diff --git a/TESTING_STATUS.md b/TESTING_STATUS.md deleted file mode 100644 index e69de29..0000000 diff --git a/TEST_COVERAGE_REPORT.md b/TEST_COVERAGE_REPORT.md deleted file mode 100644 index e69de29..0000000 diff --git a/TEST_SUMMARY_REPORT.md b/TEST_SUMMARY_REPORT.md deleted file mode 100644 index e69de29..0000000 diff --git a/WORKFLOW_DIAGRAM_README.md b/WORKFLOW_DIAGRAM_README.md deleted file mode 100644 index e69de29..0000000 diff --git a/WORKFLOW_VISUALIZATION.md b/WORKFLOW_VISUALIZATION.md deleted file mode 100644 index 21d36c6..0000000 --- a/WORKFLOW_VISUALIZATION.md +++ /dev/null @@ -1,32 +0,0 @@ -# MuMDIA Project Structure - -## Workflow Visualization - -The `workflow_visualization/` folder contains all files related to generating and viewing the MuMDIA workflow diagrams: - -- **Source**: PlantUML workflow definition -- **Generators**: Multiple tools for creating diagrams (Java, Python, Shell) -- **Output**: High-quality PNG, SVG, and PDF diagrams -- **Documentation**: Complete usage instructions - -### Quick Start -```bash -# Generate workflow diagrams -make diagrams - -# Or manually -cd workflow_visualization && ./generate_diagrams.sh -``` - -For detailed information, see [`workflow_visualization/README.md`](workflow_visualization/README.md). - -## Main Project Components - -- `feature_generators/` - Feature extraction modules -- `utilities/` - Utility functions and helpers -- `parsers/` - Data parsing modules -- `tests/` - Comprehensive test suite -- `configs/` - Configuration files -- `workflow_visualization/` - Workflow diagrams and generation tools - -The workflow diagrams provide a visual overview of the complete MuMDIA proteomics analysis pipeline. diff --git a/config_manager.py b/config_manager.py index 5a7ea07..ece3ab7 100644 --- a/config_manager.py +++ b/config_manager.py @@ -104,6 +104,7 @@ def save(self, path: str) -> None: "read_correlation", "dlc_transfer_learn", "fdr_init_search", + "coefficient_bounds", ] }, "sage_basic": self.sage_basic, diff --git a/configs/config.json b/configs/config.json index 1f60cf4..57ae7c0 100644 --- a/configs/config.json +++ b/configs/config.json @@ -4,7 +4,7 @@ "bucket_size": 1024, "enzyme": { "missed_cleavages": 2, - "min_len": 6, + "min_len": 7, "max_len": 30, "cleave_at": "KR", "restrict": "P", @@ -68,15 +68,15 @@ "database": { "bucket_size": 10240, "enzyme": { - "missed_cleavages": 2, - "min_len": 6, + "missed_cleavages": 1, + "min_len": 7, "max_len": 30, "cleave_at": "$" }, - "fragment_min_mz": 50, - "fragment_max_mz": 2500, + "fragment_min_mz": 200, + "fragment_max_mz": 1800, "peptide_min_mass": 300, - "peptide_max_mass": 5000, + "peptide_max_mass": 7200, "ion_kinds": [ "b", "y" @@ -88,15 +88,15 @@ "variable_mods": { "M": [15.9949] }, - "max_variable_mods": 2, + "max_variable_mods": 1, "decoy_tag": "rev_", - "generate_decoys": true, + "generate_decoys": false, "fasta": "fasta/ecoli_22032024.fasta" }, "precursor_tol": { - "da": [ - -40, - 40 + "ppm": [ + -50, + 50 ] }, "fragment_tol": { @@ -111,37 +111,38 @@ ], "isotope_errors": [ -1, - 1 + 3 ], - "deisotope": true, + "deisotope": false, "annotate_matches": true, - "chimera": true, + "chimera": false, "predict_rt": false, "wide_window": true, - "min_peaks": 0, - "max_peaks": 10000, - "min_matched_peaks": 5, + "min_peaks": 15, + "max_peaks": 100000000, + "min_matched_peaks": 1, "max_fragment_charge": 1, - "report_psms": 12, + "report_psms": 200, "output_directory": "./", "mzml_paths": [ "mzml_files/LFQ_Orbitrap_AIF_Ecoli_01.mzML" ] }, "mumdia": { - "write_deeplc_pickle": true, - "write_ms2pip_pickle": true, + "write_deeplc_pickle": false, + "write_ms2pip_pickle": false, "write_correlation_pickles": true, "write_initial_search_pickle": true, "write_full_search_pickle": true, "read_deeplc_pickle": true, "read_ms2pip_pickle": true, - "read_correlation_pickles": true, - "read_full_search_pickles": true, - "read_initial_search_pickle": true, + "read_correlation_pickles": false, + "read_full_search_pickles": false, + "read_initial_search_pickle": false, "remove_intermediate_files": false, "dlc_transfer_learn": false, - "fdr_init_search": 0.01, + "coefficient_bounds": 1, + "fdr_init_search": 0.0001, "rescoring_features": [ "distribution_correlation_matrix_psm_ids", "distribution_correlation_matrix_frag_ids", diff --git a/configs/config_robbin.json b/configs/config_robbin.json new file mode 100644 index 0000000..2ed9fcc --- /dev/null +++ b/configs/config_robbin.json @@ -0,0 +1,285 @@ +{ + "sage_basic": { + "database": { + "bucket_size": 1024, + "enzyme": { + "missed_cleavages": 2, + "min_len": 7, + "max_len": 30, + "cleave_at": "KR", + "restrict": "P", + "c_terminal": true + }, + "fragment_min_mz": 100, + "fragment_max_mz": 2500, + "peptide_min_mass": 300, + "peptide_max_mass": 5000, + "ion_kinds": [ + "b", + "y" + ], + "min_ion_index": 2, + "static_mods": { + "C": 57.0215 + }, + "variable_mods": { + "M": [15.9949] + }, + "max_variable_mods": 1, + "decoy_tag": "rev_", + "generate_decoys": true, + "fasta": "fasta/ecoli_22032024.fasta" + }, + "precursor_tol": { + "da": [ + -40, + 40 + ] + }, + "fragment_tol": { + "ppm": [ + -13, + 13 + ] + }, + "precursor_charge": [ + 1, + 4 + ], + "isotope_errors": [ + -1, + 1 + ], + "deisotope": false, + "annotate_matches": true, + "chimera": true, + "wide_window": true, + "min_peaks": 0, + "max_peaks": 10000, + "min_matched_peaks": 5, + "max_fragment_charge": 1, + "report_psms": 5, + "output_directory": "./", + "mzml_paths": [ + "mzml_files/LFQ_Orbitrap_AIF_Ecoli_01.mzML" + ] + }, + "sage": { + "database": { + "bucket_size": 10240, + "enzyme": { + "missed_cleavages": 1, + "min_len": 7, + "max_len": 30, + "cleave_at": "$" + }, + "fragment_min_mz": 100, + "fragment_max_mz": 3000, + "peptide_min_mass": 200, + "peptide_max_mass": 7200, + "ion_kinds": [ + "b", + "y" + ], + "min_ion_index": 2, + "fixed_mods": { + "C": 57.0215 + }, + "variable_mods": { + "M": [15.9949] + }, + "max_variable_mods": 1, + "decoy_tag": "rev_", + "generate_decoys": false, + "fasta": "fasta/ecoli_22032024.fasta" + }, + "precursor_tol": { + "ppm": [ + -50, + 50 + ] + }, + "fragment_tol": { + "ppm": [ + -40, + 40 + ] + }, + "precursor_charge": [ + 1, + 4 + ], + "deisotope": true, + "annotate_matches": true, + "chimera": true, + "predict_rt": false, + "wide_window": true, + "min_peaks": 1, + "max_peaks": 100000000, + "min_matched_peaks": 2, + "max_fragment_charge": 2, + "report_psms": 10, + "output_directory": "./", + "mzml_paths": [ + "mzml_files/LFQ_Orbitrap_AIF_Ecoli_01.mzML" + ] + }, + "mumdia": { + "write_deeplc_pickle": true, + "write_ms2pip_pickle": true, + "write_correlation_pickles": true, + "write_initial_search_pickle": false, + "write_full_search_pickle": true, + "read_deeplc_pickle": false, + "read_ms2pip_pickle": false, + "read_correlation_pickles": false, + "read_full_search_pickles": false, + "read_initial_search_pickle": true, + "remove_intermediate_files": false, + "dlc_transfer_learn": false, + "coefficient_bounds": 1, + "fdr_init_search": 0.0001, + "rescoring_features": [ + "distribution_correlation_matrix_psm_ids", + "distribution_correlation_matrix_frag_ids", + "distribution_correlation_individual", + "top_correlation_individual", + "top_correlation_matrix_frag_ids", + "top_correlation_matrix_psm_ids" + ], + "collapse_max_columns": [ + "fragment_ppm", + "rank", + "delta_next", + "delta_rt_model", + "matched_peaks", + "longest_b", + "longest_y", + "matched_intensity_pct", + "fragment_intensity", + "poisson", + "spectrum_q", + "peptide_q", + "protein_q", + "rt", + "rt_predictions", + "rt_prediction_error_abs", + "rt_prediction_error_abs_relative", + "precursor_ppm", + "hyperscore", + "delta_best" + ], + "collapse_min_columns": [ + "fragment_ppm", + "rank", + "delta_next", + "delta_rt_model", + "matched_peaks", + "longest_b", + "longest_y", + "matched_intensity_pct", + "fragment_intensity", + "poisson", + "spectrum_q", + "peptide_q", + "protein_q", + "rt", + "rt_predictions", + "rt_prediction_error_abs", + "rt_prediction_error_abs_relative", + "precursor_ppm", + "hyperscore", + "delta_best" + ], + "collapse_mean_columns": [ + "fragment_ppm", + "rank", + "delta_next", + "delta_rt_model", + "matched_peaks", + "longest_b", + "longest_y", + "matched_intensity_pct", + "fragment_intensity", + "poisson", + "spectrum_q", + "peptide_q", + "protein_q", + "rt", + "rt_predictions", + "rt_prediction_error_abs", + "rt_prediction_error_abs_relative", + "precursor_ppm", + "hyperscore", + "delta_best" + ], + "collapse_sum_columns": [ + "hyperscore", + "delta_rt_model", + "matched_peaks", + "longest_b", + "longest_y", + "matched_intensity_pct", + "fragment_intensity", + "rt", + "rt_predictions", + "rt_prediction_error_abs", + "rt_prediction_error_abs_relative", + "precursor_ppm", + "fragment_ppm", + "delta_next", + "rank", + "delta_best" + ], + "get_first_entry": [ + "psm_id", + "filename", + "scannr", + "peptide", + "num_proteins", + "proteins", + "expmass", + "calcmass", + "is_decoy", + "charge", + "peptide_len", + "missed_cleavages" + ], + "collect_distributions": [ + 0, + 5, + 10, + 15, + 20, + 25, + 30, + 35, + 40, + 45, + 50, + 55, + 60, + 65, + 70, + 75, + 80, + 85, + 90, + 95, + 100 + ], + "collect_top": [ + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10 + ] + } +} + \ No newline at end of file diff --git a/data_structures.py b/data_structures.py index 8f9425c..2fa303c 100644 --- a/data_structures.py +++ b/data_structures.py @@ -20,14 +20,14 @@ class CorrelationResults: sum_pred_frag_intens: np.ndarray correlation_matrix_psm_ids: np.ndarray correlation_matrix_frag_ids: np.ndarray - correlation_matrix_psm_ids_ignore_zeros: np.ndarray - correlation_matrix_psm_ids_ignore_zeros_counts: np.ndarray - correlation_matrix_psm_ids_missing: np.ndarray - correlation_matrix_psm_ids_missing_zeros_counts: np.ndarray - correlation_matrix_frag_ids_ignore_zeros: np.ndarray - correlation_matrix_frag_ids_ignore_zeros_counts: np.ndarray - correlation_matrix_frag_ids_missing: np.ndarray - correlation_matrix_frag_ids_missing_zeros_counts: np.ndarray + # correlation_matrix_psm_ids_ignore_zeros: np.ndarray + # correlation_matrix_psm_ids_ignore_zeros_counts: np.ndarray + # correlation_matrix_psm_ids_missing: np.ndarray + # correlation_matrix_psm_ids_missing_zeros_counts: np.ndarray + # correlation_matrix_frag_ids_ignore_zeros: np.ndarray + # correlation_matrix_frag_ids_ignore_zeros_counts: np.ndarray + # correlation_matrix_frag_ids_missing: np.ndarray + # correlation_matrix_frag_ids_missing_zeros_counts: np.ndarray most_intens_cor: float most_intens_cos: float mse_avg_pred_intens: float diff --git a/diann_feature_generator.py b/diann_feature_generator.py new file mode 100644 index 0000000..873b660 --- /dev/null +++ b/diann_feature_generator.py @@ -0,0 +1,3465 @@ +""" +DIA-NN Feature Generator for Proteomics Analysis + +This module implements the DIANNFeatureGenerator class for calculating comprehensive +features from MS/MS proteomics data for use in machine learning models. The features +are based on fragment elution profiles, correlations, and spectral library predictions. + +Author: Generated from Jupyter notebook analysis +Date: August 2025 +""" + +import numpy as np +import pandas as pd +from typing import Dict, List, Tuple, Optional, Union, Any +from scipy.signal import savgol_filter +from dataclasses import dataclass +import logging +from concurrent.futures import ThreadPoolExecutor, as_completed +from functools import partial +import matplotlib.pyplot as plt + +# Configure logging +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + + +@dataclass +class FeatureConfig: + """Configuration parameters for feature calculation.""" + + # Mass tolerance settings + fragment_mass_tolerance: float = 13.0 # ppm + precursor_mass_tolerance: float = 50.0 # ppm + + # RT tolerance settings + rt_tolerance: float = 5.0 # minutes or seconds + + # Smoothing settings + savgol_window_length: int = 3 + savgol_polyorder: int = 1 + + # Feature-specific settings + top_n_fragments: int = 6 + top_n_fragments_extended: int = 12 + isotope_mass_c13: float = 1.00335 + c13_isotope_list: List[int] = None + ms1_accuracy_factors: List[float] = None + ms2_accuracy_factors: List[float] = None + + # Parallelization settings + n_jobs: int = -1 # -1 means use all available CPU cores + + def __post_init__(self): + """Set default values for list parameters.""" + if self.c13_isotope_list is None: + self.c13_isotope_list = [1, 2, 3] + if self.ms1_accuracy_factors is None: + self.ms1_accuracy_factors = [1.0, 0.45, 0.2] + if self.ms2_accuracy_factors is None: + self.ms2_accuracy_factors = [1.0, 0.45, 0.2] + + +class DIANNFeatureGenerator: + """ + Comprehensive feature generator for DIA-NN proteomics data. + + This class calculates a wide range of features from MS/MS data including: + - Ion co-elution features (MS2 level) + - Ion co-elution features (MS1 level) + - Isotopologue co-elution features + - Total signal features + - Fragment intensity features + - Mass accuracy features + - Retention time features + - Elution profile shape features + - Library characteristics features + + The implementation addresses common issues in proteomics feature engineering: + - Robust error handling and input validation + - Configurable parameters instead of hard-coded values + - Consistent NaN handling + - Performance optimizations + - Comprehensive logging and documentation + """ + + def __init__(self, config: Optional[FeatureConfig] = None): + """ + Initialize the feature generator with built-in optimizations. + + Parameters + ---------- + config : FeatureConfig, optional + Configuration object with parameters. If None, uses defaults. + """ + self.config = config if config is not None else FeatureConfig() + self._validate_config() + self._setup_parallelization() + + # Initialize optimization caches + self._cache = {} + self._pivot_cache = {} + self._correlation_cache = {} + + logger.info("Initialized DIANNFeatureGenerator with built-in optimizations") + + def _setup_parallelization(self): + """Set up parallelization parameters.""" + import os + + if self.config.n_jobs == -1: + self.n_workers = os.cpu_count() + elif self.config.n_jobs > 0: + self.n_workers = min(self.config.n_jobs, os.cpu_count()) + else: + self.n_workers = 1 + + logger.info(f"Using {self.n_workers} workers for parallel feature calculation") + + def _validate_config(self): + """Validate configuration parameters.""" + if self.config.fragment_mass_tolerance <= 0: + raise ValueError("Fragment mass tolerance must be positive") + if self.config.rt_tolerance <= 0: + raise ValueError("RT tolerance must be positive") + if self.config.top_n_fragments <= 0: + raise ValueError("Number of top fragments must be positive") + + def _get_cache_key(self, fragments: pd.DataFrame) -> str: + """Generate cache key for fragments DataFrame.""" + try: + rt_min, rt_max = fragments["rt"].min(), fragments["rt"].max() + frag_names = sorted(fragments["fragment_names"].unique()) + return f"{len(fragments)}_{rt_min:.3f}_{rt_max:.3f}_{hash(tuple(frag_names[:10]))}" + except Exception: + return str(hash(str(fragments.shape))) + + def _get_or_create_pivot_table(self, fragments: pd.DataFrame) -> pd.DataFrame: + """Get or create pivot table with caching.""" + cache_key = f"pivot_{self._get_cache_key(fragments)}" + + if cache_key in self._pivot_cache: + return self._pivot_cache[cache_key] + + # Create pivot table efficiently + pivot_table = fragments.pivot_table( + index="rt", + columns="fragment_names", + values="fragment_intensity", + aggfunc="mean", + ) + + # Cache the result + self._pivot_cache[cache_key] = pivot_table + return pivot_table + + def clear_cache(self): + """Clear all caches to free memory.""" + self._cache.clear() + self._pivot_cache.clear() + self._correlation_cache.clear() + logger.info("Cleared all caches") + + def get_cache_stats(self) -> Dict[str, int]: + """Get cache statistics for monitoring.""" + return { + "main_cache_size": len(self._cache), + "pivot_cache_size": len(self._pivot_cache), + "correlation_cache_size": len(self._correlation_cache), + } + + def _validate_fragments_input(self, fragments: pd.DataFrame) -> pd.DataFrame: + """ + Optimized fragment validation with caching. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + + Returns + ------- + pd.DataFrame + Validated and cleaned fragment data + + Raises + ------ + ValueError + If required columns are missing or data is invalid + """ + if fragments.empty: + raise ValueError("Fragment data is empty") + + required_cols = ["fragment_names", "rt", "fragment_intensity"] + missing_cols = set(required_cols) - set(fragments.columns) + if missing_cols: + raise ValueError(f"Missing required columns: {missing_cols}") + + # Check if already cleaned (cache check) + cache_key = f"validated_{self._get_cache_key(fragments)}" + if cache_key in self._cache: + return self._cache[cache_key] + + # Clean data efficiently + fragments = fragments.copy() + + # Vectorized numeric conversion + fragments["rt"] = pd.to_numeric(fragments["rt"], errors="coerce") + fragments["fragment_intensity"] = pd.to_numeric( + fragments["fragment_intensity"], errors="coerce" + ) + + # Remove invalid data in one operation + initial_size = len(fragments) + valid_mask = fragments["rt"].notna() & fragments["fragment_intensity"].notna() + fragments = fragments[valid_mask] + + if fragments.empty: + raise ValueError("No valid fragment data after cleaning") + + if len(fragments) < initial_size: + logger.debug(f"Removed {initial_size - len(fragments)} invalid rows") + + # Cache the result + self._cache[cache_key] = fragments + return fragments + + def _search_sorted_with_tolerance( + self, arr: np.ndarray, target: float, tolerance: float + ) -> Tuple[Optional[int], Optional[float]]: + """ + Find closest value in sorted array within tolerance. + + Parameters + ---------- + arr : np.ndarray + Sorted array to search + target : float + Target value + tolerance : float + Maximum allowed difference + + Returns + ------- + Tuple[Optional[int], Optional[float]] + Index and value of closest match, or (None, None) if no match + """ + if len(arr) == 0: + return None, None + + arr = np.asarray(arr) + if not np.all(np.diff(arr) >= 0): + arr = np.sort(arr) + + idx = np.searchsorted(arr, target) + candidates = [] + + # Check current position and neighbors + for check_idx in [idx - 1, idx, idx + 1]: + if 0 <= check_idx < len(arr): + candidates.append((check_idx, arr[check_idx])) + + if not candidates: + return None, None + + # Find closest within tolerance + best_idx, best_val = min(candidates, key=lambda x: abs(x[1] - target)) + return ( + (best_idx, best_val) + if abs(best_val - target) <= tolerance + else (None, None) + ) + + def find_top_n_fragments(self, fragments: pd.DataFrame, n: int = None) -> List[str]: + """ + Optimized top fragment finding with caching. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + n : int, optional + Number of fragments to return. Uses config default if None. + + Returns + ------- + List[str] + List of fragment names sorted by intensity (descending) + """ + if n is None: + n = self.config.top_n_fragments + + cache_key = f"top_frags_{n}_{self._get_cache_key(fragments)}" + if cache_key in self._cache: + return self._cache[cache_key] + + fragments = self._validate_fragments_input(fragments) + + if "fragment_names" not in fragments.columns: + raise ValueError("Missing 'fragment_names' column") + + # Vectorized groupby operation + top_fragments = ( + fragments.groupby("fragment_names", sort=False)["fragment_intensity"] + .max() + .nlargest(n) + .index.tolist() + ) + + # Cache the result + self._cache[cache_key] = top_fragments + return top_fragments + + def find_best_fragment(self, fragments: pd.DataFrame) -> str: + """ + Optimized best fragment finding with caching and vectorized correlation calculation. + + The best fragment is defined as the fragment from the top 6 most intense + fragments that maximizes the sum of Pearson correlations with other fragments. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + + Returns + ------- + str + Name of the best fragment + + Raises + ------ + ValueError + If no best fragment can be determined + """ + cache_key = f"best_frag_{self._get_cache_key(fragments)}" + if cache_key in self._cache: + return self._cache[cache_key] + + fragments = self._validate_fragments_input(fragments) + top_fragments = self.find_top_n_fragments( + fragments, self.config.top_n_fragments + ) + + if len(top_fragments) < 2: + logger.warning("Less than 2 fragments available, using first fragment") + best = top_fragments[0] if top_fragments else None + self._cache[cache_key] = best + return best + + # Filter to top fragments efficiently + top_fragment_set = set(top_fragments) + filtered_fragments = fragments[ + fragments["fragment_names"].isin(top_fragment_set) + ] + + # Create pivot table + pivot_table = self._get_or_create_pivot_table(filtered_fragments) + + if pivot_table.empty: + best = top_fragments[0] + self._cache[cache_key] = best + return best + + # Calculate correlations efficiently using numpy + correlation_sums = {} + + # Convert to numpy for faster computation + pivot_values = pivot_table.values + fragment_names = pivot_table.columns.tolist() + + # Only compute correlations for top fragments + top_indices = [ + i for i, name in enumerate(fragment_names) if name in top_fragments + ] + + if len(top_indices) < 2: + best = top_fragments[0] + self._cache[cache_key] = best + return best + + # Compute correlation matrix for top fragments only + top_values = pivot_values[:, top_indices] + correlation_matrix = np.corrcoef(top_values.T, rowvar=True) + correlation_matrix = np.nan_to_num(correlation_matrix, 0.0) + + # Sum correlations for each fragment + for i, global_idx in enumerate(top_indices): + frag_name = fragment_names[global_idx] + correlation_sums[frag_name] = ( + np.sum(correlation_matrix[i]) - 1.0 + ) # Subtract self-correlation + + # Find best fragment + if correlation_sums: + best = max(correlation_sums.items(), key=lambda x: x[1])[0] + else: + best = top_fragments[0] + + # Cache the result + self._cache[cache_key] = best + return best + + def _apply_savgol_smoothing( + self, + intensity: np.ndarray, + window_length: Optional[int] = None, + polyorder: Optional[int] = None, + ) -> np.ndarray: + """ + Apply Savitzky-Golay smoothing with robust parameter handling. + + Parameters + ---------- + intensity : np.ndarray + Intensity values to smooth + window_length : int, optional + Window length for smoothing + polyorder : int, optional + Polynomial order for smoothing + + Returns + ------- + np.ndarray + Smoothed intensity values + """ + if window_length is None: + window_length = self.config.savgol_window_length + if polyorder is None: + polyorder = self.config.savgol_polyorder + + if len(intensity) < 3: + return intensity.copy() + + # Ensure odd window length + wl = min(window_length, len(intensity)) + if wl % 2 == 0: + wl -= 1 + wl = max(3, wl) # Minimum window length of 3 + + # Ensure polyorder is less than window length + po = min(polyorder, wl - 1) + + try: + return savgol_filter(intensity, window_length=wl, polyorder=po) + except Exception as e: + logger.warning(f"Smoothing failed: {e}, returning original data") + return intensity.copy() + + def calculate_pearson_correlations( + self, + fragments: pd.DataFrame, + best_fragment: Optional[str] = None, + use_all_rt: bool = False, + visualize: bool = False, + ) -> Tuple[pd.Series, np.ndarray, Dict[str, float]]: + """ + Optimized Pearson correlation calculation with caching. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + best_fragment : str, optional + Name of best fragment. If None, will be determined automatically. + use_all_rt : bool, default=False + Whether to use all RT points (filling missing with 0) or only overlapping points + visualize : bool, default=False + If True, render diagnostic plots + + Returns + ------- + Tuple[pd.Series, np.ndarray, Dict[str, float]] + Best fragment trace, smoothed trace, and correlation dictionary + """ + cache_key = f"correlations_{self._get_cache_key(fragments)}_{best_fragment}_{use_all_rt}" + + if not visualize and cache_key in self._correlation_cache: + return self._correlation_cache[cache_key] + + fragments = self._validate_fragments_input(fragments) + + if best_fragment is None: + best_fragment = self.find_best_fragment(fragments) + + # Get or create pivot table + pivot_table = self._get_or_create_pivot_table(fragments) + + if best_fragment not in pivot_table.columns: + raise ValueError(f"Best fragment '{best_fragment}' not found in data") + + # Get best fragment trace and smooth it + best_trace = pivot_table[best_fragment].dropna() + if len(best_trace) == 0: + raise ValueError("Best fragment has no valid data points") + + smoothed_best_trace = self._apply_savgol_smoothing(best_trace.values) + + # Calculate correlations efficiently + correlations = {} + + if use_all_rt: + # Fill missing values with 0 and use all RT points + pivot_filled = pivot_table.fillna(0.0) + best_trace_filled = pivot_filled[best_fragment] + smoothed_best_filled = self._apply_savgol_smoothing( + best_trace_filled.values + ) + + # Vectorized correlation calculation + smoothed_series = pd.Series(smoothed_best_filled, index=pivot_filled.index) + + # Batch correlation calculation + for frag in pivot_table.columns: + frag_trace = pivot_filled[frag] + if len(frag_trace) < 2: + correlations[frag] = np.nan + continue + + # Use pandas built-in correlation which is optimized + corr = smoothed_series.corr(frag_trace) + correlations[frag] = corr if not pd.isna(corr) else 0.0 + else: + # Use only overlapping RT points + best_smoothed_series = pd.Series( + smoothed_best_trace, index=best_trace.index + ) + + # Pre-compute common indices for efficiency + best_index_set = set(best_trace.index) + + for frag in pivot_table.columns: + frag_trace = pivot_table[frag].dropna() + + # Fast intersection using set operations + frag_index_set = set(frag_trace.index) + common_indices = best_index_set & frag_index_set + + if len(common_indices) < 2: + correlations[frag] = np.nan + continue + + # Convert back to sorted index for pandas + common_index = sorted(common_indices) + + # Use optimized pandas correlation + corr = best_smoothed_series.loc[common_index].corr( + frag_trace.loc[common_index] + ) + correlations[frag] = corr if not pd.isna(corr) else 0.0 + + # For visualization alignment + vis_index = best_trace.index + smoothed_for_vis = smoothed_best_trace + + # -------------------- Visualization (optional) -------------------- + if visualize: + # Prepare correlation series + corr_s = pd.Series(correlations).dropna().sort_values(ascending=False) + + # Choose top-6 by correlation for overlay (fallback to available) + top_k = 6 + top_frags = corr_s.index[:top_k].tolist() + + # Build a matrix of fragment traces aligned to vis_index + # (If use_all_rt=False, traces outside vis_index become NaN -> fill 0) + aligned = ( + pivot_table.reindex(index=vis_index) + .reindex(columns=top_frags) + .fillna(0.0) + ) + + # Normalize each trace to [0,1] for fair overlay + def _minmax(x: pd.Series) -> pd.Series: + x = x.astype(float) + rng = float(x.max() - x.min()) + return (x - x.min()) / (rng if rng > 0 else 1.0) + + aligned_norm = aligned.apply(_minmax, axis=0) + smoothed_norm = (smoothed_for_vis - np.min(smoothed_for_vis)) / ( + (np.max(smoothed_for_vis) - np.min(smoothed_for_vis)) or 1.0 + ) + + # Create figure with three panels + fig, axes = plt.subplots(1, 3, figsize=(15, 4)) + + # (i) Best vs. smoothed best + axes[0].plot( + best_trace.index, best_trace.values, label="Best fragment (raw)" + ) + axes[0].plot(vis_index, smoothed_for_vis, label="Best fragment (smoothed)") + axes[0].set_title("Best fragment trace") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Intensity") + axes[0].legend() + + # (ii) Overlay of top-6 normalized traces vs. smoothed best + for col in aligned_norm.columns: + axes[1].plot(vis_index, aligned_norm[col].values, alpha=0.8, label=col) + axes[1].plot( + vis_index, + smoothed_norm, + linestyle="--", + linewidth=2, + label="Smoothed best (norm)", + ) + axes[1].set_title("Top-6 fragment traces (normalized)") + axes[1].set_xlabel("RT") + axes[1].set_ylabel("Relative intensity") + axes[1].legend(fontsize=8, ncol=1, loc="upper right") + + # (iii) Correlation bar chart + axes[2].barh(corr_s.index[::-1], corr_s.values[::-1]) + axes[2].set_xlim(-1.0, 1.0) + axes[2].set_title("Pearson correlations vs. smoothed best") + axes[2].set_xlabel("r") + axes[2].set_ylabel("Fragment") + + plt.tight_layout() + plt.show() + + # ----------------------------------------------------------------- + + result = (best_trace, smoothed_best_trace, correlations) + + # Cache if not visualizing + if not visualize: + self._correlation_cache[cache_key] = result + + return result + + def build_elution_profile( + self, + target_mz: float, + ms1_dict: Dict[str, Dict[str, Any]], + tolerance_ppm: Optional[float] = None, + acc_factor: float = 1.0, + ) -> Dict[float, float]: + """ + Build elution profile from MS1 data for a given m/z. + + Parameters + ---------- + target_mz : float + Target m/z value + ms1_dict : dict + MS1 data dictionary + tolerance_ppm : float, optional + Mass tolerance in ppm. Uses config default if None. + acc_factor : float, default=1.0 + Accuracy factor to multiply tolerance + + Returns + ------- + Dict[float, float] + Dictionary mapping RT to intensity + """ + if tolerance_ppm is None: + tolerance_ppm = self.config.precursor_mass_tolerance + + elution_profile = {} + tol_mz = target_mz * tolerance_ppm / 1e6 * acc_factor + + for scan, scan_dict in ms1_dict.items(): + mzs = scan_dict.get("mz", []) + intensities = scan_dict.get("intensity", []) + rt = scan_dict.get("retention_time", None) + + if rt is None or len(mzs) == 0 or len(intensities) == 0: + continue + + # Convert RT from seconds to minutes if needed + if isinstance(rt, (int, float)) and rt > 1000: # Likely in seconds + rt = rt / 60 + + best_idx, best_val = self._search_sorted_with_tolerance( + mzs, target_mz, tol_mz + ) + + if best_idx is not None: + elution_profile[rt] = intensities[best_idx] + + return elution_profile + + # Feature Group 1: Ion Co-elution (MS2 level) + + def feature_pearson_correlations_top_n( + self, + fragments: pd.DataFrame, + n: Optional[int] = None, + visualize: bool = False, + ) -> np.ndarray: + """ + Calculate Pearson correlations of the top-n fragments with the smoothed + elution profile of the best fragment. Optionally visualize the results. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data. Must contain at least: + ['rt', 'fragment_names', 'fragment_intensity']. + n : int, optional + Number of top fragments. Uses `self.config.top_n_fragments_extended` + if None. + visualize : bool, default=False + If True, render: + (i) a bar chart of the top-n correlations, and + (ii) an overlay of the top-n (normalized) traces vs. the smoothed best. + + Returns + ------- + np.ndarray + Array (length n) with Pearson correlation coefficients for the selected + top-n fragments (NaN-padded if fewer than n are available). + """ + if n is None: + n = self.config.top_n_fragments_extended + + fragments = self._validate_fragments_input(fragments) + + try: + # Avoid double plotting here: get correlations without visualization, + # then perform visualization specific to this "top-n" feature below. + best_trace, smoothed_best_trace, correlations = ( + self.calculate_pearson_correlations(fragments, visualize=False) + ) + + # Determine the top-n fragments according to your internal criterion + top_fragments = self.find_top_n_fragments(fragments, n) + + # Build the fixed-size result vector (NaN-padded) + result = np.full(n, np.nan, dtype=float) + for i, frag in enumerate(top_fragments[:n]): + if frag in correlations: + result[i] = correlations[frag] + + # -------------------- Visualization (optional) -------------------- + if visualize: + # 1) Bar chart of correlations for the chosen top-n (in the chosen order) + labels = top_fragments[:n] + vals = [correlations.get(f, np.nan) for f in labels] + + # 2) Overlay of normalized traces for the top-n vs. smoothed best + # Align everything to the best_trace index (RT grid). + pivot = ( + fragments.pivot_table( + index="rt", + columns="fragment_names", + values="fragment_intensity", + aggfunc="mean", + ) + .reindex(best_trace.index) # align rows to best fragment RTs + .reindex(columns=labels) # keep only selected fragments + .fillna(0.0) + ) + + # Per-fragment min–max normalization for display + def _minmax(x: pd.Series) -> pd.Series: + x = x.astype(float) + rng = float(x.max() - x.min()) + return (x - x.min()) / (rng if rng > 0 else 1.0) + + pivot_norm = pivot.apply(_minmax, axis=0) + + # Normalize smoothed best for overlay + sb = np.asarray(smoothed_best_trace, float) + sb_norm = (sb - sb.min()) / ( + sb.max() - sb.min() if sb.max() > sb.min() else 1.0 + ) + + fig, axes = plt.subplots(1, 2, figsize=(13, 4)) + + # (i) Bar chart of correlations + axes[0].barh(labels[::-1], np.asarray(vals, dtype=float)[::-1]) + axes[0].set_xlim(-1.05, 1.05) + axes[0].axvline(0.0, linestyle="--", linewidth=1) + axes[0].set_title( + f"Top-{len(labels)} fragment correlations (Pearson r)" + ) + axes[0].set_xlabel("r") + axes[0].set_ylabel("Fragment") + + # (ii) Overlay of normalized traces vs. smoothed best + for col in pivot_norm.columns: + axes[1].plot( + best_trace.index, pivot_norm[col].values, alpha=0.8, label=col + ) + axes[1].plot( + best_trace.index, + sb_norm, + linestyle="--", + linewidth=2, + label="Smoothed best (norm)", + ) + axes[1].set_title("Top-n fragment chromatograms (normalized)") + axes[1].set_xlabel("RT") + axes[1].set_ylabel("Relative intensity") + axes[1].legend(fontsize=8, ncol=1, loc="upper right") + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return result + + except Exception as e: + logger.error(f"Error calculating correlations: {e}") + return np.full(n, np.nan, dtype=float) + + def feature_sum_correlations_mass_accuracy( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW toggle + ) -> np.ndarray: + """ + Sum of correlations for top-N fragments at different mass-accuracy factors, + with an optional visualization. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data. Must include a 'ppm_error' column to enable filtering. + visualize : bool, default=False + If True, renders: + (i) a line/bar chart of correlation sums vs. mass-accuracy factor, and + (ii) a boxplot of per-factor correlation distributions (top-N). + + Returns + ------- + np.ndarray + Array of correlation sums for each mass-accuracy factor in + `self.config.ms2_accuracy_factors` (NaN for failures/empty). + """ + # --- Configuration guards --- + if not hasattr(self, "config") or not hasattr( + self.config, "ms2_accuracy_factors" + ): + raise AttributeError( + "self.config.ms2_accuracy_factors is required but not found." + ) + if not hasattr(self.config, "fragment_mass_tolerance"): + raise AttributeError( + "self.config.fragment_mass_tolerance is required but not found." + ) + if not hasattr(self.config, "top_n_fragments"): + raise AttributeError( + "self.config.top_n_fragments is required but not found." + ) + + if "ppm_error" not in fragments.columns: + logger.warning("ppm_error column missing, skipping mass accuracy filtering") + # Preserve output shape + out = np.array([np.nan] * len(self.config.ms2_accuracy_factors)) + if visualize: + plt.figure(figsize=(7, 3)) + plt.plot(self.config.ms2_accuracy_factors, out, marker="o") + plt.title( + "Correlation sums vs. mass-accuracy factor (ppm_error missing)" + ) + plt.xlabel("Mass-accuracy factor") + plt.ylabel("Sum of correlations (top-N)") + plt.tight_layout() + plt.show() + return out + + # --- Main computation loop --- + factors = list(self.config.ms2_accuracy_factors) + results: list[float] = [] + per_factor_corrs: list[np.ndarray] = [] # for visualization (boxplot) + + # CRITICAL FIX: Determine the best fragment from the FULL dataset first + # to ensure we use the same reference fragment for all mass accuracy factors + try: + best_fragment = self.find_best_fragment(fragments) + except Exception as e: + logger.error(f"Error finding best fragment: {e}") + # Return all NaN if we can't find a best fragment + results_arr = np.array([np.nan] * len(factors)) + if visualize: + plt.figure(figsize=(7, 3)) + plt.plot(factors, results_arr, marker="o") + plt.title( + "Correlation sums vs. mass-accuracy factor (no best fragment)" + ) + plt.xlabel("Mass-accuracy factor") + plt.ylabel("Sum of correlations (top-N)") + plt.tight_layout() + plt.show() + return results_arr + + for factor in factors: + try: + # Filter by (absolute) ppm tolerance scaled by factor + tol_ppm = float(self.config.fragment_mass_tolerance) * float(factor) + filtered = fragments[fragments["ppm_error"] <= tol_ppm] + + if filtered.empty: + results.append(np.nan) + per_factor_corrs.append(np.array([np.nan])) + continue + + # CRITICAL FIX: Use the pre-determined best fragment, but fall back if it's not available + # Check if the best fragment survived the filtering + fragment_names_in_filtered = filtered["fragment_names"].unique() + + if best_fragment in fragment_names_in_filtered: + # Best case: use the original best fragment + reference_fragment = best_fragment + else: + # Fallback: find the best fragment from the filtered data + # This maintains consistency within this mass accuracy level + try: + reference_fragment = self.find_best_fragment(filtered) + logger.warning( + f"Best fragment '{best_fragment}' not found in filtered data " + f"for factor {factor}, using '{reference_fragment}' instead" + ) + except Exception as e: + logger.error( + f"Could not find any best fragment in filtered data for factor {factor}: {e}" + ) + results.append(np.nan) + per_factor_corrs.append(np.array([np.nan])) + continue + + # Calculate correlations using the determined reference fragment + _, _, correlations = ( + self.calculate_pearson_correlations( # TODO: Use all RT??? + filtered, best_fragment=reference_fragment + ) + ) + + # Get top N fragments from the filtered data + top_fragments = self.find_top_n_fragments( + filtered, self.config.top_n_fragments + ) + + # Calculate correlations for top N fragments, padding with NaN as needed + corrs = np.full(self.config.top_n_fragments, np.nan) + for i, frag in enumerate(top_fragments[: self.config.top_n_fragments]): + if frag in correlations: + corrs[i] = correlations[frag] + + # Store individual correlations for visualization and the sum for the feature + per_factor_corrs.append(np.asarray(corrs, dtype=float)) + results.append(np.nansum(corrs)) + + except Exception as e: + logger.error(f"Error with mass accuracy factor {factor}: {e}") + results.append(np.nan) + per_factor_corrs.append(np.array([np.nan])) + + results_arr = np.asarray(results, dtype=float) + + # --- Optional visualization --- + if visualize: + # Figure 1: correlation sums vs factor + fig, ax = plt.subplots(1, 2, figsize=(13, 4)) + + # Left: line/marker plot (handles NaNs gracefully) + ax[0].plot(factors, results_arr, marker="o") + ax[0].set_title( + "Sum of fragment–reference correlations\nacross mass-accuracy factors" + ) + ax[0].set_xlabel("Mass-accuracy factor (× base tolerance)") + ax[0].set_ylabel("Sum of correlations (top-N)") + ax[0].grid(True, alpha=0.3) + + # Right: boxplot of per-factor correlation distributions (top-N each) + # Prepare data: replace pure-NaN arrays with [np.nan] to keep boxplot aligned + box_data = [ + vals if np.any(np.isfinite(vals)) else np.array([np.nan]) + for vals in per_factor_corrs + ] + ax[1].boxplot(box_data, labels=[str(f) for f in factors], showmeans=True) + ax[1].set_title("Distribution of per-fragment correlations (top-N)") + ax[1].set_xlabel("Mass-accuracy factor") + ax[1].set_ylabel("Pearson r") + ax[1].set_ylim(-1.05, 1.05) + + fig.suptitle( + f"Base fragment mass tolerance = {self.config.fragment_mass_tolerance} ppm; " + f"Top-N = {self.config.top_n_fragments}", + y=1.03, + fontsize=10, + ) + plt.tight_layout() + plt.show() + + return results_arr + + def feature_remaining_fragments_correlations( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW toggle + ) -> np.ndarray: + """ + Sum of correlations for remaining fragments (non-normalized and normalized). + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + visualize : bool, default=False + If True, render diagnostic plots for the remaining-fragment correlations: + (i) sorted bar plot of r for the remaining fragments, + (ii) histogram (density) with mean and zero-reference. + + Returns + ------- + np.ndarray + Array with [non_normalized_sum, normalized_sum] + """ + try: + # Compute correlations for all fragments against the smoothed best trace + # (do not visualize here; this function controls plotting) + _, _, correlations = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # Determine the "top" set to exclude, using the extended N from config + top_fragments = self.find_top_n_fragments( + fragments, self.config.top_n_fragments + ) + + # Collect correlations for fragments not in the top set + remaining_names = [f for f in correlations.keys() if f not in top_fragments] + remaining_corrs = np.array( + [correlations.get(f, np.nan) for f in remaining_names], dtype=float + ) + + # Remove NaNs + valid_mask = np.isfinite(remaining_corrs) + valid_corrs = remaining_corrs[valid_mask] + valid_names = [n for n, m in zip(remaining_names, valid_mask) if m] + + if valid_corrs.size == 0: + # Nothing to visualize either + if visualize: + fig, ax = plt.subplots(1, 1, figsize=(7, 3)) + ax.set_title("No remaining fragments with valid correlations") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.array([0.0, 0.0], dtype=float) + + non_normalized = float(np.sum(valid_corrs)) + normalized = float(non_normalized / valid_corrs.size) + + # -------------------- Visualization (optional) -------------------- + if visualize: + # Sort for bar plot readability + order = np.argsort(valid_corrs) # ascending + corr_sorted = valid_corrs[order] + names_sorted = [valid_names[i] for i in order] + + fig, axes = plt.subplots(1, 2, figsize=(13, 4)) + + # (i) Sorted bar plot of remaining correlations + axes[0].barh(names_sorted, corr_sorted) + axes[0].set_xlim(-1.05, 1.05) + axes[0].axvline(0.0, linestyle="--", linewidth=1) + axes[0].set_title("Remaining fragments: Pearson r (sorted)") + axes[0].set_xlabel("r") + axes[0].set_ylabel("Fragment") + + # (ii) Histogram with density; indicate mean and zero + axes[1].hist(valid_corrs, bins=20, density=True) + axes[1].axvline(0.0, linestyle="--", linewidth=1, label="r = 0") + axes[1].axvline( + normalized, + linestyle=":", + linewidth=2, + label=f"Mean r = {normalized:.3f}", + ) + axes[1].set_xlim(-1.05, 1.05) + axes[1].set_title("Distribution of remaining-fragment correlations") + axes[1].set_xlabel("r") + axes[1].set_ylabel("Density") + axes[1].legend() + + fig.suptitle( + f"Excluded top-{self.config.top_n_fragments}; " + f"Remaining: {valid_corrs.size} fragments\n" + f"Sum = {non_normalized:.3f}, Mean = {normalized:.3f}", + y=1.03, + fontsize=10, + ) + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return np.array([non_normalized, normalized], dtype=float) + + except Exception as e: + logger.error(f"Error calculating remaining fragment correlations: {e}") + return np.array([np.nan, np.nan], dtype=float) + + def feature_best_b_fragments_correlation( + self, + fragments: pd.DataFrame, + n: int = 3, + visualize: bool = False, # <-- NEW + ) -> float: + """ + Sum of correlations for top-n b-fragments, with optional visualization. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + n : int, default=3 + Number of top b-fragments to consider + visualize : bool, default=False + If True, render diagnostic plots of b-fragment correlations. + + Returns + ------- + float + Sum of correlations for best b-fragments + """ + try: + _, _, correlations = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # Select only b-fragments + b_fragments = [frag for frag in correlations.keys() if frag.startswith("b")] + + if len(b_fragments) == 0: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title("No b-fragments found") + ax.set_axis_off() + plt.show() + return np.nan + + # Sort by correlation (descending) and take top-n + b_fragments_sorted = sorted( + b_fragments, key=lambda x: correlations.get(x, -np.inf), reverse=True + ) + top_b = b_fragments_sorted[:n] + corrs = [correlations.get(f, 0.0) for f in top_b] + corr_sum = float(np.nansum(corrs)) + + # -------------------- Visualization -------------------- + if visualize: + # Build sorted correlation series for all b-fragments + corr_s = pd.Series( + {f: correlations.get(f, np.nan) for f in b_fragments} + ) + corr_s = corr_s.sort_values(ascending=True) # for barh plot + + fig, axes = plt.subplots(1, 2, figsize=(13, 4)) + + # (i) Barh plot of all b-fragment correlations + colors = [ + "tab:blue" if f not in top_b else "tab:orange" for f in corr_s.index + ] + axes[0].barh(corr_s.index, corr_s.values, color=colors) + axes[0].axvline(0.0, linestyle="--", linewidth=1, color="black") + axes[0].set_xlim(-1.05, 1.05) + axes[0].set_title(f"b-fragment correlations (top-{n} in orange)") + axes[0].set_xlabel("Pearson r") + + # (ii) Histogram of correlation distribution + vals = corr_s.values[np.isfinite(corr_s.values)] + axes[1].hist(vals, bins=20, density=True, alpha=0.7) + axes[1].axvline( + 0.0, linestyle="--", linewidth=1, color="black", label="r = 0" + ) + axes[1].axvline( + np.mean(corrs), + linestyle=":", + linewidth=2, + color="tab:orange", + label=f"Mean of top-{n} = {np.nanmean(corrs):.3f}", + ) + axes[1].set_xlim(-1.05, 1.05) + axes[1].set_title("Distribution of b-fragment correlations") + axes[1].set_xlabel("r") + axes[1].set_ylabel("Density") + axes[1].legend() + + fig.suptitle( + f"Top-{n} b-fragment correlation sum = {corr_sum:.3f}", + y=1.02, + fontsize=11, + ) + plt.tight_layout() + plt.show() + # ------------------------------------------------------- + + return corr_sum + + except Exception as e: + logger.error(f"Error calculating b-fragment correlations: {e}") + return np.nan + + def feature_precursor_best_fragment_correlation( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW toggle + ) -> float: + """ + Correlation between precursor (MS1) and best fragment (MS2) elution profiles. + Optionally visualizes the aligned traces and the point-wise relationship. + + Parameters + ---------- + precursor : pd.DataFrame + Precursor information; must contain 'calcmass' and 'charge' columns. + fragments : pd.DataFrame + Fragment data used to locate and smooth the best-fragment chromatogram. + ms1_dict : dict + MS1 data dictionary consumed by `self.build_elution_profile(...)`. + visualize : bool, default=False + If True, render: + (i) overlay of aligned precursor and smoothed-best-fragment elution profiles (min–max normalized), + (ii) scatter of paired intensities used for the Pearson correlation. + + Returns + ------- + float + Pearson correlation coefficient between the aligned precursor intensity + and the smoothed best-fragment intensity (NaN if insufficient data). + """ + try: + # --- Compute precursor m/z --- + precursor_mz = ( + precursor["calcmass"].iloc[0] / precursor["charge"].iloc[0] + + 1.007276466879 + ) + + # --- Build precursor (MS1) elution profile --- + elution_profile = self.build_elution_profile(precursor_mz, ms1_dict) + if not elution_profile: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title("No MS1 elution profile available") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.nan + + # --- Best-fragment (MS2) trace and its smoothed version --- + best_trace, smoothed_best_trace, _ = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # --- Align profiles (ASOF merge on RT within tolerance) --- + smoothed_best_df = pd.DataFrame( + { + "rt": best_trace.index.astype(float), + "smoothed_intensity": smoothed_best_trace, + } + ).sort_values("rt") + + elution_df = ( + pd.DataFrame(list(elution_profile.items()), columns=["rt", "intensity"]) + .astype({"rt": float}) + .sort_values("rt") + ) + + merged = pd.merge_asof( + smoothed_best_df, + elution_df, + on="rt", + direction="nearest", + tolerance=self.config.rt_tolerance, + ) + merged_clean = merged.dropna(subset=["smoothed_intensity", "intensity"]) + + if len(merged_clean) < 2: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title("Insufficient overlap after RT alignment") + ax.set_xlabel("RT") + ax.set_ylabel("Intensity") + plt.tight_layout() + plt.show() + return np.nan + + # --- Pearson correlation --- + r = float( + merged_clean["smoothed_intensity"].corr(merged_clean["intensity"]) + ) + + # -------------------- Visualization (optional) -------------------- + if visualize: + # Min–max normalization for visual comparison of shapes + def _minmax(x: pd.Series) -> np.ndarray: + x = x.to_numpy(dtype=float) + xmin, xmax = np.nanmin(x), np.nanmax(x) + return ( + (x - xmin) / (xmax - xmin) if xmax > xmin else np.zeros_like(x) + ) + + rt_aligned = merged_clean["rt"].to_numpy(dtype=float) + ms2_norm = _minmax(merged_clean["smoothed_intensity"]) + ms1_norm = _minmax(merged_clean["intensity"]) + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Overlay of normalized elution profiles + axes[0].plot( + rt_aligned, ms2_norm, label="Best fragment (smoothed, norm.)" + ) + axes[0].plot(rt_aligned, ms1_norm, label="Precursor (MS1, norm.)") + axes[0].set_title(f"Aligned elution profiles (r = {r:.3f})") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Relative intensity") + axes[0].legend() + + # (ii) Scatter of paired intensities used for correlation + axes[1].scatter( + merged_clean["smoothed_intensity"].to_numpy(dtype=float), + merged_clean["intensity"].to_numpy(dtype=float), + alpha=0.7, + ) + axes[1].set_title("Point-wise relationship (paired samples)") + axes[1].set_xlabel("Best fragment (smoothed) intensity") + axes[1].set_ylabel("Precursor (MS1) intensity") + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return r + + except Exception as e: + logger.error(f"Error calculating precursor-fragment correlation: {e}") + return np.nan + + # Feature Group 2: MS1 Level Co-elution + def feature_ms1_accuracy_correlations( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW: overall summary visualization + visualize_per_factor: bool = False, # <-- NEW: delegate per-factor plots to helper + ) -> np.ndarray: + """ + Correlations between precursor (MS1) and best-fragment (MS2) elution profiles + computed across a sweep of MS1 mass-accuracy factors. Optionally visualizes: + (i) a summary line plot of correlation vs. accuracy factor, and + (ii) per-factor diagnostic plots (if `visualize_per_factor=True`, via helper). + + Parameters + ---------- + precursor : pd.DataFrame + Precursor information; must contain 'calcmass' and 'charge'. + fragments : pd.DataFrame + Fragment data for best-fragment profiling. + ms1_dict : dict + MS1 data dictionary to be consumed by `self.build_elution_profile(...)`. + visualize : bool, default=False + Draw a summary plot of correlation vs. MS1 accuracy factor. + visualize_per_factor : bool, default=False + If True, pass `visualize=True` down to the helper to render an overlay + and scatter for *each* factor. + + Returns + ------- + np.ndarray + Array of Pearson correlations (one per MS1 accuracy factor in + `self.config.ms1_accuracy_factors`), NaN where unavailable. + """ + if not hasattr(self, "config") or not hasattr( + self.config, "ms1_accuracy_factors" + ): + raise AttributeError( + "self.config.ms1_accuracy_factors is required but missing." + ) + + factors: List[float] = list(self.config.ms1_accuracy_factors) + results: List[float] = [] + + for acc_factor in factors: + try: + corr = self._calculate_precursor_fragment_correlation_with_accuracy( + precursor=precursor, + fragments=fragments, + ms1_dict=ms1_dict, + acc_factor=acc_factor, + visualize=visualize_per_factor, # pass through if requested + ) + results.append(corr) + except Exception as e: + logger.error(f"Error with MS1 accuracy factor {acc_factor}: {e}") + results.append(np.nan) + + results_arr = np.asarray(results, dtype=float) + + # ---- Summary visualization (optional) ---- + if visualize: + plt.figure(figsize=(7, 4)) + plt.plot(factors, results_arr, marker="o") + plt.title("MS1–MS2 correlation vs. MS1 mass-accuracy factor") + plt.xlabel("MS1 mass-accuracy factor (× base tolerance)") + plt.ylabel("Pearson correlation (r)") + plt.grid(True, alpha=0.3) + plt.tight_layout() + plt.show() + + return results_arr + + def _calculate_precursor_fragment_correlation_with_accuracy( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Dict[str, Dict[str, Any]], + acc_factor: float, + visualize: bool = False, # <-- NEW: per-factor diagnostic visualization + ) -> float: + """ + Compute the Pearson correlation between the precursor (MS1) elution profile + extracted at a given MS1 mass-accuracy factor and the smoothed best-fragment + (MS2) elution profile. Optionally visualizes the aligned traces and the + paired-intensity scatter for this specific factor. + + Parameters + ---------- + precursor : pd.DataFrame + Must contain 'calcmass' and 'charge'. + fragments : pd.DataFrame + Fragment data used to obtain the best-fragment chromatogram and smoothing. + ms1_dict : dict + MS1 data dictionary used by `self.build_elution_profile`. + acc_factor : float + Multiplicative factor applied to the base MS1 mass tolerance. + visualize : bool, default=False + Draw two panels for this factor: + (i) overlay of normalized MS1 vs. smoothed MS2 elution profiles, + (ii) scatter of paired intensities used for the correlation. + + Returns + ------- + float + Pearson correlation coefficient (NaN if insufficient overlap or data). + """ + # Precursor m/z and MS1 elution profile at this accuracy factor + precursor_mz = ( + precursor["calcmass"].iloc[0] / precursor["charge"].iloc[0] + 1.007276466879 + ) + elution_profile = self.build_elution_profile( + precursor_mz, ms1_dict, acc_factor=acc_factor + ) + if not elution_profile: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title(f"No MS1 elution profile at factor={acc_factor:g}") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.nan + + # Best-fragment (MS2) trace and smoothing + best_trace, smoothed_best_trace, _ = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # Align on RT using asof-merge with configured tolerance + smoothed_best_df = pd.DataFrame( + { + "rt": best_trace.index.astype(float), + "smoothed_intensity": smoothed_best_trace, + } + ).sort_values("rt") + + elution_df = ( + pd.DataFrame(list(elution_profile.items()), columns=["rt", "intensity"]) + .astype({"rt": float}) + .sort_values("rt") + ) + + merged = pd.merge_asof( + smoothed_best_df, + elution_df, + on="rt", + direction="nearest", + tolerance=self.config.rt_tolerance, + ) + merged_clean = merged.dropna(subset=["smoothed_intensity", "intensity"]) + + if len(merged_clean) < 2: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title( + f"Insufficient overlap after RT alignment (factor={acc_factor:g})" + ) + ax.set_xlabel("RT") + ax.set_ylabel("Intensity") + plt.tight_layout() + plt.show() + return np.nan + + # Pearson correlation at this accuracy factor + r = float(merged_clean["smoothed_intensity"].corr(merged_clean["intensity"])) + + # ---- Per-factor visualization (optional) ---- + if visualize: + # Min–max normalization for visual comparability + def _minmax(arr: pd.Series) -> np.ndarray: + x = arr.to_numpy(dtype=float) + xmin, xmax = np.nanmin(x), np.nanmax(x) + return (x - xmin) / (xmax - xmin) if xmax > xmin else np.zeros_like(x) + + rt_aligned = merged_clean["rt"].to_numpy(dtype=float) + ms2_norm = _minmax(merged_clean["smoothed_intensity"]) + ms1_norm = _minmax(merged_clean["intensity"]) + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Overlay of normalized elution profiles + axes[0].plot( + rt_aligned, ms2_norm, label="MS2 best fragment (smoothed, norm.)" + ) + axes[0].plot( + rt_aligned, ms1_norm, label=f"MS1 (norm.) @ factor={acc_factor:g}" + ) + axes[0].set_title(f"Aligned elution profiles (r = {r:.3f})") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Relative intensity") + axes[0].legend() + + # (ii) Scatter of paired intensities + axes[1].scatter( + merged_clean["smoothed_intensity"].to_numpy(dtype=float), + merged_clean["intensity"].to_numpy(dtype=float), + alpha=0.7, + ) + axes[1].set_title("Point-wise relationship (paired samples)") + axes[1].set_xlabel("Best fragment (smoothed) intensity") + axes[1].set_ylabel("Precursor (MS1) intensity") + + plt.tight_layout() + plt.show() + + return r + + # Feature Group 3: Isotopologue Co-elution + + def feature_c13_isotope_correlations( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW: summary visualization + visualize_per_isotope: bool = False, # <-- NEW: per-isotope diagnostics + ) -> np.ndarray: + """ + Correlations between the smoothed best-fragment (MS2) elution profile and + MS1 elution profiles extracted at precursor + k*C13/z for k in c13_isotope_list. + Optionally visualizes a summary bar plot and per-isotope diagnostic overlays. + + Parameters + ---------- + precursor : pd.DataFrame + Precursor information (must contain 'calcmass' and 'charge'). + fragments : pd.DataFrame + Fragment data used to determine and smooth the best-fragment elution profile. + ms1_dict : dict + MS1 data dictionary consumed by `self.build_elution_profile`. + visualize : bool, default=False + If True, render a summary bar chart of correlation vs. C13 count. + visualize_per_isotope : bool, default=False + If True, render per-isotope overlays: + (i) normalized smoothed best-fragment vs. isotope elution profile, + (ii) scatter of paired intensities used for the correlation. + + Returns + ------- + np.ndarray + Array of Pearson correlations, aligned with `self.config.c13_isotope_list`. + NaN where no valid alignment is available. + """ + try: + # --- Best-fragment (MS2) reference: trace and smoothing --- + best_trace, smoothed_best_trace, _ = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + smoothed_best_df = pd.DataFrame( + { + "rt": best_trace.index.astype(float), + "smoothed_intensity": smoothed_best_trace, + } + ).sort_values("rt") + + # --- Precursor m/z and charge --- + base_precursor_mz = ( + float(precursor["calcmass"].iloc[0]) + / float(precursor["charge"].iloc[0]) + + 1.007276466879 + ) + charge = int(precursor["charge"].iloc[0]) + + # --- Iterate over requested C13 isotope counts --- + counts: List[int] = list(self.config.c13_isotope_list) + corrs: List[float] = [] + + for c13_count in counts: + try: + isotope_mz = base_precursor_mz + ( + float(c13_count) + * float(self.config.isotope_mass_c13) + / float(charge) + ) + + # Build isotope elution profile at this m/z + isotope_profile = self.build_elution_profile(isotope_mz, ms1_dict) + if not isotope_profile: + corrs.append(np.nan) + if visualize_per_isotope: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title( + f"No isotope elution profile (C13 count = {c13_count})" + ) + ax.set_axis_off() + plt.tight_layout() + plt.show() + continue + + isotope_df = ( + pd.DataFrame( + list(isotope_profile.items()), + columns=["rt", "isotope_intensity"], + ) + .astype({"rt": float}) + .sort_values("rt") + ) + + # Align to MS2 smoothed reference using asof with RT tolerance + merged = pd.merge_asof( + smoothed_best_df, + isotope_df, + on="rt", + direction="nearest", + tolerance=self.config.rt_tolerance, + ) + merged_clean = merged.dropna( + subset=["smoothed_intensity", "isotope_intensity"] + ) + + if len(merged_clean) < 2: + corrs.append(np.nan) + if visualize_per_isotope: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title( + f"Insufficient overlap after RT alignment (C13 = {c13_count})" + ) + ax.set_xlabel("RT") + ax.set_ylabel("Intensity") + plt.tight_layout() + plt.show() + continue + + # Pearson correlation + r = float( + merged_clean["smoothed_intensity"].corr( + merged_clean["isotope_intensity"] + ) + ) + corrs.append(r if np.isfinite(r) else np.nan) + + # ----- Per-isotope visualization (optional) ----- + if visualize_per_isotope: + # Min–max normalization for shape comparison + def _minmax(series: pd.Series) -> np.ndarray: + x = series.to_numpy(dtype=float) + xmin, xmax = np.nanmin(x), np.nanmax(x) + return ( + (x - xmin) / (xmax - xmin) + if xmax > xmin + else np.zeros_like(x) + ) + + rt_aligned = merged_clean["rt"].to_numpy(dtype=float) + ms2_norm = _minmax(merged_clean["smoothed_intensity"]) + iso_norm = _minmax(merged_clean["isotope_intensity"]) + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Overlaid normalized elution profiles + axes[0].plot( + rt_aligned, ms2_norm, label="MS2 best (smoothed, norm.)" + ) + axes[0].plot( + rt_aligned, + iso_norm, + label=f"MS1 isotope (C13={c13_count}, norm.)", + ) + axes[0].set_title( + f"Aligned profiles — r = {r:.3f} (C13 = {c13_count})" + ) + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Relative intensity") + axes[0].legend() + + # (ii) Scatter of paired intensities + axes[1].scatter( + merged_clean["smoothed_intensity"].to_numpy(dtype=float), + merged_clean["isotope_intensity"].to_numpy(dtype=float), + alpha=0.7, + ) + axes[1].set_title("Point-wise relationship (paired samples)") + axes[1].set_xlabel("Best fragment (smoothed) intensity") + axes[1].set_ylabel("Isotope (MS1) intensity") + + plt.tight_layout() + plt.show() + + except Exception as e_iso: + logger.error( + f"C13={c13_count}: error calculating isotope correlation: {e_iso}" + ) + corrs.append(np.nan) + + corrs_arr = np.asarray(corrs, dtype=float) + + # ----- Summary visualization (optional) ----- + if visualize: + plt.figure(figsize=(7, 4)) + plt.bar([str(k) for k in counts], corrs_arr) + plt.ylim(-1.05, 1.05) + plt.axhline(0.0, linestyle="--", linewidth=1) + plt.title("Correlation with C13 isotope elution profiles") + plt.xlabel("C13 atoms (k)") + plt.ylabel("Pearson r (MS2 smoothed vs. MS1 isotope)") + plt.tight_layout() + plt.show() + + return corrs_arr + + except Exception as e: + logger.error(f"Error calculating C13 isotope correlations: {e}") + return np.full(len(self.config.c13_isotope_list), np.nan, dtype=float) + + def feature_c13_subtracted_correlations( + self, + fragments: pd.DataFrame, + ms2dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW: summary bar plot + visualize_per_fragment: bool = False, # <-- NEW: per-fragment diagnostics + ) -> np.ndarray: + """ + Correlations between the smoothed best-fragment (MS2) elution profile and + elution profiles reconstructed at (fragment_mz - C13/z) for the top-N fragments. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + ms2dict : dict + MS2 spectral data dict + visualize : bool, default=False + If True, render a summary bar chart of per-fragment correlations. + visualize_per_fragment : bool, default=False + If True, for each fragment render: + (i) normalized smoothed best vs. C13-subtracted elution profile, and + (ii) scatter of paired intensities used for the correlation. + + Returns + ------- + np.ndarray + Correlations for the top-N fragments (NaN-padded). + """ + try: + # Reference MS2 profile (best fragment, smoothed) + best_trace, smoothed_best_trace, _ = self.calculate_pearson_correlations( + fragments, visualize=False + ) + smoothed_best_df = pd.DataFrame( + { + "rt": best_trace.index.astype(float), + "smoothed_intensity": smoothed_best_trace, + } + ) + + # Select top-N fragments + top_fragments = self.find_top_n_fragments( + fragments, self.config.top_n_fragments + ) + correlations: List[float] = [] + labels: List[str] = [] + + for frag_name in top_fragments: + try: + corr = self._calculate_c13_subtracted_correlation( + frag_name, + fragments, + smoothed_best_df, + ms2dict, + visualize=visualize_per_fragment, # pass through + ) + correlations.append(corr) + labels.append(frag_name) + except Exception as e: + logger.warning(f"Error processing fragment {frag_name}: {e}") + correlations.append(np.nan) + labels.append(frag_name) + + # Pad to fixed length if needed + while len(correlations) < self.config.top_n_fragments: + correlations.append(np.nan) + labels.append(f"pad{len(correlations)}") + + corr_arr = np.asarray( + correlations[: self.config.top_n_fragments], dtype=float + ) + + # ----- Summary visualization (optional) ----- + if visualize: + plt.figure(figsize=(8, 4)) + plt.bar(labels[: self.config.top_n_fragments], corr_arr) + plt.ylim(-1.05, 1.05) + plt.axhline(0.0, linestyle="--", linewidth=1) + plt.title("C13-subtracted correlations (per fragment)") + plt.xlabel("Fragment") + plt.ylabel("Pearson r") + plt.xticks(rotation=45, ha="right") + plt.tight_layout() + plt.show() + + return corr_arr + + except Exception as e: + logger.error(f"Error calculating C13 subtracted correlations: {e}") + return np.full(self.config.top_n_fragments, np.nan, dtype=float) + + def feature_sum_c13_subtracted_correlations( + self, + fragments: pd.DataFrame, + ms2dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW: summary with annotation + ) -> float: + """ + Sum of C13-subtracted correlations for the top fragments. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + ms2dict : dict + MS2 spectral data dictionary + visualize : bool, default=False + If True, display the bar chart of per-fragment correlations with the sum annotated. + + Returns + ------- + float + Sum of C13-subtracted correlations (NaN-safe). + """ + corr_arr = self.feature_c13_subtracted_correlations( + fragments, ms2dict, visualize=visualize, visualize_per_fragment=False + ) + total = float(np.nansum(corr_arr)) + + if visualize: + # If the per-fragment chart was already shown, add a compact gauge for the sum. + plt.figure(figsize=(4, 3)) + plt.bar(["Σ corr"], [total]) + plt.ylim(min(0.0, total) - 0.1, max(0.0, total) + 0.1) + plt.title("Sum of C13-subtracted correlations") + plt.tight_layout() + plt.show() + + return total + + def _calculate_c13_subtracted_correlation( + self, + frag_name: str, + fragments: pd.DataFrame, + smoothed_best_df: pd.DataFrame, + ms2dict: Dict[str, Dict[str, Any]], + visualize: bool = False, # <-- NEW: per-fragment plots + ) -> float: + """ + Helper: correlation between smoothed best-fragment intensity and the + C13-subtracted elution profile for a specific fragment. + + Parameters + ---------- + frag_name : str + Target fragment name + fragments : pd.DataFrame + Fragment data + smoothed_best_df : pd.DataFrame + DataFrame with columns ['rt','smoothed_intensity'] + ms2dict : dict + MS2 spectra by scan: {scan: {"mz": [...], "intensity": [...]} } + visualize : bool, default=False + If True, render: + (i) normalized smoothed best vs. C13-subtracted elution profile, + (ii) scatter of paired intensities used for the correlation. + + Returns + ------- + float + Pearson correlation coefficient (0.0 if computed NaN, NaN on failure). + """ + frag_data = fragments[fragments["fragment_names"] == frag_name] + if frag_data.empty: + return np.nan + + # Target m/z with one C13 mass subtracted + original_mz = float(frag_data["fragment_mz_calculated"].iloc[0]) + charge = float(frag_data["fragment_charge"].iloc[0]) + c13_subtracted_mz = original_mz - (self.config.isotope_mass_c13 / charge) + + # Build elution profile at the adjusted m/z using MS2 scans + c13_subtracted_profile: Dict[float, float] = {} + for _, row in frag_data.iterrows(): + rt = float(row["rt"]) + scan = row["scannr"] + scan_data = ms2dict.get(scan, {}) + mzs = scan_data.get("mz", []) + intensities = scan_data.get("intensity", []) + if len(mzs) == 0 or len(intensities) == 0: + continue + + best_idx, _best_val = self._search_sorted_with_tolerance( + mzs, c13_subtracted_mz, self.config.fragment_mass_tolerance + ) + if best_idx is not None: + c13_subtracted_profile[rt] = float(intensities[best_idx]) + + if not c13_subtracted_profile: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title(f"{frag_name}: no C13-subtracted profile") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.nan + + c13_df = pd.DataFrame( + list(c13_subtracted_profile.items()), + columns=["rt", "c13_subtracted_intensity"], + ) + + merged = pd.merge_asof( + smoothed_best_df.sort_values("rt"), + c13_df.sort_values("rt"), + on="rt", + direction="nearest", + tolerance=self.config.rt_tolerance, + ) + + merged_clean = merged.dropna( + subset=["smoothed_intensity", "c13_subtracted_intensity"] + ) + if len(merged_clean) < 2: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title(f"{frag_name}: insufficient overlap after RT alignment") + ax.set_xlabel("RT") + ax.set_ylabel("Intensity") + plt.tight_layout() + plt.show() + return np.nan + + r = merged_clean["smoothed_intensity"].corr( + merged_clean["c13_subtracted_intensity"] + ) + r = float(r) if pd.notna(r) else 0.0 + + # ----- Per-fragment visualization (optional) ----- + if visualize: + + def _minmax(series: pd.Series) -> np.ndarray: + x = series.to_numpy(dtype=float) + xmin, xmax = np.nanmin(x), np.nanmax(x) + return (x - xmin) / (xmax - xmin) if xmax > xmin else np.zeros_like(x) + + rt_aligned = merged_clean["rt"].to_numpy(dtype=float) + ms2_norm = _minmax(merged_clean["smoothed_intensity"]) + c13_norm = _minmax(merged_clean["c13_subtracted_intensity"]) + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Overlaid normalized elution profiles + axes[0].plot(rt_aligned, ms2_norm, label="MS2 best (smoothed, norm.)") + axes[0].plot( + rt_aligned, c13_norm, label=f"{frag_name} (C13-subtracted, norm.)" + ) + axes[0].set_title(f"{frag_name} — aligned profiles (r = {r:.3f})") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Relative intensity") + axes[0].legend() + + # (ii) Scatter of paired intensities + axes[1].scatter( + merged_clean["smoothed_intensity"].to_numpy(dtype=float), + merged_clean["c13_subtracted_intensity"].to_numpy(dtype=float), + alpha=0.7, + ) + axes[1].set_title("Point-wise relationship (paired samples)") + axes[1].set_xlabel("Best fragment (smoothed) intensity") + axes[1].set_ylabel("C13-subtracted intensity") + + plt.tight_layout() + plt.show() + + return r + + def feature_weighted_auc( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW toggle + ) -> float: + """ + Natural log of weighted AUC for top fragments. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + visualize : bool, default=False + If True, render diagnostic plots: + (i) overlay of top-N fragment chromatograms (RT–intensity), + (ii) bar charts of AUC, correlation, and AUC×corr (weighted AUC) per fragment. + + Returns + ------- + float + Natural log of sum_i (AUC_i * corr_i) over the selected top-N fragments. + Returns NaN if the sum is non-positive or if no valid AUCs are found. + """ + try: + # Correlations of each fragment vs. smoothed best + _, _, correlations = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # Select top-N fragments according to your internal criterion + top_fragments = self.find_top_n_fragments( + fragments, self.config.top_n_fragments + ) + + aucs: list[float] = [] + corrs: list[float] = [] + used_names: list[str] = [] + + # Compute AUC per fragment over RT (sorted), and pair with its correlation + for frag in top_fragments: + frag_data = fragments[fragments["fragment_names"] == frag] + if frag_data.empty: + continue + + frag_data_sorted = frag_data.sort_values("rt") + rt = frag_data_sorted["rt"].to_numpy(dtype=float) + intensity = frag_data_sorted["fragment_intensity"].to_numpy(dtype=float) + + if rt.size > 1: + auc = float(np.trapz(intensity, rt)) + aucs.append(auc) + corrs.append(float(correlations.get(frag, 0.0))) + used_names.append(frag) + + if not aucs: + # Nothing to compute or visualize + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title("No valid AUCs for selected fragments") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.nan + + aucs_arr = np.asarray(aucs, dtype=float) + corrs_arr = np.asarray(corrs, dtype=float) + # Replace NaN correlations by 0 (neutral); negatives will reduce the weighted sum + corrs_arr = np.nan_to_num(corrs_arr, nan=0.0) + + weighted_aucs = aucs_arr * corrs_arr + total_weighted_auc = float(np.sum(weighted_aucs)) + result = np.log(total_weighted_auc) if total_weighted_auc > 0 else np.nan + + # -------------------- Visualization (optional) -------------------- + if visualize: + # (i) Overlay of top-N chromatograms (raw scale) + fig, axes = plt.subplots(1, 2, figsize=(14, 4)) + + # Gather traces for selected fragments + for frag in used_names: + fd = fragments[fragments["fragment_names"] == frag].sort_values( + "rt" + ) + axes[0].plot( + fd["rt"].to_numpy(), + fd["fragment_intensity"].to_numpy(), + label=frag, + alpha=0.85, + ) + axes[0].set_title("Top-N fragment chromatograms (RT vs intensity)") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Intensity") + axes[0].legend(fontsize=8, ncol=1, loc="best") + + # (ii) Per-fragment bars: AUC, corr, and weighted AUC + x = np.arange(len(used_names)) + width = 0.28 + axes[1].bar(x - width, aucs_arr, width, label="AUC") + axes[1].bar(x, corrs_arr, width, label="corr (vs. smoothed best)") + axes[1].bar(x + width, weighted_aucs, width, label="AUC × corr") + axes[1].set_xticks(x, used_names, rotation=45, ha="right") + axes[1].set_title( + f"Weighted AUC components (Σ AUC×corr = {total_weighted_auc:.3g}; ln = {result if np.isfinite(result) else float('nan'):.3g})" + ) + axes[1].set_ylabel("Value") + axes[1].legend() + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return result + + except Exception as e: + logger.error(f"Error calculating weighted AUC: {e}") + return np.nan + + """ + TODO: MISSING: Cosine similarity measure (itself and to + power 3) between the predicted and + measured intensities of the top 6 fragments + weighted by the squared values of the + smoothed “best” fragment elution curve at + the respective time points + """ + + # Feature Group 5: Fragment Intensities + def feature_relative_intensities_top_6( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW + ) -> np.ndarray: + """ + Relative intensities of the top-N fragments (default = 6). + Optionally visualize the per-fragment contributions. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data + visualize : bool, default=False + If True, render: + (i) bar chart of relative intensities (normalized), + (ii) pie chart of raw max-intensity proportions. + + Returns + ------- + np.ndarray + Array of relative intensities of length `self.config.top_n_fragments`, + normalized so that the maximum fragment = 1.0. + """ + try: + n = self.config.top_n_fragments + top_fragments = self.find_top_n_fragments(fragments, n) + + raw_intensities: list[float] = [] + for frag in top_fragments: + frag_data = fragments[fragments["fragment_names"] == frag] + if not frag_data.empty: + raw_intensities.append(float(frag_data["fragment_intensity"].max())) + else: + raw_intensities.append(0.0) + + # Pad with zeros if fewer than n fragments available + while len(raw_intensities) < n: + raw_intensities.append(0.0) + + raw_intensities = raw_intensities[:n] + intensities = np.asarray(raw_intensities, dtype=float) + + # Normalize by maximum + max_intensity = float(np.max(intensities)) + if max_intensity > 0: + intensities = intensities / max_intensity + + # -------------------- Visualization (optional) -------------------- + if visualize: + frag_labels = top_fragments[:n] + [ + f"pad{i+1}" for i in range(n - len(top_fragments)) + ] + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Bar chart of normalized intensities + axes[0].bar(frag_labels, intensities) + axes[0].set_ylim(0, 1.05) + axes[0].set_title( + "Relative intensities of top-N fragments (normalized)" + ) + axes[0].set_xlabel("Fragment") + axes[0].set_ylabel("Relative intensity (max=1)") + axes[0].tick_params(axis="x", rotation=45) + + # (ii) Pie chart of raw intensities (proportions) + total = np.sum(raw_intensities) + if total > 0: + axes[1].pie( + raw_intensities, + labels=frag_labels, + autopct="%1.1f%%", + startangle=90, + ) + axes[1].set_title("Raw max-intensity contributions") + else: + axes[1].text(0.5, 0.5, "No signal", ha="center", va="center") + axes[1].set_axis_off() + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return intensities + + except Exception as e: + logger.error(f"Error calculating relative intensities: {e}") + return np.zeros(self.config.top_n_fragments, dtype=float) + + # Feature Group 6: Mass Accuracy + def feature_weighted_mass_accuracy( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW toggle + ) -> np.ndarray: + """ + Mass accuracy at the chromatographic apex, weighted by fragment–reference correlations. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data; must contain columns: + ['rt', 'fragment_names', 'fragment_intensity', 'ppm_error']. + visualize : bool, default=False + If True, render diagnostic plots: + (i) bar chart per fragment of ppm_error, correlation, and ppm_error×correlation, + (ii) scatter of correlation vs. ppm_error with the weighted product highlighted. + + Returns + ------- + np.ndarray + Array (length = self.config.top_n_fragments) of weighted mass accuracies + for the top-N most intense fragments at the apex RT. NaN-padded as needed. + """ + try: + n = int(self.config.top_n_fragments) + + if "ppm_error" not in fragments.columns: + logger.warning("ppm_error column missing") + return np.full(n, np.nan, dtype=float) + + # --- 1) Identify apex RT based on overall max fragment intensity --- + apex_idx = fragments["fragment_intensity"].idxmax() + if pd.isna(apex_idx): + return np.full(n, np.nan, dtype=float) + apex_rt = float(fragments.loc[apex_idx, "rt"]) + + # --- 2) Select top-N fragments at the apex by intensity --- + fragments_at_apex = fragments[fragments["rt"] == apex_rt] + if fragments_at_apex.empty: + return np.full(n, np.nan, dtype=float) + + top_apex = fragments_at_apex.nlargest(n, "fragment_intensity") + + # --- 3) Correlations vs. smoothed best-fragment trace (across RT) --- + _, _, correlations = self.calculate_pearson_correlations( + fragments, visualize=False + ) + + # --- 4) Compute weighted mass accuracies (ppm_error * correlation) --- + names, ppms, corrs, weighted = [], [], [], [] + + for _, row in top_apex.iterrows(): + frag_name = row["fragment_names"] + ppm_error = float(row["ppm_error"]) + r = correlations.get(frag_name, 0.0) + r = 0.0 if pd.isna(r) else float(r) + + names.append(frag_name) + ppms.append(ppm_error) + corrs.append(r) + weighted.append(ppm_error * r) + + # Pad to fixed length if fewer than n fragments at apex + while len(weighted) < n: + names.append(f"pad{len(weighted)+1}") + ppms.append(np.nan) + corrs.append(np.nan) + weighted.append(np.nan) + + weighted_arr = np.asarray(weighted[:n], dtype=float) + + # -------------------- Visualization (optional) -------------------- + if visualize: + labels = names[:n] + ppms_arr = np.asarray(ppms[:n], dtype=float) + corrs_arr = np.asarray(corrs[:n], dtype=float) + + fig, axes = plt.subplots(1, 2, figsize=(14, 4)) + + # (i) Bar chart per fragment + x = np.arange(n) + width = 0.28 + axes[0].bar(x - width, ppms_arr, width, label="ppm_error") + axes[0].bar(x, corrs_arr, width, label="correlation (r)") + axes[0].bar(x + width, weighted_arr, width, label="ppm_error × r") + axes[0].set_xticks(x, labels, rotation=45, ha="right") + axes[0].set_title( + f"Apex RT = {apex_rt:.4f} — mass accuracy & weighting" + ) + axes[0].set_ylabel("Value") + axes[0].legend() + + # (ii) Scatter: correlation vs. ppm error (color encodes product magnitude) + axes[1].scatter(corrs_arr, ppms_arr, s=60) + for i, lbl in enumerate(labels): + if np.isfinite(corrs_arr[i]) and np.isfinite(ppms_arr[i]): + axes[1].annotate( + lbl, + (corrs_arr[i], ppms_arr[i]), + fontsize=8, + xytext=(3, 3), + textcoords="offset points", + ) + axes[1].axvline(0.0, linestyle="--", linewidth=1) + axes[1].set_xlabel("Correlation r (fragment vs. smoothed best)") + axes[1].set_ylabel("ppm_error at apex") + axes[1].set_title("Apex mass accuracy vs. chromatographic consistency") + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return weighted_arr + + except Exception as e: + logger.error(f"Error calculating weighted mass accuracy: {e}") + return np.full(self.config.top_n_fragments, np.nan, dtype=float) + + # Feature Group 7: Retention Time + def feature_rt_apex( + self, + fragments: pd.DataFrame, + visualize: bool = False, # <-- NEW + top_k: int = 6, # visual overlay of up to top_k fragment traces + ) -> float: + """ + Retention time at intensity apex. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data with at least ['rt','fragment_names','fragment_intensity']. + visualize : bool, default=False + If True, overlays up to `top_k` fragment chromatograms and marks the apex RT. + top_k : int, default=6 + Maximum number of fragment traces to overlay when visualize=True. + + Returns + ------- + float + RT at the global intensity apex across all fragment rows. + """ + try: + fragments = self._validate_fragments_input(fragments) + if fragments.empty: + return np.nan + + # Locate the single row with the highest intensity; take its RT + apex_idx = fragments["fragment_intensity"].idxmax() + apex_rt = float(fragments.loc[apex_idx, "rt"]) + + if visualize: + # Build pivot of RT × fragment_names to plot chromatograms + piv = ( + fragments.pivot_table( + index="rt", + columns="fragment_names", + values="fragment_intensity", + aggfunc="mean", + ) + .sort_index() + .fillna(0.0) + ) + + # Choose up to top_k fragments by their max intensity over RT + frag_max = piv.max(axis=0).sort_values(ascending=False) + chosen = frag_max.index[:top_k] + + plt.figure(figsize=(8, 4)) + for col in chosen: + plt.plot(piv.index.values, piv[col].values, label=col, alpha=0.85) + + # Mark the apex RT + plt.axvline( + apex_rt, + linestyle="--", + linewidth=2, + label=f"Apex RT = {apex_rt:.4f}", + ) + plt.title("Fragment chromatograms with apex RT") + plt.xlabel("RT") + plt.ylabel("Intensity") + plt.legend(fontsize=8, ncol=1, loc="best") + plt.tight_layout() + plt.show() + + return apex_rt + + except Exception as e: + logger.error(f"Error calculating RT apex: {e}") + return np.nan + + # --------- Feature: sqrt absolute difference to RT prediction --------- # + def feature_rt_prediction_difference( + self, + fragments: pd.DataFrame, + rt_predictions: pd.DataFrame, + visualize: bool = False, # <-- NEW + top_k: int = 6, # visual overlay of up to top_k fragment traces + ) -> float: + """ + Square root of absolute difference between observed apex RT and predicted RT. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data with at least ['rt','fragment_names','fragment_intensity','peptide']. + rt_predictions : pd.DataFrame + Must include columns ['peptide','rt_predictions']. + visualize : bool, default=False + If True, overlays top-k fragment chromatograms with vertical lines for + apex RT and predicted RT, and displays |ΔRT| and sqrt(|ΔRT|). + top_k : int, default=6 + Maximum number of fragment traces to overlay when visualize=True. + + Returns + ------- + float + sqrt(|apex_rt - predicted_rt|), or NaN if unavailable. + """ + try: + apex_rt = self.feature_rt_apex(fragments, visualize=False) + + if pd.isna(apex_rt): + return np.nan + + if "peptide" not in fragments.columns: + logger.warning("Column 'peptide' missing in fragments") + return np.nan + peptide = fragments["peptide"].iloc[0] + + required_cols = {"peptide", "rt_predictions"} + if not required_cols.issubset(set(rt_predictions.columns)): + logger.warning("Required columns missing in RT predictions") + return np.nan + + pred_row = rt_predictions[rt_predictions["peptide"] == peptide] + if pred_row.empty: + logger.warning(f"No RT prediction found for peptide {peptide}") + return np.nan + pred_rt = float(pred_row["rt_predictions"].iloc[0]) + + diff = abs(apex_rt - pred_rt) + result = float(np.sqrt(diff)) + + if visualize: + # Build pivot of RT × fragment_names for chromatograms + frags_val = self._validate_fragments_input(fragments) + piv = ( + frags_val.pivot_table( + index="rt", + columns="fragment_names", + values="fragment_intensity", + aggfunc="mean", + ) + .sort_index() + .fillna(0.0) + ) + + # Choose up to top_k fragments by their max intensity + frag_max = piv.max(axis=0).sort_values(ascending=False) + chosen = frag_max.index[:top_k] + + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) Overlay chromatograms with apex & prediction + for col in chosen: + axes[0].plot( + piv.index.values, piv[col].values, label=col, alpha=0.85 + ) + axes[0].axvline( + apex_rt, + linestyle="--", + linewidth=2, + label=f"Apex RT = {apex_rt:.4f}", + ) + axes[0].axvline( + pred_rt, + linestyle=":", + linewidth=2, + label=f"Pred RT = {pred_rt:.4f}", + ) + axes[0].set_title("Top fragment chromatograms with RT markers") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Intensity") + axes[0].legend(fontsize=8, ncol=1, loc="best") + + # (ii) Simple gauge of |ΔRT| and sqrt(|ΔRT|) + axes[1].bar(["|ΔRT|", "sqrt(|ΔRT|)"], [diff, result]) + axes[1].set_title(f"RT difference for peptide: {peptide}") + axes[1].set_ylabel("Time units") + + plt.tight_layout() + plt.show() + + return result + + except Exception as e: + logger.error(f"Error calculating RT prediction difference: {e}") + return np.nan + + # Feature Group 8: Elution Profile Shape + def feature_scanning_window_splits( + self, + fragments: pd.DataFrame, + splits: int = 5, + visualize: bool = False, # <-- NEW toggle + ) -> np.ndarray: + """ + Relative intensities in scanning-window splits for the best fragment. + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data. Must include ['rt', 'fragment_names', 'fragment_intensity']. + splits : int, default=5 + Number of equal RT segments to divide the best-fragment window into. + visualize : bool, default=False + If True, render: + (i) the best-fragment chromatogram with shaded RT segments and percentages, + (ii) a bar chart of the relative intensities per segment. + + Returns + ------- + np.ndarray + Array of length `splits` with relative intensities per RT segment, + summing to 1.0 (or all zeros on error). + """ + try: + if splits <= 0: + raise ValueError("`splits` must be a positive integer.") + + best_fragment = self.find_best_fragment(fragments) + frag_data = fragments[fragments["fragment_names"] == best_fragment] + + if frag_data.empty: + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title("Best fragment not found or empty") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return np.zeros(splits, dtype=float) + + # Sort by RT to ensure proper plotting/segmenting + frag_data = frag_data.sort_values("rt") + rt_min = float(frag_data["rt"].min()) + rt_max = float(frag_data["rt"].max()) + rt_range = rt_max - rt_min + + # Degenerate window (all points at the same RT) + if rt_range == 0.0: + result = np.zeros(splits, dtype=float) + result[0] = 1.0 # put all signal in the first bin by convention + if visualize: + # Minimal plot + fig, axes = plt.subplots(1, 2, figsize=(12, 4)) + + # (i) chromatogram (single vertical line) + axes[0].plot( + frag_data["rt"], frag_data["fragment_intensity"], marker="o" + ) + axes[0].set_title( + f"Best fragment: {best_fragment}\n(degenerate RT window)" + ) + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Intensity") + axes[0].axvline(rt_min, linestyle="--", linewidth=2) + + # (ii) bar chart of relative intensities + axes[1].bar([str(i + 1) for i in range(splits)], result) + axes[1].set_ylim(0, 1.05) + axes[1].set_title("Relative intensities per segment") + axes[1].set_xlabel("Segment") + axes[1].set_ylabel("Relative intensity") + + plt.tight_layout() + plt.show() + return result + + # Compute equal-width segment boundaries + bounds = np.linspace(rt_min, rt_max, splits + 1) + split_intensities = [] + + # Sum intensity within each segment + for i in range(splits): + left = bounds[i] + right = bounds[i + 1] + if i == splits - 1: + mask = (frag_data["rt"] >= left) & (frag_data["rt"] <= right) + else: + mask = (frag_data["rt"] >= left) & (frag_data["rt"] < right) + split_intensities.append( + float(frag_data.loc[mask, "fragment_intensity"].sum()) + ) + + # Normalize to relative intensities + total_intensity = float(np.sum(split_intensities)) + if total_intensity > 0.0: + rel = np.asarray(split_intensities, dtype=float) / total_intensity + else: + # Fallback: equal distribution if there is no signal at all + rel = np.full(splits, 1.0 / splits, dtype=float) + + # -------------------- Visualization (optional) -------------------- + if visualize: + # (i) Chromatogram with shaded segments and percentage labels + fig, axes = plt.subplots(1, 2, figsize=(13, 4)) + + axes[0].plot( + frag_data["rt"].to_numpy(dtype=float), + frag_data["fragment_intensity"].to_numpy(dtype=float), + label=f"Best fragment: {best_fragment}", + alpha=0.9, + ) + ymax = ( + float(frag_data["fragment_intensity"].max()) + if not frag_data.empty + else 1.0 + ) + for i in range(splits): + axes[0].axvspan(bounds[i], bounds[i + 1], color="gray", alpha=0.1) + # place text at 90% of max intensity within segment center + x_mid = 0.5 * (bounds[i] + bounds[i + 1]) + axes[0].text( + x_mid, + 0.9 * ymax, + f"{rel[i]*100:.1f}%", + ha="center", + va="top", + fontsize=9, + ) + axes[0].set_title("Best-fragment chromatogram with RT segments") + axes[0].set_xlabel("RT") + axes[0].set_ylabel("Intensity") + axes[0].legend(fontsize=8, loc="best") + + # (ii) Bar chart of relative intensities + axes[1].bar([str(i + 1) for i in range(splits)], rel) + axes[1].set_ylim(0, 1.05) + axes[1].set_title("Relative intensities per segment") + axes[1].set_xlabel("Segment (1..N)") + axes[1].set_ylabel("Relative intensity (sum = 1)") + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return rel + + except Exception as e: + logger.error(f"Error calculating scanning window splits: {e}") + return np.zeros(splits, dtype=float) + + # Feature Group 10: Library Characteristics + def feature_relative_predicted_intensities( + self, + fragments: pd.DataFrame, + predictions: Dict[str, Dict[str, float]], + top_n: int = 12, + visualize: bool = False, # <-- NEW toggle + ) -> np.ndarray: + """ + Relative predicted intensities for fragments 2..top_n (top-1 excluded). + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data; must contain ['peptide','charge']. + predictions : dict + Mapping { "PEPTIDE/charge": {frag_key: predicted_intensity, ...}, ... }. + top_n : int, default=12 + Number of highest predicted fragments to consider (first is excluded in the output). + visualize : bool, default=False + If True, render: + (i) bar chart of normalized predictions for top_n (top highlighted), + (ii) bar chart of the returned vector (positions 2..top_n). + + Returns + ------- + np.ndarray + Array of length (top_n-1) with normalized predicted intensities + for ranks 2..top_n (NaN-padded if fewer are available). + """ + try: + if top_n < 2: + raise ValueError( + "`top_n` must be ≥ 2 since the top-1 is excluded from the output." + ) + + peptide = fragments["peptide"].iloc[0] + charge = fragments["charge"].iloc[0] + proforma = f"{peptide}/{charge}" + + if proforma not in predictions: + logger.warning(f"No predictions found for {proforma}") + result = np.full(top_n - 1, np.nan, dtype=float) + if visualize: + fig, ax = plt.subplots(figsize=(6, 3)) + ax.set_title(f"No MS2 predictions for {proforma}") + ax.set_axis_off() + plt.tight_layout() + plt.show() + return result + + # Convert prediction dict to a Series and sort descending + pred_series = pd.Series(predictions[proforma], dtype=float).sort_values( + ascending=False + ) + + # Require at least two items (since we exclude the top one from the return vector) + if pred_series.size < 2: + return np.full(top_n - 1, np.nan, dtype=float) + + # Take the top_n (or fewer if not available) + top_preds = pred_series.head(top_n) + max_intensity = float(top_preds.max()) if top_preds.size > 0 else 0.0 + + # Normalize by maximum among the selected top_n + if max_intensity > 0.0: + normalized = top_preds / max_intensity + else: + normalized = top_preds * 0.0 # all zeros if max is zero + + # Exclude the top-1 and construct a fixed-length (top_n-1) vector + vec = normalized.iloc[1:].to_numpy(dtype=float) # ranks 2..top_n + if vec.size < (top_n - 1): + padded = np.full(top_n - 1, np.nan, dtype=float) + padded[: vec.size] = vec + vec = padded + result = vec[: (top_n - 1)] + + # -------------------- Visualization (optional) -------------------- + if visualize: + # Labels: use fragment keys if available, else rank labels + labels_all = list(top_preds.index) + labels_excl_top = labels_all[1:] + + fig, axes = plt.subplots(1, 2, figsize=(14, 4)) + + # (i) All top_n normalized predictions (top highlighted) + colors = ["tab:orange"] + ["tab:blue"] * (len(normalized) - 1) + axes[0].bar(labels_all, normalized.values, color=colors) + axes[0].set_ylim(0, 1.05) + axes[0].set_title( + f"Top-{len(normalized)} predicted intensities (normalized)" + ) + axes[0].set_xlabel("Fragment") + axes[0].set_ylabel("Relative predicted intensity (max = 1)") + axes[0].tick_params(axis="x", rotation=45, labelsize=8) + + # (ii) Returned vector (ranks 2..top_n) + axes[1].bar(labels_excl_top[: (top_n - 1)], result) + axes[1].set_ylim(0, 1.05) + axes[1].set_title(f"Relative predicted intensities (ranks 2..{top_n})") + axes[1].set_xlabel("Fragment") + axes[1].set_ylabel("Relative predicted intensity") + axes[1].tick_params(axis="x", rotation=45, labelsize=8) + + plt.tight_layout() + plt.show() + # ----------------------------------------------------------------- + + return result + + except Exception as e: + logger.error(f"Error calculating relative predicted intensities: {e}") + return np.full(top_n - 1, np.nan, dtype=float) + + def feature_cos_pred_obs_weighted( + self, + fragments: pd.DataFrame, + intensity_predictions: Dict[str, Dict[str, float]], + top_n: int = 6, + use_all_rt: bool = False, + visualize: bool = False, + ) -> np.ndarray: + """ + Weighted cosine similarity between predicted and observed fragment intensities. + + This feature calculates cosine similarity averaged over RT with weights equal to + b(t)^2 where b(t) is the smoothed elution profile of the 'best' fragment. + Returns both the similarity (S) and its cubic power (S^3). + + Parameters + ---------- + fragments : pd.DataFrame + Fragment data containing columns: + ['fragment_names', 'fragment_type', 'fragment_ordinals', 'fragment_charge', + 'fragment_intensity', 'rt', 'peptide', 'charge'] + intensity_predictions : dict + MS2PiP predictions mapping peptide/charge to fragment predictions + top_n : int, default=6 + Number of top fragments to use for cosine similarity calculation + use_all_rt : bool, default=False + Whether to use all RT points (filling missing with 0) or only overlapping points + visualize : bool, default=False + If True, render diagnostic plots + + Returns + ------- + np.ndarray + Array containing [cosine_similarity, cosine_similarity_cubed] + """ + try: + # Get peptide identifier for predictions lookup + if fragments.empty: + return np.array([0.0, 0.0]) + + peptide = fragments["peptide"].iloc[0] + charge = fragments["charge"].iloc[0] + proforma = f"{peptide}/{charge}" + + if proforma not in intensity_predictions: + logger.warning(f"No intensity predictions found for {proforma}") + return np.array([0.0, 0.0]) + + precursor_preds = intensity_predictions[proforma] + + # 1) Select top-N fragment names + used_fragments = self.find_top_n_fragments(fragments, n=top_n) + + if len(used_fragments) == 0: + return np.array([0.0, 0.0]) + + # 2) Get best trace and smoothed trace + best_trace, smoothed_best_trace, _ = self.calculate_pearson_correlations( + fragments, use_all_rt=use_all_rt + ) + + if best_trace is None or len(best_trace) == 0: + return np.array([0.0, 0.0]) + + # Align everything to the RT grid of the best fragment + rt_index = best_trace.index.to_numpy() + b = np.asarray(smoothed_best_trace, dtype=np.float64) + + if b.shape[0] != rt_index.shape[0]: + logger.error("Best trace and RT index length mismatch") + return np.array([0.0, 0.0]) + + # 3) Pivot to (rt × fragment) and align to best_trace.index + piv = ( + fragments.pivot_table( + index="rt", + columns="fragment_names", + values="fragment_intensity", + aggfunc="sum", + ) + .reindex(rt_index) + .fillna(0.0) + ) + + # Restrict to the chosen fragments, in that order + piv = piv.reindex(columns=used_fragments).fillna(0.0) + + # Measured matrix (K x T) + measured = piv.to_numpy(dtype=np.float64).T # shape (K, T) + K, T = measured.shape + + if T == 0 or K == 0: + return np.array([0.0, 0.0]) + + # 4) Build predicted vector for the same K fragments + predicted_vals = [] + + # Get metadata for fragments to construct prediction keys + meta = ( + fragments[fragments["fragment_names"].isin(used_fragments)] + .sort_values("rt") + .drop_duplicates(subset=["fragment_names"], keep="first") + .set_index("fragment_names") + ) + + for frag_name in used_fragments: + if frag_name in meta.index: + key = f"{meta.loc[frag_name, 'fragment_type']}{int(meta.loc[frag_name, 'fragment_ordinals'])}/{int(meta.loc[frag_name, 'fragment_charge'])}" + predicted_vals.append(float(precursor_preds.get(key, 0.0))) + else: + predicted_vals.append(0.0) + + predicted = np.asarray(predicted_vals, dtype=np.float64) # shape (K,) + + # Guard against all-zero predictions + pred_norm = float(np.linalg.norm(predicted)) + if pred_norm == 0.0: + return np.array([0.0, 0.0]) + + # 5) Calculate cosine similarity per RT point + cosine_by_rt = np.zeros(T, dtype=np.float64) + for j in range(T): + obs = measured[:, j] + obs_norm = float(np.linalg.norm(obs)) + if obs_norm == 0.0: + cosine_by_rt[j] = 0.0 + else: + cosine_by_rt[j] = float( + np.dot(obs, predicted) / (obs_norm * pred_norm) + ) + + # Numerical safety - clip to [0, 1] + np.clip(cosine_by_rt, 0.0, 1.0, out=cosine_by_rt) + + # 6) Weighted average with b(t)^2 + w = b**2 + w_sum = float(w.sum()) + + if w_sum == 0.0: + return np.array([0.0, 0.0]) + + S = float(np.sum(w * cosine_by_rt) / w_sum) + S_cubed = S**3 + + # Optional visualization + if visualize: + fig, axes = plt.subplots(2, 2, figsize=(12, 8)) + + # Plot 1: Best fragment trace and weights + axes[0, 0].plot( + rt_index, best_trace.values, "b-", label="Best fragment", alpha=0.7 + ) + axes[0, 0].plot( + rt_index, smoothed_best_trace, "r-", label="Smoothed", linewidth=2 + ) + axes[0, 0].set_xlabel("RT") + axes[0, 0].set_ylabel("Intensity") + axes[0, 0].set_title("Best Fragment Elution Profile") + axes[0, 0].legend() + + # Plot 2: Weights (b^2) + axes[0, 1].plot(rt_index, w, "g-", linewidth=2) + axes[0, 1].set_xlabel("RT") + axes[0, 1].set_ylabel("Weight (b²)") + axes[0, 1].set_title("Weighting Function") + + # Plot 3: Per-RT cosine similarities + axes[1, 0].plot( + rt_index, cosine_by_rt, "purple", marker="o", markersize=3 + ) + axes[1, 0].axhline( + y=S, color="red", linestyle="--", label=f"Weighted avg: {S:.3f}" + ) + axes[1, 0].set_xlabel("RT") + axes[1, 0].set_ylabel("Cosine Similarity") + axes[1, 0].set_title("Per-RT Cosine Similarities") + axes[1, 0].legend() + axes[1, 0].set_ylim(0, 1) + + # Plot 4: Predicted vs observed intensities (relative scale) + x_pos = np.arange(len(used_fragments)) + pred_arr = np.asarray(predicted, dtype=float) + obs_max = measured.max(axis=1).astype( + float + ) # Max observed intensity per fragment + + # Normalize to [0,1] by their respective maxima to make scales comparable + pred_max = pred_arr.max() if pred_arr.size > 0 else 0.0 + obs_max_val = obs_max.max() if obs_max.size > 0 else 0.0 + + pred_rel = ( + pred_arr / pred_max if pred_max > 0 else np.zeros_like(pred_arr) + ) + obs_rel = ( + obs_max / obs_max_val if obs_max_val > 0 else np.zeros_like(obs_max) + ) + + axes[1, 1].bar( + x_pos - 0.2, pred_rel, 0.4, label="Predicted (rel.)", alpha=0.7 + ) + axes[1, 1].bar( + x_pos + 0.2, obs_rel, 0.4, label="Observed (max, rel.)", alpha=0.7 + ) + axes[1, 1].set_xlabel("Fragment") + axes[1, 1].set_ylabel("Relative intensity (0..1)") + axes[1, 1].set_title("Predicted vs Observed (relative)") + axes[1, 1].set_xticks(x_pos) + axes[1, 1].set_xticklabels(used_fragments, rotation=45) + axes[1, 1].set_ylim(0, 1.05) + axes[1, 1].legend() + + plt.tight_layout() + plt.suptitle( + f"Cosine Similarity Analysis (S={S:.3f}, S³={S_cubed:.3f})", y=1.02 + ) + plt.show() + + return np.array([S, S_cubed]) + + except Exception as e: + logger.error(f"Error calculating weighted cosine similarity: {e}") + return np.array([np.nan, np.nan]) + + def feature_precursor_mz(self, precursor: pd.DataFrame) -> float: + """Calculate precursor m/z.""" + try: + return ( + precursor["calcmass"].iloc[0] / precursor["charge"].iloc[0] + 1.007276 + ) + except Exception as e: + logger.error(f"Error calculating precursor m/z: {e}") + return np.nan + + def feature_precursor_charge(self, precursor: pd.DataFrame) -> int: + """Get precursor charge.""" + try: + return int(precursor["charge"].iloc[0]) + except Exception as e: + logger.error(f"Error getting precursor charge: {e}") + return -1 + + def feature_precursor_length(self, precursor: pd.DataFrame) -> int: + """Calculate precursor peptide length.""" + try: + return len(precursor["stripped_peptide"].iloc[0]) + except Exception as e: + logger.error(f"Error calculating precursor length: {e}") + return -1 + + def feature_library_fragment_count( + self, precursor: pd.DataFrame, predictions: Dict[str, Dict[str, float]] + ) -> int: + """Count library fragments with intensity > 0.""" + try: + peptide = precursor["peptide"].iloc[0] + charge = precursor["charge"].iloc[0] + proforma = f"{peptide}/{charge}" + + if proforma not in predictions: + return 0 + + pred_ints = predictions[proforma] + return len([v for v in pred_ints.values() if v > 0]) + + except Exception as e: + logger.error(f"Error counting library fragments: {e}") + return 0 + + def calculate_all_features( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Optional[Dict[str, Dict[str, Any]]] = None, + ms2dict: Optional[Dict[str, Dict[str, Any]]] = None, + rt_predictions: Optional[pd.DataFrame] = None, + intensity_predictions: Optional[Dict[str, Dict[str, float]]] = None, + parallel: bool = True, + ) -> Dict[str, Union[float, np.ndarray]]: + """ + Calculate all available features. + + Parameters + ---------- + precursor : pd.DataFrame + Precursor information + fragments : pd.DataFrame + Fragment data + ms1_dict : dict, optional + MS1 data dictionary + ms2dict : dict, optional + MS2 data dictionary + rt_predictions : pd.DataFrame, optional + RT prediction data + intensity_predictions : dict, optional + Intensity prediction data + parallel : bool, default True + Whether to use parallel processing for feature calculation + + Returns + ------- + Dict[str, Union[float, np.ndarray]] + Dictionary of calculated features + """ + if parallel and self.n_workers > 1: + return self._calculate_all_features_parallel( + precursor, + fragments, + ms1_dict, + ms2dict, + rt_predictions, + intensity_predictions, + ) + else: + return self._calculate_all_features_sequential( + precursor, + fragments, + ms1_dict, + ms2dict, + rt_predictions, + intensity_predictions, + ) + + def _calculate_all_features_parallel( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Optional[Dict[str, Dict[str, Any]]] = None, + ms2dict: Optional[Dict[str, Dict[str, Any]]] = None, + rt_predictions: Optional[pd.DataFrame] = None, + intensity_predictions: Optional[Dict[str, Dict[str, float]]] = None, + ) -> Dict[str, Union[float, np.ndarray]]: + """ + Calculate all features using parallel processing. + """ + features = {} + + # Define feature calculation tasks + tasks = [] + + # Group 1: Ion co-elution (MS2 level) - can be parallelized + tasks.extend( + [ + ( + "pearson_correlations_top_12", + self.feature_pearson_correlations_top_n, + (fragments,), + ), + ( + "sum_correlations_mass_accuracy", + self.feature_sum_correlations_mass_accuracy, + (fragments,), + ), + ( + "remaining_fragments_correlations", + self.feature_remaining_fragments_correlations, + (fragments,), + ), + ( + "best_b_fragments_correlation", + self.feature_best_b_fragments_correlation, + (fragments,), + ), + ] + ) + + if ms1_dict is not None: + tasks.append( + ( + "precursor_best_fragment_correlation", + self.feature_precursor_best_fragment_correlation, + (precursor, fragments, ms1_dict), + ) + ) + + # Group 2: MS1 level co-elution + tasks.append( + ( + "ms1_accuracy_correlations", + self.feature_ms1_accuracy_correlations, + (precursor, fragments, ms1_dict), + ) + ) + + # Group 3: Isotopologue co-elution + tasks.append( + ( + "c13_isotope_correlations", + self.feature_c13_isotope_correlations, + (precursor, fragments, ms1_dict), + ) + ) + + if ms2dict is not None: + tasks.extend( + [ + ( + "c13_subtracted_correlations", + self.feature_c13_subtracted_correlations, + (fragments, ms2dict), + ), + ( + "sum_c13_subtracted_correlations", + self.feature_sum_c13_subtracted_correlations, + (fragments, ms2dict), + ), + ] + ) + + # Group 4-10: Other features + tasks.extend( + [ + ("weighted_auc", self.feature_weighted_auc, (fragments,)), + ( + "relative_intensities_top_6", + self.feature_relative_intensities_top_6, + (fragments,), + ), + ( + "weighted_mass_accuracy", + self.feature_weighted_mass_accuracy, + (fragments,), + ), + ("rt_apex", self.feature_rt_apex, (fragments,)), + ( + "scanning_window_splits", + self.feature_scanning_window_splits, + (fragments,), + ), + ("precursor_mz", self.feature_precursor_mz, (precursor,)), + ("precursor_charge", self.feature_precursor_charge, (precursor,)), + ("precursor_length", self.feature_precursor_length, (precursor,)), + ] + ) + + if rt_predictions is not None: + tasks.append( + ( + "rt_prediction_difference", + self.feature_rt_prediction_difference, + (fragments, rt_predictions), + ) + ) + + if intensity_predictions is not None: + tasks.extend( + [ + ( + "relative_predicted_intensities", + self.feature_relative_predicted_intensities, + (fragments, intensity_predictions), + ), + ( + "library_fragment_count", + self.feature_library_fragment_count, + (precursor, intensity_predictions), + ), + ] + ) + + # Execute tasks in parallel + with ThreadPoolExecutor(max_workers=self.n_workers) as executor: + # Submit all tasks + future_to_name = {} + for feature_name, func, args in tasks: + future = executor.submit(self._safe_feature_calculation, func, args) + future_to_name[future] = feature_name + + # Collect results as they complete + for future in as_completed(future_to_name): + feature_name = future_to_name[future] + try: + result = future.result() + if result is not None: + features[feature_name] = result + except Exception as e: + logger.error(f"Error calculating {feature_name}: {e}") + + logger.info(f"Calculated {len(features)} feature groups in parallel") + return features + + def _safe_feature_calculation(self, func, args): + """Safely execute feature calculation with error handling.""" + try: + return func(*args) + except Exception as e: + logger.error(f"Error in feature calculation: {e}") + return None + + def _calculate_all_features_sequential( + self, + precursor: pd.DataFrame, + fragments: pd.DataFrame, + ms1_dict: Optional[Dict[str, Dict[str, Any]]] = None, + ms2dict: Optional[Dict[str, Dict[str, Any]]] = None, + rt_predictions: Optional[pd.DataFrame] = None, + intensity_predictions: Optional[Dict[str, Dict[str, float]]] = None, + ) -> Dict[str, Union[float, np.ndarray]]: + """ + Calculate all available features. + + Parameters + ---------- + precursor : pd.DataFrame + Precursor information + fragments : pd.DataFrame + Fragment data + ms1_dict : dict, optional + MS1 data dictionary + ms2dict : dict, optional + MS2 data dictionary + rt_predictions : pd.DataFrame, optional + RT prediction data + intensity_predictions : dict, optional + Intensity prediction data + + Returns + ------- + Dict[str, Union[float, np.ndarray]] + Dictionary of calculated features + """ + features = {} + + logger.info("Calculating DIA-NN features...") + + # Group 1: Ion co-elution (MS2 level) + try: + features["pearson_correlations_top_12"] = ( + self.feature_pearson_correlations_top_n(fragments) + ) + features["sum_correlations_mass_accuracy"] = ( + self.feature_sum_correlations_mass_accuracy(fragments) + ) + features["remaining_fragments_correlations"] = ( + self.feature_remaining_fragments_correlations(fragments) + ) + features["best_b_fragments_correlation"] = ( + self.feature_best_b_fragments_correlation(fragments) + ) + + if ms1_dict is not None: + features["precursor_best_fragment_correlation"] = ( + self.feature_precursor_best_fragment_correlation( + precursor, fragments, ms1_dict + ) + ) + except Exception as e: + logger.error(f"Error in group 1 features: {e}") + + # Group 2: MS1 level co-elution + if ms1_dict is not None: + try: + features["ms1_accuracy_correlations"] = ( + self.feature_ms1_accuracy_correlations( + precursor, fragments, ms1_dict + ) + ) + except Exception as e: + logger.error(f"Error in group 2 features: {e}") + + # Group 3: Isotopologue co-elution + if ms1_dict is not None: + try: + features["c13_isotope_correlations"] = ( + self.feature_c13_isotope_correlations( + precursor, fragments, ms1_dict + ) + ) + except Exception as e: + logger.error(f"Error in group 3.1 features: {e}") + + if ms2dict is not None: + try: + features["c13_subtracted_correlations"] = ( + self.feature_c13_subtracted_correlations(fragments, ms2dict) + ) + features["sum_c13_subtracted_correlations"] = ( + self.feature_sum_c13_subtracted_correlations(fragments, ms2dict) + ) + except Exception as e: + logger.error(f"Error in group 3.3-3.4 features: {e}") + + # Group 4: Total signal + try: + features["weighted_auc"] = self.feature_weighted_auc(fragments) + except Exception as e: + logger.error(f"Error in group 4 features: {e}") + + # Group 5: Fragment intensities + try: + features["relative_intensities_top_6"] = ( + self.feature_relative_intensities_top_6(fragments) + ) + except Exception as e: + logger.error(f"Error in group 5 features: {e}") + + # Group 6: Mass accuracy + try: + features["weighted_mass_accuracy"] = self.feature_weighted_mass_accuracy( + fragments + ) + except Exception as e: + logger.error(f"Error in group 6 features: {e}") + + # Group 7: Retention time + try: + features["rt_apex"] = self.feature_rt_apex(fragments) + if rt_predictions is not None: + features["rt_prediction_difference"] = ( + self.feature_rt_prediction_difference(fragments, rt_predictions) + ) + except Exception as e: + logger.error(f"Error in group 7 features: {e}") + + # Group 8: Elution profile shape + try: + features["scanning_window_splits"] = self.feature_scanning_window_splits( + fragments + ) + except Exception as e: + logger.error(f"Error in group 8 features: {e}") + + # Group 10: Library characteristics + try: + features["precursor_mz"] = self.feature_precursor_mz(precursor) + features["precursor_charge"] = self.feature_precursor_charge(precursor) + features["precursor_length"] = self.feature_precursor_length(precursor) + + if intensity_predictions is not None: + features["relative_predicted_intensities"] = ( + self.feature_relative_predicted_intensities( + fragments, intensity_predictions + ) + ) + features["library_fragment_count"] = ( + self.feature_library_fragment_count( + precursor, intensity_predictions + ) + ) + except Exception as e: + logger.error(f"Error in group 10 features: {e}") + + logger.info(f"Calculated {len(features)} feature groups") + return features + + +def main(): + """Example usage of the DIANNFeatureGenerator.""" + + # Create configuration + config = FeatureConfig( + fragment_mass_tolerance=15.0, rt_tolerance=3.0, top_n_fragments=6 + ) + + # Initialize generator + generator = DIANNFeatureGenerator(config) + + # Example data (replace with actual data loading) + print("DIANNFeatureGenerator initialized successfully!") + print(f"Configuration: {config}") + + # Example feature calculation would go here with real data + # features = generator.calculate_all_features(precursor, fragments, ...) + + return generator + + +if __name__ == "__main__": + main() diff --git a/evaluate_ids.ipynb b/evaluate_ids.ipynb index 2a10145..0eb6508 100644 --- a/evaluate_ids.ipynb +++ b/evaluate_ids.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 44, "id": "2fb8529e", "metadata": {}, "outputs": [], @@ -12,12 +12,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 94, "id": "dc573b2e", "metadata": {}, "outputs": [], "source": [ - "def process_data(diann_path, mumdia_path, pin_path):\n", + "def process_data(diann_path, mumdia_path, pin_path, peptide_level=False):\n", " \"\"\"\n", " Process DIA-NN and MuMDIA data for comparison.\n", "\n", @@ -27,32 +27,44 @@ " pin_path: Path to pin file\n", "\n", " Returns:\n", - " tuple: (diann_data, mumdia_valid_data)\n", + " tuple: (diann_data, mumdia_merged_data)\n", " \"\"\"\n", + "\n", + " modification_mapper = {\"(UniMod:35)\": \"[Oxidation]\", \"(UniMod:4)\": \"\"}\n", " # Load DIA-NN data\n", " diann_data = pd.read_parquet(diann_path)\n", "\n", + " for old, new in modification_mapper.items():\n", + " diann_data[\"Modified.Sequence\"] = diann_data[\"Modified.Sequence\"].str.replace(\n", + " old, new, regex=False\n", + " )\n", + " diann_data[\"Precursor.Id\"] = diann_data[\"Precursor.Id\"].str.replace(\n", + " old, new, regex=False\n", + " )\n", + "\n", " # Load MuMDIA data\n", " mumdia_data = pd.read_csv(mumdia_path, sep=\"\\t\")\n", + " mumdia_valid = mumdia_data[\n", + " (mumdia_data[\"mokapot q-value\"] <= 0.01) & (mumdia_data[\"Label\"])\n", + " ]\n", + " print(\"Mumdia shape:\", mumdia_valid.shape)\n", " pin_data = pd.read_csv(pin_path, sep=\"\\t\")\n", "\n", " # Merge and filter MuMDIA data\n", " mumdia_merged = pd.merge(\n", - " mumdia_data,\n", + " mumdia_valid,\n", " pin_data[[\"ScanNr\", \"filename\", \"charge\"]],\n", " on=[\"filename\", \"ScanNr\"],\n", " how=\"left\",\n", " )\n", - " mumdia_valid = mumdia_merged[\n", - " (mumdia_data[\"mokapot q-value\"] <= 0.1) & (mumdia_data[\"Label\"])\n", - " ]\n", + " print(\"mumdia_merged shape:\", mumdia_merged.shape)\n", "\n", " # Create Precursor.Id for MuMDIA data\n", - " mumdia_valid[\"Precursor.Id\"] = mumdia_valid[\"Peptide\"] + mumdia_valid[\n", + " mumdia_merged[\"Precursor.Id\"] = mumdia_merged[\"Peptide\"] + mumdia_merged[\n", " \"charge\"\n", " ].astype(int).astype(str)\n", "\n", - " return diann_data, mumdia_valid" + " return diann_data, mumdia_merged" ] }, { @@ -65,20 +77,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 46, "id": "c6e5278c", "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/tmp/ipykernel_851989/775785660.py:32: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " mumdia_valid[\"Precursor.Id\"] = mumdia_valid[\"Peptide\"] + mumdia_valid[\n" + "Mumdia shape: (25471, 11)\n", + "mumdia_merged shape: (25471, 12)\n", + "mumdia_merged shape: (25471, 12)\n" ] } ], @@ -103,20 +112,17 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 47, "id": "122e65a8", "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "/tmp/ipykernel_851989/775785660.py:32: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " mumdia_valid[\"Precursor.Id\"] = mumdia_valid[\"Peptide\"] + mumdia_valid[\n" + "Mumdia shape: (7076, 11)\n", + "mumdia_merged shape: (7076, 12)\n", + "mumdia_merged shape: (7076, 12)\n" ] } ], @@ -131,13 +137,13 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 48, "id": "bd74e61e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTgAAAJOCAYAAACTNWipAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2PpJREFUeJzs3Xd4FOXaBvB7djdb0hOSQGgJCR0EFBCUEhEQERCVomABbJxjw97PASzHo9h7OZ+IEKSriNI7KE16CwRIAiG9J9t33u+PmJUlhQSSzJb7d125ILOzO3d2k913nnmLJIQQICIiIiIiIiIiIvJAKqUDEBEREREREREREV0uFjiJiIiIiIiIiIjIY7HASURERERERERERB6LBU4iIiIiIiIiIiLyWCxwEhERERERERERkcdigZOIiIiIiIiIiIg8FgucRERERERERERE5LFY4CQiIiIiIiIiIiKPxQInEREREREREREReSwWOIkUcsMNN+CGG25QOkaDSElJgSRJ+O6775SOUqNVq1ahR48e0Ov1kCQJhYWFSkciIiIicmuTJ09GbGys0jHoMs2YMQOSJCkdo0Z2ux3PP/88WrVqBZVKhdtuu03pSETkAVjgJK/0+eefQ5Ik9OnT57If4+jRo5gxYwZSUlLqL1g9y8vLw3PPPYcOHTpAr9cjPDwcw4YNw4oVK5SO5vby8vIwfvx4GAwGfPbZZ5g7dy4CAgKq3Pe7776DJEnOL71ej/bt2+Oxxx5DVlZWIyf3fJs2bYIkSViyZIlzW1XPcfPmzTFs2DB8/PHHKCkpUTAxERGRd7vwM7imr02bNjV6tsmTJ9cq2+TJk533EUJg7ty5GDhwIEJDQ+Hv74+rrroKr732GsrKyiod44Ybbqj2cY8fP35Zubdv347bb78dTZs2hU6nQ2xsLKZOnYq0tLTLfSp8xrfffotZs2Zh7NixmDNnDp566qlq9734tQsPD0fv3r3x7bffQpblRkztHSZPnozAwECXbRc+xyqVCsHBwejQoQPuvfderF27VqGkRJVplA5A1BASExMRGxuLXbt2ITk5GW3btq3zYxw9ehQzZ87EDTfc4JZXqZOSkjB48GDk5ORgypQp6NWrFwoLC5GYmIhRo0bh2WefxaxZs5SO6bZ2796NkpISvP766xgyZEit7vPaa6+hTZs2MJvN2LZtG7744gv89ttvOHz4MPz9/Rs4sW+oeI5tNhsyMzOxadMmPPnkk3j//fexfPlydOvWTemIREREXmfu3Lku33///fdYu3Ztpe2dOnXCN99806iFo6lTp7q01c6cOYN///vfePjhhzFgwADn9vj4eACAw+HAxIkTsWjRIgwYMAAzZsyAv78/tm7dipkzZ2Lx4sVYt24dmjZt6nKcli1b4q233qp0/ObNm9c58yeffIJp06YhLi4Ojz/+OKKjo3Hs2DH873//w8KFC/Hbb7/h+uuvr/Pj+ooNGzagRYsW+OCDD2q1/4WvXU5ODr7//ns88MADOHHiBP773/82ZFSfceFzXFZWhuTkZCxbtgzz5s3D+PHjMW/ePPj5+SmcknyeIPIyp0+fFgDEsmXLRGRkpJgxY8ZlPc7ixYsFALFx48ZL7ivLsjAajXV6/ISEBJGQkHBZ2axWq+jatavw9/cXO3bscLnNbreLO++8UwAQCxYsuKzHv1w2m01YLBZx5swZAUDMnj27UY9fF3PmzBEAxO7duy+57+zZs6vc9+mnnxYAxPz586u9b2lp6RVnrU8mk0k4HI4GP05NP/fGjRsFALF48WLntuqeYyGEWL9+vTAYDCImJqbOf2dERERUd48++qhw11PF3bt319jO/M9//iMAiGeffbbSbcuXLxcqlUrcfPPNLtsTEhJEly5d6iXftm3bhEqlEgMGDBBlZWUutyUnJ4umTZuK6OhokZ+fXy/Hq62Kttn06dPd9rWtMGjQoFq/HlW9dmVlZaJly5YiICBAWK3WKu/ncDiEyWS64qz1qTHOGy513jpp0iQREBDgsq26vw+73S4eeeQRAUA8//zz9Z6VqK44RJ28TmJiIsLCwjBixAiMHTsWiYmJVe63YMEC9OzZE0FBQQgODsZVV12Fjz76CED5cNlx48YBAAYNGlRpWE5sbCxGjhyJ1atXo1evXjAYDPjqq68AALNnz8aNN96IqKgo6HQ6dO7cGV988UWtsqelpdVqGMzSpUtx+PBhvPjii5WG4avVanz11VcIDQ3FjBkzAABZWVnQaDSYOXNmpcdKSkqCJEn49NNPndsKCwvx5JNPolWrVtDpdGjbti3efvttl6v1FfNsvvvuu/jwww8RHx8PnU6Ho0ePVpn54MGDmDx5MuLi4qDX69GsWTPcf//9yMvLc9mvYl6g48ePY/z48QgODkaTJk0wbdo0mM3mSz43ALB48WL07NkTBoMBERERuOeee5Cenu68/YYbbsCkSZMAAL179640rKm2brzxRgDlPQmAv4d0nDp1CrfccguCgoJw9913AwBkWcaHH36ILl26QK/Xo2nTppg6dSoKCgoqPe7KlSuRkJDg/N3s3bs35s+f77w9Nja2yrwXz+taMRR8wYIFePXVV9GiRQv4+/ujuLgYNpsNM2fORLt27aDX69GkSRP079+/0jCTDRs2YMCAAQgICEBoaChGjx6NY8eOuexT8ZodPXoUEydORFhYGPr371/n57M6N954I/71r38hNTUV8+bNc27PzMzElClT0LJlS+h0OkRHR2P06NFuPa0EERGRp7t4Ds4L24SfffYZ4uLi4O/vj5tuuglnz56FEAKvv/46WrZsCYPBgNGjRyM/P9/lMffs2YNhw4YhIiICBoMBbdq0wf3331/nbCaTCbNmzUL79u2r7I05atQoTJo0CatWrcKOHTtq/bg2mw3Hjx9HRkbGJfd9/fXXIUkS5syZU2mET3x8PN555x1kZGQ4zx3effddSJKE1NTUSo/10ksvQavVurQXd+7ciZtvvhkhISHw9/dHQkICtm/f7nK/urbNanv+UnEOtGbNGuc89p07d8ayZcsu+bwA5T3/nnnmGec5RocOHfDuu+9CCAHg79+ljRs34siRI5c9NYK/vz/69u2LsrIy5OTkACifhuGxxx5DYmIiunTpAp1Oh1WrVgEA0tPTcf/99zunE+jSpQu+/fbbSo9rNpsxY8YMtG/fHnq9HtHR0bjjjjtw6tQpAH+3vS/OW9X6BDWdN5w8eRJjxoxBs2bNoNfr0bJlS9x1110oKipy3t9ut+P11193noPFxsbi5ZdfhsVicTl2TeetV0qtVuPjjz9G586d8emnn7rkW7t2Lfr374/Q0FAEBgaiQ4cOePnll+vluETV4RB18jqJiYm44447oNVqMWHCBHzxxRfYvXs3evfu7dxn7dq1mDBhAgYPHoy3334bAHDs2DFs374d06ZNw8CBA/HEE0/g448/xssvv4xOnToBgPNfoLwwOGHCBEydOhUPPfQQOnToAAD44osv0KVLF9x6663QaDT45Zdf8Mgjj0CWZTz66KM1Zr/vvvuwefNm54d8dX755Rfn/lUJCQnB6NGjMWfOHOcQ/YSEBCxatAjTp0932XfhwoVQq9XOgq7RaERCQgLS09MxdepUtG7dGr///jteeuklZGRk4MMPP3S5/+zZs2E2m/Hwww9Dp9MhPDy8ymFLa9euxenTpzFlyhQ0a9YMR44cwddff40jR45gx44dlSY7Hz9+PGJjY/HWW29hx44d+Pjjj1FQUIDvv/++xufmu+++w5QpU9C7d2+89dZbyMrKwkcffYTt27dj3759CA0NxSuvvIIOHTrg66+/dg6JrhjWVBcVjZkmTZo4t9ntdgwbNgz9+/fHu+++62zYTp061ZntiSeewJkzZ/Dpp59i37592L59u3NIx3fffYf7778fXbp0wUsvvYTQ0FDs27cPq1atwsSJE+ucEShvaGu1Wjz77LOwWCzQarWYMWMG3nrrLTz44IO49tprUVxcjD179mDv3r0YOnQoAGDdunUYPnw44uLiMGPGDJhMJnzyySfo168f9u7dW2nqhnHjxqFdu3b4z3/+c8nf4bq699578fLLL2PNmjV46KGHAABjxozBkSNH8PjjjyM2NhbZ2dlYu3Yt0tLS3HJaCSIiIm+WmJgIq9WKxx9/HPn5+XjnnXcwfvx43Hjjjdi0aRNeeOEFJCcn45NPPsGzzz7rLCBlZ2fjpptuQmRkJF588UWEhoYiJSWl1kWzC23btg0FBQWYNm0aNJqqT3Xvu+8+zJ49GytWrEDfvn2d2x0OB3Jzc1321ev1CAwMRHp6Ojp16oRJkybVuIim0WjE+vXrMWDAALRp06bKfe688048/PDDWLFiBV588UWMHz8ezz//PBYtWoTnnnvOZd9FixbhpptuQlhYGIDyC8/Dhw9Hz549MX36dKhUKmdxcuvWrbj22mtd7l/btlldzl9OnjyJO++8E//4xz8wadIkzJ49G+PGjcOqVaucbciqCCFw6623YuPGjXjggQfQo0cPrF69Gs899xzS09PxwQcfIDIyEnPnzsWbb76J0tJSZ5H6wnOw2jp9+jTUajVCQ0Od2zZs2IBFixbhscceQ0REBGJjY5GVlYW+ffs6C6CRkZFYuXIlHnjgARQXF+PJJ58EUP77MXLkSKxfvx533XUXpk2bhpKSEqxduxaHDx++rHOJqs4brFYrhg0bBovFgscffxzNmjVDeno6VqxYgcLCQoSEhAAAHnzwQcyZMwdjx47FM888g507d+Ktt97CsWPH8OOPP7ocp7rz1vqgVqsxYcIE/Otf/8K2bdswYsQIHDlyBCNHjkS3bt3w2muvQafTITk5uVIhnqjeKdl9lKi+7dmzRwAQa9euFUKUd8Fv2bKlmDZtmst+06ZNE8HBwcJut1f7WDUNUY+JiREAxKpVqyrdVlWX/2HDhom4uDiXbVUNUU9ISKjVkJEePXqIkJCQGvd5//33BQCxfPlyIYQQX331lQAgDh065LJf586dxY033uj8/vXXXxcBAQHixIkTLvu9+OKLQq1Wi7S0NCGEcA5DDw4OFtnZ2S77VjVEvarn5YcffhAAxJYtW5zbKobN3HrrrS77Vgx/OHDgQLU/s9VqFVFRUaJr164uQ05WrFghAIh///vfzm01DYm+WMW+69atEzk5OeLs2bNiwYIFokmTJsJgMIhz584JIcqHdAAQL774osv9t27dKgCIxMREl+2rVq1y2V5YWCiCgoJEnz59Kg2ZkWXZ+f+YmBgxadKkSjkv/p2qGAoeFxdX6fnv3r27GDFiRI0/d48ePURUVJTIy8tzbjtw4IBQqVTivvvuc26reM0mTJhQ4+NdnKu2Q9QrhISEiKuvvloIIURBQYEAIGbNmlWrYxIREVHt1TREfdKkSSImJsb5fUW7LzIyUhQWFjq3v/TSSwKA6N69u7DZbM7tEyZMEFqtVpjNZiGEED/++GOt22RC1DxE/cMPPxQAxI8//ljt/fPz8wUAcccddzi3VbTBL/6qaG9V/IxVtb8utH//fgGg0rnHxbp16ybCw8Od31933XWiZ8+eLvvs2rVLABDff/+9EKK8LdiuXTsxbNgwl3ah0WgUbdq0EUOHDnVuq6ltVtUQ9dqev1ScAy1dutS5raioSERHRzvbaNX56aefBADxxhtvuGwfO3askCRJJCcnO7fVZcqAhIQE0bFjR5GTkyNycnLEsWPHxBNPPCEAiFGjRjn3AyBUKpU4cuSIy/0feOABER0dLXJzc12233XXXSIkJMT53Hz77bcCgHj//fcrZah4PSrauBefP1Z1blTdecO+ffsqtZMvVvF79uCDD7psf/bZZwUAsWHDBue2ms5bq1KXIeoVKv6GP/roIyGEEB988IEAIHJycmp1TKL6wiHq5FUSExPRtGlTDBo0CED5UIQ777wTCxYsgMPhcO4XGhqKsrKyK1r1rU2bNhg2bFil7QaDwfn/oqIi5ObmIiEhAadPn3bptl+VTZs21arnW0lJCYKCgmrcp+L24uJiAMAdd9wBjUaDhQsXOvc5fPgwjh49ijvvvNO5bfHixRgwYADCwsKQm5vr/BoyZAgcDge2bNnicpwxY8YgMjLykpkvfF7MZjNyc3OdV8337t1baf+LrxY//vjjAIDffvut2mPs2bMH2dnZeOSRR6DX653bR4wYgY4dO+LXX3+9ZM6aDBkyBJGRkWjVqhXuuusuBAYG4scff0SLFi1c9vvnP//p8v3ixYsREhKCoUOHujynPXv2RGBgIDZu3AigvJdrSUkJXnzxRZf8ACr1cK2LSZMmuTz/QPnfwJEjR3Dy5Mkq75ORkYH9+/dj8uTJCA8Pd27v1q0bhg4dWuXr8I9//OOyM9ZGYGCgczV1g8EArVaLTZs2VTnMn4iIiBrXuHHjnL3LADinUbrnnntcelP26dMHVqvVOX1QRQ+7FStWwGazXVGGinZCTe3ki9vIFWJjY7F27VqXr+eff955mxCixt6btT1+xe0XHv/OO+/En3/+6RwdBJSPstLpdBg9ejQAYP/+/Th58iQmTpyIvLw8Z3uyrKwMgwcPxpYtWyqNoqpt26wu5y/NmzfH7bff7vw+ODgY9913H/bt24fMzMxqj/Hbb79BrVbjiSeecNn+zDPPQAiBlStX1iprVY4fP47IyEhERkaiU6dO+OSTTzBixIhKw8wTEhLQuXNn5/dCCCxduhSjRo2CEMKlnT5s2DAUFRU5z1OWLl2KiIgI5znJha6knX7xeUPF39Dq1athNBqrvE9FO/zpp5922f7MM88AQKVznurOW+tLxarrFb//FX/TP//8M1eyp0bFAid5DYfDgQULFmDQoEE4c+YMkpOTkZycjD59+iArKwvr16937vvII4+gffv2GD58OFq2bIn777/fOQdLbVU37GT79u0YMmSIc87CyMhI53wjlypw1lZQUJDzA6Q6FzewIiIiMHjwYCxatMi5z8KFC6HRaHDHHXc4t508eRKrVq1yNhIqvipWr8zOznY5TnXPw8Xy8/Mxbdo0NG3aFAaDAZGRkc77VvW8tGvXzuX7+Ph4qFSqGudXrJi7qKphFx07dqxybqO6+Oyzz7B27Vps3LgRR48exenTpys1FjQaDVq2bOmy7eTJkygqKkJUVFSl57W0tNT5nFY0art27XpFOS9W1Wv02muvobCwEO3bt8dVV12F5557DgcPHnTeXtNz2alTJ2eD+lLHqU+lpaXO32edToe3334bK1euRNOmTTFw4EC88847NTasiYiIqOG0bt3a5fuKQk2rVq2q3F5xgTIhIQFjxozBzJkzERERgdGjR2P27NmV5hKsjYp2Qk3t5OqKkAEBARgyZIjL14XFsPo6fsXtFx5/3LhxUKlUzo4IQggsXrwYw4cPR3BwMAA4L0pPmjSpUnvyf//7HywWS6U2dW3bZnU5f2nbtm2lgl779u0B4JLt9ObNm1d63iuGn19JO72iOL1u3Tps27YNmZmZWLFiBSIiIlz2u/j5yMnJQWFhIb7++utKz+mUKVMAwKWd3qFDh2qnPrgcVZ03tGnTBk8//TT+97//ISIiAsOGDcNnn33m8jqkpqZCpVKhbdu2Lvdt1qwZQkNDKz2XjdFGB/7+/b/zzjvRr18/PPjgg2jatCnuuusuLFq0iMVOanCcg5O8xoYNG5CRkYEFCxZgwYIFlW5PTEzETTfdBACIiorC/v37sXr1aqxcuRIrV67E7Nmzcd9992HOnDm1Ot7FPeKA8g++wYMHo2PHjnj//ffRqlUraLVa/Pbbb/jggw/q7U29U6dO2L9/P9LS0io1JitUFKsubJjdddddmDJlCvbv348ePXpg0aJFGDx4sMuHvyzLGDp0qPOK9cUqGjAVqnoeqjJ+/Hj8/vvveO6559CjRw8EBgZClmXcfPPNtXperuTKaH259tpr0atXrxr30el0UKlcrx3JsoyoqKhqF7yqTQ/YC1X3XDgcDqjV6krbq3qNBg4ciFOnTuHnn3/GmjVr8L///Q8ffPABvvzySzz44IN1ylPTcerLuXPnUFRU5NKQe/LJJzFq1Cj89NNPWL16Nf71r3/hrbfewoYNG3D11Vc3WBYiIiKqrKo2SE3bK0YtSZKEJUuWYMeOHfjll1+wevVq3H///XjvvfewY8cOZ++w2qgolh08eBC33XZblftU1UauL23btoVGo3G5aHwxi8WCpKQklzZl8+bNMWDAACxatAgvv/wyduzYgbS0NOdaAQCc7eVZs2ahR48eVT72xc9VbdpmjXX+0pAqitOXcvHzUfGz3XPPPc4FSC/WrVu3WueoqY1elarOGwDgvffew+TJk53t9CeeeMK5LsGFBdHanh81ZBsdKB8VCMDZTjcYDNiyZQs2btyIX3/9FatWrcLChQtx4403Ys2aNdW+JxBdKRY4yWskJiYiKioKn332WaXbli1bhh9//BFffvml8w1eq9Vi1KhRGDVqFGRZxiOPPIKvvvoK//rXv6q8Mlkbv/zyCywWC5YvX+5SeKwYglxfRo4ciR9++AHff/89Xn311Uq3FxcX4+eff0bHjh1dCkK33XYbpk6d6rw6fOLECbz00ksu942Pj0dpaWmtGgm1VVBQgPXr12PmzJn497//7dxe3fDoitsuvNqYnJwMWZZrXDwmJiYGQPlE2hUrnFdISkpy3t7Y4uPjsW7dOvTr16/GBkbF5OSHDx+udEX2QmFhYSgsLKy0PTU1FXFxcbXOFR4ejilTpmDKlCkoLS3FwIEDMWPGDDz44IMuz+XFjh8/joiICAQEBNT6WFdq7ty5AFCpx2x8fDyeeeYZPPPMMzh58iR69OiB9957z2W1dSIiInJ/ffv2Rd++ffHmm29i/vz5uPvuu7FgwYI6XXitWLV5/vz5eOWVV6ospFQsWDly5Mh6y14hICAAgwYNwoYNG5Camlpl23PRokWwWCyVjn/nnXfikUceQVJSEhYuXAh/f3+MGjXKeXtFOzE4OLhe2+l1PX9JTk6GEMLlXOnEiRMAcMl2+rp16yr1Xj1+/Ljz9sYWGRmJoKAgOByOSz6n8fHx2LlzJ2w2m3Nx0ItVLAZ1cTv9cnqnXnXVVbjqqqvw6quv4vfff0e/fv3w5Zdf4o033kBMTAxkWcbJkyddFmDKyspCYWFhoz6XDocD8+fPh7+/P/r37+/crlKpMHjwYAwePBjvv/8+/vOf/+CVV17Bxo0b6/X3l+hCHKJOXsFkMmHZsmUYOXIkxo4dW+nrscceQ0lJCZYvXw4AyMvLc7m/SqVyXp2rGA5TUbypqpBUnYpG1IXzaBYVFWH27Nm1un9aWprzQ74mY8eORefOnfHf//4Xe/bscblNlmX885//REFBQaUV00NDQzFs2DAsWrQICxYsgFarrXR1e/z48fjjjz+wevXqSsctLCyE3W6v1c9yoaqeFwCVVmS/0MWF6k8++QQAMHz48Grv06tXL0RFReHLL790Gda0cuVKHDt2DCNGjKhr9Hoxfvx4OBwOvP7665Vus9vtzt+xm266CUFBQXjrrbdgNptd9rvwuYuPj8eOHTtgtVqd21asWIGzZ8/WOtPFfwOBgYFo27at83mLjo5Gjx49MGfOHJe/gcOHD2PNmjW45ZZban2sK7Vhwwa8/vrraNOmDe6++24A5auUXvwcxcfHIygo6LKGtBEREZEyCgoKKrURK3oo1vUz3d/fH88++yySkpLwyiuvVLr9119/xXfffYdhw4a5rKB+KTabDcePH0dGRsYl93311VchhMDkyZNhMplcbjtz5gyef/55REdHY+rUqS63jRkzBmq1Gj/88AMWL16MkSNHulxM7tmzJ+Lj4/Huu+86hwRfKCcnp9Y/z4Xqev5y/vx5l1W6i4uL8f3336NHjx5o1qxZtce55ZZb4HA48Omnn7ps/+CDDyBJUo1t/IaiVqsxZswYLF261NkL8UIXPqdjxoxBbm5upfzA389dTEwM1Gp1pTULPv/881pnKi4urnS+ddVVV0GlUjn/Hira4RefS73//vsA0GjnPA6HA0888QSOHTuGJ554wjmdQn5+fqV9L/dvmqgu2IOTvMLy5ctRUlKCW2+9tcrb+/bti8jISCQmJuLOO+/Egw8+iPz8fNx4441o2bIlUlNT8cknn6BHjx7Oq2A9evSAWq3G22+/jaKiIuh0Otx4442IioqqNsdNN93k7Bk6depUlJaW4ptvvkFUVFStGkT33XcfNm/efMmFhrRaLZYsWYLBgwejf//+mDJlCnr16oXCwkLMnz8fe/fuxTPPPIO77rqr0n3vvPNO3HPPPfj8888xbNgw5yTQFZ577jksX74cI0eOxOTJk9GzZ0+UlZXh0KFDWLJkCVJSUirNZ3MpwcHBzjkSbTYbWrRogTVr1uDMmTPV3ufMmTO49dZbcfPNN+OPP/7AvHnzMHHiRHTv3r3a+/j5+eHtt9/GlClTkJCQgAkTJiArKwsfffQRYmNj8dRTT9Upd31JSEjA1KlT8dZbb2H//v246aab4Ofnh5MnT2Lx4sX46KOPMHbsWAQHB+ODDz7Agw8+iN69e2PixIkICwvDgQMHYDQandMnPPjgg1iyZAluvvlmjB8/HqdOncK8efOcV/Zro3PnzrjhhhvQs2dPhIeHY8+ePViyZAkee+wx5z6zZs3C8OHDcd111+GBBx6AyWTCJ598gpCQEMyYMaO+nyYA5cXo48ePw263IysrCxs2bMDatWsRExOD5cuXOxdfOnHiBAYPHozx48ejc+fO0Gg0+PHHH5GVlVXl7z0RERG5pzlz5uDzzz/H7bffjvj4eJSUlOCbb75BcHDwZV1QffHFF7Fv3z68/fbb+OOPPzBmzBgYDAZs27YN8+bNQ6dOnWo9JVWF9PR0dOrUCZMmTbrkQkMDBw7Eu+++i6effhrdunXD5MmTER0djePHj+Obb76BLMv47bffnL39KkRFRWHQoEF4//33UVJS4rIIKFDeIeN///sfhg8fji5dumDKlClo0aIF0tPTsXHjRgQHB+OXX36p088F1P38pX379njggQewe/duNG3aFN9++y2ysrIu2aFj1KhRGDRoEF555RWkpKSge/fuWLNmDX7++Wc8+eSTdWrH1qf//ve/2LhxI/r06YOHHnoInTt3Rn5+Pvbu3Yt169Y5i3X33Xcfvv/+ezz99NPYtWsXBgwYgLKyMqxbtw6PPPIIRo8ejZCQEIwbNw6ffPIJJElCfHw8VqxYUWkNg5ps2LABjz32GMaNG4f27dvDbrdj7ty5zmIsAHTv3h2TJk3C119/jcLCQiQkJGDXrl2YM2cObrvtNueCu/WpqKjIOULKaDQiOTkZy5Ytw6lTp3DXXXe5dOR47bXXsGXLFowYMQIxMTHIzs7G559/jpYtW7r08iSqd42/cDtR/Rs1apTQ6/WirKys2n0mT54s/Pz8RG5urliyZIm46aabRFRUlNBqtaJ169Zi6tSpIiMjw+U+33zzjYiLixNqtVoAEBs3bhRCCBETEyNGjBhR5XGWL18uunXrJvR6vYiNjRVvv/22+PbbbwUAcebMGed+CQkJIiEhweW+CQkJoi5/ltnZ2eLpp58Wbdu2FTqdToSGhoohQ4aI5cuXV3uf4uJiYTAYBAAxb968KvcpKSkRL730kmjbtq3QarUiIiJCXH/99eLdd98VVqtVCCHEmTNnBAAxa9asSvevuG327NnObefOnRO33367CA0NFSEhIWLcuHHi/PnzAoCYPn26c7/p06cLAOLo0aNi7NixIigoSISFhYnHHntMmEymWj0vCxcuFFdffbXQ6XQiPDxc3H333eLcuXMu+8yePVsAELt3777k49V230mTJomAgIBqb//6669Fz549hcFgEEFBQeKqq64Szz//vDh//rzLfsuXLxfXX3+9MBgMIjg4WFx77bXihx9+cNnnvffeEy1atBA6nU7069dP7Nmzp9Lv1MaNGwUAsXjx4kpZ3njjDXHttdeK0NBQYTAYRMeOHcWbb77pfH0rrFu3TvTr18+ZZdSoUeLo0aMu+1S8Zjk5OTU+PzXlqniOK760Wq1o1qyZGDp0qPjoo49EcXGxy2Pk5uaKRx99VHTs2FEEBASIkJAQ0adPH7Fo0aJaZSAiIqLqPfroo9W2SSdNmiRiYmKc31fXJqyuHXJxu2rv3r1iwoQJonXr1kKn04moqCgxcuRIsWfPniqPv3v37krtzIs5HA4xe/Zs0a9fPxEcHCz0er3o0qWLmDlzpigtLa20f0JCgujSpUu1j1fxM06aNKnafS62ZcsWMXr0aBERESH8/PxE69atxUMPPSRSUlKqvc8333wjAIigoKBq27379u0Td9xxh2jSpInQ6XQiJiZGjB8/Xqxfv965T01ts4rbLlTb85eKc6DVq1eLbt26CZ1OJzp27FhlW7MqJSUl4qmnnhLNmzcXfn5+ol27dmLWrFlClmWX/S71elzOvgDEo48+WuVtWVlZ4tFHHxWtWrUSfn5+olmzZmLw4MHi66+/dtnPaDSKV155RbRp08a539ixY8WpU6ec++Tk5IgxY8YIf39/ERYWJqZOnSoOHz5c6Xe2uvOG06dPi/vvv1/Ex8cLvV4vwsPDxaBBg8S6detc9rPZbGLmzJnOLK1atRIvvfSSMJvNLvvVdN5alapyVZyjVnwFBgaKdu3aiXvuuUesWbOm0mOsX79ejB49WjRv3lxotVrRvHlzMWHCBHHixIla5yC6HJIQl+gqRkTUiGbMmIGZM2ciJyenzj1FiYiIiIioYcTGxqJr165YsWKF0lGIiCrhHJxERERERERERETksVjgJCIiIiIiIiIiIo/FAicRERERERERERF5LM7BSURERERERERERB6LPTiJiIiIiIiIiIjIY7HASURERERERERERB6LBU7yGTNmzIAkScjNzVU6CtFlSUlJgSRJ+O6775SOQkRERFQttrvJ07HdTeR5WOAkugLz58/Hhx9+qHSMBrNp0yZIkgRJkjBv3rwq9+nXrx8kSULXrl0v6xjfffed8xjbtm2rdLsQAq1atYIkSRg5cqTLbRX3kyQJGo0G4eHh6NmzJ6ZNm4ajR49WeqyKhsq7775bZZbffvsNkiShefPmkGX5sn4ed3Dh6yZJEnQ6HZo2bYobbrgB//nPf5CTk1PpPhWvw549e6p8zOeffx6SJOHOO++sU5bJkydDkiR069YNVU35LEkSHnvsMef3Fa+RJElYunRppf15wkREROSb2O5mu9sdsd1N5D5Y4CS6At7e0Kqg1+sxf/78SttTUlLw+++/Q6/XN9gxNm/ejHPnzkGn01V5v6FDh2Lu3LmYPXs2XnvtNVxzzTWYM2cOunfvjvfff79OGRITExEbG4uMjAxs2LDhsn4Od/LEE09g7ty5+Prrr/Hcc88hPDwc06dPR6dOner08wkh8MMPPyA2Nha//PILSkpK6pzl0KFDWLZsWZ3u89prr1XZOCMiIiLfw3Y3293ujO1uIuWxwElEl3TLLbdg7dq1la7ezZ8/H02bNkWvXr3q5RiLFy+G3W6vdIyePXuiWbNmVd6vffv2uOeee3DvvffisccewzfffINTp06hd+/eeOaZZ/Dbb7/V6vhlZWX4+eef8fTTT+Pqq69GYmLiFf9MShswYADuueceTJo0Cc8++yyWLVuGPXv2QK1WY8yYMcjIyKjV42zatAnnzp3Dt99+C7vdXucGk8FgQPv27evUcOrRowcOHjyIH3/8sU7HIiIiIvJkbHd7Jra7iZTHAif5nNzcXIwfPx7BwcFo0qQJpk2bBrPZXGm/efPmoWfPnjAYDAgPD8ddd92Fs2fPOm+/4YYb8OuvvyI1NdXZtT82NhZCCERERODpp5927ivLMkJDQ6FWq1FYWOjc/vbbb0Oj0aC0tNS57fjx4xg7dizCw8Oh1+vRq1cvLF++vFK+wsJCPPnkk2jVqhV0Oh3atm2Lt99+22WIx4VDQ77++mvEx8dDp9Ohd+/e2L17d62fs9GjR0On02Hx4sUu2+fPn4/x48dDrVa7bK9pzhpJkjBjxoxK2ydMmIC8vDysXbvWuc1qtWLJkiWYOHFirbMCQJMmTbBgwQJoNBq8+eabtbrPjz/+CJPJhHHjxuGuu+7CsmXLqvy9qMrWrVsxbtw4tG7dGjqdDq1atcJTTz0Fk8nkst/kyZMRGBiI9PR03HbbbQgMDERkZCSeffZZOBwOl30LCwsxefJkhISEIDQ0FJMmTXL53blc3bt3x4cffojCwkJ8+umntbpPYmIiOnfujEGDBmHIkCF1boSqVCq8+uqrdWo43XXXXXVunBEREZF7Ybub7e6qsN1dPba7iS4fC5zkc8aPHw+z2Yy33noLt9xyCz7++GM8/PDDLvu8+eabuO+++9CuXTu8//77ePLJJ7F+/XoMHDjQ+WH3yiuvoEePHoiIiMDcuXMxd+5cfPjhh5AkCf369cOWLVucj3fw4EEUFRUBALZv3+7cvnXrVlx99dUIDAwEABw5cgR9+/bFsWPH8OKLL+K9995DQEAAbrvtNpcPKKPRiISEBMybNw/33XcfPv74Y/Tr1w8vvfSSSwOvwvz58zFr1ixMnToVb7zxBlJSUnDHHXfAZrPV6jnz9/fH6NGj8cMPPzi3HThwAEeOHKlzI6g6sbGxuO6661yOsXLlShQVFeGuu+6q8+O1bt0aCQkJ2LFjB4qLiy+5f2JiIgYNGoRmzZrhrrvuQklJCX755ZdaHWvx4sUwGo345z//iU8++QTDhg3DJ598gvvuu6/Svg6HA8OGDUOTJk3w7rvvIiEhAe+99x6+/vpr5z5CCIwePRpz587FPffcgzfeeAPnzp3DpEmTav8E1GDs2LEwGAxYs2bNJfe1WCxYunQpJkyYAKC8QbxhwwZkZmbW6ZgTJ05Eu3btat1wUqvVePXVV3HgwAFeTSYiIvJQbHez3V0VtrurxnY30RUSRD5i+vTpAoC49dZbXbY/8sgjAoA4cOCAEEKIlJQUoVarxZtvvumy36FDh4RGo3HZPmLECBETE1PpWLNmzRJqtVoUFxcLIYT4+OOPRUxMjLj22mvFCy+8IIQQwuFwiNDQUPHUU0857zd48GBx1VVXCbPZ7Nwmy7K4/vrrRbt27ZzbXn/9dREQECBOnDjhctwXX3xRqNVqkZaWJoQQ4syZMwKAaNKkicjPz3fu9/PPPwsA4pdffqnxOdu4caMAIBYvXixWrFghJElyPvZzzz0n4uLihBBCJCQkiC5dujjvV3Hc2bNnV3pMAGL69OnO72fPni0AiN27d4tPP/1UBAUFCaPRKIQQYty4cWLQoEFCCCFiYmLEiBEjKj3Wo48+Wm3+adOmuby2FblmzZrlsl9WVpbQaDTim2++cW67/vrrxejRo2t8fipU5L3QW2+9JSRJEqmpqc5tkyZNEgDEa6+95rLv1VdfLXr27On8/qeffhIAxDvvvOPcZrfbxYABA6p9Xi904etWne7du4uwsDDn9xe+DhdasmSJACBOnjwphBCiuLhY6PV68cEHH9SYocKkSZNEQECAEEKIOXPmCABi2bJlztsvfg0vfI3sdrto166d6N69u5BlWQjx999xTk5OrY5PREREjY/tbra72e7+G9vdRI2DPTjJ5zz66KMu3z/++OMA4JwzZtmyZZBlGePHj0dubq7zq1mzZmjXrh02btx4yWMMGDAADocDv//+O4DyK8YDBgzAgAEDsHXrVgDA4cOHUVhYiAEDBgAA8vPzsWHDBowfPx4lJSXO4+bl5WHYsGE4efIk0tPTAZRfuRwwYADCwsJcMg4ZMgQOh8PlKjYA3HnnnQgLC3PJBwCnT5+u9fN20003ITw8HAsWLIAQAgsWLHBeXawv48ePh8lkwooVK1BSUoIVK1Zc0ZXqiiv0l5qce8GCBVCpVBgzZoxz24QJE7By5UoUFBRc8jgGg8H5/7KyMuTm5uL666+HEAL79u2rtP8//vEPl+8HDBjg8lr89ttv0Gg0+Oc//+ncplarnb+r9SEwMLBWk5YnJiaiV69eaNu2LQAgKCgII0aMuKy5ku6+++7Lvpr8008/1fl4REREpCy2u9nuvhjb3dVju5voyrDAST6nXbt2Lt/Hx8dDpVIhJSUFAHDy5EkIIdCuXTtERka6fB07dgzZ2dmXPMY111wDf39/Z6OqoqE1cOBA7NmzB2az2Xlb//79AQDJyckQQuBf//pXpeNOnz4dAJzHPnnyJFatWlVpvyFDhrjsV6F169Yu31c0umrTiKjg5+eHcePGYf78+diyZQvOnj1bb8NkKlT8DPPnz8eyZcvgcDgwduzYy368ijmWgoKCatxv3rx5uPbaa5GXl4fk5GQkJyfj6quvhtVqrTT/UVXS0tIwefJkhIeHO+f3SUhIAADnEKkKer0ekZGRLtvCwsJcXovU1FRER0c7G4oVOnTocMkstVVaWnrJ56WwsBC//fYbEhISnM9LcnIy+vXrhz179uDEiRMAAJPJhMzMTJevqlQ0nPbv31/rhtPdd9+Ntm3bck4gIiIiD8R2N9vdF2O7u2psdxNdOY3SAYiUJkmSy/eyLEOSJKxcubLSJN4AKn34VcXPzw99+vTBli1bkJycjMzMTAwYMABNmzaFzWbDzp07sXXrVnTs2NH5oVsxSfmzzz6LYcOGVfm4FVfzZFnG0KFD8fzzz1e5X/v27V2+r+rnAFDnD66JEyfiyy+/xIwZM9C9e3d07ty5yv0ufk4rXDyhd3XHeOihh5CZmYnhw4cjNDS0ThkvdPjwYajVarRp06bafU6ePOmc+P3iRjhQfiX14rmiLuRwODB06FDk5+fjhRdeQMeOHREQEID09HRMnjzZZfJ5oPrXojHZbDacOHECXbt2rXG/xYsXw2Kx4L333sN7771X6fbExETMnDkTCxcuxJQpU1xuq+536+6778brr7+O1157Dbfddtsls1Y0ziZPnoyff/75kvsTERGR+2K7u/bY7q6M7W62u4lqwgIn+ZyTJ0+6fPAmJydDlmXExsYCKL+yLIRAmzZtKjVYLlZdgwIoH/7w9ttvY926dYiIiEDHjh0hSRK6dOmCrVu3YuvWrRg5cqRz/7i4OADljbSKK8LViY+PR2lp6SX3q2/9+/dH69atsWnTJrz99tvV7ldxpfri1QdTU1MveYzbb78dU6dOxY4dO7Bw4cLLzpqWlobNmzfjuuuuq/GKaWJiIvz8/DB37txKjaBt27bh448/RlpaWqWr8RUOHTqEEydOYM6cOS6Tm1+4KmVdxcTEYP369SgtLXVp2CclJV32Y15oyZIlMJlM1TboKyQmJqJr167OngwX+uqrrzB//nzMnDkTw4YNq/XPezkNp4oJ32fOnIlbb721VvchIiIi5bHdffnY7q6M7W62u4lqwiHq5HM+++wzl+8/+eQTAMDw4cMBAHfccQfUajVmzpxZ6WqYEAJ5eXnO7wMCAioNhagwYMAAWCwWfPjhh+jfv7+zUTZgwADMnTsX58+fd87JAwBRUVG44YYb8NVXXyEjI6PS4+Xk5Dj/P378ePzxxx9YvXp1pf0KCwtht9trfA4ulyRJ+PjjjzF9+nTce++91e4XHByMiIiISnMSff7555c8RmBgIL744gvMmDEDo0aNuqyc+fn5mDBhAhwOB1555ZUa901MTMSAAQNw5513YuzYsS5fzz33HAC4rDB5sYrG2YW/K0IIfPTRR5eVHQBuueUW2O12fPHFF85tDofD+bt6JQ4cOIAnn3wSYWFhlebFutDZs2exZcsWjB8/vtLzMnbsWEyZMgXJycnYuXMnoqOjMWTIEJevmtxzzz1o27YtZs6cWavMFw6xWb58eZ1+XiIiIlIO292Xj+3uytjuZrubqCbswUk+58yZM7j11ltx8803448//sC8efMwceJEdO/eHUD5Vdo33ngDL730ElJSUnDbbbchKCgIZ86cwY8//oiHH34Yzz77LACgZ8+eWLhwIZ5++mn07t0bgYGBzsbBddddB41Gg6SkJJehFgMHDnR+gF7Y0ALKG4H9+/fHVVddhYceeghxcXHIysrCH3/8gXPnzuHAgQMAgOeeew7Lly/HyJEjMXnyZPTs2RNlZWU4dOgQlixZgpSUFERERDTI8zd69GiMHj36kvs9+OCD+O9//4sHH3wQvXr1wpYtW5xzx1zKpEmTap3nxIkTmDdvHoQQKC4uxoEDB7B48WKUlpbi/fffx80331ztfXfu3Ink5GQ89thjVd7eokULXHPNNUhMTMQLL7xQ5T4dO3ZEfHw8nn32WaSnpyM4OBhLly6t0zxLFxs1ahT69euHF198ESkpKejcuTOWLVtWbaO+Olu3boXZbIbD4UBeXh62b9+O5cuXIyQkBD/++COaNWtW7X3nz58PIUS1V25vueUWaDQaJCYmok+fPnXKpVar8corr1QaXlOTiiE2+/fvr9OxiIiISDlsd18Ztrtdsd3NdjdRjRpjqXYidzB9+nQBQBw9elSMHTtWBAUFibCwMPHYY48Jk8lUaf+lS5eK/v37i4CAABEQECA6duwoHn30UZGUlOTcp7S0VEycOFGEhoYKACImJsblMXr37i0AiJ07dzq3nTt3TgAQrVq1qjLnqVOnxH333SeaNWsm/Pz8RIsWLcTIkSPFkiVLXPYrKSkRL730kmjbtq3QarUiIiJCXH/99eLdd98VVqtVCCHEmTNnBAAxa9asSscBIKZPn17jc7Zx40YBQCxevLjG/RISEkSXLl1cthmNRvHAAw+IkJAQERQUJMaPHy+ys7MrHXf27NkCgNi9e3eNx4iJiREjRoyo9DNUfKlUKhEaGiquvvpqMW3aNHHkyJFKj3Hx8/H4448LAOLUqVPVHnfGjBkCgDhw4EC1+xw9elQMGTJEBAYGioiICPHQQw+JAwcOCABi9uzZzv0mTZokAgICKt2/4nfzQnl5eeLee+8VwcHBIiQkRNx7771i3759lR6zKhWvW8WXn5+fiIyMFAMHDhRvvvmmyM7OrnSfi1+Hq666SrRu3brG49xwww0iKipK2Gy2avep7me22WwiPj5eABCPPvqoc3tNv7MVGQGInJycGrMRERGRctjudsV2N9vdF2K7m6hhSEJweSwiIiIiIiIiIiLyTJyDk4iIiIiIiIiIiDwWC5xERERERERERETksVjgJCIiIiIiIiIiIo/FAicRERERERERERF5LBY4iYiIiIiIiIiIyGOxwElEREREREREREQeiwVOIiIiIiIiIiIi8lgscBIREREREREREZHHYoGTiIiIiIiIiIiIPBYLnEREREREREREROSxWOAkIiIiIiIiIiIij8UCJxEREREREREREXksFjiJiIiIiIiIiIjIY7HASURERERERERERB6LBU4iIiIiIiIiIiLyWCxwEhERERERERERkcdigZOIiIiIiIiIiIg8FgucRERERERERERE5LFY4CQiIiIiIiIiIiKPxQInEREREREREREReSwWOImIiIiIiIiIiMhjscBJREREREREREREHosFTiIiIiIiIiIiIvJYLHASERERERERERGRx2KBk4iIiIiIiIiIiDwWC5xERERERERERETksVjgJCIiIiIiIiIiIo/FAicRERERERERERF5LBY4iYiIiIiIiIiIyGOxwElEREREREREREQeiwVOIiIiIiIiIiIi8lgscBIREREREREREZHHYoGTiIiIiIiIiIiIPBYLnEREREREREREROSxWOAkIiIiIiIiIiIij8UCJxEREREREREREXksFjiJiIiIiIiIiIjIY7HASURERERERERERB6LBU4iIiIiIiIiIiLyWCxwEhERERERERERkcdigZOIiIiIiIiIiIg8FgucRERERERERERE5LFY4CQiIiIiIiIiIiKPxQInEREREREREREReSwWOImIiIiIiIiIiMhjscBJREREREREREREHosFTiIiIiIiIiIiIvJYGqUDEBEREREREZHnkoUMs90Mi90Ci8Pi/NfqsMIu2yELGQ7ZAYdwVPl/AQGVpIJKUkGC5Py/SlJBkv7+3k/lB61aC61aC51G5/z/hV9E5JtY4CQiugIVjTK7bIddtsMh/v6/XbZDJamgUWmgltTQqDTl/1f9/X8iIiIiIndldVhRai1FmbUMZbYy5/9LraUw2U3OQqZdtisdFQAgQYJOo4O/nz/8/fwR4BeAAG1Apf8bNAZIkqR0XCKqR5IQQigdgohISbKQKzXaymxlKLOWwSbb/i5eVlHIlIV8RceurvBZ8aVT6xCgDUCgNtDZKAvwC4DBz1BPPz0RERER+SohBEqsJSgyF6HIUuT8t6JNbJNtSkdsECpJhUBtIEJ0IQjRhzj/DdWHIsAvgMVPIg/EAicReTWH7KhUuLy4iGmym5SOWWdqSV1+Jfqi4ueF/+eVaSIiIiKqUGQuQp4pD4XmQhSYClBgLkCRuQgO4VA6mltRS2oE64KdBc9wQzgi/CMQogth25rIjbHASUReweqwIt+Uj3xTPgpMBcg35aPQXOiRxcv6opJUCNYFo4mhCZr4N0G4IRxNDE0QoA1QOhoRERERNaAicxFyjbnIMeYg15iLXGMurA6r0rE8mkalQZg+DE38myDSPxIR/hFo4t8EKolrNxO5AxY4icjjVDTYco25zqJmma1M6VgeQ6/RVyp6hhnC2DgjIiIi8kBGmxGZpZnILstmMbORqSQVwg3hiAqIQrPAZogOjGZnAiKFsMBJRG5LCIEiy19Xn8vKrz7nmfLYYGsAKknlvCJdUfRs4t8Eeo1e6WhEREREdIFSaykySjKQUZqBjJIMFFmKlI5EFwjSBpUXO4Oi0SywGUL1oUpHIvIJLHASkVvJN+UjvTgd6SXpyCzNZDFTYSG6ELQIboEWQS3QPKg5dBqd0pGIiIiIfEqxpdiloFliLVE6EtWBXqN39u5sFdKKBU+iBsICJxEpqsRSgvSSdKQXp+N8yXmfnjPT3UmQ0MS/CZoHNUeLoBaIDoqGRqVROhYRERGRV3HIDmSUZiCtKA1pRWkothQrHYnqUZA2CK1CWqFVcCs0D2oOP7Wf0pGIvAILnETUqEw2E86XnHcWNXkF2nOpJBWiAqLQIqgFWgS3QFRAFOfxJCIiIroMZdYyZ0EzvSQddtmudCRqBCpJhWaBzdA6pDVaBrdEuCFc6UhEHosFTiJqUDaHDRmlGc5h5/mmfKUjUQPRqDRoFtjMWfBsYmgCSZKUjkVERETklrLLspFamIq0ojTkmfKUjkNuIFAbiNjQWMSFxaFZYDOl4xB5FBY4iajeme1mnC44jdMFp5FZmglZyEpHIgXoNXrEhsYiPiwezYOas9hJREREPi/XmIvTBadxKv8URzJRjQL8AtAmrA2LnUS1xAInEdULi92CM4VncLrgNNKL0yHAtxb6m0FjQFxYHOLD49lAIyIiIp+Sb8p3FjW54jldDn8/f7QJ/bvYyY4DRJWxwElEl83msCGlMAWnCk7hXPE59tSkWgnwC3AWO6MCopSOQ0RERFTvii3FSM5Pxqn8UygwFygdh7yIv58/2oa3RYcmHRBmCFM6DpHbYIGTiOrELtuRVpSGU/mncLb4LCdApysSqA1EfFg84sPjEeEfoXQcIiIiostml+04XXAaSblJyCjNUDoO+YCogCi0b9IebcPbQqvWKh2HSFEscBLRJclCxtmiszhVcAqphamwyTalI5EXCtYFO4udXEGSiIiIPEVOWQ6S8pKQnJ8Mq8OqdBzyQWpJjTZhbdChSQfOfU8+iwVOIqpWrjEXR3OO4nTBaTbWqFGF6kPRoUkHdIjoAL1Gr3QcIiIiIhcWuwUn808iKTeJK6CTWwnUBqJ9k/boFNEJAdoApeMQNRoWOInIhSxknC44jcPZh5Fdlq10HPJxakmNuLA4dI7sjKaBTZWOQ0RERD4u15iLQ1mHcLrgNBzCoXQcomqpJBViQ2PRNaorF/kkn8ACJxEBAIw2I47lHMOx3GMw2oxKxyGqJNwQjs6RndEuvB381H5KxyEiIiIfIYRASmEKDmUfQmZpptJxiOoswj8CXaO6Ij4sHmqVWuk4RA2CBU4iH5dVmoUjOUdwuuA0V0Enj+Cn8kO7Ju3QNaorQvWhSschIiIiL2V1WJGUm4TD2YdRYi1ROg7RFdNr9OgU0QldorrA389f6ThE9YoFTiIf5JAdOFVwCoezDyPXmKt0HKLL1jqkNbpGdUXL4JZKRyEiIiIvUWwpxuHsw0jKTeLimuSVVJIKbULboEezHmji30TpOET1ggVOIh9SZi3D0ZyjOJZ7DGa7Wek4RPUm3BCOrlFd0S68HYfdEBER0WXJN+VjX8Y+nC44DQGeJpNvaB3SGtdEX4OogCiloxBdERY4iXxAZmkmDmcfRkphCoehk1fTa/ToHNkZXaO6cvV1IiIiqpU8Yx7+zPgTKYUpSkchUkyLoBa4OvpqNA9qrnQUosvCAieRF8suy8ae83twrvic0lGIGpWfyg9do7qiW9Nu0Gl0SschIiIiN5RTloO9GXuRWpSqdBQit9E0oCmujr4arUNaKx2FqE5Y4CTyQnnGPOw+vxtpRWlKRyFSlFatRbem3XBV1FVceZ2IiIgAlHcC+PP8nzhbfFbpKERuK8I/AtdEX4PY0FiloxDVCgucRF6kwFSAPzP+xOmC00pHIXIreo0e3Zt2R5eoLtCoNErHISIiIgXklOVg9/ndHN1EVAdRAVHo06IPooOilY5CVCMWOIm8QLGlGHvO78Gp/FOcEJ2oBv5+/ujRrAc6RXTiYkREREQ+oshchN3nd7MTANEVaB3SGte2uBbhhnCloxBViQVOIg9Wai3Fn+f/xMn8k1w8iKgOAvwCcE30NegQ0QEqSaV0HCIiImoAJpsJf2b8ieO5x9lWJqoHEiS0DW+L3i16I1AbqHQcIhcscBJ5IKPNiL0Ze9lYI7pCwbpgXBN9DdqFt4MkSUrHISIionpgl+04mHUQBzIPwCbblI5D5HXUkhqdIzvj6uirodfolY5DBIAFTiKPYrabsS9jH47mHIVDOJSOQ+Q1QvWh6BndE/Hh8UpHISIiosskhMCJvBPYc34PymxlSsch8npatRbXRF+DrlFdOSqKFMcCJ5EHkIWMQ1mHsDdjL69CEzWgCP8I9G/dH1EBUUpHISIiojrIKcvBtrRtyDHmKB2FyOeE6EJwfavr0SqkldJRyIexwEnk5jJLM7E1dSsKzAVKRyHyGR0jOqJPiz7QaXRKRyEiIqIaWOwW7ErfheO5x7nYJpHCWoe0xvWtrkewLljpKOSDWOAkclNmuxk7zu3AibwTSkch8kl6jR59WvRBh4gOSkchIiKiKhzPPY5d6btgtpuVjkJEf1FLanRv1h09mvWARqVROg75EBY4idyMEALHco9hd/puWBwWpeMQ+bxmgc3Qv3V/hBvClY5CREREAHKNudiWtg3ZZdlKRyGiagRpg3B9q+sRExqjdBTyESxwErkRNtaI3JNKUqFrVFf0jO4JP7Wf0nGIiIh8ktVhxe703Tiac5TD0Yk8RGxoLPq37g9/P3+lo5CXY4GTyA2wsUbkGQL8AnB9q+vRJqyN0lGIiIh8SmphKrambYXRZlQ6ChHVkU6tw3WtrkP7Ju2VjkJejAVOIoUl5ydjx7kdbKwReZBWwa3Qr3U/TqBORETUwCx2C7af3Y7k/GSloxDRFWoV3AoDYgYgUBuodBTyQixwEimk0FyIbWnbcL7kvNJRiOgyqCU1ejTrgR7NekCtUisdh4iIyOukFKZgW9o2dgQg8iJ+Kj/0adkHnSM7Kx2FvAwLnESNTBYy9mbsxf7M/ZCFrHQcIrpCwbpgDIwZiOZBzZWOQkRE5BXMdjN+P/s7e20SebHowGgkxCZwRBTVGxY4iRpRkbkIG85sQI4xR+koRFSPJEjo3qw7ejXvBZWkUjoOERGRx0opTMHW1K0w2U1KRyGiBqZRaXBti2vRNaqr0lHIC7DASdRIjucex+9nf4ddtisdhYgaSKR/JG5scyNC9CFKRyEiIvIoVocV29K2sdcmkQ9qFdwKN8TeAIOfQeko5MFY4CRqYBa7BVvTtuJ0wWmloxBRI9CoNOjXqh86RHRQOgoREZFHyC7LxoYzG1BsKVY6ChEpxKAx4IbYG9AqpJXSUchDscBJ1IDOl5zHxjMbUWYrUzoKETWyuLA4DGg9ADqNTukoREREbmt/5n7sOb+Hc9MTEQCga1RX9GnRh4t4Up2xwEnUAGQhY8/5PTiQeQAC/BMj8lWB2kAMih2E6KBopaMQERG5FaPNiI1nNiK9JF3pKETkZsIN4RjcZjDCDGFKRyEPwgInUT3jQkJEdCEJEno064GezXtyASIiIiIAZ4vOYmPKRpjtZqWjEJGb0qg06NOiD7pEdVE6CnkIFjiJ6lFSbhK2n93OhYSIqJKogCjc2OZGBOuClY5CRESkCFnI2JW+CwezDiodhYg8RFxYHBJiEuCn9lM6Crk5FjiJ6gEXEiKi2vBT+aFf635o36S90lGIiIgaldFmxJpTa5Bdlq10FCLyMGH6MAyNH4pQfajSUciNscBJdIUySjKwMWUjSq2lSkchIg8RFxaHgTEDoVVrlY5CRETU4DJLM7Hu9DoYbUaloxCRh9Kqtbgh9gbEhsYqHYXcFAucRFfgUNYh7Di3gwsJEVGdBeuCcXPbm3klmoiIvNqR7CP449wfXCWdiOpFj2Y90Lt5b0iSpHQUcjMscBJdBlnI2Ja2DcdzjysdhYg8mFatxZC4IWgZ3FLpKERERPXKITuwLW0bkvKSlI5CRF6mRVALDI4bDL1Gr3QUciMscBLVkdluxtpTa5FRmqF0FCLyAhIkXNfqOnSN6qp0FCIionpRai3F2lNrkWPMUToKEXmpQG0ghsYNRWRApNJRyE2wwElUBwWmAqw+tRrFlmKloxCRl+kY0RH9W/eHSlIpHYWIiOiyZZRkYO3ptTDbzUpHISIvp5bUGNRmEOLC4pSOQm6ABU6iWjpbdBbrz6yH1WFVOgoReanmQc0xJG4Ih9sQEZFHSspNwta0rZxvk4ga1bUtrkWPZj2UjkEKY4GTqBa4mBARNRYuPkRERJ5oz/k92JuxV+kYROSjOjTpgAExAzgayoexwElUAy4mRERK0Kq1GNxmMFqFtFI6ChERUY1kIWNzymaczD+pdBQi8nHNg5rjpviboFVrlY5CCmCBk6gaXEyIiJQkQULfln1xVdOrlI5CRERUJavDijWn1uB8yXmloxARAQBC9aEY3nY4gnRBSkehRsYCJ1EVCkwFWJW8CiXWEqWjEJGP4+JDRETkjkosJViZvBKF5kKloxARudBr9BgWPwxNA5sqHYUaEQucRBdJK0rDhjMbuJgQEbmN6MBoDI0fysWHiIjILeSU5WBV8iqY7CaloxARVUktqTEkbghiQmOUjkKNhAVOogscyT6C38/+zsWEiMjtBOuCMaLdCA63ISIiRZ0rPoc1p9bALtuVjkJEVCOVpMINsTegbXhbpaNQI2CBk+gv+zL2Yff53UrHICKqVoBfAEa2H4kQfYjSUYiIyAedKTiD9WfWQxay0lGIiGqtX6t+6BLVRekY1MBY4CQCsPPcThzIOqB0DCKiSzJoDBjRfgTCDeFKRyEiIh9yIu8ENqds5kgnIvJIvZr3wjXR1ygdgxoQC5zk04QQ2H52O47mHFU6ChFRrek1etzS7hZE+EcoHYWIiHzA0Zyj2Ja2TekYRERXpFvTbujbsq/SMaiBsMBJPksWMjalbEJyfnK1+/gJCQZJDT1U0AkV1ALQSBJUAlBBgloAKuCv7wEJgCwEhCRBlgRkSBBS+TZZAmQJsEHAIgmYhQNmyLBAhpAa66cmIm+hVWtxS7tbEBUQpXQUIiLyYgcyD2Bn+k6lYxAR1YsOTTpgYMxASBJPwr0NC5zkkxyyAztObURBUToChAoBsgSdLKCRZfjJAmpZhtrhgNRIfx6ySoJdpYasVsGmUsGsVsGoAoySjFLJgWLYYedwICK6iJ/KDze3vRnRQdFKRyEiIi+0O3039mXuUzoGEVG9iguLw41tboRKUikdheoRC5zk3UwmoKgIKCws/yoqglxchJxwC8wwKZ2uThxqNWwaNcxqNYxqCYUqBwokB0rBFSyJfJlGpcFN8TehZXBLpaMQEZEX+f3s7zicfVjpGEREDaJNaBsMjhvMIqcXYYGTvIfDAeTkAJmZQFZW+ZfZ7LKLrJKQE6uFWbIoFLL+ySoVzFo/lGnUKFYLFMCBAskKrm1J5DvUkhpD44eidUhrpaMQEZEXYHGTiHxBXFgcBrcZzOHqXoIFTvJcZvPfxczMTCA3t7zIWQ1ZLSE7RguLFxU3qyMkCSatFkVaNXIlB7JVVg5xJ/JyKkmFG9vciLiwOKWjEBGRB9t5bicOZB1QOgYRUaNoG94Wg2IHscjpBVjgJM9RWPh3MTMzs3zoeS35UnGzShJg1mpR7KdBnlpGFqywSOzjSeRtJEgY1GYQ2oa3VToKERF5oD3n92Bvxl6lYxARNap24e1wQ+wNLHJ6OBY4yX1ZrUBKSvlXZmal4ea15Y3D0uuDWadFvlaNTJUDOZJV6ThEVE8kSBgQMwAdIzoqHYWIiDzIvox92H1+t9IxiIgU0aFJByTEJigdg64AC5zkXsxmIDUVOH0aSE8H5CvrZSgkICdWD5Pq8oqjvsKhVqNIp0W2n0C6ZOFwdiIv0L91f3SO7Kx0DCIi8gCHsg7hj3N/KB2DiEhRHSM6YmDMQKVj0GVigZOUZzYDZ86UFzUzMq64qFlBAMiLNaBM7VmrpStNqCSU6nTI9APSVCx2EnkqCRIGxw3mnJxERFSjozlHsS1tm9IxiIjcQufIzujfur/SMegysMBJyjAay4uaZ86UFzUb4NcwL8aAUg2Lm1dCqCQU6nQ4rwXSYYbglCREHkUtqXFLu1sQHRStdBQiInJDSblJ2Jy6WekYRERupWd0T/Rs3lPpGFRHLHBS4zEay3tpnj5dvlhQA/7qFbTyR7HW2GCP74scajXyDTqcVds5ZyeRB9Gqtbi1w60IN4QrHYWIiNxISmEK1p5aC8HROkRElQxoPQCdIjspHYPqgAVOanjZ2cDhw+WFzXoafl6Tohb+KNSzuNmQbH5+yNL74ZTaDDO4GjuRuwvwC8DojqMRqA1UOgoREbmBzNJM/HriVziEQ+koRERuSYKEofFDERsaq3QUqiUWOKlhyDJw6hRw5Eh5gbORlDQzID+Aw9Ibi5AkFPrrcUbDldiJ3F2oPhSjO4yGTqNTOgoRESmowFSA5UnLYXFYlI5CROTW1JIaI9qPQLPAZkpHoVpggZPql9EIHDtW/mVs3F6UpVEG5AWxuKkUs1aLdIMaZ2CGQ+LbCpE7ahbYDLe0uwUalUbpKEREpIAyaxl+Ov4TymxlSkchIvIIOrUOt3a4FWGGMKWj0CWwwEn1IycHOHSo0YahX8wUpkNOuIUzCLkBh1qNHIMWyWoryiQOeyJyN7GhsRgaNxSSxFXDiIh8idVhxfKk5cg35SsdhYjIo3C6J8/AAiddPlkuL2gePtyow9AvZvP3Q2a0AzLngnQvEpDnb0CSxoYSya50GiK6QKeIThgQM0DpGERE1EhkIWNV8iqcKz6ndBQiIo/E6Z7cHwucVHd2e3lR8/DhRh+GfjGHnwqZrVWwgwU0tyUBBQY9TmgdKIRN6TRE9JdezXvhmuhrlI5BRESNYHPKZiTlJSkdg4jIozUPao5b2t0ClaRSOgpVgQVOqj1ZBo4fB/buVbywCQBCArLa6GCROEG6pyjyN+CE1o58FjqJ3MLAmIHoGNFR6RhERNSADmQewM70nUrHICLyChwJ5b5Y4KTaOXMG2L0bKCxUOolTbowBZRouKuSJSgx6HNc5WOgkUpgECTfF34SY0BiloxARUQM4W3QWq5JXQXCmeiKienN9q+vRNaqr0jHoIixwUs0yMoCdOxWdY7MqRS38UahXvhcpXZn8AAOO+FlhBBcjIlKKRqXByPYjERUQpXQUIiKqR4XmQvx0/CdYHValoxAReRUJEoa3G46WwS2VjkIXYIGTqpafD+zaBaSlKZ2kkrIIA3JD2HPTWwiVhMwAA46pTLBJfDsiUkKgNhB3dLoDeo1e6ShERFQPrA4rfjr+EwrNhUpHISLySlq1Frd3vB0h+hClo9BfWOAkV6WlwJ49wMmTgBv+aliCtciKtHGYjRdyqNVI89fipMoEISmdhsj3tAxuieFth0OS+AdIROTJhBBYfWo10orcr6MCEZE3CdWH4raOt0Gr1iodhcACJ1WwWIB9+4AjRwCHew4XdujUyGgJODic2atZ/fxw0l+Nc5JZ6ShEPuea6GvQq3kvpWMQEdEV2JW+C/sz9ysdg4jIJ7QOaY1h8cPYScANsMBJwNGj5QsIWdx3NXKumO57ivwNOKjl/JxEje3mtjejdUhrpWMQEdFlOJV/CuvPrFc6BhGRT2EnAfegUjoAKai4GFixAti2za2LmwBQ2NKfxU0fE2I0oV+xQAfZAE7NSdR4Np7ZiBJLidIxiIiojvKMediculnpGEREPmdfxj6cKz6ndAyfxwKnrzp8GFiyBDh/Xukkl2Rsokexlium+yKVLCO22ISBZi2aCM5rQtQYLA4L1p5eC4fM3tNERJ7C5rBh3el1sMt2paMQEfkcAYENZzbAaGPdQkkscPqa4mJg+XLg998Bu/s3gGwGDfJCrUrHIIXpLVb0Krbiars/NODcJkQNLdeYi+1ntysdg4iIamlr2lYUWYqUjkFE5LPMdjPWn14PzgKpHBY4fYUQwKFD5b02MzOVTlMrQiUht7kKMmSlo5A7EEBUqREJpWo0g07pNERe73jucSTlJikdg4iILuF47nEk5ycrHYOIyOdllGZg9/ndSsfwWSxw+oLCwvJem3/84RG9Nivkt9LDCvbeJFcaux3dCy3oYffnGxhRA9t+djvyjHlKxyAiomoUmArw+9nflY5BRER/2Z+5H2lFaUrH8EmsD3gzIYADB4ClS4GsLKXT1ElplAGlGpPSMciNNS01YqBRizDhp3QUIq9ll+1Ye3otrA5ebCIicjd22c55N4mI3NCmlE0otZYqHcPnsMDprQoKgJ9/BnbuBByetVCENdAP+UFmpWOQB9BZrehdbEdH2V/pKEReq9hSjI1nNiodg4iILrI9bTsKzAVKxyAiootUzMcpC06315hY4PRGR48Cy5YB2dlKJ6kzWSUht2n5KmREtSEJgZhiI/qb9QgQaqXjEHml1KJU7M/cr3QMIiL6y8m8k0jK4zzJRETuKqssC3sz9iodw6ewwOlNHA5g82Zg2zaP67VZobCFHjbYlI5BHijAbMZ1pUALoVc6CpFX2p2+G5mlnrFIHRGRNyu2FGNb2jalYxAR0SXsz9yP7DLP63jmqVjg9BZlZeULCSV57pVcU5gOJVrOu0mXT+1woGuRGV0dHLJOVN8EBDalbILNwYtQRERKEeKv92KZ78VERO5OFjI2ntnIuZIbCQuc3iAjo3xIek6O0kkum6xRIS/cM3udkvtpUWLE9RY9tHyLI6pXxZZi7Di3Q+kYREQ+61D2IfamJyLyIEWWIuw8t1PpGD6BZ/+e7vBh4NdfAZNn93zMb6mDA7yqQfUnyGRG/zI1wsFV1onq07HcYzhXfE7pGEREPqfQXIjd6buVjkFERHV0JOcI28+NgAVOT+VwAJs2Ab//DsievTKXMUKPMrVnF2jJPfnZbOhVbEecMCgdhcirbE7ZDKvDqnQMIiKfIYTAxjMb4RAc8URE5InYfm54LHB6otJS4OefgRMnlE5yxRxaNfJDOIcQNRxJFmhXZMI1dn9IQuk0RN6hzFaG38/+rnQMIiKfsT9zP3KMnjsdFRGRryuzlXGBuAbGAqenOX++fL7N3Fylk9SLvBZ+cIBXoqnhRZYacZ1VDw0kpaMQeYUTeSeQUpiidAwiIq+XZ8zDnxl/Kh2DiIiuUHJ+Mk4XnFY6htdigdOTHDoE/PYbYDYrnaRelEbpYVJ5x89CniHIZEZ/ox/8oVY6CpFX2Jq6FRa7RekYREReSxYyNqZshCw8e0oqIiIqtz1tO9vPDYQFTk8gBLBlC/DHHx4/32YFu16DgiDOP0GNT2e14roSiYsPEdUDk92EP879oXQMIiKvtS9jH/JN+UrHICKiemKym7AznauqNwQWON2dLAMbNwLHjyudpF7lN1NDhncUa8nzaBx29Cx2IFrolI5C5PFO5J3gqpBERA2gyFyE/Zn7lY5BRET17HjucWSUZCgdw+uwwOnOZBlYtw5ITlY6Sb0yNtHDpGaXbFKWSpZxVbEVsVxhneiKbU3dCrtsVzoGEZFX2Za2jaumExF5qa1pWzn9SD1jgdNd2e3A6tVASorSSeqVrJJQEMqTYHIPkhDoUGRCO5lFTqIrUWItwe703UrHICLyGsn5yUgvSVc6BhERNZBCcyF76dczFjjdkc0GrFwJnD2rdJJ6V9TCADtY4CT3EldsQkcWOYmuyOHsw8guy1Y6BhGRx7M6rPjjLOc3JiLydvsy9qHQXKh0DK/BAqe7sVqBX38FMrxvPgZroB9KtEalYxBVKabYhM6yv9IxiDyWgMCW1C0cakNEdIV2pe+CyW5SOgYRETUwh3BgW9o2pWN4DRY43YnZDKxYAWR7Zw+Y/CgVhNIhiGrQqtiIrg4WOYkuV74pH4ezDysdg4jIY2WXZeNYzjGlYxARUSM5X3IeSblJSsfwCixwugujEfjlFyA3V+kkDaK0qQEWiQsLkftrUWJENxY5iS7b3oy9MNvNSscgIvI4QghsTd0KwS4BREQ+ZWf6TlgdVqVjeDwWON1BaSmwfDlQUKB0kgbh8FOhMJB/rOQ5okuM6GFnkZPoclgdVuzN2Kt0DCIij3Mk5wjyTHlKxyAiokZmtpvZfq4HLHAqrbi4vLhZXKx0kgZT2FwHBxxKxyCqk6al7MlJdLmO5hxFkblI6RhERB7DYrfgz/N/Kh2DiIgUcjj7MIot3lsXagwscCqppKS8uFlaqnSSBmMJ1qJUw0nSyTNFlxjRiUVOojqThYwd53YoHYOIyGPszdgLi4PTORER+Sq2n68cC5xKMZuB334rn3vTixVGSEpHILoirUuMaCsMSscg8jipRak4X3Je6RhERG6v2FKMIzlHlI5BREQKSylMYfv5CrDAqQS7HVi1Cijy7uF7pnA9zFxYiLxAfLEJrYVe6RhEHmfHuR0QgotlEBHVZOe5nZCFrHQMIiJyA3+c/YPt58vEAmdjk2Vg3TogO1vpJA1KACgI47yb5CUE0LHYgmihUzoJkUfJNebiZP5JpWMQEbmtzNJMnCk8o3QMIiJyE3mmPCTlJSkdwyOxwNnYtmwB0tKUTtHgypoaYINN6RhE9UYSAl1LbIiAVukoRB5lV/ou2GW70jGIiNwS51sjIqKL7U7fDZuD9ZS6YoGzMe3eDZw4oXSKBierJBQGWpWOQVTvVLKMHiUOBAmN0lGIPIbRZsSBzANKxyAicjvJ+cnILvPuUV1ERFR3JrsJB7LYfq4rFjgbS1ISsG+f0ikaRUm0AQ5weDp5J7XDgZ4mFfwEF9Aiqq0DWQdgtHn3onpERHXhkB3Ylb5L6RhEROSmDmUdgtluVjqGR2GBszFkZABbtyqdolE4tGoU6/lHSN5NZ7XiWqsOEud+JqoVu2zH7vTdSscgInIbx3KPodRaqnQMIiJyUzbZhv2Z+5WO4VFY4GxoRUXAmjXliwv5gKJmWsjwjZ+VfFugyYzuDn+lYxB5jBN5J5BnzFM6BhGR4uyynSetRER0SUdzjnIUVB2wwNmQLBZg1aryf32Azd8PpX4mpWMQNZqmpUa0FQalYxB5BAHBxTSIiAAcyznGE1YiIrokXhCrGxY4G4osA2vXlvfg9BFFURpwxC75mvhiE5pBp3QMIo+QXpKOc8XnlI5BRKQYu2znwhFERFRrx3I4pUltscDZUHbsAM6fVzpFo7EZNChTs/cm+SABdC2xIxBcWZ2oNngVmoh8GYcbEhFRXTiEA/syfGPB6ivFAmdDSE0FDh9WOkWjKo7yUzoCkWLUDgd6GlV8QyWqhfMl55FTlqN0DCKiRmeX7TiQyd6bRERUN0l5SSi2FCsdw+3xfLy+GY3A5s1Kp2hUdr0GZRr23iTfprda0cPORYeIaoO9OInIFx3NOQqTnW1mIiKqG1nI2JuxV+kYbo8FzvokBLBhA2A2K52kURVH+XHuTSIAkaVGtBZ6pWMQub2UwhQUmguVjkFE1Gi4UAQREV2J5PxkzsV5CSxw1qf9+31q3k0AcOjUKPXzrYIuUU06lFg5HyfRJQgIDtMkIp9yNOcozHa2mYmI6PLIQsbBrINKx3BrLHDWl+xs4M8/lU7R6IqjtBDsv0nkpJJlXGNS882V6BJO5p9EmbVM6RhERA1OFjIOZR1SOgYREXm447nHYbFblI7htngOXh+sVmD9ekCWlU7SqBx+KpRoeSWa6GIGiwXdOB8nUY1kIeNQNk/4icj7nco/hTIbL+gQEdGVsct2HMk5onQMt8UCZ33Ytg0oKVE6RaMrbqZn702iajQtNaIl5+MkqtGxnGO8Ck1EXo9DComIqL4cyT4Ch+xQOoZbYoHzSp04ASQnK52i0ckaFUrZe5OoRh1LbdAJvs0SVccm23gVmoi8WnpxOvJMeUrHICIiL2Gym5CUl6R0DLfEM+8rUVQEbN+udApFlEbpIcO3huQT1ZXa4UAPm07pGERu7XD2Ydhlu9IxiIgaBHtvEhFRfTuYdRBCcDTtxVjgvFyyXD7vps2mdJJGJwCUGKxKxyDyCKFGE1pzqDpRtcx2M47nHlc6BhFRvSswFeBs8VmlYxARkZcpthTjTOEZpWO4HY3SATzWrl1Abq7SKRRhjNDDDg5PJ6qt9qU2ZAWqYJHY65moKgezDqJzZGeoJF53JSLvUd+9NyUBBEgaBAs1AoQKOiFBAsq/BP7+/1/7q/7q3SMBcEgSrBJgkQQskoBZkmGEjDJhh5CqPBwREbmxg1kHERcWp3QMt8IC5+XIzgYO+u5wk5JgdoUmqgu1w4HudgN2+ZmUjkLklkqtpTiVfwrtmrRTOgoRUb0w2oxIzq/7PP0aSAgSGgRBjQBZBX9ZQO8Q0Drs8LM7IAk7gHqc1kMCbBoNrGoNzCoJJrWEQpWMbFhgk9jmJyJyV9ll2cg15iLCP0LpKG6DBc66EsJn590EAGuQFhaJK94S1VVYmQmtQvQ4K7H3M1FVDmQdYIGTiLzGsZxjcIhLr3KrFhKaQotIhxqhNjv0FisA219fjUAAfjY7/Gx2BPy1qeVf/1q0WhRrNchXC2RLVhjBVXuJiNzJ0ZyjGBgzUOkYboMFzrpKSgJycpROoZiScLXSEYg8VodSG7KCVLBygS6iSvJN+cgoyUB0ULTSUYiIrogsZBzLPVblbZIAIiUtohwahNkcMFiskIR7dh7QWa2ItFoRCaADAJufBqVaP+SrBHJUdhRJXCCOiEhJyfnJ6NuyL7RqrdJR3AILnHVhsZTPvemjHH4qlGnY+4zocqkdDnSzGbCHQ9WJqpSUl8QCJxF5vNTCVBhtRuf3QUKDFkKLcJuMAIsVKtkKwPMW7PSz2RFmsyMMQDwAu1qDPIMWqWobCiTfW3iViEhpdtmOE3kn0DWqq9JR3AJn86+L3bsBs+8W+Moi9RDgXDxEV6JJmQlNBK+wEVXldMFp2Bw8SSYiz3Ys9xj8hIS2woD+Ji2uL7IjptiIIJMZKtl7RnFoHHY0LTXi2iIbbjBq0VH2h56nl0REjepYTtUjBnwRP4FqKzcXOObbvzglBs+70kzkjrqYuVwpUVXssh2nCk4pHYOI6LJZss+hRV4+BpUA8UUmBFh8o/2ss1oRU2xEQpGM6806xAoD1FyenYiowRWYC5BRkqF0DLfAIeq1tX17+QJDPsoUpocdvtt7lag+GSwWxOkNOC1xqDrRxZJyk9AxoqPSMYiIas9qBU6eBI4ehTHQglCt8dL38VYCCDJb0MEMtFOpkG/Q46yfA9keOCSfiMhTHM05ymmewAJn7Zw4AWRlKZ1CUaUhvAJLVJ/iSq04GyjBJvnuhROiqmSVZaHQXIhQfajSUYiIamaxAIcOAYcPA1YrhASUcUFOJ5UsI6LMhAgAZXo9TuhlFjqJiBrAmcIzMNlMMPgZlI6iKA5RvxSrFdi5U+kUipI1KpjU7L1JVJ/UDge6OHz7A4ioOkm5SUpHICKqnslUfn4wfz6wd2/5+QIAU7geDjgUDueeAsxmXF1oxfVmHeciJyKqZ7KQkZTH9jMLnJeyZ095I8aHlUXouLgQUQNoWmZEKPyUjkHkdk7mn4QsvGchDiLyEkYj8PvvwA8/AAcOADbXRdFKgxXK5UGCzBb0KrKir9WAMME2EBFRfTmRd0LpCIpjgbMm+fnA0aNKp1BcmT+vRBM1CAF0sXAoG9HFjDYjzhadVToGEVE5hwPYvx9YuLB8OLrdXnkXnRomFUc81VaI0YRri2zoYzUgmLOmERFdsUJzIbLLspWOoSgWOGuyfTsg+3YPEptBA4vEuXKIGkqgyYymQqd0DCK3w2E2ROQWUlKAxYuBXbsq9di8UFk4h11fjlCjCdcV2dHbakAgC51ERFfkZN5JpSMoigXO6pw5A2RkKJ1CcWVN2FgjamjtLUonIHI/aUVpMNl8e4oYIlJQYSHw22/AmjVAcfEldy8zcMTTZRNAuNGE64tldJQ5PzkR0eU6VXDKp6d5YoGzOnv3Kp3ALZTp2HuTqKH5my1oLrMXJ9GFZCHjZL5vX4UmIgXIcvkc/EuWAOfO1eouNoMGVo54umKSLCOm2ISBJh3nKCciugxmuxlpRWlKx1AMC5xVSUsD8vKUTqE4c4gOdlSeY4iI6l87MxfyIroYV1MnokZVUAD89FN5R4c6TFNl5PD0emWwWHBtkR1dHP6Q2DwiIqqT5PxkpSMohgXOquzbp3QCt1AWwl8Posait1oRI/RKxyByKwXmAp+fLJ2IGoEQwMGDwLJlQG5une9epqt+bk66PJIQaFlixACzDkGCc3MSEdVWWlEabA7f/FxiBeti588DWVlKp1CcUEkw+nFiQKLG1MYks6cC0UXYi5OIGlRJCfDLL8COHeWrpdeRNdAPNsk3TyQbg8FiQd8SGfEyLwITEdWGXbYjpTBF6RiKYIHzYuy9CQAwhesgw3cnpyVSgs5qRRtwcn2iC50pPAMhWPknogaQlgYsXQpkZl72QxhDOVdkQ1PJMtoWm9HXaoCWp69ERJfkq8PU+QlxoexsID1d6RRuwRgoKR2ByCfFGDnvLdGFzHYzsso4soKI6tm+fcDq1YD1yhYH4oKcjSfEaEK/MjWHrBMRXUJ6STqsDt/7fGKB80LsvQkAEBJgUnN4OpEStDYb5+IkuogvrwZJRPXMbgfWrQN27y6fe/MKWIL8uCBnI9PabOhTKhApuLATEVF1ZCHjbNFZpWM0OhY4K+TnA6mpSqdwC+ZQDk8nUlIMV1QncpFayM9nIqoHxcXlq6SfPl0vD8fh6cpQOxy4usSG1rwgTERULV+ch5MFzgrsvelkCuKvBZGSDBYLmkGndAwit1FgLkCxpVjpGETkyXJyyoub+fn19pBGre8N/3MXkizQqciMDjLnLiciqsrZ4rOQhW91XGMlCwCKiurtSq43MPlxJUgipbXhLBFELjhMnYgu2/nzwIoVgNlcbw9p8+fwdHcQW2xCD7u/0jGIiNyO1WHF+ZLzSsdoVCxwAsD+/Vc8B4+3sAZp2VgjcgPBJgtCBIe+EVXgMHUiuiwpKcDKlYCtfi/gm0L4Ge0umpYa0ddqgFpwkVQiogv52jB1FjhLS4GTJ5VO4TaMIVyVkMhdtLXz75GoQkZphk+uBklEV+DECWDtWsDhqPeHNunr/zHp8oUYTehn1kIneHpLRFTB1zoI8BPg8GFA9q15CWpi1LH3JpG7aGIys6FO9BdZyDhXfE7pGETkKY4cATZtapBRWrJGBYuKc8m4G4PFgutMGvixJycREQCgzFaGnLIcpWM0Gt8+c5bl8iu7BACwGzSwgb1jiNyFJAu04QqhRE6+dhWaiC7TiRPA9u0N9vDmUC04uZV70lmt6GPR+fhJLhHR33xpmLpvv/enpdXrZOOezhiqVToCEV2kmZm9qokqpBWlQXDObCKqSWoqsGVLgx7CFMAegu4swGxGbytXVyciAspXU/cVvl3gZO9NFyY9h+oTuRud1Yoo8OIDEQBYHBZklWUpHYOI3FVGBrBuXYNPP2XScMSTuws1mnA1V1cnIkKeMQ8Wu29Mq+K7BU6zubwHJwEAhATOJUTkpmJsaqUjELkNDlMnoirl5gKrVzfIgkIXsgRr4QAXGPIEUaVGdJZZ5CQi3yYgkF6SrnSMRuG7Bc7kZC4udAFLsBaCswkRuaUwk4UT5hP9JbWIBU4iukhJCbByJWBt+J6VpmBNgx+D6k+rYiPiBIerE5FvO19yXukIjcJ3C5xJSUoncCvmIDbWiNyVJMuI5WJDRACAQnMhii3FSscgIndhtwNr1gAmU6MczuzHubE9TbtiE5oLndIxiIgUc674nNIRGoVvFjjz8sq/yMmi5VAbInfW3MK/UaIKaUWcYoaI/rJlS6O164VKglVla5RjUT0SQNcSG5oIzmlORL6p2FKMUmup0jEanG8WOLm4kAtZJcEicf5NInemt1gRDj+lYxC5hczSTKUjEJE7OHSofNqpRmIJ8uOUTh5KkmX0KJWhE755+ktE5Au9OH3vHV6WG7Uh5AksIVo21Yg8QGs7C5xEAJBdlq10BCJS2vnzwM6djXpISwAX/fNkGocdV9s4VJ2IfFN6sfcvNOR7Bc6zZxttjh5PYQ7wvV8DIk8Ubmn4xROIPEGptRRl1jKlYxCRUsrKgHXrGn3BULOOXQI8XYjRxEWHiMgn+cJCQ75X2eLiQpVw/k0iz+Bns3P+KKK/ZJVlKR2BiJSycSNgNjfqIYUEWFW80OgN4kssCAQXWCUi32Kym1BoLlQ6RoPyrQKn2QykcWGCC8lqCVaJjTUiT9HSwQY5EcBh6kQ+6+DB8uHpjcwa6AcZjdtjlBqGSpZxtZnTDRCR78kq9e4OAr5V4ExObvShLO7OEqLj/JtEHqSJhau3EgHe30AjoioUFAC7dytyaEsQ58H2Jv5mCzo5OFSdiHyLt4+A8q0CZ2qq0gncjsUgKR2BiOrAz2bjaupEAHKNuXDInGKFyGcIAWzeDDiU+bs369hJwtu0KjWzTUVEPsXbR0D5ToHTbgcyM5VO4XYsWjbWiDxNSwcb40QO4UCuMVfpGETUWA4eBLKVOzGzcP5NryMJgW5GyYdOiInI1xWYCmBzeO+IQN95P8/IUOyKrzuzqexKRyCiOmpi9t4PJaK68PZhNkT0l5ISYM8exQ5v8+f8m95KZ7Wim91f6RhERI1CQCDHmKN0jAbjOwXOs2eVTuB27AYNHGDRl8jTaG02BAsuNkTk7cNsiOgvO3Yo2lHBGsDPXG/WtNTIoepE5DO8eR573ylwnjundAK3YwngBzmRp4oW/Psl8uYGGhH95fx54MwZRSNY9Zyz3tt15qrqROQjvLmDgG8UOEtLgcJCpVO4Hate6QREdLma2ITSEYgUV2YrQ6m1VOkYRNRQhAD++EPpFLD6ccSTtwswm9FS8OSIiLwfC5yejr03q2T141xCRJ4q0GL1kTdwopp5cyONyOcdPw7k5SmdAlaJc1/7gnZGByRePyYiL2eym1BiKVE6RoPwjfNjFjirZFWxsUbkqSRZRpTQKh2DSHEcpk7kpaxWYPdupVPAbtBwgSEfobXZ0FYYlI5BRNTg8kzKXzxsCN5f4BQCSE9XOoXbsbGxRuTxohycL4qIK6kTealDhwCzWekUsPpzgSFf0rrMBrXgnKtE5N0KTAVKR2gQ3l/gzMkBLBalU7gdayAba0SeLtTKOcGIco25EIJjCom8is0GHD6sdAoAgNXg/adL9DeNw452nIuTiLxcvilf6QgNwvs/sc+eVTqBW7Lqvf+lJ/J2BqsVOsG/ZfJtspBRYvXOeYSIfNbRo27TQYFz1vueFuzFSURejgVOT8X5N6tk07CxRuQNosF5OImKzEVKRyCi+uJwlA9PdxOcs973lPfi5FycROS9iixFkIX31YS8u8BptQLZXF21KjaVXekIRFQPQh3e/TZOVBtFFhY4ibzG8eOA0ah0CgCAw08FBzgdjC9qWWbx8hNlIvJlspBRaC5UOka98+737fPnyxcZIhdCJcEOFjiJvEGQjSdeROzBSeQlZBk4cEDpFE42fz+lI5BC1A4HWrMXJxF5MW8cpu7dBc6cHKUTuCUbV4Mk8hoGmxUSr+OQj2MPTiIvkZIClJYqncLJzjnrfVoLCxtYROS9WOD0NHl5SidwS3a9WukIRFRPJFkgnPNwko9jD04iL3H8uNIJXNi0XGjGlwWazQgQPG8iIu/EAqenYYGzSjadd7/sRL6mCRvf5ONKraVwyJyugcijlZS43eKgdjV78Pm6NrJO6QhERA3CGzsIeG+ly2IBysqUTuGWbBo21oi8SYidf9Pk2wQEii3FSscgoiuRlKR0gkrsal448XVRZqvSEYiIGkSJtQTCy9as8d4CJ3tvVouNNSLvEsiFhog4DyeRJxPCPQucXJTT5/nZ7IgW7MVJRN5HFjLKbN7VKdB7C5z53jefQH2xSWysEXkTrc0GrRe/nRPVhjcOsyHyGWfPut3IK4dODRmy0jHIDbSys41FRN6pxFKidIR65b3v1uzBWSWHn4qNNSIvFCo0SkcgUhR7cBJ5sJMnlU5Qic3Az1UqF2oyw09wwSki8j4lVhY4PQN7cFbJ5u+ndAQiagAhXGiIfBx7cBJ5KFku78HpZuxclJP+IskCsUKvdAwionrnbXPYe+cntxAscFbDofXOl5zI1wXK7FlAvo09OIk81PnzgNX9FnKxafm5Sn+LtnAEHBF5Hw5R9wRFRYCDi25UxeHHxhqRN/J3sOFNvs1oM8LmsCkdg4jqKjVV6QRVcqi9a2VZujIGixk64Z2nzkTkuzhE3RNw/s1qsbFG5J30Ni4eRsRenEQeyF0LnBI7S9CFJDSDVukQRET1ikPUPQELnNVycJo+Iq+ksduhAXtok2/ztmE2RF4vNxcoLVU6RZUcKnYKIFdNHN556kxEvstoM8Ihe88FPe98l+b8m9VyqDiMlchbhXAldfJxFodF6QhEVBdpaUonqJYD3nPCR/UjyMppUIjI+5jsJqUj1BsWOH2MnY01Iq8VAhY4ybeZ7WalIxBRXWRmKp2gSrJKggx2CiBXequN83ASkdfxpvaz971Dy7LbDnVxB5xPiMh7BXAldfJx3tRAI/J6QgBZWUqnqJKs45xOVLWmnIeTiLyMycYenO7LzJOb6sgaFQQ4nxCRt9LJ/Psm32axc4g6kcfIzwds7jnk16FlgZOq1sTBi8lE5F04RN2dGY1KJ3BbbKwReTcWOMnXsQcnkQdx096bAODwYxGLqhZi5Wg4IvIu7MHpzkze8+LUN7vW+15uIvqbn4PzhZFv4yJDRB7ETeffBACHhgVOqprOaoXWC0+hich3sQenO2OBs1oOFjiJvJrGwV4F5NvYg5PIg7hzD04WOKkGTYWf0hGIiOoNe3C6MxY4qyWr2Vgj8mZqhwNqwb9z8l0scBJ5CKsVKClROkW1HGpO+ULVC3dw2i8i8h7swenOOAdntYT3vdpEdJEAiY1u8l1Wh1XpCERUG0VFSieokSyxwEnV08ucEoiIvIc3dRDwvpIXe3BWS/a+V5uILhIgWOAk3yULmUVOIk9QWKh0ghpxMATVROdgAZyIvIfF7j1z2HtfyYsFzmoJXo0m8noGL3xbJ6oLb7oKTeS13L0HJ9hDj6qntduVjkBEVG9ssk3pCPXG+86EWeCslsyr0URez4/XMcjHedNVaCKv5e49OL3vDInqkdrh8MKTaCLyVXbZey7aeN97M+fgrBZ7cBJ5Pw3H1ZGPYw9OIg/g5j04BdhmppoFQqN0BCKiemGX7RDCOz73vKvAKcuAhT03qsMenETeT+Mdn01El83iYDuAyO0VFyudoEYcok6XEsg5z4nIi3hLL07vKnCazYCXVJ4bgpDYWCPydmq+B5KPYw9OIjdntwM2957viz046VL82XOEiLwIC5zuiPNv1kjmEHUir8cBU+TruIo6kZszu/9FCPbgpEvx97LTaCLybd6y0JB3vTNzeHqNeDWayPupZf6dk2+TBQsTRG7NzQucsoo98+jS9A5+1hCR92APTnck84OmJrwaTeT91Kxvko/zlknSibyWm3dIEBrvOj2ihqFz8LOGiLyHtxQ4vWs04xUWOLecOIFZa9bgz7Q0ZBQV4cd//hO39egBALA5HHj1p5/w2+HDOJ2bixCDAUM6dcJ/b78dzUNDnY9x62efYf/Zs8guKUGYvz+GdOqEt++4w7lPUmYm/pGYiKMZGSgymdA8NBQTe/fG9FGj4Kcun6z6yPnz+Pfy5fgzLQ2peXn4YNw4PDlkyBX9bAB7cHqaz39YhXf+70dMueNGTH/kTgDA/BVb8POG3TiSnIZSoxkHfvoAIYH+Lvf7NPE3bNh5CEdPnYWfRoNDP39Y6bG37z2G975bjqQz6TDodRhzU188d/9t0Kj/njB98+4j+GDOLziZeh46rR+uvaodXvnHWLRqFtGgPzddGRUv9NRZQXYBln2yDEd+PwKr2YrIlpGYNH0SYjvHAigvmP3y1S/Y+uNWmEpNiO8ej4kvTkTT1k0BALnnc/Hb/37D8T3HUZxXjJCIEPS5pQ9uuf8WaPwqf8xmn83GG3e/AZVKhQ83fejc/vsvv2POzDku+2q0Gnz2+2cN9rN7I37WEbm5i3pwfrF5M77YvBkpeXkAgC7R0fj3yJEY3rVr+e42G55ZvBgL9uyBxW7HsM6d8fnEiWgaHOx8jPXHjuFfy5fjUHo6AnQ6TOrbF2/e9ne7JiU3F21eeaVSlD9eeAF94+Jctgm15/fg3HnwBL5etAaHTqYhO68IX838J4b16wEAsNkdeHf2T9i08zDSMnMRFGBA/6s74YUHb0fTiNBKj2Wx2nDb4//FsVPn8OuXr6JL21YAALPVhlc+TMThE6lITsvEjX2vwjevPVLp/t//vBFzft6Ec5l5aBEVjkcnDseYm65ryB+/UWjY3qIqyA4Zv3z9C3au3OlsE14/6nrc8sAtkKTK7y2J/0nElmVbMO7pcRgy0fV8/9C2Q1jxzQqkJ6fDT+uHdte0wyPv/f03dmzXMSz/cjnSk9OhM+jQd0Rf3PbIbVBryt/3MlMykfhWIjLOZMBUakJoZCh6D+uNUQ+Pcu5DVMHm8I4h6ixwXqDMakX3li1xf79+uOPLL11uM1qt2Hv2LP41YgS6t2yJAqMR0xYuxK2ffYY9FzSYBnXogJeHD0d0SAjSCwvx7JIlGPvVV/j9hRcAAH5qNe7r2xfXtG6NUH9/HDh3Dg/NnQtZCPzn9tudx4qLiMC4nj3x1KJFV/QzkWc6cDwF83/dgo5xLV22myxWJPTugoTeXfDO//1Y5X2tdjtuGdgT13SOw8KV2yvdfvTUWUx55VM8OnE43n9hCjJzC/HKR4mQZYFXpo4FAJzNyMVD//4cD44dgo9efgAlZSa89sUi/GPGl/j1y1fr/wemesNFhuqmrLgMsx6Yhfa92uPxjx5HUFgQss9mIyA4wLnP6jmrsWHBBkyeMRkRLSKw/Ivl+PjxjzFj0Qz46fyQmZIJWci45+V7ENkyEudPncfcN+fCarJi7JNjXY7nsDvwv1f+h3Y92uHUwVOV8ugD9Hht6WvO76tqDFPNOESdyM1d1IOzZWgo/nv77WgXFQUBYM4ff2D0559j36uvokvz5nhq0SL8eugQFj/8MEIMBjz2ww+448svsf355wEAB86exS2ffopXhg/H91OmIL2wEP9ITIRDCLw71vU9eN2TT6JL8+bO75sEBlaK5w2fokazFZ3iWmLczf3wjxmu5zQmsxVHTp7F4/eMQKf4ligqMWLm5wvx4L8/wy+fVy4Cv/XNMjRtEopjp865bJcdMvRaP0y+/Uas3Lq3yhxzl2/GO//3E9566h507xCL/UkpeOn9uQgJ8seQ67rX3w+sAMkrflOovq2aswqbl2zGlJlTEB0XjdSjqZjz2hwYAg248a4bXfbdt3EfTh8+jdDI0EqPs3f9Xsx9cy5ue+Q2dOzdEQ6HA+dPnXfefvbEWXw67VMMv384psycgsLsQiS+lQghC2fbU61Ro++IvmjdsTX8g/xx7sQ5zH1zLoQQuP3R2xv0eSDP4y3tZ+8qcF7hif3wrl2dV4svFmIwYO2TT7ps+3TCBFz71ltIy89H6/BwAMBTF/S0jGnSBC/efDNu++IL2BwO+KnViIuMRFxkpMs+m5KSsDU52bmtd2wsesfGAgBe/LHqItbl4QexJygzmfHkW/+H/z51Lz5J/M3ltgfGlP9+/bE/qdr7Pz3pVgDA4tW/V3n7ik170LFNC0y7dyQAILZFFF566A48+vo3mHbvSAT663HoZCpkWcazU0ZDpSofqvXwuKF46N9fwGZ3wI9X/chLrJ6zGmFNwzB5+mTntogWf/dSFkJg/Q/rccsDt6DHDT0AAFNem4Jnb3oW+zftR+9hvdH1+q7oev3fnx2RLSORmZqJLUu3VCpw/vT5T2gW0wwdr+1YZYFTkiSERITU7w/pYzhEncjNWV0XAhvV3bXQ9eZtt+GLzZux4/RptAwLw/9t3475DzyAGzt2BADMnjwZnaZPx47Tp9E3Lg4L9+xBtxYt8O+R5e2atlFReOeOOzD+m28wfeRIBOn1zsduEhiIZiHe/x476NquGHRt1ec0wYEGzHvnSZdtrz02AaMfewvpWflo0TTcuX3jrsPY+udRfDl9KjbtOuxyH3+DDm8+eTcAYM+RUyguNVY61o/rdmDiiAEYNag3AKB180gcTErBlwtWe36Bkx81VIXTB0+jR0IPXNX/KgBARPMI7F69G2eOnHHZryC7AAtmLcC0T6bh0yc/dbnNYXdg4XsLMeaJMeh/W3/n9uZxf1+c2bN2D1q0a4GRD5W/70W1isIdT9yBb176BiMfGgl9gB6RLSMR2fLvukOT6CZI+jMJyfv+rjsQVfCWEVDeNclMI5/UFJlMkCQJoQZDlbfnl5UhcedOXB8X5xx+frHk7GysOnoUCe3aNWRUAN7zS+vt/vXxDxjU5yr079mpQR7farNDp/Vz2abXamGx2nDoRCoA4Kp2MVCpVFi8+nc4HDKKS034ce1O9L+mI4ubbo79/erm4JaDiOkUg69e+ArPDn0Wb0x8A1t/3Oq8PTc9F8V5xeh07d9/j4ZAA9p0bYPTh05X+7imUhP8g12njzi++zj2rt+LCS9MqPZ+FpMFL418CS+OeBGfP/25y9V6qh1+1hG5uRpGXDlkGQt270aZ1Yrr4uLwZ2oqbA4HhnT6+z24Y7NmaB0ejj9Ol78HW+x26P1c2zUGrRZmmw1/pqa6bL/1s88Q9eyz6P/OO1h+4EDVIXzwg7SkrPycJjjw73OanIJivPT+XHzwwhToddrLetyq25x+OJCUApvdcUWZlSbxYhpVIa5bHI7vPo6s1CwA5T0tkw8ku1wIl2UZs/89GzfdexOaxzev9Bhpx9NQmF0ISSXhjYlv4Llhz+HjJz5GenK6cx+71Q6/i/62tDotbBYbUo+lXvyQAMqnSDr6x1G0u6bh6w5ESvGuHpyNOBeK2WbDC8uWYULv3gi+qMD5wtKl+HTTJhitVvRt0wYrHnus0v2vf/tt7E1Lg8Vux8MDBuC1W29trOjkxpZv3I0jJ9Pw8+cvN9gxBvbqgm+XrcfPG3ZhZEIv5BQU4eN5KwAA2flFAIBW0RH4/r/T8NjrX+PlDxLhkGVc0zkOs//zeIPlovrCBndd5KTnYPPSzRhy9xAMnzIcKUdTsPDdhdD4aXDdyOtQnFcMAAhuEuxyv+DwYBTlFVX5mNlns7Fx4UaX3pulhaX4bsZ3uP/1+2EIrPqiWNOYprjvX/ehZbuWMJWasGbeGrx9/9uYsWgGwpqG1dNP7P28ZYgNkdeqojB0KD0d1739Nsw2GwJ1Ovz4j3+gc/Pm2H/uHLQaDUL9XS8YNQ0ORmZR+XvwsC5d8OH69fhh1y6M79ULmUVFeG1Febsm4699AvV6vDd2LPq1bQuVJGHp3r247Ysv8NM//4lbu1/ck9C3Kpxmqw3//d8y3DqoN4ICyj+fhBB49p3vcPfIgejWIRZnM3Mv67EH9uqMBSu34aZ+PdC1XWscOpGKBSu3w2Z3oKCoFFFNvL83LfmWmyffDHOZGdPHToekkiBkgdGPjEaf4X2c+6yesxoqtarSkPUKuenlf28rvl6BcU+NQ5PmTbB23lq8N/U9vL7sdQSEBKDLdV2w/of12LVqF3oN7YWivCKs+F/5+15Rrmv79O3730ba8TTYrXYMuH0Abv0H6w5UmbeMgPKuAmcjvSg2hwPjv/4aQgh8MXFipdufGzYMD/Tvj9S8PMxcsQL3zZ6NFY895jKX2sKHHkKJ2YwD587huaVL8e7atXh+2LAGTu5bDTZPcz47H699thBz33kS+ouuyNWngb064+WHx+DVDxPx9H9nQ6vV4PG7R2DXoWSo/vodzc4vwkvvz8WYm67DqEG9UWYy4/3vfsEjM7/CvHee5LyA7sw7PpsajZAFYjrHOOciat2xNc6fOo/NSzfjupF1XwShILsAHz/+MXoO6YkBtw9wbp/75lxce/O1aH9N+2rvG98tHvHd4v/+vns8po+dji3LtmD0P0fXOYuv8pYGGpHXquJvtEPTptj/6qsoMpmwZO9eTPruO2x+5plaPdxNnTtj1pgx+EdiIu6dPRs6jQb/GjECW5P/btdEBAbi6aFDnffpHRuL80VFmLVmTaUCp/ChJo7N7sBjr5ef07wx7e9zmu9+2ogyoxmPTBh+RY//xD0jkJNfjNsf/y+EACLCgjHmpr74auEaSCrPfqLZg5Oq8ufaP7Fr1S488MYDaB7fHGeTzmLR+4sQGhmK60Zeh9RjqdiwYANemfdKtedTFe2Y4fcPxzWDrwEATJo+CS/e8iL+XPcnBo4ZiM59O2PME2OQ+FYiZk+fDY2fBiMeHIHkfcmV/rYe+s9DMBvNOHfiHJZ+vBRr567FsEkNXXcgT+MtI6C8q8DZCEWXiuJman4+Njz1VKXem0B5IyoiMBDtmzZFp+hotHrxRew4fRrXxf994trqrzk7OzdvDocs4+F58/DM0KFQq7xr1gCqvUMn05BbWIKR/3jTuc0hy9h16CS+/2kTTqz8DGp1/fx+PDh2KB4YMwTZeUUICfLHucw8vPN/P6J1dPk8LXN/3oSgAANeeniM8z4fvnQ/rpvwIvYdO4NrOsdV99CkNM8+X2h0IREhiG4T7bItuk009m3YB+DvnpsVK2FWKM4vRqv2rVzuV5hTiPf/8T7iu8XjnlfucbktaXcSDm45iLXz1gIob7wKWeCfff6Je16+B/1G96uUTa1Ro1WHVsg5m3PlP6gP4QUYIjdXxd+oVqNB26goAEDPmBjsTknBRxs24M5evWC121FoNLr04swqLnaZS/PpoUPx1JAhyCgqQpi/P1Ly8vDSjz+6zHt/sT6xsVh79GjlG3ykcGWzO/Do61/jXFY+fpj1lLP3JgD8vu849h47jfbDH3W5z62P/AejB1+L91+YUqtj6HVazHpuEv7z1D3ILShGVHgI5v+6FYH+ejQJqbzAkycR/KyhKiz9eCmGTRqG3sPK551t0bYF8jLysHL2Slw38jqc3HcSJfkleGnkS877yA4ZSz5cgg0/bMB/fvmPs7154Zybflo/RLSIQH5mvnPb0HuGYsjdQ1CU+//t3Xl4XPWB5vv3nDq1qlSlfd8sWV5lg7EBGxswjsFhTcKOhwC5c9PJZDqB5Ha6p/uZpOl0z53pztJ0pxOSmUku3WAbLiEkxB2zhZgtxBgwuw143y3L2vdSVc0fwgJjyZZkSb+qU9/P8+ixXcup1yCrTr3nt7QplB3SsUPH9Oi/PKrC8hN/7uWV5A0dL5FI6IH/9oAuvfVS2RP0uRLuYLnkQyQF5xgcLzc/aGzU77/xjWF3XvykxIcnSX0DA6d8TCweVyKZ1OSubpgU7UfqWrpglp74X98+4bZvfvdfVVdVoi/ftGrCys3jLMtScUGOpMGp8WWFuWqor5I0uFv7J6/+HS/fGR2V6vg3PhZ1Z9UNrZN03JE9R5RXOngyWFBeoEh+RNs2b1PlzMFCs6ezR7ve3qWLr7t46DktjS36wZd/oOpZ1br9r28f2pzruL/4//5CifhHU6ffePYNPfFvT+jPf/bnyinKGTZbIp7Qge0H1LB0+I0iMDzb4oQdSGmjOF9PJJPqGxjQwupqeT0e/W7bNl13zuBIpvcOH9be5mYtqT3xYqtlWSrLyZEkrdu8WZW5uTqnqmrE13h9/36VDrPhkFs+5J3K8XJz94FGrfveN5T7ibLx7v98s/7sCx/NHDhyrE23/Zd/0r/81y/q7NnTxvx6Xsej0sLBpVZ+s3GzVpw/76T3ScAN+nv7T/retj320OenxVcsPmFdd0n656/+s86/4nxdcPUFkgZnEzk+R4d3H9b0s6dLGtx46NihY0Pnp8dZljW0C/vmJzYrtzhXVbNG/rmXTCQVH4jzeQ4nccsAAXcVnGf4RtnZ26vtRz8aKbOrqUmv79unvKwslUajuv6nP9Vre/dq/X/+z4onEkNr/+RlZcnnONq0a5c2796tZdOnKzcU0o6jR/Wtxx5TXWHh0EnYmk2b5PV4NK+8XH7H0St79ugvf/Ur3bRo0dBGRP0DA3r30KGh3x9obdXr+/Yp7PcPXd0eD0uWSwYeu1M4FNDMaeUn3BYM+JUTyRq6vbG5TUeb27Xn4OD36Xu7DigrGFB5UZ5yIlmSpANHmtXa0aWDjc1KJBJ6Z/s+SVJNeaGygoM7if70oSd08bkNsm1Lj7+wRfc++Lj+5Vt/MlSirjh/nn72yO/0T/ev1zWXnKuunj79w88eVXlxvuZOP3HUGlIL/8bHZuXqlfr7/+vv9duf/1aLLl2k3e/s1vOPPj80AtOyLH3qlk/ptz/7rYoqi1RQXqBf3/tr5RTmDO2q3tLYoh986QfKK83TdXddp46WjqHjH78K/8lRonu27pFlWSqf/tG/+fX/a71q59WqsKJwcA3Of3tSzYebT9hBE6eXCeUEkNY+cb7+l48+qsvnzlVVXp46+vq09uWXtfH99/XE176maDCo/7h0qb7x8MPKy8pSJBDQVx98UEtqa7X4YwXnd594Qp9uaJBtWfrlli36H48/rv//T/5k6OLsv770knwejxZ8WHj+8rXX9PMXX9T//vznT87ngg/+XT292n3go880+w416Z3t+5STnaWi/Kj+09/8VO9s36uf/d3gZ5rja7DnZGfJ53VO2EldGtwxXRrcBf14USlJH+w5qP5YXG0dXers7h065zx+rrhz/xG9sW2Xzp41TW2d3frfv3ha7+86qO//+R2T+defEozgxHDmXzhfv/35b5VXkqfS2lLte2+fnl7ztC64ZrC8DOeEFc458YKCx/Eokh9RSU2JpMHNLC+67iL95n/+RnklecorydOT9z8pSVq4cuHQ8574tyfUcEGDLMvSlt9v0eP3Pa4/+R9/MjQyc9OGTfI4HpVPL5fjdbRn6x796ke/0qLLFsnDprFwKXcVnGf4RvPKnj265Ac/GPrzNx5+WJJ0+5Iluvuqq4Z2Wzz77/7uhOf9/hvf0PKZMxXy+fTLLVv017/5jbr6+lQajerTc+fqv37xi/J/uLujY9v6+yee0PtHjigpqTovT3+6fLm+vnLl0PEOtrZqwcde43tPPaXvPfWULp4xQxtHuR7R8CxRf6S3Nb95Tv90//qhP9/49e9Jkr77zdt1w6rBN84f/OtjeuTJl4Yec+WXB7+X1n3vG1py9kxJ0sbN7+hf1m5Qf2xAs2sr9D+/8xVdct5Ho8QuWDBL//RX/1E/fegJ/fShJxUM+LRgdq3+9b9/bdw7aQKpqGZujf7T9/6THv2XR/Xv//vfVVBWoBv/nxtPWAx+1e2r1N/brwf+3wfU3dGt6WdP19f++Wvy+gd/rm/dtFWN+xrVuK9R/+WK/3LC8X/6yk9HnaW7vVv3/939aj/WrlAkpKpZVfrzn/35CVOUcHpuuQINuJZz4sePxo4O3XbffTrU1qZoMKj55eV64mtf06Vz5kiS/vHGG2Vblq77yU/UNzCgVXPm6MefWAN/wzvv6L9t2KC+gQGdVVGhX3/lK7q84cTR73/7299qz7Fjcmxbs0pK9NAXv6jrFy6UG7353h7d8mcffab5u58Mfqa57rIluuu2q/T0S4Ofaa740omfaT5+rjgad/zVv+jAkWNDfz5+zrn76cH3vkQ8of/18NPauf+wvB6PFp89U4/885+rsqRgfH+xFJJJa7Vi9G7+5s369U9+rbX/Y606WjoULYjqwmsv1FVfvGpMx7n+zuvl8Xj082//XLG+mKbNnaZv3PsNZX04oEWS3vnDO9rw8w0aiA2oor5CX/n+V06Y9WN7bD3xr0/oyN4jUlLKK83T8huXa+XqlcO9JDKcWwYIWEk3jU/eu1d6/HHTKVLW3jrLNYvHAhher8+rZ0Mx0zEAY84qPkvnV5x/+gcCMGP7dumZZ0ynGNFA0NGBspGXlgIkqd/r1e+zON8C4A5X1l+p8kj56R+Y4ty1+AmjNk7JLa08gJElWNMKGY4RnECKCwRMJzglK8FgAJxenPMtAC7i2O6Y3O2un8y80ZyS5bL/3QBONkC5gwzHJkNAikv1gnMgcfoHIeP1sQM1ABeh4ExFfr/pBCnNZgQn4HoJCk5kOGYrACkuxc/X7TgjOHF6fTbvNQDcw+vxmo4wIdxVcAaDphOkNJvVsAHXG+CfOTKcz8NGaEBKS/ERnBIXSnB63TZFOAD3YARnKqLgPCWmqAPuF2cEJzJcwEn98gTIaF6v5PGYTnFKzHrC6XRZLGUAwD28NiM4U49tp/y0F5O40Ai4X4zPZMhwfofzACDlRSKmE5wSgwJwOhScANyEEZypilGcI7KYog64XtziSgYyGyM4gTQQjZpOcEq2Cz8iYWJ1asB0BACYEB7LI8slswDd9+4dCplOkLJsLjQCrhczHQAwzO9hBCeQ8nJyTCc4JQYF4FTitq0BcUEZgDu4ZYMhyY0FJyM4R8TJGuB+PUyZQoZjBCeQBlJ9BCfnzDiFmOOOqZwAILlnerpEwZlRGMEJuF+X4qYjAMZYsthFHUgHjOBEGutzUnuTLAAYCzedO7uv4GSK+ogY2AW4X5dFwYnM5Xf8rllDCHC1lB/BaToBUlmfzfsMAPcIOu4ZJOi+gpMRnCOy45ytAW6WYE0oZDjW3wTSRCCQ0oMS7AQFFkbW4uFcC4B7BL3u6dAoODOIJ8abMeBmAx6mTCGzsf4mkEaKi00nGJGHDbJxCkfUbzoCAEwYRnCmMgrOEXn6mboKuFmMghMZzu8wghNIGyUlphOMiEEBGEm/11EPywEBcBFGcKYyCs4RUXAC7saaUMh0jOAE0kgqj+CMsXA9htfh85qOAAATihGcqSyF1/MxzRNLyBIFCOBWfR7+fSOzsQYnkEYKCiTHMZ1iWAwKwEiaWH8TgMswgjOV2TajOE/BI6awAm7VzbavyHCM4ATSiG0PlpwpiIITIzlixUxHAIAJ5abzZ/cVnJKUl2c6QcryJN35vxyA1M6aUMhwrMEJpJnSUtMJhmXHk8x6wkn6vV7W3wTgOkxRT3X5+aYTpCxPghGcgFu1JBlVgMzmpivQQEaorDSdYETMesIntftSc0kFADgTTFFPdRScI/IkuBoNuNGAx1HMYoo6MlvYFzYdAcBYFBen7NJSniQFJ07UzLcEAJcJOAE5tnsu3riz4GSK+og8A6YTAJgMfV73vDEB4xX1R01HADAWliVVVZlOMSxPwp0fkzB+R+x+0xEAYEJF/BHTESaUO9+5c3MHFy7HSTyxhOkIACZBt8PPPGS2gBNgDU4gHVVXm04wLCfOrCd8pM/nU7dYfxOAu2T7sk1HmFDu/ERs21JOjukUKcmJMYUVcKNOdlBHhmP0JpCmKiokJ/VmIXDOjI874k+971EAOFPZfgrO9MA6nMNyepijDrhRh8XobGS2aICCE0hLjiOVl5tOcRKnj/dVfMiSdnl6TacAgAnHFPV0QcE5LKcvLtvF/9uBTNVisYM6MhsjOIE0Nn266QQn8fYwHRmD2gMB9YrCG4D7MEU9XbDR0IgcMcUCcJOY1+HEGxmPEZxAGqupkQIB0ylO4PQOyBLrcELa7zOdAAAmB1PU0wUjOEfkjXtMRwAwgbq8XtMRAOMYwQmkMY8nJUdxMigAcY9H+8X0dADuY8lS2Bc2HWNCubfgDAYHv3ASZ4Cr0YCbtDn8mwYYwQmkudmzTSc4iTfBoIBM1xT0K8lpFgAXCvvCsi13VYLu+tt8EqM4h+XtY1dIwE2abTYPQ2bL8mbJsRlpBaS13FypqMh0ihM4A+7+qITT2+VhjXMA7uTGwQHuftdmHc5heXtZNB1wi6SkpmS/6RiAUW48QQMy0qxZphOcwIkxKCCT9fj9amMTRwAulRd0X1/m7oKzoMB0gpTkdPFGDbhFn9+nBFOnkOFYfxNwienTU2qzIW8vG/hlskN+d39UBpDZKDjTTXm56QQpyU4k5WHRdMAVOrz8WwYYwQm4hONIDQ2mUwxxelgCJlMlbFu7LTYXAuBeuYFc0xEmnLsLzmCQdThH4E1SigBu0Oph+hzACE7ARRoaJJ/PdApJktMXl0dsNJSJDmcFFLM4xwLgTpYs5QYpONNPZaXpBCnJy6LpgCsctlh/E2AEJ+AiPp80Z47pFEO8CQYFZJqEbes9D6M3AbhXxB9x5Qad7m+5KipMJ0hJvl6uSALprs/nU7fYNAyZzbZsRfwR0zEATKT58wenq6cA3wAjODPN4ayA+sX6qwDcy42jN6VMKDhLSlLmBCmV+LpYUwhId20+frYBuYFc2Zb7T2eAjBIIpMyO6gwKyCwJ29Y2u8d0DACYVG7cYEjKhILTtqWyMtMpUo63KyZLbL0MpLNGD6MLgOJwsekIACbD2WdLXq/pFAwKyDAHWXsTQAag4ExnTFM/iSXJl0yNBdwBjF3SsnTE6jMdAzCuKKvIdAQAkyEUGiw5DfN2x2RnyEemTDfgOIzeBJARKDjTGQXnsHyxzPjfD7hRl9+nATHCACjOYgQn4Frz50vZ2aZTyJs0P5IUk29XlldxRm8CcDmfx6ecQI7pGJMiMxqunBwpHDadIuX42RwQSFst3sz48Q2cSsAJsIM64GYej7R4sekUbDSUAXp9Pu20GL0JwP3cPPspcz4hV1aaTpByfF0x0xEAjNNhmzXBADefoAH40LRpUmmp0Qi+Pkb1ud37QfYmAJAZ3Hz+nDkFJ9PUT+LtHmBNISANDTiOmi0uUAAl4RLTEQBMhQsukCxzBZSvK27stTH5WrKCOsS65gAyhJuXd8qcdqu83OiJUarysaYQkHZaAmwQBkjuvgIN4GPy86V584y9vLern0EBLjXgOHrdS7kJIHO4+fw5c96pfT6pyL3/I8fL15853wKAWxzwMJIEsGS5+gQNwCcsWiRFzay5ayUlX4KLi270bpZH/UqYjgEAUyLqj8rv+E3HmDSZ1W5VV5tOkHL8vawpBKSTAY+jI0yjApQfypdjO6ZjAJgqjiNdfLGxGVmBPmaCuc2RcIip6QAySnHYvdPTpUwrOKdPZ5r6J/jb+k1HADAGLUFGkACSu6fXABhBSYk0f76Rl/azDqer9Pl8etPpNh0DAKaU28+fM6vgDIelsjLTKVKKJ5aQTxQmQLo46PABC5DcvUA6gFM499zBNTmnmL8jJksMlHCDpGXpzVCSiekAMg4Fp9vMnGk6QcoJ9DPFD0gHAx5Hh8VUKkBy/xQbACOwbWnFisEp61PISiTlS7A5pxvsCwfVrJjpGAAwpXwen/KDU3+BcCplXsFZUzO44RCG+Lu5fgmkA6anA4OCTlARf8R0DACm5OYOrsc5xQIxBgWku+6AX1s9TE0HkHnKsstkuXzJxswrOB1Hqq01nSKlBFiHE0gL7J4ODGL0JgDV1U35epz+LgYFpLOEbes1/4DpGABgRHl2uekIky7zCk5JmjHDdIKUYg8k5EsyMgxIZf1eL7unAx9y+/pBAEbp/POl8qn7wOZv5304bVnSu9k+dVlcLAaQmcojFJzuVFIiRaOmU6QUptwAqe1wgHW/gOMqI5WmIwBIBZYlfepTgxuJTgE7nmRQQJranh3UAavXdAwAMCLLm6WcQI7pGJMuMwtOSaqvN50gpQQ6mXIDpCxL2uXhpByQpLAvrPyQuxdIBzAGgYB02WVTtukQgwLSz/7skHbYPaZjAIAxmTB6U8rkgnPGjMGrvpAk+dv6xH8NIDW1BQLqFRchAEmqilaZjgAg1RQUSJdeOrjD+iQLdjDFOZ0cDYf0DpsKAchwmbD+ppTJBWc4LJWVmU6RMuxEUr6k33QMAMPY60uajgCkjOpotekIAFJRZaV0ySWTPoDB39YnO4M/QqWTtlBQrzmUmwDACM5MwGZDJwj2eUxHAPAJA46jg2wuBEiSvLZXZdlcnAQwgro6aenSSX0JKykF4wwKSHXdAb82e1neBwByA7kKeUOmY0yJzC44p02TfCwUflywNWY6AoBPOMLmQsCQ8ki5PDYX4wCcwpw50qJFk/oSAQYFprQ+n0+bAjHFLWbAAEBFpMJ0hCmT2QWn40i1taZTpAxfV0yOWDgdSBmWtNPpN50CSBlMTwcwKuecI82fP2mHD7YwsyJVDTiOXg7F1c/a5QAgSarOyZzz58wuOCVp3jzTCVJKqJ8RrUCqaAkE1C02MwAkyZLFBkMARm/xYmnhwkk5tCeWkD/JOXOqiXm92hwW504A8KGAE1BpuNR0jClDwZmbK9XUmE6RMoLtnBAAqWKnn9EHwHGFWYUKeoOmYwBIJwsXShdcMCmHDvYx6ymV9Pj9ejEUV7sGTEcBgJRRFa2SNcmb76USCk5pcBoLJA3uDOkR65sBpnX7/WoS09OB45ieDmBcGhoGd1e3J/ZjT7CNIi1VtIWCejHQrz6LC8MA8HE1OTWmI0wpCk5JKiiQKjJn4dVTsSQFB5hyA5i2J5A5V9qA0cik9YMATLD6emnlSskzcRfxfZ398rB2vXFHsoL6o6+HDYUA4BMc28moDYYkCs6PMIpzSLCTq5+ASf1er/ZavaZjACkj7AsrL5hnOgaAdFZTI111lRQKTdghgwPeCTsWxm5PJKjXvT2mYwBASirPLpdjZ9aFOArO40pKBr+gQEu/LDF6DDBlXyiz3oiA02F6OoAJUVwsXXutVFQ0IYfLamNQgAlJ29LWaEDbbMpNABhJpk1Plyg4T8QoTkmSnUgqmPCbjgFkpAHH0U6LE3bg45ieDmDChELSNddIs2ad8aH8raxdP9XiHo+2ZDPTBQBOxZKVkefPFJwfV1EhFRaaTpESgl2M4ARMOBDyivEgwEe8tldl2WWmYwBwE9uWLrpIWrbsjDYfsiSFYgwKmCo9fr82hS0dtdiEEQBOpSRcooATMB1jylFwftKCBaYTpITQsV6mqQNTbMBx9D7TrYATVOdUy7Y4XQEwCebMGRzNGYmM+xBZreymPhUOZgf1fKBPHRb/vQHgdOry6kxHMIJPDJ9UUyPl5ppOYZwdTyo0wBVpYCrtZfQmcJKZ+TNNRwDgZkVF0vXXD5ad4+Bv75fDbuqTJuZ1tCXHp7c8PUoy9gIATsu2bNXm1pqOYQQF53AYxSlJyuownQDIHP1er7az9iZwgrAvrPJIuekYANzOcQanq19xhZSVNeanh/p9kxAKzVlBPR+Kq1FMSQeA0aqIVGTk9HSJgnN4dXVnNFXFLQLNvSycDkyRXUEPIxOAT2D0JoApVVEh3XCDNH36mJ6W1RybpECZKeZ19FbUr83eHsWspOk4AJBWpueN7T3MTSg4h2NZ0tlnm05hnCUpq59p6sBk6/P5tNtmN1Dgk2YWUHACmGI+n7RixeBozpyc0T2lKyavvJObK0M0hkN6Liuug1af6SgAkHa8tlc1OTWmYxhDwTmSmTOlvDzTKYzjijQw+XYE+VEMfFJ5drnCvrDpGAAyVUXF4NqcS5YMlp6nkdVLwXkmugN+bcnxaYvTrQExahMAxmNa7jQ5duauC82n6pFY1uBaPBnO1xWTN8kJGzBZevx+7bMYvQl8EqM3ARhn29K8edLNN0uzZg1+PhhBqJl1Isejx+/XW1G/ng/0sdYmAJyh+rx60xGMouA8lZKSMa/B40ZhrkgDk2ZbkFEKwCf5PD5Ny5lmOgYADAoEpIsukj73Oam6etiHeHsG5E+w2dBo9fl8eifi13PBPqajA8AECPvCKssuMx3DKArO01m8WPJmdsGXdYyTDmAyNIeCjFYAhjE9b7o8NpvcAUgxBQXSqlXSdddJtbUnjegMd/LR6nT6fD5tiwa0MdSv/TafMQBgokzPmy7rFDMNMgHvwqcTCkkLF5pOYZSnL65gImA6BuAqCdvW217KTWA47J4OIKXl50srVw7uuF5fP1R0ho71yebj1bD6vV69HwlqY6hfe1iaBwAmlCVLswtmm45hHO/Ao9HQIOXmmk5hVFZHZl8JACbavnBAPVbcdAwg5eQF81SYVWg6BgCcXk6OdMkl0k03SfPny/b6lBXzm06VUroCgQ+LzZh22T2m4wCAK1VEKpTtzzYdwzgKztGwbWnpUtMpjAod65FHTBcEJkK/16v37W7TMYCUxOhNAGknEhlc1urWWxWcsUg9/swuOfu9Xu3PDun5HI9eCPRql92jJGMlAGDSzCmcYzpCSsjc/ePHqqxscK2dnTtNJzHCSkrhXp/aAlx5Bc7UeyFbCdMhgBRkW7bq8zN790cAaczjUbB2trb1v6fermbVxH0q7OmXMzBgOtmki3s8OhbwaZ83rib1S4qZjgQAGSHsC6sqWmU6Rkqg4ByLxYulvXulDDhJGU64qV/tFRJ7PgPj1xYK6qDFhQJgONXRagUc1nwGkN7mFM7Rxq6NetMzIIWlsqRfJXGPIv0D8ve7Z/3tpGWpPRjQAW9CB6w+JcT5DQBMtVkFszJ+c6HjKDjHIhyWzjlHevll00mMcD7cbKjbZmFwYDwStq232FgIGNHMAqanA0h/tbm1emnfS+qLD+4SftDq00FHkiMFgx6Vyqf8ASnSF0ur0Z1Jy1KPz6d2r0dNnriOWjH1U2oCgDG2ZWtWwSzTMVIGBedYzZ8vvfee1NZmOokR2S1JdeebTgGkp91hv7oYvQkMK+wLqzJSaToGAJwxx3Y0I3+G3mp866T7eqy4dqpHO72SvFJ20qOS5GDhGe7rlyeeOhsQJmxbXX6f2hxbTXZcR60+JdRnOhYA4EM1OTUKeUOmY6QMCs6xsm3pggukDRtMJzEi0Nonb75PMTEKDRiLzkBAH7B7KDCi+cXzmV4DwDXmFs3V241vK3maxZ06rLg6rB594JPkk3LkVSTpUShhKZS0FIwn5BuIyzswICs5SQtFWVLMcdTvcdTrsdTukY5aA2qxYpKYuQUAqYrNhU5EwTkelZXS9OnS9u2mkxgR6fToWNh0CiB9JGxbr/tZbB8YScAJML0GgKtE/BHV5NRoV+uuMT2vVTG1WjHJ8+ENjiT/4IafIXkUkaNw0lYoYcmXTMrS4H2SPvz94B9sSUoO3iZJSUvqty31W1KfbalPSfVZCbVbcXUlB5S0BiSlz3R5AMh0OYEclWWXmY6RUig4x+vCC6XGRqm93XSSKZd1tFetYY/iSp0pNEAqY2o6cGoNRQ1ybE5JALjL/OL5Yy44R5K0pC7F1aX4YGtpT8hhBzF4HgDSzvzi+aYjpJyJfGvMLF6vtGLF4JT1DGMlkgr3+kzHANJCF1PTgVPy2l7NLZxrOgYATLjicLGKs4pNxwAAuEzIG9KM/BmmY6SczGvnJlJRkbRokekURmQ39cvici9wSgnb1usBpnsBpzK7cLb8jt90DACYFIywAQBMtIaiBtkWdd4n8V/kTJ11llRebjrFlPP0xRWOBUzHAFLarmy/OlnPChiRbdmaVzTPdAwAmDQ1OTWK+COmYwAAXMJre9lcaAQUnGfKsqRLLpECmVf2RRpjjOEERtAaCmo7624Cp1SfV68sX5bpGAAwaSzL4kIOAGDCzC6cLZ+HJQOHQ8E5EUIhafly0ymmnNM7oKyBoOkYQMrp93r1mrfXdAwgpVmydFbJWaZjAMCkm1kwU34PS3EAAM4Ms59OjYJzolRVSXMzb5OEyFGm3wIfl7QsvZElxayk6ShASqvJqVFOIMd0DACYdI7taG5R5n1OAABMrOl505n9dAoUnBNp8WIpL890iinl7Y4pK84oTuC43dkBNStmOgaQ8s4uOdt0BACYMg1FDfLaXtMxAABpjI3rTo2CcyJ5PNLKlZLjmE4ypRjFCQxqCwX1vs26m8DplGWXqTCr0HQMAJgyASeghqIG0zEAAGmqOlqtvGBmDagbKwrOiZaTIy1ZYjrFlPJ1xRRKZN4mS8DHxbyOXmXdTWBUGL0JIBPNL57PxhAAgHFZVLbIdISUR8E5GWbPlqZNM51iSkWbEqYjAMYkbUtvhGzW3QRGoSBUoIpIhekYADDl/I6fUZwAgDGrza1VfijfdIyUR8E5WZYvz6j1OH0d/QoyihMZ6r1sv45Z/aZjAGmB0ZsAMtm8onmM4gQAjJolSwtLF5qOkRYoOCeL1yt9+tNSMHM24IkeYxQnMs+B7JD2WExNB0ajIFSg2txa0zEAwBhGcQIAxqIur065wVzTMdICBedkCoelVasGNx/KAP72foXYUR0ZpDUU1NuebtMxgLSxuGKx6QgAYBxrcQIARsO2bNbeHAMKzslWVDQ4XT1D5ByJyTIdApgCvX6fXmFTIWDUqqPVKssuMx0DAIzzeXyaVzTPdAwAQIqrz6tXxB8xHSNtUHBOhbo6aVFmtO7engGFYyHTMYBJNeBxtDkYV5xNhYBRsS2b0ZsA8DHziucp4LB+PQBgeLZla2EZa2+OBQXnVDnnHKm+3nSKKRE91Cubby24VNK29Ea2rW7FTUcB0sacwjmKBqKmYwBwufvuu0+WZcmyLL3wwgsn3Z9MJlVZWSnLsnTVVVeN+fh33323LMuSbdvat2/fSfe3t7crGAzKsiz96Z/+6dDtu3fvHsplWZa8Xq/Kisv0g//7B3r0R4+q+XDzScd675X39KVFX9KrT786bJaND2/UlxZ9Sf/99v8+5r8HACD1zSqYpbAvbDpGWqGFmkoXXyxVVJhOMek8sYQiPVyRhgtZ0rvZfjWJHdOB0fJ5fDqn9BzTMQBkkEAgoLVr1550+7PPPqv9+/fL7/ef0fH9fr/WrVt30u2//OUvT/m8W265Rffff79+9rOf6Vvf+pbmzpyrZ9Y9o7++/q+1+YnNY8rw8oaXlV+Wr93v7FbjvsYxPRcAkNp8Hh87p48DBedUsm3p0kulggLTSSZd5HCPHDmmYwAT6v3soPazYzowJueUnsM0TABT6oorrtDDDz+sgYGBE25fu3atFi5cqJKSkjM+/nAF59q1a3XllVeO+LxzzjlHt956q2677TbdeeedWvPAGv1u0++UW5Sr++6+T/veP3lU6HCaDjRpx5s7dMPXb1B2brY2bdg07r8LACD1nF1ytoJeNnAeKwrOqeb1SpdfLkXcvVCslUgq2uE1HQOYMLsjQe2ye0zHANJKxB9RQ1GD6RgAMswtt9yiY8eO6amnnhq6rb+/X7/4xS+0evXqEx67ceNGWZaljRs3nnD78Wnl991330nHX716tV5//XVt27Zt6LbDhw/rmWeeOen4p7Ns/jL92T/8mQZiA3ry354c1XM2bdikUCSkecvm6ZxPnaOXH395TK8JAEhd2b5sNqIbJwpOE4JB6YorBn91sazGHvnkMx0DOGMHs0N6j3ITGLPzys+TbXGqAWBq1dTUaMmSJSeMstywYYPa2tp08803n/HxL7roIlVUVJwwDf6hhx5SOBw+5QjOkdxx9R0qrCjU1k1bR/X4lx9/WQsuWSDH6+jcVeeqcW+jdr+ze8yvCwBIPedXnC+P7TEdIy3xqcOUSGRwJKfXvaMcLUk5zXyLIb0dDYf0lqfbdAwg7ZSES1SbW2s6BoAMtXr1av3qV79ST8/gBco1a9bo4osvVllZ2Rkf27Is3XzzzScUqGvWrNG11147rvU9C0IFmjF7hjpaOtTTeeoLqnu27tHh3Yd17mXnSpKmnz1ducW52vQ409QBIN2Vhks5fz4DtE8mFRQMjuT0uXeUY7ClV8EEa68hPbWGgnrNodwExmNxxWLTEQBksBtvvFE9PT1av369Ojo6tH79+jFPHz+V1atXa/v27dq8efPQr2dy/IqCwY1Ie7tPvdb3pg2bFMmPaOaimZIGy9ZFly7SK0++okQ8Me7XBwCYZcnSksolpmOkNXaBMa24WLrqKum3v5V63bl5Sd7hAR0ss5RU0nQUYNTaQkFt9jEtHRiP6XnTVZRVZDoGgAxWWFiolStXau3ateru7lY8Htf1118/YcdfsGCBZs2apbVr1yonJ0clJSVasWLFuI93vNgMhEYeGJCIJ/TKk69o5sKZajrYNHT7tIZpeuqBp7Rt8zbNWTxn3BkAAObU59erIOT+DaknEwVnKigokK6+Wvr3f5e63TdazOkZULQnpNag+/5ucKeWrKA2Oz1U8sA4eCyPzis/z3QMANDq1av1xS9+UYcPH9bll1+unJyckx5jWdawz43H46M6/r333qvs7GzddNNNsu3xT457++23VVRUpKK8InX0dwz7mG2bt6mtqU2bn9yszU9uPun+TRs2UXACQBry2l7OnycABWeqyM2VrrlGWr9e6uw0nWbCRQ51q6vWq5hipqMAp9ScFdQrTo+Sw3/eAXAa84rnKewLm44BAPrc5z6nL33pS/rjH/+ohx56aNjH5ObmSpJaW1tPuH3Pnj2nPf7q1av17W9/W4cOHdL9998/7pwvvfSSduzYoVtvvVXLqpZpw/YNwz7u5cdfVnZetm7581tOum/L77fo9Y2vq7+3X76Ae5e/AgA3Oqf0HIW8IdMx0h4FZyqJRD4qOdvbTaeZUFZSymuydYQR10hhTVlBveplWjowXmFfWAtKFpiOAQCSpHA4rHvvvVe7d+/W1VdfPexjqqur5fF49Nxzz+mzn/3s0O0//vGPT3v8uro63XPPPerp6dF5541v5M2ePXt0xx13yOfz6Zvf/KYqo5WaljNN7+m9Ex7X39uvLb/fooWfWqiFKxeedJycwhxtfmKz3njujaENiAAAqS8/mK95xfNMx3AFCs5UEw4Plpz//u9SS4vpNBMq0NanrJyAuhx3rjWK9NYYDmkLGwoBZ+TCqgvl9XhNxwCAIbfffvsp749Go7rhhhv0wx/+UJZlqa6uTuvXr1djY+Oojn/nnXeOOstrr72mBx54QIlEQq2trdq8ebMeeeQRWZal+++/X/Pnz5ckXVB5gZ62nz7huW8894Z6u3o1/6L5wx572rxpys7N1ssbXqbgBIA0YcnShdUXyrbY/3siUHCmolDoozU5jx0znWZC5R7sV2+VR3Gdfl0jYKocDof0BuUmcEam501XZbTSdAwAGLMf/vCHisVi+slPfiK/368bb7xR3/3ud9XQ0DChr7Nu3TqtW7dOjuMoEomovr5ed911l7785S+rqqpq6HFZvizNKph1wnNf3vCyvH7viGts2rathmUNennDy+ps7VQ4h6VCACDVzSmcw8acE8hKJpPso5Gq+vsHd1cf5RXkdNFZHNSxMNOAkRr2Z4f0jodyEzgTASegG+feqIAz8u6/AIDRSyaTenTbo2rqbjr9gwEAaSfkDenGuTfK52Hd5InCONhU5vNJV14plZaaTjKhwkd65E/6TcdAprOkD6JByk1gAlxQeQHlJgBMIMuydGHVhbLErocA4EZLK5dSbk4wCs5U5/VKl18uVbpr2l9eY4LTNRiTsG29FfFrp8VIYuBMVUWrND1vuukYAOA6hVmFmlM4/JR0AED6qo5Wa1ruNNMxXIeCMx04jrRqlTTB6wCZ5OuMKdobMh0DGWjAcfRqxKODVp/pKEDa89peLataZjoGALjWeeXnKexjPU0AcAuv7dXSqqWmY7gSBWe6sG3pggukSy6RPB7TaSZE5EC3/EmGZGPq9Pp8eimcVLNipqMArrC4YjEfvAFgEnk9Xi2vWW46BgBggnDhavJQcKab+nrpM5+Rwun/D8KSlH84ydpCmBLtwYBeDMXUrbjpKIArVEQqNLtwtukYAOB6Zdllmls413QMAMAZKs8u19wifp5PFgrOdFRQIF17rVRWZjrJGfN2x5TbxcYUmFwHskN6yd+rASVNRwFcwefx6eLqi03HAICMcX7F+Yr6o6ZjAADGyefxMSJ/klFwpqtAYHCH9XnzTCc5Y9mHexRIUHJi4sU9Hr0dDehtdkoHJtTSyqXK8mWZjgEAGcOxHS2vWc7MJwBIU8uqlnH+PMkoONOZZUlLlkgrVgxuRJTG8g/GZPPtiAnU6/Ppj9mWDli9pqMArlKTU6P6/HrTMQAg4xSHizW/eL7pGACAMarNrdX0vOmmY7gejZIbTJ8uXXONlJ1tOsm4OX1x5bX7TceASzRnBfVCMKZODZiOArhKwAnowqoLTccAgIy1qGyRcgO5pmMAAEYp5A1pWdUy0zEyAgWnWxQUSJ/7nFRebjrJuGUd7VEoHjQdA2ksaVnaGQlqs7dHcYv1NoGJdmHVhQp6+TkNAKZ4bI8umXaJbIuPcQCQDi6qvkgBhyX5pgLvjG4SCEhXXCHNT9+pK3kH+uSRx3QMpKF+r1evRrz6wO4xHQVwpYaiBk3LnWY6BgBkvIJQgc4tO9d0DADAacwumK2qaJXpGBmDgtNtLEtavHiw6AyHTacZM08soYJj6b2eKKbe0XBIz4UGdMzqNx0FcKWirCItrlhsOgYA4ENnlZylykil6RgAgBHkBHK0pHKJ6RgZhYLTrSoqpBtukObMMZ1kzAKtfcrpCZmOgTQw4HH0VtSv15xupqQDkyTgBHRp7aVMhwSAFHPJtEuU5WVHXgBINY7taGXtSjk2g7emEp9W3MzrlZYtk666Ku02IIoe7FYwwToVGFlbKKgXwgkdtPpMRwFcy5KlT037lLJ8fIAGgFQTcAJaMW2FLFmmowAAPmZp5VLlBfNMx8g4FJyZoKxscDTn3Lmmk4xJ/v5+OeKKB06UsG1tjwT1R1+P+qyE6TiAqy0qW6TySPpuXgcAbleaXaqFZQtNxwAAfGhG/gzNLJhpOkZGouDMFI4jLV0qXX21FImYTjMqnlhCBUdtrkljSHswoD9kW9rBRkLApKuKVmlB6QLTMQAAp7GgZIHKs7kYBQCm5QZytaxqmekYGYuCM9OUlkrXXy/Nmze4IVGK87f3K7craDoGDBtwHG2NBvSSv1ddVtx0HMD1sn3ZWjFthekYAIBRsCxLK6atUNDhnBkATHFsR5fWXcq6mwZRcGYix5GWLJGuuUaKRk2nOa3swz3KinPClpEsqTEc0rPhuPZavabTABnBY3l0ad2l8nl8pqMAAEYp6A2yHicAGHRh1YXKCeSYjpHRKDgzWXHx4GjOs86S7NT+Vsjb1yuvvKZjYAr1+n16JeLTFqdbA2KHdGCqLK1aqoJQgekYAIAxKo+U6/yK803HAICMM6tglurz603HyHhWMpmkOYDU1ia9/LK0a5fpJCPqz/LqSElcCbGxjJvFPR7ty/LpfatHSQYhAFNqZv5MXVxzsekYAIAz8Ptdv9cHzR+YjgEAGaEoq0hXz7haHttjOkrGo+DEiRobpU2bpEOHTCcZVk9eQI25TFV2o6Rl6UhWQFudPvVTYgNTLj+Yr8/O+iwnZwCQ5uKJuB577zEd7T5qOgoAuFrIG9K1s69VyBsyHQWi4MRI9u4dHNHZ3Gw6yUnaS0NqCXWbjoEJ1BoK6h1fTJ0aMB0FyEg+j0/Xzr5WEX/EdBQAwATo6u/So9seVXeMc2YAmAwey6OrZ16toqwi01HwIQpOjCyZlD74QHrlFamz03SaEzRXBdXh7TEdA2eoKxDQtkBCTeo3HQXIWJYsrZq+SlXRKtNRAAAT6EjnEf3m/d8okWRmDABMtOU1yzUjf4bpGPgYCk6cXjwuvfOOtGWL1NdnOo0kKWlJjTUB9dpMV09HfT6ftgcs7bdT4/sJyGTLqpZpTuEc0zEAAJNgW9M2PbfnOdMxAMBV5hfP1+KKxaZj4BMoODF6/f2DJefbbw+WnoYlHFuHqz2KKWY6Ckap1+fTroClvRSbQEo4p/QcLSpbZDoGAGASvbj3Rb1z9B3TMQDAFaqj1bqs7jJZFjviphoKToxdV5f06quD09cNF52xoKMjZUnFZb5wxch6/H7tCFg6YDHiFkgVswpm6aLqi0zHAABMskQyoce3P6797ftNRwGAtJYXzNNnZn5GXo/XdBQMg4IT49fbK23dKr377mDpaSpG1K/Ggn4lxbdyqukKBLTdn9BhizU2gVRSFa3SqrpVXHkGgAwRi8f02HuP6VjPMdNRACAthbwhfXbWZxX2hU1HwQgoOHHmEglp167BqetHjhiJ0FUYVFOETYdSgiW1BYPa6Yurkc2DgJRTlFWkq2ZcJcd2TEcBAEyh7li3frXtV+rsT63NQwEg1fk8Pl0942rlh/JNR8EpUHBiYjU1DRadO3ZM+fT1trKQWoPdU/qa+Ejc41FjyK/tnj51s2QAkJJyAjm6ZuY1CjgB01EAAAY09zTrsfceU3+ci9AAMBoey6PL6y9XWXaZ6Sg4DQpOTI6eno+mr3dPXenYUhlSu4+Scyr1+P3a67e01+5VwnQYACMKeUP6zMzPKNufbToKAMCggx0HteGDDYonuSANAKdiydKnaj+l2txa01EwChScmFyJhLRz5+CozsbGKXnJY9VBdTpMV59MCdtWS9Cvnd4BNbOLPZDymFYDAPi4nS079budv2MNewA4haWVSzW3aK7pGBglCk5MnaNHB3de37VrUjclSko6VhNUl4eSc0JZUkcgoIM+S/utXg1wQgykBduydUX9FUyrAQCc4J3Gd/TivhdNxwCAlLSgZIHOLT/XdAyMAQUnzGhsHBzZuWuX1NEx4YdPWtLRmoB67N4JP3am6fb71Oj3aI/dJyahA+nnU9M+pbq8OtMxAAAp6NWDr+rVQ6+ajgEAKWVm/kxdXHOx6RgYIwpOmHf06GDRuXOn1N4+YYdN2JaO1vjUa/VN2DEzRZ/Pp2N+R3s8/WrXgOk4AMbpgsoL1FDUYDoGACCFbdq/SW8cecN0DABICdXRal1Wd5ksyzIdBWNEwYnUcuzYRyM7W1vP+HAJx9aRakf9YqfIU7Kkbr9fTV6P9tv96rAoNYF0d3bJ2Tqv/DzTMQAAaeAP+/6gtxvfNh0DAIyqjFRq1fRVsi3bdBSMAwUnUldLy2DZuXu31NwsjfNbNe61daTKoxib4Zwg7vGoPeBToyMdtPrUz/RzwDVYMwgAMFbP73leW5u2mo4BAEZURCq0qm6VPLbHdBSMEwUn0kN/v3TkyODX4cODa3gOjH6U4YDfo8YKO6NLzrjHoy6fVy2OpSZPXE2MagVc6dyyc7WgdIHpGACANLRx90a9f+x90zEAYEqVZZfp09M/Lcd2TEfBGaDgRHpKJAansx8+/FHp2d19yqfE/R4dyaCSc8Bx1OF11Oq11GgPqDVD/t5AJltSsUTziueZjgEASFPJZFLP7HpGO1p2mI4CAFOiNFyqy+svp9x0AQpOuEd7+0dl55Ejg9PaPyHu8+hIpftKzgHHUbfXUZdjq81O6Jg1oE42BwIyyrKqZZpTOMd0DABAmkskE3p659Pa3brbdBQAmFQl4RJdUX8F5aZLUHDCvfr7Bzcqam2V2tqGfo33dOpImRRLwynacY9HMcejbo9HHY6lNiuuY1aM9TOBDGbJ0sU1F2tG/gzTUQAALkHJCcDtirOKdUX9FfJ6vKajYIJQcCLzJJMa6GzT5n0vqLerRVkJS4FEUr54Qp5EXE48ITthoDC0pLjt0YDHo36PrV6PrW5b6rYS6lBcHdaABsQ/VwAfsS1bl9Rcorq8OtNRAAAuk0gm9OzuZ/VB8wemowDAhCrOKtbl9ZfL5/GZjoIJRMGJjBWLx/T49sd1qPPQSffZkgLyKCBbgaQtf9KSX7Y8SckjyU4OPsZOJmV9/PeSEpKSlqWkJSWSGvzVkpKylLCkmJKK2VKfkuqzEurV4BejMAGMhW3ZWlm7UjU5NaajAABc7IW9L+jdo++ajgEAE6IiUqHL6i5jWroLUXAiow0kBvT0zqe1t22v6SgAMGoey6PL6i5TZbTSdBQAQAb44/4/6s0jb5qOAQBnpDa3ViumrZBt2aajYBJQcCLjJZIJPbPrGe1s2Wk6CgCclmM7+vT0T6ssu8x0FABABnnt0Gt65eArpmMAwLjMKpilC6sulGVZpqNgklBwApKSyaSe3/u8tjVtMx0FAEbk8/j06emfVkm4xHQUAEAGeuvIW3pp/0umYwDAmMwvnq/FFYtNx8Ako+AEPobpNwBSld/j1xX1V6gwq9B0FABABtvWtE3P73leSTa/BJAGzi07VwtKF5iOgSlAwQl8wrtH39Uf9v1BiSSb/gBIDTmBHK2qW6VoIGo6CgAA2tO6R7/b9TsNJAZMRwGAES2tXKq5RXNNx8AUoeAEhnGg/YCe3vm0+uJ9pqMAyHAVkQqtrF0pn8dnOgoAAEOOdh3V49sfV89Aj+koAHACx3a0vGa5anNrTUfBFKLgBEbQ1tumJ3Y8odbeVtNRAGSohqIGLalYwmLoAICU1NHXoQ3bN3C+DCBlBJ2gVk1fpaKsItNRMMUoOIFT6I/36+mdT2t/+37TUQBkENuytbRyqWYXzjYdBQCAU+qP9+vJHU/qYMdB01EAZLjcQK4ur79cYV/YdBQYQMEJnEYymdRL+1/S241vm44CIAP4PX5dWnepyrLLTEcBAGBUEsmEnt39rD5o/sB0FAAZimWdQMEJjNLWo1v14r4X2XwIwKTJCeTo09M/rYg/YjoKAABj9srBV/TaoddMxwCQYWYXzNbSqqWyLdt0FBhEwQmMwcGOg3pqx1NsPgRgwnHVGQDgBh8c+0DP732eHdYBTInFFYs1v3i+6RhIARScwBi197Xr8e2Ps5g6gAnDZkIAADdp6m7SkzueVGd/p+koAFzK5/Fpec1y1eTUmI6CFEHBCYwDmw8BmAi2ZWtZ1TLNKphlOgoAABOqd6BXv9v5Ox3oOGA6CgCXyQ3k6rK6yxQNRE1HQQqh4ATGic2HAJyJgBPQpbWXqjS71HQUAAAmRTKZ1KYDm/TmkTdNRwHgErW5tVpes1yO7ZiOghRDwQmcoQ+OfaAX9r6gWCJmOgqANFGcVawV01Yo259tOgoAAJNuR/MOPbvnWdblBDButmXrvPLzWG8TI6LgBCZAe1+7ntn1jBq7Gk1HAZDCLFk6p/QcnVN6DuttAgAySnNPs57c8aTa+9pNRwGQZoJOUCtrVzLzCadEwQlMkEQyodcOvaYth7YoKf5ZAThR2BfWimkrVBIuMR0FAAAj+gb69OyeZ7W7dbfpKADSRHFWsVbWrlSWL8t0FKQ4Ck5ggh3uPKxndj3DrpEAhkzPm65lVcvk8/hMRwEAwLh3j76rl/a9pHgybjoKgBQ2v3i+zis/T7Zlm46CNEDBCUyC/ni/nt/zvHa07DAdBYBBXturZVXLVJ9fbzoKAAAppbmnWb/b+Tu19LaYjgIgxYS8IS2vWa6KSIXpKEgjFJzAJHr/2Pt6ce+LbEAEZKCirCKtmLZCEX/EdBQAAFLSQGJAL+17SVubtpqOAiBFVEerdXHNxQo4AdNRkGYY54sJcd9998myLFmWpRdeeOGk+5PJpCorK2VZlq666qoxH//uu++WZVmybVv79u076f729nYFg0FZlqU//dM/Hbp99+7dQ7ksy5LX61VBQYEuuOAC/dVf/ZX27t170rE2btwoy7L0i1/8YtgsP/7xj2VZls4///zT5p6RP0PXzblORVlFY/jbAkhnxzcSumbmNZSbAACcgmM7urD6Ql1ae6n8Hr/pOAAMcmxHy6qWadX0VZSbGBcKTkyoQCCgtWvXnnT7s88+q/3798vvP7MTF7/fr3Xr1p10+y9/+ctTPu+WW27R/fffr5/97Gf61re+pdraWt1zzz2aPXu2HnzwwTFlWLNmjWpqavTyyy9r+/btp318xB/RNTOv0YKSBbLErsmAm4V9YV0982otKlvEWkEAAIzStNxpum7OdWzEB2SovGCePjfrc5pTOMd0FKQxPn1hQl1xxRV6+OGHNTAwcMLta9eu1cKFC1VScmYnLVdcccWwBefatWt15ZVXjvi8c845R7feeqtuu+023XnnnXrggQe0detWVVRU6Pbbb9cbb7wxqtfftWuX/vCHP+gHP/iBCgsLtWbNmlE9z7ZsnVt+rq6acZXCvvCongMgvdTl1un6Odfz4QwAgHEI+8K6esbVWlyxWI7tmI4DYIo0FDXoc7M+p9xgrukoSHMUnJhQt9xyi44dO6annnpq6Lb+/n794he/0OrVq0947PGp4Bs3bjzh9uPTyu+7776Tjr969Wq9/vrr2rZt29Bthw8f1jPPPHPS8U+nurpa9913n/r7+/UP//APo3rOmjVrlJubqyuvvFLXX3/9qAvO40qzS3Xd7Os0PW/6mJ4HIHX5PX4tr1muT9V+il3SAQA4A5ZlaX7xfF03m9GcgNtF/VFdPeNqXVB5gTy2x3QcuAAFJyZUTU2NlixZcsIoyw0bNqitrU0333zzGR//oosuUkVFxQnT4B966CGFw+FTjuAcyZIlS1RXV3dCIXsqa9as0bXXXiufz6dbbrlFH3zwgTZv3jym1/Q7fq2YtkJX1l+pqD865swAUseM/Bm6qeEmzcifYToKAACuEQ0MFh9LKpYwmhNwGUsfXsiYc51Ks0tNx4GLUHBiwq1evVq/+tWv1NPTI2mwFLz44otVVlZ2xse2LEs333zzCQXq8dJxvOt7NjQ06OjRo2pvbz/l41599VVt27ZtqKhdtmyZKioqxjyK87jySLlumHuDFpUt4sQNSDN5wTxdM/MaLa9ZziLoAABMAsuyNK94Hsu/AC6SF8zTZ2d9lqUoMCkoODHhbrzxRvX09Gj9+vXq6OjQ+vXrxzx9/FRWr16t7du3a/PmzUO/nsnxw+HBNTE7OjpO+bg1a9aouLhYl1xyiaTBk66bbrpJDz74oOLx+Lhe27ZsnVN6jm6Yc4OqolXjOgaAqePYjs4vP1/Xzr6WD1sAAEyBiD8yNI2VQgRIT7Zla2HpQl07+1oVZhWajgOX4h0CE66wsFArV67U2rVr1d3drXg8ruuvv37Cjr9gwQLNmjVLa9euVU5OjkpKSrRixYpxH6+zs1OSlJ2dPeJj4vG4HnzwQV1yySXatWvX0O3nn3++vv/97+t3v/udLrvssnFnyPZn69PTP63drbv1h31/UGd/57iPBWByTMuZpiWVS9goDACAKWZZlhqKGlQVrdIf9v1Be9v2mo4EYJQKQ4W6uOZi5QXzTEeBy1FwYlKsXr1aX/ziF3X48GFdfvnlysnJOekxlmUN+9zRjIZcvXq17r33XmVnZ+umm26SbY9/MPLbb7+toqIiRSKRER/zzDPP6NChQ3rwwQf14IMPnnT/mjVrzqjgPK4mp0YVkQq9evBVvdX4lhLJxBkfE8CZifgjWlq5VJXRStNRAADIaBF/hEEBQJrweXxaVLZIcwvnjvjZH5hIFJyYFJ/73Of0pS99SX/84x/10EMPDfuY3NxcSVJra+sJt+/Zs+e0x1+9erW+/e1v69ChQ7r//vvHnfOll17Sjh07dOutt57ycWvWrFFRUZF+9KMfnXTfL3/5Sz366KP6yU9+omAwOO4sxzm2o/MrzteM/Bl6Ye8LOtR56IyPCWDsPJZHZ5WcpQUlC9jZEQCAFHJ8UMCWQ1v0xpE3GBQApJj6vHqdX3G+Qt6Q6SjIIBScmBThcFj33nuvdu/erauvvnrYx1RXV8vj8ei5557TZz/72aHbf/zjH5/2+HV1dbrnnnvU09Oj8847b1wZ9+zZozvuuEM+n0/f/OY3R3xcT0+PfvnLX+qGG24Ydqp9WVmZ1q1bp8cee0w33XTTuLIMJzeYq6tnXq33j72vTfs3qWegZ8KODeDUKiIVWlq5VNFA1HQUAAAwDMd2dG75uZqRP0Mv7ntR+9v3m44EZLy8YJ6WVi5ld3QYQcGJSXP77bef8v5oNKobbrhBP/zhD2VZlurq6rR+/Xo1NjaO6vh33nnnqLO89tpreuCBB5RIJNTa2qrNmzfrkUcekWVZuv/++zV//vwRn/vYY4+po6ND11xzzbD3L168WIWFhVqzZs2EFpzHzcifoepotTYf3KytR7cqqeSEvwaAQSFvSEsqlqgur850FAAAMArRQFRX1F+hnS079dK+l9QV6zIdCcg4fo9fi8oWaU7hHKajwxgKThj1wx/+ULFYTD/5yU/k9/t144036rvf/a4aGhom9HXWrVundevWyXEcRSIR1dfX66677tKXv/xlVVWdevfyNWvWKBAI6NJLLx32ftu2deWVV2rNmjU6duyY8vPzJzS7JPkdv5ZVLdOcwjl65eAr2t26e8JfA8hkfo9fZ5WcpYaiBnZoBQAgDdXm1qoqWqXXD7+uN4+8qYHEgOlIgOtZsjS7cLYWlS1SwAmYjoMMZyWTSYaDAWmmqbtJmw9s1r72faajAGnN5/GpoahB84vny+fxmY4DAAAmQHesW5sPbNb7x95n9hMwSaqj1Tqv/DzlBnNNRwEkUXACae1I5xFtPrhZBzsOmo4CpBXHdtRQ1KCzis+S3/GbjgMAACbBse5j2nRgE+tzAhOoJFyi88rPU0m4xHQU4AQUnIALHOw4qFcOvqLDnYdNRwFSmsfyaHbhbC0oWaCgN2g6DgAAmAIHOw5q0/5NOtp91HQUIG3lBnJ1Xvl5qs6pNh0FGBYFJ+Ai+9r2afPBzWrqbjIdBUgptmVrVsEsLShZoCxfluk4AADAgJ0tO7X5wGa19bWZjgKkjbAvrEVli1SfV88GQkhpFJyAC+1u3a1XDr6i5p5m01EAoyxZqs+v18LShcr2Z5uOAwAADEsmk9rRskNbDm1RS2+L6ThAygo6QZ1VcpbmFs6Vx/aYjgOcFgUn4GI7mnfo1UOvqrW31XQUYEpZslSXV6eFpQsVDURNxwEAACkmmUxqV+suvXboNQYFAB8T9oV1VvFZmlUwi2ITaYWCE3C5ZDKp7c3b9VbjW0xdh+vZlq3a3FqdXXK28oJ5puMAAIA0sLt1t1479BrnyshoUX9UZ5ecrfr8etmWbToOMGYUnEAGOdJ5RO8cfUc7W3YqkUyYjgNMmIAT0OyC2ZpbNFchb8h0HAAAkIb2tO7Ra4deYzMiZJS8YJ7OLjlbdbl1rLGJtEbBCWSg7li3th7dqq1NW9Ud6zYdBxi33ECuGooaVJ9fL8d2TMcBAAAucLDjoN468pb2tu1VUnxchjsVZRXp7JKzVZNTYzoKMCEoOIEMlkgmtLNlp95ufFuNXY2m4wCjVhmp1LzieaqIVJiOAgAAXKq9r11vN76t95reUywRMx0HOGPHl3NqKGpQUVaR6TjAhKLgBCBJOtp1VO8cfUc7mnconoybjgOcJOAENDN/pmYXzlbEHzEdBwAAZIj+eL+2NW3T241vq7O/03QcYMyCTlCzC2drTuEclnOCa1FwAjhB70Cvth7dqnePvquuWJfpOIBKwiWaUzhH03KmsZMjAAAw5vjO6283vq3DnYdNxwFOqzBUqIaiBtXl1bFxEFyPghPAsBLJhHa37ta7R9/VoY5DrD+EKeXz+DQ9b7rmFM5hN3QAAJByWnpatK1pmz5o/kC9A72m4wBDHNvRtJxpmlM4R8XhYtNxgClDwQngtLpj3drZslPbm7ezVicmjdf2qjqnWnW5daqIVDBaEwAApLzjgwK2NW3TgfYDDAqAMUVZRZqZP1N1eXXyeXym4wBTjoITwJh09ndqR/MO7WjZoabuJtNxkOYc21FVtEq1ubWqilaxEzoAAEhbnf2deq/pPb137D3W6sSUCHlDqs+r18yCmcoJ5JiOAxhFwQlg3Np627SjZYd2NO9QS2+L6ThIEx7Lo8popWpza1UdrZbX4zUdCQAAYMIkk0kd6Dig7c3btbt1t/rj/aYjwUVsy1Z1tFozC2aqMlIpy7JMRwJSAgUngAnR3NM8NLKzva/ddBykGNuyVZ5drrq8OtXk1DBtBgAAZIREMqF9bfu0o2WH9rTuUSwRMx0Jaci2bFVEKlSbW8u5NDACCk4AE66pu2mo7GR6TuayZKksu0x1eXWaljNNfsdvOhIAAIAx8URce9v2akfLDu1t26uBxIDpSEhhHsujikiFpuVOo9QERoGCE8Ckau1t1f72/TrYcVAHOw4yRcflov6oyiPlKs8uV1l2GaUmAADAMAYSA9rTukd72vZoX9s+9cX7TEdCCjheatbm1qo6p5pSExgDCk4AUyaZTOpo91Ed7DioA+0HdLjzsOLJuOlYOANZ3iyVRwbLzPLscmX5skxHAgAASCvJZFJHuo5ob9te7W3bq+aeZtORMIWyfdmqjFaqKlqlsuwyNt0ExomCE4Ax8URcR7qO6ED7AR3oOKCjXUeVFD+SUpnf4x8sMz8sNdmtEQAAYGJ19ndqX9s+7W3bqwMdB5jK7jIey6PS7FJVRatUGalUNBA1HQlwBQpOACmjP96vQx2HdKDjgA60H2Bn9hTg2I5Kw6VDhWZ+MJ+dGgEAAKZIPBHX4c7DOtR5SIc6Dqmxq5EZUGnGkqW8YJ5Ks0tVGalUaXYpozSBSUDBCSBl9cR61NTdpKPdR9XU3aSm7iY2LZpEPo9PecE85QfzlR/KH/rVtmzT0QAAAKDBwrOxq3Go8DzSdYQRninGY3lUmFWoknCJSsOlKg4Xs5YmMAUoOAGkld6B3qGys6m7Sc09zWrrbWNq+xhF/JGTysxsf7bpWAAAABiDRDKho11HdajzkI52DQ4K6OjvMB0ro/g9fhVlFQ0WmtmlKgwVymN7TMcCMg4FJ4C0F0/E1drbquaeZjX3NKult0XNPc2M9tTgFPO8YN4JZWZeMI+ryAAAAC718QEBR7uO6mj3Uc6LJ0jACSg/mK/CrEIVhApUECpQxB8xHQuAKDgBuFgsHlNXrEud/Z3q6u9SV6xLXf0f/vnD3/fF+0zHHDdLlkLekLJ8WQr7wsryZp30+yxvFmtmAgAAZLjjpeex7mNq6W1Ra2+rWnpaFEvETEdLSY7tKOqPKieQMzhQ4MMZT1m+LNPRAIyAghNARhtIDAyVnx8vQjv7O9Ud61YsHtNAYkADiQHFk/FJXePIkiXHduTYjjy2R47tKOAERiwuQ94Q5SUAAADGrau/S629rWrra1Nbb9vQr12xLtev7WlbtiL+iKL+qKKB6NCvOYEchbwh0/EAjBEFJwCM0UBiQPFE/KTi8+Nfx++3rI9Ky6Hy0vKcVGQ6tsNmPgAAAEgZvQO9J8x++uRggJ5YT8qOAHVsZ2hgQMgbGvH3nH8D7kHBCQAAAAAAxiyRTKhvoE998b4Rf40n4oon40okEyf9PpFMKJ6MK5lMyrIs2ZZ90pelj273erzyeXwnfPk9/o9+73z0ewCZhYITAAAAAAAAQNpiPDYAAAAAAACAtEXBCQAAAAAAACBtUXACAAAAAAAASFsUnAAAAAAAAADSFgUnAAAAAAAAgLRFwQkAAAAAAAAgbVFwAgAAAAAAAEhbFJwAAAAAAAAA0hYFJwAAAAAAAIC0RcEJAAAAAAAAIG1RcAIAAAAAAABIWxScAAAAAAAAANIWBScAAAAAAACAtEXBCQAAAAAAACBtUXACAAAAAAAASFsUnAAAAAAAICXcd999sixr6CsQCKisrEyrVq3SP//zP6ujo+OEx999992yLEtNTU3DHu/GG2+UZVn6i7/4izHlWL58uSzL0tVXX33Sfbt375ZlWfre9743dNvGjRuHMr/66qsnPeeOO+5QOBweUwYAo0fBCQAAAAAAUsp3vvMd3X///br33nv11a9+VZJ01113ad68eXrzzTdHdYz29nb95je/UU1NjdatW6dkMjnmHOvXrx+2sDyVu+++e8yvA+DMUHACAAAAAICUcvnll+vWW2/VF77wBf3lX/6lnnjiCT399NNqbGzUNddco56entMe45FHHlE8HtfPf/5z7du3T88999yYMlRVVSk3N1d/8zd/M+rnnH322Vq/fr1ee+21Mb0WgDNDwQkAk4xpNgAAAMCZW7Fihb71rW9pz549euCBB077+DVr1ujSSy/VJZdcotmzZ2vNmjVjer3s7Gx9/etf129+85tRF5Zf/epXlZubyyhOYIpRcALAFGGaDQAAAHBmPv/5z0uSnnzyyVM+7uDBg/r973+vW265RZJ0yy236Be/+IX6+/vH9Hp33nnnmArLSCQy5lIUwJmj4ASAKcI0GwAAAODMVFRUKBqNaseOHad83Lp16+T3+/WZz3xGknTzzTerpaVFv/3tb8f0epFIRHfdddeYCsuvfe1rYz7nBnBmKDgBwCCm2QAAAABjEw6HT1rm6ZPWrFmjK6+8UtnZ2ZKk+vp6LVy4cMznz9JHozhHW1hGo1Hdddddeuyxx7Rly5Yxvx6AsaPgBADDmGYDAAAAjF5nZ+dQcTmcrVu3asuWLVq6dKm2b98+9LV8+XKtX79e7e3tQ8c5fPjw0NfRo0eHPd54Css777xTOTk5DBIApggFJwAYxjQbAAAAYHT279+vtrY2TZ8+fcTHHJ8Z9fWvf1319fVDX9///vfV29urRx55RJL0ve99T6WlpUNf55577ojHPF5YMooTSE0UnACQAphmAwAAAJze/fffL0latWrVsPcnk0mtXbtWl1xyiR5++OGTvubPnz90/nzbbbfpqaeeGvo61Xn18fPhX//616M+H77rrrvGVIoCGD/HdAAAwOD0mKKiohHvPz7N5rbbbtP27duHbl++fLl+9KMfqb29XZFIRJ2dners7By63+PxqLCw8KTjHT9B++u//mtt2bJFubm5p81455136h//8R91991369e//vUY/4YAAADAmXnmmWf0t3/7t5o2bZr+w3/4D8M+5sUXX9Tu3bv1ne98R9dff/1J97///vv61re+pYMHD6q2tla1tbWjfv277rpL99xzj77zne+M6vHHz7nvvvtunXXWWaN+HQBjxwhOADCMaTYAAADAiTZs2KAHHnhA9913n/7+7/9eq1at0sqVK1VcXKzHHntMgUBg2OetWbNGHo9HV1555bD3X3PNNUokEnrwwQfHnCkajerOO+/U66+/Purn3HnnnYpGo3rjjTfG/HoARo8RnABg2Fim2XzlK1856f6//du/1Zo1a/SFL3xBt912m5YtWzZ0XzAYHPF1P35F+fbbbx9V1uNXrf/mb/5GOTk5o3oOAAAAMFbf/va3JUk+n095eXmaN2+e7rnnHn3hC18YcYOhWCymhx9+WBdccIHy8vKGfUxDQ4OmTZumBx54QN/4xjfGnOv4+XBbW9uoHp+Tk6O77rqLaerAJKPgBACDmGYDAAAAfOSOO+7QHXfcMerH33333SfsVN7U1HTa5+zcufO0j9m4ceOwt+fk5Ki1tfWk25cvX65kMjmqjAAmHlPUAWCKMM0GAAAAAICJR8EJAFPk29/+tj7/+c/rS1/6ku655x4lk0ndc889evPNN9XQ0DDsc8Y6zWY87rrrLkWj0VE//vg0GwAAAAAAUoGVHGkMNQAAAAAAAACkOEZwAgAAAAAAAEhbFJwAAAAAAAAA0hYFJwAAAAAAAIC0RcEJAAAAAAAAIG1RcAIAAAAAAABIWxScAAAAAAAAANIWBScAAAAAAACAtEXBCQAAAAAAACBtUXACAAAAAAAASFsUnAAAAAAAAADSFgUnAAAAAAAAgLRFwQkAAAAAAAAgbVFwAgAAAAAAAEhbFJwAAAAAAAAA0hYFJwAAAAAAAIC0RcEJAAAAAAAAIG1RcAIAAAAAAABIW/8HzS42BVsmkvYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAJOCAYAAAD/MzqsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzR9JREFUeJzs3Xd4FOXaBvB7d9N7QiotISFUadKkBgRFBESlYwEU5VixYPccwHI8Huy9fSJSRFCUIkV6r9JLCOm91832nff7IycrSwpJSDKb3ft3Xbkgs7Mzdzab5J1n3qIQQggQERERERERERGRQ1PKHYCIiIiIiIiIiIjkx0IhERERERERERERsVBIRERERERERERELBQSERERERERERERWCgkIiIiIiIiIiIisFBIREREREREREREYKGQiIiIiIiIiIiIwEIhERERERERERERgYVCIiIiIiIiIiIiAguFRPUyYsQIjBgxQu4YTSI5ORkKhQI//PCD3FFqtXXrVvTu3Rtubm5QKBQoLi6WOxIRERFRs5g9ezYiIiLkjkENtGjRIigUCrlj1MpkMuHFF19Eu3btoFQqcffdd8sdiYiaGQuFZDO++OILKBQKDBw4sMHHuHjxIhYtWoTk5OTGC9bICgoK8MILL6Bz585wc3NDQEAAxowZg02bNskdzeYVFBRg6tSpcHd3x+eff47ly5fD09Oz2n1/+OEHKBQKy4ebmxs6deqEJ598Ejk5Oc2cvOXbs2cPFAoFfvnlF8u26l7j1q1bY8yYMfjkk09QVlYmY2IiIqKW4eq/pbV97Nmzp9mzzZ49u07ZZs+ebXmOEALLly/H8OHD4efnBw8PD/To0QNvvPEGysvLq5xjxIgRNR43Nja2QbkPHjyIe+65ByEhIXB1dUVERATmzZuH1NTUhr4UDuP777/HkiVLMHnyZCxbtgzPPvtsjfte+70LCAhA//798f3330OSpGZMbR9mz54NLy8vq21Xv8ZKpRI+Pj7o3LkzHnjgAWzfvl2mpGTvnOQOQFRp5cqViIiIwLFjxxAfH4+OHTvW+xgXL17E4sWLMWLECJu823r58mWMGjUKeXl5mDNnDvr164fi4mKsXLkSEyZMwIIFC7BkyRK5Y9qs48ePo6ysDG+++SZGjx5dp+e88cYb6NChA3Q6HQ4cOIAvv/wSmzdvxvnz5+Hh4dHEiR1D5WtsNBqRnZ2NPXv24JlnnsEHH3yADRs2oGfPnnJHJCIislnLly+3+vzHH3/E9u3bq2zv2rUrvv3222YtwMybN8+qzZWUlIR//etfePTRRzFs2DDL9qioKACA2WzGzJkzsWbNGgwbNgyLFi2Ch4cH9u/fj8WLF2Pt2rXYsWMHQkJCrM7Ttm1bvPPOO1XO37p163pn/vTTTzF//nxERkbiqaeeQlhYGC5duoTvvvsOP//8MzZv3ozBgwfX+7iOYteuXWjTpg0+/PDDOu1/9fcuLy8PP/74Ix5++GHExcXhP//5T1NGdRhXv8bl5eWIj4/HunXrsGLFCkydOhUrVqyAs7OzzCnJrggiG5CYmCgAiHXr1omgoCCxaNGiBh1n7dq1AoDYvXv3dfeVJEloNJp6HT8mJkbExMQ0KJvBYBA33XST8PDwEEeOHLF6zGQyiWnTpgkAYvXq1Q06fkMZjUah1+tFUlKSACCWLl3arOevj2XLlgkA4vjx49fdd+nSpdXu+9xzzwkAYtWqVTU+V61W33DWxqTVaoXZbG7y89T2de/evVsAEGvXrrVsq+k1FkKInTt3Cnd3dxEeHl7vnzMiIiJH9sQTTwhbvUw7fvx4re3Ff//73wKAWLBgQZXHNmzYIJRKpbjjjjustsfExIju3bs3Sr4DBw4IpVIphg0bJsrLy60ei4+PFyEhISIsLEwUFhY2yvnqqrKNtXDhQpv93lYaOXJknb8f1X3vysvLRdu2bYWnp6cwGAzVPs9sNgutVnvDWRtTc7T/r3f9OWvWLOHp6Wm1raafD5PJJB5//HEBQLz44ouNnpUcG4cek01YuXIl/P39MW7cOEyePBkrV66sdr/Vq1ejb9++8Pb2ho+PD3r06IGPP/4YQMUwyClTpgAARo4cWWWYRkREBMaPH49t27ahX79+cHd3x9dffw0AWLp0KW699VYEBwfD1dUV3bp1w5dfflmn7KmpqXUaFvHrr7/i/PnzePnll6sMr1apVPj666/h5+eHRYsWAQBycnLg5OSExYsXVznW5cuXoVAo8Nlnn1m2FRcX45lnnkG7du3g6uqKjh074t1337W661w5D+F7772Hjz76CFFRUXB1dcXFixerzXz27FnMnj0bkZGRcHNzQ2hoKB566CEUFBRY7Vc530psbCymTp0KHx8ftGrVCvPnz4dOp7vuawMAa9euRd++feHu7o7AwEDcf//9yMjIsDw+YsQIzJo1CwDQv3//KsNc6urWW28FUHFHHPi7i39CQgLuvPNOeHt747777gMASJKEjz76CN27d4ebmxtCQkIwb948FBUVVTnuli1bEBMTY3lv9u/fH6tWrbI8HhERUW3ea+e9rBziu3r1arz++uto06YNPDw8UFpaCqPRiMWLFyM6Ohpubm5o1aoVhg4dWmXYwa5duzBs2DB4enrCz88PEydOxKVLl6z2qfyeXbx4ETNnzoS/vz+GDh1a79ezJrfeeiv++c9/IiUlBStWrLBsz87Oxpw5c9C2bVu4uroiLCwMEydOtOnpAoiIiGzFtXMUXt22+/zzzxEZGQkPDw/cfvvtSEtLgxACb775Jtq2bQt3d3dMnDgRhYWFVsc8ceIExowZg8DAQLi7u6NDhw546KGH6p1Nq9ViyZIl6NSpU7W9AydMmIBZs2Zh69atOHLkSJ2PazQaERsbi6ysrOvu++abb0KhUGDZsmVVRo5ERUXhv//9L7KysizXAO+99x4UCgVSUlKqHOuVV16Bi4uLVbvv6NGjuOOOO+Dr6wsPDw/ExMTg4MGDVs+rbxurrtchldcyf/75p2W+7m7dumHdunXXfV2Aip5ozz//vOVaoXPnznjvvfcghADw93tp9+7duHDhQoOHvHt4eOCWW25BeXk58vLyAFQMr3/yySexcuVKdO/eHa6urti6dSsAICMjAw899JBlmHj37t3x/fffVzmuTqfDokWL0KlTJ7i5uSEsLAz33nsvEhISAPzdhr42b3XzsNfW/r9y5QomTZqE0NBQuLm5oW3btpg+fTpKSkoszzeZTHjzzTct11IRERF49dVXodfrrc5d2/XnjVKpVPjkk0/QrVs3fPbZZ1b5tm/fjqFDh8LPzw9eXl7o3LkzXn311UY5LzkGDj0mm7By5Urce++9cHFxwYwZM/Dll1/i+PHj6N+/v2Wf7du3Y8aMGRg1ahTeffddAMClS5dw8OBBzJ8/H8OHD8fTTz+NTz75BK+++iq6du0KAJZ/gYoC24wZMzBv3jw88sgj6Ny5MwDgyy+/RPfu3XHXXXfByckJGzduxOOPPw5JkvDEE0/Umv3BBx/E3r17LX9ka7Jx40bL/tXx9fXFxIkTsWzZMsvQ65iYGKxZswYLFy602vfnn3+GSqWyFEY1Gg1iYmKQkZGBefPmoX379jh06BBeeeUVZGVl4aOPPrJ6/tKlS6HT6fDoo4/C1dUVAQEB1Q5j2b59OxITEzFnzhyEhobiwoUL+Oabb3DhwgUcOXKkymTMU6dORUREBN555x0cOXIEn3zyCYqKivDjjz/W+tr88MMPmDNnDvr374933nkHOTk5+Pjjj3Hw4EGcOnUKfn5+eO2119C5c2d88803lqGulcNc6qOyMdGqVSvLNpPJhDFjxmDo0KF47733LA3LefPmWbI9/fTTSEpKwmeffYZTp07h4MGDli7+P/zwAx566CF0794dr7zyCvz8/HDq1Cls3boVM2fOrHdGoKKh6+LiggULFkCv18PFxQWLFi3CO++8g7lz52LAgAEoLS3FiRMncPLkSdx2220AgB07dmDs2LGIjIzEokWLoNVq8emnn2LIkCE4efJklSH5U6ZMQXR0NP79739f9z1cXw888ABeffVV/Pnnn3jkkUcAAJMmTcKFCxfw1FNPISIiArm5udi+fTtSU1NtcroAIiKilmDlypUwGAx46qmnUFhYiP/+97+YOnUqbr31VuzZswcvvfQS4uPj8emnn2LBggWWQkxubi5uv/12BAUF4eWXX4afnx+Sk5PrXHy62oEDB1BUVIT58+fDyan6y8wHH3wQS5cuxaZNm3DLLbdYtpvNZuTn51vt6+bmBi8vL2RkZKBr166YNWtWrYvuaTQa7Ny5E8OGDUOHDh2q3WfatGl49NFHsWnTJrz88suYOnUqXnzxRaxZswYvvPCC1b5r1qzB7bffDn9/fwAVN2LHjh2Lvn37YuHChVAqlZYi3/79+zFgwACr59e1jVWf65ArV65g2rRp+Mc//oFZs2Zh6dKlmDJlCrZu3WppC1ZHCIG77roLu3fvxsMPP4zevXtj27ZteOGFF5CRkYEPP/wQQUFBWL58Od5++22o1WpLsffqa6m6SkxMhEqlgp+fn2Xbrl27sGbNGjz55JMIDAxEREQEcnJycMstt1gKiUFBQdiyZQsefvhhlJaW4plnngFQ8f4YP348du7cienTp2P+/PkoKyvD9u3bcf78+QZdE1TX/jcYDBgzZgz0ej2eeuophIaGIiMjA5s2bUJxcTF8fX0BAHPnzsWyZcswefJkPP/88zh69CjeeecdXLp0Cb/99pvVeWq6/mwMKpUKM2bMwD//+U8cOHAA48aNw4ULFzB+/Hj07NkTb7zxBlxdXREfH1+loE1UKzm7MxIJIcSJEycEALF9+3YhREWX7LZt24r58+db7Td//nzh4+MjTCZTjceqbehxeHi4ACC2bt1a5bHquoCPGTNGREZGWm2rbuhxTExMnYYQ9O7dW/j6+ta6zwcffCAAiA0bNgghhPj6668FAHHu3Dmr/bp16yZuvfVWy+dvvvmm8PT0FHFxcVb7vfzyy0KlUonU1FQhhLAML/bx8RG5ublW+1Y39Li61+Wnn34SAMS+ffss2yqHUdx1111W+1Z2hz9z5kyNX7PBYBDBwcHipptushqCsGnTJgFA/Otf/7Jsq22o67Uq992xY4fIy8sTaWlpYvXq1aJVq1bC3d1dpKenCyEquvgDEC+//LLV8/fv3y8AiJUrV1pt37p1q9X24uJi4e3tLQYOHFhlCIUkSZb/h4eHi1mzZlXJee17qnKIb2RkZJXXv1evXmLcuHG1ft29e/cWwcHBoqCgwLLtzJkzQqlUigcffNCyrfJ7NmPGjFqPd22uug49ruTr6yv69OkjhBCiqKhIABBLliyp0zmJiIgcUW1Dj2fNmiXCw8Mtn1e234KCgkRxcbFl+yuvvCIAiF69egmj0WjZPmPGDOHi4iJ0Op0QQojffvutzm0rIWofevzRRx8JAOK3336r8fmFhYUCgLj33nst2yrb0td+VLabKr/G6tpRVzt9+rQAUOUa4lo9e/YUAQEBls8HDRok+vbta7XPsWPHBADx448/CiEq2nTR0dFizJgxVu07jUYjOnToIG677TbLttraWNUNPa7rdUjltcyvv/5q2VZSUiLCwsIsba2a/P777wKAeOutt6y2T548WSgUChEfH2/ZVp+h4DExMaJLly4iLy9P5OXliUuXLomnn35aABATJkyw7AdAKJVKceHCBavnP/zwwyIsLEzk5+dbbZ8+fbrw9fW1vDbff/+9ACA++OCDKhkqvx+VbdVrrwOru8apqf1/6tSpKu3da1W+z+bOnWu1fcGCBQKA2LVrl2Vbbdef1anP0ONKlT/DH3/8sRBCiA8//FAAEHl5eXU6J1F1OPSYZLdy5UqEhIRg5MiRACq6pk+bNg2rV6+G2Wy27Ofn54fy8vIbWt2pQ4cOGDNmTJXt7u7ulv+XlJQgPz8fMTExSExMtOrGXZ09e/bUqSdWWVkZvL29a92n8vHS0lIAwL333gsnJyf8/PPPln3Onz+PixcvYtq0aZZta9euxbBhw+Dv74/8/HzLx+jRo2E2m7Fv3z6r80yaNAlBQUHXzXz166LT6ZCfn2+5+3vy5Mkq+1971/Opp54CAGzevLnGc5w4cQK5ubl4/PHH4ebmZtk+btw4dOnSBX/88cd1c9Zm9OjRCAoKQrt27TB9+nR4eXnht99+Q5s2baz2e+yxx6w+X7t2LXx9fXHbbbdZvaZ9+/aFl5cXdu/eDaCi12VZWRlefvllq/wAqvS4rI9Zs2ZZvf5Axc/AhQsXcOXKlWqfk5WVhdOnT2P27NkICAiwbO/Zsyduu+22ar8P//jHPxqcsS68vLwsqx+7u7vDxcUFe/bsqXb4NhERETXMlClTLL2dAFimubn//vutevcNHDgQBoPBMr1LZY+vTZs2wWg03lCGyr/3tbV3r23rVoqIiMD27dutPl588UXLY0KIWnsT1vX8lY9fff5p06bhr7/+sow6ASpG77i6umLixIkAgNOnT+PKlSuYOXMmCgoKLO3C8vJyjBo1Cvv27asyOqeubaz6XIe0bt0a99xzj+VzHx8fPPjggzh16hSys7NrPMfmzZuhUqnw9NNPW21//vnnIYTAli1b6pS1OrGxsQgKCkJQUBC6du2KTz/9FOPGjasyfDgmJgbdunWzfC6EwK+//ooJEyZACGHV3h4zZgxKSkos1xu//vorAgMDLdcWV7uR9va17f/Kn6Ft27ZBo9FU+5zK9vRzzz1ntf35558HgCrXLjVdfzaWylWSK9//lT/T69ev58rT1GAsFJKszGYzVq9ejZEjRyIpKQnx8fGIj4/HwIEDkZOTg507d1r2ffzxx9GpUyeMHTsWbdu2xUMPPWSZ26KuahqGcPDgQYwePdoyp1tQUJBlHofrFQrrytvb2/ILvCbXNnACAwMxatQorFmzxrLPzz//DCcnJ9x7772WbVeuXMHWrVstf6QrPypXqcvNzbU6T02vw7UKCwsxf/58hISEwN3dHUFBQZbnVve6REdHW30eFRUFpVJZ6/xzlXPCVNcNv0uXLtXOGVMfn3/+ObZv347du3fj4sWLSExMrPLH2snJCW3btrXaduXKFZSUlCA4OLjK66pWqy2vaWWj8qabbrqhnNeq7nv0xhtvoLi4GJ06dUKPHj3wwgsv4OzZs5bHa3stu3btamnQXu88jUmtVlvez66urnj33XexZcsWhISEYPjw4fjvf/9ba8OWiIiIrq99+/ZWn1cWPNq1a1ft9sobdjExMZg0aRIWL16MwMBATJw4EUuXLq0y11pdVP69r629W1Mxz9PTE6NHj7b6uLqo1Fjnr3z86vNPmTIFSqXScmNeCIG1a9di7Nix8PHxAQDLTdpZs2ZVaRd+99130Ov1VdrGdW1j1ec6pGPHjlUKY506dQKA67a3W7duXeV1rxxWfCPt7coi744dO3DgwAFkZ2dj06ZNCAwMtNrv2tcjLy8PxcXF+Oabb6q8pnPmzAEAq/Z2586daxzS3hDVtf87dOiA5557Dt999x0CAwMxZswYfP7551bfh5SUFCiVSnTs2NHquaGhofDz86vyWjZHWxv4+/0/bdo0DBkyBHPnzkVISAimT5+ONWvWsGhI9cI5CklWu3btQlZWFlavXo3Vq1dXeXzlypW4/fbbAQDBwcE4ffo0tm3bhi1btmDLli1YunQpHnzwQSxbtqxO57u2hxZQ8Ydn1KhR6NKlCz744AO0a9cOLi4u2Lx5Mz788MNG+6XatWtXnD59GqmpqVUac5Uqiz5XN4ymT5+OOXPm4PTp0+jduzfWrFmDUaNGWf3xlSQJt912m+XO67UqGxCVqnsdqjN16lQcOnQIL7zwAnr37g0vLy9IkoQ77rijTq/LjdzhaywDBgxAv379at3H1dUVSqX1fRNJkhAcHFzjwjp16ZF5tZpeC7PZDJVKVWV7dd+j4cOHIyEhAevXr8eff/6J7777Dh9++CG++uorzJ07t155ajtPY0lPT0dJSYlVQ+qZZ57BhAkT8Pvvv2Pbtm345z//iXfeeQe7du1Cnz59miwLERGRPauuLVHb9srRMAqFAr/88guOHDmCjRs3Ytu2bXjooYfw/vvv48iRI5beSnVRWXQ6e/Ys7r777mr3qa6t21g6duwIJycnq5uo19Lr9bh8+bJV27B169YYNmwY1qxZg1dffRVHjhxBamqqZU50AJZ275IlS9C7d+9qj33ta1WXNlZzXYc0pcoi7/Vc+3pUfm3333+/ZcHCa/Xs2bPOOWpra1enuvY/ALz//vuYPXu2pb399NNPW+Zfv7qwWNfrnKZsawMVo80AWNrb7u7u2LdvH3bv3o0//vgDW7duxc8//4xbb70Vf/75Z42/E4iuxkIhyWrlypUIDg7G559/XuWxdevW4bfffsNXX31l+QXr4uKCCRMmYMKECZAkCY8//ji+/vpr/POf/6z2DltdbNy4EXq9Hhs2bLAq4FUOLW0s48ePx08//YQff/wRr7/+epXHS0tLsX79enTp0sWqsHL33Xdj3rx5lruccXFxeOWVV6yeGxUVBbVaXac/0nVVVFSEnTt3YvHixfjXv/5l2V7TsNfKx66+axYfHw9JkmpdpCI8PBxAxUS/lSsSV7p8+bLl8eYWFRWFHTt2YMiQIbX+ga+cPPn8+fNV7ixezd/fH8XFxVW2p6SkIDIyss65AgICMGfOHMyZMwdqtRrDhw/HokWLMHfuXKvX8lqxsbEIDAyEp6dnnc91o5YvXw4AVXpwRkVF4fnnn8fzzz+PK1euoHfv3nj//fetVkcmIiKi5nPLLbfglltuwdtvv41Vq1bhvvvuw+rVq+t1I7JyldVVq1bhtddeq7YgUbnA3fjx4xsteyVPT0+MHDkSu3btQkpKSrVtyDVr1kCv11c5/7Rp0/D444/j8uXL+Pnnn+Hh4YEJEyZYHq9s7/n4+DRqe7u+1yHx8fEQQlhd88TFxQHAddvbO3bsqNKbMjY21vJ4cwsKCoK3tzfMZvN1X9OoqCgcPXoURqPRspjgtSoXnbm2vd2Q3pI9evRAjx498Prrr+PQoUMYMmQIvvrqK7z11lsIDw+HJEm4cuWK1UIvOTk5KC4ubtbX0mw2Y9WqVfDw8LBaWVupVGLUqFEYNWoUPvjgA/z73//Ga6+9ht27dzfq+5fsF4cek2y0Wi3WrVuH8ePHY/LkyVU+nnzySZSVlWHDhg0AgIKCAqvnK5VKy12myuERlUWQ6goyNalsxFw9z2BJSQmWLl1ap+enpqZa/sjWZvLkyejWrRv+85//4MSJE1aPSZKExx57DEVFRVVWOPbz88OYMWOwZs0arF69Gi4uLlXu0k6dOhWHDx/Gtm3bqpy3uLgYJpOpTl/L1ap7XQBUWUH5atcWfD/99FMAwNixY2t8Tr9+/RAcHIyvvvrKapjLli1bcOnSJYwbN66+0RvF1KlTYTab8eabb1Z5zGQyWd5jt99+O7y9vfHOO+9Ap9NZ7Xf1axcVFYUjR47AYDBYtm3atAlpaWl1znTtz4CXlxc6duxoed3CwsLQu3dvLFu2zOpn4Pz58/jzzz9x55131vlcN2rXrl1488030aFDB9x3330AKlYjvPY1ioqKgre3d4OGOBEREdGNKSoqqtLWq+wxV9+/zR4eHliwYAEuX76M1157rcrjf/zxB3744QeMGTPGasXj6zEajYiNjUVWVtZ193399dchhMDs2bOh1WqtHktKSsKLL76IsLAwzJs3z+qxSZMmQaVS4aeffsLatWsxfvx4q5urffv2RVRUFN577z3LUM+r5eXl1fnruVp9r0MyMzOtVtUtLS3Fjz/+iN69eyM0NLTG89x5550wm8347LPPrLZ/+OGHUCgUtbbVm4pKpcKkSZPw66+/WnrFXe3q13TSpEnIz8+vkh/4+7ULDw+HSqWqMjf7F198UedMpaWlVa6bevToAaVSafl5qGxPX3tN9MEHHwBAs127mM1mPP3007h06RKefvppyzD5wsLCKvs29GeaHBd7FJJsNmzYgLKyMtx1113VPn7LLbcgKCgIK1euxLRp0zB37lwUFhbi1ltvRdu2bZGSkoJPP/0UvXv3ttzN6d27N1QqFd59912UlJTA1dUVt956K4KDg2vMcfvtt1t6Ks6bNw9qtRrffvstgoOD69QgefDBB7F3797rLmji4uKCX375BaNGjcLQoUMxZ84c9OvXD8XFxVi1ahVOnjyJ559/HtOnT6/y3GnTpuH+++/HF198gTFjxlgmqa30wgsvYMOGDRg/fjxmz56Nvn37ory8HOfOncMvv/yC5OTkKvOEXI+Pj49lDjmj0Yg2bdrgzz//RFJSUo3PSUpKwl133YU77rgDhw8fxooVKzBz5kz06tWrxuc4Ozvj3XffxZw5cxATE4MZM2YgJycHH3/8MSIiIvDss8/WK3djiYmJwbx58/DOO+/g9OnTuP322+Hs7IwrV65g7dq1+PjjjzF58mT4+Pjgww8/xNy5c9G/f3/MnDkT/v7+OHPmDDQajWVY/Ny5c/HLL7/gjjvuwNSpU5GQkIAVK1ZY7lDXRbdu3TBixAj07dsXAQEBOHHiBH755Rc8+eSTln2WLFmCsWPHYtCgQXj44Yeh1Wrx6aefwtfXF4sWLWrslwlARVE3NjYWJpMJOTk52LVrF7Zv347w8HBs2LDBsshLXFwcRo0ahalTp6Jbt25wcnLCb7/9hpycnGrf90RERNS0li1bhi+++AL33HMPoqKiUFZWhm+//RY+Pj4NusH48ssv49SpU3j33Xdx+PBhTJo0Ce7u7jhw4ABWrFiBrl271nnKoEoZGRno2rUrZs2add0FTYYPH4733nsPzz33HHr27InZs2cjLCwMsbGx+PbbbyFJEjZv3mzpfVYpODgYI0eOxAcffICysjKrRQOBig4K3333HcaOHYvu3btjzpw5aNOmDTIyMrB79274+Phg48aN9fq6gPpfh3Tq1AkPP/wwjh8/jpCQEHz//ffIycm5bgeHCRMmYOTIkXjttdeQnJyMXr164c8//8T69evxzDPP1Ks92pj+85//YPfu3Rg4cCAeeeQRdOvWDYWFhTh58iR27NhhKXo9+OCD+PHHH/Hcc8/h2LFjGDZsGMrLy7Fjxw48/vjjmDhxInx9fTFlyhR8+umnUCgUiIqKwqZNm6rM1V6bXbt24cknn8SUKVPQqVMnmEwmLF++3FLUBIBevXph1qxZ+Oabb1BcXIyYmBgcO3YMy5Ytw913321ZoLMxlZSUWEbeaDQaxMfHY926dUhISMD06dOtOja88cYb2LdvH8aNG4fw8HDk5ubiiy++QNu2ba16HRLVqvkXWiaqMGHCBOHm5ibKy8tr3Gf27NnC2dlZ5Ofni19++UXcfvvtIjg4WLi4uIj27duLefPmiaysLKvnfPvttyIyMlKoVCoBQOzevVsIUbE8/bhx46o9z4YNG0TPnj2Fm5ubiIiIEO+++674/vvvBQCRlJRk2S8mJkbExMRYPTcmJkbU50cpNzdXPPfcc6Jjx47C1dVV+Pn5idGjR4sNGzbU+JzS0lLh7u4uAIgVK1ZUu09ZWZl45ZVXRMeOHYWLi4sIDAwUgwcPFu+9954wGAxCCCGSkpIEALFkyZIqz698bOnSpZZt6enp4p577hF+fn7C19dXTJkyRWRmZgoAYuHChZb9Fi5cKACIixcvismTJwtvb2/h7+8vnnzySaHVauv0uvz888+iT58+wtXVVQQEBIj77rtPpKenW+2zdOlSAUAcP378user676zZs0Snp6eNT7+zTffiL59+wp3d3fh7e0tevToIV588UWRmZlptd+GDRvE4MGDhbu7u/Dx8REDBgwQP/30k9U+77//vmjTpo1wdXUVQ4YMESdOnKjyntq9e7cAINauXVsly1tvvSUGDBgg/Pz8hLu7u+jSpYt4++23Ld/fSjt27BBDhgyxZJkwYYK4ePGi1T6V37O8vLxaX5/aclW+xpUfLi4uIjQ0VNx2223i448/FqWlpVbHyM/PF0888YTo0qWL8PT0FL6+vmLgwIFizZo1dcpARETkCJ544oka25azZs0S4eHhls9ratvV1J64tn108uRJMWPGDNG+fXvh6uoqgoODxfjx48WJEyeqPf/x48ertBevZTabxdKlS8WQIUOEj4+PcHNzE927dxeLFy8WarW6yv4xMTGie/fuNR6v8mucNWtWjftca9++fWLixIkiMDBQODs7i/bt24tHHnlEJCcn1/icb7/9VgAQ3t7eNbZfT506Je69917RqlUr4erqKsLDw8XUqVPFzp07LfvU1saqfOxqdb0OqbyW2bZtm+jZs6dwdXUVXbp0qbbNWJ2ysjLx7LPPitatWwtnZ2cRHR0tlixZIiRJstrvet+PhuwLQDzxxBPVPpaTkyOeeOIJ0a5dO+Hs7CxCQ0PFqFGjxDfffGO1n0ajEa+99pro0KGDZb/JkyeLhIQEyz55eXli0qRJwsPDQ/j7+4t58+aJ8+fPV3nP1tT+T0xMFA899JCIiooSbm5uIiAgQIwcOVLs2LHDaj+j0SgWL15sydKuXTvxyiuvCJ1OZ7Vfbdef1akuV+W1ZuWHl5eXiI6OFvfff7/4888/qxxj586dYuLEiaJ169bCxcVFtG7dWsyYMUPExcXVOQeRQojrdIMiIrqORYsWYfHixcjLy6t3z0UiIiIiIqpdREQEbrrpJmzatEnuKERk5zhHIREREREREREREbFQSERERERERERERCwUEhEREREREREREQDOUUhERERERERERETsUUhEREREREREREQsFBIRERERERERERFYKCQbt2jRIigUCuTn58sdhahBkpOToVAo8MMPP8gdhYiIiBwA28/U0rH9TCQvFgrJ4axatQofffSR3DGazJ49e6BQKKBQKLBixYpq9xkyZAgUCgVuuummBp3jhx9+sJzjwIEDVR4XQqBdu3ZQKBQYP3681WOVz1MoFHByckJAQAD69u2L+fPn4+LFi1WOVdlQeO+996rNsnnzZigUCrRu3RqSJDXo67EFV3/fFAoFXF1dERISghEjRuDf//438vLyqjyn8vtw4sSJao/54osvQqFQYNq0afXKMnv2bCgUCvTs2RPVTWOrUCjw5JNPWj6v/B4pFAr8+uuvVfbnBQsREVHLxvYz28+2iO1noqbBQiE5HHtv6FRyc3PDqlWrqmxPTk7GoUOH4Obm1mTn2Lt3L9LT0+Hq6lrt82677TYsX74cS5cuxRtvvIGbb74Zy5YtQ69evfDBBx/UK8PKlSsRERGBrKws7Nq1q0Ffhy15+umnsXz5cnzzzTd44YUXEBAQgIULF6Jr1671+vqEEPjpp58QERGBjRs3oqysrN5Zzp07h3Xr1tXrOW+88Ua1jSMiIiJqudh+ZvvZlrH9TNS4WCgkslN33nkntm/fXuUu1KpVqxASEoJ+/fo1yjnWrl0Lk8lU5Rx9+/ZFaGhotc/r1KkT7r//fjzwwAN48skn8e233yIhIQH9+/fH888/j82bN9fp/OXl5Vi/fj2ee+459OnTBytXrrzhr0luw4YNw/33349Zs2ZhwYIFWLduHU6cOAGVSoVJkyYhKyurTsfZs2cP0tPT8f3338NkMtW7weLu7o5OnTrVq+HSu3dvnD17Fr/99lu9zkVERERkC9h+bpnYfiZqXCwUUouQn5+PqVOnwsfHB61atcL8+fOh0+mq7LdixQr07dsX7u7uCAgIwPTp05GWlmZ5fMSIEfjjjz+QkpJi6eodEREBIQQCAwPx3HPPWfaVJAl+fn5QqVQoLi62bH/33Xfh5OQEtVpt2RYbG4vJkycjICAAbm5u6NevHzZs2FAlX3FxMZ555hm0a9cOrq6u6NixI959912rLv9XDxX45ptvEBUVBVdXV/Tv3x/Hjx+v82s2ceJEuLq6Yu3atVbbV61ahalTp0KlUlltr20uEIVCgUWLFlXZPmPGDBQUFGD79u2WbQaDAb/88gtmzpxZ56wA0KpVK6xevRpOTk54++236/Sc3377DVqtFlOmTMH06dOxbt26at8X1dm/fz+mTJmC9u3bw9XVFe3atcOzzz4LrVZrtd/s2bPh5eWFjIwM3H333fDy8kJQUBAWLFgAs9lstW9xcTFmz54NX19f+Pn5YdasWVbvnYbq1asXPvroIxQXF+Ozzz6r03NWrlyJbt26YeTIkRg9enS9G4FKpRKvv/56vRou06dPr3fjiIiIiJoG289sP1eH7eeasf1MVIGFQmoRpk6dCp1Oh3feeQd33nknPvnkEzz66KNW+7z99tt48MEHER0djQ8++ADPPPMMdu7cieHDh1v+2Lz22mvo3bs3AgMDsXz5cixfvhwfffQRFAoFhgwZgn379lmOd/bsWZSUlAAADh48aNm+f/9+9OnTB15eXgCACxcu4JZbbsGlS5fw8ssv4/3334enpyfuvvtuqz8QGo0GMTExWLFiBR588EF88sknGDJkCF555RWrBlalVatWYcmSJZg3bx7eeustJCcn495774XRaKzTa+bh4YGJEyfip59+smw7c+YMLly4UO9GSE0iIiIwaNAgq3Ns2bIFJSUlmD59er2P1759e8TExODIkSMoLS297v4rV67EyJEjERoaiunTp6OsrAwbN26s07nWrl0LjUaDxx57DJ9++inGjBmDTz/9FA8++GCVfc1mM8aMGYNWrVrhvffeQ0xMDN5//3188803ln2EEJg4cSKWL1+O+++/H2+99RbS09Mxa9asur8AtZg8eTLc3d3x559/XndfvV6PX3/9FTNmzABQ0SDdtWsXsrOz63XOmTNnIjo6us4NF5VKhddffx1nzpzhXVEiIiKZsf3M9nN12H6uHtvPRFcRRDZs4cKFAoC46667rLY//vjjAoA4c+aMEEKI5ORkoVKpxNtvv22137lz54STk5PV9nHjxonw8PAq51qyZIlQqVSitLRUCCHEJ598IsLDw8WAAQPESy+9JIQQwmw2Cz8/P/Hss89anjdq1CjRo0cPodPpLNskSRKDBw8W0dHRlm1vvvmm8PT0FHFxcVbnffnll4VKpRKpqalCCCGSkpIEANGqVStRWFho2W/9+vUCgNi4cWOtr9nu3bsFALF27VqxadMmoVAoLMd+4YUXRGRkpBBCiJiYGNG9e3fL8yrPu3Tp0irHBCAWLlxo+Xzp0qUCgDh+/Lj47LPPhLe3t9BoNEIIIaZMmSJGjhwphBAiPDxcjBs3rsqxnnjiiRrzz58/3+p7W5lryZIlVvvl5OQIJycn8e2331q2DR48WEycOLHW16dSZd6rvfPOO0KhUIiUlBTLtlmzZgkA4o033rDat0+fPqJv376Wz3///XcBQPz3v/+1bDOZTGLYsGE1vq5Xu/r7VpNevXoJf39/y+dXfx+u9ssvvwgA4sqVK0IIIUpLS4Wbm5v48MMPa81QadasWcLT01MIIcSyZcsEALFu3TrL49d+D6/+HplMJhEdHS169eolJEkSQvz9c5yXl1en8xMREVHDsf3M9jPbz39j+5mo/tijkFqEJ554wurzp556CgAsc3GsW7cOkiRh6tSpyM/Pt3yEhoYiOjoau3fvvu45hg0bBrPZjEOHDgGouPM5bNgwDBs2DPv37wcAnD9/HsXFxRg2bBgAoLCwELt27cLUqVNRVlZmOW9BQQHGjBmDK1euICMjA0DFHbhhw4bB39/fKuPo0aNhNput7sYCwLRp0+Dv72+VDwASExPr/LrdfvvtCAgIwOrVqyGEwOrVqy13yRrL1KlTodVqsWnTJpSVlWHTpk03dMe18k7z9SYPXr16NZRKJSZNmmTZNmPGDGzZsgVFRUXXPY+7u7vl/+Xl5cjPz8fgwYMhhMCpU6eq7P+Pf/zD6vNhw4ZZfS82b94MJycnPPbYY5ZtKpXK8l5tDF5eXnWaVHnlypXo168fOnbsCADw9vbGuHHjGjQHzX333dfgu6K///57vc9HREREjYPtZ7afr8X2c83Yfib6GwuF1CJER0dbfR4VFQWlUonk5GQAwJUrVyCEQHR0NIKCgqw+Ll26hNzc3Oue4+abb4aHh4elUVPZ0Bk+fDhOnDgBnU5neWzo0KEAgPj4eAgh8M9//rPKeRcuXAgAlnNfuXIFW7durbLf6NGjrfar1L59e6vPKxs9dfkjXsnZ2RlTpkzBqlWrsG/fPqSlpTXasIlKlV/DqlWrsG7dOpjNZkyePLnBx6ucu8bb27vW/VasWIEBAwagoKAA8fHxiI+PR58+fWAwGKrMK1Od1NRUzJ49GwEBAZZ5U2JiYgDAMmSmkpubG4KCgqy2+fv7W30vUlJSEBYWZmmoVercufN1s9SVWq2+7utSXFyMzZs3IyYmxvK6xMfHY8iQIThx4gTi4uIAAFqtFtnZ2VYf1alsuJw+fbrODZf77rsPHTt25FwrREREMmL7me3na7H9XD22n4msOckdgKghFAqF1eeSJEGhUGDLli1VJhkGUOWPT3WcnZ0xcOBA7Nu3D/Hx8cjOzsawYcMQEhICo9GIo0ePYv/+/ejSpYvlj17lJMoLFizAmDFjqj1u5V0pSZJw22234cUXX6x2v06dOll9Xt3XAaDefzhmzpyJr776CosWLUKvXr3QrVu3ave79jWtdO2EwzWd45FHHkF2djbGjh0LPz+/emW82vnz56FSqdChQ4ca97ly5YplYuprG8FAxR3Ba+fguZrZbMZtt92GwsJCvPTSS+jSpQs8PT2RkZGB2bNnW02ODdT8vWhORqMRcXFxuOmmm2rdb+3atdDr9Xj//ffx/vvvV3l85cqVWLx4MX7++WfMmTPH6rGa3lv33Xcf3nzzTbzxxhu4++67r5u1snE0e/ZsrF+//rr7ExERUdNj+7nu2H6uiu1ntp/JcbBQSC3ClStXrP7wxcfHQ5IkREREAKi4QyqEQIcOHao0GK5V0x90oKI7/LvvvosdO3YgMDAQXbp0gUKhQPfu3bF//37s378f48ePt+wfGRkJoKKRVHlnsyZRUVFQq9XX3a+xDR06FO3bt8eePXvw7rvv1rhf5R3Xa1cZS0lJue457rnnHsybNw9HjhzBzz//3OCsqamp2Lt3LwYNGlTrnb+VK1fC2dkZy5cvr9IIOXDgAD755BOkpqZWuatc6dy5c4iLi8OyZcusJl++evW5+goPD8fOnTuhVqutGtaXL19u8DGv9ssvv0Cr1dbYoK60cuVK3HTTTZY78lf7+uuvsWrVKixevBhjxoyp89fbkIZL5YTUixcvxl133VWn5xAREVHjYfu54dh+rortZ7afyXFw6DG1CJ9//rnV559++ikAYOzYsQCAe++9FyqVCosXL65yV0cIgYKCAsvnnp6eVbrGVxo2bBj0ej0++ugjDB061NIoGjZsGJYvX47MzEzLXCcAEBwcjBEjRuDrr79GVlZWlePl5eVZ/j916lQcPnwY27Ztq7JfcXExTCZTra9BQykUCnzyySdYuHAhHnjggRr38/HxQWBgYJW5Xr744ovrnsPLywtffvklFi1ahAkTJjQoZ2FhIWbMmAGz2YzXXnut1n1XrlyJYcOGYdq0aZg8ebLVxwsvvAAAVivJXauycXT1e0UIgY8//rhB2QHgzjvvhMlkwpdffmnZZjabLe/VG3HmzBk888wz8Pf3rzLf0NXS0tKwb98+TJ06tcrrMnnyZMyZMwfx8fE4evQowsLCMHr0aKuP2tx///3o2LEjFi9eXKfMVw+52LBhQ72+XiIiIrpxbD83HNvPVbH9zPYzOQ72KKQWISkpCXfddRfuuOMOHD58GCtWrMDMmTPRq1cvABV3G9966y288sorSE5Oxt133w1vb28kJSXht99+w6OPPooFCxYAAPr27Yuff/4Zzz33HPr37w8vLy/LH+dBgwbByckJly9ftup6P3z4cMsfsKsbOkBFI2zo0KHo0aMHHnnkEURGRiInJweHDx9Geno6zpw5AwB44YUXsGHDBowfPx6zZ89G3759UV5ejnPnzuGXX35BcnIyAgMDm+T1mzhxIiZOnHjd/ebOnYv//Oc/mDt3Lvr164d9+/ZZ5uS4nlmzZtU5T1xcHFasWAEhBEpLS3HmzBmsXbsWarUaH3zwAe64444an3v06FHEx8fjySefrPbxNm3a4Oabb8bKlSvx0ksvVbtPly5dEBUVhQULFiAjIwM+Pj749ddf6zV/zbUmTJiAIUOG4OWXX0ZycjK6deuGdevW1diorsn+/fuh0+lgNptRUFCAgwcPYsOGDfD19cVvv/2G0NDQGp+7atUqCCFqvAN55513wsnJCStXrsTAgQPrlUulUuG1116rMtyiNpVDLk6fPl2vcxEREdGNY/v5xrD9bI3tZ7afyYE0x9LKRA1VuSz8xYsXxeTJk4W3t7fw9/cXTz75pNBqtVX2//XXX8XQoUOFp6en8PT0FF26dBFPPPGEuHz5smUftVotZs6cKfz8/AQAER4ebnWM/v37CwDi6NGjlm3p6ekCgGjXrl21ORMSEsSDDz4oQkNDhbOzs2jTpo0YP368+OWXX6z2KysrE6+88oro2LGjcHFxEYGBgWLw4MHivffeEwaDQQghRFJSkgAglixZUuU8AMTChQtrfc12794tAIi1a9fWul9MTIzo3r271TaNRiMefvhh4evrK7y9vcXUqVNFbm5ulfMuXbpUABDHjx+v9Rzh4eFi3LhxVb6Gyg+lUin8/PxEnz59xPz588WFCxeqHOPa1+Opp54SAERCQkKN5120aJEAIM6cOVPjPhcvXhSjR48WXl5eIjAwUDzyyCPizJkzAoBYunSpZb9Zs2YJT0/PKs+vfG9eraCgQDzwwAPCx8dH+Pr6igceeECcOnWqyjGrU/l9q/xwdnYWQUFBYvjw4eLtt98Wubm5VZ5z7fehR48eon379rWeZ8SIESI4OFgYjcYa96npazYajSIqKkoAEE888YRle23v2cqMAEReXl6t2YiIiOjGsf1sje1ntp+vxvYz0fUphOCSOkRERERERERERI6OcxQSERERERERERERC4VERERERERERETEQiERERERERERERGBhUIiIiIiIiIiIiICC4VEREREREREREQEFgqJiIiIiIiIiIgILBQSERERERERERERWCgkIiIiIiIiIiIisFBIREREREREREREYKGQiIiIiIiIiIiIwEIhERERERERERERgYVCIiIiIiIiIiIiAguFREREREREREREBBYKiYiIiIiIiIiICCwUEhEREREREREREVgoJCIiIiIiIiIiIrBQSERERERERERERGChkIiIiIiIiIiIiMBCIREREREREREREYGFQiIiIiIiIiIiIgILhURERERERERERAQWComIiIiIiIiIiAgsFBIRERERERERERFYKCQiIiIiIiIiIiKwUEhERERERERERERgoZCIiIiIiIiIiIjAQiERERERERERERGBhUIiIiIiIiIiIiICC4VEREREREREREQEFgqJiIiIiIiIiIgILBQSERERERERERERWCgkIiIiIiIiIiIisFBIREREREREREREYKGQiIiIiIiIiIiIwEIhERERERERERERgYVCIiIiIiIiIiIiAguFREREREREREREBBYKiYiIiIiIiIiICCwUEhEREREREREREVgoJCIiIiIiIiIiIrBQSERERERERERERGChkIiIiIiIiIiIiMBCIREREREREREREYGFQiIiIiIiIiIiIgILhURERERERERERAQWComIiIiIiIiIiAiAk9wBiIiIiIiIiKh+JCHBJJlgkkwAAAUUUCgUtf7fSckSABHVjr8liEh2epMeerPe8q/OpIPepIdJMsEszDBL5hr/FRCWxo9Soazx/85KZ7ioXOCsqvjXReVi2Vb54erkCqWCHa2JiIiIqOmZJTO0Ji20Ri20Ji10Jp3l/1qjFnqz3lIIrO5DElKDzuusdLa0ia9uI1/9f1eVK9yd3eHh7AF3p4p/3ZzcLAVHIrJfCiGEkDsEEdkfSUgoN5RDbVCj3Fjxr8aoQbmhHBqjpqIY+L/ioIDt/Bpyc3KDh7NHjR+ezp7wcvFiI4mIiIiIaqU1alGqL0WZoQyl+tKK/+vLUG4sh9aohVEyyh2xXpQKJdyd3OHp4glPZ094ulS0i31cfeDr6gsfVx+olCq5YxLRDWKhkIgaTBISSvWlKNYVWz5K9aUVxUFDuU0VABuTUqGEt4s3fN0qGkRXN468Xb3ZK5GIiIjIQRjMBhRqC1GoLUSxrhhl+jJLcbBySLCjUEABLxcvSxvZ19UXvm6+8HX1ZRuZqAVhoZCIrksSklUD6OqiYEOHPNgrpUIJLxcvBLgHoJV7K7TyaIVW7q3g7eotdzQiIiIiaiAhBEr0JSjQFKBQW4gCbcW/aoNa7mgtglKhhL+bPwI9AhHoEYhWHq0Q6BHIOROJbBALhURkxSyZUagtRL4mH3maPORr8lGoLWRB8Aa5qFysioeV/+fwDCIiIiLbU6wrRrY6G7nlucjX5KNIWwSzMMsdy64ooICvm29F4dC9laWI6OrkKnc0IofGQiGRg7u2EcSiYPNRKpQI9AhEsGcwgj2DEeoVCi8XL7ljERERETkUk2RCbnkuctQ5yCnPQY46B3qzXu5YDsvPzQ9hXmEI8w5DmFcYPF085Y5E5FBYKCRyMAWaAmSps5BVloVsdTa0Jq3ckegqns6eCPUKtXwEuAdw4RQiIiKiRqQz6ZBZlolsdTay1dm8UW7jvF28EeoVaikc+rr5yh2JyK6xUEhk5/I1+cgsy7QUBnl3tGVxc3JDa+/WaOvTFm192rLHIREREVE9mSUzstXZyCjLQHppOgo0BXa76J4jcHdyR5h3GNr5tEM733bwcPaQOxKRXWGhkMjO6E16pJemI7UkFeml6ewxaGf83PwsRcMwrzA4q5zljkRERERkc0r1pZb2cGZZpsOtQOxIAj0C0d63Pdr5tEOwZzBH4xDdIBYKiexAgaYAqSWpSCtNQ446h3dIHYRSoUSIZwja+7ZHhF8Eh2EQERGRwxJCIKc8B0lFSUgpSUGpvlTuSCQDNyc3tPVpaykccmEUovpjoZCoBZKEhMyyTCQWJSKtJA3lxnK5I5EN8HfzRwf/Dojwi0CgR6DccYiIiIialBACWeosJBYlIrk4GRqjRu5IZEMUUCDEKwSR/pGI9I/kEGWiOmKhkKiFuLo4mFycDJ1JJ3cksmHeLt6I8ItAB/8OCPEM4RAMIiIisgtsE1NDKKBAmHeYpWjo5uQmdyQim8VCIZENE0IgsywTCUUJbAhRg7k7uSPSPxLRraIR7BksdxwiIiKiehFCIKMsA/GF8UgpTuHifHRDlAolWnu3RpR/FCL8Ijg8megaLBQS2aDc8lzEFcQhsSiRxUFqVL6uvohuFY3ogGh4u3rLHYeIiIioRiW6ElwuuIwrBVc41Q41CaVCibY+bREdEI0IvwiolCq5IxHJjoVCIhuhM+kQVxCHuII4FGoL5Y5DDiDMKwzRraIR6R8JF5WL3HGIiIiIYDQbkVCUgLiCOGSrs+WOQw7EzckN0QHR6BLYBf7u/nLHIZINC4VEMhJCIK00DbH5sUgtSYUkJLkjkQNSKVQI9wtHl8AuaOvTVu44RERE5IAyyzItI2pMkknuOOTgQjxD0CWwC6ICouCkdJI7DlGzYqGQSAal+lLE5sciriCOq7ORTfF19UW3oG7oHNiZvQyJiIioSRnMBsTmx+Ji3kWU6kvljkNUhYvKBVH+UegS2AVBnkFyxyFqFiwUEjWj9NJ0nM89j9SSVLmjENXKSemEKP8odA/ujkCPQLnjEBERkR0p1hXjfO55xBXEsfcgtRiBHoHoHtQd0a2ioVQo5Y5D1GRYKCRqYibJhLiCOJzPPY9iXbHccYjqLdgzGN2CuiHKP4oTPBMREVGDpZak4nzueaSXpssdhajBPJw90C2oG7oFdYObk5vccYgaHQuFRE2kTF+GC3kXEJsfC4PZIHccohvm5uSG7kHd0T24OxtFREREVCdGsxGXCy7jfO55Di8mu+KkdEKnVp3QI7gHfN185Y5D1GhYKCRqZDnqHJzJOYOU4hQI8MeL7I+T0gldArugZ0hPeLl4yR2HiIiIbJDGqMHZnLO8aU4OIdw3HD1CeqC1d2u5oxDdMBYKiRpJemk6TmWdQpY6S+4oRM1CqVAi0j8SvUN7I8A9QO44REREZAPKDeU4nX0asfmxMAuz3HGImlWgRyB6h/ZGB78OUCgUcschahAWColuUFJREk5ln0K+Jl/uKESyaefTDr1Ce/EuKhERkYMq05fhdPZpXC64DElIcschkpWfmx9uDrsZUf5RLBhSi8NCIVEDCCGQWJSIU9mnUKgtlDsOkc0I9QpF/9b9EeYdJncUIiIiagYluhKcyj6F+MJ4FgiJruHn5oc+oX3QMaAjC4bUYrBQSFRPCYUJ+CvrL65gTFSLNt5t0L9NfwR7BssdhYiIiJpAsa4YJ7NOIqEwgfNyE12Hn5sf+ob1RVRAlNxRiK6LhUKiOkovTcexjGMcYkxUD+1926N/6/5o5dFK7ihERETUCDRGDU5knsDl/MssEBLVU4B7APq17ocIvwi5oxDViIVCouvILc/FsYxjyCzLlDsKUYvVwa8D+rXuB393f7mjEBERUQMYzAacyT6Dc7nnYJJMcschatGCPIIwqN0ghHqFyh2FqAoWColqUKwrxvGM40gqTpI7CpFdUECB6FbR6N+6PzxdPOWOQ0RERHUgCQkX8y7iZNZJ6Ew6ueMQ2ZUOfh0wsO1A+Lj6yB2FyIKFQqJrVA6niCuI44TMRE3ASemE3qG90TOkJ5yUTnLHISIiohokFiXiWMYxlOpL5Y5CZLeUCiVuCr4JN4fdDBeVi9xxiFgoJKpklsw4k3MGp7NPczgFUTPwcvHCgDYD0DGgo9xRiIiI6CrZ6mwcST+C3PJcuaMQOQw3Jzf0DeuLrkFdoVQo5Y5DDoyFQiIAKcUpOJx+mHdLiWQQ7BmMwe0Gc4VkIiIimWmNWhxJP4IrhVfkjkLksPzc/HBL21vQ3re93FHIQbFQSA6tVF+KQ2mHkFqSKncUIofXMaAjBrYZyPkLiYiImpkQAhfzLuJ45nEYzAa54xARgLY+bTG0/VDOX0jNjoVCckgmyYSTWSdxLucczMIsdxwi+h8npRP6hvVFj5AeHHJBRETUDHLLc3Eg9QDyNflyRyGiazgpndAntA96hfZi25iaDQuF5HASixJxOO0wyo3lckchohoEuAdgaPuhCPUKlTsKERGRXdKb9DiWcQyx+bEQ4CUhkS3zd/PHsPBhbBtTs2ChkBxGuaEc+1P3c5gxUQvSJbALBrYZCFcnV7mjEBER2Y3L+ZdxNOModCad3FGIqB66BnbFwLYDuToyNSkWCskhXMy7iGMZxzjnClEL5O7kjiHthyDSP1LuKERERC1amb4Me5L3IEudJXcUImogdyd3DGo3CB0DOsodhewUC4Vk10r1pdibvJeNISI7EO4bjiHth8DLxUvuKERERC3OhdwLOJpxFCbJJHcUImoEbX3aYlj7YfB29ZY7CtkZFgrJLgkhcDbnLP7K+ouNISI74qJywaC2g9A5sLPcUYiIiFoEtUGNPcl7kFmWKXcUImpkzkpnDG43mG1jalQsFJLdKdQWYm/yXuRp8uSOQkRNJMIvAsPaD4O7s7vcUYiIiGzWpbxLOJJ+BEbJKHcUImpCbBtTY2KhkOzKmewzOJ55HJKQ5I5CRE3MzckNw8OHI8IvQu4oRERENkVtUGNfyj6kl6bLHYWImgnbxtRYWCgku1BuKMee5D3IKMuQOwoRNbNOrTphcLvBXP2NiIgIFSsaH04/zEX8iBxU51adMbjdYDirnOWOQi0UC4XU4iUVJWFfyj7ozXq5oxCRTLxcvDAiYgRae7eWOwoREZEsDGYD9qXsQ2JRotxRiEhm3i7eGBExAmHeYXJHoRaIhUJqsUySCQdTD+JywWW5oxCRjegZ0hMD2gyAUqGUOwoREVGzyVZnY1fSLqgNarmjEJGNUECBniE90b9Nf7aNqV5YKKQWKa88D7uSdqFEXyJ3FCKyMSGeIRgVOQpeLl5yRyEiImpSQgicyj6FvzL/ggAv64ioqhDPEIyOHA1PF0+5o1ALwUIhtThcsISIrsdV5YqRHUaivW97uaMQERE1Ca1Ri11JuzhHNxFdl5uTG27tcCva+rSVOwq1ACwUUothMBuwJ3kPkouT5Y5CRC0EhyITEZE9yizLxK6kXdAYNXJHIaIWQgEF+oT1Qd+wvlAoFHLHIRvGQiG1CIXaQmxP2M6hxkRUbxxuQURE9uRU1imcyDzBocZE1CBtvNvg1g63wt3ZXe4oZKNYKCSbF18Yj30p+2CSTHJHIaIWys3JDSMiRnAoMhERtVhGsxG7knYhpSRF7ihE1MJ5OHtgdORohHqFyh2FbBALhWSzJCHhUNohXMy7KHcUIrIT/Vr3w81hN8sdg4iIqF5K9aXYFr8NRboiuaMQkZ1QKpTo37o/eoX2kjsK2RgWCskmlRvKsT1xO3LLc+WOQkR2JtI/EiMiRsBJ6SR3FCIioutKL03HzsSd0Jv1ckchIjsUHRCN4eHDoVKq5I5CNoKFQrI5Oeoc/JnwJ7QmrdxRiMhOBXoE4vao2+Hl4iV3FCIiohqdyzmHI+lHOB8hETWpEM8Q3B51O+ctJAAsFJKNiS+Mx97kvTALs9xRiMjOuTu547ao2zg3CxER2RyzZMb+1P2IK4iTOwoROQgvFy/c0fEOBLgHyB2FZMZCIdmME5kncDLrpNwxiMiBKBVKDGs/DJ0DO8sdhYiICACgMWrwZ8KfnIKHiJqds9IZt3a4FeF+4XJHIRmxUEiyM0tm7Eneg4SiBLmjEJGDuin4JgxqOwgKhULuKERE5MDyNfnYGr8VGqNG7ihE5KAUUGBAmwFc5MSBsVBIstIatdiWsI13TIlIdu1922N05GguckJERLJIL03H9oTtMEpGuaMQEaFzq84YFj4MSoVS7ijUzFgoJNkUaguxNX4r1Aa13FGIiAAAwZ7BuKPjHXBzcpM7ChEROZArBVewN2UvJCHJHYWIyCLMKwxjOo6Bi8pF7ijUjFgoJFlklmXiz4Q/YTAb5I5CRGTF19UXd0bfCW9Xb7mjEBGRAzidfRrHMo7JHYOIqFoB7gG4M/pOeDh7yB2FmgkLhdTskouTsTNxJ1c2JiKb5e7kjrHRYxHoESh3FCIislNCCBxOP4zzuefljkJEVCsfVx/cGX0nfFx95I5CzYCFQmpWl/MvY1/KPgjwbUdEts1Z6Yzbom5DW5+2ckchIiI7Y5bM2J28G4lFiXJHISKqEw9nD4ztOBatPFrJHYWaGAuF1GzOZJ/B0YyjcscgIqozpUKJmPAYRLeKljsKERHZCYPZgG3x25ClzpI7ChFRvbioXDAmagzCvMPkjkJNiIVCahZH04/iTM4ZuWMQETXI4HaDcVPwTXLHICKiFk5r1OKPK3+gUFsodxQiogZRKVQYHTka4X7hckehJsJCITUpIQT2pezD5YLLckchIrohA9oMQO/Q3nLHICKiFkpj1GBT3CYU64rljkJEdEMUUCAmIgadWnWSOwo1ARYKqclIQsKOxB1ILk6WOwoRUaPo17ofbg67We4YRETUwpQbyrEpbhNK9CVyRyEiajQcdWOfWCikJmGWzNieuB2pJalyRyEialR9Qvugf5v+cscgIqIWQm1QY1PcJpTqS+WOQkTU6FgstD8sFFKjM0tm/JnwJ9JK0+SOQkTUJHqG9MQtbW+ROwYREdk4tUGNjZc3osxQJncUIqImM6TdEHQP7i53DGokLBRSozJLZmxL2Ib00nS5oxARNanuQd0xpP0QuWMQEZGNKtWXYlPcJqgNarmjEBE1uaHth6JbUDe5Y1AjYKGQGg2LhETkaLoGdsWw8GFyxyAiIhtToivBprhNKDeWyx2FiKjZsFhoH5RyByD7IAkJ2xO3s0hIRA7lUv4lHEo7JHcMIiKyIaX6UmyM28giIRE5nAOpB3Ap75LcMegGsVBIN0wSErYncOESInJM53PP43jGcbljEBGRDahc3Vhj1MgdhYhIFvtT9yM2P1buGHQDWCikGyKEwK6kXUgpSZE7ChGRbE5ln8Lp7NNyxyAiIhnpTDr8ceUPzklIRA5vX8o+XM6/LHcMaiAWCumGHEg9gMSiRLljEBHJ7ljGMVzMuyh3DCIikoHRbMSWK1tQrCuWOwoRkU3Yl7IPSUVJcsegBmChkBrseMZxXMrn/ANERJUOpB5AXEGc3DGIiKgZVS7ol6fJkzsKEZHNEKgYfZhZlil3FKonFgqpQc7nnsep7FNyxyAisjl7k/fy7ikRkYMQQmBn0k5eCBMRVcMszNgWvw155byR0pKwUEj1Fl8Yz1U+iYhqIFBx0chV4ImI7N/elL1ILk6WOwYRkc0ySkZsid+CEl2J3FGojlgopHpJK0nDnuQ9cscgIrJpkpCwI3EHCrWFckchIqImcjjtMKebICKqA51Jh81XNnNF+BaChUKqsxx1DrYnbockJLmjEBHZPIPZgC1XtqDcUC53FCIiamRnc87iXO45uWMQEbUYZYYybI3fCqPZKHcUug4WCqlOSnQl2Bq/FSbJJHcUIqIWo9xYzgYREZGdSS5OxtH0o3LHICJqcfI1+ex81AKwUEjXpTfpsTV+K/RmvdxRiIhanAJtAXYk7mCDiIjIDuRr8rEraRcEhNxRiIhapPTSdOxP2S93DKoFC4VUK0lI2J64HSV6TjxKRNRQaaVpOJB6QO4YRER0A8oN5dgWv40jbIiIbtDlgss4m3NW7hhUAxYKqVYHUg8gsyxT7hhERC1ebH4sTmefljsGERE1gEkyYVvCNpQbOe8sEVFjOJp+FGklaXLHoGqwUEg1OptzFrH5sXLHICKyG8cyjiGhMEHuGEREVA9CCOxK2oV8Tb7cUYiI7IaAwM6knSjWFcsdha7BQiFVK7UklZM0ExE1gb0pe3mxSUTUghzLOIbk4mS5YxAR2R2D2VCxHoKJ6yHYEhYKqYpCbSF2Ju7kJM1ERE3AJJnwZ8Kf0Jl0ckchIqLriM2PxZmcM3LHICKyW6X6Ui78Z2NYKCQrOpMOW+O3wigZ5Y5CRGS31AY1tidsZ4OIiMiG5ZbnciEqIqJmkFGWgcNph+WOQf/DQiFZVM6/ojao5Y5CRGT3stRZOJR2SO4YRERUDZ1Jxx4uRETN6ELeBVzKuyR3DAILhXSVv7L+QnpputwxiIgcxsW8i4griJM7BhERXYU3z4mI5HEw7SBy1Dlyx3B4LBQSgIrFS05mnZQ7BhGRw9mfsp+LmxAR2RDePCcikockJOxM2snFTWTGQiGhTF+G3Um75Y5BROSQzMKM7Qnb2SAiIrIBaSVpvHlORCQjtUGN3cmsT8iJhUIHZ5bM2J64HXozL1CJiORSZihjg4iISGa8OCUisg2pJak4m3NW7hgOi4VCB3co7RCHvBER2YDUklSczz0vdwwiIockCQnbE7ZDZ9LJHYWIiAAcyzjG+QplwkKhA4sriMOlfK4qRERkK46kH+HNGyIiGRxKO4Q8TZ7cMYiI6H84X6F8WCh0UCW6EhxIPSB3DCIiuookJOxM3Amj2Sh3FCIih5FUlISLeRfljkFERNfglBDyYKHQAUlCwu7k3TBJJrmjEBHRNUr0JTiYdlDuGEREDkFj1GBfyj65YxARUQ1SS1JxJvuM3DEcCguFDuhk1knklufKHYOIiGoQVxCHKwVX5I5BRGT39iTv4aJ+REQ27njmcdYwmhELhQ4mW52NU1mn5I5BRETXcSD1AEr1pXLHICKyW+dzzyO9NF3uGEREdB2SkLAneQ9HRTYTFgodiMFswO6k3RAQckchIqLrMEpG7EjcAUlIckchIrI7RdoiHMs4JncMIiKqo2JdMX9vNxMWCh3IwdSDKDOUyR2DiIjqKF+Tz17gRESNjPN1ExG1TOdzzyOzLFPuGHaPhUIHkVCYgCuFnO+KiKilOZV9CgWaArljEBHZjROZJ5CvyZc7BhERNcDe5L0wmo1yx7BrLBQ6gHJDOfan7pc7BhERNUDlnCwcgkxEdOOy1dlcPZOIqAUrM5ThcPphuWPYNRYKHcCB1AMwmA1yxyAiogYq0BZwCDIR0Q0ymo2cr5uIyA7E5scitSRV7hh2i4VCO5dQmICUkhS5YxAR0Q3iEGQiohtzLOMY5+smIrIT+1L2QW/Syx3DLrFQaMf0Jj0OpR2SOwYRETUCDkEmImq4HHUOLuZdlDsGERE1Eo1Rg4NpB+WOYZdYKLRjh9IOQWvSyh2DiIgaSYG2ACezTsodg4ioRTFLZuxN2cshx0REdia+MJ5DkJsAC4V2Kr00nascExHZodPZp1GoLZQ7BhFRi3Eq+xSKdcVyxyAioiZwMPUgTJJJ7hh2hYVCO2Q0G7EvZZ/cMYiIqAlIQsL+FK5kT0RUF0XaIpzOPi13DCIiaiJlhjKOuGlkLBTaoeOZx6E2qOWOQURETSSnPAex+bFyxyAisnn7U/dzblciIjt3NucsirRFcsewGywU2pnc8lxcyL0gdwwiImpixzKOQWfSyR2DiMhmxebHIludLXcMIiJqYpKQcCD1gNwx7AYLhXbmUNohTtRMROQAdCYdjmUckzsGEZFN0pl0OJp+VO4YRETUTLLUWYgriJM7hl1godCOXM6/jNzyXLljEBFRM4nNj+XvfSKiahxNPwq9WS93DCIiakZH0o9Ab+Lv/hvFQqGdMJgN7FlCROSA9qfshxDsSU5EVClfk89eJUREDkhn0uFoBnuT3ygWCu3EX5l/QWvSyh2DiIiaWYG2ABfyODctEVGlw2mHORUPEZGDis2PRY46R+4YLZqT3AHoxhVpi2z+IlEJwEUo4aZQwVUooQKggAJKAIr/7SMACCEgKQAjJBgA6GGGQSGBa9UREdXsROYJRPlHwd3ZXe4oRESySixKRJY6S+4YREQko8Pph3F3l7vljtFisVBoBw6lHYIk5CulOQsFfOAMbyjhKSnhLgm4mQVUkhlOkoBKkqCQJACVH/UnlApICiXMSiWMKhV0KgW0SgXKlQLlMKNMYYKO5UQiclAGswEnMk9gWPgwuaMQEcnGLJm5gAkRESG3PBcJhQmICoiSO0qLxEJhC5dUlISMsoxmOZdCAP4KZ7SSnOBrBjxMElxMJqjMZgCGpj23JKCCGSqzGS5GIzyr2UdSKmFwdoLaSYUSpUCR0owihZHlQyJyCLH5segR0gN+bn5yRyEiksW53HMoM5TJHYOIiGzAsYxj6ODfAUoFZ9yrLxYKWzCzZMbh9MNNdnwvOCFEcoavpICX0Qw3owEKyQjA2GTnvBFKSYKb3gA3PRBYuVEB6J1dUO6sQrEKyFIaoYZJzphERE1CQOBI+hHc0fEOuaMQETU7jVGDU1mn5I5BREQ2osxQhvO559EzpKfcUVocFgpbsIt5F6E2qBvteM5CgVC4IsishK/eCBejEWjpRTUBuBoMcDUAAQAiARicnFDm6ox8J4EsGKBXsM8hEdmH1JJUZJZlorV3a7mjEBE1q+MZx2GUbPNmNhERyeNU1il0btUZrk6uckdpUVgobKEMZgNOZd/4XVM/OKOt2Rn+BjM8DHpA6BohnW1zMZnQymRCKwCdAehcXFDk6oQ0pRFFCjYwiahlO5J+BPd2vVfuGEREzSZfk4+4gji5YxARkY3Rm/U4mXUSg9oNkjtKi8JCYQt1NucsdKaGFfV84IR2ZmcE6c1wNRhgq0OJm4ubwYAwgwFhAAzOzihwc0aqyohiB39diKhlytfk40rBFUS3ipY7ChFRsziafhQCQu4YRERkgy7kXUD34O7wcfWRO0qLwUJhC6Q1anE252y9nuMpVGgvuSBIb4a7wYAWP6S4ibgYjQgzGhEGQP+/omGKyoBSvl5E1IIczzyOSP9IqJQquaMQETWprLKsZlvYj4iIWh5JSDiWcQyjI0fLHaXFYKGwBTqZdRImqW6Fq7bCDeEGwEurA6Bt2mB2xtVoRGujEa0BqN3ckOYKpEEHoZA7GRFR7dQGNc7nnkev0F5yRyEialInMk/IHYGIiGxcYlEicstzEewZLHeUFoHrRLcwZfoyXMq/VOs+LlCiq9kdt5Y7oXuJ7n9FQroRXjodupbocGu5E3qYPeAB9tIhItt2JucMjGZOoUBE9iujNANZ6iy5YxARUQvAG0t1x0JhC3M88zgkUf0qvQFwRn+jO0aUCrQv08LZyOGyjc3JZELrMg2GlZhxi8EdwXCROxIRUbV0Jh0u5F2QOwYRUZM5nnlc7ghERNRCpJemI7c8V+4YLQILhS1IobYQ8YXxVbYHwgWD9W7oX2xEQLkWComTOTc5AfhqtOhTbMBQnRtCBJdbJyLbczbnLHsVEpFdSi1J5QUfERHVy1+Zf8kdoUVgobAFufZNHSRcMETvhr7FBnhzeLFsPHU69C7RY5jOFWGCPQyJyHawVyER2SsOISMiovpKK01DXnme3DFsHguFLUSRtghJxUkA/i4Q3lxi4PyDNsRDp0fPEgOGa13Rmj0MichGsFchEdmb5OJk5Gvy5Y5BREQt0F9Z7FV4PSwUthCnsk/BB04YxAKhzXPX69GjRI8hOjf4C2e54xCRg2OvQiKyN+xNSEREDZVakspehdfBQmELUK4tgU9uJgaVmODDAmGL4aXTYUCJEf2M7nDjjxoRyYi9ConIXiQVJaFQWyh3DCIiasFOZp2UO4JNY/XC1sXFQXd0G4LUGoBrlLRIrcq1GFYKdJHcoeD3kIhkwF6FRGQvzuSckTsCERG1cCklKZzCohYsFNqqwkJgwwaYDu9HublY7jR0g5SShPBSLWK0LggGFzwhouZ3LucczJJZ7hhERA2Wrc7mSsdERNQo2KuwZiwU2hpJAv76C1i3DsjORlmwCzsS2hFXgwF9ig3oZXKHSijkjkNEDkRr0uJK4RW5YxARNdiZbPYmJCKixpFcnIxiXbHcMWwSC4W2pLAQ+P33ikKhJMHsrITaRS93KmoCoWothmuc2LuQiJrVuZxzckcgImqQEl0JUkpS5I5BRER25Hzuebkj2CQWCm2BEMDp0xW9CPP/HievDnaDBEm+XNSkXIxG9Ck2oLfJg70LiahZFOmKkFaSJncMIqJ6O5tzVu4IRERkZ+IK4qA3sXPWtVgolFtxMbB+PXDsWMWw4/+RlAqUufEN6whC1BoM1zghkL0LiagZ8GKbiFoarVGLuII4uWMQEZGdMUkmXMq/JHcMm8NCoZzi4yt6EeZWnZRZE+QGMzjpvKNwMRpxc4kRnSR3uaMQkZ3LKMtAgaZA7hhERHV2Ie8CzILtYiIianwXci9AEhzJeTUWCuUgScDBg8CuXYDJVO0uZZ5sDDkahRDoUKrFQIM7nMChyETUdM7lcq5CImoZTJIJF/Muyh2DiIjsVLmxHElFSXLHsCksFDa38nJgwwbgwoUad9H7uMCgMDRjKLIlfhothmqc4QdnuaMQkZ2KL4yHxqiROwYR0XXFFcRBZ9LJHYOIiOwYb6JbY6GwOWVkAL/+Wu1Q46up/VXNFIhslavBgAGlZnTgUGQiagKSkHAht+YbVkREtoK9CYmIqKnlluciR50jdwybwUJhczl7Fti8GdDVfkfU7KxEuRPvmhKgkCR0KtWip9lD7ihEZIdi82M5HwsR2bQcdQ4KtYVyxyAiIgfAXoV/Y6GwqQlRMR/hkSMV/7+O8kBXCFx/P3IcYWUaDDC684eViBqV1qRFcnGy3DGIiGrElSiJiKi5JBUlodxQLncMm8DaQ1MymYDt22udj/Baao/qFzchx+ZfrsUQnStc+CNLRI0oNj9W7ghERNUymA1ILEqUOwYRETkIAYHLBZfljmETWHVoKjod8McfQHJynZ+i9XeFEcamy0QtmodOj8EaJ3jBSe4oRGQn0kvTUaYvkzsGEVEVcQVxMEm8gU5ERM0nNj8Wog4jQe0dC4VNoaysYmXjnPpNhqn2UzRRILIXrgYDbikTaCVc5I5CRHaCvQqJyBZdyuOwYyIial5qgxoZZRlyx5AdC4WNrbgYWL++4t96MLmqoFFyERO6PpXZjJvLTAgEi4VEdOMuF1zmoiZEZFOy1dko0hXJHYOIiBwQb6KzUNi4iouBTZsAjabeT1UHuTZ+HrJbSklCn1IWC4noxmmMGqSWpModg4jIgr0JiYhILsnFydCZHLsTFwuFjeUGioQCgNrV0OiRyL6xWEhEjYUX5URkK/QmPRcxISIi2UhCQnxhvNwxZMVCYWMoKWlwkRAA9L4uMIOTNVP9VRYLgzhnIRHdgPTSdKgNarljEBEhoSgBZmGWOwYRETmwy/mOvfoxC4U3qqQE2LixwUVCACj3UzViIHI0SklC7zIWC4mo4QSEw985JSLbwN9FREQktwJtAQo0BXLHkA0LhTdCrb6hnoQAIBSAxknfiKHIESklCb3UZvgKZ7mjEFELxYtzIpKb2qBGtjpb7hhERES4XOC4vQpZKGwogwHYuhUoL7+hw+j83SCBq03SjVOZzeirEXAX7KFKRPVXqC106DunRCS/hMIEuSMQEREBqPibJISQO4YsWChsCEkCtm8HCgtv+FDlPopGCERUwdlowgCtCk7g+4qI6o+9ColITvwdREREtkJr0iJLnSV3DFmwUNgQ+/YBGRk3fBhJqYBG5djLblPjczMYMFDvCoVj3vwgohuQUMTePEQkj2JdMQq07NVMRES2I7EoUe4IsmChsL7++guIi2uUQ2lbuUGA1RxqfF5aHfqa3OWOQUQtDOcHIyK5sDchERHZmqSiJIccfsxCYX3ExVUUChuJxsvx3nDUfFqVa9Hd7CF3DCJqYRz1zikRyYvzExIRka1x1OHHLBTWVX4+sH9/ox1OclJCq+SwY2pabcs0aC1c5Y5BRC1IYlGiQ945JSL55GvyUaIvkTsGERFRFY54E52FwrowGCoWLzGbG+2QmgAXDjqmZtFNbYIHuBIyEdWNxqjh8GMialYcdkxERLbKEYcfs1BYF7t3A2VljXrIcq9GPRxRjVRmM/ppnfjDTkR1llKSIncEInIgycXJckcgIiKqliMOP2bt4HrOnAFSGveCyeyshE7BYcfUfNz1evQycb5CIqqblGIWComoeRRpi1CqL5U7BhERUY0cbfgxC4W1yc4Gjh9v9MPqfF0a/ZhE1xOs1iBCuMkdg4hagBJ9CYp1xXLHICIHkFqSKncEIiKiWjna8GMWCmui0wE7dgCS1OiH1noqGv2YRHURXWaAF5zkjkFELQB7FRJRc+BUB0REZOu0Ji3yNHlyx2g2LBTW5MABQKNpkkPrnAxNclyi61FKEnrrWCgkouvjxTsRNTW9SY8cdY7cMYiIiK4rrSRN7gjNhoXC6iQmVnw0AYO3C8xovNWTierLU6dDJ8ld7hhEZONy1DnQmTifLhE1nbTSNAg4zlAuIiJqudJKWSh0XDodcPBgkx1e68PeXCS/CLWeQ5CJqFYCgnOHEVGT4hQHRETUUuSV50Fv0ssdo1mwUHitgwcBrbbJDq91ZW9Ckp+CQ5CJqA54EU9ETUUSEtJL0+WOQUREVCcCwmH+brFScLWkJCAhockOb3ZWQq9wjAo02T5PnQ6dXdxxWdl0hXEiatnSS9MhCQlKBe8rElHjylHnQG9uvnaxQgBecIIPnOAtlHCXAKUQUAJQSAIqwPJ/BQRUAjArFDColNApAZ0S0CgEyhVmqIUJBgWHTBMROZq00jREBUTJHaPJsVBYSa+vWMCkCen8XAGwKEO2I1ytQ4aPE9QwyR2FiGyQUTIirzwPIV4hckchIjvTlFMbKAH4CxcECBV8zYCX0QwXkxEKyQTUs83jUcN2oVTC4OQEtbMK+U5AFvTQK6QbjU5ERDbMURY0YaGw0vHjTTrkGAC0nk16eKJ6U0gCNxmcccSFhUIiql5mWSYLhUTU6DLKMhr1eCqhQFu4ItQI+OoMUEiGRj3+tRSSBFeDAa4GoBWAzgD0Li4oclEhTykhR2GAmb0OiYjsitakRb4mH4EegXJHaVIsFAJAQQFw6VKTn0anatoGC1FD+Gq0aO3sikwOiyeiamSUZaBPWB+5YxCRHTGYDSjQFNzwcf4uDirgq9NDIcm7UrurwYBQAxAK4CaFAhoXV+S7KpGo1MMA9jYkIrIHaSVpLBQ6hIMHAdG0d/z0Pi4wg4VCsk2dNRKyPcEmLBFVkaPOgVkyQ6VUyR2FiOxEtjobAg1reysE0A5uCLOR4mBNFELAU6+Hpx5or1Sg2N0dKU4ScnhjloioRUsrTbP7m+gsFCYmAtnZTX4anRcvsMh2uRiNiJa4sAkRVWUWZuSU56C1d2u5oxCRncgsy6z3cxQC6AB3RGhMcDbaZnGwJgpJwL9cC39UDE9OdVchWaHlDVoiohYorzzP7m+iO/YyhmYzcPRos5xK78KmANm2duUGuDj4rwQiql5DLuqJiGqSVZZV530VAugguWOExhnRJVo4G41NmKzpuRoMiC7RYqTaCV3NHnCCQu5IRERUD2ZhRp4mT+4YTcqxqwLnzwNlZc1yKoOKi0WQbVOZzehucpM7BhHZoIzSxl10gIgcl8FsQL4mv077RoiKAmGnUi1cWniB8FpOJhPal2kQU6ZChHCXOw4REdVDtrrpR6XKyXGHHhuNwOnTzXMqD2eYYV+NG7JPQRotPHxU0MAsdxQisiF5mjwYzUY4q5zljkJELVxd5idsL9wQqZXgarD/KVGczCZ0LjGhjZsbzrmZUAp2LiAisnX2Xih03B6F588D+uaZTFjv5bj1WGpZFJJAZ5Or3DGIyMZIQkJOeY7cMYjIDtQ27NgFSgw0uKNriQ6uBsdaBNBLp8MtpWbcZHJ34As0IqKWIUdt3+1ix/w7ZDIB58412+n0HM1JLUiQRgt3Yb8TsxJRw+SW58odgYjsQJa6+kJhmHDFMLUSfhr770VYE4Uk0EatRUy5M1oL3rglIrJVerMehdpCuWM0GccsFF64AOiab7U0vTOHEFDLoZAEOpvZOCUiaywUEtGNMpqNVeYnVALobfJAzxI9nExsMwOAi9GIHiV6DDC6c7ETIiIbZc+9Ch2vUGgyAWfPNtvpJCcljJyfkFqYYI0Wbg7464GIasZCIRHdqDxNHiQhWT73gzOGa1wQotbImMp2+ZdrMVTjDC8HnlaeiMhW2fM8hY5XCbh0CdA235AGvY9Ls52LqLEoJIEuXAGZiK6iM+lQqi+VOwYRtWB55XmW/3eR3DGg1ORwcxHWl6vBgFvKBILBawoiIlvCQqG9kCTgzJlmPaXew7FeYrIfwRodXBzsVwQR1Y69ConoRuRp8qAQQD+jO8JLtVBIta9+TBVUZjN6lxgRKdzljkJERP9TZiiDxmifPeIdqwqQmAhomvcbqXcxN+v5iBqLQpIQKXGuQiL6GwuFRHQjCtR5uMXghlbljrtgSUMphEB0iRY9TSwWEhHZimvn3bUXjlUovHixWU8nAOgVHE5BLVeYlpOKE9Hfrh42SERUHwaDFj3LDPDRNt+CgvYoTK3FIL0bFzkhIrIBLBS2dIWFQHbzjiE3ejpDgEMqqOVyMRrRWrBXIRFVyNfkWy1EQERUJwYDzAd3wUOnlzuJXfDR6jBY6wKVYLGQiEhOhdpCuSM0CccpFDZzb0IAMHpwhTJq+dobHefXBBHVzizMdtsgIqImotcDf/wBQ3mR3EnsirtejwEGVyjYJ4GISDbsUdiSGY3AlSvNf1pX3uWjls9Xq4UHVHLHICIbwUIhEdWZ2Qxs2wbk5cHgwopWY/PR6tCXcxYSEcmmVF8Ko9kod4xG5xiFwitXKoqFzczozOFZZAcEEGV2kTsFEdkIFgqJqM727LFM/WNUcd7jptCqXIubzB5yxyAiclj22DZ2jEJhbKwspzUqueIx2Ydgrf3dJSGihinScvggEdXBiRNAQgIAQFIpYATbEk2lTZkGHQV7FhIRyaFAWyB3hEZn/4XCkhIgv/nHjQslG0RkP5xMJgSDvQqJCCjSsVBIRNcRFwecPGn51OjpLGMYxxBVqkVb4SZ3DCIih2OP8xTaf6EwMVGW0xo92CAi+9LWxMV5iAhQG9QwmA1yxyAiW5WdDezbZ7XJ6Ma5jpucALqV6RHIG7tERM2qQMMehS3P/4Y8NDejOxtEZF/8tSwMEFEFDj8momoZDMCuXYBkPU+3yYUL/DUHhSTQs1zACXy9iYiaS5GuCELY14Jd9l0oLC4GCuWZWNLgxj/QZF+czCaEwlXuGERkAzj8mIiqdeAAoFZX2Wx0sq8LKFvmbDSit5FDkImImotJMqHcWC53jEZl34VCmXoTAoDRiSsek/1pY7TvXxlEVDf2uLobEd2gxEQgPr7ah4xKrnjcnFqVc75CIqLmVKIrkTtCo7Lvq36Z5icE2CAi++SvM0DBTgFEDo9Dj4nIikYD7N9f48MmBdvFza2L2ggXO7/UIyKyFaX6UrkjNCr7/etRUgIUyXMhIykVMIENIrI/KrMZwRx+TOTw7K0xREQ3aO9eQK+v9iGTqwoCvMvY3FRmM3oY2WYjImoO9tY2tt9CYXq6bKc2eXLFY7JfwZL9/togorpRG9SQBKfYICIAqalAWlqNDxvdnZoxDF0tsFyLEMFiIRFRU2OhsKXIyJDt1CYX+31ZifwNLA4QOToBgXKDfU3aTEQNIEnAkSO17mJyY7tYTl21wo4v+IiIbEOJnnMU2j4hgMxM2U5vduaKx2S/3A16OAu+x4kcXZmhTO4IRCS32FiguLjWXUxsF8vK1WBAR8ld7hhERHatTG9f7WL7LBTm5QEGg2ynZ4OI7JoAwjhPIZHDs7cGERHVk9EI/PXX9Xdz4kgEubXVGrkYHRFREzJKRmiMGrljNBr7LBTKOD8hAJhV/EtM9i3QbJ+/Ooio7tijkMjBnT4NaLXX3c2kNDd9FqqVs9GEcLBXIRFRU7KneQrt82pfxvkJAcCk5J1Tsm++eqPcEYhIZuxRSOTADAbg/Pk67WoGC4W2IELL7wMRUVNiodCWSRKQkyNrBLOCf4jJvrkYjXCzw18fRFR37FFI5MAuXqwYenwdklIBCbyBbgtcDQa05grIRERNxp4W+rO/K/3CwopioUwEADNMsp2fqLm0Ei5yRyAiGbFHIZGDkiTgwoU67Wp2VTVxGKqPSD3nUSciaiqco9CW5eXJenrJVQXOUEiOwF+yv18fRFR3GqMGQvAvHpHDSU4GyuvWa8LswkKhLfHU6RAI3uglImoKWtP15+1tKezvSj8/X9bTm3jnlByEt4lDiYgcmYCAzqSTOwYRNbeLF+u8q9nZ/i41WrqOBl6rEBE1BfYotGUyFwrNLvb3khJVx8PIIfZEjo6FQiIHU1ICZGbWeXezM4e62hpfjZbzTBMRNQGtkT0KbZMkVcxRKCMT75ySg3AymdjQJHJw9jTEgojqIDGxXrubnZooB92QNhIXNSEiamz21C62r6v8wkLALO+Kw2wQkSPhgiZEjo09CokcTHJyvXY3KzmPqS0K4qAQIqJGZzAbYJLs4xes/RUKZcYGETkSPy5oQuTQ7GmIBRFdR3l5vRcNZLvYNnnr9HZ2EUhEZBvspW1sX38jSkrkTgDBBhE5EDeJ73ciR2ZPQyyI6DpSUur9FLOSC5/ZIqUkIVRw+DERUWOzl7axfRUKy8rkTgAJLJyQ43A38/1O5Mg49JjIgSQl1fspEuSdEohqFmrm6sdERI3NXlY+tq9CYWmp3AkgKVg4IcfhYraPORiIqGHsZXgFEV2HyQRkZdX7aYI30G2Wn94gdwQiIrtjLzfR7atQaAM9CgULheRAnE0m8C1P5LjspTFERNeRnw9I9R9GLIFDj22Vs9EEPzjLHYOIyK5wMRNbYzIBWvl7NnCIBTkUAXgquNQ3kaMySka5IxBRc8jNrfdTJJWiCYJQYwozs1BIRNSYjGb7aBvbT6HQBoYdA5yjkByPj+AcN0SOyl7umhLRddRztWMAEE72c5lhrzw51zQRUaOyl5vo9vMXXK2WOwGEgnOxkOPxFPbza4SI6oeFQiIH0YBCoaRi+8DWuTdgODkREdXMXtrG9vMXXCf/PEkcYkGOyBl83xM5KnsZXkFEtdDrGzRyR7BdbPNcjPZxQUtEZCvspW1sP4VCvV7uBBDOHIJJjseZN6OJHJa93DUloloUFDToabyBbvuczGY48YYvEVGj4dBjW2MDhUIOsSBH5Cw43J7IUZmFGYK/A4jsW3l5g54mlCxAtQS+gguaEBE1FvYotDUGg9wJILFDITkgJ9YIiBwaexUS2bkGFgrZo7Bl8AYvYIiIGgt7FNoaG+hRKNijkByQk8RKIZEjs5cGERHVQKNp0NO41lnL4CWxoEtE1Fjs5Qa6k9wBGsuXv/6KL3//Hcn/m0ele1gY/jV+PMbedBMAQGc04vm1a7H6xAnoTSaM6dYNX8yciRAfH6vj/HDoED7YsQNxOTnwcXfHlJtvxuczZ1oe33bhAhZu3IgLmZlwc3bG8OhovD95MiICA5vvi7UDn6/agm0HTiEhLRturi64uVskXn7kXkS1CwUAFJeW48NlG7D/r0vIyC1EK18v3D6kN56bPRE+Xu5VjldUosbYeW8iO78YZ37/EL5eHpbHDp++jLe+WosrKVkIC/LHk/fdiSljBlseX75hL1Zu3Iv0nIr3TnR4GJ5+YDxGDripiV8F+6ASnKSwJXl1wqsoyKo631TMlBjMfGkm8tLz8MtHvyD+dDxMRhO6D+qO6S9Mh0+rv39XlpeUY/WS1Ti7/ywUCgVuvvVmTF0wFW4eblWOm5uWi7fuewtKpRIf7fnI6rG/dvyF9V+uR0FWAYLbBePep+5Fj6E9Gv1rpqZlLw0iIgIWLVqExYsXW23r3K4dYl9/3WqbEAJ3fvoptl64gN8eewx39+5teUwxb16V437y2lzcNbJ/k2Sur+z8Ivzn23XYc+wCtHoDIloHYckLs9CzcwQA4Pn//oBf/zxs9Zzh/brhx//Mt3w+95+f42J8GvKLy+Dr7YGhN3fFy3PvRUigHwBAZzDitY9W4nxcCuJTs3HrLT3w7RuPN9eXWC8ekgA7FVJT0JXrsP6r9Ti9+zTKisrQrnM7THt+GiK6RwCo+D2y8euN2P/bfmjVWkT1isLMl2cipH2I5RjVtVvvefIe3DH7DsvnFw5fwMavNyIzMRPOLs6I7hONyc9ORmDriuvzkvwSrP1wLVIupSAvLQ8jp4/EtOenNf0LQA7JXtrFdlMobOvnh//ccw+ig4MhACw7fBgTv/gCp15/Hd1bt8aza9bgj3PnsPbRR+Hr7o4nf/oJ9371FQ6++KLlGB9s3473d+zAkkmTMLBDB5Tr9ZbCIwAk5edj4hdf4LnRo7Hy4YdRotXi2TVrcO9XX+Hk669DKNizqq6Ono3DAxNHoFfnCJjMZiz5v9/x4EsfY/v/LYKHuytyCoqRU1CCV+dNQnR4a2TkFOC1j1Yip6AEXy6s2gB98f0f0SWyLbLzi622p2Xl46HXP8N944fj41cexsFTsXj5/eUIDvBFTP/uAICwID+8NPceRLSpeO/8+udhPPqvL/DHV6+jU0TrZng1WjYVexS2KK/8+Aok89/F3cyETHz0xEfoO6ov9Fo9PnriI7Tt1BbPffUcAGD9l+vx+bOf46UfXoJSWdE95P/++X8oyS/BM58/A7PJjGWLl2HF2ysw9+25Vucym8z47rXvEN07GglnE6weSziTgO9e+w53P3E3eg7riWNbj+HLBV/itRWvoU3HNk38KlBjknizgMiudO/eHTt27LB87rR9O6DVWu3z0c6dUChq7om2dNYsDBnZF8UeOgCAz1U3cOVUUlaOSfOXYFDvTvjhnafQytcbSRm58PX2tNovpn93LHlhluVzV2frS6ZbenXG4zPGIriVL3Lyi/H217/gsTe+xrpPXgIASGYJbi7OmH3Prdiy/2TTf2E3wMUsAE5TSE3gx7d+RGZCJua8MQd+QX44uvkoPnz8Qyxauwj+wf7Ytmwbdq3ehdmLZiOwTSA2fLkBnzz1CRatWQRn17/flHf94y4MvXuo5XM3z79vTOdn5OOL57/A6PtG4+G3HoZWrcWaD9bgqxe+wusrK25wGA1GePt7486H7sTOVTub7wUgh2Qv7WK7GRQw4eabcWePHogOCUGnkBC8fffd8HJ1xZHERJRotfi/gwfxwZQpuLVLF/QND8fS2bNxKCEBRxITAQBF5eV4ff16/Dh7NmYOGICooCD0bNsWd/XqZTnHXykpMEsS3po4EVFBQbi5fXssuO02nE5Ph9FsBrhqWJ39+J/5mDJmMDpFtEa3qHZ478XZyMgtxLkrKQCAzh3a4KtF/8DoQb0Q3joIg/t0wYKH7sbOI2dhMputjrV8w16UqrV4dMptVc6zYtNetAsNxOv/mIKO4WGYdfdIjB1+M/7v178bwKMH9cLIgT3QoW0IItuG4IWH7oaHuytOXUps2hfBTii4kEGL4u3vDd9AX8vH2QNnEdQ2CJ36dkLCmQQUZBVg9sLZaNOxDdp0bIM5i+cg5VIKLh+/DADISsrChUMX8MDrD6DDTR3QsXdHTHthGk78eQLFecVW5/r9i98RGh6Kvrf1rZJj5+qd6D6oO8Y8OAZhHcIw8bGJaN+lPfas2dMMrwI1Ji5mQmRfnJycEBoaavkIdLauIp1OS8P727fj+wcfrPEYfh4eCAnwQ3CAL4IDfOHmYhuVqC9Xb0PrIH+898Js9O7SAe3CAjG8XzeEtw6y2s/F2cmSPTjAt0ohce7k0bi5WyTahrRC3+5ReGz6HTh1KQlGU0Ub1cPdFW8/cx9mjBuGoADfZvv6GkJhJxe1ZFsMOgNO7TqFSU9PQqebOyG4XTAmzJuA4HbB2PvLXgghsPOnnbjz4TvRe0RvtI1uizlvzEFxXjFO7zltdSxXD1ertquru6vlsZRLKZDMEiY+NhFBbYPQvkt73Hb/bUiPS4f5fz+Pga0DMW3BNAwaPwju1YxMI6Kq7KZQiKsuVMyShNXHj6PcYMCgyEj8lZICo9mM0V27WvbpEhqK9gEBOPy/QuH2S5cgCYGM4mJ0XbgQbV96CVO/+QZphYWW5/QND4dSqcTSQ4dgliSUaLVYfvQoRnfpAmeVinXCG1BWXnGn2u+ahti1+3h5uMFJ9ff4iCspmfhkxSZ88NKcau9sn7qYiCE3d7HaNrxfN5y6WH0R0GyWsGH3cWh1BtzcLbIhX4rjYZGgxTIZTTi6+SgG3zUYCoUCRoMRCoUCTi5/95xwcnGCQqlA/Ol4AEDi2UR4eHsgoluEZZ+uA7pCoVQg6XySZVvs8Vic3HkSM16aUe25E88mossA65/NboO6IfEcC/QtjQB/BxDZkytXrqB169aIjIzEfffdh9ScHMtjGoMBM//v//D5jBkI9a25APbETz+hw32PY+IT72DNloM2c0Nhx+Gz6NEpHI+/8TX6Tl6AO+e9hZ/+2F9lvyNn4tB38gLcOvtfeO2jlSgqUdd4zOLScvy+8yj6douEs1PLG8NrPxeDZEskswTJLFm1KQHA2dUZCacTkJ+Rj9KCUnQd8Pf1ubuXOzrc1KFKW3Dbsm14btRzeGvmW9j24zZLARAAwrtWXJ8f2nAIklmCVq3F0c1H0WVAF6ha4M8jtXy28vfuRtnN0GMIgXMZGRj07rvQGY3wcnXFb//4B7q1bo3T6elwcXKCn4f1sIcQHx9kl5QAABLz8yEJgX9v2YKPp02Dr7s7Xl+/Hrd99BHO/utfcHFyQofAQPw5fz6mfvMN5q1cCbMkYVBkJDY/9VRFBFYKG0SSJLzxxRr06x6Fzh2qH3JYWKLGpyv+wIxxwyzb9AYjnnr7//Dqo5PQJiQAqVl5VZ6XV1iKQD/reSiD/H1QptFBpzfAzdUFABCbmIF7n34XeoMRHu6u+HrRPxAdzmHHdcF3fct1es9paNVaDJ5QMWdnZI9IuLi5YN2n63DPE/dACIF1n66DZJZQkl/xu7KkoATe/t5Wx1E5qeDp44nSglIAgLpYjR8W/YCH3nyoxju3pQWl8Amw/tn0CfBBSUFJY3+ZRERURwMHDsQPP/yAzp07IysrC4sXL8awbdtw/l//grebG55dswaDIyMx8ao5Ca/1xl134dbOnSG18cEf50/i9U9WoVynx5x7bm2+L6QGqVl5WLFxL+ZOHo3HZ4zF2cvJWPT5z3B2dsLk2wcBqBh2fMfQPmgXGoiUrDws+b/fMfvVT7Huk5egumrhwne+/RU/rt8Drc6APl074Pu3npTry7oxdnJRS7bFzdMNkT0jsfm7zQjrEAafAB8c23YMiecSEdw22NJmvHoObKBqW3DktJFo36U9PH09kXAmAb9//jtK8ksw9bmpAIDANoGY/9l8fPPKN1j5zkpIZgmRPSPx1MdPNd8XS3QVe7mBbleFws4hITj9+uso0Wrxy8mTmPXDD9j7/PN1erokSTCazfhk+nTc3q0bAOCnuXMR+sIL2H35MsZ0747skhI8snw5Zg0ahBn9+6NMp8O/Nm7E5K+/xvZnnmHFpIH++clPuJyciV8+eqHax8vKtZjz2qfoGB6GZx6cYNn+3//7DR3bh+Ke0bfccIbIdiHY/PXrKCvXYvO+k3j+vz/g5w+eZ7GwLtjAbLEOrj+I7oO7wy/ID0DFsOR5787DyndWYvfq3VAoFeh/e3+079IeCmXdf8Etf3s5BtwxAJ1u7tREycmW2MudUyICxo4da/l/z549MXDgQIS3bo01J04gyNsbuy5fxqnXXqv1GP8cNw4AUNLaA+1vCoZWZ8A3a/60iUKhEAI9OoXjxYfvAQDcFN0eccmZWLlxr6VQePWiK10i26BrhzYY/uDrOHLmMobc/Hfvp3lTx2Da2KHIyCnAxz9uwnPvLsX3bz9Z69yNtkjJX+HURB564yEse2MZXhr7EpQqJdp3bo/+Y/oj9VJqnY9x2/1/Ty3VNrotnJydsOLfK3DPk/fA2cUZJfklWP72cgwaNwj9x/SHTqPDxq824uuXvsYznz/T4n4eiWyF/RQKFQq4ODmhY3AwgIphwseTk/Hxrl2Y1q8fDCYTijUaq16FOaWllmETYf/7t1tYmOXxIG9vBHp5IfV/w48/37MHvu7u+O+kSZZ9Vjz0ENq9/DKOJiWhR1D3Jv8y7c2/Pv0Ju46ew5oPFiAsyL/K42qNDrNe+QRe7m74evFjVkM6Dp2+jMtJGYi6vWKS6Mrq/c33Po8n7huL52bdhaAAH+QXl1odM6+oFN4ebpbehEDFXDQRbSreOz06hePs5WR8v24X3nn2/kb/mu2N4N/fFqkgqwCXjl3CP/77D6vt3W7phrfXvw11sRpKlRIe3h54YcwLCGxTsXKcbytflBWVWT3HbDKjvLTcclf48vHLOLvvLLav2A6g4sJMSAKPDXwM9796P4ZMHAKfVj4oLbT+2SwtLIVvK9uey4mqYiOcyH75+fmhU2go4vPycC4jAwl5efB79lmrfSZ99RWGRUdjzzU35yt/M/Tu0gGfrPgDeoMRrjLPVRgc4Ivo8DCrbVHtw7Bl/6kan9O+dRACfL2QnJlnVSgM8PVCgK8XItuGoGP7MAya8TJOXkpE325RTZa/KQj+DqcmEtQ2CAu+WQC9Vg9duQ6+gb745pVvENgm0NJmLC0ohW/g322/0sJStOvUrsZjdripAySzhILMAoRGhGLP2j1w93LHpPl/X58/9OZDeHncy0g6n4TIHpxKiqgh7KpQeC1JCOhNJvQND4ezSoWdsbGYdPPNAIDL2dlILSzEoMiKXx5DOna0bG/rX1GwKiwvR75ajfBWrQBUzMuivOY8qv+tAioJAdhJN9PmIITAws9WY9uB01j9/nNoFxZYZZ+yci0efPljuDg747s3n6gyEfZXC/8Bnd5g+fzM5WS8+N6PWPPRAoSHVUxK3adbJPYcPW/1vAN/XUKf68w/KAkBg9E+ljZvagp2pW2RDm04BG9/b/QY2qPax738vABUzDVYVliGXsMrFnaK7BkJTZkGKZdSEN41HABw+cRlCEmgw00dAAAvLX3JamXlM3vPYNuP2/Di/70Iv2A/y3Fij8di9MzRlv0uHb3EBh0RkQ1Rq9VIyM3FAwMGYGrfvpg7dKjV4z3eeAMfTp2KCT171niMiwlp8PX2kL1ICAB9u0chMS3HaltSeg7ahATU+JysvCIUlZYjuJZFSSSp4hrAYGh5bUfe8KWm5uruCld3V5SXluPi4Yu49+l7LcXC2OOxaNe5ojCoVWuRdD4JMZNiajxWWlwaFEoFvAMqpsEx6AxVblgq/zdFgJB4bU7Nz16uje2mUPjKypUYGxmJ9gEBKNPrserYMeyJi8O2p5+Gr7s7Hh4yBM+tXYsAT0/4uLnhqdWrMSgyErf8r1DYKSQEE3v1wvw1a/DN/ffDx80Nr/z2G7qEhmJk584AgHE9euDDnTvxxqZNFUOP9Xq8+ttvCG/VCn3ateMIzHr45yc/Yf2uY/j2jcfh6eGG3MKKuSh8PN3h5uqCsnItHnjpY+j0Bnz0ysMo02hRpqlY8KSVrzdUKmWVFeoK/zfRdMf2YfD1qug5ev/4GPy4fg/e+eZXTLljCA6fisUfe//C92//PY/Mu9/9hhEDuqN1cADKNXqs33UMR87E4cf/PN0cL0WLxzvRLY8kSTi08RAGjR9UZaLngxsOIqxDGLz9vZFwNgFr3l+DUTNHITQiFAAQ1iEM3Qd3x/K3luO+V+6D2WTGT//9Cf1u72cZwhzWwbq3RsqlFCgUCrTp+PccpKOmj8J7j76H7Su2o8fQHji+7ThSLqbg/lfZi7elsZcGEREBCxYswIQJExAeHo7MzEwsXLgQKqUSM/r3R5C3d7ULmLQPCECHwIobvhvPnEFOWRlu6dABRuGNPy6ewuc/bcEjU26r8jw5PDxpNCbNfxefr9qMcTH9cCY2GT9t3m8ZQVKu1eHjHzfhjmE3IyjAB6mZeXjn23WIaB2E4f0qpiY6dSkJZy8no99NHeHr7YHUzDy8/8MGhLcOsloI70pKJgxGM0rKyqHW6HAhPg0A0L1jzb2l5MA51qmpXDh8AUIIhIaHIjctF79+8itCI0Ix5K4hUCgUGDVjFDb/32YEtwtGYJtArP9yPfyC/NB7RG8AQMLZBCSdT0Lnfp3h5uGGxHOJWPvBWgwcOxCePhULYPYY2gM7V+3Epm83of+Y/tBr9Pjt89/QKqyVpQAJAGmXK37+dFod1EVqpF1Og8pZhdaRnGaKGpe9jLRRCDuZXOjh0aOx8/RpZJWUwNfdHT3btMFLY8bgtv/NN6gzGvH82rX46fhx6E0mjOnWDV/MnGnV4CnVavHs2rVYd+oUlAoFYqKj8fG0aWgX8PddxtXHj+O/27YhLjcXHi4uGBQZif9v786jo7wPNN8/7/vWrqpSaRdCEhIgjDGb2QwYAzZ4ASfdaU/s2HS3HU9PDrfnTtpOzr3Tp+85cYhzZvpmkr7tGd+Oe865Z467E/B4nD3EeElsvCQxYIONjVkMWGYTCAm0qyTVcv8gKMZIIKGSflVvfT/n6GBXvfXWI4zRW8/7W75zzz2aWVmpnhK/zsb6Jvx7z0V1azcO+fh3/8+HdO+dy/X7dw/qgf/j/xnymDd++J9UU3n5CMSLr3nvZ/84WBRefPzbTz2nw8eaVFka01f/4m7de+fywef/4/f+Vb/dc0Bnz7UrUhDUzPrJ+t/uv1O3LJw1xu8yPwx4PXqlIPfuoOezD9/6UP/1P/xXPf7jx1UxpeKS537y5E/0+62/V3d7t0qqSrTynpVa++drL/mh193erWf+yzPa+8ZeWZalBbct0Jf+zy8pEAoM+X6/++Xv9L/+4X/pie1PXPL4O79+Rz///s/V2tSq8ppy3fM39ww7whHZ674b7lMsEDMdA0AG3H///Xr99dfV2tqqsrIyrVixQv9p1SpNc4bePdTauFE//eu/1hf+sLnJCx98oL/72c90uLlZaUuqnVymv/j8Kj2wfoVsOzv21/3NW3v1X/6/n+rjk82qmVSqf/dv1g5ulhfv69dXHntKHx45ro6uHpWXxLRy4fX6+sN/qrKiC1MlDxw9qW99/1ntP3JCPfE+lZcUatWiG/TVv1ivytI/LqNz85//Xzp5pvWy92/89X+fmG90hLoDAb0ZiJuOARd6++W39dP/96dqa25TKBrSgtsW6Av/+xcGN7pLp9P65X//pd746Rvq6ezR9PnTteFvNwxemx47cExb/u8tOt14WomBhEqrSnXT+pu09s/XyvupEcq7XtylF//1RTUfa5Yv4NPUOVN1z9/cM3iTW5I2Lrr8s2fJpBL951/+53H+XUC+ifqjun/2/aZjjJlrikJt2yYdP240Qm9xQM1F/KBFfon7fHot1H/1AwG40pdu+JIKA6wtCbjWSy9JjY2jflnHpJDOh3oynwcZ1RYKaoev13QMAHCFWCCm+264z3SMMcuOW3uZ4PebTgDkpWSWjBAAYIbXMb/uGIBxVFBwTS+zXDIWwe16HXdMkwOAbOBYQ4/AzzXu+YSfBUWh9anF+4F8kbC5wATymcd2zXLHAIYSCl39mCHYyQznwLjosil0ASBT3HID3T1Foc9nOoFsekLkoQQ9IZDXKAoBl7vWEYXsOJoTOkWjCwCZ4pbrYvcUhdkwojBBU4j8k3DJzk4ARs+2bNmWey4lAAzhGotCO0lRmAvaLTakA4BM8dqMKMwuWVAU2hSFyEMD9IRA3nLLxRCAKyguvqaXMaIw+yVtW/3i8wsAZApTj7MNRSFgRL/FBwEgX7llegWAKwgGpXB41C+zE1wfZLt+rzs+0AJAtnDLTXT3FIWRiOkEstKSJYZXIb/0UBQCeYuiEMgTpaWjfgmb/GU/djwGgMxiRGG2yYKiUJJsikLkmU7WtgHyllsuhgBcRXn5qF/CGoXZr8dxz0dBAMgGbrmJ7p6fDj5fVkw/tlz0WwqMRJcoCoF85ZaLIQBXUVY26pewyV/2O+NwDQcAmcTU42wUjZpOINtlv6XAlQw4DktgA3ks4AmYjgBgIpSVSdboZs1YYkmebJZ0HLWo33QMAHAVt8y2cVerlQXTj+00F0TIHwNeRhMB+YyiEMgTPt+1TT922UcNN2kP+ExHAADX8TvmZ7lmgrt+emfDiEKKQuSRuM2fdyCfBT1B0xEATJS6ulG/hKIwe53xsIYkAGRa0OuOa2N3/fTOgqLQYh4m8kgvi2ADec0tF0MARqC+ftQvcdJcJ2SjtG3plNVnOgYAuE7IGzIdISPc9dO7uNh0AtlcECGPdNg040A+Y+oxkEeiUamoaFQvcZLMPMhG3X6/EmJEIQBkmltm27ir1SopkWyz35KHzcOQR1qsAdMRABjkloshACM0yunHTspdHzXc4qyXAhcAMs1je9jMJCs5jhSLmY0wwN055Iek46hHSdMxABjE1GMgz4xy+rHDDfSsdMJmt2MAyDS3TDuW3FYUSlJpqdG39/QzFRP5odfnjrslAK4dU4+BPFNaOqprbSfBDfRs0x0IcKMXAMaBm2bauK8oLCsz+vZOHz94kR86Pe776wPA6FAUAnlo1qwRH+oMcAM92xz1U94CwHhw00wb933SNzyi0OljjgXyQxsbmQB5LegJyrbcdxkB4CqmT5f8/hEd6jDTJqvEfT52OwaAccLU42xWUiJZ5hbotdKSI4+x9wcmSqvYyATIZxF/xHQEACZ4PNL114/oUG6gZ5dPgo7pCADgWhSF2czjMT6q0JN2328r8GkJj0fdFtPsgXwW8VEUAnlr9mzJvvr1rp1My3bhx41cNOD16hP1mo4BAK5FUZjtqquNvr2T4m4d3K3Dz0YmQL5jRCGQx0IhaebMER3qiOvibHA86FHa3KQrAHC9qD9qOkLGuLMonDzZ6Nt7kvwUhrudZXY9kPcYUQjkuYULJe/VbxxyA928pOPoqBU3HQMAXI2iMNtVVFyYgmyIw3IscLnTLIQN5D1GFAJ5LhiU5s276mFebqAb1xTyK2mx2zEAjBfHchT2hU3HyBh3FoWOI1VWGnt7zwA7vMG9+nw+xcWfcSDfMaIQgObOlQoKrniIZ4Ci0KSEx6ODDmsTAsB4ctsNdHcWhZLR6cdOPyUK3KvNx7xjIN9Zslx3QQTgGng80uLFVzzEG2fzM5MOFXiUEKMJAWA8FfoLTUfIKPcWhQY3NPH2MPcY7tXscMEP5LuQNyTbcu8lBIBRaGiQysqGfdrTy3WxKR3BgI6zNiEAjDs3rU8oubkoLCmRwmbmiNuJlBwx6gruk7JtnVG/6RgADHPbxRCAMbAs6dZbh10f3BNPisnHEy9l29rrGzAdAwDygtuujd1bFErStGnG3tqboiiE+7QHWQwbgFQULDIdAUA2icWkJUuGfMqS5ElzXTzRPg771G0xCwQAJkJhgKnHuWPqVGNv7Uu4+7cW+emUh5IQgFQUoCgE8BmzZw+79I+XonBCdQQDOmwz5RgAJgojCnNJWZkUNfMfzNtPoQJ3Sdm2TrHODQBJxcFi0xEAZKPVqyW//7KHPdxAnzBJx9EeP8vEAMBEsS1bYZ+ZZe/Gi/t/ahsaVejtZag/3KUt6Bf7eQOQmHoMYBihkLRy5WUPcwN9gljS/rBXca7YAGDCFAWKXLfJn7u+m6EYWqfQ283iwXCXkx4uOgFIQU9QAU/AdAwA2aq+Xlq06JKHPHGuISbC0UhQJ5n9AQATqiRUYjpCxrm/KCwpkQonfmFJO5mWh52P4RJJx1GT+kzHAJAFGE0I4KoWLJBmzBj8V28PN9DH26lISB/ZvaZjAEDeKQlSFOammTONvC07H8MtWoN+pS3TKQBkA9YnBDAiK1dKVVWSJGcgxQ30cdRaENT7To/pGACQlxhRmKuuu05ynAl/W+8AzQrc4YiHRbEBXEBRCGBEbFu6/XYpFpMk+biBPi46ggG942EkIQCYwojCXBUIGNnUxEu3AhfoDgTUoYTpGACyRFGAqccARsjvl9avlyIR+frz42PHROr1+7XL38esDwAwJOwLy+/xm46RcfnzE3vWrAl/Sx87H8MFjrnv7z0A18i2bFdOrwAwjsJh6fOfl9cTMp3EVfq9Xu0MDighdpQGAFPcOJpQyqeisKLiwsYmE8jb1S9L3OJD7kp4PDouds8DcEFxsFgem+mDAEYpHJbnlrXq93pNJ3GFuN+nt0IpxcVu0gBgkltvoOdPUShN+KhCKy350r4JfU8gk04HvUxnATCovKDcdAQAOcoXiurdQr96/UxVGIu2UFBvBgbUazFzCQBMY0ShGzQ0SL6JLe78rMeCXGVJR20W2gTwRxSFAMYiWlCi3wX71RUMmI6Sk05GQtrh61XSYroxAGSD0lCp6QjjIr9aLI9HmjNnQt/S38sPcuSmllCQu9UALkFRCGAsygrKlFBav/fH1RxmzcKRStuWDhYG9IHTYzoKAOAPQt6QIv6I6RjjIr+KQkmaPXtCRxX6Owcm7L2AjLGkg17+7AL4I5/jUywQMx0DQA67eLMhJWmPp0fvF/qVcFj39EoSjke7o141WqwZDQDZpDJcaTrCuMm/otDvl264YcLezulPyiMugJBbzoWC6lLCdAwAWaQsVGY6AoAc99m/R05ZfXoznFJ7KGgoUXbr9fv1+0haLWIpGADINhSFbjNnjjSBu675ExSFyCGWdMDDaEIAl2LaMYCx8nv8Kg4WX/JYn5XSW75eHSkMKm3n50eTz0o6jo5Gg3o92KcesQwMAGQjikK3CQQmdAdkf5xtY5E7zgWD6rQYTQjgUhSFADKhKlI15OOHrV79PmLn/a7I50IBvRlJ6yO713QUAMAwvLbXtTseS/laFErS3LkXNjeZAP5uShfkCEs66GM0IYBLWbJcfdcUwMSZFJ407HOdVkJvBPp0LBJS0nEmMJV5fT6f3ov5tcsXV1wp03EAAFdQXlAuy3LvgLD8LQqDwQsbm0wAb9eA7Dz+rUbuOBcMqoO1CQF8RkmoRH5Pfo/yAZAZkyLDF4WSlLak/U6PtkdSOpEHhWHatnQiEtLroX6dVp/pOACAEXD7DfT8bq/mz78wDXmcWZJ8qYnbaRm4Fmnb0j4fi2UDuNxwUwUBYLQCnoCKAkVXPS6htPY5PXotfKEwTLls/cK0belsOKTfRR3tc3oYQwgAOYSi0M18PmnRogl5K3+/e4elwh2aCoIsmA1gSBSFADJpNH+nDFgXCsPtkbROuaAwTDqOTkZCei1iabenR13M5ACAnGJbtuvX7s7tn7SZcP31UnHx1Y8bo0A39wmRvRKOR/sdFs0GcDnbsq+4phgAjNbVph8PZcBK632nR69FpU+ioZzb9KTH79dHhUG9Gk7pA6dHfRafDQAgF5UES+R1vKZjjKuJ2c0jm1mWtHy5tHXruL6Nv71PdomtFBMLkIWOFHiU4I42gCGUhcpcfzEEYGKN5eZDv1I6YPfoQFAqCDiqTflV1pdQsD/7lk9JeDw6H/DpqGdAbaw/CACuUB2tNh1h3FEUSlJVlTR1qnT06Li9hZWWAimfeuz4uL0HcC16An418ucSwDCYdgwg04LeoGKBmNribWM6T7eV1H6nR/tDUjjkUW3Kp7K+hAJ9ZkrDpOOoy+9Tqyet09aAOq2ExI1YAHCVmsIa0xHGHUXhRUuXSsePSwMD4/YWwW6pJzJupwdGz5I+8DPKFcDwJkcnm44AwIUmRyaPuSj8tC4l9KGdkIJSKOioLO1VLGkpkkgr2N8vO5X56520banH59d5r60zTkIt6pfEUi4A4FY+x6eKggrTMcYdReFF4bB0003Sm2+O21sE2wckikJkkaZwSOetHtMxAGQpx3Ly4mIIwMSrLazVvrP7xuXcPUrqEyupTzy68GknIIXkKJb2KJK2VZCy5E+mZKXTcnRh5o+dTstKpz71z2mlbFsDjqM+x1KfbStup9WjlHrstLqUUFwpSczKAIB8UR2tlmW5f6NaisJPmzXrwvTjU6fG5fROX1I++dSv7FtDBfmnz+fTBw4lIYDhVUWq5NiO6RgAXKgqUiWP7VEiNTFTc3uUVI+VlCxd2M5xRJ+CUmLqMADgopqo+6cdS+x6fLlVqyTv+C3aHuinm0UWsKT3g2JrHQBXNCU2xXQEAC7l2I4mR1jaAACQO/JhfUKJovBykYi0ZMm4nT7YkRy3cwMjdSocUqvFyFYAVzalkKIQwPjhZgQAIFcUB4sV8oZMx5gQFIVDueGGCzshjwN/e59sftthUJ/Pp31MOQZwFaWhUhX4CkzHAOBitYW1piMAADAi+TLtWKIoHN6qVZLPl/HTWpICSX/GzwuMiCXtDaWZcgzgqhhNCGC8hbwhlYZKTccAAOCq8mXasURROLxI5EJZOA6CDOaCIZ9EgjqnAdMxAOQApgQCmAjclAAAZDuf41NluNJ0jAlDUXgl9fXS7NkZP22wnbXhMPHaQkEdsHtNxwCQAwq8BYzyATAhmH4MAMh2UwqnyLbypz7Ln+/0Wi1dKlVUZPSUTl9S/nTmpzUDw+n3evWOL246BoAcwWhCABOlrKAsbxaHBwDkpmnF00xHmFAUhVdj29KaNVIgkNHThno9GT0fMJy0bWtPgZRQ2nQUADmCqYAAJhJ/5wAAspXP8ak6Wm06xoSiKByJcFi67TbJsjJ2yoJzfRk7F3AlhyJ+tbEuIYAR8jk+TY5ONh0DQB6ZXjzddAQAAIZUF6vLq2nHEkXhyFVXS4sWZex0Tl9SgXRmRykCn3U2HFKjxbqEAEauPlafdxdDAMyqDFeqwFtgOgYAAJeZWjTVdIQJxyeB0bjxRmnmzIydrqA7cyMUgc/qDAa0x2GLbQCjk29rsAAwz7Is/u4BAGSdfJx2LFEUjt6KFRdGF2ZAqLVPVIUYD3G/Tzv9fUrzBwzAKAQ8AVVFqkzHAJCHphVRFAIAsks+TjuWKApHz7al22+XiovHfqpESsEU04+RWQNej3YGkmxeAmDUphZNzcuLIQDmlRWUKeqPmo4BAMCgfJx2LFEUXhuvV1q3TioY+1oqoS6GfCFzko6jd0KWeq2k6SgAchAbCgAwib+DAADZIl+nHUsUhdeuoOBCWejzjek0wda4LCYgIwPStqX3wx61W+xwDGD0Ir6IKsOVpmMAMOTpp5+WZVmyLEtvvvnmZc+n02nV1NTIsix97nOfG/X5N23aJMuyZNu2jh8/ftnzHR0dumXaLdq4aKOe+c4zg4+3nGrRxkUbB7/++qa/1tfXfF3f+bff0U//6ac6d/rcZec6+PZBbVy0Ue/8+p0hs2x/brs2Ltqov3/o70f9fQAA8kM+b/CXn991phQXXygLvd5rPoWdSiuUZPoxxsiS9kf8OmP1mU4CIEc1lDSYjgAgCwQCAW3ZsuWyx1977TWdOHFCfr9/TOf3+/165plnLnv8Jz/5yRVft/jOxXr48Yf14Dce1N3/7m6VTi7Vb7b8Rt/84je168Vdo8qwc9tOlVSVqHFfo5qPN4/qtQCA/HBd6XWmIxhDUThWFRXS+vVjKgsLOlhLDmNgSR9GAzpuxU0nAZDDmPIHQJLWr1+v5557TolE4pLHt2zZooULF6qycmwjj9evXz9kUbhlyxbdfffdw76udmatlq5fqmWfW6Y1D6zRX337r/StH31LReVFenrT0zp+6PJRikNpOdmiI3uP6N6v3atIUUQ7tu245u8FAOBOUX80r2faUBRmQkXFmEYWBs7H5cjJcCjkg7RlURICGLPKcKVigZjpGACywAMPPKDW1la9/PLLg4/19/frRz/6kTZs2HDJsdu3b5dlWdq+ffsljzc2NsqyLD399NOXnX/Dhg169913deDAgcHHTp8+rVdeeWXw/JY1smV5SiaV6KFNDykxkNBL//rSiF6zY9sOhaIhzVkxRwvWLNDOF3aO6HUAgPwxo2SG6QhGURRmSmXlNZeFVloK9Y9trUPkn7RlaX/UT0kIYMxmls40HQFAlqirq9OyZcsuGfW3bds2tbe36/777x/z+VeuXKnq6upLpjc/++yzCofDgyMKw77wiM83be40lVWXaf+O/SM6fucLO3XjrTfK4/Vo8Z2L1XysWY37Gkf1PQAA3MuSRVFoOoCrXCwLPZ5RvzTSmrj6QcAfUBICyBSf49PUoqmmYwDIIhs2bNDPfvYz9fb2SpI2b96sVatWqaqqaszntixL999//yVF5ObNm3XPPfcMrn9YHCwe1TmrplWp83ynert6r3jcJ/s/0enG01p8x2JJ0vT501VUUaQdLzD9GABwweTo5FHdsHIjisJMq6yUPvc5KTC6DUq8PQMKpMa2ODTyQ9q2tY+SEECGNBQ3yGOP/gYXAPe677771Nvbq61bt6qzs1Nbt269bNrxWGzYsEGHDx/Wrl27Bn/99PkLvAWj+pDmD124ho73XPnaaMe2HYqWRHXdogsL1FuWpUW3L9LbL72tVDJ1Dd8JAMBtmGlDUTg+ysulL3xBikZH9bJI58jWY0H+SjqOdkc9OklJCCBDri+73nQEAFmmrKxMa9eu1ZYtW/STn/xEyWRSX/ziFzN2/htvvFEzZ87Uli1btHnzZlVWVuq2224bfN6yrFF9UOvr6ZMkBULD36hPJVN6+6W3dd3C69RyqkXNx5vVfLxZ9bPr1dHaoQO7Dgz7WgBAfgh6gqqL1ZmOYRxDCMZLNHqhLHzhBam5eUQvCbbG5RQ6Sio5vtmQk/q9Xu0qSKtL/aajAHCJ8oLyUU/xA5AfNmzYoK985Ss6ffq01q1bp1gsdtkxw206kkxe/Vp2w4YNeuqppxSJRPSlL31Jtn3p+IWZpTO1u2n3iLKeOnJKkeKIguHgsMcc2HVA7S3t2vXSLu16addlz+/YtkOzls4a0fsBANxpRskM2Rbj6SgKx1MgcGEa8m9+I33yyVUPt9JSuM+vdn/PBIRDLukJ+LUjMKB+MS0GQOZcX8poQgBD+7M/+zNt3LhRb731lp599tkhjykqKpIktbW1XfL4JyO47t2wYYMee+wxNTU16Qc/+MFlz4e8IdUW1qr55JVvuB/Ze0RnT5zVTetuuuJxO1/YqUhxRA/8xwcue27Pq3v07vZ31R/vly/ABoMAkK+YdnwBReF483ikO+6Qfvtb6cMPr3p45GyfOqql9AREQ25oCwW1y9dLRQggo3yOT9OKp5mOASBLhcNhPfXUU2psbNTnP//5IY+ZMmWKHMfR66+/ri984QuDj3//+9+/6vmnTZumJ554Qr29vVqyZMmQx1xfer3e1tvDnqO1qVX/sulf5PF6dMeDdwx7XH+8X3te3aOFaxZq4dqFlz0fK4tp14u79N7r7w1udAIAyC/V0WoVBgpNx8gKFIUTwbKkFSuk0tILheEVpmM4fUkFUwH12KxBB+lEJKR9DiNMAWQem5gAuJqHHnrois8XFhbq3nvv1ZNPPinLsjRt2jRt3bpVzSNcdueRRx654vPV0WqFvRc2NTl24Jjeev4tpVNp9Xb1qnFfo3a/sluWZenhxx9WdUP1sOd57/X3FO+Oa+7KuUM+Xz+nXpGiiHZu20lRCAB5ak75HNMRsgafECbSzJkXysKXX5Y6O4c9LHw+rZ6SCcyFrJN0HO0Le9RkURICyDxLlmaXzzYdA4ALPPnkkxoYGNA///M/y+/367777tN3v/tdzZ499r9jLMvS9JLpkqRdL+7Srhd3yXZsBcNBldeUa82GNVr1b1apuPLKa63u3LZTXr932DUIbdvW7BWztXPbTnW1dSkcG/mOywCA3BcLxFRTWGM6Rtaw0uk0s1wnWl+f9Oqr0rFjwx5yappXAxqYwFDIFj1+v94JJtTDpjYAxkldrE53TBt+mh4AZIu+RJ82v79ZiVTCdBQAgEvdUnuLri9j7e6L2M7FBL9fuusuadGiC9OShxDu8U5wKGSDM+GQ3gz0URICGFdMrQCQK/weP4vLAwDGjd/xq6GkwXSMrEJRaNKCBdLdd0vhy6c3hM/GZfOfJ28kHUf7CwN619Oj9NDdMQBkRFmoTJMik0zHAIARm1M+R5a4QAIAZN71Zdezbvdn0ESZVlUl3XvvhfULP8VOpBTu9xsKhYnUHgrqzUhaxyw2sAEw/uZWDL2YPwBkq4g/ovqietMxAAAuY1s263YPgaIwG3i90sqV0rp1UkHB4MOR5n7unbpY0nF0sDCot3y9iitlOg6APBD2hfmwDSAnzauYZzoCAMBlphZNVcgbMh0j61AUZpOamgujC2fMkCR5+pIqSAQNh8J4uDiKsNHqNR0FQB6ZXT5btsWPfgC5p6ygTJPCLJsAAMgc1u0eGp8Wso3PJ61efWGzk0hE0bPs8OYmjCIEYIrP8bEhAICcNq+SUYUAgMyYFJ6ksoIy0zGyEis2ZqvaWmnyZHnffVehtgPqUbfpRBgLS2ouCGmfJ65+MYoQwMSbVTZLPsdnOgYAXLPawlrFAjG1xdtMRwEA5LiFVQtNR8hajCjMZo4jLVyowOK16ggGTKfBNeoOBLSj0Ks9nh71M4oQgAEe28MmJgBcgbUKAQBjVRmuVFWkynSMrEVRmAMi0QqdKCvT3kK/+nyMBskV/V6v9hUG9GYgrjYNmI4DII/dUHaDAh5uOAHIfQ0lDYr4IqZjAABy2MJJjCa8EorCHLFg0gI1WX3aHurXwcKg+r1e05EwjITHo6PRoLaHBnTCipuOAyDPeWwP63oBcA3bsrVg0gLTMQAAOaqioEKTo5NNx8hqFIU5oiJcMTg0ttHq1asFAzpYGGSEYRYZ8Hp0JBrQq+GEPrJ7lbZMJwIARhMCcJ+GkgZF/VHTMQAAOYi1Ca+OojCHfHZ4bKPVe2GEYTRAYWhQv9erj6IBvRpK6LDNXsYAsgejCQG4kW3ZTBsDAIxaeUG5qqPVpmNkPYrCHDIpMkk10ZrLHm+049oe6teBwoB6An4DyfJT3OfTwWhA20MDOmrHGUEIIOswmhCAW00vnq5YIGY6BgAgh3CTaWQoCnPMkslLhn3uEyuuNwJ92hHzqqUgqLTNf95MS9uWzoWC2l3o02uhfjVSEALIUowmBOBmlmVpUdUi0zEAADmiLFSmmsLLB17hch7TATA6JaESTS+ersPnDg97TJsG9I53QF6PpanpoKp6E/INsOvuWPR7vWoKenXUjqtfvabjAMBVzS6fzWhCAK42tWiqioPFOtd7znQUAECWY23CkWPIWQ5aVLVItnX1/3QDVloH7Qsbn7xb6NfZcEhJx5mAhO6Qsm2dCwX0fqFfrxYM6IDdo35WIASQAwKegOZXzjcdAwDGHaMKAQBXUxWpUm1hrekYOYMRhTko6o9qZulMfXj2wxG/5ozVpzMeyQpLk+TX5IStWG+f7BTF16elbFvtQb+aPGmdtOJKKW46EgCM2oJJC+Rz2OQKgPvVxepUGipVS0+L6SgAgCy1tHqp6Qg5haIwRy2ctFCHWg8pkUqM6nVpSzqlPp3ySrZXmpwOqDJhKdo3IE9idOdyi6TjqNPvU5M3rZPqU9JiajGA3BX1RzWrbJbpGAAwYZZWL9XWQ1tNxwAAZKGG4gaVhkpNx8gpFIU5KugNak75HO05veeaz5GSdNyK67hXkleKyavKlFclAykV9PXLculow7Rtqdvn03mfozPWgFqtAYl1BwG4xE2TbxrR8hQA4BZVkSrVxerU2NZoOgoAIIt4bI8WT15sOkbOoSjMYfMq52l/y37FE5mZHtumAbXZA5Jfsv1SRdqvspSj8EBSoYGEnGQyI+8z0VK2rV6fTx1eW2ftpM5YfUqpz3QsAMi4ioIK1RfVm44BABNuafVSHWs/plTanTe6AQCjN7t8tsK+sOkYOYeiMIf5HJ8WVy3WG8feyPi5U5KarD41OZIcSQEplLZVmvYqlnYUGUgpODCQdeVh0nHU4/Woy2Or3UmrVQPqspISaw0CyAOsvwIgX0X9Uc0un629Z/aajgIAyAJBT1A3Vt5oOkZOoijMcTNLZ2p/y/4JWcC5x0rpmNWnY9JgeehNW4pYHkXSjgrStkLJtALJtHzJhJxkKuObpaRtSwnHo37HUdyx1Gtb6rbT6lZSnVZCcSUlZVd5CQATYWrRVFWEK0zHAABjFkxaoEOthzI22wYAkLsWVi2U1/GajpGTKApznGVZWl6zXL84+Asj7z9gpXVOAzpnDUiWJFvSp/5ftNKS37LlS9sK/OFXnyw56QvP2ZZ04YWS0mmlLSktqV9pDVjSgJVSXzqlfqXVr5SSVlrSwB++AACSZFu2lkxeYjoGABjlc3xaVLVIbx5703QUAIBBsUBMM0tnmo6RsygKXaAyXKmG4gZ9dO4j01Euk7akuFKKWyl1SIOd4OCvIzGaYwEgD82rmKeoP2o6BgAYd33p9frw7Ic613vOdBQAgCFLq5eyud8Y8DvnEjdV3ySvzbBaAMg3EV9EN05i/RUAkC7MtllWvcx0DACAIXWxOtUW1pqOkdMoCl0i5A1pwaQFpmMAACbYzbU3y2MzQQAALpocnawphVNMxwAATDCP7dHymuWmY+Q8ikIXmVMxR4X+QtMxAAAThDumADC05TXLuYkCAHlmUdUihX1h0zFyHkWhi9iWTXsOAHmCO6YAMLyIP8JsGwDII8XBYs0un206hitQFLpMTWGNphVNMx0DADDOFkxawB1TALiCuRVzVRwsNh0DADABbqm9hQ1MMoTfRRdaXrNcAU/AdAwAwDiJBWKaWzHXdAwAyGq2ZeuW2ltMxwAAjLOZpTNVEa4wHcM1KApdKOgNstsbALjYitoV3DEFgBGoCFdoVtks0zEAAOMk4Anopsk3mY7hKnzKcKmGkgbVRGtMxwAAZNisslmqilSZjgEAOWPJ5CUq8BaYjgEAGAdLq5fK7/GbjuEqFIUudsuUW+S1vaZjAAAyJOKLcMcUAEbJ5/i0onaF6RgAgAybHJmsGSUzTMdwHYpCFwv7wlo8ebHpGACADFlVt0pehxtAADBaU2JTNLVoqukYAIAM8Tk+rapbZTqGK1EUutwNZTeoooBFPQEg1zHlGADG5uaam9nwDwBcYln1MoV9YdMxXImi0OUsy9KqulVyLMd0FADANWLKMQCMXdAbZBdkAHCBKYVTdF3pdaZjuBZFYR6IBWJaMnmJ6RgAgGvElGMAyIz6onrWswKAHBbwBLRyykrTMVyNojBPzKmYo+potekYAIBRYsoxAGTWzTU3K+KLmI4BALgGK2pXKOgNmo7hahSFeWR13WrWZQGAHBL1R5lyDAAZ5nW8urX+VlmyTEcBAIzCtKJpbEw1ASgK80jIG2KILgDkCNuytaZ+DVOOAWAcVIYrNb9yvukYAIARCnlDWlG7wnSMvEBRaNDTTz8ty7JkWZbefPPNy55Pp9OqqamRZVn63Oc+N+rzb9q0SZZlybZtHT9+XJJUF6vTzNKZkqTerl79h5v/gzYu2qhnvvPM4OtaTrVo46KNg19/fdNf6+trvq7v/Nvv6Kf/9FOdO33usvc6+PZBbVy0Ue/8+p0hs2x/brs2Ltqov3/o70f9fQBAPlpctVhlBWWmYwCAay2sWqjSUKnpGACAEVg5ZaX8Hr/pGHmBojALBAIBbdmy5bLHX3vtNZ04cUJ+/9j+Z/D7/XrmmT8WgctrlqvQX6g9r+654usW37lYDz/+sB78xoO6+9/drdLJpfrNlt/om1/8pna9uGtUGXZu26mSqhI17mtU8/Hma/o+ACBfVEerNa9ynukYAOBqtmXrtvrb5LE9pqMAAK5gTvkc1RbWmo6RNygKs8D69ev13HPPKZFIXPL4li1btHDhQlVWVo75/J8uCj22R7fV36ZdL+zSnJvnDPu62pm1Wrp+qZZ9bpnWPLBGf/Xtv9K3fvQtFZUX6elNT+v4oeMjev+Wky06sveI7v3avYoURbRj244xfT8A4GYhb0i31t1qOgYA5IVYIMZasACQxcoLynVTNX9PTySKwizwwAMPqLW1VS+//PLgY/39/frRj36kDRs2XHLs9u3bZVmWtm/ffsnjjY2NsixLTz/99GXn37Bhg959910dOHBg8LFkZ1IH3z6oxXctHlXWkkklemjTQ0oMJPTSv740otfs2LZDoWhIc1bM0YI1C7TzhZ2jek8AyCer61azkxsATKAbym9QXazOdAwAwGf4Hb/WTl0r26K6mkj8bmeBuro6LVu27JJRf9u2bVN7e7vuv//+MZ9/5cqVqq6uvmR687PPPqtwOKy719896vNNmztNZdVl2r9j/4iO3/nCTt14643yeD1afOdiNR9rVuO+xlG/LwC43fzK+aqOVpuOAQB5Z3XdakX9UdMxAACfsrputcK+sOkYeYeiMEts2LBBP/vZz9Tb2ytJ2rx5s1atWqWqqqoxn9uyLN1///2XFJGbN2/WPffcoztn3nlN56yaVqXO853q7eq94nGf7P9EpxtPa/EdF0YuTp8/XUUVRdrxAtOPAeDTygvKtahqkekYAJCXfI5Pt0+9nfUKASBLzCmfoymxKaZj5CWKwixx3333qbe3V1u3blVnZ6e2bt162bTjsdiwYYMOHz6sXbt2Df66YcMG+RyfpAtl4mj4Qxc2WIn3xK943I5tOxQtieq6RdcNvs+i2xfp7ZfeViqZuobvBADcJ+AJaE39GqZVAIBBJaESrahdYToGAOQ91iU0i1tmWaKsrExr167Vli1b1NPTo2QyqS9+8YsZO/+NN96omTNnasuWLYrFYqqsrNRtt902+Pyk8KRRna+vp0+SFAgFhj0mlUzp7Zfe1nULr1PLqZbBx+tn1+vlH76sA7sOaNbSWaP8TgDAXSxZuq3+NkX8EdNRACDvzSiZodNdp3Wg5cDVDwYAZBzrEppHUZhFNmzYoK985Ss6ffq01q1bp1gsdtkxw438SyaTIzr/U089pUgkoi996Uuy7T/+j1cULNLM0pkjvig6deSUIsURBcPDL7h/YNcBtbe0a9dLu7TrpV2XPb9j2w6KQgB5b/HkxaxLCABZ5Oaam9XS06KWnparHwwAyCjWJTSPojCL/Nmf/Zk2btyot956S88+++yQxxQVFUmS2traLnn8k08+uer5N2zYoMcee0xNTU36wQ9+cNnzgxdFuvJF0ZG9R3T2xFndtO7KQ4F3vrBTkeKIHviPD1z23J5X9+jd7e+qP94vX8B31ewA4EZ1sTrNr5xvOgYA4FMc29HtU2/XT/b/RH3JPtNxACBvLJi0gHUJswBFYRYJh8N66qmn1NjYqM9//vNDHjNlyhQ5jqPXX39dX/jCFwYf//73v3/V80+bNk1PPPGEent7tWTJksuev3hRdPTjo8Oeo7WpVf+y6V/k8Xp0x4N3DHtcf7xfe17do4VrFmrh2oWXPR8ri2nXi7v03uvvDW50AgD5pChQpFvrbjUdAwAwhIg/olvrb9ULh18wHQUA8kJ9rJ6N/bIERWGWeeihh674fGFhoe699149+eSTsixL06ZN09atW9Xc3Dyi8z/yyCNXfD7ij+iW2lskSccOHNNbz7+ldCqt3q5eNe5r1O5XdsuyLD38+MOqbhh+qtx7r7+neHdcc1fOHfL5+jn1ihRFtHPbTopCAHnH7/h15/Q75XW8pqMAAIZRW1irhZMW6p2md0xHAQBXKwmW6NZ6bqBnC4rCHPTkk09qYGBA//zP/yy/36/77rtP3/3udzV79uyMnL8iXCFJ2vXiLu16cZdsx1YwHFR5TbnWbFijVf9mlYori694jp3bdsrr9w67BqFt25q9YrZ2btuprrYuhWOsQQAgP1iytGbqGkX9UdNRAABXsbBqodr72nX43GHTUQDAlYKeoO6cfqc8NvVUtrDS6XTadAhkp98f/73eb37fdAwAcJWl1Us1t2Lo0dYAgOyTTCW19dBWnek+YzoKALiKbdn63IzPqTJcaToKPoX9pjGspdVLVVtYazoGALjGrLJZlIQAkGMc29Ed0+5QxBcxHQUAXOWW2lsoCbMQRSGGZVmW1tSvUXHwytOMAQBXV1tYq5trbjYdAwBwDYLeoO6afpd8js90FABwhTnlc3Rd6XWmY2AIFIW4Iq/j1V3T71LQEzQdBQByVmmoVGunrpVlWaajAACuUVGw6MLf5eLvcgAYi5pojZZWLzUdA8OgKMRVhX1h3Tn9TjmWYzoKAOScsC+su6bfxQLNAOAC1dFq3VzL6HAAuFYlwRJuoGc5ikKMSHlBudZMXcMdVAAYBZ/j07rp6xTyhkxHAQBkyKyyWZpdPtt0DADIOWFfWOsa1snreE1HwRVQFGLE6mJ1umXKLaZjAEBOsC1bd0y7Q0XBItNRAAAZtqx6mepj9aZjAEDO8Dt+rW9Yzw30HEBRiFGZWTpTSyYvMR0DALLeyikrVRWpMh0DADAOLMvSmqlrNDky2XQUAMh6Htuju6bfpVggZjoKRoCiEKM2v3K+5pTPMR0DALLW8prlmlEyw3QMAMA4si1bd06/U+UF5aajAEDWsi1ba6euVUW4wnQUjBBFIa7JspplaihuMB0DALLOoqpFrF0FAHnCY3u0bvo6FQeLTUcBgKy0asoq1RbWmo6BUaAoxDVbVcf/8ADwafMq5mnBpAWmYwAAJpDfc2HdrYgvYjoKAGSV5TXL1VDCAKNcQ1GIa3ZxCHFluNJ0FAAwblbZLN1UfZPpGAAAA0LekO6ecTeL9APAHyyYtIBZNjmKohBjcnFRUtZmAZDPGoobtKJ2hekYAACDov6o1jesl9/xm44CAEbdWHmjFlUtMh0D14iiEGPmc3xa37BepaFS01EAYMLVxeq0qm6V6RgAgCxQHCzWuoZ18tpe01EAwIj5lfO1ePJi0zEwBhSFyAif49PdDXdTFgLIKzXRGq2pXyPb4scpAOCC8oJyrW9YL5/jMx0FACbUvIp5WjJ5iekYGCMrnU6nTYeAe8QTcf3q0K/U2ttqOgoAjKsphVN0+7TbKQkBAENq7m7W8x89r/5kv+koADDu5lXMY71ul6AoRMb1Jfr0q49+pZaeFtNRAGBcTC2aqtvqb6MkBABcUUtPi3516FfqS/aZjgIA42ZuxVwtrV5qOgYyhKIQ46Iv0afnP3peZ3vOmo4CABk1vXi6bq27VZZlmY4CAMgBrT2t+tVHv1I8ETcdBQAyjpLQfSgKMW76k/16/qPn1dzdbDoKAGTEdSXXaeWUlZSEAIBROdd7TlsPbaUsBOAqc8rnaFnNMtMxkGEUhRhXiVRCLx15SSc6TpiOAgBjMqtsllbUrjAdAwCQo873ntevPvqVegZ6TEcBgDFbOGmhFlYtNB0D44CiEOMulU7plY9f0dHzR01HAYBrMrt8tpbXLDcdAwCQ49ribfrVoV+pe6DbdBQAuGY319ysG8pvMB0D44SiEBMinU7rt8d/qw/Pfmg6CgCMyqKqRVowaYHpGAAAl+jq79LzHz2vtnib6SgAMCq2ZWt13WpNL55uOgrGEUUhJtTbp97W7qbdpmMAwFXZlq0VtSs0s3Sm6SgAAJfpS/TphcMv6Ez3GdNRAGBEPLZHt0+9XTWFNaajYJxRFGLCfdD8gX53/HemYwDAsDy2R2unrlVtYa3pKAAAl0qkEnrl41fU2NZoOgoAXJHf8WtdwzqVF5SbjoIJQFEIIz5q/UivffKaUumU6SgAcImAJ6C7pt/FhRAAYNyl02m9eexN7W/ZbzoKAAypwFug9Q3rVRQsMh0FE4SiEMac7Dipl4++rP5kv+koACBJivqjWjd9nQoDhaajAADyyO6m3Xr71NumYwDAJWKBmNY3rFfYFzYdBROIohBGtcXb9MLhF9TR12E6CoA8Vxoq1brp6xT0Bk1HAQDkoQMtB/TGJ28oLT6eATCvKlKl26feLr/HbzoKJhhFIYyLJ+J66chLOt112nQUAHlqSuEU3VZ/m7yO13QUAEAeO9Z+TL85+hsNpAZMRwGQx64vvV43194s27JNR4EBFIXICql0Sq81vqaPzn1kOgqAPHNj5Y1aPHmx6RgAAEiSzvWe04uHX1Rnf6fpKADyjCVLy2qWaXb5bNNRYBBFIbLKnqY92nVql+kYAPKAx/Zo1ZRVmlY8zXQUAAAuEU/E9eujv9apzlOmowDIEz7Hp7VT16o6Wm06CgyjKETWOXr+qLY3blcilTAdBYBLhX1h3THtDpWGSk1HAQBgSKl0Sr8//nvtO7vPdBQALhf1R3XX9LsUC8RMR0EWoChEVmrpadHLR15mygWAjKsoqNAd0+5g0xIAQE440HJAbx57U6l0ynQUAC40KTxJt0+7XQFPwHQUZAmKQmStvkSfXm18Vcfaj5mOAsAlriu5TrdMuYWFmQEAOeV012m9fORl9SZ6TUcB4CKzymZpec1yro1xCYpCZL3dTbv1zql3lBZ/VAFcG8dytKxmmWaVzTIdBQCAa9LV36WXjryklp4W01EA5DiP7dHKKSs1vXi66SjIQhSFyAknOk7olY9fUTwRNx0FQI6J+qNaO3Ut6xECAHJeIpXQ747/TgdaDpiOAiBHFQWKdPu021mPEMOiKETO6Orv0stHXtbZnrOmowDIEVOLpmrllJXyOT7TUQAAyJhDrYf05rE32fwPwKg0FDfolim3yGN7TEdBFqMoRE5JppL63fHfaX/LftNRAGQx27K1rHqZbii/wXQUAADGxfne8/r10V/rfPy86SgAspxjObq59mbNLJ1pOgpyAEUhctLH5z/W65+8rr5kn+koALIMU40BAPkikUrot8d+q4OtB01HAZCluDbGaFEUImd193fr1cZXdarzlOkoALJEfaxeq+pWMdUYAJBXjpw7ojeOvaH+ZL/pKACyCMvw4FpQFCLn7T2zVztP7lQqnTIdBYAhPsen5TXLNaNkhukoAAAY0dHXoVc+fkXN3c2mowAwzOf4dHPNzWooaTAdBTmIohCu0NrTqt98/Bu1xdtMRwEwwaoiVVpdt1phX9h0FAAAjEqlU9rdtFvvnn6Xm+hAnuLaGGNFUQjXSKQSeuvEW/rw7IemowCYAI7laMnkJZpTMcd0FAAAssrZ7rPa3ridjU6APMK1MTKFohCuc7z9uN449oa6+rtMRwEwTkpDpbqt/jbFAjHTUQAAyErJVFJvn3pbe8/sVVp85APcrDRUqlvrblVRsMh0FLgARSFcaSA5oB0ndzC6EHAZ27I1v3K+FkxaINuyTccBACDrNXc3a3vjdpboAVzIkqUbJ93ItTEyiqIQrtbU2aTXP3ld7X3tpqMAGKOSYIlWTlmpsoIy01EAAMgpyVRSu07t0vtn3md0IeASRYEirapbpfKCctNR4DIUhXC9RCqhd069w7QLIEd5bI8WTFqguRVzuVMKAMAYnO46rdcaX+MmOpDDHMvRgkkLNK9yHtfGGBcUhcgbLT0t2t64Xed6z5mOAmCEJkcm65Yptyjqj5qOAgCAKyRSCe1p2qP3zrzHzshAjqmOVmtF7QqujTGuKAqRV1LplPae2avdTbuVSCVMxwEwjKAnqGU1yzS9eLrpKAAAuFJ7vF2/Pf5bneg4YToKgKvg2hgTiaIQeam7v1tvnXhLR84fMR0FwGfMKpulJZOXyOf4TEcBAMD1jp4/qt8f/726B7pNRwEwhJmlM3XT5Jvk9/hNR0GeoChEXjvVeUq/O/47piMDWaCioELLapaxIDMAABNsIDmgd5re0QfNHzAdGcgSRYEi3TLlFlWGK01HQZ6hKETeS6fT2nd2n94+9bb6k/2m4wB5J+wLa8nkJUylAADAsHO95/TmsTd1uuu06ShA3gp4AlowaYFmlc1isxIYQVEI/EE8EdeOEzt0sPWg6ShAXvDYHs2vnK+5FXPlsT2m4wAAgD/4qPUj7Tq1S139XaajAHnDtmzNLp+tBZMWsAQPjKIoBD6jpadFO07s0MnOk6ajAK41o2SGlkxeopA3ZDoKAAAYQjKV1PvN7+vd0+8y6wYYZ/Wxet1UfRO7GSMrUBQCwzjZcVI7Tu5QS0+L6SiAa1SGK7WsepnKCspMRwEAACMQT8S1p2mP9p3dx/qFQIaVhcq0rGYZ6xAiq1AUAldx9PxR7Ty5Ux19HaajADmrNFSqxVWLVVNYYzoKAAC4Bp19ndp1apcOnztsOgqQ8wq8BVoyeYkaShpMRwEuQ1EIjEAqndKBlgPa3bRbPQM9puMAOaM4WKxFVYtUF6szHQUAAGRAS0+L3jrxlk51njIdBcg5AU9A8yvna1bZLNboRtaiKARGIZFK6P0z72vvmb3qS/aZjgNkrUJ/oRZWLdS0ommyLMt0HAAAkGHH24/rnaZ31NzdbDoKkPX8jl/zKudpdvlsCkJkPYpC4BoMJAe07+w+7T2zV/FE3HQcIGtEfBEtmLRAM0pmUBACAJAHTnac1O6m3WrqajIdBcg6fsevORVzNLt8NjsZI2dQFAJjkEgl9OHZD7X3zF6mJCOvxQIxzauYp4aSBtmWbToOAACYYE2dTdpzeo9OdJwwHQUwLuAJaE75HN1QfgMFIXIORSGQAclUUgdbD+q90++ps7/TdBxgwlQUVGh+5XxNiU0xHQUAAGSB5u5m7W7arWPtx0xHASZcyBvS7PLZuqHsBnkdr+k4wDWhKAQyKJ1O68j5I3rv9Htq7W01HQcYN7WFtZpfOV+V4UrTUQAAQBZq6WnRnqY9amxrVFp85IS7FQeLNad8jqYXT5djO6bjAGNCUQiMk6bOJn3Q/AEXR3AN27I1vXi65lXMU1GwyHQcAACQAzr6OrSveZ8Oth5Uf7LfdBwgo6qj1ZpbMVfV0WrTUYCMoSgExllXf5f2Ne/TgZYD7JSMnBTyhnR96fW6vux6hbwh03EAAEAOGkgO6FDrIX3Q/IHa+9pNxwGumWM5ml48XXMr5nLzHK5EUQhMkEQqoY9aP9IHzR/ofPy86TjAVVVFqjSrbJbqYnVsUAIAADLmWPsxfdD8ARufIKcEPAHNKpulG8puUNAbNB0HGDcUhYABJztOan/LfjW2NSqVTpmOAwzyOT7NKJmhWWWzFAvETMcBAAAu1hZv0wfNH+hQ6yElUgnTcYAhVUerNbN0JjfPkTcoCgGD4om4Dp87rIMtB9n8BEaVhco0s3SmGkoa5LE9puMAAIA8MpAc0NHzR3Ww9aBOd502HQdQgbdA15Vep+tKrlPEHzEdB5hQFIVAlmjpadHBloM6fO4waxliQoR9YTUUN6ihpIHRgwAAICt09HXoYMtBHWo9pO6BbtNxkEdsy1ZtYa1mls5UTbRGlmWZjgQYQVEIZJlkKqnGtkYdaj2kk50nmZqMjPI5PtXH6tVQ0qCqSJXpOAAAAENKp9M62XlSB1sOqrGtUcl00nQkuFRRoEgNJQ2aUTKDjfsAURQCWS2eiKuxrVFHzh3Rqc5TSov/XTF6tmVrcmSyZpTM0JTYFKYWAwCAnNKf7Nfhc4d15NwRne46zTUxxqzQX6hpxdM0rWgaOxcDn0FRCOSIeCKuj89/rKPnj1Ia4qo8tkfV0WrVxeo0pXCK/B6/6UgAAABj1jvQq4/bPtbH5z/mmhijEvFFNLVoqqYVT1NpqNR0HCBrURQCOSieiOvo+aP6+PzHaupqYnoyJF2YVlxbWKv6WL1qCmsYOQgAAFzt4uybj89/zJI9GFKBt2CwHCwvKDcdB8gJFIVAjhtIDuhk50kdaz+m4+3HWfQ5z4R9YdVEa1RfVK+qSJVsyzYdCQAAYML1J/svKQ0TqYTpSDDAkqXygnLVFtaqtrBWJaES05GAnENRCLhMa0+rjncc17H2YzrTdYbpGC7jtb2aFJmk6mi1qqPV7FYMAADwGclUUk1dTTreflzHO46rLd5mOhLGUcATUHW0WrWFtaqOVivgCZiOBOQ0ikLAxfqT/TrRcUJNnU1q6mrSud5zpiNhlCxZKg2VDhaDFeEKRg0CAACMQld/l050nNCJjhM61XlK8UTcdCSMwcXr45rCGtVEa1ReUC7LskzHAlyDohDII/FEXKe7Tg8Wh609rYw4zDK2Zas0VKrKcOXgF3dFAQAAMqelp0UnO07qdNdpnek+Q3GY5RzLUVlBmSaFJw1eH3sdr+lYgGtRFAJ5rD/ZrzNdZ9TU1aSz3WfV0tOivmSf6Vh5JeAJqKKgQuUF5aoIX/iVTUgAAAAmTlu8TWe6zuhM9xmd7jrNVGXDvLZXFeEKVYYrNSk8SeUF5XJsx3QsIG9QFAK4REdfh1p6WtTS00J5mGEF3gKVhEpUHCxWSbBEZQVlivqjpmMBAADgU/oSfTrTfWawPGztaeV6eJx4bI+Kg8UqDZUOfhUHi1lqBzCIohDAVV0sD8/3nldbvE3n4+fVHm9XMp00HS0r2ZatokCRSkIlKgmWDJaDTCEGAADITd393WrtbdW53nM613tOrT2tau9rVyqdMh0tZ/gc3yWFYEmwRLFAjPUFgSxDUQjgmqTTaXX1d6kt3nbJV3tfu3oGekzHG3eO5Sjij6jQX6ioP6rCwIVfo/6oIr4IFzwAAAAul0qndL73/GCB2B5vV2d/pzr6OpRIJUzHM8K2bIV9YRX6C1UYKLzk14g/YjoegBGgKASQcal0Sl39XZd8dfd3q3ugWz0DPeru71Zfsi9r78B6ba9C3tCQXwW+AkX9URV4CygDAQAAMKTegd7B0rCjr0OdfRf+ubO/Uz0DPVl7HTwSQU9QBb4Chbyhy0rBiD/CtGEgx1EUAjBmIDmgvmSf4om4+hJ9l/1zIpVQIpVQKp1SMpVUMp287NdUOiXbsmXJkmVZQ/6zbdnyOl75HJ+89h9+/cO/X/zy2l4FPAGFvCF2UQMAAMC4iifiiifi6h3oVW+id/DXTz/Wl7hwPTyQGlAilVAylVRamfv47ljOJdfIn/5nv8evoCeokDekoPcPv/6hIKQIBNyNohAAAAAAgByQTCUHb6ZfLBGTqQvrhl+c7XLxpvlQ/+yxPYOFIIUfgKFQFAIAAAAAAAAQtxAAAAAAAAAAUBQCAAAAAAAAoCgEAAAAAAAAIIpCAAAAAAAAAKIoBAAAAAAAACCKQgAAAAAAAACiKAQAAAAAAAAgikIAAAAAAAAAoigEAAAAAAAAIIpCAAAAAAAAAKIoBAAAAAAAACCKQgAAAAAAAACiKAQAAAAAAAAgikIAAAAAAFzn6aeflmVZg1+BQEBVVVW688479d/+239TZ2fnJcdv2rRJlmWppaVlyPPdd999sixLf/u3fzuqHKtXr5ZlWfr85z9/2XONjY2yLEvf+973Bh/bvn37YOZ33nnnstd8+ctfVjgcHlUGACNHUQgAAAAAgEs9/vjj+sEPfqCnnnpKX/3qVyVJjz76qObMmaO9e/eO6BwdHR365S9/qbq6Oj3zzDNKp9OjzrF169Yhi78r2bRp06jfB8DYUBQCAAAAAOBS69at01/8xV/o4Ycf1t/93d/pxRdf1K9//Ws1NzfrT/7kT9Tb23vVc/z4xz9WMpnU//gf/0PHjx/X66+/PqoMtbW1Kioq0re+9a0Rv2b+/PnaunWrdu/ePar3AjA2FIUAXIUpFgAAAMCV3XbbbfrGN76hTz75RD/84Q+vevzmzZt1++2369Zbb9X111+vzZs3j+r9IpGIvva1r+mXv/zliIu/r371qyoqKmJUITDBKAoBuBJTLAAAAIDh/eVf/qUk6aWXXrricadOndKrr76qBx54QJL0wAMP6Ec/+pH6+/tH9X6PPPLIqIq/aDQ66nIRwNhRFAJwJaZYAAAAAMOrrq5WYWGhjhw5csXjnnnmGfn9fv3pn/6pJOn+++/X+fPn9fzzz4/q/aLRqB599NFRFX9/8zd/M+rraQBjQ1EIIG8wxQIAAAD4o3A4fNnSPJ+1efNm3X333YpEIpKkhoYGLVy4cNTXxtIfRxWOtPgrLCzUo48+ql/84hfas2fPqN8PwOhRFALIK0yxAAAAAC7o6uoaLACHsn//fu3Zs0c333yzDh8+PPi1evVqbd26VR0dHYPnOX369ODX2bNnhzzftRR/jzzyiGKxGDfSgQlCUQggrzDFAgAAAJBOnDih9vZ2TZ8+fdhjLs7C+drXvqaGhobBr3/4h39QPB7Xj3/8Y0nS9773PU2aNGnwa/HixcOe82Lxx6hCIDtRFALIO0yxAAAAQL77wQ9+IEm68847h3w+nU5ry5YtuvXWW/Xcc89d9jV37tzBa+MHH3xQL7/88uDXla6ZL17r/vznPx/xte6jjz46qnIRwLXzmA4AABOtq6tL5eXlwz5/cYrFgw8+qMOHDw8+vnr1av3TP/2TOjo6FI1G1dXVpa6ursHnHcdRWVnZZee7eDH0zW9+U3v27FFRUdFVMz7yyCP6x3/8R23atEk///nPR/kdAgAAAMN75ZVX9O1vf1v19fX68z//8yGP+e1vf6vGxkY9/vjj+uIXv3jZ84cOHdI3vvENnTp1SlOnTtXUqVNH/P6PPvqonnjiCT3++OMjOv7i9fSmTZs0b968Eb8PgNFjRCGAvMIUCwAAAOSTbdu26Yc//KGefvppfec739Gdd96ptWvXqqKiQr/4xS8UCASGfN3mzZvlOI7uvvvuIZ//kz/5E6VSKf3P//k/R52psLBQjzzyiN59990Rv+aRRx5RYWGh3nvvvVG/H4CRY0QhgLwymikW//7f//vLnv/2t7+tzZs36+GHH9aDDz6oFStWDD4XDAaHfd9P3wV96KGHRpT14p3Wb33rW4rFYiN6DQAAAPBpjz32mCTJ5/OpuLhYc+bM0RNPPKGHH3542I1MBgYG9Nxzz2n58uUqLi4e8pjZs2ervr5eP/zhD/X1r3991LkuXuu2t7eP6PhYLKZHH32U6cfAOKMoBJA3mGIBAACAfPHlL39ZX/7yl0d8/KZNmy7ZWbilpeWqrzl69OhVj9m+ffuQj8diMbW1tV32+OrVq5VOp0eUEUDmMfUYgCsxxQIAAAAAgNGhKATgSo899pj+8i//Uhs3btQTTzyhdDqtJ554Qnv37tXs2bOHfM1op1hci0cffVSFhYUjPv7iFAsAAAAAAMablR5uTC8AAAAAAACAvMGIQgAAAAAAAAAUhQAAAAAAAAAoCgEAAAAAAACIohAAAAAAAACAKAoBAAAAAAAAiKIQAAAAAAAAgCgKAQAAAAAAAIiiEAAAAAAAAIAoCgEAAAAAAACIohAAAAAAAACAKAoBAAAAAAAAiKIQAAAAAAAAgCgKAQAAAAAAAIiiEAAAAAAAAIAoCgEAAAAAAACIohAAAAAAAACAKAoBAAAAAAAAiKIQAAAAAAAAgKT/H4233FWLSNVsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -150,18 +156,18 @@ "output_type": "stream", "text": [ "Astral Dataset:\n", - " MuMDIA identifications: 53529\n", + " MuMDIA identifications: 25471\n", " DIA-NN identifications: 101443\n", - " Overlap: 41198\n", - " MuMDIA unique: 12331\n", - " DIA-NN unique: 60245\n", + " Overlap: 22403\n", + " MuMDIA unique: 3068\n", + " DIA-NN unique: 79040\n", "\n", "TimsTOF Dataset:\n", - " MuMDIA identifications: 15514\n", + " MuMDIA identifications: 7076\n", " DIA-NN identifications: 97112\n", - " Overlap: 12419\n", - " MuMDIA unique: 3095\n", - " DIA-NN unique: 84693\n" + " Overlap: 6531\n", + " MuMDIA unique: 545\n", + " DIA-NN unique: 90581\n" ] } ], @@ -223,6 +229,6256 @@ " f\" DIA-NN unique: {len(diann_precursor_ids_timsconvert - mumdia_precursor_ids_timsconvert)}\"\n", ")" ] + }, + { + "cell_type": "markdown", + "id": "e363dd12", + "metadata": {}, + "source": [ + "# ECOLI" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "34355bc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mumdia shape: (10452, 11)\n", + "mumdia_merged shape: (10452, 12)\n" + ] + } + ], + "source": [ + "# Process Astral data\n", + "diann_astral, mumdia_astral_valid = process_data(\n", + " \"/home/robbe/MuMDIA/DIA-NN_output/ecoli/report.parquet\",\n", + " \"/home/robbe/MuMDIA/results/config_playing/mokapot.psms.txt\",\n", + " \"/home/robbe/MuMDIA/results/config_playing/outfile.pin\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "64c80849", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run", + "rawType": "object", + "type": "string" + }, + { + "name": "Channel", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + }, + { + "name": "Modified.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Stripped.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Lib.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Decoy", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Proteotypic", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Ids", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Group", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Names", + "rawType": "object", + "type": "string" + }, + { + "name": "Genes", + "rawType": "object", + "type": "string" + }, + { + "name": "RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Quantity", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Factor", + "rawType": "float32", + "type": "float" + }, + { + "name": "Quantity.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Empirical.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Noise", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Profile.Corr", + "rawType": "float32", + "type": "float" + }, + { + "name": "Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Mass.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.Before", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.After", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Start", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Stop", + "rawType": "float32", + "type": "float" + }, + { + "name": "FWHM", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Site.Occupancy.Probabilities", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Sites", + "rawType": "object", + "type": "string" + }, + { + "name": "Lib.PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Translated.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "GG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz.Delta", + "rawType": "float32", + "type": "float" + } + ], + "ref": "988a7195-89b4-421f-88e8-cf12fd0d1a18", + "rows": [ + [ + "0", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAEIAVK2", + "AAAAEIAVK", + "AAAAEIAVK", + "2", + "10", + "0", + "1", + "422.25037", + "P0A8D6", + "P0A8D6", + "YMDB_ECOLI", + "ymdB", + "45.039364", + "-11.2311", + "45.049755", + "-10.05596", + "0.0", + "0.79848653", + "0.0", + "0.0", + "9478950.0", + "9478950.0", + "9629110.0", + "9629110.0", + "8328634.0", + "-0.00030517578", + "1.0", + "0.91445416", + "0.0", + "0.0", + "0.8910806", + "5.4202604", + "0.86327136", + "0.9772817", + "353855840.0", + "403993300.0", + "44.79642", + "45.281773", + "0.23923437", + "0.0", + "9478950.0", + "0.0", + "9478950.0", + "9478950.0", + "0.91445416", + "0.91445416", + "0.91445416", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAEIAVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "317.21832", + "0.00064086914" + ], + [ + "1", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "AAAAPVTGPLADDPIQETITFDDFAK", + "AAAAPVTGPLADDPIQETITFDDFAK", + "3", + "58", + "0", + "1", + "892.1131", + "P00959", + "P00959", + "SYM_ECOLI", + "metG", + "131.40971", + "102.82846", + "131.40822", + "110.56359", + "0.0", + "1.0572941", + "0.0", + "0.0", + "227486.38", + "227486.38", + "485865.8", + "485865.8", + "0.0", + "0.0", + "1.0", + "0.78337896", + "0.0", + "0.0", + "0.19562031", + "3.4541717", + "0.0", + "0.52708817", + "1242418800.0", + "937075300.0", + "131.26434", + "131.6526", + "0.23196226", + "0.0", + "55844700.0", + "0.0", + "55844700.0", + "55844700.0", + "0.8808654", + "0.8808654", + "0.8808654", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "214.11862", + "0.0011901855" + ], + [ + "2", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAVLAK1", + "AAAAVLAK", + "AAAAVLAK", + "1", + "72", + "0", + "1", + "714.45087", + "P0AEQ1", + "P0AEQ1", + "GLCG_ECOLI", + "glcG", + "35.834743", + "-19.224216", + "36.656822", + "-21.282513", + "0.0", + "1.2209269", + "0.0", + "0.0", + "1300103.4", + "1300103.4", + "1320218.6", + "1320218.6", + "1103460.6", + "0.001159668", + "1.0", + "0.79625547", + "0.0", + "0.0", + "0.9049706", + "3.4163113", + "1.7396158", + "0.96952754", + "285655300.0", + "295228060.0", + "35.59217", + "36.077908", + "0.31452703", + "0.0", + "9308464.0", + "0.0", + "9308464.0", + "9308464.0", + "0.9637441", + "0.9637441", + "0.9637441", + "0.0024889165", + "0.048146296", + "0.0025668947", + "0.0", + "0.0035870865", + "0.0048929173", + "0.0", + "1.0", + "AAAAVLAK1", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "384.22415", + "-0.00018310547" + ], + [ + "3", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADLISR2", + "AAADLISR", + "AAADLISR", + "2", + "107", + "0", + "1", + "408.73233", + "P00452", + "P00452", + "RIR1_ECOLI", + "nrdA", + "52.66213", + "-1.9677705", + "52.288113", + "-0.9493257", + "0.0", + "0.7979276", + "0.0", + "0.0", + "33115972.0", + "33115972.0", + "27576084.0", + "27576084.0", + "27404988.0", + "-0.00091552734", + "1.0", + "0.98159057", + "0.0", + "0.0", + "0.87968576", + "5.811066", + "1.6436243", + "0.93535155", + "697454900.0", + "755969100.0", + "52.3221", + "52.953266", + "0.29944947", + "0.0", + "43924670.0", + "0.0", + "43924670.0", + "43924670.0", + "0.42255992", + "0.42255992", + "0.42255992", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAADLISR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "603.34607", + "-0.00024414062" + ], + [ + "4", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADVQLR2", + "AAADVQLR", + "AAADVQLR", + "2", + "116", + "0", + "1", + "422.2378", + "P0AEG4", + "P0AEG4", + "DSBA_ECOLI", + "dsbA", + "44.020058", + "-10.41877", + "45.611725", + "-11.208551", + "0.0", + "0.80835223", + "0.0", + "0.0", + "90264560.0", + "90264560.0", + "80806920.0", + "80806920.0", + "78470104.0", + "-0.000579834", + "1.0", + "0.9814644", + "0.0", + "0.0", + "0.98277956", + "6.8381004", + "2.0685427", + "0.98311853", + "668152960.0", + "756061900.0", + "43.728844", + "44.408207", + "0.33655792", + "0.0", + "138798110.0", + "0.0", + "138798110.0", + "138798110.0", + "0.98128796", + "0.98128796", + "0.98128796", + "1.2305009e-06", + "1.9478937e-06", + "1.2305009e-06", + "0.0", + "0.000119832235", + "0.00015953313", + "0.0", + "1.0", + "AAADVQLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "701.39404", + "0.0010375977" + ], + [ + "5", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEADDIFGELSSGK2", + "AAAEADDIFGELSSGK", + "AAAEADDIFGELSSGK", + "2", + "124", + "0", + "1", + "790.87555", + "P19934", + "P19934", + "TOLA_ECOLI", + "tolA", + "102.35789", + "62.346027", + "104.54801", + "61.24625", + "0.0", + "1.0644443", + "0.0", + "0.0", + "987667.56", + "987667.56", + "969323.6", + "969323.6", + "867402.6", + "0.0014038086", + "1.0", + "0.12193332", + "0.0", + "0.0", + "0.8921607", + "1.1468129", + "0.19816712", + "0.5556846", + "841869900.0", + "684339650.0", + "102.16394", + "102.4549", + "0.07275009", + "0.0", + "987667.5", + "0.0", + "987667.5", + "987667.5", + "0.12193332", + "0.12193332", + "0.12193332", + "0.007065851", + "0.096600726", + "0.007139215", + "0.0", + "0.008451758", + "0.01186899", + "0.0", + "1.0", + "AAAEADDIFGELSSGK2", + "", + "1.0", + "0.0", + "0.0", + "0.028571429", + "0.5675676", + "0.02764423", + "0.028279182", + "0.029045643", + "0.0", + "824.41486", + "0.0012207031" + ], + [ + "6", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAESSIQVK2", + "AAAESSIQVK", + "AAAESSIQVK", + "2", + "189", + "0", + "1", + "502.27457", + "P0A8T7", + "P0A8T7", + "RPOC_ECOLI", + "rpoC", + "40.818455", + "-16.967041", + "39.618042", + "-15.982115", + "0.0", + "0.8604796", + "0.0", + "0.0", + "68653180.0", + "68653180.0", + "59188360.0", + "59188360.0", + "60213604.0", + "0.00018310547", + "1.0", + "0.98619014", + "0.0", + "0.0", + "0.99340165", + "6.5156555", + "1.9736533", + "0.5928819", + "420635070.0", + "449591200.0", + "40.527092", + "41.109886", + "0.2868077", + "0.0", + "135742530.0", + "0.0", + "135742530.0", + "135742530.0", + "0.97769797", + "0.97769797", + "0.97769797", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.00022177867", + "0.00035893754", + "0.0", + "1.0", + "AAAESSIQVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.3559", + "0.0005493164" + ], + [ + "7", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEVGAPFIEIHTGCYADAK3", + "AAAEVGAPFIEIHTGCYADAK", + "AAAEVGAPFIEIHTGCYADAK", + "3", + "205", + "0", + "1", + "731.0211", + "P0A794", + "P0A794", + "PDXJ_ECOLI", + "pdxJ", + "93.420525", + "51.298367", + "95.98912", + "49.67698", + "0.0", + "0.97043586", + "0.0", + "0.0", + "21573336.0", + "21573336.0", + "22895202.0", + "22895202.0", + "20004146.0", + "0.00079345703", + "1.0", + "0.9457609", + "0.0", + "0.0", + "0.9556992", + "5.614942", + "0.9625929", + "0.96859276", + "600740350.0", + "620459650.0", + "92.98384", + "93.760704", + "0.41035897", + "0.0", + "39017516.0", + "0.0", + "39017516.0", + "39017516.0", + "0.86302906", + "0.86302906", + "0.86302906", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "[P0A794:C158]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "811.3876", + "0.0022583008" + ], + [ + "8", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR2", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "2", + "213", + "0", + "1", + "844.4361", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.206535", + "55.172043", + "98.40381", + "56.774063", + "0.0", + "1.1086445", + "0.0", + "0.0", + "590610400.0", + "590610400.0", + "664060740.0", + "664060740.0", + "537971200.0", + "0.0005493164", + "1.0", + "0.69137955", + "0.0", + "0.0", + "0.97497547", + "5.0616074", + "3.4223218", + "0.9900597", + "583057200.0", + "626362800.0", + "99.01234", + "99.69194", + "0.28078166", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.5241153e-06", + "2.3548791e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1327.6852", + "0.0012207031" + ], + [ + "9", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR3", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "3", + "214", + "0", + "1", + "563.29315", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.32842", + "55.172043", + "98.40381", + "57.41639", + "0.0", + "0.90191376", + "0.0", + "0.0", + "70214264.0", + "70214264.0", + "64663430.0", + "64663430.0", + "64823516.0", + "0.00018310547", + "1.0", + "0.9844389", + "0.0", + "0.0", + "0.9685039", + "6.3540897", + "0.8979662", + "0.98694193", + "604663900.0", + "621195400.0", + "98.98892", + "99.619675", + "0.24378972", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "5.422538e-06", + "0.0", + "3.834282e-06", + "5.422538e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "393.70886", + "-0.00021362305" + ], + [ + "10", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAGISETLLR2", + "AAAGISETLLR", + "AAAGISETLLR", + "2", + "231", + "0", + "1", + "551.3168", + "P00935", + "P00935", + "METB_ECOLI", + "metB", + "78.551445", + "34.235195", + "79.89243", + "31.955782", + "0.0", + "0.9136672", + "0.0", + "0.0", + "9205300.0", + "9205300.0", + "7925204.0", + "7925204.0", + "7566976.0", + "0.00018310547", + "1.0", + "0.8986022", + "0.0", + "0.0", + "0.93385655", + "5.2695966", + "1.9842398", + "0.9301016", + "860745300.0", + "767963500.0", + "78.20871", + "78.89107", + "0.28478286", + "0.0", + "9636097.0", + "0.0", + "9636097.0", + "9636097.0", + "0.967955", + "0.967955", + "0.967955", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAGISETLLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "271.14008", + "0.0010681152" + ], + [ + "11", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIAYAR2", + "AAAIAYAR", + "AAAIAYAR", + "2", + "264", + "0", + "1", + "403.72958", + "P0AG84", + "P0AG84", + "YGHA_ECOLI", + "yghA", + "44.16412", + "-12.755369", + "43.757565", + "-11.295829", + "0.0", + "0.802654", + "0.0", + "0.0", + "1316254.8", + "1316254.8", + "1785789.4", + "1785789.4", + "771801.0", + "0.00033569336", + "1.0", + "0.8577426", + "0.0", + "0.0", + "0.2958416", + "4.2764664", + "1.3657955", + "0.67840135", + "901996700.0", + "918440100.0", + "43.824783", + "44.407032", + "0.42865494", + "0.0", + "18808108.0", + "0.0", + "18808108.0", + "18808108.0", + "0.95981085", + "0.95981085", + "0.95981085", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAIAYAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "593.3406", + "0.0026855469" + ], + [ + "12", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAICAER2", + "AAAICAER", + "AAAICAER", + "2", + "269", + "0", + "1", + "431.216", + "P0A9M8", + "P0A9M8", + "PTA_ECOLI", + "pta", + "31.925087", + "-27.066788", + "33.41249", + "-25.78823", + "0.0", + "0.8097701", + "0.0", + "0.0", + "571500.1", + "571500.1", + "297236.94", + "297236.94", + "277989.7", + "0.0", + "1.0", + "0.8485891", + "0.0", + "0.0", + "0.8154417", + "3.0258095", + "0.7766815", + "0.0", + "165218400.0", + "163403330.0", + "31.68209", + "32.119316", + "0.23412684", + "0.0", + "77180104.0", + "0.0", + "77180104.0", + "77180104.0", + "0.9837814", + "0.9837814", + "0.9837814", + "0.00095205125", + "0.011658683", + "0.0010386014", + "0.0", + "0.0013630168", + "0.0016382998", + "0.0", + "1.0", + "AAAIC(UniMod:4)AER2", + "[P0A9M8:C424]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "535.2293", + "-0.006713867" + ], + [ + "13", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAALAAADAR2", + "AAALAAADAR", + "AAALAAADAR", + "2", + "316", + "0", + "1", + "450.7485", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "40.28075", + "-16.91546", + "40.494534", + "-16.164911", + "0.0", + "0.83690274", + "0.0", + "0.0", + "249159380.0", + "249159380.0", + "238044860.0", + "238044860.0", + "234785490.0", + "-0.00079345703", + "1.0", + "0.9864738", + "0.0", + "0.0", + "0.9906313", + "6.9015007", + "2.9800456", + "0.994135", + "669318460.0", + "642184600.0", + "39.89198", + "40.52356", + "0.32557887", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-05", + "0.00019478938", + "0.00019942167", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAALAAADAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.2944", + "-0.00030517578" + ], + [ + "14", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAPAFSEESIR2", + "AAAPAFSEESIR", + "AAAPAFSEESIR", + "2", + "398", + "0", + "1", + "624.8146", + "P08142", + "P08142", + "ILVB_ECOLI", + "ilvB", + "69.67013", + "17.595957", + "67.82137", + "21.751873", + "0.0", + "0.95711935", + "0.0", + "0.0", + "5982976.5", + "5982976.5", + "6234872.0", + "6234872.0", + "4715585.5", + "0.0010986328", + "1.0", + "0.9502138", + "0.0", + "0.0", + "0.8272268", + "4.9783382", + "0.68951464", + "0.8171237", + "806941600.0", + "851504400.0", + "69.427155", + "70.10676", + "0.31591344", + "0.0", + "5982976.5", + "0.0", + "5982976.5", + "5982976.5", + "0.9502138", + "0.9502138", + "0.9502138", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAPAFSEESIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "518.2589", + "6.1035156e-05" + ], + [ + "15", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAQLQQGLADTSDENLK2", + "AAAQLQQGLADTSDENLK", + "AAAQLQQGLADTSDENLK", + "2", + "429", + "0", + "1", + "936.9685", + "P76576", + "P76576", + "YFGM_ECOLI", + "yfgM", + "73.92252", + "26.326391", + "75.514366", + "26.570925", + "0.0", + "1.1768218", + "0.0", + "0.0", + "1673985.8", + "1673985.8", + "2157632.5", + "2157632.5", + "1085307.2", + "0.0", + "1.0", + "0.86881787", + "0.0", + "0.0", + "0.80435896", + "5.4468393", + "1.7003247", + "0.7718048", + "893386240.0", + "991242000.0", + "73.82548", + "74.262184", + "0.27614152", + "0.0", + "1673985.9", + "0.0", + "1673985.9", + "1673985.9", + "0.86881787", + "0.86881787", + "0.86881787", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAQLQQGLADTSDENLK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "342.1772", + "0.00064086914" + ], + [ + "16", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAASHLVR2", + "AAASHLVR", + "AAASHLVR", + "2", + "500", + "0", + "1", + "412.7405", + "P0AET8", + "P0AET8", + "HDHA_ECOLI", + "hdhA", + "23.709194", + "-33.986176", + "27.357487", + "-36.831825", + "0.0", + "0.8146272", + "0.0", + "0.0", + "2015989.4", + "2015989.4", + "1642456.9", + "1642456.9", + "1693433.9", + "-0.00024414062", + "1.0", + "0.9366546", + "0.0", + "0.0", + "0.89273024", + "6.2581363", + "0.5348917", + "0.9736561", + "15688434.0", + "16270505.0", + "23.563482", + "23.9038", + "0.12379906", + "0.0", + "62128812.0", + "0.0", + "62128812.0", + "62128812.0", + "0.81174695", + "0.81174695", + "0.81174695", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAASHLVR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "341.70337", + "-0.0007019043" + ], + [ + "17", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATGEALSLVCVDEHK3", + "AAATGEALSLVCVDEHK", + "AAATGEALSLVCVDEHK", + "3", + "537", + "0", + "1", + "590.9612", + "P25888", + "P25888", + "RHLE_ECOLI", + "rhlE", + "80.39914", + "39.111588", + "84.24667", + "34.261047", + "0.0", + "0.89202386", + "0.0", + "0.0", + "734635.6", + "734635.6", + "977589.56", + "977589.56", + "686336.9", + "0.0010375977", + "1.0", + "0.6546537", + "0.0", + "0.0", + "0.38540652", + "1.7331743", + "0.0", + "0.5563414", + "1140822700.0", + "1047089500.0", + "80.30209", + "80.49616", + "0.07276726", + "0.0", + "5998876.0", + "0.0", + "5998876.0", + "5998876.0", + "0.42509428", + "0.42509428", + "0.42509428", + "0.002201604", + "0.026073128", + "0.002280412", + "0.0", + "0.0022290102", + "0.0034667768", + "0.0", + "1.0", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "[P25888:C350]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1086.5248", + "0.01550293" + ], + [ + "18", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM[Oxidation]TLVDTPNAK2", + "AAATQEM[Oxidation]TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "2", + "547", + "0", + "1", + "838.9116", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.638172", + "6.2113576", + "60.591183", + "8.781703", + "0.0", + "1.105177", + "0.0", + "0.0", + "64499790.0", + "64499790.0", + "58886880.0", + "58886880.0", + "59196744.0", + "0.00048828125", + "1.0", + "0.9908719", + "0.0", + "0.0", + "0.98715895", + "6.894661", + "1.9770116", + "0.969655", + "710916400.0", + "675191940.0", + "59.29827", + "59.929302", + "0.31421912", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.0186795e-06", + "6.995294e-06", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK2", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "645.32025", + "0.00079345703" + ], + [ + "19", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM[Oxidation]TLVDTPNAK3", + "AAATQEM[Oxidation]TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "3", + "548", + "0", + "1", + "559.61017", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.664837", + "6.2113576", + "60.591183", + "8.985086", + "0.0", + "0.8728873", + "0.0", + "0.0", + "5298862.0", + "5298862.0", + "5148599.5", + "5148599.5", + "5150481.0", + "0.00018310547", + "1.0", + "0.5086611", + "0.0", + "0.0", + "0.7988776", + "3.010162", + "0.0", + "0.95376974", + "675191940.0", + "705779300.0", + "59.325485", + "59.76188", + "0.29714456", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "1.4628691e-05", + "1.4628691e-05", + "0.00035893754", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK3", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "429.2456", + "0.0010681152" + ], + [ + "20", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQHNLEVLASR3", + "AAATQHNLEVLASR", + "AAATQHNLEVLASR", + "3", + "552", + "0", + "1", + "494.26706", + "P0ABQ0", + "P0ABQ0", + "COABC_ECOLI", + "coaBC", + "58.301556", + "8.126932", + "58.213245", + "6.339929", + "0.0", + "0.81177694", + "0.0", + "0.0", + "21642576.0", + "21642576.0", + "28040164.0", + "28040164.0", + "21112072.0", + "0.0011901855", + "1.0", + "0.8000993", + "0.0", + "0.0", + "0.0", + "4.5929427", + "0.4240915", + "0.3084519", + "686155260.0", + "665677500.0", + "58.059067", + "58.544544", + "0.3010973", + "0.0", + "21642576.0", + "0.0", + "21642576.0", + "21642576.0", + "0.8000993", + "0.8000993", + "0.8000993", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAATQHNLEVLASR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "545.3406", + "-0.005004883" + ], + [ + "21", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAAFAEWGQTTPK3", + "AADAAFAEWGQTTPK", + "AADAAFAEWGQTTPK", + "3", + "632", + "0", + "1", + "521.91943", + "P77674", + "P77674", + "ABDH_ECOLI", + "patD", + "81.266945", + "40.291775", + "82.119934", + "35.698925", + "0.0", + "0.86976653", + "0.0", + "0.0", + "5242987.0", + "5242987.0", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.97488064", + "0.0", + "0.0", + "0.0", + "4.6458707", + "0.0", + "0.0", + "1078702800.0", + "1228739100.0", + "80.97595", + "81.60664", + "0.30355465", + "0.0", + "490309730.0", + "0.0", + "490309730.0", + "490309730.0", + "0.99679875", + "0.99679875", + "0.99679875", + "0.0001947799", + "0.0036620705", + "0.00029216986", + "0.0", + "0.0053409706", + "0.006091772", + "0.0", + "1.0", + "AADAAFAEWGQTTPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "400.18268", + "0.00030517578" + ], + [ + "22", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAHGIPFTLSTVSVCPIEEVAPAIK3", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "3", + "638", + "0", + "1", + "931.8212", + "P33232", + "P33232", + "LLDD_ECOLI", + "lldD", + "124.85556", + "95.393196", + "130.38431", + "91.264404", + "0.0", + "1.0574688", + "0.0", + "0.0", + "77785.11", + "77785.11", + "104206.56", + "104206.56", + "0.0", + "0.0", + "1.0", + "0.3175594", + "0.0", + "0.0", + "0.0", + "1.7876791", + "0.0", + "0.0", + "179140050.0", + "182702220.0", + "124.75574", + "124.95271", + "0.074884415", + "0.0", + "1833752.2", + "0.0", + "1833752.2", + "1833752.2", + "0.8396257", + "0.8396257", + "0.8396257", + "0.0010312822", + "0.011658683", + "0.0011172224", + "0.0", + "0.0018053645", + "0.0027950038", + "0.0", + "1.0", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "[P33232:C111]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1412.7454", + "-0.016357422" + ], + [ + "23", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADEGLEVK2", + "AADEGLEVK", + "AADEGLEVK", + "2", + "706", + "0", + "1", + "466.2402", + "P15639", + "P15639", + "PUR9_ECOLI", + "purH", + "45.382343", + "-10.578891", + "45.980556", + "-9.825813", + "0.0", + "0.8359929", + "0.0", + "0.0", + "153085760.0", + "153085760.0", + "138279150.0", + "138279150.0", + "136599680.0", + "0.00018310547", + "1.0", + "0.9861937", + "0.0", + "0.0", + "0.9797145", + "6.8830585", + "1.431289", + "0.9854878", + "555958400.0", + "589427650.0", + "45.042305", + "45.673447", + "0.3254246", + "0.0", + "197813780.0", + "0.0", + "197813780.0", + "197813780.0", + "0.9848251", + "0.9848251", + "0.9848251", + "1.1841555e-06", + "1.9478937e-06", + "1.1841555e-06", + "0.0", + "0.000119832235", + "0.00015951775", + "0.0", + "1.0", + "AADEGLEVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "860.436", + "0.0021972656" + ], + [ + "24", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR2", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "2", + "775", + "0", + "1", + "952.4371", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.55485", + "41.7659", + "90.38439", + "45.32776", + "0.0", + "1.1736622", + "0.0", + "0.0", + "6539769.0", + "6539769.0", + "6286169.0", + "6286169.0", + "5616604.0", + "-0.00018310547", + "1.0", + "0.720854", + "0.0", + "0.0", + "0.9051132", + "4.788562", + "0.0", + "0.96589357", + "821253300.0", + "789920900.0", + "89.26371", + "89.846085", + "0.09049349", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.522042e-06", + "7.663706e-06", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "818.3315", + "-0.0005493164" + ], + [ + "25", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR3", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "3", + "776", + "0", + "1", + "635.29376", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.52821", + "41.7659", + "90.38439", + "45.21288", + "0.0", + "0.94026244", + "0.0", + "0.0", + "3315591.5", + "3315591.5", + "3435347.2", + "3435347.2", + "2989024.8", + "0.00012207031", + "1.0", + "0.7603821", + "0.0", + "0.0", + "0.8769604", + "3.057929", + "0.0", + "0.937624", + "875894200.0", + "821253300.0", + "89.28592", + "89.819466", + "0.27418387", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "931.4156", + "0.009765625" + ], + [ + "26", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK2", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "2", + "794", + "0", + "1", + "971.5282", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.52126", + "102.333176", + "131.15799", + "99.58934", + "0.0", + "1.2082555", + "0.0", + "0.0", + "11768890.0", + "11768890.0", + "10098005.0", + "10098005.0", + "9879739.0", + "0.001953125", + "1.0", + "0.9270581", + "0.0", + "0.0", + "0.9587445", + "6.4231935", + "2.2982807", + "0.99356806", + "346843420.0", + "343348540.0", + "129.27815", + "129.81258", + "0.26670924", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1118.5688", + "-0.0013427734" + ], + [ + "27", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK3", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "3", + "795", + "0", + "1", + "648.02124", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.49579", + "102.333176", + "131.15799", + "99.237206", + "0.0", + "0.9755506", + "0.0", + "0.0", + "5831566.5", + "5831566.5", + "5678113.5", + "5678113.5", + "5321460.5", + "6.1035156e-05", + "1.0", + "0.8908107", + "0.0", + "0.0", + "0.91466933", + "5.089149", + "0.0", + "0.95213616", + "346843420.0", + "343348540.0", + "129.30157", + "129.73882", + "0.2509879", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0026550293" + ], + [ + "28", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK2", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "2", + "825", + "0", + "1", + "740.4301", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.80189", + "67.758026", + "109.88321", + "64.94934", + "0.0", + "1.0728568", + "0.0", + "0.0", + "123073600.0", + "123073600.0", + "113322660.0", + "113322660.0", + "109594280.0", + "0.0005493164", + "1.0", + "0.6734924", + "0.0", + "0.0", + "0.99421567", + "5.0390263", + "1.7109023", + "0.9851098", + "426308030.0", + "504281540.0", + "105.51072", + "106.19015", + "0.18242767", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "1.2291321e-06", + "1.9478937e-06", + "0.00015953268", + "0.0", + "0.000119832235", + "0.00015953268", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1010.5993", + "-0.00048828125" + ], + [ + "29", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK3", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "3", + "826", + "0", + "1", + "493.95584", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.78095", + "67.758026", + "109.88321", + "64.92609", + "0.0", + "0.86559445", + "0.0", + "0.0", + "27001664.0", + "27001664.0", + "26015190.0", + "26015190.0", + "25650814.0", + "0.00015258789", + "1.0", + "0.9743886", + "0.0", + "0.0", + "0.97202075", + "6.2575827", + "1.7785354", + "0.9863196", + "425179200.0", + "426308030.0", + "105.48976", + "106.12093", + "0.3258582", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "514.2984", + "0.0006713867" + ], + [ + "30", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADNKSLGQFNLDGINPAPR3", + "AADNKSLGQFNLDGINPAPR", + "AADNKSLGQFNLDGINPAPR", + "3", + "884", + "0", + "1", + "700.0274", + "P0A6Y8", + "P0A6Y8", + "DNAK_ECOLI", + "dnaK", + "88.41845", + "53.373013", + "96.38754", + "44.248936", + "0.0", + "0.9205765", + "0.0", + "0.0", + "2014406.0", + "2014406.0", + "2318806.5", + "2318806.5", + "925617.25", + "0.0", + "1.0", + "0.8834976", + "0.0", + "0.0", + "0.6073868", + "4.048474", + "0.0", + "0.0", + "1398788600.0", + "1652747100.0", + "88.22464", + "88.80648", + "0.4029023", + "0.0", + "528809730.0", + "0.0", + "528809730.0", + "528809730.0", + "0.9646322", + "0.9646322", + "0.9646322", + "0.0003686296", + "0.0036620705", + "0.00046078704", + "0.0", + "0.050652087", + "0.056812774", + "0.0", + "1.0", + "AADNKSLGQFNLDGINPAPR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "440.2616", + "0.0024414062" + ], + [ + "31", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADSCHVSQPTLSGQIR3", + "AADSCHVSQPTLSGQIR", + "AADSCHVSQPTLSGQIR", + "3", + "929", + "0", + "1", + "609.63196", + "P0ACQ4", + "P0ACQ4", + "OXYR_ECOLI", + "oxyR", + "58.21326", + "5.008134", + "57.742092", + "6.152042", + "0.0", + "0.86223096", + "0.0", + "0.0", + "14137073.0", + "14137073.0", + "13011373.0", + "13011373.0", + "13712340.0", + "0.00030517578", + "1.0", + "0.83560085", + "0.0", + "0.0", + "0.7753711", + "5.0263877", + "0.81187373", + "0.8735103", + "644759200.0", + "662432300.0", + "57.970203", + "58.40748", + "0.18644737", + "0.0", + "48629056.0", + "0.0", + "48629056.0", + "48629056.0", + "0.9219536", + "0.9219536", + "0.9219536", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1983224e-06", + "1.9222603e-06", + "0.0", + "1.0", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "[P0ACQ4:C25]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "774.44684", + "0.0015258789" + ], + [ + "32", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADVHLCVK2", + "AADVHLCVK", + "AADVHLCVK", + "2", + "964", + "0", + "1", + "506.76584", + "P45395", + "P45395", + "KDSD_ECOLI", + "kdsD", + "45.045246", + "-5.750933", + "47.869987", + "-10.058963", + "0.0", + "0.87408507", + "0.0", + "0.0", + "1718921.0", + "1718921.0", + "1069094.5", + "1069094.5", + "1407849.6", + "0.0004272461", + "1.0", + "0.7300319", + "0.0", + "0.0", + "0.6207463", + "3.2565506", + "1.1316797", + "0.7533607", + "353855840.0", + "403993300.0", + "44.89996", + "45.19117", + "0.13195394", + "0.0", + "11497942.0", + "0.0", + "11497942.0", + "11497942.0", + "0.7444782", + "0.7444782", + "0.7444782", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.925552e-06", + "4.21584e-06", + "0.0", + "1.0", + "AADVHLC(UniMod:4)VK2", + "[P45395:C146]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "519.29596", + "0.002380371" + ], + [ + "33", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEAVIIDTIR2", + "AAEAVIIDTIR", + "AAEAVIIDTIR", + "2", + "1052", + "0", + "1", + "586.3377", + "P0ADG4", + "P0ADG4", + "SUHB_ECOLI", + "suhB", + "88.26376", + "42.97589", + "88.241714", + "43.108944", + "0.0", + "0.94074327", + "0.0", + "0.0", + "28097418.0", + "28097418.0", + "27610082.0", + "27610082.0", + "24713134.0", + "-0.0006713867", + "1.0", + "0.9689099", + "0.0", + "0.0", + "0.8944861", + "6.624495", + "3.5546937", + "0.8928653", + "803579140.0", + "1021073900.0", + "87.8757", + "88.603386", + "0.3242042", + "0.0", + "28097418.0", + "0.0", + "28097418.0", + "28097418.0", + "0.9689099", + "0.9689099", + "0.9689099", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAEAVIIDTIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "829.51416", + "0.0025024414" + ], + [ + "34", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEEAFR2", + "AAEEAFR", + "AAEEAFR", + "2", + "1075", + "0", + "1", + "397.1956", + "P21165", + "P21165", + "PEPQ_ECOLI", + "pepQ", + "35.711937", + "-17.198992", + "39.371098", + "-21.21893", + "0.0", + "0.7815424", + "0.0", + "0.0", + "8971166.0", + "8971166.0", + "8599221.0", + "8599221.0", + "8410514.0", + "-0.00088500977", + "1.0", + "0.95596766", + "0.0", + "0.0", + "0.9741072", + "4.954106", + "0.87492824", + "0.97103006", + "258507520.0", + "277407400.0", + "35.42042", + "36.10053", + "0.3008589", + "0.0", + "79750740.0", + "0.0", + "79750740.0", + "79750740.0", + "0.98041433", + "0.98041433", + "0.98041433", + "1.7822638e-05", + "1.7822638e-05", + "1.7822638e-05", + "0.0", + "0.00022177867", + "0.00044233107", + "0.0", + "1.0", + "AAEEAFR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "722.3468", + "0.004638672" + ], + [ + "35", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEGIAPKPLDANQM[Oxidation]AALVELLK3", + "AAEGIAPKPLDANQM[Oxidation]AALVELLK", + "AAEGIAPKPLDANQMAALVELLK", + "3", + "1134", + "0", + "1", + "793.7699", + "P36683", + "P36683", + "ACNB_ECOLI", + "acnB", + "112.99285", + "76.778725", + "114.356186", + "74.95788", + "0.0", + "0.987832", + "0.0", + "0.0", + "1294528.2", + "1294528.2", + "2726475.2", + "2726475.2", + "997040.4", + "0.004211426", + "1.0", + "0.62068915", + "0.0", + "0.0", + "0.8252063", + "3.1483374", + "0.6531393", + "0.7315975", + "501934400.0", + "418322880.0", + "112.75", + "113.3324", + "0.4064182", + "0.0", + "688585150.0", + "0.0", + "688585150.0", + "688585150.0", + "0.9442582", + "0.9442582", + "0.9442582", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAEGIAPKPLDANQM(UniMod:35){1.000000}AALVELLK3", + "[P36683:M27]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "329.14557", + "0.00036621094" + ], + [ + "36", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM[Oxidation]EQK2", + "AAEIIHIGQAIM[Oxidation]EQK", + "AAEIIHIGQAIMEQK", + "2", + "1171", + "0", + "1", + "834.4429", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.844376", + "38.029137", + "82.05038", + "31.588327", + "0.0", + "1.1397063", + "0.0", + "0.0", + "778467.5", + "778467.5", + "682096.6", + "682096.6", + "518027.94", + "0.0028686523", + "1.0", + "0.4717078", + "0.0", + "0.0", + "0.5071717", + "2.9717689", + "1.8750236", + "0.66830456", + "1169947900.0", + "1120576300.0", + "77.26175", + "78.03854", + "0.22015776", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0010350993", + "0.0011739385", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK2", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "635.35114", + "0.0008544922" + ], + [ + "37", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM[Oxidation]EQK3", + "AAEIIHIGQAIM[Oxidation]EQK", + "AAEIIHIGQAIMEQK", + "3", + "1172", + "0", + "1", + "556.63104", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.821", + "38.029137", + "82.05038", + "31.573114", + "0.0", + "0.8493062", + "0.0", + "0.0", + "15018206.0", + "15018206.0", + "25544548.0", + "25544548.0", + "14102344.0", + "6.1035156e-05", + "1.0", + "0.638456", + "0.0", + "0.0", + "0.7257927", + "3.071986", + "0.0", + "0.9269335", + "987974850.0", + "1169947900.0", + "77.23835", + "78.2093", + "0.37308988", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "0.0011710582", + "0.011658683", + "0.022141015", + "0.0", + "0.019180777", + "0.022141015", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK3", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "920.4506", + "-0.006652832" + ], + [ + "38", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELAGNDTIPVEITR2", + "AAELAGNDTIPVEITR", + "AAELAGNDTIPVEITR", + "2", + "1203", + "0", + "1", + "835.4414", + "P0ACB7", + "P0ACB7", + "HEMY_ECOLI", + "hemY", + "92.55462", + "44.613483", + "91.74687", + "49.380917", + "0.0", + "1.100099", + "0.0", + "0.0", + "2065169.5", + "2065169.5", + "2777191.5", + "2777191.5", + "1018370.9", + "-0.00012207031", + "1.0", + "0.9660883", + "0.0", + "0.0", + "0.7852382", + "5.258746", + "1.5672374", + "0.93024945", + "1214181800.0", + "1343128200.0", + "92.31227", + "92.79749", + "0.27851662", + "0.0", + "2101538.0", + "0.0", + "2101538.0", + "2101538.0", + "0.80221117", + "0.80221117", + "0.80221117", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAELAGNDTIPVEITR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1285.6747", + "0.011108398" + ], + [ + "39", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELSGLTHSAISTIEQDK3", + "AAELSGLTHSAISTIEQDK", + "AAELSGLTHSAISTIEQDK", + "3", + "1241", + "0", + "1", + "657.6725", + "P0A9U6", + "P0A9U6", + "PUUR_ECOLI", + "puuR", + "92.83261", + "52.800926", + "95.38884", + "49.440197", + "0.0", + "0.90168226", + "0.0", + "0.0", + "1559440.0", + "1559440.0", + "4588269.0", + "4588269.0", + "1107571.6", + "-6.1035156e-05", + "1.0", + "0.829134", + "0.0", + "0.0", + "0.65697545", + "4.8367305", + "0.8680101", + "0.85241157", + "1244536400.0", + "1142363000.0", + "92.687454", + "93.12392", + "0.27198178", + "0.0", + "16596189.0", + "0.0", + "16596189.0", + "16596189.0", + "0.8498309", + "0.8498309", + "0.8498309", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0005226299", + "0.00051727705", + "0.0", + "1.0", + "AAELSGLTHSAISTIEQDK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "793.90466", + "0.0048828125" + ], + [ + "40", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDECR2", + "AAENNPELAAFIDECR", + "AAENNPELAAFIDECR", + "2", + "1277", + "0", + "1", + "910.4176", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.71746", + "59.33595", + "102.491844", + "59.59053", + "0.0", + "1.1293542", + "0.0", + "0.0", + "35468964.0", + "35468964.0", + "27665188.0", + "27665188.0", + "27662706.0", + "-0.00018310547", + "1.0", + "0.9918874", + "0.0", + "0.0", + "0.98318624", + "6.8573484", + "0.9958743", + "0.9957494", + "383825760.0", + "344968580.0", + "100.42619", + "101.05705", + "0.33605525", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R2", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1320.6252", + "0.0007324219" + ], + [ + "41", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDECR3", + "AAENNPELAAFIDECR", + "AAENNPELAAFIDECR", + "3", + "1278", + "0", + "1", + "607.2808", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.64509", + "59.33595", + "102.491844", + "60.003082", + "0.0", + "0.92753696", + "0.0", + "0.0", + "13152284.0", + "13152284.0", + "13149464.0", + "13149464.0", + "12741688.0", + "0.00061035156", + "1.0", + "0.6915186", + "0.0", + "0.0", + "0.72929275", + "4.1023116", + "1.3746892", + "0.87355685", + "394104060.0", + "383825760.0", + "100.49975", + "100.93643", + "0.13069002", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R3", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "839.37164", + "-0.0015258789" + ], + [ + "42", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEQLGQANSAVSR2", + "AAEQLGQANSAVSR", + "AAEQLGQANSAVSR", + "2", + "1301", + "0", + "1", + "701.35767", + "P30864", + "P30864", + "YAFC_ECOLI", + "yafC", + "48.169655", + "-9.248929", + "47.460194", + "-7.1125617", + "0.0", + "1.0064552", + "0.0", + "0.0", + "2426344.5", + "2426344.5", + "1100771.5", + "1100771.5", + "1100771.5", + "-0.00030517578", + "1.0", + "0.54000485", + "0.0", + "0.0", + "0.645773", + "3.2920668", + "0.56579524", + "0.639474", + "537066430.0", + "489363040.0", + "47.926537", + "48.412094", + "0.24718998", + "0.0", + "2426344.5", + "0.0", + "2426344.5", + "2426344.5", + "0.54000485", + "0.54000485", + "0.54000485", + "0.0011710582", + "0.011658683", + "0.0012547051", + "0.0", + "0.0022290102", + "0.0032603245", + "0.0", + "1.0", + "AAEQLGQANSAVSR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "889.4486", + "0.006652832" + ], + [ + "43", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAESALNIDVPVNAQYIR2", + "AAESALNIDVPVNAQYIR", + "AAESALNIDVPVNAQYIR", + "2", + "1346", + "0", + "1", + "972.5129", + "P0ACE0", + "P0ACE0", + "MBHM_ECOLI", + "hybC", + "106.4501", + "63.976006", + "106.3041", + "65.58738", + "0.0", + "1.192544", + "0.0", + "0.0", + "115423.8", + "115423.8", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.14110963", + "0.0", + "0.0", + "0.0", + "0.96301436", + "0.0", + "0.0", + "413169100.0", + "458511840.0", + "106.30478", + "106.59692", + "0.17054091", + "0.0", + "1231022.1", + "0.0", + "1231022.1", + "1231022.1", + "0.443667", + "0.443667", + "0.443667", + "0.00687235", + "0.096600726", + "0.0069459677", + "0.0", + "0.027691884", + "0.03497582", + "0.0", + "1.0", + "AAESALNIDVPVNAQYIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1174.6215", + "0.0" + ], + [ + "44", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEVLVVDTR2", + "AAEVLVVDTR", + "AAEVLVVDTR", + "2", + "1439", + "0", + "1", + "536.80347", + "P76116", + "P76116", + "YNCE_ECOLI", + "yncE", + "69.12997", + "18.1098", + "68.80989", + "20.39872", + "0.0", + "0.9022431", + "0.0", + "0.0", + "15261269.0", + "15261269.0", + "13799797.0", + "13799797.0", + "13161172.0", + "0.0006713867", + "1.0", + "0.8059485", + "0.0", + "0.0", + "0.94272983", + "6.048667", + "2.4350483", + "0.9846432", + "815928700.0", + "865392100.0", + "68.887566", + "69.517746", + "0.28593954", + "0.0", + "29748434.0", + "0.0", + "29748434.0", + "29748434.0", + "0.97279036", + "0.97279036", + "0.97279036", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.7919564e-06", + "4.038439e-06", + "0.0", + "1.0", + "AAEVLVVDTR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0035705566" + ], + [ + "45", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDDAIAAR2", + "AAFDDAIAAR", + "AAFDDAIAAR", + "2", + "1480", + "0", + "1", + "510.7591", + "P0ABC7", + "P0ABC7", + "HFLK_ECOLI", + "hflK", + "69.22526", + "20.680796", + "70.90652", + "20.603237", + "0.0", + "0.874018", + "0.0", + "0.0", + "4191834.5", + "4191834.5", + "5319950.0", + "5319950.0", + "3585247.0", + "0.00091552734", + "1.0", + "0.91427785", + "0.0", + "0.0", + "0.84949213", + "5.577577", + "0.20540452", + "0.8701518", + "874820030.0", + "942318850.0", + "69.07937", + "69.56425", + "0.31091535", + "0.0", + "6749399.5", + "0.0", + "6749399.5", + "6749399.5", + "0.3634465", + "0.3634465", + "0.3634465", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAFDDAIAAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "616.3413", + "0.0049438477" + ], + [ + "46", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER2", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "2", + "1493", + "0", + "1", + "803.3864", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.30761", + "31.610626", + "76.97953", + "30.905209", + "0.0", + "1.1188899", + "0.0", + "0.0", + "6226086.5", + "6226086.5", + "6581563.0", + "6581563.0", + "5416400.0", + "0.00048828125", + "1.0", + "0.87343264", + "0.0", + "0.0", + "0.83749926", + "5.453828", + "0.9509031", + "0.88552314", + "835704500.0", + "847041660.0", + "77.11338", + "77.74489", + "0.33347782", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "7.2828416e-06", + "1.0001863e-05", + "0.0", + "1.0", + "AAFDFAVEHQSVER2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "732.3493", + "0.005065918" + ], + [ + "47", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER3", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "3", + "1494", + "0", + "1", + "535.9267", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.28542", + "31.610626", + "76.97953", + "30.868996", + "0.0", + "0.85347503", + "0.0", + "0.0", + "34672812.0", + "34672812.0", + "35916796.0", + "35916796.0", + "30941520.0", + "0.00012207031", + "1.0", + "0.9381459", + "0.0", + "0.0", + "0.96926254", + "4.7819843", + "0.0", + "0.9832147", + "809092540.0", + "835704500.0", + "77.04237", + "77.77095", + "0.34891692", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "2.9257258e-06", + "2.9257258e-06", + "0.00044233107", + "0.0", + "0.0004361099", + "0.00044233107", + "0.0", + "1.0", + "AAFDFAVEHQSVER3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "601.30164", + "0.0" + ], + [ + "48", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFLAVDNHK2", + "AAFLAVDNHK", + "AAFLAVDNHK", + "2", + "1573", + "0", + "1", + "543.2905", + "P30958", + "P30958", + "MFD_ECOLI", + "mfd", + "52.817375", + "4.7128224", + "55.31082", + "-0.9314743", + "0.0", + "0.92017615", + "0.0", + "0.0", + "608196.8", + "608196.8", + "672072.4", + "672072.4", + "464276.38", + "-0.00030517578", + "1.0", + "0.6241357", + "0.0", + "0.0", + "0.6410963", + "2.881232", + "1.0310254", + "0.7445865", + "810914300.0", + "749407400.0", + "52.6233", + "53.01149", + "0.22651064", + "0.0", + "69954510.0", + "0.0", + "69954510.0", + "69954510.0", + "0.9603192", + "0.9603192", + "0.9603192", + "0.00028754913", + "0.0036620705", + "0.00038339884", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAFLAVDNHK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "683.3471", + "-0.0028076172" + ], + [ + "49", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFNQM[Oxidation]VQGHK3", + "AAFNQM[Oxidation]VQGHK", + "AAFNQMVQGHK", + "3", + "1599", + "0", + "1", + "416.20474", + "P0AD59", + "P0AD59", + "IVY_ECOLI", + "ivy", + "32.16641", + "-27.826418", + "31.139164", + "-25.183844", + "0.0", + "0.74429053", + "0.0", + "0.0", + "15223242.0", + "15223242.0", + "13718766.0", + "13718766.0", + "15013976.0", + "-0.00039672852", + "1.0", + "0.68971384", + "0.0", + "0.0", + "0.8479052", + "3.8382869", + "0.3720075", + "0.8248497", + "138829220.0", + "151236850.0", + "31.92391", + "32.40942", + "0.13118525", + "0.0", + "33099992.0", + "0.0", + "33099992.0", + "33099992.0", + "0.9900178", + "0.9900178", + "0.9900178", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1550284e-05", + "1.566858e-05", + "0.0", + "1.0", + "AAFNQM(UniMod:35){1.000000}VQGHK3", + "[P0AD59:M50]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "568.3202", + "-0.0008544922" + ] + ], + "shape": { + "columns": 71, + "rows": 13976 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Run.IndexRunChannelPrecursor.IdModified.SequenceStripped.SequencePrecursor.ChargePrecursor.Lib.IndexDecoyProteotypic...Translated.Q.ValueChannel.Q.ValuePG.Q.ValuePG.PEPGG.Q.ValueProtein.Q.ValueGlobal.PG.Q.ValueLib.PG.Q.ValueBest.Fr.MzBest.Fr.Mz.Delta
00LFQ_Orbitrap_AIF_Ecoli_01AAAAEIAVK2AAAAEIAVKAAAAEIAVK21001...0.00.00.0006460.0012870.000650.0006510.0006460.0317.2183230.000641
10LFQ_Orbitrap_AIF_Ecoli_01AAAAPVTGPLADDPIQETITFDDFAK3AAAAPVTGPLADDPIQETITFDDFAKAAAAPVTGPLADDPIQETITFDDFAK35801...0.00.00.0006460.0012870.000650.0006510.0006460.0214.1186220.001190
20LFQ_Orbitrap_AIF_Ecoli_01AAAAVLAK1AAAAVLAKAAAAVLAK17201...0.00.00.0006460.0012870.000650.0006510.0006460.0384.224152-0.000183
30LFQ_Orbitrap_AIF_Ecoli_01AAADLISR2AAADLISRAAADLISR210701...0.00.00.0006460.0012870.000650.0006510.0006460.0603.346069-0.000244
40LFQ_Orbitrap_AIF_Ecoli_01AAADVQLR2AAADVQLRAAADVQLR211601...0.00.00.0006460.0012870.000650.0006510.0006460.0701.3940430.001038
..................................................................
139710LFQ_Orbitrap_AIF_Ecoli_01YYLNAGVPIEIK2YYLNAGVPIEIKYYLNAGVPIEIK271227601...0.00.00.0006460.0012870.000650.0006510.0006460.0599.3762820.000000
139720LFQ_Orbitrap_AIF_Ecoli_01YYPAEDAK2YYPAEDAKYYPAEDAK271235201...0.00.00.0006460.0012870.000650.0006510.0006460.0315.6582950.000977
139730LFQ_Orbitrap_AIF_Ecoli_01YYPGSPLIAR2YYPGSPLIARYYPGSPLIAR271236201...0.00.00.0006460.0012870.000650.0006510.0006460.0810.4832150.007996
139740LFQ_Orbitrap_AIF_Ecoli_01YYQGTPSPVK2YYQGTPSPVKYYQGTPSPVK271246101...0.00.00.0006460.0012870.000650.0006510.0006460.0527.3187870.000122
139750LFQ_Orbitrap_AIF_Ecoli_01YYSVIYNLIDEVK2YYSVIYNLIDEVKYYSVIYNLIDEVK271262201...0.00.00.0006460.0012870.000650.0006510.0006460.0993.525146-0.005127
\n", + "

13976 rows × 71 columns

\n", + "
" + ], + "text/plain": [ + " Run.Index Run Channel \\\n", + "0 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "1 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "2 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "3 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "4 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "... ... ... ... \n", + "13971 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13972 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13973 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13974 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13975 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "\n", + " Precursor.Id Modified.Sequence \\\n", + "0 AAAAEIAVK2 AAAAEIAVK \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK3 AAAAPVTGPLADDPIQETITFDDFAK \n", + "2 AAAAVLAK1 AAAAVLAK \n", + "3 AAADLISR2 AAADLISR \n", + "4 AAADVQLR2 AAADVQLR \n", + "... ... ... \n", + "13971 YYLNAGVPIEIK2 YYLNAGVPIEIK \n", + "13972 YYPAEDAK2 YYPAEDAK \n", + "13973 YYPGSPLIAR2 YYPGSPLIAR \n", + "13974 YYQGTPSPVK2 YYQGTPSPVK \n", + "13975 YYSVIYNLIDEVK2 YYSVIYNLIDEVK \n", + "\n", + " Stripped.Sequence Precursor.Charge Precursor.Lib.Index \\\n", + "0 AAAAEIAVK 2 10 \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK 3 58 \n", + "2 AAAAVLAK 1 72 \n", + "3 AAADLISR 2 107 \n", + "4 AAADVQLR 2 116 \n", + "... ... ... ... \n", + "13971 YYLNAGVPIEIK 2 712276 \n", + "13972 YYPAEDAK 2 712352 \n", + "13973 YYPGSPLIAR 2 712362 \n", + "13974 YYQGTPSPVK 2 712461 \n", + "13975 YYSVIYNLIDEVK 2 712622 \n", + "\n", + " Decoy Proteotypic ... Translated.Q.Value Channel.Q.Value PG.Q.Value \\\n", + "0 0 1 ... 0.0 0.0 0.000646 \n", + "1 0 1 ... 0.0 0.0 0.000646 \n", + "2 0 1 ... 0.0 0.0 0.000646 \n", + "3 0 1 ... 0.0 0.0 0.000646 \n", + "4 0 1 ... 0.0 0.0 0.000646 \n", + "... ... ... ... ... ... ... \n", + "13971 0 1 ... 0.0 0.0 0.000646 \n", + "13972 0 1 ... 0.0 0.0 0.000646 \n", + "13973 0 1 ... 0.0 0.0 0.000646 \n", + "13974 0 1 ... 0.0 0.0 0.000646 \n", + "13975 0 1 ... 0.0 0.0 0.000646 \n", + "\n", + " PG.PEP GG.Q.Value Protein.Q.Value Global.PG.Q.Value \\\n", + "0 0.001287 0.00065 0.000651 0.000646 \n", + "1 0.001287 0.00065 0.000651 0.000646 \n", + "2 0.001287 0.00065 0.000651 0.000646 \n", + "3 0.001287 0.00065 0.000651 0.000646 \n", + "4 0.001287 0.00065 0.000651 0.000646 \n", + "... ... ... ... ... \n", + "13971 0.001287 0.00065 0.000651 0.000646 \n", + "13972 0.001287 0.00065 0.000651 0.000646 \n", + "13973 0.001287 0.00065 0.000651 0.000646 \n", + "13974 0.001287 0.00065 0.000651 0.000646 \n", + "13975 0.001287 0.00065 0.000651 0.000646 \n", + "\n", + " Lib.PG.Q.Value Best.Fr.Mz Best.Fr.Mz.Delta \n", + "0 0.0 317.218323 0.000641 \n", + "1 0.0 214.118622 0.001190 \n", + "2 0.0 384.224152 -0.000183 \n", + "3 0.0 603.346069 -0.000244 \n", + "4 0.0 701.394043 0.001038 \n", + "... ... ... ... \n", + "13971 0.0 599.376282 0.000000 \n", + "13972 0.0 315.658295 0.000977 \n", + "13973 0.0 810.483215 0.007996 \n", + "13974 0.0 527.318787 0.000122 \n", + "13975 0.0 993.525146 -0.005127 \n", + "\n", + "[13976 rows x 71 columns]" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_astral" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "7bb68200", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "ScanNr", + "rawType": "float64", + "type": "float" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "Peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "ExpMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "CalcMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "Label", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "SpecId", + "rawType": "object", + "type": "string" + }, + { + "name": "mokapot score", + "rawType": "float64", + "type": "float" + }, + { + "name": "mokapot q-value", + "rawType": "float64", + "type": "float" + }, + { + "name": "mokapot PEP", + "rawType": "float64", + "type": "float" + }, + { + "name": "Proteins", + "rawType": "object", + "type": "string" + }, + { + "name": "charge", + "rawType": "float64", + "type": "float" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + } + ], + "ref": "cedfa14b-fdb3-46ec-a8eb-e17b6ceaa0b3", + "rows": [ + [ + "0", + "16344319.0", + "part_0.0_12763.813476562498.mzml", + "VAVVLGESEVANGTAVVK", + "1725.7568", + "1740.9623", + "True", + "16344319|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=120503", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P60906|SYH_ECOLI|382|400", + "4.0", + "VAVVLGESEVANGTAVVK4" + ], + [ + "1", + "7269092.0", + "part_0.0_12763.813476562498.mzml", + "AM[Oxidation]YSIAK", + "798.84924", + "798.39453", + "True", + "7269092|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=39402", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A853|TNAA_ECOLI|211|218", + "2.0", + "AM[Oxidation]YSIAK2" + ], + [ + "2", + "7269128.0", + "part_0.0_12763.813476562498.mzml", + "ANAVVM[Oxidation]ATGGAGR", + "1198.2739", + "1189.5874", + "True", + "7269128|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=39402", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P00363|FRDA_ECOLI|185|198", + "3.0", + "ANAVVM[Oxidation]ATGGAGR3" + ], + [ + "3", + "31040321.0", + "part_0.0_12763.813476562498.mzml", + "LDSAVTNLNNTTTNLSEAQSR", + "2242.7485", + "2248.0933", + "True", + "31040321|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=102717", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P04949|FLIC_ECOLI|434|455", + "3.0", + "LDSAVTNLNNTTTNLSEAQSR3" + ], + [ + "4", + "15137498.0", + "part_0.0_12763.813476562498.mzml", + "LDGPVTGNGK", + "958.922", + "956.49274", + "True", + "15137498|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=57774", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AFG8|ODP1_ECOLI|264|274", + "2.0", + "LDGPVTGNGK2" + ], + [ + "5", + "30187050.0", + "part_0.0_12763.813476562498.mzml", + "IVSGDDVDLNR", + "1207.0348", + "1201.5938", + "True", + "30187050|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=95507", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AAB4|UBID_ECOLI|133|144", + "2.0", + "IVSGDDVDLNR2" + ], + [ + "6", + "4330677.0", + "part_0.0_12763.813476562498.mzml", + "PFVLGPTHEEVITDLIR", + "1927.3622", + "1935.0466", + "True", + "4330677|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=177874", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P16659|SYP_ECOLI|102|119", + "2.0", + "PFVLGPTHEEVITDLIR2" + ], + [ + "7", + "27295408.0", + "part_0.0_12763.813476562498.mzml", + "LINYLVEEFK", + "1263.0603", + "1266.6859", + "True", + "27295408|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=143480", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A6Y8|DNAK_ECOLI|235|245", + "2.0", + "LINYLVEEFK2" + ], + [ + "8", + "4332080.0", + "part_0.0_12763.813476562498.mzml", + "EEESAAAAEVEER", + "1414.3722", + "1418.6161", + "True", + "4332080|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=81337", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0ACF8|HNS_ECOLI|41|54", + "3.0", + "EEESAAAAEVEER3" + ], + [ + "9", + "11105509.0", + "part_0.0_12763.813476562498.mzml", + "HLNATIINEGDINTR", + "1693.7422", + "1679.8591", + "True", + "11105509|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=76128", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A9M8|PTA_ECOLI|237|252", + "4.0", + "HLNATIINEGDINTR4" + ], + [ + "10", + "27296413.0", + "part_0.0_12763.813476562498.mzml", + "ISTTLLNLM[Oxidation]ER", + "1311.0822", + "1305.696", + "True", + "27296413|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=141341", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P21151|FADA_ECOLI|351|362", + "2.0", + "ISTTLLNLM[Oxidation]ER2" + ], + [ + "11", + "4327197.0", + "part_0.0_12763.813476562498.mzml", + "VNESLLAGK", + "926.9075", + "929.5182", + "True", + "4327197|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=55323", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P05459|PDXB_ECOLI|48|57", + "2.0", + "VNESLLAGK2" + ], + [ + "12", + "27298637.0", + "part_0.0_12763.813476562498.mzml", + "LVEVPVGFK", + "990.9366", + "986.5801", + "True", + "27298637|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=138720", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P36938|PGM_ECOLI|365|374", + "2.0", + "LVEVPVGFK2" + ], + [ + "13", + "21235785.0", + "part_0.0_12763.813476562498.mzml", + "DANGNLLADGDSVTIIK", + "1726.5142", + "1714.8738", + "True", + "21235785|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=138424", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AFJ1|YJDM_ECOLI|45|62", + "3.0", + "DANGNLLADGDSVTIIK3" + ], + [ + "14", + "21226757.0", + "part_0.0_12763.813476562498.mzml", + "HVVVDKPFTVTLSQAR", + "1789.7859", + "1795.9944", + "True", + "21226757|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=106734", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P77376|YDGJ_ECOLI|89|105", + "4.0", + "HVVVDKPFTVTLSQAR4" + ], + [ + "15", + "24606979.0", + "part_0.0_12763.813476562498.mzml", + "EIPFLYASSAATYGGR", + "1695.2567", + "1701.8363", + "True", + "24606979|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=141825", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P67910|HLDD_ECOLI|107|123", + "2.0", + "EIPFLYASSAATYGGR2" + ], + [ + "16", + "24649240.0", + "part_0.0_12763.813476562498.mzml", + "EALGLPHSDVFR", + "1335.093", + "1339.6882", + "True", + "24649240|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=92455", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P36683|ACNB_ECOLI|358|370", + "2.0", + "EALGLPHSDVFR2" + ], + [ + "17", + "18402058.0", + "part_0.0_12763.813476562498.mzml", + "QNQLEQLAEQYDELK", + "1839.3221", + "1847.8903", + "True", + "18402058|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=124390", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A8V2|RPOB_ECOLI|1007|1022", + "2.0", + "QNQLEQLAEQYDELK2" + ], + [ + "18", + "29486457.0", + "part_0.0_12763.813476562498.mzml", + "NVNPQIVENYR", + "1354.345", + "1344.6786", + "True", + "29486457|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=93805", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P29745|PEPT_ECOLI|88|99", + "3.0", + "NVNPQIVENYR3" + ], + [ + "19", + "14083068.0", + "part_0.0_12763.813476562498.mzml", + "VIPATILGIQSDR", + "1378.3557", + "1381.7928", + "True", + "14083068|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=157153", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P00961|SYGB_ECOLI|171|184", + "3.0", + "VIPATILGIQSDR3" + ], + [ + "20", + "18404633.0", + "part_0.0_12763.813476562498.mzml", + "IALTQSGGLDAAQAR", + "1462.394", + "1470.779", + "True", + "18404633|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=109034", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P37648|YHJJ_ECOLI|83|98", + "3.0", + "IALTQSGGLDAAQAR3" + ], + [ + "21", + "29505280.0", + "part_0.0_12763.813476562498.mzml", + "DM[Oxidation]FLDDQGNPDSK", + "1503.1694", + "1496.6089", + "True", + "29505280|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=102641", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P18956|GGT_ECOLI|123|136", + "2.0", + "DM[Oxidation]FLDDQGNPDSK2" + ], + [ + "22", + "1859729.0", + "part_0.0_12763.813476562498.mzml", + "NGALNAAIVGQPAYK", + "1487.1621", + "1485.794", + "True", + "1859729|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=122685", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A9Q7|ADHE_ECOLI|288|303", + "2.0", + "NGALNAAIVGQPAYK2" + ], + [ + "23", + "14086364.0", + "part_0.0_12763.813476562498.mzml", + "AVEFQDILK", + "1062.9694", + "1061.5757", + "True", + "14086364|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=128702", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AC38|ASPA_ECOLI|177|186", + "2.0", + "AVEFQDILK2" + ], + [ + "24", + "14086082.0", + "part_0.0_12763.813476562498.mzml", + "DLVHAIPLYAIK", + "1359.1039", + "1351.7864", + "True", + "14086082|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=170876", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P36683|ACNB_ECOLI|547|559", + "2.0", + "DLVHAIPLYAIK2" + ], + [ + "25", + "14085363.0", + "part_0.0_12763.813476562498.mzml", + "M[Oxidation]SPEAFEESVDAIR", + "1594.4541", + "1595.7136", + "True", + "14085363|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=128702", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AD05|YECA_ECOLI|158|172", + "3.0", + "M[Oxidation]SPEAFEESVDAIR3" + ], + [ + "26", + "1857693.0", + "part_0.0_12763.813476562498.mzml", + "GDVISDGPEAPHDILR", + "1695.2567", + "1689.8323", + "True", + "1857693|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=125452", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A8T7|RPOC_ECOLI|1206|1222", + "2.0", + "GDVISDGPEAPHDILR2" + ], + [ + "27", + "15141747.0", + "part_0.0_12763.813476562498.mzml", + "LQTLGLTQGTVVTISAEGEDEQK", + "2414.0696", + "2416.2334", + "True", + "15141747|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=129629", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AA04|PTHP_ECOLI|49|72", + "4.0", + "LQTLGLTQGTVVTISAEGEDEQK4" + ], + [ + "28", + "15142060.0", + "part_0.0_12763.813476562498.mzml", + "KDVNPDEAVAIGAAVQGGVLTGDVK", + "2414.0696", + "2422.2703", + "True", + "15142060|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=129629", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A6Y8|DNAK_ECOLI|362|387", + "4.0", + "KDVNPDEAVAIGAAVQGGVLTGDVK4" + ], + [ + "29", + "21250520.0", + "part_0.0_12763.813476562498.mzml", + "APM[Oxidation]ILALANPEPEILPPLAK", + "2110.6885", + "2113.1855", + "True", + "21250520|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=204695", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P76558|MAO2_ECOLI|279|299", + "3.0", + "APM[Oxidation]ILALANPEPEILPPLAK3" + ], + [ + "30", + "17440984.0", + "part_0.0_12763.813476562498.mzml", + "DGNPNVTADITR", + "1271.0638", + "1271.6105", + "True", + "17440984|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=83117", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P00864|CAPP_ECOLI|253|265", + "2.0", + "DGNPNVTADITR2" + ], + [ + "31", + "30188564.0", + "part_0.0_12763.813476562498.mzml", + "GQIQENQYQLNQVVER", + "1933.8513", + "1944.9653", + "True", + "30188564|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=99164", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P45955|CPOB_ECOLI|74|90", + "4.0", + "GQIQENQYQLNQVVER4" + ], + [ + "32", + "30189285.0", + "part_0.0_12763.813476562498.mzml", + "VSQALDILTYTNKK", + "1597.6985", + "1592.8774", + "True", + "30189285|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=144369", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P61175|RL22_ECOLI|28|42", + "4.0", + "VSQALDILTYTNKK4" + ], + [ + "33", + "21248438.0", + "part_0.0_12763.813476562498.mzml", + "EGTDLFLK", + "919.6611", + "921.4808", + "True", + "21248438|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=125308", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A7V8|RS4_ECOLI|14|22", + "1.0", + "EGTDLFLK1" + ], + [ + "34", + "11096364.0", + "part_0.0_12763.813476562498.mzml", + "VDM[Oxidation]ALVGDIK", + "1078.9767", + "1075.5582", + "True", + "11096364|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=110953", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P07003|POXB_ECOLI|303|313", + "2.0", + "VDM[Oxidation]ALVGDIK2" + ], + [ + "35", + "21223386.0", + "part_0.0_12763.813476562498.mzml", + "NDIAM[Oxidation]GPLINAAALER", + "1677.7349", + "1683.8613", + "True", + "21223386|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=133584", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P25553|ALDA_ECOLI|320|336", + "4.0", + "NDIAM[Oxidation]GPLINAAALER4" + ], + [ + "36", + "21223432.0", + "part_0.0_12763.813476562498.mzml", + "NEAPLGIVYGSDAVASK", + "1677.7349", + "1689.8573", + "True", + "21223432|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=133584", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P37329|MODA_ECOLI|185|202", + "4.0", + "NEAPLGIVYGSDAVASK4" + ], + [ + "37", + "11123207.0", + "part_0.0_12763.813476562498.mzml", + "VQTGDGINNDVDTK", + "1462.394", + "1474.69", + "True", + "11123207|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=56704", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AAV6|YBGS_ECOLI|106|120", + "3.0", + "VQTGDGINNDVDTK3" + ], + [ + "38", + "21222492.0", + "part_0.0_12763.813476562498.mzml", + "AGFLAAIAK", + "859.63385", + "860.51196", + "True", + "21222492|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=133640", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P36683|ACNB_ECOLI|64|73", + "1.0", + "AGFLAAIAK1" + ], + [ + "39", + "27280321.0", + "part_0.0_12763.813476562498.mzml", + "M[Oxidation]GISTIASYR", + "1110.9911", + "1113.5487", + "True", + "27280321|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=88462", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P09831|GLTB_ECOLI|716|726", + "2.0", + "M[Oxidation]GISTIASYR2" + ], + [ + "40", + "11089324.0", + "part_0.0_12763.813476562498.mzml", + "ELLEIEGLDEPTVEALR", + "1918.6013", + "1924.9993", + "True", + "11089324|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=172248", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AFF6|NUSA_ECOLI|390|407", + "3.0", + "ELLEIEGLDEPTVEALR3" + ], + [ + "41", + "30190367.0", + "part_0.0_12763.813476562498.mzml", + "VSVSIFGR", + "854.87476", + "863.48645", + "True", + "30190367|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=99004", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AFG0|NUSG_ECOLI|159|167", + "2.0", + "VSVSIFGR2" + ], + [ + "42", + "21220648.0", + "part_0.0_12763.813476562498.mzml", + "GSPALSAFR", + "899.65204", + "904.4767", + "True", + "21220648|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=132268", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P15254|PUR4_ECOLI|6|15", + "1.0", + "GSPALSAFR1" + ], + [ + "43", + "27307882.0", + "part_0.0_12763.813476562498.mzml", + "AGDVITSLNGK", + "1070.973", + "1073.5717", + "True", + "27307882|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=73235", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0C0V0|DEGP_ECOLI|331|342", + "2.0", + "AGDVITSLNGK2" + ], + [ + "44", + "1863838.0", + "part_0.0_12763.813476562498.mzml", + "QFVEVIIAPSASEEALK", + "1823.315", + "1829.9774", + "True", + "1863838|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=171517", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P15639|PUR9_ECOLI|337|354", + "2.0", + "QFVEVIIAPSASEEALK2" + ], + [ + "45", + "14081504.0", + "part_0.0_12763.813476562498.mzml", + "IVGDGIAIK", + "878.8856", + "884.5331", + "True", + "14081504|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=76283", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P69783|PTGA_ECOLI|45|54", + "2.0", + "IVGDGIAIK2" + ], + [ + "46", + "7294542.0", + "part_0.0_12763.813476562498.mzml", + "ITEETLAK", + "902.8966", + "903.4913", + "True", + "7294542|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=41321", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0A6T1|G6PI_ECOLI|57|65", + "2.0", + "ITEETLAK2" + ], + [ + "47", + "24649985.0", + "part_0.0_12763.813476562498.mzml", + "TAAILLDTK", + "947.6738", + "944.5542", + "True", + "24649985|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=110393", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AD61|KPYK1_ECOLI|59|68", + "1.0", + "TAAILLDTK1" + ], + [ + "48", + "7283352.0", + "part_0.0_12763.813476562498.mzml", + "TAVQGSPTM[Oxidation]LAAISK", + "1486.4049", + "1489.7809", + "True", + "7283352|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=79351", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P77455|PAAZ_ECOLI|496|511", + "3.0", + "TAVQGSPTM[Oxidation]LAAISK3" + ], + [ + "49", + "24654354.0", + "part_0.0_12763.813476562498.mzml", + "IGAAIGSGIGGLGLIEENHTSLM[Oxidation]NGGPR", + "2702.2004", + "2706.376", + "True", + "24654354|part_0.0_12763.813476562498.mzml|controllerType=0 controllerNumber=1 scan=142338", + "0.00022804766", + "0.0001231982259455", + "0.0695380311799379", + "sp|P0AAI5|FABF_ECOLI|100|128", + "4.0", + "IGAAIGSGIGGLGLIEENHTSLM[Oxidation]NGGPR4" + ] + ], + "shape": { + "columns": 13, + "rows": 10452 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ScanNrfilenamePeptideExpMassCalcMassLabelSpecIdmokapot scoremokapot q-valuemokapot PEPProteinschargePrecursor.Id
016344319.0part_0.0_12763.813476562498.mzmlVAVVLGESEVANGTAVVK1725.756801740.96230True16344319|part_0.0_12763.813476562498.mzml|cont...0.0002280.0001230.069538sp|P60906|SYH_ECOLI|382|4004.0VAVVLGESEVANGTAVVK4
17269092.0part_0.0_12763.813476562498.mzmlAM[Oxidation]YSIAK798.84924798.39453True7269092|part_0.0_12763.813476562498.mzml|contr...0.0002280.0001230.069538sp|P0A853|TNAA_ECOLI|211|2182.0AM[Oxidation]YSIAK2
27269128.0part_0.0_12763.813476562498.mzmlANAVVM[Oxidation]ATGGAGR1198.273901189.58740True7269128|part_0.0_12763.813476562498.mzml|contr...0.0002280.0001230.069538sp|P00363|FRDA_ECOLI|185|1983.0ANAVVM[Oxidation]ATGGAGR3
331040321.0part_0.0_12763.813476562498.mzmlLDSAVTNLNNTTTNLSEAQSR2242.748502248.09330True31040321|part_0.0_12763.813476562498.mzml|cont...0.0002280.0001230.069538sp|P04949|FLIC_ECOLI|434|4553.0LDSAVTNLNNTTTNLSEAQSR3
415137498.0part_0.0_12763.813476562498.mzmlLDGPVTGNGK958.92200956.49274True15137498|part_0.0_12763.813476562498.mzml|cont...0.0002280.0001230.069538sp|P0AFG8|ODP1_ECOLI|264|2742.0LDGPVTGNGK2
..........................................
104474915132.0part_0.0_12763.813476562498.mzmlSIGTLSAFEQNALEGMLDTLK2242.748502237.12520True4915132|part_0.0_12763.813476562498.mzml|contr...0.0130950.0098550.082518sp|P61889|MDH_ECOLI|279|3003.0SIGTLSAFEQNALEGMLDTLK3
104488913138.0part_0.0_12763.813476562498.mzmlFGLPIYVPER1198.273901189.64940True8913138|part_0.0_12763.813476562498.mzml|contr...0.0131390.0098550.082566sp|P07023|TYRA_ECOLI|39|493.0FGLPIYVPER3
1044927527933.0part_0.0_12763.813476562498.mzmlFGLPIYVPER1191.027501189.64940True27527933|part_0.0_12763.813476562498.mzml|cont...0.0131390.0098550.082566sp|P07023|TYRA_ECOLI|39|492.0FGLPIYVPER2
1045013414284.0part_0.0_12763.813476562498.mzmlVLQM[Oxidation]LEK870.88200875.47864True13414284|part_0.0_12763.813476562498.mzml|cont...0.0131610.0098550.082590sp|P0A6Z3|HTPG_ECOLI|355|3622.0VLQM[Oxidation]LEK2
1045129190065.0part_0.0_12763.813476562498.mzmlVLQM[Oxidation]LEK875.64110875.47864True29190065|part_0.0_12763.813476562498.mzml|cont...0.0131610.0098550.082590sp|P0A6Z3|HTPG_ECOLI|355|3621.0VLQM[Oxidation]LEK1
\n", + "

10452 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " ScanNr filename Peptide \\\n", + "0 16344319.0 part_0.0_12763.813476562498.mzml VAVVLGESEVANGTAVVK \n", + "1 7269092.0 part_0.0_12763.813476562498.mzml AM[Oxidation]YSIAK \n", + "2 7269128.0 part_0.0_12763.813476562498.mzml ANAVVM[Oxidation]ATGGAGR \n", + "3 31040321.0 part_0.0_12763.813476562498.mzml LDSAVTNLNNTTTNLSEAQSR \n", + "4 15137498.0 part_0.0_12763.813476562498.mzml LDGPVTGNGK \n", + "... ... ... ... \n", + "10447 4915132.0 part_0.0_12763.813476562498.mzml SIGTLSAFEQNALEGMLDTLK \n", + "10448 8913138.0 part_0.0_12763.813476562498.mzml FGLPIYVPER \n", + "10449 27527933.0 part_0.0_12763.813476562498.mzml FGLPIYVPER \n", + "10450 13414284.0 part_0.0_12763.813476562498.mzml VLQM[Oxidation]LEK \n", + "10451 29190065.0 part_0.0_12763.813476562498.mzml VLQM[Oxidation]LEK \n", + "\n", + " ExpMass CalcMass Label \\\n", + "0 1725.75680 1740.96230 True \n", + "1 798.84924 798.39453 True \n", + "2 1198.27390 1189.58740 True \n", + "3 2242.74850 2248.09330 True \n", + "4 958.92200 956.49274 True \n", + "... ... ... ... \n", + "10447 2242.74850 2237.12520 True \n", + "10448 1198.27390 1189.64940 True \n", + "10449 1191.02750 1189.64940 True \n", + "10450 870.88200 875.47864 True \n", + "10451 875.64110 875.47864 True \n", + "\n", + " SpecId mokapot score \\\n", + "0 16344319|part_0.0_12763.813476562498.mzml|cont... 0.000228 \n", + "1 7269092|part_0.0_12763.813476562498.mzml|contr... 0.000228 \n", + "2 7269128|part_0.0_12763.813476562498.mzml|contr... 0.000228 \n", + "3 31040321|part_0.0_12763.813476562498.mzml|cont... 0.000228 \n", + "4 15137498|part_0.0_12763.813476562498.mzml|cont... 0.000228 \n", + "... ... ... \n", + "10447 4915132|part_0.0_12763.813476562498.mzml|contr... 0.013095 \n", + "10448 8913138|part_0.0_12763.813476562498.mzml|contr... 0.013139 \n", + "10449 27527933|part_0.0_12763.813476562498.mzml|cont... 0.013139 \n", + "10450 13414284|part_0.0_12763.813476562498.mzml|cont... 0.013161 \n", + "10451 29190065|part_0.0_12763.813476562498.mzml|cont... 0.013161 \n", + "\n", + " mokapot q-value mokapot PEP Proteins charge \\\n", + "0 0.000123 0.069538 sp|P60906|SYH_ECOLI|382|400 4.0 \n", + "1 0.000123 0.069538 sp|P0A853|TNAA_ECOLI|211|218 2.0 \n", + "2 0.000123 0.069538 sp|P00363|FRDA_ECOLI|185|198 3.0 \n", + "3 0.000123 0.069538 sp|P04949|FLIC_ECOLI|434|455 3.0 \n", + "4 0.000123 0.069538 sp|P0AFG8|ODP1_ECOLI|264|274 2.0 \n", + "... ... ... ... ... \n", + "10447 0.009855 0.082518 sp|P61889|MDH_ECOLI|279|300 3.0 \n", + "10448 0.009855 0.082566 sp|P07023|TYRA_ECOLI|39|49 3.0 \n", + "10449 0.009855 0.082566 sp|P07023|TYRA_ECOLI|39|49 2.0 \n", + "10450 0.009855 0.082590 sp|P0A6Z3|HTPG_ECOLI|355|362 2.0 \n", + "10451 0.009855 0.082590 sp|P0A6Z3|HTPG_ECOLI|355|362 1.0 \n", + "\n", + " Precursor.Id \n", + "0 VAVVLGESEVANGTAVVK4 \n", + "1 AM[Oxidation]YSIAK2 \n", + "2 ANAVVM[Oxidation]ATGGAGR3 \n", + "3 LDSAVTNLNNTTTNLSEAQSR3 \n", + "4 LDGPVTGNGK2 \n", + "... ... \n", + "10447 SIGTLSAFEQNALEGMLDTLK3 \n", + "10448 FGLPIYVPER3 \n", + "10449 FGLPIYVPER2 \n", + "10450 VLQM[Oxidation]LEK2 \n", + "10451 VLQM[Oxidation]LEK1 \n", + "\n", + "[10452 rows x 13 columns]" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mumdia_astral_valid" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "id": "64108076", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAH4CAYAAAClqYymAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbtlJREFUeJzt3XeYU2X+NvD7pGd6r8A0ehdQ6U0EERcUFQErq66r7iquZXV3VbC7iosNy66KLw5lpSi6q1gQRdQVpHcGGPr0PsmkPu8f+U1kmMKUJCc55/5c11wwSSb5pp3ceaokhBAgIiIiUgmN3AUQERERBRLDDxEREakKww8RERGpCsMPERERqQrDDxEREakKww8RERGpCsMPERERqQrDDxEREakKww8RERGpCsNPKyxevBiSJCE/P1/uUlr0wgsvIDs7G1qtFgMHDpS7HAqQzMxMXHHFFXKXQdRu8+bNgyRJcpcRMtxuN/r27Yunn35a7lIwduxYjB071vt7fn4+JEnC4sWLvac9/PDDuPjiiwNfXAuCKvzs2bMHN9xwA9LT02E0GpGWlobrr78ee/bskbu0oPfFF1/goYcewogRI/Dee+/hmWeeafayt9xyCyRJ8v5ERUVhwIABWLBgAWw2WwCrVob6A3dJSYn3tHMf44iICGRnZ+Oaa67BqlWr4Ha7Zay4ZRaLBfPmzcOGDRvkLsVv6p+fqKgoWK3WRucfOnTI+9y9+OKL7bqNsWPHQpIkdOvWrcnzv/zyS+9trFy50nt6/Zet+h+TyYS0tDRMmjQJr7zyCqqrqxtdV1OvwbPNmDEDkiThz3/+c7vuS7Boz/tq7Nix6Nu3b5PX53K5kJaWBkmS8Nlnn7WplvoaFixY0Oi8+udwy5Yt3tPqn6Pk5GRYLJZGf9OWLzHLli3DiRMn8Ic//KHRbTb389NPP7Xp/vnS3LlzsWPHDqxdu1a2Gs6lk7uAeqtXr8asWbMQFxeHW2+9FVlZWcjPz8c777yDlStXYvny5bjqqqvkLjNorV+/HhqNBu+88w4MBsN5L280GvGvf/0LAFBRUYFVq1bhgQcewObNm7F8+XJ/l6sKZz/GVqsVx44dwyeffIJrrrkGY8eOxccff4yoqCiZq2zMYrFg/vz5ANDgG53S6HQ6WCwWfPLJJ5gxY0aD83Jzc2EymVBXV9eh2zCZTMjLy8PPP/+Miy66qE238cQTTyArKwsOhwMFBQXYsGED5s6di5deeglr165F//79W1VDVVUVPvnkE2RmZmLZsmV47rnnQrqVxZfvq/Xr1+PMmTPIzMxEbm4uJk+e3OZ6XnjhBdx5550ICwtr1eWLiorwxhtv4P7772/zbZ19mzNnzkR0dHSj8+pfN+fq2rVru2+vLTIyMmC1WqHX672npaSkYNq0aXjxxRcxderUgNRxXiII5OXlibCwMNGzZ09RVFTU4Lzi4mLRs2dPER4eLg4fPhzQumpqaoQQQrz33nsCgDh69GhAb78t5syZI8LDw1t12ZtvvrnRZV0ulxgyZIgAIE6dOtXk37ndbmGxWDpcqy/VP0f+Vltb2+x5jz/+uAAgiouLvac19RjXe/bZZwUAMWPGDJ/UlpGRIaZMmeKT6xLC854DIB5//HGfXWewqX9+Jk6cKK688spG53fr1k1cffXVAoB44YUX2nUbY8aMEX369BE9evQQc+fObXCe1WoVUVFR3tv48MMPvefVH282b97c6Dq//vprYTabRUZGRoP3YlOvwXrvvvuu0Ov1Yv369QKA2LBhQ7vujz/V138+7Xlf1T8PTbnpppvEoEGDxMsvvyzCw8PbdDwBIAYOHCgAiAULFjQ4r6nnsP4+Dhw4UCQnJzc6lrb2fbx161YBQHz11Vfnvc1AGDNmjBgzZsx5L7dy5UohSVLAP8ebExTdXi+88AIsFgvefvttJCYmNjgvISEBb731Fmpra/H3v/8dALBy5UpIkoRvv/220XW99dZbkCQJu3fv9p62f/9+XHPNNYiLi4PJZMKQIUMaNb/VNxl+++23uOuuu5CUlIROnTo1W/PHH3+MKVOmIC0tDUajETk5OXjyySfhcrkaXK6+yfWXX37B8OHDYTabkZWVhTfffLNVj43T6cSTTz6JnJwcGI1GZGZm4i9/+UuD7ilJkvDee++htrbW28R5dn9ra2g0Gu+3/PqxTfXNsOvWrcOQIUNgNpvx1ltvAfC0Fs2dOxedO3eG0WhE165d8fzzzzdqdna73Xj55ZfRr18/mEwmJCYm4rLLLvM2BzfVP3z2/Zo3b5739/pm471792L27NmIjY3FyJEjAQAFBQWYM2cOOnXqBKPRiNTUVEybNq3ROK1FixahT58+3m7Vu+++GxUVFQ0uc/ZzNnr0aISFheEvf/lLmx7Pljz88MOYOHEiPvzwQxw8eNB7+pYtWzBp0iQkJCR4Xye//e1vW329X3zxBQYOHAiTyYTevXtj9erVjS5zvuctPz/f+x6cP3++9/U0b948rF27FpIkYefOnd7rW7VqFSRJwvTp0xvcTq9evXDdddc1OO2DDz7A4MGDYTabERcXh5kzZ+LEiRONavzf//6Hyy67DNHR0QgLC8OYMWOwadOmBpepfy3k5eXhlltuQUxMDKKjozFnzpwmuxSaM3v2bHz22WcNXgObN2/GoUOHMHv27EaXb25sSkvjAmfNmoUVK1Y0eG988sknsFgsjVqczmf8+PF49NFHcezYMXzwwQet+pvc3FxceumlGDduHHr16oXc3NxW396LL76I4cOHIz4+HmazGYMHD27QRVdPkiT84Q9/wEcffYS+ffvCaDSiT58++Pzzzxtd9vvvv8eFF14Ik8mEnJwc7zGlo5p7XzXHarVizZo1mDlzJmbMmAGr1YqPP/64Tbc5YsQIjB8/Hn//+9+b7D5tymOPPYbCwkK88cYbbbqteh999BEMBgNGjx7drr8Hzn9cBlr32dOU5o7pEyZMAIA2P8b+EhThp75JdtSoUU2eP3r0aGRmZuI///kPAGDKlCmIiIjAv//970aXXbFiBfr06ePt492zZw+GDh2Kffv24eGHH8aCBQsQHh6OK6+8EmvWrGn093fddRf27t2Lxx57DA8//HCzNS9evBgRERH405/+hJdffhmDBw9u9m/Ky8tx+eWXY/Dgwfj73/+OTp064c4778S777573sfmtttuw2OPPYZBgwbhH//4B8aMGYNnn30WM2fO9F5myZIlGDVqFIxGI5YsWYIlS5a0641x+PBhAEB8fLz3tAMHDmDWrFm49NJL8fLLL2PgwIGwWCwYM2YMPvjgA9x000145ZVXMGLECDzyyCP405/+1OA6b731Vu+H7fPPP4+HH34YJpOpQ/3P1157LSwWC5555hncfvvtAICrr74aa9aswZw5c7Bo0SLcc889qK6uxvHjx71/N2/ePNx9991IS0vDggULcPXVV+Ott97CxIkT4XA4GtxGaWkpJk+ejIEDB2LhwoUYN25cu+ttyo033gghBL788ksAnqbwiRMnIj8/Hw8//DBeffVVXH/99a1+nA4dOoTrrrsOkydPxrPPPgudTodrr73We/0AWvW8JSYmeg/KV111lff1NH36dIwcORKSJOG7777zXufGjRuh0Wjw/fffe08rLi7G/v37G7wGn376adx0003o1q0bXnrpJcydOxdff/01Ro8e3SB4rF+/HqNHj0ZVVRUef/xxPPPMM6ioqMD48ePx888/N7rfM2bMQHV1NZ599lnMmDEDixcv9nbZtcb06dMhSVKDoLh06VL07NkTgwYNavX1tGT27Nk4c+ZMgzFUS5cuxSWXXIKkpKQ2X9+NN94IwBN2z+f06dP45ptvMGvWLACeILZy5UrY7fZW3dbLL7+MCy64AE888QSeeeYZ7+uq/lh8tu+//x533XUXZs6cib///e+oq6vD1VdfjdLSUu9ldu3ahYkTJ6KoqAjz5s3DnDlz8Pjjjzd5LG6Pc99XLVm7di1qamowc+ZMpKSkYOzYsW0KhvXmzZvXpjAzatSoNgems/3www/o27dvg26ls1VWVqKkpKTBz9nPAdC643JrPnvaIjo6Gjk5OY2+yMhG7qaniooKAUBMmzatxctNnTpVABBVVVVCCCFmzZolkpKShNPp9F7mzJkzQqPRiCeeeMJ72iWXXCL69esn6urqvKe53W4xfPhw0a1bN+9p9U2GI0eObHCdZ593drdXU90/d9xxhwgLC2twW2PGjGnULGqz2cTAgQNFUlKSsNvtzd7n7du3CwDitttua3D6Aw88IACI9evXe09rqTn4XPWXLS4uFsXFxSIvL08888wzQpIk0b9/f+/lMjIyBADx+eefN/j7J598UoSHh4uDBw82OP3hhx8WWq1WHD9+XAghvM3s99xzT6Ma3G63EEKIo0ePCgDivffea3QZnNP1Ut9sPGvWrAaXKy8vP2/3RFFRkTAYDGLixInC5XJ5T3/ttdcEAPHuu+96T6t/zt58881mr+9sbe32EkKIbdu2CQDivvvuE0IIsWbNmnY3Wdc/T6tWrfKeVllZKVJTU8UFF1zgPa21z1tL3V59+vRp0K0waNAgce211woAYt++fUIIIVavXi0AiB07dgghhMjPzxdarVY8/fTTDa5r165dQqfTeU93u92iW7duYtKkSd7XhxCe91pWVpa49NJLvafVP+a//e1vG1znVVddJeLj48/7mJ39/FxzzTXikksuEUJ4un9TUlLE/Pnzva/Ns19XzXXPNHWMOLu7ZciQIeLWW28VQnherwaDQbz//vvim2++aVO3V73o6OgGz21z3V4vvviiMJvN3uPmwYMHBQCxZs2a8z5GQjQ+ztntdtG3b18xfvz4BqcDEAaDQeTl5XlP27FjhwAgXn31Ve9pV155pTCZTOLYsWPe0/bu3Su0Wm2Hu72EaPy+EqL5bq8rrrhCjBgxwvv722+/LXQ6XaOhF80BIO6++24hhBDjxo0TKSkp3serpW6v4uJi8e233woA4qWXXvKe39pur06dOomrr7660en1t9nUj9Fo9F6uNcfltnz2nNvt1dIxfeLEiaJXr17nvY+BIHvLT/3MhcjIyBYvV39+VVUVAOC6665DUVFRg29TK1euhNvt9ja3l5WVYf369d5vh2en4EmTJuHQoUM4depUg9u5/fbbodVqz1u32WxucB9KSkowatQoWCwW7N+/v8FldTod7rjjDu/vBoMBd9xxB4qKivDLL780exv//e9/AaBRa0r9QLmmvn21Vm1tLRITE5GYmIiuXbviL3/5C4YNG9boG1hWVhYmTZrU4LQPP/wQo0aNQmxsbINvFxMmTIDL5fK2DNR3iTz++OONbr8jAy5///vfN/jdbDbDYDBgw4YNKC8vb/JvvvrqK9jtdsydOxcaza8v+9tvvx1RUVGNHkuj0Yg5c+a0u8bziYiIAPDr6z8mJgYA8OmnnzZqhWqNtLS0BhMCoqKicNNNN2Hbtm0oKCgA0PrnrSWjRo3Cxo0bvbXv2LEDv/vd75CQkOA9fePGjYiJifG2vq5evRputxszZsxocLspKSno1q0bvvnmGwDA9u3bvd1NpaWl3svV1tbikksuwXfffdeoW/Xc18KoUaNQWlrqPU60xuzZs7FhwwYUFBRg/fr1KCgoaLLLqyNmz56N1atXw263Y+XKldBqtR2awBEREdHkrK9z5ebmYsqUKd7jZ7du3TB48OBWt3CcfZwrLy9HZWUlRo0aha1btza67IQJE5CTk+P9vX///oiKisKRI0cAeGZWrVu3DldeeSW6dOnivVyvXr0aHWPa69z3VXNKS0uxbt06b4sY4Gk9liSpyR6F85k3bx4KCgpaPZxh9OjRGDduXLtaf0pLSxEbG9vs+a+//jq+/PLLBj9nz2RrzXHZX5899ceeYCD7bK/6N+X5XqznhqT6MQErVqzAJZdcAsDT5TVw4EB0794dAJCXlwchBB599FE8+uijTV5vUVER0tPTvb83NUq+KXv27MHf/vY3rF+/vtGBtrKyssHvaWlpCA8Pb3BafY35+fkYOnRok7dx7NgxaDSaRqP0U1JSEBMTg2PHjrWq1qaYTCZ88sknADwf9FlZWU2OcWrq8Th06BB27tzZaHxWvaKiIgCebrS0tDTExcW1u86mnFuT0WjE888/j/vvvx/JyckYOnQorrjiCtx0001ISUkBAO9j1aNHjwZ/azAYkJ2d3eixTE9Pb9WsufaqqakB8OvrecyYMbj66qsxf/58/OMf/8DYsWNx5ZVXYvbs2TAajee9vq5duzYKlGe/xlJSUlr9vLVk1KhRePPNN5GXl4fDhw9DkiQMGzbMG4puv/12bNy4ESNGjPCGzEOHDkEI0eyU7/rm+0OHDgEAbr755mZvv7KyssGB/+wPUQDe88rLy1s94+fyyy9HZGQkVqxYge3bt+PCCy9E165dfbqu18yZM/HAAw/gs88+Q25uLq644orzfuFrSU1NzXm7zPbt24dt27bhpptuQl5envf0sWPH4vXXX0dVVdV5H6NPP/0UTz31FLZv395onOG5zn0uAM/zUf+FpLi4GFartcnXQY8ePbwfuB1x7vuqOStWrIDD4cAFF1zQ4LG5+OKLkZubi7vvvhuA5wv02V2EZrO5yRlWZ4eZcwN5c+bNm4cxY8bgzTffxH333deqv6knhGj2vIsuughDhgxp9vzWHJf99dkjhAiamYayh5/o6GikpqY2GETZlJ07dyI9Pd37ZjUajd5xO4sWLUJhYSE2bdrUYH2b+m+JDzzwQLPfLM59cs/+ptOciooKjBkzBlFRUXjiiSeQk5MDk8mErVu34s9//rPP13Dxx4tFq9V6B6C1pKnHw+1249JLL8VDDz3U5N/Uf+i2RnP37dyB4+erae7cufjNb36Djz76COvWrcOjjz6KZ599FuvXr8cFF1zQ6npaug1fqh+QX//6q1/r5aeffsInn3yCdevW4be//S0WLFiAn376yfuNtiN88bzVDzD/7rvvcOTIEQwaNAjh4eEYNWoUXnnlFdTU1GDbtm0NFl9zu93edVSaalWtv2/175sXXnih2UU6z30cmmulbenD4VxGoxHTp0/H+++/jyNHjjQYZH+u9rxeASA1NRVjx47FggULsGnTJqxatarV9Z3r5MmTqKysPO/U5foB0ffdd1+TH66rVq1qsXVz48aNmDp1KkaPHo1FixYhNTUVer0e7733HpYuXdro8r54Ljrq3PdVc+pbvkaMGNHk+UeOHEF2djamT5/eYGLNzTff3Oxkkscffxxjx47FW2+95W3Jbcno0aMxduzYNgUmwDMms7kWbl/z9WdPeXk5EhISfHqd7SV7+AGAK664Av/85z/x/fffew+uZ9u4cSPy8/MbdB0Bnq6v999/H19//TX27dsHIUSDGSbZ2dkAPN8sW/NB31obNmxAaWkpVq9e3WBQ59GjR5u8/OnTp1FbW9ug9ad+NkJmZmazt5ORkQG3241Dhw6hV69e3tMLCwtRUVGBjIyMDt6T9snJyUFNTc15H9OcnBysW7cOZWVlzX7LqP+mfu6Mq/Z8s8jJycH999+P+++/H4cOHcLAgQOxYMECfPDBB97H6sCBA97XBQDY7XYcPXrUp6+P1liyZAkkScKll17a4PShQ4di6NChePrpp7F06VJcf/31WL58OW677bYWr6++lfPsg9W5r7HWPm8tHfC6dOmCLl26YOPGjThy5Ih3ksLo0aPxpz/9CR9++CFcLleD90VOTg6EEMjKymoxYNV3mURFRQX8+Zg9ezbeffddaDSaFgd0nv16PfsDrjWv19mzZ+O2225DTEwMLr/88nbXumTJEgBosatICIGlS5di3LhxuOuuuxqd/+STTyI3N7fF8LNq1SqYTCasW7euQevje++91666ExMTYTabvS18Zztw4EC7rvNczb2vznb06FH88MMP+MMf/oAxY8Y0OM/tduPGG2/E0qVL8be//Q0LFixoEDTS0tKavd4xY8Zg7NixeP755/HYY4+1qt558+Z5A1Nr9ezZs9nPmtZozXHZX589R48exYABA9r1t74m+5gfAHjwwQdhNptxxx13NBqVXlZWht///vcICwvDgw8+2OC8CRMmIC4uDitWrMCKFStw0UUXNegSSUpK8r6wzpw50+h2i4uL21Vv/Tecs7/R2O12LFq0qMnLO53OBi9uu92Ot956C4mJiRg8eHCzt1N/gFy4cGGD01966SUAnllvcpgxYwZ+/PFHrFu3rtF5FRUVcDqdADx96EKIJmff1D92UVFRSEhIaDTepLnHsikWi6XRQnE5OTmIjIz0NtVPmDABBoMBr7zySoPn7Z133kFlZWVAH8vnnnsOX3zxBa677jpvF0B5eXmjb8j1rR+tWXX79OnTDcZrVVVV4f/9v/+HgQMHerv+Wvu81S/Wdm4grTdq1CisX78eP//8szf8DBw4EJGRkXjuuee8U6LrTZ8+HVqtFvPnz290H4UQ3vf84MGDkZOTgxdffNHbfXG29r5fW2PcuHF48skn8dprr3kfr6bUB7SzX6+1tbV4//33z3sb11xzDR5//HEsWrSo3V2q69evx5NPPomsrCxcf/31zV5u06ZNyM/Px5w5c3DNNdc0+rnuuuvwzTff4PTp081eh1arhSRJDVq18vPz8dFHH7Wrdq1Wi0mTJuGjjz5qMAtz3759Tb4m26qp91VT6lt9HnrooUaPy4wZMzBmzBjvZQYPHowJEyZ4f3r37t1iDfVjf95+++1W1Xx2YGrtgprDhg3D7t27270af2uOy/747KmsrMThw4cxfPjwNv+tPwRFy0+3bt3w/vvv4/rrr0e/fv0arfBcUlKCZcuWNRhMB3hadKZPn47ly5ejtra2yWXoX3/9dYwcORL9+vXD7bffjuzsbBQWFuLHH3/EyZMnsWPHjjbXO3z4cMTGxuLmm2/GPffcA0mSsGTJkmabd9PS0vD8888jPz8f3bt3944tePvtt5udrggAAwYMwM0334y3337b29X2888/4/3338eVV17p8+nXrfXggw9i7dq1uOKKK3DLLbdg8ODBqK2txa5du7By5Urk5+cjISEB48aNw4033ohXXnkFhw4dwmWXXQa3242NGzdi3Lhx3qXZb7vtNjz33HO47bbbMGTIEHz33XetWqej3sGDB3HJJZdgxowZ6N27N3Q6HdasWYPCwkLvt/jExEQ88sgjmD9/Pi677DJMnToVBw4cwKJFi3DhhRfihhtu8Pnj5HQ6vV0PdXV1OHbsGNauXYudO3di3LhxDQ6Q77//PhYtWoSrrroKOTk5qK6uxj//+U9ERUW1qpWge/fuuPXWW7F582YkJyfj3XffRWFhYYNv6a193sxmM3r37o0VK1age/fuiIuLQ9++fb0DmEeNGoXc3FxIkuRtqdVqtRg+fDjWrVuHsWPHNvhwz8nJwVNPPYVHHnkE+fn5uPLKKxEZGYmjR49izZo1+N3vfocHHngAGo0G//rXvzB58mT06dMHc+bMQXp6Ok6dOoVvvvkGUVFR3nFqvqbRaPC3v/3tvJebOHEiunTpgltvvRUPPvggtFot3n33XSQmJjb4QG9KdHR0i11q5/rss8+wf/9+OJ1OFBYWYv369fjyyy+RkZGBtWvXwmQyNfu3ubm50Gq1zX5ITZ06FX/961+xfPnyRoNa602ZMgUvvfQSLrvsMsyePRtFRUV4/fXX0bVr1/MOU2jO/Pnz8fnnn2PUqFG466674HQ68eqrr6JPnz6tvs62vK+akpubi4EDB6Jz585Nnj916lT88Y9/xNatW9u83MGYMWMwZsyYJtega87jjz/epmP5tGnT8OSTT+Lbb7/FxIkTG51f/7o51/Dhw5Gdnd2q47I/Pnu++uorCCEwbdq0Nv+tXwR0btl57Ny5U8yaNUukpqYKvV4vUlJSxKxZs8SuXbua/Zsvv/xSABCSJIkTJ040eZnDhw+Lm266SaSkpAi9Xi/S09PFFVdcIVauXOm9TEvTS5uaxrpp0yYxdOhQYTabRVpamnjooYfEunXrBADxzTffeC9XP81yy5YtYtiwYcJkMomMjAzx2muvteoxcTgcYv78+SIrK0vo9XrRuXNn8cgjjzSYTi9E+6a6n09LUy+rq6vFI488Irp27SoMBoNISEgQw4cPFy+++GKD6ftOp1O88MILomfPnsJgMIjExEQxefJk8csvv3gvY7FYxK233iqio6NFZGSkmDFjhigqKmp2qvu503lLSkrE3Xff7V0JPDo6Wlx88cXi3//+d6O6X3vtNdGzZ0+h1+tFcnKyuPPOO0V5eXmDy7S0ImxTmpvqjrOmmoaFhYnMzExx9dVXi5UrVzaYbi+EZ9XWWbNmiS5dugij0SiSkpLEFVdcIbZs2XLe269/ntatWyf69+8vjEaj6NmzZ4Pp0/Va+7z98MMPYvDgwcJgMDR6Hvbs2SMANJqy+tRTTwkA4tFHH22yzlWrVomRI0eK8PBwER4eLnr27CnuvvtuceDAgQaX27Ztm5g+fbqIj48XRqNRZGRkiBkzZoivv/66xcdciNavxt6a90BTU92FEOKXX34RF198sTAYDKJLly7ipZdeOu9U9+a0NNW9/sdgMIiUlBRx6aWXipdfftk7bf1sZz8edrtdxMfHi1GjRrV421lZWQ2myzflnXfeEd26dfO+pt57770mp/vjrGnfZ8vIyBA333xzg9O+/fZb72srOztbvPnmm21a4bkt7yshGj4Pv/zyS4uvUSE8SzPgnOnyTWnuPtc/p+d+nrS0Cnf98hqtXam9f//+3qUT6rU01R3nTD1vzXG5tZ89rZ3qft1114mRI0e26v4FgiREAEejqdDYsWNRUlLSYMVpIiKi9lqyZAnuvvtuHD9+vFWDq+VWUFCArKwsLF++PGhafoJizA8RERG1zvXXX48uXbrg9ddfl7uUVlm4cCH69esXNMEHANjy42ds+SEiIgoubPkhIiIiVWHLDxEREakKW36IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFUYfoiIiEhVGH6IiIhIVRh+iIiISFV0chdARBRIdpcddc66Fn+cbidcbhfcwg23cMMlfv1/c/QaPfRaPQxaAwxaA/Qaz//PPa3+d5POhHB9OLQabQDvPREBDD9EpCAOlwOVtkpU2apQWVeJSlslauw1DYJNSwFGDmadGZHGSEQYIhBp+L9//+/3CEMEDFqD3CUSKY4khBByF0FE1FpOt7NBuDn7/xaHRe7yfM6gNXhDUYwpBvFh8UgIS0C0MRqSJMldHlFIYvghoqDldDtRXFuMotoiFFs8/9bYa+QuKyjoNDrEmeMQb473BqI4cxx0GjboE50Pww8RBQUhBMqsZd6QU1RbhHJrOQR4iGotCRKiTdHeQJQYlojkiGQGIqJzMPwQkSzqnHU4XX3aG3RKLCVwup1yl6U4GkmDpPAkpEemIy0yDckRydBInOhL6sbwQ0QBIYRAUW0RTlSdwInKEyixlLBVRwY6jQ4pESlIi0xDWmQaEsMSOXaIVIfhh4j8xuKw4ETlCZyoOoFTVadgc9nkLonOYdAakBqRirTINKRHpSPOHCd3SUR+x/BDRD7jFm4U1hR6W3dKraVyl0RtFGWMQlZMFrJjs5EYnih3OUR+wfBDRB3iFm6crDqJvLI8HK88DrvLLndJ5CMRhghkx2YjKyYLyRHJcpdD5DMMP0TULoU1hThUdghHyo+gzlkndznkZxGGCGTGZCI7NhspESlyl0PUIQw/RNRq5dZy5JXlIa8sD9X2arnLIZmE6cO8XWOpkalyl0PUZgw/RNSiWnstDpcfxqHSQxzDQ41EGaPQK6EXeiT0gElnkrscolZh+CGiRtzCjSPlR7C/ZD/OVJ/hlHQ6L42kQVZMFnon9mZrEAU9hh8i8rI6rNhXsg97i/cqcp8sCowYUwx6JfRC9/juMOqMcpdD1AjDDxGhxFKC3UW7cbjsMFzCJXc5pBBaSYvs2Gz0TuzN2WIUVBh+iFTKLdzIr8jH7qLdKKgpkLscUrg4cxx6J/ZGj/ge0Gq0cpdDKsfwQ6Qydc467C/Zj73Fe7lDOgWcWWdG/+T+6J3YG3qtXu5ySKUYfohUotpWjW0F25BXlscNREl2Rq0RfZP6om9SX44LooBj+CFSuBp7Dbad2YYDpQfgFm65yyFqQK/Ro09SH/RP7s+p8hQwDD9ECmVxWLDtzDbsL9nPQcwU9HQaHXom9MSA5AEIN4TLXQ4pHMMPkcLUOeuwvWA79hbvZfcWhRyNpEGP+B4YmDIQkcZIucshhWL4IVIIm9OGHYU7sLtoN0MPhbz6EDQ4bTDC9GFyl0MKw/BDFOLsLjt2Fu7ErsJdcLgdcpdD5FN6jR79k/tjQMoA6DQ6ucshhWD4IQpRbuHG7qLd2HZmG2wum9zlEPlVmD4MQ9KGoEd8D0iSJHc5FOIYfohC0InKE/jx5I+oqKuQuxSigIozx2FYp2FIj0qXuxQKYQw/RM1xOgGrteFPXR3gcHjOc7k8/577f7cbkCRAo/n13/qf+t91OsBgAEwmwGj0/Jz9//qfc1TZqvDDiR9wvPK4DA8IUfDIisnC0E5DOSia2oXhh9TLYgEqK4Gqql//ra39Neg4ZB4/o9UC4eFARATcUREoSdJjb80xVEkOVMEJCzh9ndRNK2nRP7k/Lki9gOOBqE0YfkjZhPAEm5ISoKysYdhxhsaMKEu8CeUxTjjRsF6hkWDX6WHTamDValCtESiWHKiSQuN+EflKuD4cwzsPR1ZsltylUIhg+CHlcLuBigpP0Kn/KS2VvwWnnZwmHcpSdbBq6tr0dy6tFlaDHlU6DUolF0o0DtjBlZ1J+bJjszGyy0iuFE3nxfBDocvhAAoKgNOngTNnPEHHFfpdQUICqlPDUGG2QsA3b0+7XocavR4VOoFSjQvlwgHBCTOkQCadCcM7D0fXuK5yl0JBjOGHQofT+WvYOX3a07LjVlaLhiNMj9IUCTbJ7tfbERoNrAY9qnValGndOAMbHBIPBaQcmTGZGNllJBdIpCYx/FBwKykBjh0DTp4EiosVF3bOVpViRkV4nc9ae9pCSBJqTUYU6SWclOywSqHfgkZk1BoxrPMwdI/vLncpFGQYfii4uFzAqVNAfj5w/LhnRpbCOY1alKbpUdfGsT3+ZDUaUWLU4oRkRzUHUFOI6xzVGaMyRiHCECF3KRQkGH5Ifg6HJ+gcPQqcOBGyA5TbozbRjLIoG9xBPCDZZjCgzKjDKY0TpX7ujiPyF4PWgIvTL0avxF5yl0JBgOGH5OF2e7qyDh70dGspYKByW7j0GpSlG2HRWuUupU2cOh3KTQac1jpRCDsHTVPISY9Mx7iscRwLpHIMPxRYpaWewJOX51lIUIWscSaUxjrgCvFFCl1aLcpNBhzWO1EB9bTWUegz68wYnzWeW2SoGMMP+Z/F4gk7Bw96FhpUKbdGQnlnE2p0ygt9FpMRJ4wSjkt1QdyBR/QrCRIGpQ7CoNRB3ChVhRh+yH/OnAF27/Z0ayl4llZrOMw6FKdp4ICyx8w4tToUhRlwWGvj9hsUEtIj0zE+azzMerPcpVAAMfyQb7lcwKFDwJ49ni4ugjXOhJJYe1APavY5Cag0m5FvcKMANrmrIWpRmD4ME7InICUiRe5SKEAYfsg3ams9gWf/fs/O5wQAqOgUhkqj8qfrt8RmMOC0SYsjmjo4ZVjDiKg1JEi4MP1CDEwZKHcpFAAMP9QxxcXAjh2edXlU3rV1NrdOg5LOhjbvy6Vkbo0GpWEmHNE5OECaglaX6C4YlzkORp1R7lLIjxh+qH2KioCtWz3r81AD9gg9ipNFo13Y6VdVZhP2G1wolxiCKPhEGCIwIXsCksKT5C6F/IThh9qmsBD45RfPGj3USG2iGaVR8mxREYrKw83Yq3eghkGRgoxG0mBUl1HokdBD7lLIDxh+qHUKCjyh59QpuSsJSkICKjqZUWVQ3jR2v5OA4vAw7NPauKcYBZ1BqYMwJG2I3GWQjzH8UMuKi4H//c+zizo1yaXXoKSzHnUSZzV1hNBIKAwzY5+uDnY1zYyjoNc1rivGZo6FRtLIXQr5CMMPNa2mBvj5Z8/ihNQsp0mHonQJDg7g9Rm3RoPT4SYc0Fo5O4yCRmpEKibmTORAaIVg+KGGHA5g+3Zg1y7AyXEYLbGH61GUIuDieBW/cGm1OBFuwCGNle1AFBRiTDG4rOtliDJGyV0KdRDDD3kI4VmjZ8sW1e651RZ10UYUJzjUtXChTBx6HfLD9DgKKzdSJdmZdCZc1vUyzgQLcQw/5BnE/OOPqt53qy0s8SaUxNg4oyvA6gwG7AoTKGMXI8lMp9FhXOY4ZMVmyV0KtRPDj5pZrZ7Qw3E9rVadYkZZOFvGZCMBZyLCsFtrYZsbyUqChIs7XYz+yf3lLoXageFHrQ4cAH76CbBxhlJrcauK4GHX67EnXEKRwjeKpeDXN6kvhnceLncZ1EYMP2pTWQls3Mip620gAJRlmFGjY4tPsCkKN2OXnnuGkbx6J/bGyC4j5S6D2oDhRy3cbs8eXFu3enZep1YRGgklGUZYuEdX0HLqdNgXrsVprrNEMuqZ0BOjM0bLXQa1EsOPGpSUABs2cEBzGwmNhKIMI+oYfEJCWZgZOww2LpBIsumZ0BOjuoyCJHFaYrBj+FEyITytPVu2cMf1NhISUJxp4q7sIcal1eJQhB7HJD5vJI/u8d0xJmMMA1CQY/hRqpoa4JtvgDNn5K4k5AgJKMk0sasrhFWGmbFDb+deYSQLBqDgx/CjREeOAN99B9g5E6atBICSTDMsWg5uDnVujQb7Iw04wVYgkkHXuK4YlzmOAShIMfwoicMBbNoEHDwodyUhSQAozTSjlsFHUc5EhmGXxsLVoSngGICCF8OPUhQXA19/DVRVyV1JyCrJMKOW09kVqcZkwhajHTaJY98osLJjszE+azx3hA8yDD9KsH+/p8WHU9jbrZTr+CieU6fD9nANSiV2B1Ng5cTm4JLsS+Qug87C8BPK3G7g++894YfarayLGdV6Bh81EBoJRyJNyJP4fFNg9Uvqh2Gdh8ldBv0fhp9QVVsLfPklUFQkdyUhrbxzGKoM3LJCbUrDzdiqt3JFIAqoYZ2GoV9yP7nLIDD8hKaCAk/wsfLba0dUpZpRHsbHUK2sRiO2mJ2wgN3FFDgTsicgOzZb7jJUj+En1Oze7dmQlIsWdogl3oTiGE6BVjuXVos9ETqc4dYYFCBaSYvLu12O1MhUuUtRNYafUMHxPT5jizKgMNEBwc0wCQAk4HiEGfu4xAEFiEFrwLQe0xBrjpW7FNVi+AkFDoenm+vkSbkrCXlOkw4F6QIudnXQOSrDzNisr4NL4iGR/C/CEIFpPaYh3BAudymqxIUHgl1tLfDxxww+PuDWaVCUrmHwoSZFW6wYZjNCBy5IR/5XY6/BZ3mfwe7i0gtyYPgJZuXlwEcfcTd2HxASUNzZAAd4oKHmhdfVYbjVAAMPjRQAZdYyfHH4C7gFx3AGGt/hwaqgwNPiU1srdyWKUNbFjDpuVEqtYLbZMNyig4mHRwqA09WnsSF/g9xlqA7f3cEoPx/4z3+4MamPVKVy9WZqG6PdjmG1WoQLrdylkArkleVhR8EOuctQFYafYHPokGdwM7eq8AlLgolr+VC7GBwODK2VEAWd3KWQCvx86mecrj4tdxmqwfATTA4eBDZsADgBzyfs4XqURHP9Fmo/ndOJi6oF4qCXuxRSOAGBr498DYuDK84HAsNPsNi/n8HHh9waCSUp4Fo+1GFalwuDq1xIFAa5SyGFszqt+OrIVxwAHQAMP8Fg717gu+/krkJRyrqY4IBD7jJIITRuNy6odiJVGOUuhRSuoKYAP538Se4yFI/hR2579nhWbiafqUk2o5ar9ZKPSW43+lXZ0VmY5C6FFG530W4cLjssdxmKxvAjp127gE2b5K5CUewRepRFcEo7+YckBHpX1SHLbZa7FFK47459h4q6CrnLUCyGH7ns3Qv8+KPcVSiKWyuhJJnjfMjPBNC9yooMtgCRHzncDnxx+As4XOy+9weGHzkcPswWHz8o68xxPhQ4PapsSAHHAJH/VNRV4Ntj38pdhiIx/ATayZPAN99wVpePVadwnA8FliQE+lU5OA2e/OpI+RHsKtwldxmKw/ATSEVFngUM3ZzG6Ev2CAPKwznOhwJP43ZjULUbkYILIZL//O/U/1Bm5R6PvsTwEygVFcDnnwMOdsv4kmecj+A4H5KN1uXChRaJe4GR37iFG98c/Ybr//gQ362BUFsL/Pe/QB1bJ3ytvBPH+ZD89A4Hhlp00AtJ7lJIoUqtpdh6ZqvcZSgGw4+/2WyeTUprauSuRHGssSZuWEpBw2i34yK7ERIbIclPthdsR4mlRO4yFIHhx5/cbuCrrzxdXuRTbq2Esjin3GUQNRBhrcMFrjC5yyCFcgs3NuRvYPeXDzD8+NNPPwGnTsldhSJVpJvgBMMPBZ/EGgt6uhmAyD/KrGXYcnqL3GWEPIYff9m/H9i9W+4qFKkuxohqPbu7KHhlVFm4DQb5zY6CHSiqLZK7jJDG8OMPBQXcr8tP3BoJpfEuucsgOq9e1XbEcyd48gMBgQ35G+By81jYXgw/vlZTA3zxBdfy8ZPKdDO7uygkSG43Bta4OQWe/KKirgKbT2+Wu4yQxXelLzmdwLp1nNLuJ7YoA6oMFrnLIGo1ncuJwTa2/pB/7CrchYKaArnLCEkMP760YQNQWip3FYokNBJKEzmHmEJPhLUOvTgDjPyA3V/tx/DjK3v2AEeOyF2FYlWmmbmYIYWsLjUWJIAtQOR7VbYq7CjcIXcZIYfhxxdKSz3T2skv7BF6VBnZ3UUhTAD9a91cAZr8YnvBdlTbquUuI6Qw/HSUw+FZyNDFZkd/KU/ScOcuCnl6hxODHJz+Tr7ndDvx48kf5S4jpDD8dNSmTUBlpdxVKFZtghl1kk3uMoh8IsZiRVdhlrsMUqD8inycqDwhdxkhg+GnIw4e9PyQX7g1EiqiOc6HlCW7ug4x0MtdBinQphObOPi5lRh+2quiggsZ+llVGtf0IeWR3AIDLRK0HP9DPlZlq8Kuol1ylxESGH7aw+0Gvv7as64P+YXTpEOVkVtYkDIZ7XYMcHL8D/netjPbYHXw2Hk+DD/tsXUr1/Pxs4pkHQSHOZOCJdZakcH9v8jHHG4HV35uBYaftiotBbZvl7sKRbNHGlCr4yrZpHzdq+0IF1q5yyCFOVByAGXWMrnLCGoMP23hdgPffst9u/ysPJFjIUgdNG43BtXp5C6DFEZA4McTnPreEoaftti+HSgpkbsKRbPEGTm1nVQlzGZDNzenv5Nvnao+heOVx+UuI2gx/LRWeblnrA/5jQBQEctWNVKfjFo7jIKHY/KtLae3yF1C0OK7rTWE8Gxayu4uv6pN5v5dpE5alwv9nEa5yyCFKbGUsPWnGQw/rbFzJ1BcLHcViiYAVEYw+JB6xddaufkp+dwvp3+Ru4SgxPBzPjU1wC988fhbbRIXNCTqw+VZyMeKLcVs/WkCw8/5/PQTFzP0MwGgKpKPMZHJZufgZ/K5rWc4XvVcDD8tOX0aOHJE7ioUz5LAsT5E9Tj4mXytqLaIm56eg++w5ggB/PCD3FWoQlU0N+IjqsfBz+QPv5zh8I2zMfw0Z+9eoIwrZPqbJc4IO+xyl0EUVOJrrUgUHPxMvlNUW4STVSflLiNoMPw0pa4O2ML1EQKhKob7dxE1pbcVkPj2IB/izK9fMfw0ZcsWwMZVhv3NGmuETWKrD1FTTHY7ugkOfibfKawtZOvP/2H4OVdZGbBvn9xVqEJVrNwVEAW3jBobTDxMkw+x9ceD76pzbd7sGexMflUXzT28iM5H43ajr4ODn8l3CmsLUVRbJHcZsmP4OVtREXDsmNxVqEJVHHduJ2qNeIsVEeDO7+Q7e4r2yF2C7Bh+zrZ5s9wVqILDrINVUyd3GUShQQDdHXq5qyAFOVJ+BHVOdR+DGX7qnTkDnDoldxWqUJPAKbxEbZFgqYNZaOUugxTCJVzYX7Jf7jJkxfBTj60+ASE0EmoNHOtD1BaSEOjh5JcG8p29xXshVDy+leEHAE6eBAoK5K5CFSzxJrjAFZ2J2irJyplf5Ds19hpVb3jKdxLAVp8Aqo50y10CUUiS3G5057YX5EN7itU78Jnh59gxoLhY7ipUwR6uh43T24naLdlig4GHbfKRk1UnUVlXKXcZsuC7aPt2uStQjZo4Ttcl6ggNW3/Ix/YW75W7BFmoO/wUFACFhXJXoQpuDnQm8okUqx16wXWyyDcOlB6A0+2Uu4yAU3f42bFD7gpUw5Joghsc70PUUVqXC93cJrnLIIWwu+zIK8uTu4yAU2/4qajgas4BVB2uvm8WRP6SZrFDy9Yf8hE1dn2pN/zs3i13Baphi9TDLjnkLoNIMdj6Q75UYilBRV2F3GUElDrDj80GHDwodxWqURvLgc5EvpZucaj0AE7+cLjssNwlBJQ63zv79gFOdsMEggBg0dvlLoNIcXQuJzLcZrnLIIU4XM7wo2xCAHvUu7BToNlijFzRmchP0u3q3Z6AfKuirgKlllK5ywgY9YWf48eB2lq5q1ANS5T6XmJEgRJeV4dwbnhKPqKm1h/1fTIdOCB3BarBLi8i/8tyc9FD8g01jftRV/ixWDwtPxQQ7PIi8r+kOs6kJN+otlejqLZI7jICQl3h5+BBwM2F9gKFXV5E/qd3OJACtv6Qb6il9Uddn07s8goYdnkRBU5nh7oO5eQ/R8qPyF1CQKjnHXPmDFCpzt1r5cAuL6LAibXaoANXfKaOq3XUoqCmQO4y/E494Wf/frkrUBV2eREFjuR2I1NwxWfyDTV0fanjE8puB44elbsK1fB0eXEHd6JASrVxPCP5xpHyIxBC2WtIqSP8HDvGFZ0DyNPlxQMxUSCF1dkQKbiVDHWc1WlFqVXZCx6qI/wcUccArmBhjVDHy4oo2GS69HKXQApxsuqk3CX4lfI/pRwO4KSyn8RgU2fkQGciOXDNH/IVhp9Qd+wY4OKHcaC49BrYwSnuRHLQOZ1IE1zzhzqusKYQTrdyh4soP/ywyyug6qINcpdApGppTuUf1sn/XMKl6Cnvyn6XOJ3s8gowWxjXGiGSU7SNXV/kG0ru+lJ2+OEsr4Cz6njgJZKTzulEtODAZ+o4hp9QxbV9Aspp0sEpMWwSyS2V4Yd8oMxaBovDIncZfqHc8ON2AydOyF2FqtRF84BLFAziHVxni3zjVNUpuUvwC+WGn8JCzzR3Cpg6s9wVEBEAhNts0AqOv6OOO1XN8BNaONA54Oq0nOJOFAwkt0AyOPOSOk6p436UG35OKTOtBit7hJ67uBMFkWSXVu4SSAEsDgvKreVyl+Fzygw/NhtQXCx3FapSF8nxPkTBJNrOyQfkG4W1hXKX4HPKDD+nTgEK35E22NiNfLyJgonRbkcY2PpDHVdcq7zGBOWGHwoou5bfMomCTbqb436o44otDD+hgYOdA8qtleAAZ9YRBZt4B1tkqePKrGVwC2Utn6C88FNVBVRXy12FqtgjON6HKBhF2uyQmH+og9zCjTJrmdxl+JTywk+h8gZmBTt7mE7uEoioCRq3G4kSu76o45Q27kd54aeoSO4KVIeDnYmCV5KLX06o40osJXKX4FMMP9RhHOxMFLwincoaq0HyUNqgZ2WFH5cLKC2VuwpVcWs42JkomJmd/HJCHae0Qc/KCj8lJZ4NTSlgHBzsTBTU9A4n9NznizpIaYOelRV+2OUVcPYwLqJGFOziuM8X+YCSBj0z/FCH2I1yV0BE5xMjlHWoJ3koadyPst4RDD8BZ9dxM1OiYBfJtyn5ALu9gpHNxsUNZcDBzkTBL9zJ9EMdV2WrkrsEn1FO+KmokLsC1XEZtRDgGj9Ewc7ocHClZ+qwOmcd7C673GX4hHLCT3m53BWojsPExdOIQoHkFogCZ2ZSx1XblNHDopzww5afgHMalfPyIVK6WPDLCnWcUrq+lPPpxZafgHPyiyRRyIhyc60f6rhqO1t+ggtbfgLOyS+SRCEjgttckA+w5SeYOJ2c6SUDl5YHU6JQYXZwmwvqOIafYMJWH1k4JB5MiUKFzumEkYsdUgdxwHMwYfgJOCEBLnDtEKJQEsMZX9RB1fZqCBH66yYoI/xUKaMZLpQ4zTyIEoUaMzjomTrGLdyoddTKXUaHKSP8WCxyV6A6TiM3NCUKNUbu7k4+oIRxP8oIP7Whn0JDjdPIgyhRqGH4IV9Qwrgfhh9qF5eOB1GiUGNwh/5YDZKf1WmVu4QOY/ihdnFreBAlCjV6hh/yAZvTJncJHRb64cftBqyhn0JDjTv0XzlEqmNwc20u6jibi+FHfhzsLAsXt4gmCjk6F8MPdRxbfoIBu7xkISQeRIlCjdbNtbmo49jyEwwYfmThZssPUciR3AJ6zviiDrK77HKX0GGhH35soZ9AQ5GbqzsThSQzuEYXdQy7vYKBwyF3BarkBru9iEJRmMTwQx3Dbq9gYA/95rdQ49ZIYKcXUWgyudntRR1jd9lDfn+v0A8/bPkJOLc+9F82RGpl4v5e5AOhPu4n9D/F2PITcAw/RKHLwAHP5AOh3vUV+p9ibPkJOLc29F82RGrFLS7IF0J90HPof4qx5SfghJbfHIlCFd+95Auh3u2lk7uADpOp5eeNb7/FG99+i/zSUgBAn9RUPHbFFZjct2+DywkhcPmrr+LzPXuw5s47ceXAgd7z7lm+HJsOH8bu06fRKyUF2x99tNnbyysqwgVPPQWtRoOKhQv9cZdaTYR+ZFa0Edf/BacKSxudfuPUMXjyntmoszvw9Jsf4pNvtsDucGL0kN548t7ZSIyNAgCUV9bg3mffwf6jp1BRVYv4mEhcOnwAHvztlYgMN3uv76Ov/4c3V3yB/FOFiAw3Y+yFffGX312N2OiIgN1Xaju1hJ/yonKsfnU19vywB/Y6OxI7JeLmx29GZu9MAEBVaRVWv7oae3/aC0u1Bd0GdcPMB2ciuUuy9zo+ePoD7Pt5HypLKmE0G5HTPwfT75mOlMwU72Xy9+Rj9WurcXzfcUiShMw+mZh+z3R07t450Hc5oFwitJc7Yfhpp04xMXjuqqvQLSkJAsD7P/6IaYsWYdvf/oY+aWneyy38+mtIUvOHm98OH47/5edj58mTzV7G4XJh1r/+hVHduuGHw4d9eTfaRajm8Bma1r7+CFxn7eF08Ohp3PDnhbh89GAAwJOL/o1v/rcLix77HSLDzXjs1WX4/bw3serlhwAAGo2ES4cPxANzpiEuJhLHThXh0VeXoaKqFq/89TYAwJbdefjT8+/h0TtnYMLQ/igoqcBfX87Fw/9Ygrfm3Rn4O02tp4Jur9qqWrxw6wvoPqQ7/vjyHxEZG4miE0UIjwoH4PlSuuiBRdDqtLhrwV0whZvwVe5XWHjXQsz7cB6MZiMAoEuvLrho8kWIS4mDpcqCT976BAvvXohn1j4DjVaDOksdXrnnFfQf3R+z/zwbbpcbn7z1CV754yt47j/PQavjsgLBKvS/w8u0Ud9vBgzA5f36oVtyMronJ+PpK69EhNGIn44c8V5m+4kTWPDll3j3ppuavI5XZs7E3ePGITshocXb+ttHH6FnSgpmDB7s0/vQblzdOajFx0QiKS7a+/P1/3YiIy0RQwd0R1WNFf/+fBP+due1GH5BT/TrnoEXHrwFv+w5jK17Pa/d6Mhw3Dh1DPr3yESn5HiMGNQLN04di82787y3sXXvEXRKjsecq8ajc2oCLuzXFbOnjMKO/fky3WtqLU0LX8aUYt376xCbHItbHr8FWX2zkJCegN5DeyOxUyIAoOh4EY7uOorrH74emX0ykZKZgtmPzIbD5sDmdZu91zN6+mh0H9QdCWkJ6NKzC6bdNQ3lheUoPeNpWS3IL0BtZS2m3jEVKZkpSMtJwxW/uwJVpVXeyyiVW4T2Wm+hH36CYK0Bl9uN5Zs3o9Zux7DsbACAxW7H7HfeweuzZiElOrrd171+/358uHUrXp81y1fl+oDyD55KYXc48dFX/8OMy4ZDkiTsPnQMDqcLIwb18l6ma5cUpCfFecPPuQpLKvD5xm24uH8372mDemfjTHE5vvnfLgghUFxehf9u3IpxF/Vt8jooiATBMdPfdn63Exm9MvDWn9/CA5c+gKdmP4WNazZ6z3c6nAAAvVHvPU2j0UBn0CFve16j6wMAm9WGH9b+gIT0BMQmxwIAUjJSEB4djk0fb4LT4YS9zo7vP/4eqVmpiE+N9+M9lF+or/MT+t1eMj4Bu06dwrDnn0edw4EIoxFrfv979P6/Lq/7/v1vDM/OxrSzxvi0VWlNDW5ZvBgf/Pa3iDKbz/8HAcKZsqHji03bUVVjxTUThwMAisuqYNDrEB0R1uByCbFRKC6vbHDaH5/+F778YTvqbA5MGNYfz93/awvmkL5dsfCRW/GHp/4Jm90Bp8uNCcP644l7Zvv/TlGHqOHtW3yqGN+u+hYTrp+AyXMmI39vPla8uAI6vQ7DrhiGlMwUxKXEYc1ra3D9X66H0WzEV7lfobywHJUlDd8HGz7cgNWvrIbNakNyRjLmvj4XOr3no9MUbsL9b92PNx54A/955z8AgKTOSbj3tXsV3+UlQnyp29Bv+ZFRj+RkbP/b3/C/hx/GnWPG4ObFi7H39Gms3bED6w8cwMIZMzp0/bcvWYLZF12E0d27+6hiXwntF72arPhsE8Ze1AfJCTFt/ttH77wWn77xN/zzibtw7HQxnnrjQ+95h46dxvxFK3DPDVPwyRt/xfvP3oOTBaX468JcH1ZP/qCGg75wC3Tp2QVX3X0VuvTsgtHTR2PklSPx7apvAQBanRa/f+H3KDxeiD+N/xP+OPKPOPDLAfQd3heSpmE8vHjyxfhr7l9x/9v3I7lLMt5++G04bJ6xpvY6O/7fk/8POQNy8PB7D+Ohdx5Cek46Xrv3NdjrQns21Pmw5UfFDDoduiYlAQAGZ2Rgc34+Xl6/Hma9HoeLixFz330NLn/1m29iVLdu2HD//a26/vUHDmDtzp148csvAXhebG4hoLvzTrx9ww347YgRvr1DpCgnC0uxads+vPn4772nJcZFwe5worLG0qD1p6S8ComxDbtn68cMde2SgpjIcFx73wu454YpSIqPxqJln2NInxzccd0kAECv7E4IMxlx7X0v4IE505AU3/6uXqKOik6IRmpWaoPTUrNSsW39Nu/vGb0y8OjSR2GtscLpcCIyNhLP3vwsMnpnNPg7c4QZ5ggzkrskI7tfNu4bdx+2fbMNF112EX7+/GeUninFn9/7MzQaT6y89elbcd+4+7Dj2x24cNKF/r+z1C4MPz7kFgI2pxPzf/Mb3DZyZIPz+j3xBP4xYwZ+079/q6/vxz//ucGsnY937MDz69bhh4ceQnpMjK/Kbgc1NJyHvg8//wHxMZEYP7Sf97S+3TKg12nxw9b9mDx6EADg8IkCnCoqw6De2c1eV/3gRtv/za601tmhPWexS83/rf8U6t8IlS60h6m2Ts6AHBQeK2xwWuGxQsSlxjW6rDnCM6Sg8Hghju07hml3Tmv2eoUQEEJ4xwzZ6+yQJKnBjN7635X+PmhpFnMoCP3wI9MT8MiaNZjcpw+6xMWh2mbD0p9/xoaDB7HunnuQEh3d5CDnLnFxyDprZldeURFqbDYUVFXB6nBg+4kTAIDeqakw6HToldrwm8uWY8egkST0TU/37507D072Cn5utxsr1/2Aqy8dBp3217EHURFmzLhsBJ5680NER4UjMsyEx19bjkG9s73h55v/7UJxeRUG9MhEmNmIQ/ln8MzbqzCkTw46p3hev5cM649HXlqCJWu/xZghvVFUVoknFv0bA3pmtquLjQJHDW/fCbMn4PnfPo//vvtfDLl0CPL35GPjmo244a83eC/zy1e/ICImAnEpcTiVdwr/XvBvDBwzEL2H9gYAFJ8sxpYvt6D30N6IjI1EeWE5Pl/8OQwmA/qO8Azs7z20N1a9sgrLnl+GcdeNg3ALfL74c2i0GvQY0kOW+x4oUoh/CWb4aaei6mrctHgxzlRWItpsRv/0dKy75x5c2rt3q6/jtiVL8O3Bg97fL3jqKQDA0aefRuZ5pr/LSw2Hz9D2/db9OFVUhhmTG3eNPnrXDGg0Eu6c/+avixyeNVDZaDRg+X+/x5NvfAi7w4m0xFhMGnkB7px1mfcy104ajlpLHf7fx9/g6bc+RFREGIYP7IGHb58ekPtHHRDi39hbI7NPJu588U6seW0N/vOv/yAhLQEz7p+Biydf7L1MZUklPvzHh6gqrUJ0QjSGThmKKbdN8Z6vN+qRty0PXy/7GpYqC6Lio9Dtgm546J2HEBXnWRA0JTMFd790Nz7956d4fs7zkDQSOvfojHtevQfRCcru+g31lh9JhHrb3MqVQFmZ3FWoSm2CGSXRVrnLIKJ2KDeb8LOxTu4yKMRd1vUydInuIncZ7Rb6A//1+vNfhnxKYssPUejShPY3diJfYPihNpPUMGKSSKH41YV8QSuF9jpGoR9+DAa5K1AdycXDJ1Go4ruXfMGgDe3P3tAPP2z5CTiNi00/RKHKzm4v8gGjzih3CR0S+uGHLT8Bp3Ew/BCFKjvXqiAfMGoZfuTFlp+AY/ghCl117PgiH2C3l9zY8hNwGrcI8eWtiNSrTsPwQx1j0BpCfp2f0A8/bPmRhUYBLx0iNbIIl9wlUIgL9S4vQAnhxxj6T0Io0iC0pzkSqZUVDD/UMaE+2BlQQvgJD5e7AlXSiNBu8iRSI6GR4OCAZ+qgUB/vAzD8UDtJIvRfOkRq49KwxZY6jt1ewSAsTO4KVEnLlh+ikOPUhv4hn+THbq9goNEAZrPcVaiOhrPdiUKOXRP6h3ySH1t+ggW7vgJO42bLD1GocXB1Z/IBtvwEC4afgNM6OWiSKNRwawvyBbMu9HtbGH6oXXQ2hh+iUGPjTC/ygUhjpNwldJgywg8HPQeczsa1QohCDcMP+UKUMUruEjpMGeEnKvSfiFCjszrkLoGI2sjKfb2ogzSSBuH60O9tUUb4iYmRuwLVkQSg5SrPRCGlXOKXFuqYSENkyO/rBTD8UAfohU7uEoiolZw6HezgGhXUMUoY7wMoJfzodECkMp6QUKJ1KePlQ6QGVj2/rFDHKWG8D6CU8AOw9UcGOqfcFRBRa9XolHO4J/kw/ASb2Fi5K1AdHYcPEIWMKg0HO1PHRRqU0cuinPDDlp+A09k4foAoVJSDTbXUcWz5CTZs+Qk4fR0PpkShQGgkVIFNtdRxHPAcbNjyE3BamwsSQn/KI5HS2fR6CL5VqYNMOhMMWoPcZfiEcsKP0cgZXzLQQy93CUR0HrU6rslFHaeULi9ASeEHAJKS5K5AdQxOHlSJgl0136bkA3HmOLlL8BmGH+oQg03uCojofCokTk6gjksMS5S7BJ9h+KEOMVi4wSlRsCuDXe4SSAESwxl+glNCAqBR1l0KdvoaziAhCmYOvQ4O7uZOHaSRNOz2ClpaLRAfL3cVqqJxCw56JgpiVh23taCOizPHQSMpJzIo557UY9dXwBlcPLgSBatqbmtBPqCk8T4Aww/5gMHGBUSIglWRlouRUsclhCXIXYJPKS/8JCfLXYHqGCw8uBIFI7dGg2LBwc7UcUoa7AwoMfxERXGxwwAzcNAzUVCqNhq4sjN1mNIGOwNKDD8A0KmT3BWoisbFQc9EwahUz+RDHae0wc6AUsNPerrcFagOBz0TBZ9TGnZ5UccpbbAzoOTwI/EbTyBx0DNRcLEZDLCAi5BSxyltvA+g1PBjNAKJynuygpmpmuN+iIJJpYGtseQbyeHKm0ikzPADsOsrwAw1DmjB3ROJgkWhlq0+1HFh+jDEmmPlLsPnlBt+OOg54Ewug9wlEBEAoZFQyP28yAc6RSnzs1S54Sc5GdBzBlIgmaxyV0BEAFBrNMLF/bzIB9IjldmLotzwo9EAnTvLXYWqmCo57ocoGJTqlXtop8BKj2L4CT1ZWXJXoCq6Oid0goMsieR2RuIXEeq4OHMcwvRhcpfhF8oOPxkZAHc0Diizk12NRHJy6nSoZPghH1DqeB9A6eFHp+PA5wAzWjjOgEhOlUZ+ASHfYPgJZdnZclegKqZKzjAhktNpnVvuEkgBtJIWKREpcpfhN8oPPxkZgJbrzwSK1uGGAZzyTiQHp06H05JN7jJIAZIjkqHTKHfYiPLDj17Prq8AM9kYNonkUGRilxf5hpK7vAA1hB+AXV8BZq5hszuRHPK1HOhMvsHwowSc9RVQxgobt7ogCjCLyYhqySl3GaQAZp0Z8eZ4ucvwK3WEH4OBa/4EkAQgzMFxP0SBdMaojsM5+V92bDYkSZK7DL9Sz7ulZ0+5K1CVsCp2fREFitBokC/VyV0GKUROXI7cJfidesJPaioQHS13FarBri+iwCk3G+EE19iijgvXhyt6ins99YQfAOjRQ+4KVINdX0SBc0LPllbyjexYdUwQUlf46d7ds+EpBQS7voj8z6HXowBc24d8Qw1dXoDawk9YGNCli9xVqAa7voj8j2v7kK9EGiKRFJ4kdxkBoa7wA7DrK4DY9UXkf0c1bPUh31BLqw+gxvDTpQsQHi53FarBri8i/6k1mVArueQugxQiJ5bhR7kkCejTR+4qVINdX0T+c8qg7LVYKHBiTDGID1P2woZnU1/4AYBevbjic4Cw64vIP5w6HY5prHKXQQqhplYfQK3hx2j0zPyigAgv55L7RL52yqwHO5XJV9Q03gdQa/gBgL595a5ANYzVDhgEZ6QQ+YpLq8UhDVd0Jt9ICEtAjClG7jICSr3hJybGs+EpBURkLbsZiXzldJgBLokrOpNv9E7sLXcJAafe8AMAAwbIXYFqhBXXQaPylxuRL7DVh3zJoDWga1xXucsIOHV/GqWkAMnJclehChq3QLjdKHcZRCGvwGyAg60+5CM94ntAp1Ffy7y6ww8ADBwodwWqEVHGgc9EHeHWaHBQx0UNyXfU2OUFMPx4xv0kJspdhSoYah0wCrb+ELVXYZgRds7xIh/pFNUJ0aZoucuQBcMPAFx4odwVqEZkNV9yRO0h2OpDPtYnUb0L/vKTCAA6dfKM/yG/Cyut44rPRO1QZDaijq0+5CMRhgh0iVbvRt8MP/XY+hMQEgc+E7WZkCQc0NnlLoMUpHdib0iSerdHYfipl5oKpKfLXYUqRJTwIE7UFiVhJli5gSn5iFbSomdCT7nLkBXDz9nY+hMQeqsTZrdJ7jKIQoMEtvqQT2XHZsOkU/cxmOHnbElJXPU5QKLKuE4JUWuUhplRy1Yf8qE+Seod6FyP4edcF14IqLgfNFBMlTaYOO2dqEVujQa79ZzhRb6THJ6MpPAkucuQHcPPueLigF695K5CFaLK5a6AKLgdi+AML/KtwWmD5S4hKDD8NGXIEMDIVgl/M5fbYBQGucsgCkp1BgMOSVa5yyAFSQ5PRqeoTnKXERQYfppiMnkCEPldVAW7GImastcMCL49yIfY6vMrhp/m9O7t6QIjvwors8EAtv4Qna003IxiiTO8yHeSwpPY6nMWhp/mSBIwfLjcVahCVCVXfCaq59JqsYvbWJCPDU5lq8/ZGH5akpYGZGfLXYXihZVYoYde7jKIgsKxcANsEgc5k+8khSehc3RnucsIKgw/5zN0KKDTyV2FokkAoqr5GBPVGQ04pOEgZ/KtQamD5C4h6DD8nE9EBDCYzYX+Fl5khQ4MQKRue8xyV0BKkxiWqOoNTJvD8NMa/ft7Vn8mv5EARNew64vUqzTcjBJwkDP5Fmd4NY3hpzUkCRgzBtDw4fKn8EKO/SF14iBn8ge2+jSPn+atFRsLDGK/qT9JAGLK+ZIk9eEgZ/IHtvo0j580bTFwIJCQIHcVihZWxj2/SF0sRiMHOZPPpUems9WnBQw/baHRsPsrAGKLueM7qYNbo8FWk1PuMkhhJEgY1nmY3GUENX6Kt1V8vKcFiPzGUG1HuNMkdxlEfncg0oBaySV3GaQwPRJ6IM7MHQpawvDTHoMGeUIQ+U1MoRMSuLERKVdxuBnHpTq5yyCFMWgNuDDtQrnLCHoMP+2h0QCXXMLFD/1IV+dElI2LnpAy2QwG7NAx+JDvDUwZCLOex87zYfhpr5gYYORIuatQtKjTXPiQlEdoJGwzC7gkjm0j34oyRqFfUj+5ywgJDD8d0b2754f8QuMWiKnkuj+kLEciTaiUHHKXQQo0ovMIaDXcKLo1GH46auRIIDpa7ioUK7zEyqnvpBgVYWbkSZzWTr6XGZPJzUvbgOGno3Q6YMIEQMu07S+xRW4OfaaQ59DrsFXPcT7kezqNDsM6cWp7WzD8+EJ8vGf3d/ILQ40DUbYwucsgaj8J2BmugYPjfMgPBqYMRKQxUu4yQgrDj6/06QNkZ8tdhWJFn+a+XxS6jkeEcdNS8osoYxQGJA+Qu4yQw/DjS2PHcv0fP5HcAvHF7Pyi0FNjNmGf1iJ3GaRAEiSMzRzLQc7twPDjSzodMGkSYOLqxP5grLIjys7uLwodTq0OvxjZ4kP+0S+5H1IiUuQuIyQx/PhaRAQwcSL3//KT6FNc+4dCg9BosD1Cgzpwt3byvRhTDFdy7gB+QvtDSgoXQPQTjVsgvpRNvBT89kUaUCqx1Yd8j91dHcfw4y89ewJ9+8pdhSKZKmyIdHD5dgpex6LMOMF9u8hPBqQMQFJ4ktxlhDSGH38aNgxIT5e7CkWKOVXH7i8KSsURYdiv4UKG5B9x5jgMSRsidxkhj+HHnyTJswBibKzclSiOxiUQV8bwQ8GlxmzCNs7sIj/RSBqMzRwLjcSP7o7iI+hvRiNw+eWegdDkU+byOkQ42f1FwcFmMOBngw2CKzKQnwxMGYiEsAS5y1AEhp9ACA/3BCBOgfe52JN1XPyQZOfQ6/FTmJMrOJPfJIQlYFDqILnLUAyGn0CJiQEmTwb0/KD2JY1LIKFQgsTdv0gmLq0Wm8MEp7ST37C7y/f4SAZSYiJw6aVcA8jHDDV2xNayVY0Cz63RYGukBtWSU+5SSMEuTr8YceY4uctQFH4KB1qnTsC4cZ7B0OQzkQVWhLs4/ocCR0gSdkXpUQaH3KWQgmXHZqNfcj+5y1Achh855OQAI0bIXYXixJ3g+B8KnP1RRhTAJncZpGAxphiMyRgjdxmKxPAjl969PesAkc94xv+A43/IvyTgYJQZx7mIIfmRXqPHxJyJ0Gv5hc4fGH7k1K8fW4B8zFDjQFwNx/+QfwiNhL1RJhzlIobkZ6MzRiPGFCN3GYrF8CO3Pn2AUaPkrkJRIgo5/od8T2g02BVp4LYV5Hd9k/oiJy5H7jIUjeEnGPTqBYweLXcVihJ3nON/yHfcGg22RepwRuIYH/KvlIgUDO00VO4yFI/hJ1j07AmMHctZYD6icQskFHD8D3WcS6vFL1FaFHOHdvIzs86MCdkTuJ5PAPARDibdu3MavA8Zah1IqDTKXQaFMKdOh58jJU5nJ7+TIOGS7EsQpg+TuxRVYPgJNl27ehZC1GrlrkQRwkrqEGvh+B9qO7tej5/CBarABQzJ/y5KvwhpkWlyl6EaDD/BKDMTmDLFsykqdVjUGSs3QKU2sRkM+DHchVrJJXcppAJd47piQMoAuctQFYafYJWSAkyd6tkUlTos7rgVJjenwNP5WY1G/BDm5F5dFBBpkWkYmzlW7jJUh+EnmMXGAldeCcTHy11JyJMEkHjCDj0McpdCQazWZMIPZjvsDD4UAHHmOEzMmcgBzjLgIx7swsM9LUCdOsldScjTON1IOuWGFhxPRY1Vhpnxo9EGJ4TcpZAKRBgiMLnrZBi0/EImB0kIwXd6KHC7ge+/B/bvl7uSkGeLMqAw0QHBDzkCAAk4HhGGfVqL3JWQShi0BkzrMQ2x5li5S1Ethp9Qs2cP8OOPnjBE7WaJN6E4hiv1qp1Lq8WeCC5eSIGjlbS4vNvlSI1MlbsUVWP4CUUFBcCXXwJW7i/UEVWpZpSH8TFUK6vRiC1mJyzgjC4KnAnZE5Admy13GarH8BOqLBbgiy+AoiK5Kwlp5Z3DUGVgd4falISbsU1v5bBmCqhhnYahX3I/ucsgMPyENrcb2LQJ2LdP7kpCWlkXM6r1bAFSA6GRcDjChMPclZ0CrF9SPwzrPEzuMuj/MPwowf79nhDkYvN9e5VmmFGj4weikjn0OuwI06CUe3RRgOXE5uCS7EvkLoPOwvCjFMXFwNdfA1VVclcSskoyzKhlAFKkGpMJW4x22CR2dFFgZcdmY3zWeK7lE2QYfpTE4fC0AB08KHclIUkAKM00o1bLAKQkZyLDsEtjgeB+wRRgXeO6YlzmOEjcrDroMPwo0ZEjwMaNgI3Td9tKACjJNMPCABTy3BoN9kcacELikgYUeAw+wY3hR6lqaoANG4DTp+WuJOQICSjJNMGi4YdmqKoMM2OH3g4rNyYlGXSP744xGWMYfIIYw4+SCQHs2AFs2cJFEdtISEBxpglWBqCQ4tJqcShCj2Ns7SGZ9IjvgdEZoxl8ghzDjxqUlHhagcrK5K4kpAiNhKIMI+oYgEJCWZgJOwzclJTk0zOhJ0ZnjJa7DGoFhh+1cLs9rUBbt3JKfBsIjYSSDCO7wIKYU6fDvnAtTnOLCpJRr4ReGJUxSu4yqJUYftSmstIzGJpjgVpNACjjOkBBqTgiDDt1Vu7ETrLqndgbI7uMlLsMagOGH7U6cAD46SfOCGuDik5hqDRyK4xgYNfrsSdcQhG4YCHJq29SXwzvPFzuMqiNGH7UrK4O+OEHIC9P7kpCRnWKGWXhbAGSjQScDjdjj477cpG8JEi4uNPF6J/cX+5SqB0Yfgg4dQr48UcOiG4lS7wJJTE2CHa1BFSdwYBdYQJlcMhdCqmcTqPDuMxxyIrNkrsUaieGH/IQwtMVtnkzYGXLxvnURRtRnOCAm+0PfufQ65AfpscRia9Lkp9ZZ8akrpOQFJ4kdynUAQw/1JDDAWzfDuzaBTidclcT1OzhehSlCLjAx8kfXFotjocbkKdhFxcFhxhTDCZ3nYxIY6TcpVAHMfxQ02pqgJ9/5nig83AatSjqpIGDXTE+49ZocDrchANazuKi4JEakYqJORNh1BnlLoV8gOGHWlZc7AlBp07JXUnQcuk1KOmsRx3XmekQoZFQEG7Gfm0dFyqkoNI1rivGZo7lzuwKwvBDrVNQ4Fkg8eRJuSsJSgJARecwVBk4Fb7NJKA4PAz7tDbuxUVBZ1DqIAxJGyJ3GeRjDD/UNoWFnhB04oTclQSl2kQzSqPqOBOslcrDzdird6CG46YoyGgkDUZnjEb3+O5yl0J+wPBD7VNU5AlBx4/LXUnQsUfoUZws4OQHerOqzCbsM7pQwbFSFIQiDBGYkD2BM7oUjOGHOqa42LNnWH4+d44/i1unQUlnA3eFP4tbo0FpmAmHtQ5USgw9FJy6RHfBuMxxHNiscAw/5Bu1tcCePcD+/Z6VowkAt8QAAJvBgNMmLY5o6jh7i4KWRtJgSNoQDEwZKHcpFAAMP+RbLpdnevzu3UBpqdzVBAVrnAklsXZ1LYgoARVmM44Z3CgAZ8FRcAvTh2FC9gSkRKTIXQoFCMMP+c+ZM57WIHaJwWHWoThNA4fCN+J0anUoCjMgT8OZWxQaOkV1wvis8TDpTHKXQgHE8EP+Z7UChw55flTcGuTWSCjvbEKNTnnbNFhMRpwwSjiGOghJ7mqIzk+ChEGpgzAodRAkiS9atWH4ocAqLfWEoLw8wKLOsTDWOBNKYx1wIbRbRlxaLcpNBhzWOzlri0KKWWfG+KzxSI9Kl7sUkgnDD8lDCM9aQYcOebrFXKEdBNrKpdegLN0Iiza0WoGcOh3KTAac0blQKGxs5aGQkx6ZjnFZ4xCmD5O7FJIRww/Jz+HwrBd09KgnEDnU04pQm2hGWZQtqAdD2wwGlBl1OKl1oIwtPBSiDFoDhnYaip4JPeUuhYIAww8FF5fLs4/YsWOeHxV0jTmNWpSm6VEXRGsCWYwGlBh0OKmxo1riYo0U2jpHdcbojNEIN4TLXQoFCYYfCm4lJZ4QdOqUZ1VpBc8aq04xozxcnq0xhCSh1mREkV7CCY0NdUHcEkXUWkatEcM6D+MWFdQIww+FDqfTs8Hq6dOeafTFxYoLQ44wPUpTJNgk/06JFxoNrAY9qnQalGsFzsAGh8RDASlHZkwmRnYZybE91CSGHwpdDocnDJ054wlEZWWegBTiBIDqtDBUmK0+awWy6/Wo0WtRoZNQqnGiXDg4WJkUyaQzYUTnEciJy5G7FApiDD+kHG43UFHh6Sqr/yktDdkB1E6TDuWpOljaOBbIpdXCatCjUiuhTOtGieSAnd1YpALZsdkY2WUkFyyk82L4IWUTAqis9AShsjKgqsrze1VVyIQiS7wJ5THORrvEC40Gdp0ONq0GFq2EGg1QrHGgirvJk8qE68MxvPNwZMVmyV0KhQiGH1Ivi+XXMFQfiGprPStSW63yhyOtFggPByIi4I6KQEmyAXur81ElOVApHLBKbM0hddNKWgxIGYCBKQOh0+jkLodCCMMPUXOcTs8O9RZLw38dDs+UfKfT81P//7P/lSRAo/n15+zfJQnQ6QCj8dcfk6nx7wZDo5KqbFX48cSPOFZ5TIYHhCh4ZMVkYWinoYg0RspdCoUghh+iEHSy6iR+OPEDKuoq5C6FKKDizHEY3nk40iLT5C6FQhjDD1GIcgs3dhftxrYz22Bz2eQuh8ivwvRhGJI2BD3ie3AjUuowhh+iEGd32bGzcCd2F+2G3eXf9YGIAk2v0WNAygD0T+7PcT3kMww/RAphc9qwo3AHdhfthtPNGV8U2jSSBj3ie2Bw2mAuVEg+x/BDpDB1zjpsL9iOvcV7GYIo5GglLbrHd8fAlIEczEx+w/BDpFAWhwXbC7ZjX/E+uIRL7nKIWqTT6NAroRf6J/fnBqTkdww/RApXY6/BtjPbcKD0ANyCawNRcDFoDeid2Bv9k/tzZWYKGIYfIpWotlVje8F2HCo7xO4wkp1Ra0S/5H7om9QXBm3jNa2I/Inhh0hl6px12F+yH3uL96LGXiN3OaQyZp0Z/ZP7o3dib+i1ernLIZVi+CFSKSEEjlYcxe6i3SioKZC7HFK4OHMceif2Ro/4HtBqtHKXQyrH8ENEKLGUYHfRbhwuO8zB0eQzWkmLnLgc9EroheSIZLnLIfJi+CEirzpnHfYW78Xe4r2wOCxyl0MhKsYUg96JvdEtrhuMOqPc5RA1wvBDRI24hRtHyo9gf8l+nKk+AwEeJqhlGkmD7Nhs9ErohdTIVLnLIWoRww8RtajWXovD5YeRV5aHEkuJ3OVQkIkyRqFXQi/0SOjBqeoUMhh+iKjVKuoqcKj0EPLK8lBtr5a7HJJJmD4MWTFZyI7NZisPhSSGHyJql8KaQuSV5eFw+WHUOevkLof8LMIQgayYLGTFZiElIkXucog6hOGHiDrELdw4WXUSeWV5OF55nDvLK0ikIRJZsZ4WnqTwJLnLIfIZhh8i8hm3cKOwphAnqk7gROUJlFpL5S6J2ijKGOXt0koMT5S7HCK/YPghIr+xOCw4WXUSJypP4GTVSdhcNrlLonMYtAakRqQiPSodaZFpiDPHyV0Skd9p5C6AlGXx4sWQJAmSJOH7779vdL4QAp07d4YkSbjiiivafP3z5s2DJEnQaDQ4ceJEo/OrqqpgNpshSRL+8Ic/eE/Pz8/31iVJEvR6PRISEjB8+HD85S9/wfHjxxtd14YNGyBJElauXNlkLYsWLYIkSbj44ovbfD/UIkwfhu7x3XFJ9iW4acBNmNZjGgalDkJiWCIkSHKXp0o6jQ6dojrhovSLcFXPq3DzgJsxqesk9E3qy+BDqqGTuwBSJpPJhKVLl2LkyJENTv/2229x8uRJGI0dW/jMaDRi2bJleOihhxqcvnr16hb/btasWbj88svhdrtRXl6OzZs3Y+HChXj55ZfxzjvvYObMma2uITc3F5mZmfj555+Rl5eHrl27tuu+qIUkSUiOSEZyRDKGpA1BnbMOp6tPo6i2CMW1xSi2FHPDVT/QSBokhycjLTIN6VHpSApPgkbi915SN4Yf8ovLL78cH374IV555RXodL++zJYuXYrBgwejpKRj68VcfvnlTYafpUuXYsqUKVi1alWTfzdo0CDccMMNDU47duwYJk6ciJtvvhm9evXCgAEDznv7R48exQ8//IDVq1fjjjvuQG5uLh5//PH23yEVMulMyI7NRnZsNgBPq2B5XTmKaou8P+XWci6w2AYSJESbopEQloB4czwSwhKQHJEMnYaHeqKzMf6TX8yaNQulpaX48ssvvafZ7XasXLkSs2fPbnDZ+u6lDRs2NDi9vqtq8eLFja5/9uzZ2L59O/bv3+89raCgAOvXr290/eeTkZGBxYsXw2634+9//3ur/iY3NxexsbGYMmUKrrnmGuTm5rbpNqkxSZIQZ45Dz4SeGJ0xGtf0vgZzLpiD33T/DYZ2Gors2GxEGiLlLjNo6DQ6JIUnoXdib4zqMgpX9rwScy6Ygxl9ZmB81ngMSBmA9Kh0Bh+iJvBdQX6RmZmJYcOGYdmyZZg8eTIA4LPPPkNlZSVmzpyJV155pUPXP3r0aHTq1AlLly7FE088AQBYsWIFIiIiMGXKlDZf37Bhw5CTk9MgrLUkNzcX06dPh8FgwKxZs/DGG29g8+bNuPDCC9t829Q8nUaH1MjUBgvpOd1OVNmqUGWrQmVdJSptld5/lbgfmVFrRIQhApHGSMSYYhBvjkd8WDyijdGQJI6bImoPhh/ym9mzZ+ORRx6B1WqF2WxGbm4uxowZg7S0tA5ftyRJmDlzJpYtW+YNP/WBpL3jifr27YuPP/4YVVVViIqKavZyv/zyC/bv349XX30VADBy5Eh06tQJubm5DD8BoNPoEGeOa3JwrsPl8ISiswJRjb0Gdc46749buGWounlh+jBPuDFEekNOhCHCe5peq5e7RCLFYfghv5kxYwbmzp2LTz/9FJdddhk+/fTTDrf4nG327Nl48cUXsXnzZsTGxmLz5s145pln2n19ERERAIDq6uoWw09ubi6Sk5Mxbtw4AJ4gdt111+GDDz7AggULoNVq210DdYxeq0d8mKdlpDl2l71BGGrqx+l2wi3ccLldcAu35//CBSFEk2OQJEjQaXQwaA3Qa/UwaA2e/2v0DU47+3eTzoRwfTi0Gr5eiAKN4Yf8JjExERMmTMDSpUthsVjgcrlwzTXX+Oz6L7jgAvTs2RNLly5FTEwMUlJSMH78+HZfX01NDQAgMrL5cSUulwvLly/HuHHjcPToUe/pF198MRYsWICvv/4aEydObHcN5H/1wSTK2HzAJSJlY/ghv5o9ezZuv/12FBQUYPLkyYiJiWl0mebGLbhcrlZd/xtvvIHIyEhcd9110GjaP4Z/9+7dSEpKarHVZ/369Thz5gyWL1+O5cuXNzo/NzeX4YeIKMgx/JBfXXXVVbjjjjvw008/YcWKFU1eJjY2FgBQUVHR4PRjx46d9/pnz56Nxx57DGfOnMGSJUvaXeePP/6Iw4cPN5oGf67c3FwkJSXh9ddfb3Te6tWrsWbNGrz55pswm83troWIiPyL4Yf8KiIiAm+88Qby8/Pxm9/8psnLZGRkQKvV4rvvvsOVV17pPX3RokXnvf6cnBwsXLgQVqsVF110UbtqPHbsGG655RYYDAY8+OCDzV7OarVi9erVuPbaa5vsvktLS8OyZcuwdu1aXHfdde2qhYiI/I/hh/zu5ptvbvH86OhoXHvttXj11VchSRJycnLw6aefoqioqFXXf++997a6lq1bt+KDDz6A2+1GRUUFNm/ejFWrVkGSJCxZsgT9+/dv9m/Xrl2L6upqTJ06tcnzhw4disTEROTm5jL8EBEFMYYfCgqvvvoqHA4H3nzzTRiNRsyYMQMvvPAC+vbt69PbWbZsGZYtWwadToeoqCh069YNc+fOxe9//3t06dKlxb/Nzc2FyWTCpZde2uT5Go0GU6ZMQW5uLkpLSxEf3/yMIyIikg93dSciIiJV4fYWREREpCoMP0RERKQqDD9ERESkKgw/REREpCoMP0RERKQqDD9ERESkKgw/REREpCoMP0RERKQqDD9ERESkKgw/REREpCoMP0RERKQqDD9ERESkKgw/RETttHjxYkiS5P0xmUxIS0vDpEmT8Morr6C6urrB5efNmwdJklBSUtLk9c2YMQOSJOHPf/5zm+oYO3YsJEnCb37zm0bn5efnQ5IkvPjii97TNmzY4K35l19+afQ3t9xyCyIiItpUA1EoYfghIuqgJ554AkuWLMEbb7yBP/7xjwCAuXPnol+/fti5c2errqOqqgqffPIJMjMzsWzZMggh2lzHp59+2mSYacm8efPafDtEoY7hh4iogyZPnowbbrgBc+bMwSOPPIJ169bhq6++QlFREaZOnQqr1Xre61i1ahVcLhfeffddnDhxAt99912baujSpQtiY2Mxf/78Vv/NwIED8emnn2Lr1q1tui2iUMfwQ0TkB+PHj8ejjz6KY8eO4YMPPjjv5XNzc3HppZdi3Lhx6NWrF3Jzc9t0e5GRkbjvvvvwySeftDrM/PGPf0RsbCxbf0h1GH6IiPzkxhtvBAB88cUXLV7u9OnT+OabbzBr1iwAwKxZs7By5UrY7fY23d69997bpjATFRXV5sBEpAQMP0REftKpUydER0fj8OHDLV5u2bJlMBqNmDZtGgBg5syZKC8vx3//+9823V5UVBTmzp3bpjBzzz33tLm7jCjUMfwQEflRREREo1lf58rNzcWUKVMQGRkJAOjWrRsGDx7c5q4v4NfWn9aGmejoaMydOxdr167Ftm3b2nx7RKGI4YeIyI9qamq8oaYp+/btw7Zt2zBixAjk5eV5f8aOHYtPP/0UVVVV3uspKCjw/hQXFzd5fe0JM/feey9iYmI49odUg+GHiMhPTp48icrKSnTt2rXZy9QPhr7vvvvQrVs378+CBQtQV1eHVatWAQBefPFFpKamen8uvPDCZq+zPsyw9YeoaTq5CyAiUqolS5YAACZNmtTk+UIILF26FOPGjcNdd93V6Pwnn3wSubm5mDNnDm666SaMHDnSe57ZbG72duvDzLx583DzzTe3qta5c+di4cKFmD9/PmJiYlr1N0ShiuGHiMgP1q9fjyeffBJZWVm4/vrrm7zMpk2bkJ+fjyeeeALXXHNNo/MPHjyIRx99FKdPn0Z2djays7Nbffv1YeaJJ55o1eXPDkwDBgxo9e0QhSJ2exERddBnn32GDz74AIsXL8bzzz+PSZMmYcKECUhOTsbatWthMpma/Lvc3FxotVpMmTKlyfOnTp0Kt9uN5cuXt7mm6Oho3Hvvvdi+fXur/+bee+9FdHQ0duzY0ebbIwolDD9ERB302GOP4cYbb8Qdd9yBhQsXQgiBhQsXYufOnejbt2+Tf+NwOPDhhx9i+PDhiIuLa/Iyffv2RVZWVqsWSWzK3LlzER0d3erLx8TEYO7cue26LaJQIon2bCBDREREFKLY8kNERESqwvBDREREqsLwQ0RERKrC8ENERESqwvBDREREqsLwQ0RERKrC8ENERESqwvBDREREqsLwQ0RERKrC8ENERESqwvBDREREqsLwQ0RERKrC8ENERESqwvBDREREqsLwQ0RERKry/wFNzX4UXKXHeQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib_venn import venn2\n", + "\n", + "# Create a venn diagram of identifications\n", + "import matplotlib.pyplot as plt\n", + "\n", + "mumdia_precursor_ids = set(mumdia_astral_valid[\"Precursor.Id\"])\n", + "diann_precursor_ids = set(diann_astral[\"Precursor.Id\"])\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "venn2([mumdia_precursor_ids, diann_precursor_ids], set_labels=(\"MuMDIA\", \"DIA-NN\"))\n", + "plt.title(\"Overlap of Precursor IDs between MuMDIA and DIA-NN (Ecoli)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "id": "d9720b14", + "metadata": {}, + "outputs": [], + "source": [ + "diann_not_mumdia = diann_astral[\n", + " ~diann_astral[\"Precursor.Id\"].isin(mumdia_astral_valid[\"Precursor.Id\"])\n", + "]\n", + "mumdia_not_diann = mumdia_astral_valid[\n", + " ~mumdia_astral_valid[\"Precursor.Id\"].isin(diann_astral[\"Precursor.Id\"])\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "99ea9440", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + } + ], + "ref": "8ef0a3f1-e28a-4680-85f0-2f5768c1e523", + "rows": [ + [ + "1", + "AAAAPVTGPLADDPIQETITFDDFAK3" + ], + [ + "2", + "AAAAVLAK1" + ], + [ + "5", + "AAAEADDIFGELSSGK2" + ], + [ + "7", + "AAAEVGAPFIEIHTGCYADAK3" + ], + [ + "11", + "AAAIAYAR2" + ], + [ + "12", + "AAAICAER2" + ], + [ + "17", + "AAATGEALSLVCVDEHK3" + ], + [ + "20", + "AAATQHNLEVLASR3" + ], + [ + "22", + "AADAHGIPFTLSTVSVCPIEEVAPAIK3" + ], + [ + "31", + "AADSCHVSQPTLSGQIR3" + ], + [ + "32", + "AADVHLCVK2" + ], + [ + "34", + "AAEEAFR2" + ], + [ + "35", + "AAEGIAPKPLDANQM[Oxidation]AALVELLK3" + ], + [ + "36", + "AAEIIHIGQAIM[Oxidation]EQK2" + ], + [ + "37", + "AAEIIHIGQAIM[Oxidation]EQK3" + ], + [ + "40", + "AAENNPELAAFIDECR2" + ], + [ + "41", + "AAENNPELAAFIDECR3" + ], + [ + "42", + "AAEQLGQANSAVSR2" + ], + [ + "43", + "AAESALNIDVPVNAQYIR2" + ], + [ + "48", + "AAFLAVDNHK2" + ], + [ + "51", + "AAFPGGSITGAPK2" + ], + [ + "52", + "AAFQPVFLEVVDESYR2" + ], + [ + "56", + "AAGDAPLSGTETTLPAPPR2" + ], + [ + "57", + "AAGDEPLFGPVLNIK2" + ], + [ + "62", + "AAGLGIAYHAK2" + ], + [ + "65", + "AAGPALLDACLK2" + ], + [ + "66", + "AAGSVLISAPR2" + ], + [ + "67", + "AAGVPPGPLFQELK2" + ], + [ + "73", + "AAHQDEPQFGAQSTPLDER3" + ], + [ + "74", + "AAHSFNLLDAR2" + ], + [ + "75", + "AAHSFNLLDAR3" + ], + [ + "80", + "AAIDLSSGQPR2" + ], + [ + "81", + "AAIDQQLR2" + ], + [ + "82", + "AAIDSIVSA1" + ], + [ + "83", + "AAIEAAGGKIEE2" + ], + [ + "85", + "AAIELFR2" + ], + [ + "92", + "AAILSNEK2" + ], + [ + "93", + "AAIM[Oxidation]AEIR2" + ], + [ + "97", + "AAISSCELLLSETSGTLR2" + ], + [ + "100", + "AAKAAEVDDADYCATVAAVVSEQMQGR3" + ], + [ + "101", + "AALAADITDVIIR2" + ], + [ + "103", + "AALAGAVNTLM[Oxidation]R2" + ], + [ + "106", + "AALEALPGVGR2" + ], + [ + "110", + "AALGYDVP1" + ], + [ + "111", + "AALIDCLAPDR2" + ], + [ + "112", + "AALIDCLAPDRR2" + ], + [ + "113", + "AALIDCLAPDRR3" + ], + [ + "114", + "AALISALQTLYPECSIYDR3" + ], + [ + "115", + "AALLADK1" + ], + [ + "117", + "AALPLNHLVAK2" + ] + ], + "shape": { + "columns": 1, + "rows": 6938 + } + }, + "text/plain": [ + "1 AAAAPVTGPLADDPIQETITFDDFAK3\n", + "2 AAAAVLAK1\n", + "5 AAAEADDIFGELSSGK2\n", + "7 AAAEVGAPFIEIHTGCYADAK3\n", + "11 AAAIAYAR2\n", + " ... \n", + "13965 YYGFDIGGTK2\n", + "13967 YYGYVTQPWFIGHSQR3\n", + "13968 YYLATGGGDISQAEVLLK2\n", + "13973 YYPGSPLIAR2\n", + "13975 YYSVIYNLIDEVK2\n", + "Name: Precursor.Id, Length: 6938, dtype: object" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_not_mumdia[\"Precursor.Id\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "id": "ad8ef00c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + } + ], + "ref": "b77ada0e-5c22-41c8-8834-7e9788d3bc77", + "rows": [ + [ + "0", + "VAVVLGESEVANGTAVVK4" + ], + [ + "2", + "ANAVVM[Oxidation]ATGGAGR3" + ], + [ + "6", + "PFVLGPTHEEVITDLIR2" + ], + [ + "9", + "HLNATIINEGDINTR4" + ], + [ + "13", + "DANGNLLADGDSVTIIK3" + ], + [ + "14", + "HVVVDKPFTVTLSQAR4" + ], + [ + "18", + "NVNPQIVENYR3" + ], + [ + "20", + "IALTQSGGLDAAQAR3" + ], + [ + "25", + "M[Oxidation]SPEAFEESVDAIR3" + ], + [ + "27", + "LQTLGLTQGTVVTISAEGEDEQK4" + ], + [ + "28", + "KDVNPDEAVAIGAAVQGGVLTGDVK4" + ], + [ + "31", + "GQIQENQYQLNQVVER4" + ], + [ + "32", + "VSQALDILTYTNKK4" + ], + [ + "35", + "NDIAM[Oxidation]GPLINAAALER4" + ], + [ + "36", + "NEAPLGIVYGSDAVASK4" + ], + [ + "37", + "VQTGDGINNDVDTK3" + ], + [ + "42", + "GSPALSAFR1" + ], + [ + "48", + "TAVQGSPTM[Oxidation]LAAISK3" + ], + [ + "49", + "IGAAIGSGIGGLGLIEENHTSLM[Oxidation]NGGPR4" + ], + [ + "50", + "DTINAPAEELGPSQLAQR4" + ], + [ + "53", + "LPDLAVQAQQK3" + ], + [ + "57", + "DVM[Oxidation]PEVNAVLEK3" + ], + [ + "61", + "YRPETDMADLDNFDAAK3" + ], + [ + "66", + "AAELAGNDTIPVEITR4" + ], + [ + "70", + "LFYLISEDM[Oxidation]TEPYEAR3" + ], + [ + "73", + "LEQAAYEM[Oxidation]TALR3" + ], + [ + "76", + "EQGLNSENFVAFNLTER4" + ], + [ + "78", + "ADYADSLTENGTHGSDSVESAAR4" + ], + [ + "85", + "TTSSAAIATGLAQK3" + ], + [ + "90", + "IDAVVASNDATAGGAIQALSAQGLSGK4" + ], + [ + "91", + "LNIDQNPGTAPK3" + ], + [ + "98", + "ILGNIEVGR1" + ], + [ + "101", + "GQSLQDPFLNALR3" + ], + [ + "105", + "GAVPGATGSDLIVKPAVK4" + ], + [ + "108", + "ADISSDQIAAIGITNQR4" + ], + [ + "110", + "LSDQEIEQTLQAFEAR4" + ], + [ + "114", + "GIAAAAQGELAGADAK3" + ], + [ + "120", + "ELVGEENFYTGIAHGEQER4" + ], + [ + "121", + "DVAEILLEGLR3" + ], + [ + "122", + "ALISNPTVIGAIM[Oxidation]VQR4" + ], + [ + "129", + "PVPALNQPGGIVEK3" + ], + [ + "132", + "ADALPAFEK1" + ], + [ + "133", + "FEDFEIEGYDPHPGIK4" + ], + [ + "137", + "LGVALATAESVVDAIER4" + ], + [ + "141", + "EALAEVGITGM[Oxidation]TVTEVK4" + ], + [ + "146", + "NTFSAKYQQEPGVSGPLK2" + ], + [ + "149", + "VLNQFDDAGIVTR3" + ], + [ + "158", + "GLAYVDELTPEQIR4" + ], + [ + "161", + "VVYAQSALGAYSSVHNIIADK4" + ], + [ + "163", + "DNVVIYEGELESLR3" + ] + ], + "shape": { + "columns": 1, + "rows": 3414 + } + }, + "text/plain": [ + "0 VAVVLGESEVANGTAVVK4\n", + "2 ANAVVM[Oxidation]ATGGAGR3\n", + "6 PFVLGPTHEEVITDLIR2\n", + "9 HLNATIINEGDINTR4\n", + "13 DANGNLLADGDSVTIIK3\n", + " ... \n", + "10445 ADDIQIR1\n", + "10446 SIGTLSAFEQNALEGMLDTLK4\n", + "10447 SIGTLSAFEQNALEGMLDTLK3\n", + "10448 FGLPIYVPER3\n", + "10451 VLQM[Oxidation]LEK1\n", + "Name: Precursor.Id, Length: 3414, dtype: object" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mumdia_not_diann[\"Precursor.Id\"]" + ] } ], "metadata": { diff --git a/feature_generators/features_fragment_intensity.py b/feature_generators/features_fragment_intensity.py index 211cddc..b0f4128 100644 --- a/feature_generators/features_fragment_intensity.py +++ b/feature_generators/features_fragment_intensity.py @@ -400,8 +400,8 @@ def match_fragments( fragment_records = [] - # Plot XICs - plot_XIC(df_fragment_sub_peptidoform) + # # Plot XICs + # plot_XIC(df_fragment_sub_peptidoform) # Get unique PSMs by sorting by fragment intensity and keeping the first occurrence per PSM unique_psm_id = df_fragment_sub_peptidoform.sort( @@ -412,40 +412,9 @@ def match_fragments( unique_psm_id_dicts = unique_psm_id.to_dicts() - log_info("Original df_fragment_sub_peptidoform:") - log_info(df_fragment_sub_peptidoform) - log_info("Shape: {}".format(df_fragment_sub_peptidoform.shape)) - log_info( - "Unique PSM IDs in original: {}".format( - df_fragment_sub_peptidoform["psm_id"].unique().to_list() - ) - ) - log_info( - "Unique RTs in original: {}".format( - sorted(df_fragment_sub_peptidoform["rt"].unique().to_list()) - ) - ) - log_info( - "rt_max_peptide_sub values: {}".format( - df_fragment_sub_peptidoform["rt_max_peptide_sub"].unique().to_list() - ) - ) - print("\n" * 2) - - log_info("After selecting unique PSMs by highest fragment intensity:") - log_info("Shape: {}".format(unique_psm_id.shape)) - log_info( - "Unique PSM IDs in unique_psm_id: {}".format( - unique_psm_id["psm_id"].unique().to_list() - ) - ) - log_info( - "Unique RTs in unique_psm_id: {}".format( - sorted(unique_psm_id["rt"].unique().to_list()) - ) - ) - print("\n" * 2) - + # log_info("Original df_fragment_sub_peptidoform:") + # log_info(df_fragment_sub_peptidoform) + # print("\n" * 2) # Iterate over each unique PSM to annotate and match fragments successful_psm_ids = [] failed_psm_ids = [] @@ -461,11 +430,11 @@ def match_fragments( precursor = row[ "precursor" ] # TODO: check if its okay to do on precursor level. If we don't we have a problem with RT matching - log_info( - "Processing PSM ID: {}, RT: {}, rt_max_peptide_sub: {}".format( - psm_id, rt, rt_max_peptide_sub - ) - ) + # log_info( + # "Processing PSM ID: {}, RT: {}, rt_max_peptide_sub: {}".format( + # psm_id, rt, rt_max_peptide_sub + # ) + # ) try: # Construct a RawSpectrum object for this PSM using the scan number and MS2 data @@ -495,32 +464,37 @@ def match_fragments( mode=MassMode.Monoisotopic, ) - log_info( - "Annotated spectrum for PSM ID: {} with {} peaks.".format( - psm_id, len(annotated_spectrum.spectrum or []) - ) - ) - - # Log all annotated peaks - log_info("Annotated peaks:") - for annotated_peak in annotated_spectrum.spectrum: - - if annotated_peak.annotation: - ion_label = re.search( - ion_pattern, repr(annotated_peak.annotation[0]) - ).group(1) - charge_label = re.search( - charge_pattern, repr(annotated_peak.annotation[0]) - ).group(1) - log_info( - "m/z: {}, Intensity:{}, Charge:{}, Ion:{}".format( - annotated_peak.experimental_mz, - annotated_peak.intensity, - charge_label, - ion_label, - ) - ) - log_info("\n" * 2) + # log_info("Annotated spectrum for PSM ID: {}".format(psm_id)) + # for annotated_peak in annotated_spectrum.spectrum: + # if annotated_peak.annotation: + # log_info(" - Found annotated peak: {}".format(annotated_peak)) + # log_info( + # " - Charge: {}".format(annotated_peak.annotation[0].charge) + # ) + # log_info( + # " - ion type: {}".format( + # re.search( + # ion_pattern, repr(annotated_peak.annotation[0]) + # ).group(1) + # ) + # ) + # log_info( + # "Charge is 1: {}".format( + # annotated_peak.annotation[0].charge == 1 + # ) + # ) + # log_info( + # "Ion type starts with b or y: {}".format( + # re.search(ion_pattern, repr(annotated_peak.annotation[0])) + # .group(1) + # .startswith("b") + # or re.search( + # ion_pattern, repr(annotated_peak.annotation[0]) + # ) + # .group(1) + # .startswith("y") + # ) + # ) matched_fragments = [ annotated_peak @@ -537,12 +511,12 @@ def match_fragments( ) ] - # For each matched fragment, extract ion type, ordinal, charge, and intensity - log_info( - "Found {} matched fragments for PSM ID: {}".format( - len(matched_fragments), psm_id - ) - ) + # # For each matched fragment, extract ion type, ordinal, charge, and intensity + # log_info( + # "Found {} matched fragments for PSM ID: {}".format( + # len(matched_fragments), psm_id + # ) + # ) if len(matched_fragments) == 0: log_info( @@ -553,18 +527,8 @@ def match_fragments( failed_psm_ids.append(psm_id) continue - # log_info("Matched fragment:") for mf in matched_fragments: - # log_info( - # "m/z: {}, Intensity: {}, Charge: {}, Annotation: {}".format( - # mf.experimental_mz, - # mf.intensity, - # mf.annotation[0].charge, - # repr(mf.annotation[0]), - # ) - # ) - ion_label = re.search(ion_pattern, repr(mf.annotation[0])).group(1) ion_charge = re.search(charge_pattern, repr(mf.annotation[0])).group(1) @@ -594,13 +558,6 @@ def match_fragments( failed_psm_ids.append(psm_id) continue - log_info("Summary of PSM processing:") - log_info( - " Successful PSMs: {} - {}".format(len(successful_psm_ids), successful_psm_ids) - ) - log_info(" Failed PSMs: {} - {}".format(len(failed_psm_ids), failed_psm_ids)) - log_info(" Total fragment records created: {}".format(len(fragment_records))) - # If any fragment records were found, create a new DataFrame and ensure uniqueness per PSM/fragment if len(fragment_records) != 0: new_df_fragment_sub_peptidoform = ( @@ -609,24 +566,6 @@ def match_fragments( .unique(subset=["psm_id", "fragment_name"], keep="first") ) - log_info("After creating new DataFrame from fragment records:") - log_info(" Shape: {}".format(new_df_fragment_sub_peptidoform.shape)) - log_info( - " Unique PSM IDs: {}".format( - new_df_fragment_sub_peptidoform["psm_id"].unique().to_list() - ) - ) - log_info( - " Unique RTs: {}".format( - sorted(new_df_fragment_sub_peptidoform["rt"].unique().to_list()) - ) - ) - log_info( - " rt_max_peptide_sub values: {}".format( - new_df_fragment_sub_peptidoform["rt_max_peptide_sub"].unique().to_list() - ) - ) - # Replace the original DataFrame df_fragment_sub_peptidoform = new_df_fragment_sub_peptidoform else: @@ -652,7 +591,7 @@ def match_fragments( └──────────┴─────────────┴─────────────┴──────────────┴────────────┴─────────────┴─────────────┴────────────┘ """ - log_info("{}".format(intensity_matrix_df.head(5))) + # log_info("{}".format(intensity_matrix_df)) # Do a max normalization of the MS2PIP predictions by dividing by the maximum # predicted intensity @@ -672,39 +611,6 @@ def match_fragments( df_fragment_sub_peptidoform["rt"] == target_rt ) - log_info( - "Looking for PSMs with RT exactly matching target RT: {}".format(target_rt) - ) - log_info( - "Available RTs in current DataFrame: {}".format( - sorted(df_fragment_sub_peptidoform["rt"].unique().to_list()) - ) - ) - log_info( - "Most abundant fragment PSMs with matching RT {} for the apex spectrum: {}".format( - target_rt, - ( - most_abundant_frag_psm["psm_id"][0] - if most_abundant_frag_psm.shape[0] > 0 - else "N/A" - ), - ) - ) - - log_info("{}".format(most_abundant_frag_psm.head(20))) - - if most_abundant_frag_psm.is_empty(): - log_info("No PSMs found with matching RT for the apex spectrum.") - log_info("Target RT = {:.6f}".format(target_rt)) - log_info("Available RTs:") - for rt in sorted(df_fragment_sub_peptidoform["rt"].unique()): - rt_diff = abs(float(rt) - target_rt) - log_info(" {:.6f} (diff: {:.6f})".format(rt, rt_diff)) - log_info( - "This indicates that the PSM with the correct RT was lost during fragment annotation processing." - ) - log_info("\n") - # Build predicted intensity vector for the fragments present in the most abundant PSM pred_frag_intens_individual = np.array( [ @@ -715,11 +621,11 @@ def match_fragments( ] ) - log_info( - "Predicted fragment intensities for the most abundant PSM: {}".format( - pred_frag_intens_individual - ) - ) + # log_info( + # "Predicted fragment intensities for the most abundant PSM: {}".format( + # pred_frag_intens_individual + # ) + # ) """ Get pearson and cosine similarity of spectrum with highest intensity @@ -729,16 +635,16 @@ def match_fragments( pred_frag_intens_individual, most_abundant_frag_psm["fragment_intensity"] )[0][1] - log_info( - "Pearson correlation for the most abundant PSM: {}".format(most_intens_cor) - ) + # log_info( + # "Pearson correlation for the most abundant PSM: {}".format(most_intens_cor) + # ) # Compute cosine similarity between predicted and observed intensities for the apex spectrum most_intens_cos = cosine_similarity( pred_frag_intens_individual, most_abundant_frag_psm["fragment_intensity"] ) - log_info("Cosine similarity for the most abundant PSM: {}".format(most_intens_cos)) + # log_info("Cosine similarity for the most abundant PSM: {}".format(most_intens_cos)) """ Get the intensity matrix of observations @@ -753,19 +659,20 @@ def match_fragments( [ms2pip_predictions.get(fid, 0.0) for fid in fragment_names] ) - log_info("Intensity matrix shape: {}".format(intensity_matrix.shape)) - log_info("{}".format(intensity_matrix)) - log_info("Predicted fragment intensities: \n{}".format(pred_frag_intens)) + # log_info("Intensity matrix shape: {}".format(intensity_matrix.shape)) + # print("{}".format(intensity_matrix)) + # log_info("Predicted fragment intensities: {}".format(pred_frag_intens.shape)) + # print("{}".format(pred_frag_intens)) # Collect predictions for keys not listed in fragment_names (i.e., fragments predicted but not observed) non_matched_predictions = np.array( [v for k, v in ms2pip_predictions.items() if k not in fragment_names] ) - log_info( - "Non-matched fragment predictions (not in intensity matrix): \n{}".format( - non_matched_predictions - ) - ) + # log_info( + # "Non-matched fragment predictions (not in intensity matrix): \n{}".format( + # non_matched_predictions + # ) + # ) # Sum of predicted intensities for matched fragments (for feature engineering) # TODO: is it a good idea to sum over PSMs? Or should we do it per PSM? @@ -773,11 +680,11 @@ def match_fragments( sum([ms2pip_predictions.get(fid, 0.0) for fid in fragment_names]) ) - log_info( - "Sum of predicted fragment intensities for matched fragments: {}".format( - sum_pred_frag_intens - ) - ) + # log_info( + # "Sum of predicted fragment intensities for matched fragments: {}".format( + # sum_pred_frag_intens + # ) + # ) # Ensure data types are consistent for downstream calculations intensity_matrix = intensity_matrix.astype(np.float32) @@ -804,7 +711,7 @@ def match_fragments( correlation_result = compute_correlations( intensity_matrix_normalized, pred_frag_intens ) - log_info("Correlation results: {}".format(correlation_result)) + # log_info("Correlation results: {}".format(correlation_result)) # Count the number of nonzero entries per PSM (for feature engineering) # TODO: is there a relevance to this? Because the number of columns depends on the max number of fragments for the PSM with the most fragments @@ -825,40 +732,40 @@ def match_fragments( .ravel() # Flatten the array to 1D ) - log_info( - "Count of non-zero fragment entries per PSM: {}".format( - correlation_result_counts - ) - ) + # log_info( + # "Count of non-zero fragment entries per PSM: {}".format( + # correlation_result_counts + # ) + # ) # Compute mean squared error between normalized observed and predicted intensities (per PSM, then averaged) mse_avg_pred_intens = ( abs(intensity_matrix_normalized - pred_frag_intens).sum(axis=1) ).sum() / intensity_matrix_normalized.shape[0] - log_info( - "Mean Squared Error (MSE) between normalized observed and predicted intensities: {}".format( - mse_avg_pred_intens - ) - ) + # log_info( + # "Mean Squared Error (MSE) between normalized observed and predicted intensities: {}".format( + # mse_avg_pred_intens + # ) + # ) # Compute total MSE including non-matched predictions mse_avg_pred_intens_total = ( (abs(intensity_matrix_normalized - pred_frag_intens).sum(axis=1)).sum() + sum(non_matched_predictions) ) / intensity_matrix_normalized.shape[0] - log_info( - "Total Mean Squared Error (MSE) including non-matched predictions: {}".format( - mse_avg_pred_intens_total - ) - ) + # log_info( + # "Total Mean Squared Error (MSE) including non-matched predictions: {}".format( + # mse_avg_pred_intens_total + # ) + # ) # Compute correlation matrix for PSM IDs (rows of intensity matrix) - log_info( - "Shape of intensity matrix normalized: {}".format( - intensity_matrix_normalized.shape - ) - ) + # log_info( + # "Shape of intensity matrix normalized: {}".format( + # intensity_matrix_normalized.shape + # ) + # ) if intensity_matrix_normalized.shape[0] > 1: # Ensure there are multiple PSMs correlation_matrix_psm_ids = np.corrcoef( intensity_matrix_normalized @@ -877,10 +784,10 @@ def match_fragments( """ # Placeholders for additional correlation matrices (not computed here) - correlation_matrix_psm_ids_ignore_zeros = np.array([]) - correlation_matrix_psm_ids_ignore_zeros_counts = np.array([]) - correlation_matrix_psm_ids_missing = np.array([]) - correlation_matrix_psm_ids_missing_zeros_counts = np.array([]) + # correlation_matrix_psm_ids_ignore_zeros = np.array([]) + # correlation_matrix_psm_ids_ignore_zeros_counts = np.array([]) + # correlation_matrix_psm_ids_missing = np.array([]) + # correlation_matrix_psm_ids_missing_zeros_counts = np.array([]) # Remove diagonal elements (self-correlation) and flatten to 1D correlation_matrix_psm_ids = correlation_matrix_psm_ids[ @@ -889,24 +796,33 @@ def match_fragments( # Square and sort the correlation values for downstream use # TODO: why square? correlation_matrix_psm_ids = np.sort(correlation_matrix_psm_ids**2) - log_info( - "Correlation matrix for PSM IDs computed with shape: {}".format( - correlation_matrix_psm_ids.shape - ) - ) + # log_info( + # "Correlation matrix for PSM IDs computed with shape: {}".format( + # correlation_matrix_psm_ids.shape + # ) + # ) else: # If only one PSM, set all correlation matrices to empty correlation_matrix_psm_ids = np.array([]) - correlation_matrix_psm_ids_ignore_zeros = np.array([]) - correlation_matrix_psm_ids_ignore_zeros_counts = np.array([]) - correlation_matrix_psm_ids_missing = np.array([]) - correlation_matrix_psm_ids_missing_zeros_counts = np.array([]) + # correlation_matrix_psm_ids_ignore_zeros = np.array([]) + # correlation_matrix_psm_ids_ignore_zeros_counts = np.array([]) + # correlation_matrix_psm_ids_missing = np.array([]) + # correlation_matrix_psm_ids_missing_zeros_counts = np.array([]) # Compute correlation matrix for fragment IDs (columns of intensity matrix) if intensity_matrix_normalized.shape[1] > 1: + # log_info("Calculating fragment correlations") + # print(intensity_matrix_normalized.T) correlation_matrix_frag_ids = np.corrcoef(intensity_matrix_normalized.T) + # log_info( + # "Shape of fragment correlation matrix: {}".format( + # correlation_matrix_frag_ids.shape + # ) + # ) + # print(" {}".format(correlation_matrix_frag_ids)) + """ ( correlation_matrix_frag_ids_ignore_zeros, @@ -919,28 +835,64 @@ def match_fragments( ) = corrcoef_ignore_both_missing_counts(intensity_matrix) """ # Placeholders for additional correlation matrices (not computed here) - correlation_matrix_frag_ids_ignore_zeros = np.array([]) - correlation_matrix_frag_ids_ignore_zeros_counts = np.array([]) - correlation_matrix_frag_ids_missing = np.array([]) - correlation_matrix_frag_ids_missing_zeros_counts = np.array([]) + # correlation_matrix_frag_ids_ignore_zeros = np.array([]) + # correlation_matrix_frag_ids_ignore_zeros_counts = np.array([]) + # correlation_matrix_frag_ids_missing = np.array([]) + # correlation_matrix_frag_ids_missing_zeros_counts = np.array([]) # Remove diagonal elements (self-correlation) and flatten to 1D + # log_info("Removing diagonal elements from fragment correlation matrix") correlation_matrix_frag_ids = correlation_matrix_frag_ids[ ~np.eye(correlation_matrix_frag_ids.shape[0], dtype=bool) ] # Square and sort the correlation values for downstream use - correlation_matrix_frag_ids = np.sort(correlation_matrix_frag_ids**2) + correlation_matrix_frag_ids = np.sort(correlation_matrix_frag_ids) + # log_info( + # "Final fragment correlation matrix shape: {}".format( + # correlation_matrix_frag_ids.shape + # ) + # ) else: # If only one fragment, set all correlation matrices to empty correlation_matrix_frag_ids = np.array([]) - correlation_matrix_frag_ids_ignore_zeros = np.array([]) - correlation_matrix_frag_ids_ignore_zeros_counts = np.array([]) - correlation_matrix_frag_ids_missing = np.array([]) - correlation_matrix_frag_ids_missing_zeros_counts = np.array([]) - - log_info("##" * 25) - log_info("\n" * 10) + # correlation_matrix_frag_ids_ignore_zeros = np.array([]) + # correlation_matrix_frag_ids_ignore_zeros_counts = np.array([]) + # correlation_matrix_frag_ids_missing = np.array([]) + # correlation_matrix_frag_ids_missing_zeros_counts = np.array([]) + + # log_info("##" * 25) + + # log_info("Final results:") + # log_info(" Correlation results: {}".format(correlation_result)) + # log_info( + # " Count of non-zero fragment entries per PSM: {}".format( + # correlation_result_counts + # ) + # ) + # log_info( + # " Sum of predicted fragment intensities for matched fragments: {}".format( + # sum_pred_frag_intens + # ) + # ) + # log_info(" Correlation matrix for PSM IDs: {}".format(correlation_matrix_psm_ids)) + # log_info(" Correlation matrix for fragment IDs:") + # print(" {}".format(correlation_matrix_frag_ids)) + # log_info("Pearson correlation of the most intense PSM: {}".format(most_intens_cor)) + # log_info("Cosine similarity of the most intense PSM: {}".format(most_intens_cos)) + # log_info( + # " Average MSE of predicted fragment intensities: {}".format( + # mse_avg_pred_intens + # ) + # ) + # log_info( + # " Total MSE of predicted fragment intensities including non-matched predictions: {}".format( + # mse_avg_pred_intens_total + # ) + # ) + # print("#" * 25) + # print("\n" * 5) + # input("Press enter to continue...") return CorrelationResults( correlations=correlation_result, # Pearson correlation between predicted and observed intensities @@ -948,14 +900,14 @@ def match_fragments( sum_pred_frag_intens=sum_pred_frag_intens, # Sum of predicted fragment intensities for matched fragments correlation_matrix_psm_ids=correlation_matrix_psm_ids, # Correlation matrix for PSMs, i.e. the correlation between fragments of different PSMs correlation_matrix_frag_ids=correlation_matrix_frag_ids, # Correlation matrix for fragments, i.e. the correlation between fragments of every PSM - correlation_matrix_psm_ids_ignore_zeros=correlation_matrix_psm_ids_ignore_zeros, # TODO: always empty, needs to be implemented - correlation_matrix_psm_ids_ignore_zeros_counts=correlation_matrix_psm_ids_ignore_zeros_counts, # TODO: always empty, needs to be implemented - correlation_matrix_psm_ids_missing=correlation_matrix_psm_ids_missing, # TODO: always empty, needs to be implemented - correlation_matrix_psm_ids_missing_zeros_counts=correlation_matrix_psm_ids_missing_zeros_counts, # Always empty, needs to be implemented - correlation_matrix_frag_ids_ignore_zeros=correlation_matrix_frag_ids_ignore_zeros, # Always empty, needs to be implemented - correlation_matrix_frag_ids_ignore_zeros_counts=correlation_matrix_frag_ids_ignore_zeros_counts, # Always empty, needs to be implemented - correlation_matrix_frag_ids_missing=correlation_matrix_frag_ids_missing, # Always empty, needs to be implemented - correlation_matrix_frag_ids_missing_zeros_counts=correlation_matrix_frag_ids_missing_zeros_counts, # Always empty, needs to be implemented + # correlation_matrix_psm_ids_ignore_zeros=correlation_matrix_psm_ids_ignore_zeros, # TODO: always empty, needs to be implemented + # correlation_matrix_psm_ids_ignore_zeros_counts=correlation_matrix_psm_ids_ignore_zeros_counts, # TODO: always empty, needs to be implemented + # correlation_matrix_psm_ids_missing=correlation_matrix_psm_ids_missing, # TODO: always empty, needs to be implemented + # correlation_matrix_psm_ids_missing_zeros_counts=correlation_matrix_psm_ids_missing_zeros_counts, # TODO: Always empty, needs to be implemented + # correlation_matrix_frag_ids_ignore_zeros=correlation_matrix_frag_ids_ignore_zeros, # TODO: Always empty, needs to be implemented + # correlation_matrix_frag_ids_ignore_zeros_counts=correlation_matrix_frag_ids_ignore_zeros_counts, # TODO: Always empty, needs to be implemented + # correlation_matrix_frag_ids_missing=correlation_matrix_frag_ids_missing, # TODO: Always empty, needs to be implemented + # correlation_matrix_frag_ids_missing_zeros_counts=correlation_matrix_frag_ids_missing_zeros_counts, # TODO: Always empty, needs to be implemented most_intens_cor=most_intens_cor, # Pearson correlation of the most intense PSM most_intens_cos=most_intens_cos, # Cosine similarity of the most intense PSM mse_avg_pred_intens=mse_avg_pred_intens, # Average MSE of predicted fragment intensities @@ -993,15 +945,15 @@ def get_features_fragment_intensity( (pl.col("peptide") + "/" + pl.col("charge").cast(pl.Utf8)).alias("precursor") ) - log_info("df_fragment_max_peptide summary:") - log_info(" Shape: {}".format(df_fragment_max_peptide.shape)) - log_info(" Sample entries:") - for row in df_fragment_max_peptide.head(5).iter_rows(named=True): - log_info( - " Precursor: {}, PSM ID: {}, RT: {}".format( - row["precursor"], row["psm_id"], row["rt"] - ) - ) + # log_info("df_fragment_max_peptide summary:") + # log_info(" Shape: {}".format(df_fragment_max_peptide.shape)) + # log_info(" Sample entries:") + # for row in df_fragment_max_peptide.head(5).iter_rows(named=True): + # log_info( + # " Precursor: {}, PSM ID: {}, RT: {}".format( + # row["precursor"], row["psm_id"], row["rt"] + # ) + # ) precursor_to_rt_max = dict( zip( @@ -1010,11 +962,11 @@ def get_features_fragment_intensity( ) ) - log_info( - "precursor_to_rt_max mapping created with {} entries".format( - len(precursor_to_rt_max) - ) - ) + # log_info( + # "precursor_to_rt_max mapping created with {} entries".format( + # len(precursor_to_rt_max) + # ) + # ) df_precursor_rt = pl.DataFrame( { @@ -1027,30 +979,13 @@ def get_features_fragment_intensity( (pl.col("peptide") + "/" + pl.col("charge").cast(pl.Utf8)).alias("precursor") ) - log_info("Before joining rt_max_peptide_sub:") - log_info(" df_fragment shape: {}".format(df_fragment.shape)) - log_info( - " Unique precursors in df_fragment: {}".format( - len(df_fragment["precursor"].unique()) - ) - ) - df_fragment = df_fragment.join(df_precursor_rt, on="precursor", how="left") - log_info("After joining rt_max_peptide_sub:") - log_info(" df_fragment shape: {}".format(df_fragment.shape)) - log_info( - " Entries with null rt_max_peptide_sub: {}".format( - df_fragment.filter(pl.col("rt_max_peptide_sub").is_null()).shape[0] - ) - ) - df_fragment = df_fragment.filter( (pl.col("rt_max_peptide_sub").is_not_null()) & (abs(pl.col("rt") - pl.col("rt_max_peptide_sub")) < filter_max_apex_rt) ) - log_info("df_fragment after filtering: {}".format(df_fragment.shape)) - log_info("Calculation of all correlation values...") + # log_info("Calculation of all correlation values...") for (peptidoform, charge), df_fragment_sub_peptidoform in tqdm( df_fragment.group_by(["peptide", "charge"]) @@ -1073,14 +1008,14 @@ def get_features_fragment_intensity( results.sum_pred_frag_intens, results.correlation_matrix_psm_ids, results.correlation_matrix_frag_ids, - results.correlation_matrix_psm_ids_ignore_zeros, - results.correlation_matrix_psm_ids_ignore_zeros_counts, - results.correlation_matrix_psm_ids_missing, - results.correlation_matrix_psm_ids_missing_zeros_counts, - results.correlation_matrix_frag_ids_ignore_zeros, - results.correlation_matrix_frag_ids_ignore_zeros_counts, - results.correlation_matrix_frag_ids_missing, - results.correlation_matrix_frag_ids_missing_zeros_counts, + # results.correlation_matrix_psm_ids_ignore_zeros, + # results.correlation_matrix_psm_ids_ignore_zeros_counts, + # results.correlation_matrix_psm_ids_missing, + # results.correlation_matrix_psm_ids_missing_zeros_counts, + # results.correlation_matrix_frag_ids_ignore_zeros, + # results.correlation_matrix_frag_ids_ignore_zeros_counts, + # results.correlation_matrix_frag_ids_missing, + # results.correlation_matrix_frag_ids_missing_zeros_counts, results.most_intens_cor, results.most_intens_cos, results.mse_avg_pred_intens, diff --git a/mumdia.py b/mumdia.py index 3fdaae4..5d8cb4a 100644 --- a/mumdia.py +++ b/mumdia.py @@ -255,7 +255,7 @@ def create_model(): ) model = Sequential() - model.add(Dense(100, input_dim=103, activation="relu")) + model.add(Dense(100, input_dim=69, activation="relu")) model.add(Dense(50, activation="relu")) model.add(Dense(20, activation="relu")) model.add(Dense(1, activation="sigmoid")) @@ -327,30 +327,49 @@ def add_feature_columns_nb(data, feature_name, values, method, add_index, pad_si Compute a feature vector from the input data using Numba-accelerated routines. Returns a dictionary mapping column names to computed scalar values. """ + # logging.info( + # f"add_feature_columns_nb: feature_name={feature_name}, method={method}, values={values}, pad_size={pad_size}" + # ) data = np.asarray(data, dtype=np.float64) required_length = len(values) computed_idx = np.array([], dtype=np.float64) + # logging.debug(f"Input data size: {data.size}") if data.size == 0: + # logging.info("Input data is empty, returning zeros.") computed = np.zeros(required_length, dtype=np.float64) if len(add_index) > 0: computed_idx = np.zeros(required_length, dtype=np.float64) elif method == "percentile": qs = np.array(values, dtype=np.float64) + # logging.info(f"Computing percentiles: qs={qs}") if len(add_index) > 0: computed, computed_idx = compute_percentiles_nb_idx(data, qs, add_index) + # logging.debug( + # f"Percentile results: computed={computed}, computed_idx={computed_idx}" + # ) else: computed = compute_percentiles_nb(data, qs) + # logging.debug(f"Percentile results: computed={computed}") elif method == "top": + # logging.info(f"Computing top values: count={required_length}") if len(add_index) > 0: computed, computed_idx = compute_top_nb_idx( data, required_length, add_index ) + # logging.debug( + # f"Top results: computed={computed}, computed_idx={computed_idx}" + # ) else: computed = compute_top_nb(data, required_length) + # logging.debug(f"Top results: computed={computed}") else: + logging.error(f"Unknown method: {method}") raise ValueError(f"Unknown method: {method}") # Ensure computed is of the required length if computed.size < required_length: + # logging.info( + # f"Padded computed array from size {computed.size} to {required_length}" + # ) padded = np.zeros(required_length, dtype=np.float64) padded[: computed.size] = computed computed = padded @@ -365,6 +384,7 @@ def add_feature_columns_nb(data, feature_name, values, method, add_index, pad_si computed_idx = computed_idx[:required_length] if len(add_index) > 0: + # logging.info(f"Returning feature dict with index columns for {feature_name}") return { **{f"{feature_name}_{v}": computed[i] for i, v in enumerate(values)}, **{ @@ -372,14 +392,12 @@ def add_feature_columns_nb(data, feature_name, values, method, add_index, pad_si }, } else: + # logging.info(f"Returning feature dict for {feature_name}") return {f"{feature_name}_{v}": computed[i] for i, v in enumerate(values)} def run_peptidoform_df( df_psms_sub_peptidoform: pl.DataFrame, - selected_features: List[str] = [], - collect_distributions: List[int] = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], - collect_top: List[int] = [1, 2, 3, 4, 5], collapse_max_columns: List[str] = [ "fragment_ppm", "rank", @@ -463,6 +481,13 @@ def run_peptidoform_df( collapse_sum_columns=collapse_sum_columns, get_first_entry=get_first_entry, ) + + # log_info( + # "df_psms_sub_peptidoform_collapsed shape: {}".format( + # df_psms_sub_peptidoform_collapsed.shape + # ) + # ) + # log_info(df_psms_sub_peptidoform_collapsed) df_psms_sub_peptidoform_collapsed = df_psms_sub_peptidoform_collapsed.with_columns( pl.when(pl.col("is_decoy")).then(-1).otherwise(1).alias("is_decoy") ) @@ -598,14 +623,14 @@ def run_peptidoform_correlation( sum_pred_frag_intens, correlation_matrix_psm_ids, correlation_matrix_frag_ids, - correlation_matrix_psm_ids_ignore_zeros, - correlation_matrix_psm_ids_ignore_zeros_counts, - correlation_matrix_psm_ids_missing, - correlation_matrix_psm_ids_missing_zeros_counts, - correlation_matrix_frag_ids_ignore_zeros, - correlation_matrix_frag_ids_ignore_zeros_counts, - correlation_matrix_frag_ids_missing, - correlation_matrix_frag_ids_missing_zeros_counts, + # correlation_matrix_psm_ids_ignore_zeros, + # correlation_matrix_psm_ids_ignore_zeros_counts, + # correlation_matrix_psm_ids_missing, + # correlation_matrix_psm_ids_missing_zeros_counts, + # correlation_matrix_frag_ids_ignore_zeros, + # correlation_matrix_frag_ids_ignore_zeros_counts, + # correlation_matrix_frag_ids_missing, + # correlation_matrix_frag_ids_missing_zeros_counts, most_intens_cor, most_intens_cos, mse_avg_pred_intens, @@ -669,6 +694,9 @@ def run_peptidoform_correlation( ] for data, feat_name, values, method, ps, add_index in params: # Here, for percentiles and top values, we use the Numba-accelerated add_feature_columns_nb. + # log_info( + # f"Adding feature {feat_name} with method {method} and values {values}." + # ) feature_dict.update( add_feature_columns_nb( data, feat_name, values, method, add_index, pad_size=ps @@ -676,7 +704,7 @@ def run_peptidoform_correlation( ) df = pl.DataFrame(feature_dict) - df.write_csv("debug/correlation_features.csv") + # df.write_csv("debug/correlation_features.csv") return df @@ -965,37 +993,10 @@ def calculate_features( .unique(subset=["peptide", "charge"], keep="first") ) - log_info("Regenerated df_fragment_max_peptide:") - log_info(" Shape: {}".format(df_fragment_max_peptide.shape)) - log_info(" Sample entries:") - for row in df_fragment_max_peptide.head(3).iter_rows(named=True): - log_info( - " Peptide: {}, Charge: {}, PSM ID: {}, RT: {}, Fragment Intensity: {}".format( - row["peptide"], - row["charge"], - row["psm_id"], - row["rt"], - row["fragment_intensity"], - ) - ) - - log_info( - "Counting individual peptides per MS2 and filtering by minimum occurrences" - ) df_psms = add_count_and_filter_peptides(df_psms, min_occurrences) - log_info("PSMs shape after peptide count filtering: {}".format(df_psms.shape)) - - # CRITICAL FIX: Regenerate df_fragment_max_peptide again after peptide count filtering - log_info("Regenerating df_fragment_max_peptide after peptide count filtering...") - # Filter df_fragment to only include PSMs that passed all filtering df_fragment = df_fragment.filter(pl.col("psm_id").is_in(df_psms["psm_id"])) - log_info( - "df_fragment shape after filtering to match all-filtered PSMs: {}".format( - df_fragment.shape - ) - ) # Regenerate the maximum intensity fragment per PSM df_fragment_max = df_fragment.sort("fragment_intensity", descending=True).unique( diff --git a/notebook_helpers/compare_mokapot_output.ipynb b/notebook_helpers/compare_mokapot_output.ipynb new file mode 100644 index 0000000..86b366f --- /dev/null +++ b/notebook_helpers/compare_mokapot_output.ipynb @@ -0,0 +1,1123 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d0108887", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4608233", + "metadata": {}, + "outputs": [], + "source": [ + "before = pd.read_csv(\n", + " \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/mokapotold.psms.txt\",\n", + " sep=\"\\t\",\n", + ")\n", + "after = pd.read_csv(\n", + " \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/mokapot.psms.txt\", sep=\"\\t\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b822b6ed", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "ScanNr", + "rawType": "float64", + "type": "float" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "Peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "ExpMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "CalcMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "Label", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "SpecId", + "rawType": "object", + "type": "string" + }, + { + "name": "mokapot score", + "rawType": "float64", + "type": "float" + }, + { + "name": "mokapot q-value", + "rawType": "float64", + "type": "float" + }, + { + "name": "mokapot PEP", + "rawType": "float64", + "type": "float" + }, + { + "name": "Proteins", + "rawType": "object", + "type": "string" + } + ], + "ref": "842907a4-c66a-45cc-86be-16bb53b842cd", + "rows": [ + [ + "0", + "97709.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "AAIEYAIANDR", + "1207.0348", + "1205.604", + "True", + "97709|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=110655", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P08200|IDH_ECOLI|211|222" + ], + [ + "1", + "135617.0", + "part_4257.031860351558_5321.289825439448.mzml", + "NQIADLVGADPR", + "1271.0638", + "1267.652", + "True", + "135617|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129480", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A6B7|ISCS_ECOLI|55|67" + ], + [ + "2", + "135621.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GYVVDPLGK", + "942.9148", + "946.5123", + "True", + "135621|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=123109", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P23847|DPPA_ECOLI|517|526" + ], + [ + "3", + "135718.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TVLITLGSR", + "958.922", + "958.5812", + "True", + "135718|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=127242", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A9J6|RBSK_ECOLI|218|227" + ], + [ + "4", + "135623.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AVTAEVEAALGNR", + "1306.323", + "1299.6782", + "True", + "135623|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=130067", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P31120|GLMM_ECOLI|392|405" + ], + [ + "5", + "135625.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GELQQLIK", + "934.91113", + "927.53894", + "True", + "135625|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=115229", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AC69|GLRX4_ECOLI|93|101" + ], + [ + "6", + "135642.0", + "part_4257.031860351558_5321.289825439448.mzml", + "VNAEYVEAFTK", + "1271.0638", + "1269.6241", + "True", + "135642|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129480", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABB0|ATPA_ECOLI|303|314" + ], + [ + "7", + "135609.0", + "part_4257.031860351558_5321.289825439448.mzml", + "VSVSIFGR", + "870.882", + "863.48645", + "True", + "135609|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=130067", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AFG0|NUSG_ECOLI|159|167" + ], + [ + "8", + "97692.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "ALVQESIYER", + "1207.0348", + "1206.6244", + "True", + "97692|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=110655", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P37685|ALDB_ECOLI|312|322" + ], + [ + "9", + "136158.0", + "part_4257.031860351558_5321.289825439448.mzml", + "IEQLYPFPHK", + "1282.3121", + "1270.6709", + "True", + "136158|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=121191", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AFG3|ODO1_ECOLI|844|854" + ], + [ + "10", + "136255.0", + "part_4257.031860351558_5321.289825439448.mzml", + "ELDQALVVR", + "1038.9584", + "1041.5818", + "True", + "136255|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=117607", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A9H1|MUG_ECOLI|157|166" + ], + [ + "11", + "136286.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GVTAIITM[Oxidation]TESGR", + "1351.1002", + "1350.6812", + "True", + "136286|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=119233", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P21599|KPYK2_ECOLI|377|390" + ], + [ + "12", + "136335.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LSFTGSTEIGR", + "1167.0166", + "1166.5931", + "True", + "136335|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=120063", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P25526|GABD_ECOLI|228|239" + ], + [ + "13", + "136419.0", + "part_4257.031860351558_5321.289825439448.mzml", + "VGFFNPIASEKEEGTR", + "1783.2968", + "1779.8792", + "True", + "136419|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=131502", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A7T3|RS16_ECOLI|35|51" + ], + [ + "14", + "97256.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "QHVPVFVTDEM[Oxidation]VGHK", + "1738.5195", + "1737.8508", + "True", + "97256|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=95657", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A7U3|RS19_ECOLI|55|70" + ], + [ + "15", + "175486.0", + "part_4257.031860351558_5321.289825439448.mzml", + "VQLTATVSENQLGQR", + "1630.4703", + "1642.8639", + "True", + "175486|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=139032", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P33643|RLUD_ECOLI|4|19" + ], + [ + "16", + "73928.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "YAGVGDIIK", + "926.9075", + "934.5123", + "True", + "73928|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=111479", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ADY3|RL14_ECOLI|31|40" + ], + [ + "17", + "177850.0", + "part_4257.031860351558_5321.289825439448.mzml", + "EGSSLLGSDAGELAGAGK", + "1615.2203", + "1617.7847", + "True", + "177850|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=132945", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P04036|DAPB_ECOLI|39|57" + ], + [ + "18", + "177928.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LLESAGIAYTVNQR", + "1535.184", + "1533.8151", + "True", + "177928|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133399", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P60906|SYH_ECOLI|242|256" + ], + [ + "19", + "177874.0", + "part_4257.031860351558_5321.289825439448.mzml", + "SIDALQHVLINK", + "1354.345", + "1349.7667", + "True", + "177874|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133129", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ACI6|ASNC_ECOLI|114|126" + ], + [ + "20", + "175119.0", + "part_4257.031860351558_5321.289825439448.mzml", + "QLSELIYSR", + "1102.9875", + "1107.5924", + "True", + "175119|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=125415", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P00959|SYM_ECOLI|104|113" + ], + [ + "21", + "177494.0", + "part_4257.031860351558_5321.289825439448.mzml", + "SLFDGTLQGIHR", + "1342.3394", + "1342.6993", + "True", + "177494|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=137643", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A6F1|CARA_ECOLI|330|342" + ], + [ + "22", + "75443.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "LISADGKPVSPTEENFANAAK", + "2146.7048", + "2158.0906", + "True", + "75443|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=101642", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AG82|PSTS_ECOLI|233|254" + ], + [ + "23", + "175337.0", + "part_4257.031860351558_5321.289825439448.mzml", + "IGAFEIDDGELHGESPGDR", + "2014.645", + "2012.9076", + "True", + "175337|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=136447", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P64503|YEBV_ECOLI|6|25" + ], + [ + "24", + "177706.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GGDLGQPFQFK", + "1199.0311", + "1192.5876", + "True", + "177706|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=137203", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A8E7|YAJQ_ECOLI|148|159" + ], + [ + "25", + "175295.0", + "part_4257.031860351558_5321.289825439448.mzml", + "QISLLLR", + "846.8711", + "841.53845", + "True", + "175295|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=136415", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABB0|ATPA_ECOLI|271|278" + ], + [ + "26", + "177723.0", + "part_4257.031860351558_5321.289825439448.mzml", + "NIFGYQYTIPTHQGR", + "1799.3041", + "1793.885", + "True", + "177723|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=137623", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A853|TNAA_ECOLI|88|103" + ], + [ + "27", + "177769.0", + "part_4257.031860351558_5321.289825439448.mzml", + "FPAIIYGGK", + "963.6811", + "964.5382", + "True", + "177769|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=137631", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P68919|RL25_ECOLI|25|34" + ], + [ + "28", + "177483.0", + "part_4257.031860351558_5321.289825439448.mzml", + "APVEQWSAGATGLGVR", + "1599.213", + "1597.8213", + "True", + "177483|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133403", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P37095|PEPB_ECOLI|403|419" + ], + [ + "29", + "75107.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "QAIVAEVSEVAK", + "1247.053", + "1242.682", + "True", + "75107|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=93903", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A7J3|RL10_ECOLI|8|20" + ], + [ + "30", + "175763.0", + "part_4257.031860351558_5321.289825439448.mzml", + "APVAAPSQSVATGAVNEIHTSPYSK", + "2470.8525", + "2481.25", + "True", + "175763|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124378", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P38038|CYSJ_ECOLI|208|233" + ], + [ + "31", + "113150.0", + "part_4257.031860351558_5321.289825439448.mzml", + "IIAPEGSDNAFQTSNPK", + "1783.2968", + "1787.869", + "True", + "113150|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=113752", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P09832|GLTD_ECOLI|421|438" + ], + [ + "32", + "113152.0", + "part_4257.031860351558_5321.289825439448.mzml", + "QSQLLANLR", + "1038.9584", + "1041.593", + "True", + "113152|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=114088", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P76216|ASTB_ECOLI|269|278" + ], + [ + "33", + "113175.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TSVVNASISGDTSQQGLAR", + "1894.5905", + "1889.9443", + "True", + "113175|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=113490", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ADA1|TESA_ECOLI|60|79" + ], + [ + "34", + "111781.0", + "part_4257.031860351558_5321.289825439448.mzml", + "HQVNILYTAPTAIR", + "1599.213", + "1595.8784", + "True", + "111781|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=126211", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P27550|ACSA_ECOLI|348|362" + ], + [ + "35", + "111853.0", + "part_4257.031860351558_5321.289825439448.mzml", + "VGPGELM[Oxidation]VIDTR", + "1295.0748", + "1301.6649", + "True", + "111853|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=111656", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P09831|GLTB_ECOLI|390|402" + ], + [ + "36", + "178145.0", + "part_4257.031860351558_5321.289825439448.mzml", + "M[Oxidation]ENFTTNLNQLAR", + "1558.4375", + "1566.746", + "True", + "178145|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124493", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABH9|CLPA_ECOLI|168|181" + ], + [ + "37", + "178244.0", + "part_4257.031860351558_5321.289825439448.mzml", + "STLFNALTK", + "998.9402", + "993.54944", + "True", + "178244|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133135", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABU2|YCHF_ECOLI|15|24" + ], + [ + "38", + "178224.0", + "part_4257.031860351558_5321.289825439448.mzml", + "DSLGFQPNLR", + "1151.0094", + "1145.5829", + "True", + "178224|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133221", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P65367|YQCA_ECOLI|76|86" + ], + [ + "39", + "174680.0", + "part_4257.031860351558_5321.289825439448.mzml", + "ITGIDSSPAM[Oxidation]IAEAR", + "1551.1913", + "1546.766", + "True", + "174680|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124219", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P76145|TAM_ECOLI|57|72" + ], + [ + "40", + "174687.0", + "part_4257.031860351558_5321.289825439448.mzml", + "IIAYGDADVM[Oxidation]VAGGAEK", + "1695.2567", + "1694.8185", + "True", + "174687|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124228", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AAI5|FABF_ECOLI|176|193" + ], + [ + "41", + "73654.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "SSAIFINAGR", + "1038.9584", + "1034.5509", + "True", + "73654|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=111180", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P37666|GHRB_ECOLI|227|237" + ], + [ + "42", + "178348.0", + "part_4257.031860351558_5321.289825439448.mzml", + "SIDALQHVLINK", + "1351.1002", + "1349.7667", + "True", + "178348|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=133158", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ACI6|ASNC_ECOLI|114|126" + ], + [ + "43", + "178359.0", + "part_4257.031860351558_5321.289825439448.mzml", + "DFDVTTNATPEQVR", + "1599.213", + "1591.7477", + "True", + "178359|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124987", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABF1|PCNB_ECOLI|79|93" + ], + [ + "44", + "113355.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AVDLISNVAGDR", + "1231.0458", + "1228.6411", + "True", + "113355|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129095", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P37095|PEPB_ECOLI|129|141" + ], + [ + "45", + "113328.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AIDVIDEAGAR", + "1126.9984", + "1128.5775", + "True", + "113328|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=113864", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0ABH9|CLPA_ECOLI|397|408" + ], + [ + "46", + "113020.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AIAQVGTISANSDETVGK", + "1767.2894", + "1759.8953", + "True", + "113020|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=113598", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A6F5|CH60_ECOLI|142|160" + ], + [ + "47", + "113121.0", + "part_4257.031860351558_5321.289825439448.mzml", + "SLEQYFGR", + "990.9366", + "998.4822", + "True", + "113121|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=126173", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0A7X3|RS9_ECOLI|33|41" + ], + [ + "48", + "111914.0", + "part_4257.031860351558_5321.289825439448.mzml", + "EAFATIAVAADK", + "1199.0311", + "1205.6292", + "True", + "111914|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129093", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P15288|PEPD_ECOLI|260|272" + ], + [ + "49", + "113401.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AGVDVLGISTDKPEK", + "1527.1803", + "1527.8145", + "True", + "113401|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=118938", + "0.0010413406", + "0.0002675227394328", + "0.0547050629637278", + "sp|P0AE52|BCP_ECOLI|62|77" + ] + ], + "shape": { + "columns": 11, + "rows": 46355 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ScanNrfilenamePeptideExpMassCalcMassLabelSpecIdmokapot scoremokapot q-valuemokapot PEPProteins
097709.0part_3192.7738952636682_4257.031860351558.mzmlAAIEYAIANDR1207.03481205.6040True97709|part_3192.7738952636682_4257.03186035155...0.0010410.0002680.054705sp|P08200|IDH_ECOLI|211|222
1135617.0part_4257.031860351558_5321.289825439448.mzmlNQIADLVGADPR1271.06381267.6520True135617|part_4257.031860351558_5321.28982543944...0.0010410.0002680.054705sp|P0A6B7|ISCS_ECOLI|55|67
2135621.0part_4257.031860351558_5321.289825439448.mzmlGYVVDPLGK942.9148946.5123True135621|part_4257.031860351558_5321.28982543944...0.0010410.0002680.054705sp|P23847|DPPA_ECOLI|517|526
3135718.0part_4257.031860351558_5321.289825439448.mzmlTVLITLGSR958.9220958.5812True135718|part_4257.031860351558_5321.28982543944...0.0010410.0002680.054705sp|P0A9J6|RBSK_ECOLI|218|227
4135623.0part_4257.031860351558_5321.289825439448.mzmlAVTAEVEAALGNR1306.32301299.6782True135623|part_4257.031860351558_5321.28982543944...0.0010410.0002680.054705sp|P31120|GLMM_ECOLI|392|405
....................................
46350109694.0part_4257.031860351558_5321.289825439448.mzmlNVEDNWRVRWM[Oxidation]TGYYYK2286.01152295.0532True109694|part_4257.031860351558_5321.28982543944...0.8568850.7501190.964964sp|P37650|BCSC_ECOLI|973|990
46351132305.0part_4257.031860351558_5321.289825439448.mzmlIQTQLDADDQLLSTYKK1981.87321979.0211True132305|part_4257.031860351558_5321.28982543944...0.8568850.7501190.964964sp|P0AB85|APBE_ECOLI|64|81
46352179905.0part_4257.031860351558_5321.289825439448.mzmlVSAYHTHGADSHGEYWDEIFSGKDEK2974.32422964.2950True179905|part_4257.031860351558_5321.28982543944...0.8568850.7501190.964964sp|P16917|RHSB_ECOLI|1338|1364
46353153107.0part_4257.031860351558_5321.289825439448.mzmlQPDLQPISTDRKTECFR2045.90232032.9999True153107|part_4257.031860351558_5321.28982543944...0.8568850.7501190.964964sp|A5A628|YJBT_ECOLI|55|72
46354136389.0part_4257.031860351558_5321.289825439448.mzmlIAKAATFAASLGLKVNAGHGLTYHNVK2766.22972751.5183True136389|part_4257.031860351558_5321.28982543944...0.8568980.7501240.964964sp|P0A794|PDXJ_ECOLI|174|201
\n", + "

46355 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " ScanNr filename \\\n", + "0 97709.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "1 135617.0 part_4257.031860351558_5321.289825439448.mzml \n", + "2 135621.0 part_4257.031860351558_5321.289825439448.mzml \n", + "3 135718.0 part_4257.031860351558_5321.289825439448.mzml \n", + "4 135623.0 part_4257.031860351558_5321.289825439448.mzml \n", + "... ... ... \n", + "46350 109694.0 part_4257.031860351558_5321.289825439448.mzml \n", + "46351 132305.0 part_4257.031860351558_5321.289825439448.mzml \n", + "46352 179905.0 part_4257.031860351558_5321.289825439448.mzml \n", + "46353 153107.0 part_4257.031860351558_5321.289825439448.mzml \n", + "46354 136389.0 part_4257.031860351558_5321.289825439448.mzml \n", + "\n", + " Peptide ExpMass CalcMass Label \\\n", + "0 AAIEYAIANDR 1207.0348 1205.6040 True \n", + "1 NQIADLVGADPR 1271.0638 1267.6520 True \n", + "2 GYVVDPLGK 942.9148 946.5123 True \n", + "3 TVLITLGSR 958.9220 958.5812 True \n", + "4 AVTAEVEAALGNR 1306.3230 1299.6782 True \n", + "... ... ... ... ... \n", + "46350 NVEDNWRVRWM[Oxidation]TGYYYK 2286.0115 2295.0532 True \n", + "46351 IQTQLDADDQLLSTYKK 1981.8732 1979.0211 True \n", + "46352 VSAYHTHGADSHGEYWDEIFSGKDEK 2974.3242 2964.2950 True \n", + "46353 QPDLQPISTDRKTECFR 2045.9023 2032.9999 True \n", + "46354 IAKAATFAASLGLKVNAGHGLTYHNVK 2766.2297 2751.5183 True \n", + "\n", + " SpecId mokapot score \\\n", + "0 97709|part_3192.7738952636682_4257.03186035155... 0.001041 \n", + "1 135617|part_4257.031860351558_5321.28982543944... 0.001041 \n", + "2 135621|part_4257.031860351558_5321.28982543944... 0.001041 \n", + "3 135718|part_4257.031860351558_5321.28982543944... 0.001041 \n", + "4 135623|part_4257.031860351558_5321.28982543944... 0.001041 \n", + "... ... ... \n", + "46350 109694|part_4257.031860351558_5321.28982543944... 0.856885 \n", + "46351 132305|part_4257.031860351558_5321.28982543944... 0.856885 \n", + "46352 179905|part_4257.031860351558_5321.28982543944... 0.856885 \n", + "46353 153107|part_4257.031860351558_5321.28982543944... 0.856885 \n", + "46354 136389|part_4257.031860351558_5321.28982543944... 0.856898 \n", + "\n", + " mokapot q-value mokapot PEP Proteins \n", + "0 0.000268 0.054705 sp|P08200|IDH_ECOLI|211|222 \n", + "1 0.000268 0.054705 sp|P0A6B7|ISCS_ECOLI|55|67 \n", + "2 0.000268 0.054705 sp|P23847|DPPA_ECOLI|517|526 \n", + "3 0.000268 0.054705 sp|P0A9J6|RBSK_ECOLI|218|227 \n", + "4 0.000268 0.054705 sp|P31120|GLMM_ECOLI|392|405 \n", + "... ... ... ... \n", + "46350 0.750119 0.964964 sp|P37650|BCSC_ECOLI|973|990 \n", + "46351 0.750119 0.964964 sp|P0AB85|APBE_ECOLI|64|81 \n", + "46352 0.750119 0.964964 sp|P16917|RHSB_ECOLI|1338|1364 \n", + "46353 0.750119 0.964964 sp|A5A628|YJBT_ECOLI|55|72 \n", + "46354 0.750124 0.964964 sp|P0A794|PDXJ_ECOLI|174|201 \n", + "\n", + "[46355 rows x 11 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "before" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "08397965", + "metadata": {}, + "outputs": [], + "source": [ + "before_filtered = before[(before[\"mokapot q-value\"] < 0.01) & (before[\"Label\"])]\n", + "after_filtered = after[(after[\"mokapot q-value\"] < 0.01) & (after[\"Label\"])]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "93e08348", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of precursors in before_filtered:\n", + "(7441, 11)\n", + "Number of precursors in after_filtered:\n", + "(7441, 11)\n" + ] + } + ], + "source": [ + "# Print the number of rows in each dataframe\n", + "print(\"Number of precursors in before_filtered:\")\n", + "print(before_filtered.shape)\n", + "print(\"Number of precursors in after_filtered:\")\n", + "print(after_filtered.shape)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/diann_fasta_compare.ipynb b/notebook_helpers/diann_fasta_compare.ipynb new file mode 100644 index 0000000..19e10a7 --- /dev/null +++ b/notebook_helpers/diann_fasta_compare.ipynb @@ -0,0 +1,21824 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 143, + "id": "23d39a09", + "metadata": {}, + "outputs": [], + "source": [ + "from pyteomics import fasta\n", + "import os\n", + "import glob\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "id": "0882fbf5", + "metadata": {}, + "outputs": [], + "source": [ + "diann_results = pd.read_parquet(\"/home/robbe/MuMDIA/DIA-NN_output/ecoli/report.parquet\")\n", + "diann_results[\"RT\"] = diann_results[\"RT\"].astype(float) * 60" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "id": "f69222ea", + "metadata": {}, + "outputs": [], + "source": [ + "# Read in all the fasta files\n", + "fasta_dict = {}\n", + "\n", + "# Read in all the fasta files from /home/robbe/MuMDIA/results/config_playing/temp/\n", + "for fasta_path in glob.glob(\"/home/robbe/MuMDIA/results/config_playing/temp/*/*.fasta\"):\n", + " with open(fasta_path) as f:\n", + " fasta_dict[fasta_path] = list(\n", + " fasta.read(f)\n", + " ) # Convert to list to store the data" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "1c633980", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(fasta_dict.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "id": "53ed2335", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run", + "rawType": "object", + "type": "string" + }, + { + "name": "Channel", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + }, + { + "name": "Modified.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Stripped.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Lib.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Decoy", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Proteotypic", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Ids", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Group", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Names", + "rawType": "object", + "type": "string" + }, + { + "name": "Genes", + "rawType": "object", + "type": "string" + }, + { + "name": "RT", + "rawType": "float64", + "type": "float" + }, + { + "name": "iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Quantity", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Factor", + "rawType": "float32", + "type": "float" + }, + { + "name": "Quantity.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Empirical.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Noise", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Profile.Corr", + "rawType": "float32", + "type": "float" + }, + { + "name": "Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Mass.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.Before", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.After", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Start", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Stop", + "rawType": "float32", + "type": "float" + }, + { + "name": "FWHM", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Site.Occupancy.Probabilities", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Sites", + "rawType": "object", + "type": "string" + }, + { + "name": "Lib.PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Translated.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "GG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz.Delta", + "rawType": "float32", + "type": "float" + } + ], + "ref": "8b58a280-30ec-4426-9f12-c9df05edc9eb", + "rows": [ + [ + "0", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAEIAVK2", + "AAAAEIAVK", + "AAAAEIAVK", + "2", + "10", + "0", + "1", + "422.25037", + "P0A8D6", + "P0A8D6", + "YMDB_ECOLI", + "ymdB", + "2702.361831665039", + "-11.2311", + "45.049755", + "-10.05596", + "0.0", + "0.79848653", + "0.0", + "0.0", + "9478950.0", + "9478950.0", + "9629110.0", + "9629110.0", + "8328634.0", + "-0.00030517578", + "1.0", + "0.91445416", + "0.0", + "0.0", + "0.8910806", + "5.4202604", + "0.86327136", + "0.9772817", + "353855840.0", + "403993300.0", + "44.79642", + "45.281773", + "0.23923437", + "0.0", + "9478950.0", + "0.0", + "9478950.0", + "9478950.0", + "0.91445416", + "0.91445416", + "0.91445416", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAEIAVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "317.21832", + "0.00064086914" + ], + [ + "1", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "AAAAPVTGPLADDPIQETITFDDFAK", + "AAAAPVTGPLADDPIQETITFDDFAK", + "3", + "58", + "0", + "1", + "892.1131", + "P00959", + "P00959", + "SYM_ECOLI", + "metG", + "7884.582824707031", + "102.82846", + "131.40822", + "110.56359", + "0.0", + "1.0572941", + "0.0", + "0.0", + "227486.38", + "227486.38", + "485865.8", + "485865.8", + "0.0", + "0.0", + "1.0", + "0.78337896", + "0.0", + "0.0", + "0.19562031", + "3.4541717", + "0.0", + "0.52708817", + "1242418800.0", + "937075300.0", + "131.26434", + "131.6526", + "0.23196226", + "0.0", + "55844700.0", + "0.0", + "55844700.0", + "55844700.0", + "0.8808654", + "0.8808654", + "0.8808654", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "214.11862", + "0.0011901855" + ], + [ + "2", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAVLAK1", + "AAAAVLAK", + "AAAAVLAK", + "1", + "72", + "0", + "1", + "714.45087", + "P0AEQ1", + "P0AEQ1", + "GLCG_ECOLI", + "glcG", + "2150.0846099853516", + "-19.224216", + "36.656822", + "-21.282513", + "0.0", + "1.2209269", + "0.0", + "0.0", + "1300103.4", + "1300103.4", + "1320218.6", + "1320218.6", + "1103460.6", + "0.001159668", + "1.0", + "0.79625547", + "0.0", + "0.0", + "0.9049706", + "3.4163113", + "1.7396158", + "0.96952754", + "285655300.0", + "295228060.0", + "35.59217", + "36.077908", + "0.31452703", + "0.0", + "9308464.0", + "0.0", + "9308464.0", + "9308464.0", + "0.9637441", + "0.9637441", + "0.9637441", + "0.0024889165", + "0.048146296", + "0.0025668947", + "0.0", + "0.0035870865", + "0.0048929173", + "0.0", + "1.0", + "AAAAVLAK1", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "384.22415", + "-0.00018310547" + ], + [ + "3", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADLISR2", + "AAADLISR", + "AAADLISR", + "2", + "107", + "0", + "1", + "408.73233", + "P00452", + "P00452", + "RIR1_ECOLI", + "nrdA", + "3159.7277069091797", + "-1.9677705", + "52.288113", + "-0.9493257", + "0.0", + "0.7979276", + "0.0", + "0.0", + "33115972.0", + "33115972.0", + "27576084.0", + "27576084.0", + "27404988.0", + "-0.00091552734", + "1.0", + "0.98159057", + "0.0", + "0.0", + "0.87968576", + "5.811066", + "1.6436243", + "0.93535155", + "697454900.0", + "755969100.0", + "52.3221", + "52.953266", + "0.29944947", + "0.0", + "43924670.0", + "0.0", + "43924670.0", + "43924670.0", + "0.42255992", + "0.42255992", + "0.42255992", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAADLISR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "603.34607", + "-0.00024414062" + ], + [ + "4", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADVQLR2", + "AAADVQLR", + "AAADVQLR", + "2", + "116", + "0", + "1", + "422.2378", + "P0AEG4", + "P0AEG4", + "DSBA_ECOLI", + "dsbA", + "2641.2034606933594", + "-10.41877", + "45.611725", + "-11.208551", + "0.0", + "0.80835223", + "0.0", + "0.0", + "90264560.0", + "90264560.0", + "80806920.0", + "80806920.0", + "78470104.0", + "-0.000579834", + "1.0", + "0.9814644", + "0.0", + "0.0", + "0.98277956", + "6.8381004", + "2.0685427", + "0.98311853", + "668152960.0", + "756061900.0", + "43.728844", + "44.408207", + "0.33655792", + "0.0", + "138798110.0", + "0.0", + "138798110.0", + "138798110.0", + "0.98128796", + "0.98128796", + "0.98128796", + "1.2305009e-06", + "1.9478937e-06", + "1.2305009e-06", + "0.0", + "0.000119832235", + "0.00015953313", + "0.0", + "1.0", + "AAADVQLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "701.39404", + "0.0010375977" + ], + [ + "5", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEADDIFGELSSGK2", + "AAAEADDIFGELSSGK", + "AAAEADDIFGELSSGK", + "2", + "124", + "0", + "1", + "790.87555", + "P19934", + "P19934", + "TOLA_ECOLI", + "tolA", + "6141.473236083984", + "62.346027", + "104.54801", + "61.24625", + "0.0", + "1.0644443", + "0.0", + "0.0", + "987667.56", + "987667.56", + "969323.6", + "969323.6", + "867402.6", + "0.0014038086", + "1.0", + "0.12193332", + "0.0", + "0.0", + "0.8921607", + "1.1468129", + "0.19816712", + "0.5556846", + "841869900.0", + "684339650.0", + "102.16394", + "102.4549", + "0.07275009", + "0.0", + "987667.5", + "0.0", + "987667.5", + "987667.5", + "0.12193332", + "0.12193332", + "0.12193332", + "0.007065851", + "0.096600726", + "0.007139215", + "0.0", + "0.008451758", + "0.01186899", + "0.0", + "1.0", + "AAAEADDIFGELSSGK2", + "", + "1.0", + "0.0", + "0.0", + "0.028571429", + "0.5675676", + "0.02764423", + "0.028279182", + "0.029045643", + "0.0", + "824.41486", + "0.0012207031" + ], + [ + "6", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAESSIQVK2", + "AAAESSIQVK", + "AAAESSIQVK", + "2", + "189", + "0", + "1", + "502.27457", + "P0A8T7", + "P0A8T7", + "RPOC_ECOLI", + "rpoC", + "2449.1072845458984", + "-16.967041", + "39.618042", + "-15.982115", + "0.0", + "0.8604796", + "0.0", + "0.0", + "68653180.0", + "68653180.0", + "59188360.0", + "59188360.0", + "60213604.0", + "0.00018310547", + "1.0", + "0.98619014", + "0.0", + "0.0", + "0.99340165", + "6.5156555", + "1.9736533", + "0.5928819", + "420635070.0", + "449591200.0", + "40.527092", + "41.109886", + "0.2868077", + "0.0", + "135742530.0", + "0.0", + "135742530.0", + "135742530.0", + "0.97769797", + "0.97769797", + "0.97769797", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.00022177867", + "0.00035893754", + "0.0", + "1.0", + "AAAESSIQVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.3559", + "0.0005493164" + ], + [ + "7", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK", + "AAAEVGAPFIEIHTGCYADAK", + "3", + "205", + "0", + "1", + "731.0211", + "P0A794", + "P0A794", + "PDXJ_ECOLI", + "pdxJ", + "5605.231475830078", + "51.298367", + "95.98912", + "49.67698", + "0.0", + "0.97043586", + "0.0", + "0.0", + "21573336.0", + "21573336.0", + "22895202.0", + "22895202.0", + "20004146.0", + "0.00079345703", + "1.0", + "0.9457609", + "0.0", + "0.0", + "0.9556992", + "5.614942", + "0.9625929", + "0.96859276", + "600740350.0", + "620459650.0", + "92.98384", + "93.760704", + "0.41035897", + "0.0", + "39017516.0", + "0.0", + "39017516.0", + "39017516.0", + "0.86302906", + "0.86302906", + "0.86302906", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "[P0A794:C158]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "811.3876", + "0.0022583008" + ], + [ + "8", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR2", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "2", + "213", + "0", + "1", + "844.4361", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "5952.392120361328", + "55.172043", + "98.40381", + "56.774063", + "0.0", + "1.1086445", + "0.0", + "0.0", + "590610400.0", + "590610400.0", + "664060740.0", + "664060740.0", + "537971200.0", + "0.0005493164", + "1.0", + "0.69137955", + "0.0", + "0.0", + "0.97497547", + "5.0616074", + "3.4223218", + "0.9900597", + "583057200.0", + "626362800.0", + "99.01234", + "99.69194", + "0.28078166", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.5241153e-06", + "2.3548791e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1327.6852", + "0.0012207031" + ], + [ + "9", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR3", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "3", + "214", + "0", + "1", + "563.29315", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "5959.705352783203", + "55.172043", + "98.40381", + "57.41639", + "0.0", + "0.90191376", + "0.0", + "0.0", + "70214264.0", + "70214264.0", + "64663430.0", + "64663430.0", + "64823516.0", + "0.00018310547", + "1.0", + "0.9844389", + "0.0", + "0.0", + "0.9685039", + "6.3540897", + "0.8979662", + "0.98694193", + "604663900.0", + "621195400.0", + "98.98892", + "99.619675", + "0.24378972", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "5.422538e-06", + "0.0", + "3.834282e-06", + "5.422538e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "393.70886", + "-0.00021362305" + ], + [ + "10", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAGISETLLR2", + "AAAGISETLLR", + "AAAGISETLLR", + "2", + "231", + "0", + "1", + "551.3168", + "P00935", + "P00935", + "METB_ECOLI", + "metB", + "4713.086700439453", + "34.235195", + "79.89243", + "31.955782", + "0.0", + "0.9136672", + "0.0", + "0.0", + "9205300.0", + "9205300.0", + "7925204.0", + "7925204.0", + "7566976.0", + "0.00018310547", + "1.0", + "0.8986022", + "0.0", + "0.0", + "0.93385655", + "5.2695966", + "1.9842398", + "0.9301016", + "860745300.0", + "767963500.0", + "78.20871", + "78.89107", + "0.28478286", + "0.0", + "9636097.0", + "0.0", + "9636097.0", + "9636097.0", + "0.967955", + "0.967955", + "0.967955", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAGISETLLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "271.14008", + "0.0010681152" + ], + [ + "11", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIAYAR2", + "AAAIAYAR", + "AAAIAYAR", + "2", + "264", + "0", + "1", + "403.72958", + "P0AG84", + "P0AG84", + "YGHA_ECOLI", + "yghA", + "2649.847183227539", + "-12.755369", + "43.757565", + "-11.295829", + "0.0", + "0.802654", + "0.0", + "0.0", + "1316254.8", + "1316254.8", + "1785789.4", + "1785789.4", + "771801.0", + "0.00033569336", + "1.0", + "0.8577426", + "0.0", + "0.0", + "0.2958416", + "4.2764664", + "1.3657955", + "0.67840135", + "901996700.0", + "918440100.0", + "43.824783", + "44.407032", + "0.42865494", + "0.0", + "18808108.0", + "0.0", + "18808108.0", + "18808108.0", + "0.95981085", + "0.95981085", + "0.95981085", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAIAYAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "593.3406", + "0.0026855469" + ], + [ + "12", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIC(UniMod:4)AER2", + "AAAIC(UniMod:4)AER", + "AAAICAER", + "2", + "269", + "0", + "1", + "431.216", + "P0A9M8", + "P0A9M8", + "PTA_ECOLI", + "pta", + "1915.5052185058594", + "-27.066788", + "33.41249", + "-25.78823", + "0.0", + "0.8097701", + "0.0", + "0.0", + "571500.1", + "571500.1", + "297236.94", + "297236.94", + "277989.7", + "0.0", + "1.0", + "0.8485891", + "0.0", + "0.0", + "0.8154417", + "3.0258095", + "0.7766815", + "0.0", + "165218400.0", + "163403330.0", + "31.68209", + "32.119316", + "0.23412684", + "0.0", + "77180104.0", + "0.0", + "77180104.0", + "77180104.0", + "0.9837814", + "0.9837814", + "0.9837814", + "0.00095205125", + "0.011658683", + "0.0010386014", + "0.0", + "0.0013630168", + "0.0016382998", + "0.0", + "1.0", + "AAAIC(UniMod:4)AER2", + "[P0A9M8:C424]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "535.2293", + "-0.006713867" + ], + [ + "13", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAALAAADAR2", + "AAALAAADAR", + "AAALAAADAR", + "2", + "316", + "0", + "1", + "450.7485", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "2416.845016479492", + "-16.91546", + "40.494534", + "-16.164911", + "0.0", + "0.83690274", + "0.0", + "0.0", + "249159380.0", + "249159380.0", + "238044860.0", + "238044860.0", + "234785490.0", + "-0.00079345703", + "1.0", + "0.9864738", + "0.0", + "0.0", + "0.9906313", + "6.9015007", + "2.9800456", + "0.994135", + "669318460.0", + "642184600.0", + "39.89198", + "40.52356", + "0.32557887", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-05", + "0.00019478938", + "0.00019942167", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAALAAADAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.2944", + "-0.00030517578" + ], + [ + "14", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAPAFSEESIR2", + "AAAPAFSEESIR", + "AAAPAFSEESIR", + "2", + "398", + "0", + "1", + "624.8146", + "P08142", + "P08142", + "ILVB_ECOLI", + "ilvB", + "4180.207672119141", + "17.595957", + "67.82137", + "21.751873", + "0.0", + "0.95711935", + "0.0", + "0.0", + "5982976.5", + "5982976.5", + "6234872.0", + "6234872.0", + "4715585.5", + "0.0010986328", + "1.0", + "0.9502138", + "0.0", + "0.0", + "0.8272268", + "4.9783382", + "0.68951464", + "0.8171237", + "806941600.0", + "851504400.0", + "69.427155", + "70.10676", + "0.31591344", + "0.0", + "5982976.5", + "0.0", + "5982976.5", + "5982976.5", + "0.9502138", + "0.9502138", + "0.9502138", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAPAFSEESIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "518.2589", + "6.1035156e-05" + ], + [ + "15", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAQLQQGLADTSDENLK2", + "AAAQLQQGLADTSDENLK", + "AAAQLQQGLADTSDENLK", + "2", + "429", + "0", + "1", + "936.9685", + "P76576", + "P76576", + "YFGM_ECOLI", + "yfgM", + "4435.351409912109", + "26.326391", + "75.514366", + "26.570925", + "0.0", + "1.1768218", + "0.0", + "0.0", + "1673985.8", + "1673985.8", + "2157632.5", + "2157632.5", + "1085307.2", + "0.0", + "1.0", + "0.86881787", + "0.0", + "0.0", + "0.80435896", + "5.4468393", + "1.7003247", + "0.7718048", + "893386240.0", + "991242000.0", + "73.82548", + "74.262184", + "0.27614152", + "0.0", + "1673985.9", + "0.0", + "1673985.9", + "1673985.9", + "0.86881787", + "0.86881787", + "0.86881787", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAQLQQGLADTSDENLK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "342.1772", + "0.00064086914" + ], + [ + "16", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAASHLVR2", + "AAASHLVR", + "AAASHLVR", + "2", + "500", + "0", + "1", + "412.7405", + "P0AET8", + "P0AET8", + "HDHA_ECOLI", + "hdhA", + "1422.5516510009766", + "-33.986176", + "27.357487", + "-36.831825", + "0.0", + "0.8146272", + "0.0", + "0.0", + "2015989.4", + "2015989.4", + "1642456.9", + "1642456.9", + "1693433.9", + "-0.00024414062", + "1.0", + "0.9366546", + "0.0", + "0.0", + "0.89273024", + "6.2581363", + "0.5348917", + "0.9736561", + "15688434.0", + "16270505.0", + "23.563482", + "23.9038", + "0.12379906", + "0.0", + "62128812.0", + "0.0", + "62128812.0", + "62128812.0", + "0.81174695", + "0.81174695", + "0.81174695", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAASHLVR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "341.70337", + "-0.0007019043" + ], + [ + "17", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "AAATGEALSLVC(UniMod:4)VDEHK", + "AAATGEALSLVCVDEHK", + "3", + "537", + "0", + "1", + "590.9612", + "P25888", + "P25888", + "RHLE_ECOLI", + "rhlE", + "4823.9483642578125", + "39.111588", + "84.24667", + "34.261047", + "0.0", + "0.89202386", + "0.0", + "0.0", + "734635.6", + "734635.6", + "977589.56", + "977589.56", + "686336.9", + "0.0010375977", + "1.0", + "0.6546537", + "0.0", + "0.0", + "0.38540652", + "1.7331743", + "0.0", + "0.5563414", + "1140822700.0", + "1047089500.0", + "80.30209", + "80.49616", + "0.07276726", + "0.0", + "5998876.0", + "0.0", + "5998876.0", + "5998876.0", + "0.42509428", + "0.42509428", + "0.42509428", + "0.002201604", + "0.026073128", + "0.002280412", + "0.0", + "0.0022290102", + "0.0034667768", + "0.0", + "1.0", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "[P25888:C350]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1086.5248", + "0.01550293" + ], + [ + "18", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK2", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "2", + "547", + "0", + "1", + "838.9116", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "3578.290328979492", + "6.2113576", + "60.591183", + "8.781703", + "0.0", + "1.105177", + "0.0", + "0.0", + "64499790.0", + "64499790.0", + "58886880.0", + "58886880.0", + "59196744.0", + "0.00048828125", + "1.0", + "0.9908719", + "0.0", + "0.0", + "0.98715895", + "6.894661", + "1.9770116", + "0.969655", + "710916400.0", + "675191940.0", + "59.29827", + "59.929302", + "0.31421912", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.0186795e-06", + "6.995294e-06", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK2", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "645.32025", + "0.00079345703" + ], + [ + "19", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK3", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "3", + "548", + "0", + "1", + "559.61017", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "3579.8902130126953", + "6.2113576", + "60.591183", + "8.985086", + "0.0", + "0.8728873", + "0.0", + "0.0", + "5298862.0", + "5298862.0", + "5148599.5", + "5148599.5", + "5150481.0", + "0.00018310547", + "1.0", + "0.5086611", + "0.0", + "0.0", + "0.7988776", + "3.010162", + "0.0", + "0.95376974", + "675191940.0", + "705779300.0", + "59.325485", + "59.76188", + "0.29714456", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "1.4628691e-05", + "1.4628691e-05", + "0.00035893754", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK3", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "429.2456", + "0.0010681152" + ], + [ + "20", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQHNLEVLASR3", + "AAATQHNLEVLASR", + "AAATQHNLEVLASR", + "3", + "552", + "0", + "1", + "494.26706", + "P0ABQ0", + "P0ABQ0", + "COABC_ECOLI", + "coaBC", + "3498.0933380126953", + "8.126932", + "58.213245", + "6.339929", + "0.0", + "0.81177694", + "0.0", + "0.0", + "21642576.0", + "21642576.0", + "28040164.0", + "28040164.0", + "21112072.0", + "0.0011901855", + "1.0", + "0.8000993", + "0.0", + "0.0", + "0.0", + "4.5929427", + "0.4240915", + "0.3084519", + "686155260.0", + "665677500.0", + "58.059067", + "58.544544", + "0.3010973", + "0.0", + "21642576.0", + "0.0", + "21642576.0", + "21642576.0", + "0.8000993", + "0.8000993", + "0.8000993", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAATQHNLEVLASR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "545.3406", + "-0.005004883" + ], + [ + "21", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAAFAEWGQTTPK3", + "AADAAFAEWGQTTPK", + "AADAAFAEWGQTTPK", + "3", + "632", + "0", + "1", + "521.91943", + "P77674", + "P77674", + "ABDH_ECOLI", + "patD", + "4876.016693115234", + "40.291775", + "82.119934", + "35.698925", + "0.0", + "0.86976653", + "0.0", + "0.0", + "5242987.0", + "5242987.0", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.97488064", + "0.0", + "0.0", + "0.0", + "4.6458707", + "0.0", + "0.0", + "1078702800.0", + "1228739100.0", + "80.97595", + "81.60664", + "0.30355465", + "0.0", + "490309730.0", + "0.0", + "490309730.0", + "490309730.0", + "0.99679875", + "0.99679875", + "0.99679875", + "0.0001947799", + "0.0036620705", + "0.00029216986", + "0.0", + "0.0053409706", + "0.006091772", + "0.0", + "1.0", + "AADAAFAEWGQTTPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "400.18268", + "0.00030517578" + ], + [ + "22", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "3", + "638", + "0", + "1", + "931.8212", + "P33232", + "P33232", + "LLDD_ECOLI", + "lldD", + "7491.3336181640625", + "95.393196", + "130.38431", + "91.264404", + "0.0", + "1.0574688", + "0.0", + "0.0", + "77785.11", + "77785.11", + "104206.56", + "104206.56", + "0.0", + "0.0", + "1.0", + "0.3175594", + "0.0", + "0.0", + "0.0", + "1.7876791", + "0.0", + "0.0", + "179140050.0", + "182702220.0", + "124.75574", + "124.95271", + "0.074884415", + "0.0", + "1833752.2", + "0.0", + "1833752.2", + "1833752.2", + "0.8396257", + "0.8396257", + "0.8396257", + "0.0010312822", + "0.011658683", + "0.0011172224", + "0.0", + "0.0018053645", + "0.0027950038", + "0.0", + "1.0", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "[P33232:C111]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1412.7454", + "-0.016357422" + ], + [ + "23", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADEGLEVK2", + "AADEGLEVK", + "AADEGLEVK", + "2", + "706", + "0", + "1", + "466.2402", + "P15639", + "P15639", + "PUR9_ECOLI", + "purH", + "2722.9405975341797", + "-10.578891", + "45.980556", + "-9.825813", + "0.0", + "0.8359929", + "0.0", + "0.0", + "153085760.0", + "153085760.0", + "138279150.0", + "138279150.0", + "136599680.0", + "0.00018310547", + "1.0", + "0.9861937", + "0.0", + "0.0", + "0.9797145", + "6.8830585", + "1.431289", + "0.9854878", + "555958400.0", + "589427650.0", + "45.042305", + "45.673447", + "0.3254246", + "0.0", + "197813780.0", + "0.0", + "197813780.0", + "197813780.0", + "0.9848251", + "0.9848251", + "0.9848251", + "1.1841555e-06", + "1.9478937e-06", + "1.1841555e-06", + "0.0", + "0.000119832235", + "0.00015951775", + "0.0", + "1.0", + "AADEGLEVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "860.436", + "0.0021972656" + ], + [ + "24", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR2", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "2", + "775", + "0", + "1", + "952.4371", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "5373.290863037109", + "41.7659", + "90.38439", + "45.32776", + "0.0", + "1.1736622", + "0.0", + "0.0", + "6539769.0", + "6539769.0", + "6286169.0", + "6286169.0", + "5616604.0", + "-0.00018310547", + "1.0", + "0.720854", + "0.0", + "0.0", + "0.9051132", + "4.788562", + "0.0", + "0.96589357", + "821253300.0", + "789920900.0", + "89.26371", + "89.846085", + "0.09049349", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.522042e-06", + "7.663706e-06", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "818.3315", + "-0.0005493164" + ], + [ + "25", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR3", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "3", + "776", + "0", + "1", + "635.29376", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "5371.692810058594", + "41.7659", + "90.38439", + "45.21288", + "0.0", + "0.94026244", + "0.0", + "0.0", + "3315591.5", + "3315591.5", + "3435347.2", + "3435347.2", + "2989024.8", + "0.00012207031", + "1.0", + "0.7603821", + "0.0", + "0.0", + "0.8769604", + "3.057929", + "0.0", + "0.937624", + "875894200.0", + "821253300.0", + "89.28592", + "89.819466", + "0.27418387", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "931.4156", + "0.009765625" + ], + [ + "26", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK2", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "2", + "794", + "0", + "1", + "971.5282", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "7771.275329589844", + "102.333176", + "131.15799", + "99.58934", + "0.0", + "1.2082555", + "0.0", + "0.0", + "11768890.0", + "11768890.0", + "10098005.0", + "10098005.0", + "9879739.0", + "0.001953125", + "1.0", + "0.9270581", + "0.0", + "0.0", + "0.9587445", + "6.4231935", + "2.2982807", + "0.99356806", + "346843420.0", + "343348540.0", + "129.27815", + "129.81258", + "0.26670924", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1118.5688", + "-0.0013427734" + ], + [ + "27", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK3", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "3", + "795", + "0", + "1", + "648.02124", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "7769.747314453125", + "102.333176", + "131.15799", + "99.237206", + "0.0", + "0.9755506", + "0.0", + "0.0", + "5831566.5", + "5831566.5", + "5678113.5", + "5678113.5", + "5321460.5", + "6.1035156e-05", + "1.0", + "0.8908107", + "0.0", + "0.0", + "0.91466933", + "5.089149", + "0.0", + "0.95213616", + "346843420.0", + "343348540.0", + "129.30157", + "129.73882", + "0.2509879", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0026550293" + ], + [ + "28", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK2", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "2", + "825", + "0", + "1", + "740.4301", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "6348.113250732422", + "67.758026", + "109.88321", + "64.94934", + "0.0", + "1.0728568", + "0.0", + "0.0", + "123073600.0", + "123073600.0", + "113322660.0", + "113322660.0", + "109594280.0", + "0.0005493164", + "1.0", + "0.6734924", + "0.0", + "0.0", + "0.99421567", + "5.0390263", + "1.7109023", + "0.9851098", + "426308030.0", + "504281540.0", + "105.51072", + "106.19015", + "0.18242767", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "1.2291321e-06", + "1.9478937e-06", + "0.00015953268", + "0.0", + "0.000119832235", + "0.00015953268", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1010.5993", + "-0.00048828125" + ], + [ + "29", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK3", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "3", + "826", + "0", + "1", + "493.95584", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "6346.857147216797", + "67.758026", + "109.88321", + "64.92609", + "0.0", + "0.86559445", + "0.0", + "0.0", + "27001664.0", + "27001664.0", + "26015190.0", + "26015190.0", + "25650814.0", + "0.00015258789", + "1.0", + "0.9743886", + "0.0", + "0.0", + "0.97202075", + "6.2575827", + "1.7785354", + "0.9863196", + "425179200.0", + "426308030.0", + "105.48976", + "106.12093", + "0.3258582", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "514.2984", + "0.0006713867" + ], + [ + "30", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADNKSLGQFNLDGINPAPR3", + "AADNKSLGQFNLDGINPAPR", + "AADNKSLGQFNLDGINPAPR", + "3", + "884", + "0", + "1", + "700.0274", + "P0A6Y8", + "P0A6Y8", + "DNAK_ECOLI", + "dnaK", + "5305.106964111328", + "53.373013", + "96.38754", + "44.248936", + "0.0", + "0.9205765", + "0.0", + "0.0", + "2014406.0", + "2014406.0", + "2318806.5", + "2318806.5", + "925617.25", + "0.0", + "1.0", + "0.8834976", + "0.0", + "0.0", + "0.6073868", + "4.048474", + "0.0", + "0.0", + "1398788600.0", + "1652747100.0", + "88.22464", + "88.80648", + "0.4029023", + "0.0", + "528809730.0", + "0.0", + "528809730.0", + "528809730.0", + "0.9646322", + "0.9646322", + "0.9646322", + "0.0003686296", + "0.0036620705", + "0.00046078704", + "0.0", + "0.050652087", + "0.056812774", + "0.0", + "1.0", + "AADNKSLGQFNLDGINPAPR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "440.2616", + "0.0024414062" + ], + [ + "31", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "AADSC(UniMod:4)HVSQPTLSGQIR", + "AADSCHVSQPTLSGQIR", + "3", + "929", + "0", + "1", + "609.63196", + "P0ACQ4", + "P0ACQ4", + "OXYR_ECOLI", + "oxyR", + "3492.795639038086", + "5.008134", + "57.742092", + "6.152042", + "0.0", + "0.86223096", + "0.0", + "0.0", + "14137073.0", + "14137073.0", + "13011373.0", + "13011373.0", + "13712340.0", + "0.00030517578", + "1.0", + "0.83560085", + "0.0", + "0.0", + "0.7753711", + "5.0263877", + "0.81187373", + "0.8735103", + "644759200.0", + "662432300.0", + "57.970203", + "58.40748", + "0.18644737", + "0.0", + "48629056.0", + "0.0", + "48629056.0", + "48629056.0", + "0.9219536", + "0.9219536", + "0.9219536", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1983224e-06", + "1.9222603e-06", + "0.0", + "1.0", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "[P0ACQ4:C25]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "774.44684", + "0.0015258789" + ], + [ + "32", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADVHLC(UniMod:4)VK2", + "AADVHLC(UniMod:4)VK", + "AADVHLCVK", + "2", + "964", + "0", + "1", + "506.76584", + "P45395", + "P45395", + "KDSD_ECOLI", + "kdsD", + "2702.7147674560547", + "-5.750933", + "47.869987", + "-10.058963", + "0.0", + "0.87408507", + "0.0", + "0.0", + "1718921.0", + "1718921.0", + "1069094.5", + "1069094.5", + "1407849.6", + "0.0004272461", + "1.0", + "0.7300319", + "0.0", + "0.0", + "0.6207463", + "3.2565506", + "1.1316797", + "0.7533607", + "353855840.0", + "403993300.0", + "44.89996", + "45.19117", + "0.13195394", + "0.0", + "11497942.0", + "0.0", + "11497942.0", + "11497942.0", + "0.7444782", + "0.7444782", + "0.7444782", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.925552e-06", + "4.21584e-06", + "0.0", + "1.0", + "AADVHLC(UniMod:4)VK2", + "[P45395:C146]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "519.29596", + "0.002380371" + ], + [ + "33", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEAVIIDTIR2", + "AAEAVIIDTIR", + "AAEAVIIDTIR", + "2", + "1052", + "0", + "1", + "586.3377", + "P0ADG4", + "P0ADG4", + "SUHB_ECOLI", + "suhB", + "5295.8258056640625", + "42.97589", + "88.241714", + "43.108944", + "0.0", + "0.94074327", + "0.0", + "0.0", + "28097418.0", + "28097418.0", + "27610082.0", + "27610082.0", + "24713134.0", + "-0.0006713867", + "1.0", + "0.9689099", + "0.0", + "0.0", + "0.8944861", + "6.624495", + "3.5546937", + "0.8928653", + "803579140.0", + "1021073900.0", + "87.8757", + "88.603386", + "0.3242042", + "0.0", + "28097418.0", + "0.0", + "28097418.0", + "28097418.0", + "0.9689099", + "0.9689099", + "0.9689099", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAEAVIIDTIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "829.51416", + "0.0025024414" + ], + [ + "34", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEEAFR2", + "AAEEAFR", + "AAEEAFR", + "2", + "1075", + "0", + "1", + "397.1956", + "P21165", + "P21165", + "PEPQ_ECOLI", + "pepQ", + "2142.7162170410156", + "-17.198992", + "39.371098", + "-21.21893", + "0.0", + "0.7815424", + "0.0", + "0.0", + "8971166.0", + "8971166.0", + "8599221.0", + "8599221.0", + "8410514.0", + "-0.00088500977", + "1.0", + "0.95596766", + "0.0", + "0.0", + "0.9741072", + "4.954106", + "0.87492824", + "0.97103006", + "258507520.0", + "277407400.0", + "35.42042", + "36.10053", + "0.3008589", + "0.0", + "79750740.0", + "0.0", + "79750740.0", + "79750740.0", + "0.98041433", + "0.98041433", + "0.98041433", + "1.7822638e-05", + "1.7822638e-05", + "1.7822638e-05", + "0.0", + "0.00022177867", + "0.00044233107", + "0.0", + "1.0", + "AAEEAFR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "722.3468", + "0.004638672" + ], + [ + "35", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK3", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK", + "AAEGIAPKPLDANQMAALVELLK", + "3", + "1134", + "0", + "1", + "793.7699", + "P36683", + "P36683", + "ACNB_ECOLI", + "acnB", + "6779.571075439453", + "76.778725", + "114.356186", + "74.95788", + "0.0", + "0.987832", + "0.0", + "0.0", + "1294528.2", + "1294528.2", + "2726475.2", + "2726475.2", + "997040.4", + "0.004211426", + "1.0", + "0.62068915", + "0.0", + "0.0", + "0.8252063", + "3.1483374", + "0.6531393", + "0.7315975", + "501934400.0", + "418322880.0", + "112.75", + "113.3324", + "0.4064182", + "0.0", + "688585150.0", + "0.0", + "688585150.0", + "688585150.0", + "0.9442582", + "0.9442582", + "0.9442582", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAEGIAPKPLDANQM(UniMod:35){1.000000}AALVELLK3", + "[P36683:M27]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "329.14557", + "0.00036621094" + ], + [ + "36", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK2", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "2", + "1171", + "0", + "1", + "834.4429", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "4670.662536621094", + "38.029137", + "82.05038", + "31.588327", + "0.0", + "1.1397063", + "0.0", + "0.0", + "778467.5", + "778467.5", + "682096.6", + "682096.6", + "518027.94", + "0.0028686523", + "1.0", + "0.4717078", + "0.0", + "0.0", + "0.5071717", + "2.9717689", + "1.8750236", + "0.66830456", + "1169947900.0", + "1120576300.0", + "77.26175", + "78.03854", + "0.22015776", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0010350993", + "0.0011739385", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK2", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "635.35114", + "0.0008544922" + ], + [ + "37", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK3", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "3", + "1172", + "0", + "1", + "556.63104", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "4669.259948730469", + "38.029137", + "82.05038", + "31.573114", + "0.0", + "0.8493062", + "0.0", + "0.0", + "15018206.0", + "15018206.0", + "25544548.0", + "25544548.0", + "14102344.0", + "6.1035156e-05", + "1.0", + "0.638456", + "0.0", + "0.0", + "0.7257927", + "3.071986", + "0.0", + "0.9269335", + "987974850.0", + "1169947900.0", + "77.23835", + "78.2093", + "0.37308988", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "0.0011710582", + "0.011658683", + "0.022141015", + "0.0", + "0.019180777", + "0.022141015", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK3", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "920.4506", + "-0.006652832" + ], + [ + "38", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELAGNDTIPVEITR2", + "AAELAGNDTIPVEITR", + "AAELAGNDTIPVEITR", + "2", + "1203", + "0", + "1", + "835.4414", + "P0ACB7", + "P0ACB7", + "HEMY_ECOLI", + "hemY", + "5553.277130126953", + "44.613483", + "91.74687", + "49.380917", + "0.0", + "1.100099", + "0.0", + "0.0", + "2065169.5", + "2065169.5", + "2777191.5", + "2777191.5", + "1018370.9", + "-0.00012207031", + "1.0", + "0.9660883", + "0.0", + "0.0", + "0.7852382", + "5.258746", + "1.5672374", + "0.93024945", + "1214181800.0", + "1343128200.0", + "92.31227", + "92.79749", + "0.27851662", + "0.0", + "2101538.0", + "0.0", + "2101538.0", + "2101538.0", + "0.80221117", + "0.80221117", + "0.80221117", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAELAGNDTIPVEITR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1285.6747", + "0.011108398" + ], + [ + "39", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELSGLTHSAISTIEQDK3", + "AAELSGLTHSAISTIEQDK", + "AAELSGLTHSAISTIEQDK", + "3", + "1241", + "0", + "1", + "657.6725", + "P0A9U6", + "P0A9U6", + "PUUR_ECOLI", + "puuR", + "5569.9566650390625", + "52.800926", + "95.38884", + "49.440197", + "0.0", + "0.90168226", + "0.0", + "0.0", + "1559440.0", + "1559440.0", + "4588269.0", + "4588269.0", + "1107571.6", + "-6.1035156e-05", + "1.0", + "0.829134", + "0.0", + "0.0", + "0.65697545", + "4.8367305", + "0.8680101", + "0.85241157", + "1244536400.0", + "1142363000.0", + "92.687454", + "93.12392", + "0.27198178", + "0.0", + "16596189.0", + "0.0", + "16596189.0", + "16596189.0", + "0.8498309", + "0.8498309", + "0.8498309", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0005226299", + "0.00051727705", + "0.0", + "1.0", + "AAELSGLTHSAISTIEQDK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "793.90466", + "0.0048828125" + ], + [ + "40", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R2", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "2", + "1277", + "0", + "1", + "910.4176", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "6043.047637939453", + "59.33595", + "102.491844", + "59.59053", + "0.0", + "1.1293542", + "0.0", + "0.0", + "35468964.0", + "35468964.0", + "27665188.0", + "27665188.0", + "27662706.0", + "-0.00018310547", + "1.0", + "0.9918874", + "0.0", + "0.0", + "0.98318624", + "6.8573484", + "0.9958743", + "0.9957494", + "383825760.0", + "344968580.0", + "100.42619", + "101.05705", + "0.33605525", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R2", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1320.6252", + "0.0007324219" + ], + [ + "41", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R3", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "3", + "1278", + "0", + "1", + "607.2808", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "6038.705291748047", + "59.33595", + "102.491844", + "60.003082", + "0.0", + "0.92753696", + "0.0", + "0.0", + "13152284.0", + "13152284.0", + "13149464.0", + "13149464.0", + "12741688.0", + "0.00061035156", + "1.0", + "0.6915186", + "0.0", + "0.0", + "0.72929275", + "4.1023116", + "1.3746892", + "0.87355685", + "394104060.0", + "383825760.0", + "100.49975", + "100.93643", + "0.13069002", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R3", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "839.37164", + "-0.0015258789" + ], + [ + "42", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEQLGQANSAVSR2", + "AAEQLGQANSAVSR", + "AAEQLGQANSAVSR", + "2", + "1301", + "0", + "1", + "701.35767", + "P30864", + "P30864", + "YAFC_ECOLI", + "yafC", + "2890.1792907714844", + "-9.248929", + "47.460194", + "-7.1125617", + "0.0", + "1.0064552", + "0.0", + "0.0", + "2426344.5", + "2426344.5", + "1100771.5", + "1100771.5", + "1100771.5", + "-0.00030517578", + "1.0", + "0.54000485", + "0.0", + "0.0", + "0.645773", + "3.2920668", + "0.56579524", + "0.639474", + "537066430.0", + "489363040.0", + "47.926537", + "48.412094", + "0.24718998", + "0.0", + "2426344.5", + "0.0", + "2426344.5", + "2426344.5", + "0.54000485", + "0.54000485", + "0.54000485", + "0.0011710582", + "0.011658683", + "0.0012547051", + "0.0", + "0.0022290102", + "0.0032603245", + "0.0", + "1.0", + "AAEQLGQANSAVSR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "889.4486", + "0.006652832" + ], + [ + "43", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAESALNIDVPVNAQYIR2", + "AAESALNIDVPVNAQYIR", + "AAESALNIDVPVNAQYIR", + "2", + "1346", + "0", + "1", + "972.5129", + "P0ACE0", + "P0ACE0", + "MBHM_ECOLI", + "hybC", + "6387.0062255859375", + "63.976006", + "106.3041", + "65.58738", + "0.0", + "1.192544", + "0.0", + "0.0", + "115423.8", + "115423.8", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.14110963", + "0.0", + "0.0", + "0.0", + "0.96301436", + "0.0", + "0.0", + "413169100.0", + "458511840.0", + "106.30478", + "106.59692", + "0.17054091", + "0.0", + "1231022.1", + "0.0", + "1231022.1", + "1231022.1", + "0.443667", + "0.443667", + "0.443667", + "0.00687235", + "0.096600726", + "0.0069459677", + "0.0", + "0.027691884", + "0.03497582", + "0.0", + "1.0", + "AAESALNIDVPVNAQYIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1174.6215", + "0.0" + ], + [ + "44", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEVLVVDTR2", + "AAEVLVVDTR", + "AAEVLVVDTR", + "2", + "1439", + "0", + "1", + "536.80347", + "P76116", + "P76116", + "YNCE_ECOLI", + "yncE", + "4147.798004150391", + "18.1098", + "68.80989", + "20.39872", + "0.0", + "0.9022431", + "0.0", + "0.0", + "15261269.0", + "15261269.0", + "13799797.0", + "13799797.0", + "13161172.0", + "0.0006713867", + "1.0", + "0.8059485", + "0.0", + "0.0", + "0.94272983", + "6.048667", + "2.4350483", + "0.9846432", + "815928700.0", + "865392100.0", + "68.887566", + "69.517746", + "0.28593954", + "0.0", + "29748434.0", + "0.0", + "29748434.0", + "29748434.0", + "0.97279036", + "0.97279036", + "0.97279036", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.7919564e-06", + "4.038439e-06", + "0.0", + "1.0", + "AAEVLVVDTR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0035705566" + ], + [ + "45", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDDAIAAR2", + "AAFDDAIAAR", + "AAFDDAIAAR", + "2", + "1480", + "0", + "1", + "510.7591", + "P0ABC7", + "P0ABC7", + "HFLK_ECOLI", + "hflK", + "4153.515472412109", + "20.680796", + "70.90652", + "20.603237", + "0.0", + "0.874018", + "0.0", + "0.0", + "4191834.5", + "4191834.5", + "5319950.0", + "5319950.0", + "3585247.0", + "0.00091552734", + "1.0", + "0.91427785", + "0.0", + "0.0", + "0.84949213", + "5.577577", + "0.20540452", + "0.8701518", + "874820030.0", + "942318850.0", + "69.07937", + "69.56425", + "0.31091535", + "0.0", + "6749399.5", + "0.0", + "6749399.5", + "6749399.5", + "0.3634465", + "0.3634465", + "0.3634465", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAFDDAIAAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "616.3413", + "0.0049438477" + ], + [ + "46", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER2", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "2", + "1493", + "0", + "1", + "803.3864", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "4638.456573486328", + "31.610626", + "76.97953", + "30.905209", + "0.0", + "1.1188899", + "0.0", + "0.0", + "6226086.5", + "6226086.5", + "6581563.0", + "6581563.0", + "5416400.0", + "0.00048828125", + "1.0", + "0.87343264", + "0.0", + "0.0", + "0.83749926", + "5.453828", + "0.9509031", + "0.88552314", + "835704500.0", + "847041660.0", + "77.11338", + "77.74489", + "0.33347782", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "7.2828416e-06", + "1.0001863e-05", + "0.0", + "1.0", + "AAFDFAVEHQSVER2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "732.3493", + "0.005065918" + ], + [ + "47", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER3", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "3", + "1494", + "0", + "1", + "535.9267", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "4637.125396728516", + "31.610626", + "76.97953", + "30.868996", + "0.0", + "0.85347503", + "0.0", + "0.0", + "34672812.0", + "34672812.0", + "35916796.0", + "35916796.0", + "30941520.0", + "0.00012207031", + "1.0", + "0.9381459", + "0.0", + "0.0", + "0.96926254", + "4.7819843", + "0.0", + "0.9832147", + "809092540.0", + "835704500.0", + "77.04237", + "77.77095", + "0.34891692", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "2.9257258e-06", + "2.9257258e-06", + "0.00044233107", + "0.0", + "0.0004361099", + "0.00044233107", + "0.0", + "1.0", + "AAFDFAVEHQSVER3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "601.30164", + "0.0" + ], + [ + "48", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFLAVDNHK2", + "AAFLAVDNHK", + "AAFLAVDNHK", + "2", + "1573", + "0", + "1", + "543.2905", + "P30958", + "P30958", + "MFD_ECOLI", + "mfd", + "3169.042510986328", + "4.7128224", + "55.31082", + "-0.9314743", + "0.0", + "0.92017615", + "0.0", + "0.0", + "608196.8", + "608196.8", + "672072.4", + "672072.4", + "464276.38", + "-0.00030517578", + "1.0", + "0.6241357", + "0.0", + "0.0", + "0.6410963", + "2.881232", + "1.0310254", + "0.7445865", + "810914300.0", + "749407400.0", + "52.6233", + "53.01149", + "0.22651064", + "0.0", + "69954510.0", + "0.0", + "69954510.0", + "69954510.0", + "0.9603192", + "0.9603192", + "0.9603192", + "0.00028754913", + "0.0036620705", + "0.00038339884", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAFLAVDNHK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "683.3471", + "-0.0028076172" + ], + [ + "49", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFNQM(UniMod:35)VQGHK3", + "AAFNQM(UniMod:35)VQGHK", + "AAFNQMVQGHK", + "3", + "1599", + "0", + "1", + "416.20474", + "P0AD59", + "P0AD59", + "IVY_ECOLI", + "ivy", + "1929.9845123291016", + "-27.826418", + "31.139164", + "-25.183844", + "0.0", + "0.74429053", + "0.0", + "0.0", + "15223242.0", + "15223242.0", + "13718766.0", + "13718766.0", + "15013976.0", + "-0.00039672852", + "1.0", + "0.68971384", + "0.0", + "0.0", + "0.8479052", + "3.8382869", + "0.3720075", + "0.8248497", + "138829220.0", + "151236850.0", + "31.92391", + "32.40942", + "0.13118525", + "0.0", + "33099992.0", + "0.0", + "33099992.0", + "33099992.0", + "0.9900178", + "0.9900178", + "0.9900178", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1550284e-05", + "1.566858e-05", + "0.0", + "1.0", + "AAFNQM(UniMod:35){1.000000}VQGHK3", + "[P0AD59:M50]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "568.3202", + "-0.0008544922" + ] + ], + "shape": { + "columns": 71, + "rows": 13976 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Run.IndexRunChannelPrecursor.IdModified.SequenceStripped.SequencePrecursor.ChargePrecursor.Lib.IndexDecoyProteotypic...Translated.Q.ValueChannel.Q.ValuePG.Q.ValuePG.PEPGG.Q.ValueProtein.Q.ValueGlobal.PG.Q.ValueLib.PG.Q.ValueBest.Fr.MzBest.Fr.Mz.Delta
00LFQ_Orbitrap_AIF_Ecoli_01AAAAEIAVK2AAAAEIAVKAAAAEIAVK21001...0.00.00.0006460.0012870.000650.0006510.0006460.0317.2183230.000641
10LFQ_Orbitrap_AIF_Ecoli_01AAAAPVTGPLADDPIQETITFDDFAK3AAAAPVTGPLADDPIQETITFDDFAKAAAAPVTGPLADDPIQETITFDDFAK35801...0.00.00.0006460.0012870.000650.0006510.0006460.0214.1186220.001190
20LFQ_Orbitrap_AIF_Ecoli_01AAAAVLAK1AAAAVLAKAAAAVLAK17201...0.00.00.0006460.0012870.000650.0006510.0006460.0384.224152-0.000183
30LFQ_Orbitrap_AIF_Ecoli_01AAADLISR2AAADLISRAAADLISR210701...0.00.00.0006460.0012870.000650.0006510.0006460.0603.346069-0.000244
40LFQ_Orbitrap_AIF_Ecoli_01AAADVQLR2AAADVQLRAAADVQLR211601...0.00.00.0006460.0012870.000650.0006510.0006460.0701.3940430.001038
..................................................................
139710LFQ_Orbitrap_AIF_Ecoli_01YYLNAGVPIEIK2YYLNAGVPIEIKYYLNAGVPIEIK271227601...0.00.00.0006460.0012870.000650.0006510.0006460.0599.3762820.000000
139720LFQ_Orbitrap_AIF_Ecoli_01YYPAEDAK2YYPAEDAKYYPAEDAK271235201...0.00.00.0006460.0012870.000650.0006510.0006460.0315.6582950.000977
139730LFQ_Orbitrap_AIF_Ecoli_01YYPGSPLIAR2YYPGSPLIARYYPGSPLIAR271236201...0.00.00.0006460.0012870.000650.0006510.0006460.0810.4832150.007996
139740LFQ_Orbitrap_AIF_Ecoli_01YYQGTPSPVK2YYQGTPSPVKYYQGTPSPVK271246101...0.00.00.0006460.0012870.000650.0006510.0006460.0527.3187870.000122
139750LFQ_Orbitrap_AIF_Ecoli_01YYSVIYNLIDEVK2YYSVIYNLIDEVKYYSVIYNLIDEVK271262201...0.00.00.0006460.0012870.000650.0006510.0006460.0993.525146-0.005127
\n", + "

13976 rows × 71 columns

\n", + "
" + ], + "text/plain": [ + " Run.Index Run Channel \\\n", + "0 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "1 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "2 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "3 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "4 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "... ... ... ... \n", + "13971 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13972 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13973 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13974 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13975 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "\n", + " Precursor.Id Modified.Sequence \\\n", + "0 AAAAEIAVK2 AAAAEIAVK \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK3 AAAAPVTGPLADDPIQETITFDDFAK \n", + "2 AAAAVLAK1 AAAAVLAK \n", + "3 AAADLISR2 AAADLISR \n", + "4 AAADVQLR2 AAADVQLR \n", + "... ... ... \n", + "13971 YYLNAGVPIEIK2 YYLNAGVPIEIK \n", + "13972 YYPAEDAK2 YYPAEDAK \n", + "13973 YYPGSPLIAR2 YYPGSPLIAR \n", + "13974 YYQGTPSPVK2 YYQGTPSPVK \n", + "13975 YYSVIYNLIDEVK2 YYSVIYNLIDEVK \n", + "\n", + " Stripped.Sequence Precursor.Charge Precursor.Lib.Index \\\n", + "0 AAAAEIAVK 2 10 \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK 3 58 \n", + "2 AAAAVLAK 1 72 \n", + "3 AAADLISR 2 107 \n", + "4 AAADVQLR 2 116 \n", + "... ... ... ... \n", + "13971 YYLNAGVPIEIK 2 712276 \n", + "13972 YYPAEDAK 2 712352 \n", + "13973 YYPGSPLIAR 2 712362 \n", + "13974 YYQGTPSPVK 2 712461 \n", + "13975 YYSVIYNLIDEVK 2 712622 \n", + "\n", + " Decoy Proteotypic ... Translated.Q.Value Channel.Q.Value PG.Q.Value \\\n", + "0 0 1 ... 0.0 0.0 0.000646 \n", + "1 0 1 ... 0.0 0.0 0.000646 \n", + "2 0 1 ... 0.0 0.0 0.000646 \n", + "3 0 1 ... 0.0 0.0 0.000646 \n", + "4 0 1 ... 0.0 0.0 0.000646 \n", + "... ... ... ... ... ... ... \n", + "13971 0 1 ... 0.0 0.0 0.000646 \n", + "13972 0 1 ... 0.0 0.0 0.000646 \n", + "13973 0 1 ... 0.0 0.0 0.000646 \n", + "13974 0 1 ... 0.0 0.0 0.000646 \n", + "13975 0 1 ... 0.0 0.0 0.000646 \n", + "\n", + " PG.PEP GG.Q.Value Protein.Q.Value Global.PG.Q.Value \\\n", + "0 0.001287 0.00065 0.000651 0.000646 \n", + "1 0.001287 0.00065 0.000651 0.000646 \n", + "2 0.001287 0.00065 0.000651 0.000646 \n", + "3 0.001287 0.00065 0.000651 0.000646 \n", + "4 0.001287 0.00065 0.000651 0.000646 \n", + "... ... ... ... ... \n", + "13971 0.001287 0.00065 0.000651 0.000646 \n", + "13972 0.001287 0.00065 0.000651 0.000646 \n", + "13973 0.001287 0.00065 0.000651 0.000646 \n", + "13974 0.001287 0.00065 0.000651 0.000646 \n", + "13975 0.001287 0.00065 0.000651 0.000646 \n", + "\n", + " Lib.PG.Q.Value Best.Fr.Mz Best.Fr.Mz.Delta \n", + "0 0.0 317.218323 0.000641 \n", + "1 0.0 214.118622 0.001190 \n", + "2 0.0 384.224152 -0.000183 \n", + "3 0.0 603.346069 -0.000244 \n", + "4 0.0 701.394043 0.001038 \n", + "... ... ... ... \n", + "13971 0.0 599.376282 0.000000 \n", + "13972 0.0 315.658295 0.000977 \n", + "13973 0.0 810.483215 0.007996 \n", + "13974 0.0 527.318787 0.000122 \n", + "13975 0.0 993.525146 -0.005127 \n", + "\n", + "[13976 rows x 71 columns]" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_results" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "id": "2a6abc2f", + "metadata": {}, + "outputs": [], + "source": [ + "def check_diann_id_presence_in_fasta(diann_results, fasta_dict):\n", + " correct_matches_num = 0\n", + " incorrect_matches_num = 0\n", + " not_found_num = 0\n", + " incorrect_matches = []\n", + " not_found_matches = []\n", + "\n", + " for index, row in diann_results.iterrows():\n", + " peptide = row[\"Stripped.Sequence\"]\n", + " RT = row[\"RT\"]\n", + "\n", + " # First, find all FASTA files that contain this peptide\n", + " found_in_fastas = []\n", + " for fasta_path, fasta_content in fasta_dict.items():\n", + " for entry in fasta_content:\n", + " if peptide == entry.sequence:\n", + " found_in_fastas.append(fasta_path)\n", + " break # Found in this FASTA, no need to check other entries\n", + "\n", + " if not found_in_fastas:\n", + " # Peptide not found in any FASTA file\n", + " print(f\"Peptide {peptide} NOT FOUND in any FASTA file.\")\n", + " not_found_num += 1\n", + " not_found_matches.append((peptide, RT))\n", + " continue\n", + "\n", + " # Check if RT matches any of the FASTA files where peptide was found\n", + " found_matching = False\n", + " matching_fasta = None\n", + " incorrect_fasta = None\n", + "\n", + " for fasta_path in found_in_fastas:\n", + " RT_bounds = fasta_path.split(\"/\")[7].split(\"_\")[1:3]\n", + " RT_start = float(RT_bounds[0])\n", + " RT_end = float(RT_bounds[1])\n", + "\n", + " if RT_start <= RT <= RT_end:\n", + " found_matching = True\n", + " matching_fasta = fasta_path\n", + " break\n", + " else:\n", + " incorrect_fasta = fasta_path # Keep track of one incorrect match\n", + "\n", + " if found_matching:\n", + " print(f\"{peptide} found in {matching_fasta.split('/')[-2]}: CORRECT\")\n", + " correct_matches_num += 1\n", + " else:\n", + " print(\n", + " f\"{peptide} found in FASTA file(s) but RT does not match any bounds: INCORRECT\"\n", + " )\n", + " print(\n", + " f\" Found in {len(found_in_fastas)} FASTA(s): {[f.split('/')[-2] for f in found_in_fastas]}\"\n", + " )\n", + " incorrect_matches_num += 1\n", + " # Find the FASTA where the bounds are closest to the observed RT\n", + " min_distance = float(\"inf\")\n", + " closest_fasta = None\n", + " for fasta_path in found_in_fastas:\n", + " RT_bounds = fasta_path.split(\"/\")[7].split(\"_\")[1:3]\n", + " RT_start = float(RT_bounds[0])\n", + " RT_end = float(RT_bounds[1])\n", + " # Distance to closest bound\n", + " if RT < RT_start:\n", + " distance = RT_start - RT\n", + " elif RT > RT_end:\n", + " distance = RT - RT_end\n", + " else:\n", + " distance = 0 # Shouldn't happen for incorrect matches\n", + " if distance < min_distance:\n", + " min_distance = distance\n", + " closest_fasta = fasta_path\n", + " incorrect_matches.append((peptide, RT, closest_fasta))\n", + "\n", + " print(\"\\n\" * 2)\n", + " print(\"Summary:\")\n", + " print(f\"Sequences found in matching FASTA: {correct_matches_num}\")\n", + " print(f\"Sequences found in non-matching FASTA: {incorrect_matches_num}\")\n", + " print(f\"Sequences not found in any FASTA: {not_found_num}\")\n", + " print()\n", + "\n", + " return incorrect_matches, not_found_matches" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "id": "2479b59e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AAAAEIAVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAAAPVTGPLADDPIQETITFDDFAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAAAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAADLISR found in part_0.0_13829.432373046875: CORRECT\n", + "AAADVQLR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAEADDIFGELSSGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAAESSIQVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAAEVGAPFIEIHTGCYADAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAAFEGELIPASQIDR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAFEGELIPASQIDR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAGISETLLR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAIAYAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAICAER found in part_0.0_13829.432373046875: CORRECT\n", + "AAALAAADAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAPAFSEESIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAAQLQQGLADTSDENLK found in part_0.0_13829.432373046875: CORRECT\n", + "AAASHLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AAATGEALSLVCVDEHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAATQEMTLVDTPNAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAATQEMTLVDTPNAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAATQHNLEVLASR found in part_0.0_13829.432373046875: CORRECT\n", + "AADAAFAEWGQTTPK found in part_0.0_13829.432373046875: CORRECT\n", + "AADAHGIPFTLSTVSVCPIEEVAPAIK found in part_0.0_13829.432373046875: CORRECT\n", + "AADEGLEVK found in part_0.0_13829.432373046875: CORRECT\n", + "AADGSTVAQTALSYDDYR found in part_0.0_13829.432373046875: CORRECT\n", + "AADGSTVAQTALSYDDYR found in part_0.0_13829.432373046875: CORRECT\n", + "AADIIGIGINGVDAVSELSK found in part_0.0_13829.432373046875: CORRECT\n", + "AADIIGIGINGVDAVSELSK found in part_0.0_13829.432373046875: CORRECT\n", + "AADIVLQAAIAAGAPK found in part_0.0_13829.432373046875: CORRECT\n", + "AADIVLQAAIAAGAPK found in part_0.0_13829.432373046875: CORRECT\n", + "AADNKSLGQFNLDGINPAPR found in part_0.0_13829.432373046875: CORRECT\n", + "AADSCHVSQPTLSGQIR found in part_0.0_13829.432373046875: CORRECT\n", + "AADVHLCVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAEAVIIDTIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAEEAFR found in part_0.0_13829.432373046875: CORRECT\n", + "AAEGIAPKPLDANQMAALVELLK found in part_0.0_13829.432373046875: CORRECT\n", + "AAEIIHIGQAIMEQK found in part_0.0_13829.432373046875: CORRECT\n", + "AAEIIHIGQAIMEQK found in part_0.0_13829.432373046875: CORRECT\n", + "AAELAGNDTIPVEITR found in part_0.0_13829.432373046875: CORRECT\n", + "AAELSGLTHSAISTIEQDK found in part_0.0_13829.432373046875: CORRECT\n", + "AAENNPELAAFIDECR found in part_0.0_13829.432373046875: CORRECT\n", + "AAENNPELAAFIDECR found in part_0.0_13829.432373046875: CORRECT\n", + "AAEQLGQANSAVSR found in part_0.0_13829.432373046875: CORRECT\n", + "AAESALNIDVPVNAQYIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAEVLVVDTR found in part_0.0_13829.432373046875: CORRECT\n", + "AAFDDAIAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAFDFAVEHQSVER found in part_0.0_13829.432373046875: CORRECT\n", + "AAFDFAVEHQSVER found in part_0.0_13829.432373046875: CORRECT\n", + "AAFLAVDNHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAFNQMVQGHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAFNSAVDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AAFPGGSITGAPK found in part_0.0_13829.432373046875: CORRECT\n", + "AAFQPVFLEVVDESYR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGAELVGMEDLADQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGAELVGMEDLADQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGAELVGMEDLADQIKK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGDAPLSGTETTLPAPPR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGDEPLFGPVLNIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGDNAMANQYETLANAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGDNAMANQYETLANAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGEKPENGVFWESAGEGEYTVADITK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGEKPENGVFWESAGEGEYTVADITK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGLGIAYHAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGLHLQESIAEQGALR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGLHLQESIAEQGALR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGPALLDACLK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGSVLISAPR found in part_0.0_13829.432373046875: CORRECT\n", + "AAGVPPGPLFQELK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGYDKPFK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGYELGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGYELGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGYTNIEFHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAGYTNIEFHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAHQDEPQFGAQSTPLDER found in part_0.0_13829.432373046875: CORRECT\n", + "AAHSFNLLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAHSFNLLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIAAAQANPNAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAIADYK found in part_0.0_13829.432373046875: CORRECT\n", + "AAIAYGADEVDVVFPYR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIDAGAAGAISGSAIVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAIDLSSGQPR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIDQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIDSIVSA found in part_0.0_13829.432373046875: CORRECT\n", + "AAIEAAGGKIEE found in part_0.0_13829.432373046875: CORRECT\n", + "AAIELAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIELFR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIEYAIANDR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIEYAIANDR found in part_0.0_13829.432373046875: CORRECT\n", + "AAIEYAIANDRDSVTLVHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAIEYAIANDRDSVTLVHK found in part_0.0_13829.432373046875: CORRECT\n", + "AAILNTAR found in part_0.0_13829.432373046875: CORRECT\n", + "AAILNYSR found in part_0.0_13829.432373046875: CORRECT\n", + "AAILSNEK found in part_0.0_13829.432373046875: CORRECT\n", + "AAIMAEIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAINAPMQGTAADIIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAISQASDVAALDNVR found in part_0.0_13829.432373046875: CORRECT\n", + "AAISQASDVAALDNVR found in part_0.0_13829.432373046875: CORRECT\n", + "AAISSCELLLSETSGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "AAITAAYR found in part_0.0_13829.432373046875: CORRECT\n", + "AAITAEIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAKAAEVDDADYCATVAAVVSEQMQGR found in part_0.0_13829.432373046875: CORRECT\n", + "AALAADITDVIIR found in part_0.0_13829.432373046875: CORRECT\n", + "AALAAGGEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "AALAGAVNTLMR found in part_0.0_13829.432373046875: CORRECT\n", + "AALANLFSELPSK found in part_0.0_13829.432373046875: CORRECT\n", + "AALASALGEYFER found in part_0.0_13829.432373046875: CORRECT\n", + "AALEALPGVGR found in part_0.0_13829.432373046875: CORRECT\n", + "AALELAEQR found in part_0.0_13829.432373046875: CORRECT\n", + "AALESTLAAITESLK found in part_0.0_13829.432373046875: CORRECT\n", + "AALESTLAAITESLK found in part_0.0_13829.432373046875: CORRECT\n", + "AALGYDVP found in part_0.0_13829.432373046875: CORRECT\n", + "AALIDCLAPDR found in part_0.0_13829.432373046875: CORRECT\n", + "AALIDCLAPDRR found in part_0.0_13829.432373046875: CORRECT\n", + "AALIDCLAPDRR found in part_0.0_13829.432373046875: CORRECT\n", + "AALISALQTLYPECSIYDR found in part_0.0_13829.432373046875: CORRECT\n", + "AALLADK found in part_0.0_13829.432373046875: CORRECT\n", + "AALNLSQK found in part_0.0_13829.432373046875: CORRECT\n", + "AALPLNHLVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AALPPEISLPAVGQGAVGIECR found in part_0.0_13829.432373046875: CORRECT\n", + "AALQISQSGQTCALLSK found in part_0.0_13829.432373046875: CORRECT\n", + "AALQISQSGQTCALLSK found in part_0.0_13829.432373046875: CORRECT\n", + "AALQNTILK found in part_0.0_13829.432373046875: CORRECT\n", + "AALSMIVEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "AALTQPLNALR found in part_0.0_13829.432373046875: CORRECT\n", + "AALVDHDNIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAMESGVATRPIADFDVYIDK found in part_0.0_13829.432373046875: CORRECT\n", + "AAMTLVQSLLNGNK found in part_0.0_13829.432373046875: CORRECT\n", + "AAMTVAALCEK found in part_0.0_13829.432373046875: CORRECT\n", + "AANAEPLLMQIR found in part_0.0_13829.432373046875: CORRECT\n", + "AANAGGVATSGLEMAQNAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AANAGGVATSGLEMAQNAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AANANLGFQK found in part_0.0_13829.432373046875: CORRECT\n", + "AANANVVFFDGITAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "AANHQIIGSSQMYATAQSR found in part_0.0_13829.432373046875: CORRECT\n", + "AANHQIIGSSQMYATAQSR found in part_0.0_13829.432373046875: CORRECT\n", + "AANIIGIQIEFAK found in part_0.0_13829.432373046875: CORRECT\n", + "AANIILHCEGK found in part_0.0_13829.432373046875: CORRECT\n", + "AANIILHCEGK found in part_0.0_13829.432373046875: CORRECT\n", + "AANKFPAIIYGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AANKFPAIIYGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPAPAAAAPK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPATPAAPAQPGLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "AAPDVQLLMNDSQNDQSK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPDVQLLMNDSQNDQSK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPENAVANAYDMVINGYEVGGGSVR found in part_0.0_13829.432373046875: CORRECT\n", + "AAPGYYLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPLCNGDPDDLILK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPLTTQTIDEFK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPNTIPTAAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPSGTPVLVNGR found in part_0.0_13829.432373046875: CORRECT\n", + "AAPSYEELSNSQELLETGIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAPVIRPNK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQCLLGENDFTSFR found in part_0.0_13829.432373046875: CORRECT\n", + "AAQEDILK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQEEEFSLELR found in part_0.0_13829.432373046875: CORRECT\n", + "AAQEIVNSGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQPQVDEGLSYPLLQQLLVQHPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQSDPNCFFIDDENSR found in part_0.0_13829.432373046875: CORRECT\n", + "AAQSLLLIDK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQVPVVVAVNK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQVPVVVAVNK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQYVASHPGEVCPAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAQYVASHPGEVCPAK found in part_0.0_13829.432373046875: CORRECT\n", + "AASAAGLSIHVPFAPGR found in part_0.0_13829.432373046875: CORRECT\n", + "AASAAGLSIHVPFAPGR found in part_0.0_13829.432373046875: CORRECT\n", + "AASDLIFLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "AASEAVKDAALSCDQFFVNHR found in part_0.0_13829.432373046875: CORRECT\n", + "AASEEYNWDLNYGEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AASEEYNWDLNYGEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AASIEALK found in part_0.0_13829.432373046875: CORRECT\n", + "AASIEALK found in part_0.0_13829.432373046875: CORRECT\n", + "AASLLEDILETR found in part_0.0_13829.432373046875: CORRECT\n", + "AASYAPTLISHGDQVLPYVR found in part_0.0_13829.432373046875: CORRECT\n", + "AATAGNGNEAAIEAQAAGVEQR found in part_0.0_13829.432373046875: CORRECT\n", + "AATALQLEQVLR found in part_0.0_13829.432373046875: CORRECT\n", + "AATDNGGSLIK found in part_0.0_13829.432373046875: CORRECT\n", + "AATFAASLGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AATGVDALTHAIEGYITR found in part_0.0_13829.432373046875: CORRECT\n", + "AATHDVLAGLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "AATHDVLAGLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "AATIELGPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AATLFNDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AATPLVSAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AATYEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AATYEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVADCLAATDKR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVAFAPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVAFAPGKPLEIVEIDVAPPK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVAGIAMGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVEAETLK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVEEGVVAGGGVALIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVEEGVVAGGGVALIR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVELAK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVELAVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVELIQPGHR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVELIQPGHR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVIEAMTK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVLCFAAESVATDCQR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVLCFAAESVATDCQR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVLLADSFK found in part_0.0_13829.432373046875: CORRECT\n", + "AAVLPANLIQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVLPANLIQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AAVVVPDNVLFEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAYAVVDDGK found in part_0.0_13829.432373046875: CORRECT\n", + "AAYAVVDDGKR found in part_0.0_13829.432373046875: CORRECT\n", + "AAYDLLALR found in part_0.0_13829.432373046875: CORRECT\n", + "AAYDLTR found in part_0.0_13829.432373046875: CORRECT\n", + "AAYDNELVEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "AAYSSGKPAIGVGAGNTPVVIDETADIK found in part_0.0_13829.432373046875: CORRECT\n", + "ACAEAGVFLISPFVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ACAEAGVFLISPFVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ACAEDDPQLSGR found in part_0.0_13829.432373046875: CORRECT\n", + "ACALITDGR found in part_0.0_13829.432373046875: CORRECT\n", + "ACAQLVKPGGDVFFSTLNR found in part_0.0_13829.432373046875: CORRECT\n", + "ACDGCLNGEFAALITGPVHK found in part_0.0_13829.432373046875: CORRECT\n", + "ACDLVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ACEEAAEGQVVSPVNFNSPGQVVIAGHK found in part_0.0_13829.432373046875: CORRECT\n", + "ACEEAAEGQVVSPVNFNSPGQVVIAGHK found in part_0.0_13829.432373046875: CORRECT\n", + "ACEEAGISAEAIDPQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "ACEEAGISAEAIDPQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "ACEEVGFVSR found in part_0.0_13829.432373046875: CORRECT\n", + "ACIGIITNPVNTTVAIAAEVLKK found in part_0.0_13829.432373046875: CORRECT\n", + "ACQNYGPLYK found in part_0.0_13829.432373046875: CORRECT\n", + "ACQTAGMDFDSTQAHSALYDTER found in part_0.0_13829.432373046875: CORRECT\n", + "ACVDIGYR found in part_0.0_13829.432373046875: CORRECT\n", + "ACVIPEGMVIGENAEEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "ACVIPEGMVIGENAEEDARR found in part_0.0_13829.432373046875: CORRECT\n", + "ADAFAVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAFAVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAFGLER found in part_0.0_13829.432373046875: CORRECT\n", + "ADAIFIEELR found in part_0.0_13829.432373046875: CORRECT\n", + "ADAINAPLSANSFLPQPHPGNCGK found in part_0.0_13829.432373046875: CORRECT\n", + "ADALPAFEK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAPGVYVGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAVLHDTPNILYFIK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAVLHDTPNILYFIK found in part_0.0_13829.432373046875: CORRECT\n", + "ADAVVVLENDLHR found in part_0.0_13829.432373046875: CORRECT\n", + "ADAVVVLENDLHR found in part_0.0_13829.432373046875: CORRECT\n", + "ADCLGIIGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADCLLYANGR found in part_0.0_13829.432373046875: CORRECT\n", + "ADDAISEQLAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADDIQIR found in part_0.0_13829.432373046875: CORRECT\n", + "ADDLAAIPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADDVICLHQLQPTAAVAGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "ADDYTGPATDLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADEGISFR found in part_0.0_13829.432373046875: CORRECT\n", + "ADEIQIYK found in part_0.0_13829.432373046875: CORRECT\n", + "ADEIQIYK found in part_0.0_13829.432373046875: CORRECT\n", + "ADEQILDIGDASAQELAEILK found in part_0.0_13829.432373046875: CORRECT\n", + "ADESPIQHLAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADFLCGTGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ADFLSDPNK found in part_0.0_13829.432373046875: CORRECT\n", + "ADFPVLSR found in part_0.0_13829.432373046875: CORRECT\n", + "ADGAYLYDVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGFQQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGIGSLLPAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADGINPEELLGNSSAAAPR found in part_0.0_13829.432373046875: CORRECT\n", + "ADGLGTADHSALACYYEK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGLGTADHSALACYYEK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGLLPASSK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGSGTSFVFTSYLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ADGSQEVVPCR found in part_0.0_13829.432373046875: CORRECT\n", + "ADHDTFWFDTTR found in part_0.0_13829.432373046875: CORRECT\n", + "ADHIYLATDLDR found in part_0.0_13829.432373046875: CORRECT\n", + "ADHIYLATDLDR found in part_0.0_13829.432373046875: CORRECT\n", + "ADHPKPDSLISEHPTAQEAMDAK found in part_0.0_13829.432373046875: CORRECT\n", + "ADHPKPDSLISEHPTAQEAMDAK found in part_0.0_13829.432373046875: CORRECT\n", + "ADHPLTTPPPK found in part_0.0_13829.432373046875: CORRECT\n", + "ADIAANGFDILCVR found in part_0.0_13829.432373046875: CORRECT\n", + "ADIAIIATAQNGNK found in part_0.0_13829.432373046875: CORRECT\n", + "ADIDYNTSEAHTTYGVIGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADIEVSTCGVISPLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADILTFHTPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "ADILTFHTPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "ADISSDQIAAIGITNQR found in part_0.0_13829.432373046875: CORRECT\n", + "ADISSDQIAAIGITNQR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ADITLISGSTLGGAEYVAEHLAEK NOT FOUND in any FASTA file.\n", + "ADIVGVSSLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADKPLVGTGMER found in part_0.0_13829.432373046875: CORRECT\n", + "ADKPLVGTGMER found in part_0.0_13829.432373046875: CORRECT\n", + "ADLGIAFDGDGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ADLLTLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADLNVPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADLNVPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADLNVPVKDGK found in part_0.0_13829.432373046875: CORRECT\n", + "ADLPLLSHNLPADFAALR found in part_0.0_13829.432373046875: CORRECT\n", + "ADLPVEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ADLVFGSNSVLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADMHYIIR found in part_0.0_13829.432373046875: CORRECT\n", + "ADNDLVDMIK found in part_0.0_13829.432373046875: CORRECT\n", + "ADNSPVTAADIAAHTVIMDGLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADNVVLENGGR found in part_0.0_13829.432373046875: CORRECT\n", + "ADPAANAGSLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADQIPVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADQIQWSAGIEPGDPR found in part_0.0_13829.432373046875: CORRECT\n", + "ADQIQWSAGIEPGDPR found in part_0.0_13829.432373046875: CORRECT\n", + "ADQYLDALEQEIVHR found in part_0.0_13829.432373046875: CORRECT\n", + "ADSAEVSMIPSTK found in part_0.0_13829.432373046875: CORRECT\n", + "ADSPDHEELAK found in part_0.0_13829.432373046875: CORRECT\n", + "ADSVLAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADTDILMGQR found in part_0.0_13829.432373046875: CORRECT\n", + "ADTGFGVMTEEELK found in part_0.0_13829.432373046875: CORRECT\n", + "ADTTLNNGLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVAMTGEITLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVAPSNLAIVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVDKLPIPDPEDELGYVMNAVR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVEASGGNTFNGK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVLAKPAVEAVENGDIQFVPK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVLPLDSNHVNTEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVLPLDSNHVNTEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVNQVVDGDALQLAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVPTVSLVGYTNAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVQGSVEAISDSLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVQGSVEAISDSLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVSLILR found in part_0.0_13829.432373046875: CORRECT\n", + "ADVVLGLDNNLLDAASK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVVTYNQVTDVQILHDK found in part_0.0_13829.432373046875: CORRECT\n", + "ADVVVANILAGPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ADYAAAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADYADSLTENGTHGSDSVESAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ADYVSITDDEALEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAAEINLR found in part_0.0_13829.432373046875: CORRECT\n", + "AEAAELEVDELK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAANGNGPVDAVYQAINR found in part_0.0_13829.432373046875: CORRECT\n", + "AEADISEYITK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAEQTLAALTEK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAEQTLAALTEK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAFVTMR found in part_0.0_13829.432373046875: CORRECT\n", + "AEAGDVANAILDGTDAVMLSGESAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAGIVISASHNPFYDNGIK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAIHYIGDLVQR found in part_0.0_13829.432373046875: CORRECT\n", + "AEAIHYIGDLVQR found in part_0.0_13829.432373046875: CORRECT\n", + "AEALYDYFVER found in part_0.0_13829.432373046875: CORRECT\n", + "AEANPALHPGQSAAIYLK found in part_0.0_13829.432373046875: CORRECT\n", + "AEANPALHPGQSAAIYLK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAPAAAPAAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAPAAAPAAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAQVIIEQANK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAVITGVCETDFSGYPDCR found in part_0.0_13829.432373046875: CORRECT\n", + "AEAVITGVCETDFSGYPDCRDEFVK found in part_0.0_13829.432373046875: CORRECT\n", + "AEAVSIMTDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AEDEAINVFAR found in part_0.0_13829.432373046875: CORRECT\n", + "AEDTLALLR found in part_0.0_13829.432373046875: CORRECT\n", + "AEDYFFNK found in part_0.0_13829.432373046875: CORRECT\n", + "AEEAGVDLVEISPNAEPPVCR found in part_0.0_13829.432373046875: CORRECT\n", + "AEEGIWMTDVPVPELGHNDLLIK found in part_0.0_13829.432373046875: CORRECT\n", + "AEEHISSSHGDVDYAQASAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEEHISSSHGDVDYAQASAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEEIVASNPEK found in part_0.0_13829.432373046875: CORRECT\n", + "AEELAEER found in part_0.0_13829.432373046875: CORRECT\n", + "AEEPALNMLADGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AEETIFSK NOT FOUND in any FASTA file.\n", + "Peptide AEETIFSK NOT FOUND in any FASTA file.\n", + "AEFGEVDILVNNAGITR found in part_0.0_13829.432373046875: CORRECT\n", + "AEFGEVDILVNNAGITR found in part_0.0_13829.432373046875: CORRECT\n", + "AEFGVDELQPWDIAYYSEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AEFPASLLILNGK NOT FOUND in any FASTA file.\n", + "AEFQIIISPEYQGK found in part_0.0_13829.432373046875: CORRECT\n", + "AEFTYQR found in part_0.0_13829.432373046875: CORRECT\n", + "AEGETLATQQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AEGGTGDAISGFEGSVPNPYVK found in part_0.0_13829.432373046875: CORRECT\n", + "AEGGVVAVFANNAPAFYAVTPAR found in part_0.0_13829.432373046875: CORRECT\n", + "AEGILLQCQR found in part_0.0_13829.432373046875: CORRECT\n", + "AEGKSEFAENDAYVHATPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "AEGPTAFVSIMEGCNK found in part_0.0_13829.432373046875: CORRECT\n", + "AEGQPVATVFPK found in part_0.0_13829.432373046875: CORRECT\n", + "AEGYALAGR found in part_0.0_13829.432373046875: CORRECT\n", + "AEHILMPGDIPVIQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "AEIDEEQLAAAPVIIR found in part_0.0_13829.432373046875: CORRECT\n", + "AEIDEEQLAAAPVIIR found in part_0.0_13829.432373046875: CORRECT\n", + "AEIDQVK found in part_0.0_13829.432373046875: CORRECT\n", + "AEIGHVSAER found in part_0.0_13829.432373046875: CORRECT\n", + "AEIIVYPDAGHAFNADYR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AEITASLVK NOT FOUND in any FASTA file.\n", + "Peptide AEITASLVK NOT FOUND in any FASTA file.\n", + "AEITLDYQLK found in part_0.0_13829.432373046875: CORRECT\n", + "AEITPANADTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AEIVASFER found in part_0.0_13829.432373046875: CORRECT\n", + "AELAVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "AELAVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "AELDALQAEIR found in part_0.0_13829.432373046875: CORRECT\n", + "AELESAALNAR found in part_0.0_13829.432373046875: CORRECT\n", + "AELGLDAAGMEAK found in part_0.0_13829.432373046875: CORRECT\n", + "AELLYGVIDNSDFYR found in part_0.0_13829.432373046875: CORRECT\n", + "AELTAIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "AEMFPAQVR found in part_0.0_13829.432373046875: CORRECT\n", + "AEMNIAPGKPLELLLR found in part_0.0_13829.432373046875: CORRECT\n", + "AEMSEYLFDK found in part_0.0_13829.432373046875: CORRECT\n", + "AENGEEPIKEHLLLTR found in part_0.0_13829.432373046875: CORRECT\n", + "AENITAQPFDAVIFHGDSDQLR found in part_0.0_13829.432373046875: CORRECT\n", + "AENPDIQQFECSVFNGVYVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AENPDLISGENSAAALLEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AENQYYGTGR NOT FOUND in any FASTA file.\n", + "AEPGLASR found in part_0.0_13829.432373046875: CORRECT\n", + "AEPLISEMEAVINK found in part_0.0_13829.432373046875: CORRECT\n", + "AEQAAAEQALK found in part_0.0_13829.432373046875: CORRECT\n", + "AEQAALQADK found in part_0.0_13829.432373046875: CORRECT\n", + "AEQAALQADKR found in part_0.0_13829.432373046875: CORRECT\n", + "AEQAGDNLSCIMVTYPSTHGVYEETIR found in part_0.0_13829.432373046875: CORRECT\n", + "AEQLEENVQALNNLTFSTK found in part_0.0_13829.432373046875: CORRECT\n", + "AEQQLDKDSAIVPVYYYVNAR found in part_0.0_13829.432373046875: CORRECT\n", + "AEQYLLENETTK found in part_0.0_13829.432373046875: CORRECT\n", + "AESCDDCDTYLK found in part_0.0_13829.432373046875: CORRECT\n", + "AESFQAVADATLAYHK found in part_0.0_13829.432373046875: CORRECT\n", + "AESFQAVADATLAYHK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AESFTTTNR NOT FOUND in any FASTA file.\n", + "AESFYGGGAEGYTDYPTL found in part_0.0_13829.432373046875: CORRECT\n", + "AETASPEVMADCPR found in part_0.0_13829.432373046875: CORRECT\n", + "AETFGFEVIVDDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "AETLYYIVK found in part_0.0_13829.432373046875: CORRECT\n", + "AETNIQYEGR found in part_0.0_13829.432373046875: CORRECT\n", + "AEVEVDAK found in part_0.0_13829.432373046875: CORRECT\n", + "AEVFVTCPGR found in part_0.0_13829.432373046875: CORRECT\n", + "AEVVAADER found in part_0.0_13829.432373046875: CORRECT\n", + "AEYLESPTIDER found in part_0.0_13829.432373046875: CORRECT\n", + "AEYQELLAVSR found in part_0.0_13829.432373046875: CORRECT\n", + "AEYTPHVDTGDYIIVLNADK found in part_0.0_13829.432373046875: CORRECT\n", + "AFAASNELEVNATHK found in part_0.0_13829.432373046875: CORRECT\n", + "AFAASNELEVNATHK found in part_0.0_13829.432373046875: CORRECT\n", + "AFAAYLQQGLGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AFADIVK found in part_0.0_13829.432373046875: CORRECT\n", + "AFAEAYR found in part_0.0_13829.432373046875: CORRECT\n", + "AFALAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AFAYGLKPIVVINK found in part_0.0_13829.432373046875: CORRECT\n", + "AFAYGLKPIVVINK found in part_0.0_13829.432373046875: CORRECT\n", + "AFCEPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AFDDVMAGK found in part_0.0_13829.432373046875: CORRECT\n", + "AFDFACLPNEGVGLAR found in part_0.0_13829.432373046875: CORRECT\n", + "AFDLGITHFDLANNYGPPPGSAEENFGR found in part_0.0_13829.432373046875: CORRECT\n", + "AFDQIDNAPEEK found in part_0.0_13829.432373046875: CORRECT\n", + "AFDQIDNAPEEK found in part_0.0_13829.432373046875: CORRECT\n", + "AFDQIDNAPEEKAR found in part_0.0_13829.432373046875: CORRECT\n", + "AFEADCNCELK found in part_0.0_13829.432373046875: CORRECT\n", + "AFEHTAAYDSMIANYFGSMVPAYHGESK found in part_0.0_13829.432373046875: CORRECT\n", + "AFEQCAGFLR found in part_0.0_13829.432373046875: CORRECT\n", + "AFEVGGEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFFANPVLTGAVDK found in part_0.0_13829.432373046875: CORRECT\n", + "AFFPTAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "AFFVVGNALDENPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "AFIAELMPK found in part_0.0_13829.432373046875: CORRECT\n", + "AFICSIK found in part_0.0_13829.432373046875: CORRECT\n", + "AFIEENALK found in part_0.0_13829.432373046875: CORRECT\n", + "AFIEVGQK found in part_0.0_13829.432373046875: CORRECT\n", + "AFIEVGQK found in part_0.0_13829.432373046875: CORRECT\n", + "AFIGLELVPGTR found in part_0.0_13829.432373046875: CORRECT\n", + "AFINGQEVDVNR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLAQLSEEQVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AFLDAGHYQPLR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLEAENPQR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLGLPVGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLGVPIIQR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLIDDAK found in part_0.0_13829.432373046875: CORRECT\n", + "AFLNELAR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLPGSLVDVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLPGSLVDVRPVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLPGSLVDVRPVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFLQELQEASDR found in part_0.0_13829.432373046875: CORRECT\n", + "AFNEALPLTGVVLTK found in part_0.0_13829.432373046875: CORRECT\n", + "AFNEMQPIVDR found in part_0.0_13829.432373046875: CORRECT\n", + "AFNEMQPIVDR found in part_0.0_13829.432373046875: CORRECT\n", + "AFNIEQATFNDYMAK found in part_0.0_13829.432373046875: CORRECT\n", + "AFNLDVQR found in part_0.0_13829.432373046875: CORRECT\n", + "AFNLLVVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFNVEGILCLPIQDSDK found in part_0.0_13829.432373046875: CORRECT\n", + "AFPAIALDTEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFPETAATGGIIESELVAIPAMQK found in part_0.0_13829.432373046875: CORRECT\n", + "AFPGLNGMDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AFQELNAIDVL found in part_0.0_13829.432373046875: CORRECT\n", + "AFQQQLAEVAIAGFQPQFNK found in part_0.0_13829.432373046875: CORRECT\n", + "AFSDALGNQVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFSIDGPVLVDVVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AFSILLK found in part_0.0_13829.432373046875: CORRECT\n", + "AFSQFLNLANTAEQYHSISPK found in part_0.0_13829.432373046875: CORRECT\n", + "AFSSYLGEDK found in part_0.0_13829.432373046875: CORRECT\n", + "AFTDFFAR found in part_0.0_13829.432373046875: CORRECT\n", + "AFTGVGGTPLFIEK found in part_0.0_13829.432373046875: CORRECT\n", + "AFTNYLPGFNIPMLPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AFTPFPPR NOT FOUND in any FASTA file.\n", + "AFTSEEFTHFLEELTK found in part_0.0_13829.432373046875: CORRECT\n", + "AFTSEEFTHFLEELTK found in part_0.0_13829.432373046875: CORRECT\n", + "AFTVMSCDNVR found in part_0.0_13829.432373046875: CORRECT\n", + "AFVEYLNK found in part_0.0_13829.432373046875: CORRECT\n", + "AFVNADFDGFAR found in part_0.0_13829.432373046875: CORRECT\n", + "AFYDYLK found in part_0.0_13829.432373046875: CORRECT\n", + "AFYPTDAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAAIGAQAGAALK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAANAALLAAQILATHDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAANAALLAAQILATHDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAAQTIVASQQR found in part_0.0_13829.432373046875: CORRECT\n", + "AGADFITLHPETINGQAFR found in part_0.0_13829.432373046875: CORRECT\n", + "AGADINVLEHALK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAGTDAAIDSLKPYLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGAGTDAAIDSLKPYLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGALIAPIQIVEER found in part_0.0_13829.432373046875: CORRECT\n", + "AGALIMAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGAPFGPGANPMHGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGAPFGPGANPMHGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGAVAGVSHLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGAWQVINYR found in part_0.0_13829.432373046875: CORRECT\n", + "AGAYGIQGLGGCFVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGCPVSQVLK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDDAARPEWLEPEFGVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDEFAFQYR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDGDLLIAGGVESMSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDIAAAIGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDIAAAIGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDIITSLNGK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDIITSLNGKPLNSFAELR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDIVGEHTAMFADIGER found in part_0.0_13829.432373046875: CORRECT\n", + "AGDNAPMAYIELVDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDNAPMAYIELVDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDQIQSGVDAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDQIQSGVDAAIKPGNTLPMR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDRDEPDMMPAATQALPTQPPEGAAEEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDRPINLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDVIPQVVNVVLSERPEDTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDVITSLNGK found in part_0.0_13829.432373046875: CORRECT\n", + "AGDVITSLNGKPISSFAALR found in part_0.0_13829.432373046875: CORRECT\n", + "AGDYYPPALQTK found in part_0.0_13829.432373046875: CORRECT\n", + "AGEAAFQVCR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEEAVPLEAGHR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEEAVPLEAGHR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEEAVPLEAGHRF found in part_0.0_13829.432373046875: CORRECT\n", + "AGEEAVPLEAGHRF found in part_0.0_13829.432373046875: CORRECT\n", + "AGEEFTIDVTFPEEYHAENLK found in part_0.0_13829.432373046875: CORRECT\n", + "AGEGAKVIELQGIAGTSAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEGAKVIELQGIAGTSAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEIFQVVPSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGELIGMVAQQVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AGENVGVLLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEPHAEVHALR found in part_0.0_13829.432373046875: CORRECT\n", + "AGEQGYSVPTDAINR found in part_0.0_13829.432373046875: CORRECT\n", + "AGETFGEEK found in part_0.0_13829.432373046875: CORRECT\n", + "AGETYNIGGHNEK found in part_0.0_13829.432373046875: CORRECT\n", + "AGETYNIGGHNEK found in part_0.0_13829.432373046875: CORRECT\n", + "AGFATSQEAYDEAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGFLAAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGFLAAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGGAGALLVSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGASSFLADR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGASSFLADRVEEEGEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGFTTGGLNFDAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGGGEELGGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGGSATLSMGQAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGGSATLSMGQAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGMGLILGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGNVEAFVTTDNVAVGAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGGNYLSSLLVGSEAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGPALLFENPK found in part_0.0_13829.432373046875: CORRECT\n", + "AGGPLYLYR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGVIGILGELDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGYLTDGTELHDTNFAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGGYLTDGTELHDTNFAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGHATKVIFLTADAFGVLPPVSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGHTGALDPLATGMLPICLGEATK found in part_0.0_13829.432373046875: CORRECT\n", + "AGIAGGADSSSVLPIGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGIALNDNFVK found in part_0.0_13829.432373046875: CORRECT\n", + "AGIDTIIAAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGIEAANFPFCTIEPNTGVVPMPDPR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIEHGLLYNQEQR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIEHGLLYNQEQR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIELTLFHGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIGINAGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIIRPVLDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGILAQVPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIVEFAQALSAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIVEFAQALSAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGIVGADGQTHQGAFDLSYLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGKEEAHGAPLGEEEVALAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGKEEAHGAPLGEEEVALAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLADPNRPIGSFLFLGPTGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLAVASMK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLDPEQPPK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLGMMDGVLENVPSAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLGMMDGVLENVPSAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLIGFSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLINSGGAAGGETDLSDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLINSGGAAGGETDLSDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLMPADEAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLNEINLPELQAGSSIMPAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLPAQVMIDFSHANSSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLSQSLSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLTFLVDLIK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLTHISILSDALSEPSR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLVAPDETTFNYVK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLVDILGASGAENVQGEVQQK found in part_0.0_13829.432373046875: CORRECT\n", + "AGLVGFSVSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGLYYADHITAVSPTYAR found in part_0.0_13829.432373046875: CORRECT\n", + "AGMIVVNVNPLYTPR found in part_0.0_13829.432373046875: CORRECT\n", + "AGMVAGVIVNR found in part_0.0_13829.432373046875: CORRECT\n", + "AGMYTTVQDGGR found in part_0.0_13829.432373046875: CORRECT\n", + "AGNGETILTSELYTSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGNGETILTSELYTSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AGNTIGQLFR NOT FOUND in any FASTA file.\n", + "AGNVAADGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "AGPALAAGCTMVLK found in part_0.0_13829.432373046875: CORRECT\n", + "AGPGSLGPVNMPIPVVIDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGPGSLGPVNMPIPVVIDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGPLAGYPVVDMGIR found in part_0.0_13829.432373046875: CORRECT\n", + "AGPLAGYPVVDMGIR found in part_0.0_13829.432373046875: CORRECT\n", + "AGQGDEQAQQLIHR found in part_0.0_13829.432373046875: CORRECT\n", + "AGQLNPDTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGQNAMDATVLEITK found in part_0.0_13829.432373046875: CORRECT\n", + "AGQSVQFDVHQGPK found in part_0.0_13829.432373046875: CORRECT\n", + "AGQTFTFTTDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGRPVLISTGDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGSGALTLGQPNSPGVPADFAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGSVFVNNYNDGDMTVPFGGYK found in part_0.0_13829.432373046875: CORRECT\n", + "AGSVFVNNYNDGDMTVPFGGYK found in part_0.0_13829.432373046875: CORRECT\n", + "AGTGGDEAALFAGDLFR found in part_0.0_13829.432373046875: CORRECT\n", + "AGTHDSHGAPLGDAEIALTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGTHDSHGAPLGDAEIALTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGTHDSHGAPLGDAEIALTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGTLTDSSLR found in part_0.0_13829.432373046875: CORRECT\n", + "AGTPEKLDLNPIGTGPFQLQQYQK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVDFEIVNNESDPR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVDFEIVNNESDPR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVDVLGISTDKPEK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVDVLGISTDKPEK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVEVDDR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVHFGHQTR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVLAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVLESSFVAEVK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVMVLIAGGNVVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVNGLFTDFPDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVNPDLVYQAIR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVNPDLVYQAIR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVPAGVFNVVTGSAGAVGNELTSNPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVPAGVFNVVTGSAGAVGNELTSNPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVPCVPGSDGPLGDDMDK found in part_0.0_13829.432373046875: CORRECT\n", + "AGVPCVPGSDGPLGDDMDKNR found in part_0.0_13829.432373046875: CORRECT\n", + "AGVSYVDYHIQFHQR found in part_0.0_13829.432373046875: CORRECT\n", + "AGYAEDEVVAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "AGYNLVASATEGQMR found in part_0.0_13829.432373046875: CORRECT\n", + "AGYSLVVADR found in part_0.0_13829.432373046875: CORRECT\n", + "AGYSLVVADRNPEAIADVIAAGAETASTAK found in part_0.0_13829.432373046875: CORRECT\n", + "AGYVTAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AHADGFDAFASPNLPPLLEAGIHIR found in part_0.0_13829.432373046875: CORRECT\n", + "AHALFTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHEIAGEEFNLSSTK found in part_0.0_13829.432373046875: CORRECT\n", + "AHEIAGEEFNLSSTK found in part_0.0_13829.432373046875: CORRECT\n", + "AHEILESR found in part_0.0_13829.432373046875: CORRECT\n", + "AHFGFNMPILYNAR found in part_0.0_13829.432373046875: CORRECT\n", + "AHFVTIFAK found in part_0.0_13829.432373046875: CORRECT\n", + "AHGGENIHIISK found in part_0.0_13829.432373046875: CORRECT\n", + "AHGGENIHIISK found in part_0.0_13829.432373046875: CORRECT\n", + "AHIVATNPPFGSAAGTNITR found in part_0.0_13829.432373046875: CORRECT\n", + "AHIVELVR found in part_0.0_13829.432373046875: CORRECT\n", + "AHKPGSATIALNK found in part_0.0_13829.432373046875: CORRECT\n", + "AHLAPFVPGHSVVQIEGMLTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHLAPFVPGHSVVQIEGMLTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHLLPLGIEQLPALK found in part_0.0_13829.432373046875: CORRECT\n", + "AHPADVLPQEMDK found in part_0.0_13829.432373046875: CORRECT\n", + "AHPADVLPQEMDK found in part_0.0_13829.432373046875: CORRECT\n", + "AHPQLAEEFTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHPQLAEEFTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHPSLTLHQDPVYVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHPSLTLHQDPVYVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHPSLTLHQDPVYVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AHRPIIDELQER found in part_0.0_13829.432373046875: CORRECT\n", + "AHSEQIPIILGSATPALETLCNVQQK found in part_0.0_13829.432373046875: CORRECT\n", + "AHVGDFIFTSK found in part_0.0_13829.432373046875: CORRECT\n", + "AHVGDFIFTSK found in part_0.0_13829.432373046875: CORRECT\n", + "AHYVLMNVEAPQEVIDELETTFR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAAIPEMHELNIGHAIIGR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAAIPEMHELNIGHAIIGR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAALDCNDR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAAVGAENIATNQIELSPYLQNR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAEATEAGLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAEHTDLPQILYNVPSR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAEQCDVIITMLPNSPHVK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAESIGIHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAESIGIHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAETLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAGDSVSGLGTGGMSTK found in part_0.0_13829.432373046875: CORRECT\n", + "AIALIELK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AIALVTGGSR NOT FOUND in any FASTA file.\n", + "AIAPLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAQVGTISANSDETVGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAQVGTISANSDETVGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIASAGLPALVSNSFSK found in part_0.0_13829.432373046875: CORRECT\n", + "AIASDCADGMTK found in part_0.0_13829.432373046875: CORRECT\n", + "AIAVFER found in part_0.0_13829.432373046875: CORRECT\n", + "AIAVPGSFNDQFADADIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIAVQAYQTLGCAGMAR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDDAAAGKPFDTSLLETLEGLAHR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDDAAAGKPFDTSLLETLEGLAHR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDDHTLEVTLSEPVPYFYK found in part_0.0_13829.432373046875: CORRECT\n", + "AIDEAELVALGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIDFSDGYYK found in part_0.0_13829.432373046875: CORRECT\n", + "AIDGTLSVMVGGDK found in part_0.0_13829.432373046875: CORRECT\n", + "AIDGYTPR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDKPFLLPIEDVFSISGR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDLIDEAASSIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDLIDEAASSIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDLLNQVGIPDPASR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDQAGIQFR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDTAQIYDNEAAVGQAIAESGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDVIDEAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "AIDVNGVK found in part_0.0_13829.432373046875: CORRECT\n", + "AIEALTEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "AIEELQYQPNK found in part_0.0_13829.432373046875: CORRECT\n", + "AIEIIAGALR found in part_0.0_13829.432373046875: CORRECT\n", + "AIELANQR found in part_0.0_13829.432373046875: CORRECT\n", + "AIELLGTMQGGYNIHPLIDALDDAK found in part_0.0_13829.432373046875: CORRECT\n", + "AIEMAGIEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIENFYISNNK found in part_0.0_13829.432373046875: CORRECT\n", + "AIENQAYVAGCNR found in part_0.0_13829.432373046875: CORRECT\n", + "AIEQAINK found in part_0.0_13829.432373046875: CORRECT\n", + "AIEQDAKAAPDVQLLMNDSQNDQSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AIEQTAITR NOT FOUND in any FASTA file.\n", + "AIFNDEEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIFPNPDHTLLPGMFVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGAGELSPR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGEAKDDDTADILTAASR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGEAKDDDTADILTAASR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGEVTDVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIGIDIDPQAIQASR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGIEQPSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGIISNNPEFADVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGINFIDTYIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIGTVSAVNIGSIFR found in part_0.0_13829.432373046875: CORRECT\n", + "AIIFANTK found in part_0.0_13829.432373046875: CORRECT\n", + "AIIPVAEEVGVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIIPVHYAGAPADIDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIISDVNASDEDR found in part_0.0_13829.432373046875: CORRECT\n", + "AIISSGGNVDSLVK found in part_0.0_13829.432373046875: CORRECT\n", + "AIKPVYDVFK found in part_0.0_13829.432373046875: CORRECT\n", + "AILAAAGIAEDVK found in part_0.0_13829.432373046875: CORRECT\n", + "AILAAAGIAEDVK found in part_0.0_13829.432373046875: CORRECT\n", + "AILGSMER found in part_0.0_13829.432373046875: CORRECT\n", + "AILQQIAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AIMASDLGLNPNSAGSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIMASDLGLNPNSAGSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIMVNGRVVNIASYQVSPNDVVSIR found in part_0.0_13829.432373046875: CORRECT\n", + "AINACEASLR found in part_0.0_13829.432373046875: CORRECT\n", + "AINALANPTTNSYK found in part_0.0_13829.432373046875: CORRECT\n", + "AINALANPTTNSYK found in part_0.0_13829.432373046875: CORRECT\n", + "AINASLQR found in part_0.0_13829.432373046875: CORRECT\n", + "AINATLSK found in part_0.0_13829.432373046875: CORRECT\n", + "AINEDAAGNYIHYGVR found in part_0.0_13829.432373046875: CORRECT\n", + "AINEDAAGNYIHYGVR found in part_0.0_13829.432373046875: CORRECT\n", + "AINPDLSPINTHR found in part_0.0_13829.432373046875: CORRECT\n", + "AINVSDQVPAK found in part_0.0_13829.432373046875: CORRECT\n", + "AINYGYTDDR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AIPAFGLGTFR NOT FOUND in any FASTA file.\n", + "AIPEGAVDNGQLR found in part_0.0_13829.432373046875: CORRECT\n", + "AIPNYNVMGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AIPTVYLFQNGQPVDGFQGPQPEEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "AIPVQVA found in part_0.0_13829.432373046875: CORRECT\n", + "AIQHGLAIAAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "AIQHGLAIAAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "AIQQQIENPLAQQILSGELVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIQVLCR found in part_0.0_13829.432373046875: CORRECT\n", + "AIQVTTGAK found in part_0.0_13829.432373046875: CORRECT\n", + "AIQVTTGAK found in part_0.0_13829.432373046875: CORRECT\n", + "AISDLVADGVLIR found in part_0.0_13829.432373046875: CORRECT\n", + "AISIVTETR found in part_0.0_13829.432373046875: CORRECT\n", + "AISLSGEAQSGR found in part_0.0_13829.432373046875: CORRECT\n", + "AISLVEETR found in part_0.0_13829.432373046875: CORRECT\n", + "AISLVEETRPLLPGVR found in part_0.0_13829.432373046875: CORRECT\n", + "AISTIAESK found in part_0.0_13829.432373046875: CORRECT\n", + "AISVTGFR found in part_0.0_13829.432373046875: CORRECT\n", + "AITDYGVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "AITESGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AITETTEQLINEPLDHR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AITGIFFGSDTGNTENIAK NOT FOUND in any FASTA file.\n", + "Peptide AITGIFFGSDTGNTENIAK NOT FOUND in any FASTA file.\n", + "AITLNQPNPQDGVDVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AITMVDELK found in part_0.0_13829.432373046875: CORRECT\n", + "AITPPTPAVR found in part_0.0_13829.432373046875: CORRECT\n", + "AITQYIGDNAK found in part_0.0_13829.432373046875: CORRECT\n", + "AITSSAGNQTPEK found in part_0.0_13829.432373046875: CORRECT\n", + "AIVEAAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AIVEAAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "AIVEAAHEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVEAAHEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVEEEHR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVKENR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVMPNLAPPVTTVEAAVAYR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVQLEDGVQISSGDTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVQLEDGVQISSGDTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "AIVVTPDHPLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIVVTPDHPLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "AIWEQELTDMR found in part_0.0_13829.432373046875: CORRECT\n", + "AIYQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "AKDFEDAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "AKEPALFR found in part_0.0_13829.432373046875: CORRECT\n", + "AKPAVHFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AKPGQDFFPLTVNYQER found in part_0.0_13829.432373046875: CORRECT\n", + "AKPVLLEPIMK found in part_0.0_13829.432373046875: CORRECT\n", + "AKPVLLEPIMK found in part_0.0_13829.432373046875: CORRECT\n", + "AKYPDLQIIGGNVATAAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "AKYPDLQIIGGNVATAAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALAAALGQIEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALADAGFPQAVIPPHER found in part_0.0_13829.432373046875: CORRECT\n", + "ALADAGFPQAVIPPHERPFIPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALADGATDYLER found in part_0.0_13829.432373046875: CORRECT\n", + "ALADITDPATGAVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALADSCTDCR found in part_0.0_13829.432373046875: CORRECT\n", + "ALAEAGCSAVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAEHGIVFGEPK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAEHGIVFGEPK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAEIVDEAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALAESIGITVEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAIFGDTGPCDAALDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAINLVDPAAAGTVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAINLVDPAAAGTVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALALEGELR found in part_0.0_13829.432373046875: CORRECT\n", + "ALANSLACQGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAQLLCR found in part_0.0_13829.432373046875: CORRECT\n", + "ALAQPLIDSGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALAQQLMQER found in part_0.0_13829.432373046875: CORRECT\n", + "ALCDEHGIMLIADEVQSGAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ALCEAVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALCHYPR found in part_0.0_13829.432373046875: CORRECT\n", + "ALCPDCHQPLQVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALCTELNAQGSINVVNYSQHDEQDGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDAIIASVTESLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDAIIASVTESLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDALLDYQDYPIPAAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDALLDYQDYPIPAAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDDAIASVDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDFIAER found in part_0.0_13829.432373046875: CORRECT\n", + "ALDGVSFNLER found in part_0.0_13829.432373046875: CORRECT\n", + "ALDIIVTCQGGDYTNEIYPK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDILTATPPDVFNHNLENVPR found in part_0.0_13829.432373046875: CORRECT\n", + "ALDLSAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDNVNLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALDVATNVLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALDVEQIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALEAAGVPVIGTSPDAIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALEAAGVPVIGTSPDAIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALEEAGAEVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEEAGAEVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEEANADLEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEETVLFAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEETVLFAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEGDAEWEAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEIEEMQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEIISELAAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALEINSQSLDNNAAFIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALEINSQSLDNNAAFIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALELEEIPGIVNDFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALELEEIPGIVNDFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALELLKPLLEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALELLKPLLEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALENALLEFPGCAMVISHDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALENGEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALESFQGTGR found in part_0.0_13829.432373046875: CORRECT\n", + "ALEVADK found in part_0.0_13829.432373046875: CORRECT\n", + "ALFATGNFEDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALFDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALFDQVLPAER found in part_0.0_13829.432373046875: CORRECT\n", + "ALFDVQIK found in part_0.0_13829.432373046875: CORRECT\n", + "ALFEDSAMSQQPTVPDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALFGDNTTK found in part_0.0_13829.432373046875: CORRECT\n", + "ALFSGGEETKPTEQPAPK found in part_0.0_13829.432373046875: CORRECT\n", + "ALGAKPQINAEEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGANLVLTEGAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALGASSILVLPIEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALGCHSIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGDIPESHILTVSSFYR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGEYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALGGASGGYTAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGGGFPVGALLATEECAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGGGFPVGALLATEECAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGHAGDVLLAISTR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGIELLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGLNDELAHSSIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGLNDELAHSSIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGMLAVDNQAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGVGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALGVTFFLPEGDAISASR found in part_0.0_13829.432373046875: CORRECT\n", + "ALGWKPQETFESGIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALHQAAAGEMVLSEALTPVLAASLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALIDCYPDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALIEDSVSR found in part_0.0_13829.432373046875: CORRECT\n", + "ALIEQEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALIGFAGPR found in part_0.0_13829.432373046875: CORRECT\n", + "ALILAELEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALIPFGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "ALIPFGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "ALISNPTVIGAIMVQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALISNPTVIGAIMVQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALITQDMSR found in part_0.0_13829.432373046875: CORRECT\n", + "ALKDEVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALKEPENYDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLAAFDFPFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLAAFDFPFRK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLAAFDFPFRK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLAGQSGISLIDHFDTSAYATK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLDILADEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLDILADEKENGPEDTTQDDDMK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLDNNIVPVINENDAVATAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLDTLLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLEFDDQEPQLQNEIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLEGESAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLEGLSPLPSADPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLENTELSAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLEVANR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLEVSGNVTDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLHVAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLIADTPIIDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLKEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLLKEDEIVIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLMHGTEGEVYANPQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLMHGTEGEVYANPQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLNSMVIGVTEGFTK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLNSMVIGVTEGFTK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLPLVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLQGLQEEGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ALLQISEPGLSAAPHQR NOT FOUND in any FASTA file.\n", + "Peptide ALLQISEPGLSAAPHQR NOT FOUND in any FASTA file.\n", + "ALLSMAIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALLSQFPTAPNYPQADGSVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLSVSDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLSVSDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALLTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALMAGNEQVGFDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALMEYDESLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALMQEALLAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALNAAGFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALNAYLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALNHAVSLGMAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ALNLQDK NOT FOUND in any FASTA file.\n", + "Peptide ALNLQDK NOT FOUND in any FASTA file.\n", + "ALNSVEASQPHQDQMEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALNVEEQSVQETEQEER found in part_0.0_13829.432373046875: CORRECT\n", + "ALNVMLK found in part_0.0_13829.432373046875: CORRECT\n", + "ALNVPVCELLGPGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPAIADAVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPDAQFEVVHSLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPDDLLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALPEFAQDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPFGQNDLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALPFIDNK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPFIGDGLKPVQR found in part_0.0_13829.432373046875: CORRECT\n", + "ALPGPEYHEFDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALPGQLKPFETLLSQNQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPIYGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLLVFVPSK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLPELK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLPVSVPSHCALMK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLPVSVPSHCALMK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLPVSVPSHCALMKPAADK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPLPVSVPSHCALMKPAADK found in part_0.0_13829.432373046875: CORRECT\n", + "ALPSAVSER found in part_0.0_13829.432373046875: CORRECT\n", + "ALPVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALQAIAGPFSQVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALQAIAGPFSQVR found in part_0.0_13829.432373046875: CORRECT\n", + "ALQDFVIDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALQEASGFIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALQECMQHNFSVFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALQGEQGVVECAYVEGDGQYAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALQLGIEASNINPK found in part_0.0_13829.432373046875: CORRECT\n", + "ALQSSINEDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALQSSINEDKAH found in part_0.0_13829.432373046875: CORRECT\n", + "ALQTAGKSDVMVVGFDGTPDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALREELVTLTGGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ALRPLPDK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSELEQIVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSGAALNVYPGR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSGGVGAEELK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSHTLLMFDNFYDVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSHTLLMFDNFYDVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSLAIENR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSMDAVQK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSNPDLYEGDGELR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSSNAFR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSSQQLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSVGETLPAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALSVPCSDSK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSYNNIADTDAALECVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALSYNNIADTDAALECVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALTDAVHR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTDFMVEFER found in part_0.0_13829.432373046875: CORRECT\n", + "ALTEANGDIELAIENMR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTEANGDIELAIENMR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTEETGTTIEIEDDGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALTGLSPDEIVNQVK found in part_0.0_13829.432373046875: CORRECT\n", + "ALTICTVSDHIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTICTVSDHIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTLEALR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTMSLAER found in part_0.0_13829.432373046875: CORRECT\n", + "ALTPFIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTTFTGLPHR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTTFTGLPHR found in part_0.0_13829.432373046875: CORRECT\n", + "ALTVSPDQVLQLTPEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALVAVNLASEEPYHNALNEK found in part_0.0_13829.432373046875: CORRECT\n", + "ALVDAELAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVDIVPQGNYFLMGGSPVDNNAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALVEAGVKPCGLGAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVEAGVKPCGLGAR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVGAPDGSQIIR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVIVESPAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALVPVCR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVQESIYER found in part_0.0_13829.432373046875: CORRECT\n", + "ALVSEMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVTGGDSGIGR found in part_0.0_13829.432373046875: CORRECT\n", + "ALVVGEPTFGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALYCTENNPPFDNGLLNAQLLQQAK found in part_0.0_13829.432373046875: CORRECT\n", + "ALYCVATTGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALYPCPLHGISEDDAIASIHR found in part_0.0_13829.432373046875: CORRECT\n", + "ALYPCPLHGISEDDAIASIHR found in part_0.0_13829.432373046875: CORRECT\n", + "ALYTVVTEGK found in part_0.0_13829.432373046875: CORRECT\n", + "ALYVGISSYSPER found in part_0.0_13829.432373046875: CORRECT\n", + "AMAGLIDGISQK found in part_0.0_13829.432373046875: CORRECT\n", + "AMAGSVVHTGEIGAGNVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AMASGVSACLATPFK found in part_0.0_13829.432373046875: CORRECT\n", + "AMASGVSACLATPFK found in part_0.0_13829.432373046875: CORRECT\n", + "AMAVIDPVK found in part_0.0_13829.432373046875: CORRECT\n", + "AMEAPLR found in part_0.0_13829.432373046875: CORRECT\n", + "AMEIVYDEADLR found in part_0.0_13829.432373046875: CORRECT\n", + "AMEIVYDEADLRR found in part_0.0_13829.432373046875: CORRECT\n", + "AMHDIIASDTFDK found in part_0.0_13829.432373046875: CORRECT\n", + "AMHDIIASDTFDK found in part_0.0_13829.432373046875: CORRECT\n", + "AMIEAGAAAVHFEDQLASVK found in part_0.0_13829.432373046875: CORRECT\n", + "AMLAAEQHVVTPALER found in part_0.0_13829.432373046875: CORRECT\n", + "AMLAEVGLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "AMLHFCENPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AMLHFCENPGK found in part_0.0_13829.432373046875: CORRECT\n", + "AMSAQDLLNSR found in part_0.0_13829.432373046875: CORRECT\n", + "AMTFIER found in part_0.0_13829.432373046875: CORRECT\n", + "AMTPANYIGR found in part_0.0_13829.432373046875: CORRECT\n", + "AMTPGCTVQACGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AMTPGCTVQACGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AMVAGTLANFQHPTLK found in part_0.0_13829.432373046875: CORRECT\n", + "AMVAGTLANFQHPTLK found in part_0.0_13829.432373046875: CORRECT\n", + "AMVEVFLER found in part_0.0_13829.432373046875: CORRECT\n", + "AMVVDQFR found in part_0.0_13829.432373046875: CORRECT\n", + "AMYPYIER found in part_0.0_13829.432373046875: CORRECT\n", + "AMYSIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AMYSIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ANALLADGLK found in part_0.0_13829.432373046875: CORRECT\n", + "ANANGVDLNR found in part_0.0_13829.432373046875: CORRECT\n", + "ANAVVMATGGAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ANAYGHGIER found in part_0.0_13829.432373046875: CORRECT\n", + "ANAYGHGLLETAR found in part_0.0_13829.432373046875: CORRECT\n", + "ANDAAGDGTTTATVLAQAIITEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "ANDIALK found in part_0.0_13829.432373046875: CORRECT\n", + "ANDIDVPAALIDSEIDVLR found in part_0.0_13829.432373046875: CORRECT\n", + "ANDIDVPAALIDSEIDVLRR found in part_0.0_13829.432373046875: CORRECT\n", + "ANDIVVALLQEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANDIVVALLQEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANEAYLQGQLGNPK found in part_0.0_13829.432373046875: CORRECT\n", + "ANEAYLQGQLGNPK found in part_0.0_13829.432373046875: CORRECT\n", + "ANELLINVK found in part_0.0_13829.432373046875: CORRECT\n", + "ANENGESFVAMVDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANEVRPVLACR found in part_0.0_13829.432373046875: CORRECT\n", + "ANEVRPVLACR found in part_0.0_13829.432373046875: CORRECT\n", + "ANGAEIDDGAINGIK found in part_0.0_13829.432373046875: CORRECT\n", + "ANGELFYGR found in part_0.0_13829.432373046875: CORRECT\n", + "ANGLSEAMLDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANGLVSDVFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "ANGSVPDDLR found in part_0.0_13829.432373046875: CORRECT\n", + "ANGTTVLVGMPAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "ANGYSELEISQK found in part_0.0_13829.432373046875: CORRECT\n", + "ANHALPYAVYVSDPCDGR found in part_0.0_13829.432373046875: CORRECT\n", + "ANIGFMQVVK found in part_0.0_13829.432373046875: CORRECT\n", + "ANINIVAIAQGSSER found in part_0.0_13829.432373046875: CORRECT\n", + "ANISDSYVLLR found in part_0.0_13829.432373046875: CORRECT\n", + "ANISVHEPR found in part_0.0_13829.432373046875: CORRECT\n", + "ANITLYEPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANKPSAEELK NOT FOUND in any FASTA file.\n", + "ANLDLASVVPELDMYDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANLDLASVVPELDMYDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANLPGYLGNCHSSGTVILDQLGEEHMK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLPGYLGNCHSSGTVILDQLGEEHMK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLPPLLSVPVGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLPVLAIQR found in part_0.0_13829.432373046875: CORRECT\n", + "ANLQPVLITGMEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLTAQINK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLTAQINK found in part_0.0_13829.432373046875: CORRECT\n", + "ANLVNKPLPR found in part_0.0_13829.432373046875: CORRECT\n", + "ANLVPHF found in part_0.0_13829.432373046875: CORRECT\n", + "ANMFGTVADYFAQSNK found in part_0.0_13829.432373046875: CORRECT\n", + "ANNAINDMVR found in part_0.0_13829.432373046875: CORRECT\n", + "ANNVGELEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANPAFDTEK found in part_0.0_13829.432373046875: CORRECT\n", + "ANPDAVVVAIICDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANPDDTFEAQLFYGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ANPDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "ANPELLAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANPEQLEEQR NOT FOUND in any FASTA file.\n", + "Peptide ANPEQLEEQREETR NOT FOUND in any FASTA file.\n", + "Peptide ANPLYQK NOT FOUND in any FASTA file.\n", + "Peptide ANPLYQK NOT FOUND in any FASTA file.\n", + "ANPQPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "ANPTLPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANPTVIK NOT FOUND in any FASTA file.\n", + "ANPWQQFAETHNK found in part_0.0_13829.432373046875: CORRECT\n", + "ANPWQQFAETHNK found in part_0.0_13829.432373046875: CORRECT\n", + "ANQFLGMEPLPTFIANDVIK found in part_0.0_13829.432373046875: CORRECT\n", + "ANSHAPEAVVEGASR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANSITADEIR NOT FOUND in any FASTA file.\n", + "ANSSTTTAAEPLK found in part_0.0_13829.432373046875: CORRECT\n", + "ANSYVIGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ANVDILTLTATPIPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANVEIYTK NOT FOUND in any FASTA file.\n", + "Peptide ANVEIYTK NOT FOUND in any FASTA file.\n", + "ANVSQVMHIIGDVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ANYFNTLNLR NOT FOUND in any FASTA file.\n", + "ANYSNPPAHGASVVATILSNDALR found in part_0.0_13829.432373046875: CORRECT\n", + "ANYSNPPAHGASVVATILSNDALR found in part_0.0_13829.432373046875: CORRECT\n", + "APAATSTPAPK found in part_0.0_13829.432373046875: CORRECT\n", + "APAIVMDDADLELAVK found in part_0.0_13829.432373046875: CORRECT\n", + "APAIVMDDADLELAVK found in part_0.0_13829.432373046875: CORRECT\n", + "APAPEYVPEAPR found in part_0.0_13829.432373046875: CORRECT\n", + "APCRFCGTGCGVLVGTQQGR found in part_0.0_13829.432373046875: CORRECT\n", + "APDILSNATSR found in part_0.0_13829.432373046875: CORRECT\n", + "APEAVIAK found in part_0.0_13829.432373046875: CORRECT\n", + "APEAVIAK found in part_0.0_13829.432373046875: CORRECT\n", + "APECFYIEQK found in part_0.0_13829.432373046875: CORRECT\n", + "APECIEFANK found in part_0.0_13829.432373046875: CORRECT\n", + "APEGFFYLRPR found in part_0.0_13829.432373046875: CORRECT\n", + "APESLPNPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "APESTPTVYR found in part_0.0_13829.432373046875: CORRECT\n", + "APGLAVVLVGSNPASQIYVASK found in part_0.0_13829.432373046875: CORRECT\n", + "APIVHALR found in part_0.0_13829.432373046875: CORRECT\n", + "APLAAEAMGIIAPR found in part_0.0_13829.432373046875: CORRECT\n", + "APLAAEAMGIIAPR found in part_0.0_13829.432373046875: CORRECT\n", + "APLANNGSVLEQSTPNK found in part_0.0_13829.432373046875: CORRECT\n", + "APLANNGSVLEQSTPNK found in part_0.0_13829.432373046875: CORRECT\n", + "APLDIYLK found in part_0.0_13829.432373046875: CORRECT\n", + "APLDIYLK found in part_0.0_13829.432373046875: CORRECT\n", + "APLDNDIGVSEATR found in part_0.0_13829.432373046875: CORRECT\n", + "APLDNDIGVSEATR found in part_0.0_13829.432373046875: CORRECT\n", + "APLIITVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "APLLSVFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "APLNQADLR found in part_0.0_13829.432373046875: CORRECT\n", + "APLPTPLP found in part_0.0_13829.432373046875: CORRECT\n", + "APLVEELYR found in part_0.0_13829.432373046875: CORRECT\n", + "APLVMVVDHQR found in part_0.0_13829.432373046875: CORRECT\n", + "APLVMVVDHQR found in part_0.0_13829.432373046875: CORRECT\n", + "APMILALANPEPEILPPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "APNEAVSSVR found in part_0.0_13829.432373046875: CORRECT\n", + "APNSPVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "APQAEVLTPGYK found in part_0.0_13829.432373046875: CORRECT\n", + "APQNVDSALTQGPEMAR found in part_0.0_13829.432373046875: CORRECT\n", + "APSIMQVPGAR found in part_0.0_13829.432373046875: CORRECT\n", + "APTEPSAGGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "APTPSAAAEVVSR found in part_0.0_13829.432373046875: CORRECT\n", + "APTPVDVIEGDIR found in part_0.0_13829.432373046875: CORRECT\n", + "APTPVDVIEGDIR found in part_0.0_13829.432373046875: CORRECT\n", + "APVAAPSQSVATGAVNEIHTSPYSK found in part_0.0_13829.432373046875: CORRECT\n", + "APVALLDFAASAR found in part_0.0_13829.432373046875: CORRECT\n", + "APVEQWSAGATGLGVR found in part_0.0_13829.432373046875: CORRECT\n", + "APVEQWSAGATGLGVR found in part_0.0_13829.432373046875: CORRECT\n", + "APVFQSR found in part_0.0_13829.432373046875: CORRECT\n", + "APVILAVNK found in part_0.0_13829.432373046875: CORRECT\n", + "APVIVQFSNGGASFIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "APVIVQFSNGGASFIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "APVLSDSSCK found in part_0.0_13829.432373046875: CORRECT\n", + "APVPVYAHVSMINGDDGK found in part_0.0_13829.432373046875: CORRECT\n", + "APVQLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "APVSVQNFVDYVNSGFYNNTTFHR found in part_0.0_13829.432373046875: CORRECT\n", + "APVTAGQLAVENGHYVVETLAR found in part_0.0_13829.432373046875: CORRECT\n", + "APVVTIMGHVDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "APVVVPAGVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "AQAFEQDR found in part_0.0_13829.432373046875: CORRECT\n", + "AQAGDFMSLCK found in part_0.0_13829.432373046875: CORRECT\n", + "AQAGGVLTR found in part_0.0_13829.432373046875: CORRECT\n", + "AQALAAQGITVR found in part_0.0_13829.432373046875: CORRECT\n", + "AQATGFYGSLLPSPDVHGYK found in part_0.0_13829.432373046875: CORRECT\n", + "AQCAINIESPNDK found in part_0.0_13829.432373046875: CORRECT\n", + "AQDFTTFK found in part_0.0_13829.432373046875: CORRECT\n", + "AQEEDLPADALR found in part_0.0_13829.432373046875: CORRECT\n", + "AQEILGCPVQVISGEEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQEVTADNNQQAASGAQPEQSK found in part_0.0_13829.432373046875: CORRECT\n", + "AQFEEER found in part_0.0_13829.432373046875: CORRECT\n", + "AQFGAAFPVVPGETGGR found in part_0.0_13829.432373046875: CORRECT\n", + "AQFGAAFPVVPGETGGR found in part_0.0_13829.432373046875: CORRECT\n", + "AQFPDTPYIAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQFPDTPYIAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQFTDAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQFVYTMHR NOT FOUND in any FASTA file.\n", + "AQFYQNLQNYLETELKR found in part_0.0_13829.432373046875: CORRECT\n", + "AQGEVVFK found in part_0.0_13829.432373046875: CORRECT\n", + "AQGHIVAGQTPLYEIK found in part_0.0_13829.432373046875: CORRECT\n", + "AQGIEVLLDDR found in part_0.0_13829.432373046875: CORRECT\n", + "AQGIEVLLDDRK found in part_0.0_13829.432373046875: CORRECT\n", + "AQGIEVLLDDRK found in part_0.0_13829.432373046875: CORRECT\n", + "AQGLDLTIPVDK found in part_0.0_13829.432373046875: CORRECT\n", + "AQGNMPAYGYTPPYTDGAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQGTLYIVSAPSGAGK NOT FOUND in any FASTA file.\n", + "AQHSALDDIPR found in part_0.0_13829.432373046875: CORRECT\n", + "AQHSALDDIPR found in part_0.0_13829.432373046875: CORRECT\n", + "AQHSLIHR found in part_0.0_13829.432373046875: CORRECT\n", + "AQIAHFFEHYK found in part_0.0_13829.432373046875: CORRECT\n", + "AQIEPLHAMVK found in part_0.0_13829.432373046875: CORRECT\n", + "AQIEPLHAMVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQIFNFSSGPAMLPAEVLK NOT FOUND in any FASTA file.\n", + "Peptide AQIFNFSSGPAMLPAEVLK NOT FOUND in any FASTA file.\n", + "AQIHVEDTER found in part_0.0_13829.432373046875: CORRECT\n", + "AQIHVEDTER found in part_0.0_13829.432373046875: CORRECT\n", + "AQIIQQAGNSVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AQIPGALEGAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AQIVGMNVGTLK found in part_0.0_13829.432373046875: CORRECT\n", + "AQLAFEGFDSK found in part_0.0_13829.432373046875: CORRECT\n", + "AQLAIYDYIK found in part_0.0_13829.432373046875: CORRECT\n", + "AQLETVDSAPVQALR found in part_0.0_13829.432373046875: CORRECT\n", + "AQLLAAIDALK found in part_0.0_13829.432373046875: CORRECT\n", + "AQLLAAIDALKR found in part_0.0_13829.432373046875: CORRECT\n", + "AQLLAAIDALKR found in part_0.0_13829.432373046875: CORRECT\n", + "AQLLSQIQQQR found in part_0.0_13829.432373046875: CORRECT\n", + "AQLQEIAQTK found in part_0.0_13829.432373046875: CORRECT\n", + "AQLYAFDPALEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AQMDGLEGYPVYTR found in part_0.0_13829.432373046875: CORRECT\n", + "AQMSLQQELR found in part_0.0_13829.432373046875: CORRECT\n", + "AQNLNVHLIGR found in part_0.0_13829.432373046875: CORRECT\n", + "AQNLQLDAEDKK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQPAAIIR NOT FOUND in any FASTA file.\n", + "AQPEAEVVAQPEPVVEETPEPVAIER found in part_0.0_13829.432373046875: CORRECT\n", + "AQPEWEALPAIER found in part_0.0_13829.432373046875: CORRECT\n", + "AQPFAKPVANQR found in part_0.0_13829.432373046875: CORRECT\n", + "AQPSLEAIAALKPDLIIADSSR found in part_0.0_13829.432373046875: CORRECT\n", + "AQQIELASSVIR found in part_0.0_13829.432373046875: CORRECT\n", + "AQQIVDATDK found in part_0.0_13829.432373046875: CORRECT\n", + "AQQPPIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQQSPYSAAMAEQR NOT FOUND in any FASTA file.\n", + "Peptide AQQTPLYEQHTLCGAR NOT FOUND in any FASTA file.\n", + "Peptide AQQTPLYEQHTLCGAR NOT FOUND in any FASTA file.\n", + "AQQYQQQLGQK found in part_0.0_13829.432373046875: CORRECT\n", + "AQSHAILTSSATVLADDPALTVR found in part_0.0_13829.432373046875: CORRECT\n", + "AQSSGILAEEIVPVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "AQSVTLDYK found in part_0.0_13829.432373046875: CORRECT\n", + "AQSVVDYLISK found in part_0.0_13829.432373046875: CORRECT\n", + "AQTDEVLENPDPR found in part_0.0_13829.432373046875: CORRECT\n", + "AQTFTLVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AQTFTLVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AQTILEAQGEVAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQTISFEDFITYK found in part_0.0_13829.432373046875: CORRECT\n", + "AQVAELAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AQVAIITASDSGIGK NOT FOUND in any FASTA file.\n", + "AQVFTDSLNPAPLEALAGR found in part_0.0_13829.432373046875: CORRECT\n", + "AQVGTMPVGSK found in part_0.0_13829.432373046875: CORRECT\n", + "AQVLALLEK found in part_0.0_13829.432373046875: CORRECT\n", + "AQYLIDQLLAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQYLIDQLLAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "AQYPTAPGYATLR found in part_0.0_13829.432373046875: CORRECT\n", + "AQYVLAEQVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AQYVVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ARGEDIEPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ARGITINTSHVEYDTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "ARPAEQPAPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ARPESQELNILR found in part_0.0_13829.432373046875: CORRECT\n", + "ARPHQLEAIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "ARPYSGYENFDFEIPVGGGVSDCYTR found in part_0.0_13829.432373046875: CORRECT\n", + "ASAAESAGGHLDPQNTGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAAESAGGHLDPQNTGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAAFIQHGDK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAFPTEDPQK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAGLIISEATQISAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAPGQISVNDLR found in part_0.0_13829.432373046875: CORRECT\n", + "ASAQLETIK found in part_0.0_13829.432373046875: CORRECT\n", + "ASAQLETIK found in part_0.0_13829.432373046875: CORRECT\n", + "ASDELASIQAVIDK found in part_0.0_13829.432373046875: CORRECT\n", + "ASDFVLAMGQGR found in part_0.0_13829.432373046875: CORRECT\n", + "ASDFVLAMGQGR found in part_0.0_13829.432373046875: CORRECT\n", + "ASDVFLAVESYR found in part_0.0_13829.432373046875: CORRECT\n", + "ASEGELLAQVEPEDLIK found in part_0.0_13829.432373046875: CORRECT\n", + "ASEGFGEDTYLTSTMGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASEISALIVEEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASEISALIVEEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASELLGGVR found in part_0.0_13829.432373046875: CORRECT\n", + "ASEVDEALQR found in part_0.0_13829.432373046875: CORRECT\n", + "ASFGGQIITVK found in part_0.0_13829.432373046875: CORRECT\n", + "ASFVTLQDVGGR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGIQTGGPDSLSQR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGLEVSENAIR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGLLELR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGQPVFLVR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGTDEAVVLVPPIR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGTDEAVVLVPPIR found in part_0.0_13829.432373046875: CORRECT\n", + "ASGTEHHGGVCFLIK found in part_0.0_13829.432373046875: CORRECT\n", + "ASGVPFIPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ASIFHIEGDPDHPVNR found in part_0.0_13829.432373046875: CORRECT\n", + "ASINTDDPGVQGVDIIHEYTVAAPAAGLSR found in part_0.0_13829.432373046875: CORRECT\n", + "ASIYNAMPLEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ASLATESFISAASFQETTR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLEANVR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLFINAR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLGETIDIVDHQGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASLGVVMAAGGYPGDYR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLGVVMAAGGYPGDYR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLPTIELALK found in part_0.0_13829.432373046875: CORRECT\n", + "ASLSAFDYLIR found in part_0.0_13829.432373046875: CORRECT\n", + "ASLSGTQTIK found in part_0.0_13829.432373046875: CORRECT\n", + "ASMEVPAPFAGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "ASMEVPSPQAGIVK found in part_0.0_13829.432373046875: CORRECT\n", + "ASNQGEPVILDINADAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASNQGEPVILDINADAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ASNSINTLPLPVER found in part_0.0_13829.432373046875: CORRECT\n", + "ASPLLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ASPLLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ASPSLLDGIVVEYYGTPTPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ASQPSNIASQAEETPPPHY found in part_0.0_13829.432373046875: CORRECT\n", + "ASQVAILNANYIASR found in part_0.0_13829.432373046875: CORRECT\n", + "ASSGLNEDEIQK found in part_0.0_13829.432373046875: CORRECT\n", + "ASSLVFDSVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "ASSVVNTAFEQR found in part_0.0_13829.432373046875: CORRECT\n", + "ASTISNVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ASTPLGVGGFGAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ASTSINVPDPTPFVTYF found in part_0.0_13829.432373046875: CORRECT\n", + "ASTWLNHFDADSLR found in part_0.0_13829.432373046875: CORRECT\n", + "ASVDAILK found in part_0.0_13829.432373046875: CORRECT\n", + "ASVDIGISR found in part_0.0_13829.432373046875: CORRECT\n", + "ASVEDWETMIDTNNK found in part_0.0_13829.432373046875: CORRECT\n", + "ASVEIDRK found in part_0.0_13829.432373046875: CORRECT\n", + "ASVESNFALR found in part_0.0_13829.432373046875: CORRECT\n", + "ASVIDTATNAAPGTILEANK found in part_0.0_13829.432373046875: CORRECT\n", + "ASVIDTATNAAPGTILEANK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ASVQLQNVTK NOT FOUND in any FASTA file.\n", + "ASYLGER found in part_0.0_13829.432373046875: CORRECT\n", + "ASYNVEGAFQASNK found in part_0.0_13829.432373046875: CORRECT\n", + "ASYTMEFLK found in part_0.0_13829.432373046875: CORRECT\n", + "ASYVTGSFIDLAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "ATAAEVFGLPLETVTSEQR found in part_0.0_13829.432373046875: CORRECT\n", + "ATAALLTEK found in part_0.0_13829.432373046875: CORRECT\n", + "ATADYEVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ATAVMPDGQFK found in part_0.0_13829.432373046875: CORRECT\n", + "ATCVFAEPQFR found in part_0.0_13829.432373046875: CORRECT\n", + "ATCVFAEPQFRPAVVESVAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATDALCNYDGPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "ATDAVIAPR found in part_0.0_13829.432373046875: CORRECT\n", + "ATDIAHNCGLQQVNR found in part_0.0_13829.432373046875: CORRECT\n", + "ATDIAHNCGLQQVNR found in part_0.0_13829.432373046875: CORRECT\n", + "ATDIQLAENMGITGLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATDLFLK found in part_0.0_13829.432373046875: CORRECT\n", + "ATDLFLK found in part_0.0_13829.432373046875: CORRECT\n", + "ATDPSGIVENEVCPVFAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATEFSPFELTK found in part_0.0_13829.432373046875: CORRECT\n", + "ATEVNYHDSGATIR found in part_0.0_13829.432373046875: CORRECT\n", + "ATEVNYHDSGATIR found in part_0.0_13829.432373046875: CORRECT\n", + "ATFDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ATFPNELSLSELK found in part_0.0_13829.432373046875: CORRECT\n", + "ATGASVVLFDHALSPAQER found in part_0.0_13829.432373046875: CORRECT\n", + "ATGFPIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ATGIDFDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ATGLDALFDATIK found in part_0.0_13829.432373046875: CORRECT\n", + "ATGLDALFDATIK found in part_0.0_13829.432373046875: CORRECT\n", + "ATGTPAIQVNTGK found in part_0.0_13829.432373046875: CORRECT\n", + "ATGVSEVTIR found in part_0.0_13829.432373046875: CORRECT\n", + "ATIAPANSEYAK found in part_0.0_13829.432373046875: CORRECT\n", + "ATIGDQVKPGDVVK found in part_0.0_13829.432373046875: CORRECT\n", + "ATIGDQVKPGDVVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ATIHVDGK NOT FOUND in any FASTA file.\n", + "ATIPLLVETGPK found in part_0.0_13829.432373046875: CORRECT\n", + "ATIVNAGSSDFLEGEQVEYSR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLAANGVEGEVFASNVFSEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ATLEAEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLEDLGQAK found in part_0.0_13829.432373046875: CORRECT\n", + "ATLESIAYQTR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLESIAYQTR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLGEVGNAEHMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLGEVGNAEHMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATLKPEGQAALDQLYSQLSNLDPK found in part_0.0_13829.432373046875: CORRECT\n", + "ATLLGLGLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATMGLDPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATNLLYTR found in part_0.0_13829.432373046875: CORRECT\n", + "ATNNVICCYDGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ATPAVGFAMGLER found in part_0.0_13829.432373046875: CORRECT\n", + "ATPDQLGVTAVDAHTLK found in part_0.0_13829.432373046875: CORRECT\n", + "ATPLGAVTK found in part_0.0_13829.432373046875: CORRECT\n", + "ATPLLDLIK found in part_0.0_13829.432373046875: CORRECT\n", + "ATPSSTDQMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATPVELDFSQVEK found in part_0.0_13829.432373046875: CORRECT\n", + "ATPVELDFSQVEKA found in part_0.0_13829.432373046875: CORRECT\n", + "ATQGSSLLIP found in part_0.0_13829.432373046875: CORRECT\n", + "ATQPQLGISDPYQLTEEQYQAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ATSIELAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATSLETLR found in part_0.0_13829.432373046875: CORRECT\n", + "ATSSSSFLQCSSIIR found in part_0.0_13829.432373046875: CORRECT\n", + "ATSTISVGYDNFDVDALTAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATTGTLYDLASNTK found in part_0.0_13829.432373046875: CORRECT\n", + "ATVAYIPK found in part_0.0_13829.432373046875: CORRECT\n", + "ATVDKPCPVNMTNHVYFNLDGEQSDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ATVELLNR found in part_0.0_13829.432373046875: CORRECT\n", + "ATVFEDPELSDWLPYQDK found in part_0.0_13829.432373046875: CORRECT\n", + "ATVFIFPDLNTGNTTYK found in part_0.0_13829.432373046875: CORRECT\n", + "ATVILAHTIK found in part_0.0_13829.432373046875: CORRECT\n", + "ATVLATGGAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ATVLGHIQR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ATVNQLVR NOT FOUND in any FASTA file.\n", + "ATVNVADLDR found in part_0.0_13829.432373046875: CORRECT\n", + "ATVSDLGPLLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "ATVTGDGLSQEAK found in part_0.0_13829.432373046875: CORRECT\n", + "ATYIVVHDGMGK found in part_0.0_13829.432373046875: CORRECT\n", + "ATYTQTHMDFIIEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "ATYTQTHMDFIIEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ATYYSNDFR NOT FOUND in any FASTA file.\n", + "AVAAALEQMPR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAAMASFFR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAAVNGPIAQALIGK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAAVNGPIAQALIGK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAAYVDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVADQTATAGYVKTNTAYTITYQ found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEACGSQAVIVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEACGSQAVIVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEAYYASR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEESAEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEFGHIDILVNNAGLIR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEVYASSDAHEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAEVYASSDAHEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAFALFGLQDR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAGALYSQDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAGQANLLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAGQANLLDKDGQIIDGGK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAGVNIEEFSR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAIDMESATIAAQGYR found in part_0.0_13829.432373046875: CORRECT\n", + "AVAIENLK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAIENLK found in part_0.0_13829.432373046875: CORRECT\n", + "AVASVLMSK found in part_0.0_13829.432373046875: CORRECT\n", + "AVASVLMSK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAVDSGVTAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVAVYADQAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVDALAGQSAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVDDTYQYGLSAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVDGEMITVTVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "AVDKFEYR found in part_0.0_13829.432373046875: CORRECT\n", + "AVDLISNVAGDR found in part_0.0_13829.432373046875: CORRECT\n", + "AVDLSAEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVDLVAQQHQK found in part_0.0_13829.432373046875: CORRECT\n", + "AVDSMIPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEAAGGEVCMTR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEAAVTR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEAFTR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEALDHCVEEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEALDHCVEEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEDHAPILITR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEDLVNTQIR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEFQDILK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEGALASK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEGALASK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEGSSFPQVALLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEGSSFPQVALLVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEGTPFECLK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEHLVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEHLVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEIAEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEIGSFLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEQALEDNCPLICFSASGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEQVSTEMFR found in part_0.0_13829.432373046875: CORRECT\n", + "AVESVGGQLLITADHGNAEQMR found in part_0.0_13829.432373046875: CORRECT\n", + "AVETLILDEADR found in part_0.0_13829.432373046875: CORRECT\n", + "AVEYFLK found in part_0.0_13829.432373046875: CORRECT\n", + "AVEYFLK found in part_0.0_13829.432373046875: CORRECT\n", + "AVFALGAGVDSILSK found in part_0.0_13829.432373046875: CORRECT\n", + "AVFHVQSSGR found in part_0.0_13829.432373046875: CORRECT\n", + "AVFPSLDNFK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGDGVAVKPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGDGVAVKPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGDSLEAQQYGIAFPK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGDSLEAQQYGIAFPK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGEELCPALGLTIPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGESVQKPLEYYDNNVNGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "AVGLPEIQVIR found in part_0.0_13829.432373046875: CORRECT\n", + "AVGNLELANDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVGPYVVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGPYVVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGVHQSAYK found in part_0.0_13829.432373046875: CORRECT\n", + "AVGVLHLPLGDENR found in part_0.0_13829.432373046875: CORRECT\n", + "AVHVSPGALDAEAYGVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVIAIHGGAGAISR found in part_0.0_13829.432373046875: CORRECT\n", + "AVIENYAQYAGVKPEQVLVSR found in part_0.0_13829.432373046875: CORRECT\n", + "AVIESENSAER found in part_0.0_13829.432373046875: CORRECT\n", + "AVIESENSAERDQLLENLQEGMEVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVIGVASCDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVINPGVTIGDNVVVASGAVVTK found in part_0.0_13829.432373046875: CORRECT\n", + "AVIPVAGLGTR found in part_0.0_13829.432373046875: CORRECT\n", + "AVITGDVTQIDLPR found in part_0.0_13829.432373046875: CORRECT\n", + "AVITGDVTQIDLPR found in part_0.0_13829.432373046875: CORRECT\n", + "AVIYSNKPLPELAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLAETEQK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLCPGVEITFK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLDELNK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLDHFFSDFTQQLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLDISVER found in part_0.0_13829.432373046875: CORRECT\n", + "AVLDTCR found in part_0.0_13829.432373046875: CORRECT\n", + "AVLEAEVQMCGELR found in part_0.0_13829.432373046875: CORRECT\n", + "AVLEVAGVHNVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLEVAGVHNVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLGENAPVDSWDLILKPENLEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLHVALR found in part_0.0_13829.432373046875: CORRECT\n", + "AVLLDEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLLPGDLSDEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLLSFR found in part_0.0_13829.432373046875: CORRECT\n", + "AVLPGMVER found in part_0.0_13829.432373046875: CORRECT\n", + "AVLVAGGVEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLVAGGVEAEKLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLVAGGVEAEKLDK found in part_0.0_13829.432373046875: CORRECT\n", + "AVLVNIFGGIVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVMALTALASDR found in part_0.0_13829.432373046875: CORRECT\n", + "AVMCVDDPVIR found in part_0.0_13829.432373046875: CORRECT\n", + "AVNDAIAEMQK found in part_0.0_13829.432373046875: CORRECT\n", + "AVNDGKLAATIAQLPDQIGAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVNDGKLAATIAQLPDQIGAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVNGLFEVVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVNGLFEVVKR found in part_0.0_13829.432373046875: CORRECT\n", + "AVNITHSYEVVAA found in part_0.0_13829.432373046875: CORRECT\n", + "AVNLNEGTLTLNDSTVTTDVIAQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVPVCGHLGLTPQSVNIFGGYK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQAGIPLAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVQAVVHHNETADR found in part_0.0_13829.432373046875: CORRECT\n", + "AVQDVILK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQDVILK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQDVILKNGALNAAIVGQPAYK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQEQVASEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQLGGVALGTTQVINSK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQLGGVALGTTQVINSK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQLNSLSGFCLTK found in part_0.0_13829.432373046875: CORRECT\n", + "AVQLNSLSGFCLTK found in part_0.0_13829.432373046875: CORRECT\n", + "AVSDIHFR found in part_0.0_13829.432373046875: CORRECT\n", + "AVSEEMAEIYLER found in part_0.0_13829.432373046875: CORRECT\n", + "AVSSVETVADSYYAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTAEVEAALGNR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTAEVEAALGNR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTAHHTVLVSNIIGVER found in part_0.0_13829.432373046875: CORRECT\n", + "AVTAHHTVLVSNIIGVER found in part_0.0_13829.432373046875: CORRECT\n", + "AVTDKPSLLMCK found in part_0.0_13829.432373046875: CORRECT\n", + "AVTDKPSLLMCK found in part_0.0_13829.432373046875: CORRECT\n", + "AVTDSDEPPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTDSVLITVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVTLYLGAVAATVR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTNSPVVVALDYHNR found in part_0.0_13829.432373046875: CORRECT\n", + "AVTNSPVVVALDYHNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AVTNVAELNALVER NOT FOUND in any FASTA file.\n", + "Peptide AVTNVAELNALVER NOT FOUND in any FASTA file.\n", + "Peptide AVTQTAQACDLVIFGAK NOT FOUND in any FASTA file.\n", + "AVTTGYMGTASQIK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVAGLAQADTLR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVCSEPYSAQLSR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVEAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVEALK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVEALKR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVESIQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVIKPTLTGSLEK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVMDHDANIISVSQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVMDHDANIISVSQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVMDHDANIISVSQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVSVPIIGIVK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVTPLPR found in part_0.0_13829.432373046875: CORRECT\n", + "AVVVTSGTTSEVLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "AVVVTSGTTSEVLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "AVYADTEGFVSEMDTR found in part_0.0_13829.432373046875: CORRECT\n", + "AVYEAIGFVAKP found in part_0.0_13829.432373046875: CORRECT\n", + "AVYGVGYR found in part_0.0_13829.432373046875: CORRECT\n", + "AVYLHQR found in part_0.0_13829.432373046875: CORRECT\n", + "AVYQGAGVSAK found in part_0.0_13829.432373046875: CORRECT\n", + "AVYQQVISK found in part_0.0_13829.432373046875: CORRECT\n", + "AWFIQSVTPR found in part_0.0_13829.432373046875: CORRECT\n", + "AWHSSSETIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AWHSSSETIAK found in part_0.0_13829.432373046875: CORRECT\n", + "AWIQYQGFK found in part_0.0_13829.432373046875: CORRECT\n", + "AWLEEEMGIK found in part_0.0_13829.432373046875: CORRECT\n", + "AWQEIEQADR found in part_0.0_13829.432373046875: CORRECT\n", + "AWTIPVGATAPQAAGK found in part_0.0_13829.432373046875: CORRECT\n", + "AYADLITIAGYDGGTGASPLSSVK found in part_0.0_13829.432373046875: CORRECT\n", + "AYADTVER found in part_0.0_13829.432373046875: CORRECT\n", + "AYALQDQGYDTVEANHQLGFAADER found in part_0.0_13829.432373046875: CORRECT\n", + "AYALSEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "AYASLATSADK found in part_0.0_13829.432373046875: CORRECT\n", + "AYCAQVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "AYDGEIFYHR found in part_0.0_13829.432373046875: CORRECT\n", + "AYDLGADVR found in part_0.0_13829.432373046875: CORRECT\n", + "AYDQVLHDVAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "AYEAYDFHEVVQR found in part_0.0_13829.432373046875: CORRECT\n", + "AYEAYDFHEVVQR found in part_0.0_13829.432373046875: CORRECT\n", + "AYEDAETVTGVINGK found in part_0.0_13829.432373046875: CORRECT\n", + "AYEDAETVTGVINGK found in part_0.0_13829.432373046875: CORRECT\n", + "AYELYLSEK found in part_0.0_13829.432373046875: CORRECT\n", + "AYEPFIELLR found in part_0.0_13829.432373046875: CORRECT\n", + "AYFTGAPTR found in part_0.0_13829.432373046875: CORRECT\n", + "AYGGALICDSTTPSVEPSVEDK found in part_0.0_13829.432373046875: CORRECT\n", + "AYGLFSEESELAQTLR found in part_0.0_13829.432373046875: CORRECT\n", + "AYGQFEPPALYDHVVK found in part_0.0_13829.432373046875: CORRECT\n", + "AYGSTNPINVVR found in part_0.0_13829.432373046875: CORRECT\n", + "AYHVVDEAELTK found in part_0.0_13829.432373046875: CORRECT\n", + "AYHVVDEAELTK found in part_0.0_13829.432373046875: CORRECT\n", + "AYLATQGVEIR found in part_0.0_13829.432373046875: CORRECT\n", + "AYNTVVPASGK found in part_0.0_13829.432373046875: CORRECT\n", + "AYPEQSMAVAATHDLPTLR found in part_0.0_13829.432373046875: CORRECT\n", + "AYPGLVNVPR found in part_0.0_13829.432373046875: CORRECT\n", + "AYPQEAAEFTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AYQSQDIIR NOT FOUND in any FASTA file.\n", + "AYREEAIIK found in part_0.0_13829.432373046875: CORRECT\n", + "AYRPGDVLTTMSGQTVEVLNTDAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "AYSGVRPLVASDDDPSGR found in part_0.0_13829.432373046875: CORRECT\n", + "AYSLLEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide AYTTFSQTK NOT FOUND in any FASTA file.\n", + "AYVGVDPVK found in part_0.0_13829.432373046875: CORRECT\n", + "AYVMAETTQLVTDTK found in part_0.0_13829.432373046875: CORRECT\n", + "AYVVQLGALK found in part_0.0_13829.432373046875: CORRECT\n", + "AYYDTDDATTK found in part_0.0_13829.432373046875: CORRECT\n", + "AYYVGTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "AYYVGTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "CADLGLETVIVER found in part_0.0_13829.432373046875: CORRECT\n", + "CAGFNNVDLDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "CAIITGAGAGIGK found in part_0.0_13829.432373046875: CORRECT\n", + "CCSDVFNQVVK found in part_0.0_13829.432373046875: CORRECT\n", + "CDANIIVETASAR found in part_0.0_13829.432373046875: CORRECT\n", + "CDEFTPDSLK found in part_0.0_13829.432373046875: CORRECT\n", + "CDGPSALPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "CDILEPGTLQGYDR found in part_0.0_13829.432373046875: CORRECT\n", + "CDILEPGTLQGYDRDPR found in part_0.0_13829.432373046875: CORRECT\n", + "CDLLVIKPDQYQTPVELDDEEDD found in part_0.0_13829.432373046875: CORRECT\n", + "CDSCGQVLYR found in part_0.0_13829.432373046875: CORRECT\n", + "CEDLDAAGIAASVK found in part_0.0_13829.432373046875: CORRECT\n", + "CELLIPIR found in part_0.0_13829.432373046875: CORRECT\n", + "CFENDNIIHVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "CFGVPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "CFSGIDHIENPDEDGIFK found in part_0.0_13829.432373046875: CORRECT\n", + "CGEDLNYAR found in part_0.0_13829.432373046875: CORRECT\n", + "CGGNLGTDGSVAYLFSK found in part_0.0_13829.432373046875: CORRECT\n", + "CGIGEISIPENEPGSSIMPGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide CGIVGAIAQR NOT FOUND in any FASTA file.\n", + "CGIVGLPNVGK found in part_0.0_13829.432373046875: CORRECT\n", + "CGLDGVVCSAQEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "CGLTPQYEQLENIQK found in part_0.0_13829.432373046875: CORRECT\n", + "CGLYFGR found in part_0.0_13829.432373046875: CORRECT\n", + "CGVEVTQTK found in part_0.0_13829.432373046875: CORRECT\n", + "CHPFFTGK found in part_0.0_13829.432373046875: CORRECT\n", + "CIFTTVSPEK found in part_0.0_13829.432373046875: CORRECT\n", + "CINGITANK found in part_0.0_13829.432373046875: CORRECT\n", + "CIYVAIGQK found in part_0.0_13829.432373046875: CORRECT\n", + "CLAGSEPIPESLK found in part_0.0_13829.432373046875: CORRECT\n", + "CLLVSYSDKPLGLF found in part_0.0_13829.432373046875: CORRECT\n", + "CLNGLAAGEYLEGHTSMIR found in part_0.0_13829.432373046875: CORRECT\n", + "CLPQLENAGMLR found in part_0.0_13829.432373046875: CORRECT\n", + "CMTIPSDQLYLPGHDYVDR found in part_0.0_13829.432373046875: CORRECT\n", + "CMVIGEDLGTVPVEIVGK found in part_0.0_13829.432373046875: CORRECT\n", + "CNEILGAR found in part_0.0_13829.432373046875: CORRECT\n", + "CPFHQGGHDQSAGAGTTTR found in part_0.0_13829.432373046875: CORRECT\n", + "CPQINLIDR found in part_0.0_13829.432373046875: CORRECT\n", + "CQEVIDR found in part_0.0_13829.432373046875: CORRECT\n", + "CQNITAGTNTTLYLK found in part_0.0_13829.432373046875: CORRECT\n", + "CQQAGLTIER found in part_0.0_13829.432373046875: CORRECT\n", + "CQSTNDAYPTGFR found in part_0.0_13829.432373046875: CORRECT\n", + "CRPVGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "CSFLPEER found in part_0.0_13829.432373046875: CORRECT\n", + "CTAPVFEPGGGGINVAR found in part_0.0_13829.432373046875: CORRECT\n", + "CTAVVADVR found in part_0.0_13829.432373046875: CORRECT\n", + "CTEEHQAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "CTEEHQAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "CTGGLICGAQR found in part_0.0_13829.432373046875: CORRECT\n", + "CTQELLFGK found in part_0.0_13829.432373046875: CORRECT\n", + "CVGIQNEQLVHHDIIDAIENMK found in part_0.0_13829.432373046875: CORRECT\n", + "CVGVTAGASAPDILVQNVVAR found in part_0.0_13829.432373046875: CORRECT\n", + "CVSNVAGDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "DAADHIYLSQDLGMR found in part_0.0_13829.432373046875: CORRECT\n", + "DAADHIYLSQDLGMR found in part_0.0_13829.432373046875: CORRECT\n", + "DAADYVR found in part_0.0_13829.432373046875: CORRECT\n", + "DAAGHELVYTGMSK found in part_0.0_13829.432373046875: CORRECT\n", + "DAAGHELVYTGMSK found in part_0.0_13829.432373046875: CORRECT\n", + "DAAHLAALESK found in part_0.0_13829.432373046875: CORRECT\n", + "DAALEDSIAR found in part_0.0_13829.432373046875: CORRECT\n", + "DAALSCDQFFVNHR found in part_0.0_13829.432373046875: CORRECT\n", + "DAALSCDQFFVNHR found in part_0.0_13829.432373046875: CORRECT\n", + "DAAPDATFR found in part_0.0_13829.432373046875: CORRECT\n", + "DAASFAPLHNPAHLIGIEEALK found in part_0.0_13829.432373046875: CORRECT\n", + "DAASFAPLHNPAHLIGIEEALK found in part_0.0_13829.432373046875: CORRECT\n", + "DAASVHGESGMAGYDFVEHNR found in part_0.0_13829.432373046875: CORRECT\n", + "DAASVHGESGMAGYDFVEHNR found in part_0.0_13829.432373046875: CORRECT\n", + "DAAYHFQGDADNDQLSVTPLVGLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DACLLPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "DADAIYANPLLAHLPAVQNK found in part_0.0_13829.432373046875: CORRECT\n", + "DADELLAILASK found in part_0.0_13829.432373046875: CORRECT\n", + "DADLPSPQQK found in part_0.0_13829.432373046875: CORRECT\n", + "DADNLLQHR found in part_0.0_13829.432373046875: CORRECT\n", + "DADTLLEVSETSK found in part_0.0_13829.432373046875: CORRECT\n", + "DADVDGALAASVFHK found in part_0.0_13829.432373046875: CORRECT\n", + "DADVDGALAASVFHK found in part_0.0_13829.432373046875: CORRECT\n", + "DADYLIK found in part_0.0_13829.432373046875: CORRECT\n", + "DAEALYGLLK found in part_0.0_13829.432373046875: CORRECT\n", + "DAEFIITMLPNGDLVR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEGNITTIFCTYDADTLSK found in part_0.0_13829.432373046875: CORRECT\n", + "DAEGNITTIFCTYDADTLSKDPADGR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEGYLQPPCAPGTDDR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEILLEHVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEIPVFLLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEMVADVR found in part_0.0_13829.432373046875: CORRECT\n", + "DAEVVLVEGLVPTR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFIDEMQR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFLEHAEVFGNYYGTSR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFVGPTLIAYSMEHPGAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFVNVNTPEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFVSNNYDSLDALPAGSIVGTSSLR found in part_0.0_13829.432373046875: CORRECT\n", + "DAFVTELLK found in part_0.0_13829.432373046875: CORRECT\n", + "DAGFQAFADK found in part_0.0_13829.432373046875: CORRECT\n", + "DAGIEASQIGYVNAHGTSTPAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DAGLNIAPFITLTR found in part_0.0_13829.432373046875: CORRECT\n", + "DAGLNVVMDR found in part_0.0_13829.432373046875: CORRECT\n", + "DAGNIIIDDDDISLLPLHAR found in part_0.0_13829.432373046875: CORRECT\n", + "DAGVDIDAGNALVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DAGVLANYETPK found in part_0.0_13829.432373046875: CORRECT\n", + "DAGYTAVISHR found in part_0.0_13829.432373046875: CORRECT\n", + "DAGYTAVISHR found in part_0.0_13829.432373046875: CORRECT\n", + "DAHFIGLR found in part_0.0_13829.432373046875: CORRECT\n", + "DAIAAAIDVLNEER found in part_0.0_13829.432373046875: CORRECT\n", + "DAIAADQLFTTLMGDAVEPR found in part_0.0_13829.432373046875: CORRECT\n", + "DAIATVNK found in part_0.0_13829.432373046875: CORRECT\n", + "DAIATVNK found in part_0.0_13829.432373046875: CORRECT\n", + "DAIATVNKQEDANFSNNAMAEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "DAIDALFDANR found in part_0.0_13829.432373046875: CORRECT\n", + "DAIHLLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "DAILDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DAILDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DAINQVADR found in part_0.0_13829.432373046875: CORRECT\n", + "DAIPTQSVLTITSNVVYGK found in part_0.0_13829.432373046875: CORRECT\n", + "DAIPTQSVLTITSNVVYGK found in part_0.0_13829.432373046875: CORRECT\n", + "DAITALAK found in part_0.0_13829.432373046875: CORRECT\n", + "DAIVAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "DAIVDAFTR found in part_0.0_13829.432373046875: CORRECT\n", + "DAKPQGGIGLLTVK found in part_0.0_13829.432373046875: CORRECT\n", + "DAKPQGGIGLLTVK found in part_0.0_13829.432373046875: CORRECT\n", + "DALAITGK found in part_0.0_13829.432373046875: CORRECT\n", + "DALALTLDSVR found in part_0.0_13829.432373046875: CORRECT\n", + "DALAPHISAETIEYHYGK found in part_0.0_13829.432373046875: CORRECT\n", + "DALAPHISAETIEYHYGK found in part_0.0_13829.432373046875: CORRECT\n", + "DALEAAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "DALEAAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide DALELLINR NOT FOUND in any FASTA file.\n", + "DALESTLAETEAR found in part_0.0_13829.432373046875: CORRECT\n", + "DALGEHILER found in part_0.0_13829.432373046875: CORRECT\n", + "DALGQVDIVANYNGR found in part_0.0_13829.432373046875: CORRECT\n", + "DALLENVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "DALLEVTR found in part_0.0_13829.432373046875: CORRECT\n", + "DALLFPEK found in part_0.0_13829.432373046875: CORRECT\n", + "DALLGLPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DALMQEYDDK found in part_0.0_13829.432373046875: CORRECT\n", + "DALNQAADDLNQR found in part_0.0_13829.432373046875: CORRECT\n", + "DALNQAADDLNQR found in part_0.0_13829.432373046875: CORRECT\n", + "DALNSGSAGTEDEVTTPAADNAIAEAAER found in part_0.0_13829.432373046875: CORRECT\n", + "DALPEHVAISNPLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "DALPTEEEQFAAYK found in part_0.0_13829.432373046875: CORRECT\n", + "DALSALVSPLQAHAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DALSALVSPLQAHAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DALSYLR found in part_0.0_13829.432373046875: CORRECT\n", + "DALTGELFR found in part_0.0_13829.432373046875: CORRECT\n", + "DALVADFPGLTR found in part_0.0_13829.432373046875: CORRECT\n", + "DALVAFLEQHK found in part_0.0_13829.432373046875: CORRECT\n", + "DALVAFLEQHK found in part_0.0_13829.432373046875: CORRECT\n", + "DALYVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DALYVGKGAK found in part_0.0_13829.432373046875: CORRECT\n", + "DAMFTTSSENR found in part_0.0_13829.432373046875: CORRECT\n", + "DANDTGSTEVQVALLTAQINHLQGHFAEHK found in part_0.0_13829.432373046875: CORRECT\n", + "DANFSLEGLTGFTMYGK found in part_0.0_13829.432373046875: CORRECT\n", + "DANFVEEVEEE found in part_0.0_13829.432373046875: CORRECT\n", + "DANGELVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DANGNLLADGDSVTIIK found in part_0.0_13829.432373046875: CORRECT\n", + "DANGNVLEVVPQR found in part_0.0_13829.432373046875: CORRECT\n", + "DANYIAQNAEGVTVNR found in part_0.0_13829.432373046875: CORRECT\n", + "DAPDYQYLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "DAPIIMAGAGVR found in part_0.0_13829.432373046875: CORRECT\n", + "DAPLVASLSVNQK found in part_0.0_13829.432373046875: CORRECT\n", + "DAPQNAIIGGASLWVMQGK found in part_0.0_13829.432373046875: CORRECT\n", + "DAPYFGFEIPNAPGK found in part_0.0_13829.432373046875: CORRECT\n", + "DAQSALTVSETTFGR found in part_0.0_13829.432373046875: CORRECT\n", + "DAQVLDELMGER found in part_0.0_13829.432373046875: CORRECT\n", + "DARPPLVVISR found in part_0.0_13829.432373046875: CORRECT\n", + "DARPPLVVISR found in part_0.0_13829.432373046875: CORRECT\n", + "DASESDVEASLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DASGTINVDIDHK found in part_0.0_13829.432373046875: CORRECT\n", + "DASGTINVDIDHK found in part_0.0_13829.432373046875: CORRECT\n", + "DASGTINVDIDHKR found in part_0.0_13829.432373046875: CORRECT\n", + "DASGTINVDIDHKR found in part_0.0_13829.432373046875: CORRECT\n", + "DASSIAVGEVISAVDESVDATR found in part_0.0_13829.432373046875: CORRECT\n", + "DASVNEHIEQMR found in part_0.0_13829.432373046875: CORRECT\n", + "DASVVVVSSAISADNPEIVAAHEAR found in part_0.0_13829.432373046875: CORRECT\n", + "DATGIDPVSLIAFDK found in part_0.0_13829.432373046875: CORRECT\n", + "DATSATTTTSLGGLFK found in part_0.0_13829.432373046875: CORRECT\n", + "DAVEDVILNR found in part_0.0_13829.432373046875: CORRECT\n", + "DAVETVYQR found in part_0.0_13829.432373046875: CORRECT\n", + "DAVGCADSFVR found in part_0.0_13829.432373046875: CORRECT\n", + "DAVIPGLQK found in part_0.0_13829.432373046875: CORRECT\n", + "DAVNGTISYTNEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "DAYLIGR found in part_0.0_13829.432373046875: CORRECT\n", + "DAYLSALK found in part_0.0_13829.432373046875: CORRECT\n", + "DCDIEPELKPIR found in part_0.0_13829.432373046875: CORRECT\n", + "DCDIEPELKPIR found in part_0.0_13829.432373046875: CORRECT\n", + "DCFALECEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DCILVDLASVK found in part_0.0_13829.432373046875: CORRECT\n", + "DCLIVGGGDVAER found in part_0.0_13829.432373046875: CORRECT\n", + "DCVLVDDMIDTGGTLCK found in part_0.0_13829.432373046875: CORRECT\n", + "DCVVVVR found in part_0.0_13829.432373046875: CORRECT\n", + "DDAAGQAIANR found in part_0.0_13829.432373046875: CORRECT\n", + "DDAAYYFASVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DDAELTAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "DDALAFVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DDANIHAIQR found in part_0.0_13829.432373046875: CORRECT\n", + "DDANTLHIEPLPYSLEE found in part_0.0_13829.432373046875: CORRECT\n", + "DDASSEHYIK found in part_0.0_13829.432373046875: CORRECT\n", + "DDDTADILTAASR found in part_0.0_13829.432373046875: CORRECT\n", + "DDDTADILTAASR found in part_0.0_13829.432373046875: CORRECT\n", + "DDDVVDAEFEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "DDDVVDAEFEEVKDK found in part_0.0_13829.432373046875: CORRECT\n", + "DDDVVDAEFEEVKDK found in part_0.0_13829.432373046875: CORRECT\n", + "DDEILTHPVFNR found in part_0.0_13829.432373046875: CORRECT\n", + "DDEILTHPVFNR found in part_0.0_13829.432373046875: CORRECT\n", + "DDELTAIESNR found in part_0.0_13829.432373046875: CORRECT\n", + "DDEQMAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "DDERYPGHDPR found in part_0.0_13829.432373046875: CORRECT\n", + "DDEVIVLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "DDFQYQYVDIR found in part_0.0_13829.432373046875: CORRECT\n", + "DDGGLNVINK found in part_0.0_13829.432373046875: CORRECT\n", + "DDHVLDAVLPPDIPIPSIAEVQR found in part_0.0_13829.432373046875: CORRECT\n", + "DDIAQLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "DDIIDVMK found in part_0.0_13829.432373046875: CORRECT\n", + "DDKEISSHDSSTNGLINR found in part_0.0_13829.432373046875: CORRECT\n", + "DDLAPSLGR found in part_0.0_13829.432373046875: CORRECT\n", + "DDLLAQFPQAR found in part_0.0_13829.432373046875: CORRECT\n", + "DDLNLVLATAAK found in part_0.0_13829.432373046875: CORRECT\n", + "DDLPEGVYNEQFK found in part_0.0_13829.432373046875: CORRECT\n", + "DDLQELAVVESFPTK found in part_0.0_13829.432373046875: CORRECT\n", + "DDLSMIAVQGPNAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "DDLSMIAVQGPNAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "DDLSMIAVQGPNAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "DDNLVVLHDHYLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DDNLVVLHDHYLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DDNLVVLHDHYLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DDRPVGECLVEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "DDSFFDVYTECR found in part_0.0_13829.432373046875: CORRECT\n", + "DDSFFDVYTECR found in part_0.0_13829.432373046875: CORRECT\n", + "DDSGVHHLNVLDFQR found in part_0.0_13829.432373046875: CORRECT\n", + "DDSGVHHLNVLDFQR found in part_0.0_13829.432373046875: CORRECT\n", + "DDTAVPLLAPNQDIYLR found in part_0.0_13829.432373046875: CORRECT\n", + "DDTIPAIISHDE found in part_0.0_13829.432373046875: CORRECT\n", + "DDVIIGVNR found in part_0.0_13829.432373046875: CORRECT\n", + "DDVIVSPQTVQVK found in part_0.0_13829.432373046875: CORRECT\n", + "DDVNFLK found in part_0.0_13829.432373046875: CORRECT\n", + "DDVTGEELTTR found in part_0.0_13829.432373046875: CORRECT\n", + "DDYNPETEQYTLTISQR found in part_0.0_13829.432373046875: CORRECT\n", + "DEADEKDAIATVNK found in part_0.0_13829.432373046875: CORRECT\n", + "DEADEKDAIATVNK found in part_0.0_13829.432373046875: CORRECT\n", + "DEALHLTGTQHMLNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "DECGCGESFHV found in part_0.0_13829.432373046875: CORRECT\n", + "DEDGAVVTFTGK found in part_0.0_13829.432373046875: CORRECT\n", + "DEDKFNCYGIPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "DEEGLEIIR found in part_0.0_13829.432373046875: CORRECT\n", + "DEENALGPMAR found in part_0.0_13829.432373046875: CORRECT\n", + "DEEVPALFTNK found in part_0.0_13829.432373046875: CORRECT\n", + "DEEVTGELPEDLEYEEFNEIR found in part_0.0_13829.432373046875: CORRECT\n", + "DEFADGASYLQGK found in part_0.0_13829.432373046875: CORRECT\n", + "DEFAESRPLEK found in part_0.0_13829.432373046875: CORRECT\n", + "DEFAESRPLEK found in part_0.0_13829.432373046875: CORRECT\n", + "DEFMQELGLEEPGLNR found in part_0.0_13829.432373046875: CORRECT\n", + "DEGYISDSGDAEPAETMK found in part_0.0_13829.432373046875: CORRECT\n", + "DELELVK found in part_0.0_13829.432373046875: CORRECT\n", + "DELESFASAVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "DELFEHYK found in part_0.0_13829.432373046875: CORRECT\n", + "DELGDNLYIAQLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "DELIISTK found in part_0.0_13829.432373046875: CORRECT\n", + "DELIISTK found in part_0.0_13829.432373046875: CORRECT\n", + "DELPALVQSQFNVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "DELVCSQENGTVQIK found in part_0.0_13829.432373046875: CORRECT\n", + "DENDEFVK found in part_0.0_13829.432373046875: CORRECT\n", + "DENDNVEVSR found in part_0.0_13829.432373046875: CORRECT\n", + "DEPASLDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DEPFVSMEGK found in part_0.0_13829.432373046875: CORRECT\n", + "DEPILLRPGDSVR found in part_0.0_13829.432373046875: CORRECT\n", + "DEPILLRPGDSVR found in part_0.0_13829.432373046875: CORRECT\n", + "DEQNLELVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DEQSVHQIAAER found in part_0.0_13829.432373046875: CORRECT\n", + "DEQSVHQIAAER found in part_0.0_13829.432373046875: CORRECT\n", + "DESFISQFLSPK found in part_0.0_13829.432373046875: CORRECT\n", + "DETGKTPVLTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DETGKTPVLTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DETYLYQSGK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVFALSNIQK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVFFNQTVENVQR found in part_0.0_13829.432373046875: CORRECT\n", + "DEVIDHLGTIAK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVIDHLGTIAK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVILTLNK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVNGCIR found in part_0.0_13829.432373046875: CORRECT\n", + "DEVRPIDTDPNVLVMPADGVISQLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DEVSAALDR found in part_0.0_13829.432373046875: CORRECT\n", + "DEYPEVLNVDNK found in part_0.0_13829.432373046875: CORRECT\n", + "DFADAELDR found in part_0.0_13829.432373046875: CORRECT\n", + "DFADIEGADIAK found in part_0.0_13829.432373046875: CORRECT\n", + "DFAFAGSSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DFDAAFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DFDALNILRPDMEPR found in part_0.0_13829.432373046875: CORRECT\n", + "DFDDAVYCEK found in part_0.0_13829.432373046875: CORRECT\n", + "DFDGTFTFDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DFDNTVAIHPTAAEEFVTMR found in part_0.0_13829.432373046875: CORRECT\n", + "DFDVTTNATPEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "DFEAQLASTETQVGNELAPLK found in part_0.0_13829.432373046875: CORRECT\n", + "DFEDAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "DFEDAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "DFELSGIGLPK found in part_0.0_13829.432373046875: CORRECT\n", + "DFFAGIR found in part_0.0_13829.432373046875: CORRECT\n", + "DFGSVDNFK found in part_0.0_13829.432373046875: CORRECT\n", + "DFGYAVFGK found in part_0.0_13829.432373046875: CORRECT\n", + "DFINFPNVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DFKDESFISQFLSPK found in part_0.0_13829.432373046875: CORRECT\n", + "DFKDESFISQFLSPK found in part_0.0_13829.432373046875: CORRECT\n", + "DFLDPIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DFLTLLEQQGELK found in part_0.0_13829.432373046875: CORRECT\n", + "DFLTLLEQQGELKR found in part_0.0_13829.432373046875: CORRECT\n", + "DFNCEDIISR found in part_0.0_13829.432373046875: CORRECT\n", + "DFNEALVHQVVVAYAAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "DFNPSGIILSGGPESTTEENSPR found in part_0.0_13829.432373046875: CORRECT\n", + "DFNSYGSR found in part_0.0_13829.432373046875: CORRECT\n", + "DFQQLALIR found in part_0.0_13829.432373046875: CORRECT\n", + "DFSAQVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DFSEEEIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "DFSFIIK found in part_0.0_13829.432373046875: CORRECT\n", + "DFSFIIK found in part_0.0_13829.432373046875: CORRECT\n", + "DFSQTFGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "DFSTLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "DFTIDSK found in part_0.0_13829.432373046875: CORRECT\n", + "DFVAAVLPK found in part_0.0_13829.432373046875: CORRECT\n", + "DFVADGGSLIGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "DFVPYFR found in part_0.0_13829.432373046875: CORRECT\n", + "DGAAGVFLAANTFPK found in part_0.0_13829.432373046875: CORRECT\n", + "DGAALGYSHGFNIVEVGEQIR found in part_0.0_13829.432373046875: CORRECT\n", + "DGADGVISR found in part_0.0_13829.432373046875: CORRECT\n", + "DGAEDAQDDLVPSIQDDGCESGACK found in part_0.0_13829.432373046875: CORRECT\n", + "DGAEILIDR found in part_0.0_13829.432373046875: CORRECT\n", + "DGALTPEEVQQVMDLLQK found in part_0.0_13829.432373046875: CORRECT\n", + "DGAYDLVVPSTYYVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DGAYVTLR found in part_0.0_13829.432373046875: CORRECT\n", + "DGDHYATLNTAQK found in part_0.0_13829.432373046875: CORRECT\n", + "DGDHYATLNTAQK found in part_0.0_13829.432373046875: CORRECT\n", + "DGDLVLIDAGCEYK found in part_0.0_13829.432373046875: CORRECT\n", + "DGDTLLVQVK found in part_0.0_13829.432373046875: CORRECT\n", + "DGEDPGYTLYDLSER found in part_0.0_13829.432373046875: CORRECT\n", + "DGEEPLNELR found in part_0.0_13829.432373046875: CORRECT\n", + "DGEIVGEGYHQR found in part_0.0_13829.432373046875: CORRECT\n", + "DGEIVGEGYHQR found in part_0.0_13829.432373046875: CORRECT\n", + "DGEIVQYVPFDK found in part_0.0_13829.432373046875: CORRECT\n", + "DGEQALQASLSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DGETLEQFR found in part_0.0_13829.432373046875: CORRECT\n", + "DGEVIIVDEHTGR found in part_0.0_13829.432373046875: CORRECT\n", + "DGFETYDK found in part_0.0_13829.432373046875: CORRECT\n", + "DGFIVNDALADDLK found in part_0.0_13829.432373046875: CORRECT\n", + "DGFSLYDR found in part_0.0_13829.432373046875: CORRECT\n", + "DGGTHLAGFR found in part_0.0_13829.432373046875: CORRECT\n", + "DGGYLYTTTDIACAK found in part_0.0_13829.432373046875: CORRECT\n", + "DGHALSDEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "DGHALSDEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "DGHLIVNGK found in part_0.0_13829.432373046875: CORRECT\n", + "DGHLIVNGK found in part_0.0_13829.432373046875: CORRECT\n", + "DGHPLFAGFVK found in part_0.0_13829.432373046875: CORRECT\n", + "DGHPLFAGFVK found in part_0.0_13829.432373046875: CORRECT\n", + "DGIASAILPGR found in part_0.0_13829.432373046875: CORRECT\n", + "DGIDAAAAAGVTCVIQPGGSIR found in part_0.0_13829.432373046875: CORRECT\n", + "DGIPAVVER found in part_0.0_13829.432373046875: CORRECT\n", + "DGIPVLLETEAR found in part_0.0_13829.432373046875: CORRECT\n", + "DGISALQMDIK found in part_0.0_13829.432373046875: CORRECT\n", + "DGISYTFSIVPNALGK found in part_0.0_13829.432373046875: CORRECT\n", + "DGLALSSR found in part_0.0_13829.432373046875: CORRECT\n", + "DGLDGFITITGGK found in part_0.0_13829.432373046875: CORRECT\n", + "DGLDSYR found in part_0.0_13829.432373046875: CORRECT\n", + "DGLEDYIR found in part_0.0_13829.432373046875: CORRECT\n", + "DGLFCAR found in part_0.0_13829.432373046875: CORRECT\n", + "DGLLAIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGLLAIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGLVDVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGMLFGR found in part_0.0_13829.432373046875: CORRECT\n", + "DGNPNVTADITR found in part_0.0_13829.432373046875: CORRECT\n", + "DGQFIAER found in part_0.0_13829.432373046875: CORRECT\n", + "DGQIQFVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "DGQIVLNIAPR found in part_0.0_13829.432373046875: CORRECT\n", + "DGQLVFTR found in part_0.0_13829.432373046875: CORRECT\n", + "DGQQLNLDNIGTTPLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGQVGAIFNTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "DGQVYNIAFENGEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGSMIGLNK found in part_0.0_13829.432373046875: CORRECT\n", + "DGSPEAALSEFIK found in part_0.0_13829.432373046875: CORRECT\n", + "DGSVVVLGYTDR found in part_0.0_13829.432373046875: CORRECT\n", + "DGSYNIDQGVGVR found in part_0.0_13829.432373046875: CORRECT\n", + "DGTIHQFSAVEQDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "DGTIVSVQGFAR found in part_0.0_13829.432373046875: CORRECT\n", + "DGTLISEPPSDFQVDR found in part_0.0_13829.432373046875: CORRECT\n", + "DGTLQALSEK found in part_0.0_13829.432373046875: CORRECT\n", + "DGTVYSITR found in part_0.0_13829.432373046875: CORRECT\n", + "DGTYETIYNK found in part_0.0_13829.432373046875: CORRECT\n", + "DGVDAGGSYVFVQR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVEVPVSLVYHR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVEVPVSLVYHR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVIEIQGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DGVIEIQGDKR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVIEIQGDKR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVLFTPPFTSSALPGITR found in part_0.0_13829.432373046875: CORRECT\n", + "DGVYHCLICDAPLFHSQTK found in part_0.0_13829.432373046875: CORRECT\n", + "DGVYHCLICDAPLFHSQTK found in part_0.0_13829.432373046875: CORRECT\n", + "DGYGFLR found in part_0.0_13829.432373046875: CORRECT\n", + "DGYIAYIDELYNANR found in part_0.0_13829.432373046875: CORRECT\n", + "DGYTFVSHQQEVGTGYFDK found in part_0.0_13829.432373046875: CORRECT\n", + "DGYYLEPTILFGQNNMR found in part_0.0_13829.432373046875: CORRECT\n", + "DHALLIDCR found in part_0.0_13829.432373046875: CORRECT\n", + "DHAPLMQEINQTGGYNDEIEGK found in part_0.0_13829.432373046875: CORRECT\n", + "DHDFAAIADFDMVR found in part_0.0_13829.432373046875: CORRECT\n", + "DHDFAAIADFDMVR found in part_0.0_13829.432373046875: CORRECT\n", + "DHFAILK found in part_0.0_13829.432373046875: CORRECT\n", + "DHGEGGNLVGSALQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DHHVDVTYK found in part_0.0_13829.432373046875: CORRECT\n", + "DHIELATR found in part_0.0_13829.432373046875: CORRECT\n", + "DHLDDPVIGELR found in part_0.0_13829.432373046875: CORRECT\n", + "DHLDDPVIGELR found in part_0.0_13829.432373046875: CORRECT\n", + "DHPIYYAGPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DHPIYYAGPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DHTLFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DHTSDQLHAEFDGK found in part_0.0_13829.432373046875: CORRECT\n", + "DHTSDQLHEEFDAK found in part_0.0_13829.432373046875: CORRECT\n", + "DHVTLGEMHSGLDFAAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DHVTLGEMHSGLDFAAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DIADAVTAAGVEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DIADAVTAAGVEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DIADYEHNQLMR found in part_0.0_13829.432373046875: CORRECT\n", + "DIADYEHNQLMR found in part_0.0_13829.432373046875: CORRECT\n", + "DIAEQYK found in part_0.0_13829.432373046875: CORRECT\n", + "DIAFLPEGVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DIALGEEFVNK found in part_0.0_13829.432373046875: CORRECT\n", + "DIALTIPNLPADEVPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DIALTIPNLPADEVPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DIALTIPNLPADEVPVGKDENDNVEVSR found in part_0.0_13829.432373046875: CORRECT\n", + "DIANTGLR found in part_0.0_13829.432373046875: CORRECT\n", + "DIANTGLRPVMTLSSEIIGVQTLK found in part_0.0_13829.432373046875: CORRECT\n", + "DIANTGLRPVMTLSSEIIGVQTLK found in part_0.0_13829.432373046875: CORRECT\n", + "DIASDLFGVVNDNPDIITNVYR found in part_0.0_13829.432373046875: CORRECT\n", + "DIAVVVAENVPAADILSECKK found in part_0.0_13829.432373046875: CORRECT\n", + "DIDALVEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIDGEVTTLEK found in part_0.0_13829.432373046875: CORRECT\n", + "DIDGHDAASIK found in part_0.0_13829.432373046875: CORRECT\n", + "DIDGHDAASIKR found in part_0.0_13829.432373046875: CORRECT\n", + "DIDIQSPTAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIDLALDAAHK found in part_0.0_13829.432373046875: CORRECT\n", + "DIDVAAESLK found in part_0.0_13829.432373046875: CORRECT\n", + "DIEADTPAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIEEDKAPADLASTFLR found in part_0.0_13829.432373046875: CORRECT\n", + "DIEGEARPQPDIK found in part_0.0_13829.432373046875: CORRECT\n", + "DIEGEARPQPDIK found in part_0.0_13829.432373046875: CORRECT\n", + "DIEPDKFK found in part_0.0_13829.432373046875: CORRECT\n", + "DIFAPLIDEHAYSDEEK found in part_0.0_13829.432373046875: CORRECT\n", + "DIFLLSPDAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "DIFSLTNEEVQELAK found in part_0.0_13829.432373046875: CORRECT\n", + "DIFTVHDILK found in part_0.0_13829.432373046875: CORRECT\n", + "DIGAQYIIIGHSER found in part_0.0_13829.432373046875: CORRECT\n", + "DIGAQYIIIGHSER found in part_0.0_13829.432373046875: CORRECT\n", + "DIGEPSVLNR found in part_0.0_13829.432373046875: CORRECT\n", + "DIGLGFDCR found in part_0.0_13829.432373046875: CORRECT\n", + "DIHFEGLQR found in part_0.0_13829.432373046875: CORRECT\n", + "DIHGAPVGDTLTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIHGAPVGDTLTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIHVHVPEGATPK found in part_0.0_13829.432373046875: CORRECT\n", + "DIIAAFVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide DIISVALK NOT FOUND in any FASTA file.\n", + "DILELADTVSELRPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DILEVICK found in part_0.0_13829.432373046875: CORRECT\n", + "DILFGTTGPR found in part_0.0_13829.432373046875: CORRECT\n", + "DILIISTPQDTPR found in part_0.0_13829.432373046875: CORRECT\n", + "DILTGSIDGVPDIYK found in part_0.0_13829.432373046875: CORRECT\n", + "DINQAAGQFSAMQK found in part_0.0_13829.432373046875: CORRECT\n", + "DIPFPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "DIPGQVYTPPQLGTYYYAFNTQK found in part_0.0_13829.432373046875: CORRECT\n", + "DIPLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "DIPPNVVAAGVPCR found in part_0.0_13829.432373046875: CORRECT\n", + "DIPPNVVAAGVPCR found in part_0.0_13829.432373046875: CORRECT\n", + "DIPSPSITDVPVGVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide DIPVNAAK NOT FOUND in any FASTA file.\n", + "DIPVVMLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "DIPYDPEPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "DIQGLEHFDK found in part_0.0_13829.432373046875: CORRECT\n", + "DIQLATPPQVGAPATEYAALAELK found in part_0.0_13829.432373046875: CORRECT\n", + "DIQQTIK found in part_0.0_13829.432373046875: CORRECT\n", + "DISECFPAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DISELVR found in part_0.0_13829.432373046875: CORRECT\n", + "DISFEAPNAPHVFQK found in part_0.0_13829.432373046875: CORRECT\n", + "DISFEAPNAPHVFQK found in part_0.0_13829.432373046875: CORRECT\n", + "DISLSDYK found in part_0.0_13829.432373046875: CORRECT\n", + "DISSANLR found in part_0.0_13829.432373046875: CORRECT\n", + "DISTALGLK found in part_0.0_13829.432373046875: CORRECT\n", + "DITADVLK found in part_0.0_13829.432373046875: CORRECT\n", + "DITADVLK found in part_0.0_13829.432373046875: CORRECT\n", + "DITGGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "DITLAMDCAASEFYK found in part_0.0_13829.432373046875: CORRECT\n", + "DITLTSTCEHHFVTIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "DIVDPATPYPGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DIVGAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "DIVGYVR found in part_0.0_13829.432373046875: CORRECT\n", + "DIYDIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DIYQMPGIAETVNFDHIR found in part_0.0_13829.432373046875: CORRECT\n", + "DKDVIVMSVNGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DKECALCFTNGK found in part_0.0_13829.432373046875: CORRECT\n", + "DKEGNEIIVASNFTPVPR found in part_0.0_13829.432373046875: CORRECT\n", + "DKETYTGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DKFDLAFANDPDYDR found in part_0.0_13829.432373046875: CORRECT\n", + "DKFDLAFANDPDYDR found in part_0.0_13829.432373046875: CORRECT\n", + "DKFEIVTPSESILAEPTVSVVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DKFNLQR found in part_0.0_13829.432373046875: CORRECT\n", + "DKFPQTELFR found in part_0.0_13829.432373046875: CORRECT\n", + "DKFPQTELFR found in part_0.0_13829.432373046875: CORRECT\n", + "DKGEFFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DKGLILLSCGPYYNVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DKGSSLVTGIVDAR found in part_0.0_13829.432373046875: CORRECT\n", + "DKLDQLSQK found in part_0.0_13829.432373046875: CORRECT\n", + "DKLEPYFTEGR found in part_0.0_13829.432373046875: CORRECT\n", + "DKLEPYFTEGR found in part_0.0_13829.432373046875: CORRECT\n", + "DKLSNPVR found in part_0.0_13829.432373046875: CORRECT\n", + "DKLVSSEVK found in part_0.0_13829.432373046875: CORRECT\n", + "DKMDAWLSGPNANK found in part_0.0_13829.432373046875: CORRECT\n", + "DKNDEIVSMLGASYFR found in part_0.0_13829.432373046875: CORRECT\n", + "DKNVLLVDDSIVR found in part_0.0_13829.432373046875: CORRECT\n", + "DKNVLLVDDSIVR found in part_0.0_13829.432373046875: CORRECT\n", + "DKPEDAVLDVQGIATVTPAIVQACTQDK found in part_0.0_13829.432373046875: CORRECT\n", + "DKPEDAVLDVQGIATVTPAIVQACTQDK found in part_0.0_13829.432373046875: CORRECT\n", + "DKPLGAVALK found in part_0.0_13829.432373046875: CORRECT\n", + "DKPSLIICR found in part_0.0_13829.432373046875: CORRECT\n", + "DKTTIPDYFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DKTTIPDYFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DLAANPIPVLDGELVGALRPSDAPLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "DLALAYSPGVAAPCLEIEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLALAYSPGVAAPCLEIEKDPLK found in part_0.0_13829.432373046875: CORRECT\n", + "DLALEMANR found in part_0.0_13829.432373046875: CORRECT\n", + "DLALIEINPLVITK found in part_0.0_13829.432373046875: CORRECT\n", + "DLALNQAMIPLGSCTMK found in part_0.0_13829.432373046875: CORRECT\n", + "DLANDGYR found in part_0.0_13829.432373046875: CORRECT\n", + "DLAQCVEISNQYGPEHLIIQTR found in part_0.0_13829.432373046875: CORRECT\n", + "DLAVSSGSACTSASLEPSYVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLCLPFGEDVYPR found in part_0.0_13829.432373046875: CORRECT\n", + "DLDEDIR found in part_0.0_13829.432373046875: CORRECT\n", + "DLDEIITIAGQELNEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLDFEVPVSR found in part_0.0_13829.432373046875: CORRECT\n", + "DLDGTILATGFPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DLDQECGSTCAADFR found in part_0.0_13829.432373046875: CORRECT\n", + "DLDSAIAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "DLDVTATNR found in part_0.0_13829.432373046875: CORRECT\n", + "DLEDSPVR found in part_0.0_13829.432373046875: CORRECT\n", + "DLEEIPDNVIADLDIHPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DLEEIPDNVIADLDIHPVKR found in part_0.0_13829.432373046875: CORRECT\n", + "DLEHPIEVPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLEHPIEVPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLETQSQDGTFDK found in part_0.0_13829.432373046875: CORRECT\n", + "DLEYLNSSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DLFCSER found in part_0.0_13829.432373046875: CORRECT\n", + "DLFEGLVNQNEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLFFEDK found in part_0.0_13829.432373046875: CORRECT\n", + "DLFFEDK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGAVGVICGR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGFAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGFAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGFEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGFNVEVQPVPGTR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGLIEQIDEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGLTDESK found in part_0.0_13829.432373046875: CORRECT\n", + "DLGMVGAEELR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGNMPPNICNAAYLASQAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGNMPPNICNAAYLASQAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGNTVIVVEHDEDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "DLGSMDVNEVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLHEAKR found in part_0.0_13829.432373046875: CORRECT\n", + "DLHPELEVIGTNADDAVPHYLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLHPELEVIGTNADDAVPHYLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLHVSVEDK found in part_0.0_13829.432373046875: CORRECT\n", + "DLIAYLEEKPEMAEHLAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DLIDDAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLIESELFGHEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLIVIGGGINGAGIAADAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "DLIVTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLAGIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLALSPEDR found in part_0.0_13829.432373046875: CORRECT\n", + "DLLDGLSQAK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLDNVQYAPAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLLGATNPANALAGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLLGATNPANALAGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLLGITK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLNVPSNYK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLPELPVQPVR found in part_0.0_13829.432373046875: CORRECT\n", + "DLLPLVEGCTVSTK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLPNPPK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLPNPPK found in part_0.0_13829.432373046875: CORRECT\n", + "DLLTAYK found in part_0.0_13829.432373046875: CORRECT\n", + "DLMGCQVVTTEGYDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLMGNSSELR found in part_0.0_13829.432373046875: CORRECT\n", + "DLMPVPPAVAEYSTGLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLNELAEQNLILR found in part_0.0_13829.432373046875: CORRECT\n", + "DLNELQTQGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLNIDPATLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLNLTDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "DLNLTYR found in part_0.0_13829.432373046875: CORRECT\n", + "DLNNESTPMAFENIK found in part_0.0_13829.432373046875: CORRECT\n", + "DLPADPLTLFER found in part_0.0_13829.432373046875: CORRECT\n", + "DLPDLVYMTEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DLPDSYK found in part_0.0_13829.432373046875: CORRECT\n", + "DLPDSYKR found in part_0.0_13829.432373046875: CORRECT\n", + "DLPLIASNFR found in part_0.0_13829.432373046875: CORRECT\n", + "DLPLVTIDGEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLQQTTQLLDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DLQSIADYPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DLRPALK found in part_0.0_13829.432373046875: CORRECT\n", + "DLSDVTLGQFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLSDVTLGQFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "DLSGFVDGTENPAGEETR found in part_0.0_13829.432373046875: CORRECT\n", + "DLSGFVDGTENPAGEETRR found in part_0.0_13829.432373046875: CORRECT\n", + "DLSIDLNR found in part_0.0_13829.432373046875: CORRECT\n", + "DLSIIATPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "DLSQLTGVSR found in part_0.0_13829.432373046875: CORRECT\n", + "DLTAADGQTR found in part_0.0_13829.432373046875: CORRECT\n", + "DLTAEQAAER found in part_0.0_13829.432373046875: CORRECT\n", + "DLTDAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DLTDSTVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DLTKPAVLEVITPTQVR found in part_0.0_13829.432373046875: CORRECT\n", + "DLTVFDATCPLVTK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVESAPAALK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVESAPAALKEGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVESAPAALKEGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVESVMQR found in part_0.0_13829.432373046875: CORRECT\n", + "DLVGFGVENAPR found in part_0.0_13829.432373046875: CORRECT\n", + "DLVHAIPLYAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVHAIPLYAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVIGTGAPK found in part_0.0_13829.432373046875: CORRECT\n", + "DLVVSLAYQVR found in part_0.0_13829.432373046875: CORRECT\n", + "DMEPEDLLK found in part_0.0_13829.432373046875: CORRECT\n", + "DMFLDDQGNPDSK found in part_0.0_13829.432373046875: CORRECT\n", + "DMGGLPDALFVIDADHEHIAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DMGGLPDALFVIDADHEHIAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DMGGLPDALFVIDADHEHIAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DMGTVVFPDAPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DMLYPER found in part_0.0_13829.432373046875: CORRECT\n", + "DMPNALVEVLR found in part_0.0_13829.432373046875: CORRECT\n", + "DMSLYGLEDYTVVR found in part_0.0_13829.432373046875: CORRECT\n", + "DMTCQEFIDLNPK found in part_0.0_13829.432373046875: CORRECT\n", + "DMTFSYAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DMVCSPGGTTIEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "DMVIGPVR found in part_0.0_13829.432373046875: CORRECT\n", + "DMVKPEEMVVLDR found in part_0.0_13829.432373046875: CORRECT\n", + "DNAAVMEGSEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DNAEITIVGELPPQTAK found in part_0.0_13829.432373046875: CORRECT\n", + "DNEIYQFASIGEVNQDLK found in part_0.0_13829.432373046875: CORRECT\n", + "DNESLSLSILR found in part_0.0_13829.432373046875: CORRECT\n", + "DNFKEELEK found in part_0.0_13829.432373046875: CORRECT\n", + "DNFYGVQFHPER found in part_0.0_13829.432373046875: CORRECT\n", + "DNFYGVQFHPER found in part_0.0_13829.432373046875: CORRECT\n", + "DNGAGVPDVGELLNYDADNVQHR found in part_0.0_13829.432373046875: CORRECT\n", + "DNGFTVLDACQVNDR found in part_0.0_13829.432373046875: CORRECT\n", + "DNIFGSIEEDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DNISLDLGNNAEAVILR found in part_0.0_13829.432373046875: CORRECT\n", + "DNIVDFVNHSK found in part_0.0_13829.432373046875: CORRECT\n", + "DNLAAANPQVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DNLAEFSK found in part_0.0_13829.432373046875: CORRECT\n", + "DNLAEFSK found in part_0.0_13829.432373046875: CORRECT\n", + "DNLAPDLSYR found in part_0.0_13829.432373046875: CORRECT\n", + "DNMAFSPEER found in part_0.0_13829.432373046875: CORRECT\n", + "DNPLVIR found in part_0.0_13829.432373046875: CORRECT\n", + "DNPPQDLIDLNPNQSVPTLVDR found in part_0.0_13829.432373046875: CORRECT\n", + "DNQIVTLTASR found in part_0.0_13829.432373046875: CORRECT\n", + "DNSAGLDLANEHR found in part_0.0_13829.432373046875: CORRECT\n", + "DNSAGLDLANEHR found in part_0.0_13829.432373046875: CORRECT\n", + "DNTPMFVK found in part_0.0_13829.432373046875: CORRECT\n", + "DNVTDKNELR found in part_0.0_13829.432373046875: CORRECT\n", + "DNVTDKNELR found in part_0.0_13829.432373046875: CORRECT\n", + "DNVVIYEGELESLR found in part_0.0_13829.432373046875: CORRECT\n", + "DNVVIYEGELESLRR found in part_0.0_13829.432373046875: CORRECT\n", + "DPALSELYLVEGDSAGGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "DPALSELYLVEGDSAGGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "DPASVAAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DPATGQAHTAHTNLPVPLIYVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DPATGQAHTAHTNLPVPLIYVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "DPATLDYVVPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DPDFYAFIR found in part_0.0_13829.432373046875: CORRECT\n", + "DPDIYAIGDCASCPRPEGGFVPPR found in part_0.0_13829.432373046875: CORRECT\n", + "DPDTGQLFDR found in part_0.0_13829.432373046875: CORRECT\n", + "DPDVVLLADK found in part_0.0_13829.432373046875: CORRECT\n", + "DPEASENDKYVALQFLR found in part_0.0_13829.432373046875: CORRECT\n", + "DPEASENDKYVALQFLR found in part_0.0_13829.432373046875: CORRECT\n", + "DPEEVVGIGANLPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "DPEFQAQFNDLLK found in part_0.0_13829.432373046875: CORRECT\n", + "DPEFQNIMK found in part_0.0_13829.432373046875: CORRECT\n", + "DPELAAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "DPELVQAFYNAR found in part_0.0_13829.432373046875: CORRECT\n", + "DPFFEAK found in part_0.0_13829.432373046875: CORRECT\n", + "DPFGAASGGR found in part_0.0_13829.432373046875: CORRECT\n", + "DPFTLTEHDGK found in part_0.0_13829.432373046875: CORRECT\n", + "DPFTLTEHDGK found in part_0.0_13829.432373046875: CORRECT\n", + "DPIQPYIDGEWVK found in part_0.0_13829.432373046875: CORRECT\n", + "DPISQAAFALPLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DPLAHPLK found in part_0.0_13829.432373046875: CORRECT\n", + "DPLDNTYTR found in part_0.0_13829.432373046875: CORRECT\n", + "DPLESLR found in part_0.0_13829.432373046875: CORRECT\n", + "DPLVPEENDK found in part_0.0_13829.432373046875: CORRECT\n", + "DPLVPEENDKTTVIALR found in part_0.0_13829.432373046875: CORRECT\n", + "DPLVPEENDKTTVIALR found in part_0.0_13829.432373046875: CORRECT\n", + "DPLVTTSR found in part_0.0_13829.432373046875: CORRECT\n", + "DPNGIRPLVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DPNGIRPLVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DPNQTEFAQAVR found in part_0.0_13829.432373046875: CORRECT\n", + "DPQEAQNIINAQK found in part_0.0_13829.432373046875: CORRECT\n", + "DPQQIISGNEK found in part_0.0_13829.432373046875: CORRECT\n", + "DPSLPVIIYPAAVQGDDAPGQIVR found in part_0.0_13829.432373046875: CORRECT\n", + "DPSLSFR found in part_0.0_13829.432373046875: CORRECT\n", + "DPSLSLYAIPDGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "DPSLTEESLVTFCR found in part_0.0_13829.432373046875: CORRECT\n", + "DPTTQYYTGEYPK found in part_0.0_13829.432373046875: CORRECT\n", + "DPYLYPGLDIMR found in part_0.0_13829.432373046875: CORRECT\n", + "DQAVPPTINLDNPDEGCDLDFVPHEAR found in part_0.0_13829.432373046875: CORRECT\n", + "DQDDIYPVFR found in part_0.0_13829.432373046875: CORRECT\n", + "DQEFSSDLGSR found in part_0.0_13829.432373046875: CORRECT\n", + "DQFVQPVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DQGIDLR found in part_0.0_13829.432373046875: CORRECT\n", + "DQGKDPATLDYVVPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DQGKDPATLDYVVPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DQGPPDLDDIFR found in part_0.0_13829.432373046875: CORRECT\n", + "DQGVVVNNVK found in part_0.0_13829.432373046875: CORRECT\n", + "DQIDEVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DQLEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "DQLFVGDDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "DQLHQLR found in part_0.0_13829.432373046875: CORRECT\n", + "DQLIAGVQDAFADK found in part_0.0_13829.432373046875: CORRECT\n", + "DQLLENLQEGMEVK found in part_0.0_13829.432373046875: CORRECT\n", + "DQLLENLQEGMEVK found in part_0.0_13829.432373046875: CORRECT\n", + "DQLNPGEYGLFLGTAHPAK found in part_0.0_13829.432373046875: CORRECT\n", + "DQLQGILASER found in part_0.0_13829.432373046875: CORRECT\n", + "DQLVGKIQER found in part_0.0_13829.432373046875: CORRECT\n", + "DQNEDIDREDFAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DQNKQPSLSGCLR found in part_0.0_13829.432373046875: CORRECT\n", + "DQPIFDYHCHLPPQQIAEDYR found in part_0.0_13829.432373046875: CORRECT\n", + "DQPLGELALSIPR found in part_0.0_13829.432373046875: CORRECT\n", + "DQSNLSPAQYLK found in part_0.0_13829.432373046875: CORRECT\n", + "DQTYLYVEK found in part_0.0_13829.432373046875: CORRECT\n", + "DQVEDYAR found in part_0.0_13829.432373046875: CORRECT\n", + "DQVGNILIR found in part_0.0_13829.432373046875: CORRECT\n", + "DQYDLHPVYK found in part_0.0_13829.432373046875: CORRECT\n", + "DQYDLHPVYK found in part_0.0_13829.432373046875: CORRECT\n", + "DREGIVQVFFDPDR found in part_0.0_13829.432373046875: CORRECT\n", + "DRFNVPVSDADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "DRFNVPVSDADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "DRFTPHPDLR found in part_0.0_13829.432373046875: CORRECT\n", + "DRGEDALIIYDDLSK found in part_0.0_13829.432373046875: CORRECT\n", + "DRGEDALIIYDDLSK found in part_0.0_13829.432373046875: CORRECT\n", + "DRIDYQALPEHEK found in part_0.0_13829.432373046875: CORRECT\n", + "DRIDYQALPEHEK found in part_0.0_13829.432373046875: CORRECT\n", + "DRLPVPAPMAVGAIQTR found in part_0.0_13829.432373046875: CORRECT\n", + "DRSEVDLK found in part_0.0_13829.432373046875: CORRECT\n", + "DRVEDATLVLSVGDEVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "DSAIVPVYYYVNAR found in part_0.0_13829.432373046875: CORRECT\n", + "DSAQEAGHHVVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DSDPEVLLEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "DSDTVVVNYK found in part_0.0_13829.432373046875: CORRECT\n", + "DSFDALASAEK found in part_0.0_13829.432373046875: CORRECT\n", + "DSFDDSSANLFK found in part_0.0_13829.432373046875: CORRECT\n", + "DSFLASLTEAER found in part_0.0_13829.432373046875: CORRECT\n", + "DSGLDISYALR found in part_0.0_13829.432373046875: CORRECT\n", + "DSGQNDLIDEDTR found in part_0.0_13829.432373046875: CORRECT\n", + "DSGSDMVLVGLLR found in part_0.0_13829.432373046875: CORRECT\n", + "DSGTILFQGK found in part_0.0_13829.432373046875: CORRECT\n", + "DSGVVSELFDER found in part_0.0_13829.432373046875: CORRECT\n", + "DSHLPISGSIK found in part_0.0_13829.432373046875: CORRECT\n", + "DSHPMAVMCGITGALAAFYHDSLDVNNPR found in part_0.0_13829.432373046875: CORRECT\n", + "DSILEAIDAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "DSIPVPDYEPEADGIPNTFVPGR found in part_0.0_13829.432373046875: CORRECT\n", + "DSIYIPMER found in part_0.0_13829.432373046875: CORRECT\n", + "DSLAIFGNDYPTEDGTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "DSLGFQPNLR found in part_0.0_13829.432373046875: CORRECT\n", + "DSLKDEVLHSLLPR found in part_0.0_13829.432373046875: CORRECT\n", + "DSLMLQLYPDAELR found in part_0.0_13829.432373046875: CORRECT\n", + "DSLPEGVYNDQFK found in part_0.0_13829.432373046875: CORRECT\n", + "DSLYTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "DSMGAIDVPADK found in part_0.0_13829.432373046875: CORRECT\n", + "DSMSYAEQDVK found in part_0.0_13829.432373046875: CORRECT\n", + "DSQSSDVIIIGGGATGAGIAR found in part_0.0_13829.432373046875: CORRECT\n", + "DSSFAMLLEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DSSFLSLR found in part_0.0_13829.432373046875: CORRECT\n", + "DSSGKPLY found in part_0.0_13829.432373046875: CORRECT\n", + "DSTAELYHFIGK found in part_0.0_13829.432373046875: CORRECT\n", + "DSTAELYHFIGK found in part_0.0_13829.432373046875: CORRECT\n", + "DSTGICFIGER found in part_0.0_13829.432373046875: CORRECT\n", + "DSTLLVETVK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVGAVVMGPYADLAEGMK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVIGLSK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVPMTLSEDEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "DSVSYGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVSYGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVTLVHK found in part_0.0_13829.432373046875: CORRECT\n", + "DSVTLVHK found in part_0.0_13829.432373046875: CORRECT\n", + "DTAIMSYSTK found in part_0.0_13829.432373046875: CORRECT\n", + "DTDVPYSNIVALNEHAAVLHYTK found in part_0.0_13829.432373046875: CORRECT\n", + "DTDVPYSNIVALNEHAAVLHYTK found in part_0.0_13829.432373046875: CORRECT\n", + "DTEELHPR found in part_0.0_13829.432373046875: CORRECT\n", + "DTFLMIDK found in part_0.0_13829.432373046875: CORRECT\n", + "DTGHVAIITQLHGNK found in part_0.0_13829.432373046875: CORRECT\n", + "DTGPNTGGMGAYSPAPVVTDDVHQR found in part_0.0_13829.432373046875: CORRECT\n", + "DTINAPAEELGPSQLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DTINAPAEELGPSQLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DTLFSAPIAR found in part_0.0_13829.432373046875: CORRECT\n", + "DTLHLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "DTLHLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "DTNGNLYAADVNETTGAVSVK found in part_0.0_13829.432373046875: CORRECT\n", + "DTPELVSFLHLPVQSGSDR found in part_0.0_13829.432373046875: CORRECT\n", + "DTPQSCGLPPIEEYK found in part_0.0_13829.432373046875: CORRECT\n", + "DTPQSCGLPPIEEYKNDYPDDYNEK found in part_0.0_13829.432373046875: CORRECT\n", + "DTQPTLSFQR found in part_0.0_13829.432373046875: CORRECT\n", + "DTSGVLLVAK found in part_0.0_13829.432373046875: CORRECT\n", + "DTTERPEAVTAGTVR found in part_0.0_13829.432373046875: CORRECT\n", + "DTTTIIDGVGEEAAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DTTTIIDGVGEEAAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DTTTIIDGVGEEAAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DTVEIQGEVDK found in part_0.0_13829.432373046875: CORRECT\n", + "DTVGNNIGVYDNPNDLSAK found in part_0.0_13829.432373046875: CORRECT\n", + "DTVSELLTANR found in part_0.0_13829.432373046875: CORRECT\n", + "DTVVDVQSK found in part_0.0_13829.432373046875: CORRECT\n", + "DTYDASLLQGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "DVAAELLDIYAQR found in part_0.0_13829.432373046875: CORRECT\n", + "DVADVHDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "DVAEILLEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "DVAGYAAGLELFDR found in part_0.0_13829.432373046875: CORRECT\n", + "DVAHSQEKAIMALVDSQIGNFGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVAIVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVAQLTNPLPK found in part_0.0_13829.432373046875: CORRECT\n", + "DVATPEVADIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDGFHPYNVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDGFHPYNVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDLDGIYYCPHHPQGSVEEFR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDLDGIYYCPHHPQGSVEEFR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDQGYLDFLDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "DVDSIYK found in part_0.0_13829.432373046875: CORRECT\n", + "DVDTLGMADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "DVDTLGMADIEKK found in part_0.0_13829.432373046875: CORRECT\n", + "DVDTLGMADIEKK found in part_0.0_13829.432373046875: CORRECT\n", + "DVDVLYFR found in part_0.0_13829.432373046875: CORRECT\n", + "DVEFQVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVENNILVVAQGHEHPR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFHPVFDVDQQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFHPVFDVDQQGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFHPVFDVDQQGRPVMR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFHPVFDVDQQGRPVMR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFIDLVCYR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFINAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFLGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFLGLDKR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFLPDDYLIK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFNAFR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFNGELSK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFPIIADR found in part_0.0_13829.432373046875: CORRECT\n", + "DVFRPGHADYTYEQK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFVHFSAIQGNGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFVHFSAIQGNGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFVHFSAIQNDGYK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFVHFSAIQTNGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVFVHFSAIQTNGFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVGVAIIGQTSSLAPADK found in part_0.0_13829.432373046875: CORRECT\n", + "DVGVAIIGQTSSLAPADKR found in part_0.0_13829.432373046875: CORRECT\n", + "DVHDILNK found in part_0.0_13829.432373046875: CORRECT\n", + "DVHEAAADALGLDDSQR found in part_0.0_13829.432373046875: CORRECT\n", + "DVHEAAADALGLDDSQR found in part_0.0_13829.432373046875: CORRECT\n", + "DVHPTHYGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVIAEPYR found in part_0.0_13829.432373046875: CORRECT\n", + "DVIAFPK found in part_0.0_13829.432373046875: CORRECT\n", + "DVIEAAHALR found in part_0.0_13829.432373046875: CORRECT\n", + "DVILFPAMR found in part_0.0_13829.432373046875: CORRECT\n", + "DVILFPAMRPQK found in part_0.0_13829.432373046875: CORRECT\n", + "DVILFPAMRPQK found in part_0.0_13829.432373046875: CORRECT\n", + "DVILFPAMRPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVILFPAMRPVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVIPFPR found in part_0.0_13829.432373046875: CORRECT\n", + "DVLAPGGSFVVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVLDLNNL found in part_0.0_13829.432373046875: CORRECT\n", + "DVLEAMQADSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVLEAMQADSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVLETLGTDK found in part_0.0_13829.432373046875: CORRECT\n", + "DVLGSAPTGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "DVLLDINK found in part_0.0_13829.432373046875: CORRECT\n", + "DVLLDINK found in part_0.0_13829.432373046875: CORRECT\n", + "DVLLFVDNIYR found in part_0.0_13829.432373046875: CORRECT\n", + "DVMPEVNAVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "DVNAYTSYDETVYQVSLPTTQK found in part_0.0_13829.432373046875: CORRECT\n", + "DVNDEQLALIATMK found in part_0.0_13829.432373046875: CORRECT\n", + "DVNDLPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "DVNEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVNPDEAVAIGAAVQGGVLTGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVNQLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "DVNVFCAPYDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVPDNVVVGGNPAR found in part_0.0_13829.432373046875: CORRECT\n", + "DVPNEYSIYK found in part_0.0_13829.432373046875: CORRECT\n", + "DVPTNEGVLGEIALSSLPR found in part_0.0_13829.432373046875: CORRECT\n", + "DVQFIEQFR found in part_0.0_13829.432373046875: CORRECT\n", + "DVSGEGVQQALLK found in part_0.0_13829.432373046875: CORRECT\n", + "DVSIMPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVSIMPFK found in part_0.0_13829.432373046875: CORRECT\n", + "DVSLLHK found in part_0.0_13829.432373046875: CORRECT\n", + "DVSLLHKPTTQISDFHVATR found in part_0.0_13829.432373046875: CORRECT\n", + "DVSLLHKPTTQISDFHVATR found in part_0.0_13829.432373046875: CORRECT\n", + "DVTAGAIQSDINR found in part_0.0_13829.432373046875: CORRECT\n", + "DVTEEEGNIVIYTEPTDLHK found in part_0.0_13829.432373046875: CORRECT\n", + "DVTGHAIGAYIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVTGHAIGAYIR found in part_0.0_13829.432373046875: CORRECT\n", + "DVTIADLFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DVTPDATLAVADR found in part_0.0_13829.432373046875: CORRECT\n", + "DVTPQPPQTPQALLEFAK found in part_0.0_13829.432373046875: CORRECT\n", + "DVTSLLEDPK found in part_0.0_13829.432373046875: CORRECT\n", + "DVTTGDTLCDPDAPIILER found in part_0.0_13829.432373046875: CORRECT\n", + "DVVDAAVALR found in part_0.0_13829.432373046875: CORRECT\n", + "DVVIGETITVGELANK found in part_0.0_13829.432373046875: CORRECT\n", + "DVVIGMGACTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "DVVIISTLR found in part_0.0_13829.432373046875: CORRECT\n", + "DVVLLTGDKPGSEPETQALCQLIHR found in part_0.0_13829.432373046875: CORRECT\n", + "DVVLLTGDKPGSEPETQALCQLIHR found in part_0.0_13829.432373046875: CORRECT\n", + "DVVLVDAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "DVVSIPVTVK found in part_0.0_13829.432373046875: CORRECT\n", + "DVVTQPQA found in part_0.0_13829.432373046875: CORRECT\n", + "DVVTQPQA found in part_0.0_13829.432373046875: CORRECT\n", + "DVVVYPHMVIPLFVGR found in part_0.0_13829.432373046875: CORRECT\n", + "DVYEITLQDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "DVYGIDDALR found in part_0.0_13829.432373046875: CORRECT\n", + "DWAAADAAR found in part_0.0_13829.432373046875: CORRECT\n", + "DWDDVMNLNIK found in part_0.0_13829.432373046875: CORRECT\n", + "DWDVNAAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "DWFDYDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "DWFQLSLK found in part_0.0_13829.432373046875: CORRECT\n", + "DWIANPDLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "DWPFFSTR found in part_0.0_13829.432373046875: CORRECT\n", + "DWTIEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "DWVVNER found in part_0.0_13829.432373046875: CORRECT\n", + "DWYVVDATGK found in part_0.0_13829.432373046875: CORRECT\n", + "DYAGVDEGMNGLSTR found in part_0.0_13829.432373046875: CORRECT\n", + "DYAYTIGR found in part_0.0_13829.432373046875: CORRECT\n", + "DYECLCGK found in part_0.0_13829.432373046875: CORRECT\n", + "DYEEDFK found in part_0.0_13829.432373046875: CORRECT\n", + "DYEFASK found in part_0.0_13829.432373046875: CORRECT\n", + "DYEFASK found in part_0.0_13829.432373046875: CORRECT\n", + "DYFGAHTYK found in part_0.0_13829.432373046875: CORRECT\n", + "DYFGTGLGIAVR found in part_0.0_13829.432373046875: CORRECT\n", + "DYGNDPLPR found in part_0.0_13829.432373046875: CORRECT\n", + "DYGVGSDVYSVTSFTELAR found in part_0.0_13829.432373046875: CORRECT\n", + "DYIATFK found in part_0.0_13829.432373046875: CORRECT\n", + "DYLALVR found in part_0.0_13829.432373046875: CORRECT\n", + "DYLDIER found in part_0.0_13829.432373046875: CORRECT\n", + "DYLLPENSGVR found in part_0.0_13829.432373046875: CORRECT\n", + "DYLPDAFGPK found in part_0.0_13829.432373046875: CORRECT\n", + "DYLQSAK found in part_0.0_13829.432373046875: CORRECT\n", + "DYLVPSR found in part_0.0_13829.432373046875: CORRECT\n", + "DYLVVATTRPETLLGDTGVAVNPEDPR found in part_0.0_13829.432373046875: CORRECT\n", + "DYPDTQATR found in part_0.0_13829.432373046875: CORRECT\n", + "DYPLYPYLEYR found in part_0.0_13829.432373046875: CORRECT\n", + "DYPQAESVHR found in part_0.0_13829.432373046875: CORRECT\n", + "DYPSALAK found in part_0.0_13829.432373046875: CORRECT\n", + "DYPSALAK found in part_0.0_13829.432373046875: CORRECT\n", + "DYQEIDDVLFK found in part_0.0_13829.432373046875: CORRECT\n", + "DYSEGASGLLR found in part_0.0_13829.432373046875: CORRECT\n", + "DYSYFNTLSTK found in part_0.0_13829.432373046875: CORRECT\n", + "DYTLDIHDENGK found in part_0.0_13829.432373046875: CORRECT\n", + "DYTLDIHDENGK found in part_0.0_13829.432373046875: CORRECT\n", + "DYTPLYDELR found in part_0.0_13829.432373046875: CORRECT\n", + "DYVEGETAAK found in part_0.0_13829.432373046875: CORRECT\n", + "DYVVSMLDSLGK found in part_0.0_13829.432373046875: CORRECT\n", + "DYYAIMGVKPTDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "DYYAIMGVKPTDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "EAAATAGEKEDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAAATAGEKEDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAADELTPER found in part_0.0_13829.432373046875: CORRECT\n", + "EAAEILAK found in part_0.0_13829.432373046875: CORRECT\n", + "EAAEILAK found in part_0.0_13829.432373046875: CORRECT\n", + "EAAIFLPTGTQANLVALLSHCER found in part_0.0_13829.432373046875: CORRECT\n", + "EAAIQVSNVAIFNAATGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAAIQVSNVAIFNAATGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAAIVTDIAGTTR found in part_0.0_13829.432373046875: CORRECT\n", + "EAALTLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "EAALVHEALVAR found in part_0.0_13829.432373046875: CORRECT\n", + "EAALVHEALVAR found in part_0.0_13829.432373046875: CORRECT\n", + "EAAPAAAPAAAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "EAARPEITYPDNLPVSQK found in part_0.0_13829.432373046875: CORRECT\n", + "EACAAANVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "EADGLADVGSPLPGR found in part_0.0_13829.432373046875: CORRECT\n", + "EADKLGYNLVVLDSQNNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "EADLSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EADLSLKR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEAYTNEVQPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEFPTGIMLEQHAIAIPHCEAIHAK found in part_0.0_13829.432373046875: CORRECT\n", + "EAEGQDFQLYPGELGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAEIYNENASK found in part_0.0_13829.432373046875: CORRECT\n", + "EAELATLEFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EAELMQF found in part_0.0_13829.432373046875: CORRECT\n", + "EAELMQF found in part_0.0_13829.432373046875: CORRECT\n", + "EAEPEIYHDVTR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEPEIYHDVTR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEPEIYNAIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEPEIYNAIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEPQAKPPTVYR found in part_0.0_13829.432373046875: CORRECT\n", + "EAEYKDWTIEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFATIAVAADK found in part_0.0_13829.432373046875: CORRECT\n", + "EAFATIAVAADKVDVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EAFATIAVAADKVDVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EAFDTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFDTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFICDGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFNEADIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFPGDVFYLHSR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFPGDVFYLHSR found in part_0.0_13829.432373046875: CORRECT\n", + "EAFSHSLDLAR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGAAVTLDGDR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGAVDATFVTK found in part_0.0_13829.432373046875: CORRECT\n", + "EAGCAQLFNCPVTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGEGFGDFTVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGESNIGIIFQQ found in part_0.0_13829.432373046875: CORRECT\n", + "EAGGIVSDFTGGHNYMLTGNIVAGNPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGIAPTSFYR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGIELSDFVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGINNCYLEGEMVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAGIQFDESQFVPTVSGYYSDSK found in part_0.0_13829.432373046875: CORRECT\n", + "EAGLALGLSR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGLPDGVLNVVTGFGHEAGQALSR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGVEVITDLDR found in part_0.0_13829.432373046875: CORRECT\n", + "EAGVQEADFLANVDK found in part_0.0_13829.432373046875: CORRECT\n", + "EAGVQEADFLANVDK found in part_0.0_13829.432373046875: CORRECT\n", + "EAGYNIEPDQVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAHHIVGEAVVEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "EAHVMSLATSIGR found in part_0.0_13829.432373046875: CORRECT\n", + "EAIEEAGLIVK found in part_0.0_13829.432373046875: CORRECT\n", + "EAIEETGYEVGEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAIGYADSVHDYVSR found in part_0.0_13829.432373046875: CORRECT\n", + "EAIHMYGPDYGFDTTINK found in part_0.0_13829.432373046875: CORRECT\n", + "EAIINSAR found in part_0.0_13829.432373046875: CORRECT\n", + "EAILEAQSVK found in part_0.0_13829.432373046875: CORRECT\n", + "EAILYDALR found in part_0.0_13829.432373046875: CORRECT\n", + "EAINAKAMGAMTLNWQEK found in part_0.0_13829.432373046875: CORRECT\n", + "EAISQLQASESPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAIVAMER found in part_0.0_13829.432373046875: CORRECT\n", + "EALAEVGITGMTVTEVK found in part_0.0_13829.432373046875: CORRECT\n", + "EALALGVNHIDTSDFYGPHVTNQIIR found in part_0.0_13829.432373046875: CORRECT\n", + "EALALGVNHIDTSDFYGPHVTNQIIR found in part_0.0_13829.432373046875: CORRECT\n", + "EALASLELPEGMGLIVR found in part_0.0_13829.432373046875: CORRECT\n", + "EALDFFAR found in part_0.0_13829.432373046875: CORRECT\n", + "EALDSFR found in part_0.0_13829.432373046875: CORRECT\n", + "EALEACSVDLVALR found in part_0.0_13829.432373046875: CORRECT\n", + "EALETFMK found in part_0.0_13829.432373046875: CORRECT\n", + "EALEVQR found in part_0.0_13829.432373046875: CORRECT\n", + "EALGDQIPLAVISGPTFAK found in part_0.0_13829.432373046875: CORRECT\n", + "EALGDQIPLAVISGPTFAK found in part_0.0_13829.432373046875: CORRECT\n", + "EALGELLAR found in part_0.0_13829.432373046875: CORRECT\n", + "EALGFPMCNK found in part_0.0_13829.432373046875: CORRECT\n", + "EALGLPHSDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "EALGLPHSDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "EALGVLHFK found in part_0.0_13829.432373046875: CORRECT\n", + "EALHDSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EALHPEIDGCEGILNAMAR found in part_0.0_13829.432373046875: CORRECT\n", + "EALLDSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EALLDSLKK found in part_0.0_13829.432373046875: CORRECT\n", + "EALLGCASPECYQDQAAFLGASIGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide EALLQLK NOT FOUND in any FASTA file.\n", + "EALNYAINRPALVK found in part_0.0_13829.432373046875: CORRECT\n", + "EALNYAINRPALVK found in part_0.0_13829.432373046875: CORRECT\n", + "EALPVIR found in part_0.0_13829.432373046875: CORRECT\n", + "EALQVDSLTAIQER found in part_0.0_13829.432373046875: CORRECT\n", + "EALSYLANATGK found in part_0.0_13829.432373046875: CORRECT\n", + "EALTFVQNYHPALR found in part_0.0_13829.432373046875: CORRECT\n", + "EALVAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EALVPFGK found in part_0.0_13829.432373046875: CORRECT\n", + "EALYPYSDDLTIVTK found in part_0.0_13829.432373046875: CORRECT\n", + "EAMEPEFK found in part_0.0_13829.432373046875: CORRECT\n", + "EAMEPEFK found in part_0.0_13829.432373046875: CORRECT\n", + "EAMGSTQSIMVGPDGELYGASDPR found in part_0.0_13829.432373046875: CORRECT\n", + "EANEEIDGDERPETSHLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EANEEIDGDERPETSHLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EANVPVILCSSK found in part_0.0_13829.432373046875: CORRECT\n", + "EAPDDATFAR found in part_0.0_13829.432373046875: CORRECT\n", + "EAPDGVATEMLDEGLVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAPFVFR found in part_0.0_13829.432373046875: CORRECT\n", + "EAPGQPEPVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAPLAIELDHDK found in part_0.0_13829.432373046875: CORRECT\n", + "EAPLAIELDHDK found in part_0.0_13829.432373046875: CORRECT\n", + "EAPQTLAQEVDR found in part_0.0_13829.432373046875: CORRECT\n", + "EAPVYACLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAQAPIVAITGSNGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAQLDIQSQSQPPTEEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "EAQLLER found in part_0.0_13829.432373046875: CORRECT\n", + "EAQQLLALENPLPLPAYER found in part_0.0_13829.432373046875: CORRECT\n", + "EAQSLLEQIR found in part_0.0_13829.432373046875: CORRECT\n", + "EASAGNFADLLAHSDGLIK found in part_0.0_13829.432373046875: CORRECT\n", + "EASAGNFADLLAHSDGLIK found in part_0.0_13829.432373046875: CORRECT\n", + "EASAQGKPPLDIHVLPR found in part_0.0_13829.432373046875: CORRECT\n", + "EASAQGKPPLDIHVLPR found in part_0.0_13829.432373046875: CORRECT\n", + "EASFAQGLR found in part_0.0_13829.432373046875: CORRECT\n", + "EASGFGADYNAMIR found in part_0.0_13829.432373046875: CORRECT\n", + "EASVATATQVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "EATEQSQPAAAPEAPAAEQGE found in part_0.0_13829.432373046875: CORRECT\n", + "EATIDVNALAAK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVAATGATASVIYVPAPFCK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVADIGYPCIVK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVADIGYPCIVKPVMSSSGK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVDFLHYYAGQVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVDTTSQPVATEK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVEIVSEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVESVLAQHGLADCVHYVGQAVSGDR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVESVLAQHGLADCVHYVGQAVSGDR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVFQYALYEPGLLEPEGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVMDSVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVNLIQSLDPR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVNQVIALLDSGALR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVNQVIALLDSGALR found in part_0.0_13829.432373046875: CORRECT\n", + "EAVPAGFETFK found in part_0.0_13829.432373046875: CORRECT\n", + "EAVQFLTGEYR found in part_0.0_13829.432373046875: CORRECT\n", + "EAYAQLSADDENASFAVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAYAQLSADDENASFAVR found in part_0.0_13829.432373046875: CORRECT\n", + "EAYELVAPILTK found in part_0.0_13829.432373046875: CORRECT\n", + "EAYELVAPILTK found in part_0.0_13829.432373046875: CORRECT\n", + "EAYEVLTDSQK found in part_0.0_13829.432373046875: CORRECT\n", + "EAYIVTIEK found in part_0.0_13829.432373046875: CORRECT\n", + "EAYQNPGILAAVDR found in part_0.0_13829.432373046875: CORRECT\n", + "ECAAEITDK found in part_0.0_13829.432373046875: CORRECT\n", + "ECDLAGAIK found in part_0.0_13829.432373046875: CORRECT\n", + "ECEAIVLTDSSK found in part_0.0_13829.432373046875: CORRECT\n", + "ECISENQILK found in part_0.0_13829.432373046875: CORRECT\n", + "ECITSMVSR found in part_0.0_13829.432373046875: CORRECT\n", + "ECSHYCELVSSPEQIPQVLAIAMR found in part_0.0_13829.432373046875: CORRECT\n", + "ECTLETLEEMLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ECTLETLEEMLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ECVPMADLAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "EDAAVTLSR found in part_0.0_13829.432373046875: CORRECT\n", + "EDALALIR found in part_0.0_13829.432373046875: CORRECT\n", + "EDALEFSEK found in part_0.0_13829.432373046875: CORRECT\n", + "EDAQLLYGFNNK found in part_0.0_13829.432373046875: CORRECT\n", + "EDAVEFFAK found in part_0.0_13829.432373046875: CORRECT\n", + "EDEIVIDR found in part_0.0_13829.432373046875: CORRECT\n", + "EDEPMPLTSGEFAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EDFAAYR found in part_0.0_13829.432373046875: CORRECT\n", + "EDFAAYRDELIISTK found in part_0.0_13829.432373046875: CORRECT\n", + "EDFAPLAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "EDFNSQNPSLPLNEFR found in part_0.0_13829.432373046875: CORRECT\n", + "EDGIYVTMEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EDGPFVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EDGTIDFDDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "EDGTIDFDDGSKTENTR found in part_0.0_13829.432373046875: CORRECT\n", + "EDGTPEPDFQQQVR found in part_0.0_13829.432373046875: CORRECT\n", + "EDGYETIMVNCNPETVSTDYDTSDR found in part_0.0_13829.432373046875: CORRECT\n", + "EDIDAEQLATGDLSER found in part_0.0_13829.432373046875: CORRECT\n", + "EDIEYVESIK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLAAYK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLGGTVDANNDITAK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLIAYLK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLLANR found in part_0.0_13829.432373046875: CORRECT\n", + "EDLLASGR found in part_0.0_13829.432373046875: CORRECT\n", + "EDLLISGPGK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLNENAPR found in part_0.0_13829.432373046875: CORRECT\n", + "EDLVNEIK found in part_0.0_13829.432373046875: CORRECT\n", + "EDLVNEIK found in part_0.0_13829.432373046875: CORRECT\n", + "EDNSLPVR found in part_0.0_13829.432373046875: CORRECT\n", + "EDPAGNYIHYGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EDPAGNYIHYGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EDPVPLPELPCEK found in part_0.0_13829.432373046875: CORRECT\n", + "EDQDSFALR found in part_0.0_13829.432373046875: CORRECT\n", + "EDSDTDGQVFYK found in part_0.0_13829.432373046875: CORRECT\n", + "EDSETFQGEGHFSVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "EDTIPFLEALK found in part_0.0_13829.432373046875: CORRECT\n", + "EDTPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "EDVLGEALK found in part_0.0_13829.432373046875: CORRECT\n", + "EDVQAYVK found in part_0.0_13829.432373046875: CORRECT\n", + "EDVQAYVK found in part_0.0_13829.432373046875: CORRECT\n", + "EDYEVTGGTVEFK found in part_0.0_13829.432373046875: CORRECT\n", + "EDYGFEDGLFTGYDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "EDYTPYTFTK found in part_0.0_13829.432373046875: CORRECT\n", + "EEAELAVASTR found in part_0.0_13829.432373046875: CORRECT\n", + "EEAESFMTK found in part_0.0_13829.432373046875: CORRECT\n", + "EEAHGAPLGEEEVALAR found in part_0.0_13829.432373046875: CORRECT\n", + "EEAHGAPLGEEEVALAR found in part_0.0_13829.432373046875: CORRECT\n", + "EEALNLENK found in part_0.0_13829.432373046875: CORRECT\n", + "EEDDVVVIK found in part_0.0_13829.432373046875: CORRECT\n", + "EEDFIDR found in part_0.0_13829.432373046875: CORRECT\n", + "EEDFVAER found in part_0.0_13829.432373046875: CORRECT\n", + "EEDLVER found in part_0.0_13829.432373046875: CORRECT\n", + "EEEAVSPHLQK found in part_0.0_13829.432373046875: CORRECT\n", + "EEEGALVISNLPER found in part_0.0_13829.432373046875: CORRECT\n", + "EEEGALVISNLPER found in part_0.0_13829.432373046875: CORRECT\n", + "EEESAAAAEVEER found in part_0.0_13829.432373046875: CORRECT\n", + "EEESAAAAEVEER found in part_0.0_13829.432373046875: CORRECT\n", + "EEFEAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "EEFEEICAR found in part_0.0_13829.432373046875: CORRECT\n", + "EEFGVYAVASGR found in part_0.0_13829.432373046875: CORRECT\n", + "EEFLADNPGIDAEDANVQQFNAQK found in part_0.0_13829.432373046875: CORRECT\n", + "EEFYETLR found in part_0.0_13829.432373046875: CORRECT\n", + "EEGFIEDFK found in part_0.0_13829.432373046875: CORRECT\n", + "EEGYSFDFAYTSVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EEIDAFLDR found in part_0.0_13829.432373046875: CORRECT\n", + "EEIEGSGILSK found in part_0.0_13829.432373046875: CORRECT\n", + "EEIFGPVLVVTR found in part_0.0_13829.432373046875: CORRECT\n", + "EEIKEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EEKPEFDPILLR found in part_0.0_13829.432373046875: CORRECT\n", + "EELAIPPQIK found in part_0.0_13829.432373046875: CORRECT\n", + "EELDEIEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "EELDEIEQAKDEAR found in part_0.0_13829.432373046875: CORRECT\n", + "EELDFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EELELVR found in part_0.0_13829.432373046875: CORRECT\n", + "EELFITTK found in part_0.0_13829.432373046875: CORRECT\n", + "EELFYPSNEEK found in part_0.0_13829.432373046875: CORRECT\n", + "EELLAIAPVFGQK found in part_0.0_13829.432373046875: CORRECT\n", + "EELLTTQEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "EELSAFLSQCR found in part_0.0_13829.432373046875: CORRECT\n", + "EELSAFLSQCR found in part_0.0_13829.432373046875: CORRECT\n", + "EELTNGGYNIGR found in part_0.0_13829.432373046875: CORRECT\n", + "EELVTLTGGQK found in part_0.0_13829.432373046875: CORRECT\n", + "EEMGEILAK found in part_0.0_13829.432373046875: CORRECT\n", + "EENIVFEVPK found in part_0.0_13829.432373046875: CORRECT\n", + "EENVIGHYITDR found in part_0.0_13829.432373046875: CORRECT\n", + "EENVIGHYITDR found in part_0.0_13829.432373046875: CORRECT\n", + "EEPLEILR found in part_0.0_13829.432373046875: CORRECT\n", + "EEPLEILREEDFVAER found in part_0.0_13829.432373046875: CORRECT\n", + "EEQHLYDLCELEALSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EEQHTPVSDISALTVGQALK found in part_0.0_13829.432373046875: CORRECT\n", + "EEQQDNAIFSAK found in part_0.0_13829.432373046875: CORRECT\n", + "EERPTDVVFAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "EERPTDVVFAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "EESDSVFMR found in part_0.0_13829.432373046875: CORRECT\n", + "EESEAEQAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "EESEAEQAVARPQVTVIPR found in part_0.0_13829.432373046875: CORRECT\n", + "EETFGPLAPLFR found in part_0.0_13829.432373046875: CORRECT\n", + "EETGISELDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "EETLAQHGAVSEPVVVEMAIGALK found in part_0.0_13829.432373046875: CORRECT\n", + "EEVFGPVVNLVR found in part_0.0_13829.432373046875: CORRECT\n", + "EEVGALVK found in part_0.0_13829.432373046875: CORRECT\n", + "EEVGFGANDLTFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EEVLLTEIR found in part_0.0_13829.432373046875: CORRECT\n", + "EEVMLTCR found in part_0.0_13829.432373046875: CORRECT\n", + "EEVPCYCGK found in part_0.0_13829.432373046875: CORRECT\n", + "EEVVTVPGLGSMLLPGK found in part_0.0_13829.432373046875: CORRECT\n", + "EEYPQSAAIDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFAAVPIR found in part_0.0_13829.432373046875: CORRECT\n", + "EFADNLDSDFK found in part_0.0_13829.432373046875: CORRECT\n", + "EFADVQVVAPDR found in part_0.0_13829.432373046875: CORRECT\n", + "EFAEPACVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "EFAETGVDFISVGALTK found in part_0.0_13829.432373046875: CORRECT\n", + "EFDAVVIGAGGAGMR found in part_0.0_13829.432373046875: CORRECT\n", + "EFDFEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EFDNSYTR found in part_0.0_13829.432373046875: CORRECT\n", + "EFDQYVNLRPVR found in part_0.0_13829.432373046875: CORRECT\n", + "EFELGECLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFEQIYPK found in part_0.0_13829.432373046875: CORRECT\n", + "EFFDAVPALAR found in part_0.0_13829.432373046875: CORRECT\n", + "EFFGSSQLSQFMDQNNPLSEITHK found in part_0.0_13829.432373046875: CORRECT\n", + "EFGEDVEK found in part_0.0_13829.432373046875: CORRECT\n", + "EFGEGEQLPSER found in part_0.0_13829.432373046875: CORRECT\n", + "EFGELKEETCR found in part_0.0_13829.432373046875: CORRECT\n", + "EFGELKEETCR found in part_0.0_13829.432373046875: CORRECT\n", + "EFGESKYSFMR found in part_0.0_13829.432373046875: CORRECT\n", + "EFGINHDADFLAMNPNGLVPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFGVNLAK found in part_0.0_13829.432373046875: CORRECT\n", + "EFGYAQVEVVNDSALVR found in part_0.0_13829.432373046875: CORRECT\n", + "EFGYAQVEVVNDSALVR found in part_0.0_13829.432373046875: CORRECT\n", + "EFIDSSQPPLSEVNQEK found in part_0.0_13829.432373046875: CORRECT\n", + "EFIDSSQPPLSEVNQEK found in part_0.0_13829.432373046875: CORRECT\n", + "EFILEHLTK found in part_0.0_13829.432373046875: CORRECT\n", + "EFIPVQGVYAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "EFIQVAEEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "EFIQVAEEAEKDFR found in part_0.0_13829.432373046875: CORRECT\n", + "EFIQVAEEAEKDFR found in part_0.0_13829.432373046875: CORRECT\n", + "EFLDANLA found in part_0.0_13829.432373046875: CORRECT\n", + "EFLDEHQK found in part_0.0_13829.432373046875: CORRECT\n", + "EFLENYLLTDEGLEAVNK found in part_0.0_13829.432373046875: CORRECT\n", + "EFNVEANVGK found in part_0.0_13829.432373046875: CORRECT\n", + "EFNVEANVGKPQVAYR found in part_0.0_13829.432373046875: CORRECT\n", + "EFNVEANVGKPQVAYR found in part_0.0_13829.432373046875: CORRECT\n", + "EFPCPIPK found in part_0.0_13829.432373046875: CORRECT\n", + "EFPLPTYATSGSAGLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFPLPTYATSGSAGLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFRPGIETTER found in part_0.0_13829.432373046875: CORRECT\n", + "EFRPGIETTER found in part_0.0_13829.432373046875: CORRECT\n", + "EFSHNVVLAN found in part_0.0_13829.432373046875: CORRECT\n", + "EFSQDPGSANQGGDLGWATPDIFDPAFR found in part_0.0_13829.432373046875: CORRECT\n", + "EFVESLETPR found in part_0.0_13829.432373046875: CORRECT\n", + "EFVETALR found in part_0.0_13829.432373046875: CORRECT\n", + "EFVFTIADK found in part_0.0_13829.432373046875: CORRECT\n", + "EFVSSLATR found in part_0.0_13829.432373046875: CORRECT\n", + "EFVYSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "EFYEKPTTER found in part_0.0_13829.432373046875: CORRECT\n", + "EFYEKPTTER found in part_0.0_13829.432373046875: CORRECT\n", + "EGADTLITAGAIQSNHVR found in part_0.0_13829.432373046875: CORRECT\n", + "EGADTLITAGAIQSNHVR found in part_0.0_13829.432373046875: CORRECT\n", + "EGADVAISYLPVEEEDAQDVK found in part_0.0_13829.432373046875: CORRECT\n", + "EGADVAISYLPVEEEDAQDVKK found in part_0.0_13829.432373046875: CORRECT\n", + "EGADVLTGGR found in part_0.0_13829.432373046875: CORRECT\n", + "EGAELAFTYQNDK found in part_0.0_13829.432373046875: CORRECT\n", + "EGAFTDPDSYFHNYAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGAIGVFTAGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGAIVIDVGINR found in part_0.0_13829.432373046875: CORRECT\n", + "EGANVSIIENGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGATVAIPNDPTNLGR found in part_0.0_13829.432373046875: CORRECT\n", + "EGATVCGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EGATVTGLDMGFEPLQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGCSLEDAVENIDIGGPTMVR found in part_0.0_13829.432373046875: CORRECT\n", + "EGDALLQGGSLTGNGSVEK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDAVQLVGFGTFK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDAVQLVGFGTFK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDDVALVGFGTFAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDFLLLQK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDNYVVLSDILGDEDHLGDMDFK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDPNLGVIAETLTEHGTR found in part_0.0_13829.432373046875: CORRECT\n", + "EGDVLLGISTSGNSANVIK found in part_0.0_13829.432373046875: CORRECT\n", + "EGDVLLGISTSGNSANVIK found in part_0.0_13829.432373046875: CORRECT\n", + "EGEATLAPSLDLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGEATLAPSLDLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGEATLAPSLDLVGKI found in part_0.0_13829.432373046875: CORRECT\n", + "EGEGENLIVNR found in part_0.0_13829.432373046875: CORRECT\n", + "EGEIDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGENVVGSETR found in part_0.0_13829.432373046875: CORRECT\n", + "EGEPMGVIIQK found in part_0.0_13829.432373046875: CORRECT\n", + "EGETLVLLDGTEAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGETLVVAAATGPVGATVGQIGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGFELAVSR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFELAVSRPK found in part_0.0_13829.432373046875: CORRECT\n", + "EGFELAVSRPK found in part_0.0_13829.432373046875: CORRECT\n", + "EGFEVTYLAPQR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFEVTYLAPQR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFFTQLATDELAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGFQPTETQPR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFTELTLR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFYNNTIFHR found in part_0.0_13829.432373046875: CORRECT\n", + "EGFYNNTIFHR found in part_0.0_13829.432373046875: CORRECT\n", + "EGGIDAYPVDPK found in part_0.0_13829.432373046875: CORRECT\n", + "EGGIYTPALR found in part_0.0_13829.432373046875: CORRECT\n", + "EGGLTPSLGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIEPDQPGVVGPIK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIEPDQPGVVGPIK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIEPDQPGVVGPIKQIEALQQK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIFCGVSSGGAVAGALR found in part_0.0_13829.432373046875: CORRECT\n", + "EGIHTCLDTNGFVR found in part_0.0_13829.432373046875: CORRECT\n", + "EGITIADAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIVQVFFDPDR found in part_0.0_13829.432373046875: CORRECT\n", + "EGIVQVFFDPDRADALK found in part_0.0_13829.432373046875: CORRECT\n", + "EGIYVTGFFYPVVPK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLGGSLDLVER found in part_0.0_13829.432373046875: CORRECT\n", + "EGLIAVVSVK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLIDPNHSVQIGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EGLIDPNHSVQIGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EGLLEPLAVTER found in part_0.0_13829.432373046875: CORRECT\n", + "EGLNEGFK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLNQIFK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLNVLQYFISTHGAR found in part_0.0_13829.432373046875: CORRECT\n", + "EGLSEEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "EGLTVFR found in part_0.0_13829.432373046875: CORRECT\n", + "EGLVHISQIADK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLVHISQIADK found in part_0.0_13829.432373046875: CORRECT\n", + "EGLVHISQIADKR found in part_0.0_13829.432373046875: CORRECT\n", + "EGMNNIIAAIEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGMPVVADVDQR found in part_0.0_13829.432373046875: CORRECT\n", + "EGNDFYHEMTDSNVIDK found in part_0.0_13829.432373046875: CORRECT\n", + "EGNGYLLSK found in part_0.0_13829.432373046875: CORRECT\n", + "EGPAEDFANQEAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGPAEDFANQEAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGQEVIVQIDK found in part_0.0_13829.432373046875: CORRECT\n", + "EGQEVIVQIDKEER found in part_0.0_13829.432373046875: CORRECT\n", + "EGQHAFVNFR found in part_0.0_13829.432373046875: CORRECT\n", + "EGQHAFVNFR found in part_0.0_13829.432373046875: CORRECT\n", + "EGQNLDFVGGAE found in part_0.0_13829.432373046875: CORRECT\n", + "EGQSLPVGVGQPTLK found in part_0.0_13829.432373046875: CORRECT\n", + "EGRPSEGETLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "EGRPSEGETLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "EGSDAIYAGTR found in part_0.0_13829.432373046875: CORRECT\n", + "EGSGMVEFSR found in part_0.0_13829.432373046875: CORRECT\n", + "EGSSLLGSDAGELAGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGTDLFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EGTDLFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EGTLITE found in part_0.0_13829.432373046875: CORRECT\n", + "EGTQLTISGHPVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EGTRPAVVIPTNEELVIAQDASR found in part_0.0_13829.432373046875: CORRECT\n", + "EGTRPAVVIPTNEELVIAQDASR found in part_0.0_13829.432373046875: CORRECT\n", + "EGVCGSDGLNMNGK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVFHTEWLD found in part_0.0_13829.432373046875: CORRECT\n", + "EGVFVNGAAQGYLIDK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVGDVKPFL found in part_0.0_13829.432373046875: CORRECT\n", + "EGVHLHDEDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "EGVIGEILSCHTK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVIGEILSCHTK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVITVEDGTGLQDELDVVEGMQFDR found in part_0.0_13829.432373046875: CORRECT\n", + "EGVLDVIDK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVMIGAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVNSTESGLQFR found in part_0.0_13829.432373046875: CORRECT\n", + "EGVSKDDAEALK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVSKDDAEALK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVTALNR found in part_0.0_13829.432373046875: CORRECT\n", + "EGVTGWADTTMLHSEAK found in part_0.0_13829.432373046875: CORRECT\n", + "EGVVVPPVPDQEPEA found in part_0.0_13829.432373046875: CORRECT\n", + "EGYETLLNTDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EGYFCLDSR found in part_0.0_13829.432373046875: CORRECT\n", + "EHEDTLAGIEATGVTQR found in part_0.0_13829.432373046875: CORRECT\n", + "EHEDTLAGIEATGVTQR found in part_0.0_13829.432373046875: CORRECT\n", + "EHEGEIITGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "EHEGEIITGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "EHFAGLCK found in part_0.0_13829.432373046875: CORRECT\n", + "EHGTQHSDAILTR found in part_0.0_13829.432373046875: CORRECT\n", + "EHGYETVVMGASFR found in part_0.0_13829.432373046875: CORRECT\n", + "EHGYETVVMGASFR found in part_0.0_13829.432373046875: CORRECT\n", + "EHGYETVVMGASFRNIGEILELAGCDR found in part_0.0_13829.432373046875: CORRECT\n", + "EHIDGLWPVLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EHILLGR found in part_0.0_13829.432373046875: CORRECT\n", + "EHIPVLVYGPK found in part_0.0_13829.432373046875: CORRECT\n", + "EHIPVLVYGPK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLGLCQASAVVMTQDDLPFAK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLGTGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLGYPELPATIASK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLGYPELPATIASK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLIQFGGAEPVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLIQFGGAEPVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EHLLLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EHLSQEVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "EHNAEVTGFIR found in part_0.0_13829.432373046875: CORRECT\n", + "EHNAEVTGFIR found in part_0.0_13829.432373046875: CORRECT\n", + "EHPVLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "EHVEQILAAQATR found in part_0.0_13829.432373046875: CORRECT\n", + "EHVEQILAAQATR found in part_0.0_13829.432373046875: CORRECT\n", + "EHVNPGFLEYR found in part_0.0_13829.432373046875: CORRECT\n", + "EHVNPGFLEYR found in part_0.0_13829.432373046875: CORRECT\n", + "EHVTKPVVGYIAGVTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "EHVTKPVVGYIAGVTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "EHVTKPVVGYIAGVTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "EIADGLASAER found in part_0.0_13829.432373046875: CORRECT\n", + "EIALILQR found in part_0.0_13829.432373046875: CORRECT\n", + "EIANAQQGLPSGITLK found in part_0.0_13829.432373046875: CORRECT\n", + "EIAYFFGEGEVCPR found in part_0.0_13829.432373046875: CORRECT\n", + "EICPELTLR found in part_0.0_13829.432373046875: CORRECT\n", + "EIDATCTFSNQAFDSLIPSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EIDPHTNYLSPR found in part_0.0_13829.432373046875: CORRECT\n", + "EIDQILK found in part_0.0_13829.432373046875: CORRECT\n", + "EIDYTRPTCILMGQEK found in part_0.0_13829.432373046875: CORRECT\n", + "EIEAAYNELK found in part_0.0_13829.432373046875: CORRECT\n", + "EIEAAYNELKK found in part_0.0_13829.432373046875: CORRECT\n", + "EIEAAYNELKK found in part_0.0_13829.432373046875: CORRECT\n", + "EIEEGLINNQILDVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIELDVLDHLR found in part_0.0_13829.432373046875: CORRECT\n", + "EIELEDK found in part_0.0_13829.432373046875: CORRECT\n", + "EIELEDK found in part_0.0_13829.432373046875: CORRECT\n", + "EIENVTNITGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIESIIEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "EIETDTEGYLK found in part_0.0_13829.432373046875: CORRECT\n", + "EIETRPGSIVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIFEELFPLPSAAECVPGGPSVACSSAK found in part_0.0_13829.432373046875: CORRECT\n", + "EIFGSSDTDADPVAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIFSQLTEATR found in part_0.0_13829.432373046875: CORRECT\n", + "EIGAAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGAVLEVGESR found in part_0.0_13829.432373046875: CORRECT\n", + "EIGEALYDAYPDLDPK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGELENK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGISNFTIPLMEK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGNGFSELNDAEDQAER found in part_0.0_13829.432373046875: CORRECT\n", + "EIGNGFSELNDAEDQAER found in part_0.0_13829.432373046875: CORRECT\n", + "EIGNGFSELNDAEDQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "EIGNGFSELNDAEDQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "EIGVETGGSNVQFAVNPK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGVETGGSNVQFAVNPK found in part_0.0_13829.432373046875: CORRECT\n", + "EIGYPLVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIGYPLVVRPSYVLGGR found in part_0.0_13829.432373046875: CORRECT\n", + "EIIGVANFSNVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EIIHQQMGGLR found in part_0.0_13829.432373046875: CORRECT\n", + "EIIHQQMGGLR found in part_0.0_13829.432373046875: CORRECT\n", + "EILAQLSQYPVSTR found in part_0.0_13829.432373046875: CORRECT\n", + "EILAQLSQYPVSTR found in part_0.0_13829.432373046875: CORRECT\n", + "EILAVVEAVSNEK found in part_0.0_13829.432373046875: CORRECT\n", + "EILAVVEAVSNEK found in part_0.0_13829.432373046875: CORRECT\n", + "EILDVQAR found in part_0.0_13829.432373046875: CORRECT\n", + "EILEDYAGGMR found in part_0.0_13829.432373046875: CORRECT\n", + "EILGDEADQYVK found in part_0.0_13829.432373046875: CORRECT\n", + "EILGIHCFGER found in part_0.0_13829.432373046875: CORRECT\n", + "EILGIHCFGER found in part_0.0_13829.432373046875: CORRECT\n", + "EILIITTPEDK found in part_0.0_13829.432373046875: CORRECT\n", + "EILLVTHASK found in part_0.0_13829.432373046875: CORRECT\n", + "EILQDSTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "EILSEMGYTHVENAGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EILSEMGYTHVENAGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EILTNDISDNSGLGQHTTTAAR found in part_0.0_13829.432373046875: CORRECT\n", + "EIMALADLANR found in part_0.0_13829.432373046875: CORRECT\n", + "EIMAPLFQK found in part_0.0_13829.432373046875: CORRECT\n", + "EIMQVALNQAK found in part_0.0_13829.432373046875: CORRECT\n", + "EIPFLYASSAATYGGR found in part_0.0_13829.432373046875: CORRECT\n", + "EIPFLYASSAATYGGR found in part_0.0_13829.432373046875: CORRECT\n", + "EIPILSDELQLK found in part_0.0_13829.432373046875: CORRECT\n", + "EIPPLDYPR found in part_0.0_13829.432373046875: CORRECT\n", + "EIPSDIVYQDDLVTAFR found in part_0.0_13829.432373046875: CORRECT\n", + "EIPSDIVYQDDLVTAFR found in part_0.0_13829.432373046875: CORRECT\n", + "EISCVDSAELGK found in part_0.0_13829.432373046875: CORRECT\n", + "EISLMKPGSLLINASR found in part_0.0_13829.432373046875: CORRECT\n", + "EISLMKPGSLLINASR found in part_0.0_13829.432373046875: CORRECT\n", + "EISLSEAPNFAEAIINNQIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "EISMSIK found in part_0.0_13829.432373046875: CORRECT\n", + "EISMSIK found in part_0.0_13829.432373046875: CORRECT\n", + "EISNPENLMLSEELR found in part_0.0_13829.432373046875: CORRECT\n", + "EISPDFINVK found in part_0.0_13829.432373046875: CORRECT\n", + "EISSHDSSTNGLINR found in part_0.0_13829.432373046875: CORRECT\n", + "EISSHDSSTNGLINR found in part_0.0_13829.432373046875: CORRECT\n", + "EISTTIAFVR found in part_0.0_13829.432373046875: CORRECT\n", + "EISYAEK found in part_0.0_13829.432373046875: CORRECT\n", + "EISYIHAEAYAAGELK found in part_0.0_13829.432373046875: CORRECT\n", + "EITAEETAELLK found in part_0.0_13829.432373046875: CORRECT\n", + "EITGGLDDTQLR found in part_0.0_13829.432373046875: CORRECT\n", + "EITIAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "EITIAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "EITLEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "EITLEPADNAR found in part_0.0_13829.432373046875: CORRECT\n", + "EITMRELTPAAVTGTLTTPVGR found in part_0.0_13829.432373046875: CORRECT\n", + "EITPSTELR found in part_0.0_13829.432373046875: CORRECT\n", + "EITPVNIEEELK found in part_0.0_13829.432373046875: CORRECT\n", + "EITSTDDFYR found in part_0.0_13829.432373046875: CORRECT\n", + "EIVAVHPQR found in part_0.0_13829.432373046875: CORRECT\n", + "EIVFTSGATESDNLAIK found in part_0.0_13829.432373046875: CORRECT\n", + "EIVFTSGATESDNLAIK found in part_0.0_13829.432373046875: CORRECT\n", + "EIVSELDK found in part_0.0_13829.432373046875: CORRECT\n", + "EIYAPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "EIYEQPNAIK found in part_0.0_13829.432373046875: CORRECT\n", + "EIYPNGTETHTYVDVPGLSTMLEGASR found in part_0.0_13829.432373046875: CORRECT\n", + "EIYQLINQFK found in part_0.0_13829.432373046875: CORRECT\n", + "EKDPSLSFR found in part_0.0_13829.432373046875: CORRECT\n", + "EKLDNLVFVINCNLQR found in part_0.0_13829.432373046875: CORRECT\n", + "EKLEGYAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "EKLLSLLR found in part_0.0_13829.432373046875: CORRECT\n", + "EKLPPGFQR found in part_0.0_13829.432373046875: CORRECT\n", + "EKPAHLAQSIR found in part_0.0_13829.432373046875: CORRECT\n", + "EKPDYDDNLFGEPDEGIVISR found in part_0.0_13829.432373046875: CORRECT\n", + "EKPTFLVANK found in part_0.0_13829.432373046875: CORRECT\n", + "EKPTWLEVDAGK found in part_0.0_13829.432373046875: CORRECT\n", + "EKTEEVIAENPGK found in part_0.0_13829.432373046875: CORRECT\n", + "EKTEEVIAENPGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAAATSSADEGASVAYK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAAFSQFASDLDDATR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAAFSQFASDLDDATR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAAFSQFASDLDDATRK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAAQIGENVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAASGVMLTSDENVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELADIPVLHAYPVGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ELADQLVPYAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAENNPLGDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAESEGAIER found in part_0.0_13829.432373046875: CORRECT\n", + "ELAEVVAAATPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAFEQMNNAEYIEVEPEQK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAGVSEVSFTEFAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAGWMCDVLDSINDEAVIER found in part_0.0_13829.432373046875: CORRECT\n", + "ELALQSGLAHK found in part_0.0_13829.432373046875: CORRECT\n", + "ELANVQDLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELANVQDLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAPPEQFR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAQIDQHIADGELNLWQASSDK found in part_0.0_13829.432373046875: CORRECT\n", + "ELASGELIDLTPGLFQR found in part_0.0_13829.432373046875: CORRECT\n", + "ELASGELIDLTPGLFQR found in part_0.0_13829.432373046875: CORRECT\n", + "ELASGLAEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELASGLSCPVGFK found in part_0.0_13829.432373046875: CORRECT\n", + "ELATCTPEYYR found in part_0.0_13829.432373046875: CORRECT\n", + "ELAVEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAVEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAVQIHADAEPLAEATGLK found in part_0.0_13829.432373046875: CORRECT\n", + "ELAYLSADDLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDAETAQAIISR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDAETAQAIISR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDAQPTGFLDSR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDDDTLASYQK found in part_0.0_13829.432373046875: CORRECT\n", + "ELDGFTAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELDLIIPR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDNAQFFTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDPMIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELDQALVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELDSLYGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELEMVVENGCYTLK found in part_0.0_13829.432373046875: CORRECT\n", + "ELEQCLEDFYDQGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELEVALLENR found in part_0.0_13829.432373046875: CORRECT\n", + "ELEVFVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELFDLIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELFEEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELFEEVGLSR found in part_0.0_13829.432373046875: CORRECT\n", + "ELFKDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGASDEADLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGEITR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGEMDDAPDENEALK found in part_0.0_13829.432373046875: CORRECT\n", + "ELGEMDDAPDENEALKR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGFNNVEEAEDGVDALNK found in part_0.0_13829.432373046875: CORRECT\n", + "ELGGNYYSDPDVPPR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGGTCVNVGCVPK found in part_0.0_13829.432373046875: CORRECT\n", + "ELGIPAVVGCGDATER found in part_0.0_13829.432373046875: CORRECT\n", + "ELGIPAVVGCGDATER found in part_0.0_13829.432373046875: CORRECT\n", + "ELGIPVNSEPAEYR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGITHIISSDLGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGLNVPDAEIIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELGLVATDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGLVDDER found in part_0.0_13829.432373046875: CORRECT\n", + "ELGMDPTIHDIR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGMDPTIHDIR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGMDPTIHDIR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGSVNDFIVDGNR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGVINIGGAGTITVDGQCYEIGHR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGVPASAADITAR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGYAAVDDETTQQTMR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGYLGSLAICNVPGSSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELGYLVPQPER found in part_0.0_13829.432373046875: CORRECT\n", + "ELHEETVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELHGEVNFLGTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELHMEQPGDYCITYNGALVQK found in part_0.0_13829.432373046875: CORRECT\n", + "ELIAQGPQIVLVK found in part_0.0_13829.432373046875: CORRECT\n", + "ELIIGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELINTTGDYAHIAE found in part_0.0_13829.432373046875: CORRECT\n", + "ELIPGGVNSPVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELISGFADYVLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ELISNASDAADK found in part_0.0_13829.432373046875: CORRECT\n", + "ELISNASDAADKLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELITDFGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ELIVASSYSK found in part_0.0_13829.432373046875: CORRECT\n", + "ELIYQPTLTEADLSDEQTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLAALNHHETALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLAEIAELSDK found in part_0.0_13829.432373046875: CORRECT\n", + "ELLAGVATNTAYLDGLMKPYLSR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLDAAIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELLEDPTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLEIEGLDEPTVEALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLEIEGLDEPTVEALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLHYCLER found in part_0.0_13829.432373046875: CORRECT\n", + "ELLHYCLER found in part_0.0_13829.432373046875: CORRECT\n", + "ELLIEAQNLGLGAQFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELLIEAQNLGLGAQFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ELLLLSNSTLPGK NOT FOUND in any FASTA file.\n", + "ELLLSDEYAEQK found in part_0.0_13829.432373046875: CORRECT\n", + "ELLNDLQR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLPPVALLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ELLQQPGYIQAGYSLLNAPVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLSQYDFPGDDTPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLSQYDFPGDDTPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLSQYDFPGDDTPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELLTNDPFSSR found in part_0.0_13829.432373046875: CORRECT\n", + "ELMAQLGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELMDNMRNVALEEQAVEAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELMTISK found in part_0.0_13829.432373046875: CORRECT\n", + "ELNADDVVFSFDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELNEQLEENLGYK found in part_0.0_13829.432373046875: CORRECT\n", + "ELNMGVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ELNQAADNLACSLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPAFIIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELPELTAEFIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELPFSSLIFAR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPGLIADGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPLTESLALTIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPPEER found in part_0.0_13829.432373046875: CORRECT\n", + "ELPPEERPAAGAVINEAK found in part_0.0_13829.432373046875: CORRECT\n", + "ELPTPASQTPEALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPVPVIGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPYAPDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELPYMNFPK found in part_0.0_13829.432373046875: CORRECT\n", + "ELQADAQAYGDDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELQADAQAYGDDRR found in part_0.0_13829.432373046875: CORRECT\n", + "ELQDIGVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELQDTLEAAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "ELQFADLQSR found in part_0.0_13829.432373046875: CORRECT\n", + "ELQQQDAESPLIIDEGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELQTIPK found in part_0.0_13829.432373046875: CORRECT\n", + "ELQTIPK found in part_0.0_13829.432373046875: CORRECT\n", + "ELSAEGFNFIGTGVSGGEEGALK found in part_0.0_13829.432373046875: CORRECT\n", + "ELSDDLCSLR found in part_0.0_13829.432373046875: CORRECT\n", + "ELSELIGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELSFLNSGVSIR found in part_0.0_13829.432373046875: CORRECT\n", + "ELSINDEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELSLEEIEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "ELSQGTYLGHITR found in part_0.0_13829.432373046875: CORRECT\n", + "ELSQQYQQLDDEYLQAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ELSSLTAVSPVDGR NOT FOUND in any FASTA file.\n", + "ELTGGIYFGQPK found in part_0.0_13829.432373046875: CORRECT\n", + "ELTPAAVTGTLTTPVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELTPAAVTGTLTTPVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ELTQPDDVR found in part_0.0_13829.432373046875: CORRECT\n", + "ELTQPDDVRK found in part_0.0_13829.432373046875: CORRECT\n", + "ELTSLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ELTVQATTGTNSESDLSSIQDEIK found in part_0.0_13829.432373046875: CORRECT\n", + "ELVADDATNTVYISGIGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELVASGFNR found in part_0.0_13829.432373046875: CORRECT\n", + "ELVASLSER found in part_0.0_13829.432373046875: CORRECT\n", + "ELVEFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELVELPPETSSK found in part_0.0_13829.432373046875: CORRECT\n", + "ELVGEENFYTGIAHGEQER found in part_0.0_13829.432373046875: CORRECT\n", + "ELVGTDATEVAADFPTVEALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELVHNVALR found in part_0.0_13829.432373046875: CORRECT\n", + "ELVNTCLSQPGLTTGQLLEHYR found in part_0.0_13829.432373046875: CORRECT\n", + "ELVQDCR found in part_0.0_13829.432373046875: CORRECT\n", + "ELVSGLTQSATGK found in part_0.0_13829.432373046875: CORRECT\n", + "ELVTDTR found in part_0.0_13829.432373046875: CORRECT\n", + "ELYEQYNK found in part_0.0_13829.432373046875: CORRECT\n", + "ELYEVER found in part_0.0_13829.432373046875: CORRECT\n", + "ELYLGAVVDR found in part_0.0_13829.432373046875: CORRECT\n", + "ELYQTVYSEKPGAVAAPTAGLHFDEPLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "EMAHQQIGMEVLNR found in part_0.0_13829.432373046875: CORRECT\n", + "EMANVAYR found in part_0.0_13829.432373046875: CORRECT\n", + "EMASALSCPVGFK found in part_0.0_13829.432373046875: CORRECT\n", + "EMDDNEGSLTLATR found in part_0.0_13829.432373046875: CORRECT\n", + "EMDDNEGSLTLATR found in part_0.0_13829.432373046875: CORRECT\n", + "EMDDNEGSLTLATR found in part_0.0_13829.432373046875: CORRECT\n", + "EMFGAEEDPFSVLTER found in part_0.0_13829.432373046875: CORRECT\n", + "EMFTLFGPQFVR found in part_0.0_13829.432373046875: CORRECT\n", + "EMGSAVPEEPVLFIKPETALCDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EMGSAVPEEPVLFIKPETALCDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EMGTVELLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EMHGVPVIYLSQLNER found in part_0.0_13829.432373046875: CORRECT\n", + "EMIISEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EMIQALADAR found in part_0.0_13829.432373046875: CORRECT\n", + "EMLEHMASTLAQGER found in part_0.0_13829.432373046875: CORRECT\n", + "EMLIADGIDPNELLNSLAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EMLLDAMENPEKYPQLTIR found in part_0.0_13829.432373046875: CORRECT\n", + "EMLPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EMLPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EMLPVLEAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "EMLPVLEAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "EMNVFCEAEGQAHR found in part_0.0_13829.432373046875: CORRECT\n", + "EMVEANLR found in part_0.0_13829.432373046875: CORRECT\n", + "EMYTFEDR found in part_0.0_13829.432373046875: CORRECT\n", + "ENAAGIPMDAAER found in part_0.0_13829.432373046875: CORRECT\n", + "ENDPTNSMNPGIGK found in part_0.0_13829.432373046875: CORRECT\n", + "ENDVVLVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ENELEEAVMSDR found in part_0.0_13829.432373046875: CORRECT\n", + "ENEPFDVALR found in part_0.0_13829.432373046875: CORRECT\n", + "ENEQQYIR found in part_0.0_13829.432373046875: CORRECT\n", + "ENFAVFLK found in part_0.0_13829.432373046875: CORRECT\n", + "ENFRPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ENGIVPEK found in part_0.0_13829.432373046875: CORRECT\n", + "ENGTYNEIYK found in part_0.0_13829.432373046875: CORRECT\n", + "ENGTYNEIYKK found in part_0.0_13829.432373046875: CORRECT\n", + "ENGTYNEIYKK found in part_0.0_13829.432373046875: CORRECT\n", + "ENGVEPEVVLYLETPADAATLR found in part_0.0_13829.432373046875: CORRECT\n", + "ENGVFCGK found in part_0.0_13829.432373046875: CORRECT\n", + "ENHIIASGSVR found in part_0.0_13829.432373046875: CORRECT\n", + "ENIAPGFSQK found in part_0.0_13829.432373046875: CORRECT\n", + "ENITNLDACITR found in part_0.0_13829.432373046875: CORRECT\n", + "ENLALLDEVEQAAHALK found in part_0.0_13829.432373046875: CORRECT\n", + "ENLEAIEFLR found in part_0.0_13829.432373046875: CORRECT\n", + "ENLGSGFISLFR found in part_0.0_13829.432373046875: CORRECT\n", + "ENMSLTALR found in part_0.0_13829.432373046875: CORRECT\n", + "ENNFALPAVNCVGTDSINAVLETAAK found in part_0.0_13829.432373046875: CORRECT\n", + "ENNIDIVECVK found in part_0.0_13829.432373046875: CORRECT\n", + "ENNLGADVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "ENPDKEQLLVVNLSGR found in part_0.0_13829.432373046875: CORRECT\n", + "ENPGIYPPADVR found in part_0.0_13829.432373046875: CORRECT\n", + "ENPLQQLLDSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "ENQSLLNGPQVDTSK found in part_0.0_13829.432373046875: CORRECT\n", + "ENQVVLFEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "ENSQEAHEAIRPSDVNVMAESLK found in part_0.0_13829.432373046875: CORRECT\n", + "ENTAQPVPFAPNNAR found in part_0.0_13829.432373046875: CORRECT\n", + "ENTEGEYSSLGGR found in part_0.0_13829.432373046875: CORRECT\n", + "ENTLQQAVGLPDQK found in part_0.0_13829.432373046875: CORRECT\n", + "ENTQEVHAIVPVPIASYLLNEK found in part_0.0_13829.432373046875: CORRECT\n", + "ENVLTDGIQTFPDR found in part_0.0_13829.432373046875: CORRECT\n", + "ENVTSIIGNGVVLSPAALMK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ENYLIDNLDR NOT FOUND in any FASTA file.\n", + "ENYPTSQAIGAPLFR found in part_0.0_13829.432373046875: CORRECT\n", + "EPAGTGGFGYDPIFFVPSEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EPANDNINLEAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "EPARPMVAIVGGSK found in part_0.0_13829.432373046875: CORRECT\n", + "EPARPMVAIVGGSK found in part_0.0_13829.432373046875: CORRECT\n", + "EPDFAFVAEEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EPDLNLLQFLQK found in part_0.0_13829.432373046875: CORRECT\n", + "EPDYLDIPAFLR found in part_0.0_13829.432373046875: CORRECT\n", + "EPENYDVR found in part_0.0_13829.432373046875: CORRECT\n", + "EPFAAISISGPISR found in part_0.0_13829.432373046875: CORRECT\n", + "EPFNEEK found in part_0.0_13829.432373046875: CORRECT\n", + "EPFTGTMR found in part_0.0_13829.432373046875: CORRECT\n", + "EPGGTQLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "EPIKNEANNGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EPIKNEANNGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EPILCAPNDPDDAR found in part_0.0_13829.432373046875: CORRECT\n", + "EPILCAPNDPDDARPLSAVQGEK found in part_0.0_13829.432373046875: CORRECT\n", + "EPILGLDVLQTATR found in part_0.0_13829.432373046875: CORRECT\n", + "EPLDPVR found in part_0.0_13829.432373046875: CORRECT\n", + "EPMFFGQPVNVAR found in part_0.0_13829.432373046875: CORRECT\n", + "EPNTANSVDISQR found in part_0.0_13829.432373046875: CORRECT\n", + "EPQGFVADATINTPNGVLVASGK found in part_0.0_13829.432373046875: CORRECT\n", + "EPQLDAMLEHYGIK found in part_0.0_13829.432373046875: CORRECT\n", + "EPQLDAMLEHYGIK found in part_0.0_13829.432373046875: CORRECT\n", + "EPQLTELK found in part_0.0_13829.432373046875: CORRECT\n", + "EPQLTELKK found in part_0.0_13829.432373046875: CORRECT\n", + "EPSLEDLTSQQTEVELR found in part_0.0_13829.432373046875: CORRECT\n", + "EPTPEELAER found in part_0.0_13829.432373046875: CORRECT\n", + "EPVDAFFDK found in part_0.0_13829.432373046875: CORRECT\n", + "EPVLVSGTDGVGTK found in part_0.0_13829.432373046875: CORRECT\n", + "EPVMNLSESEVQEQLDNLVK found in part_0.0_13829.432373046875: CORRECT\n", + "EPVTIHPDDAQER found in part_0.0_13829.432373046875: CORRECT\n", + "EQAAAQESANLSSK found in part_0.0_13829.432373046875: CORRECT\n", + "EQAAAQESANLSSK found in part_0.0_13829.432373046875: CORRECT\n", + "EQAGIPDR found in part_0.0_13829.432373046875: CORRECT\n", + "EQANVALMFLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQARPAAQQSEDELLR found in part_0.0_13829.432373046875: CORRECT\n", + "EQATQEVLMAAAVGK found in part_0.0_13829.432373046875: CORRECT\n", + "EQCSAELLR found in part_0.0_13829.432373046875: CORRECT\n", + "EQDAPITADQLLAPCDGER found in part_0.0_13829.432373046875: CORRECT\n", + "EQDSLQLTELHPSDYPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "EQEAAELKR found in part_0.0_13829.432373046875: CORRECT\n", + "EQESNLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "EQEVLAMGADK found in part_0.0_13829.432373046875: CORRECT\n", + "EQEVLVR found in part_0.0_13829.432373046875: CORRECT\n", + "EQEVYMGEIPLMTDNGTFVINGTER found in part_0.0_13829.432373046875: CORRECT\n", + "EQFNELIAPLVK found in part_0.0_13829.432373046875: CORRECT\n", + "EQFPQEQAER found in part_0.0_13829.432373046875: CORRECT\n", + "EQGFNNVK found in part_0.0_13829.432373046875: CORRECT\n", + "EQGFYEK found in part_0.0_13829.432373046875: CORRECT\n", + "EQGIAFPNDFR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGLLVGLASASPLHMLEK found in part_0.0_13829.432373046875: CORRECT\n", + "EQGLNSENFVAFNLTER found in part_0.0_13829.432373046875: CORRECT\n", + "EQGLNSENFVAFNLTER found in part_0.0_13829.432373046875: CORRECT\n", + "EQGLTPVLCIGETEAENEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "EQGLTPVLCIGETEAENEAGKTEEVCAR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGNESPLNIIACENMVR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGTPEIR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGVNSHVEMAAAFHR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGYMGLHTVGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGYMGLHTVGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGYMGLHTVGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQGYVETLDGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQHVTIPAHQVNAEFFEEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EQHVTIPAHQVNAEFFEEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EQIGAEPR found in part_0.0_13829.432373046875: CORRECT\n", + "EQIIFPEIDYDK found in part_0.0_13829.432373046875: CORRECT\n", + "EQIIFPEIDYDKVDR found in part_0.0_13829.432373046875: CORRECT\n", + "EQIIFPEIDYDKVDR found in part_0.0_13829.432373046875: CORRECT\n", + "EQIPHDAR found in part_0.0_13829.432373046875: CORRECT\n", + "EQIQNIE found in part_0.0_13829.432373046875: CORRECT\n", + "EQIQNIE found in part_0.0_13829.432373046875: CORRECT\n", + "EQITYVADR found in part_0.0_13829.432373046875: CORRECT\n", + "EQITYVADRPGHDR found in part_0.0_13829.432373046875: CORRECT\n", + "EQLGLSQQAVAER found in part_0.0_13829.432373046875: CORRECT\n", + "EQLIAAR found in part_0.0_13829.432373046875: CORRECT\n", + "EQLLEVGDFLK found in part_0.0_13829.432373046875: CORRECT\n", + "EQLPELILQATK found in part_0.0_13829.432373046875: CORRECT\n", + "EQNIFAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "EQPCDNVPATR found in part_0.0_13829.432373046875: CORRECT\n", + "EQPCDNVPATRPTVK found in part_0.0_13829.432373046875: CORRECT\n", + "EQPCDNVPATRPTVK found in part_0.0_13829.432373046875: CORRECT\n", + "EQQGFCEGR found in part_0.0_13829.432373046875: CORRECT\n", + "EQQQDVITR found in part_0.0_13829.432373046875: CORRECT\n", + "EQQTSTFLGNGIAIPHGTTDTR found in part_0.0_13829.432373046875: CORRECT\n", + "EQSKPVTIVGLQPEEGSSIPGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EQTQAAVSLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "EQTQILAEVAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "EQVAYYK found in part_0.0_13829.432373046875: CORRECT\n", + "EQVAYYKEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "EQVLEIVAEEAK found in part_0.0_13829.432373046875: CORRECT\n", + "EQVPAGEFQIMSAGTGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EQVQASLENMAK found in part_0.0_13829.432373046875: CORRECT\n", + "EQVQQALNAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide EQVVIVDAIR NOT FOUND in any FASTA file.\n", + "EQYAPLVK found in part_0.0_13829.432373046875: CORRECT\n", + "EQYLAELAQHEQEGK found in part_0.0_13829.432373046875: CORRECT\n", + "ERDGILR found in part_0.0_13829.432373046875: CORRECT\n", + "ERGEGFQQAVAAHK found in part_0.0_13829.432373046875: CORRECT\n", + "ERGEGFQQAVAAHK found in part_0.0_13829.432373046875: CORRECT\n", + "ERLDPSEYANVK found in part_0.0_13829.432373046875: CORRECT\n", + "ERPDAVLPTMGGQTALNCALELER found in part_0.0_13829.432373046875: CORRECT\n", + "ERPIGHLVDALR found in part_0.0_13829.432373046875: CORRECT\n", + "ERPTIASITFSGNK found in part_0.0_13829.432373046875: CORRECT\n", + "ERQEQQEQEAAELQAVTAIAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "ERVTEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "ESAEPEELVEPFLTR found in part_0.0_13829.432373046875: CORRECT\n", + "ESAPAAAAPAAQPALAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESAPAAAAPAAQPALAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESAVMAITANELDTAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESAVMAITANELDTAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESDAPNEELR found in part_0.0_13829.432373046875: CORRECT\n", + "ESDELIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ESDELIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ESDENDAQIAER found in part_0.0_13829.432373046875: CORRECT\n", + "ESDIEPLIVVK found in part_0.0_13829.432373046875: CORRECT\n", + "ESDLALMTNAGTEIGVASTK found in part_0.0_13829.432373046875: CORRECT\n", + "ESDLLEPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ESDPVDTNAESR found in part_0.0_13829.432373046875: CORRECT\n", + "ESEVLTNLEILER found in part_0.0_13829.432373046875: CORRECT\n", + "ESFLNPGFR found in part_0.0_13829.432373046875: CORRECT\n", + "ESGALFVDR found in part_0.0_13829.432373046875: CORRECT\n", + "ESGATVFAYHVNDPER found in part_0.0_13829.432373046875: CORRECT\n", + "ESGATVFAYHVNDPER found in part_0.0_13829.432373046875: CORRECT\n", + "ESGIIQGDLIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ESGLFDMR found in part_0.0_13829.432373046875: CORRECT\n", + "ESGLILAGTHGDENSSVVTLSCALR found in part_0.0_13829.432373046875: CORRECT\n", + "ESGLLGLTEVTSDCR found in part_0.0_13829.432373046875: CORRECT\n", + "ESGLMNAVTPQR found in part_0.0_13829.432373046875: CORRECT\n", + "ESIIADNNIQTLR found in part_0.0_13829.432373046875: CORRECT\n", + "ESILLTIPPGSQAGQR found in part_0.0_13829.432373046875: CORRECT\n", + "ESLADVSDSER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ESLASLYK NOT FOUND in any FASTA file.\n", + "ESLGLDSESIR found in part_0.0_13829.432373046875: CORRECT\n", + "ESLLDEAQGADCLMVK found in part_0.0_13829.432373046875: CORRECT\n", + "ESLLDEAQGADCLMVKPAGAYLDIVR found in part_0.0_13829.432373046875: CORRECT\n", + "ESLNAELEK found in part_0.0_13829.432373046875: CORRECT\n", + "ESLSASEVAQAIEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ESLTLQPIAR NOT FOUND in any FASTA file.\n", + "ESLVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ESLVTCGR found in part_0.0_13829.432373046875: CORRECT\n", + "ESMANGGGPACLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ESPLGSDLAR NOT FOUND in any FASTA file.\n", + "ESQAIGDYVLAHAYLR found in part_0.0_13829.432373046875: CORRECT\n", + "ESSVPFSYYDNQQK found in part_0.0_13829.432373046875: CORRECT\n", + "ESTFVDTLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESTGHGSPLPQLVHGGPGR found in part_0.0_13829.432373046875: CORRECT\n", + "ESTGHGSPLPQLVHGGPGR found in part_0.0_13829.432373046875: CORRECT\n", + "ESTHEYLK found in part_0.0_13829.432373046875: CORRECT\n", + "ESTLHLVLR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVAELAYYR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVGFLVTIK found in part_0.0_13829.432373046875: CORRECT\n", + "ESVLFGDSTLALR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVLPGGAIEGDR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVLPGGAIEGDRDDYAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVLPSNVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVPAIAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "ESVTIHR found in part_0.0_13829.432373046875: CORRECT\n", + "ESWQDLPQNK found in part_0.0_13829.432373046875: CORRECT\n", + "ESYGYNGDYFLVYPIK found in part_0.0_13829.432373046875: CORRECT\n", + "ESYTKEDLLASGR found in part_0.0_13829.432373046875: CORRECT\n", + "ETAAAALDK found in part_0.0_13829.432373046875: CORRECT\n", + "ETAAGSLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "ETAAYGHFGR found in part_0.0_13829.432373046875: CORRECT\n", + "ETAQAISNELGFTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ETATTAPVQTASPAQTTATPAAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "ETCHEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ETDGLPYR found in part_0.0_13829.432373046875: CORRECT\n", + "ETEAIGHVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ETESALTTR found in part_0.0_13829.432373046875: CORRECT\n", + "ETEVQNEQPVVEEIVQAQEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "ETFADIGQTLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ETFYVCKPSQGAGQC found in part_0.0_13829.432373046875: CORRECT\n", + "ETGACNVQVIGK found in part_0.0_13829.432373046875: CORRECT\n", + "ETGCAVNVK found in part_0.0_13829.432373046875: CORRECT\n", + "ETGEIHYGR found in part_0.0_13829.432373046875: CORRECT\n", + "ETGIASVK found in part_0.0_13829.432373046875: CORRECT\n", + "ETGIASVK found in part_0.0_13829.432373046875: CORRECT\n", + "ETGQEAEYLPEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "ETGQSFLDNILSR found in part_0.0_13829.432373046875: CORRECT\n", + "ETIFNLK found in part_0.0_13829.432373046875: CORRECT\n", + "ETIIVHEIPYQVNK found in part_0.0_13829.432373046875: CORRECT\n", + "ETIIVHEIPYQVNK found in part_0.0_13829.432373046875: CORRECT\n", + "ETLAVCER found in part_0.0_13829.432373046875: CORRECT\n", + "ETLEDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "ETLGDIDPER found in part_0.0_13829.432373046875: CORRECT\n", + "ETLNLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ETLVEYGFR found in part_0.0_13829.432373046875: CORRECT\n", + "ETLYSFDQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ETNIDYR found in part_0.0_13829.432373046875: CORRECT\n", + "ETNVVLKPGMTFTIEPMVNAGK found in part_0.0_13829.432373046875: CORRECT\n", + "ETPADAEVISHQLMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ETPADAEVISHQLMLR found in part_0.0_13829.432373046875: CORRECT\n", + "ETPAPVPTLSPLR found in part_0.0_13829.432373046875: CORRECT\n", + "ETPDLLNFEK found in part_0.0_13829.432373046875: CORRECT\n", + "ETPINLLGFK found in part_0.0_13829.432373046875: CORRECT\n", + "ETQDSETLDTADALEQK found in part_0.0_13829.432373046875: CORRECT\n", + "ETQKSTCTGVEMFR found in part_0.0_13829.432373046875: CORRECT\n", + "ETSAADVPLAIDHFR found in part_0.0_13829.432373046875: CORRECT\n", + "ETSAADVPLAIDHFR found in part_0.0_13829.432373046875: CORRECT\n", + "ETTDAPVTNSR found in part_0.0_13829.432373046875: CORRECT\n", + "ETTFNELMNQQA found in part_0.0_13829.432373046875: CORRECT\n", + "ETTFTGPK found in part_0.0_13829.432373046875: CORRECT\n", + "ETVDFVDNYDGTEK found in part_0.0_13829.432373046875: CORRECT\n", + "ETVDFVDNYDGTEKIPDVMPTK found in part_0.0_13829.432373046875: CORRECT\n", + "ETVDFYDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ETVEAYHMK found in part_0.0_13829.432373046875: CORRECT\n", + "ETVLNLLALR found in part_0.0_13829.432373046875: CORRECT\n", + "ETYNILK found in part_0.0_13829.432373046875: CORRECT\n", + "ETYTGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAAQQVSDQQLETAR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAAQQVSDQQLETAR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAEAYLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAETVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAFAEYGR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAGSIQTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAHLRPR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAIECQR found in part_0.0_13829.432373046875: CORRECT\n", + "EVALELYVDR found in part_0.0_13829.432373046875: CORRECT\n", + "EVALGENGIIEGAK found in part_0.0_13829.432373046875: CORRECT\n", + "EVANFVTK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAQAAIALIDQPK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAQAAIALIDQPK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAQAIGQLEQELGR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAQAIGQLEQELGR found in part_0.0_13829.432373046875: CORRECT\n", + "EVAVDDGILGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAVFPAGVADK found in part_0.0_13829.432373046875: CORRECT\n", + "EVAVPTPGINQVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "EVCSGDTGHAEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVCSGDTGHAEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVDAIMNR found in part_0.0_13829.432373046875: CORRECT\n", + "EVDIYQGDTPFCHFAYIEK found in part_0.0_13829.432373046875: CORRECT\n", + "EVDSIIR found in part_0.0_13829.432373046875: CORRECT\n", + "EVDSLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "EVDVTQLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVEAAFEQLGVPVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVEGFGEVFR found in part_0.0_13829.432373046875: CORRECT\n", + "EVENRPAVSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVENRPAVSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVEVIYR found in part_0.0_13829.432373046875: CORRECT\n", + "EVFGPVLHVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVFGPVLHVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVFGVLEPFNIR found in part_0.0_13829.432373046875: CORRECT\n", + "EVFLGAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "EVFQDLNHHGVYHSGEVVGLGNLVCEK found in part_0.0_13829.432373046875: CORRECT\n", + "EVGERPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EVGSHFHALDR found in part_0.0_13829.432373046875: CORRECT\n", + "EVHIEGYTPEDK found in part_0.0_13829.432373046875: CORRECT\n", + "EVHIEGYTPEDK found in part_0.0_13829.432373046875: CORRECT\n", + "EVHIEGYTPEDKK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIAFLAER found in part_0.0_13829.432373046875: CORRECT\n", + "EVIDGYGK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIEFYSK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIEYFK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIEYFK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIGGDDAR found in part_0.0_13829.432373046875: CORRECT\n", + "EVILMADSSK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIPFGASLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVIPPYYSVK found in part_0.0_13829.432373046875: CORRECT\n", + "EVIYVDSPSK found in part_0.0_13829.432373046875: CORRECT\n", + "EVLAIER found in part_0.0_13829.432373046875: CORRECT\n", + "EVLEALANER found in part_0.0_13829.432373046875: CORRECT\n", + "EVLILLK found in part_0.0_13829.432373046875: CORRECT\n", + "EVLPEGIR found in part_0.0_13829.432373046875: CORRECT\n", + "EVLRPVADELR found in part_0.0_13829.432373046875: CORRECT\n", + "EVMEALVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVMESFIK found in part_0.0_13829.432373046875: CORRECT\n", + "EVMEYHNFQLVNYYK found in part_0.0_13829.432373046875: CORRECT\n", + "EVNGKPCNVVELQGTVGASVAIDR found in part_0.0_13829.432373046875: CORRECT\n", + "EVNTGTNLPAQIDLYAVDGDEYK found in part_0.0_13829.432373046875: CORRECT\n", + "EVNVPDIGGDEVEVTEVMVK found in part_0.0_13829.432373046875: CORRECT\n", + "EVPAAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "EVPAAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "EVPADAYYGVHTLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVPADAYYGVHTLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVPGAAETILR found in part_0.0_13829.432373046875: CORRECT\n", + "EVPILLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVPVEVKPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVPVEVKPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVQALADVTHDAR found in part_0.0_13829.432373046875: CORRECT\n", + "EVQEISPNLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVQPDQMINISGSLDK found in part_0.0_13829.432373046875: CORRECT\n", + "EVQVSHEVDFMTASSYGSGMSTTR found in part_0.0_13829.432373046875: CORRECT\n", + "EVRPDAIICTGR found in part_0.0_13829.432373046875: CORRECT\n", + "EVRPDAIICTGR found in part_0.0_13829.432373046875: CORRECT\n", + "EVSAPYIK found in part_0.0_13829.432373046875: CORRECT\n", + "EVSFAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "EVSLNSGAAVLAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "EVSQSVDDTIELVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVTAIQAENMTR found in part_0.0_13829.432373046875: CORRECT\n", + "EVTLAYGGMR found in part_0.0_13829.432373046875: CORRECT\n", + "EVTSIQFTAR found in part_0.0_13829.432373046875: CORRECT\n", + "EVTTDDELR found in part_0.0_13829.432373046875: CORRECT\n", + "EVTVEDLMK found in part_0.0_13829.432373046875: CORRECT\n", + "EVVDFCHR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVDTYK found in part_0.0_13829.432373046875: CORRECT\n", + "EVVEEAYAADPEMIASAACDIQAVR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVEQEYR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVFASIDTGTPAK found in part_0.0_13829.432373046875: CORRECT\n", + "EVVFASIDTGTPAK found in part_0.0_13829.432373046875: CORRECT\n", + "EVVFPTHCPVCGSDVER found in part_0.0_13829.432373046875: CORRECT\n", + "EVVLGMAHR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVLPFNK found in part_0.0_13829.432373046875: CORRECT\n", + "EVVNDNILPLQAFPNGSPR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVQDPAAGTAGFLIEADR found in part_0.0_13829.432373046875: CORRECT\n", + "EVVQDPAAGTAGFLIEADR found in part_0.0_13829.432373046875: CORRECT\n", + "EWANDLDQLINLEK found in part_0.0_13829.432373046875: CORRECT\n", + "EWIEHVQEVAPK found in part_0.0_13829.432373046875: CORRECT\n", + "EWKIPLLIHQPSYNLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "EWLAEQGMVK found in part_0.0_13829.432373046875: CORRECT\n", + "EWSFISSSLVK found in part_0.0_13829.432373046875: CORRECT\n", + "EYAATQVDGQR found in part_0.0_13829.432373046875: CORRECT\n", + "EYAPAEDPGVVSVSEIYQYYK found in part_0.0_13829.432373046875: CORRECT\n", + "EYAQLSDVSR found in part_0.0_13829.432373046875: CORRECT\n", + "EYASFTQEQVDK found in part_0.0_13829.432373046875: CORRECT\n", + "EYAVGTESYELGFSK found in part_0.0_13829.432373046875: CORRECT\n", + "EYCDLLR found in part_0.0_13829.432373046875: CORRECT\n", + "EYCGHGIGR found in part_0.0_13829.432373046875: CORRECT\n", + "EYCIKPMNCPGHVQIFNQGLK found in part_0.0_13829.432373046875: CORRECT\n", + "EYDDIRS found in part_0.0_13829.432373046875: CORRECT\n", + "EYDHIKDVNDLPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "EYDHIKDVNDLPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "EYDSMVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EYDTFCGAIDK found in part_0.0_13829.432373046875: CORRECT\n", + "EYEAVAIGHMTAGGTVDEPISR found in part_0.0_13829.432373046875: CORRECT\n", + "EYEKPLNVYGYSK found in part_0.0_13829.432373046875: CORRECT\n", + "EYEKPLNVYGYSK found in part_0.0_13829.432373046875: CORRECT\n", + "EYEMEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "EYFAEQK found in part_0.0_13829.432373046875: CORRECT\n", + "EYFAPLAEATR found in part_0.0_13829.432373046875: CORRECT\n", + "EYGFAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "EYLGELFSR found in part_0.0_13829.432373046875: CORRECT\n", + "EYLIAALK found in part_0.0_13829.432373046875: CORRECT\n", + "EYLPASYHEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "EYLPASYHEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "EYLQQLGEHQTTSIGSSLK found in part_0.0_13829.432373046875: CORRECT\n", + "EYLSQYPR found in part_0.0_13829.432373046875: CORRECT\n", + "EYLVTVDKPITEEFIR found in part_0.0_13829.432373046875: CORRECT\n", + "EYNAAPPLQGFGISAPDQVK found in part_0.0_13829.432373046875: CORRECT\n", + "EYNTVDMSPQR found in part_0.0_13829.432373046875: CORRECT\n", + "EYPDLVQEAR found in part_0.0_13829.432373046875: CORRECT\n", + "EYQDIAALPQNAK found in part_0.0_13829.432373046875: CORRECT\n", + "EYQDIIR found in part_0.0_13829.432373046875: CORRECT\n", + "EYQQPISGQLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "EYQVQLDIAMQSGK found in part_0.0_13829.432373046875: CORRECT\n", + "EYQVQLDIAMQSGKPK found in part_0.0_13829.432373046875: CORRECT\n", + "EYQVQLDIAMQSGKPK found in part_0.0_13829.432373046875: CORRECT\n", + "EYQYQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "EYSPLAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EYSPLAVK found in part_0.0_13829.432373046875: CORRECT\n", + "EYVHTPADLFK found in part_0.0_13829.432373046875: CORRECT\n", + "EYVLIDTAGVR found in part_0.0_13829.432373046875: CORRECT\n", + "EYYLNEQMK found in part_0.0_13829.432373046875: CORRECT\n", + "FAAACEHFVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FAAACEHFVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FAAAGAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "FAACNLDR found in part_0.0_13829.432373046875: CORRECT\n", + "FAAEIVDISR found in part_0.0_13829.432373046875: CORRECT\n", + "FAALAGAIDEEK found in part_0.0_13829.432373046875: CORRECT\n", + "FAALEAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "FAALEAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "FAALLESNK found in part_0.0_13829.432373046875: CORRECT\n", + "FAAQAVMGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "FAASSDVFK found in part_0.0_13829.432373046875: CORRECT\n", + "FAASVFTNLSR found in part_0.0_13829.432373046875: CORRECT\n", + "FAAYFQQGNMESNGK found in part_0.0_13829.432373046875: CORRECT\n", + "FADGTPVTAEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FADIVNANINALLEK found in part_0.0_13829.432373046875: CORRECT\n", + "FADLQTALTK found in part_0.0_13829.432373046875: CORRECT\n", + "FADLVEQHSEELAQLETLEQGK found in part_0.0_13829.432373046875: CORRECT\n", + "FADSESLFR found in part_0.0_13829.432373046875: CORRECT\n", + "FADVACAGPLLAAELDALGK found in part_0.0_13829.432373046875: CORRECT\n", + "FADVACAGPLLAAELDALGK found in part_0.0_13829.432373046875: CORRECT\n", + "FADVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "FADYDEAR found in part_0.0_13829.432373046875: CORRECT\n", + "FAEDAALLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FAEGLETVGDNFLR found in part_0.0_13829.432373046875: CORRECT\n", + "FAENAYFIK found in part_0.0_13829.432373046875: CORRECT\n", + "FAEVVFER found in part_0.0_13829.432373046875: CORRECT\n", + "FAFLTQGGAAPETPNPR found in part_0.0_13829.432373046875: CORRECT\n", + "FAGDDLPSNPVACALAIADK found in part_0.0_13829.432373046875: CORRECT\n", + "FAGDLFHTR found in part_0.0_13829.432373046875: CORRECT\n", + "FAGENTIYGSIR found in part_0.0_13829.432373046875: CORRECT\n", + "FAGLISK found in part_0.0_13829.432373046875: CORRECT\n", + "FAHAAAAIAVTR found in part_0.0_13829.432373046875: CORRECT\n", + "FAHAAAAIAVTR found in part_0.0_13829.432373046875: CORRECT\n", + "FAHSNGQLNDTLTEVADGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "FAIDQEK found in part_0.0_13829.432373046875: CORRECT\n", + "FAIDQEK found in part_0.0_13829.432373046875: CORRECT\n", + "FAIDQEKLEK found in part_0.0_13829.432373046875: CORRECT\n", + "FALESISK found in part_0.0_13829.432373046875: CORRECT\n", + "FALFDDER found in part_0.0_13829.432373046875: CORRECT\n", + "FALIENR found in part_0.0_13829.432373046875: CORRECT\n", + "FALTDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "FALVKPK found in part_0.0_13829.432373046875: CORRECT\n", + "FANGELSLQDAR found in part_0.0_13829.432373046875: CORRECT\n", + "FANPQEGSVVFDDQIR found in part_0.0_13829.432373046875: CORRECT\n", + "FANPQEGSVVFDDQIR found in part_0.0_13829.432373046875: CORRECT\n", + "FANTLLELGIK found in part_0.0_13829.432373046875: CORRECT\n", + "FAPALNVSEEEVTTGLDR found in part_0.0_13829.432373046875: CORRECT\n", + "FAPALNVSEEEVTTGLDR found in part_0.0_13829.432373046875: CORRECT\n", + "FAPHLTR found in part_0.0_13829.432373046875: CORRECT\n", + "FAPLNSWPDNVSLDK found in part_0.0_13829.432373046875: CORRECT\n", + "FAPLYGELK found in part_0.0_13829.432373046875: CORRECT\n", + "FAPSPTGYLHVGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "FAPSPTGYLHVGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "FAPYLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FAQAIHAK found in part_0.0_13829.432373046875: CORRECT\n", + "FAQAIHAK found in part_0.0_13829.432373046875: CORRECT\n", + "FAQLPLANHPQITVVDGGDER found in part_0.0_13829.432373046875: CORRECT\n", + "FASFIDK found in part_0.0_13829.432373046875: CORRECT\n", + "FASLDELK found in part_0.0_13829.432373046875: CORRECT\n", + "FASSFYGPFR found in part_0.0_13829.432373046875: CORRECT\n", + "FASTHTDSSAQTVSLEDYVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FATHGGYLLQGK found in part_0.0_13829.432373046875: CORRECT\n", + "FATHGGYLLQGK found in part_0.0_13829.432373046875: CORRECT\n", + "FATITAYDYSFAK found in part_0.0_13829.432373046875: CORRECT\n", + "FATSDLNDLYR found in part_0.0_13829.432373046875: CORRECT\n", + "FAVDFVGGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "FAYVDILQNPDIR found in part_0.0_13829.432373046875: CORRECT\n", + "FAYVDILQNPDIR found in part_0.0_13829.432373046875: CORRECT\n", + "FCGAEGLNNVITLSTFR found in part_0.0_13829.432373046875: CORRECT\n", + "FCGAEGLNNVITLSTFR found in part_0.0_13829.432373046875: CORRECT\n", + "FCGDLED found in part_0.0_13829.432373046875: CORRECT\n", + "FCLPNSR found in part_0.0_13829.432373046875: CORRECT\n", + "FCLVAEGQAQLYPR found in part_0.0_13829.432373046875: CORRECT\n", + "FCNSEFGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "FCPTGGISPANYR found in part_0.0_13829.432373046875: CORRECT\n", + "FCPTGGISPANYR found in part_0.0_13829.432373046875: CORRECT\n", + "FCQALMTELYR found in part_0.0_13829.432373046875: CORRECT\n", + "FCQFYQQDPLQR found in part_0.0_13829.432373046875: CORRECT\n", + "FCVHLIPETLER found in part_0.0_13829.432373046875: CORRECT\n", + "FDAHDFADQAK found in part_0.0_13829.432373046875: CORRECT\n", + "FDAHDFADQAK found in part_0.0_13829.432373046875: CORRECT\n", + "FDDEVTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDDIAQK found in part_0.0_13829.432373046875: CORRECT\n", + "FDDNSYK found in part_0.0_13829.432373046875: CORRECT\n", + "FDDSTLIR found in part_0.0_13829.432373046875: CORRECT\n", + "FDDTNPVK found in part_0.0_13829.432373046875: CORRECT\n", + "FDDTNPVKEDIEYVESIK found in part_0.0_13829.432373046875: CORRECT\n", + "FDEAIINYVR found in part_0.0_13829.432373046875: CORRECT\n", + "FDELSLK found in part_0.0_13829.432373046875: CORRECT\n", + "FDETGHSQIMVEPVADVTAYGVVDCK found in part_0.0_13829.432373046875: CORRECT\n", + "FDEVGNLYGR found in part_0.0_13829.432373046875: CORRECT\n", + "FDFNDICAAISDK found in part_0.0_13829.432373046875: CORRECT\n", + "FDFQDLMEEK found in part_0.0_13829.432373046875: CORRECT\n", + "FDFSHNEAMKPEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "FDFSILDK found in part_0.0_13829.432373046875: CORRECT\n", + "FDGFVHSIGFAPGDQLDGDYVNAVTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDGLSPEFQQALVSSAQEAGNYQR found in part_0.0_13829.432373046875: CORRECT\n", + "FDGNACVLLNNNSEQPIGTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDGTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "FDGTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "FDGVLASELADPQLYK found in part_0.0_13829.432373046875: CORRECT\n", + "FDIPFELVSHEGLTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDIPFELVSHEGLTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDIPVYHPDVR found in part_0.0_13829.432373046875: CORRECT\n", + "FDIPVYHPDVR found in part_0.0_13829.432373046875: CORRECT\n", + "FDIVVSDCCPEDEYVK found in part_0.0_13829.432373046875: CORRECT\n", + "FDLAAVMGR found in part_0.0_13829.432373046875: CORRECT\n", + "FDLNPAR found in part_0.0_13829.432373046875: CORRECT\n", + "FDLVLVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "FDPEFEK found in part_0.0_13829.432373046875: CORRECT\n", + "FDPEFEK found in part_0.0_13829.432373046875: CORRECT\n", + "FDPSSGCLPK found in part_0.0_13829.432373046875: CORRECT\n", + "FDPVGVAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FDPVYVTHFK found in part_0.0_13829.432373046875: CORRECT\n", + "FDPVYVTHFK found in part_0.0_13829.432373046875: CORRECT\n", + "FDSCFLTAK found in part_0.0_13829.432373046875: CORRECT\n", + "FDSLAVR found in part_0.0_13829.432373046875: CORRECT\n", + "FDSQQTFTR found in part_0.0_13829.432373046875: CORRECT\n", + "FDSVLNEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FDTIADNENLNISSK found in part_0.0_13829.432373046875: CORRECT\n", + "FDVAVGANDAYGQYDENLVQR found in part_0.0_13829.432373046875: CORRECT\n", + "FDVHTNAEQNLFEPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "FDVLQDPEVNSR found in part_0.0_13829.432373046875: CORRECT\n", + "FDVVLLGIDK found in part_0.0_13829.432373046875: CORRECT\n", + "FEAAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "FEAEQYDPQR found in part_0.0_13829.432373046875: CORRECT\n", + "FEALATCDALVQAHGALK found in part_0.0_13829.432373046875: CORRECT\n", + "FEALATCDALVQAHGALK found in part_0.0_13829.432373046875: CORRECT\n", + "FEDENFILK found in part_0.0_13829.432373046875: CORRECT\n", + "FEDFEIEGYDPHPGIK found in part_0.0_13829.432373046875: CORRECT\n", + "FEDFEIEGYDPHPGIK found in part_0.0_13829.432373046875: CORRECT\n", + "FEDLDDR found in part_0.0_13829.432373046875: CORRECT\n", + "FEEEGIFNR found in part_0.0_13829.432373046875: CORRECT\n", + "FEELNSTEYQK found in part_0.0_13829.432373046875: CORRECT\n", + "FEELVQTR found in part_0.0_13829.432373046875: CORRECT\n", + "FEFFIGGR found in part_0.0_13829.432373046875: CORRECT\n", + "FEHIGDDTLEATMPVDSR found in part_0.0_13829.432373046875: CORRECT\n", + "FEHLAAIIDGVEDK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FEINPVNNR NOT FOUND in any FASTA file.\n", + "FELDTTDGR found in part_0.0_13829.432373046875: CORRECT\n", + "FENPYLK found in part_0.0_13829.432373046875: CORRECT\n", + "FENPYLKDDVER found in part_0.0_13829.432373046875: CORRECT\n", + "FEPCGLTQLYGLK found in part_0.0_13829.432373046875: CORRECT\n", + "FEPIRPYEFTGR found in part_0.0_13829.432373046875: CORRECT\n", + "FEPLNATANQDYQR found in part_0.0_13829.432373046875: CORRECT\n", + "FEPLSSEPGALAPLMDK found in part_0.0_13829.432373046875: CORRECT\n", + "FEQGHPVALNGK found in part_0.0_13829.432373046875: CORRECT\n", + "FEQTYFSTFK found in part_0.0_13829.432373046875: CORRECT\n", + "FESEVYILSK found in part_0.0_13829.432373046875: CORRECT\n", + "FESEVYILSKDEGGR found in part_0.0_13829.432373046875: CORRECT\n", + "FETEIIFDHINK found in part_0.0_13829.432373046875: CORRECT\n", + "FETEIIFDHINK found in part_0.0_13829.432373046875: CORRECT\n", + "FEVGEGIEK found in part_0.0_13829.432373046875: CORRECT\n", + "FEVVLEHNGVR found in part_0.0_13829.432373046875: CORRECT\n", + "FFAAGADLNEMAEK found in part_0.0_13829.432373046875: CORRECT\n", + "FFAGAARCLNGLAAGEYLEGHTSMIR found in part_0.0_13829.432373046875: CORRECT\n", + "FFASVAG found in part_0.0_13829.432373046875: CORRECT\n", + "FFDNDVNQVPK found in part_0.0_13829.432373046875: CORRECT\n", + "FFELYDENNELR found in part_0.0_13829.432373046875: CORRECT\n", + "FFETQSSK found in part_0.0_13829.432373046875: CORRECT\n", + "FFETVTPIKPDATFVTQR found in part_0.0_13829.432373046875: CORRECT\n", + "FFINGIR found in part_0.0_13829.432373046875: CORRECT\n", + "FFINPTGR found in part_0.0_13829.432373046875: CORRECT\n", + "FFPAEANGGVK found in part_0.0_13829.432373046875: CORRECT\n", + "FFQQPALR found in part_0.0_13829.432373046875: CORRECT\n", + "FFQVYDPAYYDSK found in part_0.0_13829.432373046875: CORRECT\n", + "FFSDIGGR found in part_0.0_13829.432373046875: CORRECT\n", + "FFSFEPGAK found in part_0.0_13829.432373046875: CORRECT\n", + "FFSIDGTK found in part_0.0_13829.432373046875: CORRECT\n", + "FFSQPLLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "FFTELYK found in part_0.0_13829.432373046875: CORRECT\n", + "FFTVLDDDR found in part_0.0_13829.432373046875: CORRECT\n", + "FFTVSDAR found in part_0.0_13829.432373046875: CORRECT\n", + "FFVASDVHPQTLDVVR found in part_0.0_13829.432373046875: CORRECT\n", + "FFVASDVHPQTLDVVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGADGIVVSNHGGR found in part_0.0_13829.432373046875: CORRECT\n", + "FGAIAGCMVTEGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "FGAIGIGSR found in part_0.0_13829.432373046875: CORRECT\n", + "FGANAILAVSLANAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGANAILAVSLANAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGANSVLKPEIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGANSVLKPEIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGANVAVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGAPSYNR found in part_0.0_13829.432373046875: CORRECT\n", + "FGASSLLASLLK found in part_0.0_13829.432373046875: CORRECT\n", + "FGATDCINPNDYDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGATDCINPNDYDKPIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGATDCINPNDYDKPIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGDDEAFEENVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGDEGEYR found in part_0.0_13829.432373046875: CORRECT\n", + "FGDLDQNK found in part_0.0_13829.432373046875: CORRECT\n", + "FGDPETQPIMLR found in part_0.0_13829.432373046875: CORRECT\n", + "FGDVGADTLGHIAEACAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGDVGADTLGHIAEACAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGEAIELLEQGDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGEEEDDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGEEVEMITK found in part_0.0_13829.432373046875: CORRECT\n", + "FGEFTLK found in part_0.0_13829.432373046875: CORRECT\n", + "FGEIEEVELGR found in part_0.0_13829.432373046875: CORRECT\n", + "FGEIEQR found in part_0.0_13829.432373046875: CORRECT\n", + "FGELDYAHMK found in part_0.0_13829.432373046875: CORRECT\n", + "FGELDYAHMK found in part_0.0_13829.432373046875: CORRECT\n", + "FGELPFLFK found in part_0.0_13829.432373046875: CORRECT\n", + "FGETYINR found in part_0.0_13829.432373046875: CORRECT\n", + "FGFELAAHHDLR found in part_0.0_13829.432373046875: CORRECT\n", + "FGFLLDALK found in part_0.0_13829.432373046875: CORRECT\n", + "FGFVLPMDECLAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGGALMAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FGGESVLAGSIIVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGGESVLAGSIIVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGGLNIEQEALCQFIR found in part_0.0_13829.432373046875: CORRECT\n", + "FGGSSLADVK found in part_0.0_13829.432373046875: CORRECT\n", + "FGGTEPGDETA found in part_0.0_13829.432373046875: CORRECT\n", + "FGGTSVANAER found in part_0.0_13829.432373046875: CORRECT\n", + "FGGYAQSGLLAEITPDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGGYAQSGLLAEITPDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGGYAQSGLLAEITPDKAFQDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGIDMNTDYTLEEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "FGIGGSNLQGAQR found in part_0.0_13829.432373046875: CORRECT\n", + "FGIGQQVR found in part_0.0_13829.432373046875: CORRECT\n", + "FGINENMTHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "FGINENMTHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "FGINQPGK found in part_0.0_13829.432373046875: CORRECT\n", + "FGLIPEFIGR found in part_0.0_13829.432373046875: CORRECT\n", + "FGLLEMSR found in part_0.0_13829.432373046875: CORRECT\n", + "FGLLGYEAATLEDVGR found in part_0.0_13829.432373046875: CORRECT\n", + "FGLLPDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGLLTDK found in part_0.0_13829.432373046875: CORRECT\n", + "FGLNLSDELIPQVQK found in part_0.0_13829.432373046875: CORRECT\n", + "FGLPIYVPER found in part_0.0_13829.432373046875: CORRECT\n", + "FGLSCGLVSPER found in part_0.0_13829.432373046875: CORRECT\n", + "FGMHADVESADGDVHR found in part_0.0_13829.432373046875: CORRECT\n", + "FGNAVTHLEAVSPLSTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGPDAFTVQATR found in part_0.0_13829.432373046875: CORRECT\n", + "FGQGEAAPVVAPAPAPAPEVQTK found in part_0.0_13829.432373046875: CORRECT\n", + "FGQGQVSLPGGCTIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGQGQVSLPGGCTIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGSELLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGSELLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGSSISGSHVAIDDIEGAWNSSTQYEGGNK found in part_0.0_13829.432373046875: CORRECT\n", + "FGSTSELR found in part_0.0_13829.432373046875: CORRECT\n", + "FGTNPFCVVFPR found in part_0.0_13829.432373046875: CORRECT\n", + "FGVAAGSAATLNQGTR found in part_0.0_13829.432373046875: CORRECT\n", + "FGVEDGSVEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "FGVEIYAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVPMGYGGPHAAFFAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVPMGYGGPHAAFFAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVPTVTDIIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVSAAAAVAVAAGPVEAAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVTPAYLVNADVIQIK found in part_0.0_13829.432373046875: CORRECT\n", + "FGVVEFDDNFR found in part_0.0_13829.432373046875: CORRECT\n", + "FGWQAEEAVDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "FGYFLPQDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FGYGYVNLK found in part_0.0_13829.432373046875: CORRECT\n", + "FHAGANVGCGR found in part_0.0_13829.432373046875: CORRECT\n", + "FHALTHHEEK found in part_0.0_13829.432373046875: CORRECT\n", + "FHANEAAIVAQAGYPAAVTIATNMAGR found in part_0.0_13829.432373046875: CORRECT\n", + "FHAPGGFGVR found in part_0.0_13829.432373046875: CORRECT\n", + "FHAQYLLK found in part_0.0_13829.432373046875: CORRECT\n", + "FHGLQDQEAR found in part_0.0_13829.432373046875: CORRECT\n", + "FHGLQDQEAR found in part_0.0_13829.432373046875: CORRECT\n", + "FHGLQDQEVR found in part_0.0_13829.432373046875: CORRECT\n", + "FHGLQDQEVR found in part_0.0_13829.432373046875: CORRECT\n", + "FHGPIIGAGAYTVEK found in part_0.0_13829.432373046875: CORRECT\n", + "FHNVTNGITPR found in part_0.0_13829.432373046875: CORRECT\n", + "FHNVTNGITPR found in part_0.0_13829.432373046875: CORRECT\n", + "FHPSVNLSILK found in part_0.0_13829.432373046875: CORRECT\n", + "FHTLSGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FHTLSGGKPQVEGAEDYTDSDD found in part_0.0_13829.432373046875: CORRECT\n", + "FIAATNVNDTVPR found in part_0.0_13829.432373046875: CORRECT\n", + "FIAQQLGVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FICGTQDSHK found in part_0.0_13829.432373046875: CORRECT\n", + "FICGTQDSHK found in part_0.0_13829.432373046875: CORRECT\n", + "FICIADASK found in part_0.0_13829.432373046875: CORRECT\n", + "FIDAMLAIR found in part_0.0_13829.432373046875: CORRECT\n", + "FIDELTDK found in part_0.0_13829.432373046875: CORRECT\n", + "FIDQSISANTNYDPSR found in part_0.0_13829.432373046875: CORRECT\n", + "FIEIPVVYGGAGGPDLAVVAAHCGLSEK found in part_0.0_13829.432373046875: CORRECT\n", + "FIEPVKPGDTIQVR found in part_0.0_13829.432373046875: CORRECT\n", + "FIEPVKPGDTIQVR found in part_0.0_13829.432373046875: CORRECT\n", + "FIEPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "FIEQDPEGQYGLEAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "FIEQDPEGQYGLEAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "FIESVMEPLR found in part_0.0_13829.432373046875: CORRECT\n", + "FIFNAER found in part_0.0_13829.432373046875: CORRECT\n", + "FIGELPEECVEEVR found in part_0.0_13829.432373046875: CORRECT\n", + "FIGGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "FIGHEQHVALDTLLPAPEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "FIGHEQHVALDTLLPAPEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "FIGMGEIDDEGR found in part_0.0_13829.432373046875: CORRECT\n", + "FIGPAGLLAAYR found in part_0.0_13829.432373046875: CORRECT\n", + "FIHALDELSR found in part_0.0_13829.432373046875: CORRECT\n", + "FIHALDELSR found in part_0.0_13829.432373046875: CORRECT\n", + "FIMGSVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "FINELLPVIDSLDR found in part_0.0_13829.432373046875: CORRECT\n", + "FINGLKK found in part_0.0_13829.432373046875: CORRECT\n", + "FINTMSQVPTISQLLPLPASDDDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "FIQVPTTLLSQVDSSVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FIQVPTTLLSQVDSSVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FISIEAE found in part_0.0_13829.432373046875: CORRECT\n", + "FISNRPCASCEGTR found in part_0.0_13829.432373046875: CORRECT\n", + "FITIFGTR found in part_0.0_13829.432373046875: CORRECT\n", + "FITIINNTLSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "FIVNHSAVEALR found in part_0.0_13829.432373046875: CORRECT\n", + "FIVTNPNAK found in part_0.0_13829.432373046875: CORRECT\n", + "FIVTPPLFAMK found in part_0.0_13829.432373046875: CORRECT\n", + "FKDDVNEVR found in part_0.0_13829.432373046875: CORRECT\n", + "FKGDDIVDTVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "FKGDDIVDTVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "FKLPTDR found in part_0.0_13829.432373046875: CORRECT\n", + "FLADVITPDGR found in part_0.0_13829.432373046875: CORRECT\n", + "FLAFGETHLADVLVSK found in part_0.0_13829.432373046875: CORRECT\n", + "FLAGHAEELDLR found in part_0.0_13829.432373046875: CORRECT\n", + "FLAGHAEELDLR found in part_0.0_13829.432373046875: CORRECT\n", + "FLALQTMGTETAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FLAQEIIR NOT FOUND in any FASTA file.\n", + "FLAVPAEALVYTMK found in part_0.0_13829.432373046875: CORRECT\n", + "FLAVPAEALVYTMK found in part_0.0_13829.432373046875: CORRECT\n", + "FLAYEALLEK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDADIQNNPQK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDESLPLENGSYQDVVAFK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDFLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDQVAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDSTADYPQQPGVVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "FLDYCDPANVPR found in part_0.0_13829.432373046875: CORRECT\n", + "FLECSESELNR found in part_0.0_13829.432373046875: CORRECT\n", + "FLEEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "FLEEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "FLFDEYVR found in part_0.0_13829.432373046875: CORRECT\n", + "FLFNNGYADQITSVLK found in part_0.0_13829.432373046875: CORRECT\n", + "FLFNNGYADQITSVLK found in part_0.0_13829.432373046875: CORRECT\n", + "FLGFEQTFK found in part_0.0_13829.432373046875: CORRECT\n", + "FLGIYSNNLDEFYK found in part_0.0_13829.432373046875: CORRECT\n", + "FLHDFEGTVVAITHDR found in part_0.0_13829.432373046875: CORRECT\n", + "FLHPEIVTVDPGYAEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "FLIVTDEATANMLTDK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLANLNGFDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLATTDPQK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLDANLGK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLQEVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLVEGVHQK found in part_0.0_13829.432373046875: CORRECT\n", + "FLLVTQNIDNLHER found in part_0.0_13829.432373046875: CORRECT\n", + "FLNDFPGAETIR found in part_0.0_13829.432373046875: CORRECT\n", + "FLNDPQAFNEAFAR found in part_0.0_13829.432373046875: CORRECT\n", + "FLNDPQAFNEAFAR found in part_0.0_13829.432373046875: CORRECT\n", + "FLNLIAGEPDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "FLNYVSLDTQSK found in part_0.0_13829.432373046875: CORRECT\n", + "FLPNLHSHR found in part_0.0_13829.432373046875: CORRECT\n", + "FLPPTPVR found in part_0.0_13829.432373046875: CORRECT\n", + "FLPQFCAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLPSFIDNIDNLMAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLSALAGENDPEAK found in part_0.0_13829.432373046875: CORRECT\n", + "FLSAPEAVEYGLVDSILTHR found in part_0.0_13829.432373046875: CORRECT\n", + "FLSELTAAEGLER found in part_0.0_13829.432373046875: CORRECT\n", + "FLSELTAAEGLER found in part_0.0_13829.432373046875: CORRECT\n", + "FLSLTADLR found in part_0.0_13829.432373046875: CORRECT\n", + "FLSQPFFVAEVFTGSPGK found in part_0.0_13829.432373046875: CORRECT\n", + "FLTCGSVDDGK found in part_0.0_13829.432373046875: CORRECT\n", + "FLVVDDFSTMR found in part_0.0_13829.432373046875: CORRECT\n", + "FLVYASPAVAEALK found in part_0.0_13829.432373046875: CORRECT\n", + "FLYPLTIPDAQFDAAMK found in part_0.0_13829.432373046875: CORRECT\n", + "FLYPLTIPDAQFDAAMK found in part_0.0_13829.432373046875: CORRECT\n", + "FMALGSGVIIDADK found in part_0.0_13829.432373046875: CORRECT\n", + "FMAVHPDVQDK found in part_0.0_13829.432373046875: CORRECT\n", + "FMFLPDGEDPDTLVR found in part_0.0_13829.432373046875: CORRECT\n", + "FMGEPEFTIDNADQYPEILR found in part_0.0_13829.432373046875: CORRECT\n", + "FMPLDTENGQVPER found in part_0.0_13829.432373046875: CORRECT\n", + "FMQEAVPEGTGAMAAIIGLDDASIAK found in part_0.0_13829.432373046875: CORRECT\n", + "FMQLQQQISAER found in part_0.0_13829.432373046875: CORRECT\n", + "FMSACLK found in part_0.0_13829.432373046875: CORRECT\n", + "FMSLFDK found in part_0.0_13829.432373046875: CORRECT\n", + "FMVNVEGR found in part_0.0_13829.432373046875: CORRECT\n", + "FNAENPDYK found in part_0.0_13829.432373046875: CORRECT\n", + "FNAEVDEPR found in part_0.0_13829.432373046875: CORRECT\n", + "FNAEVDEPRPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "FNAEVDEPRPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "FNAIGEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FNALYGEIFK found in part_0.0_13829.432373046875: CORRECT\n", + "FNAPVEVLHSGLNDSER found in part_0.0_13829.432373046875: CORRECT\n", + "FNDAVIR found in part_0.0_13829.432373046875: CORRECT\n", + "FNDDFSR found in part_0.0_13829.432373046875: CORRECT\n", + "FNDDFSR found in part_0.0_13829.432373046875: CORRECT\n", + "FNDGDFLR found in part_0.0_13829.432373046875: CORRECT\n", + "FNDLLATLK found in part_0.0_13829.432373046875: CORRECT\n", + "FNDSGIVGCLTVTPYYNRPSQEGLYQHFK found in part_0.0_13829.432373046875: CORRECT\n", + "FNGWELDINSR found in part_0.0_13829.432373046875: CORRECT\n", + "FNHGAQPPVQSALDGK found in part_0.0_13829.432373046875: CORRECT\n", + "FNIDADK found in part_0.0_13829.432373046875: CORRECT\n", + "FNIDADK found in part_0.0_13829.432373046875: CORRECT\n", + "FNIDADKVNPR found in part_0.0_13829.432373046875: CORRECT\n", + "FNIDADKVNPR found in part_0.0_13829.432373046875: CORRECT\n", + "FNIDSTQVSLTPDKK found in part_0.0_13829.432373046875: CORRECT\n", + "FNLMLETK found in part_0.0_13829.432373046875: CORRECT\n", + "FNLQDGFPLVTTK found in part_0.0_13829.432373046875: CORRECT\n", + "FNNFINDSLLEGAIDALKR found in part_0.0_13829.432373046875: CORRECT\n", + "FNNPAYDK found in part_0.0_13829.432373046875: CORRECT\n", + "FNPEQVTVSNDNGK found in part_0.0_13829.432373046875: CORRECT\n", + "FNQGDYFAAVEDK found in part_0.0_13829.432373046875: CORRECT\n", + "FNQIGSLTETLAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "FNQIGSLTETLAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FNSDNLR NOT FOUND in any FASTA file.\n", + "FNSLTPEQQR found in part_0.0_13829.432373046875: CORRECT\n", + "FNSSLSEDGQR found in part_0.0_13829.432373046875: CORRECT\n", + "FNTILIDFDR found in part_0.0_13829.432373046875: CORRECT\n", + "FNVEVVAIR found in part_0.0_13829.432373046875: CORRECT\n", + "FNVFIGTDSAR found in part_0.0_13829.432373046875: CORRECT\n", + "FNVLASQPADFDR found in part_0.0_13829.432373046875: CORRECT\n", + "FNVLASQPADFDR found in part_0.0_13829.432373046875: CORRECT\n", + "FNVPVSDADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "FNVQPLGIEVNGNGK found in part_0.0_13829.432373046875: CORRECT\n", + "FNYFIMSK found in part_0.0_13829.432373046875: CORRECT\n", + "FPAFTGELPNGDQYYGFPAENDALK found in part_0.0_13829.432373046875: CORRECT\n", + "FPAIIYGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FPAIIYGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FPAQEQMTFVR found in part_0.0_13829.432373046875: CORRECT\n", + "FPATENAANTVAHAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPATENAANTVAHAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPDGLELIEHIPQGHK found in part_0.0_13829.432373046875: CORRECT\n", + "FPEDLDGDGR found in part_0.0_13829.432373046875: CORRECT\n", + "FPEDLDGDGRR found in part_0.0_13829.432373046875: CORRECT\n", + "FPEGTSEEQIDK found in part_0.0_13829.432373046875: CORRECT\n", + "FPEHCGIGIK found in part_0.0_13829.432373046875: CORRECT\n", + "FPEHCGIGIKPCSEEGTK found in part_0.0_13829.432373046875: CORRECT\n", + "FPEHCGIGIKPCSEEGTK found in part_0.0_13829.432373046875: CORRECT\n", + "FPETFEEVAALPGVGR found in part_0.0_13829.432373046875: CORRECT\n", + "FPEVPLFGR found in part_0.0_13829.432373046875: CORRECT\n", + "FPGDPLSVLR found in part_0.0_13829.432373046875: CORRECT\n", + "FPGVDPLLGPEMR found in part_0.0_13829.432373046875: CORRECT\n", + "FPHCFSAEGEAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPHPPLMPVYPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPHPPLMPVYPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPHPPLMPVYPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPLAYNDLFK found in part_0.0_13829.432373046875: CORRECT\n", + "FPLLSANIYQK found in part_0.0_13829.432373046875: CORRECT\n", + "FPLPVEVIPMAR found in part_0.0_13829.432373046875: CORRECT\n", + "FPNDVDPIETR found in part_0.0_13829.432373046875: CORRECT\n", + "FPNVYGIDMPSATELIAHGR found in part_0.0_13829.432373046875: CORRECT\n", + "FPNVYGIDMPSATELIAHGR found in part_0.0_13829.432373046875: CORRECT\n", + "FPPGTILPAER found in part_0.0_13829.432373046875: CORRECT\n", + "FPQIVVYGPQETQDK found in part_0.0_13829.432373046875: CORRECT\n", + "FPQTELFR found in part_0.0_13829.432373046875: CORRECT\n", + "FPVISEDKDHIEGILMAK found in part_0.0_13829.432373046875: CORRECT\n", + "FPVSQSIDELMEACR found in part_0.0_13829.432373046875: CORRECT\n", + "FPYNTPTSK found in part_0.0_13829.432373046875: CORRECT\n", + "FPYVNANVIDAR found in part_0.0_13829.432373046875: CORRECT\n", + "FQAAMLAADDDR found in part_0.0_13829.432373046875: CORRECT\n", + "FQADTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "FQAMAAEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "FQASDMVR found in part_0.0_13829.432373046875: CORRECT\n", + "FQDDILAGR found in part_0.0_13829.432373046875: CORRECT\n", + "FQDEEVQR found in part_0.0_13829.432373046875: CORRECT\n", + "FQDEVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "FQDGDLTLYQSNTILR found in part_0.0_13829.432373046875: CORRECT\n", + "FQDGTDFNAAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FQEQVNAK found in part_0.0_13829.432373046875: CORRECT\n", + "FQHAVER found in part_0.0_13829.432373046875: CORRECT\n", + "FQIVSESPR found in part_0.0_13829.432373046875: CORRECT\n", + "FQLADFAPR found in part_0.0_13829.432373046875: CORRECT\n", + "FQQAGHKPVALVGGATGLIGDPSFK found in part_0.0_13829.432373046875: CORRECT\n", + "FQQAGHKPVALVGGATGLIGDPSFK found in part_0.0_13829.432373046875: CORRECT\n", + "FQQAPGPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FQQEVTITAPNGLHTR NOT FOUND in any FASTA file.\n", + "Peptide FQQEVTITAPNGLHTR NOT FOUND in any FASTA file.\n", + "FQVFGADAMR found in part_0.0_13829.432373046875: CORRECT\n", + "FQVSNPR found in part_0.0_13829.432373046875: CORRECT\n", + "FRFPYNTPTSK found in part_0.0_13829.432373046875: CORRECT\n", + "FRFPYNTPTSK found in part_0.0_13829.432373046875: CORRECT\n", + "FRNDEAFLQQVMK found in part_0.0_13829.432373046875: CORRECT\n", + "FRPGTDEGDYQVK found in part_0.0_13829.432373046875: CORRECT\n", + "FRPGTDEGDYQVK found in part_0.0_13829.432373046875: CORRECT\n", + "FSAASQPAAPVTK found in part_0.0_13829.432373046875: CORRECT\n", + "FSATFDDQMLVDYSK found in part_0.0_13829.432373046875: CORRECT\n", + "FSAVLEQGAIAAGSDDK found in part_0.0_13829.432373046875: CORRECT\n", + "FSAVLEQGAIAAGSDDK found in part_0.0_13829.432373046875: CORRECT\n", + "FSDFALHPK found in part_0.0_13829.432373046875: CORRECT\n", + "FSDGEVSVQINENVR found in part_0.0_13829.432373046875: CORRECT\n", + "FSDIPIVMVTAK found in part_0.0_13829.432373046875: CORRECT\n", + "FSDYLGR found in part_0.0_13829.432373046875: CORRECT\n", + "FSEASLVK found in part_0.0_13829.432373046875: CORRECT\n", + "FSFEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "FSGGNLETLSDKPGNPVQQALK found in part_0.0_13829.432373046875: CORRECT\n", + "FSGNYGNMTEVSYQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "FSGVSTGACIGHVGPEALAGGPIGK found in part_0.0_13829.432373046875: CORRECT\n", + "FSGVVNPR found in part_0.0_13829.432373046875: CORRECT\n", + "FSIALLNQAVER found in part_0.0_13829.432373046875: CORRECT\n", + "FSIDDFQK found in part_0.0_13829.432373046875: CORRECT\n", + "FSIDDFQK found in part_0.0_13829.432373046875: CORRECT\n", + "FSIIHGPFSALGEYVAER found in part_0.0_13829.432373046875: CORRECT\n", + "FSLEGGDALIPMLK found in part_0.0_13829.432373046875: CORRECT\n", + "FSLPDQDGEQVNLTDFQGQR found in part_0.0_13829.432373046875: CORRECT\n", + "FSLPQPPVCLR found in part_0.0_13829.432373046875: CORRECT\n", + "FSLQTSAR found in part_0.0_13829.432373046875: CORRECT\n", + "FSNPSLR found in part_0.0_13829.432373046875: CORRECT\n", + "FSPSVSLR found in part_0.0_13829.432373046875: CORRECT\n", + "FSQYLLDSDKR found in part_0.0_13829.432373046875: CORRECT\n", + "FSSQGEIVAALQEQGFDNINQSK found in part_0.0_13829.432373046875: CORRECT\n", + "FSTELTDEMIK found in part_0.0_13829.432373046875: CORRECT\n", + "FSTNTVPR found in part_0.0_13829.432373046875: CORRECT\n", + "FSTPEEVFGPLSIQALK found in part_0.0_13829.432373046875: CORRECT\n", + "FSTVQGGAGSADTVR found in part_0.0_13829.432373046875: CORRECT\n", + "FSVHSALPQVALLGDEGAANHNR found in part_0.0_13829.432373046875: CORRECT\n", + "FSVHSALPQVALLGDEGAANHNR found in part_0.0_13829.432373046875: CORRECT\n", + "FSVVPPGTGICHQVNLEYLGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTAAEFR found in part_0.0_13829.432373046875: CORRECT\n", + "FTAEGVQEIDYK found in part_0.0_13829.432373046875: CORRECT\n", + "FTALQSGEVDLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "FTAQGADAEQALK found in part_0.0_13829.432373046875: CORRECT\n", + "FTDAQGNQHEGIITSGTFSPTLGYSIALAR found in part_0.0_13829.432373046875: CORRECT\n", + "FTDEDEQGLR found in part_0.0_13829.432373046875: CORRECT\n", + "FTDGENGEEING found in part_0.0_13829.432373046875: CORRECT\n", + "FTDMIDGQTITR found in part_0.0_13829.432373046875: CORRECT\n", + "FTDVNGETK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEGAFK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEGAFK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEGFDIENGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEGFDIENGKK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEGFDIENGKK found in part_0.0_13829.432373046875: CORRECT\n", + "FTELGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEVGYVGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTEVTDVVLITR found in part_0.0_13829.432373046875: CORRECT\n", + "FTFDNNYFSDR found in part_0.0_13829.432373046875: CORRECT\n", + "FTFIATSGAFHGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTFPPLSTVR found in part_0.0_13829.432373046875: CORRECT\n", + "FTFTPPQGVTVDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "FTGANTLEVEGENGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGANTLEVEGENGK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGEVSLTGQPFVMEPSK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGEVSLTGQPFVMEPSK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGFVFK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGIPNFAPELFR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FTGIVQGTAK NOT FOUND in any FASTA file.\n", + "FTGNVIGDIVDAQYK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGQVLPTAK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGSETSSQALSSAQAIISSNPGLNR found in part_0.0_13829.432373046875: CORRECT\n", + "FTGWYDVDLSEK found in part_0.0_13829.432373046875: CORRECT\n", + "FTGWYDVDLSEK found in part_0.0_13829.432373046875: CORRECT\n", + "FTIAASFGNVHGVYKPGNVVLTPTILR found in part_0.0_13829.432373046875: CORRECT\n", + "FTIDAFR found in part_0.0_13829.432373046875: CORRECT\n", + "FTIDCSGVR found in part_0.0_13829.432373046875: CORRECT\n", + "FTIHCEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide FTINAEVR NOT FOUND in any FASTA file.\n", + "FTKPVTGGYYFAPSLDK found in part_0.0_13829.432373046875: CORRECT\n", + "FTLAALASTGR found in part_0.0_13829.432373046875: CORRECT\n", + "FTLLPTCCLGNCDK found in part_0.0_13829.432373046875: CORRECT\n", + "FTMDEGLSNAVK found in part_0.0_13829.432373046875: CORRECT\n", + "FTNGYVAHGVSGPSR found in part_0.0_13829.432373046875: CORRECT\n", + "FTNPNVK found in part_0.0_13829.432373046875: CORRECT\n", + "FTNSPLAIYK found in part_0.0_13829.432373046875: CORRECT\n", + "FTNTSGFANK found in part_0.0_13829.432373046875: CORRECT\n", + "FTNVTNGVTPR found in part_0.0_13829.432373046875: CORRECT\n", + "FTPESVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FTPHPDLR found in part_0.0_13829.432373046875: CORRECT\n", + "FTSEQAEGNAIYR found in part_0.0_13829.432373046875: CORRECT\n", + "FTSLDQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "FTSPVTCK found in part_0.0_13829.432373046875: CORRECT\n", + "FTTHPNPNVGCVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "FTTIHIQELACVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FTTIHIQELACVSR found in part_0.0_13829.432373046875: CORRECT\n", + "FTVLISPHVNK found in part_0.0_13829.432373046875: CORRECT\n", + "FTVLISPHVNK found in part_0.0_13829.432373046875: CORRECT\n", + "FVADALAK found in part_0.0_13829.432373046875: CORRECT\n", + "FVAGFIGSPK found in part_0.0_13829.432373046875: CORRECT\n", + "FVAINFEPVVGEILEK found in part_0.0_13829.432373046875: CORRECT\n", + "FVDEHTLALDCPDGSVETLTAEK found in part_0.0_13829.432373046875: CORRECT\n", + "FVDVEITDVYPNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "FVEAEGFSVVR found in part_0.0_13829.432373046875: CORRECT\n", + "FVEFYGDGLDSLPLADR found in part_0.0_13829.432373046875: CORRECT\n", + "FVFAEGIAYGPEMAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FVGMLTDSR found in part_0.0_13829.432373046875: CORRECT\n", + "FVHYCPR found in part_0.0_13829.432373046875: CORRECT\n", + "FVIACGSR found in part_0.0_13829.432373046875: CORRECT\n", + "FVIGGPMGDCGLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "FVITANGQTVFSESR found in part_0.0_13829.432373046875: CORRECT\n", + "FVIVCDDDVNAR found in part_0.0_13829.432373046875: CORRECT\n", + "FVLGFAQSTVEK found in part_0.0_13829.432373046875: CORRECT\n", + "FVLLTSGATVADYNDAPADAQQSEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "FVLNQPANAR found in part_0.0_13829.432373046875: CORRECT\n", + "FVMPGAALNEDEFR found in part_0.0_13829.432373046875: CORRECT\n", + "FVMQPER found in part_0.0_13829.432373046875: CORRECT\n", + "FVNELAR found in part_0.0_13829.432373046875: CORRECT\n", + "FVNEVDSSAVYVNASTR found in part_0.0_13829.432373046875: CORRECT\n", + "FVNEVDSSAVYVNASTR found in part_0.0_13829.432373046875: CORRECT\n", + "FVNGVLDK found in part_0.0_13829.432373046875: CORRECT\n", + "FVNILMVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "FVNILMVDGKK found in part_0.0_13829.432373046875: CORRECT\n", + "FVNLPPEAPR found in part_0.0_13829.432373046875: CORRECT\n", + "FVPDTQAPLGIR found in part_0.0_13829.432373046875: CORRECT\n", + "FVQQFGNQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "FVSFNINGLR found in part_0.0_13829.432373046875: CORRECT\n", + "FVSQGELVR found in part_0.0_13829.432373046875: CORRECT\n", + "FVTAYLGDAGMLR found in part_0.0_13829.432373046875: CORRECT\n", + "FVTDLNQPVSVYMTPK found in part_0.0_13829.432373046875: CORRECT\n", + "FVTDLNQPVSVYMTPK found in part_0.0_13829.432373046875: CORRECT\n", + "FVVECDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "FVVEGDLR found in part_0.0_13829.432373046875: CORRECT\n", + "FVVMPGR found in part_0.0_13829.432373046875: CORRECT\n", + "FWHTGNGYTNEPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "FWHTGNGYTNEPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "FYALPQSPQLFK found in part_0.0_13829.432373046875: CORRECT\n", + "FYALSAQTGATR found in part_0.0_13829.432373046875: CORRECT\n", + "FYDAVSTFK found in part_0.0_13829.432373046875: CORRECT\n", + "FYDQLPVK found in part_0.0_13829.432373046875: CORRECT\n", + "FYGVQFHPEVTHTR found in part_0.0_13829.432373046875: CORRECT\n", + "FYGVQFHPEVTHTR found in part_0.0_13829.432373046875: CORRECT\n", + "FYHEPSDNLR found in part_0.0_13829.432373046875: CORRECT\n", + "FYLDLADLR found in part_0.0_13829.432373046875: CORRECT\n", + "FYLDVQK found in part_0.0_13829.432373046875: CORRECT\n", + "FYLFGIMQGEEHPFPATTQSK found in part_0.0_13829.432373046875: CORRECT\n", + "FYNGDCAMTTASSGSLANIR found in part_0.0_13829.432373046875: CORRECT\n", + "FYNPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "FYQLQAIEK found in part_0.0_13829.432373046875: CORRECT\n", + "FYTDGPR found in part_0.0_13829.432373046875: CORRECT\n", + "FYVELHK found in part_0.0_13829.432373046875: CORRECT\n", + "FYVINAAK found in part_0.0_13829.432373046875: CORRECT\n", + "FYYNCAPAHTTYPTK found in part_0.0_13829.432373046875: CORRECT\n", + "FYYNCAPAHTTYPTK found in part_0.0_13829.432373046875: CORRECT\n", + "GAAAVSTDEMGDIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GAAFLHLTD found in part_0.0_13829.432373046875: CORRECT\n", + "GAANFYQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAANFYQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAAPQEVVSAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GADANILQQVR found in part_0.0_13829.432373046875: CORRECT\n", + "GADEELVK found in part_0.0_13829.432373046875: CORRECT\n", + "GADEELVK found in part_0.0_13829.432373046875: CORRECT\n", + "GADEGIELLIR found in part_0.0_13829.432373046875: CORRECT\n", + "GADGYLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GADLIEPTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GADLMQALVDSELQPSR found in part_0.0_13829.432373046875: CORRECT\n", + "GADLMQALVDSELQPSR found in part_0.0_13829.432373046875: CORRECT\n", + "GADSCLVSIAGEGLVDVPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GADVALIGTPDGVK found in part_0.0_13829.432373046875: CORRECT\n", + "GADVGITMIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GAEAALTALEMINVLK found in part_0.0_13829.432373046875: CORRECT\n", + "GAELANSFK found in part_0.0_13829.432373046875: CORRECT\n", + "GAELANSFKPDVIIALGGGSPMDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GAELELLR found in part_0.0_13829.432373046875: CORRECT\n", + "GAEQIYIPVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GAEQIYIPVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GAEQIYIPVLIKK found in part_0.0_13829.432373046875: CORRECT\n", + "GAEQIYIPVLIKK found in part_0.0_13829.432373046875: CORRECT\n", + "GAEYMVDFLPK found in part_0.0_13829.432373046875: CORRECT\n", + "GAFAMGGMAAFIPSKDEEHNNQVLNK found in part_0.0_13829.432373046875: CORRECT\n", + "GAFVSEVLPGSGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "GAFVSQVLPNSSAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GAGLVDFIHSESR found in part_0.0_13829.432373046875: CORRECT\n", + "GAGLVVTGTALSGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GAHIYAEIVGYGATSDGADMVAPSGEGAVR found in part_0.0_13829.432373046875: CORRECT\n", + "GAIDMIVR found in part_0.0_13829.432373046875: CORRECT\n", + "GAIFGLTR found in part_0.0_13829.432373046875: CORRECT\n", + "GAITGVDTSK found in part_0.0_13829.432373046875: CORRECT\n", + "GAITIATR found in part_0.0_13829.432373046875: CORRECT\n", + "GAIVGIIGPNGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "GAIVGMTGYGESAPADK found in part_0.0_13829.432373046875: CORRECT\n", + "GALALVER found in part_0.0_13829.432373046875: CORRECT\n", + "GALAQYDEQLAEYYLTR found in part_0.0_13829.432373046875: CORRECT\n", + "GALAQYDEQLAEYYLTR found in part_0.0_13829.432373046875: CORRECT\n", + "GALATGMENSLQSAVR found in part_0.0_13829.432373046875: CORRECT\n", + "GALDCSGVK found in part_0.0_13829.432373046875: CORRECT\n", + "GALDDEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GALDLAGLPGK found in part_0.0_13829.432373046875: CORRECT\n", + "GALDVGATAINEEMK found in part_0.0_13829.432373046875: CORRECT\n", + "GALDVGATAINEEMK found in part_0.0_13829.432373046875: CORRECT\n", + "GALIDSQAAIEALK found in part_0.0_13829.432373046875: CORRECT\n", + "GALLDLFPMGSELPYR found in part_0.0_13829.432373046875: CORRECT\n", + "GALLHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GALSAVVADSR found in part_0.0_13829.432373046875: CORRECT\n", + "GALVILESTSPVGSTEK found in part_0.0_13829.432373046875: CORRECT\n", + "GAMALFGEK found in part_0.0_13829.432373046875: CORRECT\n", + "GAMEESGAVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GAMLDVFNR found in part_0.0_13829.432373046875: CORRECT\n", + "GANEAIDFNDELR found in part_0.0_13829.432373046875: CORRECT\n", + "GANFDKYAGQDIVSNASCTTNCLAPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GANFIAVHEMLDGFR found in part_0.0_13829.432373046875: CORRECT\n", + "GANFIAVHEMLDGFR found in part_0.0_13829.432373046875: CORRECT\n", + "GANFSFAVEDTQK found in part_0.0_13829.432373046875: CORRECT\n", + "GANVTLVSGPVSLPTPPFVK found in part_0.0_13829.432373046875: CORRECT\n", + "GANVTLVSGPVSLPTPPFVK found in part_0.0_13829.432373046875: CORRECT\n", + "GANVTVPFK found in part_0.0_13829.432373046875: CORRECT\n", + "GANVTVPFKEEAFAR found in part_0.0_13829.432373046875: CORRECT\n", + "GAPDVFEQFNTAVQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAPDVFEQFNTAVQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAPIVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GAQLFVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GAQNGCIIAGDNPDAALALEK found in part_0.0_13829.432373046875: CORRECT\n", + "GAQTPGELR found in part_0.0_13829.432373046875: CORRECT\n", + "GAQVENIQR found in part_0.0_13829.432373046875: CORRECT\n", + "GASEAFISTLR found in part_0.0_13829.432373046875: CORRECT\n", + "GASFIIDK found in part_0.0_13829.432373046875: CORRECT\n", + "GASFIIDK found in part_0.0_13829.432373046875: CORRECT\n", + "GASGIDGLLSTAAGVQR found in part_0.0_13829.432373046875: CORRECT\n", + "GASGYLPEHTLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "GASGYLPEHTLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "GASIITTSSIQAYQPSPHLLDYAATK found in part_0.0_13829.432373046875: CORRECT\n", + "GASPLSAGDVTNDLSHVR found in part_0.0_13829.432373046875: CORRECT\n", + "GASQNIIPSSTGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GASQNIIPSSTGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GASQNIIPSSTGAAKAVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GATCFNLEELPVK found in part_0.0_13829.432373046875: CORRECT\n", + "GATGLGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GATGRPVALLAQFLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "GATIAAGTTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GATIVGHWPTAGYHFEASK found in part_0.0_13829.432373046875: CORRECT\n", + "GATLLTPNLSEFEAVVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GATPAASDIQEAK found in part_0.0_13829.432373046875: CORRECT\n", + "GATTTFAER found in part_0.0_13829.432373046875: CORRECT\n", + "GATVELADGVEGYLR found in part_0.0_13829.432373046875: CORRECT\n", + "GATVELADGVEGYLR found in part_0.0_13829.432373046875: CORRECT\n", + "GATVLPHGTGR found in part_0.0_13829.432373046875: CORRECT\n", + "GAVASLTSVAK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVASLTSVAK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVETAEKLDAPLIVVATQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVETAEKLDAPLIVVATQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVGALTDEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVLASEQALR found in part_0.0_13829.432373046875: CORRECT\n", + "GAVNYLSVPEFPTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVPGATGSDLIVK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVPGATGSDLIVKPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVPGATGSDLIVKPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVPIILAGNGYLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVPYAYTANLGQPDEEDYDAIPR found in part_0.0_13829.432373046875: CORRECT\n", + "GAVSVLDNLSPIK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVVDNTALLTCLNEGQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAVVDNTALLTCLNEGQK found in part_0.0_13829.432373046875: CORRECT\n", + "GAYGTVIMDSR found in part_0.0_13829.432373046875: CORRECT\n", + "GAYPGWQPDANSPVMHLVR found in part_0.0_13829.432373046875: CORRECT\n", + "GAYSFYIVR found in part_0.0_13829.432373046875: CORRECT\n", + "GAYSPASQIR found in part_0.0_13829.432373046875: CORRECT\n", + "GCAIDIGTVIDNDNCTSK found in part_0.0_13829.432373046875: CORRECT\n", + "GCETNGFNYFDK found in part_0.0_13829.432373046875: CORRECT\n", + "GCGITVDQAER found in part_0.0_13829.432373046875: CORRECT\n", + "GCIVAPGVAEFHVR found in part_0.0_13829.432373046875: CORRECT\n", + "GCLTQMGDIPLDIK found in part_0.0_13829.432373046875: CORRECT\n", + "GCYTGQEMVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GDAAAPTCILLK found in part_0.0_13829.432373046875: CORRECT\n", + "GDAELAQSISMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GDAELAQSISMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GDAIFFVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDALTLVELTPAQHFTKPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "GDALTLVELTPAQHFTKPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "GDATVLVVGADDK found in part_0.0_13829.432373046875: CORRECT\n", + "GDAVDIAVDPIEGTR found in part_0.0_13829.432373046875: CORRECT\n", + "GDAWIDVVNPATEAVISR found in part_0.0_13829.432373046875: CORRECT\n", + "GDAWIDVVNPATEAVISR found in part_0.0_13829.432373046875: CORRECT\n", + "GDDIVDTVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "GDDLAEQAQALSNR found in part_0.0_13829.432373046875: CORRECT\n", + "GDDLAEQAQALSNR found in part_0.0_13829.432373046875: CORRECT\n", + "GDEAQPNEEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GDEPVTVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GDESLVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GDEVIELAK found in part_0.0_13829.432373046875: CORRECT\n", + "GDEVLTNGGLVGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDFQFNISR found in part_0.0_13829.432373046875: CORRECT\n", + "GDFSYVGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDFTFEAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GDGAILTATQNGYGK found in part_0.0_13829.432373046875: CORRECT\n", + "GDGCGHCAACNLR found in part_0.0_13829.432373046875: CORRECT\n", + "GDGTTGEDITSNVR found in part_0.0_13829.432373046875: CORRECT\n", + "GDHELNEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GDHNQLISSIK found in part_0.0_13829.432373046875: CORRECT\n", + "GDIAILADSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDIDIADALPVDQLNALK found in part_0.0_13829.432373046875: CORRECT\n", + "GDIDIADALPVDQLNALK found in part_0.0_13829.432373046875: CORRECT\n", + "GDIIIDGGNTFFQDTIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDIIIDGGNTFFQDTIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDISEFAPR found in part_0.0_13829.432373046875: CORRECT\n", + "GDIVLCGFEYGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDKDIFTVHDILK found in part_0.0_13829.432373046875: CORRECT\n", + "GDKDPFALR found in part_0.0_13829.432373046875: CORRECT\n", + "GDLESVLDLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "GDLGVEIGDPELVGIQK found in part_0.0_13829.432373046875: CORRECT\n", + "GDLGVEIPVEEVIFAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GDLHTDLPSIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDLLEGISR found in part_0.0_13829.432373046875: CORRECT\n", + "GDLTGVAQAGTVSEK found in part_0.0_13829.432373046875: CORRECT\n", + "GDLVLFDR found in part_0.0_13829.432373046875: CORRECT\n", + "GDLYIDDHHTVEDTGLALGEALK found in part_0.0_13829.432373046875: CORRECT\n", + "GDMEQIINVNR found in part_0.0_13829.432373046875: CORRECT\n", + "GDMGDVQHFADDVIAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GDMLLDGFR found in part_0.0_13829.432373046875: CORRECT\n", + "GDNFLLIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDNVAMVINGDQGTISR found in part_0.0_13829.432373046875: CORRECT\n", + "GDQAEETILR found in part_0.0_13829.432373046875: CORRECT\n", + "GDQYPIALEGALK found in part_0.0_13829.432373046875: CORRECT\n", + "GDSLDACAELGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDSRPVNPLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "GDSVFSPDDR found in part_0.0_13829.432373046875: CORRECT\n", + "GDTAGTGGKPATLSTGAVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GDTAGTGGKPATLSTGAVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GDTLVQANLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GDVAALNVDALTENQK found in part_0.0_13829.432373046875: CORRECT\n", + "GDVAVFFGLSGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "GDVFATAR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVIIGANQQAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GDVILDTPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GDVISDGPEAPHDILR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVISDGPEAPHDILR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVLADGPSTDLGELALGQNMR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVLEMNIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVLNYDEVMER found in part_0.0_13829.432373046875: CORRECT\n", + "GDVQAYQDIR found in part_0.0_13829.432373046875: CORRECT\n", + "GDVVYLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "GDWFNVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GDWQNEVNVR found in part_0.0_13829.432373046875: CORRECT\n", + "GDWSLSSPAK found in part_0.0_13829.432373046875: CORRECT\n", + "GDYEDRVDDYIIK found in part_0.0_13829.432373046875: CORRECT\n", + "GDYLPDVVDATAGLGR found in part_0.0_13829.432373046875: CORRECT\n", + "GDYTDSAELR found in part_0.0_13829.432373046875: CORRECT\n", + "GEAASNPEVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GEADAMICGTVGDYHEHFSVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GEADAMICGTVGDYHEHFSVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GEAFSYIYSK found in part_0.0_13829.432373046875: CORRECT\n", + "GEAHDQEFTIHCQVSGLSEPVVGTGSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GEAHDQEFTIHCQVSGLSEPVVGTGSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GEAIGVIAAQSIGEPGTQLTMR found in part_0.0_13829.432373046875: CORRECT\n", + "GEATADAAQSDALLSLGGAITAYK found in part_0.0_13829.432373046875: CORRECT\n", + "GEATAHLIEDIPTGIYTIPEISSVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GEDALIIYDDLSK found in part_0.0_13829.432373046875: CORRECT\n", + "GEDIEPLR found in part_0.0_13829.432373046875: CORRECT\n", + "GEDISAGAVVFPAGTR found in part_0.0_13829.432373046875: CORRECT\n", + "GEEDDTSGHYLR found in part_0.0_13829.432373046875: CORRECT\n", + "GEEEVHLTPIEFR found in part_0.0_13829.432373046875: CORRECT\n", + "GEFYQQLTNDLETAR found in part_0.0_13829.432373046875: CORRECT\n", + "GEFYQQLTNDLETAR found in part_0.0_13829.432373046875: CORRECT\n", + "GEGDIDNAPWPVADEK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGFQQAVAAHK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGFQQAVAAHK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGGILVNK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGGYLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGGYLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGLGNQFLTNIR found in part_0.0_13829.432373046875: CORRECT\n", + "GEGMVLTGPK found in part_0.0_13829.432373046875: CORRECT\n", + "GEGQPGDIETLEQLCR found in part_0.0_13829.432373046875: CORRECT\n", + "GEGTPFPVQADFR found in part_0.0_13829.432373046875: CORRECT\n", + "GEIFHFNPGSVSIPK found in part_0.0_13829.432373046875: CORRECT\n", + "GEIHIVEPDLASVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GEIIDEDDLPIK found in part_0.0_13829.432373046875: CORRECT\n", + "GEILEVVSDCPQSINNIPLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "GEILGGMAAVEQPEK found in part_0.0_13829.432373046875: CORRECT\n", + "GEILGGMAAVEQPEKPAAQPK found in part_0.0_13829.432373046875: CORRECT\n", + "GEIRPLAQADAAELDALIVPGGFGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GEISAIQEVER found in part_0.0_13829.432373046875: CORRECT\n", + "GEISPDINTAMTSR found in part_0.0_13829.432373046875: CORRECT\n", + "GELDFTASLR found in part_0.0_13829.432373046875: CORRECT\n", + "GELEITDINR found in part_0.0_13829.432373046875: CORRECT\n", + "GELFGAK found in part_0.0_13829.432373046875: CORRECT\n", + "GELGIMGTELNSELAK found in part_0.0_13829.432373046875: CORRECT\n", + "GELHCVGATTLDEYR found in part_0.0_13829.432373046875: CORRECT\n", + "GELHCVGATTLDEYR found in part_0.0_13829.432373046875: CORRECT\n", + "GELLVDPEPVLLQEYQR found in part_0.0_13829.432373046875: CORRECT\n", + "GELLVPER found in part_0.0_13829.432373046875: CORRECT\n", + "GELPYGEAANFDLVGQR found in part_0.0_13829.432373046875: CORRECT\n", + "GELQQLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GELQQLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GELVEIGGAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GELVLDKDQFSYK found in part_0.0_13829.432373046875: CORRECT\n", + "GELVLDKDQFSYK found in part_0.0_13829.432373046875: CORRECT\n", + "GELVVLGR found in part_0.0_13829.432373046875: CORRECT\n", + "GEMPQTIGGGIGQSR found in part_0.0_13829.432373046875: CORRECT\n", + "GEMPSDFDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GENEAAFAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GENLSNTLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "GENVLSDAEGEDSPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GENYDGTTGSFADLLR found in part_0.0_13829.432373046875: CORRECT\n", + "GEPIDAQTLQAEESAR found in part_0.0_13829.432373046875: CORRECT\n", + "GEPLSFR found in part_0.0_13829.432373046875: CORRECT\n", + "GEQVLAYPGTTLYSLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GEREPVTEAER found in part_0.0_13829.432373046875: CORRECT\n", + "GEREPVTEAER found in part_0.0_13829.432373046875: CORRECT\n", + "GERPFVLGPTHEEVITDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "GERPFVLGPTHEEVITDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "GESAPTTAFGAAVVGGDNGR found in part_0.0_13829.432373046875: CORRECT\n", + "GESDLVLSYTTSPAYHILEEK found in part_0.0_13829.432373046875: CORRECT\n", + "GESLDECEECGAPIPQAR found in part_0.0_13829.432373046875: CORRECT\n", + "GESNILLER found in part_0.0_13829.432373046875: CORRECT\n", + "GESSLFSR found in part_0.0_13829.432373046875: CORRECT\n", + "GESTEALLPNMVATSLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GESTEALLPNMVATSLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GETAMTINGPWAWSNIDTSK found in part_0.0_13829.432373046875: CORRECT\n", + "GETASFDIEANGK found in part_0.0_13829.432373046875: CORRECT\n", + "GETATRPQDEITVQMAER found in part_0.0_13829.432373046875: CORRECT\n", + "GETCPNELV found in part_0.0_13829.432373046875: CORRECT\n", + "GETDELAALVAQQR found in part_0.0_13829.432373046875: CORRECT\n", + "GETDELAALVAQQR found in part_0.0_13829.432373046875: CORRECT\n", + "GETIDIDGYQFK found in part_0.0_13829.432373046875: CORRECT\n", + "GETPFEINSR found in part_0.0_13829.432373046875: CORRECT\n", + "GETPSAVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GETQALVTATLGTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GETQALVTATLGTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GETQLTPEEK found in part_0.0_13829.432373046875: CORRECT\n", + "GETSVGELPAPGSLYFQR found in part_0.0_13829.432373046875: CORRECT\n", + "GETSVGELPAPGSLYFQR found in part_0.0_13829.432373046875: CORRECT\n", + "GETVGAQLTGDDR found in part_0.0_13829.432373046875: CORRECT\n", + "GETVGQELAGNPK found in part_0.0_13829.432373046875: CORRECT\n", + "GETVGQELAGNPK found in part_0.0_13829.432373046875: CORRECT\n", + "GEVALENTHPFTR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVALENTHPFTR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVDDIDHLGNR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVDDIDHLGNR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVDDIDHLGNRR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVETIALEQLVGR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVFLPQAGFEK found in part_0.0_13829.432373046875: CORRECT\n", + "GEVIDIFPAESDDIALR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVLAVGNGR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVLDIVAEPR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVLENLIPEAFAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVASTFDEPASR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVGAVSIQHQALPSCLVDK found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVLGDEFSPDGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVLVGAGPGDAGLLTLK found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVNAACAVDAGSVDQTVQLGQVR found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVSHIASDNVLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GEVVSHIASDNVLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GEYQYLNPNDHVNK found in part_0.0_13829.432373046875: CORRECT\n", + "GEYQYLNPNDHVNK found in part_0.0_13829.432373046875: CORRECT\n", + "GFAEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "GFAGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GFAVTPPELTK found in part_0.0_13829.432373046875: CORRECT\n", + "GFAVVAGEVR found in part_0.0_13829.432373046875: CORRECT\n", + "GFAVVGYGK found in part_0.0_13829.432373046875: CORRECT\n", + "GFCAGQDLNDR found in part_0.0_13829.432373046875: CORRECT\n", + "GFCAGVDR found in part_0.0_13829.432373046875: CORRECT\n", + "GFDFDGQEALK found in part_0.0_13829.432373046875: CORRECT\n", + "GFDNGPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GFDSGDPAQCNTFGK found in part_0.0_13829.432373046875: CORRECT\n", + "GFEELDTSK found in part_0.0_13829.432373046875: CORRECT\n", + "GFEGGQMPLYR found in part_0.0_13829.432373046875: CORRECT\n", + "GFEQASPSTVTLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GFEQCGELLSENMINGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFFSGVIPR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGFITPADGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GFGFITPDDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GFGFITPEDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GFGFLEVDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GFGGDTLNTSVYIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGGDTLNTSVYIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGHTLGNALR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGHTLGNALRR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGLLQLDR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGQPQLAMILPLDGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFGSFSLHYR found in part_0.0_13829.432373046875: CORRECT\n", + "GFHALQAYR found in part_0.0_13829.432373046875: CORRECT\n", + "GFHEEPQVLHYDSR found in part_0.0_13829.432373046875: CORRECT\n", + "GFHEEPQVLHYDSR found in part_0.0_13829.432373046875: CORRECT\n", + "GFHNCTPIQALALPLTLAGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFIDVEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "GFLAQNTAGSGPFMLK found in part_0.0_13829.432373046875: CORRECT\n", + "GFLASPENPQGIR found in part_0.0_13829.432373046875: CORRECT\n", + "GFLIGGTSGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFLQALGHQGNVK found in part_0.0_13829.432373046875: CORRECT\n", + "GFLQALGHQGNVK found in part_0.0_13829.432373046875: CORRECT\n", + "GFLQTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "GFMVLGFPCNQFLEQEPGSDEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "GFNEEDFAR found in part_0.0_13829.432373046875: CORRECT\n", + "GFNEGVFTAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GFNVDHSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GFPGDDEEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GFPHADYPDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "GFPHADYPDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "GFPLAYVGDVVGTGSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GFPLAYVGDVVGTGSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GFQASTEQQNNPPAK found in part_0.0_13829.432373046875: CORRECT\n", + "GFQPQQTEQTLR found in part_0.0_13829.432373046875: CORRECT\n", + "GFSGEDATPALEGADVVLISAGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GFSLAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GFSPDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "GFSQQVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GFSVNFER found in part_0.0_13829.432373046875: CORRECT\n", + "GFTAEDFALSHPGGALGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFTQDDAHIFCTEEQIR found in part_0.0_13829.432373046875: CORRECT\n", + "GFTQDDAHIFCTEEQIRDEVNGCIR found in part_0.0_13829.432373046875: CORRECT\n", + "GFTRPTAIQAAAIPPALDGR found in part_0.0_13829.432373046875: CORRECT\n", + "GFTSEITVTSNGK found in part_0.0_13829.432373046875: CORRECT\n", + "GFVICTPDPK found in part_0.0_13829.432373046875: CORRECT\n", + "GFVTYSNEAK found in part_0.0_13829.432373046875: CORRECT\n", + "GFYAEHDGK found in part_0.0_13829.432373046875: CORRECT\n", + "GFYDAIQALVAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GFYPMVAAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GGAASVASITPQER found in part_0.0_13829.432373046875: CORRECT\n", + "GGAGFSTGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GGAPAHAALLSQPPGSLK found in part_0.0_13829.432373046875: CORRECT\n", + "GGAPAHAALLSQPPGSLK found in part_0.0_13829.432373046875: CORRECT\n", + "GGAQGDLLCR found in part_0.0_13829.432373046875: CORRECT\n", + "GGDEFSLQDEVPVEHDATEEK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDFAALAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDGNYGYNAATEEYGNMIDMGILDPTK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDIEETAFNTNLEAADEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGDLGEFR found in part_0.0_13829.432373046875: CORRECT\n", + "GGDLGQPFQFK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDPFIFGR found in part_0.0_13829.432373046875: CORRECT\n", + "GGDTVTLNETDLTQIPK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDTVTLNETDLTQIPK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDVEQALLPAYPK found in part_0.0_13829.432373046875: CORRECT\n", + "GGDYKPEEIAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GGEAFHTGCIPFYK found in part_0.0_13829.432373046875: CORRECT\n", + "GGEQNEDQLLQDAYLNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "GGFESYQER found in part_0.0_13829.432373046875: CORRECT\n", + "GGFSSSSGYELAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGFTVELNGIR found in part_0.0_13829.432373046875: CORRECT\n", + "GGGDETFVQGR found in part_0.0_13829.432373046875: CORRECT\n", + "GGGISGQAGAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GGGLCLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GGGLCLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GGGRPDMAQAGGTDAAALPAALASVK found in part_0.0_13829.432373046875: CORRECT\n", + "GGGRPDMAQAGGTDAAALPAALASVK found in part_0.0_13829.432373046875: CORRECT\n", + "GGHIYNICAPAHPAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGHIYNICAPAHPAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGHSGGEIHVGLGNANK found in part_0.0_13829.432373046875: CORRECT\n", + "GGHSGGEIHVGLGNANK found in part_0.0_13829.432373046875: CORRECT\n", + "GGHSGGEIHVGLGNANK found in part_0.0_13829.432373046875: CORRECT\n", + "GGIEYIEVR found in part_0.0_13829.432373046875: CORRECT\n", + "GGISFESEEAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGIYEVLAHAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GGIYEVLAHAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GGIYLYPSTASHPDGK found in part_0.0_13829.432373046875: CORRECT\n", + "GGIYLYPSTASHPDGK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLAGSTVLDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLANVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLDPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLFDDSK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLGNLMK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLILAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGLVPGALLAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGNFFQPTILVDVPANAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGNFFQPTILVDVPANAK found in part_0.0_13829.432373046875: CORRECT\n", + "GGPLADGIVITPSHNPPEDGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "GGQFRPEFLR found in part_0.0_13829.432373046875: CORRECT\n", + "GGQVYYLYNDVENIQK found in part_0.0_13829.432373046875: CORRECT\n", + "GGSEELYK found in part_0.0_13829.432373046875: CORRECT\n", + "GGSEELYK found in part_0.0_13829.432373046875: CORRECT\n", + "GGSEEPMDLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GGSFIGLNPIHALYPANPESASPYSPSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GGSPVPYDR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTFLGSAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTLAGTTTLNNGAILTLSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GGTPYGATTIAGGDGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTPYGATTIAGGDGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTTHLGLPVFNTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTTHLGLPVFNTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GGTTVIAFVEDPDGYK found in part_0.0_13829.432373046875: CORRECT\n", + "GGVDVLVATPGR found in part_0.0_13829.432373046875: CORRECT\n", + "GGVIPGEYIPAVDK found in part_0.0_13829.432373046875: CORRECT\n", + "GGVIPGEYIPAVDKGIQEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GGVIVYPTDSGYALGCK found in part_0.0_13829.432373046875: CORRECT\n", + "GGVLAGEEEAESIVALAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GGVLAGEEEAESIVALAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GGVLPGEQEIDTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GGVSPQQVAQAIAFAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "GGVVQYVDASR found in part_0.0_13829.432373046875: CORRECT\n", + "GGWTELDLAQTNYLR found in part_0.0_13829.432373046875: CORRECT\n", + "GGYDLVTASGDASLR found in part_0.0_13829.432373046875: CORRECT\n", + "GGYDLVTASGDASLR found in part_0.0_13829.432373046875: CORRECT\n", + "GGYFPVPPVDSAQDIR found in part_0.0_13829.432373046875: CORRECT\n", + "GGYFPVPPVDSAQDIR found in part_0.0_13829.432373046875: CORRECT\n", + "GGYVEPEYVQAMLDR found in part_0.0_13829.432373046875: CORRECT\n", + "GHAAFAEGVGEILTPVDPPEK found in part_0.0_13829.432373046875: CORRECT\n", + "GHALEAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "GHATLGGPNTTYVFK found in part_0.0_13829.432373046875: CORRECT\n", + "GHATLGGPNTTYVFK found in part_0.0_13829.432373046875: CORRECT\n", + "GHAYVADNGDVMFDVPTDPTYGVLSR found in part_0.0_13829.432373046875: CORRECT\n", + "GHDIDAPGLNYK found in part_0.0_13829.432373046875: CORRECT\n", + "GHDIDAPGLNYK found in part_0.0_13829.432373046875: CORRECT\n", + "GHEVNFICADDAHGTPIMLK found in part_0.0_13829.432373046875: CORRECT\n", + "GHISNAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GHLTASTVIQYR found in part_0.0_13829.432373046875: CORRECT\n", + "GHLTASTVIQYR found in part_0.0_13829.432373046875: CORRECT\n", + "GHLTLQMTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "GHLTLQMTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "GHQVVASSSLVPHNDPTLLFTNAGMNQFK found in part_0.0_13829.432373046875: CORRECT\n", + "GHSNIQGLTDLGLLSQSLPGYMTLPSEK found in part_0.0_13829.432373046875: CORRECT\n", + "GHTAAFIDLSGPK found in part_0.0_13829.432373046875: CORRECT\n", + "GHTAAFIDLSGPK found in part_0.0_13829.432373046875: CORRECT\n", + "GHTELYR found in part_0.0_13829.432373046875: CORRECT\n", + "GHTIQEVR found in part_0.0_13829.432373046875: CORRECT\n", + "GHVMNALPEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GHVMNALPEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GHVMNALPEDAKAWVEEHVGFVDSAVDR found in part_0.0_13829.432373046875: CORRECT\n", + "GHVYIAQPPLYK found in part_0.0_13829.432373046875: CORRECT\n", + "GHVYIAQPPLYK found in part_0.0_13829.432373046875: CORRECT\n", + "GHYGVALLTK found in part_0.0_13829.432373046875: CORRECT\n", + "GIAAAAQGELAGADAK found in part_0.0_13829.432373046875: CORRECT\n", + "GIAAASLAAILEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAAASLAAILEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAETAQCGAILGIGGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIAFAPLSSVNLVMPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAFAPLSSVNLVMPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAFGNIDAIVEHIQQR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAILQYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIANALLNR found in part_0.0_13829.432373046875: CORRECT\n", + "GIANSILIK found in part_0.0_13829.432373046875: CORRECT\n", + "GIANSILIK found in part_0.0_13829.432373046875: CORRECT\n", + "GIASMHCSANVGEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIASMHCSANVGEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIATCVLLGNPAEINR found in part_0.0_13829.432373046875: CORRECT\n", + "GIATCVLLGNPAEINR found in part_0.0_13829.432373046875: CORRECT\n", + "GIAVADTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GICGLPFTR found in part_0.0_13829.432373046875: CORRECT\n", + "GICLSAGSPVSHSALIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIDEFYAQCEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIDGLTAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GIDIPDVSHVFNFDMPR found in part_0.0_13829.432373046875: CORRECT\n", + "GIDIYYENVGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIDMLDAPVSGGEPK found in part_0.0_13829.432373046875: CORRECT\n", + "GIDTVLAELR found in part_0.0_13829.432373046875: CORRECT\n", + "GIEDALTADGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEEAYR found in part_0.0_13829.432373046875: CORRECT\n", + "GIEGSSLDVPENIVHSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEGSSLDVPENIVHSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEIDPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "GIEPVITLSSGEAK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEVGHIFQLGTK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEVGHIFQLGTK found in part_0.0_13829.432373046875: CORRECT\n", + "GIEVLLLSDR found in part_0.0_13829.432373046875: CORRECT\n", + "GIFSEYGLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GIGALYVR found in part_0.0_13829.432373046875: CORRECT\n", + "GIGLTHALADVSGLAFDR found in part_0.0_13829.432373046875: CORRECT\n", + "GIGPAYEDK found in part_0.0_13829.432373046875: CORRECT\n", + "GIGPAYEDK found in part_0.0_13829.432373046875: CORRECT\n", + "GIGRPSTYASIISTIQDR found in part_0.0_13829.432373046875: CORRECT\n", + "GIGSGLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIGYLPQEASIFR found in part_0.0_13829.432373046875: CORRECT\n", + "GIIDFLNQYEEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GIILAGGSGTR found in part_0.0_13829.432373046875: CORRECT\n", + "GIIYHVDATQSVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIIYHVDATQSVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GILAADESTGSIAK found in part_0.0_13829.432373046875: CORRECT\n", + "GILANYGIELR found in part_0.0_13829.432373046875: CORRECT\n", + "GILASIEQQNK found in part_0.0_13829.432373046875: CORRECT\n", + "GILDPEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "GILDSFK found in part_0.0_13829.432373046875: CORRECT\n", + "GILEALMGNAR found in part_0.0_13829.432373046875: CORRECT\n", + "GILEQYGHK found in part_0.0_13829.432373046875: CORRECT\n", + "GILETITCR found in part_0.0_13829.432373046875: CORRECT\n", + "GILLYHR found in part_0.0_13829.432373046875: CORRECT\n", + "GILMGLVR found in part_0.0_13829.432373046875: CORRECT\n", + "GILNALYEAK found in part_0.0_13829.432373046875: CORRECT\n", + "GILPIDTYK found in part_0.0_13829.432373046875: CORRECT\n", + "GILSVPVPVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GINAPLASSCGR found in part_0.0_13829.432373046875: CORRECT\n", + "GINEEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "GINFIACPTCSR found in part_0.0_13829.432373046875: CORRECT\n", + "GINFVFATGR found in part_0.0_13829.432373046875: CORRECT\n", + "GINSYYLTSDGSTMSYR found in part_0.0_13829.432373046875: CORRECT\n", + "GIPADLEDR found in part_0.0_13829.432373046875: CORRECT\n", + "GIPAFSIYGHDVQDADDTSIPADVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIPALPAGGAHIR found in part_0.0_13829.432373046875: CORRECT\n", + "GIPIATTTAVALAEHHDLDLPYCFNR found in part_0.0_13829.432373046875: CORRECT\n", + "GIPTGIHPEEGVSAAEVIMTVLHAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIPTLLLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GIPTLLLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GIPVFNAPFSNTR found in part_0.0_13829.432373046875: CORRECT\n", + "GIPVGTLAIGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIPVIATSSTCTFALR found in part_0.0_13829.432373046875: CORRECT\n", + "GIQALFVR found in part_0.0_13829.432373046875: CORRECT\n", + "GIQEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GIQEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GIQLQVSDAELAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GIRPDQALDR found in part_0.0_13829.432373046875: CORRECT\n", + "GIRPGAYCEPK found in part_0.0_13829.432373046875: CORRECT\n", + "GIRPGAYCEPK found in part_0.0_13829.432373046875: CORRECT\n", + "GISPAGLATSFEK found in part_0.0_13829.432373046875: CORRECT\n", + "GITDILVVDNLK found in part_0.0_13829.432373046875: CORRECT\n", + "GITEFIEQDTEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GITFDSGGYSIK found in part_0.0_13829.432373046875: CORRECT\n", + "GITILAK found in part_0.0_13829.432373046875: CORRECT\n", + "GITINTSHVEYDTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "GITINTSHVEYDTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "GITVNVVAPGFIETDMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GITVSDHGAIK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVDIPVYPLK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVEAVHER found in part_0.0_13829.432373046875: CORRECT\n", + "GIVGNIYK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVIINPNNPTGAVYSK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVLLDHAER found in part_0.0_13829.432373046875: CORRECT\n", + "GIVTLLER found in part_0.0_13829.432373046875: CORRECT\n", + "GIVVVNLTQCMSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVYIDEIDK found in part_0.0_13829.432373046875: CORRECT\n", + "GIVYISHR found in part_0.0_13829.432373046875: CORRECT\n", + "GIYDQFVNR found in part_0.0_13829.432373046875: CORRECT\n", + "GIYDTLVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GIYEGPGISIK found in part_0.0_13829.432373046875: CORRECT\n", + "GIYLVNLDEK found in part_0.0_13829.432373046875: CORRECT\n", + "GKDQGVVVNNVK found in part_0.0_13829.432373046875: CORRECT\n", + "GKDQGVVVNNVK found in part_0.0_13829.432373046875: CORRECT\n", + "GKDVLIVEDIIDSGNTLSK found in part_0.0_13829.432373046875: CORRECT\n", + "GKFTFIATSGAFHGK found in part_0.0_13829.432373046875: CORRECT\n", + "GKGTVSTESGVLNQQPYGFNTR found in part_0.0_13829.432373046875: CORRECT\n", + "GKPFAPLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GKVECTLR found in part_0.0_13829.432373046875: CORRECT\n", + "GKVPMNIVAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GKVPMNIVAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GLAASLMK found in part_0.0_13829.432373046875: CORRECT\n", + "GLADDDHFVGLAIDEDR found in part_0.0_13829.432373046875: CORRECT\n", + "GLADDDHFVGLAIDEDRQPELTAER found in part_0.0_13829.432373046875: CORRECT\n", + "GLADDDHFVGLAIDEDRQPELTAER found in part_0.0_13829.432373046875: CORRECT\n", + "GLAEYSSHFYGSDSDAR found in part_0.0_13829.432373046875: CORRECT\n", + "GLAIDTALPSGEEFPR found in part_0.0_13829.432373046875: CORRECT\n", + "GLAIDTALPSGEEFPR found in part_0.0_13829.432373046875: CORRECT\n", + "GLAIDTYTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "GLALLDEELAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLANPLTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GLAQGTDVSFGSFGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GLASTPFDSEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "GLATTIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLAYVDELTPEQIR found in part_0.0_13829.432373046875: CORRECT\n", + "GLCGGLNINLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GLCGGLNINLFKK found in part_0.0_13829.432373046875: CORRECT\n", + "GLCMPTDLPR found in part_0.0_13829.432373046875: CORRECT\n", + "GLCTLPGLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDAILVPGGFGYR found in part_0.0_13829.432373046875: CORRECT\n", + "GLDDLAKPSEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDIELAAGDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDINSGALDSNEAEAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDITITTTAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDLSPTK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDLSPTK found in part_0.0_13829.432373046875: CORRECT\n", + "GLDPQTPFVVEATPLEADALR found in part_0.0_13829.432373046875: CORRECT\n", + "GLDYYNR found in part_0.0_13829.432373046875: CORRECT\n", + "GLEALLRPK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEDFYYSVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEEDAEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLEELLK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEFSPDLK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEGINSPVAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLENLSGDLYEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEPSELGELVYR found in part_0.0_13829.432373046875: CORRECT\n", + "GLEVGATGFDPK found in part_0.0_13829.432373046875: CORRECT\n", + "GLEYIEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GLFAVGECSSVGLHGANR found in part_0.0_13829.432373046875: CORRECT\n", + "GLFAVGECSSVGLHGANR found in part_0.0_13829.432373046875: CORRECT\n", + "GLFIIDDK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide GLFNFVK NOT FOUND in any FASTA file.\n", + "GLGAGANPEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "GLGLLIGCVLNADYAGQAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLGLLIGCVLNADYAGQAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLGSMIAVEFNDPQTGEPSAAIAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GLGTPVGSLLVGNR found in part_0.0_13829.432373046875: CORRECT\n", + "GLHLPEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLHSAFTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GLIDAVAFGR found in part_0.0_13829.432373046875: CORRECT\n", + "GLIDPGESVYEAANR found in part_0.0_13829.432373046875: CORRECT\n", + "GLIDSSDLPLNVSR found in part_0.0_13829.432373046875: CORRECT\n", + "GLIEEMASAYEDPK found in part_0.0_13829.432373046875: CORRECT\n", + "GLIGKEEDDVVVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLIGKEEDDVVVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLILIDPPYEMK found in part_0.0_13829.432373046875: CORRECT\n", + "GLILLSCGPYYNVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLINDPHMDNSFQINDGLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLINGVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLISDPDLNGSYR found in part_0.0_13829.432373046875: CORRECT\n", + "GLITEHVQHTGSQR found in part_0.0_13829.432373046875: CORRECT\n", + "GLIVAPPK found in part_0.0_13829.432373046875: CORRECT\n", + "GLLAFSPEKPGTTEAQCNYYYAK found in part_0.0_13829.432373046875: CORRECT\n", + "GLLAPITDVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GLLDSVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GLLEEDAFIER found in part_0.0_13829.432373046875: CORRECT\n", + "GLLLSENGYLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLLPENER found in part_0.0_13829.432373046875: CORRECT\n", + "GLLPTALDITDNPR found in part_0.0_13829.432373046875: CORRECT\n", + "GLLQAVDDFTAEAQLDK found in part_0.0_13829.432373046875: CORRECT\n", + "GLLTAFAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GLLTEAELDDIFSVQNLMHPAYK found in part_0.0_13829.432373046875: CORRECT\n", + "GLMAIPAPESEYVR found in part_0.0_13829.432373046875: CORRECT\n", + "GLMAKPDGSIIETPITANFR found in part_0.0_13829.432373046875: CORRECT\n", + "GLMLNVTDPASIESVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLMLNVTDPASIESVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLMNVQFAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GLMPDGTTR found in part_0.0_13829.432373046875: CORRECT\n", + "GLNCETGITATPCGVCDNCR found in part_0.0_13829.432373046875: CORRECT\n", + "GLNHEFK found in part_0.0_13829.432373046875: CORRECT\n", + "GLNIFNSK found in part_0.0_13829.432373046875: CORRECT\n", + "GLNIFNSK found in part_0.0_13829.432373046875: CORRECT\n", + "GLNIPQDISLISVNDIPTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GLNNPDLDAAVGEDLAQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLNVTIMK found in part_0.0_13829.432373046875: CORRECT\n", + "GLPADVVPGDILLLDDGR found in part_0.0_13829.432373046875: CORRECT\n", + "GLPASILDALPAEQK found in part_0.0_13829.432373046875: CORRECT\n", + "GLPEEEFNALVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GLPEGAEIAVQLEGER found in part_0.0_13829.432373046875: CORRECT\n", + "GLPIPVVITVYADR found in part_0.0_13829.432373046875: CORRECT\n", + "GLPIPVVITVYADR found in part_0.0_13829.432373046875: CORRECT\n", + "GLPYSIVNQALGK found in part_0.0_13829.432373046875: CORRECT\n", + "GLQDYGR found in part_0.0_13829.432373046875: CORRECT\n", + "GLQELVVATGGSLHR found in part_0.0_13829.432373046875: CORRECT\n", + "GLQELVVATGGSLHR found in part_0.0_13829.432373046875: CORRECT\n", + "GLQETSLTPYK found in part_0.0_13829.432373046875: CORRECT\n", + "GLQQIQQADVVVYDR found in part_0.0_13829.432373046875: CORRECT\n", + "GLSFGAPTEMEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GLSFHIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLSGVSDISYDTVVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GLSQGSGVAFDNEK found in part_0.0_13829.432373046875: CORRECT\n", + "GLSVLMLEAQDLACATSSASSK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTDAAQQVVAAVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTDAAQQVVAAVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTEALTR found in part_0.0_13829.432373046875: CORRECT\n", + "GLTFDSGGISIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTFTYEPK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTFTYEPKVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLTSTITFPVGNIAPEGSVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GLTVTPYQNR found in part_0.0_13829.432373046875: CORRECT\n", + "GLTYLHPEIPVEIR found in part_0.0_13829.432373046875: CORRECT\n", + "GLVAQVTDEEALAER found in part_0.0_13829.432373046875: CORRECT\n", + "GLVEQTNASLLNENANK found in part_0.0_13829.432373046875: CORRECT\n", + "GLVLSPFGNASFAGVYR found in part_0.0_13829.432373046875: CORRECT\n", + "GLVQINNGER found in part_0.0_13829.432373046875: CORRECT\n", + "GLVTPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GLVYMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GLYTADPR found in part_0.0_13829.432373046875: CORRECT\n", + "GMAGGLIAIRPPVGSAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GMAGGLIAIRPPVGSAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GMASGAVIESFLDK found in part_0.0_13829.432373046875: CORRECT\n", + "GMCSLIPNLEGISDNIR found in part_0.0_13829.432373046875: CORRECT\n", + "GMCSLIPNLEGISDNIR found in part_0.0_13829.432373046875: CORRECT\n", + "GMFLPDR found in part_0.0_13829.432373046875: CORRECT\n", + "GMFSYTGLSAAQVDR found in part_0.0_13829.432373046875: CORRECT\n", + "GMGESNPVTGNTCDNVK found in part_0.0_13829.432373046875: CORRECT\n", + "GMIELQK found in part_0.0_13829.432373046875: CORRECT\n", + "GMLATDLFSTLQR found in part_0.0_13829.432373046875: CORRECT\n", + "GMLGFTGTYK found in part_0.0_13829.432373046875: CORRECT\n", + "GMLNELDEEPSPR found in part_0.0_13829.432373046875: CORRECT\n", + "GMNTEGVLPGPLR found in part_0.0_13829.432373046875: CORRECT\n", + "GMPIATPVFDGAK found in part_0.0_13829.432373046875: CORRECT\n", + "GMPLYEHIAELNGTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "GMPLYEHIAELNGTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "GMPLYEHIAELNGTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "GMPVDIHPEEGVPAVELILCR found in part_0.0_13829.432373046875: CORRECT\n", + "GMQLYFER found in part_0.0_13829.432373046875: CORRECT\n", + "GMQVALGTNAVR found in part_0.0_13829.432373046875: CORRECT\n", + "GMSAGVPILGTVTK found in part_0.0_13829.432373046875: CORRECT\n", + "GMVFYTNLGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GMVIGTTGFDEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "GMVLNYNGK found in part_0.0_13829.432373046875: CORRECT\n", + "GMVLTGGGALLR found in part_0.0_13829.432373046875: CORRECT\n", + "GNAFTLVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GNANVVFFDGITAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "GNASEDARPIVLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GNASEDARPIVLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GNATTPQVADAICK found in part_0.0_13829.432373046875: CORRECT\n", + "GNAVGVELTPLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GNCTPNAEFNIAADPEAAACVFR found in part_0.0_13829.432373046875: CORRECT\n", + "GNDFFQQIQLTQCTR found in part_0.0_13829.432373046875: CORRECT\n", + "GNDFFQQIQLTQCTR found in part_0.0_13829.432373046875: CORRECT\n", + "GNDGIAAFVQR found in part_0.0_13829.432373046875: CORRECT\n", + "GNDTDTYALK found in part_0.0_13829.432373046875: CORRECT\n", + "GNDYSILNTVSENLTYKPER found in part_0.0_13829.432373046875: CORRECT\n", + "GNESDVYSSEIPAEFQK found in part_0.0_13829.432373046875: CORRECT\n", + "GNESDVYSSEIPAEFQK found in part_0.0_13829.432373046875: CORRECT\n", + "GNESIYLLMR found in part_0.0_13829.432373046875: CORRECT\n", + "GNFDLEGLER found in part_0.0_13829.432373046875: CORRECT\n", + "GNGATILLYNTK found in part_0.0_13829.432373046875: CORRECT\n", + "GNGSTEDLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GNGYYYAPTLLAGALQDDAIVQK found in part_0.0_13829.432373046875: CORRECT\n", + "GNIGYIGPVPER found in part_0.0_13829.432373046875: CORRECT\n", + "GNNALGATALAQVYR found in part_0.0_13829.432373046875: CORRECT\n", + "GNNALGATALAQVYR found in part_0.0_13829.432373046875: CORRECT\n", + "GNNLTVSADLYK found in part_0.0_13829.432373046875: CORRECT\n", + "GNNQQVLLEQLENQGIR found in part_0.0_13829.432373046875: CORRECT\n", + "GNNQQVLLEQLENQGIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide GNNVVVLGTQWGDEGK NOT FOUND in any FASTA file.\n", + "GNPCVEAVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "GNPTVEAEVHLEGGFVGMAAAPSGASTGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GNPTVEAEVHLEGGFVGMAAAPSGASTGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GNQLLPVSLVK found in part_0.0_13829.432373046875: CORRECT\n", + "GNTGENLLALLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GNTGENLLALLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GNTISTPR found in part_0.0_13829.432373046875: CORRECT\n", + "GNTLAELAR found in part_0.0_13829.432373046875: CORRECT\n", + "GNVTINGVK found in part_0.0_13829.432373046875: CORRECT\n", + "GNYEQNLSAGIAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GNYEQNLSAGIAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GPAAGNVTSL found in part_0.0_13829.432373046875: CORRECT\n", + "GPAAGNVTSL found in part_0.0_13829.432373046875: CORRECT\n", + "GPAAVNVTAI found in part_0.0_13829.432373046875: CORRECT\n", + "GPAAVNVTAI found in part_0.0_13829.432373046875: CORRECT\n", + "GPAIAQAFDAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GPAIAQAFDAEGKPSK found in part_0.0_13829.432373046875: CORRECT\n", + "GPAIAQAFDAEGKPSK found in part_0.0_13829.432373046875: CORRECT\n", + "GPAYTEMSLFAR found in part_0.0_13829.432373046875: CORRECT\n", + "GPDADSLFSYR found in part_0.0_13829.432373046875: CORRECT\n", + "GPDWSGIYASDNAILAHER found in part_0.0_13829.432373046875: CORRECT\n", + "GPEAEEALIAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GPEGLMPSDDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "GPFIDLHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "GPGETQLETDR found in part_0.0_13829.432373046875: CORRECT\n", + "GPGETQLETDRR found in part_0.0_13829.432373046875: CORRECT\n", + "GPGGGYLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GPGSFTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "GPGSLDVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GPHVPNMR found in part_0.0_13829.432373046875: CORRECT\n", + "GPIEFSNQELDDLIIR found in part_0.0_13829.432373046875: CORRECT\n", + "GPIEFSNQELDDLIIR found in part_0.0_13829.432373046875: CORRECT\n", + "GPILCLVGPPGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GPIPLPTR found in part_0.0_13829.432373046875: CORRECT\n", + "GPITALAEDLAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "GPLDHDGFSAVEAIAPGVIER found in part_0.0_13829.432373046875: CORRECT\n", + "GPLDHDGFSAVEAIAPGVIER found in part_0.0_13829.432373046875: CORRECT\n", + "GPLNLPNLTR found in part_0.0_13829.432373046875: CORRECT\n", + "GPLTTPVGGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "GPLVVLVDR found in part_0.0_13829.432373046875: CORRECT\n", + "GPMGLEALTTYK found in part_0.0_13829.432373046875: CORRECT\n", + "GPQAAEIFK found in part_0.0_13829.432373046875: CORRECT\n", + "GPQAALAQISGLDANSEVVSEAVTAYK found in part_0.0_13829.432373046875: CORRECT\n", + "GPQFLHIMTK found in part_0.0_13829.432373046875: CORRECT\n", + "GPQVPAGLPMTEEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "GPSAANVIAL found in part_0.0_13829.432373046875: CORRECT\n", + "GPSAANVIAL found in part_0.0_13829.432373046875: CORRECT\n", + "GPSICDVLTGGAHGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "GPSICDVLTGGAHGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "GPSIMPGGQK found in part_0.0_13829.432373046875: CORRECT\n", + "GPSISIATACTSGVHNIGHAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GPSISIATACTSGVHNIGHAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GPTDFVENYAK found in part_0.0_13829.432373046875: CORRECT\n", + "GPTLLEDFILR found in part_0.0_13829.432373046875: CORRECT\n", + "GPVAAASAEATPATAAPVAK found in part_0.0_13829.432373046875: CORRECT\n", + "GPVATVLVR found in part_0.0_13829.432373046875: CORRECT\n", + "GPVFGLPLVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "GPVVDENALIAALQK found in part_0.0_13829.432373046875: CORRECT\n", + "GPVVDENALIAALQK found in part_0.0_13829.432373046875: CORRECT\n", + "GPYGTVLSNPPYGER found in part_0.0_13829.432373046875: CORRECT\n", + "GQAIIATADGR found in part_0.0_13829.432373046875: CORRECT\n", + "GQAMVEIGPGLAALTEPVGER found in part_0.0_13829.432373046875: CORRECT\n", + "GQDAAGIITIDANNCFR found in part_0.0_13829.432373046875: CORRECT\n", + "GQDEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "GQDIIALDVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "GQDSEEVIAK found in part_0.0_13829.432373046875: CORRECT\n", + "GQDSFTIQPGER found in part_0.0_13829.432373046875: CORRECT\n", + "GQESEVTGVK found in part_0.0_13829.432373046875: CORRECT\n", + "GQFAAVPLNILGDK found in part_0.0_13829.432373046875: CORRECT\n", + "GQFCDAPNNQFR found in part_0.0_13829.432373046875: CORRECT\n", + "GQFENAFNSER found in part_0.0_13829.432373046875: CORRECT\n", + "GQGAQLNGYR found in part_0.0_13829.432373046875: CORRECT\n", + "GQGETLAFAGHTDVVPPGDADR found in part_0.0_13829.432373046875: CORRECT\n", + "GQGIVLNEPSVVAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GQGMQILATHLSDNAVDFR found in part_0.0_13829.432373046875: CORRECT\n", + "GQGYLFELR found in part_0.0_13829.432373046875: CORRECT\n", + "GQHLLAMK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIDALER found in part_0.0_13829.432373046875: CORRECT\n", + "GQIEGAVSSSDASTEK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIEGAVSSSDASTEK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIEYIPFPDK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIGLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "GQIQDIEPEQIHLAIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIQDIEPEQIHLAIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQIQENQYQLNQVVER found in part_0.0_13829.432373046875: CORRECT\n", + "GQIQENQYQLNQVVER found in part_0.0_13829.432373046875: CORRECT\n", + "GQLLLDGR found in part_0.0_13829.432373046875: CORRECT\n", + "GQLSGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQMSLADLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GQNEDQNVGIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQNVPVVFFNK found in part_0.0_13829.432373046875: CORRECT\n", + "GQNVPVVFFNKEPSR found in part_0.0_13829.432373046875: CORRECT\n", + "GQNVPVVFFNKEPSR found in part_0.0_13829.432373046875: CORRECT\n", + "GQNVTVISNLPEDDIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQPSKPFVGVLSAGINAASPNK found in part_0.0_13829.432373046875: CORRECT\n", + "GQPVLVGTISIEK found in part_0.0_13829.432373046875: CORRECT\n", + "GQQEQYVALK found in part_0.0_13829.432373046875: CORRECT\n", + "GQQLSSFAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "GQQLVLVPNPHYPGNKPNFK found in part_0.0_13829.432373046875: CORRECT\n", + "GQQLVLVPNPHYPGNKPNFK found in part_0.0_13829.432373046875: CORRECT\n", + "GQSLQDPFLNALR found in part_0.0_13829.432373046875: CORRECT\n", + "GQTTIPAPVR found in part_0.0_13829.432373046875: CORRECT\n", + "GQTVLDLAGGTGDLTAK found in part_0.0_13829.432373046875: CORRECT\n", + "GQVLAGAVVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "GQVLAKPGTIK found in part_0.0_13829.432373046875: CORRECT\n", + "GQVLPIGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GQYGHVVIDMYPLEPGSNPK found in part_0.0_13829.432373046875: CORRECT\n", + "GQYTAGFAQGK found in part_0.0_13829.432373046875: CORRECT\n", + "GREPQLDAMLEHYGIK found in part_0.0_13829.432373046875: CORRECT\n", + "GREPQLDAMLEHYGIK found in part_0.0_13829.432373046875: CORRECT\n", + "GRGEISAIQEVER found in part_0.0_13829.432373046875: CORRECT\n", + "GRLNVLVNVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GRLNVLVNVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GRPGQAEPVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GRPIVNLLPLEQDER found in part_0.0_13829.432373046875: CORRECT\n", + "GRQDVVDCEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GRQDVVDCEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSAAHGYFQPYK found in part_0.0_13829.432373046875: CORRECT\n", + "GSAARHSFNEPHILAIAQAIAEER found in part_0.0_13829.432373046875: CORRECT\n", + "GSAFSMEER found in part_0.0_13829.432373046875: CORRECT\n", + "GSAFTQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSALINDK found in part_0.0_13829.432373046875: CORRECT\n", + "GSALINDKR found in part_0.0_13829.432373046875: CORRECT\n", + "GSASAPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "GSASSTDLSPQAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GSAYGGVLSNFSGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSAYYLGVHPEFR found in part_0.0_13829.432373046875: CORRECT\n", + "GSDLVVTAIAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GSDYIGDQDAIEYMCK found in part_0.0_13829.432373046875: CORRECT\n", + "GSDYIGDQDAIEYMCK found in part_0.0_13829.432373046875: CORRECT\n", + "GSENYALTTNQGVR found in part_0.0_13829.432373046875: CORRECT\n", + "GSFAAAADELGR found in part_0.0_13829.432373046875: CORRECT\n", + "GSFNGMVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GSGIHVVSNQPR found in part_0.0_13829.432373046875: CORRECT\n", + "GSGIHVVSNQPR found in part_0.0_13829.432373046875: CORRECT\n", + "GSGLTPAQALDK found in part_0.0_13829.432373046875: CORRECT\n", + "GSGNIASAPAMSR found in part_0.0_13829.432373046875: CORRECT\n", + "GSGPYFYLPK found in part_0.0_13829.432373046875: CORRECT\n", + "GSHEYCDVMGR found in part_0.0_13829.432373046875: CORRECT\n", + "GSHEYCDVMGR found in part_0.0_13829.432373046875: CORRECT\n", + "GSHIVVPR found in part_0.0_13829.432373046875: CORRECT\n", + "GSHLESLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLAAMVVAAER found in part_0.0_13829.432373046875: CORRECT\n", + "GSLAYAEDPCGAEQGFSGR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLHPQFGVLPQR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLHPQFGVLPQR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLPIALDEVITDGHK found in part_0.0_13829.432373046875: CORRECT\n", + "GSLPIALDEVITDGHK found in part_0.0_13829.432373046875: CORRECT\n", + "GSLPIALDEVITDGHKR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLPIALDEVITDGHKR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLPIALDEVITDGHKR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLYIATTHTQAR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLYVTR found in part_0.0_13829.432373046875: CORRECT\n", + "GSLYVTRPSLQGYITTR found in part_0.0_13829.432373046875: CORRECT\n", + "GSMASVAFHLNTQLNNGESPK found in part_0.0_13829.432373046875: CORRECT\n", + "GSMIEVLHSNFIR found in part_0.0_13829.432373046875: CORRECT\n", + "GSNDFVTNVDK found in part_0.0_13829.432373046875: CORRECT\n", + "GSPAAQAGLQK found in part_0.0_13829.432373046875: CORRECT\n", + "GSPALSAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GSPIQPTLDSLK found in part_0.0_13829.432373046875: CORRECT\n", + "GSQQLQLKPGESAFIAANESPVTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSQVYIEGQLR found in part_0.0_13829.432373046875: CORRECT\n", + "GSSIEFGTTSSVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSSLQQGFQK found in part_0.0_13829.432373046875: CORRECT\n", + "GSSLQQGFQKPAQAVNR found in part_0.0_13829.432373046875: CORRECT\n", + "GSSMASDAFFPFR found in part_0.0_13829.432373046875: CORRECT\n", + "GSTLLGHDPADPLKQPVEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GSTNTFVER found in part_0.0_13829.432373046875: CORRECT\n", + "GSVAVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GSVAVLIKDEEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GSVAVLIKDEEGK found in part_0.0_13829.432373046875: CORRECT\n", + "GSVGIGIPGMPETEDGTLYAANVPAASGK found in part_0.0_13829.432373046875: CORRECT\n", + "GSVNPECTLAQLGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GSVNPECTLAQLGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GSWLDFEFDPK found in part_0.0_13829.432373046875: CORRECT\n", + "GSYSGSTYTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GSYSHLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GTADAVTQNLDIIR found in part_0.0_13829.432373046875: CORRECT\n", + "GTAMNPVDHPHGGGEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GTAMNPVDHPHGGGEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GTAMNPVDHPHGGGEGR found in part_0.0_13829.432373046875: CORRECT\n", + "GTCQTYILGQR found in part_0.0_13829.432373046875: CORRECT\n", + "GTEITLHLR found in part_0.0_13829.432373046875: CORRECT\n", + "GTENEDFMFLNLGPNHPSAHGAFR found in part_0.0_13829.432373046875: CORRECT\n", + "GTGAGIISNGR found in part_0.0_13829.432373046875: CORRECT\n", + "GTGECTPYPR found in part_0.0_13829.432373046875: CORRECT\n", + "GTGNMELHLSR found in part_0.0_13829.432373046875: CORRECT\n", + "GTHNPNFVR found in part_0.0_13829.432373046875: CORRECT\n", + "GTHTLESQPQR found in part_0.0_13829.432373046875: CORRECT\n", + "GTIAEDLNDGLTGGFK found in part_0.0_13829.432373046875: CORRECT\n", + "GTIAEQIAQEMQK found in part_0.0_13829.432373046875: CORRECT\n", + "GTIDLNLPLADNLR found in part_0.0_13829.432373046875: CORRECT\n", + "GTKILLINPTDSDAVGNAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GTLADILK found in part_0.0_13829.432373046875: CORRECT\n", + "GTLEDPNLFIR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLFGLQTGGR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLGQDVIDIR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLHDFLR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "GTLIVNKPQSLR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLIVNKPQSLR found in part_0.0_13829.432373046875: CORRECT\n", + "GTLLAQDGEER found in part_0.0_13829.432373046875: CORRECT\n", + "GTNTVIVLPIGIGQLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GTPEYNISLGER found in part_0.0_13829.432373046875: CORRECT\n", + "GTPLADNDDVDAFDFIR found in part_0.0_13829.432373046875: CORRECT\n", + "GTPTVISRPESEFTAIYR found in part_0.0_13829.432373046875: CORRECT\n", + "GTPYGGFVPTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GTPYGLMAVPVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GTQAQFIMEK found in part_0.0_13829.432373046875: CORRECT\n", + "GTSANPDTYFQSR found in part_0.0_13829.432373046875: CORRECT\n", + "GTSEISAGNADLSSR found in part_0.0_13829.432373046875: CORRECT\n", + "GTSLVFTQR found in part_0.0_13829.432373046875: CORRECT\n", + "GTTLQGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "GTTLQGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "GTTQVFEAYSK found in part_0.0_13829.432373046875: CORRECT\n", + "GTTSEQIIEMAR found in part_0.0_13829.432373046875: CORRECT\n", + "GTVAPEELQLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GTVGMGIPGSISPYTGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GTVIDHIPAQIGFK found in part_0.0_13829.432373046875: CORRECT\n", + "GTVIDHIPAQIGFK found in part_0.0_13829.432373046875: CORRECT\n", + "GTVLNSDISSVISR found in part_0.0_13829.432373046875: CORRECT\n", + "GTVSTESGVLNQQPYGFNTR found in part_0.0_13829.432373046875: CORRECT\n", + "GTVVDIPALCDALASK found in part_0.0_13829.432373046875: CORRECT\n", + "GTVVNFVVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVAADPDDVLFSGNR found in part_0.0_13829.432373046875: CORRECT\n", + "GVAESTINVIFNPVETK found in part_0.0_13829.432373046875: CORRECT\n", + "GVAGLINAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GVALSAGVQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVANTVLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVCDLADK found in part_0.0_13829.432373046875: CORRECT\n", + "GVCDLADKYDALVMVDDSHAVGFVGENGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVCGTAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVCKPLHLGSR found in part_0.0_13829.432373046875: CORRECT\n", + "GVDEIFGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVDLGDFPVMTFAEAER found in part_0.0_13829.432373046875: CORRECT\n", + "GVDLGDFPVMTFAEAER found in part_0.0_13829.432373046875: CORRECT\n", + "GVDPALQHK found in part_0.0_13829.432373046875: CORRECT\n", + "GVDVVAYANQDLVYSDLAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVDVVSSFASSSTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVEGMITTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVEGVTSVSDK found in part_0.0_13829.432373046875: CORRECT\n", + "GVEIGDGFDVVALR found in part_0.0_13829.432373046875: CORRECT\n", + "GVELAIQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVELAPGESVPMVGVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVELAPGESVPMVGVVEKPK found in part_0.0_13829.432373046875: CORRECT\n", + "GVELLSTGGTAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVETADKVLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVFAAGDCTTVPYK found in part_0.0_13829.432373046875: CORRECT\n", + "GVFISYQNR found in part_0.0_13829.432373046875: CORRECT\n", + "GVFITTSGFTSQAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVFLTAEGEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVFNLVLGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVFTFDPGFTSTASCESK found in part_0.0_13829.432373046875: CORRECT\n", + "GVFTFDPGFTSTASCESK found in part_0.0_13829.432373046875: CORRECT\n", + "GVGEDISDGGNAISGAATK found in part_0.0_13829.432373046875: CORRECT\n", + "GVGFLEAPR found in part_0.0_13829.432373046875: CORRECT\n", + "GVGNSIPDIPDPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVGQIHPIFADR found in part_0.0_13829.432373046875: CORRECT\n", + "GVGQIHPIFADR found in part_0.0_13829.432373046875: CORRECT\n", + "GVGQYLLEEVLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVGVMCNFFAQSAENATLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVHEGHVAAEVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVHEGHVAAEVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVHVVEDDLLAALDSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVHVVEDDLLAALDSGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVHVVTVNDYLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVHVVTVNDYLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVIDYLHYYR found in part_0.0_13829.432373046875: CORRECT\n", + "GVIDYLHYYR found in part_0.0_13829.432373046875: CORRECT\n", + "GVIEIVSGASR found in part_0.0_13829.432373046875: CORRECT\n", + "GVIELMR found in part_0.0_13829.432373046875: CORRECT\n", + "GVINDAGIPFTGHTEFFEER found in part_0.0_13829.432373046875: CORRECT\n", + "GVINILSAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVIQHLDYLHK found in part_0.0_13829.432373046875: CORRECT\n", + "GVISFEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVIVPIVDLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVIVQYGGQTPLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVIYQGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLEQAGVNVDSVILPDGEQYK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLFNSGEFNGLDHEAAFNAIADK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLIVPVNTLMQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLKPGVELVEPTSGNTGIALAYVAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLKPGVELVEPTSGNTGIALAYVAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLMVGPPGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLNDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLPTCQDTGTAIIVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLPTCQDTGTAIIVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVLTNLGAVAVDTGIFTGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLTNLGAVAVDTGIFTGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLYSVRPEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVLYSVRPEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVMAALLTPFDQQQALDK found in part_0.0_13829.432373046875: CORRECT\n", + "GVMFTGSTEVATLLQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVMVNALSLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVMVVEER found in part_0.0_13829.432373046875: CORRECT\n", + "GVNANHIIR found in part_0.0_13829.432373046875: CORRECT\n", + "GVNLPGVSIALPALAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVNLPGVSIALPALAEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVNVLADAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVNVLADAVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVNVVALYGGQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVNVVLTTGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVNVVLTTGRPYAGVHNYLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVPAMFVNGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVPFINLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVPNYFGAQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVQCDLAMIGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GVQLEDGPAAFK found in part_0.0_13829.432373046875: CORRECT\n", + "GVQSILQR found in part_0.0_13829.432373046875: CORRECT\n", + "GVSACATCDGFFYR found in part_0.0_13829.432373046875: CORRECT\n", + "GVSADQISIVSYGK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSFEIEHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSFEIEHVEK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSFQELPIDGNAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSFQELPIDGNAAK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSLEVSQEAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVSTIVSK found in part_0.0_13829.432373046875: CORRECT\n", + "GVSVVVLPGDVALK found in part_0.0_13829.432373046875: CORRECT\n", + "GVTAIITMTESGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVTDAQVVSR found in part_0.0_13829.432373046875: CORRECT\n", + "GVTHFYEPLDAER found in part_0.0_13829.432373046875: CORRECT\n", + "GVTPVHFDSANDGVAAASEAVNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVTPVHFDSANDGVAAASEAVNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVTVVNNFDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GVTYCPHCDGPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GVTYCPHCDGPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "GVTYSAPLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVDETEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVDTFR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVETPCFMPVGTYGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVGLFPANR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVHDTWPQALIAR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVPQLVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVPQLVK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVVAIDK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVVAIDK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVVAIDKDVVLVDAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "GVVVQDAALLESGAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GVVVQDAALLESGAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "GVYNTYIEDNLR found in part_0.0_13829.432373046875: CORRECT\n", + "GVYNTYIEDNLR found in part_0.0_13829.432373046875: CORRECT\n", + "GWQVTGSK found in part_0.0_13829.432373046875: CORRECT\n", + "GYACGLLLENGGNLR found in part_0.0_13829.432373046875: CORRECT\n", + "GYAGDITR found in part_0.0_13829.432373046875: CORRECT\n", + "GYAGDTATTSEIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYAGTLASGR found in part_0.0_13829.432373046875: CORRECT\n", + "GYASLDYNFK found in part_0.0_13829.432373046875: CORRECT\n", + "GYCADAASGQLDLNNPLIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYDAFAEQALAER found in part_0.0_13829.432373046875: CORRECT\n", + "GYDEINLNVGCPSDR found in part_0.0_13829.432373046875: CORRECT\n", + "GYDGPIVECEK found in part_0.0_13829.432373046875: CORRECT\n", + "GYDHAFLLQAK found in part_0.0_13829.432373046875: CORRECT\n", + "GYDHLELNGK found in part_0.0_13829.432373046875: CORRECT\n", + "GYDSAGLAVVDAEGHMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GYDSAGLAVVDAEGHMTR found in part_0.0_13829.432373046875: CORRECT\n", + "GYDYPDIQR found in part_0.0_13829.432373046875: CORRECT\n", + "GYEEMVNNGR found in part_0.0_13829.432373046875: CORRECT\n", + "GYEFINDIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYEIHISDEALK found in part_0.0_13829.432373046875: CORRECT\n", + "GYEIHISDEALK found in part_0.0_13829.432373046875: CORRECT\n", + "GYELEESFPADR found in part_0.0_13829.432373046875: CORRECT\n", + "GYEVGGTVR found in part_0.0_13829.432373046875: CORRECT\n", + "GYFAYASNHYQTHQ found in part_0.0_13829.432373046875: CORRECT\n", + "GYFAYASNHYQTHQ found in part_0.0_13829.432373046875: CORRECT\n", + "GYGGQDIVLPDETR found in part_0.0_13829.432373046875: CORRECT\n", + "GYGLQMR found in part_0.0_13829.432373046875: CORRECT\n", + "GYGLVFGMSER found in part_0.0_13829.432373046875: CORRECT\n", + "GYGNLIIIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYGTLADVPEK found in part_0.0_13829.432373046875: CORRECT\n", + "GYGTLADVPEKVDMVDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "GYHLDVYQHVNNAR found in part_0.0_13829.432373046875: CORRECT\n", + "GYINSLGALTGGQALQQAK found in part_0.0_13829.432373046875: CORRECT\n", + "GYINSLGALTGGQALQQAK found in part_0.0_13829.432373046875: CORRECT\n", + "GYISDNFGK found in part_0.0_13829.432373046875: CORRECT\n", + "GYISDQLTDEAIGVVDR found in part_0.0_13829.432373046875: CORRECT\n", + "GYIVVDK found in part_0.0_13829.432373046875: CORRECT\n", + "GYIVVDK found in part_0.0_13829.432373046875: CORRECT\n", + "GYLADVELSK found in part_0.0_13829.432373046875: CORRECT\n", + "GYLDYDAK found in part_0.0_13829.432373046875: CORRECT\n", + "GYLMVSAS found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide GYLNNVTGYR NOT FOUND in any FASTA file.\n", + "GYLPENLFAPAPQSR found in part_0.0_13829.432373046875: CORRECT\n", + "GYLSQLLNAK found in part_0.0_13829.432373046875: CORRECT\n", + "GYNAEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "GYNGLAEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "GYNGLAEVGKK found in part_0.0_13829.432373046875: CORRECT\n", + "GYPFEVVLSGQER found in part_0.0_13829.432373046875: CORRECT\n", + "GYPINNPEDVAYSR found in part_0.0_13829.432373046875: CORRECT\n", + "GYQEVITYSFVDPK found in part_0.0_13829.432373046875: CORRECT\n", + "GYQLILR found in part_0.0_13829.432373046875: CORRECT\n", + "GYRPQFYFR found in part_0.0_13829.432373046875: CORRECT\n", + "GYRPQFYFR found in part_0.0_13829.432373046875: CORRECT\n", + "GYSFDDEEHALGLR found in part_0.0_13829.432373046875: CORRECT\n", + "GYSMPVLCNLFGTPK found in part_0.0_13829.432373046875: CORRECT\n", + "GYSVTTATDGNVLK found in part_0.0_13829.432373046875: CORRECT\n", + "GYTAASIR found in part_0.0_13829.432373046875: CORRECT\n", + "GYTDAYLPIVER found in part_0.0_13829.432373046875: CORRECT\n", + "GYTEGFLR found in part_0.0_13829.432373046875: CORRECT\n", + "GYTSLVVVPVGHHSVEDFNATLPK found in part_0.0_13829.432373046875: CORRECT\n", + "GYTSLVVVPVGHHSVEDFNATLPK found in part_0.0_13829.432373046875: CORRECT\n", + "GYTVSIFNR found in part_0.0_13829.432373046875: CORRECT\n", + "GYTYLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "GYVLTNNHVINQAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GYVLTNNHVINQAQK found in part_0.0_13829.432373046875: CORRECT\n", + "GYVPASTR found in part_0.0_13829.432373046875: CORRECT\n", + "GYVVDPLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GYVVDPLGK found in part_0.0_13829.432373046875: CORRECT\n", + "GYVVTNNHVVDNATVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYVVTNNHVVDNATVIK found in part_0.0_13829.432373046875: CORRECT\n", + "GYYYPPTLLLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "GYYYPPTLLLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "HAASDSIAVIDGER found in part_0.0_13829.432373046875: CORRECT\n", + "HADEQQAVSDFIR found in part_0.0_13829.432373046875: CORRECT\n", + "HADEQQAVSDFIR found in part_0.0_13829.432373046875: CORRECT\n", + "HADIVLPATTSFER found in part_0.0_13829.432373046875: CORRECT\n", + "HADNTLTFGPR found in part_0.0_13829.432373046875: CORRECT\n", + "HADNTLTFGPR found in part_0.0_13829.432373046875: CORRECT\n", + "HAECSVLVVR found in part_0.0_13829.432373046875: CORRECT\n", + "HAEGSVLVEFGDTK found in part_0.0_13829.432373046875: CORRECT\n", + "HAEMLDVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "HAHYFDTLCVEVADK found in part_0.0_13829.432373046875: CORRECT\n", + "HAIAPLLFGADHPVLK found in part_0.0_13829.432373046875: CORRECT\n", + "HALGGLTK found in part_0.0_13829.432373046875: CORRECT\n", + "HALQLACAGGGSLAGTLVTADPQIAR found in part_0.0_13829.432373046875: CORRECT\n", + "HALVCGPDR found in part_0.0_13829.432373046875: CORRECT\n", + "HANLPVLVVR found in part_0.0_13829.432373046875: CORRECT\n", + "HANPCGVAIGNSILDAYDR found in part_0.0_13829.432373046875: CORRECT\n", + "HAPGDYTPTVK found in part_0.0_13829.432373046875: CORRECT\n", + "HAPGDYTPTVKPSSK found in part_0.0_13829.432373046875: CORRECT\n", + "HAPTGTPVLVDGVR found in part_0.0_13829.432373046875: CORRECT\n", + "HAPTGTPVLVDGVR found in part_0.0_13829.432373046875: CORRECT\n", + "HASDDEPFSALAFK found in part_0.0_13829.432373046875: CORRECT\n", + "HASDDEPFSALAFK found in part_0.0_13829.432373046875: CORRECT\n", + "HAVIALTSIYGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "HAVIALTSIYGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "HAVTEASPMVK found in part_0.0_13829.432373046875: CORRECT\n", + "HCAVGIEPNR found in part_0.0_13829.432373046875: CORRECT\n", + "HDASDFETNTEDKR found in part_0.0_13829.432373046875: CORRECT\n", + "HDATITLFDLSSK found in part_0.0_13829.432373046875: CORRECT\n", + "HDAVLEAGGLHIIGTER found in part_0.0_13829.432373046875: CORRECT\n", + "HDDDGVTIETADGEYQAK found in part_0.0_13829.432373046875: CORRECT\n", + "HDEIFAAINAVSESDAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "HDFSSIDVER found in part_0.0_13829.432373046875: CORRECT\n", + "HDGEAEDVAVALNEQYQPR found in part_0.0_13829.432373046875: CORRECT\n", + "HDGSAATCDDFVQAMEDASNVDLSHFR found in part_0.0_13829.432373046875: CORRECT\n", + "HDLAVEPPAPTVLQK found in part_0.0_13829.432373046875: CORRECT\n", + "HDLAVEPPAPTVLQK found in part_0.0_13829.432373046875: CORRECT\n", + "HDLENPTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "HDPCVGIR found in part_0.0_13829.432373046875: CORRECT\n", + "HDTDPGCAIR found in part_0.0_13829.432373046875: CORRECT\n", + "HDVEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "HEDFPYQEILLTR found in part_0.0_13829.432373046875: CORRECT\n", + "HEDFPYQEILLTR found in part_0.0_13829.432373046875: CORRECT\n", + "HEDMYTAINELINK found in part_0.0_13829.432373046875: CORRECT\n", + "HEDMYTAINELINK found in part_0.0_13829.432373046875: CORRECT\n", + "HEEVQALLGDAQTIADQER found in part_0.0_13829.432373046875: CORRECT\n", + "HEFPNFQGNAVINFTDANVPYTR found in part_0.0_13829.432373046875: CORRECT\n", + "HEFVTLEGMEK found in part_0.0_13829.432373046875: CORRECT\n", + "HEFVTLEGMEK found in part_0.0_13829.432373046875: CORRECT\n", + "HEGPEGAGHLGDLPALVVNNDGK found in part_0.0_13829.432373046875: CORRECT\n", + "HEGPEGAGHLGDLPALVVNNDGK found in part_0.0_13829.432373046875: CORRECT\n", + "HEIAAVIIEPIVQGAGGMR found in part_0.0_13829.432373046875: CORRECT\n", + "HEIGSAYPGDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "HEIGSAYPGDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "HELDIAPPEPPYQPDEIYDALK found in part_0.0_13829.432373046875: CORRECT\n", + "HELNIVQNNEFVDHR found in part_0.0_13829.432373046875: CORRECT\n", + "HELYITTK found in part_0.0_13829.432373046875: CORRECT\n", + "HENLGSALSYMLANK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide HENQQPQTEAFELSAAER NOT FOUND in any FASTA file.\n", + "HEPELGLASGTDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "HEPELGLASGTDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "HEQLITQK found in part_0.0_13829.432373046875: CORRECT\n", + "HEQLLQER found in part_0.0_13829.432373046875: CORRECT\n", + "HESGVVTDPQTVLPTTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "HEVDFPR found in part_0.0_13829.432373046875: CORRECT\n", + "HFAAYGAVEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "HFDNQPIDLPLDVLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "HFDNQPIDLPLDVLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "HFDVDAFDAR found in part_0.0_13829.432373046875: CORRECT\n", + "HFDYVETK found in part_0.0_13829.432373046875: CORRECT\n", + "HFEQFIESGCAK found in part_0.0_13829.432373046875: CORRECT\n", + "HFEQFIESGCAK found in part_0.0_13829.432373046875: CORRECT\n", + "HFESTPDTPEIIATIHGEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "HFESTPDTPEIIATIHGEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "HFGALACTLELGK found in part_0.0_13829.432373046875: CORRECT\n", + "HFGVSNFTPAQFALLQSR found in part_0.0_13829.432373046875: CORRECT\n", + "HFIAQGNGGK found in part_0.0_13829.432373046875: CORRECT\n", + "HFIECVQNQTVPQTAGEQAVLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "HFKPGDTVPEMYR found in part_0.0_13829.432373046875: CORRECT\n", + "HFMNASGGGVTASGGEAILQAEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "HFQTAVK found in part_0.0_13829.432373046875: CORRECT\n", + "HFSTTPAEK found in part_0.0_13829.432373046875: CORRECT\n", + "HFTDEPISEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "HFTDEPISEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "HFVNVNFTLPK found in part_0.0_13829.432373046875: CORRECT\n", + "HGALLQCR found in part_0.0_13829.432373046875: CORRECT\n", + "HGASCPVGMGVSCSADR found in part_0.0_13829.432373046875: CORRECT\n", + "HGASCPVGMGVSCSADR found in part_0.0_13829.432373046875: CORRECT\n", + "HGAVSVMQYR found in part_0.0_13829.432373046875: CORRECT\n", + "HGDFTIK found in part_0.0_13829.432373046875: CORRECT\n", + "HGDNPLNGYSICAFPDAADK found in part_0.0_13829.432373046875: CORRECT\n", + "HGFLPLK found in part_0.0_13829.432373046875: CORRECT\n", + "HGGFYLGSIGGPAAVLAQGSIK found in part_0.0_13829.432373046875: CORRECT\n", + "HGGPEVLQAVEFTPADPAENEIQVENK found in part_0.0_13829.432373046875: CORRECT\n", + "HGHNEADEPSATQPLMYQK found in part_0.0_13829.432373046875: CORRECT\n", + "HGHNEADEPSATQPLMYQK found in part_0.0_13829.432373046875: CORRECT\n", + "HGLAPEEVLAFIHGK found in part_0.0_13829.432373046875: CORRECT\n", + "HGLDPAQMALAFVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGLEQTIADTLGPGGIMR found in part_0.0_13829.432373046875: CORRECT\n", + "HGLEQTIADTLGPGGIMR found in part_0.0_13829.432373046875: CORRECT\n", + "HGLGISCLSR found in part_0.0_13829.432373046875: CORRECT\n", + "HGLGMSDQIENR found in part_0.0_13829.432373046875: CORRECT\n", + "HGLHEYLQTQVVYLQS found in part_0.0_13829.432373046875: CORRECT\n", + "HGLHEYLQTQVVYLQS found in part_0.0_13829.432373046875: CORRECT\n", + "HGLITGATGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "HGLQSILR found in part_0.0_13829.432373046875: CORRECT\n", + "HGNFALLTPDGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "HGNTSAASVPCALDEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGNTSAASVPCALDEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGPFLGCSQYPACDYVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGPLALIDADMPVIVVAPNNELLEK found in part_0.0_13829.432373046875: CORRECT\n", + "HGQVVSVGK found in part_0.0_13829.432373046875: CORRECT\n", + "HGTAADPEDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGTAADPEDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "HGVSDEHIVMR found in part_0.0_13829.432373046875: CORRECT\n", + "HGYAFNELDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "HGYAFNELDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "HGYAFNELDLGKR found in part_0.0_13829.432373046875: CORRECT\n", + "HHFENVSIE found in part_0.0_13829.432373046875: CORRECT\n", + "HHQTYVNNANAALESLPEFANLPVEELITK found in part_0.0_13829.432373046875: CORRECT\n", + "HHQTYVTNLNNLIK found in part_0.0_13829.432373046875: CORRECT\n", + "HIAAPNETVSTMGFEAATR found in part_0.0_13829.432373046875: CORRECT\n", + "HIALSGSISQGAK found in part_0.0_13829.432373046875: CORRECT\n", + "HIALSGSISQGAK found in part_0.0_13829.432373046875: CORRECT\n", + "HIDQITTVLNQLK found in part_0.0_13829.432373046875: CORRECT\n", + "HIDQITTVLNQLK found in part_0.0_13829.432373046875: CORRECT\n", + "HIEINGDNLHDYLGVQR found in part_0.0_13829.432373046875: CORRECT\n", + "HIEVIVR found in part_0.0_13829.432373046875: CORRECT\n", + "HIFISNLK found in part_0.0_13829.432373046875: CORRECT\n", + "HIGESASDILR found in part_0.0_13829.432373046875: CORRECT\n", + "HIGESASDILR found in part_0.0_13829.432373046875: CORRECT\n", + "HIGLSNVTPTQVAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "HIGLSNVTPTQVAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "HIGVAISGNEEDALLVNK found in part_0.0_13829.432373046875: CORRECT\n", + "HIIGQDNAK found in part_0.0_13829.432373046875: CORRECT\n", + "HIINNTQDSVVNVDK found in part_0.0_13829.432373046875: CORRECT\n", + "HIINNTQDSVVNVDK found in part_0.0_13829.432373046875: CORRECT\n", + "HIIQGPMYDVSGTAPVNVTNK found in part_0.0_13829.432373046875: CORRECT\n", + "HIISINDLSR found in part_0.0_13829.432373046875: CORRECT\n", + "HIKDEPASLDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "HILGLDHK found in part_0.0_13829.432373046875: CORRECT\n", + "HILIAVDLSPESK found in part_0.0_13829.432373046875: CORRECT\n", + "HILIAVDLSPESK found in part_0.0_13829.432373046875: CORRECT\n", + "HILLKPSPIMTDEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "HILTENAR found in part_0.0_13829.432373046875: CORRECT\n", + "HIPEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "HIQVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "HITYYLDRPDVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "HIVDGFSFELSK found in part_0.0_13829.432373046875: CORRECT\n", + "HIVMHNEQAVISPSWSIHSGVGTK found in part_0.0_13829.432373046875: CORRECT\n", + "HIYAQVIAPNGSEVLVAASTVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HLAVAVTPVAGQLDLK found in part_0.0_13829.432373046875: CORRECT\n", + "HLAVSSFSMENPQGFGLLQR found in part_0.0_13829.432373046875: CORRECT\n", + "HLDALLSSGHNVVGVFTQPDRPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLDALVADEDLSR found in part_0.0_13829.432373046875: CORRECT\n", + "HLDALVADEDLSR found in part_0.0_13829.432373046875: CORRECT\n", + "HLDGNIRPQTILELGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLEAGCDLLK found in part_0.0_13829.432373046875: CORRECT\n", + "HLESVVTNK found in part_0.0_13829.432373046875: CORRECT\n", + "HLFTSESVSEGHPDK found in part_0.0_13829.432373046875: CORRECT\n", + "HLGADTDVPAGDIGVGGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLGADTDVPAGDIGVGGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLGFPALAVSLDGHK found in part_0.0_13829.432373046875: CORRECT\n", + "HLGVEASLKPTK found in part_0.0_13829.432373046875: CORRECT\n", + "HLGVEASLKPTK found in part_0.0_13829.432373046875: CORRECT\n", + "HLIVYDEGNLFSAPR found in part_0.0_13829.432373046875: CORRECT\n", + "HLIVYDEGNLFSAPR found in part_0.0_13829.432373046875: CORRECT\n", + "HLKPIALAGDAR found in part_0.0_13829.432373046875: CORRECT\n", + "HLLPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "HLNATIINEGDINTR found in part_0.0_13829.432373046875: CORRECT\n", + "HLNATIINEGDINTR found in part_0.0_13829.432373046875: CORRECT\n", + "HLNIMITAGPTR found in part_0.0_13829.432373046875: CORRECT\n", + "HLNSGGELR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPCDICVVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "HLPCDICVVEEK found in part_0.0_13829.432373046875: CORRECT\n", + "HLPDSDVVSIYDAAMR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPEPFR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPEPFR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPSDTGIEVAFAGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPVGQR found in part_0.0_13829.432373046875: CORRECT\n", + "HLPYIGK found in part_0.0_13829.432373046875: CORRECT\n", + "HLSEAEIDNYVR found in part_0.0_13829.432373046875: CORRECT\n", + "HLSEAEIDNYVR found in part_0.0_13829.432373046875: CORRECT\n", + "HLSNALR found in part_0.0_13829.432373046875: CORRECT\n", + "HLSQEIPATPGIR found in part_0.0_13829.432373046875: CORRECT\n", + "HLSTEIIQAR found in part_0.0_13829.432373046875: CORRECT\n", + "HLVDLYQQQGVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HLVDLYQQQGVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HLVSPADALPGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLVSPADALPGR found in part_0.0_13829.432373046875: CORRECT\n", + "HLYACDR found in part_0.0_13829.432373046875: CORRECT\n", + "HMDYGVQINK found in part_0.0_13829.432373046875: CORRECT\n", + "HMGWTEAADLIVK found in part_0.0_13829.432373046875: CORRECT\n", + "HMNADTDYSIAEAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "HMNADTDYSIAEAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "HMNADTDYSIAEAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "HMNPELVNR found in part_0.0_13829.432373046875: CORRECT\n", + "HMQIINEINTR found in part_0.0_13829.432373046875: CORRECT\n", + "HMQIINEINTR found in part_0.0_13829.432373046875: CORRECT\n", + "HMTADAAAHEVIEGQASALEELDDEYLK found in part_0.0_13829.432373046875: CORRECT\n", + "HMVHELVSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "HMVHELVSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "HNALLIFDEVQTGVGR found in part_0.0_13829.432373046875: CORRECT\n", + "HNALLIFDEVQTGVGR found in part_0.0_13829.432373046875: CORRECT\n", + "HNDGLDYVPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "HNDGLDYVPTDKK found in part_0.0_13829.432373046875: CORRECT\n", + "HNDIDAIAFTGSTR found in part_0.0_13829.432373046875: CORRECT\n", + "HNDIDAIAFTGSTR found in part_0.0_13829.432373046875: CORRECT\n", + "HNDLENVGYTAR found in part_0.0_13829.432373046875: CORRECT\n", + "HNDLENVGYTAR found in part_0.0_13829.432373046875: CORRECT\n", + "HNEALDVQVGIGGK found in part_0.0_13829.432373046875: CORRECT\n", + "HNEALDVQVGIGGK found in part_0.0_13829.432373046875: CORRECT\n", + "HNEPYYPPVEPARPVGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "HNEPYYPPVEPARPVGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "HNGAPAFSPDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "HNGAPAFSPDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "HNGFNKVWHIEGGIIEYAR found in part_0.0_13829.432373046875: CORRECT\n", + "HNGPTALILSR found in part_0.0_13829.432373046875: CORRECT\n", + "HNINVNAIAPGYMATNNTQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "HNINVNAIAPGYMATNNTQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "HNISFAEVESK found in part_0.0_13829.432373046875: CORRECT\n", + "HNISFAEVESK found in part_0.0_13829.432373046875: CORRECT\n", + "HNIVAIADIDTR found in part_0.0_13829.432373046875: CORRECT\n", + "HNIVAIADIDTR found in part_0.0_13829.432373046875: CORRECT\n", + "HNIVVCDSK found in part_0.0_13829.432373046875: CORRECT\n", + "HNLPHNSLNFVFHGGSGSTAQEIK found in part_0.0_13829.432373046875: CORRECT\n", + "HNLPHNSLNFVFHGGSGSTAQEIK found in part_0.0_13829.432373046875: CORRECT\n", + "HNLQITK found in part_0.0_13829.432373046875: CORRECT\n", + "HNLTTLK found in part_0.0_13829.432373046875: CORRECT\n", + "HNMDDILQNVPNHNIK found in part_0.0_13829.432373046875: CORRECT\n", + "HNQQVVLFHK found in part_0.0_13829.432373046875: CORRECT\n", + "HNSEIGFAK found in part_0.0_13829.432373046875: CORRECT\n", + "HNTLGTEFK found in part_0.0_13829.432373046875: CORRECT\n", + "HNTVPLSFADGYPYLLANEASLR found in part_0.0_13829.432373046875: CORRECT\n", + "HNVAPIFICPPNADDDLLR found in part_0.0_13829.432373046875: CORRECT\n", + "HNVELVAIGNGTASR found in part_0.0_13829.432373046875: CORRECT\n", + "HNVPAGSESHFK found in part_0.0_13829.432373046875: CORRECT\n", + "HNVPAGSESHFK found in part_0.0_13829.432373046875: CORRECT\n", + "HPADQVIPQQDPR found in part_0.0_13829.432373046875: CORRECT\n", + "HPAFVNR found in part_0.0_13829.432373046875: CORRECT\n", + "HPAVPVDVVHR found in part_0.0_13829.432373046875: CORRECT\n", + "HPAVPVDVVHR found in part_0.0_13829.432373046875: CORRECT\n", + "HPDTLLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "HPEGEFSVDK found in part_0.0_13829.432373046875: CORRECT\n", + "HPEIGDVR found in part_0.0_13829.432373046875: CORRECT\n", + "HPEITTVPYDSYQNAK found in part_0.0_13829.432373046875: CORRECT\n", + "HPEITTVPYDSYQNAK found in part_0.0_13829.432373046875: CORRECT\n", + "HPELITPDSPTQR found in part_0.0_13829.432373046875: CORRECT\n", + "HPELITPDSPTQR found in part_0.0_13829.432373046875: CORRECT\n", + "HPELTDMVIFR found in part_0.0_13829.432373046875: CORRECT\n", + "HPELTDMVIFR found in part_0.0_13829.432373046875: CORRECT\n", + "HPETSTLVR found in part_0.0_13829.432373046875: CORRECT\n", + "HPFPGPGLGVR found in part_0.0_13829.432373046875: CORRECT\n", + "HPGPLVVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "HPLFVTNVDDTR found in part_0.0_13829.432373046875: CORRECT\n", + "HPLQLYSLGTPNGQK found in part_0.0_13829.432373046875: CORRECT\n", + "HPSEIVNVGDEITVK found in part_0.0_13829.432373046875: CORRECT\n", + "HPSEIVNVGDEITVK found in part_0.0_13829.432373046875: CORRECT\n", + "HPTFVEGDIR found in part_0.0_13829.432373046875: CORRECT\n", + "HPVIAVTGSSGAGTTTTSLAFR found in part_0.0_13829.432373046875: CORRECT\n", + "HPYLEDR found in part_0.0_13829.432373046875: CORRECT\n", + "HPYTQALLR found in part_0.0_13829.432373046875: CORRECT\n", + "HQAEAHAAIDTFTK found in part_0.0_13829.432373046875: CORRECT\n", + "HQDGDAAEQAALTMIASSTR found in part_0.0_13829.432373046875: CORRECT\n", + "HQEIYQASGLK found in part_0.0_13829.432373046875: CORRECT\n", + "HQFAQSLNYEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "HQFAQSLNYEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "HQGNTIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "HQGTFDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "HQKPVPALNQPGGIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HQKPVPALNQPGGIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HQKPVPALNQPGGIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "HQPDVIGLQETK found in part_0.0_13829.432373046875: CORRECT\n", + "HQPDVIGLQETK found in part_0.0_13829.432373046875: CORRECT\n", + "HQPLLEQHVLYATGTTGNLISR found in part_0.0_13829.432373046875: CORRECT\n", + "HQPLLEQHVLYATGTTGNLISR found in part_0.0_13829.432373046875: CORRECT\n", + "HQQADLSLVEAADK found in part_0.0_13829.432373046875: CORRECT\n", + "HQQADLSLVEAADK found in part_0.0_13829.432373046875: CORRECT\n", + "HQQGQPLSLPVHVADAFR found in part_0.0_13829.432373046875: CORRECT\n", + "HQQGQPLSLPVHVADAFR found in part_0.0_13829.432373046875: CORRECT\n", + "HQQGQPLSLPVHVADAFR found in part_0.0_13829.432373046875: CORRECT\n", + "HQQHLAQLPK found in part_0.0_13829.432373046875: CORRECT\n", + "HQQQFFQFR found in part_0.0_13829.432373046875: CORRECT\n", + "HQQQFFQFR found in part_0.0_13829.432373046875: CORRECT\n", + "HQVNILYTAPTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "HQVNILYTAPTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "HSADEITVR found in part_0.0_13829.432373046875: CORRECT\n", + "HSDIILKPLDGMGGASIFR found in part_0.0_13829.432373046875: CORRECT\n", + "HSDIILKPLDGMGGASIFR found in part_0.0_13829.432373046875: CORRECT\n", + "HSDIILKPLDGMGGASIFR found in part_0.0_13829.432373046875: CORRECT\n", + "HSEYNPSSTER found in part_0.0_13829.432373046875: CORRECT\n", + "HSFNEPHILAIAQAIAEER found in part_0.0_13829.432373046875: CORRECT\n", + "HSIEYLR found in part_0.0_13829.432373046875: CORRECT\n", + "HSLRDDIPGAAR found in part_0.0_13829.432373046875: CORRECT\n", + "HSLSSCVIAEENGDMER found in part_0.0_13829.432373046875: CORRECT\n", + "HSQVFSTAEDNQSAVTIHVLQGER found in part_0.0_13829.432373046875: CORRECT\n", + "HSQVFSTAEDNQSAVTIHVLQGER found in part_0.0_13829.432373046875: CORRECT\n", + "HSSLLGEMPQER found in part_0.0_13829.432373046875: CORRECT\n", + "HSSLLGEMPQER found in part_0.0_13829.432373046875: CORRECT\n", + "HSTAEKPVFNR found in part_0.0_13829.432373046875: CORRECT\n", + "HSVELDSQGR found in part_0.0_13829.432373046875: CORRECT\n", + "HTAIDGGTFQNEITDR found in part_0.0_13829.432373046875: CORRECT\n", + "HTAIDGGTFQNEITDR found in part_0.0_13829.432373046875: CORRECT\n", + "HTAPLSSADR found in part_0.0_13829.432373046875: CORRECT\n", + "HTEALGELTR found in part_0.0_13829.432373046875: CORRECT\n", + "HTGLVVPLDAANVDTDAIIPK found in part_0.0_13829.432373046875: CORRECT\n", + "HTIEVVVDR found in part_0.0_13829.432373046875: CORRECT\n", + "HTIMVANLAPR found in part_0.0_13829.432373046875: CORRECT\n", + "HTIMVANLAPR found in part_0.0_13829.432373046875: CORRECT\n", + "HTIPANIADR found in part_0.0_13829.432373046875: CORRECT\n", + "HTMDIAVEAGNLAQAIGR found in part_0.0_13829.432373046875: CORRECT\n", + "HTMIHEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "HTMIHEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "HTTDGLLK found in part_0.0_13829.432373046875: CORRECT\n", + "HTVEVMIPEAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "HTVEVMIPEAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "HTWEINMLGR found in part_0.0_13829.432373046875: CORRECT\n", + "HVAILGDLQGPK found in part_0.0_13829.432373046875: CORRECT\n", + "HVAILGDLQGPK found in part_0.0_13829.432373046875: CORRECT\n", + "HVAITVLR found in part_0.0_13829.432373046875: CORRECT\n", + "HVANMENANSTEFVPDCK found in part_0.0_13829.432373046875: CORRECT\n", + "HVDPAAAIQQGK found in part_0.0_13829.432373046875: CORRECT\n", + "HVDSLITIPNDK found in part_0.0_13829.432373046875: CORRECT\n", + "HVDTVCISSYDHDNQR found in part_0.0_13829.432373046875: CORRECT\n", + "HVDTVCISSYDHDNQR found in part_0.0_13829.432373046875: CORRECT\n", + "HVEPEQALR found in part_0.0_13829.432373046875: CORRECT\n", + "HVFASLFNDR found in part_0.0_13829.432373046875: CORRECT\n", + "HVFASLFNDR found in part_0.0_13829.432373046875: CORRECT\n", + "HVGPDVCLHLVGA found in part_0.0_13829.432373046875: CORRECT\n", + "HVGPDVCLHLVGA found in part_0.0_13829.432373046875: CORRECT\n", + "HVGSLHAADER found in part_0.0_13829.432373046875: CORRECT\n", + "HVGVAPADAANALGSFINAR found in part_0.0_13829.432373046875: CORRECT\n", + "HVGVAPADAANALGSFINAR found in part_0.0_13829.432373046875: CORRECT\n", + "HVLCTDISR found in part_0.0_13829.432373046875: CORRECT\n", + "HVLIIGGGDGAMLR found in part_0.0_13829.432373046875: CORRECT\n", + "HVLLADETVCIGPAPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "HVLLADETVCIGPAPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "HVLLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "HVLPSHAQDIYK found in part_0.0_13829.432373046875: CORRECT\n", + "HVPFGNIEAMR found in part_0.0_13829.432373046875: CORRECT\n", + "HVPFGNIEAMR found in part_0.0_13829.432373046875: CORRECT\n", + "HVPLDALER found in part_0.0_13829.432373046875: CORRECT\n", + "HVQVAEMVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "HVQVAEMVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "HVSDAFEQTSETIGVR found in part_0.0_13829.432373046875: CORRECT\n", + "HVSLITDAR found in part_0.0_13829.432373046875: CORRECT\n", + "HVSPAFGEDPLR found in part_0.0_13829.432373046875: CORRECT\n", + "HVSSCGCNIEDSR found in part_0.0_13829.432373046875: CORRECT\n", + "HVVTFNMDEYVGLPK found in part_0.0_13829.432373046875: CORRECT\n", + "HVVVDKPFTVTLSQAR found in part_0.0_13829.432373046875: CORRECT\n", + "HYAHVDCPGHADYVK found in part_0.0_13829.432373046875: CORRECT\n", + "HYAHVDCPGHADYVK found in part_0.0_13829.432373046875: CORRECT\n", + "HYDEDEEFAER found in part_0.0_13829.432373046875: CORRECT\n", + "HYDETLAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "HYDHAVSPMDVALDIGPGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "HYDHAVSPMDVALDIGPGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "HYDTAAAVTCSILR found in part_0.0_13829.432373046875: CORRECT\n", + "HYDYIAIGGGSGGIASINR found in part_0.0_13829.432373046875: CORRECT\n", + "HYDYIAIGGGSGGIASINR found in part_0.0_13829.432373046875: CORRECT\n", + "HYFPVNAR found in part_0.0_13829.432373046875: CORRECT\n", + "HYGALQGLNK found in part_0.0_13829.432373046875: CORRECT\n", + "HYHPQDATTNPSLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "HYNPDELVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "HYPLEADNIFAAIAATNR found in part_0.0_13829.432373046875: CORRECT\n", + "HYQSGAAMPDELQQK found in part_0.0_13829.432373046875: CORRECT\n", + "HYTAADGSEISLHGR found in part_0.0_13829.432373046875: CORRECT\n", + "HYVELLEGTNTQLLDTR found in part_0.0_13829.432373046875: CORRECT\n", + "IAAADIAGTLPVMK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAAESIFGER found in part_0.0_13829.432373046875: CORRECT\n", + "IAAALDELGYIPNR found in part_0.0_13829.432373046875: CORRECT\n", + "IAAANVPAFVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAANVPAFVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAEEIENLLLR found in part_0.0_13829.432373046875: CORRECT\n", + "IAAEMGAQIIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAGADISK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAGADISK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAGDTSNLGDTSTLADPGVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAGQPLSIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAIPGDGIGK found in part_0.0_13829.432373046875: CORRECT\n", + "IAALDAGADDYLSKPFGIGELQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAALMDKPVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAQALVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAVAEDGEPCVTYIGADGAGHYVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAVAEDGEPCVTYIGADGAGHYVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAAVLQHVNSNYDIDLFR found in part_0.0_13829.432373046875: CORRECT\n", + "IAAVTVTGSVR found in part_0.0_13829.432373046875: CORRECT\n", + "IADALINEAQQDLQSN found in part_0.0_13829.432373046875: CORRECT\n", + "IADDQNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "IADELEK found in part_0.0_13829.432373046875: CORRECT\n", + "IADELEKR found in part_0.0_13829.432373046875: CORRECT\n", + "IADETLALMR found in part_0.0_13829.432373046875: CORRECT\n", + "IADIYANCGITK found in part_0.0_13829.432373046875: CORRECT\n", + "IADQLIVGGGIANTFIAAQGHDVGK found in part_0.0_13829.432373046875: CORRECT\n", + "IADQLIVGGGIANTFIAAQGHDVGK found in part_0.0_13829.432373046875: CORRECT\n", + "IADTSLPLDELVADPVTAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "IADVSVTTTEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEAAVVGIPHNIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAEAAVVGIPHNIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAEAAWQVNESTENIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEAAWQVNESTENIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEACGITGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEDGNPQVLIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAEDLGLVTAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide IAEFESR NOT FOUND in any FASTA file.\n", + "IAEIVCVQNEYNIAHR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEIVCVQNEYNIAHR found in part_0.0_13829.432373046875: CORRECT\n", + "IAELAGFSVPENTK found in part_0.0_13829.432373046875: CORRECT\n", + "IAELAGFSVPENTK found in part_0.0_13829.432373046875: CORRECT\n", + "IAELTAQR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEQEGIAEDGYR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEQEGIAEDGYR found in part_0.0_13829.432373046875: CORRECT\n", + "IAEQFGLNVLPTR found in part_0.0_13829.432373046875: CORRECT\n", + "IAESINIALDK found in part_0.0_13829.432373046875: CORRECT\n", + "IAEVDGNDPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "IAEYAPGAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAFESAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAFLEEPCK found in part_0.0_13829.432373046875: CORRECT\n", + "IAFLGPK found in part_0.0_13829.432373046875: CORRECT\n", + "IAFVFSTAPHGTAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IAGDYIAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAGDYIAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAGDYIAKK found in part_0.0_13829.432373046875: CORRECT\n", + "IAGINIPDHK found in part_0.0_13829.432373046875: CORRECT\n", + "IAGLEVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAGLPAPEVFVTAER found in part_0.0_13829.432373046875: CORRECT\n", + "IAGQGLSFEQMLK found in part_0.0_13829.432373046875: CORRECT\n", + "IAHDISSYSFVAMAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAHDISSYSFVAMAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAHELMADLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAHELMADLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAHWVGQGATISDR found in part_0.0_13829.432373046875: CORRECT\n", + "IAIAACEQCGR found in part_0.0_13829.432373046875: CORRECT\n", + "IAIAAGIDDPQNPIGTDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIAEGQVK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIDWPQTSGLILSPK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAILTVSNR found in part_0.0_13829.432373046875: CORRECT\n", + "IAIPGYEPDPSIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIVHDK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIVNMGSLFQQVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "IAIVNMGSLFQQVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "IALASPDMIR found in part_0.0_13829.432373046875: CORRECT\n", + "IALESVLLGDK found in part_0.0_13829.432373046875: CORRECT\n", + "IALESVLLGDKE found in part_0.0_13829.432373046875: CORRECT\n", + "IALFCNVPEK found in part_0.0_13829.432373046875: CORRECT\n", + "IALGVFDSGR found in part_0.0_13829.432373046875: CORRECT\n", + "IALIGPNGCGK found in part_0.0_13829.432373046875: CORRECT\n", + "IALNIAGDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IALTQSGGLDAAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IALVTGASR found in part_0.0_13829.432373046875: CORRECT\n", + "IALYELSK found in part_0.0_13829.432373046875: CORRECT\n", + "IANLSGGER found in part_0.0_13829.432373046875: CORRECT\n", + "IANTPAFIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPDAINK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPELYLK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPELYLK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPPDEHAASAGGLAVGILGALK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPYPQAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAPYYHLFGSDELSQR found in part_0.0_13829.432373046875: CORRECT\n", + "IAPYYHLFGSDELSQR found in part_0.0_13829.432373046875: CORRECT\n", + "IAQAPAFLK found in part_0.0_13829.432373046875: CORRECT\n", + "IAQFNVVSEAHNEGTIVSVSDGVIR found in part_0.0_13829.432373046875: CORRECT\n", + "IAQFNVVSEAHNEGTIVSVSDGVIR found in part_0.0_13829.432373046875: CORRECT\n", + "IAQTLLNLAK found in part_0.0_13829.432373046875: CORRECT\n", + "IARPDASSETLIR found in part_0.0_13829.432373046875: CORRECT\n", + "IASIAVPLR found in part_0.0_13829.432373046875: CORRECT\n", + "IASLSDSVSNAR found in part_0.0_13829.432373046875: CORRECT\n", + "IATAVPDK found in part_0.0_13829.432373046875: CORRECT\n", + "IATAVPDK found in part_0.0_13829.432373046875: CORRECT\n", + "IATAVPDKNDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IATAVPDKNDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IATDPFVGNLTFFR found in part_0.0_13829.432373046875: CORRECT\n", + "IATDPFVGNLTFFR found in part_0.0_13829.432373046875: CORRECT\n", + "IATHILDYQDEGK found in part_0.0_13829.432373046875: CORRECT\n", + "IATHILDYQDEGK found in part_0.0_13829.432373046875: CORRECT\n", + "IATNSELAAK found in part_0.0_13829.432373046875: CORRECT\n", + "IATSYPHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "IATTMPYIPGFLSFR found in part_0.0_13829.432373046875: CORRECT\n", + "IATVTNFPHGNDDIDIALAETR found in part_0.0_13829.432373046875: CORRECT\n", + "IAVEVAYALPEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAVIGECMIELSEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAVIGLTTDDTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IAVLLGGTSAER found in part_0.0_13829.432373046875: CORRECT\n", + "IAVNYPR found in part_0.0_13829.432373046875: CORRECT\n", + "IAVPDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "IAVYSSLIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAVYSSLIK found in part_0.0_13829.432373046875: CORRECT\n", + "IAYNVEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IAYVVQTNGGQFPYELR found in part_0.0_13829.432373046875: CORRECT\n", + "IAYVVQTNGGQFPYELR found in part_0.0_13829.432373046875: CORRECT\n", + "ICEHYVTVTQK found in part_0.0_13829.432373046875: CORRECT\n", + "ICHLNNCATGVATQDDK found in part_0.0_13829.432373046875: CORRECT\n", + "ICLEPQACLLAATVGTAEQK found in part_0.0_13829.432373046875: CORRECT\n", + "ICLFTVSDDGHLVAQDPAEVTTVEGAGPR found in part_0.0_13829.432373046875: CORRECT\n", + "ICNDYIVNEQHAVSACLGYHGYPK found in part_0.0_13829.432373046875: CORRECT\n", + "ICNLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "ICSNADLIYGAK found in part_0.0_13829.432373046875: CORRECT\n", + "ICTLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAAFQDEVAASEGFLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAAIAATR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAELSMAALR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAIIKPFK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAIISSLSITDK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAIISSLSITDKR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAIISSLSITDKR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAILVDR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAIMSSLSITEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAVAFVESIPFSETR found in part_0.0_13829.432373046875: CORRECT\n", + "IDAVNEYNQK found in part_0.0_13829.432373046875: CORRECT\n", + "IDAVVASNDATAGGAIQALSAQGLSGK found in part_0.0_13829.432373046875: CORRECT\n", + "IDDEQIFYLR found in part_0.0_13829.432373046875: CORRECT\n", + "IDDEVTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IDDGQMGVILK found in part_0.0_13829.432373046875: CORRECT\n", + "IDDIDLNLEDFVQR found in part_0.0_13829.432373046875: CORRECT\n", + "IDELMQK found in part_0.0_13829.432373046875: CORRECT\n", + "IDESGFDIR found in part_0.0_13829.432373046875: CORRECT\n", + "IDETIAQVTGSAHVGNLYVNR found in part_0.0_13829.432373046875: CORRECT\n", + "IDEVFIGSCMTNIGHFR found in part_0.0_13829.432373046875: CORRECT\n", + "IDEVLAPFVTASYNK found in part_0.0_13829.432373046875: CORRECT\n", + "IDEVVVFHPLGEQHIASIAQIQLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDFSLISSER found in part_0.0_13829.432373046875: CORRECT\n", + "IDGEVCDLSDPPK found in part_0.0_13829.432373046875: CORRECT\n", + "IDGFGPMK found in part_0.0_13829.432373046875: CORRECT\n", + "IDGHLISVR found in part_0.0_13829.432373046875: CORRECT\n", + "IDGIPALLDR found in part_0.0_13829.432373046875: CORRECT\n", + "IDGLGIK found in part_0.0_13829.432373046875: CORRECT\n", + "IDGSGQMAITVDVEVASDTPHPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IDHYLGK found in part_0.0_13829.432373046875: CORRECT\n", + "IDIGDLQNLQPGATVPVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "IDIKPSR found in part_0.0_13829.432373046875: CORRECT\n", + "IDILIGTHK found in part_0.0_13829.432373046875: CORRECT\n", + "IDILVNNAGVCR found in part_0.0_13829.432373046875: CORRECT\n", + "IDKPEADPDR found in part_0.0_13829.432373046875: CORRECT\n", + "IDLALLPFSDALSR found in part_0.0_13829.432373046875: CORRECT\n", + "IDLAMYPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "IDLLDKVEAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDLLDKVEAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDLPAADPER found in part_0.0_13829.432373046875: CORRECT\n", + "IDLQPGEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "IDLTEWETNPESTR found in part_0.0_13829.432373046875: CORRECT\n", + "IDLTIVGPEAPLVK found in part_0.0_13829.432373046875: CORRECT\n", + "IDMDNLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDMLEDFEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IDMQETAGSLR found in part_0.0_13829.432373046875: CORRECT\n", + "IDNATLAELDALR found in part_0.0_13829.432373046875: CORRECT\n", + "IDNVLVCPNSNCISHAEPVSSSFAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IDNYEVVGK found in part_0.0_13829.432373046875: CORRECT\n", + "IDNYPELR found in part_0.0_13829.432373046875: CORRECT\n", + "IDPILVPDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IDPNGENDRYPLQK found in part_0.0_13829.432373046875: CORRECT\n", + "IDPVGACVGMR found in part_0.0_13829.432373046875: CORRECT\n", + "IDQLSSDVQTLNAK found in part_0.0_13829.432373046875: CORRECT\n", + "IDQMEAEAESHSFGK found in part_0.0_13829.432373046875: CORRECT\n", + "IDQQYDVFSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "IDQTEEILGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "IDQVVESESNLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDRPEEYADIATK found in part_0.0_13829.432373046875: CORRECT\n", + "IDRPEEYADIATK found in part_0.0_13829.432373046875: CORRECT\n", + "IDSLTAVSR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide IDTTLPLTDIHR NOT FOUND in any FASTA file.\n", + "IDVAEELDR found in part_0.0_13829.432373046875: CORRECT\n", + "IDVIVQALAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVLDSDIPADTGVK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVLVNNAGAMTK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVPQQTHDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVPQQTHDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVQQVEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDVVINQVTISDER found in part_0.0_13829.432373046875: CORRECT\n", + "IDWSLSAAQLER found in part_0.0_13829.432373046875: CORRECT\n", + "IDYAEAENLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "IDYNEIDDNR found in part_0.0_13829.432373046875: CORRECT\n", + "IDYQALPEHEK found in part_0.0_13829.432373046875: CORRECT\n", + "IDYQALPEHEK found in part_0.0_13829.432373046875: CORRECT\n", + "IEAALADK found in part_0.0_13829.432373046875: CORRECT\n", + "IEAALADK found in part_0.0_13829.432373046875: CORRECT\n", + "IEAALADKEAELMQF found in part_0.0_13829.432373046875: CORRECT\n", + "IEALADGIMDAGLVSVR found in part_0.0_13829.432373046875: CORRECT\n", + "IEALAEDFSDK found in part_0.0_13829.432373046875: CORRECT\n", + "IEALKPFGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IEALKPFGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IEAPMDEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "IEAPMDEGLKR found in part_0.0_13829.432373046875: CORRECT\n", + "IEAQLNDVIADLDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IEAVTGEGAIATVHADSDR found in part_0.0_13829.432373046875: CORRECT\n", + "IEAVTGEGAIATVHADSDR found in part_0.0_13829.432373046875: CORRECT\n", + "IEDDIVITETGNENLTASVVK found in part_0.0_13829.432373046875: CORRECT\n", + "IEDLRPFK found in part_0.0_13829.432373046875: CORRECT\n", + "IEDNVVIHENNVENMTR found in part_0.0_13829.432373046875: CORRECT\n", + "IEDTDLER found in part_0.0_13829.432373046875: CORRECT\n", + "IEDVHVFDGHIACDAASNSEIVLPLVVK found in part_0.0_13829.432373046875: CORRECT\n", + "IEDVPQEQR found in part_0.0_13829.432373046875: CORRECT\n", + "IEDYQPQALAILGK found in part_0.0_13829.432373046875: CORRECT\n", + "IEEALGEK found in part_0.0_13829.432373046875: CORRECT\n", + "IEEALGEK found in part_0.0_13829.432373046875: CORRECT\n", + "IEEDLLGTR found in part_0.0_13829.432373046875: CORRECT\n", + "IEEGLFR found in part_0.0_13829.432373046875: CORRECT\n", + "IEEITAEIEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "IEELTGVPIDIISTGPDR found in part_0.0_13829.432373046875: CORRECT\n", + "IEELTGVPIDIISTGPDR found in part_0.0_13829.432373046875: CORRECT\n", + "IEESEINYLLNVYNTHFK found in part_0.0_13829.432373046875: CORRECT\n", + "IEEVLTLALQNEPSGMQVVTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IEFTLYDCLDR found in part_0.0_13829.432373046875: CORRECT\n", + "IEGCDDGVIMHLK found in part_0.0_13829.432373046875: CORRECT\n", + "IEGEISR found in part_0.0_13829.432373046875: CORRECT\n", + "IEGGIVVR found in part_0.0_13829.432373046875: CORRECT\n", + "IEGVANLQATR found in part_0.0_13829.432373046875: CORRECT\n", + "IEGVPESNISR found in part_0.0_13829.432373046875: CORRECT\n", + "IEHVFDDFK found in part_0.0_13829.432373046875: CORRECT\n", + "IEIFSQR found in part_0.0_13829.432373046875: CORRECT\n", + "IEIPGCSLCMGNQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IEIPVLPLR found in part_0.0_13829.432373046875: CORRECT\n", + "IEKDWYTLMNTIINGSASEADAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IEKPAGISNPK found in part_0.0_13829.432373046875: CORRECT\n", + "IELDQDYIDER found in part_0.0_13829.432373046875: CORRECT\n", + "IELIEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IELIEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IELLPYHELGK found in part_0.0_13829.432373046875: CORRECT\n", + "IELLPYHELGK found in part_0.0_13829.432373046875: CORRECT\n", + "IELQQGR found in part_0.0_13829.432373046875: CORRECT\n", + "IELSSAQQTDVNLPYITADATGPK found in part_0.0_13829.432373046875: CORRECT\n", + "IEMGETPEQAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "IENGGLHPVTR found in part_0.0_13829.432373046875: CORRECT\n", + "IENGGLHPVTR found in part_0.0_13829.432373046875: CORRECT\n", + "IENGLLLLNGK found in part_0.0_13829.432373046875: CORRECT\n", + "IENGLLLLNGKPLLIR found in part_0.0_13829.432373046875: CORRECT\n", + "IENGLLLLNGKPLLIR found in part_0.0_13829.432373046875: CORRECT\n", + "IENLEELVTATR found in part_0.0_13829.432373046875: CORRECT\n", + "IENQEGLNNFDEILEASDGIMVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IENTFLSEDQVDQLALYAPQATVNR found in part_0.0_13829.432373046875: CORRECT\n", + "IEPGELYNGTK found in part_0.0_13829.432373046875: CORRECT\n", + "IEPSLEAAFVDYGAER found in part_0.0_13829.432373046875: CORRECT\n", + "IEQAAEGLECR found in part_0.0_13829.432373046875: CORRECT\n", + "IEQESFDFFNR found in part_0.0_13829.432373046875: CORRECT\n", + "IEQGVYLVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "IEQLYPFPHK found in part_0.0_13829.432373046875: CORRECT\n", + "IEQLYPFPHK found in part_0.0_13829.432373046875: CORRECT\n", + "IEQMLSQDK found in part_0.0_13829.432373046875: CORRECT\n", + "IEQMLSQDKR found in part_0.0_13829.432373046875: CORRECT\n", + "IEQSPELSAK found in part_0.0_13829.432373046875: CORRECT\n", + "IESLVTPAELALR found in part_0.0_13829.432373046875: CORRECT\n", + "IETLFTNDLDHGPYISETLR found in part_0.0_13829.432373046875: CORRECT\n", + "IETLVPDFR found in part_0.0_13829.432373046875: CORRECT\n", + "IETQGADGIQNR found in part_0.0_13829.432373046875: CORRECT\n", + "IEVATPLLDPR found in part_0.0_13829.432373046875: CORRECT\n", + "IEVEDFPAFILVDDK found in part_0.0_13829.432373046875: CORRECT\n", + "IEVLVER found in part_0.0_13829.432373046875: CORRECT\n", + "IEVNGEGR found in part_0.0_13829.432373046875: CORRECT\n", + "IEVPEIGEEVIEIK found in part_0.0_13829.432373046875: CORRECT\n", + "IEYAINR found in part_0.0_13829.432373046875: CORRECT\n", + "IEYTESTSAAMEK found in part_0.0_13829.432373046875: CORRECT\n", + "IEYVYQSAEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "IEYVYQSAEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "IFAGGDIVR found in part_0.0_13829.432373046875: CORRECT\n", + "IFALPVIEQISPVLSR found in part_0.0_13829.432373046875: CORRECT\n", + "IFCNVVDAPK found in part_0.0_13829.432373046875: CORRECT\n", + "IFDFPLR found in part_0.0_13829.432373046875: CORRECT\n", + "IFDFVKPGVITGDDVQK found in part_0.0_13829.432373046875: CORRECT\n", + "IFDFVKPGVITGDDVQK found in part_0.0_13829.432373046875: CORRECT\n", + "IFEAAELSHQTNTLPEVCGR found in part_0.0_13829.432373046875: CORRECT\n", + "IFEALESALATATK found in part_0.0_13829.432373046875: CORRECT\n", + "IFEALESALATATK found in part_0.0_13829.432373046875: CORRECT\n", + "IFEDNSLTIGHTPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "IFEDNSLTIGHTPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "IFESGLR found in part_0.0_13829.432373046875: CORRECT\n", + "IFGPGNAFVTEAK found in part_0.0_13829.432373046875: CORRECT\n", + "IFGPTAGAAQLEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "IFGPTAGAAQLEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "IFLAGGER found in part_0.0_13829.432373046875: CORRECT\n", + "IFLDASSEER found in part_0.0_13829.432373046875: CORRECT\n", + "IFLEGECVVTNSR found in part_0.0_13829.432373046875: CORRECT\n", + "IFMAPLTR found in part_0.0_13829.432373046875: CORRECT\n", + "IFMITEPDGTFITAR found in part_0.0_13829.432373046875: CORRECT\n", + "IFNADGSEVAQCGNGAR found in part_0.0_13829.432373046875: CORRECT\n", + "IFNADWVIDGEQQPK found in part_0.0_13829.432373046875: CORRECT\n", + "IFNADWVIDGEQQPK found in part_0.0_13829.432373046875: CORRECT\n", + "IFNAVVAYGCELK found in part_0.0_13829.432373046875: CORRECT\n", + "IFNDLLR found in part_0.0_13829.432373046875: CORRECT\n", + "IFNTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "IFPIAGVTTNPSIIAASK found in part_0.0_13829.432373046875: CORRECT\n", + "IFPLAGVTTNPSIIAAGK found in part_0.0_13829.432373046875: CORRECT\n", + "IFSDAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "IFSFTALTVVGDGNGR found in part_0.0_13829.432373046875: CORRECT\n", + "IFSLYGER found in part_0.0_13829.432373046875: CORRECT\n", + "IFSPVSHLNSVK found in part_0.0_13829.432373046875: CORRECT\n", + "IFSPVSHLNSVK found in part_0.0_13829.432373046875: CORRECT\n", + "IFSSAAYNAGPGR found in part_0.0_13829.432373046875: CORRECT\n", + "IFTEDGVSIPVTVIEVEANR found in part_0.0_13829.432373046875: CORRECT\n", + "IFTPEFR found in part_0.0_13829.432373046875: CORRECT\n", + "IFVDEGPSMK found in part_0.0_13829.432373046875: CORRECT\n", + "IFVFDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IFVNPAIK found in part_0.0_13829.432373046875: CORRECT\n", + "IFYGDSDNDITAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGAAIGSGIGGLGLIEENHTSLMNGGPR found in part_0.0_13829.432373046875: CORRECT\n", + "IGAENSGHVILLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IGAENSGHVILLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IGAFEIDDGELHGESPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "IGAGSVVLQPVPPHTTAAGVPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGASSAIEALHR found in part_0.0_13829.432373046875: CORRECT\n", + "IGASSAIEALHR found in part_0.0_13829.432373046875: CORRECT\n", + "IGAVHSVIFGGFSPEAVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IGAVHSVIFGGFSPEAVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IGDDVYANGEK found in part_0.0_13829.432373046875: CORRECT\n", + "IGDGDQFSSGFVEVNPNSK found in part_0.0_13829.432373046875: CORRECT\n", + "IGDGDQFSSGFVEVNPNSK found in part_0.0_13829.432373046875: CORRECT\n", + "IGDIIQR found in part_0.0_13829.432373046875: CORRECT\n", + "IGDLCWAAGDQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGDLCWAAGDQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGDYAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "IGEDQLFYCLQR found in part_0.0_13829.432373046875: CORRECT\n", + "IGEEYELK found in part_0.0_13829.432373046875: CORRECT\n", + "IGEHTPSALAIMENANVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGENINIR found in part_0.0_13829.432373046875: CORRECT\n", + "IGEQELAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGEQEYFDK found in part_0.0_13829.432373046875: CORRECT\n", + "IGFIGCGNMGK found in part_0.0_13829.432373046875: CORRECT\n", + "IGFIGGEDEPGK found in part_0.0_13829.432373046875: CORRECT\n", + "IGFLCDIR found in part_0.0_13829.432373046875: CORRECT\n", + "IGFQGTLLIEPKPQEPTK found in part_0.0_13829.432373046875: CORRECT\n", + "IGFVGVVHPELER found in part_0.0_13829.432373046875: CORRECT\n", + "IGFVGVVHPELER found in part_0.0_13829.432373046875: CORRECT\n", + "IGFVSLGCPK found in part_0.0_13829.432373046875: CORRECT\n", + "IGGASFEDFQQDLLNLSK found in part_0.0_13829.432373046875: CORRECT\n", + "IGGVAHDLPR found in part_0.0_13829.432373046875: CORRECT\n", + "IGIDLGGTK found in part_0.0_13829.432373046875: CORRECT\n", + "IGIFQDLVDR found in part_0.0_13829.432373046875: CORRECT\n", + "IGIGHPGDK found in part_0.0_13829.432373046875: CORRECT\n", + "IGIQPGHIHKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "IGIQVLQR found in part_0.0_13829.432373046875: CORRECT\n", + "IGIVAAGYADGYPR found in part_0.0_13829.432373046875: CORRECT\n", + "IGLELGLPYDMLYR found in part_0.0_13829.432373046875: CORRECT\n", + "IGLLLDMPLR found in part_0.0_13829.432373046875: CORRECT\n", + "IGLNCQLAQVAER found in part_0.0_13829.432373046875: CORRECT\n", + "IGLNCQLAQVAER found in part_0.0_13829.432373046875: CORRECT\n", + "IGLVDGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "IGLVLFGK found in part_0.0_13829.432373046875: CORRECT\n", + "IGLVSISDR found in part_0.0_13829.432373046875: CORRECT\n", + "IGMAIDDLR found in part_0.0_13829.432373046875: CORRECT\n", + "IGMALAQR found in part_0.0_13829.432373046875: CORRECT\n", + "IGNPEYFTDIEFR found in part_0.0_13829.432373046875: CORRECT\n", + "IGQEQLQFYR found in part_0.0_13829.432373046875: CORRECT\n", + "IGQGPAEAFPK found in part_0.0_13829.432373046875: CORRECT\n", + "IGQLLQELK found in part_0.0_13829.432373046875: CORRECT\n", + "IGQLTMR found in part_0.0_13829.432373046875: CORRECT\n", + "IGQVVEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "IGRPPEQVLEIVG found in part_0.0_13829.432373046875: CORRECT\n", + "IGSDAYNQGLSER found in part_0.0_13829.432373046875: CORRECT\n", + "IGSLGMDVYENER found in part_0.0_13829.432373046875: CORRECT\n", + "IGSLVANDADSYR found in part_0.0_13829.432373046875: CORRECT\n", + "IGSPITDLALR found in part_0.0_13829.432373046875: CORRECT\n", + "IGTAIFGAR found in part_0.0_13829.432373046875: CORRECT\n", + "IGTDPTYAPFESK found in part_0.0_13829.432373046875: CORRECT\n", + "IGTDTTYAPFSSK found in part_0.0_13829.432373046875: CORRECT\n", + "IGTGCVIK found in part_0.0_13829.432373046875: CORRECT\n", + "IGTPFSDLYSK found in part_0.0_13829.432373046875: CORRECT\n", + "IGTTEVIPGLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IGTTGAIQPHINVGDVLVTTASVR found in part_0.0_13829.432373046875: CORRECT\n", + "IGVLGLNGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVLTSGGDAPGMNAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "IGVLTSGGDAPGMNAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "IGVLVAAK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVMFGNPETTTGGNALK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVNAGSLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVNAPK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVPFVDGGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVTDYTILGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVTIYK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVTIYK found in part_0.0_13829.432373046875: CORRECT\n", + "IGVVGLGGIAQK found in part_0.0_13829.432373046875: CORRECT\n", + "IGYLPQEPQLNPEHTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IGYLPQEPQLNPEHTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IGYPVIIK found in part_0.0_13829.432373046875: CORRECT\n", + "IGYPVIIK found in part_0.0_13829.432373046875: CORRECT\n", + "IGYSGDSSSDISLKPLNYEQK found in part_0.0_13829.432373046875: CORRECT\n", + "IHAEVPLSEMFGYATQLR found in part_0.0_13829.432373046875: CORRECT\n", + "IHCSILAEDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "IHCSILAEDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "IHDKPSTEAITSFR found in part_0.0_13829.432373046875: CORRECT\n", + "IHGLADCMQGEMISLPGNR found in part_0.0_13829.432373046875: CORRECT\n", + "IHGVNYSISSACATSAHCIGNAVEQIQLGK found in part_0.0_13829.432373046875: CORRECT\n", + "IHLDASMSCAGDPIPLAPETVAER found in part_0.0_13829.432373046875: CORRECT\n", + "IHLFMGGVGNDGHIAFNEPASSLASR found in part_0.0_13829.432373046875: CORRECT\n", + "IHLFMGGVGNDGHIAFNEPASSLASR found in part_0.0_13829.432373046875: CORRECT\n", + "IHLFMGGVGNDGHIAFNEPASSLASR found in part_0.0_13829.432373046875: CORRECT\n", + "IHNGDMQQTVFGILGINEEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "IHSEEDERPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "IHSFESCGTVDGPGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IHSFESCGTVDGPGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IHSLFTVPK found in part_0.0_13829.432373046875: CORRECT\n", + "IHTDFEK found in part_0.0_13829.432373046875: CORRECT\n", + "IHTSYENVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "IHTSYENVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "IHVAVAQEVPGTGVDTPEDLER found in part_0.0_13829.432373046875: CORRECT\n", + "IHVLDGER found in part_0.0_13829.432373046875: CORRECT\n", + "IHVVQGDITK found in part_0.0_13829.432373046875: CORRECT\n", + "IIAADNGDAWVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIADAAIDAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IIAESISLPEIPADVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIAGEIQARPEQVDAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IIAIDNSPAMIER found in part_0.0_13829.432373046875: CORRECT\n", + "IIAIDTNPK found in part_0.0_13829.432373046875: CORRECT\n", + "IIAPEGSDNAFQTSNPK found in part_0.0_13829.432373046875: CORRECT\n", + "IIASEFLADDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "IIASEFLADDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "IIASPDYISR found in part_0.0_13829.432373046875: CORRECT\n", + "IIASVAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIASVAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIAVIHSEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIAVLEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IIAVTACPSGVAHTYMAAEALESAAK found in part_0.0_13829.432373046875: CORRECT\n", + "IIAYGDADVMVAGGAEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIDDAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIDFALSNCINSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IIDGAELLIPMAGLINK found in part_0.0_13829.432373046875: CORRECT\n", + "IIDGAELLIPMAGLINK found in part_0.0_13829.432373046875: CORRECT\n", + "IIDLLVGR found in part_0.0_13829.432373046875: CORRECT\n", + "IIDQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIDQLVEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEFNQNPLYSDHSR found in part_0.0_13829.432373046875: CORRECT\n", + "IIEFNQNPLYSDHSR found in part_0.0_13829.432373046875: CORRECT\n", + "IIEFVEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEFVEKPANPPSMPNDPSK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEPAVNPALIGAVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEQHINEPEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEQHINEPEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIEQVLK found in part_0.0_13829.432373046875: CORRECT\n", + "IIFAGTPDFAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIFTSSTSVYGDAQGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIFTSSTSVYGDAQGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIGALPYLYEINLR found in part_0.0_13829.432373046875: CORRECT\n", + "IIGEQLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIGEQLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "IIGESASR found in part_0.0_13829.432373046875: CORRECT\n", + "IIGGGMPVGAFGGR found in part_0.0_13829.432373046875: CORRECT\n", + "IIGIDLGTTNSCVAIMDGTTPR found in part_0.0_13829.432373046875: CORRECT\n", + "IIGQLMSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "IIGTGSYLPEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "IIHLTDDSFDTDVLK found in part_0.0_13829.432373046875: CORRECT\n", + "IIHLTDDSFDTDVLK found in part_0.0_13829.432373046875: CORRECT\n", + "IIISEEQGSNSHSR found in part_0.0_13829.432373046875: CORRECT\n", + "IIISELEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIITSATIDPER found in part_0.0_13829.432373046875: CORRECT\n", + "IILCTGDMGFGACK found in part_0.0_13829.432373046875: CORRECT\n", + "IILDSIK found in part_0.0_13829.432373046875: CORRECT\n", + "IILGGDHLGPNCWQQENADAAMEK found in part_0.0_13829.432373046875: CORRECT\n", + "IILLGAPGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "IILPVNDGR found in part_0.0_13829.432373046875: CORRECT\n", + "IILSDDK found in part_0.0_13829.432373046875: CORRECT\n", + "IILSDDK found in part_0.0_13829.432373046875: CORRECT\n", + "IILSDDKVK found in part_0.0_13829.432373046875: CORRECT\n", + "IILVTGASDGIGR found in part_0.0_13829.432373046875: CORRECT\n", + "IIMEYLDER found in part_0.0_13829.432373046875: CORRECT\n", + "IINEPTAAALAYGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IINEPTAAALAYGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IINEVNGISR found in part_0.0_13829.432373046875: CORRECT\n", + "IINGEVPEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "IINIASMLSFQGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "IINIPSAEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IINITSVHEHTPLPDASAYTAAK found in part_0.0_13829.432373046875: CORRECT\n", + "IINSPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "IIPCLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "IIPGFMCQGGDFTR found in part_0.0_13829.432373046875: CORRECT\n", + "IIPHLIR found in part_0.0_13829.432373046875: CORRECT\n", + "IIPLCPFAK found in part_0.0_13829.432373046875: CORRECT\n", + "IIPQDELGSSEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIPVLEAAYGER found in part_0.0_13829.432373046875: CORRECT\n", + "IIQFGEGNFLR found in part_0.0_13829.432373046875: CORRECT\n", + "IIQICGGLSDR found in part_0.0_13829.432373046875: CORRECT\n", + "IIQVHVK found in part_0.0_13829.432373046875: CORRECT\n", + "IISAHTPTTF found in part_0.0_13829.432373046875: CORRECT\n", + "IISESGTAAGVR found in part_0.0_13829.432373046875: CORRECT\n", + "IISLAPEVL found in part_0.0_13829.432373046875: CORRECT\n", + "IISLAPEVL found in part_0.0_13829.432373046875: CORRECT\n", + "IITHPNFNGNTLDNDIMLIK found in part_0.0_13829.432373046875: CORRECT\n", + "IITIGSVVGTMGNGGQANYAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "IITNLTEGASR found in part_0.0_13829.432373046875: CORRECT\n", + "IITVDGDEIGEHQGLMYHTLGQR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVATDHEDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVATDHEDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVDTYGGMAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVGGIMPITK found in part_0.0_13829.432373046875: CORRECT\n", + "IIVIDVSENR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVPATEAENFAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVPQALVNAVSDALVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVQEMGESSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide IIVTGGAGFIGSNIVK NOT FOUND in any FASTA file.\n", + "IIVTPINDIYYAEAHEK found in part_0.0_13829.432373046875: CORRECT\n", + "IIVVSDEVAADTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IIVVTDSSK found in part_0.0_13829.432373046875: CORRECT\n", + "IIVVTSGK found in part_0.0_13829.432373046875: CORRECT\n", + "IIWPENDINLK found in part_0.0_13829.432373046875: CORRECT\n", + "IIYEQDLIVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IIYTGPIDQYFDYR found in part_0.0_13829.432373046875: CORRECT\n", + "IKADAEEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IKEEDFIDR found in part_0.0_13829.432373046875: CORRECT\n", + "IKEELFYPSNEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IKEELFYPSNEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IKELAVK found in part_0.0_13829.432373046875: CORRECT\n", + "IKGEPVDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "IKGPILCLVGPPGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "IKNELEPK found in part_0.0_13829.432373046875: CORRECT\n", + "IKPDDIHFAR found in part_0.0_13829.432373046875: CORRECT\n", + "IKPYLLNNGQNPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IKYAMIGDPTGALTR found in part_0.0_13829.432373046875: CORRECT\n", + "IKYPFLLSNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "IKYPFLLSNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "ILAADNTPLYIK found in part_0.0_13829.432373046875: CORRECT\n", + "ILAATQQALK found in part_0.0_13829.432373046875: CORRECT\n", + "ILADIAVFDK found in part_0.0_13829.432373046875: CORRECT\n", + "ILAEEIER found in part_0.0_13829.432373046875: CORRECT\n", + "ILALAETNAELEK found in part_0.0_13829.432373046875: CORRECT\n", + "ILAMLGDSVTTDHISPAGSIKPDSPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILAMLGDSVTTDHISPAGSIKPDSPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILAMLGDSVTTDHISPAGSIKPDSPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILAQSIEVYQR found in part_0.0_13829.432373046875: CORRECT\n", + "ILASDVVSPLDVPGFDNSAMDGYAVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILCYLYLSPER found in part_0.0_13829.432373046875: CORRECT\n", + "ILDATNNQLPQDR found in part_0.0_13829.432373046875: CORRECT\n", + "ILDAVDFPPER found in part_0.0_13829.432373046875: CORRECT\n", + "ILDDLCANQLQPLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILDDLCANQLQPLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILDEAGLPGELR found in part_0.0_13829.432373046875: CORRECT\n", + "ILDIIPETLHQR found in part_0.0_13829.432373046875: CORRECT\n", + "ILDIIPETLHQR found in part_0.0_13829.432373046875: CORRECT\n", + "ILDVLIPPAK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEDEVVGVEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "ILEEAVSTALELASGK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEHVCPQIPADKPR found in part_0.0_13829.432373046875: CORRECT\n", + "ILEHVCPQIPADKPR found in part_0.0_13829.432373046875: CORRECT\n", + "ILEIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEIEGLPDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEITPER found in part_0.0_13829.432373046875: CORRECT\n", + "ILELAGFLDSYIPEPER found in part_0.0_13829.432373046875: CORRECT\n", + "ILENGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILENGEVKPLDVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILENGEVKPLDVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEQCLNNMPEGPFK found in part_0.0_13829.432373046875: CORRECT\n", + "ILESMAQVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILETLAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "ILETLAEIKK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEVLQEPDNHHVSAEDLYK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEVLQEPDNHHVSAEDLYK found in part_0.0_13829.432373046875: CORRECT\n", + "ILEVPVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILEVSGCDPQTTELDGKPLADHLLAPTR found in part_0.0_13829.432373046875: CORRECT\n", + "ILFAGDLQDDLPAR found in part_0.0_13829.432373046875: CORRECT\n", + "ILFENLTPLHANSR found in part_0.0_13829.432373046875: CORRECT\n", + "ILFGMAGTAR found in part_0.0_13829.432373046875: CORRECT\n", + "ILFLEGLPNLQDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "ILFVGTK found in part_0.0_13829.432373046875: CORRECT\n", + "ILFYTGVNHK found in part_0.0_13829.432373046875: CORRECT\n", + "ILFYTGVNHK found in part_0.0_13829.432373046875: CORRECT\n", + "ILGGDLEPTLGNVSLDPNER found in part_0.0_13829.432373046875: CORRECT\n", + "ILGILASK found in part_0.0_13829.432373046875: CORRECT\n", + "ILGISLAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "ILGLEIGADDYITK found in part_0.0_13829.432373046875: CORRECT\n", + "ILGLEIGADDYITKPFNPR found in part_0.0_13829.432373046875: CORRECT\n", + "ILGLGDQGIGGMGIPIGK found in part_0.0_13829.432373046875: CORRECT\n", + "ILGNIEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILHSAETDDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILHSAETDDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILIEGPPR found in part_0.0_13829.432373046875: CORRECT\n", + "ILIGEVTVVDESEPFAHEK found in part_0.0_13829.432373046875: CORRECT\n", + "ILILHADHEQNASTSTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILILHADHEQNASTSTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILILHADHEQNASTSTVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILILTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "ILIVDDEDNVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILIVEDEPK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLDAPCSATGVIR found in part_0.0_13829.432373046875: CORRECT\n", + "ILLIGAGGASR found in part_0.0_13829.432373046875: CORRECT\n", + "ILLIGCGK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLINPTDSDAVGNAVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLINPTDSDAVGNAVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLSNDDGVHAPGIQTLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLSSMPGCAVTEVEIDGVLHEYSTK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLSSMPGCAVTEVEIDGVLHEYSTK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLTRPAVEAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ILLVDDDR found in part_0.0_13829.432373046875: CORRECT\n", + "ILLVDDDRELTSLLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILMEQAPIAPIYQYTNGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILMEQAPIAPIYQYTNGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILNINVPDLPLDQIK found in part_0.0_13829.432373046875: CORRECT\n", + "ILNTSSVIPVDGLCVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILNTSSVIPVDGLCVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILNVSPR found in part_0.0_13829.432373046875: CORRECT\n", + "ILPEHVVPAVTK found in part_0.0_13829.432373046875: CORRECT\n", + "ILPEHVVPAVTK found in part_0.0_13829.432373046875: CORRECT\n", + "ILPELKDDK found in part_0.0_13829.432373046875: CORRECT\n", + "ILPGFENR found in part_0.0_13829.432373046875: CORRECT\n", + "ILPLVCYDLR found in part_0.0_13829.432373046875: CORRECT\n", + "ILPPGSFASIGQALPPGEPLSTEER found in part_0.0_13829.432373046875: CORRECT\n", + "ILPQLLAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "ILPSITLK found in part_0.0_13829.432373046875: CORRECT\n", + "ILPSPVIK found in part_0.0_13829.432373046875: CORRECT\n", + "ILQDALSD found in part_0.0_13829.432373046875: CORRECT\n", + "ILQQESVK found in part_0.0_13829.432373046875: CORRECT\n", + "ILREDVQAYVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ILSAFSLEGK NOT FOUND in any FASTA file.\n", + "ILSPAFVSHYAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILSPAFVSHYAGR found in part_0.0_13829.432373046875: CORRECT\n", + "ILSVSQQSLER found in part_0.0_13829.432373046875: CORRECT\n", + "ILTEPNASITVQYK found in part_0.0_13829.432373046875: CORRECT\n", + "ILTIPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVDENMPYAR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVEGTSR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVGPDASK found in part_0.0_13829.432373046875: CORRECT\n", + "ILVIAADER found in part_0.0_13829.432373046875: CORRECT\n", + "ILVPLTIEDAQIR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVPLTIEDAQIR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVTGGAGFIGSAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVTGVASK found in part_0.0_13829.432373046875: CORRECT\n", + "ILVTGVASK found in part_0.0_13829.432373046875: CORRECT\n", + "ILVVDDDMR found in part_0.0_13829.432373046875: CORRECT\n", + "ILVVEDEAPIR found in part_0.0_13829.432373046875: CORRECT\n", + "ILYISCNPETLCK found in part_0.0_13829.432373046875: CORRECT\n", + "IMAGIDKDIEGEAR found in part_0.0_13829.432373046875: CORRECT\n", + "IMDELSVISCDVYR found in part_0.0_13829.432373046875: CORRECT\n", + "IMENALTANNNK found in part_0.0_13829.432373046875: CORRECT\n", + "IMGGADVILVPSR found in part_0.0_13829.432373046875: CORRECT\n", + "IMIDLDGTENK found in part_0.0_13829.432373046875: CORRECT\n", + "IMLDGEPYAVEASEFVK found in part_0.0_13829.432373046875: CORRECT\n", + "IMLDGEPYAVEASEFVK found in part_0.0_13829.432373046875: CORRECT\n", + "IMLDGEPYAVEASEFVKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "IMLLCSPQNPTGK found in part_0.0_13829.432373046875: CORRECT\n", + "IMLVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "IMNDENFQHGGTNIHYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IMNDENFQHGGTNIHYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IMVLGGGPNR found in part_0.0_13829.432373046875: CORRECT\n", + "INAEDPNTFLPSPGK found in part_0.0_13829.432373046875: CORRECT\n", + "INALAPVSGQAK found in part_0.0_13829.432373046875: CORRECT\n", + "INALETVTIASK found in part_0.0_13829.432373046875: CORRECT\n", + "INALETVTIASK found in part_0.0_13829.432373046875: CORRECT\n", + "INAQYQGADR found in part_0.0_13829.432373046875: CORRECT\n", + "INDAIQHVR found in part_0.0_13829.432373046875: CORRECT\n", + "INDNQVIEGAESR found in part_0.0_13829.432373046875: CORRECT\n", + "INDNQVIEGAESR found in part_0.0_13829.432373046875: CORRECT\n", + "INDPQVADDILSR found in part_0.0_13829.432373046875: CORRECT\n", + "INECVNAADLQLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "INEVTATAVK found in part_0.0_13829.432373046875: CORRECT\n", + "INGATVDVR found in part_0.0_13829.432373046875: CORRECT\n", + "INGQVITIK found in part_0.0_13829.432373046875: CORRECT\n", + "INGQVITIK found in part_0.0_13829.432373046875: CORRECT\n", + "INHGDNPLDASTVHPEAYPVVER found in part_0.0_13829.432373046875: CORRECT\n", + "INHGDNPLDASTVHPEAYPVVER found in part_0.0_13829.432373046875: CORRECT\n", + "INIIDTPGHVDFTIEVER found in part_0.0_13829.432373046875: CORRECT\n", + "INIVDTPGHADFGGEVER found in part_0.0_13829.432373046875: CORRECT\n", + "INIVDTPGHADFGGEVER found in part_0.0_13829.432373046875: CORRECT\n", + "INLDIPGAVAQALR found in part_0.0_13829.432373046875: CORRECT\n", + "INLGIGVYK found in part_0.0_13829.432373046875: CORRECT\n", + "INLGIGVYK found in part_0.0_13829.432373046875: CORRECT\n", + "INLGIGVYKDETGK found in part_0.0_13829.432373046875: CORRECT\n", + "INLGIGVYKDETGK found in part_0.0_13829.432373046875: CORRECT\n", + "INLHTQR found in part_0.0_13829.432373046875: CORRECT\n", + "INLNGGAIALGHPLGCSGAR found in part_0.0_13829.432373046875: CORRECT\n", + "INLTLYR found in part_0.0_13829.432373046875: CORRECT\n", + "INPAGAPTYVPGEYK found in part_0.0_13829.432373046875: CORRECT\n", + "INPAGAPTYVPGEYK found in part_0.0_13829.432373046875: CORRECT\n", + "INPDEILVAHDELDLPPGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "INPEANHEHVCLLGCGVTTGIGAVHNTAK found in part_0.0_13829.432373046875: CORRECT\n", + "INPGNIGNEER found in part_0.0_13829.432373046875: CORRECT\n", + "INQLFER found in part_0.0_13829.432373046875: CORRECT\n", + "INQLVVEPTLQTTR found in part_0.0_13829.432373046875: CORRECT\n", + "INQTDIDR found in part_0.0_13829.432373046875: CORRECT\n", + "INQVYVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "INSLAMPVK found in part_0.0_13829.432373046875: CORRECT\n", + "INVATELK found in part_0.0_13829.432373046875: CORRECT\n", + "INVICEKPLASNLAEVDAAIACAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide INVQNVSK NOT FOUND in any FASTA file.\n", + "INVTAYQGK found in part_0.0_13829.432373046875: CORRECT\n", + "IPAEEVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IPAELLTALK found in part_0.0_13829.432373046875: CORRECT\n", + "IPAGVDTGDR found in part_0.0_13829.432373046875: CORRECT\n", + "IPAGVGNGQR found in part_0.0_13829.432373046875: CORRECT\n", + "IPALIESGELESTIGLPMNK found in part_0.0_13829.432373046875: CORRECT\n", + "IPALVENR found in part_0.0_13829.432373046875: CORRECT\n", + "IPAWYDEAGNVYVGR found in part_0.0_13829.432373046875: CORRECT\n", + "IPDDSPQPK found in part_0.0_13829.432373046875: CORRECT\n", + "IPDGQAEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "IPDGQAEDARK found in part_0.0_13829.432373046875: CORRECT\n", + "IPDGQAEDARK found in part_0.0_13829.432373046875: CORRECT\n", + "IPDVMPTK found in part_0.0_13829.432373046875: CORRECT\n", + "IPEEFKK found in part_0.0_13829.432373046875: CORRECT\n", + "IPEGESMQELSDR found in part_0.0_13829.432373046875: CORRECT\n", + "IPELAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "IPFIETVK found in part_0.0_13829.432373046875: CORRECT\n", + "IPGFEQPWEEDFGKPER found in part_0.0_13829.432373046875: CORRECT\n", + "IPGSFFR found in part_0.0_13829.432373046875: CORRECT\n", + "IPHGDIR found in part_0.0_13829.432373046875: CORRECT\n", + "IPIFAICR found in part_0.0_13829.432373046875: CORRECT\n", + "IPISGIAGDQQAALFGQLCVK found in part_0.0_13829.432373046875: CORRECT\n", + "IPIVGDEHADMEK found in part_0.0_13829.432373046875: CORRECT\n", + "IPIVGDEHADMEK found in part_0.0_13829.432373046875: CORRECT\n", + "IPLDADLR found in part_0.0_13829.432373046875: CORRECT\n", + "IPLLIHQPSYNLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "IPLLIHQPSYNLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "IPLLQNGTFDFECGSTTNNVER found in part_0.0_13829.432373046875: CORRECT\n", + "IPLSDGSVR found in part_0.0_13829.432373046875: CORRECT\n", + "IPMVPDSR found in part_0.0_13829.432373046875: CORRECT\n", + "IPPEVLTSLNSIDDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IPPEVLTSLNSIDDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "IPQFGQQTPMK found in part_0.0_13829.432373046875: CORRECT\n", + "IPSINVSK found in part_0.0_13829.432373046875: CORRECT\n", + "IPTAEYQNFTEVEPALAYLR found in part_0.0_13829.432373046875: CORRECT\n", + "IPTIATPVPR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVAYLTNK found in part_0.0_13829.432373046875: CORRECT\n", + "IPVCGLVSSYNATELPPGPDR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVCMHNVEETK found in part_0.0_13829.432373046875: CORRECT\n", + "IPVGHVEAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVHMIETINK found in part_0.0_13829.432373046875: CORRECT\n", + "IPVHMIETINK found in part_0.0_13829.432373046875: CORRECT\n", + "IPVIAGTGANATAEAISLTQR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVSDTQAYR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVTLGNIAPLSLRPFQPGR found in part_0.0_13829.432373046875: CORRECT\n", + "IPVVSSPK found in part_0.0_13829.432373046875: CORRECT\n", + "IPVVSSPK found in part_0.0_13829.432373046875: CORRECT\n", + "IPYVESFPTGTPQSPYGK found in part_0.0_13829.432373046875: CORRECT\n", + "IPYVESFPTGTPQSPYGK found in part_0.0_13829.432373046875: CORRECT\n", + "IQAIIEDIK found in part_0.0_13829.432373046875: CORRECT\n", + "IQAIIEDIKER found in part_0.0_13829.432373046875: CORRECT\n", + "IQAQYPQEVITTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IQAQYPQEVITTVR found in part_0.0_13829.432373046875: CORRECT\n", + "IQASLFAPNEEEK found in part_0.0_13829.432373046875: CORRECT\n", + "IQAYPEGK found in part_0.0_13829.432373046875: CORRECT\n", + "IQDADYATEVSNMSK found in part_0.0_13829.432373046875: CORRECT\n", + "IQDLTER found in part_0.0_13829.432373046875: CORRECT\n", + "IQEIHIK found in part_0.0_13829.432373046875: CORRECT\n", + "IQELPGIFAQALSTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQELPGIFAQALSTAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide IQEQTMLNVADNSGAR NOT FOUND in any FASTA file.\n", + "Peptide IQEQTMLNVADNSGAR NOT FOUND in any FASTA file.\n", + "IQFVMCDDGSLK found in part_0.0_13829.432373046875: CORRECT\n", + "IQGIGAGFIPANLDLK found in part_0.0_13829.432373046875: CORRECT\n", + "IQGIGAGFIPANLDLK found in part_0.0_13829.432373046875: CORRECT\n", + "IQGQSDSPLTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQGVIQAR found in part_0.0_13829.432373046875: CORRECT\n", + "IQIAEQSQLAPASVTK found in part_0.0_13829.432373046875: CORRECT\n", + "IQILNEESAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQIVFQNPYGSLNPR found in part_0.0_13829.432373046875: CORRECT\n", + "IQLGPFASK found in part_0.0_13829.432373046875: CORRECT\n", + "IQLISSGGTLER found in part_0.0_13829.432373046875: CORRECT\n", + "IQLTDAIAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQLTIGAGQSTFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "IQLVGDDLFVTNTK found in part_0.0_13829.432373046875: CORRECT\n", + "IQLVGDDLFVTNTK found in part_0.0_13829.432373046875: CORRECT\n", + "IQLYVAR found in part_0.0_13829.432373046875: CORRECT\n", + "IQNAGTEVVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQPSGTFYDYEAK found in part_0.0_13829.432373046875: CORRECT\n", + "IQQAFFGLFTGETEDK found in part_0.0_13829.432373046875: CORRECT\n", + "IQQQQDIDNGTLPDFISETASIR found in part_0.0_13829.432373046875: CORRECT\n", + "IQSDISQR found in part_0.0_13829.432373046875: CORRECT\n", + "IQSGELSAIPHQLIMDK found in part_0.0_13829.432373046875: CORRECT\n", + "IQSGELSAIPHQLIMDK found in part_0.0_13829.432373046875: CORRECT\n", + "IQTESWSPLAQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "IQTEVFR found in part_0.0_13829.432373046875: CORRECT\n", + "IQTIDEIQSTETLIVLQNPIMR found in part_0.0_13829.432373046875: CORRECT\n", + "IQTVVSR found in part_0.0_13829.432373046875: CORRECT\n", + "IQVEHPVTEMITGVDLIK found in part_0.0_13829.432373046875: CORRECT\n", + "IQVSPTKPLATQR found in part_0.0_13829.432373046875: CORRECT\n", + "IQVSPTKPLATQR found in part_0.0_13829.432373046875: CORRECT\n", + "IQVTELDLYR found in part_0.0_13829.432373046875: CORRECT\n", + "IQVTGSEGELGIYPGHAPLLTAIK found in part_0.0_13829.432373046875: CORRECT\n", + "IQVTGSEGELGIYPGHAPLLTAIKPGMIR found in part_0.0_13829.432373046875: CORRECT\n", + "IRDEMGLAMEEGCGIYR found in part_0.0_13829.432373046875: CORRECT\n", + "IRFPEHCGIGIK found in part_0.0_13829.432373046875: CORRECT\n", + "IRTGEEDDAAI found in part_0.0_13829.432373046875: CORRECT\n", + "ISADQVDQEVER found in part_0.0_13829.432373046875: CORRECT\n", + "ISAGGYGDK found in part_0.0_13829.432373046875: CORRECT\n", + "ISAGQAIR found in part_0.0_13829.432373046875: CORRECT\n", + "ISAGYFR found in part_0.0_13829.432373046875: CORRECT\n", + "ISALDEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISALGPGGLTR found in part_0.0_13829.432373046875: CORRECT\n", + "ISALSDNGEHFSAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISALSDNGEHFSAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISAPQVAER found in part_0.0_13829.432373046875: CORRECT\n", + "ISDAAQAHFAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISDDLYVFK found in part_0.0_13829.432373046875: CORRECT\n", + "ISDEQLDQAIANIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISDEQLDQAIANIAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISDGYISALLR found in part_0.0_13829.432373046875: CORRECT\n", + "ISDIPEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "ISDNTVMTTSR found in part_0.0_13829.432373046875: CORRECT\n", + "ISEHLLPR found in part_0.0_13829.432373046875: CORRECT\n", + "ISEIEADLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISELAFPPSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISELENR found in part_0.0_13829.432373046875: CORRECT\n", + "ISELSEGQIDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "ISELSEGQIDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "ISELSEGQIDTLRDEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISELSEGQIDTLRDEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISFLIDADGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISFTGSTATGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISGAGIQESHVHDVTITK found in part_0.0_13829.432373046875: CORRECT\n", + "ISGAGIQESHVHDVTITK found in part_0.0_13829.432373046875: CORRECT\n", + "ISGANLSR found in part_0.0_13829.432373046875: CORRECT\n", + "ISGDGVYGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ISGILASPGIAFGK NOT FOUND in any FASTA file.\n", + "ISHASLQPGGQAPVAPSALSAGTR found in part_0.0_13829.432373046875: CORRECT\n", + "ISHGQVDLSELGPNADELLSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISIFAGQSGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISIGVQSFSEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISINSPALADPTLITR found in part_0.0_13829.432373046875: CORRECT\n", + "ISIQLNDGR found in part_0.0_13829.432373046875: CORRECT\n", + "ISLDEAMASGHVK found in part_0.0_13829.432373046875: CORRECT\n", + "ISLDEAMASGHVK found in part_0.0_13829.432373046875: CORRECT\n", + "ISLEQGTPGFEPPLEGETR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ISLFDMFK NOT FOUND in any FASTA file.\n", + "ISLPTPIMSGVR found in part_0.0_13829.432373046875: CORRECT\n", + "ISLQEEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISNEESISAMFEH found in part_0.0_13829.432373046875: CORRECT\n", + "ISNVELSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISNVELSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISNVPVPEDK found in part_0.0_13829.432373046875: CORRECT\n", + "ISPEDIVIAMSSGSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISPELLQISPEVQDALK found in part_0.0_13829.432373046875: CORRECT\n", + "ISPETAEPIPR found in part_0.0_13829.432373046875: CORRECT\n", + "ISQATGSTEIDR found in part_0.0_13829.432373046875: CORRECT\n", + "ISQSVDDVDFFYAPADFR found in part_0.0_13829.432373046875: CORRECT\n", + "ISQVPTHDVGPYQNVPSK found in part_0.0_13829.432373046875: CORRECT\n", + "ISQVPTHDVGPYQNVPSKPVVILSAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISQVPTHDVGPYQNVPSKPVVILSAK found in part_0.0_13829.432373046875: CORRECT\n", + "ISSGLPIFAMSR found in part_0.0_13829.432373046875: CORRECT\n", + "ISSLESLEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISTAINEVVLHPGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISTEVDAR found in part_0.0_13829.432373046875: CORRECT\n", + "ISTPPVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ISTTLLNLMER found in part_0.0_13829.432373046875: CORRECT\n", + "ISTVPEAVEMQSR found in part_0.0_13829.432373046875: CORRECT\n", + "ISTVPEAVEMQSR found in part_0.0_13829.432373046875: CORRECT\n", + "ISVALYR found in part_0.0_13829.432373046875: CORRECT\n", + "ISVTSLISASAQGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISVVEVMGR found in part_0.0_13829.432373046875: CORRECT\n", + "ISVVGMYR found in part_0.0_13829.432373046875: CORRECT\n", + "ISVYSAR found in part_0.0_13829.432373046875: CORRECT\n", + "ISVYVADALLK found in part_0.0_13829.432373046875: CORRECT\n", + "ISWMEIYTGEK found in part_0.0_13829.432373046875: CORRECT\n", + "ISYISTGGGAFLEFVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "ISYNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "ITAAPVVDENGK found in part_0.0_13829.432373046875: CORRECT\n", + "ITAFIYK found in part_0.0_13829.432373046875: CORRECT\n", + "ITAILPVTEFEEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITANQNLIIAGVPESEK found in part_0.0_13829.432373046875: CORRECT\n", + "ITANQNLIIAGVPESEK found in part_0.0_13829.432373046875: CORRECT\n", + "ITAVIPYFGYAR found in part_0.0_13829.432373046875: CORRECT\n", + "ITAYADELLNDLDK found in part_0.0_13829.432373046875: CORRECT\n", + "ITCVYDPENGENIAR found in part_0.0_13829.432373046875: CORRECT\n", + "ITDAYAENPQIANLLLAPYFK found in part_0.0_13829.432373046875: CORRECT\n", + "ITDIITPSER found in part_0.0_13829.432373046875: CORRECT\n", + "ITDLTDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "ITDVEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITDVEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITEAVCR found in part_0.0_13829.432373046875: CORRECT\n", + "ITEETLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ITEETLAK found in part_0.0_13829.432373046875: CORRECT\n", + "ITEQGVHFR found in part_0.0_13829.432373046875: CORRECT\n", + "ITESVFR found in part_0.0_13829.432373046875: CORRECT\n", + "ITEYNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "ITEYNVELVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITFIDGDEGILLHR found in part_0.0_13829.432373046875: CORRECT\n", + "ITFIDGDEGILLHR found in part_0.0_13829.432373046875: CORRECT\n", + "ITFIGAGSTIFVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITFNAPTVPVVNNVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITFNAPTVPVVNNVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITGIDSSPAMIAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "ITGINNPNEAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide ITGIQITK NOT FOUND in any FASTA file.\n", + "ITGLSASATSQHLAR found in part_0.0_13829.432373046875: CORRECT\n", + "ITHFVSSMGTTGTITGVSR found in part_0.0_13829.432373046875: CORRECT\n", + "ITHIPTGIVTQCQNDR found in part_0.0_13829.432373046875: CORRECT\n", + "ITHIPTGIVTQCQNDR found in part_0.0_13829.432373046875: CORRECT\n", + "ITHLPTGIVVECQDER found in part_0.0_13829.432373046875: CORRECT\n", + "ITHLPTGIVVECQDER found in part_0.0_13829.432373046875: CORRECT\n", + "ITIAPQGPEFSR found in part_0.0_13829.432373046875: CORRECT\n", + "ITIGLNLPSGEMGR found in part_0.0_13829.432373046875: CORRECT\n", + "ITINYFAMPPSTFGAICK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLHGPLDQPTLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLHGPLDQPTLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLIENK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLKPGETQTVSFPIDIEALK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLNMGVGEAIADK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLNMGVGEAIADKK found in part_0.0_13829.432373046875: CORRECT\n", + "ITLPVDPHLEITEIADR found in part_0.0_13829.432373046875: CORRECT\n", + "ITLPVDPHLEITEIADR found in part_0.0_13829.432373046875: CORRECT\n", + "ITLSTQPADAR found in part_0.0_13829.432373046875: CORRECT\n", + "ITLVQGLNR found in part_0.0_13829.432373046875: CORRECT\n", + "ITNIAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITNICYK found in part_0.0_13829.432373046875: CORRECT\n", + "ITNLGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITNPVSLDYPQAK found in part_0.0_13829.432373046875: CORRECT\n", + "ITNTEGGSFNSHYGVK found in part_0.0_13829.432373046875: CORRECT\n", + "ITPAHDFNDYEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "ITPAHDFNDYEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "ITPAHDFNDYEVGKR found in part_0.0_13829.432373046875: CORRECT\n", + "ITPEALDAAVTFFR found in part_0.0_13829.432373046875: CORRECT\n", + "ITPIVGMLQGVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "ITPTFTEESDGVR found in part_0.0_13829.432373046875: CORRECT\n", + "ITPVVFIMK found in part_0.0_13829.432373046875: CORRECT\n", + "ITQESLYLALR found in part_0.0_13829.432373046875: CORRECT\n", + "ITQGDDLAPGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITSFSHPEIGTVVVSES found in part_0.0_13829.432373046875: CORRECT\n", + "ITSVDTPLGGDSEK found in part_0.0_13829.432373046875: CORRECT\n", + "ITSVNVGGMAFR found in part_0.0_13829.432373046875: CORRECT\n", + "ITTEAFNQR found in part_0.0_13829.432373046875: CORRECT\n", + "ITTETPEK found in part_0.0_13829.432373046875: CORRECT\n", + "ITTLPPAK found in part_0.0_13829.432373046875: CORRECT\n", + "ITTVQAAIDYINGHQA found in part_0.0_13829.432373046875: CORRECT\n", + "ITTVQAAIDYINGHQA found in part_0.0_13829.432373046875: CORRECT\n", + "ITVPVDATEEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "ITVPVDATEEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "ITVSIPLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITVVPILR found in part_0.0_13829.432373046875: CORRECT\n", + "ITWEGSQNQDADVSSDGK found in part_0.0_13829.432373046875: CORRECT\n", + "ITWEGSQNQDADVSSDGK found in part_0.0_13829.432373046875: CORRECT\n", + "ITWLYAAHNPQLK found in part_0.0_13829.432373046875: CORRECT\n", + "ITYLEQENYPPLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVADAMGALR found in part_0.0_13829.432373046875: CORRECT\n", + "IVAGCPVPIVIAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "IVAITADEAGQR found in part_0.0_13829.432373046875: CORRECT\n", + "IVAMATAGVEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IVAQAQAEIEAER found in part_0.0_13829.432373046875: CORRECT\n", + "IVCTIGPK found in part_0.0_13829.432373046875: CORRECT\n", + "IVCTIGPK found in part_0.0_13829.432373046875: CORRECT\n", + "IVDAQGNDVLIPGTDMPAQYFLPGK found in part_0.0_13829.432373046875: CORRECT\n", + "IVDEIGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "IVDEQPGAECQLIGTATGK found in part_0.0_13829.432373046875: CORRECT\n", + "IVDLLRPQLQK found in part_0.0_13829.432373046875: CORRECT\n", + "IVDLLTER found in part_0.0_13829.432373046875: CORRECT\n", + "IVDSQAHLEPATR found in part_0.0_13829.432373046875: CORRECT\n", + "IVEEAMIAANICAAR found in part_0.0_13829.432373046875: CORRECT\n", + "IVEEELQR found in part_0.0_13829.432373046875: CORRECT\n", + "IVEELLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVEENTYGIVK found in part_0.0_13829.432373046875: CORRECT\n", + "IVEFIEKPDQPQTLDSDIMAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVEIYGPESSGK found in part_0.0_13829.432373046875: CORRECT\n", + "IVEQSQITAFDK found in part_0.0_13829.432373046875: CORRECT\n", + "IVFTATDADVIK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGDDEADFK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGDGIAIK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGDGIAIKPTGNK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGDGIAIKPTGNK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGFLYLGTPQLK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGIDAVVLSTQHSEEIDQK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLEIGADDYIPK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLEIGADDYIPKPFNPR found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLQTDAPLK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLQTEAPLK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLQTEAPLKR found in part_0.0_13829.432373046875: CORRECT\n", + "IVGLQTEAPLKR found in part_0.0_13829.432373046875: CORRECT\n", + "IVGNNVHPGTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGNNVHPGTAK found in part_0.0_13829.432373046875: CORRECT\n", + "IVGVGQTGK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIAGEITEADK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIAPDSFK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIAPDSYK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIDQAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIDSGVDSGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIDSQNR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIEGVER found in part_0.0_13829.432373046875: CORRECT\n", + "IVIERPAK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIGELLK found in part_0.0_13829.432373046875: CORRECT\n", + "IVIMDEPTSSLTEK found in part_0.0_13829.432373046875: CORRECT\n", + "IVINNQVGFTTSNPLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "IVINNQVGFTTSNPLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIRPLPGLPVIR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIVANGAPYGSESLFNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVIVTSGAIAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVLETEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IVLGGEALDGFTSR found in part_0.0_13829.432373046875: CORRECT\n", + "IVLGVSGGIAAYK found in part_0.0_13829.432373046875: CORRECT\n", + "IVLPEGDEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IVNPEVTDK found in part_0.0_13829.432373046875: CORRECT\n", + "IVNPIMGVK found in part_0.0_13829.432373046875: CORRECT\n", + "IVPDAAFSFR found in part_0.0_13829.432373046875: CORRECT\n", + "IVPDFAAAGASIITFHPEASEHVDR found in part_0.0_13829.432373046875: CORRECT\n", + "IVPLIAYMSK found in part_0.0_13829.432373046875: CORRECT\n", + "IVPTVLK found in part_0.0_13829.432373046875: CORRECT\n", + "IVQIQSR found in part_0.0_13829.432373046875: CORRECT\n", + "IVQSPDVIPADSEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVQSPDVIPADSEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVQVPFAELVK found in part_0.0_13829.432373046875: CORRECT\n", + "IVSDLDDAIAHIR found in part_0.0_13829.432373046875: CORRECT\n", + "IVSDLDDAIAHIR found in part_0.0_13829.432373046875: CORRECT\n", + "IVSEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVSGDDVDLNR found in part_0.0_13829.432373046875: CORRECT\n", + "IVSYAQGFSQLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVSYAQGFSQLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTGIEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTGVTASQALLDEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTGVTASQALLDEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTIQNPYSLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTPGTISDEALLQER found in part_0.0_13829.432373046875: CORRECT\n", + "IVTTLGPATDR found in part_0.0_13829.432373046875: CORRECT\n", + "IVTTLGPATDRDNNLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IVTTLGPATDRDNNLEK found in part_0.0_13829.432373046875: CORRECT\n", + "IVTTPAYMLAQNIAEAASGIDK found in part_0.0_13829.432373046875: CORRECT\n", + "IVVDCANGATYHIAPNVLR found in part_0.0_13829.432373046875: CORRECT\n", + "IVVEAFDDPDVK found in part_0.0_13829.432373046875: CORRECT\n", + "IVVELPGIQDTAR found in part_0.0_13829.432373046875: CORRECT\n", + "IVVFSVSNHEEDVVTALK found in part_0.0_13829.432373046875: CORRECT\n", + "IVVLDAGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVVNEEVGDTGR found in part_0.0_13829.432373046875: CORRECT\n", + "IVVNYAK found in part_0.0_13829.432373046875: CORRECT\n", + "IVVSPAAGTIVK found in part_0.0_13829.432373046875: CORRECT\n", + "IVVTDADDALR found in part_0.0_13829.432373046875: CORRECT\n", + "IVYQDLTR found in part_0.0_13829.432373046875: CORRECT\n", + "IVYVSCNPATLAR found in part_0.0_13829.432373046875: CORRECT\n", + "IWDQQGK found in part_0.0_13829.432373046875: CORRECT\n", + "IWDSTDALELK found in part_0.0_13829.432373046875: CORRECT\n", + "IYADKLEQEK found in part_0.0_13829.432373046875: CORRECT\n", + "IYADKLEQEK found in part_0.0_13829.432373046875: CORRECT\n", + "IYALPEMSEEDGYK found in part_0.0_13829.432373046875: CORRECT\n", + "IYCESFLGEEHR found in part_0.0_13829.432373046875: CORRECT\n", + "IYCESFLGEEHR found in part_0.0_13829.432373046875: CORRECT\n", + "IYDLVEAITGFR found in part_0.0_13829.432373046875: CORRECT\n", + "IYDSDSILSMHHEPR found in part_0.0_13829.432373046875: CORRECT\n", + "IYELLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IYELLDK found in part_0.0_13829.432373046875: CORRECT\n", + "IYELLDKTDIDDVTQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "IYGDTIPGHQADK found in part_0.0_13829.432373046875: CORRECT\n", + "IYGDTIPGHQADK found in part_0.0_13829.432373046875: CORRECT\n", + "IYGITAK found in part_0.0_13829.432373046875: CORRECT\n", + "IYGVLER found in part_0.0_13829.432373046875: CORRECT\n", + "IYIQNVDHCNTHSPFDPAIAPVR found in part_0.0_13829.432373046875: CORRECT\n", + "IYIQNVDHCNTHSPFDPAIAPVR found in part_0.0_13829.432373046875: CORRECT\n", + "IYLEQGR found in part_0.0_13829.432373046875: CORRECT\n", + "IYLVDQNDR found in part_0.0_13829.432373046875: CORRECT\n", + "IYNEISK found in part_0.0_13829.432373046875: CORRECT\n", + "IYNEISK found in part_0.0_13829.432373046875: CORRECT\n", + "IYNILTPEQK found in part_0.0_13829.432373046875: CORRECT\n", + "IYPGQVLR found in part_0.0_13829.432373046875: CORRECT\n", + "IYPLDLENR found in part_0.0_13829.432373046875: CORRECT\n", + "IYQGLNPGGALVLSEK found in part_0.0_13829.432373046875: CORRECT\n", + "IYQLKPNPAVLICR found in part_0.0_13829.432373046875: CORRECT\n", + "IYQLKPNPAVLICR found in part_0.0_13829.432373046875: CORRECT\n", + "IYQRPFGGQSK found in part_0.0_13829.432373046875: CORRECT\n", + "IYQSTTNAHINTGDGVGMAIR found in part_0.0_13829.432373046875: CORRECT\n", + "IYSDVLR found in part_0.0_13829.432373046875: CORRECT\n", + "IYTFGPTFR found in part_0.0_13829.432373046875: CORRECT\n", + "IYTKDISFEAPNAPHVFQK found in part_0.0_13829.432373046875: CORRECT\n", + "IYTKDISFEAPNAPHVFQK found in part_0.0_13829.432373046875: CORRECT\n", + "IYTLTLAPSLDSATITPQIYPEGK found in part_0.0_13829.432373046875: CORRECT\n", + "IYVGNVPIGDGAPIAVQSMTNTR found in part_0.0_13829.432373046875: CORRECT\n", + "IYYITADSYAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KAAITAEIR found in part_0.0_13829.432373046875: CORRECT\n", + "KACEEVGFVSR found in part_0.0_13829.432373046875: CORRECT\n", + "KADEIQIYK found in part_0.0_13829.432373046875: CORRECT\n", + "KAEDTLALLR found in part_0.0_13829.432373046875: CORRECT\n", + "KAEEHISSSHGDVDYAQASAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "KAEIDEEQLAAAPVIIR found in part_0.0_13829.432373046875: CORRECT\n", + "KAELESAALNAR found in part_0.0_13829.432373046875: CORRECT\n", + "KAELESAALNAR found in part_0.0_13829.432373046875: CORRECT\n", + "KAEQAAAEQALK found in part_0.0_13829.432373046875: CORRECT\n", + "KAEQAAAEQALK found in part_0.0_13829.432373046875: CORRECT\n", + "KAEQYLLENETTK found in part_0.0_13829.432373046875: CORRECT\n", + "KAEQYLLENETTK found in part_0.0_13829.432373046875: CORRECT\n", + "KAGNVAADGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "KAINVSDQVPAK found in part_0.0_13829.432373046875: CORRECT\n", + "KAINVSDQVPAK found in part_0.0_13829.432373046875: CORRECT\n", + "KAISVTER found in part_0.0_13829.432373046875: CORRECT\n", + "KALEEAGAEVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "KALEEAGAEVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "KASAIVTNR found in part_0.0_13829.432373046875: CORRECT\n", + "KASEISIK found in part_0.0_13829.432373046875: CORRECT\n", + "KASVEIDR found in part_0.0_13829.432373046875: CORRECT\n", + "KATLDTLALYLACGIDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "KATVELLNR found in part_0.0_13829.432373046875: CORRECT\n", + "KAVEFQDILK found in part_0.0_13829.432373046875: CORRECT\n", + "KAVEFQDILK found in part_0.0_13829.432373046875: CORRECT\n", + "KDDAAYYFASVVK found in part_0.0_13829.432373046875: CORRECT\n", + "KDDAELTAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "KDDAELTAAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "KDDLYLSSEQMK found in part_0.0_13829.432373046875: CORRECT\n", + "KDDTIPAIISHDE found in part_0.0_13829.432373046875: CORRECT\n", + "KDDTIPAIISHDE found in part_0.0_13829.432373046875: CORRECT\n", + "KDEDGNYLVDVILDEAANK found in part_0.0_13829.432373046875: CORRECT\n", + "KDEPTQSSDPGSQPNSEEQAGGEER found in part_0.0_13829.432373046875: CORRECT\n", + "KDEQVIGIFHPD found in part_0.0_13829.432373046875: CORRECT\n", + "KDGTYETIYNK found in part_0.0_13829.432373046875: CORRECT\n", + "KDIALGEEFVNK found in part_0.0_13829.432373046875: CORRECT\n", + "KDIALGEEFVNK found in part_0.0_13829.432373046875: CORRECT\n", + "KDILEVICK found in part_0.0_13829.432373046875: CORRECT\n", + "KDISSANLR found in part_0.0_13829.432373046875: CORRECT\n", + "KDPSLSLYAIPDGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "KDPSLTEESLVTFCR found in part_0.0_13829.432373046875: CORRECT\n", + "KDQGIDLR found in part_0.0_13829.432373046875: CORRECT\n", + "KDSHLPISGSIK found in part_0.0_13829.432373046875: CORRECT\n", + "KDVNPDEAVAIGAAVQGGVLTGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "KEAAPAAAPAAAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KEAAPAAAPAAAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KEDELPFHVVAYDFGAK found in part_0.0_13829.432373046875: CORRECT\n", + "KEDGAVVISALPHQVSGAR found in part_0.0_13829.432373046875: CORRECT\n", + "KEDGAVVISALPHQVSGAR found in part_0.0_13829.432373046875: CORRECT\n", + "KEDIPALAQAALDDVCTGGNPR found in part_0.0_13829.432373046875: CORRECT\n", + "KEELLTTQEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "KEELLTTQEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "KEGAFVPFVTLGDPGIEQSLK found in part_0.0_13829.432373046875: CORRECT\n", + "KEIYQLINQFK found in part_0.0_13829.432373046875: CORRECT\n", + "KELANAIR found in part_0.0_13829.432373046875: CORRECT\n", + "KENNLGADVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "KENNLGADVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "KEYCDLLR found in part_0.0_13829.432373046875: CORRECT\n", + "KFAIDQEK found in part_0.0_13829.432373046875: CORRECT\n", + "KFDPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "KFEELVQTR found in part_0.0_13829.432373046875: CORRECT\n", + "KFNLMLETK found in part_0.0_13829.432373046875: CORRECT\n", + "KFTGEVSLTGQPFVMEPSK found in part_0.0_13829.432373046875: CORRECT\n", + "KFTPESVSR found in part_0.0_13829.432373046875: CORRECT\n", + "KGDEIAAVVLQVDAER found in part_0.0_13829.432373046875: CORRECT\n", + "KGDEIAAVVLQVDAER found in part_0.0_13829.432373046875: CORRECT\n", + "KGDFSYVGR found in part_0.0_13829.432373046875: CORRECT\n", + "KGDIVGPIR found in part_0.0_13829.432373046875: CORRECT\n", + "KGDLAAVAVK found in part_0.0_13829.432373046875: CORRECT\n", + "KGDPVYLK found in part_0.0_13829.432373046875: CORRECT\n", + "KGDTLVQANLAK found in part_0.0_13829.432373046875: CORRECT\n", + "KGDVIIGANQQAVK found in part_0.0_13829.432373046875: CORRECT\n", + "KGDVIIGANQQAVK found in part_0.0_13829.432373046875: CORRECT\n", + "KGEFELL found in part_0.0_13829.432373046875: CORRECT\n", + "KGEILEVVSDCPQSINNIPLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "KGEILGVSGLMGAGR found in part_0.0_13829.432373046875: CORRECT\n", + "KGFAEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "KGFIDVEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "KGFIDVEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "KGIIELSR found in part_0.0_13829.432373046875: CORRECT\n", + "KGIILAGGSGTR found in part_0.0_13829.432373046875: CORRECT\n", + "KGLADTALK found in part_0.0_13829.432373046875: CORRECT\n", + "KGMASGAVIESFLDK found in part_0.0_13829.432373046875: CORRECT\n", + "KGNEDLLK found in part_0.0_13829.432373046875: CORRECT\n", + "KGNGYYYAPTLLAGALQDDAIVQK found in part_0.0_13829.432373046875: CORRECT\n", + "KGPFIDLHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "KGPFIDLHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "KGPLNLPNLTR found in part_0.0_13829.432373046875: CORRECT\n", + "KGPLNLPNLTR found in part_0.0_13829.432373046875: CORRECT\n", + "KGQIEYIPFPDK found in part_0.0_13829.432373046875: CORRECT\n", + "KGSQVYIEGQLR found in part_0.0_13829.432373046875: CORRECT\n", + "KGSQVYIEGQLR found in part_0.0_13829.432373046875: CORRECT\n", + "KGTTLQGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "KGTVLNSDISSVISR found in part_0.0_13829.432373046875: CORRECT\n", + "KGVDTGFK found in part_0.0_13829.432373046875: CORRECT\n", + "KGVISFEK found in part_0.0_13829.432373046875: CORRECT\n", + "KGYINSLGALTGGQALQQAK found in part_0.0_13829.432373046875: CORRECT\n", + "KHESGVVTDPQTVLPTTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "KHESGVVTDPQTVLPTTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "KIDAIISSLSITDK found in part_0.0_13829.432373046875: CORRECT\n", + "KIDAIISSLSITDK found in part_0.0_13829.432373046875: CORRECT\n", + "KIDFSLISSER found in part_0.0_13829.432373046875: CORRECT\n", + "KIDFSLISSER found in part_0.0_13829.432373046875: CORRECT\n", + "KIDGIPALLDR found in part_0.0_13829.432373046875: CORRECT\n", + "KIDGIPALLDR found in part_0.0_13829.432373046875: CORRECT\n", + "KIDGLGIK found in part_0.0_13829.432373046875: CORRECT\n", + "KIEAALADK found in part_0.0_13829.432373046875: CORRECT\n", + "KIEQIAR found in part_0.0_13829.432373046875: CORRECT\n", + "KIIGEQLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "KILPDPK found in part_0.0_13829.432373046875: CORRECT\n", + "KIPPEVLTSLNSIDDPAR found in part_0.0_13829.432373046875: CORRECT\n", + "KISADQVDQEVER found in part_0.0_13829.432373046875: CORRECT\n", + "KITLQNGK found in part_0.0_13829.432373046875: CORRECT\n", + "KITQGDDLAPGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "KITVSIPLK found in part_0.0_13829.432373046875: CORRECT\n", + "KITVVPILR found in part_0.0_13829.432373046875: CORRECT\n", + "KIVQEDR found in part_0.0_13829.432373046875: CORRECT\n", + "KLADSGLNIIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KLADSGLNIIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KLAVPLIK found in part_0.0_13829.432373046875: CORRECT\n", + "KLCEQPELLEHR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDDLPK found in part_0.0_13829.432373046875: CORRECT\n", + "KLDELDLIVVDHPQVK found in part_0.0_13829.432373046875: CORRECT\n", + "KLDLNGR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDMVPVECVVR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDMVPVECVVR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDTQLVNAGR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDTQLVNAGR found in part_0.0_13829.432373046875: CORRECT\n", + "KLDVVTQVCPFPLIEAK found in part_0.0_13829.432373046875: CORRECT\n", + "KLEDLLAAK found in part_0.0_13829.432373046875: CORRECT\n", + "KLEDQYPHLDK found in part_0.0_13829.432373046875: CORRECT\n", + "KLEFLAADALR found in part_0.0_13829.432373046875: CORRECT\n", + "KLEHAVPMAK found in part_0.0_13829.432373046875: CORRECT\n", + "KLGLQEK found in part_0.0_13829.432373046875: CORRECT\n", + "KLIDATFADR found in part_0.0_13829.432373046875: CORRECT\n", + "KLLDEGR found in part_0.0_13829.432373046875: CORRECT\n", + "KLLDYLK found in part_0.0_13829.432373046875: CORRECT\n", + "KLLEGELK found in part_0.0_13829.432373046875: CORRECT\n", + "KLNLLVTDK found in part_0.0_13829.432373046875: CORRECT\n", + "KLNSAVFPGGQGGPLMHVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "KLPATIILR found in part_0.0_13829.432373046875: CORRECT\n", + "KLPEDTPVTAQTSIGDNGEIVESTVR found in part_0.0_13829.432373046875: CORRECT\n", + "KLQELGATR found in part_0.0_13829.432373046875: CORRECT\n", + "KLQLVGVGYR found in part_0.0_13829.432373046875: CORRECT\n", + "KLSYTGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "KLTPEQAEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "KLTPEQAEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "KNDFSISLPVDR found in part_0.0_13829.432373046875: CORRECT\n", + "KNEAPASFEK found in part_0.0_13829.432373046875: CORRECT\n", + "KNGIDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "KNIEFFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "KNIFSGR found in part_0.0_13829.432373046875: CORRECT\n", + "KNNPLLVGESGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "KNNQHDVAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "KNQLEVMR found in part_0.0_13829.432373046875: CORRECT\n", + "KPAVATAPATGQVQSLTR found in part_0.0_13829.432373046875: CORRECT\n", + "KPDAALVDFLCENADVITK found in part_0.0_13829.432373046875: CORRECT\n", + "KPEITVPVVTDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "KPEQGTEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "KPESIFDYR found in part_0.0_13829.432373046875: CORRECT\n", + "KPETINYR found in part_0.0_13829.432373046875: CORRECT\n", + "KPFGPVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "KPFMPLLPGFR found in part_0.0_13829.432373046875: CORRECT\n", + "KPFMPLLPGFR found in part_0.0_13829.432373046875: CORRECT\n", + "KPGLTLGIGCETAQFPLPQVGK found in part_0.0_13829.432373046875: CORRECT\n", + "KPLGIPAFLAIR found in part_0.0_13829.432373046875: CORRECT\n", + "KPLIISGTNAGSLEVIQAAANVAK found in part_0.0_13829.432373046875: CORRECT\n", + "KPMDPYVVEEDPGVK found in part_0.0_13829.432373046875: CORRECT\n", + "KPMDPYVVEEDPGVK found in part_0.0_13829.432373046875: CORRECT\n", + "KPNPPIK found in part_0.0_13829.432373046875: CORRECT\n", + "KPQDLFDEFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "KPQDLFDEFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "KPQFVSPGQMGNIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "KPSDADILVPGDTISLIGTTSLR found in part_0.0_13829.432373046875: CORRECT\n", + "KPSFLITNPGSNQGPR found in part_0.0_13829.432373046875: CORRECT\n", + "KPSFLITNPGSNQGPR found in part_0.0_13829.432373046875: CORRECT\n", + "KPSNLFVHGYVTVNGAK found in part_0.0_13829.432373046875: CORRECT\n", + "KPTMLVTDLTLR found in part_0.0_13829.432373046875: CORRECT\n", + "KPTMLVTDLTLR found in part_0.0_13829.432373046875: CORRECT\n", + "KPVITER found in part_0.0_13829.432373046875: CORRECT\n", + "KPVVLQAHLDMVPQK found in part_0.0_13829.432373046875: CORRECT\n", + "KPVVLQAHLDMVPQK found in part_0.0_13829.432373046875: CORRECT\n", + "KQDLTSEEITNHIEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "KQEPYENVTLDVEEQHQGSVMQALGER found in part_0.0_13829.432373046875: CORRECT\n", + "KQIDEYGNFVK found in part_0.0_13829.432373046875: CORRECT\n", + "KQIDEYGNFVK found in part_0.0_13829.432373046875: CORRECT\n", + "KQILYLLGPVGGGK found in part_0.0_13829.432373046875: CORRECT\n", + "KQILYLLGPVGGGK found in part_0.0_13829.432373046875: CORRECT\n", + "KQLIPQLK found in part_0.0_13829.432373046875: CORRECT\n", + "KQLVEWQELVGYK found in part_0.0_13829.432373046875: CORRECT\n", + "KQPDPETLPPTL found in part_0.0_13829.432373046875: CORRECT\n", + "KQYGEAFEK found in part_0.0_13829.432373046875: CORRECT\n", + "KSPFDSGGR found in part_0.0_13829.432373046875: CORRECT\n", + "KTAEDYLGEPVTEAVITVPAYFNDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "KTEVAALR found in part_0.0_13829.432373046875: CORRECT\n", + "KTFQEILAALGTGDALASK found in part_0.0_13829.432373046875: CORRECT\n", + "KTNDTLAVTGEAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "KTVLTEFNR found in part_0.0_13829.432373046875: CORRECT\n", + "KVADDAPLMER found in part_0.0_13829.432373046875: CORRECT\n", + "KVADDAPLMER found in part_0.0_13829.432373046875: CORRECT\n", + "KVAEFFGK found in part_0.0_13829.432373046875: CORRECT\n", + "KVDLTTR found in part_0.0_13829.432373046875: CORRECT\n", + "KVDLVFAPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "KVDLVFAPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "KVEDEDFGYCESCGVEIGIR found in part_0.0_13829.432373046875: CORRECT\n", + "KVEIIVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "KVEIPGVATTASPSSEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "KVEIPGVATTASPSSEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "KVENIVR found in part_0.0_13829.432373046875: CORRECT\n", + "KVEVMNTDAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "KVEVMNTDAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "KVEYPVAVVEGHNNATVK found in part_0.0_13829.432373046875: CORRECT\n", + "KVIEAESLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "KVIEAESLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "KVIGIGSPR found in part_0.0_13829.432373046875: CORRECT\n", + "KVLESAIANAEHNDGADIDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "KVNPETTLFLVASK found in part_0.0_13829.432373046875: CORRECT\n", + "KVNPETTLFLVASK found in part_0.0_13829.432373046875: CORRECT\n", + "KVPGYLEEEGANK found in part_0.0_13829.432373046875: CORRECT\n", + "KVPGYLEEEGANK found in part_0.0_13829.432373046875: CORRECT\n", + "KVPLPVTPSLR found in part_0.0_13829.432373046875: CORRECT\n", + "KVSQALDILTYTNK found in part_0.0_13829.432373046875: CORRECT\n", + "KVTPDEVSPVTLGDNLTSNR found in part_0.0_13829.432373046875: CORRECT\n", + "KVTTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "KVVADIAGVPAQINIAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "KVVDFFVR found in part_0.0_13829.432373046875: CORRECT\n", + "KVVMIPVS found in part_0.0_13829.432373046875: CORRECT\n", + "KVYAAIEAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "KWDLGDILGAK found in part_0.0_13829.432373046875: CORRECT\n", + "KYDFSTPYTISGIQALVK found in part_0.0_13829.432373046875: CORRECT\n", + "KYDIPVVMDSAR found in part_0.0_13829.432373046875: CORRECT\n", + "KYDIPVVMDSAR found in part_0.0_13829.432373046875: CORRECT\n", + "KYEQEIDVR found in part_0.0_13829.432373046875: CORRECT\n", + "KYFDFNVYGD found in part_0.0_13829.432373046875: CORRECT\n", + "KYFPDATILALTTNEK found in part_0.0_13829.432373046875: CORRECT\n", + "KYIVALDQGTTSSR found in part_0.0_13829.432373046875: CORRECT\n", + "KYLLASLDQSLK found in part_0.0_13829.432373046875: CORRECT\n", + "KYLLASLDQSLK found in part_0.0_13829.432373046875: CORRECT\n", + "LAAALIGADGQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAADDFR found in part_0.0_13829.432373046875: CORRECT\n", + "LAADVTGVPTLLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAADVTGVPTLLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAEELQLPTSTYR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAEELQLPTSTYR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAEGHFAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAETIDVSLPGR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAETIDVSLPGR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAEVLEMIEPYVKPGVSTGELDR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAGIDLGTTNSLVATVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAGLNSENALSNEAMER found in part_0.0_13829.432373046875: CORRECT\n", + "LAAGSFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAHAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAAITAQDSQR found in part_0.0_13829.432373046875: CORRECT\n", + "LAALDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAALDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAALVDPGGDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAANWPLEQDELLTR found in part_0.0_13829.432373046875: CORRECT\n", + "LAAQEMLAAYAG found in part_0.0_13829.432373046875: CORRECT\n", + "LAASAEFIER found in part_0.0_13829.432373046875: CORRECT\n", + "LAASIAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LAASIAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LAASVGVSEAALYR found in part_0.0_13829.432373046875: CORRECT\n", + "LAATIAQLPDQIGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAATIAQLPDQIGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAATIAQLPDQIGAKGVETADK found in part_0.0_13829.432373046875: CORRECT\n", + "LAATITPQHLMFNR found in part_0.0_13829.432373046875: CORRECT\n", + "LAATITPQHLMFNR found in part_0.0_13829.432373046875: CORRECT\n", + "LACGEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LADAEFFFNTDR found in part_0.0_13829.432373046875: CORRECT\n", + "LADAIAEPLLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LADAIAEPLLDKK found in part_0.0_13829.432373046875: CORRECT\n", + "LADAPQFK found in part_0.0_13829.432373046875: CORRECT\n", + "LADCQERDPALSELYLVEGDSAGGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "LADDALNGVTGLVEYHEHFNR found in part_0.0_13829.432373046875: CORRECT\n", + "LADDALNGVTGLVEYHEHFNR found in part_0.0_13829.432373046875: CORRECT\n", + "LADDEQVVTNGGR found in part_0.0_13829.432373046875: CORRECT\n", + "LADELCGR found in part_0.0_13829.432373046875: CORRECT\n", + "LADEVDESAK found in part_0.0_13829.432373046875: CORRECT\n", + "LADIASGQPLPVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LADLLDEALER found in part_0.0_13829.432373046875: CORRECT\n", + "LADLLLDNK found in part_0.0_13829.432373046875: CORRECT\n", + "LADLMEAHAEELALLETLDTGKPIR found in part_0.0_13829.432373046875: CORRECT\n", + "LADPEELEFMGIR found in part_0.0_13829.432373046875: CORRECT\n", + "LADPTAMVVATVDEHGQPYQR found in part_0.0_13829.432373046875: CORRECT\n", + "LADSGLNIIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LADTIAAHMPLK found in part_0.0_13829.432373046875: CORRECT\n", + "LADTIAAHMPLK found in part_0.0_13829.432373046875: CORRECT\n", + "LADVIEENGQVFAELESR found in part_0.0_13829.432373046875: CORRECT\n", + "LADYIICSPAPETPLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LADYIICSPAPETPLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEAAYEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEAGIPTQMER found in part_0.0_13829.432373046875: CORRECT\n", + "LAEAQEELK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEDILR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEEIIYGPEHVSTGASNDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEGDYQQVEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEGLDALVMDVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEHALEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAELESR found in part_0.0_13829.432373046875: CORRECT\n", + "LAELGGER found in part_0.0_13829.432373046875: CORRECT\n", + "LAELGPQGLITTLK found in part_0.0_13829.432373046875: CORRECT\n", + "LAELQER found in part_0.0_13829.432373046875: CORRECT\n", + "LAELVPEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAENASLEEMVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEPAPTGEQLQNILR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEPAPTGEQLQNILR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEPINLADAQK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEQAYIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAESLSEIGVPVFMADVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEVASEYLR found in part_0.0_13829.432373046875: CORRECT\n", + "LAEVEPALAEVAHK found in part_0.0_13829.432373046875: CORRECT\n", + "LAEVLAAANAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAFDEFDELAGDR found in part_0.0_13829.432373046875: CORRECT\n", + "LAFELQVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAFEPGVIPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "LAFLDCLSNLTR found in part_0.0_13829.432373046875: CORRECT\n", + "LAFLFPDEEER found in part_0.0_13829.432373046875: CORRECT\n", + "LAFLITSDEEASAHNGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAFQHDEEVLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGDLETLR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGETLSEHEVAQFK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGETLSEHEVAQFK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGEVFGSAATFGAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGGVAVIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGGVAVIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAGHQTIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGITVPDR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGLVGPGR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGTGEMVAEVTER found in part_0.0_13829.432373046875: CORRECT\n", + "LAGVISTIHPTLDYAGFDR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGVPCQVYVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAGVSVATVSR found in part_0.0_13829.432373046875: CORRECT\n", + "LAHEAQLDVAPLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LAHEAQLDVAPLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LAIALAQEGGIGFIHK found in part_0.0_13829.432373046875: CORRECT\n", + "LAIFHLR found in part_0.0_13829.432373046875: CORRECT\n", + "LAILNFGTLMPEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAIVGRPNVGK found in part_0.0_13829.432373046875: CORRECT\n", + "LAIVPDHPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LAIVPDHPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LALCDIASGEISQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LALCDIASGEISQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LALDLEIATYR found in part_0.0_13829.432373046875: CORRECT\n", + "LALDLLEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "LALLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "LALMPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LALSEALASQPESPSVPIHNQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LALSMTIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LAMELQAEPIIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAMQVVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "LANAGIVVSAGHSNATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LANAGIVVSAGHSNATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LANAPFIK found in part_0.0_13829.432373046875: CORRECT\n", + "LANAVGIGAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LANEGFVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LANELSDAAENK found in part_0.0_13829.432373046875: CORRECT\n", + "LANQLVSQTGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LANVGVEQIFGGDR found in part_0.0_13829.432373046875: CORRECT\n", + "LANVNPPELLR found in part_0.0_13829.432373046875: CORRECT\n", + "LANYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LANYLNPDK found in part_0.0_13829.432373046875: CORRECT\n", + "LAPAEDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAPALAAGNCVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LAPALAAGNCVVLKPSEITPLTALK found in part_0.0_13829.432373046875: CORRECT\n", + "LAPIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAPLDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAPQELEQK found in part_0.0_13829.432373046875: CORRECT\n", + "LAPSLTLGCGSWGGNSISENVGPK found in part_0.0_13829.432373046875: CORRECT\n", + "LAQALANPLFPALDSALR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQEASQEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQEYEIPLAQTVAIGDGANDLPMIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAQFTSLQADLENGVNLEQTIR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQIAANPEK found in part_0.0_13829.432373046875: CORRECT\n", + "LAQLEFR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQMQQLSHQDDDSAAAAALAAQTGER found in part_0.0_13829.432373046875: CORRECT\n", + "LAQMQQLSHQDDDSAAAAALAAQTGER found in part_0.0_13829.432373046875: CORRECT\n", + "LAQQEGQTGLPHPK found in part_0.0_13829.432373046875: CORRECT\n", + "LAQQNLSEITGEFTSDDLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQSAPPYGNTIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAQYIQQVDDK found in part_0.0_13829.432373046875: CORRECT\n", + "LASAKYYDELPTEGNEHGQAFR found in part_0.0_13829.432373046875: CORRECT\n", + "LASALCAAEDTPK found in part_0.0_13829.432373046875: CORRECT\n", + "LASLPGVVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "LASLSSALLNSALQK found in part_0.0_13829.432373046875: CORRECT\n", + "LASSLSLAECELLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LASTEWVDIVNEENEVIAQASR found in part_0.0_13829.432373046875: CORRECT\n", + "LASVDQFR found in part_0.0_13829.432373046875: CORRECT\n", + "LASVLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "LASVNLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LASVTDAENIK found in part_0.0_13829.432373046875: CORRECT\n", + "LATAVAHLIGR found in part_0.0_13829.432373046875: CORRECT\n", + "LATEMGADLAINSHTEDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LATEMGADLAINSHTEDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LATIIDAEEDSTR found in part_0.0_13829.432373046875: CORRECT\n", + "LATLLNDIPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LATLPTYEEAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LATLSEETCQK found in part_0.0_13829.432373046875: CORRECT\n", + "LATPFAEGEALR found in part_0.0_13829.432373046875: CORRECT\n", + "LATQQSHIPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LATQQSHIPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVADDVIDNNGAPDAIASDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LAVCSMPIGQSLPSHSVIVPR found in part_0.0_13829.432373046875: CORRECT\n", + "LAVELAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVGDPEHVPAGIYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVGDPEHVPAGIYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVGEALTNIAATQIGDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVGEALTNIAATQIGDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVGEALTNIAATQIGDIKR found in part_0.0_13829.432373046875: CORRECT\n", + "LAVKPQVSALVSVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAVLGTNGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVMVLR found in part_0.0_13829.432373046875: CORRECT\n", + "LAVNAGDFIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVNFGAEILK found in part_0.0_13829.432373046875: CORRECT\n", + "LAVPTLIH found in part_0.0_13829.432373046875: CORRECT\n", + "LAYDGLNYNTYR found in part_0.0_13829.432373046875: CORRECT\n", + "LAYQLADK found in part_0.0_13829.432373046875: CORRECT\n", + "LAYVASTLPAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LAYVEAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LAYVTFESGR found in part_0.0_13829.432373046875: CORRECT\n", + "LCEGSCTLNDEFGAVTIGNIER found in part_0.0_13829.432373046875: CORRECT\n", + "LCEQPELLEHR found in part_0.0_13829.432373046875: CORRECT\n", + "LCEQPELLEHR found in part_0.0_13829.432373046875: CORRECT\n", + "LCGSGLDALGFAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LCGSSMQALHDAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LCIHCQQEK found in part_0.0_13829.432373046875: CORRECT\n", + "LCQMAINELR found in part_0.0_13829.432373046875: CORRECT\n", + "LCRPSEVVLEILPDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "LCVEQCK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAALQDEVAASEGFLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAALQDEVAASEGFLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAECIDDVILGCANQAGEDNR found in part_0.0_13829.432373046875: CORRECT\n", + "LDALLER found in part_0.0_13829.432373046875: CORRECT\n", + "LDALYEQSVVALR found in part_0.0_13829.432373046875: CORRECT\n", + "LDAPLIVVATQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAPLIVVATQGGK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAQGIMAR found in part_0.0_13829.432373046875: CORRECT\n", + "LDAVGFMWKEPGTSCIHLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDAVVFTGGIGENAAMVR found in part_0.0_13829.432373046875: CORRECT\n", + "LDCDAEQMIAAQFGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LDCDAEQMIAAQFGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDGTTAESTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDIQPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LDDNTIEISVTPNR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDNTIEISVTPNR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDPTGYGR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDTSSEFNTQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDDVNRPK found in part_0.0_13829.432373046875: CORRECT\n", + "LDDVVALIK found in part_0.0_13829.432373046875: CORRECT\n", + "LDDVYGDR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEASELAR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEDEQYR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEFETVGNTIR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEHQPVFMPVGAFCPPLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEHQPVFMPVGAFCPPLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEIQQSDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEISPGDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDELDLIVVDHPQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEQPGETNAR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEVIALLPGAER found in part_0.0_13829.432373046875: CORRECT\n", + "LDEVIALLPGAERPTILPLAGDQQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDEVYALYADPDADFDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEVYALYADPDADFDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDEVYALYADPDADFDKLAAEQGR found in part_0.0_13829.432373046875: CORRECT\n", + "LDFCNLDVNDTAAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDFCNLDVNDTAAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDFFDDEIDSLR found in part_0.0_13829.432373046875: CORRECT\n", + "LDFGGCR found in part_0.0_13829.432373046875: CORRECT\n", + "LDGEMSEGELVDAFR found in part_0.0_13829.432373046875: CORRECT\n", + "LDGKPLLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "LDGLAEHGIIHLINSGSAALDGSCK found in part_0.0_13829.432373046875: CORRECT\n", + "LDGLAEHGIIHLINSGSAALDGSCK found in part_0.0_13829.432373046875: CORRECT\n", + "LDGLSDAFSVFR found in part_0.0_13829.432373046875: CORRECT\n", + "LDGPVTGNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LDGTQFQLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDGVKPPK found in part_0.0_13829.432373046875: CORRECT\n", + "LDHEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LDHEPSAEEIAEQLDKPVDDVSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDHQAPEEMR found in part_0.0_13829.432373046875: CORRECT\n", + "LDHQAPEEMR found in part_0.0_13829.432373046875: CORRECT\n", + "LDIIAWPGYIER found in part_0.0_13829.432373046875: CORRECT\n", + "LDINEFR found in part_0.0_13829.432373046875: CORRECT\n", + "LDINIDEEVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LDINIDEEVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LDITESTVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDKDELGEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LDKDELGEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LDKDPPDLIAGADVGFEQGGEVTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDKDQLIAGVQDAFADK found in part_0.0_13829.432373046875: CORRECT\n", + "LDKDQLIAGVQDAFADK found in part_0.0_13829.432373046875: CORRECT\n", + "LDKNDAAVLLVDHQAGLLSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LDKNDAAVLLVDHQAGLLSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LDKPVMLGGPLAEDR found in part_0.0_13829.432373046875: CORRECT\n", + "LDKPVMLGGPLAEDR found in part_0.0_13829.432373046875: CORRECT\n", + "LDLENAILIHDPQLELAPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDLFANEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDLLHSVTAESEEPLSAGQIK found in part_0.0_13829.432373046875: CORRECT\n", + "LDLNPIGTGPFQLQQYQK found in part_0.0_13829.432373046875: CORRECT\n", + "LDLQNGR found in part_0.0_13829.432373046875: CORRECT\n", + "LDLSYSETFNQTHLADAYER found in part_0.0_13829.432373046875: CORRECT\n", + "LDLVQFQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDLYITVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDMLIEPIIQEHQADQLAALSEQE found in part_0.0_13829.432373046875: CORRECT\n", + "LDMLNEELSDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDMLNEELSDKER found in part_0.0_13829.432373046875: CORRECT\n", + "LDMVPVECVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LDNGVGVCGK found in part_0.0_13829.432373046875: CORRECT\n", + "LDNHLISER found in part_0.0_13829.432373046875: CORRECT\n", + "LDNKPGYVNTGFIDAEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDNLAFPLR found in part_0.0_13829.432373046875: CORRECT\n", + "LDNLHVAMVGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDNLHVAMVGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDNLVFVINCNLQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDNNDMIDQLEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LDNRPLAQLLQMDGPR found in part_0.0_13829.432373046875: CORRECT\n", + "LDNVVYR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LDPNLLR NOT FOUND in any FASTA file.\n", + "LDPSEYANVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQAGRPYNEGEQVVIGGNER found in part_0.0_13829.432373046875: CORRECT\n", + "LDQAGVSELATNQK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQAISLLSSASSQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQALAEMFPDYSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLAEIVKPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLAEIVKPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLPADK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLPADK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLPADKK found in part_0.0_13829.432373046875: CORRECT\n", + "LDQLTVIELDR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LDQVCQLAR NOT FOUND in any FASTA file.\n", + "LDRIDELMQK found in part_0.0_13829.432373046875: CORRECT\n", + "LDRLDEPSSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LDRLDEPSSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LDSAVTNLNNTTTNLSEAQSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDSEPALIALHSLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LDSLLAHLGD found in part_0.0_13829.432373046875: CORRECT\n", + "LDTAEFGVVPGVTDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDTEESGVALR found in part_0.0_13829.432373046875: CORRECT\n", + "LDTFEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDTQLVNAGR found in part_0.0_13829.432373046875: CORRECT\n", + "LDTTGLIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LDTVVVPTNR found in part_0.0_13829.432373046875: CORRECT\n", + "LDTVVVPTNRPMIR found in part_0.0_13829.432373046875: CORRECT\n", + "LDVLDER found in part_0.0_13829.432373046875: CORRECT\n", + "LDVLDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDVLDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDVLTGHTATNTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDVLTGHTATNTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDVSTTESLLIDK found in part_0.0_13829.432373046875: CORRECT\n", + "LDVVNFISHGTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDVVNFISHGTR found in part_0.0_13829.432373046875: CORRECT\n", + "LDVVNLISK found in part_0.0_13829.432373046875: CORRECT\n", + "LDYAPIEK found in part_0.0_13829.432373046875: CORRECT\n", + "LDYELKPMDFSGIIPALQTK found in part_0.0_13829.432373046875: CORRECT\n", + "LDYFSVQSGSNDIATAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LDYQGIYTPDQVER found in part_0.0_13829.432373046875: CORRECT\n", + "LDYQSESLVNEIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LDYVIPSR found in part_0.0_13829.432373046875: CORRECT\n", + "LDYYGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LDYYGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LEAGDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "LEALQTQVADASFFSQPHEQTQK found in part_0.0_13829.432373046875: CORRECT\n", + "LEALREEQMAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEAVLAKPECK found in part_0.0_13829.432373046875: CORRECT\n", + "LECLDSR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDAQVQLENNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDAQVQLENNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDEGFLTR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDGLPVGVVDVVEGLDGCHSANISPDNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDLLAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEDLNSLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDMQAAVAANVGTK found in part_0.0_13829.432373046875: CORRECT\n", + "LEDNLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LEDQYPHLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LEEDDVATPGEGQVLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LEEDDVATPGEGQVLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LEEDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LEEGLEDGLAHQTLLGVTGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "LEEGLVELR found in part_0.0_13829.432373046875: CORRECT\n", + "LEEGYVK found in part_0.0_13829.432373046875: CORRECT\n", + "LEEIIQAHDGHNLNVQLER found in part_0.0_13829.432373046875: CORRECT\n", + "LEEIIQAHDGHNLNVQLER found in part_0.0_13829.432373046875: CORRECT\n", + "LEEIQECHLVSGDFDYLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LEEITSGDLIVDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LEELEIDGLTLER found in part_0.0_13829.432373046875: CORRECT\n", + "LEEQNEVVAEAIER found in part_0.0_13829.432373046875: CORRECT\n", + "LEESHIVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFGLYK found in part_0.0_13829.432373046875: CORRECT\n", + "LEFIGAPTPLEYLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFIINR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFLAADALR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFNGQDLQR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFNNDNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFNNDNRK found in part_0.0_13829.432373046875: CORRECT\n", + "LEFSIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LEFYHQGMYFDTPVK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGGNDVSLK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGILLDPVYTGK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGNGQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LEGNNAELGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGNNPAGSVK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGVEMPLVTLTAAEALAR found in part_0.0_13829.432373046875: CORRECT\n", + "LEGVTAEVVK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGWSESGAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGYAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEGYQEDQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEHAVPMAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEHNIIELQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEHNIIELQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LEHYAQNDPDAYGYSGALCR found in part_0.0_13829.432373046875: CORRECT\n", + "LEIEAIAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LEILPAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LELIENEILR found in part_0.0_13829.432373046875: CORRECT\n", + "LELLDGDATPIPVK found in part_0.0_13829.432373046875: CORRECT\n", + "LELVIQR found in part_0.0_13829.432373046875: CORRECT\n", + "LELYLPK found in part_0.0_13829.432373046875: CORRECT\n", + "LENGDDYFAVNPK found in part_0.0_13829.432373046875: CORRECT\n", + "LENLLQSINDEQTQTLPSDELNR found in part_0.0_13829.432373046875: CORRECT\n", + "LENQHFDEITK found in part_0.0_13829.432373046875: CORRECT\n", + "LENSLGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "LENSLGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "LENWPPASIADE found in part_0.0_13829.432373046875: CORRECT\n", + "LEPSALAGMAGPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LEPVHVAGVLVSNATLHNADEIER found in part_0.0_13829.432373046875: CORRECT\n", + "LEPVHVAGVLVSNATLHNADEIER found in part_0.0_13829.432373046875: CORRECT\n", + "LEPYFTEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LEQAAYEMTALR found in part_0.0_13829.432373046875: CORRECT\n", + "LEQELVLLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LEQELVLLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LEQGAILSLSPER found in part_0.0_13829.432373046875: CORRECT\n", + "LEQIAADIK found in part_0.0_13829.432373046875: CORRECT\n", + "LEQILGQHR found in part_0.0_13829.432373046875: CORRECT\n", + "LEQMISQIDK found in part_0.0_13829.432373046875: CORRECT\n", + "LEQQALMK found in part_0.0_13829.432373046875: CORRECT\n", + "LEQYFDR found in part_0.0_13829.432373046875: CORRECT\n", + "LESAICLFHQR found in part_0.0_13829.432373046875: CORRECT\n", + "LESFVTDFYQR found in part_0.0_13829.432373046875: CORRECT\n", + "LESGDLPLEEALNEFER found in part_0.0_13829.432373046875: CORRECT\n", + "LESIPGFDIFPDDNR found in part_0.0_13829.432373046875: CORRECT\n", + "LESITVLPADDK found in part_0.0_13829.432373046875: CORRECT\n", + "LESITVLPADDKGPVSVTK found in part_0.0_13829.432373046875: CORRECT\n", + "LESITVLPADDKGPVSVTK found in part_0.0_13829.432373046875: CORRECT\n", + "LESLDAEQSFIR found in part_0.0_13829.432373046875: CORRECT\n", + "LESLLPLHLGQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LESLVEDLVNR found in part_0.0_13829.432373046875: CORRECT\n", + "LESLVEDLVNR found in part_0.0_13829.432373046875: CORRECT\n", + "LESQISTLYGGR found in part_0.0_13829.432373046875: CORRECT\n", + "LETGNESLQFIAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LETIEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "LETIEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "LETLPLK found in part_0.0_13829.432373046875: CORRECT\n", + "LETLPLKK found in part_0.0_13829.432373046875: CORRECT\n", + "LEVDGGVK found in part_0.0_13829.432373046875: CORRECT\n", + "LEVFCEDR found in part_0.0_13829.432373046875: CORRECT\n", + "LEVNEDR found in part_0.0_13829.432373046875: CORRECT\n", + "LEVVVNER found in part_0.0_13829.432373046875: CORRECT\n", + "LEYDPNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEYDPNR found in part_0.0_13829.432373046875: CORRECT\n", + "LEYSDVK found in part_0.0_13829.432373046875: CORRECT\n", + "LFAAAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "LFAEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "LFAGNATPELAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LFAGQIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LFAVDQR found in part_0.0_13829.432373046875: CORRECT\n", + "LFDLGQVPK found in part_0.0_13829.432373046875: CORRECT\n", + "LFDYLTDTGNLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LFEAAAQCSGILAGCTPEEEK found in part_0.0_13829.432373046875: CORRECT\n", + "LFEELLK found in part_0.0_13829.432373046875: CORRECT\n", + "LFEGSENFK found in part_0.0_13829.432373046875: CORRECT\n", + "LFEGTASQMYQSLK found in part_0.0_13829.432373046875: CORRECT\n", + "LFESSGCAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LFETSENGLDYFTSVPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LFGKPEIDGSR found in part_0.0_13829.432373046875: CORRECT\n", + "LFGKPEIDGSR found in part_0.0_13829.432373046875: CORRECT\n", + "LFGSIGTR found in part_0.0_13829.432373046875: CORRECT\n", + "LFGVTTLDIIR found in part_0.0_13829.432373046875: CORRECT\n", + "LFHEAVGLTGITLTK found in part_0.0_13829.432373046875: CORRECT\n", + "LFIDNFDK found in part_0.0_13829.432373046875: CORRECT\n", + "LFIDNFDKYTDTPAGAALVAAGPK found in part_0.0_13829.432373046875: CORRECT\n", + "LFITAATEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LFIVQAR found in part_0.0_13829.432373046875: CORRECT\n", + "LFIVQARPETVR found in part_0.0_13829.432373046875: CORRECT\n", + "LFLCCADNLISGNAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LFLGHGAEVYEGQIIGIHSR found in part_0.0_13829.432373046875: CORRECT\n", + "LFLMSDAVTAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LFLPGVGTAQAAMDQVR found in part_0.0_13829.432373046875: CORRECT\n", + "LFLTKPLGIGVLTTAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LFNDDYFQPLR found in part_0.0_13829.432373046875: CORRECT\n", + "LFNECADFR found in part_0.0_13829.432373046875: CORRECT\n", + "LFNELGPR found in part_0.0_13829.432373046875: CORRECT\n", + "LFNLVQPDIACFGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LFNQNSSLFDEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LFPEITIK found in part_0.0_13829.432373046875: CORRECT\n", + "LFPFFGFTAENIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LFPGVPCPLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LFTDMCEGLPEK found in part_0.0_13829.432373046875: CORRECT\n", + "LFTDMCEGLPEKR found in part_0.0_13829.432373046875: CORRECT\n", + "LFTLDELIR found in part_0.0_13829.432373046875: CORRECT\n", + "LFTLNTGHAITAYLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LFVAVCR found in part_0.0_13829.432373046875: CORRECT\n", + "LFVEPNPIPVK found in part_0.0_13829.432373046875: CORRECT\n", + "LFVVDAFCGANPDTR found in part_0.0_13829.432373046875: CORRECT\n", + "LFVVDAFCGANPDTR found in part_0.0_13829.432373046875: CORRECT\n", + "LFYKPGACSLASHITLR found in part_0.0_13829.432373046875: CORRECT\n", + "LFYLISEDMTEPYEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGAAVATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAAVATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGADGNALFR found in part_0.0_13829.432373046875: CORRECT\n", + "LGAEGGEVAIIEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAEIIGTTLSGYTTPETPEEPDLALVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAEIVDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAENIFLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LGAFEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGAFSVVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGALDYLFVSSKPFAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAMLDQK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAQQCQLVDDSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGAQQCQLVDDSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGASVVGFSDSANTSLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGAVPGGTER found in part_0.0_13829.432373046875: CORRECT\n", + "LGCEVTEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGCINVHGSLLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LGCINVHGSLLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDASLSEGLEQHLLGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDASLSEGLEQHLLGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDDFVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDIEYR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDIITYR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDLLIHEGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDLPTSGQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDNADVIPGDSNDSSVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDQVDGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGDQVDGQRPLAVIHAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDQVDGQRPLAVIHAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGDSELYDQSR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEAMQAVQFGNPAER found in part_0.0_13829.432373046875: CORRECT\n", + "LGEAMQAVQFGNPAER found in part_0.0_13829.432373046875: CORRECT\n", + "LGEDKQNK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEELDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEELDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEFAPTR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEFTMPEHK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEFTMPEHK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEGVGELAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEHNIDVLEGNEQFINAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEHNIDVLEGNEQFINAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGELAIVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGELLEALK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEPVFDVQECQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEPVFDVQECQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGETGDAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGEVSDTDIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEVTAVPGR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEVTAVPGRPIPVAQLADADALMVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGEYLKPLAER found in part_0.0_13829.432373046875: CORRECT\n", + "LGFAIAHALDNSAPAVDGIEPELQSK found in part_0.0_13829.432373046875: CORRECT\n", + "LGFFETVDTDTQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGFIDFAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGFLPGDLSQK found in part_0.0_13829.432373046875: CORRECT\n", + "LGFMSFYVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGFNAVHHPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGFPVVVHGVSEDPTR found in part_0.0_13829.432373046875: CORRECT\n", + "LGFQPDR found in part_0.0_13829.432373046875: CORRECT\n", + "LGFVNQGEITTPTTTPIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGGDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LGGDDGKTEVVDIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGGGDPDANPR found in part_0.0_13829.432373046875: CORRECT\n", + "LGGGLSAEALTEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGGPNFHEIPINR found in part_0.0_13829.432373046875: CORRECT\n", + "LGGRPEYR found in part_0.0_13829.432373046875: CORRECT\n", + "LGHTDTLVVCDAGLPIPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGHTDTLVVCDAGLPIPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGIAQGDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGIDFLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGIDIADYR found in part_0.0_13829.432373046875: CORRECT\n", + "LGIEINR found in part_0.0_13829.432373046875: CORRECT\n", + "LGILDASECPPTYGVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGILDDSQLER found in part_0.0_13829.432373046875: CORRECT\n", + "LGINPDFYEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGIPYVFK found in part_0.0_13829.432373046875: CORRECT\n", + "LGIQAFEPVLIEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGISDEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGISPATAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGIVMDPIANINIK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLAYGGDGYDK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLDTLGIETVER found in part_0.0_13829.432373046875: CORRECT\n", + "LGLEIDGER found in part_0.0_13829.432373046875: CORRECT\n", + "LGLGAQFGGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLGGPIGSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLHCVALLENPIGTTAENYLTNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLIEVQAPILSR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLNITPLTADHISLR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLNPDQVYK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLNPQQTAVLAGDNEQQQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLNQGTAGNVSVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGLNSEEQKEDTNYLDGIQGLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLPLFVK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLPLFVKPANQGSSVGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLSDAFLIK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLSYDDDEEEEEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLTGYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGLYFNPYGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGMHDASDEALR found in part_0.0_13829.432373046875: CORRECT\n", + "LGNMPQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGNTLGSDGENLPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGNTRPCTTADLALPGSQEPAEVTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LGPALAAGNSVILKPSEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGPALAAGNSVILKPSEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGPDPDQFGG found in part_0.0_13829.432373046875: CORRECT\n", + "LGPDPDQFGG found in part_0.0_13829.432373046875: CORRECT\n", + "LGPEEITADIPNVGEAALSK found in part_0.0_13829.432373046875: CORRECT\n", + "LGPVYSVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGPYEFICTGRPDEGIPAVCFK found in part_0.0_13829.432373046875: CORRECT\n", + "LGQDQLLSLAGGDTAVTIK found in part_0.0_13829.432373046875: CORRECT\n", + "LGQDQLLSLAGGDTAVTIK found in part_0.0_13829.432373046875: CORRECT\n", + "LGQFSSAETQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGQSATTLSGGEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LGSAIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGSLQQAR found in part_0.0_13829.432373046875: CORRECT\n", + "LGSNSLAELVVFGR found in part_0.0_13829.432373046875: CORRECT\n", + "LGSPGEYVDYAASK found in part_0.0_13829.432373046875: CORRECT\n", + "LGSQFHIPHGLANALLICNVIR found in part_0.0_13829.432373046875: CORRECT\n", + "LGTAEIESALVAHPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGTAEIESALVAHPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGTDEPLSLEGAQVASPALTDLR found in part_0.0_13829.432373046875: CORRECT\n", + "LGTDGLQLYSSGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGTSTVSPIELENAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LGTSVLTGGSR found in part_0.0_13829.432373046875: CORRECT\n", + "LGVALATAESVVDAIER found in part_0.0_13829.432373046875: CORRECT\n", + "LGVAQADFTGLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVATPEK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVDVYAVSTDTHFTHK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVDVYAVSTDTHFTHK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVDVYAVSTDTHFTHK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVEVIAVDR found in part_0.0_13829.432373046875: CORRECT\n", + "LGVLGFEVDHER found in part_0.0_13829.432373046875: CORRECT\n", + "LGVLGFEVDHER found in part_0.0_13829.432373046875: CORRECT\n", + "LGVLKPAPFVFTVAGTNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LGVQEVEASIETLR found in part_0.0_13829.432373046875: CORRECT\n", + "LGVSQPTVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGYGAMQLAGPGVFGPPR found in part_0.0_13829.432373046875: CORRECT\n", + "LGYIAER found in part_0.0_13829.432373046875: CORRECT\n", + "LGYNLVVLDSQNNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGYNLVVLDSQNNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LGYNVFYHGQK found in part_0.0_13829.432373046875: CORRECT\n", + "LGYQVVAVSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LGYSGNTTDPK found in part_0.0_13829.432373046875: CORRECT\n", + "LGYTFNHQELLQQALTHR found in part_0.0_13829.432373046875: CORRECT\n", + "LGYVTPLAAGAFPLTR found in part_0.0_13829.432373046875: CORRECT\n", + "LHAEFRPDQGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LHAPDNAWVQQTR found in part_0.0_13829.432373046875: CORRECT\n", + "LHDEVYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LHDVSEEVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LHDVSEEVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LHDYYKDEVVK found in part_0.0_13829.432373046875: CORRECT\n", + "LHDYYKDEVVK found in part_0.0_13829.432373046875: CORRECT\n", + "LHEEAMALPSEEEFAER found in part_0.0_13829.432373046875: CORRECT\n", + "LHEFGGDITK found in part_0.0_13829.432373046875: CORRECT\n", + "LHFGSYHDVDSSELAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LHFGSYHDVDSSELAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LHFGSYHDVDSSELAFK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGAHTVELNLEPSQVGNEFAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGAHTVELNLEPSQVGNEFAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGFNNLTK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGGEPANFLDVGGGATK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGGEPANFLDVGGGATK found in part_0.0_13829.432373046875: CORRECT\n", + "LHGYLPSR found in part_0.0_13829.432373046875: CORRECT\n", + "LHHANDTDSFSATNVH found in part_0.0_13829.432373046875: CORRECT\n", + "LHIGDGLDNGVTIGPLIDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LHILGVMEQAINAPR found in part_0.0_13829.432373046875: CORRECT\n", + "LHILGVMEQAINAPR found in part_0.0_13829.432373046875: CORRECT\n", + "LHLIANEPGTYDGISASYSGPGFSGMK found in part_0.0_13829.432373046875: CORRECT\n", + "LHLPTAPWQLLAER found in part_0.0_13829.432373046875: CORRECT\n", + "LHLSEEVLSTLDGISR found in part_0.0_13829.432373046875: CORRECT\n", + "LHPEDAESQPLTDDR found in part_0.0_13829.432373046875: CORRECT\n", + "LHQCGLPK found in part_0.0_13829.432373046875: CORRECT\n", + "LHQNQVFGLTVPLITK found in part_0.0_13829.432373046875: CORRECT\n", + "LHQNQVFGLTVPLITK found in part_0.0_13829.432373046875: CORRECT\n", + "LHSLLDEGSLVELGSELEPK found in part_0.0_13829.432373046875: CORRECT\n", + "LHTTFWPEEYPEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LHTVLER found in part_0.0_13829.432373046875: CORRECT\n", + "LHVCGNNPTCDGYEIEEGEFR found in part_0.0_13829.432373046875: CORRECT\n", + "LHVHDENNECGIGDVVEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LHVHDENNECGIGDVVEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LHVPFYCFHDVDVSPEGASLK found in part_0.0_13829.432373046875: CORRECT\n", + "LHVPLICITGRPESSMAR found in part_0.0_13829.432373046875: CORRECT\n", + "LHYLLSQELDTETIR found in part_0.0_13829.432373046875: CORRECT\n", + "LHYLLSQELDTETIR found in part_0.0_13829.432373046875: CORRECT\n", + "LIAAAPTAVAPEESGFYAR found in part_0.0_13829.432373046875: CORRECT\n", + "LIAAAPTAVAPEESGFYAR found in part_0.0_13829.432373046875: CORRECT\n", + "LIADVVCFPGCHINHLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "LIAEAMDK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAEAMDK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAGESDGLPGITIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LIAHVGCVSTAESQQLAASAK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAIDMDGTLLLPDHTISPAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAINAENGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAQGLPNK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAYPIAVEALSLIYNK found in part_0.0_13829.432373046875: CORRECT\n", + "LIAYVTGVQNVR found in part_0.0_13829.432373046875: CORRECT\n", + "LICYGENR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDALSQLPAGYPVYSNR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDATFADR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDEAIDEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDEALLDQYAR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDETGVTPVINQIELHPLMQQR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDFNGGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDGTVFDSSVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDMGEEIGLATVYR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDQATAEIVETAK found in part_0.0_13829.432373046875: CORRECT\n", + "LIDQATAEIVETAK found in part_0.0_13829.432373046875: CORRECT\n", + "LIDQYGPISR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDSIIPEPLGGAHR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDSIIPEPLGGAHR found in part_0.0_13829.432373046875: CORRECT\n", + "LIDSQDVETR found in part_0.0_13829.432373046875: CORRECT\n", + "LIEDEEY found in part_0.0_13829.432373046875: CORRECT\n", + "LIEDGTQR found in part_0.0_13829.432373046875: CORRECT\n", + "LIEEEALK found in part_0.0_13829.432373046875: CORRECT\n", + "LIELALER found in part_0.0_13829.432373046875: CORRECT\n", + "LIENSSSEVKPK found in part_0.0_13829.432373046875: CORRECT\n", + "LIENSSSEVKPK found in part_0.0_13829.432373046875: CORRECT\n", + "LIEPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "LIEQQAVIAAL found in part_0.0_13829.432373046875: CORRECT\n", + "LIEVPVEYIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIFPNPK found in part_0.0_13829.432373046875: CORRECT\n", + "LIGDDEHGWDDDGVFNFEGGCYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LIGHHIADEQVTDILR found in part_0.0_13829.432373046875: CORRECT\n", + "LIGHHIADEQVTDILR found in part_0.0_13829.432373046875: CORRECT\n", + "LIGNPETR found in part_0.0_13829.432373046875: CORRECT\n", + "LIGSDDQSDIALLQIQNPSK found in part_0.0_13829.432373046875: CORRECT\n", + "LIGTVGTAQK found in part_0.0_13829.432373046875: CORRECT\n", + "LIGVDILTMPGVAGHA found in part_0.0_13829.432373046875: CORRECT\n", + "LIHGQVATR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LIIETLPLLR NOT FOUND in any FASTA file.\n", + "LIKPLLGTLEYGLPHK found in part_0.0_13829.432373046875: CORRECT\n", + "LILAAQMDR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LILISPAK NOT FOUND in any FASTA file.\n", + "LILLTADRPPELIDCGANQAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LILPLAIGK found in part_0.0_13829.432373046875: CORRECT\n", + "LILSNQYK found in part_0.0_13829.432373046875: CORRECT\n", + "LILSQLGEEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LILTAAQLDALK found in part_0.0_13829.432373046875: CORRECT\n", + "LIMGLADGEVLVDGR found in part_0.0_13829.432373046875: CORRECT\n", + "LINAVQDVYLDSK found in part_0.0_13829.432373046875: CORRECT\n", + "LINDAYDSEYFATK found in part_0.0_13829.432373046875: CORRECT\n", + "LINDAYDSEYFATK found in part_0.0_13829.432373046875: CORRECT\n", + "LINDVQDVLDEQLAGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "LINFLLRPDVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LINQAVEIVR found in part_0.0_13829.432373046875: CORRECT\n", + "LINYLVEEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LINYLVEEFKK found in part_0.0_13829.432373046875: CORRECT\n", + "LINYLVEEFKK found in part_0.0_13829.432373046875: CORRECT\n", + "LIPAADISEQISTAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIPAAVEGGLHQIETASGAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LIPAGTGYAYHQDR found in part_0.0_13829.432373046875: CORRECT\n", + "LIPAGTGYAYHQDR found in part_0.0_13829.432373046875: CORRECT\n", + "LIPEELVPVQR found in part_0.0_13829.432373046875: CORRECT\n", + "LIPEELVPVQR found in part_0.0_13829.432373046875: CORRECT\n", + "LIPITSQNR found in part_0.0_13829.432373046875: CORRECT\n", + "LIPLTTAEQVGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIPLVILNALEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIPPSQTFPR found in part_0.0_13829.432373046875: CORRECT\n", + "LIQDAGYPVDK found in part_0.0_13829.432373046875: CORRECT\n", + "LIQLMNETVDGDYQTFK found in part_0.0_13829.432373046875: CORRECT\n", + "LISADGKPVSPTEENFANAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LISVGPDNPK found in part_0.0_13829.432373046875: CORRECT\n", + "LITDAGIDPAFR found in part_0.0_13829.432373046875: CORRECT\n", + "LITDGLAVFEK found in part_0.0_13829.432373046875: CORRECT\n", + "LITIAVPR found in part_0.0_13829.432373046875: CORRECT\n", + "LITSSSADGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIVAVNSDASTK found in part_0.0_13829.432373046875: CORRECT\n", + "LIVEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "LIVGLANPGAEYAATR found in part_0.0_13829.432373046875: CORRECT\n", + "LIVIEMNPR found in part_0.0_13829.432373046875: CORRECT\n", + "LIVKPNAVNGELSEDDIQLFPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LIVVTGLSGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "LIVVTHQ found in part_0.0_13829.432373046875: CORRECT\n", + "LIYLGAGTSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LIYTASDLK found in part_0.0_13829.432373046875: CORRECT\n", + "LKAPLDIYLK found in part_0.0_13829.432373046875: CORRECT\n", + "LKDFNIK found in part_0.0_13829.432373046875: CORRECT\n", + "LKDGEDPGYTLYDLSER found in part_0.0_13829.432373046875: CORRECT\n", + "LKDGEDPGYTLYDLSER found in part_0.0_13829.432373046875: CORRECT\n", + "LKDGLLAIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LKDLETQSQDGTFDK found in part_0.0_13829.432373046875: CORRECT\n", + "LKDLETQSQDGTFDK found in part_0.0_13829.432373046875: CORRECT\n", + "LKENGFIK found in part_0.0_13829.432373046875: CORRECT\n", + "LKEPENSSIYSK found in part_0.0_13829.432373046875: CORRECT\n", + "LKEPENSSIYSK found in part_0.0_13829.432373046875: CORRECT\n", + "LKEYNAAPPLQGFGISAPDQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LKEYQYQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LKEYQYQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LKGNTGENLLALLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LKLASILAK found in part_0.0_13829.432373046875: CORRECT\n", + "LKNEQPQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LKPQTPEEEQHD found in part_0.0_13829.432373046875: CORRECT\n", + "LKPQTPEEEQHD found in part_0.0_13829.432373046875: CORRECT\n", + "LKSENTSYSQIITTCR found in part_0.0_13829.432373046875: CORRECT\n", + "LLADDIVPSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLADGMESFNK found in part_0.0_13829.432373046875: CORRECT\n", + "LLAEAGYTADKPLTINLLYNTSDLHK found in part_0.0_13829.432373046875: CORRECT\n", + "LLAECEER found in part_0.0_13829.432373046875: CORRECT\n", + "LLAEHNLDASAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LLAEHNLDASAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LLAGELAPVSGEIGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLAIDRDPQAIAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLALHMYDCAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLALLAER found in part_0.0_13829.432373046875: CORRECT\n", + "LLALSETSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLANETDAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLANQEEGTQIR found in part_0.0_13829.432373046875: CORRECT\n", + "LLANRPESALAVTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLAQICQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLDEAER found in part_0.0_13829.432373046875: CORRECT\n", + "LLDEGNTVPFIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLDIVCGAPNCR found in part_0.0_13829.432373046875: CORRECT\n", + "LLDLAAPDIIVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLDNAAADLAAISGQK found in part_0.0_13829.432373046875: CORRECT\n", + "LLDNAAADLAAISGQK found in part_0.0_13829.432373046875: CORRECT\n", + "LLDNAAADLAAISGQKPLITK found in part_0.0_13829.432373046875: CORRECT\n", + "LLDQFADK found in part_0.0_13829.432373046875: CORRECT\n", + "LLDVLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LLEDPVEVSANPSTR found in part_0.0_13829.432373046875: CORRECT\n", + "LLEELGQVEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLEGEESR found in part_0.0_13829.432373046875: CORRECT\n", + "LLEGELK found in part_0.0_13829.432373046875: CORRECT\n", + "LLEGELK found in part_0.0_13829.432373046875: CORRECT\n", + "LLEIIACPVCNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLEIPFNPVYR found in part_0.0_13829.432373046875: CORRECT\n", + "LLELTFTEQTTK found in part_0.0_13829.432373046875: CORRECT\n", + "LLENGANTSFVNR found in part_0.0_13829.432373046875: CORRECT\n", + "LLESAGIAYTVNQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLESAGIAYTVNQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLETAEPHPGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLETAEPHPGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLETLQEEGYVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLFEGGYPVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLFSQDDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LLGCSVAEIESDR found in part_0.0_13829.432373046875: CORRECT\n", + "LLGDNTDGVGLLSDLER found in part_0.0_13829.432373046875: CORRECT\n", + "LLGETLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LLGGPQAGIIVGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLGLEPPQFR found in part_0.0_13829.432373046875: CORRECT\n", + "LLGPDVGFDSINDRPMAEELSK found in part_0.0_13829.432373046875: CORRECT\n", + "LLGQTSVDR found in part_0.0_13829.432373046875: CORRECT\n", + "LLGVNEVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLGYSEYR found in part_0.0_13829.432373046875: CORRECT\n", + "LLHAMGCEVTAFSSNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLHNPLEIEVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLHPETEAALTR found in part_0.0_13829.432373046875: CORRECT\n", + "LLHPETEAALTR found in part_0.0_13829.432373046875: CORRECT\n", + "LLIAPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "LLIDDLSFSIPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLIDPCAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLIEEEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLIGPEGGLSADEIAMTAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLILGSGPAGYTAAVYAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLINGELVSGEGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLINGELVSGEGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLIVDATDMGLNPGEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LLIVVTSTQGEGEPPEEAVALHK found in part_0.0_13829.432373046875: CORRECT\n", + "LLKNAGCLPPELEQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLLDALR found in part_0.0_13829.432373046875: CORRECT\n", + "LLLDPGFGFGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLLISSSEVGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLLLNIPSPIK found in part_0.0_13829.432373046875: CORRECT\n", + "LLLLTDQK found in part_0.0_13829.432373046875: CORRECT\n", + "LLLPIPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLLSEACPLILDYHVALDNAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLLVTPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLMAIGEPVMVDTAQEPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLMEETGIPVVVAEDPLTCVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLMEETGIPVVVAEDPLTCVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNATPNGVIR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNDTDMAIIDK found in part_0.0_13829.432373046875: CORRECT\n", + "LLNEMAQQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNFLESR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNGIPIDEEDFFGR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNHGPTVLITSFDEQSQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNHSELTHAPCAPGTLETLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNHSELTHAPCAPGTLETLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNIHPSLLPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLNIHPSLLPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLNISQTKPILEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLNLEQAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLNLEQAGKPVADAASMQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLNLVVG found in part_0.0_13829.432373046875: CORRECT\n", + "LLNSEEMALLDSAASEVA found in part_0.0_13829.432373046875: CORRECT\n", + "LLPEHDVAYDGNPLAQQHGPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLPEHDVAYDGNPLAQQHGPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLPENSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLPGPTGER found in part_0.0_13829.432373046875: CORRECT\n", + "LLPHIPADQFPAQALACELYK found in part_0.0_13829.432373046875: CORRECT\n", + "LLPHIPADQFPAQALACELYK found in part_0.0_13829.432373046875: CORRECT\n", + "LLPNKPVEVIDSLLYGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLPNKPVEVIDSLLYGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLPSLYQLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLPTEIMAGSPIR found in part_0.0_13829.432373046875: CORRECT\n", + "LLPWIDGLLDAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLQAGYGYETYK found in part_0.0_13829.432373046875: CORRECT\n", + "LLQEEEEGLPLVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LLQLSQGQAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LLQQSGTFDSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLSAAGLSK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSDTECLVK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSENGYDPVYGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LLSEQLGEGEIELR found in part_0.0_13829.432373046875: CORRECT\n", + "LLSLCGPFDDNIK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSLDGPTGALTHGTFTDLLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSLENTHNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSLENTHNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSPEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LLSPEVANDK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTGDSPFAANALGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTGTDDVQAIPVESASIVSLQDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTNNPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTPIDVNK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTPSQFTFVFQQPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTPSQFTFVFQQPQR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTPVEGVEHEDNLIVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTQDDTVNLSK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTQQGDE found in part_0.0_13829.432373046875: CORRECT\n", + "LLTSQGPGTAIDFGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LLTTCNIPVPSDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTTCNIPVPSDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTTMQQQGFVR found in part_0.0_13829.432373046875: CORRECT\n", + "LLTTPNPEEDKDLQLFR found in part_0.0_13829.432373046875: CORRECT\n", + "LLVAAQAVPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLVANTHDHILCFSSR found in part_0.0_13829.432373046875: CORRECT\n", + "LLVDACYSPVER found in part_0.0_13829.432373046875: CORRECT\n", + "LLVDNNSEGEYAIIPASVADK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVHPSTSPVPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVHPSTSPVPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVILGNPPALK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVNCIDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVNNIEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVNTGSLAESTQQSGYSHAIPR found in part_0.0_13829.432373046875: CORRECT\n", + "LLVPTTFMNLSGK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVSELSGVEPK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVVIGPCSIHDPVAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLVVIGPCSIHDPVAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LLYECNPMAFLAEQAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "LMAGSTGFDLVVPSASFLER found in part_0.0_13829.432373046875: CORRECT\n", + "LMAIQEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "LMDDTIAQVQTSGEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LMDDTIAQVQTSGEAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LMDLGCYR found in part_0.0_13829.432373046875: CORRECT\n", + "LMDLTTLNDDDTDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LMEEEGILAGISSGAAVAAALK found in part_0.0_13829.432373046875: CORRECT\n", + "LMEIAQQQHAQQQTAGADASANNAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMEIAQQQHAQQQTAGADASANNAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMERPIVVANGK found in part_0.0_13829.432373046875: CORRECT\n", + "LMEVEQVLESAR found in part_0.0_13829.432373046875: CORRECT\n", + "LMFASDIHGSLPATER found in part_0.0_13829.432373046875: CORRECT\n", + "LMGAEVIPVHSGSATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LMGAEVIPVHSGSATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LMGAEVIPVHSGSATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LMGEQFVTGETIAEALANAR found in part_0.0_13829.432373046875: CORRECT\n", + "LMGNDVTDEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMIPSLAQAQQLNEDQIQELR found in part_0.0_13829.432373046875: CORRECT\n", + "LMLGQLQADSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LMLLAPIIK found in part_0.0_13829.432373046875: CORRECT\n", + "LMLPISLSFDHR found in part_0.0_13829.432373046875: CORRECT\n", + "LMLPISLSFDHR found in part_0.0_13829.432373046875: CORRECT\n", + "LMLQSAQHIADEVGGVVLDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "LMNLPAPNPEAPR found in part_0.0_13829.432373046875: CORRECT\n", + "LMNNEEISEEAQHEMAAEAGINPVR found in part_0.0_13829.432373046875: CORRECT\n", + "LMPGEEEVAENPR found in part_0.0_13829.432373046875: CORRECT\n", + "LMPLHNK found in part_0.0_13829.432373046875: CORRECT\n", + "LMPPLGVLLDR found in part_0.0_13829.432373046875: CORRECT\n", + "LMQPGSSDINLER found in part_0.0_13829.432373046875: CORRECT\n", + "LMTLEQGKPLAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMTLEQGKPLAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMTLEQGKPLAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LMTNHGGGNFK found in part_0.0_13829.432373046875: CORRECT\n", + "LMVDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LNADDDVSEIFK found in part_0.0_13829.432373046875: CORRECT\n", + "LNADTLVIADHNK found in part_0.0_13829.432373046875: CORRECT\n", + "LNADTLVIADHNK found in part_0.0_13829.432373046875: CORRECT\n", + "LNAEAVEALNELAESR found in part_0.0_13829.432373046875: CORRECT\n", + "LNAEIIKPVFLDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LNALPDVLEQFIHLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNALPDVLEQFIHLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNAPVDEQGR found in part_0.0_13829.432373046875: CORRECT\n", + "LNAQLAQAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "LNAQPHGASLYLPMEGLNCYR found in part_0.0_13829.432373046875: CORRECT\n", + "LNDSNLFR found in part_0.0_13829.432373046875: CORRECT\n", + "LNEADFR found in part_0.0_13829.432373046875: CORRECT\n", + "LNEFPEQFEPLFGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNEIPQENIQR found in part_0.0_13829.432373046875: CORRECT\n", + "LNELGLQFMQGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LNELLEFPTPFTYK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LNETPALAPDGQPYR NOT FOUND in any FASTA file.\n", + "LNEVEFR found in part_0.0_13829.432373046875: CORRECT\n", + "LNFAEIATYNDHR found in part_0.0_13829.432373046875: CORRECT\n", + "LNFDQFK found in part_0.0_13829.432373046875: CORRECT\n", + "LNFSHGDYAEHGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LNFSHGDYAEHGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LNFSHGDYAEHGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LNGDNGEYTCDALIIATGASAR found in part_0.0_13829.432373046875: CORRECT\n", + "LNGIDESSVK found in part_0.0_13829.432373046875: CORRECT\n", + "LNGPLPADTLFQPK found in part_0.0_13829.432373046875: CORRECT\n", + "LNHLVDDK found in part_0.0_13829.432373046875: CORRECT\n", + "LNHTVTADQLQAFDETILASGIVPR found in part_0.0_13829.432373046875: CORRECT\n", + "LNIDQNPGTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "LNIGEDVEEMLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNIKPGQTTFDGR found in part_0.0_13829.432373046875: CORRECT\n", + "LNIKPGQTTFDGR found in part_0.0_13829.432373046875: CORRECT\n", + "LNIPGNSEVFHLCR found in part_0.0_13829.432373046875: CORRECT\n", + "LNIPVIFVSGGPMEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LNITLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LNKEPIIEYLNSNIVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LNKPDLQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LNLAQALICR found in part_0.0_13829.432373046875: CORRECT\n", + "LNLEYTVMSK found in part_0.0_13829.432373046875: CORRECT\n", + "LNLLADDSLADR found in part_0.0_13829.432373046875: CORRECT\n", + "LNLLVTDK found in part_0.0_13829.432373046875: CORRECT\n", + "LNLQVEDETR found in part_0.0_13829.432373046875: CORRECT\n", + "LNLSLDSQLYPQISGHK found in part_0.0_13829.432373046875: CORRECT\n", + "LNNEVLHEVQAS found in part_0.0_13829.432373046875: CORRECT\n", + "LNPADAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LNPGDLLVFNNTR found in part_0.0_13829.432373046875: CORRECT\n", + "LNPQIDMGQR found in part_0.0_13829.432373046875: CORRECT\n", + "LNPSEIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LNQLDNLTER NOT FOUND in any FASTA file.\n", + "LNQLSNQVDNLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNSAAISDYAPNGLQVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LNSAAISDYAPNGLQVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LNSAFKPSGDQPEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LNSAVFPGGQGGPLMHVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LNSCAVAAQVYIGSEYEHQSIK found in part_0.0_13829.432373046875: CORRECT\n", + "LNSLEDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LNSLLDGALK found in part_0.0_13829.432373046875: CORRECT\n", + "LNSNLNLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LNTALEK found in part_0.0_13829.432373046875: CORRECT\n", + "LNTIHNLR found in part_0.0_13829.432373046875: CORRECT\n", + "LNTLSPAEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "LNVENPK found in part_0.0_13829.432373046875: CORRECT\n", + "LNVETNMPEALDR found in part_0.0_13829.432373046875: CORRECT\n", + "LNVLVNVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LNVPANVSTEQMK found in part_0.0_13829.432373046875: CORRECT\n", + "LNVPENPIIPYIEGDGIGVDVTPAMLK found in part_0.0_13829.432373046875: CORRECT\n", + "LNVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "LNVVDCGDLVYAFGDAR found in part_0.0_13829.432373046875: CORRECT\n", + "LNVVDCGDLVYAFGDAR found in part_0.0_13829.432373046875: CORRECT\n", + "LPAAEIDPTYR found in part_0.0_13829.432373046875: CORRECT\n", + "LPAAQSFAALSGMEEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "LPAGDLVLYPSSSLHCVTPVTR found in part_0.0_13829.432373046875: CORRECT\n", + "LPAGLNASQSQGK found in part_0.0_13829.432373046875: CORRECT\n", + "LPALFCFPQILQHR found in part_0.0_13829.432373046875: CORRECT\n", + "LPALFCFPQILQHR found in part_0.0_13829.432373046875: CORRECT\n", + "LPANPETPVIMIGPGTGIAPFR found in part_0.0_13829.432373046875: CORRECT\n", + "LPASILVHENSYQPLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LPASILVHENSYQPLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LPATDGQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LPATIILR found in part_0.0_13829.432373046875: CORRECT\n", + "LPAVNNIYELR found in part_0.0_13829.432373046875: CORRECT\n", + "LPDAPYVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "LPDAVEEAIEAEMEK found in part_0.0_13829.432373046875: CORRECT\n", + "LPDAVEEAIEAEMEK found in part_0.0_13829.432373046875: CORRECT\n", + "LPDGAYLLNLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LPDLAVQAQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LPDPQEDSK found in part_0.0_13829.432373046875: CORRECT\n", + "LPDQPLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LPDQPLAGKPVLIQTSSMGVIGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LPDYFAIGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPEAGEDLELK found in part_0.0_13829.432373046875: CORRECT\n", + "LPEAVER found in part_0.0_13829.432373046875: CORRECT\n", + "LPEDTPVTAQTSIGDNGEIVESTVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPEGYHTLTLTQDDQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPELMSLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LPEMINSVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPENLKPK found in part_0.0_13829.432373046875: CORRECT\n", + "LPEPLAEESLSAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPEYTPDVNQLYDALYNK found in part_0.0_13829.432373046875: CORRECT\n", + "LPFAYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPFAYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPFDASIEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPFICELAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPGAIGYVEYAYAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPGCVDAFEQGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPGGVITTK found in part_0.0_13829.432373046875: CORRECT\n", + "LPGHEFTTLLAENR found in part_0.0_13829.432373046875: CORRECT\n", + "LPGILELSR found in part_0.0_13829.432373046875: CORRECT\n", + "LPGLYYIETDSTGER found in part_0.0_13829.432373046875: CORRECT\n", + "LPGLYYIETDSTGER found in part_0.0_13829.432373046875: CORRECT\n", + "LPGVEEYIK found in part_0.0_13829.432373046875: CORRECT\n", + "LPGVNDTR found in part_0.0_13829.432373046875: CORRECT\n", + "LPIDLSQLK found in part_0.0_13829.432373046875: CORRECT\n", + "LPIEPISQASANQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPITVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPIVEQTPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "LPIVVYTPDNVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "LPIVVYTPDNVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "LPIYLDYSATTPVDPR found in part_0.0_13829.432373046875: CORRECT\n", + "LPLFYNLSPVNQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPLGDEYQEQLESNFADMANIGGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPLLMATVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LPLLSAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPLMINPK found in part_0.0_13829.432373046875: CORRECT\n", + "LPLNFKK found in part_0.0_13829.432373046875: CORRECT\n", + "LPLTLDPVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPMSFPR found in part_0.0_13829.432373046875: CORRECT\n", + "LPMTPITDSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPNNSSPFYSTMGFLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPNPTLAVTDGK found in part_0.0_13829.432373046875: CORRECT\n", + "LPPDCPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPEQVVAEVSSR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPFIEIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPGFQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPLNALR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPVDVETQPGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPVDVETQPGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPPVVPAGPNNPLGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPQLGIEFSGPGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPQLGIEFSGPGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LPQNITLTEV found in part_0.0_13829.432373046875: CORRECT\n", + "LPQPVAEQAHK found in part_0.0_13829.432373046875: CORRECT\n", + "LPQPVAEQAHK found in part_0.0_13829.432373046875: CORRECT\n", + "LPQVASPLTFATEEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LPQVASPLTFATEEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "LPQVEGTGGDVQPSQDLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPQVEGTGGDVQPSQDLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSAAINLVTAHDGFTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSAALTFTPHDGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSCGFSAQAVQALAACGER found in part_0.0_13829.432373046875: CORRECT\n", + "LPSDAGSNITYR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSEFDLSAFLR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSQNIAVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSQPLPIIGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "LPSSASALACSAHALNLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "LPSTCFAEENGSIVNSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPSTCFAEENGSIVNSGR found in part_0.0_13829.432373046875: CORRECT\n", + "LPTGIFYAQGVK found in part_0.0_13829.432373046875: CORRECT\n", + "LPTGSGANISIDK found in part_0.0_13829.432373046875: CORRECT\n", + "LPTLTADQK found in part_0.0_13829.432373046875: CORRECT\n", + "LPTPEEYQTYVAQVDK found in part_0.0_13829.432373046875: CORRECT\n", + "LPTPEEYQTYVAQVDK found in part_0.0_13829.432373046875: CORRECT\n", + "LPVEFVPVR found in part_0.0_13829.432373046875: CORRECT\n", + "LPVLFAIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LPVLSAAAPFK found in part_0.0_13829.432373046875: CORRECT\n", + "LPVPAPMAVGAIQTR found in part_0.0_13829.432373046875: CORRECT\n", + "LPVPDSPGLRPTTDR found in part_0.0_13829.432373046875: CORRECT\n", + "LPVTILSR found in part_0.0_13829.432373046875: CORRECT\n", + "LPYGVQADEQDCQDAIAFIQPDR found in part_0.0_13829.432373046875: CORRECT\n", + "LPYITFPEGSEEHTYLHAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LPYITFPEGSEEHTYLHAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LQAADVACR found in part_0.0_13829.432373046875: CORRECT\n", + "LQAEGLFDQQYK found in part_0.0_13829.432373046875: CORRECT\n", + "LQAHPEMLNPSVPLFR found in part_0.0_13829.432373046875: CORRECT\n", + "LQAIGFTVER found in part_0.0_13829.432373046875: CORRECT\n", + "LQAVLDNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LQDAFPVLYTGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQDAFPVLYTGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQDALGDR found in part_0.0_13829.432373046875: CORRECT\n", + "LQDGTLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "LQDPLAELVK found in part_0.0_13829.432373046875: CORRECT\n", + "LQDYAAQGAEVLHLVDLTGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LQEDESFTNK found in part_0.0_13829.432373046875: CORRECT\n", + "LQEGQNIALVSDAGTPLINDPGYHLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LQELGATR found in part_0.0_13829.432373046875: CORRECT\n", + "LQELKDELGDNLYIAQLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LQEYLQGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQFNAYTDNNPK found in part_0.0_13829.432373046875: CORRECT\n", + "LQGEVTISGAK found in part_0.0_13829.432373046875: CORRECT\n", + "LQGIAQQNSFK found in part_0.0_13829.432373046875: CORRECT\n", + "LQGNMGIGHVR found in part_0.0_13829.432373046875: CORRECT\n", + "LQGQILK found in part_0.0_13829.432373046875: CORRECT\n", + "LQGVDSVMTPPER found in part_0.0_13829.432373046875: CORRECT\n", + "LQGYYDALAESGIAANDR found in part_0.0_13829.432373046875: CORRECT\n", + "LQHIDFVR found in part_0.0_13829.432373046875: CORRECT\n", + "LQHYAATTPIVDMVR found in part_0.0_13829.432373046875: CORRECT\n", + "LQIIVAER found in part_0.0_13829.432373046875: CORRECT\n", + "LQILADEYLPVDEGGIPHDGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LQINSNVLQIENELYAPIRPK found in part_0.0_13829.432373046875: CORRECT\n", + "LQISFECAAPEVDETPR found in part_0.0_13829.432373046875: CORRECT\n", + "LQISFECAAPEVDETPR found in part_0.0_13829.432373046875: CORRECT\n", + "LQKNECQVMPYPNPADIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LQLLHDEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQLQALEALLR found in part_0.0_13829.432373046875: CORRECT\n", + "LQLTDSYQLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LQLVGVGYR found in part_0.0_13829.432373046875: CORRECT\n", + "LQMELVPER found in part_0.0_13829.432373046875: CORRECT\n", + "LQNQLQR found in part_0.0_13829.432373046875: CORRECT\n", + "LQPDEGVDIQVLNK found in part_0.0_13829.432373046875: CORRECT\n", + "LQPGNYDK found in part_0.0_13829.432373046875: CORRECT\n", + "LQPVCGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQQALSETGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQQIEEETGLTIEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LQQIEEETGLTIEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "LQQLGGGEAIPLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LQQLGQIPDVSLK found in part_0.0_13829.432373046875: CORRECT\n", + "LQQPDIVETLITLPETQLK found in part_0.0_13829.432373046875: CORRECT\n", + "LQQVGDKPR found in part_0.0_13829.432373046875: CORRECT\n", + "LQSGDEYFR found in part_0.0_13829.432373046875: CORRECT\n", + "LQSIGTENTEENR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LQSNEYFSGK NOT FOUND in any FASTA file.\n", + "LQTHPFLGPK found in part_0.0_13829.432373046875: CORRECT\n", + "LQTIIER found in part_0.0_13829.432373046875: CORRECT\n", + "LQTLGLTQGTVVTISAEGEDEQK found in part_0.0_13829.432373046875: CORRECT\n", + "LQTMVSHFTIDPSR found in part_0.0_13829.432373046875: CORRECT\n", + "LQTVLFQQQLGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LQTVLFQQQLGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LQTYIDQVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LQVDAGGTATNVTLK found in part_0.0_13829.432373046875: CORRECT\n", + "LQVDGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LQVEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LQVELAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "LQVGDLDNR found in part_0.0_13829.432373046875: CORRECT\n", + "LQVPALDGER found in part_0.0_13829.432373046875: CORRECT\n", + "LQVTSEK found in part_0.0_13829.432373046875: CORRECT\n", + "LQVVTLLGSLR found in part_0.0_13829.432373046875: CORRECT\n", + "LQVVTLLGSLRK found in part_0.0_13829.432373046875: CORRECT\n", + "LQYVNEALK found in part_0.0_13829.432373046875: CORRECT\n", + "LQYYVNTDQLVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LRDELAK found in part_0.0_13829.432373046875: CORRECT\n", + "LRDELPGVK found in part_0.0_13829.432373046875: CORRECT\n", + "LRDVVIGMGACTDSK found in part_0.0_13829.432373046875: CORRECT\n", + "LREEFGVYAVASGR found in part_0.0_13829.432373046875: CORRECT\n", + "LREEIAEQHR found in part_0.0_13829.432373046875: CORRECT\n", + "LREELDFLK found in part_0.0_13829.432373046875: CORRECT\n", + "LRGETASFDIEANGK found in part_0.0_13829.432373046875: CORRECT\n", + "LRGSVNPECTLAQLGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LRPCTPR found in part_0.0_13829.432373046875: CORRECT\n", + "LRPEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "LRPGAELLEGAHVGNFVEMK found in part_0.0_13829.432373046875: CORRECT\n", + "LRPGAELLEGAHVGNFVEMK found in part_0.0_13829.432373046875: CORRECT\n", + "LRPSPVDEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LSAFTQLK found in part_0.0_13829.432373046875: CORRECT\n", + "LSAHQVQQTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSALCSEGAHDQVYETVR found in part_0.0_13829.432373046875: CORRECT\n", + "LSALPDDTLVCCAHEYTLSNMK found in part_0.0_13829.432373046875: CORRECT\n", + "LSALVEIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LSANWMAAAGHPGEDAGLYEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "LSASYVGEDNER found in part_0.0_13829.432373046875: CORRECT\n", + "LSATLESMFADDGVNK found in part_0.0_13829.432373046875: CORRECT\n", + "LSCPITAEDTSGTLYDK found in part_0.0_13829.432373046875: CORRECT\n", + "LSCQLYQR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDDPIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDGAPLTVYPGEVPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDQEIEQTLQAFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDQEIEQTLQAFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDQIIK found in part_0.0_13829.432373046875: CORRECT\n", + "LSDQPVLSVQR found in part_0.0_13829.432373046875: CORRECT\n", + "LSDYGVQLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEDAFDDQCTGANPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEDAFDDQCTGANPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEQGLITR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEQIQNDLLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEVAHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LSEVEGVNNR found in part_0.0_13829.432373046875: CORRECT\n", + "LSEVMPGAGGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSFDILIPPDQIMGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSFDINEDVAAPYIATGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSFETSMHR found in part_0.0_13829.432373046875: CORRECT\n", + "LSFTGSTEIGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGAQVMATDLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGDTLDGETAFR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGELPSPLNPPPGCAFNAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGETLEHAVEVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGETLEHAVEVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGEVAQHTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGEVAQHTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGFGNFDLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGNTASGLPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGQHNYTNALAALALADAAGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGQTIEVTSEYLFR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGQTIEVTSEYLFR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGSVTVGETPVIR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGSVTVGETPVIR found in part_0.0_13829.432373046875: CORRECT\n", + "LSGVEVSGNLAGHSAEIEQLTK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGVLNGVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGVPEGDVPGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGYTEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "LSGYTEDEKLNIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LSHNIATLK found in part_0.0_13829.432373046875: CORRECT\n", + "LSIAYGIAQAMHR found in part_0.0_13829.432373046875: CORRECT\n", + "LSIAYGIAQAMHR found in part_0.0_13829.432373046875: CORRECT\n", + "LSIAYGIAQAMHREGAELAFTYQNDK found in part_0.0_13829.432373046875: CORRECT\n", + "LSILLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LSINPRPPVER found in part_0.0_13829.432373046875: CORRECT\n", + "LSIVDVNAGAQPLYNQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LSIVDVNAGAQPLYNQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LSLATPVDEAWDGPLSLNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LSLNGTIIVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSLNISPDDR found in part_0.0_13829.432373046875: CORRECT\n", + "LSMAPSYFSSK found in part_0.0_13829.432373046875: CORRECT\n", + "LSMGVQDFNK found in part_0.0_13829.432373046875: CORRECT\n", + "LSNAQVIDVTK found in part_0.0_13829.432373046875: CORRECT\n", + "LSNNTACVFTGK found in part_0.0_13829.432373046875: CORRECT\n", + "LSPEMVSASTLAGDPITAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPEMVSASTLAGDPITAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPFFDEMQATPAPVEDIHGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPFFDEMQATPAPVEDIHGAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPIAEQLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LSPSLGESSHHVCPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPSLGESSHHVCPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPTLAMYR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPYDAACAGCVAHGAAADVLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LSPYYDFISVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSFNSAYPGIDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSLTELTAK found in part_0.0_13829.432373046875: CORRECT\n", + "LSSMNPVER found in part_0.0_13829.432373046875: CORRECT\n", + "LSSPATLNSR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSPIMPAIAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSTDPNLQNIPVR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSTDPNLQNIPVR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSVSHPEYIGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSSVSHPEYIGR found in part_0.0_13829.432373046875: CORRECT\n", + "LSTLALPLISQVPGETLR found in part_0.0_13829.432373046875: CORRECT\n", + "LSTLEVMK found in part_0.0_13829.432373046875: CORRECT\n", + "LSTLYQLPTMQR found in part_0.0_13829.432373046875: CORRECT\n", + "LSVFKPIAQPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSVFKPIAQPR found in part_0.0_13829.432373046875: CORRECT\n", + "LSVHFGDESAPFR found in part_0.0_13829.432373046875: CORRECT\n", + "LSYDTEASIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LSYTGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LSYTGEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LTAACFDR found in part_0.0_13829.432373046875: CORRECT\n", + "LTAADLADPQLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LTAANMLDAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTAAPGNGASIGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "LTADQTQYHFLSGFTAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTADQTQYHFLSGFTAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTAEIVAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTALGDELR found in part_0.0_13829.432373046875: CORRECT\n", + "LTAMGVGER found in part_0.0_13829.432373046875: CORRECT\n", + "LTAPESNLEVSYQNYHR found in part_0.0_13829.432373046875: CORRECT\n", + "LTARPILDIALQYR found in part_0.0_13829.432373046875: CORRECT\n", + "LTAVYSR found in part_0.0_13829.432373046875: CORRECT\n", + "LTDAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "LTDAGHQVNNVEVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTDDDMTIIEGK found in part_0.0_13829.432373046875: CORRECT\n", + "LTDILAAGLQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTDILAAGLQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTDLQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTEELTSR found in part_0.0_13829.432373046875: CORRECT\n", + "LTEFVYK found in part_0.0_13829.432373046875: CORRECT\n", + "LTEGIATLGAAFYPK found in part_0.0_13829.432373046875: CORRECT\n", + "LTEINVTSPTCIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTEINVTSPTCIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTEMGFPCIGLPGTIDNDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LTEMGFPCIGLPGTIDNDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LTENSFR found in part_0.0_13829.432373046875: CORRECT\n", + "LTESHIVFIDGNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LTFTALQQR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGALEEAANEFR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGEPYASK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGFEVEFAQQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGFEVEFAQQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGGLQLPNDETGDCQLFTQNLAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGIVTTTDNGGSTGR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGLEGEQLGIVSLR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGLEGEQLGIVSLR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGLEHEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGLEPGELFVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGLEPGELFVHR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGMAFR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGMVQDAQQNK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGPASEQQAMEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTGRPICVTAAADILR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGVSEELGATR found in part_0.0_13829.432373046875: CORRECT\n", + "LTGYDAVCMQPNSGAQGEYAGLLAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTIAPALLK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIAPALLK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIAPNLLK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIEPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIPEVELPNAELLGK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIVPAQTSAEDVLK found in part_0.0_13829.432373046875: CORRECT\n", + "LTIYALLDSPR found in part_0.0_13829.432373046875: CORRECT\n", + "LTKPATTLEFTPAEVAAQR found in part_0.0_13829.432373046875: CORRECT\n", + "LTKPVELIATLDDSAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTKPVELIATLDDSAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLAQVEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLCDVSAPAVEASR found in part_0.0_13829.432373046875: CORRECT\n", + "LTLDLGGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLDLGGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLFSESSLQHDAIQAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLLYNTSENHQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLLYNTSENHQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTLQDNPAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTLTYAETR found in part_0.0_13829.432373046875: CORRECT\n", + "LTMLLTGTDNIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTPALGQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTPALGQQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTPDADDTVLVK found in part_0.0_13829.432373046875: CORRECT\n", + "LTPEQAEQIK found in part_0.0_13829.432373046875: CORRECT\n", + "LTPGCLFVALK found in part_0.0_13829.432373046875: CORRECT\n", + "LTPLGIGITDYYIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTPPQISTLMR found in part_0.0_13829.432373046875: CORRECT\n", + "LTPTYLGESIAVPHGTVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTQAQLINGR found in part_0.0_13829.432373046875: CORRECT\n", + "LTQDVLDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTQEQLDNFR found in part_0.0_13829.432373046875: CORRECT\n", + "LTQEQLDNFR found in part_0.0_13829.432373046875: CORRECT\n", + "LTQIAIADSDK found in part_0.0_13829.432373046875: CORRECT\n", + "LTQLISAAQK found in part_0.0_13829.432373046875: CORRECT\n", + "LTQSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "LTSEGYSVVTAESGAEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LTSENPIDLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LTSGPALPGK found in part_0.0_13829.432373046875: CORRECT\n", + "LTSLADLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LTSQGLFDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "LTTDAEALAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTTDIGPVIDSEAK found in part_0.0_13829.432373046875: CORRECT\n", + "LTTDITLPSR found in part_0.0_13829.432373046875: CORRECT\n", + "LTTGCSVIVTGK found in part_0.0_13829.432373046875: CORRECT\n", + "LTTIANALGNNINGQPVNYK found in part_0.0_13829.432373046875: CORRECT\n", + "LTTPNTIVLAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LTVADSAR found in part_0.0_13829.432373046875: CORRECT\n", + "LTVDELHPPIPGYECPPNHQLVEVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LTVIAEIR NOT FOUND in any FASTA file.\n", + "LTVLDSLSK found in part_0.0_13829.432373046875: CORRECT\n", + "LTVLDSLSK found in part_0.0_13829.432373046875: CORRECT\n", + "LTVSTIEDK found in part_0.0_13829.432373046875: CORRECT\n", + "LTVTVFK found in part_0.0_13829.432373046875: CORRECT\n", + "LTVTVFK found in part_0.0_13829.432373046875: CORRECT\n", + "LTYAGNLMSLAPVAQSER found in part_0.0_13829.432373046875: CORRECT\n", + "LTYAGNLMSLAPVAQSER found in part_0.0_13829.432373046875: CORRECT\n", + "LVAAIDGIDR found in part_0.0_13829.432373046875: CORRECT\n", + "LVADLIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVADLPESFYTQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVADPLLFER found in part_0.0_13829.432373046875: CORRECT\n", + "LVADSITSQLER found in part_0.0_13829.432373046875: CORRECT\n", + "LVADSITSQLER found in part_0.0_13829.432373046875: CORRECT\n", + "LVAEQIEAAGGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVAIDIAPVDYHVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVALEDGVSLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "LVAMGGIGHTSCLYTDQDNQPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVAMGGIGHTSCLYTDQDNQPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVAMGGIGHTSCLYTDQDNQPAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVATDTIYPHTGQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVAVPHSK found in part_0.0_13829.432373046875: CORRECT\n", + "LVCPFNDVLVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LVCVGSEEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDAINQLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDAVVNAVEHYNEIKPQLLTTGGTSDGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDCVIVATPNYLHK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDDDDNEVPPGQPGELCVK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDIEQVSSTHAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDIEQVSSTHAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDITMTQNQITYDR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDIVEPTEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDKVIGITNEEAISTAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDLPGYGYAEVPEEMK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDLPGYGYAEVPEEMK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDLPGYGYAEVPEEMKR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDMVPEELR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDNGAIAFIPAPFLHAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVDRPTVQANEVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LVDSILVTQ found in part_0.0_13829.432373046875: CORRECT\n", + "LVDSILVTQ found in part_0.0_13829.432373046875: CORRECT\n", + "LVDTHAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVEEGTDPAYAEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVEESDPVAELALR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEGDHNIDCK found in part_0.0_13829.432373046875: CORRECT\n", + "LVEGDHNIDCK found in part_0.0_13829.432373046875: CORRECT\n", + "LVELLAPIPVTLDK found in part_0.0_13829.432373046875: CORRECT\n", + "LVENLFSR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEQLCQR found in part_0.0_13829.432373046875: CORRECT\n", + "LVESLQR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEVAEGQPAQGDFPACLVANENYHHFR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEVIHQR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEVLESPR found in part_0.0_13829.432373046875: CORRECT\n", + "LVEVPVGFK found in part_0.0_13829.432373046875: CORRECT\n", + "LVEYHQMTAPLIGYYSK found in part_0.0_13829.432373046875: CORRECT\n", + "LVFDENLRPK found in part_0.0_13829.432373046875: CORRECT\n", + "LVFDENLRPK found in part_0.0_13829.432373046875: CORRECT\n", + "LVFDLQSK found in part_0.0_13829.432373046875: CORRECT\n", + "LVFITDTVQPVINQGGTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVFITDTVQPVINQGGTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGAPPGYVGYEEGGYLTEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGDLSIGDQQMVEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGEGSSVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGLTGIDDAAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGLVMTEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGPLIDVMGSAGEDLK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGPLIDVMGSAGEDLKR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGQNQTYTVQEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGSSHLLTDPAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGSYTSPFVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGVEYDDACDPK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGVGFFTSGGNGAQQAGK found in part_0.0_13829.432373046875: CORRECT\n", + "LVGVIPEDQSVLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVGVTGTNGK found in part_0.0_13829.432373046875: CORRECT\n", + "LVHGEEGLQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVHGEEGLQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVHIPEEELLPGLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVHIPEEELLPGLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVHLVYDVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVHTLNGSGLAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVHTLNGSGLAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIEMETNGTIDPEEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIEMETNGTIDPEEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIGADGANSQVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIIGGDHGTAGAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIIGGDHGTAGAIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIMGGSAGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVIPPELAYGK found in part_0.0_13829.432373046875: CORRECT\n", + "LVISIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVITPVDGSDPYEEMIPK found in part_0.0_13829.432373046875: CORRECT\n", + "LVITSDEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLADEPTGNLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLADGLIDASAQKPEMIIDAATLTGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVLANAQMVVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLCDVLTYVER found in part_0.0_13829.432373046875: CORRECT\n", + "LVLEVQQQLGGGIVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLEVQQQLGGGIVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLHGDEVPER found in part_0.0_13829.432373046875: CORRECT\n", + "LVLHGDEVPER found in part_0.0_13829.432373046875: CORRECT\n", + "LVLINPELLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVLKPLGTTPDEITAICR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLLVQAVNPEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LVLSGTVCR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLVESPSNPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVLVLNCGSSSLK found in part_0.0_13829.432373046875: CORRECT\n", + "LVNADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVNAGDYK found in part_0.0_13829.432373046875: CORRECT\n", + "LVNERPATTLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVNPEELK found in part_0.0_13829.432373046875: CORRECT\n", + "LVNSQFSQR found in part_0.0_13829.432373046875: CORRECT\n", + "LVNTNVDQAAAASGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPEGIEGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPFEDLPDEEVGSR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPFLDGQVIK found in part_0.0_13829.432373046875: CORRECT\n", + "LVPGYEAPVMLAYSAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPIIADEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPLQGFELDSLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVPYYTVK found in part_0.0_13829.432373046875: CORRECT\n", + "LVQAFQFTDK found in part_0.0_13829.432373046875: CORRECT\n", + "LVQDYPIK found in part_0.0_13829.432373046875: CORRECT\n", + "LVQQFADAGIR found in part_0.0_13829.432373046875: CORRECT\n", + "LVQQFTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVQQFTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSEALAER found in part_0.0_13829.432373046875: CORRECT\n", + "LVSEPGVGTIATGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSEYNATQK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSGRPGEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSIDEKPNFR found in part_0.0_13829.432373046875: CORRECT\n", + "LVSIDEKPNFR found in part_0.0_13829.432373046875: CORRECT\n", + "LVSLPVTEIK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSNIDER found in part_0.0_13829.432373046875: CORRECT\n", + "LVSSAGTGHFYTTTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSSAGTGHFYTTTK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSSVLNAAVVEGEPIHLR found in part_0.0_13829.432373046875: CORRECT\n", + "LVSTHNEASLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LVSTHNEASLSR found in part_0.0_13829.432373046875: CORRECT\n", + "LVSWYDNETGYSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LVSWYDNETGYSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTDEAELAGMPESALAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTDEAELAGMPESALAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTDEAELAGMPESALAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTDELVIALVK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTHLDVSR found in part_0.0_13829.432373046875: CORRECT\n", + "LVTIDNIQK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTLAER found in part_0.0_13829.432373046875: CORRECT\n", + "LVTPGIRPQGSEAGDQR found in part_0.0_13829.432373046875: CORRECT\n", + "LVTYPGNYDQYLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTYQTDANGQPVNQILVEAATDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVTYQTDANGQPVNQILVEAATDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVVATDTAFVPFEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LVVATDTAFVPFEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LVVAVDQEGGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVVDQEDADGR found in part_0.0_13829.432373046875: CORRECT\n", + "LVVEYPA found in part_0.0_13829.432373046875: CORRECT\n", + "LVVGGFER found in part_0.0_13829.432373046875: CORRECT\n", + "LVVHPYTVR found in part_0.0_13829.432373046875: CORRECT\n", + "LVVNSATR found in part_0.0_13829.432373046875: CORRECT\n", + "LVYEHTAK found in part_0.0_13829.432373046875: CORRECT\n", + "LVYSTETGR found in part_0.0_13829.432373046875: CORRECT\n", + "LWPELAER found in part_0.0_13829.432373046875: CORRECT\n", + "LWSAEIPNLYR found in part_0.0_13829.432373046875: CORRECT\n", + "LWVAPPTR found in part_0.0_13829.432373046875: CORRECT\n", + "LYAASSSGVPVNLLVR found in part_0.0_13829.432373046875: CORRECT\n", + "LYAIHGTNANFGIGLR found in part_0.0_13829.432373046875: CORRECT\n", + "LYAIQPEETLTLDVK found in part_0.0_13829.432373046875: CORRECT\n", + "LYDADLPEYNVAVDR found in part_0.0_13829.432373046875: CORRECT\n", + "LYDLDIESPGHEQK found in part_0.0_13829.432373046875: CORRECT\n", + "LYDQMLEPK found in part_0.0_13829.432373046875: CORRECT\n", + "LYDTYGFPVDLTADVCR found in part_0.0_13829.432373046875: CORRECT\n", + "LYDTYGFPVDLTADVCR found in part_0.0_13829.432373046875: CORRECT\n", + "LYELCEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "LYELEMQK found in part_0.0_13829.432373046875: CORRECT\n", + "LYHEEEVTVYDPQDVEFK found in part_0.0_13829.432373046875: CORRECT\n", + "LYHFPHGGDVIDSPGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LYHFPHGGDVIDSPGVR found in part_0.0_13829.432373046875: CORRECT\n", + "LYILQER found in part_0.0_13829.432373046875: CORRECT\n", + "LYINADNEASIR found in part_0.0_13829.432373046875: CORRECT\n", + "LYIVSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LYIVSNK found in part_0.0_13829.432373046875: CORRECT\n", + "LYKEDLIYR found in part_0.0_13829.432373046875: CORRECT\n", + "LYLHPEALSEK found in part_0.0_13829.432373046875: CORRECT\n", + "LYLNSFNQTR found in part_0.0_13829.432373046875: CORRECT\n", + "LYLPDIK found in part_0.0_13829.432373046875: CORRECT\n", + "LYNDAGISNDR found in part_0.0_13829.432373046875: CORRECT\n", + "LYNIVPYGIDATGHIDYADLEK found in part_0.0_13829.432373046875: CORRECT\n", + "LYPANATTNSSHGVTSIDAIMPVLER found in part_0.0_13829.432373046875: CORRECT\n", + "LYPENNEAR found in part_0.0_13829.432373046875: CORRECT\n", + "LYPNVDFYSGIILK found in part_0.0_13829.432373046875: CORRECT\n", + "LYPVTMAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "LYQGLEAFCPLR found in part_0.0_13829.432373046875: CORRECT\n", + "LYQPQDATTNPSLILNAAQIPEYR found in part_0.0_13829.432373046875: CORRECT\n", + "LYQQLAADLK found in part_0.0_13829.432373046875: CORRECT\n", + "LYQTVGQLIK found in part_0.0_13829.432373046875: CORRECT\n", + "LYSEDDFLSRPEFTDPEILR found in part_0.0_13829.432373046875: CORRECT\n", + "LYTDYSLLTADAR found in part_0.0_13829.432373046875: CORRECT\n", + "LYTESDLQR found in part_0.0_13829.432373046875: CORRECT\n", + "LYTSLGDAAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "LYTTNADGELITIDTADNK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide LYVIYAQDK NOT FOUND in any FASTA file.\n", + "LYVPVSSLHLISR found in part_0.0_13829.432373046875: CORRECT\n", + "LYVQDGVYDR found in part_0.0_13829.432373046875: CORRECT\n", + "LYVSENQLK found in part_0.0_13829.432373046875: CORRECT\n", + "MAALGQSIGGIFPSDEIVK found in part_0.0_13829.432373046875: CORRECT\n", + "MAALIQSGLDLSPIITHR found in part_0.0_13829.432373046875: CORRECT\n", + "MAALIQSGLDLSPIITHR found in part_0.0_13829.432373046875: CORRECT\n", + "MAALIQSGLDLSPIITHR found in part_0.0_13829.432373046875: CORRECT\n", + "MADAIDAYQPDYVVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MAEDLTEYLEEHGER found in part_0.0_13829.432373046875: CORRECT\n", + "MAEFGSCHR found in part_0.0_13829.432373046875: CORRECT\n", + "MAENPQQVLDFLTDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MAENQYYGTGR found in part_0.0_13829.432373046875: CORRECT\n", + "MAERPEVQDALSAEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "MAEVTPDTIR found in part_0.0_13829.432373046875: CORRECT\n", + "MAFAEQGITELSK found in part_0.0_13829.432373046875: CORRECT\n", + "MAGTADIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "MAGTADIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "MALELFKPFIYGK found in part_0.0_13829.432373046875: CORRECT\n", + "MAMHGVDTPIDYLNSHGTSTPVGDVK found in part_0.0_13829.432373046875: CORRECT\n", + "MANQANIPVITLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MANQANIPVITLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MANQANIPVITLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MANQANIPVITLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MANVEIYTK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALAAGNCVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALAAGNCVVLKPAR found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALAAGNCVVLKPAR found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALLTGNTIVIK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALLTGNTIVIK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALLTGNTIVIKPSEFTPNNAIAFAK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPALLTGNTIVIKPSEFTPNNAIAFAK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPPQISAEVLK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPPQISAEVLKK found in part_0.0_13829.432373046875: CORRECT\n", + "MAPVIQR found in part_0.0_13829.432373046875: CORRECT\n", + "MAQENPGVDVPVYGVPINTR found in part_0.0_13829.432373046875: CORRECT\n", + "MAQILDTTPQPAQNIAPSAVIDATAK found in part_0.0_13829.432373046875: CORRECT\n", + "MAQVSAETINPAHPGSK found in part_0.0_13829.432373046875: CORRECT\n", + "MAQVVDKHQVNILYTAPTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MATLLAGLPQSVSGTTINR found in part_0.0_13829.432373046875: CORRECT\n", + "MATLNFNATGGDGYPR found in part_0.0_13829.432373046875: CORRECT\n", + "MATLYPAR found in part_0.0_13829.432373046875: CORRECT\n", + "MAVHPDDPPRPILGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "MAVHPDDPPRPILGLPR found in part_0.0_13829.432373046875: CORRECT\n", + "MCDTIHPQIHDSDR found in part_0.0_13829.432373046875: CORRECT\n", + "MCGLVMLLPHGYEGQGPEHSSAR found in part_0.0_13829.432373046875: CORRECT\n", + "MCSSPETGLSLETAAK found in part_0.0_13829.432373046875: CORRECT\n", + "MCVAGLNTANVQR found in part_0.0_13829.432373046875: CORRECT\n", + "MDAAQLTEEGYYSVFGK found in part_0.0_13829.432373046875: CORRECT\n", + "MDAAQLTEEGYYSVFGK found in part_0.0_13829.432373046875: CORRECT\n", + "MDALELLINR found in part_0.0_13829.432373046875: CORRECT\n", + "MDAWLSGPNANK found in part_0.0_13829.432373046875: CORRECT\n", + "MDAWLSGPNANK found in part_0.0_13829.432373046875: CORRECT\n", + "MDDCAPIAAYISQEK found in part_0.0_13829.432373046875: CORRECT\n", + "MDEVIYEEFK found in part_0.0_13829.432373046875: CORRECT\n", + "MDIISVALK found in part_0.0_13829.432373046875: CORRECT\n", + "MDLSQLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "MDNFLALTLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "MDNGEGLPQYIK found in part_0.0_13829.432373046875: CORRECT\n", + "MDPNTQFLK found in part_0.0_13829.432373046875: CORRECT\n", + "MDQAGIIR found in part_0.0_13829.432373046875: CORRECT\n", + "MDQFECINVADAHQK found in part_0.0_13829.432373046875: CORRECT\n", + "MDQTYSLESFLNHVQK found in part_0.0_13829.432373046875: CORRECT\n", + "MDTLAGIFGIGQHPK found in part_0.0_13829.432373046875: CORRECT\n", + "MDTLAGIFGIGQHPK found in part_0.0_13829.432373046875: CORRECT\n", + "MDTLQPDR found in part_0.0_13829.432373046875: CORRECT\n", + "MDYEFLR found in part_0.0_13829.432373046875: CORRECT\n", + "MDYFTLFGLPAR found in part_0.0_13829.432373046875: CORRECT\n", + "MDYTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "MEALLQLK found in part_0.0_13829.432373046875: CORRECT\n", + "MECCGVCHTDLHVK found in part_0.0_13829.432373046875: CORRECT\n", + "MEDAFDVQR found in part_0.0_13829.432373046875: CORRECT\n", + "MEDGDLDVLR found in part_0.0_13829.432373046875: CORRECT\n", + "MEFPEPVISIAVEPK found in part_0.0_13829.432373046875: CORRECT\n", + "MEFPEPVISIAVEPK found in part_0.0_13829.432373046875: CORRECT\n", + "MELLLLSNSTLPGK found in part_0.0_13829.432373046875: CORRECT\n", + "MELSSLTAVSPVDGR found in part_0.0_13829.432373046875: CORRECT\n", + "MENFTTNLNQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "MENYLIDNLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MENYLIDNLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MEQNPQSQLK found in part_0.0_13829.432373046875: CORRECT\n", + "MEQVVIVDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MESIEQQLTELR found in part_0.0_13829.432373046875: CORRECT\n", + "MESKVVVPAQGK found in part_0.0_13829.432373046875: CORRECT\n", + "MESLASLYK found in part_0.0_13829.432373046875: CORRECT\n", + "MESLLTLPLAGEAR found in part_0.0_13829.432373046875: CORRECT\n", + "MESLTLQPIAR found in part_0.0_13829.432373046875: CORRECT\n", + "MESPLGSDLAR found in part_0.0_13829.432373046875: CORRECT\n", + "METNIVEVENFVQQSEER found in part_0.0_13829.432373046875: CORRECT\n", + "METTKPSFQDVLEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "METVAYADFAR found in part_0.0_13829.432373046875: CORRECT\n", + "MEVFTAPGKPTVVVDYAHTPDALEK found in part_0.0_13829.432373046875: CORRECT\n", + "MFACEHENVQPDILCLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MFAGLPSLTHEQQQK found in part_0.0_13829.432373046875: CORRECT\n", + "MFEINPVNNR found in part_0.0_13829.432373046875: CORRECT\n", + "MFGLEECQPLTPDR found in part_0.0_13829.432373046875: CORRECT\n", + "MFKPELLSPAGTLK found in part_0.0_13829.432373046875: CORRECT\n", + "MFPQILVNVR found in part_0.0_13829.432373046875: CORRECT\n", + "MFQDNPLLAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "MFQQEVTITAPNGLHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MFQQEVTITAPNGLHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MFQQEVTITAPNGLHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MFSNTEELLPVISFNAK found in part_0.0_13829.432373046875: CORRECT\n", + "MFSVDPATHLAR found in part_0.0_13829.432373046875: CORRECT\n", + "MFTGIVQGTAK found in part_0.0_13829.432373046875: CORRECT\n", + "MFTINAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "MFTINAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "MGAEAIQALLK found in part_0.0_13829.432373046875: CORRECT\n", + "MGALVNAEQR found in part_0.0_13829.432373046875: CORRECT\n", + "MGANFLK found in part_0.0_13829.432373046875: CORRECT\n", + "MGAQVVELGPVNATIHK found in part_0.0_13829.432373046875: CORRECT\n", + "MGEIIIDAK found in part_0.0_13829.432373046875: CORRECT\n", + "MGEIVTDR found in part_0.0_13829.432373046875: CORRECT\n", + "MGFAIAAAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "MGFALRHNVIEAHGLCAACVEVEACR found in part_0.0_13829.432373046875: CORRECT\n", + "MGHAGAIIAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "MGISTIASYR found in part_0.0_13829.432373046875: CORRECT\n", + "MGLPILTEGK found in part_0.0_13829.432373046875: CORRECT\n", + "MGLQNYLQAQIR found in part_0.0_13829.432373046875: CORRECT\n", + "MGLVEPLK found in part_0.0_13829.432373046875: CORRECT\n", + "MGLVEPLKELFK found in part_0.0_13829.432373046875: CORRECT\n", + "MGSEVFHHLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MGSEVFHHLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MGSEVFHHLAK found in part_0.0_13829.432373046875: CORRECT\n", + "MGSSYGIR found in part_0.0_13829.432373046875: CORRECT\n", + "MGSTGIGNGIAIPHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MGTLDPLGTNIK found in part_0.0_13829.432373046875: CORRECT\n", + "MGVTPSEALR found in part_0.0_13829.432373046875: CORRECT\n", + "MHENQQPQTEAFELSAAER found in part_0.0_13829.432373046875: CORRECT\n", + "MHGPQEVAFANK found in part_0.0_13829.432373046875: CORRECT\n", + "MHGPQEVAFANK found in part_0.0_13829.432373046875: CORRECT\n", + "MIAEFESR found in part_0.0_13829.432373046875: CORRECT\n", + "MIALIQR found in part_0.0_13829.432373046875: CORRECT\n", + "MIAPILDEIADEYQGK found in part_0.0_13829.432373046875: CORRECT\n", + "MIAPILDEIADEYQGK found in part_0.0_13829.432373046875: CORRECT\n", + "MIAPILDEIADEYQGK found in part_0.0_13829.432373046875: CORRECT\n", + "MIAVTTTSGTGSEVTPFAVVTDDATGQK found in part_0.0_13829.432373046875: CORRECT\n", + "MIDTTLPLTDIHR found in part_0.0_13829.432373046875: CORRECT\n", + "MIDTTLPLTDIHR found in part_0.0_13829.432373046875: CORRECT\n", + "MIEVTGVTLK found in part_0.0_13829.432373046875: CORRECT\n", + "MIGLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "MIGPNCPGVITPGECK found in part_0.0_13829.432373046875: CORRECT\n", + "MIGPNCPGVITPGECK found in part_0.0_13829.432373046875: CORRECT\n", + "MIGPNCPGVITPGECK found in part_0.0_13829.432373046875: CORRECT\n", + "MIHTLLGEENFQK found in part_0.0_13829.432373046875: CORRECT\n", + "MIHTLLGEENFQK found in part_0.0_13829.432373046875: CORRECT\n", + "MIIVTGGAGFIGSNIVK found in part_0.0_13829.432373046875: CORRECT\n", + "MILSAFSLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "MILSAFSLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "MIPDNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "MIPGFEDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "MIPGVSYQK found in part_0.0_13829.432373046875: CORRECT\n", + "MISGILASPGIAFGK found in part_0.0_13829.432373046875: CORRECT\n", + "MISGQEQPDSGTITLGETVK found in part_0.0_13829.432373046875: CORRECT\n", + "MITEGSNTASAEIDR found in part_0.0_13829.432373046875: CORRECT\n", + "MITGIQITK found in part_0.0_13829.432373046875: CORRECT\n", + "MKDDAIIILDPVNQDVITDGLNNGIR found in part_0.0_13829.432373046875: CORRECT\n", + "MKDEEWNDIIETNLSSVFR found in part_0.0_13829.432373046875: CORRECT\n", + "MKPFIFGAR found in part_0.0_13829.432373046875: CORRECT\n", + "MKPSVILYK found in part_0.0_13829.432373046875: CORRECT\n", + "MKPTTISLLQK found in part_0.0_13829.432373046875: CORRECT\n", + "MKPTTISLLQK found in part_0.0_13829.432373046875: CORRECT\n", + "MKTFSEAIISGEWK found in part_0.0_13829.432373046875: CORRECT\n", + "MLAHCEAVTPIR found in part_0.0_13829.432373046875: CORRECT\n", + "MLAHCEAVTPIR found in part_0.0_13829.432373046875: CORRECT\n", + "MLDASHVVVFCAK found in part_0.0_13829.432373046875: CORRECT\n", + "MLDGGDNPLR found in part_0.0_13829.432373046875: CORRECT\n", + "MLDLICPK found in part_0.0_13829.432373046875: CORRECT\n", + "MLDPNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "MLDQVCQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "MLEAGESALDVVTEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "MLEDAFSYANQLGAR found in part_0.0_13829.432373046875: CORRECT\n", + "MLEDQNLISAHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MLEDQNLISAHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MLEDQNLISAHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MLEEISSVK found in part_0.0_13829.432373046875: CORRECT\n", + "MLEGVDVK found in part_0.0_13829.432373046875: CORRECT\n", + "MLEVLDIPR found in part_0.0_13829.432373046875: CORRECT\n", + "MLHLTVEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "MLHLTVEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "MLIIETLPLLR found in part_0.0_13829.432373046875: CORRECT\n", + "MLILISPAK found in part_0.0_13829.432373046875: CORRECT\n", + "MLINATQQEELR found in part_0.0_13829.432373046875: CORRECT\n", + "MLKPDNLPVTFGK found in part_0.0_13829.432373046875: CORRECT\n", + "MLLPDTVGTGGDSHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MLLPDTVGTGGDSHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MLLPDTVGTGGDSHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MLLPDTVGTGGDSHTR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNETPALAPDGQPYR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNETPALAPDGQPYR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNKPVEELNIITCHLGNGGSVSAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNKPVEELNIITCHLGNGGSVSAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNKPVEELNIITCHLGNGGSVSAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "MLNQLDNLTER found in part_0.0_13829.432373046875: CORRECT\n", + "MLQEAVDALLDNGR found in part_0.0_13829.432373046875: CORRECT\n", + "MLQEAVDALLDNGR found in part_0.0_13829.432373046875: CORRECT\n", + "MLQQTIEQALLEQGR found in part_0.0_13829.432373046875: CORRECT\n", + "MLQSNEYFSGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide MLSATQPLSEK NOT FOUND in any FASTA file.\n", + "MLSFEEIGTSTLQSR found in part_0.0_13829.432373046875: CORRECT\n", + "MLTEANLNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "MLTLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "MLVEEDPGFFEK found in part_0.0_13829.432373046875: CORRECT\n", + "MMLEHYQQTK found in part_0.0_13829.432373046875: CORRECT\n", + "MMRPGEPPTR found in part_0.0_13829.432373046875: CORRECT\n", + "MNDIAHNLAQVR found in part_0.0_13829.432373046875: CORRECT\n", + "MNEFSILCR found in part_0.0_13829.432373046875: CORRECT\n", + "MNELDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "MNELMALHTGQSLEQIER found in part_0.0_13829.432373046875: CORRECT\n", + "MNIAGASFANIEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "MNIGQILETHLGMAAK found in part_0.0_13829.432373046875: CORRECT\n", + "MNIIEANVATPDAR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIIEANVATPDAR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIIEANVATPDAR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIPVFHDDQHGTAIISTAAILNGLR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIPVFHDDQHGTAIISTAAILNGLR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIPVFHDDQHGTAIISTAAILNGLR found in part_0.0_13829.432373046875: CORRECT\n", + "MNIVVAQDLYPESLEGDEPEPLPQVR found in part_0.0_13829.432373046875: CORRECT\n", + "MNLHEYQAK found in part_0.0_13829.432373046875: CORRECT\n", + "MNNDVFPNK found in part_0.0_13829.432373046875: CORRECT\n", + "MNNFNLHTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "MNNFNLHTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "MNPDGIFLSNGPGDPAPCDYAITAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "MNPDGIFLSNGPGDPAPCDYAITAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "MNPIVINR found in part_0.0_13829.432373046875: CORRECT\n", + "MNQLLVS found in part_0.0_13829.432373046875: CORRECT\n", + "MNQLLVS found in part_0.0_13829.432373046875: CORRECT\n", + "MNSLFASTAR found in part_0.0_13829.432373046875: CORRECT\n", + "MNSLIAQYPLVK found in part_0.0_13829.432373046875: CORRECT\n", + "MNTEATHDQNEALTTGAR found in part_0.0_13829.432373046875: CORRECT\n", + "MNTVCTHCQAINR found in part_0.0_13829.432373046875: CORRECT\n", + "MNVPFQLADSALDK found in part_0.0_13829.432373046875: CORRECT\n", + "MNVVILDTGCANLNSVK found in part_0.0_13829.432373046875: CORRECT\n", + "MNYQNDDLR found in part_0.0_13829.432373046875: CORRECT\n", + "MPEDLLTR found in part_0.0_13829.432373046875: CORRECT\n", + "MPEEVEELEQQR found in part_0.0_13829.432373046875: CORRECT\n", + "MPEEVEELEQQR found in part_0.0_13829.432373046875: CORRECT\n", + "MPGDLSEYSVIQTK found in part_0.0_13829.432373046875: CORRECT\n", + "MPIITFIDTPGAYPGVGAEER found in part_0.0_13829.432373046875: CORRECT\n", + "MPNLLPFQTK found in part_0.0_13829.432373046875: CORRECT\n", + "MPTSLIHALALTK found in part_0.0_13829.432373046875: CORRECT\n", + "MPTSLIHALALTK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAAGAQAYLVNTGWNGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAASGQLQQSHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAASGQLQQSHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAASGQLQQSHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAATVVINR found in part_0.0_13829.432373046875: CORRECT\n", + "MQALLLEQQDGK found in part_0.0_13829.432373046875: CORRECT\n", + "MQAVGLDLPFQTR found in part_0.0_13829.432373046875: CORRECT\n", + "MQAYFDQLDR found in part_0.0_13829.432373046875: CORRECT\n", + "MQDLSLEAR found in part_0.0_13829.432373046875: CORRECT\n", + "MQDPQFAGQTK found in part_0.0_13829.432373046875: CORRECT\n", + "MQDSILTTVVK found in part_0.0_13829.432373046875: CORRECT\n", + "MQDYTLEADEGR found in part_0.0_13829.432373046875: CORRECT\n", + "MQEEIAQLEVTGESGAGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "MQELAQVSQK found in part_0.0_13829.432373046875: CORRECT\n", + "MQEQYRPEEIESK found in part_0.0_13829.432373046875: CORRECT\n", + "MQGSVTEFLKPR found in part_0.0_13829.432373046875: CORRECT\n", + "MQGSVTEFLKPR found in part_0.0_13829.432373046875: CORRECT\n", + "MQIDSKPEELDR found in part_0.0_13829.432373046875: CORRECT\n", + "MQIDSKPEELDR found in part_0.0_13829.432373046875: CORRECT\n", + "MQLNITGNNVEITEALR found in part_0.0_13829.432373046875: CORRECT\n", + "MQLNSTEISELIK found in part_0.0_13829.432373046875: CORRECT\n", + "MQPGITLR found in part_0.0_13829.432373046875: CORRECT\n", + "MQPNDITFFQR found in part_0.0_13829.432373046875: CORRECT\n", + "MQQLDSIISAK found in part_0.0_13829.432373046875: CORRECT\n", + "MQQLQNIIETAFER found in part_0.0_13829.432373046875: CORRECT\n", + "MQQLQNIIETAFER found in part_0.0_13829.432373046875: CORRECT\n", + "MQQNQSGFDLR found in part_0.0_13829.432373046875: CORRECT\n", + "MQSDEGEINPVDILR found in part_0.0_13829.432373046875: CORRECT\n", + "MQSFDADIPK found in part_0.0_13829.432373046875: CORRECT\n", + "MQTEHVILLNAQGVPTGTLEK found in part_0.0_13829.432373046875: CORRECT\n", + "MQTQVLFEHPLNEK found in part_0.0_13829.432373046875: CORRECT\n", + "MQVILLDK found in part_0.0_13829.432373046875: CORRECT\n", + "MQVSVETTQGLGR found in part_0.0_13829.432373046875: CORRECT\n", + "MQVSVETTQGLGR found in part_0.0_13829.432373046875: CORRECT\n", + "MQVSVETTQGLGR found in part_0.0_13829.432373046875: CORRECT\n", + "MQYVKPELVPEDLAFLQYTGGTTGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "MSADLLIVPFIDK found in part_0.0_13829.432373046875: CORRECT\n", + "MSEIAIVLDEAER found in part_0.0_13829.432373046875: CORRECT\n", + "MSELQYGK found in part_0.0_13829.432373046875: CORRECT\n", + "MSFELPALPYAK found in part_0.0_13829.432373046875: CORRECT\n", + "MSGIDSYLLR found in part_0.0_13829.432373046875: CORRECT\n", + "MSLAPFIER found in part_0.0_13829.432373046875: CORRECT\n", + "MSNLVTSVVK found in part_0.0_13829.432373046875: CORRECT\n", + "MSPEAFEESVDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MSQPITRENFDEWMIPVYAPAPFIPVR found in part_0.0_13829.432373046875: CORRECT\n", + "MSQQVIIFDTTLR found in part_0.0_13829.432373046875: CORRECT\n", + "MSQTVHFQGNPVTVANSIPQAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "MSTGLALDSEGK found in part_0.0_13829.432373046875: CORRECT\n", + "MSTGLALDSEGKR found in part_0.0_13829.432373046875: CORRECT\n", + "MSVVPVADVLQGR found in part_0.0_13829.432373046875: CORRECT\n", + "MSYTLPSLPYAYDALEPHFDK found in part_0.0_13829.432373046875: CORRECT\n", + "MSYVEGLLSSNQK found in part_0.0_13829.432373046875: CORRECT\n", + "MTAHTPCFR found in part_0.0_13829.432373046875: CORRECT\n", + "MTDIAQLLGK found in part_0.0_13829.432373046875: CORRECT\n", + "MTDLDLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "MTDLDLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "MTESFAQLFEESLK found in part_0.0_13829.432373046875: CORRECT\n", + "MTESFAQLFEESLK found in part_0.0_13829.432373046875: CORRECT\n", + "MTESFAQLFEESLK found in part_0.0_13829.432373046875: CORRECT\n", + "MTETGGNFDK found in part_0.0_13829.432373046875: CORRECT\n", + "MTFANGAVR found in part_0.0_13829.432373046875: CORRECT\n", + "MTGLESYDVK found in part_0.0_13829.432373046875: CORRECT\n", + "MTLQQQIIK found in part_0.0_13829.432373046875: CORRECT\n", + "MTLTEIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "MTNNDTTLQLSSVLNR found in part_0.0_13829.432373046875: CORRECT\n", + "MTNNPPSAQIK found in part_0.0_13829.432373046875: CORRECT\n", + "MTNNPPSAQIKPGEYGFPLK found in part_0.0_13829.432373046875: CORRECT\n", + "MTNNPPSAQIKPGEYGFPLK found in part_0.0_13829.432373046875: CORRECT\n", + "MTPEHLPTEQYEAQLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "MTPGGQAQIGNVDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "MTPPGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "MTPTIELICGHR found in part_0.0_13829.432373046875: CORRECT\n", + "MTPTIELICGHR found in part_0.0_13829.432373046875: CORRECT\n", + "MTPVPDCGEK found in part_0.0_13829.432373046875: CORRECT\n", + "MTQTLSQLENSGAFIER found in part_0.0_13829.432373046875: CORRECT\n", + "MTQTLSQLENSGAFIER found in part_0.0_13829.432373046875: CORRECT\n", + "MTSCNQQATAQALK found in part_0.0_13829.432373046875: CORRECT\n", + "MTSVGSQDTTGPMTR found in part_0.0_13829.432373046875: CORRECT\n", + "MTTDDLAFDQR found in part_0.0_13829.432373046875: CORRECT\n", + "MVAFSNYFFDTTQGHSQINGCTVR found in part_0.0_13829.432373046875: CORRECT\n", + "MVAFSNYFFDTTQGHSQINGCTVR found in part_0.0_13829.432373046875: CORRECT\n", + "MVAPVDGTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVAPVDGTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVEAGQMTATVAQNPADIGATGLK found in part_0.0_13829.432373046875: CORRECT\n", + "MVEDILAPGLR found in part_0.0_13829.432373046875: CORRECT\n", + "MVEEDPAHPR found in part_0.0_13829.432373046875: CORRECT\n", + "MVEEDPAHPR found in part_0.0_13829.432373046875: CORRECT\n", + "MVEVNACLK found in part_0.0_13829.432373046875: CORRECT\n", + "MVFNVPTR found in part_0.0_13829.432373046875: CORRECT\n", + "MVGGVTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVGTTDDPIDSLEHHAEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "MVINALNANVK found in part_0.0_13829.432373046875: CORRECT\n", + "MVKPGINLR found in part_0.0_13829.432373046875: CORRECT\n", + "MVLETGEHPGALK found in part_0.0_13829.432373046875: CORRECT\n", + "MVLETGEHPGALK found in part_0.0_13829.432373046875: CORRECT\n", + "MVLTVTDDDLVR found in part_0.0_13829.432373046875: CORRECT\n", + "MVLVLGQEYEGLPDAAR found in part_0.0_13829.432373046875: CORRECT\n", + "MVNADELAR found in part_0.0_13829.432373046875: CORRECT\n", + "MVNYQLIPVNLK found in part_0.0_13829.432373046875: CORRECT\n", + "MVPCDFIAPAITHNPLSDHHQK found in part_0.0_13829.432373046875: CORRECT\n", + "MVPVVALVGRPNVGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVQAPIFHVNADDPEAVAFVTR found in part_0.0_13829.432373046875: CORRECT\n", + "MVSLTGSIATGEHIISHTASSIK found in part_0.0_13829.432373046875: CORRECT\n", + "MVSLTGSIATGEHIISHTASSIK found in part_0.0_13829.432373046875: CORRECT\n", + "MVTLYGIK found in part_0.0_13829.432373046875: CORRECT\n", + "MVVTLIHPIAMDDGLR found in part_0.0_13829.432373046875: CORRECT\n", + "MVYAPTQEHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVYAPTQEHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVYAPTQEHGK found in part_0.0_13829.432373046875: CORRECT\n", + "MVYSYTEK found in part_0.0_13829.432373046875: CORRECT\n", + "MYALTQGR found in part_0.0_13829.432373046875: CORRECT\n", + "MYAVFQSGGK found in part_0.0_13829.432373046875: CORRECT\n", + "MYFLPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "MYQDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "MYQVVASDLDGTLLSPDHTLSPYAK found in part_0.0_13829.432373046875: CORRECT\n", + "MYTNPLR found in part_0.0_13829.432373046875: CORRECT\n", + "MYVVSTK found in part_0.0_13829.432373046875: CORRECT\n", + "NAADEDRDALR found in part_0.0_13829.432373046875: CORRECT\n", + "NAADEDRDALR found in part_0.0_13829.432373046875: CORRECT\n", + "NAALLAEVPHSVPAVTVNR found in part_0.0_13829.432373046875: CORRECT\n", + "NAALLAEVPHSVPAVTVNR found in part_0.0_13829.432373046875: CORRECT\n", + "NAAVEAVFALNR found in part_0.0_13829.432373046875: CORRECT\n", + "NADALTLQAPAQR found in part_0.0_13829.432373046875: CORRECT\n", + "NADALTLQAPAQR found in part_0.0_13829.432373046875: CORRECT\n", + "NADHAEQPVVNYLLAAEAAQQR found in part_0.0_13829.432373046875: CORRECT\n", + "NADTVVIGR found in part_0.0_13829.432373046875: CORRECT\n", + "NAEFLQAYGVAIADGPLK found in part_0.0_13829.432373046875: CORRECT\n", + "NAEFLQAYGVAIADGPLK found in part_0.0_13829.432373046875: CORRECT\n", + "NAELACEVTLQPLR found in part_0.0_13829.432373046875: CORRECT\n", + "NAFANLQK found in part_0.0_13829.432373046875: CORRECT\n", + "NAFLEVR found in part_0.0_13829.432373046875: CORRECT\n", + "NAFNTDDYK found in part_0.0_13829.432373046875: CORRECT\n", + "NAFRPLTVK found in part_0.0_13829.432373046875: CORRECT\n", + "NAFSQALK found in part_0.0_13829.432373046875: CORRECT\n", + "NAGDTASIPTIEAILNEEK found in part_0.0_13829.432373046875: CORRECT\n", + "NAGELDTVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NAGFINK found in part_0.0_13829.432373046875: CORRECT\n", + "NAGTGQDNLTHQMHLQETFR found in part_0.0_13829.432373046875: CORRECT\n", + "NAHLVSTVVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "NAHLVSTVVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "NAIAHTVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NAIGNYITSGELPDENAR found in part_0.0_13829.432373046875: CORRECT\n", + "NAIGNYITSGELPDENAR found in part_0.0_13829.432373046875: CORRECT\n", + "NAIIFSPHPR found in part_0.0_13829.432373046875: CORRECT\n", + "NAIPSGIPDESVPLYLQR found in part_0.0_13829.432373046875: CORRECT\n", + "NALATTDQTQR found in part_0.0_13829.432373046875: CORRECT\n", + "NALAYLAYSDK found in part_0.0_13829.432373046875: CORRECT\n", + "NALDKIPLDADLR found in part_0.0_13829.432373046875: CORRECT\n", + "NALEVEGLTK found in part_0.0_13829.432373046875: CORRECT\n", + "NALGILGGIPR found in part_0.0_13829.432373046875: CORRECT\n", + "NALPEGYAPAK found in part_0.0_13829.432373046875: CORRECT\n", + "NALQELIIDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "NALSLQAPCPDIIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NALTAVQNNAVDSGQDYSGFTLTPSAQSPR NOT FOUND in any FASTA file.\n", + "NALTTLPMGGGK found in part_0.0_13829.432373046875: CORRECT\n", + "NAMPLLNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NAPFTYSSPTLSVEALK NOT FOUND in any FASTA file.\n", + "NAPSYTAQTLK found in part_0.0_13829.432373046875: CORRECT\n", + "NAQPDTLDAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NASLFNK found in part_0.0_13829.432373046875: CORRECT\n", + "NASMAVLR found in part_0.0_13829.432373046875: CORRECT\n", + "NATETEVAER found in part_0.0_13829.432373046875: CORRECT\n", + "NATGCSAEQAEAALIACER found in part_0.0_13829.432373046875: CORRECT\n", + "NATLIEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "NAVDEEIER found in part_0.0_13829.432373046875: CORRECT\n", + "NAVENHFDTSYELESLLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "NAVIEAAER found in part_0.0_13829.432373046875: CORRECT\n", + "NAVNAELTMAR found in part_0.0_13829.432373046875: CORRECT\n", + "NAYQNDLHLPLLNLMLTPDER found in part_0.0_13829.432373046875: CORRECT\n", + "NCGKPLHSAFNDEIPAIVDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "NCGKPLHSAFNDEIPAIVDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "NCVNPHVAD found in part_0.0_13829.432373046875: CORRECT\n", + "NDAAVLLVDHQAGLLSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "NDAAVLLVDHQAGLLSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "NDDAAFER found in part_0.0_13829.432373046875: CORRECT\n", + "NDDYLILDAVNNQVYVNPTNEVIDK found in part_0.0_13829.432373046875: CORRECT\n", + "NDEAFLQQVMK found in part_0.0_13829.432373046875: CORRECT\n", + "NDELLQFER found in part_0.0_13829.432373046875: CORRECT\n", + "NDELVAYAR found in part_0.0_13829.432373046875: CORRECT\n", + "NDFSISLPVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NDGDSQFIR found in part_0.0_13829.432373046875: CORRECT\n", + "NDHLMLAR found in part_0.0_13829.432373046875: CORRECT\n", + "NDIAMGPLINAAALER found in part_0.0_13829.432373046875: CORRECT\n", + "NDIAMGPLINAAALER found in part_0.0_13829.432373046875: CORRECT\n", + "NDIAMGPLINAAALER found in part_0.0_13829.432373046875: CORRECT\n", + "NDIEGLATLFSNHIPDYR found in part_0.0_13829.432373046875: CORRECT\n", + "NDLAFLEK found in part_0.0_13829.432373046875: CORRECT\n", + "NDLQGATLAIVPGDPDR found in part_0.0_13829.432373046875: CORRECT\n", + "NDLQGATLAIVPGDPDR found in part_0.0_13829.432373046875: CORRECT\n", + "NDLQGATLAIVPGDPDRVEK found in part_0.0_13829.432373046875: CORRECT\n", + "NDPEGRPTVFDR found in part_0.0_13829.432373046875: CORRECT\n", + "NDPFSPEEDSR found in part_0.0_13829.432373046875: CORRECT\n", + "NDPLAMQR found in part_0.0_13829.432373046875: CORRECT\n", + "NDQLKEPMFFGQPVNVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NDQVATDLK found in part_0.0_13829.432373046875: CORRECT\n", + "NDVEIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NDVISPEFDENGRPLR found in part_0.0_13829.432373046875: CORRECT\n", + "NDVNPEITDR found in part_0.0_13829.432373046875: CORRECT\n", + "NDYPDDYNEK found in part_0.0_13829.432373046875: CORRECT\n", + "NEAPASFEK found in part_0.0_13829.432373046875: CORRECT\n", + "NEAPLGIVYGSDAVASK found in part_0.0_13829.432373046875: CORRECT\n", + "NEAVETETAE found in part_0.0_13829.432373046875: CORRECT\n", + "NECDVLIVGR found in part_0.0_13829.432373046875: CORRECT\n", + "NECQVMPYPNPADIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NECQVMPYPNPADIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NEDIFIPLQVR found in part_0.0_13829.432373046875: CORRECT\n", + "NEEALELLFGHLR found in part_0.0_13829.432373046875: CORRECT\n", + "NEEALELLFGHLR found in part_0.0_13829.432373046875: CORRECT\n", + "NEETLEPVPYFQK found in part_0.0_13829.432373046875: CORRECT\n", + "NEETLEPVPYFQK found in part_0.0_13829.432373046875: CORRECT\n", + "NEFCIQVTGTVR found in part_0.0_13829.432373046875: CORRECT\n", + "NEFLVEK found in part_0.0_13829.432373046875: CORRECT\n", + "NEFLVEK found in part_0.0_13829.432373046875: CORRECT\n", + "NEGITLALSPVR found in part_0.0_13829.432373046875: CORRECT\n", + "NEGVVASSAWPYQANALK found in part_0.0_13829.432373046875: CORRECT\n", + "NEIIPTGGHDADGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NEIIPTGGHDADGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NEIVNFVLR found in part_0.0_13829.432373046875: CORRECT\n", + "NELEDLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "NELFTATR found in part_0.0_13829.432373046875: CORRECT\n", + "NELGAGIATITR found in part_0.0_13829.432373046875: CORRECT\n", + "NELLDVSDVSETINSIR found in part_0.0_13829.432373046875: CORRECT\n", + "NELLDVSDVSETINSIR found in part_0.0_13829.432373046875: CORRECT\n", + "NELNEAAETLANFLK found in part_0.0_13829.432373046875: CORRECT\n", + "NELNEAAETLANFLK found in part_0.0_13829.432373046875: CORRECT\n", + "NELPDTLGLR found in part_0.0_13829.432373046875: CORRECT\n", + "NELSSYK found in part_0.0_13829.432373046875: CORRECT\n", + "NELSSYK found in part_0.0_13829.432373046875: CORRECT\n", + "NELTYGFQSAQK found in part_0.0_13829.432373046875: CORRECT\n", + "NENNEIFITR found in part_0.0_13829.432373046875: CORRECT\n", + "NENTLLPATLDYR found in part_0.0_13829.432373046875: CORRECT\n", + "NEPSGSLHGLMR found in part_0.0_13829.432373046875: CORRECT\n", + "NEPSGSLHGLMR found in part_0.0_13829.432373046875: CORRECT\n", + "NEQDGGDLVYFQGHISPGVYAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NEQYSALR NOT FOUND in any FASTA file.\n", + "NETLTCYNGFK found in part_0.0_13829.432373046875: CORRECT\n", + "NETNELFIPPGPR found in part_0.0_13829.432373046875: CORRECT\n", + "NETNELFIPPGPR found in part_0.0_13829.432373046875: CORRECT\n", + "NEYGEYGLAAQK found in part_0.0_13829.432373046875: CORRECT\n", + "NEYTVPTAPAEDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "NEYTVPTAPAEDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "NFALAMPYLVEQGFSR found in part_0.0_13829.432373046875: CORRECT\n", + "NFAPIFEDVAQER found in part_0.0_13829.432373046875: CORRECT\n", + "NFDEIVHDLAPENR found in part_0.0_13829.432373046875: CORRECT\n", + "NFDEIVHDLAPENR found in part_0.0_13829.432373046875: CORRECT\n", + "NFDNMREDEGLADR found in part_0.0_13829.432373046875: CORRECT\n", + "NFDNMREDEGLADR found in part_0.0_13829.432373046875: CORRECT\n", + "NFDYLLNQR found in part_0.0_13829.432373046875: CORRECT\n", + "NFFEEDLQIR found in part_0.0_13829.432373046875: CORRECT\n", + "NFGGEQAAR found in part_0.0_13829.432373046875: CORRECT\n", + "NFGLYNER found in part_0.0_13829.432373046875: CORRECT\n", + "NFGMPAPEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "NFIDAIIK found in part_0.0_13829.432373046875: CORRECT\n", + "NFIDAIIK found in part_0.0_13829.432373046875: CORRECT\n", + "NFIFSSSATVYGDQPK found in part_0.0_13829.432373046875: CORRECT\n", + "NFLAETGDIR found in part_0.0_13829.432373046875: CORRECT\n", + "NFLDYCR found in part_0.0_13829.432373046875: CORRECT\n", + "NFLVPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "NFLVPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "NFPFLPADQIPAFNK found in part_0.0_13829.432373046875: CORRECT\n", + "NFPGTLDYAEQQR found in part_0.0_13829.432373046875: CORRECT\n", + "NFPMIPGIDFAGTVR found in part_0.0_13829.432373046875: CORRECT\n", + "NFSIIAHIDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "NFVPAPNYAEAFLGR found in part_0.0_13829.432373046875: CORRECT\n", + "NGAEGVGLYR found in part_0.0_13829.432373046875: CORRECT\n", + "NGALNAAIVGQPAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NGALNAAIVGQPAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NGATEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "NGATEAFKK found in part_0.0_13829.432373046875: CORRECT\n", + "NGDEEAVVLGAITR found in part_0.0_13829.432373046875: CORRECT\n", + "NGDMLNQPSTPQPDIPLK found in part_0.0_13829.432373046875: CORRECT\n", + "NGDSLTLRPEGTAGCVR found in part_0.0_13829.432373046875: CORRECT\n", + "NGEDPVAIR found in part_0.0_13829.432373046875: CORRECT\n", + "NGEFIEITEK found in part_0.0_13829.432373046875: CORRECT\n", + "NGEFIEITEKDTEGR found in part_0.0_13829.432373046875: CORRECT\n", + "NGEVAPPKEDPVPLPELPCEK found in part_0.0_13829.432373046875: CORRECT\n", + "NGEYTYIINTTSGR found in part_0.0_13829.432373046875: CORRECT\n", + "NGFLLDGFPR found in part_0.0_13829.432373046875: CORRECT\n", + "NGGGVILTITSMAAENK found in part_0.0_13829.432373046875: CORRECT\n", + "NGGSGGAIVNVSSVASR found in part_0.0_13829.432373046875: CORRECT\n", + "NGHLFVTDGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "NGHLFVTDGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "NGHVVIAGDGQATLGNTVMK found in part_0.0_13829.432373046875: CORRECT\n", + "NGIEIEHACEK found in part_0.0_13829.432373046875: CORRECT\n", + "NGIEIEHACEK found in part_0.0_13829.432373046875: CORRECT\n", + "NGIIDLK found in part_0.0_13829.432373046875: CORRECT\n", + "NGIIHTTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "NGIREPILGLDVLQTATR found in part_0.0_13829.432373046875: CORRECT\n", + "NGITGPCYVGK found in part_0.0_13829.432373046875: CORRECT\n", + "NGKGEVDDIDHLGNR found in part_0.0_13829.432373046875: CORRECT\n", + "NGLACITPISALNQPGK found in part_0.0_13829.432373046875: CORRECT\n", + "NGLACITPISALNQPGKK found in part_0.0_13829.432373046875: CORRECT\n", + "NGLINHSPVYGK found in part_0.0_13829.432373046875: CORRECT\n", + "NGMECGIGVK found in part_0.0_13829.432373046875: CORRECT\n", + "NGNEAVLIGQLECK found in part_0.0_13829.432373046875: CORRECT\n", + "NGNIDLTDLR found in part_0.0_13829.432373046875: CORRECT\n", + "NGNTTAIDFR found in part_0.0_13829.432373046875: CORRECT\n", + "NGNVGEIGHIQVEPLGER found in part_0.0_13829.432373046875: CORRECT\n", + "NGPLDCVQK found in part_0.0_13829.432373046875: CORRECT\n", + "NGPQLADLVK found in part_0.0_13829.432373046875: CORRECT\n", + "NGQVVDMLNGAVPK found in part_0.0_13829.432373046875: CORRECT\n", + "NGSDYSATQIGALAGVSR found in part_0.0_13829.432373046875: CORRECT\n", + "NGTAISLEEKPLEPK found in part_0.0_13829.432373046875: CORRECT\n", + "NGTAISLEEKPLEPK found in part_0.0_13829.432373046875: CORRECT\n", + "NGTFVTTYLSPR found in part_0.0_13829.432373046875: CORRECT\n", + "NGVAQPLR found in part_0.0_13829.432373046875: CORRECT\n", + "NGVFTDR found in part_0.0_13829.432373046875: CORRECT\n", + "NGVIVVGHR found in part_0.0_13829.432373046875: CORRECT\n", + "NGVMIVNTSR found in part_0.0_13829.432373046875: CORRECT\n", + "NGVNLFAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "NGVNVSFSIPK found in part_0.0_13829.432373046875: CORRECT\n", + "NGYLTAEQR found in part_0.0_13829.432373046875: CORRECT\n", + "NGYQDSLFTSPEVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NGYQDSLFTSPEVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NHADIPLRPR found in part_0.0_13829.432373046875: CORRECT\n", + "NHAVTEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "NHCEILQGNAR found in part_0.0_13829.432373046875: CORRECT\n", + "NHCEILQGNAR found in part_0.0_13829.432373046875: CORRECT\n", + "NHEAGGIYLFTDEK found in part_0.0_13829.432373046875: CORRECT\n", + "NHEIIGDIVPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NHEIIGDIVPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NHETGELLATFELK found in part_0.0_13829.432373046875: CORRECT\n", + "NHETGELLATFELK found in part_0.0_13829.432373046875: CORRECT\n", + "NHFASEYIYNAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NHFASEYIYNAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NHFASEYIYNAYKDEK found in part_0.0_13829.432373046875: CORRECT\n", + "NHGGEFVLR found in part_0.0_13829.432373046875: CORRECT\n", + "NHGYTVLDIQQDGPTIR found in part_0.0_13829.432373046875: CORRECT\n", + "NHIATLQER found in part_0.0_13829.432373046875: CORRECT\n", + "NHIGGNAYTEDCEGIQIHK found in part_0.0_13829.432373046875: CORRECT\n", + "NHIPAQTLIER found in part_0.0_13829.432373046875: CORRECT\n", + "NHLDDYVIGQEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "NHLDDYVIGQEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "NHNLIMTR found in part_0.0_13829.432373046875: CORRECT\n", + "NHTIVSNESAEIIR found in part_0.0_13829.432373046875: CORRECT\n", + "NHTIVSNESAEIIR found in part_0.0_13829.432373046875: CORRECT\n", + "NIADSFLPALSK found in part_0.0_13829.432373046875: CORRECT\n", + "NIADVLDATVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NIAIEHSGYSVFAGVGER found in part_0.0_13829.432373046875: CORRECT\n", + "NIAIIAHVDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIASSALLMR found in part_0.0_13829.432373046875: CORRECT\n", + "NICFNNAR found in part_0.0_13829.432373046875: CORRECT\n", + "NIDFTNHPAAADPVTMR found in part_0.0_13829.432373046875: CORRECT\n", + "NIDPLVEAGYR found in part_0.0_13829.432373046875: CORRECT\n", + "NIDVLIADTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "NIEFFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "NIETFHTAQK found in part_0.0_13829.432373046875: CORRECT\n", + "NIFADESHDIYTVR found in part_0.0_13829.432373046875: CORRECT\n", + "NIFAIGGNPEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NIFDHYR NOT FOUND in any FASTA file.\n", + "NIFGYQYTIPTHQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NIFGYQYTIPTHQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NIFGYQYTIPTHQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NIFLVGPMGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIGEILELAGCDR found in part_0.0_13829.432373046875: CORRECT\n", + "NIGEILELAGCDR found in part_0.0_13829.432373046875: CORRECT\n", + "NIGISAHIDAGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIGISAHIDAGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIGIYPEIK found in part_0.0_13829.432373046875: CORRECT\n", + "NIGPAGLTIVIVR found in part_0.0_13829.432373046875: CORRECT\n", + "NIHQQALR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIAGLPGAEEGYTLDQFR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIAGLPGAEEGYTLDQFRK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NIIEANVATPDAR NOT FOUND in any FASTA file.\n", + "NIIFAINK found in part_0.0_13829.432373046875: CORRECT\n", + "NIIFAINK found in part_0.0_13829.432373046875: CORRECT\n", + "NIILSSQPGTDDR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIPGFENCDATILSTPK found in part_0.0_13829.432373046875: CORRECT\n", + "NIIQHVENNR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIQHVENNR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIQLLR found in part_0.0_13829.432373046875: CORRECT\n", + "NIIQLVDAGMK found in part_0.0_13829.432373046875: CORRECT\n", + "NILGDVFHR found in part_0.0_13829.432373046875: CORRECT\n", + "NILNELQK found in part_0.0_13829.432373046875: CORRECT\n", + "NILNELQK found in part_0.0_13829.432373046875: CORRECT\n", + "NILVVVPSHVFGEVLR found in part_0.0_13829.432373046875: CORRECT\n", + "NINLVIPR found in part_0.0_13829.432373046875: CORRECT\n", + "NINMTSYASSK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPFTLK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVELHVLLNDDAETPTR found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVGSTVHNVEMK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVGSTVHNVEMK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVGSTVHNVEMKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVGSTVHNVEMKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIPVGSTVHNVEMKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "NIQDTNETLFYR found in part_0.0_13829.432373046875: CORRECT\n", + "NIQFAILER found in part_0.0_13829.432373046875: CORRECT\n", + "NISDDLR found in part_0.0_13829.432373046875: CORRECT\n", + "NISLSFFPGAK found in part_0.0_13829.432373046875: CORRECT\n", + "NISPHLQR found in part_0.0_13829.432373046875: CORRECT\n", + "NISVTEVHAR found in part_0.0_13829.432373046875: CORRECT\n", + "NITDIDDK found in part_0.0_13829.432373046875: CORRECT\n", + "NITDIDDK found in part_0.0_13829.432373046875: CORRECT\n", + "NIVAAGLADR found in part_0.0_13829.432373046875: CORRECT\n", + "NIVDAIDK found in part_0.0_13829.432373046875: CORRECT\n", + "NIVDGNHQMEPGMPESFNVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "NIVNDPSVVFDDIVTNEQIQK found in part_0.0_13829.432373046875: CORRECT\n", + "NIVPDYR found in part_0.0_13829.432373046875: CORRECT\n", + "NIVSLNYAVR found in part_0.0_13829.432373046875: CORRECT\n", + "NIVTVGNDIETR found in part_0.0_13829.432373046875: CORRECT\n", + "NIVVILPSSGER found in part_0.0_13829.432373046875: CORRECT\n", + "NIYDYYK found in part_0.0_13829.432373046875: CORRECT\n", + "NIYDYYK found in part_0.0_13829.432373046875: CORRECT\n", + "NIYTDPLNVLQAELLHR found in part_0.0_13829.432373046875: CORRECT\n", + "NKDGIPAVVER found in part_0.0_13829.432373046875: CORRECT\n", + "NKDGIPAVVER found in part_0.0_13829.432373046875: CORRECT\n", + "NKFPAFTGELPNGDQYYGFPAENDALK found in part_0.0_13829.432373046875: CORRECT\n", + "NKPATLSTGLVIQVPEYLSPGEK found in part_0.0_13829.432373046875: CORRECT\n", + "NKSEITDEEYK found in part_0.0_13829.432373046875: CORRECT\n", + "NLAEGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "NLALHVDGAR found in part_0.0_13829.432373046875: CORRECT\n", + "NLALICESDLLGER found in part_0.0_13829.432373046875: CORRECT\n", + "NLALLEELGEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLALLLDSVANDK found in part_0.0_13829.432373046875: CORRECT\n", + "NLALNIESR found in part_0.0_13829.432373046875: CORRECT\n", + "NLAQCGIR found in part_0.0_13829.432373046875: CORRECT\n", + "NLDDTIFNTNIEATQAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NLDITDTR found in part_0.0_13829.432373046875: CORRECT\n", + "NLDLIMGCER found in part_0.0_13829.432373046875: CORRECT\n", + "NLDLPGFTPAQK found in part_0.0_13829.432373046875: CORRECT\n", + "NLDNDDIEYK found in part_0.0_13829.432373046875: CORRECT\n", + "NLDPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "NLEEFFAR found in part_0.0_13829.432373046875: CORRECT\n", + "NLETLSQTHK found in part_0.0_13829.432373046875: CORRECT\n", + "NLEVCPK found in part_0.0_13829.432373046875: CORRECT\n", + "NLEVCPK found in part_0.0_13829.432373046875: CORRECT\n", + "NLEVMVK found in part_0.0_13829.432373046875: CORRECT\n", + "NLEVMVK found in part_0.0_13829.432373046875: CORRECT\n", + "NLFCSCVPISEYQ found in part_0.0_13829.432373046875: CORRECT\n", + "NLGIELTDDQLNITPPPDVNGLK found in part_0.0_13829.432373046875: CORRECT\n", + "NLGQENFDAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLGVEEVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "NLHDLLMAAPAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "NLILSSPLADEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLIPPTMWGYNDDVQDYTYDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLIPPTMWGYNDDVQDYTYDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLLAQPAAGTTEAK found in part_0.0_13829.432373046875: CORRECT\n", + "NLLGLMQGTLQEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLLKPLR found in part_0.0_13829.432373046875: CORRECT\n", + "NLLTLLNLEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLMTSYDTLTK found in part_0.0_13829.432373046875: CORRECT\n", + "NLNLDLQTLTEEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "NLPGDLAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NLPIETNIMDLEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "NLPTAQGYCDSK found in part_0.0_13829.432373046875: CORRECT\n", + "NLQEEDIK found in part_0.0_13829.432373046875: CORRECT\n", + "NLQEVER found in part_0.0_13829.432373046875: CORRECT\n", + "NLSDGEVR found in part_0.0_13829.432373046875: CORRECT\n", + "NLSEMQFYVTQNHGTEPPFTGR found in part_0.0_13829.432373046875: CORRECT\n", + "NLSESNDYVPR found in part_0.0_13829.432373046875: CORRECT\n", + "NLSNFASLGSECTVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NLSNFASLGSECTVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NLSYVLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "NLTCVFVDNGLLR found in part_0.0_13829.432373046875: CORRECT\n", + "NLTGKEADAALGR found in part_0.0_13829.432373046875: CORRECT\n", + "NLTIGER found in part_0.0_13829.432373046875: CORRECT\n", + "NLTSQMVEYGQVK found in part_0.0_13829.432373046875: CORRECT\n", + "NLVEHCGIALDEVLR found in part_0.0_13829.432373046875: CORRECT\n", + "NLVEPAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NLVQQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "NLVQQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "NLYDLPPEEAK found in part_0.0_13829.432373046875: CORRECT\n", + "NMAFDLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "NMAGSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "NMINVALNNGTLQHPVK found in part_0.0_13829.432373046875: CORRECT\n", + "NMINVALNNGTLQHPVK found in part_0.0_13829.432373046875: CORRECT\n", + "NMINVALNNGTLQHPVK found in part_0.0_13829.432373046875: CORRECT\n", + "NMLANLEQVNATYGPLLHPGK found in part_0.0_13829.432373046875: CORRECT\n", + "NMLENPGWYTAYTPYQPEVSQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NMLPDLYAEDPDFYR found in part_0.0_13829.432373046875: CORRECT\n", + "NMNVPGEDQYR found in part_0.0_13829.432373046875: CORRECT\n", + "NMQTLYNTGR found in part_0.0_13829.432373046875: CORRECT\n", + "NMVAAGSGITLLPALAVPPER found in part_0.0_13829.432373046875: CORRECT\n", + "NMVAAGSGITLLPALAVPPER found in part_0.0_13829.432373046875: CORRECT\n", + "NMVGAVVGVQPFGGEGLSGTGPK found in part_0.0_13829.432373046875: CORRECT\n", + "NMYFSGDGAR found in part_0.0_13829.432373046875: CORRECT\n", + "NNAGETVLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "NNASPADPQVH found in part_0.0_13829.432373046875: CORRECT\n", + "NNDTVHDFTK found in part_0.0_13829.432373046875: CORRECT\n", + "NNDTVHDFTK found in part_0.0_13829.432373046875: CORRECT\n", + "NNDTVTTSAPVTAFGATTTNNIK found in part_0.0_13829.432373046875: CORRECT\n", + "NNDYSLVYTVENNQLGLYK found in part_0.0_13829.432373046875: CORRECT\n", + "NNEAFLDR found in part_0.0_13829.432373046875: CORRECT\n", + "NNEHIQVITSLTNALDDESVIER found in part_0.0_13829.432373046875: CORRECT\n", + "NNEVYLIEVNPR found in part_0.0_13829.432373046875: CORRECT\n", + "NNFMTPEQFR found in part_0.0_13829.432373046875: CORRECT\n", + "NNGFDGTDAVLEFNKPEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "NNGIDPQVMVER found in part_0.0_13829.432373046875: CORRECT\n", + "NNGSEVQSLDPHK found in part_0.0_13829.432373046875: CORRECT\n", + "NNGSEVQSLDPHK found in part_0.0_13829.432373046875: CORRECT\n", + "NNGSEVQSLDPHKIEGVPESNISR found in part_0.0_13829.432373046875: CORRECT\n", + "NNGSEVQSLDPHKIEGVPESNISR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NNIAPQSPVMR NOT FOUND in any FASTA file.\n", + "NNIEAVTK found in part_0.0_13829.432373046875: CORRECT\n", + "NNIPVIAQHTGADSASVIFDAIQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "NNLGVISLNLPR found in part_0.0_13829.432373046875: CORRECT\n", + "NNPLLVGESGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "NNPVIAYEDDCVTR found in part_0.0_13829.432373046875: CORRECT\n", + "NNPVLIGEPGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "NNQHDVAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "NNSLSQEVQNAQHQR found in part_0.0_13829.432373046875: CORRECT\n", + "NNSLSQEVQNAQHQR found in part_0.0_13829.432373046875: CORRECT\n", + "NNTPGNYTFILK found in part_0.0_13829.432373046875: CORRECT\n", + "NNVDVIK found in part_0.0_13829.432373046875: CORRECT\n", + "NNVIGLLEDPK found in part_0.0_13829.432373046875: CORRECT\n", + "NNVLALGDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NNVLSGLFCGLR found in part_0.0_13829.432373046875: CORRECT\n", + "NNYGQYLYK found in part_0.0_13829.432373046875: CORRECT\n", + "NPDALELIR found in part_0.0_13829.432373046875: CORRECT\n", + "NPDIVAGVAALK found in part_0.0_13829.432373046875: CORRECT\n", + "NPDMPADELEK found in part_0.0_13829.432373046875: CORRECT\n", + "NPEAMAASLK found in part_0.0_13829.432373046875: CORRECT\n", + "NPEQVSVALR found in part_0.0_13829.432373046875: CORRECT\n", + "NPESLALDAIER found in part_0.0_13829.432373046875: CORRECT\n", + "NPINGDPIFLDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "NPLFLLDEIDK found in part_0.0_13829.432373046875: CORRECT\n", + "NPLYEEIADVTIR found in part_0.0_13829.432373046875: CORRECT\n", + "NPMELTDVADLLK found in part_0.0_13829.432373046875: CORRECT\n", + "NPNDIELYMFAQANSEHCR found in part_0.0_13829.432373046875: CORRECT\n", + "NPNNEHYLDTK found in part_0.0_13829.432373046875: CORRECT\n", + "NPNVTSVEHVVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NPNVTSVEHVVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NPPAGEEEFLLDLLTNR found in part_0.0_13829.432373046875: CORRECT\n", + "NPPAGEEEFLLDLLTNR found in part_0.0_13829.432373046875: CORRECT\n", + "NPPSGITPLPLFEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "NPQEHYNELAK found in part_0.0_13829.432373046875: CORRECT\n", + "NPQVAAMLK found in part_0.0_13829.432373046875: CORRECT\n", + "NPSFSVK found in part_0.0_13829.432373046875: CORRECT\n", + "NPSISTHLLGSNASSVIR found in part_0.0_13829.432373046875: CORRECT\n", + "NPVVAALLDDGLAR found in part_0.0_13829.432373046875: CORRECT\n", + "NPVVSAETAK found in part_0.0_13829.432373046875: CORRECT\n", + "NPVVVSAVQNQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NPVVVSAVQNQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NPYLTYAR found in part_0.0_13829.432373046875: CORRECT\n", + "NQAILPLK found in part_0.0_13829.432373046875: CORRECT\n", + "NQASNDLPN found in part_0.0_13829.432373046875: CORRECT\n", + "NQDLGPFISHEMNR found in part_0.0_13829.432373046875: CORRECT\n", + "NQDLGPFISHEMNR found in part_0.0_13829.432373046875: CORRECT\n", + "NQGDHLLHSTR found in part_0.0_13829.432373046875: CORRECT\n", + "NQGDHLLHSTR found in part_0.0_13829.432373046875: CORRECT\n", + "NQHATVLIR found in part_0.0_13829.432373046875: CORRECT\n", + "NQIADLVGADPR found in part_0.0_13829.432373046875: CORRECT\n", + "NQIADLVGADPR found in part_0.0_13829.432373046875: CORRECT\n", + "NQIFLINER found in part_0.0_13829.432373046875: CORRECT\n", + "NQILTMGCYGIGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "NQILTMGCYGIGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "NQIQPIAER found in part_0.0_13829.432373046875: CORRECT\n", + "NQIQVNR found in part_0.0_13829.432373046875: CORRECT\n", + "NQITLPVILK found in part_0.0_13829.432373046875: CORRECT\n", + "NQIVQLETILDR found in part_0.0_13829.432373046875: CORRECT\n", + "NQLEVMR found in part_0.0_13829.432373046875: CORRECT\n", + "NQLNAGCFAAK found in part_0.0_13829.432373046875: CORRECT\n", + "NQLRDEVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NQLTAAALFPLYVNAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "NQLTAAALFPLYVNAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "NQLTFNQIALEEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "NQLTFNQIALEEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "NQPDNVIK found in part_0.0_13829.432373046875: CORRECT\n", + "NQPELSEDTIK found in part_0.0_13829.432373046875: CORRECT\n", + "NQPELSEDTIKK found in part_0.0_13829.432373046875: CORRECT\n", + "NQPELSEDTIKK found in part_0.0_13829.432373046875: CORRECT\n", + "NQPGINGVK found in part_0.0_13829.432373046875: CORRECT\n", + "NQSALSSSIER found in part_0.0_13829.432373046875: CORRECT\n", + "NQSDPTMFNK found in part_0.0_13829.432373046875: CORRECT\n", + "NQVEQAGFAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NRDELLALIR found in part_0.0_13829.432373046875: CORRECT\n", + "NRITINYFAMPPSTFGAICK found in part_0.0_13829.432373046875: CORRECT\n", + "NSDALALQR found in part_0.0_13829.432373046875: CORRECT\n", + "NSDIQPTVESLK found in part_0.0_13829.432373046875: CORRECT\n", + "NSEAAWGVAQEAIAIGAK found in part_0.0_13829.432373046875: CORRECT\n", + "NSEGLTQVFNDVHK found in part_0.0_13829.432373046875: CORRECT\n", + "NSGLASQVISLPPFQVDLSR found in part_0.0_13829.432373046875: CORRECT\n", + "NSGTEPTIIHYLETPPTR found in part_0.0_13829.432373046875: CORRECT\n", + "NSIPALEK found in part_0.0_13829.432373046875: CORRECT\n", + "NSQGELVGFDIDLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NSTLSALMPSETSSQISNATNGIEPPR found in part_0.0_13829.432373046875: CORRECT\n", + "NSTLSALMPSETSSQISNATNGIEPPR found in part_0.0_13829.432373046875: CORRECT\n", + "NSVIDEVVVCDTIPLSDEIK found in part_0.0_13829.432373046875: CORRECT\n", + "NSVLVDNGDLIQGSPLADYMSAK found in part_0.0_13829.432373046875: CORRECT\n", + "NTDGSLTLELEDGR found in part_0.0_13829.432373046875: CORRECT\n", + "NTDIAEELELPPVK found in part_0.0_13829.432373046875: CORRECT\n", + "NTDIAEELELPPVK found in part_0.0_13829.432373046875: CORRECT\n", + "NTEDLSSYLK found in part_0.0_13829.432373046875: CORRECT\n", + "NTELEQLINEK found in part_0.0_13829.432373046875: CORRECT\n", + "NTFETTPDHVLSAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NTFETTPDHVLSAYK found in part_0.0_13829.432373046875: CORRECT\n", + "NTFNDYLDACDALLK found in part_0.0_13829.432373046875: CORRECT\n", + "NTGNFDVIR found in part_0.0_13829.432373046875: CORRECT\n", + "NTGNPQAPGTLIGASR found in part_0.0_13829.432373046875: CORRECT\n", + "NTIGVGVNR found in part_0.0_13829.432373046875: CORRECT\n", + "NTIGVGVNRPGCFAEYLVIPAFNAFK found in part_0.0_13829.432373046875: CORRECT\n", + "NTITELPAMFDELAHIR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLEMIR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLGVDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLIDAK found in part_0.0_13829.432373046875: CORRECT\n", + "NTLIDNK found in part_0.0_13829.432373046875: CORRECT\n", + "NTLLHEQWCDLLEENSVDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "NTLNKPVIMGR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLSLQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLTPTQMR found in part_0.0_13829.432373046875: CORRECT\n", + "NTLWQVGTDHAGIATQMVVER found in part_0.0_13829.432373046875: CORRECT\n", + "NTNITGVIVNK found in part_0.0_13829.432373046875: CORRECT\n", + "NTPSAANISAYADIVR found in part_0.0_13829.432373046875: CORRECT\n", + "NTQGVILIR found in part_0.0_13829.432373046875: CORRECT\n", + "NTSFAPGNVSIK found in part_0.0_13829.432373046875: CORRECT\n", + "NTTIPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NTVGDNLDDLVTILR found in part_0.0_13829.432373046875: CORRECT\n", + "NTVVIMTSNLGSDLIQER found in part_0.0_13829.432373046875: CORRECT\n", + "NTVVIMTSNLGSDLIQER found in part_0.0_13829.432373046875: CORRECT\n", + "NTYPDEMLK found in part_0.0_13829.432373046875: CORRECT\n", + "NVAKPLVSYIDK found in part_0.0_13829.432373046875: CORRECT\n", + "NVAKPLVSYIDK found in part_0.0_13829.432373046875: CORRECT\n", + "NVALEEQAVEAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NVALEEQAVEAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDDALK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDDALKNPNVTSVEHVVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDDALKNPNVTSVEHVVVLK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDGEIDCSGK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDIILNAQTTEVK found in part_0.0_13829.432373046875: CORRECT\n", + "NVDLALAGITITDER found in part_0.0_13829.432373046875: CORRECT\n", + "NVDNSDSYLR found in part_0.0_13829.432373046875: CORRECT\n", + "NVDPTGPAPDLGMSVER found in part_0.0_13829.432373046875: CORRECT\n", + "NVEASFELNDASK found in part_0.0_13829.432373046875: CORRECT\n", + "NVEPYEELGLAEDK found in part_0.0_13829.432373046875: CORRECT\n", + "NVEVFDTGGR found in part_0.0_13829.432373046875: CORRECT\n", + "NVEVLDSGAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVEYLVVEAAGETR found in part_0.0_13829.432373046875: CORRECT\n", + "NVEYLVVEAAGETR found in part_0.0_13829.432373046875: CORRECT\n", + "NVFSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "NVFYPQMAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVGENALAISR found in part_0.0_13829.432373046875: CORRECT\n", + "NVGVAAPFGPVNVQK found in part_0.0_13829.432373046875: CORRECT\n", + "NVIAIGAGMSDGIGFGANAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVIEVAPLAYMR found in part_0.0_13829.432373046875: CORRECT\n", + "NVIGNIFAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLAVDPTR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLAYDAYYR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLGSYGYSEIR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLIEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLINASPIVR found in part_0.0_13829.432373046875: CORRECT\n", + "NVLQPIGWDAFGLPAEGAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "NVLQQIK found in part_0.0_13829.432373046875: CORRECT\n", + "NVLVEKPFTPTLAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "NVLVEKPFTPTLAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "NVMGVPAVFVNGK found in part_0.0_13829.432373046875: CORRECT\n", + "NVNPQIVENYR found in part_0.0_13829.432373046875: CORRECT\n", + "NVPFESGIDSVGSAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVPLFEQALEFAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVPQQVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NVQLNGPTTDIIGEAPAMQDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "NVQNIFSVER found in part_0.0_13829.432373046875: CORRECT\n", + "NVSELLDVFER found in part_0.0_13829.432373046875: CORRECT\n", + "NVVAGDPSPDGQGR found in part_0.0_13829.432373046875: CORRECT\n", + "NVVITDVNEYR found in part_0.0_13829.432373046875: CORRECT\n", + "NVVITDVNEYR found in part_0.0_13829.432373046875: CORRECT\n", + "NVVMITAQNHGFAVDEATLPANLR found in part_0.0_13829.432373046875: CORRECT\n", + "NVVVETLEQLGIR found in part_0.0_13829.432373046875: CORRECT\n", + "NVYAPLK found in part_0.0_13829.432373046875: CORRECT\n", + "NVYFIPSALALK found in part_0.0_13829.432373046875: CORRECT\n", + "NVYIKEAFDTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "NVYIKEAFDTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "NWIDKEEYPQSAAIDLR found in part_0.0_13829.432373046875: CORRECT\n", + "NWQPSAETR found in part_0.0_13829.432373046875: CORRECT\n", + "NWVSPVDAIVER found in part_0.0_13829.432373046875: CORRECT\n", + "NYAHEGLK found in part_0.0_13829.432373046875: CORRECT\n", + "NYDQVPANKPIVDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "NYETPDAVEASQK found in part_0.0_13829.432373046875: CORRECT\n", + "NYFDLVAR found in part_0.0_13829.432373046875: CORRECT\n", + "NYGITAPIDVHLMVKPVDR found in part_0.0_13829.432373046875: CORRECT\n", + "NYGSLIGEATAER found in part_0.0_13829.432373046875: CORRECT\n", + "NYHIAVLPGDGIGPEVMTQALK found in part_0.0_13829.432373046875: CORRECT\n", + "NYIDIFDGGPTLECDIDR found in part_0.0_13829.432373046875: CORRECT\n", + "NYITESGK found in part_0.0_13829.432373046875: CORRECT\n", + "NYITESGK found in part_0.0_13829.432373046875: CORRECT\n", + "NYLGIDGIPEFGR found in part_0.0_13829.432373046875: CORRECT\n", + "NYLTEHPEATDPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide NYQNDDLR NOT FOUND in any FASTA file.\n", + "NYTAGGEGGATLINDK found in part_0.0_13829.432373046875: CORRECT\n", + "NYTDDVEFSCEDAGR found in part_0.0_13829.432373046875: CORRECT\n", + "NYTGDILNFETATELLHDSGVK found in part_0.0_13829.432373046875: CORRECT\n", + "NYTIGDVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "NYTITQR found in part_0.0_13829.432373046875: CORRECT\n", + "NYVVYETTR found in part_0.0_13829.432373046875: CORRECT\n", + "PAAEPTPPGAQPTAPGSLK found in part_0.0_13829.432373046875: CORRECT\n", + "PAAGAVINEAK found in part_0.0_13829.432373046875: CORRECT\n", + "PAAQFVK found in part_0.0_13829.432373046875: CORRECT\n", + "PAAQQSEDELLR found in part_0.0_13829.432373046875: CORRECT\n", + "PAEAVEYISR found in part_0.0_13829.432373046875: CORRECT\n", + "PAESFVPHNLAGEGPR found in part_0.0_13829.432373046875: CORRECT\n", + "PAFDEGMQQK found in part_0.0_13829.432373046875: CORRECT\n", + "PAGAYLDIVR found in part_0.0_13829.432373046875: CORRECT\n", + "PAGQVIAQYYEFLR found in part_0.0_13829.432373046875: CORRECT\n", + "PAHLAQSIR found in part_0.0_13829.432373046875: CORRECT\n", + "PAHQQQVADILR found in part_0.0_13829.432373046875: CORRECT\n", + "PAHQQQVADILR found in part_0.0_13829.432373046875: CORRECT\n", + "PAHQQQVADILRDPEASENDK found in part_0.0_13829.432373046875: CORRECT\n", + "PAHQQQVADILRDPEASENDK found in part_0.0_13829.432373046875: CORRECT\n", + "PAIGVGAGNTPVVIDETADIK found in part_0.0_13829.432373046875: CORRECT\n", + "PAIGVGAGNTPVVIDETADIKR found in part_0.0_13829.432373046875: CORRECT\n", + "PAISASESITR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PALDLIR NOT FOUND in any FASTA file.\n", + "PALNGYFR found in part_0.0_13829.432373046875: CORRECT\n", + "PANPPSMPNDPSK found in part_0.0_13829.432373046875: CORRECT\n", + "PANQLLTQPVK found in part_0.0_13829.432373046875: CORRECT\n", + "PAPAPQADTPAAAPQGE found in part_0.0_13829.432373046875: CORRECT\n", + "PAPFLIHQESNVIVR found in part_0.0_13829.432373046875: CORRECT\n", + "PAPISDKEVDAIMNR found in part_0.0_13829.432373046875: CORRECT\n", + "PAPMSEAEFR found in part_0.0_13829.432373046875: CORRECT\n", + "PAPTPQAPAQNTTPVTK found in part_0.0_13829.432373046875: CORRECT\n", + "PASASPAVGYMSVHQK found in part_0.0_13829.432373046875: CORRECT\n", + "PASEAALLYEETAESVEK found in part_0.0_13829.432373046875: CORRECT\n", + "PATLSTGAVVK found in part_0.0_13829.432373046875: CORRECT\n", + "PAVATAPATGQVQSLTR found in part_0.0_13829.432373046875: CORRECT\n", + "PAVEAVENGDIQFVPK found in part_0.0_13829.432373046875: CORRECT\n", + "PAVLEVITPTQVR found in part_0.0_13829.432373046875: CORRECT\n", + "PAVNPGISVSR found in part_0.0_13829.432373046875: CORRECT\n", + "PAVVESVAR found in part_0.0_13829.432373046875: CORRECT\n", + "PAVVIPTNEELVIAQDASR found in part_0.0_13829.432373046875: CORRECT\n", + "PCLHQDDLAR found in part_0.0_13829.432373046875: CORRECT\n", + "PDAALVDFLCENADVITK found in part_0.0_13829.432373046875: CORRECT\n", + "PDDIHFAR found in part_0.0_13829.432373046875: CORRECT\n", + "PDEGIPAVCFK found in part_0.0_13829.432373046875: CORRECT\n", + "PDGSIIETPITANFR found in part_0.0_13829.432373046875: CORRECT\n", + "PDIPLHALAMLK found in part_0.0_13829.432373046875: CORRECT\n", + "PEAGHFAK found in part_0.0_13829.432373046875: CORRECT\n", + "PEFIKPEDVSAEVVEK found in part_0.0_13829.432373046875: CORRECT\n", + "PEIIAAIAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "PEITLVTNK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PELPEVETSR NOT FOUND in any FASTA file.\n", + "PELPSLADAVTGCYLTPYSEK found in part_0.0_13829.432373046875: CORRECT\n", + "PEQVDAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "PETINYR found in part_0.0_13829.432373046875: CORRECT\n", + "PEVMGGLGGFGALCALPQK found in part_0.0_13829.432373046875: CORRECT\n", + "PFEDLIQPAR found in part_0.0_13829.432373046875: CORRECT\n", + "PFIFGAR found in part_0.0_13829.432373046875: CORRECT\n", + "PFIPVLR found in part_0.0_13829.432373046875: CORRECT\n", + "PFLADAELLSK found in part_0.0_13829.432373046875: CORRECT\n", + "PFLLPIEDVFSISGR found in part_0.0_13829.432373046875: CORRECT\n", + "PFMPLLPGFR found in part_0.0_13829.432373046875: CORRECT\n", + "PFQLVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "PFRLNGDNGEYTCDALIIATGASAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PFTLGQR NOT FOUND in any FASTA file.\n", + "PFTPTLAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "PFVGVLSAGINAASPNK found in part_0.0_13829.432373046875: CORRECT\n", + "PFVGVLSAGINAASPNK found in part_0.0_13829.432373046875: CORRECT\n", + "PFVLGPTHEEVITDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "PFYQVVVADSR found in part_0.0_13829.432373046875: CORRECT\n", + "PGALQGEIAIAIPAHVR found in part_0.0_13829.432373046875: CORRECT\n", + "PGDTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "PGEGGQLPGDK found in part_0.0_13829.432373046875: CORRECT\n", + "PGENILLFK found in part_0.0_13829.432373046875: CORRECT\n", + "PGEYGFPLK found in part_0.0_13829.432373046875: CORRECT\n", + "PGGAITAGCFLSR found in part_0.0_13829.432373046875: CORRECT\n", + "PGGDVFFSTLNR found in part_0.0_13829.432373046875: CORRECT\n", + "PGIETTER found in part_0.0_13829.432373046875: CORRECT\n", + "PGIVIGK found in part_0.0_13829.432373046875: CORRECT\n", + "PGNALYVINPSTLVQYPLNDIAQK found in part_0.0_13829.432373046875: CORRECT\n", + "PGNINAWDNEDFVK found in part_0.0_13829.432373046875: CORRECT\n", + "PGNINAWDNEDFVK found in part_0.0_13829.432373046875: CORRECT\n", + "PGNVVLTPTILR found in part_0.0_13829.432373046875: CORRECT\n", + "PGQDFFPLTVNYQER found in part_0.0_13829.432373046875: CORRECT\n", + "PGQSIQTGEPEYVIPDVLVR found in part_0.0_13829.432373046875: CORRECT\n", + "PGQTLLLHHVPNVLSER found in part_0.0_13829.432373046875: CORRECT\n", + "PGSLLINASR found in part_0.0_13829.432373046875: CORRECT\n", + "PGTDEGDYQVK found in part_0.0_13829.432373046875: CORRECT\n", + "PGTPAADMVDDVPEEEKK found in part_0.0_13829.432373046875: CORRECT\n", + "PGTTITIPSQLLLPDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "PGTTITIPSQLLLPDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "PGTVLIDMSSIAPLASR found in part_0.0_13829.432373046875: CORRECT\n", + "PGVIAFSGGFHGR found in part_0.0_13829.432373046875: CORRECT\n", + "PGVITGDDVQK found in part_0.0_13829.432373046875: CORRECT\n", + "PGVSTGELDR found in part_0.0_13829.432373046875: CORRECT\n", + "PHGAPVPENFR found in part_0.0_13829.432373046875: CORRECT\n", + "PHGAPVPENFR found in part_0.0_13829.432373046875: CORRECT\n", + "PHPDPLLLVAER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PHSYDYDAIVIGSGPGGEGAAMGLVK NOT FOUND in any FASTA file.\n", + "PHVNVGTIGHVDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "PICVTAAADILR found in part_0.0_13829.432373046875: CORRECT\n", + "PIDDASLAR found in part_0.0_13829.432373046875: CORRECT\n", + "PIIDELQER found in part_0.0_13829.432373046875: CORRECT\n", + "PIIYDVETLR found in part_0.0_13829.432373046875: CORRECT\n", + "PILDIALQYR found in part_0.0_13829.432373046875: CORRECT\n", + "PILIGRPNVIEMR found in part_0.0_13829.432373046875: CORRECT\n", + "PILPEDEPQLQQFISR found in part_0.0_13829.432373046875: CORRECT\n", + "PILPEDEPQLQQFISR found in part_0.0_13829.432373046875: CORRECT\n", + "PIPNLPEAR found in part_0.0_13829.432373046875: CORRECT\n", + "PIPVAQLADADALMVR found in part_0.0_13829.432373046875: CORRECT\n", + "PIQLPFIPHEDPR found in part_0.0_13829.432373046875: CORRECT\n", + "PIQLPFIPHEDPR found in part_0.0_13829.432373046875: CORRECT\n", + "PIRETSAADVPLAIDHFR found in part_0.0_13829.432373046875: CORRECT\n", + "PISQGGLLK found in part_0.0_13829.432373046875: CORRECT\n", + "PISSFAALR found in part_0.0_13829.432373046875: CORRECT\n", + "PITDLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "PITEPGVYSSGIPLQPNK found in part_0.0_13829.432373046875: CORRECT\n", + "PITEPGVYSSGIPLQPNK found in part_0.0_13829.432373046875: CORRECT\n", + "PIVMPLSNPTSR found in part_0.0_13829.432373046875: CORRECT\n", + "PIVNLLPLEQDER found in part_0.0_13829.432373046875: CORRECT\n", + "PIVVANGK found in part_0.0_13829.432373046875: CORRECT\n", + "PLAQADAAELDALIVPGGFGAAK found in part_0.0_13829.432373046875: CORRECT\n", + "PLASGEVPLDVAPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "PLASNLAEVDAAIACAR found in part_0.0_13829.432373046875: CORRECT\n", + "PLCAVGAPAQVR found in part_0.0_13829.432373046875: CORRECT\n", + "PLCDDESDSPQAITR found in part_0.0_13829.432373046875: CORRECT\n", + "PLDANQMAALVELLK found in part_0.0_13829.432373046875: CORRECT\n", + "PLDANQMAALVELLK found in part_0.0_13829.432373046875: CORRECT\n", + "PLDIDLPQLIVK found in part_0.0_13829.432373046875: CORRECT\n", + "PLDYTPR found in part_0.0_13829.432373046875: CORRECT\n", + "PLEDLPLSELQK found in part_0.0_13829.432373046875: CORRECT\n", + "PLEEEADTSNYALIPTAEVPLTNLVR found in part_0.0_13829.432373046875: CORRECT\n", + "PLEIVEIDVAPPK found in part_0.0_13829.432373046875: CORRECT\n", + "PLETGAFEQDK found in part_0.0_13829.432373046875: CORRECT\n", + "PLFTAEHYAR found in part_0.0_13829.432373046875: CORRECT\n", + "PLFTAEHYAR found in part_0.0_13829.432373046875: CORRECT\n", + "PLGAVALK found in part_0.0_13829.432373046875: CORRECT\n", + "PLGIPAFLAIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PLHNLTR NOT FOUND in any FASTA file.\n", + "PLHSAFNDEIPAIVDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "PLIISGTNAGSLEVIQAAANVAK found in part_0.0_13829.432373046875: CORRECT\n", + "PLKEETGISELDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "PLKEETGISELDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "PLLCVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "PLLPEVLFDNGQAR found in part_0.0_13829.432373046875: CORRECT\n", + "PLNNPQK found in part_0.0_13829.432373046875: CORRECT\n", + "PLNSFAELR found in part_0.0_13829.432373046875: CORRECT\n", + "PLPDTLATMTPQAYNSIQYDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "PLPEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "PLQDNLAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PLSAQQLAAQK NOT FOUND in any FASTA file.\n", + "PLSAVQGEK found in part_0.0_13829.432373046875: CORRECT\n", + "PLSEEVQEVLEER found in part_0.0_13829.432373046875: CORRECT\n", + "PLSPLVNAGAIATTSLINAENVEQR found in part_0.0_13829.432373046875: CORRECT\n", + "PLSSMSPTIVVK found in part_0.0_13829.432373046875: CORRECT\n", + "PLTEDTLR found in part_0.0_13829.432373046875: CORRECT\n", + "PLVASDDDPSGR found in part_0.0_13829.432373046875: CORRECT\n", + "PLVINSSSTIR found in part_0.0_13829.432373046875: CORRECT\n", + "PLVLCVR found in part_0.0_13829.432373046875: CORRECT\n", + "PLVLSPEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "PLVSYIDK found in part_0.0_13829.432373046875: CORRECT\n", + "PMDFSGIIPALQTK found in part_0.0_13829.432373046875: CORRECT\n", + "PMDPYVVEEDPGVK found in part_0.0_13829.432373046875: CORRECT\n", + "PMDVVSKADNSPVTAADIAAHTVIMDGLR found in part_0.0_13829.432373046875: CORRECT\n", + "PMNCPGHVQIFNQGLK found in part_0.0_13829.432373046875: CORRECT\n", + "PMPIVIPSYNGAR found in part_0.0_13829.432373046875: CORRECT\n", + "PMVAIVGGSK found in part_0.0_13829.432373046875: CORRECT\n", + "PMVVQSSEDFYLAK found in part_0.0_13829.432373046875: CORRECT\n", + "PNAGYVVLKDLNGPLQYLLMPTYR found in part_0.0_13829.432373046875: CORRECT\n", + "PNIELLPEGQFK found in part_0.0_13829.432373046875: CORRECT\n", + "PNVIEMR found in part_0.0_13829.432373046875: CORRECT\n", + "PNVTVDVASLCLK found in part_0.0_13829.432373046875: CORRECT\n", + "PPFNDVR found in part_0.0_13829.432373046875: CORRECT\n", + "PPLQLIK found in part_0.0_13829.432373046875: CORRECT\n", + "PQDLFDEFAGK found in part_0.0_13829.432373046875: CORRECT\n", + "PQDVQVEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "PQETFESGIR found in part_0.0_13829.432373046875: CORRECT\n", + "PQFVSPGQMGNIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "PQIDTLVFSITPDASVR found in part_0.0_13829.432373046875: CORRECT\n", + "PQIDTLVFSITPDASVR found in part_0.0_13829.432373046875: CORRECT\n", + "PQINAEEEIR found in part_0.0_13829.432373046875: CORRECT\n", + "PQINAEEEIRR found in part_0.0_13829.432373046875: CORRECT\n", + "PQQSAPAAPSNEPPMDFDDDIPF found in part_0.0_13829.432373046875: CORRECT\n", + "PQQSAPAAPSNEPPMDFDDDIPF found in part_0.0_13829.432373046875: CORRECT\n", + "PQSQEAYGCMLR found in part_0.0_13829.432373046875: CORRECT\n", + "PQTILELGR found in part_0.0_13829.432373046875: CORRECT\n", + "PQVEGAEDYTDSDD found in part_0.0_13829.432373046875: CORRECT\n", + "PQVTVIPR found in part_0.0_13829.432373046875: CORRECT\n", + "PSATSLAQVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "PSDEELAGFKPDFIVMNGAK found in part_0.0_13829.432373046875: CORRECT\n", + "PSDLIPELQGR found in part_0.0_13829.432373046875: CORRECT\n", + "PSEFTPNNAIAFAK found in part_0.0_13829.432373046875: CORRECT\n", + "PSEGETLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "PSEVVLEILPDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PSFDIVSEVDLQEAR NOT FOUND in any FASTA file.\n", + "PSFLITNPGSNQGPR found in part_0.0_13829.432373046875: CORRECT\n", + "PSFLITNPGSNQGPR found in part_0.0_13829.432373046875: CORRECT\n", + "PSFTMGGSGGGIAYNR found in part_0.0_13829.432373046875: CORRECT\n", + "PSGASFTGETIER found in part_0.0_13829.432373046875: CORRECT\n", + "PSGDQPEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "PSGILAPVEADAR found in part_0.0_13829.432373046875: CORRECT\n", + "PSHQDLLPDPELPDDTR found in part_0.0_13829.432373046875: CORRECT\n", + "PSLLITTDDQLPR found in part_0.0_13829.432373046875: CORRECT\n", + "PSLQGYITTR found in part_0.0_13829.432373046875: CORRECT\n", + "PSLSPDDAGCQALLIER found in part_0.0_13829.432373046875: CORRECT\n", + "PSPAGEELVSR found in part_0.0_13829.432373046875: CORRECT\n", + "PSPIMTDEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "PSPQHQYQPPYASAQPR found in part_0.0_13829.432373046875: CORRECT\n", + "PSSEVSMIHAR found in part_0.0_13829.432373046875: CORRECT\n", + "PSTYASIISTIQDR found in part_0.0_13829.432373046875: CORRECT\n", + "PSTYASIISTIQDR found in part_0.0_13829.432373046875: CORRECT\n", + "PSVDTGMGLER found in part_0.0_13829.432373046875: CORRECT\n", + "PSVLALNIQR found in part_0.0_13829.432373046875: CORRECT\n", + "PSYGLTDSEIASMIK found in part_0.0_13829.432373046875: CORRECT\n", + "PSYVLGGR found in part_0.0_13829.432373046875: CORRECT\n", + "PTADLCIDCK found in part_0.0_13829.432373046875: CORRECT\n", + "PTADRPFVLGLPTGGTPMTTYK found in part_0.0_13829.432373046875: CORRECT\n", + "PTEGEYNEEFSLLPVVNYLK found in part_0.0_13829.432373046875: CORRECT\n", + "PTFAFEGK found in part_0.0_13829.432373046875: CORRECT\n", + "PTFIDEVK found in part_0.0_13829.432373046875: CORRECT\n", + "PTGGVESLR found in part_0.0_13829.432373046875: CORRECT\n", + "PTIIINDLDAER found in part_0.0_13829.432373046875: CORRECT\n", + "PTILPLAGDQQR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PTKPPYPR NOT FOUND in any FASTA file.\n", + "PTLAANRPAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "PTLPIPDLLTTDAR found in part_0.0_13829.432373046875: CORRECT\n", + "PTMLVTDLTLR found in part_0.0_13829.432373046875: CORRECT\n", + "PTNPTGNVITDEELLK found in part_0.0_13829.432373046875: CORRECT\n", + "PTNSILLR found in part_0.0_13829.432373046875: CORRECT\n", + "PTQDIPAR found in part_0.0_13829.432373046875: CORRECT\n", + "PTQEQYDEFK found in part_0.0_13829.432373046875: CORRECT\n", + "PTRPADFDAR found in part_0.0_13829.432373046875: CORRECT\n", + "PTSLPFEK found in part_0.0_13829.432373046875: CORRECT\n", + "PTTQISDFHVATR found in part_0.0_13829.432373046875: CORRECT\n", + "PTTVIDLTDDTPVVVR found in part_0.0_13829.432373046875: CORRECT\n", + "PVAPDANEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "PVATQVDDLLSEIR found in part_0.0_13829.432373046875: CORRECT\n", + "PVDVNTHHTLPDFIMNR found in part_0.0_13829.432373046875: CORRECT\n", + "PVDVNTHHTLPDFIMNR found in part_0.0_13829.432373046875: CORRECT\n", + "PVELIATLDDSAK found in part_0.0_13829.432373046875: CORRECT\n", + "PVHTVTLLLGDK found in part_0.0_13829.432373046875: CORRECT\n", + "PVHVLTPIASVR found in part_0.0_13829.432373046875: CORRECT\n", + "PVHVLTPIASVR found in part_0.0_13829.432373046875: CORRECT\n", + "PVILAADGSEPDLSQQALTEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide PVITLPDGSQR NOT FOUND in any FASTA file.\n", + "PVIVTGSQIPLAELR found in part_0.0_13829.432373046875: CORRECT\n", + "PVLIQTSSMGVIGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "PVLISTGDK found in part_0.0_13829.432373046875: CORRECT\n", + "PVLLEPIMK found in part_0.0_13829.432373046875: CORRECT\n", + "PVMVFIPEQK found in part_0.0_13829.432373046875: CORRECT\n", + "PVNPLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "PVPALNQPGGIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "PVPVETLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "PVQYEGGGADTTATDIICPMYAR found in part_0.0_13829.432373046875: CORRECT\n", + "PVTGEITYGLER found in part_0.0_13829.432373046875: CORRECT\n", + "PVTQSVDPAQTLK found in part_0.0_13829.432373046875: CORRECT\n", + "PVVGYIAGVTAPK found in part_0.0_13829.432373046875: CORRECT\n", + "PVVLQAHLDMVPQK found in part_0.0_13829.432373046875: CORRECT\n", + "PVYDVFK found in part_0.0_13829.432373046875: CORRECT\n", + "PYHPTDVDFTHPR found in part_0.0_13829.432373046875: CORRECT\n", + "PYLFCGDTLFSGGCGR found in part_0.0_13829.432373046875: CORRECT\n", + "PYNEGEQVVIGGNER found in part_0.0_13829.432373046875: CORRECT\n", + "PYSAEDVVK found in part_0.0_13829.432373046875: CORRECT\n", + "PYSVILLDEVEK found in part_0.0_13829.432373046875: CORRECT\n", + "QAADHPVIATYPEGLYLK found in part_0.0_13829.432373046875: CORRECT\n", + "QAAFSDTIFVVGTR found in part_0.0_13829.432373046875: CORRECT\n", + "QADGTMEPLPK found in part_0.0_13829.432373046875: CORRECT\n", + "QADGVVIVTPEYNYSVPGGLK found in part_0.0_13829.432373046875: CORRECT\n", + "QADLMVVAGTCFTK found in part_0.0_13829.432373046875: CORRECT\n", + "QAEDESDREVEGGR found in part_0.0_13829.432373046875: CORRECT\n", + "QAEGDFFVCTPEEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "QAELPASAEFINNPVGTACGFAVQLNR found in part_0.0_13829.432373046875: CORRECT\n", + "QAETEIADFIAQK found in part_0.0_13829.432373046875: CORRECT\n", + "QAFHDASFMLR found in part_0.0_13829.432373046875: CORRECT\n", + "QAFLDFFHSK found in part_0.0_13829.432373046875: CORRECT\n", + "QAFLDFFHSK found in part_0.0_13829.432373046875: CORRECT\n", + "QAFNKPGELNIDR found in part_0.0_13829.432373046875: CORRECT\n", + "QAGIITGAR found in part_0.0_13829.432373046875: CORRECT\n", + "QAGLGGEIICYVA found in part_0.0_13829.432373046875: CORRECT\n", + "QAGVSVATVSR found in part_0.0_13829.432373046875: CORRECT\n", + "QAGYDASVSHPK found in part_0.0_13829.432373046875: CORRECT\n", + "QAGYTVVTTSSEQGK found in part_0.0_13829.432373046875: CORRECT\n", + "QAGYTVVTTSSEQGKPLFK found in part_0.0_13829.432373046875: CORRECT\n", + "QAIANSFAR found in part_0.0_13829.432373046875: CORRECT\n", + "QAIEHIK found in part_0.0_13829.432373046875: CORRECT\n", + "QAIFATPAFQVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "QAIHPGDDPQPLIER found in part_0.0_13829.432373046875: CORRECT\n", + "QAIHPGDDPQPLIER found in part_0.0_13829.432373046875: CORRECT\n", + "QAIPEQTTFEQMVAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QAIPMTLR NOT FOUND in any FASTA file.\n", + "QAITSAGTGCMAALDAER found in part_0.0_13829.432373046875: CORRECT\n", + "QAIVAEVSEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "QAIYDPENR found in part_0.0_13829.432373046875: CORRECT\n", + "QALAILQGLK found in part_0.0_13829.432373046875: CORRECT\n", + "QALDAAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "QALDMGLVNTVVPLADLEK found in part_0.0_13829.432373046875: CORRECT\n", + "QALEDSVK found in part_0.0_13829.432373046875: CORRECT\n", + "QALELPR found in part_0.0_13829.432373046875: CORRECT\n", + "QALELVR found in part_0.0_13829.432373046875: CORRECT\n", + "QALIDANLR found in part_0.0_13829.432373046875: CORRECT\n", + "QALILNLPGQPK found in part_0.0_13829.432373046875: CORRECT\n", + "QALLALVLNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QALLLEQQDGK NOT FOUND in any FASTA file.\n", + "QALQLVQNELPGSGFEPASSER found in part_0.0_13829.432373046875: CORRECT\n", + "QALTEQGYYLQLPPPPEDLLK found in part_0.0_13829.432373046875: CORRECT\n", + "QALTYAVNK found in part_0.0_13829.432373046875: CORRECT\n", + "QALVEQMQPGSAALIFAAPEVTR found in part_0.0_13829.432373046875: CORRECT\n", + "QAMIAAGAPADCEPQVR found in part_0.0_13829.432373046875: CORRECT\n", + "QANDLDYASLPDSVVEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "QANELPGAPSQEEAVIAFGK found in part_0.0_13829.432373046875: CORRECT\n", + "QAQEILDTDHYGLER found in part_0.0_13829.432373046875: CORRECT\n", + "QAQVVMHDQAPALIIAHSTVFEPVR found in part_0.0_13829.432373046875: CORRECT\n", + "QASFDPSVLAIK found in part_0.0_13829.432373046875: CORRECT\n", + "QATFEEMIAR found in part_0.0_13829.432373046875: CORRECT\n", + "QATKGEVVSHIASDNVLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "QATQGDELTIK found in part_0.0_13829.432373046875: CORRECT\n", + "QAVLDQFAK found in part_0.0_13829.432373046875: CORRECT\n", + "QAVLEQFLGTNGQR found in part_0.0_13829.432373046875: CORRECT\n", + "QAVQIEK found in part_0.0_13829.432373046875: CORRECT\n", + "QAVTNPQNTLFAIK found in part_0.0_13829.432373046875: CORRECT\n", + "QAVVAAAAGADFIAPSAAMDGQVQAIR found in part_0.0_13829.432373046875: CORRECT\n", + "QAVVVPESK found in part_0.0_13829.432373046875: CORRECT\n", + "QAYILQNEDK found in part_0.0_13829.432373046875: CORRECT\n", + "QAYILQNEDKR found in part_0.0_13829.432373046875: CORRECT\n", + "QCLVCNER found in part_0.0_13829.432373046875: CORRECT\n", + "QCNPALAALLDK found in part_0.0_13829.432373046875: CORRECT\n", + "QCYALPER found in part_0.0_13829.432373046875: CORRECT\n", + "QDAAPPPPHAIEDGYR found in part_0.0_13829.432373046875: CORRECT\n", + "QDDAMVAFQNFIK found in part_0.0_13829.432373046875: CORRECT\n", + "QDGPTALILSR found in part_0.0_13829.432373046875: CORRECT\n", + "QDIESNLQYDAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "QDIGEILIDNPK found in part_0.0_13829.432373046875: CORRECT\n", + "QDKSINLMEMPGLNVGYLSYNVQK found in part_0.0_13829.432373046875: CORRECT\n", + "QDLDQLQAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "QDLMLAGVICGNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QDLSLEAR NOT FOUND in any FASTA file.\n", + "QDLTEAFQFAAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "QDLTSEEITNHIEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "QDNTIEMASLESCIR found in part_0.0_13829.432373046875: CORRECT\n", + "QDPLAYLER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QDSILTTVVK NOT FOUND in any FASTA file.\n", + "QDTAGSELLPQAK found in part_0.0_13829.432373046875: CORRECT\n", + "QDTNMLFVR found in part_0.0_13829.432373046875: CORRECT\n", + "QDVLGDLMSR found in part_0.0_13829.432373046875: CORRECT\n", + "QDVPSFR found in part_0.0_13829.432373046875: CORRECT\n", + "QDVPSFRPGDTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "QDVPSFRPGDTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "QDVVDCEVK found in part_0.0_13829.432373046875: CORRECT\n", + "QEAAPAAAPAPAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "QEAAPAAAPAPAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "QEAEADDYSYDLLR found in part_0.0_13829.432373046875: CORRECT\n", + "QEANNDILK found in part_0.0_13829.432373046875: CORRECT\n", + "QECYDLFVQAAQQEK found in part_0.0_13829.432373046875: CORRECT\n", + "QEDANFSNNAMAEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "QEDANFSNNAMAEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "QEEHIELIASENYTSPR found in part_0.0_13829.432373046875: CORRECT\n", + "QEGIECYR found in part_0.0_13829.432373046875: CORRECT\n", + "QEIGQIVGCSR found in part_0.0_13829.432373046875: CORRECT\n", + "QEIVTDPLEQEVNK found in part_0.0_13829.432373046875: CORRECT\n", + "QELEAFIEQTTPVLPASEEER found in part_0.0_13829.432373046875: CORRECT\n", + "QEQQEQEAAELQAVTAIAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "QESGVALR found in part_0.0_13829.432373046875: CORRECT\n", + "QEVHGNGLSSYPHPK found in part_0.0_13829.432373046875: CORRECT\n", + "QEVHGNGLSSYPHPK found in part_0.0_13829.432373046875: CORRECT\n", + "QEVTTEGGLDVAGQR found in part_0.0_13829.432373046875: CORRECT\n", + "QEVTTEGGLDVAGQR found in part_0.0_13829.432373046875: CORRECT\n", + "QFAQTPALYR found in part_0.0_13829.432373046875: CORRECT\n", + "QFCMNGLVFADR found in part_0.0_13829.432373046875: CORRECT\n", + "QFDALLQEQSAQR found in part_0.0_13829.432373046875: CORRECT\n", + "QFDHFDLR found in part_0.0_13829.432373046875: CORRECT\n", + "QFDLDQAFSAK found in part_0.0_13829.432373046875: CORRECT\n", + "QFDYLVNSMR found in part_0.0_13829.432373046875: CORRECT\n", + "QFFDDGMHLPSPYGIR found in part_0.0_13829.432373046875: CORRECT\n", + "QFGENYVQEGVDK found in part_0.0_13829.432373046875: CORRECT\n", + "QFHEANNMTDALAALSAAVAAQLPCR found in part_0.0_13829.432373046875: CORRECT\n", + "QFIADAAR found in part_0.0_13829.432373046875: CORRECT\n", + "QFIDGLALPEEEK found in part_0.0_13829.432373046875: CORRECT\n", + "QFMNELNSGLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "QFNANFEK found in part_0.0_13829.432373046875: CORRECT\n", + "QFNTGSQTADNYYASVYSVDQGVK found in part_0.0_13829.432373046875: CORRECT\n", + "QFNYSAEELDSVIR found in part_0.0_13829.432373046875: CORRECT\n", + "QFPNGIEPHGTDALR found in part_0.0_13829.432373046875: CORRECT\n", + "QFPNIDNAYMELGTNR found in part_0.0_13829.432373046875: CORRECT\n", + "QFPNIDNAYMELGTNR found in part_0.0_13829.432373046875: CORRECT\n", + "QFQEALSR found in part_0.0_13829.432373046875: CORRECT\n", + "QFSLNLR found in part_0.0_13829.432373046875: CORRECT\n", + "QFTINVGR found in part_0.0_13829.432373046875: CORRECT\n", + "QFTTVVADSGDIESIR found in part_0.0_13829.432373046875: CORRECT\n", + "QFTTVVADSGDIESIR found in part_0.0_13829.432373046875: CORRECT\n", + "QFVACQMTPAK found in part_0.0_13829.432373046875: CORRECT\n", + "QFVDDLVEK found in part_0.0_13829.432373046875: CORRECT\n", + "QFVEAAHESGK found in part_0.0_13829.432373046875: CORRECT\n", + "QFVEAAHESGK found in part_0.0_13829.432373046875: CORRECT\n", + "QFVEVIIAPSASEEALK found in part_0.0_13829.432373046875: CORRECT\n", + "QFVFGGECETPVR found in part_0.0_13829.432373046875: CORRECT\n", + "QGADIVFGSAQR found in part_0.0_13829.432373046875: CORRECT\n", + "QGAPTDLPK found in part_0.0_13829.432373046875: CORRECT\n", + "QGDLICLDGK found in part_0.0_13829.432373046875: CORRECT\n", + "QGEEDFLAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "QGEPDPELNTSLK found in part_0.0_13829.432373046875: CORRECT\n", + "QGEPLGLGHSILCAR found in part_0.0_13829.432373046875: CORRECT\n", + "QGEVLVR found in part_0.0_13829.432373046875: CORRECT\n", + "QGEVVGIVGESGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "QGFAEPSLK found in part_0.0_13829.432373046875: CORRECT\n", + "QGFELDATHGTAIVLGEAGINPR found in part_0.0_13829.432373046875: CORRECT\n", + "QGFVDLLADR found in part_0.0_13829.432373046875: CORRECT\n", + "QGGALVTSTAATVTGINR found in part_0.0_13829.432373046875: CORRECT\n", + "QGIIVNLAELR found in part_0.0_13829.432373046875: CORRECT\n", + "QGITSYSLVPFPGH found in part_0.0_13829.432373046875: CORRECT\n", + "QGIVLATGGGSVK found in part_0.0_13829.432373046875: CORRECT\n", + "QGLEIISQCFDEAK found in part_0.0_13829.432373046875: CORRECT\n", + "QGLEIISQCFDEAKQ found in part_0.0_13829.432373046875: CORRECT\n", + "QGLLTVEK found in part_0.0_13829.432373046875: CORRECT\n", + "QGLLTVEK found in part_0.0_13829.432373046875: CORRECT\n", + "QGNALGWATAGGSGFR found in part_0.0_13829.432373046875: CORRECT\n", + "QGNEFGATTGR found in part_0.0_13829.432373046875: CORRECT\n", + "QGQMVPAFDK found in part_0.0_13829.432373046875: CORRECT\n", + "QGQVATVLSAPAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QGSVTEFLKPR NOT FOUND in any FASTA file.\n", + "QGYPIGCK found in part_0.0_13829.432373046875: CORRECT\n", + "QGYPIGCK found in part_0.0_13829.432373046875: CORRECT\n", + "QHITPILINPDTDLVQFLK found in part_0.0_13829.432373046875: CORRECT\n", + "QHLELSR found in part_0.0_13829.432373046875: CORRECT\n", + "QHVPVFVTDEMVGHK found in part_0.0_13829.432373046875: CORRECT\n", + "QHVPVFVTDEMVGHK found in part_0.0_13829.432373046875: CORRECT\n", + "QHVPVFVTDEMVGHK found in part_0.0_13829.432373046875: CORRECT\n", + "QIADDYQQALR found in part_0.0_13829.432373046875: CORRECT\n", + "QIADFQK found in part_0.0_13829.432373046875: CORRECT\n", + "QIAENPILLYMK found in part_0.0_13829.432373046875: CORRECT\n", + "QIAINQGTEFIR found in part_0.0_13829.432373046875: CORRECT\n", + "QIASLGIYPAVDPLDSTSR found in part_0.0_13829.432373046875: CORRECT\n", + "QIASLGIYPAVDPLDSTSR found in part_0.0_13829.432373046875: CORRECT\n", + "QIDAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "QIDEYGNFVK found in part_0.0_13829.432373046875: CORRECT\n", + "QIDQPLHLGITEAGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "QIEAGAPADLFISADQK found in part_0.0_13829.432373046875: CORRECT\n", + "QIEALQQK found in part_0.0_13829.432373046875: CORRECT\n", + "QIEALQQK found in part_0.0_13829.432373046875: CORRECT\n", + "QIEALQQKGFPLAYVGDVVGTGSSR found in part_0.0_13829.432373046875: CORRECT\n", + "QIEDAGLR found in part_0.0_13829.432373046875: CORRECT\n", + "QIEEISAAFER found in part_0.0_13829.432373046875: CORRECT\n", + "QIFQYLR found in part_0.0_13829.432373046875: CORRECT\n", + "QIGIYSPNGQQYTPQDR found in part_0.0_13829.432373046875: CORRECT\n", + "QIGIYSPNGQQYTPQDR found in part_0.0_13829.432373046875: CORRECT\n", + "QIGTEDFAR found in part_0.0_13829.432373046875: CORRECT\n", + "QIHQLMENCTR found in part_0.0_13829.432373046875: CORRECT\n", + "QIIDEDLASGK found in part_0.0_13829.432373046875: CORRECT\n", + "QIIIATGEGAK found in part_0.0_13829.432373046875: CORRECT\n", + "QIINIGELK found in part_0.0_13829.432373046875: CORRECT\n", + "QILLDTYYGR found in part_0.0_13829.432373046875: CORRECT\n", + "QILPEANSQIVGFR found in part_0.0_13829.432373046875: CORRECT\n", + "QILPEANSQIVGFR found in part_0.0_13829.432373046875: CORRECT\n", + "QILTNIIQSEDR found in part_0.0_13829.432373046875: CORRECT\n", + "QILYLLGPVGGGK found in part_0.0_13829.432373046875: CORRECT\n", + "QINGADYLAAPVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "QINVFLR found in part_0.0_13829.432373046875: CORRECT\n", + "QIQEINTGILIANGADMK found in part_0.0_13829.432373046875: CORRECT\n", + "QIQVEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "QISLHFVPTAILSR found in part_0.0_13829.432373046875: CORRECT\n", + "QISLLLR found in part_0.0_13829.432373046875: CORRECT\n", + "QITVNDLPVGR found in part_0.0_13829.432373046875: CORRECT\n", + "QIVLNCGEEPSVVANTVK found in part_0.0_13829.432373046875: CORRECT\n", + "QIVLNCGEEPSVVANTVK found in part_0.0_13829.432373046875: CORRECT\n", + "QIYEHGVPQAPLAVTGETEK found in part_0.0_13829.432373046875: CORRECT\n", + "QIYQVPTK found in part_0.0_13829.432373046875: CORRECT\n", + "QLADGTAKPEVQDETLVTYAEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLAEDNFGETEEVAPPTLRPVPPVSGK found in part_0.0_13829.432373046875: CORRECT\n", + "QLAEDPFNNWVALNK found in part_0.0_13829.432373046875: CORRECT\n", + "QLAEISALGLPVIVKPSR found in part_0.0_13829.432373046875: CORRECT\n", + "QLAEQVLTHLDLNGIASK found in part_0.0_13829.432373046875: CORRECT\n", + "QLASVTVEDSR found in part_0.0_13829.432373046875: CORRECT\n", + "QLAYPINK found in part_0.0_13829.432373046875: CORRECT\n", + "QLAYPINK found in part_0.0_13829.432373046875: CORRECT\n", + "QLDPLVVGQEHYDTAR found in part_0.0_13829.432373046875: CORRECT\n", + "QLDPLVVGQEHYDTAR found in part_0.0_13829.432373046875: CORRECT\n", + "QLEAATQLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "QLEEAFVSAQK found in part_0.0_13829.432373046875: CORRECT\n", + "QLEGQSDLGFAGFR found in part_0.0_13829.432373046875: CORRECT\n", + "QLFVNTLQEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLGFSGSDEQVLEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLGHEVTGSDANVYPPMSTLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLGIPFAR found in part_0.0_13829.432373046875: CORRECT\n", + "QLGLQPYEPISQAMHEFTDTR found in part_0.0_13829.432373046875: CORRECT\n", + "QLGVSYFLER found in part_0.0_13829.432373046875: CORRECT\n", + "QLINTVHVDMLIVPLRDEEE found in part_0.0_13829.432373046875: CORRECT\n", + "QLIPQLK found in part_0.0_13829.432373046875: CORRECT\n", + "QLIQVNPDILMR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLAALACPEHLYK found in part_0.0_13829.432373046875: CORRECT\n", + "QLLAAVGQSR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLAEVQSICPPGVTIMNVR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLAPVNSISR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLDEVQSICPPHVTIMQVR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLEYDDVANDQR found in part_0.0_13829.432373046875: CORRECT\n", + "QLLNEFPELK found in part_0.0_13829.432373046875: CORRECT\n", + "QLLTPLR found in part_0.0_13829.432373046875: CORRECT\n", + "QLMLDETQTAEQK found in part_0.0_13829.432373046875: CORRECT\n", + "QLNGATIAEPAPYR found in part_0.0_13829.432373046875: CORRECT\n", + "QLNQVEILGK found in part_0.0_13829.432373046875: CORRECT\n", + "QLNVFEGER found in part_0.0_13829.432373046875: CORRECT\n", + "QLPCPAELLR found in part_0.0_13829.432373046875: CORRECT\n", + "QLPLNFYQIQTK found in part_0.0_13829.432373046875: CORRECT\n", + "QLQLIGK found in part_0.0_13829.432373046875: CORRECT\n", + "QLQQNATQAEVNR found in part_0.0_13829.432373046875: CORRECT\n", + "QLQQPEIQPNAAHLALAK found in part_0.0_13829.432373046875: CORRECT\n", + "QLQTILFEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLSELIYSR found in part_0.0_13829.432373046875: CORRECT\n", + "QLSIADVMTPGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "QLTAGVFQPLDK found in part_0.0_13829.432373046875: CORRECT\n", + "QLTAQAPVDPIVLGK found in part_0.0_13829.432373046875: CORRECT\n", + "QLVAQLEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLVLSPDAR found in part_0.0_13829.432373046875: CORRECT\n", + "QLVNGTVDGR found in part_0.0_13829.432373046875: CORRECT\n", + "QLYNAPTIVER found in part_0.0_13829.432373046875: CORRECT\n", + "QLYTGYEK found in part_0.0_13829.432373046875: CORRECT\n", + "QLYTGYEK found in part_0.0_13829.432373046875: CORRECT\n", + "QMAESGVTLHADAAALAQLQAGPAK found in part_0.0_13829.432373046875: CORRECT\n", + "QMDTFIDHDR found in part_0.0_13829.432373046875: CORRECT\n", + "QMDVCADVCQQIAGGEK found in part_0.0_13829.432373046875: CORRECT\n", + "QMEITPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "QMLNKPPLPFTK found in part_0.0_13829.432373046875: CORRECT\n", + "QMPEIVER found in part_0.0_13829.432373046875: CORRECT\n", + "QMQVGGKDPLVPEENDK found in part_0.0_13829.432373046875: CORRECT\n", + "QMQVGGKDPLVPEENDK found in part_0.0_13829.432373046875: CORRECT\n", + "QMTQLAQLGLLSR found in part_0.0_13829.432373046875: CORRECT\n", + "QNDQIDVLLAK found in part_0.0_13829.432373046875: CORRECT\n", + "QNEENLLPK found in part_0.0_13829.432373046875: CORRECT\n", + "QNEVENLEMHNEG found in part_0.0_13829.432373046875: CORRECT\n", + "QNGMFSFSGLTK found in part_0.0_13829.432373046875: CORRECT\n", + "QNGVLISNGQGK found in part_0.0_13829.432373046875: CORRECT\n", + "QNLAQVER found in part_0.0_13829.432373046875: CORRECT\n", + "QNLISVNSPIAR found in part_0.0_13829.432373046875: CORRECT\n", + "QNLPGAEEGDGFFYAK found in part_0.0_13829.432373046875: CORRECT\n", + "QNLSIVR found in part_0.0_13829.432373046875: CORRECT\n", + "QNNFNAVR found in part_0.0_13829.432373046875: CORRECT\n", + "QNNVSVDDIAK found in part_0.0_13829.432373046875: CORRECT\n", + "QNQLEQLAEQYDELK found in part_0.0_13829.432373046875: CORRECT\n", + "QNQLEQLAEQYDELKHEFEK found in part_0.0_13829.432373046875: CORRECT\n", + "QNVQGVDVR found in part_0.0_13829.432373046875: CORRECT\n", + "QNVSSVIIDLR found in part_0.0_13829.432373046875: CORRECT\n", + "QPALGYLN found in part_0.0_13829.432373046875: CORRECT\n", + "QPELTAER found in part_0.0_13829.432373046875: CORRECT\n", + "QPLELVDMVEK found in part_0.0_13829.432373046875: CORRECT\n", + "QPLEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "QPLHSQELLDPLR found in part_0.0_13829.432373046875: CORRECT\n", + "QPSEQELR found in part_0.0_13829.432373046875: CORRECT\n", + "QPSLSGCLR found in part_0.0_13829.432373046875: CORRECT\n", + "QPSQEELSIAR found in part_0.0_13829.432373046875: CORRECT\n", + "QPVDAPSPAK found in part_0.0_13829.432373046875: CORRECT\n", + "QQALINGEWLDANNGEAIDVTNPANGDK found in part_0.0_13829.432373046875: CORRECT\n", + "QQAPAHPYSLLEPQR found in part_0.0_13829.432373046875: CORRECT\n", + "QQAQVEQVLK found in part_0.0_13829.432373046875: CORRECT\n", + "QQASLEEQNNDALSPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "QQASLEEQNNDALSPAIR found in part_0.0_13829.432373046875: CORRECT\n", + "QQCSLVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "QQEATQPDDVIR found in part_0.0_13829.432373046875: CORRECT\n", + "QQEELLAEFNASDAR found in part_0.0_13829.432373046875: CORRECT\n", + "QQEIAFSDK found in part_0.0_13829.432373046875: CORRECT\n", + "QQEIAFTDK found in part_0.0_13829.432373046875: CORRECT\n", + "QQFAQVTNPPIDPLR found in part_0.0_13829.432373046875: CORRECT\n", + "QQFAQVTNPPIDPLR found in part_0.0_13829.432373046875: CORRECT\n", + "QQFVGEFTGER found in part_0.0_13829.432373046875: CORRECT\n", + "QQGVAFPNDFR found in part_0.0_13829.432373046875: CORRECT\n", + "QQIEEATSDYDR found in part_0.0_13829.432373046875: CORRECT\n", + "QQIEEATSDYDREK found in part_0.0_13829.432373046875: CORRECT\n", + "QQIIGLAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "QQLATDNIDITPVSVIK found in part_0.0_13829.432373046875: CORRECT\n", + "QQLATDNIDITPVSVIK found in part_0.0_13829.432373046875: CORRECT\n", + "QQLLYTVAEK found in part_0.0_13829.432373046875: CORRECT\n", + "QQLPDDATLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QQLQNIIETAFER NOT FOUND in any FASTA file.\n", + "QQQALQYELEK found in part_0.0_13829.432373046875: CORRECT\n", + "QQQDLVNDALNVE found in part_0.0_13829.432373046875: CORRECT\n", + "QQQGDCPTGHAVITLAGDLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "QQTAESQAVIR found in part_0.0_13829.432373046875: CORRECT\n", + "QQTGDNVVIR found in part_0.0_13829.432373046875: CORRECT\n", + "QQVDVINHLTGEAMTETR found in part_0.0_13829.432373046875: CORRECT\n", + "QQYGEGLAR found in part_0.0_13829.432373046875: CORRECT\n", + "QSALDFHEFPVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "QSALDFHEFPVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "QSDALGEFIENDHLR found in part_0.0_13829.432373046875: CORRECT\n", + "QSDPEYFFK found in part_0.0_13829.432373046875: CORRECT\n", + "QSELEAMCR found in part_0.0_13829.432373046875: CORRECT\n", + "QSGILAAAGIYALK found in part_0.0_13829.432373046875: CORRECT\n", + "QSGVTIYPPQK found in part_0.0_13829.432373046875: CORRECT\n", + "QSLGGLIEAYEAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "QSNPEDPESVLTEMAK found in part_0.0_13829.432373046875: CORRECT\n", + "QSPDINQGVDR found in part_0.0_13829.432373046875: CORRECT\n", + "QSQLLANLR found in part_0.0_13829.432373046875: CORRECT\n", + "QSSLMVESLVQK found in part_0.0_13829.432373046875: CORRECT\n", + "QSSMFDDHPASAER found in part_0.0_13829.432373046875: CORRECT\n", + "QSVDQPVQTGYK found in part_0.0_13829.432373046875: CORRECT\n", + "QSVLEMSDVNER found in part_0.0_13829.432373046875: CORRECT\n", + "QTAFSQYDR found in part_0.0_13829.432373046875: CORRECT\n", + "QTAFSQYDRPQAR found in part_0.0_13829.432373046875: CORRECT\n", + "QTAFSQYDRPQAR found in part_0.0_13829.432373046875: CORRECT\n", + "QTDELTGLSSLVVLDSAER found in part_0.0_13829.432373046875: CORRECT\n", + "QTDIPCTVK found in part_0.0_13829.432373046875: CORRECT\n", + "QTDLVEAMAK found in part_0.0_13829.432373046875: CORRECT\n", + "QTFQFHGILK found in part_0.0_13829.432373046875: CORRECT\n", + "QTGVIFPADSVK found in part_0.0_13829.432373046875: CORRECT\n", + "QTHQTPVIMLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "QTIETIATLVDMAEQATGQR found in part_0.0_13829.432373046875: CORRECT\n", + "QTIVVDYSAPNVAK found in part_0.0_13829.432373046875: CORRECT\n", + "QTLIDHLNQK found in part_0.0_13829.432373046875: CORRECT\n", + "QTLIDHLNQK found in part_0.0_13829.432373046875: CORRECT\n", + "QTLLGNSLVVVAPK found in part_0.0_13829.432373046875: CORRECT\n", + "QTLQAQLTR found in part_0.0_13829.432373046875: CORRECT\n", + "QTPESFAFTLK found in part_0.0_13829.432373046875: CORRECT\n", + "QTTFNDMIK found in part_0.0_13829.432373046875: CORRECT\n", + "QTTTYGFSEDADVR found in part_0.0_13829.432373046875: CORRECT\n", + "QTVAAYIAK found in part_0.0_13829.432373046875: CORRECT\n", + "QTVDEALK found in part_0.0_13829.432373046875: CORRECT\n", + "QTVDEALK found in part_0.0_13829.432373046875: CORRECT\n", + "QTVDEALKDAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "QTVDEALKDAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QTVIFGR NOT FOUND in any FASTA file.\n", + "QTYCGPIGAEYMHITSTEEK found in part_0.0_13829.432373046875: CORRECT\n", + "QVAAIIFEPVQGEGGFNVAPK found in part_0.0_13829.432373046875: CORRECT\n", + "QVADNLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "QVAESTPDIPK found in part_0.0_13829.432373046875: CORRECT\n", + "QVAEYADGIGPDYHMLIEETSQPGNIK found in part_0.0_13829.432373046875: CORRECT\n", + "QVAILAVAGAEK found in part_0.0_13829.432373046875: CORRECT\n", + "QVAIPDIADLTSEQFQK found in part_0.0_13829.432373046875: CORRECT\n", + "QVASFPR found in part_0.0_13829.432373046875: CORRECT\n", + "QVASHINEETGR found in part_0.0_13829.432373046875: CORRECT\n", + "QVCNLADPVGQVIDGGVLDSGLR found in part_0.0_13829.432373046875: CORRECT\n", + "QVCVLGNGQLGR found in part_0.0_13829.432373046875: CORRECT\n", + "QVDDFLAQALK found in part_0.0_13829.432373046875: CORRECT\n", + "QVEALVEASK found in part_0.0_13829.432373046875: CORRECT\n", + "QVEALVEASKEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "QVEEAGDKLPADDK found in part_0.0_13829.432373046875: CORRECT\n", + "QVEEAGDKLPADDK found in part_0.0_13829.432373046875: CORRECT\n", + "QVFGGQVVGQALYAAK found in part_0.0_13829.432373046875: CORRECT\n", + "QVFGQEFK found in part_0.0_13829.432373046875: CORRECT\n", + "QVGLCHSVQGTAEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "QVGMATLAVPIHNAEEAFNPNAVK found in part_0.0_13829.432373046875: CORRECT\n", + "QVGVPYIIVFLNK found in part_0.0_13829.432373046875: CORRECT\n", + "QVIADMLR found in part_0.0_13829.432373046875: CORRECT\n", + "QVIDASHAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "QVIDDAAAHLSEVAQGDDVDAIEQAIK found in part_0.0_13829.432373046875: CORRECT\n", + "QVIGQVAADLR found in part_0.0_13829.432373046875: CORRECT\n", + "QVIGVDINQHAVDTINR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QVILLDK NOT FOUND in any FASTA file.\n", + "QVIQLTPQEDESTLK found in part_0.0_13829.432373046875: CORRECT\n", + "QVLFTTPYYDNSALFVGQQGK found in part_0.0_13829.432373046875: CORRECT\n", + "QVLGTHVSQK found in part_0.0_13829.432373046875: CORRECT\n", + "QVLPAHDPDCFLCAGNVR found in part_0.0_13829.432373046875: CORRECT\n", + "QVLTHGFTVDGQGR found in part_0.0_13829.432373046875: CORRECT\n", + "QVLTHGFTVDGQGR found in part_0.0_13829.432373046875: CORRECT\n", + "QVMVYTHDSIGLGEDGPTHQPVEQVASLR found in part_0.0_13829.432373046875: CORRECT\n", + "QVMVYTHDSIGLGEDGPTHQPVEQVASLR found in part_0.0_13829.432373046875: CORRECT\n", + "QVNLTER found in part_0.0_13829.432373046875: CORRECT\n", + "QVPILQK found in part_0.0_13829.432373046875: CORRECT\n", + "QVSAEYGLTADK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide QVSVETTQGLGR NOT FOUND in any FASTA file.\n", + "QVTTPEQYPLSVNGVVTACNQK found in part_0.0_13829.432373046875: CORRECT\n", + "QVVSGLNEAQLMR found in part_0.0_13829.432373046875: CORRECT\n", + "QVVVGLPDVR found in part_0.0_13829.432373046875: CORRECT\n", + "QVWAGAIDTVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "QVYALGTETFR found in part_0.0_13829.432373046875: CORRECT\n", + "QWVNLPLVLHGASGLSTK found in part_0.0_13829.432373046875: CORRECT\n", + "QYAPMSVAQQSLVLFAAER found in part_0.0_13829.432373046875: CORRECT\n", + "QYATTYINIVGK found in part_0.0_13829.432373046875: CORRECT\n", + "QYDINEAIALLK found in part_0.0_13829.432373046875: CORRECT\n", + "QYDWVTQFEK found in part_0.0_13829.432373046875: CORRECT\n", + "QYEAQGFEVVIPK found in part_0.0_13829.432373046875: CORRECT\n", + "QYGEAFEK found in part_0.0_13829.432373046875: CORRECT\n", + "QYHLSANEINQIINA found in part_0.0_13829.432373046875: CORRECT\n", + "QYLIAPSILSADFAR found in part_0.0_13829.432373046875: CORRECT\n", + "QYLPQMQK found in part_0.0_13829.432373046875: CORRECT\n", + "QYMAEVESGVYPGEEHSFH found in part_0.0_13829.432373046875: CORRECT\n", + "QYMAEVESGVYPGEEHSFH found in part_0.0_13829.432373046875: CORRECT\n", + "QYSLNAAQR found in part_0.0_13829.432373046875: CORRECT\n", + "QYTTVVADTGDIAAMK found in part_0.0_13829.432373046875: CORRECT\n", + "QYTTVVADTGDIAAMK found in part_0.0_13829.432373046875: CORRECT\n", + "QYVVGATLPVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "RADAIFIEELR found in part_0.0_13829.432373046875: CORRECT\n", + "RAEDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "RAEITPANADTVTR found in part_0.0_13829.432373046875: CORRECT\n", + "RANDIALK found in part_0.0_13829.432373046875: CORRECT\n", + "RDALLENVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "RDDEVIVLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "RDDEVIVLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "RDDFANETADDAEAGDSEEEEEE found in part_0.0_13829.432373046875: CORRECT\n", + "RDEQNLELVLR found in part_0.0_13829.432373046875: CORRECT\n", + "RDFSEEEIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "RDGLEDYIR found in part_0.0_13829.432373046875: CORRECT\n", + "RDPEHIYQQVSK found in part_0.0_13829.432373046875: CORRECT\n", + "RDPNQTEFAQAVR found in part_0.0_13829.432373046875: CORRECT\n", + "REDALEFSEK found in part_0.0_13829.432373046875: CORRECT\n", + "REDALEFSEK found in part_0.0_13829.432373046875: CORRECT\n", + "REDVVVATK found in part_0.0_13829.432373046875: CORRECT\n", + "REEESAAAAEVEER found in part_0.0_13829.432373046875: CORRECT\n", + "REEESAAAAEVEER found in part_0.0_13829.432373046875: CORRECT\n", + "REGDLPAYWADASK found in part_0.0_13829.432373046875: CORRECT\n", + "REGTDLFLK found in part_0.0_13829.432373046875: CORRECT\n", + "REISMSIK found in part_0.0_13829.432373046875: CORRECT\n", + "RELAVEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "RELSINDEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "RENELEEAVMSDR found in part_0.0_13829.432373046875: CORRECT\n", + "REQLGLPSSDTEISDTCPAYDEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "RESLGLDSESIR found in part_0.0_13829.432373046875: CORRECT\n", + "RETLEDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "REVEQWFTTQTEELNK found in part_0.0_13829.432373046875: CORRECT\n", + "RFDAVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "RFDGVLASELADPQLYK found in part_0.0_13829.432373046875: CORRECT\n", + "RFQDEEVQR found in part_0.0_13829.432373046875: CORRECT\n", + "RGDYLGATVQVIPHITNAIK found in part_0.0_13829.432373046875: CORRECT\n", + "RGEDISAGAVVFPAGTR found in part_0.0_13829.432373046875: CORRECT\n", + "RGEEDDTSGHYLR found in part_0.0_13829.432373046875: CORRECT\n", + "RGELGIMGTELNSELAK found in part_0.0_13829.432373046875: CORRECT\n", + "RGFAVTPPELTK found in part_0.0_13829.432373046875: CORRECT\n", + "RGGVVQYVDASR found in part_0.0_13829.432373046875: CORRECT\n", + "RGPAIAQAFDAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "RGSLPIALDEVITDGHK found in part_0.0_13829.432373046875: CORRECT\n", + "RGVANTVLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "RHSTLLK found in part_0.0_13829.432373046875: CORRECT\n", + "RIEAVTGEGAIATVHADSDR found in part_0.0_13829.432373046875: CORRECT\n", + "RIEELTGVPIDIISTGPDR found in part_0.0_13829.432373046875: CORRECT\n", + "RIIVPQALVNAVSDALVAR found in part_0.0_13829.432373046875: CORRECT\n", + "RIPVSSLK found in part_0.0_13829.432373046875: CORRECT\n", + "RLDDVYGDR found in part_0.0_13829.432373046875: CORRECT\n", + "RLDEVYALYADPDADFDK found in part_0.0_13829.432373046875: CORRECT\n", + "RLDITESTVK found in part_0.0_13829.432373046875: CORRECT\n", + "RLEDNLPR found in part_0.0_13829.432373046875: CORRECT\n", + "RLENGDDYFAVNPK found in part_0.0_13829.432373046875: CORRECT\n", + "RLENLLQSINDEQTQTLPSDELNR found in part_0.0_13829.432373046875: CORRECT\n", + "RLETLSK found in part_0.0_13829.432373046875: CORRECT\n", + "RLLDVLDK found in part_0.0_13829.432373046875: CORRECT\n", + "RLPELMSLLR found in part_0.0_13829.432373046875: CORRECT\n", + "RLQELAK found in part_0.0_13829.432373046875: CORRECT\n", + "RNDVNPEITDR found in part_0.0_13829.432373046875: CORRECT\n", + "RNDVNPEITDR found in part_0.0_13829.432373046875: CORRECT\n", + "RNELPDTLGLR found in part_0.0_13829.432373046875: CORRECT\n", + "RNETNELFIPPGPR found in part_0.0_13829.432373046875: CORRECT\n", + "RPASEAALLYEETAESVEK found in part_0.0_13829.432373046875: CORRECT\n", + "RPEITLVTNK found in part_0.0_13829.432373046875: CORRECT\n", + "RPELLENLALTEEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "RPFYQVVVADSR found in part_0.0_13829.432373046875: CORRECT\n", + "RPFYQVVVADSR found in part_0.0_13829.432373046875: CORRECT\n", + "RPGAEADYTEEEIAQAAER found in part_0.0_13829.432373046875: CORRECT\n", + "RPPSSDVDAIEAENFESGGALK found in part_0.0_13829.432373046875: CORRECT\n", + "RPSLSPDDAGCQALLIER found in part_0.0_13829.432373046875: CORRECT\n", + "RPYSVILLDEVEK found in part_0.0_13829.432373046875: CORRECT\n", + "RQDIESNLQYDAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "RQDIESNLQYDAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "RQPSEQELR found in part_0.0_13829.432373046875: CORRECT\n", + "RSDVIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "RSSEVYGQTNIGGK found in part_0.0_13829.432373046875: CORRECT\n", + "RTAEICEHLK found in part_0.0_13829.432373046875: CORRECT\n", + "RTELDIEK found in part_0.0_13829.432373046875: CORRECT\n", + "RTEQILALTGCDR found in part_0.0_13829.432373046875: CORRECT\n", + "RVDFSLAR found in part_0.0_13829.432373046875: CORRECT\n", + "RVEFVLA found in part_0.0_13829.432373046875: CORRECT\n", + "RVEIEVK found in part_0.0_13829.432373046875: CORRECT\n", + "RVEITGPVER found in part_0.0_13829.432373046875: CORRECT\n", + "RVNGGLLVQDR found in part_0.0_13829.432373046875: CORRECT\n", + "RVPETMPPQLFEK found in part_0.0_13829.432373046875: CORRECT\n", + "RVPETMPPQLFEK found in part_0.0_13829.432373046875: CORRECT\n", + "RVVEPLITLAK found in part_0.0_13829.432373046875: CORRECT\n", + "RVVEPLITLAK found in part_0.0_13829.432373046875: CORRECT\n", + "RYEGEIIQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "SAAGNYVFNER found in part_0.0_13829.432373046875: CORRECT\n", + "SAAMEEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "SACIVVGVFEPR found in part_0.0_13829.432373046875: CORRECT\n", + "SADAAGVHAVIVPK found in part_0.0_13829.432373046875: CORRECT\n", + "SADAAGVHAVIVPK found in part_0.0_13829.432373046875: CORRECT\n", + "SADASLADMNDPSLITVR found in part_0.0_13829.432373046875: CORRECT\n", + "SADFLNTAK found in part_0.0_13829.432373046875: CORRECT\n", + "SADFSPLAR found in part_0.0_13829.432373046875: CORRECT\n", + "SADIHYQVSVDCK found in part_0.0_13829.432373046875: CORRECT\n", + "SADIHYQVSVDCK found in part_0.0_13829.432373046875: CORRECT\n", + "SADIISAR found in part_0.0_13829.432373046875: CORRECT\n", + "SADIVLSDANVR found in part_0.0_13829.432373046875: CORRECT\n", + "SADKAPLAAEAMGIIAPR found in part_0.0_13829.432373046875: CORRECT\n", + "SADLLAILK found in part_0.0_13829.432373046875: CORRECT\n", + "SADPETSYTAK found in part_0.0_13829.432373046875: CORRECT\n", + "SADSEYPYR found in part_0.0_13829.432373046875: CORRECT\n", + "SADSSYLAGPDDIYVSPSQIR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEELVFVR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEHEVSLQSAK found in part_0.0_13829.432373046875: CORRECT\n", + "SAEHEVSLQSAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SAEHVLTMLNEHEVK NOT FOUND in any FASTA file.\n", + "Peptide SAEHVLTMLNEHEVK NOT FOUND in any FASTA file.\n", + "Peptide SAEHVLTMLNEHEVK NOT FOUND in any FASTA file.\n", + "SAEILDR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEILDR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEILDRIPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEQMLADYAPLNK found in part_0.0_13829.432373046875: CORRECT\n", + "SAETLSGGEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "SAEVIQIQAQR found in part_0.0_13829.432373046875: CORRECT\n", + "SAFDEFSTPAAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SAFTPASEVLLR NOT FOUND in any FASTA file.\n", + "SAGGAFANINR found in part_0.0_13829.432373046875: CORRECT\n", + "SAGGAFANINRPVSGPTHEK found in part_0.0_13829.432373046875: CORRECT\n", + "SAGGAFANINRPVSGPTHEK found in part_0.0_13829.432373046875: CORRECT\n", + "SAGGIVLTGSAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SAGGIVLTGSAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SAGTYVQIVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SAIGAFALVK found in part_0.0_13829.432373046875: CORRECT\n", + "SAIGYIVEALR found in part_0.0_13829.432373046875: CORRECT\n", + "SAIPMGCVLTLPATGSESNAGAVISR found in part_0.0_13829.432373046875: CORRECT\n", + "SAIPMGCVLTLPATGSESNAGAVISR found in part_0.0_13829.432373046875: CORRECT\n", + "SAIVEVLSPGQRPTK found in part_0.0_13829.432373046875: CORRECT\n", + "SAIVEVLSPGQRPTK found in part_0.0_13829.432373046875: CORRECT\n", + "SAIYDIK found in part_0.0_13829.432373046875: CORRECT\n", + "SAIYPLTPEQDAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "SALAEAEVEYYDK found in part_0.0_13829.432373046875: CORRECT\n", + "SALAYLEK found in part_0.0_13829.432373046875: CORRECT\n", + "SALFNQIVAER found in part_0.0_13829.432373046875: CORRECT\n", + "SALFTPFK found in part_0.0_13829.432373046875: CORRECT\n", + "SALFTVR found in part_0.0_13829.432373046875: CORRECT\n", + "SALINFLK found in part_0.0_13829.432373046875: CORRECT\n", + "SALLVLEDGTQFHGR found in part_0.0_13829.432373046875: CORRECT\n", + "SALLVLEDGTQFHGR found in part_0.0_13829.432373046875: CORRECT\n", + "SALNSLQGAFSAR found in part_0.0_13829.432373046875: CORRECT\n", + "SALPDCQFVEADIR found in part_0.0_13829.432373046875: CORRECT\n", + "SALPTPHEIR found in part_0.0_13829.432373046875: CORRECT\n", + "SALVIQTLANGAVR found in part_0.0_13829.432373046875: CORRECT\n", + "SALVPFFAGIPHR found in part_0.0_13829.432373046875: CORRECT\n", + "SALVTVYPLPDTR found in part_0.0_13829.432373046875: CORRECT\n", + "SANDEVSTLFFGHDDR found in part_0.0_13829.432373046875: CORRECT\n", + "SANHAVEEVR found in part_0.0_13829.432373046875: CORRECT\n", + "SANIALVLYK found in part_0.0_13829.432373046875: CORRECT\n", + "SAPYFLEILDK found in part_0.0_13829.432373046875: CORRECT\n", + "SAQDSAENCPSGMQFPDTAIAHANVR found in part_0.0_13829.432373046875: CORRECT\n", + "SAQGTAGPDFR found in part_0.0_13829.432373046875: CORRECT\n", + "SAQNVVNALEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SAQPVDIQIFGR NOT FOUND in any FASTA file.\n", + "SASLAYQNAVTAVSEGKPDSIPAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "SATIAVVGPLADSK found in part_0.0_13829.432373046875: CORRECT\n", + "SATLPLPAVILEK found in part_0.0_13829.432373046875: CORRECT\n", + "SATNGLTPAPQAR found in part_0.0_13829.432373046875: CORRECT\n", + "SATNSVLWFMGDDIPHVPNK found in part_0.0_13829.432373046875: CORRECT\n", + "SATPAQAQAVHK found in part_0.0_13829.432373046875: CORRECT\n", + "SATPAQAQAVHK found in part_0.0_13829.432373046875: CORRECT\n", + "SATPEQELGK found in part_0.0_13829.432373046875: CORRECT\n", + "SATTAEELR found in part_0.0_13829.432373046875: CORRECT\n", + "SAVAPVDLILLK found in part_0.0_13829.432373046875: CORRECT\n", + "SAVEQQMNELLAEYLLENPTDAK found in part_0.0_13829.432373046875: CORRECT\n", + "SAVLSSMQGSLPGGCDAVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SAVLSSMQGSLPGGCDAVDKIPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SAVNAIETR found in part_0.0_13829.432373046875: CORRECT\n", + "SAWVEGATEAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "SAYALGASLGR found in part_0.0_13829.432373046875: CORRECT\n", + "SAYPDPQALIGR found in part_0.0_13829.432373046875: CORRECT\n", + "SCACTTCHCIVR found in part_0.0_13829.432373046875: CORRECT\n", + "SCAFLIADGVMPSNENR found in part_0.0_13829.432373046875: CORRECT\n", + "SCAHFGVK found in part_0.0_13829.432373046875: CORRECT\n", + "SCGLPAGAVQAIDNPDR found in part_0.0_13829.432373046875: CORRECT\n", + "SCLLNGSVEVAPR found in part_0.0_13829.432373046875: CORRECT\n", + "SCMGLTGCGTIDELR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SCPVIELTQQLIR NOT FOUND in any FASTA file.\n", + "SCVEVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDAEAFSMDK found in part_0.0_13829.432373046875: CORRECT\n", + "SDAEPHYLPQLR found in part_0.0_13829.432373046875: CORRECT\n", + "SDAEPHYLPQLR found in part_0.0_13829.432373046875: CORRECT\n", + "SDAGSLVFTSSSVGR found in part_0.0_13829.432373046875: CORRECT\n", + "SDALQGLSK found in part_0.0_13829.432373046875: CORRECT\n", + "SDATADQHQLQALR found in part_0.0_13829.432373046875: CORRECT\n", + "SDAYFVLR found in part_0.0_13829.432373046875: CORRECT\n", + "SDDDLEPVVIGR found in part_0.0_13829.432373046875: CORRECT\n", + "SDDTHNHSVLFNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SDDVALPLEFTDAAANK NOT FOUND in any FASTA file.\n", + "SDDYESFSR found in part_0.0_13829.432373046875: CORRECT\n", + "SDEEQTSTTTDTPATPAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDEIPEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SDEQLPSQEEATAILNAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDEQLPSQEEATAILNAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDEVLSDR found in part_0.0_13829.432373046875: CORRECT\n", + "SDFDLTPFR found in part_0.0_13829.432373046875: CORRECT\n", + "SDGAEVAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "SDGAVHQGIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDGAVHQGIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "SDGLTFHYK found in part_0.0_13829.432373046875: CORRECT\n", + "SDIALIQIQNPK found in part_0.0_13829.432373046875: CORRECT\n", + "SDILNAVGITLDETTTR found in part_0.0_13829.432373046875: CORRECT\n", + "SDILNAVGITLDETTTR found in part_0.0_13829.432373046875: CORRECT\n", + "SDKLPEYTPDVNQLYDALYNK found in part_0.0_13829.432373046875: CORRECT\n", + "SDLALALK found in part_0.0_13829.432373046875: CORRECT\n", + "SDLALELDGAK found in part_0.0_13829.432373046875: CORRECT\n", + "SDLFNVNAGIVK found in part_0.0_13829.432373046875: CORRECT\n", + "SDLFNVNAGIVKNLVQQVAK found in part_0.0_13829.432373046875: CORRECT\n", + "SDLMPIR found in part_0.0_13829.432373046875: CORRECT\n", + "SDLPESVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SDNAQLTGLCDR NOT FOUND in any FASTA file.\n", + "Peptide SDNDTIVAQATPPGR NOT FOUND in any FASTA file.\n", + "SDNDYAQLVK found in part_0.0_13829.432373046875: CORRECT\n", + "SDNVIFSATGITK found in part_0.0_13829.432373046875: CORRECT\n", + "SDPYAFEAQMRPETASLICGLPEK found in part_0.0_13829.432373046875: CORRECT\n", + "SDTGPLDPECDCYTCR found in part_0.0_13829.432373046875: CORRECT\n", + "SDVDFHR found in part_0.0_13829.432373046875: CORRECT\n", + "SDVEDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "SDVFHLGLTK found in part_0.0_13829.432373046875: CORRECT\n", + "SDVIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "SDVLFNFNK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SDVLRPYR NOT FOUND in any FASTA file.\n", + "SDVMVVGFDGTPDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "SDVMVVGFDGTPDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "SDVMVVGFDGTPDGEKAVNDGK found in part_0.0_13829.432373046875: CORRECT\n", + "SDVMVVGFDGTPDGEKAVNDGK found in part_0.0_13829.432373046875: CORRECT\n", + "SDVSALMQLASK found in part_0.0_13829.432373046875: CORRECT\n", + "SDYTRTFR found in part_0.0_13829.432373046875: CORRECT\n", + "SEADIAAEFTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SEALLNAGR NOT FOUND in any FASTA file.\n", + "SEDAEAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "SEDAEAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "SEDDPQAQELAALIADK found in part_0.0_13829.432373046875: CORRECT\n", + "SEDDPQAQELAALIADK found in part_0.0_13829.432373046875: CORRECT\n", + "SEDQVELVEK found in part_0.0_13829.432373046875: CORRECT\n", + "SEEDVAALLEAGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SEEGIVLVTR found in part_0.0_13829.432373046875: CORRECT\n", + "SEFAENDAYVHATPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "SEFAENDAYVHATPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SEFITVAR NOT FOUND in any FASTA file.\n", + "SEFLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "SEFLIEK found in part_0.0_13829.432373046875: CORRECT\n", + "SEGFGITLFER found in part_0.0_13829.432373046875: CORRECT\n", + "SEIDLFNIR found in part_0.0_13829.432373046875: CORRECT\n", + "SEITDEEYK found in part_0.0_13829.432373046875: CORRECT\n", + "SEITDEEYKEFYK found in part_0.0_13829.432373046875: CORRECT\n", + "SEITDEEYKEFYK found in part_0.0_13829.432373046875: CORRECT\n", + "SEKPAIVGEPEMPSTIADVAQEK found in part_0.0_13829.432373046875: CORRECT\n", + "SEKPMLSPQAELELLETDER found in part_0.0_13829.432373046875: CORRECT\n", + "SELDTAFNR found in part_0.0_13829.432373046875: CORRECT\n", + "SELEAFEVALENVR found in part_0.0_13829.432373046875: CORRECT\n", + "SELEAFEVALENVRPTVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SELIVSR NOT FOUND in any FASTA file.\n", + "SELLDSR found in part_0.0_13829.432373046875: CORRECT\n", + "SELVNVAK found in part_0.0_13829.432373046875: CORRECT\n", + "SELVNVAK found in part_0.0_13829.432373046875: CORRECT\n", + "SELVSNELTK found in part_0.0_13829.432373046875: CORRECT\n", + "SENIAPLLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "SENLYSAAR found in part_0.0_13829.432373046875: CORRECT\n", + "SEPIKGDVLNYDEVMER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SEPLLIAR NOT FOUND in any FASTA file.\n", + "SEPMLNDTESYFNTAIK found in part_0.0_13829.432373046875: CORRECT\n", + "SEPMLNDTESYFNTAIK found in part_0.0_13829.432373046875: CORRECT\n", + "SEQGYIPVSGHLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SEQGYIPVSGHLQR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SEQHAQGADAVVDLNNELK NOT FOUND in any FASTA file.\n", + "SEQLEQQLQVLLLPK found in part_0.0_13829.432373046875: CORRECT\n", + "SEQLPTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SEQLTDQVLVER NOT FOUND in any FASTA file.\n", + "SESAIPAEQFK found in part_0.0_13829.432373046875: CORRECT\n", + "SESDLAQSLDTLQLPPGVTMGYR found in part_0.0_13829.432373046875: CORRECT\n", + "SESMVGPLTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SETITVNCPTCGK NOT FOUND in any FASTA file.\n", + "SETLLPLVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "SETVDFFGDK found in part_0.0_13829.432373046875: CORRECT\n", + "SEVAVPGIDASTFDGIIQK found in part_0.0_13829.432373046875: CORRECT\n", + "SEVAVPGIDASTFDGIIQK found in part_0.0_13829.432373046875: CORRECT\n", + "SEVLTHIGNEMLAK found in part_0.0_13829.432373046875: CORRECT\n", + "SEVLTHIGNEMLAK found in part_0.0_13829.432373046875: CORRECT\n", + "SEVNLGAGEAGSVTIPR found in part_0.0_13829.432373046875: CORRECT\n", + "SEVYSEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "SEYLGDPDFVK found in part_0.0_13829.432373046875: CORRECT\n", + "SFADEGLLNK found in part_0.0_13829.432373046875: CORRECT\n", + "SFDIYSR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SFDSLGLSPDILR NOT FOUND in any FASTA file.\n", + "Peptide SFELPALPYAK NOT FOUND in any FASTA file.\n", + "SFESDAEAK found in part_0.0_13829.432373046875: CORRECT\n", + "SFFDGVK found in part_0.0_13829.432373046875: CORRECT\n", + "SFFENDLR found in part_0.0_13829.432373046875: CORRECT\n", + "SFFVGNDHMVEDVER found in part_0.0_13829.432373046875: CORRECT\n", + "SFGAPTITK found in part_0.0_13829.432373046875: CORRECT\n", + "SFGAPTITK found in part_0.0_13829.432373046875: CORRECT\n", + "SFIDPEVLR found in part_0.0_13829.432373046875: CORRECT\n", + "SFLESLGSDQAK found in part_0.0_13829.432373046875: CORRECT\n", + "SFLSYTR found in part_0.0_13829.432373046875: CORRECT\n", + "SFLVNVEK found in part_0.0_13829.432373046875: CORRECT\n", + "SFNIPALTGAYGIIENSSSR found in part_0.0_13829.432373046875: CORRECT\n", + "SFPLDGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SFQDTTGSGTGDLR found in part_0.0_13829.432373046875: CORRECT\n", + "SFQNEDLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SFQNQYGNISSASVGAIQR found in part_0.0_13829.432373046875: CORRECT\n", + "SFTFVTK found in part_0.0_13829.432373046875: CORRECT\n", + "SFTFVTK found in part_0.0_13829.432373046875: CORRECT\n", + "SFTMSNPNR found in part_0.0_13829.432373046875: CORRECT\n", + "SFVPLAHTNEAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SFVVIIPAR NOT FOUND in any FASTA file.\n", + "SFYENSEVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SFYQGLFGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "SFYSLSDK found in part_0.0_13829.432373046875: CORRECT\n", + "SFYYCAR found in part_0.0_13829.432373046875: CORRECT\n", + "SGADDPEMAEIAEECK found in part_0.0_13829.432373046875: CORRECT\n", + "SGALAGTVLNDANNQAK found in part_0.0_13829.432373046875: CORRECT\n", + "SGALAGTVLNDANNQAK found in part_0.0_13829.432373046875: CORRECT\n", + "SGALQEQVANK found in part_0.0_13829.432373046875: CORRECT\n", + "SGALTESPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGANIAFIACTGDDSIGESVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGAPDDESTELGPLSSLAHLER found in part_0.0_13829.432373046875: CORRECT\n", + "SGAQAVCFAPDK found in part_0.0_13829.432373046875: CORRECT\n", + "SGAQGDAFLAR found in part_0.0_13829.432373046875: CORRECT\n", + "SGASNSLTLESSLR found in part_0.0_13829.432373046875: CORRECT\n", + "SGASVGIDDMVIPEK found in part_0.0_13829.432373046875: CORRECT\n", + "SGASVGIDDMVIPEKK found in part_0.0_13829.432373046875: CORRECT\n", + "SGAVDVIVVDSVAALTPK found in part_0.0_13829.432373046875: CORRECT\n", + "SGCPYCVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGCTNYLPTLITTSDELMK found in part_0.0_13829.432373046875: CORRECT\n", + "SGDFDTFR found in part_0.0_13829.432373046875: CORRECT\n", + "SGDFTLVK found in part_0.0_13829.432373046875: CORRECT\n", + "SGDLLFVSGQVGSR found in part_0.0_13829.432373046875: CORRECT\n", + "SGDLTAFEPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "SGDTYLHR found in part_0.0_13829.432373046875: CORRECT\n", + "SGDVLAGVAAASSQER found in part_0.0_13829.432373046875: CORRECT\n", + "SGECPPPYTVYAYANSLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SGEGLYFIDK found in part_0.0_13829.432373046875: CORRECT\n", + "SGEINVVIPAAVFDGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGELQPTPR found in part_0.0_13829.432373046875: CORRECT\n", + "SGELVLDGK found in part_0.0_13829.432373046875: CORRECT\n", + "SGEQTAVAQDSVAAHLR found in part_0.0_13829.432373046875: CORRECT\n", + "SGEQTAVAQDSVAAHLR found in part_0.0_13829.432373046875: CORRECT\n", + "SGESPSDALLR found in part_0.0_13829.432373046875: CORRECT\n", + "SGETEDATIADLAVGTAAGQIK found in part_0.0_13829.432373046875: CORRECT\n", + "SGETGIEEGCLSIPEQR found in part_0.0_13829.432373046875: CORRECT\n", + "SGFDPQAMPTFLEK found in part_0.0_13829.432373046875: CORRECT\n", + "SGFIFIGPK found in part_0.0_13829.432373046875: CORRECT\n", + "SGFQYHGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGGDVVDQVVRPTGLLDPIIEVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGGLMPCFNQVLLER found in part_0.0_13829.432373046875: CORRECT\n", + "SGGVTFAAR found in part_0.0_13829.432373046875: CORRECT\n", + "SGIGPVTAADITHDGDVEIVK found in part_0.0_13829.432373046875: CORRECT\n", + "SGISFVDR found in part_0.0_13829.432373046875: CORRECT\n", + "SGITFSQELK found in part_0.0_13829.432373046875: CORRECT\n", + "SGIVAFK found in part_0.0_13829.432373046875: CORRECT\n", + "SGLASLHAR found in part_0.0_13829.432373046875: CORRECT\n", + "SGLFEQGGYR found in part_0.0_13829.432373046875: CORRECT\n", + "SGLLVMVK found in part_0.0_13829.432373046875: CORRECT\n", + "SGLLVMVK found in part_0.0_13829.432373046875: CORRECT\n", + "SGLNAENYENFIQTDAAINR found in part_0.0_13829.432373046875: CORRECT\n", + "SGLPQAALNYIK found in part_0.0_13829.432373046875: CORRECT\n", + "SGLYEDGVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGLYPPPSLPSGLGTEAAGIVSK found in part_0.0_13829.432373046875: CORRECT\n", + "SGMHQDVPKEDVIIESVTVSE found in part_0.0_13829.432373046875: CORRECT\n", + "SGMPVQISSGSR found in part_0.0_13829.432373046875: CORRECT\n", + "SGMSEFDINIAYLTATGHR found in part_0.0_13829.432373046875: CORRECT\n", + "SGNANTDYNAAIALVQDK found in part_0.0_13829.432373046875: CORRECT\n", + "SGNANTDYNAAIALVQDK found in part_0.0_13829.432373046875: CORRECT\n", + "SGQAETLADHEGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGQAETLADHEGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGQSVIFNESVDHGPFPLAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "SGSAAQGFQLLDEAELK found in part_0.0_13829.432373046875: CORRECT\n", + "SGSGTLTVSNTTLTQK found in part_0.0_13829.432373046875: CORRECT\n", + "SGSQLTIPQQLILPDTVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGSQLTIPQQLILPDTVR found in part_0.0_13829.432373046875: CORRECT\n", + "SGTAMLVDDYGHHPTEVDATIK found in part_0.0_13829.432373046875: CORRECT\n", + "SGTDEFPGCVVVMSNGDDGEK found in part_0.0_13829.432373046875: CORRECT\n", + "SGTEPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "SGTGSVDYAK found in part_0.0_13829.432373046875: CORRECT\n", + "SGTIAFSGAYHGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGTIAFSGAYHGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SGTLLAFDFGTK NOT FOUND in any FASTA file.\n", + "SGTLPVHQIVGMGEAYR found in part_0.0_13829.432373046875: CORRECT\n", + "SGTLPVHQIVGMGEAYR found in part_0.0_13829.432373046875: CORRECT\n", + "SGTLTYEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "SGTVLLVLSDR found in part_0.0_13829.432373046875: CORRECT\n", + "SGVGFHILK found in part_0.0_13829.432373046875: CORRECT\n", + "SGVLEHGNILPGER found in part_0.0_13829.432373046875: CORRECT\n", + "SGVLTGLPDAYGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGVLTGLPDGYGR found in part_0.0_13829.432373046875: CORRECT\n", + "SGVPNVTAPVYSHLIYDVIPDGDK found in part_0.0_13829.432373046875: CORRECT\n", + "SGVSHELVLNAIADCQSA found in part_0.0_13829.432373046875: CORRECT\n", + "SHATAQEEILK found in part_0.0_13829.432373046875: CORRECT\n", + "SHATAQEEILK found in part_0.0_13829.432373046875: CORRECT\n", + "SHATVITR found in part_0.0_13829.432373046875: CORRECT\n", + "SHEASIIGNTCLYGATGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SHEASIIGNTCLYGATGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SHHNVGGLPK found in part_0.0_13829.432373046875: CORRECT\n", + "SHIQFYDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "SHIQFYDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SHLAELVASAK NOT FOUND in any FASTA file.\n", + "Peptide SHLDEVIAR NOT FOUND in any FASTA file.\n", + "SHVINMLDGDALR found in part_0.0_13829.432373046875: CORRECT\n", + "SHVINMLDGDALR found in part_0.0_13829.432373046875: CORRECT\n", + "SIADQIDINK found in part_0.0_13829.432373046875: CORRECT\n", + "SIAELWG found in part_0.0_13829.432373046875: CORRECT\n", + "SIAGGFPLAGVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "SICLNFGIAQDYK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDALPYVEAGSNAR found in part_0.0_13829.432373046875: CORRECT\n", + "SIDALQHVLINK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDALQHVLINK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDEQEDKPLK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDEQEDKPLK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDEVTPAEFDALLLPGGHSPDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "SIDFYTK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDFYTK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDTAAAYK found in part_0.0_13829.432373046875: CORRECT\n", + "SIDVQISR found in part_0.0_13829.432373046875: CORRECT\n", + "SIEPGDIPTPLMAEYYR found in part_0.0_13829.432373046875: CORRECT\n", + "SIEQGGTTLK found in part_0.0_13829.432373046875: CORRECT\n", + "SIETLLK found in part_0.0_13829.432373046875: CORRECT\n", + "SIFILPPSK found in part_0.0_13829.432373046875: CORRECT\n", + "SIGATTHVGVTASSDTFYPGQER found in part_0.0_13829.432373046875: CORRECT\n", + "SIGFSSSSTGR found in part_0.0_13829.432373046875: CORRECT\n", + "SIGNTVSPQDVMNK found in part_0.0_13829.432373046875: CORRECT\n", + "SIGTLSAFEQNALEGMLDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "SIGTLSAFEQNALEGMLDTLKK found in part_0.0_13829.432373046875: CORRECT\n", + "SIGVAVGQR found in part_0.0_13829.432373046875: CORRECT\n", + "SIGVCNFQIHHLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SIGVCNFQIHHLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SIGVGQYQHDVSQTQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "SIHTIDATQPLEAVMDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "SIIVATGAK found in part_0.0_13829.432373046875: CORRECT\n", + "SIIVATGAK found in part_0.0_13829.432373046875: CORRECT\n", + "SILFNDR found in part_0.0_13829.432373046875: CORRECT\n", + "SILLTALAR found in part_0.0_13829.432373046875: CORRECT\n", + "SILSELVR found in part_0.0_13829.432373046875: CORRECT\n", + "SIMELSGR found in part_0.0_13829.432373046875: CORRECT\n", + "SIMIEIR found in part_0.0_13829.432373046875: CORRECT\n", + "SINAAFK found in part_0.0_13829.432373046875: CORRECT\n", + "SINAEVTNSAIELK found in part_0.0_13829.432373046875: CORRECT\n", + "SIPTIMIFK found in part_0.0_13829.432373046875: CORRECT\n", + "SIQDYPK found in part_0.0_13829.432373046875: CORRECT\n", + "SIQDYPKPGILFR found in part_0.0_13829.432373046875: CORRECT\n", + "SIQDYPKPGILFR found in part_0.0_13829.432373046875: CORRECT\n", + "SIQPAMLR found in part_0.0_13829.432373046875: CORRECT\n", + "SISEITQDSLVQGLGK found in part_0.0_13829.432373046875: CORRECT\n", + "SISIVGSYVGNR found in part_0.0_13829.432373046875: CORRECT\n", + "SISPNEDEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SISTIAESK found in part_0.0_13829.432373046875: CORRECT\n", + "SISVVVNNDDATTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SITLSDSAAAR NOT FOUND in any FASTA file.\n", + "SIVVAIER found in part_0.0_13829.432373046875: CORRECT\n", + "SIVVPAPEAQNDPR found in part_0.0_13829.432373046875: CORRECT\n", + "SIYVAYTGGTIGMQR found in part_0.0_13829.432373046875: CORRECT\n", + "SKAPNSPVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SKGESSLFSR found in part_0.0_13829.432373046875: CORRECT\n", + "SKPEMLIELFR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SKSENLYSAAR NOT FOUND in any FASTA file.\n", + "SLADIGEALK found in part_0.0_13829.432373046875: CORRECT\n", + "SLADIQQR found in part_0.0_13829.432373046875: CORRECT\n", + "SLADMIK found in part_0.0_13829.432373046875: CORRECT\n", + "SLAEQGVTK found in part_0.0_13829.432373046875: CORRECT\n", + "SLAICTLLDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLAICTLLDKPSR found in part_0.0_13829.432373046875: CORRECT\n", + "SLAICTLLDKPSR found in part_0.0_13829.432373046875: CORRECT\n", + "SLAVEYAQSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "SLDCLQR found in part_0.0_13829.432373046875: CORRECT\n", + "SLDDFLIK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDDFLIK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDDFLIKQ found in part_0.0_13829.432373046875: CORRECT\n", + "SLDDQFAELK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDEAQAIK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDEIKDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDELVQR found in part_0.0_13829.432373046875: CORRECT\n", + "SLDEVRDDIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDEVRDDIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDINPFSPIGVDEQQVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLDINQIALHQLIK NOT FOUND in any FASTA file.\n", + "SLDLDSIIAEVK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDVLEGYLVDGTLK found in part_0.0_13829.432373046875: CORRECT\n", + "SLDVMGSPIR found in part_0.0_13829.432373046875: CORRECT\n", + "SLEAPVTESLLK found in part_0.0_13829.432373046875: CORRECT\n", + "SLEEIIR found in part_0.0_13829.432373046875: CORRECT\n", + "SLEGDAECR found in part_0.0_13829.432373046875: CORRECT\n", + "SLELPAIVGTGSVTSQVK found in part_0.0_13829.432373046875: CORRECT\n", + "SLELPAIVGTGSVTSQVK found in part_0.0_13829.432373046875: CORRECT\n", + "SLEMIAENGPDEFYK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLENAPDDVK NOT FOUND in any FASTA file.\n", + "SLEPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "SLEQYFGR found in part_0.0_13829.432373046875: CORRECT\n", + "SLESAAQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLETGNFRPVGETDSEK found in part_0.0_13829.432373046875: CORRECT\n", + "SLFDGTLQGIHR found in part_0.0_13829.432373046875: CORRECT\n", + "SLFDGTLQGIHR found in part_0.0_13829.432373046875: CORRECT\n", + "SLFTVSVGGQPK found in part_0.0_13829.432373046875: CORRECT\n", + "SLGALSATAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLGALSATAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLGITNPEEIDR found in part_0.0_13829.432373046875: CORRECT\n", + "SLGLENLTLK found in part_0.0_13829.432373046875: CORRECT\n", + "SLGNFFTVR found in part_0.0_13829.432373046875: CORRECT\n", + "SLGQFNLDGINPAPR found in part_0.0_13829.432373046875: CORRECT\n", + "SLGQFNLDGINPAPR found in part_0.0_13829.432373046875: CORRECT\n", + "SLGSSVDR found in part_0.0_13829.432373046875: CORRECT\n", + "SLHALEK found in part_0.0_13829.432373046875: CORRECT\n", + "SLHEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "SLHLNGPIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLHLNGPIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLIADEDNPNLK found in part_0.0_13829.432373046875: CORRECT\n", + "SLICNFR found in part_0.0_13829.432373046875: CORRECT\n", + "SLIDSGK found in part_0.0_13829.432373046875: CORRECT\n", + "SLIDSGKDYVVSMLDSLGK found in part_0.0_13829.432373046875: CORRECT\n", + "SLIELLPQLPLEQSHLPDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "SLIGPDGEQYK found in part_0.0_13829.432373046875: CORRECT\n", + "SLIQTIGR found in part_0.0_13829.432373046875: CORRECT\n", + "SLITDVSETHK found in part_0.0_13829.432373046875: CORRECT\n", + "SLITDVSETHK found in part_0.0_13829.432373046875: CORRECT\n", + "SLKPGAILINACR found in part_0.0_13829.432373046875: CORRECT\n", + "SLKPGAILINACR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLLAQLDQK NOT FOUND in any FASTA file.\n", + "SLLEDGGVIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLLNVPAGK NOT FOUND in any FASTA file.\n", + "Peptide SLLNVPAGK NOT FOUND in any FASTA file.\n", + "SLLSDTLK found in part_0.0_13829.432373046875: CORRECT\n", + "SLLSYDGLDASR found in part_0.0_13829.432373046875: CORRECT\n", + "SLMQLVPIYVLSANGER found in part_0.0_13829.432373046875: CORRECT\n", + "SLMQLVPIYVLSANGER found in part_0.0_13829.432373046875: CORRECT\n", + "SLNFATSDNRPLYVIASDGGLLPEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLNFLDFEQPIAELEAK NOT FOUND in any FASTA file.\n", + "Peptide SLNLVSEQLLAANGLK NOT FOUND in any FASTA file.\n", + "Peptide SLPHCPK NOT FOUND in any FASTA file.\n", + "SLPIPNHYGVDDFPVIIQDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLPVYGNGQQIR found in part_0.0_13829.432373046875: CORRECT\n", + "SLQFLDGTQLDFVK found in part_0.0_13829.432373046875: CORRECT\n", + "SLQKPTILNVETVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SLQNQVVDIAPEQYQK found in part_0.0_13829.432373046875: CORRECT\n", + "SLQNQVVDIAPEQYQK found in part_0.0_13829.432373046875: CORRECT\n", + "SLQTAEGILK found in part_0.0_13829.432373046875: CORRECT\n", + "SLSDTLEEVLSSSGEK found in part_0.0_13829.432373046875: CORRECT\n", + "SLSDTLEEVLSSSGEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLSTEATAK NOT FOUND in any FASTA file.\n", + "SLTEIKDVLASR found in part_0.0_13829.432373046875: CORRECT\n", + "SLTEIKDVLASR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SLTELTGNPR NOT FOUND in any FASTA file.\n", + "SLTLGMTEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLTSHLASGTPGTVAGFSLALDK found in part_0.0_13829.432373046875: CORRECT\n", + "SLVAQQEK found in part_0.0_13829.432373046875: CORRECT\n", + "SLVIVVNK found in part_0.0_13829.432373046875: CORRECT\n", + "SLVLGISGGQDSTLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "SLVNTYQEILK found in part_0.0_13829.432373046875: CORRECT\n", + "SLYEADLVDEAK found in part_0.0_13829.432373046875: CORRECT\n", + "SLYEADLVDEAKR found in part_0.0_13829.432373046875: CORRECT\n", + "SLYEADLVDEAKR found in part_0.0_13829.432373046875: CORRECT\n", + "SLYMTTVTADNILEGK found in part_0.0_13829.432373046875: CORRECT\n", + "SLYMTTVTADNILEGK found in part_0.0_13829.432373046875: CORRECT\n", + "SLYSQLPAIDR found in part_0.0_13829.432373046875: CORRECT\n", + "SLYVDTAPMR found in part_0.0_13829.432373046875: CORRECT\n", + "SMAVVGCDPSIMGYGPVPASK found in part_0.0_13829.432373046875: CORRECT\n", + "SMDLEQECEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "SMDLEQECEQLREELNETNSETK found in part_0.0_13829.432373046875: CORRECT\n", + "SMDLEQECEQLREELNETNSETK found in part_0.0_13829.432373046875: CORRECT\n", + "SMEDYINYITPQFSR found in part_0.0_13829.432373046875: CORRECT\n", + "SMGLVVED found in part_0.0_13829.432373046875: CORRECT\n", + "SMGLVVED found in part_0.0_13829.432373046875: CORRECT\n", + "SMIDTGIGGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "SMIGQLLNVGPSER found in part_0.0_13829.432373046875: CORRECT\n", + "SMLDVVR found in part_0.0_13829.432373046875: CORRECT\n", + "SMLNPGSALLTLSYLGAER found in part_0.0_13829.432373046875: CORRECT\n", + "SMNIAASSELVSR found in part_0.0_13829.432373046875: CORRECT\n", + "SMQFALDHLR found in part_0.0_13829.432373046875: CORRECT\n", + "SMSGIIQPLTIYGPQGIR found in part_0.0_13829.432373046875: CORRECT\n", + "SNAIVYAK found in part_0.0_13829.432373046875: CORRECT\n", + "SNAIVYAK found in part_0.0_13829.432373046875: CORRECT\n", + "SNDADPGLNVK found in part_0.0_13829.432373046875: CORRECT\n", + "SNDIPGAFDAANSMLVQHPEVK found in part_0.0_13829.432373046875: CORRECT\n", + "SNDLTVNCLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "SNDVIQDDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "SNDVSLPILVLTAR found in part_0.0_13829.432373046875: CORRECT\n", + "SNEYANLVGGER found in part_0.0_13829.432373046875: CORRECT\n", + "SNFDAMSGQYYAR found in part_0.0_13829.432373046875: CORRECT\n", + "SNFDVLTR found in part_0.0_13829.432373046875: CORRECT\n", + "SNIEEVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SNILIINGAK NOT FOUND in any FASTA file.\n", + "SNILLIGPTGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "SNIQCGSVLLPEMK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SNITIYHNPACGTSR NOT FOUND in any FASTA file.\n", + "Peptide SNKPFHYQAPFPLK NOT FOUND in any FASTA file.\n", + "Peptide SNKPFHYQAPFPLK NOT FOUND in any FASTA file.\n", + "Peptide SNKPFHYQAPFPLK NOT FOUND in any FASTA file.\n", + "SNLEDGVAFAIEK found in part_0.0_13829.432373046875: CORRECT\n", + "SNLIGMGILPLEFPQGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "SNLLVLAGAGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "SNLPSVFR found in part_0.0_13829.432373046875: CORRECT\n", + "SNNQVRPVTLTR found in part_0.0_13829.432373046875: CORRECT\n", + "SNPATYTGVFTPVR found in part_0.0_13829.432373046875: CORRECT\n", + "SNPLGEDFDYR found in part_0.0_13829.432373046875: CORRECT\n", + "SNPLGEDFDYRK found in part_0.0_13829.432373046875: CORRECT\n", + "SNPLGEDFDYRK found in part_0.0_13829.432373046875: CORRECT\n", + "SNPLIER found in part_0.0_13829.432373046875: CORRECT\n", + "SNPNRPATEIYR found in part_0.0_13829.432373046875: CORRECT\n", + "SNPQAELIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SNQEPATILLIDDHPMLR NOT FOUND in any FASTA file.\n", + "SNQMTGLFSTIDEK found in part_0.0_13829.432373046875: CORRECT\n", + "SNQNTCINQMPCVSLGEPVER found in part_0.0_13829.432373046875: CORRECT\n", + "SNQPVVFVDSTGR found in part_0.0_13829.432373046875: CORRECT\n", + "SNSDFVPSTTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SNSYDSSSIK NOT FOUND in any FASTA file.\n", + "SNTFVAELK found in part_0.0_13829.432373046875: CORRECT\n", + "SNTGLVIDPYFSGTK found in part_0.0_13829.432373046875: CORRECT\n", + "SNTGLVIDPYFSGTK found in part_0.0_13829.432373046875: CORRECT\n", + "SNTIVLK found in part_0.0_13829.432373046875: CORRECT\n", + "SNTPILVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SNVPAELK NOT FOUND in any FASTA file.\n", + "Peptide SNVPAELK NOT FOUND in any FASTA file.\n", + "SNVPALEACPQK found in part_0.0_13829.432373046875: CORRECT\n", + "SNVPALEACPQKR found in part_0.0_13829.432373046875: CORRECT\n", + "SNVPALEACPQKR found in part_0.0_13829.432373046875: CORRECT\n", + "SPAFDSIMAETLK found in part_0.0_13829.432373046875: CORRECT\n", + "SPAFTVPESAQR found in part_0.0_13829.432373046875: CORRECT\n", + "SPAGAIQFEAVDAPEIIPDPFDPSK found in part_0.0_13829.432373046875: CORRECT\n", + "SPAGAIQFEAVDAPEIIPDPFDPSKK found in part_0.0_13829.432373046875: CORRECT\n", + "SPDQYGDNCEVCGATYSPTELIEPK found in part_0.0_13829.432373046875: CORRECT\n", + "SPEEIAVLR found in part_0.0_13829.432373046875: CORRECT\n", + "SPEEITLLAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "SPFVTSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "SPGVFFDSDK found in part_0.0_13829.432373046875: CORRECT\n", + "SPHVAALGSEAGGTLYGLQVLER found in part_0.0_13829.432373046875: CORRECT\n", + "SPIGELINNK found in part_0.0_13829.432373046875: CORRECT\n", + "SPILLYSDFK found in part_0.0_13829.432373046875: CORRECT\n", + "SPLEQMLK found in part_0.0_13829.432373046875: CORRECT\n", + "SPLLTPEK found in part_0.0_13829.432373046875: CORRECT\n", + "SPLLTPEK found in part_0.0_13829.432373046875: CORRECT\n", + "SPLMVAVSSGGTSPVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "SPLVAESIR found in part_0.0_13829.432373046875: CORRECT\n", + "SPMLVDYVQR found in part_0.0_13829.432373046875: CORRECT\n", + "SPMVGTFYR found in part_0.0_13829.432373046875: CORRECT\n", + "SPNILLIPGTSSVAHLR found in part_0.0_13829.432373046875: CORRECT\n", + "SPNILLIPGTSSVAHLR found in part_0.0_13829.432373046875: CORRECT\n", + "SPNVVCSLESVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SPQDGLANGIVYISEDR found in part_0.0_13829.432373046875: CORRECT\n", + "SPQEMIDEAVQTAK found in part_0.0_13829.432373046875: CORRECT\n", + "SPSFGEYYSHPR found in part_0.0_13829.432373046875: CORRECT\n", + "SPSGVALECK found in part_0.0_13829.432373046875: CORRECT\n", + "SPVEPVQSTAPQPK found in part_0.0_13829.432373046875: CORRECT\n", + "SPVLLALDYNPTGDK found in part_0.0_13829.432373046875: CORRECT\n", + "SPVLLALDYNPTGDKEAPVYACLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "SPVNDHPFCLFNPQEDAQILEK found in part_0.0_13829.432373046875: CORRECT\n", + "SPVSIGGVVVGR found in part_0.0_13829.432373046875: CORRECT\n", + "SPVTLEYDLDDAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SPVVDISFPEIEK found in part_0.0_13829.432373046875: CORRECT\n", + "SPWQLSSQSNR found in part_0.0_13829.432373046875: CORRECT\n", + "SPYFFNAGLFNTGR found in part_0.0_13829.432373046875: CORRECT\n", + "SQAIEGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "SQAIEGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "SQCPCIIFDSSR found in part_0.0_13829.432373046875: CORRECT\n", + "SQDLASQAEESFVEAE found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQDPFQER NOT FOUND in any FASTA file.\n", + "SQDYSAIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQFFYIHPDNPQQR NOT FOUND in any FASTA file.\n", + "SQGLDDYICK found in part_0.0_13829.432373046875: CORRECT\n", + "SQGLNALSEAIIAATK found in part_0.0_13829.432373046875: CORRECT\n", + "SQGVAAYGAK found in part_0.0_13829.432373046875: CORRECT\n", + "SQHADVLIVNGGLGPTSDDLSALAAATAK found in part_0.0_13829.432373046875: CORRECT\n", + "SQILDEAK found in part_0.0_13829.432373046875: CORRECT\n", + "SQILSGIR found in part_0.0_13829.432373046875: CORRECT\n", + "SQLADYQQALDVQQTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQLCPCGSAVEYSLCCHPYVSGEK NOT FOUND in any FASTA file.\n", + "SQLEEIIK found in part_0.0_13829.432373046875: CORRECT\n", + "SQLEEIIKK found in part_0.0_13829.432373046875: CORRECT\n", + "SQLLTSDLVK found in part_0.0_13829.432373046875: CORRECT\n", + "SQLNYSEENLK found in part_0.0_13829.432373046875: CORRECT\n", + "SQLTDDDSQFK found in part_0.0_13829.432373046875: CORRECT\n", + "SQMITLK found in part_0.0_13829.432373046875: CORRECT\n", + "SQNDSEHVSVDGR found in part_0.0_13829.432373046875: CORRECT\n", + "SQNDSEHVSVDGR found in part_0.0_13829.432373046875: CORRECT\n", + "SQNGAAMSFGR found in part_0.0_13829.432373046875: CORRECT\n", + "SQPEVLDYLQQENSYGHR found in part_0.0_13829.432373046875: CORRECT\n", + "SQPEVNDAITK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQPIFNDK NOT FOUND in any FASTA file.\n", + "Peptide SQPLNADQELVSDVVACQLVIK NOT FOUND in any FASTA file.\n", + "SQSSNDVFPTAMHVAALLALR found in part_0.0_13829.432373046875: CORRECT\n", + "SQSTSLIER found in part_0.0_13829.432373046875: CORRECT\n", + "SQTECDIYPLR found in part_0.0_13829.432373046875: CORRECT\n", + "SQTEVAAIMGVSR found in part_0.0_13829.432373046875: CORRECT\n", + "SQTGFGVEQGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQTIDLTLDGLSCGHCVK NOT FOUND in any FASTA file.\n", + "SQTNDLDDLDGDTQDFQIHR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SQTVHFQGNPVTVANSIPQAGSK NOT FOUND in any FASTA file.\n", + "Peptide SQVQSGILPEHCR NOT FOUND in any FASTA file.\n", + "Peptide SQVQSGILPEHCR NOT FOUND in any FASTA file.\n", + "Peptide SQVSTEFIPTR NOT FOUND in any FASTA file.\n", + "SQVTFQYDDGK found in part_0.0_13829.432373046875: CORRECT\n", + "SQVVLLPPVK found in part_0.0_13829.432373046875: CORRECT\n", + "SRDPQLQVVTNK found in part_0.0_13829.432373046875: CORRECT\n", + "SRDTFIR found in part_0.0_13829.432373046875: CORRECT\n", + "SRLPQNITLTEV found in part_0.0_13829.432373046875: CORRECT\n", + "SRPATGQALLK found in part_0.0_13829.432373046875: CORRECT\n", + "SRPDAVDLDPK found in part_0.0_13829.432373046875: CORRECT\n", + "SRPSLPER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SRPTIIINDLDAER NOT FOUND in any FASTA file.\n", + "Peptide SRPTIIINDLDAER NOT FOUND in any FASTA file.\n", + "SRPYLFSNSLAPAIVAASIK found in part_0.0_13829.432373046875: CORRECT\n", + "SRYEQLAEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "SSAASIPLNVEAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "SSAIFINAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SSAIYLLR found in part_0.0_13829.432373046875: CORRECT\n", + "SSAIYLLRPTNK found in part_0.0_13829.432373046875: CORRECT\n", + "SSAIYLLRPTNK found in part_0.0_13829.432373046875: CORRECT\n", + "SSALNTLTNQK found in part_0.0_13829.432373046875: CORRECT\n", + "SSDIQPAPVAGMK found in part_0.0_13829.432373046875: CORRECT\n", + "SSDYDAIIK found in part_0.0_13829.432373046875: CORRECT\n", + "SSEVYGQTNIGGK found in part_0.0_13829.432373046875: CORRECT\n", + "SSEVYGQTNIGGK found in part_0.0_13829.432373046875: CORRECT\n", + "SSFADILNHADNVINQQTR found in part_0.0_13829.432373046875: CORRECT\n", + "SSFTAMYTAVTTHR found in part_0.0_13829.432373046875: CORRECT\n", + "SSGGLPSYSK found in part_0.0_13829.432373046875: CORRECT\n", + "SSGSSYPSLLQCLK found in part_0.0_13829.432373046875: CORRECT\n", + "SSGVYSYK found in part_0.0_13829.432373046875: CORRECT\n", + "SSIMVGEVDATTASGIHGLADENEDIR found in part_0.0_13829.432373046875: CORRECT\n", + "SSIMVGEVDATTASGIHGLADENEDIR found in part_0.0_13829.432373046875: CORRECT\n", + "SSINPFLFPGEGE found in part_0.0_13829.432373046875: CORRECT\n", + "SSIPVFGVDALPEALALVK found in part_0.0_13829.432373046875: CORRECT\n", + "SSIPVFGVDALPEALALVK found in part_0.0_13829.432373046875: CORRECT\n", + "SSLAFDTLYAEGQR found in part_0.0_13829.432373046875: CORRECT\n", + "SSLEAVVDTLDQMK found in part_0.0_13829.432373046875: CORRECT\n", + "SSLEAVVDTLDQMK found in part_0.0_13829.432373046875: CORRECT\n", + "SSLGAVQNR found in part_0.0_13829.432373046875: CORRECT\n", + "SSLIQALLK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SSLLLFNDK NOT FOUND in any FASTA file.\n", + "SSLLNALAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SSLLNALLGLQK found in part_0.0_13829.432373046875: CORRECT\n", + "SSLNVLAPGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SSLQFIDPK found in part_0.0_13829.432373046875: CORRECT\n", + "SSMPIIELK found in part_0.0_13829.432373046875: CORRECT\n", + "SSNPLAFR found in part_0.0_13829.432373046875: CORRECT\n", + "SSNTETFVAIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SSNTFTLGTK NOT FOUND in any FASTA file.\n", + "SSPHLELLR found in part_0.0_13829.432373046875: CORRECT\n", + "SSPLDVSVYEPK found in part_0.0_13829.432373046875: CORRECT\n", + "SSSSLLPELSAEANPFR found in part_0.0_13829.432373046875: CORRECT\n", + "SSSVETMPDLPLK found in part_0.0_13829.432373046875: CORRECT\n", + "SSTAVNLALALAAEGAK found in part_0.0_13829.432373046875: CORRECT\n", + "SSTAVNLALALAAEGAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SSTNIEQVMPVK NOT FOUND in any FASTA file.\n", + "SSVVNNPTGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SSYANHQALAGLTLGK NOT FOUND in any FASTA file.\n", + "STADVALIAR found in part_0.0_13829.432373046875: CORRECT\n", + "STAESIVYSALETLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "STAESIVYSALETLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "STALLQSSYNYQER found in part_0.0_13829.432373046875: CORRECT\n", + "STAVFNMFK found in part_0.0_13829.432373046875: CORRECT\n", + "STCTGVEMFR found in part_0.0_13829.432373046875: CORRECT\n", + "STDNLPLR found in part_0.0_13829.432373046875: CORRECT\n", + "STFISSVK found in part_0.0_13829.432373046875: CORRECT\n", + "STFLLDSLGK found in part_0.0_13829.432373046875: CORRECT\n", + "STFMKILGGDLEPTLGNVSLDPNER found in part_0.0_13829.432373046875: CORRECT\n", + "STFQQLPGTGVKPDQFHSQTR found in part_0.0_13829.432373046875: CORRECT\n", + "STFQQLPGTGVKPDQFHSQTR found in part_0.0_13829.432373046875: CORRECT\n", + "STGEVMGVGR found in part_0.0_13829.432373046875: CORRECT\n", + "STGSYSLVTQQPLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "STGSYSLVTQQPLGGK found in part_0.0_13829.432373046875: CORRECT\n", + "STGVEASIQVK found in part_0.0_13829.432373046875: CORRECT\n", + "STGYLVGGISPLGQK found in part_0.0_13829.432373046875: CORRECT\n", + "STIFPNMIGLTIAVHNGR found in part_0.0_13829.432373046875: CORRECT\n", + "STIIGDAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "STLDEVIER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide STLEQTIGNTPLVK NOT FOUND in any FASTA file.\n", + "STLFNALTK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide STLGHQYDNSLVSNAFGFLR NOT FOUND in any FASTA file.\n", + "STLIHQGEK found in part_0.0_13829.432373046875: CORRECT\n", + "STLINDTLFPIAQR found in part_0.0_13829.432373046875: CORRECT\n", + "STLLGEAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "STLNIPGTGGK found in part_0.0_13829.432373046875: CORRECT\n", + "STLNLPETGFPMR found in part_0.0_13829.432373046875: CORRECT\n", + "STLSATLAGR found in part_0.0_13829.432373046875: CORRECT\n", + "STLTPVVISNMDEIK found in part_0.0_13829.432373046875: CORRECT\n", + "STLTPVVISNMDEIK found in part_0.0_13829.432373046875: CORRECT\n", + "STLTPVVISNMDEIKELIK found in part_0.0_13829.432373046875: CORRECT\n", + "STLTVEEEQDR found in part_0.0_13829.432373046875: CORRECT\n", + "STLYLPDTAK found in part_0.0_13829.432373046875: CORRECT\n", + "STLYLPDTAKEELEK found in part_0.0_13829.432373046875: CORRECT\n", + "STLYLPDTAKEELEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide STPDFSTAENNQELANEVSCLK NOT FOUND in any FASTA file.\n", + "STPFAAQVAAER found in part_0.0_13829.432373046875: CORRECT\n", + "STPTLLSLMDEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "STPYCTDIGK found in part_0.0_13829.432373046875: CORRECT\n", + "STQVYGQDVWLPAETLDLIR found in part_0.0_13829.432373046875: CORRECT\n", + "STSDLFNEIIPLGR found in part_0.0_13829.432373046875: CORRECT\n", + "STSNILSAANALIENNNGR found in part_0.0_13829.432373046875: CORRECT\n", + "STTDDLYLVHDR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide STTHNVPQGDLVLR NOT FOUND in any FASTA file.\n", + "STVGHDLNLDVCSK found in part_0.0_13829.432373046875: CORRECT\n", + "STVGHDLNLDVCSK found in part_0.0_13829.432373046875: CORRECT\n", + "STVGTITEIHDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide STVTITDLAR NOT FOUND in any FASTA file.\n", + "STVTTLVGEMAK found in part_0.0_13829.432373046875: CORRECT\n", + "STYPALLGLEQAR found in part_0.0_13829.432373046875: CORRECT\n", + "SVAAQQAQYK found in part_0.0_13829.432373046875: CORRECT\n", + "SVADQLPK found in part_0.0_13829.432373046875: CORRECT\n", + "SVAEAANTPVALVFGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVAGTSFDFR found in part_0.0_13829.432373046875: CORRECT\n", + "SVALILAGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVANAIIAACDEVLNNGK found in part_0.0_13829.432373046875: CORRECT\n", + "SVANAIIAACDEVLNNGK found in part_0.0_13829.432373046875: CORRECT\n", + "SVANSQDIDLVVDANAVAYNSSDVK found in part_0.0_13829.432373046875: CORRECT\n", + "SVCISINEVVCHGIPDDAK found in part_0.0_13829.432373046875: CORRECT\n", + "SVCPVAELPPEIEQR found in part_0.0_13829.432373046875: CORRECT\n", + "SVDDLTAGY found in part_0.0_13829.432373046875: CORRECT\n", + "SVDDVIAQVK found in part_0.0_13829.432373046875: CORRECT\n", + "SVDEAANSDIVDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVDEAIAACGDVPEIMVIGGGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVDGIQVGEGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVDTPVIGLK found in part_0.0_13829.432373046875: CORRECT\n", + "SVDVAISR found in part_0.0_13829.432373046875: CORRECT\n", + "SVEEILGK found in part_0.0_13829.432373046875: CORRECT\n", + "SVEEILGK found in part_0.0_13829.432373046875: CORRECT\n", + "SVEEILNAL found in part_0.0_13829.432373046875: CORRECT\n", + "SVEELNTELLNLLR found in part_0.0_13829.432373046875: CORRECT\n", + "SVEENLALFEK found in part_0.0_13829.432373046875: CORRECT\n", + "SVEFAVFAGPANDPK found in part_0.0_13829.432373046875: CORRECT\n", + "SVEICQFTQQTR found in part_0.0_13829.432373046875: CORRECT\n", + "SVEYMAAQGVEHLYEVGPGK found in part_0.0_13829.432373046875: CORRECT\n", + "SVFCQPLGDR found in part_0.0_13829.432373046875: CORRECT\n", + "SVFDTLATAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SVFFMSQAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "SVFNSAGLEVR found in part_0.0_13829.432373046875: CORRECT\n", + "SVFPIQSYSGNSELQYVSYR found in part_0.0_13829.432373046875: CORRECT\n", + "SVGASLSGYIAQTHGDQGLAADPIK found in part_0.0_13829.432373046875: CORRECT\n", + "SVGDEVITDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVGEMAENQFR found in part_0.0_13829.432373046875: CORRECT\n", + "SVGEVMAIGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVGQIPVYYSHLNTGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVGTQVDDGTLEVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SVIAQAGAK NOT FOUND in any FASTA file.\n", + "SVIEALK found in part_0.0_13829.432373046875: CORRECT\n", + "SVITPEIEQK found in part_0.0_13829.432373046875: CORRECT\n", + "SVITTGEPESAYR found in part_0.0_13829.432373046875: CORRECT\n", + "SVITVGPYLR found in part_0.0_13829.432373046875: CORRECT\n", + "SVIVCNGYK found in part_0.0_13829.432373046875: CORRECT\n", + "SVLAELGLELPGGNKPEPR found in part_0.0_13829.432373046875: CORRECT\n", + "SVLELIEK found in part_0.0_13829.432373046875: CORRECT\n", + "SVLIFVR found in part_0.0_13829.432373046875: CORRECT\n", + "SVLPVIER found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SVLQVLHIPDER NOT FOUND in any FASTA file.\n", + "Peptide SVLQVLHIPDER NOT FOUND in any FASTA file.\n", + "SVMIDASHLPFAQNISR found in part_0.0_13829.432373046875: CORRECT\n", + "SVMLAAGDTFR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SVMLQSLNNIR NOT FOUND in any FASTA file.\n", + "SVMTLFSGPTDIYSHQVR found in part_0.0_13829.432373046875: CORRECT\n", + "SVNIFDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVNIFDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVNVGFSGGEK found in part_0.0_13829.432373046875: CORRECT\n", + "SVPAIFLDR found in part_0.0_13829.432373046875: CORRECT\n", + "SVPLVEGVDFFNELER found in part_0.0_13829.432373046875: CORRECT\n", + "SVPSLQIGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVQAPLLK found in part_0.0_13829.432373046875: CORRECT\n", + "SVQIEVR found in part_0.0_13829.432373046875: CORRECT\n", + "SVQTVTGQPDVDQVVLDEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "SVSGSATGTPYELR found in part_0.0_13829.432373046875: CORRECT\n", + "SVSLGVAQPDAYK found in part_0.0_13829.432373046875: CORRECT\n", + "SVSLGVAQPDAYKDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVSLGVAQPDAYKDK found in part_0.0_13829.432373046875: CORRECT\n", + "SVTDVDSGESVSIPTEDISEPMFHQGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVTFCAR found in part_0.0_13829.432373046875: CORRECT\n", + "SVTGMVAR found in part_0.0_13829.432373046875: CORRECT\n", + "SVTGNFSR found in part_0.0_13829.432373046875: CORRECT\n", + "SVVDQINK found in part_0.0_13829.432373046875: CORRECT\n", + "SVVPPATNRPVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SVVPVADVLQGR NOT FOUND in any FASTA file.\n", + "SVVSCDTDFGVCAHCYGR found in part_0.0_13829.432373046875: CORRECT\n", + "SVVSGATPVMR found in part_0.0_13829.432373046875: CORRECT\n", + "SWDYLYEPDPK found in part_0.0_13829.432373046875: CORRECT\n", + "SWPGVQSFAGR found in part_0.0_13829.432373046875: CORRECT\n", + "SYAIDPITLPSAR found in part_0.0_13829.432373046875: CORRECT\n", + "SYEEELAK found in part_0.0_13829.432373046875: CORRECT\n", + "SYEEELAK found in part_0.0_13829.432373046875: CORRECT\n", + "SYEEELAKDPR found in part_0.0_13829.432373046875: CORRECT\n", + "SYEEELAKDPR found in part_0.0_13829.432373046875: CORRECT\n", + "SYFIPPPQMK found in part_0.0_13829.432373046875: CORRECT\n", + "SYGVGNAPQNK found in part_0.0_13829.432373046875: CORRECT\n", + "SYLNALGDALK found in part_0.0_13829.432373046875: CORRECT\n", + "SYLQTYPFIK found in part_0.0_13829.432373046875: CORRECT\n", + "SYMITSNGAR found in part_0.0_13829.432373046875: CORRECT\n", + "SYPLDIHNVQDHLK found in part_0.0_13829.432373046875: CORRECT\n", + "SYPLDIHNVQDHLK found in part_0.0_13829.432373046875: CORRECT\n", + "SYPLDIHNVQDHLK found in part_0.0_13829.432373046875: CORRECT\n", + "SYQCETIFVDPPR found in part_0.0_13829.432373046875: CORRECT\n", + "SYTHIIR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide SYTLPSLPYAYDALEPHFDK NOT FOUND in any FASTA file.\n", + "SYVANDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "SYVLDDSR found in part_0.0_13829.432373046875: CORRECT\n", + "SYYALAESVK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAALHILVK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAEGVGEAELASDAAYLK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAEGVGEAELASDAAYLK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAILLDTK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAILLDTK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAPSPSSSDKP found in part_0.0_13829.432373046875: CORRECT\n", + "TAAQDGDMIFFGADNK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAQDGDMIFFGADNK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAQDGDMIFFGADNKK found in part_0.0_13829.432373046875: CORRECT\n", + "TAAVADYYAPIR found in part_0.0_13829.432373046875: CORRECT\n", + "TACEVAEISYK found in part_0.0_13829.432373046875: CORRECT\n", + "TACLPNFHLLR found in part_0.0_13829.432373046875: CORRECT\n", + "TADAELCETGTPEQPGK found in part_0.0_13829.432373046875: CORRECT\n", + "TADKDSATSQFFINVADNAFLDHGQR found in part_0.0_13829.432373046875: CORRECT\n", + "TADMIPPLLFPR found in part_0.0_13829.432373046875: CORRECT\n", + "TADQGTNIQTPAQMAK found in part_0.0_13829.432373046875: CORRECT\n", + "TAEDENVVGLQR found in part_0.0_13829.432373046875: CORRECT\n", + "TAEDYLGEPVTEAVITVPAYFNDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "TAEGGAEHVQPITGDNIVNVLDDFR found in part_0.0_13829.432373046875: CORRECT\n", + "TAEICEHLK found in part_0.0_13829.432373046875: CORRECT\n", + "TAEICEHLKR found in part_0.0_13829.432373046875: CORRECT\n", + "TAEICEHLKR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TAELLVNVTPSETR NOT FOUND in any FASTA file.\n", + "TAEVTLGGVDTNELSSR found in part_0.0_13829.432373046875: CORRECT\n", + "TAFETAPQYEGK found in part_0.0_13829.432373046875: CORRECT\n", + "TAFFTTGAEAVENAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TAFFTTGAEAVENAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TAFQEALDAAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGLDSSQGPTAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGNGQFKAVGDSLEAQQYGIAFPK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGVDDSILK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGVECFVQGVPTEPAVDLFK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGVIGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "TAGYKPVASGSEK found in part_0.0_13829.432373046875: CORRECT\n", + "TAHIALMDIDPTR found in part_0.0_13829.432373046875: CORRECT\n", + "TAHIALMDIDPTR found in part_0.0_13829.432373046875: CORRECT\n", + "TAHQLVLSK found in part_0.0_13829.432373046875: CORRECT\n", + "TAHQLVLSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TAIAPVITIDGPSGAGK NOT FOUND in any FASTA file.\n", + "TAIESALTALETALK found in part_0.0_13829.432373046875: CORRECT\n", + "TAIESALTALETALKGEDK found in part_0.0_13829.432373046875: CORRECT\n", + "TAIESALTALETALKGEDK found in part_0.0_13829.432373046875: CORRECT\n", + "TAIHALAR found in part_0.0_13829.432373046875: CORRECT\n", + "TAIIPGNVKDE found in part_0.0_13829.432373046875: CORRECT\n", + "TAIIWEGDDASQSK found in part_0.0_13829.432373046875: CORRECT\n", + "TAIIWEGDDASQSK found in part_0.0_13829.432373046875: CORRECT\n", + "TAISDLEVENR found in part_0.0_13829.432373046875: CORRECT\n", + "TAISQFEGYIK found in part_0.0_13829.432373046875: CORRECT\n", + "TAIVEGLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "TALAIDAIINQR found in part_0.0_13829.432373046875: CORRECT\n", + "TALAIDAIINQR found in part_0.0_13829.432373046875: CORRECT\n", + "TALAQYR found in part_0.0_13829.432373046875: CORRECT\n", + "TALGNDYHALFSFDDALAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TALIDHLDTMAER found in part_0.0_13829.432373046875: CORRECT\n", + "TALIDHLDTMAER found in part_0.0_13829.432373046875: CORRECT\n", + "TALIMPICNEDVNR found in part_0.0_13829.432373046875: CORRECT\n", + "TALITGALQGIGEGIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TALNFVQTLSGVASK found in part_0.0_13829.432373046875: CORRECT\n", + "TANDFYIPEDEPFK found in part_0.0_13829.432373046875: CORRECT\n", + "TANEVQQAANAIFDR found in part_0.0_13829.432373046875: CORRECT\n", + "TANSGYLTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TAPSQVLK NOT FOUND in any FASTA file.\n", + "TAQALLQGLGGLDTLYAEPEK found in part_0.0_13829.432373046875: CORRECT\n", + "TAQDNGDVDFGQNLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TAQSVLVR found in part_0.0_13829.432373046875: CORRECT\n", + "TAQTPGGTGALR found in part_0.0_13829.432373046875: CORRECT\n", + "TASISPDVNDPAFR found in part_0.0_13829.432373046875: CORRECT\n", + "TASITGACVALVDALQK found in part_0.0_13829.432373046875: CORRECT\n", + "TASLINDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TASPFAGYLAQAHINNAAAIVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TASTGVFLGCSGYALPPK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TATAQQLEYLK NOT FOUND in any FASTA file.\n", + "TATFMPK found in part_0.0_13829.432373046875: CORRECT\n", + "TATPATASQFYTVK found in part_0.0_13829.432373046875: CORRECT\n", + "TAVAEYPTK found in part_0.0_13829.432373046875: CORRECT\n", + "TAVDTYR found in part_0.0_13829.432373046875: CORRECT\n", + "TAVEGGFLR found in part_0.0_13829.432373046875: CORRECT\n", + "TAVFPAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TAVGQTIQIGSGITK found in part_0.0_13829.432373046875: CORRECT\n", + "TAVINAASGR found in part_0.0_13829.432373046875: CORRECT\n", + "TAVLFCEIVNR found in part_0.0_13829.432373046875: CORRECT\n", + "TAVQGSPTMLAAISK found in part_0.0_13829.432373046875: CORRECT\n", + "TAVQHVILTR found in part_0.0_13829.432373046875: CORRECT\n", + "TAWENIIAPQLDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TAYAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "TAYAELAK found in part_0.0_13829.432373046875: CORRECT\n", + "TAYFVDAPYQVDK found in part_0.0_13829.432373046875: CORRECT\n", + "TCAFIDAEHALDPIYAR found in part_0.0_13829.432373046875: CORRECT\n", + "TCHAAIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TCIILSAPASQHEDLR found in part_0.0_13829.432373046875: CORRECT\n", + "TCILGYNNVR found in part_0.0_13829.432373046875: CORRECT\n", + "TDADAADLITSDCDPYDSEFITGER found in part_0.0_13829.432373046875: CORRECT\n", + "TDAEQAQELAR found in part_0.0_13829.432373046875: CORRECT\n", + "TDAVELR found in part_0.0_13829.432373046875: CORRECT\n", + "TDDDLYDTVIGYR found in part_0.0_13829.432373046875: CORRECT\n", + "TDEYNIK found in part_0.0_13829.432373046875: CORRECT\n", + "TDGSSTLASFGER found in part_0.0_13829.432373046875: CORRECT\n", + "TDHQDLIIFENAAFGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TDIAQLLGK NOT FOUND in any FASTA file.\n", + "TDIDDVTQLAK found in part_0.0_13829.432373046875: CORRECT\n", + "TDIKSPVTGYIAQR found in part_0.0_13829.432373046875: CORRECT\n", + "TDINQALNR found in part_0.0_13829.432373046875: CORRECT\n", + "TDITELEAFR found in part_0.0_13829.432373046875: CORRECT\n", + "TDITELEAFRK found in part_0.0_13829.432373046875: CORRECT\n", + "TDITELEAFRK found in part_0.0_13829.432373046875: CORRECT\n", + "TDITIPQSQR found in part_0.0_13829.432373046875: CORRECT\n", + "TDIVDLIDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TDIYNYDLPAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TDKLTSLR NOT FOUND in any FASTA file.\n", + "TDLEYVLPDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TDLFSSPDHTLDALGLR NOT FOUND in any FASTA file.\n", + "TDLGDNAAVPVK found in part_0.0_13829.432373046875: CORRECT\n", + "TDLHGTAVR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TDLIQRPR NOT FOUND in any FASTA file.\n", + "TDLNYLQGVDGPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "TDLVIAGEAAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "TDPTSAFGGIIAFNR found in part_0.0_13829.432373046875: CORRECT\n", + "TDQYGGSVENR found in part_0.0_13829.432373046875: CORRECT\n", + "TDRPSQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "TDSTNLSQDAVNMVR found in part_0.0_13829.432373046875: CORRECT\n", + "TDTATDKDYLDIER found in part_0.0_13829.432373046875: CORRECT\n", + "TDTATDKDYLDIER found in part_0.0_13829.432373046875: CORRECT\n", + "TDTFLFHYNFPPYSVGETGMVGSPK found in part_0.0_13829.432373046875: CORRECT\n", + "TDTSDADGQIVEER found in part_0.0_13829.432373046875: CORRECT\n", + "TDVLDLTINTR found in part_0.0_13829.432373046875: CORRECT\n", + "TDVLIDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "TDYQAVVSGIAEGYK found in part_0.0_13829.432373046875: CORRECT\n", + "TEAIDPTTVK found in part_0.0_13829.432373046875: CORRECT\n", + "TEALAGTVANNPDDK found in part_0.0_13829.432373046875: CORRECT\n", + "TEANIIR found in part_0.0_13829.432373046875: CORRECT\n", + "TECAVDAIR found in part_0.0_13829.432373046875: CORRECT\n", + "TEEEQFAR found in part_0.0_13829.432373046875: CORRECT\n", + "TEEFDAIK found in part_0.0_13829.432373046875: CORRECT\n", + "TEEQLANIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TEEVIAENPGK found in part_0.0_13829.432373046875: CORRECT\n", + "TEEVIAENPGKK found in part_0.0_13829.432373046875: CORRECT\n", + "TEEVIAENPGKK found in part_0.0_13829.432373046875: CORRECT\n", + "TEEVRPLQPR found in part_0.0_13829.432373046875: CORRECT\n", + "TEEVRPLQPR found in part_0.0_13829.432373046875: CORRECT\n", + "TEFDKDNGFTVLDACQVNDR found in part_0.0_13829.432373046875: CORRECT\n", + "TEFDVILK found in part_0.0_13829.432373046875: CORRECT\n", + "TEFDVILK found in part_0.0_13829.432373046875: CORRECT\n", + "TEFDVILKAAGANK found in part_0.0_13829.432373046875: CORRECT\n", + "TEFLFMDR found in part_0.0_13829.432373046875: CORRECT\n", + "TEFYADLNR found in part_0.0_13829.432373046875: CORRECT\n", + "TEGATVFGYQVMDPER found in part_0.0_13829.432373046875: CORRECT\n", + "TEHPGPLPETVVAHLDK found in part_0.0_13829.432373046875: CORRECT\n", + "TEHPGPLPETVVAHLDK found in part_0.0_13829.432373046875: CORRECT\n", + "TEIEDVLILEPR found in part_0.0_13829.432373046875: CORRECT\n", + "TEIIEESEGEVAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "TEIIEESEGEVAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "TELDIEK found in part_0.0_13829.432373046875: CORRECT\n", + "TELDIEK found in part_0.0_13829.432373046875: CORRECT\n", + "TELEDLYLPYKPK found in part_0.0_13829.432373046875: CORRECT\n", + "TELENLGAVECQVVQGGVHFK found in part_0.0_13829.432373046875: CORRECT\n", + "TELFLVEGDSAGGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "TELGDELR found in part_0.0_13829.432373046875: CORRECT\n", + "TELPIGAYQVSGEYAMIK found in part_0.0_13829.432373046875: CORRECT\n", + "TELPIGAYQVSGEYAMIK found in part_0.0_13829.432373046875: CORRECT\n", + "TENLYILPASQTR found in part_0.0_13829.432373046875: CORRECT\n", + "TENLYILPASQTR found in part_0.0_13829.432373046875: CORRECT\n", + "TEPGDENNQDISALVGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TEPHVAVLSQVQQFLDR NOT FOUND in any FASTA file.\n", + "TEPLQITTELPGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TEPLTETPELSAK NOT FOUND in any FASTA file.\n", + "Peptide TEQATTTDELAFTR NOT FOUND in any FASTA file.\n", + "Peptide TEQATTTDELAFTRPYGEQEK NOT FOUND in any FASTA file.\n", + "TEQFMTQFLK found in part_0.0_13829.432373046875: CORRECT\n", + "TEQILALTGCDR found in part_0.0_13829.432373046875: CORRECT\n", + "TEQLQLDTAMWDTAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "TEQTQPAAPAKPTSDIPN found in part_0.0_13829.432373046875: CORRECT\n", + "TESEEMLAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TESFAQLFEESLK NOT FOUND in any FASTA file.\n", + "Peptide TESFAQLFEESLK NOT FOUND in any FASTA file.\n", + "TESTTASGLPVFYK found in part_0.0_13829.432373046875: CORRECT\n", + "TETMILR found in part_0.0_13829.432373046875: CORRECT\n", + "TETMILRDPFDA found in part_0.0_13829.432373046875: CORRECT\n", + "TETTALTAITALQVR found in part_0.0_13829.432373046875: CORRECT\n", + "TEVAVVYDPMR found in part_0.0_13829.432373046875: CORRECT\n", + "TEVDELTR found in part_0.0_13829.432373046875: CORRECT\n", + "TEVEEYTVDNTTK found in part_0.0_13829.432373046875: CORRECT\n", + "TEVELLK found in part_0.0_13829.432373046875: CORRECT\n", + "TEVELLK found in part_0.0_13829.432373046875: CORRECT\n", + "TEVIALGDAGEQLYR found in part_0.0_13829.432373046875: CORRECT\n", + "TEVTYGDVTLDFGKPFEK found in part_0.0_13829.432373046875: CORRECT\n", + "TEVVDIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "TEYCGQLR found in part_0.0_13829.432373046875: CORRECT\n", + "TEYELACMR found in part_0.0_13829.432373046875: CORRECT\n", + "TFAEAFAK found in part_0.0_13829.432373046875: CORRECT\n", + "TFAHVDPVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFAIISHPDAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFAIISHPDAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFAQDLTNQK found in part_0.0_13829.432373046875: CORRECT\n", + "TFAYTNHTLMPEALER found in part_0.0_13829.432373046875: CORRECT\n", + "TFCAHAPGAVEPLQSAIK found in part_0.0_13829.432373046875: CORRECT\n", + "TFCIPHGGGGPGMGPIGVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFCIPHGGGGPGMGPIGVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFDAPGGMK found in part_0.0_13829.432373046875: CORRECT\n", + "TFDDKAPETVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFDDKAPETVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFDTPTHPNSLALSADGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFDTPTHPNSLALSADGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFEVLATNGDTHLGGEDFDSR found in part_0.0_13829.432373046875: CORRECT\n", + "TFEVTEDESK found in part_0.0_13829.432373046875: CORRECT\n", + "TFEVTEDESKEK found in part_0.0_13829.432373046875: CORRECT\n", + "TFEVTEDESKEK found in part_0.0_13829.432373046875: CORRECT\n", + "TFGEAACQQELEAFLAHR found in part_0.0_13829.432373046875: CORRECT\n", + "TFGFGAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TFGMEGLFR found in part_0.0_13829.432373046875: CORRECT\n", + "TFGYYNAGQDCTAACR found in part_0.0_13829.432373046875: CORRECT\n", + "TFGYYNAGQDCTAACR found in part_0.0_13829.432373046875: CORRECT\n", + "TFHAPLIAGTPGQELAVISSSDETK found in part_0.0_13829.432373046875: CORRECT\n", + "TFHIGGAASR found in part_0.0_13829.432373046875: CORRECT\n", + "TFIMPGQQLR found in part_0.0_13829.432373046875: CORRECT\n", + "TFLDQTGGLWASGALYGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFLVEIGTEELPPK found in part_0.0_13829.432373046875: CORRECT\n", + "TFLVTIGDR found in part_0.0_13829.432373046875: CORRECT\n", + "TFMSISGAQIR found in part_0.0_13829.432373046875: CORRECT\n", + "TFNCGVGMIIALPAPEVDK found in part_0.0_13829.432373046875: CORRECT\n", + "TFPDSEFLMR found in part_0.0_13829.432373046875: CORRECT\n", + "TFPDYFEQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "TFPSLFEPVHGSAPDIYGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFPTPPDSWQVVFVEQNLPDGK found in part_0.0_13829.432373046875: CORRECT\n", + "TFQEILAALGTGDALASK found in part_0.0_13829.432373046875: CORRECT\n", + "TFQPSVLK found in part_0.0_13829.432373046875: CORRECT\n", + "TFSIIKPNAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TFSIIKPNAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TFSNAIAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "TFSPESEDYLK found in part_0.0_13829.432373046875: CORRECT\n", + "TFTAKPETVK found in part_0.0_13829.432373046875: CORRECT\n", + "TFTEQEVCNICSNPR found in part_0.0_13829.432373046875: CORRECT\n", + "TFTGVLGGDAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TFTTQETMTNAHSAR found in part_0.0_13829.432373046875: CORRECT\n", + "TFVCVETAYASETQK found in part_0.0_13829.432373046875: CORRECT\n", + "TFVDQEFAQIK found in part_0.0_13829.432373046875: CORRECT\n", + "TGADFAVMSGGGIR found in part_0.0_13829.432373046875: CORRECT\n", + "TGAITPVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGAIVDFFSPGALK found in part_0.0_13829.432373046875: CORRECT\n", + "TGATGGFGSYVAFIPEK found in part_0.0_13829.432373046875: CORRECT\n", + "TGAVINVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGCDLLPETVGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGCVEAIASGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDEIPDVGEDYTLQQPEDIR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDGCGLLLQKPDR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDIGLFR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDILAEAALGLQR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDIVEYLVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGDKVELEGK found in part_0.0_13829.432373046875: CORRECT\n", + "TGDLIEIK found in part_0.0_13829.432373046875: CORRECT\n", + "TGDTVNDEDISNTIR found in part_0.0_13829.432373046875: CORRECT\n", + "TGDVIHGLPLEEVAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "TGDVIHGLPLEEVAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "TGEDIPITAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGEEDDAAI found in part_0.0_13829.432373046875: CORRECT\n", + "TGEGVDVLR found in part_0.0_13829.432373046875: CORRECT\n", + "TGELSIHCTELR found in part_0.0_13829.432373046875: CORRECT\n", + "TGELSIHCTELR found in part_0.0_13829.432373046875: CORRECT\n", + "TGELYAYMHYGVTPDLLTTAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGEVPADVAAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGEVPADVAAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGEYLEGIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGFANYCLADFVAPK found in part_0.0_13829.432373046875: CORRECT\n", + "TGFESADYPQGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGFNDSLLDIR found in part_0.0_13829.432373046875: CORRECT\n", + "TGFPYIQLK found in part_0.0_13829.432373046875: CORRECT\n", + "TGGAHAAVVTAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGGAHAAVVTAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGGDAPDQTTTIVR found in part_0.0_13829.432373046875: CORRECT\n", + "TGGDVGPALGAAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGGGLTSLPANEATLSAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGGLTEALALATEAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGGTLVYATCSVLPEENSLQIK found in part_0.0_13829.432373046875: CORRECT\n", + "TGHALLHTLYQQNLK found in part_0.0_13829.432373046875: CORRECT\n", + "TGHALLHTLYQQNLK found in part_0.0_13829.432373046875: CORRECT\n", + "TGHALLHTLYQQNLK found in part_0.0_13829.432373046875: CORRECT\n", + "TGHLLSQPFNSSTPVLYYNK found in part_0.0_13829.432373046875: CORRECT\n", + "TGIPDADKVNIQIADGK found in part_0.0_13829.432373046875: CORRECT\n", + "TGISAAFLGNTAEQVIDHLR found in part_0.0_13829.432373046875: CORRECT\n", + "TGITVVGDFR found in part_0.0_13829.432373046875: CORRECT\n", + "TGKQLPCPAELLR found in part_0.0_13829.432373046875: CORRECT\n", + "TGLDIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "TGLFLSHETR found in part_0.0_13829.432373046875: CORRECT\n", + "TGLLEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGLLSSSAASGVPQVENLENK found in part_0.0_13829.432373046875: CORRECT\n", + "TGMTFDAQPGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGNAVILR found in part_0.0_13829.432373046875: CORRECT\n", + "TGNIFVLDR found in part_0.0_13829.432373046875: CORRECT\n", + "TGNTDSLALQNIGLETDSR found in part_0.0_13829.432373046875: CORRECT\n", + "TGNTDSLALQNIGLETDSR found in part_0.0_13829.432373046875: CORRECT\n", + "TGPEAILELEHMGLPFSR found in part_0.0_13829.432373046875: CORRECT\n", + "TGPTESLIQGLHQSVFR found in part_0.0_13829.432373046875: CORRECT\n", + "TGQAPGYSYTAANK found in part_0.0_13829.432373046875: CORRECT\n", + "TGSAALDLAYVAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGSAGGTGHVVEFCGEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "TGSDEPLALVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGSLIMIFEVEGAAPAAAPAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGSVYIVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGSVYIVKPK found in part_0.0_13829.432373046875: CORRECT\n", + "TGTLFAMEQMGVAPDLTTFAK found in part_0.0_13829.432373046875: CORRECT\n", + "TGTPAAQIGLK found in part_0.0_13829.432373046875: CORRECT\n", + "TGTVLAAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGTVLTAVLQDHGTLAEHDIYIAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGTVVTTDDR found in part_0.0_13829.432373046875: CORRECT\n", + "TGVCQLDNANVTDAILSR found in part_0.0_13829.432373046875: CORRECT\n", + "TGVGVQDVLER found in part_0.0_13829.432373046875: CORRECT\n", + "TGVILGHEGIGVVAEVGPGVTSLKPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "TGVILGHEGIGVVAEVGPGVTSLKPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "TGVSNTLENEFK found in part_0.0_13829.432373046875: CORRECT\n", + "TGVTVQSSLDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TGVVFCQYPEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "TGVVLAPDGGILGK found in part_0.0_13829.432373046875: CORRECT\n", + "TGYAVKPIAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TGYDGAAPPK found in part_0.0_13829.432373046875: CORRECT\n", + "TGYLPITK found in part_0.0_13829.432373046875: CORRECT\n", + "TGYLPITK found in part_0.0_13829.432373046875: CORRECT\n", + "TGYYLDQR found in part_0.0_13829.432373046875: CORRECT\n", + "THAGIEQAISR found in part_0.0_13829.432373046875: CORRECT\n", + "THAPVDFDTAVASTITSHDAGYINK found in part_0.0_13829.432373046875: CORRECT\n", + "THAPVDFDTAVASTITSHDAGYINK found in part_0.0_13829.432373046875: CORRECT\n", + "THEIPYIWPQAVEQQVAGLK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide THFSQQDNFSVAAR NOT FOUND in any FASTA file.\n", + "THFTSGGELDK found in part_0.0_13829.432373046875: CORRECT\n", + "THFTSGGELDK found in part_0.0_13829.432373046875: CORRECT\n", + "THGQPATPSTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "THGQPATPSTIGK found in part_0.0_13829.432373046875: CORRECT\n", + "THGSALFTR found in part_0.0_13829.432373046875: CORRECT\n", + "THGVDTDYPLDHEFITGGEYR found in part_0.0_13829.432373046875: CORRECT\n", + "THGVDTDYPLDHEFITGGEYR found in part_0.0_13829.432373046875: CORRECT\n", + "THLHTLSLVAK found in part_0.0_13829.432373046875: CORRECT\n", + "THLLQPGGLNTTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "THLLQPGGLNTTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "THLNFQR found in part_0.0_13829.432373046875: CORRECT\n", + "THLTEDVINAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "THLTEDVINAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "THNQGVFDVYTPDILR found in part_0.0_13829.432373046875: CORRECT\n", + "THNQGVFDVYTPDILR found in part_0.0_13829.432373046875: CORRECT\n", + "THTALEYK found in part_0.0_13829.432373046875: CORRECT\n", + "THTASGLVER found in part_0.0_13829.432373046875: CORRECT\n", + "THVLAVNGEIYNHQALR found in part_0.0_13829.432373046875: CORRECT\n", + "THVLAVNGEIYNHQALR found in part_0.0_13829.432373046875: CORRECT\n", + "THYTLALTGK found in part_0.0_13829.432373046875: CORRECT\n", + "THYVTPR found in part_0.0_13829.432373046875: CORRECT\n", + "TIAEGELDK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAELVEQFNLPIEK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAGEIGSSTMPHK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAGEIGSSTMPHK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAMGSSDGLR found in part_0.0_13829.432373046875: CORRECT\n", + "TIANLLTA found in part_0.0_13829.432373046875: CORRECT\n", + "TIANLLTA found in part_0.0_13829.432373046875: CORRECT\n", + "TIAQDYGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAQLEK found in part_0.0_13829.432373046875: CORRECT\n", + "TIAQQVR found in part_0.0_13829.432373046875: CORRECT\n", + "TIASFQQQLSDMGYK found in part_0.0_13829.432373046875: CORRECT\n", + "TIASNAITINGEK found in part_0.0_13829.432373046875: CORRECT\n", + "TICFCGR found in part_0.0_13829.432373046875: CORRECT\n", + "TIDLGLER found in part_0.0_13829.432373046875: CORRECT\n", + "TIDNPEEIASALR found in part_0.0_13829.432373046875: CORRECT\n", + "TIEAAEGPYGEEGMIVQQFHPLPK found in part_0.0_13829.432373046875: CORRECT\n", + "TIESLPEDLR found in part_0.0_13829.432373046875: CORRECT\n", + "TIEVDDELYSYIASHTK found in part_0.0_13829.432373046875: CORRECT\n", + "TIFCTFLQR found in part_0.0_13829.432373046875: CORRECT\n", + "TIFGEAASR found in part_0.0_13829.432373046875: CORRECT\n", + "TIGFPTANVPLR found in part_0.0_13829.432373046875: CORRECT\n", + "TIGLVYRPGSPLR found in part_0.0_13829.432373046875: CORRECT\n", + "TIGVVFGK found in part_0.0_13829.432373046875: CORRECT\n", + "TIHLGENYGNK found in part_0.0_13829.432373046875: CORRECT\n", + "TIHLGENYGNK found in part_0.0_13829.432373046875: CORRECT\n", + "TIIDDLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "TIIGFGSPNK found in part_0.0_13829.432373046875: CORRECT\n", + "TILVPIDISDSELTQR found in part_0.0_13829.432373046875: CORRECT\n", + "TILVPIDISDSELTQR found in part_0.0_13829.432373046875: CORRECT\n", + "TILWNGPVGVFEFPNFR found in part_0.0_13829.432373046875: CORRECT\n", + "TILYCLNPR found in part_0.0_13829.432373046875: CORRECT\n", + "TIMEGQSIVNVDEIHR found in part_0.0_13829.432373046875: CORRECT\n", + "TINPDTLIR found in part_0.0_13829.432373046875: CORRECT\n", + "TINSQLDYSLNSLK found in part_0.0_13829.432373046875: CORRECT\n", + "TIPLQDQDTR found in part_0.0_13829.432373046875: CORRECT\n", + "TIPQADAMK found in part_0.0_13829.432373046875: CORRECT\n", + "TIPVPMVVGHEYVGEVVGIGQEVK found in part_0.0_13829.432373046875: CORRECT\n", + "TIQVLQR found in part_0.0_13829.432373046875: CORRECT\n", + "TISGQDALPNISDAER found in part_0.0_13829.432373046875: CORRECT\n", + "TISGSNTVPSTQVADAR found in part_0.0_13829.432373046875: CORRECT\n", + "TISPLISPELLK found in part_0.0_13829.432373046875: CORRECT\n", + "TISQLYDPEK found in part_0.0_13829.432373046875: CORRECT\n", + "TITEAVHQEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "TITEAVHQEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "TITFEEIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TITLEVEPSDTIENVK found in part_0.0_13829.432373046875: CORRECT\n", + "TITPLIEQQK found in part_0.0_13829.432373046875: CORRECT\n", + "TITYTDSSGAASSPTAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TIVALNPAPAR found in part_0.0_13829.432373046875: CORRECT\n", + "TIVDQELLPYVQVK found in part_0.0_13829.432373046875: CORRECT\n", + "TIVDQELLPYVQVK found in part_0.0_13829.432373046875: CORRECT\n", + "TIVSDGKPQTDNDTGMISYK found in part_0.0_13829.432373046875: CORRECT\n", + "TIVVYGTR found in part_0.0_13829.432373046875: CORRECT\n", + "TIYQYLQK found in part_0.0_13829.432373046875: CORRECT\n", + "TKAEADISEYITK found in part_0.0_13829.432373046875: CORRECT\n", + "TKAEADISEYITK found in part_0.0_13829.432373046875: CORRECT\n", + "TKPHVNVGTIGHVDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "TKPHVNVGTIGHVDHGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TKPIVFSGAQPSGELTIGNYMGALR NOT FOUND in any FASTA file.\n", + "TKPVLSFLASPGGTSER found in part_0.0_13829.432373046875: CORRECT\n", + "TKPVLSFLASPGGTSER found in part_0.0_13829.432373046875: CORRECT\n", + "TLAALTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAALTPGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAAQFNR found in part_0.0_13829.432373046875: CORRECT\n", + "TLAASGIK found in part_0.0_13829.432373046875: CORRECT\n", + "TLADNFHIPATNMNPVIFAGDKPGQNTK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAEGQNVEFEIQDGQK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAEGQNVEFEIQDGQK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAEGQNVEFEIQDGQK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAQDILGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAQEVLGTTK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAQQLIDFGEIK found in part_0.0_13829.432373046875: CORRECT\n", + "TLAQQLIDFGEIKR found in part_0.0_13829.432373046875: CORRECT\n", + "TLASVQTLDESR found in part_0.0_13829.432373046875: CORRECT\n", + "TLAVVGESGCGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLCVVQEGFPTYGGLEGGAMER found in part_0.0_13829.432373046875: CORRECT\n", + "TLDAAAALAAANK found in part_0.0_13829.432373046875: CORRECT\n", + "TLDAAAALAAANKR found in part_0.0_13829.432373046875: CORRECT\n", + "TLDAAAALAAANKR found in part_0.0_13829.432373046875: CORRECT\n", + "TLDDVIEGADIFLGCSGPK found in part_0.0_13829.432373046875: CORRECT\n", + "TLDEVKPEIAELAETYPEVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLDLSIPLPQGAR found in part_0.0_13829.432373046875: CORRECT\n", + "TLDQLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLDTQGLR found in part_0.0_13829.432373046875: CORRECT\n", + "TLDYQSPLTTTR found in part_0.0_13829.432373046875: CORRECT\n", + "TLEDAIPLVVGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEEEEIAATVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEEEEIAATVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEEPPEHVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEEVEAINLLPAHEFPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEEVTGDQMGVTGVR found in part_0.0_13829.432373046875: CORRECT\n", + "TLEFLGHK found in part_0.0_13829.432373046875: CORRECT\n", + "TLELMEEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLENLASQGYIR found in part_0.0_13829.432373046875: CORRECT\n", + "TLEVLKK found in part_0.0_13829.432373046875: CORRECT\n", + "TLEVNGETITADHILIATGGR found in part_0.0_13829.432373046875: CORRECT\n", + "TLFEPGEMVR found in part_0.0_13829.432373046875: CORRECT\n", + "TLFGDHER found in part_0.0_13829.432373046875: CORRECT\n", + "TLFTVSAGGQPAYSQDFAPLPADIR found in part_0.0_13829.432373046875: CORRECT\n", + "TLGADALEPK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGAELLYK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGDIYLGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGEFIVEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGLDGFSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGLTGEEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLGLYPDEVVLR found in part_0.0_13829.432373046875: CORRECT\n", + "TLGTAACPPYHIAFVIGGTSAETNLK found in part_0.0_13829.432373046875: CORRECT\n", + "TLHLADEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLIFAMPGSTK found in part_0.0_13829.432373046875: CORRECT\n", + "TLINTHK found in part_0.0_13829.432373046875: CORRECT\n", + "TLIQAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLIVEAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLAETLAR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLALVEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLCDPPR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLELTR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLGADDK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TLLGTALR NOT FOUND in any FASTA file.\n", + "Peptide TLLGTALRPAATR NOT FOUND in any FASTA file.\n", + "TLLIPEHK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLMDEQDHGYALTGDALSQAAIAAANR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLMDEQDHGYALTGDALSQAAIAAANR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLSAAGYGPQKPLK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLSAAGYGPQKPLK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLTQFR found in part_0.0_13829.432373046875: CORRECT\n", + "TLLTQVAPPGVTAHVVDVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLVGVIKPESPATAAAILASK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLVTTGSEAVENAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLLVTTGSEAVENAVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLMYEFNHSHPSEVEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLMYEFNHSHPSEVEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLMYEFNHSHPSEVEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNAIDSLAASGAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNAYMDK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNDAVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNDAVEVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNLNFIK found in part_0.0_13829.432373046875: CORRECT\n", + "TLNLTALYR found in part_0.0_13829.432373046875: CORRECT\n", + "TLPDADAFGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TLPGVFSR found in part_0.0_13829.432373046875: CORRECT\n", + "TLPTTMEFVDIAGLVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLQEQYPNDTDLLGR found in part_0.0_13829.432373046875: CORRECT\n", + "TLQPVSGSEIDLQLR found in part_0.0_13829.432373046875: CORRECT\n", + "TLQQAVQSGEYSDYQEYAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLQQGIQLAQSR found in part_0.0_13829.432373046875: CORRECT\n", + "TLQQLNASIAVEGLDAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLSDQACQEMDSK found in part_0.0_13829.432373046875: CORRECT\n", + "TLSDYNIQK found in part_0.0_13829.432373046875: CORRECT\n", + "TLSGQTTEAFYNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "TLSLPANQPIALTK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TLSPYLQEVAK NOT FOUND in any FASTA file.\n", + "TLTATLPAYLNALTGK found in part_0.0_13829.432373046875: CORRECT\n", + "TLTAVDCCLMVIDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLTDEDIAGYVASDEPLDK found in part_0.0_13829.432373046875: CORRECT\n", + "TLTIPCK found in part_0.0_13829.432373046875: CORRECT\n", + "TLTISDNGVGMTR found in part_0.0_13829.432373046875: CORRECT\n", + "TLTQEDVEALEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLTQEDVEALEKR found in part_0.0_13829.432373046875: CORRECT\n", + "TLTQTLNEK found in part_0.0_13829.432373046875: CORRECT\n", + "TLVAGVNVPVQVGGGVR found in part_0.0_13829.432373046875: CORRECT\n", + "TLVAVMENYQQADGR found in part_0.0_13829.432373046875: CORRECT\n", + "TLVGDLQPDSGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLVGSEYNTR found in part_0.0_13829.432373046875: CORRECT\n", + "TLVLYRPTK found in part_0.0_13829.432373046875: CORRECT\n", + "TLVQCGVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLVTSIANSAPGR found in part_0.0_13829.432373046875: CORRECT\n", + "TLVYPAK found in part_0.0_13829.432373046875: CORRECT\n", + "TLYPDAETIK found in part_0.0_13829.432373046875: CORRECT\n", + "TLYVSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TLYYQNTR found in part_0.0_13829.432373046875: CORRECT\n", + "TMACGIAGLSVAADSLSAIK found in part_0.0_13829.432373046875: CORRECT\n", + "TMACGIAGLSVAADSLSAIK found in part_0.0_13829.432373046875: CORRECT\n", + "TMAPLTR found in part_0.0_13829.432373046875: CORRECT\n", + "TMDIGGDKELPYMNFPK found in part_0.0_13829.432373046875: CORRECT\n", + "TMGKPPVDDDIPAEEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "TMGKPPVDDDIPAEEQVR found in part_0.0_13829.432373046875: CORRECT\n", + "TMLYAINGGVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "TMNLGTVSEER found in part_0.0_13829.432373046875: CORRECT\n", + "TMPEYCGVISK found in part_0.0_13829.432373046875: CORRECT\n", + "TMVDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "TNAALDTANTISSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TNAALDTANTISSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TNAATVAVIQDALK found in part_0.0_13829.432373046875: CORRECT\n", + "TNAQPISVIQIDDPNNPGEK found in part_0.0_13829.432373046875: CORRECT\n", + "TNDTLAVTGEAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "TNDTLAVTGEAFSR found in part_0.0_13829.432373046875: CORRECT\n", + "TNELKADEER found in part_0.0_13829.432373046875: CORRECT\n", + "TNELKADEER found in part_0.0_13829.432373046875: CORRECT\n", + "TNGPLNEQLHER found in part_0.0_13829.432373046875: CORRECT\n", + "TNGPLNEQLHER found in part_0.0_13829.432373046875: CORRECT\n", + "TNISTIFIR found in part_0.0_13829.432373046875: CORRECT\n", + "TNLCVAVR found in part_0.0_13829.432373046875: CORRECT\n", + "TNLFMKPIFSQAR found in part_0.0_13829.432373046875: CORRECT\n", + "TNLIGAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TNLNYQQTHFVMSAPDIR NOT FOUND in any FASTA file.\n", + "TNLPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "TNLQEAQPLGNGK found in part_0.0_13829.432373046875: CORRECT\n", + "TNLSDLDQYR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TNNDTTLQLSSVLNR NOT FOUND in any FASTA file.\n", + "TNNPEQLEK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TNNPPSAQIK NOT FOUND in any FASTA file.\n", + "Peptide TNNPPSAQIKPGEYGFPLK NOT FOUND in any FASTA file.\n", + "TNPGYSAIGR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TNPLLTPFELPPFSK NOT FOUND in any FASTA file.\n", + "Peptide TNPQFAGHPFGTTVTAETLR NOT FOUND in any FASTA file.\n", + "TNPQLGVATEK found in part_0.0_13829.432373046875: CORRECT\n", + "TNQVLGQALLAK found in part_0.0_13829.432373046875: CORRECT\n", + "TNREPVMNLSESEVQEQLDNLVK found in part_0.0_13829.432373046875: CORRECT\n", + "TNTTDVATFK found in part_0.0_13829.432373046875: CORRECT\n", + "TNVAFSDFTPTEYSTK found in part_0.0_13829.432373046875: CORRECT\n", + "TNVDLQIR found in part_0.0_13829.432373046875: CORRECT\n", + "TNVLFFTK found in part_0.0_13829.432373046875: CORRECT\n", + "TNVPHIFAIGDIVGQPMLAHK found in part_0.0_13829.432373046875: CORRECT\n", + "TNVPHIFAIGDIVGQPMLAHK found in part_0.0_13829.432373046875: CORRECT\n", + "TNYAVSGER found in part_0.0_13829.432373046875: CORRECT\n", + "TPADFLTLVK found in part_0.0_13829.432373046875: CORRECT\n", + "TPAGYPSGSLGPTTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TPAIPYEDLSVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPAQFVGYR found in part_0.0_13829.432373046875: CORRECT\n", + "TPAQIVIR found in part_0.0_13829.432373046875: CORRECT\n", + "TPASFEPSIDYVVTK found in part_0.0_13829.432373046875: CORRECT\n", + "TPDLPNFAETFAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPDTELFLLPGMANR found in part_0.0_13829.432373046875: CORRECT\n", + "TPDVLLSDIR found in part_0.0_13829.432373046875: CORRECT\n", + "TPEAALNFMR found in part_0.0_13829.432373046875: CORRECT\n", + "TPEAEEIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPEGYASGSLGPTTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TPEGYASGSLGPTTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "TPELNLFK found in part_0.0_13829.432373046875: CORRECT\n", + "TPEQLTPEQR found in part_0.0_13829.432373046875: CORRECT\n", + "TPFTDEHLQPFER found in part_0.0_13829.432373046875: CORRECT\n", + "TPGGAPSTSEEVLEELALDYPLPK found in part_0.0_13829.432373046875: CORRECT\n", + "TPGGEVEFEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "TPGQTLLKPTAQ found in part_0.0_13829.432373046875: CORRECT\n", + "TPHPALTEAK found in part_0.0_13829.432373046875: CORRECT\n", + "TPIHPNIFYFSTEK found in part_0.0_13829.432373046875: CORRECT\n", + "TPISGDYR found in part_0.0_13829.432373046875: CORRECT\n", + "TPIVVNDCPGFFVNR found in part_0.0_13829.432373046875: CORRECT\n", + "TPLEYQPGSK found in part_0.0_13829.432373046875: CORRECT\n", + "TPLIISGPAEDSSEMYK found in part_0.0_13829.432373046875: CORRECT\n", + "TPLSNFNVGAIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPNIQIIHAGLECGLFK found in part_0.0_13829.432373046875: CORRECT\n", + "TPNIQIIHAGLECGLFK found in part_0.0_13829.432373046875: CORRECT\n", + "TPNPDILCNK found in part_0.0_13829.432373046875: CORRECT\n", + "TPNPGNTMSEQLGDK found in part_0.0_13829.432373046875: CORRECT\n", + "TPNQAQYIANILDHDITFGVGPAGTGK found in part_0.0_13829.432373046875: CORRECT\n", + "TPPAAVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "TPPAAVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "TPPCCDALIAAGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPPCCDALIAAGVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPPIDGIDHPK found in part_0.0_13829.432373046875: CORRECT\n", + "TPPVTLEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "TPQQALDTAVER found in part_0.0_13829.432373046875: CORRECT\n", + "TPQQALDTAVER found in part_0.0_13829.432373046875: CORRECT\n", + "TPQTIGEELLDYR found in part_0.0_13829.432373046875: CORRECT\n", + "TPSDVLAVHLLLK found in part_0.0_13829.432373046875: CORRECT\n", + "TPSFAHLQQIPAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "TPSFTVNGEK found in part_0.0_13829.432373046875: CORRECT\n", + "TPSMEQAIGLLSGGNQQK found in part_0.0_13829.432373046875: CORRECT\n", + "TPVGNTAAICIYPR found in part_0.0_13829.432373046875: CORRECT\n", + "TPVGNTAAICIYPR found in part_0.0_13829.432373046875: CORRECT\n", + "TPVLTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TPVLTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "TPYNPGER found in part_0.0_13829.432373046875: CORRECT\n", + "TPYVIAGLEYAR found in part_0.0_13829.432373046875: CORRECT\n", + "TQAIPALPAPK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TQANLSETLFKPR NOT FOUND in any FASTA file.\n", + "TQEQQVVAACDK found in part_0.0_13829.432373046875: CORRECT\n", + "TQEVANAASQVAAFPR found in part_0.0_13829.432373046875: CORRECT\n", + "TQEVANAASQVAAFPR found in part_0.0_13829.432373046875: CORRECT\n", + "TQFIIQNHSQK found in part_0.0_13829.432373046875: CORRECT\n", + "TQFTGDTASLLVENGR found in part_0.0_13829.432373046875: CORRECT\n", + "TQGTTGMFDSLPYR found in part_0.0_13829.432373046875: CORRECT\n", + "TQGVELEIR found in part_0.0_13829.432373046875: CORRECT\n", + "TQGVTAVIENTAGQGSNLGFK found in part_0.0_13829.432373046875: CORRECT\n", + "TQHPLLPGAIAEFNQYEFSR found in part_0.0_13829.432373046875: CORRECT\n", + "TQIGSLSGGNQQK found in part_0.0_13829.432373046875: CORRECT\n", + "TQLATAASLR found in part_0.0_13829.432373046875: CORRECT\n", + "TQLDSAGYR found in part_0.0_13829.432373046875: CORRECT\n", + "TQLIDVIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "TQLINLFEVADGK found in part_0.0_13829.432373046875: CORRECT\n", + "TQLINLFEVADGKR found in part_0.0_13829.432373046875: CORRECT\n", + "TQLQDAVPMTLGQEFR found in part_0.0_13829.432373046875: CORRECT\n", + "TQLQDAVPMTLGQEFR found in part_0.0_13829.432373046875: CORRECT\n", + "TQMSAAHTPEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "TQMSAAHTPEQITR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TQNIRPLPQFK NOT FOUND in any FASTA file.\n", + "TQNLSVNVGGR found in part_0.0_13829.432373046875: CORRECT\n", + "TQPDYDYQDGK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TQPLFLIGPR NOT FOUND in any FASTA file.\n", + "TQPLPILITGGGR found in part_0.0_13829.432373046875: CORRECT\n", + "TQPLYDTQVSVSHTTR found in part_0.0_13829.432373046875: CORRECT\n", + "TQPLYDTQVSVSHTTR found in part_0.0_13829.432373046875: CORRECT\n", + "TQQEEAVITAVR found in part_0.0_13829.432373046875: CORRECT\n", + "TQQEIPNAETMK found in part_0.0_13829.432373046875: CORRECT\n", + "TQQIEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "TQRPSTCNTVETLLVNK found in part_0.0_13829.432373046875: CORRECT\n", + "TQSAPGTLSPDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TQSLFANAFGYPATHTIQAPGR found in part_0.0_13829.432373046875: CORRECT\n", + "TQTAPVATPQELADYDAIIFGTPTR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TQTFIPGK NOT FOUND in any FASTA file.\n", + "TQTGALIMIFDSADGAADAAPAQAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "TQTGALIMIFDSADGAADAAPAQAEEK found in part_0.0_13829.432373046875: CORRECT\n", + "TQTGELSIHCTELR found in part_0.0_13829.432373046875: CORRECT\n", + "TQTGELSIHCTELR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TQTLSQLENSGAFIER NOT FOUND in any FASTA file.\n", + "Peptide TQTLSQLENSGAFIER NOT FOUND in any FASTA file.\n", + "TQTQLQQQHLENQINNNSQR found in part_0.0_13829.432373046875: CORRECT\n", + "TQTSGVQIR found in part_0.0_13829.432373046875: CORRECT\n", + "TQVFPLER found in part_0.0_13829.432373046875: CORRECT\n", + "TQVNNAVSVDEK found in part_0.0_13829.432373046875: CORRECT\n", + "TQVVVLGAGPAGYSAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "TQVVVLGAGPAGYSAAFR found in part_0.0_13829.432373046875: CORRECT\n", + "TRDNEIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TREELDQEAR found in part_0.0_13829.432373046875: CORRECT\n", + "TRPDLSEIFDDSSK found in part_0.0_13829.432373046875: CORRECT\n", + "TRPDLSEIFDDSSK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TRPIQASLDLQALK NOT FOUND in any FASTA file.\n", + "Peptide TRPIQASLDLQALK NOT FOUND in any FASTA file.\n", + "TRVPDMSAYR found in part_0.0_13829.432373046875: CORRECT\n", + "TSAEMLYLQK found in part_0.0_13829.432373046875: CORRECT\n", + "TSAESILTTGPVVPVIVVK found in part_0.0_13829.432373046875: CORRECT\n", + "TSAESILTTGPVVPVIVVK found in part_0.0_13829.432373046875: CORRECT\n", + "TSAESILTTGPVVPVIVVKK found in part_0.0_13829.432373046875: CORRECT\n", + "TSDFIESR found in part_0.0_13829.432373046875: CORRECT\n", + "TSDIHETIIK found in part_0.0_13829.432373046875: CORRECT\n", + "TSEDINDALNYR found in part_0.0_13829.432373046875: CORRECT\n", + "TSEDLLDLAESR found in part_0.0_13829.432373046875: CORRECT\n", + "TSEGFFR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TSENPLLALR NOT FOUND in any FASTA file.\n", + "TSGAPLEGLVR found in part_0.0_13829.432373046875: CORRECT\n", + "TSGYVTLDGHEVVTR found in part_0.0_13829.432373046875: CORRECT\n", + "TSGYVTLDGHEVVTR found in part_0.0_13829.432373046875: CORRECT\n", + "TSHITVVVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "TSHITVVVSDR found in part_0.0_13829.432373046875: CORRECT\n", + "TSLGQSIAK found in part_0.0_13829.432373046875: CORRECT\n", + "TSLLDYIR found in part_0.0_13829.432373046875: CORRECT\n", + "TSLPGSTGLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TSLVVPGLDTLR NOT FOUND in any FASTA file.\n", + "Peptide TSLYLASGSPR NOT FOUND in any FASTA file.\n", + "TSPELAELLR found in part_0.0_13829.432373046875: CORRECT\n", + "TSPLKPVSTVQPR found in part_0.0_13829.432373046875: CORRECT\n", + "TSPSIDVAFQAVDQDALK found in part_0.0_13829.432373046875: CORRECT\n", + "TSPSIDVAFQAVDQDALK found in part_0.0_13829.432373046875: CORRECT\n", + "TSQAAPVQAQPR found in part_0.0_13829.432373046875: CORRECT\n", + "TSQDADFTAK found in part_0.0_13829.432373046875: CORRECT\n", + "TSQLVSQICNMPIPANK found in part_0.0_13829.432373046875: CORRECT\n", + "TSQYLLSTLK found in part_0.0_13829.432373046875: CORRECT\n", + "TSSGILYEVDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TSSTGLVYQVVEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TSSTGLVYQVVEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "TSSTGLVYQVVEAGKGEAPK found in part_0.0_13829.432373046875: CORRECT\n", + "TSTFLDVYIER found in part_0.0_13829.432373046875: CORRECT\n", + "TSVVNASISGDTSQQGLAR found in part_0.0_13829.432373046875: CORRECT\n", + "TSVVNASISGDTSQQGLAR found in part_0.0_13829.432373046875: CORRECT\n", + "TTAAFGTATR found in part_0.0_13829.432373046875: CORRECT\n", + "TTAGLEVR found in part_0.0_13829.432373046875: CORRECT\n", + "TTALLTDMNQVLASSAGNAVEVR found in part_0.0_13829.432373046875: CORRECT\n", + "TTASTSTSVTLSDAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTDELDAIFFGR found in part_0.0_13829.432373046875: CORRECT\n", + "TTDVEATVNQIK found in part_0.0_13829.432373046875: CORRECT\n", + "TTDVTGTIELPEGVEMVMPGDNIK found in part_0.0_13829.432373046875: CORRECT\n", + "TTDVTGTIELPEGVEMVMPGDNIK found in part_0.0_13829.432373046875: CORRECT\n", + "TTFAAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTGATDFTR found in part_0.0_13829.432373046875: CORRECT\n", + "TTGEHEVSFQVHSEVFAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTGEHEVSFQVHSEVFAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTGISVSTR found in part_0.0_13829.432373046875: CORRECT\n", + "TTGLDSDQGPTAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTHILEVAPEAQVVAVDIDEQR found in part_0.0_13829.432373046875: CORRECT\n", + "TTHVEVC found in part_0.0_13829.432373046875: CORRECT\n", + "TTIADIEK found in part_0.0_13829.432373046875: CORRECT\n", + "TTIAEQASLQQK found in part_0.0_13829.432373046875: CORRECT\n", + "TTIPDYFAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TTIVDSNLPVAR NOT FOUND in any FASTA file.\n", + "TTLAEVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TTLAIDIGGTK NOT FOUND in any FASTA file.\n", + "TTLAPNTQTASPR found in part_0.0_13829.432373046875: CORRECT\n", + "TTLDLFAHER found in part_0.0_13829.432373046875: CORRECT\n", + "TTLEATVK found in part_0.0_13829.432373046875: CORRECT\n", + "TTLFIPVR found in part_0.0_13829.432373046875: CORRECT\n", + "TTLLQAITGVNADR found in part_0.0_13829.432373046875: CORRECT\n", + "TTLSTDPK found in part_0.0_13829.432373046875: CORRECT\n", + "TTLTAAITTVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTLTAAITTVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTLYTANR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TTNYIFVTGGVVSSLGK NOT FOUND in any FASTA file.\n", + "TTPESEQALQR found in part_0.0_13829.432373046875: CORRECT\n", + "TTPPAVLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "TTPSIIAYTQDGETLVGQPAK found in part_0.0_13829.432373046875: CORRECT\n", + "TTPSIIAYTQDGETLVGQPAKR found in part_0.0_13829.432373046875: CORRECT\n", + "TTPTPQPGSDEINR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide TTQVPPSALLPLNPEQLAR NOT FOUND in any FASTA file.\n", + "TTSGNVSAPAQSSQDGAPAEPQ found in part_0.0_13829.432373046875: CORRECT\n", + "TTSIVPVDLNSLMFK found in part_0.0_13829.432373046875: CORRECT\n", + "TTSSAAIATGLAQK found in part_0.0_13829.432373046875: CORRECT\n", + "TTTQELLAQAEK found in part_0.0_13829.432373046875: CORRECT\n", + "TTTQNEILR found in part_0.0_13829.432373046875: CORRECT\n", + "TTVGMALADSLNR found in part_0.0_13829.432373046875: CORRECT\n", + "TTVNGMPALR found in part_0.0_13829.432373046875: CORRECT\n", + "TTVPQIFIDAQHIGGCDDLYALDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TTVTSGGLQR found in part_0.0_13829.432373046875: CORRECT\n", + "TVAAMDVLAPGIGEIIGGSQR found in part_0.0_13829.432373046875: CORRECT\n", + "TVAAMDVLAPGIGEIIGGSQR found in part_0.0_13829.432373046875: CORRECT\n", + "TVAAMSDFAAGANIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "TVAILGGESSGK found in part_0.0_13829.432373046875: CORRECT\n", + "TVAPAGGEAFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "TVASCALLQAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TVATAQFFITGAFPGCDIPVHHQEK found in part_0.0_13829.432373046875: CORRECT\n", + "TVATAQFFITGAFPGCDIPVHHQEK found in part_0.0_13829.432373046875: CORRECT\n", + "TVAVEHAEPVYLR found in part_0.0_13829.432373046875: CORRECT\n", + "TVAVEHAEPVYLR found in part_0.0_13829.432373046875: CORRECT\n", + "TVDALMR found in part_0.0_13829.432373046875: CORRECT\n", + "TVDDFINEVIEPNK found in part_0.0_13829.432373046875: CORRECT\n", + "TVDVTIR found in part_0.0_13829.432373046875: CORRECT\n", + "TVEAASALEQGDLK found in part_0.0_13829.432373046875: CORRECT\n", + "TVEAASALEQGDLKR found in part_0.0_13829.432373046875: CORRECT\n", + "TVEAASALEQGDLKR found in part_0.0_13829.432373046875: CORRECT\n", + "TVEGYPAPK found in part_0.0_13829.432373046875: CORRECT\n", + "TVETVCYEIMR found in part_0.0_13829.432373046875: CORRECT\n", + "TVEVTLR found in part_0.0_13829.432373046875: CORRECT\n", + "TVEWYLSNTK found in part_0.0_13829.432373046875: CORRECT\n", + "TVGAGVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TVGAGVVAK found in part_0.0_13829.432373046875: CORRECT\n", + "TVGDPLTGHPK found in part_0.0_13829.432373046875: CORRECT\n", + "TVGFKPAGGVR found in part_0.0_13829.432373046875: CORRECT\n", + "TVGIVGVGNVGR found in part_0.0_13829.432373046875: CORRECT\n", + "TVGQLLK found in part_0.0_13829.432373046875: CORRECT\n", + "TVHLIGGCDVAMELDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TVHSLTQALAK found in part_0.0_13829.432373046875: CORRECT\n", + "TVIGFGSPNK found in part_0.0_13829.432373046875: CORRECT\n", + "TVILNEGDFVVFYPGEVHK found in part_0.0_13829.432373046875: CORRECT\n", + "TVINFDNAIIAAGSR found in part_0.0_13829.432373046875: CORRECT\n", + "TVINFDNAIIAAGSR found in part_0.0_13829.432373046875: CORRECT\n", + "TVINQVTYLPIASEVTDVNR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLGLPEVQLGLLPGSGGTQR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLHLIPSGILR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLHLIPSGILR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLIPFENK found in part_0.0_13829.432373046875: CORRECT\n", + "TVLIPFENKR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLITLGSR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLTILHQA found in part_0.0_13829.432373046875: CORRECT\n", + "TVLTNLLDSDDVR found in part_0.0_13829.432373046875: CORRECT\n", + "TVLTNSGVLYITDDGK found in part_0.0_13829.432373046875: CORRECT\n", + "TVNDILDNVK found in part_0.0_13829.432373046875: CORRECT\n", + "TVNNDTLTIR found in part_0.0_13829.432373046875: CORRECT\n", + "TVNVADIESVVAR found in part_0.0_13829.432373046875: CORRECT\n", + "TVPLAVER found in part_0.0_13829.432373046875: CORRECT\n", + "TVPTLDNWQLDLQGISDK found in part_0.0_13829.432373046875: CORRECT\n", + "TVQAALDIAR found in part_0.0_13829.432373046875: CORRECT\n", + "TVQILDR found in part_0.0_13829.432373046875: CORRECT\n", + "TVSEFITR found in part_0.0_13829.432373046875: CORRECT\n", + "TVSGFGNR found in part_0.0_13829.432373046875: CORRECT\n", + "TVSVDAGDIAAFNDLK found in part_0.0_13829.432373046875: CORRECT\n", + "TVSVGGEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "TVSVGGEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "TVTADIPIVGDAR found in part_0.0_13829.432373046875: CORRECT\n", + "TVTELLQGR found in part_0.0_13829.432373046875: CORRECT\n", + "TVTHMQDEAANFPDPVDR found in part_0.0_13829.432373046875: CORRECT\n", + "TVTLLFPSTGENR found in part_0.0_13829.432373046875: CORRECT\n", + "TVTPAAPR found in part_0.0_13829.432373046875: CORRECT\n", + "TVTYDFER found in part_0.0_13829.432373046875: CORRECT\n", + "TVVADGVGQGYK found in part_0.0_13829.432373046875: CORRECT\n", + "TVVLTGSLSQMSR found in part_0.0_13829.432373046875: CORRECT\n", + "TVVPYTSEIYGR found in part_0.0_13829.432373046875: CORRECT\n", + "TVVTAVSQAVR found in part_0.0_13829.432373046875: CORRECT\n", + "TVVVLCNLQK found in part_0.0_13829.432373046875: CORRECT\n", + "TVVYTAEIDDR found in part_0.0_13829.432373046875: CORRECT\n", + "TVYSTENPDLLVLEFR found in part_0.0_13829.432373046875: CORRECT\n", + "TVYSTENPDLLVLEFR found in part_0.0_13829.432373046875: CORRECT\n", + "TWEEIPALDK found in part_0.0_13829.432373046875: CORRECT\n", + "TWFVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "TWLVTGSPGGSR found in part_0.0_13829.432373046875: CORRECT\n", + "TWNSAQLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "TWQDLADYAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TWQIAMDGSQK found in part_0.0_13829.432373046875: CORRECT\n", + "TYDDDPTKYQDLR found in part_0.0_13829.432373046875: CORRECT\n", + "TYDNLADK found in part_0.0_13829.432373046875: CORRECT\n", + "TYDSADLNGGNLQTGLTAGGEALTAVANGK found in part_0.0_13829.432373046875: CORRECT\n", + "TYGLPTIVTNCSNNYGPYHFPEK found in part_0.0_13829.432373046875: CORRECT\n", + "TYGLPTLITNCSNNYGPYHFPEK found in part_0.0_13829.432373046875: CORRECT\n", + "TYGSEVLPNHENSK found in part_0.0_13829.432373046875: CORRECT\n", + "TYGSEVLPNHENSK found in part_0.0_13829.432373046875: CORRECT\n", + "TYHYYSLPLAAK found in part_0.0_13829.432373046875: CORRECT\n", + "TYIGSMPGK found in part_0.0_13829.432373046875: CORRECT\n", + "TYLVTLESPVADDTAEQFAK found in part_0.0_13829.432373046875: CORRECT\n", + "TYLYQETK found in part_0.0_13829.432373046875: CORRECT\n", + "TYMSDCLK found in part_0.0_13829.432373046875: CORRECT\n", + "TYNESLPPAK found in part_0.0_13829.432373046875: CORRECT\n", + "TYSGLDYPSLEAVIR found in part_0.0_13829.432373046875: CORRECT\n", + "TYSINEGNYIK found in part_0.0_13829.432373046875: CORRECT\n", + "TYTFHLR found in part_0.0_13829.432373046875: CORRECT\n", + "TYVPADDYR found in part_0.0_13829.432373046875: CORRECT\n", + "TYVVMEEVK found in part_0.0_13829.432373046875: CORRECT\n", + "VAAASAGGIVGSLSQSQLGNLGEK found in part_0.0_13829.432373046875: CORRECT\n", + "VAADFLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAADFLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAAEQSLITVEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAAGFDVADNEIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAALAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAALEGDVLGSYQHGAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAALEGDVLGSYQHGAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAALLCHDTFTHPQPTAPEVQKPTLH found in part_0.0_13829.432373046875: CORRECT\n", + "VAALNGLNR found in part_0.0_13829.432373046875: CORRECT\n", + "VAAMQEEDVER found in part_0.0_13829.432373046875: CORRECT\n", + "VAAPESLAVLFNPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAAVKAPGFGDR found in part_0.0_13829.432373046875: CORRECT\n", + "VAAVVNNGVVLESDVDGLMQSVK found in part_0.0_13829.432373046875: CORRECT\n", + "VACDVTNPLVGDNGASR found in part_0.0_13829.432373046875: CORRECT\n", + "VACETYVK found in part_0.0_13829.432373046875: CORRECT\n", + "VACGAAESVPLIR found in part_0.0_13829.432373046875: CORRECT\n", + "VADAIESR found in part_0.0_13829.432373046875: CORRECT\n", + "VADDAPLMER found in part_0.0_13829.432373046875: CORRECT\n", + "VADDQGFLR found in part_0.0_13829.432373046875: CORRECT\n", + "VADELAVITCAPFVTAPNK found in part_0.0_13829.432373046875: CORRECT\n", + "VADGATVVSTSTR found in part_0.0_13829.432373046875: CORRECT\n", + "VADGATVVSTSTR found in part_0.0_13829.432373046875: CORRECT\n", + "VADILESNAR found in part_0.0_13829.432373046875: CORRECT\n", + "VADISLLQ found in part_0.0_13829.432373046875: CORRECT\n", + "VADISLLQ found in part_0.0_13829.432373046875: CORRECT\n", + "VADLFEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VADMVANFAHEIDTYGHIPNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "VADMVANFAHEIDTYGHIPNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "VADNADNDALLR found in part_0.0_13829.432373046875: CORRECT\n", + "VADVINNDPLVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEAIAASFGSFADFK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEALRDDLLAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEALRDDLLAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEEIEDIVGIDATDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEEIEDIVGIDATDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEETPHLIHK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEETPHLIHK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEFFGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEFFGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEHAEICGR found in part_0.0_13829.432373046875: CORRECT\n", + "VAELNPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEQLCR found in part_0.0_13829.432373046875: CORRECT\n", + "VAESLNATLVDMR found in part_0.0_13829.432373046875: CORRECT\n", + "VAESVVSVDSDVECSMSFAIDNQR found in part_0.0_13829.432373046875: CORRECT\n", + "VAETPESVIAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEVFPDMIQR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEVGITGLNADFLR found in part_0.0_13829.432373046875: CORRECT\n", + "VAEVIDIPFCVAGGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VAEYGVDCLR found in part_0.0_13829.432373046875: CORRECT\n", + "VAFENIEDAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAFINTGFLDR found in part_0.0_13829.432373046875: CORRECT\n", + "VAFQAVIK found in part_0.0_13829.432373046875: CORRECT\n", + "VAFQAVIK found in part_0.0_13829.432373046875: CORRECT\n", + "VAFTALVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VAFTALVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VAFTPDEEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAGAPAQAAGNNDLDNELD found in part_0.0_13829.432373046875: CORRECT\n", + "VAGEALSR found in part_0.0_13829.432373046875: CORRECT\n", + "VAGEMNLSK found in part_0.0_13829.432373046875: CORRECT\n", + "VAGIPGEFDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAGQSVIFEGTEGLPAQISR found in part_0.0_13829.432373046875: CORRECT\n", + "VAHECILDIR found in part_0.0_13829.432373046875: CORRECT\n", + "VAHECILDIR found in part_0.0_13829.432373046875: CORRECT\n", + "VAHECILDIRPLK found in part_0.0_13829.432373046875: CORRECT\n", + "VAHECILDIRPLK found in part_0.0_13829.432373046875: CORRECT\n", + "VAIANVLK found in part_0.0_13829.432373046875: CORRECT\n", + "VAIANVLK found in part_0.0_13829.432373046875: CORRECT\n", + "VAIASTGIIR found in part_0.0_13829.432373046875: CORRECT\n", + "VAIDAINAAGAPHCFLSVTK found in part_0.0_13829.432373046875: CORRECT\n", + "VAIIGAGPAGLACADVLTR found in part_0.0_13829.432373046875: CORRECT\n", + "VAIMPGYTYGEEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VAINEAIELAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAINGFGR found in part_0.0_13829.432373046875: CORRECT\n", + "VAISGQDADLAGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VAISGQDADLAGIKR found in part_0.0_13829.432373046875: CORRECT\n", + "VAITAQSGAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAIVMGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VAKGVEGVTSVSDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAKPVEEVNAEIQR found in part_0.0_13829.432373046875: CORRECT\n", + "VAKPVEEVNAEIQR found in part_0.0_13829.432373046875: CORRECT\n", + "VALAENDLHVPTFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VALAENDLHVPTFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VALAGAQDYYGVVPDLTCLGK found in part_0.0_13829.432373046875: CORRECT\n", + "VALDPLTGPMPYQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VALDPLTGPMPYQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VALFSTGDELQLPGQPLGDGQIYDTNR found in part_0.0_13829.432373046875: CORRECT\n", + "VALIENAEFVEGSDK found in part_0.0_13829.432373046875: CORRECT\n", + "VALLDIPANGEIIR found in part_0.0_13829.432373046875: CORRECT\n", + "VALLSHSNFGSSDCPSSSK found in part_0.0_13829.432373046875: CORRECT\n", + "VALLSHSNFGSSDCPSSSK found in part_0.0_13829.432373046875: CORRECT\n", + "VALPDVPK found in part_0.0_13829.432373046875: CORRECT\n", + "VALQDAGLSVSDIDDVILVGGQTR found in part_0.0_13829.432373046875: CORRECT\n", + "VALQGNMDPSMLYAPPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VALRPLADINTIFTEMEEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VALTGLTMAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VALVDGQR found in part_0.0_13829.432373046875: CORRECT\n", + "VALVQPHEPGATTVPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VALVQPHEPGATTVPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VALYGIDYLMK found in part_0.0_13829.432373046875: CORRECT\n", + "VAMLSYSTGTSGAGSDVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLAEAQPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VANLAEAQPDREIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLEAQLAEAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "VANLEAQLAEAQTR found in part_0.0_13829.432373046875: CORRECT\n", + "VANLGSLGDQVNVK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLGSLGDQVNVK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLPFVGSDVLASAACMDK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLPFVGSDVLASAACMDKDVTK found in part_0.0_13829.432373046875: CORRECT\n", + "VANLTAFTPDFK found in part_0.0_13829.432373046875: CORRECT\n", + "VAPAALAFVSEK found in part_0.0_13829.432373046875: CORRECT\n", + "VAPEALTLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAPGVQALVVPGSGPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VAPILYMEGACGVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAPTTELFPMSK found in part_0.0_13829.432373046875: CORRECT\n", + "VAQGAKPGEGGQLPGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAQGELENGR found in part_0.0_13829.432373046875: CORRECT\n", + "VAQIIAER found in part_0.0_13829.432373046875: CORRECT\n", + "VAQTLDSINGGEAYQK found in part_0.0_13829.432373046875: CORRECT\n", + "VAQYISFLELNQIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VASEPIGQR found in part_0.0_13829.432373046875: CORRECT\n", + "VASLHVPAVVSSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VASPAIVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "VATEFSETAPATLK found in part_0.0_13829.432373046875: CORRECT\n", + "VATEFSETAPATLK found in part_0.0_13829.432373046875: CORRECT\n", + "VATIQTLGGSGALK found in part_0.0_13829.432373046875: CORRECT\n", + "VATLEDATEMVNLYR found in part_0.0_13829.432373046875: CORRECT\n", + "VATLEDATEMVNLYR found in part_0.0_13829.432373046875: CORRECT\n", + "VATTDEEPILGQTYLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VATTDEEPILGQTYLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VATVSLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VATYDLQPEMSSAELTEK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVATIGAVLPGDFK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVATIGAVLPGDFK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVDSEVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVFTQGANAEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVGAALLSMPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVIKAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVLGLAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVNATPESAR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVTELAHIVDETLAANNLDR found in part_0.0_13829.432373046875: CORRECT\n", + "VAVTGAGQSPALDVTVHAIGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVTGAGQSPALDVTVHAIGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVTPVPNVMVYTSGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVVDATGK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVVDIQSDK found in part_0.0_13829.432373046875: CORRECT\n", + "VAVVLGESEVANGTAVVK found in part_0.0_13829.432373046875: CORRECT\n", + "VCASVSYQQMHGFSAEQLR found in part_0.0_13829.432373046875: CORRECT\n", + "VCAYVDSVELATGK found in part_0.0_13829.432373046875: CORRECT\n", + "VCGFQFHPESILTTQGAR found in part_0.0_13829.432373046875: CORRECT\n", + "VCGTPIVATK found in part_0.0_13829.432373046875: CORRECT\n", + "VCLELGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VCLELGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VCSGGIVGLGETVK found in part_0.0_13829.432373046875: CORRECT\n", + "VCVSPGIGFGDYGDTHVR found in part_0.0_13829.432373046875: CORRECT\n", + "VCVVNADDALTMPIR found in part_0.0_13829.432373046875: CORRECT\n", + "VDAEGMKQFIDGLALPEEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VDAGFAITK found in part_0.0_13829.432373046875: CORRECT\n", + "VDAGFAITK found in part_0.0_13829.432373046875: CORRECT\n", + "VDAIMPTFIETVR found in part_0.0_13829.432373046875: CORRECT\n", + "VDALALITHR found in part_0.0_13829.432373046875: CORRECT\n", + "VDAPSGTALAMGEAIAHALDK found in part_0.0_13829.432373046875: CORRECT\n", + "VDAVASMIYR found in part_0.0_13829.432373046875: CORRECT\n", + "VDAYAGDPILTLMER found in part_0.0_13829.432373046875: CORRECT\n", + "VDDEFIER found in part_0.0_13829.432373046875: CORRECT\n", + "VDDGGTLDVR found in part_0.0_13829.432373046875: CORRECT\n", + "VDDKVPLFAVVSR found in part_0.0_13829.432373046875: CORRECT\n", + "VDDLAVDLVER found in part_0.0_13829.432373046875: CORRECT\n", + "VDDLAVDLVER found in part_0.0_13829.432373046875: CORRECT\n", + "VDDLDIHAYR found in part_0.0_13829.432373046875: CORRECT\n", + "VDDVLNVSGHR found in part_0.0_13829.432373046875: CORRECT\n", + "VDDVLNVSGHR found in part_0.0_13829.432373046875: CORRECT\n", + "VDDYIIK found in part_0.0_13829.432373046875: CORRECT\n", + "VDDYIIK found in part_0.0_13829.432373046875: CORRECT\n", + "VDEAGFEAAMEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "VDEDQPFPAVPK found in part_0.0_13829.432373046875: CORRECT\n", + "VDEDQPFPAVPK found in part_0.0_13829.432373046875: CORRECT\n", + "VDEIATDVDK found in part_0.0_13829.432373046875: CORRECT\n", + "VDELFSELK found in part_0.0_13829.432373046875: CORRECT\n", + "VDEMVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VDENTPMEETASALAHAVQSGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDEPLNVEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDESSDNNSLLNPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VDFDADK found in part_0.0_13829.432373046875: CORRECT\n", + "VDFDADKLK found in part_0.0_13829.432373046875: CORRECT\n", + "VDFDKDFFGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDFDKDFFGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDFSLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VDGAEVVVK found in part_0.0_13829.432373046875: CORRECT\n", + "VDGAEVVVK found in part_0.0_13829.432373046875: CORRECT\n", + "VDGGAVANNFLMQFQSDILGTR found in part_0.0_13829.432373046875: CORRECT\n", + "VDGLGVLK found in part_0.0_13829.432373046875: CORRECT\n", + "VDGTINLPGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VDGTKPVAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VDGVFTADPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VDHYADLSNVESVMAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VDIGTSHIAGYTLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDIGTSHIAGYTLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDIITGTLGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDILVNNAGGGGPK found in part_0.0_13829.432373046875: CORRECT\n", + "VDIVVEAVVENPK found in part_0.0_13829.432373046875: CORRECT\n", + "VDLAQLVK found in part_0.0_13829.432373046875: CORRECT\n", + "VDLDGNPCGELDEQHVEHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLDGNPCGELDEQHVEHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLINTR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLLNQHSNR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLLNQHSNR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLMSFSGHK found in part_0.0_13829.432373046875: CORRECT\n", + "VDLNRPMK found in part_0.0_13829.432373046875: CORRECT\n", + "VDLQNRPFR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLQPFN found in part_0.0_13829.432373046875: CORRECT\n", + "VDLSTFSDEEVMR found in part_0.0_13829.432373046875: CORRECT\n", + "VDLVFAPSVK found in part_0.0_13829.432373046875: CORRECT\n", + "VDMALVGDIK found in part_0.0_13829.432373046875: CORRECT\n", + "VDMVDVFR found in part_0.0_13829.432373046875: CORRECT\n", + "VDNLCGPGVNDVSFTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VDNLTVGGTA found in part_0.0_13829.432373046875: CORRECT\n", + "VDNPQSNQVALR found in part_0.0_13829.432373046875: CORRECT\n", + "VDQLSNDVNAMR found in part_0.0_13829.432373046875: CORRECT\n", + "VDRPTAECAAALDK found in part_0.0_13829.432373046875: CORRECT\n", + "VDSASEFK found in part_0.0_13829.432373046875: CORRECT\n", + "VDSIACDLVER found in part_0.0_13829.432373046875: CORRECT\n", + "VDSSGFQTEPVAADGK found in part_0.0_13829.432373046875: CORRECT\n", + "VDSVSLGEIER found in part_0.0_13829.432373046875: CORRECT\n", + "VDVLINGER found in part_0.0_13829.432373046875: CORRECT\n", + "VDVVDDKR found in part_0.0_13829.432373046875: CORRECT\n", + "VDYEAIPK found in part_0.0_13829.432373046875: CORRECT\n", + "VDYPGGEK found in part_0.0_13829.432373046875: CORRECT\n", + "VDYPLDELR found in part_0.0_13829.432373046875: CORRECT\n", + "VDYPLDELRR found in part_0.0_13829.432373046875: CORRECT\n", + "VDYSTFLQEVNNDQVR found in part_0.0_13829.432373046875: CORRECT\n", + "VEAEIISPNK found in part_0.0_13829.432373046875: CORRECT\n", + "VEAEQSLITVEGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VEAITAIEQR found in part_0.0_13829.432373046875: CORRECT\n", + "VEALANFPIER found in part_0.0_13829.432373046875: CORRECT\n", + "VEALEIEVAELK found in part_0.0_13829.432373046875: CORRECT\n", + "VEAMAENYPEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VEAPPAPKPEPK found in part_0.0_13829.432373046875: CORRECT\n", + "VEAQGFR found in part_0.0_13829.432373046875: CORRECT\n", + "VEATLAPLALLTK found in part_0.0_13829.432373046875: CORRECT\n", + "VEAVNMDER found in part_0.0_13829.432373046875: CORRECT\n", + "VECVDSLPLTAVGK found in part_0.0_13829.432373046875: CORRECT\n", + "VEDALHATR found in part_0.0_13829.432373046875: CORRECT\n", + "VEDATLVLSVGDEVEAK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide VEDILAPGLR NOT FOUND in any FASTA file.\n", + "VEDVATPEGFDR found in part_0.0_13829.432373046875: CORRECT\n", + "VEDVATPEGFDRDPELVQAFYNAR found in part_0.0_13829.432373046875: CORRECT\n", + "VEDVLFAMVK found in part_0.0_13829.432373046875: CORRECT\n", + "VEDYQQIGPQGHFTLLR found in part_0.0_13829.432373046875: CORRECT\n", + "VEEDGSINDDYR found in part_0.0_13829.432373046875: CORRECT\n", + "VEEDRPTLGFDIDGVVIK found in part_0.0_13829.432373046875: CORRECT\n", + "VEEFPSEPPFDGVISR found in part_0.0_13829.432373046875: CORRECT\n", + "VEEHIADALEK found in part_0.0_13829.432373046875: CORRECT\n", + "VEEHIADALEK found in part_0.0_13829.432373046875: CORRECT\n", + "VEELQNAEFDR found in part_0.0_13829.432373046875: CORRECT\n", + "VEESLGYNAIAAGFQGQR found in part_0.0_13829.432373046875: CORRECT\n", + "VEESLGYNAIAAGFQGQR found in part_0.0_13829.432373046875: CORRECT\n", + "VEETEDADAFR found in part_0.0_13829.432373046875: CORRECT\n", + "VEETLLTVPGNYPAYYAAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VEFEITNGAK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGDTKPELELTLK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGDTKPELELTLK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGDTLPSSK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGGQHLNVNVLR found in part_0.0_13829.432373046875: CORRECT\n", + "VEGGQHLNVNVLR found in part_0.0_13829.432373046875: CORRECT\n", + "VEGGVVDLNTLK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGIDVVSLPFYK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGKDDVTGEELTTR found in part_0.0_13829.432373046875: CORRECT\n", + "VEGKDDVTGEELTTR found in part_0.0_13829.432373046875: CORRECT\n", + "VEGMSLEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VEGNVSEVLVK found in part_0.0_13829.432373046875: CORRECT\n", + "VEGWENAEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VEHIQILACGTSYNSGMVSR found in part_0.0_13829.432373046875: CORRECT\n", + "VEIDSPR found in part_0.0_13829.432373046875: CORRECT\n", + "VEIGACTTIDR found in part_0.0_13829.432373046875: CORRECT\n", + "VEIIVGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VEIPGVATTASPSSEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "VEIPIDAPGIDALLR found in part_0.0_13829.432373046875: CORRECT\n", + "VEITGPVER found in part_0.0_13829.432373046875: CORRECT\n", + "VELCAAPK found in part_0.0_13829.432373046875: CORRECT\n", + "VELCVFDANGQEHR found in part_0.0_13829.432373046875: CORRECT\n", + "VELENGHVVTAHISGK found in part_0.0_13829.432373046875: CORRECT\n", + "VELENGHVVTAHISGK found in part_0.0_13829.432373046875: CORRECT\n", + "VELFDEEVER found in part_0.0_13829.432373046875: CORRECT\n", + "VELITTDGFLHPNQVLK found in part_0.0_13829.432373046875: CORRECT\n", + "VELLPENSEFKPIVVDLR found in part_0.0_13829.432373046875: CORRECT\n", + "VELQALTTSDFER found in part_0.0_13829.432373046875: CORRECT\n", + "VEMHFLPDIYVPCDQCK found in part_0.0_13829.432373046875: CORRECT\n", + "VEMNLVTSQGVGQSIGSVTITETDK found in part_0.0_13829.432373046875: CORRECT\n", + "VEMNLVTSQGVGQSIGSVTITETDK found in part_0.0_13829.432373046875: CORRECT\n", + "VENALAALR found in part_0.0_13829.432373046875: CORRECT\n", + "VENGNIILHTNR found in part_0.0_13829.432373046875: CORRECT\n", + "VENGNIILHTNR found in part_0.0_13829.432373046875: CORRECT\n", + "VEPLPESEYSAPLR found in part_0.0_13829.432373046875: CORRECT\n", + "VEQAFELTDASAER found in part_0.0_13829.432373046875: CORRECT\n", + "VEQAFELTDASAER found in part_0.0_13829.432373046875: CORRECT\n", + "VEQEYGKPGEK found in part_0.0_13829.432373046875: CORRECT\n", + "VEQEYGKPGEK found in part_0.0_13829.432373046875: CORRECT\n", + "VEQLALTSEADVR found in part_0.0_13829.432373046875: CORRECT\n", + "VERPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VETDFAAEVAAMSK found in part_0.0_13829.432373046875: CORRECT\n", + "VETDFAAEVAAMSK found in part_0.0_13829.432373046875: CORRECT\n", + "VETGSGIGFGATVK found in part_0.0_13829.432373046875: CORRECT\n", + "VETHNHPTAISPWPGAATGSGGEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VETHNHPTAISPWPGAATGSGGEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VETTDGVVQLSGTVDSQAQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "VEVAGWVEDPDTYPMAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VEVAGWVEDPDTYPMAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VEVETPEENTGDVIGDLSR found in part_0.0_13829.432373046875: CORRECT\n", + "VEVLSAGADDYVTKPFHIEEVMAR found in part_0.0_13829.432373046875: CORRECT\n", + "VEVMNTDAEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VEVNLQAEPEHNR found in part_0.0_13829.432373046875: CORRECT\n", + "VEVTPGLK found in part_0.0_13829.432373046875: CORRECT\n", + "VEYMLQSQINPQLAGHGGR found in part_0.0_13829.432373046875: CORRECT\n", + "VEYPVAVVEGHNNATVK found in part_0.0_13829.432373046875: CORRECT\n", + "VFAYATHPIFSGNAANNLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFDAVLPLLNTSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFDVDSQR found in part_0.0_13829.432373046875: CORRECT\n", + "VFDVNEPLSQINQAK found in part_0.0_13829.432373046875: CORRECT\n", + "VFEAETLQR found in part_0.0_13829.432373046875: CORRECT\n", + "VFEGNRPTNSILLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFEGNRPTNSILLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFEQENLLQK found in part_0.0_13829.432373046875: CORRECT\n", + "VFESLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFFCNSGAEANEAALK found in part_0.0_13829.432373046875: CORRECT\n", + "VFFCNSGAEANEAALK found in part_0.0_13829.432373046875: CORRECT\n", + "VFFTCDSHEQLLPLEQAINAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFGQVDDAK found in part_0.0_13829.432373046875: CORRECT\n", + "VFIDNYAAIPSESIR found in part_0.0_13829.432373046875: CORRECT\n", + "VFIEHNDNFR found in part_0.0_13829.432373046875: CORRECT\n", + "VFIKPGNGK found in part_0.0_13829.432373046875: CORRECT\n", + "VFINDLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFLGTDSAPHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFLGTDSAPHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VFLNIGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VFLNIGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VFMATANGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "VFNITLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFNMNKPGALR found in part_0.0_13829.432373046875: CORRECT\n", + "VFNMNKPGALR found in part_0.0_13829.432373046875: CORRECT\n", + "VFPAIDYNR found in part_0.0_13829.432373046875: CORRECT\n", + "VFPDKPITEK found in part_0.0_13829.432373046875: CORRECT\n", + "VFQEEIFGPVLAVTTFK found in part_0.0_13829.432373046875: CORRECT\n", + "VFQEEIFGPVLAVTTFK found in part_0.0_13829.432373046875: CORRECT\n", + "VFQGEGFDEYLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFQTHSPVVDSISVK found in part_0.0_13829.432373046875: CORRECT\n", + "VFQTHSPVVDSISVK found in part_0.0_13829.432373046875: CORRECT\n", + "VFSGVPPIK found in part_0.0_13829.432373046875: CORRECT\n", + "VFSLPEVK found in part_0.0_13829.432373046875: CORRECT\n", + "VFTEVTVGGPLSNNK found in part_0.0_13829.432373046875: CORRECT\n", + "VFTEVTVGGPLSNNK found in part_0.0_13829.432373046875: CORRECT\n", + "VFTSLLR found in part_0.0_13829.432373046875: CORRECT\n", + "VFTYYTPK found in part_0.0_13829.432373046875: CORRECT\n", + "VFVADEYTMVYSHIDR found in part_0.0_13829.432373046875: CORRECT\n", + "VFVADEYTMVYSHIDR found in part_0.0_13829.432373046875: CORRECT\n", + "VFVAEPSVEDTIAILR found in part_0.0_13829.432373046875: CORRECT\n", + "VFVEVFDEEALK found in part_0.0_13829.432373046875: CORRECT\n", + "VFVQPMK found in part_0.0_13829.432373046875: CORRECT\n", + "VFVYGNR found in part_0.0_13829.432373046875: CORRECT\n", + "VGAAPLAAFSQIR found in part_0.0_13829.432373046875: CORRECT\n", + "VGAATEVEMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGAAVGAGAGNEER found in part_0.0_13829.432373046875: CORRECT\n", + "VGACTLVAADSETVDR found in part_0.0_13829.432373046875: CORRECT\n", + "VGACTLVAADSETVDR found in part_0.0_13829.432373046875: CORRECT\n", + "VGAEVEEGHDYIR found in part_0.0_13829.432373046875: CORRECT\n", + "VGAEVEEGHDYIR found in part_0.0_13829.432373046875: CORRECT\n", + "VGAGPFPTELFDETGEFLCK found in part_0.0_13829.432373046875: CORRECT\n", + "VGAITAANR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDAPITPDFVLK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDAVQADVDEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDAVQADVDEARR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDDIEIYR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDEPYYPVNDNK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDEVEILATAPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDGTQDNLSGCEK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDIVIFNDGYGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDIVIFNDGYGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDIVVSDEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLFDK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLFDK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLFDKETFAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLFDKETFAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLPEGLSR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDLSTEMIEHFFR found in part_0.0_13829.432373046875: CORRECT\n", + "VGDNDNLSALAAILAGADK found in part_0.0_13829.432373046875: CORRECT\n", + "VGDTVIEFDLPLLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEEGVETALAATVHDR found in part_0.0_13829.432373046875: CORRECT\n", + "VGEEGVETALAATVHDR found in part_0.0_13829.432373046875: CORRECT\n", + "VGEENAAALGEYMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEENIFIFGHTVEQVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEEVEIVGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEEVEIVGIKETQK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEFFGRPPLTSIDPDK found in part_0.0_13829.432373046875: CORRECT\n", + "VGEFSGANK found in part_0.0_13829.432373046875: CORRECT\n", + "VGELSGGER found in part_0.0_13829.432373046875: CORRECT\n", + "VGETYNIGGHNER found in part_0.0_13829.432373046875: CORRECT\n", + "VGFFNPIASEK found in part_0.0_13829.432373046875: CORRECT\n", + "VGFFNPIASEKEEGTR found in part_0.0_13829.432373046875: CORRECT\n", + "VGFFNPIASEKEEGTR found in part_0.0_13829.432373046875: CORRECT\n", + "VGFGYGK found in part_0.0_13829.432373046875: CORRECT\n", + "VGFIGLGIMGK found in part_0.0_13829.432373046875: CORRECT\n", + "VGGIDPLIGR found in part_0.0_13829.432373046875: CORRECT\n", + "VGGLSVMCEDAEAAGR found in part_0.0_13829.432373046875: CORRECT\n", + "VGGSTYQVPVEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGGSTYQVPVEVRPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGGSTYQVPVEVRPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGGTGDGGIDGVISLDK found in part_0.0_13829.432373046875: CORRECT\n", + "VGGVATYR found in part_0.0_13829.432373046875: CORRECT\n", + "VGHLNLTDSDTSR found in part_0.0_13829.432373046875: CORRECT\n", + "VGHLNLTDSDTSR found in part_0.0_13829.432373046875: CORRECT\n", + "VGIGGLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VGIGPGSICTTR found in part_0.0_13829.432373046875: CORRECT\n", + "VGIGPSSSHTVGPMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGIGPSSSHTVGPMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGINELLR found in part_0.0_13829.432373046875: CORRECT\n", + "VGINGFGR found in part_0.0_13829.432373046875: CORRECT\n", + "VGIVYNYANASDLPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VGIYFGMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLFGGAGVGK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLFQDTSAF found in part_0.0_13829.432373046875: CORRECT\n", + "VGLIAGSGGGSPR found in part_0.0_13829.432373046875: CORRECT\n", + "VGLIGYGYASK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLILNPETPVEAMK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLLDNSR found in part_0.0_13829.432373046875: CORRECT\n", + "VGLLTGDVAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLSPTPCLER found in part_0.0_13829.432373046875: CORRECT\n", + "VGLTNEELQK found in part_0.0_13829.432373046875: CORRECT\n", + "VGLYEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGMGTCQGELCACR found in part_0.0_13829.432373046875: CORRECT\n", + "VGMPDCSGVALGVDR found in part_0.0_13829.432373046875: CORRECT\n", + "VGNFMDDSAITAK found in part_0.0_13829.432373046875: CORRECT\n", + "VGNFMDDSAITAK found in part_0.0_13829.432373046875: CORRECT\n", + "VGNLAFLDVTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VGPALTFALR found in part_0.0_13829.432373046875: CORRECT\n", + "VGPDVLDPNLTPEVVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGPGELMVIDTR found in part_0.0_13829.432373046875: CORRECT\n", + "VGQFDPQTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGQILEEPLLINTSLSK found in part_0.0_13829.432373046875: CORRECT\n", + "VGSCGAVLPHVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGSCGAVLPHVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGTAQELATLR found in part_0.0_13829.432373046875: CORRECT\n", + "VGTISANAGTNLGSLEEQLAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VGTLAITDHDTTAAIAPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VGTLVHASK found in part_0.0_13829.432373046875: CORRECT\n", + "VGTPAITR found in part_0.0_13829.432373046875: CORRECT\n", + "VGTSMLTR found in part_0.0_13829.432373046875: CORRECT\n", + "VGTVTPNVAEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VGVDSVLVADVPVEESAPFR found in part_0.0_13829.432373046875: CORRECT\n", + "VGVENLVNAVPQLK found in part_0.0_13829.432373046875: CORRECT\n", + "VGVIMQDK found in part_0.0_13829.432373046875: CORRECT\n", + "VGVNQVVGVNLFDVYR found in part_0.0_13829.432373046875: CORRECT\n", + "VGVYSSPHLVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGVYSSPHLVR found in part_0.0_13829.432373046875: CORRECT\n", + "VGYINDQYVLNPTQDELK found in part_0.0_13829.432373046875: CORRECT\n", + "VGYLVVSTDR found in part_0.0_13829.432373046875: CORRECT\n", + "VHDDMFPLEEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VHDDMFPLEEVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VHDLDGNLIFAHNLDR found in part_0.0_13829.432373046875: CORRECT\n", + "VHDLNEDAEFDENGVEVFDEK found in part_0.0_13829.432373046875: CORRECT\n", + "VHDTDNVAIIVNDNGLK found in part_0.0_13829.432373046875: CORRECT\n", + "VHGGILGR found in part_0.0_13829.432373046875: CORRECT\n", + "VHIINLEK found in part_0.0_13829.432373046875: CORRECT\n", + "VHIINLEK found in part_0.0_13829.432373046875: CORRECT\n", + "VHLTVANLNNK found in part_0.0_13829.432373046875: CORRECT\n", + "VHLTVANLNNK found in part_0.0_13829.432373046875: CORRECT\n", + "VHSECLTGDALFSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VHTAIVVQDPTMQR found in part_0.0_13829.432373046875: CORRECT\n", + "VHTEYNNNALTLPDYFTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VHTFEEEIEFVQGLNHSTGK found in part_0.0_13829.432373046875: CORRECT\n", + "VHTFEEEIEFVQGLNHSTGK found in part_0.0_13829.432373046875: CORRECT\n", + "VHTSYHQAVTATGR found in part_0.0_13829.432373046875: CORRECT\n", + "VHVDEYDVDVIDSQSASK found in part_0.0_13829.432373046875: CORRECT\n", + "VHVDEYDVDVIDSQSASK found in part_0.0_13829.432373046875: CORRECT\n", + "VHVHVEEGSPK found in part_0.0_13829.432373046875: CORRECT\n", + "VHVHVEEGSPK found in part_0.0_13829.432373046875: CORRECT\n", + "VHVTDYTNASR found in part_0.0_13829.432373046875: CORRECT\n", + "VHVTDYTNASR found in part_0.0_13829.432373046875: CORRECT\n", + "VHYDTTLNGGFATAMALNADATEK found in part_0.0_13829.432373046875: CORRECT\n", + "VIAAGANVVR found in part_0.0_13829.432373046875: CORRECT\n", + "VIADCGCEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIADHIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIADYEER found in part_0.0_13829.432373046875: CORRECT\n", + "VIAIDVNDEQLK found in part_0.0_13829.432373046875: CORRECT\n", + "VIALCHQAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIASCFFEASTR found in part_0.0_13829.432373046875: CORRECT\n", + "VIASDELMTK found in part_0.0_13829.432373046875: CORRECT\n", + "VIASELGEER found in part_0.0_13829.432373046875: CORRECT\n", + "VIASVNADFAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIAVDDQFVNAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIAVEAEDSACLK found in part_0.0_13829.432373046875: CORRECT\n", + "VIAVGTTSVR found in part_0.0_13829.432373046875: CORRECT\n", + "VIAYPTEAVFGVGCDPDSETAVMR found in part_0.0_13829.432373046875: CORRECT\n", + "VICFSPDHSK found in part_0.0_13829.432373046875: CORRECT\n", + "VICQGFTGSQGTFHSEQAIAYGTK found in part_0.0_13829.432373046875: CORRECT\n", + "VICQGFTGSQGTFHSEQAIAYGTK found in part_0.0_13829.432373046875: CORRECT\n", + "VICSAEPK found in part_0.0_13829.432373046875: CORRECT\n", + "VICSAEPK found in part_0.0_13829.432373046875: CORRECT\n", + "VIDELRPK found in part_0.0_13829.432373046875: CORRECT\n", + "VIDFSGNYEDYLR found in part_0.0_13829.432373046875: CORRECT\n", + "VIDGQINLR found in part_0.0_13829.432373046875: CORRECT\n", + "VIDHYENPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIDIDQSPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIDLLIK found in part_0.0_13829.432373046875: CORRECT\n", + "VIDLMCPFAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIDTCPSGALK found in part_0.0_13829.432373046875: CORRECT\n", + "VIDTTAAGDSFSAGYLAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VIDTTAAGDSFSAGYLAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEAESLDLR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEDQLQAGTLSEVAVPLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEFNCR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEFSDDSIEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEIAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VIELQGIAGTSAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIELQGIAGTSAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEPVKR found in part_0.0_13829.432373046875: CORRECT\n", + "VIEQTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VIESLIHSGEPLGLEAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VIESLIHSGEPLGLEAGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VIETFGASEGGNK found in part_0.0_13829.432373046875: CORRECT\n", + "VIETMYETGK found in part_0.0_13829.432373046875: CORRECT\n", + "VIFDNNYR found in part_0.0_13829.432373046875: CORRECT\n", + "VIFDNNYRPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIFDNNYRPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIFDVAHNPHAAEYLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIFDVAHNPHAAEYLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIFETQSTHK found in part_0.0_13829.432373046875: CORRECT\n", + "VIFLTADAFGVLPPVSR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGAGQVYGLSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGCLLEK found in part_0.0_13829.432373046875: CORRECT\n", + "VIGGMTPVCSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGIGSPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGITNEEAISTAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGITNEEAISTAR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGQNEAVDAVSNAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGQNEAVDAVSNAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIGSTTYQEFSNIFEK found in part_0.0_13829.432373046875: CORRECT\n", + "VIGTATSENGAQAISDYLGANGK found in part_0.0_13829.432373046875: CORRECT\n", + "VIGYTDLPGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIHDISEMNR found in part_0.0_13829.432373046875: CORRECT\n", + "VIHDISEMNR found in part_0.0_13829.432373046875: CORRECT\n", + "VIHQALEDK found in part_0.0_13829.432373046875: CORRECT\n", + "VIIAAHGNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VIIETGELK found in part_0.0_13829.432373046875: CORRECT\n", + "VIIETGELKDEALIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIIETGELKDEALIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIIMDEPTDALTDTETESLFR found in part_0.0_13829.432373046875: CORRECT\n", + "VIIVPDGEHAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VIIVPDGEHAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VILAGEVTTPVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VILAGEVTTPVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VILDSGTTTFEIAR found in part_0.0_13829.432373046875: CORRECT\n", + "VILFNKPYDVLPQFTDEAGR found in part_0.0_13829.432373046875: CORRECT\n", + "VILLNEQGEVVAAQTEK found in part_0.0_13829.432373046875: CORRECT\n", + "VILSQQMASAIIAAGQEEAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VILVGNLGQDPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VILVGNLGQDPEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VILVPGAQSAEAAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VIMPDAPDHGSR found in part_0.0_13829.432373046875: CORRECT\n", + "VINDDVIEAGQGFGTHPHK found in part_0.0_13829.432373046875: CORRECT\n", + "VINDDVIEAGQGFGTHPHK found in part_0.0_13829.432373046875: CORRECT\n", + "VINDNFGIIEGLMTTVHATTATQK found in part_0.0_13829.432373046875: CORRECT\n", + "VINDNFGIIEGLMTTVHATTATQK found in part_0.0_13829.432373046875: CORRECT\n", + "VINELTEK found in part_0.0_13829.432373046875: CORRECT\n", + "VINEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VINGVVELPK found in part_0.0_13829.432373046875: CORRECT\n", + "VINNDPQIGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VINPQGEIIATADAHQATR found in part_0.0_13829.432373046875: CORRECT\n", + "VINQGEGAIPAR found in part_0.0_13829.432373046875: CORRECT\n", + "VINQLTGGLAGMAK found in part_0.0_13829.432373046875: CORRECT\n", + "VINQLTGGLAGMAK found in part_0.0_13829.432373046875: CORRECT\n", + "VINSGQVCNCAER found in part_0.0_13829.432373046875: CORRECT\n", + "VINSGQVCNCAER found in part_0.0_13829.432373046875: CORRECT\n", + "VIPATILGIQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "VIPATILGIQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "VIPLPDEQATLDLGER found in part_0.0_13829.432373046875: CORRECT\n", + "VIPVVEAIAQR found in part_0.0_13829.432373046875: CORRECT\n", + "VIPYWNETILPR found in part_0.0_13829.432373046875: CORRECT\n", + "VIQDNLK found in part_0.0_13829.432373046875: CORRECT\n", + "VIQNPELSLAGGAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VIQVPIDLYTK found in part_0.0_13829.432373046875: CORRECT\n", + "VISHVEEEAK found in part_0.0_13829.432373046875: CORRECT\n", + "VISIITLK found in part_0.0_13829.432373046875: CORRECT\n", + "VISLPAPLR found in part_0.0_13829.432373046875: CORRECT\n", + "VISQVEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "VISVQEMHAQIK found in part_0.0_13829.432373046875: CORRECT\n", + "VISVQEMHAQIK found in part_0.0_13829.432373046875: CORRECT\n", + "VITASDSSGTVVDESGFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VITASDSSGTVVDESGFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VITLTGK found in part_0.0_13829.432373046875: CORRECT\n", + "VITPHPGEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VITSGQLVYK found in part_0.0_13829.432373046875: CORRECT\n", + "VITTPLTVGYFDGK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVEGINLVK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVEGVVK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVEQGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVNVVAE found in part_0.0_13829.432373046875: CORRECT\n", + "VIVNVVAE found in part_0.0_13829.432373046875: CORRECT\n", + "VIVSEALR found in part_0.0_13829.432373046875: CORRECT\n", + "VIVSQLHR found in part_0.0_13829.432373046875: CORRECT\n", + "VIVTDMDGTFLNDAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVTGCLGAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIVVTDGER found in part_0.0_13829.432373046875: CORRECT\n", + "VIYLSPQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VIYPAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "VIYQAGFTDR found in part_0.0_13829.432373046875: CORRECT\n", + "VIYSTYESNETMYAK found in part_0.0_13829.432373046875: CORRECT\n", + "VIYVPGK found in part_0.0_13829.432373046875: CORRECT\n", + "VKAPVIVQFSNGGASFIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VKAQGNMPAYGYTPPYTDGAK found in part_0.0_13829.432373046875: CORRECT\n", + "VKDDLQELAVVESFPTK found in part_0.0_13829.432373046875: CORRECT\n", + "VKDDLQELAVVESFPTK found in part_0.0_13829.432373046875: CORRECT\n", + "VKEEDDIEAATR found in part_0.0_13829.432373046875: CORRECT\n", + "VKEEDDIEAATR found in part_0.0_13829.432373046875: CORRECT\n", + "VKFDELSLK found in part_0.0_13829.432373046875: CORRECT\n", + "VKHPSEIVNVGDEITVK found in part_0.0_13829.432373046875: CORRECT\n", + "VKHPSEIVNVGDEITVK found in part_0.0_13829.432373046875: CORRECT\n", + "VKLDEAGVR found in part_0.0_13829.432373046875: CORRECT\n", + "VKLEQIAADIK found in part_0.0_13829.432373046875: CORRECT\n", + "VKLEQIAADIK found in part_0.0_13829.432373046875: CORRECT\n", + "VKLPLTLDPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VKLPLTLDPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VKPGSLGHR found in part_0.0_13829.432373046875: CORRECT\n", + "VKPLELPLLDSLER found in part_0.0_13829.432373046875: CORRECT\n", + "VKPNQQVTIIDSEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VKPNQQVTIIDSEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VKPQVYAGLFPVSSDDYEAFR found in part_0.0_13829.432373046875: CORRECT\n", + "VKVGDTVIEFDLPLLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLAAIDAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLAAKPAIIALQIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLAEEHYPLPER found in part_0.0_13829.432373046875: CORRECT\n", + "VLAEQNADVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLALDMGALVAGAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLAQASTENTVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLASLDACR found in part_0.0_13829.432373046875: CORRECT\n", + "VLATEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLATTDYK found in part_0.0_13829.432373046875: CORRECT\n", + "VLCAAQPLSIQVHPNK found in part_0.0_13829.432373046875: CORRECT\n", + "VLCLQDEIADHTLK found in part_0.0_13829.432373046875: CORRECT\n", + "VLCTASIEEGVPR found in part_0.0_13829.432373046875: CORRECT\n", + "VLCVTALGHTVAEAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VLCVTALGHTVAEAQK found in part_0.0_13829.432373046875: CORRECT\n", + "VLDAAVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLDAAVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLDAGGGEGQTAIK found in part_0.0_13829.432373046875: CORRECT\n", + "VLDAINTAGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDICAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDLASPIGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDLIAHISK found in part_0.0_13829.432373046875: CORRECT\n", + "VLDQPTQDGFVYR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDSKPSVLALNIQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDSKPSVLALNIQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDVGCGAGVLSVAFAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLDVGCGGGILAESMAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLEGQIDDR found in part_0.0_13829.432373046875: CORRECT\n", + "VLEGQVCPACGANLVLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLELINTPEMLNGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLELINTPEMLNGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLEMVEAGSELR found in part_0.0_13829.432373046875: CORRECT\n", + "VLENAEGDR found in part_0.0_13829.432373046875: CORRECT\n", + "VLENAEGDRTTPSIIAYTQDGETLVGQPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLENALVPPMGESTVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLEQIAAQMR found in part_0.0_13829.432373046875: CORRECT\n", + "VLEQSAESVPEYGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLESAIANAEHNDGADIDDLK found in part_0.0_13829.432373046875: CORRECT\n", + "VLESGVDILIGTTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLESLHGALAADAALLSAAER found in part_0.0_13829.432373046875: CORRECT\n", + "VLETILHSEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLETILHSEQAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLEVDLQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLEVQGMK found in part_0.0_13829.432373046875: CORRECT\n", + "VLEVSNLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLEVTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLFVDQGDEQALR found in part_0.0_13829.432373046875: CORRECT\n", + "VLGAIGVVETTHPVNMAALQK found in part_0.0_13829.432373046875: CORRECT\n", + "VLGANFDGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VLGCYPSENVVPVDPT found in part_0.0_13829.432373046875: CORRECT\n", + "VLGENGQEAVGSMGDDTPFAVLSSQPR found in part_0.0_13829.432373046875: CORRECT\n", + "VLGFITDAGGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLGGEQVAINAEIEEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLGHLGLER found in part_0.0_13829.432373046875: CORRECT\n", + "VLGIDGGEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLGLELGADDYLPKPFNDR found in part_0.0_13829.432373046875: CORRECT\n", + "VLGTDGFGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLHATQELVTLGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLHATQELVTLGLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLHLPTVAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLHNHSEELTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLHPLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VLHSLEQALSK found in part_0.0_13829.432373046875: CORRECT\n", + "VLHTLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLIACEDEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLIEATSNQVNQFGGYTGMTPADFR found in part_0.0_13829.432373046875: CORRECT\n", + "VLIENLK found in part_0.0_13829.432373046875: CORRECT\n", + "VLIEQAIEQPLDPQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLIEQMR found in part_0.0_13829.432373046875: CORRECT\n", + "VLILDEPTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLITYGGGSVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLIVDDEPLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLKPYVDSGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLLADEVGLGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLLEAADK found in part_0.0_13829.432373046875: CORRECT\n", + "VLLENLLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLLFGQAIQTAGTVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLLGVAGFQAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLLHLIDIDPIDGTDPVENAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLLPAFPDIR found in part_0.0_13829.432373046875: CORRECT\n", + "VLLPAIESCINTQALK found in part_0.0_13829.432373046875: CORRECT\n", + "VLLVGQSPNAELSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNDDPTLNVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNEMAADDALSEAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNFPQSNLCLK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNIFPSIDTGVCAASVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNIFPSIDTGVCAASVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNLCDK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNNEIILVTCGSAFK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNNEIILVTCGSAFK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNNESGVSQLTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNNGDLGENK found in part_0.0_13829.432373046875: CORRECT\n", + "VLNNSTLVSADTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNQFDDAGIVTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLNTEAATLTSQFNQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPADLLDIASENNLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPAVAMLEER found in part_0.0_13829.432373046875: CORRECT\n", + "VLPAVVSVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPDIAAAIDVIHAQVSGGGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPEIPK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPELNGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPELNGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPGMQAAFVDIGLDK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPGQVMVELIK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPHLSDLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPHLSDLTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPITIHGDAAVTGQGVVQETLNMSK found in part_0.0_13829.432373046875: CORRECT\n", + "VLPQGFGSGLVAMPDGVLQTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLPSGVESNVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLQAAAER found in part_0.0_13829.432373046875: CORRECT\n", + "VLQFTQQQLAQVGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VLQHIAGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLQLINAYR found in part_0.0_13829.432373046875: CORRECT\n", + "VLQLLGLPYR found in part_0.0_13829.432373046875: CORRECT\n", + "VLQLLGLPYRK found in part_0.0_13829.432373046875: CORRECT\n", + "VLQLQFIDPDVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLQMLEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLQSQPGER found in part_0.0_13829.432373046875: CORRECT\n", + "VLSCGNGGSHCDAMHFAEELTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSCGNGGSHCDAMHFAEELTGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSEITSSLNK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSEPHHPSGELTDFR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSEPHHPSGELTDFR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSFESK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSGPGLVNLYR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSGPQAQPAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSGPQAQPAGDKAEFIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSGPQAQPAGDKAEFIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSMGDFSTELCGGTHASR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSSIADK found in part_0.0_13829.432373046875: CORRECT\n", + "VLSTEMPER found in part_0.0_13829.432373046875: CORRECT\n", + "VLSTNVTGYFLCCR found in part_0.0_13829.432373046875: CORRECT\n", + "VLSVGKQSHAISTASGVGEHFADK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTEAAVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTETIFELMGITPTLHGGQAQAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTGGVDANALHR found in part_0.0_13829.432373046875: CORRECT\n", + "VLTGGVDANALHRPK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTGIYTR found in part_0.0_13829.432373046875: CORRECT\n", + "VLTGLTK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTMFDLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLTPEFVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLTQEMVK found in part_0.0_13829.432373046875: CORRECT\n", + "VLTVFGTRPEAIK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVAGTLNNAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVCVPVGATQVER found in part_0.0_13829.432373046875: CORRECT\n", + "VLVEGLQR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVICAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVIGNGGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVLTGAGISAESGIR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVLVAAPEGIAALEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVLVAAPEGIAALEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVPTQEAIQK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVSPFLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVTTLTK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVDGEPVPYCLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVDGGGSVR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVDVSPETQLK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVEDNALLR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVGDMAELGAESEACHVQVGEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VLVVGTDGIPEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLVYFYPK found in part_0.0_13829.432373046875: CORRECT\n", + "VLYEMDGVPEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLYEMDGVPEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "VLYFENDHEK found in part_0.0_13829.432373046875: CORRECT\n", + "VLYGALPR found in part_0.0_13829.432373046875: CORRECT\n", + "VLYPDDSTYSGR found in part_0.0_13829.432373046875: CORRECT\n", + "VLYPINSK found in part_0.0_13829.432373046875: CORRECT\n", + "VLYPNDNHTAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLYPNDNHTAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VLYQSFPQAER found in part_0.0_13829.432373046875: CORRECT\n", + "VLYTPEIAENQQMISLLSPFQNK found in part_0.0_13829.432373046875: CORRECT\n", + "VMAAIEEEPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VMAGLGIAVVSTSK found in part_0.0_13829.432373046875: CORRECT\n", + "VMALDGVVQTTER found in part_0.0_13829.432373046875: CORRECT\n", + "VMALINEAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VMALVGENGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VMASQQALQDR found in part_0.0_13829.432373046875: CORRECT\n", + "VMDLAAFTLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VMEAIETLPER found in part_0.0_13829.432373046875: CORRECT\n", + "VMEEILALR found in part_0.0_13829.432373046875: CORRECT\n", + "VMEELYPR found in part_0.0_13829.432373046875: CORRECT\n", + "VMENLLLESADK found in part_0.0_13829.432373046875: CORRECT\n", + "VMGFIGGTSDR found in part_0.0_13829.432373046875: CORRECT\n", + "VMGFIGGTSDRPAPISDK found in part_0.0_13829.432373046875: CORRECT\n", + "VMGQALPELVDQVVEVVQR found in part_0.0_13829.432373046875: CORRECT\n", + "VMIDNNRPPAVLR found in part_0.0_13829.432373046875: CORRECT\n", + "VMIHQPLGGYQGQATDIEIHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VMIHQPLGGYQGQATDIEIHAR found in part_0.0_13829.432373046875: CORRECT\n", + "VMLLFTNPTDVER found in part_0.0_13829.432373046875: CORRECT\n", + "VMLLGSGELGK found in part_0.0_13829.432373046875: CORRECT\n", + "VMLQAYDEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VMLQAYDEGRLDK found in part_0.0_13829.432373046875: CORRECT\n", + "VMLSELFR found in part_0.0_13829.432373046875: CORRECT\n", + "VMLVDDVITAGTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VMNLDRFDLL found in part_0.0_13829.432373046875: CORRECT\n", + "VMPFFEQHK found in part_0.0_13829.432373046875: CORRECT\n", + "VMPSVVSINVEGSTTVNTPR found in part_0.0_13829.432373046875: CORRECT\n", + "VMQAQGSQLTNK found in part_0.0_13829.432373046875: CORRECT\n", + "VMQAQGSQLTNK found in part_0.0_13829.432373046875: CORRECT\n", + "VMQAQGSQLTNK found in part_0.0_13829.432373046875: CORRECT\n", + "VMSLLEPTK found in part_0.0_13829.432373046875: CORRECT\n", + "VMSLLEPTKK found in part_0.0_13829.432373046875: CORRECT\n", + "VMSTGQTYNADR found in part_0.0_13829.432373046875: CORRECT\n", + "VMTVGTHGTTYGGNPLASAVAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VMVEGEDEAQVTEFAHR found in part_0.0_13829.432373046875: CORRECT\n", + "VMVEHEILPR found in part_0.0_13829.432373046875: CORRECT\n", + "VMVTSHLGR found in part_0.0_13829.432373046875: CORRECT\n", + "VMVTSHLGRPTEGEYNEEFSLLPVVNYLK found in part_0.0_13829.432373046875: CORRECT\n", + "VMVTSHLGRPTEGEYNEEFSLLPVVNYLK found in part_0.0_13829.432373046875: CORRECT\n", + "VNAALESCR found in part_0.0_13829.432373046875: CORRECT\n", + "VNADGTLATTGHPEALGSALTHK found in part_0.0_13829.432373046875: CORRECT\n", + "VNADGTLATTGHPEALGSALTHK found in part_0.0_13829.432373046875: CORRECT\n", + "VNADIVNK found in part_0.0_13829.432373046875: CORRECT\n", + "VNADIVNK found in part_0.0_13829.432373046875: CORRECT\n", + "VNAEYVEAFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VNAFYGLTGDGK found in part_0.0_13829.432373046875: CORRECT\n", + "VNAGHGLTYHNVK found in part_0.0_13829.432373046875: CORRECT\n", + "VNAICPGYVR found in part_0.0_13829.432373046875: CORRECT\n", + "VNAISAGPIR found in part_0.0_13829.432373046875: CORRECT\n", + "VNALLADK found in part_0.0_13829.432373046875: CORRECT\n", + "VNASTLKEPEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "VNASTLKEPEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "VNCINPGGTR found in part_0.0_13829.432373046875: CORRECT\n", + "VNDEGIIEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNDGPFADFNGVVEEVDYEK found in part_0.0_13829.432373046875: CORRECT\n", + "VNDIMHTGDEIPHVK found in part_0.0_13829.432373046875: CORRECT\n", + "VNEDEMYPGEAGIDIYNLTK found in part_0.0_13829.432373046875: CORRECT\n", + "VNEDEMYPGEAGIDIYNLTK found in part_0.0_13829.432373046875: CORRECT\n", + "VNEDLGLLSEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VNEGTEHEVVIQESVFTR found in part_0.0_13829.432373046875: CORRECT\n", + "VNEISEQLNLSPK found in part_0.0_13829.432373046875: CORRECT\n", + "VNENLDINPTHYLDINHADIVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNENLDINPTHYLDINHADIVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNESLLAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VNESLLAGKPIK found in part_0.0_13829.432373046875: CORRECT\n", + "VNESLLAGKPIK found in part_0.0_13829.432373046875: CORRECT\n", + "VNEVNFDKPENAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNEVNFDKPENAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNFDSQLEK found in part_0.0_13829.432373046875: CORRECT\n", + "VNFEPDSAFR found in part_0.0_13829.432373046875: CORRECT\n", + "VNGGLLVQDR found in part_0.0_13829.432373046875: CORRECT\n", + "VNGIAPGAILTDALK found in part_0.0_13829.432373046875: CORRECT\n", + "VNGNAGSFFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNGQLIEPR found in part_0.0_13829.432373046875: CORRECT\n", + "VNHLVEALTHLR found in part_0.0_13829.432373046875: CORRECT\n", + "VNHPALPGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VNIEIDPQTQAVVDTVER found in part_0.0_13829.432373046875: CORRECT\n", + "VNILLAAGCEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VNINGGAPQR found in part_0.0_13829.432373046875: CORRECT\n", + "VNIVAPGPIWTALQISGGQTQDK found in part_0.0_13829.432373046875: CORRECT\n", + "VNMGEPNFEPSAVPFR found in part_0.0_13829.432373046875: CORRECT\n", + "VNPENSIHLTMAGNEVFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNPETTLFLVASK found in part_0.0_13829.432373046875: CORRECT\n", + "VNPETTLFLVASK found in part_0.0_13829.432373046875: CORRECT\n", + "VNPGGSVSDTVISAGGGQSLQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VNPIDFENSEGNLGLSNAVLQHLASK found in part_0.0_13829.432373046875: CORRECT\n", + "VNPLSPVDLVIDHSVTVDR found in part_0.0_13829.432373046875: CORRECT\n", + "VNPTVFFDIAVDGEPLGR found in part_0.0_13829.432373046875: CORRECT\n", + "VNPVVPEVVNQVCFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNPVVPEVVNQVCFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNQLGVAEPVVQR found in part_0.0_13829.432373046875: CORRECT\n", + "VNQSDISDAQIK found in part_0.0_13829.432373046875: CORRECT\n", + "VNSDVLTVSTVNSQDQVTQKPLR found in part_0.0_13829.432373046875: CORRECT\n", + "VNSIAEMR found in part_0.0_13829.432373046875: CORRECT\n", + "VNSIAPSLILFNEHDDAEYR found in part_0.0_13829.432373046875: CORRECT\n", + "VNSLAQQEQLGFVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNTFLANR found in part_0.0_13829.432373046875: CORRECT\n", + "VNVAEYPSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VNVITDGCR found in part_0.0_13829.432373046875: CORRECT\n", + "VNVLVATDVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VNVTINTTSVDTNHAER found in part_0.0_13829.432373046875: CORRECT\n", + "VNVTINTTSVDTNHAER found in part_0.0_13829.432373046875: CORRECT\n", + "VNWLGLGPQENYPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VNWLGLGPQENYPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VNYGVTVLPTFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNYGVTVLPTFK found in part_0.0_13829.432373046875: CORRECT\n", + "VNYQGIGSSGGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VNYSQIDPALCR found in part_0.0_13829.432373046875: CORRECT\n", + "VPAGSVVVSGNLPSK found in part_0.0_13829.432373046875: CORRECT\n", + "VPAGSVVVSGNLPSK found in part_0.0_13829.432373046875: CORRECT\n", + "VPDGLDSAAASSITCAGVTTYK found in part_0.0_13829.432373046875: CORRECT\n", + "VPDGTVDPFR found in part_0.0_13829.432373046875: CORRECT\n", + "VPDIGADEVEITEILVK found in part_0.0_13829.432373046875: CORRECT\n", + "VPDIHNVALMEDR found in part_0.0_13829.432373046875: CORRECT\n", + "VPDIHNVALMEDR found in part_0.0_13829.432373046875: CORRECT\n", + "VPDLENQVK found in part_0.0_13829.432373046875: CORRECT\n", + "VPDMSAYR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEDDEEQQLEALR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEELMK found in part_0.0_13829.432373046875: CORRECT\n", + "VPEGIGETAIVQIR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEGIGETAIVQIR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEPFIPK found in part_0.0_13829.432373046875: CORRECT\n", + "VPEPLPPLEGYTFEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEPLPPLEGYTFEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "VPEQYQQEHVQGAINIPLK found in part_0.0_13829.432373046875: CORRECT\n", + "VPETMPPQLFEK found in part_0.0_13829.432373046875: CORRECT\n", + "VPFAEVASDGSEAFPFLR found in part_0.0_13829.432373046875: CORRECT\n", + "VPFAEVASDGSEAFPFLR found in part_0.0_13829.432373046875: CORRECT\n", + "VPFIDTFDLR found in part_0.0_13829.432373046875: CORRECT\n", + "VPGAQIVANQEGTVLDK found in part_0.0_13829.432373046875: CORRECT\n", + "VPGFIDVPGHEK found in part_0.0_13829.432373046875: CORRECT\n", + "VPGFIDVPGHEK found in part_0.0_13829.432373046875: CORRECT\n", + "VPGGASLTR found in part_0.0_13829.432373046875: CORRECT\n", + "VPGISQGLAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VPGLDFK found in part_0.0_13829.432373046875: CORRECT\n", + "VPGTIGFATVR found in part_0.0_13829.432373046875: CORRECT\n", + "VPGYLEEEGANK found in part_0.0_13829.432373046875: CORRECT\n", + "VPHFGYADR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLAPDIDAAIIAR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLDDCTIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPLDEYPK found in part_0.0_13829.432373046875: CORRECT\n", + "VPLENVEYVADLGCGPGNSTALLQQR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLFAVVSR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLFVQIGEVIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPLGVIGVIYEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLHTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VPLPPLTEER found in part_0.0_13829.432373046875: CORRECT\n", + "VPLPVVAQTAPEQQEENNADNR found in part_0.0_13829.432373046875: CORRECT\n", + "VPMNIVAQR found in part_0.0_13829.432373046875: CORRECT\n", + "VPNGVSGTVIDVQVFTR found in part_0.0_13829.432373046875: CORRECT\n", + "VPPGVDEAAYVK found in part_0.0_13829.432373046875: CORRECT\n", + "VPPIGITDR found in part_0.0_13829.432373046875: CORRECT\n", + "VPQDYVTQSGPLR found in part_0.0_13829.432373046875: CORRECT\n", + "VPQTEEELER found in part_0.0_13829.432373046875: CORRECT\n", + "VPSALSYTMQK found in part_0.0_13829.432373046875: CORRECT\n", + "VPSEQLTLLVR found in part_0.0_13829.432373046875: CORRECT\n", + "VPSYTASK found in part_0.0_13829.432373046875: CORRECT\n", + "VPSYTASK found in part_0.0_13829.432373046875: CORRECT\n", + "VPTGATTQDAEVDDAK found in part_0.0_13829.432373046875: CORRECT\n", + "VPTNEPVIIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPTPNVSVVDLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VPTPNVSVVDLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "VPTVDTSNPFAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VPVEHTLDAVNIADR found in part_0.0_13829.432373046875: CORRECT\n", + "VPVFAGDSEDDITAR found in part_0.0_13829.432373046875: CORRECT\n", + "VPVIYAPAK found in part_0.0_13829.432373046875: CORRECT\n", + "VPVMIHR found in part_0.0_13829.432373046875: CORRECT\n", + "VPVSIYLVNGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPVTAEGLAAIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPVTLFTK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYEVGR found in part_0.0_13829.432373046875: CORRECT\n", + "VPYGAVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYGTLLCVSDKPLHGEIK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYVGVDK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYVGVDK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYVGVDKDNLAEFSK found in part_0.0_13829.432373046875: CORRECT\n", + "VPYVGVDKDNLAEFSK found in part_0.0_13829.432373046875: CORRECT\n", + "VQAGLAPALITR found in part_0.0_13829.432373046875: CORRECT\n", + "VQALADAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VQALVTVASSPCFSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VQAQIQGDEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VQAVATAIDTHLVSNDFSVLR found in part_0.0_13829.432373046875: CORRECT\n", + "VQAVDMTELR found in part_0.0_13829.432373046875: CORRECT\n", + "VQAVSTELGGER found in part_0.0_13829.432373046875: CORRECT\n", + "VQAYDGPIYIADAALFVK found in part_0.0_13829.432373046875: CORRECT\n", + "VQDLQVVGTCGK found in part_0.0_13829.432373046875: CORRECT\n", + "VQETIAIIR found in part_0.0_13829.432373046875: CORRECT\n", + "VQFIDEPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VQFSSAIGPYK found in part_0.0_13829.432373046875: CORRECT\n", + "VQGDLSTPELQETLTPVYPTTEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VQGDVAAWFGSLPVVPEGCK found in part_0.0_13829.432373046875: CORRECT\n", + "VQGEIPENADLK found in part_0.0_13829.432373046875: CORRECT\n", + "VQGKDEVILTLNK found in part_0.0_13829.432373046875: CORRECT\n", + "VQGLSEVFER found in part_0.0_13829.432373046875: CORRECT\n", + "VQGQELPESAHTASFAEIESAR found in part_0.0_13829.432373046875: CORRECT\n", + "VQIGSNNIR found in part_0.0_13829.432373046875: CORRECT\n", + "VQIIDQPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VQILSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VQIQDAGHQVDDAEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQIQDAGHQVDDAEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQLAQEGLGIEAQAR found in part_0.0_13829.432373046875: CORRECT\n", + "VQLGTTPVVR found in part_0.0_13829.432373046875: CORRECT\n", + "VQLLEGEVTPLK found in part_0.0_13829.432373046875: CORRECT\n", + "VQLLGSGSILR found in part_0.0_13829.432373046875: CORRECT\n", + "VQLNSGMSLIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VQLTATVSENQLGQR found in part_0.0_13829.432373046875: CORRECT\n", + "VQLTFNNLK found in part_0.0_13829.432373046875: CORRECT\n", + "VQNAAGDIVSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VQNASYQVAAYLADEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQNASYQVAAYLADEIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQPFGNVVVYADMTGK found in part_0.0_13829.432373046875: CORRECT\n", + "VQPGDMVLLSPACASLDQFK found in part_0.0_13829.432373046875: CORRECT\n", + "VQPLFSTDFYR found in part_0.0_13829.432373046875: CORRECT\n", + "VQPNGTEGYR found in part_0.0_13829.432373046875: CORRECT\n", + "VQPNIVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQQPEFAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VQRLPIEPISQASANQR found in part_0.0_13829.432373046875: CORRECT\n", + "VQSGIHGNATQTSIPGVFAAGDVMDHIYR found in part_0.0_13829.432373046875: CORRECT\n", + "VQSMPEINDADK found in part_0.0_13829.432373046875: CORRECT\n", + "VQTGDGINNDVDTK found in part_0.0_13829.432373046875: CORRECT\n", + "VQTLGAVEHSPLYTSVDPLQSMSR found in part_0.0_13829.432373046875: CORRECT\n", + "VQTLLASQSNPGR found in part_0.0_13829.432373046875: CORRECT\n", + "VRDDANTLHIEPLPYSLEE found in part_0.0_13829.432373046875: CORRECT\n", + "VRENEPFDVALR found in part_0.0_13829.432373046875: CORRECT\n", + "VRLDYVIPSR found in part_0.0_13829.432373046875: CORRECT\n", + "VRPGILAVEALNLMQSR found in part_0.0_13829.432373046875: CORRECT\n", + "VSAAPFCEK found in part_0.0_13829.432373046875: CORRECT\n", + "VSADAPLELVSR found in part_0.0_13829.432373046875: CORRECT\n", + "VSAEEIAAASER found in part_0.0_13829.432373046875: CORRECT\n", + "VSAIAAMK found in part_0.0_13829.432373046875: CORRECT\n", + "VSAQELLSPLADASK found in part_0.0_13829.432373046875: CORRECT\n", + "VSAVSSAGELLLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VSAYELITR found in part_0.0_13829.432373046875: CORRECT\n", + "VSCPEEIAFR found in part_0.0_13829.432373046875: CORRECT\n", + "VSDAASNDTESLAGAEQAAGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VSDGDVLIALGSSGPHSNGYSLVR found in part_0.0_13829.432373046875: CORRECT\n", + "VSDLQETLIGR found in part_0.0_13829.432373046875: CORRECT\n", + "VSDSVLASEIQGEAGSLVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VSDYDGYNQFVVHR found in part_0.0_13829.432373046875: CORRECT\n", + "VSEGICIR found in part_0.0_13829.432373046875: CORRECT\n", + "VSEISIVGR found in part_0.0_13829.432373046875: CORRECT\n", + "VSELPVLMGER found in part_0.0_13829.432373046875: CORRECT\n", + "VSELQIPVNAGSVDMLDQLGQVSPGHR found in part_0.0_13829.432373046875: CORRECT\n", + "VSEQPIR found in part_0.0_13829.432373046875: CORRECT\n", + "VSFELFADK found in part_0.0_13829.432373046875: CORRECT\n", + "VSFTIESGAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSGEGHITCGHCR found in part_0.0_13829.432373046875: CORRECT\n", + "VSGGSYEYFEGMGLPELISEVK found in part_0.0_13829.432373046875: CORRECT\n", + "VSGGSYEYFEGMGLPELISEVKK found in part_0.0_13829.432373046875: CORRECT\n", + "VSGNSPVIFDVTHALQCR found in part_0.0_13829.432373046875: CORRECT\n", + "VSGQTQFNGVNVLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSIDTSSLQYENDDLMR found in part_0.0_13829.432373046875: CORRECT\n", + "VSINNASAEELAR found in part_0.0_13829.432373046875: CORRECT\n", + "VSKEETFGPLAPLFR found in part_0.0_13829.432373046875: CORRECT\n", + "VSLAADPVEEIK found in part_0.0_13829.432373046875: CORRECT\n", + "VSLDDPEALTK found in part_0.0_13829.432373046875: CORRECT\n", + "VSLIAGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VSLIAGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VSLITSDGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VSLVYGQMNEPPGNR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide VSNASALGR NOT FOUND in any FASTA file.\n", + "VSNILAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSPAISTLQK found in part_0.0_13829.432373046875: CORRECT\n", + "VSPEIFSTSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VSQAFTVFLPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VSQALDILTYTNK found in part_0.0_13829.432373046875: CORRECT\n", + "VSQALDILTYTNK found in part_0.0_13829.432373046875: CORRECT\n", + "VSQALDILTYTNKK found in part_0.0_13829.432373046875: CORRECT\n", + "VSQALDILTYTNKK found in part_0.0_13829.432373046875: CORRECT\n", + "VSQASDSYYYR found in part_0.0_13829.432373046875: CORRECT\n", + "VSQLHSQAIK found in part_0.0_13829.432373046875: CORRECT\n", + "VSQWLVEYTQQR found in part_0.0_13829.432373046875: CORRECT\n", + "VSSFHASFTQK found in part_0.0_13829.432373046875: CORRECT\n", + "VSSSEGVTVGPVLMGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSSSEGVTVGPVLMGVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSSSEGVTVGPVLMGVAKPVHVLTPIASVR found in part_0.0_13829.432373046875: CORRECT\n", + "VSSSEGVTVGPVLMGVAKPVHVLTPIASVR found in part_0.0_13829.432373046875: CORRECT\n", + "VSTEVDAR found in part_0.0_13829.432373046875: CORRECT\n", + "VSTGSLIMVFEVAGEAGAAAPAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VSTLDLENLPR found in part_0.0_13829.432373046875: CORRECT\n", + "VSTLEMCR found in part_0.0_13829.432373046875: CORRECT\n", + "VSVADVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VSVPTMDAAEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "VSVSGLGDR found in part_0.0_13829.432373046875: CORRECT\n", + "VSVSGSGNVAQYAIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VSVSIFGR found in part_0.0_13829.432373046875: CORRECT\n", + "VSYFAQQLGTPYPISDK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYFGQK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYFGQK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYPIYHIDNIVK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYPIYHIDNIVK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYPIYHIDNIVKPVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYPIYHIDNIVKPVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VSYPIYHIDNIVKPVSK found in part_0.0_13829.432373046875: CORRECT\n", + "VTAEDVLKPGTADILVPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTAEDVLKPGTADILVPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTAEEVDILLR found in part_0.0_13829.432373046875: CORRECT\n", + "VTAERDPANLK found in part_0.0_13829.432373046875: CORRECT\n", + "VTAERDPANLK found in part_0.0_13829.432373046875: CORRECT\n", + "VTAIPSDFITVASTESCPFAIMANEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTALFVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTALFVDGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTALPAIADDSGLAVDVLGGAPGIYSAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTASVQVTNTGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTATYSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VTAYPLEHPLECYGYR found in part_0.0_13829.432373046875: CORRECT\n", + "VTCFVGHDIR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDAEIAEVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDAEIAEVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDALLDYGHK found in part_0.0_13829.432373046875: CORRECT\n", + "VTDEDLVVEIPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDEDLVVEIPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDIEPGLVGGTEFSNVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDIEPGLVGGTEFSNVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDIMGEIASASDEQSR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDKDYFGTGLGIAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDKDYFGTGLGIAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDPQYFGTGLGIAVRPDNK found in part_0.0_13829.432373046875: CORRECT\n", + "VTDSLAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDVADRFPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDVADRFPDR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDVIDVTIAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDVLLASHENTAQIIDAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTDYLQMGQEVPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VTDYLQMGQEVPVK found in part_0.0_13829.432373046875: CORRECT\n", + "VTEFGAMVIK found in part_0.0_13829.432373046875: CORRECT\n", + "VTEQGEMIR found in part_0.0_13829.432373046875: CORRECT\n", + "VTETYPANPNGSPNGITAVTTESGR found in part_0.0_13829.432373046875: CORRECT\n", + "VTFLGFDAATEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTFLPINQESAATK found in part_0.0_13829.432373046875: CORRECT\n", + "VTGATDLSNK found in part_0.0_13829.432373046875: CORRECT\n", + "VTGETGEAIDDLR found in part_0.0_13829.432373046875: CORRECT\n", + "VTGIVEHK found in part_0.0_13829.432373046875: CORRECT\n", + "VTGQALTVNEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTIAPDDER found in part_0.0_13829.432373046875: CORRECT\n", + "VTIDFTGSVDGEEFEGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTIEGWNGPVEIDQIK found in part_0.0_13829.432373046875: CORRECT\n", + "VTIEGWNGPVEIDQIK found in part_0.0_13829.432373046875: CORRECT\n", + "VTIHTAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTIHTARPGIVIGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTIIDPNGRPPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTIIDPNGRPPVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTINGAHNCR found in part_0.0_13829.432373046875: CORRECT\n", + "VTIPVHPIIRPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTITIAADSIETAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VTITIAADSIETAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VTKPEAGHFAK found in part_0.0_13829.432373046875: CORRECT\n", + "VTKPVFVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTLAPEMVPAEVISK found in part_0.0_13829.432373046875: CORRECT\n", + "VTLELGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VTLELSGCPIDADGFCPMDK found in part_0.0_13829.432373046875: CORRECT\n", + "VTLEPLER found in part_0.0_13829.432373046875: CORRECT\n", + "VTLGGEDVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTLNAPGR found in part_0.0_13829.432373046875: CORRECT\n", + "VTLPEFER found in part_0.0_13829.432373046875: CORRECT\n", + "VTLQEGATVEEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "VTLSGTEGALDSLR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide VTLYGIK NOT FOUND in any FASTA file.\n", + "VTMAELDDAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTNYFEFIAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTPDEVSPVTLGDNLTSNR found in part_0.0_13829.432373046875: CORRECT\n", + "VTPDEVSPVTLGDNLTSNRR found in part_0.0_13829.432373046875: CORRECT\n", + "VTPLGTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VTPLTAQETLPLVQCFGR found in part_0.0_13829.432373046875: CORRECT\n", + "VTPVGTPVTEEDFLQPGNK found in part_0.0_13829.432373046875: CORRECT\n", + "VTQLVNVEEHVEGFR found in part_0.0_13829.432373046875: CORRECT\n", + "VTQLVNVEEHVEGFR found in part_0.0_13829.432373046875: CORRECT\n", + "VTQQNASLVQESAAAAAALEEQASR found in part_0.0_13829.432373046875: CORRECT\n", + "VTSGSSLMPQK found in part_0.0_13829.432373046875: CORRECT\n", + "VTSNSVMNSFFIPR found in part_0.0_13829.432373046875: CORRECT\n", + "VTSPISGR found in part_0.0_13829.432373046875: CORRECT\n", + "VTSVEAITDTVYR found in part_0.0_13829.432373046875: CORRECT\n", + "VTSVEAITDTVYR found in part_0.0_13829.432373046875: CORRECT\n", + "VTSVLIGASR found in part_0.0_13829.432373046875: CORRECT\n", + "VTTAFTFIK found in part_0.0_13829.432373046875: CORRECT\n", + "VTTASVASDGNLAITCSR found in part_0.0_13829.432373046875: CORRECT\n", + "VTTIIQGGTSSVTALTGSTEESQF found in part_0.0_13829.432373046875: CORRECT\n", + "VTTVVIDDDVAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVDGEIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVEGHADER found in part_0.0_13829.432373046875: CORRECT\n", + "VTVEHPDK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVEHPDKLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVEHPDKLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVELTPYDLSK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVETTGIDSEITSQAGPQLVVPAMNAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVETTGIDSEITSQAGPQLVVPAMNAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVNDITETVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVPLFEGVQK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVQDAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVQSLDVVR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVSLWQGETQVASGTAPFGGEIIDER found in part_0.0_13829.432373046875: CORRECT\n", + "VTVTLECQR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVVASGVPAGLGEPVFDR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVVASGVPAGLGEPVFDR found in part_0.0_13829.432373046875: CORRECT\n", + "VTVVATGIGMDK found in part_0.0_13829.432373046875: CORRECT\n", + "VTVYGLPIVAAR found in part_0.0_13829.432373046875: CORRECT\n", + "VTYGEHVFDFGKPFEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTYGEHVFDFGKPFEK found in part_0.0_13829.432373046875: CORRECT\n", + "VTYLYLNNSK found in part_0.0_13829.432373046875: CORRECT\n", + "VVAAAIEQNYDER found in part_0.0_13829.432373046875: CORRECT\n", + "VVAAAIEQNYDER found in part_0.0_13829.432373046875: CORRECT\n", + "VVAAVEAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "VVAAVEAQLKK found in part_0.0_13829.432373046875: CORRECT\n", + "VVADAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVADDQAPAEQSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VVADFLSSVGVDR found in part_0.0_13829.432373046875: CORRECT\n", + "VVADGVNSLR found in part_0.0_13829.432373046875: CORRECT\n", + "VVADIAGVPAQINIAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVADIAGVPAQINIAEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVADLYK found in part_0.0_13829.432373046875: CORRECT\n", + "VVAENALQDALR found in part_0.0_13829.432373046875: CORRECT\n", + "VVAEYCDEQGGFIIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVAGDVVVIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVAILLNDEVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVALGSAAQDK found in part_0.0_13829.432373046875: CORRECT\n", + "VVALTGSSGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVANFLLSPDAQLR found in part_0.0_13829.432373046875: CORRECT\n", + "VVASMQDPNPQVAGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVASPGQGQQFEIQASK found in part_0.0_13829.432373046875: CORRECT\n", + "VVASPGQGQQFEIQASK found in part_0.0_13829.432373046875: CORRECT\n", + "VVATATLR found in part_0.0_13829.432373046875: CORRECT\n", + "VVATFPEDSHK found in part_0.0_13829.432373046875: CORRECT\n", + "VVATFPEDSHK found in part_0.0_13829.432373046875: CORRECT\n", + "VVAVGLPPESMSLDIPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVAVGLPPESMSLDIPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVCVGSNYAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDAAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDAAVEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDFFVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDGVGILR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDIDDAVAR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDILALGQNIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDQLAHIDLTLAQAVAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDQQNAGDPAYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDQQNAGDPAYRPMAGNFANSCAFK found in part_0.0_13829.432373046875: CORRECT\n", + "VVDTAESHSLNLTYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDTAESHSLNLTYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVDTGEEPQTTR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEALMAR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEATLSAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVEEANNVDIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEEAPAPGITPELR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEEAPAPGITPELR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEETLVSHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "VVEETLVSHLLK found in part_0.0_13829.432373046875: CORRECT\n", + "VVEHPHILDIAQQAMR found in part_0.0_13829.432373046875: CORRECT\n", + "VVEPLITLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVEVAER found in part_0.0_13829.432373046875: CORRECT\n", + "VVFCGINPGLSSAGTGFPFAHPANR found in part_0.0_13829.432373046875: CORRECT\n", + "VVFEHITTK found in part_0.0_13829.432373046875: CORRECT\n", + "VVFLPDYCVSAAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVFMASTEGGVEIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVFNEITK found in part_0.0_13829.432373046875: CORRECT\n", + "VVFSCPVLEPTGPLHTQFGYHIIK found in part_0.0_13829.432373046875: CORRECT\n", + "VVFVDESPMAVASSR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGDVIGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGDVVFEDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGGAAGLIEEVAASK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLEINANHVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLEINANHVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLELAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLEYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLPVYK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGLSTLPEIYEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGQLGQVLGPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGQLGQVLGPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVGVAGGAEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGYSQDYSNAIVEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGYSQDYSNAIVEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVGYSQDYSNAIVEAVKK found in part_0.0_13829.432373046875: CORRECT\n", + "VVHGDELGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVIAESFER found in part_0.0_13829.432373046875: CORRECT\n", + "VVIAGRPNAGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVIAISPGDSR found in part_0.0_13829.432373046875: CORRECT\n", + "VVIDESVIDGQSK found in part_0.0_13829.432373046875: CORRECT\n", + "VVILYPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVINKDTTTIIDGVGEEAAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVINKDTTTIIDGVGEEAAIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVISGLQK found in part_0.0_13829.432373046875: CORRECT\n", + "VVITPGEPAGIGPDLVVQLAQR found in part_0.0_13829.432373046875: CORRECT\n", + "VVIVPVEGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVLADINESMLK found in part_0.0_13829.432373046875: CORRECT\n", + "VVLASNGSQVTVSPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVLATGNVGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVLESLGSIK found in part_0.0_13829.432373046875: CORRECT\n", + "VVLPEGEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "VVLQAATDHHLEICGGGTHPFQK found in part_0.0_13829.432373046875: CORRECT\n", + "VVLTEEER found in part_0.0_13829.432373046875: CORRECT\n", + "VVLYGSGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVMIPVS found in part_0.0_13829.432373046875: CORRECT\n", + "VVMTEELLPAPIPASK found in part_0.0_13829.432373046875: CORRECT\n", + "VVNFEGTPDMIGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVNIASYQVSPNDVVSIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVNIASYQVSPNDVVSIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVNIASYQVSPNDVVSIR found in part_0.0_13829.432373046875: CORRECT\n", + "VVNLQQAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVNPELHK found in part_0.0_13829.432373046875: CORRECT\n", + "VVNTLGAPIDGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVPDSFTHGTSQQR found in part_0.0_13829.432373046875: CORRECT\n", + "VVPEAMEKPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVPGYAHR found in part_0.0_13829.432373046875: CORRECT\n", + "VVPLLQQR found in part_0.0_13829.432373046875: CORRECT\n", + "VVPPAAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVSDYLAK found in part_0.0_13829.432373046875: CORRECT\n", + "VVSGGTDNHLFLVDLVDK found in part_0.0_13829.432373046875: CORRECT\n", + "VVSGGTDNHLFLVDLVDK found in part_0.0_13829.432373046875: CORRECT\n", + "VVSLIVPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVSLPSTDIFDAQDEEYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVSMPSTDAFDK found in part_0.0_13829.432373046875: CORRECT\n", + "VVSMPSTDAFDKQDAAYR found in part_0.0_13829.432373046875: CORRECT\n", + "VVSMVEFEK found in part_0.0_13829.432373046875: CORRECT\n", + "VVSQITR found in part_0.0_13829.432373046875: CORRECT\n", + "VVSTGGELNK found in part_0.0_13829.432373046875: CORRECT\n", + "VVTFRPGQK found in part_0.0_13829.432373046875: CORRECT\n", + "VVTLEDSR found in part_0.0_13829.432373046875: CORRECT\n", + "VVTLSGFVESQAQAEEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVTLSGFVESQAQAEEAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVTNALLTR found in part_0.0_13829.432373046875: CORRECT\n", + "VVVETPVGLNER found in part_0.0_13829.432373046875: CORRECT\n", + "VVVGDPAQEGVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVGQEPACVK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVLGGGDTAMDCVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVVLLSHPANPR found in part_0.0_13829.432373046875: CORRECT\n", + "VVVLSNTNR found in part_0.0_13829.432373046875: CORRECT\n", + "VVVPAAIAPEINDK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVPAQGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVPAQGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVTRPGGEQGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVTRPGGEQGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVVELEEEGIK found in part_0.0_13829.432373046875: CORRECT\n", + "VVVYDMPGTTR found in part_0.0_13829.432373046875: CORRECT\n", + "VVWPDLDDAQR found in part_0.0_13829.432373046875: CORRECT\n", + "VVYAGNALR found in part_0.0_13829.432373046875: CORRECT\n", + "VVYAQSALGAYSSVHNIIADK found in part_0.0_13829.432373046875: CORRECT\n", + "VVYDSVGR found in part_0.0_13829.432373046875: CORRECT\n", + "VVYDVFDSNEVLEGK found in part_0.0_13829.432373046875: CORRECT\n", + "VVYGDPQLTAHFDAVR found in part_0.0_13829.432373046875: CORRECT\n", + "VVYVCSPNNPTGQLINPQDFR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide VWLANPER NOT FOUND in any FASTA file.\n", + "VWLEAGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VWNITEGSDDER found in part_0.0_13829.432373046875: CORRECT\n", + "VWPSILQQIAIAK found in part_0.0_13829.432373046875: CORRECT\n", + "VWTGGGDEAALAR found in part_0.0_13829.432373046875: CORRECT\n", + "VWVVEGSK found in part_0.0_13829.432373046875: CORRECT\n", + "VYAADQLFATLDPTLR found in part_0.0_13829.432373046875: CORRECT\n", + "VYAAIEAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VYAGNEHNHAAQQPQVLDI found in part_0.0_13829.432373046875: CORRECT\n", + "VYALNEDLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "VYDALEVQNGNER found in part_0.0_13829.432373046875: CORRECT\n", + "VYDALEVQNGNER found in part_0.0_13829.432373046875: CORRECT\n", + "VYDALYQTITHGAPNYVK found in part_0.0_13829.432373046875: CORRECT\n", + "VYDPAEQSDGYR found in part_0.0_13829.432373046875: CORRECT\n", + "VYEQFLPK found in part_0.0_13829.432373046875: CORRECT\n", + "VYESQDDAVEAILGGK found in part_0.0_13829.432373046875: CORRECT\n", + "VYEYNADSASCHTEAGLILER found in part_0.0_13829.432373046875: CORRECT\n", + "VYFAADEQTLLK found in part_0.0_13829.432373046875: CORRECT\n", + "VYFEKPR found in part_0.0_13829.432373046875: CORRECT\n", + "VYGEDPHGLSPR found in part_0.0_13829.432373046875: CORRECT\n", + "VYGENACQALFQSR found in part_0.0_13829.432373046875: CORRECT\n", + "VYGENACQALFQSRPEAIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VYGEVATTSSHELAMIVR found in part_0.0_13829.432373046875: CORRECT\n", + "VYGGEADAADK found in part_0.0_13829.432373046875: CORRECT\n", + "VYGTPYQWGPNLLMYNTK found in part_0.0_13829.432373046875: CORRECT\n", + "VYGYNNIPDEPVQASLIMGTHR found in part_0.0_13829.432373046875: CORRECT\n", + "VYHNVANL found in part_0.0_13829.432373046875: CORRECT\n", + "VYIFENGGDK found in part_0.0_13829.432373046875: CORRECT\n", + "VYIFENGGDKK found in part_0.0_13829.432373046875: CORRECT\n", + "VYLASAAPEIR found in part_0.0_13829.432373046875: CORRECT\n", + "VYLEEHK found in part_0.0_13829.432373046875: CORRECT\n", + "VYLNPQDCSVINDEALNR found in part_0.0_13829.432373046875: CORRECT\n", + "VYLQCFDADELK found in part_0.0_13829.432373046875: CORRECT\n", + "VYLQCFDADELKR found in part_0.0_13829.432373046875: CORRECT\n", + "VYLQCFDADELKR found in part_0.0_13829.432373046875: CORRECT\n", + "VYLVIEK found in part_0.0_13829.432373046875: CORRECT\n", + "VYQAYQEACDR found in part_0.0_13829.432373046875: CORRECT\n", + "VYQLPEATR found in part_0.0_13829.432373046875: CORRECT\n", + "VYSGVVNSGDTVLNSVK found in part_0.0_13829.432373046875: CORRECT\n", + "VYSGVVNSGDTVLNSVK found in part_0.0_13829.432373046875: CORRECT\n", + "VYSNPDFIGVQLGGAVK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide VYSYTEK NOT FOUND in any FASTA file.\n", + "VYTDVSYLACAK found in part_0.0_13829.432373046875: CORRECT\n", + "VYTSPSTPVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "VYTTAPALQFYSGNFLGGTPSR found in part_0.0_13829.432373046875: CORRECT\n", + "VYVTFLNDKDEDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VYVTFLNDKDEDAVK found in part_0.0_13829.432373046875: CORRECT\n", + "VYYDLLEQR found in part_0.0_13829.432373046875: CORRECT\n", + "WAADIHITPDGR found in part_0.0_13829.432373046875: CORRECT\n", + "WAHTSVQDR found in part_0.0_13829.432373046875: CORRECT\n", + "WALALEDGK found in part_0.0_13829.432373046875: CORRECT\n", + "WAQTNTPVR found in part_0.0_13829.432373046875: CORRECT\n", + "WCYKPFEDLIQPAR found in part_0.0_13829.432373046875: CORRECT\n", + "WDAAQSLLATYIK found in part_0.0_13829.432373046875: CORRECT\n", + "WDGMLASLDSK found in part_0.0_13829.432373046875: CORRECT\n", + "WDLGDIIGAR found in part_0.0_13829.432373046875: CORRECT\n", + "WDLGDILGAK found in part_0.0_13829.432373046875: CORRECT\n", + "WDLLDVMRACYALR found in part_0.0_13829.432373046875: CORRECT\n", + "WDSLLPLPEPYVVPGGR found in part_0.0_13829.432373046875: CORRECT\n", + "WELTIPQELAYGER found in part_0.0_13829.432373046875: CORRECT\n", + "WELTIPQELAYGER found in part_0.0_13829.432373046875: CORRECT\n", + "WEQYGPELLR found in part_0.0_13829.432373046875: CORRECT\n", + "WEVSEDGK found in part_0.0_13829.432373046875: CORRECT\n", + "WFGADVTK found in part_0.0_13829.432373046875: CORRECT\n", + "WGEALIQVSQPR found in part_0.0_13829.432373046875: CORRECT\n", + "WILDHVEGSR found in part_0.0_13829.432373046875: CORRECT\n", + "WINPPFEPTIR found in part_0.0_13829.432373046875: CORRECT\n", + "WIVEAAR found in part_0.0_13829.432373046875: CORRECT\n", + "WKEGEATLAPSLDLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "WKEGEATLAPSLDLVGK found in part_0.0_13829.432373046875: CORRECT\n", + "WKPEILDGFTK found in part_0.0_13829.432373046875: CORRECT\n", + "WLAQGTIYPDVIESAASATGK found in part_0.0_13829.432373046875: CORRECT\n", + "WLDTLGSAK found in part_0.0_13829.432373046875: CORRECT\n", + "WLEANNIDYR found in part_0.0_13829.432373046875: CORRECT\n", + "WLELGLTDEEK found in part_0.0_13829.432373046875: CORRECT\n", + "WLSLPGETR found in part_0.0_13829.432373046875: CORRECT\n", + "WLVVDEVTQPTK found in part_0.0_13829.432373046875: CORRECT\n", + "WMDNPQQLNTLR found in part_0.0_13829.432373046875: CORRECT\n", + "WMIAEGYGDR found in part_0.0_13829.432373046875: CORRECT\n", + "WNDYRINIVDTPGHADFGGEVER found in part_0.0_13829.432373046875: CORRECT\n", + "WNGVTVTPK found in part_0.0_13829.432373046875: CORRECT\n", + "WNMLHPLETPR found in part_0.0_13829.432373046875: CORRECT\n", + "WPETALTR found in part_0.0_13829.432373046875: CORRECT\n", + "WPGPVTFVFPAPATTPR found in part_0.0_13829.432373046875: CORRECT\n", + "WPGTESAFQVHR found in part_0.0_13829.432373046875: CORRECT\n", + "WPLAQPFR found in part_0.0_13829.432373046875: CORRECT\n", + "WQIVNQNDR found in part_0.0_13829.432373046875: CORRECT\n", + "WSDQQLTFLMR found in part_0.0_13829.432373046875: CORRECT\n", + "WSVPLTVR found in part_0.0_13829.432373046875: CORRECT\n", + "WTADVEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "WTALAAFPGGPR found in part_0.0_13829.432373046875: CORRECT\n", + "WTDDDLYGIIR found in part_0.0_13829.432373046875: CORRECT\n", + "WTDNAEPTEDSSDYHVTTSQHAR found in part_0.0_13829.432373046875: CORRECT\n", + "WTGIPVSR found in part_0.0_13829.432373046875: CORRECT\n", + "WTQDYIAIMGGR found in part_0.0_13829.432373046875: CORRECT\n", + "WTQPGNIVTNGAYTLK found in part_0.0_13829.432373046875: CORRECT\n", + "WVEQGIGCSK found in part_0.0_13829.432373046875: CORRECT\n", + "WVGYGQDSR found in part_0.0_13829.432373046875: CORRECT\n", + "WYAEAIDK found in part_0.0_13829.432373046875: CORRECT\n", + "WYEDGTLNLAANCLDR found in part_0.0_13829.432373046875: CORRECT\n", + "WYEDGTLNLAANCLDR found in part_0.0_13829.432373046875: CORRECT\n", + "WYGPNDPVSLADVR found in part_0.0_13829.432373046875: CORRECT\n", + "WYQQLTER found in part_0.0_13829.432373046875: CORRECT\n", + "WYSQSGTPIVTVK found in part_0.0_13829.432373046875: CORRECT\n", + "YAADLSYLPLMQELEK found in part_0.0_13829.432373046875: CORRECT\n", + "YAAEHNIIVVAPDTSPR found in part_0.0_13829.432373046875: CORRECT\n", + "YAALCDVFVMDAFGTAHR found in part_0.0_13829.432373046875: CORRECT\n", + "YACADNITGK found in part_0.0_13829.432373046875: CORRECT\n", + "YACGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "YADAPAMHVAHR found in part_0.0_13829.432373046875: CORRECT\n", + "YADEGDDYPQR found in part_0.0_13829.432373046875: CORRECT\n", + "YADEVVR found in part_0.0_13829.432373046875: CORRECT\n", + "YADVGSFDYGR found in part_0.0_13829.432373046875: CORRECT\n", + "YADYLPFK found in part_0.0_13829.432373046875: CORRECT\n", + "YADYQQIQFNHDK found in part_0.0_13829.432373046875: CORRECT\n", + "YADYQQIQFNHDK found in part_0.0_13829.432373046875: CORRECT\n", + "YAEFIGK found in part_0.0_13829.432373046875: CORRECT\n", + "YAEGYPGK found in part_0.0_13829.432373046875: CORRECT\n", + "YAEGYPGK found in part_0.0_13829.432373046875: CORRECT\n", + "YAEGYPGKR found in part_0.0_13829.432373046875: CORRECT\n", + "YAEIADHLGLSAPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "YAEIADHLGLSAPGDR found in part_0.0_13829.432373046875: CORRECT\n", + "YAEIASGDLGYVPDALGCVLK found in part_0.0_13829.432373046875: CORRECT\n", + "YAFATLVR found in part_0.0_13829.432373046875: CORRECT\n", + "YAFAYGADAVYAGQPR found in part_0.0_13829.432373046875: CORRECT\n", + "YAFELAQSR found in part_0.0_13829.432373046875: CORRECT\n", + "YAGALVLGQYYK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGHTASDEVFEK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGHTASDEVFEK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGLSEQALYYIGGVIK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGQDIVSNASCTTNCLAPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGQDIVSNASCTTNCLAPLAK found in part_0.0_13829.432373046875: CORRECT\n", + "YAGVGDIIK found in part_0.0_13829.432373046875: CORRECT\n", + "YAHIGTGNFNEK found in part_0.0_13829.432373046875: CORRECT\n", + "YAIALNLER found in part_0.0_13829.432373046875: CORRECT\n", + "YAIDAEK found in part_0.0_13829.432373046875: CORRECT\n", + "YAIVANDVR found in part_0.0_13829.432373046875: CORRECT\n", + "YALCELYER found in part_0.0_13829.432373046875: CORRECT\n", + "YALGVGPLR found in part_0.0_13829.432373046875: CORRECT\n", + "YALLEIPSDK found in part_0.0_13829.432373046875: CORRECT\n", + "YALNAANAR found in part_0.0_13829.432373046875: CORRECT\n", + "YALPNVIK found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide YALTQGR NOT FOUND in any FASTA file.\n", + "YALVGDVGGTNAR found in part_0.0_13829.432373046875: CORRECT\n", + "YALVVGSDVLAR found in part_0.0_13829.432373046875: CORRECT\n", + "YAMIGDPTGALTR found in part_0.0_13829.432373046875: CORRECT\n", + "YANNDMQELEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YANPIPSR found in part_0.0_13829.432373046875: CORRECT\n", + "YAQLLSEAQQR found in part_0.0_13829.432373046875: CORRECT\n", + "YAQVDVIK found in part_0.0_13829.432373046875: CORRECT\n", + "YAQVDVIK found in part_0.0_13829.432373046875: CORRECT\n", + "YASSILALNATTGK found in part_0.0_13829.432373046875: CORRECT\n", + "YATLSGTNTPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide YAVFQSGGK NOT FOUND in any FASTA file.\n", + "Peptide YAVFQSGGK NOT FOUND in any FASTA file.\n", + "YAVLCGGGANHR found in part_0.0_13829.432373046875: CORRECT\n", + "YAVLCGGGANHR found in part_0.0_13829.432373046875: CORRECT\n", + "YAVTDAESAR found in part_0.0_13829.432373046875: CORRECT\n", + "YCDSVVCHINGYQGIQAALEK found in part_0.0_13829.432373046875: CORRECT\n", + "YCLDDIFK found in part_0.0_13829.432373046875: CORRECT\n", + "YCLGVTNPDSGIAEK found in part_0.0_13829.432373046875: CORRECT\n", + "YCMAQNYLPAIK found in part_0.0_13829.432373046875: CORRECT\n", + "YCSVALMLEK found in part_0.0_13829.432373046875: CORRECT\n", + "YCTPNVFDAK found in part_0.0_13829.432373046875: CORRECT\n", + "YCTYCVVPYTR found in part_0.0_13829.432373046875: CORRECT\n", + "YCVNSASLR found in part_0.0_13829.432373046875: CORRECT\n", + "YDAEQIVR found in part_0.0_13829.432373046875: CORRECT\n", + "YDALQGTAFTTYAVQR found in part_0.0_13829.432373046875: CORRECT\n", + "YDALVMVDDSHAVGFVGENGR found in part_0.0_13829.432373046875: CORRECT\n", + "YDAVIALGTVIR found in part_0.0_13829.432373046875: CORRECT\n", + "YDAVISGMDITPER found in part_0.0_13829.432373046875: CORRECT\n", + "YDAVLVAIGR found in part_0.0_13829.432373046875: CORRECT\n", + "YDDNFMSVVR found in part_0.0_13829.432373046875: CORRECT\n", + "YDDNIGVIILTGAGDK found in part_0.0_13829.432373046875: CORRECT\n", + "YDDVFAEVNR found in part_0.0_13829.432373046875: CORRECT\n", + "YDEAPSNVAQAVIEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YDEAPSNVAQAVIEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YDENGNPWSAYGGDFGDTPNDR found in part_0.0_13829.432373046875: CORRECT\n", + "YDFHQEPAHILMK found in part_0.0_13829.432373046875: CORRECT\n", + "YDFSTPYTISGIQALVK found in part_0.0_13829.432373046875: CORRECT\n", + "YDFSTPYTISGIQALVK found in part_0.0_13829.432373046875: CORRECT\n", + "YDGLVEQLGGR found in part_0.0_13829.432373046875: CORRECT\n", + "YDHPELIVDESNLR found in part_0.0_13829.432373046875: CORRECT\n", + "YDIPVVMDSAR found in part_0.0_13829.432373046875: CORRECT\n", + "YDIPVVVIGK found in part_0.0_13829.432373046875: CORRECT\n", + "YDLATLCQVNPELR found in part_0.0_13829.432373046875: CORRECT\n", + "YDLSAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "YDMGLFNDPYSHLGPK found in part_0.0_13829.432373046875: CORRECT\n", + "YDNHLLEDYTEEEFK found in part_0.0_13829.432373046875: CORRECT\n", + "YDNHLLEDYTEEEFK found in part_0.0_13829.432373046875: CORRECT\n", + "YDSGCGWPSFYEPVSEESIR found in part_0.0_13829.432373046875: CORRECT\n", + "YDSIVPGGR found in part_0.0_13829.432373046875: CORRECT\n", + "YDSTTLTVGAGDFR found in part_0.0_13829.432373046875: CORRECT\n", + "YDTFDEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "YDWVVSLR found in part_0.0_13829.432373046875: CORRECT\n", + "YEADLDELQIR found in part_0.0_13829.432373046875: CORRECT\n", + "YEEITASCSCGNVMK found in part_0.0_13829.432373046875: CORRECT\n", + "YEEITASCSCGNVMK found in part_0.0_13829.432373046875: CORRECT\n", + "YEGEIIQSDR found in part_0.0_13829.432373046875: CORRECT\n", + "YEGEIIQSDRPGENILLFK found in part_0.0_13829.432373046875: CORRECT\n", + "YEGFGPNGSMIIAETLTSNVNR found in part_0.0_13829.432373046875: CORRECT\n", + "YEGFGPNGSMIIAETLTSNVNR found in part_0.0_13829.432373046875: CORRECT\n", + "YEIDKESGALFVDR found in part_0.0_13829.432373046875: CORRECT\n", + "YELSSFIADFK found in part_0.0_13829.432373046875: CORRECT\n", + "YEMIDANGNLR found in part_0.0_13829.432373046875: CORRECT\n", + "YEPDEENPMLGFR found in part_0.0_13829.432373046875: CORRECT\n", + "YEPDVSAQGELILNEK found in part_0.0_13829.432373046875: CORRECT\n", + "YEPIPVQNVEPTLGIGAPTDK found in part_0.0_13829.432373046875: CORRECT\n", + "YEQEIDVR found in part_0.0_13829.432373046875: CORRECT\n", + "YEQLAEAIR found in part_0.0_13829.432373046875: CORRECT\n", + "YEQLLAAR found in part_0.0_13829.432373046875: CORRECT\n", + "YESLFAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "YETIDAPQIDDLMAR found in part_0.0_13829.432373046875: CORRECT\n", + "YETLHADR found in part_0.0_13829.432373046875: CORRECT\n", + "YEVISTLSK found in part_0.0_13829.432373046875: CORRECT\n", + "YEVNNMLLK found in part_0.0_13829.432373046875: CORRECT\n", + "YEVPVIIEAFPETLAGEK found in part_0.0_13829.432373046875: CORRECT\n", + "YFADHETGR found in part_0.0_13829.432373046875: CORRECT\n", + "YFAETTALRPDCAIIGEPTSLQPVR found in part_0.0_13829.432373046875: CORRECT\n", + "YFAHDIR found in part_0.0_13829.432373046875: CORRECT\n", + "YFASCIR found in part_0.0_13829.432373046875: CORRECT\n", + "YFATGAATPGAANADATFK found in part_0.0_13829.432373046875: CORRECT\n", + "YFDIADEYATECAEPVAEAER found in part_0.0_13829.432373046875: CORRECT\n", + "YFEELQPGDSLLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YFEELQPGDSLLTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YFFSSHVNTEGGGEASSTAIR found in part_0.0_13829.432373046875: CORRECT\n", + "YFGDGTGVGLR found in part_0.0_13829.432373046875: CORRECT\n", + "YFGTSDMEYGK found in part_0.0_13829.432373046875: CORRECT\n", + "YFNELEAENIK found in part_0.0_13829.432373046875: CORRECT\n", + "YFNLPTILTTSFETGPNGPLVPELK found in part_0.0_13829.432373046875: CORRECT\n", + "YFNVYGPR found in part_0.0_13829.432373046875: CORRECT\n", + "YFPALLTGEQVSSLK found in part_0.0_13829.432373046875: CORRECT\n", + "YFPDATILALTTNEK found in part_0.0_13829.432373046875: CORRECT\n", + "YFPDATILALTTNEK found in part_0.0_13829.432373046875: CORRECT\n", + "YFPNGVTR found in part_0.0_13829.432373046875: CORRECT\n", + "YFPVYANDGK found in part_0.0_13829.432373046875: CORRECT\n", + "YFQSDNAADK found in part_0.0_13829.432373046875: CORRECT\n", + "YFSVVIGGDDVQNK found in part_0.0_13829.432373046875: CORRECT\n", + "YFTEAGVGFVVPDDSR found in part_0.0_13829.432373046875: CORRECT\n", + "YFTLNAVSK found in part_0.0_13829.432373046875: CORRECT\n", + "YFVGEGK found in part_0.0_13829.432373046875: CORRECT\n", + "YFVTGTDTEVGK found in part_0.0_13829.432373046875: CORRECT\n", + "YFYEDFAEFDADAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YGAHGTSHFYVTQEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YGAHGTSHFYVTQEAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YGAIPINFDEDSDPAQSIIEQTAGHR found in part_0.0_13829.432373046875: CORRECT\n", + "YGCYVNPSLISQLK found in part_0.0_13829.432373046875: CORRECT\n", + "YGDAFTQPEQR found in part_0.0_13829.432373046875: CORRECT\n", + "YGDGGTDINPLYR found in part_0.0_13829.432373046875: CORRECT\n", + "YGDGITLIK found in part_0.0_13829.432373046875: CORRECT\n", + "YGDIPLPK found in part_0.0_13829.432373046875: CORRECT\n", + "YGEIATR found in part_0.0_13829.432373046875: CORRECT\n", + "YGEMDGYSAEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YGENSHQQAAFYIEENVK found in part_0.0_13829.432373046875: CORRECT\n", + "YGEPTPQALLESAMR found in part_0.0_13829.432373046875: CORRECT\n", + "YGEVIGYAVR found in part_0.0_13829.432373046875: CORRECT\n", + "YGFDAAFGGAR found in part_0.0_13829.432373046875: CORRECT\n", + "YGFDADK found in part_0.0_13829.432373046875: CORRECT\n", + "YGFIYVNK found in part_0.0_13829.432373046875: CORRECT\n", + "YGFNDFK found in part_0.0_13829.432373046875: CORRECT\n", + "YGFVASGTLNPQK found in part_0.0_13829.432373046875: CORRECT\n", + "YGGALSSVR found in part_0.0_13829.432373046875: CORRECT\n", + "YGGVAVLK found in part_0.0_13829.432373046875: CORRECT\n", + "YGIDQQETSLK found in part_0.0_13829.432373046875: CORRECT\n", + "YGIEDYLEIK found in part_0.0_13829.432373046875: CORRECT\n", + "YGIEKPYEK found in part_0.0_13829.432373046875: CORRECT\n", + "YGIPQISTGDMLR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLDPQEER found in part_0.0_13829.432373046875: CORRECT\n", + "YGLEGVITDPHTGDR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLEGVITDPHTGDR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLFSEVR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLLNDVR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLNIKPVILAADGSEPDLSQQALTEK found in part_0.0_13829.432373046875: CORRECT\n", + "YGLNSAAEMTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLPAPVGYACTTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLPAPVGYACTTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YGLSSNSGETLK found in part_0.0_13829.432373046875: CORRECT\n", + "YGPALASHAPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "YGPALASHAPQGK found in part_0.0_13829.432373046875: CORRECT\n", + "YGQAIGHIGK found in part_0.0_13829.432373046875: CORRECT\n", + "YGSDKPDLR found in part_0.0_13829.432373046875: CORRECT\n", + "YGSGGLVQGK found in part_0.0_13829.432373046875: CORRECT\n", + "YGTLPLVR found in part_0.0_13829.432373046875: CORRECT\n", + "YGTMPLNK found in part_0.0_13829.432373046875: CORRECT\n", + "YGTPPHAGLAFGLDR found in part_0.0_13829.432373046875: CORRECT\n", + "YGTPPHAGLAFGLDR found in part_0.0_13829.432373046875: CORRECT\n", + "YGTVPHSGFGLGFER found in part_0.0_13829.432373046875: CORRECT\n", + "YGTVPHSGFGLGFER found in part_0.0_13829.432373046875: CORRECT\n", + "YGVDEVER found in part_0.0_13829.432373046875: CORRECT\n", + "YGVIYAGAQK found in part_0.0_13829.432373046875: CORRECT\n", + "YGVTDLR found in part_0.0_13829.432373046875: CORRECT\n", + "YGVVEFDK found in part_0.0_13829.432373046875: CORRECT\n", + "YHDADVTAFGYEYGQLPGCPAGFK found in part_0.0_13829.432373046875: CORRECT\n", + "YHLPDAISFR found in part_0.0_13829.432373046875: CORRECT\n", + "YHLPDAISFR found in part_0.0_13829.432373046875: CORRECT\n", + "YHQMLEEQYPLQENGQILLAFPR found in part_0.0_13829.432373046875: CORRECT\n", + "YHVNFMGGDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "YHVNFMGGDLGK found in part_0.0_13829.432373046875: CORRECT\n", + "YHVNQYTGDESR found in part_0.0_13829.432373046875: CORRECT\n", + "YHVSNYQPSPMVR found in part_0.0_13829.432373046875: CORRECT\n", + "YHVSNYQPSPMVR found in part_0.0_13829.432373046875: CORRECT\n", + "YHYYATPVELVPLLEEK found in part_0.0_13829.432373046875: CORRECT\n", + "YIAETFLEDAR found in part_0.0_13829.432373046875: CORRECT\n", + "YIAGVGAEYTDAPALQR found in part_0.0_13829.432373046875: CORRECT\n", + "YICGEETALINSLEGR found in part_0.0_13829.432373046875: CORRECT\n", + "YIDDVFTEGHGTLYASDGR found in part_0.0_13829.432373046875: CORRECT\n", + "YIDIPELVANVK found in part_0.0_13829.432373046875: CORRECT\n", + "YIDMLIPR found in part_0.0_13829.432373046875: CORRECT\n", + "YIDQFVQPK found in part_0.0_13829.432373046875: CORRECT\n", + "YIDVDDLLHR found in part_0.0_13829.432373046875: CORRECT\n", + "YIDVDDLLHR found in part_0.0_13829.432373046875: CORRECT\n", + "YIEEPIK found in part_0.0_13829.432373046875: CORRECT\n", + "YIELPDAYK found in part_0.0_13829.432373046875: CORRECT\n", + "YIEQGNVFLNGK found in part_0.0_13829.432373046875: CORRECT\n", + "YIFELNPDHVLVK found in part_0.0_13829.432373046875: CORRECT\n", + "YIFELNPDHVLVK found in part_0.0_13829.432373046875: CORRECT\n", + "YIGAYTALMDGR found in part_0.0_13829.432373046875: CORRECT\n", + "YIGPEVPK found in part_0.0_13829.432373046875: CORRECT\n", + "YIGSLVADFHR found in part_0.0_13829.432373046875: CORRECT\n", + "YIGSLVADFHR found in part_0.0_13829.432373046875: CORRECT\n", + "YIGVGER found in part_0.0_13829.432373046875: CORRECT\n", + "YIGVSNETAFGVMR found in part_0.0_13829.432373046875: CORRECT\n", + "YIIDELDQICQR found in part_0.0_13829.432373046875: CORRECT\n", + "YIIDELDQICQR found in part_0.0_13829.432373046875: CORRECT\n", + "YIINETSDAVVVVDK found in part_0.0_13829.432373046875: CORRECT\n", + "YILTLLNSMR found in part_0.0_13829.432373046875: CORRECT\n", + "YINELQANPAK found in part_0.0_13829.432373046875: CORRECT\n", + "YIPEELR found in part_0.0_13829.432373046875: CORRECT\n", + "YIPEELRK found in part_0.0_13829.432373046875: CORRECT\n", + "YIPGFADSPNDTIK found in part_0.0_13829.432373046875: CORRECT\n", + "YIQDQHPEVK found in part_0.0_13829.432373046875: CORRECT\n", + "YIQGADVINR found in part_0.0_13829.432373046875: CORRECT\n", + "YISESGICSR found in part_0.0_13829.432373046875: CORRECT\n", + "YISLIYTNYEAGK found in part_0.0_13829.432373046875: CORRECT\n", + "YISMNVTQKPFDNPK found in part_0.0_13829.432373046875: CORRECT\n", + "YITECEER found in part_0.0_13829.432373046875: CORRECT\n", + "YIVALDQGTTSSR found in part_0.0_13829.432373046875: CORRECT\n", + "YIVALDQGTTSSR found in part_0.0_13829.432373046875: CORRECT\n", + "YIVIEGLEGAGK found in part_0.0_13829.432373046875: CORRECT\n", + "YIVNEVQDVYR found in part_0.0_13829.432373046875: CORRECT\n", + "YIYALGGNEAATR found in part_0.0_13829.432373046875: CORRECT\n", + "YKDLIGK found in part_0.0_13829.432373046875: CORRECT\n", + "YKQEQTPLAVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "YKQEQTPLAVIAGK found in part_0.0_13829.432373046875: CORRECT\n", + "YKVPLDEYPK found in part_0.0_13829.432373046875: CORRECT\n", + "YKVPLDEYPK found in part_0.0_13829.432373046875: CORRECT\n", + "YLAAQYGQK found in part_0.0_13829.432373046875: CORRECT\n", + "YLADAPQQDPEGNK found in part_0.0_13829.432373046875: CORRECT\n", + "YLADIYQLAR found in part_0.0_13829.432373046875: CORRECT\n", + "YLAEEHFK found in part_0.0_13829.432373046875: CORRECT\n", + "YLAEQAMDR found in part_0.0_13829.432373046875: CORRECT\n", + "YLAGDIDITESFPK found in part_0.0_13829.432373046875: CORRECT\n", + "YLAHNGEINTITGNR found in part_0.0_13829.432373046875: CORRECT\n", + "YLAHNGEINTITGNR found in part_0.0_13829.432373046875: CORRECT\n", + "YLAQTQNASDLIGGVSK found in part_0.0_13829.432373046875: CORRECT\n", + "YLATKPEGAAAR found in part_0.0_13829.432373046875: CORRECT\n", + "YLDGLADAK found in part_0.0_13829.432373046875: CORRECT\n", + "YLDGVTVR found in part_0.0_13829.432373046875: CORRECT\n", + "YLDLIANDK found in part_0.0_13829.432373046875: CORRECT\n", + "YLDLISNDESR found in part_0.0_13829.432373046875: CORRECT\n", + "YLDMAQQYQHLGPLYEVPEGLR found in part_0.0_13829.432373046875: CORRECT\n", + "YLDVSTLK found in part_0.0_13829.432373046875: CORRECT\n", + "YLEFLEEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YLEIDPLSADK found in part_0.0_13829.432373046875: CORRECT\n", + "YLELAAQDK found in part_0.0_13829.432373046875: CORRECT\n", + "YLENPANAQAFAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "YLETYFR found in part_0.0_13829.432373046875: CORRECT\n", + "YLFAENPVVHLDTATSGSK found in part_0.0_13829.432373046875: CORRECT\n", + "YLFENFAVR found in part_0.0_13829.432373046875: CORRECT\n", + "YLGGEELTEAEIK found in part_0.0_13829.432373046875: CORRECT\n", + "YLGLPSEEAFK found in part_0.0_13829.432373046875: CORRECT\n", + "YLGSDYVVK found in part_0.0_13829.432373046875: CORRECT\n", + "YLGSFDAQSPEK found in part_0.0_13829.432373046875: CORRECT\n", + "YLHLADK found in part_0.0_13829.432373046875: CORRECT\n", + "YLIAAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "YLIAAGQK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLANDVAK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLASLDQSLK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLASLDQSLKR found in part_0.0_13829.432373046875: CORRECT\n", + "YLLCNADEMEPGTYK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLDQGYHVIPVSPK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLDQGYHVIPVSPK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLDSVSR found in part_0.0_13829.432373046875: CORRECT\n", + "YLLLPNNPNMVIVDTK found in part_0.0_13829.432373046875: CORRECT\n", + "YLLLQQFSNPANPEIHEK found in part_0.0_13829.432373046875: CORRECT\n", + "YLMGVGKPEDLVEGVR found in part_0.0_13829.432373046875: CORRECT\n", + "YLNFNQLSQYTEK found in part_0.0_13829.432373046875: CORRECT\n", + "YLNGDNVR found in part_0.0_13829.432373046875: CORRECT\n", + "YLNGIPQDSR found in part_0.0_13829.432373046875: CORRECT\n", + "YLNSPETDIFHK found in part_0.0_13829.432373046875: CORRECT\n", + "YLPESPNQYASK found in part_0.0_13829.432373046875: CORRECT\n", + "YLPGLIK found in part_0.0_13829.432373046875: CORRECT\n", + "YLPTDNGK found in part_0.0_13829.432373046875: CORRECT\n", + "YLQDYGMGPETPLGEPK found in part_0.0_13829.432373046875: CORRECT\n", + "YLQEGGTFK found in part_0.0_13829.432373046875: CORRECT\n", + "YLQTQPLVK found in part_0.0_13829.432373046875: CORRECT\n", + "YLSLLPYTDR found in part_0.0_13829.432373046875: CORRECT\n", + "YLSLLTGELPR found in part_0.0_13829.432373046875: CORRECT\n", + "YLSTGVFGEEHFSQGAGI found in part_0.0_13829.432373046875: CORRECT\n", + "YLTEQGFQVR found in part_0.0_13829.432373046875: CORRECT\n", + "YLTGNQLTEADIR found in part_0.0_13829.432373046875: CORRECT\n", + "YLVFMPGASHVGVSQR found in part_0.0_13829.432373046875: CORRECT\n", + "YLVIQGIK found in part_0.0_13829.432373046875: CORRECT\n", + "YLYGVKPGATR found in part_0.0_13829.432373046875: CORRECT\n", + "YLYGVKPGATR found in part_0.0_13829.432373046875: CORRECT\n", + "YLYSPEGQEIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YLYSVTSPDDSLR found in part_0.0_13829.432373046875: CORRECT\n", + "YLYVGVRPEFR found in part_0.0_13829.432373046875: CORRECT\n", + "YMELGPR found in part_0.0_13829.432373046875: CORRECT\n", + "YMHSLER found in part_0.0_13829.432373046875: CORRECT\n", + "YMQGQVTADVSQMAEDQHLLAAHCDAK found in part_0.0_13829.432373046875: CORRECT\n", + "YNADFTGEK found in part_0.0_13829.432373046875: CORRECT\n", + "YNAVIDQMLEEGTAYK found in part_0.0_13829.432373046875: CORRECT\n", + "YNAVIDQMLEEGTAYK found in part_0.0_13829.432373046875: CORRECT\n", + "YNEAFSAIYPK found in part_0.0_13829.432373046875: CORRECT\n", + "YNEEHGITPQGLNK found in part_0.0_13829.432373046875: CORRECT\n", + "YNGPELTLTAFEPPASS found in part_0.0_13829.432373046875: CORRECT\n", + "YNGTVNHYFLCDR found in part_0.0_13829.432373046875: CORRECT\n", + "YNLAAMIAR found in part_0.0_13829.432373046875: CORRECT\n", + "YNLELCEEISK found in part_0.0_13829.432373046875: CORRECT\n", + "YNMPVIAEAVER found in part_0.0_13829.432373046875: CORRECT\n", + "YNPDALMTDLPK found in part_0.0_13829.432373046875: CORRECT\n", + "YNPDVDDAPR found in part_0.0_13829.432373046875: CORRECT\n", + "YNPFADLK found in part_0.0_13829.432373046875: CORRECT\n", + "YNPPNGGPADTNVTK found in part_0.0_13829.432373046875: CORRECT\n", + "YNSDALR found in part_0.0_13829.432373046875: CORRECT\n", + "YNTLGGVCLNVGCIPSK found in part_0.0_13829.432373046875: CORRECT\n", + "YNTLGGVCLNVGCIPSK found in part_0.0_13829.432373046875: CORRECT\n", + "YNTPAQAADAMR found in part_0.0_13829.432373046875: CORRECT\n", + "YNVELIR found in part_0.0_13829.432373046875: CORRECT\n", + "YNYSGPR found in part_0.0_13829.432373046875: CORRECT\n", + "YPADVPTEINPDR found in part_0.0_13829.432373046875: CORRECT\n", + "YPDHLIIGSDQVCVLDGEITGKPLTEENAR found in part_0.0_13829.432373046875: CORRECT\n", + "YPDLDAK found in part_0.0_13829.432373046875: CORRECT\n", + "YPDLQIIGGNVATAAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "YPDLQIIGGNVATAAGAR found in part_0.0_13829.432373046875: CORRECT\n", + "YPDVQFHQTR found in part_0.0_13829.432373046875: CORRECT\n", + "YPDVQFHQTR found in part_0.0_13829.432373046875: CORRECT\n", + "YPEYNFYR found in part_0.0_13829.432373046875: CORRECT\n", + "YPFLLSNGNR found in part_0.0_13829.432373046875: CORRECT\n", + "YPFLTESLAR found in part_0.0_13829.432373046875: CORRECT\n", + "YPGVLEYMER found in part_0.0_13829.432373046875: CORRECT\n", + "YPIVRPQDVQVEEQR found in part_0.0_13829.432373046875: CORRECT\n", + "YPLADGAK found in part_0.0_13829.432373046875: CORRECT\n", + "YPLISELK found in part_0.0_13829.432373046875: CORRECT\n", + "YPLISELK found in part_0.0_13829.432373046875: CORRECT\n", + "YPPEGIR found in part_0.0_13829.432373046875: CORRECT\n", + "YPQADSLAEYLK found in part_0.0_13829.432373046875: CORRECT\n", + "YPQATFTSTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "YPQLTIR found in part_0.0_13829.432373046875: CORRECT\n", + "YPSCILR found in part_0.0_13829.432373046875: CORRECT\n", + "YPSEPQENLLYFMEK found in part_0.0_13829.432373046875: CORRECT\n", + "YPSLELVEYK found in part_0.0_13829.432373046875: CORRECT\n", + "YPTLALVDSTQELR found in part_0.0_13829.432373046875: CORRECT\n", + "YPTQSPMPLTVACASPELASGK found in part_0.0_13829.432373046875: CORRECT\n", + "YPTQSPMPLTVACASPELASGK found in part_0.0_13829.432373046875: CORRECT\n", + "YPVDAQLK found in part_0.0_13829.432373046875: CORRECT\n", + "YPVDVYTGK found in part_0.0_13829.432373046875: CORRECT\n", + "YPVLTESSPEK found in part_0.0_13829.432373046875: CORRECT\n", + "YPVTPGVATHVTDSR found in part_0.0_13829.432373046875: CORRECT\n", + "YQAFTQADLTNLR found in part_0.0_13829.432373046875: CORRECT\n", + "YQAFTQADLTNLR found in part_0.0_13829.432373046875: CORRECT\n", + "YQALSECVK found in part_0.0_13829.432373046875: CORRECT\n", + "YQDALVELAELR found in part_0.0_13829.432373046875: CORRECT\n", + "YQDALVELAELR found in part_0.0_13829.432373046875: CORRECT\n", + "YQDGMLITPTGIPYEK found in part_0.0_13829.432373046875: CORRECT\n", + "YQFTDILLGPR found in part_0.0_13829.432373046875: CORRECT\n", + "YQGEYVAGLAVK found in part_0.0_13829.432373046875: CORRECT\n", + "YQGEYVAGLAVK found in part_0.0_13829.432373046875: CORRECT\n", + "YQGGHNAGHTLVINGEK found in part_0.0_13829.432373046875: CORRECT\n", + "YQGGHNAGHTLVINGEK found in part_0.0_13829.432373046875: CORRECT\n", + "YQGIPVGGYTK found in part_0.0_13829.432373046875: CORRECT\n", + "YQGLVAQIELLK found in part_0.0_13829.432373046875: CORRECT\n", + "YQISVKPQGYQQAVTVK found in part_0.0_13829.432373046875: CORRECT\n", + "YQLANCYMGR found in part_0.0_13829.432373046875: CORRECT\n", + "YQLDTQALSLR found in part_0.0_13829.432373046875: CORRECT\n", + "YQLGSEHAER found in part_0.0_13829.432373046875: CORRECT\n", + "YQLNPQGMDTSNMDVFVQQYADTVK found in part_0.0_13829.432373046875: CORRECT\n", + "YQLTALEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YQLTELAR found in part_0.0_13829.432373046875: CORRECT\n", + "YQLYGELALAQR found in part_0.0_13829.432373046875: CORRECT\n", + "YQNTGQVCAAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YQPDFQDLPAQAADR found in part_0.0_13829.432373046875: CORRECT\n", + "YQPLSEYEAQR found in part_0.0_13829.432373046875: CORRECT\n", + "YQQEPGVSGPLK found in part_0.0_13829.432373046875: CORRECT\n", + "YQSLVDMFEQSVAR found in part_0.0_13829.432373046875: CORRECT\n", + "YQTLLDSIQGR found in part_0.0_13829.432373046875: CORRECT\n", + "YQTTTIVNTDDAIPGSGMFVR found in part_0.0_13829.432373046875: CORRECT\n", + "YQVDINNLTQR found in part_0.0_13829.432373046875: CORRECT\n", + "YQVETQR found in part_0.0_13829.432373046875: CORRECT\n", + "YRAEELAEER found in part_0.0_13829.432373046875: CORRECT\n", + "YREDPVR found in part_0.0_13829.432373046875: CORRECT\n", + "YREEVPCYCGK found in part_0.0_13829.432373046875: CORRECT\n", + "YREPVLVSGTDGVGTK found in part_0.0_13829.432373046875: CORRECT\n", + "YRPETDMADLDNFDAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YRPETDMADLDNFDSAK found in part_0.0_13829.432373046875: CORRECT\n", + "YSANNYVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDGFGPK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDGSANNLTHK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDGSANNLTHK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDHIALPVEIEK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDHIALPVEIEK found in part_0.0_13829.432373046875: CORRECT\n", + "YSDNGSTLSAVNFPEVSLPLHGGR found in part_0.0_13829.432373046875: CORRECT\n", + "YSDVGLVTPLR found in part_0.0_13829.432373046875: CORRECT\n", + "YSEALDVAR found in part_0.0_13829.432373046875: CORRECT\n", + "YSFFCNSGTESVEAALK found in part_0.0_13829.432373046875: CORRECT\n", + "YSFFCNSGTESVEAALK found in part_0.0_13829.432373046875: CORRECT\n", + "YSFGTFR found in part_0.0_13829.432373046875: CORRECT\n", + "YSGFLNNYSDLK found in part_0.0_13829.432373046875: CORRECT\n", + "YSIGQPFVYPR found in part_0.0_13829.432373046875: CORRECT\n", + "YSIIQTK found in part_0.0_13829.432373046875: CORRECT\n", + "YSLDADDAACAIER found in part_0.0_13829.432373046875: CORRECT\n", + "YSLYCAVIVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPDYFTFGDVQHDK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPDYFTFGDVQHDK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPDYFTFGDVQHDKDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPDYFTFGDVQHDKDTVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPELDSHGQYSLPASGK found in part_0.0_13829.432373046875: CORRECT\n", + "YSPVEGADANALPDQVPEEVKEER found in part_0.0_13829.432373046875: CORRECT\n", + "YSQDLATKPR found in part_0.0_13829.432373046875: CORRECT\n", + "YSQNAPLDMYK found in part_0.0_13829.432373046875: CORRECT\n", + "YSQQQLMETSHR found in part_0.0_13829.432373046875: CORRECT\n", + "YSQQQLMETSHR found in part_0.0_13829.432373046875: CORRECT\n", + "YSSEQFR found in part_0.0_13829.432373046875: CORRECT\n", + "YSSLIFTPR found in part_0.0_13829.432373046875: CORRECT\n", + "YSSNIALMCGSGCAGAHK found in part_0.0_13829.432373046875: CORRECT\n", + "YSSRPPEILLTHPLPESR found in part_0.0_13829.432373046875: CORRECT\n", + "YSSTISDPDTNVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSTPLLYLK found in part_0.0_13829.432373046875: CORRECT\n", + "YSVEPNGMR found in part_0.0_13829.432373046875: CORRECT\n", + "YSVMTSVK found in part_0.0_13829.432373046875: CORRECT\n", + "YSVSDMINR found in part_0.0_13829.432373046875: CORRECT\n", + "YSYEASLMALHDR found in part_0.0_13829.432373046875: CORRECT\n", + "YSYQPHLVAPSALQAPINR found in part_0.0_13829.432373046875: CORRECT\n", + "YSYVDENGETK found in part_0.0_13829.432373046875: CORRECT\n", + "YTAAITGAEGK found in part_0.0_13829.432373046875: CORRECT\n", + "YTAGSGDPLEHESVK found in part_0.0_13829.432373046875: CORRECT\n", + "YTAGSGDPLEHESVK found in part_0.0_13829.432373046875: CORRECT\n", + "YTCPQYK found in part_0.0_13829.432373046875: CORRECT\n", + "YTCPQYK found in part_0.0_13829.432373046875: CORRECT\n", + "YTDIGSALLK found in part_0.0_13829.432373046875: CORRECT\n", + "YTDPQLTTVR found in part_0.0_13829.432373046875: CORRECT\n", + "YTDTPAGAALVAAGPK found in part_0.0_13829.432373046875: CORRECT\n", + "YTDTPAGAALVAAGPK found in part_0.0_13829.432373046875: CORRECT\n", + "YTEADQYGTTVIAGEDAQK found in part_0.0_13829.432373046875: CORRECT\n", + "YTENGPEGLVTGK found in part_0.0_13829.432373046875: CORRECT\n", + "YTFDGETVTLSPSQGVNQLHGGPEGFDK found in part_0.0_13829.432373046875: CORRECT\n", + "YTIDLTER found in part_0.0_13829.432373046875: CORRECT\n", + "YTINHAR found in part_0.0_13829.432373046875: CORRECT\n", + "YTITFSR found in part_0.0_13829.432373046875: CORRECT\n", + "YTLAGTEVSALLGR found in part_0.0_13829.432373046875: CORRECT\n", + "YTLGAVNSVIQR found in part_0.0_13829.432373046875: CORRECT\n", + "YTLPELLDNSQQLIHEAR found in part_0.0_13829.432373046875: CORRECT\n", + "YTLPVLILTAR found in part_0.0_13829.432373046875: CORRECT\n", + "YTLTCTYNDLASVR found in part_0.0_13829.432373046875: CORRECT\n", + "YTPDVVENICGTPK found in part_0.0_13829.432373046875: CORRECT\n", + "YTPNVADATEAQIQQATK found in part_0.0_13829.432373046875: CORRECT\n", + "YTQGVDEQGNAIDVVDPMLAEFQK found in part_0.0_13829.432373046875: CORRECT\n", + "YTQIAPTSR found in part_0.0_13829.432373046875: CORRECT\n", + "YTQLIER found in part_0.0_13829.432373046875: CORRECT\n", + "YTQQHESDELILPPLAEA found in part_0.0_13829.432373046875: CORRECT\n", + "YTSPDPCAGVADK found in part_0.0_13829.432373046875: CORRECT\n", + "YTSSVVIDESVIQGIK found in part_0.0_13829.432373046875: CORRECT\n", + "YTSVDQLK found in part_0.0_13829.432373046875: CORRECT\n", + "YTTHEQFK found in part_0.0_13829.432373046875: CORRECT\n", + "YTTQYEAK found in part_0.0_13829.432373046875: CORRECT\n", + "YTTYIPVQDPK found in part_0.0_13829.432373046875: CORRECT\n", + "YTVTLPDGTK found in part_0.0_13829.432373046875: CORRECT\n", + "YVAGQPAER found in part_0.0_13829.432373046875: CORRECT\n", + "YVAGVLGPTNR found in part_0.0_13829.432373046875: CORRECT\n", + "YVALQFLR found in part_0.0_13829.432373046875: CORRECT\n", + "YVAPYVNR found in part_0.0_13829.432373046875: CORRECT\n", + "YVDEFVR found in part_0.0_13829.432373046875: CORRECT\n", + "YVDNFGK found in part_0.0_13829.432373046875: CORRECT\n", + "YVDYVLGILK found in part_0.0_13829.432373046875: CORRECT\n", + "YVEAVGR found in part_0.0_13829.432373046875: CORRECT\n", + "YVEDNYATK found in part_0.0_13829.432373046875: CORRECT\n", + "YVESLSAYAR found in part_0.0_13829.432373046875: CORRECT\n", + "YVESQVYQGVVENLASEQAAR found in part_0.0_13829.432373046875: CORRECT\n", + "YVFEHADICDAPAMAR found in part_0.0_13829.432373046875: CORRECT\n", + "YVFTDVQLR found in part_0.0_13829.432373046875: CORRECT\n", + "YVGGGLNQHIESAR found in part_0.0_13829.432373046875: CORRECT\n", + "YVGNIDEDGVCR found in part_0.0_13829.432373046875: CORRECT\n", + "YVILPLALR found in part_0.0_13829.432373046875: CORRECT\n", + "YVILPLVNR found in part_0.0_13829.432373046875: CORRECT\n", + "YVLAGEGNK found in part_0.0_13829.432373046875: CORRECT\n", + "YVLAGEGNK found in part_0.0_13829.432373046875: CORRECT\n", + "YVLDNGQGGSGQR found in part_0.0_13829.432373046875: CORRECT\n", + "YVLDSDE found in part_0.0_13829.432373046875: CORRECT\n", + "YVPHFKPGK found in part_0.0_13829.432373046875: CORRECT\n", + "YVPLVLR found in part_0.0_13829.432373046875: CORRECT\n", + "YVPPEGQSLR found in part_0.0_13829.432373046875: CORRECT\n", + "YVPSGDVPDVVQEAFIK found in part_0.0_13829.432373046875: CORRECT\n", + "YVPVEGYAPWLVSGNASELER found in part_0.0_13829.432373046875: CORRECT\n", + "YVQIDPEMVTVQLEQK found in part_0.0_13829.432373046875: CORRECT\n", + "YVQIDPEMVTVQLEQK found in part_0.0_13829.432373046875: CORRECT\n", + "YVSDSFR found in part_0.0_13829.432373046875: CORRECT\n", + "YVVHNVAHR found in part_0.0_13829.432373046875: CORRECT\n", + "YVVKPIFSR found in part_0.0_13829.432373046875: CORRECT\n", + "YWLVDPLDGTK found in part_0.0_13829.432373046875: CORRECT\n", + "YYAIDFTLDEIK found in part_0.0_13829.432373046875: CORRECT\n", + "YYAVAQIQR found in part_0.0_13829.432373046875: CORRECT\n", + "YYCLSMLPYPSGR found in part_0.0_13829.432373046875: CORRECT\n", + "YYCLSMLPYPSGR found in part_0.0_13829.432373046875: CORRECT\n", + "YYDAETVR found in part_0.0_13829.432373046875: CORRECT\n", + "YYDELPTEGNEHGQAFR found in part_0.0_13829.432373046875: CORRECT\n", + "YYEQNDESALPR found in part_0.0_13829.432373046875: CORRECT\n", + "Peptide YYGFDIGGTK NOT FOUND in any FASTA file.\n", + "YYGPASQVVPEFVEK found in part_0.0_13829.432373046875: CORRECT\n", + "YYGYVTQPWFIGHSQR found in part_0.0_13829.432373046875: CORRECT\n", + "YYLATGGGDISQAEVLLK found in part_0.0_13829.432373046875: CORRECT\n", + "YYLGNADEIAAK found in part_0.0_13829.432373046875: CORRECT\n", + "YYLISAASGLGVK found in part_0.0_13829.432373046875: CORRECT\n", + "YYLNAGVPIEIK found in part_0.0_13829.432373046875: CORRECT\n", + "YYPAEDAK found in part_0.0_13829.432373046875: CORRECT\n", + "YYPGSPLIAR found in part_0.0_13829.432373046875: CORRECT\n", + "YYQGTPSPVK found in part_0.0_13829.432373046875: CORRECT\n", + "YYSVIYNLIDEVK found in part_0.0_13829.432373046875: CORRECT\n", + "\n", + "\n", + "\n", + "Summary:\n", + "Sequences found in matching FASTA: 13741\n", + "Sequences found in non-matching FASTA: 0\n", + "Sequences not found in any FASTA: 235\n", + "\n" + ] + } + ], + "source": [ + "incorrect_matches, not_found_matches = check_diann_id_presence_in_fasta(\n", + " diann_results, fasta_dict\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "id": "d4e57b3c", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_RT_error(incorrect_matches):\n", + " # Plot the Observed RT versus the bounds in which the peptide was included in the fasta\n", + " if not incorrect_matches:\n", + " print(\"No incorrect matches to plot\")\n", + " return\n", + "\n", + " RTs = [match[1] for match in incorrect_matches]\n", + " bounds = [\n", + " (match[2].split(\"/\")[7].split(\"_\")[1], match[2].split(\"/\")[7].split(\"_\")[2])\n", + " for match in incorrect_matches\n", + " ]\n", + "\n", + " plt.figure(figsize=(12, 8))\n", + "\n", + " # Use only a sample of 100 incorrect matches for plotting\n", + " sample_indices = range(min(100, len(incorrect_matches)))\n", + " RTs_sample = [RTs[i] for i in sample_indices]\n", + " bounds_sample = [bounds[i] for i in sample_indices]\n", + "\n", + " for i, (rt, (bound_start, bound_end)) in enumerate(zip(RTs_sample, bounds_sample)):\n", + " bound_start = float(bound_start)\n", + " bound_end = float(bound_end)\n", + "\n", + " # Plot bounds as horizontal lines\n", + " plt.plot(\n", + " [bound_start, bound_end],\n", + " [i, i],\n", + " color=\"red\",\n", + " linewidth=3,\n", + " label=\"RT bounds\" if i == 0 else \"\",\n", + " )\n", + "\n", + " # Plot vertical lines at bound start and end\n", + " plt.plot(\n", + " [bound_start, bound_start],\n", + " [i - 0.2, i + 0.2],\n", + " color=\"red\",\n", + " linewidth=2,\n", + " alpha=0.7,\n", + " )\n", + " plt.plot(\n", + " [bound_end, bound_end],\n", + " [i - 0.2, i + 0.2],\n", + " color=\"red\",\n", + " linewidth=2,\n", + " alpha=0.7,\n", + " )\n", + "\n", + " # Plot observed RT as blue dot\n", + " plt.scatter(\n", + " rt, i, color=\"blue\", s=50, zorder=5, label=\"Observed RT\" if i == 0 else \"\"\n", + " )\n", + "\n", + " # Add connecting line to show distance to closest bound\n", + " if rt < bound_start:\n", + " plt.plot(\n", + " [rt, bound_start],\n", + " [i, i],\n", + " color=\"orange\",\n", + " linewidth=2,\n", + " linestyle=\"--\",\n", + " alpha=0.7,\n", + " label=\"Distance to bound\" if i == 0 else \"\",\n", + " )\n", + " elif rt > bound_end:\n", + " plt.plot(\n", + " [rt, bound_end],\n", + " [i, i],\n", + " color=\"orange\",\n", + " linewidth=2,\n", + " linestyle=\"--\",\n", + " alpha=0.7,\n", + " )\n", + "\n", + " plt.ylabel(\"Peptide index\")\n", + " plt.xlabel(\"Retention Time (RT)\")\n", + " plt.title(\n", + " f\"Observed RTs of DIA-NN ids that are not present in vectorized FASTA of that RT region vs closest distance to RT region in which it is included in FASTA ({len(incorrect_matches)} peptides)\"\n", + " )\n", + " plt.legend()\n", + " plt.grid(True, alpha=0.3)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " # Print some statistics\n", + " distances = []\n", + " for rt, (bound_start, bound_end) in zip(RTs, bounds):\n", + " bound_start = float(bound_start)\n", + " bound_end = float(bound_end)\n", + " if rt < bound_start:\n", + " distances.append(bound_start - rt)\n", + " elif rt > bound_end:\n", + " distances.append(rt - bound_end)\n", + " else:\n", + " distances.append(0) # This shouldn't happen for incorrect matches\n", + "\n", + " if distances:\n", + " print(f\"Average distance from bounds: {sum(distances)/len(distances):.2f} s\")\n", + " print(f\"Maximum distance from bounds: {max(distances):.2f} s\")\n", + " print(f\"Minimum distance from bounds: {min(distances):.2f} s\")" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "id": "59931972", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXUAAAMWCAYAAAC+22WXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlcFPX/B/DXHrAsIiAIIl4gnnmfqXineQuaeeSvxCxRvK+y1Dyw1DxLQ81Krcwz0ay8tRI1U0vzyivNvqWCKCBy73x+f2y7sgfsLC6nr+fjsQ/Yz3xm5rOzszOfec9nPh+FEEKAiIiIiIiIiIiIiIoFZWEXgIiIiIiIiIiIiIjkY1CXiIiIiIiIiIiIqBhhUJeIiIiIiIiIiIioGGFQl4iIiIiIiIiIiKgYYVCXiIiIiIiIiIiIqBhhUJeIiIiIiIiIiIioGGFQl4iIiIiIiIiIiKgYYVCXiIiIiIiIiIiIqBhhUJeIiIiIiIiIiIioGMn3oO6sWbOgUChw7969/F5VkaNQKDBr1qzCLobD3L17F/369YO3tzcUCgWWLVtW2EUqsm7evAmFQoF169bZzBsWFoaAgIB8LU9YWBjc3NzydR1E9rDnN/I0K4zziOG8TfIkJyfjtddeg5+fHxQKBcaPH2/3Mp7mulJ+CggIQFhYWGEXo1CsW7cOCoUCN2/eLOyiFIgffvgBCoUCP/zwgzGtIOpXVHIU5rmvKFwzGuplixYtspk3r9sqICAAPXv2zEvxADz5dnLkMSG/v7P27dujffv2RX6ZcrYD6/x5s2XLFnh5eSE5Obmwi1KiyT0u5Pd+PHXqVDz77LN5mjdPQd0LFy7g//7v/1ChQgVoNBr4+/tj8ODBuHDhQp4K8TQz7ByGl1KphJeXF7p164bjx48DeFwxt/XK74rrhAkTsHfvXrz11lv44osv0LVr1xzzZi+XWq2Gl5cXmjRpgnHjxuHixYsW+W1VJL7//nsoFAr4+/tDkiTZZTZsOxcXF/zzzz8W09u3b4+6deuapAUEBEChUGDMmDEW+Q0XDdu2bZNdhoKSkpKCWbNmmVzQ5Kf33nsPO3bsKJB1FUXHjh3DrFmzkJCQUNhFKTKexn3i+++/L/QLscISFhaW4/loz549Jnn79+8PhUKBN998M8fl3bx5E0OHDkVQUBBcXFzg5+eHtm3bYubMmQDyfi5s3rw5FAoFVq5c6fBtAOj3+3Xr1mHkyJH44osv8PLLL+eat6B+I1FRUXZVPM23o7u7O9q1a4fvvvsOwOPzn5wXkT2K0rnj4sWLmDVrVokJhufXOcr8+K/RaFCjRg288847SEtLA/C4Pm3rxUAP5RXr4k+v9u3b53hM+eOPP0zyyqkHnjt3Dv369UOVKlXg4uKCChUqoHPnzli+fDmAxzcybL2yB811Oh38/f2hUCiwe/duuz6fTqfDzJkzMWbMGJOGWfv27cOwYcNQt25dqFSqHOM/tsp79OhRAIAkSVi3bh169+6NSpUqoVSpUqhbty7mzp1rPJabu3v3LsLDw1GhQgW4uLggICAAw4YNs+vzFbR///0Xs2bNwpkzZwq7KDkaP348zp49i2+++cbuedX2zrB9+3YMGjQIXl5eGDZsGAIDA3Hz5k18+umn2LZtGzZt2oQ+ffrYXZCn3aBBg9C9e3fodDpcuXIFUVFR6NChA06ePIm2bdviiy++MMn/2muvoXnz5hg+fLgxLb9bYh46dAghISGYPHmyrPydO3fGK6+8AiEEEhMTcfbsWaxfvx5RUVFYsGABJk6cKHvdGzZsQEBAAG7evIlDhw6hU6dOdpU9PT0d8+fPNx6Y5VizZg3eeust+Pv727UuAKhSpQpSU1Ph5ORk97x5lZKSgtmzZwOAw+/CWvPee++hX79+CA0Nzfd1FUXHjh3D7NmzERYWBk9Pz8IuTpFgzz5RGL+R/PD999/jo48+yrfAbmpqKtRqu0/VBUaj0eCTTz6xSG/QoIHx/6SkJOzatQsBAQHYuHEj5s+fbxH4u3btGpo1awatVotXX30VAQEBuH37Nn799VcsWLAAs2fPztO58OrVqzh58iQCAgKwYcMGjBw50lEf3ejQoUNo0aKFMficm4I8bkZFRaFs2bJ2tVTNft7+66+/sHLlSvTq1Qu7d+9Gw4YNLbb/W2+9BTc3N0ybNs3BpXeMy5cvQ6lkT2NFXX79LtasWWNXQwBAH9SdPXs22rdvXyJa+ebnOSr78T8xMRE7d+5EZGQkrl+/jg0bNmDZsmUmLcy+//57bNy4EUuXLkXZsmWN6a1atXJ42fJi+vTpmDp1aqGsu6if680V1rYy30721sXzckyQWxbKWX7V+StWrIh58+ZZpGe/dpdTDzx27Bg6dOiAypUr4/XXX4efnx/+/vtv/Pzzz/jggw8wZswY9O3bF9WqVTPOk5ycjJEjR6JPnz7o27evMb1cuXLG/w8dOoTbt28b192tWzfZn23Xrl24fPmySf0WAL766its3rwZjRs3zjVGYV5eg7fffhvJyclo1qwZAH38YOjQoWjRogVGjBgBX19fHD9+HDNnzsTBgwdx6NAhkzr733//jeDgYADAiBEjUKFCBfz777/45ZdfZH+2wvDvv/9i9uzZCAgIQMOGDU2mOfK48CT8/PwQEhKCRYsWoXfv3nbNa9eR6Pr163j55ZdRtWpV/PTTT/Dx8TFOGzduHNq0aYOXX34Zv//+O6pWrWpXQfKbJEnIyMiAi4tLYRfFqsaNG+P//u//jO/btGmDbt26YeXKlYiKirLYniNGjEDVqlVN5slvsbGxdgWvatSoYVG++fPno1evXpg0aRJq1aqF7t2721zOo0ePsHPnTsybNw9r167Fhg0b7A7qNmzY0K4gbZ06dXD58mXMnz8fH374oV3rAmBsHUxPLisrC5IkwdnZubCLUmjS0tLg7OxcooIT/I3kLPv5qqhvI7VabfM89PXXX0On0+Gzzz5Dx44d8dNPP6Fdu3YmeZYuXYrk5GScOXMGVapUMZkWGxsLAKhatard58Ivv/wSvr6+WLx4Mfr164ebN286PFATGxuLZ555xqHLLCzm5+0XXngBzzzzDD744AN8//33Vs/pZcuWfaK6SH4e3zQajcOXScVHcb9pWNSZH/8jIiLQqlUrbNy4EUuWLLEI0t+5cwcbN25EaGhono/DQgikpaVBq9U+QcmtU6vVhRakK+rnenOFta2edDs58phQ3L6zwpRfdX4PDw+b9Q859cB3330XHh4eOHnypEWsw1AHrV+/PurXr29Mv3fvHkaOHIn69evnWgdt3LgxhgwZgrfffhuPHj1CqVKlZH22tWvXIjg4GBUqVDBJf++997BmzRo4OTmhZ8+eOH/+vNX5zcsL6AOy//vf//Daa68Zr6udnZ1x9OhRk5trr7/+OgICAoyB3exxl/DwcKjVapw8eRLe3t6yPktRV5TqCv3798eLL76IP//80654ql016IULFyIlJQUff/yxSUAXAMqWLYvVq1fj0aNHeP/99y3mvXfvHvr37w93d3d4e3tj3LhxFk269+/fj9atW8PT0xNubm6oWbMm3n77bZM86enpmDlzJqpVqwaNRoNKlSrhjTfeQHp6ukk+hUKB0aNHY8OGDahTpw40Gg127doFLy8vDB061KJ8SUlJcHFxMWmFKndd6enpmDBhAnx8fFC6dGn07t0b//vf/+Rt1By0adMGgD6QLkdmZiZmz56N6tWrw8XFBd7e3mjdujX2799vc94///wTL774Iry8vODq6ooWLVoYH7cEHj/yKoTARx999ESPV3p7e2PTpk1Qq9V49913Zc0THR2N1NRUvPjiixg4cCC2b9+e4+MAOXn77beh0+kwf/58WfkDAgLwyiuvYM2aNfj333/tWheQc58rO3bsQN26deHi4oK6desiOjra6vybNm1CkyZNULp0abi7u6NevXr44IMPcl2f4Tc5e/Zs43dk3jLjn3/+QWhoKNzc3ODj44PJkydDp9OZ5Fm0aBFatWoFb29vaLVaNGnSxKK7CYVCgUePHmH9+vXGdeXWGiwjIwPvvPMOmjRpAg8PD5QqVQpt2rTB4cOHrW63RYsWYdmyZQgKCoJGozF22fHHH3+gX79+8PLygouLC5o2bSrrEYXsy/3444+Ny23WrBlOnjxpkf/QoUNo06YNSpUqBU9PT4SEhODSpUvG6bNmzcKUKVMAAIGBgcZtkNvjmoauPk6fPo1WrVpBq9UiMDAQq1atMslneMR506ZNmD59OipUqABXV1ckJSUBAE6cOIGuXbvCw8MDrq6uaNeunfERGoOHDx9i/PjxCAgIgEajga+vLzp37oxff/3VJJ+cZRke37l27ZqxJYSHhweGDh2KlJQUYz579wlrvxFD389y9lNzPXv2zPHk17JlSzRt2tQk7csvv0STJk2g1Wrh5eWFgQMH4u+//7aY98SJE+jevTvKlCmDUqVKoX79+sbfYlhYGD766CPj5zc/Nj569AiTJk1CpUqVoNFoULNmTSxatAhCCJN1WDtfGbovyP47Nu+uJ7dH3uV8twAQExODZs2awcXFBUFBQVi9enVumzlPNmzYgM6dO6NDhw6oXbs2NmzYYJHn+vXrqFixokVAFwB8fX3zvO6vvvoK/fr1Q8+ePeHh4YGvvvpK9ryxsbEYNmwYypUrBxcXFzRo0ADr1683Tjf8Vm/cuIHvvvvO5nFAzm8kISEh198ZoK/od+zYEb6+vtBoNHjmmWcsHikMCAjAhQsX8OOPP1p9JFCu2rVro2zZsrLrIrY44vhmWE7Tpk1N9ltrfTxa61PXVp0nezm3bNmCd999FxUrVoSLiwuee+45XLt2LdfPuG3bNigUCvz4448W01avXg2FQmG8CLtz5w6GDh2KihUrQqPRoHz58ggJCZH16P8ff/yB/v37w8fHB1qtFjVr1pTVYjoqKsp4nPH398eoUaMsHl2+evUqXnjhBfj5+cHFxQUVK1bEwIEDkZiYaJJPznHU1rLsPXcAwP/+9z+EhoaiVKlS8PX1xYQJEyzq5oD1fvJyq1+tW7cOL774IgCgQ4cOxvIYurXauXMnevToAX9/f2g0GgQFBSEyMtLi/GQ431+8eBEdOnSAq6srKlSoYPX6KC0tDbNmzUKNGjXg4uKC8uXLo2/fvia/OUmSsGzZMtSpUwcuLi4oV64cwsPD8eDBg1y3k6POUXIpFAq0bt0aQgj8+eefeVqGOUMfrHv37kXTpk2h1WqN56mEhASMHz/eWP5q1aphwYIFFi2u4uPj8fLLL8Pd3R2enp4YMmQIzp49a1EHsXYMycrKQmRkpLHeGBAQgLfffttifzOUMyYmBs2bN4eLiwuqVq2Kzz//XNbnNK+zy617WfPhhx9CpVKZ/K4XL14MhUJh8pSkTqdD6dKlrXaLZKuunFOful9++SWaN28OV1dXlClTBm3btsW+ffss8jliO+WlLm7vMUFuWQzlsec7k7utDHLqJ91af+LA4+9Qq9WiefPmOHLkiNXlFkS8w9F1fnvIqQdev34dderUsdp4La910NTUVERHR2PgwIHo378/UlNTsXPnTlnzpqWlYc+ePVYbsfn7++c5CLlx40YIITB48GBjmrOzs9WnJQxP3me//v3jjz+we/duTJkyBd7e3khLS0NmZqbs9Rt+I4b6S25xQUBeHUPO9fUPP/xgbJk8dOhQi65/rB0XDPVxDw8P43kjp25e5MQn5MbqDN+53H3FwK5bbIbHJw0BR3Nt27ZFQECAReUY0EedAwICMG/ePPz888/48MMP8eDBA+NB/MKFC+jZsyfq16+POXPmQKPR4Nq1ayaVeUmS0Lt3b8TExGD48OGoXbs2zp07h6VLl+LKlSsW/XEdOnQIW7ZswejRo1G2bFlUr14dffr0wfbt27F69WqTln87duxAeno6Bg4caPe6XnvtNXz55Zd46aWX0KpVKxw6dAg9evSwZ9NaMBywy5QpIyv/rFmzMG/ePOOjqElJSTh16hR+/fVXdO7cOcf57t69i1atWiElJQVjx46Ft7c31q9fj969e2Pbtm3o06eP8ZHXl19+2fho5pOoXLky2rVrh8OHDyMpKQnu7u655t+wYQM6dOgAPz8/DBw4EFOnTsWuXbuMFW85AgMDjUHaqVOnymqtO23aNHz++ed5bq1rbt++fcZWT/PmzUN8fLzxYi67/fv3Y9CgQXjuueewYMECAPoD6tGjRzFu3Diry/bx8cHKlSstHgPJfodOp9OhS5cuePbZZ7Fo0SIcOHAAixcvRlBQkMmjKB988AF69+6NwYMHIyMjA5s2bcKLL76Ib7/91rhff/HFFxaPPQcFBeX42ZOSkvDJJ59g0KBBeP311/Hw4UN8+umn6NKlC3755ReLxyDWrl2LtLQ0DB8+HBqNBl5eXrhw4YLxjuXUqVNRqlQpbNmyBaGhofj6669ldfvy1Vdf4eHDhwgPD4dCocD777+Pvn374s8//zSeIA8cOIBu3bqhatWqmDVrFlJTU7F8+XIEBwfj119/RUBAAPr27YsrV65YPEZofrPL3IMHD9C9e3f0798fgwYNwpYtWzBy5Eg4Ozvj1VdfNckbGRkJZ2dnTJ48Genp6XB2dsahQ4fQrVs3NGnSBDNnzoRSqTQGeI4cOYLmzZsD0Lde3LZtG0aPHo1nnnkG8fHxiImJwaVLl9C4cWMAkL0sg/79+yMwMBDz5s3Dr7/+ik8++QS+vr7GfdTefSIncvdTcwMGDMArr7yCkydPGk/cAPDXX3/h559/xsKFC41p7777LmbMmIH+/fvjtddeQ1xcHJYvX462bdvit99+M1bq9u/fj549e6J8+fIYN24c/Pz8cOnSJXz77bcYN24cwsPD8e+//2L//v0Wj6ULIdC7d28cPnwYw4YNQ8OGDbF3715MmTIF//zzD5YuXWqS3/x8Za0Vk4+Pj8V6MjMzMWHCBJPzmdzv9ty5c3j++efh4+ODWbNmISsrCzNnzjR5dEwO88G9nJyc4OHhAUD/uNPhw4eNwdBBgwZh6dKlWLFihUmZq1SpggMHDuDQoUPo2LGjXevPyYkTJ3Dt2jWsXbsWzs7O6Nu3LzZs2GBxs9ia1NRUtG/fHteuXcPo0aMRGBiIrVu3IiwsDAkJCRg3bhxq166NL774AhMmTEDFihUxadIkADkfB+T8Rmz9zgBg5cqVqFOnDnr37g21Wo1du3YhIiICkiRh1KhRAIBly5YZ+2EzBPrs/V4B/SPVDx48yNNvOTdPcnz77bff0LVrV5QvXx6zZ8+GTqfDnDlzbB5/AXl1nuzmz58PpVKJyZMnIzExEe+//z4GDx6MEydO5LiOHj16wM3NDVu2bLFokb5582bUqVPH2Jf/Cy+8gAsXLmDMmDEICAhAbGws9u/fj1u3buXakvH3339HmzZt4OTkhOHDhyMgIADXr1/Hrl27cr1hPmvWLMyePRudOnXCyJEjcfnyZaxcuRInT57E0aNH4eTkhIyMDHTp0gXp6ekYM2YM/Pz88M8//+Dbb79FQkKC8bct5zgqZ1n2njtSU1Px3HPP4datWxg7diz8/f3xxRdf4NChQznOY2CrftW2bVuMHTsWH374Id5++23Url0bAIx/161bBzc3N0ycOBFubm44dOgQ3nnnHSQlJZmcYwD9+b5r167o27cv+vfvj23btuHNN99EvXr1jI/g6nQ69OzZEwcPHsTAgQMxbtw4PHz4EPv378f58+eN2yE8PBzr1q3D0KFDMXbsWNy4cQMrVqzAb7/9ZvzerHHkOUoue69f5Lh8+TIGDRqE8PBwvP7666hZsyZSUlLQrl07/PPPPwgPD0flypVx7NgxvPXWW7h9+7ZxMGdJktCrVy/88ssvGDlyJGrVqoWdO3diyJAhstb92muvYf369ejXrx8mTZqEEydOYN68ebh06ZJFw4xr166hX79+GDZsGIYMGYLPPvsMYWFhaNKkCerUqZOnzy7nnGCuTZs2kCQJMTExxkHJjhw5AqVSaRLY++2335CcnIy2bduazC+nrmzN7NmzMWvWLLRq1Qpz5syBs7MzTpw4gUOHDuH55593+HbKa108u7xcc9ki5zuTu63y6tNPP0V4eDhatWqF8ePH488//0Tv3r3h5eWFSpUqGfMVdrwjr3X+7POb10FdXFyM3XDJrQdWqVIFx48fx/nz5y3G2smrb775BsnJyRg4cCD8/PzQvn17bNiwAS+99JLNeU+fPo2MjAzjNZujbNiwAZUqVbL4zVtz584dADDpKufAgQMA9PXJ5557DocOHYJKpULnzp2xcuVK2U9g2IoLAvKv1QDb19e1a9fGnDlz8M4772D48OHGWGZOXf8IIRASEoKYmBiMGDECtWvXRnR0tNXzhtz4hNxYnYeHB4KCgnD06FFMmDBB1vY0FFqWhIQEAUCEhITkmq93794CgEhKShJCCDFz5kwBQPTu3dskX0REhAAgzp49K4QQYunSpQKAiIuLy3HZX3zxhVAqleLIkSMm6atWrRIAxNGjR41pAIRSqRQXLlwwybt3714BQOzatcskvXv37qJq1ap2r+vMmTMCgIiIiDDJ99JLLwkAYubMmTl+HiGEuHHjhgAgZs+eLeLi4sSdO3fEkSNHRLNmzQQAsXXrVqvzlSpVSgwZMsT4vkGDBqJHjx65rsua8ePHCwAmn/Phw4ciMDBQBAQECJ1OZ0wHIEaNGiVrubbyjhs3zuT7N2yHhQsXmuS7e/euUKvVYs2aNca0Vq1a2dwPDdauXSsAiJMnT4rr168LtVotxo4da5zerl07UadOHZN5qlSpYtyWQ4cOFS4uLuLff/8VQghx+PDhXL8XA8PnWbt2rTGtYcOGonz58iIhIcGYtm/fPgFAVKlSxZg2btw44e7uLrKysmR9RoO4uLgc97khQ4YIAGLOnDkm6Y0aNRJNmjQxSUtJSTF5n5GRIerWrSs6duxokm6+D+YmKytLpKenm6Q9ePBAlCtXTrz66qvGNMN2c3d3F7GxsSb5n3vuOVGvXj2RlpZmTJMkSbRq1UpUr1491/Ubluvt7S3u379vTN+5c6fF8aBhw4bC19dXxMfHG9POnj0rlEqleOWVV4xpCxcuFADEjRs3ZG2Ddu3aCQBi8eLFxrT09HTj+jIyMoQQj/exqlWrmnwXkiSJ6tWriy5dughJkozpKSkpIjAwUHTu3NmY5uHhkevvz55lGY7h2b8nIYTo06eP8Pb2NkmzZ5+w9huxZz81l5iYKDQajZg0aZJJ+vvvvy8UCoX466+/hBBC3Lx5U6hUKvHuu++a5Dt37pxQq9XG9KysLBEYGCiqVKkiHjx4YJI3+zYbNWqUsHYq3bFjhwAg5s6da5Ler18/oVAoxLVr14xpOZ2vDNNyO49EREQIlUolDh06ZCyb3O82NDRUuLi4GLeNEEJcvHhRqFQqq5/JnOH7Mn+1a9fOmGfRokVCq9Ua6wRXrlwRAER0dLTJss6fPy+0Wq0AIBo2bCjGjRsnduzYIR49epRrGXLb50aPHi0qVapk3A6G4+1vv/1m87MtW7ZMABBffvmlMS0jI0O0bNlSuLm5GT+PEKbnDFtyKq89vzPzY7QQQnTp0sWkDiOEEHXq1DH5LmwBIIYNGybi4uJEbGysOHXqlOjatavVc3Ne1+GI41uvXr2Eq6ur+Oeff4xpV69eFWq12mK/rVKlisn2llvnMZSzdu3aJueuDz74QAAQ586dy/VzDho0SPj6+pqcx2/fvi2USqXx+PbgwYNct21u2rZtK0qXLm3y2xXC9NhkqP8YzlGxsbHC2dlZPP/88yZ1uxUrVggA4rPPPhNCCPHbb7/ZrOfIPY7KWZYQ9p07DL/NLVu2GNMePXokqlWrJgCIw4cPG9OHDBlid/1q69atFssxsPbbCw8PF66uriZ1E8P5/vPPPzempaenCz8/P/HCCy8Y0z777DMBQCxZssRiuYbv8siRIwKA2LBhg8n0PXv2WE0354hzlDVDhgwRpUqVEnFxcSIuLk5cu3ZNLFq0SCgUClG3bl2TfdHA3nqTEPrfMACxZ88ek/TIyEhRqlQpceXKFZP0qVOnCpVKJW7duiWEEOLrr78WAMSyZcuMeXQ6nejYsaNFHcRwHDYwXOO99tprJuuYPHmyAGA872Yv508//WRMi42NtVovscb8XG/POcGcTqcT7u7u4o033hBC6Pclb29v8eKLLwqVSiUePnwohBBiyZIlQqlUGus49tSVzbfV1atXhVKpFH369DE5vhjWb+Do7WTvPpWXY4Lcssj9zuRuq3bt2pmcX82P6QaG85XhmJWRkSF8fX1Fw4YNTc5fH3/8sUUdraDjHY6q8wvx+Dhr/sp+LpFbD9y3b59QqVRCpVKJli1bijfeeEPs3bvXeG1mTW7X3UII0bNnTxEcHGx8//HHHwu1Wm1xfWvNJ598Iquu0aNHD5P9OTfnz58XAIzHBVs6deok3N3dTa6Bxo4dazxGdO3aVWzevFksXLhQuLm5iaCgIJt1drlxQbl1DCHkX1+fPHnSYh80MD8uGM6P77//vjEtKytLtGnTxmIZcuMT9sTqnn/+eVG7dm1ZeQ1kd7/w8OFDAEDp0qVzzWeYbniUzsDQesRgzJgxAPSd5gMwRtt37tyZY0fFW7duRe3atVGrVi3cu3fP+DK06jF/lLtdu3YW/dx17NgRZcuWxebNm41pDx48wP79+zFgwAC712Uo/9ixY03WM378eKufISczZ86Ej48P/Pz80KZNG1y6dMnY94scnp6euHDhAq5evWrXer///ns0b94crVu3Nqa5ublh+PDhuHnzpvGxd0cz3EEz7Fc52bRpE5RKJV544QVj2qBBg7B7926bj52Zq1q1Kl5++WV8/PHHuH37tqx5pk+fjqysLNndNuTk9u3bOHPmDIYMGWJs5QLoB6Ux30c9PT3x6NEjWV1n2GvEiBEm79u0aWPxiFz2fsoePHiAxMREtGnTxuLRfXuoVCpjqzxJknD//n1kZWWhadOmVpf7wgsvmNxpv3//Pg4dOoT+/fvj4cOHxt9jfHw8unTpgqtXr+Kff/6xWY4BAwaYtB4x3KkzbAPD9xQWFgYvLy9jvvr166Nz587G33teqdVqhIeHG987OzsjPDwcsbGxOH36tEneIUOGmHwXZ86cwdWrV/HSSy8hPj7euA0ePXqE5557Dj/99JPx2Onp6YkTJ07k2HWIPcsysLbvxMfHWxzrHUHOfmrO3d0d3bp1w5YtW0weHd28eTNatGiBypUrA9AP9ilJEvr3729ybPfz80P16tWNx/bffvsNN27cwPjx4y0ex5LT/cz3338PlUplcW6YNGkShBAWo+BaO1/Z8vnnnyMqKgrvv/8+OnToAED+d6vT6bB3716EhoYatw2gb5HWpUsX2WVwcXHB/v37TV6LFy82Tt+wYQN69OhhrBtUr14dTZo0seiCoU6dOjhz5gz+7//+Dzdv3sQHH3yA0NBQlCtXDmvWrLFruwD6R2Y3b96MAQMGGL8vQ5cF1rp/MPf999/Dz88PgwYNMqY5OTlh7NixSE5OtvpovSPI+Z1lPy4kJibi3r17aNeuHf7880+Lx+Pt9emnn8LHxwe+vr5o2rQpDh48iDfeeMOugU3lyOvxTafT4cCBAwgNDTV54qZatWqyBiCxt84zdOhQkxbl5ueMnAwYMACxsbEmj8Nu27YNkiQZ65parRbOzs744Ycf7KrPxMXF4aeffsKrr75q8tsFcj82HThwABkZGRg/frxJ/8Wvv/463N3djU/ZGeooe/fuzfExb7nHUTnLstf333+P8uXLm9SPXV1dLQaTseZJ61fZ91lDXaRNmzZISUmxGG3dzc3NpJ9FZ2dnNG/e3GTf+frrr1G2bFnjNVF2hu9y69at8PDwQOfOnU22dZMmTeDm5mZx7SOXvecoax49egQfHx/4+PigWrVqmDx5MoKDg7Fz5848d9NmTWBgoMV5aevWrWjTpg3KlCljsl06deoEnU6Hn376CQCwZ88eODk54fXXXzfOq1QqLa5LrTHU+cyPf4anMsyfTH3mmWdMnmb18fFBzZo1n6grirzUvZRKJVq1amXcBpcuXUJ8fDymTp0KIQSOHz8OQN96t27duhZ1HFt1ZWt27NgBSZLwzjvvWPSPbr4v5Md2yqv8uOay9Z3Zs63y4tSpU4iNjcWIESNMzl+GR8mzK+h4hzV5qfMbBAQEWNRB33jjDQD21QM7d+6M48ePo3fv3jh79izef/99dOnSBRUqVJDVzZ+5+Ph47N2716QO+cILLxi7dZIzP+DYJx4Mnzl71ws5ee+993DgwAHMnz/f5PhgGPjSz88P3333Hfr374/JkydjzZo1uH79uuwuzmzFBeXWMQzsub6W4/vvv4darTZpLa5SqSzO1fbEJ+yJ1RnOa/aQHdQ1XJDZCsLlFPytXr26yfugoCAolUrjYzoDBgxAcHAwXnvtNZQrVw4DBw7Eli1bTAILV69exYULF4wVCMOrRo0aAB53ZG0QGBhoUT61Wo0XXngBO3fuNPYVs337dmRmZpoEdeWu66+//oJSqbR4VKxmzZq5bidzw4cPx/79+7Fr1y5MmDABqampdvUnM2fOHCQkJKBGjRqoV68epkyZgt9//93mfH/99ZfVshoeNfvrr7/kfwg7GA4Ktm4SGPobio+Px7Vr13Dt2jU0atQIGRkZ2Lp1KwD9oxd37twxeWVkZFhdnr1B2rwEgq0xbEfz3wFgua9ERESgRo0a6NatGypWrIhXX33V2L/mk3BxcbF4JKlMmTIWF5PffvstWrRoARcXF3h5eRm7dnjSYMH69etRv359Yz8yPj4++O6776wu1/y3e+3aNQghMGPGDIvfpGHEefPfvzXmF8CGk6VhGxi+p5x+E4YgQ175+/tbdJBvOKaY95Flvg0MJ4EhQ4ZYbINPPvkE6enpxm35/vvv4/z586hUqRKaN2+OWbNmmVSQ7FmWga1t5yhy91NrBgwYgL///tt4wXL9+nWcPn3a4tguhED16tUtPvulS5eM+5GhP8O8Pob1119/wd/f3+IYl9Ox1dr5KjdnzpzBiBEjMGjQIJMLTrnfbVxcHFJTU2Udk3KjUqnQqVMnk1eTJk0A6C8kf/vtNwQHBxuP39euXUP79u3x7bffWlyU1qhRA1988QXu3buH33//He+99x7UajWGDx9ufORLrn379iEuLg7Nmzc3rvfGjRvo0KEDNm7caHOU27/++gvVq1e3uODK73OjnN/Z0aNH0alTJ2Of3z4+PsZHCZ/0OB0SEoL9+/fju+++M/Z9lpKS4vBBzPJ6fIuNjUVqaqrVEZ2tpZmzt86T1+OeoV/g7A0INm/ejIYNGxqP+RqNBgsWLMDu3btRrlw5tG3bFu+//77xkcecGI7l9h6bcjq/OTs7o2rVqsbpgYGBmDhxIj755BOULVsWXbp0wUcffWSyb8k9jspZlr3++usvVKtWzSL4Iee49aT1qwsXLqBPnz7w8PCAu7s7fHx8jIFb889UsWJFizKan8uuX7+OmjVr5jrg1NWrV5GYmAhfX1+LbZ2cnCyr7mONvecoa7Lf1Fu7di1q166N2NhYhw9iZu38ePXqVezZs8dimxj6I8x+nVa+fHm4urqazC/3eKFUKi3y+vn5wdPT0+bxApBff8lJXo9Bbdq0wenTp5GamoojR46gfPnyaNy4MRo0aGDsgiEmJsZql4p5Wef169ehVCpl3ZzOj+2UV/lxzWVr+9mzrfIip2tOJycni7EnCjreYe5J6vwAUKpUKYs6qGG72lsPbNasGbZv344HDx7gl19+wVtvvYWHDx+iX79+djdy27x5MzIzM9GoUSPjuu/fv49nn31WVsMCg+yNVJ6EEAJfffUV6tatazF4mrnNmzdj+vTpGDZsmEUXGIZje//+/U3qhS+++CLUajWOHTsmqzy24oJy6xgG9lxfy2E4bxgaIRqY7+/2xCfsidUJIey+wSO7T10PDw+UL1/eZqDw999/R4UKFWz2k2peUK1Wi59++gmHDx/Gd999hz179mDz5s3o2LEj9u3bB5VKBUmSUK9ePSxZssTqMrP3EWNYpjUDBw7E6tWrsXv3boSGhmLLli2oVasWGjRoYMxj77qeVPXq1Y0VkZ49e0KlUmHq1Kno0KGDxQA/1rRt2xbXr1/Hzp07sW/fPnzyySdYunQpVq1ahddee82hZXWE8+fPQ6VS5RrIuHr1qrFjfmuBhw0bNmD48OH4+++/LZZz+PBhq4PCGEZJ//jjjzF16lRZZZ02bRq++OILLFiwwGIk3/zg6+uLM2fOYO/evdi9ezd2796NtWvX4pVXXjEZpMdeKpXKZp4jR46gd+/eaNu2LaKiolC+fHk4OTlh7dq1dg0wZO7LL79EWFgYQkNDMWXKFPj6+kKlUmHevHlWB+Ax/+0aTryTJ0/OsRWhnAp6TtvAUSdNR8ppGyxcuNCiD2IDw8mnf//+aNOmDaKjo7Fv3z4sXLgQCxYswPbt29GtWze7lmVQUNtOzn6ak169esHV1RVbtmxBq1atsGXLFiiVSpP+tyVJgkKhwO7du62uy/xzFxR7LoIfPHiAF154ATVq1MAnn3xiMk3ud2ttUCFH+/LLLwEAEyZMsNov1Ndff2114FKVSoV69eqhXr16aNmyJTp06IANGzZYHTAiJ4ZKc//+/a1O//HHH42tm4sSW7+z69ev47nnnkOtWrWwZMkSVKpUCc7Ozvj++++xdOlSm8FqWypWrGjczt27d0fZsmUxevRodOjQwdhXuyPk9fhm7yCpTyqvxz2NRoPQ0FBER0cjKioKd+/exdGjR/Hee++Z5Bs/fjx69eqFHTt2YO/evZgxYwbmzZuHQ4cOoVGjRg77HPZavHgxwsLCjHXKsWPHGvu+q1ixol3HUVvLKkhPUr9KSEhAu3bt4O7ujjlz5iAoKAguLi749ddf8eabb1r89hx1zpQkKdcnDOzpP9TRDDf1DLp06YJatWohPDw8T63bcmLt/ChJEjp37mxslWfOcEHvCHIvrvOjnpTXZbZu3RqZmZk4fvw4jhw5YgzetmnTBkeOHMEff/yBuLg4q0Hd/K7vFaW6eH5cc+XX58tpP3ySQcUKOt5h7knq/LbktR7o7OyMZs2aoVmzZqhRowaGDh2KrVu3GoN09qw7ODjY6vQ///wzx8GdAf3A8oC+vu+I8+TRo0fx119/Yd68ebnm279/P1555RX06NHDYiBvAMYnpMzHaFCpVPD29s7zjRnzfbuoXquZsyc+YU+s7sGDByZ9Gcth10BpPXv2xJo1axATE2Py6JrBkSNHcPPmTZPmzwZXr141Cbxdu3YNkiSZdKisVCrx3HPP4bnnnsOSJUvw3nvvYdq0aTh8+DA6deqEoKAgnD17Fs8999wTPZ7Qtm1blC9fHps3b0br1q1x6NAhixGD5a6rSpUqkCTJeLfd4PLly3kuH6APJK5ZswbTp0+XfcfQy8sLQ4cOxdChQ40d38+aNSvXoG6VKlWsltXwGJm1kcif1K1bt/Djjz+iZcuWubbU3bBhA5ycnPDFF19Y/KBjYmLw4Ycf4tatW/Dz87N4bCZ7gN7c9OnT8eWXX+Y6yEB2QUFB+L//+z+sXr0azz77rKx5zBm2o7Um99a2v7OzM3r16oVevXpBkiRERERg9erVmDFjRo7BS0c8svP111/DxcUFe/fuhUajMaavXbv2ida3bds2VK1aFdu3bzeZT+4J0nDic3JysiuwYy/D95TTb6Js2bLGO4F52d7//vsvHj16ZHI38cqVKwBgs3N5w91xd3d3WdugfPnyiIiIQEREBGJjY9G4cWO8++676Natm93LksuRj1vmRalSpdCzZ09s3boVS5YswebNm9GmTRuTx7SDgoIghEBgYGCuF32GbXT+/Plct1FOn9kw8NfDhw9NjnNPemyVJAmDBw9GQkICDhw4YNH6SO536+PjA61WK/uYZC9Dq4AOHTogIiLCYnpkZCQ2bNhgNaibneGmpj1PSjx69Ag7d+7EgAEDrHZhNHbsWOMAnDmpUqUKfv/9d0iSZNIa4Um/vyf9jezatQvp6en45ptvTFoDWXsE2xG/x/DwcCxduhTTp09Hnz598u03Lne/9fX1hYuLC65du2YxzVqauYKs8wwYMADr16/HwYMHcenSJQghTJ4aMAgKCsKkSZMwadIkXL16FQ0bNsTixYuNN0XMGc6H58+ft6s82c9v2S8mMzIycOPGDYvtbrixMn36dBw7dgzBwcFYtWoV5s6dK/s4KmdZgH37apUqVXD+/HmLlixyj1u26lc5leWHH35AfHw8tm/fbjLIzI0bN2SX3VxQUBBOnDiBzMzMHAegCgoKwoEDBxAcHJynFrAFeY4qX748JkyYgNmzZ+Pnn39GixYt7F6GXEFBQUhOTrZZh6lSpQoOHz6MlJQUk/Ol3OOFJEm4evWqsQUzoB9wMSEhIV+ukRylefPmcHZ2xpEjR3DkyBFMmTIFgP4aeM2aNTh48KDxvSMEBQVBkiRcvHgxxxtz+cER56S8XHM9ibxuK0OL34SEBJN08xbj2a85sw88m5mZiRs3bphcIxd2vCO/OKIeCOStDnrjxg0cO3YMo0ePthgsVZIkvPzyy/jqq68wffr0HJdRq1Yt47Lq1asne9052bBhAxQKRa6DtJ04cQJ9+vRB06ZNsWXLFqtPkBiexDPv8jAjIwP37t2TfZPRVlzQ3jqGnOtre+sZBw8eRHJyskkA2Xx/tzc+ITdWZ/47lcOu5+mmTJkCrVaL8PBwY18fBvfv38eIESPg6upqPHFk99FHH5m8X758OQAY+0C7f/++xTyGA52hRVH//v3xzz//WO1fLzU1VfZj0UqlEv369cOuXbvwxRdfICsry6KiLXddhvJ/+OGHJnkMo67mlaenJ8LDw7F3716cOXPGZn7z78PNzQ3VqlWz2Rqre/fu+OWXX4yPKwP6A+HHH3+MgIAAhz8acv/+fQwaNAg6nc4ikG5uw4YNaNOmjfGAnP1l2Mc2btwIFxcXi0cvcuuDJnuQ1tZjjgbTp09HZmYm3n//ffkfNpvy5cujYcOGWL9+vckjevv377d4pMP8u1QqlcZHJXL7Pg2VVfOTvT1UKhUUCoXJXd+bN2+ajH5qUKpUKdnrMgTls9+lPnHihMl+lxtfX1+0b98eq1evtnpijYuLk7UcW7J/T9k/2/nz57Fv3z50797dmGY4cdizvbOysrB69Wrj+4yMDKxevRo+Pj7GE2VOmjRpgqCgICxatMjYfUl2hm2g0+ksHgP19fWFv7+/cf+Ruyx72bNP5JcBAwbg33//xSeffIKzZ89aHNv79u0LlUqF2bNnW7SaEEIYf3+NGzdGYGAgli1bZvGZss+X037QvXt36HQ6rFixwiR96dKlUCgUsvr/tGb27NnYu3cvNm7caPVJB7nfrUqlQpcuXbBjxw7cunXLOP3SpUvYu3dvnsqW3dGjR3Hz5k0MHTrU4vjdr18/DBgwAIcPHzb2+3zkyBFkZmZaLMfQv5Y9j/hFR0fj0aNHGDVqlNV19+zZE19//XWux9Pu3bvjzp07Jo/PZ2VlYfny5XBzc7OoqMv1pL8Ra8fSxMREqzfeHPF7VKvVmDRpEi5duoSdO3c+0bJyY89+26lTJ+zYscOkz/Br167J6gO0IOs8nTp1gpeXFzZv3ozNmzejefPmJr/ZlJQUi5bHQUFBKF26dK77po+PD9q2bYvPPvvM5LcL5N4SrFOnTnB2dsaHH35oku/TTz9FYmKicRTzpKQkZGVlmcxbr149KJVKY7nkHkflLAuwb1/t3r07/v33X2zbts2YlpKSgo8//tjmvHLqVzkd06399jIyMhAVFSWr3Na88MILuHfvnsV5Ivt6+vfvD51Oh8jISIs8WVlZNrdbQZ+jxowZA1dX1ycei8KW/v374/jx41bPVwkJCcb9rkuXLsjMzDS5npMkyeK61BpDnc/8ms7QqtHwmymKXFxc0KxZM2zcuBG3bt0yaambmpqKDz/8EEFBQShfvrxD1hcaGgqlUok5c+ZYtFrPzxa4eamLZ5fXa64nkddtZbj5aegrGdDX+c2PfU2bNoWPjw9WrVpl0h3hunXrLLZTYcc78ou99cDDhw9b3fZ5qYMaWum+8cYbFuvt378/2rVrZ7MLhiZNmsDZ2RmnTp2Svd6cZGZmYuvWrWjdurXVrk8Afd2/R48eCAgIwLfffpvjDcT27dsbnxzJXn9Zt24ddDodOnfuLKtMtuKCcusYBnKur+05VnTv3h1ZWVlYuXKlMU2n0xnLaWBPfEJurC4xMRHXr19Hq1atbJYzO7ta6lavXh3r16/H4MGDUa9ePQwbNgyBgYG4efMmPv30U9y7dw8bN2606G8F0Eece/fuja5du+L48eP48ssv8dJLLxmj0HPmzMFPP/2EHj16oEqVKoiNjUVUVBQqVqxobBX88ssvY8uWLRgxYgQOHz6M4OBg6HQ6/PHHH9iyZQv27t0rq6sCQH/hv3z5csycORP16tUzuQNrz7oaNmyIQYMGISoqComJiWjVqhUOHjwo6w6wLePGjcOyZcswf/58bNq0Kde8zzzzDNq3b48mTZrAy8sLp06dwrZt2zB69Ohc55s6dSo2btyIbt26YezYsfDy8sL69etx48YNfP3110/Uj96VK1fw5ZdfQgiBpKQknD17Flu3bkVycjKWLFmCrl275jjviRMncO3atRzLX6FCBTRu3BgbNmzAm2++aXfZDF0qXL58GXXq1LGZ3xAIfpLuD+bNm4cePXqgdevWePXVV3H//n0sX74cderUMbmIfe2113D//n107NgRFStWxF9//YXly5ejYcOGFvtpdlqtFs888ww2b96MGjVqwMvLC3Xr1rWr370ePXoYv5uXXnoJsbGx+Oijj1CtWjWLrleaNGmCAwcOYMmSJfD390dgYGCOLZl79uyJ7du3o0+fPujRowdu3LiBVatW4ZlnnrF6AW/NRx99hNatW6NevXp4/fXXUbVqVdy9exfHjx/H//73P5w9e1b258zNwoUL0a1bN7Rs2RLDhg1Damoqli9fDg8PD8yaNcuYz3CSmDZtGgYOHAgnJyf06tXLok+f7Pz9/bFgwQLcvHkTNWrUwObNm3HmzBl8/PHHObbSMVAqlfjkk0/QrVs31KlTB0OHDkWFChXwzz//4PDhw3B3d8euXbvw8OFDVKxYEf369UODBg3g5uaGAwcO4OTJk8YBrOQuy1727BP5pXv37ihdujQmT54MlUplMsgioP8tz507F2+99RZu3ryJ0NBQlC5dGjdu3EB0dDSGDx+OyZMnQ6lUYuXKlejVqxcaNmyIoUOHonz58vjjjz9w4cIF44WkYT8YO3YsunTpApVKhYEDB6JXr17o0KEDpk2bhps3b6JBgwbYt28fdu7cifHjx1s9T9py7tw5REZGom3btoiNjbVoyfd///d/dn23s2fPxp49e9CmTRtEREQYg5Z16tSR1Sd7bjZs2ACVSpXjRW/v3r0xbdo0bNq0CRMnTsSCBQtw+vRp9O3b13hB9euvv+Lzzz+Hl5eXXYNxbNiwAd7e3jlWiHr37o01a9bgu+++y7FLgeHDh2P16tUICwvD6dOnERAQgG3btuHo0aNYtmyZzf7gc/Kkv5Hnn3/e2KooPDwcycnJWLNmDXx9fS0qlE2aNMHKlSsxd+5cVKtWDb6+viatduQKCwvDO++8k69dENmz386aNQv79u1DcHAwRo4caQxM1a1b1+ZN8Pys85hzcnJC3759sWnTJjx69AiLFi0ymX7lyhU899xz6N+/P5555hmo1WpER0fj7t27GDhwYK7L/vDDD9G6dWs0btwYw4cPN9bFv/vuuxy3gY+PD9566y3Mnj0bXbt2Re/evXH58mVERUWhWbNmxr5hDx06hNGjR+PFF19EjRo1kJWVZXxiynA8lXsclbMswL7fxeuvv44VK1bglVdewenTp1G+fHl88cUXFk8tWCOnftWwYUOoVCosWLAAiYmJ0Gg06NixI1q1aoUyZcpgyJAhGDt2LBQKBb744osnCli98sor+PzzzzFx4kT88ssvaNOmDR49eoQDBw4gIiICISEhaNeuHcLDwzFv3jycOXMGzz//PJycnHD16lVs3boVH3zwQa6DKhfkOQrQPzY8dOhQREVF4dKlS7nWW5/ElClT8M0336Bnz54ICwtDkyZN8OjRI5w7dw7btm3DzZs3UbZsWYSGhqJ58+aYNGkSrl27hlq1auGbb74xNibKrfVWgwYNMGTIEHz88cfG7jd++eUXrF+/HqGhoUWyC5/s2rRpg/nz58PDw8PY2s/X1xc1a9bE5cuXERYW5rB1VatWDdOmTUNkZCTatGmDvn37QqPR4OTJk/D397f52Hde5aUunl1er7meRF63VZ06ddCiRQu89dZbuH//Pry8vLBp0yaLG2dOTk6YO3cuwsPD0bFjRwwYMAA3btzA2rVrLR75Lwrxjvxgbz1wzJgxSElJQZ8+fVCrVi1kZGTg2LFj2Lx5MwICAmw+VWa+7oYNG+bYdUXv3r0xZswY/Prrr2jcuLHVPC4uLnj++edx4MABzJkzx2Ta77//buze5tq1a0hMTDQ+9dKgQQP06tXLJP/evXsRHx+f4wBpDx8+RJcuXfDgwQNMmTLFYgDIoKAgtGzZEoC+a6mFCxdiyJAhaNu2LV5++WXcunULH3zwgXFflsNWXFBuHcNAzvV1UFAQPD09sWrVKpQuXRqlSpXCs88+a7WBTK9evRAcHIypU6fi5s2beOaZZ7B9+3ar4wHIjU/IjdUdOHAAQgiEhITI2pZGIg9+//13MWjQIFG+fHnh5OQk/Pz8xKBBg8S5c+cs8s6cOVMAEBcvXhT9+vUTpUuXFmXKlBGjR48WqampxnwHDx4UISEhwt/fXzg7Owt/f38xaNAgceXKFZPlZWRkiAULFog6deoIjUYjypQpI5o0aSJmz54tEhMTjfkAiFGjRuX4GSRJEpUqVRIAxNy5c63mkbuu1NRUMXbsWOHt7S1KlSolevXqJf7++28BQMycOTPXbXnjxg0BQCxcuNDq9LCwMKFSqcS1a9dM0kuVKiWGDBlifD937lzRvHlz4enpKbRarahVq5Z49913RUZGRq7rF0KI69evi379+glPT0/h4uIimjdvLr799luLfLa2qXlew0upVApPT0/RqFEjMW7cOHHhwgWL/ObbYcyYMQKAuH79eo7rmDVrlgAgzp49m2OetWvXCgDi5MmTFtOGDBkiAIg6deqYpFepUkX06NHDIv/Vq1eFSqUSAMTWrVtzXGf2z7N27VqT9K+//lrUrl1baDQa8cwzz4jt27eLIUOGiCpVqhjzbNu2TTz//PPC19dXODs7i8qVK4vw8HBx+/btXNcphBDHjh0TTZo0Ec7Ozib735AhQ0SpUqUs8ht+n9l9+umnonr16kKj0YhatWqJtWvXWs33xx9/iLZt2wqtVisAmOyP5iRJEu+9956oUqWK0Gg0olGjRuLbb7+1+Oy2fg/Xr18Xr7zyivDz8xNOTk6iQoUKomfPnmLbtm25bpfclmvtd3rgwAERHBwstFqtcHd3F7169RIXL160mDcyMlJUqFBBKJVKAUDcuHEjxzK0a9dO1KlTR5w6dUq0bNlSuLi4iCpVqogVK1aY5Dt8+HCu+9hvv/0m+vbtK7y9vYVGoxFVqlQR/fv3FwcPHhRCCJGeni6mTJkiGjRoIEqXLi1KlSolGjRoIKKiouxelhCP95G4uDiTeQ2/reyf2Z59wtpvxJ79NDeDBw8WAESnTp1yzPP111+L1q1bi1KlSolSpUqJWrVqiVGjRonLly+b5IuJiRGdO3c2bsv69euL5cuXG6dnZWWJMWPGCB8fH6FQKEzK+fDhQzFhwgTh7+8vnJycRPXq1cXChQuFJEkm68jt2Jp9/zTsGzm9spPz3QohxI8//mg8ZlStWlWsWrVK9vbO6fvKyMgQ3t7eok2bNrnOHxgYKBo1aiSEEOLo0aNi1KhRom7dusLDw0M4OTmJypUri7CwsFzPA+bnwrt37wq1Wi1efvnlHOdJSUkRrq6uok+fPrmW7+7du2Lo0KGibNmywtnZWdSrV8/imC5EzucMa3L6jdjzO/vmm29E/fr1hYuLiwgICBALFiwQn332mUW+O3fuiB49eojSpUsLAKJdu3a5li23/dBwvj18+LBJep06dWwuN7snPb4ZHDx4UDRq1Eg4OzuLoKAg8cknn4hJkyYJFxcXk3xVqlSxOA7JqfPkVM6czu052b9/vwAgFAqF+Pvvv02m3bt3T4waNUrUqlVLlCpVSnh4eIhnn31WbNmyRdayz58/L/r06WP8HDVr1hQzZswwTre27wghxIoVK0StWrWEk5OTKFeunBg5cqR48OCBcfqff/4pXn31VREUFCRcXFyEl5eX6NChgzhw4IBFGWwdR+Uuy55zhxBC/PXXX6J3797C1dVVlC1bVowbN07s2bPHYh/Na/1qzZo1omrVqsY6n2GZR48eFS1atBBarVb4+/uLN954Q+zdu9divYbzvTnz8gihPx5NmzZNBAYGGq+p+vXrZ3Hc+/jjj0WTJk2EVqsVpUuXFvXq1RNvvPGG+Pfff3PdVo44R1mT0/FfCP1vTKVSWXyPCxcutFlXMpfb8fXhw4firbfeEtWqVRPOzs6ibNmyolWrVmLRokUm1z9xcXHipZdeEqVLlxYeHh4iLCxMHD16VAAQmzZtMuazdu7LzMwUs2fPNn4/lSpVEm+99ZZIS0uTVc527drJOkaa10XtOSfk5LvvvhMARLdu3UzSX3vtNQFAfPrppybp9tSVc6onfPbZZ6JRo0bG6+Z27dqJ/fv3G6c7ejsJYV9d3JHXXE/6ndnaVta2yfXr10WnTp2ERqMR5cqVE2+//bbxPGN+fo6KihKBgYFCo9GIpk2bip9++snqMgsy3uHIOn9Ox9m81AN3794tXn31VVGrVi3h5uYmnJ2dRbVq1cSYMWPE3bt3rS4jLi7O4rOfPn1aADA5F5u7efOmACAmTJiQ6+fbvn27UCgU4tatWybphv3J2svauXPgwIHCyclJxMfHW12P4buxZ5kbN24UDRo0MO6Ho0ePFklJSbl+HiHkxwUN5Fyryb2+FkKInTt3imeeeUao1WqT/dHauTk+Pl68/PLLwt3dXXh4eIiXX35Z/Pbbb1brgHLiE3JjdQMGDBCtW7e2uS3NKYQogiMEERGVMO3bt8e9e/fs7geRiIhsCw0NxYULF6z2E01ElN2OHTvQp08fxMTE5DiYERFRYdHpdHjmmWfQv39/q93vFEezZs3C7NmzERcXZ/dAYDkpSdfXd+7cQWBgIDZt2mR3S13HPWdGRERERJTPUlNTTd5fvXoV33//Pdq3b184BSKiIsv8eGHoG9Hd3T3Hx5+JiAqTSqXCnDlz8NFHH8nuqpCKt2XLlqFevXr2d70AO/vUJSIiIiIqTFWrVkVYWBiqVq2Kv/76CytXroSzszPeeOONwi4aERUxY8aMQWpqKlq2bIn09HRs374dx44dw3vvvZfjgEBERIVtwIABFgM+U8n1JAOMMqhLRERERMVG165dsXHjRty5cwcajQYtW7bEe++9h+rVqxd20YioiOnYsSMWL16Mb7/9FmlpaahWrRqWL19uczBpIiKi4oB96hIREREREREREREVI+xTl4iIiIiIiIiIiKgYYVCXiIiIiIiIiIiIqBhhn7pkN0mS8O+//6J06dJQKBSFXRwiIiIiIiIiomJLCIGHDx/C398fSiXbX5I8DOqS3f79919UqlSpsItBRERERERERFRi/P3336hYsWJhF4OKCQZ1yW6lS5cGoD/YuLu7F3JpCoYkSYiLi4OPjw/vmtET4b5EjsT9iRyF+xI5EvcnchTuS+Qo3JfIkfJjf0pKSkKlSpWM8RYiORjUJbsZulxwd3d/qoK6aWlpcHd3ZyWAngj3JXIk7k/kKNyXyJG4P5GjcF8iR+G+RI6Un/sTu7gke/BoRkRERERERERERFSMMKhLREREREREREREVIwwqEtERERERERERERUjLBPXcoXkiQhIyOjsIvhMJIkITMzE2lpaeyDqQRzcnKCSqUq7GIQEREREREREeWKQV1yuIyMDNy4cQOSJBV2URxGCAFJkvDw4UN2XF7CeXp6ws/Pj98zERERERERERVZDOqSQwkhcPv2bahUKlSqVKnEtGoVQiArKwtqtZrBvhJKCIGUlBTExsYCAMqXL1/IJSIiIiIiIiIiso5BXXKorKwspKSkwN/fH66uroVdHIdhUPfpoNVqAQCxsbHw9fVlVwxEREREREREVCSVjGaUVGTodDoAgLOzcyGXhChvDDcjMjMzC7kkRERERERERETWMahL+YKtWam44r5LREREREREREUdg7pERERERERERERExQiDukT55IcffoBCoUBCQkJhF8WqdevWwdPTs7CLQUREREREREREdmJQlwhAWFgYFAoFFAoFnJycEBgYiDfeeANpaWlYt24dlEolnJ2doVQqjfmyv27evFnYH4GIiIiIiIiIiJ4S6sIuAFFR0bVrV6xduxaZmZk4ffo0hgwZAoVCgVmzZqFLly7IysqCWq3GCy+8gLp162LOnDnGeX18fAqx5ERERERERERE9DRhS13KP5IExMUV7kuSZBdXo9HAz88PlSpVQmhoKDp16oT9+/dDq9XCz8/P+HJ2doarq6tJmkqlynG5R48eRf369eHi4oIWLVrg/PnzJtO//vpr1KlTBxqNBgEBAVi8eLHJdIVCgR07dpikeXp6Yt26dQCAmzdvQqFQYPv27ejQoQNcXV3RoEEDHD9+3GSedevWoXLlynB1dUWfPn0QHx9vMv3s2bPo0KEDSpcuDXd3dzRp0gSnTp2Svf2IiIiIiIiIiKhgsKUu5Z/4eMDXt3DLEBsL5KEV7fnz53Hs2DFUqVLliYswZcoUfPDBB/Dz88Pbb7+NXr164cqVK3BycsLp06fRv39/zJo1CwMGDMCxY8cQEREBb29vhIWF2bWeadOmYdGiRahevTqmTZuGQYMG4dq1a1Cr1Thx4gSGDRuGefPmITQ0FHv27MHMmTNN5h88eDAaNWqElStXQqVS4cyZM3Bycnriz09ERERERERERI7FoC7Rf7799lu4ubkhKysL6enpUCqVWLFixRMvd+bMmejcuTMAYP369ahYsSKio6PRv39/LFmyBM899xxmzJgBAKhRowYuXryIhQsX2h3UnTx5Mnr06AEAmD17NurUqYNr166hVq1a+OCDD9C1a1e88cYbxvUcO3YMe/bsMc5/69YtTJkyBbVq1QIAVK9e/Uk/OhERERERERER5QN2v0D0nw4dOuDMmTM4ceIEhgwZgqFDh+KFF1544uW2bNnS+L+Xlxdq1qyJS5cuAQAuXbqE4OBgk/zBwcG4evUqdDqdXeupX7++8f/y5csDAGJjY43refbZZ3MsFwBMnDgRr732Gjp16oT58+fj+vXrdq2fiIiIiIiIiIgKBoO6RP8pVaoUqlWrhgYNGuCzzz7DiRMn8OmnnxZ2saBQKCCEMEnLzMy0yJe9qwSFQgEAkOzoU3jWrFm4cOECevTogUOHDuGZZ55BdHR0HktNRERERERERET5hd0vUP7x9tb3aVvYZcgDpVKJt99+GxMnTsRLL70EFxeXPBfh559/RuXKlQEADx48wJUrV1C7dm0AQO3atXH06FGT/EePHkWNGjWMg6/5+Pjg9u3bxulXr15FSkqKXWWoXbs2Tpw4YVEuczVq1ECNGjUwYcIEDBo0CGvXrkWfPn3sWhcREREREREREeUvBnUp/yiVeRqkrKh48cUXMWXKFHz00UeYNGlSnpczZ84ceHt7o1y5cpg2bRrKli2L0NBQAMCkSZPQrFkzREZGYsCAATh+/DhWrFiBqKgo4/wdO3bEihUr0LJlS+h0Orz55pt2D2A2duxYBAcHY9GiRQgJCcHevXtN+tNNTU3FlClT0K9fPwQGBuJ///sfTp486ZDuJ4iIiIiIiIiIyLHY/UIx8tNPP6FXr17w9/eHQqHAjh07TKYLIfDOO++gfPny0Gq16NSpE65evWqS5/79+xg8eDDc3d3h6emJYcOGITk5uQA/RfGhVqsxevRovP/++3j06FGelzN//nyMGzcOTZo0wZ07d7Br1y44OzsDABo3bowtW7Zg06ZNqFu3Lt555x3MmTPHZJC0xYsXo1KlSmjTpg1eeuklTJ48Ga6urnaVoUWLFlizZg0++OADNGjQAPv27cP06dON01UqFeLj4/HKK6+gRo0a6N+/P7p164bZs2fn+XMTEREREREREVH+UAjzzjqpyNq9ezeOHj2KJk2aoG/fvoiOjja2+ASABQsWYN68eVi/fj0CAwMxY8YMnDt3DhcvXjR2H9CtWzfcvn0bq1evRmZmJoYOHYpmzZrhq6++kl2OpKQkeHh4IDExEe7u7ibT0tLScOPGDQQGBj5RlwVFjRACWVlZUKvVxv5qqWTK731YkiTExsbC19cXSiXvq9GT4f5EjsJ9iRyJ+xM5CvclchTuS+RI+bE/5RZnIcoJu18oRrp164Zu3bpZnSaEwLJlyzB9+nSEhIQAAD7//HOUK1cOO3bswMCBA3Hp0iXs2bMHJ0+eRNOmTQEAy5cvR/fu3bFo0SL4+/sX2GchIiIiIiIiIiKivGFQt4S4ceMG7ty5g06dOhnTPDw88Oyzz+L48eMYOHAgjh8/Dk9PT2NAFwA6deoEpVKJEydO5DggVnp6OtLT043vk5KSAOjvTkmSZJJXkiQIIYyvksTweUra5yJThn3X2v7tCIbfSH4sm54+3J/IUbgvkSNxfyJH4b5EjsJ9iRwpP/Yn7puUFwzqlhB37twBAJQrV84kvVy5csZpd+7cga+vr8l0tVoNLy8vYx5r5s2bZ7Vv1bi4OKSlpZmkZWZmQpIkZGVlISsrK0+fpSgSQkCn0wEAu18o4bKysiBJEuLj4+0ekE4OSZKQmJgIIQQf/aInxv2JHIX7EjkS9ydyFO5L5Cjcl8iR8mN/evjwoUOWQ08XBnXJprfeegsTJ040vk9KSkKlSpXg4+NjtU/dhw8fQq1WQ60uebtXfgT5qGhRq9VQKpXw9vbOtz51FQoFfHx8WKEku6WmAklJgLs7oNVyfyLH4b5EjsT9iRyF+xI5CvclcqT82J9K0phEVHBKXtTtKeXn5wcAuHv3LsqXL29Mv3v3Lho2bGjMExsbazJfVlYW7t+/b5zfGo1GA41GY5GuVCotDmBKpRIKhcL4KimEEMbPU5I+F1ky7LvW9m9HriM/l08lT0wMsGQJsHMnIEmAUgmEhAATJgDVq3N/IsfgsYkcifsTOQr3JXIU7kvkSI7en7hfUl5wrykhAgMD4efnh4MHDxrTkpKScOLECbRs2RIA0LJlSyQkJOD06dPGPIcOHYIkSXj22WcLvMxERGTbypVA27bArl36gC6g/7trF9CunQLr12sLt4BERERERERU4NhStxhJTk7GtWvXjO9v3LiBM2fOwMvLC5UrV8b48eMxd+5cVK9eHYGBgZgxYwb8/f0RGhoKAKhduza6du2K119/HatWrUJmZiZGjx6NgQMHwt/fv5A+FRER5SQmBhg1ChACMO+mXP9egbfeckerVgJt2hRGCfOZJAHx8cCMGUBCAuDpCURGFnapSiZJguLePUCh0DcFz77No6L0aUREREREVGQwqFuMnDp1Ch06dDC+N/RzO2TIEKxbtw5vvPEGHj16hOHDhyMhIQGtW7fGnj17TPpm2bBhA0aPHo3nnnsOSqUSL7zwAj788MMC/yxERGTbkiWASmUZ0M1OqQSWLVOUzKBufDxgNsAnVq8unLKUcEoA5XKaGBkJ+PgUYGmIiIiIiMgWBnWLkfbt20MIkeN0hUKBOXPmYM6cOTnm8fLywldffZUfxSMiIgdKTX3ch25udDoFduyQkPrDcGg1mY8nuAUB9WaYZj4XCSRft73yiqFApdDH77NSgZMj5RW87nSgdLXH7+NPAlc+sj2fygVovso07Z+vgPD//j8F4LT5TERERERERE8nBnWJ7BQQEIDx48dj/PjxhV0Uhyhpn4eopEhKsh3QNZAkJZLup0HrlfA4UVPWMmNmIpAeb3uBuhSzBCFvPgCQzJoV69Llzau20jew7hHg9t//luN1liipcEES3OGOJGiRVtjFISIiIiKiIo4dpFGRlZoK3L2r/1sQ/v77b7z66qvw9/eHs7MzqlSpgnHjxiE+XmYgo4SaNWsWFAoFFAoFVCoVKlWqhOHDh+P+/fv44YcfjNNyev3www+F/RGIiiV3d/ndmCqVEty9XACN9+OXk4dlRicP0zw5vVSuZjMq5M2n8QaUZveLVRp58zl7WZZXVQpIhv6VLm9bFDcxCEZfbIMbkuGHu3BDMvpiG46iVWEXjYiIiIiIijC21KUiJyZG34+k4bFjpRIICQEmTQKCg/NnnX/++SdatmyJGjVqYOPGjQgMDMSFCxcwZcoU7N69G8ePH4e7u3v+rNwGnU4HhUIBZSEOUlOnTh0cOHAAOp0Oly5dwquvvorExER88cUXuH37tjHfuHHjkJSUhLVr1xrTvLysBGqIyCatVn/s27Ur9z51VSqBkBAFtO3X2F6oeXcMcqm1QMt1eZvXu1ne560/Boh8ST9oV7UEoKlniRoobeVaF4ya6gaVEpB0CgCABBV2qfpih9QXUQuSMSKsYFrtSpKEuLg4+Pj46M832QdK8/YukDIQEREREZF8DOpSkbJypX6kd5Xq8WPHkqQPauzYoR+Ae8QIx6931KhRcHZ2xr59+6DV6h8Brly5Mho1aoSgoCBMmzYNy5cvN+Z/+PAhBg0ahG+++Qaenp54++23MWrUKACAEAKzZ8/GZ599hrt378Lb2xv9+vUzDkiXnp6OadOmYePGjUhISEDdunWxYMECtG/fHgCwbt06jB8/Hp9//jmmTp2KK1euICoqCmPHjsWdO3fg6elpLMe4ceNw7tw5HDp0CAAQExODt956C6dOnULZsmXRp08fzJs3D6VKlQIAxMbGYtiwYThw4AD8/Pwwd+5cWdtHrVbDz88PAFChQgW8+OKLWLt2LZydnY3pAKDVapGenm6SRkR5N3Gi/tiXG0kCxo8XABQFUaSCpVTqB+hatcp23mImJgYYNRUQAsjSmU7L+i/AG/FmadRrVTrfbmiakCR9v/3e3sCDB6bB86f8iZVC4e0tv6k+ERERET2VGNSlIiMmRh/QFcKyVZrhfUQEUK+eY1vs3r9/H3v37sW7775rDOga+Pn5YfDgwdiyZYsxKAsACxcuxNtvv43Zs2dj7969GDduHGrUqIHOnTvj66+/xtKlS7Fp0ybUqVMHd+7cwdmzZ43zjh49GhcvXsSmTZvg7++P6OhodO3aFefOnUP16tUBACkpKViwYAE++eQTeHt7o2LFinjnnXfw9ddfY9iwYQD0LXg3b96Md999FwBw/fp1dO3aFXPnzsVnn32GuLg4jB49GqNHjza2nA0LC8O///6Lw4cPw8nJCWPHjkVsbKxd2+vmzZvYu3cvnJ2d7d/YRGSX1q31N7MiIvQ3u7IfG9VqQKcTmDcvCcHBpQuvkJQnS5ZYfqfmVCpg6dL8e0rFqvh4gDfmCl9srP6GBhERERFRDhjUpSKjsC5wr169CiEEateubXV67dq18eDBA8TFxcHf3x8AEBwcjKlTpwIAatSogaNHj2Lp0qXo3Lkzbt26BT8/P3Tq1AlOTk6oXLkymjdvDgC4desW1q5di1u3bhmXNXnyZOzZswdr167Fe++9BwDIzMxEVFQUGjRoYCzHwIED8dVXXxmDugcPHkRCQgJeeOEFAMC8efMwePBg44Bn1atXx4cffoh27dph5cqVuHXrFnbv3o1ffvkFzZo1AwB8+umnOX7u7M6dOwc3NzfodDqkpekfBV6yZIn8jUxEeTZihP5m1tKlQHS0abc048YJVK+eCoBB3eIkNfVxF0O5ycoCoqMlpP4QDq0m8/EEtyDLrjTORQLJ122vvGIoUCk020pSgZMjoRACHmlpUCgAhP837RSA07YXSUREREREBY9BXSoS7LvA1efXWhko/UkIIWTnbdmypcX7ZcuWAQBefPFFLFu2DFWrVkXXrl3RvXt39OrVC2q1GufOnYNOp0ONGjVM5k9PT4d3tj4LnZ2dUb9+fZM8gwcPRosWLfDvv//C398fGzZsQI8ePYzdMZw9exa///47NmzYYPKZJEnCjRs3cOXKFajVajRp0sQ4vVatWibdOeSkZs2a+Oabb5CWloYvv/wSZ86cwZgxY+RsKiJygOBg/Ss1FUhK0g+iptXqj5l2NranIiApyfb5zkCSlEi6nwatV8LjRE1Zy4yZiUC6jG4SdClmCeK/+QQUmRn6XjzcDOuRV0YiIiIiIip4DOpSkWDfBa4+v6OCutWqVYNCocClS5fQp08fi+mXLl1CmTJl4CPzMchKlSrh8uXLOHDgAPbv34+IiAgsXLgQP/74I5KTk6FSqXD69GmoVCqT+dzc3Iz/a7VaKBSm/WM2a9YMQUFB2LRpE0aOHIno6GisW7fOOD05ORnh4eEYO3asRZkqV66MK1euyCq/Nc7OzqhWrRoAYP78+ejRowdmz56NyBI0YBE9vcwDpUWZVlv0y0i2ubvrW1vLOe8plRLcvVwATbbBypw8LDM6eZjmyYnK1SxBoZ9PCAgpTR/UTf5vUrrtxRERERERUeFgUJeKBPsucPX5HcXb2xudO3dGVFQUJkyYYNKv7p07d7Bhwwa8/PLLJkHWn3/+2WQZP//8s0k3BlqtFr169UKvXr0watQo1KpVC+fOnUOjRo2g0+kQGxuLNm3a2F3WwYMHY8OGDahYsSKUSiV69OhhnNa4cWNcvHjRGHw1V6tWLWRlZeH06dPG7hcuX76MhIQEu8sxffp0dOzYESNHjjR2I0FU3MTE6Lt9MTwlYOjSYNKkAu7DlJ46Wq1+X9u1K/cuh9RqICRECW37NbYXat4dg1xqLdByHYQkITE2FpqyZaGouwKYMQOolgA09TQdNI3yz4wZQEIC4OmpHyiNiIiIiCgXDOpSkWDfBa7jW6qtWLECrVq1QpcuXTB37lwEBgbiwoULmDJlCipUqGAcjMzg6NGjeP/99xEaGor9+/dj69at+O677wAA69atg06nw7PPPgtXV1d8+eWX0Gq1qFKlCry9vTF48GC88sorWLx4MRo1aoS4uDgcPHgQ9evXNwnSWjN48GDMmjUL7777Lvr16weN5vGzsW+++SZatGiB0aNH47XXXkOpUqVw8eJF7N+/HytWrEDNmjXRtWtXhIeHY+XKlVCr1Rg/frzF4HBytGzZEvXr18d7772HFStW2D0/UWFbuVI/MKNK9fhmkiTpj0E7dugHJxsxolCLSCXcxIn6fS03Oh0wYUKBFOcxpVI/QNeqVQW8YuI2JyIiIiJ7MKhLRUZhXuBWr14dp06dwsyZM9G/f3/cv38ffn5+CA0NxcyZM+Hl5YWsbNHmSZMm4dSpU5g9ezbc3d2xZMkSdOnSBQDg6emJ+fPnY+LEidDpdKhXrx527dpl7DN37dq1mDt3LiZNmoR//vkHZcuWRYsWLdCzZ0+b5axWrRqaN2+OX375xdiHr0H9+vXx448/Ytq0aWjTpg2EEAgKCsKAAQOMedauXYvXXnsN7dq1Q7ly5TB37lzMmJG31l0TJkxAWFgY3nzzTVSqVClPyyAqDDEx+oCuEJY3kQzvIyL0g5OxxW4hkyQgPt60BWMJaTXauiYQtcAFEW+6QaUEsnSPnwZRqwR0EhC1IBnBNdKAuAIokCRBce8eoFDoA7vZt3lUlD6NiIiIiIiKDIWwZ3QoIgBJSUnw8PBAYmIi3M36QUhLS8ONGzcQGBgIFxcXu5e9apU+mKJSmQZb1Gp9QLewWs8JIZCVlQW1Wm3R1y2VLE+6D9siSRJiY2Ph6+sLJYMkhaJvX/lPBWzbVnDlyosSvz/FxQG+voVdinx1FK2wFBMQjT6QoIISOvRBNCZgKYJxrLCLpxcbq2+9SyRTiT82UYHhvkSOwn2JHCk/9qfc4ixEOWFLXSpSRozQt45buhSIjjbt53LCBLaaI6Ink5r6uA/d3GRlAdHRElJ/CIdWk/l4gluQZd+l5yKB5Ou2V14xFKgUmm0lqcDJkfIKXnc6UDpbf9nxJ4ErH0EhBDzS0qD400XfwtKcygVobvZI9/XPgNifbK/TuxlQY5Rp2ukJQMYD2/NWHQqUa/f4fco/wNlptucDgMZLAI3X4/f1AbQEcArAaXmLKE6CcQzBOIZUuCAJ7nBHErRIK+xiERERERFREcegLhU5wcH6V3EakZ6IioekJHkDMgKAJCmRdD8NWq+Ex4maspYZMxOB9HjbC9SlmCUIefMBgGTWrFiX/t+8AorMDEDpDMBKUFdt5eCZlSxvvZkPLdMyHsibV0o3fS908j+rMPuCnAC4AdBYy1xyaJHGYG4esb5ARERERE8jBnWpyNJqeXFGRI7l7q5v/S8nsKtUSnD3cgE02Uahd/KwzOjkYZonJypXswSFvPkAQGl2ulZp9PMKASGlAc65tNQ1p3aTt16n0pZpzmVkltcsAqtQyf+sCrNH2DIBJANIt5aZnmYxMcCSJY9b3xue7Jk0iU/2EBEREVHJx6AuERE9NbRafdBHXp+6Smjbr7G9UPPuGORSa4GW6/I2r3czoOU6CElCYmwsNL6+UMjtzyvoVf0rL5oszdt8rhXy9lm9vYEDsfpBu6olAE09S8xAaUWNJEmIi4uDj4+Pvm+47AOlecsMyBeglSv1Ax6qVI9v0kiS/re9Y0fh9cFPRERERFRQGNQlIqKnysSJ+qBPbnQ6fT/eVMiUSv0AXatW2c5LT0aSIITQb2+lskhv85gYfUBXCMubM4b3ERH6PvqLRYtdSQLiZXZPUlxIEhT37umfICgOAxJ5exePchIRERFlw6AuERE9VVq31rfii4jQt/LLHhRSq/UB3aioYhIMInoKLVli+ds1p1LpB10tFr/j+HjA17ewS+FQSgDlCrsQ9oiN1d/QICIiIipGGNQlIqKnzogR+lZ8S5cC0dGm/XFOmFBMAkFET6HU1Md96OYmKwuIjpaQ+kM4tJrMxxPcgiy7TDkXCSRft73yiqFApdBsK0kFTo6UV/C604HS1R6/jz8JXPlI/39aGhD+X/opAKflLZKIiIiInm4M6hIR0VMpOFj/Sk0FkpL0g6hxcEZyFO5X+SMpSd5AhwAgSUok3U+D1ivhcaKmrGXGzEQgXUb3B7oUswQhbz4AkMyaFevSH8+bmQG4Gconb3FERERERAzqEhHRU02rZdCNHCcmRt89gKE1qaEF+KRJbAHuCO7u+m0qJ7CrVEpw93IBNNkGenPysMzo5GGaJycqV7MEhbz5AEBpVuVWaR7PK9KA5P/S0+UtjoiIiIiIQV0iOykUCkRHRyM0NLSwi1Ik/fDDD+jQoQMePHgAT0/Pwi6OhXXr1mH8+PFISEgo7KIQUQmzcqV+AC+V6nHQUZKAXbv0g/NFRem7/qC802r1QfJdu3LvU1etBkJClNC2X2N7oebdMcil1gIt1+VtXu9mj+eVJKDucmDGDKBaAtDUE4iMzNtyiwhJkhAXFwcfHx8oi+oAZDNmAAkJgKenfqA0IiIiomKGQV0iAGFhYVi/fj0AQK1Ww8vLC/Xr18egQYMQFhYGhUJhzHv79m2UKVNG1nKLUwA4LCwMCQkJ2LFjR2EXhYio2ImJ0Qd0hbAMNhreR0To+3Iu0i12JUk/cFcRNnGoGjt2eAJQ5JhHpxOYEJYAxOUS+S1qsgdyvb31TZKLK0mCEEI/+FhR/RyrVhV2CYiIiIieCIO6RP/p2rUr1q5dC51Oh7t372LPnj0YN24ctm3bhp07dxrz+fn5FWIpiYioKFqyRN9CN7fWoyqVfnC+Ih3UjY8Hivh5rjWAKIQjAlFQQYcsOBmnqZEJHVSIEhEI7rW68Ar5pGJj9QFRIiIiIqIcFNFb50QFT6PRwM/PDxUqVEDjxo3x9ttvY+fOndi9ezfWrVtnzKdQKIytWTMyMjB69GiUL18eLi4uqFKlCubNmwcACAgIAAD06dMHCoXC+P769esICQlBuXLl4ObmhmbNmuHAgQMmZQkICMB7772HV199FaVLl0blypXx8ccfm+T53//+h0GDBsHLywulSpVC06ZNceLECeP0nTt3onHjxnBxcUHVqlUxe/ZsZOUQbZg1axbWr1+PnTt3QqFQQKFQ4IcffgAAnDt3Dh07doRWq4W3tzeGDx+O5ORkq8vJ7ujRo6hfvz5cXFzQokULnD9/3mT6119/jTp16kCj0SAgIACLFy82mZ59Oxt4enoav4ubN29CoVBg+/bt6NChA1xdXdGgQQMcP37cZJ5169ahcuXKcHV1RZ8+fRBfxFugEVHxk5qq70M3t4AuoJ8eHS0h9YfXgeNhj1/nrDxqfy7SNE9Or793mK0kVd58x8OAh9dMZlUnnYHi4lggHPpXE3mfvzCMwGocQRuEYCeU0AEAlNAhBDtxBG0wAsU4oEtEREREJAODukS56NixIxo0aIDo6Gir0z/88EN888032LJlCy5fvowNGzYYg7cnT54EAKxduxa3b982vk9OTkb37t1x8OBB/Pbbb+jatSt69eqFW7dumSx78eLFaNq0KX777TdERERg5MiRuHz5snEZ7dq1wz///INvvvkGZ8+exRtvvAHpv04cjxw5gldeeQXjxo3DxYsXsXr1aqxbtw7vvvuu1c8xefJk9O/fH127dsXt27dx+/ZttGrVCo8ePUKXLl1QpkwZnDx5Elu3bsWBAwcwevRom9tuypQpWLx4MU6ePAkfHx/06tULmZmZAIDTp0+jf//+GDhwIM6dO4dZs2ZhxowZJsFzuaZNm4bJkyfjzJkzqFGjBgYNGmQMXp84cQLDhg3D6NGjcebMGXTo0AFz5861ex1ERLlJSpI3cBcASJISSffTgPT4x6/MRMuMmYmmeXJ66VLMZhTy5kuPByTTKLRCSgcyHwBu0L80edkaBScYx7ANLyIZbriDckiGG7bhRQTjWGEXjYiIiIgo37H7BSoYf+8A/rfDdj63IMsBS85FAsnXbc9bMRSoFGp/2WyoVasWfv/9d6vTbt26herVq6N169ZQKBSoUqWKcZrPf49Nenp6mnTZ0KBBAzRo0MD4PjIyEtHR0fjmm29MgqXdu3dHREQEAODNN9/E0qVLcfjwYdSsWRNfffUV4uLicPLkSXh5eQEAqlWrZpx39uzZmDp1KoYMGQIAqFq1KiIjI/HGG29g5syZFp/Dzc0NWq0W6enpJmVdv3490tLS8Pnnn6NUqVIAgBUrVqBXr15YsGABypUrl+N2mzlzJjp37mxcTsWKFREdHY3+/ftjyZIleO655zBjhv67rlGjBi5evIiFCxciLCwsx2VaM3nyZPTo0cP4uevUqYNr166hVq1a+OCDD9C1a1e88cYbxvUcO3YMe/bssWsdRES5cXfXdxsqJ7CrVEpw93IBNNkGZnLysMzo5GGaJycqV7MEhbz5AEBpWg0USg3gVAYwPIyRLm8xhU2LNGiRVtjFICKyW2qq/sagu7t+IEgiIiJ7MKhLBUOXom8VZIumrGWaobWSnHXkAyGEyUBp2YWFhaFz586oWbMmunbtip49e+L555/PdXnJycmYNWsWvvvuO9y+fRtZWVlITU21aKlbv3594/8KhQJ+fn6IjY0FAJw5cwaNGjUyBnTNnT17FkePHjVpmavT6ZCWloaUlBS4upoHAay7dOkSGjRoYAzoAkBwcDAkScLly5dzDeq2bNnS+L+Xlxdq1qyJS5cuGZcbEhJikj84OBjLli2DTqeDSqWSVT7AdDuVL18eABAbG4tatWrh0qVL6NOnj0W5GNQlIkfSaoGQEGDXrty7YFCrgZAQJbTt19heqPkNTrnUWqDlujzNmuXeEKLqBijqrgDGjAG8HwADygDLl+etLGSfMWOABw+AMmX0A6URUYkVE6Pvi33nTv0NQaVSfx6ZNKmI97tORERFCoO6VDBUrvJaDjm0tZJjXLp0CYGBgVanNW7cGDdu3MDu3btx4MAB9O/fH506dcK2bdtyXN7kyZOxf/9+LFq0CNWqVYNWq0W/fv2QkZFhks/JycnkvUKhMHavoLVxKz85ORmzZ89G3759Laa5uLjkOm9RoVAo9CNnZ2PoviG77NvJEHyX5D4HTUTkIBMnAmbdgFvQ6YAJEwqkOHmnVOoH6CpfHnBx0QcYOWBXwci+zZXsIY2opFq5Ehg1Sj94pqHKKkn6G4M7dgBRUcCIEYVaRCIiKiYY1KWCUSk0710j5LW1kgMcOnQI586dw/jx43PM4+7ujgEDBmDAgAHo168funbtivv378PLywtOTk7Q6XQm+Y8ePYqwsDBjC9Lk5GTcvHnTrnLVr18fn3zyiXE95ho3bozLly+bdMlgi7Ozs0VZa9eujXXr1uHRo0fG1rpHjx6FUqlEzZo1c13ezz//jMqVKwMAHjx4gCtXrqB27drG5R49etQk/9GjR1GjRg1jK10fHx/cvn3bOP3q1atISbGvNXbt2rVNBo8zlIuIyNFat9ZfiEdE6C/Us7fYVav1Ad2oqGLUAmvp0sIuwdOH25yoxIuJ0Qd0hbB8ssPwPiICqFfvCc8XkgRwcGBTkgTFvXuAQlEwN868vXmDjojyHYO6RP9JT0/HnTt3oNPpcPfuXezZswfz5s1Dz5498corr1i0GgWAJUuWoHz58mjUqBGUSiW2bt0KPz8/eHp6AgACAgJw8OBBBAcHQ6PRoEyZMqhevTq2b9+OXr16QaFQYMaMGXa3LB00aBDee+89hIaGYt68eShfvjx+++03+Pv7o2XLlnjnnXfQs2dPVK5cGf369YNSqcTZs2dx/vz5HAcKCwgIwN69e3H58mV4e3vDw8MDgwcPxsyZMzFkyBDMmjULcXFxGDNmDF5++eVcu14AgDlz5sDb2xvlypXDtGnTULZsWYSGhgIAJk2ahGbNmiEyMhIDBgzA8ePHsWLFCkRFRRnn79ixI1asWIGWLVtCp9PhzTfftGi9bMvYsWMRHByMRYsWISQkBHv37mXXC0SUb0aM0F+IL10KREebPlI7YUIxCugSEVG+WLLE8safOZVKfx55onNGfDzg6/sECyh5lAByv3pxsNhYPulCRPmOt46I/rNnzx6UL18eAQEB6Nq1Kw4fPowPP/wQO3fuzLGP19KlS+P9999H06ZN0axZM9y8eRPff/89lP/dlV28eDH279+PSpUqoVGjRgD0geAyZcqgVatW6NWrF7p06YLGjRvbVVZnZ2fs27cPvr6+6N69O+rVq4f58+cby9mlSxd8++232LdvH5o1a4YWLVpg6dKlJgO5mXv99ddRs2ZNNG3aFD4+Pjh69ChcXV2xd+9e3L9/H82aNUO/fv3w3HPPYcWKFTbLOH/+fIwbNw5NmjTBnTt3sGvXLjg7OwPQtyTesmULNm3ahLp16+Kdd97BnDlzTAZJW7x4MSpVqoQ2bdrgpZdewuTJk2X3BWzQokULrFmzBh988AEaNGiAffv2Yfr06XYtg4jIHsHBwLZtQHIycOeO/u+2bQzoEhE97VJT9X3o5hbQBfTTo6MlpP7wOnA87PHrXKRl5nORpnkMr/NjgHDoX00c+SmIiKgoUQhrzQ+JcpGUlAQPDw8kJibC3d3dZFpaWhpu3LiBwMDAYtN3qxxCCGRlZUGtVuc4aBqVDPm9D0uShNjYWPj6+hqD/0R5xf0pfzyNo5FzXyJH4v5EjlKS9qW7dwE/P/n573z9Msp5JTxOcK8JNF5kmunXyUDSZcuZMzKAffv0/x8HcMze0tITY0vdEi0/jk25xVmIclK8z4xEREREDhITA/TtC7i56S+83dz07826ACciIrKbu7v8LlaVSgnuXi76waINr9wGlDZ/OZUBkqF/pTvyUxARUVHCPnWJiIjoqcfRyImIKD9ptfo+1nftyr0LBrUaCAlRQtt+je2F5jSgtCQBdZcDM2YA1RKApp5ApJXuG54ikiQhLi4OPj4++dfqe8YMICEB8PTUD5RGRJTPGNQlIiKip1qBjUZeHHDE9KKBo6YTlUgTJ+pvFOZGp9MPrvlElEr9o/+rVj3hgkoQSdIPfO3jk3/HV25vIipgDOoSERHRU63ARiMvDuLj7ev0kfIH+2IkKpFat9Y/+RERYXneUav1Ad2oqKfgXENERA7BoC7lC46/R8UV912ip4thNHJDlws5eTwaeTi0mszHE9yCLB9/PRcJJF+3vfKKoUCl0GwrSQVOjpRX8LrTgdLVHr+PPwlc+cj2fCoXoLlZS6Lrn0Fx90d4pKVBoYB+tHQAOAXgtLziEBGRPCNG6J/8WLoUiI7Wn3+USn3XDBMmMKBLRETyMahLDqVSqQAAGRkZ0D4tQ4ZTiZKSkgIAcHJyKuSSEFFBSEqyHdA1kCQlku6nQZt9NHJNWcuMmYlAuowuDHQpZglC3nwAIJk1K9aly5tXbeXcnJUMZMRDkZkBKAC4/ZeukVcUIiKyT3Cw/pWaqj8Pubvr+9wlIiKyB4O65FBqtRqurq6Ii4uDk5NT/nVCX8CEEMjKyoJarYZCoSjs4pRokqR/9EylKtjuBIUQSElJQWxsLDw9PY03KIioZDOMRi4nsGsyGrlBbqOR26JyNUtQyJsPAJRmVTiVRuY6XSzT1G6AszeElKYP6ib/l84R04mI8pVWy2AuERHlHYO65FAKhQLly5fHjRs38NdffxV2cRxGCAFJkqBUKhnUzSdpacDDh0BKtoZrrq76gIumAFuLeXp6wo/9SRI9NQp0NHJb1Fqg5bq8zevdLO/zBr0KERiGxNhYaMqWhaLuCmDMGMD7ATCgDLB8ed6WS/YZMwZ48AAoU4ajphMRERGRTQzqksM5OzujevXqyMjIKOyiOIwkSYiPj4e3t3eJaX1clGzcCMyZk/OAETNnAgMH5n85nJyc2EKX6ClUYKORFweGEdPLlwdcXPQBRg7YVTCyb3PWNYiIiIjIBgZ1KV8olUq4uFh5xLOYkiQJTk5OcHFxYVDXwWJigGHDgNzGJ3v1VaB6dQ4cYUGS9CPVz5gBJCQAnp5AZGRhl+rpkH2bR0UxAFPMcTRyK5YuLewSPH24zYmIiIjIDgzqElGhWrLEMohiTqXSX+s+VQEVOeLjAV9f07TVqwunLE+zyEi2ZCwBOBo5EREREREVJwzqElGhSU0Fdu60PUBRVhYQHS0h9YdwaDWZjye4BVn2XXkuEki+bnvlFUOBSqHZVpIKnBwpr+B1pwOlqz1+H38SuPKR7flULkDTKNO0658BsT/Znte7GVBjlGna5RlA+H//nwJw2vZiiChnHI2ciIiIiIiKCwZ1iajQJCXJG3EeACRJiaT7adB6JTxO1JS1zJiZCKTH216gLsUsQcibDwAks2bFunR586qtRIeykuXNm/nQSloC4Pbf/wU4mBxRScfRyImISg7eqCMiopKKQV0iKjTu7vrHm+UEdpVKCe5eLoAm24jgTh6WGZ08TPPkROVqlqCQNx8AKM0OnSqNzHVa6Wda7SZvXqfSVtI8geT//k+3vQgiIiKip0VMjL6bL8NTYYYudSZNYpc6RERUMjCoS0SFRqvVV6537cq9T121GggJUULbfo3thZp3xyCXWgu0XJe3eb2byZ/XPIId9Kr+lRetooCakfpBu6olAE09OVBaQck+UJq3zJsBREREVCBWrgRGjdKPy2CoekmSvs65Y4d+8MsRIwq1iERERE+MQV0iKlQTJ+or17nR6fQDFZEZpVI/QNeqVYVdkqcPtzkRUfEkSfqBRqlweXvr6zH5ICZGH9AVwrLRgOF9RIR+cEy22CUiouKMQV0iKlStW+tbS0RE6FtTZK98q9X6gG5UFCvdRERE5ADx8YCvb2GXgmJj9Tem88GSJZZ1SnMqFbB0KeuXRERUvDGoS0SFbsQIfWuJpUuB6GjTfs8mTGCFm4iIiKhEaALgd7O0v3cA/9thNbtCCHikpUHxpwtQupplN1vnIoHk68a3qelO2LlzNSQp91bAWVn6OmdqKgdPIyKi4otBXSIqEoKD9S+OUExERERUQmkAKMzSdClAek5dYggoMjMApTOQaaVlb2aiybxJ9z1tBnQNJElf52R9k4iIiisGdYmoSNFqWbkmoqKBN5mIiBwsHYAwS1O5ApocBh0VAkJKA5xdACcPy+lOHibzuns5QamUZAV2lUr98Z2IiKi4YlCXiIiIKJuYGH2fjDt3mnYHM2kSu4MhKva8vfX9uc6YASQkAJ6eQGRkYZfq6WDY5k099d+DQaVQ/csKIUlIjI2FxtcXCmsDq5l1x6CF/ni9a1fufeqq1fp8vGFHRETFGYO6RERERP9ZuVI/arpKpQ/oAvq/u3YBO3boB24cMaJQi0hET0Kp1A/QtWpVYZfk6VNA23ziRP3xOjc6nX7cBiIiouKMQV0iIiIi6FvojhoFCGHZwsvwPiJCP7BjiW2xK0lAfDxbMRaG7Ns8KkoffCQiu7Vurf8JRUTob9BlP56r1fqAblRUCT6OExHRU4NBXSIiIiLou1wwDwCYU6mApUtLcDAgPh7w8zNNW726cMryNIuM1LcmJaI8GTFCfwNu6VIgOtq0K50JE0rwMZyIiJ4qDOoSERHRUy819XEfurnJygKioyWk/hAOrSbz8QS3IIu+HXEuEki+bnvlFUNN+5PMSgVOjpRX8LrTgdLVHr+PPwlc+cj2fCoXoLnpo9DafzdCkfgzEP5fwikAp+UVg4ioqAkO1r846CUREZVUDOoSERHZgReHJVNSku2AroEkKZF0Pw1ar4THiZqylhkzE4H0eNsL1KWYJQh58wGAZNasWJcub1615c6r0D0CMh8Abv8laOQVgYioKNNqeb4mIqKSiUFdIiIiGWJi9I/nG1pzGh7jnDSJj3GWBO7u+u9UTmBXqZTg7uUCaLKN3u7kYZnRycM0T05UrmYJCnnzAYDSrCqn0shcp4tFklCVApzKAMn/JaTLKwIRERERERU8BnWJiIhsWLlSP4CWSvU46CdJwK5d+hG2o6L0/fdR8aXV6oP0u3bl3qeuWg2EhCihbb/G9kLNu2OQS60FWq7L27zezfI8b6r/IJSuPwaKuiv0g3ZVSwCaenKgtIKSfaA0b5lBfSIiIiJ6ajGoS0RElIuYGH1AVwjLYJ/hfUSEQL2KCQh+NpdoYH6QJCju3QMUCn0z06eBt3e+fdaJE/VB+tzodPpBdkospVI/QNeqVbbzkmNxmxMRERGRHRjUJSIiysWSJfoWurm13lSJLCztdRDBeLHgCgZACaBcga6xCIiN1Qcd80Hr1vpW1xERlt+5Wq0P6EZFsbsNIiIiIiIqfE9Jsx4iIiL7pabq+9DNLaALAFlwQjT6IBWW/ZRS8TJiBHDkiL4rBkODYEP/yUeOsJsNIiIiIiIqGthSl4iIKAdJSfIGzgIACSokwR1apOVvoSjfBQfrX6mp+n3A3Z0jpxMRERERUdHCoC4REVEO3N31rTTlBHaV0MEdSflfKCowWi2DuSUdA/dEREREVFwxqEtERJQDrVb/2P2uXbl3waBWCYR0y4L2s1sFVzgAkiQhLi4OPj4+UJbkgdJmzAASEgBPT/1AaURPKCZG31/2zp36mzaGLjYmTWKfyURERERUPDCoS0RElIuJE4EdO3LPo5MUmDBVk28DeOVIkiCE0K+3JAd1V60q7BJQCbJyJTBqlH4wPEMrfEnS37zZsUM/GB77TiYiIiKioo5BXSIioly0bq0P8kRE6INA2VvsqtWATqefztZ9REVfTIw+oCuEZet7w/uICKBePf6mSyxJAuLjTZ8AiIws7FI9HbJv86iokn0zkoiIqAAwqEtERGTDiBH6IM/SpUB0tOnj2hMmMPhDVFwsWWJ5c8acSqX/rfN3XULFxwO+vqZpq1cXTlmeZpGRBf90CxERUQnDoC4REZEMwcH6FwdWIiqeUlMf96Gbm6wsIDpaQuoP4dBqMh9PcAsC6s0wzXwuEki+bnvlFUOBSqHZVpIKnBwpr+B1pwOlqz1+H38SuPKR7flULkBzs65Lrn8GxP5ke17vZkCNUaZppycAGQ9sz1t1KODT5vH7lH+As9NszwcAjZcAGq/H7//dA/y1yfZ8rhWABu+apl1aBCSct8yblgaE//f/KQCn5RWNiIiIqKhhUJeIiMgOWi2DuUTFUVKS7YCugSQpkXQ/DVqvhMeJmrKWGTMTgfR42wvUpZglCHnzAYBk1qxYly5vXrWVA1VWsrx5Mx9apmU8kDevlG76Xujkf1Zh9gXp0mR+VlfLtMwk6/NmZgBu//2vkVcsIiIioqKIQV0iIiIiKvHc3fXdpsgJ7CoVEty9XACN9+NEJw/LjE4epnlyojIPOirkzQcASrPqukojc50ulmlqN3nzOpW2THMuY3s+AFCaRUoVKvmfVWHWx6rKRd681srm5G59XpEGJP/3f7rlZCIiIqLiQiGEEIVdCCpekpKS4OHhgcTERLi7uxd2cQqEJEmIjY2Fr68vlBzUgZ4A9yVyJO5P5ChPy77Uty+wa1fufeoarFyp70+b7Fek9ycOlFZ48jBQWpHel6hY4b5EjpQf+9PTGGehJ8eWukRERET0VJg4EdixQ17eiAj9AIn5PmCaIchYkkgSFPfuAQqFrMBdocgeyPX2LrrlLElWrbKdh4iIiGRjUJeIiIiIngqtW+sbCI6UMUaZSgUsXVoAQd34eMDXN59XUrCUAMoVdiHsERsL+PgUdimIiIiI7MKgLhERERE9NYYM0bfCtdUBWVYWEB0tIfWHcGg1mY8nuAUB9WaYZj4XCSRft73yiqFApdBsK0kFzo8Bwv97fwrAaduLISIiIiJiUJeIiIiInhpJSbYDugaSpETS/TRovRIeJ2rKWmbMTATSZXShoEsxSxBA5gPAzbBseeUiIiIiImJQl4iIiIieGu7u+u5TJcl2XqVSgruXC6Dxfpzo5GGZ0cnDNE9OVK5mCQrAqQyQ/N/bdNuLICIiIiICGNQlIiIioqeIVguEhAC7dum7WMhNgwZKaNuvsb1Q8+4Y5FJrgXZfAXWXAzNmANUSgKaepoN4FUOSJCEuLg4+Pj5Fd5T5GTOAhATA01M/UBoRERFRMcOgLhERERE9VSZOBKKjbef77Tfg6NECGCwNKPaB3GKH25uIiIiKOQZ1iYiIiOip0ro10LAhcOZM7vnUamDp0nwO6sbHA76++biCgqcEUK6wC2GP2FjAx6ewS0FERERkFwZ1iYiIiOipkpoK/P677XxZWUB0tITUH8Kh1WQ+nuAWZNnlwrlIIPm67YVWDAUqhT5+r0sFwv/7/xSA07YXQURERETEoC4RERERPVWSkuQNlAYAkqRE0v00aL0SHidqylpmzEwE0uNtL1CXYpYgADfDcuWViYiIiIiIQV0iIiIieqq4uwNKpbzArlIpwd3LBdBkG0zLycMyo5OHaZ6cqFzNEhRA8n//ptuenYiI8i41FUhO1p8HtNrCLg0R0ZNhUJeIiIiInipaLRASAuzape9iISdqNRASooS2/RrbCzXvjkEu34pAZCwwZgzg/QAYUAZYvjxvyyoiJElCXFwcfHx8oFQqC7s41o0ZAzx4AJQpA3jLCMYTUbEWEwPMn++JvXsVkCT9jb2QEGDSpAIaDJOIKB8wqEtERERET52JE4EdO3LPo9MBEybkc0GUSv0gXeXLAy4u+iBjcR+0S5IghNB/jqIa1M2+vYtqGYnIIVauBEaNUkCp1ECSFAD0T2rs2qU/D0RFASNGFG4ZiYjygkFdIiIiInrqtG6tv5CPiABUKtMWu2q1PqAbFVWALbiWLi2gFREAbm+ip0RMDDBqFCCEAjqd6TTDcT8iAqhX7wmO95IExMvoU53yl7c3b9LRU4dBXSIiIiJ6Ko0Yob+QX7oUiI6GySO5EybwkVwiouJuyRLLG3fmVCr9eSDPx/z4eMDXN48zk8PExhb/J12I7MSgLhERERE9tYKD9a/UVCApiYPnEBGVFKmpwM6dtgfFzMoCoqMlpP4QDq0m8/EEtyDL/tLPRQLJ103T0tKA8P/+PwXg9JOWnIhIHgZ1iYjyEYMERETFg1bL4zQRUUmSlGQ7oGsgSUok3U+D1ivhcaKmrGXGzEQg3ayrhcwMwM0wT15KSkSUN+xwhIgoH8TEAH37Am5ugJ+f/m/fvsDRo4VdMiIiIiKiks/dXX4Xq0qlBHcvF0Dj/fjl5GGZ0cnDNI/GG3AqAyRD/0p35CcgIsodW+oSETmYfoRdff9chtYBj0fYVWDePC2mTCncMhIRERERlWRarb6P9F27cu9TV60GQkKU0LZfY3uh5t0xAPqKft3lwIwZQLUEoKknEBmZ12KTPWbMABISAE9P/UBpRE8ZBnWJiBzo8Qi7lpVH/XsF3nrLHa1aCbRp84Qr40i7RQNH2iUiIiIqkiZOBHbsyD2PTqcfHDPPlEr9AF2rVj3BQihPuM3pKcegLhGRA8kZYVepBJYtUzx5UJcj7RYNHGmXiIiIqEhq3RqIigIiIgSUSkCnUxinqdX6gG5UlH7ATCKi4oZBXSIiB5E7wq5Op8COHRJSfxietxF2DTjSLhERERFRrkaMAOrUEViwIAO7d2sgSQoolfquGSZMYECXiIovBnWJiBykwEbYNU7jSLtERERERLYEBwOffJKA0qV9kZysgLu7vs9dIqLijEFdIiIHMYywKyewazLCrkFuI+xaI9L0o+wCHGmXiIiIiMgGrRYoVaqwS0FE5BgM6hIROYhhhN1vvtH3z5UTlUogJESR9xF2DQwj7Y4ZA3g/AAaUAZYvt7/gZL8xY4AHD4AyZTjSLhERERERERU4BnWJiBwoMDD3gC6gj8WOHy8AKHLPaIthpN3y5QEXF32AkQN2FYzs21ypLOzSEBERERER0VOGQV0iIgeJiQGWLrWVSyA8/BGCg12ffIWSBMTH60doS0vT/42Le/Llkm3Zt7kkMbBLREREREREBYpBXSIiB1myBFCpgKysnPOoVMDffzvo0BsfD/j6mqatXu2YZZN8kZFsIU1EREREREQFikFdIiIHSE0Fdu60PUiaTqfA7t3OSPtxOFxdskV/3YIs+889FwkkX895YWlpQDiAUwBO57XkRERERERERFTcMKhLROQASUm2A7oGkqRE0oM0uHolPk7UlLXMmJkIpMfnvKDMDMANgMauohIRUQFLTdWfJ9zd9YNqEhERERE9KXYCSETkAO7u8rtVVSoluJdxATTej19OHpYZnTxM85i/nMoAyQDSHfpRiIjIQWJigL59ATc3wM9P/7dvX+Do0cIuGREREREVd2ypS0TkAFotEBIC7NqVe5+6arVAly4ZcGn3se0osHl3DOYkCai7HJgxA6iWAHh66vt3pfw3YwaQkKDf5t7ehV0aIiqCVq4ERo3S96VueJJDkvTniR07gKgoYMSIQi0iERERERVjDOoSETnIxIn6C/Xc6HTA8OGPADg/+QqVSv0AXatWPfmyyD7c5kSUi5gYfUBXCMsbfYb3ERFAvXpAcHDBl++pJkn6gUapcHl7y3/EiYiIiKxiUJeIyEFat9a3vIqI0LfMyn4hr1brA7orVgg0b55ZeIUkIqJ8t2SJ5XnAnEoFLF3KoG6Bi48HfH0LuxQUG6u/MU1ERER5xqAuEZEDjRihb3m1dCkQHa1vEKRU6rtmmDABaNlSfx1DREQlU2oqsHOn7cEzs7KA6GgJqT+EQ6vJdrPPLciy+51zkUDyddsrrxgKVArNtpJU4ORIeQWvOx0oXe3x+/iTwJWPbM+ncgGamz298Odn8Li1H4o/XQCFIud5vZsBNUaZpp2eAGQ8sL3eqkOBcu0ev0/5Bzg7zfZ8aWlAKQCPbGclIiIiKsoY1CUicrDgYP3L2mjnti7yiYioeEtKkn+slyQlku6nQeuV8DhRU9YyY2YikC6jywBdilmCkDcfAEhmzYp16fLmVWst07IeQZH5AFA6A8glqJv50DIt44G89Upmo4QKnbz5MjNyLRIRERFRccGgLhFRPtFqHwdziYjo6eDurn9CQ05gV6mU4O7lAmiyDbjo5GGZ0cnDNE9OVK5mCQp58wGA0uyyQKWRuU4XyzR1KQinMoCzjZa6TqUt05zL2F4nACg1pu8VKnnlFWmAkLcKIiIioqKMQV0iIiIiIgfRavVd7nzzjb4v9Zyo1UBIiBLa9mtsL9S8Owa51Fqg5bq8zevdLO/zVn0ViW49ofH1hcLewbCaLM3bOl0ryCuvJAE3lgMzZgAJCYCnJxAZmbd1kn2yb3NvmTcbiIiIKEcM6hIREREROVBgYO4BXUA/fcKEgikPZaNU6gfoWrXKdl5yLG5zIiIih2JQl4iIiIjIQWJi9INl2jJpkr7/dSpgkgTEx7OlbmHIvs2jovQBdiIiIsozBnWJiIiIiBxkyRJApQKysnLOo1IBN24UXJkom/h4wNfXNG316sIpy9MsMlLfYpqIiIjyjEFdIiIiIiIHSE0Fdu60PUiaTgdER0tI/SEcWk3m4wluQZb9556LBJKv2155xVCgUujj91mpwMmR8gpedzpQutrj9/EngSsf2Z5P5QI0N3uk/vpnUNz9ER5paVD8mctAad7NgBqjTNNOTwAyHtheb9WhQLl2j9+n/AOcnWZ7PgCo8ra8fERERERFHIO6RERERFSkpKYCSUmAu7t+4LHiIinJdkDXQJKUSLqfBq1XwuNETVnLjJmJQHq87QXqUswShLz5AEAya1asS5c3r9rKl5OVDGTEQ5GZASidAeQQ1M18aJmW8UDeeqV00/dCJ/+zCplfEBEREVERx6AuERERERUJMTH67gsMrV2VSiAkpPj0P+vuri+znMCuUinB3csF0Hg/TnTysMzo5GGaJycqV7MEhbz5AEBpdkmg0shcp4tlmtoNcPaGkNIA51xa6jqVtkxzLmN7nQCg1Ji+V6jkf1YF+3ElIiKikoFB3RJEp9Nh1qxZ+PLLL3Hnzh34+/sjLCwM06dPh+K/CrUQAjNnzsSaNWuQkJCA4OBgrFy5EtWrVy/k0hMREdHTbOVKYNQofX+zhqCoJAG7dgE7dujHVRoxolCLaJNWqw9C79qVe5+6ajUQEqKEtv0a2ws1745BLrUWaLkub/N6N8v7vEGvQgSGITE2FhpfXyjsGQyriYwR5qxxrSC/vJIExMZyoLTCkH2be8sMwhMREVGOGNQtQRYsWICVK1di/fr1qFOnDk6dOoWhQ4fCw8MDY8eOBQC8//77+PDDD7F+/XoEBgZixowZ6NKlCy5evAgXFyutLYiIiIjyWUyMPqArhGUw1PA+IgKoV6/ot9idOFEfhM6NTgdMmPDfG0nSD95VkkgSFPfu6Vvp2hPULUjZA7ne3kW3nCXJqlW28xAREZFsDOqWIMeOHUNISAh69OgBAAgICMDGjRvxyy+/ANC30l22bBmmT5+OkJAQAMDnn3+OcuXKYceOHRg4cGChlZ2IiIieXkuW6Fvo5ta6VaUCli4t+kHd1q31rYojIiw/k1qtD+hGRWX7HPHxgK9voZQ1vygBlCvsQtgjNhbw8SnsUhARERHZhUHdEqRVq1b4+OOPceXKFdSoUQNnz55FTEwMlixZAgC4ceMG7ty5g06dOhnn8fDwwLPPPovjx4/nGNRNT09HevrjASmSkpIAAJIkQZI7GkgxJ0kShBBPzeel/MN9iRyJ+xM5SmHuS6mpwM6dCkhSDn2v/icrC4iOlpByeDi0mkxjunALAupON818fi4UyddtrltUDAEqhmZbSSoUpyJklVvUmQaUrvY4If4kFFejAADh9YG6UdWxdFMX7DjSBJKkhFIpoXfwaUx46TBavTb5cb+7kgRlOwC1AJwCcFrW6smBJEmSP8IdFSie58hRuC+RI+XH/sR9k/KCQd0SZOrUqUhKSkKtWrWgUqmg0+nw7rvvYvDgwQCAO3fuAADKlTNtO1GuXDnjNGvmzZuH2bNnW6THxcUhLS3NgZ+g6JIkCYmJiRBCQMnH8+gJcF8iRyqJ+1NqKpCcrISbmwSttrBL8/QozH0pLk4JSZLXUlWSlIi7m4RyZRKMaTqdKx7GxprkK514G6qU2zaXl3b/DtKcs82rS4HnQ9vzAcDDe3ehS3U3vndKuINS2eZtGngbG976CakTnZGU4gp31xRoNRkQKhfExr5izKe4dw/lXAC4ATAb/4sKRlxcHIQQhV0MsqIknueocHBfIkfKj/3p4cOHDlkOPV0Y1C1BtmzZgg0bNuCrr75CnTp1cObMGYwfPx7+/v4YMmRInpf71ltvYeLEicb3SUlJqFSpEnx8fODu7p7LnCWHJElQKBTw8fFhJYCeCPclcqSStD/FxADLlinw/+z9fXxcZ33n/7/nzEijseXRnSXbYFOCDRSwuE3CJhJLWvhuaBcq4T4olHZLAl2sSLhUMuU2KtsVNwWKROtEcsiSBL7fsvyW7EpGDzbQLtuQKFDWMSyYLUu6DgstkIw8tjRRPKObuc7vj0vyaGakmWN5bjWv5+MxD+tcc13nfOboeCR95jrX59QpyRifHMdVT480OOhW/O3220E5r6VduyTHcfPO1JUkxzFq3xNWMJjK+LuN+xTKXL4gsk8+/6W8+6tv3avw+rErcfl27fMUd/3uPdKudWP9e+W7kD02uEtqliStxuxvUHD9MX0+KSFpQdJi5miUQnt7O8svVKjt9HMO5cW1hEIqxvVEjSNsBUndbeRP/uRP9P73v//yMgqdnZ366U9/qo9//ON629vepr1790qSnnzySe3bl/qj48knn9RLX/rSTfcbDAYVDGZPHXEcp6Z+IPp8vpp7zSgOriUU0na4niYmbJEsvz91B7QxPk1PS1NTPo2PS3195Y2xFpTrWtq5U+rpkaanc6+pGwhIPT2Odvzaf0hr3zAV/OI/9XTsrLH1O6UbP7+1se2vtI8rHdveLn05Ig0PS4fmpGub04t4VSFjjGZnZys7eTI8LM3NSc3NctrbKZRWwbbDzzlUBq4lFFKhryeuS2wFSd1t5NKlS1lvBH6///LaLNdcc4327t2rb3zjG5eTuLFYTN/5znd02223lTpcAAA0M2MTuq6bndBb2+7vd9W5f05dr8yR8cPVMUa+8+ftrNHMPyra2oqe8BoakqamcvdJJqXBwaKGUR6OYxO7J0+WO5LCWV1rUJWcLN1O5xsAANQkkrrbyBve8AZ99KMf1bOe9Sy96EUv0ve+9z2Njo7q7W9/uyT7SdIf//Ef6yMf+Yie+9zn6pprrtHw8LCe8YxnqLe3t7zBAwBq0uionaGba4am313R2Bu+oS69qXSB1RhH0p7NnoxEin5rene3ND4u9fdnXw+BgE3ojo+LpTgAAACAVSR1t5ETJ05oeHhY/f39ikQiesYznqGjR4/qT/80dQvie9/7Xj399NN65zvfqbm5OXV3d+trX/sa67cAAEouHtfqGrq5+62oTpN6o+JqUEi1UaCzFvX1SZ2d0tiYNDlprwvH0erayiR0AQAAgPV8LqVecYVisZiampo0Pz9fU4XSIpGIOjo6WOsGV4VrCYVU7dfTk09Kq8u9e/KE9miPIsULCBsrwUzdTPG4FItJ4bAUCuXvj8pS7e9NqBxcSygUriUUUjGup1rMs+DqMVMXAACURThsZ2Lmm6krSY6SCitW/KBQEUKhq0vmkhQGAADAdkdSFwAAlEUoZG+tn57OvaZuwLeinvZvK/RrPdKJE6ULsIYYYzQ7O6v29nY74+TYMeniRamlxRZKqxIzM3ad5rVlPdaWbzh+nOUbAAAAsL2Q1AUAAGUzNCRNTeXuk3T9GnzFN6V9+0q+DEDNMEau69rz6zj2XDc02KRuldymOjEhDQzYQmtrs7+NsR8aTE3ZQmt9fWUNEQAAACgYkroAAKBsurttsq2/3ybj1s/YDQSkZFIaH/epq+/28gVZi8bGyh3BFZmZsQld182e9b223d9vC7FV3IxdY6RotNxRFJYx8p0/L/l81fGhQFtbdcQJAACwDkldAABQVn19Ntk2NiZNTqbfNj84WIFJOFSc0dHsDwUy+f32Gqu46ykalTo6yh1FQTmS9pQ7iCtRhmKAAAAAV4ukLgAAKLuuLvugwBWuVDyeWkM3l5UVaXLSKP7gUYWCy6knGg9KncPpnc+OSAvn8h98f690oHfdQeLS6du8BX74dmnXodT2cyS1SDrjbTgAAABqG0ldAABQMUKhykjmklyuHrFY/oTuGmMcxS4kFGqdSzUGd2d3XJ6XFj0siZC8lNHgehsnSSZjWnFAUtDbUAAAAICkLgAAwKqZGXsr/9rMz7VlII4fr8Db9iHJJt4dx1ti13GMwq0NUrAt1VjXlN2xrim9z2b8OzIafN7GSZKT8Wv4iqRFb0MBAAAAkroAAACSJiZssS2/P5UgNEaanpampmxBt76+soaIDYRCNvE+PZ17Td1AQOrpcRS66e78O81cjsGrQEi64b4rG9PWZtd0HR6W5uaka5ulkZGtHb9CGGM0Ozur9vZ2OZVagGztfDc32+8BAABAlSGpCwAAat7MjE3oum52YnBtu7/fFnTb1jN2jbGFu6rM0K0BTU01S/Jt2ieZdDV4y5w0myPzW07rE7ltbXb6cbUyRq7r2uJjlfo6Tp4sdwQAAABXhaQuAACoeaOjdoZurpmefr80NrbNk7rRqLR3b7mjuGLdksZ1VP0al19Jraju8nMBLSspv8bdfnW94a7yBXklIhGbEAUAAAA2QVIXAADUtHg8tYZuLisr0uSkUfzBowoFl1NPNB7Mvl3/7Ii0cC7/wff3Sgd61x0kLp2+zVvgh2+Xdh1KbUdPS4/dmX+cv0G6PmOW4uP3qOlnfyufT9LR1bZHJZ3xFkol6NNd6tRZjWlQk3qjjPxylFSPTmlQY+rSt8odIgAAAFAwJHUBAEBNi8W8FdmSJGMcxS4kFGqdSzUGd2d3XJ6XFj0sY5C8lNHgehsnSSZjWnFy0dvYQCi7beVp+ZYv2tULGlfbgt7CqCRd+pa69C3F1aCYwgorppAS5Q4LAAAAKDiSugAAoKaFw3bZTy+JXccxCrc2SMF1hZXqmrI71jWl99mMf0dGg8/bOElyMn6N8wc9HrMhuy2wU25di03qLqy2LXoLoxKFlKjaZG5cDYpFfAo32iJwAAAAwEZI6gIAgJoWCkk9PdL0dO41dQMBqafHUeimu/PvNHM5Bq8CIemG+7Y2tu26rY99zts13/h6BXfvlu/wHdKxY1LbRenNLdKJE1vbJ67IzFvu0OgP/x+ditwoc9iR49jr8vjxbb6OMwAAALaEpC4AAKh5Q0PS1FTuPsmkNDhYknDKx3Fsga59+6SGBqmlhYJdJTAxIQ38938nv8/IyJFkZ45PT9vrcnxc6usrb4wAAACoLCR1AQBAzevutomz/n7J70+fsRsI2ITu+HgNzZgcGyt3BDVjZkYaGJBc+bTi+tOeW7sO+/ulzs4auv6KyRgp6nHdahRPW5v9EAkAAGwZSV0AAADZmZCdnTafOTlpcz9rt8APDpJQQ3GMjmZ/kJDJ77fXJddgAUSjUkdHuaNAJMJdAAAAXCWSugAAAKu6uuwjHpdiMVtEjWJVKJZ4XDp1Kn+RvpUVaXLSKP7gUYWCy6knGg9mr998dkRaOJf/4Pt7pQO96w4Sl07f5i3ww7dLuw6ltqOnpcfuvLzpc101JRLyPd4g+Xypfv4G6fqT6fs6d48UeSj/Mduuk543kN52ZlBauph/7HNulfa8OrXdIul3JD0q6Uz+4QAAAJWIpC4AAECGUIhkLoovFsuf0F1jjKPYhYRCrXOpxuDu7I7L89Kih+UFkpcyGlxv4yTJZEwrTi5mjHXlW16SnHpJ65K6gQ3+U60seDvu8lPZbUsXvY01i+nbjqRGScH8QwEAACoVSV0AAACgDMJhu8SHl8Su4xiFWxukYFuqsa4pu2NdU3qfzfh3ZDT4vI2TJCfjTwh/MH2s68o1Cal+g5m6mQKN3o5btyu7rb7FY7wZ2VsjaUHS4kadAQAAqgNJXQAAAKAMQiG7ZvP0dO41dSXpJS9xFLrp7vw7zVyOwatASLrhvq2NbbsubaxrjOYjEQU7OuTLVwzr4NvtYytesYWCfm1t0o8j0vCwdGhOurZZGhnZ2vFxZYaHpbk5qbnZfh8AAMBVIakLAAAAlMnQkC3Ml8/3vic98gjF0gqGRG7pcc4BACgokroAAABAmXR3Sy99qfQ//2fufoGANDZGUveqRaNSR0e5o0AkIrW3lzsKAACqGkldAAAAoEzicekHP8jfb2VFmpw0ij94VKHgcuqJxoPZSy6cHZEWzuXf6f5e6UDvuoPEpdO3eQlbOny7tOtQajt6WnrsTkmSz3XVlEjI93jGmrqSXVf3+pPpbefukSIP5T9m23XS8wbS284M2oJp+TznVmnPq1PbLZKeI+lM/qEAAACViKQuAAAAUCaxmLdCaZJkjKPYhYRCrXOpxuDu7I7L89JiNP8Ok5cyGlxv4yTJZCwCnFxcN9aVb3lJcuolZSR1A6Hsfa0seDvu8lPZbUsXvY01GVXRHEnBDXsCAABUBZK6AACgIsTjNsEVDtsCUkAtCIclx/GW2HUco3BrgxRcV2Sqrim7Y11Tep/N+HdkNPi8jZMkJ+PPCH8wNdZ15ZqEVL/JTN1MgUZvx63bld1W3+Ix3owMrpG0uGFPAACAqkBSFwAAlNXMjDQ6Kp06ZRNbjiP19EjHj7N+KLa/UMhe79PTdomFzQQCUk+Po9BNd+ffaeZyDF4FQtIN921tbNt1l8e6xmg+ElGwo0M+x8k/9uDb7WMrXjF2Zf3b2ux6rseOSRcvSm9ukU6c2NqxcWXWznlLi/0+AACAq0JSFwAAlM3EhDQwIPn9qZmKxtgE19SUND4u9fWVNUSg6IaG7PWeSzIpDQ6WJJztzXFsga59+6SGBptgpGBXaaw/516S/QAAICeSugAAoCxmZmxC13WzZyiubff3u+r82l+oq+GM1NwsjYyUPM6aYIx858/bW+UdRxoelubm7DkfHycBU2Td3fY09/fbDzjW/38IBGxCd3ycmesFNXaFM3xx9TjnAAAUFEldAABQFqOj2QmsTH53RWOnrlGX3msb7rqrNMHVGEfSns2eHBlhJmMJ9PVJnZ027zU5mb4UyeAgCV0AAACkI6kLAABKLh5PraGby4rqNOl7o+IvbVDoe4nSBAeUSVeXfVA0EAAAAPmQ1AWQhj8kAZRCLJY/obvGuH7F/GGFRFIXtSEU4mcwAAAAcmOBNACS7NqWR45IjY3S3r323yNHpEceKXdkALajcNj7Mq2OL6lwMlbcgAAAAACgijBTFwDV5wGUXChk1wqdns69pm7A76rnWd9X6Hk90vXNFEorEmOMZmdn1d7eLiezUFpbW7nDAwAAAJCBpC5Q47xVn7fFW3IWaTFGikaLFue2kVlhvtDa2qhSj6oxNGQ/OMolaXwa/H9fLnV9qSQx1Sxj5LquLYjmONLJk+WOCAAAAEAOJHWBGuep+rzfVuPOmdSNRqWOjoLHt93krDBfCJEIVepRNbq77Z0A/f3Z70OBgJRM2udzvvcAAAAAQA0iqQvUMM/V51ekyUmj+INHFQoup55oPCh1Dqd37pX0T5LOFDhYANtSX5+9E2BsTJqctO9HjmOXZhgcJKELAAAAABshqQvUsCuqPm8cxS4kFGqdSzUGd2d33CEpWIjoANSKri77iMft+1I4bNfcBQAAAABsjKQuUMPWqs97Sew6jlG4tUEKriuYU9eU3fGSpMWChQhsiOTf9hQK8f0EAAAAAC9I6gI1zHP1+YDU0+ModNPdm3dqa7PruQ4PS8E56dpmqtRvIKvCfCHUUJX6mRm7DvTasiFrt+kfP85t+gAAAACA2kFSF6hxnqrPJ+3aljk5ji3QRcX03DIrzBdCjZzziQlpYMAW1FqbXW6M/VBiasoW1OrrK2uIAAAAAACUBEldoMZRfR7VYGbGJnRdN3tW+dp2f78tuFXUa9UYKRpNnx1dzhnpxsh3/rzk8xXuQ4JKtP58j49v79cKAAAAAB6Q1AVA9XlUvNHR7A8dMvn99hou6vUajUodHeltd91VxAPm5kjaU7ajl8nIiJ3pDgAAAAA1jKQuAElUn0flisdTa+jmsrIiTU4axR88qlBwOfVE40Gpczi989kRaeFc/oPv75UO9Ka2k3Hp6OrXj0o6k38XAAAAAAAUGkldAGmoPo9KE4vlT+iuMcZR7EJCoda5VGNwd3bH5XlpMZpzX/HFesWeMArvXv9/wpUa1/brLSYAAAAAAAqNpC4AoKKFw3Y5EC+JXccxCrc2SMG2VGNdU3bHuqb0PuvMfP+5Gv3SzTr18MtljHN5KZLjx6Wugz5pYbXj4pW/FgAAAAAACoGkLgCgooVCNqk6PZ17Td1AQOrpcRS66e78O81cjmHVxIQtyOb3p5LIxthjT01J43fsV99IxBbuOjQnXdtc1kJpxhjNzs6qvb1dznYuHra+UFrbxsl4AAAAAKglJHUBABVvaMgmVXNJJm1hv62ambEJXdfNTh6vbfe/y6fOZwXUVcZEbk3ifAMAAABAGpK6AICK190tjY9L/f12Fu36pGsgYBO64+O22N9WjY5m7zuT35HG3vANdelNWz9QATmS9pQ7iFKLRKT29nJHAQAAAABltY3v1QQAbCd9fdLDD9ulGNZWGlhb7/bhh+3zWxWPS6dO5U7oStJK0qdJ3xsVf0eD9IqtHw8AAAAAgKvBTF0AQNXo6rKPeFyKxWwRtVDo6vcbi3krxCZJxvUrVhdWKJi4+gMDFSYelxYWCvd/CwAAAEBxMFMXAFB1QiFpz57CJZ3C4dTs33wcX1Lh5Zi0WJhjA5VgZkZ6+9ubFQ77tHev1NgoHTkiPfJIuSMDAAAAsBFm6gIAal4oZJdxmJ7OvQRDIOCq53UrCgXeJh2ak65tLmsRL2OMZmdn1d7eLsdrVroaDQ9Lc3NSc7PU1lbuaLadiQlpYMAnxwnKGJ8kO3N9etoWKBwfv7rlTQAAAAAUHkldAAAkDQ3ZBFYuyaRPg+8PSl0nSxJTXsbIdV1bOGw7J3VPVsj53oZmZqSBAcl1fUom059b+4Cjv1/q7Ly6QoRAxTBGikbLHQXa2rb3zy0AAEqApC4AAJK6u+2MxP5+ye9Pn7EbCEjJpH2exBa2k9HR7Os9k98vjY1x7WObiEaljo5yR4FIxH4gCQAAtoykLgAAq/r67IzEsTFpctJO6HIcuzTD4CBJLWwv8bh06lT+IoErK9LkpFH8waMKBZdTTzQelDqH0zufHZEWzuU/+P5e6UDvuoPEpdO3eQv88O3SrkOp7ehp6bE784/zN0jXZ8z6PnePFHko/9i266TnDaS3nRmUli7mH/ucW6U9r05tX/q59P0P5R8nSS8flYKtqe1ffE366Zfyj9vxTOklH01v+9FfSHM/zD92383Ss383ve3bt+QfJ0kvOC41d6a2585KPx7zNvaG+9K3/+9/lH759fzjmg9LL3hPetv3P2TP80YSCeno6tfflvQDb+EBAABUGpK6AACs09VlH/G4FIvZImqFKsgGVJJYLH9Cd40xjmIXEgq1zqUag7uzOy7PS4sebm1PXspocL2NkySTMa04uehtbGCD/8grC97GLj+V3bZ00dtYk1FV0U16f61uxjcomfD4Wndkty3HvI1deTq7zfP3Zjl72+vYjeLw9L2JZbfl+t4sL0mNq1/XbS00AACASkBSFwCADYRCJHOxvYXDdia6l8Su4xiFWxuk4LpCdXVN2R3rmtL7bMafmXT0eRsnSU7Gr6/+oMdjNmS3BRq9ja3bld1W35J/nCQ5wfRtn9/7a/VlrDnqb/A2dqPY6sLexgZ2Zrd5/t7UZW97HbtRHJ6+N+HstvoWaSXzg4NVbkJaWP16eeMuAAAA1cDnuq5b7iBQXWKxmJqamjQ/P69weINfpLchY4wikYg6Ojq2d4V5FB3XEgqJ6wlX68gRaXo6/5q6vb3S/feXLCxUuYp+b1orlHbsmHTxotTSIp04Ue6oasP6c/7FL3oqlFbR1xKqCtcSCqkY11Mt5llw9ZipCwAAUKOGhqSpqdx9kknpmmtKEg5QfI5jC3Tt2yc1NNgEIwW7SmP9OSepBgDAVSOpCwAAUKO6u21i99OfdiX5Nu336U/b2boUC0TVW5up+8EPptpmZ8sXTy1Zf87XKpECAIAtI6kLAABQwx5/3C6xkExu3sfvl8bGSOpiG4hGpY6OckeBSIQZ0gAAXCWSugAAADUqHpdOnZKM2XyWrmTX3J2cNIo/eFSh4LrqUo0Hpc7h9M5nR6SFc/kPvr9XOtC77iBx6fRt3gI/fLu061BqO3paeuzO/OP8DdL1J9Pbzt0jRR7KP7btOul5A+ltZwalpYv5xz7nVmnPq1Pbl34uff9D+cdJ0stHpWBravsXX5N++qX843Y8U3rJR9PbfvQX0twP84/dd7P07N9Nb/v2LfnHSdILjkvhF6W2585KP/q0t7E33Je+/X//o/TLr+cf13xYesF70tu+/yF7njMlEtLR1a8flXTGW2gAAACVhqQugMvicSkWsxXRQ6FyRwMAKLZYzN4F7YUxjmIXEgq1zqUag7uzOy7PS4vR/DtMXspocL2NkySTUdktuehtbGCDH24rC97GLj+V3bZ00dtYs5i+7Sa9v1Y34xuUTHh8rTuy25Zj3sauPJ3d5vl7s5y97XXsRnF4+t7Ests2+94sL0mNq18HtxYWAABAJSCpC0AzM9Lo6NpsLbvEWU+PdPw4t9oCwHYWDtv3fC+JXccxCrc2SMG2VGNdU3bHuqb0PpvxZyYdfd7GSZKT8SusP+jxmA3ZbYFGb2PrdmW31bfkHydJTkb20Of3/lp9GeuO+hu8jd0otrqwt7GBndltnr83ddnbXsduFIen780GVcLrW6SVzA8OJLkJaWH168XspwEAAKqFz3Vdt9xBoLrEYjE1NTVpfn5e4fAGv0RvQ8YYRSIRdXR0yNlmRR0mJqSBAbte4sq6iU+BgF1fcXxc6usrX3zbzXa+llB6XE8ohCNHpOlpVysrmy/BEAjYD/vuv7+EgaFqVfR701qhtOFhaW5Oam6WRkbKHVVtWH/Ox8c9FUqr6GsJVYVrCYVUjOupFvMsuHrM1AVq2MyMTei6bnpCV0pt9/dLnZ0eZuyu/ZGE3IyR7/x5yecrTtXntjaqSQO4IkND0tRU7j7JpDQ4WJJwgOJyHFug6+TJ/H1RWJxzAAAKiqQuUMNGR7Nn6GbyXPGcatKeOJL2FPMAVJMGcIW6u6U77nD1rnet/UxIzdhdf9cGy/EAAAAAlYOkLlCjUhXPc/e7oornvbIZS6pJA0BV6euT9u+/oM9/vlVTU+nrqw8OktAFAAAAKg1JXaBGFaXi+Q7ZitJUkwaAqnP99ct6/etdLS76FIvZImqhULmjAgAAALARkrpAjSpKxfNLshWlqSYNYAPxuEgWVoFQiO8PAAAAUOlI6gI1KhSyt9VOT+deU9dWPHcUuunu3Dtsa5M+G5GOHZPaLkpvbpFOnChs0NuAMUazs7Nqb28vXOXdY8ekixellhb7fQAqzMyMXcN7bcmXtdv6jx/ntn4AAAAA2AqSukANK2jF87Vq0vv2SQ0NNsFIwa5sxsh1XXtuCpXUXX/OC7VPoEAmJqSBAVuAa+3OAGPsB0pTU7YAV19fWUMEAAAAgKpDUheoYd3dNqHS379W8Tz13JYrno+NFTxO5ME5R4WambEJXdfNviNgbbu/X+rs3OR9xhgpGi16nJBkjHznz0s+X/aHQ21tfGAEAAAAVBiSukCN6+uzCZWxMWlykornAApndDT7A6NMfr99/9nwvSYalTo6ihYfUhxJezZ7MhLhzgsAAACgwpDUBaCuLvugiBGAQonHU2vo5rKyIk1OGsUfPKpQcDn1RONBaS/rMgAAAADARkjqAriMiucACiUWy5/QXWOMo9iFhEKtc6nG4O6ixAUAQDVjEgYAYA0LpAEAgIILh70vw+o4RuHWBinYlnrUNRU3QAAAqsjMjHTkiNTYKO3da/89ckR65JFyRwYAKBdm6gIAgIILheza3NPTudfUDQSknh5HoZvuzn7SGLue6/CwNDcnNTdLIyPFCrmmGWM0Ozur9vZ2OY6Tfs7b2sodHgDUtIkJW3jU70/dBWOM/Rk7NWULG/exYhEA1BySugAAoCiGhuwfm7kkk7Yo44YcxxboOnmy0KEhkzFyXdeeb8fhnANAhZiZsQld183+kHRtu7/fFj6+XHTUGFtsFCnGyHf+vOTzeb+V6Gq0tZXmOABqGkldAABQFN3ddvZQf7+dXbT+j9FAwCZ0x8fX/REKAADSjI5m/wzN5PdLY2Prfp5Go1JHR0niqxaOpD2lPGAkYj8oBYAiIqkLAACKpq/Pzh4aG5MmJ+3kIcexSzMMDpLQBQBgM/G4dOpU/sKjKyvS5KRR/MGjCgWXpURCOirpSUlTJQgUAFAWJHUBAEBRdXXZBxW7AQDwLhbLn9BdY4yj2IWEQq1z0vKS1CjpqWJGBwAoN5K6AABUkfWJ0WCw3NFcmVCIZC4AAF6Fw/buFi+JXccxCrc2SME2yU1IC5IuFT1EAEAZkdQFAKAKzMzYdfXWbsO0Sxj4dMstdXr968sdHQAAKLRQyC5XND2de03dQEDq6XEUuulu22CMdPiEdOyY9K8uSi0t0okTpQm6QhljNDs7q/b2djnFKmB27Jh0cfV8t7UV5xgAsA5JXQAAKtzEhK187fenZusYY//Im5pq1R13uOrvL2+MAACg8IaGpKmp3H2SSbtO/WWOY4t07dsnNTTYJGOtF+0yRq7r2vNQrKTu+vNdrGMAwDokdQEAqGAzMzah67rZs3RWVnySpHe9S3rJS7Zh0TFjbAXv4WFpbk5qbpZGRsod1fZkjHznz0s+n/1DdP05Hx/nj1MAKJPubvs23N9vP9xd/7tAIGATuuPjm/wOMDZWsjghzjeAkiOpCwBABRsdzf4jLpPfb/+O2HZJ3WhU6uhIb7vrrvLEss05kvZs9uTICDO8AKCM+vqkzk77s35ycv0yTHaG7rb7+Q8A8ISkLgAAFSoeT62hm8vKik+Tk0bxB48qFFxOPdF4UOocTu98dkRaOJf/4Pt7pQO96w4Sl07f5i3ww7dLuw6ltqOnpcfuzD/O3yBdfzK97dWSflXSo5LOeDs8AADbTVeXfawvmErxUQCobSR1AWyIXxiB8ovFvFW8liRjHMUuJBRqnUs1Bndnd1yelxaj+XeYzCyZ7XobJ0kmY1pxctHb2MAGbzYNkholBb0dGgCA7SwU4ndzAIBFUhdAmpkZe7v32uzAtVu7jh/n1i6g1MJh+3/QS2LXcYzCrQ1ScF215bqm7I51Tel9NuPfkdHg8zZOkpyMXy/8QY/HbMhuS0hakLTo7dAAAAAAUAtI6gK4bGLCFmTy+1NJJGOk6WlbdXd83K7pBaA0QiH7ocr0dO41dQMBVz09jkI33Z1/p5nLMXgVCEk33Le1sW3XbW1sW5v05Ygt2nVoTrq2mUJpRWKM0ezsrNrb2+VkFkpr85jMBwAAAFAyJHUBSLIzdAcGJNfNTh6tbff32yINzNitEMbYQlIor7Y2O522SIaG7IcquSSTtlDKtuM4tkDXyZP5++LqGCPXde35dhzOOQAAAFDhSOoCkGSXXPD7c88G9Ptt1V2SuhUiGpU6OsodBSIRmwgrku5uO0u+vz/7/2gg4CqZlO64w1VXl69oMQAAAAAAKgtJXQCKx1Nr6OaysiJNThrFHzyqUHA59UTjwexbus+OSAvn8h98f690oHfdQeLS6du8BX74dmnXodR29LT02J35x/kbpOszZqGdu0eKPJR/bNt10vMG0tvODEpLF/OPfc6tUvurUtuXfi59/0P5x0nSy0elYGtq+xdfk358n3R0dftRSWe87QrVp6/PzpIfG5MmJ1PrXf/Wb0lve9sFvf71LeUOEQAAAABQQiR1ASgW81aISZKMcRS7kFCodS7VGNyd3XF53lu1++SljAbX2zhJMhnTipOL3sYGNigZvLLgbezyU9ltSxe9jTUZlZ7cpPfX6mZ8g5IJafmi1Li6HfS2G1Svri77iMft/9lwWAoGXUUiy/kHAwAAAAC2FZK6ABQO21l/XhK7jmMUbm1Ir2Rf15Tdsa7JY7X7HRkNPm/jJMnJeAvzBz0esyG7LdDobWzdruy2eo+zJJ2MzKvP7/21+jLWbPU3SHUt0sLq9mLWCGxToZB9SN4/jAEAAAAAbC8kdQEoFJJ6eqSvfMUWXNpMICD19DgK3XR3/p1mLsfgVSAk3XDf1sa2Xbf1sQffbh9b8Yox733XZ+F2PHPr8T7jddLefyUdPmGr1B+ak65tlkZGtrY/XJnhYWluTmputoXSAAAAAAAoIZK6ACRJ11yTO6Er2ecHB0sTDzxwHFugiyr1pcc5BwAAAACUEUldAJqZsQWY8jl+3K7piQphjBSNps8aZaZuaaw/5+PjNsEOAAAAAECJkNQFoNFRye+XVlY27+P3Sz/5SeliggfRqNTRkd52113liaWWjYzYGdMAAAAAAJQISV2gxsXj0qlT+QsuJZPS5KRR/MGjCgWXU080HsxeP/fsiLRwLv/B9/dKB3pT2ytx6fRt3gI/fLu061BqO3paeuzO/OP8DdL1GbfOn7tHijyUf2zbddLzBtLbzgxKSxfzj33OrdKeV6e2L/1cOutx3eGXj0rB1tT2L74m/fRLUiIhHV1te1TSGW+7AwAAAAAA1Y2kLlDjYrH8Cd01xjiKXUgo1DqXagzuzu64PC8tRvPvMHkpo8H1Nk6STMa04uSit7GBUHbbyoK3sctPZbctXfQ21iymb7tJ76/VzfgGJRN27PKS1LjaFvS2KwAolHjc/gwJh23BTQAAAAClQ1IXqHHhsF0O1Eti13GMwq0NUrAt1VjXlN2xrim9z2b8OzIafN7GSZKT8fblD3o8ZkN2W6DR29i6Xdlt9S35x0mSk5F19fm9v1Zfxnqt/tXvgZuQFlbbFrNGAUBRzMzYZXvW7vJwHKmnh3XXAQAAgFLyua7rljsIVJdYLKampibNz88rHA6XO5ySMMYoEomoo6NDzjYsiHTkiDQ9nXtN3UDA/tF+//2li2s7Kui1RKG08qmQQmnb/b0JpeP1WpqYkAYGstdhDwTsMj3j41JfXwkCRkXjvQmFwrWEQuFaQiEV43qqxTwLrh4zdQFoaEiamsrdJ5mUBgdLEg68chxboOvkyfx9UVicc9SgmRmb0HXd7A8B17b7+6XOTmbsXpG1D+i2E2PkO39e8vnK9qHXFWlrq444AQAA1iGpC0Dd3XZ2VX9/7tlX/JEOALVrdDT7Z0Qmv18aG+PnxRWJRqWOjnJHUVCOpD3lDuJKRCL2Q1IAAIAqQlIXgCR7u2xnp/1jfHIyfZ3EwUH+QAeAWhaPp9bQzWVlRZqcNIo/eFSh4HLqicaDUudweuezI9LCufwH398rHehdd5C4dPo2b4Efvl3adSi1HT0tPXZn/nH+Bun6jBn55+6RIg/lH9t2nfS8gfS2M4O2sOZGEgnp6OrX35T0v/MfAgAAACCpC+Cyri77oKI5AGC9WMxbQU1JMsZR7EJCoda5VGNwd3bH5Xlp0cOyA8lLGQ2ut3GSZDKmFScXvY0NbPDDb2XB29jlp7Lbli5uPnZ5SWpc/bou/+4BXD1+1wUAbAckdQFkCYX4BRcAkBIO27s3vCR2Hcco3NogBdtSjXVN2R3rmtL7bMa/I6PB522cJDkZv+r6gx6P2ZDdFmj0NrZuV3Zbfcvm/d2EtLD69fLm3QBcvZkZu5TM2p0Ha3elHT/OXWkAgOpDUhcAAAA5hUI28TE9nXtN3UBA6ulxFLrp7vw7zVyOwatASLrhvq2Nbbtu62MPvt0+tuIVY5s/Z4x0+IQ0PCy9ZE56dbM0MrK141QIY4xmZ2fV3t5euVXmh4eluTmpudkWSsO2NzFhiz36/akPqIyx72tTU7Z+RF9fWUMEAOCKkNQFAABAXkNDNvGRSzJp12HHFXAcW6Tr5Mn8fauFMXJd176uSkvqGmOL061PnEc9LueBwmlrK+m1MTNjE7qum/3B1Np2f7+tL8GMXQBAtSCpCwAAgLy6u+1Mtv5+O9NtfWIkELAJ3fFxEiKocNGo1NFR7igQidikf4mMjma/b2Xy+23BYN7DAADVgqQuAAAAPOnrszPZxsakycn0NSkHB0mGAMjjFZKulfTDY1LDurWrr5tIL1D4T1PSP0/J57pqSiTke7xB8vmy99d4MHspl7Mj0sK5y5vxxTqdOnWXjMk9M3hlxb6vxePUlgAAVAeSugAAAPCsq8s+qB4P4IoFJTVKWr4o+erXPeGm90tekhajklz5lpckp17SBknd4O7stuX51bFW7EJz3oTuGmPs+xrvaQCAakBSFwAAoMbF49LsrKNdu6SdO72NCYVIfAC4QouSFiTVtUjBdTN1MxO2/h1SsE1yXbkmIdVvMlO3rmnjtmCq+F24tU6OYzwldh3HflAFAEA1IKm7zfz85z/X+973Pj3wwAO6dOmSDh06pHvvvVfXXnutJMl1XX34wx/W3Xffrbm5OXV1dWliYkLPfe5zyxw5AAAotZkZu9bkqVM+GdMhx3HV0yMdP85SCtim2trseq7HjkkXL0otLdKJE+WOqjasnfO5FunVX8xdKO1Ar3SgV64xmo9EFOzokM9rYbWM5RhCskvETE/nXlM3ELD9+LAKAFAtSOpuIxcvXlRXV5d+7dd+TQ888IDa29v1j//4j2ppabnc55Of/KT+6q/+Sp///Od1zTXXaHh4WDfffLP+4R/+QQ3r17UCAADb2sSErQbv90vG2Blwxvg0PS1NTdmiZ3195Y0RKDjHsQW69u2za7q2tJS0YFdNW3/OvSZoC2RoyL6v5ZJM2rXBAQCoFiR1t5FPfOITOnDggO69997Lbddcc83lr13X1Wc+8xndfvvt6unpkSR94Qtf0J49ezQ1NaW3vOUtJY8ZAACU3syMTei6bvbMtbXt/n5bFI0Zu0VmjBSN5u9XTYyR7/x5e7t8iZN3nn3wg6mv1yr+objGxsp26O5u+0FVf7/9IGv9+14gYBO64+O83wEAqgtJ3W3kK1/5im6++Wa96U1v0je/+U0985nPVH9/v/7tv/23kqSf/OQneuKJJ/Ta17728pimpia98pWv1Le//W2SugAA1IjR0ezERia/3+ZgSHIUWTQqdXSUO4qCciTtKXcQVyISYbZuDejrsx9UjY1Jk5OpXH5Pj52hy3sdAKDakNTdRh5//HFNTExoaGhIH/zgB3X69Gn90R/9kerr6/W2t71NTzzxhCRpz570X7P37Nlz+bmNLC4uanFx8fJ2LBaTJBljZIwpwiupPMYYua5bM68XxcO1hELiesJWxONra+huUHRonZUVaXLS6NLfvVOh4PLldrfxoHT49vTOP/yIfAvn8h7b3d8j7e9dd5C4fI/2e4rbfdGHpF2HUg3R0/L943j+gf4GuddNpLc9fo98kYfzH7PtOum56fH5vjskLV3MP/Y5t0gdr041XPq5fD+4PbvjYkK+o6tfPyrpTN5do8CMMTbDh4pT6J9zN9xgH/G4FIvZomhra+hyCWxv/M6EQirG9cS1ia0gqbuNGGN07bXX6mMf+5gk6WUve5l++MMf6uTJk3rb29625f1+/OMf15/92Z9ltc/OziqRSGx5v9XEGKP5+Xm5riuH2/NwFbiWUEhcT5UtHpcWFhw1NpqKKrwzO+vIGG8zQ41xNPtkTHta5i63JZM79FQkktZv1/wv5b/0y7z7S1x4Qon6dWOTl9T8VP5xkvTU+SeVjKfK0tfNPaGdHsa6/gbNZ8S74+ITqvcwdtn5pZ7OGNsU+6V8y/mTupeiT2pJqbFO4kmFNzimb2lJwcbVjWDe3aIIZmdn5bpuucPABor5c87nk556yj6w/fE7EwqpGNfTU7wZYQtI6m4j+/bt0wtf+MK0the84AX6z//5P0uS9u7dK0l68skntW/fvst9nnzySb30pS/ddL8f+MAHNDQ0dHk7FovpwIEDam9vVzgc3nTcdmKMkc/nU3t7O78E4KpwLaGQuJ4q08yM9JnP+HTqlC085jju6u29bkXc3rtrl+Q4bt6ZupLkOEbte8IKBlNZabdxn0KZywVE9snnv5R3f/WtexVeP3YlLt+ufZsPWD929x5p17qx/r3yXfAw1t+gYGa8C3vlW84/tr5ln3ZmjPX98z5pKX9x2fq2PenLKlxalu8XGxxzMSEtrH2dd7cogvb2dpZfqFD8nEOhcC2hkIpxPVG4HltBUncb6erq0o9//OO0tscee0y/8iu/IskWTdu7d6++8Y1vXE7ixmIxfec739Ftt9226X6DwaCCweypI47j1NQPRJ/PV3OvGcXBtYRC4nqqLBMTtgCZ35+6ldcYn6anpakpn8bH7bqO5bRzp11Dcno695q6gYDU0+Nox6/9h7T2DVPBL/5TT8fOGlu/U7rx81sb2/5K+9jK2EN/aB9XOk6Srv3M1o7ZeGDj12qMdPgOaXhYOjQnXdssjYx4OkalMsZodna2spMnw8PS3JzU3CynvZ1CaRWMn3MoFK4lFFKhryeuS2wFSd1tZHBwUDfeeKM+9rGP6Xd+53f0P/7H/9BnP/tZffazn5Vk33T++I//WB/5yEf03Oc+V9dcc42Gh4f1jGc8Q729veUNHgCAKjczYxO6rpudLF3b7u+3hXrKPWN3aEiamsrdJ5l0NXjLnDSbI/OLwlmfyG1rq+4k4+pag6rkZOnJk+WOAAAA4KqQ1N1GrrvuOk1OTuoDH/iA/v2///e65ppr9JnPfEa/93u/d7nPe9/7Xj399NN65zvfqbm5OXV3d+trX/saU/0BALhKo6N2hm6u2a9+v628Xu6kbne3ND5uk8yZMQe0rKT8Gnf71fWGu8oXZC2LRFgOAAAAADn5XKoC4ArFYjE1NTVpfn6+ptbUjUQi6ujo4LYIXBWuJRQS11PliMelxkZv1dMdx2jhG0cVCi6nGhsPSp3D6R3PjkgL5/LvcH+vdKA3tb0Sl05vvqzSeo8sfERjd+3X5KR7ef3fN/7Kf9bgi8fU9c/fks542g0KrcqTurw3oVC4llAoXEsopGJcT7WYZ8HVY6YuAADAVYrFvCV0JckYR7ELCYVa51KNwd3ZHZfnpcVo/h0mMwuUud7GSeq6fkFd/4/09NOuHn98Vs8x/0M7/9832SdnPe0CAAAAQBmQ1AUAALhK4bBdOtTrTN1wa4MUbEs11jVld6xrSu+zGf8OSXa2cCwmhXf4FPIyTpIc+6tgKCS1txuFngpIC6vPLXrbBQAAAIDSI6kLAABwlUIhqadHmp7OvaZuICD19DgK3XR3/p1mLsewiZkZafTd0qlTNqnsOCH19Nyn48e3sHbvNa+VRiLSsWNS20XpzS3SiRNXuBNsybFj0sWLUkuLLZQGAAAA5EBSFwAAoACGhqSpqdx9kklpcLBwx5yYkAYGbLGztVnCxtjk8tSULYbW13cFO3Qcu5brvn1SQ4NNMFbx2q5VZf05Z71HAAAA5EFSFwAAoAC6u20Stb/fJlnXz9gNBGxCd3x8C7NnNzEzYxO6rps9O3htu79f6uy8gmMaI0Wjdi2HRML+O8viuiWx/pzbKdfljggAAAAVjKQuAABAgfT12STq2Jg0OZnKzfX02Bm6hUroStLoaHbyOJPfb2PxfNxoVNq7N73trru2HCO2aGSEGdIAAADIiaQuAABAAXV12cflwmVhu+ZuIcXjqTV0c1lZkSYnjeIPHlUouJx6ovFg1pq9O38yKl/ip9LR1YZHJZ0paNgAAAAACoSkLgAAQBGEQoVP5q6JxfIndNcY4yh2IaFQ61yqMbg7q5+z8pS0fFFqXOtz1WFuKq4GxRRWWDGFlCjegQAAAIBtisW6AAAAqkw47H3JVccxCrc2SMG21KOuKaufCeyS6lqkBdnHYkFDliTNqEtHdL8ataC9elKNWtAR3a9HdGPhDwYAAABsY8zUBQAAqDKhkF2nd3o695q6gYDU0+ModNPdeff59DVD2rl7t3yH75CGh6VDc9K1zXZ91wKYuLdBA+9vlN+RTNInSTLya9p/RFPmiMY/saC+W2p41u7wsDQ3JzU3S21t5Y4GAAAAFY6kLgAAQBUaGpKmpnL3SSZtgTbPHMcW6Dp58mpCyzIzIw28X3JdaSWZ/tzKaoK3/3271HnjroIWk6sKxtgCdeuT59Fo+eIpBGPkO39e8vm8Tykvp7a26ogTAABgHZK6AAAAVai7Wxofl/r7Jb8/fcZuIGATuuPjqogk6ehodoyZ/H5pbKwy4i2paFTq6Ch3FAXlSNpT7iCuRCRiP8wAAACoIiR1AQAAqlRfn9TZaZOhk5N20qfj2KUZBgcrI0Eaj0unTuUv7LayIk1OGsUfPKpQcDn1RONBqXM4vfPZEWnhXP6D7++VDvSuO0hcOn2bt8AP3y7tOpTajp6WHrsz/zh/g3R9xkznc/dIkYc27p9ISEdXv35U0hlv4QEAAKC2kdQFAACoYl1d9hGPS7GYLaIWCpU7qpRYLH9Cd40xjmIXEgq1zqUag7uzOy7PS4selihIXspocL2NkySTMa04uehtbGCDk7+ysPnY5SWpcfXroLfQAAAAAJK6AAAAVSozkVtJydw14bCdPewlses4RuHWBim4rlBYXVN2x7qm9D6b8e/IaPB5GydJTsavyf6gx2M2ZLcFGjcf6yakhdWvF72FBgAAAJDUBQAAqDIzM3ad2rVlDdaWXDh+vDKWXFgvFLKxTU/nXlM3EJB6ehyFbro7/04zl2PwKhCSbrhva2Pbrtv62INvt4+NGCMdPiEND0uH5qRrm9OLplUhY4xmZ2fV3t4up1ILkA0PS3NzUnOzLZQGAABQZUjqFtl9992nW265Jat9ZWVFw8PD+vjHP176oAAAQNWamJAGBmxhsbXZr8bYpOnUlC2O1tdX1hCzDA3Z2HJJJu06wDXHcWyRrpMn8/etFsbIdV37uio1qbudzjcAAKhJJHWL7I/+6I/01a9+VZ/97GfV0tIiSfrxj3+st771rYpGoyR1AQCAZzMzNqHrutmzXte2+/tt8bQtzdg1RopG02cxFmDWaPfzpfFPNKj/fY3yO9JK0nf5uYDfVdJI459YUNfzEtLsVR+uOq0/5+PjlZsMBQAAQEUgqVtk3/ve9/T7v//76uzs1L333qvHHntM733ve9Xb26vx8fFyhwcAAKrI6KidoZtrGQO/Xxob22JSNxqV9u5Nb7vrri3sKFufpE7dqLHkoCb1Rhn55SipnuSkBjWmrvd+S3pvQQ5V/UZG7CxXAAAAYBMkdYvs4MGDeuSRR/THf/zHet3rXie/36/Pf/7z+t3f/d1yhwYAAKpIPJ5aQzeXlRVpctIo/uBRhYLLqScaD2avRXt2RFo4J5/rqimRkM8n6ejqc49KOlPAFyCpS99Sl76luBoUU1hhxRRSorAHAQAAAGoA93WVwFe/+lV96Utf0g033KDm5mZ97nOf0y9+8YtyhwWgyOJx6ckn7b8AcLVisfwJ3TXGOIpdSEiL0dRjeT674/K8fW4pKt/yRWn5otQo+wgWMvp0ISW0RxESugAAAMAWkdQtsqNHj+pNb3qT3ve+9+nhhx/WD37wA9XX16uzs1P/6T/9p3KHB6AIZmakI0ekxkZ7F3Njo91+5JFyRwagmoXD3pdZdRyjcGuDFGxLPeqasjvWNdnn6tvk1rVIdS3SguxjsZDRAwAAACgkll8oskceeUTf+c539JKXvESStHfvXv3X//pfdeedd+rtb3+7fud3fqfMEQIopHxV6e+4wyZ4AeBKhUJST499P8m1pm4gIPX0OArddHf+na4ux+Aao/lIRMHdu+U7fIct2nVoTrq2uSCF0uDB+kJpbW3ljgYAAAAVjqRukZ05c0bBYPb9iwMDA3rta19bhogAFIuXqvTvepdP+/fX6fWvL8AB16rUo7za2qhSj5IZGrIfEOWSTEqDg1s8gOPYAl0nT25xB9gyzjkAAACuAEndIgsGgzp37pzuvfdenTt3Tn/5l3+pjo4OPfDAA3rWs55V7vAAFJDXqvSf/ezOwiR1o1Gpo6MAO8JViUSoUo+S6e6Wxsel/v7s95tAwCZ0x8elrq7yxQgAAACg+EjqFtk3v/lN/cZv/Ia6urr00EMP6aMf/ag6Ojr0/e9/X5/73Od0//33lztEAAXgvSq9Tw88UK/EN9+pHQ3rsjE5qtJvKpGwVeqLUKEeQOXq65M6O6WxMWly0r7vOI5dmmFwkIQuAAAAUAtI6hbZ+9//fn3kIx/R0NCQdu3adbn913/913XHHXeUMTIAhXTFVekvJrSjdV0l+uDu7I5rVek3s7xU9Ar1ACpTV5d9xOP2/ScctmvuAgAAAKgNJHWL7OzZs/riF7+Y1d7R0aHz58+XISIAxbBWld5LYtdxjMItDVJw3Vtwrqr0m3ETNVOhPq4GxRRWWDGFlCh3OEDFCIVI5gIAAAC1iKRukTU3N+uXv/ylrrnmmrT2733ve3rmM59ZpqgAFJr3qvSubr55SQ2v/mz+4lqZyzFkMkY6fCJVpb65edtVqZ/5+4BGT+7Qqa/VyxifHMdVz+uWdPy2S+p6ZY4TXWxUqQcAAAAAlBFJ3SJ7y1veove973368pe/LJ/PJ2OMHnnkEb3nPe/RH/zBH5Q7PAAF5LUq/Tvf+bSk+qs/4DavUj8xIQ0M2GJQazOgjfFp+m+CmnogqPFxu7ZoWWzTcw4AAAAAqA4kdYvsYx/7mAYGBnTgwAElk0m98IUvVDKZ1Fvf+lbdfvvt5Q4PQAF5qUp/xx2urr9+uXxBVomZGZvQdd3smc9r2/39tlhUSYtCGSNFo+kzdcs5O9oY+c6fl3y+/DO/q9n68z0+vr1fKwAAAAB4QFK3yOrr63X33XdreHhYP/zhD7WwsKCXvexleu5zn1vu0AAUQb6q9DfcIEUi5Y6y8o2OZifGM/n99jyXNKkbjUodHeltd91VwgDSOZL2lO3oZTIyYmeoAwAAAEANI6lbIs961rP0rGc9q9xhACiBXFXpvRRSq3XxuHTqVP5ztbIiTU4axR88qlBw3eznxoPZ6xGfHZEWzuU/+P5e6UDvuoPEpdO3pbYTCeno6tePSjqTf5cAAAAAABQaSd0iGBoa8tx3dHS0iJEAKCeq0m9NLOY9+W2Mo9iFhEKtc6nG4O7sjsvz0mI0/w6TlzIa3PRxy0tS49pxvMUoSXE1KKawwooppIT3gQAAAAAAbICkbhF873vfS9v+7ne/q5WVFT3/+c+XJD322GPy+/16xSteUY7wAKCihcN2yQoviV3HMQq3NkjBtlRjXVN2x7qm9D6b8e/IaPClj3MT0sLq14v5dzejLo1qUKfUKyO/HCXVoykd16i69K38OwAAAAAAYAMkdYvg7/7u7y5/PTo6ql27dunzn/+8WlpaJEkXL17Urbfeqle96lXlChEAKlYoZNcgnp7OvaZuICD19DgK3XR3/p1mLsfgVSAk3XBfatsY6fAJW7jr0Jx0bfOmhdIm7m3QwPsb5Xckk/TZ4fJr2n9EU+aIxj+xoL5brm7WrjFGs7Ozam9vl7Odi4etL5TW5iE5DwAAAADbnM91XbfcQWxnz3zmM/U3f/M3etGLXpTW/sMf/lD/6l/9K/3iF78oU2RbF4vF1NTUpPn5eYXD4XKHUxLGGEUiEXV0dGzvxAmKjmvJm5kZ6V/+SynXTyifT3r44RIXSvOoVPFv++vJGFucDkWX8wOCtjY7fR7waNu/N6FkuJZQKFxLKKRiXE+1mGfB1WOmbpHFYjHNzs5mtc/Ozuqpp54qQ0QAUPm6u6Xxcam/X/L702fsBgJSMmmfr8SEriSNjmbHncnvl8bGKvc1VIRoVOroKHcUNcGRtGezJyMRqb29hNEAAAAAyIekbpG98Y1v1K233qpPf/rTuv766yVJ3/nOd/Qnf/InOnLkSJmjA4DK1dcndXbaxOfkpJ206Th2aYbBwcpNhsbj0qlT+dcEXlmRJieN4g8eVSi4nHqi8WD2chFnR6SFc1n78LmumhIJ+R5vsFN/9/dKB3rXHSQunb7NW+CHb5d2HUptR09Lj92Zf5y/Qbr+ZHrbuXukyEP5x7ZdJz1vIL3tzKC0dNF+nUhIR1fbH5V0Jv8uAQAAAKAWkNQtspMnT+o973mP3vrWt2p52f7RHggE9I53vEOf+tSnyhwdAFS2ri77iMelWMwWUQuFyh1VbrGYtyJvkmSMo9iFhEKtc6nG4O7sjsvz0uJGyxC48i0vSU69JJ+UvJT1/MbjNgomY1pxctHb2MAG35CVBW9jlze4Y2XpYmrs8pLUuNoezL87AAAAAKgVJHWLbMeOHRofH9enPvUpnTtnZ1kdPHhQO3fuLHNkAFA9QqHKT+auCYftjGIviV3HMQq3NkjBdcW/6pqyO9Y1pfdZ47pyTUKqX52p69+R0cG38bgNg8n4lcAf9DbW35DdFmj0NrZuV3ZbfUvqazchLax+vZh/dwAAAABQK0jqlsjOnTv14he/uNxhAACKLBSyS0TkW4LBcaQ3vtFR6Ka78+80czmGVa4xmo9EFOzokG+jIg2BkHTDfd4Cz9R23dbHHny7fWzFK8ZSXxsjHT4hDQ9Lh+aka5ulkZGt7Rc5ZRVKGx6W5uak5mZbKA0AAABARSGpW2RPP/20/vzP/1zf+MY3FIlEZDL+wn/88cfLFBkAoFhe+1q7DnAuxkiveU1p4ql6JHJLj3MOAAAAVDSSukX2h3/4h/rmN7+pf/Nv/o327dsnn89X7pAAAEX23/5b/iUYHEf6xjek2zzWMatJ0ajU0VHuKGqCI2nPZk9GIlJ7ewmjAQAAAJAPSd0ie+CBB/TVr35VXZVaph0AUFDxeP6lFyT7/OSkUfzBowoFl1NPNB7MXm7h7Ii0cC5rHz7XVVMiId/jq2vq7u+VDvSmOqzEpdMes8aHb5d2HUptR09Lj92Zf5y/Qbr+ZHrbuXukyEP5x7ZdJz1vIL3tzKAtliZJiYR0dLX9UUln8u8SAAAAAGoBSd0ia2lpUWtra7nDAACUSCzmrUiaJBnjKHYhoVDrXKoxuDu74/K8tBjdYA+ufMtLklMvySclL2U9v/G4jYJZSd9OLnobG9iggt3Kgrexy09lty1dTI1dXpIaV9uD+XcHAAAAALWCpG6RjYyM6E//9E/1+c9/Xjt2ZFYlBwBsN+Fw/qUX1jiOUbi1QQquK0RV15Tdsa4pvc8a15VrElL96kxdf+bPGd/G4zYMJuNXAn/Q21h/Q3ZboNHb2Lpd2W31Lamv3YS0sPr1Yv7dYXNxNSimsMKKKaREucMBAAAAcJV8ruu65Q5iO3vZy16mc+fOyXVdPfvZz1ZdXV3a89/97nfLFNnWxWIxNTU1aX5+XuFwuNzhlIQxRpFIRB0dHbYqOLBFXEu14cgRaXpaWlnZvE8gIPX0SPffv/XjbPvryRi7ru6xY9LFi1JLi3TiRLmjqiozfx/Q6MkdOvW1ehnjk+O46nndko7fdkldr0xdoMYYzc7Oqr293V5L68/5F79oP6kAPNr2700oGa4lFArXEgqpGNdTLeZZcPWYqVtkvb295Q4BAFBiQ0PS1FTuPsmkNDhYknCql+PYAl379kkNDTbBSMEuzyYmpIEBye9PzRw3xqfpvwlq6oGgxselvj6tPSHXde35dZz0c84fvwAAAEDFIalbZB/+8IfLHQIAoMS6u6Xxcam/3ybU1s/YDQRsQnd8XKKGpkdjY+WOoOrMzNiErutmzxhf2+7vlzo7N7kOOeelszYjfTsxRr7z5+2yMNXwoUBbW3XECQAAsA5JXQAAiqCvzybMxsakyUmbt3Ecu+TC4CAJXRTX6Gj2BwqZ/H57fXItllk0KnV0lDuKgnIk7Sl3EFciEuEuAAAAUHVI6hZBa2urHnvsMe3evVstLS3y+Xyb9r1w4UIJIwMAlFJXl33E41IsZouohULljgrbXTwunTqVv1jfyoo0OWkUf/CoGuqX1JRIyPd4g7TrkNQ5nN757Ii0cC7/wff3Sgd61x0kLp2+zVvgh2+3x14TPS09dmf+cf4G6fqT6W3n7pEiD+Uf23ad9LyB9LYzg9LSxfxjn3OrtOfVqe1LP5e+/6H84yTp5aNSsDW1/WJJN0h6VNIZb7sAAABAbSOpWwRjY2PatctW9P7MZz5T3mAAAGUXCpHMRenEYvkTumuMcRS7kFBD60X5lpckp15a3mDG4vK8tOhhiYDkpYwG19s4STIZ04qTi97GBjb4z7Wy4G3s8lPZbUsXvY01i+nbbtL7a3UzvkF1kholBb0NL7e4GhRTWGHFFFKi3OEAAADUJJK6RfC2t71tw68BAACKLRy2S314Sew6jlG4tUGqb5NrElJ9g1TXlN2xrkkKtuXfoX9HRoPP2zhJcjJ+LfUHPR6zIbst0OhtbN2u7Lb6lvzjJMnJyMD6/N5fqy9j/dZlSQuSFjfqXDlm1KVRDeqUemXkl6OkejSl4xpVl75V7vAAAABqis91XbfcQaC6xGIxNTU1aX5+XuFwuNzhlIQxRpFIRB0dHXIopIGrwLWEQuJ6wmaOHJGmp3OvqRsI2DWe77+fa6ms1gqlDQ9Lc3NSc7M0MlLuqLJM3Nuggfc3yu9IK8nU0mIBv6ukkcY/saC+W+ysXWOMZmdn1d7eXrnX0/rzPT5OobQKxXsTCoVrCYVUjOupFvMsuHrM1AUAANhmhoakqancfZJJW7QPZeY4tkjXyZP5+5bJzIw08H7JdaWVZPpzawne/vftUueNu2zhPWPkuq59XZWWPFlLoq9PnEc9LpuBwmlrq7xrAwCAKkNSFwAAYJvp7raTD/v7Jb8/fcZuIGATuuPjtpAfkM/oaPZ1lMnvl8bGquCaikaljo5yR4FIxCb9AQDAlpHUBQAA2Ib6+qTOTptom5y0ExQdxy65MDhYBck3VIR4XDp1Kv8azSsr0uSkUfzBo2qoX1JTIiHf4w3SrkNS53B657Mj0sK5/Aff3ysd6F13kLh0+jZvgR++3R57TfS09NidUiIhHV1te1TSGW+7AwAAqDQkdUvk//yf/6Nz587pX/7Lf6lQKCTXdeXz+fIPBAAA2KKuLvuIx6VYzBZRC4XKHRWqSSzmreieJBnjKHYhoYbWi/ItL0lOvbS8wWzM5Xlp0cOSB8lLGQ2ut3GSZDKmFScX7djlJalxtS2YNQoAAKBqkNQtsmg0qje/+c367//9v8vn8+kf//Ef9ZznPEfveMc71NLSok9/+tPlDhFAHiRDAFS7UIj3L2xNOGxneHtJ7DqOUbi1Qapvk2sSUn2DVNeU3bGuSQq25d+hf0dGg8/bOElyMv7M8QftWDchLay2LXrbFQAAQCUiqVtkg4ODCgQC+tnPfqYXvOAFl9vf/OY3a2hoiKQuUMFmZuw6gmu3na7dtnz8OLctAwBqQyhkf/ZNT+deUzcQkHp6HIVuulvGGM1HIgp2dMi3UTGszOUYvAqEpBvu29rYtuvsWGOkwyekY8ektovSm1ukEye2tk9cmWPHpIsXpZYWWygNAABcFZK6RfY3f/M3+vrXv679+/entT/3uc/VT3/60zJFBSCfiQlpYMAWflmbnWSM/aN2asoWGOrrK2uIAACUxNCQ/dmXSzJp12queI5jC3Tt2yc1NNgEIwW7SmP9Od8o2Q8AAK4ISd0ie/rpp7VjR+atY9KFCxcUDLKQF1CJZmZsQtd1s2clrW3399sCRMzYrTHG2Mrpw8PS3JzU3CyNjJQ1Ht/585LPt73/QF5/vsfHt/drBSpQd7f9r9ffbz/sXP+zMRCwCd3x8Sr7mTg2Vu4Iag/nHACAgiKpW2SvetWr9IUvfEEjq3/0+3w+GWP0yU9+Ur/2a79W5ugAbGR0NPuP1kx+v/3bpKr+gMXVi0aljo70trvuKk8skhxJe8p29DIZGWFWHVAGfX32w8yxMWlyMn1ZosFBfh4CAACUGkndIvvkJz+p17zmNXr00Ue1tLSk9773vfpf/+t/6cKFC3rkkUfKHR6ADPF4ag3dXFZWpMlJo/iDRxUKLqeeaDyYvVbg2RFp4Zwkyee6akok5Hu8wc6uXG9/r3Sgd91B4tLp27wFfvh2adeh1Hb0tPTYnfnH+Ruk60+mt527R4o8lH9s23XS8wbS284MSksX8499zq3Snlenti/9XPr+h/KPk6SXj0rB1tT2L74m/fRL+cfteKb0ko+mt/3oL6S5H+Yfu+9m6dm/m972Ckln8g8FgO2iq8s+KCAKAABQfiR1i+zw4cN67LHHdMcdd2jXrl1aWFjQkSNHNDAwoH379pU7PAAZYjFvFb4lyRhHsQsJhVrnUo3B3Wl94nEp9kRSYfOUQsElSa58y0uSUy8pI6mbvJRxBFdajHoMJmNacXLR29jABn+Nryx4G7v8VHbb0kVvY01GyXE36f21uhnfoGTC42vNXgpHyzFvY1eezm5jBR0ANSoUIpkLAABQbiR1S6CpqUkf+pDHGWgAyioctreTeknsOo5RuLVBCq6r4FzXJMmuyzs6ujbr99/JcYx6XvVdDb3la3rF885K9RvM1PVnJh196fvOGUzG27k/6G2svyG7LdDobWzdruy2+pb84yTJyciI+vzeX6svYz1Vf4O3sRvFVhf2NjawM7ttMbsJAAAAAIBS8Lmu65Y7iO3mBz/4gee+L37xi4sYSXHEYjE1NTVpfn5e4XC43OGUhDFGkUhEHR0dcijQs+0dOSJNT+deUzcQsOsI3n9/9nMTE7bQ2sbFZFx9/OMx/cmf7OJaqkYVVijNGKPZ2Vm1t7dv7+uJQmlFx885FBLXEwqFawmFwrWEQirG9VSLeRZcPWbqFsFLX/pS+Xw+ua4r37qZeGv58/VtyWSy5PEByG1oSJqayt0nmbSFYTLNzNiErutmJ4Xttk8f+EBYN97o6lWvuspA1xKMKL31idy2tvIlGY2xP1va27d3ovPkyfx9AAAAAKCGkNQtgp/85CeXv/7e976n97znPfqTP/kT3XDDDZKkb3/72/r0pz+tT37yk+UKEUAO3d12MmB//2azbe3zG1X6Hh3NHpPJcaTPfMZ39UndaFTq6LjKneCqRSI2qQoAAAAAQImQ1C2CX/mVX7n89Zve9Cb91V/9lX7zN3/zctuLX/xiHThwQMPDw+rt7S1DhADy6euTOjulsTFpctJOinUcu+TC4ODGCd14fG0N3dz7TiZ9mpoyij/4ToWCy6knGg9KncPpnc+OSAvnNt5RIiEdXf36UUlnvL46AAAAAABQzUjqFtnZs2d1zTXXZLVfc801+od/+IcyRATAq64u+4jHpVjMFlHLVe07FvNWYE2SjHEUu5BQqHUu1Rjcnd1xeV5a3GSJheUlqXFtrLfjAgAAAACA6reNF+CrDC94wQv08Y9/XEtLS5fblpaW9PGPf1wveMELyhgZAK9CIWnPntwJXckmfb0ua+o4RuHWBinYlnrUNWV3rGtK75PWv0VakH0sXumrAgAAqE3xuPTkk/ZfAACqFTN1i+zkyZN6wxveoP379+vFL36xJOkHP/iBfD6fpqenyxwdgEIKhezyDNPTudfU9ftd9fT4FLrp7vw7zVyOYT1jpMMnpOFh6dCcdG1zegEvFM/wsDQ3JzU320JpAACg4s3M2PoHa8tlrS2tdfz4xktrAQBQyUjqFtn111+vxx9/XH/913+t//2//7ck6c1vfrPe+ta3aufOnWWODkChDQ1JU1O5+xgj/fEfu5J8V3cwx7EFuk6evLr94MpxzgEAqCoTE9LAgC1ou7ZcljH2w/ipKVsEt6+vrCECAHBFSOqWwM6dO/XOd76z3GEAKIHubvtHQX+//aNh/YzdQEBKJl19/OMxdXXtKl+QAIDKYYwUjabfAVDtd10YI9/585LP531dolJbf77Hxys3ThTEzIxN6Lpu9t1Ua9v9/bZILjN2AQDVgqRuEXzlK1/Rb/zGb6iurk5f+cpXcvb9rd/6rRJFBaBU+vrsHwVjY9LkZPrtfe9+t6vnPjcuiaQuAEA2odvRkd52113liaVAHEl7yh3ElRgZsXe+YNsaHc3+sD2T329/dyOpCwCoFiR1i6C3t1dPPPGEOjo61Nvbu2k/n8+nZDJZusAAlExXl33E41IsZouohUI2wRuJlDs6AACgV0i6VtIPj0kNDZv3az4sveA96W3f/5B06ef5j/Erb5Ge8brU9uIF6btD3uJ7yUelHc9MbT/5Tenxe/OPq2+RXjGW3vbYnVL0dP6xHf9SOvj29Lb/0SclE/nHPm9Aarsutf3U/5F++JH84yTpugkpsK4i7T9NSf88JZ/rqimRkO/xBjvzO1Pjwez6A2dHpIVzlzfji3U6deouGZN7NvbKiv0wPh7PXxwXAIBKQFK3CMzaIk0ZXwOoPaEQfxgAAEorrgbFFFZYMYXkIRlXq4KSGiUtX5R89Zv3W45lty1dlBaj+Y+RmQx1jbdxkuRmTP4wi97HZlp+ytvYlYXstqUL0ko8/9jkYvq2WbmCeN2MfV1aHevKt7wkOfXasBZBcHd22/J82nFjF5rzJnQvh2zsh/H87gYAqAYkdYvsC1/4gt785jcrGAymtS8tLelLX/qS/uAP/qBMkQEAAGA7mVGXRjWoU+qVkV+OkurRlI5rVF36VrnDqzyLkhYk1bVIwRwzdevC2W31LdLKpfzH8Gfs1+dIwTZv8fn86dtO0NvY+pbstrpd3sYGGjfYX6vk9/DhgD/97x05Ae+vNTNh699hx7quXJOQ6jeZqVvXtHHbuuOGW+vkOMZTYtdx7N1VAABUA5/rum7+btgqv9+vX/7yl+rIWCstGo2qo6OjKpdfiMViampq0vz8vMI18luPMUaRSEQdHR1yKKSBq8C1hELiekKhcC2VUYEKpU3c26CB9zfK70gryVTyK+B3lTTS+CcW1HdLaWbtGmM0Ozur9vb2yr2eKJRWFQr13nTkiDQ9nXtN3UDA1j+4//4tHwYVjJ9zKKRiXE+1mGfB1WOmbpG5rivfBp8q//M//7Oamjb4ZBkAAAC1w3Fska6TJ7e8i5kZaeD9kutKKxnzBdYSvP3v26XOG3eVpgiUMXJd176uSkuerCXR1yfOo1tc0gBb19ZW0mtjaEiamsrdJ5mUBgdLEg4AAAVBUrdIXvayl8nn88nn8+k1r3mNAoHUqU4mk/rJT36i173udTn2AAAAAOQ3Oir5/blnIfr90tiYSpPUrWTRqJRxBx3KIBKxSf8S6e62E7L7+7P/rwQCNqE7Ps7/DwBAdSGpWyS9vb2SpP/5P/+nbr75ZjU2ptanqq+v17Of/Wz99m//dpmiAwAAwHYQj0unTtkJqLmsrEiTk0bxB48qFFxOPdF4UOocTu98dkRaOJf/4Pt7pQO96w4Sl07fJp/rqimRkO/xTdZBlaTDt0u7DqW2o6elx+7Mf0x/g3R9xqzmc/dIkYfyj227Tmr5nfz9sC319UmdnfbDjclJ+3/GceySC4ODJHQBANWHpG6RfPjDH5YkPfvZz9ab3/xmNTTkKL4AAAAAbEEslj+hu8YYR7ELCYVa51KNwd3ZHZfnpUUPSxIkMwuFuavjXPmWlySnXlkFsC4HkzGtOLno7ZiBUHbbyoK3sctP5e+Dba2ryz7icft/JxyWQhtcUgAAVAOSukX2tre9TZL06KOP6kc/+pEk6YUvfKFe8YpXlDMsAABQo0hmbC/hsJ1t6CWx6zhG4dYGKdiWaqzboMZDXVN6n834d2Q0+Ow415VrElJ9jpm6TsafIf6gx2NuMFEi0OhtbN2u/H1QE0Ih3v8AANWPpG6R/fznP9db3vIWPfLII2pubpYkzc3N6cYbb9SXvvQl7d+/v7wBAgCAmjAzY9deXbtVf+224+PHpRtuKHd02KpQyH4fp6dzr6kbCEg9PY5CN92df6eZyzF4FQhJN9wn1xjNRyIKdnTI57UYVtt10g33be24B99uH14YY9dzHR6W5uak5ub0omkonvXnvM1DEh4AAOREUrfI3vGOd2h5eVk/+tGP9PznP1+S9OMf/1i33nqr/vAP/1Bf+9rXyhwhAADY7iYmpIEBWyBobUanMTYRODUl3XGHdORIWUPEVRgast/HXJJJu25ozXMcW6Dr5Mn8fVFYnHMAAAqKpG6RffOb39S3vvWtywldSXr+85+vEydO6FWvelUZIwMAALVgZsYmdF03eybn2va73uXT/v11ev3rSx8frl53tzQ+LvX328T9+u9zIGATuuPjFIKSZD/NiEaZqVsO68/5+LhNsAMAgC0jqVtkBw4c0PLyclZ7MpnUM57xjDJEBAAAasnoaHaiL5PfL332sztJ6laxvj6ps1MaG5MmJ9OX2BgcJKF7WTQqdXSkt911V3liqWUjI3bGNAAA2DKSukX2qU99SseOHdOdd96pa6+9VpItmvbud79bf/EXf1Hm6AAAwHYWj6fW0M1lZcWnBx6oV+Kb79SOhnXZ38aD2eurnh2RFs7lP/j+XulA77qDxKXTt3kL/PDt0q5Dqe3oaemxO/OP8zdI12fc4n3uHinyUP6xbddJzxtIbzszKC1dzD/2ObdKe16d2r70c+n7H8o/TpJePioFW1Pbv/ia9NMv5R+345nSSz6a1tTV+hfqOv5Dxd9Vp9jTIYV3xhUKrk4u+Pa6jvtulp79u+n7+/Yt3uJ9wXGpuTO1PXdW+tGn07r4XFdNiYR8j2cUSstcM/f//kfpl1/Pf8zmw9IL3pPe9v0P2fOcz6+8RXrG61Lbyxelo6tfPyrpTP5dAAAAVCKSukV2yy236NKlS3rlK1+pQMCe7pWVFQUCAb397W/X29+eKupw4cKFcoUJAEDJxONSLCaFw1QfL7ZYLH9Cd40xjmIXE9rROp9qDO7O7rg8Ly1G8+8weSmjwfU2TpJMxrTi5KK3sYENLqiVBW9jl5/Kblu66G2sWUzfdpPeX6ub8Q1KJjy+1h3ZbcsxaTGqkKTQztW2xexuWnk6u83z92Y5eztrrCvf8pLk1EvyaVMrT3v83sSy27x+b5KJjNCM1Lj6dTD/cAAAgEpFUrfIPvOZz5Q7BAAAKsLMjF0KYG3m6Nqt4cePc2t4sYTD9jx7Sew6jlG4pUEKrvv1sK4pu2NdkxT0ULnen5l09HkbJ0lOxq+o/qDHYzZktwUavY2t25XdVt+Sf5wkORnZQZ/f+2v1Zawr6m/wNnaj2OrC3sYGdma3ef7e1GVvZ451XbkmIdVnzNTdKA5P35twdlt9i7SS+cHBBjKvCZ8jLax+vVHCGwAAoEr4XNd1yx0EqkssFlNTU5Pm5+cVDm/wS/Y2ZIxRJBJRR0eHHIo64CpwLaGQqul6mpiwxbpyFXHq6ytffNvZkSPS9HTuNXUDAVc337yor3ylvuKvJVS+in5volBa+WyhUFpFX0uoKlxLKKRiXE+1mGfB1WOmbgmcO3dO9957r86dO6e//Mu/VEdHhx544AE961nP0ote9KJyhwcAQFHNzNiErutmJxbXtvv7bZGntBm7a8kXXJWhWwOammpWrtvgk0np6Jt/Ic3uzE60tLVRpR7bh+PYAl0nT+bvi8LinAMAUFAkdYvsm9/8pn7jN35DXV1deuihh/TRj35UHR0d+v73v6/Pfe5zuv/++8sdIgAARTU6mj1DN5PfL42NZSR1N6pSjyvWLWlcR9WvcfmV1IpSt88HtKyk/Bp3+/WGP7hr4x1EIlSpBwAAACoM0y6K7P3vf78+8pGP6G//9m9VX19/uf3Xf/3X9fd///dljAwAgOKLx+0aurkSupJ9fnLSKP7gv5W+fYt9/PCY1FuCIGtAn+7Sw3qVenRKjpKSJEdJ9eiUHtar1KdNEroAAAAAKhIzdYvs7Nmz+uIXv5jV3tHRofPnz5chIgAASicW81akS5KMcRS7kFCodc42LC9JmbW2sGVd+pa69C3F1aCYwgorppAS5Q4LKIt43L4/hcNSKFTuaAAAAK4cM3WLrLm5Wb/85S+z2r/3ve/pmc98ZhkiAgCgdMJh78uxOo5RuLVBCrbZR12L5KG4Pa5MSAntUYSELmrSzIwtHtjYKO3da/89ckR65JFyRwYAAHBlmKlbZG95y1v0vve9T1/+8pfl8/lkjNEjjzyi97znPfqDP/iDcocHAEBRhUJST480PZ17CYZAQOrpcRS66e5UozHS4RPSHqrUF5sxRrOzs2pvb7dVnNdXqW9rK3d4QEFMTNiijX5/6g4CY+z709SUND4u9fWVNUQAAADPSOoW2cc+9jENDAzowIEDSiaTeuELX6hkMqm3vvWtuv3228sdHgAARTc0ZBMmuSST0uBgRiNV6kvHGLmua8+343DOse3MzNiErutmf8C0tt3f76pz/5y6XplnEXBcvbY277dxAACADZHULbL6+nrdfffd+tM//VOdPXtWCwsLetnLXqbnPve55Q4NAICS6O62M+D6++0MufUJlUDAJnTHx6WurvLFCGB7Gx3Nfv/J5HdXNPaGb6hLbypdYLUqErEfIgEAgC0jqVskxhh96lOf0le+8hUtLS3pNa95jT784Q8rRCUGAEAN6uuTOjulsTFpctLe8uw4dmmGwUESugCKJx6XTp3KX7RxRXWa1BsVVwNrTgMAgIpHUrdIPvrRj+rf/bt/p9e+9rUKhUL6y7/8S0UiEd1zzz3lDg0AgLLo6rIPqs4DKKVYLH9Cd42RXzGFSeoCAICKx0JGRfKFL3xB4+Pj+vrXv66pqSlNT0/rr//6r2W8/kYJAMA2FQpJe/aQ0AVQGuGw9+VbHSUVVqy4AQEAABQAM3WL5Gc/+5l+8zd/8/L2a1/7Wvl8Pv3iF7/Q/v37yxgZAAAAUDtCIbvUy1e+Ytfw3kzA76rnN1YUuudnpQuulhw7Jl28KLW02EJpAADgqpDULZKVlRU1NDSktdXV1Wl5eblMEQEAAAC16Zprcid0JSlpfBp8f5ACXsWyb5/U0GCTul6nTgMAgE2R1C0S13V1yy23KBgMXm5LJBLq6+vTzp07L7f9l//yX8oRHgAAAFATZmZskcbcXB2/7ZK6nndJmi1FVDXogx9Mfb1WLRMAAGwZSd0iedvb3pbV9vu///tliAQAAACoXaOjkt8vraxs3sevpH4y/oA0/qbSBVbLIhFmRAMAcJVI6hbJvffeW+4QAAAAgJoWj0unTtmJobkkFdCk3qi4GhRSojTBAQAAXAXueQEAAEBNiselJ5+0/2J7isXyJ3TXGPkVU7i4AQEAABQISV0AAADUlJkZ6cgRqbFR2rvX/nvkiPTII+WODIUWDntfutVRUmHFihsQAABAgbD8AgAAAGrGxIQ0MGDXWF2bwWmMND0tTU1J4+NSX19ZQ0QBhUJST4/9/uZaUzfgd9XzGysK3fOz0gVXa4aHpbk5qblZamsrdzQAAFQ9kroAAACoCTMzNqHrutkJvrXt/n6ps1Pq6ipRUMZI0WiJDlYixsh3/rzk83mfJltEQ7cGNDXVLMm3aZ+k8Wnw/UGKdxXTyZPljgAAgG2FpC4AAABqwuionaGba8am3y+NjZUwqRuNSh0dJTpYaTiS9pQ7iHW6JY3rqPo1Lr+SWlHd5ecCWlbSF9D4uK9033MAAIACIKkLAACAbS8el06dyl80a2VFmpw0ij94VKHgcuqJxoNS53B657Mj0sK5/Aff3ysd6F13kLh0+jb7dSIhHV1tf1TSmfy7w5Xr013q1FmNaVCTeqOM/HKUVI9OafArr1HX61vKHSIAAMAVIakLAACAbS8Wy5/QXWOMo9iFhEKtc6nG4O7sjsvz0qKHpROSlzIa3NS45SWpce0Y3uLD1nTpW+rStxRXg2IKK6yYQkpIr4yUOzQAAIArRlIXAAAAecXjNjEaDtviU9UmHLbLu3pJ7DqOUbi1QQquK+ZU15Tdsa4pvc9m/DsyGnypcW5CWlhtXsy/K1y9kBI2mQsAAFDFSOpuY3/+53+uD3zgA3r3u9+tz3zmM5KkRCKh48eP60tf+pIWFxd18803a3x8XHv2VNLKZwAAoFLMzNi1aNeWLnAcqadHOn68hOvOFkAoZOOens69pm4gIPX0OArddHf+nWYux+BVICTdcJ/92hjp8Anp2DGp7aL05hbpxImt7bdCGGM0Ozur9vZ2ORVQKG1Dx45JFy9KLS1Sm4fEPAAAQIUhqbtNnT59WnfddZde/OIXp7UPDg7qq1/9qr785S+rqalJ73rXu3TkyBE98sgjZYoUAABUqokJaWDAFg9bm+FqjE2MTk1J4+NSX19ZQ7wiQ0M27lySSWlwsCThWI4jtbdL+/ZJDQ02ydjeXsIAisAYua5rX0elJnXXn+9KjREAACAHkrrb0MLCgn7v935Pd999tz7ykY9cbp+fn9fnPvc5ffGLX9Sv//qvS5LuvfdeveAFL9Df//3f61/8i39RrpABAECFmZmxCV3XzZ7Zurbd3y91dlbPjN3ubpuI7u+3ier1rysQsAnd8fESvx5jpGjUrm+RSNh/Z2dLGEARGCPf+fOSz1e5CdP153ttCjoAAEAVIam7DQ0MDOhf/+t/rde+9rVpSd0zZ85oeXlZr33tay+3/eqv/qqe9axn6dvf/jZJXQAAcNnoaHbiM5PfL42NVU9SV7Izizs7bdyTk+lLSgwOluG1RKNSR0d62113lTiIwnIkVdXCXiMj1T87GgAA1BySutvMl770JX33u9/V6dOns5574oknVF9fr+bm5rT2PXv26Iknnth0n4uLi1pcTFXuiMVikux6acZrGekqZ1ZvI6yV14vi4VpCIXE9oVAyr6V4XDp1yidjfDnHraxIk5NGl/7unQoFly+3u40HpcO3p3f+4UfkWziXNxZ3f4+0v3fdQeLyPdrv6XW4L/qQtOtQqiF6Wr5/HM/qd6NPunFIig/UKfZ0SOFdrhpe9VeS1hVSe/we+SIP5z9m23XSc9Pj8313SFq6mH/sc26RfC8Uc0TLyxjjrYIeSo6fcygUriUUUjGuJ65NbAVJ3W3kn/7pn/Tud79bf/u3f6uGhoaC7ffjH/+4/uzP/iyrfXZ2VolEbVQONsZofn5erutWbsEPVAWuJRQS1xMKJfNamp11ZExH/oGSjHE0+2RMe1rmLrclkzv0VCSS1m/X/C/lv/RLSVJ8sV6xSzsU3nFJoeBSWr/EhSeUqF83NnlJzU/90lMsT51/Usl4+PJ23dwT2pljrCOpuU5ylxsUyYh3x8UnVO/huMvOL/V0xtim2C/lW86f1L0UfVLLbnt1zWrdhmZnZ+0awKg4/JxDoXAtoZCKcT099dRTBdkPagtJ3W3kzJkzikQievnLX365LZlM6qGHHtIdd9yhr3/961paWtLc3FzabN0nn3xSe/fu3XS/H/jABzQ0NHR5OxaL6cCBA2pvb1c4HN503HZijJHP56vsKs6oClxLKCSuJxRK5rW0a5fkOG7embqS5DhG7XvCCgZDl9vcxn0KZS4pENmnR374TI39/16nUw+/XMY4chyjnld9V0Nv+Zq6XvyPkqT61r0Krx+7Epdv1z5Pr6N+9x5p17qx/r3yXfAw1t+gYGa8C3vlW84/tr5ln3ZmjPX98z5pKf8H7PVteyQft/2XW3t7O8svVCh+zqFQuJZQSMW4ngo5MQ+1g6TuNvKa17xGZ8+eTWu79dZb9au/+qt63/vepwMHDqiurk7f+MY39Nu//duSpB//+Mf62c9+phtuuGHT/QaDQQWDwax2x3Fq6geiz+erudeM4uBaQiFxPaFQ1l9LO3faNWanp3OvqRsISD09jnb82n9I39cGfSce+VMNDNh1eNfuMDTG0fQj12rqoWs1Pm7Xu80aW79TuvHz3l5DZkP7K+1jK2MP/aF9XOk4Sbr2M96PaYwUiUjDw9LcnNTcbNd4rWLGGM3OzlZ28mTd+Xba2ymUVsH4OYdC4VpCIRX6euK6xFaQ1N1Gdu3apcOHD6e17dy5U21tbZfb3/GOd2hoaEitra0Kh8M6duyYbrjhBoqkAQAqjzG2iBSKzxj5zp+XfL7Lya2hWwOammrWJmlLSVIyaYuL5TMzIw0MSK6bnSRe2+7vtwXMqqnoWkE4jp0levJkuSMpnNW1BlXJydLtdL4BAEBNIqlbY8bGxuQ4jn77t39bi4uLuvnmmzU+nl1ABACAsotGpcxb4lEUjpS1rmu3pHEdVb9vQn6/Ly0ZGwjYhO74uLck7OionaGba9av3y+NjdVgUhcAAADYApK629yDDz6Ytt3Q0KA777xTd955Z3kCAgAA1eEVUt+1d6nzRR0a+y9v0ORDr0itg9t9RoNv+bq6bnQlDaePOzsiLZy7vBlfrNOpU3fJmNwzNldWpMlJKR6XQqGcXQEAAICaR1IXAAAA2YKSGqWu539HXR/+nuKL9Yo9vUPhnZcUCi7ZPsvPzx63PC8tppbNiF1ozpvQXWOMFIuR1AUAAADyIakLAECBxeM2MRUOk5xCFVuUtCCprkUKNigUlEJhSdqV6lPXlD2urkkKtl3eDLfWyXGMp8Su49j/NwAAAAByI6kLAECBzMzYtUNPnbIzDh1H6umRjh9nndAtaWuTIpG0KvUaGSl3VNuSMUazs7Nqb2+31ZfXzrmapVePX1mxq8705RhCsv8Ppqdzr6kbCNh+fBACAAAA5EdSFwCAApiYkAYGbLEnY2ybMTaRNTVlC0r19ZU1xOrjOFJ7O1XqS8EYua5rz7fjFPycDw3Z/we5JJPS4GBBDwsAAABsWyR1AQC4SjMzNqHrutkzEde2+/ulzk5m7F4RY6RolJm6pWCMfOfPSz6fTequP+fjVzhTdwPd3XY3/f32g4/1/08CAZvQHR/n/wcAAADgFUldAACu0uhodqIqk98vjY2RtLoi0ajU0ZHedtdd5Yllm3Mk7dnsyZERO4P3KvX12Q82xsakycn0JUoGB/m/AQAAAFwJkroAAFyFeDy1hm4uKyvS5KRR/MGjCgWXU080Hsxag1RnR6SFc/kP/szfkupvXHeQuHT6Nm+BH75d2nUotR09LT12Z/5x/gbp+oxb88/dI0Ueyj+27TrpeQPpbWcGpaWLG/dPJKSjq19/U9L/zn8IVLauLvugmCAAAABwdUjqAgBwFWKx/AndNcY4il1IKNQ6l2oM7s7uuDwvLUbz73DlklS/vsH1Nk6STMa04uSit7GBDTJwKwvexi4/ld22dHHzsctLUuPq13X5d4/qEQqRzK1VJPQBAAAKg6QuAABXIRy2t5B7Sew6jlG4tUEKtqUa65qyO9Y1pffZTGBHRoPP2zhJcjJ+BfAHvY31N2wQR6O3sXW7stvqWzbv7yakhdWvlzfvBqDyzczYpWrW7mxYW3rj+HGW3gAAANgKn+u6brmDQHWJxWJqamrS/Py8wuFwucMpCWOMIpGIOjo65FxlsRjUNq6l7enIEWl6OveauoGATWDcf3/hjrvtrycKpZWMMUazs7Nqb2+311KBC6WhtmS+N01M2GKSuYrk9fWVL15Urm3/cw4lw7WEQirG9VSLeRZcPWbqAgBwlYaGpKmp3H2SSVsMClfAcWyBrpMn8/fF1TFGruva8+04nHMUzMyMTei6bvYHX2vb/f22iF5JZuyufViE8mpr48MiAACuEkldAACuUne3nWnW3597Jhq3GAOoNaOj2e+Lmfx+aWysRO+R0ajU0VGCAyGnSMR+iAQAALaMpC4AAAXQ12dnmo2NSZOT6WtGDg6S0AVQe+Lx1Bq6uaysSJOTRvEHjyoUXLeAduNBqXM4vfPZEWnhXP6D7++VDvSuO0hcOn2blEhIR1fbHpV0Jv+uAAAAKhFJXQAACqSryz6o7g7gam2H95FYzFsRSUkyxlHsQkKh1rlUY3B3dsfleWnRw/IJyUsZDa4dt7wkNa7t31tsAAAAlYiFjAAAKLBQSNqzp3oTMQDKZ2bGFl9sbJT27rX/HjkiPfJIuSO7cuGw92VTHcco3NogBdtSj7qm7I51Tel9Nnv4d2QM9K3us0VakH0sXuULBAAAKCNm6gIAAAAVYGLCFhXz+1MzXI2RpqdtMcbxcbvUS7UIhewSNNPTudfUDQSknh5HoZvuzr/TzOUYvAqEpBvusyf08AlpeFg6NCdd2yyNjGxtn7gyw8PS3JzU3GwLpQEAgKtCUhcAAACWMbaQFEpu5u8DGhholuv6shKga9v9/Xbt7mpao3toyCakc0km7drjJeE4tkDXyZMlOiAu45wDAFBQJHUBAABgRaP2nn+U3Kjul1+/pRXVbdrH77fFGKspqdvdbWcY9/fb+NcnrAMBm9AdH6+u1wQAAFAJWFMXAAAAKKO4GnRKvTkTupJNiE5O2iJq1aSvT3r4YbsUw9oau45jtx9+uLqWlAAAAKgUzNQFAAAAyiimsIz8nvoaI8Vi1VeIsavLPuJxG384XH2vAQAAoJKQ1AWAHPjjEwBQbGHF5CjpKbHrOPZnUrUKhfh5CgAAUAgkdQFgAzMz0uiodOqUnRW1dpvo8eOs+wdgG2trkyIR6dgx6eJFqaVFOnGi3FFteyFJPS87o+lfvFwr7ua/ngcC9mcRSVEAAACQ1AWADBMT0sCALehijG0zRpqethW8x8dZ/w/ANuU4Unu7tG+f1NBgk7rt7eWOqiYM3fgfNfXl63L2SSalwcESBQQAAICKRlIXANaZmbEJXddNr9Atpbb7+6XOzgqYsWuMrVSP8mprS1X+AbaLsbFyR1Bzuv/TH2n8pP0Z4/en/wwKBGxCd3y8An72AAAAoCKQ1AWAdUZHs/+YzuT323xH2f+wjkaljo4yBwFFIsxkBFAQfX32Q8OxMWlyMn35n8HBCvi5AwAAgIpBUhcAVsXjqTV0c1lZkSYnjeIPHlUouJx6ovGg1Dmc3vnsiLRw7vKmz3XVlEjI93iD5POl+u3vlQ70rjtIXDp9W+5AEgnpqKQpSU/m7goAqA5dXfZBoU4AAADkQlIXAFbFYvkTumuMcRS7kFCodS7VGNyd3XF5Xlpcv0SCK9/ykuTUS1qX1E1eyhjoZozbwPKS1CiJO/9RZUhWAfmFQvz/AAAAwOZI6gLAqnDY3ubqJbHrOEbh1gYp2JZqrGvK7ljXlN7HdeWahFSfMVPXvyNjoC993EbchLQgyWMiGii3mRm7xMnajPi128qPH+e2cgAAAAC4EiR1AWBVKGQTTNPTudfUDQSknh5HoZvuzr/TjOUYXGM0H4ko2NEhX67iWoGQdMN9ufdtjHT4hKRhaW5Oam6WRkbyx4SrN7zunLflSb5DkjQxYYsQ+v2pD06Msf/fpqZsAai+vrKGCAAAAABVg6QuAKwzNGQTTLkkk7ZgTdk5ji3QdfJkuSOpPZzzKzIzYxO6rpv9gcnadn+/LRCVNmPXGFsQEMVnjHznz9s7CDI/cGpry24DAAAAUFYkdQFgne5uO2Owv9/OKFyfgAoEbEJ3fJxbxYErMTXxDtEAAF+pSURBVDqa/f8pk98vjY1l/N+KRqWOjqLHB7s0957NnoxE7AdIAAAAACoGSV0AyNDXZ2cMjo1Jk5Ppa38ODpLQBa5EPJ5aQzeXlRVpctIo/uBRhYLLtjGRkHolTRU5SAAAAACoMiR1AWADXV32EY9LsZgtokYVcuDKxWLeig9KkjGOYhcSCrXO2YblJSmzhiAAAAAAgKQuAOQSCpHMBa5GOGxnuntJ7DqOUbi1QQquFp9zE9Kl4sZXDHE1KKawwooppES5wwEAAACwDZHUBQAARRMK2aVLpqdzr6kbCEg9PY5CN92dajRGOnxCCh6TLl6UWlqkEyeKH/QWzfx9QKMnd+jU1+pljE+O46rndUs6ftsldb0yx4uvAMYYzc7Oqr29XY7jSMfWnfO2tnKHBwAAACADSV0AAFBUQ0PS1FTuPsmkXbM6jePYAl379kkNDTbBWKEFuyYmpIEBW/BtbVayMT5N/01QUw8ENT5u1+uuWMbIdV17fh0n/Zw7TrmjAwAAAJCBpC4AACiq7m5pfFzq77dJz/UzdgMBm9AdH89RhHBsrCRxbtXMjE3oum72bOS17f5+W4Cx4gstGiNFo9IHP5hqm50tXzy1qq2NZDoAAAByIqkLAACKrq/PJjXHxqTJSZs7dBy7NMPgYBUkO3MYHc1OVmfy++1rr/jXGY1Ke/eWOwpEIhU7Kx0AAACVgaQuAAAoia4u+4jHpVjMFlGr9kKE8bh06lT+QnArK9LkpFH8waMKBZdTTzQelDqH0zufHZEWzuU/+P5e6UDvuoPEpdO3eQv88O3SrkOp7ehpNf3DqHw+SUdX2x6VdMbb7gAAAACUFkldAEDV2U5JwVoUCm2f71sslj+hu8YYR7ELCYVa51KNwd3ZHZfnpcVo/h0mL2U0uN7GSZLJmFZsFuVbvij5JDWuxeZtVwAAAABKj6QuAKBqzMzYW93XZkau3b5//HgV3NaObSkcttehl8Su4xiFWxukYFuqsa4pu2NdU3qfzfh3ZDT4vI2TJCfjV0AnKLeuxSZ1F1bbFr3tCgAAAEDpkdQFAFSFiQlbjMrvTyXQjJGmp6WpKVtoq6+vrCGiBoVC9oOF6enca+oGAlJPj6PQTXfn32nmcgxeBULSDfdtbWzbdZp/4V8quHu3fIfvkIaHpUNz0rXN0sjI1vaJKzM8LM3NSc3NtlAaAAAAkANJXQBAxZuZsQld181OnK1t9/fbQlxFnbFrjC0kVSmMke/8ecnns9NFa0FbW8W91qEh+8FCLsmkLQhX8RzHFug6ebLckdQezjkAAACuAEldAEDFGx21M3RzzYT0+6WxsSIndaNRqaOjiAe4Mo6kPeUOotQiEZt0rCDd3XameH9/9nUaCNiE7vg4S4QAAAAAKBySugCAihaPp9bQzWVlRZqcNIo/eFSh4HLqicaD2beznx2RFs7lP/j+XulAb2o7GZeOrn79qKQz+XeB2tDXZ2eKj41Jk5Ppaz4PDpLQBQAAAFBYJHUBABUtFvNWhEqSjHEUu5BQqHUu1Rjcnd1xeV5a9LCMQvJSRoMrNa7t11tMqB1dXfYRj9vrNhy2a+4CAAAAQKGR1AUAVLRw2M549JLYdRyjcGuDFFxXZKiuKbtjXVN6n834d2Q0+KSF1S8X8w/HlYurQTGFFVZMISXKHc6WhEIkcwEAAAAUF0ldAEBFC4XsLezT07nX1A0EpJ4eR6Gb7s6/08zlGLzq2C+NRKRjx6S2i9KbW6QTJ7a2rwIwxmh2dlbt7e1yKqx42JWa+fuARk/u0Kmv1csYnxzHVc/rlnT8tkvq+v9uky5elFpabKE0AAAAAKhxJHUBABVvaEiamsrdJ5m0a5cWlePYIl379kkNDTbJWM6iXcbIdV0bQxUndScmpIEBW2RsbUa2MT5N/01QUw8ENf5rv62+A1+157uKXycAAAAAFApJXQBAxevulsbHpf5+m/hbP2M3ELAJ3fHxEhajGhsr0YG2v5kZm9B13eyZ2Gvb/X/3JnU+/CaKjZWCMVI0Kg0PS3NzUnOzNDJS7qhqw/pzPj7OBxgAAADIiaQuAKAq9PVJnZ02nzo5aXNPjmOXZhgcLGFCFwU1OpqdqM/k99vvO9/jEohGpb1709vuuqs8sdSykZHy3gUAAACAikdSFwBQNbq67CMel2IxW0SNglTVKx6XTp3KXwRvZUWanDSKP3hUoeBy6onGg9nrI58dkRbO5T/4/l7pQO+6g8Sl07d5C/zw7dKuQ6nt6GnpsTvzj/M3SNefTG87d48UeSj/2LbrpOcNpLedGZSWLuYf+5xbpT2vTm1f+rn0/Q+ldfG5rpoSCfl8ko6uNj4q6Uz+3QMAAAAoPZK6AGoGicDtIxTie7gdxGL5E7prjHEUu5BQqHUu1Rjcnd1xeV5ajObfYfJSRoPrbZwkmYxpxclFb2MDG1y0Kwvexi4/ld22dNHbWLOYvu0mNxjnyre8JPkkNa42BfPvGgAAAEB5kNQFsO3NzNhbvNdmBK7dsn/8OLdzA+UUDtv/j14Su45jFG5tkIJtqca6puyOdU3pfTbj35HR4PM2TpKcjF+f/EGPx2zIbgs0ehtbtyu7rb4l/zhJcjKysz5/9jFdV65J2KTuwmpbRi4YAAAAQOXwua7rljsIVJdYLKampibNz88rHA6XO5ySMMYoEomoo6NDDoVLqsrEhC3ClKu4Vl9f6eLhWkIhbYfr6cgRaXo695q6gYD9IOb++0sXV625fC3t3i3n4kUKpZXDNiqUth3em1AZuJZQKFxLKKRiXE+1mGfB1WOmLoBta2bGJnRdNzthtLbd32+Lb1XljN21KvUor7a2qk6+lNvQkDQ1lbtPMmmL4aEEHMcW6Dp5Mn9fFBbnHAAAAFeApC6AbWt0NHuGbia/Xxobq9KkbjQqdXSUOwpEIlSpvwrd3XZSYn9/7hn1Vfl/FAAAAACKhKQugG0pHk+toZvLyoo0OWkUf/CoQsHl1BONB6XO4fTOZ0ekhXP5D76/VzrQu+4gcen0bZLWVZh/vEG2zHyGw7dLuw6ltqOnpcfu3Pg4iQRV6rEt9PXZGfNjY9LkZPra14ODJHQBAAAAIBNJXQDbUizmrfiSJBnjKHYhoVDrXKoxuDu74/K8t0rzyUsZDe66casV5p162YpEmcFkTCtOLm5+zOUlqtRj2+jqso943P7/DYelUKjcUQEAAABAZSKpC5QZCYziCIftTD8viV3HMQq3NqRXg69ryu5Y1+Sxwv2OjAZfatxahfn6TWbqOhlvy/7g5sd0E1Spx7YTCvFeCAAAAAD5kNQFymRmxq75urZEwNqtxsePc6txIYRC9nxOT+deUzcQkHp6HIVuujv/TjOXY/AqEJJuuE+S5Bqj+UhEwY4O+bwU12q77vLYLMZIh0/YiumH5qRrm6lSXyrrq9S3eUj0AwAAAABQQCR1gTKYmJAGBmxRoLWZpMbYBOTUlC0K1NdX1hC3haEhez5zSSbtmp1ViSr15cM5BwAAAACUEUldoMRmZmxC13WzZ5Cubff326JBVTVj1xgpGk2fwVjmWaPdz5fGP9Gg/vc1yu9IK8nUcgcBv6ukkcY/saCu5yWk2RIFZYx858/bpRe8zNT1Yv05Hx8v3H4BAAAAAEBFIqkLlNjoqJ2hm2tJAL/fVoGvqqRuNCp1dKS33XVXeWJZp09Sp27UWHJQk3qjjPxylFRPclKDGlPXe78lvbd08TiS9hTzACMjdvYuAAAAAADYtkjqAiUUj6fW0M1lZUWanDSKP3hUoeBy6onGg9nrup4dkRbO5T/4/l7pQO+6g8Sl07d5C/zw7dKuQ6nt6GnpsTvT+yQS0tHVrx+VdMbbrkuhS99Sl76luBoUU1hhxRRSotxhAQAAAAAAbAlJXaCEYrH8Cd01xjiKXUgo1DqXagzuzu64PC8tRvPvMHkpo8H1Nk6STMa04uRi9tjlJalxLU5vuy21kBIkcwEAAAAAQNUjqQuUUDhslzv1kth1HKNwa4MUbEs11jVld6xrSu+zGf+OjAaft3GS5GS8VfiD2WPdhLSw+vWit90CAAAAAADgypHUBUooFJJ6evIvweA40hvf6Ch00935d5q5HINXgZB0w31bG9t2XfZYY6TDJ2zRrkNz0rXNZS+UVomMMZqdnVV7e7ucYhRKa/OYqAcAAAAAAFWLpC5QYq99rTQ5mbuPMdJrXlOaeAqORG7pcc4BAAAAAKgpJHWBEvtv/y3/EgyOI33jG9JtHuuYVYRoVOroKHcUFc+RtKeYB4hEpPb2Yh4BAAAAAACUGUldoITi8fxLL0j2+clJo/iDRxUKLqeeaDyYvdzC2RFp4Vz+g+/vlQ70prZX4tJpj1njw7dLuw6ltqOnpcfuTO+TSEhHV79+VNIZb7sGAAAAAADAlSGpC5RQLOatSJokGeModiGhUOtcqjG4O7vj8ry0GM2/w+SljAbX2zhJMisZ+1rMHru8JDWuxelttwCAyhCPS7OzjnbtknbuLHc0AAAAAPIhqQuUUDicf+mFNY5jFG5tkILrCl/VNWV3rGtK77MZ/46MBp+3cZLkZLxV+IPZY92EtLD69aK33QIAymtmRhodlU6d8smYDjmOq54e6fhxqaur3NEBAAAA2AxJXaCEQiGpp0eanpZWVjbvFwhIPT2OQjfdnX+nmcsxeBUISTfct7WxbddljzVGOnxCGh6WDs1J1zZTwGsDxhjNzs6qvb1djuMUZqfDw9LcnNTcLLV5TNQDqHkTE9LAgOT3S8b4JNl/p6elqSlpfFzq6ytvjAAAAAA2RlIXKLGhIfvHci7JpDQ4WJJwCsdxbIGukyfLHUllM0au69pzVaikLuccwBWambEJXdfN/pBxbbu/31Xn/jl1vTLHp5Aojra2wv2MAAAAwLZEUhcose5uO/upv9/Ojlr/x3QgYBO64+Pc9goAKJ7R0eyfQZn87orG3vANdelNpQsMViRiP/wDAAAANsEUAKAM+vqkhx+2SzGsTcRxHLv98MPc7goAKJ54XDp1KndCV5JWVKdJvVFxNZQmMAAAAACeMVMXKJOuLvuIx6VYzBZRC4XKHRUAYLuLxbwV7JQkI79iCiukRHGDAgAAAHBFSOoCZRYKkcwFgO2iGj6oC4ft3SFeEruOkgorVvygAAAAAFwRkroAAABXaWbGrlN76pRNlq4tqXP8eOWtkR4K2dimp3MvwRDwrajnmWcU+u7PShdcLTt2TLp4UWppsYXSAAAAgBxI6gIAAFyFiQlpYMAWHlub/WqMTZpOTdnil5W2VvrQkI0tl6Tr1+CN35HaX1mSmGrevn1SQ4NN6jqUvQAAAEBuJHUBAAC2aGbGJnRdN3vW69p2f7/U2VlZM3a7u22yub/fJqPXxx7wu0oaafwTC+q65Xel2dnyBVpLPvjB1Ndr070BAACATZDUBQAA2KLR0eykaCa/Xxobq6ykrmRnD3d22tgmJ10Z45PjuOpJ/mcNakxd7/2W9N5yR1mjIhGpvb3cUQAAAKCCkdQFAADYgng8tYZuLisr0uSkUfzBowoFl1NPNB6UOofTO58dkRbO5T/4/l7pQO+6g8Sl07d5C/zw7dKuQ5JsornrV0/r0sBdikQddTRe0o6pv7b9HpV0xtsuAQAAAJQWSV1gG6mGqusAsF3EYvkTumuMcRS7kFCodS7VGNyd3XF5XlqM5t9h8lJGg+ttnCSZjGnFyUWFfE9o764lBX2SGtfi87Y7AAAAAKVHUhfYBqqp6joAbBfhsH2/9ZLYdRyjcGuDFGxLNdY1ZXesa0rvsxn/jowGn7dxkuRk/PrnD0r1bXJNQvJJWlhtX/S2OwAAAAClR1IXqHLVWHUdALaDUMh+gDY9nXtN3UBA6ulxFLrp7vw7zVyOwatASLrhvq2NbbtO7r+4V/ORiIK7d8t3+A5peFg6NCdd2yyNjGxtv7gyw8PS3JzU3Cy1eUzQAwAAoGaR1AWqWLVWXUeBGCNFPd5ujeJpa6NKfQ0bGrIfoOWSTEqDgyUJ5+o5ji3QdfJkuSOpPZxzAAAAXAGSukAVq+aq6yiAaFTq6Ch3FKBKfU3r7rZ3RPT3Z78fBwI2oTs+znswAAAAgMIiqQtUqe1QdV2SFD0tPXZn/nH+Bun6jFlM5+6RIg/lH9t2nfS8gfS2M4PS0sX8Y59zq7Tn1antSz+Xvv+h/OMk6eWjUrA1tf2Lr8n3f/+jmhIJ+R5vkHy+jcfteKb0ko+mt/3oL6S5H6a3JRLS0dWvqVIPlE1fn70jYmxMmpxMX9t8cJCELgAAAIDCI6kLVKntVHXd09hAKLttZcHb2OWnstuWLnobazIqBblJ76/VzfgGJRPSUlS+5SXJqZetSLSBQGYBJEnLsezjLi9RpR6oEF1d9hGP2/fncNiuuQsAAAAAxUBSF6hS26rquqdjNmS3BRq9ja3bld1W35J/nCQ5GdlSn9/7a/VlrLPqb0hVmK/PMVN3o9jqwtnHdRNUqQcqTCh09clcEsMAAAAA8vG5ruuWOwhUl1gspqamJs3PzyscDpc7nJIwxigSiaijo0NOBRVEOnLEa9V16f77SxcXNlfQa2mtUNqxY9LFi1JLi3TiRGECRW7rz/kXv1i2QmmV+t6ErZmZsWulry2ts7aEw/HjxV/CgWsJhcT1hELhWkKhcC2hkIpxPdVingVXj5m6QBXbdlXXcWXWqtTv2yc1NNgEIwW7SmP9OecPAxTAxIQ0MGCLra3dgWGM/eBuasoWW+vrK2uIAAAAACoISV2gilF1HZJsdSaUFuccBTQzYxO6rpt958Xadn+/LcZW9PfztTsAUF5tbXxgBAAAgJxI6gJVjqrrAFDdRkezP5j7/7d3//FRVQf+/99zZ5LJxTCBhPxAREWoWgVRRF0Mrb/4FLt+u6H6cd2u24dKuzUmuJqwbbVKrY98LNr2k7RLDfixKv2l7tZtQuMPrFLBxrUWaaHQWmjRVtuCiYFkiExCMvd8/7jmx2QgcxMmmUzyej4e84B75px7z0xOJsl7zpwzkN/vvs6P+Gt6S4tUVDTCF0FCTU188gIAAACDItQFxgF2XQeA9BSJ9K2hO5jubqmuzlFk882yg119d2TPluatiq28s0pq35v44ictk2Yu6zuORuTbc4d08wfHr0valvg0AAAAAEYfoS4wjiRj13UAwOgJhxMHuj0cx1L4QIfs3Na+wuC0+IpdbVKnhyUUoocHFBip66CU3XNub/0CAKQfJoMAQPpjsS4AAIAUCYW8L51qWY5CuVlSMK/vlpETXzEjJ7bOsW7+SQMa+qSMqVK73FvncT44AMCY09goXX21lJ3trraTne0ev/JKqnsGABgqZuoCAACkiG27a6A3NAy+pm4gIJWUWLIvfTjxSQcux+CV35b5yA/lm/ttadUqaU6rtHCKVFU1vPNhaFatklpbpSlT3I3SACDJ1q51N+b0+/s+JeI47s+g+np3g+XS0pR2EQAwBIS6AAAAKVRZ6f4xPZho1N38csRZlrtB17p1o3AxxOA5x3jlOO4mjMNs63vvPcnn8/6xBhxV4xt5Ki+3ZEz8m4g9x2Vl7gbMbLQMAOmBUBcAACCFFi92Z0eVlbmzp/r/sR0IuIFubS1/ZANIUy0tUkHBsJpakgqT25sJq/rvO+T3Bwf9VIjfL9XU8PMGANIFb3cCAACkWGmp9POfu0sx9ExGsyz3+Oc/5+OwAIBhOl+KfCZLGzZmDBroSu6binV17iZqAICxj5m6AAAAY0BxsXtjR3IAQNIEpXBGSI7jbT6X47g/g/j5AwBjH6EuAADAGGLb/DE9URHoA0i6TinUFZZlOZ6CXctyX4MAAGMfoS4AAACQQo2NUnW1tGGDO0uuZ+mNlStZ2xLjQF6e1NQk3XqrdPCgNHWqtGaNp6aO46i5uVn5+fmy2Cht6D54zu32qSop8amhIX6TtP4CAfe1hzeVACA9EOoCAAAAKbJ2rVRe7m5Q5DhumeNIDQ1Sfb27SR5rKiOtWZaUny9Nny5lZbmhbn6+t7aOI2OMW59Qd+j6PeeV1/hUXz949WhUqqgYlZ4BAJKAUBcAAAAux3F3ql+1SmptlaZMkaqqUt2rcavxFwGVl0+RMb642XM9x2Vl0rx5zNjFOFBTk+oeTDz9nvPFct8kKitz30Tq/5oTCLiBbm0trzUAkE4IdQEAAOBqaZGKimLLHnooNX2ZAKr1lPz6B3Ur45h1/H43lyFoAXC8SkvdN4lqaqS6utjlXioqeJ0BgHRDqAsAAACMsoiytEHL5Mg/aL3ubjd8iURY5xLA8Ssudm9szAgA6Y9QFwAAABhlYYUSBro9HMcNXwheACSLbfOaAgDpjtXmAQAAgFEWUliWop7qWpY7mw4AAADowUxdAAAAuPLypKYmNkobBbakcy5ztP23liTfMesFAu56l8yoAwAAQH+EugAAAIhFkDviGn8R0PbfBjRYoCu5a+pWVIxOnwAAAJA+CHUBAADgammRiopS3YsJoVpPKaB/ULcyBq133nnsSA8AAIB4rKkLAAAAjKKIsrRByxIGupK0Y4e7Sz0AAADQH6EuAAAAMIrCCsmR31Ndx5HC4RHuEAAAANIOoS4AAAAwikIKy1LUU13LkkKhEe4QMEIiEendd5ltDgDASGBN3XFk9erV+vGPf6zf//73sm1bF198sR544AGdccYZvXU6Ojq0cuVKPfnkk+rs7NTSpUtVW1urwsLCFPYcAACMCXl5UlOTtGqV1NoqTZnCpmkjwJZUcmO3Gp631B099kZpgYBUUiLZ9uj1DUiGxkapulrasMGdbW5Z7lheuZI1ogEASBZC3XFky5YtKi8v1wUXXKDu7m596Utf0sc+9jH97ne/0wknnCBJqqio0DPPPKMf/ehHysnJ0YoVK3T11VfrlVdeSXHvAQBAylmWlJ8vrVuX6p6Me5V3SvXPDV4nGpUqKkanP0CyrF0rlZdLfr8b6Eruvw0NUn29VFsrlZamtIsAAIwLhLrjyMaNG2OO169fr4KCAm3btk0f/ehH1dbWpkceeUSPP/64Lr/8cknSY489pg9/+MP6xS9+ob/7u79LRbcBAAAmnMWL3XCrrMwNv7q7++4LBNxAt7aWWY1IL42NbqBrTOyYlvqOy24xmndSq4ov6o4/wUCOI99770k+n/umE4am/6cuamt5DgFgnCHUHcfa2tokSbm5uZKkbdu2qaurS0uWLOmtc+aZZ+rkk0/Wq6++SqgLAAAwikpLpXnzpJoaqa4u9mPqFRUEukg/1dXxb1IM5Fe3aj6xScW6NuH5LEksEpckVVXuJzEAAOMGoe445TiObr/9dhUXF2vu3LmSpP379yszM1NTpkyJqVtYWKj9+/cf81ydnZ3q7OzsPQ5/sAWz4zhyej5TNc45jiNjzIR5vBg5jCUkE+MJycJYSp1Fi9xbJCKFw+6maD1r6Kbrl4PxNDFFItKGDT45zrHXiZakbmWoTp9URFmy1TFKvYPjOOn7opIEvC4hmUZiPDE2MRyEuuNUeXm5du3apcbGxuM+1+rVq3XvvffGlTc3N6ujY2L8IuY4jtra2mSMkcXHlnAcGEtIJsbT8EUiUnu7pexsh02oxFgaK3w+6dAh95bOGE8TU3OzJccp8FTXkV9hhQh1R1Fzc7OMManuRsrwuoRkGonxdCjdf/gjJQh1x6EVK1bo6aef1ssvv6yTTjqpt7yoqEhHjhxRa2trzGzdd999V0VFRcc835133qnKysre43A4rJkzZyo/P1+hUGhEHsNY4ziOfD6f8vPz+SUAx4WxhGRiPA1dY6P0zW/6PtiR3SfLMh981N1M6I+6M5aQTIyniWnyZMmyTMKZupJkKaqQwqPQK/TIz8+f0Msv8LqEZBqJ8ZSVlZWU82BiIdQdR4wxuvXWW1VXV6fNmzdr1qxZMfeff/75ysjI0KZNm3TNNddIknbv3q23335bixYtOuZ5g8GggsFgXLllWRPqB6LP55twjxkjg7GEZGI8eXf0Hdl9H+zI7pvwO7IzlpBMjKeJ54QT3PWgGxoGX1M34Iuq5Kpu2Y++nfCcjuOoubmZIG64+m2UZuXnT/iN0nhdQjIlezwxLjEchLrjSHl5uR5//HFt2LBBkydP7l0nNycnR7ZtKycnR5/5zGdUWVmp3NxchUIh3XrrrVq0aBGbpAEAxjVPO7KXuZtWTeQZu3IcqaUl1b1AXt6ED1+Qniorpfr6wetE5VfFHX5vs0Y/WLdSBJLDs25dqnsAABhBhLrjyNq1ayVJl156aUz5Y489phtvvFGSVFNTI8uydM0116izs1NLly5VbW3tKPcUAIDR5WlHdr9UUzPBQ92WFmmQJZkwSpqaJvTHpJG+Fi+WamvdN8kGvuYGAlI06t4/oV9nAQBIEkLdccTLwvdZWVl68MEH9eCDD45CjwAASD13R/bEm353d0t1dY4im2+WHezquyN7tjRvVWzlnVVS+97EFz9pmTRzWb+LRKStt3jr+Ny7pclz+o5btkp7PPz89mdJFw6YnbX3Uanp5WM28RmjnI4OKXSut74BwDGUlrqfeqipkerq3Ndey9IH65cT6AIAkCyEugAAYFwLhxMHuj0cx1L4QIfs3Na+wuC0+IpdbVKnh2UKoocHFBhv7STJGTCtONrprW3Aji/rbk/Q1sjXdUSKvu+tbwAwiOJi9xaJuK/BoZBkH+WlCQAADB+hLgAAGNdCIXeWmJdg17IchXKzpGBeX2FGTnzFjJzYOsfinzSgwOetnSRZA35N8wc9XvMouycHsgdva4yM0yH5T/DWNwDwwLYJcwEAGCmEugAAYFyzbfdjv4mWYLAs6ZOftGRf+nDikw5cjsGrgC0tWj+8tnkXDL/t7OXu7RiM46itqUkF06ZJTZ+N2TFdVVXDuyaGpv9znucx+AcAAMCERagLAADGvSVL3LUdB+M40hVXjE5/xjyC3NHHcw4AAIAhINQFAADj3osvJl6CwbKkTZukWzzuYzYutbRIRUWp7gWamqT8/FT3AgAAAGMYoS4AABjXIpHESy9I7v11dY4im2+WHezquyN7dvxyCzurpPa9iS9+0jJp5rK+4+6ItNVjajz3bmnynL7jlq3SngcTt/NnSReuiy3b+6jU9PIxm/iMUU5HhxQ611vfAAAAAKQUoS4AABjXwmFvm6RJkuNYCh/okJ3b2lcYnBZfsatN6mxJfMLo4QEFxls7SXK6B5yr01vbwFF2JepuT9DWyNd1RIq+761vAAAAAFKKUBcA0kQk4oZToRA7SQNDEQolXnqhh2U5CuVmScF+G1Vl5MRXzMiJrXMs/kkDCnze2kmSNeDXNH/Q4zWz4ssC2YO3NUbG6ZD8J3jrGwAAAICUItQFgDGusVGqru77+LhlSSUl0sqVUnFxqnsHjH227X7PNDRI3d3HrhcISCUlluxLH0580oHLMXgVsKVF64fXNu+C4bedvdy9HYNxHLU1Nalg2jSp6bPSrbdKBw9KU6dKa9YM75oYmv7PeZ7H4B8AAAATFqEuAIxha9dK5eWS3983y9Bx3HCqvl6qrZVKS1PaRSAtVFa63zODiUaliopR6c7YZVnuBl3Tp0tZWW7AyIZdo6P/c25Zqe4NAAAAxjhCXQAYoxob3UDXmPjZhT3HZWVG805qVfFFg0w/xMjKyyOASQOLF7tvgpSVuW+S9P+eCgTcQLe2ltnvvWpqUt2DiYfnHAAAAENAqAsAY1R1dXz4NJDfdKvmE5tUrGtHr2OI1dTETMY0UVoqzZvnZmd1dbHLmVRUEOgCAAAASB+EugAwBkUifWvoDqZbGarzfVKRc7Nk/7pjdDoHpLHiYvfGxoMAAAAA0hmhLgCMQeFw4kC3h2P8CvtDskWoC3hl24S5AAAAANIXiwACwBgUCnlfptXyRRWKhke2QwAAAAAAYMxgpi4AjEG27a7zmWgJBssy+uQpO2SfXiJdOEWqqhq1Pk5oq1ZJra3SlCnuRmkAAAAAAIwiQl0AGKOWLHE3cxqM40hXlM6RblozOp2Ci/AcAAAAAJBChLoAMEa9+KK7BMOgM3XlaNMXf6pbvnjt6HUMsZqapPz8VPcCAAAAADCBsKYuAIxBkUjipRckyZFfdb5PKnJe1uh0DAAAAAAApByhLgCMQeFw4kC3h2P8CvtDI9shAAAAAAAwZhDqAsAYFAq5Sy94YfmiCkXDI9shYAgiEendd91/AQAAAADJx5q6ADAG2bZUUiI1NEjd3ceuF/AblUx/XXb+R6Xrpkpr2DBtVNx6q3TwoDR1qpSXl+rejBmNjVJ1dd/SIZbljuOVK6Xi4lT3DgAAAADGD0JdABijKiul+vrB60Qdnyoufk2yp7sBIxt2jY7p06WsLPc59zqlepxbu1YqL5f8/r6lQxzHfWOivl6qrZVKS1PaRQAAAAAYNwh1AWCMWrzYDcLKytygrP+M3UBAikbd+4tL/y11nZyoampS3YMxpbHRDXSNiZ9Z3nNcVibNmzfEGbuOI7W0SKtWSa2t0pQpUlVVknqNGI4j33vvST6f+0ZF/+e8tpY3LwAAAIAxhlAXAMaw0lI3CKupkerqYj/SXlHBR9oxNlRXx7/xMJDf747jIY3ZlhapoCC27KGHhtVHDM6SVHisO6uq+BQAAAAAMMYQ6gLAGFdc7N4iESkcdjdRs+1U9wpwRSJ9a+gOprtbqqtzFNl8s+xgV98d2bOleatiK++sktr3Sh0d0s0flL0uaVsyew4AAAAA6YtQFwDShG0T5mLsCYcTB7o9HMdS+ECH7NzWvsLgtPiKXW1SZ4vUdUTK7ql3vD0FAAAAgPGDUBcAAAxbKOQuCeIl2LUsR6HcLCmY11eYkRNfMSPHrWM6pPYPyjqT0l0AAAAAGBcIdQEAwLDZtrvGc6IlGCxL+uQnLdmXPpz4pD3LMTiONHeNu2nXnFZp4RQ2ShshjuOoublZ+fn5sgZulJaXl6g5AAAAgFFGqAsAAI7LkiXuRn6DcRzpiiuGeQGC3NHHcw4AAACMaYS6AADguLz4YuIlGCxL2rRJuuWWIZy4pUUqKDju/iExS1Lhse5sapLy80exNwAAAAASIdQFAADDFokkXnpBcu+vq3MU2Xyz7GBX3x3Zs/uWW+ixs0pq3yt1dEg3f1D2uqRtyew5AAAAAKQvQl0AADBs4bC3TdIkyXEshQ90yM5t7SsMTouv2NUmdbZIXUek7J56x9tTAAAAABg/CHUBAMCwhUKJl17oYVmOQrlZUrDfxlsZOfEVM3LcOqZDav+grDMp3R33IspSWCGFFJatjlR3BwAAAMAIIdQFAADDZttSSYnU0CB1dx+7XiAglZRYsi99OPFJe5ZjcBxp7hrp1lulvIPSdVOlNWuS0/FxpvEXAVWvm6QNGzPlOD5ZllHJlUe08pbDKr5okC/MBxzHUXNzs/Lz82VZlvucHzwoTZ0q5eUlbA8AAABgdBHqAgCA41JZKdXXD14nGpUqKoZ4YstyN+iaPl3KynIDRjbsirN2rVReLvn9fTOmHcenhp8GVf9cULW1UmlpgpM4jowx7vNrWbHPuWWN+GMAAAAAMDSEugAA4LgsXizV1kplZW6w2H/GbiDgBrq1tVJx8TAvUFOTlH6OR42NbqBrTPxM6Z7jsjJp3jyPz7/jSC0t7g54HR3uv83NSe83jmLVKqm1VZoyxf2GIUwHAADAIAh1AQDAcSstdYPDmhqprs7NBi3LXZqhouI4Al0Mqro6PkgfyO93vy6evgYtLVJRUWzZQw8dVx8xDFVVzEoHAADAoAh1AQBAUhQXu7dIRAqH3U3UbDvVvRq/IhFpw4bEm9R1d0t1dY4im2+WHezquyN7dt/6xT3eqpZu/uD/r0valsweAwAAAEgWQl0AGOcI2DDabJuxNhrC4cSBbg/HsRQ+0CE7t7WvMDgtrp6vOyxl99x/3F0EAAAAMEJYrAsAxqnGRunqq6XsbPfT1NnZ7vErr6S6ZwCSIRTyvuyqZTkK5WZJwby+W0ZOXD0TCEntcm+dSe0uAAAAgCRipi4AjENr17qbJ/n9fTP5HEdqaJDq6909eEpLU9pFAMfJtt01ixsaBl9TNxCQSkos2Zc+nPikC++TZv+7u2nXnFZp4RR3fVeMvP4bpeXlpbo3AAAAGOMIdQFgnGlsdANdY+KDnp7jsjJ3Uys2rxoix3E3khorHEe+996TfD7vUzbTXV7exHmsHlRWum/UDCYadTer88Sy3A261q073q5hqHjOAQAAMASEugAwzlRXuzN0B5u55/dLNTWEukPW0iIVFKS6F70sSYWp7sRoa2pyQ0dIkhYvdmfel5XFf98HAm6gW1vL9zoAAAAw3hDqAsA4EolIGzYk3jypu1uqq3MU2Xyz7GBX3x3Zs6V5q2Ir76yS2vcmvvhJy6SZy/pdJCJtvcVbx+feLU2e03fcslXa82Didv4s6cIBs9v2Pio1vZy4bd4F0unlsWXbKqQjB4/dpqNDulnSFkm/T3wJYDSUlroz72tqpLo69/vfstylGSoqCHQBAACA8YhQFwDGkXA4caDbw3EshQ90yM5t7SsMTouv2NUmdXpYciB6eECB8dZOkpwB04qjnd7aBuz4su52b227DsWXHTk4eNuuI1K2pIzEpwdGU3Gxe4tE3NeBUMhdcxcAAADA+ESoCwDjSCjkztDzEuxalqNQbpYU7LchT0ZOfMWMnNg6x+KfNKDA562dJFkDfhz5gx6vmRVfFsj21jZjcnxZ5tTB25gOqV1S1+DVkDwRZSmskEIKy1ZHqrsz5tk2YS4AAAAwERDqAsA4YtvuR64bGgZfUzcQkEpKLNmXPpz4pAOXY/AqYEuL1g+vbd4Fw287e7l7G47zawa/33GkuWvcXernt7q71FdVDe9aSeA4jpqbm5Wfny9rnG0e1viLgKrXTdKGjZlyHJ8sOSo5dbtW/j5PxSypCwAAAGCCI9QFgHGmslKqrx+8TjTqrrWJIbIsd5OusbJLvePIGOP2aRyFumvXSuXl7sZfPbPOHVlq+MsC1V/ibvxVWpraPgIAAABAKhHqAsA4s3ixG3qVlbmhWP8Zu4GAG+jW1rJ5EsamxkY30DUmfrZ5z3FZmdG8k1pVfNEg09ExNI4j33vvST6f+wbBqlVSa6s7G722dly9aQAAAACMB4S6ADAOlZZK8+ZJNTVSXZ0729Gy3KUZKioIdDF2VVfHvxkxkN90q+YTm1Ssa0evY+OcJanwWHdWVbmzwQEAAACMGYS6ADBOFRe7t0hECofdTdTYQAljWSQibdiQeKO/bmWoTp9URFlsngYAAABgQiLUBYBxzrYJczFykvmmQTicONDt4civsEKEugAAAAAmJBZIAwAAQ9bYKF19tZSdLRUVuf9efbX0yivDP2co5H3pVktRhRQe/sUAAAAAII0xUxcAAAzJ2rXuZmZ+f9/MWseRGhqk+np3X63S0qGf17bddZ8bGgZfUzfgNyr5eLfsR98eVv8Rz3EcNTc3Kz8/X9bAjdLy8lLdPQAAAAADEOoCAADPGhvdQNeY+OC157iszN2obzgb8lVWusHwYKKOTxV3BNm8K5kcR8YYN8A9eNDdHK1HS0vq+jVR5eV5n7YOAACACYlQFwAAeFZd7c7QHWwmrd8v1dQML9RdvNid6VtWFn+dQECKRt37h3NueNDS4q6ngdRqauJNCwAAAAyKUBcAAHgSiUgbNiTezKy7W6qrcxTZfLPsYFffHdmzpXmrYivvrJLa98YUlc6X5q2do5onl6ru5fPlOJYsy6ikxKeKig8C3e6ItPUWbx2fe7c0eU7fcctWac+Didv5s6QL18WW7X1Uano5cdu8C6TTy2PLtlVIRw4mbnvaTVLhJX3Hh/8q7bgrcTtJWlAtBXP7jv+2Ufrzkwmb+ewTpaJ/iy0slPSut8sCAAAAGF2EugAAwJNwOHGg28NxLIUPdMjObe0rDE6Lr9jVJnXGf7y/+IwWFd/zmiKdmQq/P0mhs/4/2Wde16+GOWq7o3dmwLTiaKe3tgE7vqy7XZHwIbdPJxyWHTxy9LZdh+LLjhz0dl2nM/bYRL0/VjPgCxTt8NbWf5THyqf/AQAAgDGLUBcAAHgSCrnLfHoJdi3LUSg3Swr222QrIye+YkZObJ0B7KBkhySdEBxwj2/QdrGdGfDrjj/ora0/K+awsVGqrvoHbXhxxQezhx2VfORXWvmpjSo+54+xbTMmx58vc6rH/g54rD6/98fqG5DE+rO8tT1a3zwG+AAAAABGH6EuAADwxLalkhKpoWHwNXUDAamkxJJ96cOJTzpwOQavAra0aP3w2uZdMOS2a9e6G8T5/af2htqOY6nhlYWqf3mhamul0tIEJzm/Zljd1aQZw3+sJ17p3hIwjuOu45qX5/67apXU2ipNmRK7aRpGTv/nPM9jiA8AAIAJi1AXAAB4Vlkp1dcPXicalSoqRqU7o6Kx0Q10jYkPs3uOy8qkefPG0QZuBLmjj+ccAAAAQ0CoCwAAPFu8WKqtdUNMvz825AwE3EC3tnYchZuSqqvjH+tAfr9UUzMOHndLi1RUlOpeoKlJys9PdS8AAAAwhhHqAgCAISktdWel1tRIdXXuGruW5S7NUFExDoLNfiIRacOGxOsId3dLdXWOIptvlh3s6rsje3b8EhM7q6T2vYkvftIyaeayfheJSFtv8dbxuXdLk+f0HbdslfY8eMzqPmOU09Eh34B1hAEAAACMTYS6AABgyIqL3VskIoXD7iZqtp3qXiVfOOxtYzjJXWM3fKBDdm5rX2FwWnzFrjapsyXxCaOHBxQYb+0kyRkwrTjamaCtka/riOQQ6gIAAADpgFAXANLEeA/PkJ5se3yPx1DInYXsJdi1LEeh3Cwp2G+Tq4yc+IoZObF1jsU/aUCBz1s7SbIG/IrnDw7e1hgZp0Nipi4AAACQFgh1AWCMa2x01/Ts+Qh4z8fcV64cXx9zB8Yi23a/3xoaBl9TNxCQSkos2Zc+nPikA5dj8CpgS4vWD69t3gWDtjWOo7amJgWnTZOv6RvSrbdKBw9KU6dKa9YM75oYmv7PeZ7H8B4AAAATFqEuAIxha9dK5eXuJkw9MwUdxw2Y6uvdDalKS1PaRWDcq6x0v98GE4266wmnPctyN+iaPl3KynIDRjbsGh39n3PLSnVvAAAAMMYR6gLAGNXY6Aa6xsTPEOw5LiszmndSq4ovGmQKIUZWXh4BzDi3eLH7BkpZmfsGS//vx0DADXRra8fZzPmamlT3YOLhOQcAAMAQEOoCwBhVXR0fIA3kN92q+cQmFeva0esYYjU1MZNxAigtlebNc3O3urrYpVAqKsZZoAsAAABgzCPUBYAxKBLpW0N3MN3KUJ3vk4qcmyX71x2j0zlggioudm9sWggAAAAg1Qh1AWAMCocTB7o9HONX2B+SLUJdYDTYdnLCXMJhAAAAAMPFIoAAMAaFQt6XabV8UYWi4ZHtEICkaWyUrr5ays6Wiorcf6++WnrllVT3DAAAAEC6YKYuAIxBtu2u1dnQMPiaugG/UcnJO2SfXiJdOEWqqhq1Pk5oq1ZJra3SlCnuRmmAR2vXuhsg+v19s/Edx/1er693N1wrLU1pFwEAAACkAUJdABijKivdkGcwUceniu8vkIqfHJU+4QPr1qW6B0hDjY1uoGtM/Js1PcdlZe6GbGy8NoE4jtTSkupeJJfjyPfee5LP5/1jJ6mUl5ce/QQAAOiHUBcAxqjFi91Ze2Vl7qy+/iFQICBFo+79hD9Aeqiujv9eHsjvl2pq+L6eUFpapIKCVPciqSxJhanuxFA0NUn5+anuBQAAwJAQ6gLAGFZa6s7aq6mR6urcCV2W5S7NUFFB8AOki0hE2rAh8QaI3d1SXZ2jyOabZQe7+u7Ini3NWxVbeWeV1L438cVPWibNXNbvIhFp6y0xVXzGKKejQ743s9zZlT3m3i1NntN33LJV2vNg4mv6s6QLB8xo3/uo1PRy4rZ5F0inl8eWbauQjhxM3Pa0m6TCS/qOD/9V2nFX4naStKBaCub2Hf9to/RnD5+CmDRDmn9fbNkb35BadyVuO32pdMISb/0DAAAA+iHUBYAxrrjYvUUiUjjsbqJm26nuFYChCIcTB7o9HMdS+ECH7NzWvsLgtPiKXW1Sp4eP7UcPDygwR2ln5Os6IlmZkvqFus6AacXRTm/XDBzlRaq73VvbrkPxZUcOemvrdMYem6i3dpJkBnyBoh0eH+uk+LKusLe23e976xsAAAAwAKEuAKQJ2ybMBdJVKOTOsvcS7FqWo1BulhTstwlfRk58xYyc2DrH4h8YOvri2xkj43RImQNm6loDflX0Bz1eMyu+LJDtrW3G5PiyzKmJ20mSFYw99vm9XVOSfAPWVPVnKaIihd+3FTohEjtzOlHfMkLerhs4wVvfAAAAgAF8xhiT6k4gvYTDYeXk5KitrU2hUCjV3RkVjuOoqalJBQUFsthIA8eBsYRkYjyll6uvlhoaBl9TNxBwl1d56qnR65fEWBqosdFdA7lnyYyeZW9WrhyBZW96Nkq79Vbp4EFp6lRpzZokX2R0OY6j5uZm5efnj93x1P/5fvxxNkobo3htQrIwlpBMIzGeJmLOguPHTF0AAIBRUFkp1dcPXicaddfLRuqsXSuVl7ub1vXMrHYcN5Cvr3c3qCwtTeIFLcvdpGv6dCkryw0Z033TLseRMcZ9HGM1POn/fI/VPgIAAAyCUBcAAGAULF7sBoJlZW5g2H/GbiDgBrq1tWyAmEqNjW6ga0z8jOqe47IydwPLpH+damqSfEIcVc/M6EhE6uhw/21uTnWvJoZVq6TWVmnKFPfFjjAdAIDjQqgLAAAwSkpL3UCwpkaqq4v9aH9FBYFuqlVXxwfuA/n97tePr1WaammRCgpiyx56KDV9mciqqtJ/RjoAAClGqAsAADCKiovdWyQihcPuJmpsgph6kUjfGrqD6e6W6uocRTbfHLt5WvZsad6q2Mo7q6T2vYkvftIyaeayfheJSFtv8dbxuXdLk+f0HbdslfY8mLidP0u6cF1s2d5HpaaXE7fNu0A6vTy2bFuFdOSgJMlnjHI6OuR7c8DGe5J02k1S4SV9x4f/Ku24K/E1JWlBtRTM7Tv+20bpz08mbjdphjT/vtiyv5f0rqRt3i4NAAAw1hDqAgAApIBtE+aOJeFw4kC3h+NYCh/okJ3b2lcYnBZfsatN6mxJfMLo4QEFxls7SXIGTCuOdnprGzjK4Otu99a261B82ZGD/doa+bqOSFampAGhrtMZe2yi3h+rGfAFinZ4fKyT4stsSUFvlwUAABiLCHUBAAAw4YVC7lIYXoJdy3IUys2Sgnl9hRk58RUzcmLrHIt/YOjo89ZOkqwBv877gx6vmRVfFsj21jZjcnxZ5tS+/xsj43RImUeZqWsNSFJ9fu+P1TdgDVZ/lre2/fvWIyKpM74YAAAgXRDqAgAAYMKzbXdt44aGwdfUlaT58y3Zlz6c+KQDl2PwKmBLi9YPr23eBcNvO3u5exuO8/s2ejOOo7amJgULCuRLtBnWpBnD7++JV7q3ocjLk5qa3E27JrdKC6e467ti5PXfKC3PY5APAACOiVAXAAAAkFRZ6W5gl8ivfy298gqbpaU1gtzRx3MOAEBSEeoCAAAAkhYvls49V9q+ffB6gYBUU0Oom5ZaWqSCglT3Ak1NUn5+qnsBAEBaI9QFAAAAJEUi0m9+k7hed7dUV+cosvlm2cGuvjuyZ8cvubCzSmrfm/ikJy2TZi7rd5GItPUWL92W5t4tTZ7Td9yyVdrzYOJ2/izpwnWxZXsflZpeTtw27wLp9PLYsm0V0pGD8hmjnI4O+d48ypq6knTaTVLhJX3Hh/8q7bgr8TUlaUG1FMztO/7bRunPTyZuN2mGNP++2LJCSe96uywAAMBYQ6gLAAAASAqHvW2UJkmOYyl8oEN2bmtfYXBafMWuNqmzJfEJo4cHFBhv7STJGbAIcLTTW9uAHV/W3e6tbdeh+LIjBz9oa+TrOiJZmZKOEuo6A3YoM1Hvj9UM+AJFOzw+1oGb0UlKsNwvAADAWEaoiwkrEnH/eAuF3M1RAADAxBYKSZblLdi1LEeh3Cwp2G/Dp4yc+IoZObF1jsU/MHT0eWsnSdaAX+n9QY/XzIovC2R7a5sxOb4sc6r7rzEyToeUeYyZulYw9tjn9/5YfQOSWH+Wt7Y9fevPY4APAAAwFhHqYsJpbJSqq6UNG9w/2izL3e165UrWxgMAYCKzbfd3goYGd4mFYwkEpJISS/alDyc+6cDlGLwK2NKi9cNrm3fB8NvOXu7ehuP8GkmScRy1NTUpWFAgn+VhOuykGcPv74lXujev8vLc9VxXrZJaW6UpU9jAa7T0f87zPIb4AADgmAh1MaGsXSuVl0t+f98sHMdx/3irr5dqa6XS0pR2EQAApFBlpfs7wWCiUamiYlS6g2SzLHeDrnXrEtdFcvGcAwCQVIS6mDAaG91A15j42Tc9x2Vl0rx5zNgdFsdxd5Rm5svgHEe+995zP47qZfaSF/2f89ra5J0XACagxYvdl9KyMvdN4P6/MwQCbqBbW8vvCgAAAEgtQl1MGNXV8X+cDeT3SzU1/KE2LC0tUkFBbNlDD6WmL2OYJXez7RFTVeXOQAIADFtpqfsmb02NVFcXu1xTRQW/JwAAACD1CHUxIUQifWvoDqa7W6qrcxTZfLPsYFffHSecJhV8LrbyziqpfW/ii5+0TJq5rN9FItLWW7x1fO7d0uQ5fcctW6U9DyZu58+SLhzwEbe9j0pNLydum3eBdHp5bNm2CndH68F0dEhnSvp94ksAADDWFRe7NzZWBQAAwFhEqIsJIRz2tpO1JDmOpfCBDtm5rb1lvsyjbObQ1SZ1tiQ+YfTwgALjrZ0kOQOmFUc7vbUNHOWvzu52b227DsWXHTmYuG3XESkj8ekBYLwh9BvfbJuvKwAAAMYeQl1MCKGQ+7FJL8GuZTkK5WZJwb4g12TkxFfMyImpc0z+SQMKfN7aSZI14FvUH/R4zaz4skC2t7YZk+PLMqcmbmc6pK7E1QBgvGhsdJf26fkkSM/H81eu5OP5AAAAAEYWoS4mBNt2/9BuaBh8Td1AQCopsWRf+nDsHY4jNTXFls1bNbzOBGxp0frhtc27YPhtZy93b8Nxfk3iOo4jvbyGjdIScBxHzc3Nys/PlzUSG6XleXzDAMBxWbvW3XzT7+97w9Bx3J8z9fXuRlqlpSntIgAAAIBxjFAXE0ZlpfuH9mCiUXcDFAyDZbkbdK1bl7juROY4Msa4z1WyQl2ec2BUNTa6ga4x8W8U9hyXlbkbbaXdjF3HcTe+RGrl5SXvZwQAAADGJUJdTBiLF7szp8rK3JlV/f8QDwTcQLe2Ng3/AAcAjKrq6vifIwP5/VJNTRr+TGlpkYqKUt0LNDW5b/4BAAAAx0CoiwmltNSdOVVTI9XVxa6BWFGRhn98AwBGVSTSt4buYLq7pbo6R5HNN8sO9ltwPHt2/PI9O6uk9r2JL37SMmnmsn4XiUhbb/HW8bl3S5Pn9B23bJX2PNh76DNGOR0d8vkk3fxB4euStnk7PQAAAIDRRaiLCae42L2xWzkAYKjCYW+bbkqS41gKH+iQndvaVxicFl+xq03q9LDkQfTwgALjrZ0kOQOmFUc7B7Q18nUdkXySsnv66u3UAAAAAEYfoS4mLNsmzAUADE0o5H7Cw0uwa1mOQrlZUrDfBoYZOfEVM3Ji6xyLf9KAAp+3dpJkDfiVzx+MbWuMjNPhhrrtH5R1ejs1AAAAgNFHqAsAAOCRbbtL9jQ0DL6mbiAglZRYsi99OPFJBy7H4FXAlhatH17bvAti2hrHUVtTk4LTpsk399vSqlXSnFZp4RSpqmp418DQrFoltbZKU6a4G6UBAAAAgyDUBQAAGILKSndd9sF0d7trtacdy3I36Fq3LtU9mXh4zgEAADAEhLoAAABwOY7U0hI7a5SZuqOj/3NeW+sG7AAAAMAxEOoCAAAMQXW1u7xCouUXamrcjTnTSkuLVFQUW/bQQ6npy0RWVeXOmAYAAACOgVAXAADAo0hE2rAh8UZp3d1SXZ2jyOabZQe7+u7Inh2/hu7OKql9b+KLn7RMmrms30Ui0tZbvHV87t3S5Dl9xy1bpT0P9h76jFFOR4d8Pkk3f1D4uqRt3k4PAAAAYHQR6gIA0l4kIoXDUijkbmQFjJRwOHGg28NxLIUPdMjObe0rDE6Lr9jVJnW2JD5h9PCAAuOtnSQ5A6YVRzsHtDXydR2RfJKye/rq7dQAAAAARh+hLgAgbTU2uh+F75k5aVlSSYm0cmUafuwdaSEUcseZl2DXshyFcrOkYF5fYUZOfMWMnNg6x+KfNKDA562dJFkDfuXzB2PbGiPjdLihbvsHZZ3eTg0AAABg9BHqAgDS0tq1Unm55Pf3BWyOIzU0SPX17j5DpaUp7SLGIdt23zhoaEi8pm5JiSX70ocTn3TgcgxeBWxp0frhtc27IKatcRy1NTUpOG2afHO/7W7aNadVWjiFjdJGS/+N0vI8hvUAAACYsAh1AQBpp7HRDXSNiQ/Weo7LyqR585I8Y9dx3I2kxgrHke+99ySfz50+OhHk5aX8sVZWum8cDCYalSoqRqU7yWVZ7gZd69aluicTD885AAAAhoBQFwCQdqqr3Rm6g82U9Pulmpokh7otLVJBQRJPeHwsSYWp7sRoa2pyQ8cUWrzYnQleVhY/DgMBN9CtrWUJEAAAAAAjh1AXAJBWIpG+NXQH090t1dU5imy+WXawq++O7NnxH3ffWSW170188dBlQ+8wxqXSUncmeE2NVFcXu6ZzRQWBLgAAAICRRagLAEgr4bC3TaokyXEshQ90yM5t7SsMTouv2NUmdXpYViEa8XZhTAjFxe4tEnHHZSjkrrkLAAAAACONUBcAkFZCIXdGpJdg17IchXKzpGC/TYcycuIrZuTE1jkWP4kd4tk2YS4AAACA0UWoO0E9+OCD+vrXv679+/dr/vz5WrNmjS688MJUdwsAErJt6ZxzpO3bB68XCEglJZbsSx9OfNKByzEci+NITX8fu0t9VZW3tiPAcRw1NzcrPz9f1njeKK3/853nIXwHAAAAgHGOUHcC+s///E9VVlZq3bp1uuiii/TNb35TS5cu1e7du1UwhjYAAoCjaWxMHOhK7pq6FRUj1IkUBrkTEs83AAAAAMQg1J2Aqqur9a//+q+66aabJEnr1q3TM888o0cffVR33HFHinsHAIOrrnZn4XZ3D17vvPNGYLOqlhZpDL35ZUkqTHUnRltTk5Sfn+peAAAAAEBKEepOMEeOHNG2bdt055139pZZlqUlS5bo1VdfPWqbzs5OdXZ29h6Hw2FJ7sd+Ha+7FaU5x3FkjJkwjxcjh7F0fCIRacMGnxzHl7Dujh2ODr/0OdnBrt4ykz1bmnt3bMVd/0e+9r0Jz2dOKpGCxRrHixykBcdxvO+UB894bUIyMZ6QLIwlJAtjCck0EuOJsYnhINSdYN577z1Fo1EVFsbO7SosLNTvf//7o7ZZvXq17r333rjy5uZmdXR0jEg/xxrHcdTW1iZjzPhetxIjjrF0fJqbLTmOt5myjmOp+d2wCqe29pZFo5N0qKkppt7ktn3yH96X8HwdB/arM9A88WbGjjHNzc0yxqS6G+MOr01IJsYTkoWxhGRhLCGZRmI8HTp0KCnnwcRCqIuE7rzzTlVWVvYeh8NhzZw5U/n5+QqFQins2ehxHEc+n2/8b0aEEcdYOj6TJ0uWZTzN1LUsR/mFIQWDdm+ZyZ4ue+DyCU3T5fMfTni+zNwiKcjH/lMtPz+f5RdGAK9NSCbGE5KFsYRkYSwhmUZiPGVlZSXlPJhYCHUnmGnTpsnv9+vdd9+NKX/33XdVVFR01DbBYFDBYDCu3LKsCfUD0efzTbjHjJHBWBq+E06QSkqkhobB19QNBKSSEkuTLvtOTPlRo+Bzvuzp2j7J/dh/U5N0663SwYPS1KnSmjVeu590juOoubl5/P+B0u/5tvLzpfH8WFOI1yYkE+MJycJYQrIwlpBMyR5PjEsMB6HuBJOZmanzzz9fmzZt0rJlyyS5ocCmTZu0YsWK1HYOADyorJTq6wevE41KFRUjcHHLcmeJTp8uZWW5oW4qZ41+sJ6XxnvQ2f/5Hs+PEwAAAAA8ItSdgCorK3XDDTdo4cKFuvDCC/XNb35T77//vm666aZUdw0AElq8WKqtlcrKJL8/dsZuIOAGurW1UnHxCHaipmYET444PN8AAAAAEINQdwK67rrr1NzcrC9/+cvav3+/zj33XG3cuDFu8zQAGKtKS6V589ysr67OXRXBstylGSoqRjjQBQAAAAAgxQh1J6gVK1aw3AKAtFZc7N4iESkclkIhybYTtwMAAAAAIN0R6gIA0pptE+YCAAAAACYWdhsBAAAAAAAAgDRCqAsAAAAAAAAAaYRQFwAAAAAAAADSCKEuAAAAAAAAAKQRQl0AAAAAAAAASCOEugAAAAAAAACQRgh1AQAAAAAAACCNEOoCAAAAAAAAQBoh1AUAAAAAAACANEKoCwAAAAAAAABphFAXAAAAAAAAANIIoS4AAAAAAAAApBFCXQAAAAAAAABII4S6AAAAAAAAAJBGCHUBAAAAAAAAII0Q6gIAAAAAAABAGiHUBQAAAAAAAIA0QqgLAAAAAAAAAGmEUBcAAAAAAAAA0gihLgAAAAAAAACkEUJdAAAAAAAAAEgjhLoAAAAAAAAAkEYIdQEAAAAAAAAgjRDqAgAAAAAAAEAaIdQFAAAAAAAAgDQSSHUHkH6MMZKkcDic4p6MHsdxdOjQIWVlZcmyeC8Ew8dYQjIxnpAsjCUkE+MJycJYQrIwlpBMIzGeevKVnrwF8IJQF0N26NAhSdLMmTNT3BMAAAAAAIDx4dChQ8rJyUl1N5AmfIa3ATBEjuPob3/7myZPniyfz5fq7oyKcDismTNn6p133lEoFEp1d5DGGEtIJsYTkoWxhGRiPCFZGEtIFsYSkmkkxpMxRocOHdKJJ57IbHJ4xkxdDJllWTrppJNS3Y2UCIVC/BKApGAsIZkYT0gWxhKSifGEZGEsIVkYS0imZI8nZuhiqIj/AQAAAAAAACCNEOoCAAAAAAAAQBoh1AU8CAaDuueeexQMBlPdFaQ5xhKSifGEZGEsIZkYT0gWxhKShbGEZGI8YaxgozQAAAAAAAAASCPM1AUAAAAAAACANEKoCwAAAAAAAABphFAXAAAAAAAAANIIoS4mhNWrV+uCCy7Q5MmTVVBQoGXLlmn37t0xdTo6OlReXq68vDxlZ2frmmuu0bvvvhtT5+2339ZVV12lSZMmqaCgQJ///OfV3d0dU2fz5s1asGCBgsGg5syZo/Xr14/0w8MoW7t2rc455xyFQiGFQiEtWrRIzz33XO/9jCUM1/333y+fz6fbb7+9t4zxBK++8pWvyOfzxdzOPPPM3vsZSxiKv/71r/qXf/kX5eXlybZtzZs3T6+//nrv/cYYffnLX9b06dNl27aWLFmiP/zhDzHnOHDggK6//nqFQiFNmTJFn/nMZ9Te3h5T5ze/+Y0+8pGPKCsrSzNnztTXvva1UXl8GD2nnnpq3GuTz+dTeXm5JF6b4F00GtWqVas0a9Ys2bat2bNnq6qqSv23CeK1CV4dOnRIt99+u0455RTZtq2LL75YW7du7b2fsYS0YIAJYOnSpeaxxx4zu3btMtu3bzd///d/b04++WTT3t7eW6e0tNTMnDnTbNq0ybz++uvm7/7u78zFF1/ce393d7eZO3euWbJkifn1r39tnn32WTNt2jRz55139tZ58803zaRJk0xlZaX53e9+Z9asWWP8fr/ZuHHjqD5ejKyf/OQn5plnnjF79uwxu3fvNl/60pdMRkaG2bVrlzGGsYTh+eUvf2lOPfVUc84555jbbrutt5zxBK/uuecec/bZZ5t9+/b13pqbm3vvZyzBqwMHDphTTjnF3Hjjjea1114zb775pnn++efNH//4x946999/v8nJyTH19fVmx44d5h/+4R/MrFmzTCQS6a1z5ZVXmvnz55tf/OIX5uc//7mZM2eO+dSnPtV7f1tbmyksLDTXX3+92bVrl3niiSeMbdvmoYceGtXHi5HV1NQU87r0wgsvGEnmpZdeMsbw2gTv7rvvPpOXl2eefvpp89Zbb5kf/ehHJjs723zrW9/qrcNrE7z6x3/8R3PWWWeZLVu2mD/84Q/mnnvuMaFQyPzlL38xxjCWkB4IdTEhNTU1GUlmy5YtxhhjWltbTUZGhvnRj37UW+eNN94wksyrr75qjDHm2WefNZZlmf379/fWWbt2rQmFQqazs9MYY8wXvvAFc/bZZ8dc67rrrjNLly4d6YeEFJs6dar5zne+w1jCsBw6dMh86EMfMi+88IK55JJLekNdxhOG4p577jHz588/6n2MJQzFF7/4RbN48eJj3u84jikqKjJf//rXe8taW1tNMBg0TzzxhDHGmN/97ndGktm6dWtvneeee874fD7z17/+1RhjTG1trZk6dWrv+Oq59hlnnJHsh4Qx5LbbbjOzZ882juPw2oQhueqqq8zy5ctjyq6++mpz/fXXG2N4bYJ3hw8fNn6/3zz99NMx5QsWLDB33XUXYwlpg+UXMCG1tbVJknJzcyVJ27ZtU1dXl5YsWdJb58wzz9TJJ5+sV199VZL06quvat68eSosLOyts3TpUoXDYf32t7/trdP/HD11es6B8ScajerJJ5/U+++/r0WLFjGWMCzl5eW66qqr4r7mjCcM1R/+8AedeOKJOu2003T99dfr7bfflsRYwtD85Cc/0cKFC3XttdeqoKBA5513nh5++OHe+9966y3t378/Zizk5OTooosuihlPU6ZM0cKFC3vrLFmyRJZl6bXXXuut89GPflSZmZm9dZYuXardu3fr4MGDI/0wkQJHjhzRD37wAy1fvlw+n4/XJgzJxRdfrE2bNmnPnj2SpB07dqixsVEf//jHJfHaBO+6u7sVjUaVlZUVU27bthobGxlLSBuEuphwHMfR7bffruLiYs2dO1eStH//fmVmZmrKlCkxdQsLC7V///7eOv1/mey5v+e+weqEw2FFIpGReDhIkZ07dyo7O1vBYFClpaWqq6vTWWedxVjCkD355JP61a9+pdWrV8fdx3jCUFx00UVav369Nm7cqLVr1+qtt97SRz7yER06dIixhCF58803tXbtWn3oQx/S888/r1tuuUX/9m//pu9+97uS+sbD0cZC/7FSUFAQc38gEFBubu6QxhzGl/r6erW2turGG2+UxM85DM0dd9yhf/qnf9KZZ56pjIwMnXfeebr99tt1/fXXS+K1Cd5NnjxZixYtUlVVlf72t78pGo3qBz/4gV599VXt27ePsYS0EUh1B4DRVl5erl27dqmxsTHVXUEaO+OMM7R9+3a1tbXpqaee0g033KAtW7akultIM++8845uu+02vfDCC3EzBYCh6pmpJEnnnHOOLrroIp1yyin6r//6L9m2ncKeId04jqOFCxfqq1/9qiTpvPPO065du7Ru3TrdcMMNKe4d0tkjjzyij3/84zrxxBNT3RWkof/6r//SD3/4Qz3++OM6++yztX37dt1+++068cQTeW3CkH3/+9/X8uXLNWPGDPn9fi1YsECf+tSntG3btlR3DfCMmbqYUFasWKGnn35aL730kk466aTe8qKiIh05ckStra0x9d99910VFRX11hm4E2/PcaI6oVCIP6jHmczMTM2ZM0fnn3++Vq9erfnz5+tb3/oWYwlDsm3bNjU1NWnBggUKBAIKBALasmWL/uM//kOBQECFhYWMJwzblClTdPrpp+uPf/wjr00YkunTp+uss86KKfvwhz/cu5xHz3g42ljoP1aamppi7u/u7taBAweGNOYwfvz5z3/Wiy++qM9+9rO9Zbw2YSg+//nP987WnTdvnj796U+roqKi99NOvDZhKGbPnq0tW7aovb1d77zzjn75y1+qq6tLp512GmMJaYNQFxOCMUYrVqxQXV2dfvazn2nWrFkx959//vnKyMjQpk2best2796tt99+W4sWLZIkLVq0SDt37ox54X7hhRcUCoV6//BZtGhRzDl66vScA+OX4zjq7OxkLGFIrrjiCu3cuVPbt2/vvS1cuFDXX3997/8ZTxiu9vZ27d27V9OnT+e1CUNSXFys3bt3x5Tt2bNHp5xyiiRp1qxZKioqihkL4XBYr732Wsx4am1tjZnx9LOf/UyO4+iiiy7qrfPyyy+rq6urt84LL7ygM844Q1OnTh2xx4fUeOyxx1RQUKCrrrqqt4zXJgzF4cOHZVmxEYbf75fjOJJ4bcLwnHDCCZo+fboOHjyo559/XiUlJYwlpI9U79QGjIZbbrnF5OTkmM2bN5t9+/b13g4fPtxbp7S01Jx88snmZz/7mXn99dfNokWLzKJFi3rv7+7uNnPnzjUf+9jHzPbt283GjRtNfn6+ufPOO3vrvPnmm2bSpEnm85//vHnjjTfMgw8+aPx+v9m4ceOoPl6MrDvuuMNs2bLFvPXWW+Y3v/mNueOOO4zP5zM//elPjTGMJRyfSy65xNx22229x4wneLVy5UqzefNm89Zbb5lXXnnFLFmyxEybNs00NTUZYxhL8O6Xv/ylCQQC5r777jN/+MMfzA9/+EMzadIk84Mf/KC3zv3332+mTJliNmzYYH7zm9+YkpISM2vWLBOJRHrrXHnllea8884zr732mmlsbDQf+tCHzKc+9ane+1tbW01hYaH59Kc/bXbt2mWefPJJM2nSJPPQQw+N6uPFyItGo+bkk082X/ziF+Pu47UJXt1www1mxowZ5umnnzZvvfWW+fGPf2ymTZtmvvCFL/TW4bUJXm3cuNE899xz5s033zQ//elPzfz5881FF11kjhw5YoxhLCE9EOpiQpB01Ntjjz3WWycSiZiysjIzdepUM2nSJPPJT37S7Nu3L+Y8f/rTn8zHP/5xY9u2mTZtmlm5cqXp6uqKqfPSSy+Zc88912RmZprTTjst5hoYH5YvX25OOeUUk5mZafLz880VV1zRG+gaw1jC8RkY6jKe4NV1111npk+fbjIzM82MGTPMddddZ/74xz/23s9YwlA0NDSYuXPnmmAwaM4880zz//7f/4u533Ecs2rVKlNYWGiCwaC54oorzO7du2PqtLS0mE996lMmOzvbhEIhc9NNN5lDhw7F1NmxY4dZvHixCQaDZsaMGeb+++8f8ceG0ff8888bSXFjxBhem+BdOBw2t912mzn55JNNVlaWOe2008xdd91lOjs7e+vw2gSv/vM//9OcdtppJjMz0xQVFZny8nLT2traez9jCenAZ4wxKZwoDAAAAAAAAAAYAtbUBQAAAAAAAIA0QqgLAAAAAAAAAGmEUBcAAAAAAAAA0gihLgAAAAAAAACkEUJdAAAAAAAAAEgjhLoAAAAAAAAAkEYIdQEAAAAAAAAgjRDqAgAAAAAAAEAaIdQFAABAyvl8PtXX16e0D+vXr9eUKVNSdv1HHnlEH/vYx5J6znXr1ukTn/hEUs8JAACA1CPUBQAAGEduvPFG+Xw++Xw+ZWRkaNasWfrCF76gjo4Oz+fYvHmzfD6fWltbk96/r3zlKzr33HPjyvft26ePf/zjSb9ej0svvbT3eTna7dJLL9V1112nPXv2jFgfBtPR0aFVq1bpnnvu6S37yle+0ts/v9+vmTNn6nOf+5wOHDjQ+zUa7LZ582YtX75cv/rVr/Tzn/88JY8LAAAAIyOQ6g4AAAAgua688ko99thj6urq0rZt23TDDTfI5/PpgQceSHXXjqmoqGhEz//jH/9YR44ckSS98847uvDCC/Xiiy/q7LPPliRlZmbKtm3Ztj2i/TiWp556SqFQSMXFxTHlZ599tl588UVFo1G98cYbWr58udra2vT9739f+/bt66132223KRwO67HHHusty83NVWZmpv75n/9Z//Ef/6GPfOQjo/Z4AAAAMLKYqQsAADDOBINBFRUVaebMmVq2bJmWLFmiF154ofd+x3G0evVqzZo1S7Zta/78+XrqqackSX/605902WWXSZKmTp0qn8+nG2+8MWE7qW+G76ZNm7Rw4UJNmjRJF198sXbv3i3JXd7g3nvv1Y4dO3pnk65fv15S/PILO3fu1OWXXy7btpWXl6fPfe5zam9v773/xhtv1LJly/SNb3xD06dPV15ensrLy9XV1XXU5yQ3N1dFRUUqKipSfn6+JCkvL6+3LDc3N275hZ5ZxY8++qhOPvlkZWdnq6ysTNFoVF/72tdUVFSkgoIC3XfffTHXam1t1Wc/+1nl5+crFArp8ssv144dOwb9mj355JNHXSYhEAioqKhIM2bM0JIlS3TttdfqhRdeUGZmZm/fi4qKZNt279e955aZmSlJ+sQnPqGf/OQnikQig/YBAAAA6YNQFwAAYBzbtWuX/ud//qc34JOk1atX63vf+57WrVun3/72t6qoqNC//Mu/aMuWLZo5c6b++7//W5K0e/du7du3T9/61rcStuvvrrvu0v/9v/9Xr7/+ugKBgJYvXy5Juu6667Ry5UqdffbZ2rdvn/bt26frrrsurs/vv/++li5dqqlTp2rr1q360Y9+pBdffFErVqyIqffSSy9p7969eumll/Td735X69ev7w2Jk2Xv3r167rnntHHjRj3xxBN65JFHdNVVV+kvf/mLtmzZogceeEB33323Xnvttd421157rZqamvTcc89p27ZtWrBgga644godOHDgmNdpbGzUwoULB+3Ln/70Jz3//PMxX0svFi5cqO7u7pg+AgAAIL2x/AIAAMA48/TTTys7O1vd3d3q7OyUZVn69re/LUnq7OzUV7/6Vb344otatGiRJOm0005TY2OjHnroIV1yySXKzc2VJBUUFPTOXPXSrsd9993Xe3zHHXfoqquuUkdHh2zbVnZ2du/s02N5/PHH1dHRoe9973s64YQTJEnf/va39YlPfEIPPPCACgsLJbkzib/97W/L7/frzDPP1FVXXaVNmzbpX//1X5P2XDqOo0cffVSTJ0/WWWedpcsuu0y7d+/Ws88+K8uydMYZZ+iBBx7QSy+9pIsuukiNjY365S9/qaamJgWDQUnSN77xDdXX1+upp57S5z73ubhrtLa2qq2tTSeeeGLcfTt37lR2drai0WjvusjV1dVDegyTJk1STk6O/vznPw/jGQAAAMBYRKgLAAAwzlx22WVau3at3n//fdXU1CgQCOiaa66RJP3xj3/U4cOH9b/+1/+KaXPkyBGdd955xzznUNqdc845vf+fPn26JKmpqUknn3yyp/6/8cYbmj9/fm+gK0nFxcVyHEe7d+/uDXXPPvts+f3+mGvt3LnT0zW8OvXUUzV58uTe48LCQvn9flmWFVPW1NQkSdqxY4fa29uVl5cXc55IJKK9e/ce9Ro9yyJkZWXF3XfGGWfoJz/5iTo6OvSDH/xA27dv16233jrkx2Hbtg4fPjzkdgAAABibCHUBAADGmRNOOEFz5syRJD366KOaP3++HnnkEX3mM5/pXZf2mWee0YwZM2La9cwsPZqhtMvIyOj9v8/nk+TOeE22/tfpuVayr3O0awx23fb2dk2fPl2bN2+OO1f/9Xr7y8vLk8/n08GDB+Puy8zM7P1a3n///brqqqt07733qqqqakiP48CBA71rCQMAACD9EeoCAACMY5Zl6Utf+pIqKyv1z//8zzrrrLMUDAb19ttvxyyZ0F/Pmq3RaLS3zEs7LzIzM2POezQf/vCHtX79er3//vu9s3VfeeWV3uUOxrIFCxZo//79CgQCOvXUUz21yczM1FlnnaXf/e53+tjHPjZo3bvvvluXX365brnllqMu13A0e/fuVUdHx6AzsQEAAJBe2CgNAABgnLv22mvl9/v14IMPavLkyfr3f/93VVRU6Lvf/a727t2rX/3qV1qzZo2++93vSpJOOeUU+Xw+Pf3002publZ7e7undl6ceuqpeuutt7R9+3a999576uzsjKtz/fXXKysrSzfccIN27dqll156Sbfeeqs+/elP9y69MFYtWbJEixYt0rJly/TTn/5Uf/rTn/Q///M/uuuuu/T6668fs93SpUvV2NiY8PyLFi3SOeeco69+9aue+/Tzn/9cp512mmbPnu25DQAAAMY2Ql0AAIBxLhAIaMWKFfra176m999/X1VVVVq1apVWr16tD3/4w7ryyiv1zDPPaNasWZKkGTNm6N5779Udd9yhwsJCrVixQpIStvPimmuu0ZVXXqnLLrtM+fn5euKJJ+LqTJo0Sc8//7wOHDigCy64QP/7f/9vXXHFFb2bvY1lPp9Pzz77rD760Y/qpptu0umnn65/+qd/0p///OdBA+nPfOYzevbZZ9XW1pbwGhUVFfrOd76jd955x1OfnnjiiaRuHgcAAIDU8xljTKo7AQAAAEx01157rRYsWKA777wzaef87W9/q8svv1x79uxRTk5O0s4LAACA1GKmLgAAADAGfP3rX1d2dnZSz7lv3z5973vfI9AFAAAYZ5ipCwAAAAAAAABphJm6AAAAAAAAAJBGCHUBAAAAAAAAII0Q6gIAAAAAAABAGiHUBQAAAAAAAIA0QqgLAAAAAAAAAGmEUBcAAAAAAAAA0gihLgAAAAAAAACkEUJdAAAAAAAAAEgjhLoAAAAAAAAAkEYIdQEAAAAAAAAgjfz/D+U0eiAdaiMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average distance from bounds: 321.53 s\n", + "Maximum distance from bounds: 1585.11 s\n", + "Minimum distance from bounds: 0.01 s\n" + ] + } + ], + "source": [ + "plot_RT_error(incorrect_matches)" + ] + }, + { + "cell_type": "code", + "execution_count": 133, + "id": "005c7176", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('AAATQEMTLVDTPNAK',\n", + " 3578.290328979492,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AAATQEMTLVDTPNAK',\n", + " 3579.8902130126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AAEIIHIGQAIMEQK',\n", + " 4670.662536621094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AAEIIHIGQAIMEQK',\n", + " 4669.259948730469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AAFNQMVQGHK',\n", + " 1929.9845123291016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AAGAELVGMEDLADQIK',\n", + " 5480.667572021484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AAGAELVGMEDLADQIK',\n", + " 5473.365325927734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AAGAELVGMEDLADQIKK',\n", + " 4760.014343261719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AAIMAEIR',\n", + " 3098.771438598633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AAINAPMQGTAADIIK',\n", + " 4638.456573486328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AALAGAVNTLMR',\n", + " 4226.710052490234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AALSMIVEAEK',\n", + " 4387.021179199219,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AAMTVAALCEK',\n", + " 3195.493927001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AANAEPLLMQIR',\n", + " 4902.907562255859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AANAGGVATSGLEMAQNAAR',\n", + " 4260.449523925781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AANAGGVATSGLEMAQNAAR',\n", + " 4258.997955322266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AANHQIIGSSQMYATAQSR',\n", + " 3102.6912689208984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AANHQIIGSSQMYATAQSR',\n", + " 3099.795455932617,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AAPDVQLLMNDSQNDQSK',\n", + " 4540.333099365234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AAPDVQLLMNDSQNDQSK',\n", + " 4538.692932128906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AAPENAVANAYDMVINGYEVGGGSVR',\n", + " 6890.6982421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('AASAAGLSIHVPFAPGR',\n", + " 5658.072967529297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AASAAGLSIHVPFAPGR',\n", + " 5662.677154541016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AASLLEDILETR',\n", + " 7589.028167724609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('AAVAGIAMGLVK',\n", + " 4800.504913330078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AAVIEAMTK',\n", + " 2288.825225830078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ACVIPEGMVIGENAEEDARR',\n", + " 4687.742156982422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ADHDTFWFDTTR',\n", + " 5001.191253662109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ADKPLVGTGMER',\n", + " 2158.528289794922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ADKPLVGTGMER',\n", + " 2160.344009399414,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ADMHYIIR',\n", + " 2775.5506896972656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ADNDLVDMIK',\n", + " 4360.716247558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ADTDILMGQR',\n", + " 3556.6360473632812,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ADTGFGVMTEEELK',\n", + " 4696.568298339844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ADVAMTGEITLR',\n", + " 4314.429016113281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AEAFVTMR',\n", + " 2865.685043334961,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AEAGIVISASHNPFYDNGIK',\n", + " 5686.6497802734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AEAVITGVCETDFSGYPDCRDEFVK',\n", + " 6049.0594482421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AEAVSIMTDAVR',\n", + " 3825.0022888183594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AEGKSEFAENDAYVHATPLIR',\n", + " 5190.956726074219,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AEGPTAFVSIMEGCNK',\n", + " 5058.2427978515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AEHILMPGDIPVIQSDR',\n", + " 5418.277130126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AEIDEEQLAAAPVIIR',\n", + " 6275.904693603516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AEIDEEQLAAAPVIIR',\n", + " 6280.249786376953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AEMSEYLFDK',\n", + " 4317.25341796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AEPLISEMEAVINK',\n", + " 4967.459564208984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AEQAGDNLSCIMVTYPSTHGVYEETIR',\n", + " 5788.8226318359375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AESFYGGGAEGYTDYPTL',\n", + " 7150.423278808594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AETASPEVMADCPR',\n", + " 2974.965362548828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AFDDVMAGK',\n", + " 2868.650665283203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AFEHTAAYDSMIANYFGSMVPAYHGESK',\n", + " 5949.174041748047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AFIAELMPK',\n", + " 4942.941741943359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AFNEMQPIVDR',\n", + " 3857.1693420410156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AFNEMQPIVDR',\n", + " 3856.055145263672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AFTVMSCDNVR',\n", + " 3530.844497680664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AGALIMAAR',\n", + " 2964.630889892578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AGAWQVINYR',\n", + " 4879.228363037109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AGDGDLLIAGGVESMSR',\n", + " 5192.14599609375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AGDIVGEHTAMFADIGER',\n", + " 4896.943817138672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AGDQIQSGVDAAIKPGNTLPMR',\n", + " 4711.041412353516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AGDRDEPDMMPAATQALPTQPPEGAAEEVR',\n", + " 4999.6966552734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AGDVIPQVVNVVLSERPEDTR',\n", + " 7152.324371337891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AGELIGMVAQQVGGK',\n", + " 5089.730529785156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AGGGSATLSMGQAAAR',\n", + " 2409.4278717041016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AGGGSATLSMGQAAAR',\n", + " 2414.0670776367188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AGGMGLILGR',\n", + " 3984.499969482422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AGIEAANFPFCTIEPNTGVVPMPDPR',\n", + " 7467.898406982422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('AGIIRPVLDPAR',\n", + " 4304.562835693359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AGLAVASMK',\n", + " 2399.2721557617188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AGLGMMDGVLENVPSAR',\n", + " 5017.486267089844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AGLGMMDGVLENVPSAR',\n", + " 5013.150787353516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AGLMPADEAIAK',\n", + " 3722.7664947509766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AGMVAGVIVNR',\n", + " 3553.6722564697266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AGMYTTVQDGGR',\n", + " 2403.127212524414,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AGPALAAGCTMVLK',\n", + " 4358.315277099609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AGPLAGYPVVDMGIR',\n", + " 5678.266754150391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AGPLAGYPVVDMGIR',\n", + " 5671.256561279297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AGQNAMDATVLEITK',\n", + " 4591.824645996094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AGVMVLIAGGNVVR',\n", + " 5351.5447998046875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AGYNLVASATEGQMR',\n", + " 4361.725616455078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AHFGFNMPILYNAR',\n", + " 5240.391082763672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AHLAPFVPGHSVVQIEGMLTR',\n", + " 5587.8973388671875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AHLAPFVPGHSVVQIEGMLTR',\n", + " 5595.804748535156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AHPADVLPQEMDK',\n", + " 2966.0646057128906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AHPADVLPQEMDK',\n", + " 2970.6356048583984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AHYVLMNVEAPQEVIDELETTFR',\n", + " 8007.204895019531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('AIAAIPEMHELNIGHAIIGR',\n", + " 5441.922454833984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AIAAIPEMHELNIGHAIIGR',\n", + " 5432.393646240234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AIAEQCDVIITMLPNSPHVK',\n", + " 5418.808135986328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AIAGDSVSGLGTGGMSTK',\n", + " 3767.523422241211,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AIDGTLSVMVGGDK',\n", + " 4602.847595214844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AIDTAQIYDNEAAVGQAIAESGVPR',\n", + " 7117.9302978515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AIEMAGIEK',\n", + " 2618.222122192383,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AIEQDAKAAPDVQLLMNDSQNDQSK',\n", + " 4585.37841796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AIGINFIDTYIR',\n", + " 7379.389801025391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('AIPNYNVMGLAK',\n", + " 4701.896209716797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AITETTEQLINEPLDHR',\n", + " 5316.572113037109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AITMVDELK',\n", + " 3684.5645141601562,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AIWEQELTDMR',\n", + " 4783.664703369141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AKPVLLEPIMK',\n", + " 3976.4208984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AKPVLLEPIMK',\n", + " 3975.5026245117188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ALAQQLMQER',\n", + " 3320.716552734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ALEIEEMQLK',\n", + " 4305.535583496094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ALENALLEFPGCAMVISHDR',\n", + " 6540.425262451172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ALGMLAVDNQAR',\n", + " 3880.3656005859375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ALILAELEK',\n", + " 5717.747039794922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ALISNPTVIGAIMVQR',\n", + " 6284.551849365234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ALISNPTVIGAIMVQR',\n", + " 6283.110809326172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ALLMHGTEGEVYANPQR',\n", + " 3667.5924682617188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ALLMHGTEGEVYANPQR',\n", + " 3673.4488677978516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ALLNSMVIGVTEGFTK',\n", + " 6465.08056640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ALLNSMVIGVTEGFTK',\n", + " 6466.765594482422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ALLSMAIR',\n", + " 4057.118682861328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ALMQEALLAVVR',\n", + " 5957.431640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ALNSVEASQPHQDQMEK',\n", + " 2385.696487426758,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ALNVMLK',\n", + " 3532.6441955566406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ALPLPVSVPSHCALMKPAADK',\n", + " 4847.922821044922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ALPLPVSVPSHCALMKPAADK',\n", + " 4844.165496826172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ALQECMQHNFSVFR',\n", + " 4276.336212158203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ALSMDAVQK',\n", + " 2122.7169799804688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ALTDFMVEFER',\n", + " 6231.23291015625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ALTEANGDIELAIENMR',\n", + " 5754.837799072266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ALTEANGDIELAIENMR',\n", + " 5756.120910644531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ALTMSLAER',\n", + " 3128.1056213378906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ALVSEMLR',\n", + " 3532.9268646240234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AMAGLIDGISQK',\n", + " 4226.905059814453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AMEAPLR',\n", + " 1970.7323455810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AMEIVYDEADLR',\n", + " 4745.892791748047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AMLAAEQHVVTPALER',\n", + " 4174.208221435547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AMLAEVGLVGK',\n", + " 4546.9134521484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AMLHFCENPGK',\n", + " 3009.4210052490234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AMLHFCENPGK',\n", + " 3008.3070373535156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AMTFIER',\n", + " 3055.0767517089844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AMVEVFLER',\n", + " 4954.817962646484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AMVVDQFR',\n", + " 3445.660400390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AMYSIAK',\n", + " 2351.583938598633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AMYSIAK',\n", + " 2364.1781616210938,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ANAVVMATGGAGR',\n", + " 2505.033187866211,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ANENGESFVAMVDR',\n", + " 4376.240386962891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ANGLSEAMLDR',\n", + " 3460.6986236572266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ANGTTVLVGMPAGAK',\n", + " 3560.2162170410156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ANIGFMQVVK',\n", + " 4357.750396728516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ANLPGYLGNCHSSGTVILDQLGEEHMK',\n", + " 5641.397552490234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ANLPGYLGNCHSSGTVILDQLGEEHMK',\n", + " 5631.503448486328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ANLQPVLITGMEK',\n", + " 4906.0125732421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ANMFGTVADYFAQSNK',\n", + " 6074.999542236328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ANNAINDMVR',\n", + " 2362.042236328125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ANVSQVMHIIGDVAGR',\n", + " 5109.163055419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('APAATSTPAPK',\n", + " 1898.3465194702148,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1256.7750549316402_1885.1625823974603/vectorized_output.fasta'),\n", + " ('APAIVMDDADLELAVK',\n", + " 6007.714691162109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('APAIVMDDADLELAVK',\n", + " 6012.295989990234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('APLAAEAMGIIAPR',\n", + " 5302.184600830078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('APLAAEAMGIIAPR',\n", + " 5306.922912597656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('APSIMQVPGAR',\n", + " 3480.966796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AQAGDFMSLCK',\n", + " 3658.8416290283203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AQIEPLHAMVK',\n", + " 3096.6554260253906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AQIEPLHAMVK',\n", + " 3095.7369232177734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AQIVGMNVGTLK',\n", + " 3979.3121337890625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AQVGTMPVGSK',\n", + " 2029.7101593017578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ASDFVLAMGQGR',\n", + " 4145.326995849609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ASDFVLAMGQGR',\n", + " 4141.42822265625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ASEGFGEDTYLTSTMGK',\n", + " 4784.615020751953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ASIYNAMPLEGVK',\n", + " 4739.995880126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ASLGVVMAAGGYPGDYR',\n", + " 5166.0205078125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ASLGVVMAAGGYPGDYR',\n", + " 5170.514831542969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ASMEVPAPFAGVVK',\n", + " 5535.269622802734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ASQPSNIASQAEETPPPHY',\n", + " 4410.6646728515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ASTSINVPDPTPFVTYF',\n", + " 7884.7650146484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ASVEDWETMIDTNNK',\n", + " 4799.087677001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ATAVMPDGQFK',\n", + " 3134.315643310547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ATDIQLAENMGITGLR',\n", + " 5463.1256103515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ATLGEVGNAEHMLR',\n", + " 3615.76171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ATLGEVGNAEHMLR',\n", + " 3614.6138763427734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ATMGLDPGLR',\n", + " 3576.819305419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ATPAVGFAMGLER',\n", + " 4978.6083984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ATPSSTDQMLR',\n", + " 2210.8243560791016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ATYIVVHDGMGK',\n", + " 2912.1228790283203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AVAAALEQMPR',\n", + " 3300.278778076172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AVAAMASFFR',\n", + " 4567.276153564453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AVAEVYASSDAHEK',\n", + " 2499.844207763672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AVAEVYASSDAHEK',\n", + " 2504.4486236572266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('AVAIDMESATIAAQGYR',\n", + " 4904.06982421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AVASVLMSK',\n", + " 3080.5641174316406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AVASVLMSK',\n", + " 3087.1957397460938,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AVDSMIPIGR',\n", + " 4040.0747680664062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AVEQVSTEMFR',\n", + " 3699.719009399414,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AVESVGGQLLITADHGNAEQMR',\n", + " 4792.756805419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AVIESENSAERDQLLENLQEGMEVK',\n", + " 5533.474273681641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AVLEAEVQMCGELR',\n", + " 4725.87890625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AVLPGMVER',\n", + " 3451.486587524414,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AVMALTALASDR',\n", + " 4722.131195068359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AVMCVDDPVIR',\n", + " 3999.778289794922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('AVNDAIAEMQK',\n", + " 2647.836685180664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('AVNDGKLAATIAQLPDQIGAK',\n", + " 6091.552276611328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AVNDGKLAATIAQLPDQIGAK',\n", + " 5912.928771972656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('AVSEEMAEIYLER',\n", + " 5642.161560058594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AVTTGYMGTASQIK',\n", + " 3312.685546875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('AVYADTEGFVSEMDTR',\n", + " 4796.265563964844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AWIQYQGFK',\n", + " 4951.958770751953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AWLEEEMGIK',\n", + " 4130.6414794921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AYPEQSMAVAATHDLPTLR',\n", + " 4955.419006347656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('AYRPGDVLTTMSGQTVEVLNTDAEGR',\n", + " 5472.2076416015625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('AYVMAETTQLVTDTK',\n", + " 4580.395660400391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('CLPQLENAGMLR',\n", + " 4839.066009521484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('CMVIGEDLGTVPVEIVGK',\n", + " 6727.930755615234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DAASVHGESGMAGYDFVEHNR',\n", + " 3749.7969818115234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DAASVHGESGMAGYDFVEHNR',\n", + " 3742.9625701904297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DAEMVADVR',\n", + " 2874.5828247070312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DAFIDEMQR',\n", + " 3661.523208618164,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DAGLNVVMDR',\n", + " 3941.1671447753906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DAIAAAIDVLNEER',\n", + " 7513.647766113281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DAIAADQLFTTLMGDAVEPR',\n", + " 7834.201354980469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('DAIATVNKQEDANFSNNAMAEAFK',\n", + " 4860.1739501953125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DALESTLAETEAR',\n", + " 4868.134002685547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DALNSGSAGTEDEVTTPAADNAIAEAAER',\n", + " 5865.5145263671875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DAMFTTSSENR',\n", + " 2633.4402465820312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DAPIIMAGAGVR',\n", + " 4340.4144287109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DAQVLDELMGER',\n", + " 5447.675628662109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DDEQMAAFR',\n", + " 2816.516876220703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DDIIDVMK',\n", + " 4077.6480102539062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DDLSMIAVQGPNAQAK',\n", + " 4817.948455810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DDLSMIAVQGPNAQAK',\n", + " 4813.454132080078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DDLSMIAVQGPNAQAK',\n", + " 4812.156829833984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DEADEKDAIATVNK',\n", + " 3167.120361328125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('DEADEKDAIATVNK',\n", + " 3165.9732055664062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('DEALHLTGTQHMLNLLR',\n", + " 5080.6182861328125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DEENALGPMAR',\n", + " 3009.2090606689453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DEPFVSMEGK',\n", + " 3582.8892517089844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DESFISQFLSPK',\n", + " 7825.362854003906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DFDNTVAIHPTAAEEFVTMR',\n", + " 6185.020294189453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DFEAQLASTETQVGNELAPLK',\n", + " 7758.589782714844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DFKDESFISQFLSPK',\n", + " 7575.644989013672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DFKDESFISQFLSPK',\n", + " 7577.057189941406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DGMLFGR',\n", + " 3684.019775390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DGSMIGLNK',\n", + " 2871.5096282958984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DGSPEAALSEFIK',\n", + " 6948.0010986328125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DHDFAAIADFDMVR',\n", + " 6071.742095947266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DHDFAAIADFDMVR',\n", + " 6073.413848876953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DHVTLGEMHSGLDFAAAVK',\n", + " 4888.373107910156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DHVTLGEMHSGLDFAAAVK',\n", + " 4890.473327636719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DIADAVTAAGVEVAK',\n", + " 6085.802307128906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DIADAVTAAGVEVAK',\n", + " 6087.669982910156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DIASDLFGVVNDNPDIITNVYR',\n", + " 7884.2559814453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('DITLAMDCAASEFYK',\n", + " 6007.8607177734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DIYQMPGIAETVNFDHIR',\n", + " 6111.987762451172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DKGLILLSCGPYYNVLR',\n", + " 6982.884063720703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DKMDAWLSGPNANK',\n", + " 3288.3590698242188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DKNDEIVSMLGASYFR',\n", + " 6067.907409667969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DLALAYSPGVAAPCLEIEKDPLK',\n", + " 7036.060638427734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DLALEMANR',\n", + " 3643.7935638427734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DLALNQAMIPLGSCTMK',\n", + " 5977.623596191406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DLGFNVEVQPVPGTR',\n", + " 6424.160614013672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DLGMVGAEELR',\n", + " 4675.455780029297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DLGNMPPNICNAAYLASQAR',\n", + " 6167.374420166016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DLGNMPPNICNAAYLASQAR',\n", + " 6164.4781494140625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DLGSMDVNEVIEK',\n", + " 4885.729064941406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DLMGNSSELR',\n", + " 3032.3373413085938,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DLMPVPPAVAEYSTGLR',\n", + " 6538.267364501953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DLPDLVYMTEAEK',\n", + " 6112.286224365234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DLVESAPAALKEGVSK',\n", + " 4810.37841796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DLVESAPAALKEGVSK',\n", + " 4812.051086425781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DLVESVMQR',\n", + " 3993.533935546875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DMEPEDLLK',\n", + " 4750.975799560547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DMLYPER',\n", + " 3127.9641723632812,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DMPNALVEVLR',\n", + " 6120.3662109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DMVCSPGGTTIEAVR',\n", + " 4288.947601318359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DMVIGPVR',\n", + " 3509.567413330078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DMVKPEEMVVLDR',\n", + " 3850.740966796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DPEFQNIMK',\n", + " 3748.8233184814453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DPSLPVIIYPAAVQGDDAPGQIVR',\n", + " 7869.740295410156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('DQLLENLQEGMEVK',\n", + " 5430.972747802734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DQLLENLQEGMEVK',\n", + " 5432.499847412109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DQLVGKIQER',\n", + " 3073.2227325439453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DSGSDMVLVGLLR',\n", + " 6834.4097900390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DSLMLQLYPDAELR',\n", + " 6875.879974365234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DSMGAIDVPADK',\n", + " 3539.4190979003906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DSTAELYHFIGK',\n", + " 5581.747741699219,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DSTAELYHFIGK',\n", + " 5586.426544189453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DSVGAVVMGPYADLAEGMK',\n", + " 5942.5836181640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DSVPMTLSEDEIAR',\n", + " 4935.481109619141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DTAIMSYSTK',\n", + " 2947.8426361083984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('DTGPNTGGMGAYSPAPVVTDDVHQR',\n", + " 4347.469940185547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DVAAELLDIYAQR',\n", + " 7770.173034667969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DVDTLGMADIEK',\n", + " 4416.450347900391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DVDTLGMADIEKK',\n", + " 3656.374053955078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DVDTLGMADIEKK',\n", + " 3652.3331451416016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DVFPIIADR',\n", + " 6195.552062988281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DVGVAIIGQTSSLAPADKR',\n", + " 5456.142883300781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DVILFPAMR',\n", + " 5843.129425048828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DVILFPAMRPQK',\n", + " 4807.004241943359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DVILFPAMRPQK',\n", + " 4803.048248291016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DVILFPAMRPVK',\n", + " 5127.4346923828125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DVILFPAMRPVK',\n", + " 5129.145355224609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DVLDLNNL',\n", + " 7596.1285400390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DVLEAMQADSGIR',\n", + " 4236.086883544922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DVLEAMQADSGIR',\n", + " 4249.447174072266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DVMPEVNAVLEK',\n", + " 4964.103240966797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('DVNDEQLALIATMK',\n", + " 5858.96484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DVSIMPFK',\n", + " 4921.793518066406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DVSIMPFK',\n", + " 4916.584167480469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DVVIGMGACTDSK',\n", + " 3411.559524536133,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DWDDVMNLNIK',\n", + " 5543.919525146484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('DWVVNER',\n", + " 3660.978012084961,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('DYAGVDEGMNGLSTR',\n", + " 4058.763427734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('DYVVSMLDSLGK',\n", + " 5878.670196533203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('DYYAIMGVKPTDDLK',\n", + " 4965.121765136719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('DYYAIMGVKPTDDLK',\n", + " 4966.573333740234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EAEFPTGIMLEQHAIAIPHCEAIHAK',\n", + " 5573.207244873047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EAELMQF',\n", + " 4892.232513427734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EAELMQF',\n", + " 4890.226135253906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EAEYKDWTIEQITR',\n", + " 4823.9483642578125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EAGINNCYLEGEMVQGK',\n", + " 4493.646697998047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EAHHIVGEAVVEAIR',\n", + " 4308.148956298828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EAHVMSLATSIGR',\n", + " 3594.0408325195312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EAINAKAMGAMTLNWQEK',\n", + " 4235.910186767578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EAIVAMER',\n", + " 2393.6398315429688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EALAEVGITGMTVTEVK',\n", + " 5457.411346435547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EALASLELPEGMGLIVR',\n", + " 7018.992004394531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('EALETFMK',\n", + " 3498.0933380126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EALGFPMCNK',\n", + " 4081.087646484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EALHPEIDGCEGILNAMAR',\n", + " 5124.540252685547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EAMEPEFK',\n", + " 2751.6931915283203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EAMEPEFK',\n", + " 2752.189178466797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EAMGSTQSIMVGPDGELYGASDPR',\n", + " 5218.345642089844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EAPDGVATEMLDEGLVR',\n", + " 5460.449523925781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EASGFGADYNAMIR',\n", + " 4446.040191650391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EAVMDSVVR',\n", + " 2728.938674926758,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ECITSMVSR',\n", + " 2787.392120361328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ECSHYCELVSSPEQIPQVLAIAMR',\n", + " 6867.680969238281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('ECTLETLEEMLEK',\n", + " 6601.936798095703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ECTLETLEEMLEK',\n", + " 6591.928253173828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ECVPMADLAGEK',\n", + " 3685.236282348633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EDGIYVTMEGK',\n", + " 3501.624298095703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EDGYETIMVNCNPETVSTDYDTSDR',\n", + " 5609.3023681640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EEAESFMTK',\n", + " 2359.043197631836,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EEMGEILAK',\n", + " 2880.4454040527344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EETLAQHGAVSEPVVVEMAIGALK',\n", + " 6619.433898925781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('EEVMLTCR',\n", + " 2967.8807830810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EFGINHDADFLAMNPNGLVPLLR',\n", + " 7700.7733154296875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('EFLDANLA',\n", + " 6340.042877197266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EGADVLTGGR',\n", + " 3224.102096557617,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EGEATLAPSLDLVGKI',\n", + " 7207.987518310547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EGEPMGVIIQK',\n", + " 3574.314422607422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EGIEPDQPGVVGPIK',\n", + " 5008.303985595703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EGIEPDQPGVVGPIK',\n", + " 5007.012176513672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EGMNNIIAAIEAAK',\n", + " 6173.233795166016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('EGMPVVADVDQR',\n", + " 3463.9132690429688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EGNDFYHEMTDSNVIDK',\n", + " 3999.9710083007812,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EGQEVIVQIDK',\n", + " 4372.6190185546875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EGSGMVEFSR',\n", + " 2903.92822265625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EGVFHTEWLD',\n", + " 5933.754730224609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EGVTGWADTTMLHSEAK',\n", + " 4057.94677734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EHIDGLWPVLTR',\n", + " 6131.296234130859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EHLGLCQASAVVMTQDDLPFAK',\n", + " 6124.125823974609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EIFEELFPLPSAAECVPGGPSVACSSAK',\n", + " 7887.9180908203125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('EIIHQQMGGLR',\n", + " 2575.2099609375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EIIHQQMGGLR',\n", + " 2577.0272827148438,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EILEDYAGGMR',\n", + " 4218.254699707031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EIMAPLFQK',\n", + " 4881.944732666016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EIMQVALNQAK',\n", + " 3481.2137603759766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EISLMKPGSLLINASR',\n", + " 5388.920745849609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EISLMKPGSLLINASR',\n", + " 5391.850891113281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EISLSEAPNFAEAIINNQIQGR',\n", + " 7890.043029785156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('EISMSIK',\n", + " 2214.730911254883,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EISMSIK',\n", + " 2224.482192993164,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EISNPENLMLSEELR',\n", + " 5594.388885498047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EITMRELTPAAVTGTLTTPVGR',\n", + " 5451.119842529297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EIYPNGTETHTYVDVPGLSTMLEGASR',\n", + " 6229.836730957031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ELAGWMCDVLDSINDEAVIER',\n", + " 7449.877166748047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('ELGEMDDAPDENEALK',\n", + " 4033.1382751464844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ELLAGVATNTAYLDGLMKPYLSR',\n", + " 6794.3353271484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ELMAQLGVTR',\n", + " 3929.5486450195312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ELMTISK',\n", + " 2306.044921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ELNMGVLEK',\n", + " 3332.0555877685547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ELPYMNFPK',\n", + " 4873.371734619141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EMAHQQIGMEVLNR',\n", + " 3218.646240234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EMANVAYR',\n", + " 2160.7530212402344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EMFTLFGPQFVR',\n", + " 7096.891937255859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('EMGTVELLTR',\n", + " 4392.8082275390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EMHGVPVIYLSQLNER',\n", + " 5628.11279296875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EMIISEVR',\n", + " 3559.2466735839844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EMIQALADAR',\n", + " 3766.262969970703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EMLEHMASTLAQGER',\n", + " 3201.2466430664062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EMLLDAMENPEKYPQLTIR',\n", + " 5585.0372314453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EMLPEVR',\n", + " 3282.1485900878906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EMLPEVR',\n", + " 3293.8208770751953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EMYTFEDR',\n", + " 3483.790969848633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ENMSLTALR',\n", + " 3437.0812225341797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ENSQEAHEAIRPSDVNVMAESLK',\n", + " 3938.624725341797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EPFAAISISGPISR',\n", + " 6280.8856201171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EPFTGTMR',\n", + " 2472.316131591797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EPMFFGQPVNVAR',\n", + " 5526.727752685547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EQATQEVLMAAAVGK',\n", + " 4871.4166259765625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EQEVLAMGADK',\n", + " 2708.9627838134766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EQEVYMGEIPLMTDNGTFVINGTER',\n", + " 6716.243591308594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('EQFNELIAPLVK',\n", + " 6796.621856689453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('EQGVNSHVEMAAAFHR',\n", + " 3025.822219848633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EQVPAGEFQIMSAGTGIR',\n", + " 5390.765075683594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('EQVQASLENMAK',\n", + " 3108.599853515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ERPDAVLPTMGGQTALNCALELER',\n", + " 6261.401824951172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ESDLALMTNAGTEIGVASTK',\n", + " 5258.394470214844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ESGLFDMR',\n", + " 3742.609405517578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ESGLMNAVTPQR',\n", + " 3248.2177734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ESWQDLPQNK',\n", + " 3571.4566040039062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ETNVVLKPGMTFTIEPMVNAGK',\n", + " 5503.600616455078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ETQKSTCTGVEMFR',\n", + " 2807.1826171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ETTFNELMNQQA',\n", + " 4868.240203857422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ETVDFVDNYDGTEKIPDVMPTK',\n", + " 5765.885925292969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ETVEAYHMK',\n", + " 1697.5611877441406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('EVDAIMNR',\n", + " 2294.6763610839844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EVILMADSSK',\n", + " 3265.2113342285156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EVMEALVR',\n", + " 3113.4732055664062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EVMESFIK',\n", + " 3739.749069213867,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EVQPDQMINISGSLDK',\n", + " 4921.5362548828125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EVQVSHEVDFMTASSYGSGMSTTR',\n", + " 4461.086883544922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('EVTAIQAENMTR',\n", + " 3021.2159729003906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EVTLAYGGMR',\n", + " 3696.3661193847656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EVTVEDLMK',\n", + " 3853.707733154297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EVVLGMAHR',\n", + " 2318.115692138672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('EWKIPLLIHQPSYNLLNR',\n", + " 6111.315765380859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('EWLAEQGMVK',\n", + " 3711.116180419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('EYDSMVVR',\n", + " 2676.5279388427734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EYEMEVVR',\n", + " 2883.445587158203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('EYQVQLDIAMQSGKPK',\n", + " 4373.997344970703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('EYQVQLDIAMQSGKPK',\n", + " 4366.754608154297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FAAQAVMGSAK',\n", + " 2679.6334075927734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FAAYFQQGNMESNGK',\n", + " 4117.361297607422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FCQALMTELYR',\n", + " 5034.308624267578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FCVHLIPETLER',\n", + " 5706.146392822266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FDETGHSQIMVEPVADVTAYGVVDCK',\n", + " 6136.416778564453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FDFQDLMEEK',\n", + " 5587.434997558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FDFSHNEAMKPEEIR',\n", + " 3751.2570190429688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FDLAAVMGR',\n", + " 4884.653778076172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FEHIGDDTLEATMPVDSR',\n", + " 4658.331756591797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FEHLAAIIDGVEDK',\n", + " 5624.6868896484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FEPLSSEPGALAPLMDK',\n", + " 6191.493072509766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FFAAGADLNEMAEK',\n", + " 4716.940155029297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FGAIAGCMVTEGVVK',\n", + " 4990.910339355469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FGDPETQPIMLR',\n", + " 4999.181213378906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FGEEVEMITK',\n", + " 4360.822448730469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FGELDYAHMK',\n", + " 3475.3173065185547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FGELDYAHMK',\n", + " 3474.2745208740234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FGFVLPMDECLAR',\n", + " 6674.548187255859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('FGGALMAVK',\n", + " 3678.4078216552734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FGINENMTHVEK',\n", + " 3094.200897216797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FGINENMTHVEK',\n", + " 3090.161590576172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FGLLEMSR',\n", + " 4633.982849121094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FGSSISGSHVAIDDIEGAWNSSTQYEGGNK',\n", + " 6059.862213134766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FGVPMGYGGPHAAFFAAK',\n", + " 5581.394348144531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FGVPMGYGGPHAAFFAAK',\n", + " 5575.604095458984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FHANEAAIVAQAGYPAAVTIATNMAGR',\n", + " 6066.354217529297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FIDAMLAIR',\n", + " 5359.573059082031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FIESVMEPLR',\n", + " 4765.80322265625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FIGMGEIDDEGR',\n", + " 4200.985565185547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FIMGSVSDR',\n", + " 2979.499969482422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FLADVITPDGR',\n", + " 5575.533599853516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FLALQTMGTETAR',\n", + " 4544.7967529296875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FLAVPAEALVYTMK',\n", + " 6744.606628417969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('FLAVPAEALVYTMK',\n", + " 6746.1712646484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('FLIVTDEATANMLTDK',\n", + " 5996.318206787109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FLPSFIDNIDNLMAK',\n", + " 7467.605438232422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('FMAVHPDVQDK',\n", + " 2947.0816040039062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FMQEAVPEGTGAMAAIIGLDDASIAK',\n", + " 6730.422821044922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('FMQLQQQISAER',\n", + " 4026.4723205566406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FMSACLK',\n", + " 2682.033233642578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FMSLFDK',\n", + " 4654.216461181641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FMVNVEGR',\n", + " 3669.7986602783203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FNLMLETK',\n", + " 4817.736968994141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FNYFIMSK',\n", + " 4899.360809326172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FPAQEQMTFVR',\n", + " 4206.84814453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FPGVDPLLGPEMR',\n", + " 6213.946380615234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FPNVYGIDMPSATELIAHGR',\n", + " 6251.808013916016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FPNVYGIDMPSATELIAHGR',\n", + " 6254.737243652344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FPVSQSIDELMEACR',\n", + " 5821.599884033203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FQASDMVR',\n", + " 2454.866180419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('FQQAGHKPVALVGGATGLIGDPSFK',\n", + " 5396.042633056641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FQQAGHKPVALVGGATGLIGDPSFK',\n", + " 5389.1326904296875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FSDIPIVMVTAK',\n", + " 5840.801239013672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FSGNYGNMTEVSYQVAK',\n", + " 4359.5562744140625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FSTELTDEMIK',\n", + " 4561.983489990234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FTDAQGNQHEGIITSGTFSPTLGYSIALAR',\n", + " 6948.464813232422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FTDMIDGQTITR',\n", + " 4367.143707275391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('FTFIATSGAFHGK',\n", + " 4893.224029541016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('FTGSETSSQALSSAQAIISSNPGLNR',\n", + " 6567.215881347656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FVFAEGIAYGPEMAAK',\n", + " 6214.556579589844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('FVGMLTDSR',\n", + " 3559.3526458740234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('FVIGGPMGDCGLTGR',\n", + " 5200.601348876953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FVMPGAALNEDEFR',\n", + " 5529.872131347656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('FVMQPER',\n", + " 2282.977294921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('FYLFGIMQGEEHPFPATTQSK',\n", + " 6016.327972412109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('FYNPLVR',\n", + " 5064.991149902344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAAAVSTDEMGDIIAR',\n", + " 4090.920867919922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GADLMQALVDSELQPSR',\n", + " 5952.756500244141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GADLMQALVDSELQPSR',\n", + " 5959.952545166016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GADVGITMIAR',\n", + " 4147.904205322266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAFAMGGMAAFIPSKDEEHNNQVLNK',\n", + " 4396.233215332031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GAIDMIVR',\n", + " 3958.1410217285156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAIVGMTGYGESAPADK',\n", + " 3700.5917358398438,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GALATGMENSLQSAVR',\n", + " 4099.712219238281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAMALFGEK',\n", + " 3599.8997497558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAMEESGAVLIK',\n", + " 3618.016891479492,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GAMLDVFNR',\n", + " 4564.241180419922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GANFIAVHEMLDGFR',\n", + " 5381.536560058594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GANFIAVHEMLDGFR',\n", + " 5388.885955810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GANVTLVSGPVSLPTPPFVK',\n", + " 7532.373504638672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GANVTLVSGPVSLPTPPFVK',\n", + " 7542.383880615234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GASPLSAGDVTNDLSHVR',\n", + " 5045.259704589844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GAYGTVIMDSR',\n", + " 3504.378204345703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GCLTQMGDIPLDIK',\n", + " 5526.870574951172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GCYTGQEMVAR',\n", + " 2423.5057067871094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GDAELAQSISMTR',\n", + " 3988.4339904785156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GDAELAQSISMTR',\n", + " 3993.1809997558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GDALTLVELTPAQHFTKPPAR',\n", + " 5625.7489013671875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GDALTLVELTPAQHFTKPPAR',\n", + " 5627.829895019531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GDAWIDVVNPATEAVISR',\n", + " 6888.132476806641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('GDAWIDVVNPATEAVISR',\n", + " 6889.537811279297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('GDMEQIINVNR',\n", + " 3860.028076171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GDVLEMNIR',\n", + " 3713.730010986328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GDWSLSSPAK',\n", + " 3760.260543823242,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GEAIGVIAAQSIGEPGTQLTMR',\n", + " 6216.910858154297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GEGMVLTGPK',\n", + " 2714.3648529052734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GEILGGMAAVEQPEK',\n", + " 4079.0089416503906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GEILGGMAAVEQPEKPAAQPK',\n", + " 3831.181411743164,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GEISPDINTAMTSR',\n", + " 3746.8666076660156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GELGIMGTELNSELAK',\n", + " 5387.324981689453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GEMPQTIGGGIGQSR',\n", + " 3446.7919921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GEMPSDFDAK',\n", + " 2665.093002319336,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GENVLSDAEGEDSPLLK',\n", + " 5734.066314697266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GESTEALLPNMVATSLAK',\n", + " 5850.824890136719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GESTEALLPNMVATSLAK',\n", + " 5855.128326416016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GETAMTINGPWAWSNIDTSK',\n", + " 5931.479644775391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GETATRPQDEITVQMAER',\n", + " 3396.97998046875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GEVVLVGAGPGDAGLLTLK',\n", + " 7013.059844970703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GFEGGQMPLYR',\n", + " 3894.9114990234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GFTRPTAIQAAAIPPALDGR',\n", + " 5572.959136962891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GFYPMVAAQR',\n", + " 4206.193084716797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GGDGNYGYNAATEEYGNMIDMGILDPTK',\n", + " 6451.246032714844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('GGDVEQALLPAYPK',\n", + " 5651.837310791016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GGLGNLMK',\n", + " 2644.023971557617,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GGSEEPMDLFK',\n", + " 4384.1986083984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GGYVEPEYVQAMLDR',\n", + " 5332.06787109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GHEVNFICADDAHGTPIMLK',\n", + " 4877.058563232422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GHLTLQMTTLR',\n", + " 3367.6746368408203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GHLTLQMTTLR',\n", + " 3360.769271850586,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GHVMNALPEDAK',\n", + " 2205.1773834228516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GHVMNALPEDAK',\n", + " 2204.223861694336,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GIAFAPLSSVNLVMPVAR',\n", + " 7447.4578857421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('GIAFAPLSSVNLVMPVAR',\n", + " 7451.829528808594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('GIDMLDAPVSGGEPK',\n", + " 4553.621520996094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GIEGSSLDVPENIVHSGK',\n", + " 5008.992004394531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GIEGSSLDVPENIVHSGK',\n", + " 5004.577331542969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GILEALMGNAR',\n", + " 5584.186248779297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GIVVVNLTQCMSGK',\n", + " 5002.483062744141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GKGTVSTESGVLNQQPYGFNTR',\n", + " 4524.680328369141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GLAASLMK',\n", + " 2999.3746948242188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GLCMPTDLPR',\n", + " 4002.425079345703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GLIEEMASAYEDPK',\n", + " 4667.516326904297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GLILIDPPYEMK',\n", + " 6269.167785644531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GLMAIPAPESEYVR',\n", + " 5250.154266357422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GLMNVQFAVK',\n", + " 4573.168029785156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GLMPDGTTR',\n", + " 2181.134490966797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GLNVTIMK',\n", + " 3559.034957885742,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GLSFGAPTEMEVK',\n", + " 4690.388031005859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GLTDAAQQVVAAVEGK',\n", + " 7338.956451416016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GLTDAAQQVVAAVEGK',\n", + " 7337.628479003906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GLVYMTR',\n", + " 2935.396499633789,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GMASGAVIESFLDK',\n", + " 6106.199798583984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GMFLPDR',\n", + " 3585.1476287841797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GMFSYTGLSAAQVDR',\n", + " 5136.657257080078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GMIELQK',\n", + " 2544.888381958008,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GMLGFTGTYK',\n", + " 4086.734619140625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GMLNELDEEPSPR',\n", + " 3982.825469970703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GMPIATPVFDGAK',\n", + " 4742.678375244141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GMPLYEHIAELNGTPGK',\n", + " 4853.125762939453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GMPLYEHIAELNGTPGK',\n", + " 4842.930450439453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GMPLYEHIAELNGTPGK',\n", + " 4850.235443115234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GMQLYFER',\n", + " 4034.2176818847656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GMQVALGTNAVR',\n", + " 3414.1708374023438,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('GMVFYTNLGSR',\n", + " 4556.019744873047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GMVIGTTGFDEAGK',\n", + " 4259.316101074219,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GMVLNYNGK',\n", + " 2830.8812713623047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GMVLTGGGALLR',\n", + " 4654.816589355469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GNESIYLLMR',\n", + " 4978.325958251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GNPTVEAEVHLEGGFVGMAAAPSGASTGSR',\n", + " 5483.963928222656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GNPTVEAEVHLEGGFVGMAAAPSGASTGSR',\n", + " 5479.9493408203125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GPAYTEMSLFAR',\n", + " 4932.055206298828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GPQVPAGLPMTEEQLK',\n", + " 4947.575225830078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GPSIMPGGQK',\n", + " 2087.734909057617,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GQAMVEIGPGLAALTEPVGER',\n", + " 6741.15966796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GQGMQILATHLSDNAVDFR',\n", + " 5284.729156494141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GQHLLAMK',\n", + " 1685.2801895141602,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GQYGHVVIDMYPLEPGSNPK',\n", + " 4996.3934326171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GSAFSMEER',\n", + " 2187.1021270751953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GSDYIGDQDAIEYMCK',\n", + " 4764.396057128906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GSDYIGDQDAIEYMCK',\n", + " 4760.014343261719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GSFNGMVAR',\n", + " 2358.709716796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GSGNIASAPAMSR',\n", + " 2274.9815368652344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GSHEYCDVMGR',\n", + " 1872.868309020996,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GSHEYCDVMGR',\n", + " 1877.6921081542969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GSLAAMVVAAER',\n", + " 4325.8685302734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GSLPIALDEVITDGHKR',\n", + " 5533.239440917969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GSLPIALDEVITDGHKR',\n", + " 5534.649353027344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GSLPIALDEVITDGHKR',\n", + " 5533.978729248047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GSMASVAFHLNTQLNNGESPK',\n", + " 4582.859344482422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GSMIEVLHSNFIR',\n", + " 4517.6055908203125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GSWLDFEFDPK',\n", + " 6872.198181152344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GTAMNPVDHPHGGGEGR',\n", + " 1533.4522247314453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GTAMNPVDHPHGGGEGR',\n", + " 1534.1733169555664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GTAMNPVDHPHGGGEGR',\n", + " 1536.383056640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('GTENEDFMFLNLGPNHPSAHGAFR',\n", + " 5587.505950927734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GTIAEQIAQEMQK',\n", + " 4183.721466064453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GTTSEQIIEMAR',\n", + " 3746.5120697021484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GVAESTINVIFNPVETK',\n", + " 6873.326568603516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GVEGMITTAR',\n", + " 2793.1114196777344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GVELAPGESVPMVGVVEKPK',\n", + " 5063.2452392578125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('GVGVMCNFFAQSAENATLK',\n", + " 6001.2103271484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GVIELMR',\n", + " 3678.2666015625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GVLIVPVNTLMQR',\n", + " 6021.760711669922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GVMAALLTPFDQQQALDK',\n", + " 6512.3638916015625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GVMFTGSTEVATLLQR',\n", + " 6482.684783935547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GVPAMFVNGK',\n", + " 3538.959732055664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GVQCDLAMIGSK',\n", + " 4180.279083251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('GVTAIITMTESGR',\n", + " 4564.947052001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GVVHDTWPQALIAR',\n", + " 4867.305450439453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('GWQVTGSK',\n", + " 2442.9622650146484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GYEEMVNNGR',\n", + " 2231.117935180664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('GYGLQMR',\n", + " 2527.438430786133,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('GYGTLADVPEKVDMVDVFR',\n", + " 6275.026702880859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('GYSMPVLCNLFGTPK',\n", + " 6491.369476318359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('GYSVTTATDGNVLK',\n", + " 4407.998199462891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HAEMLDVIVK',\n", + " 3545.0988006591797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HDGSAATCDDFVQAMEDASNVDLSHFR',\n", + " 5675.299987792969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('HEDMYTAINELINK',\n", + " 5218.454132080078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HEDMYTAINELINK',\n", + " 5222.983245849609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HEFVTLEGMEK',\n", + " 3466.8079376220703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HEFVTLEGMEK',\n", + " 3474.575958251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HEIAAVIIEPIVQGAGGMR',\n", + " 6050.608062744141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('HENLGSALSYMLANK',\n", + " 4474.145965576172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HFKPGDTVPEMYR',\n", + " 3131.1415100097656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('HFMNASGGGVTASGGEAILQAEFVR',\n", + " 5838.815002441406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('HGASCPVGMGVSCSADR',\n", + " 2343.230438232422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('HGASCPVGMGVSCSADR',\n", + " 2338.8704681396484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('HGAVSVMQYR',\n", + " 2178.662567138672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('HGLDPAQMALAFVR',\n", + " 5857.598419189453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('HGLEQTIADTLGPGGIMR',\n", + " 5545.087738037109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HGLEQTIADTLGPGGIMR',\n", + " 5546.5301513671875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HGLGMSDQIENR',\n", + " 2256.7472076416016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('HGPLALIDADMPVIVVAPNNELLEK',\n", + " 7243.323211669922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('HHQTYVNNANAALESLPEFANLPVEELITK',\n", + " 8012.7374267578125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('HILLKPSPIMTDEQAR',\n", + " 3612.2660064697266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HLPDSDVVSIYDAAMR',\n", + " 5467.646942138672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HMGWTEAADLIVK',\n", + " 4878.804473876953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HMVHELVSNLR',\n", + " 2793.782958984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('HMVHELVSNLR',\n", + " 2792.743148803711,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('HNEPYYPPVEPARPVGDLK',\n", + " 4378.871154785156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HNEPYYPPVEPARPVGDLK',\n", + " 4378.093414306641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HNGFNKVWHIEGGIIEYAR',\n", + " 4975.218658447266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HNINVNAIAPGYMATNNTQQLR',\n", + " 4577.3583984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HNINVNAIAPGYMATNNTQQLR',\n", + " 4571.571807861328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HNMDDILQNVPNHNIK',\n", + " 3743.280487060547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HPELTDMVIFR',\n", + " 4745.715179443359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HPELTDMVIFR',\n", + " 4750.391693115234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('HSDIILKPLDGMGGASIFR',\n", + " 5569.126281738281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HSDIILKPLDGMGGASIFR',\n", + " 5570.0628662109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HSDIILKPLDGMGGASIFR',\n", + " 5574.9847412109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HSSLLGEMPQER',\n", + " 2796.7849731445312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('HSSLLGEMPQER',\n", + " 2798.639373779297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('HTIMVANLAPR',\n", + " 3591.869888305664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HTIMVANLAPR',\n", + " 3602.545623779297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HTMIHEQITR',\n", + " 1755.2276229858398,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('HTMIHEQITR',\n", + " 1740.6679916381836,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('HTWEINMLGR',\n", + " 3822.1089935302734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HVLIIGGGDGAMLR',\n", + " 4389.4207763671875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('HVPFGNIEAMR',\n", + " 3626.909408569336,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HVPFGNIEAMR',\n", + " 3625.9046173095703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HVQVAEMVIEK',\n", + " 3067.646484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HVQVAEMVIEK',\n", + " 3069.586715698242,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('HYDHAVSPMDVALDIGPGLAK',\n", + " 5421.665954589844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HYDHAVSPMDVALDIGPGLAK',\n", + " 5432.499847412109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('HYQSGAAMPDELQQK',\n", + " 2478.5694122314453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IAAADIAGTLPVMK',\n", + " 5371.9757080078125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IAAEMGAQIIK',\n", + " 3658.6649322509766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IADETLALMR',\n", + " 4273.335113525391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IAGQGLSFEQMLK',\n", + " 5019.575958251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IAHDISSYSFVAMAK',\n", + " 4644.391021728516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IAHDISSYSFVAMAK',\n", + " 4637.196350097656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IAHELMADLEK',\n", + " 3379.327926635742,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IAHELMADLEK',\n", + " 3381.1436462402344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IAIVNMGSLFQQVAQK',\n", + " 6121.5234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IAIVNMGSLFQQVAQK',\n", + " 6123.0450439453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IALASPDMIR',\n", + " 4442.140960693359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IAVIGECMIELSEK',\n", + " 5608.484802246094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ICLFTVSDDGHLVAQDPAEVTTVEGAGPR',\n", + " 6759.037628173828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IDAELSMAALR',\n", + " 4587.919006347656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IDAIMSSLSITEK',\n", + " 5197.385101318359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IDDGQMGVILK',\n", + " 3990.8509826660156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IDELMQK',\n", + " 2256.676483154297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('IDEVFIGSCMTNIGHFR',\n", + " 5567.10205078125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IDEVVVFHPLGEQHIASIAQIQLK',\n", + " 6743.912200927734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IDGFGPMK',\n", + " 3369.561996459961,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IDKPEADPDR',\n", + " 1948.2536315917969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1256.7750549316402_1885.1625823974603/vectorized_output.fasta'),\n", + " ('IDLAMYPAVK',\n", + " 4902.431945800781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IDMDNLK',\n", + " 2247.886505126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IDMLEDFEPR',\n", + " 5272.788848876953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IDMQETAGSLR',\n", + " 2918.923873901367,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IDPVGACVGMR',\n", + " 3644.162063598633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IEAALADKEAELMQF',\n", + " 5891.262359619141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IEALADGIMDAGLVSVR',\n", + " 6473.998718261719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IEAPMDEGLK',\n", + " 3375.8846282958984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IEDNVVIHENNVENMTR',\n", + " 3664.9120330810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IEESEINYLLNVYNTHFK',\n", + " 7545.668792724609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IEGCDDGVIMHLK',\n", + " 3844.6481323242188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IEIPVLPLR',\n", + " 6859.744720458984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IEKDWYTLMNTIINGSASEADAAR',\n", + " 5955.5401611328125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('IEMGETPEQAVVR',\n", + " 3668.0882263183594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IEQMLSQDK',\n", + " 2111.4990234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('IEQMLSQDKR',\n", + " 1749.396858215332,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('IEYTESTSAAMEK',\n", + " 2945.691146850586,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IFALPVIEQISPVLSR',\n", + " 7884.582824707031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('IFMAPLTR',\n", + " 4339.9200439453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IFNADWVIDGEQQPK',\n", + " 6072.030487060547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IFNADWVIDGEQQPK',\n", + " 6073.590545654297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IFPIAGVTTNPSIIAASK',\n", + " 6774.219818115234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IFVDEGPSMK',\n", + " 3623.663864135742,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IGAAIGSGIGGLGLIEENHTSLMNGGPR',\n", + " 6258.580627441406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IGEHTPSALAIMENANVLAR',\n", + " 5238.132476806641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IGLLLDMPLR',\n", + " 6306.477813720703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IGMAIDDLR',\n", + " 4022.4668884277344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IGMALAQR',\n", + " 2445.929489135742,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IGQLTMR',\n", + " 2340.9716033935547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('IGSLGMDVYENER',\n", + " 4253.7396240234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IHAEVPLSEMFGYATQLR',\n", + " 5835.083312988281,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IHGLADCMQGEMISLPGNR',\n", + " 4611.8316650390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IHLFMGGVGNDGHIAFNEPASSLASR',\n", + " 5628.289947509766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IHLFMGGVGNDGHIAFNEPASSLASR',\n", + " 5626.48681640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IHLFMGGVGNDGHIAFNEPASSLASR',\n", + " 5628.3251953125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IIAIDNSPAMIER',\n", + " 4842.065277099609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIASPDYISR',\n", + " 4369.439392089844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IIAVTACPSGVAHTYMAAEALESAAK',\n", + " 6255.579986572266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IIAYGDADVMVAGGAEK',\n", + " 4755.237121582031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIDGAELLIPMAGLINK',\n", + " 7444.419708251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('IIDGAELLIPMAGLINK',\n", + " 7445.937652587891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('IIEFVEKPANPPSMPNDPSK',\n", + " 4492.508697509766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIGGGMPVGAFGGR',\n", + " 4524.1131591796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIGQLMSDIR',\n", + " 4407.3468017578125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IILCTGDMGFGACK',\n", + " 4996.731262207031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IILGGDHLGPNCWQQENADAAMEK',\n", + " 5014.7021484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIMEYLDER',\n", + " 4398.701934814453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IINIASMLSFQGGIR',\n", + " 6756.3958740234375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('IIPGFMCQGGDFTR',\n", + " 5401.755523681641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IITHPNFNGNTLDNDIMLIK',\n", + " 6086.014709472656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IITIGSVVGTMGNGGQANYAAAK',\n", + " 5573.242034912109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IITVDGDEIGEHQGLMYHTLGQR',\n", + " 4987.253265380859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IIVDTYGGMAR',\n", + " 3871.4675903320312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IIVGGIMPITK',\n", + " 5042.262725830078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IIVPQALVNAVSDALVAR',\n", + " 7884.7650146484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('IIVQEMGESSK',\n", + " 2610.026092529297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ILEEAVSTALELASGK',\n", + " 7884.2559814453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ILELAGFLDSYIPEPER',\n", + " 7882.0953369140625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('ILEQCLNNMPEGPFK',\n", + " 5148.760528564453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ILESMAQVK',\n", + " 2717.329788208008,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('ILEVSGCDPQTTELDGKPLADHLLAPTR',\n", + " 6004.460906982422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ILFGMAGTAR',\n", + " 4130.288543701172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ILGLGDQGIGGMGIPIGK',\n", + " 6689.566955566406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ILMEQAPIAPIYQYTNGR',\n", + " 6202.166290283203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ILMEQAPIAPIYQYTNGR',\n", + " 6202.201995849609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ILVDENMPYAR',\n", + " 4148.399505615234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IMAGIDKDIEGEAR',\n", + " 3690.337142944336,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IMDELSVISCDVYR',\n", + " 6176.699523925781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('IMGGADVILVPSR',\n", + " 5153.49609375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IMLVAQK',\n", + " 3022.7151489257812,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IMNDENFQHGGTNIHYLEK',\n", + " 3741.0781860351562,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IMNDENFQHGGTNIHYLEK',\n", + " 3740.0669860839844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('INSLAMPVK',\n", + " 3113.5084533691406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IPDVMPTK',\n", + " 3031.8429565429688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IPEGESMQELSDR',\n", + " 3204.954071044922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IPQFGQQTPMK',\n", + " 3673.484115600586,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IPVCMHNVEETK',\n", + " 2425.7649993896484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('IPVHMIETINK',\n", + " 3356.092758178711,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IPVHMIETINK',\n", + " 3352.0470428466797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IQAIIEDIKER',\n", + " 4319.211273193359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IQDADYATEVSNMSK',\n", + " 3753.0855560302734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IQFVMCDDGSLK',\n", + " 4675.9515380859375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IQSGELSAIPHQLIMDK',\n", + " 5373.254241943359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IQSGELSAIPHQLIMDK',\n", + " 5368.799743652344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IRDEMGLAMEEGCGIYR',\n", + " 3953.3445739746094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IRTGEEDDAAI',\n", + " 3239.182662963867,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('ISDNTVMTTSR',\n", + " 2242.9074096679688,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('ISLDEAMASGHVK',\n", + " 3303.7918853759766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ISLDEAMASGHVK',\n", + " 3302.607421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ISLPTPIMSGVR',\n", + " 5400.850067138672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ISPEDIVIAMSSGSK',\n", + " 5529.728851318359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('ISTTLLNLMER',\n", + " 5389.274597167969,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ISVVEVMGR',\n", + " 3763.084259033203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ISVVGMYR',\n", + " 3599.8997497558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('ISWMEIYTGEK',\n", + " 5219.556427001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ITHFVSSMGTTGTITGVSR',\n", + " 3999.9005126953125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('ITLNMGVGEAIADK',\n", + " 4882.767791748047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ITLNMGVGEAIADKK',\n", + " 4197.22412109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('ITPIVGMLQGVVEK',\n", + " 5989.842681884766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('ITPVVFIMK',\n", + " 5388.657989501953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('ITSVNVGGMAFR',\n", + " 4320.219268798828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IVADAMGALR',\n", + " 3407.7626037597656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IVAMATAGVEPR',\n", + " 3303.313751220703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('IVDAQGNDVLIPGTDMPAQYFLPGK',\n", + " 7327.8643798828125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('IVEEAMIAANICAAR',\n", + " 5154.172668457031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IVIMDEPTSSLTEK',\n", + " 4583.074035644531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IVNPIMGVK',\n", + " 4150.516662597656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('IVPLIAYMSK',\n", + " 5284.148254394531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('IYALPEMSEEDGYK',\n", + " 4758.061065673828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('IYVGNVPIGDGAPIAVQSMTNTR',\n", + " 6234.6588134765625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('KAEIDEEQLAAAPVIIR',\n", + " 5453.178405761719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('KDDLYLSSEQMK',\n", + " 2982.2891235351562,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('KDVNPDEAVAIGAAVQGGVLTGDVK',\n", + " 6645.513153076172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('KEAAPAAAPAAAAAK',\n", + " 2021.6063690185547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('KEAAPAAAPAAAAAK',\n", + " 2026.318359375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('KEDGAVVISALPHQVSGAR',\n", + " 4326.080474853516,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KEDGAVVISALPHQVSGAR',\n", + " 4328.269500732422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KGEILEVVSDCPQSINNIPLDAR',\n", + " 6275.8319091796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('KGEILGVSGLMGAGR',\n", + " 4304.845275878906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('KLDMVPVECVVR',\n", + " 4230.3314208984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KLDMVPVECVVR',\n", + " 4234.936981201172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KNQLEVMR',\n", + " 1758.5847473144531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('KPFMPLLPGFR',\n", + " 5441.675262451172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('KPFMPLLPGFR',\n", + " 5443.564453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('KPQFVSPGQMGNIVDK',\n", + " 3623.734588623047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KPVVLQAHLDMVPQK',\n", + " 3609.074020385742,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('KPVVLQAHLDMVPQK',\n", + " 3611.367645263672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('KQEPYENVTLDVEEQHQGSVMQALGER',\n", + " 4990.910339355469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('KQPDPETLPPTL',\n", + " 5033.9007568359375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('KTAEDYLGEPVTEAVITVPAYFNDAQR',\n", + " 7506.215972900391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('KVADDAPLMER',\n", + " 2464.424057006836,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('KVADDAPLMER',\n", + " 2466.240005493164,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('KVEVMNTDAEGR',\n", + " 1734.9438858032227,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('KVEVMNTDAEGR',\n", + " 1740.809326171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_1885.1625823974603_2513.5501098632803/vectorized_output.fasta'),\n", + " ('LAAQEMLAAYAG',\n", + " 5313.417205810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LAATIAQLPDQIGAKGVETADK',\n", + " 5517.898406982422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LAATITPQHLMFNR',\n", + " 4693.852386474609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LAATITPQHLMFNR',\n", + " 4698.311462402344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LADPEELEFMGIR',\n", + " 6010.287780761719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LADTIAAHMPLK',\n", + " 3399.770278930664,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LADTIAAHMPLK',\n", + " 3375.354995727539,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LAEAGIPTQMER',\n", + " 3522.1646118164062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LAENASLEEMVR',\n", + " 3807.7734375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LAGTGEMVAEVTER',\n", + " 3813.8131713867188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LAILNFGTLMPEAAK',\n", + " 7012.698211669922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('LALMPQR',\n", + " 3072.4461364746094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LALSMTIDR',\n", + " 4083.6488342285156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LAMELQAEPIIR',\n", + " 5086.620941162109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LAMQVVVLR',\n", + " 4302.252960205078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LAPALAAGNCVVLKPSEITPLTALK',\n", + " 6916.740417480469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LAQEYEIPLAQTVAIGDGANDLPMIK',\n", + " 7753.611145019531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('LASTEWVDIVNEENEVIAQASR',\n", + " 7554.786071777344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LASVTDAENIK',\n", + " 3783.8113403320312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LATEMGADLAINSHTEDAAK',\n", + " 3906.778106689453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LATEMGADLAINSHTEDAAK',\n", + " 3906.8138122558594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LAVMVLR',\n", + " 4155.9356689453125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LCGSSMQALHDAAR',\n", + " 2487.0423889160156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LDAQGIMAR',\n", + " 3017.4366760253906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LDAVGFMWKEPGTSCIHLEK',\n", + " 4949.099578857422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LDAVVFTGGIGENAAMVR',\n", + " 6223.721008300781,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LDDPTGYGR',\n", + " 3154.292449951172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LDEHQPVFMPVGAFCPPLEK',\n", + " 6269.451599121094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LDEHQPVFMPVGAFCPPLEK',\n", + " 6281.136016845703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LDMLIEPIIQEHQADQLAALSEQE',\n", + " 7476.5478515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('LDMLNEELSDK',\n", + " 4162.876739501953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LDMLNEELSDKER',\n", + " 3678.8468170166016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LDMVPVECVVR',\n", + " 4894.157867431641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LDNNDMIDQLEAR',\n", + " 4315.032806396484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LDQALAEMFPDYSR',\n", + " 5652.353668212891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LDSEPALIALHSLLGR',\n", + " 7783.975524902344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LEALREEQMAK',\n", + " 2399.392547607422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LEDMQAAVAANVGTK',\n", + " 3543.035430908203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LEPSALAGMAGPQR',\n", + " 3991.3613891601562,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LEQAAYEMTALR',\n", + " 3956.3768005371094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LEQMISQIDK',\n", + " 3382.115707397461,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LEQQALMK',\n", + " 2224.8353576660156,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LESIPGFDIFPDDNR',\n", + " 7671.661834716797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LFEGTASQMYQSLK',\n", + " 4621.013031005859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LFLMSDAVTAGLR',\n", + " 6074.12109375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LFPFFGFTAENIVAK',\n", + " 7884.400634765625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('LFYLISEDMTEPYEAR',\n", + " 6713.533172607422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LGEFTMPEHK',\n", + " 2851.707229614258,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LGEFTMPEHK',\n", + " 2844.949951171875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LGIVMDPIANINIK',\n", + " 6555.059967041016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LGMHDASDEALR',\n", + " 2472.1749114990234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LGNMPQIR',\n", + " 2597.738571166992,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LGVALATAESVVDAIER',\n", + " 7884.437255859375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LGYGAMQLAGPGVFGPPR',\n", + " 6121.5966796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LHEEAMALPSEEEFAER',\n", + " 4431.076812744141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LHIGDGLDNGVTIGPLIDEK',\n", + " 6548.896636962891,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LHILGVMEQAINAPR',\n", + " 4897.833709716797,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LHILGVMEQAINAPR',\n", + " 4893.6474609375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LHTTFWPEEYPEIR',\n", + " 5549.3536376953125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LIAEAMDK',\n", + " 2244.2122650146484,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LIAEAMDK',\n", + " 2256.7117309570312,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LIAIDMDGTLLLPDHTISPAVK',\n", + " 6791.151580810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LIDMGEEIGLATVYR',\n", + " 6138.798065185547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LIEQQAVIAAL',\n", + " 7052.454986572266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LILAAQMDR',\n", + " 3600.1114654541016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LIMGLADGEVLVDGR',\n", + " 6118.163909912109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LIPAAVEGGLHQIETASGAVLK',\n", + " 7009.449005126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LIQLMNETVDGDYQTFK',\n", + " 5805.901336669922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LIVIEMNPR',\n", + " 4136.218414306641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LLALHMYDCAR',\n", + " 3821.136703491211,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LLHAMGCEVTAFSSNPAK',\n", + " 4107.557830810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LLLDALR',\n", + " 5696.972351074219,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LLMAIGEPVMVDTAQEPR',\n", + " 5590.367889404297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LLNDTDMAIIDK',\n", + " 4608.831481933594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LLNEMAQQR',\n", + " 2318.378448486328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LLNGIPIDEEDFFGR',\n", + " 7692.043762207031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LLPTEIMAGSPIR',\n", + " 5430.24169921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LLTTMQQQGFVR',\n", + " 4172.039337158203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LLVPTTFMNLSGK',\n", + " 6161.514129638672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LMAIQEQAR',\n", + " 2682.492141723633,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LMDDTIAQVQTSGEAEK',\n", + " 4036.17919921875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMDDTIAQVQTSGEAEK',\n", + " 4040.478515625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMDLGCYR',\n", + " 3667.133331298828,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LMEIAQQQHAQQQTAGADASANNAK',\n", + " 2771.576614379883,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LMEIAQQQHAQQQTAGADASANNAK',\n", + " 2779.1665649414062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LMERPIVVANGK',\n", + " 2950.048828125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LMEVEQVLESAR',\n", + " 5258.535919189453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LMFASDIHGSLPATER',\n", + " 4823.912658691406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LMGAEVIPVHSGSATLK',\n", + " 4282.056427001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMGAEVIPVHSGSATLK',\n", + " 4283.425140380859,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMGAEVIPVHSGSATLK',\n", + " 4282.092132568359,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMGNDVTDEQAK',\n", + " 2371.2538146972656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LMNLPAPNPEAPR',\n", + " 4265.249176025391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LMNNEEISEEAQHEMAAEAGINPVR',\n", + " 4653.622283935547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LNALPDVLEQFIHLR',\n", + " 8007.1307373046875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('LNALPDVLEQFIHLR',\n", + " 8005.650329589844,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_8169.037857055662_8797.425384521483/vectorized_output.fasta'),\n", + " ('LNAQPHGASLYLPMEGLNCYR',\n", + " 5352.078552246094,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LNELGLQFMQGAR',\n", + " 5305.31982421875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LNGDNGEYTCDALIIATGASAR',\n", + " 6383.167877197266,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LNIGEDVEEMLR',\n", + " 5608.092498779297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LNPQIDMGQR',\n", + " 2880.79833984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LNVETNMPEALDR',\n", + " 4096.406707763672,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LNVPANVSTEQMK',\n", + " 3662.1949768066406,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LPAAQSFAALSGMEEGGK',\n", + " 5361.352386474609,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LPDAVEEAIEAEMEK',\n", + " 6220.304260253906,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LPDAVEEAIEAEMEK',\n", + " 6227.722320556641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LPELMSLLR',\n", + " 6169.438934326172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LPEMINSVR',\n", + " 3501.200408935547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LPLGDEYQEQLESNFADMANIGGR',\n", + " 6960.648651123047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_7540.650329589843_8169.037857055663/vectorized_output.fasta'),\n", + " ('LPLLMATVLK',\n", + " 6058.904571533203,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LPLMINPK',\n", + " 4380.669708251953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LPMSFPR',\n", + " 3759.836883544922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LPPEQVVAEVSSR',\n", + " 4972.960968017578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LPSSASALACSAHALNLIEK',\n", + " 6044.886932373047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LPVPAPMAVGAIQTR',\n", + " 5334.528350830078,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LQAHPEMLNPSVPLFR',\n", + " 5450.248718261719,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LQDPLAELVK',\n", + " 6332.598724365234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LQDYAAQGAEVLHLVDLTGAK',\n", + " 7125.988311767578,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LQGNMGIGHVR',\n", + " 2148.544235229492,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LQHYAATTPIVDMVR',\n", + " 4203.298645019531,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LQKNECQVMPYPNPADIAR',\n", + " 4331.552581787109,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LQMELVPER',\n", + " 3742.9625701904297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LQTMVSHFTIDPSR',\n", + " 4369.368438720703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LRDVVIGMGACTDSK',\n", + " 3288.465042114258,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LSATLESMFADDGVNK',\n", + " 5186.428985595703,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LSDQEIEQTLQAFEAR',\n", + " 7567.108612060547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LSDQEIEQTLQAFEAR',\n", + " 7568.4429931640625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LSEVMPGAGGR',\n", + " 2536.8896484375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LSFETSMHR',\n", + " 2676.775360107422,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LSGAQVMATDLR',\n", + " 3711.2928771972656,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LSIAYGIAQAMHR',\n", + " 4524.431304931641,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LSIAYGIAQAMHR',\n", + " 4555.298309326172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LSIAYGIAQAMHREGAELAFTYQNDK',\n", + " 6053.822479248047,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LSMAPSYFSSK',\n", + " 3955.9881591796875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LSMGVQDFNK',\n", + " 3276.9605255126953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LSPTLAMYR',\n", + " 4045.862274169922,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LSPYDAACAGCVAHGAAADVLAAR',\n", + " 5856.069488525391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LSSPIMPAIAIR',\n", + " 5543.7066650390625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LSTLEVMK',\n", + " 3241.4962005615234,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LTAANMLDAK',\n", + " 2854.2858123779297,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LTAMGVGER',\n", + " 2355.7809448242188,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LTDDDMTIIEGK',\n", + " 3953.3798217773438,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LTGMAFR',\n", + " 2658.5977935791016,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LTGMVQDAQQNK',\n", + " 2050.814208984375,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LTGPASEQQAMEK',\n", + " 2319.0151977539062,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_2513.5501098632803_3141.9376373291007/vectorized_output.fasta'),\n", + " ('LTMLLTGTDNIR',\n", + " 4885.517120361328,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LTPPQISTLMR',\n", + " 4873.618927001953,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5027.100219726562_5655.487747192382/vectorized_output.fasta'),\n", + " ('LVAMGGIGHTSCLYTDQDNQPAR',\n", + " 4131.799621582031,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LVAMGGIGHTSCLYTDQDNQPAR',\n", + " 4123.118591308594,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LVAMGGIGHTSCLYTDQDNQPAR',\n", + " 4124.924468994141,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_4398.712692260741_5027.100219726562/vectorized_output.fasta'),\n", + " ('LVDAVVNAVEHYNEIKPQLLTTGGTSDGR',\n", + " 6887.245330810547,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LVDLPGYGYAEVPEEMKR',\n", + " 5430.205993652344,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LVEYHQMTAPLIGYYSK',\n", + " 5092.37548828125,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_5655.487747192382_6283.875274658202/vectorized_output.fasta'),\n", + " ('LVGDLSIGDQQMVEIAK',\n", + " 5737.104949951172,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVGPLIDVMGSAGEDLK',\n", + " 6185.489044189453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ('LVGPLIDVMGSAGEDLKR',\n", + " 5409.527435302734,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVIMGGSAGR',\n", + " 2819.1629791259766,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3141.9376373291007_3770.325164794921/vectorized_output.fasta'),\n", + " ('LVITPVDGSDPYEEMIPK',\n", + " 6091.446075439453,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVPGYEAPVMLAYSAR',\n", + " 6060.3826904296875,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVTDEAELAGMPESALAAAK',\n", + " 5700.994720458984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVTDEAELAGMPESALAAAK',\n", + " 5699.8297119140625,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LVTDEAELAGMPESALAAAK',\n", + " 5701.030426025391,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6283.875274658202_6912.2628021240225/vectorized_output.fasta'),\n", + " ('LYDQMLEPK',\n", + " 3603.2869720458984,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LYELEMQK',\n", + " 3477.894058227539,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_3770.325164794921_4398.712692260741/vectorized_output.fasta'),\n", + " ('LYPANATTNSSHGVTSIDAIMPVLER',\n", + " 5742.961120605469,\n", + " '/home/robbe/MuMDIA/results/config_playing/temp/part_6912.2628021240225_7540.650329589843/vectorized_output.fasta'),\n", + " ...]" + ] + }, + "execution_count": 133, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "incorrect_matches" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/diann_features.ipynb b/notebook_helpers/diann_features.ipynb new file mode 100644 index 0000000..ccf154c --- /dev/null +++ b/notebook_helpers/diann_features.ipynb @@ -0,0 +1,2948 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 759, + "id": "da93d9dd", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 760, + "id": "6cb9ded3", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import re\n", + "import pickle\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.lines import Line2D\n", + "from scipy.signal import savgol_filter\n", + "from typing import Tuple, List\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 761, + "id": "6ba28234", + "metadata": {}, + "outputs": [], + "source": [ + "ms2pip_preds = pickle.load(\n", + " open(\"/home/robbe/MuMDIA/results/config_playing/ms2pip_predictions.pkl\", \"rb\")\n", + ")\n", + "deeplc_preds = pickle.load(\n", + " open(\"/home/robbe/MuMDIA/results/config_playing/predictions_deeplc.pkl\", \"rb\")\n", + ")\n", + "df_psms = pd.read_csv(\"/home/robbe/MuMDIA/results/config_playing/df_psms.tsv\", sep=\"\\t\")\n", + "df_psms[\"precursor\"] = df_psms[\"peptide\"] + \"/\" + df_psms[\"charge\"].astype(str)\n", + "df_fragment = pd.read_csv(\n", + " \"/home/robbe/MuMDIA/results/config_playing/df_fragment.tsv\", sep=\"\\t\"\n", + ")\n", + "df_fragment[\"fragment_names\"] = df_fragment[\"fragment_type\"].astype(str) + df_fragment[\n", + " \"fragment_ordinals\"\n", + "].astype(\"Int64\").astype(str)" + ] + }, + { + "cell_type": "code", + "execution_count": 762, + "id": "313a0af0", + "metadata": {}, + "outputs": [], + "source": [ + "ms2dict = pickle.load(open(\"/home/robbe/MuMDIA/debug/ms2dict.pkl\", \"rb\"))\n", + "ms1_dict = pickle.load(open(\"/home/robbe/MuMDIA/debug/ms1_dict.pkl\", \"rb\"))\n", + "ms2_to_ms1_dict = pickle.load(\n", + " open(\"/home/robbe/MuMDIA/debug/ms2_to_ms1_dict.pkl\", \"rb\")\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 763, + "id": "bd3981f8", + "metadata": {}, + "outputs": [], + "source": [ + "deeplc_preds = deeplc_preds.to_pandas()" + ] + }, + { + "cell_type": "markdown", + "id": "62d44ea4", + "metadata": {}, + "source": [ + "# 0. Helpers" + ] + }, + { + "cell_type": "code", + "execution_count": 764, + "id": "f7d6f51a", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_XIC(fragments: pd.DataFrame, show: bool = False):\n", + " \"\"\"\n", + " Plot fragment Extracted Ion Chromatograms (XICs) with PSM markers.\n", + "\n", + " Parameters\n", + " ----------\n", + " fragments : pd.DataFrame\n", + " Must contain columns:\n", + " ['fragment_type', 'fragment_ordinals', 'rt', 'fragment_intensity', 'psm_id'].\n", + " show : bool, optional\n", + " If True, call plt.show() before returning (useful in scripts).\n", + "\n", + " Returns\n", + " -------\n", + " fig : matplotlib.figure.Figure\n", + " ax : matplotlib.axes.Axes\n", + " \"\"\"\n", + " required = {\n", + " \"fragment_type\",\n", + " \"fragment_ordinals\",\n", + " \"rt\",\n", + " \"fragment_intensity\",\n", + " \"psm_id\",\n", + " }\n", + " missing = required.difference(fragments.columns)\n", + " if missing:\n", + " raise KeyError(f\"Missing required columns: {sorted(missing)}\")\n", + "\n", + " # Defensive copy and typing\n", + " df = fragments.copy()\n", + "\n", + " # Coerce numeric fields and drop unplottable rows\n", + " df[\"rt\"] = pd.to_numeric(df[\"rt\"], errors=\"coerce\")\n", + " df[\"fragment_intensity\"] = pd.to_numeric(df[\"fragment_intensity\"], errors=\"coerce\")\n", + " df = df.dropna(subset=[\"rt\", \"fragment_intensity\"])\n", + "\n", + " if df.empty:\n", + " raise ValueError(\n", + " \"After coercion and NaN removal, there is no data to plot. \"\n", + " \"Check that 'rt' and 'fragment_intensity' are numeric.\"\n", + " )\n", + "\n", + " fragment_names = df[\"fragment_names\"].unique()\n", + " if len(fragment_names) == 0:\n", + " raise ValueError(\"No fragment names could be derived from the input.\")\n", + "\n", + " # Colors and markers\n", + " cmap = plt.cm.get_cmap(\"tab20\", len(fragment_names))\n", + " fragment_color_map = {frag: cmap(i) for i, frag in enumerate(fragment_names)}\n", + " marker_styles = [\"o\", \"s\", \"D\", \"^\", \"v\", \"p\", \"*\", \"X\", \"H\", \"<\", \">\"]\n", + "\n", + " psm_ids = df[\"psm_id\"].unique()\n", + " psm_marker_map = {\n", + " psm: marker_styles[i % len(marker_styles)] for i, psm in enumerate(psm_ids)\n", + " }\n", + "\n", + " fig, ax = plt.subplots(figsize=(12, 6))\n", + "\n", + " # Lines per fragment\n", + " plotted_any = False\n", + " for frag in fragment_names:\n", + " frag_df = df.loc[df[\"fragment_names\"] == frag].sort_values(\"rt\")\n", + " if frag_df.empty:\n", + " continue\n", + " ax.plot(\n", + " frag_df[\"rt\"].to_numpy(),\n", + " frag_df[\"fragment_intensity\"].to_numpy(),\n", + " color=fragment_color_map[frag],\n", + " linestyle=\"-\",\n", + " linewidth=1,\n", + " label=str(frag),\n", + " )\n", + " plotted_any = True\n", + "\n", + " # Marker overlays per PSM within each fragment\n", + " for frag in fragment_names:\n", + " frag_df = df.loc[df[\"fragment_names\"] == frag]\n", + " if frag_df.empty:\n", + " continue\n", + " for psm in psm_ids:\n", + " psm_df = frag_df.loc[frag_df[\"psm_id\"] == psm]\n", + " if psm_df.empty:\n", + " continue\n", + " ax.scatter(\n", + " psm_df[\"rt\"].to_numpy(),\n", + " psm_df[\"fragment_intensity\"].to_numpy(),\n", + " color=fragment_color_map[frag],\n", + " marker=psm_marker_map[psm],\n", + " edgecolor=\"k\",\n", + " linewidths=0.5,\n", + " s=24,\n", + " )\n", + "\n", + " if not plotted_any:\n", + " raise ValueError(\n", + " \"No non-empty fragment groups to plot. \"\n", + " \"Verify 'fragment_type'/'fragment_ordinals' values.\"\n", + " )\n", + "\n", + " ax.set_xlabel(\"Retention Time (RT)\")\n", + " ax.set_ylabel(\"Fragment Intensity\")\n", + "\n", + " # Fragment legend\n", + " frag_legend_elements = [\n", + " Line2D([0], [0], color=fragment_color_map[frag], lw=2, label=str(frag))\n", + " for frag in fragment_names\n", + " ]\n", + " legend1 = ax.legend(\n", + " handles=frag_legend_elements,\n", + " title=\"Fragment\",\n", + " bbox_to_anchor=(1.05, 1),\n", + " loc=\"upper left\",\n", + " frameon=True,\n", + " )\n", + " ax.add_artist(legend1)\n", + "\n", + " fig.tight_layout()\n", + "\n", + " if show:\n", + " plt.show()\n", + "\n", + " return fig" + ] + }, + { + "cell_type": "code", + "execution_count": 765, + "id": "0a9b7307", + "metadata": {}, + "outputs": [], + "source": [ + "def find_top_n_fragments(fragments: pd.DataFrame, top_n: int = 6) -> List[str]:\n", + " \"\"\"\n", + " Find the top n fragments by their maximum intensity.\n", + " \"\"\"\n", + " top_fragments = (\n", + " (\n", + " fragments.groupby(\"fragment_names\")[\"fragment_intensity\"]\n", + " .max()\n", + " .nlargest(top_n)\n", + " )\n", + " .reset_index()[\"fragment_names\"]\n", + " .tolist()\n", + " )\n", + " return top_fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 766, + "id": "9315e050", + "metadata": {}, + "outputs": [], + "source": [ + "def find_best_fragment(\n", + " fragments: pd.DataFrame, top_n: int = 6\n", + ") -> Tuple[str, List[str]]:\n", + " \"\"\"\n", + " Identify the \"best\" fragment. This fragment is defined as the fragment from the top 6 most intense fragments that maximizes the sum of Pearson correlations with the remaining 5 out of the top 6 list\n", + " \"\"\"\n", + " # Compute the top 6 most intense fragments in a list\n", + " top_fragments = find_top_n_fragments(fragments, top_n)\n", + "\n", + " # Filter the original fragments to keep only the top fragments\n", + " filtered_fragments = fragments[fragments[\"fragment_names\"].isin(top_fragments)]\n", + "\n", + " # Compute pairwise Pearson correlations\n", + " corr_matrix = filtered_fragments.pivot_table(\n", + " index=\"rt\", columns=\"fragment_names\", values=\"fragment_intensity\"\n", + " ).corr(method=\"pearson\")\n", + "\n", + " # Find the fragment with the highest sum of correlations\n", + " if corr_matrix.empty:\n", + " return None\n", + " # corr_matrix.set_index(\"fragment_names\", inplace=True)\n", + " corr_matrix[\"fragment_corr_sum\"] = corr_matrix.sum(axis=1)\n", + " best_fragment = corr_matrix[\"fragment_corr_sum\"].idxmax()\n", + " return best_fragment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e08eb141", + "metadata": {}, + "outputs": [], + "source": [ + "def search_sorted_tolerance_np(\n", + " arr, target, tol=6.5\n", + "): # TODO: propagate config fragment mass tolerance\n", + " arr = np.asarray(arr)\n", + " # Check if array is sorted, and if not, sort\n", + " if not np.all(np.diff(arr) >= 0):\n", + " arr = np.sort(arr)\n", + " idx = np.searchsorted(arr, target)\n", + " candidates = []\n", + " if 0 <= idx < len(arr):\n", + " candidates.append((idx, arr[idx]))\n", + " if 0 <= idx - 1 < len(arr):\n", + " candidates.append((idx - 1, arr[idx - 1]))\n", + " if not candidates:\n", + " return None, None\n", + " best_idx, best_val = min(candidates, key=lambda x: abs(x[1] - target))\n", + " return (best_idx, best_val) if abs(best_val - target) <= tol else (None, None)" + ] + }, + { + "cell_type": "code", + "execution_count": 768, + "id": "c6533b73", + "metadata": {}, + "outputs": [], + "source": [ + "def find_intensity_ms2dict(\n", + " row, ms2dict, offset=1, scan_prefix=\"controllerType=0 controllerNumber=1 scan=\"\n", + "):\n", + " scan = row[\"scan\"]\n", + " scan_offset = scan + offset\n", + " ms2dict_scan = ms2dict.get(f\"{scan_prefix}{scan_offset}\", {})\n", + " fragment_mz = row[\"fragment_mz_experimental\"]\n", + " # Find index of fragment_mz in ms2dict_scan.mz\n", + " mzs = ms2dict_scan.get(\"mz\", [])\n", + " intensities = ms2dict_scan.get(\"intensity\", [])\n", + " best_idx, best_val = search_sorted_tolerance_np(mzs, fragment_mz)\n", + " return intensities[best_idx] if best_idx is not None else None" + ] + }, + { + "cell_type": "code", + "execution_count": 769, + "id": "26905c64", + "metadata": {}, + "outputs": [], + "source": [ + "def smooth_trace(\n", + " fragments: pd.DataFrame, mode=\"sg\", window_length=3, polyorder=1, ms2dict=None\n", + "):\n", + " \"\"\"Smooth the fragment intensity traces using a specified smoothing method.\"\"\"\n", + " if mode == \"sg\":\n", + " # Apply Savitzky-Golay smoothing per fragment trace using scipy.signal.savgol_filter\n", + " smoothed = []\n", + " for frag, frag_df in fragments.groupby(\"fragment_names\"):\n", + " frag_df_sorted = frag_df.sort_values(\"rt\")\n", + " intensity = frag_df_sorted[\"fragment_intensity\"].to_numpy()\n", + " wl = min(window_length, len(intensity))\n", + " if wl % 2 == 0:\n", + " wl += 1\n", + " if wl > len(intensity):\n", + " wl = len(intensity) if len(intensity) % 2 == 1 else len(intensity) - 1\n", + " if wl < 3:\n", + " wl = 3\n", + " if len(intensity) < wl:\n", + " smoothed_intensity = intensity\n", + " else:\n", + " smoothed_intensity = savgol_filter(\n", + " intensity, window_length=wl, polyorder=polyorder\n", + " )\n", + " frag_df_sorted = frag_df_sorted.copy()\n", + " frag_df_sorted[\"fragment_intensity\"] = smoothed_intensity\n", + " smoothed.append(frag_df_sorted)\n", + " return pd.concat(smoothed, ignore_index=True)\n", + " if mode == \"min_neighbor_rt\":\n", + " # Apply int(RT) = min(int(prev_RT_point), int(RT), int(next_RT_point))\n", + " smoothed = []\n", + " for frag, frag_df in fragments.groupby(\"fragment_names\"):\n", + " frag_df_sorted = frag_df.sort_values(\"rt\").reset_index(drop=True)\n", + " intensity = frag_df_sorted[\"fragment_intensity\"].to_numpy()\n", + " smoothed_intensity = intensity.copy()\n", + " for i in range(1, len(intensity) - 1):\n", + " smoothed_intensity[i] = min(\n", + " intensity[i - 1], intensity[i], intensity[i + 1]\n", + " )\n", + " frag_df_sorted = frag_df_sorted.copy()\n", + " frag_df_sorted[\"fragment_intensity\"] = smoothed_intensity\n", + " smoothed.append(frag_df_sorted)\n", + " return pd.concat(smoothed, ignore_index=True)\n", + "\n", + " if mode == \"min_neighbor_scan\":\n", + " # Apply int(scan) = min(int(prev_scan), int(scan), int(next_scan))\n", + " # TODO: make work with other scannr formats\n", + " fragments[\"scan\"] = fragments[\"scannr\"].apply(\n", + " lambda x: int(re.search(r\"scan=(\\d+)\", x).group(1))\n", + " )\n", + " fragments[\"intensity_prev_scan\"] = fragments.apply(\n", + " lambda row: find_intensity_ms2dict(row, ms2dict, offset=-1), axis=1\n", + " )\n", + " fragments[\"intensity_next_scan\"] = fragments.apply(\n", + " lambda row: find_intensity_ms2dict(row, ms2dict, offset=1), axis=1\n", + " )\n", + "\n", + " smoothed_fragments = fragments.copy()\n", + " smoothed_fragments[\"fragment_intensity\"] = smoothed_fragments[\n", + " [\"intensity_prev_scan\", \"fragment_intensity\", \"intensity_next_scan\"]\n", + " ].min(axis=1)\n", + "\n", + " return smoothed_fragments\n", + "\n", + " else:\n", + " raise ValueError(\n", + " f\"Unknown smoothing mode: {mode}\"\n", + " ) # TODO: Implement other smoothing modes" + ] + }, + { + "cell_type": "code", + "execution_count": 779, + "id": "0c4d100e", + "metadata": {}, + "outputs": [], + "source": [ + "precursor = df_psms[df_psms[\"precursor\"] == \"GYINSLGALTGGQALQQAK/2\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 780, + "id": "191642a2", + "metadata": {}, + "outputs": [], + "source": [ + "precursor_fragments = df_fragment[df_fragment[\"psm_id\"].isin(precursor[\"psm_id\"])]" + ] + }, + { + "cell_type": "code", + "execution_count": 781, + "id": "4616affa", + "metadata": {}, + "outputs": [], + "source": [ + "precursor_fragments[\"ppm_error\"] = (\n", + " abs(\n", + " precursor_fragments[\"fragment_mz_calculated\"]\n", + " - precursor_fragments[\"fragment_mz_experimental\"]\n", + " )\n", + " / precursor_fragments[\"fragment_mz_calculated\"]\n", + " * 1e6\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 783, + "id": "1948856e", + "metadata": {}, + "outputs": [], + "source": [ + "smoothed = smooth_trace(precursor_fragments, mode=\"sg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 784, + "id": "6df77c53", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute('tabindex', '0');\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;' +\n 'z-index: 2;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key_event(event, name);\n };\n }\n\n canvas_div.addEventListener(\n 'keydown',\n on_keyboard_event_closure('key_press')\n );\n canvas_div.addEventListener(\n 'keyup',\n on_keyboard_event_closure('key_release')\n );\n\n this._canvas_extra_style(canvas_div);\n this.root.appendChild(canvas_div);\n\n var canvas = (this.canvas = document.createElement('canvas'));\n canvas.classList.add('mpl-canvas');\n canvas.setAttribute(\n 'style',\n 'box-sizing: content-box;' +\n 'pointer-events: none;' +\n 'position: relative;' +\n 'z-index: 0;'\n );\n\n this.context = canvas.getContext('2d');\n\n var backingStore =\n this.context.backingStorePixelRatio ||\n this.context.webkitBackingStorePixelRatio ||\n this.context.mozBackingStorePixelRatio ||\n this.context.msBackingStorePixelRatio ||\n this.context.oBackingStorePixelRatio ||\n this.context.backingStorePixelRatio ||\n 1;\n\n this.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n 'canvas'\n ));\n rubberband_canvas.setAttribute(\n 'style',\n 'box-sizing: content-box;' +\n 'left: 0;' +\n 'pointer-events: none;' +\n 'position: absolute;' +\n 'top: 0;' +\n 'z-index: 1;'\n );\n\n // Apply a ponyfill if ResizeObserver is not implemented by browser.\n if (this.ResizeObserver === undefined) {\n if (window.ResizeObserver !== undefined) {\n this.ResizeObserver = window.ResizeObserver;\n } else {\n var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n this.ResizeObserver = obs.ResizeObserver;\n }\n }\n\n this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n // There's no need to resize if the WebSocket is not connected:\n // - If it is still connecting, then we will get an initial resize from\n // Python once it connects.\n // - If it has disconnected, then resizing will clear the canvas and\n // never get anything back to refill it, so better to not resize and\n // keep something visible.\n if (fig.ws.readyState != 1) {\n return;\n }\n var nentries = entries.length;\n for (var i = 0; i < nentries; i++) {\n var entry = entries[i];\n var width, height;\n if (entry.contentBoxSize) {\n if (entry.contentBoxSize instanceof Array) {\n // Chrome 84 implements new version of spec.\n width = entry.contentBoxSize[0].inlineSize;\n height = entry.contentBoxSize[0].blockSize;\n } else {\n // Firefox implements old version of spec.\n width = entry.contentBoxSize.inlineSize;\n height = entry.contentBoxSize.blockSize;\n }\n } else {\n // Chrome <84 implements even older version of spec.\n width = entry.contentRect.width;\n height = entry.contentRect.height;\n }\n\n // Keep the size of the canvas and rubber band canvas in sync with\n // the canvas container.\n if (entry.devicePixelContentBoxSize) {\n // Chrome 84 implements new version of spec.\n canvas.setAttribute(\n 'width',\n entry.devicePixelContentBoxSize[0].inlineSize\n );\n canvas.setAttribute(\n 'height',\n entry.devicePixelContentBoxSize[0].blockSize\n );\n } else {\n canvas.setAttribute('width', width * fig.ratio);\n canvas.setAttribute('height', height * fig.ratio);\n }\n /* This rescales the canvas back to display pixels, so that it\n * appears correct on HiDPI screens. */\n canvas.style.width = width + 'px';\n canvas.style.height = height + 'px';\n\n rubberband_canvas.setAttribute('width', width);\n rubberband_canvas.setAttribute('height', height);\n\n // And update the size in Python. We ignore the initial 0/0 size\n // that occurs as the element is placed into the DOM, which should\n // otherwise not happen due to the minimum size styling.\n if (width != 0 && height != 0) {\n fig.request_resize(width, height);\n }\n }\n });\n this.resizeObserverInstance.observe(canvas_div);\n\n function on_mouse_event_closure(name) {\n /* User Agent sniffing is bad, but WebKit is busted:\n * https://bugs.webkit.org/show_bug.cgi?id=144526\n * https://bugs.webkit.org/show_bug.cgi?id=181818\n * The worst that happens here is that they get an extra browser\n * selection when dragging, if this check fails to catch them.\n */\n var UA = navigator.userAgent;\n var isWebKit = /AppleWebKit/.test(UA) && !/Chrome/.test(UA);\n if(isWebKit) {\n return function (event) {\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We\n * want to control all of the cursor setting manually through\n * the 'cursor' event from matplotlib */\n event.preventDefault()\n return fig.mouse_event(event, name);\n };\n } else {\n return function (event) {\n return fig.mouse_event(event, name);\n };\n }\n }\n\n canvas_div.addEventListener(\n 'mousedown',\n on_mouse_event_closure('button_press')\n );\n canvas_div.addEventListener(\n 'mouseup',\n on_mouse_event_closure('button_release')\n );\n canvas_div.addEventListener(\n 'dblclick',\n on_mouse_event_closure('dblclick')\n );\n // Throttle sequential mouse events to 1 every 20ms.\n canvas_div.addEventListener(\n 'mousemove',\n on_mouse_event_closure('motion_notify')\n );\n\n canvas_div.addEventListener(\n 'mouseenter',\n on_mouse_event_closure('figure_enter')\n );\n canvas_div.addEventListener(\n 'mouseleave',\n on_mouse_event_closure('figure_leave')\n );\n\n canvas_div.addEventListener('wheel', function (event) {\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n on_mouse_event_closure('scroll')(event);\n });\n\n canvas_div.appendChild(canvas);\n canvas_div.appendChild(rubberband_canvas);\n\n this.rubberband_context = rubberband_canvas.getContext('2d');\n this.rubberband_context.strokeStyle = '#000000';\n\n this._resize_canvas = function (width, height, forward) {\n if (forward) {\n canvas_div.style.width = width + 'px';\n canvas_div.style.height = height + 'px';\n }\n };\n\n // Disable right mouse context menu.\n canvas_div.addEventListener('contextmenu', function (_e) {\n event.preventDefault();\n return false;\n });\n\n function set_focus() {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'mpl-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n continue;\n }\n\n var button = (fig.buttons[name] = document.createElement('button'));\n button.classList = 'mpl-widget';\n button.setAttribute('role', 'button');\n button.setAttribute('aria-disabled', 'false');\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n\n var icon_img = document.createElement('img');\n icon_img.src = '_images/' + image + '.png';\n icon_img.srcset = '_images/' + image + '_large.png 2x';\n icon_img.alt = tooltip;\n button.appendChild(icon_img);\n\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n var fmt_picker = document.createElement('select');\n fmt_picker.classList = 'mpl-widget';\n toolbar.appendChild(fmt_picker);\n this.format_dropdown = fmt_picker;\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = document.createElement('option');\n option.selected = fmt === mpl.default_extension;\n option.innerHTML = fmt;\n fmt_picker.appendChild(option);\n }\n\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n};\n\nmpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', { width: x_pixels, height: y_pixels });\n};\n\nmpl.figure.prototype.send_message = function (type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n};\n\nmpl.figure.prototype.send_draw_message = function () {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n};\n\nmpl.figure.prototype.handle_resize = function (fig, msg) {\n var size = msg['size'];\n if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n fig._resize_canvas(size[0], size[1], msg['forward']);\n fig.send_message('refresh', {});\n }\n};\n\nmpl.figure.prototype.handle_rubberband = function (fig, msg) {\n var x0 = msg['x0'] / fig.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n var x1 = msg['x1'] / fig.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0,\n 0,\n fig.canvas.width / fig.ratio,\n fig.canvas.height / fig.ratio\n );\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n};\n\nmpl.figure.prototype.handle_figure_label = function (fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n};\n\nmpl.figure.prototype.handle_cursor = function (fig, msg) {\n fig.canvas_div.style.cursor = msg['cursor'];\n};\n\nmpl.figure.prototype.handle_message = function (fig, msg) {\n fig.message.textContent = msg['message'];\n};\n\nmpl.figure.prototype.handle_draw = function (fig, _msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n};\n\nmpl.figure.prototype.handle_image_mode = function (fig, msg) {\n fig.image_mode = msg['mode'];\n};\n\nmpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n for (var key in msg) {\n if (!(key in fig.buttons)) {\n continue;\n }\n fig.buttons[key].disabled = !msg[key];\n fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n }\n};\n\nmpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n if (msg['mode'] === 'PAN') {\n fig.buttons['Pan'].classList.add('active');\n fig.buttons['Zoom'].classList.remove('active');\n } else if (msg['mode'] === 'ZOOM') {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.add('active');\n } else {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.remove('active');\n }\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Called whenever the canvas gets updated.\n this.send_message('ack', {});\n};\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function (fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n var img = evt.data;\n if (img.type !== 'image/png') {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n img.type = 'image/png';\n }\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src\n );\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n img\n );\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n } else if (\n typeof evt.data === 'string' &&\n evt.data.slice(0, 21) === 'data:image/png;base64'\n ) {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig['handle_' + msg_type];\n } catch (e) {\n console.log(\n \"No handler for the '%s' message type: \",\n msg_type,\n msg\n );\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '%s' message: \", msg_type, msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\n \"Exception inside the 'handler_%s' callback:\",\n msg_type,\n e,\n e.stack,\n msg\n );\n }\n }\n };\n};\n\nfunction getModifiers(event) {\n var mods = [];\n if (event.ctrlKey) {\n mods.push('ctrl');\n }\n if (event.altKey) {\n mods.push('alt');\n }\n if (event.shiftKey) {\n mods.push('shift');\n }\n if (event.metaKey) {\n mods.push('meta');\n }\n return mods;\n}\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * https://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys(original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object') {\n obj[key] = original[key];\n }\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function (event, name) {\n if (name === 'button_press') {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n // from https://stackoverflow.com/q/1114465\n var boundingRect = this.canvas.getBoundingClientRect();\n var x = (event.clientX - boundingRect.left) * this.ratio;\n var y = (event.clientY - boundingRect.top) * this.ratio;\n\n this.send_message(name, {\n x: x,\n y: y,\n button: event.button,\n step: event.step,\n buttons: event.buttons,\n modifiers: getModifiers(event),\n guiEvent: simpleKeys(event),\n });\n\n return false;\n};\n\nmpl.figure.prototype._key_event_extra = function (_event, _name) {\n // Handle any extra behaviour associated with a key event\n};\n\nmpl.figure.prototype.key_event = function (event, name) {\n // Prevent repeat events\n if (name === 'key_press') {\n if (event.key === this._key) {\n return;\n } else {\n this._key = event.key;\n }\n }\n if (name === 'key_release') {\n this._key = null;\n }\n\n var value = '';\n if (event.ctrlKey && event.key !== 'Control') {\n value += 'ctrl+';\n }\n else if (event.altKey && event.key !== 'Alt') {\n value += 'alt+';\n }\n else if (event.shiftKey && event.key !== 'Shift') {\n value += 'shift+';\n }\n\n value += 'k' + event.key;\n\n this._key_event_extra(event, name);\n\n this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n return false;\n};\n\nmpl.figure.prototype.toolbar_button_onclick = function (name) {\n if (name === 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message('toolbar_button', { name: name });\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n this.message.textContent = tooltip;\n};\n\n///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n// prettier-ignore\nvar _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n\nmpl.default_extension = \"png\";/* global mpl */\n\nvar comm_websocket_adapter = function (comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.binaryType = comm.kernel.ws.binaryType;\n ws.readyState = comm.kernel.ws.readyState;\n function updateReadyState(_event) {\n if (comm.kernel.ws) {\n ws.readyState = comm.kernel.ws.readyState;\n } else {\n ws.readyState = 3; // Closed state.\n }\n }\n comm.kernel.ws.addEventListener('open', updateReadyState);\n comm.kernel.ws.addEventListener('close', updateReadyState);\n comm.kernel.ws.addEventListener('error', updateReadyState);\n\n ws.close = function () {\n comm.close();\n };\n ws.send = function (m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function (msg) {\n //console.log('receiving', msg['content']['data'], msg);\n var data = msg['content']['data'];\n if (data['blob'] !== undefined) {\n data = {\n data: new Blob(msg['buffers'], { type: data['blob'] }),\n };\n }\n // Pass the mpl event to the overridden (by mpl) onmessage function.\n ws.onmessage(data);\n });\n return ws;\n};\n\nmpl.mpl_figure_comm = function (comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = document.getElementById(id);\n var ws_proxy = comm_websocket_adapter(comm);\n\n function ondownload(figure, _format) {\n window.open(figure.canvas.toDataURL());\n }\n\n var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element;\n fig.cell_info = mpl.find_output_cell(\"
\");\n if (!fig.cell_info) {\n console.error('Failed to find cell for figure', id, fig);\n return;\n }\n fig.cell_info[0].output_area.element.on(\n 'cleared',\n { fig: fig },\n fig._remove_fig_handler\n );\n};\n\nmpl.figure.prototype.handle_close = function (fig, msg) {\n var width = fig.canvas.width / fig.ratio;\n fig.cell_info[0].output_area.element.off(\n 'cleared',\n fig._remove_fig_handler\n );\n fig.resizeObserverInstance.unobserve(fig.canvas_div);\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable();\n fig.parent_element.innerHTML =\n '';\n fig.close_ws(fig, msg);\n};\n\nmpl.figure.prototype.close_ws = function (fig, msg) {\n fig.send_message('closing', msg);\n // fig.ws.close()\n};\n\nmpl.figure.prototype.push_to_output = function (_remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width / this.ratio;\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] =\n '';\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message('ack', {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () {\n fig.push_to_output();\n }, 1000);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'btn-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n var button;\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n continue;\n }\n\n button = fig.buttons[name] = document.createElement('button');\n button.classList = 'btn btn-default';\n button.href = '#';\n button.title = name;\n button.innerHTML = '';\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n // Add the status bar.\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message pull-right';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n\n // Add the close button to the window.\n var buttongrp = document.createElement('div');\n buttongrp.classList = 'btn-group inline pull-right';\n button = document.createElement('button');\n button.classList = 'btn btn-mini btn-primary';\n button.href = '#';\n button.title = 'Stop Interaction';\n button.innerHTML = '';\n button.addEventListener('click', function (_evt) {\n fig.handle_close(fig, {});\n });\n button.addEventListener(\n 'mouseover',\n on_mouseover_closure('Stop Interaction')\n );\n buttongrp.appendChild(button);\n var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n titlebar.insertBefore(buttongrp, titlebar.firstChild);\n};\n\nmpl.figure.prototype._remove_fig_handler = function (event) {\n var fig = event.data.fig;\n if (event.target !== this) {\n // Ignore bubbled events from children.\n return;\n }\n fig.close_ws(fig, {});\n};\n\nmpl.figure.prototype._root_extra_style = function (el) {\n el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n};\n\nmpl.figure.prototype._canvas_extra_style = function (el) {\n // this is important to make the div 'focusable\n el.setAttribute('tabindex', 0);\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n } else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n};\n\nmpl.figure.prototype._key_event_extra = function (event, _name) {\n // Check for shift+enter\n if (event.shiftKey && event.which === 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n fig.ondownload(fig, null);\n};\n\nmpl.find_output_cell = function (html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i = 0; i < ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code') {\n for (var j = 0; j < cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] === html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n};\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel !== null) {\n IPython.notebook.kernel.comm_manager.register_target(\n 'matplotlib',\n mpl.mpl_figure_comm\n );\n}\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyJZJREFUeJzs3XeYHnW9///nzNxle3rbkIQUEnoVpQlBEQREsXCwcCiK7YuVY+NYEETx/I79HBUbIEc5FkBQ5AAqTRSkRnoJCem9bd+975n5/XHv3smySdhNdjdk9/m4rvvK3nPPzH5mc//1ut7v9ydI0zRFkiRJkiRJGkThrl6AJEmSJEmShh9DKUmSJEmSJA06QylJkiRJkiQNOkMpSZIkSZIkDTpDKUmSJEmSJA06QylJkiRJkiQNOkMpSZIkSZIkDTpDKUmSJEmSJA06QylJkiRJkiQNOkMpSZIkSZIkDbphHUrdc889nHbaadTX1xMEATfeeGOf75GmKd/4xjeYPXs2+XyeyZMn89WvfrX/FytJkiRJkjSEZHb1Anal5uZmDjroIN773vfytre9bYfu8fGPf5zbb7+db3zjGxxwwAGsX7+e9evX9/NKJUmSJEmShpYgTdN0Vy/ilSAIAn73u99x+umnl4+1t7fz+c9/nv/93/9l48aN7L///vzHf/wHc+fOBeDpp5/mwAMP5IknnmDOnDm7ZuGSJEmSJEm7oWHdvvdyPvKRj3Dffffxq1/9iscee4wzzjiDN77xjTz//PMA/OEPf2DGjBncfPPNTJ8+nT333JPzzz/fSilJkiRJkqSXYSi1DYsXL+aqq67it7/9La997WuZOXMmn/rUpzjmmGO46qqrAFiwYAGLFi3it7/9Lddccw1XX301Dz/8MO94xzt28eolSZIkSZJe2Yb1TKntefzxx4njmNmzZ3c73t7ezpgxYwBIkoT29nauueaa8nk/+9nPOOyww3j22Wdt6ZMkSZIkSdoGQ6ltaGpqIooiHn74YaIo6vZZTU0NAJMmTSKTyXQLrvbZZx+gVGllKCVJkiRJkrR1hlLbcMghhxDHMatXr+a1r33tVs85+uijKRaLvPDCC8ycOROA5557DoBp06YN2lolSZIkSZJ2N8N6972mpibmz58PlEKob33rWxx//PGMHj2aqVOnctZZZ/G3v/2Nb37zmxxyyCGsWbOGv/zlLxx44IGceuqpJEnC4YcfTk1NDd/5zndIkoQLLriAuro6br/99l38dJIkSZIkSa9cwzqUuuuuuzj++ON7HD/nnHO4+uqrKRQKXHbZZVxzzTUsW7aMsWPHcsQRR3DJJZdwwAEHALB8+XI++tGPcvvtt1NdXc3JJ5/MN7/5TUaPHj3YjyNJkiRJkrTbGNahlCRJkiRJknaNcFcvQJIkSZIkScOPoZQkSZIkSZIG3bDbfS9JEpYvX05tbS1BEOzq5UiSJEmSJA0paZrS2NhIfX09YbjteqhhF0otX76cKVOm7OplSJIkSZIkDWlLlixhjz322Obnwy6Uqq2tBUp/mLq6ul28GkmSJEmSpKGloaGBKVOmlDOYbRl2oVRXy15dXZ2hlCRJkiRJ0gB5ubFJDjqXJEmSJEnSoDOUkiRJkiRJ0qAzlJIkSZIkSdKgM5SSJEmSJEnSoDOUkiRJkiRJ0qAzlJIkSZIkSdKgM5SSJEmSJEnSoDOUkiRJkiRJ0qAzlJIkSZIkSdKgM5SSJEmSJEnSoDOUkiRJkiRJ0qAzlJIkSZIkSdKgM5SSJEmSJEnSoDOUkiRJkiRJ0qAzlJIkSZIkSdKgM5SSJEmSJEnSoDOU0lYtX76cv/71ryxfvnxXL0WSJEmSJA1BmV29AL2yNDU18YH3vZeGNauZPnECC1euom7ceH5y5VVUV1fv6uVJkiRJkqQhwlBK3Xzgfe/lqGmTOeTE48rHHn12Pu9/73lc++vf7MKVSZIkSZKkocT2PZUtW7aMhjWrOWTOrG7HD5kzi4Y1q23lkyRJkiRJ/cZQSmULFixg+sQJW/1sz4njWbBgwSCvSJIkSZIkDVWGUiqbOXMmC1eu2upnL65czYwZMwZ5RZIkSZIkaagylFJZfX09dePG8+iz87sdn/fsfOrGjae+vn4XrUySJEmSJA01hlLq5idXXsXfFy3j+aXLaWxpAWBdochPrrxqF69MkiRJkiQNJe6+p26qq6u59te/4eEbf8MDDz1MJgw4aEo9bz31FNI0BaB2xEhu+P3vd/FKJUmSJEnS7sxQSluVCQMKxQIH7jUTgIv/9V/Kn335ml/vqmVJkiRJkqQhwvY9bVVSKFIoxLt6GZIkSZIkaYgylNJWxcUCHcXCrl6GJEmSJEkaogyltFWlUMpKKUmSJEmSNDAMpbRVSaFAR7G4q5chSZIkSZKGKAedq4c0SUjimCib48vX/Jrqijyf/pfTufaOv/Lc0uXUjhi5q5coSZIkSZJ2c4ZS6iHurJD62IUXcumMvYiLBe7/+Y/58qWXMm7m7F28OkmSJEmSNBTYvqce4kJpwHmYyZb+jTIQBOXjkiRJkiRJO8tQSj0knbvuRdlSKBUEAVEmS1zo2JXLkiRJkiRJQ4ihlHp4aaUUlAIqK6UkSZIkSVJ/MZRSDy+tlOr62VBKkiRJkiT1F0Mp9RBvJZQKs9nycUmSJEmSpJ1lKKUe4kJp970os3lzxiibc6aUJEmSJEnqN4ZS6qGrfa/bTKlMlsT2PUmSJEmS1E8MpdRDXCgQhCFhFJWPOVNKkiRJkiT1J0Mp9RAXC0RbVEmBoZQkSZIkSepfhlLqIS4UCLOGUpIkSZIkaeAYSqmHZFuVUu6+J0mSJEmS+omhlHooVUpluh1z9z1JkiRJktSfDKXUQ1Is9qiUCjOl9r00TXfRqiRJkiRJ0lBiKKUe4kKBaCszpUhTkjjeRauSJEmSJElDiaGUeoiLBcKtzJQCSBx2LkmSJEmS+sEuDaUuv/xyDj/8cGpraxk/fjynn346zz777HavufrqqwmCoNuroqJikFY8PCRbrZTKAThXSpIkSZIk9YtdGkrdfffdXHDBBdx///386U9/olAocOKJJ9Lc3Lzd6+rq6lixYkX5tWjRokFa8fAQF4tEmZcOOs92fmallCRJkiRJ2nmZlz9l4Nx6663d3l999dWMHz+ehx9+mGOPPXab1wVBwMSJEwd6ecNWXNzGTClK86YkSZIkSZJ21itqptSmTZsAGD169HbPa2pqYtq0aUyZMoW3vOUtPPnkk4OxvGEjKWxlplTGUEqSJEmSJPWfV0wolSQJn/jEJzj66KPZf//9t3nenDlzuPLKK7npppv4xS9+QZIkHHXUUSxdunSr57e3t9PQ0NDtpe2Li4VyCNXFmVKSJEmSJKk/7dL2vS1dcMEFPPHEE9x7773bPe/II4/kyCOPLL8/6qij2GefffjRj37EV77ylR7nX3755VxyySX9vt6hKk1TkmKR8CXte2G29FWxUkqSJEmSJPWHV0Sl1Ec+8hFuvvlm7rzzTvbYY48+XZvNZjnkkEOYP3/+Vj+/6KKL2LRpU/m1ZMmS/ljykJV0DjJ/aaVUGEYEUWQoJUmSJEmS+sUurZRK05SPfvSj/O53v+Ouu+5i+vTpfb5HHMc8/vjjnHLKKVv9PJ/Pk8/nd3apw0ZX6PTSQeddxxJ335MkSZIkSf1gl4ZSF1xwAddeey033XQTtbW1rFy5EoARI0ZQWVkJwNlnn83kyZO5/PLLAbj00ks54ogjmDVrFhs3buQ///M/WbRoEeeff/4ue46hJC4WAQgzPb8aUSbrTClJkiRJktQvdmko9cMf/hCAuXPndjt+1VVXce655wKwePFiwnBzl+GGDRt4//vfz8qVKxk1ahSHHXYYf//739l3330Ha9lDWrLdSqmc7XuSJEmSJKlf7PL2vZdz1113dXv/7W9/m29/+9sDtCLF25gpBaWgylBKkiRJkiT1h1fEoHO9crzcTClDKUmSJEmS1B8MpdRNUp4pZSglSZIkSZIGjqGUutl+pVSu3N4nSZIkSZK0Mwyl1E1cLEAQEIQ9vxqhu+9JkiRJkqR+YiilbpJigSibJQiCHp9F2Wx5dz5JkiRJkqSdYSilbuJCYas774EzpSRJkiRJUv8xlFI3cbFAuJV5UmAoJUmSJEmS+o+hlLpJXqZSKomLpEkyyKuSJEmSJElDjaGUuomLRaJMZqufRdlc5zlWS0mSJEmSpJ1jKKVu4kJp0PnWdFVQ2cInSZIkSZJ2lqGUukmKBcLttO+BoZQkSZIkSdp5hlLqZnuVUmE5lOoYzCVJkiRJkqQhyFBK3cTbrZTqnCllpZQkSZIkSdpJhlLqJtneTCnb9yRJkiRJUj8xlFI3cbFQHmj+Ul2hVOLue5IkSZIkaScZSqmbuFgkzGa2+lkYZSAInCklSZIkSZJ2mqGUytI0LbXvbaNSKggCokzW9j1JkiRJkrTTDKVUlsRFgG3OlOr6zFBKkiRJkiTtLEMplXWFTdvafQ8MpSRJkiRJUv8wlFJZUuyqlNr6TCmAMJt1ppQkSZIkSdpphlIq66qA2tZMKYAomyN29z1JkiRJkrSTDKVU1qv2PQedS5IkSZKkfmAopbKkswLq5QadJ4ZSkiRJkiRpJxlKqazcvufue5IkSZIkaYAZSqmsa1aUu+9JkiRJkqSBZiilsqRYgCAgjKJtnhO5+54kSZIkSeoHhlIqiwtFokyGIAi2eY6770mSJEmSpP5gKKWyuFgg3M48KSi19sWFAmmaDtKqJEmSJEnSUGQopbKkUCDazjwp6ByCnqYkcTxIq5IkSZIkSUORoZTK4mIvQylwrpQkSZIkSdophlIqS4rFl23fi7K50rnuwCdJkiRJknaCoZTK4kKBjmJxu+dsrpQylJIkSZIkSTvOUEoANDc3M++Rh3nowQd57zln09zcvNXzukKpVStXDObyJEmSJEnSEGMoJR599FFOPH4uIytyHDBjTw4aN4qTXnc88+bN63Fu18yp955zDosXLx7chUqSJEmSpCHDUGqYKxaLnPXOM7no3W+ntqoKgFftM5vPvettvOfMf6H4kna+rplSb5t7DF/58sWDvl5JkiRJkjQ0GEoNc5lMhvpJk6iuqOh2vKqigvpJ9WQymW7Hly5fDsBh+8xhyfz5VktJkiRJkqQdYigl3njqm3jw6We7HXvwqWc5+U1v6nHuZZdcQpKmAJx5/NFWS0mSJEmSpB1iKCXOOPNM7nnsKZIkoaWtjXWbGvjr409xxplndjtv8eLFLF0wnzAIAJg9dQpL5s9nyZIlu2LZkiRJkiRpN2YoJaZOncqrjjmWjmLME8tWccMjT3L4a49jypQp3c679OKLOfP4Y7odO/P4o/nKxVZLSZIkSZKkvgnStLMXa5hoaGhgxIgRbNq0ibq6ul29nFeU+6/5MVMOeTWTDzi4x2crVqzgNa86jLcdfyxvfM2rWLZmLY8veBGAG+68h3889DCTJk0a3AVLkiRJkqRXnN5mL5ltfqJhJ4ljwija6mejRo3iml9eC0BmyXz2mjiZma97IwCnn/8hRo0aNWjrlCRJkiRJuz9DKQGQpilpkhBsI5SqqKhg7ty5APzz92upGjWavV47d/AWKEmSJEmShhRnSgmANEkACMOth1JbijIZkmJxoJckSZIkSZKGMEMpAaXWPYAgevmvRBhlSGJDKUmSJEmStOMMpQRAmpRCqd5USoVWSkmSJEmSpJ1kKCVgc6XUtgadb8lQSpIkSZIk7SxDKQGQltv3ehdKxbbvSZIkSZKknWAoJQCScvvey38loshKKUmSJEmStHMMpQRAGpd23+ttpZShlCRJkiRJ2hmGUgK2qJQylJIkSZIkSYPAUErA5kHnQS9333OmlCRJkiRJ2hmGUgI2DzrvVaVU50ypNE0HelmSJEmSJGmIMpQS0LdKqSiTgTQlTZKBXpYkSZIkSRqiDKUEUA6YejtTCnCulCRJkiRJ2mGGUgI2V0qF0ct/JcKoM5RyrpQkSZIkSdpBhlICIO3cfS/oQ6VUbKWUJEmSJEnaQYZSAraYKRW8/Fcisn1PkiRJkiTtJEMpAaVKqSCKCILgZc8tz5SyfU+SJEmSJO0gQykBpUqpsBc778EWM6WslJIkSZIkSTvIUEpAZyjVi3lS4O57kiRJkiRp5xlKCehs3wt793WIHHQuSZIkSZJ2kqGUAEjipPeVUpEzpSRJkiRJ0s4xlBIAaVwadN4bXefZvidJkiRJknaUoZQASJLeDzoPgoAwkzGUkiRJkiRJO8xQSkBp0HlvK6WgNOzc9j1JkiRJkrSjDKUElNr3wl4OOgeIooyDziVJkiRJ0g4zlBIASZL0vVLKUEqSJEmSJO0gQykBnZVShlKSJEmSJGmQGEoJ6Bx03pdQKnKmlCRJkiRJ2nGGUgJKlVJBL3ffg1KllDOlJEmSJEnSjjKUElDafa8vlVKR7XuSJEmSJGknGEoJgDRJCPqw+57te5IkSZIkaWcYSgnoe6WUg84lSZIkSdLOMJQSUBp03teZUkmxMIArkiRJkiRJQ5mhlIDSoPO+VkrFcTyAK5IkSZIkSUOZoZSAzkopB51LkiRJkqRBsktDqcsvv5zDDz+c2tpaxo8fz+mnn86zzz77stf99re/Ze+996aiooIDDjiAW265ZRBWO7SlcUzYl/a9yPY9SZIkSZK043ZpKHX33XdzwQUXcP/99/OnP/2JQqHAiSeeSHNz8zav+fvf/8673vUu3ve+9/Hoo49y+umnc/rpp/PEE08M4sqHnh0bdG77niRJkiRJ2jFBmqbprl5ElzVr1jB+/Hjuvvtujj322K2ec+aZZ9Lc3MzNN99cPnbEEUdw8MEHc8UVV7zs72hoaGDEiBFs2rSJurq6flv77u7vV/6Q6Uccw6R9D+jV+SufeZIX/nYXR733/xEEwQCvTpIkSZIk7S56m728omZKbdq0CYDRo0dv85z77ruPE044oduxk046ifvuu29A1zaUpWlKmiZ9rpSCUoWVJEmSJElSX2V29QK6JEnCJz7xCY4++mj233//bZ63cuVKJkyY0O3YhAkTWLly5VbPb29vp729vfy+oaGhfxY8hKSdwVLfBp1nAUiKRaLMK+ZrJEmSJEmSdhOvmEqpCy64gCeeeIJf/epX/Xrfyy+/nBEjRpRfU6ZM6df7DwVJUgql+lYpVTrXYeeSJEmSJGlHvCJCqY985CPcfPPN3Hnnneyxxx7bPXfixImsWrWq27FVq1YxceLErZ5/0UUXsWnTpvJryZIl/bbuoaKrBS8Ie/91CKNst2slSZIkSZL6YpeGUmma8pGPfITf/e533HHHHUyfPv1lrznyyCP5y1/+0u3Yn/70J4488sitnp/P56mrq+v2Undd7Xs7UikVWyklSZIkSZJ2wC4dBnTBBRdw7bXXctNNN1FbW1ueCzVixAgqKysBOPvss5k8eTKXX345AB//+Mc57rjj+OY3v8mpp57Kr371Kx566CF+/OMf77Ln2N0lSQJAEPZlplTnoPOilVKSJEmSJKnvdmko9cMf/hCAuXPndjt+1VVXce655wKwePFiwi3ayo466iiuvfZavvCFL/Dv//7v7LXXXtx4443bHY6u7dtWpdS/nP52WhqbepxfVVvDNf9zFQBJbKWUJEmSJEnqu10aSqVp+rLn3HXXXT2OnXHGGZxxxhkDsKLhKdlGKNXS2MR1n/pGj/Pf8Y1Plc9NisWBX6AkSZIkSRpyXhGDzrVrpUnXoPO+zJTqHHRuKCVJkiRJknaAoZS2WSm1PZsHnRtKSZIkSZKkvjOUEml50Hnvvw5hGBEEYTnQkiRJkiRJ6gtDKe1QpRRAmMmQFB10LkmSJEmS+s5QSuVQKnhJKFVVW8P5P7ik/P67f7yWd3zjU1TV1gClFj5nSkmSJEmSpB2xS3ff0ytD16Dz8CWDzn9z4/XEKzZRmLcYgH/79L/x2Wljy5+HmSxJbCglSZIkSZL6zlBK223fS9Y3EVTlSIsJFJJun4VR5KBzSZIkSZK0Q2zfU6lSKgi2Oug8Wd9MOLqaIBuRFrsPNY8yWdv3JEmSJEnSDjGUEkkcE24lkEo7iqRN7YSjqyETQqF7KFUadG4oJUmSJEmS+s5QSiRx3GPIOUCyoRlgc6XUS0OpKONMKUmSJEmStEMMpUQaJz2GnEOpdY/KLEFlDrIRFK2UkiRJkiRJ/cNQSiRJz0qp5cuX07B4Fe0VAQBBJiJ96aDzjIPOJUmSJEnSjjGUEmkcl3fea2pq4px3ncUXP/xJKuOQa3/7a85511kUiHtUSkWRg84lSZIkSdKOyezqBWjXS5K4vPPeBe//EO855HUce8DhAJx3wluZ+fiD3HjTTbztNa/vdl2YcaaUJEmSJEnaMVZKqVwptWzZMgobm8qBVJdjDzicxo2bSAsxaZqWjztTSpIkSZIk7ShDKZEkpUHnCxYsYL+ps7Z6zuiakQQA8ea5UmEmQ2yllCRJkiRJ2gGGUiKNS4POZ86cyZOL52/1nOeWv1j6YYth52EUWSklSZIkSZJ2iKGUSOKYMIyor68nO7KGex5/sNvn9zz+IIVc6auSbjHsPMo46FySJEmSJO0YB52rNOi8c/e9H/z0R/y/8z/ItAmT2dDUwHf/8Atyo2r5wff+Cx5aCoXNoVSYyZAmCWmSlAelS5IkSZIk9YahlEjjmCibA6C6upqf/+8vaP7Lk+Ro4Ztv/SH19fWkbQXa6V4pFUalr09cLJLJ5XbF0iVJkiRJ0m7KUEokSUIm6l7pFCUwZeaeZOrHlQ5kS5VUL62UAkjiImAoJUmSJEmSes+eK5F2zpQqv09TKCaQ2XyMMIAgeMlMqc5QyrlSkiRJkiSpjwylRBJvnikFlAIpIMhuPhYEQalaasvd9wylJEmSJEnSDjKUUs9Kqa4WvWz3r0eQDbc6U6rUvidJkiRJktR7hlIiSWLCLSulOkOpLSulgFI731ZmSsVWSkmSJEmSpD4ylBLpS9r3ytVQme6hVJCNnCklSZIkSZL6haGUSpVS4RZfhe1WSm0xUyoylJIkSZIkSTvGUEokcdK9UqrQu0qp8qBzZ0pJkiRJkqQ+MpRSj0HnFGOIQoIw6H5iJtzqTCkrpSRJkiRJUl8ZSokkiXtWSr20dY/OSqktQqkgCAiiyEHnkiRJkiSpzwylhrk0SSBNCaMtvgrFpOc8KSi18xVj0jQtH4qijO17kiRJkiSpzwylhrkk6RxqHr6kUiqz9UopUiDeHEqFmYzte5IkSZIkqc8MpYa5NC6FUuEW7XsU4q1XSnUde8mwc0MpSZIkSZLUV4ZSw1ySJED3UKo0U6rnVyPIhJs/7xTavidJkiRJknaAodQw11UpFbxk972+VEo1NzYO5BIlSZIkSdIQZCg1zCVbad9LCzHB1mZKdR7bslKKIODmP/yelpaWgV2oJEmSJEkaUgylhrlka5VShXhzVdSWuo5tEUqtXb+e2spKbrnlloFcpiRJkiRJGmIMpYa5NOleKZXGCSTp1tv3wgCCgLijyMEHHsiB++7Dc88+y5xpU/juf3ydA/fdh4MPPJA4jnteK0mSJEmStAVDqWEuibsGnXd+FbrmRW2tfS8IIBsRxik3/eEPjB8/nvqxY6iqqOCtxx7F+PHj+f3NNxNFWwm0JEmSJEmStmAoNcx1VUp1te91zYvaaqUUEGRD0mLMtGnT+NgnL2RDQyPrGxp5bvESPn7hvzF16tTBWbgkSZIkSdqtGUoNcz0GnRdKlVNbnSkFpQqqzuDqV9f+ksWr11BRU8Ndjz7Gr375y4FeriRJkiRJGiIyu3oB2rXKg867Zkp1tu9tbfe9ruNd5xz/+hM4Zs4MWtes4u8PPMj11103CCuWJEmSJElDgZVSw1x50Hn4kp31stv4amSjcjXV+z/wAaqqa0jimNGjR/P+D3xgoJcrSZIkSZKGCEOpYW5zpVTpq5AWYgiAaOtfja6ZUuX3UVS+hyRJkiRJUm/1OZS6+OKLWbRo0UCsRbtAj0qpYgyZqLTT3tZsMVMKSrOoUkMpSZIkSZLUR30OpW666SZmzpzJ61//eq699lra29sHYl0aJEmcQBAQhJsrpba18x6UduXbslIqDK2UkiRJkiRJfdfnUGrevHk8+OCD7Lfffnz84x9n4sSJfPjDH+bBBx8ciPVpgKVxvHnnPShVQW0nlCpVSiWkaQpAmIlIkrj8XpIkSZIkqTd2aKbUIYccwve+9z2WL1/Oz372M5YuXcrRRx/NgQceyHe/+102bdrU3+vUAEmSeHPrHr2rlCJNISmFUEFYep+myYCvVZIkSZIkDR07Neg8TVMKhQIdHR2kacqoUaP47//+b6ZMmcKvf/3r/lqjBlAax+Uh50B5ptQ2ZTrP7ZwrFUaZ8n0kSZIkSZJ6a4dCqYcffpiPfOQjTJo0iU9+8pMccsghPP3009x99908//zzfPWrX+VjH/tYf69VAyCJd6BSCli1fAVAufXPuVKSJEmSJKkv+hxKHXDAARxxxBEsXLiQn/3sZyxZsoSvf/3rzJo1q3zOu971LtasWdOvC9XASJKYoNtMqeTlZ0oB7znjTBYvXmwoJUmSJEmSdkifQ6l/+Zd/4cUXX+SPf/wjp59+OlHUM8AYO3YsSeKMod3BSwedp8WYYDvte12VUp9827lcfull5UDLUEqSJEmSJPVFn0OprtlRL9Xa2sqll17aL4vS4EmSpDSsnNL/bWn3vW1/LRavWAbACYcexZpFy1izdm3pWkMpSZIkSZLUB30OpS655BKampp6HG9paeGSSy7pl0Vp8HSrlCqWqtu2N1Pq8su+WgqvgE+95Ryu/tlVgJVSkiRJkiSpb3aoUioIgh7H//nPfzJ69Oh+WZQGTxJvMVOq2BksbaN9b/HixaxdvLz8/3/wzH1Yu3Rl+T6SJEmSJEm9lentiaNGjSIIAoIgYPbs2d2CqTiOaWpq4kMf+tCALFIDJ002776XFkrB0rYqpS6/9DI+9ZZzuh0793Wnk7CeJC4O7EIlSZIkSdKQ0utQ6jvf+Q5pmvLe976XSy65hBEjRpQ/y+Vy7Lnnnhx55JEDskgNnCROCKJSwVxXKLW13fdWrFjB7bfdxp7ZUUwdX8+Lq5fx1ycfIZeNePVBk1m3Zg0j6/cYzKVLkiRJkqTdWK9DqXPOKVXITJ8+naOOOopsNjtgi9LgSeOYKJcrvdlOpdSoUaP42f/8HIBcWzWTR87gNftPgLgILz5LdVXloK1ZkiRJkiTt/noVSjU0NFBXVwfAIYccQmtrK62trVs9t+s87R6SJCbbOVMq3c5MqYqKCubOnQtAxz8WUJfPMO3gqRQ7OvjHi88Shdseji5JkiRJkvRSvQqlRo0axYoVKxg/fjwjR47c6qDzrgHosQOvdyvdBp0XYohCgrDn/283UQhxaQe+rp370sT/d0mSJEmS1Hu9CqXuuOOO8s56d95554AuSIMrjbccdJ5sdZ5UD5kQOkqDzYOwNI/KQeeSJEmSJKkvehVKHXfccVv9Wbu/JInLg84pxhTSmIqXuSaIQpJiUvo5CAijiMQKOUmSJEmS1AdhXy+49dZbuffee8vvv//973PwwQfz7ne/mw0bNvTr4jTwuiqlmpubue/ue3nu+ef4wHnvo7m5edsXRSHESfltEGUMpSRJkiRJUp/0OZT69Kc/TUNDAwCPP/44F154IaeccgoLFy7kwgsv7PcFamAlScKqNWt40xveyIxRE9lv6ixOn30Ep73hZObNm7f1izLdQ6kwikgNpSRJkiRJUh/0qn1vSwsXLmTfffcF4Prrr+e0007ja1/7Go888ginnHJKvy9QAyuJi9xw3fVc87HLGDtiFACvO/gIDpg+m9PefRYPPTaPTKb71ySIQtJi91DKSilJkiRJktQXfa6UyuVytLS0APDnP/+ZE088EYDRo0eXK6i0+0iThOrqGuqqarodr62sZvKkyT0CKaBH+56hlCRJkiRJ6qs+h1LHHHMMF154IV/5yld44IEHOPXUUwF47rnn2GOPPfp9gRpYaRwza85s/vLofd2O/+XR+3jDKSdt/aIohCQlTVMAAkMpSZIkSZLUR30Opf77v/+bTCbDddddxw9/+EMmT54MwP/93//xxje+sd8XqIGTpilJHHPwYYdy3X1/Jk4SGluaWbl+Ldff/xfe/i9nbPW6INO1W1+pWsqZUpIkSZIkqa/6PFNq6tSp3HzzzT2Of/vb3+6XBWnwpGkpVLrjjjvZ69D96SgW+POzD3Hns4+w3xGHMmXKlK1fGHWGUnEC2YgwjEji4iCtWpIkSZIkDQV9DqWgtGPb/PnzWb16NUmSdPvs2GOP7ZeFaeA1birNAOtYv5q/P/oknzv2TM54z7t417SPbPe6oDOUSuOEAAijDElipZQkSZIkSeq9PodS999/P+9+97tZtGhReaZQlyAIiG3j2i00NTXxr+/8Fz77L6fzmv32paqikiCF9mLHy38pMlHp3872PWdKSZIkSZKkvurzTKkPfehDvOpVr+KJJ55g/fr1bNiwofxav379QKxR/aypqYm3nvYmTjv8kPKxg2bNAuA///M/aGpq2v4Ntmzfw5lSkiRJkiSp7/pcKfX8889z3XXXMaszxNDupSuQetsRh7Hv9Gnl42FQqn46bOY03nram/jdH26mpqZmq/fYsn0PSqFUoc1QSpIkSZIk9V6fK6Ve85rXMH/+/IFYiwbBZZdewv714zlw1oxux8Og9FWYOnEc+9eP57JLL9n2TV6y+57te5IkSZIkqa/6XCn10Y9+lH/7t39j5cqVHHDAAWSz2W6fH3jggf22OPW/L3zpYt562puYPX9Bt2CqK5R6bskSnli+mt/96Mpt32QrlVKpu+9JkiRJkqQ+6HMo9fa3vx2A9773veVjQRCQpqmDzncDNTU1/O4PN/PW095EZT7PXlMmA5vb926f9/h2W/cAgjCAMIDO/+swikjiZJvnS5IkSZIkvVSf2/cWLlzY47VgwYLyv31xzz33cNppp1FfX08QBNx4443bPf+uu+4iCIIer5UrV/b1MYa1rmDqr089Wz724vJVAHz7+9/fbiBVFoVQLO2+WAqlrJSSJEmSJEm91+dKqWnTpr38Sb3U3NzMQQcdxHvf+17e9ra39fq6Z599lrq6uvL78ePH99uahouamhouu/zrLLjrdv7v7/+gSA0nHwTVtb0IpACisLzjXhBlSBIr5CRJkiRJUu/1OZQC+J//+R+uuOIKFi5cyH333ce0adP4zne+w/Tp03nLW97S6/ucfPLJnHzyyX3+/ePHj2fkyJF9vk7d5TvngWUm1HPR+z8Jz6wuz4t6OUEmhK6ZUmFEWjSUkiRJkiRJvdfn9r0f/vCHXHjhhZxyyils3LixPENq5MiRfOc73+nv9W3VwQcfzKRJk3jDG97A3/72t0H5nUNR2lnd9PkvfZmKXK50MAp6d3EUlnffC6PISilJkiRJktQnfQ6l/uu//ouf/OQnfP7znyeKovLxV73qVTz++OP9uriXmjRpEldccQXXX389119/PVOmTGHu3Lk88sgj27ymvb2dhoaGbi+VJOVB5WFpJ70ACHoXSgVd1wBBFJXvJUmSJEmS1Bt9bt9buHAhhxxySI/j+Xye5ubmflnUtsyZM4c5c+aU3x911FG88MILfPvb3+Z//ud/tnrN5ZdfziWXXDKg69pdJeWZUFEpYApDgl6GUmzZvhdFkKakSUIQ9jnnlCRJkiRJw1CfE4Tp06czb968HsdvvfVW9tlnn/5YU5+8+tWvZv78+dv8/KKLLmLTpk3l15IlSwZxda9sXe17QRBCnPZ6nhTQo30PcAc+SZIkSZLUa32ulLrwwgu54IILaGtrI01THnjgAf73f/+Xyy+/nJ/+9KcDscbtmjdvHpMmTdrm5/l8nnw+P4gr2n0kcUwYRQRBUKpy6u08KUrte0m5UirTeb+EKDsgS5UkSZIkSUNMn0Op888/n8rKSr7whS/Q0tLCu9/9burr6/nud7/LO9/5zj7dq6mpqVuV08KFC5k3bx6jR49m6tSpXHTRRSxbtoxrrrkGoLzD33777UdbWxs//elPueOOO7j99tv7+hiiFEoFXXPB4qRvlVJbtO8FnddZKSVJkiRJknqrz6EUwHve8x7e85730NLSQlNTE+PHj9+hX/7QQw9x/PHHl99feOGFAJxzzjlcffXVrFixgsWLF5c/7+jo4N/+7d9YtmwZVVVVHHjggfz5z3/udg/1XhonhGFXKNX39r202L1SKnXYuSRJkiRJ6qU+h1Kve93ruOGGGxg5ciRVVVVUVVUB0NDQwOmnn84dd9zR63vNnTuXNE23+fnVV1/d7f1nPvMZPvOZz/R1ydqGJNlcKdU16Ly3guglg87BHfgkSZIkSVKv9XnQ+V133UVHR0eP421tbfz1r3/tl0VpcCRxsRwoEfdtplSP3fcwlJIkSZIkSb3X60qpxx57rPzzU089xcqVK8vv4zjm1ltvZfLkyf27Og2otHPQOdD3mVJRBElKmqSGUpIkSZIkqc96HUodfPDBBEFAEAS87nWv6/F5ZWUl//Vf/9Wvi9PA2nLQeRqnBLk+tu9BZ4VV5z0SQylJkiRJktQ7vQ6lFi5cSJqmzJgxgwceeIBx48aVP8vlcowfP56oq+pGu4U02WLQeZJsDpo6velNb2L9+vU9rhs9ejQ3XfW/pTdxUh507u57kiRJkiSpt3odSk2bNg2AJEkGbDEaXMlL2/fC7jOl1q9fz4knntjjuttvv70cYKXFxPY9SZIkSZLUZ33efQ/g+eef584772T16tU9QqovfelL/bIwDbwt2/f6PlNqi/a9nKGUJEmSJEnqmz6HUj/5yU/48Ic/zNixY5k4cSJBsLm6JggCQ6ndSBrH5fa9NE57tO9tV6bz3GJMGOXK95MkSZIkSeqNPodSl112GV/96lf57Gc/OxDr0SBKkphMNlt6EycQBdu/YAvl9r04IQxLP1spJUmSJEmSeqsPpTElGzZs4IwzzhiItWiQdc2UStMUkp1o3wsCwihy0LkkSZIkSeq1PodSZ5xxBrfffvtArEWDLO0adJ6mkNKjfW/06NGsWrWKhoYG2traeOGFF7j99tsZPXp0uX0vLZZmigVRxkopSZIkSZLUa31u35s1axZf/OIXuf/++znggAPIdrV/dfrYxz7Wb4vTwCrvvhenpQNh91DqV7/6Fd/61rc46aSTmDdvHkcddRRvfvObN58QBqW2PyCMQmdKSZIkSZKkXutzKPXjH/+Ympoa7r77bu6+++5unwVBYCi1G0mSmCCMysHSljOlli9fzh133AHAAQccwPz582lqaup+gyjcIpSyUkqSJEmSJPVen0OphQsXDsQ6tAt0te+l5VAqpKmpiXPPPZcVK1ZwzDHHsGnTJs4++2ze/e53s2bNmm7XB5mwfG0QRYZSkiRJkiSp1/ocSmnoSOKYIIogKbXvBVHIueeeTW1tLfvvvz8AlZWVtLe38+c//5mZM2d2v0EUQrGrUioiTQylJEmSJElS7/Q6lLrwwgt7dd63vvWtHV6MBlcax4RbtO+tXruGFStWlAOpLtOmTeOpp55iwoQJJElC2DV7asv2vTAiKRpKSZIkSZKk3ul1KPXoo4++7DlBELzsOXrlSJLu7XuLly1l1KhRWz03l8uRpiktLS3U1NQA3dv3wigisVJKkiRJkiT1Uq9DqTvvvHMg16FdoNy+1xksTdlzGhs2bNjquevWrWPWrFk0NjaWQymiqNy+V5opVRyUdUuSJEmSpN1fuKsXoF0jTRJIU8Iogrg0U2pi/SQmTZrEokWLup27aNEiRo4cCdB9B74o6Lb7Xuqgc0mSJEmS1EuGUsNU10554RaVUkQhP//5z2lsbKRQKLB06VJuv/12Ghsb+dGPfgRAY2Nj+R5BJurevmcoJUmSJEmSeslQapjqmv8UhJ3BUgBBGFBdXc2vfvUrstksJ554Itdddx3XXXcddXV1VFZWvqRSqvvue4ZSkiRJkiSptwylhql0y0qpJIFw81ehK3g69NBDqa+vLx+vra3tVilFtHnQeWAoJUmSJEmS+qDXg867LF68mClTpvTYaS9NU5YsWcLUqVP7bXEaON3a9zrSUtVTp65Q6uLPfYn1y9aUj+992L488/hTXPWDn3HdH28gyIRbzJSKnCklSZIkSZJ6rc+h1PTp01mxYgXjx4/vdnz9+vVMnz6d2GBit9AVSnW17wXR5pCxK5RqWLORnxz3pfLxu7NPsilo5fl5z5YO2L4nSZIkSZJ2UJ/b99I07VElBaUgo6Kiol8WpYGXds6UCjOdg85fUikVBAHFjkK3ayrTPC20l98HmRDSlDRJSqFUYiglSZIkSZJ6p9eVUhdeeCEAQRDwxS9+kaqqqvJncRzzj3/8g4MPPrjfF6iBUW7fCyNICj1Cqerq6h7XVKU5WoOOzQe6rolTgihDEhcHdM2SJEmSJGno6HUo9eijjwKlSqnHH3+cXC5X/iyXy3HQQQfxqU99qv9XqAFRbt+LItK450ypmpqaHtdUpXniICHKRKUDXdcUY8LQmVKSJEmSJKn3eh1K3XnnnQCcd955fPe736Wurm7AFqWB1233va3MlNp6KFUKInP50r9BJuy8V+JMKUmSJEmS1Cd9nil11VVXGUgNAVsOOidOIOxZKVUzuo41rRu4b9VjNBZa+OviRwCoHTuidGK5fS8hMJSSJEmSJEl90Ofd95qbm/n617/OX/7yF1avXk2SJN0+X7BgQb8tTgOnPOg8ikjihCC3+avQ1NTE2LFj+dx5n2DcQ7Dfp45n/W+f5azXvpPvz/sV//bvny6d2BlKpcVSpVTX0PMg7HPWKUmSJEmShpk+h1Lnn38+d999N//6r//KpEmTtroTn175yoPOo5AkSQk6A6bGxkbWr1/PU/c9xnvHnsyLacxFn/wh//n6TxO2luaHNTY2Apvb9+hs3+u6b2QoJUmSJEmSXkafQ6n/+7//449//CNHH330QKxHg2RzKJUpte91zpT6yPs+zPR9Z3HWzFPYI5kAwJs3HckjT8zj8IMPo7a2lqamptJNyoPOk9J9Ou8bZbOD+zCSJEmSJGm30+eSllGjRjF69OiBWIsGUZrEEASlVrs4gShk2bJlFNa1AlCZbt5d8cgpB7Nx00baN7ZSU1NTrpQqt+/FSbnSyrlSkiRJkiSpN/ocSn3lK1/hS1/6Ei0tLQOxHg2SpBgThqWWuzROCcKQBQsWMGPMFACqyHc7Px/liBs7ulVKBUFQqrCKN1dKpXFxEJ9CkiRJkiTtrvrcvvfNb36TF154gQkTJrDnnnuSfUmr1iOPPNJvi9PASZKYoHMOVFel1MyZM1lRWMcURnarlAJY2LCM13QcSE11DStWrNj8QRSV2vcqo/J9JUmSJEmSXk6fQ6nTTz99AJahwZbGMWEUkqZpeaZUfX09leNrCRLIEpXPvW/JPDpqSz9X56s2z5QCgigg3XLQedFQSpIkSZIkvbw+h1IXX3zxQKxDgyyJO9v3khSgPBPqlLe8ib/dey8rm9eypmUDVz51A5WTR/DfX/0OjVc9S3VUQXt7O4sXL2bq1KmQiWhpbCIzbhTQOatKkiRJkiTpZfR5phTAxo0b+elPf8pFF13E+vXrgVLb3rJly/p1cRo45fa9zlCKsPRVaG9vZ8bMmUwaP5EpR8/me9f/hP+57lqqx9UBUBWWZk0deeSRLF68mCRIufG6G+goFEr3ddC5JEmSJEnqhT6HUo899hizZ8/mP/7jP/jGN77Bxo0bAbjhhhu46KKL+nt9GiCl9r2o1LoHpYHlQFNTEzU1NdCesuecGdTX1wMQ1pRmh1UlpVDquOOO44tf/CJr169nbN1I7rr7HsBQSpIkSZIk9U6fQ6kLL7yQc889l+eff56Kiory8VNOOYV77rmnXxengZPEMWGUIS2HUqWvQlNTE9VV1aXh5VWbh9iHuYggF9K+rhmA2bNnc++99/Lsc8/y6jkHcvUVPwXgEx/9KLHBlCRJkiRJehl9DqUefPBBPvjBD/Y4PnnyZFauXNkvi9LAS5Ok1L7XGUoFW4ZSuUoAwsruI8fCmhz/+MvfSsPRgRNOOIFCsUhtVTXvO+GtAFx00UVEUYQkSZIkSdL29DmUyufzNDQ09Dj+3HPPMW7cuH5ZlAZeUiwShiHEnTOlopAkSWhpaaE6u/VQqphNSJqKBEGp1W/SpElsaG5g+brVPDr/aQBGjxo5aM8gSZIkSZJ2X30Opd785jdz6aWXUugcbB0EAYsXL+azn/0sb3/72/t9gRoYSVKaKZUmm9v3mpubSdOUqqjUlhlWdQ+lnl70HFPG1nc7NnrcWDqSIr+990+l+9q6J0mSJEmSeqHPodQ3v/lNmpqaGD9+PK2trRx33HHMmjWL2tpavvrVrw7EGjUA0jh+SfteQFNTE7B5h70tK6VWrFjBM4ueJ1eMaGhoYP369dx///2s27iBiIDf3Hg9SWooJUmSJEmSeifz8qd0N2LECP70pz9x77338thjj9HU1MShhx7KCSecMBDr0wBJ4phsNrd5970wLIdSleSJ6R5KjRo1irmnvJ7aZQEzx82kUCjwtre9jfpCJROKFeRmzKDh4b+RxMVd8DSSJEmSJGl30+dQqssxxxzDMccc059r0SBKOgedp1vMlOoKpSriLC35qDz8HKCiooIZ++3FxhcXsOeee7J48WLmzp1LceFais+voqKiotQO2BVySZIkSZIkbccOhVIPPvggd955J6tXryZJuocQ3/rWt/plYRpYaVyaKUWcQABBWGrfy+fzhO1pjyHnAGFNFuKUylwFLS0tpYNRCHFCmqaEUcZKKUmSJEmS1Ct9DqW+9rWv8YUvfIE5c+YwYcKE8k5sQLef9cqWdIVSSVIecn799dcThiG3/+FWjpn5qh7XRDVZACrCPC0tLaRpShB1/p8nKUEUkSTOlJIkSZIkSS+vz6HUd7/7Xa688krOPffcAViOBkuSbB50Xkxijjv2WF73utdRXV1N9YZKHn36n6yal+Hggw8uXxPW5ACoDHLEcUxHRweZrha/OOls3zOUkiRJkiRJL6/Pu++FYcjRRx89EGvRIEqLRcIwIi7ErFi1qhxIAYyuHkHlqBre8Y53UCxubsfrqpTKJ6Uss6WlpdS+BxCnhGHk7nuSJEmSJKlX+hxKffKTn+T73//+QKxFgyhJSu17YQrFNCafz5c/y6dZCmHMpEmTyGQ2F9MFlRmIAvLx5lCqaxh62lkpZSglSZIkSZJ6o8/te5/61Kc49dRTmTlzJvvuuy/ZbLbb5zfccEO/LU4DJ4mTcvteZU01CxYsYPbs2QDkybBq01pOO+20btcEQUBUnSVfiIDOSqma0aUPO+9nKCVJkiRJknqjz5VSH/vYx7jzzjuZPXs2Y8aMYcSIEd1e2j2kcUwYRqRxwuixY1i4cCFpmtLe3k4uybBs7Qre9a539bgurMmSay99bUrte12DzhPCKEPq7nuSJEmSJKkX+lwp9fOf/5zrr7+eU089dSDWo0FSHnTekVJRXcnrXvc6ADZu3EiuLsuUWdOYMmVKj+vCmhxBS0o2m91q+15cKAzqc0iSJEmSpN1TnyulRo8ezcyZMwdiLRokaZJAmhJ2tu8RhnzpS18iCAL+3/kfIgwC3vqut2/12qgmS9JUoKqq6iWDzrtmSlkpJUmSJEmSXl6fQ6kvf/nLXHzxxaVAQrulrrlPYVRq3yMKaW9vByBLaV5UWJnd6rVhTY6kqWMroVRKEEWkzpSSJEmSJEm90Of2ve9973u88MILTJgwgT333LPHoPNHHnmk3xangZEkm0OpUpi0RSiVdIZSVVv/akQ1WeKmAlUTq2htbYWwNFPK3fckSZIkSVJf9DmUOv300wdgGRpMSbEUHAVhBHEHREHPUKpy61+NsCZL2h5TVVFJY3MTQRCUhp3HCWEYlQMvSZIkSZKk7elzKHXxxRcPxDo0iNItKqXSpKt9rxWATBySsL1KqRwASSHe3MIZhqVQKmOllCRJkiRJ6p0+h1La/XUFR0HnoPMg3KJ9rxDSHkKQi7Z6bVhTate86de/44CjDqGtrY32YgdLFyxkeeMSwpYW7rrrrvL5RxxxBBUVFQP7QJIkSZIkabfT51Bq1KhRpZatlwiCgIqKCmbNmsW5557Leeed1y8LVP9Ltxx0Xkz44//dwoTD9wYgUwgoVGa3+n8Mmyuljpp0MKtaWli/fj0bli9j+cblzF/7LHOm7sHvf3oFADfceQ//eOhhJk2aNAhPJUmSJEmSdid9DqW+9KUv8dWvfpWTTz6ZV7/61QA88MAD3HrrrVxwwQUsXLiQD3/4wxSLRd7//vf3+4K187rmPrW1tlEdx+SbY370/R8yc85eBG3pNlv3AJauW06Qpuw/ehargydoaWkhm88xcfQYqkZMB+CM41/Lc4uX0JKrMpCSJEmSJElb1edQ6t577+Wyyy7jQx/6ULfjP/rRj7j99tu5/vrrOfDAA/ne975nKPUK1dW+9+kLP80V7/sicw96NSuSJuY3raajsXWbQ84Bvvqly/j3SWdRQamN71tf+0++fs7H+ds//kbdmM3n/frOv/GTX147oM8hSZIkSZJ2X2FfL7jttts44YQTehx//etfz2233QbAKaecwoIFC3Z+dRoQLU1NALz3mDeVj00cM47afCUP3HUfSW7rrXuLFy9m1bNLyYQR+bQUSm1Ysg7CgJEjR7Ni3ToAnlu8hCmzZjFlypQBfhJJkiRJkrS76nMoNXr0aP7whz/0OP6HP/yB0aNHA9Dc3Extbe3Or079rqmpicsv/QoAh8zat3y8Iy4yorKG2eOmcu8//kZTZ3C1pa9+4VI+vN8ZAFSkpdlSb95rLk8//Qz77rMv9z72FAA3/e1BvvjlSwb6USRJkiRJ0m6sz+17X/ziF/nwhz/MnXfeWZ4p9eCDD3LLLbdwxRWlAdd/+tOfOO644/p3peoXX/vKZRwyeS8AgmBzJtkRF8hFGWrz1YyuqeVrX7mMr/3H18ufr1ixgttvv52Jh1ZTma8kG2WgAp5pWkS0JGbfvfembux4APacNYupU6cO7oNJkiRJkqTdSpCmadrXi/72t7/x3//93zz77LMAzJkzh49+9KMcddRR/b7A/tbQ0MCIESPYtGkTdXV1u3o5g66pqYlLPv4xTj/qMA6eeDRRGAFw3bN/JyXlmNVzuHXp3/nXH3ycmpqa8nVtbW3cf//9AIx9KqByfcC16d3sueeeHDthbyZUjWBxbTNrHvo7E4+cy8x999slzydJkiRJknat3mYvfa6UAjj66KM5+uijd3hx2nVqamr46Mc/ypIH/86Ti57nwOl7A9AeF2hrbSUtpvzLue/qFkgBVFRUMHfuXAAa4sU03bec2tpaJk2aRP3kySRrm5i8xxTWPATjx40d7MeSJEmSJEm7mT7PlNpSW1sbDQ0N3V565ctmsxAE3PjwPeVjG5obeGrJQnJhloqR1du9PqzJkjQXqKqqoqWlBaIQ4oQwWxp+HhcKA7p+SZIkSZK0++tzKNXS0sJHPvIRxo8fT3V1NaNGjer20itfGseEUcTnv/gFAH526/Wsbd7EyW88GYCwKrvd66PqLKRQla+kpaWFIApJ44SoM5RKioZSkiRJkiRp+/ocSn3605/mjjvu4Ic//CH5fJ6f/vSnXHLJJdTX13PNNdcMxBrVz5IkJgwjKrKlHfRWVRUYPWYM1flKAMLK7Xd1hjWl8Kkimy9VSoUhxClRxkopSZIkSZLUO30Opf7whz/wgx/8gLe//e1kMhle+9rX8oUvfIGvfe1r/PKXvxyINaqfpXFMEEWkcQLAJV+7jI6ODrKdI8ZePpQqhVkVYb5b+14QlYamx8XiAK5ekiRJkiQNBX0OpdavX8+MGTMAqKurY/369QAcc8wx3HPPPdu7VK8QSWf7HnECUUiSJBSLRXJpZyhVtf1QKuqslKoMc53tewEAQQphJkNipZQkSZIkSXoZfQ6lZsyYwcKFCwHYe++9+c1vfgOUKqhGjhzZr4vTwEg6K6W6Qqn29nYAMknp6/BylVJBPoJMQEWapbW1lTQshVJ0zpWyfU+SJEmSJL2cPodS5513Hv/85z8B+NznPsf3v/99Kioq+OQnP8mnP/3pfl+g+l/aOVMqjVOCKCiHUtk4JMhFBNH2vxZBEBBV58gnGdI0pa3YUfogTogyWWIHnUuSJEmSpJex/ZKYrfjkJz9Z/vmEE07gmWee4eGHH2bWrFkceOCB/bo4DYyXtu91dJRCpWwxIqzsXU4Z1mTJF0tfn9aOdmqBNE4Js1l335MkSZIkSS+rT5VShUKB17/+9Tz//PPlY9OmTeNtb3ubgdRuZFvte9liSDGT9OoeUU2WXHtpsHlLR1vpYFellO17kiRJkiTpZfQplMpmszz22GP99svvueceTjvtNOrr6wmCgBtvvPFlr7nrrrs49NBDyefzzJo1i6uvvrrf1jNcpJ2VUmmcEGQ2h1KP3zePZ559hvPPei/Nzc3bvUdYnSXfVvr6tLRvEUo5U0qSJEmSJPVCn2dKnXXWWfzsZz/rl1/e3NzMQQcdxPe///1enb9w4UJOPfVUjj/+eObNm8cnPvEJzj//fG677bZ+Wc9wkXTOlKJYqpR69tlnAZjKWPYZO5PXJwdy6rEnMW/evG3eI6zJkW0p/dzaGUqlXaGU7XuSJEmSJOll9HmmVLFY5Morr+TPf/4zhx12GNXV1d0+/9a3vtXre5188smcfPLJvT7/iiuuYPr06Xzzm98EYJ999uHee+/l29/+NieddFKv7zPcpXFMEGUgTkizET/+rys49MhXMa5yFACvnXoY+46dyb++/T088uw/yWR6fk2imiw0x+Qr8qxZvw6YDElCmMlSaG0d5CeSJEmSJEm7mz6HUk888QSHHnooAM8991y3z4Ig6J9VbcN9993HCSec0O3YSSedxCc+8YkB/b1DTRLHZHN50jghrMoxeswYsmlEwOb/v+pcJZMn1W81kIJS+17aHlM5spIfXvFDjvvQZVB09z1JkiRJktQ7vQ6lFixYwPTp07nzzjsHcj3btXLlSiZMmNDt2IQJE2hoaKC1tZXKysoe17S3t5dnJgE0NDQM+Dpf6ZIk6bb73ux9ZxO3dg+S/rroIU5887ar2KLaHAAd7e1UVlUBkCapM6UkSZIkSVKv9Hqm1F577cWaNWvK788880xWrVo1IIvqT5dffjkjRowov6ZMmbKrl7TLJXGRIAzLodRec2bT3N5KmqY0tDWxumkdf1z8V97xrjO2en0cx7zzvHcDsHLpCvbcc09aO9r56qVf4Yc//rGhlCRJkiRJelm9DqXSNO32/pZbbnnZHdr628SJE3sEYatWraKurm6rVVIAF110EZs2bSq/lixZMhhLfUXbvPteShCF5PN5KqsqCYKA2xsf5AfrbuTgN7x6mwFeFEV898f/DcCIqjry+TzFJGbsqDH869nnkBSLg/k4kiRJkiRpN9TnmVK70pFHHsktt9zS7dif/vQnjjzyyG1ek8/nyefzA7203UoSxwRbtO+1t7ez5557wnPwoc9+lIrZo172HlPnTGcZy0nbY1poo6WjjeOPPY7R40exaf7TpGk64DPGJEmSJEnS7qvXlVJBEPQIGXY2dGhqamLevHnMmzcPgIULFzJv3jwWL14MlKqczj777PL5H/rQh1iwYAGf+cxneOaZZ/jBD37Ab37zGz75yU/u1DqGmzSOCcNMt1AqG2YBCCt7l1MGmZCWuI24tUBNTQ2NzU08+/QzhJkspClJHA/kI0iSJEmSpN1cryul0jTl3HPPLVcdtbW18aEPfYjq6upu591www29/uUPPfQQxx9/fPn9hRdeCMA555zD1VdfzYoVK8oBFcD06dP54x//yCc/+Um++93vsscee/DTn/6Uk046qde/U5AkMWEYARBEAe3t7YzI1pTe9zKUAkgqAo6Y8WqebFzA9FkziWtzRNlSuJUUCkTb2LlPkiRJkiSp16nBOeec0+39WWedtdO/fO7cuT1mVW3p6quv3uo1jz766E7/7uEsiRPCoLNIrrNSKp8vteyFFVGv7zN68jiWpy10dHSQyWXZZ/betJQyKeJigSxbn/MlSZIkSZLU61DqqquuGsh1aBClcUzUWSlVbt+j9L637XsAUXWWzIaQYrFIEkAUJ0SZUiWdO/BJkiRJkqTt6fVMKQ0NaZqW2vc6K6WCTGcolWYIchFB1PuvRFiTJdNR+rkjjSFOSjOlgKRoKCVJkiRJkrbNUGqYSdME0pSwszIqDQM6OjrIplGfqqQAwpocmbbSzx1pkTROyzOlrJSSJEmSJEnbYyg1zKSdu+J1VUoV04QkScjGEWFl7+dJAUQ1WaKuUCqJIUk2h1JWSkmSJEmSpO0wlBpmkjgBIOz8r++IS+FRthj2aec9KLXv5eJSkNWRFKC4uX3PSilJkiRJkrQ9hlLDTNJZKRUEAQDtnRVNmWJAWJnt072i6hzZtBRktccxaZIQRhEEgTOlJEmSJEnSdhlKDTNp0tm+RymU6igWAch2hDswUypb3rWvkBQhTgiCgCiTtVJKkiRJkiRtV99SCO32ypVSaQhBQHtHOwCZQkBY0feZUl2hVHtcgLTUGhhlDaUkSZIkSdL2GUoNM2k5lAKigPb2UigVtdHnSqmgIkMYRmTCqLPiKiVNU8JMhqSzAkuSJEmSJGlrbN8bZpLO9r2AAKKQjo4OADI7EkqFAUFVhkJbgZb2zm34ktRKKUmSJEmS9LIMpYaZpNgZSiUQZELa29sJw5CoGBBU9W3QOUBT3EImDVmybEnpQJyUZko56FySJEmSJG2HodQw0zXovNS+Vwql8rk8Ab2fKRXHMYcccDCHzj6QBYsXUhtV8fwzzwNw8utPIsxkrJSSJEmSJEnbZSg1jCxbtoyOzsHmSZzQUSzS3t5OLluqkOpt+14URdx4802MGz+e8VVjqAhzTKoZD8DPrvwpUTZHYqWUJEmSJEnaDkOpYeKf//wnp73xjXzr//v/AHjkgYd45NFHWLZsGblMDujbTKlp06Zxwac/xqrmtaTFhE2FJgAmjZ/oTClJkiRJkvSyDKWGgWXLlnHeWWfxlfedxV7jRgMwtqaG6fXjueuOOwjTAICwsm8zpX57za94Zt1C8pk869sbSgfjpBRKWSklSZIkSZK2w1BqGBg/fjwzZs7k8QUvsve0KQCMqRvBuoZNjBg5kspsBQBhZe9mSnU57qTjec8HzqYqyjNrzl4ApHFCmMmSWCklSZIkSZK2w1BqGMhms1xz7bVc8bub6SiHRQH/nP8CBx50EPkwC5mAINu3UOr8D7yf6pE1ZOOIYucAdXffkyRJkiRJvWEoNQwUCgXOfve7+dBb30QumyVNU7Jhhr2m1vP0U0+RSaM+zZPaUlCRIRuHdLR3lA50te9ZKSVJkiRJkrbDUGoYWL16NQteeIEDZuzJopWr2dDYSKGYMLq2mjiOCQrpDodSYUVEjgztnbv6pUlKmM2SFIukadqfjyFJkiRJkoYQQ6lhYPLkyVz1i1/wxZ/9gjXNLUyaPAWCkFsfeIix48axcfV60tyOfRWCfIYsGQqFAkkYQLHUvgeQ2MInSZIkSZK2wVBqmDjooIO4+bbbOOXkk8nkctRWVfPOs/+V5uZmaEt46PFHaGpq6vN9w4qIbFqaRdVBEZKEKFuquoqLxX59BkmSJEmSNHQYSg0j9fX1pHFMlM1CkvKzn19NJpNhVEUdYWWGU045pc/BVJCPyFIKoTrSpLz7HuBcKUmSJEmStE2GUsNMXCwQBKX/9hFjRgFQQZZMdY699tqrz8FUWJEpV0oV0rg86BwgMZSSJEmSJEnbYCg1zHS0tfHQg48CUDOiFoDKNE8HRaZMmdLnYCqsiMhSCqXa0xjitBxKxc6UkiRJkiRJ22AoNcwsWriQKNPZbheXZj5Vpjnag1KANGXKFGpra7nkkkt6d8NMSC4ohVAdSZE03jzo3PY9SZIkSZK0LYZSw8zkSZMoFmJgcyhVTZ52Sj8vWbKExsZGLr744l7dLwgC8vlc6X5JEeKEMOvue5IkSZIkafsMpYaZNIl53etOAGD1ujUAZInoCIosWbKE559/nltuuYWamppe3zOXzwObQykrpSRJkiRJ0ssxlBpmkkKBfL4CgOUrVwKQTTMsXbN8hwIpgGxljigI6Uji0u57UUQQhoZSkiRJkiRpmwylhpm4WCAKSzOl3v/BDwCQI+LZF3cskAII8hHZMEtHXIA4BSDMZB10LkmSJEmStslQahhJk4SkWCQKS7vlEQZEYURIyA9+dsUOBVJtbW1saN5ElASs3bie5sZG7rrrLopxzIL582lra+vnp5AkSZIkSUOBodQwEhdLw8zDoBRKtRc6yGdLQ8prxtTt0D03bNjAfQ/eR1SEDWvWUWxu4x+//j9am1q5/Y+3sGHDhv5ZvCRJkiRJGlIMpYaRrt3wwiCCKKCjo4NclIWw1IK3IyZNmsSoCWOoCHOMrBtBXVUNH3/zWVTlK5k1cwaTJk3qz0eQJEmSJElDhKHUMBKXQ6kQopD29nZyYZawIkMQBDt830OPOhyK0BEXy8eWrF3FQQcfuNNrliRJkiRJQ5Oh1DDStRtekG4OpbJBhrAys1P3HTFuFBVBlobWZgDmvfA0QTZLRWdroCRJkiRJ0ksZSg0jSWcoFRIQdFVKkSHYyVAqzEdUhHlWN64H4Irbfstee+/t7nuSJEmSJGmbDKWGka6QKIDN7XvsfKVUUJEhl0QQleZSTZs1g9oRI8qVWZIkSZIkSS9lKDWMxIXSzKcgpVwplUnCnQ6lwoqILBkqqyoB+NAHP0iUyZYrsyRJkiRJkl7KUGoY6dp9jwSIQjo6OsjG0c5XSuUzZNOIYhwDMH7UWKJs1vY9SZIkSZK0TYZSw0hcKBCEIUGSltv3MsWAe+67l6amph2+b1gRkSNDR6GDNE1JC0VDKUmSJEmStF2GUsNIXCgQZbOkcVpu30uaiiQrWnnHKW/d4WAqyEdk09I8qY4ggY6Y0PY9SZIkSZK0HYZSw0hcLBBmshAntBU7KBaLVIcVHD75AD4w7a07HEyFFRmylFoAC2FKWoiJshmSOCZNkv5+DEmSJEmSNAQYSg0jSWelVFIocuONNwGQ6wyTXr0TwVRYsUWlVJhAR5EokwUgLhb78QkkSZIkSdJQYSg1jMTFAoQhG9auZ1blVACyROXPdziYyoTkwlII1UFCWogJs52hlC18kiRJkiRpKwylhpG4UGDJkmVUZysYXTkCgFzafee9V08+gKMq9+OrX76s1/cNgoB8LgeUZkqlHUWiTOl9ssWw8xUrVtDW1razjyFJkiRJkoYAQ6lhJCkWmLHXLDLZDIs2rgAoz4Lq8sCyx/l765N8/stf6NO9c/nOUCqNoXOmFJSCsMWLF3P+eefxmlcdxv33398PTyJJkiRJknZ3mZc/RUNFXCiQq6giag95cOPTMDJHLt3cvvfAssf58aLfcd0tv6OmpqZP985XVEAbdKRF0s7d9wAuv/QSHp43jzOPP4aa44/t1+eRJEmSJEm7LyulhpG4WCDT2Vb3xrecCkCmM5TamUAKIJPPEhLQkcSkHUU+95nPAHDQpLF88Zx3MXvqlH56CkmSJEmSNBRYKTWMxIVCeVe8tDOOLMQFfvn47/l765M7HEgBRJVZsmGWTc2NBFVjGRemAEweP65f1i5JkiRJkoYWK6WGkaRYJBOWcsj2QoFclKVu7EhaD6jYqUAKIMhH5IIMYa4UejVna0iShFXr1/fL2iVJkiRJ0tBiKDWMxIUCUVQKjdqLBbJBhqg6x+Xf+PpOBVIAYUVElohCXATga1/5Gpl8nqUNLXzl57/iucVLdnr9kiRJkiRp6LB9bxgpFjoIggCAto42MkSEldv+Crzj1LfRvL6xx/Hq0bVc98cbuh0LKjJk04iOYgHykBZicpVVvPm00zj9/R/mK1++mNvuvIfTz/9Q/z6UJEmSJEnaLRlKDRPz5s2DJOG2W27nzMNP4a677mZcxSga2pvY1tSn5vWN/OS4L/U4/v67L+1xLMxHZNMM7cWO0oGOIplcnmJHO7OmTuUnV17FihUrGDVqVP89lCRJkiRJ2m3ZvjcMLFu2jE9+8MMAzBk3FYBJI8YwIlfDPX+/h+XLl+/07wjzEdk4pL2jA8KAtBCXQ6kukyZNoqKiYqd/lyRJkiRJ2v0ZSg0D48ePZ8aMGQDMrt8TgDF1I4nikKg6x7hxO79DXlCRIZtEdLS3Qy5D2hET5XMU29tf/mJJkiRJkjTsGEoNA9lslv/89jcAKMYxAK2FdqI44NQz3kI2m93he7e1tXHXXXfx1PynyZJhw/oNNLe3suzFxaxet55CW1u/PIMkSZIkSRpaDKWGgUKhwMWf+3cAKnIVpGlKMU2oCiu45tprKBQKO3zvDRs28M53vpNf/+63ZInYtGkTLyx+kQXPPsfvb/4jHW2t/fUYkiRJkiRpCHHQ+TCwevVq1q9ZDcDi1SuoyFaysaWJekazeMUS1qxZQ319fbdrli9fzoTaMQBc+cyNHDJ2bzJhhu89fi3Vo2vL502aNImTTjqJmuo6cmmGbDZLtirPmHyeyVOmQmdlliRJkiRJ0paslBoGJk+ezIWf+RQASzetY/K0KbTHBXJpxPmf/H/dAqmmpib+9R3v5mNv/wBnTz+V9W2beCGziiPedCwH77U//3ffn7jujzd0u/9XvvIV5j31GFkiUqCl0E4Yp5x0yikUO9pJ03QwH1eSJEmSJO0GDKWGiWlT9gBg7nHHEWQjMtksWTLstf+cbud9+NwP8Ob8kXznuM8ye9SejK4YwZvyr+FXv/8t8YY20jjpce+pU6dSv+ce5NMsBLByw1rGjBjJuAkTIU2Jd6I9UJIkSZIkDU2GUsNEXCwFQ2EaEIcpSZqQTSPCys0dnMuWLaN1WQNHTjm427VHTjmY5SuWQwLFDVvfTe+zX/wceUoD0+cveZFR1XVk8vnS7+5wBz5JkiRJktSdodQwEReKhFEEcUIHpWqnHBnCqs2h1IIFC9h75J5bvb4uUwNAce3WB5dPnbEn2SQCoKK2miCFTKYUUhUNpSRJkiRJ0ksYSg0TSbFAmM2SFhM60iIAWTIEuah8zsyZM3lm44tbvf6RtU9CFGwzlAqCgMp8JQBHHncMAJmwM5RqN5SSJEmSJEndGUoNE3GhQJTJQjGhPSntiJfP5wjCoHxOfX09lZPreGDpY92uvW/JPComjyAzppLiuq2HUgDVlVWl+1aXwqmQUuBlpZQkSZIkSXopQ6lhIi4UiLJZ0mJMR1KqlMpXVPQ474qf/4SH0ucB+O2zt/OJu7/O79vv44qf/4TM2EqK69q2+TvylXmiIKKl0AFA1Pn1slJKkiRJkiS9VOblT9FQEBcLhJ2VUh2ZzkqpynyP86qrq/n8Jz7Hhuuf59WfOJEz9/ow9fX1ABTGVtD6xLpt/o4gH1ER5WhtbwPqCOKUMJMh7ugYkGeSJEmSJEm7L0OpYSLprJQiTmiPSzvx5St7VkoBFFa1EI2u4OjjDu92PDOmknhDG2kxIcj0LLILKzJUhJ2hVARpR0wml6fYse3qKkmSJEmSNDwZSg0TcbFAJspBDB1xkYCAXFXPSimAwuoWshOqOO2NJ7Fh7Zry8f1G7cUXD/sI57/9Pfzspv/tcV2Qj6ggR2trK4zKQKFYCqXarZSSJEmSJEndGUoNE3GhQL6ysjOUKpALMkRV2a2eW1zVQjyrkuVLFvPu/WeWj1dGpeqoqrbNO/a1tbVx//33AzBufUBUgGXLltFSM5NNCxYRZrMOOpckSZIkST046HyYSIpFoqgUQrUXC2SJCCt7hlKN6zYRb2rnB1d9lw1r1nT7rDVupJgUmFg1rnxsw4YNnPfOs7nz//sdLz78PJk2WL90DWuXruHBv95HEgSGUpIkSZIkqQdDqWEiLhTIdIZSHcUC2TRDWNmzUO7LH/kMALPGpNTken7eXNzIxKqx5feTJk3ixBNP5MgJB3LQ+DnURtXUVtVQmebZa88ZVNeNIHb3PUmSJEmS9BKGUsNEaaZUKWRqL3SQTSLCqu6h07Jly6hqhDRNaSis4+QD9u5xn8bCBiZUjut27POXfYkfPvlbACrSLO0UeGzV88yaOZNMLmellCRJkiRJ6sFQapiICwXCsDOUamsnt5VKqQULFrDXiMk0FzcSp0VqK3sOQm8qbGBS1TiWL19ePjZ16lQmzNmDJZtWkE+zFIKYuCIkR0Qmn6fY4aBzSZIkSZLUnaHUMJEUC0RsDqWyRAQvCaVmzpzJ6IrxbOpYC8ALq9dx5b0PcuW9D3L3cwuJk5S/rljIuMrRHDBnPxYvXly+9vOXfZHfL7yLfOfvOOioV5EWikS5PMX2tkF6SkmSJEmStLswlBoGkjgmTRKiMIQopL29Y6szperr65k2cgrLGktVUPtPnsh7jzmcuXvPYsz0mURhwIc+9f8Ig5Cvvf5CvvqFS8vXTps2jVx9DRVpaW5VtqYSigmZbI6kWCRJYlasWEFbmwGVJEmSJEkylBoW4mIBgJAIMiHt7e3kiHqEUklbkVHZOtYHjbQWivxt8UpuenYRq+vG8p0rf04YRTy/4J8AnLr3XFY+s7RbtdR7L/wgeUqhVFtcatnLRKUWwAv/30c45tVHcP/99w/480qSJEmSpFe+nturachJCqVQKiAgyIS0d7STZUSPQeeF1S0A1NYmjDvk9cw99EhmzJhBfX09AOOmTefPt97A+VM/ShiEfHi/M/jqFy7lR9f8FIAps/dkQfoiAK3FDiDDL6/+Hw6bPo4zD3gtk4K6wXlgSZIkSZL0iveKqJT6/ve/z5577klFRQWvec1reOCBB7Z57tVXX00QBN1eFRUVg7ja3U+5UioNIBPSUegozZTKReVzmpub+cll/02SJqxY/TxzXnM0xxxzTDmQAqiZUE+mrZUwKH1t9p8wm5XPLGXJkiWl++ci8tlSZdSvf/sbAOZOPxiA2XtMG/DnlCRJkiRJu49dHkr9+te/5sILL+Tiiy/mkUce4aCDDuKkk05i9erV27ymrq6OFStWlF+LFi0axBXvfuKuSqk0gCigIy6Qz+YIggCARx99lFNeeyKHZ2ZTTNpJUvjw//sM8+bN63afvz34T6pzAXEal491VUt1CfIRaSFhdKYagOkTppTWkBQH8hElSZIkSdJuZpeHUt/61rd4//vfz3nnnce+++7LFVdcQVVVFVdeeeU2rwmCgIkTJ5ZfEyZMGMQV7342h1LQEaQA5HOliqZiscg57ziL7x3zOSbXTWBjxxqmVM/mO0d/lrPf/h6KxVKYtGLFCv7891IF233L/0GSplz1+O+4b9Vj3HbbbaxYsQKAbF2eEVW1LGvfSJzErFhf2smvmBpKSZIkSZKkzXZpKNXR0cHDDz/MCSecUD4WhiEnnHAC99133zava2pqYtq0aUyZMoW3vOUtPPnkk4Ox3N1W0tm+F8TQ0RkO5fKlUCqTyVA/qZ6aXBVJmrCufQV7VO9Fda6SyZPqyWRKc6dGjRrFt678MWEuR9V+VYRBwBvOfzPHf+atXPWraxg1ahQAYXWWyjDP0a89BnIZnli9mCRJeXHV0l3w5JIkSZIk6ZVql4ZSa9euJY7jHpVOEyZMYOXKlVu9Zs6cOVx55ZXcdNNN/OIXvyBJEo466iiWLt166NHe3k5DQ0O313ATFzqrlJKEjjQBIL/FHK4DXnUQ9yx8gICAlmIDEyunc/eCBzjg1QeVz6moqOD4449nj9n7kIYNEML+E2czd+5c5s6dW57rFVZnyZOltbWVTGWe0045lUw+xyMrnufHN/9q8B5akiRJkiS9ou3y9r2+OvLIIzn77LM5+OCDOe6447jhhhsYN24cP/rRj7Z6/uWXX86IESPKrylTpgzyine9rkHncXuRtmIHAPmKHMuWLaNYLPLb317Ln1+4tzQ4nogNLU1c9+TN/OY315bb97pM2msOS597kqdWzWfDc6t6/K6oKktFkqWlpYUglyFtL5KrqORNp53KvQ/czxFHHDHwDyxJkiRJkl7xdmkoNXbsWKIoYtWq7uHGqlWrmDhxYq/ukc1mOeSQQ5g/f/5WP7/ooovYtGlT+dW1U9xwkhQKEIY0btzELbffCsD9D/6DN7zhDTz55JNMnTKFCSNLlU73L3mUT93+eTL5JqbuMaXcvtdl4szZtDU20Fxcy/J/Luzxu8LqLLliRGtrK+Qi0o4iUT5Psb2NSZMmuVOiJEmSJEkCdnEolcvlOOyww/jLX/5SPpYkCX/5y1848sgje3WPOI55/PHHmTRp0lY/z+fz1NXVdXsNNxvWr2NTYxO1ldXEnf/jSZDypje9iXe9610c+7rXMWNMKQQcPwpOPWQ640dWcNpb39rjXsWKKgDCbCMTMqNYvLD7zodhdZZ8ISpVSuUz0F4kk8tT7OgY2IeUJEmSJEm7lV3evnfhhRfyk5/8hJ///Oc8/fTTfPjDH6a5uZnzzjsPgLPPPpuLLrqofP6ll17K7bffzoIFC3jkkUc466yzWLRoEeeff/6ueoRXvMp8HoKQKAypqC6FSrWjR7Bs2TJmzZrFee87H8I6WotNNLa10NDaxnObWnjnu9/T416Xf/3rFJOEDR2ryIQZfnDpN7t9HlZnyKelmVJkS5VSmVyeuL19UJ5VkiRJkiTtHjIvf8rAOvPMM1mzZg1f+tKXWLlyJQcffDC33nprefj54sWLCcPN2dmGDRt4//vfz8qVKxk1ahSHHXYYf//739l333131SO88iUx9fWlWVqthXaiNKS12MZdd93F888/T1VVFfvuuS/NhU0sytbQSsjcUw7vMX9r8eLFzH/8nxy4z3Q2dawmTVOiVa0sWbKkfG5YlaUizZKmKe0kZAoxmZo87U2Ng/7YkiRJkiTplStI0zTd1YsYTA0NDYwYMYJNmzYNi1a+L3/xC4wttjKhbgynHXwaVzxyK8WOmDFJDX9ecB+NjY1cf/31LP/u/Sx98SkO+do7qaobsdV7nfue9zB6zWImjyp9fvLk81mw8TmuLzzGVf/zCwAKq5p55Lt/5v9yj3LBe95L7fxNrB7VxJolL3DYGWcN2nNLkiRJkqRdo7fZyy5v39PAefLJJ3n4b/ey79Q9oDN6bGhooCLN8sKyF5k8eTLz589nzZo10JjQkjRQWbv1L8uKFSu4/fbbWNzYwtOr1wPwwsZF1OUncNutt7JixQpgc6UUQFtc2vUvE+Uodti+J0mSJEmSNtvl7XsaGGma8ulPfoL3vfH15HM5xo+sBKCxqZH63Hjuf/gBHlv2NP/9g+8zafxElrbPp5iLCYJgq/cbNWoU1/72OgAKLc089vMfMnbfyUzeMJ5rf3Mdo0aNAiCsKs2UAmgploabZ6McxfZ20jTd5v0lSZIkSdLwYig1RM2fP5+go52JY0ZTKBZZu7YZpsOEunFUkOWsvd/EHoe9l3+/+Oscvf9rCAigZtuFcxUVFcydO7f8fsHvf02mLiZcG7DPpJlUVFQAEEQhlRWlAKyt0A5EZIIMpClJsUCUzQ3kY0uSJEmSpN2E7XtD1KxZs0hzeVauW08mish1hkFRttRed8L0I1nUtII9Z81gRFgNQDgy3+v7j58xi6WrnwHgU//6MVpaWsqf5WsqiIKI1vY2iEKiIAKg6A58kiRJkiSpk6HUEBUEAf/57e9w9a1/IQgC9pq6Bx3FAq1BBxVpjqb2Fi772xVc/etrCBqKpGlKflxV+frly5dz7JFHcMTBB3LMqw7t9jrtjScxYfoslr/4LG25IodN3I//u+WW8rVhVYaKKEdLSwtBLiJKS1+zYkfHoP8dJEmSJEnSK5Oh1BC23377cdjRx1CMY554fjHFjiIdQZF8mqEmX8UXjv4Q5555Nh3rWmhNmqgZPYampibOeOtbeOepb2TpC/M5Y85U3jqzvttr/ZrVfO1b36OtsYGnlz7LG/d6Ld//ync4dPaBHHLAwQRVGSqCHK2trZDPEMalOVJWSkmSJEmSpC6GUkPcF790MZkooiJXSXuhCMCGxo3ctuBeDp+4Py/OX0DjsvU0FTZSM3oM5/3rexjfsJa3zJ7K6JGVPL1uDY0d7SRpys3zn+M3zzzJinUr+caPfgTAiHwFNbkqztvvrYwbP56b/vh7opocFWQ7K6UyBHFpLe7AJ0mSJEmSuhhKDXFdQdChhx/Ggg3LAJgzZw63tT7E+X+6mJ/86ioyTQkthU20JimrXlzIjLGlnfTedchBHDSlnn1fM42K6hyXfPFt/PL6j5LJwt4HHkRUUcmK5iUkacITq57nI5/5OFOnTiWszpJPMjQ3N9Na7CAoJgDEhlKSJEmSJKmTu+8NcV0tcyPrRjKqvhVWPUnNiFp+ecOvWLNmDfX19Sy58V6ai5to3dTI2IrNu+Mt3LiBj136VsIoJE1SXrhvSemDoNSOt76lAOkiwiDkwVWPs+KaRk5782lEVVlycYala9dy5f9czb/MPYUgDG3fkyRJkiRJZVZKDXFdlVJhGlAIUgCqR9SQzWapr68nLSQErSnNxU3sfcCBrG0rDSNP05TFmxoIo5AkSQnCgPQl9x4/cyYjR5V21vv1//wvx544t/S7qjPkixkKhQJ7TBjDiIpqNjU1ccNvfs3ixYsH5bklSZIkSdIrm6HUENdVnRSkAS3FdoI0oGpEzebPN7YBUMgVmDJtGmP2mMJtT79AEASsaG5i06bSQKi2toRsTVW3e7/xHf/ChoYVpEBVIcf5H3g/AGF1loo0S7FQoKmtmUyUYWR1DXuOruMDZ72b8887z3BKkiRJkqRhzlBqiOua4xQkKS2FdirIEtVsbtGLN3R+XtP5VcjkOGT//SiGEdP32Zd8PmDlypgVK4rUTqim0FYkk8kCMGH6TBIS1raspXVVY/meYXWWfJolThIa25pLtw1zVFVU8Jl3v4NxFNhv331Zvnz5YPwJJEmSJEnSK5Ch1BBXbG8njDIQJzS3tVGR5ohqsps/39BGSkpmVBXLli1jxYoVRC0NbKip493vPoYwTPn8569i0cINjBxXwWc+8mtaW0u7+NWMHkOYr2BT+3qWPrWwfM+oKksFpd/R1NEKwAtLVrJi7To+94OfsTbI8uRTT1FfXz+IfwlJkiRJkvRKYig1xBU72snk86TFhNb2VirTLOEWlVKtqxpoLjaQr6tjwYIFtDSuZXRFjon7zmDffXPkchHvf/9xPDJvIVEUsM+sKey778EcuP9+7DNzBkvXrCMNW1i/YCV7z5jOgfvvR1oZkk9LodTfnnwCgIraUUwaO4Z/+/fP85Mrr2Lq1Km75O8hSZIkSZJeGQylhrhiezuZXB6KMS3tbeTJEnZWSjU1NfHX399Bc2ETf7zldgBm148gqajmgAOrSDsnmx911GyWL19NHKe86S3H8cc//pE//PEWxk+YQFU2Q2vcwOSacYyfMIGbb/k/lq9ZQTYtDUCfud/+pGlKTXUd+WyWCePG7pK/gyRJkiRJemUxlBriih3tRPk8xCkt7W1Upjmi6ixNTU2845S3sm/ddFqKG3n1yIP51Ec+yczxY5j06j2ZNi1LuMW3o74+x4YNMS3Ftbz1rScwbdo0/u1zn2NNUwtNhY1UZ2v4zKcvIpPJsN/++xMXSy1+o8eMpqXYTiYsVWcFhY5d8WeQJEmSJEmvMIZSQ1yxo51ctgKAlvY2KjJ5mttaeMcpb+UD095KdbaSpuImZo6cTk0cUkXEIceOY/36IkEQlO+zaNFiNqxrZfwetTQ2rgTgF1ddxXPrNtISbwLgz7+5mfr6ep566iniNCGIoaGhgZZCO9mwc45VoTC4fwBJkiRJkvSKZCg1xMXt7WRzFaRpSmuxjcpsRTmQevXkAwiCkObiJr72jx9x9icO4dh3vgqA//iP3/P006Xd8e6//1nGjttEa8taakdmGVVVCcAbTj6FH//iWpoKGwE4/tXHAzB16lSmzZnOqIo6ABavXA7FhNaODoKilVKSJEmSJAkyu3oBGljF9nayI/O0NxVI0pSWpmaOqtyPV08+oHxOc2Ejn//GqVRmMoyYVMtDD7Xwmc+cyJln/hf77DOa2XMaOfvsKpo2vkAQTGfvWXsA8IEPfpCOtlbakxbSKOV1rzq2fM+wOsvI9TUccsgh7DfjQF58/gVeWLGO6WMmDPrfQJIkSZIkvfIYSg1xxY52MpkcLcV2AKZMncIP//ZL9l82uxxMbWhfy8hxM6CQsnRpgcrKiJqaLGEYcO55bYwdW6qMylUtoKMjZa/Ze5Tvn6uopLK2jmKuSHFDW/l4WJ2lJq1g6YYNVI+qY5+Ze8G4AiHpID69JEmSJEl6pbJ9b4grdrSTjXK0dA4Yrx1Rx3W3/I4fL/odyxpWUUjaaSt28Pe/P0e+OsvSpQWmT89yzz3P0t7ezNixm3PLXK7AhnUFJk8bwyOPPFI+PmL8BFppJl7fPZSqLebZtGkTZCPSjiIjx42n0Nw0eA8vSZIkSZJesQylhrAkjkmKRaIoS0uhVClVPaKWmpoarrvld6wsrGdj+3pWNzXyj3+8SBAGtDW209zcxA03PEpbWzt/+H0TbW0JTz3VzrPPdrB8ySbGTqriiCNezX333QdA3fiJNBU2UNwilIqqMlR35IjjmMa4HTpi8jW1tDc1kSbJLvl7SJIkSZKkVw5DqSGs2FEKoqIwQ2tn+17NyJrSvzU1HDbrQJY0vkhbIWbGlMkAzHv4RT7zmT8SRaMYNSrPaW+uoaIiZN9988yZkyNM11Bdk+Hyr76TD37wPKBUKbWxeRXF9W2kSak9r1QpVdr1b1NbMwBt7TFpmtButZQkSZIkScOeodQQVmzvCqUiWuIO8mmGTF0egMaNDcTr2+hIN9La0c6sGRNobEwYO2kar3/9qeTztex/QE2Pe7a1Pw/Aqw+dQ1VlzH333ceIcRNYt2kZxClxY6lNsGumFMCiFUsB+PdPfb50j8aGgX1wSZIkSZL0imcoNYTFnZVSIREtxQ4q0hxRdY6mpiY+fMbZREFEc7yOGWNHMWZsng0bYpauWMnvf/8Lli+/gyOPjHrc86HHX6CpKSZOQy7699P44AfPY8T4CTR1bCj9zs4WvrA6S5YMaTHh97+9CYAT9zqWFGg3lJIkSZIkadgzlBrCuiqlQgJaiu1UkKUtLPCmk97AkaMmAdBQWEdVPsv4+lo2bihy332/pLJqBRd/eSwHHVTR7X5pmjJiZAVrlrYyamyOffedTFVlzIsrVtJc3FT6nevbWLRoERdd9O8AtDW2kMmUhqVX5SsgylgpJUmSJEmSDKWGsq6ZUnfc+mc2NDZQkeY4531nM7q9hVmjptFabKIjaaMx6aCqJsum9S1877/qec97RvL0U22EL/l2FApw5BEToViguiZi5dI2Lvr307jgwo8Sp0U6ogKP3/sI++29L/VrKomTmPrKsewxrZ72QgfLWlfRkUJbk6GUJEmSJEnDnaHUELbkxReJk4Tj9z+cmJQKslRksiyJIUMdDYW1ADwXl/4dMfIxAObMqeDAgyr53e820dqa8Ld7m7nqqvXkcgHtHau59a6HKRQSVixv4a67nmHlqtUUigEbG9fS+tQ6zj/iTG585g6eWbuQWiopBpDP5njb3Dfw3HMLeHrePBYvXrzL/i6SJEmSJGnXM5QaotI05bY/3EwmzBIEpfa9yjDHpe++gInj6qnJj2d1yyoA9t9nCsViSs2I54njlJ9fvZ7f/+lojj3xTWQyAY/Oa2d+wxwAqqtj/vL7h1i6oIE9ptdx101PUmxJqcmMJAiK7DVqGp96zXl8/rgPsSrZwBjqaOxoJUkTJo4ay4mHvJaRFZXsv99+LF++fFf+iSRJkiRJ0i5kKDVEzZ8/n5pcnlyUA6C12EFllGfq+EnUhRXUV09gRdsa2opF9p0zjYaGIlGmwB/+0MBBB9fwhtP/H+Pq5hHm9iJ/8NtZuc8XWbmxtBvf+P0mECTjGDcuw2cv+Tz/+d1vsahxHY3F9eXf/8Mnf8u0w2czPhhJSkpDeyut7W385JYbyGZDHnvsn9TX1++Sv40kSZIkSdr1DKWGqFmzZpHJRcRxSkdcpJjGVEU5Fq9eQW1FHUEKYyfXsKa9yLgpo2lqagVg9aoC+x32OnLxn4B2mvNfY0FwOiQxj68/iDSFmbNyvPYNZwOQzW7ks5/9LGFtNevaVgLw1Ornmbj3HuQm11BHFQC//cefyGQynPX/PgjA+JEjBv1vIkmSJEmSXjkMpYaoIAg47NBDWLR6JS3F0sDzqmyeL//qB1z4/k8AsGLNfN7+r+cwZmINra2bSBKoqAwpRHPJFa8FUlqKI3n7QTOYtfEqnty4P0EAU8atJV8xgqYNMGpcSm1tLRNnzWBDRymU+sOiv/L5y75ERy1UxjlIYf9jXk02yjBz+mwA2hobd8WfRZIkSZIkvUIYSg1hVRV5Ro4aS2uhA4AH5z/Bvq8+hAm50QTVGZqa1jFh+iQy2ZA02UAmM4FlqyaTje8nTrL89LF3ce0jK5g9fgx71UxkdeNepGnArL0yzJo1i7/86Z9Mqs/wqgP34cZbbqWxsA6AOTP3YurUqbzm6CPIjamkJldFkit91TJxSBBFtDVu2mV/F0mSJEmStOtldvUCNHCK7e3su/cBbFrRDMBpb38Lk0/ah3W/eIq0tnROkmkhBIJwNWk6kVcdezjZ+GZ++/zp3L/ycPLhShpXLeKkkz7BxKUNrGkdw9hRa1m69AX+93o4/cyDOf51B/GHm1oopgVWNa3mtONPBqCiooLKKSOoXVjJxsYGGsM6bvzu9xk/LuDvV/6M2x6aB0DtiJHc8Pvf74K/kCRJkiRJ2lUMpYawYkc7uShHS6E0gLwQJBQKBQqrW2jJtUAQ8Nd7/8iRx+9FobiIv/25leNe18qG5knctmguAAePGMmo1tGMIeY1E2t5onEO46vWcsghNSxevI6Gje3MmD2SlesXE4/fj7Ud65jaNqe8hmx9DdXP5ti4YSOLkpBTX/UaFm58hrEj6jhy39J5X77m14P9p5EkSZIkSbuY7XtDWLG9nUyQpSUtkE0jvv7Vyzn77e+huLaVvz90F5taW9l3vwls3BRTU9PGHtMmkAue49eLzmRMPsfnZtXy8b3rWdAa8+u1DdQVEw4Y/WYAPvO5cWQyKWtXNjF5jxzvO/f1NLZ3UDkmR9Pi9dx1113cddddMCZLbZxnw4YNLF6zgops1a79o0iSJEmSpFcEQ6khKk0S4kIHyxctY9naVVSkWTY0b2LE+gwksK5xCeOnjqJ2VBWNja0EAcyambC+7VAeXDqD1x0wjmsnV3NWbQeXT4n4zdiQH7Q1U9M6hzSNqKrOc9qbM/zzsYXU1IS0NUFDaxsvLn2CqCXlR5//HO8+4x00VRaoTStpam5i8boVVGQMpSRJkiRJkqHUkFXsHG6edsQUSKkgx6tOPYp8RQUAlSPb2GP2OCpr///27js+inJr4Phvtm+y6T2B0CEU6QIBpAgCgiiIiAUFRbn2K3qvr15BVFTELja8ForYQMWrCIhUERDpvSe09L7ZTbbP+0dgSUgCKJAAni+fkN2Zp5x55slm9mRmVo/DUXbTca2Sy6a8TrQNNbMqVEuqw0qJAmg1qBY9y4sdzND70Ho6olVchIWZmPrBQlwuH3EJYXgVFZ9iRaNoaB2ZSJ9rroEALcFGCwDHinLQKBqMOnOtjIkQQgghhBBCCCEuHpKUukx5HA4AokIiKHW7MKl6HLhJjIyjlBIcJXZC4i0oioLPmwsYAFh9tB7dm4aTqlUp+PGbkw36VLzxZn5KK8Jm74GiQLduRh7/l5ljh+w0bRGJDg1WVy4ABc4ABg8ZSvv27ckpLPtUvjx7WfLLLGdLCSGEEEIIIYQQf3uSlLpMpR48AIDFGECJ24FZNeBVfLSp34pDeWmoPhVjYFkiSqfLBiUAlxpPXX0EewI0aH0+nBt+x5ubXdagTgNmHRqbmw179aAa0Wg1GAwKO7ekExltJDLSglt1UewqonXDtoSGhtKxY0esPjuKCllFhRSVFLN2Rwo5hVb+2LOfZ2d9TVBIaC2NkhBCCCGEEEIIIWqLJKUuU3HR0eg0erSKBrvXien4mVDBPjOZxVkAlDhc2O1ejOYCfKqXdHszhsYHsVRxYv9tOYY2HbC+8iz5d96A4f/ux3MoBV+ciR25HjSejqiE07ixid17tuHzqRibRACQZs+kZ5vu7Nq1C7vdjisILKqJ1q1ak5qdTrN6TaiX1Jw+Pa7il5W/8t0PP9TaOAkhhBBCCCGEEKJ2SFLqMuV1uzBojdjdTrz4MKg6AMwuPU5NCV7A5fFRVORDpytCoRibrRlHQkyUGvSYevQh6O4HCHvlfUIen0DDuBh0P/+ALzqA3aGJaD1d0GlyKbYpXDs0l6wsL6061sHmdFKqtaO3lcWh1+rJU2yEqRaCA4LwmXXEWEJ584MPseXmoPp8tTdIQgghhBBCCCGEqDWSlLpMuR0O9BoDBc6y7FBRZh6/zllMmCkYr7YUTAHE1g3HZnehKB4UoL6+DXOdBf42XFs2UPT2ZKxzPuP3vQfQHzuEWlpKYbSB9IIWqKoOvakOAYFejh1x0LBpJFkldhSjE3duCakHUvB6vRQpJUT4LHhULwtXLiUuJJL7/jkO1eeltKiwdgZICCGEEEIIIYQQtUpX2wGICyMrIx2DqqegtCwp1S2qLT2v7wBAoS2dEosPS5gRR1omRiO4fGHojfGkBrr8beivaIehbUf/czegAN46GrYf9dHb0waDIQ+dopCbkYFW24RO17Ygd2sKSmwyG5f9hjYiiPTMdFoZ4/CFqwyq0wu9TscTjz/FlH/ejS0vh4Cw8JocGiGEEEIIIYQQQlwE5Eypy1SoxYJGoyfPZiVANaJD61+n1Tvw6D1oNAoeVz4qCkWlLViu81W4nK74o6lVtq0EmFhpVDF4k9EpR/D5IDgkm/w8D+2vakixs+wT+Lq36Mz2bdso3JBGE308ADP3/gTAt5/PwRQUjC0350INgRBCCCGEEEIIIS5ikpS6THncLkIsoaQX5xGsmv3Li502FMVFVFwwAE5PGqCCqyUL9T48B/bgs5edXeU9eqjKth2rV3Ig0cxeNRlUFac7iBJ3CsfSvBgtBlyqA5unmM5NOjG6/TDuaj2UxSlrsPhMqEFaikpsLPx6Hpt37GbdsqXcPGTYhR4OIYQQQgghhBBCXGQkKXWZ8jidmAwB2H0ugn1mRsz5J8tSVpNTWnZmUmxsIA6Hj5CwIhQgw9SJXB0oUTFoAi3Yvp6FWlQIqsqdvgMs8y7EpHoAKFn0PWqBjZdNJo66u6LXmwmLKCIry4NWpyG0XjDZ9kzy9qXz7c5FfO/7nZufuosoNZiOzVoTEmDhlm796duqG/VjYygpttXeQAkhhBBCCCGEEKJWSFLqMuUssYNbpcTnIkgJICophsZRCWh0dgBC4oOxWn2YTcV4fQZ+NIQTkJdFcH4G3oI8dCYzRoedN9T1vKJupC4lTPOtRfW4CRn3NIrJjM7jY6r+XhwaB1FRCtYiK6pPxRukw+4romF4Iv9bPJ//TJrAlPdeI8IbRFZpIT5VBSBAb8GnegkLCqzNoRJCCCGEEEIIIUQtkKTUZchms7Fv1y5AweFxERoYzBfffItFF0qhM4/C0hIi4oIpLnKiUUrZ5enKLp3KY0FHcTRuxdOBh3nJvJdl/+rBMNcBnvpuO/+cvpYBpNPjyxfRhIRBoJ6mB6wUK4HMYjQAWs1hCvJchCeG4fQW0DCsLh+8/h4P3zSWwZpOKHYvbtVLXqkVgAB9EACxYSG1NFJCCCGEEEIIIYSoLZKUuszYbDaGDr6OuNAICp2lABw7epQ7bhxOuDmU3NIc8pxWgsNNeH35ACzWDiHC4yVLF4QeFb1O4freVxARbEarUZh84xW8f3s7jmQX8f71jTAenzUpFj3XOfVsohNONQCjOZ28XC/1msRQ7M5Fp9EywngV7139NK1imlKYV9Zfhr0AAJ1Wj0FrJCIokPT09JofLCGEEEIIIYQQQtQaXW0HIM6fEwmpG7t0wGK2UOAsu1dTZJCJgsO50BY82EhsFoBOp6Do0kkngc3aOgxzZDLb1AgnGiZp2vG8pzmup0dwVZwBgIyCEjyWUH59aQhj1H18oDQnL9ZEvM1LqcnMUeoSEXmInHxonGTErpQlnppGNvDHd7ggjVA1hgxbPq2j6gNll/BFhwYxduRtBEdF89Gn0wkMlMv5hBBCCCGEEEKIy52cKXWZKJ+Qat24IQaNkUKHHaOqJzo6kEduuBmAEm8hLl0MAAZDKvMZQqiqEKPLx40GFAUA1/q1/Htgc36YdBOP3dSZBs3bkppt4+Xtbsb7tmIoseI+tA9rViEm1ccuWhAZ5SS/wImiKOji9GSXZFJ4/FI9gAN5R4jyBbMudTdzfl1IVkEu3/26hMSYKJ66fThd6yVw79131fzgCSGEEEIIIYQQosZJUuoy8cLzz9EqPprWjRsCYNAayS2xEqyaceudNIpIpNRbisvnpF7TRNxuH8Wqi9X0oEuxk690jQh02fDm55Z9/fQtWZn5DHhqDg+/+wtFx/bRIkhl7hsfY7U5uEtJwVg3kU0bVtDCo2UnbdFqwOM4jNPhpX67RuRrMjAajTyw5AV2ZO0j1hxBpC8YkyWAgzmHiQmL5NrkZMwmIwDtmjXGmpMtl/IJIYQQQgghhBB/A5KUukyMf2YiO9Kz2XYgBafbjUFrpMBhI1g1U+yzUZznJN+Ri1OrJzIhhFKHjZ20wqPoMGsKKcDA0ZmfYp8xDetL44lXvazZfoRPe2SzfZSDnwdl81W/AtomWggLMjPSkI7PHMj67B3E2D3soxkuVY/JvJ+8PC+quYiUnM2YNUbCTQaeXTGZTzfMxYIZn+qjFCeq6iPYGFZhO+rHRpOSklJLoyiEEEIIIYQQQoiaIkmpy4TFYmHej/OZ89sf/L5tF3qNEaurlCDVxP9Nm4Y1z4XVlc/eI2mERxjxeXPYTSvifE7WWYJo7MjGm3oQ81V9CLMWo884gNGVT3zQySkyZZ2Gp0b1AaAJxTRzZtP+zmGkb9uBS9FzQGlKdHwOuXkqcfWiKfbkUOyycscVvRjeKQlDoI5j6WkoKmw5cpitqXtJOVrA1v0H/X0cysymYcOGNT5+QgghhBBCCCGEqFmSlLrMGHVGurduh15rxO5xEKa38OjQu4k1R+JRrXiNOkJCtahks4tWBLu1pCkB2E1BBNx6F/a3JxPvzmLt7U7CTWqFtnvU9bF8435e+HwNy7Ye4xbdMXaEN2Ht/C+x+FR20pqwcCjIKcYUYMAQaiDbkUJ8QGMANDodpoQgQtVAuiZ3o9jgo0vztvyxez8Au1OPEBwVTXx8fI2PmxBCCCGEEEIIIWqWJKUuEzabjZuHDOPfg0ZiMCjY3G4AQo0WOjRqQWRAGHZPIVde1QKDQUOO00O6UodcnUpHNZc0JRBj6/YE/OsZjroVSt0q/9fN4G/f7VW5OUlhRNBW5q3ez4gXvmOQLx2fRoOvZQPCrW52qZ1RUAkwbQKg1KJw1L6fIH04QfpwAPKUYmJ8ISgopBZlY9IZsFpdlDqd2FWVjz6dXvODJ4QQQgghhBBCiBonSanLxEuTXqBPk/Z0bNYCFAWrqxQAi8FITEAEAMWeAnSBFgC2umMByNPqiVdL/O20bhLO1JGJhJoUmkRoefQ3N62/cdFhnpuJG70kBGu4t2UReq3K5/N/p5svi+ARd5Czex8HlQRKMREWcwCr1UN08wRynUdweV1YqIPT5SLdnUsdXySqopJuy8fhcdO1eXtS0nJoGhuDqqoIIYQQQgghhBDi8idJqcvEfyaMZ+n+TWxK2Y5FH0yB045O1TJr2TzS0nMAOFhwhLjEYHw+Dzt89Qn0uYlQHWxWys5iemn/W6zYcBfdPQd5e08kE/Ku53daUxQZjfeRhswb3pDnI8K4r42O+1urvLdgO3f6DuAzBVAcYsSraNhHKxQdlJTk0qBxJAdz88goPUywoR4ur4OVG1cT7QtCp5ZNvSPWHK5q2Z4hV15LcICJZx//F9nZ2bU2jkIIIYQQQgghhKgZkpS6TFgsFuZ8/y1rUzajV8xk2wsJVs3oEoL4duliHJ4SwusHUbeBHofjKLtoiQ+FTmouRxULTeyHuDt9Hs+v1zE37im6P/4FB45mQASEtQ9DzVBxTHfw2Ww9X+9VeLKbnjh3Ltn7D1LPZ4VALQaXl13q1Xh8oWi1+4iLD2R/YQHZpQdoE53EPSP7UFRURIHGTryvLBGWWpRFi8TGBBlC0Wn01A8NIqlZM0pKSs6wxUIIIYQQQgghhLiUSVLqMhMVGkSAMYS8kmKCVTPG2CBa1U/C5ikkOD6GsLAAjtkLyFDqUKrRYSwsOyvpnm0fkGFX+O5IDMvWr2Jl3ko6PtCRoCFBBHcIJrBhIP0f7c9nb3/GO9sDUIGR7Yx89vkSHmIvusT6ODNy2KG0xKQrwOHMQKNRePi5wRQa01DQ0ETfmEN7U1izcwNNbNEAfLtkARqNgqIohJmjaFGvDkFmEwsWLKjFURRCCCGEEEIIIU4aMXQQ1/dJrvQ1Yuig2g7tkqar7QDE+WGz2Rg4cCBP33IjYeZQrM5SItUgDpFDo6AErLajaINMgMoWRxAAZtXD5jfeIqBdD24O/Z3lYd0ZPqUr9U31aRTQCLfXzVDtUHwqHCjdzw+5/yPTmcnhIoVNXMGopB3M2JhCh/RtWKJbUIiDw5pYjvgaoU8vIjammIjwIHSdw8jbkk4TXXMGNrqK3omdiTSGEmNMo05yV3KKCogKCSPcHE2OMZ1nxtzJ21Ne5vlnJqDR6dm4eTNarbZ2B1gIIYQQQgghxN9WqTWfH57qVWn59ZNX1HgslxM5U+oy8dxzzxEdEU6UJQyPz0eJz4lB1WHGQIQSSpo9hcZXhOB0ZrJDrY9e9dDDd5QjKbu4c99svAY9u9v3pk94HyIMUWR4g8jw1SOfaJxKII3NTflX4r+INcby3nsfoL1mIia9wvM9dMxauoN7NSnoEuqglLr4H3cTFmamuHg7YeEG6rSN5WjpbuprGmHWmYgMDOWYNRNduo8jxbm88OMMUGH2LwvIzi8gqX4iQ3t0JTo6mh/mz5eElBBCCCGEEEKIWrX98GF6TJrHWwu3smjrEXpMmkePSfPYfvhwbYd2SZOk1GVi4sSJBOq0WPTB7C/IACBANZJw4t5N7kNExwZgL0llB61xKzoCd21G51G4v63K7GbD6RbanUKPHYeuFTolgGfGXksouehwU6pYWGM7wicZn2AIDcJjCGZvnZvp00DDr1v2czcH0Go1qFot65Rm5Bt9HEk5jKKorFx9kNzQoygoNI9uBMDKw+vpGdAGjaKhTrMG7Mw7yq1XX8c3y38DoNTh4J+PPU5iYmLtDKgQQgghhBBCCHGcxqTj9pljuH1Ie/q3SeSeT+7i9plj0JjkArRzIUmpy0i98AjMOgvbsw8R5gvEqbhJ8IaR78wirGUUWq2GNLuTbCUOjerjSGRDrmkZTnG4hbrx15HlysahS0KHm91rvsPhsKPBhx4XgRRTr1jPzux9vJ/5ER5VT0nr0bj0wdwSn8/Wfelco6aDXoPBq/I/huPwhWIv2Udyl0Z8vmwZWaWHaRhRh/6z72HuoV8wKDpC1AAAVqftJsgUQJO4JDbs3kuLBvWY88UXpKen1/KoCiGEEEIIIYQQYPL6sHh8FBi01Le7ajucy4IkpS4TLz77Aq2jGxBoCOZYcR71vFEUKnbi3KFklabSqHU0Tlce23yxALT35bD0uZd5pJWTxS3vI0gbhEfTHNwOyN/FoiXzcbhLuWP0SO4YNZLb77ydR//5CNea+pJaup2ZWbNxqypbr3yVBzqZ2L5lB1PUjWhRcfq8rKYbRAZTXLydoGADrXoncaBoO23jWvLRpx8T2yCBVE02bTz1AChylbAj9wj3DriJH1euIyoslP7JnWjWtClHjhypzaEVQgghhBBCCCFIKHGzKiqQb+sGE+T2VVqfkZGBw+EAID09nVWrVsmJFmcg55ldBux2O0fTDtG5bRtySm34FJU6nnBm7f+Rnk1bcth+gK4NG2Mv2cQiZRioKvVtmQwafx9ptrm0ibya1BIrDlsRU/7vDvQWH9c82IOkYfVoc01LAIqyrbw57COyNmdSL6geq80/k+c6xON1H+e7Dv/HLaWvEuDozkhzCjPVOmjQ8qMumRvSPyckOJ+B13Rl1qTFJMdcS6Ijhry8PPbq0hnkas963wFKNW5WHd3FP9r05/V7/8OSncto07g+kUFBDOzbh7i4uArbHBQSync//FAbwy2EEEIIIYQQ4m9Go9ES6/Dwe0QAigqbw83ovD40Gi1Hjhxh4ovPsHjxz3z8/qfM+OJTMm3pRDWJIGd/HrGWeD6dNoPAwMDa3oyLjiSlLnGbN2/moX+M5ZZe3WicUJ8DhRmYVQMRqoUWah08PjchHfQYDFp+y9VxSGkMQH5wFHdvex1b9yfBYyUo8ArqBR7j8Tfvwx5TQECImdJih78fS3ggd30wAlepi9XjVtHqqiTWzf6D31/ZTveonmxN2kDS0f08XEfH55/MxvPIRH7laq4P24jdvokG9ftS2KEV6SUHSNxtIi87l98Pb+Gq+OZ09DRilWEPefYiPv75G+4bOAKXz0OeK4UJ995JXGQEwaf88D476+saHWchhBBCCCGEEH9fcQkJKCp4NQpmj48gj49cg5bwxHBuf+gWevyjEz1juvLq21Noc0dTru7WyV93z+r9jLz7dt5/64NKJ1z83cnle5cwj8fDyFtG8NRtw2jfrAmBhmD2FaRTzxvFwdwjNImqQ7bjCMF1Q3C57XzhGQCqyu2+g7iyUtnerAOJAQ0pIQGTfh8HItejJLnwZsLi91cyfdTHRJS4CHF50Wk11GtVhyZXNmTij+MY+dIwLGEmtn+7jn22FAxN7wf3EQKcxWy5oz511v+Cqmh4WTeaQsdhnE43o3rEsLdwGxR4STImkrvpKP/btZSGnhhSV+9GQSHVXcAHC77minpN2XcwH1tJKQEmEwCZufm8/cU8Jn4wi8OHjgLgdrtJS0urzd0ghBBCCCGEEOIy1zw+hnSzDmdmMR/c9x11/ziM1ubg1slDGDl1KIktE2hwZSKNr6tLUrcmFeomdWvCwcx9tOvUhrv+MVpuUVOOJKUuYTqdjvi4ODSKwrodu3F6NRQ5S0jwhXLf98/QKLQBWcphEpuHsqGomD20oI5aTHNPLo2tX9Eq/iZyPU7UkL0cCt+IzmdAv8YIyzfzwYAr2P76SG5Kt3HDMSvXpVkZmGald6aNKxUtisfHwx+PwdfIzicfTMPpc7Gh1eOY9v3AzkNZbOhQQBOPlRyieV99lMzMPbRtFYy7WSlObymtY5vyYIfb6F+nK063i+fa3Yd3n5Ww2Chygnx88Nv/uK5bf46lOfh+yWYahbWgXmwCj4+8mTnPvIVBo6ekpIRbhw9n8IABbN26tbZ3hxBCCHHZSUtLw+12A/KHICGEEH9v7z77GEcCDbSNS2b7Hzs5qPoYlu8gwGL0l7GEB9D8qiYoqnqy4vHH/e7vQZ+xV5EwJIzbH7pFklPHKapafrQuf1arlZCQEIqKiggODq7tcM7ZY+PGsWz+Al55ZCw6U11Wp+0hdKuXkpJibm83lB1XLCK+fRg3ZV5JsRrE79753DftE5rfeSM3RQ9nh2E7ariVWFsijfcdoGmgFRRYtyubH3/bz45DeaQXlmCJsuDzqqglDvpc3ZR/D23PSsXH0Tqh+Hwqm2ancs/A0aRl/EjPlBV8cDCUe4d2Jlk3CKei5xbfbG4xR6LTKxTMMlBHn8Sk1dM4UHCEMF0Q19RP5pbW17Has4uUwBxKVRcajYbYwFBuaNwZu83Ohv3b0QQUEx5s4fmPP+NITi73Db2OZnUTeOaT2fy8bBnx8fG1vUvERcThcPD7779Xu75Lly6Yjp+JJ4QQoqKtW7dy18iRNGzUiFlffMGdt91GysGDTJ89mzZt2tR2eEIIIUSNSt35MYsDCxiRMAZrho33336Ol6+NZrbbib15HKgqhz79jVsaxdKmTgRZRi1e4IjFwM4QE9ZiBwEhZn97GQezWfr2ahrHNeW5p58nMTGx9jbuAjjb3IucKXUJ83g8/Pjd/2ib1JTo0GhSrFnUVSJYmbaekGATxcZcGnQI5+WsBKxqMP29+1jtgNKBkQyOGIhV58QbXETTvFa0T9lN44AiPvh+K2OeX0Y7bRt2H7Dy09hH2PzEk6y66yFW3/Mwax75Nys3HOOX+CB6OH30P5CHz+UhopWerQU7qRt/A3uiG1O4ex3jXvyK57ybAPhKuZVfs4IJDtFh7VJIgSuXST0eoVPjJPZa99O9Xkf+tXAKzb0J3OHsyRhXHzrZGpBdUMBHWxez3XqMwZ2vpl5cWxyqwrP3jmLm+H/RuUUS3yxbQWZ2FhP+89RpM83y6Qd/PxkZGdx+8y2s+Xx+pa/bho8gIyOjtkMUQoiLUlpaGneNHMk/hw2mXUI0LZo1o11CNP8cNpi7Ro70/y4t/ylDQgghxOVow4YNlNhtpKg5hPlMHNiaQmJiIi+//gklShAh27LZ9tyPDNqfx+SeLfG6vHxcVMz3dYJZFWMhyerk1gN5bJnwP9bO2ehvN65RNCOnDsXbqIQWrVr8bd+nyo3OL3EFNis3XNOTYGMsacUHae9uwNq0P3i2573ktj+I02VkudoMLR4mqTu51bqBgdH9MWkDSAndyMavN3Jtk2xCzCrrVpfySLsbWGTYyeiZM2kRl8jyfSm0rxtPkMnIxPnLWLn/EPuyc/jvlJ94+2gBH97ejV46DWs71+f3z5ajSdbQpumDjByt5fpHZqFfs5t2V8WziyjeC2lH1L5VdO0YzM+719O5tA3/1/p+IjXBjPvpJY6VZHHNzLtpEdmQuqHxXNXkSkYkdGeldhdbcw6RZstjdKs+LC8pYv6aBQy5KhmDTssDNw1lSK8emAwGpjzxON7AYP4zcaI/02yz2Rg75m6sOdk0iI0hNTOL4KhoPvp0+mk//SAtLY3o6Gj0ej1ut5vs7GwSEhJqatf+7dlsNsZPeoEXJozHYrFUWPfzzz+zcOFCrr32Wvr3719h3ZYtW6hfvz6hoaFs3LiRrNwcfB4PnZJaA1DqcvD6nOmEmC0MuLovL7/xGmFhYZX6l7OohBB/J+np6Rw8eJBGjRrx3w/eZ/WqXykoKGDitJnUj4vmncce4N2vvic1LZOwuGhKS0sZNWoUixYt4rPPPqNfv361vQlCCCHEeTd37hweeeIhuresx7VTh7Nn/nr++eYkJvx7Its3/k7fem6GdW3A4A512ZdewLBZqzhWoCXI7MQbaiKmeTyfpWQzvs8VTH/oGj7bl4ZDVUFRcJa4QIUgWzi7duz62171I5fvXeK6duzAR+P+TXqJwpq0Paibc+jZpSnRan30N+3nsYx6bPA2YqDvd2KKfmVVyWFebfgSeeZSjpl20HtTKqFGPTl7jbSKalChbbfXy7bsPDak5dAkIoTkOrGM+n4py3ZswJaXRd3wMF4Ych3DrmrGikQr+xOCyVhoJbhBON0julGw7r/cvCOA66/vy8rABAw4MeHgvbAtBLhUViw6xhXp8bQO60pK8QGeXv4mew4dw2NQuf6G6ykoKMCbWcLLfR7niCaP9boDWAwmbmrWlf98/Abf/7qYW4YNo05EKEqJjY7NmxIeHIyqquQWWbG6PHTofhXTP/+CRqHBxEeFk5adS0J0JEezcllzOI2mTZuyZtWqk+N51VU8O+kFuWThFA6Hg4KCgjN+UsTpEkmnk56eXuFF2Gaz0XnAtRy94krqbl/PukULsVgsLFy4kBvv+Qe+uDroW1yBe9d2NBnH2PXbSjIzMxl5681kZ2cTEJlAXN2G5B3chU7Rcvt1N3Jl45YEGs1sOrSH7ccOsnjFUkb3GcI3q36mVYMmRIScTEz9uHYZS1Ys/1vuayHE34vNZuPBe+/DkWelZd2GbE3dx97D+xk/5jYWrl5Pjw6tSapXl9zCIub8soqVW7ZSbLcRGRVJ32uuYd++fRTlFhAfHVOp7YAgC3O+/7YWtkoIIYQ4dxs2bGDw8IH869sHqJtjo6BZDPtW7iX+ijpMvmEqTw1qy+M3da5Q59nZ62g39J/M+/ozijJTiQ3Sk1nsJjS2Afde24qucU62ez3c/fJ8FK+Rhz7+B16Tm+tibibKGAvAzp07admyZW1s8nl1trkXSUpdwjweD+PH3M3YQaOZvWsVrT31CA4uonF+Ww70XEt2fDCP5iUT6cvhndL5PJq/klejH8ASegW7YtbRYl86dQscvL4/nCsOH+PuKzsAkFlczJfb9/HRpg38e95cvMpRlMJCrt9rI8Ct0u3Nt8k/eoRv/3EPHRITURQFn9HB/1oUc8QIO2dsoPE1yfSKuJrs3T/wRMIArrDmsi68Dh40xCk5fBC2kXBLAIcyVbbMO8RAtQ8WfRhz9/zIyyum0/7KDvh8Ktt2buPh+x4k2dOUSF8wy/U7sWpK6BTbBJ/qw6uq7D24H2uJjcCwYLZt2UyoRU//zu3RaDSYTUZMBgMABVYbVlspx7JyyC8u4mheHvnWYsaPutU/ppNnz+HxZ57l8Uce4frkjqiqwsxFvzBqwDUoisoPazcw/+efaySLffjwYerVq3fB+zkbixcvZtRdYxg4cBATJ/ynyuudq0skncnhw4dJatWKvTt3kpiY6G8nfdgojG074tyygfhvZzL/s1k0bNue0Gdextj+5Iu/c9M6HK9MpI7Bw2G3Ab3qo0fD+gzp0ZuhXQYRbAoBwOooxulxEhEYjkbRkFOUx//WLmV79lH2Zx4h0Fx2fbfX6+XX1b8RHxNDkCWQgEALk156yd+fnEElalpmZibDhw9l7tx5xMbG1nY44jJz0w1DGdNlEM3qNiAl4ygNYhM4lHcQl2Il2BJIYYkHIyHo8KAzO/nh9z+Y88sKoqKj6d69O1u2bCFl9z72Tl9Uqe3Oj9zM1v27a2GrhBBCiHNXUlJC6w4tuPNfvenQpTEFBi12vZatC7ax8K2V9O16FUXp+3nqxpa0a1x2jPbGvK20H/4EvXr1Ij09nZSUFBo2bEh8fDxvvfUWW5bOZNr9fdFoFNJzi3nu+x1c8WhfQuqEcH3cLahFGhLqJJCRnkFkZGQtj8C5kaRUNS6npNSh1FTsqzayJjuD/ZmHMewpYkyLW9nXfj0J7Y0MSeuEXTXxdsYs3vas5J6wISRF9eNw0H60HKXD1gy+J5k7FA1RxYUcLSxk85E0Bl3RAjcqB61HwZTANlpTHB5O2OYD9IjPxuTKRW8OwO718PX+bazZf5SPhg7DEKCyqGkx6XUMWI85cdvh6pC+ZOX9ymKHD1tqKTvbd+cYkcSSztPaL2ga2pTAwCA2pmkxf2fnCmNnSj0OVmWsZFP2ZjbnHsRl0qKgUDcgjt5xXYmpn8g+Q1aVY6LTaAk2mIk3heKxlRAeH83K35aC4iM4xExCVBThgQGEBAYA4PP5yC4oJDO/AJvDgdvtxhQYSE5+PtlWG/bSEm7p2Y2Zi1fgUxSCjUbemPo2ep0eNAqKokFRjn8//hxFQXPqc40Gyi1TFAUUBUVzov7x54qC3W7n0QcfZu+2nSS1acWb706tcJlhbWTOn3/+ed5/+3VatU+m1O0jqUnDCsmpE4mkjGGjMLTtiGvLBuK+nXlWiambxtzLL+Hx9C/I4NO33qiQkDrBuWUDrteeoyQvj9hpC9CUgkan0FWfy5jgwzRSC1h1WIPDEk+S4ibOEkdCcENS8zL4ccsKHBYTeg2YdVrCjSbqh8TSyBJPREgkOo2OI3mZvD1vFnNX/YzX68XpdBITEYlOq0OHhtv7XA/Ahz99xYrVq2jQoEF1myPEeZWZmUlycntuvfVKvvxyPWvXbpLElDhv1q1bx8Oj7qVOTDwu1cPIawbSIC4CnR7W79xNmDmGrq06siHrAJklheSVFuNRfQAkBFpoFhpJqCGAnHwrHo+CSW/if78vY+3usk/ETTl2mPioWH7+dSkGg4EZM2ZUG8vo0aMJDQ2tga0WQgghykx4fjyr1v7qf35Vcg8mPfMCAI7SbI5lrSa15CBpRi9OrYbM5XtYMGsNuUfzadigIVqtFo/HQ3ZmLknx4Tx1Y0v+9/thut72ZJWXtS9evJg1X7zMsyMrnl21L6eIH2IshDeM5+CcDGZ8MpPbrh/Jq6++dmEH4AK7pJJS7733Hq+++iqZmZm0adOGd955h06dOlVbfu7cuUyYMIFDhw7RpEkTpkyZwsCBA8+qr8shKXX48GEmTZxIlEbD4KuuZ/HhLWxYu4XXr7ifrKu2E95cxxOZddnkachVznXk535CcnAXrou5nQLlGCElxcTkebD6QolUNGhQKfSoHNixE41WB42a4G7cBFtwOF5T2VlGisuNuqMAt1UlNqCESKUQ59Z12OMM2BuEYtDpSHJHYPBqWNXKgUvvA3wEO0OJttfBri8i05KKCy+/ZCewx1UHrwp1SKWnfi8Dw00Y3A52/u8IDXLbkmhOIsd5jH1F6/G0skC3KDwBPjxGL16tl+AUC6EpQYSkB4BbwRbooCjSjj3Ygb3URX66DY/HR2xgKK0i69E8og6+AB95Jiv5JisFOit2nw1K3RjtGgylClqPgsajoPVS9t0Diqqc1T5RUCo+U04+PvV/lCrKH3+kKmXrVVRcqqvsOWXXHJ9Y50NF0Zx4rqIe70xV1LIulHLt+Ns73v3xdvxlUSqXVTjZzvF6TrcLr+pDo1FQj8fpU30oWg0Gg4HSUieKwYBGa0BRNGhUDYrPh87txRIYRDEG8lQjuaqBHFVPrqonW9WT49ORrepwKRoUVUVD2acvaBTQoGJSoY/q5Eafk7o+yEHLVJ2ZFZqTt8NL9Kk08ql09HhI9Dmp64UAWwmr03eRZSvyl9MqGnyqDw0amnrjSPIklG1bqAtviEqdyCgCMHA0J5u80kK0Zh0ajQaX00WoJQi3z0ORvZjwiHA0Wu2pEwAU9cTOLRu34/utQpny3zk5xsqJcT+17Cn1TpQ9oVKdCn0oFds5MY/Kt3FKm+opMSr+ZYq/uerjLFep3FhU3g7leCwnFiuV+j3ZllrhueKfkxXHtcLPD6BoKq9U/U/LVahyn5Trq9z6Kutx6ngq5b/B8Z+XKtsoV66qMVUUBZvNzqef/pfefZJISAgjLa2AJUt3MXbs/QRZgqiowqtMxUeVXsaqLltV3ROxVG6h6tfGU5f7n1f5mnjmR1W1ccZyp1umnGnbzyJOpfKyE32VP6Qq+/1x/HmVR1qqf7lyShn1+H+nLlfUst8PJ38Y1Ep9qf42Vf/EV1UfPp9aFp8Kqk9FxcfkF17CZy9lYLvudG+QjFYpe91TUChxO/nt6C72FKaheFUsTj31ImJolpBIsaeU39P3YXWVUD84mrjAEMJMZsx6PYdLs9hRnI4HlXnffMc/29/Bu+tmM3zUrXww7QPatWlbKdbNW7bwxRdf0Lx58/M4t6paVtVaqp0X1fVd5bK/PLfKLTvN3Drt8yp+RoUQQpzezp07Gf34SO6Zdpt/2Y+TFvDEY6MpNOSTqXOjKgr6/BKObjrE1q1HSduexucf31uprYce+o6JE1/lkYfuIfXwEcaPn8Sjjz5aqdyKFSvYNPcVHhtadouQnYdy2JRaSPcrEkmIMvJjXBB5OoWA9CKeeeRzbIUlOKwucrPzMBy/+udScskkpb7++mvuvPNOpk2bRufOnXnrrbeYO3cue/fuJTo6ulL5NWvW0KNHDyZPnsx1113HF198wZQpU9i0aROtWrU6Y3+XelIqPT2dJo0b065JU16893FWFxxmy+EjHGp3DW8npbA9Mpa38+uTrwahU1zcaP6cNto4mnt7kWfOwOTUcjSs+oRfeapPLTti1JSdwaOqKniPH+RqFBTtBToIUlUUfCgnvuND4fhjD2g8gFtF9fnKyqoqWi/ovBo0PgV8Kvh8OFQXNrWUEp8DVJVAjQGjoj1+VF9WX/V68Xm9qB5v2baqKqg+yo7ajz+221GKCjn5zqDcGw1OHlRX2IQq3oGo1Typtqyq4vP5yr68ZW8ofD7v8f4qJzyUig/Knp1IOlR+N3fyTXK55ycenEg+VDpoPmWXexSFEr0Ru06HXW/ArjdgNZgoNJgoMpooNJqwGkx4NSc/6NPkcRPidBDiLC377nKg93jKEl3K8T2tgA+FYoORHdEJOLQ66hfnc8wSigkPnTXpeLQGNnmjKObEC7Tq34g4CulWepR+mQqBajBZRi3pJg0e1UU962GsDit2p4/SUh9u98ntCTEE0DQ8gUhNED63D6/Hi8ftRafR4vV5UVDQaXX+sQX8icsT/yvlR1U9+VhRlJM5FpRyu7CsjHK8/Ik2y7/J0FR446o5kQopK6OW67tc+0r55RX27Il15d86nfqMCglZpVwrFd78nGEeV1XunMqUK3fa4mqlB+fc32mr/em2/lpcp1avMOZK5eflK5RPjp1sQz2ZsK6iJ/WU52X1T11X1b4vW6L6/5V/XPbcd8o6qihbdj6OD1+5bSu//GRZ8Clq2Uu24vOXUwFVrbp/1V/+lOXl+jlZ/5Q6x3/ofBxP8ijgU0+pV6HNsjXlI1Mrla34vXJbp3wvt/+q6698nb/KpOpp4okjwhiEwaTFojeh6FWMGNEXaEl15LBXm0aBYseleICy14pAxYBZr0MXrOCJc6MNUVDCNaghXLhjB1Glygmtk/+fvlwVxw1nKnu5tVlhYdUjV7lsNcnJKrs+tyT5+Wnz1ARnxfUVa1ST1D3DPqlu3Ktu8zT7SCkfd9Wlqorr5CadPv4/FWelwf9z86PKsmds89T9/id+jqsrV80++kv77JS4qo6+umdnGt8/E+ep+72asiq8NvU1Wl3XBEtoIGavD4+i4NBp0PlU4t166gc0JHW3m/vvvY+5cx9h3R8H+WzWKr744qFKvd5//yzM5kDGjOnMunWH6dXrH1WeKXUiKdX7ihgmf7eTqHot+L8Jz5OYmMiGVYv55ds3aDj2KlwGHetX7mHeS4uYM/s7kpOTqxyTi90lk5Tq3LkzV155Je+++y5QdjlV3bp1efjhh3nyyScrlR8xYgR2u5358+f7l3Xp0oW2bdsybdq0M/Z3OSSlGjVsiCUmnhb3PoCjWSuOhEcTqDixKybUcj9w1wZt5irdURq6OhKg+ijYOI9VeZHkBtWj86AhqKUuFLMBtcSNWupDLfWiOrzsWrkC37FsVu9ZxYNfzqgUwwtDruOxq8pOJVx/8BciA4IIC0kkJCweRaMho+gwP25+m87t4uie3IG4To3IMWqItFkId5sp0QXj0gTgVuEXr45tqhYNoFUUNIBOUdGjolfKHmsB7fHvOo0GLQoaRTm+nON1QYOCRgEtoDne1ollVX1XFKXs+/H2FCi77O748xOOlWSyx5biP9j3HR9jVVXKvQEot7zSOqXcG4eKdU6WO3lGhXpK+QrL1MrtVV5/cnn5mE7WK3u3Wva96jgrPVbL9wVetDjQ40ZfaX4YcRGIo+xLKT3+3UEADgIoxaB4K7xJKvvwCQ2KokfR6FCUsi+NRosbI2neIPZ6wsj1Gv3bo6CSqC2gvTaFtpq9RCn5rPO2ZoWnFYd9EZViOjEqZXUhWuugsd5Gc4OVUI2TQEpopCkgQWcvt3dO1qucS6jqZfN4ueqyj1W3eNo2z7pctS/jVaQVqmyncqKhqmyrv1SlVVWmL6ptp+ptqH5dpfarKPtn+q16uM52XFXKZ3bOvq1q1lU7zscfnXhy6nFXVVPjtMrHXVWtqtdVntPVOVm/YvHqK59mk86mejWt/KnKFX5nnr6Ns0ykqGVvGMrmzlnWOW2/pzp1P1Xu41yO6sre8x1PU5+4rJyys391riDCnTEnfvlUYDDp8Xq1lLgUHG4o9ao4fV4cigsnnrJIj7+n1Gs0GHQK8WE+QoN8p93Ms92UKn9Sz/LsoT8zXGd58jTV7fvT9lX5/dJZOX1Mpw+42j6qqFZVWeV0bVRXXzn55vCvTtVzeln4S20q5/bj/Kf7K9/1ee74QjnN/D3da33FOaRU+1vq1Ll2Xl65L4qhrTpdeGr8f/I30Z/t8mxWnXN35/pb8dT2zne9k3/MBbfLg8FgKrv9CioOhwOtVkGn056uCb/p09dyzTUP0qtXr0rrVqxYwZg7b2FA/wH+ZFR548c/zS7HBmLqRJCWkk3b0C48//wLZ9Xvxehscy+6atfUAJfLxcaNG3nqqaf8yzQaDX379mXt2rVV1lm7di2PPfZYhWX9+/fn+++/r7K80+nE6XT6n1ut1nMPvBZlZmbi8Hox3HwHB7v0QqP6UDUaLO48XLooLJk7yY9rz3BnHn9wJQtpR29PGgWffEyD5AG0HtyH/z0ylrCYeJp2LDtjSgnQo5TdYok969byy8KPeeup9/lmzSym3je6UgyltpNjGBtSn08Xj8ek9RAQUI+HB7/BN4vf5MrujVg4fxkaUx1GXzEQS6lK3xE349KZ6Jeo5Za2kQQntmRgdBO6RrckLz+FIlsO2+LqcUwXTq4mhHxNED7l7H74L4QTyS5V1eCh8QXs6c8flp3xhfVPvBE8fXtqpfUnHmsVFR0eFMouu/N/V8CHCRsmbIRWiEc52eTJ9k406FPLvk6841FVNHiJVopore4m2pdPWEkOFmsuwcUOjDoPpsBcTAGF6AyldHNvpLMaQJ43DJsuiBxdGFuNHbArgRjVUgw4cSkGsoijwBvOam8UmxxBODCiojDa+CvDjdsqbmWFoyPllOPSakby1D/NqCcWn2Hkz+qvQlX8FU05dfEZ/kKlnL7fU+tV7veUsaly+6p6fGq9U8fzz/V75jirq3e68axiWZV/HT+LfivU+xNx+qvX5qHbpdLfX1M7lzpdSvvCdzypVvalnjh7GAUUJ1B2L8TySXOn11t2VplLJUhvIOh49263lwBdAB7VixcfOp0Oj9tD2b0Xtdh8Kh6vh+CgUy9H/TPbUPXbtkovjZWq/dn2/8yaM689m3rnp/1TX9POtoXz/9bv9K+j56H9U38XqmeZxjjLzEXt7u9z7+t0Z7/85f5OO5/Ob38XZvxPbeUs26nq9eNP/gHnL0d8lq9d52d//NXXv7/WZsVS53P+VPz9oAJWaxHLVvxC4y6NMAYYKNVpKNEqlFhLWfPFOu4f+wgREVEAuFxuXnzxOcaO7cknn6zkgQf6Vuph6tSfeeSR/meMrkuXLvy2bnO1n2j+7Q9fk5WdS79e1/Dbig0ciD58SSelzlatJqVyc3Pxer3ExFT8GOGYmBj27NlTZZ3MzMwqy2dmZlZZfvLkyTz33HPnJ+CLQPv27Vnz66/cdt/9ZC9diOm+x9A3SSJTXwdl/kz2L1yCZeyjzG3TASg7lX7h6t2Y1m1n4LgX2L5yKanbNjP3lRcY/u+naXrlyZus7fvjdz7+1yPEBSTw4psTCTIFUpSRic/rQ9EqOJ1OAo0WTBozS7Z87q/n8Hh47d23efv1d1m9ewFNWzfgs6++pV+/fqjA3r17mfruVCwuJ9FKKcW5Zh7+1kFpggZN4FF0DY/iSdmP68BeTD36oAkKwVdchKJosIy+DwDt6//hoyeSiYkJAeCxx2bzwqThBFqMLF68g4/++yvDht2GVqMlKyuTFcuXYTAYef7553lq3P106dmPevUbAKCoKqmpKaxc+TPTp48lLi7U//KVkVHIQw99RX6Jlyc+/47dm/7gy1de5NYnnqZ5+05MvnUI0956g8GDB1d4sfS/7a7il3OFt8Bn+EUycEBPkrvtpWu3kzc2X/2bnXVrm9O+Q1e8qTlEWELJKy5E1ziG55+fdNr2zpfu3buzO6kN+tvLrqF279+D7f3X0eZkYXEUEp4QS96Y/0PbugNll1+Cb9tGIqa/SnFmDj8tXsYVV7TyX3KSmZnJFV27o+9/HQEBepxuFY8P7KUuShf+D218XSyj78NwRTuObUvB+uaL4PGgKbXhM1vQNUkiYMgItCEJ+A6m4njtGWLNbg6rEeA4iuWeh3D8upTQif8o2wAF8h8fS8j/PY/17ckEP/Ik2pg4SjFROv9bXGtWMOOld3j34c8Y0bY1devW9W/7nNlfosHHgmVLq/zUQSHOtxM3N3/xxRvp1KlhpfV//JHC009/d8nf9LyqM9Gqvhz6LOtWWe5k+ROPff4z5sqdIViWB/cnWtRTTgj01y3Xzon1PtXnv0zQX7bc5Xwnzqir2L7qj6V8jMcXAhXb8+EtF0e5y/aO33Qcf3zlHp+4YFClQgJJVVUmPfcc9uwCHh5yB6/99D7jHh8AgFHnJcJcdmbUhGe+I2VvCv98uA99r7mClIPZzJmzjuzsIsaOvZqkpLJPoZ01azlff72K6OgmdO7cl5CQEH9fP87+jo8GPM8Ti1/hxc/epHPnzqxevZrRo0Zx+8iRfD57NrM++4w2bS/NyxKEEEJcmsJUldn3vYNn0RZuf3ekf/nn479FZzXR+JV+KIqC2+1m7NibuPrqBIxGPZs3H6qyvU2bql5+KpPJVG1CCqBT+648M2EijRo14uDBgzw/6fLJY5xOrSalasJTTz1V4cwqq9Va4Q3npSg5OZnUrVtYu3Yt1916OwXhkVjuewxXiULA0Fspfv15eGwCxrYdcW7ZgGPaG1h0Ki/dPBjV62Ll0qU88fTTfPTvR7hnyls065zsT0it+GURkyZO5uiBTOKN9Sn1WqmbFMvkVyfx5ptvVhnPnR1vp1+/fvTs2ZPmSS3Ys7fs458bNmzInK/msGjhIlo2bkT6wT1EhpoI0joIdGmoo1HJKrXjTjuKqdROvqMUx0/zwOUAoxlNeKQ/KeW4/k5uuW0c8RaIjQ3DUepiUK+JvPDCcK7u0oj/vlFE+v59rF2zGpPRxOeffuq/9vZ/n0wl47dvOLgunNDoOhRmHyPAnU/b+i158Zk5fPLJPf5tmTThayZNeJ6RDz/Cy/fegddoojQvl++mf4T2g3coKrHToG5dDOXukXQ+TZj4MuMe7UdSc6N/2YKf7Lw99WXuv+tusrJz6NGnN78uXUHMlsgaS0qFh4fj8vjgeDLKkJfLV1PfYOjQoWzbto0BfXoQ8ckUf2LKs20jEZ+8QmFGNouW/krr1q2Bk0m78PAotPZCHqqbTYMGUf5+9u7N5GVXKZZht2L/4lM8VybjXL8WQ4fOeFYuJkzro8hpx3foAGxeS+nn2+BYKgHuPIxhOozFJhyKluKP3yH02YqfVhF032MUvf4Cak4m6PV483MBcP26BH3GMUoXzENNO8qSnJOf7Ohxe7AWW7lu4LWSkBI1JjY2lrVrN1WZmLpcElJQdZL+7E9iujTOyroYZWRksGnhT3w9/i3a1mnIbLuKNXUfXbs24fhHTbBmzT6yjlhxOXxceWVzFv+8m/Hjv+GFF26iXr0oHnhgBo0bhzNu3PXYbBq83jggiHXr1gGQdvQYXq8Xj9vD2CUTiU6IpXPnsj+CdevWDYPBwKZNmzAajZfsfTKEEEJcuhRF4Z0PP2XUyOv58s6P/ctLij3M+vxL/zFKdnY2qakHad++A0uW7GbfvizuuOMDjEY92dlW4uPrAFBU5GXcuG+5557OVfZ3tmbOmOV/3KhRowrPL2e1mpSKjIxEq9WSlZVVYXlWVla1B9uxsbF/qrzRaMRoNFa57lKXnJxM3qEUgmPCsT7zKD6XG73Wh1EB28tP4x02ktJvZ1NP7yWpWVNcbjfde15Nhw4dWPTjj6xfv54bht1M39H3sGTGx/z+20oaNWrEnO++ID09nZSUFBo2bEh8fNlfQ0/c9+t0Dhzc7y//7LPPMmzYMK655hoAru/bDa8tFzQaWtbxsPtQConRscSFBpHpsGMrKeaGgYOY+/NiAnr3xbF9K6WzP/S3bbc7ySktorTUhdPpZv36zfTs2QW9XkNeXimbN25k9udfVDrA/e/n83hw1HCKDm0l1rGDTFMAIUndeG/mXF5/fTIPP/y9v2zfvsO4+eabAbjj0XGEBgaQlZpCy+RkCu0lzH5nKu3btz+n/XY6ycnJhIW2YvILaf5lsbFX0LlzZ9pc2ZHxzzzjz5y/8PzzFyyOU8XHx2P/+mtYusifjDqhdevWLFr6qz8xld3jeqJ//QHrKQmp8r7//nt8Ph9FBXa2FNgrrAvCjW3qZCyPP4Nz22YsN95C8WvP8d306fTu3ZtbbrmOdet+J2bDF+j1AST17MRHH33N4sWLeeih2ygsdFBqCMP5x2pcf6w+eRWdquLZt4sgkwnTsycT1U1iYnj8ybe46ZZb+G7OnArbdvjwYVo0b86U114/zyMqxOlVlZi6nBJSovY4HA7QaFi29Q+Wbf2DpIQk3n99GTM/XU3TpGi2bk8jJTUHl7vs00eHD38bp9PNH39soVevThgMOgoKCslKD+Tpp34kMzuL8eOfr/JThqrz348+omfPnqxaterCbagQQghxGi1btmToDSNYt3qlf9k1V/ekRYsW/ucJCQl8/PHn3HPP7TRo0Ij9+48yevStpKYe5Msvf6JNmzb+skeOHOHFF5/h559Xc801D9botlzqLoobnXfq1Il33nkHKLvReWJiIg899FC1NzovKSnhxx9/9C/r2rUrrVu3/lvc6Px0tmzZQv369dHpdHS7qhd7Du0nqX4TVq9agcViqbLOwYMH6du3H0uWLKZRo0Y1GzCwadMmfv/9d7p06UL79u3Zu3cvY8aMqbb8J598wsaNG+nXrx+RkZHk5uby3Xff0alTJ9q2bXvavqpKtJ0ptqSkJAICAigpKWHPnj0XNCF1McvMzGT79u3+BGNVTpwx1bhBDAdSs6pNSAEcOnSIcePGVdvW2LFjGXrXaIzD7sD57Wf8sfiXCm2dbl9+9tlnfP7555jN5krt7tmzh4ULF1K/fv1K637++Wf69698LXh6evpZzRchLoQTl/LdeuuVfPnleklIiXPmcDj4/fffKy3ft28fu3btYsSIERX+uPPFF1+c9nfuiWOP0NDQPxXHpk2b/ra/U4UQQlxa0tPTiYqKQq/X43a7ycnJqfb9QUZGBmFhYZhMphqO8uJzyXz63tdff82oUaP48MMP6dSpE2+99RZz5sxhz549xMTEcOedd5KQkMDkyZMBWLNmDT179uTll19m0KBBfPXVV7z00kts2rSJVq1anbG/yzkpVZ7NZmPSCy8yYfzT1SakhDjftm3bRv9+ffh58dJqE1J/pq0e/fry6+Il59yWEJeyzMxMhg8fyty58yQhJYQQQgghLgmXTFIKyi4Le/XVV8nMzKRt27ZMnTrVf++BXr16Ub9+fWbMmOEvP3fuXMaPH8+hQ4do0qQJr7zyCgMHDjyrvv4uSSkhhBBCCCGEEEKI2nBJJaVqkiSlhBBCCCGEEEIIIS6cs829XJiPEBNCCCGEEEIIIYQQ4jQkKSWEEEIIIYQQQgghapwkpYQQQgghhBBCCCFEjZOklBBCCCGEEEIIIYSocZKUEkIIIYQQQgghhBA1TpJSQgghhBBCCCGEEKLGSVJKCCGEEEIIIYQQQtQ4SUoJIYQQQgghhBBCiBonSSkhhBBCCCGEEEIIUeMkKSWEEEIIIYQQQgghapwkpYQQQgghhBBCCCFEjZOklBBCCCGEEEIIIYSocZKUEkIIIYQQQgghhBA1TpJSQgghhBBCCCGEEKLGSVJKCCGEEEIIIYQQQtQ4XW0HUNNUVQXAarXWciRCCCGEEEIIIYQQl58TOZcTOZjq/O2SUsXFxQDUrVu3liMRQgghhBBCCCGEuHwVFxcTEhJS7XpFPVPa6jLj8/lIT08nKCgIRVFqOxxRw6xWK3Xr1uXo0aMEBwfXdjjiIiPzQ1RH5oY4HZkfojoyN8TpyPwQ1ZG5IU7nUpkfqqpSXFxMfHw8Gk31d476250ppdFoqFOnTm2HIWpZcHDwRf0DLGqXzA9RHZkb4nRkfojqyNwQpyPzQ1RH5oY4nUthfpzuDKkT5EbnQgghhBBCCCGEEKLGSVJKCCGEEEIIIYQQQtQ4SUqJvxWj0cjEiRMxGo21HYq4CMn8ENWRuSFOR+aHqI7MDXE6Mj9EdWRuiNO53ObH3+5G50IIIYQQQgghhBCi9smZUkIIIYQQQgghhBCixklSSgghhBBCCCGEEELUOElKCSGEEEIIIYQQQogaJ0kpccn79ddfGTx4MPHx8SiKwvfff19hvaqqPPPMM8TFxWE2m+nbty/79+/3rz906BBjxoyhQYMGmM1mGjVqxMSJE3G5XDW8JeJCONf5UZ7T6aRt27YoisKWLVsufPDigjpfc+Onn36ic+fOmM1mwsLCGDJkSM1sgLigzsf82LdvHzfccAORkZEEBwfTvXt3li9fXoNbIS6UM82P7777jn79+hEREVHt7wyHw8GDDz5IREQEFouFYcOGkZWVVTMbIC6Yc50b+fn5PPzwwzRr1gyz2UxiYiKPPPIIRUVFNbcR4oI5H68dJ6iqyrXXXltlO+LSc77mxtq1a7n66qsJDAwkODiYHj16UFpaeuE34BxIUkpc8ux2O23atOG9996rcv0rr7zC1KlTmTZtGuvWrSMwMJD+/fvjcDgA2LNnDz6fjw8//JCdO3fy5ptvMm3aNP7zn//U5GaIC+Rc50d5TzzxBPHx8Rc6ZFFDzsfc+Pbbb7njjju466672Lp1K6tXr+a2226rqU0QF9D5mB/XXXcdHo+HZcuWsXHjRtq0acN1111HZmZmTW2GuEDOND/sdjvdu3dnypQp1bYxbtw4fvzxR+bOncvKlStJT0/nxhtvvFAhixpyrnMjPT2d9PR0XnvtNXbs2MGMGTNYtGgRY8aMuZBhixpyPl47TnjrrbdQFOV8hyhqyfmYG2vXrmXAgAH069ePP/74g/Xr1/PQQw+h0VzkaR9ViMsIoM6bN8//3OfzqbGxseqrr77qX1ZYWKgajUb1yy+/rLadV155RW3QoMGFDFXUgnOZHwsWLFCTkpLUnTt3qoC6efPmGopa1IS/MjfcbreakJCgfvzxxzUdrqhhf2V+5OTkqID666+/+stYrVYVUH/55Zcai11ceKfOj/JSU1Or/J1RWFio6vV6de7cuf5lu3fvVgF17dq1FzBaUZP+ytyoypw5c1SDwaC63e7zG6CoVecyPzZv3qwmJCSoGRkZp21HXJr+6tzo3LmzOn78+Asb3AVwkafMhDg3qampZGZm0rdvX/+ykJAQOnfuzNq1a6utV1RURHh4eE2EKGrR2c6PrKws7r33Xj777DMCAgJqI1RRw85mbmzatIm0tDQ0Gg3t2rUjLi6Oa6+9lh07dtRW2KKGnM38iIiIoFmzZsyaNQu73Y7H4+HDDz8kOjqaDh061Fbo4iKxceNG3G53hTmUlJREYmLiaY9PxN9TUVERwcHB6HS62g5FXARKSkq47bbbeO+994iNja3tcMRFIjs7m3Xr1hEdHU3Xrl2JiYmhZ8+e/Pbbb7Ud2hlJUkpc1k5cIhETE1NheUxMTLWXTxw4cIB33nmHf/zjHxc8PlG7zmZ+qKrK6NGjue++++jYsWONxyhqx9nMjZSUFACeffZZxo8fz/z58wkLC6NXr17k5+fXbMCiRp3N/FAUhSVLlrB582aCgoIwmUy88cYbLFq0iLCwsBqPWVxcMjMzMRgMhIaGVlh+uuMT8feUm5vLpEmTGDt2bG2HIi4S48aNo2vXrtxwww21HYq4iJQ/Lr333ntZtGgR7du3p0+fPtXeL/diIUkpIcpJS0tjwIABDB8+nHvvvbe2wxEXgXfeeYfi4mKeeuqp2g5FXGR8Ph8ATz/9NMOGDaNDhw5Mnz4dRVGYO3duLUcnapuqqjz44INER0ezatUq/vjjD4YMGcLgwYPJyMio7fCEEJcAq9XKoEGDaNGiBc8++2xthyMuAj/88APLli3jrbfequ1QxEXmxHHpP/7xD+666y7atWvHm2++SbNmzfj0009rObrTk6SUuKydOKX11E+zycrKqnS6a3p6Or1796Zr167897//rbEYRe05m/mxbNky1q5di9FoRKfT0bhxYwA6duzIqFGjajZgUWPOZm7ExcUB0KJFC/96o9FIw4YNOXLkSA1FKmrD2b52zJ8/n6+++opu3brRvn173n//fcxmMzNnzqzxmMXFJTY2FpfLRWFhYYXlVR2fiL+n4uJiBgwYQFBQEPPmzUOv19d2SOIisGzZMg4ePEhoaCg6nc5/SeewYcPo1atX7QYnalVVx6UAzZs3v+iPSyUpJS5rDRo0IDY2lqVLl/qXWa1W1q1bR3Jysn9ZWloavXr18p/pcNF/QoE4L85mfkydOpWtW7eyZcsWtmzZwoIFCwD4+uuvefHFF2slbnHhnc3c6NChA0ajkb179/rLuN1uDh06RL169Wo8ZlFzzmZ+lJSUAFT6faLRaPx/zRR/Xx06dECv11eYQ3v37uXIkSMVjk/E35PVaqVfv34YDAZ++OEHTCZTbYckLhJPPvkk27Zt8x+XbtmyBYA333yT6dOn125wolbVr1+f+Pj4CselAPv27bvoj0vlbnnikmez2Thw4ID/eWpqKlu2bCE8PJzExEQeffRRXnjhBZo0aUKDBg2YMGEC8fHxDBkyBDiZkKpXrx6vvfYaOTk5/rbkr5WXvnOdH4mJiRXas1gsADRq1Ig6derU2HaI8+9c50ZwcDD33XcfEydOpG7dutSrV49XX30VgOHDh9fGJonz6FznR3JyMmFhYYwaNYpnnnkGs9nMRx99RGpqKoMGDaqlrRLny5nmR35+PkeOHCE9PR3A/yYhNjaW2NhYQkJCGDNmDI899hjh4eEEBwfz8MMPk5ycTJcuXWplm8T5ca5z40RCqqSkhNmzZ2O1WrFarQBERUWh1WprfqPEeXOu8+PE16kSExNp0KBBzWyEuCDOdW4oisK///1vJk6cSJs2bWjbti0zZ85kz549fPPNN7WyTWettj/+T4hztXz5chWo9DVq1ChVVcs+unvChAlqTEyMajQa1T59+qh79+71158+fXqV9eXH4/JwrvPjVH/mI5zFxe18zA2Xy6U+/vjjanR0tBoUFKT27dtX3bFjRy1sjTjfzsf8WL9+vdqvXz81PDxcDQoKUrt06aIuWLCgFrZGnG9nmh/VHVtMnDjR30Zpaan6wAMPqGFhYWpAQIA6dOhQNSMjo3Y2SJw35zo3qqsPqKmpqbW2XeL8OB+vHacC1Hnz5tVI/OLCOV9zY/LkyWqdOnXUgIAANTk5WV21alXNb8yfpKiqqv7VhJYQQgghhBBCCCGEEH+F3DhHCCGEEEIIIYQQQtQ4SUoJIYQQQgghhBBCiBonSSkhhBBCCCGEEEIIUeMkKSWEEEIIIYQQQgghapwkpYQQQgghhBBCCCFEjZOklBBCCCGEEEIIIYSocZKUEkIIIYQQQgghhBA1TpJSQgghhBBCCCGEEKLGSVJKCCGEEOI8UhSF77//vlZjmDFjBqGhobXW/yeffEK/fv3Oa5vTpk1j8ODB57VNIYQQQtQuSUoJIYQQ4qI0evRoFEVBURT0ej0NGjTgiSeewOFwnHUbK1asQFEUCgsLz3t8zz77LG3btq20PCMjg2uvvfa893dCr169/ONS1VevXr0YMWIE+/btu2AxnI7D4WDChAlMnDjRv+zZZ5/1x6fVaqlbty5jx44lPz/fv49O97VixQruvvtuNm3axKpVq2plu4QQQghx/ulqOwAhhBBCiOoMGDCA6dOn43a72bhxI6NGjUJRFKZMmVLboVUrNjb2grb/3Xff4XK5ADh69CidOnViyZIltGzZEgCDwYDZbMZsNl/QOKrzzTffEBwcTLdu3Sosb9myJUuWLMHr9bJ7927uvvtuioqK+Oyzz8jIyPCX++c//4nVamX69On+ZeHh4RgMBm677TamTp3KVVddVWPbI4QQQogLR86UEkIIIcRFy2g0EhsbS926dRkyZAh9+/bll19+8a/3+XxMnjyZBg0aYDabadOmDd988w0Ahw4donfv3gCEhYWhKAqjR48+Yz04eYbV0qVL6dixIwEBAXTt2pW9e/cCZZfHPffcc2zdutV/Ns+MGTOAypfvbd++nauvvhqz2UxERARjx47FZrP5148ePZohQ4bw2muvERcXR0REBA8++CBut7vKMQkPDyc2NpbY2FiioqIAiIiI8C8LDw+vdPneibO6Pv30UxITE7FYLDzwwAN4vV5eeeUVYmNjiY6O5sUXX6zQV2FhIffccw9RUVEEBwdz9dVXs3Xr1tPus6+++qrKy+x0Oh2xsbEkJCTQt29fhg8fzi+//ILBYPDHHhsbi9ls9u/3E18GgwGAwYMH88MPP1BaWnraGIQQQghxaZCklBBCCCEuCTt27GDNmjX+BAXA5MmTmTVrFtOmTWPnzp2MGzeOkSNHsnLlSurWrcu3334LwN69e8nIyODtt98+Y73ynn76aV5//XU2bNiATqfj7rvvBmDEiBE8/vjjtGzZkoyMDDIyMhgxYkSlmO12O/379ycsLIz169czd+5clixZwkMPPVSh3PLlyzl48CDLly9n5syZzJgxw5/kOl8OHjzIwoULWbRoEV9++SWffPIJgwYN4tixY6xcuZIpU6Ywfvx41q1b568zfPhwsrOzWbhwIRs3bqR9+/b06dOH/Pz8avv57bff6Nix42ljOXToED///HOFfXk2OnbsiMfjqRCjEEIIIS5dcvmeEEIIIS5a8+fPx2Kx4PF4cDqdaDQa3n33XQCcTicvvfQSS5YsITk5GYCGDRvy22+/8eGHH9KzZ0/Cw8MBiI6O9p85dDb1TnjxxRf9z5988kkGDRqEw+HAbDZjsVj8Z/9U54svvsDhcDBr1iwCAwMBePfddxk8eDBTpkwhJiYGKDuT691330Wr1ZKUlMSgQYNYunQp995773kbS5/Px6effkpQUBAtWrSgd+/e7N27lwULFqDRaGjWrBlTpkxh+fLldO7cmd9++40//viD7OxsjEYjAK+99hrff/8933zzDWPHjq3UR2FhIUVFRcTHx1dat337diwWC16v139fsDfeeONPbUNAQAAhISEcPnz4L4yAEEIIIS42kpQSQgghxEWrd+/efPDBB9jtdt588010Oh3Dhg0D4MCBA5SUlHDNNddUqONyuWjXrl21bf6Zeq1bt/Y/jouLAyA7O5vExMSzin/37t20adPGn5AC6NatGz6fj7179/qTUi1btkSr1Vboa/v27WfVx9mqX78+QUFB/ucxMTFotVo0Gk2FZdnZ2QBs3boVm81GREREhXZKS0s5ePBglX2cuKzOZDJVWtesWTN++OEHHA4Hs2fPZsuWLTz88MN/ejvMZjMlJSV/up4QQgghLj6SlBJCCCHERSswMJDGjRsD8Omnn9KmTRs++eQTxowZ478v008//URCQkKFeifO7KnKn6mn1+v9jxVFAcrOODrfyvdzoq/z3U9VfZyuX5vNRlxcHCtWrKjUVvn7VZUXERGBoigUFBRUWmcwGPz78uWXX2bQoEE899xzTJo06U9tR35+vv9eWkIIIYS4tElSSgghhBCXBI1Gw3/+8x8ee+wxbrvtNlq0aIHRaOTIkSMVLrkr78Q9i7xer3/Z2dQ7GwaDoUK7VWnevDkzZszAbrf7z5ZavXq1/3K5i1n79u3JzMxEp9NRv379s6pjMBho0aIFu3btol+/fqctO378eK6++mruv//+Ki/3q8rBgwdxOBynPRNOCCGEEJcOudG5EEIIIS4Zw4cPR6vV8t577xEUFMS//vUvxo0bx8yZMzl48CCbNm3inXfeYebMmQDUq1cPRVGYP38+OTk52Gy2s6p3NurXr09qaipbtmwhNzcXp9NZqcztt9+OyWRi1KhR7Nixg+XLl/Pwww9zxx13+C/du1j17duX5ORkhgwZwuLFizl06BBr1qzh6aefZsOGDdXW69+/P7/99tsZ209OTqZ169a89NJLZx3TqlWraNiwIY0aNTrrOkIIIYS4eElSSgghhBCXDJ1Ox0MPPcQrr7yC3W5n0qRJTJgwgcmTJ9O8eXMGDBjATz/9RIMGDQBISEjgueee48knnyQmJsb/qXdnqnc2hg0bxoABA+jduzdRUVF8+eWXlcoEBATw888/k5+fz5VXXslNN91Enz59/Ddrv5gpisKCBQvo0aMHd911F02bNuWWW27h8OHDp02ojRkzhgULFlBUVHTGPsaNG8fHH3/M0aNHzyqmL7/88rze/F0IIYQQtUtRVVWt7SCEEEIIIcTlY/jw4bRv356nnnrqvLW5c+dOrr76avbt20dISMh5a1cIIYQQtUfOlBJCCCGEEOfVq6++isViOa9tZmRkMGvWLElICSGEEJcROVNKCCGEEEIIIYQQQtQ4OVNKCCGEEEIIIYQQQtQ4SUoJIYQQQgghhBBCiBonSSkhhBBCCCGEEEIIUeMkKSWEEEIIIYQQQgghapwkpYQQQgghhBBCCCFEjZOklBBCCCGEEEIIIYSocZKUEkIIIYQQQgghhBA1TpJSQgghhBBCCCGEEKLGSVJKCCGEEEIIIYQQQtQ4SUoJIYQQQgghhBBCiBr3//FsHgCX/hNDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 784, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fig = plot_XIC(precursor_fragments)\n", + "fig" + ] + }, + { + "cell_type": "markdown", + "id": "a0d6befa", + "metadata": {}, + "source": [ + "# 1. Features of Ion coelution (MS2 level)" + ] + }, + { + "cell_type": "markdown", + "id": "742e6fde", + "metadata": {}, + "source": [ + "## 1.1 Pearson correlations of top 12 fragments’ elution profiles (fragments ordered by their reference library intensities) with the smoothed elution profile of the “best” fragment (12 scores)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 785, + "id": "b0d0a275", + "metadata": {}, + "outputs": [], + "source": [ + "def pearson_corr_top_n(\n", + " fragments, n=12, ms2_acc=13, ms2_acc_factor=None, reverse=False, use_all_rt=False\n", + ") -> Tuple[np.ndarray, pd.Series, np.ndarray]:\n", + " \"\"\"\n", + " Compute Pearson correlations of all fragments' elution profiles\n", + " with the smoothed elution profile of the \"best\" fragment,\n", + " then filter to the top n fragments by intensity.\n", + "\n", + " Parameters\n", + " ----------\n", + " fragments : pd.DataFrame\n", + " Fragment data containing RT and intensity information\n", + " n : int, default=12\n", + " Number of top fragments to consider\n", + " ms2_acc : float, default=13\n", + " Base mass accuracy\n", + " ms2_acc_factor : float, optional\n", + " Factor to multiply ms2_acc for filtering\n", + " reverse : bool, default=False\n", + " If True, return correlations for fragments NOT in top n\n", + " use_all_rt : bool, default=False\n", + " If True, use all RT time points from all fragments (filling missing with 0)\n", + " If False, use only overlapping RT time points between fragments\n", + "\n", + " Returns\n", + " -------\n", + " sorted_correlations : np.ndarray\n", + " Correlation coefficients for selected fragments\n", + " best_trace : pd.Series\n", + " Raw elution profile of best fragment\n", + " smoothed_best_trace : np.ndarray\n", + " Smoothed elution profile of best fragment\n", + " correlations : dict\n", + " All fragment correlations\n", + " \"\"\"\n", + " # Optionally filter by ppm_error\n", + " if ms2_acc_factor is not None:\n", + " fragments = fragments[fragments[\"ppm_error\"] <= ms2_acc * ms2_acc_factor]\n", + "\n", + " best_fragment = find_best_fragment(fragments)\n", + " if best_fragment is None:\n", + " raise ValueError(\"Could not identify the best fragment.\")\n", + "\n", + " # Pivot to create a matrix of rt vs fragment intensity for all fragments\n", + " pivot_table = fragments.pivot_table(\n", + " index=\"rt\", columns=\"fragment_names\", values=\"fragment_intensity\"\n", + " )\n", + "\n", + " # Smooth the best fragment's trace\n", + " if best_fragment not in pivot_table.columns:\n", + " raise ValueError(f\"Best fragment '{best_fragment}' not found in data.\")\n", + " best_trace = pivot_table[best_fragment].dropna()\n", + " smoothed_best_trace = savgol_filter(\n", + " best_trace,\n", + " window_length=3,\n", + " polyorder=1,\n", + " )\n", + "\n", + " # Compute Pearson correlations for all fragments\n", + " correlations = {}\n", + "\n", + " if use_all_rt:\n", + " # Use all RT time points from all fragments, fill missing with 0\n", + " # Get union of all RT time points\n", + " all_rt_points = pivot_table.index\n", + "\n", + " # Fill missing values with 0 for all fragments\n", + " pivot_filled = pivot_table.fillna(0.0)\n", + "\n", + " # Get smoothed best trace aligned to all RT points\n", + " best_trace_aligned = pivot_filled[best_fragment]\n", + " smoothed_best_aligned = savgol_filter(\n", + " best_trace_aligned,\n", + " window_length=min(3, len(best_trace_aligned)),\n", + " polyorder=1,\n", + " )\n", + "\n", + " for frag in pivot_table.columns:\n", + " frag_trace_aligned = pivot_filled[frag]\n", + "\n", + " # Calculate correlation using all time points\n", + " if len(frag_trace_aligned) < 2:\n", + " correlations[frag] = float(\"nan\")\n", + " continue\n", + "\n", + " corr = pd.Series(smoothed_best_aligned, index=all_rt_points).corr(\n", + " frag_trace_aligned\n", + " )\n", + " correlations[frag] = corr\n", + " else:\n", + " # Original logic: use only overlapping RT time points\n", + " for frag in pivot_table.columns:\n", + " frag_trace = pivot_table[frag].dropna()\n", + " common_index = best_trace.index.intersection(frag_trace.index)\n", + " if len(common_index) < 2:\n", + " correlations[frag] = float(\"nan\")\n", + " continue\n", + " corr = (\n", + " pd.Series(smoothed_best_trace, index=best_trace.index)\n", + " .loc[common_index]\n", + " .corr(frag_trace.loc[common_index])\n", + " )\n", + " correlations[frag] = corr\n", + "\n", + " # Find top n fragments by intensity\n", + " top_fragments = find_top_n_fragments(fragments, n)\n", + " if not reverse:\n", + " sorted_correlations = np.array(\n", + " [correlations[frag] for frag in top_fragments if frag in correlations]\n", + " )\n", + " else:\n", + " sorted_correlations = np.array(\n", + " [correlations[frag] for frag in correlations if frag not in top_fragments]\n", + " )\n", + "\n", + " return sorted_correlations, best_trace, smoothed_best_trace, correlations" + ] + }, + { + "cell_type": "code", + "execution_count": 787, + "id": "e689e22e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.99792412, 0.99782506, 0.99902171, 0.99781988, 0.99792208,\n", + " 0.99718701, 0.99441233, 0.99653843, 0.99712779, 0.99110063,\n", + " 0.99506514, 0.99443747])" + ] + }, + "execution_count": 787, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_correlations, best_trace, smoothed_best_trace, correlations = pearson_corr_top_n(\n", + " precursor_fragments, n=12\n", + ")\n", + "sorted_correlations" + ] + }, + { + "cell_type": "markdown", + "id": "34fec175", + "metadata": {}, + "source": [ + "## 1.2 Sum of these correlations for the top 6 fragments; calculated for chromatograms extracted at the base mass accuracy as well as 0.45 and 0.2 of the base mass accuracy (3 scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 788, + "id": "d9e19c28", + "metadata": {}, + "outputs": [], + "source": [ + "def sum_corrs_topn_mass_accs(\n", + " fragments, n=6, ms2_acc=13, ms2_acc_factors=[1, 0.45, 0.2], use_all_rt=False\n", + "):\n", + " \"\"\"\n", + " Compute the sum of Pearson correlations for the top n fragments\n", + " across different mass accuracy factors.\n", + " \"\"\"\n", + " results = np.array([])\n", + " for factor in ms2_acc_factors:\n", + " corrs, _, _, _ = pearson_corr_top_n(\n", + " fragments,\n", + " n=n,\n", + " ms2_acc=ms2_acc,\n", + " ms2_acc_factor=factor,\n", + " use_all_rt=use_all_rt,\n", + " )\n", + " results = np.append(results, corrs.sum())\n", + " return results" + ] + }, + { + "cell_type": "code", + "execution_count": 789, + "id": "b10c13ca", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([5.98771326, 5.98526176, 5.98627818])" + ] + }, + "execution_count": 789, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum_corrs_topn_mass_accs(precursor_fragments)" + ] + }, + { + "cell_type": "markdown", + "id": "49a1faf2", + "metadata": {}, + "source": [ + "## 1.3 Sum of correlations for the remaining fragments, without normalisation and with normalisation by number of remaining fragments (2 scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 790, + "id": "e9398616", + "metadata": {}, + "outputs": [], + "source": [ + "def lower_frag_corrs_sum(fragments, ignore_top_n=12, use_all_rt=False):\n", + " sorted_correlations, _, _, _ = pearson_corr_top_n(\n", + " fragments, n=ignore_top_n, reverse=True, use_all_rt=use_all_rt\n", + " )\n", + "\n", + " # Remove NaNs before summing\n", + " valid_corrs = sorted_correlations[~np.isnan(sorted_correlations)]\n", + " non_normalised = np.sum(valid_corrs)\n", + " normalised = non_normalised / len(valid_corrs) if len(valid_corrs) > 0 else 0\n", + " result = np.array([non_normalised, normalised])\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": 791, + "id": "36fa2ddc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([17.40960673, 0.91629509])" + ] + }, + "execution_count": 791, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result = lower_frag_corrs_sum(precursor_fragments)\n", + "result" + ] + }, + { + "cell_type": "markdown", + "id": "261440e2", + "metadata": {}, + "source": [ + "## 1.4 Sum of these correlations for the 3 b fragments (charge 1) with highest correlations (1 score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b4f6ad51", + "metadata": {}, + "outputs": [], + "source": [ + "def best_b_corr_sum(fragments, n=3, use_all_rt=True):\n", + " _, _, _, correlations = pearson_corr_top_n(fragments, use_all_rt=use_all_rt)\n", + " b_fragments = [frag for frag, corr in correlations.items() if frag.startswith(\"b\")]\n", + " # Sort by correlation and take top n\n", + " b_fragments = sorted(b_fragments, key=lambda x: correlations[x], reverse=True)[:n]\n", + " corrs = [correlations[frag] for frag in b_fragments]\n", + " return sum(corrs)" + ] + }, + { + "cell_type": "code", + "execution_count": 793, + "id": "e7f2bfb7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(2.981040132933891)" + ] + }, + "execution_count": 793, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_b_corr_sum(precursor_fragments)" + ] + }, + { + "cell_type": "markdown", + "id": "e2864df2", + "metadata": {}, + "source": [ + "## 1.5 Sum of such correlations for the top 6 fragments with elution profiles x() first processed using the x(scan) -> min(x(scan - 1), x(scan), x(scan + 1)) replacement" + ] + }, + { + "cell_type": "code", + "execution_count": 794, + "id": "5ff347bd", + "metadata": {}, + "outputs": [], + "source": [ + "def top_n_corrs_sum_processed_profile(\n", + " fragments, n=6, use_all_rt=False, smooth_mode=\"min_neighbor_scan\", ms2dict=None\n", + "):\n", + " if smooth_mode == \"min_neighbor_rt\":\n", + " smoothed_fragments = smooth_trace(fragments, mode=smooth_mode)\n", + " if smooth_mode == \"min_neighbor_scan\":\n", + " smoothed_fragments = smooth_trace(fragments, mode=smooth_mode, ms2dict=ms2dict)\n", + " sorted_correlations, _, _, _ = pearson_corr_top_n(\n", + " smoothed_fragments, n=n, use_all_rt=use_all_rt\n", + " )\n", + " sum_processed_profile = np.sum(sorted_correlations)\n", + " return sum_processed_profile" + ] + }, + { + "cell_type": "code", + "execution_count": 795, + "id": "feda992f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.9526830186876674)" + ] + }, + "execution_count": 795, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "top_n_corrs_sum_processed_profile(precursor_fragments, ms2dict=ms2dict)" + ] + }, + { + "cell_type": "markdown", + "id": "57e79021", + "metadata": {}, + "source": [ + "## 1.6 Correlation between the elution profile at the m/z value that corresponds to the non-fragmented precursor and the smoothed elution profile of the “best” fragment" + ] + }, + { + "cell_type": "markdown", + "id": "b0aa9fe0", + "metadata": {}, + "source": [ + "### TO DISCUSS: is this tolerance RT matching okay? " + ] + }, + { + "cell_type": "code", + "execution_count": 796, + "id": "c1ab6cfe", + "metadata": {}, + "outputs": [], + "source": [ + "def build_elution_profile(\n", + " precursor_mz,\n", + " ms1_dict,\n", + " tol=50,\n", + " tol_unit=\"ppm\",\n", + " wide_window=False,\n", + " in_sec=True,\n", + " acc_factor=1.0,\n", + "):\n", + " # Gather all MS1 features within the specified tolerance\n", + " elution_profile = {}\n", + " if not wide_window:\n", + " if tol_unit == \"ppm\":\n", + " tol_mz = precursor_mz * tol / 1e6\n", + " else:\n", + " tol_mz = tol\n", + " else:\n", + " # TODO: implement wide window. How does it work?\n", + " pass\n", + "\n", + " tol_mz *= acc_factor\n", + "\n", + " for scan, scan_dict in ms1_dict.items():\n", + " mzs = scan_dict.get(\"mz\", [])\n", + " intensities = scan_dict.get(\"intensity\", [])\n", + " rt = scan_dict.get(\"retention_time\", [])\n", + " if in_sec:\n", + " rt = rt / 60\n", + "\n", + " best_idx, best_val = search_sorted_tolerance_np(mzs, precursor_mz, tol=tol_mz)\n", + "\n", + " # candidates is a list of tuples (idx, mz).\n", + " # elution_profile should be a dictionary of \"rt\":\"intensity\"\n", + " if best_idx is not None:\n", + " elution_profile[rt] = intensities[best_idx]\n", + "\n", + " return elution_profile" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1136e275", + "metadata": {}, + "outputs": [], + "source": [ + "def corr_precursor_best_fragment(\n", + " precursor, precursor_fragments, ms1_dict, acc_factor=1.0, rt_tolerance=5.0\n", + "):\n", + " precursor_mz = precursor[\"calcmass\"].iloc[0] / precursor[\"charge\"].iloc[0]\n", + " elution_profile = build_elution_profile(\n", + " precursor_mz, ms1_dict, acc_factor=acc_factor\n", + " )\n", + "\n", + " _, best_trace, smoothed_best_trace, _ = pearson_corr_top_n(precursor_fragments)\n", + " # Combine retention times and smoothed intensities into a DataFrame\n", + " smoothed_best_df = pd.DataFrame(\n", + " {\"rt\": best_trace.index, \"smoothed_intensity\": smoothed_best_trace}\n", + " )\n", + " # align rt for smoothed_best_df and elution_profile\n", + " # Convert elution_profile dict to DataFrame for alignment\n", + " elution_df = pd.DataFrame(\n", + " list(elution_profile.items()), columns=[\"rt\", \"intensity\"]\n", + " )\n", + "\n", + " # Merge on 'rt' using nearest RT within a small tolerance\n", + " merged = pd.merge_asof(\n", + " smoothed_best_df.sort_values(\"rt\"),\n", + " elution_df.sort_values(\"rt\"),\n", + " on=\"rt\",\n", + " direction=\"nearest\",\n", + " tolerance=rt_tolerance, # TODO: How to set this based on Sage config?\n", + " )\n", + "\n", + " # Calculate pearson correlation\n", + " corr = merged[\"smoothed_intensity\"].corr(merged[\"intensity\"])\n", + " return corr, merged" + ] + }, + { + "cell_type": "code", + "execution_count": 798, + "id": "2cf91671", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.47362079830883386)" + ] + }, + "execution_count": 798, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr, merged = corr_precursor_best_fragment(precursor, precursor_fragments, ms1_dict)\n", + "corr" + ] + }, + { + "cell_type": "code", + "execution_count": 799, + "id": "29ccad0f", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "smoothed_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "intensity", + "rawType": "float32", + "type": "float" + } + ], + "ref": "d84e32ba-585f-478d-beb0-01e885277f2b", + "rows": [ + [ + "0", + "100.86591", + "5231.918166666667", + "114420.78" + ], + [ + "1", + "100.91415", + "51697.70266666668", + "114420.78" + ], + [ + "2", + "100.96301", + "127853.80900000004", + "114420.78" + ], + [ + "3", + "101.011246", + "272084.30000000005", + "114420.78" + ], + [ + "4", + "101.06009", + "512599.2000000001", + "318020.47" + ], + [ + "5", + "101.108345", + "826226.6500000001", + "318020.47" + ], + [ + "6", + "101.15717", + "1128571.3333333337", + "318020.47" + ], + [ + "7", + "101.20541", + "1330083.0000000005", + "318020.47" + ], + [ + "8", + "101.25427", + "1349064.2000000002", + "318020.47" + ], + [ + "9", + "101.30246", + "1219687.35", + "318020.47" + ], + [ + "10", + "101.351295", + "953638.6833333336", + "318020.47" + ], + [ + "11", + "101.39951", + "666211.1966666668", + "318020.47" + ], + [ + "12", + "101.44833", + "411475.1600000001", + "318020.47" + ], + [ + "13", + "101.496506", + "246128.76666666675", + "318020.47" + ], + [ + "14", + "101.54536", + "149875.8766666667", + "318020.47" + ], + [ + "15", + "101.59358", + "94357.11000000003", + "318020.47" + ], + [ + "16", + "101.64243", + "67829.48000000001", + "318020.47" + ], + [ + "17", + "101.69062", + "52995.46433333335", + "318020.47" + ], + [ + "18", + "101.739494", + "42060.92666666667", + "318020.47" + ], + [ + "19", + "101.787704", + "32318.282666666673", + "318020.47" + ], + [ + "20", + "101.884735", + "22890.149333333342", + "318020.47" + ], + [ + "21", + "101.98146", + "17994.12666666667", + "318020.47" + ], + [ + "22", + "102.07845", + "13739.457333333336", + "318020.47" + ], + [ + "23", + "102.17542", + "14305.825333333336", + "318020.47" + ], + [ + "24", + "103.77932", + "17324.746333333336", + "194910.88" + ], + [ + "25", + "103.82752", + "20791.466333333337", + "194910.88" + ], + [ + "26", + "103.87636", + "21218.02533333334", + "194910.88" + ], + [ + "27", + "103.92456", + "19515.274000000005", + "194910.88" + ], + [ + "28", + "103.97339", + "15345.289666666671", + "194910.88" + ], + [ + "29", + "104.0216", + "12379.399333333338", + "194910.88" + ], + [ + "30", + "106.44825", + "11863.552333333337", + "194910.88" + ], + [ + "31", + "108.73116", + "13263.46366666667", + "105709.625" + ], + [ + "32", + "108.77937", + "19286.90333333334", + "105709.625" + ], + [ + "33", + "108.828224", + "23372.531666666673", + "105709.625" + ], + [ + "34", + "108.87647", + "24450.064666666673", + "105709.625" + ], + [ + "35", + "108.92535", + "21416.341333333337", + "105709.625" + ], + [ + "36", + "108.973564", + "14566.307666666671", + "105709.625" + ], + [ + "37", + "109.11953", + "8869.798166666667", + "105709.625" + ] + ], + "shape": { + "columns": 3, + "rows": 38 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rtsmoothed_intensityintensity
0100.8659105.231918e+03114420.78125
1100.9141505.169770e+04114420.78125
2100.9630101.278538e+05114420.78125
3101.0112462.720843e+05114420.78125
4101.0600905.125992e+05318020.46875
5101.1083458.262267e+05318020.46875
6101.1571701.128571e+06318020.46875
7101.2054101.330083e+06318020.46875
8101.2542701.349064e+06318020.46875
9101.3024601.219687e+06318020.46875
10101.3512959.536387e+05318020.46875
11101.3995106.662112e+05318020.46875
12101.4483304.114752e+05318020.46875
13101.4965062.461288e+05318020.46875
14101.5453601.498759e+05318020.46875
15101.5935809.435711e+04318020.46875
16101.6424306.782948e+04318020.46875
17101.6906205.299546e+04318020.46875
18101.7394944.206093e+04318020.46875
19101.7877043.231828e+04318020.46875
20101.8847352.289015e+04318020.46875
21101.9814601.799413e+04318020.46875
22102.0784501.373946e+04318020.46875
23102.1754201.430583e+04318020.46875
24103.7793201.732475e+04194910.87500
25103.8275202.079147e+04194910.87500
26103.8763602.121803e+04194910.87500
27103.9245601.951527e+04194910.87500
28103.9733901.534529e+04194910.87500
29104.0216001.237940e+04194910.87500
30106.4482501.186355e+04194910.87500
31108.7311601.326346e+04105709.62500
32108.7793701.928690e+04105709.62500
33108.8282242.337253e+04105709.62500
34108.8764702.445006e+04105709.62500
35108.9253502.141634e+04105709.62500
36108.9735641.456631e+04105709.62500
37109.1195308.869798e+03105709.62500
\n", + "
" + ], + "text/plain": [ + " rt smoothed_intensity intensity\n", + "0 100.865910 5.231918e+03 114420.78125\n", + "1 100.914150 5.169770e+04 114420.78125\n", + "2 100.963010 1.278538e+05 114420.78125\n", + "3 101.011246 2.720843e+05 114420.78125\n", + "4 101.060090 5.125992e+05 318020.46875\n", + "5 101.108345 8.262267e+05 318020.46875\n", + "6 101.157170 1.128571e+06 318020.46875\n", + "7 101.205410 1.330083e+06 318020.46875\n", + "8 101.254270 1.349064e+06 318020.46875\n", + "9 101.302460 1.219687e+06 318020.46875\n", + "10 101.351295 9.536387e+05 318020.46875\n", + "11 101.399510 6.662112e+05 318020.46875\n", + "12 101.448330 4.114752e+05 318020.46875\n", + "13 101.496506 2.461288e+05 318020.46875\n", + "14 101.545360 1.498759e+05 318020.46875\n", + "15 101.593580 9.435711e+04 318020.46875\n", + "16 101.642430 6.782948e+04 318020.46875\n", + "17 101.690620 5.299546e+04 318020.46875\n", + "18 101.739494 4.206093e+04 318020.46875\n", + "19 101.787704 3.231828e+04 318020.46875\n", + "20 101.884735 2.289015e+04 318020.46875\n", + "21 101.981460 1.799413e+04 318020.46875\n", + "22 102.078450 1.373946e+04 318020.46875\n", + "23 102.175420 1.430583e+04 318020.46875\n", + "24 103.779320 1.732475e+04 194910.87500\n", + "25 103.827520 2.079147e+04 194910.87500\n", + "26 103.876360 2.121803e+04 194910.87500\n", + "27 103.924560 1.951527e+04 194910.87500\n", + "28 103.973390 1.534529e+04 194910.87500\n", + "29 104.021600 1.237940e+04 194910.87500\n", + "30 106.448250 1.186355e+04 194910.87500\n", + "31 108.731160 1.326346e+04 105709.62500\n", + "32 108.779370 1.928690e+04 105709.62500\n", + "33 108.828224 2.337253e+04 105709.62500\n", + "34 108.876470 2.445006e+04 105709.62500\n", + "35 108.925350 2.141634e+04 105709.62500\n", + "36 108.973564 1.456631e+04 105709.62500\n", + "37 109.119530 8.869798e+03 105709.62500" + ] + }, + "execution_count": 799, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged" + ] + }, + { + "cell_type": "code", + "execution_count": 800, + "id": "a58b925f", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 801, + "id": "485a1b02", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIcCAYAAACKFe9hAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAd3RJREFUeJzt3Xl4VOX9/vH7zCQz2TfIBgTCJorILohoBYWiVVqqVapWEZd+baVV6aK0FcRWqbhhqxVtFaT9uVRtsS51IYpaRUUUBEWQTbYkrNn3mfP742QmCZmELJPM9n5d17lIzpzlOQmj3PN5FsM0TVMAAAAAACDgbIFuAAAAAAAAsBDSAQAAAAAIEoR0AAAAAACCBCEdAAAAAIAgQUgHAAAAACBIENIBAAAAAAgShHQAAAAAAIIEIR0AAAAAgCBBSAcAAAAAIEgQ0gEAAAAACBIRHdLfffddTZ8+Xb169ZJhGFq5cmW7r2Gapu69916dcMIJcjqd6t27t+68807/NxYAAAAAEPaiAt2AQCovL9eIESN09dVX68ILL+zQNW688Ua98cYbuvfee3XKKafoyJEjOnLkiJ9bCgAAAACIBIZpmmagGxEMDMPQv//9b82YMcO7r7q6Wr/97W/19NNPq6ioSMOGDdPdd9+tSZMmSZI2b96s4cOHa9OmTRoyZEhgGg4AAAAACBsR3d39eObMmaM1a9bomWee0eeff66LL75Y5557rr7++mtJ0ksvvaQBAwbo5ZdfVv/+/ZWbm6trr72WSjoAAAAAoEMI6S3YvXu3li1bpueee05nnnmmBg4cqF/+8pc644wztGzZMknSjh079M033+i5557TihUrtHz5cq1bt04/+MEPAtx6AAAAAEAoiugx6a3ZuHGjXC6XTjjhhCb7q6ur1aNHD0mS2+1WdXW1VqxY4T3u8ccf15gxY7Rlyxa6wAMAAAAA2oWQ3oKysjLZ7XatW7dOdru9yWsJCQmSpOzsbEVFRTUJ8ieddJIkqxJPSAcAAAAAtAchvQWjRo2Sy+XSgQMHdOaZZ/o8ZuLEiaqrq9P27ds1cOBASdLWrVslSf369eu2tgIAAAAAwkNEz+5eVlambdu2SbJC+f3336/JkycrLS1Nffv21Y9+9CO9//77uu+++zRq1CgdPHhQeXl5Gj58uM4//3y53W6deuqpSkhI0JIlS+R2u3XDDTcoKSlJb7zxRoCfDgAAAAAQaiI6pK9evVqTJ09utn/WrFlavny5amtr9Yc//EErVqzQvn371LNnT5122mlauHChTjnlFEnS/v379bOf/UxvvPGG4uPjdd555+m+++5TWlpadz8OAAAAACDERXRIBwAAAAAgmLAEGwAAAAAAQYKQDgAAAABAkIi42d3dbrf279+vxMREGYYR6OYAAAAAAMKcaZoqLS1Vr169ZLO1XiuPuJC+f/9+5eTkBLoZAAAAAIAIs2fPHvXp06fVYwIa0t99913dc889WrdunfLz8/Xvf/9bM2bMaNO577//vs466ywNGzZM69evb/M9ExMTJVk/nKSkpA60GgAAAACAtispKVFOTo43j7YmoCG9vLxcI0aM0NVXX60LL7ywzecVFRXpyiuv1DnnnKPCwsJ23dPTxT0pKYmQDgAAAADoNm0Zch3QkH7eeefpvPPOa/d5119/vS677DLZ7XatXLnS/w0DAAAAACAAQm5292XLlmnHjh1asGBBm46vrq5WSUlJkw0AAAAAgGAUUiH966+/1q233qp//OMfiopqWyeARYsWKTk52bsxaRwAAAAAIFiFzOzuLpdLl112mRYuXKgTTjihzefNmzdPc+fO9X7vGbAPAAAAoPuZpqm6ujq5XK5ANwXwq+joaNnt9k5fJ2RCemlpqT755BN99tlnmjNnjiRrzXPTNBUVFaU33nhDZ599drPznE6nnE5ndzcXAAAAwDFqamqUn5+vioqKQDcF8DvDMNSnTx8lJCR06johE9KTkpK0cePGJvv+8pe/6K233tLzzz+v/v37B6hlAAAAAI7H7XZr586dstvt6tWrlxwOR5tmugZCgWmaOnjwoPbu3avBgwd3qqIe0JBeVlambdu2eb/fuXOn1q9fr7S0NPXt21fz5s3Tvn37tGLFCtlsNg0bNqzJ+RkZGYqJiWm2HwAAAEBwqampkdvtVk5OjuLi4gLdHMDv0tPTtWvXLtXW1oZuSP/kk080efJk7/eeseOzZs3S8uXLlZ+fr927dweqeQAAAAD8zGYLqbmrgTbzV88QwzRN0y9XChElJSVKTk5WcXGxkpKSAt0cAAAAICJUVVVp586d6t+/v2JiYgLdHMDvWvs73p4cysdYAAAAAAAECUI6AAAAAIQRwzC0cuVKv1930qRJuummm/x+3UDIzc3VkiVLAt0MnwjpAAAAANCCgwcP6ic/+Yn69u0rp9OprKwsTZs2Te+//36gm6bbb79dI0eODHQzvJYvX66UlJR2nROo4L927Vr9+Mc/9n7fVR9sdETILMEGAAAAAN3toosuUk1NjZ588kkNGDBAhYWFysvL0+HDhwPdNHRCenp6oJvQIirpAAAAALqdaZqqqKkLyNbWubOLior03nvv6e6779bkyZPVr18/jRs3TvPmzdN3v/td73GGYejRRx/VBRdcoLi4OJ100klas2aNtm3bpkmTJik+Pl6nn366tm/f3uT6jzzyiAYOHCiHw6EhQ4bo73//e5PXd+/ere9973tKSEhQUlKSLrnkEhUWFkqyqtYLFy7Uhg0bZBiGDMPQ8uXLveceOnRI3//+9xUXF6fBgwfrP//5T5Nrb9q0Seedd54SEhKUmZmpK664QocOHfK+Xl5eriuvvFIJCQnKzs7Wfffd16afWWOeSv/f//535ebmKjk5WT/84Q9VWloqSbrqqqv0zjvv6MEHH/Q+w65du9rUvkmTJunnP/+5fv3rXystLU1ZWVm6/fbbva+bpqnbb7/d2wOiV69e+vnPf+59vXF399zcXEnS97//fRmGodzcXO3atUs2m02ffPJJk2dasmSJ+vXrJ7fb3e6fR1tRSQcAAADQ7SprXRo6//WA3PvLO6YpznH8KJSQkKCEhAStXLlSp512mpxOZ4vH/v73v9f999+v+++/X7fccosuu+wyDRgwQPPmzVPfvn119dVXa86cOfrvf/8rSfr3v/+tG2+8UUuWLNGUKVP08ssva/bs2erTp48mT54st9vtDejvvPOO6urqdMMNN2jmzJlavXq1Zs6cqU2bNum1117TqlWrJEnJycne9ixcuFCLFy/WPffcoz//+c+6/PLL9c033ygtLU1FRUU6++yzde211+qBBx5QZWWlbrnlFl1yySV66623JEm/+tWv9M477+jFF19URkaGfvOb3+jTTz9td/f67du3a+XKlXr55Zd19OhRXXLJJfrjH/+oO++8Uw8++KC2bt2qYcOG6Y477pBkVbjb0j5JevLJJzV37lx99NFHWrNmja666ipNnDhRU6dO1QsvvKAHHnhAzzzzjE4++WQVFBRow4YNPtu4du1aZWRkaNmyZTr33HNlt9uVnp6uKVOmaNmyZRo7dqz32GXLlumqq67q0qUECekAAAAA4ENUVJSWL1+u6667TkuXLtXo0aN11lln6Yc//KGGDx/e5NjZs2frkksukSTdcsstmjBhgm677TZNmzZNknTjjTdq9uzZ3uPvvfdeXXXVVfrpT38qSZo7d64+/PBD3XvvvZo8ebLy8vK0ceNG7dy5Uzk5OZKkFStW6OSTT9batWt16qmnKiEhQVFRUcrKymrW9quuukqXXnqpJOmuu+7Sn/70J3388cc699xz9dBDD2nUqFG66667vMc/8cQTysnJ0datW9WrVy89/vjj+sc//qFzzjlHkhWI+/Tp0+6fodvt1vLly5WYmChJuuKKK5SXl6c777xTycnJcjgciouLa/IMx2vfCSecIEkaPny4FixYIEkaPHiwHnroIeXl5Wnq1KnavXu3srKyNGXKFEVHR6tv374aN26czzZ6ur6npKQ0ace1116r66+/Xvfff7+cTqc+/fRTbdy4US+++GK7fw7tQUhHh1TWuPRVQYlG5qTIMIxANwcAAAAhJjbari/vmBawe7fVRRddpPPPP1/vvfeePvzwQ/33v//V4sWL9be//U1XXXWV97jGoT0zM1OSdMoppzTZV1VVpZKSEiUlJWnz5s1NJi6TpIkTJ+rBBx+UJG3evFk5OTnegC5JQ4cOVUpKijZv3qxTTz211XY3bk98fLySkpJ04MABSdKGDRv09ttvKyEhodl527dvV2VlpWpqajR+/Hjv/rS0NA0ZMqTVe/qSm5vrDeiSlJ2d7W1HS47XvsYhvbHG17744ou1ZMkSDRgwQOeee66+853vaPr06YqKansEnjFjhm644Qb9+9//1g9/+EMtX75ckydP9naP7yqEdLRbRU2dLl66Rl/sL9GTV4/TWScE76QLAAAACE6GYbSpy3kwiImJ0dSpUzV16lTddtttuvbaa7VgwYImIT06Otr7taeI5WtfV45lbqzxvT3399y7rKxM06dP1913393svOzsbG3btq1b2tGS47WvLdfOycnRli1btGrVKr355pv66U9/qnvuuUfvvPNOs/Na4nA4dOWVV2rZsmW68MIL9dRTT3k/ROlKTByHdnG7Td30zHp9sb9EkrRpX3GAWwQAAAB0r6FDh6q8vLxT1zjppJOaLeP2/vvva+jQod7X9+zZoz179nhf//LLL1VUVOQ9xuFwyOVytfveo0eP1hdffKHc3FwNGjSoyRYfH6+BAwcqOjpaH330kfeco0ePauvWrR151Fb5eobjta+tYmNjNX36dP3pT3/S6tWrtWbNGm3cuNHnsdHR0T5/ltdee61WrVqlv/zlL6qrq9OFF17YvgfsAEI62mXx61v0xpeF3u/3Hq0MYGsAAACArnP48GGdffbZ+sc//qHPP/9cO3fu1HPPPafFixfre9/7Xqeu/atf/UrLly/XI488oq+//lr333+//vWvf+mXv/ylJGnKlCk65ZRTdPnll+vTTz/Vxx9/rCuvvFJnnXWWdyKz3Nxc7dy5U+vXr9ehQ4dUXV3dpnvfcMMNOnLkiC699FKtXbtW27dv1+uvv67Zs2fL5XIpISFB11xzjX71q1/prbfe0qZNm7pssrTc3Fx99NFH2rVrlw4dOiS3233c9rXF8uXL9fjjj2vTpk3asWOH/vGPfyg2Nlb9+vVrsR15eXkqKCjQ0aNHvftPOukknXbaabrlllt06aWXKjY21i/P3RpCOtrsn5/s0dJ3rGUjJg2xurjvPVoRyCYBAAAAXSYhIUHjx4/XAw88oG9961saNmyYbrvtNl133XV66KGHOnXtGTNm6MEHH9S9996rk08+WY8++qiWLVumSZMmSbK6br/44otKTU3Vt771LU2ZMkUDBgzQs88+673GRRddpHPPPVeTJ09Wenq6nn766Tbdu1evXnr//fflcrn07W9/W6eccopuuukmpaSkeIP4PffcozPPPFPTp0/XlClTdMYZZ2jMmDGdemZffvnLX8put2vo0KFKT0/X7t2729S+40lJSdFf//pXTZw4UcOHD9eqVav00ksvqUePHj6Pv++++/Tmm28qJydHo0aNavLaNddco5qaGl199dWdft62MMy2LhIYJkpKSpScnKzi4mIlJSUFujkh48Mdh3XF4x+p1mXq5+cM1vj+abr8bx9pQHq83vrFpEA3DwAAAEGuqqpKO3fuVP/+/RUTExPo5gBt9vvf/17PPfecPv/881aPa+3veHtyKJV0HNeuQ+W6/h/rVOsydcHwbN08ZbB6p1jdPPYXVSrCPucBAAAAEAHKysq0adMmPfTQQ/rZz37WbfclpOO47ntzq4oqajUiJ0X3XjxChmEoOyVGhiFV1bp1uLwm0E0EAAAAAL+aM2eOxowZo0mTJnVbV3eJkI422H3EGnd+w6SBiqlfU9IZZVdGolOStI/J4wAAAACEmeXLl6u6ulrPPvus7HZ7t92XkI7jOlpfKe+R4Giy39PlnRneAQAAAMA/COk4Lk9IT407JqSnxkmS9hUxwzsAAAAA+AMhHa2qqXOrtLpOkpQW3zSk90m1Kul0dwcAAAAA/yCko1VFFVYV3W4zlBQT3eQ1T3f3fUWEdAAAAADwB0I6WnXY29U9Wjab0eS13qmMSQcAAAAAfyKko1UtjUeXpBy6uwMAAACAXxHS0aoj9d3dU+Obh/Re9d3dS6vrVFxZ263tAgAAAIKFYRhauXJlp6+Tm5urJUuWdPo6gfL+++/rlFNOUXR0tGbMmKHVq1fLMAwVFRVJspY0S0lJCWgbQwEhHa3yVNLTfFTS4xxR3snkqKYDAAAgHF111VUyDKPZdu6553b4mi2F1bVr1+rHP/5xJ1p7fJ7g7NkyMzN10UUXaceOHZ2+9ty5czVy5Ejt3LlTy5cv1+mnn678/HwlJyf7oeWRg5COVh0ptyrkvirpUuO10lmGDQAAAOHp3HPPVX5+fpPt6aef9vt90tPTFRcX5/fr+rJlyxbt379fzz33nL744gtNnz5dLper2XGmaaqurq5N19y+fbvOPvts9enTRykpKXI4HMrKypJhGMc/GV6EdLTqaH1397T4aJ+ve5dhY4Z3AAAAtIdpSjXlgdlMs11NdTqdysrKarKlpqb6PPbYLt6StH79ehmGoV27dmn16tWaPXu2iouLvdXs22+/XVLz7u67d+/W9773PSUkJCgpKUmXXHKJCgsLva/ffvvtGjlypP7+978rNzdXycnJ+uEPf6jS0tLjPlNGRoays7P1rW99S/Pnz9eXX36pbdu2edv/3//+V2PGjJHT6dT//vc/VVdX6+c//7kyMjIUExOjM844Q2vXrpUk7dq1S4Zh6PDhw7r66qtlGIaWL1/u82dxrBdffFGjR49WTEyMBgwYoIULF7b5Q4FwFRXoBiC4HWll4jip0TJsdHcHAABAe9RWSHf1Csy9f7NfcsQH5Nann366lixZovnz52vLli2SpISEhGbHud1ub0B/5513VFdXpxtuuEEzZ87U6tWrvcdt375dK1eu1Msvv6yjR4/qkksu0R//+EfdeeedbW5TbKz1b/qamhrvvltvvVX33nuvBgwYoNTUVP3617/WCy+8oCeffFL9+vXT4sWLNW3aNG3btk05OTnKz8/XkCFDdMcdd2jmzJlKTk7WRx991Op933vvPV155ZX605/+pDPPPFPbt2/3dvdfsGBBm9sfbqiko1UNlfQWQjqVdAAAAIS5l19+WQkJCU22u+66q0PXcjgcSk5OlmEY3qq8r5Cel5enjRs36qmnntKYMWM0fvx4rVixQu+88463gi1ZYX758uUaNmyYzjzzTF1xxRXKy8trc3vy8/N17733qnfv3hoyZIh3/x133KGpU6dq4MCBcjqdeuSRR3TPPffovPPO09ChQ/XXv/5VsbGxevzxx2W3273d2pOTk5WVleUN/q1ZuHChbr31Vs2aNUsDBgzQ1KlT9fvf/16PPvpom9sfjqiko1XeSvpxx6QT0gEAANAO0XFWRTtQ926HyZMn65FHHmmyLy0tzZ8tambz5s3KyclRTk6Od9/QoUOVkpKizZs369RTT5VkdZFPTEz0HpOdna0DBw4c9/p9+vSRaZqqqKjQiBEj9MILL8jhaPg3/9ixY71fb9++XbW1tZo4caJ3X3R0tMaNG6fNmzd3+Bk3bNig999/v0nV3+VyqaqqShUVFd02Pj/YENLRqtZmd5ekPqnWG4dKOgAAANrFMALW5by94uPjNWjQoDYda7NZnZXNRuPea2u7brni6Oimc0cZhiG3233c89577z0lJSUpIyOjScj3iI/v+t9NWVmZFi5cqAsvvLDZazExMV1+/2BFSEerjrSxu/uR8hpV1NQpzsFfKQAAAESu9PR0SVY3cs/kcuvXr29yjMPh8DmTemMnnXSS9uzZoz179nir6V9++aWKioo0dOjQTrezf//+bV6zfODAgXI4HHr//ffVr18/SdYHD2vXrtVNN93U4TaMHj1aW7ZsafMHIJGCRIUWVda4VFVrfQrXUnf35NhoJTqjVFpdp/1FlRqU0fxTOAAAACCUVVdXq6CgoMm+qKgo9ezZs9mxgwYNUk5Ojm6//Xbdeeed2rp1q+67774mx+Tm5qqsrEx5eXkaMWKE4uLimnXtnjJlik455RRdfvnlWrJkierq6vTTn/5UZ511VpOu6N0hPj5eP/nJT/SrX/1KaWlp6tu3rxYvXqyKigpdc801Hb7u/PnzdcEFF6hv3776wQ9+IJvNpg0bNmjTpk36wx/+4McnCC1MHIcWHS6vliQ5omyKd9hbPM5TTd/DuHQAAACEoddee03Z2dlNtjPOOMPnsdHR0Xr66af11Vdfafjw4br77rubBc7TTz9d119/vWbOnKn09HQtXry42XUMw9CLL76o1NRUfetb39KUKVM0YMAAPfvss13yjMfzxz/+URdddJGuuOIKjR49Wtu2bdPrr7/e4lJ0bTFt2jS9/PLLeuONN3TqqafqtNNO0wMPPOCt1kcqwzTbuUhgiCspKVFycrKKi4uVlJQU6OYEtY17izX9of8pKylGH/7mnBaPu/bJtVq1+YD+MGOYfnRaZL+hAAAA4FtVVZV27typ/v37R/R4Y4Sv1v6OtyeHUklHizzj0Vvq6u7hXSudyeMAAAAAoFMI6WiRd2b3+OhWj/OulU53dwAAAADoFEI6WuRdI72F5dc8eqewDBsAAAAA+AMhHS06epzl1zz61FfS9x6t6PI2AQAAAEA4I6SjRW2upNeH9AOl1aqpc3d5uwAAABC6ImzeakQQf/3dJqSjRW2tpPeIdygm2ibTlPKL6fIOAACA5qKjrXmOKirofYnwVFNj5Se7veXlq9siyh+NQXjyVtKPE9INw1CvlFjtOFiufUcr1a9HfHc0DwAAACHEbrcrJSVFBw4ckCTFxcXJMIwAtwrwD7fbrYMHDyouLk5RUZ2L2YR0tOhoea0kKe043d0lqU9qnHYcLNdeZngHAABAC7KysiTJG9SBcGKz2dS3b99Of/hESEeLGtZJb30JNqlhrfS9zPAOAACAFhiGoezsbGVkZKi2tjbQzQH8yuFwyGbr/IhyQjp8Mk2z0Trpbamks1Y6AAAA2sZut3d63C4Qrpg4Dj6VVNWpzm3NTni82d2lRiG9iIlAAAAAAKCjCOnwyVNFj3fYFRN9/E85vd3dqaQDAAAAQIcR0uFTw3j041fRpYa10guKq+Rys/YlAAAAAHQEIR0+tWc8uiRlJMYoymaozm2qsKSqK5sGAAAAAGGLkA6fvGukt2E8uiTZbdZa6ZK0jxneAQAAAKBDCOnw6WhF+yrpkpSVFCNJOlBS3SVtAgAAAIBwR0iHT0fKrXUr21pJl6TEGGtFv9Iq1rwEAAAAgI4IaEh/9913NX36dPXq1UuGYWjlypWtHv+vf/1LU6dOVXp6upKSkjRhwgS9/vrr3dPYCNMwJj26zeckxVrHllbVdUmbAAAAACDcBTSkl5eXa8SIEXr44YfbdPy7776rqVOn6tVXX9W6des0efJkTZ8+XZ999lkXtzTytHd2d6mhkl5CJR0AAAAAOiQqkDc/77zzdN5557X5+CVLljT5/q677tKLL76ol156SaNGjfJz6yKbt5Leju7uSTFU0gEAAACgMwIa0jvL7XartLRUaWlpLR5TXV2t6uqGicxKSkq6o2khr1OV9Eoq6QAAAADQESE9cdy9996rsrIyXXLJJS0es2jRIiUnJ3u3nJycbmxh6PJU0nu0K6RblfQSKukAAAAA0CEhG9KfeuopLVy4UP/85z+VkZHR4nHz5s1TcXGxd9uzZ083tjI0udymiuqr4e2ppCfFMrs7AAAAAHRGSHZ3f+aZZ3Tttdfqueee05QpU1o91ul0yul0dlPLwkNRRY1M0/o6Jbbts7tTSQcAAACAzgm5SvrTTz+t2bNn6+mnn9b5558f6OaEpaP149GTY6MVZW/7X5Ek1kkHAAAAgE4JaCW9rKxM27Zt836/c+dOrV+/Xmlpaerbt6/mzZunffv2acWKFZKsLu6zZs3Sgw8+qPHjx6ugoECSFBsbq+Tk5IA8Qzg6Um6F7LR2dHWXGlXSmTgOAAAAADokoJX0Tz75RKNGjfIunzZ37lyNGjVK8+fPlyTl5+dr9+7d3uMfe+wx1dXV6YYbblB2drZ3u/HGGwPS/nB1pH7SuNS4tnd1lxoq6WXVdTI9/eUBAAAAAG0W0Er6pEmTWg1zy5cvb/L96tWru7ZBkNTQ3b29lfSk+vHrblMqr3EpwRmSUx4AAAAAQMCE3Jh0dL2GSnr7QrozyqZouyGJLu8AAAAA0BGEdDTjWSO9vZV0wzCUVD8uvZQZ3gEAAACg3QjpaOZIfXf39qyR7pFYPy69hBneAQAAAKDdCOloxltJb2d3d6lhhneWYQMAAACA9iOko5kjFVbA7kglPSm2vpJeSXd3AAAAAGgvQjqa6eiYdElKdFJJBwAAAICOIqSjmc6EdG8lnYnjAAAAAKDdCOloorrOpdJqK2B3Zkw6E8cBAAAAQPsR0tFEUf14dLvN8M7U3h6ec1iCDQAAAADaj5COJo7Ud3VPjYuWzWa0+3zPOukllVTSAQAAAKC9COlo4qg3pLe/q7tEJR0AAAAAOoOQjiaOVNSH9A5MGidJSbHM7g4AAAAAHUVIRxPemd07WUlndncAAAAAaD9COpo4Um5VwDtcSY+hkg4AAAAAHUVIRxNHKzxrpEd36PyGieOopAMAAABAexHS0cQRP00cV1nrUq3L7bd2AQAAAEAkIKSjibJqqwLuqYi3V+O11csYlw4AAAAA7UJIRxOeYJ3QKGy3R5TdpjiHXZJUwrh0AAAAAGgXQjqa8FTS450dC+kSa6UDAAAAQEcR0tGEJ6QndCKkN0weRyUdAAAAANqDkI4m/BHSWSsdAAAAADqGkI4mvCG9g2PSJSkptr6Szph0AAAAAGgXQjq8aurcqqmzlk1LcHSmkm6FdMakAwAAAED7ENLhVV7dEKrjnfYOX6dh4jgq6QAAAADQHoR0eHm6usdE2xRl7/hfjYaJ46ikAwAAAEB7ENLh1TBpXHSnrkMlHQAAAAA6hpAOL09IT+zEpHESE8cBAAAAQEcR0uHlCemdGY8uSUneSjrd3QEAAACgPQjp8Cqr6vwa6VLj7u6EdAAAAABoD0I6vBrGpHeyu3sM3d0BAAAAoCMI6fAq91NIZ510AAAAAOgYQjq8PKE6vrOV9Fjr/JLKWpmm2el2AQAAAECkIKTDy1tJ7+Ts7p5Kep3bVFWtu9PtAgAAAIBIQUiHl3dMuqNzIT3eYZfNsL5mrXQAAAAAaDtCOrzK/FRJNwzDW01n8jgAAAAAaDtCOrwa1knvXEiXGpZhK2HyOAAAAABoM0I6vDxj0hP9ENK9y7BVUkkHAAAAgLYipMPLM7t7Z7u7Sw2VdJZhAwAAAIC2I6TDy7/d3VkrHQAAAADai5AOL792d/eslc7EcQAAAADQZoR0ePmzkp7kraQT0gEAAACgrQjpkCRV17lU6zIl+WdMepJndvdKursDAAAAQFsR0iFJKms0djze4c8x6VTSAQAAAKCtCOmQJJVXuyRJcQ677Daj09djnXQAAAAAaD9COiRJpdVWxdsf49ElKSmWSjoAAAAAtBchHZIaKun+mNldYp10AAAAAOgIQjokSWX1lXR/TBonNczuXlJJJR0AAAAA2oqQDkkNFW9/TBonUUkHAAAAgI4gpENSQ3d3f1XSvbO7V9fJ5Tb9ck0AAAAACHeEdEhq1N3dz2PSrWtTTQcAAACAtiCkQ5JU5qmk+ymkx0Tb5Yiy/noxwzsAAAAAtA0hHZKkMs+YdD+FdKnx5HFU0gEAAACgLQIa0t99911Nnz5dvXr1kmEYWrly5XHPWb16tUaPHi2n06lBgwZp+fLlXd7OSFBe3yU90U9j0iUpyTt5HJV0AAAAAGiLgIb08vJyjRgxQg8//HCbjt+5c6fOP/98TZ48WevXr9dNN92ka6+9Vq+//noXtzT8ecaNxzvsfrumJ/CXMMM7AAAAALSJ/8qmHXDeeefpvPPOa/PxS5cuVf/+/XXfffdJkk466ST973//0wMPPKBp06Z1VTMjgiekJ9R3UfeHpNj6Gd6ppAMAAABAm4TUmPQ1a9ZoypQpTfZNmzZNa9asafGc6upqlZSUNNnQnDekO/1fSWetdAAAAABom5AK6QUFBcrMzGyyLzMzUyUlJaqsrPR5zqJFi5ScnOzdcnJyuqOpIcczcVyC04+VdO/EcVTSAQAAAKAtQiqkd8S8efNUXFzs3fbs2RPoJgWlhu7u/hsB4a2ks046AAAAALRJQMekt1dWVpYKCwub7CssLFRSUpJiY2N9nuN0OuV0OrujeSGta7q7U0kHAAAAgPYIqUr6hAkTlJeX12Tfm2++qQkTJgSoReHBNE3vEmz+7e7OmHQAAAAAaI+AhvSysjKtX79e69evl2QtsbZ+/Xrt3r1bktVV/corr/Qef/3112vHjh369a9/ra+++kp/+ctf9M9//lM333xzIJofNqrr3Kpzm5Kk+K6opDO7OwAAAAC0SUBD+ieffKJRo0Zp1KhRkqS5c+dq1KhRmj9/viQpPz/fG9glqX///nrllVf05ptvasSIEbrvvvv0t7/9jeXXOqms0ZjxeIf/RkB4lmBjnXQAAAAAaJuAjkmfNGmSTNNs8fXly5f7POezzz7rwlZFHs/M7vEOu2w2w2/XbViCjUo6AAAAALRFSI1JR9foipndpYaQXlJJJR0AAAAA2oKQDm9Ij3f6N6R71kmnkg4AAAAAbUNIh7e7e2IXhfTqOreq61x+vTYAAAAAhCNCOlRe0zWV9Mbd51mGDQAAAACOj5AOb4BO8HNIt9sM7zUJ6QAAAABwfIR0qLyLJo6TGk8ex7h0AAAAADgeQjoaZnf3cyVdajx5HJV0AAAAADgeQjq6NKR7K+nM8A4AAAAAx0VIh3d2d39PHCc1dKH3fBAAAAAAAGgZIR3e2d0Tu2BMuqc6X0Z3dwAAAAA4LkI6vOPF4x1d0d3dGpNOJR0AAAAAjo+QjoYx6V04uzshHQAAAACOj5COhiXYumJMOuukAwAAAECbEdLhHS/elSGdSjoAAAAAHB8hHd4A3ZWzu5eyBBsAAAAAHBchPcKZpukN6V0xu3sis7sDAAAAQJsR0iNcVa1bbtP6uku6uzNxHAAAAAC0GSE9wpVWW93QDUOKc9j9fn0mjgMAAACAtiOkR7jyapckKcERJcMw/H59lmADAAAAgLYjpEc4z1jxrpg0TpISnNHWfarrZJpml9wDAAAAAMIFIT3Cebq7J3TBpHGNr+tym6qqdXfJPQAAAAAgXBDSI5ynu3tXVdLjou3y9KL3fCAAAAAAAPCNkB7hyuqDc2IXhXSbzVCCg2XYAAAAAKAtCOkRrsxbSff/zO4eLMMGAAAAAG1DSI9wnuq2Z4K3ruCd4Z1KOgAAAAC0ipAe4crrq9uJXTRxnNRorXQq6QAAAADQKkJ6hPN0Qe/a7u71y7BRSQcAAACAVhHSI5wnpHdpd3cnY9IBAAAAoC0I6RGuYUx6F1bSPd3dq1iCDQAAAABaQ0iPcN5KeleOSY9hTDoAAAAAtAUhPcJ5x6Q7un7iOMakAwAAAEDrCOkRrjsq6Ymskw4AAAAAbUJIj3Dl3onjqKQDAAAAQKAR0iNcw8RxjEkHAAAAgEAjpEcw0zRVVkMlHQAAAACCBSE9glXUuGSa1teMSQcAAACAwCOkRzDPeHSbIcVGd+U66dGSCOkAAAAAcDyE9AjmGSMe74ySYRhddh9PlZ7u7gAAAADQOkJ6BPOE5sQuHI8uNXR3r3G5VV3n6tJ7AQAAAEAoI6RHsPJGlfSuFO9ouD7VdAAAAABoGSE9gnm6u3flpHGSZLcZindYY94Zlw4AAAAALSOkRzBPJb0rl1/z8K6VTiUdAAAAAFpESI9gZd0Z0p2EdAAAAAA4HkJ6BCvrpjHpkpQQwzJsAAAAAHA8hPQI5pnErTsq6Z4Z5Muqa7v8XgAAAAAQqgjpEaxbx6Q7WSsdAAAAAI6HkB7Bumt298b3KKW7OwAAAAC0iJAewbprnXSJSjoAAAAAtAUhPYKVV7skSQlOe5ffKzHGMyadkA4AAAAALSGkRzDv7O4OKukAAAAAEAwI6RGsWyeOY0w6AAAAABxXwEP6ww8/rNzcXMXExGj8+PH6+OOPWz1+yZIlGjJkiGJjY5WTk6Obb75ZVVVV3dTa8MKYdAAAAAAILgEN6c8++6zmzp2rBQsW6NNPP9WIESM0bdo0HThwwOfxTz31lG699VYtWLBAmzdv1uOPP65nn31Wv/nNb7q55eGhrBtDOmPSAQAAAOD4AhrS77//fl133XWaPXu2hg4dqqVLlyouLk5PPPGEz+M/+OADTZw4UZdddplyc3P17W9/W5deeulxq+9ozjRNldd4Jo7rjpAeLYmQDgAAAACtCVhIr6mp0bp16zRlypSGxthsmjJlitasWePznNNPP13r1q3zhvIdO3bo1Vdf1Xe+850W71NdXa2SkpImG6TqOrdcblOSFN8Ns7t7Pggopbs7AAAAALSo60uoLTh06JBcLpcyMzOb7M/MzNRXX33l85zLLrtMhw4d0hlnnCHTNFVXV6frr7++1e7uixYt0sKFC/3a9nDQuKId152zu1fXdvm9AAAAACBUBXziuPZYvXq17rrrLv3lL3/Rp59+qn/961965ZVX9Pvf/77Fc+bNm6fi4mLvtmfPnm5scfDyTBoXG22X3WZ0+f08Y9Krat2qdbm7/H4AAAAAEIoCVknv2bOn7Ha7CgsLm+wvLCxUVlaWz3Nuu+02XXHFFbr22mslSaeccorKy8v14x//WL/97W9lszX/zMHpdMrpdPr/AUJcd04ad+x9yqrqlBrv6Jb7AgAAAEAoCVgl3eFwaMyYMcrLy/Puc7vdysvL04QJE3yeU1FR0SyI2+3WeGrTNLuusWGowjtpXNePR5ekaLtNMdHW747J4wAAAADAt4BV0iVp7ty5mjVrlsaOHatx48ZpyZIlKi8v1+zZsyVJV155pXr37q1FixZJkqZPn677779fo0aN0vjx47Vt2zbddtttmj59ujeso226u5IuSQnOaFXVVjN5HAAAAAC0IKAhfebMmTp48KDmz5+vgoICjRw5Uq+99pp3Mrndu3c3qZz/7ne/k2EY+t3vfqd9+/YpPT1d06dP15133hmoRwhZ5QEI6YkxUTpUVk0lHQAAAABaENCQLklz5szRnDlzfL62evXqJt9HRUVpwYIFWrBgQTe0LLx5Qnp3rJHuwQzvAAAAANC6kJrdHf5TVm2NSe/e7u6slQ4AAAAArSGkR6iGSnr3jeVPiPFU0gnpAAAAAOALIT1CecekO7pxTLqnuzuVdAAAAADwiZAeoQIyuzuVdAAAAABoFSE9QgVy4jjGpAMAAACAbx0K6bNmzdK7777r77agG3kmjovrxjHpiTHR9fcmpAMAAACALx0K6cXFxZoyZYoGDx6su+66S/v27fN3u9DFKmoCUEmPYUw6AAAAALSmQyF95cqV2rdvn37yk5/o2WefVW5urs477zw9//zzqq1lDexQENCJ46ikAwAAAIBPHR6Tnp6errlz52rDhg366KOPNGjQIF1xxRXq1auXbr75Zn399df+bCf8LCATx3nHpPNBDgAAAAD40umJ4/Lz8/Xmm2/qzTfflN1u13e+8x1t3LhRQ4cO1QMPPOCPNqILlNePSQ9Ed/dSKukAAAAA4FOHQnptba1eeOEFXXDBBerXr5+ee+453XTTTdq/f7+efPJJrVq1Sv/85z91xx13+Lu98BNvd/dunDgugXXSAQAAAKBVHSqjZmdny+1269JLL9XHH3+skSNHNjtm8uTJSklJ6WTz0BVM01R5ACaOS2SddAAAAABoVYcS2gMPPKCLL75YMTExLR6TkpKinTt3drhh6DqVtS65TevrQIxJr6hxyeU2ZbcZ3XZvAAAAAAgFHeru/vbbb/ucxb28vFxXX311pxuFruWpZBuGFOfoxu7uMQ0fCFBNBwAAAIDmOhTSn3zySVVWVjbbX1lZqRUrVnS6Uehanknj4h1RMozuq2Y7o+xy2K2/coR0AAAAAGiuXX2dS0pKZJqmTNNUaWlpk+7uLpdLr776qjIyMvzeSPhXICaN80iIidKR8homjwMAAAAAH9oV0lNSUmQYhgzD0AknnNDsdcMwtHDhQr81Dl3Du0a6o/vGo3skOOtDejVrpQMAAADAsdqV0t5++22Zpqmzzz5bL7zwgtLS0ryvORwO9evXT7169fJ7I+FfFTWeSnpgQroklVJJBwAAAIBm2pXSzjrrLEnSzp071bdv324dzwz/KfOMSQ9Qd3erDYR0AAAAADhWm0P6559/rmHDhslms6m4uFgbN25s8djhw4f7pXHoGp4x6d25RrpHkiekU0kHAAAAgGbanNJGjhypgoICZWRkaOTIkTIMQ6ZpNjvOMAy5XC6/NhL+1TBxXOC6u1NJBwAAAIDm2pzSdu7cqfT0dO/XCF1lgQzpMYxJBwAAAICWtDml9evXz+fXCD2B7O6e4IyWREgHAAAAAF9sHTnpySef1CuvvOL9/te//rVSUlJ0+umn65tvvvFb49A1vBPHBWAJtkTvxHEswQYAAAAAx+pQSL/rrrsUGxsrSVqzZo0eeughLV68WD179tTNN9/s1wbC/xrGpAdgdnfGpAMAAABAizpUSt2zZ48GDRokSVq5cqV+8IMf6Mc//rEmTpyoSZMm+bN96AKB7e7OmHQAAAAAaEmHKukJCQk6fPiwJOmNN97Q1KlTJUkxMTGqrKz0X+vQJYJh4jgq6QAAAADQXIdS2tSpU3Xttddq1KhR2rp1q77zne9Ikr744gvl5ub6s33oAuU1gaukJzpZJx0AAAAAWtKhSvrDDz+sCRMm6ODBg3rhhRfUo0cPSdK6det06aWX+rWB8L+K+onj4hwBGJNOJR0AAAAAWtShUmpKSooeeuihZvsXLlzY6Qah6wW0uzuVdAAAAABoUYdTWlFRkT7++GMdOHBAbrfbu98wDF1xxRV+aRy6RkAnjvNU0mvq5HabstmMbm8DAAAAAASrDqW0l156SZdffrnKysqUlJQkw2gIWoT04OZ2myqvqV8nPSBj0qMlSaYpVdS6AvJBAQAAAAAEqw6NSf/FL36hq6++WmVlZSoqKtLRo0e925EjR/zdRvhRRa3L+3UgAnJMtE32+uo5Xd4BAAAAoKkOhfR9+/bp5z//ueLi4vzdHnQxT1d3m2EF5u5mGIYSvZPH1Xb7/QEAAAAgmHUopU2bNk2ffPKJv9uCbtB40rjGwxS6k6eCX0olHQAAAACa6FB/5/PPP1+/+tWv9OWXX+qUU05RdHR0k9e/+93v+qVx8L9AThrn4bl3CSEdAAAAAJroUFK77rrrJEl33HFHs9cMw5DL5Wq2H8EhkMuveSTFWh/qlFbR3R0AAAAAGutQUmu85BpCS3l14GZ290iKsUJ6SSWVdAAAAABorNMzh1VVVfmjHegmFTWe7u72gLUhKdb6gKC4kko6AAAAADTWoZDucrn0+9//Xr1791ZCQoJ27NghSbrtttv0+OOP+7WB8C9vd3dH4CrpyfXd3Uvo7g4AAAAATXQopN95551avny5Fi9eLIfD4d0/bNgw/e1vf/Nb4+B/5cEwJt3b3Z2QDgAAAACNdSikr1ixQo899pguv/xy2e0N3aZHjBihr776ym+Ng/+VecekB7K7u6eSzph0AAAAAGisQyF93759GjRoULP9brdbtbVUR4NZcFTS65dgo5IOAAAAAE10KKQPHTpU7733XrP9zz//vEaNGtXpRqHreNdJD+CY9CTGpAMAAACATx1KavPnz9esWbO0b98+ud1u/etf/9KWLVu0YsUKvfzyy/5uI/woKNZJZ0w6AAAAAPjUoUr69773Pb300ktatWqV4uPjNX/+fG3evFkvvfSSpk6d6u82wo+8lfRAhvT6JdgYkw4AAAAATXU4qZ155pl68803/dkWdINy78RxVNIBAAAAINh0qJI+YMAAHT58uNn+oqIiDRgwoNONQtdp6O4e+Nndq+vcqqp1BawdAAAAABBsOhTSd+3aJZerebiqrq7Wvn37Ot0odJ3ymsB3d090RskwrK9L6fIOAAAAAF7tSmr/+c9/vF+//vrrSk5O9n7vcrmUl5en3NxcvzUO/hcM3d1tNkMJziiVVtWppKpW6YnOgLUFAAAAAIJJu5LajBkzJEmGYWjWrFlNXouOjlZubq7uu+8+vzUO/hcME8dJUnJstEqr6lTMuHQAAAAA8GpXUnO73ZKk/v37a+3aterZs2eXNApdw+U2VVkb+Eq65Jk8rpLJ4wAAAACgkQ6NSd+5c6ffAvrDDz+s3NxcxcTEaPz48fr4449bPb6oqEg33HCDsrOz5XQ6dcIJJ+jVV1/1S1vCnWc8uiTFOQI3cZzEMmwAAAAA4EuHy6l5eXnKy8vTgQMHvBV2jyeeeKJN13j22Wc1d+5cLV26VOPHj9eSJUs0bdo0bdmyRRkZGc2Or6mp0dSpU5WRkaHnn39evXv31jfffKOUlJSOPkZE8XR1j7IZckZ16PMZv2EZNgAAAABorkMhfeHChbrjjjs0duxYZWdny/BM1d1O999/v6677jrNnj1bkrR06VK98soreuKJJ3Trrbc2O/6JJ57QkSNH9MEHHyg62gp5TFTXduXe5deiOvw78xfPMmwlVYR0AAAAAPDoUEhfunSpli9friuuuKLDN66pqdG6des0b9487z6bzaYpU6ZozZo1Ps/5z3/+owkTJuiGG27Qiy++qPT0dF122WW65ZZbZLf77r5dXV2t6upq7/clJSUdbnOoK6uf2T3Qk8ZJjSvpdHcHAAAAAI8O9XmuqanR6aef3qkbHzp0SC6XS5mZmU32Z2ZmqqCgwOc5O3bs0PPPPy+Xy6VXX31Vt912m+677z794Q9/aPE+ixYtUnJysnfLycnpVLtDWUMlPbDj0aXGY9KppAMAAACAR4dC+rXXXqunnnrK3205LrfbrYyMDD322GMaM2aMZs6cqd/+9rdaunRpi+fMmzdPxcXF3m3Pnj3d2OLgUtaou3ugMSYdAAAAAJrrUFqrqqrSY489plWrVmn48OHe8eEe999//3Gv0bNnT9ntdhUWFjbZX1hYqKysLJ/nZGdnKzo6uknX9pNOOkkFBQWqqamRw+Fodo7T6ZTT6WzLY4W9YFkjXWo8Jp3u7gAAAADg0aG09vnnn2vkyJGSpE2bNnXoxg6HQ2PGjFFeXp5mzJghyaqU5+Xlac6cOT7PmThxop566im53W7ZbFYngK1btyo7O9tnQEdT3u7ujiAI6TH13d2ppAMAAACAV4fS2ttvv+2Xm8+dO1ezZs3S2LFjNW7cOC1ZskTl5eXe2d6vvPJK9e7dW4sWLZIk/eQnP9FDDz2kG2+8UT/72c/09ddf66677tLPf/5zv7Qn3JXXWBPHBUV3d2Z3BwAAAIBm2pXWLrzwwuMeYxiGXnjhhTZdb+bMmTp48KDmz5+vgoICjRw5Uq+99pp3Mrndu3d7K+aSlJOTo9dff10333yzhg8frt69e+vGG2/ULbfc0p7HiFgN3d2DYOI4ZncHAAAAgGbaFdKTk5P93oA5c+a02L199erVzfZNmDBBH374od/bEQmCaeK45LiGieNM0wz4uu0AAAAAEAzaldaWLVvWVe1ANygPopDuGZNe43Krus6tmOjAV/cBAAAAINA6tAQbQlN5df2YdEfgA3G8I0q2+uI5k8cBAAAAgIWQHkGCqbu7zWYoMYbJ4wAAAACgMUJ6BAmmddIlKSnWakcxk8cBAAAAgCRCekQJpkq61GiGdyrpAAAAACCJkB5RymuCNKQzJh0AAAAAJBHSI4pn4rhg6+5eUkV3dwAAAACQCOkRpWEJtsDP7i5RSQcAAACAYxHSI0Rd/XrkUjBV0hmTDgAAAACNEdIjhKeruxSMY9Lp7g4AAAAAEiE9YpTVTxrniLIp2h4cv/Zk75h0KukAAAAAIBHSI0awrZEuNeruzph0AAAAAJBESI8YnjXS4xzBMWmcxMRxAAAAAHAsQnqECOpKOkuwAQAAAIAkQnrEaFh+LZhCev2YdCrpAAAAACCJkB4xyupndw+qkB7TsASbaZoBbg0AAAAABB4hPUI0dHcPojHp9d3da12mqmrdAW4NAAAAAAQeIT1CeCaOi3cETyU93mGXzbC+Zhk2AAAAACCkR4yKmuAbk24YBsuwAQAAAEAjhPQIUV4/Jj2YZneXmo5LBwAAAIBIR0iPEJ4QnBATZCHdO8M7y7ABAAAAACE9Qni6kyfXdy8PFlTSAQAAAKABIT1CFAdpSE9mTDoAAAAAeBHSI0SwhvSGSjrd3QEAAACAkB4hgjak149JL6aSDgAAAACE9EgRtCE9hu7uAAAAAOBBSI8A1XUuVdW6Jcm7Lnmw8K6TzsRxAAAAAEBIjwSeKrphSInBtk46S7ABAAAAgBchPQJ4upInxUTLZjMC3JqmWIINAAAAABoQ0iNAsI5Hlxp1d2dMOgAAAAAQ0iNBUId0lmADAAAAAC9CegQI6pDuHZNeK9M0A9waAAAAAAgsQnoEKKoI4pBeX0mvc5uqrHUFuDUAAAAAEFiE9AjgqaQH2/JrkhTnsMteP5kdM7wDAAAAiHSE9AgQzN3dDcPwtosZ3gEAAABEOkJ6BAjmkC5JSTEN49IBAAAAIJIR0iNASbCH9Pp2FRPSAQAAAEQ4QnoE8ITflLggDekxdHcHAAAAAImQHhGCvru7dxk2Jo4DAAAAENkI6REg6EO6p5JOd3cAAAAAEY6QHgGCPqQzuzsAAAAASCKkh73qOpeqat2SgnOddKnx7O50dwcAAAAQ2QjpYc5TRTcMKdEZFeDW+EYlHQAAAAAshPQw5xnnnRQTLZvNCHBrfGN2dwAAAACwENLDXLCPR5eY3R0AAAAAPAjpYS4UQnoy3d0BAAAAQBIhPeyFQkhnCTYAAAAAsBDSw1xxRQiEdG8lvU6maQa4NQAAAAAQOIT0MFdcP847WJdfkxoq6S63qfIaV4BbAwAAAACBQ0gPc6HQ3T0m2qZouzXzPF3eAQAAAEQyQnqYC4WQbhgGy7ABAAAAgIIkpD/88MPKzc1VTEyMxo8fr48//rhN5z3zzDMyDEMzZszo2gaGsFAI6VJDd3zPGHoAAAAAiEQBD+nPPvus5s6dqwULFujTTz/ViBEjNG3aNB04cKDV83bt2qVf/vKXOvPMM7uppaGpuLJGUvCH9B7xDknS4fKaALcEAAAAAAIn4CH9/vvv13XXXafZs2dr6NChWrp0qeLi4vTEE0+0eI7L5dLll1+uhQsXasCAAd3Y2tATKpX09ESnJOlgaXWAWwIAAAAAgRPQkF5TU6N169ZpypQp3n02m01TpkzRmjVrWjzvjjvuUEZGhq655prj3qO6ulolJSVNtkgSaiH9QGlVgFsCAAAAAIET0JB+6NAhuVwuZWZmNtmfmZmpgoICn+f873//0+OPP66//vWvbbrHokWLlJyc7N1ycnI63e5QEiohPYNKOgAAAAAEvrt7e5SWluqKK67QX//6V/Xs2bNN58ybN0/FxcXebc+ePV3cyuBRXedSVa1bUvCH9IZKOiEdAAAAQOSKCuTNe/bsKbvdrsLCwib7CwsLlZWV1ez47du3a9euXZo+fbp3n9tthdCoqCht2bJFAwcObHKO0+mU0+nsgtYHP08V3TCkxJiA/qqPKyMxRhKVdAAAAACRLaCVdIfDoTFjxigvL8+7z+12Ky8vTxMmTGh2/IknnqiNGzdq/fr13u273/2uJk+erPXr10dcV/bjKakP6YnOKNlsRoBb0zoq6QAAAAAQ4Eq6JM2dO1ezZs3S2LFjNW7cOC1ZskTl5eWaPXu2JOnKK69U7969tWjRIsXExGjYsGFNzk9JSZGkZvvRaDx6XHB3dZcaxqQfLquWy23KHuQfKgAAAABAVwh4SJ85c6YOHjyo+fPnq6CgQCNHjtRrr73mnUxu9+7dstlCauh80AiVSeMkKS3eIcOQ3KZ0uLza2/0dAAAAACJJwEO6JM2ZM0dz5szx+drq1atbPXf58uX+b1CYCKWQHmW3qUe8U4fKqnWwlJAOAAAAIDJRog5jxRWhE9KlhnHpTB4HAAAAIFIR0sNYcWWdpNAJ6RlMHgcAAAAgwhHSw5inu3tSiIR0KukAAAAAIh0hPYx5QnpKrCPALWkbQjoAAACASEdID2OhNHGc1NDdnZAOAAAAIFIR0sNYSYiF9HTvmPSqALcEAAAAAAKDkB7GQq+Sbi27RiUdAAAAQKQipIexUAvp6czuDgAAACDCEdLDWKiFdM+Y9Ioal8qr6wLcGgAAAADofoT0MFVT51ZlrUtS6IT0eGeU4hx2SXR5BwAAABCZCOlhylNFNwwpMSYqwK1puwy6vAMAAACIYIT0MFVcWSNJSnRGyWYzAtyatmOtdAAAAACRjJAeprzj0eNCo6u7B8uwAQAAAIhkhPQwFWqTxnmwDBsAAACASEZID1OhGtJZhg0AAABAJCOkh6niitAO6VTSAQAAAEQiQnqYKq601hkP1ZBOJR0AAABAJAqdtbnQLp7u7kmNQ3pVieSqDVCL2iY7ulypKlFNSbVUfjjQzQlOhiHFplp/AgAAAAgrhPQw1WxM+qd/l/7zM0lm4BrVBidK+ixGkkvSPQFuTDCL6yH1nSD1Pc36M2u4FOUIdKsAAAAAdBIhPUw1C+k7VivYAzraoeKw9NXL1iZJUbFSn7H1of00qc84KSYpsG0EAAAA0G6E9DBVcmxIr6jvOj5jqTTihwFqVduceucqHSyr1stzztCw3smBbk7wcdVI+Z9Lu9dIuz+0/qw8Iu16z9okybBJmSc3VNtzTpOSewe23QAAAACOi5AepppV0j0hPT496McyZyTF6GBZjQ6W1QR9WwMiyinlnGptE38umaZ06Oumof3oTqlgo7V9/Jh1XnLfhkp73wlS+omSjbkjAQAAgGBCSA9TzUP6EevPuLQAtajtWIatnQxDSj/B2sbMsvaVFtQH9vrQXvC5VLxb2rhb2vhP65iYZKvC7gntvUZJ0TGBew4AAAAAhPRw1WIlPa5HgFrUdukJnmXYqgLckhCWmCWdPMPaJKm6VNr7SUNo3/uJVFUsff26tUmS3SH1Gt0Q2nPGhcSHOgAAAEA4IaSHoZo6typrXZLqQ3pNuVRXab0YAiE9I4lKut85E6WBk61NspbiK9go7fnICu3frJHKD0h7PrS295dYx6Wf1BDa+54mpfRlCAIAAADQhQjpYchTRZekxJhoqaTA+sbulBzxAWpV2zVU0gnpXcYeLfUebW2n/cQa1350Z0OlffeH0qGt0sHN1rZumXVeYq9GoX28lDlMstkD+ywAAABAGCGkhyFPSE+MiZLdZjTt6h4CVdCMJGtcNJX0bmQYUtoAaxt5mbWv/FBDpX33h9L+z6TS/dIX/7I2SXIkWhPYeSrtvcdKjrjAPQcAAAAQ4gjpYSiUx6NLjSaOKyOkB1R8T+nE861NkmoqpP2fNoT2PR9L1SXS9resTZJsUVL2iKZLvyWkB+4ZAAAAgBBDSA9DzddID52Z3SUpoz6kHyiplmmaMkKg+h8RHHFS7hnWJklul3Tgy4Yu8t+ssSrt+9ZZ25qHrON6DGrURX6CVa3ndwoAAAD4REgPQ+FSSa+sdam8xqUEJ39Ng5LNLmWdYm3jrrPGtRfvaTqu/cCX0uFt1vbZP6zz4tObTkaXNdwaIw8AAACAkB6OWgzp8T0D1KL2iXNEKcEZpbLqOh0oqVJCekKgm4S2MAxr9veUvtLwS6x9lUelPWsbQvu+dVL5QWnzS9YmSdFxUu8xDaG9z6lSTFLgngMAAAAIIEJ6GAr1SrpkVdPLqut0sLRaAwjpoSs2VTrh29YmSXXV0v71DaF99xqpqkja9Z61SZJhs2aN94T2vhOkpOxAPQEAAADQrQjpYaiooj6kx9WH9PJD1p8hFtJ3HipnGbZwE+W0lm7rO9763u22lnprHNqLvpEKPre2jx+1jkvp1zS09zxBstkC9xwAAABAFyGkh6GjFTWSpJRYh7UjxCaOkxrN8E5ID282m5RxorWNnW3tK9lfH9jrQ3vhJiu4F30jff6MdUxsqjVzvCe09xppfQAAAAAAhDhCehgqKK6SJGUnW+uNh2R394T6Gd4J6ZEnqZc07EJrk6SqEmnv2vpl3z6U9n5ijXXf+l9rkyS7s35ce31ozznVCvIAAABAiCGkh6GCEiukZ4VwSM9IopKOejFJ0qBzrE2SXLVWV/jGs8iXH5R2f2BtkiRDyhjadBb5lJyAPQIAAADQVoT0MGOapvKLKyXVV9JNMyRDuqeSfrCMkI5j2KOtqnnvMdKEG6y/40d21Af2+tB+eJt04Atr++Rx67yk3k1De8ZQaxk5AAAAIIgQ0sNMcWWtqmrdkqTMpBipqlgyXdaLIRTSM5KsXgAH6nsFAC0yDKnHQGsb9SNrX9lBq2u8p9qev0Eq2SdtesHaJMmZJOWMawjuvcdI0bGBew4AAABAhPSwk18/Hj0t3qGYaLtUUl9FdySG1MRankr6ISrp6IiEdOmk6dYmSTXl1hrtntC+52OpukTatsraJMkWbU1A5x3XfpoUHzofbAEAACA8ENLDjGfSuKwkz3j00JvZXWoYk364vEZ1Lrei7Cy3hU5wxEv9v2VtkuSqs7rCNx7XXppvTVC3d630wZ+t43qe0LSLfGp/q3IPAAAAdBFCepjJbzaze+itkS5JaXEO2W2GXG5Th8trrK77gL/Yo6TsEdY2/v+sce1F3zRa+u1D6eBmaw33Q1ulT1dY5yVkWmHds/xb1nDrWgAAAICf8K/LMFPgmTQuJXRndpckm81QeoJTBSVV2ldUSUhH1zIMKTXX2kb80NpXccTqFu+ptO//VCorlL580dokKTpe6jO2odLe51TJmRCopwAAAEAYIKSHmYZKev0EWCEa0iVpYEa8CkqqtO1AmUb3Zc1rdLO4NGnIudYmSbVV0v7PGkL7ng+tiRl3vmNtkmTYpaxTGkJ739OkxKzAPQMAAABCDiE9zHjXSE8K7Uq6JA3OSNT72w7r68LSQDcFkKJjpH4TrE2S3G7p4FcNoX33h1Lxbil/vbV99Ih1XGr/RqF9gtRzMOPaAQAA0CJCepjZX9RojXSpUUgPrYnjJGlwptVt+OsDZQFuCeCDzSZlDrW2U6+x9hXvbTquvXCTdHSntW14yjomNq1paM8eIUU5AvccAAAACCqE9DBimqa3u3uWN6R7ZncPvUr6CZmJkqSvCwnpCBHJfaRTfmBtktUdfu/ahtC+d61UeUTa8oq1SVJUjLVGuye09zlVik0J2CMAAAAgsAjpYaS0uk4VNS5JjUN6fSU9vmeAWtVxgzOsSvq+okqVVdcpwclfV4SYmGRp0BRrk6S6Gqng80Zd5NdY79Fv3rc2SZIhZZ7cdOm35D4BewQAAAB0L1JPGPGskZ4cG604R/2vNoTHpKfEOZSe6NTB0mptO1CmkTkpgW4S0DlRDms2+D5jpdN/Zi39dnhb09B+ZIfVTb5wk7T2b9Z5yTkNE9H1nSCln2R1twcAAEDYIaSHkWZrpEshHdIlq5p+sLRaWwtLCekIP4ZhTSTXc7A0+kprX2mhNXO8J7Tnfy4V75E27pE2PmcdE5Ms5YxvCO29RlsT2wEAACDkEdLDiGeNdG9Xd1edVHnU+jpEQ/oJmYn6YPthbWPyOESKxExp6PesTZKqy6R9nzSE9j1rrbHuX79hbZJkd0i9RjWE9pzxITlZJAAAAAjpYaVZJd0T0GVIMSkBaVNnDaofl76VZdgQqZwJ0oBJ1iZZH74Vbmw0i/waqaxQ2vORtb3/oHVc+olWaM+p7yafmsvSbwAAACGAkB5GPGPSs5JirR2eru6xKZI9NH/VzPAOHMMeZVXNe42STvuJNa796K6GwL77Q+nQFmsN94NfSeuWW+clZDWdjC5zWMj+dwEAACCcBcXMQw8//LByc3MVExOj8ePH6+OPP27x2L/+9a8688wzlZqaqtTUVE2ZMqXV4yNJs0p6iI9Hl5rO8F5eXRfg1gBByDCktP7SyEul7/5JmvOx9Ksd0g+flk7/udRnnGSLlsoKpC9XSq/dIj12lnR3P2nFDGn13dKOd6Sa8kA/CQAAABQElfRnn31Wc+fO1dKlSzV+/HgtWbJE06ZN05YtW5SRkdHs+NWrV+vSSy/V6aefrpiYGN1999369re/rS+++EK9e/cOwBMEj4Jma6SHfkhPjXeoZ4JTh8qsGd5HMHkccHzxPaQTv2NtklRbKe37tKHSvudjqbpY2vG2tUmSYZeyRzRU2vueJiU0/28wAAAAulbAQ/r999+v6667TrNnz5YkLV26VK+88oqeeOIJ3Xrrrc2O/3//7/81+f5vf/ubXnjhBeXl5enKK6/sljYHq/z6iePCqZIuSSdkJuhQmTXDOyEd6IDoWCl3orVJktslHdjcaOm3D6WSvdL+T63tw4et49IGNgrtE6QeAxnXDgAA0MUCGtJramq0bt06zZs3z7vPZrNpypQpWrNmTZuuUVFRodraWqWl+Z7JuLq6WtXV1d7vS0pKOtfoIFVeXaeSKqs7eHbKMWPSQzykD85I0AfbD+trZngH/MNml7KGWdu466x9RXusiec8wb3wC+nIdmtb/w/rmLieTddrzxpurf0OAAAAvwloSD906JBcLpcyMzOb7M/MzNRXX33Vpmvccsst6tWrl6ZMmeLz9UWLFmnhwoWdbmuwKyixuronOqOU4Kz/tVYcsf4M9ZDunTyOGd6BLpOSY22n/MD6vrJI2ru2IbTv/USqOCR99bK1SVJUrNRnrDUmXlTYAXSQLUpK6iUl1/93KLmPlNiLyS0BRKyQ/q/fH//4Rz3zzDNavXq1YmJifB4zb948zZ071/t9SUmJcnJyuquJ3abZeHTJ+ge1FPoh3bsMG5V0oNvEpkiDp1qbJNVVS/kbGnWRX2Mt87jrPWsDAH8ybFZQT8mxwntyn0Zf13/vTAh0KwGgSwQ0pPfs2VN2u12FhYVN9hcWFiorK6vVc++991798Y9/1KpVqzR8+PAWj3M6nXI6nX5pbzDL9xnSw6O7u2cZNs8M7/HOkP5sCQhNUU4pZ5y1TbxRcrulw19bYb38YKBbByCU1dVIJfukot1S8V7ra1eNNVdGyV5JLQyBjE21wnpy30YhvtH3CRnMowEgJAU07TgcDo0ZM0Z5eXmaMWOGJMntdisvL09z5sxp8bzFixfrzjvv1Ouvv66xY8d2U2uDW8Gxk8ZJYRPSmeEdCEI2m5Q+xNoAwJ/cbqn8gDVXRrFn21v//V6peLdUVWz15qk8KhVs9H0du1NK7t1QffeGeM+ffawPIAEgyAS8JDl37lzNmjVLY8eO1bhx47RkyRKVl5d7Z3u/8sor1bt3by1atEiSdPfdd2v+/Pl66qmnlJubq4KCAklSQkKCEhIit9tTQyU9tmFnmIR0yeryzgzvAABEAJtNSsyytpxTfR9TVVIf2OtDe5MQv0cqzZdc1dKRHdbWkoTMYwL8MVX5mBSq8QC6XcBD+syZM3Xw4EHNnz9fBQUFGjlypF577TXvZHK7d++WzWbzHv/II4+opqZGP/jBD5pcZ8GCBbr99tu7s+lBxTMmvWkl3TNxnO+Z70PJCZkJWrPjsLYxwzsAAIhJkmKGSplDfb/uqpVK9jeEdl9V+bpKqazQ2vZ94vs6jsRjutIfU5VPzLZWzAAAPwp4SJekOXPmtNi9ffXq1U2+37VrV9c3KAQ1G5NeWyXV1AfaMKikD6ofl76VGd4BAMDx2KOl1H7W5otpWsWMZlX4Rt9XHJJqSqWDm63NF8MuJfVu3pW+8YR3jviue04AYSkoQjo6z7MEm7eSXllfRbdFSTHJAWqV/5xQP8M7a6UDAIBOMwwpvoe19Rrl+5jaymMq8XsbVeJ3WxPcuevqg/3ulu8Vm9Z0Zvpjq/LxPelSD6AJQnoYqKp16Uh5jSQpO6l+THrj8ehh8B9+z1rpe48ywzsAAOgG0bFSz8HW5ovbZXWV94T2ZhPc7ZGqS6zCSeURaxlLX6JijqnC9236fVJvKcrRdc8JIOiQdMJAYX0VPTbarqTY+l9peXiske6RFu9QzwSHDpXVaPvBMg3vkxLoJgEAgEhms0tJvawtZ5zvY6qKj6nCH1OVLy2Q6qqkw9uszSfDmkSvpfXiU3LCotckgAaE9DCQ32jSOMNTNQ+jmd09BmUk6FDZEW0tJKQDAIAQEJMsZSVLWcN8v+5ZI/7YrvSNv6+rsmarL82X9n7s+zrOJN/LzHmq8glZ1qz5AEICIT0M5NevkZ4VpjO7e5yQmagPdxzR10weBwAAwkGUQ0rrb22+mKbVO9JXFd7zfeURq1v9gS+szRdbtFXxP7YrfeMJ7qJjfZ8LoNsR0sNAs5ndpbCspHvGpTN5HAAAiAiGISWkW1vv0b6PqSlvZYK7PfUT3NVKRd9YW0viera8XnxyX6vwEwbzHAGhgJAeBjxrpPdKbvQJaDiG9PoZ3lmGDQAAoJ4jXkofYm2+uF1WV3nvpHbHrBdfvMdatrfikLXt/8z3daLj6gP7sevFeya462UtfQeg0wjpYSBSKuknNJrhvaKmTnEO/voCAAC0ymZvCNd9T2v+umlKVUXNQ3zjqnxZoVRbIR3aam2+GDYpMfuYrvTHVOWdiV36qEC4IOWEgYLiY9ZIlxqF9J4BaFHXaDzD+xf7S3RqbviMtwcAAAgIw5BiU60t6xTfx9RV1wf2vc2r8J7vXfWT4JXsk/a0cK+YZB9d6RtV5eMzmOAOECE9LPiupIffxHGSdNqAHnr583y9u/UgIR0AAKA7RDmlHgOtzRe3Wyo/WB/idx+zXnz995VHrSXpqjZKhRt9X8fusNaFP3a9eE+3+qTeUnSM73OBMEJID3E1dW4dKquWJGWH+Zh0SZo0JEMvf56v1VsO6hffbmHsFQAAALqPzSYlZlpbnzG+j6kulYr3HdOdvlFVvnS/VY0/utPaWhKf4bsK7/k+NpUJ7hDyCOkhrrDEqqI7omxKjaufrMM0rYk/pLAL6WedkC5J2rivWAdLq5We6AxwiwAAAHBczkQp40Rr88VVZwX11ia4q62Qyg9Y2751vq8THd/yevHJOda4eTsRCMGNv6EhrqCkYTy64fnUsKbM+iRSCruQnp7o1LDeSdq0r0Tvbj2oi8b0CXSTAAAA0Fn2KCtMp/SV+vl43TStLvMtrRdfvNcK77Xl0sGvrM0Xw27NRO9zvfj6750JXfqowPEQ0kOcdzx6ko9J46JiJUdcAFrVtc46IV2b9pVoNSEdAAAgMhiGNddSXJqUPcL3MbWVUsl+qWj3MWvHe7b6NeM932uN7+vEpvruSu+d4C6dLvXoUoT0EFdQXCmppZndw6uK7jFpSIYefnu73vv6oFxuU3Yb/5EEAACIeNGxx5/grqywhQnu6oN7VbFVsa88KhV87vs6dmfDsnbHVuFT6ie4i2JIJjqOkB7idh2ukCT1Smk8aVx4zuzuMSonRUkxUSqqqNWGvUUa3Tc10E0CAABAsLPZpKRsa8s51fcxVSW+u9J7xseX5kuuaunIdmvzyZASMlteLz65jxSTQjUeLSKkh7jP9xZJkob1Tm7YGeaV9Ci7TWcOTtcrG61Z3gnpAAAA8IuYJClmqJQ51PfrrlqrS32TSe2OqcrXVUplBda27xPf13EkHmeCuyzJZu+650RQI6SHsKpal77KL5UkjchJaXjBE9Lje3Z/o7rJWUOskP7OlgOaO/WEQDcHAAAAkcAeLaX2szZfTNP6t3hrE9xVHJJqSqUDX1qbL7ao+gnujulK37gqH4ZzT8FCSA9Wez62tlYcKqrULGOnEuKi1OvLHZLqu8xsW2X9GaaVdEmaVL8U2+f7inW4rFo9Ehj3AwAAgAAzDKtQFt9T6jXK9zE1FVLJvqYT3DVeaq5kn+Sus14v2t3yveJ6tLxefHKO1Qa61IckQnqw2v62tPquVg/pI+m2aEluSW/4OCAhowsaFhwykmJ0UnaSNueX6N2vD+r7o5jlHQAAACHAESf1HGxtvrhd1gR3PteLrw/11SVWxb7isJS/wfd1omJbn+AusZcU5ei650SHEdKDVeZQafjMVg9Zu+uI9hyt1NDsRJ2YldT0RWeSNOqKLmxg4E0akq7N+SV6ZwshHQAAAGHCVr+We1IvSeN9H1NZdEwV/piqfGmBNTb+8NfW5pMhJWYf05X+mKp8THIL56IrEdKD1UnTra0Vv753tXbWluvJKeN0Yn3370gy6YR0PbJ6u979+pDcblM2lmIDAABAJIhNsbasYb5fr6uxus0f25Xe833xXqmuSirdb217Wxhm60y2wnpCumTYuupp/OOHT1nL8IUBQnqIKqqo0c5D5ZKkEX0i8xOu0f1SleiM0pHyGn2+r1gjG0+eBwAAAESqKIeU1t/afDFNqfxQy+vFF+2RKo9I1cXSgWLpQPc2v0PcrkC3wG8I6SHq873FkqTcHnFKiYvMsSTRdpvOGNxT/91UoNVbDhDSAQAAgLYwDKs6npAu9R7j+5ia8oYA71k9KphFhc9E0oT0ELVhT5GkY5Zei0CThqTXh/SDumkKS7EBAAAAfuGIl9KHWBu6VZAPLEBLNtRX0kf0SQlsQwLsrBOsGew37C3SniMVAW4NAAAAAHQOIT0Emaap9d5KemSOR/fISo7RxEE9ZJrS71/+MtDNAQAAAIBOIaSHoPziKh0qq5bdZujkXpEd0iVpwfSTFWUz9MaXhXr7q1CY1QIAAAAAfCOkhyDPePQTsxIVE20PbGOCwAmZibr6DGvmygX/+UJVteEzsyMAAACAyEJID0Hr9xZJYtK4xn5+zmBlJjm1+0iFlr6zPdDNAQAAAIAOIaSHIE8lfWSETxrXWIIzSrddMFSS9JfV2/XN4fIAtwgAAAAA2o+QHmJcblMb62d2Hx7hk8Yd6/xTsnXGoJ6qqXPr9v98IdM0A90kAAAAAGgXQnqI2XGwTOU1LsU57BqckRjo5gQVwzC08HsnK9pu6O0tB/Xml4WBbhIAAAAAtAshPcR4ll4b1jtZdpsR2MYEoYHpCbruzAGSpIUvfakDJVUBbhEAAAAAtB0hPcRsqJ80biSTxrVoztmD1Cc1VvuKKnXxo2u050hFoJsEAAAAAG1CSA8xG/ZY49FHMGlci+IcUfp/145Xn9RYfXO4Qpc8ukbbDpQFulkAAAAAcFyE9BBSVevS5vwSSdIIJo1rVb8e8Xr++tM1KCNB+cVVuuTRNdq0rzjQzQIAAACAVhHSQ8iX+SWqc5vqEe9Q75TYQDcn6GUlx+if/zdBp/RO1pHyGl362Idau+tIoJsFAAAAAC0ipIcQz/roI3JSZBhMGtcWafEOPXXdeI3rn6bS6jpd/teP9Mjq7XK5WZ4NAAAAQPAhpIeQ1VsOSpLG9EsNcEtCS2JMtJ6cPU7TTs5Ujcutu1/7Spc8uka7DpUHumkAAAAA0AQhPUQcLa/R+9sOSZLOG5YV4NaEnliHXUt/NEaLfzBcCc4orfvmqM578D2tWLNLbqrqAAAAAIIEIT1EvPZFgercpoZmJ2lAekKgmxOSDMPQJWNz9NpNZ2rCgB6qrHVp/otf6IonPtJOquoAAAAAggAhPUS8/Pl+SdIFI7ID3JLQ1yc1Tv/v2vG6ffpQxUTb9P62w5q25F09uOprVde5At08AAAAABGMkB4CDpZWa832w5KkC07pFeDWhAebzdBVE/vrtRu/pTMH91RNnVsPrNqq85a85x1WAAAAAADdjZAeAl7blC+3ac3q3rdHXKCbE1Zye8ZrxdXj9OdLRyk90akdh8p1+d8+0tXL1+qfn+zRwdLqQDcRAAAAQASJCnQDcHwvfZ4vSZo+nK7uXcEwDE0f0UtnDUnX/W9s1ZNrdumtrw7ora8OSLI+HDnnxAydfWKGTu6VxPJ3AAAAALqMYZpmRE1tXVJSouTkZBUXFyspKSnQzTmuguIqTfhjnkxT+uDWs9UrJTbQTQp7XxeW6pWN+XrrqwP6fG9xk9cyk5w6+8QMnX1ipiYO6qE4B59zAQAAAJJU63KruLJWRRW1Kq6sVUllraLshk7KTlLPBGegmxdQ7cmhJIwg98rGfJmmNLZfKgG9mwzOTNRNmYm6acoJOlBSpbe3HFDe5gP637ZDKiyp1tMf79HTH++RI8qm4b2TNTA9QQMz4jWgZ4IGZiQoJzVWUXZGkiAymaapgpIqHSytVk2d29pc1p/xzihlJccoKylG8U7+9wMAQKg7UFqlNdsP68Mdh7Vm+2HtOlzR4rGZSU6d3CtZQ7OTNCY3Vd8anC67jR6qvvCvpCDnndWdru4BkZEUo5mn9tXMU/uqqtalj3Ye0VubC5X31QHtPVqpT745qk++OdrknGi7oX494jUwPV4D0hM0MD1B/XvGKSctTukJTrrLI2iYpinTlExJ7vqv3fWdq9w+XjMbHdN4/zeHK/TZ7qP6bHeRPttzVIUlx5/LITEmSllJMToxO0mnD+yhiQN7KictlvcHAABBbtuBUj23bq/yNh/QtgNlPo9JjIlScmy0UuKiVVZVp12HK1RYUq3CkoYhpX3T4nTlhH665NQcJcVEd+cjBD26uwexvUcrdMbdb8swpI/mnaOMpJhANwn1TNPUtgNl+jK/RNsPlmvHwTJtP1iunYfKVFXrbvG8mGib+qbFqW9afP2fserbI0590+LUJzVOziib3KbVVajObcrlMlXrdsvlNlXr8vxpWmFJTYOVFaIkU6bc9YHKbUryft84eDUc3zhwyTzmmmoczBrOOzbIuc3Gge+Y+zW6hqdNTa9rthAEG64l73nN2+K9ps92HXv/Fp5XPp7B3fRZdMzPtdkz+PyZNVxbzX5nvn5mvkOz57/Sx72P27O/cTtb+7vRNaJshtITnXJE2eSw2+SIsinablNZdZ0Ki6tUWl3n87zeKbGaOKiHxvZL09BeSRqcmSBnlL3rGgoAANqktKpWr3yer39+skef7i7y7jcM6aQs6wP3CQN7aEROilLjHM0q5GXVddpSUKIv9pdo075ivf5FoYorayVJ8Q67fjCmj74/uo/6pcUpJS46LD+0b08OJaQHsUff2a5F//1Kpw1I0zM/nhDo5qAN3G5T+4srteNgubYfLPP++c3hCuUXV3ZpMAK6m2FIhqT0RKdG5aRqVN8Uje6XqmG9khXraDlcl1XXqaC4SvuKKvXpN0f1wfZD+mx3keqOeYNE2QwNykjQ0OwkpcY7fLehlbb53u/7hRb/KdDSdVp4ocX7tnT5dly/vddu6QR/tKUj7Wnv76Qlvg4PxO+jteNb0t6/f+1vf+j+vZHk/UDS+rix8fdNDzCPOd762vdr5jGvt/VeTa59zDHN7tnCuW19jva0x/O6Wni+Tj1HO9vS+Am8x/jrOXy23/cxaume7fgdq8Vj/PP3qi3tafE52tiWxjuP+7ts53NI0p4jlaqsdUmS7DZDk4ek6/uj+mjioB5KifP9/+jWVNa49O/P9mnZ+zv19THV+DiHXb1SYtU7JVa9UmLVJzVWvVJi1DslTr1SrGFzoTi0NORC+sMPP6x77rlHBQUFGjFihP785z9r3LhxLR7/3HPP6bbbbtOuXbs0ePBg3X333frOd77TpnuFUkif/uf/aeO+Yv1hxjD96LR+gW4OOqmmzq19RZXafaTC2g6X139dqd2Hy1Ve42rxXLvNkN1mKLr+T5vNkM2w/glkGIYMQ7IZ1j+KbEbDPmu/dZytPlE1nFe/r/4177Ge8yXvtTzXbnLNJvs8x/i6RsO11aQ9jdqpY57BJsn7LPLxrPXXsPn+Gfi+f9P7Nb52az+D1n6GNpuvn0HDtY9tQ0s/l2bPVt/ehp9B89+B5+fU2v28z2bz0Q4ZLTxbK7/zY36//lReXae1u45ozfbD2rivWF/sL/F+wg4AAAJvUEaCLh7TR98f3VsZif7p4Wuapt7fdljLP9il9XuKdKjs+EPmbIaUlRSj3qmxTcL8jFG9lRDEc96E1MRxzz77rObOnaulS5dq/PjxWrJkiaZNm6YtW7YoIyOj2fEffPCBLr30Ui1atEgXXHCBnnrqKc2YMUOffvqphg0bFoAn6Bq7DpVr475i2W2GzhuWFejmwA8cUTb17xmv/j3jm71mmqaKKmpV5zYVZTMUZTcUZbMpym7IblihHAhn8c4oTRqSoUlDrP/um6ap/OIqfbm/RJvzS3x+iGWqhc+Y27fbez/f+9t3rZaPb9/1W9JiO7u4Pe29fktntPa8gWqrv/4e+e9345/rt9z+ln8JLbapG343ns/9PP+3a/jeaPr9MfsbF+wbzjVauJbv19XSvRq18XjtUQvntnhek2s3/X/88c5puHfbnqNd7WnxZ9eGn01Hn8NHexuu0cbfZQefo7Vjjv0r1mJbOvUcrf9sWv571XCT47Wnzc/Rys9GhpQS69BJ2Yl+/5DeMAydMbinzhjcU5JUVetSfnGV9h2t1P6iSu2r3zxf5xdVqcbl1v7iKu0vrpJ01Hut6cN7+bVtgRTwSvr48eN16qmn6qGHHpIkud1u5eTk6Gc/+5luvfXWZsfPnDlT5eXlevnll737TjvtNI0cOVJLly497v1CpZL+8NvbdM/rW3Tm4J76+zXjA90cAAAAAAgot9vUobLqpuH9aKUOldXooctG+f1DBH8KmUp6TU2N1q1bp3nz5nn32Ww2TZkyRWvWrPF5zpo1azR37twm+6ZNm6aVK1f6PL66ulrV1Q3dJkpKSjrf8G6QnRyjk3slhdUnQgAAAADQUTaboYykGGUkxWhU39RAN6fLBDSkHzp0SC6XS5mZmU32Z2Zm6quvvvJ5TkFBgc/jCwoKfB6/aNEiLVy40D8N7kYXju6jC0f3abF7GwAAAAAg/ITetHjtNG/ePBUXF3u3PXv2BLpJ7RLMXTYAAAAAAP4V0Ep6z549ZbfbVVhY2GR/YWGhsrJ8T5aWlZXVruOdTqecTqd/GgwAAAAAQBcKaCXd4XBozJgxysvL8+5zu93Ky8vThAm+1wWfMGFCk+Ml6c0332zxeAAAAAAAQkXAl2CbO3euZs2apbFjx2rcuHFasmSJysvLNXv2bEnSlVdeqd69e2vRokWSpBtvvFFnnXWW7rvvPp1//vl65pln9Mknn+ixxx4L5GMAAAAAANBpAQ/pM2fO1MGDBzV//nwVFBRo5MiReu2117yTw+3evVs2W0PB//TTT9dTTz2l3/3ud/rNb36jwYMHa+XKlWG1RjoAAAAAIDIFfJ307hYq66QDAAAAAMJDe3Jo2M/uDgAAAABAqCCkAwAAAAAQJAjpAAAAAAAECUI6AAAAAABBgpAOAAAAAECQIKQDAAAAABAkCOkAAAAAAAQJQjoAAAAAAEGCkA4AAAAAQJAgpAMAAAAAECQI6QAAAAAABAlCOgAAAAAAQSIq0A3obqZpSpJKSkoC3BIAAAAAQCTw5E9PHm1NxIX00tJSSVJOTk6AWwIAAAAAiCSlpaVKTk5u9RjDbEuUDyNut1v79+9XYmKiDMMIdHMQQUpKSpSTk6M9e/YoKSkp0M0Bgh7vGaDteL8A7cN7Bt3NNE2VlpaqV69estlaH3UecZV0m82mPn36BLoZiGBJSUn8zwBoB94zQNvxfgHah/cMutPxKugeTBwHAAAAAECQIKQDAAAAABAkCOlAN3E6nVqwYIGcTmegmwKEBN4zQNvxfgHah/cMglnETRwHAAAAAECwopIOAAAAAECQIKQDAAAAABAkCOkAAAAAAAQJQjoAAAAAAEGCkA50wrvvvqvp06erV69eMgxDK1eubPK6aZqaP3++srOzFRsbqylTpujrr7/2vr5r1y5dc8016t+/v2JjYzVw4EAtWLBANTU13fwkQPfo7Humserqao0cOVKGYWj9+vVd33ggAPz1nnnllVc0fvx4xcbGKjU1VTNmzOieBwC6mT/eM1u3btX3vvc99ezZU0lJSTrjjDP09ttvd+NTINIR0oFOKC8v14gRI/Twww/7fH3x4sX605/+pKVLl+qjjz5SfHy8pk2bpqqqKknSV199JbfbrUcffVRffPGFHnjgAS1dulS/+c1vuvMxgG7T2fdMY7/+9a/Vq1evrm4yEFD+eM+88MILuuKKKzR79mxt2LBB77//vi677LLuegSgW/njPXPBBReorq5Ob731ltatW6cRI0boggsuUEFBQXc9BiKdCcAvJJn//ve/vd+73W4zKyvLvOeee7z7ioqKTKfTaT799NMtXmfx4sVm//79u7KpQFDozHvm1VdfNU888UTziy++MCWZn332WTe1Ggicjrxnamtrzd69e5t/+9vfuru5QMB15D1z8OBBU5L57rvveo8pKSkxJZlvvvlmt7UdkY1KOtBFdu7cqYKCAk2ZMsW7Lzk5WePHj9eaNWtaPK+4uFhpaWnd0UQgqLT1PVNYWKjrrrtOf//73xUXFxeIpgJBoS3vmU8//VT79u2TzWbTqFGjlJ2drfPOO0+bNm0KVLOBgGnLe6ZHjx4aMmSIVqxYofLyctXV1enRRx9VRkaGxowZE6imI8IQ0oEu4ukSlZmZ2WR/ZmZmi92ltm3bpj//+c/6v//7vy5vHxBs2vKeMU1TV111la6//nqNHTu229sIBJO2vGd27NghSbr99tv1u9/9Ti+//LJSU1M1adIkHTlypHsbDARYW94zhmFo1apV+uyzz5SYmKiYmBjdf//9eu2115SamtrtbUZkIqQDQWLfvn0699xzdfHFF+u6664LdHOAoPTnP/9ZpaWlmjdvXqCbAoQEt9stSfrtb3+riy66SGPGjNGyZctkGIaee+65ALcOCD6maeqGG25QRkaG3nvvPX388ceaMWOGpk+frvz8/EA3DxGCkA50kaysLElW19zGCgsLva957N+/X5MnT9bpp5+uxx57rNvaCASTtrxn3nrrLa1Zs0ZOp1NRUVEaNGiQJGns2LGaNWtW9zYYCLC2vGeys7MlSUOHDvW+7nQ6NWDAAO3evbubWgoEh7b+f+bll1/WM888o4kTJ2r06NH6y1/+otjYWD355JPd3mZEJkI60EX69++vrKws5eXlefeVlJToo48+0oQJE7z79u3bp0mTJnmrGzYbb0tEpra8Z/70pz9pw4YNWr9+vdavX69XX31VkvTss8/qzjvvDEi7gUBpy3tmzJgxcjqd2rJli/eY2tpa7dq1S/369ev2NgOB1Jb3TEVFhSQ1+/eYzWbz9kwBulpUoBsAhLKysjJt27bN+/3OnTu1fv16paWlqW/fvrrpppv0hz/8QYMHD1b//v112223qVevXt71aT0BvV+/frr33nt18OBB77WOrbYD4aCz75m+ffs2uV5CQoIkaeDAgerTp0+3PQfQXTr7nklKStL111+vBQsWKCcnR/369dM999wjSbr44osD8UhAl+rse2bChAlKTU3VrFmzNH/+fMXGxuqvf/2rdu7cqfPPPz9AT4WIE+jp5YFQ9vbbb5uSmm2zZs0yTdNa6uO2224zMzMzTafTaZ5zzjnmli1bvOcvW7bM5/m8NRGuOvueOdbOnTtZgg1hzR/vmZqaGvMXv/iFmZGRYSYmJppTpkwxN23aFICnAbqeP94za9euNb/97W+baWlpZmJionnaaaeZr776agCeBpHKME3T7KbPAwAAAAAAQCsY/AoAAAAAQJAgpAMAAAAAECQI6QAAAAAABAlCOgAAAAAAQYKQDgAAAABAkCCkAwAAAAAQJAjpAAAAAAAECUI6AAAAAABBgpAOAEAYMAxDK1euDGgbli9frpSUlIDd//HHH9e3v/3tTl1j165dMgxD69evb/M5S5cu1fTp0zt1XwAAPAjpAAA0ctVVV8kwDBmGoejoaPXv31+//vWvVVVV1eZrrF69WoZhqKioyO/tu/322zVy5Mhm+/Pz83Xeeef5/X4ekyZN8v5cfG2TJk3SzJkztXXr1i5rQ2uqqqp02223acGCBZ26Tk5OjvLz8zVs2LA2n3P11Vfr008/1XvvvdepewMAIElRgW4AAADB5txzz9WyZctUW1urdevWadasWTIMQ3fffXegm9airKysLr3+v/71L9XU1EiS9uzZo3HjxmnVqlU6+eSTJUkOh0OxsbGKjY3t0na05Pnnn1dSUpImTpzYqevY7fZ2/ywdDocuu+wy/elPf9KZZ57ZqfsDAEAlHQCAYzidTmVlZSknJ0czZszQlClT9Oabb3pfd7vdWrRokfr376/Y2FiNGDFCzz//vCSru/TkyZMlSampqTIMQ1ddddVxz5MaKvB5eXkaO3as4uLidPrpp2vLli2SrO7kCxcu1IYNG7wV7OXLl0tq3t1948aNOvvssxUbG6sePXroxz/+scrKyryvX3XVVZoxY4buvfdeZWdnq0ePHrrhhhtUW1vr82eSlpamrKwsZWVlKT09XZLUo0cP7760tLRm3d09Vf8nnnhCffv2VUJCgn7605/K5XJp8eLFysrKUkZGhu68884m9yoqKtK1116r9PR0JSUl6eyzz9aGDRta/Z0988wzzbqce57xrrvuUmZmplJSUnTHHXeorq5Ov/rVr5SWlqY+ffpo2bJl3nOO7e5+vN+Jx/Tp0/Wf//xHlZWVrbYTAIDjIaQDANCKTZs26YMPPpDD4fDuW7RokVasWKGlS5fqiy++0M0336wf/ehHeuedd5STk6MXXnhBkrRlyxbl5+frwQcfPO55jf32t7/Vfffdp08++URRUVG6+uqrJUkzZ87UL37xC5188snKz89Xfn6+Zs6c2azN5eXlmjZtmlJTU7V27Vo999xzWrVqlebMmdPkuLffflvbt2/X22+/rSeffFLLly/3hn5/2b59u/773//qtdde09NPP63HH39c559/vvbu3at33nlHd999t373u9/po48+8p5z8cUX68CBA/rvf/+rdevWafTo0TrnnHN05MiRFu/zv//9T2PHjm22/6233tL+/fv17rvv6v7779eCBQt0wQUXKDU1VR999JGuv/56/d///Z/27t3b6nO09DvxGDt2rOrq6po8BwAAHWICAACvWbNmmXa73YyPjzedTqcpybTZbObzzz9vmqZpVlVVmXFxceYHH3zQ5LxrrrnGvPTSS03TNM23337blGQePXrU+3p7zlu1apX39VdeecWUZFZWVpqmaZoLFiwwR4wY0azdksx///vfpmma5mOPPWampqaaZWVlTa5js9nMgoIC73P269fPrKur8x5z8cUXmzNnzjzuz2jnzp2mJPOzzz5rsn/ZsmVmcnKy9/sFCxaYcXFxZklJiXfftGnTzNzcXNPlcnn3DRkyxFy0aJFpmqb53nvvmUlJSWZVVVWTaw8cONB89NFHfbbn6NGjpiTz3XffbbLf84zH3uvMM8/0fl9XV2fGx8ebTz/9tM9na8vvxCM1NdVcvny5zzYCANBWjEkHAOAYkydP1iOPPKLy8nI98MADioqK0kUXXSRJ2rZtmyoqKjR16tQm59TU1GjUqFEtXrM95w0fPtz7dXZ2tiTpwIED6tu3b5vav3nzZo0YMULx8fHefRMnTpTb7daWLVuUmZkpSTr55JNlt9ub3Gvjxo1tukdb5ebmKjEx0ft9Zmam7Ha7bDZbk30HDhyQJG3YsEFlZWXq0aNHk+tUVlZq+/btPu/h6WIeExPT7LWTTz652b0aTwpnt9vVo0cP7/1b0pbfSWxsrCoqKlq9DgAAx0NIBwDgGPHx8Ro0aJAk6YknntCIESP0+OOP65prrvGO637llVfUu3fvJuc5nc4Wr9me86Kjo71fG4YhyRrP7m+N7+O5l7/v4+serd23rKxM2dnZWr16dbNrtbS8W48ePWQYho4ePdrp+7flOVr6nRw5csQ7Xh8AgI4ipAMA0Aqbzabf/OY3mjt3ri677DINHTpUTqdTu3fv1llnneXzHM/4dZfL5d3XlvPawuFwNLmuLyeddJKWL1+u8vJybzX9/fffl81m05AhQzp87+4wevRoFRQUKCoqSrm5uW06x+FwaOjQofryyy87vU56R23fvl1VVVWt9qYAAKAtmDgOAIDjuPjii2W32/Xwww8rMTFRv/zlL3XzzTfrySef1Pbt2/Xpp5/qz3/+s5588klJUr9+/WQYhl5++WUdPHhQZWVlbTqvLXJzc7Vz506tX79ehw4dUnV1dbNjLr/8csXExGjWrFnatGmT3n77bf3sZz/TFVdc4e3qHqymTJmiCRMmaMaMGXrjjTe0a9cuffDBB/rtb3+rTz75pMXzpk2bpv/973/d2NKm3nvvPQ0YMEADBw4MWBsAAOGBkA4AwHFERUVpzpw5Wrx4scrLy/X73/9et912mxYtWqSTTjpJ5557rl555RX1799fktS7d28tXLhQt956qzIzM72zqh/vvLa46KKLdO6552ry5MlKT0/X008/3eyYuLg4vf766zpy5IhOPfVU/eAHP9A555yjhx56yD8/kC5kGIZeffVVfetb39Ls2bN1wgkn6Ic//KG++eabVj9guOaaa/Tqq6+quLi4G1vb4Omnn9Z1110XkHsDAMKLYZqmGehGAAAAdNbFF1+s0aNHa968ed163y+++EJnn322tm7dquTk5G69NwAg/FBJBwAAYeGee+5RQkJCt983Pz9fK1asIKADAPyCSjoAAAAAAEGCSjoAAAAAAEGCkA4AAAAAQJAgpAMAAAAAECQI6QAAAAAABAlCOgAAAAAAQYKQDgAAAABAkCCkAwAAAAAQJAjpAAAAAAAECUI6AAAAAABB4v8D49yq5+CI1bIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(12, 6))\n", + "\n", + "ax.plot(merged[\"rt\"], merged[\"smoothed_intensity\"], label=\"Smoothed Intensity\")\n", + "ax.plot(merged[\"rt\"], merged[\"intensity\"], label=\"Elution Profile\")\n", + "ax.set_xlabel(\"Retention Time (min)\")\n", + "ax.set_ylabel(\"Intensity\")\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c14110aa", + "metadata": {}, + "source": [ + "# 2. Ions co-elution (MS1 level)" + ] + }, + { + "cell_type": "markdown", + "id": "bbfebeed", + "metadata": {}, + "source": [ + "## 2.1 Pearson correlations of the smoothed elution profile of the “best” fragment with the MS1 elution profiles extracted using the base mass accuracy as well as 0.45 and 0.2 of the base mass accuracy" + ] + }, + { + "cell_type": "markdown", + "id": "322bc530", + "metadata": {}, + "source": [ + "### TO DISCUSS: difference with previous? unfragmented precursor m/z and MS1 profile?" + ] + }, + { + "cell_type": "code", + "execution_count": 802, + "id": "1219e889", + "metadata": {}, + "outputs": [], + "source": [ + "def corr_precursor_best_fragment_ms1_acc(\n", + " precursor, precursor_fragments, ms1_dict, ms1_acc_factors=[1.0, 0.45, 0.2]\n", + "):\n", + " # Calculate the correlation for each MS1 accuracy factor\n", + " corr_results = np.array([])\n", + " for acc in ms1_acc_factors:\n", + " corr, _ = corr_precursor_best_fragment(\n", + " precursor, precursor_fragments, ms1_dict, acc\n", + " )\n", + " corr_results = np.append(corr_results, corr)\n", + " return corr_results, elution_profile" + ] + }, + { + "cell_type": "code", + "execution_count": 803, + "id": "30e71dc4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.4736208 , 0.40233562, 0.36550375])" + ] + }, + "execution_count": 803, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_results, elution_profile = corr_precursor_best_fragment_ms1_acc(\n", + " precursor, precursor_fragments, ms1_dict\n", + ")\n", + "\n", + "corr_results" + ] + }, + { + "cell_type": "markdown", + "id": "90498af9", + "metadata": {}, + "source": [ + "# 3. Isotopologue ions co-elution " + ] + }, + { + "cell_type": "markdown", + "id": "73265c44", + "metadata": {}, + "source": [ + "## 3.1 Pearson correlations of the smoothed elution profile of the “best” fragment with the MS1 elution profiles corresponding to the peptide featuring 1, 2 or 3 C13" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e1a42c25", + "metadata": {}, + "outputs": [], + "source": [ + "def corr_best_fragment_c13_isotopes(\n", + " precursor,\n", + " precursor_fragments,\n", + " ms1_dict,\n", + " c13_list=[1, 2, 3],\n", + " isotope_mass=1.00335,\n", + " acc_factor=1.0,\n", + " use_all_rt=False,\n", + " rt_tolerance=5.0,\n", + "):\n", + " \"\"\"\n", + " Calculate Pearson correlations between the smoothed elution profile of the \"best\"\n", + " fragment and MS1 elution profiles corresponding to the peptide featuring 1, 2, or 3 C13.\n", + "\n", + " Parameters\n", + " ----------\n", + " precursor : pd.DataFrame\n", + " Precursor information containing calcmass and charge\n", + " precursor_fragments : pd.DataFrame\n", + " Fragment data for correlation calculation\n", + " ms1_dict : dict\n", + " MS1 data dictionary\n", + " c13_list : list, default=[1, 2, 3]\n", + " List of C13 isotope numbers to consider\n", + " isotope_mass : float, default=1.00335\n", + " Mass difference for C13 isotope\n", + " acc_factor : float, default=1.0\n", + " Accuracy factor for mass tolerance\n", + " use_all_rt : bool, default=False\n", + " Whether to use all RT points or only overlapping ones\n", + "\n", + " Returns\n", + " -------\n", + " correlations : np.ndarray\n", + " Array of correlations for each C13 isotope\n", + " \"\"\"\n", + " # Get the smoothed elution profile of the \"best\" fragment\n", + " _, best_trace, smoothed_best_trace, _ = pearson_corr_top_n(\n", + " precursor_fragments, use_all_rt=use_all_rt\n", + " )\n", + "\n", + " if best_trace is None or len(best_trace) == 0:\n", + " return np.full(len(c13_list), np.nan)\n", + "\n", + " # Create DataFrame with smoothed best trace\n", + " smoothed_best_df = pd.DataFrame(\n", + " {\"rt\": best_trace.index, \"smoothed_intensity\": smoothed_best_trace}\n", + " )\n", + "\n", + " # Calculate base precursor m/z\n", + " base_precursor_mz = precursor[\"calcmass\"].iloc[0] / precursor[\"charge\"].iloc[0]\n", + "\n", + " correlations = []\n", + "\n", + " for c13_count in c13_list:\n", + " # Calculate m/z for the C13 isotope\n", + " isotope_mz = base_precursor_mz + (\n", + " c13_count * isotope_mass / precursor[\"charge\"].iloc[0]\n", + " )\n", + "\n", + " # Build elution profile for this isotope\n", + " isotope_elution_profile = build_elution_profile(\n", + " isotope_mz, ms1_dict, acc_factor=acc_factor\n", + " )\n", + "\n", + " if not isotope_elution_profile:\n", + " correlations.append(np.nan)\n", + " continue\n", + "\n", + " # Convert to DataFrame\n", + " isotope_df = pd.DataFrame(\n", + " list(isotope_elution_profile.items()), columns=[\"rt\", \"isotope_intensity\"]\n", + " )\n", + "\n", + " # Merge with smoothed best trace using nearest RT matching\n", + " merged = pd.merge_asof(\n", + " smoothed_best_df.sort_values(\"rt\"),\n", + " isotope_df.sort_values(\"rt\"),\n", + " on=\"rt\",\n", + " direction=\"nearest\",\n", + " tolerance=rt_tolerance,\n", + " )\n", + "\n", + " # Remove rows where either intensity is NaN\n", + " merged_clean = merged.dropna(subset=[\"smoothed_intensity\", \"isotope_intensity\"])\n", + "\n", + " if len(merged_clean) < 2:\n", + " correlations.append(np.nan)\n", + " continue\n", + "\n", + " # Calculate Pearson correlation\n", + " corr = merged_clean[\"smoothed_intensity\"].corr(\n", + " merged_clean[\"isotope_intensity\"]\n", + " )\n", + " correlations.append(corr if not pd.isna(corr) else 0.0)\n", + "\n", + " return np.array(correlations)" + ] + }, + { + "cell_type": "code", + "execution_count": 844, + "id": "8d251a08", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.1810811 , 0.98980408, 0.99502015])" + ] + }, + "execution_count": 844, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Test the C13 isotope correlation function\n", + "c13_correlations = corr_best_fragment_c13_isotopes(\n", + " precursor, precursor_fragments, ms1_dict\n", + ")\n", + "c13_correlations" + ] + }, + { + "cell_type": "markdown", + "id": "c9c2c290", + "metadata": {}, + "source": [ + "## 3.2 Sum of Pearson correlations of elution profiles corresponding to the top 6 fragments featuring one C13 with the smoothed elution profile of the “best” fragment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2cea765d", + "metadata": {}, + "outputs": [], + "source": [ + "def isotope_pearson_frag(\n", + " precursor_fragments, precursor, isotope_mass=1.00335, c13_list=[1]\n", + "): # TODO: how to configure c13_list from config\n", + " # Create an array to hold the correlations\n", + " correlations = np.array([])\n", + "\n", + " # Get smoothed best_fragment trace\n", + " _, best_trace, smoothed_best_trace, _ = pearson_corr_top_n(\n", + " precursor_fragments, n=12\n", + " )\n", + " smoothed_best_df = pd.DataFrame(\n", + " {\"rt\": best_trace.index, \"smoothed_intensity\": smoothed_best_trace}\n", + " )\n", + "\n", + " for c13 in c13_list:\n", + " isotope_error = c13 * isotope_mass\n", + " # Filter the psms identified at the given isotope error\n", + " precursor_filtered = precursor[precursor[\"isotope_error\"] == isotope_error][\n", + " \"psm_id\"\n", + " ].values\n", + "\n", + " precursor_fragments_filtered = precursor_fragments[\n", + " precursor_fragments[\"psm_id\"].isin(precursor_filtered)\n", + " ]\n", + "\n", + " # Calculate correlation between smoothed_best_df and precursor_fragments_filtered\n", + " merged = smoothed_best_df.merge(\n", + " precursor_fragments_filtered[[\"rt\", \"fragment_intensity\"]],\n", + " on=\"rt\",\n", + " suffixes=(\"\", \"_frag\"),\n", + " )\n", + " corr = merged[\"smoothed_intensity\"].corr(merged[\"fragment_intensity\"])\n", + " correlations = np.append(correlations, corr)\n", + "\n", + " return correlations" + ] + }, + { + "cell_type": "code", + "execution_count": 836, + "id": "e78e1a10", + "metadata": {}, + "outputs": [], + "source": [ + "correlations = isotope_pearson_frag(precursor_fragments, precursor)" + ] + }, + { + "cell_type": "code", + "execution_count": 837, + "id": "0bf9d148", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.4076935])" + ] + }, + "execution_count": 837, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "correlations" + ] + }, + { + "cell_type": "markdown", + "id": "e08210d4", + "metadata": {}, + "source": [ + "## 3.3 Pearson correlations of elution profiles corresponding to the top 6 fragments, from masses of which (C13 - C12) mass was subtracted, with the smoothed elution profile of the “best” fragment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d71f8b8", + "metadata": {}, + "outputs": [], + "source": [ + "def corr_top6_fragments_c13_subtracted(\n", + " precursor_fragments, ms2dict, isotope_mass=1.00335, top_n=6, use_all_rt=False\n", + "):\n", + " \"\"\"\n", + " Calculate Pearson correlations between elution profiles of the top 6 fragments\n", + " (with C13 mass subtracted from their masses) and the smoothed elution profile\n", + " of the \"best\" fragment.\n", + "\n", + " This feature looks for fragment elution profiles where the fragment masses\n", + " have been shifted down by the C13 isotope mass difference.\n", + "\n", + " Parameters\n", + " ----------\n", + " precursor_fragments : pd.DataFrame\n", + " Fragment data containing fragment information\n", + " ms2dict : dict\n", + " MS2 spectral data dictionary\n", + " isotope_mass : float, default=1.00335\n", + " Mass difference for C13 isotope (C13 - C12)\n", + " top_n : int, default=6\n", + " Number of top fragments to consider\n", + " use_all_rt : bool, default=False\n", + " Whether to use all RT points or only overlapping ones\n", + "\n", + " Returns\n", + " -------\n", + " correlations : np.ndarray\n", + " Array of correlations for top 6 fragments with C13 mass subtracted\n", + " \"\"\"\n", + " # Get the smoothed elution profile of the \"best\" fragment\n", + " _, best_trace, smoothed_best_trace, _ = pearson_corr_top_n(\n", + " precursor_fragments, use_all_rt=use_all_rt\n", + " )\n", + "\n", + " if best_trace is None or len(best_trace) == 0:\n", + " return np.full(top_n, np.nan)\n", + "\n", + " # Create DataFrame with smoothed best trace\n", + " smoothed_best_df = pd.DataFrame(\n", + " {\"rt\": best_trace.index, \"smoothed_intensity\": smoothed_best_trace}\n", + " )\n", + "\n", + " # Get top n fragments by intensity\n", + " top_fragments = find_top_n_fragments(precursor_fragments, top_n)\n", + "\n", + " correlations = []\n", + "\n", + " for frag_name in top_fragments:\n", + " # Get fragment data for this specific fragment\n", + " frag_data = precursor_fragments[\n", + " precursor_fragments[\"fragment_names\"] == frag_name\n", + " ]\n", + "\n", + " if frag_data.empty:\n", + " correlations.append(np.nan)\n", + " continue\n", + "\n", + " # Calculate the target m/z with C13 mass subtracted\n", + " original_mz = frag_data[\"fragment_mz_calculated\"].iloc[0]\n", + " charge = frag_data[\"fragment_charge\"].iloc[0]\n", + " c13_subtracted_mz = original_mz - (isotope_mass / charge)\n", + "\n", + " # Extract elution profile for the C13-subtracted m/z from MS2 data\n", + " c13_subtracted_profile = {}\n", + "\n", + " # Go through each RT point where this fragment was observed\n", + " for _, row in frag_data.iterrows():\n", + " rt = row[\"rt\"]\n", + " scan = row[\"scannr\"]\n", + "\n", + " # Look up the scan in ms2dict\n", + " scan_data = ms2dict.get(scan, {})\n", + " mzs = scan_data.get(\"mz\", [])\n", + " intensities = scan_data.get(\"intensity\", [])\n", + "\n", + " # Handle numpy arrays properly\n", + " if len(mzs) == 0 or len(intensities) == 0:\n", + " continue\n", + "\n", + " # Find the closest m/z to our C13-subtracted target\n", + " best_idx, best_val = search_sorted_tolerance_np(\n", + " mzs, c13_subtracted_mz, tol=13 # Use default fragment mass tolerance\n", + " )\n", + "\n", + " if best_idx is not None:\n", + " c13_subtracted_profile[rt] = intensities[best_idx]\n", + "\n", + " if not c13_subtracted_profile:\n", + " correlations.append(np.nan)\n", + " continue\n", + "\n", + " # Convert to DataFrame for correlation calculation\n", + " c13_df = pd.DataFrame(\n", + " list(c13_subtracted_profile.items()),\n", + " columns=[\"rt\", \"c13_subtracted_intensity\"],\n", + " )\n", + "\n", + " # Merge with smoothed best trace using nearest RT matching\n", + " merged = pd.merge_asof(\n", + " smoothed_best_df.sort_values(\"rt\"),\n", + " c13_df.sort_values(\"rt\"),\n", + " on=\"rt\",\n", + " direction=\"nearest\",\n", + " tolerance=5, # RT tolerance\n", + " )\n", + "\n", + " # Remove rows where either intensity is NaN\n", + " merged_clean = merged.dropna(\n", + " subset=[\"smoothed_intensity\", \"c13_subtracted_intensity\"]\n", + " )\n", + "\n", + " if len(merged_clean) < 2:\n", + " correlations.append(np.nan)\n", + " continue\n", + "\n", + " # Calculate Pearson correlation\n", + " corr = merged_clean[\"smoothed_intensity\"].corr(\n", + " merged_clean[\"c13_subtracted_intensity\"]\n", + " )\n", + " correlations.append(corr if not pd.isna(corr) else 0.0)\n", + "\n", + " # Pad with NaN if we have fewer fragments than requested\n", + " while len(correlations) < top_n:\n", + " correlations.append(np.nan)\n", + "\n", + " return np.array(correlations[:top_n])" + ] + }, + { + "cell_type": "code", + "execution_count": 850, + "id": "54214a54", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.98213745, 0.9864283 , 0.48697211, 0.9672019 , 0.99713056,\n", + " 0.99737305])" + ] + }, + "execution_count": 850, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Test the C13 mass subtracted correlation function\n", + "c13_subtracted_correlations = corr_top6_fragments_c13_subtracted(\n", + " precursor_fragments, ms2dict\n", + ")\n", + "\n", + "c13_subtracted_correlations" + ] + }, + { + "cell_type": "markdown", + "id": "e9ded18a", + "metadata": {}, + "source": [ + "## 3.4 Sum of these correlations " + ] + }, + { + "cell_type": "code", + "execution_count": 851, + "id": "19268f94", + "metadata": {}, + "outputs": [], + "source": [ + "def sum_corr_top6_fragments_c13_subtracted(correlations):\n", + " \"\"\"\n", + " Sum the Pearson correlations for the top 6 fragments with C13 mass subtracted.\n", + "\n", + " Parameters\n", + " ----------\n", + " correlations : np.ndarray\n", + " Array of correlations for top 6 fragments\n", + "\n", + " Returns\n", + " -------\n", + " float\n", + " Sum of correlations\n", + " \"\"\"\n", + " return np.nansum(correlations)" + ] + }, + { + "cell_type": "code", + "execution_count": 852, + "id": "db15f815", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(5.417243370576044)" + ] + }, + "execution_count": 852, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum_corr_top6_fragments_c13_subtracted(c13_subtracted_correlations)" + ] + }, + { + "cell_type": "markdown", + "id": "e101dc2f", + "metadata": {}, + "source": [ + "# 4. Total signal" + ] + }, + { + "cell_type": "markdown", + "id": "58423b5b", + "metadata": {}, + "source": [ + "## 4.1 Natural logarithm of the sum of the areas below the elution curves of the top 6 fragments multiplied by the respective correlations with the smoothed elution profile of the \"best\" fragment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bfc04605", + "metadata": {}, + "outputs": [], + "source": [ + "def nl_AUC_top_n(precursor_fragments, n=6, use_all_rt=False):\n", + " sorted_correlations, _, _, _ = pearson_corr_top_n(\n", + " precursor_fragments, n=n, use_all_rt=use_all_rt\n", + " )\n", + " aucs = []\n", + " for frag in find_top_n_fragments(precursor_fragments, n):\n", + " frag_df = precursor_fragments[precursor_fragments[\"fragment_names\"] == frag]\n", + " frag_df_sorted = frag_df.sort_values(\"rt\")\n", + " rt = frag_df_sorted[\"rt\"].to_numpy()\n", + " intensity = frag_df_sorted[\"fragment_intensity\"].to_numpy()\n", + " auc = np.trapz(intensity, rt)\n", + " aucs.append(auc)\n", + " aucs = np.array(aucs)\n", + " # Convert NaN to zero\n", + " corrs = np.nan_to_num(sorted_correlations, nan=0.0)\n", + " aucs = aucs[: len(corrs)] # Align lengths\n", + " weighted_aucs = aucs * corrs\n", + " total_weighted_auc = np.sum(weighted_aucs)\n", + " nl_total_weighted_auc = np.log(total_weighted_auc) if total_weighted_auc > 0 else 0\n", + " return nl_total_weighted_auc" + ] + }, + { + "cell_type": "code", + "execution_count": 345, + "id": "0fb817c8", + "metadata": {}, + "outputs": [], + "source": [ + "nl_total_weighted_auc = nl_AUC_top_n(precursor_fragments, n=6)" + ] + }, + { + "cell_type": "code", + "execution_count": 346, + "id": "7016642d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(15.595366663667184)" + ] + }, + "execution_count": 346, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nl_total_weighted_auc" + ] + }, + { + "cell_type": "markdown", + "id": "e494de35", + "metadata": {}, + "source": [ + "# 5. Measured relative fragment intensities" + ] + }, + { + "cell_type": "markdown", + "id": "7c18f2b9", + "metadata": {}, + "source": [ + "## 5.1 Cosine similarity measure (itself and to power 3) between the predicted and measured intensities of the top 6 fragments weighted by the squared values of the smoothed “best” fragment elution curve at the respective time points" + ] + }, + { + "cell_type": "code", + "execution_count": 352, + "id": "7badc88f", + "metadata": {}, + "outputs": [], + "source": [ + "precursor_preds = ms2pip_preds[\"GYINSLGALTGGQALQQAK/2\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d17230ce", + "metadata": {}, + "outputs": [], + "source": [ + "def cos_pred_obs_weighted(\n", + " precursor_fragments, precursor_preds, top_n=6, use_all_rt=False\n", + "):\n", + " \"\"\"\n", + " Weighted cosine similarity between predicted and observed fragment intensities,\n", + " averaged over RT with weights equal to b(t)^2 where b(t) is the smoothed\n", + " elution profile of the 'best' fragment.\n", + "\n", + " Parameters\n", + " ----------\n", + " precursor_fragments : DataFrame\n", + " Must contain columns:\n", + " ['fragment_type','fragment_ordinals','fragment_charge','fragment_intensity',\n", + " 'rt','scannr','fragment_names', ...]\n", + " Each row corresponds to one fragment at one time point (scan/RT).\n", + " precursor_preds : dict\n", + " Mapping like {\"b1/1\": float, \"y7/2\": float, ...} with predicted (relative) intensities.\n", + " top_n : int\n", + " Number of top fragments to use (default 6).\n", + "\n", + " Returns\n", + " -------\n", + " S : float\n", + " Weighted cosine similarity in [0, 1].\n", + " S_cubed : float\n", + " Cubic variant S**3.\n", + " cosine_by_scan : np.ndarray, shape (T,)\n", + " Per-scan cosine similarity values before weighting.\n", + " top_fragments : list of str\n", + " Fragment name keys used (length <= top_n).\n", + " scan_index : np.ndarray, shape (T,)\n", + " Scan indices (or RTs) corresponding to cosine_by_scan and weights.\n", + " \"\"\"\n", + " # --- 1) Select top-N fragment names using your helper (by area or max-intensity as implemented there)\n", + " used_fragments = find_top_n_fragments(precursor_fragments, top_n=top_n)\n", + "\n", + " # --- obtain best trace (Series indexed by rt) and smoothed trace (ndarray) ---\n", + " _, best_trace, smoothed_best_trace, _ = pearson_corr_top_n(\n", + " precursor_fragments, n=max(top_n, 12), use_all_rt=use_all_rt\n", + " )\n", + "\n", + " if best_trace is None or len(best_trace) == 0:\n", + " return 0.0, 0.0, np.array([]), [], np.array([])\n", + "\n", + " # Align everything to the RT grid of the best fragment\n", + " rt_index = best_trace.index.to_numpy()\n", + " b = np.asarray(smoothed_best_trace, dtype=np.float64)\n", + " if b.shape[0] != rt_index.shape[0]:\n", + " raise ValueError(\"Best trace and RT index length mismatch.\")\n", + "\n", + " # --- pivot to (rt × fragment) and align to best_trace.index ---\n", + " piv = (\n", + " precursor_fragments.pivot_table(\n", + " index=\"rt\",\n", + " columns=\"fragment_names\",\n", + " values=\"fragment_intensity\",\n", + " aggfunc=\"sum\",\n", + " )\n", + " .reindex(rt_index)\n", + " .fillna(0.0)\n", + " )\n", + "\n", + " # restrict to the chosen fragments, in that order\n", + " piv = piv.reindex(columns=used_fragments).fillna(0.0)\n", + "\n", + " # measured matrix (K x T)\n", + " measured = piv.to_numpy(dtype=np.float64).T # shape (K, T)\n", + " K, T = measured.shape\n", + " if T == 0 or K == 0:\n", + " return 0.0, 0.0, np.zeros(0), used_fragments, rt_index\n", + "\n", + " # --- build predicted vector for the same K fragments ---\n", + " # # helper to construct keys like \"b3/1\"\n", + " # def frag_key(df_rows: pd.DataFrame) -> str:\n", + " # r = df_rows.iloc[0]\n", + " # return f\"{r['fragment_type']}{int(r['fragment_ordinals'])}/{int(r['fragment_charge'])}\"\n", + "\n", + " predicted_vals: List[float] = []\n", + " # we need any row of each fragment to read its type/ordinal/charge\n", + " meta = (\n", + " precursor_fragments[precursor_fragments[\"fragment_names\"].isin(used_fragments)]\n", + " .sort_values(\"rt\")\n", + " .drop_duplicates(subset=[\"fragment_names\"], keep=\"first\")\n", + " .set_index(\"fragment_names\")\n", + " )\n", + "\n", + " for frag_name in used_fragments:\n", + " if frag_name in meta.index:\n", + " key = f\"{meta.loc[frag_name, 'fragment_type']}{int(meta.loc[frag_name, 'fragment_ordinals'])}/{int(meta.loc[frag_name, 'fragment_charge'])}\"\n", + " predicted_vals.append(float(precursor_preds.get(key, 0.0)))\n", + " else:\n", + " predicted_vals.append(0.0)\n", + "\n", + " predicted = np.asarray(predicted_vals, dtype=np.float64) # shape (K,)\n", + "\n", + " # guard against all-zero predictions (or degenerate observations)\n", + " pred_norm = float(np.linalg.norm(predicted))\n", + " if pred_norm == 0.0:\n", + " return 0.0, 0.0, np.zeros(T), used_fragments, rt_index\n", + "\n", + " # --- cosine per rt ---\n", + " cosine_by_rt = np.zeros(T, dtype=np.float64)\n", + " for j in range(T):\n", + " obs = measured[:, j]\n", + " obs_norm = float(np.linalg.norm(obs))\n", + " if obs_norm == 0.0:\n", + " cosine_by_rt[j] = 0.0\n", + " else:\n", + " cosine_by_rt[j] = float(np.dot(obs, predicted) / (obs_norm * pred_norm))\n", + "\n", + " # numerical safety\n", + " np.clip(cosine_by_rt, 0.0, 1.0, out=cosine_by_rt)\n", + "\n", + " # --- weighted average with b(t)^2 ---\n", + " w = b**2\n", + " w_sum = float(w.sum())\n", + " if w_sum == 0.0:\n", + " return 0.0, 0.0, np.zeros(T), used_fragments, rt_index\n", + "\n", + " S = float(np.sum(w * cosine_by_rt) / w_sum)\n", + " S_cubed = S**3\n", + "\n", + " results = np.array([S, S_cubed])\n", + "\n", + " return results" + ] + }, + { + "cell_type": "code", + "execution_count": 411, + "id": "b610f3a8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.99517575, 0.98559697])" + ] + }, + "execution_count": 411, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cos_pred_obs_weighted(precursor_fragments, precursor_preds)" + ] + }, + { + "cell_type": "markdown", + "id": "dbd12699", + "metadata": {}, + "source": [ + "# 5.2 Relative intensities of the top 6 fragments (6 scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 420, + "id": "422aa459", + "metadata": {}, + "outputs": [], + "source": [ + "def rel_int_top_6(precursor_fragments):\n", + " top_6 = find_top_n_fragments(precursor_fragments, top_n=6)\n", + " top_6_int = [\n", + " precursor_fragments[precursor_fragments[\"fragment_names\"] == frag][\n", + " \"fragment_intensity\"\n", + " ].max()\n", + " for frag in top_6\n", + " ]\n", + " rel_top_6_int = (\n", + " top_6_int / np.max(top_6_int) if np.max(top_6_int) > 0 else top_6_int\n", + " )\n", + " return rel_top_6_int" + ] + }, + { + "cell_type": "code", + "execution_count": 421, + "id": "96ba312c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1. , 0.62490544, 0.45100085, 0.44059697, 0.22379807,\n", + " 0.22329567])" + ] + }, + "execution_count": 421, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "top_6 = rel_int_top_6(precursor_fragments)\n", + "top_6" + ] + }, + { + "cell_type": "markdown", + "id": "4e9ccbde", + "metadata": {}, + "source": [ + "# 6. Mass Accuracy" + ] + }, + { + "cell_type": "markdown", + "id": "ce734ad5", + "metadata": {}, + "source": [ + "## 6.1 Measured mass accuracy of the top 6 fragments at the elution apex weighted by the Pearson correlations of the respective elution curves with the smoothed elution curve of the “best” fragment (6 scores)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7bbc89ee", + "metadata": {}, + "outputs": [], + "source": [ + "def mass_acc_weighted(precursor_fragments, use_all_rt=False):\n", + " apex_rt = precursor_fragments[\"rt\"].iloc[\n", + " precursor_fragments[\"fragment_intensity\"].idxmax()\n", + " ]\n", + " fragments_at_apex = precursor_fragments[precursor_fragments[\"rt\"] == apex_rt]\n", + " top_6_apex = fragments_at_apex.nlargest(6, \"fragment_intensity\")\n", + " # Filter out any fragments that are not in the top 6\n", + " filtered_fragments = precursor_fragments[\n", + " precursor_fragments[\"fragment_names\"].isin(top_6_apex[\"fragment_names\"])\n", + " ]\n", + " # Calculate the pearson corr of these fragments with the \"best\" fragment\n", + " _, _, _, correlations = pearson_corr_top_n(\n", + " precursor_fragments, n=6, use_all_rt=use_all_rt\n", + " )\n", + "\n", + " filtered_correlations = [\n", + " corr\n", + " for (frag, corr) in correlations.items()\n", + " if frag in filtered_fragments[\"fragment_names\"].values\n", + " ]\n", + "\n", + " mass_accs = top_6_apex[\"ppm_error\"].to_numpy()\n", + " weighted_mass_accs = mass_accs * filtered_correlations\n", + "\n", + " return weighted_mass_accs" + ] + }, + { + "cell_type": "code", + "execution_count": 458, + "id": "8fda4b20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.72168677, 0.48738242, 0.92806253, 0.8049175 , 0.07313659,\n", + " 0.75679727])" + ] + }, + "execution_count": 458, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weighted_mass_accs = mass_acc_weighted(precursor_fragments)\n", + "weighted_mass_accs" + ] + }, + { + "cell_type": "markdown", + "id": "49e29066", + "metadata": {}, + "source": [ + "# 7. Retention time" + ] + }, + { + "cell_type": "markdown", + "id": "9257e172", + "metadata": {}, + "source": [ + "## 7.1 Retention time apex" + ] + }, + { + "cell_type": "code", + "execution_count": 459, + "id": "04cf0a2f", + "metadata": {}, + "outputs": [], + "source": [ + "def RT_apex(precursor_fragments):\n", + " idx = precursor_fragments[\"fragment_intensity\"].idxmax()\n", + " apex_rt = precursor_fragments.loc[idx, \"rt\"]\n", + "\n", + " return apex_rt" + ] + }, + { + "cell_type": "code", + "execution_count": 460, + "id": "4c409e0c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(101.25427)" + ] + }, + "execution_count": 460, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "RT_apex(precursor_fragments)" + ] + }, + { + "cell_type": "markdown", + "id": "8423d806", + "metadata": {}, + "source": [ + "## 7.2 Square root of the absolute difference between measured and predicted retention times\n" + ] + }, + { + "cell_type": "code", + "execution_count": 470, + "id": "b109c3af", + "metadata": {}, + "outputs": [], + "source": [ + "def pred_obs_RT(precursor_fragments, deeplc_preds):\n", + " apex_rt = RT_apex(precursor_fragments)\n", + " precursor = precursor_fragments[\"peptide\"].iloc[0]\n", + " pred_rt = deeplc_preds[deeplc_preds[\"peptide\"] == precursor][\"rt_predictions\"].iloc[\n", + " 0\n", + " ]\n", + "\n", + " sqrt_diff = np.sqrt(abs(apex_rt - pred_rt))\n", + " return sqrt_diff" + ] + }, + { + "cell_type": "code", + "execution_count": 471, + "id": "5b592bcb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(1.6466044369778052)" + ] + }, + "execution_count": 471, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred_obs_RT(precursor_fragments=precursor_fragments, deeplc_preds=deeplc_preds)" + ] + }, + { + "cell_type": "markdown", + "id": "a516fa9a", + "metadata": {}, + "source": [ + "# 8. Elution profile shape" + ] + }, + { + "cell_type": "markdown", + "id": "7111ed30", + "metadata": {}, + "source": [ + "## 8.1 The chromatogram scanning window is split into five segments and relative total intensities are calculated for the “best” fragment for these segments (5 scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 480, + "id": "88921236", + "metadata": {}, + "outputs": [], + "source": [ + "def best_fr_scanning_split(precursor_fragments, splits=5):\n", + " best_fragment = find_best_fragment(precursor_fragments)\n", + " fragment_df = precursor_fragments[\n", + " precursor_fragments[\"fragment_names\"] == best_fragment\n", + " ]\n", + " rt_distribution_min = fragment_df[\"rt\"].min()\n", + " rt_distribution_max = fragment_df[\"rt\"].max()\n", + " rt_range = rt_distribution_max - rt_distribution_min\n", + "\n", + " rt_split = rt_range / splits\n", + "\n", + " split_intensities = []\n", + " for i in range(splits):\n", + " split_min = rt_distribution_min + i * rt_split\n", + " split_max = rt_distribution_min + (i + 1) * rt_split\n", + " split_intensities.append(\n", + " fragment_df[\n", + " (fragment_df[\"rt\"] >= split_min) & (fragment_df[\"rt\"] < split_max)\n", + " ][\"fragment_intensity\"].sum()\n", + " )\n", + "\n", + " # Normalize by total\n", + " total_intensity = sum(split_intensities)\n", + " if total_intensity > 0:\n", + " split_intensities = [x / total_intensity for x in split_intensities]\n", + " return split_intensities" + ] + }, + { + "cell_type": "code", + "execution_count": 481, + "id": "5b9844c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[np.float64(0.000269398041652294),\n", + " np.float64(0.0),\n", + " np.float64(0.0),\n", + " np.float64(0.9785524028765549),\n", + " np.float64(0.021178199081792838)]" + ] + }, + "execution_count": 481, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_fr_scanning_split(precursor_fragments)" + ] + }, + { + "cell_type": "markdown", + "id": "9709afc2", + "metadata": {}, + "source": [ + "# 9. Presence of other putative elution peaks" + ] + }, + { + "cell_type": "markdown", + "id": "5eb0ed2e", + "metadata": {}, + "source": [ + "## 9.1 Sum of the Pearson correlations between the elution profiles of the top 6 fragments and the smoothed elution profile of the “best” fragment, from which the maximum of such correlation sums for all putative elution peaks considered has been subtracted" + ] + }, + { + "cell_type": "markdown", + "id": "ed1dc278", + "metadata": {}, + "source": [ + "### TO DISCUSS? DOABLE?" + ] + }, + { + "cell_type": "markdown", + "id": "cb0116a4", + "metadata": {}, + "source": [ + "## 9.2 log(max(1.0, s) / (S + 1.0)), where s is the sum of the Pearson correlation between the elution profiles of the top 6 fragments and the smoothed elution profile of the “best” fragment, and S is the sum of such correlation sums for all putative elution peaks\n" + ] + }, + { + "cell_type": "markdown", + "id": "7598277f", + "metadata": {}, + "source": [ + "### TO DISCUSS? DOABLE?" + ] + }, + { + "cell_type": "markdown", + "id": "b28c766e", + "metadata": {}, + "source": [ + "# 10. Library charcteristics of the precursors" + ] + }, + { + "cell_type": "markdown", + "id": "9a2b3836", + "metadata": {}, + "source": [ + "## 10.1 Library intensities of the fragments 2 to 12 (fragments ordered by their reference library intensities) relative to the top fragment" + ] + }, + { + "cell_type": "code", + "execution_count": 494, + "id": "8737f031", + "metadata": {}, + "outputs": [], + "source": [ + "def relative_pred_intensities_top(precursor_fragments, ms2pip_preds, top_n=12):\n", + " precursor = precursor_fragments[\"peptide\"].iloc[0]\n", + " charge = precursor_fragments[\"charge\"].iloc[0]\n", + " proforma = precursor + \"/\" + str(charge)\n", + " pred_ints = ms2pip_preds[proforma]\n", + "\n", + " # Order predicted intensities\n", + " # Convert dict to pandas Series for sorting\n", + " pred_ints = pd.Series(pred_ints)\n", + " pred_ints = pred_ints.sort_values(ascending=False).head(top_n)\n", + "\n", + " # Normalize by top fragment intensity\n", + " top_intensity = pred_ints.max()\n", + " if top_intensity > 0:\n", + " pred_ints = pred_ints / top_intensity\n", + " # Remove first\n", + " pred_ints = pred_ints.iloc[1:].to_numpy()\n", + " return pred_ints" + ] + }, + { + "cell_type": "code", + "execution_count": 495, + "id": "1ef04fdb", + "metadata": {}, + "outputs": [], + "source": [ + "pred_ints = relative_pred_intensities_top(precursor_fragments, ms2pip_preds)" + ] + }, + { + "cell_type": "code", + "execution_count": 496, + "id": "c3a1a65a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.62446064, 0.5642461 , 0.53919506, 0.43795532, 0.32467735,\n", + " 0.25790223, 0.25758395, 0.23893973, 0.23744628, 0.21010783,\n", + " 0.20528834], dtype=float32)" + ] + }, + "execution_count": 496, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pred_ints" + ] + }, + { + "cell_type": "markdown", + "id": "4422a6c7", + "metadata": {}, + "source": [ + "## 10.2 Precursor m/z" + ] + }, + { + "cell_type": "code", + "execution_count": 499, + "id": "f0e37905", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(944.50035)" + ] + }, + "execution_count": 499, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precursor_mz = precursor[\"calcmass\"].iloc[0] / precursor[\"charge\"].iloc[0]\n", + "precursor_mz" + ] + }, + { + "cell_type": "markdown", + "id": "6ecac570", + "metadata": {}, + "source": [ + "## 10.3 Precursor charge" + ] + }, + { + "cell_type": "code", + "execution_count": 501, + "id": "ecbf3cc5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.int64(2)" + ] + }, + "execution_count": 501, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precursor_charge = precursor[\"charge\"].iloc[0]\n", + "precursor_charge" + ] + }, + { + "cell_type": "markdown", + "id": "d01de123", + "metadata": {}, + "source": [ + "## 10.4 Precursor length" + ] + }, + { + "cell_type": "code", + "execution_count": 504, + "id": "48696550", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "19" + ] + }, + "execution_count": 504, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precursor_length = len(precursor[\"stripped_peptide\"].iloc[0])\n", + "precursor_length" + ] + }, + { + "cell_type": "markdown", + "id": "58d72be8", + "metadata": {}, + "source": [ + "## 10.5 Number of library fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 514, + "id": "ac0c727f", + "metadata": {}, + "outputs": [], + "source": [ + "def n_lib_fragments(ms2pip_preds, precursor):\n", + " peptide = precursor[\"peptide\"].iloc[0]\n", + " charge = precursor[\"charge\"].iloc[0]\n", + " proforma = peptide + \"/\" + str(charge)\n", + "\n", + " pred_ints = ms2pip_preds[proforma]\n", + "\n", + " # Keep only entries with intensity > 0.\n", + " pred_ints = {k: v for k, v in pred_ints.items() if v > 0}\n", + " n_lib_fragments = len(pred_ints)\n", + " return n_lib_fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 515, + "id": "d5dde642", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 515, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n_lib_fragment = n_lib_fragments(ms2pip_preds, precursor)\n", + "n_lib_fragment" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/follow_diann_ids.ipynb b/notebook_helpers/follow_diann_ids.ipynb new file mode 100644 index 0000000..91a218e --- /dev/null +++ b/notebook_helpers/follow_diann_ids.ipynb @@ -0,0 +1,17365 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 272, + "id": "a8e62162", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import warnings\n", + "\n", + "from pandas.errors import SettingWithCopyWarning\n", + "\n", + "warnings.filterwarnings(\"ignore\", category=SettingWithCopyWarning)" + ] + }, + { + "cell_type": "code", + "execution_count": 282, + "id": "8566db74", + "metadata": {}, + "outputs": [], + "source": [ + "def follow_diann_ids(\n", + " diann_results,\n", + " df_psms,\n", + " q_value_column=\"spectrum_q\",\n", + " decoy_column=\"is_decoy\",\n", + " target_is_true=False,\n", + " peptide_level=False,\n", + "):\n", + "\n", + " MODIFICATION_MAPPING = {\n", + " \"(UniMod:4)\": \"\",\n", + " \"(UniMod:35)\": \"[Oxidation]\",\n", + " }\n", + " # Make a copy to avoid modifying the original dataframe\n", + " df_psms = df_psms.copy()\n", + "\n", + " for old, new in MODIFICATION_MAPPING.items():\n", + " diann_results[\"Modified.Sequence\"] = diann_results[\n", + " \"Modified.Sequence\"\n", + " ].str.replace(old, new, regex=False)\n", + " diann_results[\"Precursor.Id\"] = diann_results[\"Precursor.Id\"].str.replace(\n", + " old, new, regex=False\n", + " )\n", + "\n", + " if decoy_column == \"Label\":\n", + " # Decoy column mapping -1 to True, 1 to False\n", + " df_psms[decoy_column] = df_psms[decoy_column].map({-1.0: True, 1.0: False})\n", + "\n", + " # Ensure the decoy column is boolean\n", + " if df_psms[decoy_column].dtype != bool:\n", + " df_psms[decoy_column] = df_psms[decoy_column].astype(bool)\n", + "\n", + " if not target_is_true:\n", + " df_psms = df_psms[~df_psms[decoy_column]]\n", + " else:\n", + " df_psms = df_psms[df_psms[decoy_column]]\n", + "\n", + " if not peptide_level:\n", + " # change modification naming in diann\n", + " diann_results = diann_results.copy()\n", + "\n", + " try:\n", + " df_psms[\"PrecursorID\"] = df_psms[\"peptide\"] + df_psms[\"charge\"].astype(str)\n", + " except KeyError:\n", + " try:\n", + " df_psms[\"PrecursorID\"] = df_psms[\"Peptide\"] + df_psms[\"Charge\"].astype(\n", + " int\n", + " ).astype(str)\n", + " except KeyError:\n", + " df_psms[\"PrecursorID\"] = df_psms[\"Peptide\"] + df_psms[\"charge\"].astype(\n", + " int\n", + " ).astype(str)\n", + "\n", + " df_psms_passing = df_psms[(df_psms[q_value_column] <= 0.01)]\n", + "\n", + " if not peptide_level:\n", + " psm_set = set(df_psms[\"PrecursorID\"])\n", + " psm_passing_set = set(df_psms_passing[\"PrecursorID\"])\n", + " diann_set = set(diann_results[\"Precursor.Id\"])\n", + " else:\n", + " psm_set = set(df_psms[\"peptide\"])\n", + " psm_passing_set = set(df_psms_passing[\"peptide\"])\n", + " diann_set = set(diann_results[\"Modified.Sequence\"])\n", + "\n", + " common_ids = psm_set.intersection(diann_set)\n", + " common_passing_ids = psm_passing_set.intersection(diann_set)\n", + " in_diann_not_in_psm = diann_set - psm_set\n", + " in_diann_not_in_psm_passing = diann_set - psm_passing_set\n", + "\n", + " print(\"Number of IDs in DIANN:\", len(diann_set))\n", + " print(\"Number of IDs in PSM (full):\", len(psm_set))\n", + " print(\"Number of IDs in PSM (passing):\", len(psm_passing_set))\n", + " print(\"\\n\")\n", + "\n", + " print(\"Number of common IDs (full):\", len(common_ids))\n", + " print(\"Number of common IDs (passing):\", len(common_passing_ids))\n", + " print(\"\\n\")\n", + "\n", + " print(\"Number of IDs in DIANN but not in PSM: (full)\", len(in_diann_not_in_psm))\n", + " print(\n", + " \"Number of IDs in DIANN but not in PSM (passing):\",\n", + " len(in_diann_not_in_psm_passing),\n", + " )\n", + " print(\"#\" * 25)\n", + " print(\"\\n\")\n", + "\n", + " return (\n", + " common_ids,\n", + " common_passing_ids,\n", + " in_diann_not_in_psm,\n", + " in_diann_not_in_psm_passing,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 274, + "id": "89c1f141", + "metadata": {}, + "outputs": [], + "source": [ + "diann_results = pd.read_parquet(\"/home/robbe/MuMDIA/DIA-NN_output/ecoli/report.parquet\")" + ] + }, + { + "cell_type": "code", + "execution_count": 275, + "id": "92aa474c", + "metadata": {}, + "outputs": [], + "source": [ + "df_psms_full_search = pd.read_csv(\n", + " \"/home/robbe/MuMDIA/results/config_playing/df_psms.tsv\", sep=\"\\t\"\n", + ")\n", + "# df_psms_before_mumdia = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/debug/df_psms_before_mumdia.tsv\", sep=\"\\t\"\n", + "# )\n", + "# df_psms_before_rt = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/debug/df_psms_before_rt.tsv\", sep=\"\\t\"\n", + "# )\n", + "# df_psms_after_rt = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/debug/df_psms_after_rt.tsv\", sep=\"\\t\"\n", + "# )\n", + "# df_psms_after_retention_window_searches = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/debug/df_psms_after_retention_window_searches.tsv\", sep=\"\\t\"\n", + "# )\n", + "# df_psms_after_ms2pip = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/debug/df_psms_after_ms2pip.tsv\", sep=\"\\t\"\n", + "# )\n", + "# outfile = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/outfile.pin\", sep=\"\\t\"\n", + "# )\n", + "# mokapot_psms = pd.read_csv(\n", + "# \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/mokapot.psms.txt\", sep=\"\\t\"\n", + "# )\n", + "#\n", + "# mokapot_merged = pd.merge(\n", + "# mokapot_psms,\n", + "# outfile[[\"ScanNr\", \"filename\", \"charge\"]],\n", + "# on=[\"filename\", \"ScanNr\"],\n", + "# how=\"left\",\n", + "# )" + ] + }, + { + "cell_type": "code", + "execution_count": 276, + "id": "e537dfbb", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "psm_id", + "rawType": "int64", + "type": "integer" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "scannr", + "rawType": "object", + "type": "string" + }, + { + "name": "peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "stripped_peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "proteins", + "rawType": "object", + "type": "string" + }, + { + "name": "num_proteins", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rank", + "rawType": "int64", + "type": "integer" + }, + { + "name": "is_decoy", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "expmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "calcmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "peptide_len", + "rawType": "int64", + "type": "integer" + }, + { + "name": "missed_cleavages", + "rawType": "int64", + "type": "integer" + }, + { + "name": "semi_enzymatic", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "ms2_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "isotope_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "hyperscore", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_next", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_best", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "aligned_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_rt_model", + "rawType": "float64", + "type": "float" + }, + { + "name": "ion_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_peaks", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_b", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_intensity_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "scored_candidates", + "rawType": "int64", + "type": "integer" + }, + { + "name": "poisson", + "rawType": "float64", + "type": "float" + }, + { + "name": "sage_discriminant_score", + "rawType": "float64", + "type": "float" + }, + { + "name": "posterior_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "protein_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "reporter_ion_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity", + "rawType": "float64", + "type": "float" + } + ], + "ref": "fe706128-b447-4c7e-95d8-9437a3dae4c7", + "rows": [ + [ + "0", + "29153916", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159280", + "GYINSLGALTGGQALQQAK", + "GYINSLGALTGGQALQQAK", + "sp|P0A9G6|ACEA_ECOLI|63|82", + "1", + "3", + "False", + "1887.3441", + "1889.0007", + "2", + "19", + "0", + "False", + "21487516.0", + "-1.00335", + "345.88614", + "1.4106373", + "89.920006", + "55.061226", + "0.0", + "101.20541", + "101.20541", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "10", + "16", + "0.84210527", + "57.80275", + "13118", + "-26.877016", + "0.6253418", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "5144217.0" + ], + [ + "1", + "28451612", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=170519", + "APVIVQFSNGGASFIAGK", + "APVIVQFSNGGASFIAGK", + "sp|P0AB71|ALF_ECOLI|54|72", + "1", + "3", + "False", + "1767.2894", + "1761.9414", + "2", + "18", + "0", + "False", + "23179098.0", + "0.0", + "3030.7014", + "1.1615949", + "90.85319", + "55.853683", + "0.0", + "108.33786", + "108.33786", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "14", + "15", + "0.8333333", + "59.614174", + "10816", + "-28.842041", + "0.60786414", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "3195581.0" + ], + [ + "2", + "29768073", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=170672", + "APVIVQFSNGGASFIAGK", + "APVIVQFSNGGASFIAGK", + "sp|P0AB71|ALF_ECOLI|54|72", + "1", + "3", + "False", + "1767.2894", + "1761.9414", + "2", + "18", + "0", + "False", + "21032216.0", + "0.0", + "3030.7014", + "0.9215478", + "90.65641", + "55.67658", + "0.0", + "108.43496", + "108.43496", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "14", + "15", + "0.8333333", + "59.27873", + "10892", + "-28.820402", + "0.6077814", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "2897112.0" + ], + [ + "3", + "4293154", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=121859", + "LHGGEPANFLDVGGGATK", + "LHGGEPANFLDVGGGATK", + "sp|P0A836|SUCC_ECOLI|277|295", + "1", + "3", + "False", + "1735.2749", + "1738.8639", + "2", + "18", + "0", + "False", + "3799076.5", + "0.0", + "2066.1174", + "1.2410011", + "87.43079", + "56.75015", + "0.0", + "77.4584", + "77.4584", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "10", + "15", + "0.8333333", + "39.774796", + "5397", + "-31.002392", + "0.60715044", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "855111.5" + ], + [ + "4", + "29812921", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159357", + "GYINSLGALTGGQALQQAK", + "GYINSLGALTGGQALQQAK", + "sp|P0A9G6|ACEA_ECOLI|63|82", + "1", + "3", + "False", + "1895.3477", + "1889.0007", + "2", + "19", + "0", + "False", + "22411694.0", + "1.00335", + "2824.7876", + "1.215241", + "89.94109", + "52.48478", + "0.0", + "101.25427", + "101.25427", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "11", + "15", + "0.7894737", + "57.349964", + "12412", + "-26.98841", + "0.59855306", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "5340005.0" + ], + [ + "5", + "15978049", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143797", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2134.6997", + "2138.1484", + "3", + "22", + "0", + "False", + "86559330.0", + "-1.00335", + "1144.3451", + "1.2452321", + "93.62321", + "55.724854", + "0.0", + "91.380714", + "91.380714", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "10", + "17", + "0.77272725", + "44.861202", + "20353", + "-25.80478", + "0.5937287", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "13373140.0" + ], + [ + "6", + "15829211", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=162725", + "VIDTTAAGDSFSAGYLAVR", + "VIDTTAAGDSFSAGYLAVR", + "sp|P37647|KDGK_ECOLI|255|274", + "1", + "3", + "False", + "1911.355", + "1912.953", + "2", + "19", + "0", + "False", + "37202916.0", + "1.00335", + "1360.7979", + "1.0485511", + "88.086845", + "56.22843", + "0.0", + "103.39195", + "103.39195", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "9", + "16", + "0.84210527", + "67.54335", + "9920", + "-27.445004", + "0.5922307", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "8583942.0" + ], + [ + "7", + "10112666", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143568", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2146.7048", + "2138.1484", + "3", + "22", + "0", + "False", + "41679604.0", + "0.0", + "3993.7869", + "1.5647205", + "92.12287", + "55.169285", + "0.0", + "91.23544", + "91.23544", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "8", + "17", + "0.77272725", + "46.775135", + "17764", + "-27.285063", + "0.59115916", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "6213045.0" + ], + [ + "8", + "9189235", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=144180", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2146.7048", + "2138.1484", + "3", + "22", + "0", + "False", + "30840500.0", + "-1.00335", + "4461.0674", + "1.0569807", + "91.30268", + "51.747242", + "0.0", + "91.62364", + "91.62364", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "30", + "10", + "17", + "0.77272725", + "43.246887", + "19230", + "-26.713127", + "0.589856", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "4884676.0" + ], + [ + "9", + "20332714", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=178167", + "VINDNFGIIEGLM[Oxidation]TTVHATTATQK", + "VINDNFGIIEGLMTTVHATTATQK", + "sp|P0A9B2|G3P1_ECOLI|160|184", + "1", + "3", + "False", + "2578.9016", + "2589.311", + "3", + "24", + "0", + "False", + "5148805.5", + "1.00335", + "4417.3843", + "1.9642888", + "87.09489", + "28.719824", + "0.0", + "113.191864", + "113.191864", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "8", + "21", + "0.875", + "28.857197", + "13992", + "-26.69865", + "0.5862397", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "631573.9" + ], + [ + "10", + "19065885", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=163263", + "FAPALNVSEEEVTTGLDR", + "FAPALNVSEEEVTTGLDR", + "sp|P77581|ASTC_ECOLI|374|392", + "1", + "3", + "False", + "1951.3732", + "1946.9586", + "2", + "18", + "0", + "False", + "73846376.0", + "-1.00335", + "2778.8845", + "0.67697996", + "89.621124", + "53.69239", + "0.0", + "103.73299", + "103.73299", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "12", + "15", + "0.8333333", + "62.30108", + "10551", + "-26.621338", + "0.583196", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "17670308.0" + ], + [ + "11", + "29544575", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=158895", + "DTTTIIDGVGEEAAIQGR", + "DTTTIIDGVGEEAAIQGR", + "sp|P0A6F5|CH60_ECOLI|327|345", + "1", + "3", + "False", + "1847.3258", + "1844.9116", + "2", + "18", + "0", + "False", + "41870244.0", + "0.0", + "1307.7083", + "0.9085736", + "88.32116", + "55.741592", + "0.0", + "100.96116", + "100.96116", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "14", + "15", + "0.8333333", + "62.644577", + "9323", + "-27.329838", + "0.5815808", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "9041258.0" + ], + [ + "12", + "30192629", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159201", + "DTTTIIDGVGEEAAIQGR", + "DTTTIIDGVGEEAAIQGR", + "sp|P0A6F5|CH60_ECOLI|327|345", + "1", + "3", + "False", + "1847.3258", + "1844.9116", + "2", + "18", + "0", + "False", + "80537770.0", + "-1.00335", + "1850.6969", + "0.53644425", + "89.621544", + "54.21747", + "0.0", + "101.15534", + "101.15534", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "14", + "15", + "0.8333333", + "62.381588", + "10723", + "-26.859222", + "0.58107024", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "17101516.0" + ], + [ + "13", + "28579676", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=170595", + "APVIVQFSNGGASFIAGK", + "APVIVQFSNGGASFIAGK", + "sp|P0AB71|ALF_ECOLI|54|72", + "1", + "3", + "False", + "1759.2858", + "1761.9414", + "2", + "18", + "0", + "False", + "22733384.0", + "0.0", + "1508.3605", + "1.2757548", + "88.02428", + "53.061783", + "0.0", + "108.38609", + "108.38609", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "14", + "15", + "0.8333333", + "58.85246", + "11394", + "-27.591331", + "0.57856405", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "3132759.5" + ], + [ + "14", + "29162580", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159127", + "GYINSLGALTGGQALQQAK", + "GYINSLGALTGGQALQQAK", + "sp|P0A9G6|ACEA_ECOLI|63|82", + "1", + "3", + "False", + "1887.3441", + "1889.0007", + "2", + "19", + "0", + "False", + "12406604.0", + "-1.00335", + "345.88614", + "1.3059402", + "86.06627", + "54.360954", + "0.0", + "101.108345", + "101.108345", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "9", + "15", + "0.7894737", + "59.40618", + "11033", + "-26.977484", + "0.5732012", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "2941193.5" + ], + [ + "15", + "29660082", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159433", + "GYINSLGALTGGQALQQAK", + "GYINSLGALTGGQALQQAK", + "sp|P0A9G6|ACEA_ECOLI|63|82", + "1", + "3", + "False", + "1887.3441", + "1889.0007", + "2", + "19", + "0", + "False", + "18473770.0", + "1.00335", + "1409.1261", + "0.7592784", + "86.83492", + "51.201572", + "0.0", + "101.30246", + "101.30246", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "10", + "15", + "0.7894737", + "58.539356", + "11988", + "-25.945925", + "0.57165676", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "4379211.0" + ], + [ + "16", + "1281622", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=124012", + "HM[Oxidation]NADTDYSIAEAAFNK", + "HMNADTDYSIAEAAFNK", + "sp|P0AEX9|MALE_ECOLI|228|245", + "1", + "3", + "False", + "1911.355", + "1912.826", + "2", + "17", + "0", + "False", + "2115741.5", + "1.00335", + "1294.4307", + "2.9937217", + "83.42901", + "57.46626", + "0.0", + "78.8253", + "78.8253", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "14", + "14", + "0.8235294", + "28.791414", + "3226", + "-30.311506", + "0.5685443", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "301856.0" + ], + [ + "17", + "5279782", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=124318", + "HM[Oxidation]NADTDYSIAEAAFNK", + "HMNADTDYSIAEAAFNK", + "sp|P0AEX9|MALE_ECOLI|228|245", + "1", + "3", + "False", + "1911.355", + "1912.826", + "2", + "17", + "0", + "False", + "1243720.1", + "-1.00335", + "244.54733", + "4.3212357", + "82.30364", + "57.256348", + "0.0", + "79.01946", + "79.01946", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "14", + "14", + "0.8235294", + "21.411877", + "2786", + "-30.377625", + "0.5674789", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "136436.0" + ], + [ + "18", + "19828135", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=162878", + "VIDTTAAGDSFSAGYLAVR", + "VIDTTAAGDSFSAGYLAVR", + "sp|P37647|KDGK_ECOLI|255|274", + "1", + "3", + "False", + "1911.355", + "1912.953", + "2", + "19", + "0", + "False", + "30202160.0", + "1.00335", + "1360.7979", + "1.0767083", + "84.908066", + "52.803093", + "0.0", + "103.4889", + "103.4889", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "7", + "16", + "0.84210527", + "66.67506", + "9288", + "-26.054441", + "0.56657714", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "7112659.0" + ], + [ + "19", + "20815291", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=165331", + "VVTLSGFVESQAQAEEAVK", + "VVTLSGFVESQAQAEEAVK", + "sp|P0AFH8|OSMY_ECOLI|85|104", + "1", + "3", + "False", + "1991.3914", + "1991.0211", + "2", + "19", + "0", + "False", + "20532446.0", + "-1.00335", + "689.654", + "1.2103994", + "84.61472", + "52.58751", + "0.0", + "105.04476", + "105.04476", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "10", + "16", + "0.84210527", + "57.529083", + "10776", + "-25.407368", + "0.56048954", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "3217998.0" + ], + [ + "20", + "5359498", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=144027", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2146.7048", + "2138.1484", + "3", + "22", + "0", + "False", + "61422028.0", + "0.0", + "3993.7869", + "1.1113708", + "90.04484", + "46.212822", + "0.0", + "91.52661", + "91.52661", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "10", + "17", + "0.77272725", + "42.40721", + "21122", + "-24.536562", + "0.558884", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "9870483.0" + ], + [ + "21", + "3680224", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=131892", + "TLAEGQNVEFEIQDGQK", + "TLAEGQNVEFEIQDGQK", + "sp|P0A9Y6|CSPC_ECOLI|42|59", + "1", + "3", + "False", + "1903.3513", + "1904.9116", + "2", + "17", + "0", + "False", + "84855900.0", + "-1.00335", + "292.41995", + "0.6564355", + "87.61049", + "51.30508", + "0.0", + "83.82558", + "83.82558", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "13", + "14", + "0.8235294", + "54.98849", + "12300", + "-23.840527", + "0.55556387", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "15459905.0" + ], + [ + "22", + "27150008", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=152234", + "AVQLGGVALGTTQVINSK", + "AVQLGGVALGTTQVINSK", + "sp|P0ABT2|DPS_ECOLI|83|101", + "1", + "3", + "False", + "1759.2858", + "1754.989", + "2", + "18", + "0", + "False", + "57785224.0", + "1.00335", + "1874.8354", + "0.78052723", + "87.07536", + "52.48382", + "0.0", + "96.734375", + "96.734375", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "13", + "15", + "0.8333333", + "62.231762", + "11358", + "-24.847944", + "0.55531794", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "8729071.0" + ], + [ + "23", + "22518418", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=163416", + "FAPALNVSEEEVTTGLDR", + "FAPALNVSEEEVTTGLDR", + "sp|P77581|ASTC_ECOLI|374|392", + "1", + "3", + "False", + "1951.3732", + "1946.9586", + "2", + "18", + "0", + "False", + "53479652.0", + "1.00335", + "1750.5328", + "0.59468037", + "86.34572", + "51.968998", + "0.0", + "103.82999", + "103.82999", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "11", + "15", + "0.8333333", + "61.843555", + "9361", + "-25.71426", + "0.5552316", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "12678450.0" + ], + [ + "24", + "29079993", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159124", + "DTTTIIDGVGEEAAIQGR", + "DTTTIIDGVGEEAAIQGR", + "sp|P0A6F5|CH60_ECOLI|327|345", + "1", + "3", + "False", + "1839.3221", + "1844.9116", + "2", + "18", + "0", + "False", + "59270610.0", + "0.0", + "3034.2686", + "1.0652754", + "86.318184", + "49.808926", + "0.0", + "101.10648", + "101.10648", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "11", + "15", + "0.8333333", + "60.28211", + "10696", + "-25.628038", + "0.5535887", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "12525947.0" + ], + [ + "25", + "27138063", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159048", + "DTTTIIDGVGEEAAIQGR", + "DTTTIIDGVGEEAAIQGR", + "sp|P0A6F5|CH60_ECOLI|327|345", + "1", + "3", + "False", + "1847.3258", + "1844.9116", + "2", + "18", + "0", + "False", + "88290820.0", + "-1.00335", + "1850.6969", + "0.45251095", + "87.10377", + "51.221313", + "0.0", + "101.05825", + "101.05825", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "13", + "15", + "0.8333333", + "62.044342", + "10245", + "-25.556627", + "0.5523426", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "18915432.0" + ], + [ + "26", + "15634286", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=132351", + "TLAEGQNVEFEIQDGQK", + "TLAEGQNVEFEIQDGQK", + "sp|P0A9Y6|CSPC_ECOLI|42|59", + "1", + "3", + "False", + "1903.3513", + "1904.9116", + "2", + "17", + "0", + "False", + "37641612.0", + "-1.00335", + "292.41995", + "1.1307752", + "85.93429", + "52.08503", + "0.0", + "84.116646", + "84.116646", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "14", + "14", + "0.8235294", + "56.109444", + "11044", + "-24.920223", + "0.551354", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "6844297.5" + ], + [ + "27", + "28243039", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=152846", + "AVQLGGVALGTTQVINSK", + "AVQLGGVALGTTQVINSK", + "sp|P0ABT2|DPS_ECOLI|83|101", + "1", + "3", + "False", + "1759.2858", + "1754.989", + "2", + "18", + "0", + "False", + "26237094.0", + "0.0", + "2445.3142", + "0.8294306", + "85.48482", + "53.21902", + "0.0", + "97.12249", + "97.12249", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "13", + "15", + "0.8333333", + "64.283585", + "8879", + "-26.016249", + "0.55121464", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "3918881.8" + ], + [ + "28", + "7563126", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=136254", + "AGLINSGGAAGGETDLSDAVR", + "AGLINSGGAAGGETDLSDAVR", + "sp|P0A991|ALF1_ECOLI|283|304", + "1", + "3", + "False", + "1927.3622", + "1929.9392", + "2", + "21", + "0", + "False", + "7898497.5", + "1.00335", + "1856.8982", + "1.5021552", + "83.09016", + "43.4832", + "0.0", + "86.59438", + "86.59438", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "5", + "17", + "0.8095238", + "61.335598", + "6580", + "-27.231024", + "0.5496797", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "1273346.5" + ], + [ + "29", + "21027923", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=163339", + "FAPALNVSEEEVTTGLDR", + "FAPALNVSEEEVTTGLDR", + "sp|P77581|ASTC_ECOLI|374|392", + "1", + "3", + "False", + "1943.3695", + "1946.9586", + "2", + "18", + "0", + "False", + "48928644.0", + "1.00335", + "2361.5728", + "0.6599689", + "86.125015", + "44.674847", + "0.0", + "103.781166", + "103.781166", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "12", + "15", + "0.8333333", + "51.36911", + "10466", + "-25.644384", + "0.54866725", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "13871572.0" + ], + [ + "30", + "26002104", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=170366", + "APVIVQFSNGGASFIAGK", + "APVIVQFSNGGASFIAGK", + "sp|P0AB71|ALF_ECOLI|54|72", + "1", + "3", + "False", + "1767.2894", + "1761.9414", + "2", + "18", + "0", + "False", + "13412669.0", + "1.00335", + "2462.8071", + "1.8435783", + "84.27789", + "51.63172", + "0.0", + "108.24076", + "108.24076", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "13", + "15", + "0.8333333", + "57.402718", + "10206", + "-26.74584", + "0.5483638", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "1902514.5" + ], + [ + "31", + "5135291", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=124165", + "HM[Oxidation]NADTDYSIAEAAFNK", + "HMNADTDYSIAEAAFNK", + "sp|P0AEX9|MALE_ECOLI|228|245", + "1", + "3", + "False", + "1911.355", + "1912.826", + "2", + "17", + "0", + "False", + "1555225.0", + "-1.00335", + "244.54733", + "3.357726", + "80.13196", + "54.642433", + "0.0", + "78.92236", + "78.92236", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "9", + "14", + "0.8235294", + "24.003593", + "2697", + "-28.770287", + "0.54578036", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "107666.31" + ], + [ + "32", + "3209311", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=124089", + "HM[Oxidation]NADTDYSIAEAAFNK", + "HMNADTDYSIAEAAFNK", + "sp|P0AEX9|MALE_ECOLI|228|245", + "1", + "3", + "False", + "1919.3585", + "1912.826", + "2", + "17", + "0", + "False", + "2016174.0", + "-1.00335", + "3931.8818", + "3.1091359", + "80.647026", + "55.654728", + "0.0", + "78.87413", + "78.87413", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "9", + "14", + "0.8235294", + "30.354973", + "3328", + "-28.961325", + "0.5448071", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "259996.0" + ], + [ + "33", + "3422112", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143950", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2134.6997", + "2138.1484", + "3", + "22", + "0", + "False", + "73599810.0", + "-1.00335", + "1144.3451", + "1.2612433", + "87.903244", + "45.252174", + "0.0", + "91.47778", + "91.47778", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "8", + "17", + "0.77272725", + "42.532875", + "20895", + "-23.23177", + "0.53571653", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "11883800.0" + ], + [ + "34", + "2005392", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=125161", + "AIGEAKDDDTADILTAASR", + "AIGEAKDDDTADILTAASR", + "sp|P0ABT2|DPS_ECOLI|134|153", + "1", + "3", + "False", + "1935.3658", + "1931.9436", + "2", + "19", + "0", + "False", + "2732342.5", + "-1.00335", + "2288.125", + "2.4939835", + "83.617905", + "54.272728", + "0.0", + "79.55434", + "79.55434", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "29", + "12", + "14", + "0.7368421", + "26.24825", + "4503", + "-29.301876", + "0.5356718", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "449143.34" + ], + [ + "35", + "27875764", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=165637", + "VVTLSGFVESQAQAEEAVK", + "VVTLSGFVESQAQAEEAVK", + "sp|P0AFH8|OSMY_ECOLI|85|104", + "1", + "3", + "False", + "1991.3914", + "1991.0211", + "2", + "19", + "0", + "False", + "31342252.0", + "1.00335", + "318.0335", + "1.3152332", + "82.920044", + "51.894005", + "0.0", + "105.23886", + "105.23886", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "10", + "16", + "0.84210527", + "57.232334", + "11918", + "-23.721848", + "0.5356676", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "4862111.0" + ], + [ + "36", + "25993086", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=165790", + "VVTLSGFVESQAQAEEAVK", + "VVTLSGFVESQAQAEEAVK", + "sp|P0AFH8|OSMY_ECOLI|85|104", + "1", + "3", + "False", + "1991.3914", + "1991.0211", + "2", + "19", + "0", + "False", + "17096984.0", + "-1.00335", + "689.654", + "1.4873489", + "81.70957", + "48.171425", + "0.0", + "105.33594", + "105.33594", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "7", + "16", + "0.84210527", + "57.4633", + "10492", + "-24.53562", + "0.5346804", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "2676005.0" + ], + [ + "37", + "12033942", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143644", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2134.6997", + "2138.1484", + "3", + "22", + "0", + "False", + "58209650.0", + "0.0", + "1614.2537", + "1.0940471", + "87.43503", + "48.61953", + "0.0", + "91.28367", + "91.28367", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "9", + "17", + "0.77272725", + "42.88265", + "21120", + "-23.348082", + "0.53385866", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "9464174.0" + ], + [ + "38", + "29141397", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=152540", + "AVQLGGVALGTTQVINSK", + "AVQLGGVALGTTQVINSK", + "sp|P0ABT2|DPS_ECOLI|83|101", + "1", + "3", + "False", + "1759.2858", + "1754.989", + "2", + "18", + "0", + "False", + "114899770.0", + "0.0", + "2445.3142", + "1.2400495", + "85.8195", + "49.55686", + "0.0", + "96.92841", + "96.92841", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "7", + "15", + "0.8333333", + "63.138805", + "9807", + "-24.116648", + "0.5332361", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "17618640.0" + ], + [ + "39", + "23905216", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=165484", + "VVTLSGFVESQAQAEEAVK", + "VVTLSGFVESQAQAEEAVK", + "sp|P0AFH8|OSMY_ECOLI|85|104", + "1", + "3", + "False", + "1991.3914", + "1991.0211", + "2", + "19", + "0", + "False", + "35437304.0", + "-1.00335", + "689.654", + "1.0267457", + "83.14368", + "49.9082", + "0.0", + "105.14183", + "105.14183", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "10", + "16", + "0.84210527", + "57.39786", + "12353", + "-23.555655", + "0.5326034", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "5475810.0" + ], + [ + "40", + "13955047", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143721", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2146.7048", + "2138.1484", + "3", + "22", + "0", + "False", + "80053130.0", + "1.00335", + "3526.289", + "1.0674509", + "88.04306", + "44.435196", + "0.0", + "91.33249", + "91.33249", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "8", + "17", + "0.77272725", + "42.62248", + "20687", + "-23.477245", + "0.532239", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "12933772.0" + ], + [ + "41", + "28005255", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=152387", + "AVQLGGVALGTTQVINSK", + "AVQLGGVALGTTQVINSK", + "sp|P0ABT2|DPS_ECOLI|83|101", + "1", + "3", + "False", + "1759.2858", + "1754.989", + "2", + "18", + "0", + "False", + "110574530.0", + "-1.00335", + "3015.4673", + "0.7846524", + "85.75376", + "48.948906", + "0.0", + "96.831375", + "96.831375", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "8", + "15", + "0.8333333", + "63.332817", + "10510", + "-23.832474", + "0.5316144", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "16921380.0" + ], + [ + "42", + "11950795", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=162572", + "VIDTTAAGDSFSAGYLAVR", + "VIDTTAAGDSFSAGYLAVR", + "sp|P37647|KDGK_ECOLI|255|274", + "1", + "3", + "False", + "1911.355", + "1912.953", + "2", + "19", + "0", + "False", + "24802058.0", + "1.00335", + "1360.7979", + "1.767572", + "81.97521", + "46.864407", + "0.0", + "103.29489", + "103.29489", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "9", + "16", + "0.84210527", + "66.72499", + "9301", + "-24.782114", + "0.5313427", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "5732726.0" + ], + [ + "43", + "29727982", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=159354", + "DTTTIIDGVGEEAAIQGR", + "DTTTIIDGVGEEAAIQGR", + "sp|P0A6F5|CH60_ECOLI|327|345", + "1", + "3", + "False", + "1847.3258", + "1844.9116", + "2", + "18", + "0", + "False", + "39098670.0", + "0.0", + "1307.7083", + "0.88303715", + "85.42778", + "52.71199", + "0.0", + "101.25244", + "101.25244", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "14", + "14", + "0.7777778", + "61.784454", + "10143", + "-25.753592", + "0.5306696", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "8398095.0" + ], + [ + "44", + "1447371", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=143874", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2146.7048", + "2138.1484", + "3", + "22", + "0", + "False", + "88467520.0", + "1.00335", + "3526.289", + "1.3968338", + "88.25533", + "43.010174", + "0.0", + "91.42954", + "91.42954", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "9", + "17", + "0.77272725", + "42.770447", + "20437", + "-23.742802", + "0.5286481", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "14417666.0" + ], + [ + "45", + "11161133", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=144256", + "GQPSKPFVGVLSAGINAASPNK", + "GQPSKPFVGVLSAGINAASPNK", + "sp|P0AEX9|MALE_ECOLI|277|299", + "1", + "3", + "False", + "2134.6997", + "2138.1484", + "3", + "22", + "0", + "False", + "20356170.0", + "1.00335", + "2084.383", + "1.1612209", + "85.3422", + "46.455822", + "0.0", + "91.6719", + "91.6719", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "9", + "17", + "0.77272725", + "40.468235", + "18066", + "-24.40851", + "0.5284857", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "3337674.0" + ], + [ + "46", + "27871160", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=152463", + "AVQLGGVALGTTQVINSK", + "AVQLGGVALGTTQVINSK", + "sp|P0ABT2|DPS_ECOLI|83|101", + "1", + "3", + "False", + "1751.2822", + "1754.989", + "2", + "18", + "0", + "False", + "109207940.0", + "0.0", + "2114.3755", + "0.7197614", + "85.71177", + "45.978218", + "0.0", + "96.879616", + "96.879616", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "8", + "15", + "0.8333333", + "44.322765", + "13599", + "-24.011488", + "0.5284031", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "16676566.0" + ], + [ + "47", + "357424", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=121706", + "LHGGEPANFLDVGGGATK", + "LHGGEPANFLDVGGGATK", + "sp|P0A836|SUCC_ECOLI|277|295", + "1", + "3", + "False", + "1735.2749", + "1738.8639", + "2", + "18", + "0", + "False", + "4291184.5", + "-1.00335", + "1488.0769", + "2.9217377", + "79.72885", + "50.468147", + "0.0", + "77.36132", + "77.36132", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "6", + "15", + "0.8333333", + "40.28616", + "5610", + "-26.776152", + "0.52821493", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "842042.7" + ], + [ + "48", + "22010090", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=180151", + "IADQLIVGGGIANTFIAAQGHDVGK", + "IADQLIVGGGIANTFIAAQGHDVGK", + "sp|P0A799|PGK_ECOLI|206|231", + "1", + "3", + "False", + "2458.847", + "2464.3074", + "3", + "25", + "0", + "False", + "14048044.0", + "0.0", + "2218.2725", + "1.3195876", + "85.70196", + "48.550823", + "0.0", + "114.45078", + "114.45078", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "28", + "6", + "19", + "0.76", + "46.073544", + "15557", + "-25.173601", + "0.5281611", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "1487414.4" + ], + [ + "49", + "22897391", + "part_0.0_13829.432373046875.mzml", + "controllerType=0 controllerNumber=1 scan=163033", + "FAPALNVSEEEVTTGLDR", + "FAPALNVSEEEVTTGLDR", + "sp|P77581|ASTC_ECOLI|374|392", + "1", + "3", + "False", + "1943.3695", + "1946.9586", + "2", + "18", + "0", + "False", + "25599908.0", + "1.00335", + "2361.5728", + "0.71144074", + "82.48699", + "45.63921", + "0.0", + "103.58715", + "103.58715", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "27", + "7", + "15", + "0.8333333", + "51.88837", + "9244", + "-25.018984", + "0.527718", + "-324.0", + "1.0455439e-05", + "0.00022804766", + "0.00023325518", + null, + "7005772.0" + ] + ], + "shape": { + "columns": 43, + "rows": 11444063 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
psm_idfilenamescannrpeptidestripped_peptideproteinsnum_proteinsrankis_decoyexpmass...matched_intensity_pctscored_candidatespoissonsage_discriminant_scoreposterior_errorspectrum_qpeptide_qprotein_qreporter_ion_intensityfragment_intensity
029153916part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=159280GYINSLGALTGGQALQQAKGYINSLGALTGGQALQQAKsp|P0A9G6|ACEA_ECOLI|63|8213False1887.34410...57.80275013118-26.8770160.625342-324.0000000.0000100.0002280.000233NaN5144217.000
128451612part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=170519APVIVQFSNGGASFIAGKAPVIVQFSNGGASFIAGKsp|P0AB71|ALF_ECOLI|54|7213False1767.28940...59.61417410816-28.8420410.607864-324.0000000.0000100.0002280.000233NaN3195581.000
229768073part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=170672APVIVQFSNGGASFIAGKAPVIVQFSNGGASFIAGKsp|P0AB71|ALF_ECOLI|54|7213False1767.28940...59.27873010892-28.8204020.607781-324.0000000.0000100.0002280.000233NaN2897112.000
34293154part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=121859LHGGEPANFLDVGGGATKLHGGEPANFLDVGGGATKsp|P0A836|SUCC_ECOLI|277|29513False1735.27490...39.7747965397-31.0023920.607150-324.0000000.0000100.0002280.000233NaN855111.500
429812921part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=159357GYINSLGALTGGQALQQAKGYINSLGALTGGQALQQAKsp|P0A9G6|ACEA_ECOLI|63|8213False1895.34770...57.34996412412-26.9884100.598553-324.0000000.0000100.0002280.000233NaN5340005.000
..................................................................
1144405819032195part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=43462REVPFSRREVPFSRrev_sp|P37024|HRPB_ECOLI|624|6311157True886.88930...1.3645362640-0.836371-0.432501-0.2867030.9584110.8833530.890258NaN59675.117
1144405910278711part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=45370DHGKLPRDHGKLPRsp|P75821|YBJS_ECOLI|330|3371174False814.85657...1.8124512588-0.836934-0.432682-0.2867030.9584111.0000001.000000NaN7948.591
1144406019930289part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=43547VRDIM[Oxidation]IPRVRDIMIPRsp|P0AE78|CORC_ECOLI|68|761196False1022.95120...1.9448213695-0.836444-0.432865-0.2867030.9584110.9177230.926266NaN26660.066
1144406118255218part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=116725VIGTMKRVIGTMKRrev_sp|P0A976|CSPF_ECOLI|61|68;rev_sp|P0A982|C...2195True807.61017...0.1845862778-0.836748-0.433067-0.2867030.9584111.0000000.927163NaN62217.117
114440629520676part_0.0_13829.432373046875.mzmlcontrollerType=0 controllerNumber=1 scan=45293VQAAEQRVQAAEQRrev_sp|P08394|RECB_ECOLI|613|6201188True806.85290...2.2645203947-0.820671-0.433164-0.2867030.9584110.6771450.680677NaN18044.900
\n", + "

11444063 rows × 43 columns

\n", + "
" + ], + "text/plain": [ + " psm_id filename \\\n", + "0 29153916 part_0.0_13829.432373046875.mzml \n", + "1 28451612 part_0.0_13829.432373046875.mzml \n", + "2 29768073 part_0.0_13829.432373046875.mzml \n", + "3 4293154 part_0.0_13829.432373046875.mzml \n", + "4 29812921 part_0.0_13829.432373046875.mzml \n", + "... ... ... \n", + "11444058 19032195 part_0.0_13829.432373046875.mzml \n", + "11444059 10278711 part_0.0_13829.432373046875.mzml \n", + "11444060 19930289 part_0.0_13829.432373046875.mzml \n", + "11444061 18255218 part_0.0_13829.432373046875.mzml \n", + "11444062 9520676 part_0.0_13829.432373046875.mzml \n", + "\n", + " scannr \\\n", + "0 controllerType=0 controllerNumber=1 scan=159280 \n", + "1 controllerType=0 controllerNumber=1 scan=170519 \n", + "2 controllerType=0 controllerNumber=1 scan=170672 \n", + "3 controllerType=0 controllerNumber=1 scan=121859 \n", + "4 controllerType=0 controllerNumber=1 scan=159357 \n", + "... ... \n", + "11444058 controllerType=0 controllerNumber=1 scan=43462 \n", + "11444059 controllerType=0 controllerNumber=1 scan=45370 \n", + "11444060 controllerType=0 controllerNumber=1 scan=43547 \n", + "11444061 controllerType=0 controllerNumber=1 scan=116725 \n", + "11444062 controllerType=0 controllerNumber=1 scan=45293 \n", + "\n", + " peptide stripped_peptide \\\n", + "0 GYINSLGALTGGQALQQAK GYINSLGALTGGQALQQAK \n", + "1 APVIVQFSNGGASFIAGK APVIVQFSNGGASFIAGK \n", + "2 APVIVQFSNGGASFIAGK APVIVQFSNGGASFIAGK \n", + "3 LHGGEPANFLDVGGGATK LHGGEPANFLDVGGGATK \n", + "4 GYINSLGALTGGQALQQAK GYINSLGALTGGQALQQAK \n", + "... ... ... \n", + "11444058 REVPFSR REVPFSR \n", + "11444059 DHGKLPR DHGKLPR \n", + "11444060 VRDIM[Oxidation]IPR VRDIMIPR \n", + "11444061 VIGTMKR VIGTMKR \n", + "11444062 VQAAEQR VQAAEQR \n", + "\n", + " proteins num_proteins \\\n", + "0 sp|P0A9G6|ACEA_ECOLI|63|82 1 \n", + "1 sp|P0AB71|ALF_ECOLI|54|72 1 \n", + "2 sp|P0AB71|ALF_ECOLI|54|72 1 \n", + "3 sp|P0A836|SUCC_ECOLI|277|295 1 \n", + "4 sp|P0A9G6|ACEA_ECOLI|63|82 1 \n", + "... ... ... \n", + "11444058 rev_sp|P37024|HRPB_ECOLI|624|631 1 \n", + "11444059 sp|P75821|YBJS_ECOLI|330|337 1 \n", + "11444060 sp|P0AE78|CORC_ECOLI|68|76 1 \n", + "11444061 rev_sp|P0A976|CSPF_ECOLI|61|68;rev_sp|P0A982|C... 2 \n", + "11444062 rev_sp|P08394|RECB_ECOLI|613|620 1 \n", + "\n", + " rank is_decoy expmass ... matched_intensity_pct \\\n", + "0 3 False 1887.34410 ... 57.802750 \n", + "1 3 False 1767.28940 ... 59.614174 \n", + "2 3 False 1767.28940 ... 59.278730 \n", + "3 3 False 1735.27490 ... 39.774796 \n", + "4 3 False 1895.34770 ... 57.349964 \n", + "... ... ... ... ... ... \n", + "11444058 157 True 886.88930 ... 1.364536 \n", + "11444059 174 False 814.85657 ... 1.812451 \n", + "11444060 196 False 1022.95120 ... 1.944821 \n", + "11444061 195 True 807.61017 ... 0.184586 \n", + "11444062 188 True 806.85290 ... 2.264520 \n", + "\n", + " scored_candidates poisson sage_discriminant_score \\\n", + "0 13118 -26.877016 0.625342 \n", + "1 10816 -28.842041 0.607864 \n", + "2 10892 -28.820402 0.607781 \n", + "3 5397 -31.002392 0.607150 \n", + "4 12412 -26.988410 0.598553 \n", + "... ... ... ... \n", + "11444058 2640 -0.836371 -0.432501 \n", + "11444059 2588 -0.836934 -0.432682 \n", + "11444060 3695 -0.836444 -0.432865 \n", + "11444061 2778 -0.836748 -0.433067 \n", + "11444062 3947 -0.820671 -0.433164 \n", + "\n", + " posterior_error spectrum_q peptide_q protein_q \\\n", + "0 -324.000000 0.000010 0.000228 0.000233 \n", + "1 -324.000000 0.000010 0.000228 0.000233 \n", + "2 -324.000000 0.000010 0.000228 0.000233 \n", + "3 -324.000000 0.000010 0.000228 0.000233 \n", + "4 -324.000000 0.000010 0.000228 0.000233 \n", + "... ... ... ... ... \n", + "11444058 -0.286703 0.958411 0.883353 0.890258 \n", + "11444059 -0.286703 0.958411 1.000000 1.000000 \n", + "11444060 -0.286703 0.958411 0.917723 0.926266 \n", + "11444061 -0.286703 0.958411 1.000000 0.927163 \n", + "11444062 -0.286703 0.958411 0.677145 0.680677 \n", + "\n", + " reporter_ion_intensity fragment_intensity \n", + "0 NaN 5144217.000 \n", + "1 NaN 3195581.000 \n", + "2 NaN 2897112.000 \n", + "3 NaN 855111.500 \n", + "4 NaN 5340005.000 \n", + "... ... ... \n", + "11444058 NaN 59675.117 \n", + "11444059 NaN 7948.591 \n", + "11444060 NaN 26660.066 \n", + "11444061 NaN 62217.117 \n", + "11444062 NaN 18044.900 \n", + "\n", + "[11444063 rows x 43 columns]" + ] + }, + "execution_count": 276, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_psms_full_search" + ] + }, + { + "cell_type": "code", + "execution_count": 277, + "id": "f647f740", + "metadata": {}, + "outputs": [], + "source": [ + "psm_df_dict = {\n", + " # \"After Retention Window Searches\": (\n", + " # df_psms_after_retention_window_searches,\n", + " # \"spectrum_q\",\n", + " # \"is_decoy\",\n", + " # False,\n", + " # ),\n", + " \"Full search\": (df_psms_full_search, \"spectrum_q\", \"is_decoy\", False),\n", + " # \"Before MuMDIA\": (df_psms_before_mumdia, \"spectrum_q\", \"is_decoy\", False),\n", + " # # \"Before RT\": (df_psms_before_rt, \"spectrum_q\", \"is_decoy\", False),\n", + " # \"After RT\": (df_psms_after_rt, \"spectrum_q\", \"is_decoy\", False),\n", + " # \"After MS2PIP\": (df_psms_after_ms2pip, \"spectrum_q\", \"is_decoy\", False),\n", + " # \"PIN\": (outfile, \"spectrum_q_min\", \"Label\", False),\n", + " # \"Mokapot PSMS\": (mokapot_merged, \"mokapot q-value\", \"Label\", True),\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 278, + "id": "9c8a4c0a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3, 1, 2, 6, 5, 4, 9, 8, 7, 12, 11, 10, 18,\n", + " 27, 16, 15, 17, 14, 78, 24, 64, 21, 13, 20, 197, 37,\n", + " 44, 48, 83, 95, 87, 33, 30, 89, 50, 42, 76, 58, 56,\n", + " 65, 35, 25, 40, 23, 29, 63, 31, 121, 124, 103, 38, 28,\n", + " 39, 139, 36, 32, 53, 84, 54, 70, 94, 60, 114, 77, 135,\n", + " 22, 90, 51, 57, 26, 61, 41, 19, 112, 155, 68, 109, 47,\n", + " 104, 52, 120, 110, 200, 150, 153, 97, 45, 127, 43, 73, 128,\n", + " 130, 59, 106, 178, 88, 49, 72, 115, 67, 163, 140, 85, 169,\n", + " 86, 137, 113, 46, 82, 148, 34, 164, 159, 165, 149, 145, 111,\n", + " 187, 184, 161, 98, 158, 134, 79, 91, 117, 196, 143, 156, 179,\n", + " 69, 102, 171, 131, 81, 186, 116, 55, 92, 180, 193, 183, 93,\n", + " 96, 108, 151, 138, 101, 66, 160, 132, 75, 185, 126, 198, 71,\n", + " 154, 80, 105, 176, 189, 170, 107, 62, 118, 147, 125, 99, 133,\n", + " 129, 123, 74, 146, 172, 190, 191, 177, 152, 194, 168, 144, 157,\n", + " 167, 175, 199, 188, 141, 182, 142, 174, 122, 192, 195, 181, 162,\n", + " 136, 166, 173, 100, 119])" + ] + }, + "execution_count": 278, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_psms_full_search[\"rank\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 279, + "id": "1a8b2c20", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run", + "rawType": "object", + "type": "string" + }, + { + "name": "Channel", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + }, + { + "name": "Modified.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Stripped.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Lib.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Decoy", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Proteotypic", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Ids", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Group", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Names", + "rawType": "object", + "type": "string" + }, + { + "name": "Genes", + "rawType": "object", + "type": "string" + }, + { + "name": "RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Quantity", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Factor", + "rawType": "float32", + "type": "float" + }, + { + "name": "Quantity.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Empirical.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Noise", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Profile.Corr", + "rawType": "float32", + "type": "float" + }, + { + "name": "Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Mass.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.Before", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.After", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Start", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Stop", + "rawType": "float32", + "type": "float" + }, + { + "name": "FWHM", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Site.Occupancy.Probabilities", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Sites", + "rawType": "object", + "type": "string" + }, + { + "name": "Lib.PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Translated.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "GG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz.Delta", + "rawType": "float32", + "type": "float" + } + ], + "ref": "c37fe98c-85df-4981-aacd-c1777796f112", + "rows": [ + [ + "0", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAEIAVK2", + "AAAAEIAVK", + "AAAAEIAVK", + "2", + "10", + "0", + "1", + "422.25037", + "P0A8D6", + "P0A8D6", + "YMDB_ECOLI", + "ymdB", + "45.039364", + "-11.2311", + "45.049755", + "-10.05596", + "0.0", + "0.79848653", + "0.0", + "0.0", + "9478950.0", + "9478950.0", + "9629110.0", + "9629110.0", + "8328634.0", + "-0.00030517578", + "1.0", + "0.91445416", + "0.0", + "0.0", + "0.8910806", + "5.4202604", + "0.86327136", + "0.9772817", + "353855840.0", + "403993300.0", + "44.79642", + "45.281773", + "0.23923437", + "0.0", + "9478950.0", + "0.0", + "9478950.0", + "9478950.0", + "0.91445416", + "0.91445416", + "0.91445416", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAEIAVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "317.21832", + "0.00064086914" + ], + [ + "1", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "AAAAPVTGPLADDPIQETITFDDFAK", + "AAAAPVTGPLADDPIQETITFDDFAK", + "3", + "58", + "0", + "1", + "892.1131", + "P00959", + "P00959", + "SYM_ECOLI", + "metG", + "131.40971", + "102.82846", + "131.40822", + "110.56359", + "0.0", + "1.0572941", + "0.0", + "0.0", + "227486.38", + "227486.38", + "485865.8", + "485865.8", + "0.0", + "0.0", + "1.0", + "0.78337896", + "0.0", + "0.0", + "0.19562031", + "3.4541717", + "0.0", + "0.52708817", + "1242418800.0", + "937075300.0", + "131.26434", + "131.6526", + "0.23196226", + "0.0", + "55844700.0", + "0.0", + "55844700.0", + "55844700.0", + "0.8808654", + "0.8808654", + "0.8808654", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "214.11862", + "0.0011901855" + ], + [ + "2", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAVLAK1", + "AAAAVLAK", + "AAAAVLAK", + "1", + "72", + "0", + "1", + "714.45087", + "P0AEQ1", + "P0AEQ1", + "GLCG_ECOLI", + "glcG", + "35.834743", + "-19.224216", + "36.656822", + "-21.282513", + "0.0", + "1.2209269", + "0.0", + "0.0", + "1300103.4", + "1300103.4", + "1320218.6", + "1320218.6", + "1103460.6", + "0.001159668", + "1.0", + "0.79625547", + "0.0", + "0.0", + "0.9049706", + "3.4163113", + "1.7396158", + "0.96952754", + "285655300.0", + "295228060.0", + "35.59217", + "36.077908", + "0.31452703", + "0.0", + "9308464.0", + "0.0", + "9308464.0", + "9308464.0", + "0.9637441", + "0.9637441", + "0.9637441", + "0.0024889165", + "0.048146296", + "0.0025668947", + "0.0", + "0.0035870865", + "0.0048929173", + "0.0", + "1.0", + "AAAAVLAK1", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "384.22415", + "-0.00018310547" + ], + [ + "3", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADLISR2", + "AAADLISR", + "AAADLISR", + "2", + "107", + "0", + "1", + "408.73233", + "P00452", + "P00452", + "RIR1_ECOLI", + "nrdA", + "52.66213", + "-1.9677705", + "52.288113", + "-0.9493257", + "0.0", + "0.7979276", + "0.0", + "0.0", + "33115972.0", + "33115972.0", + "27576084.0", + "27576084.0", + "27404988.0", + "-0.00091552734", + "1.0", + "0.98159057", + "0.0", + "0.0", + "0.87968576", + "5.811066", + "1.6436243", + "0.93535155", + "697454900.0", + "755969100.0", + "52.3221", + "52.953266", + "0.29944947", + "0.0", + "43924670.0", + "0.0", + "43924670.0", + "43924670.0", + "0.42255992", + "0.42255992", + "0.42255992", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAADLISR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "603.34607", + "-0.00024414062" + ], + [ + "4", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADVQLR2", + "AAADVQLR", + "AAADVQLR", + "2", + "116", + "0", + "1", + "422.2378", + "P0AEG4", + "P0AEG4", + "DSBA_ECOLI", + "dsbA", + "44.020058", + "-10.41877", + "45.611725", + "-11.208551", + "0.0", + "0.80835223", + "0.0", + "0.0", + "90264560.0", + "90264560.0", + "80806920.0", + "80806920.0", + "78470104.0", + "-0.000579834", + "1.0", + "0.9814644", + "0.0", + "0.0", + "0.98277956", + "6.8381004", + "2.0685427", + "0.98311853", + "668152960.0", + "756061900.0", + "43.728844", + "44.408207", + "0.33655792", + "0.0", + "138798110.0", + "0.0", + "138798110.0", + "138798110.0", + "0.98128796", + "0.98128796", + "0.98128796", + "1.2305009e-06", + "1.9478937e-06", + "1.2305009e-06", + "0.0", + "0.000119832235", + "0.00015953313", + "0.0", + "1.0", + "AAADVQLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "701.39404", + "0.0010375977" + ], + [ + "5", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEADDIFGELSSGK2", + "AAAEADDIFGELSSGK", + "AAAEADDIFGELSSGK", + "2", + "124", + "0", + "1", + "790.87555", + "P19934", + "P19934", + "TOLA_ECOLI", + "tolA", + "102.35789", + "62.346027", + "104.54801", + "61.24625", + "0.0", + "1.0644443", + "0.0", + "0.0", + "987667.56", + "987667.56", + "969323.6", + "969323.6", + "867402.6", + "0.0014038086", + "1.0", + "0.12193332", + "0.0", + "0.0", + "0.8921607", + "1.1468129", + "0.19816712", + "0.5556846", + "841869900.0", + "684339650.0", + "102.16394", + "102.4549", + "0.07275009", + "0.0", + "987667.5", + "0.0", + "987667.5", + "987667.5", + "0.12193332", + "0.12193332", + "0.12193332", + "0.007065851", + "0.096600726", + "0.007139215", + "0.0", + "0.008451758", + "0.01186899", + "0.0", + "1.0", + "AAAEADDIFGELSSGK2", + "", + "1.0", + "0.0", + "0.0", + "0.028571429", + "0.5675676", + "0.02764423", + "0.028279182", + "0.029045643", + "0.0", + "824.41486", + "0.0012207031" + ], + [ + "6", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAESSIQVK2", + "AAAESSIQVK", + "AAAESSIQVK", + "2", + "189", + "0", + "1", + "502.27457", + "P0A8T7", + "P0A8T7", + "RPOC_ECOLI", + "rpoC", + "40.818455", + "-16.967041", + "39.618042", + "-15.982115", + "0.0", + "0.8604796", + "0.0", + "0.0", + "68653180.0", + "68653180.0", + "59188360.0", + "59188360.0", + "60213604.0", + "0.00018310547", + "1.0", + "0.98619014", + "0.0", + "0.0", + "0.99340165", + "6.5156555", + "1.9736533", + "0.5928819", + "420635070.0", + "449591200.0", + "40.527092", + "41.109886", + "0.2868077", + "0.0", + "135742530.0", + "0.0", + "135742530.0", + "135742530.0", + "0.97769797", + "0.97769797", + "0.97769797", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.00022177867", + "0.00035893754", + "0.0", + "1.0", + "AAAESSIQVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.3559", + "0.0005493164" + ], + [ + "7", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK", + "AAAEVGAPFIEIHTGCYADAK", + "3", + "205", + "0", + "1", + "731.0211", + "P0A794", + "P0A794", + "PDXJ_ECOLI", + "pdxJ", + "93.420525", + "51.298367", + "95.98912", + "49.67698", + "0.0", + "0.97043586", + "0.0", + "0.0", + "21573336.0", + "21573336.0", + "22895202.0", + "22895202.0", + "20004146.0", + "0.00079345703", + "1.0", + "0.9457609", + "0.0", + "0.0", + "0.9556992", + "5.614942", + "0.9625929", + "0.96859276", + "600740350.0", + "620459650.0", + "92.98384", + "93.760704", + "0.41035897", + "0.0", + "39017516.0", + "0.0", + "39017516.0", + "39017516.0", + "0.86302906", + "0.86302906", + "0.86302906", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "[P0A794:C158]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "811.3876", + "0.0022583008" + ], + [ + "8", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR2", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "2", + "213", + "0", + "1", + "844.4361", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.206535", + "55.172043", + "98.40381", + "56.774063", + "0.0", + "1.1086445", + "0.0", + "0.0", + "590610400.0", + "590610400.0", + "664060740.0", + "664060740.0", + "537971200.0", + "0.0005493164", + "1.0", + "0.69137955", + "0.0", + "0.0", + "0.97497547", + "5.0616074", + "3.4223218", + "0.9900597", + "583057200.0", + "626362800.0", + "99.01234", + "99.69194", + "0.28078166", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.5241153e-06", + "2.3548791e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1327.6852", + "0.0012207031" + ], + [ + "9", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR3", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "3", + "214", + "0", + "1", + "563.29315", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.32842", + "55.172043", + "98.40381", + "57.41639", + "0.0", + "0.90191376", + "0.0", + "0.0", + "70214264.0", + "70214264.0", + "64663430.0", + "64663430.0", + "64823516.0", + "0.00018310547", + "1.0", + "0.9844389", + "0.0", + "0.0", + "0.9685039", + "6.3540897", + "0.8979662", + "0.98694193", + "604663900.0", + "621195400.0", + "98.98892", + "99.619675", + "0.24378972", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "5.422538e-06", + "0.0", + "3.834282e-06", + "5.422538e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "393.70886", + "-0.00021362305" + ], + [ + "10", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAGISETLLR2", + "AAAGISETLLR", + "AAAGISETLLR", + "2", + "231", + "0", + "1", + "551.3168", + "P00935", + "P00935", + "METB_ECOLI", + "metB", + "78.551445", + "34.235195", + "79.89243", + "31.955782", + "0.0", + "0.9136672", + "0.0", + "0.0", + "9205300.0", + "9205300.0", + "7925204.0", + "7925204.0", + "7566976.0", + "0.00018310547", + "1.0", + "0.8986022", + "0.0", + "0.0", + "0.93385655", + "5.2695966", + "1.9842398", + "0.9301016", + "860745300.0", + "767963500.0", + "78.20871", + "78.89107", + "0.28478286", + "0.0", + "9636097.0", + "0.0", + "9636097.0", + "9636097.0", + "0.967955", + "0.967955", + "0.967955", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAGISETLLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "271.14008", + "0.0010681152" + ], + [ + "11", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIAYAR2", + "AAAIAYAR", + "AAAIAYAR", + "2", + "264", + "0", + "1", + "403.72958", + "P0AG84", + "P0AG84", + "YGHA_ECOLI", + "yghA", + "44.16412", + "-12.755369", + "43.757565", + "-11.295829", + "0.0", + "0.802654", + "0.0", + "0.0", + "1316254.8", + "1316254.8", + "1785789.4", + "1785789.4", + "771801.0", + "0.00033569336", + "1.0", + "0.8577426", + "0.0", + "0.0", + "0.2958416", + "4.2764664", + "1.3657955", + "0.67840135", + "901996700.0", + "918440100.0", + "43.824783", + "44.407032", + "0.42865494", + "0.0", + "18808108.0", + "0.0", + "18808108.0", + "18808108.0", + "0.95981085", + "0.95981085", + "0.95981085", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAIAYAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "593.3406", + "0.0026855469" + ], + [ + "12", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIC(UniMod:4)AER2", + "AAAIC(UniMod:4)AER", + "AAAICAER", + "2", + "269", + "0", + "1", + "431.216", + "P0A9M8", + "P0A9M8", + "PTA_ECOLI", + "pta", + "31.925087", + "-27.066788", + "33.41249", + "-25.78823", + "0.0", + "0.8097701", + "0.0", + "0.0", + "571500.1", + "571500.1", + "297236.94", + "297236.94", + "277989.7", + "0.0", + "1.0", + "0.8485891", + "0.0", + "0.0", + "0.8154417", + "3.0258095", + "0.7766815", + "0.0", + "165218400.0", + "163403330.0", + "31.68209", + "32.119316", + "0.23412684", + "0.0", + "77180104.0", + "0.0", + "77180104.0", + "77180104.0", + "0.9837814", + "0.9837814", + "0.9837814", + "0.00095205125", + "0.011658683", + "0.0010386014", + "0.0", + "0.0013630168", + "0.0016382998", + "0.0", + "1.0", + "AAAIC(UniMod:4)AER2", + "[P0A9M8:C424]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "535.2293", + "-0.006713867" + ], + [ + "13", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAALAAADAR2", + "AAALAAADAR", + "AAALAAADAR", + "2", + "316", + "0", + "1", + "450.7485", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "40.28075", + "-16.91546", + "40.494534", + "-16.164911", + "0.0", + "0.83690274", + "0.0", + "0.0", + "249159380.0", + "249159380.0", + "238044860.0", + "238044860.0", + "234785490.0", + "-0.00079345703", + "1.0", + "0.9864738", + "0.0", + "0.0", + "0.9906313", + "6.9015007", + "2.9800456", + "0.994135", + "669318460.0", + "642184600.0", + "39.89198", + "40.52356", + "0.32557887", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-05", + "0.00019478938", + "0.00019942167", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAALAAADAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.2944", + "-0.00030517578" + ], + [ + "14", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAPAFSEESIR2", + "AAAPAFSEESIR", + "AAAPAFSEESIR", + "2", + "398", + "0", + "1", + "624.8146", + "P08142", + "P08142", + "ILVB_ECOLI", + "ilvB", + "69.67013", + "17.595957", + "67.82137", + "21.751873", + "0.0", + "0.95711935", + "0.0", + "0.0", + "5982976.5", + "5982976.5", + "6234872.0", + "6234872.0", + "4715585.5", + "0.0010986328", + "1.0", + "0.9502138", + "0.0", + "0.0", + "0.8272268", + "4.9783382", + "0.68951464", + "0.8171237", + "806941600.0", + "851504400.0", + "69.427155", + "70.10676", + "0.31591344", + "0.0", + "5982976.5", + "0.0", + "5982976.5", + "5982976.5", + "0.9502138", + "0.9502138", + "0.9502138", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAPAFSEESIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "518.2589", + "6.1035156e-05" + ], + [ + "15", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAQLQQGLADTSDENLK2", + "AAAQLQQGLADTSDENLK", + "AAAQLQQGLADTSDENLK", + "2", + "429", + "0", + "1", + "936.9685", + "P76576", + "P76576", + "YFGM_ECOLI", + "yfgM", + "73.92252", + "26.326391", + "75.514366", + "26.570925", + "0.0", + "1.1768218", + "0.0", + "0.0", + "1673985.8", + "1673985.8", + "2157632.5", + "2157632.5", + "1085307.2", + "0.0", + "1.0", + "0.86881787", + "0.0", + "0.0", + "0.80435896", + "5.4468393", + "1.7003247", + "0.7718048", + "893386240.0", + "991242000.0", + "73.82548", + "74.262184", + "0.27614152", + "0.0", + "1673985.9", + "0.0", + "1673985.9", + "1673985.9", + "0.86881787", + "0.86881787", + "0.86881787", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAQLQQGLADTSDENLK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "342.1772", + "0.00064086914" + ], + [ + "16", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAASHLVR2", + "AAASHLVR", + "AAASHLVR", + "2", + "500", + "0", + "1", + "412.7405", + "P0AET8", + "P0AET8", + "HDHA_ECOLI", + "hdhA", + "23.709194", + "-33.986176", + "27.357487", + "-36.831825", + "0.0", + "0.8146272", + "0.0", + "0.0", + "2015989.4", + "2015989.4", + "1642456.9", + "1642456.9", + "1693433.9", + "-0.00024414062", + "1.0", + "0.9366546", + "0.0", + "0.0", + "0.89273024", + "6.2581363", + "0.5348917", + "0.9736561", + "15688434.0", + "16270505.0", + "23.563482", + "23.9038", + "0.12379906", + "0.0", + "62128812.0", + "0.0", + "62128812.0", + "62128812.0", + "0.81174695", + "0.81174695", + "0.81174695", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAASHLVR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "341.70337", + "-0.0007019043" + ], + [ + "17", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "AAATGEALSLVC(UniMod:4)VDEHK", + "AAATGEALSLVCVDEHK", + "3", + "537", + "0", + "1", + "590.9612", + "P25888", + "P25888", + "RHLE_ECOLI", + "rhlE", + "80.39914", + "39.111588", + "84.24667", + "34.261047", + "0.0", + "0.89202386", + "0.0", + "0.0", + "734635.6", + "734635.6", + "977589.56", + "977589.56", + "686336.9", + "0.0010375977", + "1.0", + "0.6546537", + "0.0", + "0.0", + "0.38540652", + "1.7331743", + "0.0", + "0.5563414", + "1140822700.0", + "1047089500.0", + "80.30209", + "80.49616", + "0.07276726", + "0.0", + "5998876.0", + "0.0", + "5998876.0", + "5998876.0", + "0.42509428", + "0.42509428", + "0.42509428", + "0.002201604", + "0.026073128", + "0.002280412", + "0.0", + "0.0022290102", + "0.0034667768", + "0.0", + "1.0", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "[P25888:C350]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1086.5248", + "0.01550293" + ], + [ + "18", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK2", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "2", + "547", + "0", + "1", + "838.9116", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.638172", + "6.2113576", + "60.591183", + "8.781703", + "0.0", + "1.105177", + "0.0", + "0.0", + "64499790.0", + "64499790.0", + "58886880.0", + "58886880.0", + "59196744.0", + "0.00048828125", + "1.0", + "0.9908719", + "0.0", + "0.0", + "0.98715895", + "6.894661", + "1.9770116", + "0.969655", + "710916400.0", + "675191940.0", + "59.29827", + "59.929302", + "0.31421912", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.0186795e-06", + "6.995294e-06", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK2", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "645.32025", + "0.00079345703" + ], + [ + "19", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK3", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "3", + "548", + "0", + "1", + "559.61017", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.664837", + "6.2113576", + "60.591183", + "8.985086", + "0.0", + "0.8728873", + "0.0", + "0.0", + "5298862.0", + "5298862.0", + "5148599.5", + "5148599.5", + "5150481.0", + "0.00018310547", + "1.0", + "0.5086611", + "0.0", + "0.0", + "0.7988776", + "3.010162", + "0.0", + "0.95376974", + "675191940.0", + "705779300.0", + "59.325485", + "59.76188", + "0.29714456", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "1.4628691e-05", + "1.4628691e-05", + "0.00035893754", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK3", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "429.2456", + "0.0010681152" + ], + [ + "20", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQHNLEVLASR3", + "AAATQHNLEVLASR", + "AAATQHNLEVLASR", + "3", + "552", + "0", + "1", + "494.26706", + "P0ABQ0", + "P0ABQ0", + "COABC_ECOLI", + "coaBC", + "58.301556", + "8.126932", + "58.213245", + "6.339929", + "0.0", + "0.81177694", + "0.0", + "0.0", + "21642576.0", + "21642576.0", + "28040164.0", + "28040164.0", + "21112072.0", + "0.0011901855", + "1.0", + "0.8000993", + "0.0", + "0.0", + "0.0", + "4.5929427", + "0.4240915", + "0.3084519", + "686155260.0", + "665677500.0", + "58.059067", + "58.544544", + "0.3010973", + "0.0", + "21642576.0", + "0.0", + "21642576.0", + "21642576.0", + "0.8000993", + "0.8000993", + "0.8000993", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAATQHNLEVLASR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "545.3406", + "-0.005004883" + ], + [ + "21", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAAFAEWGQTTPK3", + "AADAAFAEWGQTTPK", + "AADAAFAEWGQTTPK", + "3", + "632", + "0", + "1", + "521.91943", + "P77674", + "P77674", + "ABDH_ECOLI", + "patD", + "81.266945", + "40.291775", + "82.119934", + "35.698925", + "0.0", + "0.86976653", + "0.0", + "0.0", + "5242987.0", + "5242987.0", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.97488064", + "0.0", + "0.0", + "0.0", + "4.6458707", + "0.0", + "0.0", + "1078702800.0", + "1228739100.0", + "80.97595", + "81.60664", + "0.30355465", + "0.0", + "490309730.0", + "0.0", + "490309730.0", + "490309730.0", + "0.99679875", + "0.99679875", + "0.99679875", + "0.0001947799", + "0.0036620705", + "0.00029216986", + "0.0", + "0.0053409706", + "0.006091772", + "0.0", + "1.0", + "AADAAFAEWGQTTPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "400.18268", + "0.00030517578" + ], + [ + "22", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "3", + "638", + "0", + "1", + "931.8212", + "P33232", + "P33232", + "LLDD_ECOLI", + "lldD", + "124.85556", + "95.393196", + "130.38431", + "91.264404", + "0.0", + "1.0574688", + "0.0", + "0.0", + "77785.11", + "77785.11", + "104206.56", + "104206.56", + "0.0", + "0.0", + "1.0", + "0.3175594", + "0.0", + "0.0", + "0.0", + "1.7876791", + "0.0", + "0.0", + "179140050.0", + "182702220.0", + "124.75574", + "124.95271", + "0.074884415", + "0.0", + "1833752.2", + "0.0", + "1833752.2", + "1833752.2", + "0.8396257", + "0.8396257", + "0.8396257", + "0.0010312822", + "0.011658683", + "0.0011172224", + "0.0", + "0.0018053645", + "0.0027950038", + "0.0", + "1.0", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "[P33232:C111]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1412.7454", + "-0.016357422" + ], + [ + "23", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADEGLEVK2", + "AADEGLEVK", + "AADEGLEVK", + "2", + "706", + "0", + "1", + "466.2402", + "P15639", + "P15639", + "PUR9_ECOLI", + "purH", + "45.382343", + "-10.578891", + "45.980556", + "-9.825813", + "0.0", + "0.8359929", + "0.0", + "0.0", + "153085760.0", + "153085760.0", + "138279150.0", + "138279150.0", + "136599680.0", + "0.00018310547", + "1.0", + "0.9861937", + "0.0", + "0.0", + "0.9797145", + "6.8830585", + "1.431289", + "0.9854878", + "555958400.0", + "589427650.0", + "45.042305", + "45.673447", + "0.3254246", + "0.0", + "197813780.0", + "0.0", + "197813780.0", + "197813780.0", + "0.9848251", + "0.9848251", + "0.9848251", + "1.1841555e-06", + "1.9478937e-06", + "1.1841555e-06", + "0.0", + "0.000119832235", + "0.00015951775", + "0.0", + "1.0", + "AADEGLEVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "860.436", + "0.0021972656" + ], + [ + "24", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR2", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "2", + "775", + "0", + "1", + "952.4371", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.55485", + "41.7659", + "90.38439", + "45.32776", + "0.0", + "1.1736622", + "0.0", + "0.0", + "6539769.0", + "6539769.0", + "6286169.0", + "6286169.0", + "5616604.0", + "-0.00018310547", + "1.0", + "0.720854", + "0.0", + "0.0", + "0.9051132", + "4.788562", + "0.0", + "0.96589357", + "821253300.0", + "789920900.0", + "89.26371", + "89.846085", + "0.09049349", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.522042e-06", + "7.663706e-06", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "818.3315", + "-0.0005493164" + ], + [ + "25", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR3", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "3", + "776", + "0", + "1", + "635.29376", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.52821", + "41.7659", + "90.38439", + "45.21288", + "0.0", + "0.94026244", + "0.0", + "0.0", + "3315591.5", + "3315591.5", + "3435347.2", + "3435347.2", + "2989024.8", + "0.00012207031", + "1.0", + "0.7603821", + "0.0", + "0.0", + "0.8769604", + "3.057929", + "0.0", + "0.937624", + "875894200.0", + "821253300.0", + "89.28592", + "89.819466", + "0.27418387", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "931.4156", + "0.009765625" + ], + [ + "26", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK2", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "2", + "794", + "0", + "1", + "971.5282", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.52126", + "102.333176", + "131.15799", + "99.58934", + "0.0", + "1.2082555", + "0.0", + "0.0", + "11768890.0", + "11768890.0", + "10098005.0", + "10098005.0", + "9879739.0", + "0.001953125", + "1.0", + "0.9270581", + "0.0", + "0.0", + "0.9587445", + "6.4231935", + "2.2982807", + "0.99356806", + "346843420.0", + "343348540.0", + "129.27815", + "129.81258", + "0.26670924", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1118.5688", + "-0.0013427734" + ], + [ + "27", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK3", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "3", + "795", + "0", + "1", + "648.02124", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.49579", + "102.333176", + "131.15799", + "99.237206", + "0.0", + "0.9755506", + "0.0", + "0.0", + "5831566.5", + "5831566.5", + "5678113.5", + "5678113.5", + "5321460.5", + "6.1035156e-05", + "1.0", + "0.8908107", + "0.0", + "0.0", + "0.91466933", + "5.089149", + "0.0", + "0.95213616", + "346843420.0", + "343348540.0", + "129.30157", + "129.73882", + "0.2509879", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0026550293" + ], + [ + "28", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK2", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "2", + "825", + "0", + "1", + "740.4301", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.80189", + "67.758026", + "109.88321", + "64.94934", + "0.0", + "1.0728568", + "0.0", + "0.0", + "123073600.0", + "123073600.0", + "113322660.0", + "113322660.0", + "109594280.0", + "0.0005493164", + "1.0", + "0.6734924", + "0.0", + "0.0", + "0.99421567", + "5.0390263", + "1.7109023", + "0.9851098", + "426308030.0", + "504281540.0", + "105.51072", + "106.19015", + "0.18242767", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "1.2291321e-06", + "1.9478937e-06", + "0.00015953268", + "0.0", + "0.000119832235", + "0.00015953268", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1010.5993", + "-0.00048828125" + ], + [ + "29", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK3", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "3", + "826", + "0", + "1", + "493.95584", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.78095", + "67.758026", + "109.88321", + "64.92609", + "0.0", + "0.86559445", + "0.0", + "0.0", + "27001664.0", + "27001664.0", + "26015190.0", + "26015190.0", + "25650814.0", + "0.00015258789", + "1.0", + "0.9743886", + "0.0", + "0.0", + "0.97202075", + "6.2575827", + "1.7785354", + "0.9863196", + "425179200.0", + "426308030.0", + "105.48976", + "106.12093", + "0.3258582", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "514.2984", + "0.0006713867" + ], + [ + "30", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADNKSLGQFNLDGINPAPR3", + "AADNKSLGQFNLDGINPAPR", + "AADNKSLGQFNLDGINPAPR", + "3", + "884", + "0", + "1", + "700.0274", + "P0A6Y8", + "P0A6Y8", + "DNAK_ECOLI", + "dnaK", + "88.41845", + "53.373013", + "96.38754", + "44.248936", + "0.0", + "0.9205765", + "0.0", + "0.0", + "2014406.0", + "2014406.0", + "2318806.5", + "2318806.5", + "925617.25", + "0.0", + "1.0", + "0.8834976", + "0.0", + "0.0", + "0.6073868", + "4.048474", + "0.0", + "0.0", + "1398788600.0", + "1652747100.0", + "88.22464", + "88.80648", + "0.4029023", + "0.0", + "528809730.0", + "0.0", + "528809730.0", + "528809730.0", + "0.9646322", + "0.9646322", + "0.9646322", + "0.0003686296", + "0.0036620705", + "0.00046078704", + "0.0", + "0.050652087", + "0.056812774", + "0.0", + "1.0", + "AADNKSLGQFNLDGINPAPR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "440.2616", + "0.0024414062" + ], + [ + "31", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "AADSC(UniMod:4)HVSQPTLSGQIR", + "AADSCHVSQPTLSGQIR", + "3", + "929", + "0", + "1", + "609.63196", + "P0ACQ4", + "P0ACQ4", + "OXYR_ECOLI", + "oxyR", + "58.21326", + "5.008134", + "57.742092", + "6.152042", + "0.0", + "0.86223096", + "0.0", + "0.0", + "14137073.0", + "14137073.0", + "13011373.0", + "13011373.0", + "13712340.0", + "0.00030517578", + "1.0", + "0.83560085", + "0.0", + "0.0", + "0.7753711", + "5.0263877", + "0.81187373", + "0.8735103", + "644759200.0", + "662432300.0", + "57.970203", + "58.40748", + "0.18644737", + "0.0", + "48629056.0", + "0.0", + "48629056.0", + "48629056.0", + "0.9219536", + "0.9219536", + "0.9219536", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1983224e-06", + "1.9222603e-06", + "0.0", + "1.0", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "[P0ACQ4:C25]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "774.44684", + "0.0015258789" + ], + [ + "32", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADVHLC(UniMod:4)VK2", + "AADVHLC(UniMod:4)VK", + "AADVHLCVK", + "2", + "964", + "0", + "1", + "506.76584", + "P45395", + "P45395", + "KDSD_ECOLI", + "kdsD", + "45.045246", + "-5.750933", + "47.869987", + "-10.058963", + "0.0", + "0.87408507", + "0.0", + "0.0", + "1718921.0", + "1718921.0", + "1069094.5", + "1069094.5", + "1407849.6", + "0.0004272461", + "1.0", + "0.7300319", + "0.0", + "0.0", + "0.6207463", + "3.2565506", + "1.1316797", + "0.7533607", + "353855840.0", + "403993300.0", + "44.89996", + "45.19117", + "0.13195394", + "0.0", + "11497942.0", + "0.0", + "11497942.0", + "11497942.0", + "0.7444782", + "0.7444782", + "0.7444782", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.925552e-06", + "4.21584e-06", + "0.0", + "1.0", + "AADVHLC(UniMod:4)VK2", + "[P45395:C146]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "519.29596", + "0.002380371" + ], + [ + "33", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEAVIIDTIR2", + "AAEAVIIDTIR", + "AAEAVIIDTIR", + "2", + "1052", + "0", + "1", + "586.3377", + "P0ADG4", + "P0ADG4", + "SUHB_ECOLI", + "suhB", + "88.26376", + "42.97589", + "88.241714", + "43.108944", + "0.0", + "0.94074327", + "0.0", + "0.0", + "28097418.0", + "28097418.0", + "27610082.0", + "27610082.0", + "24713134.0", + "-0.0006713867", + "1.0", + "0.9689099", + "0.0", + "0.0", + "0.8944861", + "6.624495", + "3.5546937", + "0.8928653", + "803579140.0", + "1021073900.0", + "87.8757", + "88.603386", + "0.3242042", + "0.0", + "28097418.0", + "0.0", + "28097418.0", + "28097418.0", + "0.9689099", + "0.9689099", + "0.9689099", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAEAVIIDTIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "829.51416", + "0.0025024414" + ], + [ + "34", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEEAFR2", + "AAEEAFR", + "AAEEAFR", + "2", + "1075", + "0", + "1", + "397.1956", + "P21165", + "P21165", + "PEPQ_ECOLI", + "pepQ", + "35.711937", + "-17.198992", + "39.371098", + "-21.21893", + "0.0", + "0.7815424", + "0.0", + "0.0", + "8971166.0", + "8971166.0", + "8599221.0", + "8599221.0", + "8410514.0", + "-0.00088500977", + "1.0", + "0.95596766", + "0.0", + "0.0", + "0.9741072", + "4.954106", + "0.87492824", + "0.97103006", + "258507520.0", + "277407400.0", + "35.42042", + "36.10053", + "0.3008589", + "0.0", + "79750740.0", + "0.0", + "79750740.0", + "79750740.0", + "0.98041433", + "0.98041433", + "0.98041433", + "1.7822638e-05", + "1.7822638e-05", + "1.7822638e-05", + "0.0", + "0.00022177867", + "0.00044233107", + "0.0", + "1.0", + "AAEEAFR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "722.3468", + "0.004638672" + ], + [ + "35", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK3", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK", + "AAEGIAPKPLDANQMAALVELLK", + "3", + "1134", + "0", + "1", + "793.7699", + "P36683", + "P36683", + "ACNB_ECOLI", + "acnB", + "112.99285", + "76.778725", + "114.356186", + "74.95788", + "0.0", + "0.987832", + "0.0", + "0.0", + "1294528.2", + "1294528.2", + "2726475.2", + "2726475.2", + "997040.4", + "0.004211426", + "1.0", + "0.62068915", + "0.0", + "0.0", + "0.8252063", + "3.1483374", + "0.6531393", + "0.7315975", + "501934400.0", + "418322880.0", + "112.75", + "113.3324", + "0.4064182", + "0.0", + "688585150.0", + "0.0", + "688585150.0", + "688585150.0", + "0.9442582", + "0.9442582", + "0.9442582", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAEGIAPKPLDANQM(UniMod:35){1.000000}AALVELLK3", + "[P36683:M27]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "329.14557", + "0.00036621094" + ], + [ + "36", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK2", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "2", + "1171", + "0", + "1", + "834.4429", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.844376", + "38.029137", + "82.05038", + "31.588327", + "0.0", + "1.1397063", + "0.0", + "0.0", + "778467.5", + "778467.5", + "682096.6", + "682096.6", + "518027.94", + "0.0028686523", + "1.0", + "0.4717078", + "0.0", + "0.0", + "0.5071717", + "2.9717689", + "1.8750236", + "0.66830456", + "1169947900.0", + "1120576300.0", + "77.26175", + "78.03854", + "0.22015776", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0010350993", + "0.0011739385", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK2", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "635.35114", + "0.0008544922" + ], + [ + "37", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK3", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "3", + "1172", + "0", + "1", + "556.63104", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.821", + "38.029137", + "82.05038", + "31.573114", + "0.0", + "0.8493062", + "0.0", + "0.0", + "15018206.0", + "15018206.0", + "25544548.0", + "25544548.0", + "14102344.0", + "6.1035156e-05", + "1.0", + "0.638456", + "0.0", + "0.0", + "0.7257927", + "3.071986", + "0.0", + "0.9269335", + "987974850.0", + "1169947900.0", + "77.23835", + "78.2093", + "0.37308988", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "0.0011710582", + "0.011658683", + "0.022141015", + "0.0", + "0.019180777", + "0.022141015", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK3", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "920.4506", + "-0.006652832" + ], + [ + "38", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELAGNDTIPVEITR2", + "AAELAGNDTIPVEITR", + "AAELAGNDTIPVEITR", + "2", + "1203", + "0", + "1", + "835.4414", + "P0ACB7", + "P0ACB7", + "HEMY_ECOLI", + "hemY", + "92.55462", + "44.613483", + "91.74687", + "49.380917", + "0.0", + "1.100099", + "0.0", + "0.0", + "2065169.5", + "2065169.5", + "2777191.5", + "2777191.5", + "1018370.9", + "-0.00012207031", + "1.0", + "0.9660883", + "0.0", + "0.0", + "0.7852382", + "5.258746", + "1.5672374", + "0.93024945", + "1214181800.0", + "1343128200.0", + "92.31227", + "92.79749", + "0.27851662", + "0.0", + "2101538.0", + "0.0", + "2101538.0", + "2101538.0", + "0.80221117", + "0.80221117", + "0.80221117", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAELAGNDTIPVEITR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1285.6747", + "0.011108398" + ], + [ + "39", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELSGLTHSAISTIEQDK3", + "AAELSGLTHSAISTIEQDK", + "AAELSGLTHSAISTIEQDK", + "3", + "1241", + "0", + "1", + "657.6725", + "P0A9U6", + "P0A9U6", + "PUUR_ECOLI", + "puuR", + "92.83261", + "52.800926", + "95.38884", + "49.440197", + "0.0", + "0.90168226", + "0.0", + "0.0", + "1559440.0", + "1559440.0", + "4588269.0", + "4588269.0", + "1107571.6", + "-6.1035156e-05", + "1.0", + "0.829134", + "0.0", + "0.0", + "0.65697545", + "4.8367305", + "0.8680101", + "0.85241157", + "1244536400.0", + "1142363000.0", + "92.687454", + "93.12392", + "0.27198178", + "0.0", + "16596189.0", + "0.0", + "16596189.0", + "16596189.0", + "0.8498309", + "0.8498309", + "0.8498309", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0005226299", + "0.00051727705", + "0.0", + "1.0", + "AAELSGLTHSAISTIEQDK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "793.90466", + "0.0048828125" + ], + [ + "40", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R2", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "2", + "1277", + "0", + "1", + "910.4176", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.71746", + "59.33595", + "102.491844", + "59.59053", + "0.0", + "1.1293542", + "0.0", + "0.0", + "35468964.0", + "35468964.0", + "27665188.0", + "27665188.0", + "27662706.0", + "-0.00018310547", + "1.0", + "0.9918874", + "0.0", + "0.0", + "0.98318624", + "6.8573484", + "0.9958743", + "0.9957494", + "383825760.0", + "344968580.0", + "100.42619", + "101.05705", + "0.33605525", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R2", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1320.6252", + "0.0007324219" + ], + [ + "41", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R3", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "3", + "1278", + "0", + "1", + "607.2808", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.64509", + "59.33595", + "102.491844", + "60.003082", + "0.0", + "0.92753696", + "0.0", + "0.0", + "13152284.0", + "13152284.0", + "13149464.0", + "13149464.0", + "12741688.0", + "0.00061035156", + "1.0", + "0.6915186", + "0.0", + "0.0", + "0.72929275", + "4.1023116", + "1.3746892", + "0.87355685", + "394104060.0", + "383825760.0", + "100.49975", + "100.93643", + "0.13069002", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R3", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "839.37164", + "-0.0015258789" + ], + [ + "42", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEQLGQANSAVSR2", + "AAEQLGQANSAVSR", + "AAEQLGQANSAVSR", + "2", + "1301", + "0", + "1", + "701.35767", + "P30864", + "P30864", + "YAFC_ECOLI", + "yafC", + "48.169655", + "-9.248929", + "47.460194", + "-7.1125617", + "0.0", + "1.0064552", + "0.0", + "0.0", + "2426344.5", + "2426344.5", + "1100771.5", + "1100771.5", + "1100771.5", + "-0.00030517578", + "1.0", + "0.54000485", + "0.0", + "0.0", + "0.645773", + "3.2920668", + "0.56579524", + "0.639474", + "537066430.0", + "489363040.0", + "47.926537", + "48.412094", + "0.24718998", + "0.0", + "2426344.5", + "0.0", + "2426344.5", + "2426344.5", + "0.54000485", + "0.54000485", + "0.54000485", + "0.0011710582", + "0.011658683", + "0.0012547051", + "0.0", + "0.0022290102", + "0.0032603245", + "0.0", + "1.0", + "AAEQLGQANSAVSR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "889.4486", + "0.006652832" + ], + [ + "43", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAESALNIDVPVNAQYIR2", + "AAESALNIDVPVNAQYIR", + "AAESALNIDVPVNAQYIR", + "2", + "1346", + "0", + "1", + "972.5129", + "P0ACE0", + "P0ACE0", + "MBHM_ECOLI", + "hybC", + "106.4501", + "63.976006", + "106.3041", + "65.58738", + "0.0", + "1.192544", + "0.0", + "0.0", + "115423.8", + "115423.8", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.14110963", + "0.0", + "0.0", + "0.0", + "0.96301436", + "0.0", + "0.0", + "413169100.0", + "458511840.0", + "106.30478", + "106.59692", + "0.17054091", + "0.0", + "1231022.1", + "0.0", + "1231022.1", + "1231022.1", + "0.443667", + "0.443667", + "0.443667", + "0.00687235", + "0.096600726", + "0.0069459677", + "0.0", + "0.027691884", + "0.03497582", + "0.0", + "1.0", + "AAESALNIDVPVNAQYIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1174.6215", + "0.0" + ], + [ + "44", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEVLVVDTR2", + "AAEVLVVDTR", + "AAEVLVVDTR", + "2", + "1439", + "0", + "1", + "536.80347", + "P76116", + "P76116", + "YNCE_ECOLI", + "yncE", + "69.12997", + "18.1098", + "68.80989", + "20.39872", + "0.0", + "0.9022431", + "0.0", + "0.0", + "15261269.0", + "15261269.0", + "13799797.0", + "13799797.0", + "13161172.0", + "0.0006713867", + "1.0", + "0.8059485", + "0.0", + "0.0", + "0.94272983", + "6.048667", + "2.4350483", + "0.9846432", + "815928700.0", + "865392100.0", + "68.887566", + "69.517746", + "0.28593954", + "0.0", + "29748434.0", + "0.0", + "29748434.0", + "29748434.0", + "0.97279036", + "0.97279036", + "0.97279036", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.7919564e-06", + "4.038439e-06", + "0.0", + "1.0", + "AAEVLVVDTR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0035705566" + ], + [ + "45", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDDAIAAR2", + "AAFDDAIAAR", + "AAFDDAIAAR", + "2", + "1480", + "0", + "1", + "510.7591", + "P0ABC7", + "P0ABC7", + "HFLK_ECOLI", + "hflK", + "69.22526", + "20.680796", + "70.90652", + "20.603237", + "0.0", + "0.874018", + "0.0", + "0.0", + "4191834.5", + "4191834.5", + "5319950.0", + "5319950.0", + "3585247.0", + "0.00091552734", + "1.0", + "0.91427785", + "0.0", + "0.0", + "0.84949213", + "5.577577", + "0.20540452", + "0.8701518", + "874820030.0", + "942318850.0", + "69.07937", + "69.56425", + "0.31091535", + "0.0", + "6749399.5", + "0.0", + "6749399.5", + "6749399.5", + "0.3634465", + "0.3634465", + "0.3634465", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAFDDAIAAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "616.3413", + "0.0049438477" + ], + [ + "46", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER2", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "2", + "1493", + "0", + "1", + "803.3864", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.30761", + "31.610626", + "76.97953", + "30.905209", + "0.0", + "1.1188899", + "0.0", + "0.0", + "6226086.5", + "6226086.5", + "6581563.0", + "6581563.0", + "5416400.0", + "0.00048828125", + "1.0", + "0.87343264", + "0.0", + "0.0", + "0.83749926", + "5.453828", + "0.9509031", + "0.88552314", + "835704500.0", + "847041660.0", + "77.11338", + "77.74489", + "0.33347782", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "7.2828416e-06", + "1.0001863e-05", + "0.0", + "1.0", + "AAFDFAVEHQSVER2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "732.3493", + "0.005065918" + ], + [ + "47", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER3", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "3", + "1494", + "0", + "1", + "535.9267", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.28542", + "31.610626", + "76.97953", + "30.868996", + "0.0", + "0.85347503", + "0.0", + "0.0", + "34672812.0", + "34672812.0", + "35916796.0", + "35916796.0", + "30941520.0", + "0.00012207031", + "1.0", + "0.9381459", + "0.0", + "0.0", + "0.96926254", + "4.7819843", + "0.0", + "0.9832147", + "809092540.0", + "835704500.0", + "77.04237", + "77.77095", + "0.34891692", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "2.9257258e-06", + "2.9257258e-06", + "0.00044233107", + "0.0", + "0.0004361099", + "0.00044233107", + "0.0", + "1.0", + "AAFDFAVEHQSVER3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "601.30164", + "0.0" + ], + [ + "48", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFLAVDNHK2", + "AAFLAVDNHK", + "AAFLAVDNHK", + "2", + "1573", + "0", + "1", + "543.2905", + "P30958", + "P30958", + "MFD_ECOLI", + "mfd", + "52.817375", + "4.7128224", + "55.31082", + "-0.9314743", + "0.0", + "0.92017615", + "0.0", + "0.0", + "608196.8", + "608196.8", + "672072.4", + "672072.4", + "464276.38", + "-0.00030517578", + "1.0", + "0.6241357", + "0.0", + "0.0", + "0.6410963", + "2.881232", + "1.0310254", + "0.7445865", + "810914300.0", + "749407400.0", + "52.6233", + "53.01149", + "0.22651064", + "0.0", + "69954510.0", + "0.0", + "69954510.0", + "69954510.0", + "0.9603192", + "0.9603192", + "0.9603192", + "0.00028754913", + "0.0036620705", + "0.00038339884", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAFLAVDNHK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "683.3471", + "-0.0028076172" + ], + [ + "49", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFNQM(UniMod:35)VQGHK3", + "AAFNQM(UniMod:35)VQGHK", + "AAFNQMVQGHK", + "3", + "1599", + "0", + "1", + "416.20474", + "P0AD59", + "P0AD59", + "IVY_ECOLI", + "ivy", + "32.16641", + "-27.826418", + "31.139164", + "-25.183844", + "0.0", + "0.74429053", + "0.0", + "0.0", + "15223242.0", + "15223242.0", + "13718766.0", + "13718766.0", + "15013976.0", + "-0.00039672852", + "1.0", + "0.68971384", + "0.0", + "0.0", + "0.8479052", + "3.8382869", + "0.3720075", + "0.8248497", + "138829220.0", + "151236850.0", + "31.92391", + "32.40942", + "0.13118525", + "0.0", + "33099992.0", + "0.0", + "33099992.0", + "33099992.0", + "0.9900178", + "0.9900178", + "0.9900178", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1550284e-05", + "1.566858e-05", + "0.0", + "1.0", + "AAFNQM(UniMod:35){1.000000}VQGHK3", + "[P0AD59:M50]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "568.3202", + "-0.0008544922" + ] + ], + "shape": { + "columns": 71, + "rows": 13976 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Run.IndexRunChannelPrecursor.IdModified.SequenceStripped.SequencePrecursor.ChargePrecursor.Lib.IndexDecoyProteotypic...Translated.Q.ValueChannel.Q.ValuePG.Q.ValuePG.PEPGG.Q.ValueProtein.Q.ValueGlobal.PG.Q.ValueLib.PG.Q.ValueBest.Fr.MzBest.Fr.Mz.Delta
00LFQ_Orbitrap_AIF_Ecoli_01AAAAEIAVK2AAAAEIAVKAAAAEIAVK21001...0.00.00.0006460.0012870.000650.0006510.0006460.0317.2183230.000641
10LFQ_Orbitrap_AIF_Ecoli_01AAAAPVTGPLADDPIQETITFDDFAK3AAAAPVTGPLADDPIQETITFDDFAKAAAAPVTGPLADDPIQETITFDDFAK35801...0.00.00.0006460.0012870.000650.0006510.0006460.0214.1186220.001190
20LFQ_Orbitrap_AIF_Ecoli_01AAAAVLAK1AAAAVLAKAAAAVLAK17201...0.00.00.0006460.0012870.000650.0006510.0006460.0384.224152-0.000183
30LFQ_Orbitrap_AIF_Ecoli_01AAADLISR2AAADLISRAAADLISR210701...0.00.00.0006460.0012870.000650.0006510.0006460.0603.346069-0.000244
40LFQ_Orbitrap_AIF_Ecoli_01AAADVQLR2AAADVQLRAAADVQLR211601...0.00.00.0006460.0012870.000650.0006510.0006460.0701.3940430.001038
..................................................................
139710LFQ_Orbitrap_AIF_Ecoli_01YYLNAGVPIEIK2YYLNAGVPIEIKYYLNAGVPIEIK271227601...0.00.00.0006460.0012870.000650.0006510.0006460.0599.3762820.000000
139720LFQ_Orbitrap_AIF_Ecoli_01YYPAEDAK2YYPAEDAKYYPAEDAK271235201...0.00.00.0006460.0012870.000650.0006510.0006460.0315.6582950.000977
139730LFQ_Orbitrap_AIF_Ecoli_01YYPGSPLIAR2YYPGSPLIARYYPGSPLIAR271236201...0.00.00.0006460.0012870.000650.0006510.0006460.0810.4832150.007996
139740LFQ_Orbitrap_AIF_Ecoli_01YYQGTPSPVK2YYQGTPSPVKYYQGTPSPVK271246101...0.00.00.0006460.0012870.000650.0006510.0006460.0527.3187870.000122
139750LFQ_Orbitrap_AIF_Ecoli_01YYSVIYNLIDEVK2YYSVIYNLIDEVKYYSVIYNLIDEVK271262201...0.00.00.0006460.0012870.000650.0006510.0006460.0993.525146-0.005127
\n", + "

13976 rows × 71 columns

\n", + "
" + ], + "text/plain": [ + " Run.Index Run Channel \\\n", + "0 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "1 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "2 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "3 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "4 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "... ... ... ... \n", + "13971 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13972 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13973 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13974 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13975 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "\n", + " Precursor.Id Modified.Sequence \\\n", + "0 AAAAEIAVK2 AAAAEIAVK \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK3 AAAAPVTGPLADDPIQETITFDDFAK \n", + "2 AAAAVLAK1 AAAAVLAK \n", + "3 AAADLISR2 AAADLISR \n", + "4 AAADVQLR2 AAADVQLR \n", + "... ... ... \n", + "13971 YYLNAGVPIEIK2 YYLNAGVPIEIK \n", + "13972 YYPAEDAK2 YYPAEDAK \n", + "13973 YYPGSPLIAR2 YYPGSPLIAR \n", + "13974 YYQGTPSPVK2 YYQGTPSPVK \n", + "13975 YYSVIYNLIDEVK2 YYSVIYNLIDEVK \n", + "\n", + " Stripped.Sequence Precursor.Charge Precursor.Lib.Index \\\n", + "0 AAAAEIAVK 2 10 \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK 3 58 \n", + "2 AAAAVLAK 1 72 \n", + "3 AAADLISR 2 107 \n", + "4 AAADVQLR 2 116 \n", + "... ... ... ... \n", + "13971 YYLNAGVPIEIK 2 712276 \n", + "13972 YYPAEDAK 2 712352 \n", + "13973 YYPGSPLIAR 2 712362 \n", + "13974 YYQGTPSPVK 2 712461 \n", + "13975 YYSVIYNLIDEVK 2 712622 \n", + "\n", + " Decoy Proteotypic ... Translated.Q.Value Channel.Q.Value PG.Q.Value \\\n", + "0 0 1 ... 0.0 0.0 0.000646 \n", + "1 0 1 ... 0.0 0.0 0.000646 \n", + "2 0 1 ... 0.0 0.0 0.000646 \n", + "3 0 1 ... 0.0 0.0 0.000646 \n", + "4 0 1 ... 0.0 0.0 0.000646 \n", + "... ... ... ... ... ... ... \n", + "13971 0 1 ... 0.0 0.0 0.000646 \n", + "13972 0 1 ... 0.0 0.0 0.000646 \n", + "13973 0 1 ... 0.0 0.0 0.000646 \n", + "13974 0 1 ... 0.0 0.0 0.000646 \n", + "13975 0 1 ... 0.0 0.0 0.000646 \n", + "\n", + " PG.PEP GG.Q.Value Protein.Q.Value Global.PG.Q.Value \\\n", + "0 0.001287 0.00065 0.000651 0.000646 \n", + "1 0.001287 0.00065 0.000651 0.000646 \n", + "2 0.001287 0.00065 0.000651 0.000646 \n", + "3 0.001287 0.00065 0.000651 0.000646 \n", + "4 0.001287 0.00065 0.000651 0.000646 \n", + "... ... ... ... ... \n", + "13971 0.001287 0.00065 0.000651 0.000646 \n", + "13972 0.001287 0.00065 0.000651 0.000646 \n", + "13973 0.001287 0.00065 0.000651 0.000646 \n", + "13974 0.001287 0.00065 0.000651 0.000646 \n", + "13975 0.001287 0.00065 0.000651 0.000646 \n", + "\n", + " Lib.PG.Q.Value Best.Fr.Mz Best.Fr.Mz.Delta \n", + "0 0.0 317.218323 0.000641 \n", + "1 0.0 214.118622 0.001190 \n", + "2 0.0 384.224152 -0.000183 \n", + "3 0.0 603.346069 -0.000244 \n", + "4 0.0 701.394043 0.001038 \n", + "... ... ... ... \n", + "13971 0.0 599.376282 0.000000 \n", + "13972 0.0 315.658295 0.000977 \n", + "13973 0.0 810.483215 0.007996 \n", + "13974 0.0 527.318787 0.000122 \n", + "13975 0.0 993.525146 -0.005127 \n", + "\n", + "[13976 rows x 71 columns]" + ] + }, + "execution_count": 279, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c36036ad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing DataFrame 1/1: Full search\n", + "Number of IDs in DIANN: 12112\n", + "Number of IDs in PSM (full): 205651\n", + "Number of IDs in PSM (passing): 7268\n", + "\n", + "\n", + "Number of common IDs (full): 11786\n", + "Number of common IDs (passing): 6448\n", + "\n", + "\n", + "Number of IDs in DIANN but not in PSM: (full) 326\n", + "Number of IDs in DIANN but not in PSM (passing): 5664\n", + "#########################\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for i, (name, args) in enumerate(psm_df_dict.items()):\n", + " print(f\"Processing DataFrame {i + 1}/{len(psm_df_dict)}: {name}\")\n", + " df_psm, q_value_column, decoy_column, target_is_true = args\n", + " common_ids, common_passing_ids = follow_diann_ids(\n", + " diann_results,\n", + " df_psm,\n", + " q_value_column=q_value_column,\n", + " decoy_column=decoy_column,\n", + " target_is_true=target_is_true,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 281, + "id": "cce93c61", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'ACDGCLNGEFAALITGPVHK',\n", + " 'ACDLVLK',\n", + " 'ACEEVGFVSR',\n", + " 'ADITLISGSTLGGAEYVAEHLAEK',\n", + " 'ADM[Oxidation]HYIIR',\n", + " 'AEETIFSK',\n", + " 'AEFPASLLILNGK',\n", + " 'AEITASLVK',\n", + " 'AENQYYGTGR',\n", + " 'AESFTTTNR',\n", + " 'AFCEPGK',\n", + " 'AFICSIK',\n", + " 'AFTPFPPR',\n", + " 'AGNTIGQLFR',\n", + " 'AIALVTGGSR',\n", + " 'AIEQTAITR',\n", + " 'AIPAFGLGTFR',\n", + " 'AITGIFFGSDTGNTENIAK',\n", + " 'ALLQISEPGLSAAPHQR',\n", + " 'ALNLQDK',\n", + " 'ANKPSAEELK',\n", + " 'ANPEQLEEQR',\n", + " 'ANPEQLEEQREETR',\n", + " 'ANPLYQK',\n", + " 'ANPTVIK',\n", + " 'ANSITADEIR',\n", + " 'ANVEIYTK',\n", + " 'ANYFNTLNLR',\n", + " 'AQFVYTM[Oxidation]HR',\n", + " 'AQGTLYIVSAPSGAGK',\n", + " 'AQIFNFSSGPAMLPAEVLK',\n", + " 'AQIFNFSSGPAM[Oxidation]LPAEVLK',\n", + " 'AQPAAIIR',\n", + " 'AQQSPYSAAM[Oxidation]AEQR',\n", + " 'AQQTPLYEQHTLCGAR',\n", + " 'AQVAIITASDSGIGK',\n", + " 'ASVQLQNVTK',\n", + " 'ATIHVDGK',\n", + " 'ATVNQLVR',\n", + " 'ATYYSNDFR',\n", + " 'AVTNVAELNALVER',\n", + " 'AVTQTAQACDLVIFGAK',\n", + " 'AYQSQDIIR',\n", + " 'AYTTFSQTK',\n", + " 'CCSDVFNQVVK',\n", + " 'CDSCGQVLYR',\n", + " 'CGIVGAIAQR',\n", + " 'CQEVIDR',\n", + " 'CSFLPEER',\n", + " 'CTEEHQAIVR',\n", + " 'CTQELLFGK',\n", + " 'DAFIDEM[Oxidation]QR',\n", + " 'DALELLINR',\n", + " 'DCFALECEAVK',\n", + " 'DCVVVVR',\n", + " 'DECGCGESFHV',\n", + " 'DFDDAVYCEK',\n", + " 'DFNSYGSR',\n", + " 'DFSAQVLR',\n", + " 'DHHVDVTYK',\n", + " 'DIISVALK',\n", + " 'DIPVNAAK',\n", + " 'DQLHQLR',\n", + " 'DSGTILFQGK',\n", + " 'DSTGICFIGER',\n", + " 'DTEELHPR',\n", + " 'DWFDYDAVK',\n", + " 'DYECLCGK',\n", + " 'EALLQLK',\n", + " 'EALPVIR',\n", + " 'EDFAAYRDELIISTK',\n", + " 'EEFEEICAR',\n", + " 'EEM[Oxidation]GEILAK',\n", + " 'EESDSVFM[Oxidation]R',\n", + " 'EEVPCYCGK',\n", + " 'EFPCPIPK',\n", + " 'EGYFCLDSR',\n", + " 'ELLLLSNSTLPGK',\n", + " 'ELSSLTAVSPVDGR',\n", + " 'EM[Oxidation]NVFCEAEGQAHR',\n", + " 'ENYLIDNLDR',\n", + " 'EQPCDNVPATR',\n", + " 'EQQGFCEGR',\n", + " 'EQVVIVDAIR',\n", + " 'ESLASLYK',\n", + " 'ESLTLQPIAR',\n", + " 'ESPLGSDLAR',\n", + " 'EYCGHGIGR',\n", + " 'EYDDIRS',\n", + " 'EYDSM[Oxidation]VVR',\n", + " 'FAGLISK',\n", + " 'FAPHLTR',\n", + " 'FCGDLED',\n", + " 'FEINPVNNR',\n", + " 'FHAQYLLK',\n", + " 'FLAQEIIR',\n", + " 'FLPQFCAK',\n", + " 'FLTCGSVDDGK',\n", + " 'FM[Oxidation]SACLK',\n", + " 'FM[Oxidation]SLFDK',\n", + " 'FNSDNLR',\n", + " 'FQQEVTITAPNGLHTR',\n", + " 'FTGIVQGTAK',\n", + " 'FTINAEVR',\n", + " 'GCYTGQEM[Oxidation]VAR',\n", + " 'GDFTFEAGSK',\n", + " 'GENEAAFAAR',\n", + " 'GETCPNELV',\n", + " 'GFCAGVDR',\n", + " 'GIRPGAYCEPK',\n", + " 'GLCGGLNINLFKK',\n", + " 'GLFNFVK',\n", + " 'GNNVVVLGTQWGDEGK',\n", + " 'GSHEYCDVM[Oxidation]GR',\n", + " 'GYLNNVTGYR',\n", + " 'HENQQPQTEAFELSAAER',\n", + " 'IAEFESR',\n", + " 'IAFESAR',\n", + " 'IDTTLPLTDIHR',\n", + " 'IIVTGGAGFIGSNIVK',\n", + " 'ILNVSPR',\n", + " 'ILSAFSLEGK',\n", + " 'ILVGPDASK',\n", + " 'INVQNVSK',\n", + " 'IQEQTM[Oxidation]LNVADNSGAR',\n", + " 'ISGILASPGIAFGK',\n", + " 'ISLFDM[Oxidation]FK',\n", + " 'ITGIQITK',\n", + " 'KITVSIPLK',\n", + " 'KVVDFFVR',\n", + " 'LAIFHLR',\n", + " 'LCVEQCK',\n", + " 'LDFGGCR',\n", + " 'LDPNLLR',\n", + " 'LDQVCQLAR',\n", + " 'LEVFCEDR',\n", + " 'LFNECADFR',\n", + " 'LIIETLPLLR',\n", + " 'LILISPAK',\n", + " 'LKENGFIK',\n", + " 'LNETPALAPDGQPYR',\n", + " 'LNQLDNLTER',\n", + " 'LQSNEYFSGK',\n", + " 'LSFETSM[Oxidation]HR',\n", + " 'LTVIAEIR',\n", + " 'LYVIYAQDK',\n", + " 'M[Oxidation]CDTIHPQIHDSDR',\n", + " 'M[Oxidation]ECCGVCHTDLHVK',\n", + " 'M[Oxidation]FACEHENVQPDILCLAK',\n", + " 'M[Oxidation]FQDNPLLAQLK',\n", + " 'M[Oxidation]IAEFESR',\n", + " 'M[Oxidation]LDGGDNPLR',\n", + " 'M[Oxidation]LSATQPLSEK',\n", + " 'M[Oxidation]NEFSILCR',\n", + " 'M[Oxidation]NTVCTHCQAINR',\n", + " 'M[Oxidation]TPVPDCGEK',\n", + " 'M[Oxidation]YVVSTK',\n", + " 'NALTAVQNNAVDSGQDYSGFTLTPSAQSPR',\n", + " 'NAPFTYSSPTLSVEALK',\n", + " 'NEQYSALR',\n", + " 'NIFDHYR',\n", + " 'NIIEANVATPDAR',\n", + " 'NNIAPQSPVM[Oxidation]R',\n", + " 'NQHATVLIR',\n", + " 'NYQNDDLR',\n", + " 'PALDLIR',\n", + " 'PELPEVETSR',\n", + " 'PFTLGQR',\n", + " 'PHSYDYDAIVIGSGPGGEGAAM[Oxidation]GLVK',\n", + " 'PLHNLTR',\n", + " 'PLSAQQLAAQK',\n", + " 'PSFDIVSEVDLQEAR',\n", + " 'PTKPPYPR',\n", + " 'PVITLPDGSQR',\n", + " 'PVYDVFK',\n", + " 'QAIPM[Oxidation]TLR',\n", + " 'QALLLEQQDGK',\n", + " 'QCLVCNER',\n", + " 'QCYALPER',\n", + " 'QDLSLEAR',\n", + " 'QDSILTTVVK',\n", + " 'QFSLNLR',\n", + " 'QGEVLVR',\n", + " 'QGSVTEFLKPR',\n", + " 'QNEENLLPK',\n", + " 'QQCSLVDGK',\n", + " 'QQLQNIIETAFER',\n", + " 'QTVIFGR',\n", + " 'QVILLDK',\n", + " 'QVSVETTQGLGR',\n", + " 'SAEHVLTM[Oxidation]LNEHEVK',\n", + " 'SAFTPASEVLLR',\n", + " 'SAQPVDIQIFGR',\n", + " 'SCPVIELTQQLIR',\n", + " 'SCVEVAR',\n", + " 'SDDVALPLEFTDAAANK',\n", + " 'SDNAQLTGLCDR',\n", + " 'SDNDTIVAQATPPGR',\n", + " 'SDVLRPYR',\n", + " 'SEALLNAGR',\n", + " 'SEFITVAR',\n", + " 'SELIVSR',\n", + " 'SEPLLIAR',\n", + " 'SEQHAQGADAVVDLNNELK',\n", + " 'SEQLTDQVLVER',\n", + " 'SETITVNCPTCGK',\n", + " 'SFDSLGLSPDILR',\n", + " 'SFELPALPYAK',\n", + " 'SFVVIIPAR',\n", + " 'SGCPYCVR',\n", + " 'SGTLLAFDFGTK',\n", + " 'SHLAELVASAK',\n", + " 'SHLDEVIAR',\n", + " 'SITLSDSAAAR',\n", + " 'SKSENLYSAAR',\n", + " 'SLDINQIALHQLIK',\n", + " 'SLENAPDDVK',\n", + " 'SLLAQLDQK',\n", + " 'SLLNVPAGK',\n", + " 'SLNFLDFEQPIAELEAK',\n", + " 'SLNLVSEQLLAANGLK',\n", + " 'SLPHCPK',\n", + " 'SLSTEATAK',\n", + " 'SLTELTGNPR',\n", + " 'SNILIINGAK',\n", + " 'SNITIYHNPACGTSR',\n", + " 'SNKPFHYQAPFPLK',\n", + " 'SNQEPATILLIDDHPM[Oxidation]LR',\n", + " 'SNSYDSSSIK',\n", + " 'SNVPAELK',\n", + " 'SQDPFQER',\n", + " 'SQFFYIHPDNPQQR',\n", + " 'SQLCPCGSAVEYSLCCHPYVSGEK',\n", + " 'SQPIFNDK',\n", + " 'SQPLNADQELVSDVVACQLVIK',\n", + " 'SQTIDLTLDGLSCGHCVK',\n", + " 'SQTVHFQGNPVTVANSIPQAGSK',\n", + " 'SQVQSGILPEHCR',\n", + " 'SQVSTEFIPTR',\n", + " 'SRPTIIINDLDAER',\n", + " 'SSLLLFNDK',\n", + " 'SSLQFIDPK',\n", + " 'SSNTFTLGTK',\n", + " 'SSTNIEQVM[Oxidation]PVK',\n", + " 'SSYANHQALAGLTLGK',\n", + " 'STCTGVEM[Oxidation]FR',\n", + " 'STLEQTIGNTPLVK',\n", + " 'STLGHQYDNSLVSNAFGFLR',\n", + " 'STPDFSTAENNQELANEVSCLK',\n", + " 'STTHNVPQGDLVLR',\n", + " 'STVTITDLAR',\n", + " 'SVIAQAGAK',\n", + " 'SVLQVLHIPDER',\n", + " 'SVM[Oxidation]LQSLNNIR',\n", + " 'SVTFCAR',\n", + " 'SVTGM[Oxidation]VAR',\n", + " 'SVVPVADVLQGR',\n", + " 'SYTLPSLPYAYDALEPHFDK',\n", + " 'TAELLVNVTPSETR',\n", + " 'TAIAPVITIDGPSGAGK',\n", + " 'TAPSQVLK',\n", + " 'TATAQQLEYLK',\n", + " 'TDIAQLLGK',\n", + " 'TDKLTSLR',\n", + " 'TDLFSSPDHTLDALGLR',\n", + " 'TDLIQRPR',\n", + " 'TEPHVAVLSQVQQFLDR',\n", + " 'TEPLTETPELSAK',\n", + " 'TEQATTTDELAFTR',\n", + " 'TEQATTTDELAFTRPYGEQEK',\n", + " 'TESFAQLFEESLK',\n", + " 'TEYCGQLR',\n", + " 'TGSVYIVK',\n", + " 'THFSQQDNFSVAAR',\n", + " 'TKPIVFSGAQPSGELTIGNYM[Oxidation]GALR',\n", + " 'TLLGTALR',\n", + " 'TLLGTALRPAATR',\n", + " 'TLSPYLQEVAK',\n", + " 'TNLNYQQTHFVM[Oxidation]SAPDIR',\n", + " 'TNNDTTLQLSSVLNR',\n", + " 'TNNPPSAQIK',\n", + " 'TNNPPSAQIKPGEYGFPLK',\n", + " 'TNPLLTPFELPPFSK',\n", + " 'TNPQFAGHPFGTTVTAETLR',\n", + " 'TQANLSETLFKPR',\n", + " 'TQNIRPLPQFK',\n", + " 'TQPLFLIGPR',\n", + " 'TQTFIPGK',\n", + " 'TQTLSQLENSGAFIER',\n", + " 'TRPIQASLDLQALK',\n", + " 'TSENPLLALR',\n", + " 'TSLVVPGLDTLR',\n", + " 'TSLYLASGSPR',\n", + " 'TTIVDSNLPVAR',\n", + " 'TTLAIDIGGTK',\n", + " 'TTLFIPVR',\n", + " 'TTNYIFVTGGVVSSLGK',\n", + " 'TTQVPPSALLPLNPEQLAR',\n", + " 'VEDILAPGLR',\n", + " 'VGSCGAVLPHVK',\n", + " 'VLVTTLTK',\n", + " 'VPVM[Oxidation]IHR',\n", + " 'VSNASALGR',\n", + " 'VTIPVHPIIRPR',\n", + " 'VTLYGIK',\n", + " 'VVGLPVYK',\n", + " 'VVVLLSHPANPR',\n", + " 'VWLANPER',\n", + " 'VYSYTEK',\n", + " 'WM[Oxidation]IAEGYGDR',\n", + " 'YACGVIK',\n", + " 'YALTQGR',\n", + " 'YAVFQSGGK',\n", + " 'YCM[Oxidation]AQNYLPAIK',\n", + " 'YCSVALM[Oxidation]LEK',\n", + " 'YFADHETGR',\n", + " 'YGFNDFK',\n", + " 'YNYSGPR',\n", + " 'YPSCILR',\n", + " 'YSLYCAVIVK',\n", + " 'YSQDLATKPR',\n", + " 'YSSEQFR',\n", + " 'YSSLIFTPR',\n", + " 'YTCPQYK',\n", + " 'YVAPYVNR',\n", + " 'YYGFDIGGTK'}" + ] + }, + "execution_count": 281, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "in_diann_not_in" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c0878224", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 290, + "id": "09513e15", + "metadata": {}, + "outputs": [], + "source": [ + "# Plot a histogram of the q-values of DIA-NN IDs with whether the IDs are either not in the identified MuMDIA PSMs, found but not passing FDR, or found and passing FDR\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Use common_ids to flag in diann_results. If in common_ids, give flag \"Present\"\n", + "# First, set all to \"Not Present\"\n", + "diann_results[\"in_mumdia\"] = \"Not Present\"\n", + "\n", + "# Then, set \"Present and Passing FDR\" for those in common_passing_ids\n", + "diann_results.loc[\n", + " diann_results[\"Modified.Sequence\"].isin(common_passing_ids), \"in_mumdia\"\n", + "] = \"Present and Passing FDR\"\n", + "\n", + "# Next, set \"Present\" for those in common_ids but not in common_passing_ids\n", + "diann_results.loc[\n", + " diann_results[\"Modified.Sequence\"].isin(common_ids)\n", + " & ~diann_results[\"Modified.Sequence\"].isin(common_passing_ids),\n", + " \"in_mumdia\",\n", + "] = \"Present\"" + ] + }, + { + "cell_type": "code", + "execution_count": 291, + "id": "ceed54a5", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run", + "rawType": "object", + "type": "string" + }, + { + "name": "Channel", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + }, + { + "name": "Modified.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Stripped.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Lib.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Decoy", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Proteotypic", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Ids", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Group", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Names", + "rawType": "object", + "type": "string" + }, + { + "name": "Genes", + "rawType": "object", + "type": "string" + }, + { + "name": "RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Quantity", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Factor", + "rawType": "float32", + "type": "float" + }, + { + "name": "Quantity.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Empirical.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Noise", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Profile.Corr", + "rawType": "float32", + "type": "float" + }, + { + "name": "Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Mass.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.Before", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.After", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Start", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Stop", + "rawType": "float32", + "type": "float" + }, + { + "name": "FWHM", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Site.Occupancy.Probabilities", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Sites", + "rawType": "object", + "type": "string" + }, + { + "name": "Lib.PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Translated.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "GG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "in_mumdia", + "rawType": "object", + "type": "string" + }, + { + "name": "logqvalue", + "rawType": "float32", + "type": "float" + } + ], + "ref": "cda0fd90-eb6c-4519-ba7c-548ca74841ce", + "rows": [ + [ + "0", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAEIAVK2", + "AAAAEIAVK", + "AAAAEIAVK", + "2", + "10", + "0", + "1", + "422.25037", + "P0A8D6", + "P0A8D6", + "YMDB_ECOLI", + "ymdB", + "45.039364", + "-11.2311", + "45.049755", + "-10.05596", + "0.0", + "0.79848653", + "0.0", + "0.0", + "9478950.0", + "9478950.0", + "9629110.0", + "9629110.0", + "8328634.0", + "-0.00030517578", + "1.0", + "0.91445416", + "0.0", + "0.0", + "0.8910806", + "5.4202604", + "0.86327136", + "0.9772817", + "353855840.0", + "403993300.0", + "44.79642", + "45.281773", + "0.23923437", + "0.0", + "9478950.0", + "0.0", + "9478950.0", + "9478950.0", + "0.91445416", + "0.91445416", + "0.91445416", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAEIAVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "317.21832", + "0.00064086914", + "Present and Passing FDR", + "6.001258" + ], + [ + "1", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "AAAAPVTGPLADDPIQETITFDDFAK", + "AAAAPVTGPLADDPIQETITFDDFAK", + "3", + "58", + "0", + "1", + "892.1131", + "P00959", + "P00959", + "SYM_ECOLI", + "metG", + "131.40971", + "102.82846", + "131.40822", + "110.56359", + "0.0", + "1.0572941", + "0.0", + "0.0", + "227486.38", + "227486.38", + "485865.8", + "485865.8", + "0.0", + "0.0", + "1.0", + "0.78337896", + "0.0", + "0.0", + "0.19562031", + "3.4541717", + "0.0", + "0.52708817", + "1242418800.0", + "937075300.0", + "131.26434", + "131.6526", + "0.23196226", + "0.0", + "55844700.0", + "0.0", + "55844700.0", + "55844700.0", + "0.8808654", + "0.8808654", + "0.8808654", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "214.11862", + "0.0011901855", + "Present", + "6.001258" + ], + [ + "2", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAVLAK1", + "AAAAVLAK", + "AAAAVLAK", + "1", + "72", + "0", + "1", + "714.45087", + "P0AEQ1", + "P0AEQ1", + "GLCG_ECOLI", + "glcG", + "35.834743", + "-19.224216", + "36.656822", + "-21.282513", + "0.0", + "1.2209269", + "0.0", + "0.0", + "1300103.4", + "1300103.4", + "1320218.6", + "1320218.6", + "1103460.6", + "0.001159668", + "1.0", + "0.79625547", + "0.0", + "0.0", + "0.9049706", + "3.4163113", + "1.7396158", + "0.96952754", + "285655300.0", + "295228060.0", + "35.59217", + "36.077908", + "0.31452703", + "0.0", + "9308464.0", + "0.0", + "9308464.0", + "9308464.0", + "0.9637441", + "0.9637441", + "0.9637441", + "0.0024889165", + "0.048146296", + "0.0025668947", + "0.0", + "0.0035870865", + "0.0048929173", + "0.0", + "1.0", + "AAAAVLAK1", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "384.22415", + "-0.00018310547", + "Present", + "2.6039896" + ], + [ + "3", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADLISR2", + "AAADLISR", + "AAADLISR", + "2", + "107", + "0", + "1", + "408.73233", + "P00452", + "P00452", + "RIR1_ECOLI", + "nrdA", + "52.66213", + "-1.9677705", + "52.288113", + "-0.9493257", + "0.0", + "0.7979276", + "0.0", + "0.0", + "33115972.0", + "33115972.0", + "27576084.0", + "27576084.0", + "27404988.0", + "-0.00091552734", + "1.0", + "0.98159057", + "0.0", + "0.0", + "0.87968576", + "5.811066", + "1.6436243", + "0.93535155", + "697454900.0", + "755969100.0", + "52.3221", + "52.953266", + "0.29944947", + "0.0", + "43924670.0", + "0.0", + "43924670.0", + "43924670.0", + "0.42255992", + "0.42255992", + "0.42255992", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAADLISR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "603.34607", + "-0.00024414062", + "Present and Passing FDR", + "6.001258" + ], + [ + "4", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADVQLR2", + "AAADVQLR", + "AAADVQLR", + "2", + "116", + "0", + "1", + "422.2378", + "P0AEG4", + "P0AEG4", + "DSBA_ECOLI", + "dsbA", + "44.020058", + "-10.41877", + "45.611725", + "-11.208551", + "0.0", + "0.80835223", + "0.0", + "0.0", + "90264560.0", + "90264560.0", + "80806920.0", + "80806920.0", + "78470104.0", + "-0.000579834", + "1.0", + "0.9814644", + "0.0", + "0.0", + "0.98277956", + "6.8381004", + "2.0685427", + "0.98311853", + "668152960.0", + "756061900.0", + "43.728844", + "44.408207", + "0.33655792", + "0.0", + "138798110.0", + "0.0", + "138798110.0", + "138798110.0", + "0.98128796", + "0.98128796", + "0.98128796", + "1.2305009e-06", + "1.9478937e-06", + "1.2305009e-06", + "0.0", + "0.000119832235", + "0.00015953313", + "0.0", + "1.0", + "AAADVQLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "701.39404", + "0.0010375977", + "Present and Passing FDR", + "5.9099183" + ], + [ + "5", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEADDIFGELSSGK2", + "AAAEADDIFGELSSGK", + "AAAEADDIFGELSSGK", + "2", + "124", + "0", + "1", + "790.87555", + "P19934", + "P19934", + "TOLA_ECOLI", + "tolA", + "102.35789", + "62.346027", + "104.54801", + "61.24625", + "0.0", + "1.0644443", + "0.0", + "0.0", + "987667.56", + "987667.56", + "969323.6", + "969323.6", + "867402.6", + "0.0014038086", + "1.0", + "0.12193332", + "0.0", + "0.0", + "0.8921607", + "1.1468129", + "0.19816712", + "0.5556846", + "841869900.0", + "684339650.0", + "102.16394", + "102.4549", + "0.07275009", + "0.0", + "987667.5", + "0.0", + "987667.5", + "987667.5", + "0.12193332", + "0.12193332", + "0.12193332", + "0.007065851", + "0.096600726", + "0.007139215", + "0.0", + "0.008451758", + "0.01186899", + "0.0", + "1.0", + "AAAEADDIFGELSSGK2", + "", + "1.0", + "0.0", + "0.0", + "0.028571429", + "0.5675676", + "0.02764423", + "0.028279182", + "0.029045643", + "0.0", + "824.41486", + "0.0012207031", + "Present", + "2.1508358" + ], + [ + "6", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAESSIQVK2", + "AAAESSIQVK", + "AAAESSIQVK", + "2", + "189", + "0", + "1", + "502.27457", + "P0A8T7", + "P0A8T7", + "RPOC_ECOLI", + "rpoC", + "40.818455", + "-16.967041", + "39.618042", + "-15.982115", + "0.0", + "0.8604796", + "0.0", + "0.0", + "68653180.0", + "68653180.0", + "59188360.0", + "59188360.0", + "60213604.0", + "0.00018310547", + "1.0", + "0.98619014", + "0.0", + "0.0", + "0.99340165", + "6.5156555", + "1.9736533", + "0.5928819", + "420635070.0", + "449591200.0", + "40.527092", + "41.109886", + "0.2868077", + "0.0", + "135742530.0", + "0.0", + "135742530.0", + "135742530.0", + "0.97769797", + "0.97769797", + "0.97769797", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.00022177867", + "0.00035893754", + "0.0", + "1.0", + "AAAESSIQVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.3559", + "0.0005493164", + "Present and Passing FDR", + "6.001258" + ], + [ + "7", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEVGAPFIEIHTGCYADAK3", + "AAAEVGAPFIEIHTGCYADAK", + "AAAEVGAPFIEIHTGCYADAK", + "3", + "205", + "0", + "1", + "731.0211", + "P0A794", + "P0A794", + "PDXJ_ECOLI", + "pdxJ", + "93.420525", + "51.298367", + "95.98912", + "49.67698", + "0.0", + "0.97043586", + "0.0", + "0.0", + "21573336.0", + "21573336.0", + "22895202.0", + "22895202.0", + "20004146.0", + "0.00079345703", + "1.0", + "0.9457609", + "0.0", + "0.0", + "0.9556992", + "5.614942", + "0.9625929", + "0.96859276", + "600740350.0", + "620459650.0", + "92.98384", + "93.760704", + "0.41035897", + "0.0", + "39017516.0", + "0.0", + "39017516.0", + "39017516.0", + "0.86302906", + "0.86302906", + "0.86302906", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "[P0A794:C158]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "811.3876", + "0.0022583008", + "Present", + "6.001258" + ], + [ + "8", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR2", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "2", + "213", + "0", + "1", + "844.4361", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.206535", + "55.172043", + "98.40381", + "56.774063", + "0.0", + "1.1086445", + "0.0", + "0.0", + "590610400.0", + "590610400.0", + "664060740.0", + "664060740.0", + "537971200.0", + "0.0005493164", + "1.0", + "0.69137955", + "0.0", + "0.0", + "0.97497547", + "5.0616074", + "3.4223218", + "0.9900597", + "583057200.0", + "626362800.0", + "99.01234", + "99.69194", + "0.28078166", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.5241153e-06", + "2.3548791e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1327.6852", + "0.0012207031", + "Present and Passing FDR", + "6.001258" + ], + [ + "9", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR3", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "3", + "214", + "0", + "1", + "563.29315", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.32842", + "55.172043", + "98.40381", + "57.41639", + "0.0", + "0.90191376", + "0.0", + "0.0", + "70214264.0", + "70214264.0", + "64663430.0", + "64663430.0", + "64823516.0", + "0.00018310547", + "1.0", + "0.9844389", + "0.0", + "0.0", + "0.9685039", + "6.3540897", + "0.8979662", + "0.98694193", + "604663900.0", + "621195400.0", + "98.98892", + "99.619675", + "0.24378972", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "5.422538e-06", + "0.0", + "3.834282e-06", + "5.422538e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "393.70886", + "-0.00021362305", + "Present and Passing FDR", + "6.001258" + ], + [ + "10", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAGISETLLR2", + "AAAGISETLLR", + "AAAGISETLLR", + "2", + "231", + "0", + "1", + "551.3168", + "P00935", + "P00935", + "METB_ECOLI", + "metB", + "78.551445", + "34.235195", + "79.89243", + "31.955782", + "0.0", + "0.9136672", + "0.0", + "0.0", + "9205300.0", + "9205300.0", + "7925204.0", + "7925204.0", + "7566976.0", + "0.00018310547", + "1.0", + "0.8986022", + "0.0", + "0.0", + "0.93385655", + "5.2695966", + "1.9842398", + "0.9301016", + "860745300.0", + "767963500.0", + "78.20871", + "78.89107", + "0.28478286", + "0.0", + "9636097.0", + "0.0", + "9636097.0", + "9636097.0", + "0.967955", + "0.967955", + "0.967955", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAGISETLLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "271.14008", + "0.0010681152", + "Present and Passing FDR", + "6.001258" + ], + [ + "11", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIAYAR2", + "AAAIAYAR", + "AAAIAYAR", + "2", + "264", + "0", + "1", + "403.72958", + "P0AG84", + "P0AG84", + "YGHA_ECOLI", + "yghA", + "44.16412", + "-12.755369", + "43.757565", + "-11.295829", + "0.0", + "0.802654", + "0.0", + "0.0", + "1316254.8", + "1316254.8", + "1785789.4", + "1785789.4", + "771801.0", + "0.00033569336", + "1.0", + "0.8577426", + "0.0", + "0.0", + "0.2958416", + "4.2764664", + "1.3657955", + "0.67840135", + "901996700.0", + "918440100.0", + "43.824783", + "44.407032", + "0.42865494", + "0.0", + "18808108.0", + "0.0", + "18808108.0", + "18808108.0", + "0.95981085", + "0.95981085", + "0.95981085", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAIAYAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "593.3406", + "0.0026855469", + "Present and Passing FDR", + "6.001258" + ], + [ + "12", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAICAER2", + "AAAICAER", + "AAAICAER", + "2", + "269", + "0", + "1", + "431.216", + "P0A9M8", + "P0A9M8", + "PTA_ECOLI", + "pta", + "31.925087", + "-27.066788", + "33.41249", + "-25.78823", + "0.0", + "0.8097701", + "0.0", + "0.0", + "571500.1", + "571500.1", + "297236.94", + "297236.94", + "277989.7", + "0.0", + "1.0", + "0.8485891", + "0.0", + "0.0", + "0.8154417", + "3.0258095", + "0.7766815", + "0.0", + "165218400.0", + "163403330.0", + "31.68209", + "32.119316", + "0.23412684", + "0.0", + "77180104.0", + "0.0", + "77180104.0", + "77180104.0", + "0.9837814", + "0.9837814", + "0.9837814", + "0.00095205125", + "0.011658683", + "0.0010386014", + "0.0", + "0.0013630168", + "0.0016382998", + "0.0", + "1.0", + "AAAIC(UniMod:4)AER2", + "[P0A9M8:C424]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "535.2293", + "-0.006713867", + "Present", + "3.02134" + ], + [ + "13", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAALAAADAR2", + "AAALAAADAR", + "AAALAAADAR", + "2", + "316", + "0", + "1", + "450.7485", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "40.28075", + "-16.91546", + "40.494534", + "-16.164911", + "0.0", + "0.83690274", + "0.0", + "0.0", + "249159380.0", + "249159380.0", + "238044860.0", + "238044860.0", + "234785490.0", + "-0.00079345703", + "1.0", + "0.9864738", + "0.0", + "0.0", + "0.9906313", + "6.9015007", + "2.9800456", + "0.994135", + "669318460.0", + "642184600.0", + "39.89198", + "40.52356", + "0.32557887", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-05", + "0.00019478938", + "0.00019942167", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAALAAADAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.2944", + "-0.00030517578", + "Present and Passing FDR", + "4.001258" + ], + [ + "14", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAPAFSEESIR2", + "AAAPAFSEESIR", + "AAAPAFSEESIR", + "2", + "398", + "0", + "1", + "624.8146", + "P08142", + "P08142", + "ILVB_ECOLI", + "ilvB", + "69.67013", + "17.595957", + "67.82137", + "21.751873", + "0.0", + "0.95711935", + "0.0", + "0.0", + "5982976.5", + "5982976.5", + "6234872.0", + "6234872.0", + "4715585.5", + "0.0010986328", + "1.0", + "0.9502138", + "0.0", + "0.0", + "0.8272268", + "4.9783382", + "0.68951464", + "0.8171237", + "806941600.0", + "851504400.0", + "69.427155", + "70.10676", + "0.31591344", + "0.0", + "5982976.5", + "0.0", + "5982976.5", + "5982976.5", + "0.9502138", + "0.9502138", + "0.9502138", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAPAFSEESIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "518.2589", + "6.1035156e-05", + "Present and Passing FDR", + "6.001258" + ], + [ + "15", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAQLQQGLADTSDENLK2", + "AAAQLQQGLADTSDENLK", + "AAAQLQQGLADTSDENLK", + "2", + "429", + "0", + "1", + "936.9685", + "P76576", + "P76576", + "YFGM_ECOLI", + "yfgM", + "73.92252", + "26.326391", + "75.514366", + "26.570925", + "0.0", + "1.1768218", + "0.0", + "0.0", + "1673985.8", + "1673985.8", + "2157632.5", + "2157632.5", + "1085307.2", + "0.0", + "1.0", + "0.86881787", + "0.0", + "0.0", + "0.80435896", + "5.4468393", + "1.7003247", + "0.7718048", + "893386240.0", + "991242000.0", + "73.82548", + "74.262184", + "0.27614152", + "0.0", + "1673985.9", + "0.0", + "1673985.9", + "1673985.9", + "0.86881787", + "0.86881787", + "0.86881787", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAQLQQGLADTSDENLK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "342.1772", + "0.00064086914", + "Present and Passing FDR", + "6.001258" + ], + [ + "16", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAASHLVR2", + "AAASHLVR", + "AAASHLVR", + "2", + "500", + "0", + "1", + "412.7405", + "P0AET8", + "P0AET8", + "HDHA_ECOLI", + "hdhA", + "23.709194", + "-33.986176", + "27.357487", + "-36.831825", + "0.0", + "0.8146272", + "0.0", + "0.0", + "2015989.4", + "2015989.4", + "1642456.9", + "1642456.9", + "1693433.9", + "-0.00024414062", + "1.0", + "0.9366546", + "0.0", + "0.0", + "0.89273024", + "6.2581363", + "0.5348917", + "0.9736561", + "15688434.0", + "16270505.0", + "23.563482", + "23.9038", + "0.12379906", + "0.0", + "62128812.0", + "0.0", + "62128812.0", + "62128812.0", + "0.81174695", + "0.81174695", + "0.81174695", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAASHLVR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "341.70337", + "-0.0007019043", + "Present and Passing FDR", + "6.001258" + ], + [ + "17", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATGEALSLVCVDEHK3", + "AAATGEALSLVCVDEHK", + "AAATGEALSLVCVDEHK", + "3", + "537", + "0", + "1", + "590.9612", + "P25888", + "P25888", + "RHLE_ECOLI", + "rhlE", + "80.39914", + "39.111588", + "84.24667", + "34.261047", + "0.0", + "0.89202386", + "0.0", + "0.0", + "734635.6", + "734635.6", + "977589.56", + "977589.56", + "686336.9", + "0.0010375977", + "1.0", + "0.6546537", + "0.0", + "0.0", + "0.38540652", + "1.7331743", + "0.0", + "0.5563414", + "1140822700.0", + "1047089500.0", + "80.30209", + "80.49616", + "0.07276726", + "0.0", + "5998876.0", + "0.0", + "5998876.0", + "5998876.0", + "0.42509428", + "0.42509428", + "0.42509428", + "0.002201604", + "0.026073128", + "0.002280412", + "0.0", + "0.0022290102", + "0.0034667768", + "0.0", + "1.0", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "[P25888:C350]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1086.5248", + "0.01550293", + "Present", + "2.657261" + ], + [ + "18", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM[Oxidation]TLVDTPNAK2", + "AAATQEM[Oxidation]TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "2", + "547", + "0", + "1", + "838.9116", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.638172", + "6.2113576", + "60.591183", + "8.781703", + "0.0", + "1.105177", + "0.0", + "0.0", + "64499790.0", + "64499790.0", + "58886880.0", + "58886880.0", + "59196744.0", + "0.00048828125", + "1.0", + "0.9908719", + "0.0", + "0.0", + "0.98715895", + "6.894661", + "1.9770116", + "0.969655", + "710916400.0", + "675191940.0", + "59.29827", + "59.929302", + "0.31421912", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.0186795e-06", + "6.995294e-06", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK2", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "645.32025", + "0.00079345703", + "Present and Passing FDR", + "6.001258" + ], + [ + "19", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM[Oxidation]TLVDTPNAK3", + "AAATQEM[Oxidation]TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "3", + "548", + "0", + "1", + "559.61017", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.664837", + "6.2113576", + "60.591183", + "8.985086", + "0.0", + "0.8728873", + "0.0", + "0.0", + "5298862.0", + "5298862.0", + "5148599.5", + "5148599.5", + "5150481.0", + "0.00018310547", + "1.0", + "0.5086611", + "0.0", + "0.0", + "0.7988776", + "3.010162", + "0.0", + "0.95376974", + "675191940.0", + "705779300.0", + "59.325485", + "59.76188", + "0.29714456", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "1.4628691e-05", + "1.4628691e-05", + "0.00035893754", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK3", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "429.2456", + "0.0010681152", + "Present and Passing FDR", + "4.8347945" + ], + [ + "20", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQHNLEVLASR3", + "AAATQHNLEVLASR", + "AAATQHNLEVLASR", + "3", + "552", + "0", + "1", + "494.26706", + "P0ABQ0", + "P0ABQ0", + "COABC_ECOLI", + "coaBC", + "58.301556", + "8.126932", + "58.213245", + "6.339929", + "0.0", + "0.81177694", + "0.0", + "0.0", + "21642576.0", + "21642576.0", + "28040164.0", + "28040164.0", + "21112072.0", + "0.0011901855", + "1.0", + "0.8000993", + "0.0", + "0.0", + "0.0", + "4.5929427", + "0.4240915", + "0.3084519", + "686155260.0", + "665677500.0", + "58.059067", + "58.544544", + "0.3010973", + "0.0", + "21642576.0", + "0.0", + "21642576.0", + "21642576.0", + "0.8000993", + "0.8000993", + "0.8000993", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAATQHNLEVLASR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "545.3406", + "-0.005004883", + "Present", + "6.001258" + ], + [ + "21", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAAFAEWGQTTPK3", + "AADAAFAEWGQTTPK", + "AADAAFAEWGQTTPK", + "3", + "632", + "0", + "1", + "521.91943", + "P77674", + "P77674", + "ABDH_ECOLI", + "patD", + "81.266945", + "40.291775", + "82.119934", + "35.698925", + "0.0", + "0.86976653", + "0.0", + "0.0", + "5242987.0", + "5242987.0", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.97488064", + "0.0", + "0.0", + "0.0", + "4.6458707", + "0.0", + "0.0", + "1078702800.0", + "1228739100.0", + "80.97595", + "81.60664", + "0.30355465", + "0.0", + "490309730.0", + "0.0", + "490309730.0", + "490309730.0", + "0.99679875", + "0.99679875", + "0.99679875", + "0.0001947799", + "0.0036620705", + "0.00029216986", + "0.0", + "0.0053409706", + "0.006091772", + "0.0", + "1.0", + "AADAAFAEWGQTTPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "400.18268", + "0.00030517578", + "Present and Passing FDR", + "3.710456" + ], + [ + "22", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAHGIPFTLSTVSVCPIEEVAPAIK3", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "3", + "638", + "0", + "1", + "931.8212", + "P33232", + "P33232", + "LLDD_ECOLI", + "lldD", + "124.85556", + "95.393196", + "130.38431", + "91.264404", + "0.0", + "1.0574688", + "0.0", + "0.0", + "77785.11", + "77785.11", + "104206.56", + "104206.56", + "0.0", + "0.0", + "1.0", + "0.3175594", + "0.0", + "0.0", + "0.0", + "1.7876791", + "0.0", + "0.0", + "179140050.0", + "182702220.0", + "124.75574", + "124.95271", + "0.074884415", + "0.0", + "1833752.2", + "0.0", + "1833752.2", + "1833752.2", + "0.8396257", + "0.8396257", + "0.8396257", + "0.0010312822", + "0.011658683", + "0.0011172224", + "0.0", + "0.0018053645", + "0.0027950038", + "0.0", + "1.0", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "[P33232:C111]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1412.7454", + "-0.016357422", + "Present", + "2.9866226" + ], + [ + "23", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADEGLEVK2", + "AADEGLEVK", + "AADEGLEVK", + "2", + "706", + "0", + "1", + "466.2402", + "P15639", + "P15639", + "PUR9_ECOLI", + "purH", + "45.382343", + "-10.578891", + "45.980556", + "-9.825813", + "0.0", + "0.8359929", + "0.0", + "0.0", + "153085760.0", + "153085760.0", + "138279150.0", + "138279150.0", + "136599680.0", + "0.00018310547", + "1.0", + "0.9861937", + "0.0", + "0.0", + "0.9797145", + "6.8830585", + "1.431289", + "0.9854878", + "555958400.0", + "589427650.0", + "45.042305", + "45.673447", + "0.3254246", + "0.0", + "197813780.0", + "0.0", + "197813780.0", + "197813780.0", + "0.9848251", + "0.9848251", + "0.9848251", + "1.1841555e-06", + "1.9478937e-06", + "1.1841555e-06", + "0.0", + "0.000119832235", + "0.00015951775", + "0.0", + "1.0", + "AADEGLEVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "860.436", + "0.0021972656", + "Present and Passing FDR", + "5.926592" + ], + [ + "24", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR2", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "2", + "775", + "0", + "1", + "952.4371", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.55485", + "41.7659", + "90.38439", + "45.32776", + "0.0", + "1.1736622", + "0.0", + "0.0", + "6539769.0", + "6539769.0", + "6286169.0", + "6286169.0", + "5616604.0", + "-0.00018310547", + "1.0", + "0.720854", + "0.0", + "0.0", + "0.9051132", + "4.788562", + "0.0", + "0.96589357", + "821253300.0", + "789920900.0", + "89.26371", + "89.846085", + "0.09049349", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.522042e-06", + "7.663706e-06", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "818.3315", + "-0.0005493164", + "Present and Passing FDR", + "6.001258" + ], + [ + "25", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR3", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "3", + "776", + "0", + "1", + "635.29376", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.52821", + "41.7659", + "90.38439", + "45.21288", + "0.0", + "0.94026244", + "0.0", + "0.0", + "3315591.5", + "3315591.5", + "3435347.2", + "3435347.2", + "2989024.8", + "0.00012207031", + "1.0", + "0.7603821", + "0.0", + "0.0", + "0.8769604", + "3.057929", + "0.0", + "0.937624", + "875894200.0", + "821253300.0", + "89.28592", + "89.819466", + "0.27418387", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "931.4156", + "0.009765625", + "Present and Passing FDR", + "6.001258" + ], + [ + "26", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK2", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "2", + "794", + "0", + "1", + "971.5282", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.52126", + "102.333176", + "131.15799", + "99.58934", + "0.0", + "1.2082555", + "0.0", + "0.0", + "11768890.0", + "11768890.0", + "10098005.0", + "10098005.0", + "9879739.0", + "0.001953125", + "1.0", + "0.9270581", + "0.0", + "0.0", + "0.9587445", + "6.4231935", + "2.2982807", + "0.99356806", + "346843420.0", + "343348540.0", + "129.27815", + "129.81258", + "0.26670924", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1118.5688", + "-0.0013427734", + "Present and Passing FDR", + "6.001258" + ], + [ + "27", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK3", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "3", + "795", + "0", + "1", + "648.02124", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.49579", + "102.333176", + "131.15799", + "99.237206", + "0.0", + "0.9755506", + "0.0", + "0.0", + "5831566.5", + "5831566.5", + "5678113.5", + "5678113.5", + "5321460.5", + "6.1035156e-05", + "1.0", + "0.8908107", + "0.0", + "0.0", + "0.91466933", + "5.089149", + "0.0", + "0.95213616", + "346843420.0", + "343348540.0", + "129.30157", + "129.73882", + "0.2509879", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0026550293", + "Present and Passing FDR", + "6.001258" + ], + [ + "28", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK2", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "2", + "825", + "0", + "1", + "740.4301", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.80189", + "67.758026", + "109.88321", + "64.94934", + "0.0", + "1.0728568", + "0.0", + "0.0", + "123073600.0", + "123073600.0", + "113322660.0", + "113322660.0", + "109594280.0", + "0.0005493164", + "1.0", + "0.6734924", + "0.0", + "0.0", + "0.99421567", + "5.0390263", + "1.7109023", + "0.9851098", + "426308030.0", + "504281540.0", + "105.51072", + "106.19015", + "0.18242767", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "1.2291321e-06", + "1.9478937e-06", + "0.00015953268", + "0.0", + "0.000119832235", + "0.00015953268", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1010.5993", + "-0.00048828125", + "Present and Passing FDR", + "5.910402" + ], + [ + "29", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK3", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "3", + "826", + "0", + "1", + "493.95584", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.78095", + "67.758026", + "109.88321", + "64.92609", + "0.0", + "0.86559445", + "0.0", + "0.0", + "27001664.0", + "27001664.0", + "26015190.0", + "26015190.0", + "25650814.0", + "0.00015258789", + "1.0", + "0.9743886", + "0.0", + "0.0", + "0.97202075", + "6.2575827", + "1.7785354", + "0.9863196", + "425179200.0", + "426308030.0", + "105.48976", + "106.12093", + "0.3258582", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "514.2984", + "0.0006713867", + "Present and Passing FDR", + "6.001258" + ], + [ + "30", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADNKSLGQFNLDGINPAPR3", + "AADNKSLGQFNLDGINPAPR", + "AADNKSLGQFNLDGINPAPR", + "3", + "884", + "0", + "1", + "700.0274", + "P0A6Y8", + "P0A6Y8", + "DNAK_ECOLI", + "dnaK", + "88.41845", + "53.373013", + "96.38754", + "44.248936", + "0.0", + "0.9205765", + "0.0", + "0.0", + "2014406.0", + "2014406.0", + "2318806.5", + "2318806.5", + "925617.25", + "0.0", + "1.0", + "0.8834976", + "0.0", + "0.0", + "0.6073868", + "4.048474", + "0.0", + "0.0", + "1398788600.0", + "1652747100.0", + "88.22464", + "88.80648", + "0.4029023", + "0.0", + "528809730.0", + "0.0", + "528809730.0", + "528809730.0", + "0.9646322", + "0.9646322", + "0.9646322", + "0.0003686296", + "0.0036620705", + "0.00046078704", + "0.0", + "0.050652087", + "0.056812774", + "0.0", + "1.0", + "AADNKSLGQFNLDGINPAPR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "440.2616", + "0.0024414062", + "Present and Passing FDR", + "3.43341" + ], + [ + "31", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADSCHVSQPTLSGQIR3", + "AADSCHVSQPTLSGQIR", + "AADSCHVSQPTLSGQIR", + "3", + "929", + "0", + "1", + "609.63196", + "P0ACQ4", + "P0ACQ4", + "OXYR_ECOLI", + "oxyR", + "58.21326", + "5.008134", + "57.742092", + "6.152042", + "0.0", + "0.86223096", + "0.0", + "0.0", + "14137073.0", + "14137073.0", + "13011373.0", + "13011373.0", + "13712340.0", + "0.00030517578", + "1.0", + "0.83560085", + "0.0", + "0.0", + "0.7753711", + "5.0263877", + "0.81187373", + "0.8735103", + "644759200.0", + "662432300.0", + "57.970203", + "58.40748", + "0.18644737", + "0.0", + "48629056.0", + "0.0", + "48629056.0", + "48629056.0", + "0.9219536", + "0.9219536", + "0.9219536", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1983224e-06", + "1.9222603e-06", + "0.0", + "1.0", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "[P0ACQ4:C25]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "774.44684", + "0.0015258789", + "Present", + "6.001258" + ], + [ + "32", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADVHLCVK2", + "AADVHLCVK", + "AADVHLCVK", + "2", + "964", + "0", + "1", + "506.76584", + "P45395", + "P45395", + "KDSD_ECOLI", + "kdsD", + "45.045246", + "-5.750933", + "47.869987", + "-10.058963", + "0.0", + "0.87408507", + "0.0", + "0.0", + "1718921.0", + "1718921.0", + "1069094.5", + "1069094.5", + "1407849.6", + "0.0004272461", + "1.0", + "0.7300319", + "0.0", + "0.0", + "0.6207463", + "3.2565506", + "1.1316797", + "0.7533607", + "353855840.0", + "403993300.0", + "44.89996", + "45.19117", + "0.13195394", + "0.0", + "11497942.0", + "0.0", + "11497942.0", + "11497942.0", + "0.7444782", + "0.7444782", + "0.7444782", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.925552e-06", + "4.21584e-06", + "0.0", + "1.0", + "AADVHLC(UniMod:4)VK2", + "[P45395:C146]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "519.29596", + "0.002380371", + "Present", + "6.001258" + ], + [ + "33", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEAVIIDTIR2", + "AAEAVIIDTIR", + "AAEAVIIDTIR", + "2", + "1052", + "0", + "1", + "586.3377", + "P0ADG4", + "P0ADG4", + "SUHB_ECOLI", + "suhB", + "88.26376", + "42.97589", + "88.241714", + "43.108944", + "0.0", + "0.94074327", + "0.0", + "0.0", + "28097418.0", + "28097418.0", + "27610082.0", + "27610082.0", + "24713134.0", + "-0.0006713867", + "1.0", + "0.9689099", + "0.0", + "0.0", + "0.8944861", + "6.624495", + "3.5546937", + "0.8928653", + "803579140.0", + "1021073900.0", + "87.8757", + "88.603386", + "0.3242042", + "0.0", + "28097418.0", + "0.0", + "28097418.0", + "28097418.0", + "0.9689099", + "0.9689099", + "0.9689099", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAEAVIIDTIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "829.51416", + "0.0025024414", + "Present and Passing FDR", + "6.001258" + ], + [ + "34", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEEAFR2", + "AAEEAFR", + "AAEEAFR", + "2", + "1075", + "0", + "1", + "397.1956", + "P21165", + "P21165", + "PEPQ_ECOLI", + "pepQ", + "35.711937", + "-17.198992", + "39.371098", + "-21.21893", + "0.0", + "0.7815424", + "0.0", + "0.0", + "8971166.0", + "8971166.0", + "8599221.0", + "8599221.0", + "8410514.0", + "-0.00088500977", + "1.0", + "0.95596766", + "0.0", + "0.0", + "0.9741072", + "4.954106", + "0.87492824", + "0.97103006", + "258507520.0", + "277407400.0", + "35.42042", + "36.10053", + "0.3008589", + "0.0", + "79750740.0", + "0.0", + "79750740.0", + "79750740.0", + "0.98041433", + "0.98041433", + "0.98041433", + "1.7822638e-05", + "1.7822638e-05", + "1.7822638e-05", + "0.0", + "0.00022177867", + "0.00044233107", + "0.0", + "1.0", + "AAEEAFR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "722.3468", + "0.004638672", + "Present and Passing FDR", + "4.749028" + ], + [ + "35", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEGIAPKPLDANQM[Oxidation]AALVELLK3", + "AAEGIAPKPLDANQM[Oxidation]AALVELLK", + "AAEGIAPKPLDANQMAALVELLK", + "3", + "1134", + "0", + "1", + "793.7699", + "P36683", + "P36683", + "ACNB_ECOLI", + "acnB", + "112.99285", + "76.778725", + "114.356186", + "74.95788", + "0.0", + "0.987832", + "0.0", + "0.0", + "1294528.2", + "1294528.2", + "2726475.2", + "2726475.2", + "997040.4", + "0.004211426", + "1.0", + "0.62068915", + "0.0", + "0.0", + "0.8252063", + "3.1483374", + "0.6531393", + "0.7315975", + "501934400.0", + "418322880.0", + "112.75", + "113.3324", + "0.4064182", + "0.0", + "688585150.0", + "0.0", + "688585150.0", + "688585150.0", + "0.9442582", + "0.9442582", + "0.9442582", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAEGIAPKPLDANQM(UniMod:35){1.000000}AALVELLK3", + "[P36683:M27]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "329.14557", + "0.00036621094", + "Present", + "6.001258" + ], + [ + "36", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM[Oxidation]EQK2", + "AAEIIHIGQAIM[Oxidation]EQK", + "AAEIIHIGQAIMEQK", + "2", + "1171", + "0", + "1", + "834.4429", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.844376", + "38.029137", + "82.05038", + "31.588327", + "0.0", + "1.1397063", + "0.0", + "0.0", + "778467.5", + "778467.5", + "682096.6", + "682096.6", + "518027.94", + "0.0028686523", + "1.0", + "0.4717078", + "0.0", + "0.0", + "0.5071717", + "2.9717689", + "1.8750236", + "0.66830456", + "1169947900.0", + "1120576300.0", + "77.26175", + "78.03854", + "0.22015776", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0010350993", + "0.0011739385", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK2", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "635.35114", + "0.0008544922", + "Present", + "6.001258" + ], + [ + "37", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM[Oxidation]EQK3", + "AAEIIHIGQAIM[Oxidation]EQK", + "AAEIIHIGQAIMEQK", + "3", + "1172", + "0", + "1", + "556.63104", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.821", + "38.029137", + "82.05038", + "31.573114", + "0.0", + "0.8493062", + "0.0", + "0.0", + "15018206.0", + "15018206.0", + "25544548.0", + "25544548.0", + "14102344.0", + "6.1035156e-05", + "1.0", + "0.638456", + "0.0", + "0.0", + "0.7257927", + "3.071986", + "0.0", + "0.9269335", + "987974850.0", + "1169947900.0", + "77.23835", + "78.2093", + "0.37308988", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "0.0011710582", + "0.011658683", + "0.022141015", + "0.0", + "0.019180777", + "0.022141015", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK3", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "920.4506", + "-0.006652832", + "Present", + "2.9314218" + ], + [ + "38", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELAGNDTIPVEITR2", + "AAELAGNDTIPVEITR", + "AAELAGNDTIPVEITR", + "2", + "1203", + "0", + "1", + "835.4414", + "P0ACB7", + "P0ACB7", + "HEMY_ECOLI", + "hemY", + "92.55462", + "44.613483", + "91.74687", + "49.380917", + "0.0", + "1.100099", + "0.0", + "0.0", + "2065169.5", + "2065169.5", + "2777191.5", + "2777191.5", + "1018370.9", + "-0.00012207031", + "1.0", + "0.9660883", + "0.0", + "0.0", + "0.7852382", + "5.258746", + "1.5672374", + "0.93024945", + "1214181800.0", + "1343128200.0", + "92.31227", + "92.79749", + "0.27851662", + "0.0", + "2101538.0", + "0.0", + "2101538.0", + "2101538.0", + "0.80221117", + "0.80221117", + "0.80221117", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAELAGNDTIPVEITR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1285.6747", + "0.011108398", + "Present and Passing FDR", + "6.001258" + ], + [ + "39", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELSGLTHSAISTIEQDK3", + "AAELSGLTHSAISTIEQDK", + "AAELSGLTHSAISTIEQDK", + "3", + "1241", + "0", + "1", + "657.6725", + "P0A9U6", + "P0A9U6", + "PUUR_ECOLI", + "puuR", + "92.83261", + "52.800926", + "95.38884", + "49.440197", + "0.0", + "0.90168226", + "0.0", + "0.0", + "1559440.0", + "1559440.0", + "4588269.0", + "4588269.0", + "1107571.6", + "-6.1035156e-05", + "1.0", + "0.829134", + "0.0", + "0.0", + "0.65697545", + "4.8367305", + "0.8680101", + "0.85241157", + "1244536400.0", + "1142363000.0", + "92.687454", + "93.12392", + "0.27198178", + "0.0", + "16596189.0", + "0.0", + "16596189.0", + "16596189.0", + "0.8498309", + "0.8498309", + "0.8498309", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0005226299", + "0.00051727705", + "0.0", + "1.0", + "AAELSGLTHSAISTIEQDK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "793.90466", + "0.0048828125", + "Present and Passing FDR", + "6.001258" + ], + [ + "40", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDECR2", + "AAENNPELAAFIDECR", + "AAENNPELAAFIDECR", + "2", + "1277", + "0", + "1", + "910.4176", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.71746", + "59.33595", + "102.491844", + "59.59053", + "0.0", + "1.1293542", + "0.0", + "0.0", + "35468964.0", + "35468964.0", + "27665188.0", + "27665188.0", + "27662706.0", + "-0.00018310547", + "1.0", + "0.9918874", + "0.0", + "0.0", + "0.98318624", + "6.8573484", + "0.9958743", + "0.9957494", + "383825760.0", + "344968580.0", + "100.42619", + "101.05705", + "0.33605525", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R2", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1320.6252", + "0.0007324219", + "Present", + "6.001258" + ], + [ + "41", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDECR3", + "AAENNPELAAFIDECR", + "AAENNPELAAFIDECR", + "3", + "1278", + "0", + "1", + "607.2808", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.64509", + "59.33595", + "102.491844", + "60.003082", + "0.0", + "0.92753696", + "0.0", + "0.0", + "13152284.0", + "13152284.0", + "13149464.0", + "13149464.0", + "12741688.0", + "0.00061035156", + "1.0", + "0.6915186", + "0.0", + "0.0", + "0.72929275", + "4.1023116", + "1.3746892", + "0.87355685", + "394104060.0", + "383825760.0", + "100.49975", + "100.93643", + "0.13069002", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R3", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "839.37164", + "-0.0015258789", + "Present", + "6.001258" + ], + [ + "42", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEQLGQANSAVSR2", + "AAEQLGQANSAVSR", + "AAEQLGQANSAVSR", + "2", + "1301", + "0", + "1", + "701.35767", + "P30864", + "P30864", + "YAFC_ECOLI", + "yafC", + "48.169655", + "-9.248929", + "47.460194", + "-7.1125617", + "0.0", + "1.0064552", + "0.0", + "0.0", + "2426344.5", + "2426344.5", + "1100771.5", + "1100771.5", + "1100771.5", + "-0.00030517578", + "1.0", + "0.54000485", + "0.0", + "0.0", + "0.645773", + "3.2920668", + "0.56579524", + "0.639474", + "537066430.0", + "489363040.0", + "47.926537", + "48.412094", + "0.24718998", + "0.0", + "2426344.5", + "0.0", + "2426344.5", + "2426344.5", + "0.54000485", + "0.54000485", + "0.54000485", + "0.0011710582", + "0.011658683", + "0.0012547051", + "0.0", + "0.0022290102", + "0.0032603245", + "0.0", + "1.0", + "AAEQLGQANSAVSR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "889.4486", + "0.006652832", + "Present", + "2.9314218" + ], + [ + "43", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAESALNIDVPVNAQYIR2", + "AAESALNIDVPVNAQYIR", + "AAESALNIDVPVNAQYIR", + "2", + "1346", + "0", + "1", + "972.5129", + "P0ACE0", + "P0ACE0", + "MBHM_ECOLI", + "hybC", + "106.4501", + "63.976006", + "106.3041", + "65.58738", + "0.0", + "1.192544", + "0.0", + "0.0", + "115423.8", + "115423.8", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.14110963", + "0.0", + "0.0", + "0.0", + "0.96301436", + "0.0", + "0.0", + "413169100.0", + "458511840.0", + "106.30478", + "106.59692", + "0.17054091", + "0.0", + "1231022.1", + "0.0", + "1231022.1", + "1231022.1", + "0.443667", + "0.443667", + "0.443667", + "0.00687235", + "0.096600726", + "0.0069459677", + "0.0", + "0.027691884", + "0.03497582", + "0.0", + "1.0", + "AAESALNIDVPVNAQYIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1174.6215", + "0.0", + "Present", + "2.162895" + ], + [ + "44", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEVLVVDTR2", + "AAEVLVVDTR", + "AAEVLVVDTR", + "2", + "1439", + "0", + "1", + "536.80347", + "P76116", + "P76116", + "YNCE_ECOLI", + "yncE", + "69.12997", + "18.1098", + "68.80989", + "20.39872", + "0.0", + "0.9022431", + "0.0", + "0.0", + "15261269.0", + "15261269.0", + "13799797.0", + "13799797.0", + "13161172.0", + "0.0006713867", + "1.0", + "0.8059485", + "0.0", + "0.0", + "0.94272983", + "6.048667", + "2.4350483", + "0.9846432", + "815928700.0", + "865392100.0", + "68.887566", + "69.517746", + "0.28593954", + "0.0", + "29748434.0", + "0.0", + "29748434.0", + "29748434.0", + "0.97279036", + "0.97279036", + "0.97279036", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.7919564e-06", + "4.038439e-06", + "0.0", + "1.0", + "AAEVLVVDTR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0035705566", + "Present and Passing FDR", + "6.001258" + ], + [ + "45", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDDAIAAR2", + "AAFDDAIAAR", + "AAFDDAIAAR", + "2", + "1480", + "0", + "1", + "510.7591", + "P0ABC7", + "P0ABC7", + "HFLK_ECOLI", + "hflK", + "69.22526", + "20.680796", + "70.90652", + "20.603237", + "0.0", + "0.874018", + "0.0", + "0.0", + "4191834.5", + "4191834.5", + "5319950.0", + "5319950.0", + "3585247.0", + "0.00091552734", + "1.0", + "0.91427785", + "0.0", + "0.0", + "0.84949213", + "5.577577", + "0.20540452", + "0.8701518", + "874820030.0", + "942318850.0", + "69.07937", + "69.56425", + "0.31091535", + "0.0", + "6749399.5", + "0.0", + "6749399.5", + "6749399.5", + "0.3634465", + "0.3634465", + "0.3634465", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAFDDAIAAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "616.3413", + "0.0049438477", + "Present and Passing FDR", + "6.001258" + ], + [ + "46", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER2", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "2", + "1493", + "0", + "1", + "803.3864", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.30761", + "31.610626", + "76.97953", + "30.905209", + "0.0", + "1.1188899", + "0.0", + "0.0", + "6226086.5", + "6226086.5", + "6581563.0", + "6581563.0", + "5416400.0", + "0.00048828125", + "1.0", + "0.87343264", + "0.0", + "0.0", + "0.83749926", + "5.453828", + "0.9509031", + "0.88552314", + "835704500.0", + "847041660.0", + "77.11338", + "77.74489", + "0.33347782", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "7.2828416e-06", + "1.0001863e-05", + "0.0", + "1.0", + "AAFDFAVEHQSVER2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "732.3493", + "0.005065918", + "Present and Passing FDR", + "6.001258" + ], + [ + "47", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER3", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "3", + "1494", + "0", + "1", + "535.9267", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.28542", + "31.610626", + "76.97953", + "30.868996", + "0.0", + "0.85347503", + "0.0", + "0.0", + "34672812.0", + "34672812.0", + "35916796.0", + "35916796.0", + "30941520.0", + "0.00012207031", + "1.0", + "0.9381459", + "0.0", + "0.0", + "0.96926254", + "4.7819843", + "0.0", + "0.9832147", + "809092540.0", + "835704500.0", + "77.04237", + "77.77095", + "0.34891692", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "2.9257258e-06", + "2.9257258e-06", + "0.00044233107", + "0.0", + "0.0004361099", + "0.00044233107", + "0.0", + "1.0", + "AAFDFAVEHQSVER3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "601.30164", + "0.0", + "Present and Passing FDR", + "5.5337663" + ], + [ + "48", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFLAVDNHK2", + "AAFLAVDNHK", + "AAFLAVDNHK", + "2", + "1573", + "0", + "1", + "543.2905", + "P30958", + "P30958", + "MFD_ECOLI", + "mfd", + "52.817375", + "4.7128224", + "55.31082", + "-0.9314743", + "0.0", + "0.92017615", + "0.0", + "0.0", + "608196.8", + "608196.8", + "672072.4", + "672072.4", + "464276.38", + "-0.00030517578", + "1.0", + "0.6241357", + "0.0", + "0.0", + "0.6410963", + "2.881232", + "1.0310254", + "0.7445865", + "810914300.0", + "749407400.0", + "52.6233", + "53.01149", + "0.22651064", + "0.0", + "69954510.0", + "0.0", + "69954510.0", + "69954510.0", + "0.9603192", + "0.9603192", + "0.9603192", + "0.00028754913", + "0.0036620705", + "0.00038339884", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAFLAVDNHK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "683.3471", + "-0.0028076172", + "Present", + "3.541288" + ], + [ + "49", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFNQM[Oxidation]VQGHK3", + "AAFNQM[Oxidation]VQGHK", + "AAFNQMVQGHK", + "3", + "1599", + "0", + "1", + "416.20474", + "P0AD59", + "P0AD59", + "IVY_ECOLI", + "ivy", + "32.16641", + "-27.826418", + "31.139164", + "-25.183844", + "0.0", + "0.74429053", + "0.0", + "0.0", + "15223242.0", + "15223242.0", + "13718766.0", + "13718766.0", + "15013976.0", + "-0.00039672852", + "1.0", + "0.68971384", + "0.0", + "0.0", + "0.8479052", + "3.8382869", + "0.3720075", + "0.8248497", + "138829220.0", + "151236850.0", + "31.92391", + "32.40942", + "0.13118525", + "0.0", + "33099992.0", + "0.0", + "33099992.0", + "33099992.0", + "0.9900178", + "0.9900178", + "0.9900178", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1550284e-05", + "1.566858e-05", + "0.0", + "1.0", + "AAFNQM(UniMod:35){1.000000}VQGHK3", + "[P0AD59:M50]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "568.3202", + "-0.0008544922", + "Present and Passing FDR", + "6.001258" + ] + ], + "shape": { + "columns": 73, + "rows": 13976 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Run.IndexRunChannelPrecursor.IdModified.SequenceStripped.SequencePrecursor.ChargePrecursor.Lib.IndexDecoyProteotypic...PG.Q.ValuePG.PEPGG.Q.ValueProtein.Q.ValueGlobal.PG.Q.ValueLib.PG.Q.ValueBest.Fr.MzBest.Fr.Mz.Deltain_mumdialogqvalue
00LFQ_Orbitrap_AIF_Ecoli_01AAAAEIAVK2AAAAEIAVKAAAAEIAVK21001...0.0006460.0012870.000650.0006510.0006460.0317.2183230.000641Present and Passing FDR6.001258
10LFQ_Orbitrap_AIF_Ecoli_01AAAAPVTGPLADDPIQETITFDDFAK3AAAAPVTGPLADDPIQETITFDDFAKAAAAPVTGPLADDPIQETITFDDFAK35801...0.0006460.0012870.000650.0006510.0006460.0214.1186220.001190Present6.001258
20LFQ_Orbitrap_AIF_Ecoli_01AAAAVLAK1AAAAVLAKAAAAVLAK17201...0.0006460.0012870.000650.0006510.0006460.0384.224152-0.000183Present2.603990
30LFQ_Orbitrap_AIF_Ecoli_01AAADLISR2AAADLISRAAADLISR210701...0.0006460.0012870.000650.0006510.0006460.0603.346069-0.000244Present and Passing FDR6.001258
40LFQ_Orbitrap_AIF_Ecoli_01AAADVQLR2AAADVQLRAAADVQLR211601...0.0006460.0012870.000650.0006510.0006460.0701.3940430.001038Present and Passing FDR5.909918
..................................................................
139710LFQ_Orbitrap_AIF_Ecoli_01YYLNAGVPIEIK2YYLNAGVPIEIKYYLNAGVPIEIK271227601...0.0006460.0012870.000650.0006510.0006460.0599.3762820.000000Present and Passing FDR6.001258
139720LFQ_Orbitrap_AIF_Ecoli_01YYPAEDAK2YYPAEDAKYYPAEDAK271235201...0.0006460.0012870.000650.0006510.0006460.0315.6582950.000977Present and Passing FDR6.001258
139730LFQ_Orbitrap_AIF_Ecoli_01YYPGSPLIAR2YYPGSPLIARYYPGSPLIAR271236201...0.0006460.0012870.000650.0006510.0006460.0810.4832150.007996Present2.238207
139740LFQ_Orbitrap_AIF_Ecoli_01YYQGTPSPVK2YYQGTPSPVKYYQGTPSPVK271246101...0.0006460.0012870.000650.0006510.0006460.0527.3187870.000122Present and Passing FDR4.544427
139750LFQ_Orbitrap_AIF_Ecoli_01YYSVIYNLIDEVK2YYSVIYNLIDEVKYYSVIYNLIDEVK271262201...0.0006460.0012870.000650.0006510.0006460.0993.525146-0.005127Present and Passing FDR6.001258
\n", + "

13976 rows × 73 columns

\n", + "
" + ], + "text/plain": [ + " Run.Index Run Channel \\\n", + "0 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "1 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "2 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "3 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "4 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "... ... ... ... \n", + "13971 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13972 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13973 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13974 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13975 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "\n", + " Precursor.Id Modified.Sequence \\\n", + "0 AAAAEIAVK2 AAAAEIAVK \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK3 AAAAPVTGPLADDPIQETITFDDFAK \n", + "2 AAAAVLAK1 AAAAVLAK \n", + "3 AAADLISR2 AAADLISR \n", + "4 AAADVQLR2 AAADVQLR \n", + "... ... ... \n", + "13971 YYLNAGVPIEIK2 YYLNAGVPIEIK \n", + "13972 YYPAEDAK2 YYPAEDAK \n", + "13973 YYPGSPLIAR2 YYPGSPLIAR \n", + "13974 YYQGTPSPVK2 YYQGTPSPVK \n", + "13975 YYSVIYNLIDEVK2 YYSVIYNLIDEVK \n", + "\n", + " Stripped.Sequence Precursor.Charge Precursor.Lib.Index \\\n", + "0 AAAAEIAVK 2 10 \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK 3 58 \n", + "2 AAAAVLAK 1 72 \n", + "3 AAADLISR 2 107 \n", + "4 AAADVQLR 2 116 \n", + "... ... ... ... \n", + "13971 YYLNAGVPIEIK 2 712276 \n", + "13972 YYPAEDAK 2 712352 \n", + "13973 YYPGSPLIAR 2 712362 \n", + "13974 YYQGTPSPVK 2 712461 \n", + "13975 YYSVIYNLIDEVK 2 712622 \n", + "\n", + " Decoy Proteotypic ... PG.Q.Value PG.PEP GG.Q.Value \\\n", + "0 0 1 ... 0.000646 0.001287 0.00065 \n", + "1 0 1 ... 0.000646 0.001287 0.00065 \n", + "2 0 1 ... 0.000646 0.001287 0.00065 \n", + "3 0 1 ... 0.000646 0.001287 0.00065 \n", + "4 0 1 ... 0.000646 0.001287 0.00065 \n", + "... ... ... ... ... ... ... \n", + "13971 0 1 ... 0.000646 0.001287 0.00065 \n", + "13972 0 1 ... 0.000646 0.001287 0.00065 \n", + "13973 0 1 ... 0.000646 0.001287 0.00065 \n", + "13974 0 1 ... 0.000646 0.001287 0.00065 \n", + "13975 0 1 ... 0.000646 0.001287 0.00065 \n", + "\n", + " Protein.Q.Value Global.PG.Q.Value Lib.PG.Q.Value Best.Fr.Mz \\\n", + "0 0.000651 0.000646 0.0 317.218323 \n", + "1 0.000651 0.000646 0.0 214.118622 \n", + "2 0.000651 0.000646 0.0 384.224152 \n", + "3 0.000651 0.000646 0.0 603.346069 \n", + "4 0.000651 0.000646 0.0 701.394043 \n", + "... ... ... ... ... \n", + "13971 0.000651 0.000646 0.0 599.376282 \n", + "13972 0.000651 0.000646 0.0 315.658295 \n", + "13973 0.000651 0.000646 0.0 810.483215 \n", + "13974 0.000651 0.000646 0.0 527.318787 \n", + "13975 0.000651 0.000646 0.0 993.525146 \n", + "\n", + " Best.Fr.Mz.Delta in_mumdia logqvalue \n", + "0 0.000641 Present and Passing FDR 6.001258 \n", + "1 0.001190 Present 6.001258 \n", + "2 -0.000183 Present 2.603990 \n", + "3 -0.000244 Present and Passing FDR 6.001258 \n", + "4 0.001038 Present and Passing FDR 5.909918 \n", + "... ... ... ... \n", + "13971 0.000000 Present and Passing FDR 6.001258 \n", + "13972 0.000977 Present and Passing FDR 6.001258 \n", + "13973 0.007996 Present 2.238207 \n", + "13974 0.000122 Present and Passing FDR 4.544427 \n", + "13975 -0.005127 Present and Passing FDR 6.001258 \n", + "\n", + "[13976 rows x 73 columns]" + ] + }, + "execution_count": 291, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_results" + ] + }, + { + "cell_type": "code", + "execution_count": 292, + "id": "fd833be1", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "diann_results[\"logqvalue\"] = -np.log10(diann_results[\"Q.Value\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 293, + "id": "b6753705", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkIBJREFUeJzs3Xd4FOX6//HPAiGQChgglBRKqFIMHaRJaCKCWFCQZj2eICI2sNAUkKMgqCtYjoAIihUFFaSIcBClREAhQIDQSwCFELrJ/P7gl/0Ski1JtmX3/bquvXRnnp25Z2ZnyL1PMxmGYQgAAAAAADhdMU8HAAAAAACAryLpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QaQb2PHjpXJZHLLvjp06KAOHTpY3q9atUomk0lffPGFW/Y/ePBgxcbGumVfBZWRkaGHHnpIkZGRMplMGj58uKdDQgG4877KL3ffd3COffv2yWQyafbs2R7Zf/b3ZtWqVTmWz507V3Xq1FFAQIDKlCkjKfez3l1mz54tk8mkffv2uX3fAPwHSTfg57L/4Mh+lSpVSpUrV1bXrl315ptv6uzZs07Zz5EjRzR27Fht3rzZKdtzJm+OzRETJ07U7Nmz9dhjj2nu3LkaMGCA1bKxsbGWa12sWDGVKVNGDRo00COPPKLffvstz8+YTCYNHTo0z3XJycmW783p06cdjjn7j3GTyaRNmzblWj948GCFhITkWNahQweZTCb17NkzV/ns5OL11193aP/nzp3Tyy+/rIYNGyooKEjh4eFq27at5s6dK8MwbH42LS1NJUqU0P3332+1zNmzZ1W6dGn16dPHoXhwVfYPD8WKFdPBgwdzrU9PT1fp0qVtfiftGTx4sEwmk8LCwnThwoVc61NSUizfzWu/T9d+Z00mkwIDA1WxYkV16NBBEydO1IkTJ3JtK/v5unHjxjxjefbZZ2UymdS3b998HUNsbKxuu+22fH3Gld555x2HE/sdO3Zo8ODBqlGjht5//3299957rg3u/5s4caIWLlzoln056vLly5o+fbpuuukmhYWFqUyZMqpfv74eeeQR7dixw1Lul19+0dixY/P1jL1efq4RAOcj6QYgSRo/frzmzp2rGTNm6PHHH5ckDR8+XA0aNNDWrVtzlH3xxRfz/GPVliNHjmjcuHH5Tmx//PFH/fjjj/n6TH7Ziu3999/Xzp07Xbr/wlq5cqVatmypMWPG6P7771eTJk1slm/cuLHmzp2rjz76SJMmTVLHjh21aNEitWzZUiNGjMjXvj/++GNFRkZKUoFrQceOHZuv8osXL84zUXfU8ePH1aJFC40dO1YNGjTQtGnT9PLLL6tYsWIaOHCg7r//fmVlZVn9fIUKFdS5c2d98803On/+fJ5lvvrqK128eNFmYg7rAgMD9cknn+Ra/tVXXzll+yVKlND58+e1aNGiXOvmzZunUqVKWf3ssGHDNHfuXL333nt65plnVK5cOY0ZM0Z169bVypUrHY7BMAx98sknio2N1aJFi5z2A6cnWEvo2rVrpwsXLqhdu3aWZatWrVJWVpamT5+uwYMH65577pHk+me9taR7wIABunDhgmJiYly2b2vuvPNOPfXUU7rxxhv16quvaty4cWrXrp1++OEH/frrr5Zyv/zyi8aNG0fSDRRhJTwdAADv0L17dzVt2tTyftSoUVq5cqVuu+023X777UpOTlbp0qUlXf2DtUQJ1z4+zp8/r6CgIJUsWdKl+7EnICDAo/t3RFpamurVq+dw+SpVquRKBidPnqx+/frpjTfeUFxcnB577DG72zEMQ/Pnz1e/fv2UmpqqefPm6aGHHspX7I0bN9bixYuVlJSk+Ph4u+Wjo6N19uxZjRs3Tt9++22+9pVt0KBBSk5O1tdff63bb7/dsnzYsGF65pln9Prrr6tx48Z65plnrG6jf//+WrJkib799lvde++9udbPnz9f4eHh6tGjR4Fi9He33nqrPvnkEz377LM5ls+fP189evTQl19+WajtBwYGqk2bNvrkk08sSZ+j+2jbtq3uuuuuHMu2bNmiLl266M4779T27dtVqVIluzGsWrVKhw4d0sqVK9W1a1d99dVXGjRoUMEPygsVK1Ys1w8YaWlpkmRpVp7NU8/64sWLq3jx4m7f74YNG7R48WJNmDBBzz//fI51b7/9dqESbADeh5puAFbdcssteumll7R//359/PHHluV59T1dtmyZbr75ZpUpU0YhISGqXbu25Q+JVatWqVmzZpKkIUOGWJpnZv/q3qFDB914443atGmT2rVrp6CgIMtnrfXzy8zM1PPPP6/IyEgFBwfr9ttvz9UcNTY2VoMHD8712Wu3aS+2vPp0nzt3Tk899ZSioqIUGBio2rVr6/XXX8/VLDm7CezChQt14403KjAwUPXr19eSJUvyPuHXSUtL04MPPqiKFSuqVKlSatSokebMmWNZn93cNTU1Vd99950l9oL0TSxdurTmzp2rcuXKacKECXabWEvS2rVrtW/fPt1777269957tXr1ah06dChf+3388cdVtmxZh2u7Q0ND9eSTT2rRokVKSkrK174k6ddff9XSpUs1ePDgHAl3tkmTJikuLk6vvvqqzdYcd9xxh4KDgzV//vxc69LS0rRixQrdddddCgwM1Jo1a3T33XcrOjpagYGBioqK0pNPPmm3tYit/rgmkynXOTt8+LAeeOABVaxY0fJd+/DDD3N99q233lL9+vUVFBSksmXLqmnTpnkeR17s3XdjxoxRQEBAnk2tH3nkEZUpU0YXL160u59+/fpp8+bNOZrYHjt2TCtXrlS/fv1ylbfWL9dan+Lsffzwww85kpsNGzYoJSUlz33Y0qhRI02bNk2nT5/W22+/7dBn5s2bp3r16qljx45KSEjQvHnz8rXP650+fVqDBw9WeHi4ypQpo0GDBllN3Hbs2KG77rpL5cqVU6lSpdS0adNcP2Jln9O1a9dqxIgRKl++vIKDg3XHHXfkuL6xsbHatm2bfv75Z8sz6Nrn67XnPzY2VmPGjJEklS9fPsf3OK9n/cWLFzV27FjVqlVLpUqVUqVKldSnTx/t2bPHUub1119X69atdcMNN6h06dJq0qRJrlY3JpNJ586d05w5cywxZv/bYO27884776h+/foKDAxU5cqVlZiYmOt8Zv/btX37dnXs2FFBQUGqUqWK/vOf/+R53q+VfQxt2rTJta548eK64YYbJF399zb7B8Bq1arles7PmjVLt9xyiypUqKDAwEDVq1dPM2bMyLE9W9fI2lgSeZ2XjRs3qmvXroqIiFDp0qVVrVo1PfDAA3aPFQBJNwA7svsH22r2t23bNt122226dOmSxo8frylTpuj222/X2rVrJUl169bV+PHjJV39w3vu3LmaO3dujiaHp06dUvfu3dW4cWNNmzZNHTt2tBnXhAkT9N133+m5557TsGHDtGzZMiUkJOS72bsjsV3LMAzdfvvteuONN9StWzdNnTpVtWvX1jPPPJNn0+z//e9/+ve//617771X//nPf3Tx4kXdeeedOnXqlM24Lly4oA4dOmju3Lnq37+/XnvtNYWHh2vw4MGaPn26Jfa5c+cqIiLC0mR87ty5Kl++fL7OQbaQkBDdcccdOnz4sLZv3263/Lx581SjRg01a9ZMPXv2VFBQUJ5Ngm0JCwvLdxL9xBNP5CtRv1Z2c+KBAwfmub5EiRLq16+f/vrrL/3yyy9WtxMcHKxevXpp6dKl+uuvv3KsW7BggTIzM9W/f39J0ueff67z58/rscce01tvvaWuXbvqrbfeshpDQRw/flwtW7bU8uXLNXToUE2fPl01a9bUgw8+qGnTplnKvf/++xo2bJjq1aunadOmady4cWrcuLHV/vzXs3ffDRgwQP/8848WLFiQ43OXL1/WF198oTvvvNNm0+1s7dq1U9WqVXP8GLBgwQKFhIQ4rfVAnz59ZDKZcjRZnz9/vurUqeNQq4vr3XXXXSpdurRDTaQvXbqkL7/8Uvfdd58k6b777tPKlSt17NixfO9Xuvpc6tWrl+bOnav7779fr7zyig4dOpRnzfm2bdvUsmVLJScna+TIkZoyZYqCg4PVu3dvff3117nKP/7449qyZYvGjBmjxx57TIsWLcrRn37atGmqWrWq6tSpY3kGvfDCC3nGOW3aNN1xxx2SpBkzZmju3LlWxz3IzMzUbbfdpnHjxqlJkyaaMmWKnnjiCZ05c0Z//vmnpVx2n+jx48dr4sSJKlGihO6++2599913ljJz585VYGCgZdyGuXPn6tFHH7V6PseOHavExERVrlxZU6ZM0Z133ql3331XXbp00ZUrV3KU/fvvv9WtWzc1atRIU6ZMUZ06dfTcc8/phx9+sLp9SZbm7PPmzdM///xjtVyfPn0s35M33ngj13N+xowZiomJ0fPPP68pU6YoKipK//73v2U2my3byM81siYtLU1dunTRvn37NHLkSL311lvq379/jmbwAGwwAPi1WbNmGZKMDRs2WC0THh5u3HTTTZb3Y8aMMa59fLzxxhuGJOPEiRNWt7FhwwZDkjFr1qxc69q3b29IMmbOnJnnuvbt21ve//TTT4Yko0qVKkZ6erpl+WeffWZIMqZPn25ZFhMTYwwaNMjuNm3FNmjQICMmJsbyfuHChYYk45VXXslR7q677jJMJpOxe/duyzJJRsmSJXMs27JliyHJeOutt3Lt61rTpk0zJBkff/yxZdnly5eNVq1aGSEhITmOPSYmxujRo4fN7TlaNvtafvPNNzmOIzExMUe5y5cvGzfccIPxwgsvWJb169fPaNSokUNxZF/Hzz//3Dh9+rRRtmxZ4/bbb7esHzRokBEcHJzjM+3btzfq169vGIZhjBs3zpBkbNq0yTAMw0hNTTUkGa+99prN/fbu3duQZPz9999Wy3z11VeGJOPNN9+0ua3vvvvOkGS8++67OZa3bNnSqFKlipGZmWkYhmGcP38+12cnTZpkmEwmY//+/ZZl199X2ceU1/dSkjFmzBjL+wcffNCoVKmScfLkyRzl7r33XiM8PNwSQ69evSznMD/yc9+1atXKaNGiRY7PZ5/Tn376yeZ+ss/BiRMnjKefftqoWbOmZV2zZs2MIUOGGIaR+zuZ/RxLTU3NM+5r93vtd+uuu+4yOnXqZBiGYWRmZhqRkZHGuHHj8vw+XfudtaZRo0ZG2bJlc8V1/fP1iy++MCQZKSkphmEYRnp6ulGqVCnjjTfesHl+sl1/H2c/l/7zn/9Ylv3zzz9G27Ztc32HOnXqZDRo0MC4ePGiZVlWVpbRunVrIy4uLlfsCQkJRlZWlmX5k08+aRQvXtw4ffq0ZVn9+vVzPFOz5XX+r73G17r+ufzhhx8akoypU6fm2u618Vx/f12+fNm48cYbjVtuuSXH8uDg4Dz/Pbj+u5OWlmaULFnS6NKli+UeNgzDePvttw1JxocffpgjZknGRx99ZFl26dIlIzIy0rjzzjtz7ev6Y8j+fMWKFY377rvPMJvNOZ4J2V577bU8v995Hb9hGEbXrl2N6tWr51hm7Rpd/9zJdv15+frrr+3+rQDAOmq6AdgVEhJic5Cf7L5533zzjc0BqGwJDAzUkCFDHC4/cOBAhYaGWt7fddddqlSpkr7//vsC7d9R33//vYoXL65hw4blWP7UU0/JMIxctRsJCQmqUaOG5X3Dhg0VFhamvXv32t1PZGSkpYZDutq/fNiwYcrIyNDPP//shKPJLXvEcHuDOv3www86depUjvjuu+8+bdmyRdu2bcvXPsPDwzV8+HB9++23+v333x36THZt97hx4/K1r+zjuva7c73sdfbOQZcuXVS+fPkctbGpqan69ddfdd9996lYsav/xGaPhSBd7Zpw8uRJtW7dWoZhOHy8thiGoS+//FI9e/aUYRg6efKk5dW1a1edOXPG0oqgTJkyOnTokDZs2FCgfTly3w0cOFC//fZbjibA8+bNU1RUlNq3b+/wvvr166fdu3drw4YNlv/mt9m3I/tYtWqVpen6sWPHCrUPe8/KbPPmzVPTpk1Vs2ZNSVe/cz169ChwE/Pvv/9eJUqUyDEWQ/HixS2DYmb766+/tHLlSt1zzz06e/as5Xty6tQpde3aVSkpKTp8+HCOzzzyyCM5mh+3bdtWmZmZ2r9/f4FiddSXX36piIiIXMcgKUc8195ff//9t86cOaO2bdsWqPuJJC1fvlyXL1/W8OHDLfewJD388MMKCwvLUYMuXb3m146RUbJkSTVv3tzuM95kMmnp0qV65ZVXVLZsWX3yySdKTExUTEyM+vbt63Cf7muP/8yZMzp58qTat2+vvXv36syZMw5twxHZ/84vXrw4V20/APtIugHYlZGRYTNJ6du3r9q0aaOHHnpIFStW1L333qvPPvssXwl4lSpV8jWQTlxcXI73JpNJNWvWdPlcq/v371flypVznY+6deta1l8rOjo61zbKli2rv//+2+5+4uLicvzRZ2s/zpKRkSHJdlIqXR21vFq1agoMDNTu3bu1e/du1ahRQ0FBQTkSh2PHjuV4WWv+/8QTT6hMmTIONxkvSKJ+7XHZSoyy11WoUMHmtkqUKKG+fftqzZo1lkQlOwHPblouSQcOHNDgwYNVrlw5hYSEqHz58pbk0xl/FJ84cUKnT5/We++9p/Lly+d4Zf+QlT141XPPPaeQkBA1b95ccXFxSkxMtHQDcYQj913fvn0VGBho+R6cOXNGixcvVv/+/fM1D/lNN92kOnXqaP78+Zo3b54iIyN1yy23OPx5R9x6660KDQ3VggULNG/ePDVr1sySCBeEvWeldLXv9ffff6/27dtb7p3du3erTZs22rhxo3bt2pXv/e7fv1+VKlXKNc1e7dq1c7zfvXu3DMPQSy+9lOu7kt3XOvu7ku36Z1jZsmUlye4zrLD27Nmj2rVr2x20c/HixWrZsqVKlSqlcuXKqXz58poxY0aB763sZ+v1565kyZKqXr16rmdv1apVc32vHXnGS1d/bH7hhReUnJysI0eO6JNPPlHLli312WefOTwl3tq1a5WQkKDg4GCVKVNG5cuXt4yJ4syku3379rrzzjs1btw4RUREqFevXpo1a5YuXbrktH0AvoykG4BNhw4d0pkzZ2z+IVq6dGmtXr1ay5cv14ABA7R161b17dtXnTt3VmZmpkP7ufbXemex9ge+ozE5g7VRcQ0HBirzhOy+kraud3p6uhYtWqTU1FTFxcVZXvXq1dP58+c1f/58y/FVqlQpx+v6vr7ZClrbXaZMmXzVdmeP8n79NHjXyl5XvXp1u9vLnl4suy/7J598onr16qlx48aSrn7XOnfubOkHvXDhQi1btswyOJqtH6Yc/f5mb+P+++/XsmXL8nxlD9ZUt25d7dy5U59++qluvvlmffnll7r55pstCZczlC1bVrfddpsl6f7iiy906dKlAk2f1q9fPy1YsEDz589X3759c/0Ila2g93pgYKD69OmjOXPm6Ouvvy5ULfeVK1e0a9cuu0n7559/rkuXLmnKlCk57p/sMSEKO6CaLdnflaefftrqd+X6+L35GbZmzRrdfvvtKlWqlN555x19//33WrZsmfr16+e2+Jx1fipVqmQZkDIuLk6fffaZzb7e0tUfJjp16qSTJ09q6tSp+u6777Rs2TI9+eSTkmw/X7I5eu+YTCZ98cUXWrdunYYOHWoZuLFJkyaWH2sBWMeUYQBsmjt3riSpa9euNssVK1ZMnTp1UqdOnTR16lRNnDhRL7zwgn766SclJCTkq4bLESkpKTneG4ah3bt3q2HDhpZlZcuWzbOJ3v79+3MkVPmJLSYmRsuXL9fZs2dz1Ghlj7LsrLleY2JitHXrVmVlZeVINJy9n2tlZGTo66+/VlRUlKVGPS/Zc1DPmDFDEREROdbt3LlTL774otauXaubb75Zy5Yty7G+fv36Vrc7fPhwy+Be108nlJfsRH3s2LEOT7XUs2dPTZw4UR999FGeg+VlZmZq/vz5qlixotXB9K7VokUL1ahRQ/Pnz1fnzp21bds2TZgwwbL+jz/+0K5duzRnzpwcA6ddf17ykl2jeP13+PqatvLlyys0NFSZmZlKSEiwu93g4GD17dtXffv21eXLl9WnTx9NmDBBo0aNsjvImSP3nXS1iXmvXr20YcMGzZs3TzfddJPNa29Nv379NHr0aB09etTyLMqLo+fK2j4+/PBDFStWLM/p3xz1xRdf6MKFC3aflfPmzdONN96Y5w8d7777rubPn5/vbhMxMTFasWKFMjIyctR279y5M0e57OdeQECAQ98VRzn7+S5JNWrU0G+//aYrV65Ynbrxyy+/VKlSpbR06VIFBgZals+aNavAMWY/W3fu3Jnj34nLly8rNTXVqectLwEBAWrYsKFSUlJ08uRJRUZGWo190aJFunTpkr799tscLRJ++umnXGWtbePae+fa5661e6dly5Zq2bKlJkyYoPnz56t///769NNP8z1dJOBvqOkGYNXKlSv18ssvq1q1ajmay17v+tGbJVlq+rKbngUHB0vK/UdxQX300Uc5mgh/8cUXOnr0qLp3725ZVqNGDf3666+6fPmyZdnixYtzTS2Wn9huvfVWZWZm5poW6I033pDJZMqx/8K49dZbdezYsRw1w//884/eeusthYSE5KtvrCMuXLigAQMG6K+//tILL7xg8w/Ujz/+WNWrV9e//vUv3XXXXTleTz/9tEJCQiy1dQkJCTletuYvzk6iv/nmG23evNmhuIcPH64yZcpYRqC3p2XLlurSpYtmzZqlxYsX51r/wgsvaNeuXXr22WdzNGvds2dPjj7K1+rfv79+//13jRkzRiaTKUdtaXYt2LW1XoZhWEagtyUsLEwRERFavXp1juXvvPNOjvfFixfXnXfeqS+//DLHqM7Zrp3e6fpR80uWLKl69erJMAyH+mk6ct9JUvfu3RUREaHJkyfr559/LlAtt3T1Hp42bZomTZqk5s2b2ywnKce5yszM1HvvvWd3Hx07dtTLL7+st99+W5GRkQWKc8uWLRo+fLjKli2rxMREq+UOHjyo1atX65577sl179x1110aMmSIdu/e7fBo8tluvfVW/fPPPzmmisrMzNRbb72Vo1yFChXUoUMHvfvuuzp69Giu7eQ11ZsjgoODnT6v9J133qmTJ0/mOQVb9v1UvHhxmUymHLWy+/bt08KFCwscY0JCgkqWLKk333wzx3373//+V2fOnHHa6PkpKSk6cOBAruWnT5/WunXrVLZsWcsI5db+jcrr+XLmzJk8f3Swdvx53TvZ06td6++//85Ve3/9v/MArKOmG4CkqwNj7dixQ//884+OHz+ulStXatmyZYqJidG3335rswZs/PjxWr16tXr06KGYmBilpaXpnXfeUdWqVXXzzTdLuvoPe5kyZTRz5kyFhoYqODhYLVq0ULVq1QoUb7ly5XTzzTdryJAhOn78uKZNm6aaNWvq4YcftpR56KGH9MUXX6hbt2665557tGfPHn388cc5BjbLb2w9e/ZUx44d9cILL2jfvn1q1KiRfvzxR33zzTcaPnx4rm0X1COPPKJ3331XgwcP1qZNmxQbG6svvvhCa9eu1bRp0+z2G7Xl8OHDlnnXMzIytH37dn3++ec6duyYnnrqKZtT6Rw5ckQ//fRTroHksgUGBqpr1676/PPP9eabb1qtobLmiSee0BtvvKEtW7ZY/tC0JTw8XE888US+agY/+ugj3XLLLerVq5f69euntm3b6tKlS/rqq6+0atUq3X///Zbmmdk6deokSXmOGXD//fdr/Pjx+uabb9SmTZsc87rXqVNHNWrU0NNPP63Dhw8rLCxMX375pcP9YR966CG9+uqreuihh9S0aVOtXr06zz6/r776qn766Se1aNFCDz/8sOrVq6e//vpLSUlJWr58ueWHsS5duigyMlJt2rRRxYoVlZycrLfffls9evRw6DvlyH0nXa2tu/fee/X222+rePHiOQbcy68nnnjCbpn69eurZcuWGjVqlP766y+VK1dOn376qd3mudLVVjovvviiw/GsWbNGFy9eVGZmpk6dOqW1a9fq22+/VXh4uL7++mubiXt214u85oiXribPJUqU0Lx589SiRQuHY+rZs6fatGmjkSNHat++fapXr56++uqrPPv0ms1m3XzzzWrQoIEefvhhVa9eXcePH9e6det06NAhbdmyxeH9ZmvSpIlmzJihV155RTVr1lSFChUK3f9+4MCB+uijjzRixAitX79ebdu21blz57R8+XL9+9//Vq9evdSjRw9NnTpV3bp1U79+/ZSWliaz2ayaNWvm6kLSpEkTLV++XFOnTlXlypVVrVq1PM9x+fLlNWrUKI0bN07dunXT7bffrp07d+qdd95Rs2bNCvwD0vW2bNmifv36qXv37mrbtq3KlSunw4cPa86cOTpy5IimTZtmSaqbNGki6eqPgvfee68CAgLUs2dPdenSRSVLllTPnj316KOPKiMjQ++//74qVKiQ60cVa9eoS5cuio6O1oMPPqhnnnlGxYsX14cffqjy5cvn+FFgzpw5euedd3THHXeoRo0aOnv2rN5//32FhYXp1ltvdco5AXyaewdLB+BtsqcFyX6VLFnSiIyMNDp37mxMnz49x/RA2a6fYmTFihVGr169jMqVKxslS5Y0KleubNx3333Grl27cnzum2++MerVq2eUKFEixzQ2104FdT1rU4Z98sknxqhRo4wKFSoYpUuXNnr06JHnVCtTpkwxqlSpYgQGBhpt2rQxNm7cmGubtmK7fsowwzCMs2fPGk8++aRRuXJlIyAgwIiLizNee+21HNPYGEbeU20ZhvWpzK53/PhxY8iQIUZERIRRsmRJo0GDBnlOH5XfKcOyr7XJZDLCwsKM+vXrGw8//LDx22+/5fmZa49jypQphiRjxYoVVvcxe/bsXNOOXc/W9EvZ3y9bU4Zd6++//zbCw8MdmjIs29mzZ41x48YZ9evXN0qVKmU5Jy+99FKe5WNiYnJ9D67VrFkzQ5Lxzjvv5Fq3fft2IyEhwQgJCTEiIiKMhx9+2DJ13LXXM6+pe86fP288+OCDRnh4uBEaGmrcc889RlpaWq4pwwzj6vclMTHRiIqKMgICAozIyEijU6dOxnvvvWcp8+677xrt2rUzbrjhBiMwMNCoUaOG8cwzzxhnzpyxeb7ye98ZhmGsX7/ekGR06dLF5ravZW06qevldW/t2bPHSEhIMAIDA42KFSsazz//vLFs2TKbU4ZZY2vKsOxXQECAUb58eaNdu3bGhAkTjLS0tFzbuX7KsAYNGhjR0dE2992hQwejQoUKxpUrV6yWyeueP3XqlDFgwAAjLCzMCA8PNwYMGGD8/vvveU47t2fPHmPgwIFGZGSkERAQYFSpUsW47bbbjC+++MJq7Nefh2vP6bFjx4wePXoYoaGhhiTL87UwU4YZxtXv/wsvvGBUq1bN8p2+6667jD179ljK/Pe//zXi4uKMwMBAo06dOsasWbPyvJd27NhhtGvXzihdurQhyfIMtjbd3Ntvv23UqVPHCAgIMCpWrGg89thjuaYatPZMyuvfjesdP37cePXVV4327dsblSpVMkqUKGGULVvWuOWWW3Jch2wvv/yyUaVKFaNYsWI54v3222+Nhg0bGqVKlTJiY2ONyZMnW6Zbu/aYrF0jwzCMTZs2GS1atDBKlixpREdHG1OnTs11XpKSkoz77rvPiI6ONgIDA40KFSoYt912m7Fx40abxwngKpNheMFIGAAAeNDhw4fVunVr/fPPP1q3bl2eo84jf7Zs2aLGjRvro48+0oABAzwdDgAAHkOfbgCA36tSpYqWLFmiixcvqnv37i6fDskfvP/++woJCVGfPn08HQoAAB5Fn24AAHR1Oq3rBxpD/i1atEjbt2/Xe++9p6FDhzrUNx8AAF/mM83Lz58/r7p16+ruu+/W66+/7ulwAADwS7GxsTp+/Li6du2quXPnFmrQPwAAfIHP1HRPmDBBLVu29HQYAAD4tbxGeAcAwJ/5RJ/ulJQU7dixw2nz4wIAAAAA4AweT7pXr16tnj17qnLlyjKZTFq4cGGuMmazWbGxsSpVqpRatGih9evX51j/9NNPa9KkSW6KGAAAAAAAx3i8efm5c+fUqFEjPfDAA3mOcLpgwQKNGDFCM2fOVIsWLTRt2jR17dpVO3fuVIUKFfTNN9+oVq1aqlWrln755Zd87z8rK0tHjhxRaGioTCaTMw4JAAAAAODjDMPQ2bNnVblyZRUrZqM+26OzhF9HkvH111/nWNa8eXMjMTHR8j4zM9OoXLmyMWnSJMMwDGPkyJFG1apVjZiYGOOGG24wwsLCjHHjxlndx8WLF40zZ85YXtu3bzck8eLFixcvXrx48eLFixcvXvl+HTx40Gae6/GablsuX76sTZs2adSoUZZlxYoVU0JCgtatWydJmjRpkqVp+ezZs/Xnn39q9OjRVrc5adIkjRs3LtfygwcPKiwszMlHAAAAAADwRenp6YqKirI7U4dXJ90nT55UZmamKlasmGN5xYoVtWPHjgJtc9SoURoxYoTlffaJCgsLI+kGAAAAAOSLvW7KXp1059fgwYPtlgkMDFRgYKDrgwEAAAAA+D2Pj15uS0REhIoXL67jx4/nWH78+HFFRkZ6KCoAAAAAABzj1Ul3yZIl1aRJE61YscKyLCsrSytWrFCrVq08GBkAAAAAAPZ5vHl5RkaGdu/ebXmfmpqqzZs3q1y5coqOjtaIESM0aNAgNW3aVM2bN9e0adN07tw5DRkypFD7NZvNMpvNyszMtFs2KytLly9fLtT+ANhXsmRJ29MtAAAAAEWM6f9P1eUxq1atUseOHXMtHzRokGbPni1Jevvtt/Xaa6/p2LFjaty4sd588021aNHCKftPT09XeHi4zpw5k+dAapcvX1ZqaqqysrKcsj8A1hUrVkzVqlVTyZIlPR0KAAAAYJO9XDKbx5NuT7N1ogzD0IEDB3TlyhX7E54DKJSsrCwdOXJEAQEBio6OtjsKJAAAAOBJjibdHm9e7s3++ecfnT9/XpUrV1ZQUJCnwwF8Xvny5XXkyBH9888/CggI8HQ4AAAAQKFRdWtDdn9vmroC7pF9rzky1gIAAABQFJB0O4BmroB7cK8BAADA15B0AwAAAADgIn6bdJvNZtWrV0/NmjXzdChFXocOHTR8+HBPh+EWs2fPVpkyZSzvx44dq8aNG3ssHgAAAADezW8HUktMTFRiYqJlxDkU3FdffeW3g149/fTTevzxxz0dBgAAAAAv5bdJN5ynXLlyng7BY0JCQhQSEuLpMAAAAAB4Kb9tXg7nubZ5eWxsrCZOnKgHHnhAoaGhio6O1nvvvefQdvbt2yeTyaTPPvtMbdu2VenSpdWsWTPt2rVLGzZsUNOmTRUSEqLu3bvrxIkTee4/W+/evTV48GDL+9jYWL3yyisaOHCgQkJCFBMTo2+//VYnTpxQr169FBISooYNG2rjxo05tjN79mxFR0crKChId9xxh06dOpVj/fXNyzds2KDOnTsrIiJC4eHhat++vZKSkhw6fgAAAAC+h6QbTjdlyhQ1bdpUv//+u/7973/rscce086dOx3+/JgxY/Tiiy8qKSlJJUqUUL9+/fTss89q+vTpWrNmjXbv3q3Ro0fnO6433nhDbdq00e+//64ePXpowIABGjhwoO6//34lJSWpRo0aGjhwoAzDkCT99ttvevDBBzV06FBt3rxZHTt21CuvvGJzH2fPntWgQYP0v//9T7/++qvi4uJ066236uzZs/mOFwAAAEDRR/NyON2tt96qf//735Kk5557Tm+88YZ++ukn1a5d26HPP/300+ratask6YknntB9992nFStWqE2bNpKkBx98ULNnzy5QXI8++qgkafTo0ZoxY4aaNWumu+++2xJrq1atdPz4cUVGRmr69Onq1q2bnn32WUlSrVq19Msvv2jJkiVW93HLLbfkeP/ee++pTJky+vnnn3XbbbflO2YAAAAARZvf1nQzernrNGzY0PL/JpNJkZGRSktLK9DnK1asKElq0KBBjmX52V5+tivJsu3k5GS1aNEixzZatWplcx/Hjx/Xww8/rLi4OIWHhyssLEwZGRk6cOBAvuMFAAAAUPT5bU03o5e7zvUjmZtMJmVlZRXo8yaTKc9l126vWLFilibh2a5cuVKg7UrKV6zXGzRokE6dOqXp06crJiZGgYGBatWqlS5fvlzgbQIAAAAouvy2phu+o3z58jp69KjlfWZmpv78889Cb7du3br67bffciz79ddfbX5m7dq1GjZsmG699VbVr19fgYGBOnnyZKFjAQAAAFA0+W1NN3zHLbfcohEjRui7775TjRo1NHXqVJ0+fbrQ2x02bJjatGmj119/Xb169dLSpUtt9ueWpLi4OM2dO1dNmzZVenq6nnnmGZUuXbrQsQAAAAC+JCUlxeZgw6GhoYqLi3NjRK5D0o0i74EHHtCWLVs0cOBAlShRQk8++aQ6duxY6O22bNlS77//vsaMGaPRo0crISFBL774ol5++WWrn/nvf/+rRx55RPHx8YqKitLEiRP19NNPFzoWAAAAwFekpKSoVq1adsvt2rXLJxJvk3F9Z1g/k92n+8yZMwoLC8ux7uLFi0pNTVW1atVUqlQpD0UI+A/uOQAAAN+XlJSkJk2aaOCrzyuyekyu9cf27tdHIydq06ZNio+P90CEjrGVS16Lmm4AAAAAgNtFVo9RVD37Nd5FHQOpwW0mTpyokJCQPF/du3f3dHgAAAAA4HTUdMNt/vWvf+mee+7Jcx2DjQEAAADwRX6bdJvNZpnNZmVmZno6FL9Rrlw5lStXztNhAAAAAIDb+G3z8sTERG3fvl0bNmzwdCgAAAAAAB/lt0k3AAAAAACuRtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALiI345eXhgHDhzQyZMn3ba/iIgIRUdHu21//sxkMunrr79W7969PR1KDvv27VO1atX0+++/q3Hjxp4OBwAAAICDSLrz6cCBA6pTt64unD/vtn2WDgrSjuRkhxPvwYMHa86cOZKkgIAARUdHa+DAgXr++edVooT3XvJVq1apY8eO+vvvv1WmTBlPh5MnT53bqKgoHT16VBERES7bh/R/yf31+vfvr48//jjX+pCQEEVHR6tDhw4aPny44uLiLOtmz56tIUOGSLr6Y0bFihXVrl07vfbaa/yIBAAAAL/hvRmYlzp58qQunD+vga8+r8jqMS7f37G9+/XRyIk6efJkvhKVbt26adasWbp06ZK+//57JSYmKiAgQKNGjcpV9vLlyypZsqQzw/Zp+Tm3zlK8eHFFRka6bPvXW758uerXr295X7p06TzXnz9/Xn/88YemT5+uRo0aadGiRerUqZOlXFhYmHbu3CnDMJSamqp///vfuvvuu/Xbb7+57VgAAAAAT/LbPt1ms1n16tVTs2bNCvT5yOoxiqpXy+Wvgib2gYGBioyMVExMjB577DElJCTo22+/lXS1trZ3796aMGGCKleurNq1a0uSDh48qHvuuUdlypRRuXLl1KtXL+3bt8+yzVWrVql58+YKDg5WmTJl1KZNG+3fv9+y/ptvvlF8fLxKlSql6tWra9y4cfrnn38s600mkz744APdcccdCgoKUlxcnCWmffv2qWPHjpKksmXLymQyafDgwXke26lTp3TfffepSpUqCgoKUoMGDfTJJ5/kKNOhQwcNGzZMzz77rMqVK6fIyEiNHTs2R5mUlBS1a9dOpUqVUr169bRs2bJCn9upU6eqQYMGCg4OVlRUlP79738rIyPD8tn9+/erZ8+eKlu2rIKDg1W/fn19//33kqS///5b/fv3V/ny5VW6dGnFxcVp1qxZlvNjMpm0efNmy7UwmUxasWKFmjZtqqCgILVu3Vo7d+7MEesrr7yiChUqKDQ0VA899JBGjhzpUPP0G264QZGRkZZXeHh4nuurV6+uXr16afny5WrRooUefPBBZWZmWsqZTCZFRkaqUqVKat26tR588EGtX79e6enpDp1rAAAAoKjz26Q7MTFR27dv14YNGzwdiluULl1aly9ftrxfsWKFdu7cqWXLlmnx4sW6cuWKunbtqtDQUK1Zs0Zr165VSEiIunXrpsuXL+uff/5R79691b59e23dulXr1q3TI488IpPJJElas2aNBg4cqCeeeELbt2/Xu+++q9mzZ2vChAk54hg3bpzuuecebd26Vbfeeqv69++vv/76S1FRUfryyy8lSTt37tTRo0c1ffr0PI/l4sWLatKkib777jv9+eefeuSRRzRgwACtX78+R7k5c+YoODhYv/32m/7zn/9o/PjxlsQ6KytLffr0UcmSJfXbb79p5syZeu655wp9bosVK6Y333xT27Zt05w5c7Ry5Uo9++yzlrKJiYm6dOmSVq9erT/++EOTJ09WSEiIJOmll17S9u3b9cMPPyg5OVkzZsyw25z8hRde0JQpU7Rx40aVKFFCDzzwgGXdvHnzNGHCBE2ePFmbNm1SdHS0ZsyYUaBjtKdYsWJ64okntH//fm3atCnPMmlpafr6669VvHhxFS9e3CVxAAAAAN6G5uU+zjAMrVixQkuXLtXjjz9uWR4cHKwPPvjA0qz8448/VlZWlj744ANLIj1r1iyVKVNGq1atUtOmTXXmzBnddtttqlGjhiSpbt26lu2NGzdOI0eO1KBBgyRJ1atX18svv6xnn31WY8aMsZQbPHiw7rvvPknSxIkT9eabb2r9+vXq1q2bypUrJ0mqUKGCzT7dVapU0dNPP215//jjj2vp0qX67LPP1Lx5c8vyhg0bWvYdFxent99+WytWrFDnzp21fPly7dixQ0uXLlXlypUt8XTv3r1Q53b48OGW9bGxsXrllVf0r3/9S++8846kq2MC3HnnnWrQoIHlPGU7cOCAbrrpJjVt2tTyeXsmTJig9u3bS5JGjhypHj166OLFiypVqpTeeustPfjgg5Z+1aNHj9aPP/6Yo+bdmtatW6tYsf/7TW7NmjW66aabbH6mTp06kq7WymdfhzNnzigkJESGYej8/x8HYdiwYQoODrYbAwAAAOALSLp91OLFixUSEqIrV64oKytL/fr1y9G8ukGDBjn6cW/ZskW7d+9WaGhoju1cvHhRe/bsUZcuXTR48GB17dpVnTt3VkJCgu655x5VqlTJ8vm1a9fmqNnOzMzUxYsXdf78eQUFBUm6mghnCw4OVlhYmNLS0vJ1bJmZmZo4caI+++wzHT58WJcvX9alS5cs+8h27b4kqVKlSpZ9JScnKyoqypJwS1KrVq0c2r+tc7t8+XJNmjRJO3bsUHp6uv75558c52DYsGF67LHH9OOPPyohIUF33nmnJc7HHntMd955p5KSktSlSxf17t1brVu3thnLtceYfS3S0tIUHR2tnTt36t///neO8s2bN9fKlSvtHuOCBQty/KgSFRVl9zOGYUiS5UcbSQoNDVVSUpKuXLmiH374wVL7DgAAAPgLv21e7us6duyozZs3KyUlRRcuXLA0tc52fU1jRkaGmjRpos2bN+d47dq1S/369ZN0teZ73bp1at26tRYsWKBatWrp119/tXx+3LhxOT77xx9/KCUlRaVKlbLsJyAgIMd+TSaTsrKy8nVsr732mqZPn67nnntOP/30kzZv3qyuXbvmaD7vrH3lxdq53bdvn2677TY1bNhQX375pTZt2iSz2SxJltgeeugh7d27VwMGDNAff/yhpk2b6q233pIkde/eXfv379eTTz6pI0eOqFOnTjlq9PNy7TFmJ7vOOMaoqCjVrFnT8goMDLT7meTkZEnKMbp5sWLFVLNmTdWtW1cjRoxQy5Yt9dhjjxU6PgAAAKCoIOn2UcHBwapZs6aio6MdmsoqPj5eKSkpqlChQo5kq2bNmjkG0brppps0atQo/fLLL7rxxhs1f/58y+d37tyZ67M1a9bM0UzZluya92sH4srL2rVr1atXL91///1q1KiRqlevrl27djm0j2x169bVwYMHdfToUcuy7B8Q7LF2bjdt2qSsrCxNmTJFLVu2VK1atXTkyJFcn4+KitK//vUvffXVV3rqqaf0/vvvW9aVL19egwYN0scff6xp06bpvffey9dxXat27dq5xixw1RgGWVlZevPNN1WtWjWbzdBHjhypBQsWKCkpySVxAAAAAN6GpBuSrs7DHBERoV69emnNmjVKTU3VqlWrNGzYMB06dEipqakaNWqU1q1bp/379+vHH39USkqKpQny6NGj9dFHH2ncuHHatm2bkpOT9emnn+rFF190OIaYmBiZTCYtXrxYJ06csNr3OC4uTsuWLdMvv/yi5ORkPfroozp+/Hi+jjchIUG1atXSoEGDtGXLFq1Zs0YvvPBCvrZxvZo1a+rKlSt66623tHfvXs2dO1czZ87MUWb48OFaunSpUlNTlZSUpJ9++inHOfzmm2+0e/dubdu2TYsXL87RxDu/Hn/8cf33v//VnDlzlJKSoldeeUVbt27N0fy7oE6dOqVjx45p7969+vbbb5WQkKD169frv//9r81B0qKionTHHXdo9OjRhY4BAAAAKAro011Ax/but1+oCO0nKChIq1ev1nPPPac+ffro7NmzqlKlijp16qSwsDBduHBBO3bs0Jw5c3Tq1ClVqlRJiYmJevTRRyVJXbt21eLFizV+/HhNnjxZAQEBqlOnjh566CGHY6hSpYplQLYhQ4Zo4MCBmj17dq5yL774ovbu3auuXbsqKChIjzzyiHr37q0zZ844vK9ixYrp66+/1oMPPqjmzZsrNjZWb775prp16+bwNq7XqFEjTZ06VZMnT9aoUaPUrl07TZo0SQMHDrSUyczMVGJiog4dOqSwsDB169ZNb7zxhqSrNf2jRo3Svn37VLp0abVt21affvppgePp37+/9u7dq6effloXL17UPffco8GDB+ca5b0gEhISJF393sTExKhjx4567733VLNmTbufffLJJ9WqVSutX78+x8B3AAAAgC8yGdmjH/mp9PR0hYeH68yZMwoLC8ux7uLFi0pNTVW1atUs/ZIPHDigOnXr6sL/H4nZHUoHBWlHcrKio6Pdtk/4ps6dOysyMlJz5871dCh5yuueAwAAgG9JSkpSkyZN9Oxn7yqqXq1c6w9u36X/3POoNm3apPj4eA9E6BhbueS1qOnOp+joaO1ITtbJkyfdts+IiAgSbuTb+fPnNXPmTHXt2lXFixfXJ598ouXLl1vmKgcAAADgeiTdBRAdHU0SDK9nMpn0/fffa8KECbp48aJq166tL7/80tI0HAAAAIDrkXQDPqp06dJavny5p8MAAAAA/Jrfjl5uNptVr149NWvWzNOhAAAAAAB8lN8m3YmJidq+fbvL5i0GAAAAAMBvk24AAAAAAFyNpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGmDCuAAwcO6OTJk27bX0REBPOCAwAAAEARRNKdTwcOHFDdunV0/vwFt+0zKKi0kpN3OJx4Dx48WHPmzJEkBQQEKDo6WgMHDtTzzz+vEiW885KvWrVKHTt21N9//60yZcp4OhwAAAAAcArvzMC82MmTJ3X+/AV9NHyA6lSt6PL97Th0XAOnzdXJkyfzVdvdrVs3zZo1S5cuXdL333+vxMREBQQEaNSoUTnKXb58WSVLlnR22AAAAAAAkXQXWJ2qFRVfI8rTYVgVGBioyMhISdJjjz2mr7/+Wt9++6127typ06dPq1mzZjKbzQoMDFRqaqoOHjyop556Sj/++KOKFSumtm3bavr06YqNjZV0tSb62Wef1bZt2xQQEKD69etr/vz5iomJkSR98803GjdunLZv367KlStr0KBBeuGFFyw16yaTSe+//76+++47LV26VFWqVNGUKVN0++23a9++ferYsaMkqWzZspKkQYMGafbs2e49aQAAAADgZAyk5idKly6ty5cvS5JWrFihnTt3atmyZVq8eLGuXLmirl27KjQ0VGvWrNHatWsVEhKibt266fLly/rnn3/Uu3dvtW/fXlu3btW6dev0yCOPyGQySZLWrFmjgQMH6oknntD27dv17rvvavbs2ZowYUKOGMaNG6d77rlHW7du1a233qr+/fvrr7/+UlRUlL788ktJ0s6dO3X06FFNnz7dvScIAAAAAFyAmm4fZxiGVqxYoaVLl+rxxx/XiRMnFBwcrA8++MDSrPzjjz9WVlaWPvjgA0siPWvWLJUpU0arVq1S06ZNdebMGd12222qUaOGJKlu3bqWfYwbN04jR47UoEGDJEnVq1fXyy+/rGeffVZjxoyxlBs8eLDuu+8+SdLEiRP15ptvav369erWrZvKlSsnSapQoQJ9ugEAAAD4DJJuH7V48WKFhIToypUrysrKUr9+/TR27FglJiaqQYMGOfpxb9myRbt371ZoaGiObVy8eFF79uxRly5dNHjwYHXt2lWdO3dWQkKC7rnnHlWqVMny+bVr1+ao2c7MzNTFixd1/vx5BQUFSZIaNmxoWR8cHKywsDClpaW58jQAAAAAgEeRdPuojh07asaMGSpZsqQqV66cY9Ty4ODgHGUzMjLUpEkTzZs3L9d2ypcvL+lqzfewYcO0ZMkSLViwQC+++KKWLVumli1bKiMjQ+PGjVOfPn1yfb5UqVKW/w8ICMixzmQyKSsrq1DHCQAAAADejKTbRwUHB6tmzZoOlY2Pj9eCBQtUoUIFhYWFWS1300036aabbtKoUaPUqlUrzZ8/Xy1btlR8fLx27tzp8P7ykl3znpmZWeBtAAAAAIC38duB1Mxms+rVq6dmzZp5OhSP69+/vyIiItSrVy+tWbNGqampWrVqlYYNG6ZDhw4pNTVVo0aN0rp167R//379+OOPSklJsfTrHj16tD766CONGzdO27ZtU3Jysj799FO9+OKLDscQExMjk8mkxYsX68SJE8rIyHDV4QIAAACA2/htTXdiYqISExOVnp6u8PDwfH9+x6HjLojKM/sJCgrS6tWr9dxzz6lPnz46e/asqlSpok6dOiksLEwXLlzQjh07NGfOHJ06dUqVKlVSYmKiHn30UUlS165dtXjxYo0fP16TJ09WQECA6tSpo4ceesjhGKpUqWIZkG3IkCEaOHAgU4YBAAAAKPJMhmEYng7Ck7KT7jNnzuRqWn3x4kWlpqaqWrVqlr7JBw4cUN26dXT+/AW3xRgUVFrJyTsUHR3ttn0CnpDXPQcAAADfkpSUpCZNmujZz95VVL1audYf3L5L/7nnUW3atEnx8fEeiNAxtnLJa/ltTXdBRUdHKzl5h06ePOm2fUZERJBwAwAAAEARRNJdANHR0STBAAAAAAC7/HYgNQAAAAAAXI2kGwAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFmKe7AA4cOKCTJ0+6bX8RERHMCw4AAAAARRBJdz4dOHBAdevW1fnz5922z6CgICUnJzuceA8ePFhz5szRpEmTNHLkSMvyhQsX6o477pBhGA7vOzY2VsOHD9fw4cPtltu/f78l3tq1a2vUqFG6++67Hd6XJ4wdO1YLFy7U5s2bPR0KAAAAAB9E0p1PJ0+e1Pnz5zV81OuqGl3D5fs7dGCPpk16WidPnsxXbXepUqU0efJkPfrooypbtqwLI/w/48eP18MPP6z09HRNmTJFffv2VZUqVdS6detcZS9fvqySJUu6JS4AAAAA8BT6dBdQ1egaqhFX3+Wvgib2CQkJioyM1KRJk2yW+/LLL1W/fn0FBgYqNjZWU6ZMsazr0KGD9u/fryeffFImk0kmk8nmtkJDQxUZGalatWrJbDardOnSWrRokaSrNeEvv/yyBg4cqLCwMD3yyCOSpP/9739q27atSpcuraioKA0bNkznzp2zbPOdd95RXFycSpUqpYoVK+quu+6yrMvKytKkSZNUrVo1lS5dWo0aNdIXX3xhWb9q1SqZTCatWLFCTZs2VVBQkFq3bq2dO3dKkmbPnq1x48Zpy5YtluObPXu2YycYAAAAABxA0u2jihcvrokTJ+qtt97SoUOH8iyzadMm3XPPPbr33nv1xx9/aOzYsXrppZcsiedXX32lqlWravz48Tp69KiOHj3q8P5LlCihgIAAXb582bLs9ddfV6NGjfT777/rpZde0p49e9StWzfdeeed2rp1qxYsWKD//e9/Gjp0qCRp48aNGjZsmMaPH6+dO3dqyZIlateunWV7kyZN0kcffaSZM2dq27ZtevLJJ3X//ffr559/zhHLCy+8oClTpmjjxo0qUaKEHnjgAUlS37599dRTT6l+/fqW4+vbt6/DxwgAAAAA9tC83Ifdcccdaty4scaMGaP//ve/udZPnTpVnTp10ksvvSRJqlWrlrZv367XXntNgwcPVrly5VS8eHFLDbajLl++rClTpujMmTO65ZZbLMtvueUWPfXUU5b3Dz30kPr372/pLx4XF6c333xT7du314wZM3TgwAEFBwfrtttuU2hoqGJiYnTTTTdJki5duqSJEydq+fLlatWqlSSpevXq+t///qd3331X7du3t+xnwoQJlvcjR45Ujx49dPHiRZUuXVohISEqUaJEvo4PAAAAABxFTbePmzx5subMmaPk5ORc65KTk9WmTZscy9q0aaOUlBRlZmbme1/PPfecQkJCFBQUpMmTJ+vVV19Vjx49LOubNm2ao/yWLVs0e/ZshYSEWF5du3ZVVlaWUlNT1blzZ8XExKh69eoaMGCA5s2bZxnAbvfu3Tp//rw6d+6c4/MfffSR9uzZk2M/DRs2tPx/pUqVJElpaWn5Pj4AAAAAyC9qun1cu3bt1LVrV40aNUqDBw926b6eeeYZDR48WCEhIapYsWKuPuDBwcE53mdkZOjRRx/VsGHDcm0rOjpaJUuWVFJSklatWqUff/xRo0eP1tixY7VhwwZlZGRIkr777jtVqVIlx2cDAwNzvA8ICLD8f3ZMWVlZBT9QAAAAAHAQSbcfePXVV9W4cWPVrl07x/K6detq7dq1OZatXbtWtWrVUvHixSVJJUuWdLjWOyIiQjVr1nQ4rvj4eG3fvt3mZ0qUKKGEhAQlJCRozJgxKlOmjFauXKnOnTsrMDBQBw4cyNGUPL/yc3wAAAAAkF9+m3SbzWaZzWa/SLgaNGig/v37680338yx/KmnnlKzZs308ssvq2/fvlq3bp3efvttvfPOO5YysbGxWr16te69914FBgYqIiLCaXE999xzatmypYYOHaqHHnpIwcHB2r59u5YtW6a3335bixcv1t69e9WuXTuVLVtW33//vbKyslS7dm2Fhobq6aef1pNPPqmsrCzdfPPNOnPmjNauXauwsDANGjTIoRhiY2OVmpqqzZs3q2rVqgoNDc1VUw4AAAAABeW3SXdiYqISExOVnp6u8PDwfH/+0IE99gs5gbP2M378eC1YsCDHsvj4eH322WcaPXq0Xn75ZVWqVEnjx4/P0Qx9/PjxevTRR1WjRg1dunRJhmE4JR7pal/rn3/+WS+88ILatm0rwzBUo0YNywjiZcqU0VdffaWxY8fq4sWLiouL0yeffKL69etLkl5++WWVL19ekyZN0t69e1WmTBnFx8fr+eefdziGO++8U1999ZU6duyo06dPa9asWS5vhg8AAADAf5gMZ2ZRRVB20n3mzBmFhYXlWHfx4kWlpqaqWrVqKlWqlCTpwIEDqlu3rmVAL3cICgpScnKyoqOj3bZPwBPyuucAAADgW5KSktSkSRM9+9m7iqpXK9f6g9t36T/3PKpNmzYpPj7eAxE6xlYueS2/rekuqOjoaCUnJ+vkyZNu22dERAQJNwAAAAAUQSTdBRAdHU0SDAAAAACwi3m6AQAAAABwEWq6AQAAAABut2vTVmVkZORanrbvkAeicR2SbgAAAACA26xevVqStHCy2Wa5U6dOuSMclyPpdoCfD/AOuA33GgAAgO/LTqa7xddVv3ZNc63fl3ZKo+d/rxtuuMHdobkESbcNAQEBMplMOnHihMqXLy+TyeTpkACfZRiGTpw4IZPJpICAAE+HAwAAABeLrxGlfu1zJ91Jew5q9PzvPRCRa5B021C8eHFVrVpVhw4d0r59+zwdDuDzTCaTqlatquLFi3s6FAAAAMApSLrtCAkJUVxcnK5cueLpUACfFxAQQMINAAAAn0LS7YDixYuTCAAAAAAA8o15ugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6AQAAAABwkSKfdJ8+fVpNmzZV48aNdeONN+r999/3dEgAAAAAAEiSSng6gMIKDQ3V6tWrFRQUpHPnzunGG29Unz59dMMNN3g6NAAAAACAnyvyNd3FixdXUFCQJOnSpUsyDEOGYXg4KgAAAAAAvCDpXr16tXr27KnKlSvLZDJp4cKFucqYzWbFxsaqVKlSatGihdavX59j/enTp9WoUSNVrVpVzzzzjCIiItwUPQAAAAAA1nk86T537pwaNWoks9mc5/oFCxZoxIgRGjNmjJKSktSoUSN17dpVaWlpljJlypTRli1blJqaqvnz5+v48ePuCh8AAAAAAKs8nnR3795dr7zyiu64444810+dOlUPP/ywhgwZonr16mnmzJkKCgrShx9+mKtsxYoV1ahRI61Zs8bq/i5duqT09PQcLwAAAAAAXMHjSbctly9f1qZNm5SQkGBZVqxYMSUkJGjdunWSpOPHj+vs2bOSpDNnzmj16tWqXbu21W1OmjRJ4eHhlldUVJRrDwIAAAAA4Le8Ouk+efKkMjMzVbFixRzLK1asqGPHjkmS9u/fr7Zt26pRo0Zq27atHn/8cTVo0MDqNkeNGqUzZ85YXgcPHnTpMQAAAAAA/FeRnzKsefPm2rx5s8PlAwMDFRgY6LqAAAAAAAD4/7y6pjsiIkLFixfPNTDa8ePHFRkZ6aGoAAAAAABwjFcn3SVLllSTJk20YsUKy7KsrCytWLFCrVq18mBkAAAAAADY5/Hm5RkZGdq9e7flfWpqqjZv3qxy5copOjpaI0aM0KBBg9S0aVM1b95c06ZN07lz5zRkyBAPRg0AAAAAgH0eT7o3btyojh07Wt6PGDFCkjRo0CDNnj1bffv21YkTJzR69GgdO3ZMjRs31pIlS3INrpZfZrNZZrNZmZmZhdoOAAAAAADWeDzp7tChgwzDsFlm6NChGjp0qFP3m5iYqMTERKWnpys8PNyp2wYAAAAAQPLyPt0AAAAAABRlJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIv4bdJtNptVr149NWvWzNOhAAAAAAB8lMdHL/cURi8HAEBKSUnR2bNnra4PDQ1VXFycGyMCAMC3+G3SDQCAv0tJSVGtWrXsltu1axeJNwAABUTSDQCAn8qu4R746vOKrB6Ta/2xvfv10ciJNmvCAQCAbSTdAAD4ucjqMYqqZ7/GGwAA5J/fDqQGAAAAAICrkXQDAAAAAOAifpt0M2UYAAAAAMDV/DbpTkxM1Pbt27VhwwZPhwIAAAAA8FF+m3QDAAAAAOBqJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAAAAuIjfJt3M0w0AAAAAcDW/TbqZpxsAAAAA4Gp+m3QDAAAAAOBqJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAAAAuAhJNwAAAAAALuK3SbfZbFa9evXUrFkzT4cCAAAAAPBRfpt0JyYmavv27dqwYYOnQwEAAAAA+Ci/TboBAAAAAHA1km4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFynh6QAAAN4jJSVFZ8+etbo+NDRUcXFxbowIAACgaCPpBgBIuppw16pVy265Xbt2kXj7mF2btiojIyPX8iM793ogGgAAfAtJNwBAkiw13ANffV6R1WNyrT+2d78+GjnRZk04ipbVq1dLkhZONtstFx8f746QAADwOX6bdJvNZpnNZmVmZno6FADwKpHVYxRVz36NN4q+U6dOSZK6xddVv3ZNc62fv3qjliQlW8oBAID889ukOzExUYmJiUpPT1d4eLinwwEAwGPia0SpX/vcSfeOw8e1JCnZAxEBAOA7GL0cAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFynh6QAA+LeUlBSdPXvWZpnQ0FDFxcW5KaK82YvTG2IEAACA9yHpBuAxKSkpqlWrlkNld+3a5bGk1tE4PRkjAAAAvBNJNwCPya45Hvjq84qsHpNnmWN79+ujkRPt1oa7kr04vSFGAAAAeCeSbgAeF1k9RlH1HKvx9qSiEicAAAC8h98OpGY2m1WvXj01a9bM06EAAAAAAHyU3ybdiYmJ2r59uzZs2ODpUAAAAAAAPspvk24AAAAAAFyNpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGmDAMA5LBr01ZlZGTkWn5k514PRAMAAFC0kXQDKJSUlBSdPXvW6vrQ0FDFxcW5MSIU1OrVqyVJCyeb7ZaLj493R0gAAABFHkk3gAJLSUlRrVq17JbbtWsXiXcRcOrUKUlSt/i66teuaa7181dv1JKkZEs5AAAA2EfSDaDAsmu4B776vCKrx+Raf2zvfn00cqLNmnB4n/gaUerXPnfSvePwcS1JSvZARAAAAEUXSTeAQousHqOoevZrvK2x1odYoh8xAAAAijaSbgAe42gf4uyy9COGs9gbi0BiPAIAAOAcJN0APMZeH2KJfsRwPkfHIpAYjwAAABQeSTcAj7PWh1iiHzGcz95YBBLjEQAAAOch6QYABzF/tW8p7FgEAAAAjiDpBgA7mL8aAAAABUXSDQB2MH81AAAACoqkGwAcxPzVAAAAyK9ing4AAAAAAABfRdINAAAAAICLkHQDAAAAAOAifpt0m81m1atXT82aNfN0KAAAAAAAH+W3A6klJiYqMTFR6enpCg8P93Q4APxASkqKzp49a3V9aGio4uLi3BgRAAAAXM1vk24AcKeUlBTVqlXLbrldu3aReAMAAPgQkm4AhbZr01ZlZGTkWn5k514PROOdsmu4B776vCKrx+Raf2zvfn00cqLNmnAAAAAUPSTdAAps9erVkqSFk812y8XHx7sjJK8XWT1GUfXs13gDAADAN5B0AyiwU6dOSZK6xddVv3ZNc62fv3qjliQlW8oBAAAA/oakG0ChxdeIUr/2uZPuHYePa0lSsgciAgAAALyD304ZBgAAAACAq5F0AwAAAADgIjQvBwC4FfOVAwAAf0LSDQBwG+YrBwAA/oakGwDgNsxXDgAA/A1JNwDA7ZivHAAA+AsGUgMAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAF2EgNcBLMZcxAAAAUPSRdANeiLmMAQAAAN9A0g14IeYyBgAAAHwDSTfgxZjLGAAAACjaSLoBAH5p16atysjIyHPdkZ173RwNAADwVSTdAAC/snr1aknSwslmh8rGx8e7OiQAAODDSLoBwI2s1a5Ss+o+p06dkiR1i6+rfu2a5llm/uqNWpKUbCkLAABQUCTdfoQpqADPcbR2lZpV94mvEaV+7fNOunccPq4lSclujggAAPgikm4/wRRUgGfZq12lZhUAAPibPUfStHpL7h+5dx054YFoXIek208wBZX3sdXyIDmZGjZfZa12lZpVAADgL1JSUiRJC9Zu1oK1m62W85XKCJJuP8MUVPab2Uuub2rvaMuDwOAgl8UAAAAAeEL2+DbRsXHqc9+judanHTuk+bOm6YYbbnB3aC5B0l1EeEOiWFTYOleHDh1Sr169HNqOK5va22t5IElph47o1PE0nTqelmsdg24BAACgqCtfsYrad7o91/I9Kds0f9Y09wfkIgVKuqtXr64NGzbk+uXh9OnTio+P1969JATO5GitqESfbEfP1SNvvaIyFcvnuc6dTe2ttTzYn7xLs0eMs/t5e4NuMXgeAAAA4FkFSrr37dunzMzMXMsvXbqkw4cPFzqo/Dh48KAGDBigtLQ0lShRQi+99JLuvvtut8bgao7UitIn+ypHzlVgcJAqxFR1Z1j5dv7s1SY3/+rWRq3rVM+13pFBtxg8DwAAAPC8fCXd3377reX/ly5dqvDwcMv7zMxMrVixQrGxsU4LzhElSpTQtGnT1LhxYx07dkxNmjTRrbfequDgYLfG4Q70x3acr5yr1nWqF3jQLQbPAwAAADwvX0l37969JUkmk0mDBg3KsS4gIECxsbGaMmWK04JzRKVKlVSpUiVJUmRkpCIiIvTXX3/5ZNINFISv/AABAAAAFEXF8lM4KytLWVlZio6OVlpamuV9VlaWLl26pJ07d+q2227LVwCrV69Wz549VblyZZlMJi1cuDBXGbPZrNjYWJUqVUotWrTQ+vXr89zWpk2blJmZqaioqHzFAAAAAACAK+Qr6c6WmpqqiIgIpwRw7tw5NWrUSGazOc/1CxYs0IgRIzRmzBglJSWpUaNG6tq1q9LSco7o/Ndff2ngwIF67733nBIXAAAAAACFVeApw1asWKEVK1ZYaryv9eGHHzq8ne7du6t79+5W10+dOlUPP/ywhgwZIkmaOXOmvvvuO3344YcaOXKkpKsDuPXu3VsjR45U69atbe7v0qVLunTpkuV9enq6w7F62t4/d1jmtLues6aQSk623U+Y0a4BAAAAwHEFSrrHjRun8ePHq2nTpqpUqZJMJpOz45IkXb58WZs2bdKoUaMsy4oVK6aEhAStW7dOkmQYhgYPHqxbbrlFAwYMsLvNSZMmadw4+1MxeZPsEaq/GP+G3bL2ppCyJjA4SJJ0//332y3LaNcAAAAA4JgCJd0zZ87U7NmzHUpyC+PkyZPKzMxUxYoVcyyvWLGiduzYIUlau3atFixYoIYNG1r6g8+dO1cNGjTIc5ujRo3SiBEjLO/T09O9vg949nzo4/vdqtgKN+RZxpEppCRp16atVmvLB08dowpVK1v9rK+Mdr0/eZdlSq68OKvVgCOsXY+DO3e7LQbAE6x99915/wEAALhDgZLuy5cv223G7S4333xzrubttgQGBiowMNCFEblOt/h6iq+R9w8E9qaQWr16tSRp4eS8+85ne/rzdxVT13dHut6fvEuv3/2oQ2UL2mrA0W1L9q9H+fAQl+wf8BRHv/uuvP8AAADcqUBJ90MPPaT58+frpZdecnY8OURERKh48eI6fvx4juXHjx9XZGSkS/ddVKWmpiopKSnX8o0bN0qSusXXVb92ued9/mXHXs1cstZmDXBRYq8G+V/d2qh1nep5ftbRVgOFkb1ta9dDuppwd25cx+Z2rF1vyX7/fMAT7H333XH/AQAAuFOBku6LFy/qvffe0/Lly9WwYUMFBATkWD916lSnBFeyZEk1adJEK1assMwRnpWVpRUrVmjo0KFO2YevCA4sKUmaN2+e5s2bZ7Vc23o11K993knezCVrXRKbOzlai9arRUOrCa29VgPOFF8jyur1sMXR6y39X399wJtY++678/4DAABwhwIl3Vu3blXjxo0lSX/++WeOdfkdVC0jI0O7d/9f/9XU1FRt3rxZ5cqVU3R0tEaMGKFBgwapadOmat68uaZNm6Zz585ZRjPHVVERZSVJvZ9LVK0mDXOt37VpqxZONlvK+Spn1SB7O3vXO1vaoSM6dTxNp46n5VpH31kAAADA9QqUdP/0009OC2Djxo3q2LGj5X32IGeDBg3S7Nmz1bdvX504cUKjR4/WsWPH1LhxYy1ZsiTX4Gr5ZTabZTablZmZWajteJvKtasrql7uPtnWBk/zVQWtQS5qrF1v6Wr/9dkj7I/UT99ZAAAAwHUKPE+3s3To0EGGYdgsM3ToUKc3J09MTFRiYqLS09MVHh7u1G0XZbZGzaZmtGjJ7p9vrf86fWcBAAAA1ytQ0t2xY0ebzchXrlxZ4IDgGdmjZC+aPMNuWVfWjKakpNidkiw0NJR5wvOhdZ3q9J0FAAAAPKRASXd2f+5sV65c0ebNm/Xnn39q0KBBzogLbta5cR39MOYxnThjvRm6q2tGU1JSVKuWY9OV7dq1i8QbAAAAgNcrUNL9xhtv5Ll87Nixftd32NtYax5uq9l4NnuDi7m6ZjS7hnvgq88rsnpMnmWO7d2vj0ZOtFsbDt9ja3o0Wj8AAADAWzm1T/f999+v5s2b6/XXX3fmZuEAR5uHZ5fzZpHVY6wODgb/4+j0aLR+uMpeFw1+oAAAAHAvpybd69atU6lSpZy5SZfxtdHLHWke7gtTZcH5vL0G2d70aLR++D+OdtHgBwoAAAD3KVDS3adPnxzvDcPQ0aNHtXHjRr300ktOCczVfHH0chJq5EdRq0G2NT0arrLXRYMfKAAAANyvQEn39UlqsWLFVLt2bY0fP15dunRxSmAAXIsaZN9FFw0AAOBptrq8nTx50s3ReFaBku5Zs2Y5Ow4ABWBrgDxHBs+T7NcgJydbHzwvNTXVoX0AAADAfzja5S2gRIAbovG8QvXp3rRpk+UP8vr16+umm25ySlAAbMvPvOoFHTwvMDhI0tUBEu3JbqruSbZ+HPCGvukAAACO8IVBUe11edvw0xr9NONjhYSVcXNknlGgpDstLU333nuvVq1apTJlykiSTp8+rY4dO+rTTz9V+fLlnRkjgOs4MnCeVLjB8yrEVNVL383VpXPnrZbZtWmrFk42W5qqe4KjPw54S990AADgvTyd8PraoKjWurzt27/fA9F4ToGS7scff1xnz57Vtm3bVLduXUnS9u3bNWjQIA0bNkyffPKJU4MEkJs7Bs6rEFPV5vqMDNtJvzvY+3GAvukAAMAR3pDwMiiqbypQ0r1kyRItX77cknBLUr169WQ2m4vMQGq+NmWYL9m1aavVZO7Izr1ujgZFgb0fBwAA3sXTtYnIH3vXS/KNa+ZNCa+nB0XlHnWuAiXdWVlZCgjI3ek9ICBAWVlZhQ7KHXxxyrCibvXq1ZKkhZPNDpWNj493dUgAAHgVX/hD2BtqEx3lC+e7sBy9XpJ3XDNn8HTC62lF6R4tKgqUdN9yyy164okn9Mknn6hy5cqSpMOHD+vJJ59Up06dnBogipbC/ON06tQpSVK3+Lrq165pnmXmr96oJUnJlrIAAPgLX/lD2JtqE23xlfNdWPaul+Q916wosPe3sq2BYd2lqNyjRUmBku63335bt99+u2JjYxUVFSVJOnjwoG688UZ9/PHHTg0QRYez/nGKrxGlfu3zTrp3HD6uJUmefxgBAOBuvvaHsLfXJvra+S4sb79eRUF+Wg1kDxRrjTtmbeGaO0+Bku6oqCglJSVp+fLl2rFjhySpbt26SkhIcGpwKFr4xwmuZGve8aDQEMXU5R8FAIVTVJoSF4U/hG2dS2+oycuPonC+UTQ40mpAuppwWxuvxtFZW7755htVrWp9zBtnPM9s3ctF7T53tXwl3StXrtTQoUP166+/KiwsTJ07d1bnzp0lSWfOnFH9+vU1c+ZMtW3b1iXBomjwlX+cUlNTlZSUlOc6b/nDy9X2J+/S+bPWRyi3lQg7i6Nzkj/9+bsk3gAKjKbEzuPoubRXkwf4qsL8rWxv1pbTx0/ovcdfVK9evexuq6DPM0cT/2vL+rt8Jd3Tpk3Tww8/rLCwsFzrwsPD9eijj2rq1Kkk3SjSggNLSpLmzZunefPmWS3n63947U/epdfvftShstmJsSvYm5P8lx17NXPJWps/DgCAPbTWch5HavNs1eQBsM3WvRNVr5bNpFwq/PPMXuKfjfv8/+Qr6d6yZYsmT55sdX2XLl30+uuvFzoowJOiIspKkno/l6haTRrmWu8vf3hlJ7H/6tZGretUt1qufHiIy+cMt7f9mUvWunT/APyHr7TW8gb+ci4L27e2qHRrKCx/OU5v4I5El2Q6f/KVdB8/fjzPqcIsGytRQidOnCh0UO7APN2wp3Lt6n7xx4I9retUtzqwHQAA3srVSZ6jTWxttYzzl24N/nKcgDX5SrqrVKmiP//8UzVr1sxz/datW1WpUiWnBOZqzNPtOrs2bVVGRu6mvkd27vVANK7jjlEj3cFav2x39NcGgKKGWs2iwR1Jnr0mto60jPOXbg3+cpyANflKum+99Va99NJL6tatm0qVKpVj3YULFzRmzBjddtttTg0QRcfq1aslSQsnm+2Wi4+Pd0dILuGMX7a9gaMDlLmyvzYAOMrTySq1mt7HkRHSXZ3kOauJrb80xXf1cXr6OQFYk6+k+8UXX9RXX32lWrVqaejQoapdu7YkaceOHZam2i+88IJLAoX3O3XqlCSpW3xd9WuXuzny/NUbtSQp2VKuqHLGL9vewN4AZZJ7+msDgD2OJqu2psgp7B/b1Gp6F0e/EzEN6tL31E/woxa8Wb6S7ooVK+qXX37RY489plGjRskwDEmSyWRS165dZTabVbFiRZcECu9hbSqt1NRUSVJ8jag8+wDvOHxcS5J8Y84+X/kHnIQaQFFgL1l1dIqcwv6xTa2m93DWCOnMM+xc1s6ZO86loz9qrV+/3mfmkEfRka+kW5JiYmL0/fff6++//9bu3btlGIbi4uJUtmxZV8QHL+LoVFrZ5QB3stYH3dfGEnCEv4yrAPex9mNrNnc12bSWrNqbIqeo1SB7MnEpagr6AwbzDOfkSFN9Wxw9n4U9l47Eae07wTWHJ+U76c5WtmxZNWvWzJmxwMvZm0pr16atWjjZbClnjb2aciA/HO2bXtTHEnCEv4yrAPdx9MdWyfNNNr2lBVJhak7dlbiAeYav5WizbFvfO0fOZ2HPZWHj5Jrnxg987lPgpBv+y9pUWnnVrF3LmTXlJO7IZq9vuq+MJeAIfxlXAe5j78dWybEmm/4weJEzatHckbg4wl8Go/KXxMoeZzXVd/X5dEacXPOr+IHP/Ui64TbOqCmniTvyYqtvui+NJeAofxhXAe5l7cdWyXdmdCgsZ9WieTopYDAq/1VUxhooKnF6M2/5gc+fkHTD7QpaUy45r4k7AMA5itKMDq4eNMsX/kBlhHV4EgPbuY8vPK+KEr9Nus1ms2WaM+SPtQGrrC13hcIk7o6ydTxBoSGKqcuvrAAgef8fbwyglH/UJsKduEfh6/w26U5MTFRiYqLS09MVHh7u6XCKBEcHrMouV1Q5epz3jH9aEVUr5VrOCNEA4F0YQKlo8pVaT185DlfypXu0sCPBwzf5bdKN/LM3YJV0NWEt6nM/2zvO5EPHNOmLZfps9Os2t8MI0QDgPbz9D3X8H1+p9fSV43CXonSPWkueDx06pF69etn9PNfb/5B0I1+KekLtKHvH2a5+TUbLBgDABXyl1tOZx2GrhtRXRpMvChz9IeWRt15RmYrlrW7Dm7+3cA2SbqAAHBkt29q0ZhJTmwHAtexNUUWTzPyxd76KQpLmK0lJYY+D2QG8C6N+o6BIugEnc3Ras2vLAoC/cnSKKokmmfbkpzkzSVrR4OjsAOvXr/eLudW9AQk1CoKkG3Aye9OaSUxtBsD/WKt9zV5ubYqqbNQe2edILZy9JI1WBd7H1veeH1qAooGkG3ARa9OaSc6d2gwAvJmjSUFMg7ok1U5g7xw6ej1oVVA05OeHFuZWBzyHpBtu5w3zfAMA3IM+kN6F6+F7uFaA9yPphts4c55vEncAKDpICryLM64Hc08DgONIuuE2zpjn25mJOwAAyB/mni667I2rAMB1/DbpNpvNMpvNyszM9HQofqWw83w7I3F3F1u17tTIAwCKIl+ZQ9uf0I8f8Dy/TboTExOVmJio9PR0hYeHezoc5IM3JNS2OFobf21ZAACKCpLpooV+/IDn+W3SDbiKI7XxkvfUyAMAAN9GQg14Fkk34AIk0wAAAAAkqZinAwAAAAAAwFeRdAMAAAAA4CIk3QAAAAAAuAhJNwAAAAAALsJAagAAAAAAi/3Ju3T+rPWZeIJCQxRTt5YbIyraSLoBAAAAAJKuJtyv3/2o3XJPf/4uibeDSLoBAAAAAJJkqeH+V7c2al2neq71v+zYq5lL1tqsCUdOJN0AAAAAgBxa16mufu2b5rlu5pK1bo6maCPpBgAAKCLoZwkARQ9JNwAAQBFAP0sAKJpIugFAUkpKis6ePZvnutTUVDdHAwC50c8SAIomv026zWazzGazMjMzPR0KAA9LSUlRrVr2a4WCA0u6IRoAsI1+lgBQtPht0p2YmKjExESlp6crPDzc0+EA8KDsGu6Brz6vyOoxudbv2rRVCyebFRVR1t2hAYBPom960WLveklcM8AWv026AeB6kdVjFFUv9x8MGRk01QQAZ6FvetHi6PWSuGaANSTdAAAAcBt39U2nNt057F0vifEEAHtIugEAAOB2ruybTm2689m6XhLjCQC2kHQDAACImtFsvnAenFWb7gvnAvnDNYcrkHQDAAC/R83oVb52HgpTm+5r5wL2cc3hKiTdAADA67m69snRmtGdGzdbjcMXasD8bS7wgzt3211H33P/4W/ff7gPSTcAAPBq7qx9slYzWj48RDOXrNWiyTNcHoM38PW5wMuHh0iS3espSb1aNFTnxnXyXEffc9/k699/uB9JNwAA8GreUPvUuXEd/TDmMZ04k/c+qAErWuxdz2zlw0OsJtzZbNWW26ul9obvNnwP86p7H5JuAABQJHi69sle8kUNWNFi73ra42htuSO11J7+bsN3MK+6dyLpBgAAhUKfVPgjWj/AGzGvunci6QYAAAVGn1T4M1o/wFsxr7p3IekGgP9v16atysjI/auvrf56gL+jT2r+0CrAeWydS57b3ofvvv+xdc2P79nv5mg8i6QbgN9bvXq1JGnhZLPNctn99wDkRp9U+2gV4DyOnkue296B777/cfSaBwWHuiEazyPpBuD3Tp06JUnqFl9X/drlnTQ4MoItgIKxVwPmK7WWhZ0L3FfOgzM40m+V57bjXN1qgBYx+eMLrQLsXfMtew5oyqKfVT2unrtD8wiSbgD4/+JrRNns/wTA+fIz0q6v1FoWdi5wXzkPzmCv3yrsc2erAVrE2OdrrQKsXfOqZYI1ZdHPHojIM0i6AQCAxzhSYyn5R62lI3NH+8N5gHvRasC70CrAN5F0AwAAm2w1L3VWk2dqLK8isfE97rh/nIF70D0c7U5DqwDfQtINAADylN2c1F5z52vLAriK+wfX88fuNLiKpBsAAOTJkebOkmNNT63V6HlTTR/gTM68f+Ab6E7jv/w26TabzTKbzcrMzPR0KAAAeK3C/uHnaG0ftTrwRSROyAtN+f2P3ybdiYmJSkxMVHp6usLDwz0dDgAAPonBwQAA/s5vk24AQN72HEnT6i3JeS4HCsJdCbWtpurumtfWGwbNsrefojDHL/xTYb+7vjC/taPoslO0kHQDACRJKSkpkqQFazdrwdrNdssB3sLRJuyunNfWGwbNyk8MRWWOX/gHZ3x3fW1+a2voslM0kXQDACRJGRlXaweiY+PU577cf7h89cm7OrAvxVIO8Bb2mrC7Y15bbxg0y5EYmOMX3sgZ311/md+aLjtFE0k3ACCH8hWrqH2n23MtX7NysQ7so5Yb3sneH5jumNfWG/7IdSQG5viFqxSmybOzvrv+ML+1s541hW2i7g3daYoKkm4AAAAABUaT56KlsNfLG7rTFDUk3QAAAAAKjCbPRUthr5c3dKcpaki6AQAA4HVoulq0FJXkiu/VVYW9XkXlensLkm4AAAB4DZquwhX4XsGTSLoBAADgNWi6ClfgewVPIukGAMDP7TmSptVbkvNcVyaktBrWiHVvQC5Cs9Kig6QHrsD3Cp5C0g0AgJ9KSbk6BdyCtZu1YO1mq+WSXn+ySCfeNCsFAHgSSTcAAH4qI+NqM8vo2Dj1ue/RXOt3/JmkJYvm63TGBXeH5lQ0KwUAeBJJNwAAfq58xSpq3+n2PNctWTTfzdG4Bsm0e+1P3qXzZ/P+kYOm/CjqbH2Hg0JDFFO3lhujQVFA0g0AAACn2Z+8S6/fnbvlxPVoyo+ixtGuKk9//i6JN3Ig6QYAAIDTZNdw/6tbG7WuUz3PMjTlR1Fkr6vKLzv2auaStVZbecB/kXQDAADA6VrXqa5+7Zt6OgzAqez9WDRzyVo3RYKihKQbAADAz1jrk+pof2umX3Mv+hADRRtJNwAAgJ9wtE+qtf7WTL/mXvQhBnwDSTcAAICfcGT6NFv9rZl+zb3oQwz4BpJuAAAAP1LYZJhk2r3oQwwUfSTdAAAAgA/zpXnTCzseAeAJJN0AAACAj/KVedMLOx4B4Ekk3QAAAICP8pV50ws7HgHgSSTdAAAAgI/zhXnTSahRVJF0AyiUrXv26XTGhTzX7TmS5tA29hxJ0+otyVbXlwkprYY1YgsSHgAAgFvR7xzXI+kGUGBb9+xT/NNv2C2XkpJic/mCtZu1YO1mm9tIev1JEm8AAOC16HcOa0i6ARRYdg13t579VOfG+Fzrv/rkXR3Yl6KMjLz7X2Uvj46NU5/78h7kZcefSVqyaL7V2nQAAABvQL9zWEPSDaDQ6twYr/adbs+1fM3KxTqwL+9a7muVr1glz89nW7JofqHiAwAAcAcSauSlmKcDcIY77rhDZcuW1V133eXpUAAAAAAAsPCJmu4nnnhCDzzwgObMmePpUAAAAAC3sjVAF4N3AZ7nE0l3hw4dtGrVKk+HAQAAALiNowN3XVsWgPt5POlevXq1XnvtNW3atElHjx7V119/rd69e+coYzab9dprr+nYsWNq1KiR3nrrLTVv3twzAQMAAABewJGBuyQG7wI8zeNJ97lz59SoUSM98MAD6tOnT671CxYs0IgRIzRz5ky1aNFC06ZNU9euXbVz505VqFDBAxEDAAAA3oFkGvB+Hh9IrXv37nrllVd0xx135Ll+6tSpevjhhzVkyBDVq1dPM2fOVFBQkD788EM3RwoAAAAAQP54vKbblsuXL2vTpk0aNWqUZVmxYsWUkJCgdevWFWibly5d0qVLlyzv09PTCx0nAN+3dc8+q3OF7zmS5uZoAAAAUFR4ddJ98uRJZWZmqmLFijmWV6xYUTt27LC8T0hI0JYtW3Tu3DlVrVpVn3/+uVq1apXnNidNmqRx48a5NG4AvmXrnn2Kf/oNu+VSUuzPSQ4AAAD/4tVJt6OWL1/ucNlRo0ZpxIgRlvfp6emKiopyRVgAfER2DXe3nv1U58b4XOu/+uRdHdiXoowM2wPZAAAAwP94ddIdERGh4sWL6/jx4zmWHz9+XJGRkQXaZmBgoAIDA50RHgA/U+fGeLXvdHuu5WtWLtaBfdRyAwAAIDePD6RmS8mSJdWkSROtWLHCsiwrK0srVqyw2nwcAAAAAABv4fGa7oyMDO3evdvyPjU1VZs3b1a5cuUUHR2tESNGaNCgQWratKmaN2+uadOm6dy5cxoyZIgHowYAAAAAwD6PJ90bN25Ux44dLe+z+1sPGjRIs2fPVt++fXXixAmNHj1ax44dU+PGjbVkyZJcg6vll9lsltlsVmZmZqG2AwAAAACANR5Pujt06CDDMGyWGTp0qIYOHerU/SYmJioxMVHp6ekKDw936rYBAAAAAJC8vE83AAAAAABFGUk3AAAAAAAuQtINAAAAAICLeLxPN9xn6559Op1xwer6MiGl1bBGrPsCAvzQniNpWr0lOc/l/sQbzoO1GNwdBwAA8G1+m3T72+jlW/fsU/zTb9gtl/T6kyTegAukpKRIkhas3awFazfbLeervOE8OBqDq+MAAAD+wW+Tbn8bvTy7hrtbz36qc2N8rvU7/kzSkkXzbdaEAyi4jIwMSVJ0bJz63PdorvVfffKuDuxLsZTzVd5wHuzF4K44AACAf/DbpNtf1bkxXu073Z7nuiWL5rs5GsD/lK9YJc97cM3KxTqwz39qVb3hPFiLwd1xAAAA38ZAagAAAAAAuAhJNwAAAAAALkLSDQAAAACAi9CnGz6HqdEAAAAAeAu/Tbr9bcowf8HUaAAAAAC8id8m3f42ZZi/YGo0AAAAAN7Eb5Nu+DamRgMAAADgDRhIDQAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchIHUgDww17dznTx5UklJSXkuBwAAAHyZ3ybdzNMNa5jr23kCSgRIkn777Tc1adLEbjkAAADA1/ht0s083bCGub6dJySsjCSp42P3q1nHtrnWb/hpjX6a8bGlHAAAAOBr/DbpBuxhrm/nKV89WlH1auVavm//fg9EAwAAALgPA6kBAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAAAAuAhThvmQrXv2WZ07euveg26OBvbYul6OKBNSWg1rxDovIAAAAABO57dJt9lsltlsVmZmpqdDcYqte/Yp/uk37JYLD7/BDdHAHkevlz1Jrz9J4g0AAAB4Mb9NuhMTE5WYmKj09HSFh4d7OpxCy64x7dazn+rcGJ9nmfDwG9S4aRt3hgUrHLletuz4M0lLFs0vVE05AAAAANfz26TbV9W5MV7tO93u6TDgoMJcryWL5js5GgAAAADOxkBqAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIswTzdy2Lr3oM31ZUJKq2GNWPcEA7vsXS97/Ol6pqamKikpyeo6AAAAwBX8Nuk2m80ym83KzMz0dCheITz8BknS8I++s1s26fUn/SZR81b5uV72+Pr1DA4sKUmaN2+e5s2b51BZAAAAwFn8NulOTExUYmKi0tPTFR4e7ulwPK5x0zYa8+osnTlzymqZHX8macmi+TqdccGNkSEvjlwve/zlekZFlJUk9X4uUbWaNMyzzK5NW7VwstlSFgAAAHAWv026kVvjpm3sllmyaL4bIoEjHLle9vjT9axcu7qi6tXKc11GRoabowEAAIC/YCA1AAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUp4OgA4LmlXqjIyMvJct3XvQbfFUZh9lQkprYY1Ygu3/z37dDrjQt7rHIzNVjl3nkt/cXzPfiWvT8pzuaNsXRdnfK+8xcmTJ5WUlPtcSVJoaKji4uLcHBHgP2z9+yL51rPGFs4D/Jk3fP+9IQY4l98m3WazWWazWZmZmZ4Oxa5Tp05Jkv713pd2y4aH3+CyOLK3Pfyj7wq1naTXnyzwg2Lrnn2Kf/oNu+WsnYf8HIMrz6W/CAoOlST9PHOefp45z265vDh6zQrzvfIGASUCJEm//fabmjRpYrXcrl27SLwBF3D035ei/qyxh/MAf+YN339viAHO57dJd2JiohITE5Wenq7w8HBPh2PTDTdcTTr6DRmuCpFVrZYLD79BjZu2cVkcjZu20ZhXZ+nMmVMF+vyOP5O0ZNF8m7/c2ZP92W49+6nOjfF5lrF1Hhw9BlefS39RPa6eJOmpnu3VqEZ0rvVb9hzQlEU/W8rlxd41c8b3yhuEhJWRJHV87H4169g21/pje/fro5ETdfbsWTdHBvgHe/+++Mqzxh7OA/yZN3z/vSEGOJ/fJt1FUXzz9qoRV9+jMRQ2EV2yaL5T4qhzY7zad7q9QJ8lmXa/Hk3qql2jurmWVy0TrCmLfrb7eXvXzFnfK29Qvnq0ourV8nQYgN+y9e+LLz1r7OE8wJ95w/ffG2KA8zCQGgAAAAAALkLSDQAAAACAi5B0AwAAAADgIiTdAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAAAAuAhJNwAAAAAALkLSDQAAAACAi5B0AwAAAADgIiTdAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLlPB0AIAv2rpnn05nXLC+fu9BN0bjH6yd0y17DkiSDu7cbfWzttYBsP/MKhNSWg1rxFr/vJ1nojMUNgZnPJcdOU57cRZ2H45s39Y2+PfJ/ZxxTb1BYe/zonKcku37xF3PosLE4Egc9vCsyR+/TbrNZrPMZrMyMzM9HQp8zNY9+xT/9BsOlQ0Pv8HF0fi+7HM4/KPvbJZbNHmG3W2VDw9xSkyAr3D0/pKkpNefzPMPsPw8EwvLGTEU9Lmcn31Yi9NZ+7C1fUe3wb9P7uGMa+oNnHWfe/txOvpMdOWzqLAx5DcOV+/DX541fpt0JyYmKjExUenp6QoPD/d0OPAh2b/odevZT3VujLdaLjz8BjVu2sZdYfmsxk3baMyrs3TmzKk81+/4M0lLFs3XUz3bq1GNaKvbKR8eos6N67gqTKBIsnd/Sf93j1mrzXD0mVgYzoqhMM9lR/ZhL87C7sOR7TsSJ/8+uY8zrqk3KOx9XlSO09G/OVz5LCpsDPmJwxqeNfnnt0k34Gp1boxX+063ezoMv2Dvgb1k0Xz1aFJX7RrVdVNEgO9w5A+iJYvm2y3j6meiN8TgyD4cibMw+3B0+/wb5V2ccU29QWG+V0XlOB35m8Oewt5/zoihsHHwrMkfBlIDAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFzEJ5LuxYsXq3bt2oqLi9MHH3zg6XAAAAAAAJAklfB0AIX1zz//aMSIEfrpp58UHh6uJk2a6I477tANN9zg6dAAAAAAAH6uyNd0r1+/XvXr11eVKlUUEhKi7t2768cff/R0WAAAAAAAeD7pXr16tXr27KnKlSvLZDJp4cKFucqYzWbFxsaqVKlSatGihdavX29Zd+TIEVWpUsXyvkqVKjp8+LA7QgcAAAAAwCaPJ93nzp1To0aNZDab81y/YMECjRgxQmPGjFFSUpIaNWqkrl27Ki0tzc2RAgAAAACQPx7v0929e3d1797d6vqpU6fq4Ycf1pAhQyRJM2fO1HfffacPP/xQI0eOVOXKlXPUbB8+fFjNmze3ur1Lly7p0qVLlvfp6elOOAo4y9Y9+3Q644L19XsPujEa26zF4k0xOqIw8Ra1Y7XF1nfPncd5fM9+Ja9PyrX8yM69bosBKAhfeSa6Q0HPiaOfs1XOXdfD3r/nuMoZ18MZ57pMSGk1rBFb6FgKy975sBenvXPhLcfpDu54DnjDs6ao8HjSbcvly5e1adMmjRo1yrKsWLFiSkhI0Lp16yRJzZs3159//qnDhw8rPDxcP/zwg1566SWr25w0aZLGjRvn8tiRf1v37FP80284VDY83HMD5WXve/hH3zlUzls5ehz52VZR5eh3z5XHGRQcKkn6eeY8/TxzntVyq1evVnx8vMviAPLLV56J7uCs5661c5mf7bvyeuTn33NcVdDr4cxznfT6kx5LSPPz3bUWp6PnwpPH6Q7ueA54y7OmKPHqpPvkyZPKzMxUxYoVcyyvWLGiduzYIUkqUaKEpkyZoo4dOyorK0vPPvuszZHLR40apREjRljep6enKyoqyjUHgHzJ/mWyW89+qnOj9aQiPPwGNW7axl1h5dK4aRuNeXWWzpw5ZbWMp2N0hCPH4YiicKz2OPLdc/VxVo+rJ0l6qmd7NaoRnWv9/NUbtSQpWadOFe56Ac7mK89Ed3DGc9fWuXR0+66+Ho7+e46rCnM9nHGud/yZpCWL5nu0ZYIj3117cdo7F95wnO7gjueAtzxrihKvTroddfvtt+v22293qGxgYKACAwNdHBEKo86N8WrfybHr6Sm+8gDxleNwFm/47vVoUlftGtXNtXzH4eNakpTsgYgA+3iWOM7V58qbroU3PFP9RWHP9ZJF850YTcE48t11JE5b58IbjtMd3PEc8KZnTVHg8YHUbImIiFDx4sV1/PjxHMuPHz+uyMhID0UFAAAAAIBjvDrpLlmypJo0aaIVK1ZYlmVlZWnFihVq1aqVByMDAAAAAMA+jzcvz8jI0O7duy3vU1NTtXnzZpUrV07R0dEaMWKEBg0apKZNm6p58+aaNm2azp07ZxnNvKDMZrPMZrMyMzMLewgAAAAAAOTJ40n3xo0b1bFjR8v77EHOBg0apNmzZ6tv3746ceKERo8erWPHjqlx48ZasmRJrsHV8isxMVGJiYlKT09XeHh4obYFAAAAAEBePJ50d+jQQYZh2CwzdOhQDR061E0RAQAAAADgHF7dpxsAAAAAgKKMpBsAAAAAABch6QYAAAAAwEX8Nuk2m82qV6+emjVr5ulQAAAAAAA+ym+T7sTERG3fvl0bNmzwdCgAAAAAAB/lt0k3AAAAAACuRtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC7it0k3U4YBAAAAAFzNb5NupgwDAAAAALia3ybdAAAAAAC4Gkk3AAAAAAAuUsLTAXiaYRiSpPT0dA9HYl1GRoYk6eKF8zp/LsPD0RTcpUsXJUnnLl5W+vmLudafu3jZUq4oHyf+jzdcc3sxOCOOzH/+kSRduXLF6rPkypUrlrJ57cNenJeu/PP/y12yuo9Lly5ZyhZkG/ZidOQ47XHHPgobg7vi8AaOnIuiwB3PGm94nnkDdzxT8X+84bvtCG/499xeDO747vKccJ6LF85LupoHefO/w9mxZeeU1pgMeyV83KFDhxQVFeXpMAAAAAAARdDBgwdVtWpVq+v9PunOysrSkSNHFBoaKpPJ5Lb9pqenKyoqSgcPHlRYWJjb9gvHcY28H9eoaOA6eT+uUdHAdfJ+XKOigevk/YrKNTIMQ2fPnlXlypVVrJj1ntt+37y8WLFiNn+VcLWwsDCv/iKBa1QUcI2KBq6T9+MaFQ1cJ+/HNSoauE7eryhco/DwcLtlGEgNAAAAAAAXIekGAAAAAMBFSLo9JDAwUGPGjFFgYKCnQ4EVXCPvxzUqGrhO3o9rVDRwnbwf16ho4Dp5P1+7Rn4/kBoAAAAAAK5CTTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3S4wadIkNWvWTKGhoapQoYJ69+6tnTt32v3c559/rjp16qhUqVJq0KCBvv/+ezdE658Kco1mz54tk8mU41WqVCk3ReyfZsyYoYYNG1rmaGzVqpV++OEHm5/hPnKv/F4j7iPPe/XVV2UymTR8+HCb5biXPMuR68T95F5jx47Ndb7r1Klj8zPcR+6X3+vEfeQZhw8f1v33368bbrhBpUuXVoMGDbRx40abn1m1apXi4+MVGBiomjVravbs2e4J1glIul3g559/VmJion799VctW7ZMV65cUZcuXXTu3Dmrn/nll19033336cEHH9Tvv/+u3r17q3fv3vrzzz/dGLn/KMg1kqSwsDAdPXrU8tq/f7+bIvZPVatW1auvvqpNmzZp48aNuuWWW9SrVy9t27Ytz/LcR+6X32skcR950oYNG/Tuu++qYcOGNstxL3mWo9dJ4n5yt/r16+c43//73/+sluU+8pz8XCeJ+8jd/v77b7Vp00YBAQH64YcftH37dk2ZMkVly5a1+pnU1FT16NFDHTt21ObNmzV8+HA99NBDWrp0qRsjLwQDLpeWlmZIMn7++WerZe655x6jR48eOZa1aNHCePTRR10dHgzHrtGsWbOM8PBw9wWFPJUtW9b44IMP8lzHfeQdbF0j7iPPOXv2rBEXF2csW7bMaN++vfHEE09YLcu95Dn5uU7cT+41ZswYo1GjRg6X5z7yjPxeJ+4j93vuueeMm2++OV+fefbZZ4369evnWNa3b1+ja9euzgzNZajpdoMzZ85IksqVK2e1zLp165SQkJBjWdeuXbVu3TqXxoarHLlGkpSRkaGYmBhFRUXZrc2Dc2VmZurTTz/VuXPn1KpVqzzLcB95liPXSOI+8pTExET16NEj1z2SF+4lz8nPdZK4n9wtJSVFlStXVvXq1dW/f38dOHDAalnuI8/Jz3WSuI/c7dtvv1XTpk119913q0KFCrrpppv0/vvv2/xMUb+fSLpdLCsrS8OHD1ebNm104403Wi137NgxVaxYMceyihUr6tixY64O0e85eo1q166tDz/8UN98840+/vhjZWVlqXXr1jp06JAbo/U/f/zxh0JCQhQYGKh//etf+vrrr1WvXr08y3IfeUZ+rhH3kWd8+umnSkpK0qRJkxwqz73kGfm9TtxP7tWiRQvNnj1bS5Ys0YwZM5Samqq2bdvq7NmzeZbnPvKM/F4n7iP327t3r2bMmKG4uDgtXbpUjz32mIYNG6Y5c+ZY/Yy1+yk9PV0XLlxwdciFVsLTAfi6xMRE/fnnn3b7ksBzHL1GrVq1ylF717p1a9WtW1fvvvuuXn75ZVeH6bdq166tzZs368yZM/riiy80aNAg/fzzz1aTOrhffq4R95H7HTx4UE888YSWLVvG4EBerCDXifvJvbp37275/4YNG6pFixaKiYnRZ599pgcffNCDkeFa+b1O3Eful5WVpaZNm2rixImSpJtuukl//vmnZs6cqUGDBnk4OtegptuFhg4dqsWLF+unn35S1apVbZaNjIzU8ePHcyw7fvy4IiMjXRmi38vPNbpeQECAbrrpJu3evdtF0UGSSpYsqZo1a6pJkyaaNGmSGjVqpOnTp+dZlvvIM/Jzja7HfeR6mzZtUlpamuLj41WiRAmVKFFCP//8s958802VKFFCmZmZuT7DveR+BblO1+N+cq8yZcqoVq1aVs8395F3sHedrsd95HqVKlXK9cN83bp1bXYDsHY/hYWFqXTp0i6J05lIul3AMAwNHTpUX3/9tVauXKlq1arZ/UyrVq20YsWKHMuWLVtms18kCq4g1+h6mZmZ+uOPP1SpUiUXRAhrsrKydOnSpTzXcR95B1vX6HrcR67XqVMn/fHHH9q8ebPl1bRpU/Xv31+bN29W8eLFc32Ge8n9CnKdrsf95F4ZGRnas2eP1fPNfeQd7F2n63EfuV6bNm1yTdW7a9cuxcTEWP1Mkb+fPD2Smy967LHHjPDwcGPVqlXG0aNHLa/z589bygwYMMAYOXKk5f3atWuNEiVKGK+//rqRnJxsjBkzxggICDD++OMPTxyCzyvINRo3bpyxdOlSY8+ePcamTZuMe++91yhVqpSxbds2TxyCXxg5cqTx888/G6mpqcbWrVuNkSNHGiaTyfjxxx8Nw+A+8gb5vUbcR97h+lGxuZe8k73rxP3kXk899ZSxatUqIzU11Vi7dq2RkJBgREREGGlpaYZhcB95i/xeJ+4j91u/fr1RokQJY8KECUZKSooxb948IygoyPj4448tZUaOHGkMGDDA8n7v3r1GUFCQ8cwzzxjJycmG2Ww2ihcvbixZssQTh5Bv9Ol2gRkzZkiSOnTokGP5rFmzNHjwYEnSgQMHVKzY/zU0aN26tebPn68XX3xRzz//vOLi4rRw4UKbA3uh4Apyjf7++289/PDDOnbsmMqWLasmTZrol19+oW+xC6WlpWngwIE6evSowsPD1bBhQy1dulSdO3eWxH3kDfJ7jbiPvBP3UtHA/eRZhw4d0n333adTp06pfPnyuvnmm/Xrr7+qfPnykriPvEV+rxP3kfs1a9ZMX3/9tUaNGqXx48erWrVqmjZtmvr3728pc/To0RzNzatVq6bvvvtOTz75pKZPn66qVavqgw8+UNeuXT1xCPlmMgzD8HQQAAAAAAD4Ivp0AwAAAADgIiTdAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMA4EKxsbGaNm2ap8OwasWKFapbt64yMzM9HYokadWqVTKZTDp9+rTTtnny5ElVqFBBhw4dcto2AQBwFEk3AABFzLZt23TnnXcqNjZWJpPJalJvNpsVGxurUqVKqUWLFlq/fn2uMs8++6xefPFFFS9e3LLswoULGjNmjGrVqqXAwEBFRETo7rvv1rZt26zGtGnTJplMJv366695ru/UqZP69OmTvwN1koiICA0cOFBjxozxyP4BAP6NpBsAgCLm/Pnzql69ul599VVF/r/27jUkqq2NA/g/i1HTiQpNMxyzLC8RKuqoH8oideqDidnNBGuc+hBUkBBENyu1expJmVjaJCNJZRGRUIlUQpGoY5aa5h1ByyxCrcZynQ/h5t1eOqeOk+el/w8GZj/r2XutvT/Ns/faaxwdR8zJz89HQkICEhMTUV5eDm9vb2g0Grx580bKKSkpQUNDA6Kjo6XYly9fEBoaiuzsbCQnJ6Ourg53797F169fERgYOGpR7efnB29vb2RnZw9ra25uRnFxMXQ63b8881+n1WphMBjQ3d09bmMgIqI/E4tuIiKi36i1tRWRkZGwtbXFlClTsHbtWnR2dspykpOTMWPGDCiVSmzevBm7d++Gj4+P1B4QEICTJ09i/fr1sLS0HLGf1NRUbNmyBVqtFl5eXrhw4QImT54sK4qvXr2KsLAwWFlZSbEzZ87gyZMnuHPnDtauXQsXFxeo1WrcuHEDnp6e0Ol0EEKM2KdOp0N+fj76+vpk8cuXL2PmzJlYvnw5cnNz4e/vD6VSCUdHR2zYsEF2I2CogwcPys59cIyzZ8+WxS5evAhPT09YWVnBw8MD58+fl7UvWLAATk5OuHnz5qh9ERERmQOLbiIiot9kYGAAkZGR6O7uxsOHD3H//n00NjZi3bp1Uo7BYEBKSgqOHz+OsrIyqFQqZGRk/FQ/JpMJZWVlCA0NlWIWFhYIDQ3FkydPpNjjx4/h7+8v2zcvLw9hYWHw9vaWxS0sLLBz505UV1ejsrJyxH5jY2Px5csXXL9+XYoJIaDX67Fp0yZMnDgR/f39SEpKQmVlJW7duoXm5mZs2rTpp85vKIPBgAMHDiAlJQU1NTU4cuQI9u/fD71eL8tTq9V4/Pjxv+qLiIjoZ00a7wEQERH9KYqKilBVVYWmpiY4OzsDAK5cuYIFCxagtLQUAQEBSE9Ph06ng1arBQAcOHAA9+7dQ09Pzz/up6urC9++fYODg4Ms7uDggNraWmm7paUFTk5Ospy6ujosXbp0xON6enpKOUOfPgPA9OnTERUVhezsbMTFxQEAiouL0dzcLJ1PfHy8lD9nzhycPXsWAQEB6Onpga2t7T8+x/+VmJiI06dPS++Mu7q6orq6GpmZmdi4caOU5+TkhIqKil/qg4iI6FfxSTcREdEYMRgMsLW1lT5Dn6rW1NTA2dlZKrgBwMvLC1OnTkVNTQ0A4NWrV1Cr1bL9hm6PlU+fPsmmlg8abfr4IIVCMWpbfHw8Hj16hIaGBgBAdnY2QkJC4ObmBuD7gmsRERFQqVRQKpUICQkB8H3a/a/o7e1FQ0MDdDqd7NonJydLYxhkbW09bOo7ERGRufFJNxER0RhZuXIlAgMDpe1Zs2aNyzjs7OwwceLEYe+Kd3Z2yhZes7Ozw/v372U58+bNk24ADDUYnz9//qh9L1u2DCqVCpcvX8auXbtQUFCAzMxMAN8LZI1GA41GA4PBAHt7e7S2tkKj0cBkMo14PAsLi2E3Afr7+6XvgzMAsrKyZNcegGxFdgDo7u6Gvb39qGMnIiIyBz7pJiIiGiNKpRJubm7Sx9raWtbu6emJtrY2tLW1SbHq6mp8+PABXl5eAAB3d3eUlpbK9hu6/XcUCgX8/PxQVFQkxQYGBlBUVITg4GAp5uvri+rqatm+MTExePDgwbD3tgcGBpCWlgZ/f39prCOxsLCAVquFXq9HXl4eFAoFVq9eDQCora3Fu3fvcOzYMSxatAgeHh4/XEQNAOzt7dHR0SErvI1Go/TdwcEBTk5OaGxslF17Nzc3uLq6yo714sUL+Pr6/rA/IiKiscaim4iI6DcJDQ3FwoULERsbi/Lycjx79gxxcXEICQmRFjTbvn07Ll26BL1ej/r6eiQnJ+P58+eYMGGCdByTyQSj0Qij0QiTyYT29nYYjUa8fv1ayklISEBWVhb0ej1qamqwdetW9Pb2Su9WA4BGo0FJSYlsjDt37oRarUZERASuXbuG1tZWlJaWIjo6GvX19bLFyW7evAkPD49h56nVatHe3o49e/YgJiZGuvmgUqmgUCiQnp6OxsZG3L59G0lJST+8ZkuWLMHbt29x4sQJNDQ04Ny5cygsLJTlHDp0CEePHsXZs2dRV1eHqqoq5OTkIDU1Vcrp6+tDWVkZwsPDf9gfERHRmBNERERkNi4uLiItLU3abmlpEStXrhQ2NjZCqVSKNWvWiI6ODtk+hw8fFnZ2dsLW1lbEx8eLHTt2iKCgIKm9qalJABj2CQkJkR0nPT1dqFQqoVAohFqtFk+fPpW1v3v3TlhZWYna2lpZvKenR+zdu1fMnTtXTJo0SQAQbm5uoq2tTZaXk5MjRvspER4eLgCIZ8+eyeJ5eXli9uzZwtLSUgQHB4vbt28LAKKiokIIIURxcbEAIN6/fy/tk5GRIZydnYWNjY2Ii4sTKSkpwsXFRXZcg8EgfHx8hEKhENOmTROLFy8WBQUFsn7d3d1HHCsREZE5TRDib1ZLISIionEVFhYGR0dH5Obmjvmxd+3ahY8fP0rvXY+ksLAQUVFROHXqFLZt2zbmY/gdgoKCsGPHDmzYsGG8h0JERH8YTi8nIiL6D+nr60NqaipevnyJ2tpaJCYm4sGDB7K/vhpLe/fuhYuLCwYGBkbNWbFiBQoLC9Hd3Y2uri6zjMOcurq6sGrVKsTExIz3UIiI6A/EJ91ERET/IZ8+fUJERAQqKirw+fNnuLu7Y9++fdJ/UBMREdH/FxbdRERERERERGbC6eVEREREREREZsKim4iIiIiIiMhMWHQTERERERERmQmLbiIiIiIiIiIzYdFNREREREREZCYsuomIiIiIiIjMhEU3ERERERERkZmw6CYiIiIiIiIyExbdRERERERERGbyF312I2jWJWGUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "# Plot q-values of diann_results, hued by in_mumdia\n", + "import matplotlib.pyplot as plt\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "sns.histplot(\n", + " data=diann_results,\n", + " x=\"logqvalue\",\n", + " hue=\"in_mumdia\",\n", + " bins=100,\n", + " element=\"step\",\n", + " stat=\"count\",\n", + " common_norm=False,\n", + " palette=\"Set2\",\n", + " alpha=0.7,\n", + " multiple=\"stack\",\n", + ")\n", + "\n", + "# plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlabel(\"-log10(Q.Value)\")\n", + "plt.ylabel(\"Count\")\n", + "plt.title(\"Distribution of DIA-NN Q.Values by MuMDIA Identification Status\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "id": "7ef33142", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Run", + "rawType": "object", + "type": "string" + }, + { + "name": "Channel", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Id", + "rawType": "object", + "type": "string" + }, + { + "name": "Modified.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Stripped.Sequence", + "rawType": "object", + "type": "string" + }, + { + "name": "Precursor.Charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Lib.Index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Decoy", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Proteotypic", + "rawType": "int64", + "type": "integer" + }, + { + "name": "Precursor.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Ids", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Group", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Names", + "rawType": "object", + "type": "string" + }, + { + "name": "Genes", + "rawType": "object", + "type": "string" + }, + { + "name": "RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.RT", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iRT", + "rawType": "float32", + "type": "float" + }, + { + "name": "IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.IM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Predicted.iIM", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Quantity", + "rawType": "float32", + "type": "float" + }, + { + "name": "Precursor.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Normalised", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Area", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Apex.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Factor", + "rawType": "float32", + "type": "float" + }, + { + "name": "Quantity.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Empirical.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Normalisation.Noise", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Profile.Corr", + "rawType": "float32", + "type": "float" + }, + { + "name": "Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Mass.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Evidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.Before", + "rawType": "float32", + "type": "float" + }, + { + "name": "Ms1.Total.Signal.After", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Start", + "rawType": "float32", + "type": "float" + }, + { + "name": "RT.Stop", + "rawType": "float32", + "type": "float" + }, + { + "name": "FWHM", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.TopN", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Genes.MaxLFQ.Unique.Quality", + "rawType": "float32", + "type": "float" + }, + { + "name": "Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.Peptidoform.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Site.Occupancy.Probabilities", + "rawType": "object", + "type": "string" + }, + { + "name": "Protein.Sites", + "rawType": "object", + "type": "string" + }, + { + "name": "Lib.PTM.Site.Confidence", + "rawType": "float32", + "type": "float" + }, + { + "name": "Translated.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Channel.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "PG.PEP", + "rawType": "float32", + "type": "float" + }, + { + "name": "GG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Protein.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Global.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Lib.PG.Q.Value", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz", + "rawType": "float32", + "type": "float" + }, + { + "name": "Best.Fr.Mz.Delta", + "rawType": "float32", + "type": "float" + }, + { + "name": "in_mumdia", + "rawType": "object", + "type": "string" + }, + { + "name": "logqvalue", + "rawType": "float32", + "type": "float" + } + ], + "ref": "9143c725-f184-4d35-b5a0-ff66b3d1111c", + "rows": [ + [ + "0", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAEIAVK2", + "AAAAEIAVK", + "AAAAEIAVK", + "2", + "10", + "0", + "1", + "422.25037", + "P0A8D6", + "P0A8D6", + "YMDB_ECOLI", + "ymdB", + "45.039364", + "-11.2311", + "45.049755", + "-10.05596", + "0.0", + "0.79848653", + "0.0", + "0.0", + "9478950.0", + "9478950.0", + "9629110.0", + "9629110.0", + "8328634.0", + "-0.00030517578", + "1.0", + "0.91445416", + "0.0", + "0.0", + "0.8910806", + "5.4202604", + "0.86327136", + "0.9772817", + "353855840.0", + "403993300.0", + "44.79642", + "45.281773", + "0.23923437", + "0.0", + "9478950.0", + "0.0", + "9478950.0", + "9478950.0", + "0.91445416", + "0.91445416", + "0.91445416", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAEIAVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "317.21832", + "0.00064086914", + "Present and Passing FDR", + "6.001258" + ], + [ + "1", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "AAAAPVTGPLADDPIQETITFDDFAK", + "AAAAPVTGPLADDPIQETITFDDFAK", + "3", + "58", + "0", + "1", + "892.1131", + "P00959", + "P00959", + "SYM_ECOLI", + "metG", + "131.40971", + "102.82846", + "131.40822", + "110.56359", + "0.0", + "1.0572941", + "0.0", + "0.0", + "227486.38", + "227486.38", + "485865.8", + "485865.8", + "0.0", + "0.0", + "1.0", + "0.78337896", + "0.0", + "0.0", + "0.19562031", + "3.4541717", + "0.0", + "0.52708817", + "1242418800.0", + "937075300.0", + "131.26434", + "131.6526", + "0.23196226", + "0.0", + "55844700.0", + "0.0", + "55844700.0", + "55844700.0", + "0.8808654", + "0.8808654", + "0.8808654", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAAPVTGPLADDPIQETITFDDFAK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "214.11862", + "0.0011901855", + "Present", + "6.001258" + ], + [ + "2", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAAVLAK1", + "AAAAVLAK", + "AAAAVLAK", + "1", + "72", + "0", + "1", + "714.45087", + "P0AEQ1", + "P0AEQ1", + "GLCG_ECOLI", + "glcG", + "35.834743", + "-19.224216", + "36.656822", + "-21.282513", + "0.0", + "1.2209269", + "0.0", + "0.0", + "1300103.4", + "1300103.4", + "1320218.6", + "1320218.6", + "1103460.6", + "0.001159668", + "1.0", + "0.79625547", + "0.0", + "0.0", + "0.9049706", + "3.4163113", + "1.7396158", + "0.96952754", + "285655300.0", + "295228060.0", + "35.59217", + "36.077908", + "0.31452703", + "0.0", + "9308464.0", + "0.0", + "9308464.0", + "9308464.0", + "0.9637441", + "0.9637441", + "0.9637441", + "0.0024889165", + "0.048146296", + "0.0025668947", + "0.0", + "0.0035870865", + "0.0048929173", + "0.0", + "1.0", + "AAAAVLAK1", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "384.22415", + "-0.00018310547", + "Present", + "2.6039896" + ], + [ + "3", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADLISR2", + "AAADLISR", + "AAADLISR", + "2", + "107", + "0", + "1", + "408.73233", + "P00452", + "P00452", + "RIR1_ECOLI", + "nrdA", + "52.66213", + "-1.9677705", + "52.288113", + "-0.9493257", + "0.0", + "0.7979276", + "0.0", + "0.0", + "33115972.0", + "33115972.0", + "27576084.0", + "27576084.0", + "27404988.0", + "-0.00091552734", + "1.0", + "0.98159057", + "0.0", + "0.0", + "0.87968576", + "5.811066", + "1.6436243", + "0.93535155", + "697454900.0", + "755969100.0", + "52.3221", + "52.953266", + "0.29944947", + "0.0", + "43924670.0", + "0.0", + "43924670.0", + "43924670.0", + "0.42255992", + "0.42255992", + "0.42255992", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAADLISR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "603.34607", + "-0.00024414062", + "Present and Passing FDR", + "6.001258" + ], + [ + "4", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAADVQLR2", + "AAADVQLR", + "AAADVQLR", + "2", + "116", + "0", + "1", + "422.2378", + "P0AEG4", + "P0AEG4", + "DSBA_ECOLI", + "dsbA", + "44.020058", + "-10.41877", + "45.611725", + "-11.208551", + "0.0", + "0.80835223", + "0.0", + "0.0", + "90264560.0", + "90264560.0", + "80806920.0", + "80806920.0", + "78470104.0", + "-0.000579834", + "1.0", + "0.9814644", + "0.0", + "0.0", + "0.98277956", + "6.8381004", + "2.0685427", + "0.98311853", + "668152960.0", + "756061900.0", + "43.728844", + "44.408207", + "0.33655792", + "0.0", + "138798110.0", + "0.0", + "138798110.0", + "138798110.0", + "0.98128796", + "0.98128796", + "0.98128796", + "1.2305009e-06", + "1.9478937e-06", + "1.2305009e-06", + "0.0", + "0.000119832235", + "0.00015953313", + "0.0", + "1.0", + "AAADVQLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "701.39404", + "0.0010375977", + "Present and Passing FDR", + "5.9099183" + ], + [ + "5", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEADDIFGELSSGK2", + "AAAEADDIFGELSSGK", + "AAAEADDIFGELSSGK", + "2", + "124", + "0", + "1", + "790.87555", + "P19934", + "P19934", + "TOLA_ECOLI", + "tolA", + "102.35789", + "62.346027", + "104.54801", + "61.24625", + "0.0", + "1.0644443", + "0.0", + "0.0", + "987667.56", + "987667.56", + "969323.6", + "969323.6", + "867402.6", + "0.0014038086", + "1.0", + "0.12193332", + "0.0", + "0.0", + "0.8921607", + "1.1468129", + "0.19816712", + "0.5556846", + "841869900.0", + "684339650.0", + "102.16394", + "102.4549", + "0.07275009", + "0.0", + "987667.5", + "0.0", + "987667.5", + "987667.5", + "0.12193332", + "0.12193332", + "0.12193332", + "0.007065851", + "0.096600726", + "0.007139215", + "0.0", + "0.008451758", + "0.01186899", + "0.0", + "1.0", + "AAAEADDIFGELSSGK2", + "", + "1.0", + "0.0", + "0.0", + "0.028571429", + "0.5675676", + "0.02764423", + "0.028279182", + "0.029045643", + "0.0", + "824.41486", + "0.0012207031", + "Present", + "2.1508358" + ], + [ + "6", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAESSIQVK2", + "AAAESSIQVK", + "AAAESSIQVK", + "2", + "189", + "0", + "1", + "502.27457", + "P0A8T7", + "P0A8T7", + "RPOC_ECOLI", + "rpoC", + "40.818455", + "-16.967041", + "39.618042", + "-15.982115", + "0.0", + "0.8604796", + "0.0", + "0.0", + "68653180.0", + "68653180.0", + "59188360.0", + "59188360.0", + "60213604.0", + "0.00018310547", + "1.0", + "0.98619014", + "0.0", + "0.0", + "0.99340165", + "6.5156555", + "1.9736533", + "0.5928819", + "420635070.0", + "449591200.0", + "40.527092", + "41.109886", + "0.2868077", + "0.0", + "135742530.0", + "0.0", + "135742530.0", + "135742530.0", + "0.97769797", + "0.97769797", + "0.97769797", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.00022177867", + "0.00035893754", + "0.0", + "1.0", + "AAAESSIQVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.3559", + "0.0005493164", + "Present and Passing FDR", + "6.001258" + ], + [ + "7", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK", + "AAAEVGAPFIEIHTGCYADAK", + "3", + "205", + "0", + "1", + "731.0211", + "P0A794", + "P0A794", + "PDXJ_ECOLI", + "pdxJ", + "93.420525", + "51.298367", + "95.98912", + "49.67698", + "0.0", + "0.97043586", + "0.0", + "0.0", + "21573336.0", + "21573336.0", + "22895202.0", + "22895202.0", + "20004146.0", + "0.00079345703", + "1.0", + "0.9457609", + "0.0", + "0.0", + "0.9556992", + "5.614942", + "0.9625929", + "0.96859276", + "600740350.0", + "620459650.0", + "92.98384", + "93.760704", + "0.41035897", + "0.0", + "39017516.0", + "0.0", + "39017516.0", + "39017516.0", + "0.86302906", + "0.86302906", + "0.86302906", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAEVGAPFIEIHTGC(UniMod:4)YADAK3", + "[P0A794:C158]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "811.3876", + "0.0022583008", + "Not Present", + "6.001258" + ], + [ + "8", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR2", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "2", + "213", + "0", + "1", + "844.4361", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.206535", + "55.172043", + "98.40381", + "56.774063", + "0.0", + "1.1086445", + "0.0", + "0.0", + "590610400.0", + "590610400.0", + "664060740.0", + "664060740.0", + "537971200.0", + "0.0005493164", + "1.0", + "0.69137955", + "0.0", + "0.0", + "0.97497547", + "5.0616074", + "3.4223218", + "0.9900597", + "583057200.0", + "626362800.0", + "99.01234", + "99.69194", + "0.28078166", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.5241153e-06", + "2.3548791e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1327.6852", + "0.0012207031", + "Present and Passing FDR", + "6.001258" + ], + [ + "9", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAFEGELIPASQIDR3", + "AAAFEGELIPASQIDR", + "AAAFEGELIPASQIDR", + "3", + "214", + "0", + "1", + "563.29315", + "P0A7J3", + "P0A7J3", + "RL10_ECOLI", + "rplJ", + "99.32842", + "55.172043", + "98.40381", + "57.41639", + "0.0", + "0.90191376", + "0.0", + "0.0", + "70214264.0", + "70214264.0", + "64663430.0", + "64663430.0", + "64823516.0", + "0.00018310547", + "1.0", + "0.9844389", + "0.0", + "0.0", + "0.9685039", + "6.3540897", + "0.8979662", + "0.98694193", + "604663900.0", + "621195400.0", + "98.98892", + "99.619675", + "0.24378972", + "0.0", + "1143813100.0", + "0.0", + "1143813100.0", + "1143813100.0", + "0.7024483", + "0.7024483", + "0.7024483", + "9.971084e-07", + "1.9478937e-06", + "5.422538e-06", + "0.0", + "3.834282e-06", + "5.422538e-06", + "0.0", + "1.0", + "AAAFEGELIPASQIDR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "393.70886", + "-0.00021362305", + "Present and Passing FDR", + "6.001258" + ], + [ + "10", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAGISETLLR2", + "AAAGISETLLR", + "AAAGISETLLR", + "2", + "231", + "0", + "1", + "551.3168", + "P00935", + "P00935", + "METB_ECOLI", + "metB", + "78.551445", + "34.235195", + "79.89243", + "31.955782", + "0.0", + "0.9136672", + "0.0", + "0.0", + "9205300.0", + "9205300.0", + "7925204.0", + "7925204.0", + "7566976.0", + "0.00018310547", + "1.0", + "0.8986022", + "0.0", + "0.0", + "0.93385655", + "5.2695966", + "1.9842398", + "0.9301016", + "860745300.0", + "767963500.0", + "78.20871", + "78.89107", + "0.28478286", + "0.0", + "9636097.0", + "0.0", + "9636097.0", + "9636097.0", + "0.967955", + "0.967955", + "0.967955", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAGISETLLR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "271.14008", + "0.0010681152", + "Present and Passing FDR", + "6.001258" + ], + [ + "11", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIAYAR2", + "AAAIAYAR", + "AAAIAYAR", + "2", + "264", + "0", + "1", + "403.72958", + "P0AG84", + "P0AG84", + "YGHA_ECOLI", + "yghA", + "44.16412", + "-12.755369", + "43.757565", + "-11.295829", + "0.0", + "0.802654", + "0.0", + "0.0", + "1316254.8", + "1316254.8", + "1785789.4", + "1785789.4", + "771801.0", + "0.00033569336", + "1.0", + "0.8577426", + "0.0", + "0.0", + "0.2958416", + "4.2764664", + "1.3657955", + "0.67840135", + "901996700.0", + "918440100.0", + "43.824783", + "44.407032", + "0.42865494", + "0.0", + "18808108.0", + "0.0", + "18808108.0", + "18808108.0", + "0.95981085", + "0.95981085", + "0.95981085", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAIAYAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "593.3406", + "0.0026855469", + "Present", + "6.001258" + ], + [ + "12", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAIC(UniMod:4)AER2", + "AAAIC(UniMod:4)AER", + "AAAICAER", + "2", + "269", + "0", + "1", + "431.216", + "P0A9M8", + "P0A9M8", + "PTA_ECOLI", + "pta", + "31.925087", + "-27.066788", + "33.41249", + "-25.78823", + "0.0", + "0.8097701", + "0.0", + "0.0", + "571500.1", + "571500.1", + "297236.94", + "297236.94", + "277989.7", + "0.0", + "1.0", + "0.8485891", + "0.0", + "0.0", + "0.8154417", + "3.0258095", + "0.7766815", + "0.0", + "165218400.0", + "163403330.0", + "31.68209", + "32.119316", + "0.23412684", + "0.0", + "77180104.0", + "0.0", + "77180104.0", + "77180104.0", + "0.9837814", + "0.9837814", + "0.9837814", + "0.00095205125", + "0.011658683", + "0.0010386014", + "0.0", + "0.0013630168", + "0.0016382998", + "0.0", + "1.0", + "AAAIC(UniMod:4)AER2", + "[P0A9M8:C424]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "535.2293", + "-0.006713867", + "Not Present", + "3.02134" + ], + [ + "13", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAALAAADAR2", + "AAALAAADAR", + "AAALAAADAR", + "2", + "316", + "0", + "1", + "450.7485", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "40.28075", + "-16.91546", + "40.494534", + "-16.164911", + "0.0", + "0.83690274", + "0.0", + "0.0", + "249159380.0", + "249159380.0", + "238044860.0", + "238044860.0", + "234785490.0", + "-0.00079345703", + "1.0", + "0.9864738", + "0.0", + "0.0", + "0.9906313", + "6.9015007", + "2.9800456", + "0.994135", + "669318460.0", + "642184600.0", + "39.89198", + "40.52356", + "0.32557887", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-05", + "0.00019478938", + "0.00019942167", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAALAAADAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "574.2944", + "-0.00030517578", + "Present and Passing FDR", + "4.001258" + ], + [ + "14", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAPAFSEESIR2", + "AAAPAFSEESIR", + "AAAPAFSEESIR", + "2", + "398", + "0", + "1", + "624.8146", + "P08142", + "P08142", + "ILVB_ECOLI", + "ilvB", + "69.67013", + "17.595957", + "67.82137", + "21.751873", + "0.0", + "0.95711935", + "0.0", + "0.0", + "5982976.5", + "5982976.5", + "6234872.0", + "6234872.0", + "4715585.5", + "0.0010986328", + "1.0", + "0.9502138", + "0.0", + "0.0", + "0.8272268", + "4.9783382", + "0.68951464", + "0.8171237", + "806941600.0", + "851504400.0", + "69.427155", + "70.10676", + "0.31591344", + "0.0", + "5982976.5", + "0.0", + "5982976.5", + "5982976.5", + "0.9502138", + "0.9502138", + "0.9502138", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAPAFSEESIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "518.2589", + "6.1035156e-05", + "Present and Passing FDR", + "6.001258" + ], + [ + "15", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAAQLQQGLADTSDENLK2", + "AAAQLQQGLADTSDENLK", + "AAAQLQQGLADTSDENLK", + "2", + "429", + "0", + "1", + "936.9685", + "P76576", + "P76576", + "YFGM_ECOLI", + "yfgM", + "73.92252", + "26.326391", + "75.514366", + "26.570925", + "0.0", + "1.1768218", + "0.0", + "0.0", + "1673985.8", + "1673985.8", + "2157632.5", + "2157632.5", + "1085307.2", + "0.0", + "1.0", + "0.86881787", + "0.0", + "0.0", + "0.80435896", + "5.4468393", + "1.7003247", + "0.7718048", + "893386240.0", + "991242000.0", + "73.82548", + "74.262184", + "0.27614152", + "0.0", + "1673985.9", + "0.0", + "1673985.9", + "1673985.9", + "0.86881787", + "0.86881787", + "0.86881787", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAAQLQQGLADTSDENLK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "342.1772", + "0.00064086914", + "Present and Passing FDR", + "6.001258" + ], + [ + "16", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAASHLVR2", + "AAASHLVR", + "AAASHLVR", + "2", + "500", + "0", + "1", + "412.7405", + "P0AET8", + "P0AET8", + "HDHA_ECOLI", + "hdhA", + "23.709194", + "-33.986176", + "27.357487", + "-36.831825", + "0.0", + "0.8146272", + "0.0", + "0.0", + "2015989.4", + "2015989.4", + "1642456.9", + "1642456.9", + "1693433.9", + "-0.00024414062", + "1.0", + "0.9366546", + "0.0", + "0.0", + "0.89273024", + "6.2581363", + "0.5348917", + "0.9736561", + "15688434.0", + "16270505.0", + "23.563482", + "23.9038", + "0.12379906", + "0.0", + "62128812.0", + "0.0", + "62128812.0", + "62128812.0", + "0.81174695", + "0.81174695", + "0.81174695", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAASHLVR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "341.70337", + "-0.0007019043", + "Present and Passing FDR", + "6.001258" + ], + [ + "17", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "AAATGEALSLVC(UniMod:4)VDEHK", + "AAATGEALSLVCVDEHK", + "3", + "537", + "0", + "1", + "590.9612", + "P25888", + "P25888", + "RHLE_ECOLI", + "rhlE", + "80.39914", + "39.111588", + "84.24667", + "34.261047", + "0.0", + "0.89202386", + "0.0", + "0.0", + "734635.6", + "734635.6", + "977589.56", + "977589.56", + "686336.9", + "0.0010375977", + "1.0", + "0.6546537", + "0.0", + "0.0", + "0.38540652", + "1.7331743", + "0.0", + "0.5563414", + "1140822700.0", + "1047089500.0", + "80.30209", + "80.49616", + "0.07276726", + "0.0", + "5998876.0", + "0.0", + "5998876.0", + "5998876.0", + "0.42509428", + "0.42509428", + "0.42509428", + "0.002201604", + "0.026073128", + "0.002280412", + "0.0", + "0.0022290102", + "0.0034667768", + "0.0", + "1.0", + "AAATGEALSLVC(UniMod:4)VDEHK3", + "[P25888:C350]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1086.5248", + "0.01550293", + "Not Present", + "2.657261" + ], + [ + "18", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK2", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "2", + "547", + "0", + "1", + "838.9116", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.638172", + "6.2113576", + "60.591183", + "8.781703", + "0.0", + "1.105177", + "0.0", + "0.0", + "64499790.0", + "64499790.0", + "58886880.0", + "58886880.0", + "59196744.0", + "0.00048828125", + "1.0", + "0.9908719", + "0.0", + "0.0", + "0.98715895", + "6.894661", + "1.9770116", + "0.969655", + "710916400.0", + "675191940.0", + "59.29827", + "59.929302", + "0.31421912", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.0186795e-06", + "6.995294e-06", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK2", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "645.32025", + "0.00079345703", + "Not Present", + "6.001258" + ], + [ + "19", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQEM(UniMod:35)TLVDTPNAK3", + "AAATQEM(UniMod:35)TLVDTPNAK", + "AAATQEMTLVDTPNAK", + "3", + "548", + "0", + "1", + "559.61017", + "P16659", + "P16659", + "SYP_ECOLI", + "proS", + "59.664837", + "6.2113576", + "60.591183", + "8.985086", + "0.0", + "0.8728873", + "0.0", + "0.0", + "5298862.0", + "5298862.0", + "5148599.5", + "5148599.5", + "5150481.0", + "0.00018310547", + "1.0", + "0.5086611", + "0.0", + "0.0", + "0.7988776", + "3.010162", + "0.0", + "0.95376974", + "675191940.0", + "705779300.0", + "59.325485", + "59.76188", + "0.29714456", + "0.0", + "127610460.0", + "0.0", + "127610460.0", + "127610460.0", + "0.9880199", + "0.9880199", + "0.9880199", + "1.4628691e-05", + "1.4628691e-05", + "0.00035893754", + "0.0", + "0.000119832235", + "0.00035893754", + "0.0", + "1.0", + "AAATQEM(UniMod:35){1.000000}TLVDTPNAK3", + "[P16659:M252]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "429.2456", + "0.0010681152", + "Not Present", + "4.8347945" + ], + [ + "20", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAATQHNLEVLASR3", + "AAATQHNLEVLASR", + "AAATQHNLEVLASR", + "3", + "552", + "0", + "1", + "494.26706", + "P0ABQ0", + "P0ABQ0", + "COABC_ECOLI", + "coaBC", + "58.301556", + "8.126932", + "58.213245", + "6.339929", + "0.0", + "0.81177694", + "0.0", + "0.0", + "21642576.0", + "21642576.0", + "28040164.0", + "28040164.0", + "21112072.0", + "0.0011901855", + "1.0", + "0.8000993", + "0.0", + "0.0", + "0.0", + "4.5929427", + "0.4240915", + "0.3084519", + "686155260.0", + "665677500.0", + "58.059067", + "58.544544", + "0.3010973", + "0.0", + "21642576.0", + "0.0", + "21642576.0", + "21642576.0", + "0.8000993", + "0.8000993", + "0.8000993", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAATQHNLEVLASR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "545.3406", + "-0.005004883", + "Present and Passing FDR", + "6.001258" + ], + [ + "21", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAAFAEWGQTTPK3", + "AADAAFAEWGQTTPK", + "AADAAFAEWGQTTPK", + "3", + "632", + "0", + "1", + "521.91943", + "P77674", + "P77674", + "ABDH_ECOLI", + "patD", + "81.266945", + "40.291775", + "82.119934", + "35.698925", + "0.0", + "0.86976653", + "0.0", + "0.0", + "5242987.0", + "5242987.0", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.97488064", + "0.0", + "0.0", + "0.0", + "4.6458707", + "0.0", + "0.0", + "1078702800.0", + "1228739100.0", + "80.97595", + "81.60664", + "0.30355465", + "0.0", + "490309730.0", + "0.0", + "490309730.0", + "490309730.0", + "0.99679875", + "0.99679875", + "0.99679875", + "0.0001947799", + "0.0036620705", + "0.00029216986", + "0.0", + "0.0053409706", + "0.006091772", + "0.0", + "1.0", + "AADAAFAEWGQTTPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "400.18268", + "0.00030517578", + "Present", + "3.710456" + ], + [ + "22", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK", + "AADAHGIPFTLSTVSVCPIEEVAPAIK", + "3", + "638", + "0", + "1", + "931.8212", + "P33232", + "P33232", + "LLDD_ECOLI", + "lldD", + "124.85556", + "95.393196", + "130.38431", + "91.264404", + "0.0", + "1.0574688", + "0.0", + "0.0", + "77785.11", + "77785.11", + "104206.56", + "104206.56", + "0.0", + "0.0", + "1.0", + "0.3175594", + "0.0", + "0.0", + "0.0", + "1.7876791", + "0.0", + "0.0", + "179140050.0", + "182702220.0", + "124.75574", + "124.95271", + "0.074884415", + "0.0", + "1833752.2", + "0.0", + "1833752.2", + "1833752.2", + "0.8396257", + "0.8396257", + "0.8396257", + "0.0010312822", + "0.011658683", + "0.0011172224", + "0.0", + "0.0018053645", + "0.0027950038", + "0.0", + "1.0", + "AADAHGIPFTLSTVSVC(UniMod:4)PIEEVAPAIK3", + "[P33232:C111]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1412.7454", + "-0.016357422", + "Not Present", + "2.9866226" + ], + [ + "23", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADEGLEVK2", + "AADEGLEVK", + "AADEGLEVK", + "2", + "706", + "0", + "1", + "466.2402", + "P15639", + "P15639", + "PUR9_ECOLI", + "purH", + "45.382343", + "-10.578891", + "45.980556", + "-9.825813", + "0.0", + "0.8359929", + "0.0", + "0.0", + "153085760.0", + "153085760.0", + "138279150.0", + "138279150.0", + "136599680.0", + "0.00018310547", + "1.0", + "0.9861937", + "0.0", + "0.0", + "0.9797145", + "6.8830585", + "1.431289", + "0.9854878", + "555958400.0", + "589427650.0", + "45.042305", + "45.673447", + "0.3254246", + "0.0", + "197813780.0", + "0.0", + "197813780.0", + "197813780.0", + "0.9848251", + "0.9848251", + "0.9848251", + "1.1841555e-06", + "1.9478937e-06", + "1.1841555e-06", + "0.0", + "0.000119832235", + "0.00015951775", + "0.0", + "1.0", + "AADEGLEVK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "860.436", + "0.0021972656", + "Present and Passing FDR", + "5.926592" + ], + [ + "24", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR2", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "2", + "775", + "0", + "1", + "952.4371", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.55485", + "41.7659", + "90.38439", + "45.32776", + "0.0", + "1.1736622", + "0.0", + "0.0", + "6539769.0", + "6539769.0", + "6286169.0", + "6286169.0", + "5616604.0", + "-0.00018310547", + "1.0", + "0.720854", + "0.0", + "0.0", + "0.9051132", + "4.788562", + "0.0", + "0.96589357", + "821253300.0", + "789920900.0", + "89.26371", + "89.846085", + "0.09049349", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "5.522042e-06", + "7.663706e-06", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "818.3315", + "-0.0005493164", + "Present and Passing FDR", + "6.001258" + ], + [ + "25", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADGSTVAQTALSYDDYR3", + "AADGSTVAQTALSYDDYR", + "AADGSTVAQTALSYDDYR", + "3", + "776", + "0", + "1", + "635.29376", + "P0A8Y5", + "P0A8Y5", + "YIDA_ECOLI", + "yidA", + "89.52821", + "41.7659", + "90.38439", + "45.21288", + "0.0", + "0.94026244", + "0.0", + "0.0", + "3315591.5", + "3315591.5", + "3435347.2", + "3435347.2", + "2989024.8", + "0.00012207031", + "1.0", + "0.7603821", + "0.0", + "0.0", + "0.8769604", + "3.057929", + "0.0", + "0.937624", + "875894200.0", + "821253300.0", + "89.28592", + "89.819466", + "0.27418387", + "0.0", + "17309200.0", + "0.0", + "17309200.0", + "17309200.0", + "0.8642564", + "0.8642564", + "0.8642564", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADGSTVAQTALSYDDYR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "931.4156", + "0.009765625", + "Present", + "6.001258" + ], + [ + "26", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK2", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "2", + "794", + "0", + "1", + "971.5282", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.52126", + "102.333176", + "131.15799", + "99.58934", + "0.0", + "1.2082555", + "0.0", + "0.0", + "11768890.0", + "11768890.0", + "10098005.0", + "10098005.0", + "9879739.0", + "0.001953125", + "1.0", + "0.9270581", + "0.0", + "0.0", + "0.9587445", + "6.4231935", + "2.2982807", + "0.99356806", + "346843420.0", + "343348540.0", + "129.27815", + "129.81258", + "0.26670924", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1118.5688", + "-0.0013427734", + "Present and Passing FDR", + "6.001258" + ], + [ + "27", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIIGIGINGVDAVSELSK3", + "AADIIGIGINGVDAVSELSK", + "AADIIGIGINGVDAVSELSK", + "3", + "795", + "0", + "1", + "648.02124", + "P02924", + "P02924", + "ARAF_ECOLI", + "araF", + "129.49579", + "102.333176", + "131.15799", + "99.237206", + "0.0", + "0.9755506", + "0.0", + "0.0", + "5831566.5", + "5831566.5", + "5678113.5", + "5678113.5", + "5321460.5", + "6.1035156e-05", + "1.0", + "0.8908107", + "0.0", + "0.0", + "0.91466933", + "5.089149", + "0.0", + "0.95213616", + "346843420.0", + "343348540.0", + "129.30157", + "129.73882", + "0.2509879", + "0.0", + "64662460.0", + "0.0", + "64662460.0", + "64662460.0", + "0.96856123", + "0.96856123", + "0.96856123", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIIGIGINGVDAVSELSK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0026550293", + "Present and Passing FDR", + "6.001258" + ], + [ + "28", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK2", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "2", + "825", + "0", + "1", + "740.4301", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.80189", + "67.758026", + "109.88321", + "64.94934", + "0.0", + "1.0728568", + "0.0", + "0.0", + "123073600.0", + "123073600.0", + "113322660.0", + "113322660.0", + "109594280.0", + "0.0005493164", + "1.0", + "0.6734924", + "0.0", + "0.0", + "0.99421567", + "5.0390263", + "1.7109023", + "0.9851098", + "426308030.0", + "504281540.0", + "105.51072", + "106.19015", + "0.18242767", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "1.2291321e-06", + "1.9478937e-06", + "0.00015953268", + "0.0", + "0.000119832235", + "0.00015953268", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1010.5993", + "-0.00048828125", + "Present and Passing FDR", + "5.910402" + ], + [ + "29", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADIVLQAAIAAGAPK3", + "AADIVLQAAIAAGAPK", + "AADIVLQAAIAAGAPK", + "3", + "826", + "0", + "1", + "493.95584", + "P0A9Q7", + "P0A9Q7", + "ADHE_ECOLI", + "adhE", + "105.78095", + "67.758026", + "109.88321", + "64.92609", + "0.0", + "0.86559445", + "0.0", + "0.0", + "27001664.0", + "27001664.0", + "26015190.0", + "26015190.0", + "25650814.0", + "0.00015258789", + "1.0", + "0.9743886", + "0.0", + "0.0", + "0.97202075", + "6.2575827", + "1.7785354", + "0.9863196", + "425179200.0", + "426308030.0", + "105.48976", + "106.12093", + "0.3258582", + "0.0", + "287113630.0", + "0.0", + "287113630.0", + "287113630.0", + "0.9958902", + "0.9958902", + "0.9958902", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AADIVLQAAIAAGAPK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "514.2984", + "0.0006713867", + "Present and Passing FDR", + "6.001258" + ], + [ + "30", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADNKSLGQFNLDGINPAPR3", + "AADNKSLGQFNLDGINPAPR", + "AADNKSLGQFNLDGINPAPR", + "3", + "884", + "0", + "1", + "700.0274", + "P0A6Y8", + "P0A6Y8", + "DNAK_ECOLI", + "dnaK", + "88.41845", + "53.373013", + "96.38754", + "44.248936", + "0.0", + "0.9205765", + "0.0", + "0.0", + "2014406.0", + "2014406.0", + "2318806.5", + "2318806.5", + "925617.25", + "0.0", + "1.0", + "0.8834976", + "0.0", + "0.0", + "0.6073868", + "4.048474", + "0.0", + "0.0", + "1398788600.0", + "1652747100.0", + "88.22464", + "88.80648", + "0.4029023", + "0.0", + "528809730.0", + "0.0", + "528809730.0", + "528809730.0", + "0.9646322", + "0.9646322", + "0.9646322", + "0.0003686296", + "0.0036620705", + "0.00046078704", + "0.0", + "0.050652087", + "0.056812774", + "0.0", + "1.0", + "AADNKSLGQFNLDGINPAPR3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "440.2616", + "0.0024414062", + "Present and Passing FDR", + "3.43341" + ], + [ + "31", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "AADSC(UniMod:4)HVSQPTLSGQIR", + "AADSCHVSQPTLSGQIR", + "3", + "929", + "0", + "1", + "609.63196", + "P0ACQ4", + "P0ACQ4", + "OXYR_ECOLI", + "oxyR", + "58.21326", + "5.008134", + "57.742092", + "6.152042", + "0.0", + "0.86223096", + "0.0", + "0.0", + "14137073.0", + "14137073.0", + "13011373.0", + "13011373.0", + "13712340.0", + "0.00030517578", + "1.0", + "0.83560085", + "0.0", + "0.0", + "0.7753711", + "5.0263877", + "0.81187373", + "0.8735103", + "644759200.0", + "662432300.0", + "57.970203", + "58.40748", + "0.18644737", + "0.0", + "48629056.0", + "0.0", + "48629056.0", + "48629056.0", + "0.9219536", + "0.9219536", + "0.9219536", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1983224e-06", + "1.9222603e-06", + "0.0", + "1.0", + "AADSC(UniMod:4)HVSQPTLSGQIR3", + "[P0ACQ4:C25]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "774.44684", + "0.0015258789", + "Not Present", + "6.001258" + ], + [ + "32", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AADVHLC(UniMod:4)VK2", + "AADVHLC(UniMod:4)VK", + "AADVHLCVK", + "2", + "964", + "0", + "1", + "506.76584", + "P45395", + "P45395", + "KDSD_ECOLI", + "kdsD", + "45.045246", + "-5.750933", + "47.869987", + "-10.058963", + "0.0", + "0.87408507", + "0.0", + "0.0", + "1718921.0", + "1718921.0", + "1069094.5", + "1069094.5", + "1407849.6", + "0.0004272461", + "1.0", + "0.7300319", + "0.0", + "0.0", + "0.6207463", + "3.2565506", + "1.1316797", + "0.7533607", + "353855840.0", + "403993300.0", + "44.89996", + "45.19117", + "0.13195394", + "0.0", + "11497942.0", + "0.0", + "11497942.0", + "11497942.0", + "0.7444782", + "0.7444782", + "0.7444782", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.925552e-06", + "4.21584e-06", + "0.0", + "1.0", + "AADVHLC(UniMod:4)VK2", + "[P45395:C146]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "519.29596", + "0.002380371", + "Not Present", + "6.001258" + ], + [ + "33", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEAVIIDTIR2", + "AAEAVIIDTIR", + "AAEAVIIDTIR", + "2", + "1052", + "0", + "1", + "586.3377", + "P0ADG4", + "P0ADG4", + "SUHB_ECOLI", + "suhB", + "88.26376", + "42.97589", + "88.241714", + "43.108944", + "0.0", + "0.94074327", + "0.0", + "0.0", + "28097418.0", + "28097418.0", + "27610082.0", + "27610082.0", + "24713134.0", + "-0.0006713867", + "1.0", + "0.9689099", + "0.0", + "0.0", + "0.8944861", + "6.624495", + "3.5546937", + "0.8928653", + "803579140.0", + "1021073900.0", + "87.8757", + "88.603386", + "0.3242042", + "0.0", + "28097418.0", + "0.0", + "28097418.0", + "28097418.0", + "0.9689099", + "0.9689099", + "0.9689099", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAEAVIIDTIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "829.51416", + "0.0025024414", + "Present and Passing FDR", + "6.001258" + ], + [ + "34", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEEAFR2", + "AAEEAFR", + "AAEEAFR", + "2", + "1075", + "0", + "1", + "397.1956", + "P21165", + "P21165", + "PEPQ_ECOLI", + "pepQ", + "35.711937", + "-17.198992", + "39.371098", + "-21.21893", + "0.0", + "0.7815424", + "0.0", + "0.0", + "8971166.0", + "8971166.0", + "8599221.0", + "8599221.0", + "8410514.0", + "-0.00088500977", + "1.0", + "0.95596766", + "0.0", + "0.0", + "0.9741072", + "4.954106", + "0.87492824", + "0.97103006", + "258507520.0", + "277407400.0", + "35.42042", + "36.10053", + "0.3008589", + "0.0", + "79750740.0", + "0.0", + "79750740.0", + "79750740.0", + "0.98041433", + "0.98041433", + "0.98041433", + "1.7822638e-05", + "1.7822638e-05", + "1.7822638e-05", + "0.0", + "0.00022177867", + "0.00044233107", + "0.0", + "1.0", + "AAEEAFR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "722.3468", + "0.004638672", + "Present and Passing FDR", + "4.749028" + ], + [ + "35", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK3", + "AAEGIAPKPLDANQM(UniMod:35)AALVELLK", + "AAEGIAPKPLDANQMAALVELLK", + "3", + "1134", + "0", + "1", + "793.7699", + "P36683", + "P36683", + "ACNB_ECOLI", + "acnB", + "112.99285", + "76.778725", + "114.356186", + "74.95788", + "0.0", + "0.987832", + "0.0", + "0.0", + "1294528.2", + "1294528.2", + "2726475.2", + "2726475.2", + "997040.4", + "0.004211426", + "1.0", + "0.62068915", + "0.0", + "0.0", + "0.8252063", + "3.1483374", + "0.6531393", + "0.7315975", + "501934400.0", + "418322880.0", + "112.75", + "113.3324", + "0.4064182", + "0.0", + "688585150.0", + "0.0", + "688585150.0", + "688585150.0", + "0.9442582", + "0.9442582", + "0.9442582", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAEGIAPKPLDANQM(UniMod:35){1.000000}AALVELLK3", + "[P36683:M27]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "329.14557", + "0.00036621094", + "Not Present", + "6.001258" + ], + [ + "36", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK2", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "2", + "1171", + "0", + "1", + "834.4429", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.844376", + "38.029137", + "82.05038", + "31.588327", + "0.0", + "1.1397063", + "0.0", + "0.0", + "778467.5", + "778467.5", + "682096.6", + "682096.6", + "518027.94", + "0.0028686523", + "1.0", + "0.4717078", + "0.0", + "0.0", + "0.5071717", + "2.9717689", + "1.8750236", + "0.66830456", + "1169947900.0", + "1120576300.0", + "77.26175", + "78.03854", + "0.22015776", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0010350993", + "0.0011739385", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK2", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "635.35114", + "0.0008544922", + "Not Present", + "6.001258" + ], + [ + "37", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEIIHIGQAIM(UniMod:35)EQK3", + "AAEIIHIGQAIM(UniMod:35)EQK", + "AAEIIHIGQAIMEQK", + "3", + "1172", + "0", + "1", + "556.63104", + "P27306", + "P27306", + "STHA_ECOLI", + "sthA", + "77.821", + "38.029137", + "82.05038", + "31.573114", + "0.0", + "0.8493062", + "0.0", + "0.0", + "15018206.0", + "15018206.0", + "25544548.0", + "25544548.0", + "14102344.0", + "6.1035156e-05", + "1.0", + "0.638456", + "0.0", + "0.0", + "0.7257927", + "3.071986", + "0.0", + "0.9269335", + "987974850.0", + "1169947900.0", + "77.23835", + "78.2093", + "0.37308988", + "0.0", + "53890390.0", + "0.0", + "53890390.0", + "53890390.0", + "0.98204255", + "0.98204255", + "0.98204255", + "0.0011710582", + "0.011658683", + "0.022141015", + "0.0", + "0.019180777", + "0.022141015", + "0.0", + "1.0", + "AAEIIHIGQAIM(UniMod:35){1.000000}EQK3", + "[P27306:M428]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "920.4506", + "-0.006652832", + "Not Present", + "2.9314218" + ], + [ + "38", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELAGNDTIPVEITR2", + "AAELAGNDTIPVEITR", + "AAELAGNDTIPVEITR", + "2", + "1203", + "0", + "1", + "835.4414", + "P0ACB7", + "P0ACB7", + "HEMY_ECOLI", + "hemY", + "92.55462", + "44.613483", + "91.74687", + "49.380917", + "0.0", + "1.100099", + "0.0", + "0.0", + "2065169.5", + "2065169.5", + "2777191.5", + "2777191.5", + "1018370.9", + "-0.00012207031", + "1.0", + "0.9660883", + "0.0", + "0.0", + "0.7852382", + "5.258746", + "1.5672374", + "0.93024945", + "1214181800.0", + "1343128200.0", + "92.31227", + "92.79749", + "0.27851662", + "0.0", + "2101538.0", + "0.0", + "2101538.0", + "2101538.0", + "0.80221117", + "0.80221117", + "0.80221117", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAELAGNDTIPVEITR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1285.6747", + "0.011108398", + "Present and Passing FDR", + "6.001258" + ], + [ + "39", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAELSGLTHSAISTIEQDK3", + "AAELSGLTHSAISTIEQDK", + "AAELSGLTHSAISTIEQDK", + "3", + "1241", + "0", + "1", + "657.6725", + "P0A9U6", + "P0A9U6", + "PUUR_ECOLI", + "puuR", + "92.83261", + "52.800926", + "95.38884", + "49.440197", + "0.0", + "0.90168226", + "0.0", + "0.0", + "1559440.0", + "1559440.0", + "4588269.0", + "4588269.0", + "1107571.6", + "-6.1035156e-05", + "1.0", + "0.829134", + "0.0", + "0.0", + "0.65697545", + "4.8367305", + "0.8680101", + "0.85241157", + "1244536400.0", + "1142363000.0", + "92.687454", + "93.12392", + "0.27198178", + "0.0", + "16596189.0", + "0.0", + "16596189.0", + "16596189.0", + "0.8498309", + "0.8498309", + "0.8498309", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.0005226299", + "0.00051727705", + "0.0", + "1.0", + "AAELSGLTHSAISTIEQDK3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "793.90466", + "0.0048828125", + "Present and Passing FDR", + "6.001258" + ], + [ + "40", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R2", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "2", + "1277", + "0", + "1", + "910.4176", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.71746", + "59.33595", + "102.491844", + "59.59053", + "0.0", + "1.1293542", + "0.0", + "0.0", + "35468964.0", + "35468964.0", + "27665188.0", + "27665188.0", + "27662706.0", + "-0.00018310547", + "1.0", + "0.9918874", + "0.0", + "0.0", + "0.98318624", + "6.8573484", + "0.9958743", + "0.9957494", + "383825760.0", + "344968580.0", + "100.42619", + "101.05705", + "0.33605525", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R2", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1320.6252", + "0.0007324219", + "Not Present", + "6.001258" + ], + [ + "41", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAENNPELAAFIDEC(UniMod:4)R3", + "AAENNPELAAFIDEC(UniMod:4)R", + "AAENNPELAAFIDECR", + "3", + "1278", + "0", + "1", + "607.2808", + "P07813", + "P07813", + "SYL_ECOLI", + "leuS", + "100.64509", + "59.33595", + "102.491844", + "60.003082", + "0.0", + "0.92753696", + "0.0", + "0.0", + "13152284.0", + "13152284.0", + "13149464.0", + "13149464.0", + "12741688.0", + "0.00061035156", + "1.0", + "0.6915186", + "0.0", + "0.0", + "0.72929275", + "4.1023116", + "1.3746892", + "0.87355685", + "394104060.0", + "383825760.0", + "100.49975", + "100.93643", + "0.13069002", + "0.0", + "89946030.0", + "0.0", + "89946030.0", + "89946030.0", + "0.99604994", + "0.99604994", + "0.99604994", + "9.971084e-07", + "1.9478937e-06", + "0.00015945565", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAENNPELAAFIDEC(UniMod:4)R3", + "[P07813:C285]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "839.37164", + "-0.0015258789", + "Not Present", + "6.001258" + ], + [ + "42", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEQLGQANSAVSR2", + "AAEQLGQANSAVSR", + "AAEQLGQANSAVSR", + "2", + "1301", + "0", + "1", + "701.35767", + "P30864", + "P30864", + "YAFC_ECOLI", + "yafC", + "48.169655", + "-9.248929", + "47.460194", + "-7.1125617", + "0.0", + "1.0064552", + "0.0", + "0.0", + "2426344.5", + "2426344.5", + "1100771.5", + "1100771.5", + "1100771.5", + "-0.00030517578", + "1.0", + "0.54000485", + "0.0", + "0.0", + "0.645773", + "3.2920668", + "0.56579524", + "0.639474", + "537066430.0", + "489363040.0", + "47.926537", + "48.412094", + "0.24718998", + "0.0", + "2426344.5", + "0.0", + "2426344.5", + "2426344.5", + "0.54000485", + "0.54000485", + "0.54000485", + "0.0011710582", + "0.011658683", + "0.0012547051", + "0.0", + "0.0022290102", + "0.0032603245", + "0.0", + "1.0", + "AAEQLGQANSAVSR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "889.4486", + "0.006652832", + "Present", + "2.9314218" + ], + [ + "43", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAESALNIDVPVNAQYIR2", + "AAESALNIDVPVNAQYIR", + "AAESALNIDVPVNAQYIR", + "2", + "1346", + "0", + "1", + "972.5129", + "P0ACE0", + "P0ACE0", + "MBHM_ECOLI", + "hybC", + "106.4501", + "63.976006", + "106.3041", + "65.58738", + "0.0", + "1.192544", + "0.0", + "0.0", + "115423.8", + "115423.8", + "0.0", + "0.0", + "0.0", + "0.0", + "1.0", + "0.14110963", + "0.0", + "0.0", + "0.0", + "0.96301436", + "0.0", + "0.0", + "413169100.0", + "458511840.0", + "106.30478", + "106.59692", + "0.17054091", + "0.0", + "1231022.1", + "0.0", + "1231022.1", + "1231022.1", + "0.443667", + "0.443667", + "0.443667", + "0.00687235", + "0.096600726", + "0.0069459677", + "0.0", + "0.027691884", + "0.03497582", + "0.0", + "1.0", + "AAESALNIDVPVNAQYIR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "1174.6215", + "0.0", + "Present", + "2.162895" + ], + [ + "44", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAEVLVVDTR2", + "AAEVLVVDTR", + "AAEVLVVDTR", + "2", + "1439", + "0", + "1", + "536.80347", + "P76116", + "P76116", + "YNCE_ECOLI", + "yncE", + "69.12997", + "18.1098", + "68.80989", + "20.39872", + "0.0", + "0.9022431", + "0.0", + "0.0", + "15261269.0", + "15261269.0", + "13799797.0", + "13799797.0", + "13161172.0", + "0.0006713867", + "1.0", + "0.8059485", + "0.0", + "0.0", + "0.94272983", + "6.048667", + "2.4350483", + "0.9846432", + "815928700.0", + "865392100.0", + "68.887566", + "69.517746", + "0.28593954", + "0.0", + "29748434.0", + "0.0", + "29748434.0", + "29748434.0", + "0.97279036", + "0.97279036", + "0.97279036", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "2.7919564e-06", + "4.038439e-06", + "0.0", + "1.0", + "AAEVLVVDTR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "371.1925", + "0.0035705566", + "Present and Passing FDR", + "6.001258" + ], + [ + "45", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDDAIAAR2", + "AAFDDAIAAR", + "AAFDDAIAAR", + "2", + "1480", + "0", + "1", + "510.7591", + "P0ABC7", + "P0ABC7", + "HFLK_ECOLI", + "hflK", + "69.22526", + "20.680796", + "70.90652", + "20.603237", + "0.0", + "0.874018", + "0.0", + "0.0", + "4191834.5", + "4191834.5", + "5319950.0", + "5319950.0", + "3585247.0", + "0.00091552734", + "1.0", + "0.91427785", + "0.0", + "0.0", + "0.84949213", + "5.577577", + "0.20540452", + "0.8701518", + "874820030.0", + "942318850.0", + "69.07937", + "69.56425", + "0.31091535", + "0.0", + "6749399.5", + "0.0", + "6749399.5", + "6749399.5", + "0.3634465", + "0.3634465", + "0.3634465", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "0.000119832235", + "0.00015945565", + "0.0", + "1.0", + "AAFDDAIAAR2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "616.3413", + "0.0049438477", + "Present and Passing FDR", + "6.001258" + ], + [ + "46", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER2", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "2", + "1493", + "0", + "1", + "803.3864", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.30761", + "31.610626", + "76.97953", + "30.905209", + "0.0", + "1.1188899", + "0.0", + "0.0", + "6226086.5", + "6226086.5", + "6581563.0", + "6581563.0", + "5416400.0", + "0.00048828125", + "1.0", + "0.87343264", + "0.0", + "0.0", + "0.83749926", + "5.453828", + "0.9509031", + "0.88552314", + "835704500.0", + "847041660.0", + "77.11338", + "77.74489", + "0.33347782", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "7.2828416e-06", + "1.0001863e-05", + "0.0", + "1.0", + "AAFDFAVEHQSVER2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "732.3493", + "0.005065918", + "Present and Passing FDR", + "6.001258" + ], + [ + "47", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFDFAVEHQSVER3", + "AAFDFAVEHQSVER", + "AAFDFAVEHQSVER", + "3", + "1494", + "0", + "1", + "535.9267", + "P0ABA4", + "P0ABA4", + "ATPD_ECOLI", + "atpH", + "77.28542", + "31.610626", + "76.97953", + "30.868996", + "0.0", + "0.85347503", + "0.0", + "0.0", + "34672812.0", + "34672812.0", + "35916796.0", + "35916796.0", + "30941520.0", + "0.00012207031", + "1.0", + "0.9381459", + "0.0", + "0.0", + "0.96926254", + "4.7819843", + "0.0", + "0.9832147", + "809092540.0", + "835704500.0", + "77.04237", + "77.77095", + "0.34891692", + "0.0", + "76604540.0", + "0.0", + "76604540.0", + "76604540.0", + "0.99021405", + "0.99021405", + "0.99021405", + "2.9257258e-06", + "2.9257258e-06", + "0.00044233107", + "0.0", + "0.0004361099", + "0.00044233107", + "0.0", + "1.0", + "AAFDFAVEHQSVER3", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "601.30164", + "0.0", + "Present and Passing FDR", + "5.5337663" + ], + [ + "48", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFLAVDNHK2", + "AAFLAVDNHK", + "AAFLAVDNHK", + "2", + "1573", + "0", + "1", + "543.2905", + "P30958", + "P30958", + "MFD_ECOLI", + "mfd", + "52.817375", + "4.7128224", + "55.31082", + "-0.9314743", + "0.0", + "0.92017615", + "0.0", + "0.0", + "608196.8", + "608196.8", + "672072.4", + "672072.4", + "464276.38", + "-0.00030517578", + "1.0", + "0.6241357", + "0.0", + "0.0", + "0.6410963", + "2.881232", + "1.0310254", + "0.7445865", + "810914300.0", + "749407400.0", + "52.6233", + "53.01149", + "0.22651064", + "0.0", + "69954510.0", + "0.0", + "69954510.0", + "69954510.0", + "0.9603192", + "0.9603192", + "0.9603192", + "0.00028754913", + "0.0036620705", + "0.00038339884", + "0.0", + "0.0006119327", + "0.00051727705", + "0.0", + "1.0", + "AAFLAVDNHK2", + "", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "683.3471", + "-0.0028076172", + "Present", + "3.541288" + ], + [ + "49", + "0", + "LFQ_Orbitrap_AIF_Ecoli_01", + "", + "AAFNQM(UniMod:35)VQGHK3", + "AAFNQM(UniMod:35)VQGHK", + "AAFNQMVQGHK", + "3", + "1599", + "0", + "1", + "416.20474", + "P0AD59", + "P0AD59", + "IVY_ECOLI", + "ivy", + "32.16641", + "-27.826418", + "31.139164", + "-25.183844", + "0.0", + "0.74429053", + "0.0", + "0.0", + "15223242.0", + "15223242.0", + "13718766.0", + "13718766.0", + "15013976.0", + "-0.00039672852", + "1.0", + "0.68971384", + "0.0", + "0.0", + "0.8479052", + "3.8382869", + "0.3720075", + "0.8248497", + "138829220.0", + "151236850.0", + "31.92391", + "32.40942", + "0.13118525", + "0.0", + "33099992.0", + "0.0", + "33099992.0", + "33099992.0", + "0.9900178", + "0.9900178", + "0.9900178", + "9.971084e-07", + "1.9478937e-06", + "9.971084e-07", + "0.0", + "1.1550284e-05", + "1.566858e-05", + "0.0", + "1.0", + "AAFNQM(UniMod:35){1.000000}VQGHK3", + "[P0AD59:M50]", + "1.0", + "0.0", + "0.0", + "0.0006455778", + "0.0012865872", + "0.00065019506", + "0.0006514658", + "0.00064599485", + "0.0", + "568.3202", + "-0.0008544922", + "Not Present", + "6.001258" + ] + ], + "shape": { + "columns": 73, + "rows": 13976 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Run.IndexRunChannelPrecursor.IdModified.SequenceStripped.SequencePrecursor.ChargePrecursor.Lib.IndexDecoyProteotypic...PG.Q.ValuePG.PEPGG.Q.ValueProtein.Q.ValueGlobal.PG.Q.ValueLib.PG.Q.ValueBest.Fr.MzBest.Fr.Mz.Deltain_mumdialogqvalue
00LFQ_Orbitrap_AIF_Ecoli_01AAAAEIAVK2AAAAEIAVKAAAAEIAVK21001...0.0006460.0012870.000650.0006510.0006460.0317.2183230.000641Present and Passing FDR6.001258
10LFQ_Orbitrap_AIF_Ecoli_01AAAAPVTGPLADDPIQETITFDDFAK3AAAAPVTGPLADDPIQETITFDDFAKAAAAPVTGPLADDPIQETITFDDFAK35801...0.0006460.0012870.000650.0006510.0006460.0214.1186220.001190Present6.001258
20LFQ_Orbitrap_AIF_Ecoli_01AAAAVLAK1AAAAVLAKAAAAVLAK17201...0.0006460.0012870.000650.0006510.0006460.0384.224152-0.000183Present2.603990
30LFQ_Orbitrap_AIF_Ecoli_01AAADLISR2AAADLISRAAADLISR210701...0.0006460.0012870.000650.0006510.0006460.0603.346069-0.000244Present and Passing FDR6.001258
40LFQ_Orbitrap_AIF_Ecoli_01AAADVQLR2AAADVQLRAAADVQLR211601...0.0006460.0012870.000650.0006510.0006460.0701.3940430.001038Present and Passing FDR5.909918
..................................................................
139710LFQ_Orbitrap_AIF_Ecoli_01YYLNAGVPIEIK2YYLNAGVPIEIKYYLNAGVPIEIK271227601...0.0006460.0012870.000650.0006510.0006460.0599.3762820.000000Present and Passing FDR6.001258
139720LFQ_Orbitrap_AIF_Ecoli_01YYPAEDAK2YYPAEDAKYYPAEDAK271235201...0.0006460.0012870.000650.0006510.0006460.0315.6582950.000977Present and Passing FDR6.001258
139730LFQ_Orbitrap_AIF_Ecoli_01YYPGSPLIAR2YYPGSPLIARYYPGSPLIAR271236201...0.0006460.0012870.000650.0006510.0006460.0810.4832150.007996Not Present2.238207
139740LFQ_Orbitrap_AIF_Ecoli_01YYQGTPSPVK2YYQGTPSPVKYYQGTPSPVK271246101...0.0006460.0012870.000650.0006510.0006460.0527.3187870.000122Present and Passing FDR4.544427
139750LFQ_Orbitrap_AIF_Ecoli_01YYSVIYNLIDEVK2YYSVIYNLIDEVKYYSVIYNLIDEVK271262201...0.0006460.0012870.000650.0006510.0006460.0993.525146-0.005127Present and Passing FDR6.001258
\n", + "

13976 rows × 73 columns

\n", + "
" + ], + "text/plain": [ + " Run.Index Run Channel \\\n", + "0 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "1 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "2 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "3 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "4 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "... ... ... ... \n", + "13971 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13972 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13973 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13974 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "13975 0 LFQ_Orbitrap_AIF_Ecoli_01 \n", + "\n", + " Precursor.Id Modified.Sequence \\\n", + "0 AAAAEIAVK2 AAAAEIAVK \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK3 AAAAPVTGPLADDPIQETITFDDFAK \n", + "2 AAAAVLAK1 AAAAVLAK \n", + "3 AAADLISR2 AAADLISR \n", + "4 AAADVQLR2 AAADVQLR \n", + "... ... ... \n", + "13971 YYLNAGVPIEIK2 YYLNAGVPIEIK \n", + "13972 YYPAEDAK2 YYPAEDAK \n", + "13973 YYPGSPLIAR2 YYPGSPLIAR \n", + "13974 YYQGTPSPVK2 YYQGTPSPVK \n", + "13975 YYSVIYNLIDEVK2 YYSVIYNLIDEVK \n", + "\n", + " Stripped.Sequence Precursor.Charge Precursor.Lib.Index \\\n", + "0 AAAAEIAVK 2 10 \n", + "1 AAAAPVTGPLADDPIQETITFDDFAK 3 58 \n", + "2 AAAAVLAK 1 72 \n", + "3 AAADLISR 2 107 \n", + "4 AAADVQLR 2 116 \n", + "... ... ... ... \n", + "13971 YYLNAGVPIEIK 2 712276 \n", + "13972 YYPAEDAK 2 712352 \n", + "13973 YYPGSPLIAR 2 712362 \n", + "13974 YYQGTPSPVK 2 712461 \n", + "13975 YYSVIYNLIDEVK 2 712622 \n", + "\n", + " Decoy Proteotypic ... PG.Q.Value PG.PEP GG.Q.Value \\\n", + "0 0 1 ... 0.000646 0.001287 0.00065 \n", + "1 0 1 ... 0.000646 0.001287 0.00065 \n", + "2 0 1 ... 0.000646 0.001287 0.00065 \n", + "3 0 1 ... 0.000646 0.001287 0.00065 \n", + "4 0 1 ... 0.000646 0.001287 0.00065 \n", + "... ... ... ... ... ... ... \n", + "13971 0 1 ... 0.000646 0.001287 0.00065 \n", + "13972 0 1 ... 0.000646 0.001287 0.00065 \n", + "13973 0 1 ... 0.000646 0.001287 0.00065 \n", + "13974 0 1 ... 0.000646 0.001287 0.00065 \n", + "13975 0 1 ... 0.000646 0.001287 0.00065 \n", + "\n", + " Protein.Q.Value Global.PG.Q.Value Lib.PG.Q.Value Best.Fr.Mz \\\n", + "0 0.000651 0.000646 0.0 317.218323 \n", + "1 0.000651 0.000646 0.0 214.118622 \n", + "2 0.000651 0.000646 0.0 384.224152 \n", + "3 0.000651 0.000646 0.0 603.346069 \n", + "4 0.000651 0.000646 0.0 701.394043 \n", + "... ... ... ... ... \n", + "13971 0.000651 0.000646 0.0 599.376282 \n", + "13972 0.000651 0.000646 0.0 315.658295 \n", + "13973 0.000651 0.000646 0.0 810.483215 \n", + "13974 0.000651 0.000646 0.0 527.318787 \n", + "13975 0.000651 0.000646 0.0 993.525146 \n", + "\n", + " Best.Fr.Mz.Delta in_mumdia logqvalue \n", + "0 0.000641 Present and Passing FDR 6.001258 \n", + "1 0.001190 Present 6.001258 \n", + "2 -0.000183 Present 2.603990 \n", + "3 -0.000244 Present and Passing FDR 6.001258 \n", + "4 0.001038 Present and Passing FDR 5.909918 \n", + "... ... ... ... \n", + "13971 0.000000 Present and Passing FDR 6.001258 \n", + "13972 0.000977 Present and Passing FDR 6.001258 \n", + "13973 0.007996 Not Present 2.238207 \n", + "13974 0.000122 Present and Passing FDR 4.544427 \n", + "13975 -0.005127 Present and Passing FDR 6.001258 \n", + "\n", + "[13976 rows x 73 columns]" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diann_results" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/visualize_diann_feats.ipynb b/notebook_helpers/visualize_diann_feats.ipynb new file mode 100644 index 0000000..d8457b0 --- /dev/null +++ b/notebook_helpers/visualize_diann_feats.ipynb @@ -0,0 +1,6137 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "80e05a17", + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "sys.path.append(\"/home/robbe/MuMDIA\")\n", + "from diann_feature_generator import DIANNFeatureGenerator, FeatureConfig\n", + "from test_diann_features import load_test_data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8f352acb", + "metadata": {}, + "outputs": [], + "source": [ + "data_dict = load_test_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "817d1fef", + "metadata": {}, + "outputs": [], + "source": [ + "config = FeatureConfig(\n", + " fragment_mass_tolerance=13.0,\n", + " precursor_mass_tolerance=50.0,\n", + " rt_tolerance=5.0,\n", + " top_n_fragments=6,\n", + " top_n_fragments_extended=12,\n", + " n_jobs=1, # Disable internal parallelization since we're parallelizing at precursor level\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "298086a2", + "metadata": {}, + "outputs": [], + "source": [ + "ms2pip_preds = data_dict[\"ms2pip_preds\"]\n", + "deeplc_preds = data_dict[\"deeplc_preds\"]\n", + "df_psms = data_dict[\"df_psms\"]\n", + "df_fragment = data_dict[\"df_fragment\"]\n", + "ms2dict = data_dict[\"ms2dict\"]\n", + "ms1dict = data_dict[\"ms1_dict\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "08cfd53a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "psm_id", + "rawType": "int64", + "type": "integer" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "scannr", + "rawType": "object", + "type": "string" + }, + { + "name": "peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "stripped_peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "proteins", + "rawType": "object", + "type": "string" + }, + { + "name": "num_proteins", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rank", + "rawType": "int64", + "type": "integer" + }, + { + "name": "is_decoy", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "expmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "calcmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "peptide_len", + "rawType": "int64", + "type": "integer" + }, + { + "name": "missed_cleavages", + "rawType": "int64", + "type": "integer" + }, + { + "name": "semi_enzymatic", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "ms2_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "isotope_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "hyperscore", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_next", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_best", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "aligned_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_rt_model", + "rawType": "float64", + "type": "float" + }, + { + "name": "ion_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_peaks", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_b", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_intensity_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "scored_candidates", + "rawType": "int64", + "type": "integer" + }, + { + "name": "poisson", + "rawType": "float64", + "type": "float" + }, + { + "name": "sage_discriminant_score", + "rawType": "float64", + "type": "float" + }, + { + "name": "posterior_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "protein_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "reporter_ion_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor", + "rawType": "object", + "type": "string" + } + ], + "ref": "cdf1f2fc-593f-4724-a6be-06a8bcaf31a3", + "rows": [ + [ + "0", + "1573", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9771", + "AEGGSDER", + "AEGGSDER", + "sp|P10903|NARK_ECOLI|386|394", + "1", + "5", + "False", + "823.6175", + "819.3358", + "1", + "8", + "0", + "False", + "5778.0884", + "2.0067", + "2772.7622", + "3.3235693", + "9.580939", + "0.0", + "7.5621266", + "6.2315145", + "6.2315145", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9910882", + "10", + "-0.39908993", + "0.63587785", + "-9.1445465", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "5778.0884", + "AEGGSDER/1" + ], + [ + "1", + "1572", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9771", + "AGEKTYR", + "AGEKTYR", + "sp|P30126|LEUD_ECOLI|154|161", + "1", + "4", + "False", + "823.6175", + "823.4187", + "1", + "7", + "0", + "False", + "5778.0884", + "2.0067", + "2198.0256", + "3.204871", + "9.580939", + "0.0", + "7.5621266", + "6.2315145", + "6.2315145", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9910882", + "10", + "-0.39908993", + "0.5829506", + "-6.1692834", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "5778.0884", + "AGEKTYR/1" + ], + [ + "2", + "135", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11454", + "TGGGAKGNNASPAGSGNTK", + "TGGGAKGNNASPAGSGNTK", + "sp|P19934|TOLA_ECOLI|309|328", + "1", + "3", + "False", + "1647.235", + "1644.7816", + "2", + "19", + "0", + "False", + "14769.849", + "3.01005", + "338.51007", + "0.59014726", + "10.519349", + "0.0", + "0.0", + "7.3051367", + "7.3051367", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "14.408293", + "10", + "-0.39908993", + "0.5696887", + "-5.489716", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "14769.849", + "TGGGAKGNNASPAGSGNTK/2" + ], + [ + "3", + "2241", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=19582", + "AANTGPHAAR", + "AANTGPHAAR", + "sp|P0ADH5|FIMB_ECOLI|23|33", + "1", + "4", + "False", + "967.6829", + "964.4839", + "1", + "10", + "0", + "False", + "6838.0205", + "2.0067", + "1235.4784", + "12.901953", + "9.749338", + "9.749338", + "0.0", + "12.487231", + "12.487231", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.966263", + "4", + "-0.39908993", + "0.42733616", + "-0.67158073", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "6838.0205", + "AANTGPHAAR/1" + ], + [ + "4", + "2511", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8718", + "KPGSAAASGPK", + "KPGSAAASGPK", + "sp|P0AA80|GARP_ECOLI|228|239", + "1", + "5", + "False", + "967.6829", + "969.5243", + "1", + "11", + "0", + "False", + "5298.7236", + "2.0067", + "3976.9211", + "5.191354", + "9.494349", + "9.494349", + "0.0", + "5.5593333", + "5.5593333", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.6469091", + "5", + "-0.39908993", + "0.40063596", + "-0.5514434", + "0.05882353", + "0.33426434", + "0.33445042", + null, + "5298.7236", + "KPGSAAASGPK/1" + ], + [ + "5", + "68", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=12235", + "IEKDGGDGR", + "IEKDGGDGR", + "rev_sp|P64610|YRBL_ECOLI|167|176", + "1", + "1", + "True", + "951.67566", + "945.45154", + "1", + "9", + "0", + "False", + "5233.884", + "3.01005", + "3393.7405", + "10.251222", + "9.4820385", + "9.4820385", + "0.0", + "7.80209", + "7.80209", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.0536244", + "1", + "-0.39908993", + "0.378411", + "-0.5040385", + "0.11111111", + "0.41020367", + "0.41035864", + null, + "5233.884", + "IEKDGGDGR/1" + ], + [ + "6", + "1935", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8565", + "SKAASASENT", + "SKAASASENT", + "sp|P37019|CLCA_ECOLI|463|473", + "1", + "4", + "False", + "967.6829", + "964.4461", + "1", + "10", + "0", + "False", + "5774.821", + "2.0067", + "1274.6512", + "5.7018843", + "9.580374", + "9.580374", + "0.0", + "5.461824", + "5.461824", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.1546266", + "4", + "-0.39908993", + "0.37730575", + "-0.50219625", + "0.11111111", + "0.41020367", + "0.41035864", + null, + "5774.821", + "SKAASASENT/1" + ], + [ + "7", + "139", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11454", + "HAPETAAK", + "HAPETAAK", + "rev_sp|P0AFZ1|SSEB_ECOLI|237|245", + "1", + "7", + "True", + "823.6175", + "823.41876", + "1", + "8", + "0", + "False", + "5581.6245", + "3.01005", + "3420.0425", + "4.200363", + "9.546352", + "0.0", + "0.97299653", + "7.3051367", + "7.3051367", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.44499", + "10", + "-0.39908993", + "0.374453", + "-0.49753475", + "0.16666667", + "0.45814025", + "0.45818296", + null, + "5581.6245", + "HAPETAAK/1" + ], + [ + "8", + "1949", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8410", + "STVAVTNKK", + "STVAVTNKK", + "sp|Q46834|YGHF_ECOLI|190|199", + "1", + "2", + "False", + "951.67566", + "946.54474", + "1", + "9", + "0", + "False", + "5819.521", + "2.0067", + "3295.2197", + "5.964056", + "9.588083", + "9.588083", + "0.0", + "5.363048", + "5.363048", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.6528933", + "2", + "-0.39908993", + "0.36457163", + "-0.4818115", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "5819.521", + "STVAVTNKK/1" + ], + [ + "9", + "1708", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5297", + "KSASDASTSAR", + "KSASDASTSAR", + "sp|P76072|STFR_ECOLI|128|139", + "1", + "2", + "False", + "1070.973", + "1079.5208", + "2", + "11", + "0", + "False", + "6220.053", + "-1.00335", + "7013.1436", + "6.3132324", + "9.654633", + "9.654633", + "1.7992246", + "3.3785563", + "3.3785563", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5442871", + "2", + "-0.39908993", + "0.34312555", + "-0.44553852", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "6220.053", + "KSASDASTSAR/2" + ], + [ + "10", + "2512", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=7950", + "PSSSNSRSK", + "PSSSNSRSK", + "sp|P0A8H6|YIHI_ECOLI|2|11", + "1", + "1", + "False", + "943.67206", + "948.46246", + "1", + "9", + "0", + "False", + "5652.1255", + "-1.00335", + "4000.8235", + "2.9793282", + "9.558903", + "9.558903", + "0.0", + "5.0697036", + "5.0697036", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "4.3801956", + "1", + "-0.39908993", + "0.33267778", + "-0.4271298", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "5652.1255", + "PSSSNSRSK/1" + ], + [ + "11", + "74", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=13464", + "NGEVGRNNK", + "NGEVGRNNK", + "rev_sp|P00452|RIR1_ECOLI|433|442", + "1", + "3", + "True", + "983.69025", + "986.4893", + "1", + "9", + "0", + "False", + "5245.432", + "0.0", + "2841.4387", + "5.78001", + "9.484242", + "9.484242", + "0.0", + "8.586997", + "8.586997", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "4.620146", + "3", + "-0.39908993", + "0.32377696", + "-0.41248703", + "0.22222222", + "0.50613093", + "0.5061545", + null, + "5245.432", + "NGEVGRNNK/1" + ], + [ + "12", + "1023", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15296", + "GEKTTGQAR", + "GEKTTGQAR", + "rev_sp|P0AEJ4|ENVZ_ECOLI|0|9", + "1", + "1", + "True", + "951.67566", + "946.48315", + "1", + "9", + "0", + "False", + "5478.301", + "3.01005", + "2303.2017", + "7.9379396", + "9.527671", + "0.0", + "0.0", + "9.754573", + "9.754573", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9345824", + "4", + "-0.39908993", + "0.31839633", + "-0.40455726", + "0.2413793", + "0.5422543", + "0.5422491", + null, + "5478.301", + "GEKTTGQAR/1" + ], + [ + "13", + "1695", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=4859", + "QASAAKSSATTASTK", + "QASAAKSSATTASTK", + "sp|P76072|STFR_ECOLI|402|417", + "1", + "2", + "False", + "1407.1257", + "1408.7157", + "2", + "15", + "0", + "False", + "6864.1113", + "3.01005", + "3270.7366", + "5.6135583", + "9.753146", + "0.0", + "0.0", + "3.0987215", + "3.0987215", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.2665813", + "5", + "-0.39908993", + "0.31197894", + "-0.39631698", + "0.2413793", + "0.5422543", + "0.5422491", + null, + "6864.1113", + "QASAAKSSATTASTK/2" + ], + [ + "14", + "2113", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=951", + "GPGHGGHHDHPAK", + "GPGHGGHHDHPAK", + "rev_sp|P75616|YAAX_ECOLI|4|17", + "1", + "5", + "True", + "1303.0785", + "1302.5966", + "2", + "13", + "0", + "False", + "6164.8374", + "3.01005", + "1942.7137", + "5.510533", + "9.645718", + "9.645718", + "0.0", + "0.60767347", + "0.60767347", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.352143", + "5", + "-0.39908993", + "0.30561385", + "-0.38964567", + "0.29032257", + "0.5721068", + "0.57209045", + null, + "6164.8374", + "GPGHGGHHDHPAK/2" + ], + [ + "15", + "2825", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=17508", + "HPEQCQHDHSVQVKK", + "HPEQCQHDHSVQVKK", + "sp|P0AC51|ZUR_ECOLI|153|168", + "1", + "3", + "False", + "1799.3041", + "1798.8531", + "2", + "15", + "0", + "False", + "5760.9263", + "3.01005", + "1423.6537", + "10.1925955", + "9.577966", + "0.0", + "0.0", + "11.163845", + "11.163845", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9978765", + "9", + "-0.39908993", + "0.30163586", + "-0.3862883", + "0.29032257", + "0.5721068", + "0.57209045", + null, + "5760.9263", + "HPEQCQHDHSVQVKK/2" + ], + [ + "16", + "1170", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6726", + "AITKHVDR", + "AITKHVDR", + "rev_sp|P07813|SYL_ECOLI|150|158", + "1", + "1", + "True", + "943.67206", + "938.5298", + "1", + "8", + "0", + "False", + "5968.465", + "3.01005", + "2269.2979", + "8.740949", + "9.613351", + "0.0", + "0.0", + "4.288631", + "4.288631", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.9498186", + "5", + "-0.39908993", + "0.29750973", + "-0.38347933", + "0.32258064", + "0.61173946", + "0.6117211", + null, + "5968.465", + "AITKHVDR/1" + ], + [ + "17", + "1554", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6731", + "RAQEEAER", + "RAQEEAER", + "rev_sp|P0A705|IF2_ECOLI|773|781", + "1", + "2", + "True", + "983.69025", + "987.4734", + "1", + "8", + "0", + "False", + "5489.4346", + "0.0", + "3838.486", + "5.608914", + "9.529701", + "9.529701", + "0.0", + "4.292582", + "4.292582", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.0744724", + "2", + "-0.39908993", + "0.29688793", + "-0.3831206", + "0.34375", + "0.6272221", + "0.62723595", + null, + "5489.4346", + "RAQEEAER/1" + ], + [ + "18", + "810", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5805", + "NQFHKNK", + "NQFHKNK", + "rev_sp|P76445|LPXT_ECOLI|1|8", + "1", + "2", + "True", + "919.6611", + "914.4722", + "1", + "7", + "0", + "False", + "5682.092", + "3.01005", + "2379.7336", + "2.6676805", + "9.564189", + "9.564189", + "0.0", + "3.702085", + "3.702085", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.657813", + "2", + "-0.39908993", + "0.29206756", + "-0.38082632", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5682.092", + "NQFHKNK/1" + ], + [ + "19", + "1026", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15296", + "ESAKTPAPR", + "ESAKTPAPR", + "sp|P77743|PRPR_ECOLI|484|493", + "1", + "4", + "False", + "951.67566", + "955.50854", + "1", + "9", + "0", + "False", + "5478.301", + "0.0", + "4019.4185", + "7.9379396", + "9.527671", + "9.527671", + "0.0", + "9.754573", + "9.754573", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9345824", + "4", + "-0.39908993", + "0.2883251", + "-0.379677", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5478.301", + "ESAKTPAPR/1" + ], + [ + "20", + "49", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11855", + "THTTTASQK", + "THTTTASQK", + "sp|P27297|BAX_ECOLI|28|37", + "1", + "1", + "False", + "971.68475", + "973.4829", + "1", + "9", + "0", + "False", + "6506.784", + "2.0067", + "3916.152", + "8.368304", + "9.699693", + "0.0", + "0.0", + "7.560082", + "7.560082", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.8237934", + "4", + "-0.39908993", + "0.28751677", + "-0.37950596", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6506.784", + "THTTTASQK/1" + ], + [ + "21", + "1605", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5343", + "HEVVHNR", + "HEVVHNR", + "sp|P62623|ISPH_ECOLI|36|43", + "1", + "1", + "False", + "895.6502", + "889.4518", + "1", + "7", + "0", + "False", + "5130.647", + "3.01005", + "3578.2388", + "2.2350564", + "9.46212", + "9.46212", + "0.0", + "3.408107", + "3.408107", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "3.3155992", + "1", + "-0.39908993", + "0.28736565", + "-0.37947437", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5130.647", + "HEVVHNR/1" + ], + [ + "22", + "2767", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=7571", + "GGDGSGGVSKR", + "GGDGSGGVSKR", + "rev_sp|P0AC30|FTSX_ECOLI|321|332", + "1", + "1", + "True", + "971.68475", + "975.4734", + "1", + "11", + "0", + "False", + "6073.7734", + "0.0", + "3891.451", + "12.749407", + "9.630838", + "0.0", + "0.0", + "4.8279467", + "4.8279467", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.09090909", + "1.3248506", + "7", + "-0.39908993", + "0.28450534", + "-0.37905264", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6073.7734", + "GGDGSGGVSKR/1" + ], + [ + "23", + "21", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1296", + "AKAGNEYAK", + "AKAGNEYAK", + "sp|P36683|ACNB_ECOLI|135|144", + "1", + "1", + "False", + "955.6775", + "950.4822", + "1", + "9", + "0", + "False", + "5729.8257", + "3.01005", + "2296.4695", + "7.1708083", + "9.572554", + "0.0", + "0.0", + "0.82920074", + "0.82920074", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5431116", + "6", + "-0.39908993", + "0.28292137", + "-0.37894985", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5729.8257", + "AKAGNEYAK/1" + ], + [ + "24", + "1485", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=12578", + "SANRGDCSQACR", + "SANRGDCSQACR", + "sp|P76104|RLHA_ECOLI|185|197", + "1", + "5", + "False", + "1271.0638", + "1266.5194", + "2", + "12", + "0", + "False", + "5734.3555", + "3.01005", + "1210.7628", + "2.4300547", + "9.573343", + "9.573343", + "0.0", + "8.021089", + "8.021089", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.597828", + "5", + "-0.39908993", + "0.28153118", + "-0.37892655", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5734.3555", + "SANRGDCSQACR/2" + ], + [ + "25", + "8", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3938", + "LENRDHDSGHGK", + "LENRDHDSGHGK", + "sp|P0AEC0|YOAE_ECOLI|108|120", + "1", + "5", + "False", + "1359.1039", + "1363.6229", + "2", + "12", + "0", + "False", + "6601.2217", + "3.01005", + "5536.6743", + "5.2054935", + "9.7141", + "9.7141", + "0.0", + "2.5119288", + "2.5119288", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "6.373807", + "5", + "-0.39908993", + "0.2791188", + "-0.37892655", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6601.2217", + "LENRDHDSGHGK/2" + ], + [ + "26", + "1904", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8563", + "AGAAKCAAGAR", + "AGAAKCAAGAR", + "rev_sp|P0AAI9|FABD_ECOLI|121|132", + "1", + "1", + "True", + "951.67566", + "945.48145", + "1", + "11", + "0", + "False", + "6064.162", + "3.01005", + "3362.1084", + "11.795926", + "9.629255", + "9.629255", + "0.0", + "5.460596", + "5.460596", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "0", + "0.0", + "2.7552056", + "1", + "-0.39908993", + "0.2668688", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "6064.162", + "AGAAKCAAGAR/1" + ], + [ + "27", + "22", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1296", + "QGGSLQHPK", + "QGGSLQHPK", + "rev_sp|P31134|POTG_ECOLI|223|232", + "1", + "2", + "True", + "955.6775", + "950.49335", + "1", + "9", + "0", + "False", + "5729.8257", + "3.01005", + "2284.7183", + "7.1708083", + "9.572554", + "0.0", + "0.0", + "0.82920074", + "0.82920074", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5431116", + "6", + "-0.39908993", + "0.26677233", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5729.8257", + "QGGSLQHPK/1" + ], + [ + "28", + "1827", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5271", + "SGGRNNNGR", + "SGGRNNNGR", + "sp|P60422|RL2_ECOLI|39|48", + "1", + "2", + "False", + "931.66656", + "930.438", + "1", + "9", + "0", + "False", + "5107.909", + "3.01005", + "1916.4958", + "10.753521", + "9.45768", + "0.0", + "0.0", + "3.362189", + "3.362189", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "3.061437", + "5", + "-0.39908993", + "0.26606488", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5107.909", + "SGGRNNNGR/1" + ], + [ + "29", + "2203", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=18161", + "AGAKGSK", + "AGAKGSK", + "sp|P31802|NARP_ECOLI|121|128", + "1", + "1", + "False", + "623.5265", + "617.3497", + "1", + "7", + "0", + "False", + "5601.376", + "3.01005", + "5116.4966", + "7.1818843", + "9.549885", + "9.549885", + "0.0", + "11.579249", + "11.579249", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.064814", + "1", + "-0.39908993", + "0.26467454", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5601.376", + "AGAKGSK/1" + ], + [ + "30", + "2884", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=2392", + "SGSTTNGGAARSGPAHGR", + "SGSTTNGGAARSGPAHGR", + "rev_sp|P0A8H6|YIHI_ECOLI|114|132", + "1", + "1", + "True", + "1654.4813", + "1639.7775", + "3", + "18", + "0", + "False", + "6976.0244", + "3.01005", + "7106.0005", + "0.0", + "9.769317", + "9.769317", + "0.0", + "1.5267044", + "1.5267044", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.055555556", + "5.8483434", + "1", + "-0.39908993", + "0.26455668", + "-0.37892655", + "0.45652175", + "0.6499173", + "0.6500736", + null, + "6976.0244", + "SGSTTNGGAARSGPAHGR/3" + ], + [ + "31", + "2074", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=18009", + "HAERTDEGGER", + "HAERTDEGGER", + "rev_sp|P30015|LHR_ECOLI|1457|1468", + "1", + "4", + "True", + "1263.0603", + "1255.5541", + "2", + "11", + "0", + "False", + "5960.078", + "3.01005", + "3574.6287", + "4.5151024", + "9.611945", + "9.611945", + "0.0", + "11.482276", + "11.482276", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.2359047", + "4", + "-0.39908993", + "0.2622958", + "-0.37892655", + "0.4680851", + "0.6499173", + "0.6500736", + null, + "5960.078", + "HAERTDEGGER/2" + ], + [ + "32", + "31", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3274", + "TTSGKIQK", + "TTSGKIQK", + "sp|P38135|FADK_ECOLI|538|546", + "1", + "1", + "False", + "867.63745", + "861.49194", + "1", + "8", + "0", + "False", + "5491.627", + "3.01005", + "3632.9558", + "3.1522455", + "9.530101", + "0.0", + "0.0", + "2.0901284", + "2.0901284", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.125", + "4.282148", + "7", + "-0.39908993", + "0.26060477", + "-0.37892655", + "0.4680851", + "0.6499173", + "0.6500736", + null, + "5491.627", + "TTSGKIQK/1" + ], + [ + "33", + "3091", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=16214", + "GHQAEQQR", + "GHQAEQQR", + "rev_sp|P0AED9|DCM_ECOLI|4|12", + "1", + "5", + "True", + "951.67566", + "952.4475", + "1", + "8", + "0", + "False", + "6621.0293", + "2.0067", + "2921.5356", + "0.7761806", + "9.717095", + "9.717095", + "0.0", + "10.339558", + "10.339558", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.7943908", + "5", + "-0.39908993", + "0.25691748", + "-0.37892655", + "0.46938777", + "0.6499173", + "0.6500736", + null, + "6621.0293", + "GHQAEQQR/1" + ], + [ + "34", + "2937", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=16140", + "ADGRHEHR", + "ADGRHEHR", + "sp|P24174|MANC_ECOLI|356|364", + "1", + "1", + "False", + "971.68475", + "976.45874", + "1", + "8", + "0", + "False", + "6386.276", + "-1.00335", + "3869.0125", + "4.488186", + "9.681002", + "9.681002", + "0.0", + "10.292344", + "10.292344", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.4230332", + "1", + "-0.39908993", + "0.25013283", + "-0.37892655", + "0.46938777", + "0.6499173", + "0.6500736", + null, + "6386.276", + "ADGRHEHR/1" + ], + [ + "35", + "809", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6117", + "VAVRGTHAR", + "VAVRGTHAR", + "rev_sp|P0CF53|INSD1_ECOLI|179|188;rev_sp|P0CF54|INSD2_ECOLI|179|188;rev_sp|P0CF55|INSD3_ECOLI|179|188;rev_sp|P0CF56|INSD4_ECOLI|179|188;rev_sp|P0CF57|INSD5_ECOLI|179|188;rev_sp|P0CF58|INSD6_ECOLI|179|188;rev_sp|P0CF60|INSD8_ECOLI|179|188", + "7", + "5", + "True", + "967.6829", + "965.5519", + "1", + "9", + "0", + "False", + "6335.3228", + "2.0067", + "128.77034", + "1.9949963", + "9.672993", + "9.672993", + "0.0", + "3.9005907", + "3.9005907", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "1.5098244", + "5", + "-0.39908993", + "0.24968958", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6335.3228", + "VAVRGTHAR/1" + ], + [ + "36", + "2024", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=2443", + "KEDPSDTR", + "KEDPSDTR", + "rev_sp|P0AGC7|SMP_ECOLI|142|150", + "1", + "2", + "True", + "951.67566", + "946.43555", + "1", + "8", + "0", + "False", + "5593.8066", + "3.01005", + "2353.5022", + "12.860307", + "9.5485325", + "9.5485325", + "0.0", + "1.5602791", + "1.5602791", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.125", + "2.4956791", + "2", + "-0.39908993", + "0.2477995", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "5593.8066", + "KEDPSDTR/1" + ], + [ + "37", + "2070", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9974", + "NAGHTPKPVAHV", + "NAGHTPKPVAHV", + "sp|P21503|YCAD_ECOLI|370|382", + "1", + "5", + "False", + "1223.0421", + "1226.6519", + "2", + "12", + "0", + "False", + "6325.666", + "3.01005", + "5411.235", + "0.4400624", + "9.671467", + "9.671467", + "0.0", + "6.361402", + "6.361402", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.7498095", + "5", + "-0.39908993", + "0.2461784", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6325.666", + "NAGHTPKPVAHV/2" + ], + [ + "38", + "914", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=14256", + "VKCSNCEQSGK", + "VKCSNCEQSGK", + "sp|P13024|FDHE_ECOLI|226|237", + "1", + "2", + "False", + "1191.0275", + "1181.517", + "2", + "11", + "0", + "False", + "7259.485", + "3.01005", + "5486.688", + "4.6277046", + "9.80914", + "9.80914", + "0.0", + "9.091375", + "9.091375", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.09090909", + "5.5672293", + "2", + "-0.39908993", + "0.24544947", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "7259.485", + "VKCSNCEQSGK/2" + ], + [ + "39", + "3", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=49", + "PAPHKAR", + "PAPHKAR", + "sp|P08194|GLPT_ECOLI|6|13", + "1", + "3", + "False", + "779.5975", + "775.4453", + "1", + "7", + "0", + "False", + "6806.026", + "1.00335", + "4052.4207", + "4.5674944", + "9.744649", + "9.744649", + "0.0", + "0.033146437", + "0.033146437", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "6.1682415", + "3", + "-0.39908993", + "0.24427609", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6806.026", + "PAPHKAR/1" + ], + [ + "40", + "1609", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6492", + "AHDYSRR", + "AHDYSRR", + "sp|P00935|METB_ECOLI|42|49", + "1", + "4", + "False", + "907.65564", + "903.431", + "1", + "7", + "0", + "False", + "4917.8984", + "3.01005", + "1343.4822", + "8.972303", + "9.419779", + "9.419779", + "0.0", + "4.1396317", + "4.1396317", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.454881", + "4", + "-0.39908993", + "0.24291994", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "4917.8984", + "AHDYSRR/1" + ], + [ + "41", + "859", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3862", + "HQPGGGK", + "HQPGGGK", + "sp|TAU_HUMAN||583|590", + "1", + "3", + "False", + "683.5538", + "679.34015", + "1", + "7", + "0", + "False", + "7403.804", + "3.01005", + "1770.1116", + "0.38450307", + "9.828823", + "9.828823", + "0.0", + "2.463481", + "2.463481", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.8671043", + "3", + "-0.39908993", + "0.241431", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "7403.804", + "HQPGGGK/1" + ], + [ + "42", + "40", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1799", + "GGTGNHR", + "GGTGNHR", + "rev_sp|PPIA_HUMAN||90|97", + "1", + "1", + "True", + "703.56287", + "697.32556", + "1", + "7", + "0", + "False", + "5472.3154", + "3.01005", + "4617.3613", + "0.33645222", + "9.526578", + "9.526578", + "0.0", + "1.1486698", + "1.1486698", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.4510626", + "1", + "-0.39908993", + "0.23688504", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5472.3154", + "GGTGNHR/1" + ], + [ + "43", + "1493", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6268", + "TM[Oxidation]HDETAK", + "TMHDETAK", + "sp|P46883|AMO_ECOLI|528|536", + "1", + "3", + "False", + "951.67566", + "947.4018", + "1", + "8", + "0", + "False", + "5990.8613", + "1.00335", + "3446.1401", + "5.06422", + "9.617096", + "9.617096", + "0.0", + "3.9967763", + "3.9967763", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.3905919", + "3", + "-0.39908993", + "0.23188733", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5990.8613", + "TM[Oxidation]HDETAK/1" + ], + [ + "44", + "2152", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9483", + "KHLQDEAK", + "KHLQDEAK", + "sp|P28249|ASMA_ECOLI|583|591", + "1", + "2", + "False", + "967.6829", + "967.50867", + "1", + "8", + "0", + "False", + "5801.824", + "3.01005", + "2935.3296", + "6.389246", + "9.585038", + "0.0", + "0.0", + "6.0472193", + "6.0472193", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.8763411", + "5", + "-0.39908993", + "0.23127502", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5801.824", + "KHLQDEAK/1" + ], + [ + "45", + "2527", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=17812", + "AENSNTSR", + "AENSNTSR", + "sp|P0A8M0|SYN_ECOLI|234|242", + "1", + "4", + "False", + "883.6447", + "877.3889", + "1", + "8", + "0", + "False", + "5308.1235", + "3.01005", + "3692.4968", + "4.8575788", + "9.49612", + "0.0", + "0.043696582", + "11.357638", + "11.357638", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9520878", + "15", + "-0.39908993", + "0.23105012", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5308.1235", + "AENSNTSR/1" + ], + [ + "46", + "1651", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15553", + "GGCGSSCGGSKGGCGSCGGSK", + "GGCGSSCGGSKGGCGSCGGSK", + "sp|KRUC_SHEEP||52|73", + "1", + "5", + "False", + "1702.5032", + "1691.612", + "3", + "21", + "0", + "False", + "5190.175", + "3.01005", + "4648.0796", + "3.3743997", + "9.473654", + "9.473654", + "0.0", + "9.918019", + "9.918019", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "0.612054", + "5", + "-0.39908993", + "0.22974098", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5190.175", + "GGCGSSCGGSKGGCGSCGGSK/3" + ], + [ + "47", + "1532", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=13749", + "TNGQTDGK", + "TNGQTDGK", + "rev_sp|P77286|YDEU_ECOLI|415|423", + "1", + "7", + "True", + "823.6175", + "819.37225", + "1", + "8", + "0", + "False", + "4101.5547", + "1.00335", + "3948.741", + "2.287845", + "9.238304", + "9.238304", + "0.18357746", + "8.766931", + "8.766931", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.3151433", + "7", + "-0.39908993", + "0.22874297", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "4101.5547", + "TNGQTDGK/1" + ], + [ + "48", + "448", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=14805", + "CQPEKANAQQHR", + "CQPEKANAQQHR", + "sp|P06134|ADA_ECOLI|71|83", + "1", + "2", + "False", + "1407.1257", + "1408.663", + "2", + "12", + "0", + "False", + "8062.929", + "3.01005", + "3233.3018", + "3.6446626", + "9.914095", + "0.0", + "0.0", + "9.440571", + "9.440571", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "3.0952537", + "5", + "-0.39908993", + "0.22824515", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "8062.929", + "CQPEKANAQQHR/2" + ], + [ + "49", + "1606", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6492", + "DAHEGQTR", + "DAHEGQTR", + "sp|P0AG24|SPOT_ECOLI|31|39", + "1", + "1", + "False", + "907.65564", + "912.405", + "1", + "8", + "0", + "False", + "4917.8984", + "-1.00335", + "4114.122", + "8.877856", + "9.419779", + "0.0", + "0.0", + "4.1396317", + "4.1396317", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.454881", + "4", + "-0.39908993", + "0.2278661", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "4917.8984", + "DAHEGQTR/1" + ] + ], + "shape": { + "columns": 44, + "rows": 6895741 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
psm_idfilenamescannrpeptidestripped_peptideproteinsnum_proteinsrankis_decoyexpmass...scored_candidatespoissonsage_discriminant_scoreposterior_errorspectrum_qpeptide_qprotein_qreporter_ion_intensityfragment_intensityprecursor
01573part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=9771AEGGSDERAEGGSDERsp|P10903|NARK_ECOLI|386|39415False823.6175...10-0.3990900.635878-9.1445470.0588240.3274260.327594NaN5778.0884AEGGSDER/1
11572part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=9771AGEKTYRAGEKTYRsp|P30126|LEUD_ECOLI|154|16114False823.6175...10-0.3990900.582951-6.1692830.0588240.3274260.327594NaN5778.0884AGEKTYR/1
2135part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=11454TGGGAKGNNASPAGSGNTKTGGGAKGNNASPAGSGNTKsp|P19934|TOLA_ECOLI|309|32813False1647.2350...10-0.3990900.569689-5.4897160.0588240.3274260.327594NaN14769.8490TGGGAKGNNASPAGSGNTK/2
32241part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=19582AANTGPHAARAANTGPHAARsp|P0ADH5|FIMB_ECOLI|23|3314False967.6829...4-0.3990900.427336-0.6715810.0588240.3274260.327594NaN6838.0205AANTGPHAAR/1
42511part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=8718KPGSAAASGPKKPGSAAASGPKsp|P0AA80|GARP_ECOLI|228|23915False967.6829...5-0.3990900.400636-0.5514430.0588240.3342640.334450NaN5298.7236KPGSAAASGPK/1
..................................................................
689573628313250part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=230359GLPHNVATKGGVSSDVQSLLTTPVQIFRGLPHNVATKGGVSSDVQSLLTTPVQIFRrev_sp|P07639|AROB_ECOLI|212|240115True2915.0542...15-0.399090-0.788482-0.2391770.9989561.0000001.000000NaN6062.3057GLPHNVATKGGVSSDVQSLLTTPVQIFR/3
689573728323411part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=235604VSASNGYYPENLAFPSTKIFTSIFRVSASNGYYPENLAFPSTKIFTSIFRrev_sp|P04152|UMUC_ECOLI|112|137137True2814.2515...73-0.399090-0.788485-0.2391670.9989561.0000001.000000NaN5381.6064VSASNGYYPENLAFPSTKIFTSIFR/4
689573828314945part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=229854QRSLYIPYAGPVLLEFPLLNKQRSLYIPYAGPVLLEFPLLNKsp|P26616|MAO1_ECOLI|7|2816False2446.0842...24-0.407381-0.788575-0.2388360.9995361.0000001.000000NaN6749.7075QRSLYIPYAGPVLLEFPLLNK/4
689573928322986part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=235515IDVLQLAQVLRQTITKIDVLQLAQVLRQTITKrev_sp|P52140|YFJY_ECOLI|22|3814True1834.5632...10-0.399090-0.788578-0.2388360.9996521.0000001.000000NaN8583.5570IDVLQLAQVLRQTITK/3
689574028315296part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=227224PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTKPMQVISYLSDVGSLAASQVPVGLVPVLTKrev_sp|P0AG18|PURE_ECOLI|58|87153True2975.0815...188-0.399090-0.788579-0.2388360.9997681.0000001.000000NaN5571.7363PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTK/3
\n", + "

6895741 rows × 44 columns

\n", + "
" + ], + "text/plain": [ + " psm_id filename \\\n", + "0 1573 part_0.0_783.2013244628906.mzml \n", + "1 1572 part_0.0_783.2013244628906.mzml \n", + "2 135 part_0.0_783.2013244628906.mzml \n", + "3 2241 part_0.0_783.2013244628906.mzml \n", + "4 2511 part_0.0_783.2013244628906.mzml \n", + "... ... ... \n", + "6895736 28313250 part_8615.214569091797_9398.415893554688.mzml \n", + "6895737 28323411 part_8615.214569091797_9398.415893554688.mzml \n", + "6895738 28314945 part_8615.214569091797_9398.415893554688.mzml \n", + "6895739 28322986 part_8615.214569091797_9398.415893554688.mzml \n", + "6895740 28315296 part_8615.214569091797_9398.415893554688.mzml \n", + "\n", + " scannr \\\n", + "0 controllerType=0 controllerNumber=1 scan=9771 \n", + "1 controllerType=0 controllerNumber=1 scan=9771 \n", + "2 controllerType=0 controllerNumber=1 scan=11454 \n", + "3 controllerType=0 controllerNumber=1 scan=19582 \n", + "4 controllerType=0 controllerNumber=1 scan=8718 \n", + "... ... \n", + "6895736 controllerType=0 controllerNumber=1 scan=230359 \n", + "6895737 controllerType=0 controllerNumber=1 scan=235604 \n", + "6895738 controllerType=0 controllerNumber=1 scan=229854 \n", + "6895739 controllerType=0 controllerNumber=1 scan=235515 \n", + "6895740 controllerType=0 controllerNumber=1 scan=227224 \n", + "\n", + " peptide \\\n", + "0 AEGGSDER \n", + "1 AGEKTYR \n", + "2 TGGGAKGNNASPAGSGNTK \n", + "3 AANTGPHAAR \n", + "4 KPGSAAASGPK \n", + "... ... \n", + "6895736 GLPHNVATKGGVSSDVQSLLTTPVQIFR \n", + "6895737 VSASNGYYPENLAFPSTKIFTSIFR \n", + "6895738 QRSLYIPYAGPVLLEFPLLNK \n", + "6895739 IDVLQLAQVLRQTITK \n", + "6895740 PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTK \n", + "\n", + " stripped_peptide proteins \\\n", + "0 AEGGSDER sp|P10903|NARK_ECOLI|386|394 \n", + "1 AGEKTYR sp|P30126|LEUD_ECOLI|154|161 \n", + "2 TGGGAKGNNASPAGSGNTK sp|P19934|TOLA_ECOLI|309|328 \n", + "3 AANTGPHAAR sp|P0ADH5|FIMB_ECOLI|23|33 \n", + "4 KPGSAAASGPK sp|P0AA80|GARP_ECOLI|228|239 \n", + "... ... ... \n", + "6895736 GLPHNVATKGGVSSDVQSLLTTPVQIFR rev_sp|P07639|AROB_ECOLI|212|240 \n", + "6895737 VSASNGYYPENLAFPSTKIFTSIFR rev_sp|P04152|UMUC_ECOLI|112|137 \n", + "6895738 QRSLYIPYAGPVLLEFPLLNK sp|P26616|MAO1_ECOLI|7|28 \n", + "6895739 IDVLQLAQVLRQTITK rev_sp|P52140|YFJY_ECOLI|22|38 \n", + "6895740 PMQVISYLSDVGSLAASQVPVGLVPVLTK rev_sp|P0AG18|PURE_ECOLI|58|87 \n", + "\n", + " num_proteins rank is_decoy expmass ... scored_candidates \\\n", + "0 1 5 False 823.6175 ... 10 \n", + "1 1 4 False 823.6175 ... 10 \n", + "2 1 3 False 1647.2350 ... 10 \n", + "3 1 4 False 967.6829 ... 4 \n", + "4 1 5 False 967.6829 ... 5 \n", + "... ... ... ... ... ... ... \n", + "6895736 1 15 True 2915.0542 ... 15 \n", + "6895737 1 37 True 2814.2515 ... 73 \n", + "6895738 1 6 False 2446.0842 ... 24 \n", + "6895739 1 4 True 1834.5632 ... 10 \n", + "6895740 1 53 True 2975.0815 ... 188 \n", + "\n", + " poisson sage_discriminant_score posterior_error spectrum_q \\\n", + "0 -0.399090 0.635878 -9.144547 0.058824 \n", + "1 -0.399090 0.582951 -6.169283 0.058824 \n", + "2 -0.399090 0.569689 -5.489716 0.058824 \n", + "3 -0.399090 0.427336 -0.671581 0.058824 \n", + "4 -0.399090 0.400636 -0.551443 0.058824 \n", + "... ... ... ... ... \n", + "6895736 -0.399090 -0.788482 -0.239177 0.998956 \n", + "6895737 -0.399090 -0.788485 -0.239167 0.998956 \n", + "6895738 -0.407381 -0.788575 -0.238836 0.999536 \n", + "6895739 -0.399090 -0.788578 -0.238836 0.999652 \n", + "6895740 -0.399090 -0.788579 -0.238836 0.999768 \n", + "\n", + " peptide_q protein_q reporter_ion_intensity fragment_intensity \\\n", + "0 0.327426 0.327594 NaN 5778.0884 \n", + "1 0.327426 0.327594 NaN 5778.0884 \n", + "2 0.327426 0.327594 NaN 14769.8490 \n", + "3 0.327426 0.327594 NaN 6838.0205 \n", + "4 0.334264 0.334450 NaN 5298.7236 \n", + "... ... ... ... ... \n", + "6895736 1.000000 1.000000 NaN 6062.3057 \n", + "6895737 1.000000 1.000000 NaN 5381.6064 \n", + "6895738 1.000000 1.000000 NaN 6749.7075 \n", + "6895739 1.000000 1.000000 NaN 8583.5570 \n", + "6895740 1.000000 1.000000 NaN 5571.7363 \n", + "\n", + " precursor \n", + "0 AEGGSDER/1 \n", + "1 AGEKTYR/1 \n", + "2 TGGGAKGNNASPAGSGNTK/2 \n", + "3 AANTGPHAAR/1 \n", + "4 KPGSAAASGPK/1 \n", + "... ... \n", + "6895736 GLPHNVATKGGVSSDVQSLLTTPVQIFR/3 \n", + "6895737 VSASNGYYPENLAFPSTKIFTSIFR/4 \n", + "6895738 QRSLYIPYAGPVLLEFPLLNK/4 \n", + "6895739 IDVLQLAQVLRQTITK/3 \n", + "6895740 PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTK/3 \n", + "\n", + "[6895741 rows x 44 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_psms" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e8211d78", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_2843168/1917794545.py:3: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " precursor_fragments[\"ppm_error\"] = (\n" + ] + } + ], + "source": [ + "precursor = df_psms[df_psms[\"precursor\"] == \"GAEQIYIPVLIK/2\"]\n", + "precursor_fragments = df_fragment[df_fragment[\"psm_id\"].isin(precursor[\"psm_id\"])]\n", + "precursor_fragments[\"ppm_error\"] = (\n", + " abs(\n", + " precursor_fragments[\"fragment_mz_calculated\"]\n", + " - precursor_fragments[\"fragment_mz_experimental\"]\n", + " )\n", + " / precursor_fragments[\"fragment_mz_calculated\"]\n", + " * 1e6\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "15325e2d", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "psm_id", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_type", + "rawType": "object", + "type": "string" + }, + { + "name": "fragment_ordinals", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_mz_experimental", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_mz_calculated", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "scannr", + "rawType": "object", + "type": "string" + }, + { + "name": "fragment_names", + "rawType": "object", + "type": "string" + }, + { + "name": "ppm_error", + "rawType": "float64", + "type": "float" + } + ], + "ref": "150936f4-abfb-4e4f-8da4-caf997f6f457", + "rows": [ + [ + "13260945", + "22863186", + "b", + "3", + "1", + "258.10864", + "258.1084", + "1632843.6", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b3", + "0.9298418802429229" + ], + [ + "13260946", + "22863186", + "b", + "4", + "1", + "386.16733", + "386.167", + "827085.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b4", + "0.8545525640965732" + ], + [ + "13260947", + "22863186", + "b", + "5", + "1", + "499.25272", + "499.25104", + "407361.28", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b5", + "3.3650405616013623" + ], + [ + "13260948", + "22863186", + "b", + "6", + "1", + "662.3137", + "662.3144", + "179490.83", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b6", + "1.0568998649855301" + ], + [ + "13260949", + "22863186", + "b", + "7", + "1", + "775.39905", + "775.39844", + "99320.6", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b7", + "0.7866923229015355" + ], + [ + "13260950", + "22863186", + "b", + "8", + "1", + "872.4587", + "872.4512", + "11550.695", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b8", + "8.596469349861657" + ], + [ + "13260951", + "22863186", + "b", + "9", + "1", + "971.51276", + "971.5196", + "32336.387", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b9", + "7.040516732766956" + ], + [ + "13260952", + "22863186", + "b", + "10", + "1", + "1084.5999", + "1084.6038", + "18521.217", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b10", + "3.5957830870202447" + ], + [ + "13260953", + "22863186", + "y", + "10", + "1", + "1215.7394", + "1215.7347", + "59483.527", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y10", + "3.8659750354720255" + ], + [ + "13260954", + "22863186", + "y", + "9", + "1", + "1086.6914", + "1086.6921", + "484465.7", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y9", + "0.6441567027602937" + ], + [ + "13260955", + "22863186", + "y", + "8", + "1", + "958.6346", + "958.6335", + "1933748.9", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y8", + "1.1474666803854143" + ], + [ + "13260956", + "22863186", + "y", + "7", + "1", + "845.55023", + "845.54944", + "4318634.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y7", + "0.934303735156876" + ], + [ + "13260957", + "22863186", + "y", + "6", + "1", + "682.4872", + "682.48615", + "1077813.1", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y6", + "1.53849275927063" + ], + [ + "13260958", + "22863186", + "y", + "5", + "1", + "569.4023", + "569.4021", + "3343250.2", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y5", + "0.35124563107476403" + ], + [ + "13260959", + "22863186", + "y", + "4", + "1", + "472.3518", + "472.34933", + "55896.98", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y4", + "5.229180699836339" + ], + [ + "13260960", + "22863186", + "y", + "3", + "1", + "373.28143", + "373.2809", + "478679.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y3", + "1.4198422689886376" + ], + [ + "13260961", + "22863186", + "y", + "2", + "1", + "260.19727", + "260.19684", + "248144.78", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y2", + "1.6525950122775486" + ], + [ + "13261591", + "22470316", + "b", + "3", + "1", + "258.10834", + "258.1084", + "3633302.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b3", + "0.23246047017084612" + ], + [ + "13261592", + "22470316", + "b", + "4", + "1", + "386.16675", + "386.167", + "1823275.4", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b4", + "0.6473883060802407" + ], + [ + "13261593", + "22470316", + "b", + "5", + "1", + "499.25247", + "499.25104", + "908240.25", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b5", + "2.8642904780480296" + ], + [ + "13261594", + "22470316", + "b", + "6", + "1", + "662.31494", + "662.3144", + "399790.44", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b6", + "0.8153227530624023" + ], + [ + "13261595", + "22470316", + "b", + "7", + "1", + "775.4011", + "775.39844", + "197231.95", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b7", + "3.430494392007893" + ], + [ + "13261596", + "22470316", + "b", + "8", + "1", + "872.4603", + "872.4512", + "31270.223", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b8", + "10.430382811083817" + ], + [ + "13261597", + "22470316", + "b", + "9", + "1", + "971.5152", + "971.5196", + "75980.31", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b9", + "4.5289873718643365" + ], + [ + "13261598", + "22470316", + "b", + "10", + "1", + "1084.608", + "1084.6038", + "81897.7", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b10", + "3.872381785731535" + ], + [ + "13261599", + "22470316", + "y", + "10", + "1", + "1215.7203", + "1215.7347", + "109892.555", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y10", + "11.844689470509712" + ], + [ + "13261600", + "22470316", + "y", + "9", + "1", + "1086.6926", + "1086.6921", + "941595.4", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y9", + "0.4601119306028483" + ], + [ + "13261601", + "22470316", + "y", + "8", + "1", + "958.6332", + "958.6335", + "4175130.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y8", + "0.31294545834083687" + ], + [ + "13261602", + "22470316", + "y", + "7", + "1", + "845.54913", + "845.54944", + "9910031.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y7", + "0.366625516318872" + ], + [ + "13261603", + "22470316", + "y", + "6", + "1", + "682.48645", + "682.48615", + "2472344.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y6", + "0.43956935981540535" + ], + [ + "13261604", + "22470316", + "y", + "5", + "1", + "569.40155", + "569.4021", + "8065752.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y5", + "0.965925485655261" + ], + [ + "13261605", + "22470316", + "y", + "4", + "1", + "472.35074", + "472.34933", + "112480.49", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y4", + "2.985078860944683" + ], + [ + "13261606", + "22470316", + "y", + "3", + "1", + "373.2811", + "373.2809", + "1083828.9", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y3", + "0.5357895354587907" + ], + [ + "13261607", + "22470316", + "y", + "2", + "1", + "260.19656", + "260.19684", + "601342.7", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y2", + "1.0761083802248805" + ], + [ + "13261817", + "21600545", + "b", + "3", + "1", + "258.10852", + "258.1084", + "10741666.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b3", + "0.46492094012146146" + ], + [ + "13261818", + "21600545", + "b", + "4", + "1", + "386.16696", + "386.167", + "5228408.5", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b4", + "0.10358212886096722" + ], + [ + "13261819", + "21600545", + "b", + "5", + "1", + "499.25195", + "499.25104", + "2787205.5", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b5", + "1.8227303042434344" + ], + [ + "13261820", + "21600545", + "b", + "6", + "1", + "662.314", + "662.3144", + "1138147.9", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b6", + "0.6039427800652962" + ], + [ + "13261821", + "21600545", + "b", + "7", + "1", + "775.40265", + "775.39844", + "519547.62", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b7", + "5.4294666880470475" + ], + [ + "13261822", + "21600545", + "b", + "8", + "1", + "872.45306", + "872.4512", + "87982.234", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b8", + "2.1319243988417904" + ], + [ + "13261823", + "21600545", + "b", + "9", + "1", + "971.5158", + "971.5196", + "276242.47", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b9", + "3.9113981848185224" + ], + [ + "13261824", + "21600545", + "b", + "10", + "1", + "1084.6089", + "1084.6038", + "132039.36", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b10", + "4.702177882703954" + ], + [ + "13261825", + "21600545", + "y", + "10", + "1", + "1215.7379", + "1215.7347", + "373164.56", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y10", + "2.632153215751947" + ], + [ + "13261826", + "21600545", + "y", + "9", + "1", + "1086.6924", + "1086.6921", + "3181148.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y9", + "0.2760671582361681" + ], + [ + "13261827", + "21600545", + "y", + "8", + "1", + "958.63367", + "958.6335", + "13062880.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y8", + "0.17733575973042734" + ], + [ + "13261828", + "21600545", + "y", + "7", + "1", + "845.5496", + "845.54944", + "28958144.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y7", + "0.18922607299081906" + ], + [ + "13261829", + "21600545", + "y", + "6", + "1", + "682.4867", + "682.48615", + "7245087.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y6", + "0.8058771596893394" + ], + [ + "13261830", + "21600545", + "y", + "5", + "1", + "569.40186", + "569.4021", + "23680388.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y5", + "0.4214947573296488" + ], + [ + "13261831", + "21600545", + "y", + "4", + "1", + "472.35184", + "472.34933", + "403753.7", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y4", + "5.3138637879987645" + ], + [ + "13261832", + "21600545", + "y", + "3", + "1", + "373.281", + "373.2809", + "2833890.8", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y3", + "0.26789476780553567" + ] + ], + "shape": { + "columns": 13, + "rows": 1982 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
psm_idfragment_typefragment_ordinalsfragment_chargefragment_mz_experimentalfragment_mz_calculatedfragment_intensitypeptidechargertscannrfragment_namesppm_error
1326094522863186b31258.10864258.108401632843.600GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b30.929842
1326094622863186b41386.16733386.16700827085.500GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b40.854553
1326094722863186b51499.25272499.25104407361.280GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b53.365041
1326094822863186b61662.31370662.31440179490.830GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b61.056900
1326094922863186b71775.39905775.3984499320.600GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b70.786692
..........................................
1685292824029435y51569.40380569.4021017954.900GAEQIYIPVLIK2120.94842controllerType=0 controllerNumber=1 scan=190385y52.985588
1686756425157874b31258.10870258.108406979.220GAEQIYIPVLIK2120.26560controllerType=0 controllerNumber=1 scan=189312b31.162302
1686756525157874y51569.40173569.402107348.862GAEQIYIPVLIK2120.26560controllerType=0 controllerNumber=1 scan=189312y50.649804
1702418924205615b31258.10840258.108408374.344GAEQIYIPVLIK2120.85130controllerType=0 controllerNumber=1 scan=190232b30.000000
1702419024205615y51569.40110569.4021016422.133GAEQIYIPVLIK2120.85130controllerType=0 controllerNumber=1 scan=190232y51.756228
\n", + "

1982 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " psm_id fragment_type fragment_ordinals fragment_charge \\\n", + "13260945 22863186 b 3 1 \n", + "13260946 22863186 b 4 1 \n", + "13260947 22863186 b 5 1 \n", + "13260948 22863186 b 6 1 \n", + "13260949 22863186 b 7 1 \n", + "... ... ... ... ... \n", + "16852928 24029435 y 5 1 \n", + "16867564 25157874 b 3 1 \n", + "16867565 25157874 y 5 1 \n", + "17024189 24205615 b 3 1 \n", + "17024190 24205615 y 5 1 \n", + "\n", + " fragment_mz_experimental fragment_mz_calculated \\\n", + "13260945 258.10864 258.10840 \n", + "13260946 386.16733 386.16700 \n", + "13260947 499.25272 499.25104 \n", + "13260948 662.31370 662.31440 \n", + "13260949 775.39905 775.39844 \n", + "... ... ... \n", + "16852928 569.40380 569.40210 \n", + "16867564 258.10870 258.10840 \n", + "16867565 569.40173 569.40210 \n", + "17024189 258.10840 258.10840 \n", + "17024190 569.40110 569.40210 \n", + "\n", + " fragment_intensity peptide charge rt \\\n", + "13260945 1632843.600 GAEQIYIPVLIK 2 115.02221 \n", + "13260946 827085.500 GAEQIYIPVLIK 2 115.02221 \n", + "13260947 407361.280 GAEQIYIPVLIK 2 115.02221 \n", + "13260948 179490.830 GAEQIYIPVLIK 2 115.02221 \n", + "13260949 99320.600 GAEQIYIPVLIK 2 115.02221 \n", + "... ... ... ... ... \n", + "16852928 17954.900 GAEQIYIPVLIK 2 120.94842 \n", + "16867564 6979.220 GAEQIYIPVLIK 2 120.26560 \n", + "16867565 7348.862 GAEQIYIPVLIK 2 120.26560 \n", + "17024189 8374.344 GAEQIYIPVLIK 2 120.85130 \n", + "17024190 16422.133 GAEQIYIPVLIK 2 120.85130 \n", + "\n", + " scannr fragment_names \\\n", + "13260945 controllerType=0 controllerNumber=1 scan=181050 b3 \n", + "13260946 controllerType=0 controllerNumber=1 scan=181050 b4 \n", + "13260947 controllerType=0 controllerNumber=1 scan=181050 b5 \n", + "13260948 controllerType=0 controllerNumber=1 scan=181050 b6 \n", + "13260949 controllerType=0 controllerNumber=1 scan=181050 b7 \n", + "... ... ... \n", + "16852928 controllerType=0 controllerNumber=1 scan=190385 y5 \n", + "16867564 controllerType=0 controllerNumber=1 scan=189312 b3 \n", + "16867565 controllerType=0 controllerNumber=1 scan=189312 y5 \n", + "17024189 controllerType=0 controllerNumber=1 scan=190232 b3 \n", + "17024190 controllerType=0 controllerNumber=1 scan=190232 y5 \n", + "\n", + " ppm_error \n", + "13260945 0.929842 \n", + "13260946 0.854553 \n", + "13260947 3.365041 \n", + "13260948 1.056900 \n", + "13260949 0.786692 \n", + "... ... \n", + "16852928 2.985588 \n", + "16867564 1.162302 \n", + "16867565 0.649804 \n", + "17024189 0.000000 \n", + "17024190 1.756228 \n", + "\n", + "[1982 rows x 13 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precursor_fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7eaf928d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:diann_feature_generator:Using 1 workers for parallel feature calculation\n", + "INFO:diann_feature_generator:Initialized DIANNFeatureGenerator with built-in optimizations\n" + ] + } + ], + "source": [ + "feat_gen = DIANNFeatureGenerator(config=config)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f2c57726", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "psm_id", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_type", + "rawType": "object", + "type": "string" + }, + { + "name": "fragment_ordinals", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "fragment_mz_experimental", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_mz_calculated", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "scannr", + "rawType": "object", + "type": "string" + }, + { + "name": "fragment_names", + "rawType": "object", + "type": "string" + }, + { + "name": "ppm_error", + "rawType": "float64", + "type": "float" + } + ], + "ref": "19dc3ce1-7394-4a95-b7fb-876727adef00", + "rows": [ + [ + "13260945", + "22863186", + "b", + "3", + "1", + "258.10864", + "258.1084", + "1632843.6", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b3", + "0.9298418802429229" + ], + [ + "13260946", + "22863186", + "b", + "4", + "1", + "386.16733", + "386.167", + "827085.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b4", + "0.8545525640965732" + ], + [ + "13260947", + "22863186", + "b", + "5", + "1", + "499.25272", + "499.25104", + "407361.28", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b5", + "3.3650405616013623" + ], + [ + "13260948", + "22863186", + "b", + "6", + "1", + "662.3137", + "662.3144", + "179490.83", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b6", + "1.0568998649855301" + ], + [ + "13260949", + "22863186", + "b", + "7", + "1", + "775.39905", + "775.39844", + "99320.6", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b7", + "0.7866923229015355" + ], + [ + "13260950", + "22863186", + "b", + "8", + "1", + "872.4587", + "872.4512", + "11550.695", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b8", + "8.596469349861657" + ], + [ + "13260951", + "22863186", + "b", + "9", + "1", + "971.51276", + "971.5196", + "32336.387", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b9", + "7.040516732766956" + ], + [ + "13260952", + "22863186", + "b", + "10", + "1", + "1084.5999", + "1084.6038", + "18521.217", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "b10", + "3.5957830870202447" + ], + [ + "13260953", + "22863186", + "y", + "10", + "1", + "1215.7394", + "1215.7347", + "59483.527", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y10", + "3.8659750354720255" + ], + [ + "13260954", + "22863186", + "y", + "9", + "1", + "1086.6914", + "1086.6921", + "484465.7", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y9", + "0.6441567027602937" + ], + [ + "13260955", + "22863186", + "y", + "8", + "1", + "958.6346", + "958.6335", + "1933748.9", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y8", + "1.1474666803854143" + ], + [ + "13260956", + "22863186", + "y", + "7", + "1", + "845.55023", + "845.54944", + "4318634.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y7", + "0.934303735156876" + ], + [ + "13260957", + "22863186", + "y", + "6", + "1", + "682.4872", + "682.48615", + "1077813.1", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y6", + "1.53849275927063" + ], + [ + "13260958", + "22863186", + "y", + "5", + "1", + "569.4023", + "569.4021", + "3343250.2", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y5", + "0.35124563107476403" + ], + [ + "13260959", + "22863186", + "y", + "4", + "1", + "472.3518", + "472.34933", + "55896.98", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y4", + "5.229180699836339" + ], + [ + "13260960", + "22863186", + "y", + "3", + "1", + "373.28143", + "373.2809", + "478679.5", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y3", + "1.4198422689886376" + ], + [ + "13260961", + "22863186", + "y", + "2", + "1", + "260.19727", + "260.19684", + "248144.78", + "GAEQIYIPVLIK", + "2", + "115.02221", + "controllerType=0 controllerNumber=1 scan=181050", + "y2", + "1.6525950122775486" + ], + [ + "13261591", + "22470316", + "b", + "3", + "1", + "258.10834", + "258.1084", + "3633302.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b3", + "0.23246047017084612" + ], + [ + "13261592", + "22470316", + "b", + "4", + "1", + "386.16675", + "386.167", + "1823275.4", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b4", + "0.6473883060802407" + ], + [ + "13261593", + "22470316", + "b", + "5", + "1", + "499.25247", + "499.25104", + "908240.25", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b5", + "2.8642904780480296" + ], + [ + "13261594", + "22470316", + "b", + "6", + "1", + "662.31494", + "662.3144", + "399790.44", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b6", + "0.8153227530624023" + ], + [ + "13261595", + "22470316", + "b", + "7", + "1", + "775.4011", + "775.39844", + "197231.95", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b7", + "3.430494392007893" + ], + [ + "13261596", + "22470316", + "b", + "8", + "1", + "872.4603", + "872.4512", + "31270.223", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b8", + "10.430382811083817" + ], + [ + "13261597", + "22470316", + "b", + "9", + "1", + "971.5152", + "971.5196", + "75980.31", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b9", + "4.5289873718643365" + ], + [ + "13261598", + "22470316", + "b", + "10", + "1", + "1084.608", + "1084.6038", + "81897.7", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "b10", + "3.872381785731535" + ], + [ + "13261599", + "22470316", + "y", + "10", + "1", + "1215.7203", + "1215.7347", + "109892.555", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y10", + "11.844689470509712" + ], + [ + "13261600", + "22470316", + "y", + "9", + "1", + "1086.6926", + "1086.6921", + "941595.4", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y9", + "0.4601119306028483" + ], + [ + "13261601", + "22470316", + "y", + "8", + "1", + "958.6332", + "958.6335", + "4175130.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y8", + "0.31294545834083687" + ], + [ + "13261602", + "22470316", + "y", + "7", + "1", + "845.54913", + "845.54944", + "9910031.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y7", + "0.366625516318872" + ], + [ + "13261603", + "22470316", + "y", + "6", + "1", + "682.48645", + "682.48615", + "2472344.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y6", + "0.43956935981540535" + ], + [ + "13261604", + "22470316", + "y", + "5", + "1", + "569.40155", + "569.4021", + "8065752.0", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y5", + "0.965925485655261" + ], + [ + "13261605", + "22470316", + "y", + "4", + "1", + "472.35074", + "472.34933", + "112480.49", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y4", + "2.985078860944683" + ], + [ + "13261606", + "22470316", + "y", + "3", + "1", + "373.2811", + "373.2809", + "1083828.9", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y3", + "0.5357895354587907" + ], + [ + "13261607", + "22470316", + "y", + "2", + "1", + "260.19656", + "260.19684", + "601342.7", + "GAEQIYIPVLIK", + "2", + "115.507416", + "controllerType=0 controllerNumber=1 scan=181815", + "y2", + "1.0761083802248805" + ], + [ + "13261817", + "21600545", + "b", + "3", + "1", + "258.10852", + "258.1084", + "10741666.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b3", + "0.46492094012146146" + ], + [ + "13261818", + "21600545", + "b", + "4", + "1", + "386.16696", + "386.167", + "5228408.5", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b4", + "0.10358212886096722" + ], + [ + "13261819", + "21600545", + "b", + "5", + "1", + "499.25195", + "499.25104", + "2787205.5", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b5", + "1.8227303042434344" + ], + [ + "13261820", + "21600545", + "b", + "6", + "1", + "662.314", + "662.3144", + "1138147.9", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b6", + "0.6039427800652962" + ], + [ + "13261821", + "21600545", + "b", + "7", + "1", + "775.40265", + "775.39844", + "519547.62", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b7", + "5.4294666880470475" + ], + [ + "13261822", + "21600545", + "b", + "8", + "1", + "872.45306", + "872.4512", + "87982.234", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b8", + "2.1319243988417904" + ], + [ + "13261823", + "21600545", + "b", + "9", + "1", + "971.5158", + "971.5196", + "276242.47", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b9", + "3.9113981848185224" + ], + [ + "13261824", + "21600545", + "b", + "10", + "1", + "1084.6089", + "1084.6038", + "132039.36", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "b10", + "4.702177882703954" + ], + [ + "13261825", + "21600545", + "y", + "10", + "1", + "1215.7379", + "1215.7347", + "373164.56", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y10", + "2.632153215751947" + ], + [ + "13261826", + "21600545", + "y", + "9", + "1", + "1086.6924", + "1086.6921", + "3181148.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y9", + "0.2760671582361681" + ], + [ + "13261827", + "21600545", + "y", + "8", + "1", + "958.63367", + "958.6335", + "13062880.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y8", + "0.17733575973042734" + ], + [ + "13261828", + "21600545", + "y", + "7", + "1", + "845.5496", + "845.54944", + "28958144.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y7", + "0.18922607299081906" + ], + [ + "13261829", + "21600545", + "y", + "6", + "1", + "682.4867", + "682.48615", + "7245087.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y6", + "0.8058771596893394" + ], + [ + "13261830", + "21600545", + "y", + "5", + "1", + "569.40186", + "569.4021", + "23680388.0", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y5", + "0.4214947573296488" + ], + [ + "13261831", + "21600545", + "y", + "4", + "1", + "472.35184", + "472.34933", + "403753.7", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y4", + "5.3138637879987645" + ], + [ + "13261832", + "21600545", + "y", + "3", + "1", + "373.281", + "373.2809", + "2833890.8", + "GAEQIYIPVLIK", + "2", + "115.31328", + "controllerType=0 controllerNumber=1 scan=181509", + "y3", + "0.26789476780553567" + ] + ], + "shape": { + "columns": 13, + "rows": 1982 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
psm_idfragment_typefragment_ordinalsfragment_chargefragment_mz_experimentalfragment_mz_calculatedfragment_intensitypeptidechargertscannrfragment_namesppm_error
1326094522863186b31258.10864258.108401632843.600GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b30.929842
1326094622863186b41386.16733386.16700827085.500GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b40.854553
1326094722863186b51499.25272499.25104407361.280GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b53.365041
1326094822863186b61662.31370662.31440179490.830GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b61.056900
1326094922863186b71775.39905775.3984499320.600GAEQIYIPVLIK2115.02221controllerType=0 controllerNumber=1 scan=181050b70.786692
..........................................
1685292824029435y51569.40380569.4021017954.900GAEQIYIPVLIK2120.94842controllerType=0 controllerNumber=1 scan=190385y52.985588
1686756425157874b31258.10870258.108406979.220GAEQIYIPVLIK2120.26560controllerType=0 controllerNumber=1 scan=189312b31.162302
1686756525157874y51569.40173569.402107348.862GAEQIYIPVLIK2120.26560controllerType=0 controllerNumber=1 scan=189312y50.649804
1702418924205615b31258.10840258.108408374.344GAEQIYIPVLIK2120.85130controllerType=0 controllerNumber=1 scan=190232b30.000000
1702419024205615y51569.40110569.4021016422.133GAEQIYIPVLIK2120.85130controllerType=0 controllerNumber=1 scan=190232y51.756228
\n", + "

1982 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " psm_id fragment_type fragment_ordinals fragment_charge \\\n", + "13260945 22863186 b 3 1 \n", + "13260946 22863186 b 4 1 \n", + "13260947 22863186 b 5 1 \n", + "13260948 22863186 b 6 1 \n", + "13260949 22863186 b 7 1 \n", + "... ... ... ... ... \n", + "16852928 24029435 y 5 1 \n", + "16867564 25157874 b 3 1 \n", + "16867565 25157874 y 5 1 \n", + "17024189 24205615 b 3 1 \n", + "17024190 24205615 y 5 1 \n", + "\n", + " fragment_mz_experimental fragment_mz_calculated \\\n", + "13260945 258.10864 258.10840 \n", + "13260946 386.16733 386.16700 \n", + "13260947 499.25272 499.25104 \n", + "13260948 662.31370 662.31440 \n", + "13260949 775.39905 775.39844 \n", + "... ... ... \n", + "16852928 569.40380 569.40210 \n", + "16867564 258.10870 258.10840 \n", + "16867565 569.40173 569.40210 \n", + "17024189 258.10840 258.10840 \n", + "17024190 569.40110 569.40210 \n", + "\n", + " fragment_intensity peptide charge rt \\\n", + "13260945 1632843.600 GAEQIYIPVLIK 2 115.02221 \n", + "13260946 827085.500 GAEQIYIPVLIK 2 115.02221 \n", + "13260947 407361.280 GAEQIYIPVLIK 2 115.02221 \n", + "13260948 179490.830 GAEQIYIPVLIK 2 115.02221 \n", + "13260949 99320.600 GAEQIYIPVLIK 2 115.02221 \n", + "... ... ... ... ... \n", + "16852928 17954.900 GAEQIYIPVLIK 2 120.94842 \n", + "16867564 6979.220 GAEQIYIPVLIK 2 120.26560 \n", + "16867565 7348.862 GAEQIYIPVLIK 2 120.26560 \n", + "17024189 8374.344 GAEQIYIPVLIK 2 120.85130 \n", + "17024190 16422.133 GAEQIYIPVLIK 2 120.85130 \n", + "\n", + " scannr fragment_names \\\n", + "13260945 controllerType=0 controllerNumber=1 scan=181050 b3 \n", + "13260946 controllerType=0 controllerNumber=1 scan=181050 b4 \n", + "13260947 controllerType=0 controllerNumber=1 scan=181050 b5 \n", + "13260948 controllerType=0 controllerNumber=1 scan=181050 b6 \n", + "13260949 controllerType=0 controllerNumber=1 scan=181050 b7 \n", + "... ... ... \n", + "16852928 controllerType=0 controllerNumber=1 scan=190385 y5 \n", + "16867564 controllerType=0 controllerNumber=1 scan=189312 b3 \n", + "16867565 controllerType=0 controllerNumber=1 scan=189312 y5 \n", + "17024189 controllerType=0 controllerNumber=1 scan=190232 b3 \n", + "17024190 controllerType=0 controllerNumber=1 scan=190232 y5 \n", + "\n", + " ppm_error \n", + "13260945 0.929842 \n", + "13260946 0.854553 \n", + "13260947 3.365041 \n", + "13260948 1.056900 \n", + "13260949 0.786692 \n", + "... ... \n", + "16852928 2.985588 \n", + "16867564 1.162302 \n", + "16867565 0.649804 \n", + "17024189 0.000000 \n", + "17024190 1.756228 \n", + "\n", + "[1982 rows x 13 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "precursor_fragments" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8265250f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQkAAAGGCAYAAADYVwfrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyi1JREFUeJzs3XdcE/cfBvDnwggbRBEQUcCFG6p1b6m4xW3FgQrUPdC22tbd1lG3ddWBsz9HtdaKFSfuVbe1bnCAioMhG5L7/UGJxrAlXMDn/Xrxklwud0+OSL588h2CKIoiiIiIiIiIiIiI6KMlkzoAERERERERERERSYtFQiIiIiIiIiIioo8ci4REREREREREREQfORYJiYiIiIiIiIiIPnIsEhIREREREREREX3kWCQkIiIiIiIiIiL6yLFISERERERERERE9JFjkZCIiIiIiIiIiOgjxyIhERERERERERHRR45FQqIiKi4uDr6+vrCzs4MgCBg7dqzUkUiLQkJCIAgCQkJCCvS4giBg2rRpBXrMgqRUKlGjRg388MMPUkcp8m7evAl9fX3cuHFD6ihERMXeTz/9BBcXF+jp6cHNzU3qOMWWj48PzMzMpI5BEmvfvj38/PykjqF1Pj4+cHJyUtsmRVt+2rRpEARBdTs1NRWOjo5Yvnx5oeYg7WCRkIo8QRBy9VXQxZXMPH36FBMnTkTLli1hbm6e5XkTEhKwbNkytGnTBvb29jA3N4e7uztWrFgBhUKRq3P9+OOPWL9+PYYNG4ZNmzahf//+BfxsiqZff/0VixYtkjqGTtm3b59OFwKz87///Q+PHz/GyJEjVdvWr1+v9n/byMgIlStXxsiRI/H8+XMJ0+q2atWqoUOHDpgyZYrUUYiINOhSe+5DHThwAF999RUaN26MwMBA/Pjjj1JH0gmnT5/GtGnTEB0dLXUUnZaQkIBp06YVide6Ljh16hQOHDiAr7/+WuooHy0DAwMEBATghx9+QFJSktRx6APpSx2A6ENt2rRJ7fbGjRtx8OBBje1Vq1bVepbbt29jzpw5qFSpEmrWrIkzZ85kut+DBw8watQotG7dGgEBAbCwsEBwcDCGDx+Os2fPYsOGDTme68iRI2jQoAGmTp1a0E+jSPv1119x48YN9qx8x759+7Bs2bJMC4WJiYnQ19fdt4KffvoJffr0gaWlpcZ9M2bMgLOzM5KSknDy5EmsWLEC+/btw40bN2BiYiJBWt03dOhQtG/fHvfv30eFChWkjkNEpKJL7bkPdeTIEchkMqxduxaGhoZSx9EZp0+fxvTp0+Hj4wMrKyup4+ishIQETJ8+HQDQokULacMUAT/99BNat26NihUrSh1FErrSlh80aBAmTpyIX3/9FYMHD5Y6Dn0A6V9NRB+oX79+arfPnj2LgwcPamwvDHXq1MGrV69gbW2N3377DT179sx0Pzs7O1y/fh3Vq1dXbfviiy8wePBgBAYGYvLkyTm+0UVGRqJatWo5ZkpKSoKhoSFkMnYclkJCQkKmBau0tDQolUrJ/3gwMjKS9PzZuXz5Mq5evYr58+dnen+7du1Qt25dAICvry9KliyJBQsW4I8//sDnn39eKBnj4+NhampaKOfKr3dfax4eHihRogQ2bNiAGTNmSB2NiEhFl9pzHyoyMhLGxsY5vscrlUqkpKTo9HtxcaYrbTFdU5Rel5GRkQgKCsLKlSslOX9W7fzCpCs/JysrK7Rp0wbr169nkbCIY9WAPgrx8fEYP348HB0dIZfLUaVKFcybNw+iKKrtJwgCRo4ciS1btqBKlSowMjJCnTp1cPz48Vydx9zcHNbW1jnuV6pUKbUCYYauXbsCAP79998sH5sxN11oaCiCgoJUw2/CwsJU923duhXfffcdHBwcYGJigtjYWLx+/RoTJkxAzZo1YWZmBgsLC7Rr1w5Xr17VOMfDhw/RuXNnmJqaonTp0hg3bhyCg4M1hvm0aNECNWrUwLVr19C8eXOYmJigYsWK+O233wAAx44dQ/369WFsbIwqVarg0KFDGucKDw/H4MGDYWtrC7lcjurVq2PdunWZPuft27fjhx9+QNmyZWFkZITWrVvj3r17anmCgoLw8OFD1XV5f96OzGzevBn16tWDiYkJSpQogWbNmuHAgQNq+yxfvhzVq1eHXC5HmTJlMGLECI3hMhnX4+LFi2jWrBlMTEzwzTffICwsDIIgYN68eVi0aBEqVKgAuVyOmzdvAgBu3bqFHj16wNraGkZGRqhbty727NmTY+4TJ06gZ8+eKFeuHORyORwdHTFu3DgkJiaq9vHx8cGyZcsAqA/lypDZPCaXL19Gu3btYGFhATMzM7Ru3Rpnz55V2ydjyO+pU6cQEBAAGxsbmJqaomvXrnjx4oXavn///Tc8PT1RqlQpGBsbw9nZOVeNh927d8PQ0BDNmjXLcV8AaNWqFQAgNDRUtW3z5s2oU6cOjI2NYW1tjT59+uDx48dqj8vNdQTeznt0//59tG/fHubm5vD29gYA3L17F927d4ednR2MjIxQtmxZ9OnTBzExMarHp6WlYebMmaqfv5OTE7755hskJyerncfJyQkdO3bEyZMnUa9ePRgZGcHFxQUbN27M8Rrk9FozMDBAixYt8Mcff+TqmhIR6ZLCas9l/L4PDw+Hl5cXzMzMYGNjgwkTJuQ4LYwgCAgMDER8fLzqPXf9+vUauTLaFPv37wcAzJs3D40aNULJkiVhbGyMOnXqqNpT70pMTMTo0aNRqlQpmJubo3PnzggPD9d4P8+YM+zOnTvo168fLC0tYWNjg8mTJ0MURTx+/BhdunSBhYUF7OzsMv1ALjk5GVOnTkXFihVV749fffWVxvtWxvPavXs3atSooWrPZTy3jDxffvklAMDZ2Vmt/Zqdc+fOoX379ihRogRMTU1Rq1YtLF68WGO/nH5WOb0/HjlyBE2bNoWpqSmsrKzQpUsXjfb4h17TlJQUTJkyBXXq1IGlpSVMTU3RtGlTHD16VC2njY0NAGD69Omq6/TuzzY3WYH09nPdunVhZGSEChUqYNWqVRpzyQEF87rMOMaOHTtQrVo1GBsbo2HDhrh+/ToAYNWqVahYsSKMjIzQokULjZ97btpRmQkKCkJaWho8PDzUtuelnQoUXDt/2bJlcHFxgYmJCdq0aYPHjx9DFEXMnDkTZcuWhbGxMbp06YLXr1+rHfuPP/5Ahw4dUKZMGcjlclSoUAEzZ87M1TRU774+MrJk9fWuc+fOoW3btrC0tISJiQmaN2+OU6dOaRz/5MmT+PTTT9VeR1n57LPPcPLkSY3nR0ULexJSsSeKIjp37oyjR49iyJAhcHNzQ3BwML788kuEh4dj4cKFavsfO3YM27Ztw+jRoyGXy7F8+XK0bdsW58+fR40aNbSa9dmzZwDSi4hZqVq1KjZt2oRx48ahbNmyGD9+PADAxsZG9YY7c+ZMGBoaYsKECUhOToahoSFu3ryJ3bt3o2fPnnB2dsbz58+xatUqNG/eHDdv3kSZMmUApDfAW7VqhadPn2LMmDGws7PDr7/+qtaAeVdUVBQ6duyIPn36oGfPnlixYgX69OmDLVu2YOzYsRg6dCj69u2Ln376CT169MDjx49hbm4OAHj+/DkaNGigaljY2Njgr7/+wpAhQxAbG6sxZHj27NmQyWSYMGECYmJiMHfuXHh7e+PcuXMAgG+//RYxMTF48uSJ6uea02TW06dPx7Rp09CoUSPMmDEDhoaGOHfuHI4cOYI2bdoASG8UTp8+HR4eHhg2bBhu376NFStW4MKFCzh16hQMDAxUx3v16hXatWuHPn36oF+/frC1tVXdFxgYiKSkJPj7+0Mul8Pa2hr//PMPGjduDAcHB0ycOBGmpqbYvn07vLy8sHPnTlXhODM7duxAQkIChg0bhpIlS+L8+fNYunQpnjx5gh07dgBI76EaERGR6ZCtzPzzzz9o2rQpLCws8NVXX8HAwACrVq1CixYtVEXfd40aNQolSpTA1KlTERYWhkWLFmHkyJHYtm0bgPRPeNu0aQMbGxtMnDgRVlZWCAsLw65du3LMcvr0adSoUUPt+mbn/v37AICSJUsCAH744QdMnjwZvXr1gq+vL168eIGlS5eiWbNmuHz5smqoU26uY4a0tDR4enqiSZMmmDdvHkxMTJCSkgJPT08kJydj1KhRsLOzQ3h4OPbu3Yvo6GjVUGlfX19s2LABPXr0wPjx43Hu3DnMmjUL//77L37//Xe189y7dw89evTAkCFDMHDgQKxbtw4+Pj6oU6dOph8wvC+z11qGOnXq4I8//kBsbCwsLCxydW2JiKRW2O05hUIBT09P1K9fH/PmzcOhQ4cwf/58VKhQAcOGDcvycZs2bcIvv/yC8+fPY82aNQCARo0aqe4/cuQItm/fjpEjR6JUqVKqDzMXL16Mzp07w9vbGykpKdi6dSt69uyJvXv3okOHDqrH+/j4YPv27ejfvz8aNGiAY8eOqd3/vt69e6Nq1aqYPXs2goKC8P3338Pa2hqrVq1Cq1atMGfOHGzZsgUTJkzAp59+qvpgTqlUonPnzjh58iT8/f1RtWpVXL9+HQsXLsSdO3ewe/dutfOcPHkSu3btwvDhw2Fubo4lS5age/fuePToEUqWLIlu3brhzp07+N///oeFCxeq2roZBbHMHDx4EB07doS9vb2qTfrvv/9i7969GDNmTL5+Vpm9Px46dAjt2rWDi4sLpk2bhsTERCxduhSNGzfGpUuXND5wzu81jY2NxZo1a/D555/Dz88Pb968wdq1a+Hp6Ynz58/Dzc0NNjY2WLFiBYYNG4auXbuiW7duAIBatWoBQK6zXr58GW3btoW9vT2mT58OhUKBGTNmZHm9P/R1CaR/6Lpnzx6MGDECADBr1ix07NgRX331FZYvX47hw4cjKioKc+fOxeDBg3HkyBEAyHU7KjOnT59GyZIlUb58+Uzvz6mdChRcO3/Lli1ISUnBqFGj8Pr1a8ydOxe9evVCq1atEBISgq+//hr37t3D0qVLMWHCBLVOEevXr4eZmRkCAgJgZmaGI0eOYMqUKYiNjcVPP/2U5fN/n42NjUZ7PzU1FePGjVPrMXvkyBG0a9cOderUwdSpUyGTyRAYGIhWrVrhxIkTqFevHgDg+vXrqnb8tGnTkJaWhqlTp6o973fVqVMHoiji9OnT6NixY65zk44RiYqZESNGiO++tHfv3i0CEL///nu1/Xr06CEKgiDeu3dPtQ2ACED8+++/VdsePnwoGhkZiV27ds1Tjh07dogAxKNHj+Zq/+TkZLFatWqis7OzmJqamuP+5cuXFzt06KC27ejRoyIA0cXFRUxISFC7LykpSVQoFGrbQkNDRblcLs6YMUO1bf78+SIAcffu3aptiYmJoqurq8bzad68uQhA/PXXX1Xbbt26JQIQZTKZePbsWdX24OBgEYAYGBio2jZkyBDR3t5efPnypVquPn36iJaWlqrnkPG8qlatKiYnJ6v2W7x4sQhAvH79umpbhw4dxPLly2d12dTcvXtXlMlkYteuXTWujVKpFEVRFCMjI0VDQ0OxTZs2avv8/PPPIgBx3bp1Gtdj5cqVascKDQ0VAYgWFhZiZGSk2n2tW7cWa9asKSYlJamdu1GjRmKlSpVU2zKuwbvX//2fsSiK4qxZs0RBEMSHDx+qtr3/f+JdAMSpU6eqbnt5eYmGhobi/fv3VdsiIiJEc3NzsVmzZqptgYGBIgDRw8NDda1EURTHjRsn6unpidHR0aIoiuLvv/8uAhAvXLiQ6fmzU7ZsWbF79+4a2zPOfejQIfHFixfi48ePxa1bt4olS5YUjY2NxSdPnohhYWGinp6e+MMPP6g99vr166K+vr7a9txex4EDB4oAxIkTJ6rte/nyZRGAuGPHjiyfy5UrV0QAoq+vr9r2CRMmiADEI0eOqLaVL19eBCAeP35ctS0yMlKUy+Xi+PHjszyHKGb/Wsvw66+/igDEc+fOZXssIiIpSdmey/h9/277SBRF0d3dXaxTp06uHm9qaqqxPaN99M8//2jc9/57UUpKilijRg2xVatWqm0XL14UAYhjx45V29fHx0fj/Xzq1KkiANHf31+1LS0tTSxbtqwoCII4e/Zs1faoqCjR2NhYHDhwoGrbpk2bRJlMJp44cULtXCtXrhQBiKdOnVJ7XoaGhmo/g6tXr4oAxKVLl6q2/fTTTyIAMTQ0VOP5vy8tLU10dnYWy5cvL0ZFRand9267I7c/q+zeH93c3MTSpUuLr169Ussvk8nEAQMGqLZ96DVNS0tTa8dm7GdraysOHjxYte3FixcaP8+8Zu3UqZNoYmIihoeHq7bdvXtX1NfX12gTfujrMuMYcrlc7We7atUqEYBoZ2cnxsbGqrZPmjRJ7XWQm3ZUVpo0aZLp/8nctlMLsp1vY2OjOu67z7N27dpqf9t9/vnnoqGhoVrbP7O26BdffCGamJio7Tdw4ECNv3Oyeq1kGD58uKinp6dqayqVSrFSpUqip6en2rVJSEgQnZ2dxc8++0y1zcvLSzQyMlJrD9+8eVPU09PL9G+LiIgIEYA4Z86cLPOQ7uNwYyr29u3bBz09PYwePVpt+/jx4yGKIv766y+17Q0bNkSdOnVUt8uVK4cuXbogODg41ysP58fIkSNx8+ZN/Pzzzx88+ezAgQNhbGystk0ul6vmJVQoFHj16hXMzMxQpUoVXLp0SbXf/v374eDggM6dO6u2GRkZwc/PL9NzmZmZoU+fPqrbVapUgZWVFapWrarW6yzj+wcPHgBI7xGwc+dOdOrUCaIo4uXLl6ovT09PxMTEqOUC0ifEffdTsKZNm6odM692794NpVKJKVOmaMzZmNEl/9ChQ0hJScHYsWPV9vHz84OFhQWCgoLUHieXyzFo0KBMz9e9e3e1T3Bfv36NI0eOoFevXnjz5o3q+b969Qqenp64e/cuwsPDs8z/7s84Pj4eL1++RKNGjSCKIi5fvpz7C/EfhUKBAwcOwMvLCy4uLqrt9vb26Nu3L06ePInY2Fi1x/j7+6sNX2jatCkUCgUePnwIAKreenv37kVqamqe8rx69QolSpTI8n4PDw/Y2NjA0dERffr0gZmZGX7//Xc4ODhg165dUCqV6NWrl9pry87ODpUqVVLrGZvX6/h+r4SMT7iDg4ORkJCQadZ9+/YBAAICAtS2Z/QEfv91VK1aNdXrG0j/ZLhKlSq5fq2//1p7V8Y1ffnyZa6ORUSkC6Rozw0dOlTtdtOmTfPd5sjQvHnzTOeUfve9KCoqCjExMWjatKlGGw0Ahg8frvbYUaNGZXk+X19f1fd6enqoW7cuRFHEkCFDVNutrKw03mN27NiBqlWrwtXVVe19NGNqj/dHmHh4eKgtiFWrVi1YWFjk+3pdvnwZoaGhGDt2rMYiJ+8PmwRy/7N6//3x6dOnuHLlCnx8fNR63deqVQufffaZ6v37Xfm9pnp6eqp2rFKpxOvXr5GWloa6detqtHkzk9usCoUChw4dgpeXl2qkEABUrFgR7dq1y/TYH/K6zNC6dWu1XpcZbf/u3burRhG9uz3j2uSmHZWVnNqKObVTC7Kd37NnT7VejxnPs1+/fmp/29WvXx8pKSlqbfx3r3PG3wRNmzZFQkICbt26le01yM7GjRuxfPlyzJ07Fy1btgQAXLlyBXfv3kXfvn3x6tUr1f/t+Ph4tG7dGsePH4dSqYRCoUBwcDC8vLxQrlw51TGrVq0KT0/PTM/HNmbxwOHGVOw9fPgQZcqUUXtzAt6ujpfxJpGhUqVKGseoXLkyEhIS8OLFC1hbW2vMs2BjYwM9Pb18Z/zpp5+wevVqzJw5E+3bt8/3cTI4OztrbFMqlVi8eDGWL1+O0NBQtQZyxvBMIP16VKhQQaMBltVCKmXLltXY19LSEo6OjhrbgPQGBgC8ePEC0dHR+OWXX/DLL79keuzIyEi12+++QQFv34gyjplX9+/fh0wmy3YBmIzXR5UqVdS2GxoawsXFReP14+DgkOUE2O//XO7duwdRFDF58mRMnjw508dERkbCwcEh0/sePXqEKVOmYM+ePRrXIKc5XDLz4sULJCQkaDxXIP3/i1KpxOPHj9WGu+b0M2nevDm6d++O6dOnY+HChWjRogW8vLzQt29fyOXyHDOJ780z9a5ly5ahcuXK0NfXh62tLapUqaJq4N29exeiKGb6/xmA2tCRvFxHfX19lC1bVm2bs7MzAgICsGDBAmzZsgVNmzZF586dVfMVAemvI5lMpvH/yM7ODlZWVhqvo/evK5B+bXP7Ws/sd0CGjGua2R9ZRES6qrDbc0ZGRhoftuTl93BWsvr9vHfvXnz//fe4cuWK2px/7/6uzngvef8Y2S129/77iaWlJYyMjDSmtrG0tMSrV69Ut+/evYt///03yw+ccmqjAR92vTKmEMnN0PC8/Kzev3ZZtfOA9NdWcHCwxiJl+b2mALBhwwbMnz8ft27dUvvwNLv37bxmjY2NRWJiYqavi6xeKx/yusyQ2XUBkOPfBLlpR2Unu7ZiTu3Ugmzn5/f5A+nT/Xz33Xc4cuSIxgfy+WnTA+nFwKFDh+Lzzz9X+5D67t27ANI7lWQlJiYGycnJSExMzPR3aZUqVTItoLONWTywSEiUR6dPn1Z9EpMhNDQ0VwtkZGb9+vX4+uuvMXToUHz33XcFkBAavQgB4Mcff8TkyZMxePBgzJw5E9bW1pDJZBg7diyUSmW+z5VVcTSr7RlvHhnn7NevX5ZvUhnzr+T2mLogs2uf1X0Z12DChAlZfiKXVWNOoVDgs88+w+vXr/H111/D1dUVpqamCA8Ph4+Pzwf9TPMip5+JIAj47bffcPbsWfz5558IDg7G4MGDMX/+fJw9ezbbOSNLliyZ7R8X9erVU61u/D6lUglBEPDXX39lmjHjvHm9ju/2yH3X/Pnz4ePjgz/++AMHDhzA6NGjMWvWLJw9e1atqJjbRtOHvtazex1mXNPs5j4lIirucmrPfciHv9nJ7PfziRMn0LlzZzRr1gzLly+Hvb09DAwMEBgYiF9//fWDzpfZ88jNe4xSqUTNmjWxYMGCTPd9v/AhZRstLz+r7N4fP+R8uXn+mzdvho+PD7y8vPDll1+idOnS0NPTw6xZs1RFUakUxOsyv38TALlvR70vp7ZiQb8us3v95Pf5R0dHo3nz5rCwsMCMGTNQoUIFGBkZ4dKlS/j666/z1aaPiopC9+7dUblyZdXcqBkyjvfTTz/Bzc0t08ebmZlpLFCU2/MCbGMWdSwSUrFXvnx5HDp0CG/evFH79Dmj6/b7E91mfLryrjt37sDExAQ2NjaQy+U4ePCg2v12dnb5yvbHH3/A19cX3bp1U61Aqy2//fYbWrZsibVr16ptj46OVvtFXr58edy8eROiKKoVNN5dRbgg2NjYwNzcHAqFQmNFsg+Rl0+uKlSoAKVSiZs3b2b5Jpnx+rh9+7baENyUlBSEhoZ+UPaM4xkYGOT5ONevX8edO3ewYcMGDBgwQLX9/dcmkPtrYmNjAxMTE9y+fVvjvlu3bkEmk2n8UZBbDRo0QIMGDfDDDz/g119/hbe3N7Zu3ao2ZOd9rq6uaisV50WFChUgiiKcnZ1RuXLlLPfLy3XMSc2aNVGzZk189913OH36NBo3boyVK1fi+++/R/ny5aFUKnH37l1VrxcgffGe6OjoLCfc1obQ0FDIZLJsrwsRka7R5fbch9q5cyeMjIwQHBys1ss+MDBQbb+M95LQ0FC13j0F3UYD0t9Hr169itatWxdYr6C8ttEA4MaNGwXaTnzfu+289926dQulSpVS60X4IX777Te4uLhg165datdi6tSpavtldZ1ym9XIyAhGRkaZvi7y8lrJ7euyoGTXjsqKq6srdu7cme9zarOdn1shISF49eoVdu3apVrkBkC+28BKpRLe3t6Ijo7GoUOHYGJionZ/xv8tCwuLbJ+fjY0NjI2NM/1dmtlr8N3M77Z1qejhnIRU7LVv3x4KhQI///yz2vaFCxdCEASNuTnOnDmjNs/G48eP8ccff6BNmzbQ09NDiRIl4OHhofZlZGSU51zHjx9Hnz590KxZM2zZsiXT3kkFSU9PT+NTsx07dmjMeefp6Ynw8HDs2bNHtS0pKQmrV68u8Dzdu3fHzp07cePGDY37X7x4ka/jmpqa5rpbvpeXF2QyGWbMmKHxKV3GtfLw8IChoSGWLFmidv3Wrl2LmJiYbFcUzEnp0qXRokULrFq1Ck+fPtW4P7trkPGp5LuZRFHE4sWLNfbNaNxGR0dnm0dPTw9t2rTBH3/8oVopG0gvZP36669o0qRJnlfDjYqK0njdZRRkc/qEsmHDhrhx40a+Psns1q0b9PT0MH36dI3zi6KoGv6Tl+uYldjYWKSlpaltq1mzJmQymSp7xjQCixYtUtsvo4fGh7yO8urixYuoXr16robwEBHpCl1tzxUEPT09CIKgNhVMWFiYxgrCGaMOli9frrZ96dKlBZ6pV69eCA8Pz7T9l5iYiPj4+DwfM7ftEQD45JNP4OzsjEWLFmnsX5C9E+3t7eHm5oYNGzaonefGjRs4cOBAgUwDlCGzNse5c+dw5swZtf0yijrvP+/cZtXT04OHhwd2796NiIgI1X737t3TmLszp7y5eV1+qNy0o7LSsGFDREVF5XvuS22283Mrs9dFSkqKxv/z3Jo+fTqCg4Pxv//9L9Nh5HXq1EGFChUwb948xMXFadyf8feHnp4ePD09sXv3bjx69Eh1/7///ovg4OBMz33x4kUIgoCGDRvmKzvpBvYkpGKvU6dOaNmyJb799luEhYWhdu3aOHDgAP744w+MHTtWbZJlIH3uE09PT4wePRpyuVz1C3r69Om5Ol/Gp13//PMPAGDTpk04efIkAKiGEz98+BCdO3eGIAjo0aMHduzYoXaMWrVqaQy1/VAdO3bEjBkzMGjQIDRq1AjXr1/Hli1b1D41A4AvvvgCP//8Mz7//HOMGTMG9vb22LJli6rhXJBzTMyePRtHjx5F/fr14efnh2rVquH169e4dOkSDh06pDFXUG7UqVMH27ZtQ0BAAD799FOYmZmhU6dOme5bsWJFfPvtt5g5cyaaNm2Kbt26QS6X48KFCyhTpgxmzZoFGxsbTJo0CdOnT0fbtm3RuXNn3L59G8uXL8enn36Kfv36fdA1WLZsGZo0aYKaNWvCz88PLi4ueP78Oc6cOYMnT57g6tWrmT7O1dUVFSpUwIQJExAeHg4LCwvs3Lkz0yEXGRO3jx49Gp6entDT01NbbOZd33//PQ4ePIgmTZpg+PDh0NfXx6pVq5CcnIy5c+fm+flt2LABy5cvR9euXVGhQgW8efMGq1evhoWFRY4N7y5dumDmzJk4duwY2rRpk6fzVqhQAd9//z0mTZqEsLAweHl5wdzcHKGhofj999/h7++PCRMm5Ok6ZuXIkSMYOXIkevbsicqVKyMtLQ2bNm1SFcIBoHbt2hg4cCB++eUX1bCS8+fPY8OGDfDy8tIY8qYtqampOHbsmMak90REuq6w23OFqUOHDliwYAHatm2Lvn37IjIyEsuWLUPFihVx7do11X516tRB9+7dsWjRIrx69QoNGjTAsWPHcOfOHQAF20br378/tm/fjqFDh+Lo0aNo3LgxFAoFbt26he3btyM4ODjLKT+yktEe+fbbb9GnTx8YGBigU6dOmfbUk8lkWLFiBTp16gQ3NzcMGjQI9vb2uHXrFv75558sixT58dNPP6Fdu3Zo2LAhhgwZgsTERCxduhSWlpaYNm1agZ2nY8eO2LVrF7p27YoOHTogNDQUK1euRLVq1dSKNcbGxqhWrRq2bduGypUrw9raGjVq1ECNGjVynXXatGk4cOAAGjdujGHDhqkK7DVq1MCVK1dylTe3r8sPlZt2VHYZ9fX1cejQIfj7++f53Npu5+dGo0aNUKJECQwcOBCjR4+GIAjYtGlTvorh169fx8yZM9GsWTNERkZi8+bNavf369cPMpkMa9asQbt27VC9enUMGjQIDg4OCA8Px9GjR2FhYYE///wTQPrvy/3796Np06YYPnw40tLSsHTpUlSvXj3T18DBgwfRuHFjtfnuqQjS2rrJRBIZMWKExpLsb968EceNGyeWKVNGNDAwECtVqiT+9NNPasu+i2L6EvIjRowQN2/eLFaqVEmUy+Wiu7u7ePTo0VyfH0CWXxmOHj2a7X7ZLWOfoXz58mKHDh3UtmUcd8eOHRr7JyUliePHjxft7e1FY2NjsXHjxuKZM2fE5s2bi82bN1fb98GDB2KHDh1EY2Nj0cbGRhw/fry4c+dOEYB49uxZ1X7NmzcXq1evnqtsGddmxIgRatueP38ujhgxQnR0dBQNDAxEOzs7sXXr1uIvv/yS4/MKDQ0VAYiBgYGqbXFxcWLfvn1FKysrEYBYvnx5jRzvW7duneju7i7K5XKxRIkSYvPmzcWDBw+q7fPzzz+Lrq6uooGBgWhraysOGzZMjIqKUtsnq+uRkfOnn37K9Pz3798XBwwYINrZ2YkGBgaig4OD2LFjR/G3337TuAbvvhZv3rwpenh4iGZmZmKpUqVEPz8/8erVqxrXJC0tTRw1apRoY2MjCoKg9lrM7PV26dIl0dPTUzQzMxNNTEzEli1biqdPn1bbJzAwUAQgXrhwQW37+zkvXbokfv7552K5cuVEuVwuli5dWuzYsaP4999/Z3ot3lerVi1xyJAhuTp3Znbu3Ck2adJENDU1FU1NTUVXV1dxxIgR4u3bt1X75PY6Dhw4UDQ1NdU4x4MHD8TBgweLFSpUEI2MjERra2uxZcuW4qFDh9T2S01NFadPny46OzuLBgYGoqOjozhp0iQxKSlJbb+s/v9k9n/1fTm91v766y8RgHj37t1sj0NEJDUp23NZ/b6fOnWqRqa8PD6zdlCGtWvXqrK6urqKgYGBmZ4vPj5eHDFihGhtbS2amZmJXl5e4u3bt0UA4uzZszWyvnjxIlfZMmvDpKSkiHPmzBGrV6+uaiPVqVNHnD59uhgTE5Pj8ypfvrw4cOBAtW0zZ84UHRwcRJlMJgIQQ0NDM70eGU6ePCl+9tlnorm5uWhqairWqlVLXLp0aY7P5/1rl9P746FDh8TGjRuLxsbGooWFhdipUyfx5s2bmR4zv9dUqVSKP/74o1i+fHnVa3Lv3r3iwIEDNdqrp0+fFuvUqSMaGhpqtNVyk1UURfHw4cOiu7u7aGhoKFaoUEFcs2aNOH78eNHIyEhtv4J4XWZ2jKyu+fvt+ty2o7LSuXNnsXXr1mrbcttOzaCNdn5Wf79klu3UqVNigwYNRGNjY7FMmTLiV199JQYHB2tkzey18u7rI6e/Md91+fJlsVu3bmLJkiVFuVwuli9fXuzVq5d4+PBhtf2OHTumei26uLiIK1euzPQ1EB0dLRoaGopr1qzRuEZUtAiiqEMz/hNJTBAEjBgxQmMoC6UPkxw3bhyePHmS5Wq7RAVt06ZNGDFiBB49egQrKyup4xR5Xl5eEAQBv//+u9RRiIi05mNrz125cgXu7u7YvHkzvL29pY5DOszLywv//PNPpvPMFVUnTpxAixYtcOvWrUxX4qXCsWjRIsydOxf3798vkAWCSDqck5CINCQmJqrdTkpKwqpVq1CpUiUWCKlQeXt7o1y5clpf2Odj8O+//2Lv3r2YOXOm1FGIiCif3m+jAel/nMtkMrVFD4jef63cvXsX+/btQ4sWLaQJpCVNmzZFmzZt8jUtDhWM1NRULFiwAN999x0LhMUA5yQkIg3dunVDuXLl4ObmhpiYGGzevBm3bt3Cli1bpI5GHxmZTJbpwjaUd1WrVtWYGJyIiIqWuXPn4uLFi2jZsiX09fXx119/4a+//oK/vz8cHR2ljkc6xMXFBT4+PnBxccHDhw+xYsUKGBoa4quvvpI6WoHLy4IsVPAMDAzUFjehoo1FQiLS4OnpiTVr1mDLli1QKBSoVq0atm7dit69e0sdjYiIiOij1ahRIxw8eBAzZ85EXFwcypUrh2nTpuHbb7+VOhrpmLZt2+J///sfnj17BrlcjoYNG+LHH3/kkFwiyhbnJCQiIiIiIiIiIvrIcU5CIiIiIiIiIiKijxyLhERERERERERERB+5Yj8noVKpREREBMzNzSEIgtRxiIiIiLROFEW8efMGZcqUgUzGz4TfxbYhERERfWxy2zYs9kXCiIgIrvRFREREH6XHjx+jbNmyUsfQKWwbEhER0ccqp7ZhsS8SmpubA0i/EBYWFhKnIaKPyc2IGPRadRbbv2iAamUspY5DRB+R2NhYODo6qtpB9BbbhkRERPSxyW3bsNgXCTOGkVhYWLAhSESFyuyNCJncBGbm/P1DRNLgcFpNbBsSERHRxyqntiEnqSEi0hJzI314VC0Nc6Ni/3kMERERERERFXH8y5WISEvKlzTFmoGfSh2DiIiIiIiIKEcsEhIRaUmqQonYxFRYGBvAQI8dt4mIiIiIihuFQoHU1FSpYxABAAwMDKCnp5fvx7NISESkJbefvUHHpSexd1QT1HDgwiVERERERMVJXFwcnjx5AlEUpY5CBCB9zsGyZcvCzMwsX49nkZCIiIiIiIiIKA8UCgWePHkCExMT2NjYcLEwkpwoinjx4gWePHmCSpUq5atHIYuERERERERERER5kJqaClEUYWNjA2NjY6njEAEAbGxsEBYWhtTU1HwVCTlJFhERERERERFRPrAHIemSD309skhIRERERJI4fvw4OnXqhDJlykAQBOzevTvHx4SEhOCTTz6BXC5HxYoVsX79eq3nJCIiKsoCAwPh5uam+ipVqhS6desmdSzSQSwSEhFpSVV7C1yf1gZV7S2kjkJEpJPi4+NRu3ZtLFu2LFf7h4aGokOHDmjZsiWuXLmCsWPHwtfXF8HBwVpOSkREVHQNGjQIV65cUX3Z2dnB29tb6likgzgnIRGRlujJBJgbGUgdg4hIZ7Vr1w7t2rXL9f4rV66Es7Mz5s+fDwCoWrUqTp48iYULF8LT01NbMYk+SGxKLJLTkmFjYiN1FCLSIlEUkZym1Oo55PqybIeTzps3D3fu3MEvv/wCAIiOjkbFihVx584dWFtbAwDOnTuHyMhIdO7cWatZqWhikZCISEtCX8Zjyh83MKNLDTiXMpU6DhFRkXfmzBl4eHiobfP09MTYsWOzfExycjKSk5NVt2NjY7UVj0jD8/jnaLu9DRSCEkuaLEKLiq2ljkREWpKcpkTPlWe0eo4dQxvCyCDrxSh8fX1RuXJlzJ07F1ZWVggMDESXLl1UBUIAWLt2Lfr37w8DA3ZmIE0sEhIRaUl8chpO3H2JlvNCpI5C9NELm91B6ghUAJ49ewZbW1u1bba2toiNjUViYmKmq0vOmjUL06dPL6yIRGos5ZZwSxTwtykw/9RcFgmJSKusrKzQo0cPrFu3DuPGjcOKFSuwbds21f3x8fHYunUrzp49K2FK0mUsEhIRERFRsTVp0iQEBASobsfGxsLR0VHCRPQxMdQzxENDBQAgDBF4EPMALpYuEqciIm2Q68uwY2hDrZ8jJ6NHj0bnzp1RtWpV2NjYwN3dXXXfjh07UL16dVSrVk2bMakIY5GQiIiIiIoEOzs7PH/+XG3b8+fPYWFhkWkvQgCQy+WQy+WFEY9Ig0yQweONHv5nnV4o3HF7B76u97XEqYhIGwRByHYocGFxdXWFi4sL/P39MXfuXLX71q5diyFDhkiUjIoCrm5MREREREVCw4YNcfjwYbVtBw8eRMOG2u25QfQhmsa9/ZPrxssbEiYhoo+Fn58f0tLS0KNHD9W227dv48qVK+jdu7eEyUjXsSchEZGW2FsaSR2BiEinxcXF4d69e6rboaGhuHLlCqytrVGuXDlMmjQJ4eHh2LhxIwBg6NCh+Pnnn/HVV19h8ODBOHLkCLZv346goCCpngJRlm6/vo3wuHCEGr1d7VSEKGEiIvpYHD16FMOHD1dbnKRKlSp48+aNhKmoKNDpnoQ+Pj4QBEHjq3r16lJHIyLKUUkzDm8jIsrO33//DXd3d9V8SQEBAXB3d8eUKVMAAE+fPsWjR49U+zs7OyMoKAgHDx5E7dq1MX/+fKxZswaenp6S5CfKzvbb2zHm6BgsKq2QOgoRfSQiIiLg6uqKS5cuYezYsVLHoSJIp3sSLl68GLNnz1bdTktLQ+3atdGzZ08JUxER5U50QorUEYiIdFqLFi0giln3rFq/fn2mj7l8+bIWUxERERVNZcqUwa1bt6SOQUWYpD0JN27ciJIlSyI5OVltu5eXF/r37w9LS0vY2dmpvv7++29ERUVh0KBBEiUmIsq9J1GJUkcgIiIiIiIiyhVJi4Q9e/aEQqHAnj17VNsiIyMRFBSEwYMHa+y/du1aeHh4oHz58oUZk4iIiIiIiIiIqFiTtEhobGyMvn37IjAwULVt8+bNKFeuHFq0aKG2b0REBP766y/4+vpme8zk5GTExsaqfREREREREUmlXjzQIKkaelTukfPOREREEpF84RI/Pz8cOHAA4eHhANLnnslYsORdGzZsgJWVFby8vLI93qxZs2Bpaan6cnR01FZ0IiIiIiKiHHnFyFA3uRK8KnpJHYWIiChLkhcJ3d3dUbt2bWzcuBEXL17EP//8Ax8fH7V9RFHEunXr0L9/fxgaGmZ7vEmTJiEmJkb19fjxYy2mJyLKmrGhntQRiIiISEdkt0gPERGRLtCJ1Y19fX2xaNEihIeHw8PDQ6P337Fjx3Dv3j0MGTIkx2PJ5XLI5XJtRSUiyrUKNmZSRyAiIiIdwSIhEUklJCQE7dq1Q5UqVVTbzpw5A2NjYwlTkS7SiSJh3759MWHCBKxevRobN27UuH/t2rWoX78+atSoIUE6IiIiIiKi/IuTAYlIwpuUNzA3NJc6DhF9hKpUqYIrV65IHYN0nOTDjQHA0tIS3bt3h5mZmcacgzExMdi5c2euehESEemSG+ExUkcgIiIiiejJ9KAv6MNABH60UyKwxEEMPTRU6lhEpC2iCKQmavcrhx7J8+bNg7+/v+p2dHQ0SpUqhdevX2v72VMxoRM9CQEgPDwc3t7eGkOFLS0tkZCQIFEqIiIiIiKivPum/jdopWgM04Nj0NdJIXUcItK2tCRgXVvtnmPwfsAg6yHCvr6+qFy5MubOnQsrKysEBgaiS5cusLa2xv379/HJJ59AT08PgwYNwvDhw7WblYokyYuEUVFRCAkJQUhICJYvXy51HCIiIiIiogKRnJoMU6lDENFHw8rKCj169MC6deswbtw4rFixAtu2bUOFChXw5MkTWFpa4smTJ2jfvj1KlSqFXr16SR2ZdIzkRUJ3d3dERUVhzpw5apNoEhERERERFWWK1DSpIxBRYdE3Su/pp+1z5GD06NHo3LkzqlatChsbG7i7u6vdX7ZsWXz++ec4ceIEi4SkQfIiYVhYmNQRiIiIiIiIClyaIlXqCERUWAQh26HAhcXV1RUuLi7w9/fH3LlzAQBPnz6Fra0tZDIZ3rx5g71793LdB8qU5EVCIqLiqmJpM4RMaAE7SyMYGehJHYeIiIgK0b4H+7A7+g+YWivfbsx+zQEiogLh5+eHkSNHokePHgCAnTt3YsWKFdDX10daWhp69uyJQYMGSZySdBGLhEREWmJkoAenUpyJiIiI6GP09/O/cSbpAmAhdRIi+tgcPXoUw4cPh4GBAQBg5MiRGDlypMSpqCiQSR2AiKi4evw6AWO3Xsbj11yhnYiIiIiItCsiIgKurq64dOkSxo4dK3UcKoLYk5CISEtiElOx+0oEfJu6wFHqMEREREREVKyVKVMGt27dkjoGFWHsSUhERERERERERPSRY09CIiIt67j0pNQRiCgXwmZ3kDoCERUj4jurlPi9FPBCry4GdflOwkRERETZY5GQiIiIiIhIi1ySBcDQHC5WLlJHISIiyhKHGxMRaUlpc7nUEYiIiEhXiGLO+xAREUmIRUIiIi0pbWEkdQQiIiIiIvqICIKA6OjoTO9r06YNatWqBTc3NzRt2hSXL18u3HCk8zjcmIhIS94kpUodgYiIiHTAaTMRcXiGU+Gn0NihsdRxiOgjtX37dlhZWQEAfv/9d/j4+ODq1avShiKdotM9CUNCQiAIgsbXs2fPpI5GRJSjh68SpI5AREREEqlSogpclOVQJwH401LEUct/Mf70AuyNjJY6GhEVc/PmzYO7uzsqV66MLVu2qLZnFAgBICYmBoIgSJCOdFmR6El4+/ZtWFhYqG6XLl1awjRERERERETZ6+PaB7EnnqJh5AZ4l1dAFIAUUYkTUW/QsbSV1PGIqICJoohkRbJWzyHXk+eqsCcIAi5fvowHDx6gbt26aNy4MZycnAAAAwYMwNGjRwEA+/bt02ZcKoIkLRJu3LgR48aNQ0REBOTytxP8e3l5wdzcHEOGDAGQXhR8t+JNRERERESk60Rl+mIlAgARgEKRgsSkJEkzEZF2JCuSMXD/QK2eY0PbDTDSz3nec19fXwCAi4sLmjVrhuPHj6uKhBs3bkw/1oYN+Prrr1koJDWSDjfu2bMnFAoF9uzZo9oWGRmJoKAgDB48WLXNzc0N9vb2+Oyzz3Dq1Klsj5mcnIzY2Fi1LyIiIiIiosKmFBUAgFJp/91OfY7nkZESJiKij1FmvQ8HDhyIo0eP4tWrVxIkIl0laU9CY2Nj9O3bF4GBgejZsycAYPPmzShXrhxatGiBO3fuYOXKlahbty6Sk5OxZs0atGjRAufOncMnn3yS6TFnzZqF6dOnF+bTICLKlKG+Tk/7SkRERFqmENN7EtqnApEGAMRkpKRFSRuKiLRCrifHhrYbtH6O3AgMDMS0adMQFhaGEydOYNGiRYiOjkZCQgLKlCkDANi9ezdKliwJa2trbUamIkbyOQn9/Pzw6aefIjw8HA4ODli/fj18fHwgCAKqVKmCKlWqqPZt1KgR7t+/j4ULF2LTpk2ZHm/SpEkICAhQ3Y6NjYWjo6PWnwcR0fsq25pLHYGIiIgksuTSEmwz+h2/Oyhgn/p2e3IaF2EkKo4EQcjVUODCoFAo4O7ujvj4eCxZsgROTk54+PAhevbsicTERMhkMtjY2GDv3r1cvITUSF4kdHd3R+3atbFx40a0adMG//zzD4KCgrLcv169ejh58mSW98vlcrX5DYmIiIiIiArb66TXiJXFIVYG1E7MmJUQSE57Lm0wIirWxP96MM+cOVNte/ny5XH+/HkpIlERInmREEifVHPRokUIDw+Hh4dHtj3/rly5Ant7+0JMR0SUP/8+5ZyoREREBJR5pydhCouERESko3SiSNi3b19MmDABq1evVq20AwCLFi2Cs7MzqlevjqSkJKxZswZHjhzBgQMHJExLRJQ7iv9WNCQiIqKPW5nUd3sScrgxERHpJp0oElpaWqJ79+4ICgqCl5eXantKSgrGjx+P8PBwmJiYoFatWjh06BBatmwpXVgiIiIiIqI8sFAAhkpDpBhYw0CvlNRxiIiIMqUTRUIACA8Ph7e3t9p8gl999RW++uorCVMRERERERF9GAFA67g2OFSxA0rJpE5DRESUOcmLhFFRUQgJCUFISAiWL18udRwiIiIiIqIPlqRIUn1vIAJ6AD6JvYFE03LShSIiIsqG5EVCd3d3REVFYc6cOahSpYrUcYiICoxzKVOpIxAREZFEktLeFgnlIlAt5QE+eXgANyzdAbSXLhgREVEWJC8ShoWFSR2BiEgrTOX6CJvdQeoYREREJIHEtETV93IRsFDEQ0wRIY+PlTAVERFR1jgjBhGRljyNScTMvTfxNCYx552JiIioWFErEiqBm3pxmF0yDavMQ3Hh2QUJkxHRx0apVCIgIADVqlVDrVq10LJlS9y7d0/qWKSDWCQkItKSV3EpWHsyFK/iUqSOQkRERIXMt6Yv6se5wfu1AH0IeKOnwFUTEU8Mk/As/pnU8YjoI7Jnzx6cOnUKV69exbVr19C6dWt88803UsciHcQiIRERERERUQFrVrYZKie7oENs+p9cJsq3971JeSNRKiLSFlEUoUxK0uqXKIrZZpg3bx78/f1Vt6Ojo1GqVCnExMQgOTkZSf8dIzY2FmXLltX2JaEiSPI5CYmIiIiIiIojAQrV98bvFAnjUuMkSENE2iQmJ+Ohdz+tnqP8ls0QjIyyvN/X1xeVK1fG3LlzYWVlhcDAQHTp0gX9+/fH5cuXYWdnB3Nzczg4OODYsWNazUpFE4uERERa1nHpSakjEFEecdEhIioIClFQfc+ehESkbVZWVujRowfWrVuHcePGYcWKFdi2bRv+/vtv3LhxA+Hh4bCwsMDEiRMxdOhQbN68WerIpGNYJCQi0pISpoZSRyAiIiKJ3Hp9C29kbxAjE2GpFGCifFswZJGQqPgR5HKU36Ldopsgl+e4z+jRo9G5c2dUrVoVNjY2cHd3x8iRI9GqVStYWVkBAAYOHIg2bdpoNSsVTSwSEhFpiYOVsdQRiIiISAJpyjT0/LMnYA3cMgGmPdODmeLtXGIsEhIVP4IgZDsUuLC4urrCxcUF/v7+mDt3LgDAxcUF+/btw4QJE2BoaIi9e/eiRo0aEiclXcSFS4iItCQxRZHzTkRERFTsJKUlqb6X/1cbNFG+LRJyTkIi0iY/Pz+kpaWhR48eAIARI0bA2dkZtWvXRq1atXD48GGsWLFC4pSkiyQtErZo0QJjx46VMgIRkdbcf8E/AIiIcrJs2TI4OTnByMgI9evXx/nz57Pdf9GiRahSpQqMjY3h6OiIcePGISkpKdvHEBW2xLRE1ffy/+YiNBVFCP/VCdmTkIi06ejRoxg+fDgMDAwAAHK5HKtXr8a///6La9eu4cCBA3BxcZE4Jekine5JOG3aNLi6usLU1BQlSpSAh4cHzp07J3UsIiIiIioA27ZtQ0BAAKZOnYpLly6hdu3a8PT0RGRkZKb7//rrr5g4cSKmTp2Kf//9F2vXrsW2bdvwzTffFHJyouy9eBGt+t7wv8VLDKCEEYuERKRFERERcHV1xaVLl9ghi/JFp4uElStXxs8//4zr16/j5MmTcHJyQps2bfDixQupoxERERHRB1qwYAH8/PwwaNAgVKtWDStXroSJiQnWrVuX6f6nT59G48aN0bdvX1W78PPPP8+x9yFRYXtw65nq+4zhxnqiEm1iBbSMMYV3VW+JkhFRcVamTBncunULp0+fhrm5udRxqAiSvEiYlpaGkSNHwtLSEqVKlcLkyZMhiunvpH379oWHhwdcXFxQvXp1LFiwALGxsbh27ZrEqYmIiIjoQ6SkpODixYvw8PBQbZPJZPDw8MCZM2cyfUyjRo1w8eJFVVHwwYMH2LdvH9q3b18omYlyK0nxdrix0X/DjQWI6B2lh/bR5ujj2keiZERERFmTfHXjDRs2YMiQITh//jz+/vtv+Pv7o1y5cvDz81PbLyUlBb/88gssLS1Ru3btLI+XnJyM5ORk1e3Y2FitZSciyo4gSJ2AiEh3vXz5EgqFAra2tmrbbW1tcevWrUwf07dvX7x8+RJNmjSBKIpIS0vD0KFDsx1uzLYhSSFJ+XaeTMOMnoRIrxbKIGb2ECIiIslJ3pPQ0dERCxcuRJUqVeDt7Y1Ro0Zh4cKFqvv37t0LMzMzGBkZYeHChTh48CBKlSqV5fFmzZoFS0tL1Zejo2NhPA0iIg3Vy1hKHYGIqFgJCQnBjz/+iOXLl+PSpUvYtWsXgoKCMHPmzCwfw7YhSeHdIqFquDEUAAB+hkhERLpK8iJhgwYNILzT3aZhw4a4e/cuFIr0N9GWLVviypUrOH36NNq2bYtevXplOZk1AEyaNAkxMTGqr8ePH2v9ORARERFR3pQqVQp6enp4/vy52vbnz5/Dzs4u08dMnjwZ/fv3h6+vL2rWrImuXbvixx9/xKxZs6BUKjN9DNuGJIWUTIqEsv+mVBKhwKvEV0hVpEoRjYiIKEuSFwlzYmpqiooVK6JBgwZYu3Yt9PX1sXbt2iz3l8vlsLCwUPsiIpLC3edcuZCIKCuGhoaoU6cODh8+rNqmVCpx+PBhNGzYMNPHJCQkQCZTb77q6ekBgGpO6/exbUhSSBbfDnGXv1O/3mitwPjyL9FiewvcjrotQTIiIqKsSV4kPHfunNrts2fPolKlSqoG3/uUSqXavDJERLoqOS3zXi1ERJQuICAAq1evxoYNG/Dvv/9i2LBhiI+Px6BBgwAAAwYMwKRJk1T7d+rUCStWrMDWrVsRGhqKgwcPYvLkyejUqVOWbUciKTQwao6xTxegw8tWqJ/wdtSU0Tu17NgUzo9JRIXn+vXraNGiBapWrYqqVati165dUkciHST5wiWPHj1CQEAAvvjiC1y6dAlLly7F/PnzER8fjx9++AGdO3eGvb09Xr58iWXLliE8PBw9e/aUOjYRERERfaDevXvjxYsXmDJlCp49ewY3Nzfs379ftZjJo0eP1HoOfvfddxAEAd999x3Cw8NhY2ODTp064YcffpDqKRBlygCGMFdawVxhClPl2yKhiUIA/lu45E0KRxwQUeFISEhAly5dsHHjRjRp0gQKhQKvX7+WOhbpIMmLhAMGDEBiYiLq1asHPT09jBkzBv7+/khOTsatW7ewYcMGvHz5EiVLlsSnn36KEydOoHr16lLHJiIiIqICMHLkSIwcOTLT+0JCQtRu6+vrY+rUqZg6dWohJCP6AP8NfxfeW8lY/s7NpLQkEFHxIYoiFKnaHUmkZyBTW9PhffPmzcOdO3fwyy+/AACio6NRsWJFfPXVV2jQoAGaNGmSfhw9PdjY2Gg1KxVNkhYJ3234rVixQu0+IyMjdn8lIiIiIqIi5+0UmepFQq5sTFR8KVKV2DXvklbP0W3CJ9A3zHp6DV9fX1SuXBlz586FlZUVAgMD0aVLFzx79gxyuRwdO3bEkydPUKtWLcyfP5+FQtIg+ZyERETFlaO1idQRiIiISAJ/xZ/GohJ/4obJE8TJMl9Uh4iooFlZWaFHjx5Yt24dRFHEihUrMHLkSKSlpeHQoUNYtWoVLl++DAcHBwwbNkzquKSDJB9uTERUXFkaG0gdgYiIiCSwP+4I3picx3UAb2JkMONaZkTFnp6BDN0mfKL1c+Rk9OjR6Ny5M6pWrQobGxu4u7vj8OHDaNmyJRwcHAAA/fr1g6enp1azUtHEIiERkZZEvuFcQ0RERB+jpNRY4L8RgXJ2JCT6KAiCkO1Q4MLi6uoKFxcX+Pv7Y+7cuQCAXr16Ye3atYiNjYWFhQX27duH2rVrS5yUdBGLhEREWhIZmwwA2DuqCWo4WEqchoiIiAqNkKr6lkVCIipsfn5+GDlyJHr06AEAKFeuHL755hs0atQIMpkMDg4OqsVNiN7FIiEREREREVGBeqdIyKHGRFTIjh49iuHDh8PA4O30R/3790f//v0lTEVFAYuEREREREREBUj8ryehIArQf2dN47oJAuyfGqLK4DUoZ15OqnhEVExFRESgVatWsLa2RnBwsNRxqAhikZCIiIiIiKgAibL0IqFM1AfwtiuhlUKAqVKAe2l3iZIRUXFWpkwZ3Lp1S+oYVITlvDQOERHli4WRAdrXtIOFEVc5JiIi+piIQgoAQE+puYiBABGiyIkKiYhI97AnIRGRlpQraYJ9159h3/VnUkch+iiFze4gdQQi+kgphUQAgL7SAO/OTwgAMohQiiL0BCGTRxIREUmHPQmJiLQkJY0zlRMREX1skhXJwH/DjfWVcrX7nuuL+NtEgYMPDyIiLkKKeERERFlikZCISEvuPH8jdQQiIiIqZElpSbBKLoUyKYBTarLafdeNRSwqrcSXxyfgwrMLEiUkIiLKHIuEREREREREBcRSbomekVUwL1wfAS/fGWrM0cVEVAgEQUB0dHS2+wQGBkIQBOzevbtQMlHRofNFwi1btqB27dowMTGBvb09Bg8ejFevXkkdi4iIiIiIKFsycOoRItItYWFhWL16NRo0aCB1FNJBOl0kPHXqFAYMGIAhQ4bgn3/+wY4dO3D+/Hn4+flJHY2IiIiIiChTMqSvXqzHIiHRR0MURaSmJGv1K7cro8+bNw/u7u6oXLkytmzZotquVCrh6+uLpUuXQi6XZ3ME+lhJurrxxo0bMW7cOERERKi9QL28vGBubo7atWvDyckJo0ePBgA4Ozvjiy++wJw5c6SKTERERERElC3hvyJhxr9v78jdH/hEVPSkpaZg29SvtXqO3tPnwMAw5+KeIAi4fPkyHjx4gLp166Jx48ZwcnLCggUL0LhxY9SpU0erOanokrQnYc+ePaFQKLBnzx7VtsjISAQFBWHw4MFo2LAhHj9+jH379kEURTx//hy//fYb2rdvL2FqIqLcqWZvIXUEIiIiKmS/3fkNv5e+jp9sFXhgyKIgERU+X19fAICLiwuaNWuG48eP48aNG9i5cye+++47idORLpO0J6GxsTH69u2LwMBA9OzZEwCwefNmlCtXDi1atIAgCNiyZQt69+6NpKQkpKWloVOnTli2bFmWx0xOTkZy8ttVxGJjY7X+PIiIMiOTcYZyIipe4uPjYWpqKnUMIp32MPYhnsvj8BxAxxi2BYg+FvoGhug9XbujHvUNDPP1OEEQcOLECYSFhaFSpUoAgGfPnsHf3x9Pnz7FsGHDCjImFWGSz0no5+eHAwcOIDw8HACwfv16+Pj4QBAE3Lx5E2PGjMGUKVNw8eJF7N+/H2FhYRg6dGiWx5s1axYsLS1VX46OjoX1VIiI1Dx4ESd1BCKiAmVra4vBgwfj5MmTUkch0lnRydGq780U0uUgosIlCAIMDOVa/RKE3H3wEBgYCCB9kZITJ06gadOmGDZsGJ4+fYqwsDCEhYWhQYMG+OWXX1ggJDWSFwnd3d1Ru3ZtbNy4ERcvXsQ///wDHx8fAOkFv8aNG+PLL79ErVq14OnpieXLl2PdunV4+vRppsebNGkSYmJiVF+PHz8uxGdDRPRWQgr/MiCi4mXz5s14/fo1WrVqhcqVK2P27NmIiIiQOhaRTlErEnK0MRFJQKFQwN3dHW3atMGSJUvg5OQkdSQqIiQdbpzB19cXixYtQnh4ODw8PFS9/xISEqCvrx5RT08PALJc1Ucul3OVHiIiIiIt8PLygpeXF168eIFNmzZh/fr1mDx5Mjw9PTF48GB07txZo+1G9LGJTX473dH7PQn1RECuBAR9I8gEyftrEFExlFErmTlzZrb7hYSEFEIaKmp04p2pb9++ePLkCVavXo3Bgwertnfq1Am7du3CihUr8ODBA5w6dQqjR49GvXr1UKZMGQkTExEREX28bGxsEBAQgGvXrmHBggU4dOgQevTogTJlymDKlClISEiQOiKRZDJ6EsqVgAHUhwa2jJMh8JEeNn8SiE4VOkmQjoiIKGs68VGvpaUlunfvjqCgIHh5eam2+/j44M2bN/j5558xfvx4WFlZoVWrVpgzR7uTgRIRERFR1p4/f44NGzZg/fr1ePjwIXr06IEhQ4bgyZMnmDNnDs6ePYsDBw5IHZNIEhlFQnNl1vukpaUUThgiIqI80IkiIQCEh4fD29tbY6jwqFGjMGrUKIlSERHlXxkrY6kjEBEVqF27diEwMBDBwcGoVq0ahg8fjn79+sHKykq1T6NGjVC1alXpQhJJSBRF1XDj7BYtSUlmkZCIiHSP5EXCqKgohISEICQkBMuXL5c6DhFRgbE2NZQ6AhFRgRo0aBD69OmDU6dO4dNPP810nzJlyuDbb78t5GREuiE+NR5pYhoAwCzbnoRphZSIiIgo9yQvErq7uyMqKgpz5sxBlSpVpI5DRFRgXsezlwARFS9Pnz6FiYlJtvsYGxtj6tSphZSISLeorWysFDTu/1cu4qSZiLRnG2EQaQa30m6FF46IiCgHki9cEhYWhpiYGEyYMEHqKEREBSoiOlHqCEREBcrc3ByRkZEa21+9egU9PT0JEhHpFiN9I3xR6ws0eFMKjeI0i4QRBiKOmos48eYMwmLDCj8gERFRNiTvSUhEVNztHdUENRwspY5BRPTBRFHMdHtycjIMDTnFAlEp41IY6T4SG4KP4ZPkKKnjEBER5QmLhERERESUrSVLlgAABEHAmjVrYGZmprpPoVDg+PHjcHV1lSoeERERZePMmTMYNmwYACA1NRVNmjTBkiVLNBaOJWKRkIiIiIiytXDhQgDpPQlXrlypNrTY0NAQTk5OWLlypVTxiHSOLItet0REUqhduzYuXLgAAwMDKJVKdO/eHcuXL8e4ceOkjkY6hkVCIiItMTHUQ31na5gYcp4uIiraQkNDAQAtW7bErl27UKJECYkTEekmhVKBZEUyUgUFUgQRhqLmvIREVDyJogikZbOseUHQl0EQsv69Mm/ePNy5cwe//PILACA6OhoVK1bEnTt3VAuPpaSkIDExMdvj0MeLRUIiIi1xsTHDti8aSh2DiKjAHD16VOoIRDrtXvQ99PizB2APtH4jYMgr/hFO9NFIUyJy5TWtnqL00FqAQdYdEHx9fVG5cmXMnTsXVlZWCAwMRJcuXWBtbY2wsDB06dIF9+/fR4cOHTB8+HCtZqWiiUVCIiItUSpFuHyzT+oYRPSesNkdpI5QpAQEBGDmzJkwNTVFQEBAtvsuWLCgkFIRERHR+6ysrNCjRw+sW7cO48aNw4oVK7Bt2zYAgJOTE65evYq4uDj069cPu3btQp8+fSROTLqGRUIiIi25+TRW6ghERB/s8uXLSE1NVX2fFQ5bIiKij5q+LL2nn5bPkZPRo0ejc+fOqFq1KmxsbODu7q52v5mZGfr06YMtW7awSEgaWCQkIiIioiy9O8SYw42JiIgyJwhCtkOBC4urqytcXFzg7++PuXPnAgDu3buH8uXLw8DAACkpKfj9999Rq5aWC5pUJOVchiYiIiIiykRsbCx2796NW7duSR2FqEiwSRPwaTzgKrrA3tRe6jhEVEz5+fkhLS0NPXr0AAAcOXIE7u7uqF27Ntzd3WFra4vJkydLnJJ0EXsSEhEREVGu9OrVC82aNcPIkSORmJiIunXrIiwsDKIoYuvWrejevbvUEYl0Wq0kAbWS9HCjrCfq29eXOg4RFVNHjx7F8OHDYWBgAADw9/eHv7+/xKmoKND5noTJycn49ttvUb58ecjlcjg5OWHdunVSxyIiIiL66Bw/fhxNmzYFAPz+++8QRRHR0dFYsmQJvv/+e4nTERUdSmWa1BGIqBiKiIiAq6srLl26hLFjx0odh4ogne9J2KtXLzx//hxr165FxYoV8fTpUyiVSqljERHlqLKtudQRiIgKVExMDKytrQEA+/fvR/fu3WFiYoIOHTrgyy+/lDgdUdGhUPDvGSIqeGXKlOEUIPRBJC0Sbty4EePGjUNERATkcrlqu5eXF8zNzeHt7Y1jx47hwYMHqgapk5OTRGmJiPLGMBerjxERFSWOjo44c+YMrK2tsX//fmzduhUAEBUVBSMjI4nTERUhSoXUCYiIiDRI+hdsz549oVAosGfPHtW2yMhIBAUFYfDgwdizZw/q1q2LuXPnwsHBAZUrV8aECROQmJiY5TGTk5MRGxur9kVEJIVHrxKkjkBEVKDGjh0Lb29vlC1bFmXKlEGLFi0ApA9DrlmzprThiIqAU6ZKjC6rwErjHdgftl/qOERERGokLRIaGxujb9++CAwMVG3bvHkzypUrhxYtWuDBgwc4efIkbty4gd9//x2LFi3Cb7/9huHDh2d5zFmzZsHS0lL15ejoWBhPhYhIQ2xSqtQRiIgK1PDhw3HmzBmsW7cOJ0+ehEyW3pR0cXHhnIREABzNHbGx3UYMeW6LDjGCxv1JAvBSH3gji0diatYdH4iIiKQg+ZyEfn5++PTTTxEeHg4HBwesX78ePj4+EAQBSqUSgiBgy5YtsLS0BAAsWLAAPXr0wPLly2FsbKxxvEmTJiEgIEB1OzY2loVCIiIiogJSt25d1K1bV21bhw4dJEpDpFtMDEzgXtodj1IMYafQLBISERHpMsmLhO7u7qhduzY2btyINm3a4J9//kFQUBAAwN7eHg4ODqoCIQBUrVoVoijiyZMnqFSpksbx5HK52vyGRERERFQwFAoF1q9fj8OHDyMyMlJjMbkjR45IlIxItwgQpY5ARB8pQRAQFRUFKysrjfucnJwgl8tVHa4mTZqE3r17F3JC0mU6Mau+r68v1q9fj8DAQHh4eKh6/jVu3BgRERGIi4tT7Xvnzh3IZDKULVtWqrhEREREH6UxY8ZgzJgxUCgUqFGjBmrXrq32lR/Lli2Dk5MTjIyMUL9+fZw/fz7b/aOjozFixAjY29tDLpejcuXK2LdvX77OTaQtLBISka7atm0brly5gitXrrBASBok70kIAH379sWECROwevVqbNy4UW37zJkzMWjQIEyfPh0vX77El19+icGDB2c61JiISJeUtmCvZiIqXrZu3Yrt27ejffv2BXK8bdu2ISAgACtXrkT9+vWxaNEieHp64vbt2yhdurTG/ikpKfjss89QunRp/Pbbb3BwcMDDhw8z7S1BJIXYlFicjTiLG8aJEFNEOKdwyDHRx0IURaSlpWn1HPr6+hCEnH+vzJs3D0FBQYiPj8fUqVPh7e2t1VxUfOSrSPjo0SM4OjpqvDhFUcTjx49Rrly5PB3P0tIS3bt3R1BQELy8vFTbzczMcPDgQYwaNQp169ZFyZIl0atXL06MTURFQmlzI6kjEBEVKENDQ1SsWLHAjrdgwQL4+flh0KBBAICVK1ciKCgI69atw8SJEzX2X7duHV6/fo3Tp0/DwMAAQPrQKSJd8TTuKcYfGw+UAlq/ETDkFYuERB+LtLQ0rFu3TqvnGDx4sOr9LzuCIODy5ct48OAB6tati8aNG6veLwcMGABRFFGvXj3Mnj0bNjY2Ws1MRUu+hhs7OzvjxYsXGttfv34NZ2fnfAUJDw+Ht7e3xnyCrq6uOHjwIBISEvD48WPMnz+fvQiJqEiISeTqxkRUvIwfPx6LFy+GKH74UMqUlBRcvHgRHh4eqm0ymQweHh44c+ZMpo/Zs2cPGjZsiBEjRsDW1hY1atTAjz/+CIVC8cF5iIiIigtfX18AgIuLC5o1a4bjx48DAI4fP45r167h0qVLKFWqFAYOHChlTNJB+epJKIpipl1c4+LiYGSUt54zUVFRCAkJQUhICJYvX56fOEREOunx6wSpIxARFaiTJ0/i6NGj+Ouvv1C9enWN3gy7du3K9bFevnwJhUIBW1tbte22tra4detWpo958OABjhw5Am9vb+zbtw/37t3D8OHDkZqaiqlTp2b6mOTkZCQnJ6tux8bG5jojERFRbunr62Pw4MFaP0d+ZNRvMkZ9GhgYYOzYsahcuXKBZaPiIU+vsICAAADpL7DJkyfDxMREdZ9CocC5c+fg5uaWpwDu7u6IiorCnDlzUKVKlTw9loiIiIgKj5WVFbp27SrZ+ZVKJUqXLo1ffvkFenp6qFOnDsLDw/HTTz9lWSScNWsWpk+fXshJiYjoYyMIQq6GAheGwMBATJs2DWFhYThx4gQWLVqE+Ph4pKamqubx/d///gd3d3dpg5LOyVOR8PLlywDSexJev34dhoaGqvsMDQ1Ru3ZtTJgwIU8BwsLC8rQ/EREREUkjMDCwwI5VqlQp6Onp4fnz52rbnz9/Djs7u0wfY29vDwMDA+jp6am2Va1aFc+ePUNKSopa2zTDpEmTVB90A+k9CR0dHQvoWRDljWuygCEvgfuG1eBW2k3qOERUTCkUCri7uyM+Ph5LliyBk5MTHjx4gO7du0OhUEAURbi4uKgtHEsE5LFIePToUQDAoEGDsHjxYlhYWGglFBFRcbJ3VBPUcLCUOgYRUYFIS0tDSEgI7t+/j759+8Lc3BwRERGwsLCAmZlZro9jaGiIOnXq4PDhw6qF65RKJQ4fPoyRI0dm+pjGjRvj119/hVKphEyWPrX2nTt3YG9vn2mBEADkcrnGnNdEUnFIFeCQKsDIuCycLfM3lzsRUXYy5g2eOXOm2nYXFxdVxy+irORr4ZLAwEAWCImIciDXl6FSaTPI9fP1q5aISOc8fPgQNWvWRJcuXTBixAjVQnZz5szJ82gSIH0qm9WrV2PDhg34999/MWzYMMTHx6tWOx4wYAAmTZqk2n/YsGF4/fo1xowZgzt37iAoKAg//vgjRowYUTBPkKiwiEqpExAREWnI16yX8fHxmD17Ng4fPozIyEgolepvcg8ePCiQcERERVklW3McDGgudQwiogIzZswY1K1bF1evXkXJkiVV27t27Qo/P788H69379548eIFpkyZgmfPnsHNzQ379+9XLWby6NEjVY9BAHB0dERwcDDGjRuHWrVqwcHBAWPGjMHXX3/94U+OqBCJ+PAVwomIiApavoqEvr6+OHbsGPr37w97e/tMVzomIiIiouLlxIkTOH36tMbQXicnJ4SHh+frmCNHjsxyeHFISIjGtoYNG+Ls2bP5OheR1OJlIqL1gCi9OMSmxMLCkKOziIhId+SrSPjXX38hKCgIjRs3Lug8RETFxj8RMeiw5KTUMYgoF8Jmd5A6QpGgVCqhUCg0tj958gTm5uYSJCLSLYIgwFjfGIqUROhn0lnwnImINaVEAGdR9eFhdK0k3WrhRERE78vXRFklSpSAtbV1QWchIipWRI4kIqJipk2bNli0aJHqtiAIiIuLw9SpU9G+fXvpghHpiMolKuOvLiFY+MgKA19zTmIiIipa8vXONXPmTEyZMgUJCQkFnYeIiIiIdNT8+fNx6tQpVKtWDUlJSejbt69qqPGcOXOkjkekE1KVaZAh84VJZGr7pRZOICIiolzK13Dj+fPn4/79+7C1tYWTkxMMDAzU7r906VKBhCMiIiIi3VG2bFlcvXoV27Ztw9WrVxEXF4chQ4bA29sbxsbGUscj0gmpaZpD8jOYKgXgv0VLYlNiCykRERFR7uSrSOjl5VUgJ2/RogXc3NzUhq0QERERkW46fvw4GjVqBG9vb3h7e6u2p6Wl4fjx42jWrJmE6Yh0Q1pqGmRZrF5s9k79MCY5ppASEdHHTqlU4quvvsL+/fuRlpaGxo0bY8WKFRoLkRHlq0g4derUgs6Ro6FDh2LVqlVYuHAhxo4dW+jnJyLKqwo2ZlJHICIqUC1btsTTp09RunRpte0xMTFo2bJlpouaEH1MnsY9xZJrC5BUMhG1kpRoEq8+u5PpO6OQ2ZOQiArL2rVrcenSJVy6dAkGBgbw9/fH4sWL8eWXX0odjXRMvmfTjY6Oxpo1azBp0iS8fv0aQPow4/Dw8AILl+H333/H2bNnUaZMmQI/NhGRthgb6kkdgYioQImiCEEQNLa/evUKpqamEiQi0i0xKTE4FLEfJ83TcFuueb/ZO0VC9iQkKl5EUYRCkaTVLzGHlRHnzZsHf39/1e3o6GiUKlUKly9fhoeHBwwNDSEIAtq1a4dNmzZp+5JQEZSvnoTXrl2Dh4cHLC0tERYWBj8/P1hbW2PXrl149OgRNm7cmOtjpaWlYeTIkdi0aRMMDAwwbNgwzJgxQ9UADQ8Px6hRoxAcHIwOHTrkJy4RkSTCoxOljkBEVCC6desGIH01Yx8fH8jlb6sfCoUC165dQ6NGjaSKR1RksCchUfGlVCbj4qXeWj1HnU+2QU/PKMv7fX19UblyZcydOxdWVlYIDAxEly5d8Omnn2LVqlUYOXIkjI2NsX37doSFhWk1KxVN+epJGBAQAB8fH9y9exdGRm9foO3bt8fx48fzdKwNGzZAX18f58+fx+LFi7FgwQKsWbMGQPq4+f79++PLL79E9erV8xOViEgyUfEpUkcgIioQlpaWsLS0hCiKMDc3V922tLSEnZ0d/P39sXnzZqljEuk8QxEw+K8jEHsSElFBs7KyQo8ePbBu3TqIoogVK1Zg5MiR8PHxQdu2bdG8eXM0b94clStXhr5+vvqMUTGXr1fFhQsXsGrVKo3tDg4OePbsWZ6O5ejoiIULF0IQBFSpUgXXr1/HwoUL4efnhzlz5kBfXx+jR4/O9fGSk5ORnJysuh0by0/oiIiIiD5EYGAgAMDJyQkTJkzg0GKifBIgwFQBROuzSEhU3MhkctT5ZJvWz5GT0aNHo3PnzqhatSpsbGzg7u4OAJg2bRqmTZsGANi6dSs7YlGm8lUklMvlmRbf7ty5Axsbmzwdq0GDBmpz2zRs2BDz58/HxYsXsXjxYly6dCnTuW+yMmvWLEyfPj1PGYiIiIgoZ1IsXkdU3Ex+JsMNAzcMC1gpdRQiKkCCIGQ7FLiwuLq6wsXFBf7+/pg7dy4AICkpCYmJiShRogRevnyJ2bNnY+bMmRInJV2Ur+HGnTt3xowZM5Camgog/T/Do0eP8PXXX6N79+4FEiwkJASRkZEoV64c9PX1oa+vj4cPH2L8+PFwcnLK8nGTJk1CTEyM6uvx48cFkoeIiIjoY/f8+XP0798fZcqUgb6+PvT09NS+iChn9mkCzBT6MNY3ljoKERVTfn5+SEtLQ48ePQAAMTExaNSoEapXr46mTZti6NCh6NSpk8QpSRflqyfh/Pnz0aNHD5QuXRqJiYlo3rw5nj17hoYNG+KHH37I07HOnTundvvs2bOoVKkSfHx84OnpqXafp6cn+vfvj0GDBmV5PLlcrjaZNhGRVEqaGUodgYioQPn4+ODRo0eYPHky7O3t8zTag4iIiArH0aNHMXz4cBgYGAAAbG1t8e+//0qcioqCfBUJLS0tcfDgQZw8eRLXrl1DXFwcPvnkE3h4eOT5WI8ePUJAQAC++OILXLp0CUuXLsX8+fNRsmRJlCxZUm1fAwMD2NnZoUqVKvmJTURUqOwt2UOAiIqXkydP4sSJE3Bzc5M6ClGRJkCUOgIRFUMRERFo1aoVrK2tERwcLHUcKoI+aDmbJk2aoEmTJh8UYMCAAUhMTES9evWgp6eHMWPGwN/f/4OOSUSkC+KT06SOQERUoBwdHSGKLG4QfYj7hiIumz3D0stL0aVCF5SzKCd1JCIqJsqUKYNbt25JHYOKsHwXCS9cuICjR48iMjISSqVS7b4FCxbk6hghISGq71esWJHj/mFhYXmJSEQkqdCX8VJHICIqUIsWLcLEiROxatWqbOeIJvpYmRmYoYq8FixfX4NTSub7XDMWccLiMU5c+wU1S9VkkZCIiHRGvoqEP/74I7777jtUqVIFtra2avPRcG4aIiIiouKpd+/eSEhIQIUKFWBiYqKa6yjD69evJUpGpBvKmpeFl/kA1L79dZb7mL3TvyImOaYQUhEREeVOvoqEixcvxrp16+Dj41PAcYiIiIhIVy1atEjqCEQ6T5ma/XQjpiwSEhGRjspXkVAmk6Fx48YFnYWIiIiIdNjAgQOljkCk81KV2RcJzRQC8N/CJbEpsYWQiIiIKHfyVSQcN24cli1bxk+TiYiyoScTYG1qiC2+9VHV3kLqOERE+RIbGwsLCwvV99nJ2I/oY6ZIU2R7P3sSElFhO3LkCCZOnIi4uDgIgoAOHTpg9uzZkMlkUkcjHZOvIuGECRPQoUMHVKhQAdWqVdOYj2bXrl0FEo6IqCiram+BS5M/kzoGEdEHKVGiBJ4+fYrSpUvDysoq0/mnRVGEIAhQKLIvjhAVd/ei7iEwcT5+LatAkzgBvaM1/wBXm5MwhUVCItK+EiVKYOvWrXBxcUFSUhI8PDywceNGTiFHGvJVJBw9ejSOHj2Kli1bomTJklyshIiIiKiYOnLkCKytrQEAR48elTgNkW5LVaYiDrGI0wfis+igY/JOkfBN8pvCCUZEWieKIpKUolbPYSQTsq2/zJs3D3fu3MEvv/wCAIiOjkbFihVx584d1Xu5kZER3NzcEBYWptWsVDTlq0i4YcMG7Ny5Ex06dCjoPERExcad52/gt/FvrB5QF5VtzaWOQ0SUL82bN8/0eyLKH+N3ioRR8VHSBSGiApWkFNHl8l2tnuMP90ow1su6SOjr64vKlStj7ty5sLKyQmBgILp06aIqEALAs2fP8Ntvv2Hv3r1azUpFU74GoFtbW6NChQoFnYWIqFhJSVPi4asEpKQpc96ZiIiIPgr6EKAnpv+RH8+ehERUgKysrNCjRw+sW7cOoihixYoVGDlypOr+2NhYdOrUCV999RXq1q0rYVLSVfnqSTht2jRMnToVgYGBMDExKehMRETFSselJ6WOQES5EDabIySIqHCUTjVCmsIQDoYlpI5CRAXESCbgD/dKWj9HTkaPHo3OnTujatWqsLGxgbu7OwDgzZs3aNu2Lbp06YKAgACt5qSiK19FwiVLluD+/fuwtbWFk5OTxsIlly5dKpBwRERERERExU3fVy5487o8mjdqKHUUIioggiBkOxS4sLi6usLFxQX+/v6YO3cuACAuLg5t27ZF27Zt8d1330mckHRZvoqEXl5eBRyDiIiIiIjo4yBABAQZRK4ITkRa4Ofnh5EjR6JHjx4AgMWLF+P8+fOIj4/Hrl27AAA9e/bEt99+K2VM0kH5KhJOnTq1oHMQERU75UtyOgYiKn7S0tIQEhKC+/fvo2/fvjA3N0dERAQsLCxgZmYmdTyiokEEXurbICUqSeokRFQMHT16FMOHD1eN+vz2229ZEKRcyVeRkIiIcmZuZJDzTkRERcjDhw/Rtm1bPHr0CMnJyfjss89gbm6OOXPmIDk5GStXrpQ6IlGREJ9siP0KR1R9HodPpQ5DRMVGREQEWrVqBWtrawQHB0sdh4qgfK1uXKJECVhbW2t8lSxZEg4ODmjevDkCAwM/ONzJkyfRuHFjlCxZEsbGxnB1dcXChQs/+LhERIUhMpa9A4ioeBkzZgzq1q2LqKgoGBsbq7Z37doVhw8fljAZUdFyyTIScc4bsKz0RjyLfyZ1HCIqJsqUKYNbt27h9OnTMDc3lzoOFUH56kk4ZcoU/PDDD2jXrh3q1asHADh//jz279+PESNGIDQ0FMOGDUNaWhr8/PzyHc7U1BQjR45ErVq1YGpqipMnT+KLL76Aqakp/P39831cIqLCEPkmWeoIREQF6sSJEzh9+jQMDQ3Vtjs5OSE8PFyiVES6w87UDnWTmsEt7gTKpGa9gEGMQTJkRhGIBhCTHAM7U7tCy0hERJSVfBUJT548ie+//x5Dhw5V275q1SocOHAAO3fuRK1atbBkyZJsi4QbN27EuHHjEBERAblcrtru5eUFc3NzbNq0SbVcN5DeAN21axdOnDjBIiERERFRIVMqlVBkstDCkydP2GOBCEAJoxKokOyKVnGnst1Prnw7oCshLUHbsYiIiHIlX8ONg4OD4eHhobG9devWqnHv7du3x4MHD7I9Ts+ePaFQKLBnzx7VtsjISAQFBWHw4MEa+1++fBmnT59G8+bNszxmcnIyYmNj1b6IiIiI6MO1adMGixYtUt0WBAFxcXGYOnUq2rdvL10wIh0iimKO+xgq9VTfx6XEaTMOERFRruWrSGhtbY0///xTY/uff/4Ja2trAEB8fHyOnygbGxujb9++avMXbt68GeXKlUOLFi1U28qWLQu5XI66detixIgR8PX1zfKYs2bNgqWlperL0dExj8+OiIiIiDIzf/58nDp1CtWqVUNSUhL69u2rGmo8Z84cqeMR6QQRuSgSim//DItPjddmHCIiolzL13DjyZMnY9iwYTh69KhqTsILFy5g3759qlXtDh48mG2Pvwx+fn749NNPER4eDgcHB6xfvx4+Pj4QhLdzeJw4cQJxcXE4e/YsJk6ciIoVK+Lzzz/P9HiTJk1CQECA6nZsbCwLhUQkCUtjrm5MRMVL2bJlcfXqVWzduhXXrl1DXFwchgwZAm9vb7WFTIg+VsmKZMTKohBuIMJUCVgpMp+XUK58u51FQiIi0hX5KhL6+fmhWrVq+Pnnn7Fr1y4AQJUqVXDs2DE0atQIADB+/PhcHcvd3R21a9fGxo0b0aZNG/zzzz8ICgpS28fZ2RkAULNmTTx//hzTpk3Lskgol8vV5jckIpKKo7WJ1BGIiApUUlISjIyM0K9fP6mjEOmk+9H3EWyxE8EWwGexAga9zrxIWE4Zrfo+LpXDjYmo4AiCgKioKFhZWWncl5ycjPHjxyM4OBhGRkaoXbs2Nm/eXPghSWflq0gIAI0bN0bjxo0LJISvry8WLVqE8PBweHh4ZNvzT6lUIjmZK4YSke5LStWc3J+IqCgrXbo0unbtin79+qF169aQyfI1cw3RR6+0mKj6PiGVC5cQUeGYOHEiBEHAnTt3IAgCnj17JnUk0jH5LhJmSEpKQkpKito2CwuLPB2jb9++mDBhAlavXo2NGzeqti9btgzlypWDq6srAOD48eOYN28eRo8e/aGxiYi07l4kewYQUfGyYcMG/Prrr+jSpQssLS3Ru3dv9OvXD3Xr1pU6GlGRYqR8+z17EhIVD6IoIjlNmfOOH0CuL1Obmi0r8+bNQ1BQEOLj4zF16lR4e3sjPj4ea9euxZMnT1THsLOz02peKnryVSRMSEjAV199he3bt+PVq1ca9ysUees9Y2lpie7duyMoKAheXl6q7UqlEpMmTUJoaCj09fVRoUIFzJkzB1988UV+YhMRERHRB+jatSu6du2KN2/e4LfffsP//vc/NGjQAC4uLujXrx+mTJkidUSiIsHknToC5yQkKh6S05ToufKMVs+xY2hDGBno5bifIAi4fPkyHjx4gLp166Jx48aIjY2FtbU1fvzxRxw6dAjGxsaYNm0aWrdurdXMVLTka4zIl19+iSNHjmDFihWQy+VYs2YNpk+fjjJlyqj1BMyL8PBweHt7q80nOGrUKNy4cQPx8fGIiYnBpUuXMGzYMA5tISIiIpKQubk5Bg0ahAMHDuDatWswNTXF9OnTpY5FVGRYKYBOMQJqxFeCR3kPqeMQUTHj6+sLAHBxcUGzZs1w/PhxpKWl4eHDh6hWrRr+/vtvLFmyBL1798bz588lTku6JF89Cf/8809s3LgRLVq0wKBBg9C0aVNUrFgR5cuXx5YtW+Dt7Z3rY0VFRSEkJAQhISFYvnx5fuIQERERUSFKSkrCnj178Ouvv2L//v2wtbXFl19+KXUsoiLDQing8ygBf5g4o4lDE6njEFEBkOvLsGNoQ62fIz8EQUC5cuUgk8lU9Rp3d3c4Ozvj+vXrsLW1LciYVITl6xX2+vVruLi4AEiff/D169cAgCZNmuD48eN5Opa7uzt8fHwwZ84cVKlSJT9xiIiIiKgQBAcHY+DAgbC1tcWwYcNga2uLAwcO4OHDh5g9e7bU8YiKHJnIRc6IigtBEGBkoKfVr9zMRwgAgYGBAICwsDCcOHECTZs2RalSpdC6dWsEBwcDAEJDQxEaGoqqVatq7ZpQ0ZOvnoQuLi4IDQ1VLSqyfft21KtXD3/++Wemy2xnJywsLD8RiIh0Xg0HS6kjEBEVqK5du6Jjx47YuHEj2rdvDwMDA6kjERUNAgAxs83aXeSAiD5OCoUC7u7uiI+Px5IlS+Dk5AQAWLlyJYYMGYKvv/4aMpkMq1atgoODg7RhSafkq0g4aNAgXL16Fc2bN8fEiRPRqVMn/Pzzz0hNTcWCBQsKOiMRUZEVNruD1BGIiArM8+fPYW5uLnUMomIhDSJSkYLn8c9ha8qhfkRUMEQx/ROJmTNnatzn4uKCo0ePFnYkKkLyVSQcN26c6nsPDw/cunULFy9eRMWKFVGrVq0CC0dEVJTdfxGHCTuuYl7P2qhgYyZ1HCKifImNjYWFhQWA9D88YmNjs9w3Yz8iytkEByUiDU7h0J89cbxP3qZsIiIi0oY8z0mYmpqK1q1b4+7du6pt5cuXR7du3VggJCJ6R2KKApcfRSMxhfMNEVHRVaJECURGRgIArKysUKJECY2vjO35sWzZMjg5OcHIyAj169fH+fPnc/W4rVu3QhAEeHl55eu8RNpQyaoS2rzuiCWPZegZ/XbusMxmEZP/N/w4MS2xcMIRERHlIM89CQ0MDHDt2jVtZCEiIiIiHXPkyBFYW1sDQIEPUdq2bRsCAgKwcuVK1K9fH4sWLYKnpydu376N0qVLZ/m4sLAwTJgwAU2bNi3QPEQfykDPAKZKE5RSqJcFlRAgvDcpYUZvDTGzyQqJiIgkkK/hxv369cPatWu5ih0RUS50XHpS6ghE9A7OFZo3zZs3V33v7OwMR0dHjdUVRVHE48eP83zsBQsWwM/PD4MGDQKQPqF6UFAQ1q1bh4kTJ2b6GIVCAW9vb0yfPh0nTpxAdHR0ns9LpE0Z84G9SyHIoM+VjImISMflq0iYlpaGdevW4dChQ6hTpw5MTU3V7ufiJURERETFj7OzM54+farRy+/169dwdnaGQpH7IkhKSgouXryISZMmqbbJZDJ4eHjgzJkzWT5uxowZKF26NIYMGYITJ07keJ7k5GQkJyerbmc3pyJRgchkbLGY6YBjIiIi3ZKnIuGDBw/g5OSEGzdu4JNPPgEA3LlzR22f9z9ZJiL6WJUtYSx1BCKiAiWKYqZtvbi4OBgZGeXpWC9fvoRCoYCtrfqqrra2trh161amjzl58iTWrl2LK1eu5Po8s2bNwvTp0/OUjSi/IuIicMf4XwQLSlRIFlAxJf3/iwIyGPz3rx6U0oYkIiLKQp6KhJUqVcLTp09V89H07t0bS5Ys0WjcERERYGViKHUEIqICERAQACD9w+DJkyfDxMREdZ9CocC5c+fg5uam1Qxv3rxB//79sXr1apQqVSrXj5s0aZIqP5Dek9DR0VEbEYkQFhOGm6Y3cNMU6BoNVZFQKaTPQKhkkZCItEwQBERFRcHKykpt+6tXr9C6dWvV7YSEBDx48ACRkZGquYeJ8lQkfH9+jb/++gvx8fH5PnmLFi3g5uaGRYsW5fsYRES66lVccs47EREVAZcvXwaQ3ha8fv06DA3ffghiaGiI2rVrY8KECXk6ZqlSpaCnp4fnz5+rbX/+/Dns7Ow09r9//z7CwsLQqVMn1TalMr3Yoq+vj9u3b6NChQoaj5PL5ZDL5XnKRpRfiYq3KxXL3/nTSfnfcOO0/3oUEhEVtpIlS6r1xJ83bx6OHTvGAiGpydechBkym5S3IPn4+GDDhg1q2zw9PbF//36tnpeIqCA8jUmSOgIRUYHIGEUyaNAgLF68GBYWFh98TENDQ9SpUweHDx+Gl5cXgPSi3+HDhzFy5EiN/V1dXXH9+nW1bd999x3evHmDxYsXs3cg6YTEtHeKhO90GFRCpvYvEZE2zZs3D0FBQYiPj8fUqVPh7e2tsc/atWsxa9YsCdKRLstTkVAQBI15aLQ9B2Hbtm0RGBious1PgomIiIik8W6brCAEBARg4MCBqFu3LurVq4dFixYhPj5etdrxgAED4ODggFmzZsHIyAg1atRQe3zGUKr3txNJRa1I+E5/CsV/xUEF9Ao7EhEVFlEE0rTcSUDfCMhFDUYQBFy+fBkPHjxA3bp10bhxYzg5OanuP336NKKiotCxY0cthqWiKM/DjX18fFSFuqSkJAwdOlRjdeNdu3bl+phpaWkYOXIkNm3aBAMDAwwbNgwzZsxQFR/lcnmmQ06IiIiIqPD9/fff2L59Ox49eoSUlBS1+/LSBgTS57d+8eIFpkyZgmfPnsHNzQ379+9XzXf96NEjyGTseUVFR2JqVj0J/1vARJAB/xUPh7+Q4Zy8CnoNnFqYEYlIW9KSgHVttXuOwfsBg5wXR/T19QUAuLi4oFmzZjh+/LhakXDt2rUYMGAA9PU/aHApFUN5ekUMHDhQ7Xa/fv0+OMCGDRswZMgQnD9/Hn///Tf8/f1Rrlw5+Pn5AQBCQkJQunRplChRAq1atcL333+PkiVLfvB5iYiIiChvtm7digEDBsDT0xMHDhxAmzZtcOfOHTx//hxdu3bN1zFHjhyZ6fBiIL0dmJ3169fn65xE2qLek/Btb5+3C5e83eaYKuChzBjVS1UvvIBE9FF6dwRoXFwctm/fjgsXLkiYiHRVnoqEBT3EBAAcHR2xcOFCCIKAKlWq4Pr161i4cCH8/PzQtm1bdOvWDc7Ozrh//z6++eYbtGvXDmfOnIGeXuZd9ZOTk5Gc/HaxgNjY2ALPTESUG6ZyfjJHRMXLjz/+iIULF2LEiBEwNzfH4sWL4ezsjC+++AL29vZSxyOSXFbDjTPmIkwT9FQ9CQFA0O4U70RUmPSN0nv6afscuRAYGIhp06YhLCwMJ06cUFssdtu2bahduzZcXV21FJKKMsn/gm3QoIFaVbthw4aYP38+FAoF+vTpo9pes2ZN1KpVCxUqVEBISIja0t3vmjVrFqZPn6713EREOXEuZZrzTkRERcj9+/fRoUMHAOkLj8THx0MQBIwbNw6tWrViG4w+ekmKt/OR5WbhEgFKEFExIQi5GgpcGBQKBdzd3REfH48lS5ZoDDXOGLlJ9D7Ji4R54eLiglKlSuHevXtZFgknTZqEgIAA1e3Y2FiudkdEklAo2T2AiIqXEiVK4M2bNwAABwcH3LhxAzVr1kR0dDQSEhIkTkckvSwXLvmvU0Sa8LZIeNVYxF3D19gfuh9tnbU8jxkRfTREMf2Xz8yZMzO9//Tp04UZh4oYyYuE586dU7t99uxZVKpUKdPhxE+ePMGrV6+yHc4il8u5AjIR6YR/n3K6AyIqXpo1a4aDBw+iZs2a6NmzJ8aMGYMjR47g4MGDWX6AS/QxsTG2gUWaOYzENzDOpCfhu6sbb7NSIkz+CEdOfsMiIRER6QTJi4SPHj1CQEAAvvjiC1y6dAlLly7F/PnzERcXh+nTp6N79+6ws7PD/fv38dVXX6FixYrw9PSUOjYRERHRR+fnn39GUlL6cMpvv/0WBgYGOH36NLp3747vvvtO4nRE0hvpPhIvj0Sge9w+te2q4cYCV+smIiLdJXmRcMCAAUhMTES9evWgp6eHMWPGwN/fH0lJSbh27Ro2bNiA6OholClTBm3atMHMmTPZU5CIiIhIAtbW1qrvZTIZJk6cKGEaIt0kiJrzDGYUBxVgkZCIiHSXpEXCkJAQ1fcrVqxQu8/Y2BjBwcGFnIiIiIiI3hUbm/upEywsLLSYhKhoEAXNbQqkb3x/4RIiIiJdInlPQiIiIiLSXVZWVhCETKoe7xBFEYIgQKFQFFIqIt0lEzUXLhM53JiIiIoAFgmJiLSkip251BGIiD7Y0aNHpY5AVGQEhATgquUlPDVWYvjLtwVBZSarGxMREekaFgmJiLTEQI9/CBBR0de8eXOpIxAVGZeeX8Irw1dQvtcEEP8bbvzu6sZERES6hkVCIiItefgqHh5VS2Nyx2ooX9JU6jhERAXixIkTWLVqFR48eIAdO3bAwcEBmzZtgrOzM5o0aSJ1PCJJJaYlAgDk76xdooTwduES9iQkIi3btWsXfvjhBygUCiQlJaFMmTI4dOgQZDLt//4JCQlBUlIS2rZtCwAICwuDm5sboqOjP+i4cXFxMDc3h5jJdA7Tpk1DdHQ0Fi1a9EHnyLBo0SL06dMHdnZ2We7Ts2dPBAQEoGHDhgVyzrzau3cv9uzZg19++aXAj813KSIiLXmTlIZD/0biTVKa1FGIiArEzp074enpCWNjY1y6dAnJyckAgJiYGPz4448SpyOSliiKSFIkAQAM3/k7VoSAjJssEhKRNj19+hT+/v7YtWsXrly5glu3bmHevHk5zi1cUEJCQrB///5COZe2LFq0CM+ePcvy/vPnz+P169cFWiBMS8vb34sdO3bExYsXcffu3QLLkIHvUkRERESUK99//z1WrlyJ1atXw8DAQLW9cePGuHTpkoTJiKSXokyBUkzvQih/r7OLmMnqxsYiYKSQwcKQq4ITUcF4/vw59PT0YG1trdr2ySefqIqETk5O+O6779CoUSM4Ojpi5cqVCAwMRMOGDeHk5IStW7eqHhccHIxPPvkEtWrVQvPmzXHz5k3VfT/99BOqV6+OmjVrwtvbGzExMbhy5QpWrlyJLVu2wM3NDTNmzFDtP3XqVNSpUwcVK1bEvn37VNsvXLiAVq1aoW7dunB3d8eOHTtU961atQqVKlWCu7s7Fi5cmO3zfvz4MVq1agVXV1d06tQJr169AgCkpqZi4sSJqFevHtzc3NCrVy9ERUUBANasWYNq1arBzc0NNWvWxLlz5zBjxgxERESgd+/ecHNzw5UrVzTOtWrVKvTt21d128fHB1988QVat26NypUro1u3bkhJSQGQ3gNy8ODBqFGjBmrUqIHp06erHteiRQuMHj0aDRs2RJs2bbB+/Xp4eHjg888/R7Vq1dCoUSPcvHkTXbt2RdWqVdGmTRvExcWpHt+rVy+sWbMm2+uSHxxuTERERES5cvv2bTRr1kxju6Wl5QcPJSIq6l4nvFF9rz7cWPa2SPhOT8LJz/RwW88RPb77s9AyEpH2bfhnAzbe3JjjftWsq2Fp66Vq20YdHoWbr29muv+AagMwsPrAbI9Zq1YtNGnSBOXLl0fz5s3RqFEj9O3bFw4ODqp94uPjcfr0ady7dw81a9bEt99+izNnzuDChQto3749+vTpg8jISPTt2xchISGoWbMmtmzZgh49euCff/7B/v37sW7dOpw5cwZWVlbw9/fHxIkTsWLFCgwdOlRt6G9YWBhiYmJQq1YtTJ8+Hfv378eYMWPQvn17REdHw9/fH/v27YO9vT1evnyJTz75BI0aNUJUVBSmTp2Ky5cvw97eHt988022z/vEiRO4du0a7OzsMHz4cEyaNAm//PILfvrpJ5iamuL8+fMAgJkzZ+K7777DsmXLMH78eNy6dQv29vZITU1FcnIy6tevj3Xr1mHbtm1wc3PL9FwhISEYN26c2rYrV67g6NGjkMvlaNasGXbu3InPP/8cM2fORHJyMq5du4bExEQ0adIErq6u6N27NwDgzp07OH78OAwMDLB+/XpcuHAB169fR7ly5dC/f3906tQJp0+fhq2tLTp27IgNGzZgxIgRAICGDRsiICAg2+uSHywSEhEREVGu2NnZ4d69e3ByclLbfvLkSbi4uEgTikhH/Pvwger7rHoSvj/cWAbN+bWIqGiLT41HZEJkjvvZmWrOefc6+XWWj41Pjc/xmDKZDDt37sStW7dw7Ngx/PXXX/jhhx/w999/o2LFigCgKlBVrFgRRkZG6NGjBwCgbt26eP36NaKjo3Hu3DnUrFkTNWvWBAB4e3tjxIgRCA8Px6FDh9C7d29YWVkBAIYNG4aePXtmmcnIyAjdunUDkF7Yun//PgDg9OnTePDgAdq1a6e2/+3bt3Hjxg20a9cO9vb2qnPMmjUry3N06NBBNYegv7+/6ny7d+9GTEwMdu7cCQBISUlRtWFat26tKsS1a9cOlStXzvH6AsCTJ09ga2urtq1r164wMTEBANSrV0/1HA8dOoT58+dDJpPB1NQUAwYMwMGDB1U/g379+qmNzGjYsCHKlSsHIP3nkZqaqjrXp59+qja82M7ODk+ePMlV5rxgkZCISEtsLYwAAB2XnpQ4CVHRFza7g9QRCICfnx/GjBmDdevWQRAERERE4MyZM5gwYQImT54sdTwiSQkx91XfG4lv5/9SvjMnofK9IqEelCCi4sXUwBSlTUrnuJ+13DrTbVk91tQg9wshurq6wtXVFV988QXatm2LPXv2qHqdGRkZqfbT09NT3RYEAYIg5Hl+vJzmO5TL5ap99PT0oFAoAKTP41q9enWcPn1a4zE3btzI0zmyyiSKIpYuXYo2bdpo7LNz505cvHgRISEhaN++Pb7//nv06dMnx2ObmJggKSlJbdv71zSra/j+8zAzM8v2ONkdNykpCcbGxjnmzSsWCYmItMTGXC51BCKiAjVx4kQolUq0bt0aCQkJaNasGeRyOSZMmIBRo0ZJHY9IUinC24Kf4Tu1PxECxP+Kg2nQU3uMwJ6ERMXOwOoDcxwWnJX3hx/nVXh4OMLCwtC4cWMAQFRUFEJDQ1GhQoU8HadBgwa4fv06bty4gRo1amDr1q1wcHCAg4MDPDw8MH78eAQEBMDCwgKrVq1SFeEsLCzw8OHDXJ2jUaNGCA0NxaFDh+Dh4QEgfdhutWrV0KpVK8yaNQvPnj2DnZ0dVq5cme2x9u3bh+fPn8PW1hZr1qxRHc/LywsLFy5EkyZNYGJigoSEBISGhqJKlSoICwtD3bp1UbduXbx8+RLnz59Hnz59YGFhgZiYmCzPVatWLdy+fRuOjo45PkcPDw+sXbsWzZs3R0JCAjZt2oSvv/46V9cnJ//++y9q165dIMd6F4uERERaEpOQKnUEIqICJQgCvv32W3z55Ze4d+8e4uLiUK1aNZiZmSExMVErn2gTFRUpgkL1vVwEBEGEKP5XBvzvry7RUAb8N2LwNyslwvRf4e9TUzCj8QyN4xER5VVaWhpmzJiB0NBQmJiYIC0tDQMHDkSXLl3ydBwbGxts2bIFAwYMQFpaGkqUKIEdO3ZAEAS0a9cON27cQMOGDSGTyVCrVi0sX74cQPqw202bNsHNzQ3dunXDgAEDsjxHiRIlEBQUhAkTJmD8+PFITU1FuXLlsHv3btSoUQPTpk1D06ZNYWZmpho+nJWmTZuib9++CA8PR6VKlbB+/XoAwNdff62aazCjF9/XX3+NihUrYvDgwXj9+jX09fVhY2ODwMBAAMDo0aPh5+cHExMTrF+/XmNuwh49eiA4OFhViMzO5MmTMXr0aNWw7Z49e6JXr145Pi439u/frxoqXpAEURSL9cdXsbGxsLS0RExMDCwsuHIYERWeG+ExHGpMVEA43DhvCrP9k5ycjGXLlmHu3Ll49uyZVs9VENg2JG05fSkIB09+gwSIqJokoG6qAJmeiER9I9wyd4J7zC0EW9WHx9P0CfS/sVcgTA7oy/Rxuf9lidMTUV4lJSUhNDQUzs7OasNCqXiLi4tDo0aNcObMGZia5n4IeEF6+fIlWrVqhb///huGhoZq92X1usxt+0eW5T1EREREREgvBE6aNAl169ZFo0aNsHv3bgBAYGAgnJ2dsXDhQo2V/og+NqUNbdDntQz9X8tQJ1GAEgIEPQAyAaIgQBCgGnZMRERFk5mZGRYuXIjQ0FDJMty/fx8rV67UKBAWBJ1/l1q2bBmqVq0KY2NjVKlSBRs35ryUOBEREREVnClTpmDFihVwcnJCWFgYevbsCX9/fyxcuBALFixAWFhYgc2xQ1RUvQh/CYXy7ZBjhZA+/6AoAOJ/w9zeX7iEiIiKntatW6NGjRqSnb9+/fpo1KiRVo6t03MSrlixApMmTcLq1avx6aef4vz58/Dz80OJEiXQqVMnqeMRERERfRR27NiBjRs3onPnzrhx4wZq1aqFtLQ0XL16Nc8rDhIVV1FPI2AuvLOSMf5bXRMC8N/34P8XIiLSYZIWCTdu3Ihx48YhIiICcvnbVUC9vLxgbm6O+/fv44svvkDv3r0BAC4uLrhw4QLmzJnDIiER6TwjA/YWIKLi4cmTJ6hTpw4AoEaNGpDL5Rg3bhwLhETveB33GqVlAgxFEQIEKP7rNaiEoCoUiro/kIuI8qiYL/NARcyHvh4lLRL27NkTo0ePxp49e9CzZ08AQGRkJIKCgnDgwAFMmDBBYwJQY2NjnD9/HqmpqTAwMNA4ZnJyMpKTk1W3Y2NjtfskiIiyULG0udQRiIgKhEKhUJv3Rl9fH2ZmZhImItI9IcIFzHFKH2488ZkMFcT/CoKCoBpuzFICUfFhYGAAQRDw4sUL2NjY8IMzkpwoinjx4gUEQci0XpYbkhYJjY2N0bdvXwQGBqqKhJs3b0a5cuXQokULeHp6Ys2aNfDy8sInn3yCixcvYs2aNUhNTcXLly9hb2+vccxZs2Zh+vTphf1UiIiIiIotURTh4/P/9u48PIoqbRv4XVW9ZN8hBAhhNaCssgQYHHFEwMEFdRDREUTFFZdh3PAVcXlnQERxXlRQZPNzFMVBVFBU1IwLERQSBURkD4QkJED29Frn+6OT7lS6k3RCuivL/buuQPfpU9VPnT5VXfX0qapb3Gd+WCwW3HXXXV539duwYYMe4RG1CBVKuftxhAr3SEKB6lOO67gmITOHRK2Soijo2rUrTpw4gaNHj+odDhEAQJIkdO3aFYqiNGl63a9JOGvWLAwfPhw5OTno0qUL1qxZg1tuuQWSJGHevHnIy8vDyJEjIYRAYmIiZsyYgUWLFkGWfQ/Vnzt3LubMmeN+XlJSguTk5GAtDhGR256cYr1DICJqFjNmzNA8/+tf/6pTJEQtV4Vscz+OVAGhVCUGIePXiF64oPQQfg9LwSS9AiSiZhcREYE+ffrAbrfrHQoRANcI16YmCIEWkCQcMmQIBg0ahDfffBPjx4/H3r17sXnzZgCukYarVq3Ca6+9hvz8fCQlJeH1119HZGQkOnTo4HN+ZrNZc31DIiIiIjo3q1ev1jsEohbPItVIEjoBq1I1RFACvou/EN/FDYHJYtEpOiIKFEVRzikpQ9SS6J4kBIDbb78dL730EnJycjBu3DivkX9GoxFdu3YFAKxbtw5XXHFFnSMJiYiIiIiIgq16JKFJBUKEBMCKcFEOs7PqNORa1ysbWCmhg11GTK8xQY6UiIjItxaRJLzxxhvx0EMPYcWKFXjzzTfd5b///jt27NiBtLQ0nD17Fi+++CL27NmDtWvX6hgtERERERGRVvVIwkjV9VyFhChRCis8I4xq5glvKJJRCRO6j58dzDCJiIjq1CKG40VHR+O6665DREQEJk+e7C53Op144YUXMGjQIFx22WWwWCzYtm0bunfvrlusRERERERENalChUV2AHCdagwAqvuOxp7MYM3HAKBARVlFRXCCJCIiakCLGEkIADk5Objppps01xPs168fMjMzdYyKiKjpeneM0DsEIiIiCoJSWymE5LoGYVTVSELhx3gMGQLl5UwSEhFRy6B7kvDs2bNIT09Heno6Xn31Vb3DISJqNiFGXsCYiIioPThrOet+HOmsHkEoQ4YEQ81koXYgIWSoqLCW4qzlLGJDYoMRKhERUZ10TxIOGTIEZ8+exXPPPYfU1FS9wyEiajYnznJkABERUXtw1upJEkZVnW4sJAmS8D7FuFqZLPBUJydOHnsUKQVDsOn6NUGIlIiIqG66JwmPHj2qdwhERAFRVGHXOwQiIiIKgn5x/TDl1GCcp/6CmKokYblkBATgkD1JwprpwnAVOGMAIKk4WX4sqPESERH5onuSkIiordt03xj07xKtdxhEREQUICGGEMQ7wnCBzZMGzFeisTcuHBV1XH5EgoTOduCwGbBLp2FxWBBiCAlWyERERF5axN2NiYiIiIiIWjMJqldZYbgZFSYDIFyvCaGt09lelVSUBI6WHA10iERERPVikpCIiIiIiOicCe0zyTOqUAgVQnV41UmqcWWSnNKcQAZHRETUICYJiYgCJCHCjLvH9kJChFnvUIiIiCiAvj3xLfaHFiAzVMAm1UgECtTOC2rEOj2P8ysKAhYfERGRP3hNQiKiAOkUHYJl6YewLP2Q3qEQkR+OLpykdwhE1Er9+7d/4/vYw/gKwGvZMkwCACQYVUCqJ0kY45RQnUU8Vc4kIRER6YtJQiKiACmzOvQOgYiIiIKgzFbmfhxeddlBAUCpdZlCUSthGFNjJOGpivzABEdEROQnnm5MRBQgRwvL9Q6BiIiIgkDUOKdYRvW1CCXflWuIrfF7YgFPNyYiIp0xSUhERERERNTc6jvPuEqkCshV1QormSQkIiJ98XRjIiIiIiKi5iZ7koSjKrYhI2w0LrJ8o60CCXPygQgnkHLRvGBHSEREpNGiRxJu2LABl112GTp06ICoqCiMGjUKn332md5hERERERER1a/G2caXl32CuQX/QKrtd69qF1oUpNoURDnDghgcERGRtxadJPzmm29w2WWX4ZNPPsHOnTtxySWX4Morr0RmZqbeoRERNcigNHwtIiKi9u6VV15B9+7dERISgrS0NOzYsaPOuitWrMBFF12E2NhYxMbGYty4cfXWJ9KXZyShBCBMVKKuE5CFBJSXnA1KVERERHXRNUn45ptvIj4+HlarVVM+efJk3HzzzXjppZfwyCOPYPjw4ejTpw/++c9/ok+fPvj44491ipiIyH99O0XpHQIRUYv27rvvYs6cOZg/fz527dqFQYMGYcKECTh16pTP+unp6Zg2bRq+/vprZGRkIDk5GePHj0dOTk6QIydqmPBx4xJZaGvUVF7MJCEREelL1yThlClT4HQ68dFHH7nLTp06hc2bN+PWW2/1qq+qKkpLSxEXFxfMMImIiIgoAF588UXMmjULM2fOxPnnn4/ly5cjLCwMq1at8ln/3//+N+655x4MHjwYffv2xRtvvAFVVfHll18GOXKihimS6lUmCafncdX/ZxSBXaECXxX8F8dKjgUpOiIiIm+6JglDQ0Nx4403YvXq1e6yt956C926dcPYsWO96i9evBhlZWW4/vrr65yn1WpFSUmJ5o+ISA+/5XH7Q0RUF5vNhp07d2LcuHHuMlmWMW7cOGRkZPg1j4qKCtjtdv6ATLqLMEYgRJUR7skBwqB6Jwlrjx4EgF1hAosTVay3bMbO/J2BC5KIiKgBul+TcNasWfj888/dp4msWbMGt9xyCyRJOzz/7bffxtNPP4333nsPHTt2rHN+CxYsQHR0tPsvOTk5oPETEdXF4azrykNERFRYWAin04nExERNeWJiIvLy8vyax6OPPorOnTtrEo218QdkCobXLnsNf8vtgxXHFXeZJLz3A2R4Jw5jHJ7jnoKKgsAESERE5Afdk4RDhgzBoEGD8Oabb2Lnzp3Yu3cvbrnlFk2ddevW4fbbb8d7771X704gAMydOxfFxcXuv+PHjwcweiIiIiLSw8KFC7Fu3Tp88MEHCAkJqbMef0CmYFFqJQB9HWgJ4V0aVWOyImtR8wZFRETUCAa9AwCA22+/HS+99BJycnIwbtw4zc7bO++8g1tvvRXr1q3DpEmTGpyX2WyG2WwOZLhEREREdI4SEhKgKAry8/M15fn5+ejUqVO90y5evBgLFy7E1q1bMXDgwHrrzp07F3PmzHE/LykpYaKQAkIS2iShpKowKBIkSYLTKaAKgWiUuUcYSrKAEFKtm5kQERHpR/eRhABw44034sSJE1ixYoXmhiVvv/02pk+fjhdeeAFpaWnIy8tDXl4eiouLdYyWiIiIiM6VyWTC0KFDNTcdqb4JyahRo+qcbtGiRXj22WexZcsWDBs2rMH3MZvNiIqK0vwRBYJc63qDsgAUWYIsAUaDBKNBhiIrMMABAxw6RUlERFS3FpEkjI6OxnXXXYeIiAhMnjzZXf7666/D4XDg3nvvRVJSkvvvgQce0C9YIiI/dU8I1zsEIqIWbc6cOVixYgXWrl2Lffv24e6770Z5eTlmzpwJAJg+fTrmzp3rrv/cc89h3rx5WLVqFbp37+7+AbmsrEyvRSACACzLWoaNsflYluAZTVj7moSyBEQo5TDJdphkO0Sta7ATERHprUWcbgwAOTk5uOmmmzSnCqenp+sXEBHROYowt5hNLBFRizR16lQUFBTgySefRF5eHgYPHowtW7a4b2aSnZ0NWfb8pr1s2TLYbDb85S9/0cxn/vz5eOqpp4IZOpHGtznfYnd4OSQB3F3oKlPhnQSUJAkJhjMAgMPObl7XMRQ+7n5MREQULLofwZ49exbp6elIT0/Hq6++qnc4RETNJq/YoncIREQt3uzZszF79myfr9X+wfjo0aOBD4iomag+blICANW5Q7tkgAJb8AIiIiJqgO5JwiFDhuDs2bN47rnnkJqaqnc4RETNprDMqncIREREpBNfYwJrji10QglWKERERH7RPUnIX4SJiIiIiKjNqXHNQTkkBKrFAjkiwl1mkwwIh+si8eFOwCEZYFbM3vMhIiIKEt2ThEREbd2m+8agf5dovcMgIiKioPKMJTQmJUG1WKBIntGDVskIAOhpk7DiuIJvDSNwz8y/BT1KIiKiai3i7sZERERERERtiah5qCXLkMPC4DQZkRcRiryIUJTI4doJJO1NTIiIiIKNIwmJiAIkJsyIqcOSERNm1DsUIiIiCjKn5EoSSgbtIVd2TKTr9XLtNQklMElIRET6YpKQiChAusaG4bm/DNQ7DCIiItKBKskwdUuBZPB9g5LqJGI1mUlCIiLSGU83JiIKEIvdid/zS2GxO/UOhYiIiILMaHBCMho0NzCpqfruxvkGgeUJKrbGHMbHhz4OZohEREQaHElIRBQgB0+V4Yql3+kdBhEBOLpwkt4hEFEbNqrzKIQc3QcjnFBMgBBAdHg5gIg6p6keSVgmA99ECABnsKdwD67sdWVwgiYiIqqFIwmJiIiIiIjOwX1D7sMdhWbMLpSxM6YfTkfE4ue4lHqnEcL3CEMiIiK9cCQhERERERHROXCqqvuagu8kXobTETG43Ppp/dNIHK9BREQtC7+ZiIiIiIiIzoHFboehKkk4yJaJro5sDLbu8qonajxWBQ/FiIioZdH1m2ns2LF48MEH9QyBiIiIiIjonJRZKtwjCYdbMzCz5HWYJR83LhOeNKGkSRlWveyjjIiIKFha/M9X+/btw1VXXYXo6GiEh4dj+PDhyM7O1jssIqIG9e8SrXcIREREFAQPfzsHs5PtuKerE7LkBAQgS/Vf2UkWrqQir0xIREQtRYtOEh46dAhjxoxB3759kZ6ejl9++QXz5s1DSEiI3qEREREREREBAIotZ1GsAMUKYIITigBkxTtJKMuew6/qJCEREVFLoXuS0OFwYPbs2YiOjkZCQgLmzZsHUTUM/3/+53/w5z//GYsWLcKQIUPQq1cvXHXVVejYsaPOURMRNezgqVK9QyAiIqIgcKqehJ8inDA6fY8QlCDBbJRhNspQeGoxERG1MLonCdeuXQuDwYAdO3bgX//6F1588UW88cYbUFUVmzdvxnnnnYcJEyagY8eOSEtLw8aNG+udn9VqRUlJieaPiEgPFjtHCBAREbUHQvVcf1B2Zwe904RSjTsaK8LHNQuLjgO2imaOjoiIyD+6JwmTk5OxZMkSpKam4qabbsJ9992HJUuW4NSpUygrK8PChQsxceJEfP7557jmmmtw7bXX4r///W+d81uwYAGio6Pdf8nJyUFcGiIiIiIiam9qjiSsvoGJIvseS1i7XrgKjCqTMLoc6Hc8E/j1w4DGSkREVBfdk4QjR46EJHm+LEeNGoUDBw7A6XT9snb11Vfjb3/7GwYPHozHHnsMV1xxBZYvX17n/ObOnYvi4mL33/HjxwO+DERERERE1H4J1XPqsMEgw6C4Tiv25jnuUaquSZjokHBfoYwHCoFrnGag/FSgwyUiIvKp/ltu6SghIQEGgwHnn3++prxfv3747rvv6pzObDbDbDYHOjwiIiIiIiIAgFpzJKF7BKGP041rjiT0unFJ1Wv2ymaOjoiIyD+6jyTcvn275vkPP/yAPn36wGw2Y/jw4di/f7/m9d9//x0pKSnBDJGIqEmSY8P0DoGIiIiCQPi6U7Gvs41rjiSE9zQlFTY4LWXNFxgREVEj6D6SMDs7G3PmzMGdd96JXbt2YenSpXjhhRcAAA8//DCmTp2KP/7xj7jkkkuwZcsWfPzxx0hPT9c3aCIiP0SHGfUOgYiIiIJACOGVFIyy9obDJCE2dhTy8zcBACTFc/ilQHvjEgckbHda8fORHZjtsCDEEBLwuImIiGrSPUk4ffp0VFZWYsSIEVAUBQ888ADuuOMOAMA111yD5cuXY8GCBbj//vuRmpqK//znPxgzZozOURMRNayg1Kp3CERERBQENmEHJMDguTQhFITigoGvQJIkWK2nUFS0A506XYUTthLX6wfsmnmsjRX4PMoOIBdjC/dgWKdhQVwCIiIinZOENUcELlu2zGedW2+9FbfeemuQIiIiaj75JRa9QyAiIqIg+INlNJLLP8FZxQiEVv9IKLlv0Ni71yOorDyGkJDOyDm5DgCgCO2Pid1tnsdZBVlMEhIRUdDpPpKQiIiIiIio1Tr0NW478xUsDhmlkglqFzuEqsLUtau7iiwbER7eG06n56YkRqMTqJEYPM8iAXANRcw8lRms6ImIiNx0v3EJERERERFRq7X1KYSICgCAU5JhSkmBKTkZhoQO9U7WRToBxSwQanaNKExyAJFVlynMOpUF1dfNUIiIiAKIIwmJiAJs031j0L9LtN5hEBERUYAI4RoBqEIBZBmSyQTJ9+2N3aLUMoRKZ2GVQlAJMyRI6GMFdoUBJbYS5JTlIDkyORjhExERAeBIQiKigIkMMWBcv46IDOHvMURERG3VL5IDP4UAuQYBmyYvWH+S0KqEQYaALDx3O4l0eqaxO+2+JiMiIgoYHrkSEQVISnw43pgxXO8wiIiIKIDeMljwaUcZgIq5uQLucwek+pOEB8KS0Eu14tfIbkg5XuH1uoDwMRUREVHgcCQhEVGA2J0qTpdZYXfymkJERERt1QnJdSFBSQBxDsVd3tDpxjZJxuG4KJSZjTWmqaHw9+YMk4iIqEFMEhIRBcj+vFIM/d+t2J9XqncoREREFAhOB45Lrh8D45xAgij3vCb5OtTyjA6U4JrOUPMWxzVrpi8AKouaK1IiIqIG8XRjIqIAu2Lpd3qHQNQuHF04Se8QiKidKS7LQ5HkSvwl2oFwVKL6p0HJx3gMIZzuxwbZNZ0iHO4yRQBGFZAlQFJVoOwUEBoTsPhbleM/AqZwIPF8vSMhImqzmCQkIiIiIiJqgsz8H92Pu9klSJrrCHqfbixq3KQkKlRBhSzB7DlDGbedkXHbGaCLWSAuVgEsRQGIuhUqyQU+ecj1eMZHwG+bgT4TgPB4feMiImpjmCQkIiIiIiJqgp2ndrkf97PUSgr6vHGJ5zrFMlQYFQkCDq9aNkfVnY15urHL2SOex58+CpzaB5z6FRj/v/rFRETUBvGahERERERERE3wU8Fu9+NUC+B0eg6vfN24RJbNnidVZx4bfCQJ7U6BktOlgKW4+YJtzSwlnsen9rn+P5mlSyhERG2ZrknCsWPH4sEHH9QzBCKigOmXFKV3CERERBQg5fZy/FriGuHW1QZEqa6kYFTkAABAfPxYr2kUJRR9U59F39T/RUivPgAAY7T3/kKxasAaox23/fI6VKF6vd7uWH3cBC5pUPDjICJq41r0SEJJknz+Pf/883qHRkTUIEX2dZoRERERtQU/F/wMter04b5VpxoLSUJq6jMYeuE7CAlJ8jldVNRAREUNgJIYB1P37jAkJHjVebmjhBUdgR3OPHx48MPALURr4evajBEdgx4GEVFb16KThLm5uZq/VatWQZIkXHfddXqHRkTUoCOF5XqHQERERAFSaa9EvDMMnezAeVZXmYAESZKhKGENTi9UByTFddcSuepK8VLV0dnYMs8PjZ8e+bRZ426VrCXeZUIA3/8L+PBewGkPfkxERG2Q7klCh8OB2bNnIzo6GgkJCZg3b577rl+dOnXS/H344Ye45JJL0LNnT52jJiJqWLnV+xpDRERE1DZcmnIpbj89GC/mKBhTLkOSAcUsGp6wiio8+wmyCTCEeZKEfS2eepYzh4Dcn5sr7NbJ4iNJaCkG9mwA8vYAZw4HPyYiojZI9yTh2rVrYTAYsGPHDvzrX//Ciy++iDfeeMOrXn5+PjZv3ozbbrtNhyiJiIiIiIi07KprBJskA0qIgKI4/Z5WiLpHv9W8YEmm9RR+/ujupobYuhUeBH58Aygv8H7tpOfO0lBMwYuJiKgNM+gdQHJyMpYsWQJJkpCamordu3djyZIlmDVrlqbe2rVrERkZiWuvvbbe+VmtVlitVvfzkhIfvzoRERERERGdM1dScJ+xG3oac3A6woRUP6cUNUYShooKWCUzDJITFpggAQhRAUvVkI6bzSWY9t08PNLlMijdLwKktnvdY6ddhWKUXSMF/1PPAJHKoqDFRETUXug+knDkyJGQanzJjRo1CgcOHIDTqf0VbtWqVbjpppsQEhJS7/wWLFiA6Oho919ycnJA4iYiIiIiovZNqkoS5hpjcTa+ErLZ/+sR9+w5B5JkREq3OxDnPINOjlxUn6wsQcL0MxIiqg6JhCTh7UMb8f3WR4ETPzXzUrQMQhXYteUoPlj0E04eOAtse7kxUwcsLiKi9kT3kYT++Pbbb7F//368++67DdadO3cu5syZ435eUlLCRCER6SIpuv4fNYiIiNotVQXsFYC9ErCXu/63VQAOC9B5MGAK1zvCBm07uQ0fxBzCl6oTSc5i9JclKLL/I/yiIvtj2NB3IUkKSuA6xbjm1GPLZPyhTODpJBWHza6yAocdOPUrcOgrIKYbMHhacy6SrnZ++Dv27z2JeBuQ9eb3iIrcBFmREBZh1Ds0IqJ2Q/ck4fbt2zXPf/jhB/Tp0wdK1Z2+AGDlypUYOnQoBg0a1OD8zGYzzGZzs8dJRNRY8RHcFhERURtWXgicPgjYqpJ81Qk/W0VVArAqCeh+vcLz2GGpe74RHYHJy4Hw+OAtSxPkl+fjcEgZACCq0gKTUYES17iYJUmp+t/13CkUzetGSJhYIuHVDgJjyoCk0zbkbn0FSTGhEJIEqd+VgDni3BdGR5ZyOz5Z8QM+iDPg2AUREMKOZMtx9Dxuh2IDujsUGA01ToCLSQaKjmtnIgRw6GugQ18gKim4C0BE1IboniTMzs7GnDlzcOedd2LXrl1YunQpXnjhBffrJSUlWL9+vaaMiKg1KKqw6R0CERFRYFhKgPdvdV037lzICmAMq/oLBSxFQNkp4LO5wJX/cpW1ROWnITL/n/upIjth6t5DOxSwESRZgVBVSAYAdkA2AGrVJQsvrJAwolygn0VCpJBRai1Hcb4F/4l24pdNU7HosleREpUCnMwCrKVAj4vOefGCRQiBja99jYyIMByLdB2amixfYrf9PUzpBFxRruCq8goMVMwICTW4Rmp26OedJMx8yzW6MuUPwMR/6rAkRERtg+5JwunTp6OyshIjRoyAoih44IEHcMcdd7hfX7duHYQQmDat7QylJ6L24cTZSr1DICJq8V555RU8//zzyMvLw6BBg7B06VKMGDGizvrr16/HvHnzcPToUfTp0wfPPfcc/vznPwcxYgIA7F7vShCGRAGxPVynBxtDtQk/U0RVWWiN18NrlEUAilF7E47iHGDjXUDBfuDrfwDjngFk3S+j7u33T6GW5ABVZ8IaAEACIiPOb9LsJKMBkgDCVSvUsDCYYEO5wwwJAmFCwoMFnhGGVmGERRL4JkzGybJsXPHBFTAJA2ySAzdWKogaNAVRIX/AxT0uQLeYDp43KT7h+hxCY5u+3M0sI+MXvJy0FzBdABlmnFdxAAnF/8HmqrPNN4U7sSncib+UOXF7kQFdevYFIjt5z+jQV67/i7Nd1zIs/B340zwgooN3XSIiqpOuScL09HT342XLlvmsc8cdd2iShkRERETUNrz77ruYM2cOli9fjrS0NLz00kuYMGEC9u/fj44dO3rV37ZtG6ZNm4YFCxbgiiuuwNtvv43Jkydj165d6N+/vw5L0E5ZioHd77seX/QQ0PPi5pt3dBdg/D+AzXOAI98CO14HRt7VfPNvJieOfYs3FM+PgZHOBPRNfRzh4b2bND9FiYTTWYZo2YxwWy5koaIUyVDquCHHKQNw0uR5bpNcww7fDnUCv68DsA6LfgEui7sYQ04aMGXyXTB/eC9OhIQBE/6BLiogJ/bXLQHrdDgx+60vsU15Aap6EpGGxyDLsbjq9MfYpXjXfz/CiS9DVQw2DMPzVifqvKBL0XHPKMOTmcB54wO1CEREbZIkhGjTt4IqKSlBdHQ0iouLERUVpXc4RNSO7MkpxhVLv9M7DKJ24+jCSXqH0GK0lv2ftLQ0DB8+HC+/7LqLqaqqSE5Oxn333YfHHnvMq/7UqVNRXl6OTZs2uctGjhyJwYMHY/ny5X69Z4tqG1X1nF5bfgooLwDKCgBbGWAIAQxmQDG5/jeYAcVcx2OTp371a0oAxwJsfx3I+jcQ3xu4dkVgEk0HtgJfPet6/MeHgH5XNv97NNHmAx/gqe+ehKVqsZPswAPGv2DSjPlNnqd47WIAAjbJAduZA5BkGbn2OFgcZoQarKh0uNJikuS6/J4VRmSGWfFDuMCOeu7x8sZRGaUGoAskqE7gvWgnNsS4Xot1mhCiqggVAiFx5yH7TCW6REQg3BALZ34yXpl2K2wfPQipw3kwj38C7+x9D0mRkRD7PoXRbkPU0JtgKjsFY2wPmMyRMMkmmBQTukR0gSK7Mn1CCKhChcVpQbm9HEeKjmDXj9vxatEKTZwG5QKkmGZi4ZEnAABWCBQqKh7sYPe5XJ+eMiPKYER4ZBQUZx3Xtxz7GFBZBEQmAr3+5O9H0WIV2R147XgBkkNNuDGpZV+vk4haHn/3f3Q/3ZiIiIiI2h+bzYadO3di7ty57jJZljFu3DhkZGT4nCYjIwNz5szRlE2YMAEbN24MZKiNdjz7EP7x9RfIFz/AIKwwqTYYhRUmYYNRtcEkbFVlNkgQuKYMiFclAAKAhN+NAv+tcSm+ui5zF6YCfy2tfiYgAdgaChw0uaZSIUOVJAjIEJChQoaQXOUpzlAMs0XDCQOckutvU0geLLJrTq76VdO65+GKZEbREfS1O7FRjMX+/7cOFhQhG9t9B1lLH4yFAlPVsgKFOIxCHNTUkYXr3RIlAzra84Gv5qLym1UY4BhavagAgJ3G/SiSywDJXQThedndKslqZ6Q4u0JAgipJcMKJDONPNWcFIWmnERCQhMAFtvMRo0bC4FQhqyrOSIX4T8xWoCpBmGgHnsiXET+maSMIq0lV/5qMMRBhcVCUcCSW58AhAwZFxnFnR0iSgNHggMVmQoShEhdWhGBkhQMoBMokgUIDsDdEINcIFBoEfgkFwiAhzAE4AJTIAr/VGIJ3VrEB1aP2yvYBJmC/DYANCHX+ERuX34cLHb8Dx/dh1f4z2Br/X0Cq0brpO3wuyx/sU2AUYThWFg1rmQVlSf9FiXF/vcsf6gzBH05/BSGcgCRgVCV0tAhc47wAtoh92ByhuutGqApKnCpKVStySyTAUYJHOqgwCRUKAINwLZb07SOQJFfIZ7+JgSpJ6F95BRJtCiKdKk6ZTDhuPoRc5WfIkGBSVaiSBFWSIQvh6huyDKhACKIxwHkJhM2OipAIJJcW4pfQTOSbSwFVwAQVRlVAFRJURYEQAgYhYIBA98pEDFR7QXJKEEJCkVHBFxHbYRIqXGu9BKNQIauARTHAKStQVAGjcCJeGo5IEYcEezl+jE6GRTqNEud2vKaqiHZaoApAESpCoNZoTQEI4NLKC129SlYgSRL2G07guJJXR9/ziFejMcRxnuaVDOMelEuVVSuM0F4ioIbzHMnopnpOB7fAiu9NuzV1VEhwSjKckgQFAorqWt9H2i9AmAhFuWxEqWJCrlyAQvwGg6rCJmRYVBk2VUaY7ESYorpDMAsjRtsHat5jj+EQCuUinzHW1MmZgL6OlBolAt+afoYTTp/1nZIMuyTDIclIRD8YlCRUSAZUKEaUSSWotP+IUNWBUOGAQQiUGExQ4dpcSAAk4dqKni+GwSQUKMK1vTslZSNfynFvZSUhqqYRkIXrfwCIEuEY7OhTIyIJWYbfUSpVNLis3ZydkFLjs3FIDmw37K2zvqhaXockoZfaD2GIdH0nSMAZnMVx+bB7eyvD1Q8VCMhCwAAVkhAwQMFIR41R/pKE3+Vs5Mtn6nhPz/algxqDfmoPzes/KHtgkzw/HEg1+mjNR32cyUgUce6SclQiy3CgjqXUGuY4H2Z47qieI53CESW3wenCRAgudPbVvLpHOYSzKHWXuFYfz1JKACBJ6C6SkNZpNC6/cqqPGIOPSUIiogAJNfk4X4aIiAAAhYWFcDqdSExM1JQnJibit99+8zlNXl6ez/p5ed4HvtWsViusVqv7eUlJyTlE7Z9vvv4E046/gdnJqusooIGBdn2LIxFqj0OhFIVCxGCf+QyyIuo+eKsW6ZQx6kw0THDABDtMcCAj2oltEdWHINWJA+8D3ovKynFpqfZAbUeUE2V+fHWNkiQU27vjxcJhgCRBMpYgJHFXwxMCOHDyz4DqGfpmiCyGMTpTW6nqaO+oGYDZ9aSH9SBuLTyiqfZpJyd+M6FBfYoOYmyR50OwSQJrUtR6pvC4seAQ+lo9h587wrQHhy+frkSUwYkOg8b4Nb+GSMYwhJirDuTDu8BuLYQpJhXJBT9DQIIixaDIXIIIYcOyrpNgLBdIVQ6hR0EhQpwKzLYYJOEMTiABXXCqOt0JAIhWXQd/XW2AVQKssuf/2qY5v8WFDlfKQhICCXKtBGE9Zp38D0w1sq7rylV8FOO7booV+OtZGf0tmRCQ4ACQgwR0QSEA4GP7ZLxZ+BuuOSPhxQQj9pjCMbLUCae1HACw0H4tIg2HYZU3w+r7LaoUAQBuOf1vxDs9sW2KUvF2XNVy1dX3ZaCLrQAzc7X9b2+oE2dkNLh+n195CiOLPeuzCoE3Yxrof1WxTMk7joEWV7xXFwBZoQKLEl3TnmlgXX3i5AnN8/1xKvZGNfwZDqoARhRoE3vvdXbipLGOCWoYUnoEI0o8DVKoCCxP9m9Zp586jC52z2fzVYSKbxIajjfeATxYoE1Cb+vgRFY9I2yrXWI5iBGntcnu5d2c7lHC9Zl0ah/SKjzx/m4WeCpJrb8/VFV/Ins3QmusI+/HqEiPaXhZ+1iAWaeyNGUfJTlxyI/tYErZbxhe7AmuXBZY2s2/7eBf8veit61G0jhMxecdG443TAVm5/yqKdsZr+LHyIanHVkuYViB9rNZ1dWJIj8yWIOLfsWwMs+yZhsFXuvi37LenLsPcTW2EflRKnbENRxvVxtwR97PmrKtiU7s9uPeWylFvyF7XxHAJCERUdvWq0MET38kItLZggUL8PTTTwf1PcMlQAgDAP/ucr/YeD1kKRHVow2c8i8AGk4SliIUD5ruhXuciRCAvAHAr/VPCOCA1BVrDQNghANm4Uow2pEB15iz+pUhDJ8bL0O4VAkZAkKurGPcjbcIqQJSjYNoVbLBn0M3FTLKpRBNmROVgB9T2yUDKiRPhsMmCQD+3VzMIhlRIVVnYyTY4ABghVkFxlYMQ/cLQgCnHcbobn7Nr07DbgWyM1zXY/zscaDHRTBGd4Xxp9XAuKcQkrEYkI0wDr0Dxk8ehuGih3CzfBJnTv+IlO7L8fOKu2BP7Iew6CQU//opel3xAA5seQ2KJBAy5EY4t6/AmeRRuPR0HjpaTkLt/xeYd6/DWXMcKuVw9Kncg2iTA7lOCTZZoCMESuUwfBM6HD0qjyGt4jDiVeCsbMRhQ0c4FRUxjiLkGuIRqRYhFBVQJYFKyLALE+ySAllSYVbsCFdlJDgc6GYTKJUlJDoFeleacEGljA5OAYekwAoHVMjIleKxBhMwE1twMDwJaSFZWFg0Fbc5P0XcmbEwS+cj33kMOdIX+I80BvlyLI4ZeiPUHotolKJCMkCVBEywuUclCXhGitpgRqXkWl9kIeCAEwZhQ+20uqg1UE5AQpkUCoNwwlHVH5yogD/9zwEF5ZJnCKcKAaDhkV+ueA2ohAIhyZCFE1YIoIF0aLXa64sdVvizfjslxWtaVaqAr9FT3vEaUV5jXauQVPi7rlXCjPKqjYMs1Kp1zffp5jUJSF7xOmCBrx9Haqv92bjmV+5XvHYosEKBVDX22OH3VhCwwATJPT4QsMMOfz4bX9tB1c/toE0yoFzyZBMrGtEPrTCiskb20//PxrsfOiT/+qHDx7IK+NcPrbX6YWUj+mGFZIZZqrmsdvjzXa766Id+f0fBAGedv1IEH69JSERERNTGtIb9H5vNhrCwMLz//vuYPHmyu3zGjBkoKirChx9+6DVNt27dMGfOHDz44IPusvnz52Pjxo34+eefveoDvkcSJicnB7xtHKoDu/J3wagYNadE+XJe7HkIM4a5n5+uPI3jpccbfA+jbMQFCRdoyrJLslFkLWpw2lhzLJKjkjVle0/vhap6H9BItU4t7BrRFTEhMe7nFfYKHCk+An+kxqXCIHvGKRRUFKCgsqDB6UIMIegZ3VNTdrT4KCodDR/4xYfGo2OY50Y4qlBx4KyvU8+0JElC14iums+mwl6BUlsp4kLjYJT9GFpFrZoQAgICQgj3dRar2Zw2OIVTU0fAdQ3G6mlVqAhRQjR9SAiB/Ip8zfxVobqSmgKa54lhiV79L69cO3Ja+EiaCCHQO1Z7CnxBRQGKrcUNThtmDEOXiC6asiPFR2BzNpwo6RDWAXEhntM87U47DhUf8hlfbT1jesKseBJ2ZyxnkFte+zRPbwbJgNS4VE1Zdkk2SmzaUeO+3jM2JBZdI7tqyvYU7nF/hu5pfbRTSmSKZjtYZivDwaKDXvV8GZAwQNOfTpad9OtzDTeGo29cX03ZvtP7UG7XJjZ9Tds5orPmc7WrdmTmZ3rV8zXt+fHnI9IU6X5eWFnoXlYhhNd3RPV3nizJGN5puOa1w8WHcbrytNd71J42NiQWvWJ6aV77peAXdz+sGWf1Z1td1iO6h2abX24vx8+nfvZ57Y7a388XJl6o6Ye5ZbnILs1ucLpQQygGdBigKdt/Zr9XP/Q1bVJEktc6Fwj+7hsySUhEFCDVNy7ZdN8Y9O8SrXc4RNSOtJb9n7S0NIwYMQJLly4F4LpxSbdu3TB79uw6b1xSUVGBjz/+2F02evRoDBw4sHXeuISIiIgoCHjjEiIiIiJq0ebMmYMZM2Zg2LBhGDFiBF566SWUl5dj5syZAIDp06ejS5cuWLBgAQDggQcewMUXX4wXXngBkyZNwrp16/DTTz/h9ddf13MxiIiIiNoEJgmJiIiISBdTp05FQUEBnnzySeTl5WHw4MHYsmWL++Yk2dnZkGXPtYFGjx6Nt99+G0888QQef/xx9OnTBxs3bkT//v3regsiIiIi8hOThERERESkm9mzZ2P27Nk+X0tPT/cqmzJlCqZMmRLgqIiIiIjaHz9u7k1ERERERERERERtGUcSEhEFSO+OEUh/aCw6RYfoHQoRERERERFRvZgkJCIKkBCjgu4J4XqHQURERERERNQgnm5MRBQgx89U4MF1mTh+pkLvUIiIiIiIiIjqxSQhEVGAFFfasTHrJIor7XqHQkRERERERFQvJgmJiIiIiIiIiIjaOSYJiYiIiIiIiIiI2rk2f+MSIQQAoKSkROdIiKi9KSstgWqtQFlpCUpKJL3DIaJ2pHq/p3o/iDy4b0hERETtjb/7hm0+SVhaWgoASE5O1jkSImqvRr2kdwRE1F6VlpYiOjpa7zBaFO4bEhERUXvV0L6hJNr4T8yqquLkyZOIjIyEJPk/kqekpATJyck4fvw4oqKiAhhh68D28MY20WJ7eGObeGObaLE9vLFNtJraHkIIlJaWonPnzpBlXl2mpqbuG1ZjH/VgW3iwLTzYFh5sCw+2hQvbwYNt4RGMtvB337DNjySUZRldu3Zt8vRRUVHtvsPWxPbwxjbRYnt4Y5t4Y5tosT28sU20mtIeHEHo27nuG1ZjH/VgW3iwLTzYFh5sCw+2hQvbwYNt4RHotvBn35A/LRMREREREREREbVzTBISERERERERERG1c0wS1sFsNmP+/Pkwm816h9IisD28sU202B7e2Cbe2CZabA9vbBMttkfLw8/Eg23hwbbwYFt4sC082BYubAcPtoVHS2qLNn/jEiIiIiIiIiIiIqofRxISERERERERERG1c0wSEhERERERERERtXNMEhIREREREREREbVz7TZJ+I9//AOjR49GWFgYYmJi/JpGCIEnn3wSSUlJCA0Nxbhx43DgwAFNnTNnzuCmm25CVFQUYmJicNttt6GsrCwAS9D8Ghv70aNHIUmSz7/169e76/l6fd26dcFYpHPSlM9y7NixXst61113aepkZ2dj0qRJCAsLQ8eOHfHwww/D4XAEclGaTWPb5MyZM7jvvvuQmpqK0NBQdOvWDffffz+Ki4s19VpTH3nllVfQvXt3hISEIC0tDTt27Ki3/vr169G3b1+EhIRgwIAB+OSTTzSv+7Ndacka0x4rVqzARRddhNjYWMTGxmLcuHFe9W+55RavvjBx4sRAL0azakybrFmzxmt5Q0JCNHXaUx/xtQ2VJAmTJk1y12nNfeSbb77BlVdeic6dO0OSJGzcuLHBadLT03HhhRfCbDajd+/eWLNmjVedxm6X2rOGPoMNGzZg/PjxiI+PhyRJyMrK8pqHxWLBvffei/j4eEREROC6665Dfn5+ve/bEtfjc20Lf7/ja2uJ63Bz9At/9gFra4v9wt/jg9paW7+w2+149NFHMWDAAISHh6Nz586YPn06Tp48qZlHU44nmrKNCaRzbYejR4/itttuQ48ePRAaGopevXph/vz5sNls9b5vU9apQGuOPtG9e3ev5Vq4cGG979vS+gRw7m2Rnp5e57bixx9/rPN9W1u/AICnnnoKffv2RXh4uPsYaPv27Zo6LWlb0W6ThDabDVOmTMHdd9/t9zSLFi3C//3f/2H58uXYvn07wsPDMWHCBFgsFnedm266CXv37sUXX3yBTZs24ZtvvsEdd9wRiEVodo2NPTk5Gbm5uZq/p59+GhEREbj88ss1dVevXq2pN3ny5AAvzblr6mc5a9YszbIuWrTI/ZrT6cSkSZNgs9mwbds2rF27FmvWrMGTTz4ZyEVpNo1tk5MnT+LkyZNYvHgx9uzZgzVr1mDLli247bbbvOq2hj7y7rvvYs6cOZg/fz527dqFQYMGYcKECTh16pTP+tu2bcO0adNw2223ITMzE5MnT8bkyZOxZ88edx1/tistVWPbIz09HdOmTcPXX3+NjIwMJCcnY/z48cjJydHUmzhxoqYvvPPOO8FYnGbR2DYBgKioKM3yHjt2TPN6e+ojGzZs0LTFnj17oCgKpkyZoqnXWvtIeXk5Bg0ahFdeecWv+keOHMGkSZNwySWXICsrCw8++CBuv/12fPbZZ+46Telz7VlDn0F5eTnGjBmD5557rs55/O1vf8PHH3+M9evX47///S9OnjyJa6+9tt73bYnr8bm2RWO+42traetwc/QLoP59QF/aYr9ozPFBba2pX1RUVGDXrl2YN28edu3ahQ0bNmD//v246qqrNPWacjzRlG1MIJ1rO/z2229QVRWvvfYa9u7diyVLlmD58uV4/PHHG3zvxq5TgdYcfQIAnnnmGc1y3XffffW+b0vrE8C5t8Xo0aO9thW33347evTogWHDhtX73q2pXwDAeeedh5dffhm7d+/Gd999h+7du2P8+PEoKChw12lR2wrRzq1evVpER0c3WE9VVdGpUyfx/PPPu8uKioqE2WwW77zzjhBCiF9//VUAED/++KO7zqeffiokSRI5OTnNHntzaq7YBw8eLG699VZNGQDxwQcfNFeoQdHU9rj44ovFAw88UOfrn3zyiZBlWeTl5bnLli1bJqKiooTVam2W2AOlufrIe++9J0wmk7Db7e6y1tJHRowYIe699173c6fTKTp37iwWLFjgs/71118vJk2apClLS0sTd955pxDCv+1KS9bY9qjN4XCIyMhIsXbtWnfZjBkzxNVXX93coQZNY9ukoe+g9t5HlixZIiIjI0VZWZm7rLX3kWr+bPceeeQRccEFF2jKpk6dKiZMmOB+fq5t3J7V9xkcOXJEABCZmZma8qKiImE0GsX69evdZfv27RMAREZGhs95tYb1uClt4Yuv7/jaWvo63NS2aGgfsLb21C98HR/U1pr7RbUdO3YIAOLYsWNCiKbtOzdlGxNMTWkHXxYtWiR69OhR73wau04FW1PbIiUlRSxZssTv92npfUKI5ukXNptNdOjQQTzzzDP1zqct9Ivi4mIBQGzdulUI0fK2Fe12JGFjHTlyBHl5eRg3bpy7LDo6GmlpacjIyAAAZGRkICYmRpP5HjduHGRZ9hpO2tI0R+w7d+5EVlaWz1+Q7733XiQkJGDEiBFYtWoVXOtPy3Uu7fHvf/8bCQkJ6N+/P+bOnYuKigrNfAcMGIDExER32YQJE1BSUoK9e/c2/4I0o+bq38XFxYiKioLBYNCUt/Q+YrPZsHPnTs02QJZljBs3zr0NqC0jI0NTH3B93tX1/dmutFRNaY/aKioqYLfbERcXpylPT09Hx44dkZqairvvvhunT59u1tgDpaltUlZWhpSUFCQnJ+Pqq6/WbAvaex9ZuXIlbrjhBoSHh2vKW2sfaayGtiHN0cbUODt37oTdbte0ed++fdGtW7c627w1r8eNVdd3fG1tdR2ubx+wtvbSL+o7PqittfeL4uJiSJLkvpRVU/adm7KNaWlqt0NddWrv//nSmHWqJaqrLRYuXIj4+HgMGTIEzz//fL2XnmoLfQJouF989NFHOH36NGbOnNngvFpzv7DZbHj99dcRHR2NQYMGAWh524r6v8HJLS8vDwA0yZ3q59Wv5eXloWPHjprXDQYD4uLi3HVaquaIfeXKlejXrx9Gjx6tKX/mmWfwpz/9CWFhYfj8889xzz33oKysDPfff3+zxd/cmtoeN954I1JSUtC5c2f88ssvePTRR7F//35s2LDBPV9ffaj6tZasOfpIYWEhnn32Wa+h062hjxQWFsLpdPr8/H777Tef09T1edfcZlSX1VWnpWpKe9T26KOPonPnzpovt4kTJ+Laa69Fjx49cOjQITz++OO4/PLLkZGRAUVRmnUZmltT2iQ1NRWrVq3CwIEDUVxcjMWLF2P06NHYu3cvunbt2q77yI4dO7Bnzx6sXLlSU96a+0hj1bUNKSkpQWVlJc6ePXvO6yE1Tl5eHkwmk9dBTn3rZGtejxujru/42trqOtzQPmBt7aVf1HV8UFtr7xcWiwWPPvoopk2bhqioKABN23duyjamJfHVDrUdPHgQS5cuxeLFi+udV2PXqZamrra4//77ceGFFyIuLg7btm3D3LlzkZubixdffNHnfFp7nwD86xcrV67EhAkT0LVr13rn1Vr7xaZNm3DDDTegoqICSUlJ+OKLL5CQkACg5W0r2lSS8LHHHmvwWiH79u1D3759gxSR/vxtk3NVWVmJt99+G/PmzfN6rWbZkCFDUF5ejueff16XBFCg26PmjvGAAQOQlJSESy+9FIcOHUKvXr2aPN9AClYfKSkpwaRJk3D++efjqaee0rzWkvoIBcfChQuxbt06pKena27UccMNN7gfDxgwAAMHDkSvXr2Qnp6OSy+9VI9QA2rUqFEYNWqU+/no0aPRr18/vPbaa3j22Wd1jEx/K1euxIABAzBixAhNeXvrI0StQX3f8bW11XW4Ne4DBlp9xwe1teZ+Ybfbcf3110MIgWXLlukdjm78aYecnBxMnDgRU6ZMwaxZs+qdX2tep+prizlz5rgfDxw4ECaTCXfeeScWLFgAs9kc7FADzp9+ceLECXz22Wd47733Gpxfa+0X1deXLiwsxIoVK3D99ddj+/btXsnBlqBNnW7897//Hfv27av3r2fPnk2ad6dOnQDA624x+fn57tc6derkdaFwh8OBM2fOuOsEm79tcq6xv//++6ioqMD06dMbrJuWloYTJ07AarU2ebmaKljtUS0tLQ2A6xczwNVHfPWh6tf0EIw2KS0txcSJExEZGYkPPvgARqOx3vp69pG6JCQkQFGUercBtdX1edfcZlSX+TvPlqIp7VFt8eLFWLhwIT7//HMMHDiw3ro9e/ZEQkKCex1qyc6lTaoZjUYMGTJEs82onkdT56mXc2mP8vJyrFu3zq/T01pTH2msurYhUVFRCA0NbZY+R43TqVMn2Gw2FBUVacob+i6oruPvNK1JY7/ja2ur63DtfcDa2nq/ABp3fFBba+kX1QmQY8eO4YsvvtCMkmrKvnNTtjEtQX3tUO3kyZO45JJLMHr0aLz++uuNfo+G1qmWwp+2qCktLQ0OhwNHjx71+Xpr7ROA/22xevVqxMfH+7zJS0NaS78IDw9H7969MXLkSKxcuRIGg8F9tkxL21a0qSRhhw4d0Ldv33r/TCZTk+bdo0cPdOrUCV9++aW7rKSkBNu3b3ePAhk1ahSKioqwc+dOd52vvvoKqqq6O2+w+dsm5xr7ypUrcdVVV6FDhw4N1s3KykJsbKwuv5QEqz2qZWVlAQCSkpIAuPrI7t27NRuB6g3m+eef3zwL2UiBbpOSkhKMHz8eJpMJH330kWbUWF307CN1MZlMGDp0qGYboKoqvvzyS81IsJpGjRqlqQ+4Pu/q+v5sV1qqprQH4LqT47PPPostW7Y0eOcywPXL4unTp93rUEvW1Dapyel0Yvfu3e7lbY99BADWr18Pq9WKv/71rw2+T2vqI43V0DakOfocNc7QoUNhNBo1bb5//35kZ2fX2eateT1uSFO+42trq+tw7X3A2tpyv6jWmOOD2lpDv6hOgBw4cABbt25FfHy85vWm7Ds3ZRujt4baAXCNIBw7diyGDh2K1atXQ5Ybn4ZoaJ1qCfxpi9qysrIgy3KdI8paY58A/G8LIQRWr16N6dOnN/pHJqB19AtfVFV1D4hpcduKc7rtSSt27NgxkZmZKZ5++mkREREhMjMzRWZmpigtLXXXSU1NFRs2bHA/X7hwoYiJiREffvih+OWXX8TVV18tevToISorK911Jk6cKIYMGSK2b98uvvvuO9GnTx8xbdq0oC5bUzUU+4kTJ0RqaqrYvn27ZroDBw4ISZLEp59+6jXPjz76SKxYsULs3r1bHDhwQLz66qsiLCxMPPnkkwFfnnPV2PY4ePCgeOaZZ8RPP/0kjhw5Ij788EPRs2dP8cc//tE9jcPhEP379xfjx48XWVlZYsuWLaJDhw5i7ty5QV++pmhsmxQXF4u0tDQxYMAAcfDgQZGbm+v+czgcQojW1UfWrVsnzGazWLNmjfj111/FHXfcIWJiYtx3q7755pvFY4895q7//fffC4PBIBYvXiz27dsn5s+fL4xGo9i9e7e7jj/blZaqse2xcOFCYTKZxPvvv6/pC9Xb3dLSUvHQQw+JjIwMceTIEbF161Zx4YUXij59+giLxaLLMjZWY9vk6aefFp999pk4dOiQ2Llzp7jhhhtESEiI2Lt3r7tOe+oj1caMGSOmTp3qVd7a+0hpaal7fwOAePHFF0VmZqb7Tn+PPfaYuPnmm931Dx8+LMLCwsTDDz8s9u3bJ1555RWhKIrYsmWLu05DbUxaDX0Gp0+fFpmZmWLz5s0CgFi3bp3IzMwUubm57nncddddolu3buKrr74SP/30kxg1apQYNWqU5n2asg8ZbOfaFv58xwuhbYuWug6fa1v4sw8oRPvoF9XqOz4QovX3C5vNJq666irRtWtXkZWVpen/VqvVPY+mHF/5s40JpnNthxMnTojevXuLSy+9VJw4cUJTp1pTjqv0cK5tsW3bNrFkyRKRlZUlDh06JN566y3RoUMHMX36dPd7tIY+IUTzrB9CCLF161YBQOzbt8/rPdpCvygrKxNz584VGRkZ4ujRo+Knn34SM2fOFGazWezZs8c9j5a0rWi3ScIZM2YIAF5/X3/9tbsOALF69Wr3c1VVxbx580RiYqIwm83i0ksvFfv379fM9/Tp02LatGkiIiJCREVFiZkzZ2oSjy1ZQ7EfOXLEq42EEGLu3LkiOTlZOJ1Or3l++umnYvDgwSIiIkKEh4eLQYMGieXLl/us29I0tj2ys7PFH//4RxEXFyfMZrPo3bu3ePjhh0VxcbFmvkePHhWXX365CA0NFQkJCeLvf/+7sNvtwVy0Jmtsm3z99dc+1zMA4siRI0KI1tdHli5dKrp16yZMJpMYMWKE+OGHH9yvXXzxxWLGjBma+u+9954477zzhMlkEhdccIHYvHmz5nV/tistWWPaIyUlxWdfmD9/vhBCiIqKCjF+/HjRoUMHYTQaRUpKipg1a1arS3Y0pk0efPBBd93ExETx5z//WezatUszv/bUR4QQ4rfffhMAxOeff+41r9beR+raJla3wYwZM8TFF1/sNc3gwYOFyWQSPXv21OyXVKuvjUmroc9g9erV9W6nhBCisrJS3HPPPSI2NlaEhYWJa665xitB0pR9yGA717bw5zteCG1btNR1+Fzbwt99wPbQL6rVd3wgROvvF9X7vA0dTzbl+MqfbUwwnWs71NVnao5XaupxVbCda1vs3LlTpKWliejoaBESEiL69esn/vnPf2qS4a2hTwjRPOuHEEJMmzZNjB492ud7tIV+UVlZKa655hrRuXNnYTKZRFJSkrjqqqvEjh07NPNoSdsKSQghQERERERERERERO1Wm7omIRERERERERERETUek4RERERERERERETtHJOERERERERERERE7RyThERERERERERERO0ck4RERERERERERETtHJOERERERERERERE7RyThERERERERERERO0ck4RERERERERERETtHJOERERERERERERE7RyThERERERERETN5JZbboEkSZAkCUajET169MAjjzyC5cuXu8vr+jt69Kje4RNRO8YkIRFRENhsNr1DICIiIqIgmThxInJzc3H48GEsWbIEr732Go4cOYLc3Fz336hRozBr1ixNWXJyst6hE1E7ZtA7ACKitmjs2LHo378/DAYD3nrrLQwYMABff/213mERERERURCYzWZ06tQJAJCcnIxx48bhiy++wHPPPeeuYzKZEBYW5q5HRKQ3jiQkIgqQtWvXwmQy4fvvv8fy5cv1DoeIiIiIdLBnzx5s27YNJpNJ71CIiOrFkYRERAHSp08fLFq0SO8wiIiIiCjINm3ahIiICDgcDlitVsiyjJdfflnvsIiI6sUkIRFRgAwdOlTvEIiIiIhIB5dccgmWLVuG8vJyLFmyBAaDAdddd53eYRER1YunGxMRBUh4eLjeIRARERGRDsLDw9G7d28MGjQIq1atwvbt27Fy5Uq9wyIiqheThEREREREREQBIssyHn/8cTzxxBOorKzUOxwiojoxSUhEREREREQUQFOmTIGiKHjllVf0DoWIqE5MEhIREREREREFkMFgwOzZs7Fo0SKUl5frHQ4RkU+SEELoHQQRERERERERERHphyMJiYiIiIiIiIiI2jkmCYmIiIiIiIiIiNo5JgmJiIiIiIiIiIjaOSYJiYiIiIiIiIiI2jkmCYmIiIiIiIiIiNo5JgmJiIiIiIiIiIjaOSYJiYiIiIiIiIiI2jkmCYmIiIiIiIiIiNo5JgmJiIiIiIiIiIjaOSYJiYiIiIiIiIiI2jkmCYmIiIiIiIiIiNo5JgmJiIiIiIiIiIjauf8PL7bz9vZRiYEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([0.82767883, 0.86152661, 0.87015227, 0.81684683, 0.84013646,\n", + " 0.85565272, 0.85970058, 0.83864923, 0.76768729, 0.86093278,\n", + " 0.82596904, 0.80234844])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pearson_corr_top_n = feat_gen.feature_pearson_correlations_top_n(\n", + " precursor_fragments, visualize=True\n", + ")\n", + "pearson_corr_top_n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "cd3b2d12", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQkAAAGhCAYAAADC/jJlAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3oRJREFUeJzs3XdUFFcbBvBnaUtv0gUBEVCsEXsJduwau7GgsRt7SSxRwEbsGo0ajWKL0WjUz8RY0GgSldg1dhFRbBQL0kHY+/1BmLDsUqWoPL9zOLp378y8d2Z2d/bduffKhBACREREREREREREVGZplHYAREREREREREREVLqYJCQiIiIiIiIiIirjmCQkIiIiIiIiIiIq45gkJCIiIiIiIiIiKuOYJCQiIiIiIiIiIirjmCQkIiIiIiIiIiIq45gkJCIiIiIiIiIiKuOYJCQiIiIiIiIiIirjmCQkIiIiIiIiIiIq45gkJCIieg+tX78eDg4O0NDQwIoVK0o7HCpGTk5OPMZEREREVOyYJCQiIsrBoEGDIJPJpL9y5cqhbdu2+Oeff0o1rtjYWIwZMwZffvklnjx5guHDh5dqPMXJz88PtWrVKu0wigSTfcVj7969aNOmDcqVKweZTIYrV66o1BkxYgRcXFygp6cHS0tLdOnSBbdv3851vUIIzJ49G7a2ttDT00OrVq0QEhJSTK0ofs2aNVN6P8v+16xZs2LZrkwmg66uLh4+fKhU3rVrVwwaNKhYtplJCIElS5bAzc0Ncrkc5cuXx/z584t1m0RERO8zJgmJiIhy0bZtWzx79gzPnj3D8ePHoaWlhY4dO5ZqTOHh4Xjz5g06dOgAW1tb6Ovrq9RJTU0thcjoXfShnwsJCQlo0qQJFi5cmGMdT09PBAYG4tatWzhy5AiEEGjTpg3S09NzXGbRokX45ptvsG7dOpw9exYGBgbw9vZGcnJycTSj2O3du1d6Lzt37hwA4NixY1LZ3r17i23bMpkMs2fPLrb152T8+PH4/vvvsWTJEty+fRsHDhxAvXr1SjwOIiKi94YgIiIitXx8fESXLl2Uyv766y8BQERFRUllX3zxhXB1dRV6enrC2dlZfPXVVyI1NVV6/sqVK6JZs2bC0NBQGBkZidq1a4vz588rrbNJkyZCV1dX2Nvbi7Fjx4r4+Hi1MQUGBgoASn9hYWHC19dX1KxZU2zYsEE4OTkJmUwmhBDi0KFDonHjxsLExESYm5uLDh06iHv37imt8/Tp06JmzZpCLpcLT09PsW/fPgFAXL58WQghxIkTJwQAcfjwYVGrVi2hq6srmjdvLiIjI8Vvv/0mKleuLIyMjETfvn1FQkKCtN709HSxYMEC4eTkJHR1dUWNGjXE7t27pecz13vs2DHh6ekp9PT0RMOGDcXt27dzbGtgYGCux2r+/PnCyspKmJiYCH9/f/HmzRsxZcoUYWZmJsqXLy82bdqktNzbHLsHDx6Ijh07ClNTU6Gvry88PDzEwYMH1cbn5eWl0pZMe/bsER4eHkJHR0c4OjqKJUuWKC3r6Ogoli9fLj1+9eqVGDJkiLCwsBBGRkaiefPm4sqVK9LzhT0XwsLCBADx888/i2bNmgk9PT1Ro0YNcebMGaV4Tp06Jby8vISenp4wNTUVbdq0ES9fvszXMS9OmfFnnre5uXr1qgCg8lrIpFAohI2NjVi8eLFUFhMTI+Ryufjxxx9zXK+Xl5f4/PPPxeeffy6MjY1FuXLlxFdffSUUCoVUx9HRUcyZM0f06dNH6OvrCzs7O7F69Wql9QAQ69atEx06dBB6enqicuXK4syZMyIkJER4eXkJfX190bBhwxzjz4u6fZWf8zCvuNUBIKZMmSI0NDTEtWvXpPIuXboIHx+fQsWfHzdv3hRaWlrS+wkRERHljXcSEhER5VN8fDy2b9+OSpUqoVy5clK5kZERNm/ejJs3b2LlypXYsGEDli9fLj3fr18/2Nvb4/z587h48SKmTZsGbW1tAEBoaCjatm2L7t27459//sGuXbtw6tQpjBkzRm0MvXv3xrFjxwAA586dw7Nnz+Dg4AAAuHfvHn7++Wfs3btX6nKZkJCASZMm4cKFCzh+/Dg0NDTwySefQKFQAMjoutypUydUr14dly5dwty5c/Hll1+q3bafnx9Wr16NM2fO4NGjR+jVqxdWrFiBHTt24ODBgzh69ChWrVol1Q8ICMDWrVuxbt063LhxAxMnTkT//v3xxx9/KK135syZWLp0KS5cuAAtLS189tlnUlsnT56MqlWrSnc79e7dO8fj8/vvv+Pp06f4888/sWzZMvj6+qJjx44wMzPD2bNnMXLkSIwYMQKPHz8ukmP3+eefIyUlBX/++SeuXbuGhQsXwtDQUG1se/fuhb29PebMmSO1BQAuXryIXr16oU+fPrh27Rr8/Pwwa9YsbN68Ocd29uzZE1FRUTh06BAuXryI2rVro2XLlnj58qVUpzDnQtbjMWXKFFy5cgVubm7o27cv0tLSAABXrlxBy5Yt4eHhgeDgYJw6dQqdOnWS7sjL7zHPauTIkTA0NMz1ryglJCQgMDAQzs7O0msnu7CwMERERKBVq1ZSmYmJCerXr4/g4OBc179lyxZoaWnh3LlzWLlyJZYtW4bvv/9eqc7ixYtRs2ZNXL58GdOmTcP48eMRFBSkVGfu3LkYOHAgrly5gsqVK+PTTz/FiBEjMH36dFy4cAFCCKX3iQcPHkAmk+HkyZMF3CP5Pw/zE7c6jRs3RseOHTFt2rR8xxQeHp7nebFgwYIcl//ll19QsWJF/Prrr3B2doaTkxOGDh2q9DohIiKibEo7S0lERPSu8vHxEZqamsLAwEAYGBgIAMLW1lZcvHgx1+UWL14sPD09pcdGRkZi8+bNausOGTJEDB8+XKnsr7/+EhoaGiIpKUntMpcvX5buIMzk6+srtLW1le5wVCc6OloAkO7oWbt2rShXrpzStjZs2KD2TsJjx45JdQICAgQAERoaKpWNGDFCeHt7CyGESE5OFvr6+ip3oQ0ZMkT07ds3x/UePHhQAJDiybwrLi8+Pj7C0dFRpKenS2Xu7u6iadOm0uO0tDRhYGCQ651gBTl21atXF35+fnnGlin7HYFCCPHpp5+K1q1bK5VNnTpVeHh4qF3ur7/+EsbGxiI5OVlpGRcXF/Hdd98JIQp/LmTeXfb9999LdW7cuCEAiFu3bgkhhOjbt69o3Lix2vXl55irExkZKUJCQnL9y4+87iT89ttvpdexu7t7rnfhnT59WgAQT58+VSrv2bOn6NWrV47LeXl5iSpVqijdOfjll1+KKlWqSI8dHR1F27ZtlZbr3bu3aNeunfQYgPjqq6+kx8HBwQKA2Lhxo1T2448/Cl1dXenx48ePhbu7uzh79myO8WXKvq/yex7mFbc6AMS+ffvEjRs3hKampvjzzz+FEHnfSfjmzZs8z4sXL17kuPyIESOEXC4X9evXF3/++ac4ceKEqFWrlmjevHmu8RIREZVlvJOQiIgoF82bN8eVK1dw5coVnDt3Dt7e3mjXrp3SIPy7du1C48aNYWNjA0NDQ3z11VcIDw+Xnp80aRKGDh2KVq1a4euvv0ZoaKj03NWrV7F582alu2O8vb2hUCgQFhZWoFgdHR1haWmpVBYSEoK+ffuiYsWKMDY2hpOTEwBI8d25cwc1atSArq6utExOY3bVqFFD+r+1tTX09fVRsWJFpbKoqCgAGXeyJSYmonXr1kpt27p1q1L7s6/X1tYWAKT1FETVqlWhofHfpY21tTWqV68uPdbU1ES5cuWU1v02x27cuHGYN28eGjduDF9f30JNaHPr1i00btxYqaxx48YICQlRO17e1atXER8fj3Llyint17CwMKXYCnMuZMrteGTeSahOQY55VlZWVqhUqVKuf0WhX79+uHz5Mv744w+4ubmhV69exTK+YIMGDSCTyaTHDRs2VDmeDRs2VFqmYcOGuHXrllJZ9tcbAKXz2draGsnJyYiNjQUAlC9fHrdv3y7UmHv5PQ9zizv7HaHZeXh4YODAgfm+m1BLSyvP88Lc3DzH5RUKBVJSUrB161Y0bdoUzZo1w8aNG3HixAncuXMnXzEQERGVNUwSEhER5cLAwED6Qlq3bl18//33SEhIwIYNGwAAwcHB6NevH9q3b49ff/0Vly9fxsyZM5Umi/Dz88ONGzfQoUMH/P777/Dw8MC+ffsAZHRhHjFihJSIvHLlCq5evYqQkBC4uLgUONbsOnXqhJcvX2LDhg04e/Yszp49C6Bwk1lkdrMFMiYiyPo4syyz62p8fDwA4ODBg0ptu3nzJvbs2ZPregGodIEtaHz5ifFtj93QoUNx//59DBgwANeuXUOdOnWUulsXh/j4eNja2irt0ytXruDOnTuYOnWqVO9tzoXcjoeenl6usQH5O+ZZlVR3YxMTE7i6uuLjjz/Gnj17cPv2belYZmdjYwMAiIyMVCqPjIyUnitu6o5DUb1WisOcOXOUjrs6/v7+uHTpEvbv35/n+t62u7GtrS20tLTg5uYmlVWpUkVaNxEREanSKu0AiIiI3icymQwaGhpISkoCAJw5cwaOjo6YOXOmVCfrXYaZ3Nzc4ObmhokTJ6Jv374IDAzEJ598gtq1a+PmzZtFdrdUVi9evMCdO3ewYcMGNG3aFABw6tQppTru7u7Yvn07UlJSIJfLAQDnz59/6217eHhALpcjPDwcXl5ehV6Pjo5OrjPQvo23PXYA4ODggJEjR2LkyJGYPn06NmzYgLFjx+a7LVWqVMHp06eVyk6fPg03NzdoamqqrKN27dqIiIiAlpaWdCdgfuTnXMiPGjVq4Pjx4/D391d5rrDHfM6cOZgyZUqBY3kbQggIIZCSkqL2eWdnZ9jY2OD48eOoVasWgIzxO8+ePYtRo0bluu7M5Gumv//+G66urkrH8++//1apk5nAKg35PQ9zi9vKygpWVla5bsfBwQFjxozBjBkz8vwRxM7OLsdkY6bc7iRs3Lgx0tLSEBoaKm3r7t27ADLutCUiIiJVTBISERHlIiUlBREREQCAV69eYfXq1YiPj0enTp0AAK6urggPD8fOnTtRt25dHDx4UOnupKSkJEydOhU9evSAs7MzHj9+jPPnz6N79+4AgC+//BINGjTAmDFjMHToUBgYGODmzZsICgrC6tWr3yp2MzMzlCtXDuvXr4etrS3Cw8NVuvp9+umnmDlzJoYPH45p06YhPDwcS5YsAQClLpMFZWRkhClTpmDixIlQKBRo0qQJXr9+jdOnT8PY2Bg+Pj75Wo+TkxPCwsJw5coV2Nvbw8jISEpmvq23PXYTJkxAu3bt4ObmhlevXuHEiRO5JnqcnJzw559/ok+fPpDL5bCwsMDkyZNRt25dzJ07F71790ZwcDBWr16NNWvWqF1Hq1at0LBhQ3Tt2hWLFi2Cm5sbnj59ioMHD+KTTz5BnTp11C6Xn3MhP6ZPn47q1atj9OjRGDlyJHR0dHDixAn07NkTFhYWhTrm+Uku5ebly5cIDw/H06dPAUDqSmpjYwMbGxvcv38fu3btQps2bWBpaYnHjx/j66+/hp6eHtq3by+tp3LlyggICMAnn3wCmUyGCRMmYN68eXB1dYWzszNmzZoFOzs7dO3aNdd4wsPDMWnSJIwYMQKXLl3CqlWrsHTpUqU6p0+fxqJFi9C1a1cEBQVh9+7dOHjwYKH3wdvK73lYFHFnJtPDwsJynYgos7txYbVq1Qq1a9fGZ599hhUrVkChUODzzz9H69atle4uJCIioixKe1BEIiKid5WPj48AIP0ZGRmJunXrij179ijVmzp1qihXrpwwNDQUvXv3FsuXLxcmJiZCCCFSUlJEnz59hIODg9DR0RF2dnZizJgxShOFnDt3TrRu3VoYGhoKAwMDUaNGDTF//vwc48pp4hJ1E3wEBQWJKlWqCLlcLmrUqCFOnjwpTSSQ6fTp06JGjRpCR0dHeHp6ih07dggA4vbt20KI/yYYefXqlbRMYGCg1MacYlAoFGLFihXC3d1daGtrC0tLS+Ht7S3++OOPHNebvW3Jycmie/fuwtTUVAAQgYGBaveJj4+P6NKli1KZl5eXGD9+vFJZ9slD3ubYjRkzRri4uAi5XC4sLS3FgAEDxPPnz9XGJ0TG5BM1atQQcrlcZL0E27Nnj/Dw8BDa2tqiQoUKYvHixbnGHBsbK8aOHSvs7OyEtra2cHBwEP369RPh4eFCiMKfC+om/nj16pUAIE6cOCGVnTx5UjRq1EjI5XJhamoqvL29pWOY1zEvDoGBgUqv08w/X19fIYQQT548Ee3atRNWVlZCW1tb2Nvbi08//VQ6vzNlP78UCoWYNWuWsLa2FnK5XLRs2VLcuXMn11i8vLzE6NGjxciRI4WxsbEwMzMTM2bMUJrIxNHRUfj7+4uePXsKfX19YWNjI1auXKkSS9bXqLpjk/31k1kn67HKibr15ec8zCtudbK3RQghFixYIADkOnFJUXjy5Ino1q2bMDQ0FNbW1mLQoEG5TnZCRERU1smEEKKE8pFERET0Hvjhhx8wePBgvH79Otcx6IhIWbNmzVCrVi2sWLEixzpOTk6YMGECJkyYUKTbPnHiBLp164b79+/DzMysSNcNFF/cRERE9O5gd2MiIqIybuvWrahYsSLKly+Pq1ev4ssvv0SvXr2YICR6j/z222+YMWNGsSQIiYiIqGxgkpCIiKiMi4iIwOzZsxEREQFbW1v07NkT8+fPL+2wiKgAFi9eXNohEBER0XuO3Y2JiIiIiIiIiIjKOI3SDoCIiIiIiIiIiIhKF5OEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThERERERERERERGUck4RERERERERERERlHJOEREREREREREREZRyThETvscWLF6NixYrQ1NRErVq1cq27bds2VK5cGdra2jA1NS2R+ChvPC7vJ5lMBj8/vyJdZ7NmzdCsWbMiXScREREREVF+MUlIZca1a9fQo0cPODo6QldXF+XLl0fr1q2xatWq0g6tUI4ePYovvvgCjRs3RmBgIBYsWJBj3du3b2PQoEFwcXHBhg0bsH79+hKM9N118+ZN+Pn54cGDB6WyfR6Xsqe0zzkiIiIiIqKcaJV2AEQl4cyZM2jevDkqVKiAYcOGwcbGBo8ePcLff/+NlStXYuzYsaUdYoH9/vvv0NDQwMaNG6Gjo5Nr3ZMnT0KhUGDlypWoVKlSCUX47rt58yb8/f3RrFkzODk5lfj2eVzKntzOuaNHj5ZOUERERERERGCSkMqI+fPnw8TEBOfPn1fp0hkVFVU6Qb2lqKgo6Onp5ZkgzKwLIM/urEIIJCcnQ09PryhCLHMSEhJgYGCQ7/r5PS7FGUNZktO+eVfO+/y8lomIiIiIiIoLuxtTmRAaGoqqVauqTcZYWVlJ/3/w4AFkMhk2b96sUi/7GGR+fn6QyWS4e/cu+vfvDxMTE1haWmLWrFkQQuDRo0fo0qULjI2NYWNjg6VLl+Yr1rS0NMydOxcuLi6Qy+VwcnLCjBkzkJKSohRLYGAgEhISIJPJcowZAJycnODr6wsAsLS0VGqHk5MTOnbsiCNHjqBOnTrQ09PDd999BwAIDAxEixYtYGVlBblcDg8PD6xdu1Zl/QqFAn5+frCzs4O+vj6aN2+OmzdvwsnJCYMGDZLqbd68GTKZDKdOncK4ceNgaWkJU1NTjBgxAqmpqYiJicHAgQNhZmYGMzMzfPHFFxBCqGxrxYoVqFq1KnR1dWFtbY0RI0bg1atXKm3u2LEjTp06hXr16kFXVxcVK1bE1q1bleLp2bMnAKB58+bSfjx58mS+jlPm8b958yY+/fRTmJmZoUmTJtLz27dvh6enJ/T09GBubo4+ffrg0aNH+TouAHDo0CE0bdoUBgYGMDIyQocOHXDjxg2lGAYNGgRDQ0OEhoaiffv2MDIyQr9+/Yp8X2WKiYnBxIkT4eTkBLlcDnt7ewwcOBDPnz+X6qSkpMDX1xeVKlWCXC6Hg4MDvvjiC6XzNzdnz55F+/btYWZmBgMDA9SoUQMrV65UqvP7779L+8bU1BRdunTBrVu3lOrkdnxyO+9jYmIwYcIEODg4QC6Xo1KlSli4cCEUCkWucT98+BCjR4+Gu7s79PT0UK5cOfTs2VOpW3Fe55y6MQmjoqIwZMgQWFtbQ1dXFzVr1sSWLVuU6mS+by1ZsgTr16+X3jvq1q2L8+fPK9WNiIjA4MGDYW9vD7lcDltbW3Tp0oXdn4mIiIiIiHcSUtng6OiI4OBgXL9+HdWqVSvSdffu3RtVqlTB119/jYMHD2LevHkwNzfHd999hxYtWmDhwoX44YcfMGXKFNStWxcff/xxrusbOnQotmzZgh49emDy5Mk4e/YsAgICcOvWLezbtw9AxmQX69evx7lz5/D9998DABo1aqR2fStWrMDWrVuxb98+rF27FoaGhqhRo4b0/J07d9C3b1+MGDECw4YNg7u7OwBg7dq1qFq1Kjp37gwtLS388ssvGD16NBQKBT7//HNp+enTp2PRokXo1KkTvL29cfXqVXh7eyM5OVltPGPHjoWNjQ38/f3x999/Y/369TA1NcWZM2dQoUIFLFiwAL/99hsWL16MatWqYeDAgdKyI0aMwObNmzF48GCMGzcOYWFhWL16NS5fvozTp09DW1tbqnvv3j306NEDQ4YMgY+PDzZt2oRBgwbB09MTVatWxccff4xx48bhm2++wYwZM1ClShUAkP7Nr549e8LV1RULFiyQkprz58/HrFmz0KtXLwwdOhTR0dFYtWoVPv74Y1y+fBmmpqa5Hpdt27bBx8cH3t7eWLhwIRITE7F27Vo0adIEly9fVuqmmpaWBm9vbzRp0gRLliyBvr5+ke8rAIiPj0fTpk1x69YtfPbZZ6hduzaeP3+OAwcO4PHjx7CwsIBCoUDnzp1x6tQpDB8+HFWqVMG1a9ewfPly3L17F/v37891XwYFBaFjx46wtbXF+PHjYWNjg1u3buHXX3/F+PHjAQDHjh1Du3btULFiRfj5+SEpKQmrVq1C48aNcenSJZUuvOqOD6D+vE9MTISXlxeePHmCESNGoEKFCjhz5gymT5+OZ8+eYcWKFTnGfv78eZw5cwZ9+vSBvb09Hjx4gLVr16JZs2a4efMm9PX1C3zOJSUloVmzZrh37x7GjBkDZ2dn7N69G4MGDUJMTIy0TzLt2LEDcXFxGDFiBGQyGRYtWoRu3brh/v370vHu3r07bty4gbFjx8LJyQlRUVEICgpCeHh4qXS5JyIiIiKid4ggKgOOHj0qNDU1haampmjYsKH44osvxJEjR0RqaqpSvbCwMAFABAYGqqwDgPD19ZUe+/r6CgBi+PDhUllaWpqwt7cXMplMfP3111L5q1evhJ6envDx8ck1zitXrggAYujQoUrlU6ZMEQDE77//LpX5+PgIAwODfLT+v1ijo6OVyh0dHQUAcfjwYZVlEhMTVcq8vb1FxYoVpccRERFCS0tLdO3aVamen5+fAKDU3sDAQAFAeHt7C4VCIZU3bNhQyGQyMXLkSKkscz96eXlJZX/99ZcAIH744QelbR0+fFilPLNdf/75p1QWFRUl5HK5mDx5slS2e/duAUCcOHFCpa15ydynffv2VSp/8OCB0NTUFPPnz1cqv3btmtDS0lIqV3dc4uLihKmpqRg2bJjS8hEREcLExESp3MfHRwAQ06ZNU6pbHPtq9uzZAoDYu3evyr7IPJ7btm0TGhoa4q+//lJ6ft26dQKAOH36tMqymdLS0oSzs7NwdHQUr169Urt+IYSoVauWsLKyEi9evJDKrl69KjQ0NMTAgQOlspyOT9Y2Zz/v586dKwwMDMTdu3eVyqdNmyY0NTVFeHi4VJb9/UDd6yU4OFgAEFu3bpXKcjvnvLy8lM75FStWCABi+/btUllqaqpo2LChMDQ0FLGxsUKI/963ypUrJ16+fCnV/d///icAiF9++UUIkfE+BEAsXrxYZdtERERERETsbkxlQuvWrREcHIzOnTvj6tWrWLRoEby9vVG+fHkcOHDgrdY9dOhQ6f+ampqoU6cOhBAYMmSIVG5qagp3d3fcv38/13X99ttvAIBJkyYplU+ePBkAcPDgwbeKVR1nZ2d4e3urlGcdn+3169d4/vw5vLy8cP/+fbx+/RoAcPz4caSlpWH06NFKy+Y2EcyQIUMgk8mkx/Xr11fZX5n7Mev+2r17N0xMTNC6dWs8f/5c+vP09IShoSFOnDihtB0PDw80bdpUemxpaZmvY1BQI0eOVHq8d+9eKBQK9OrVSylOGxsbuLq6qsSZXVBQEGJiYtC3b1+l5TU1NVG/fn21y48aNUrpcXHsq59//hk1a9bEJ598orL9zOO5e/duVKlSBZUrV1babosWLQAg17ZfvnwZYWFhmDBhgsqwAJnrf/bsGa5cuYJBgwbB3Nxcer5GjRpo3bq19PrJKvvxyaTuvN+9ezeaNm0KMzMzpfhbtWqF9PR0/PnnnznGn/X18ubNG7x48QKVKlWCqakpLl26lONyufntt99gY2ODvn37SmXa2toYN24c4uPj8ccffyjV7927N8zMzKTHmcc08zhmjmF68uRJlW7nRERERERE7G5MZUbdunWxd+9epKam4urVq9i3bx+WL1+OHj164MqVK/Dw8CjUeitUqKD02MTEBLq6urCwsFApf/HiRa7revjwITQ0NFRmurWxsYGpqSkePnxYqBhz4+zsrLb89OnT8PX1RXBwMBITE5Wee/36NUxMTKR4ssdrbm6ulKzISt3+AgAHBweV8qyJjJCQELx+/VppDMmssk9Ak307AGBmZpav5Mjr16+RlJSk9jlLS0toampKj7Pvv5CQEAgh4Orqqnb5rN181QkJCQEAKbGWnbGxsdJjLS0t2Nvbq6yjqPdVaGgounfvnmfst27dgqWlZb62m1VoaCgA5DocQOb5ltklPqsqVargyJEjKpOT5HR+qysPCQnBP//8U6j4k5KSEBAQgMDAQDx58kSpa3NmUr2gHj58CFdXV2hoKP+el9k9Ofv7QfbjmPkazDyOcrkcCxcuxOTJk2FtbY0GDRqgY8eOGDhwIGxsbAoVIxERERERfTiYJKQyR0dHB3Xr1kXdunXh5uaGwYMHY/fu3fD19VW6wy2r9PT0HNeXNWGUWxkAlYk4cpJTHMVB3YyuoaGhaNmyJSpXroxly5bBwcEBOjo6+O2337B8+fI8J3HITU77Rl151v2lUChgZWWFH374Qe3y2RM7b3MMxo8frzI5RKawsDClsduy7z+FQgGZTIZDhw6pjcHQ0DDXbWfu223btqlN3GhpKb9ty+VylSRSSe6r7NutXr06li1bpvb57IngkpDTjMXqyhUKBVq3bo0vvvhC7TJubm45bmfs2LEIDAzEhAkT0LBhQ5iYmEAmk6FPnz5v9XopiPwcxwkTJqBTp07Yv38/jhw5glmzZiEgIAC///47PvrooxKJk4iIiIiI3k1MElKZVqdOHQAZ3RiB/+68iYmJUapXHHfwqePo6AiFQoGQkBClyQwiIyMRExMDR0fHEonjl19+QUpKCg4cOKB0d1L27qKZ8dy7d0/pzqwXL14UeXdGFxcXHDt2DI0bN84x8VNQOSVjv/jiC/Tv31/tc3ndceXi4gIhBJydnXNNKuW2PJAx63arVq0KvHzmOop6X7m4uOD69et51rl69SpatmxZ4ER3ZruvX7+eY7szz7c7d+6oPHf79m1YWFgo3UVYUC4uLoiPjy/Uft+zZw98fHyUZjFPTk5WeS8pyH5xdHTEP//8A4VCoZQIvn37tvR8Ybi4uGDy5MmYPHkyQkJCUKtWLSxduhTbt28v1PqIiIiIiOjDwDEJqUw4ceKE2ruiMscwy+y+aGxsDAsLC5Wxx9asWVP8QQJo3749AKjMopp5Z1aHDh1KJI7MO5Kyd5kMDAxUqteyZUtoaWlh7dq1SuWrV68u8ph69eqF9PR0zJ07V+W5tLQ0lWRMfmQmlLIv6+HhgVatWqn909XVzXWd3bp1g6amJvz9/VXOOSFEnl3Ovb29YWxsjAULFuDNmzcqz0dHR+fZruLYV927d5e66WeX2c5evXrhyZMn2LBhg0qdpKQkJCQk5Lj+2rVrw9nZGStWrFCJL3P9tra2qFWrFrZs2aJU5/r16zh69Kj0+imsXr16ITg4GEeOHFF5LiYmBmlpaTkuq6mpqXK8V61apXIXck7nnDrt27dHREQEdu3aJZWlpaVh1apVMDQ0hJeXV57ryCoxMVFl1nEXFxcYGRkhJSWlQOsiIiIiIqIPD+8kpDJh7NixSExMxCeffILKlSsjNTUVZ86cwa5du+Dk5ITBgwdLdYcOHYqvv/4aQ4cORZ06dfDnn3/i7t27JRJnzZo14ePjg/Xr1yMmJgZeXl44d+4ctmzZgq5du6J58+YlEkebNm2go6ODTp06YcSIEYiPj8eGDRtgZWUl3XUJANbW1hg/fjyWLl2Kzp07o23btrh69SoOHToECwuLIu027eXlhREjRiAgIABXrlxBmzZtoK2tjZCQEOzevRsrV65Ejx49CrTOWrVqQVNTEwsXLsTr168hl8vRokWLHMfyyw8XFxfMmzcP06dPx4MHD9C1a1cYGRkhLCwM+/btw/DhwzFlypQclzc2NsbatWsxYMAA1K5dG3369IGlpSXCw8Nx8OBBNG7cOM8kbHHsq6lTp2LPnj3o2bMnPvvsM3h6euLly5c4cOAA1q1bh5o1a2LAgAH46aefMHLkSJw4cQKNGzdGeno6bt++jZ9++glHjhyR7t7NTkNDA2vXrkWnTp1Qq1YtDB48GLa2trh9+zZu3LghJe4WL16Mdu3aoWHDhhgyZAiSkpKwatUqmJiYwM/Pr0BtUtfGAwcOoGPHjhg0aBA8PT2RkJCAa9euYc+ePXjw4IHKWKOZOnbsiG3btsHExAQeHh4IDg7GsWPHUK5cOaV6BTnnhg8fju+++w6DBg3CxYsX4eTkhD179uD06dNYsWIFjIyMCtS+u3fvomXLlujVqxc8PDygpaWFffv2ITIyEn369CnQuoiIiIiI6MPDJCGVCUuWLMHu3bvx22+/Yf369UhNTUWFChUwevRofPXVV0qzqc6ePRvR0dHYs2cPfvrpJ7Rr1w6HDh16q8RRQXz//feoWLEiNm/ejH379sHGxgbTp0+Hr69viWwfyLizcs+ePfjqq68wZcoU2NjYYNSoUbC0tMRnn32mVHfhwoXQ19fHhg0bcOzYMTRs2BBHjx5FkyZN8rzrrqDWrVsHT09PfPfdd5gxYwa0tLTg5OSE/v37o3HjxgVen42NDdatW4eAgAAMGTIE6enpOHHixFsf62nTpsHNzQ3Lly+Hv78/gIzx+Nq0aYPOnTvnufynn34KOzs7fP3111i8eDFSUlJQvnx5NG3aVCmhnZui3leGhob466+/4Ovri3379mHLli2wsrJCy5YtpYlTNDQ0sH//fixfvhxbt27Fvn37oK+vj4oVK2L8+PF5dr/29vbGiRMn4O/vj6VLl0KhUMDFxQXDhg2T6rRq1QqHDx+Gr68vZs+eDW1tbXh5eWHhwoU5TlKSX/r6+vjjjz+wYMEC7N69G1u3boWxsTHc3Nzg7+8vTbKjzsqVK6GpqYkffvgBycnJaNy4MY4dO6Yyg3JBzjk9PT2cPHkS06ZNw5YtWxAbGwt3d3cEBgZi0KBBBW6fg4MD+vbti+PHj2Pbtm3Q0tJC5cqV8dNPP+U5KQ0REREREX34ZKKgI9MTEeUhJiYGZmZmmDdvHmbOnFna4RARERERERFRHjgmIRG9laSkJJWyzDEVmzVrVrLBEBEREREREVGhsLsxEb2VXbt2YfPmzWjfvj0MDQ1x6tQp/Pjjj2jTpk2hurUSERERERERUcljkpCI3kqNGjWgpaWFRYsWITY2VprMZN68eaUdGhERERERERHlE8ckJCIiIiIiIiIiKuM4JiEREREREREREVEZxyQhERERERERERFRGcckIRERlaq0tDR88cUXcHBwgIaGBrp27VraIRER0TvGz88PMpmsRLbVrFkzNGvWTHp88uRJyGQy7Nmzp0S2P2jQIDg5OZXItgorPj4eQ4cOhY2NDWQyGSZMmFDaIeXq/PnzaNSoEQwMDCCTyXDlypXSDomKUXG8hjZv3gyZTIYHDx4U6XqL0rlz56Cjo4OHDx+Wdihv5fDhwzA0NER0dHRph1ImMUlIRESlatOmTVi8eDF69OiBLVu2YOLEiUW+jTVr1mDz5s1Fvl4iIiq4zC/bmX+6urqws7ODt7c3vvnmG8TFxRXJdp4+fQo/P793MiH0LseWHwsWLMDmzZsxatQobNu2DQMGDCjtkHL05s0b9OzZEy9fvsTy5cuxbds2ODo6lnZYpS4xMRF+fn44efJkaYfyTlmwYAH2799f2mEUysyZM9G3b1+l8/tduAZu1qwZZDIZOnXqpPLcgwcPIJPJsGTJEqmsbdu2qFSpEgICAkoyTPoXZzcmIqJS9fvvv6N8+fJYvnx5sW1jzZo1sLCwwKBBg4ptG0REVDBz5syBs7Mz3rx5g4iICJw8eRITJkzAsmXLcODAAdSoUUOq+9VXX2HatGkFWv/Tp0/h7+8PJycn1KpVK9/LHT16tEDbKYzcYtuwYQMUCkWxx/A2fv/9dzRo0AC+vr6lHUqeQkND8fDhQ2zYsAFDhw4t7XDeGYmJifD39wcApTtny7oFCxagR48eKj1bBgwYgD59+kAul5dOYHm4cuUKjh07hjNnziiVv0vXwL/++isuXrwIT0/PPOuOGDECU6ZMgb+/P4yMjEogOsrEOwmJypjk5OR3/sKTis+7ePyjoqJgampa2mEU2Lu4L4mI3ift2rVD//79MXjwYEyfPh1HjhzBsWPHEBUVhc6dOyMpKUmqq6WlBV1d3WKNJzExEQCgo6MDHR2dYt1WbrS1td/ZRESmd+2zO7fP5KioKADIV7wJCQlFGRYVQFpaGlJTU9U+9y4cF01NTejq6pbYsAcFFRgYiAoVKqBBgwalHYpaFSpUgJmZmZSYzkv37t2RkpKC3bt3F3NklB2ThETvmIcPH2L06NFwd3eHnp4eypUrh549e6od/yImJgYTJ06Ek5MT5HI57O3tMXDgQDx//hzAf2Po7Ny5E1999RXKly8PfX19xMbGAgB2794NT09P6OnpwcLCAv3798eTJ0+UthEREYHBgwfD3t4ecrkctra26NKli1I8Fy5cgLe3NywsLKCnpwdnZ2d89tlnebbVyckJHTt2xMmTJ1GnTh3o6emhevXqUreHvXv3onr16tDV1YWnpycuX76stPw///yDQYMGoWLFitDV1YWNjQ0+++wzvHjxQqleXFwcJkyYIO0nKysrtG7dGpcuXZLqhISEoHv37rCxsYGuri7s7e3Rp08fvH79Os92LFmyBI0aNUK5cuWgp6cHT0/PHMct2r59O+rVqwd9fX2YmZnh448/Vrlj4dChQ/Dy8oKRkRGMjY1Rt25d7NixQ2m/qfs1MKcxlNQd/5cvX2LKlCmoXr06DA0NYWxsjHbt2uHq1asq601OToafnx/c3Nygq6sLW1tbdOvWDaGhoRBCwMnJCV26dFG7nImJCUaMGKF2X2R2Lzhx4gRu3LghdTvLPP5FtV+dnJxw48YN/PHHH9I2su6n+/fvo2fPnjA3N4e+vj4aNGiAgwcPKq0/t3355s0b+Pv7w9XVFbq6uihXrhyaNGmCoKAgtbESEVHOWrRogVmzZuHhw4fYvn27VK5uTMKgoCA0adIEpqamMDQ0hLu7O2bMmAEg4327bt26AIDBgwdL7/+Z3e6aNWuGatWq4eLFi/j444+hr68vLZv98zRTeno6ZsyYARsbGxgYGKBz58549OiRUp38fEbnFZu68dQSEhIwefJkODg4QC6Xw93dHUuWLIEQQqmeTCbDmDFjsH//flSrVg1yuRxVq1bF4cOH1e/wbKKiojBkyBBYW1tDV1cXNWvWxJYtW6TnMz8Pw8LCcPDgQSn23MZpy4zphx9+gLu7u3Rd9+eff6rUffLkCT777DNYW1tLsW/atEmpTl7Xt1kNGjQIXl5eAICePXsqXQMMGjQIhoaGCA0NRfv27WFkZIR+/foBAP766y/07NkTFSpUgFwuh4ODAyZOnKiUuM60e/dueHh4QFdXF9WqVcO+fftUjmHWLpXffvstKlasCH19fbRp0waPHj2CEAJz586Fvb099PT00KVLF7x8+VJlW4cOHULTpk1hYGAAIyMjdOjQATdu3FBps6GhIZ48eYKuXbvC0NAQlpaWmDJlCtLT06V4LC0tAQD+/v7ScfTz88vhKGbI67sHkPc5lH1/rFixAi4uLpDL5bh586b0Wr958yY+/fRTmJmZoUmTJtKy27dvl76/mJubo0+fPiqvQ3Xyc10pk8mQkJCALVu2SPsk8/Wc05iEa9asQdWqVSGXy2FnZ4fPP/8cMTExSnUy329u3ryJ5s2bQ19fH+XLl8eiRYtU4ly1ahWqVq0qXdPWqVNH6XtATvbv348WLVoovU8W5TXwrl278nz/y42RkREmTpyIX375Rek7WE6srKxQo0YN/O9//8v3NqhosLsx0Tvm/PnzOHPmDPr06QN7e3s8ePAAa9euRbNmzXDz5k3o6+sDyBgwumnTprh16xY+++wz1K5dG8+fP8eBAwfw+PFjWFhYSOucO3cudHR0MGXKFKSkpEBHRwebN2/G4MGDUbduXQQEBCAyMhIrV67E6dOncfnyZenX1u7du+PGjRsYO3YsnJycEBUVhaCgIISHh0uP27RpA0tLS0ybNg2mpqZ48OAB9u7dm6/23rt3D59++ilGjBiB/v37Y8mSJejUqRPWrVuHGTNmYPTo0QCAgIAA9OrVC3fu3IGGRsbvG0FBQbh//z4GDx4MGxsb3LhxA+vXr8eNGzfw999/Sx+SI0eOxJ49ezBmzBh4eHjgxYsXOHXqFG7duoXatWsjNTUV3t7eSElJwdixY2FjY4MnT57g119/RUxMDExMTHJtw8qVK9G5c2f069cPqamp2LlzJ3r27Ilff/0VHTp0kOr5+/vDz88PjRo1wpw5c6Cjo4OzZ8/i999/R5s2bQBkXIB89tlnqFq1KqZPnw5TU1NcvnwZhw8fxqeffpqvfZqduuN/8+ZN7N+/Hz179oSzszMiIyPx3XffwcvLCzdv3oSdnR2AjC9EHTt2xPHjx9GnTx+MHz8ecXFxCAoKwvXr1+Hi4oL+/ftj0aJFePnyJczNzaXt/vLLL4iNjUX//v3VxmVpaYlt27Zh/vz5iI+Pl8YdqVKlSpHu1xUrVmDs2LEwNDTEzJkzAQDW1tYAgMjISDRq1AiJiYkYN24cypUrhy1btqBz587Ys2cPPvnkkzz3pZ+fHwICAjB06FDUq1cPsbGxuHDhAi5duoTWrVsX6pgREZVlAwYMwIwZM3D06FEMGzZMbZ0bN26gY8eOqFGjBubMmQO5XI579+7h9OnTADI+S+bMmYPZs2dj+PDhaNq0KQCgUaNG0jpevHiBdu3aoU+fPujfv7/02ZCT+fPnQyaT4csvv0RUVBRWrFiBVq1a4cqVK9DT08t3+/ITW1ZCCHTu3BknTpzAkCFDUKtWLRw5cgRTp07FkydPVIbrOHXqFPbu3YvRo0fDyMgI33zzDbp3747w8HCUK1cux7iSkpLQrFkz3Lt3D2PGjIGzszN2796NQYMGISYmBuPHj0eVKlWwbds2TJw4Efb29pg8eTIASAmnnPzxxx/YtWsXxo0bB7lcjjVr1qBt27Y4d+4cqlWrBiDjM7lBgwZSUtHS0hKHDh3CkCFDEBsbqzI5irrP5OxGjBiB8uXLY8GCBRg3bhzq1q2rdJzT0tLg7e2NJk2aYMmSJdJ19u7du5GYmIhRo0ahXLlyOHfuHFatWoXHjx8r3dl08OBB9O7dG9WrV0dAQABevXqFIUOGoHz58mr3ww8//IDU1FSMHTsWL1++xKJFi9CrVy+0aNECJ0+exJdffol79+5h1apVmDJlilKCdNu2bfDx8YG3tzcWLlyIxMRErF27Fk2aNMHly5eVkpLp6enw9vZG/fr1sWTJEhw7dgxLly6Fi4sLRo0aBUtLS6xduxajRo3CJ598gm7dugGAUhf/7PLz3SM/51BWgYGBSE5OxvDhwyGXy5WuI3v27AlXV1csWLBASobPnz8fs2bNQq9evTB06FBER0dj1apV+Pjjj5W+v6iTn+vKbdu2Sddzw4cPBwC4uLjkuE4/Pz/4+/ujVatWGDVqFO7cuYO1a9fi/PnzOH36NLS1taW6r169Qtu2bdGtWzf06tULe/bswZdffonq1aujXbt2ADKGGhg3bhx69OiB8ePHIzk5Gf/88w/Onj2b6/eAJ0+eIDw8HLVr11YqL8pr4KJ4/xs/fjyWL18OPz8/HDhwIM/6np6e7+34kO81QUTvlMTERJWy4OBgAUBs3bpVKps9e7YAIPbu3atSX6FQCCGEOHHihAAgKlasqLTe1NRUYWVlJapVqyaSkpKk8l9//VUAELNnzxZCCPHq1SsBQCxevDjHePft2ycAiPPnzxe4rY6OjgKAOHPmjFR25MgRAUDo6emJhw8fSuXfffedACBOnDghlanbVz/++KMAIP7880+pzMTERHz++ec5xnH58mUBQOzevbvAbVAXR2pqqqhWrZpo0aKFVBYSEiI0NDTEJ598ItLT05XqZx6vmJgYYWRkJOrXr690XLLWESJjv/n4+KjE4eXlJby8vKTHOR1/IYRITk5WiSMsLEzI5XIxZ84cqWzTpk0CgFi2bJnK9jJjunPnjgAg1q5dq/R8586dhZOTk1Ls6nh5eYmqVauqlBfVfhVCiKpVqyrtm0wTJkwQAMRff/0llcXFxQlnZ2fh5OQkrTO3fVmzZk3RoUOHXNtIRET/CQwMzPPawcTERHz00UfSY19fX5H1q8vy5csFABEdHZ3jOs6fPy8AiMDAQJXnvLy8BACxbt06tc+p+zwtX768iI2Nlcp/+uknAUCsXLlSKsvvZ3Rusfn4+AhHR0fp8f79+wUAMW/ePKV6PXr0EDKZTNy7d08qAyB0dHSUyq5evSoAiFWrVqlsK6sVK1YIAGL79u1SWWpqqmjYsKEwNDRUarujo2O+P/sACADiwoULUtnDhw+Frq6u+OSTT6SyIUOGCFtbW/H8+XOl5fv06SNMTEykz9/cPpPVyayf/TrPx8dHABDTpk1TWUbdegMCAoRMJlO6Pq1evbqwt7cXcXFxUtnJkycFAKVjGBYWJgAIS0tLERMTI5VPnz5dABA1a9YUb968kcr79u0rdHR0RHJyshAi49rE1NRUDBs2TCmmiIgIYWJiolSe2a6s13NCCPHRRx8JT09P6XF0dLQAIHx9fVXaqk5+vnvk9xzK3B/GxsYiKipKaV2Zr/W+ffsqlT948EBoamqK+fPnK5Vfu3ZNaGlpKZVnfw0Jkb/rSiGEMDAwUPsaznzfCgsLE0IIERUVJXR0dESbNm2UrkFXr14tAIhNmzZJZZnvN1m/y6WkpAgbGxvRvXt3qaxLly5qr4nzcuzYMQFA/PLLLyrPFdU1cH7e/3KS9Vrf399fABAXL14UQvx3Lqj7vrlgwQIBQERGRua5DSo67G5M9I7J+kvMmzdv8OLFC1SqVAmmpqZKt2b//PPPqFmzpsqvPABUuuP4+PgorffChQuIiorC6NGjlcb36dChAypXrizdZq6npwcdHR2cPHkSr169Uhtv5i92v/76K968eVPg9np4eKBhw4bS4/r16wPI6G5UoUIFlfL79+9LZVnblJycjOfPn0vjcGTdV6ampjh79iyePn2qNobMOwWPHDkijUdUEFnjePXqFV6/fo2mTZsqxbB//34oFArMnj1buhMyU+bxCgoKQlxcHKZNm6Yy7tLbjH+S/fgDgFwul+JIT0/HixcvpK5a2c8zCwsLjB07VmW9mTG5ubmhfv36+OGHH6TnXr58iUOHDqFfv36Fjr2o9mtufvvtN9SrV0+pG4uhoSGGDx+OBw8e4ObNm0r11e1LU1NT3LhxAyEhIQVqHxER5czQ0DDXWY4zrz/+97//FXp8WLlcjsGDB+e7/sCBA5UG0O/RowdsbW3x22+/FWr7+fXbb79BU1MT48aNUyqfPHkyhBA4dOiQUnmrVq2U7n6qUaMGjI2Nla6hctqOjY0N+vbtK5Vpa2tj3LhxiI+Pxx9//FHoNjRs2FBpsoIKFSqgS5cuOHLkCNLT0yGEwM8//4xOnTpBCIHnz59Lf97e3nj9+rVKF0V1n8mFMWrUKJWyrOtNSEjA8+fP0ahRIwghpOFvnj59imvXrmHgwIEwNDSU6nt5eaF69epqt9WzZ0+lHiqZ17f9+/eHlpaWUnlqaqo0DFBQUBBiYmLQt29fpX2jqamJ+vXr48SJEyrbGjlypNLjpk2b5nkO5CY/3z0Keg517949x7tQs8e/d+9eKBQK9OrVS2kf2NjYwNXVVe0+yCo/15UFcezYMaSmpmLChAlK16DDhg2DsbGxSrddQ0NDpd41Ojo6qFevntIxMTU1xePHj3H+/PkCxZI51JKZmVm+lynoNXBRvf+NHz8+32MTZrYna3d2Kn5MEhK9Y5KSkjB79mxpzBkLCwtYWloiJiZGaXy80NBQqXtGXpydnZUeP3z4EADg7u6uUrdy5crS83K5HAsXLsShQ4dgbW2Njz/+GIsWLUJERIRU38vLC927d4e/vz8sLCzQpUsXBAYGIiUlJV+xZU0EAv8l7BwcHNSWZ01Wvnz5EuPHj4e1tTX09PRgaWkptTXrvlq0aBGuX78OBwcH1KtXD35+fkofyM7Ozpg0aRK+//57WFhYwNvbG99++63SOl6+fImIiAjpL+tzv/76Kxo0aABdXV2Ym5tLXTiyHy8NDQ14eHjkuC9CQ0MBIN/HNb+yH38AUCgUWL58OVxdXZXOs3/++Uclbnd3d6ULV3UGDhyI06dPS+fO7t278ebNGwwYMKDQcRfVfs3Nw4cP1b4OMrs8Z7Ynk7p9OWfOHMTExMDNzQ3Vq1fH1KlT8c8//xQqHiIiyhAfH5/rjJa9e/dG48aNMXToUFhbW6NPnz746aefCpQwLF++fIEmKHF1dVV6LJPJUKlSpVzH4ysKDx8+hJ2dncr+yOmzKvu1FZDxZTunH3yzbsfV1VXlR7ectlMQ2fcdkPEjY2JiIqKjoxEdHY2YmBisX78elpaWSn+ZidzMCUgyZf1MTk9PV7pOi4iIyHESjKy0tLRgb2+vUh4eHo5BgwbB3NxcGtMvc2zDzOuQzP1RqVIlleXVlQGFv+7N/CGyRYsWKvvn6NGjKvtGV1dXJfmWn3MgN/n57lHQc0jddVVOz4WEhEAIAVdXV5V9cOvWLZV9kF1+risLIqfvUzo6OqhYsaJKW+3t7VV+wM5+TL788ksYGhqiXr16cHV1xeeffy4NoZAfItsYpXnFX5Br4Lze/+Lj45Vef9HR0Wq3a2JiggkTJuDAgQMq481nl9med3WymA8Vk4RE75ixY8di/vz56NWrF3766SccPXoUQUFBKFeuXKF/KX+bX1knTJiAu3fvIiAgALq6upg1axaqVKkivanLZDLs2bMHwcHBGDNmjDTgtKenJ+Lj4/Ncv6amZoHKs3749erVCxs2bMDIkSOxd+9eHD16VBqYO+u+6tWrF+7fv49Vq1bBzs4OixcvRtWqVZV+eV+6dCn++ecfzJgxA0lJSRg3bhyqVq2Kx48fAwC6desGW1tb6S9zTJW//voLnTt3hq6uLtasWYPffvsNQUFB+PTTTwv0QV0QOX1QZg5GnZ26479gwQJMmjQJH3/8MbZv344jR44gKCgIVatWLdR51qdPH2hra0t3E27fvh116tRRe/GRH6WxX/ND3b78+OOPERoaik2bNqFatWr4/vvvUbt2bXz//felECER0fvv8ePHeP36dY6JFiDj/fjPP//EsWPHMGDAAPzzzz/o3bs3WrdunePnobp1FLWCfkYXh/xcQ71rMq89+vfvj6CgILV/jRs3Vlom6/F79OiR0nWara0tzpw5k+d2s/asyJSeno7WrVvj4MGD+PLLL7F//34EBQVJE8sU9nocKPx1b+Y2t23bpnbfZJ/cIaf1vWtyew1mf06hUEAmk+Hw4cNq98F3332X47rehevK/Lwuq1Spgjt37mDnzp1o0qQJfv75ZzRp0gS+vr65rjtzrNG3SQK/rSVLlii9/jInZ1Jn/PjxMDU1zfNuwsz2ZB1rn4ofJy4hesfs2bMHPj4+WLp0qVSWnJysMkuWi4sLrl+/XqhtODo6AgDu3LmDFi1aKD13584d6fms25o8eTImT56MkJAQ1KpVC0uXLlWadbBBgwZo0KAB5s+fjx07dqBfv37YuXMnhg4dWqgY8/Lq1SscP34c/v7+mD17tlSeU5dPW1tbjB49GqNHj0ZUVBRq166N+fPnSwMFA0D16tVRvXp1fPXVVzhz5gwaN26MdevWYd68eVi6dKnSB2/mxB4///wzdHV1ceTIEcjlcun5wMBApe27uLhAoVDg5s2bqFWrltoYM7sGXb9+PdcvRmZmZirnA5Dxi1/FihVzXC6rPXv2oHnz5ti4caNSeUxMjNIHsYuLC86ePYs3b94oDb6cnbm5OTp06IAffvgB/fr1w+nTp7FixYp8xaJOUe5XIOcvbY6Ojrhz545K+e3bt6Xn88Pc3ByDBw/G4MGDER8fj48//hh+fn7Fdv4TEX3Itm3bBgDw9vbOtZ6GhgZatmyJli1bYtmyZViwYAFmzpyJEydOoFWrVkV+90n2awwhBO7du6c02UN+P6MLEpujoyOOHTuGuLg4pbsJC/pZlZ/t/PPPP1AoFEqJs6LYjrrrs7t370JfX1+6483IyAjp6elo1apVgddvY2ODoKAgpbKaNWsWKtZr167h7t272LJlCwYOHCiVZ19/5v64d++eyjrUlb2NzGtEKyurQu0fdQr6+sjPd4/iPIdcXFwghICzszPc3NwKtGx+ryuB/O+XrN+nsr62U1NTERYWVujjZGBggN69e6N3795ITU1Ft27dMH/+fEyfPl1lOKJMlStXBgCEhYWpPFdU18B5vf8NHDhQqetybgngzLsJ/fz84OPjk2O9sLAwqbcTlRzeSUj0jtHU1FT5RWvVqlUqv0B3794dV69exb59+1TWkdcvYnXq1IGVlRXWrVun1C340KFDuHXrljTDV2JiIpKTk5WWdXFxgZGRkbTcq1evVLaXmazJb5fjwsj8NS77trMnptLT01W6EVhZWcHOzk6KLzY2FmlpaUp1qlevDg0NDamOp6cnWrVqJf1ldm/V1NSETCZTOj4PHjxQmYmra9eu0NDQwJw5c1R+gc5sQ5s2bWBkZISAgACV/Z61nS4uLvj777+VutH8+uuvePToEfJL3Xm2e/duaeybTN27d8fz58+xevVqlXVkX37AgAG4efMmpk6dCk1NTfTp0yff8aiLr6j2K5BxwaXuS1v79u1x7tw5BAcHS2UJCQlYv349nJyc8tWNOXMcmEyGhoaoVKlSsZ7/REQfqt9//x1z586Fs7Mz+vXrl2O9ly9fqpRlv/4wMDAAALXv/4WxdetWpXES9+zZg2fPnin94Jjfz+iCxNa+fXukp6erfBYvX74cMplMaftvo3379oiIiMCuXbuksrS0NKxatQqGhoZSd9vCCA4OVhr77dGjR/jf//6HNm3aQFNTE5qamujevTt+/vlntYmonLouZtLV1VW6TmvVqlWBxmfLSt01phACK1euVKpnZ2eHatWqYevWrUq9Z/744w9cu3atUNvOibe3N4yNjbFgwQK1Y4DntX/UyZzJOb+vj/x89yjOc6hbt27Q1NSEv7+/yjWoEELleiyr/F5XAjlfM2bXqlUr6Ojo4JtvvlGKZ+PGjXj9+rX0faogsrdBR0cHHh4eEELkOvZ7+fLl4eDggAsXLqg8V1TXwHm9/1WsWFHp9Zf9zt/sJkyYAFNTU8yZMyfHOhcvXlQau55KBu8kJHrHdOzYEdu2bYOJiQk8PDwQHByMY8eOSbeRZ5o6dSr27NmDnj17St17X758iQMHDmDdunW5/nqqra2NhQsXYvDgwfDy8kLfvn0RGRmJlStXwsnJCRMnTgSQ8Qtvy5Yt0atXL3h4eEBLSwv79u1DZGSklADasmUL1qxZg08++QQuLi6Ii4vDhg0bYGxsjPbt2xfbfjI2NpbGSHzz5g3Kly+Po0ePqvyCFhcXB3t7e/To0QM1a9aEoaEhjh07hvPnz0t3a/7+++8YM2YMevbsCTc3N6SlpWHbtm3SBWtuOnTogGXLlqFt27b49NNPERUVhW+//RaVKlVSGpeuUqVKmDlzJubOnYumTZuiW7dukMvlOH/+POzs7BAQEABjY2MsX74cQ4cORd26dfHpp5/CzMwMV69eRWJiIrZs2QIAGDp0KPbs2YO2bduiV69eCA0Nxfbt25UGKc9Lx44dMWfOHAwePBiNGjXCtWvX8MMPP6jciThw4EBs3boVkyZNwrlz59C0aVMkJCTg2LFjGD16NLp06aK0L8qVK4fdu3ejXbt2sLKyync8xblfgYwk79q1azFv3jxUqlQJVlZWaNGiBaZNm4Yff/wR7dq1w7hx42Bubo4tW7YgLCwMP//8s0oXJHU8PDzQrFkzeHp6wtzcHBcuXMCePXswZsyYQrefiKgsOHToEG7fvo20tDRERkbi999/R1BQEBwdHXHgwIEc75oBMsaD/fPPP9GhQwc4OjoiKioKa9asgb29vXQ3i4uLC0xNTbFu3ToYGRnBwMAA9evXz3UctNyYm5ujSZMmGDx4MCIjI7FixQpUqlQJw4YNk+rk9zO6ILF16tQJzZs3x8yZM/HgwQPUrFkTR48exf/+9z9MmDChQJ//uRk+fDi+++47DBo0CBcvXoSTkxP27Nkj9Q7IbYzIvFSrVg3e3t4YN24c5HI51qxZAwBK3Q2//vprnDhxAvXr18ewYcPg4eGBly9f4tKlSzh27JjaxHBxqFy5MlxcXDBlyhQ8efIExsbG+Pnnn9V25VywYAG6dOmCxo0bY/DgwXj16hVWr16NatWq5WvYnfwyNjbG2rVrMWDAANSuXRt9+vSBpaUlwsPDcfDgQTRu3FjtD7q50dPTg4eHB3bt2gU3NzeYm5ujWrVqOY47mJ/vHsV5Drm4uGDevHmYPn06Hjx4gK5du8LIyAhhYWHYt28fhg8fjilTpqhdNr/XlUDGNeOxY8ewbNky2NnZwdnZWZpgJitLS0tMnz4d/v7+aNu2LTp37ow7d+5gzZo1qFu3rtIkJfnVpk0b2NjYoHHjxrC2tsatW7ewevVqdOjQIc9916VLF+zbtw9CCKW7B4vqGjg/738FYWJigvHjx+fY5TgqKgr//PMPPv/880Ktn95CcU+fTEQF8+rVKzF48GBhYWEhDA0Nhbe3t7h9+7ZwdHQUPj4+SnVfvHghxowZI8qXLy90dHSEvb298PHxEc+fPxdC/Ddl/e7du9Vua9euXeKjjz4ScrlcmJubi379+onHjx9Lzz9//lx8/vnnonLlysLAwECYmJiI+vXri59++kmqc+nSJdG3b19RoUIFIZfLhZWVlejYsaO4cOFCnm11dHQUHTp0UCkHID7//HOlsrCwMAFALF68WCp7/Pix+OSTT4SpqakwMTERPXv2FE+fPhUAhK+vrxBCiJSUFDF16lRRs2ZNYWRkJAwMDETNmjXFmjVrpPXcv39ffPbZZ8LFxUXo6uoKc3Nz0bx5c3Hs2LE82yCEEBs3bhSurq5CLpeLypUri8DAQOHr6yvUvcVu2rRJ2udmZmbCy8tLBAUFKdU5cOCAaNSokdDT0xPGxsaiXr164scff1Sqs3TpUlG+fHkhl8tF48aNxYULF4SXl5fw8vKS6uR2/JOTk8XkyZOFra2t0NPTE40bNxbBwcEq6xBCiMTERDFz5kzh7OwstLW1hY2NjejRo4cIDQ1VWe/o0aMFALFjx4587TshhPDy8hJVq1ZVKS/K/RoRESE6dOggjIyMBAClNoaGhooePXoIU1NToaurK+rVqyd+/fVXpfXnti/nzZsn6tWrJ0xNTYWenp6oXLmymD9/vkhNTc33PiAiKksCAwMFAOlPR0dH2NjYiNatW4uVK1eK2NhYlWWyv/8fP35cdOnSRdjZ2QkdHR1hZ2cn+vbtK+7evau03P/+9z/h4eEhtLS0BAARGBgohMj5syfzOXWfpz/++KOYPn26sLKyEnp6eqJDhw7i4cOHKsvn5zM6t9h8fHyEo6OjUt24uDgxceJEYWdnJ7S1tYWrq6tYvHixUCgUSvXUXUMJIdReR6oTGRkpXYfq6OiI6tWrS3FlX5+6azh1MmPavn279Ln+0UcfiRMnTqjd/ueffy4cHByka46WLVuK9evXS3Xyur7NLqf6Pj4+wsDAQO0yN2/eFK1atRKGhobCwsJCDBs2TFy9elXpOGXauXOnqFy5spDL5aJatWriwIEDonv37qJy5cpSHXXXsbnFlvkaOX/+vEp9b29vYWJiInR1dYWLi4sYNGiQ0nV3Tu1Sdw115swZ4enpKXR0dJSun3OS13cPIfJ3DuW0P7LGGR0drTaGn3/+WTRp0kQYGBgIAwMDUblyZfH555+LO3fuKO2D7K+h/F5X3r59W3z88cdCT09PAJBeN5nHJCwsTKn+6tWrReXKlYW2trawtrYWo0aNEq9evVKqk9P7TfY4v/vuO/Hxxx+LcuXKCblcLlxcXMTUqVPF69ev1e6LrC5duiQAiL/++kupvKiugfP7/qdOTu1/9eqVMDExUXsurF27Vujr66v9PKDiJRPiHR7BloiI3isTJ07Exo0bERERIXVjISIiorJLJpPh888/L/Cdbu+zWrVqwdLSUmUcQ6Li1LJlS9jZ2UnjuhaFkydPonnz5ti9ezd69OhRZOvNy0cffYRmzZph+fLlJbZNysAxCYmIqEgkJydj+/bt6N69OxOERERE9MF78+aNyrjWJ0+exNWrV9GsWbPSCYrKrAULFmDXrl14+PBhaYfyVg4fPoyQkBBMnz69tEMpkzgmIRERvZWoqCgcO3YMe/bswYsXLzB+/PjSDomIiIio2D158gStWrVC//79YWdnh9u3b2PdunWwsbHByJEjSzs8KmPq16+vNGnS+6pt27ZFOqYnFQyThERE9FZu3ryJfv36wcrKCt988400uyQRERHRh8zMzAyenp74/vvvER0dDQMDA3To0AFff/21yqSDRETvA45JSEREREREREREVMZxTEIiIiIiIiIiIqIyjklCIiIiIiIiIiKiMo5jEqqhUCjw9OlTGBkZQSaTlXY4RERERPkmhEBcXBzs7OygocHfg4sKrw+JiIjofZXf60MmCdV4+vQpHBwcSjsMIiIiokJ79OgR7O3tSzuMDwavD4mIiOh9l9f1IZOEahgZGQHI2HnGxsbFth2FQoHo6GhYWlqWuV/6y3LbAbaf7Wf72f6y2f6y3Hag5NofGxsLBwcH6XqGikZJXR8SERERFbX8Xh8ySahGZhcSY2PjYk8SJicnw9jYuMx9WSrLbQfYfraf7Wf7y2b7y3LbgZJv//vaJfbPP//E4sWLcfHiRTx79gz79u1D165dc13m5MmTmDRpEm7cuAEHBwd89dVXGDRokFKdb7/9FosXL0ZERARq1qyJVatWoV69evmOq6SuD4mIiIiKS17Xh2XvCp2IiIiI3lkJCQmoWbMmvv3223zVDwsLQ4cOHdC8eXNcuXIFEyZMwNChQ3HkyBGpzq5duzBp0iT4+vri0qVLqFmzJry9vREVFVVczSAiIiJ67/BOQiIiIiJ6Z7Rr1w7t2rXLd/1169bB2dkZS5cuBQBUqVIFp06dwvLly+Ht7Q0AWLZsGYYNG4bBgwdLyxw8eBCbNm3CtGnTir4RRERERO8h3klIRERERO+t4OBgtGrVSqnM29sbwcHBAIDU1FRcvHhRqY6GhgZatWol1VEnJSUFsbGxSn9EREREHzImCYmIiIjovRUREQFra2ulMmtra8TGxiIpKQnPnz9Henq62joRERE5rjcgIAAmJibSH2c2JiIiog8dk4RERERExSxdIfD3/Rc4evsl/r7/AukKUdohUR6mT5+O169fS3+PHj0q7ZCIiIiIihXHJCQiIiIqRoevP4P/Lzfx7HXyvyVhsDXRhW8nD7StZluqsX0IbGxsEBkZqVQWGRkJY2Nj6OnpQVNTE5qammrr2NjY5LheuVwOuVxeLDETERERvYt4JyERERFRMTl8/RlGbb+UJUGYIeJ1MkZtv4TD15+VUmQfjoYNG+L48eNKZUFBQWjYsCEAQEdHB56enkp1FAoFjh8/LtUhIiIiIiYJiYiIiIpFukLA/5ebUNexOLPM/5eb7HqcTXx8PK5cuYIrV64AAMLCwnDlyhWEh4cDyOgGPHDgQKn+yJEjcf/+fXzxxRe4ffs21qxZg59++gkTJ06U6kyaNAkbNmzAli1bcOvWLYwaNQoJCQnSbMdERERExO7GREREREUmNvkNQiLjcDcyHn/cjVK5gzArAeDZ62ScC3uJhi7lSi7Id9yFCxfQvHlz6fGkSZMAAD4+Pti8eTOePXsmJQwBwNnZGQcPHsTEiROxcuVK2Nvb4/vvv4e3t7dUp3fv3oiOjsbs2bMRERGBWrVq4fDhwyqTmRARERGVZUwSEhERERVQYmoaQiLjcTcy7t+/jP/nlhTMSVRcwZf5kDVr1gxC5Hx35ebNm9Uuc/ny5VzXO2bMGIwZM+ZtwyMiIiL6YDFJSERERJSD5DfpCI2O/y8RGBGHu1FxePQyKcdlbIx14WptCCO5Fn67HpHnNqyMdIsyZCIiIiKiQmGSkIiIiMq81DQFwp4nZLkzMCMp+PBFAnIaMtDCUAdu1kZZ/gzham0EEz1tABljEl5e+DsiXierHZdQBsDGRBf1nM2LrV1ERERERPlVqklCPz8/+Pv7K5W5u7vj9u3bOS6ze/duzJo1Cw8ePICrqysWLlyI9u3bS8/LZDK1yy1atAhTp04tmsCJiIjovZSWrsDDl4kZdwRGxuNuVBzuRsQh7HkC0nLIBproacPd2ghuNoZwszaCq1VGQrCcoTzXbWlqyODbyQOjtl+CDFBKFGZerfh28oCmhvprFyIiIiKiklTqdxJWrVoVx44dkx5raeUc0pkzZ9C3b18EBASgY8eO2LFjB7p27YpLly6hWrVqAIBnz54pLXPo0CEMGTIE3bt3L54GEBER0TtHoRB49CpRGisw887A0Oh4pKYp1C5jKNeCm/W/iUBro4zEoLUhLI3kOf4ImZe21Wyxtn9t+P9yU2m8QhsTXfh28kDbaraFWi8RERERUVEr9SShlpYWbGxs8lV35cqVaNu2rXRH4Ny5cxEUFITVq1dj3bp1AKCyrv/9739o3rw5KlasWLSBExERUakTQuDp6+SMJGDEfxOI3IuKR9KbdLXL6GlrwtXaEK5WRnC3MZQSgrYmuoVOBuambTVbtPawwdn7z3HvcTQq2VuifkUL3kFIRERERO+UUk8ShoSEwM7ODrq6umjYsCECAgJQoUIFtXWDg4MxadIkpTJvb2/s379fbf3IyEgcPHgQW7ZsKeqwiYiIqAQJIRAdl4I72SYQCYmMR3xKmtpldLQ04GJpCHdrwyx3BhrB3kwPGiWcoNPUkKFBxXKoaJgOK6tyJb59IiIiIqK8lGqSsH79+ti8eTPc3d3x7Nkz+Pv7o2nTprh+/TqMjIxU6kdERMDa2lqpzNraGhER6mcO3LJlC4yMjNCtW7dc40hJSUFKSor0ODY2FgCgUCigUKjvklQUFAoFhBDFuo13VVluO8D2s/1sP9tfNtuf37a/iE9BSFS8dFdg5v9fJ71RW19LQ4aKFgZwzewqbGUIN2tDVDDXh5amhpolBBQ5zUZSjErq2JfFc4uIiIiI3l6pJgnbtWsn/b9GjRqoX78+HB0d8dNPP2HIkCFvvf5NmzahX79+0NXVzbVeQECAygQqABAdHY3k5GQ1SxQNhUKB169fQwgBDQ11X2I+XGW57QDbz/az/Wx/2Wx/9rbHJafh/stk3H+ehPsvk3D/eTLuv0zCq0T1dwZqyAB7UzmczfXgYqEHZ3NduFjowcFUDu3syUCRiJcvEkugVflXUsc+Li6u2NZNRERERB+uUu9unJWpqSnc3Nxw7949tc/b2NggMjJSqSwyMlLtmIZ//fUX7ty5g127duW53enTpyt1Y46NjYWDgwMsLS1hbGxcwFbkn0KhgEwmg6WlZZn8olhW2w6w/Ww/28/2l632x6ek4V5UPO5ExOLqg3g8jnuNkKh4RMam5LiMg5nevxOIZNwV6GZlBBdLA8i1NUsw8qJVUsc+rx9HiUpDYmIibt++XeDlLr24hO1Pt6O/XX/ULle7wMtXrlwZ+vr6BV6OqLB4rlNZUdhzPSkpCQ8ePICTkxP09PQKvDzP9eL1TiUJ4+PjERoaigEDBqh9vmHDhjh+/DgmTJgglQUFBaFhw4YqdTdu3AhPT0/UrFkzz+3K5XLI5XKVcg0NjWL/AieTyUpkO++istx2gO1n+9l+tv/Da3/ym/R/k4EZ4wVmTiTyJCYpx2XsTHQzxgu0yegm7G5jhEpWhtDXeacuUYpMSRz7D+28ondPSEhIge9YvXXrFvr371/gbVWcXRH6FfURcCoA9+fcL/Dy27dvR5UqVQq0jJGREVxdXQu8Lfrw8Fwnytnt27fh6elZ4OUMPAxg288WzxY8Q8LNhAIvf/HiRdSuXfBEOuVPqV6BT5kyBZ06dYKjoyOePn0KX19faGpqom/fvgCAgQMHonz58ggICAAAjB8/Hl5eXli6dCk6dOiAnTt34sKFC1i/fr3SemNjY7F7924sXbq0xNtERET0oUtJS8f96ISMGYX/nUgkJDIOD18mQuQw1J+lkRxu1oawN9RELWcruNkYw9XaEMa62iUbPBG9lZCQELi5uZXItgyrGUK/YsbdIvoV9WFYzRDx1+MLtI7CJGsA4O7du0yelHE816ksKUxCPCkpCdu3by/QMkIIrE9cj1fyV6g9vjaG6w+HTFawydySkpJw6dKlAi3DhHj+lWqS8PHjx+jbty9evHgBS0tLNGnSBH///TcsLS0BAOHh4Uq/hjdq1Ag7duzAV199hRkzZsDV1RX79+9HtWrVlNa7c+dOCCGkZCMREREV3Jt0BR6+SMCdiMwJROJwJyIOD14kIj2HiT/M9LXh9u8swm42RnCzyphMxMxABwqFAlFRUbCysuLdbkTvqbi4ONgYyrBxxXw4OzsX23aEEJgRGYiwNxFQQEADMrSc3hALrAcX+AtlQYSFhWHIhJkc25N4rlOZUdIJcacpTgCAV/JXGLVwVIET4oXFhHj+lGqScOfOnbk+f/LkSZWynj17omfPnrkuN3z4cAwfPvxtQiMiIioz0hUCj14m4k5kHEIi43Dn3zsDQ6Pj8SZdfTLQSFfrv2SgtSHcrY3gam0EC0OdYv1SQ0Slb4SnDto/+hp4VHzbOK2ni1AbK+mxAgKhb57h1YUJaJxUfBMLVkFG+4gAnutUNjAhTll9mAP+EBERkQqFQuBJTNK/dwTG/5sQjMO9qHikpCnULqOvowlX64w7At1tMhKB7tZGsDaWMxlIVAYlJibiu4upqNlrGipXrlws2xBCYHFkIDT+/SKZSQMyLHaoCbNi/EIZFhaG7y7OROdiWTu9T3iuU1nChDhlYpKQiIjoAyOEQGRsyn93BkbE4W5UPO5FxiEhNV3tMnItDVSy+u+OQHcbQ7haGaG8qR40NJgMJKIMt2/fRkS8QLfP/YttG1m7o2WV+YWy/oThxd49zcjIqFjXT+8+nutUVjAhTlkxSUhERPSeEkLgeXyqdEdg5gQidyLjEJecpnYZbU0ZXCwNpbsD3WwyugxXMNeHJpOBRJSHrl27AgAqV64MfX39fC9XkBlfrbpZQSgEZGrek4RCwKqbVb4TJ5zxlQqrsOd6UlISHjx4kGc9IQS2pG9BBCJyrNNgSgP4aPrkK3ni5OQEPT29fMcJ8FynDEyIU1ZMEhIREb0HYhJTpTsCM+8ODImKx8uEVLX1NTVkcCqnn2XcwIy7Ax3LGUBbk5OGEFHhWFhYYOjQoQVernLlyrh48WKe9d4o3mDSnUmITYtV+7xMQwZbN1vsOL8D2hp5z45e0AQPUabCnuuXLl3KV0JcpiWD21I3aJvkfB4/inmEgVMGQqSpHx84q4sXL6J27doFipUIYEKclDFJSERE9A6JS36jdEdgSGQ87kTGITouRW19mQyoYK4vTSCSmRCsaGkAuZZmCUdPRKSevr5+vhMYP1f5GS+TX+b4vLmuOWwMbIoqNKIild+EOAC8SH2BuPSMyRRSklPw9NlT2NnaQa4rBwAYaxnD/Kx5vrdLVBhMiFNWTBISERGVgsTUNNx/nijdEXgnImP8wKevcx64ubypXkYi0MYIblYZycBKVobQ02EykIg+HDYGNkwC0nurIAlxovcZE+IfJiYJiYiIilHym3SERscjJDIed//tJnz7WQyexqZC5PBjqbWxPEs34Yy7A12tjWAo58c2lR3ffvstFi9ejIiICNSsWROrVq1CvXr11NZt1qwZ/vjjD5Xy9u3b4+DBgwCAQYMGYcuWLUrPe3t74/Dhw0UfPBER0QeOCfEPE79tEBERFYE36QqEPU/A3cg43I3ImETkbmQcHrxIgCKHZGA5A53/EoH/TiDiZmUEE/28x9ki+pDt2rULkyZNwrp161C/fn2sWLEC3t7euHPnDqysrFTq7927F6mp/43P+eLFC9SsWRM9e/ZUqte2bVsEBgZKj+VyefE1goiIiOg9wyQhERFRAaQrBB6++DcZ+O94gSGRcbgfnYC0HLKBJnra/90RaGUIS5001HO3h6VxwQZdJiorli1bhmHDhmHw4MEAgHXr1uHgwYPYtGkTpk2bplLf3Fy5i9LOnTuhr6+vkiSUy+WwsWE3ViIiIiJ1CpUkDA8Px8OHD5GYmAhLS0tUrVqVv8QSEdEHRaEQePwqKaOL8L+JwDuR8QiNjkdqmkLtMoZyLbhaG2aMF2jzX1dhKyO5NFubQqFAVFQUyhnyc5NIndTUVFy8eBHTp0+XyjQ0NNCqVSsEBwfnax0bN25Enz59YGBgoFR+8uRJWFlZwczMDC1atMC8efNQrly5Io2fiIiI6H2V7yThgwcPsHbtWuzcuROPHz+GyDKQko6ODpo2bYrhw4eje/fu0NDQKJZgiYiIipoQAs9eJ/+XCIyIR0hUxqzCSW/S1S6jq60BVyvlMQPdbIxgZ6IrJQOJqHCeP3+O9PR0WFtbK5VbW1vj9u3beS5/7tw5XL9+HRs3blQqb9u2Lbp16wZnZ2eEhoZixowZaNeuHYKDg6GpqTr5T0pKClJS/ptVPDY2tpAtIiIiIno/5CtJOG7cOGzZsgXe3t6YN28e6tWrBzs7O+jp6eHly5e4fv06/vrrL8yePRv+/v4IDAxE3bp1izt2IiKifBNCIDouRRorMPMvJDIecSlpapfR0dSAi5Xhf4nAf5OCDmb60NBgMpDoXbRx40ZUr15dZZKTPn36SP+vXr06atSoARcXF5w8eRItW7ZUWU9AQAD8/f2LPV4iIiKid0W+koQGBga4f/++2u4YVlZWaNGiBVq0aAFfX18cPnwYjx49YpKQiIhKzcuEVKVE4N2IeNyNikNM4hu19bU0ZHC2MFCeUdjGCI7m+tDS5N3xRCXJwsICmpqaiIyMVCqPjIzMczzBhIQE7Ny5E3PmzMlzOxUrVoSFhQXu3bunNkk4ffp0TJo0SXocGxsLBweHfLaCiIiI6P2TryRhQEBAvlfYtm3bQgdDRERUEK+T3iAkMk7l7sDn8alq62vIAMdyBtnuDDSCs4UBdLSYDCR6F+jo6MDT0xPHjx9H165dAWSM5Xn8+HGMGTMm12V3796NlJQU9O/fP8/tPH78GC9evICtra3a5+VyOcfcJiIiojKFsxsTEdE7LyElDSFR8bgbEZdlIpF4RMQm57iMg7ke3KyM4GptBHcbQ7haGaGSlSF0tVXHHiOid8ukSZPg4+ODOnXqoF69elixYgUSEhKk2Y4HDhyI8uXLq/yQvXHjRnTt2lWl90t8fDz8/f3RvXt32NjYIDQ0FF988QUqVaoEb2/vEmsXERER0bss30nC5s2b5zkYu0wmw/Hjx986KCIiKpuS36TjXlS8UiLwbmQcHr9KynEZWxPdjESgteG//2YkAw3k/B2M6H3Vu3dvREdHY/bs2YiIiECtWrVw+PBhaTKT8PBwlYny7ty5g1OnTuHo0aMq69PU1MQ///yDLVu2ICYmBnZ2dmjTpg3mzp3LuwWJiIiI/pXvb1C1atXK8bm4uDjs2LFDaQY4IiKinLxJV+B2RBzuRSdIdwfejYxD+MtEKIT6ZSwM5dIdge42GeMGVrIygomedskGT0QlYsyYMTl2Lz558qRKmbu7O4RQ/waip6eHI0eOFGV4RERERB+cfCcJly9frlKWlpaGb7/9FvPnz0f58uUxd+7cIg2OiIjeb2npCjx4kZhtEpE4hD1PQHoOyUBTfW24/XtHYNaxA80MdEo2eCIiIiIiojKk0H2xfvjhB8yePRtJSUnw8/PD8OHDoaXFrl1ERGVRukLg0cusycCMbsL3oxOQmq5Qu4yhXEu6IzDz7kBXa0NYGsrzHN6CiIiIiIiIilaBs3qHDx/GtGnTEBYWhilTpmDSpEkwMDAojtiIiOgdI4TAk5gkpUTg3cg43IuKR/Ib9clAfR1NuFplHS/QAOU0U1C1YnloanISESIiIiIiondBvpOE586dw5dffom///4bI0eOxLFjx2BhYVGcsRERUSkRQiAyNkW5m3BkPEIi45CQmq52GR0tDVSyNJTuCHT/t5tweVM9aGj8d2egQqFAVFQU7xYkIiIiIiJ6h+Q7SdigQQPo6elh5MiRcHZ2xo4dO9TWGzduXJEFR0RExe95fIo0VuDdqHhpIpHY5DS19bU1ZahoYSglAl2tM7oKVzDXh6YGE39ERERERETvo3wnCStUqACZTIb9+/fnWEcmkzFJSET0jopJTFXqIpx5d+DLhFS19TVkgJOFgZQIdPs3KehkYQBtTY0Sjp6IiIiIiIiKU76ThA8ePCjGMIiIqKjEJb9BiHRHYDxCouJwJyIOUXEpauvLZEAFc324Wv2bCLQxgquVESpaGkBXm2MGEhERERERlQVvNR3x48ePYWdnBw0N3lFCRFTSElPTcC8qXhor8E5kHEIi4/EkJinHZcqb6il3E7Y2QiUrQ+jpMBlIRERERERUlr1VktDDwwNXrlxBxYoViyoeIiLKJvlNOu5HJ0h3BGZ2GX70KhFCqF/Gykgu3RHobpMxs7CrlSGMdLVLNngiIiIiIiJ6L7xVklDk9O2UiIgK7E26Ag+eJ+DOv2MFZkwkEoeHLxKRrlD/fmtuoCONFej672zCbtaGMNXXKeHoiYiIiIiI6H32VklCIiIquHSFQPirZFyOjkBIVALu/ttN+P7zeLxJV58MNNbVykgA2hjBzcow419rI1gYyks4eiIiIiIiIvoQvVWScMaMGTA3Ny+qWIiIPigKhcCTmKSMLsJRGYnAOxFxCI2OR0qaQu0yBjqa0kzCbv/eGehuYwQrIzlkMlkJt4CIiIiIiIjKirdKEk6bNq2o4iAiem8JIRARm4w7Ef8mAiPjEBIZh5CoeCSmpqtdRq4ly5hN+N87AjO6CxuivKkek4FERERERERU4gqVJNy4cSOWL1+OkJAQAICrqysmTJiAoUOHFmg9fn5+8Pf3Vypzd3fH7du3c1xm9+7dmDVrFh48eABXV1csXLgQ7du3V6pz69YtfPnll/jjjz+QlpYGDw8P/Pzzz6hQoUKB4iMiykoIgej4FOmOwMyJREIi4xGXkqZ2GR1NDVS0NJDuCHS1MkQlKwPI38TD1saas8MTERERERHRO6HAScLZs2dj2bJlGDt2LBo2bAgACA4OxsSJExEeHo45c+YUaH1Vq1bFsWPH/gtIK+eQzpw5g759+yIgIAAdO3bEjh070LVrV1y6dAnVqlUDAISGhqJJkyYYMmQI/P39YWxsjBs3bkBXV7egTSWiMuxVQqp0R2DmRCIhkXF4lfhGbX1NDRmcLQykOwIzuwo7ldOHlqZyIlChUCAqKqEkmkFERERERESULwVOEq5duxYbNmxA3759pbLOnTujRo0aGDt2bIGThFpaWrCxsclX3ZUrV6Jt27aYOnUqAGDu3LkICgrC6tWrsW7dOgDAzJkz0b59eyxatEhazsXFpUAxEVHZEZv8JiMRGBGfMYFIVMb/n8enqK0vkwGO5vpSEjCju7AhnC0MINfSLOHoiYiIiIiIiIpGgZOEb968QZ06dVTKPT09kZamvrtdbkJCQmBnZwddXV00bNgQAQEBOXYLDg4OxqRJk5TKvL29sX//fgAZd+ccPHgQX3zxBby9vXH58mU4Oztj+vTp6Nq1a44xpKSkICXlv4RAbGystD6FQv3kAkVBoVBACFGs23hXleW2A2x/abQ/ISUN96LicTcqHiGRmQnBeDx7nZzjMvZmenC1yrwr0BBu1oZwsTSErrb6ZGB+28Pjz/aX1faX5bYDJdf+srp/iYiIiOjtFDhJOGDAAKxduxbLli1TKl+/fj369etXoHXVr18fmzdvhru7O549ewZ/f380bdoU169fh5GRkUr9iIgIWFtbK5VZW1sjIiICABAVFYX4+Hh8/fXXmDdvHhYuXIjDhw+jW7duOHHiBLy8vNTGERAQoDI2IgBER0cjOTnnBMLbUigUeP36NYQQZW5csrLcdoDtL872J6cp8PBlMu6/SPr3L+P/z2JTc1zG0lAbLuX04FxOFxXL6aFiOT04m+tCXyd7MjAFsa9SEPuWMfL4s/1ltf1lue1AybU/Li6u2NZNRERERB+uQk9ccvToUTRo0AAAcPbsWYSHh2PgwIFKd/plTyRm165dO+n/NWrUQP369eHo6IiffvoJQ4YMKXBcmb+cd+nSBRMnTgQA1KpVC2fOnMG6detyTBJOnz5dKe7Y2Fg4ODjA0tISxsbGBY6jIPHKZDJYWlqWuS9LZbntANtfFO1PTVMg7HmCdEfg3X/vDgx/mQiFUL+MhaFOxozC/94V6GptBDcrQxjrab9FawqOx5/tL6vtL8ttB0qu/RyHmYiIiIgKo8BJwuvXr6N27doAMiYJAQALCwtYWFjg+vXrUj2ZTFbgYExNTeHm5oZ79+6pfd7GxgaRkZFKZZGRkdKYhhYWFtDS0oKHh4dSnSpVquDUqVM5blcul0Mul6uUa2hoFPuXGJlMViLbeReV5bYDbH9+25+WrsCDF4kI+XfykLuRcbgbGYew5wlIyyEbaKqvDTcrI7jZ/DeBiJu1EcwNdIqjKYXC48/2l9X2l+W2AyXT/g9l33777bdYvHgxIiIiULNmTaxatQr16tVTW3fz5s0YPHiwUplcLlfqESKEgK+vLzZs2ICYmBg0btwYa9euhaura7G2g4iIiOh9UeAk4YkTJ4ojDgBAfHw8QkNDMWDAALXPN2zYEMePH8eECROksqCgIGmWZR0dHdStWxd37txRWu7u3btwdHQstriJ6O0pFAKPXiUqJQLvRMThfnQCUtPVj69lKNf6965AoywTiRjC0lBeqB8qiIjo3bBr1y5MmjQJ69atQ/369bFixQp4e3vjzp07sLKyUruMsbGx0jVg9s+BRYsW4ZtvvsGWLVvg7OyMWbNmwdvbGzdv3uTdl0REREQoZHfjTI8fPwYA2NvbF2r5KVOmoFOnTnB0dMTTp0/h6+sLTU1NaebkgQMHonz58ggICAAAjB8/Hl5eXli6dCk6dOiAnTt34sKFC1i/fr20zqlTp6J37974+OOP0bx5cxw+fBi//PILTp48+TZNJaIiIoTAk5gknA97jajb/00kEhIVh+Q36pOBetqacLX+bwIRV2sjuFsbwdZEl8lAIqIP0LJlyzBs2DDp7sB169bh4MGD2LRpE6ZNm6Z2GZlMJvUuyU4IgRUrVuCrr75Cly5dAABbt26FtbU19u/fjz59+hRPQ4iIiIjeIwVOEioUCsybNw9Lly5FfHw8AMDIyAiTJ0/GzJkzC9TF5fHjx+jbty9evHgBS0tLNGnSBH///TcsLS0BAOHh4Urra9SoEXbs2IGvvvoKM2bMgKurK/bv349q1apJdT755BOsW7cOAQEBGDduHNzd3fHzzz+jSZMmBW0qEb0FIQSi4lKkOwJDIuNxJzIO96LiEZ+ifiZ0HS0NVLI0VEoEulkbwd5MDxoaTAYSEZUFqampuHjxIqZPny6VaWhooFWrVggODs5xufj4eDg6OkKhUKB27dpYsGABqlatCgAICwtDREQEWrVqJdU3MTFB/fr1ERwczCQhEREREQqRJJw5cyY2btyIr7/+Go0bNwYAnDp1Cn5+fkhOTsb8+fPzva6dO3fm+ry6u/969uyJnj175rrcZ599hs8++yzfcRCVJekKgXNhLxEVlwwrI13UczaH5lsm4F7Ep+BO5H+JwMzxA18nvVFbX0tDhgpmclSxM4W7jbHUZbiCuT60ND+MsbSIiKhwnj9/jvT0dFhbWyuVW1tb4/bt22qXcXd3x6ZNm1CjRg28fv0aS5YsQaNGjXDjxg3Y29sjIiJCWkf2dWY+l11KSgpSUlKkx7Gxbzu3PREREdG7rcBJwi1btuD7779H586dpbIaNWqgfPnyGD16dIGShERUsg5ffwb/X27i2ev/BnK3NdGFbycPtK1mm+fyrxPf4G5UxniBdyP+m0jkRUKq2voaMsCpnIHUTdjNJuPOwApmeoh5+RxWVlYfzAD7RERUeho2bCiNUQ1k9D6pUqUKvvvuO8ydO7dQ6wwICIC/v39RhUhERET0zitwkvDly5eoXLmySnnlypXx8uXLIgmKiIre4evPMGr7JWSfDzjidTJGbb+Etf1rS4nC+JS0f+8GVJ5RODI2RXXF/6pgrq8yiUhFSwPoamuq1FUo1I89SEREZGFhAU1NTURGRiqVR0ZG5jjmYHba2tr46KOPcO/ePQCQlouMjISt7X8/ikVGRqJWrVpq1zF9+nRMmjRJehwbGwsHB4eCNIWIiIjovVLgJGHNmjWxevVqfPPNN0rlq1evRs2aNYssMCIqOukKAf9fbqokCAFIZZN3X8XOc+EIiUrAk5ikHNdlZ6Ir3RHoamUIdxsjVLIyhL7OW82DREREBADQ0dGBp6cnjh8/jq5duwLI+HHp+PHjGDNmTL7WkZ6ejmvXrqF9+/YAAGdnZ9jY2OD48eNSUjA2NhZnz57FqFGj1K5DLpdDLpe/dXuIiIiI3hcF/la/aNEidOjQAceOHZO6dQQHB+PRo0f47bffijxAInp758JeKnUxVichJR0n7z6XHlsayeFubQRXa8N//834v7GudnGHS0REZdykSZPg4+ODOnXqoF69elixYgUSEhKk2Y4HDhyI8uXLIyAgAAAwZ84cNGjQAJUqVUJMTAwWL16Mhw8fYujQoQAyZj6eMGEC5s2bB1dXVzg7O2PWrFmws7OTEpFEREREZV2Bk4ReXl64e/cuvv32W2nw6G7dumH06NGws7Mr8gCJ6O1FxeWeIMzUs449eno6wM3aEKb6OsUcFRERkXq9e/dGdHQ0Zs+ejYiICNSqVQuHDx+WJh4JDw9XGtP21atXGDZsGCIiImBmZgZPT0+cOXMGHh4eUp0vvvgCCQkJGD58OGJiYtCkSRMcPnwYurq6Jd4+IiIioneRTAihrgdijsLDw+Hg4ACZTHU21PDwcFSoUKHIgistsbGxMDExwevXr2FsbFxs21EoFIiKiiqTkzeU5bYDJd/+4NAX6Lvh7zzr/TisARq6lCv2eHj82X62v2y2vyy3HSi59pfUdUxZw/1KRERE76v8XscU+ArV2dkZ0dHRKuUvXryAs7NzQVdHRCWgnrM5TPRy7iYsQ8Ysx/WczUsuKCIiIiIiIiJ6ZxQ4SSiEUHsXYXx8PLtrEL2jgm5GIDbpjdrnMl/Nvp08oKmh+tomIiIiIiIiog9fvscknDRpEoCMgZ9nzZoFfX196bn09HScPXtWmi2OiN4dp0KeY9yPVyAANHYph9DnCYjIMomJjYkufDt5oG0129ILkoiIiIiIiIhKVb6ThJcvXwaQcSfhtWvXoKPz36QGOjo6qFmzJqZMmVL0ERJRoV0Of4Xh2y4gNV2BdtVssPrT2gAyZjuOikuGlVFGF2PeQUhERERERERUtuU7SXjixAkAwODBg7Fy5UoO2Ez0jrsbGYfBm88jMTUdTSpZYEWfWlIysCQmJyEiIiIiIiKi90e+k4SZAgMDiyMOIipCj14mYsDGs4hJfINaDqb4boAn5FqapR0WEREREREREb2j8jVxyciRI/H48eN8rXDXrl344Ycf3iooIiq8qLhk9N94FpGxKXCzNkTgoLowkBf49wAiIiIiIiIiKkPylTmwtLRE1apV0bhxY3Tq1Al16tSBnZ0ddHV18erVK9y8eROnTp3Czp07YWdnh/Xr1xd33ESkxuukNxi48RwevkiEvZketg2pDzMDnbwXJCIiIiIiIqIyLV9Jwrlz52LMmDH4/vvvsWbNGty8eVPpeSMjI7Rq1Qrr169H27ZtiyVQIspdYmoaPtt8Hrcj4mBhKMf2IfVhbaxb2mERERERERER0Xsg330Qra2tMXPmTMycOROvXr1CeHg4kpKSYGFhARcXF8hknB2VqLSkpikwavslXHz4Csa6Wtg2pB6cLAxKOywiIiIiIiIiek8UaqAyMzMzmJmZFXUsRFQI6QqBST9dwR93o6GrrYHAwXVRxZazjxMRERERERFR/uVr4hIiejcJITD7f9fx6z/PoK0pw7r+nvB0NC/tsIiIiIiIiIjoPcMkIdF7bMnRO/jhbDhkMmBZr1po5m5V2iERERERERER0XuISUKi99SGP+/j2xOhAIB5XauhU027Uo6IiIiIiIiIiN5XTBISvYd+uvAI83+7BQCY6u2OfvUdSzkiIiIiIiIiInqfFThJmJSUhMTEROnxw4cPsWLFChw9erRIAyMi9Q5fj8C0n/8BAAz/uCJGN3Mp5YiIiIiIiIiI6H1X4CRhly5dsHXrVgBATEwM6tevj6VLl6JLly5Yu3ZtkQdIRP85fe85xv14GQoB9K7jgOntKkMmk5V2WERERERERET0nitwkvDSpUto2rQpAGDPnj2wtrbGw4cPsXXrVnzzzTdFHiARZbjyKAbDtl5AaroCbavaYP4n1ZggJCIiIiIiIqIiUeAkYWJiIoyMjAAAR48eRbdu3aChoYEGDRrg4cOHRR4gEQEhkXEYFHgOianpaFypHFb2rQUtTQ4pSkRERERERERFo8BZhkqVKmH//v149OgRjhw5gjZt2gAAoqKiYGxsXOQBEpV1j14mov/Gs4hJfIOaDqZYP6AO5FqapR0WEREREREREX1ACpwknD17NqZMmQInJyfUr18fDRs2BJBxV+FHH31U5AESlWXRcSkYsPEsImNT4GpliM2D6sJArlXaYRERERW7b7/9Fk5OTtDV1UX9+vVx7ty5HOtu2LABTZs2hZmZGczMzNCqVSuV+oMGDYJMJlP6a9u2bXE3g4iIiOi9UeAkYY8ePRAeHo4LFy7g8OHDUnnLli2xfPnyIg2OqCx7nfQGAzedw4MXibA308O2IfVhZqBT2mEREREVu127dmHSpEnw9fXFpUuXULNmTXh7eyMqKkpt/ZMnT6Jv3744ceIEgoOD4eDggDZt2uDJkydK9dq2bYtnz55Jfz/++GNJNIeIiIjovVCoQc1sbGzw0UcfQUPjv8Xr1auHypUrF1lgRGVZUmo6hmw+j1vPYmFhKMf2IfVhY6Jb2mEREVEZkZ6ejj///BMxMTGlsv1ly5Zh2LBhGDx4MDw8PLBu3Tro6+tj06ZNauv/8MMPGD16NGrVqoXKlSvj+++/h0KhwPHjx5XqyeVy2NjYSH9mZmYl0RwiIiKi90KBk4QJCQmYNWsWGjVqhEqVKqFixYpKfwXh5+en0u0jr0Tj7t27UblyZejq6qJ69er47bfflJ5nVxJ636WmKTDqh4u48PAVjHS1sPWzenCyMCjtsIiIqAzR1NREmzZt8OrVqxLfdmpqKi5evIhWrVpJZRoaGmjVqhWCg4PztY7ExES8efMG5ubmSuUnT56ElZUV3N3dMWrUKLx48SLHdaSkpCA2Nlbpj4iIiOhDVuDBzYYOHYo//vgDAwYMgK2tLWQy2VsFULVqVRw7duy/gLRyDunMmTPo27cvAgIC0LFjR+zYsQNdu3bFpUuXUK1aNale27ZtERgYKD2Wy+VvFSNRSUlXCEzefRUn70RDV1sDgYPqwsOOEwIREVHJq1atGu7fvw9nZ+cS3e7z58+Rnp4Oa2trpXJra2vcvn07X+v48ssvYWdnp5RobNu2Lbp16wZnZ2eEhoZixowZaNeuHYKDg6GpqTohWEBAAPz9/d+uMURERETvkQInCQ8dOoSDBw+icePGRROAlhZsbGzyVXflypVo27Ytpk6dCgCYO3cugoKCsHr1aqxbt06ql9mVhOh9IoSA74Hr+OXqU2hpyLCuvyfqOJnnvSAREVExmDdvHqZMmYK5c+fC09MTBgbKd7UbG7+bP2J9/fXX2LlzJ06ePAld3f+G6ujTp4/0/+rVq6NGjRpwcXHByZMn0bJlS5X1TJ8+HZMmTZIex8bGwsHBoXiDJyIiIipFBe5ubGZmptJ1422EhITAzs4OFStWRL9+/RAeHp5j3eDgYKVfhAHA29tbpetJQbqSEL0rlh69i+1/h0MmA5b1roVm7lalHRIREZVh7du3x9WrV9G5c2fY29tLMwebmpoW61h+FhYW0NTURGRkpFJ5ZGRknj8CL1myBF9//TWOHj2KGjVq5Fq3YsWKsLCwwL1799Q+L5fLYWxsrPRHRERE9CEr8J2Ec+fOxezZs7Flyxbo6+u/1cbr16+PzZs3w93dHc+ePYO/vz+aNm2K69evw8jISKV+RESE2q4nERER0uOCdiUBMsacSUlJkR5njjmjUCigUCjeqo25USgUEEIU6zbeVWW57YBq+78/FYbVJzK+pMzpXBUdq9t80PuGx5/tZ/vLZvvLctuBkmt/Ua3/xIkTRbKegtLR0YGnpyeOHz+Orl27AoA0CcmYMWNyXG7RokWYP38+jhw5gjp16uS5ncePH+PFixewtbUtqtCJiIiI3msFThIuXboUoaGhsLa2hpOTE7S1tZWev3TpUr7X1a5dO+n/NWrUQP369eHo6IiffvoJQ4YMKWhoAArelQTIecyZ6OhoJCcnFyqO/FAoFHj9+jWEEEozRZcFZbntgHL7f7v1EguCHgIARjayQ2tnXURFRZVyhMWLx5/tZ/vLZvvLctuBkmt/XFxckazHy8urSNZTGJMmTYKPjw/q1KmDevXqYcWKFUhISMDgwYMBAAMHDkT58uUREBAAAFi4cCFmz56NHTt2wMnJSfoB2dDQEIaGhoiPj4e/vz+6d+8OGxsbhIaG4osvvkClSpXg7e1dau0kIiIiepcUOEmY+YtucTA1NYWbm1uO3T5sbGwK3PUka1eSnJKEOY05Y2lpWaxdSxQKBWQyGSwtLcvcl6Wy3Hbgv/ZfjlZgwbGMBOHQJs6Y2s79rScDeh/w+LP9bH/ZbH9ZbjtQcu3POg7f+6p3796Ijo7G7NmzERERgVq1auHw4cNSj5Lw8HClfbh27VqkpqaiR48eSuvx9fWFn58fNDU18c8//2DLli2IiYmBnZ0d2rRpg7lz53KCOyIiIqJ/FThJ6OvrWxxxAADi4+MRGhqKAQMGqH2+YcOGOH78OCZMmCCVBQUFoWHDhjmuMz9dSeRyudoLRA0NjWL/EiOTyUpkO++istx2ALjwKA6T/3cPCgH0qmOPmR2qlIkEYaayfvzZfra/rLa/LLcdKJn2fyj7dsyYMTl2Lz558qTS4wcPHuS6Lj09PRw5cqSIIiMiIiL6MBU4SZjp4sWLuHXrFgCgatWq+Oijjwq8jilTpqBTp05wdHTE06dP4evrC01NTfTt2xeAaleS8ePHw8vLC0uXLkWHDh2wc+dOXLhwAevXrwcAdiWh98bVRzH44pdQpKYLeFe1xoJPqpepBCERERERERERvVsKnCSMiopCnz59cPLkSZiamgIAYmJi0Lx5c+zcuROWlpb5Xtfjx4/Rt29fvHjxApaWlmjSpAn+/vtvaR3Zu5I0atQIO3bswFdffYUZM2bA1dUV+/fvR7Vq1QCAXUnovRASGYfBmy8g6Y0CjVzKYWWfj6Cl+WHc9UFERERERERE76cCJwnHjh2LuLg43LhxA1WqVAEA3Lx5Ez4+Phg3bhx+/PHHfK9r586duT6fvSsJAPTs2RM9e/ZUW59dSehd9+hlIgZsPIeYpDfwsNbHuv61oautftZtIiIiIiIiIqKSUuDblw4fPow1a9ZICUIA8PDwwLfffotDhw4VaXBEH5LouBQM2HgWEbHJcLUyxPKurjCUF7rHPxERUbGKjIzEgAEDYGdnBy0tLWhqair9EREREdGHpcAZCoVCAW1tbZVybW1tKBSKIgmK6EPzOukNfDadw4MXiShvqoctg+tCIyW2tMMiIiLK0aBBgxAeHo5Zs2bB1taWY+cSERERfeAKnCRs0aIFxo8fjx9//BF2dnYAgCdPnmDixIlo2bJlkQdI9L5LSk3H0C3ncfNZLCwM5fhhaH3YmOgiKopJQiIienedOnUKf/31F2rVqlXaoRARERFRCShwd+PVq1cjNjYWTk5OcHFxgYuLC5ydnREbG4tVq1YVR4xE76036QqM/uEizj94BSNdLWz9rB6cLAxKOywiIqI8OTg4QAhR2mEQERERUQkp8J2EDg4OuHTpEo4dO4bbt28DAKpUqYJWrVoVeXBE7zOFQmDyT1dx4k40dLU1sGlQXXjYGZd2WERERPmyYsUKTJs2Dd999x2cnJxKOxwiIiIiKmaFmjVBJpOhdevWaN26dVHHQ/RBEELA98ANHLj6FFoaMqzt74m6TualHRYREVG+9e7dG4mJiXBxcYG+vr7KmNQvX74spciIiIiIqDjkK0n4zTffYPjw4dDV1cU333yTa91x48YVSWBE77NlQXex7e+HkMmAZb1robm7VWmHREREVCArVqwo7RCIiIiIqATlK0m4fPly9OvXD7q6uli+fHmO9WQyGZOEVOZ9/9d9rPr9HgBgTpdq6FzTrpQjIiIiKjgfH5/SDoGIiIiISlC+koRhYWFq/09EynZfeIR5B28BAKa0ccOABo6lHBEREVHhpaenY//+/bh1K+OzrWrVqujcuTM0NTVLOTIiIiIiKmoFnt14zpw5SExMVClPSkrCnDlziiQoov+3d+dhUZb7/8DfwzaDICDKqoiyqIjgxgFBy46QouZS5kIGuKTH0jTNtTRBU2zRXNsUUVMjzSUzvyYu5FEREsQNXEDMVBaVZBFZ5/794c85TYAyOMMA835d11zHuZ97nuf9mRk6Dx+epSH69VIW5uw6DwB4q1dbTP63i5YTERER1V5aWhrc3NwQEhKC3bt3Y/fu3XjzzTfh7u6O9PR0bccjIiIiIjVTuUkYHh6OwsLCSuNFRUUIDw9XSyiihuZU2j28u/0s5AIY3r0VPhzoBolEou1YREREtTZ16lQ4Ozvjzz//RFJSEpKSknDz5k20bduWl5chIiIiaoRUvruxEKLK5se5c+dgacm7t5LuOffnA0zYcgalFXL07WiDiNc82CAkIqIG77fffsPp06eV9u+aN2+OZcuWoWfPnlpMRkRERESaUOMmYbNmzSCRSCCRSNCuXTulJkhFRQUKCwsxadIkjYQkqq/ScgowJioBD0sr4OfcHKuDusJAX+UDdImIiOodqVSKgoKCSuOFhYUwMjLSQiIiIiIi0qQaNwlXrlwJIQTGjRuH8PBwmJubK5YZGRmhTZs28PX11UhIovro1l9FeHNDAv4qKkPnVub4NsQLMkNeyJ2IiBqHV155BRMnTkRkZCS8vb0BAPHx8Zg0aRIGDx6s5XREREREpG41bhKGhoYCANq2bQs/Pz8YGhpqLBRRfXe3oATBkQnIyi+Gi7UpNo31hqlU5bP3iYiI6q3Vq1cjNDQUvr6+iv2+8vJyDB48GKtWrdJyOiIiIiJSN5W7Gr1791b8u7i4GKWlpUrLzczMnj8VUT2WX1yG0I0JyLj3EC0tjPHdeG80M+FpV0RE1LhYWFjgp59+QlpaGlJTUwEAbm5ucHFx0XIyIiIiItIElS+eVlRUhClTpsDa2homJiZo1qyZ0oOoMXtUWoG3Np1BSmY+WpgaYetbPrAzN9Z2LCIiIo1xcXHBoEGDMGDAABQWFuKvv/6qk+2uW7cObdq0gUwmg4+PDxISEp46f+fOnejQoQNkMhk8PDxw4MABpeVCCHz00Uews7ODsbExAgICcO3aNU2WQERERNSgqNwknDVrFo4ePYqvvvoKUqkUGzZsQHh4OOzt7bFlyxZNZCSqF8oq5HhnWyISbuSiqdQAm8d5o20LE23HIiIi0oj33nsPkZGRAB7fpK53797o1q0bHBwcEBsbq9Ft//DDD5gxYwYWLlyIpKQkdO7cGf369UNOTk6V80+dOoWgoCCMHz8eZ8+exdChQzF06FBcvHhRMefTTz/F6tWr8fXXXyM+Ph4mJibo168fiouLNVoLERERUUOhcpPw559/xpdffolhw4bBwMAAL7zwAubPn4+lS5di27ZtmshIpHVyucDMnedw7MpdyAz1sHHsv+Bub/7sFxIRETVQP/74Izp37gzg8f7f9evXcfnyZUyfPh0ffvihRre9YsUKTJgwAWPHjkXHjh3x9ddfo0mTJti4cWOV81etWoXAwEDMmjULbm5uWLx4Mbp164a1a9cCeHwU4cqVKzF//nwMGTIEnp6e2LJlC+7cuYO9e/dqtBYiIiKihkLlJmFubi6cnJwAPL7+YG5uLgCgV69eOH78uHrTEdUDQgiE/XwJPyXfgYGeBF+N7o5/tbHUdiwiIiKNunfvHmxtbQEABw4cwIgRI9CuXTuMGzcOFy5c0Nh2S0tLkZiYiICAAMWYnp4eAgICEBcXV+Vr4uLilOYDQL9+/RTzMzIykJWVpTTH3NwcPj4+1a6zpKQE+fn5Sg8iIiKixkzlJqGTkxMyMjIAAB06dMCOHTsAPP4Ls4WFhVrDEdUHX8RcxZa4PyCRAMtHdMa/O1hrOxIREZHG2djYICUlBRUVFTh48CBefvllAI+vT62vr6+x7d67dw8VFRWwsbGplCcrK6vK12RlZT11/pP/VWWdERERMDc3VzwcHBxqVQ8RERFRQ6Fyk3Ds2LE4d+4cAGDu3LlYt24dZDIZpk+fjlmzZqk9IJE2RZ7IwOqjaQCARUM6YUiXllpOREREVDfGjh2LESNGoFOnTpBIJIqj8OLj49GhQwctp9O8efPmIS8vT/H4888/tR2JiIiISKMMVH3B9OnTFf8OCAjA5cuXkZiYCBcXF3h6eqo1HJE2/Zh4C4v3pwAAZvZth+AejlpOREREVHfCwsLg4eGBmzdvYvjw4ZBKpQAAfX19zJ07V2PbbdGiBfT19ZGdna00np2drTj9+Z9sbW2fOv/J/2ZnZ8POzk5pTpcuXapcp1QqVdRMREREpAtUPpLwnxwdHfHaa6+xQUiNyqFLWZiz6zwAYHyvtpj8bxctJyIiIqo7ZWVl8Pf3h6enJ6ZPn45WrVoploWGhmLIkCEa27aRkRG6d++OI0eOKMbkcjmOHDkCX1/fKl/j6+urNB8AYmJiFPPbtm0LW1tbpTn5+fmIj4+vdp1EREREuqZGRxKuXr26xiucOnVqrcMQ1Qen0u9hyvdnUSEXeL17K3w4wA0SiUTbsYiIiOqMoaEhzp8/r7Xtz5gxA6GhofDy8oK3tzdWrlyJhw8fYuzYsQCAkJAQtGzZEhEREQCAadOmoXfv3li+fDkGDhyI6OhonDlzBt9++y0AQCKR4L333sPHH38MV1dXtG3bFgsWLIC9vT2GDh2qrTKJiIiI6pUaNQm/+OKLGq1MIpGwSUgN2vlbDzBh8xmUlsvRt6MNlr3mAT09NgiJiEj3vPnmm4iMjMSyZcvqfNsjR47E3bt38dFHHyErKwtdunTBwYMHFTceuXnzJvT0/ndCjJ+fH7Zv34758+fjgw8+gKurK/bu3YtOnTop5syePRsPHz7ExIkT8eDBA/Tq1QsHDx6ETCar8/qIiIiI6qMaNQmf3M2YqDFLyylA6MYEPCytgJ9zc6wO6goD/ec+I5+IiKhBKi8vx8aNG3H48GF0794dJiYmSstXrFih0e1PmTIFU6ZMqXJZbGxspbHhw4dj+PDh1a5PIpFg0aJFWLRokboiEhERETUqKt+45InS0lJkZGTA2dkZBga1Xg1RvXDrryIERybgr6IydG5ljm9DvCAz1Nd2LCIiIq25ePEiunXrBgC4evWq0jJehoOIiIio8VG5u1dUVIR3330XmzdvBvB4p9HJyQnvvvsuWrZsqdG73RFpwr3CEgRHJiAzrxgu1qaIGusNUykb30REpNuOHTum7QhEREREVIdUPpdy3rx5OHfuHGJjY5Wu4RIQEIAffvhBpXWFhYVBIpEoPTp06PDU1+zcuRMdOnSATCaDh4cHDhw4UO3cSZMmQSKRYOXKlSrlIt2RX1yGkMgEZNx7iJYWxvhuvDcsTYy0HYuIiIiIiIiIqE6pfLjU3r178cMPP6BHjx5Kp5q4u7sjPT1d5QDu7u44fPjw/wI95dTlU6dOISgoCBEREXjllVewfft2DB06FElJSUoXpgaAPXv24PTp07C3t1c5E+mG4rIKvLXpDFIy89HC1AjfjfeGnbmxtmMRERHVG2fOnMGOHTtw8+ZNlJaWKi3bvXu3llIRERERkSaofCTh3bt3YW1tXWn84cOHtbo+jYGBAWxtbRWPFi1aVDt31apVCAwMxKxZs+Dm5obFixejW7duWLt2rdK827dv491338W2bdtgaGiociZq/Moq5HhnWxISbuSiqdQAm8Z6w8nKVNuxiIiI6o3o6Gj4+fkhNTUVe/bsQVlZGS5duoSjR4/C3Nxc2/GIiIiISM1UbhJ6eXnhl19+UTx/0hjcsGEDfH19VQ5w7do12Nvbw8nJCaNHj8bNmzernRsXF4eAgAClsX79+iEuLk7xXC6XIzg4GLNmzYK7u7vKeajxk8sFZu48h6OXcyA10EPkmH+hU0v+skNERPR3S5cuxRdffIGff/4ZRkZGWLVqFS5fvowRI0agdevW2o5HRERERGqm8unGS5cuRf/+/ZGSkoLy8nKsWrUKKSkpOHXqFH777TeV1uXj44NNmzahffv2yMzMRHh4OF544QVcvHgRTZs2rTQ/KysLNjY2SmM2NjbIyspSPP/kk09gYGCAqVOn1jhHSUkJSkpKFM/z8/MBPG44yuVylWpShVwuhxBCo9uor7RVuxAC4T+n4qfkOzDQk2DdG13h5WhR5zl0+bMHWD/rZ/26Wr8u1w7UXf3qWn96ejoGDhwIADAyMlKcNTJ9+nT06dMH4eHhatkOEREREdUPKjcJe/XqhXPnziEiIgIeHh44dOgQunXrhri4OHh4eKi0rv79+yv+7enpCR8fHzg6OmLHjh0YP368qtGQmJiIVatWISkpSaVTnyMiIqrc0b179y6Ki4tVzlFTcrkceXl5EEJAT0/lgzobNG3Vvj7uDrbEZ0ICYEHfNuhkCeTk5NTZ9p/Q5c8eYP2sn/Xrav26XDtQd/UXFBSoZT3NmjVTrKtly5a4ePEiPDw88ODBAxQVFallG0RERERUf6jUJCwrK8N//vMfLFiwAOvXr1d7GAsLC7Rr1w5paWlVLre1tUV2drbSWHZ2NmxtbQEA//3vf5GTk6N0CkxFRQXef/99rFy5Ejdu3KhyvfPmzcOMGTMUz/Pz8+Hg4AArKyuYmZk9Z1XVk8vlkEgksLKy0rlflrRRe9TJG4iMzwQALBzUEcG+jnWy3aro8mcPsH7Wz/p1tX5drh2ou/plMpla1vPiiy8iJiYGHh4eGD58OKZNm4ajR48iJiYG/v7+atkGEREREdUfKjUJDQ0NsWvXLixYsEAjYQoLC5Geno7g4OAql/v6+uLIkSN47733FGMxMTGKayEGBwdXec3C4OBgjB07ttrtSqVSSKXSSuN6enoa/yVGIpHUyXbqo7qsfVfiLSz+JRUA8P7L7TCmZ1uNb/NZdPmzB1g/62f9ulq/LtcO1E396lr32rVrFWdUfPjhhzA0NMSpU6cwbNgwzJ8/Xy3bICIiIqL6Q+XTjYcOHYq9e/di+vTpz73xmTNnYtCgQXB0dMSdO3ewcOFC6OvrIygoCAAQEhKCli1bIiIiAgAwbdo09O7dG8uXL8fAgQMRHR2NM2fO4NtvvwUANG/eHM2bN1fahqGhIWxtbdG+ffvnzksN06FLWZi96zwAYFzPtpjSx0XLiYiIiOo/S0tLxb/19PQwd+5cLaYhIiIiIk1TuUno6uqKRYsW4eTJk+jevTtMTEyUlqtyw5Bbt24hKCgI9+/fh5WVFXr16oXTp0/DysoKAHDz5k2lv4b7+flh+/btmD9/Pj744AO4urpi79696NSpk6plkI6IS7+PKd+fRYVcYFi3Vpg/0E2l61USERHpsvT0dERFRSE9PR2rVq2CtbU1/u///g+tW7eGu7u7tuMRERERkRqp3CSMjIyEhYUFEhMTkZiYqLRMIpGo1CSMjo5+6vLY2NhKY8OHD8fw4cNrvI3qrkNIjd/5Ww8wYcsZlJbL8XJHG3wyzAN6emwQEhER1cRvv/2G/v37o2fPnjh+/DiWLFkCa2trnDt3DpGRkfjxxx+1HZGIiIiI1EilJqEQArGxsbC2toaxsbGmMhE9t7ScQoyJ+h2FJeXwdWqONUFdYaCvm9e/IiIiqo25c+fi448/xowZM9C0aVPFeJ8+fbB27VotJiMiIiIiTVCpayKEgKurK27duqWpPETP7faDRwiOjEfuw1J4tjLH+lAvyAz1tR2LiIioQblw4QJeffXVSuPW1ta4d++eFhIRERERkSap1CTU09ODq6sr7t+/r6k8RM/lXmEJgjfEIzOvGM5WJtg01humUpXPqiciItJ5FhYWyMzMrDR+9uxZtGzZUguJiIiIiEiTVD7/ctmyZZg1axYuXryoiTxEtZZfXIbQjQm4fu8hWloYY+tbPrA0MdJ2LCIiogZp1KhRmDNnDrKysiCRSCCXy3Hy5EnMnDkTISEh2o5HRERERGqm8iFWISEhKCoqQufOnWFkZFTp2oS5ublqC0dUU8VlFXhr8xlcupOP5iZG+G68N+zMed1MIiKi2lq6dCkmT54MBwcHVFRUoGPHjqioqMAbb7yB+fPnazseEREREamZyk3ClStXaiAGUe2VVcgxeVsSEjJy0VRqgM3jvOFkZartWERERA2akZER1q9fj48++ggXLlxAYWEhunbtCldXV21HIyIiIiINULlJGBoaqokcRLUilwvM2nkORy7nQGqgh8gx/0KnlubajkVERNRgyeVyfPbZZ9i3bx9KS0vh7++PhQsXVjp7RFNyc3Px7rvv4ueff4aenh6GDRuGVatWwdS06j8A5ubmYuHChTh06BBu3rwJKysrDB06FIsXL4a5+f/2CSQSSaXXfv/99xg1apTGaiEiIiJqSGp1R4eKigrs3bsXqampAAB3d3cMHjwY+vq8gyzVHSEEFu1Pwd7kOzDQk+CrN7vBu62ltmMRERE1aEuWLEFYWBgCAgJgbGyMVatWIScnBxs3bqyT7Y8ePRqZmZmIiYlBWVkZxo4di4kTJ2L79u1Vzr9z5w7u3LmDzz//HB07dsQff/yBSZMm4c6dO/jxxx+V5kZFRSEwMFDx3MLCQpOlEBERETUoKjcJ09LSMGDAANy+fRvt27cHAERERMDBwQG//PILnJ2d1R6SqCorD1/DplM3IJEAy0d0Rp8ONtqORERE1OBt2bIFX375Jf7zn/8AAA4fPoyBAwdiw4YN0NNT+Z53KklNTcXBgwfx+++/w8vLCwCwZs0aDBgwAJ9//jns7e0rvaZTp07YtWuX4rmzszOWLFmCN998E+Xl5TAw+N/uroWFBWxtbTVaAxEREVFDpfKe3tSpU+Hs7Iw///wTSUlJSEpKws2bN9G2bVtMnTpVExmJKok6mYFVR64BAMIHu2NIl5ZaTkRERNQ43Lx5EwMGDFA8DwgIgEQiwZ07dzS+7bi4OFhYWCgahE+2r6enh/j4+BqvJy8vD2ZmZkoNQgCYPHkyWrRoAW9vb2zcuBFCCLVlJyIiImroVD6S8LfffsPp06dhafm/0zqbN2+OZcuWoWfPnmoNR1SV3Um3EP5zCgBgxsvtEOLbRruBiIiIGpHy8nLIZDKlMUNDQ5SVlWl821lZWbC2tlYaMzAwgKWlJbKysmq0jnv37mHx4sWYOHGi0viiRYvQp08fNGnSBIcOHcI777yDwsLCav/IXVJSgpKSEsXz/Px8FashIiIialhUbhJKpVIUFBRUGi8sLISRkZFaQhFVJyYlG7N+PA8AGNuzDd7t46LlRERERI2LEAJjxoyBVCpVjBUXF2PSpEkwMTFRjO3evbvG65w7dy4++eSTp855cq3r55Gfn4+BAweiY8eOCAsLU1q2YMECxb+7du2Khw8f4rPPPqu2SRgREYHw8PDnzkRERETUUKjcJHzllVcwceJEREZGwtvbGwAQHx+PSZMmYfDgwWoPSPREXPp9TN6ehAq5wGvdWmLBwI5V3qmQiIiIai80NLTS2Jtvvvlc63z//fcxZsyYp85xcnKCra0tcnJylMbLy8uRm5v7zGsJFhQUIDAwEE2bNsWePXtgaGj41Pk+Pj5YvHgxSkpKlBqiT8ybNw8zZsxQPM/Pz4eDg8NT10lERETUkKncJFy9ejVCQ0Ph6+ur2PkqLy/H4MGDsWrVKrUHJAKAC7fyMGHLGZSWyxHgZoNPh3lCT48NQiIiInWLiopS+zqtrKxgZWX1zHm+vr548OABEhMT0b17dwDA0aNHIZfL4ePjU+3r8vPz0a9fP0ilUuzbt6/S6dJVSU5ORrNmzapsEAKPz56pbhkRERFRY6Ryk9DCwgI//fQT0tLSFKeFuLm5wcWFp32SZqTlFCI0KgGFJeXo4WSJtW90hYG+Zu+uSERERHXPzc0NgYGBmDBhAr7++muUlZVhypQpGDVqlOLOxrdv34a/vz+2bNkCb29v5Ofno2/fvigqKsLWrVuRn5+vuH6glZUV9PX18fPPPyM7Oxs9evSATCZDTEwMli5dipkzZ2qzXCIiIqJ6ReUm4RMuLi5sDJLG3X7wCMGR8ch9WAqPluZYH+IFmaG+tmMRERGRhmzbtg1TpkyBv78/9PT0MGzYMKxevVqxvKysDFeuXEFRUREAICkpSXHn43/um2ZkZKBNmzYwNDTEunXrMH36dAgh4OLighUrVmDChAl1VxgRERFRPadyk3DYsGHw9vbGnDlzlMY//fRT/P7779i5c6fawpFuu1dYguAN8cjMK4azlQk2jf0Xmsqefn0hIiIiatgsLS2xffv2ape3adMGQgjF85deeknpeVUCAwMRGBiotoxEREREjZHK52weP34cAwYMqDTev39/HD9+XC2hiPKLyxC6MQHX7z2EvbkM3433QXNTXheIiIiIiIiIiEgTVG4SFhYWwsjIqNK4oaGh4vovRM+juKwCb20+g0t38tHcxAjfveUDewtjbcciIiIiIiIiImq0VG4Senh44Icffqg0Hh0djY4dO6olFOmusgo5pmxPQkJGLppKDbB5nDecrUy1HYuIiIiIiIiIqFFT+ZqECxYswGuvvYb09HT06dMHAHDkyBF8//33vB4hPRe5XGD2j+dxODUHUgM9bAj1QqeW5tqORURERERERETU6KncJBw0aBD27t2LpUuX4scff4SxsTE8PT1x+PBh9O7dWxMZSQcIIbBofwr2nL0NfT0JvhzdDT5OzbUdi4iIiIiIiIhIJ6jcJASAgQMHYuDAgerOQjps1ZFr2HTqBgBg+fDO8Hez0W4gIiIiIiIiIiIdovI1CYnULepkBlYevgYACB/sjqFdW2o5ERERERERERGRbmGTkLRq79nbCP85BQAwPaAdQv3aaDcQEREREREREZEOqtXpxkTq8N/rDzB3/3UAwNiebTDV30XLiYiIiIiIiIiIdFONjiTMz8/XdA7SMfHX7+PDX66jQi7wWteWWDCwIyQSibZjERERERERERHppBo1CZs1a4acnBwAQJ8+ffDgwQNNZqJG7uLtPEz4LhGlFQIBbtb45HVP6OmxQUhEREREREREpC01ahKampri/v37AIDY2FiUlZVpNBQ1Xmk5hQjZmIDCkgp0a2WKNaO6wFCfl8YkIiIiIiIiItKmGl2TMCAgAP/+97/h5uYGAHj11VdhZGRU5dyjR4+qLx01KrcfPEJIZDxyH5aiU0szfDbICVJDfW3HIiIiIiIiIiLSeTU6hGvr1q0ICwuDl5cXAMDd3R2dO3eu8qGKsLAwSCQSpUeHDh2e+pqdO3eiQ4cOkMlk8PDwwIEDByqts0OHDjAxMUGzZs0QEBCA+Ph4lXKR+t0vLEFwZDzu5BXDycoEUaFeMJGyQUhEREREREREVB/U6EhCY2NjTJo0CQBw5swZfPLJJ7CwsFBLAHd3dxw+fPh/gQyqj3Tq1CkEBQUhIiICr7zyCrZv346hQ4ciKSkJnTp1AgC0a9cOa9euhZOTEx49eoQvvvgCffv2RVpaGqysrNSSmVRTUFyG0KgEXL/7EPbmMmwd74PmplLkFGk7GRERERERERERATU8kvDvjh07pmgQCiEghHiuAAYGBrC1tVU8WrRoUe3cVatWITAwELNmzYKbmxsWL16Mbt26Ye3atYo5b7zxBgICAuDk5AR3d3esWLEC+fn5OH/+/HPlpNopLqvAW5vP4OLtfDQ3McJ3b/nA3sJY27GIiIiIiIiIiOhvanQk4T9t2bIFn332Ga5duwbg8dF7s2bNQnBwsMrrunbtGuzt7SGTyeDr64uIiAi0bt26yrlxcXGYMWOG0li/fv2wd+/eKueXlpbi22+/hbm5+VNPhS4pKUFJSYnieX5+PgBALpdDLperWFHNyeVyCCE0ug1tKquQY/K2s4jPyIWpVB9RY7zQtnkTxfvamGt/FtbP+lk/69fF+nW5dqDu6tfV95eIiIiIno/KTcIVK1ZgwYIFmDJlCnr27AkAOHHiBCZNmoR79+5h+vTpNV6Xj48PNm3ahPbt2yMzMxPh4eF44YUXcPHiRTRt2rTS/KysLNjY2CiN2djYICsrS2ls//79GDVqFIqKimBnZ4eYmJinHqEYERGB8PDwSuN3795FcXFxjetRlVwuR15eHoQQ0NNrXHf4lQuBxYdu4MjlXEj1Jfh0kDOsDUuQk5PzeHkjrr0mWD/rZ/2sXxfr1+Xagbqrv6CgQGPrJiIiIqLGS+Um4Zo1a/DVV18hJCREMTZ48GC4u7sjLCxMpSZh//79Ff/29PSEj48PHB0dsWPHDowfP17VaAr//ve/kZycjHv37mH9+vUYMWIE4uPjYW1tXeX8efPmKR2hmJ+fDwcHB1hZWcHMzKzWOZ5FLpdDIpHAysqqUf2yJITA4v2p+L/UXOjrSbD2ja7wd1Nu7jbW2muK9bN+1s/6dbF+Xa4dqLv6ZTKZxtZNRERERI2Xyk3CzMxM+Pn5VRr38/NDZmbmc4WxsLBAu3btkJaWVuVyW1tbZGdnK41lZ2fD1tZWaczExAQuLi5wcXFBjx494OrqisjISMybN6/K9UqlUkil0krjenp6Gv8lRiKR1Ml26tKqw9ewKe4PAMDnwz3xsrtdlfMaY+2qYP2sn/Wzfl2sX5drB+qmfl19b4mIiIjo+ai8F+ni4oIdO3ZUGv/hhx/g6ur6XGEKCwuRnp4OO7uqm0q+vr44cuSI0lhMTAx8fX2ful65XK50zUHSnE0nM/DF4asAgLBBHfFq11ZaTkREREQNSW5uLkaPHg0zMzNYWFhg/PjxKCwsfOprXnrpJUgkEqXHpEmTlObcvHkTAwcORJMmTWBtbY1Zs2ahvLxck6UQERERNSgqH0kYHh6OkSNH4vjx44prEp48eRJHjhypsnn4NDNnzsSgQYPg6OiIO3fuYOHChdDX10dQUBAAICQkBC1btkRERAQAYNq0aejduzeWL1+OgQMHIjo6GmfOnMG3334LAHj48CGWLFmCwYMHw87ODvfu3cO6detw+/ZtDB8+XNVSSUV7zt5C2M8pAID3AlwxpmdbLSciIiKihmb06NHIzMxETEwMysrKMHbsWEycOBHbt29/6usmTJiARYsWKZ43adJE8e+KigoMHDgQtra2OHXqFDIzMxESEgJDQ0MsXbpUY7UQERERNSQqNwmHDRuG+Ph4fPHFF4q7Cru5uSEhIQFdu3ZVaV23bt1CUFAQ7t+/DysrK/Tq1QunT5+GlZUVgMd/8f37KTN+fn7Yvn075s+fjw8++ACurq7Yu3cvOnXqBADQ19fH5cuXsXnzZty7dw/NmzfHv/71L/z3v/+Fu7u7qqWSCg6nZGPmzvMAgDF+bTDN//mOKiUiIiLdk5qaioMHD+L333+Hl5cXgMfXwx4wYAA+//xz2NvbV/vaJk2aVLoEzROHDh1CSkoKDh8+DBsbG3Tp0gWLFy/GnDlzEBYWBiMjI43UQ0RERNSQqNwkBIDu3btj69atz73x6Ojopy6PjY2tNDZ8+PBqjwqUyWTYvXv3c+ci1cRfv4/J25NQIRd4tWtLfPRKR0gkEm3HIiIiogYmLi4OFhYWigYhAAQEBEBPTw/x8fF49dVXq33ttm3bsHXrVtja2mLQoEFYsGCB4mjCuLg4eHh4wMbmfzdS69evH95++21cunSpyj90l5SUKF2uJj8/Xx0lEhEREdVbtWoSEj1x8XYe3tp8BiXlcgS4WePT1z2hp8cGIREREakuKysL1tbWSmMGBgawtLREVlZWta9744034OjoCHt7e5w/fx5z5szBlStXFH88zsrKUmoQAlA8r269ERERCA8Pf55yiIiIiBoUNgmp1tLvFiJ0YwIKSsrh09YSa9/oBkN93lGRiIiIlM2dOxeffPLJU+ekpqbWev0TJ05U/NvDwwN2dnbw9/dHeno6nJ2da7XOefPmYcaMGYrn+fn5cHBwqHVGIiIiovqOTUKqlTsPHiF4QzzuPyxFp5Zm2BDqBZmhvrZjERERUT30/vvvY8yYMU+d4+TkBFtbW+Tk5CiNl5eXIzc3t9rrDVbFx8cHAJCWlgZnZ2fY2toiISFBaU52djYAVLteqVQKqVRa420SERERNXRsEpLK7heWIDgyHnfyiuFkZYLNY73RVGao7VhERERUT1lZWSluTPc0vr6+ePDgARITE9G9e3cAwNGjRyGXyxWNv5pITk4GANjZ2SnWu2TJEuTk5ChOZ46JiYGZmRk6duyoYjVEREREjRPPDSWVFBSXYUzU70i/+xD25jJ8N94HzU35V3YiIiJ6fm5ubggMDMSECROQkJCAkydPYsqUKRg1apTizsa3b99Ghw4dFEcGpqenY/HixUhMTMSNGzewb98+hISE4MUXX4SnpycAoG/fvujYsSOCg4Nx7tw5/Prrr5g/fz4mT57MowWJiIiI/j+VjyQsLi7GmjVrcOzYMeTk5EAulystT0pKUls4ql+KyyowYcsZXLidB0sTI3z3lg9aWhhrOxYRERE1Itu2bcOUKVPg7+8PPT09DBs2DKtXr1YsLysrw5UrV1BUVAQAMDIywuHDh7Fy5Uo8fPgQDg4OGDZsGObPn694jb6+Pvbv34+3334bvr6+MDExQWhoKBYtWlTn9RERERHVVyo3CcePH49Dhw7h9ddfh7e3NyQS3slWF5RXyDFl+1mcvp4LU6kBNo/1hrOVqbZjERERUSNjaWmJ7du3V7u8TZs2EEIonjs4OOC333575nodHR1x4MABtWQkIiIiaoxUbhLu378fBw4cQM+ePTWRh+ohuVxg9q7zOJyaDSMDPWwI9YJHK3NtxyIiIiIiIiIiIjVR+ZqELVu2RNOmTTWRheohIQQW/5KC3Um3oa8nwZdvdEMPp+bajkVERERERERERGqkcpNw+fLlmDNnDv744w9N5KF6Zs3RNESdvAEA+Ox1TwR0tNFuICIiIiIiIiIiUjuVTzf28vJCcXExnJyc0KRJExgaGiotz83NVVs40q7Np25gRcxVAMDCQR3xWrdWWk5ERERERERERESaoHKTMCgoCLdv38bSpUthY2PDG5c0UnvP3sbCfZcAANP8XTG2Z1stJyIiIiIiIiIiIk1RuUl46tQpxMXFoXPnzprIQ/XAkdRsvL/zHABgjF8bvBfgquVERERERERERESkSSpfk7BDhw549OiRJrJQPRB//T7e2ZaECrnAq11b4qNXOvJoUSIiIiIiIiKiRk7lJuGyZcvw/vvvIzY2Fvfv30d+fr7Sgxqui7fz8NbmMygplyPAzRqfvu4JPT02CImIiIiIiIiIGjuVTzcODAwEAPj7+yuNCyEgkUhQUVGhnmRUp67fLUToxgQUlJTDu60l1r7RDYb6KveQiYiIiIiIiIioAVK5SXjs2DFN5CAtuvPgEYIjE3D/YSnc7c2wIdQLMkN9bcciIiIiIiIiIqI6onKTsHfv3prIQVqS+7AUwZHxuP3gEZxamGDzOG+YyQy1HYuIiIiIiIiIiOqQyk3C48ePP3X5iy++WOswVLcKisswJioB6Xcfws5chu/e8kELU6m2YxERERERERERUR1TuUn40ksvVRr7+91veU3ChqG4rAITtyTi/K08WJoY4bvxPmhpYaztWEREREREREREpAUq35nir7/+Unrk5OTg4MGD+Ne//oVDhw5pIiOpWXmFHO9+fxZx1+/DVGqAzWO94WJtqu1YRERERERERESkJSofSWhubl5p7OWXX4aRkRFmzJiBxMREtQQjzZDLBebsuoCYlGwYGehhfYgXPFpV/kyJiIiIiIiIiEh3qHwkYXVsbGxw5coVda2ONEAIgY9/ScWupFvQ15Ng3Rvd4OvcXNuxiIiIiIiIiIhIy1Q+kvD8+fNKz4UQyMzMxLJly9ClSxd15SINWHs0DRtPZgAAPh3miZc72mg5ERERERERERER1QcqNwm7dOkCiUQCIYTSeI8ePbBx40a1BSP12hJ3A8tjrgIAPnqlI4Z1b6XlREREREREREREVF+o3CTMyMhQeq6npwcrKyvIZDK1hSL1+in5Nj766RIAYKq/K8b1aqvlREREREREREREVJ+ofE1CR0dHpYeDgwMbhPXY0cvZeH/HOQBAqK8jpge4ajkRERERUfVyc3MxevRomJmZwcLCAuPHj0dhYWG182/cuAGJRFLlY+fOnYp5VS2Pjo6ui5KIiIiIGoQaNwnj4uKwf/9+pbEtW7agbdu2sLa2xsSJE1FSUqL2gFR7CRm5eHtrEsrlAkO72GPhIHdIJBJtxyIiIiKq1ujRo3Hp0iXExMRg//79OH78OCZOnFjtfAcHB2RmZio9wsPDYWpqiv79+yvNjYqKUpo3dOhQDVdDRERE1HDU+HTjRYsW4aWXXsIrr7wCALhw4QLGjx+PMWPGwM3NDZ999hns7e0RFhamqaykgou38zB+0+8oKZfDv4M1PhveGXp6bBASERFR/ZWamoqDBw/i999/h5eXFwBgzZo1GDBgAD7//HPY29tXeo2+vj5sbW2Vxvbs2YMRI0bA1NRUadzCwqLSXCIiIiJ6rMZHEiYnJ8Pf31/xPDo6Gj4+Pli/fj1mzJiB1atXY8eOHSptPCwsrNJpHx06dHjqa3bu3IkOHTpAJpPBw8MDBw4cUCwrKyvDnDlz4OHhARMTE9jb2yMkJAR37txRKVdDd/1uIUI3JqCgpBzebS2xbnQ3GOqrfGY5ERERUZ2Ki4uDhYWFokEIAAEBAdDT00N8fHyN1pGYmIjk5GSMHz++0rLJkyejRYsW8Pb2xsaNGyvdiO/vSkpKkJ+fr/QgIiIiasxq3Dn666+/YGNjo3j+22+/KZ3C8a9//Qt//vmnygHc3d2VTvs4ceJEtXNPnTqFoKAgjB8/HmfPnsXQoUMxdOhQXLx4EQBQVFSEpKQkLFiwAElJSdi9ezeuXLmCwYMHq5yrocrMe4TgyATcf1gKd3szbAj1gsxQX9uxiIiIiJ4pKysL1tbWSmMGBgawtLREVlZWjdYRGRkJNzc3+Pn5KY0vWrQIO3bsQExMDIYNG4Z33nkHa9asqXY9ERERMDc3VzwcHBxUL4iIiIioAalxk9DGxkZxZ+PS0lIkJSWhR48eiuUFBQUwNDRUOYCBgQFsbW0VjxYtWlQ7d9WqVQgMDMSsWbPg5uaGxYsXo1u3bli7di0AwNzcHDExMRgxYgTat2+PHj16YO3atUhMTMTNmzdVztbQ5D4sxZsb4nH7wSM4tTDB5nHeMJOp/pkQERERqdPcuXOrvbnIk8fly5efezuPHj3C9u3bqzyKcMGCBejZsye6du2KOXPmYPbs2fjss8+qXde8efOQl5eneNTmj+FEREREDUmNr0k4YMAAzJ07F5988gn27t2LJk2a4IUXXlAsP3/+PJydnVUOcO3aNdjb20Mmk8HX1xcRERFo3bp1lXPj4uIwY8YMpbF+/fph79691a4/Ly8PEokEFhYWKmdrSApLyjEmKgHpdx/CzlyGLeO90cJUqu1YRERERHj//fcxZsyYp85xcnKCra0tcnJylMbLy8uRm5tbo2sJ/vjjjygqKkJISMgz5/r4+GDx4sUoKSmBVFp5n0kqlVY5TkRERNRY1bhJuHjxYrz22mvo3bs3TE1NsXnzZhgZGSmWb9y4EX379lVp4z4+Pti0aRPat2+vuBPdCy+8gIsXL6Jp06aV5mdlZSmd8gw8PsKxutNPiouLMWfOHAQFBcHMzKzaHCUlJUp3Zn5yzRm5XA65XK5STaqQy+UQQjz3NkrKKjBh8xmcv5UHyyaG2DL2X7A3l2k0+/NSV+0NFetn/ayf9eti/bpcO1B39dfH99fKygpWVlbPnOfr64sHDx4gMTER3bt3BwAcPXoUcrkcPj4+z3x9ZGQkBg8eXKNtJScno1mzZmwEEhEREf1/NW4StmjRAsePH0deXh5MTU2hr698nbudO3dWuoPcs/z9moaenp7w8fGBo6MjduzYUeVpIqooKyvDiBEjIITAV1999dS5ERERCA8PrzR+9+5dFBcXP1eOp5HL5cjLy4MQAnp6tbuxSLlc4IP96Yi7nocmhnpYPsQZTVGEnJwiNadVL3XU3pCxftbP+lm/Ltavy7UDdVd/QUGBxtataW5ubggMDMSECRPw9ddfo6ysDFOmTMGoUaMUdza+ffs2/P39sWXLFnh7eytem5aWhuPHjyvd1O6Jn3/+GdnZ2ejRowdkMhliYmKwdOlSzJw5s85qIyIiIqrvatwkfMLc3LzKcUtLy+cOY2FhgXbt2iEtLa3K5ba2tsjOzlYay87OrnT6yZMG4R9//IGjR48+9ShC4PE1Z/5+GnN+fj4cHBxgZWX1zNc+D7lcDolEAisrq1r9siCXC8zZfQHHr+fByEAP60O84OvcXANJ1e95a2/oWD/rZ/2sXxfr1+XagbqrXyaTaWzddWHbtm2YMmUK/P39oaenh2HDhmH16tWK5WVlZbhy5QqKipT/ILpx40a0atWqyjNbDA0NsW7dOkyfPh1CCLi4uGDFihWYMGGCxushIiIiaihUbhJqUmFhIdLT0xEcHFzlcl9fXxw5cgTvvfeeYiwmJga+vr6K508ahNeuXcOxY8fQvPmzm2bVXXNGT09P47/ESCSSWm1HCIGl/3cZu5JuQ19PgrVBXdHT9dmn1tQnta29sWD9rJ/1s35drF+Xawfqpv6G/t5aWlpi+/bt1S5v06YNhBCVxpcuXYqlS5dW+ZrAwEAEBgaqLSMRERFRY6TVvciZM2fit99+w40bN3Dq1Cm8+uqr0NfXR1BQEAAgJCQE8+bNU8yfNm0aDh48iOXLl+Py5csICwvDmTNnMGXKFACPG4Svv/46zpw5g23btqGiogJZWVnIyspCaWmpVmrUlLVH07Dx5OO7TX86zBN93Z99MW8iIiIiIiIiIqKqaPVIwlu3biEoKAj379+HlZUVevXqhdOnTysuNn3z5k2lv4b7+flh+/btmD9/Pj744AO4urpi79696NSpE4DH16jZt28fAKBLly5K2zp27BheeumlOqlL076Lu4HlMVcBAB+90hHDurfSciIiIiIiIiIiImrItNokjI6Ofury2NjYSmPDhw/H8OHDq5xf3eknjclPybfx0b5LAICpfVwwrldbLSciIiIiIiIiIqKGrmFftEbHHLucg/d3nIMQQIivI6a/3E7bkYiIiIiIiIiIqBFgk7CBSMjIxaStiSiXCwzpYo+wQe6QSCTajkVERERERERERI0Am4QNwKU7eRi/6XeUlMvRp4M1Ph/eGXp6bBASEREREREREZF6sElYz2Xce4jQjQkoKCmHdxtLrHujGwz1+bEREREREREREZH6sNtUj2XmPcKbG+Jxr7AUHe3MsGGMF4yN9LUdi4iIiIiIiIiIGhk2Ceup3IelCI5MwO0Hj9C2hQm2jPeGmcxQ27GIiIiIiIiIiKgRYpOwHiosKcfYqASk5RTC1kyG78Z7o4WpVNuxiIiIiIiIiIiokWKTsJ4pLqvAxC1ncO5WHpo1McTWt7zRqlkTbcciIiIiIiIiIqJGjE3CeqS8Qo6p35/FqfT7MDHSx+Zx3nCxbqrtWERERERERERE1MixSVhPyOUCc3dfwKGUbBgZ6GF9qBc8W1loOxYREREREREREekAA20H0FUVcoH46/eRdisXzgV6OHz5Ln5MvAV9PQnWBnWFn3MLbUckIiIiIiIiIiIdwSahFhy8mInwn1OQmVf8/0cyFMs+GeaJvu622glGREREREREREQ6iU3COnbwYibe3poEUc1yU6l+neYhIiIiIiIiIiLiNQnrUIVcIPznlGobhBIA4T+noEJe3QwiIiIiIiIiIiL1Y5OwDiVk5P7tFOPKBIDMvGIkZOTWXSgiIiIiIiIiItJ5bBLWoZyC6huEtZlHRERERERERESkDmwS1iHrpjK1ziMiIiJqbJYsWQI/Pz80adIEFhYWNXqNEAIfffQR7OzsYGxsjICAAFy7dk1pTm5uLkaPHg0zMzNYWFhg/PjxKCws1EAFRERERA0Tm4R1yLutJezMZZBUs1wCwM5cBu+2lnUZi4iIiKjeKC0txfDhw/H222/X+DWffvopVq9eja+//hrx8fEwMTFBv379UFz8v7MzRo8ejUuXLiEmJgb79+/H8ePHMXHiRE2UQERERNQgsUlYh/T1JFg4qCMAVGoUPnm+cFBH6OtV10YkIiIiatzCw8Mxffp0eHh41Gi+EAIrV67E/PnzMWTIEHh6emLLli24c+cO9u7dCwBITU3FwYMHsWHDBvj4+KBXr15Ys2YNoqOjcefOHQ1WQ0RERNRwsElYxwI72eGrN7vB1lz5lGJbcxm+erMbAjvZaSkZERERUcOTkZGBrKwsBAQEKMbMzc3h4+ODuLg4AEBcXBwsLCzg5eWlmBMQEAA9PT3Ex8fXeWYiIiKi+shA2wF0UWAnO7zc0Rbx1+8h7dZduLSygo9TCx5BSERERKSirKwsAICNjY3SuI2NjWJZVlYWrK2tlZYbGBjA0tJSMeefSkpKUFJSonien5+vzthERERE9Q6PJNQSfT0Jejg1R98Olujh1JwNQiIiImq05s6dC4lE8tTH5cuXtR1TSUREBMzNzRUPBwcHbUciIiIi0igeSUhEREREGvX+++9jzJgxT53j5ORUq3Xb2toCALKzs2Fn97/LtmRnZ6NLly6KOTk5OUqvKy8vR25uruL1/zRv3jzMmDFD8Tw/P5+NQiIiImrU2CQkIiIiIo2ysrKClZWVRtbdtm1b2Nra4siRI4qmYH5+PuLj4xV3SPb19cWDBw+QmJiI7t27AwCOHj0KuVwOHx+fKtcrlUohlUo1kpmIiIioPuLpxkRERERUb9y8eRPJycm4efMmKioqkJycjOTkZBQWFirmdOjQAXv27AEASCQSvPfee/j444+xb98+XLhwASEhIbC3t8fQoUMBAG5ubggMDMSECROQkJCAkydPYsqUKRg1ahTs7e21USYRERFRvcMjCYmIiIio3vjoo4+wefNmxfOuXbsCAI4dO4aXXnoJAHDlyhXk5eUp5syePRsPHz7ExIkT8eDBA/Tq1QsHDx6ETCZTzNm2bRumTJkCf39/6OnpYdiwYVi9enXdFEVERETUAEiEEELbIeqbvLw8WFhY4M8//4SZmZnGtiOXy3H37l1YWVlBT0+3DurU5doB1s/6WT/r1836dbl2oO7qf3LtvAcPHsDc3Fxj29E1dbV/SERERKRuNd0/5JGEVSgoKAAAXpyaiIiIGqyCggI2CdWI+4dERETU0D1r/5BHElZBLpfjzp07aNq0KSQSica286STq4t/kdbl2gHWz/pZP+vXzfp1uXag7uoXQqCgoAD29vY6ecSmptTV/iEp0/X/bpDu4HeddAW/69pR0/1DHklYBT09PbRq1arOtmdmZqazPxy6XDvA+lk/62f9ulm/LtcO1E39PIJQ/ep6/5CU6fp/N0h38LtOuoLf9bpXk/1D/nmZiIiIiIiIiIhIx7FJSEREREREREREpOPYJNQiqVSKhQsXQiqVajtKndPl2gHWz/pZP+vXzfp1uXaA9RPVBn9uSFfwu066gt/1+o03LiEiIiIiIiIiItJxPJKQiIiIiIiIiIhIx7FJSEREREREREREpOPYJCQiIiIiIiIiItJxbBJq0Lp169CmTRvIZDL4+PggISGh2rnr16/HCy+8gGbNmqFZs2YICAh46vyGQJX6d+/eDS8vL1hYWMDExARdunTBd999V4dp1U+V+v8uOjoaEokEQ4cO1WxADVOl/k2bNkEikSg9ZDJZHaZVP1U//wcPHmDy5Mmws7ODVCpFu3btcODAgTpKq36q1P/SSy9V+vwlEgkGDhxYh4nVR9XPfuXKlWjfvj2MjY3h4OCA6dOno7i4uI7Sqp8q9ZeVlWHRokVwdnaGTCZD586dcfDgwTpMq17Hjx/HoEGDYG9vD4lEgr179z7zNbGxsejWrRukUilcXFywadMmjeckqk/4c0ONmbp/HxgzZkyl/aXAwEANJCd6PrreC2nQBGlEdHS0MDIyEhs3bhSXLl0SEyZMEBYWFiI7O7vK+W+88YZYt26dOHv2rEhNTRVjxowR5ubm4tatW3WcXD1Urf/YsWNi9+7dIiUlRaSlpYmVK1cKfX19cfDgwTpOrh6q1v9ERkaGaNmypXjhhRfEkCFD6iasBqhaf1RUlDAzMxOZmZmKR1ZWVh2nVh9V6y8pKRFeXl5iwIAB4sSJEyIjI0PExsaK5OTkOk6uHqrWf//+faXP/uLFi0JfX19ERUXVbXA1ULX2bdu2CalUKrZt2yYyMjLEr7/+Kuzs7MT06dPrOLl6qFr/7Nmzhb29vfjll19Eenq6+PLLL4VMJhNJSUl1nFw9Dhw4ID788EOxe/duAUDs2bPnqfOvX78umjRpImbMmCFSUlLEmjVrGvT/9xHVBn9uqLHSxO8DoaGhIjAwUGm/KTc3V4NVEKlO13shDR2bhBri7e0tJk+erHheUVEh7O3tRURERI1eX15eLpo2bSo2b96sqYga9bz1CyFE165dxfz58zURT+NqU395ebnw8/MTGzZsEKGhoQ26Sahq/VFRUcLc3LyO0mmeqvV/9dVXwsnJSZSWltZVRI163p//L774QjRt2lQUFhZqKqLGqFr75MmTRZ8+fZTGZsyYIXr27KnRnJqiav12dnZi7dq1SmOvvfaaGD16tEZz1oWaNDtmz54t3N3dlcZGjhwp+vXrp8FkRPUXf26oMdHE7wMN/XcE0g263gtp6Hi6sQaUlpYiMTERAQEBijE9PT0EBAQgLi6uRusoKipCWVkZLC0tNRVTY563fiEEjhw5gitXruDFF1/UZFSNqG39ixYtgrW1NcaPH18XMTWmtvUXFhbC0dERDg4OGDJkCC5dulQXcdWuNvXv27cPvr6+mDx5MmxsbNCpUycsXboUFRUVdRVbbdTx37/IyEiMGjUKJiYmmoqpEbWp3c/PD4mJiYpTKq5fv44DBw5gwIABdZJZnWpTf0lJSaVLCxgbG+PEiRMazVpfxMXFKb1fANCvX78a/6wQ6SL+3FBDoMnfB2JjY2FtbY327dvj7bffxv3799Waneh56HovpDEw0HaAxujevXuoqKiAjY2N0riNjQ0uX75co3XMmTMH9vb2lXaCGoLa1p+Xl4eWLVuipKQE+vr6+PLLL/Hyyy9rOq7a1ab+EydOIDIyEsnJyXWQULNqU3/79u2xceNGeHp6Ii8vD59//jn8/Pxw6dIltGrVqi5iq01t6r9+/TqOHj2K0aNH48CBA0hLS8M777yDsrIyLFy4sC5iq83z/vcvISEBFy9eRGRkpKYiakxtan/jjTdw79499OrVC0IIlJeXY9KkSfjggw/qIrJa1ab+fv36YcWKFXjxxRfh7OyMI0eOYPfu3Q2yQV4bWVlZVb5f+fn5ePToEYyNjbWUjKj+4s8NNQSa+n0gMDAQr732Gtq2bYv09HR88MEH6N+/P+Li4qCvr6/OEohqRdd7IY0Bm4T10LJlyxAdHY3Y2NgGf/MGVTRt2hTJyckoLCzEkSNHMGPGDDg5OeGll17SdjSNKigoQHBwMNavX48WLVpoO45W+Pr6wtfXV/Hcz88Pbm5u+Oabb7B48WItJqsbcrkc1tbW+Pbbb6Gvr4/u3bvj9u3b+Oyzzxpck/B5RUZGwsPDA97e3tqOUidiY2OxdOlSfPnll/Dx8UFaWhqmTZuGxYsXY8GCBdqOp3GrVq3ChAkT0KFDB0gkEjg7O2Ps2LHYuHGjtqMRERHVmZr+PjBq1CjFvz08PODp6QlnZ2fExsbC39+/LqISaZSu9kLqEzYJNaBFixbQ19dHdna20nh2djZsbW2f+trPP/8cy5Ytw+HDh+Hp6anJmBpT2/r19PTg4uICAOjSpQtSU1MRERHR4JqEqtafnp6OGzduYNCgQYoxuVwOADAwMMCVK1fg7Oys2dBq9Dzf/ycMDQ3RtWtXpKWlaSKiRtWmfjs7OxgaGir9BdjNzQ1ZWVkoLS2FkZGRRjOr0/N8/g8fPkR0dDQWLVqkyYgaU5vaFyxYgODgYLz11lsAHu/wP3z4EBMnTsSHH34IPb2Gc1WQ2tRvZWWFvXv3ori4GPfv34e9vT3mzp0LJyenuoisdba2tlW+X2ZmZjwaiqga/LmhhqCufh9wcnJCixYtkJaWxiYh1Qu63gtpDBrObx8NiJGREbp3744jR44oxuRyOY4cOaJ0tNQ/ffrpp1i8eDEOHjwILy+vuoiqEbWt/5/kcjlKSko0EVGjVK2/Q4cOuHDhApKTkxWPwYMH49///jeSk5Ph4OBQl/Gfmzo+/4qKCly4cAF2dnaaiqkxtam/Z8+eSEtLU+wMAsDVq1dhZ2fXoBqEwPN9/jt37kRJSQnefPNNTcfUiNrUXlRUVKkR+KRZLITQXFgNeJ7PXiaToWXLligvL8euXbswZMgQTcetF3x9fZXeLwCIiYlR6f8riXQNf26oIair3wdu3bqF+/fvN8h9ZmqcdL0X0iho+cYpjVZ0dLSQSqVi06ZNIiUlRUycOFFYWFiIrKwsIYQQwcHBYu7cuYr5y5YtE0ZGRuLHH39UuqV9QUGBtkp4LqrWv3TpUnHo0CGRnp4uUlJSxOeffy4MDAzE+vXrtVXCc1G1/n9q6HcuU7X+8PBw8euvv4r09HSRmJgoRo0aJWQymbh06ZK2SnguqtZ/8+ZN0bRpUzFlyhRx5coVsX//fmFtbS0+/vhjbZXwXGr7/e/Vq5cYOXJkXcdVK1VrX7hwoWjatKn4/vvvxfXr18WhQ4eEs7OzGDFihLZKeC6q1n/69Gmxa9cukZ6eLo4fPy769Okj2rZtK/766y8tVfB8CgoKxNmzZ8XZs2cFALFixQpx9uxZ8ccffwghhJg7d64IDg5WzL9+/bpo0qSJmDVrlkhNTRXr1q0T+vr64uDBg9oqgajO8eeGGit1/z5QUFAgZs6cKeLi4kRGRoY4fPiw6Natm3B1dRXFxcWaLoeoxnS9F9LQsUmoQWvWrBGtW7cWRkZGwtvbW5w+fVqxrHfv3iI0NFTx3NHRUQCo9Fi4cGHdB1cTVer/8MMPhYuLi5DJZKJZs2bC19dXREdHayG1+qhS/z819CahEKrV/9577ynm2tjYiAEDBoikpCQtpFYfVT//U6dOCR8fHyGVSoWTk5NYsmSJKC8vr+PU6qNq/ZcvXxYAxKFDh+o4qfqpUntZWZkICwsTzs7OQiaTCQcHB/HOO+802CaZEKrVHxsbK9zc3IRUKhXNmzcXwcHB4vbt21pIrR7Hjh2r8v/Ln9QcGhoqevfuXek1Xbp0EUZGRsLJyUlERUXVeW4ibeLPDTVm6vx9oKioSPTt21dYWVkJQ0ND4ejoKCZMmKBovBDVJ7reC2nIJEI0sPOZiIiIiIiIiIiISK14TUIiIiIiIiIiIiIdxyYhERERERERERGRjmOTkIiIiIiIiIiISMexSUhERERERERERKTj2CQkIiIiIiIiIiLScWwSEhERERERERER6Tg2CYmIiIiIiIiIiHQcm4REREREREREREQ6jk1CItI5QghMnDgRlpaWkEgkSE5O1nakGgsODsbSpUvVtr42bdpg5cqValufNm3atAkWFhbajqE2o0aNwvLly7Udg4iIiHRMQ95XJqLnwyYhkZqMGTMGEokEkyZNqrRs8uTJkEgkGDNmTN0Ho0oOHjyITZs2Yf/+/cjMzESnTp2ee51hYWHo0qXL84d7inPnzuHAgQOYOnWqRrejbY2t2Vdb8+fPx5IlS5CXl6ftKERERM+N+8oNR0PdVyai58cmIZEaOTg4IDo6Go8ePVKMFRcXY/v27WjdurUWk9U/FRUVkMvlWtl2eno67Ozs4OfnB1tbWxgYGGglR1VKS0urXbZmzRoMHz4cpqamSuOxsbFVzk9ISMDDhw/VGa/RKysr03YEhU6dOsHZ2Rlbt27VdhQiIiK14L5yzXFfuWpP21cmoufHJiGRGnXr1g0ODg7YvXu3Ymz37t1o3bo1unbtqjT34MGD6NWrFywsLNC8eXO88sorSE9PVywvLS3FlClTYGdnB5lMBkdHR0RERAB4fApAWFgYWrduDalUCnt7+2ceXbZixQp4eHjAxMQEDg4OeOedd1BYWKg05+TJk3jppZfQpEkTNGvWDP369cNff/0FAJDL5fj000/h4uICqVSK1q1bY8mSJQAeN6kkEgkePHigWFdycjIkEglu3LgB4H9Hh+3btw8dO3aEVCrFzZs38fvvv+Pll19GixYtYG5ujt69eyMpKUkp14MHD/Cf//wHNjY2kMlk6NSpE/bv34+HDx/CzMwMP/74o9L8vXv3wsTEBAUFBZXehzFjxuDdd9/FzZs3IZFI0KZNmxp9HgBw69YtBAUFwdLSEiYmJvDy8kJ8fDw2bdqE8PBwnDt3DhKJBBKJBJs2bQIA3Lx5E0OGDIGpqSnMzMwwYsQIZGdnK9b55K+qGzZsQNu2bSGTyar8/CoqKvDjjz9i0KBBSuOFhYV44403MH36dKXxEydOoE+fPvjll1+qXN/fFRQUICgoCCYmJmjZsiXWrVuntPxZ350//vgDgwYNQrNmzWBiYgJ3d3ccOHBAsfzixYvo378/TE1NYWNjg+DgYNy7d6/KLLGxsRg7dizy8vIU72VYWBgA4K+//kJISAiaNWuGJk2aoH///rh27dpTa/vpp5/QrVs3yGQyODk5ITw8HOXl5YrlEokEX331FQYPHgwTExMsWbIEFRUVGD9+PNq2bQtjY2O0b98eq1atUlrvmDFjMHToUHz++eews7ND8+bNMXnyZKUmY0lJCebMmQMHBwdIpVK4uLggMjJSpfdl0KBBiI6OfmqNREREDQX3lR8o1sV95U0A1LevTETqwSYhkZqNGzcOUVFRiucbN27E2LFjK817+PAhZsyYgTNnzuDIkSPQ09PDq6++qviL4erVq7Fv3z7s2LEDV65cwbZt2xT/J71r1y588cUX+Oabb3Dt2jXs3bsXHh4eT82lp6eH1atX49KlS9i8eTOOHj2K2bNnK5YnJyfD398fHTt2RFxcHE6cOIFBgwahoqICADBv3jwsW7YMCxYsQEpKCrZv3w4bGxuV3puioiJ88skn2LBhAy5dugRra2sUFBQgNDQUJ06cwOnTp+Hq6ooBAwYodlrkcjn69++PkydPYuvWrUhJScGyZcugr68PExMTjBo1Sun9BoCoqCi8/vrraNq0aaUMq1atwqJFi9CqVStkZmbi999/r9HnUVhYiN69e+P27dvYt28fzp07h9mzZ0Mul2PkyJF4//334e7ujszMTGRmZmLkyJGQy+UYMmQIcnNz8dtvvyEmJgbXr1/HyJEjlTKlpaVh165d2L17d7XXfDl//jzy8vLg5eWlNG5qaoqYmBhs3boVc+fOBQDEx8djwIAB+PDDDzFixIhnfi6fffYZOnfujLNnz2Lu3LmYNm0aYmJiFMuf9d2ZPHkySkpKcPz4cVy4cAGffPKJ4mjHBw8eoE+fPujatSvOnDmDgwcPIjs7u9pcfn5+WLlyJczMzBTv5cyZMwE83mk9c+YM9u3bh7i4OAghMGDAgGqP/vvvf/+LkJAQTJs2DSkpKfjmm2+wadMmxQ77E2FhYXj11Vdx4cIFjBs3DnK5HK1atcLOnTuRkpKCjz76CB988AF27Nih9Lpjx44hPT0dx44dw+bNm7Fp0ybFDi8AhISE4Pvvv8fq1auRmpqKb775RuX3xdvbGwkJCSgpKXnaR0hERNRgcF+5etxXrv2+MhGpiSAitQgNDRVDhgwROTk5QiqVihs3bogbN24ImUwm7t69K4YMGSJCQ0Orff3du3cFAHHhwgUhhBDvvvuu6NOnj5DL5ZXmLl++XLRr106UlpbWOu/OnTtF8+bNFc+DgoJEz549q5ybn58vpFKpWL9+fZXLjx07JgCIv/76SzF29uxZAUBkZGQIIYSIiooSAERycvJTc1VUVIimTZuKn3/+WQghxK+//ir09PTElStXqpwfHx8v9PX1xZ07d4QQQmRnZwsDAwMRGxtb7Ta++OIL4ejo+NQc//w8vvnmG9G0aVNx//79KucvXLhQdO7cWWns0KFDQl9fX9y8eVMxdunSJQFAJCQkKF5naGgocnJynppnz549Ql9fv8rvgxCP3+9mzZqJt956S1hYWIgFCxY8dX1PODo6isDAQKWxkSNHiv79+1f7mn9+dzw8PERYWFiVcxcvXiz69u2rNPbnn38KANV+plFRUcLc3Fxp7OrVqwKAOHnypGLs3r17wtjYWOzYsaPK1/n7+4ulS5cqree7774TdnZ2iucAxHvvvVdtrU9MnjxZDBs2TPE8NDRUODo6ivLycsXY8OHDxciRI4UQQly5ckUAEDExMVWur6bvy7lz5wQAcePGjWdmJCIiqs+4r8x9ZU3uKxORevBIQiI1s7KywsCBA7Fp0yZERUVh4MCBaNGiRaV5165dQ1BQEJycnGBmZqb4y+fNmzcBPD5qKjk5Ge3bt8fUqVNx6NAhxWuHDx+OR48ewcnJCRMmTMCePXsUp1AuXboUpqamiseT9R0+fBj+/v5o2bIlmjZtiuDgYNy/fx9FRUUA/vfX0aqkpqaipKSk2uU1ZWRkBE9PT6Wx7OxsTJgwAa6urjA3N4eZmRkKCwsVuZOTk9GqVSu0a9euynV6e3vD3d0dmzdvBgBs3boVjo6OePHFF1XK9qzPIzk5GV27doWlpWWN15mamgoHBwc4ODgoxjp27AgLCwukpqYqxhwdHWFlZfXUdT169AhSqRQSiaTK5V26dMHKlSuxYcMGeHh4YNGiRTXO6evrW+n53/M967szdepUfPzxx+jZsycWLlyI8+fPK1577tw5HDt2TOk72aFDBwCodIrK06SmpsLAwAA+Pj6KsebNm6N9+/ZKWf/u3LlzWLRokdK2J0yYgMzMTEV2AJWOzgSAdevWoXv37rCysoKpqSm+/fZbxXfhCXd3d+jr6yue29nZIScnB8Dj74u+vj569+5dbbaavC/GxsYAoJSXiIioIeO+cvW4r1z7fWUiUg82CYk0YNy4cdi0aRM2b96McePGVTln0KBByM3Nxfr16xEfH4/4+HgA/7sYb7du3ZCRkYHFixfj0aNHGDFiBF5//XUAjy/6fOXKFXz55ZcwNjbGO++8gxdffBFlZWWYNGkSkpOTFQ97e3vcuHEDr7zyCjw9PbFr1y4kJiYqrjv3ZHtPmhFVedoy4PHpGcDj6788UdUpoMbGxpWaXKGhoUhOTsaqVatw6tQpJCcno3nz5jXK9cRbb72lOM0zKioKY8eOrbaZVp1nfR41yVFbJiYmz5zTokULFBUVVXux5itXrmD27NkICgrC2bNnsXz5crVkq8l356233sL169cRHByMCxcuwMvLC2vWrAHw+NSTQYMGKX0nk5OTce3aNZV3TlVVWFiI8PBwpe1euHAB165dU7qezT/f/+joaMycORPjx4/HoUOHkJycjLFjx1Z67w0NDZWeSyQSxSk3z/q+1PR9yc3NBQDuGBMRUaPCfWXuK6uiJvvKRKQebBISaUBgYCBKS0tRVlaGfv36VVp+//59XLlyBfPnz4e/vz/c3NwUFz3+OzMzM4wcORLr16/HDz/8gF27dimaBsbGxhg0aBBWr16N2NhYxMXF4cKFC7C0tISLi4viYWBggMTERMjlcixfvhw9evRAu3btcOfOHaVteXp64siRI1XW4+rqCmNj42qXP2lgZGZmKsZqer2QkydPYurUqRgwYADc3d0hlUqVbt7g6emJW7du4erVq9Wu480338Qff/yB1atXIyUlBaGhoTXa9hM1+Tw8PT2RnJyseP//ycjISHFNmifc3Nzw559/4s8//1SMpaSk4MGDB+jYsaNKGbt06aJ4/T+lp6ejT58+GD58OLZv3479+/fjo48+wtq1a2u07tOnT1d67ubmBgA1+u4Aj3fGJ02ahN27d+P999/H+vXrATzegb906RLatGmj9L10cXGpdoevuveyvLxcsUMK/O9zq+697NatG65cuVJpuy4uLoqd9aqcPHkSfn5+eOedd9C1a1e4uLiodNQjAHh4eEAul+O3336rNltN3peLFy+iVatWVR5hQURE1FBxX5n7yoB695WJSD3YJCTSAH19faSmpiIlJUXpdMQnmjVrhubNm+Pbb79FWloajh49ihkzZijNWbFiBb7//ntcvnwZV69exc6dO2FrawsLCwts2rQJkZGRuHjxIq5fv46tW7fC2NgYjo6OVeZxcXFBWVkZ1qxZg+vXr+O7777D119/rTRn3rx5+P333/HOO+/g/PnzuHz5Mr766ivcu3cPMpkMc+bMwezZs7Flyxakp6fj9OnTiju1uri4wMHBAWFhYbh27Rp++eWXGh/J5urqiu+++w6pqamIj4/H6NGjlf4S2bt3b7z44osYNmwYYmJikJGRgf/7v//DwYMHld7P1157DbNmzULfvn3RqlWrGm37769/1ucRFBQEW1tbDB06FCdPnsT169exa9cuxMXFAQDatGmDjIwMJCcn4969eygpKUFAQAA8PDwwevRoJCUlISEhASEhIejdu3eVp7g+jZWVFbp164YTJ04ojRcWFqJPnz4YOHAgVq9erXjP9u7di9mzZyvdPbA6J0+exKeffoqrV69i3bp12LlzJ6ZNmwagZt+d9957D7/++isyMjKQlJSEY8eOKZqMkydPRm5uLoKCgvD7778jPT0dv/76K8aOHVtpR/GJNm3aoLCwEEeOHMG9e/dQVFQEV1dXDBkyBBMmTMCJEydw7tw5vPnmm2jZsiWGDBlS5Xo++ugjbNmyBeHh4bh06RJSU1MRHR2N+fPnP/X9cHV1xZkzZ/Drr7/i6tWrWLBggeKi3TXVpk0bhIaGYty4cdi7dy8yMjIQGxuruPlJTd+X//73v+jbt69K2yYiIqrvuK/MfWV17ysTkZpo+6KIRI3Fk4sxV+efF2OOiYkRbm5uQiqVCk9PTxEbGysAiD179gghhPj2229Fly5dhImJiTAzMxP+/v4iKSlJCPH4JhY+Pj7CzMxMmJiYiB49eojDhw8/Nd+KFSuEnZ2dMDY2Fv369RNbtmypdAHl2NhY4efnJ6RSqbCwsBD9+vVTLK+oqBAff/yxcHR0FIaGhqJ169ZKN4U4ceKE8PDwEDKZTLzwwgti586dlS7G/M+bUQghRFJSkvDy8hIymUy4urqKnTt3CkdHR/HFF18o5ty/f1+MHTtWNG/eXMhkMtGpUyexf/9+pfUcOXJEAFDcxOJpqroY87M+DyGEuHHjhhg2bJgwMzMTTZo0EV5eXiI+Pl4IIURxcbEYNmyYsLCwEABEVFSUEEKIP/74QwwePFiYmJiIpk2biuHDh4usrCzFOqu6iHN1vvzyS9GjR49K4/v376/yot2xsbHiwYMHT12no6OjCA8PF8OHDxdNmjQRtra2YtWqVUpznvXdmTJlinB2dhZSqVRYWVmJ4OBgce/ePcXrr169Kl599VVhYWEhjI2NRYcOHcR7771X7U1YhBBi0qRJonnz5gKAWLhwoRBCiNzcXBEcHCzMzc0VWa5evap4TVXfsYMHDwo/Pz9hbGwszMzMhLe3t/j2228Vy//5GQvx+LMcM2aMMDc3FxYWFuLtt98Wc+fOVfqcqvp5nzZtmujdu7fi+aNHj8T06dOFnZ2dMDIyEi4uLmLjxo01fl8ePXokzM3NRVxcXLXvExERUUPBfWXuK2t6X5mInp9EiL9dGIGIqIH67rvvMH36dNy5cwdGRkbajqMRjx49Qvv27fHDDz9UutkINT5fffUV9uzZo3QhdiIiIqLa0IV9ZSJ6fgbaDkBE9DyKioqQmZmJZcuW4T//+U+j3ukxNjbGli1blK5DQ42XoaGh4gYwRERERLWhS/vKRPT8eCQhETVoYWFhWLJkCV588UX89NNPMDU11XYkIiIiIqJ6gfvKRKQKNgmJiIiIiIiIiIh0HO9uTEREREREREREpOPYJCQiIiIiIiIiItJxbBISERERERERERHpODYJiYiIiIiIiIiIdBybhERERERERERERDqOTUIiIiIiIiIiIiIdxyYhERERERERERGRjmOTkIiIiIiIiIiISMexSUhERERERERERKTj/h8nPF7CWQkr2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([5.07199372, 5.05724783, 5.01469269])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result_arr = feat_gen.feature_sum_correlations_mass_accuracy(\n", + " precursor_fragments, visualize=True\n", + ")\n", + "result_arr" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "14572687", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAGhCAYAAADcNwLWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAArD1JREFUeJzs3XdUVMfbB/Dv0paOinRplmAXu9iwoKhYsLeIKGLvJYqJLUaxd2OJCmpMjBpb7A3svWusRMSCYkEQpTPvH77cnytFwMWL8P2cs+ewc+fOfe7usjv77MxchRBCgIiIiIiIiIiIiAocDbkDICIiIiIiIiIiInkwOUhERERERERERFRAMTlIRERERERERERUQDE5SEREREREREREVEAxOUhERERERERERFRAMTlIRERERERERERUQDE5SEREREREREREVEAxOUhERERERERERFRAMTlIRERERERERERUQDE5SERERFkSGBiIQoUKfXE7DRo0wPDhw/NELJQ9Dg4OWLBgQZbrBwcHQ6FQ4M2bN7kW09cmhEDfvn1RpEgRKBQKXLlyRe6QiIiIiL4Ik4NERET5hLe3NxQKRZpbs2bN5A7tqwsNDf3qiRshBObMmYPvvvsOSqUSNjY2mDZtWrbaCAwMlJ43DQ0NWFlZoXPnzggLC8ulqLPn/Pnz6Nu3b5br165dG+Hh4TAxMcnFqNJ37NgxtGrVCtbW1lAoFNi+fbvK9sTERIwdOxYVKlSAgYEBrK2t4eXlhadPn2ba7r59+xAYGIhdu3YhPDwc5cuXz8WzkJc6EvlERESU92nJHQARERGpT7NmzRAQEKBSplQqZYqmYBk2bBgOHDiAOXPmoEKFCnj9+jVev36d7XaMjY1x584dCCHw4MEDDBw4EB07dsTZs2dzIersMTMzy1Z9HR0dWFpa5lI0mXv37h0qVaqE3r17o127dmm2v3//HpcuXcKECRNQqVIlREZGYtiwYWjdujUuXLiQYbshISGwsrJC7dq1M6yTkJAAHR0dtZwHERERUW7jyEEiIqJ8RKlUwtLSUuVWuHBhAB+meOro6OD48eNS/VmzZsHc3BzPnz8HALx58wb9+vWDhYUFdHV1Ub58eezatSvdY3l7e8PT01OlbPjw4WjQoIF0/927d/Dy8oKhoSGsrKwwd+7cNO3Ex8dj9OjRsLGxgYGBAWrWrIng4GCVOoGBgbCzs4O+vj7atm2LV69eZfo4ODo6AgAqV64MhUIhxZSSkoKff/4ZxYoVg1KphLOzM/bt2yftlzricOPGjahdu7b0GBw9ejTT4926dQvLli3Djh070Lp1azg6OqJq1apo0qRJpvulR6FQwNLSUkpA+fj44Ny5c4iOjpbq7NixA1WqVIGuri6KFy+OKVOmICkpSaWNFStWoGXLltDX10eZMmVw+vRp3L9/Hw0aNICBgQFq166NkJAQaZ+QkBC0adMGFhYWMDQ0RPXq1XHo0CGV2D6dVqxQKLBq1Sq0bdsW+vr6KFWqFHbu3Clt/3Racep08P3796NMmTIwNDREs2bNEB4eLu2TlJSEoUOHolChQjA1NcXYsWPRs2fPNK+1z2nevDl++eUXtG3bNt3tJiYmOHjwIDp16gQnJyfUqlULS5YswcWLFzMcqent7Y0hQ4YgLCwMCoUCDg4OAD6MsBs8eDCGDx+OokWLwt3dHQAwb948aWSira0tBg4ciJiYGJU2f/vtN9ja2kqv7Xnz5qlMmZ88eTKcnZ2xZs0a2NnZwdDQEAMHDkRycjJmzZoFS0tLmJubpxml+ubNG/Tp0wdmZmYwNjZGo0aNcPXq1TTtrl+/Hg4ODjAxMUGXLl3w9u1b6VyPHj2KhQsXSqNZQ0NDERkZie7du8PMzAx6enooVapUmh8kiIiI6NvC5CAREVEBkTpFsEePHoiKisLly5cxYcIErFq1ChYWFkhJSUHz5s1x8uRJ/P777/j3338xY8YMaGpq5viYY8aMwdGjR7Fjxw4cOHAAwcHBuHTpkkqdwYMH4/Tp09i4cSOuXbuGjh07olmzZrh37x4A4OzZs/Dx8cHgwYNx5coVNGzYEL/88kumxz137hwA4NChQwgPD8fWrVsBAAsXLsTcuXMxZ84cXLt2De7u7mjdurV0rI/jHjVqFC5fvgwXFxe0atUq04TkP//8g+LFi2PXrl1wdHSEg4MD+vTpozJyMDXx+GniMzMRERHYtm0bNDU1pefh+PHj8PLywrBhw/Dvv/9ixYoVCAwMTJMcmjp1Kry8vHDlyhWULl0a3bp1Q79+/eDn54cLFy5ACIHBgwdL9WNiYtCiRQscPnwYly9fRrNmzdCqVavPTmmeMmUKOnXqhGvXrqFFixbo3r17piMm379/jzlz5mD9+vU4duwYwsLCMHr0aGn7zJkzsWHDBgQEBODkyZOIjo5OMyU4dfq1ukVFRUGhUGS4nuXChQul5HJ4eDjOnz8vbVu7di10dHRw8uRJLF++HACgoaGBRYsW4ebNm1i7di2OHDmCH374Qdrn5MmT6N+/P4YNG4YrV66gSZMm6U5FDwkJwd69e7Fv3z78+eefWL16NTw8PPD48WMcPXoUM2fOxE8//aQyurRjx46IiIjA3r17cfHiRVSpUgWNGzdWeW5CQkKwfft27Nq1C7t27cLRo0cxY8YM6VxdXFzg6+uL8PBwhIeHw9bWFhMmTMC///6LvXv3SknxokWLftHjTkRERDITRERElC/07NlTaGpqCgMDA5XbtGnTpDrx8fHC2dlZdOrUSZQtW1b4+vpK2/bv3y80NDTEnTt30m0/ICBAmJiYqByvTZs2KnWGDRsmXF1dhRBCvH37Vujo6IhNmzZJ21+9eiX09PTEsGHDhBBCPHz4UGhqaoonT56otNO4cWPh5+cnhBCia9euokWLFirbO3furBLLpx48eCAAiMuXL6uUW1tbqzweQghRvXp1MXDgQJX9ZsyYIW1PTEwUxYoVEzNnzszweP369RNKpVLUrFlTHDt2TAQFBQlnZ2fRsGFDqc7jx4+Fk5OTOHv2bIbtBAQECADCwMBA6OvrCwACgBg6dKhUp3HjxmL69Okq+61fv15YWVlJ9wGIn376Sbp/+vRpAUCsXr1aKvvzzz+Frq5uhrEIIUS5cuXE4sWLpfv29vZi/vz5GR4nJiZGABB79+4VQggRFBQkAIjIyEiV87t//760z9KlS4WFhYV038LCQsyePVu6n5SUJOzs7FRea1u3bhVOTk6Zxv4xAGLbtm2Z1omNjRVVqlQR3bp1y7Te/Pnzhb29vUqZq6urqFy58mfj2Lx5szA1NZXud+7cWXh4eKjU6d69u8pre9KkSUJfX19ER0dLZe7u7sLBwUEkJydLZU5OTsLf318IIcTx48eFsbGxiIuLU2m7RIkSYsWKFRm2O2bMGFGzZk2V80r9X03VqlUr0atXr8+eKxEREX07uOYgERFRPtKwYUMsW7ZMpaxIkSLS3zo6OtiwYQMqVqwIe3t7zJ8/X9p25coVFCtWDN99951aYgkJCUFCQgJq1qypEouTk5N0//r160hOTk5zzPj4eJiamgL4MGX306mhLi4uKtOBsyI6OhpPnz5FnTp1VMrr1KmjMt0ytf1UWlpaqFatGm7dugUAKFeuHB4+fAgAqFevHvbu3YuUlBTEx8dj3bp10rmsXr0aVatWxZ07d+Dk5AQbGxvcvn37s3EaGRnh0qVLSExMxN69e7FhwwaV0WRXr17FyZMnVcqSk5MRFxeH9+/fQ19fHwBQsWJFabuFhQUAoEKFCiplcXFxiI6OhrGxMWJiYjB58mTs3r0b4eHhSEpKQmxs7GdHDn58HAMDAxgbGyMiIiLD+vr6+ihRooR038rKSqofFRWF58+fo0aNGtJ2TU1NVK1aFSkpKVJZ27ZtM5wunBOJiYno1KkThBBp/n+yqmrVqmnKDh06BH9/f9y+fRvR0dFISkpSeZ7u3LmT5jxq1KiRZiq/g4MDjIyMpPsWFhbQ1NSEhoaGSlnq43j16lXExMRI/0OpYmNjVaaSf9rux89FRgYMGID27dvj0qVLaNq0KTw9PTNdf5GIiIjyPiYHiYiI8hEDAwOULFky0zqnTp0CAOmCGQYGBgAAPT29bB1LQ0MDQgiVssTExGy1ERMTA01NTVy8eDHN9GVDQ8NstfW17NmzRzrP1MfMysoKWlpaKknOMmXKAADCwsJUEqKfo6GhIT2HZcqUQUhICAYMGID169cD+PCYTZkyJd2LbOjq6kp/a2trS3+nTsFNryw16TZ69GgcPHgQc+bMQcmSJaGnp4cOHTogISEh03g/bjO13Y8TeVmp/+nr6GtKTQw+fPgQR44cgbGxcY7aSf0/ShUaGoqWLVtiwIABmDZtGooUKYITJ07Ax8cHCQkJUhI3K9J7zDJ73GNiYmBlZZXuFPaPp0xn97kDPqzl+PDhQ+zZswcHDx5E48aNMWjQIMyZMyfL50NERER5C9ccJCIiKkBCQkIwYsQI/Pbbb6hZsyZ69uwpJQMqVqyIx48f4+7du1lqy8zMTOVCEsCH0YepSpQoAW1tbZV10CIjI1Xar1y5MpKTkxEREYGSJUuq3FKvclumTJk0V+o9c+ZMprGlXik2OTlZKjM2Noa1tTVOnjypUvfkyZMoW7Zshu0nJSXh4sWLUrLP3t5eitHGxgbAh9GHSUlJKqOyUs/T3t4+01g/Z9y4cfjrr7+ktRqrVKmCO3fupHm8SpYsqTKSLLtOnjwJb29vtG3bFhUqVIClpSVCQ0O/KPbsMjExgYWFhcpafsnJyWnWqVSX1MTgvXv3cOjQoTQj7b7ExYsXkZKSgrlz56JWrVr47rvv8PTpU5U6Tk5OKucKIM39nKhSpQqePXsGLS2tNK+R7KwPqKOjo/I/lMrMzAw9e/bE77//jgULFmDlypVfHDMRERHJh8lBIiKifCQ+Ph7Pnj1Tub18+RLAhyTL999/D3d3d/Tq1QsBAQG4du2adAVhV1dX1K9fH+3bt8fBgwfx4MED6SII6WnUqBEuXLiAdevW4d69e5g0aRJu3LghbTc0NISPjw/GjBmDI0eO4MaNG/D29lZJYH333Xfo3r07vLy8sHXrVjx48ADnzp2Dv78/du/eDQAYOnQo9u3bhzlz5uDevXtYsmTJZ6cUm5ubQ09PD/v27cPz588RFRUF4MOFRmbOnIm//voLd+7cwbhx43DlyhUMGzZMZf+lS5di27ZtuH37NgYNGoTIyEj07t07w+O5ubmhSpUq6N27Ny5fvoyLFy+iX79+aNKkyRdP07a1tUXbtm0xceJEAMDEiROxbt06TJkyBTdv3sStW7ewceNG/PTTT190nFKlSmHr1q24cuUKrl69im7dun12FFluGDJkCPz9/bFjxw7cuXMHw4YNQ2RkpMoFSLZt24bSpUtn2k5MTAyuXLkiJawfPHiAK1euSNOkExMT0aFDB1y4cAEbNmxAcnKy9D/zudGSWVGyZEkkJiZi8eLF+O+//7B+/XrpQiUfn+uePXswb9483Lt3DytWrMDevXu/+GIrbm5ucHFxgaenJw4cOIDQ0FCcOnUKP/74Iy5cuJDldhwcHHD27FmEhobi5cuXSElJwcSJE7Fjxw7cv38fN2/exK5du6TEOREREX2bmBwkIiLKR/bt2wcrKyuVW926dQEA06ZNw8OHD7FixQoAH6bCrly5Ej/99JO05t7ff/+N6tWro2vXrihbtix++OGHdEcOAYC7uzsmTJiAH374AdWrV8fbt2/h5eWlUmf27NmoV68eWrVqBTc3N9StWzfN2mwBAQHw8vLCqFGj4OTkBE9PT5w/fx52dnYAgFq1auG3337DwoULUalSJRw4cOCziTAtLS0sWrQIK1asgLW1Ndq0aQPgQ6Jx5MiRGDVqFCpUqIB9+/Zh586dKFWqlMr+M2bMwIwZM1CpUiWcOHECO3fuzHTElYaGBv755x8ULVoU9evXh4eHB8qUKYONGzdKdXJyteJUI0aMwO7du3Hu3Dm4u7tj165dOHDgAKpXr45atWph/vz5XzxCcd68eShcuDBq166NVq1awd3dHVWqVPmiNnNi7Nix6Nq1K7y8vODi4gJDQ0O4u7urTJmOiorCnTt3Mm3nwoULqFy5MipXrgwAGDlyJCpXriwlWZ88eYKdO3fi8ePHcHZ2VvmfSZ16/yUqVaqEefPmYebMmShfvjw2bNgAf39/lTp16tTB8uXLMW/ePFSqVAn79u3DiBEjVM41JxQKBfbs2YP69eujV69e+O6779ClSxc8fPhQWn8yK0aPHg1NTU2ULVsWZmZmCAsLg46ODvz8/FCxYkXUr18fmpqaKq9zIiIi+vYohJyLvBARERHlIaGhoXB0dMTly5fh7Oys1raDgoLQrl07/PfffyhcuLBa287PUlJSUKZMGXTq1AlTp06VO5xc5+vri9u3b+P48eNyh0JEREQFBC9IQkRERPQV7NmzB+PHj2di8DMePnyIAwcOwNXVFfHx8ViyZAkePHiAbt26yR1arpgzZw6aNGkCAwMD7N27F2vXrsWvv/4qd1hERERUgDA5SERERPQVzJ49W+4QvgkaGhoIDAzE6NGjIYRA+fLlcejQoXy7rt25c+cwa9YsvH37FsWLF8eiRYvQp08fucMiIiKiAoTTiomIiIiIiIiIiAooXpCEiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIhk9eLFCwwYMAB2dnZQKpWwtLSEu7s7Tp48KXdoObJp0yY4OztDX18f9vb22VprMD4+Hs7OzlAoFLhy5YpUHhcXB29vb1SoUAFaWlrw9PRMs+/WrVvRpEkTmJmZwdjYGC4uLti/f3+243dwcIBCocDGjRvTbCtXrhwUCgUCAwOz3W5etHTpUjg4OEBXVxc1a9bEuXPnMq3foEEDKBSKNDcPDw+pTkxMDAYPHoxixYpBT08PZcuWxfLly9NtTwiB5s2bQ6FQYPv27eo8NSIiIqIsY3KQiIiIZNW+fXtcvnwZa9euxd27d7Fz5040aNAAr169kju0bNu7dy+6d++O/v3748aNG/j1118xf/58LFmyJEv7//DDD7C2tk5TnpycDD09PQwdOhRubm7p7nvs2DE0adIEe/bswcWLF9GwYUO0atUKly9fzvZ52NraIiAgQKXszJkzePbsGQwMDLLdXl70119/YeTIkZg0aRIuXbqESpUqwd3dHRERERnus3XrVoSHh0u3GzduQFNTEx07dpTqjBw5Evv27cPvv/+OW7duYfjw4Rg8eDB27tyZpr0FCxZAoVDkyvkRERERZZkgIiIikklkZKQAIIKDgzOs8+DBAwFAXL58Oc1+QUFBQgghgoKCBACxb98+4ezsLHR1dUXDhg3F8+fPxZ49e0Tp0qWFkZGR6Nq1q3j37l2unU/Xrl1Fhw4dVMoWLVokihUrJlJSUjLdNzXOmzdvpjnfj/Xs2VO0adMmS/GULVtWTJkyJUt1U9nb24tx48YJpVIpwsLCpHJfX18xZMgQYWJiIgICAqTyyMhI4ePjI4oWLSqMjIxEw4YNxZUrV6Tt9+/fF61btxbm5ubCwMBAVKtWTRw8eDDNMadNmyZ69eolDA0Nha2trVixYkW24s6uGjVqiEGDBkn3k5OThbW1tfD3989yG/PnzxdGRkYiJiZGKitXrpz4+eefVepVqVJF/Pjjjyplly9fFjY2NiI8PFwAENu2bcvZiRARERF9IY4cJCIiItkYGhrC0NAQ27dvR3x8/Be3N3nyZCxZsgSnTp3Co0eP0KlTJyxYsAB//PEHdu/ejQMHDmDx4sUZ7h8WFibFlNFt+vTpGe4fHx8PXV1dlTI9PT08fvwYDx8+zHC/58+fw9fXF+vXr4e+vn72TzwdKSkpePv2LYoUKZLtfS0sLODu7o61a9cCAN6/f4+//voLvXv3TlO3Y8eOiIiIwN69e3Hx4kVUqVIFjRs3xuvXrwF8mGbbokULHD58GJcvX0azZs3QqlUrhIWFqbQzd+5cVKtWDZcvX8bAgQMxYMAA3LlzJ8MYp0+f/tnn6tNjpEpISMDFixdVRmFqaGjAzc0Np0+fzvLjtHr1anTp0kVlNGXt2rWxc+dOPHnyBEIIBAUF4e7du2jatKlU5/379+jWrRuWLl0KS0vLLB+PiIiIKDdoyR0AERERFVxaWloIDAyEr68vli9fjipVqsDV1RVdunRBxYoVs93eL7/8gjp16gAAfHx84Ofnh5CQEBQvXhwA0KFDBwQFBWHs2LHp7m9tba2y1l96Mku2ubu7Y8SIEfD29kbDhg1x//59zJ07FwAQHh4OBweHNPsIIeDt7Y3+/fujWrVqCA0N/fyJZsGcOXMQExODTp065Wj/3r17Y9SoUfjxxx+xZcsWlChRAs7Ozip1Tpw4gXPnziEiIgJKpVI67vbt27Flyxb07dsXlSpVQqVKlaR9pk6dim3btmHnzp0YPHiwVN6iRQsMHDgQADB27FjMnz8fQUFBcHJySje+/v37f/bc0puiDQAvX75EcnIyLCwsVMotLCxw+/btTNtMde7cOdy4cQOrV69WKV+8eDH69u2LYsWKQUtLCxoaGvjtt99Qv359qc6IESNQu3ZttGnTJkvHIiIiIspNTA4SERGRrNq3bw8PDw8cP34cZ86cwd69ezFr1iysWrUK3t7e2Wrr44SihYUF9PX1pcRgallmF53Q0tJCyZIls30OqXx9fRESEoKWLVsiMTERxsbGGDZsGCZPngwNjfQnbCxevBhv376Fn59fjo/7qT/++ANTpkzBjh07YG5unqM2PDw80K9fPxw7dgxr1qxJd9Tg1atXERMTA1NTU5Xy2NhYhISEAPgwcnDy5MnYvXs3wsPDkZSUhNjY2DSj+j5+7hQKBSwtLTNd/69IkSI5GhWpLqtXr0aFChVQo0YNlfLFixfjzJkz2LlzJ+zt7XHs2DEMGjQI1tbWcHNzw86dO3HkyJEcrQVJRERElBs4rZiIiIhkp6uriyZNmmDChAk4deoUvL29MWnSJACQkmpCCKl+YmJiuu1oa2tLfysUCpX7qWUpKSkZxvGl04oVCgVmzpyJmJgYPHz4EM+ePZOSRx8nKT925MgRnD59GkqlUiU5Wa1aNfTs2TPDY2Vk48aN6NOnDzZt2pThxUuyQktLCz169MCkSZNw9uxZdO/ePU2dmJgYWFlZ4cqVKyq3O3fuYMyYMQCA0aNHY9u2bZg+fTqOHz+OK1euoEKFCkhISFBpK7vP1ZdMKy5atCg0NTXx/PlzlfLnz59naZrvu3fvsHHjRvj4+KiUx8bGYvz48Zg3bx5atWqFihUrYvDgwejcuTPmzJkD4MPzHRISgkKFCkFLSwtaWh9+q2/fvj0aNGjw2WMTERERqRtHDhIREVGeU7ZsWWzfvh0AYGZmBuDDtNzKlSsDwGen/ubUl04rTqWpqQkbGxsAwJ9//gkXFxfpPD61aNEi/PLLL9L9p0+fwt3dHX/99Rdq1qyZ9eD//1i9e/fGxo0b4eHhka1909O7d2/MmTMHnTt3RuHChdNsr1KlCp49ewYtLa10p0wDwMmTJ+Ht7Y22bdsC+JBQVMfU6S+ZVqyjo4OqVavi8OHD8PT0BPBhjcbDhw+rTHXOyObNmxEfH4/vv/9epTwxMRGJiYlpRolqampKic5x48ahT58+KtsrVKiA+fPno1WrVp89NhEREZG6MTlIREREsnn16hU6duyI3r17o2LFijAyMsKFCxcwa9YsaT02PT091KpVCzNmzICjoyMiIiLw008/5Uo8Xzqt+OXLl9iyZQsaNGiAuLg4BAQEYPPmzTh69KhU59y5c/Dy8sLhw4dhY2MDOzs7lTYMDQ0BACVKlECxYsWk8n///RcJCQl4/fo13r59KyUxU9cB/OOPP9CzZ08sXLgQNWvWxLNnzwB8ePxMTExydD5lypTBy5cvM7xIipubG1xcXODp6YlZs2bhu+++w9OnT7F79260bdsW1apVQ6lSpbB161a0atUKCoUCEyZMyHREYFZ96bTikSNHomfPnqhWrRpq1KiBBQsW4N27d+jVq5dUx8vLCzY2NvD391fZd/Xq1fD09EwzndrY2Biurq4YM2YM9PT0YG9vj6NHj2LdunWYN28eAMDS0jLd0Yl2dnZwdHTM8fkQERER5RSTg0RERCQbQ0ND1KxZE/Pnz0dISAgSExNha2sLX19fjB8/Xqq3Zs0a+Pj4oGrVqnBycsKsWbNUrv6al6xduxajR4+GEAIuLi4IDg5WWZfu/fv3uHPnToZTozPSokULlSsep46iTJ1uvXLlSiQlJWHQoEEYNGiQVK9nz54IDAwEAAQGBqJXr14qU7Q/59ME2McUCgX27NmDH3/8Eb169cKLFy9gaWmJ+vXrSxf7mDdvHnr37o3atWujaNGiGDt2LKKjo7N8/NzSuXNnvHjxAhMnTsSzZ8/g7OyMffv2qVykJCwsLM0owDt37uDEiRM4cOBAuu1u3LgRfn5+6N69O16/fg17e3tMmzYN/fv3z9XzISIiIsophchO75CIiIiIvlmTJk3C0aNHERwcLHcoRERERJRHcOQgERERUQGxd+9eLFmyRO4wiIiIiCgP4chBIiIiIiIiIiKiAkrj81WIiIiIiIiIiIgoP2JykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQiIiIiIiIiIiogGJykIiIiIiIiIiIqIBicpCIiIiIiIiIiKiAYnKQKI9zcHCAt7d3jvZt0KABGjRooNZ4siopKQk//PADbG1toaGhAU9PT1niIFKXlJQUlC9fHtOmTZM7FLVSKBSYPHmydH/58uWws7NDfHy8fEERUYEzefJkKBSKr3KsT/tHwcHBUCgU2LJly1c5vre3NxwcHL7KsXIqJiYGffr0gaWlJRQKBYYPHy53SGrxJX1juZ+358+fo0OHDjA1NYVCocCCBQtki4VyX2BgIBQKBUJDQ9XWZmhoKBQKBQIDA9XWJuUfTA5Svpf6xpp609LSgo2NDby9vfHkyRO5w8u31qxZg9mzZ6NDhw5Yu3YtRowYIXdIecKePXtUEjG5JfWLTupNW1sbxYsXh5eXF/77779cP35+9Oeff+LRo0cYPHjwVz/2H3/88dW+BHh7eyMhIQErVqz4Kscjovzn076Xrq4urK2t4e7ujkWLFuHt27dqOc7Tp08xefJkXLlyRS3tqVNeji0rpk+fjsDAQAwYMADr169Hjx495A6pwBsxYgT2798PPz8/rF+/Hs2aNZM7pDzh119/ZbLrE1+z30j5h0IIIeQOgig3BQYGolevXvj555/h6OiIuLg4nDlzBoGBgXBwcMCNGzegq6srd5gZio+Ph4aGBrS1tbO9b0JCAgBAR0dH3WF9VpcuXXDixAk8fvz4qx87Lxs8eDCWLl2K3H7rDQ4ORsOGDTF06FBUr14diYmJuHTpElauXAlDQ0Ncv34d1tbWuRpDfuPs7IyaNWvKkjRr2bIlbty4odZfj1MpFApMmjRJJWk9duxY/PXXX3jw4MFXG8lDRPnHp32vxMREPHv2DMHBwTh48CDs7Oywc+dOVKxYUdonKSkJSUlJ2eqTXbhwAdWrV0dAQEC2Zll82j9K/czcvHkzOnTokOV2chpbYmIiUlJSoFQq1XKs3FCrVi1oaWnhxIkTcoeiVl/SN5b7ebO0tISbmxt+//13WY6fV5UvXx5FixZFcHCw3KGoVer76IMHD7I9YjWjfqMQAvHx8dDW1oampqb6gqV8gSMHqcBo3rw5vv/+e/Tp0werVq3C6NGjERISgp07d8odWqaUSmWOEoPAh46PHIlBAIiIiEChQoU+Wy8pKUnqqJH61atXD99//z169eqFxYsXY86cOXj9+jXWrl371WJ49+7dVztWTqWkpCAuLi7D7ZcvX8bVq1fRqVOnrxiVfI9dp06d8PDhQwQFBclyfCLKH1L7Xr169YKfnx/279+PQ4cOISIiAq1bt0ZsbKxUV0tLK9d/rH3//j0AeftHAKCtrZ2nE4NA1vtx6fncZ6qcvuS5l/t5y+pz8i30u/IrIYTK+9rH4uLikJKS8pUjUpU6kpuJQUoPk4NUYNWrVw8AEBISolJ++/ZtdOjQAUWKFIGuri6qVauWJoGYOl3mxIkTGDp0KMzMzFCoUCH069cPCQkJePPmDby8vFC4cGEULlwYP/zwQ5qRYnPmzEHt2rVhamoKPT09VK1aNd21bj5dczD12CdPnsTIkSNhZmYGAwMDtG3bFi9evFDZN6M1dTZt2oRp06ahWLFi0NXVRePGjXH//v00x166dCmKFy8OPT091KhRA8ePH//sWi2pa1kEBQXh5s2b0pSi4OBgaducOXOwYMEClChRAkqlEv/++y8SEhIwceJEVK1aFSYmJjAwMEC9evXSTU68evUKPXr0gLGxMQoVKoSePXvi6tWradbQ8Pb2hqGhIcLCwtCyZUsYGhrCxsYGS5cuBQBcv34djRo1goGBAezt7fHHH3+kOdabN28wfPhw2NraQqlUomTJkpg5c6bKh/vH57Vy5UrpvKpXr47z58+rxJN67I+nW6XauHEjqlatCiMjIxgbG6NChQpYuHChSjwhISFpXrPZ0ahRIwDAgwcPpLK9e/eiXr16MDAwgJGRETw8PHDz5k2V/a5duwZvb28UL14curq6sLS0RO/evfHq1SuVeqlrRv3777/o1q0bChcujLp16wIAnj17hl69eqFYsWJQKpWwsrJCmzZt0vyq+euvv6JcuXJQKpWwtrbGoEGD8ObNG5U6DRo0QPny5fHvv/+iYcOG0NfXh42NDWbNmpWlx0GhUGDw4MHYsGGDdKx9+/ZlWH/79u3Q0dFB/fr1Vcrfvn2L4cOHw8HBAUqlEubm5mjSpAkuXbqkUm/z5s2oWrUq9PT0ULRoUXz//fdpljVIfb2GhISgRYsWMDIyQvfu3dGgQQPs3r0bDx8+lF4zH/+CHB8fj0mTJqFkyZJQKpWwtbXFDz/8kGbNwPj4eIwYMQJmZmYwMjJC69atMxzZW7VqVRQpUgQ7duzIysNJRJRljRo1woQJE/Dw4UOVEVDprTl48OBB1K1bF4UKFYKhoSGcnJwwfvx4AB/6NNWrVwcA9OrVS3p/TO0HpH5OXLx4EfXr14e+vr60b0Z9meTkZIwfPx6WlpYwMDBA69at8ejRI5U6Ga0F/XGbn4stvbXr3r17h1GjRkn9DScnJ8yZMydN/zH182v79u0oX748lEolypUrl+ln2MciIiLg4+MDCwsL6OrqolKlSio/GKb2FR88eIDdu3dLsWc2cj2zz9QnT56gd+/esLCwkGJds2aNyv4f90+nTJkCGxsbGBkZoUOHDoiKikJ8fDyGDx8Oc3NzGBoaolevXmk+4wICAtCoUSOYm5tDqVSibNmyWLZsWZpYv6Rv/OnzltX+X6rNmzejbNmy0NXVRfny5bFt27YsrWOY2vcXQmDp0qUq/cfUbUePHsXAgQNhbm6OYsWKAQAePnyIgQMHwsnJCXp6ejA1NUXHjh3TfS6vXbsGV1dX6OnpoVixYvjll18QEBCQ5rl3cHBAy5YtERwcjGrVqkFPTw8VKlSQRu1t3boVFSpUgK6uLqpWrYrLly+nOVZ2vmt97vuOg4MDbt68iaNHj0qPy+fWlExJScHChQulOM3MzNCsWTNcuHBBqpOUlISpU6dKz6mDgwPGjx+f5nWX+njs379fejxWrFghva42btyIn376CTY2NtDX10d0dDQA4OzZs2jWrBlMTEygr68PV1dXnDx5MtO4AWDHjh3w8PCAtbU1lEolSpQogalTpyI5OVmqk1m/MaM1B48cOSJ9FyhUqBDatGmDW7duqdRJfY++f/8+vL29UahQIZiYmKBXr17SDy+pMnvvprxLS+4AiOSS+kFXuHBhqezmzZuoU6cObGxsMG7cOBgYGGDTpk3w9PTE33//jbZt26q0MWTIEFhaWmLKlCk4c+YMVq5ciUKFCuHUqVOws7PD9OnTsWfPHsyePRvly5eHl5eXtO/ChQvRunVrdO/eHQkJCdi4cSM6duyIXbt2wcPD47PxDxkyBIULF8akSZMQGhqKBQsWYPDgwfjrr78+u++MGTOgoaGB0aNHIyoqCrNmzUL37t1x9uxZqc6yZcswePBg1KtXDyNGjEBoaCg8PT1RuHBhqdORHjMzM6xfvx7Tpk1DTEwM/P39AQBlypSRfkkLCAhAXFwc+vbtC6VSiSJFiiA6OhqrVq1C165d4evri7dv32L16tVwd3fHuXPn4OzsDODDB3qrVq1w7tw5DBgwAKVLl8aOHTvQs2fPdONJTk5G8+bNUb9+fcyaNQsbNmzA4MGDYWBggB9//BHdu3dHu3btsHz5cnh5ecHFxQWOjo4APowwcHV1xZMnT9CvXz/Y2dnh1KlT8PPzQ3h4eJq1PP744w+8ffsW/fr1g0KhwKxZs9CuXTv8999/0NbWRr9+/fD06VMcPHgQ69evV9n34MGD6Nq1Kxo3boyZM2cCAG7duoWTJ09i2LBhUr3GjRsDQI6nl6YmFk1NTQEA69evR8+ePeHu7o6ZM2fi/fv3WLZsGerWrYvLly9LnYmDBw/iv//+Q69evWBpaYmbN29i5cqVuHnzJs6cOZPmC13Hjh1RqlQpTJ8+Xfpi0759e9y8eRNDhgyBg4MDIiIicPDgQYSFhUnHmTx5MqZMmQI3NzcMGDAAd+7cwbJly3D+/HmcPHlSZRRtZGQkmjVrhnbt2qFTp07YsmULxo4diwoVKqB58+affSyOHDmCTZs2YfDgwShatGimnfNTp06hfPnyaUbx9u/fH1u2bMHgwYNRtmxZvHr1CidOnMCtW7dQpUoVAP+bFlK9enX4+/vj+fPnWLhwIU6ePInLly+rjAJISkqCu7s76tatizlz5kBfXx+WlpaIiorC48ePMX/+fACAoaEhgA//D61bt8aJEyfQt29flClTBtevX8f8+fNx9+5dbN++XWq7T58++P3339GtWzfUrl0bR44cyfS9pkqVKlnqqBIRZVePHj0wfvx4HDhwAL6+vunWuXnzJlq2bImKFSvi559/hlKpxP3796X3pTJlyuDnn3/GxIkT0bdvX+lH39q1a0ttvHr1Cs2bN0eXLl3w/fffw8LCItO4pk2bBoVCgbFjxyIiIgILFiyAm5sbrly5Aj09vSyfX1Zi+5gQAq1bt0ZQUBB8fHzg7OyM/fv3Y8yYMXjy5In03p/qxIkT2Lp1KwYOHAgjIyMsWrQI7du3R1hYmPT5np7Y2Fg0aNAA9+/fx+DBg+Ho6IjNmzfD29sbb968wbBhw1CmTBmsX78eI0aMQLFixTBq1CgAH/p3mUnvM/X58+eoVauWlDw0MzPD3r174ePjg+jo6DQXOfH394eenh7GjRuH+/fvY/HixdDW1oaGhgYiIyMxefJkaWkgR0dHTJw4Udp32bJlKFeuHFq3bg0tLS38888/GDhwIFJSUjBo0KBMYwey1jfOyOf6fwCwe/dudO7cGRUqVIC/vz8iIyPh4+MDGxubz7Zfv359ad3HJk2aqHyfSDVw4ECYmZlh4sSJ0sjB8+fP49SpU+jSpQuKFSuG0NBQLFu2DA0aNMC///4LfX19AB8SuA0bNoRCoYCfnx8MDAywatWqDEdJ3r9/H926dUO/fv3w/fffY86cOWjVqhWWL1+O8ePHY+DAgQA+PJ+dOnXCnTt3oKHxYUxSTr5rZfZ9Z8GCBRgyZAgMDQ3x448/AsBn/899fHwQGBiI5s2bo0+fPkhKSsLx48dx5swZVKtWDcCHPtPatWvRoUMHjBo1CmfPnoW/vz9u3bqFbdu2qbR3584ddO3aFf369YOvry+cnJykbVOnToWOjg5Gjx6N+Ph46Ojo4MiRI2jevDmqVq2KSZMmQUNDQ0puHz9+HDVq1Mgw9sDAQBgaGmLkyJEwNDTEkSNHMHHiRERHR2P27NkAgB9//DHDfmN6Dh06hObNm6N48eKYPHkyYmNjsXjxYtSpUweXLl1K0z/u1KkTHB0d4e/vj0uXLmHVqlUwNzeXvr987r2b8jBBlM8FBAQIAOLQoUPixYsX4tGjR2LLli3CzMxMKJVK8ejRI6lu48aNRYUKFURcXJxUlpKSImrXri1KlSqVpk13d3eRkpIilbu4uAiFQiH69+8vlSUlJYlixYoJV1dXlbjev3+vcj8hIUGUL19eNGrUSKXc3t5e9OzZM82x3dzcVI49YsQIoampKd68eSOVubq6qhw3KChIABBlypQR8fHxUvnChQsFAHH9+nUhhBDx8fHC1NRUVK9eXSQmJkr1AgMDBYA055IeV1dXUa5cOZWyBw8eCADC2NhYREREqGxLSkpSiUkIISIjI4WFhYXo3bu3VPb3338LAGLBggVSWXJysmjUqJEAIAICAqTynj17CgBi+vTpKm3q6ekJhUIhNm7cKJXfvn1bABCTJk2SyqZOnSoMDAzE3bt3VeIaN26c0NTUFGFhYSrnZWpqKl6/fi3V27FjhwAg/vnnH6ls0KBBIr233mHDhgljY2ORlJSUZtvH7O3thb29faZ1hPjfc71mzRrx4sUL8fTpU7F7927h4OAgFAqFOH/+vHj79q0oVKiQ8PX1Vdn32bNnwsTERKX809erEEL8+eefAoA4duyYVDZp0iQBQHTt2lWlbmRkpAAgZs+enWHMERERQkdHRzRt2lQkJydL5UuWLJHOJZWrq6sAINatWyeVxcfHC0tLS9G+ffvPPj4AhIaGhrh58+Zn6wohRLFixdJt18TERAwaNCjD/RISEoS5ubkoX768iI2Nlcp37dolAIiJEydKZamv13HjxqVpx8PDI93nff369UJDQ0McP35cpXz58uUCgDh58qQQQogrV64IAGLgwIEq9bp165bmdZ+qb9++Qk9PL8NzIyLKSGpf5fz58xnWMTExEZUrV5bup35+pJo/f74AIF68eJFhG+fPn0/z2Z8q9XNi+fLl6W5Lr39kY2MjoqOjpfJNmzYJAGLhwoVS2af9sozazCy2nj17qrynb9++XQAQv/zyi0q9Dh06CIVCIe7fvy+VARA6OjoqZVevXhUAxOLFi9Mc62MLFiwQAMTvv/8ulSUkJAgXFxdhaGiocu729vbCw8Mj0/Y+jim9z1QfHx9hZWUlXr58qVLepUsXYWJiIvUtUh//8uXLi4SEBKle165dhUKhEM2bN1fZ38XFJc1nYnr9FHd3d1G8eHGVspz2jYVI+7xlp/9XoUIFUaxYMfH27VupLDg4WADIUr9OiA+P86d9jtT/tbp166bpQ6b3mJw+fTpN/2nIkCFCoVCIy5cvS2WvXr0SRYoUEQDEgwcPpHJ7e3sBQJw6dUoq279/vwAg9PT0xMOHD6XyFStWCAAiKChIKsvud62sfN8pV65clr6bCCHEkSNHBAAxdOjQNNtSj5PaZ+rTp4/K9tGjRwsA4siRI2kej3379qnUTX1dFS9eXOV5SElJEaVKlUrzHfL9+/fC0dFRNGnSJM1j8PHjn95z2q9fP6Gvr6/ymGbUb0x9zX78vuTs7CzMzc3Fq1evpLKrV68KDQ0N4eXlJZWlvkd//L1MCCHatm0rTE1NpftZee+mvInTiqnAcHNzg5mZGWxtbdGhQwcYGBhg586d0ii4169f48iRI+jUqRPevn2Lly9f4uXLl3j16hXc3d1x7969NNMAfXx8VEZM1axZE0II+Pj4SGWampqoVq1amivEfvwLdGRkJKKiolCvXr000xEz0rdvX5Vj16tXD8nJyXj48OFn9+3Vq5fKeiupv2inxnjhwgW8evUKvr6+0NL63wDj7t27q4y0zKn27dun+QVaU1NTiiklJQWvX79GUlISqlWrpvKY7Nu3D9ra2iojDTQ0NDL9VbhPnz7S34UKFYKTkxMMDAxU1o9zcnJCoUKFVJ6nzZs3o169eihcuLD0enj58iXc3NyQnJyMY8eOqRync+fOKo/Pp49rZgoVKoR3797h4MGDmdYLDQ3N1qjB3r17w8zMDNbW1vDw8MC7d++wdu1aVKtWDQcPHsSbN2/QtWtXlfPT1NREzZo1VaZ0f/x6jYuLw8uXL1GrVi0ASPc1279/f5X7enp60NHRQXBwMCIjI9ON9dChQ0hISMDw4cOlX5gBwNfXF8bGxti9e7dKfUNDQ3z//ffSfR0dHdSoUSPLV2N2dXVF2bJls1T31atX6b72CxUqhLNnz+Lp06fp7nfhwgVERERg4MCBKmtpeXh4oHTp0mnOCQAGDBiQpZiAD6/RMmXKoHTp0irPYer08dTncM+ePQCAoUOHquz/6aiNjxUuXBixsbFppooQEamDoaFhplctTh1VvWPHjhyv06VUKtGrV68s1/fy8oKRkZF0v0OHDrCyspLeQ3PLnj17oKmpmeY9etSoURBCYO/evSrlbm5uKFGihHS/YsWKMDY2/uzn3549e2BpaYmuXbtKZdra2hg6dChiYmJw9OjRHJ/Dp5+pQgj8/fffaNWqFYQQKp9R7u7uiIqKStN/8PLyUhmhn9qv7t27t0q9mjVr4tGjR0hKSpLKPu6nREVF4eXLl3B1dcV///2HqKioz8b/ub5xZj7X/3v69CmuX78OLy8vlRFcrq6uqFChwmfbzwpfX98068h9/JgkJibi1atXKFmyJAoVKpSmb+3i4iLN0gGAIkWKoHv37ukeq2zZsnBxcZHu16xZE8CHJQPs7OzSlKc+Djn5rvUl33fS8/fff0sXYvtU6nFS/99Hjhypsj11FO2nfTdHR0e4u7une7yePXuqPA9XrlzBvXv30K1bN7x69Up6DN69e4fGjRvj2LFjmb7ffdxW6mNYr149vH//Hrdv387s1NMVHh6OK1euwNvbG0WKFJHKK1asiCZNmqT73vdpH79evXp49eqVNGVaHe/dJA9OK6YCY+nSpfjuu+8QFRWFNWvW4NixYyrD5e/fvw8hBCZMmIAJEyak20ZERITK8P+PPwABwMTEBABga2ubpvzThMiuXbvwyy+/4MqVKyrrV2T1yqCfHju1U5JR4iU7+6Z+4JYsWVKlnpaWVravlpWe1Gm7n1q7di3mzp2L27dvIzExMd36Dx8+hJWVlTQVItWnsaZKXUvkYyYmJihWrFiax/rT5+nevXu4du1ahlNpIiIiVO5/yXMycOBAbNq0Cc2bN4eNjQ2aNm2KTp06oVmzZp/dNzMTJ05EvXr1oKmpiaJFi6JMmTJSwvfevXsA/rcO4aeMjY2lv1+/fo0pU6Zg48aNac47vU73p8+xUqnEzJkzMWrUKFhYWKBWrVpo2bIlvLy8YGlpCeB/r7uPp2MAH5J+xYsXT9MRTO85LFy4MK5du5b+g/GZGD9HpHOF6VmzZqFnz56wtbVF1apV0aJFC3h5eaF48eIAMj4nAChdunSaq0BqaWllOm3/U/fu3cOtW7c++xp9+PAhNDQ0VL5MZhRXqtTz5dWKiSg3xMTEwNzcPMPtnTt3xqpVq9CnTx+MGzcOjRs3Rrt27dChQweVH5AyY2Njk62LT5QqVUrlvkKhQMmSJXPlSvEfe/jwIaytrVUSk8CH6cmp2z/2aX8D+PD597n+xsOHD1GqVKk0j19Gx8mOTz9TX7x4gTdv3mDlypVYuXJluvt8rh+VWb86JSUFUVFR0jTqkydPYtKkSTh9+nSaH7WioqKktjIiR786tezjRN2LFy9U1o8zNDTMdEpoqvT6NLGxsfD390dAQACePHmi0o/5uO/28OFDlWTfx7GlJzvPE/C/x0Ed37Wy87ykJyQkBNbW1iqJsE+l9pk+PX9LS0sUKlQozf9JZv3JT7el9r0zWg4J+PDcZDQY4+bNm/jpp59w5MgRKRn38X7ZlVk/tUyZMti/fz/evXsHAwMDqTyz58TY2Fgt790kDyYHqcCoUaOGtI6Ep6cn6tati27duuHOnTswNDSUftkYPXp0hr/+fPohkdGVntIr//gD+fjx42jdujXq16+PX3/9FVZWVtDW1kZAQEC6F8XI6jE+PU5u7KsO6a3b8/vvv8Pb2xuenp4YM2YMzM3NoampCX9//y+6AEd2niNA9TFISUlBkyZN8MMPP6Rb97vvvst2mxkxNzfHlStXsH//fuzduxd79+5FQEAAvLy8vujKwhUqVICbm1u621Jf8+vXr5cSdB/7eNRop06dcOrUKYwZMwbOzs7S/0yzZs3S/VUwved4+PDhaNWqFbZv3479+/djwoQJ8Pf3x5EjR1C5cuVsn9uXvo6zs36Uqalpuh3RTp06oV69eti2bRsOHDiA2bNnY+bMmdi6dWuW1j38lFKpzFbHKSUlBRUqVMC8efPS3f5pRz07IiMjoa+vn63HiYgoKx4/foyoqKgMkw/Ah/foY8eOISgoCLt378a+ffvw119/oVGjRjhw4ECWrraZG+9fGf1gkpyc/NWuACp3Py49nz7WqX2D77//PsNESMWKFVXu57TPFhISgsaNG6N06dKYN28ebG1toaOjgz179mD+/PlZGr2UV/rV1atXV0k+TZo0CZMnT/7sfum91ocMGYKAgAAMHz4cLi4uMDExgUKhQJcuXb5oRFdOnyd1ftf6Gq/1rP44mtn7TEb/F7Nnz1YZqfmxjJLBb968gaurK4yNjfHzzz+jRIkS0NXVxaVLlzB27NivNkrvc8+JOt67SR5MDlKBlJp0atiwIZYsWYJx48ZJI320tbUzTKaoy99//w1dXV3s379fZfRiQEBArh43q+zt7QF8+IWvYcOGUnlSUhJCQ0PTdObUYcuWLShevDi2bt2q8mH86bB/e3t7BAUF4f379yqjB9O72vKXKlGiBGJiYtT6esiso6Gjo4NWrVqhVatWSElJwcCBA7FixQpMmDAh0y9QOZU6iszc3DzTc4yMjMThw4cxZcoUlcW/U3/9zO4xR40ahVGjRuHevXtwdnbG3Llz8fvvv0uvuzt37kj/jwCQkJCABw8e5Pr/ZWZKly6tcoXnj1lZWWHgwIEYOHAgIiIiUKVKFUybNg3NmzdXOadPR2jeuXNH2v45Gb1uSpQogatXr6Jx48aZvrbs7e2RkpKCkJAQlV+H79y5k+E+Dx48kEaTEBGpU+pFuTJKEKTS0NBA48aN0bhxY8ybNw/Tp0/Hjz/+iKCgILi5ual9ZPOnn2tCCNy/f1+l31O4cGG8efMmzb4PHz5U+ezKTmz29vY4dOgQ3r59qzJ6MHWaYFY/K7JynGvXriElJUXlhyh1Hwf4cAETIyMjJCcn5/rn9z///IP4+Hjs3LlTZVTTx8ujyOnjfvWnPi3bsGGDdAE/ACqvqezasmULevbsiblz50plcXFxaV6/9vb2WYrtS+XWd63s/K+VKFEC+/fvx+vXrzMcPZjaZ7p3755KP+j58+d48+bNF/2fpPa9jY2Ns/0YBAcH49WrV9i6dSvq168vlafXP83qY/JxP/VTt2/fRtGiRVVGDWbV5967KW/iuE4qsBo0aIAaNWpgwYIFiIuLg7m5ORo0aIAVK1YgPDw8Tf0XL16o7diamppQKBQq0wZCQ0NVriwqp2rVqsHU1BS//fabynouGzZsyPEw/s9J/RXp418Cz549i9OnT6vUc3d3R2JiIn777TepLCUlBUuXLlV7TJ06dcLp06exf//+NNvevHmj8thkVeoH7Kcds1evXqnc19DQkL6MfDztPCQk5ItGUn7M3d0dxsbGmD59uso07lSpr/n0nhsAaa7WnJn3798jLi5OpaxEiRIwMjKSzs/NzQ06OjpYtGiRyrFWr16NqKioLF3FO7e4uLjgxo0bKs9FcnJymikc5ubmsLa2lupVq1YN5ubmWL58ucq+e/fuxa1bt7J8TgYGBulOF+nUqROePHmi8v+QKjY2VrpiYeooxkWLFqnUyew5vHTpUoZX1iQiyqkjR45g6tSpcHR0zHBNM+DDchafSh1pk/p+mtFnak6tW7dOZR3ELVu2IDw8XGUkeIkSJXDmzBkkJCRIZbt27cKjR49U2spObC1atEBycjKWLFmiUj5//nwoFIocjUTP6DjPnj2TrvQKfPjhd/HixTA0NISrq6tajgN86Du0b98ef//9N27cuJFmu7r71QDSTJvNKz+6W1tbo3z58li3bh1iYmKk8qNHj+L69esqdevUqQM3Nzfp9iXJQU1NzTR9t8WLF6t8/wA+9AdPnz6NK1euSGWvX7/Ghg0bcnzs9OTWdy0DA4Msvwe0b98eQghMmTIlzbbUx6pFixYA0vaRUmdpfEl/tGrVqihRogTmzJmj8lpIldljkN7rPCEhAb/++muauhn1Gz9lZWUFZ2dnrF27VuUxvHHjBg4cOCA9FtmRlfduyps4cpAKtDFjxqBjx44IDAxE//79sXTpUtStWxcVKlSAr68vihcvjufPn+P06dN4/Pgxrl69qpbjenh4YN68eWjWrBm6deuGiIgILF26FCVLlszyemm5SUdHB5MnT8aQIUPQqFEjdOrUCaGhoQgMDESJEiVyZQ2yli1bYuvWrWjbti08PDzw4MEDLF++HGXLllX58PT09ESNGjUwatQo3L9/H6VLl8bOnTulDyJ1xjZmzBjs3LkTLVu2hLe3N6pWrYp3797h+vXr2LJlC0JDQ1G0aNFstVm1alUAHy4M4e7uDk1NTXTp0gV9+vTB69ev0ahRIxQrVgwPHz7E4sWL4ezsrPKrZePGjQFALesfGRsbY9myZejRoweqVKmCLl26wMzMDGFhYdi9ezfq1KmDJUuWwNjYGPXr18esWbOQmJgIGxsbHDhwIMORdOm5e/cuGjdujE6dOqFs2bLQ0tLCtm3b8Pz5c3Tp0gXAh1EGfn5+mDJlCpo1a4bWrVvjzp07+PXXX1G9enWVi498bW3atMHUqVNx9OhRNG3aFMCHhaCLFSuGDh06oFKlSjA0NMShQ4dw/vx56Vd6bW1tzJw5E7169YKrqyu6du2K58+fY+HChXBwcMCIESOydPyqVavir7/+wsiRI1G9enUYGhqiVatW6NGjBzZt2oT+/fsjKCgIderUQXJyMm7fvo1NmzZh//79qFatGpydndG1a1f8+uuviIqKQu3atXH48OEMRwVcvHgRr1+/Rps2bdTzABJRgbR3717cvn0bSUlJeP78OY4cOYKDBw/C3t4eO3fuVLlQ06d+/vlnHDt2DB4eHrC3t0dERAR+/fVXFCtWDHXr1gXwIVFXqFAhLF++HEZGRjAwMEDNmjWzvaZsqiJFiqBu3bro1asXnj9/jgULFqBkyZIqF0Hr06cPtmzZgmbNmqFTp04ICQnB77//nmZN1+zE1qpVKzRs2BA//vgjQkNDUalSJRw4cAA7duzA8OHD07SdU3379sWKFSvg7e2NixcvwsHBAVu2bMHJkyexYMGCNGsefqkZM2YgKCgINWvWhK+vL8qWLYvXr1/j0qVLOHToULpJhJxo2rSpNPuiX79+iImJwW+//QZzc/N0k1BymD59Otq0aYM6deqgV69eiIyMxJIlS1C+fPl0k0Tq0LJlS6xfvx4mJiYoW7YsTp8+jUOHDknrNKb64Ycf8Pvvv6NJkyYYMmQIDAwMsGrVKtjZ2eH169dq7VvnxnetqlWrYtmyZfjll19QsmRJmJubZ7iedsOGDdGjRw8sWrQI9+7dk5bHOX78OBo2bIjBgwejUqVK6NmzJ1auXClN5T137hzWrl0LT09PlVlV2aWhoYFVq1ahefPmKFeuHHr16gUbGxs8efIEQUFBMDY2xj///JPuvrVr10bhwoXRs2dPDB06FAqFAuvXr093inVG/cb0zJ49G82bN4eLiwt8fHwQGxuLxYsXw8TEJEtT2j+VlfduyqNy/XrIRDJLvQz8+fPn02xLTk4WJUqUECVKlBBJSUlCCCFCQkKEl5eXsLS0FNra2sLGxka0bNlSbNmy5bNtpl7i/dNLt/fs2VMYGBiolK1evVqUKlVKKJVKUbp0aREQECDt/zF7e3vRs2fPzx47KChIABBBQUFSmaurq3B1dU1TZ/PmzSr7pndZeyGEWLRokbC3txdKpVLUqFFDnDx5UlStWlU0a9YszWP5KVdXV1GuXLl0jzN79uw09VNSUsT06dOl41WuXFns2rVL9OzZU9jb26vUffHihejWrZswMjISJiYmwtvbW5w8eVIAEBs3bpTqpfe4ZxSbEB8eaw8PD5Wyt2/fCj8/P1GyZEmho6MjihYtKmrXri3mzJkjEhISPnteAMSkSZOk+0lJSWLIkCHCzMxMKBQK6fnesmWLaNq0qTA3Nxc6OjrCzs5O9OvXT4SHh6eJ8dPHIz0ZPdcZ1XV3dxcmJiZCV1dXlChRQnh7e4sLFy5IdR4/fizatm0rChUqJExMTETHjh3F06dP05xfRv8DL1++FIMGDRKlS5cWBgYGwsTERNSsWVNs2rQpTTxLliwRpUuXFtra2sLCwkIMGDBAREZGqtTJ6DlM7/WSHgBi0KBBn633sYoVKwofHx/pfnx8vBgzZoyoVKmSMDIyEgYGBqJSpUri119/TbPvX3/9JSpXriyUSqUoUqSI6N69u3j8+HGa2NN7vQohRExMjOjWrZsoVKiQAKByjgkJCWLmzJmiXLlyQqlUisKFC4uqVauKKVOmiKioKKlebGysGDp0qDA1NRUGBgaiVatW4tGjR2meQyGEGDt2rLCzsxMpKSnZeoyIiIT4X18l9aajoyMsLS1FkyZNxMKFC0V0dHSafT7tAx0+fFi0adNGWFtbCx0dHWFtbS26du0q7t69q7Lfjh07RNmyZYWWlpZKXyajz4nUben1j/7880/h5+cnzM3NhZ6envDw8BAPHz5Ms//cuXOFjY2NUCqVok6dOuLChQtp2swstvQ+q96+fStGjBghrK2thba2tihVqpSYPXt2mvfhjD6/Pu0vZuT58+eiV69eomjRokJHR0dUqFAhTf8vtb1P+0QZyewz9fnz52LQoEHC1tZWaGtrC0tLS9G4cWOxcuVKqU5GfZbs9Ld37twpKlasKHR1dYWDg4OYOXOmWLNmjQAgHjx4INX7kr7xp89bdvp/QgixceNGUbp0aaFUKkX58uXFzp07Rfv27UXp0qXTfezSa/PTxzmz7zmRkZHSc21oaCjc3d3F7du3032tXL58WdSrV08olUpRrFgx4e/vLxYtWiQAiGfPnkn1MnpdpBdbRo/Pl3zXSu/7zrNnz4SHh4cwMjISANL8H34qKSlJzJ49W5QuXVro6OgIMzMz0bx5c3Hx4kWpTmJiopgyZYpwdHQU2trawtbWVvj5+Ym4uDiVtjJ6PD7XD798+bJo166dMDU1FUqlUtjb24tOnTqJw4cPp3kMPn79njx5UtSqVUvo6ekJa2tr8cMPP4j9+/eneUwy6jdm9J3v0KFDok6dOkJPT08YGxuLVq1aiX///VelTkZ9/E/jzOp7N+U9CiFkXLmWiL4pKSkpMDMzQ7t27dKdxiin7du3o23btjhx4gTq1KkjdziUD61fvx6DBg1CWFgYChUqJHc4uSY+Ph4ODg4YN24chg0bJnc4RERE+ZazszPMzMxw8OBBuUNJY/jw4VixYgViYmJ4EQmiAoBrDhJRuuLi4tIMU1+3bh1ev36NBg0ayBPU//t4oWbgw9pvixcvhrGxMapUqSJTVJTfde/eHXZ2drmyvmVeEhAQAG1tbfTv31/uUIiIiPKFxMTENGtVBwcH4+rVq7L3q4G0fetXr15h/fr1qFu3LhODRAUERw4SUbqCg4MxYsQIdOzYEaamprh06RJWr16NMmXK4OLFi9DR0ZEttj59+iA2NhYuLi6Ij4/H1q1bcerUKUyfPh1+fn6yxUVERERE9KnQ0FC4ubnh+++/h7W1NW7fvo3ly5fDxMQEN27cSLMO4Nfm7OyMBg0aoEyZMnj+/DlWr16Np0+f4vDhwypXxiWi/IsXJCGidDk4OMDW1haLFi3C69evUaRIEXh5eWHGjBmyJgYBoFGjRpg7dy527dqFuLg4lCxZEosXL8bgwYNljYuIiIiI6FOFCxdG1apVsWrVKrx48QIGBgbw8PDAjBkzZE8MAh+u0LtlyxasXLkSCoUCVapUwerVq5kYJCpAOHKQiIiIiIiIiIiogOKag0RERERERERERAUUk4NEREREREREREQFFJODREREREREREREBRQvSAIgJSUFT58+hZGRERQKhdzhEBEREeU6IQTevn0La2traGjk39+L2c8jIiKigia7/TwmBwE8ffoUtra2codBRERE9NU9evQIxYoVkzuMXMN+HhERERVUWe3nMTkIwMjICMCHB83Y2FjmaIioILkf8RZD/ryMxV0ro6S5kdzhEFEBEh0dDVtbW6kflF+xn0dEcmE/jyh39Fh1Fi/fxaOogRLr+9SUO5w8Kbv9PIUQQuRyTHledHQ0TExMEBUVxU4jERERFQgFpf9TUM6TiIiIKFV2+z/5d4EZIiIiIiIiIiIiyhSTg0REMroVHo0qUw/iVni03KEQERERkRqxn0dE3wquOUhEJKPkFIHX7xKQnFLgV3ggIkrXkydPMHbsWOzduxfv379HyZIlERAQgGrVqqntGMnJyUhMTFRbe0QZ0dHRyddXBydV7OcR0beCyUEiIiIiypMiIyNRp04dNGzYEHv37oWZmRnu3buHwoULq6V9IQSePXuGN2/eqKU9os/R0NCAo6MjdHR05A6FiOibteDQXbyNS4KRrhaGu30ndzj5ApODRERERJQnzZw5E7a2tggICJDKHB0d1dZ+amLQ3Nwc+vr6UCgUamub6FMpKSl4+vQpwsPDYWdnx9cbEVEObTz3CM+i42BprMvkoJowOUhEREREedLOnTvh7u6Ojh074ujRo7CxscHAgQPh6+ub4T7x8fGIj4+X7kdHp7/WV3JyspQYNDU1VXvsROkxMzPD06dPkZSUBG1tbbnDISIiAsDkIBGRrByLGuDvAbXhWNRA7lCIiPKc//77D8uWLcPIkSMxfvx4nD9/HkOHDoWOjg569uyZ7j7+/v6YMmXKZ9tOXWNQX19frTETZSZ1OnFycjKTgwUA+3lEueM3r2pISE6BjibXcFUXhRCiwK+OGh0dDRMTE0RFRcHY2FjucIiIiIhy3bfQ/9HR0UG1atVw6tQpqWzo0KE4f/48Tp8+ne4+6Y0ctLW1TXOecXFxePDgARwdHaGrq5t7J0H0Eb7uiIjoa8huP48jB4mIZBQeFQsX/yNyh0FE37jQGR5yh5ArrKysULZsWZWyMmXK4O+//85wH6VSCaVSmduhERF9VnhULFYdf4A+9RxhZaIndzhERBlicpCISEavYhLkDoGIKM+qU6cO7ty5o1J29+5d2NvbyxQREVHWvYpJwOoTD9C2sg2Tg0Rq5jBud661nV9/dM0MJ2gTERERUZ40YsQInDlzBtOnT8f9+/fxxx9/YOXKlRg0aJDcoRUYmzdvRunSpaGrq4sKFSpgz549codEREQF3O1n6V9sjHJO1uRggwYNMHz4cDlDICIiIqI8qnr16ti2bRv+/PNPlC9fHlOnTsWCBQvQvXt3uUPLUxIScmcU+qlTp9C1a1f4+Pjg8uXL8PT0hKenJ27cuJErxyMiIsoK7zXn5Q4h38nTIwe3bt2Kpk2bwtTUFAqFAleuXElTZ+XKlWjQoAGMjY2hUCjw5s2brx4nEREREeWOli1b4vr164iLi8OtW7fg6+srd0iya9CgAQYPHozhw4ejaNGicHd3z5XjLFy4EM2aNcOYMWNQpkwZTJ06FVWqVMGSJUty5XhEREQkjzydHHz37h3q1q2LmTNnZljn/fv3aNasGcaPH/8VIyMiUo/CBjpyh0BERN+gtWvXQkdHBydPnsTy5cvTrbNhwwYYGhpmejt+/HiGxzh9+jTc3NxUytzd3TO8UjQRqSpsoIMetezZ3yNSs/ZVbeQOId+R/YIkSUlJGDx4MNavXw9tbW0MGDAAP//8MxQKBXr06AEACA0NzXD/1GnJwcHBuR8sEZGa2RTi4tRERHlNRHQcIt7Gq5SZ6GnDtog+4hKTcT8iJs0+5W1MAAAhL2IQm5Cssq1YYT0U0tfBq5h4hEfFqWwzUGrBsahBtmMsVaoUZs2alWmd1q1bo2bNmpnWsbHJ+AvWs2fPYGFhoVJmYWGBZ8+eZT1QogLMppAepnqWlzsMonxnjHtpLA0KkTuMfEX25ODatWvh4+ODc+fO4cKFC+jbty/s7OxydcpIfHw84uP/1+GLjuZilkQkj0+/QBIRkfw2nA3DwsP3VMo8na2xoEtlPIuKQ8vFJ9Lsk3plw9Gbr+Jy2BuVbfM7V0LbysWw+3o4Ju64qbKtXqmiWO+TeQIvPVWrVv1sHSMjIxgZGWW7bSJSj9iEZIS8iEEJM0Po6WjKHQ4RUYZkTw7a2tpi/vz5UCgUcHJywvXr1zF//vxcTQ76+/tjypQpudY+EVFWhbxIO/qEiIjk1b2mHZqUVR0xZ6KnDQCwNNHFriF1M9x3TsdK6Y4cBACPClaoYldYZZuBMmfdcQODz4823LBhA/r165dpnb1796JevXrpbrO0tMTz589Vyp4/fw5LS8usB0pUgIW8iEHLxSewa0hdaXQxEVFeJHtysFatWlAoFNJ9FxcXzJ07F8nJydDUzJ1fV/z8/DBy5EjpfnR0NGxtbXPlWERERET0bTE31oW5sW6623S1NTP9kl/CzDDDbaaGSpgaKr84vqz60mnFLi4uOHz4sLSMDwAcPHgQLi4u6gqRiIiI8gDZk4NyUCqVUCq/XseMiIiIiOhr+9JpxcOGDYOrqyvmzp0LDw8PbNy4ERcuXMDKlSvVGCUREVH2dF15Ru4Q8h3Zr1Z89uxZlftnzpxBqVKlcm3UIBERERERfV7t2rXxxx9/YOXKlahUqRK2bNmC7du3o3x5XmCBiIjk8+DlO7lDyHdkHzkYFhaGkSNHol+/frh06RIWL16MuXPnAgBev36NsLAwPH36FABw584dAB/WP0ld6+TZs2d49uwZ7t+/DwC4fv06jIyMYGdnhyJFishwRkREWffRqgpERERZEhwc/NWO1bFjR3Ts2PGrHY8oP1EoAEOlFvt7RGqmr+RgMnWTfeSgl5cXYmNjUaNGDQwaNAjDhg1D3759AQA7d+5E5cqV4eHx4epvXbp0QeXKlbF8+XJp/+XLl6Ny5crSBUzq16+PypUrY+fOnV//ZIiIsqmcNRenJiIiIsqPylmb4MYUd/b3iNTsyKgGcoeQ78g6cvDjXz2XLVuWZru3tze8vb0zbWPy5MmYPHmyegMjIiIiIiIiIiIqAGQfOUhEVJDde/5W7hCIiIiIKBfce/4WTeYdZX+PiPI82dccJCIqyOKTUgAAu4bURXkbTjkhIiIiyi/ik1JwLyJG6u8REeVVHDlIRERERERERETfhLWnQuUOId9hcpCIiIiIiIiIiL4Jy4JD5A4h32FykIiIiIiIiIiIqIDimoNERDKyLaIPAGi5+ITMkRCROoXO8JA7BCIikpltEX385lVN6u8RkXrM6lARXmvOyR1GvsLkIBGRjEz0tOUOgYiIiIhygYmeNpqUtZA7DKJ8p/53ZnKHkO9wWjERkYwi3sbJHQIRERER5YKIt3FYGnSf/T0iyvOYHCQiklFEdLzcIRAR0TfG29sbCoUC/fv3T7Nt0KBBUCgU8Pb2/vqByejatWuoV68edHV1YWtri1mzZmVaPzAwEAqFIt1bRESEVG/Dhg2oVKkS9PX1YWVlhd69e+PVq1fptrlx40YoFAp4enqq89ToGxYRHY/Z+++wv0dEeV6eTg6Gh4ejW7du+O6776ChoYHhw4enW2/z5s0oXbo0dHV1UaFCBezZs+frBkpERERE9BXZ2tpi48aNiI2Nlcri4uLwxx9/wM7OTsbIMpaQkJAr7UZHR6Np06awt7fHxYsXMXv2bEyePBkrV67McJ/OnTsjPDxc5ebu7g5XV1eYm5sDAE6ePAkvLy/4+Pjg5s2b2Lx5M86dOwdfX9807YWGhmL06NGoV69erpwjERH9T0Q0R+OqW55ODsbHx8PMzAw//fQTKlWqlG6dU6dOoWvXrvDx8cHly5fh6ekJT09P3Lhx4ytHS0RERET0dVSpUgW2trbYunWrVLZ161bY2dmhcuXKKnVTUlLg7+8PR0dH6OnpoVKlStiyZYu0PTk5GT4+PtJ2JycnLFy4UKUNb29veHp6Ys6cObCysoKpqSkGDRqExMTEDGOcPHkynJ2dsWrVKjg6OkJXV1dNZ69qw4YNSEhIwJo1a1CuXDl06dIFQ4cOxbx58zLcR09PD5aWltJNU1MTR44cgY+Pj1Tn9OnTcHBwwNChQ+Ho6Ii6deuiX79+OHdOdRH85ORkdO/eHVOmTEHx4sVz5RyJiOh/Wi85KXcI+Y6sycF169bB1NQU8fGqw6w9PT3Ro0cPODg4YOHChfDy8oKJiUm6bSxcuBDNmjXDmDFjUKZMGUydOhVVqlTBkiVLvsYpEBERERHJonfv3ggICJDur1mzBr169UpTz9/fH+vWrcPy5ctx8+ZNjBgxAt9//z2OHj0K4EPysFixYti8eTP+/fdfTJw4EePHj8emTZtU2gkKCkJISAiCgoKwdu1aBAYGIjAwMNMY79+/j7///htbt27FlStX0q0TFhYGQ0PDTG/Tp0/P8BinT59G/fr1oaOjI5W5u7vjzp07iIyMzDS+VOvWrYO+vj46dOgglbm4uODRo0fYs2cPhBB4/vw5tmzZghYtWqjs+/PPP8Pc3FwlsUhERPQtkfVqxR07dsTQoUOxc+dOdOzYEQAQERGB3bt348CBA1lq4/Tp0xg5cqRKmbu7O7Zv357hPvHx8SoJyejo6OwHT0SkBsa6vFoxEVFes+r4f1h1/AEAYH5nZ7iUMJW2PXr9Hh2XnwYAuJezwJQ25VX27bP2PG48+dC3PDO+scq2zRceYe6BuwCAya3Loll5qy+K8/vvv4efnx8ePnwI4MM02I0bNyI4OFiqEx8fj+nTp+PQoUNwcXEBABQvXhwnTpzAihUr4OrqCm1tbUyZMkXax9HREadPn8amTZvQqVMnqbxw4cJYsmQJNDU1Ubp0aXh4eODw4cPpTrNNlZCQgHXr1sHMLOMrS1pbW2eYOExVpEiRDLc9e/YMjo6OKmUWFhbStsKFC2faNgCsXr0a3bp1g56enlRWp04dbNiwAZ07d0ZcXBySkpLQqlUrLF26VKpz4sQJrF69+rPxU8FkrKuNFhUs2d8jUrOGpc3x57kwucPIV2RNDurp6aFbt24ICAiQkoO///477Ozs0KBBgyy18ezZM+nDP5WFhQWePXuW4T7+/v4qHSAiIrnYmerLHQIREX3ibVwSnv3/ekYJySkq25JThLQtKjbtlNpX7xKk7Z+KTUyWtsUmJn9xnGZmZvDw8EBgYCCEEPDw8EDRokVV6ty/fx/v379HkyZNVMoTEhJUph8vXboUa9asQVhYGGJjY5GQkABnZ2eVfcqVKwdNTU3pvpWVFa5fv55pjPb29pkmBgFAS0sLJUuWzLRObjp9+jRu3bqF9evXq5T/+++/GDZsGCZOnAh3d3eEh4djzJgx6N+/P1avXo23b9+iR48e+O2339I87kTAh37er92ryh0GUb7j364Ck4NqJmtyEAB8fX1RvXp1PHnyBDY2NggMDJSuwJZb/Pz8VEYbRkdHw9bWNteOR0SUkYSklM9XIiKir8pIVwuWxh/Wx9PRVF2FR1NDIW0z0Us7GsjUQEfa/ik9bU1pm562Zrp1sqt3794YPHgwAKiMaEsVExMDANi9ezdsbGxUtimVSgAfrrI7evRozJ07Fy4uLjAyMsLs2bNx9uxZlfra2qrnq1AokJKS+eeYgYHBZ88hLCwMZcuWzbTO+PHjMX78+HS3WVpa4vnz5yplqfctLS0/e/xVq1bB2dkZVauqJnH8/f1Rp04djBkzBgBQsWJFGBgYoF69evjll1/w/PlzhIaGolWrVtI+qY+HlpYW7ty5gxIlSnz2+JR/JSSl4NW7eJgaKKGjlaeX+yeiAk725GDlypVRqVIlrFu3Dk2bNsXNmzexe/fuLO+fUWcgs46AUqmUOkNERHK6+/yt3CEQEdEn+tQrjj710r+whG0R/TTThT+2qmf1DLd1rGaLjtXU+4N0s2bNkJCQAIVCAXd39zTby5YtC6VSibCwMLi6uqbbxsmTJ1G7dm0MHDhQKgsJCVFrnJn50mnFLi4u+PHHH5GYmCglMA8ePAgnJ6fPTimOiYnBpk2b4O/vn2bb+/fvoaWl+nUpdeSkEAKlS5dOM3Lyp59+wtu3b7Fw4UIOPiDcff4WLRefwK4hdVHeJv019ImI8gLZk4MA0KdPHyxYsABPnjyBm5tbtj5IXVxccPjwYQwfPlwqO3jwoLSmChERERFRfqWpqYlbt25Jf3/KyMgIo0ePxogRI5CSkoK6desiKioKJ0+ehLGxMXr27IlSpUph3bp12L9/PxwdHbF+/XqcP38+zTp+ueVLpxV369YNU6ZMgY+PD8aOHYsbN25g4cKFmD9/vlRn27Zt8PPzw+3bt1X2/euvv5CUlITvv/8+TbutWrWCr68vli1bJk0rHj58OGrUqAFra2sAQPnyqmtOFipUKN1yIiKivCxPJAe7deuG0aNH47fffsO6detUtqX+ihgTE4MXL17gypUr0NHRkaYeDBs2DK6urpg7dy48PDywceNGXLhwAStXrvzap0FERERE9NUZGxtnun3q1KkwMzODv78//vvvPxQqVAhVqlSRpun269cPly9fRufOnaFQKNC1a1cMHDgQe/fu/RrhfzETExMcOHAAgwYNQtWqVVG0aFFMnDgRffv2lepERUXhzp07afZdvXo12rVrJyX1Pubt7Y23b99iyZIlGDVqFAoVKoRGjRph5syZuXk6RET0GQM3XJQ7hHxHIYQQcgcBAF5eXti9ezeePn2qMuU3vbUH7e3tERoaKt3fvHkzfvrpJ4SGhqJUqVKYNWsWWrRokeVjR0dHw8TEBFFRUZ/tXBERqdONJ1FoufiE3GEQkZqFzvCQO4TPKij9n4zOMy4uDg8ePICjoyN0ddNfI5BI3fi6K1hS+3mcVkykXrWmH87w4l/q8C304z4nu/28PDFyEACePHmC7t27p1kLMCu5y44dO0pXOyYiIiIiIiIiIqKskf2SSZGRkdi2bRuCg4MxaNAgucMhIvqqylrl39E6RERfavLkyVAoFCq30qVLyx0WEVGWlLUyxp1fmrG/R6RmR39oIHcI+Y7sIwcrV66MyMhIzJw5E05OTnKHQ0T0VWloKPLFsHUiotxSrlw5HDp0SLr/6dVjiYjyKg0NBZQaaS8URERfRqnF/yt1k7139fHagUREBc1/L2Lgt/U6/NtVQHEzQ7nDISLKc7S0tGBpaSl3GERE2cZ+HhF9K2SfVkxEVJC9T0jG2Qev8T4hWe5QiIjypHv37sHa2hrFixdH9+7dERYWJndIRERZwn4eEX0rZB85SERERESUnpo1ayIwMBBOTk4IDw/HlClTUK9ePdy4cQNGRkbp7hMfH4/4+HjpfnR0dKbHyMrF74jUha83IqIvt+PKE7lDyHeYHCQiygNaLj4hdwhE9IW4fqj6NW/eXPq7YsWKqFmzJuzt7bFp0yb4+Piku4+/vz+mTJny2ba1tbUBAO/fv4eenp56Aib6jISEBACApibXyyIiyin/PbflDiHfYXKQiIiIiL4JhQoVwnfffYf79+9nWMfPzw8jR46U7kdHR8PW1jZNPU1NTRQqVAgREREAAH19fSgUCvUHTfT/UlJS8OLFC+jr6/PCOkRElKfwU4mISEbWhThahYgoq2JiYhASEoIePXpkWEepVEKpVGapvdQLnaQmCIlym4aGBuzs7JiILiCsC+lhRrsK7O8RqZlfi9IYtvGK3GHkK3k+OdigQQM4OztjwYIFcodCRKR2RQx05A6BiCjPGj16NFq1agV7e3s8ffoUkyZNgqamJrp27aqW9hUKBaysrGBubo7ExES1tEmUGR0dHWho8JqQBUURAx10qWEndxhE+U4bZxsmB9UszycHP+f58+cYO3YsDhw4gDdv3qB+/fpYvHgxSpUqJXdoRESf9fpdgtwhEBHlWY8fP0bXrl3x6tUrmJmZoW7dujhz5gzMzMzUehxNTU2uAUdEavf6XQIO3HyGpuUs+YMwEeVp33RyUAgBT09PaGtrY8eOHTA2Nsa8efPg5uaGf//9FwYGBnKHSESUqadvYuUOgYgoz9q4caPcIRAR5djTN7EYt/U6ytuYMDlIRHnaNzGmPSkpCYMHD4aJiQmKFi2KCRMmQAiBe/fu4cyZM1i2bBmqV68OJycnLFu2DLGxsfjzzz/lDpuIiIiIiIiIiNQoPilZ7hDynW8iObh27VpoaWnh3LlzWLhwIebNm4dVq1YhPj4eAKCrqyvV1dDQgFKpxIkTJzJsLz4+HtHR0So3IiIiIiIiIiLK21xnBcsdQr7zTUwrtrW1xfz586FQKODk5ITr169j/vz5uHr1Kuzs7ODn54cVK1bAwMAA8+fPx+PHjxEeHp5he/7+/pgyZcpXPAMiIiIiIiIiIqK855sYOVirVi0oFArpvouLC+7duwcNDQ1s3boVd+/eRZEiRaCvr4+goCA0b94806uA+fn5ISoqSro9evToa5wGEVEa+jpcAJ+IiIgoP9LX0URNxyLs7xGpWRX7QnKHkO98EyMHM1O1alVcuXIFUVFRSEhIgJmZGWrWrIlq1apluI9SqYRSqfyKURIRpa+4maHcIRARERFRLihuZoi/+rnIHQZRvvNr96pwGLdb7jDylW9i5ODZs2dV7p85cwalSpWCpub/foExMTGBmZkZ7t27hwsXLqBNmzZfO0wiomxLSRFyh0BEREREuSAlRSA+KZn9PSLK876J5GBYWBhGjhyJO3fu4M8//8TixYsxbNgwAMDmzZsRHByM//77Dzt27ECTJk3g6emJpk2byhw1EdHn/RvOCyIRERER5Uf/hkfD6ad97O8RUZ73TUwr9vLyQmxsLGrUqAFNTU0MGzYMffv2BQCEh4dj5MiReP78OaysrODl5YUJEybIHDEREREREREREVHel+eTg8HBwdLfy5YtS7N96NChGDp06FeMiIiIiIiIiIiI5OC39brcIeQ738S0YiIiIiIiIiIioqDbEXKHkO/k+ZGDREQFwa4hdVHexkTuMIiIiIiIiKiA4chBIiIZfWdhhNN+jfCdhZHcoRARERGRGrGfR5Q7dg6uI3cI+Q5HDhIRyUhHSwNWJnpyh0FEREREasZ+HlHuMDfWlTuEfIcjB4mIZBT26j0GbriIsFfv5Q6FiIiIiNSI/Twi+lZw5CARkYyi4xKx5/oz7Ln+TO5QiCgLQmd4yB0CERF9I1L7eQMblJQ7FCKiTHHkIBERERERERERfROO3X0hdwj5DpODRERERERERET0TfhhyzW5Q8h3mBwkIiIiIiIiIiIqoL755ODWrVvRpEkTmJmZwdjYGC4uLti/f7/cYRERZYm5sVLuEIiIiIgoF5gbKzHG3Yn9PSI1G9CghNwh5DvffHLw2LFjaNKkCfbs2YOLFy+iYcOGaNWqFS5fvix3aEREn2VupCt3CERERESUC8yNdDGoYUn294jUrGdtB7lDyHfy/NWK161bhxEjRuDp06dQKv/3i4unpyeMjIywfv16lfrTp0/Hjh078M8//6By5cpfO1wiomyJik2UOwQiIiIiygVRsYk49+A1ajgWgYmettzhEBFlKM+PHOzYsSOSk5Oxc+dOqSwiIgK7d+9G796909RPSUnB27dvUaRIkQzbjI+PR3R0tMqNiEgOj16/lzsEIiIiIsoFj16/h++6C+zvEVGel+eTg3p6eujWrRsCAgKkst9//x12dnZo0KBBmvpz5sxBTEwMOnXqlGGb/v7+MDExkW62tra5EToREREREREREVGelueTgwDg6+uLAwcO4MmTJwCAwMBAeHt7Q6FQqNT7448/MGXKFGzatAnm5uYZtufn54eoqCjp9ujRo1yNn4iIiIiIiIiIvlyjucFyh5Dv5Pk1BwGgcuXKqFSpEtatW4emTZvi5s2b2L17t0qdjRs3ok+fPti8eTPc3NwybU+pVKqsX0hERERERERERHnf+/hkuUPId76J5CAA9OnTBwsWLMCTJ0/g5uamMhX4zz//RO/evbFx40Z4eHjIGCURUfYotb6JAdxERERElE1KLQ2UMjdkf49IzRyLGuBZdJzcYeQr38y7VLdu3fD48WP89ttvKhci+eOPP+Dl5YW5c+eiZs2aePbsGZ49e4aoqCgZoyUiyppSFkZyh0BEREREuaCUhREOjnRlf49Izf7sW0vuEPKdbyY5aGJigvbt28PQ0BCenp5S+cqVK5GUlIRBgwbByspKug0bNky+YImIiIiIiIiIiL4B38y0YgB48uQJunfvrrJeYHBwsHwBERF9oZtPOcqZiIiIKD+6+TQKnVecwV/9aqGctYnc4RARZeibSA5GRkYiODgYwcHB+PXXX+UOh4hIbYSQOwIiIiIiyg1CADHxSezvEVGe900kBytXrozIyEjMnDkTTk5OcodDRKR2u4bURXkb/qJMRERERESUmdn7b8sdQr7zTaw5GBoaiqioKIwePVruUIiIiIhIJjNmzIBCocDw4cPlDoWIiIhk8vfFJ3KHkO98E8lBIiIiIirYzp8/jxUrVqBixYpyh0JERESUrzA5SEQkoxJmhtg1pC5KmBnKHQoRUZ4VExOD7t2747fffkPhwoXlDoeIKEvYzyPKHYG9q8sdQr7zTaw5SESUX+npaKLl4hNyh0FEWRQ6w0PuEAqkQYMGwcPDA25ubvjll18yrRsfH4/4+HjpfnR0dG6HR0SULj0dTa4pTZQLSlsayx1CvsORg0REMnryJlbuEIiI8rSNGzfi0qVL8Pf3z1J9f39/mJiYSDdbW9tcjpCIKH1P3sRiwvYb7O8RUZ7H5CARkYwi3yXIHQIRUZ716NEjDBs2DBs2bICurm6W9vHz80NUVJR0e/ToUS5HSUSUvsh3CVh/5iH7e0SU53FaMRERERHlSRcvXkRERASqVKkilSUnJ+PYsWNYsmQJ4uPjoampqbKPUqmEUqn82qESERHRV3L9cVSutu8wbne26ueHZWe++ZGDJ06cQJ06dWBqago9PT2ULl0a8+fPlzssIiIiIvpCjRs3xvXr13HlyhXpVq1aNXTv3h1XrlxJkxgkIiKi/M933QW5Q8h3vvmRgwYGBhg8eDAqVqwIAwMDnDhxAv369YOBgQH69u0rd3hERERElENGRkYoX768SpmBgQFMTU3TlBMRERFRzuT5kYPr1q2DqampylXnAMDT0xM9evRA5cqV0bVrV5QrVw4ODg74/vvv4e7ujuPHj8sUMRFR1pka6sgdAhERERHlAlNDHfjUdWR/j0jNutTgxcbULUfJwbCwMAgh0pQLIRAWFvbFQX2sY8eOSE5Oxs6dO6WyiIgI7N69G717905T//Llyzh16hRcXV0zbDM+Ph7R0dEqNyIiOViZ6MkdAhHRNyU4OBgLFiyQOwwios+yMtHDhJZl2d8jUrPhbt/JHUK+k6PkoKOjI168eJGm/PXr13B0dPzioD6mp6eHbt26ISAgQCr7/fffYWdnhwYNGkhlxYoVg1KpRLVq1TBo0CD06dMnwzb9/f1hYmIi3WxtmXUmInm8i0+SOwQiIiIiygXv4pNw8WEk+3tElOflKDkohIBCoUhTHhMTA11d3S8O6lO+vr44cOAAnjx5AgAIDAyEt7e3SgzHjx/HhQsXsHz5cixYsAB//vlnhu35+fkhKipKuj169EjtMRMRZcWDl+/kDoGIiIiIcsGDl+/Qftkp9veIKM/L1gVJRo4cCQBQKBSYMGEC9PX1pW3Jyck4e/YsnJ2d1RogAFSuXBmVKlXCunXr0LRpU9y8eRO7d6teWjp1xGKFChXw/PlzTJ48GV27dk23PaVSCaVSqfY4iYiIiIiIiIiIviXZSg5evnwZwIeRg9evX4eOzv8WVtXR0UGlSpUwevRo9Ub4//r06YMFCxbgyZMncHNzy3QqcEpKSpoLmBARERERERER0betw7JTcoeQ72QrORgUFAQA6NWrFxYuXAhjY+NcCSo93bp1w+jRo/Hbb79h3bp1UvnSpUthZ2eH0qVLAwCOHTuGOXPmYOjQoV8tNiIiIiIiIiIiyn2PI2PlDiHfyVZyMNXHFwf5WkxMTNC+fXvs3r0bnp6eUnlKSgr8/Pzw4MEDaGlpoUSJEpg5cyb69ev31WMkIsouTY2067cSERER0bdPU0OBIgY67O8RqVkhfW08i46TO4x8JUfJwXfv3mHGjBk4fPgwIiIikJKSorL9v//+U0twn3ry5Am6d++usl7gkCFDMGTIkFw5HhFRbitj9fVGYBMRERHR11PGyhiXJjSROwyifGff8PpwGLf78xUpy3KUHOzTpw+OHj2KHj16wMrKKt0rF6tTZGQkgoODERwcjF9//TVXj0VEREREX+6///5D8eLF5Q6DiIiIiD4jR8nBvXv3Yvfu3ahTp46640lX5cqVERkZiZkzZ8LJyemrHJOI6Gu4+/wt7E318ZtXNXxnYSR3OEREalOyZEm4urrCx8cHHTp0gK6urtwhERF9VXefv4Xvugvs5xFRnqeRk50KFy6MIkWKqDuWDIWGhiIqKirXroRMRCSXhKQUPHz1HglJKZ+vTET0Dbl06RIqVqyIkSNHwtLSEv369cO5c+fkDouI6KthP4+IvhU5Sg5OnToVEydOxPv379UdDxERERHlA87Ozli4cCGePn2KNWvWIDw8HHXr1kX58uUxb948vHjxQu4QiYiI6Bu06njuXOeiIMtRcnDu3LnYv38/LCwsUKFCBVSpUkXlRkREREQEAFpaWmjXrh02b96MmTNn4v79+xg9ejRsbW3h5eWF8PBwuUMkIiKib8iq4w/kDiHfydGag56enmoOg4ioYGu5+ITcIRDRR0JneMgdQr5x4cIFrFmzBhs3boSBgQFGjx4NHx8fPH78GFOmTEGbNm043ZiIiIhIRjlKDk6aNEndcRARFUj2pvpyh0BElCvmzZuHgIAA3LlzBy1atMC6devQokULaGh8mLji6OiIwMBAODg4yBsoEVEusTfVx9reNdjfI1Kz+Z2d0fW3M3KHka/kKDkIAG/evMGWLVsQEhKCMWPGoEiRIrh06RIsLCxgY2OjzhiJiPItI11tuUMgIsoVy5YtQ+/eveHt7Q0rK6t065ibm2P16tVfOTIioq/DSFcbrt+ZyR0GUb7jUsJU7hDynRwlB69duwY3NzeYmJggNDQUvr6+KFKkCLZu3YqwsDCsW7dObQE2aNAAzs7OWLBggdraJCLKKyKi4+QOgYgoVxw8eBB2dnbSSMFUQgg8evQIdnZ20NHRQc+ePWWKkIgod0VEx2HD2TB0r2kHc2NducMhIspQji5IMnLkSHh7e+PevXvQ1f3fm1yLFi1w7NgxtQWXFd7e3lAoFCq3Zs2afdUYiIhyKuJtvNwhEBHlihIlSuDly5dpyl+/fg1HR0cZIiIi+roi3sZj4eF77O8RUZ6Xo5GD58+fx4oVK9KU29jY4NmzZ18cVHY1a9YMAQEB0n2lUvnVYyAiIiKi/xFCpFseExOj8uMyERERUXY8ev1e7hDynRwlB5VKJaKjo9OU3717F2Zm6l9TISkpCYMHD8b69euhra2NAQMG4Oeff4ZCoZDisbS0VPtxiYiIiCh7Ro4cCQBQKBSYOHEi9PX/txB/cnIyzp49C2dnZ5miIyIiom9dx+Wn5Q4h38lRcrB169b4+eefsWnTJgAfOn9hYWEYO3Ys2rdvr9YAAWDt2rXw8fHBuXPncOHCBfTt2xd2dnbw9fUFAAQHB8Pc3ByFCxdGo0aN8Msvv8DUNOMFKuPj4xEf/7+h3eklOomIiIgo+y5fvgzgw8jB69evQ0dHR9qmo6ODSpUqYfTo0XKFR0RERESfyFFycO7cuejQoQPMzc0RGxsLV1dXPHv2DC4uLpg2bZq6Y4StrS3mz58PhUIBJycnXL9+HfPnz4evry+aNWuGdu3awdHRESEhIRg/fjyaN2+O06dPQ1NTM932/P39MWXKFLXHSUSUXSZ6vFoxEeUvQUFBAIBevXph4cKFMDY2ljkiIiJ5mOhpw9PZmv09IjVzL2eBtacfyh1GvqIQGS0IkwUnTpzAtWvXEBMTgypVqsDNzU2dsQH4cLXi4sWLY82aNVLZjh070KFDB8TFxaVJAP73338oUaIEDh06hMaNG6fbZnojB21tbREVFcUOLBF9dQ7jdssdAhF9InSGh9wh5Lro6GiYmJjk+/5PQTlPIiKigiQvfYfKi/3G7PZ/cjRyMFXdunVRt27dL2lC7YoXL46iRYvi/v37GSYHlUolL1pCRHlCXGKy3CEQEalNu3btEBgYCGNjY7Rr1y7Tulu3bv1KURERySMuMRnPouJgaaILXe30Z7UREeUFOU4Onj9/HkFBQYiIiEBKSorKtnnz5n1xYB87e/asyv0zZ86gVKlS6U4bfvz4MV69egUrKyu1xkBElBvuR8TIHQIRkdqYmJhIF4wzMTGRORoiInndj4hBy8UnsGtIXZS34XsiEeVdOUoOTp8+HT/99BOcnJxgYWEhdQIBqPytLmFhYRg5ciT69euHS5cuYfHixZg7dy5iYmIwZcoUtG/fHpaWlggJCcEPP/yAkiVLwt3dXe1xEBEREVHGAgIC0v2biIiIiPKuHCUHFy5ciDVr1sDb21vN4aTPy8sLsbGxqFGjBjQ1NTFs2DD07dsXcXFxuHbtGtauXYs3b97A2toaTZs2xdSpUzltmIiIiEhGsbGxEEJAX18fAPDw4UNs27YNZcuWRdOmTWWOjoiIiL5VfdaelzuEfCdHyUENDQ3UqVNH3bGkKzg4WPp72bJlKtv09PSwf//+rxIHEREREWVdmzZt0K5dO/Tv3x9v3rxBjRo1oKOjg5cvX2LevHkYMGCA3CESERHRN+jGk2i5Q8h3NHKy04gRI7B06VJ1x0JERERE+cSlS5dQr149AMCWLVtgaWmJhw8fYt26dVi0aJHM0RERERFRqhyNHBw9ejQ8PDxQokQJlC1bFtra2irbefU5IqKsKW9jgtAZHnKHQUSkdu/fv4eRkREA4MCBA2jXrh00NDRQq1YtPHz4UOboiIhyH/t5RLnjzPjGcBi3W+4w8pUcjRwcOnQogoKC8N1338HU1BQmJiYqNyIiIiIq2EqWLInt27fj0aNH2L9/v7TOYEREBIyNjWWOjoiIiIhS5Wjk4Nq1a/H333/Dw4O/ghARfYmQFzEYvfkq5nSshBJmhnKHQ0SkNhMnTkS3bt0wYsQING7cGC4uLgA+jCKsXLlyltpYtmwZli1bhtDQUABAuXLlMHHiRDRv3jy3wiYiUhv284joW5Gj5GCRIkVQokQJdcdCRFTgxCYk43LYG8QmJMsdChGRWnXo0AF169ZFeHg4KlWqJJU3btwYbdu2zVIbxYoVw4wZM1CqVCkIIbB27Vq0adMGly9fRrly5XIrdCIitWA/j4i+FTlKDk6ePBmTJk1CQEAA9PX11R0TEVGB03LxCblDICrQuCZU7rC0tISlpaVKWY0aNbK8f6tWrVTuT5s2DcuWLcOZM2eYHCQiIiqgNl94JHcI+U6OkoOLFi1CSEgILCws4ODgkOaCJJcuXVJLcERERET0bXr37h1mzJiBw4cPIyIiAikpKSrb//vvv2y1l5ycjM2bN+Pdu3fSFGUiIiIqeOYeuCt3CPlOjpKDnp6eag6DiIiIiPKTPn364OjRo+jRowesrKygUChy1M7169fh4uKCuLg4GBoaYtu2bShbtmyG9ePj4xEfHy/dj46OztFxiYiIiAqKHCUHJ02apO44MtSgQQM4OztjwYIFX+2YRERfS7HCenKHQESUK/bu3Yvdu3ejTp06X9SOk5MTrly5gqioKGzZsgU9e/bE0aNHM0wQ+vv7Y8qUKV90TCIidShWWA/zO1dif49IzSa3Lov+v3PGqjppyB2AOty6dQutW7eGiYkJDAwMUL16dYSFhckdFhHRZxXS15E7BCKiXFG4cGEUKVLki9vR0dFByZIlUbVqVfj7+6NSpUpYuHBhhvX9/PwQFRUl3R494rpERCSPQvo6aFu5GPt7RGrWrLyV3CHkOzlKDqZ29j69mZqawsbGBq6urggICFB3rOkKCQlB3bp1Ubp0aQQHB+PatWuYMGECdHV1v8rxiYi+xKuY+M9XIiL6Bk2dOhUTJ07E+/fv1dpuSkqKyrThTymVShgbG6vciIjk8ComHutOh7K/R0R5Xo6mFU+cOBHTpk1D8+bNpSvOnTt3Dvv27cOgQYPw4MEDDBgwAElJSfD19f3iIJOSkjB48GCsX78e2traGDBgAH7++WcoFAr8+OOPaNGiBWbNmiXVL1GixBcfk4joawiPipM7BCKiXDF37twvvoCdn58fmjdvDjs7O7x9+xZ//PEHgoODsX///twKm4hIbcKj4jBxx01UsSsMU0Ol3OEQEWUoR8nBEydO4JdffkH//v1VylesWIEDBw7g77//RsWKFbFo0SK1JAfXrl0LHx8fnDt3DhcuXEDfvn1hZ2cHHx8f7N69Gz/88APc3d1x+fJlODo6ws/PL9OLpnChaiIiIqLcpY4L2EVERMDLywvh4eEwMTFBxYoVsX//fjRp0uTLAyQiIqJvUkx8ktwh5Ds5Sg7u378fM2fOTFPeuHFjjBo1CgDQokULjBs37sui+3+2traYP38+FAoFnJyccP36dcyfPx+tWrVCTEwMZsyYgV9++QUzZ87Evn370K5dOwQFBcHV1TXd9rhQNREREVHuUscF7FavXq2GSIiIiCg/cZt7VO4Q8p0crTlYpEgR/PPPP2nK//nnH2nh6Xfv3sHIyOjLovt/tWrVgkKhkO67uLjg3r17SE5OBgC0adMGI0aMgLOzM8aNG4eWLVti+fLlGbbHhaqJiIiIct+bN2+watUq+Pn54fXr1wA+TCd+8uSJzJERERERUaocjRycMGECBgwYgKCgIGnNwfPnz2PPnj1SUu7gwYMZjtxTl6JFi0JLSwtly5ZVKS9TpgxOnDiR4X5KpRJKJdd8ICL5GShz9DZMRJTnXbt2DW5ubjAxMUFoaCh8fX1RpEgRbN26FWFhYVi3bp3cIRIR5SoDpRbqlSrK/h6RmtUsXgQ7rjyVO4x8JUcjB319fXH06FEYGBhg69at2Lp1K/T19XH06FH4+PgAAEaNGoW//vpLLUGePXtW5f6ZM2dQqlQpKJVKVK9eHXfu3FHZfvfuXdjb26vl2EREucmxqIHcIRAR5YqRI0fC29sb9+7dg66urlTeokULHDt2TMbIiIi+DseiBljvU5P9PSI1W9ilstwh5Ds5/gmjTp06qFOnjjpjyVBYWBhGjhyJfv364dKlS1i8eDHmzp0LABgzZgw6d+6M+vXro2HDhti3bx/++ecfBAcHf5XYiIi+RHKKkDsEIqJccf78eaxYsSJNuY2NDZ49eyZDREREX1dyisD7hCTo62hBU0Px+R2IiGTyxeOb4+LikJCQoFJmbGz8pc2q8PLyQmxsLGrUqAFNTU0MGzYMffv2BQC0bdsWy5cvh7+/P4YOHQonJyf8/fffqFu3rlpjICLKDbfCebV0IsqflEoloqPTvsfdvXsXZmZmMkRERPR13QqPRsvFJ7BrSF2UtzGROxwiogzlKDn4/v17/PDDD9i0aRNevXqVZnvqhULU4eMRgMuWLUu3Tu/evdG7d2+1HZOIiIiIvkzr1q3x888/Y9OmTQAAhUKBsLAwjB07Fu3bt5c5OiIiIiJKlaM1B8eMGYMjR45g2bJlUCqVWLVqFaZMmQJra2suLk1EREREmDt3LmJiYmBmZobY2Fi4urqiZMmSMDIywrRp0+QOj4iIiL5RozdflTuEfCdHIwf/+ecfrFu3Dg0aNECvXr1Qr149lCxZEvb29tiwYQO6d++u7jiJiPI1TjchovzGxMQEBw8exMmTJ3H16lXExMSgSpUqcHNzkzs0IiIi+oaduPdS7hDynRwlB1+/fo3ixYsD+LC+4OvXrwEAdevWxYABA9QXHRERERF9c1JSUhAYGIitW7ciNDQUCoUCjo6OsLS0hBACCgUX5iciIiLKK3I0rbh48eJ48OABAKB06dLSWjL//PMPChUqpLbgiIjyOydLI1z8yQ1OlkZyh0JEpBZCCLRu3Rp9+vTBkydPUKFCBZQrVw4PHz6Et7c32rZtK3eIRERfBft5RLlj77B6coeQ7+Ro5GCvXr1w9epVuLq6Yty4cWjVqhWWLFmCxMREzJs3T90xEhHlW9qaGjA1VModBhGR2gQGBuLYsWM4fPgwGjZsqLLtyJEj8PT0xLp16+Dl5SVThEREXwf7eUS5o7CBjtwh5Ds5Sg6OGDFC+tvNzQ23b9/GxYsXUbJkSVSsWFFtwRER5XcPX72D6+xgucMgKpBCZ3jIHUK+9Oeff2L8+PFpEoMA0KhRI4wbNw4bNmxgcpCI8r2Hr95h6q5/MaFlWdibGsgdDhFRhrI9rTgxMRGNGzfGvXv3pDJ7e3u0a9eOiUEiomx6G5ckdwhERGp17do1NGvWLMPtzZs3x9WrvMogEeV/b+OScOhWBPt7RJTnZTs5qK2tjWvXruVGLERERET0jXv9+jUsLCwy3G5hYYHIyMivGBERERHlJ4dvPZc7hHwnRxck+f7777F69Wp1x0JERERE37jk5GRoaWW8co2mpiaSkjiKhoiIiHLmx2035A4h38nRmoNJSUlYs2YNDh06hKpVq8LAQHX9BLkuSnLy5Em4urqifPnyuHLliiwxEBERERVkQgh4e3tDqUx/Ef74+PivHBERERERZSZbycH//vsPDg4OuHHjBqpUqQIAuHv3rkodhUKhvuiy4c2bN/Dy8kLjxo3x/DmHmBLRt8HCWFfuEIiI1Kpnz56frcOLkRBRQWBhrIufPMqwv0ekZkMbl8L4bdflDiNfyVZysFSpUggPD0dQUBAAoHPnzli0aFGm68p8qXXr1mHEiBF4+vSpyi/Qnp6eMDIywvr16/F/7d17dBR1mv/xT6eTdBKSNGCAgAQQwYhyVYfbOJLRLOCioyu/WW6roBi8EAUzuhpnEfEywIigy0GcwyXAMoqjB4QVYViReBsgw00BAUFBIpowCHZCAiGX7+8PDz2WnZAL3anu9Pt1Tp1DVX+78tSTbxcPD9VVknT//fdr9OjRcjqdevvttwMWDwD4U6uE6q+sAYBQlZOTY3cIABAUWiW4dO+vOtsdBtDkjO7Xgeagn9XrnoPGGMv6unXrVFJS4teAfu63v/2tKisrtWbNGu+248ePa+3atbrnnnsk/ViEfvXVV5o6dWqd9llWVqaioiLLAgB28JSW2x0CAAAAAsBTWq61n31HvQcg6DXogSTn/bxZGAixsbEaPXq05X+hly9frg4dOigtLU0HDx7UE088oeXLl1/w5tc/NX36dLndbu+SkpISqPAB4ILyT5XaHQIAAAACIP9UqSa+toN6D0DQq1dz0OFw+NxTsDHuMZiRkaENGzbo2LFjkqQlS5Zo3Lhxqqqq0ujRozVt2jRdccUVdd5fdna2PB6Pd8nPzw9U6AAAAAAAAEDQqtc9B3/+9LmzZ8/q/vvv93la8cqVK/0XoaQ+ffqoV69eWrZsmQYPHqy9e/dq7dq1Ki4u1rZt27Rz505lZmZKkqqqqmSMUWRkpDZs2KAbb7zRZ38ul6vGJ+gBAAAAAAAgOP3qj+/bHUKTU6/m4M+fPvcf//Effg3mQu6991699NJLOnbsmNLT05WSkqKqqirt3m29CeUrr7yi999/X2+99ZYuu+yyRosPAAAAAAAAgVVeEfhb3IWbejUH7Xz63OjRo/Xoo49qwYIFWrZsmSQpIiJC3bt3t4xr3bq1YmJifLYDQDCKibqoW78CAAAgSMVERejqdonUe4CfXZGcoIKis3aH0aSEzFnK7XZr+PDhio+P1+233253OADgF11aJ9gdAgAAAAKgS+sErX34V9R7gJ8tu6ev3SE0OSHTHJSkY8eOacyYMRe8X+DTTz+tXbt2NV5QAAAAAAAAQIgKiebgqVOntGrVKuXm5mrixIl2hwMAfrPnmMfuEAAAABAAe455dMXv11HvAQh69brnoF369OmjU6dOaebMmUpNTbU7HADwu3ceul7dL3XbHQYAAAD86Fxlld0hAECtQqI5eOTIEbtDAAAAAAAAgM3+8O4+u0NockLia8UAAAAAAADAml3f2h1Ck0NzEAAAAAAAAAhTIfG1YgBoqrq0jpck3TL3Y5sjAcLDkRnD7A4B9TB9+nStXLlS+/fvV2xsrAYOHMg9qAGEjC6t47XhkRvUoWWc3aEATcqfM/rpphc/sDuMJoUrBwHARjFRTrtDAICg9cEHH2jixInasmWL/u///k/l5eUaPHiwSkpK7A4NAGoVE+XUFW0SqPcAP7u8VbzdITQ5XDkIADb65lSp3SEAQNBav369ZX3JkiVq3bq1tm/frhtuuMGmqACgbr45Vaq5Gw/poZu6qH0Lrh4EELyC/srBtLQ0TZ482e4wACAgfigttzsEAAgZHo9HktSyZcsax5SVlamoqMiyAIAdfigt1xvb8qn3AAS9oG8O1sbhcFS7vPDCC3aHBgAAAD+pqqrS5MmT9ctf/lLdu3evcdz06dPldru9S0pKSiNGCQAAAm3716fsDqHJCfmvFX/33XeW9XXr1mn8+PEaPny4TREBAADA3yZOnKg9e/bo448v/ACn7OxsZWVledeLiopoEAJALTo9sbZe43nAF+qivvMqXNQnL431WQuJKwcrKiqUmZkpt9utpKQkTZkyRcYYSVJycrJlWb16tX7961+rc+fONkcNAAAAf8jMzNQ777yjTZs2qX379hcc63K5lJiYaFkAAABQs5BoDi5dulSRkZHKy8vTyy+/rNmzZ2vhwoU+4woLC7V27VqNHz/+gvvjXjQAgkVSvMvuEAAgaBljlJmZqVWrVun999/XZZddZndIAFBnSfEuPZB2OfUegKAXEl8rTklJ0Zw5c+RwOJSamqrdu3drzpw5ysjIsIxbunSpEhISdMcdd1xwf9OnT9e0adMCGTIA1EmyO8buEAAgaE2cOFGvvfaaVq9erYSEBBUUFEiS3G63YmNjbY4OAC4s2R2jx4deaXcYAFCrkLhysH///nI4HN71AQMG6ODBg6qsrLSMW7x4scaMGaOYmAv/Yzs7O1sej8e75OfnByRuAKjN6bIKu0MAgKA1f/58eTwepaWlqW3btt7ljTfesDs0AKjV6bIKbf7ye+o9AEEvJK4crIuPPvpIBw4cqFOx6HK55HJxaTcA+x05UWJ3CAAQtM7fYxoAQtGREyUatWCL3nnoenW/1G13OABQo5C4cnDr1q2W9S1btqhr165yOp3ebYsWLdK1116rXr16NXZ4AAAAAAAAQEgKiebg0aNHlZWVpQMHDuj111/X3LlzNWnSJO/rRUVFevPNN3XvvffaGCUAAAAAAAAQWkLia8V33XWXzpw5o759+8rpdGrSpEmaMGGC9/UVK1bIGKNRo0bZGCUAAAAAAAAQWoK+OZibm+v98/z586sdM2HCBEuzEABCRaTTUfsgAAAAhJxIp0PJiTHUewCCXtA3BwGgKbsyOdHuEAAAABAAVyYnasuTN9kdBgDUiuYgANjsyIxhdocAAAAAAAhTIfFAEgBoqvYXFKn/HzZqf0GR3aEAAADAj6jzAIQKmoMAYKOKSqOCorOqqDR2hwIAAAA/os4DECpoDgIAAAAAAABhinsOAkAQuGXux3aHAIQ07t0JAAAANAxXDgIAAAAAAABhiuYgANioU1Izu0MAAABAAHRKaqbXM/pT7wEIenytGABsFO/iNAwAANAUxbsiNeDyS+wOAwBqFfJXDs6bN0/dunVTbGysUlNTtWzZMrtDAoA6K/CctTsEAAAABECB56xmrt9PvQcg6IX0JSvz589Xdna2FixYoF/84hfKy8tTRkaGWrRooVtvvdXu8ACgVidOl9kdAgAAAALgxOkyzc/9UsN6tFWyO8bucACgRkHdHFy2bJkeeeQRffvtt3K5XN7tt99+uxISEvTll1/qvvvu04gRIyRJnTt31t///nfNnDmT5iAAAAAAAABQi6D+WvFvf/tbVVZWas2aNd5tx48f19q1a3XPPfeorKxMMTHW/4GJjY1VXl6eysvLa9xvWVmZioqKLAsAAAAAAAAQboK6ORgbG6vRo0crJyfHu2358uXq0KGD0tLSNGTIEC1cuFDbt2+XMUbbtm3TwoULVV5erhMnTtS43+nTp8vtdnuXlJSUxjgcAAAAAAAAIKgEdXNQkjIyMrRhwwYdO3ZMkrRkyRKNGzdODodDU6ZM0c0336z+/fsrKipKt912m8aOHStJioio+dCys7Pl8Xi8S35+fqMcCwD8XPO4KLtDAAAAQAA0j4vSiOtSqPcABL2gbw726dNHvXr10rJly7R9+3bt3btX48aNk/TjlYWLFy9WaWmpjhw5oqNHj6pTp05KSEhQq1atatyny+VSYmKiZQEAO7RvEWd3CAAAAAiA9i3iNPP/9aTeAxD0gvqBJOfde++9eumll3Ts2DGlp6f7fA04KipK7du3lyStWLFCt9xyywWvHASAYHG2vNLuEAAAABAAZ8srdfRkqTq0jFNMlNPucACgRiHRQRs9erS++eYbLViwQPfcc493+xdffKHly5fr4MGDysvL08iRI7Vnzx794Q9/sDFaAKi7Q8dP2x0CAAAAAuDQ8dMaPOdD6j0AQS8kmoNut1vDhw9XfHy8br/9du/2yspKvfjii+rVq5f+5V/+RWfPntXf/vY3derUybZYAQAAAAAAgFAREl8rlqRjx45pzJgxcrlc3m3dunXTzp07bYwKAAAAAAAACF1B3xw8deqUcnNzlZubq1deecXucAAAAAAAAIAmI+ibg3369NGpU6c0c+ZMpaam2h0OAPhdtDNCKx8cqO6Xuu0OBQAAAH4U7QyJO3kBCHNB3xw8cuSI3SEAQMB0v9StL56/2e4wAAAA4GfUeQBCBf+NAQAAAAAAAIQpmoMAYKNDx4s17L8/0qHjxXaHAgAAAD+izgMQKoL+a8UA0JSdLa/S3m+LlD77Q7tDAWx1ZMYwu0MAAMCvztd5Z8ur7A4FAC6IKwcBAAAAAACAMGVrczAtLU2TJ0+2MwQAAAAEqQ8//FC33nqr2rVrJ4fDobffftvukAAAAJqcoL5ycOXKlRo8eLAuueQSORwO7dq1y2fM2bNnNXHiRF1yySWKj4/X8OHDVVhY2PjBAgAAwK9KSkrUq1cvzZs3z+5QAAAAmqygbg6WlJTo+uuv18yZM2sc88gjj+h///d/9eabb+qDDz7Qt99+qzvuuKMRowSAhktpEWd3CAAQtG6++WY999xz+rd/+ze7QwGAektpEad5o6+h3gMQ9Gx/IElFRYUyMzP1P//zP4qKitIDDzygZ555Rg6HQ3feeack6ciRI9W+1+PxaNGiRXrttdd04403SpJycnLUrVs3bdmyRf3792+swwCABnHHRdkdAgA0KWVlZSorK/OuFxUV2RgNgHDmjovSsJ5t7Q4DAGpl+5WDS5cuVWRkpPLy8vTyyy9r9uzZWrhwYZ3eu337dpWXlys9Pd277corr1SHDh20efPmQIUMAH7zj+Ky2gcBAOps+vTpcrvd3iUlJcXukACEqX8Ul2nhR19R7wEIerY3B1NSUjRnzhylpqZqzJgxeuihhzRnzpw6vbegoEDR0dFq3ry5ZXubNm1UUFBQ4/vKyspUVFRkWQDADoVFZ+0OAQCalOzsbHk8Hu+Sn59vd0gAwlRh0Vk9t3Yf9R6AoGd7c7B///5yOBze9QEDBujgwYOqrKwM2M/kf5QBAACaJpfLpcTERMsCAACAmtneHLwYycnJOnfunH744QfL9sLCQiUnJ9f4Pv5HGQAAAAAAAAiCB5Js3brVsr5lyxZ17dpVTqez1vdee+21ioqK0saNGzV8+HBJ0oEDB3T06FENGDCgxve5XC65XK6LCxwAAAABdfr0aR06dMi7fvjwYe3atUstW7ZUhw4dbIwMAACg6bC9OXj06FFlZWXpvvvu044dOzR37ly9+OKLkqSTJ0/q6NGj+vbbbyX92PiTfrxiMDk5WW63W+PHj1dWVpZatmypxMREPfTQQxowYABPKgYQEhJibD8NA0DQ2rZtm379619717OysiRJY8eO1ZIlS2yKCgDqJiEmUundWlPvAQh6tp+l7rrrLp05c0Z9+/aV0+nUpEmTNGHCBEnSmjVrdPfdd3vHjhw5UpI0depUPf3005KkOXPmKCIiQsOHD1dZWZmGDBmiV155pdGPAwAaouMlzewOAQCCVlpamowxdocBAA3S8ZJmWjj2F3aHAQC1srU5mJub6/3z/PnzfV4fN26cxo0bd8F9xMTEaN68eZo3b56fowOAwCuvrLI7BAAAAARAeWWVis6UKzE2SlHOkL7dP4AmjjMUANjoQEGx3SEAAAAgAA4UFOva596j3gMQ9GgOAgAAAAAAAGHK9nsOAgCkdx66Xt0vddsdBgAAAAAgzHDlIAAAAAAAABCmaA4CAAAAAAAAYYqvFQOAjbq1TdTupwcrLprTMQAAQFNCnQcgVHCWAgAbOSMc6vH0BrvDqJMjM4bZHQIAAEDIcEY4lBATZXcYAFArvlYMADY6fKLE7hAAAAAQAIdPlOjORVup9wAEvaBvDqalpWny5Ml2hwEAAVFSVmF3CAAAAAiAkrIKfXTwBPUegKAX9M3B2pw+fVqZmZlq3769YmNjddVVV+nVV1+1OywAAAAAAAAg6IX8PQezsrL0/vvva/ny5erUqZM2bNigBx98UO3atdNvfvMbu8MDAAAAAAAAglZIXDlYUVGhzMxMud1uJSUlacqUKTLGSJL+9re/aezYsUpLS1OnTp00YcIE9erVS3l5eTZHDQAAAAAAAAS3kGgOLl26VJGRkcrLy9PLL7+s2bNna+HChZKkgQMHas2aNTp27JiMMdq0aZO++OILDR482OaoAaB2bd0xdocAAACAAGjrjtEzt11NvQcg6IXE14pTUlI0Z84cORwOpaamavfu3ZozZ44yMjI0d+5cTZgwQe3bt1dkZKQiIiK0YMEC3XDDDTXur6ysTGVlZd71oqKixjgMAPBxSbzL7hAAAAAQAJfEu3TXgE52hwEAtQqJKwf79+8vh8PhXR8wYIAOHjyoyspKzZ07V1u2bNGaNWu0fft2vfjii5o4caLee++9Gvc3ffp0ud1u75KSktIYhwEAPn4oPWd3CAAAAAiAH0rPadXOb6j3AAS9kGgO1uTs2bN68sknNXv2bN16663q2bOnMjMzNWLECM2aNavG92VnZ8vj8XiX/Pz8RowaAP7pm1Nn7A4BAAAAAfDNqTN65I1PqfcABL2Q+Frx1q1bLetbtmxR165dVVlZqfLyckVEWHucTqdTVVVVNe7P5XLJ5eKrfAAAAAAAAAhvIdEcPHr0qLKysnTfffdpx44dmjt3rl588UUlJiZq0KBBeuyxxxQbG6uOHTvqgw8+0LJlyzR79my7wwYAAAAAAACCWkg0B++66y6dOXNGffv2ldPp1KRJkzRhwgRJ0ooVK5Sdna0xY8bo5MmT6tixo55//nndf//9NkcNAAAAAAAABLegbw7m5uZ6/zx//nyf15OTk5WTk9OIEQGA/8RGO+0OAQAAAAEQG+1Unw7NqfcABL2gbw4CQFN2eat4u0MAAABAAFzeKl6rHvyl3WEAQK1C+mnFAAAAAAAAABqOKwcBwEZ7jnkkSe88dL26X+q2ORoAAAD4y55jHt0y92PqPABBjysHAQAAAAAAgDBFcxAAAAAAAAAIUzQHAQAAAAAAgDBFcxAAAAAAAAAIUzyQBABs1KV1vHIfTVOyO8buUAAAAOBH1HkAQgXNQQCwUUyUU52SmtkdBgAAAPyMOg9AqOBrxQBgo/yTpZq8YqfyT5baHQoABK158+apU6dOiomJUb9+/ZSXl2d3SABQK+o8AKGC5iAA2Mhzplxv7/pWnjPldocCAEHpjTfeUFZWlqZOnaodO3aoV69eGjJkiI4fP253aABwQdR5AEIFzUEAAAAErdmzZysjI0N33323rrrqKr366quKi4vT4sWL7Q4NAACgSaA5CAAAgKB07tw5bd++Xenp6d5tERERSk9P1+bNm22MDAAAoOnggSSSjDGSpKKiIpsjARBuThcXqaqsVKeLi1RU5LA7HABh5Hzdc74OCkYnTpxQZWWl2rRpY9nepk0b7d+/v9r3lJWVqayszLvu8XgkUecBaHyhVOdVldXvvoicU1EX9Z1Xoaq+n4f65KWhn7X61nk0ByUVFxdLklJSUmyOBEC4GvCS3REACFfFxcVyu912h+E306dP17Rp03y2U+cBsEtTrPPcL9kdARA8Avl5uNh917XOozkoqV27dsrPz1dCQoIcjrr/j05RUZFSUlKUn5+vxMTEAEYYGsiHL3JiRT58kRMr8uGLnPgiJ1YNzYcxRsXFxWrXrl0Ao7s4SUlJcjqdKiwstGwvLCxUcnJyte/Jzs5WVlaWd72qqkonT57UJZdcUuc6jznmi5xYkQ9f5MQXObEiH77IiRX58NVYdR7NQf1475r27ds3+P2JiYlM3J8gH77IiRX58EVOrMiHL3Lii5xYNSQfwX7FYHR0tK699lpt3LhRt99+u6Qfm30bN25UZmZmte9xuVxyuVyWbc2bN2/Qz2eO+SInVuTDFznxRU6syIcvcmJFPnwFus6jOQgAAICglZWVpbFjx+q6665T37599dJLL6mkpER333233aEBAAA0CTQHAQAAELRGjBihf/zjH3rqqadUUFCg3r17a/369T4PKQEAAEDD0By8CC6XS1OnTvX56kq4Ih++yIkV+fBFTqzIhy9y4oucWIVDPjIzM2v8GnEghENO64ucWJEPX+TEFzmxIh++yIkV+fDVWDlxmLo+1xgAAAAAAABAkxJhdwAAAAAAAAAA7EFzEAAAAAAAAAhTNAcBAAAAAACAMEVz8AKef/55DRw4UHFxcWrevHmd3mOM0VNPPaW2bdsqNjZW6enpOnjwoGXMyZMnNWbMGCUmJqp58+YaP368Tp8+HYAj8L/6xn7kyBE5HI5qlzfffNM7rrrXV6xY0RiHdFEa8rtMS0vzOdb777/fMubo0aMaNmyY4uLi1Lp1az322GOqqKgI5KH4TX1zcvLkST300ENKTU1VbGysOnTooIcfflgej8cyLlTmyLx589SpUyfFxMSoX79+ysvLu+D4N998U1deeaViYmLUo0cPvfvuu5bX63JOCXb1ycmCBQv0q1/9Si1atFCLFi2Unp7uM37cuHE+c2Ho0KGBPgy/qk9OlixZ4nO8MTExljGhPk/qk4/qzqEOh0PDhg3zjgnlOfLhhx/q1ltvVbt27eRwOPT222/X+p7c3Fxdc801crlc6tKli5YsWeIzpr7npnBAnWdFjeeLOs8q3Gs8iTqvOtR5VtR4vqjz/imo6zyDGj311FNm9uzZJisry7jd7jq9Z8aMGcbtdpu3337bfPrpp+Y3v/mNueyyy8yZM2e8Y4YOHWp69epltmzZYj766CPTpUsXM2rUqAAdhX/VN/aKigrz3XffWZZp06aZ+Ph4U1xc7B0nyeTk5FjG/TRnwaohv8tBgwaZjIwMy7F6PB7v6xUVFaZ79+4mPT3d7Ny507z77rsmKSnJZGdnB/pw/KK+Odm9e7e54447zJo1a8yhQ4fMxo0bTdeuXc3w4cMt40JhjqxYscJER0ebxYsXm71795qMjAzTvHlzU1hYWO34Tz75xDidTvPHP/7RfP755+a//uu/TFRUlNm9e7d3TF3OKcGsvjkZPXq0mTdvntm5c6fZt2+fGTdunHG73eabb77xjhk7dqwZOnSoZS6cPHmysQ7potU3Jzk5OSYxMdFyvAUFBZYxoTxP6puP77//3pKLPXv2GKfTaXJycrxjQnmOvPvuu+b3v/+9WblypZFkVq1adcHxX331lYmLizNZWVnm888/N3PnzjVOp9OsX7/eO6a+OQ4X1HlW1Hi+qPOswrnGM4Y6rzrUeVbUeL6o86yCuc6jOVgHOTk5dSoaq6qqTHJysnnhhRe823744QfjcrnM66+/bowx5vPPPzeSzN///nfvmHXr1hmHw2GOHTvm99j9yV+x9+7d29xzzz2WbXX5YASbhuZj0KBBZtKkSTW+/u6775qIiAjLXwzz5883iYmJpqyszC+xB4q/5shf/vIXEx0dbcrLy73bQmGO9O3b10ycONG7XllZadq1a2emT59e7fh///d/N8OGDbNs69evn7nvvvuMMXU7pwS7+ubk5yoqKkxCQoJZunSpd9vYsWPNbbfd5u9QG019c1Lb30GhPk8udo7MmTPHJCQkmNOnT3u3hfocOa8u573//M//NFdffbVl24gRI8yQIUO86xeb46aOOo8arzrUeVbhXuMZQ51XHeo8K2o8X9R5NQu2Oo+vFfvR4cOHVVBQoPT0dO82t9utfv36afPmzZKkzZs3q3nz5rruuuu8Y9LT0xUREaGtW7c2esz14Y/Yt2/frl27dmn8+PE+r02cOFFJSUnq27evFi9erB8/L8HrYvLx5z//WUlJSerevbuys7NVWlpq2W+PHj3Upk0b77YhQ4aoqKhIe/fu9f+B+JG/5rfH41FiYqIiIyMt24N5jpw7d07bt2+3fP4jIiKUnp7u/fz/3ObNmy3jpR9/1+fH1+WcEswakpOfKy0tVXl5uVq2bGnZnpubq9atWys1NVUPPPCAvv/+e7/GHigNzcnp06fVsWNHpaSk6LbbbrOcC0J5nvhjjixatEgjR45Us2bNLNtDdY7UV23nEX/kGD9qynUeNZ4v6jyrcK7xJOq86lDnWVHj+aLOu3iNWedF1j4EdVVQUCBJlr/sz6+ff62goECtW7e2vB4ZGamWLVt6xwQrf8S+aNEidevWTQMHDrRsf+aZZ3TjjTcqLi5OGzZs0IMPPqjTp0/r4Ycf9lv8/tbQfIwePVodO3ZUu3bt9Nlnn+nxxx/XgQMHtHLlSu9+q5tD518LZv6YIydOnNCzzz6rCRMmWLYH+xw5ceKEKisrq/3d7d+/v9r31PS7/un54vy2msYEs4bk5Ocef/xxtWvXzvIX3tChQ3XHHXfosssu05dffqknn3xSN998szZv3iyn0+nXY/C3huQkNTVVixcvVs+ePeXxeDRr1iwNHDhQe/fuVfv27UN6nlzsHMnLy9OePXu0aNEiy/ZQniP1VdN5pKioSGfOnNGpU6cu+nOIHzXlOo8azxd1nlU413gSdV51qPOsqPF8UeddvMas88KuOfjEE09o5syZFxyzb98+XXnllY0Ukf3qmpOLdebMGb322muaMmWKz2s/3danTx+VlJTohRdesKUoCHQ+floQ9ejRQ23bttVNN92kL7/8UpdffnmD9xtIjTVHioqKNGzYMF111VV6+umnLa8F0xxB45gxY4ZWrFih3Nxcy82ZR44c6f1zjx491LNnT11++eXKzc3VTTfdZEeoATVgwAANGDDAuz5w4EB169ZNf/rTn/Tss8/aGJn9Fi1apB49eqhv376W7eE2R/BP1HlW1Hi+qPOsqPFgF+o8arzaUOc1rrBrDv7ud7/TuHHjLjimc+fODdp3cnKyJKmwsFBt27b1bi8sLFTv3r29Y44fP255X0VFhU6ePOl9f2Ora04uNva33npLpaWluuuuu2od269fPz377LMqKyuTy+Wqdbw/NVY+zuvXr58k6dChQ7r88suVnJzs83ShwsJCSWrSc6S4uFhDhw5VQkKCVq1apaioqAuOt3OOVCcpKUlOp9P7uzqvsLCwxmNPTk6+4Pi6nFOCWUNyct6sWbM0Y8YMvffee+rZs+cFx3bu3FlJSUk6dOhQ0BcEF5OT86KiotSnTx8dOnRIUmjPk4vJR0lJiVasWKFnnnmm1p8TSnOkvmo6jyQmJio2NlZOp/Oi51wooc6zosbzRZ1nRY1XN9R5vqjzrKjxfFHnXbxGrfPqdYfCMFXfG1XPmjXLu83j8VR7o+pt27Z5x/z1r38N+htVG3PxsQ8aNMjn6WQ1ee6550yLFi0aHGtj8Nfv8uOPPzaSzKeffmqM+eeNqn/6dKE//elPJjEx0Zw9e9Z/BxAADc2Jx+Mx/fv3N4MGDTIlJSV1+lnBOEf69u1rMjMzveuVlZXm0ksvveCNqm+55RbLtgEDBvjcqPpC55RgV9+cGGPMzJkzTWJiotm8eXOdfkZ+fr5xOBxm9erVFx1vY2hITn6qoqLCpKammkceecQYE/rzpKH5yMnJMS6Xy5w4caLWnxFqc+Q81fFG1d27d7dsGzVqlM+Nqi9mzjV11HnUeNWhzrMK9xrPGOq86lDnWVHj+aLOq1mw1Xk0By/g66+/Njt37jTTpk0z8fHxZufOnWbnzp2muLjYOyY1NdWsXLnSuz5jxgzTvHlzs3r1avPZZ5+Z2267zedR40OHDjV9+vQxW7duNR9//LHp2rWrGTVqVKMeW0PVFvs333xjUlNTzdatWy3vO3jwoHE4HGbdunU++1yzZo1ZsGCB2b17tzl48KB55ZVXTFxcnHnqqacCfjwXq775OHTokHnmmWfMtm3bzOHDh83q1atN586dzQ033OB9T0VFhenevbsZPHiw2bVrl1m/fr1p1aqVyc7ObvTja4j65sTj8Zh+/fqZHj16mEOHDlkeSV9RUWGMCZ05smLFCuNyucySJUvM559/biZMmGCaN2/ufSLhnXfeaZ544gnv+E8++cRERkaaWbNmmX379pmpU6eaqKgos3v3bu+YupxTgll9czJjxgwTHR1t3nrrLctcOH/eLS4uNo8++qjZvHmzOXz4sHnvvffMNddcY7p27RrU/6j6qfrmZNq0aeavf/2r+fLLL8327dvNyJEjTUxMjNm7d693TCjPk/rm47zrr7/ejBgxwmd7qM+R4uJib70hycyePdvs3LnTfP3118YYY5544glz5513esd/9dVXJi4uzjz22GNm3759Zt68ecbpdJr169d7x9SW43BFnWdFjeeLOs8qnGs8Y6jzqkOdZ0WN54s6zyqY6zyagxcwduxYI8ln2bRpk3eMJJOTk+Ndr6qqMlOmTDFt2rQxLpfL3HTTTebAgQOW/X7//fdm1KhRJj4+3iQmJpq7777bUogGs9piP3z4sE+OjDEmOzvbpKSkmMrKSp99rlu3zvTu3dvEx8ebZs2amV69eplXX3212rHBpr75OHr0qLnhhhtMy5YtjcvlMl26dDGPPfaY8Xg8lv0eOXLE3HzzzSY2NtYkJSWZ3/3ud6a8vLwxD63B6puTTZs2Vfs5k2QOHz5sjAmtOTJ37lzToUMHEx0dbfr27Wu2bNnifW3QoEFm7NixlvF/+ctfzBVXXGGio6PN1VdfbdauXWt5vS7nlGBXn5x07Nix2rkwdepUY4wxpaWlZvDgwaZVq1YmKirKdOzY0WRkZIRck6M+OZk8ebJ3bJs2bcy//uu/mh07dlj2F+rzpL6fm/379xtJZsOGDT77CvU5UtM58XwOxo4dawYNGuTznt69e5vo6GjTuXNnS11y3oVyHK6o86yo8XxR51mFe41nDHVedajzrKjxfFHn/VMw13kOY4LsOfEAAAAAAAAAGkWE3QEAAAAAAAAAsAfNQQAAAAAAACBM0RwEAAAAAAAAwhTNQQAAAAAAACBM0RwEAAAAAAAAwhTNQQAAAAAAACBM0RwEAAAAAAAAwhTNQQAAAAAAACBM0RwEAAAAAAAAwhTNQQAAAAAAACBM0RwEgCBx7tw5u0MAAABAAFDnAQhmkXYHAADhKi0tTd27d1dkZKSWL1+uHj16aNOmTXaHBQAAgItEnQcglNAcBAAbLV26VA888IA++eQTu0MBAACAH1HnAQgVDmOMsTsIAAhHaWlpKioq0o4dO+wOBQAAAH5EnQcglHDPQQCw0bXXXmt3CAAAAAgA6jwAoYLmIADYqFmzZnaHAAAAgACgzgMQKmgOAgAAAAAAAGGK5iAAAAAAAAAQpmgOAgAAAAAAAGGKpxUDAAAAAAAAYYorBwEAAAAAAIAwRXMQAAAAAAAACFM0BwEAAAAAAIAwRXMQAAAAAAAACFM0BwEAAAAAAIAwRXMQAAAAAAAACFM0BwEAAAAAAIAwRXMQAAAAAAAACFM0BwEAAAAAAIAwRXMQAAAAAAAACFM0BwEAAAAAAIAwRXMQAAAAAAAACFP/HxhVxTVBB9u/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([9.41191265, 0.78432605])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result_arr = feat_gen.feature_remaining_fragments_correlations(\n", + " precursor_fragments, visualize=True\n", + ")\n", + "result_arr" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "94f4c936", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQYAAAGdCAYAAABATa4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAortJREFUeJzs3XVcldfjB/DPpS5Id6ciFhazCyd2oVOn0wEWdqFu4kKw0BnInDOmU+zZbs6ctRko5piJShjYUtLc5/cHP+7XKyGXekA+79frvuCepz7PDe7h3OecIxEEQQARERERERERERFVKSpiByAiIiIiIiIiIqLyx4ZBIiIiIiIiIiKiKogNg0RERERERERERFUQGwaJiIiIiIiIiIiqIDYMEhERERERERERVUFsGCQiIiIiIiIiIqqC2DBIRERERERERERUBbFhkIiIiIiIiIiIqApiwyAREREREREREVEVxIZBIiKiCkAikXzwtmHDhjI7fkJCAj777DM4ODhAS0sLpqam6Nq1K8LDwz+4rY+PD+rVq1fsYx87dgyurq6QSqUwMDAo9n4qq1OnTmH+/Plixyix6OhoSCQS7Nq1S6ntCjr/gIAA6OjolFa8Ki08PBzDhg1DjRo1UK1aNTg7O8Pf3x9v37794LaF/U2Ki4srdD0LC4sC95ucnAwbGxtIJBJcunSpVM6TiIiIlKcmdgAiIiICzp8/r3C/RYsWmDBhAr744gt5WfXq1cvs+Onp6dDU1MR3330HR0dHJCQkYNmyZfj0009x+fJl1KxZs8yOPXToUNSvXx8///wztLS0yuw4FdWpU6ewePFizJw5U+wooijo/EeMGIHu3buLlOrj8ttvvyEyMhJfffUVatasiRs3buD777/HhQsXcOLEiUK3ff9vEwB4eXlBW1sblpaWCuXv/83S0NAocL9z5sxBVlaWkmdCREREpY0Ng0RERBVA8+bN85TZ2dnlW14WzMzMsGXLFoWyjh07wtjYGLt27SqzRqvk5GQ8fvwYs2fPRps2bQpcLzU1tUo2GpaX7OxsyGQyqKurK5QLgoCMjAxIpdJyz2RjYwMbG5tyP+7H6Ouvv4apqan8vru7OwwNDTF48GBcvnwZbm5uBW77/t+g6OhoREZG4ocffsizblH/Zt2+fRsrVqzAkiVLMHr0aCXOhIiIiEobuxITERFVAjKZDHPnzoWDgwOkUilq1aqF1atXK6yT2/UyPDwcTZs2haamJmrXro0DBw4U65ja2trQ1NRERkZGkdY/dOgQ6tWrB01NTbi5uSEsLKzQ9Tds2ABdXV0AwPDhwyGRSODj4wMgp1viggUL8PXXX8PCwgJmZmYAcq5e6tWrF6ysrKCtrY2GDRti06ZNefZ948YNtG3bFpqamnB2dsaWLVvg6ekJd3d3+Tq5j9fVq1fRokULaGlpoXHjxrh69SrS0tIwZswYGBoawsbGBsuWLctzjPPnz+PTTz+FtrY29PX18cUXX+D58+fy5bldazdv3ozx48fD0NAQlpaWmDZtmvxKqYCAAAQGBuLt27fy7pfvZszP+fPn0alTJ+jp6UFXVxfNmjXDsWPH5Mtfv36NYcOGwcTEBFpaWmjZsiX+/vtvhX24u7ujR48eCA0NhYuLC6RSKa5fvy7vFn7w4EE0aNAAUqkUf/zxR5HONz8bN25E69atYWRkBENDQ7i7u+PixYsKz0FB559fV+KYmBj069cP+vr60NbWRufOnREREaGwjoODA8aPH48VK1bA3t4e+vr68PT0xIsXLwrNGh8fj5EjR8La2hqampqwtbXFwIEDFbLm17XZwMAAAQEBeR7bbdu2wdnZGdWqVUPPnj3x5s0bxMTEoHPnztDR0UHdunVx6tSpQjOVlncbBXM1atQIAPDkyROl9rV161ZIJBIMGjSo2HkmTJiA0aNHw8XFpdj7ICIiotLBKwaJiIgqgenTpyMkJATffvstWrZsiQMHDmD06NHIzMzE+PHj5etlZmbi888/x9SpU+Ho6IiVK1eiT58+uHLlClxdXT94HJlMBplMhhcvXmDRokVQUVGBl5fXB7eLi4vD2LFjERAQAENDQyxYsACdO3dGZGSkvFHvfd27d8exY8fQsWNHfPvtt+jevbtCA0ZISAiaN2+OdevWyRvSYmJi0KpVK4wePRqampo4e/Yshg8fDplMBm9vbwA5Vxd26tQJBgYG2Lx5MwAgMDAQ8fHxebpjZ2ZmwtvbG1OmTIG5uTm+/vpr9O3bF61atYKZmRl27NiB/fv3Y8qUKWjatClatmwJIKeRzN3dHd26dcNvv/2Gt2/f4ttvv0Xv3r3zdL385ptv0Lt3b+zYsQPnzp1DQEAAatSogdGjR2PEiBF49OgRtm7dKu/SqaenV+DjfPbsWXz66ado3rw51q5dCwMDA1y6dAmxsbEAcq7869q1Kx48eICFCxfC3NwcP/74Izp27Ihz584pXBl26dIlREdHY/bs2TA0NIStrS2AnIaiiRMn4ttvv4WdnR3s7OyUOt93RUdHw8vLC9WrV0dGRga2bduGtm3b4t9//0XNmjWVOv+kpCS4u7tDRUUFq1atgqamJubNmyffX25+APj9998RGRmJFStW4OXLl5gyZQomTJiA7du3F5jVz88Phw4dwoIFC+Dg4IC4uDgcOnSowPULc/XqVbx8+RKLFy9GQkICJk6ciJEjRyImJgZeXl6YOnUqgoKC0LdvX8TGxhY6lmJ2djYEQSj0eBKJBKqqqkplPHPmDACgVq1aSm2X+xzmdzVnUFAQ/P395Y22ixYtgp2dncI6u3btQkREBHbv3o0rV64odWwiIiIqAwIRERFVOACERYsWCYIgCC9evBDU1dWFGTNmKKwzaNAgwdTUVMjKyhIEQRBmzZolABDWrVsnXycrK0twdHQUBg4cWKTjfvPNNwIAAYBgZmYmnDt37oPbeHt7CwCE48ePy8vi4+MFXV3dPJnf9+bNGwGAsH79eoVyAEKdOnUEmUxW4LYymUzIzMwUfH19hRYtWsjLV6xYIaiqqgpRUVHysqioKEFVVVVo166dvCz38Tp48KC87I8//hAACJ9//rm8LCsrSzAzMxMmT54sL2vbtq3QsmVLhXw3btwQJBKJ8Oeff8qPCUDo37+/Qu527doJHTp0UMihra1d4Hm+q2XLlkKdOnXkz/n79u/fLwAQDh8+LC/LyMgQ7OzshL59+ypkUFdXF2JjYxW2z30uw8LCFMqVOd+dO3fmmy07O1vIzMwUXFxcBH9//w+e//vlISEhgkQiEW7evCkve/XqlaCtrS34+fnJy+zt7QUbGxshLS1NYV/q6upCdnZ2vtkEQRDq1q2rsJ8P5cmlr68vzJo1S36/Xbt2gra2tvDixQt52dSpUwUAwsqVK+VlERERAgBh3759BR4zd3+578mCbu++rovixYsXgpWVldC7d2+ltrt+/boAQFi9enWeZV5eXsKOHTuE06dPCytWrBAsLCwEW1tb4fXr1/J13r59K9ja2sr/Rp08eVIAIISHhyuVg4iIiEoPrxgkIiKq4C5cuIDMzEz0799fofzzzz/Htm3bcPfuXdSuXVte3qdPH/nvqqqq8PT0xL59+wDkjBmXnZ0tX66iogIVlf+NLDJ27Fh4enoiLi4Oa9euRbdu3XD8+HE0bty40Iz6+vr49NNPFe57eHjgwoULAP53JWJBx81P165dIZFIFMrevHmDWbNmYf/+/Xj8+LH8XIyNjeXrhIeHw9XVFQ4ODvIyBwcHNGjQIM8xVFRU0KFDB/n93ElWPDw85GWqqqqoXr06Hj58CABISUnB2bNnsXjxYoXHsmbNmrC1tUV4eDi6desmL+/UqZPCMevUqfPBCR/yk5KSgrCwMAQFBRV4ddg///wDPT09dO7cWV6mrq6Ovn37YuvWrQrr1q9fX+Equ1zGxsZo1qyZwnGVOd933bp1CzNnzsS5c+cUuh3fvXu3aCf93rnVq1dP4bVuZGSEjh07yq9+y9WuXTuFcRHr1KmDzMxMPH/+vMCZchs3bowNGzbA0tISXbp0KdFM2w0bNoSJiYn8fn6vq9yy3NdVQVavXo2kpKRC18ntkl8UmZmZ8i7SK1euLPJ2ALBlyxaoq6ujX79+eZaFhobKf2/bti1at26Nxo0b45dffsFXX30FAJg7dy7Mzc0xdOhQpY5LREREZYdjDBIREVVwb968AQCYm5srlOfef/36tbxMXV0dhoaGedaLi4sDkPPPu7q6uvw2bNgwhXWtrKzwySefoGfPnti7dy+cnJzw/ffffzBjfmOYvXvc2bNnKxx39uzZH9zn++cLAD4+Pti2bRumTZuGo0ePIjw8HMOGDUNaWpp8nbi4uHzz5NelWUtLS2Hm1NzfDQwMFNbT0NCQH+PNmzfIzs7GlClTFM5JXV0dsbGxeRp6CtuXMt68eQOZTAYrK6tC18nvPM3NzRVeJ7ll+Xm/XNnzzZWUlIROnTohJiYGS5cuxT///IPw8HA0aNCg2OefX+b8zi2/xxxAocddvnw5vvzySyxZsgSurq6ws7NTuuHsQ8d/t7womQCgRo0aaNiwYaG3GjVqFCmXIAgYNmwYLl68iIMHD+aZVfhD227fvh1du3aFkZHRB9evX78+XFxccPnyZQA5wwAsWbIEgYGBSEhIQHx8PJKTkwHkTEKU+zsRERGVL14xSEREVMHl/hP+/PlzWFtby8ufPXumsBzIuRrozZs3Co2Dz549kzcA9OzZE+Hh4fJl717V9D4VFRU0atQoz9VY+clvYod3j+vr64sePXrIlxXWuJXr/asF09LScODAASxduhQTJkyQl797JSIAWFpa4tq1a3n29/z5c6WurCqIgYEBJBIJZs6cCU9PzzzLC3tMS3pcFRWVQieLMDIyyndCkGfPnuVpzHn/8S2ovLjne/78eTx69AgHDhxQuFozISGhWLMNGxkZ4c6dO3nK8zu34tDX18eyZcuwbNkyREREICQkBGPHjkW9evXQpk0baGpqIjMzU2GbzMzMMm/Q6tChA06fPl3oOu3atSvSRCbTpk3Djh075JPLKOPMmTOIjY3NdzbiooiKikJGRga6d++eZ1n79u3RrFmzD05YRERERKWPDYNEREQVXNOmTaGuro6dO3fKZxIFgB07dsDMzEzeJTHX3r175VcCZmdnY9++ffKuocbGxgrdbguTlZWFCxcuwMnJ6YPrJiQk4MSJE/LuxAkJCfjrr78wbtw4ADkNgUVpDCxMeno6ZDKZwhV+SUlJ+P333xXWa9KkCTZu3IioqCg4OjoCyJkE4/r162jdunWJMgA5szW3aNECt27dwty5c0u8Pw0NDaSnpxf5uBs3bsTUqVPz7U7cunVrLFq0CEePHpV3Yc7KysLevXuLfe7FPd/U1FQAUHi+zp07h+joaNStW1deVtTzb926NXbt2oU7d+7IZ7N98+YN/vrrL/j6+hY5V1G4uroiODgY69atw61bt9CmTRvY2NggIyMD9+/fl09ic+LECYXu1WWhtLoSL1iwAMHBwdiyZYtC9/mi2rp1K3R0dNCrV68irX/t2jXcuXNH3m24YcOGOHnyZJ51pkyZglWrVqFJkyZKZyIiIqKSY8MgERFRBWdiYoIJEyZg0aJF0NTURPPmzXHw4EFs3boVy5cvV2gg0tDQwNy5c5GWlgZHR0f8/PPPePjwoXyMwYKsWbMGFy9ehIeHBywtLfH06VOsXr0ad+7cwc8///zBjEZGRhg+fDgCAwNhYGCABQsWQBAETJ48uYRn/z/6+vpo0qQJFixYAFNTU6ipqWHBggXQ19dXuEpu6NChmDdvHnr06IHAwEAAQEBAACwsLD44rmFRLVq0CJ9++ik+//xzDBw4EIaGhnj06BGOHTuGoUOHwt3dvcj7ql27NrKyshASEoKWLVtCT09P3vD1vgULFuDTTz+Fh4cHxo4dC0NDQ1y5cgUmJiYYNmwYunfvjqZNm2LIkCFYsGABzM3NsXz5csTFxWHmzJnler7NmzeHjo4Oxo0bhxkzZuDx48eYNWuWwlWvypz/0KFDERwcjO7du2Pu3LnyWYnV1NRK5XXWqlUr9OnTB/Xq1YOqqio2btwIDQ0NtGnTBkDOmJfa2toYOXIkvv76azx69AghISHQ1NQs8bELU9BrQRlbt26Fv78/hgwZAkdHR4Ur86pXry7vej979mzMnj0b9+/fh729vXydrKws7Nq1C56entDS0sqz/8WLF+P+/ftwd3eHmZkZ/vvvP8ybNw+2trYYMWIEgJwrTwt6X7i5uX1wHFMiIiIqG2wYJCIiqgQWLVoEAwMDrF27FnPnzoWDgwNWrVqFUaNGKaynrq6Obdu2Ydy4cYiIiICjoyN2796N+vXrF7r/unXrYs+ePZg0aRLi4+NhYWGBJk2ayMeE+xBLS0ssXLgQ06dPx/3791G3bl0cOXKkwHHsimvr1q0YNWoUvL29YWxsjIkTJyI5ORmLFy+Wr6OlpYWjR49i9OjRGDx4MKytrfHdd99h48aN0NfXL5UcLVu2xJkzZzBr1iwMHToUGRkZsLGxQYcOHYo83luunj17YuzYsQgKCsLz58/Rtm3bAruFtm7dGqdOncK3334LHx8fqKqqom7duvIr+VRVVXHw4EFMmzYN06dPx9u3b9G4cWMcPXoUbm5u5Xq+5ubm2LlzJ6ZNm4bevXujZs2aWL16NRYuXFis89fV1cWpU6fg5+cHX19fZGdno1WrVvj777/znURFWa1atZJfaaqiogJXV1f88ccf8slOjI2NsXv3bkydOhWenp5o2LAhNm7cqFQjsFiOHj0KANi8eTM2b96ssGz9+vXw8fEBkNMtPzs7G4IgKKxz5MgRvHz5El988UW++3dxccHu3bvx22+/ISkpCaampvIG3PfHWyQiIqKKRSK8/8lPRERElVJAQAAWL17MQfzz8fr1azg5OWHKlCmYNWuW2HGIiIiIiCoEXjFIREREH52FCxfC3NwcDg4OiIuLw+LFi5GdnZ1nFmYiIiIioqqMDYNERET00VFRUcHcuXPx+PFjqKmpoVmzZjhx4kSpdDklIiIiIvpYsCsxERERERERERFRFVQ6U/MRERERERERERFRpcKGQSIiIiIiIiIioiqIDYNERERERERERERVEBsGiYiIiIiIiIiIqiA2DBIREREREREREVVBbBgkIiIiIiIiIiKqgtgwSEREREREREREVAWxYZCIiIiIiIiIiKgKYsMgERERERERERFRFcSGQSIiIiIiIiIioiqIDYNERERERERERERVEBsGiYiIiIiIiIiIqiA2DBIREREREREREVVBbBgkIiIiIiIiIiKqgtgwSEREREREREREVAWxYZCIiIiIiIiIiKgKYsMgERERERERERFRFcSGQSIiIiIiIiIioiqIDYNERERERERERERVEBsGiYiIiIiIiIiIqiA2DBIREREREREREVVBbBgkIiIiIiIiIiKqgtgwSEREREREREREVAWxYZCIiIiIiIiIiKgKYsMgERERERERERFRFcSGQSIiIiIiIiIioiqIDYNERERERERERERVEBsGiYiIiIiIiIiIqiA2DBIREREREREREVVBbBgkIiIiIiIiIiKqgtgwSEREREREREREVAWxYZCIiIiIiIiIiKgKYsMgERERERERERFRFcSGQSIiIiIiIiIioiqIDYNERERERERERERVEBsGiYiIiIiIiIiIqiA2DBIREREREREREVVBbBikCi8gIAASiQQvX74s9j6Sk5MxYsQIWFhYQCKRYPLkyaUXkCqcU6dOQSKR4NSpU6W6X4lEgoCAgFLdZ2mSyWSoV68e5s2bJ3aUUpX7N4CU17x5c3z11VdixyAiqvDK87PG3d0d7u7u8vu59ZZdu3aVy/F9fHzg4OBQLscqLmXq7hKJBOPHjy/R8Q4fPoyGDRtCU1MTEokE8fHxJdofVWzvvwdLA+urVJmxYZCqhPnz52PDhg0YM2YMNm3ahC+//FLsSBXC1q1bsWzZMrFjVCgHDx6s0I1/hdm2bRsePnyoUDk+d+4cAgICRK3g3rhxA/3794eTkxOqVasGExMTtG3bFn/88YdomaqKr7/+GitWrMDTp0/FjkJEVG42bNgAiUQiv2lqasLKygqdO3fGjz/+iKSkpFI5zpMnTxAQEIBr166Vyv5KU0XOVhTlWXd/9eoVBgwYAC0tLaxYsQKbNm2CtrZ2mR2vsqjsr6GykJKSgoCAgFK/+IBIbGwYpCrhxIkTaN68OWbNmoUhQ4bAzc1N7EgVAhsG8zp48CACAwPzXZaamopvv/22nBMV3aJFizBw4EDo6+vLy86dO4fAwEBRGwZjYmKQlJQEb29vhISE4LvvvgMA9OrVC2vWrPng9t9++y1SU1PLOuZHqXfv3tDT08PPP/8sdhQionI3e/ZsbNq0CStXrsSECRMAAJMnT4arqyv+/fdfhXWL81nz5MkTBAYGKt1wcvToURw9elSpbZRVWLZffvkFd+7cKdPjl1R51t3Dw8ORlJSEOXPmYPjw4RgyZAjU1dXL7HiVRXFf3x+zlJQUBAYG5tswyPoqVWZqYgcgKg/Pnz9HnTp1PrheWloaNDQ0oKLCNnMxpKSkoFq1annKs7KyIJPJoKGhIUKq/9HU1BT1+IW5evUqrl+/jiVLlogdJY9u3bqhW7duCmXjx4+Hm5sbli5dCl9f30K3V1NTg5paxfi4qiivxaJSUVFBv379sHHjRgQGBrKLCxFVKV27dsUnn3wiv+/v748TJ06gR48e6NWrF27dugUtLS0A5fNZk1vPEfszpDI0ehW17l5axwIAAwODD65bUF2Vyl5h/6e9fftW9Ks8K1J9lUhZbP2gSuPly5cYMGAA9PT0YGxsjEmTJiEtLa3QbXLHbImKisKff/4p71ISHR0tX7Z9+3Z8++23sLa2RrVq1ZCYmIjXr19j2rRpcHV1hY6ODvT09NC1a1dcv349zzFiYmLQq1cvaGtrw8zMDFOmTMGRI0fyjHHn7u6OevXq4d9//0W7du1QrVo11KhRQz6ezOnTp9GsWTNoaWnBxcUFf/31V55jPX78GMOGDYO5uTmkUinq1q2LX3/9Nd9z3rFjB+bNmwcbGxtoamqiQ4cOuHfvnkKeP//8EzExMfLHpSjjzWzevBlNmzZFtWrVYGhoiLZt2+b51vvnn39G3bp1IZVKYWVlhXHjxuW5Yi338bh8+TLatm2LatWqYebMmYiOjoZEIsHixYuxbNkyVK9eHVKpFDdv3gQA3L59G/369YORkRE0NTXxySef4Pfff/9g7n/++Qf9+/eHnZ0dpFIpbG1tMWXKFIVv9nx8fLBixQoAUOiClCu/MQavXr2Krl27Qk9PDzo6OujQoQPCwsIU1snt0nT27Fn4+fnB1NQU2tra6NOnD168eKGw7qVLl9C5c2eYmJhAS0sLjo6OGDZs2AfPb9++fdDQ0EDbtm3lZQEBAZg+fToAwNHRUeH1D+Q0cs2ZM0f+GDs4OGDmzJlIT09X2LeDgwN69OiBo0ePysffqVOnDvbs2fPBXAVRVVWFra1tka5kzG/MltzxhPbt24d69erJ3w+HDx8u0vGfP3+O4cOHw9zcHJqammjQoAFCQ0MV1instZiRkYHvv/8ebm5u0NfXh7a2Ntq0aYOTJ08WuI81a9bI99GkSROEh4fnybVz507UqVMHmpqaqFevHvbu3ZvvWFAymQzLli1D3bp1oampCXNzc4waNQpv3rzJs8+OHTsiJiaG3/gTEQH49NNP8d133yEmJgabN2+Wl+f3WXPs2DG0bt0aBgYG0NHRgYuLC2bOnAkgp77VpEkTAMDQoUPln7EbNmwAUHA9J3dZfuObZWdnY+bMmbCwsIC2tjZ69eqFhw8fKqzj4OAAHx+fPNu+u88PZcvvc+Xt27eYOnUqbG1tIZVK4eLigsWLF0MQBIX1yvrzt7C6+4ds2bIFLi4u0NTUhJubG/7+++8PbuPu7g5vb28AQJMmTSCRSOSPb2HP4f79+9G9e3dYWVlBKpWievXqmDNnDrKzs/McY8WKFXBycoKWlhaaNm2Kf/75p8BxJnfs2IHAwEBYW1tDV1cX/fr1Q0JCAtLT0zF58mSYmZlBR0cHQ4cOzVNfA3Lq6W5ubtDS0oKRkREGDhyY5zWUe143b95E+/btUa1aNVhbW+OHH35QyFPYa6ggjx8/xvDhw+WPi6OjI8aMGYOMjAz5Og8ePED//v1hZGSEatWqoXnz5vjzzz8V9lPY/2k+Pj7Q0dHB/fv30a1bN+jq6mLw4MEAlKsfvaso9bro6GiYmpoCgPzL1nf/N8jvb4iyde0zZ86gadOm0NTUhJOTEzZu3KiwXmZmJgIDA+Hs7AxNTU0YGxujdevWOHbsWKHnR/QhbNKmSmPAgAFwcHBAUFAQwsLC8OOPP+LNmzd5/mC+q3bt2ti0aROmTJkCGxsbTJ06FQBgamoqr2DMmTMHGhoamDZtGtLT06GhoYGbN29i37596N+/PxwdHfHs2TOsXr0a7dq1w82bN2FlZQUgpxL16aefIi4uDpMmTYKFhQW2bt2ap3Eg15s3b9CjRw8MHDgQ/fv3x8qVKzFw4EBs2bIFkydPxujRo/HFF19g0aJF6NevHx4+fAhdXV0AwLNnz9C8eXN5hczU1BSHDh3C8OHDkZiYmGdQ5gULFkBFRQXTpk1DQkICfvjhBwwePBgXLlwAAHzzzTdISEjAo0ePEBwcDADQ0dEp9DkIDAxEQEAAWrZsidmzZ0NDQwMXLlzAiRMn0KlTJwA5H4qBgYHw8PDAmDFjcOfOHaxcuRLh4eE4e/aswrfUr169QteuXTFw4EAMGTIE5ubm8mXr169HWloafH19IZVKYWRkhBs3bqBVq1awtrbGjBkzoK2tjR07dsDT0xO7d+9Gnz59Csy+c+dOpKSkYMyYMTA2NsbFixexfPlyPHr0CDt37gQAjBo1Ck+ePMGxY8ewadOmQh8LIGfsvDZt2kBPTw9fffUV1NXVsXr1ari7u8sbet81YcIEGBoaYtasWYiOjsayZcswfvx4/PbbbwByKsudOnWCqakpZsyYAQMDA0RHRxepAe7cuXOoV6+ewuPbt29f3L17F9u2bUNwcDBMTEwAQF6pGTFiBEJDQ9GvXz9MnToVFy5cQFBQEG7duoW9e/cq7D8yMhKff/45Ro8eDW9vb6xfvx79+/fH4cOH0bFjxw/mA3LeL6mpqUhISMDvv/+OQ4cO4fPPPy/Stvk5c+YM9uzZg7Fjx0JXVxc//vgjPvvsM8TGxsLY2LjA7VJTU+Hu7o579+5h/PjxcHR0xM6dO+Hj44P4+HhMmjRJYf38XouJiYlYu3YtBg0ahJEjRyIpKQnr1q1D586dcfHiRTRs2FBhH1u3bkVSUhJGjRoFiUSCH374AX379sWDBw/kz9mff/6Jzz//HK6urggKCsKbN28wfPhwWFtb5zmHUaNGYcOGDRg6dCgmTpyIqKgo/PTTT7h69Wqe91lu96uzZ8+iUaNGxX24iYg+Gl9++SVmzpyJo0ePYuTIkfmuc+PGDfTo0QP169fH7NmzIZVKce/ePZw9exZATh1z9uzZ+P777+Hr64s2bdoAAFq2bCnfR2H1nPzMmzcPEokEX3/9NZ4/f45ly5bBw8MD165dk1/ZWBRFyfYuQRDQq1cvnDx5EsOHD0fDhg1x5MgRTJ8+HY8fP5bXE3OV5edvYXX3wpw+fRq//fYbJk6cCKlUip9//hldunTBxYsXUa9evQK3++abb+Di4oI1a9Zg9uzZcHR0RPXq1eXLC3oON2zYAB0dHfj5+UFHRwcnTpzA999/j8TERCxatEi+/cqVKzF+/Hi0adMGU6ZMQXR0NDw9PWFoaAgbG5s8eYKCgqClpYUZM2bg3r17WL58OdTV1aGiooI3b94gICAAYWFh2LBhAxwdHfH999/Lt503bx6+++47DBgwACNGjMCLFy+wfPlytG3bFlevXlW4IvLNmzfo0qUL+vbtiwEDBmDXrl34+uuv4erqiq5duyr9GgJyuh43bdoU8fHx8PX1Ra1atfD48WPs2rULKSkp0NDQwLNnz9CyZUukpKRg4sSJMDY2RmhoKHr16oVdu3blqcvn938akNPg1rlzZ7Ru3RqLFy+WX8WpTP3oXUWp15mammLlypUYM2YM+vTpg759+wIA6tevX+Bjokxd+969e+jXrx+GDx8Ob29v/Prrr/Dx8YGbmxvq1q0LIOf/rKCgIIwYMQJNmzZFYmIiLl26hCtXrhS5Pk6UL4Gogps1a5YAQOjVq5dC+dixYwUAwvXr1z+4D3t7e6F79+4KZSdPnhQACE5OTkJKSorCsrS0NCE7O1uhLCoqSpBKpcLs2bPlZUuWLBEACPv27ZOXpaamCrVq1RIACCdPnpSXt2vXTgAgbN26VV52+/ZtAYCgoqIihIWFycuPHDkiABDWr18vLxs+fLhgaWkpvHz5UiHXwIEDBX19ffk55J5X7dq1hfT0dPl6ISEhAgAhIiJCXta9e3fB3t6+oIdNQWRkpKCioiL06dMnz2Mjk8kEQRCE58+fCxoaGkKnTp0U1vnpp58EAMKvv/6a5/FYtWqVwr6ioqIEAIKenp7w/PlzhWUdOnQQXF1dhbS0NIVjt2zZUnB2dpaX5T4G7z7+7z/HgiAIQUFBgkQiEWJiYuRl48aNEwr60whAmDVrlvy+p6enoKGhIdy/f19e9uTJE0FXV1do27atvGz9+vUCAMHDw0P+WAmCIEyZMkVQVVUV4uPjBUEQhL179woAhPDw8HyPXxgbGxvhs88+y1O+aNEiAYAQFRWlUH7t2jUBgDBixAiF8mnTpgkAhBMnTsjL7O3tBQDC7t275WUJCQmCpaWl0KhRoyJnHDVqlABA/prv16+f8Pr16w9ul/s34F0ABA0NDeHevXvysuvXrwsAhOXLlxe6v2XLlgkAhM2bN8vLMjIyhBYtWgg6OjpCYmKiIAiFvxazsrIU3l+CIAhv3rwRzM3NhWHDhsnLcvdhbGyscK779+8XAAh//PGHvMzV1VWwsbERkpKS5GWnTp0SACi8T//55x8BgLBlyxaF4x8+fDjfckEQBA0NDWHMmDGFPi5ERB+L3M/dwj5P9fX1FT7D3v+sCQ4OFgAIL168KHAf4eHheepruQqq5+Qua9eunfx+br3F2tpa/hkkCIKwY8cOAYAQEhIiL7O3txe8vb0/uM/Csnl7eyt8ruzbt08AIMydO1dhvX79+gkSiUThs7Y8Pn9zz/P9untBcusWly5dkpfFxMQImpqaQp8+fT64fUGvl8Kew/zqlaNGjRKqVasmr6emp6cLxsbGQpMmTYTMzEz5ehs2bBAA5PsaqFevnpCRkSEvHzRokCCRSISuXbsqHKtFixYKz2F0dLSgqqoqzJs3T2G9iIgIQU1NTaE897w2btwoL0tPTxcsLCwU6pKFvYby4+XlJaioqOT7vsut/06ePFkAIPzzzz/yZUlJSYKjo6Pg4OAg//+hsP/TvL29BQDCjBkzFMqVqR+9/34par3uxYsXef4fyPX+35Di1LX//vtvednz588FqVQqTJ06VV7WoEGDIr8viJTBrsRUaYwbN07hfu4g0gcPHizRfr29vfN8CyuVSuXjV2RnZ+PVq1fyLiRXrlyRr3f48GFYW1ujV69e8jJNTc0Cv33W0dHBwIED5fddXFxgYGCA2rVrK1xdlvv7gwcPAOR8k7t792707NkTgiDg5cuX8lvnzp2RkJCgkAvIuez/3TFscr/py92nsvbt2weZTIbvv/8+z9geuZfN//XXX8jIyMDkyZMV1hk5ciT09PTydBOQSqUYOnRovsf77LPPFL4dfv36NU6cOIEBAwYgKSlJfv6vXr1C586dERkZicePHxeY/93n+O3bt3j58iVatmwJQRBw9erVoj8Q/y87OxtHjx6Fp6cnnJyc5OWWlpb44osvcObMGSQmJips4+vrq9DFoE2bNsjOzkZMTAyA/41tc+DAAWRmZiqV59WrVzA0NCzy+rnvGz8/P4Xy3G/m33+urKysFL7F1dPTg5eXF65evVrkGW8nT56MY8eOITQ0FF27dkV2drZC1xJleXh4KHyrX79+fejp6X3wNX7w4EFYWFhg0KBB8jJ1dXVMnDgRycnJOH36tML6778WgZyu0LnvL5lMhtevXyMrKwuffPJJnvciAHz++ecKz8/778cnT54gIiICXl5eClfutmvXDq6urgr72rlzJ/T19dGxY0eFvwVubm7Q0dHJ94plQ0NDvHz5stDHhYioKtHR0Sl0duLcz+T9+/dDJpMV6xiF1XPy4+XlJe8pAgD9+vWDpaVlieu6H3Lw4EGoqqpi4sSJCuVTp06FIAg4dOiQQnl5ff4qo0WLFgoTlNjZ2aF37944cuRIvt17i6qg5/DdemVuvbRNmzZISUnB7du3AeQMD/Pq1SuMHDlSYey5wYMHF1hn8/LyUriqrVmzZhAEIc+wMs2aNcPDhw+RlZUFANizZw9kMhkGDBigUDewsLCAs7NznrqBjo4OhgwZIr+voaGBpk2bFvv/BJlMhn379qFnz54K43rmyq3/Hjx4EE2bNkXr1q0Vsvj6+iI6Olo+dFCu/P5PyzVmzBiF+8WpH+VStl5XFMrWtevUqSOvHwI5V8m6uLgoPCcGBga4ceMGIiMji5WJqCBsGKRKw9nZWeF+9erVoaKiIu8S/Pr1azx9+lR+S0hIKNJ+HR0d85TJZDIEBwfD2dkZUqkUJiYmMDU1xb///quw35iYGFSvXj3PeBI1atTI91g2NjZ51tXX14etrW2eMgDy8TBevHiB+Ph4rFmzBqampgq33MpK7sDJuezs7BTu51ZAPjTGRkHu378PFRWVQgeCzm3gcnFxUSjX0NCAk5OTfHkua2vrAgfgfv95uXfvHgRBwHfffZfnMZg1axaAvI/Bu2JjY+Hj4wMjIyPo6OjA1NQU7dq1A4Aiv1be9eLFC6SkpOQ5VyCnC49MJsszpsuHnpN27drhs88+Q2BgIExMTNC7d2+sX78+3zFk8iO8Nw5QYWJiYqCiopLntWphYQEDA4M8z1WNGjXyvHZr1qwJIGfMlezsbIX339OnT/M0+tWqVQseHh7w8vLCgQMHkJycLG/sLo73H08g5zH90Gs8JiYGzs7OeRq4a9euLV/+rvz+RgBAaGgo6tevLx/jxdTUFH/++We+r6cPPfe5x8zvb8f7ZZGRkUhISICZmVme90JycnK+7wNBEDjxCBHRO5KTkxUa4d73+eefo1WrVhgxYgTMzc0xcOBA7NixQ6lGwsLqOfl5v64rkUhQo0aNIo2vVxIxMTGwsrLK83gU9LlYXp+/ynj/sQNy6ikpKSl48eIFMjIy8tRTitJgWNBzeOPGDfTp0wf6+vrQ09ODqampvKEttx5Q0Ge7mppageN6v//Y5v5PkN//CjKZTH6syMhICIIAZ2fnPHWDW7du5akb5Pc/SVGew4K8ePECiYmJhXbbBnIek4LqzrnL31VQHUxNTS1PV+zi1I/epUy9riiUrWsX5X01e/ZsxMfHo2bNmnB1dcX06dPzzLBOVBwcY5Aqrfc/zPr27avwTaO3t/cHB8gFkO+3UPPnz8d3332HYcOGYc6cOTAyMoKKigomT55c7G+NgZxvo5Qpz20wyT3mkCFD5AMkv+/98S0+tM+KoLDxct5flvsYTJs2DZ07d853m4IaZLOzs9GxY0e8fv0aX3/9NWrVqgVtbW08fvwYPj4+JXpOlfGh50QikWDXrl0ICwvDH3/8gSNHjmDYsGFYsmQJwsLCCh0D0tjYuFiVudJqLHr48GGeytvJkyfzHVw9V79+/TBq1CjcvXs330rih5TXazy/1+nmzZvh4+MDT09PTJ8+HWZmZlBVVUVQUBDu379fplllMhnMzMywZcuWfJfnNw5TfHy8fIxJIqKq7tGjR0hISCiw3gDk/O3/+++/cfLkSfz55584fPgwfvvtN3z66ac4evRogX/X399HaSvoczs7O7tImUpDZahjvu/cuXNo3769QllUVNQHJ97L7zmMj49Hu3btoKenh9mzZ6N69erQ1NTElStX8PXXX4v2v4JEIsGhQ4fyXff9OmRleQ4Leg+927srV3HqR7mUrdcpo6h17aI8J23btsX9+/exf/9+HD16FGvXrkVwcDBWrVqFESNGlCgnVW1sGKRKIzIyUqHh4d69e5DJZPIP9CVLlig0jOROEFIcu3btQvv27bFu3TqF8vf/uba3t8fNmzfzXI3z7uy/pcHU1BS6urrIzs6Gh4dHqe1XmUah6tWrQyaT4ebNm3kmVshlb28PALhz545C99qMjAxERUWVKHvu/tTV1ZXeT0REBO7evYvQ0FB4eXnJy/Obwauoj4mpqSmqVauGO3fu5Fl2+/ZtqKio5Pl2t6iaN2+O5s2bY968edi6dSsGDx6M7du3F/qBX6tWLURFReUpL+h87O3tIZPJEBkZKf+WFsiZ5CY+Pl7+XObKvWLz3f3dvXsXQM5MagYGBnkezwYNGhR6nrkzQhf3m9jisre3x7///guZTKZQqczt+vP+uedn165dcHJywp49exQek9yrV4uTCcj/b8f7ZdWrV8dff/2FVq1aFemfzsePHyMjI0PheSYiqspyJxgr6IvGXCoqKujQoQM6dOiApUuXYv78+fjmm29w8uRJeHh4lPqV2O93DxQEAffu3VP48tfQ0BDx8fF5to2JiVGoeymTzd7eHn/99ReSkpIUrhpU5nOxqMcp6edvQfLrWnn37l1Uq1YNpqamkEqleeopFhYWxTrWqVOn8OrVK+zZswdt27aVl79fD3v3s/3dRsmsrCxER0cXOmmFsqpXrw5BEODo6Cjv0VFSyryGTE1Noaenh//++6/Q9ezt7QusO+cuLy5l60fvKmq9Ttn3lTJ17aIyMjLC0KFDMXToUCQnJ6Nt27YICAhgwyCVCLsSU6WxYsUKhfvLly8HAHTt2hVAzsybHh4e8lthXV4/RFVVNc83Zjt37swzhl3nzp3x+PFj/P777/KytLQ0/PLLL8U+dkF5PvvsM+zevTvfD9wXL14Ua7/a2tpFbpTx9PSEiooKZs+eneeb0NzHysPDAxoaGvjxxx8VHr9169YhISEB3bt3L1ZOADAzM4O7uztWr16NuLi4PMsLewxyv4F7N5MgCAgJCcmzrra2NgDkW+l+f5+dOnXC/v37Fbr4PHv2DFu3bkXr1q2hp6dX6D7e9+bNmzyvu9xG2A91J27RogX++++/POsVdD7dunUDACxbtkyhfOnSpQCQ57l68uSJwuxpiYmJ2LhxIxo2bAgLCwtoamoqvP88PDzk3WXz67qRmZmJjRs3QktLq0Tv1eLo1q0bnj59Kp8NGsippC9fvhw6OjryLuaFye81deHCBZw/f75YmaysrFCvXj1s3LgRycnJ8vLTp08jIiJCYd0BAwYgOzsbc+bMybOfrKysPM/15cuXARQ+kyARUVVx4sQJzJkzB46Ojhg8eHCB671+/TpP2fufyUWtMxTVxo0bFcY93LVrF+Li4uR1XSCn8SMsLExhuI4DBw7kGb5EmWzdunVDdnY2fvrpJ4Xy4OBgSCQSheOXRGl8/hbk/PnzCmPBPXz4EPv370enTp2gqqoKQ0PDPPUUTU3NYh0rvzpARkYGfv75Z4X1PvnkExgbG+OXX36RjwUIAFu2bCl2l92C9O3bF6qqqggMDMxTlxQEAa9evVJ6n8q8hlRUVODp6Yk//vgDly5dyrM8N1O3bt1w8eJFhfrS27dvsWbNGjg4OJSoTqhs/ehdRa3X5c5+XNT3FVD0unZRvP886ujooEaNGkUedoioILxikCqNqKgo9OrVC126dMH58+exefNmfPHFFx+8Kqk4evTogdmzZ2Po0KFo2bIlIiIisGXLFoVvYgFg1KhR+OmnnzBo0CBMmjQJlpaW2LJli7yiUZrfJC9YsAAnT55Es2bNMHLkSNSpUwevX7/GlStX8Ndff+Vbgf0QNzc3/Pbbb/Dz80OTJk2go6ODnj175rtujRo18M0332DOnDlo06YN+vbtC6lUivDwcFhZWSEoKAimpqbw9/dHYGAgunTpgl69euHOnTv4+eef0aRJE4VBjotjxYoVaN26NVxdXTFy5Eg4OTnh2bNnOH/+PB49eoTr16/nu12tWrVQvXp1TJs2DY8fP4aenh52796db6Usd+DqiRMnonPnzlBVVVWYMOZdc+fOxbFjx9C6dWuMHTsWampqWL16NdLT0/HDDz8ofX6hoaH4+eef0adPH1SvXh1JSUn45ZdfoKenJ69cFKR3796YM2cOTp8+jU6dOuU5n2+++QYDBw6Euro6evbsiQYNGsDb2xtr1qyRd4m5ePEiQkND4enpmae7Tc2aNTF8+HCEh4fD3Nwcv/76K549e4b169d/8LxGjRqFxMREtG3bFtbW1nj69Cm2bNmC27dvY8mSJYV2kS4Lvr6+WL16NXx8fHD58mU4ODhg165dOHv2LJYtW1bomFO5evTogT179qBPnz7o3r07oqKisGrVKtSpU0ehYU8Z8+fPR+/evdGqVSsMHToUb968wU8//YR69eop7LNdu3YYNWoUgoKCcO3aNXTq1Anq6uqIjIzEzp07ERISgn79+snXP3bsGOzs7NCoUaNi5SIiqqwOHTqE27dvIysrC8+ePcOJEydw7Ngx2Nvb4/fffy+0YWj27Nn4+++/0b17d9jb2+P58+f4+eefYWNjI584oXr16jAwMMCqVaugq6sLbW1tNGvWrMBx0T7EyMgIrVu3xtChQ/Hs2TMsW7YMNWrUUJjUbsSIEdi1axe6dOmCAQMG4P79+9i8ebPCZCDKZuvZsyfat2+Pb775BtHR0WjQoAGOHj2K/fv3Y/LkyXn2XVyl8flbkHr16qFz586YOHEipFKpvJEuMDCwVLK/q2XLljA0NIS3tzcmTpwIiUSCTZs25WmQ09DQQEBAACZMmIBPP/0UAwYMQHR0NDZs2JDvGOUlUb16dcydOxf+/v6Ijo6Gp6cndHV1ERUVhb1798LX1xfTpk1Tep/KvL7nz5+Po0ePol27dvD19UXt2rURFxeHnTt34syZMzAwMMCMGTOwbds2dO3aFRMnToSRkRFCQ0MRFRWF3bt35+kerAxl60fvKmq9LvcL7d9++w01a9aEkZER6tWrl+/YisrWtYuiTp06cHd3h5ubG4yMjHDp0iXs2rUL48ePV3pfRArKdtJjopLLnfr95s2bQr9+/QRdXV3B0NBQGD9+vJCamlqkfdjb2+eZ2v3kyZMCAGHnzp151k9LSxOmTp0qWFpaClpaWkKrVq2E8+fP55naXhAE4cGDB0L37t0FLS0twdTUVJg6daqwe/duAYAQFhYmX69du3ZC3bp1i5RNEAQBgDBu3DiFsmfPngnjxo0TbG1tBXV1dcHCwkLo0KGDsGbNmg+eV1RUlABAWL9+vbwsOTlZ+OKLLwQDAwMBgGBvb58nx/t+/fVXoVGjRoJUKhUMDQ2Fdu3aCceOHVNY56effhJq1aolqKurC+bm5sKYMWOEN2/eKKxT0OORm3PRokX5Hv/+/fuCl5eXYGFhIairqwvW1tZCjx49hF27duV5DE6ePCkvu3nzpuDh4SHo6OgIJiYmwsiRI4Xr16/neUyysrKECRMmCKampoJEIhHe/TMJQJg1a5ZCnitXrgidO3cWdHR0hGrVqgnt27cXzp07p7DO+vXrBQBCeHi4Qvn7Oa9cuSIMGjRIsLOzE6RSqWBmZib06NFDuHTpUr6Pxfvq168vDB8+PE/5nDlzBGtra0FFRUUAIERFRQmCIAiZmZlCYGCg4OjoKKirqwu2traCv7+/kJaWprB97mv0yJEjQv369QWpVCrUqlUr3/dOfrZt2yZ4eHgI5ubmgpqammBoaCh4eHgI+/fvL9L2uX8D3pXf+yM3q7e39wf3+ezZM2Ho0KGCiYmJoKGhIbi6uiq8DgSh8NeiTCYT5s+fL9jb2wtSqVRo1KiRcODAAcHb21vhfVTYPvJ7PW3fvl2oVauWIJVKhXr16gm///678Nlnnwm1atXKs/2aNWsENzc3QUtLS9DV1RVcXV2Fr776Snjy5Il8nezsbMHS0lL49ttvP/iYEBF9LHI/d3NvGhoagoWFhdCxY0chJCRESExMzLPN+581x48fF3r37i1YWVkJGhoagpWVlTBo0CDh7t27Ctvt379fqFOnjqCmpqZQpyionpO77N36ZG59YNu2bYK/v79gZmYmaGlpCd27dxdiYmLybL9kyRLB2tpakEqlQqtWrYRLly7lW0ctKNv7n1WCIAhJSUnClClTBCsrK0FdXV1wdnYWFi1aJMhkMoX1yuPzN3d/+dWP85ObafPmzYKzs7P8c/ndemBhCqqnFfYcnj17VmjevLmgpaUlWFlZCV999ZVw5MiRPPVPQRCEH3/8UV5faNq0qXD27FnBzc1N6NKli3ydgurvBWXLfb2+ePFCoXz37t1C69atBW1tbUFbW1uoVauWMG7cOOHOnTsfPK/8XhcFvYYKEhMTI3h5eQmmpqaCVCoVnJychHHjxgnp6enyde7fvy/069dPMDAwEDQ1NYWmTZsKBw4cUNhPYf+neXt7C9ra2gVmKEr96P33S1HrdYIgCOfOnRPc3NwEDQ0NhbpcfvVVZeva73s/59y5c4WmTZsKBgYGgpaWllCrVi1h3rx5QkZGRoGPB1FRSAShgo0wSvQRWLZsGaZMmYJHjx7B2tpa7DhURWzatAnjxo1DbGwsDAwMSm2/Dg4OqFevHg4cOFBq+6Sia9iwIUxNTfMdE/ND9u3bhy+++AL379+HpaVlGaQjIiIiZchkMpiamqJv376lPvwQEVFxcIxBohLKnUAhV1paGlavXg1nZ2c2ClK5Gjx4MOzs7PKMx0mVQ2ZmpsIYREDOAOfXr18vdHbnwixcuBDjx49noyAREZEI0tLS8nQx3rhxI16/fl3sz3YiotLGMQaJSqhv376ws7NDw4YNkZCQgM2bN+P27dvYsmWL2NGoilFRUfngbHBUcT1+/BgeHh4YMmQIrKyscPv2baxatQoWFhYYPXp0sfZZ3MlQiIiIqOTCwsIwZcoU9O/fH8bGxrhy5QrWrVuHevXqoX///mLHIyICwIZBohLr3Lkz1q5diy1btiA7Oxt16tTB9u3b8fnnn4sdjYgqEUNDQ7i5uWHt2rV48eIFtLW10b17dyxYsADGxsZixyMiIiIlOTg4wNbWFj/++CNev34NIyMjeHl5YcGCBdDQ0BA7HhERAIBjDBIREREREREREVVBHGOQiIiIiIiIiIioCmLDIBERERERERERURVUKccYlMlkePLkCXR1dSGRSMSOQ0RERFRhCIKApKQkWFlZQUXl4/0OmPVBIiIiovwpUx+slA2DT548ga2trdgxiIiIiCqshw8fwsbGRuwYZYb1QSIiIqLCFaU+WCkbBnV1dQHknKCenp7IaYioqrt27RratWuH06dPo2HDhmLHIaIqLjExEba2tvL60seK9UEiqkhYHySqwpZ/AiQ/BXQsgAmXxE4DQLn6YKVsGMztLqKnp8eKIBGJTkdHR/6Tf5OIqKL42LvXsj5IRBUJ64NEVZimKpApyflZwd7/RakPVsqGQSKiiqROnTqIjIz8qLvsEREREVHBWB8kqsKGHQJk2YCKqthJioUNg0REJaSpqYkaNWqIHYOIiIiIRML6IFEVZuggdoIS+XinqiMiKidRUVEYMmQIoqKixI5CRERERCJgfZCIKiteMUhEVEJv3rzBli1b4OfnB0dHR7HjEBFVeNnZ2QgICMDmzZvx9OlTWFlZwcfHB99++22pjo0ok8mQkZFRavsj+phpaGhARYXXjRQX64NEVFmxYZCIiIiIytXChQuxcuVKhIaGom7durh06RKGDh0KfX19TJw4sVSOkZGRgaioKMhkslLZH9HHTkVFBY6OjtDQ0BA7ChFR5RL1D5CdDqhKAcc2YqdRGhsGiYiIiKhcnTt3Dr1790b37t0BAA4ODti2bRsuXrxYKvsXBAFxcXFQVVWFra0tr4Ii+gCZTIYnT54gLi4OdnZ2H/2s5kREpWqPL5D0BNC1AqbeEjuN0tgwSERERETlqmXLllizZg3u3r2LmjVr4vr16zhz5gyWLl1a4Dbp6elIT0+X309MTCxw3aysLKSkpMDKygrVqlUr1exEHytTU1M8efIEWVlZUFdXFzsOERGVEzYMEhGVkKWlJWbNmgVLS0uxoxARVQozZsxAYmIiatWqBVVVVWRnZ2PevHkYPHhwgdsEBQUhMDCwSPvPzs4GAHaJJFJC7vslOzubDYPFwPogURXWYhyQngRIdcVOUiwSQRAEsUMoKzExEfr6+khISICenp7YcYiIiIgqjMpQT9q+fTumT5+ORYsWoW7durh27RomT56MpUuXwtvbO99t8rti0NbWNt/zTEtLQ1RUFBwdHaGpqVmm50L0seD7hojo46FMfZBXDBIRlVBiYiLOnz+PFi1aVNh/womIKpLp06djxowZGDhwIADA1dUVMTExCAoKKrBhUCqVQiqVlmdMIqIiY32QiCorNgwSEZXQvXv30KVLF1z21UZjS1Wx4xDRxyQgQewEZSIlJSXPhCCqqqqcQZiIKi15ffDyZTRu3FjsOET0juEbwpVaf51PkzJKUjFxijYiIiIiKlc9e/bEvHnz8OeffyI6Ohp79+7F0qVL0adPH7GjVRk7d+5ErVq1oKmpCVdXVxw8eFDsSERERCQCNgwSERERUblavnw5+vXrh7Fjx6J27dqYNm0aRo0ahTlz5ogdrULJyMgok/2eO3cOgwYNwvDhw3H16lV4enrC09MT//33X5kcj4iI6KP2c0vgB6ecn5UQuxITERERUbnS1dXFsmXLsGzZMrGjVCju7u6oV68e1NTUsHnzZri6uuLkyZOlfpyQkBB06dIF06dPBwDMmTMHx44dw08//YRVq1aV+vGIiIg+aqlvgJRXgGrlHAuZVwwSEZWQVCpFdUMJpBxekIiISig0NBQaGho4e/ZsgY10W7ZsgY6OTqG3f/75p8BjnD9/Hh4eHgplnTt3xvnz50v1XIiqEqlUiurVq3OSJKKqyMAOMHTM+VkJ8YpBIqISqlu3Lu5N1BU7BhERfUBcXBzi4uIUygwNDeHo6Ii0tDTcvHkzzza5kwjcuXMHb9++VVjm4OAAIyMjvHjxAg8fPlRYpqurC2dnZ6UzOjs744cffih0nV69eqFZs2aFrmNtbV3gsqdPn8Lc3FyhzNzcHE+fPi16UCJSULduXdy7d0/sGEQkhuFHxE5QIko1DLq7u6Nhw4bs9kFERERElc7q1asRGBioUDZ48GBs3rwZjx49gpubW55tBEEAAPj4+CAsLExh2aZNmzBkyBDs2LED48ePV1jWqVMnHDmi/D8K+WV4n66uLnR1+YUUERERlVypXjG4Z88erFq1CpcvX8br169x9epVNGzYUGGdNWvWYOvWrbhy5QqSkpLw5s0bGBgYlGYMIqJy9e+//6LDoiQc96qG+ubsT0xEVFGNGjUKvXr1UigzNDQEANjY2ODy5csFbrthw4Z8rxgEgAEDBqBFixYKy4rbcKetrf3BdbZs2YJRo0YVus6hQ4fQpk2bfJdZWFjg2bNnCmXPnj2DhYVF0YMSkYJ///0XHTp0wPHjx1G/fn2x4xARFVmpNgy+ffsWrVu3xoABAzBy5Mh810lJSUGXLl3QpUsX+Pv7l+bhiYhEkZWVhZcpArJkYichIqLCWFpawtLSMt9lmpqa8m7D+XFxcSlwmampKUxNTUucr6hK2pW4RYsWOH78OCZPniwvO3bsWJ7GTSIquqysLLx8+RJZWVliRyEiUorSDYNZWVkYP348Nm3aBHV1dYwZMwazZ8+GRCLBl19+CQCIjo4ucPvcCsipU6eKk5eIiIiIqEoraVfiSZMmoV27dliyZAm6d++O7du349KlS1izZk0ppiQiIqoiTi0A0hIBTT3AfYbYaZSm9KzEoaGhUFNTw8WLFxESEoKlS5di7dq1ZZFNLj09HYmJiQo3IiIiIiJSXsuWLbF161asWbMGDRo0wK5du7Bv3z7Uq1dP7GhERESVz+VQIGxFzs9KSOkrBm1tbREcHAyJRAIXFxdEREQgODi4wK7DpSEoKCjPQNFERERERB+T8uxR079/f/Tv37/cjkdEREQVk9JXDDZv3hwSiUR+v0WLFoiMjER2dnapBnuXv78/EhIS5LeHDx+W2bGIiJRVs2ZNnBtWDTWNlf6TSkREREQfgZo1a+LcuXOoWbOm2FGIqLwN2goMP5bzsxIq1clHyopUKoVUKhU7BhFRvnR0dNDCtlL8OSUiIiKiMqCjo8MJfIiqKqtGYicoEaUvb7lw4YLC/bCwMDg7O0NVVbXUQhERVSaPHj2C35E0PErktMREREREVdGjR4/g5+eHR48eiR2FiEgpSjcMxsbGws/PD3fu3MG2bduwfPlyTJo0CQDw+vVrXLt2DTdv3gQA3LlzB9euXcPTp0/l2z99+hTXrl3DvXv3AAARERG4du0aXr9+XRrnQ0RU7p4/f47gsAw8fyuIHYWIiIiIRPD8+XMEBwfj+fPnYkchIlKK0n3fvLy8kJqaiqZNm0JVVRWTJk2Cr68vAOD333/H0KFD5esOHDgQADBr1iwEBAQAAFatWqUwkUjbtm0BAOvXr4ePj09xz4OIiIiIiIiIiKh8PbsBZGcCquqAeV2x0yhNqYbBd2dKW7lyZZ7lPj4+H2zcCwgIkDcSEhERERERERERVVqb+wFJTwBdK2DqLbHTKI1TaBIREREREREREVVBnEaTiKiETExMMPYTdZhUk4gdhYiIiIhEYGJigrFjx8LExETsKERU3hoOAtISAE19sZMUCxsGiYhKyM7ODiu6a4kdg4iIiIhEYmdnhxUrVogdg4jE0OF7sROUCLsSExGVUEpKCq7EZSMlk7MSExERAcDTp0/RsWNHaGtrw8DAQOw4RGUuJSUFV65cQUpKithRiIiUwisGiYhK6Pbt23Bb8xaXL19G48aNxY5DRESVlI+PD0JDQzFq1CisWrVKYdm4cePw888/w9vbGxs2bBAnoBKCg4MRFxeHa9euQV8//65VPj4+iI+Px759+8olU0BAALZv346HDx9CQ0MDbm5umDdvHpo1a1amx12xYgUWLVqEp0+fokGDBli+fDmaNm1a4PqZmZkICgpCaGgoHj9+DBcXFyxcuBBdunSRr/P3339j0aJFuHz5MuLi4rB37154enoq7Cc5ORkzZszAvn378OrVKzg6OmLixIkYPXp0WZ1qlXb79m24ubmxPkhElQ6vGCQiIiIiqiBsbW2xfft2pKamysvS0tKwdetW2NnZiZhMOffv34ebmxucnZ1hZmYmdhwAQM2aNfHTTz8hIiICZ86cgYODAzp16oQXL16U2TF/++03+Pn5YdasWbhy5QoaNGiAzp074/nz5wVu8+2332L16tVYvnw5bt68idGjR6NPnz64evWqfJ23b9+iQYMGhXZd9fPzw+HDh7F582bcunULkydPxvjx4/H777+X6jkSEVHlxoZBIiIiIqIKonHjxrC1tcWePXvkZXv27IGdnR0aNWqksK5MJkNQUBAcHR2hpaWFBg0aYNeuXfLl2dnZGD58uHy5i4sLQkJCFPbh4+MDT09PLF68GJaWljA2Nsa4ceOQmZlZaM6VK1eievXq0NDQgIuLCzZt2iRf5uDggN27d2Pjxo2QSCTw8fHJs31AQABCQ0Oxf/9+SCQSSCQSnDp1CgAQERGBTz/9FFpaWjA2Noavry+Sk5PzZA4MDISpqSn09PQwevRoZGRkFJr5iy++gIeHB5ycnFC3bl0sXboUiYmJ+PfffwvdriSWLl2KkSNHYujQoahTpw5WrVqFatWq4ddffy1wm02bNmHmzJno1q0bnJycMGbMGHTr1g1LliyRr9O1a1fMnTsXffr0KXA/586dg7e3N9zd3eHg4ABfX180aNAAFy9eLNVzJCKq8jb0AFY0y/lZCbFhkIiIiIioAhk2bBjWr18vv//rr79i6NChedYLCgrCxo0bsWrVKty4cQNTpkzBkCFDcPr0aQA5DYc2NjbYuXMnbt68ie+//x4zZ87Ejh07FPZz8uRJ3L9/HydPnkRoaCg2bNhQaHflvXv3YtKkSZg6dSr+++8/jBo1CkOHDsXJkycBAOHh4ejSpQsGDBiAuLi4PI2RADBt2jQMGDAAXbp0QVxcHOLi4tCyZUu8ffsWnTt3hqGhIcLDw7Fz50789ddfGD9+vML2x48fx61bt3Dq1Cls27YNe/bsQWBgYJEf44yMDKxZswb6+vpo0KBBgevNnz8fOjo6hd5iY2MLPMbly5fh4eEhL1NRUYGHhwfOnz9f4DHT09OhqampUKalpYUzZ84U+fwAoGXLlvj999/x+PFjCIKAkydP4u7du+jUqZNS+yEiog94dR94cTvnZyXEMQaJiEpIRUUFurq6UFHhdy1EREXh4OCAmJiYPOVjx44t21k9z/0EnP///fddAzi2+d+yN9HAr11zfq/dA+i2SHHbrQOBuOs5v0+9pbjs6hbgxNyc37suBOr0KlHMIUOGwN/fX/4YnT17Ftu3b5dfUQfkNB7Nnz8ff/31F1q0aAEAcHJywpkzZ7B69Wq0a9cO6urqCo1ljo6OOH/+PHbs2IEBAwbIyw0NDfHTTz9BVVUVtWrVQvfu3XH8+HGMHDky33yLFy+Gj48Pxo4dCyCny2pYWBgWL16M9u3bw9TUFFKpFFpaWrCwsMh3Hzo6OtDS0kJ6errCOqGhoUhLS8PGjRuhra0NAPjpp5/Qs2dPLFy4EObm5gAADQ0N/Prrr6hWrRrq1q2L2bNnY/r06ZgzZ06hn8cHDhzAwIEDkZKSAktLSxw7dgwmJiYFrj969GiFxyo/VlZW+Za/fPkS2dnZ8sy5zM3Ncfv27QL317lzZyxduhRt27ZF9erVcfz4cezZswfZ2dmF5njf8uXL4evrCxsbG6ipqUFFRQW//PIL2rZtq9R+qGhYHySqwjS0AQ3dnJ+VEBsGiYhKqGHDhkhMTBQ7BhFRpREeHq7QyPHff/+hY8eO6N+/f9keOD0JSHqS83t2uuIyWfb/lqXG59025eX/lr8vM+V/yzJT819HCaampujevTs2bNgAQRDQvXv3PI1X9+7dQ0pKCjp27KhQnpGRodDleMWKFfj1118RGxuL1NRUZGRkoGHDhgrb1K1bF6qqqvL7lpaWiIiIKDDfrVu34Ovrq1DWqlWrfK8MVNatW7fQoEEDeaNg7r5lMhnu3Lkjb2Rr0KABqlWrJl+nRYsWSE5OxsOHD3HmzBmMGjVKvuzQoUNo0yanEbh9+/a4du0aXr58iV9++QUDBgzAhQsXChwH0cjICEZGRiU+L2WEhIRg5MiRqFWrFiQSCapXr46hQ4cW2v04P8uXL0dYWBh+//132Nvb4++//8a4ceNgZWWlcBUjlQ7WB4mqsAmXxE5QImwYJCIqDQH5z7hIRJVcQILYCT5KpqamCvcXLFiA6tWro127dmV7YKkuoPv/V3epShWXqaj+b5mWQd5tq5n8b/n71Kv9b5m6VqlEHTZsmLz7bH5XUeaOuffnn3/C2tpaYZlUmnNu27dvx7Rp07BkyRK0aNECurq6WLRoES5cuKAYX11d4b5EIoFMJiuV8xBDr169FGYafvfx0dbWRo0aNVCjRg00b94czs7OWLduHfz9/fPd1/z58zF//vxCj3fz5s18J4YxMTGBqqoqnj17plD+7NmzAq+kBHLeH/v27UNaWhpevXoFKysrzJgxA05OToXmeFdqaipmzpyJvXv3onv37gCA+vXr49q1a1i8eDEbBomISI4Ng0REJXTz5k30/zkZO/troY6p6oc3ICIiuYyMDGzevBl+fn6QSCQFrpeeno709P9d5VesK3Najs+55cfQIW8X4Xd9sb3gZY0G59xKUZcuXZCRkQGJRILOnTvnWV6nTh1IpVLExsYW2KB69uxZtGzZUt7lF8iZLbikateujbNnz8Lb21vhWHXq1FFqPxoaGnm6x9auXRsbNmzA27dv5VcNnj17FioqKnBxcZGvd/36daSmpkJLK6chNiwsDDo6OrC1tZV36SwKmUym8Lp6X0m6EmtoaMDNzQ3Hjx+Hp6en/HjHjx/PM2ZifjQ1NWFtbY3MzEzs3r37gznelZmZiczMzDzdWlVVVSt1o29FdvPmTfTv3x87d+5U+r1ARCQmNgwSEZVQWloabr6QIS1L7CRERJXPvn37EB8fn+/Mte8KCgpSanKJyk5VVRW3bt2S//4+XV1dTJs2DVOmTIFMJkPr1q2RkJCAs2fPQk9PD97e3nB2dsbGjRtx5MgRODo6YtOmTQgPD4ejo2OJsk2fPh0DBgxAo0aN4OHhgT/++AN79uzBX3/9pdR+HBwccOTIEdy5cwfGxsbQ19fH4MGDMWvWLHh7eyMgIAAvXrzAhAkT8OWXXyqM1ZeRkYHhw4fj22+/RXR0NGbNmoXx48cXOL7b27dvMW/ePPTq1QuWlpZ4+fIlVqxYgcePHxfahb2kXYn9/Pzg7e2NTz75BE2bNsWyZcvw9u1bhclkvLy8YG1tjaCgIADAhQsX8PjxYzRs2BCPHz9GQEAAZDIZvvrqK/k2ycnJuHfvnvx+VFQUrl27BiMjI9jZ2UFPTw/t2rXD9OnToaWlBXt7e5w+fRobN27E0qVLi30+VLC0tDTcvHkTaWlpYkchIlIKGwaJiIiISDTr1q1D165dC7zqKpe/vz/8/Pzk9xMTE2Fra1vW8USlp6dX6PI5c+bA1NQUQUFBePDgAQwMDNC4cWPMnDkTADBq1ChcvXoVn3/+OSQSCQYNGoSxY8fi0KFDJcrl6emJkJAQLF68GJMmTYKjoyPWr18Pd3d3pfYzcuRInDp1Cp988gmSk5Nx8uRJuLu748iRI5g0aRKaNGmCatWq4bPPPsvTmNWhQwc4Ozujbdu2SE9Px6BBgxAQEFDgsVRVVXH79m2Ehobi5cuXMDY2RpMmTfDPP/+gbt26xXgUiubzzz/Hixcv8P333+Pp06do2LAhDh8+rNDIGRsbq9CgmZaWhm+//RYPHjyAjo4OunXrhk2bNsHAwEC+zqVLl9C+fXv5/dz3hre3t3xG6e3bt8Pf3x+DBw/G69evYW9vj3nz5mH06NFldr5ERFXShTVARlLOBCTNfD+8fgUjEQRBEDuEshITE6Gvr4+EhIQPVpiIiMralStX4Obmhsu+2mhsya7ERB+VSjjGYGWqJ8XExMDJyQl79uxB7969ldq2sPNMS0tDVFQUHB0doampWZqRqQLw8fFBfHw89u3bJ3aUjwrfNyUjrw9evozGjRuLHYeI3jF8Q7hS66/zaaLcAZbUzpmETNeq8GFJypEy9UHOpU5EREREoli/fj3MzMzkkyMQERERUfkq9a7E7u7uaNiwIZYtW1bauyYiqpCcnJywf6AWnAz5XQsRUVHJZDKsX78e3t7eUFPj6DZEVLk5OTlh//79Ss0eTUQfid4/AVnpgJpU7CTFUu61sGfPnuHrr7/G0aNHER8fj7Zt22L58uVwdnYu7yhERKXCwMAAvVzUxY5BRFSp/PXXX4iNjcWwYcPEjkKVTO4YekQViYGBAXr16iV2DCISQ40OYicokXK9vEUQBHh6euLBgwfYv38/rl69Cnt7e3h4eODt27flGYWIqNQ8ffoUQf+k42myTOwoRESVRqdOnSAIAmrWrCl2FCKiEnv69CmCgoLw9OlTsaMQESmlTBoGs7KyMH78eOjr68PExATfffcdBEFAZGQkwsLCsHLlSjRp0gQuLi5YuXIlUlNTsW3btrKIQkRU5p48eYKZJ9LxJKnSzeVERERERKXgyZMnmDlzJp48eSJ2FCIipZRJw2BoaCjU1NRw8eJFhISEYOnSpVi7di3S09MBQGGWKxUVFUilUpw5c6bA/aWnpyMxMVHhRkRERERUGEHgFzZERcX3CxFRMSU9BRIe5/yshMpkjEFbW1sEBwdDIpHAxcUFERERCA4OxvXr12FnZwd/f3+sXr0a2traCA4OxqNHjxAXF1fg/oKCghAYGFgWUYmIiIjoI6Ourg6JRIIXL17A1NQUEolE7EhEFZogCHjx4gUkEgnU1TluMhGRUta0B5KeALpWwNRbYqdRWpk0DDZv3lyhAtaiRQssWbIEKioq2LNnD4YPHw4jIyOoqqrCw8MDXbt2LfQbKn9/f/j5+cnvJyYmwtbWtiyiExEREVElp6qqChsbGzx69AjR0dFixyGqFCQSCWxsbKCqqip2FCIiKkflPiuxm5sbrl27hoSEBGRkZMDU1BTNmjXDJ598UuA2UqkUUmnlnPaZiD5+BgYG6FdHDQaavCKFiKii0NHRgbOzMzIzM8WOQlQpqKurs1GwBAwMDNCvXz8YGBiIHYWIylvNTkDqG0DLUOwkxVImDYMXLlxQuB8WFgZnZ2eFDxp9fX0AQGRkJC5duoQ5c+aURRQiojLn5OSEnf2riR2DiIjeo6qqyoYOIioXTk5O2Llzp9gxiEgMPUPETlAiZTL5SGxsLPz8/HDnzh1s27YNy5cvx6RJkwAAO3fuxKlTp/DgwQPs378fHTt2hKenJzp16lQWUYiIylxGRgYeJcqQkc1Bu4mIiIiqooyMDDx69AgZGRliRyEiUkqZXDHo5eWF1NRUNG3aFKqqqpg0aRJ8fX0BAHFxcfDz88OzZ89gaWkJLy8vfPfdd2URg4ioXPz3339wC07GZV9tNLbklSlEREREVc1///0HNzc3XL58GY0bNxY7DhFRkZV6w+CpU6fkv69cuTLP8okTJ2LixImlfVgiIiIiIiIiIiJSQrlPPkJERERERERERPRR2OEFvH0FaBsDAzaKnUZpbBgkIiIiIiIiIiIqjofhQNITQNdK7CTFUiaTjxAREREREREREVHFxisGiYhKqGHDhkj7RhfqnHeEiIiIqEpq2LAh0tLSoK6uLnYUIipvk66JnaBE2DBIRFRCKioqkKpJxI5BRERERCJRUVGBVCoVOwYRiUGtcr/32TBIRFRCd+/ehe+pRlizZg1q1qwpdhwiIiIiKmd3796Fr68v64NEVOlwjEEiohJKTk7G6dOnkZycLHYUIiIiIhIB64NEVFnxikEiIiIiIiIiIqLi+HcnkJkCqFcD6vcXO43S2DBIRERERERERERUHMe+B5KeALpWlbJhkF2JiYiIiIiIiIiIqiBeMUhEVEJ2dnb4pacm7La3A37n9y1ElVpAgtgJiIioErKzs8Mvv/wCOzs7saMQUXnrOPt/XYkrITYMEhGVkImJCUY01hA7BhERERGJxMTEBCNGjBA7BhGJoRJ2H34XL20hIiqhly9fYu2VDLxMkYkdhYiIiIhE8PLlS6xduxYvX74UOwoRkVLYMEhEVEKxsbEY+UcaYhMEsaMQEVUajx8/xpAhQ2BsbAwtLS24urri0qVLYsciIiqW2NhYjBw5ErGxsWJHISJSCrsSExEREVG5evPmDVq1aoX27dvj0KFDMDU1RWRkJAwNDcWORkRERKScrPT//a4mFS9HMbFhkIiIiIjK1cKFC2Fra4v169fLyxwdHUVMRERERFRMIQ2BpCeArhUw9ZbYaZRW6l2J3d3dMXny5NLeLRERERF9JH7//Xd88skn6N+/P8zMzNCoUSP88ssvhW6Tnp6OxMREhRsRERERlUy5jzEYEBCAWrVqQVtbG4aGhvDw8MCFCxfKOwYRUanR0dFBO3tV6HBiYiKiInnw4AFWrlwJZ2dnHDlyBGPGjMHEiRMRGhpa4DZBQUHQ19eX32xtbcsxMRFR4XR0dNCuXTvo6OiIHYWIypttE8C+dc7PSqjcuxLXrFkTP/30E5ycnJCamorg4GB06tQJ9+7dg6mpaXnHISIqsZo1a+KUj7bYMYiIKg2ZTIZPPvkE8+fPBwA0atQI//33H1atWgVvb+98t/H394efn5/8fmJiIhsHiajCqFmzJk6dOiV2DCISw4CNYicokTK5YjArKwvjx4+Hvr4+TExM8N1330EQcmbr/OKLL+Dh4QEnJyfUrVsXS5cuRWJiIv7999+yiEJEVOZkMhnSswTIBM5KTERUFJaWlqhTp45CWe3atQudzVMqlUJPT0/hRkRUUchkMqSnp0Mmk4kdhYhIKWXSMBgaGgo1NTVcvHgRISEhWLp0KdauXZtnvYyMDKxZswb6+vpo0KBBWUQhIipz165dg+a8JFx7yoogEVFRtGrVCnfu3FEou3v3Luzt7UVKRERUMteuXYOmpiauXbsmdhQiIqWUSVdiW1tbBAcHQyKRwMXFBREREQgODsbIkSMBAAcOHMDAgQORkpICS0tLHDt2DCYmJgXuLz09Henp/5v+mYNNExEREVVeU6ZMQcuWLTF//nwMGDAAFy9exJo1a7BmzRqxoxERERFVKWVyxWDz5s0hkUjk91u0aIHIyEhkZ2cDANq3b49r167h3Llz6NKlCwYMGIDnz58XuD8ONk1ERET08WjSpAn27t2Lbdu2oV69epgzZw6WLVuGwYMHix2NiIiISDl/TAJ2eOX8rITKfVZiANDW1kaNGjXQvHlzrFu3Dmpqali3bl2B6/v7+yMhIUF+e/jwYTmmJSIiIqLS1qNHD0RERCAtLQ23bt2S9ywhIiIiqlTuHgVu7s/5WQmVSVfiCxcuKNwPCwuDs7MzVFVV810/d6DWgkilUkil0lLNSEREREREREREVJWVScNgbGws/Pz8MGrUKFy5cgXLly/HkiVL8PbtW8ybNw+9evWCpaUlXr58iRUrVuDx48fo379/WUQhIipz9erVw8MpOjDTlnx4ZSIiIiL66NSrVw8PHz6EmZmZ2FGIqLz5ngRk2YBK/hfDVXRl0jDo5eWF1NRUNG3aFKqqqpg0aRJ8fX2Rnp6O27dvIzQ0FC9fvoSxsTGaNGmCf/75B3Xr1i2LKEREZU5DQwM2eqKMzEBEREREFYCGhgZsbGzEjkFEYtC1EDtBiZR6w+CpU6fkv69cuVJhmaamJvbs2VPahyQiEtWDBw/w9c4ULPTQhJMhGwiJiIiIqpoHDx7g66+/xsKFC+Hk5CR2HCKiIuN/sEREJRQfH49dN7MQnyaIHYWIiIiIRBAfH49du3YhPj5e7ChEREopk67EREREREREREREH717x4GsdEBNCtToIHYapbFhkIiIiIiIiIiIqDj2jweSngC6VsDUW2KnURq7EhMREREREREREVVBvGKQiKiErKysMP9TKax0JWJHISIiIiIRWFlZYf78+bCyshI7ChGVt9ZTgIwkQENX7CTFwoZBIqISsrCwgP/xNLFjEBEREZFILCws4O/vL3YMIhJDM1+xE5QIuxITEZVQfHw8fv/9d85CR0RERFRFsT5IRJUVGwaJiErowYMH6N27Nx48eCB2FCIiIiISAeuDRFRZsWGQiIiIiIiIiIioCuIYg0RERERERERERMWx/BMg6SmgawFMuCR2GqXxikEiIiIiIiIiIqLiyHibMytxxluxkxQLrxgkIiohTU1NqBvbocfPF6BhEid2HCJSQvSC7mJHICKij4Cmpibq1KkDTU1NsaMQUXkzrg5o6gHapmInKRY2DBIRlVCdOnVgNeJnsWMQERERkUjq1KmDGzduiB2DiMTgc0DsBCXCrsRERERERERERERVEK8YJCIqoWvXriE2uD8svlgIDXMnseMQERERUTm7du0a2rZti7///hsNGzYUOw7RR234hnCxI3xUeMUgEVEJyWQyCBmpEASZ2FGIiIiISAQymQxJSUmQyVgfJKLKhVcMEhERERERERERFcfx2UBaAqCpD3T4Xuw0Siv1Kwbd3d0xefLk0t4tERERERERERFRxXJtGxC+NudnJSRqV+LRo0dDIpFg2bJlYsYgIiIionIUEBAAiUSicKtVq5bYsYiIiIiqHNG6Eu/duxdhYWGwsrISKwIRUamoVasWLLyXQd3YRuwoRESVRt26dfHXX3/J76upcYQbIqq8atWqhcuXL/NLDqKqaMguIDsTUFUXO0mxlMkVg1lZWRg/fjz09fVhYmKC7777DoIgyJc/fvwYEyZMwJYtW6CuXjkfOCKiXNWqVYPUogZU1DXFjkJEVGmoqanBwsJCfjMxMRE7EhFRsVWrVg2NGzdGtWrVxI5CROXNvC5g1TDnZyVUJg2DoaGhUFNTw8WLFxESEoKlS5di7dq1AHJma/ryyy8xffp01K1btActPT0diYmJCjcioooiNjYWr46uRFbic7GjEBFVGpGRkbCysoKTkxMGDx6M2NhYsSMRERVbbGwsxo0bx79lRFTplEnDoK2tLYKDg+Hi4oLBgwdjwoQJCA4OBgAsXLgQampqmDhxYpH3FxQUBH19ffnN1ta2LGITERXLy5cvkXz1T2Sn8EsLIqKiaNasGTZs2IDDhw9j5cqViIqKQps2bZCUlFTgNvyimIgqspcvX+Lnn3/Gy5cvxY5CRKSUMmkYbN68OSQSifx+ixYtEBkZicuXLyMkJAQbNmxQWP4h/v7+SEhIkN8ePnxYFrGJiIiIqBx07doV/fv3R/369dG5c2ccPHgQ8fHx2LFjR4Hb8ItiIiIiqpCeXAUeXsz5WQmV66zEp06dwvPnz2FnZwc1NTWoqakhJiYGU6dOhYODQ4HbSaVS6OnpKdyIiIiI6ONgYGCAmjVr4t69ewWuwy+KiYiIqELa9gWwrmPOz0qoTKZ/u3DhgsL9sLAwODs7w8fHB507d1ZY1rlzZ3z55ZcYOnRoWUQhIiIiogouOTkZ9+/fx5dfflngOlKpFFKptBxTEREREX38yqRhMDY2Fn5+fhg1ahSuXLmC5cuXY8mSJTA2NoaxsbHCuurq6rCwsICLi0tZRCEiKnNmZmbQ/aQ3VKsZiB2FiKhSmDZtGnr27Al7e3s8efIEs2bNgqqqKgYNGiR2NCKiYjEzM8OUKVNgZmYmdhQiKm9u3kBaIqBZOXu3lknDoJeXF1JTU9G0aVOoqqpi0qRJ8PX1LYtDERGJzsbGBkYdRoodg4ioXDx48ABOTk4l2sejR48waNAgvHr1CqampmjdujXCwsJgampaSimJiMqXjY0Nli5dKnYMIhKD+wyxE5RIqTcMnjp1Sv77ypUrP7h+dHR0aUcgIipXycnJSH98C+qmDlDR0BI7DhFRmapRowbatWuH4cOHo1+/ftDU1FR6H9u3by+DZERE4klOTkZERARcXV2ho6MjdhwioiIr18lHiIg+Rnfv3sXTzdOR+fqx2FGIiMrclStXUL9+ffj5+cHCwgKjRo3CxYsXxY5FRCSqu3fvomXLlrh7967YUYiIlMKGQSIiIiIqsoYNGyIkJARPnjzBr7/+iri4OLRu3Rr16tXD0qVL8eLFC7EjEhEREVERsWGQiIiIiJSmpqaGvn37YufOnVi4cCHu3buHadOmwdbWFl5eXoiLixM7IhEREVHZW9cZCGmY87MSYsMgERERESnt0qVLGDt2LCwtLbF06VJMmzYN9+/fx7Fjx/DkyRP07t1b7IhEREREZS8+FngTlfOzEiqTWYmJiKoSNTU1qGjpQaKiKnYUIqIyt3TpUqxfvx537txBt27dsHHjRnTr1g0qKjnfNzs6OmLDhg1wcHAQNygRUTlSU1ODiYkJ1NT4LzZRlaNlCGSn5/yshPhXi4iohOrXr4/slASxYxARlYuVK1di2LBh8PHxgaWlZb7rmJmZYd26deWcjIhIPPXr1+cYq0RV1dhzYicoETYMEhEREVGRHTt2DHZ2dvIrBHMJgoCHDx/Czs4OGhoa8Pb2FikhERERERUVxxgkIiqhGzduoEaNGrhx44bYUYiIylz16tXx8uXLPOWvX7+Go6OjCImIiMTH+iARVVZsGCQiKqH09HTcv38f6enpYkchIipzgiDkW56cnAxNTc1yTkNEVDGwPkhElRW7EhMRERHRB/n5+QEAJBIJvv/+e1SrVk2+LDs7GxcuXEDDhg1FSkdEREQkknM/AelJgFQXaDle7DRKY8MgEVEp6f7jP5BaxIkdg4gKEL2gu9gRKrWrV68CyLliMCIiAhoaGvJlGhoaaNCgAaZNmyZWPCIiIiJxnF8BJD0BdK3YMEhEREREH6eTJ08CAIYOHYqQkBDo6emJnIiIiIiISooNg0REJVSjRg2Y9Q+EuqGV2FGIiMrc+vXrxY5ARFTh1KhRA4cPH0aNGjXEjkJE5a3vGiA7HVCVip2kWNgwSERUQnp6etBychM7BhFRmenbty82bNgAPT099O3bt9B19+zZU06piIgqDj09PXTu3FnsGEQkBsc2YicoEc5KTERUQnFxcYg/swVZya/FjkJEVCb09fUhkUjkvxd2IyKqiuLi4hAQEIC4OI43TUSVC68YJCIqobi4OCSc3QatGs2gpmMkdhwiolL3bvdhdiUmIsorLi4OgYGB6NWrFywtLcWOQ0RUZKV+xaC7uzsmT55c2rslIiIiogogNTUVKSkp8vsxMTFYtmwZjh49KmIqIiIiIpG8iQZe3c/5WQmVe1diHx8fSCQShVuXLl3KOwYRERERFUPv3r2xceNGAEB8fDyaNm2KJUuWoHfv3li5cqXI6YiIiIjK2a9dgeWNc35WQqKMMdilSxfExcXJb9u2bRMjBhEREREp6cqVK2jTJmeQ7V27dsHCwgIxMTHYuHEjfvzxR5HTEREREZEyyqRhMCsrC+PHj4e+vj5MTEzw3XffQRAE+XKpVAoLCwv5zdDQsCxiEBGVC0NDQ2jXcYeKpo7YUYiIylxKSgp0dXUBAEePHkXfvn2hoqKC5s2bIyYmRuR0RETiMDQ0xODBg/m/LVFVVLsH4Dog52clVCYNg6GhoVBTU8PFixcREhKCpUuXYu3atfLlp06dgpmZGVxcXDBmzBi8evWqLGIQEZULR0dHmPScBnUDC7GjEBGVuRo1amDfvn14+PAhjhw5gk6dOgEAnj9/Dj09PZHTERGJw9HREZs3b4ajo6PYUYiovHVbBHz2S87PSqhMZiW2tbVFcHAwJBIJXFxcEBERgeDgYIwcORJdunRB37594ejoiPv372PmzJno2rUrzp8/D1VV1Xz3l56ejvT0dPn9xMTEsohNRFQsaWlpyHzzBGq6JpCoaYgdh4ioTH3//ff44osvMGXKFHTo0AEtWrQAkHP1YKNGjUROR0QkjrS0NDx69Ag2NjbQ1NQUOw4RUZGVyRWDzZs3h0Qikd9v0aIFIiMjkZ2djYEDB6JXr15wdXWFp6cnDhw4gPDwcJw6darA/QUFBUFfX19+s7W1LYvYRETFcvPmTTxZ44uMl7FiRyEiKnP9+vVDbGwsLl26hMOHD8vLO3TogODg4GLtc8GCBZBIJJg8eXIppSQiKl83b96Es7Mzbt68KXYUIiKliDL5yLucnJxgYmKCe/fuFbiOv78/EhIS5LeHDx+WY0IiIiIiepeFhQUaNWoEFZX/VSWbNm2KWrVqKb2v8PBwrF69GvXr1y/NiERERERUBGXSlfjChQsK98PCwuDs7JxvV+FHjx7h1atXsLS0LHB/UqkUUqm01HMSERERkXLevn2LBQsW4Pjx43j+/DlkMpnC8gcPHhR5X8nJyRg8eDB++eUXzJ07t7SjEhEREZW9rQOBlJdANRPgi+1ip1FamTQMxsbGws/PD6NGjcKVK1ewfPlyLFmyBMnJyQgMDMRnn30GCwsL3L9/H1999RVq1KiBzp07l0UUIiIiIipFI0aMwOnTp/Hll1/C0tJSYfgYZY0bNw7du3eHh4cHGwaJiIiocoq7DiQ9AXStxE5SLGXSMOjl5YXU1FQ0bdoUqqqqmDRpEnx9fZGWloZ///0XoaGhiI+Ph5WVFTp16oQ5c+bwikAiIiKiSuDQoUP4888/0apVqxLtZ/v27bhy5QrCw8OLtD4noyMiIiIqfaXeMPjuJCIrV65UWKalpYUjR46U9iGJiETVuHFj2H99QOwYRETlwtDQEEZGRiXax8OHDzFp0iQcO3asyLN3BgUFITAwsETHJSIqK40bN4YgCGLHICIxTL0ldoISEX3yESIiIiKqPObMmYPvv/8eKSkpxd7H5cuX8fz5czRu3BhqampQU1PD6dOn8eOPP0JNTQ3Z2dl5tuFkdERERESlr0y6EhMRVSV37txB3KapMOk2BerGNmLHISIqU0uWLMH9+/dhbm4OBwcHqKurKyy/cuXKB/fRoUMHREREKJQNHToUtWrVwtdff53vhHWcjI6IKrI7d+7Ax8cHGzZsgIuLi9hxiIiKjA2DREQl9PbtW2Q8uQNZZprYUYiIypynp2eJ96Grq4t69eoplGlra8PY2DhPORFRZfD27VuEhYXh7du3YkchIlIKGwaJiIiIqMhmzZoldgQiIiKiiuPqFiAzBVCvBjQaLHYapbFhkIiIiIiUEh8fj127duH+/fuYPn06jIyMcOXKFZibm8Pa2rpY+3x3AjsiIiKiSuPEXCDpCaBrxYZBIqKq7M+JbdC4cWOxYxARlal///0XHh4e0NfXR3R0NEaOHAkjIyPs2bMHsbGx2Lhxo9gRiYiIiKiI2DBIRFRCDg4O2LRpExwcHMSOQkRU5vz8/ODj44MffvgBurq68vJu3brhiy++EDEZEZF4WB8kqsK6LgQyUwF1LbGTFAsbBomISsjIyAhDhgwROwYRUbkIDw/H6tWr85RbW1vj6dOnIiQiIhIf64NEVVidXmInKBEVsQMQEVV2L168wIoVK/DixQuxoxARlTmpVIrExMQ85Xfv3oWpqakIiYiIxMf6IBFVVmwYJCIqoYcPH2L8+PF4+PCh2FGIiMpcr169MHv2bGRmZgIAJBIJYmNj8fXXX+Ozzz4TOR0RkThYHySiyooNg0RERERUZEuWLEFycjJMTU2RmpqKdu3aoUaNGtDV1cW8efPEjkdERERUvtKTgLTEnJ+VEMcYJCIqJd1//AdSizixYxDRO6IXdBc7wkdHX18fx44dw9mzZ3H9+nUkJyejcePG8PDwEDsaERERUfn7qSmQ9ATQtQKm3hI7jdLYMEhERERERSKTybBhwwbs2bMH0dHRkEgkcHR0hIWFBQRBgEQiETsiERERESmBDYNERCWkq6sLTYdGUNGonNPTExEVhSAI6NWrFw4ePIgGDRrA1dUVgiDg1q1b8PHxwZ49e7Bv3z6xYxIRiUJXVxedOnWCrq6u2FGIqLw5tAJSXgHVjMVOUixsGCQiKiFnZ2eYfz5H7BhERGVqw4YN+Pvvv3H8+HG0b99eYdmJEyfg6emJjRs3wsvLS6SERETicXZ2xpEjR8SOQURi+Gyt2AlKhJOPEBGVUHZ2NmTpKRBk2WJHISIqM9u2bcPMmTPzNAoCwKeffooZM2Zgy5YtIiQjIhJfdnY2EhMTkZ3N+iARVS6l3jDo7u6OyZMnl/ZuiYgqrOvXr+PhsgHIeB4ldhQiojLz77//okuXLgUu79q1K65fv16OiYiIKo7r169DX1+ffweJqNIR5YrBW7duoVevXtDX14e2tjaaNGmC2NhYMaIQERERURG8fv0a5ubmBS43NzfHmzdvyjEREREREZVUuY8xeP/+fbRu3RrDhw9HYGAg9PT0cOPGDWhqapZ3FCIiIiIqouzsbKipFVx1VFVVRVZWVjkmIiIiIqoA9o0FUl4D1YwAz5/FTqO0MmkYzMrKwvjx47Fp0yaoq6tjzJgxmD17NiQSCb755ht069YNP/zwg3z96tWrl0UMIiIiIiolgiDAx8cHUqk03+Xp6enlnIiIiIioArh/Ekh6AuhaiZ2kWMqkK3FoaCjU1NRw8eJFhISEYOnSpVi7di1kMhn+/PNP1KxZE507d4aZmRmaNWuGffv2lUUMIiIiIiol3t7eMDMzg76+fr43MzMzzkhMREREVMmUyRWDtra2CA4OhkQigYuLCyIiIhAcHIyePXsiOTkZCxYswNy5c7Fw4UIcPnwYffv2xcmTJ9GuXbt895eenq7wLXRiYmJZxCYiKhZXV1fYTNgCFam22FGIiMrM+vXrxY5ARFRhubq64vnz5zAwMBA7ChGVtzFnAUEGSESZxqPEyiR18+bNIZFI5PdbtGiByMhI+dTtvXv3xpQpU9CwYUPMmDEDPXr0wKpVqwrcX1BQkMI30ra2tmURm4ioWNTV1aFaTR8S1XIftpWIiIiIKgB1dXWYmppCXV1d7ChEVN6qGQHaJjk/K6Fybc40MTGBmpoa6tSpo1Beu3btQmcl9vf3R0JCgvz28OHDso5KRFRk9+/fx/Pds5H5Jk7sKEREREQkgvv376NXr164f/++2FGIiJRSJg2DFy5cULgfFhYGZ2dnSKVSNGnSBHfu3FFYfvfuXdjb2xe4P6lUCj09PYUbEVFFkZCQgNR7FyFLfyt2FCIiIiISQUJCAv744w8kJCSIHYWISCll0u8tNjYWfn5+GDVqFK5cuYLly5djyZIlAIDp06fj888/R9u2bdG+fXscPnwYf/zxB06dOlUWUYiIiIiIiIiIiMrGncNAViqgpgW4dBE7jdLKpGHQy8sLqampaNq0KVRVVTFp0iT4+voCAPr06YNVq1YhKCgIEydOhIuLC3bv3o3WrVuXRRQiIiIiIiIiIqKycWAKkPQE0LViwyAAhSv/Vq5cme86w4YNw7Bhw0r70ERERERUCaxcuRIrV65EdHQ0AKBu3br4/vvv0bVrV3GDEREREVUxnEKTiKiErK2tYdh+ONR0jcWOQkRUKdjY2GDBggVwdnaGIAgIDQ1F7969cfXqVdStW1fseERESrO2tsaSJUtgbW0tdhQiKm/tvgIy3gIa2mInKRY2DBIRlZC5uTn0mvYROwYRUaXRs2dPhfvz5s3DypUrERYWxoZBIqqUzM3N4efnJ3YMIhLDJ0PFTlAiZTIrMRFRVfLmzRu8vX0G2WnJYkchIqp0srOzsX37drx9+xYtWrQQOw4RUbG8efMGO3fuxJs3b8SOQkSkFDYMEhGVUFRUFF7uX4Cs+KdiRyEiqjQiIiKgo6MDqVSK0aNHY+/evahTp06B66enpyMxMVHhRkRUUURFRWHAgAGIiooSOwoRkVLYMEhERERE5c7FxQXXrl3DhQsXMGbMGHh7e+PmzZsFrh8UFAR9fX35zdbWthzTEhEREX2cOMYgEVEp+XNiGzRu3FjsGERElYKGhgZq1KgBAHBzc0N4eDhCQkKwevXqfNf39/dXGL8rMTGRjYNEREQkvmX1gaQ4QNcSmPyv2GmUxoZBIiIiIhKdTCZDenp6gculUimkUmk5JiIiIiIqguxMIDsj52clxIZBIqIS0tLSQqNGjaClpSV2FCKiSsHf3x9du3aFnZ0dkpKSsHXrVpw6dQpHjhwROxoRUbGwPkhUhZnVBrRNAG1TsZMUCxsGiYhKqHbt2rhy5YrYMYiIKo3nz5/Dy8sLcXFx0NfXR/369XHkyBF07NhR7GhERMXC+iBRFfblHrETlAgbBomIiIioXK1bt07sCEREREQEzkpMRFRiV69ehVQqxdWrV8WOQkREREQiYH2QiCorXjFIRFRCgiAgIyMD3UL+htTiidhxiKqc6AXdxY5ARERVXG59UBAEsaMQESmFDYNERERERERERETFcfRbIDUe0DIAOs0VO43S2JWYiIiIiIiIiIioOCJ2A1c35fyshNgwSEREREREREREVAWxKzERUQnVrl0blsNWQM3AQuwoRERERCSC2rVr47///oOTk5PYUYiovHn/DsiyAJXK2cRWOVMTEVUgWlpa0DC1FzsGEREREYlES0sLdevWFTtGkQ3fEK7U+ut8mpRREvpYKfMaq2ivL6WzmziXyb7l+y9jpd6V2N3dHZMnTy7t3RIRVVgxMTF4dehHZCU8FzsKEREREYkgJiYGI0aMQExMjNhRiIiUUu5jDEokknxvixYtKu8oRESl4tWrV0j+9yiyUxPFjkJEREREInj16hXWrVuHV69eiR2FiEgp5d6VOC4uTuH+oUOHMHz4cHz22WflHYWIiIiIiIiIiKj4Hl4EstIBNSlg21TsNEorkysGs7KyMH78eOjr68PExATfffcdBEEAAFhYWCjc9u/fj/bt23OQViIiIiIiIiIiqlx2eAOhPXJ+VkJl0jAYGhoKNTU1XLx4ESEhIVi6dCnWrl2bZ71nz57hzz//xPDhwwvdX3p6OhITExVuREREREREREREVHxl0pXY1tYWwcHBkEgkcHFxQUREBIKDgzFy5EiF9UJDQ6Grq4u+ffsWur+goCAEBgaWRVQiohIzNzeHXvN+UNU2EDsKEREREYnA3NwcM2bMgLm5udhRiKi8NR0BpCcBUl2xkxRLmVwx2Lx5c0gkEvn9Fi1aIDIyEtnZ2Qrr/frrrxg8eDA0NTUL3Z+/vz8SEhLkt4cPH5ZFbCKiYrG2toZhOx+o6ZqIHYWIiIiIRGBtbY2goCBYW1uLHYWIylubqYBHQM7PSqjcJx/J9c8//+DOnTv47bffPriuVCqFVCoth1RERMpLSkpCWuy/0DCvARVpNbHjEBEREVE5S0pKwuXLl+Hm5gZd3cp51RARVU1lcsXghQsXFO6HhYXB2dkZqqqq8rJ169bBzc0NDRo0KIsIRETlJjIyEs+2zUTmmydiRyEiIiIiEURGRqJ9+/aIjIwUOwoRkVLKpGEwNjYWfn5+uHPnDrZt24bly5dj0qRJ8uWJiYnYuXMnRowYURaHJyIiIiIiIiIiog8ok67EXl5eSE1NRdOmTaGqqopJkybB19dXvnz79u0QBAGDBg0qi8MTERERERERERGVvdXtgOTngI4ZMOq02GmUVuoNg6dOnZL/vnLlynzX8fX1VWgoJCIiIiIiIiIiqnSSnwNJlXdYKdEmHyEi+lioq6tDVccYElX+SSUiIiKqitTV1WFtbQ11dXWxoxBRedMxU/xZyfC/WCKiEnJ1dYXNuFCxYxARERGRSFxdXfHo0SOxYxCRGCph9+F3lcnkI0RERERERERERFSxsWGQiKiEIiIi8GiFNzJeRIsdhYioUggKCkKTJk2gq6sLMzMzeHp64s6dO2LHIiIqtoiICNjY2CAiIkLsKERESmHDIBFRCWVmZiI7+RWE7CyxoxARVQqnT5/GuHHjEBYWhmPHjiEzMxOdOnXC27dvxY5GRFQsmZmZePz4MTIzM8WOQkSkFI4xSERUSv6c2AaNGzcWOwYRUYV3+PBhhfsbNmyAmZkZLl++jLZt24qUioiIiKgY/lkCpCcBUl2gzVSx0yiNDYNEREREJKqEhAQAgJGRkchJiIiIiJR0cS2Q9ATQtWLDIBERERGRMmQyGSZPnoxWrVqhXr16Ba6Xnp6O9PR0+f3ExMTyiEdERET0UWPDIBFRCTk7O+PkyZNwdnYWOwoRUaUzbtw4/Pfffzhz5kyh6wUFBSEwMLCcUhERKYf1QaIqbEAokJUOqEnFTlIsbBgkIiohXV1duLu7ix2DiKjSGT9+PA4cOIC///4bNjY2ha7r7+8PPz8/+f3ExETY2tqWdUQioiJhfZCoCrNtKnaCEmHDIBFRCT1+/Bh1+k2GbuMeUNM1ETsOUYURvaC72BGoghIEARMmTMDevXtx6tQpODo6fnAbqVQKqbRyfhNPRB+/x48f46effsL48eNhbW0tdhwioiJTETsAEVFl9+zZMySG7UL223ixoxARVQrjxo3D5s2bsXXrVujq6uLp06d4+vQpUlNTxY5GRFQsz549w4IFC/Ds2TOxoxARKYVXDBIRERFRuVq5ciUA5Ol2t379evj4+JR/ICIiIqLiehkJyLIAFTXApPKNM8qGQSIiIiIqV4IgiB2BiIiIqHSE9gKSngC6VsDUW2KnURq7EhMREREREREREVVBvGKQiKiEjI2NoVO/E1S19MSOQkREREQiMDY2xvDhw2FsbCx2FCIqb66fAanxgJaB2EmKRamGQXd3dzRs2BDLli0rozhERJWPvb09jLtOFDsGEREREYnE3t4ea9euFTsGEYmh01yxE5RIqXYl3rNnDzp16gRjY2NIJBJcu3YtzzppaWkYN25czhU2Ojr47LPPOHMTEVVqqampyHgRA1lmuthRiIiIiEgEqampuHHjBmdXJ6JKp1QbBt++fYvWrVtj4cKFBa4zZcoU/PHHH9i5cydOnz6NJ0+eoG/fvqUZg4ioXN26dQtxv45D5quHYkchIiIiIhHcunUL9erVw61blW/iASKq2pQeYzArKwvjx4/Hpk2boK6ujjFjxmD27NmQSCT48ssvAQDR0dH5bpuQkIB169Zh69at+PTTTwEA69evR+3atREWFobmzZsX/0yIiIiIiIiIiIioyJS+YjA0NBRqamq4ePEiQkJCsHTp0iKPpXD58mVkZmbCw8NDXlarVi3Y2dnh/PnzykYhIiIiIiIiIiISz6a+wKo2OT8rIaWvGLS1tUVwcDAkEglcXFwQERGB4OBgjBw58oPbPn36FBoaGjAwMFAoNzc3x9OnTwvcLj09Henp/xu7KzExUdnYREREREREREREpev5LSDpCaBrJXaSYlH6isHmzZtDIpHI77do0QKRkZHIzs4u1WDvCgoKgr6+vvxma2tbZsciIlKWRCIBVNUU/jYSERERUdUhkUigoaHB+iBRVaSqDqhq5PyshJS+YrAkLCwskJGRgfj4eIWrBp89ewYLC4sCt/P394efn5/8fmJiIhsHiajCaNSoEeyn7RM7BhERERGJpFGjRgq93IioCpn8r9gJSkTpKwYvXLigcD8sLAzOzs5QVVX94LZubm5QV1fH8ePH5WV37txBbGwsWrRoUeB2UqkUenp6CjciIiIiIiIiIiIqPqUbBv+vvTuPjqo+4z/+mWxDEkgCBgiByE4ACSHgSYS2Bmt+Ejbxp8cKKlv9gQsoNEgFq4BYBcumhyJwKARarRStYloBKZRoxQiyRCNEDBoEqUQhmAViSML39weHqeMMksl2M5n365w5w9z53jvPffLl5uFh7r3Hjx9XWlqajhw5oldeeUXLly/XtGnTJEmFhYXKzs7W4cOHJV1q+mVnZzuuHxgeHq777rtPaWlp2rVrl/bv36+JEydq4MCB3JEYgNfKzc3V1+unqeL0CatDAQAAgAVyc3PVv39/5ebmWh0KAHjE41OJx40bp7KyMiUmJsrf31/Tpk3T5MmTJUkZGRmaOHGiY+zo0aMlSXPnztW8efMkScuWLZOfn5/uuOMOlZeXa8iQIXrxxRfrYFcAwBplZWW6UPC5LlZy+ggAAIAvKisr08GDB1VWVmZ1KADgEY8ag5mZmY4/r1y50uX9CRMmaMKECT+5jWbNmmnFihVasWKFJx8NAAAAAAAANC770qUL56SgUOn6iVcf38g06M1HAAAAAAAAgCbjnT9IJf+VWkR7ZWPQ42sMAgAAAAAAAPB+fGMQAGqpc+fOihw1SwERUVaHAgAAAAt07txZmzZtUufOna0OBUBDG7FMqiyTAoKtjqRGaAwCQC21bNlSoT1/bnUYAAAAsEjLli115513Wh0GACvEplodQa1wKjEA1FJBQYGK976hqnNnrQ4FAAAAFigoKNDSpUtVUFBgdSgA4BG+MQgAtXTy5Emd3bVWOxY/pP79+1sdDgAAABrYyZMnNWPGDA0ePFht27a1OhwAqDYagwAAAAAAAEBNnC+UzEXJ5ieFtLI6Go/RGAQAAAAAAABqYuXPpJL/Si2ipRm5VkfjMa4xCAAAgAb37rvvauTIkYqOjpbNZtPmzZutDgkAAMDn0BgEgFoKDw/XyJEjFR4ebnUoAOA1zp07p/j4eK1YscLqUACg1qgHAR/W9Sapx9BLz16IU4kBoJa6du2qjIwMq8MAAK8ydOhQDR061OowAKBOUA8CPuy2F62OoFZoDAJALVVUVKjLjFflZw+Vzb/xH1aPLRxudQgAAABNSkVFhb777jtFREQoMDDQ6nAAoNo4lRgAaiknJ0dfLb9HF749ZnUoANBklZeXq7i42OkBAI1FTk6O2rRpo5ycHKtDAQCP0BgEAABAo7dgwQKFh4c7HjExMVaHBAAA4PVoDAIAAKDRmz17toqKihyPEydOWB0SAACA9Pf/J/3l/1569kKN/2JYAAAA8Hl2u112u93qMAAAAJwd2y2V/FdqEW11JDVS598YHDx4sKZPn17XmwUAAEATUlpaquzsbGVnZ0uS8vPzlZ2drePHj1sbGAAAgA9p8FOJS0tLNXXqVHXo0EHBwcHq3bu3Vq1a1dBhAECdiY+PV8z0TQpq09nqUADAa+zbt08JCQlKSEiQJKWlpSkhIUFz5syxODIA8Fx8fLyKiooUHx9vdSgAGtrUvdKsE5eevVCDn0qclpamf//733rppZfUqVMnbd++XQ899JCio6N16623NnQ4AFBr/v7+8rOHWB0GAHiVwYMHyxhjdRgAUCf8/f0VFhZmdRgArGBvYXUEtVIv3xisrKzU1KlTFR4ersjISD355JOOwu/999/X+PHjNXjwYHXq1EmTJ09WfHy89u71zs4qAOTl5angb0+qovCk1aEAAADAAnl5eRoyZIjy8vKsDgUAPFIvjcENGzYoICBAe/fu1QsvvKClS5fqT3/6kyRp0KBBysjI0MmTJ2WM0a5du/TZZ5/plltuqY9QAKDelZSU6PtjB3XxQpnVoQAAAMACJSUl2r59u0pKSqwOBQA8Ui+nEsfExGjZsmWy2WyKjY1VTk6Oli1bpkmTJmn58uWaPHmyOnTooICAAPn5+WnNmjW68cYbr7i98vJylZeXO14XFxfXR9gAAAAAAABA9R3OkCrKpMBgqbf3XSKvXr4xeMMNN8hmszleDxw4UHl5eaqqqtLy5cv1wQcfKCMjQ/v379eSJUs0ZcoU7dix44rbW7BggcLDwx2PmJiY+ggbAAAAAAAAqL6tj0lvTL707IUa9OYj33//vR5//HG98cYbGj58uCSpb9++ys7O1uLFi5WSkuJ2vdmzZystLc3xuri4mOYgAAAAAAAAUAv10hjcs2eP0+sPPvhA3bt3V1VVlSoqKuTn5/xFRX9/f128ePGK27Pb7bLb7fURKgDUWkxMjFr9nwcUENba6lAAAABggZiYGP3xj3/kCyyAL/rlE1LFeSkwxOpIaqReGoPHjx9XWlqa7r//fh04cEDLly/XkiVLFBYWpuTkZM2cOVPBwcHq2LGj3nnnHf35z3/W0qVL6yMUAKh3rVu3Vov+I6wOAwAAABZp3bq1pkyZYnUYAKyQcI/VEdRKvTQGx40bp7KyMiUmJsrf31/Tpk3T5MmTJUkbN27U7Nmzdc8996iwsFAdO3bUM888owceeKA+QgGAeldYWKjSQ7sU3OV6+Qe3sDocAAAANLDCwkJt2bJFw4YNU6tWrawOBwCqrc4bg5mZmY4/r1y50uX9qKgopaen1/XHAoBljh07pjP/XKKo8c/TGAQAAPBBx44d09ixY7V//34agwC8Sr3clRgAAAAAAABA49agdyUGAAAAAAAAmowlvaSS/0otoqUZuVZH4zG+MQgAAAAAAAD4IL4xCAC1FBoaqqDoWPkFNrM6FAAAAFggNDRUN9xwg0JDQ60OBUBDaxcvhbeXQiKtjqRGaAwCQC3Fxsaq3dglVocBAAAAi8TGxiorK8vqMABY4e6NVkdQKzQGAaAOHFs43OoQAAAAAADwCNcYBIBaOnDggGw2mw4cOGB1KAAAALAA9SAAb0VjEAAAAAAAAPBBnEoMAAAAAAAA1MSWmVLZd1JwhDRskdXReIxvDAIAAAAAAAA1kftPKWfTpWcvRGMQAAAAAAAA8EGcSgwAtdS7d2/l5eWpQ4cOVocCAAAAC1APAj7s11uli1WSn7/VkdQIjUEAqKVmzZqpW7duVocBAAAAi1APAj6sZSerI6gVTiUGgFrKz8/Xvffeq/z8fKtDAQCvsmLFCnXq1EnNmjVTUlKS9u7da3VIAFAj1IMAvBWNQQCopbNnz+rll1/W2bNnrQ4FALzG3/72N6WlpWnu3Lk6cOCA4uPjNWTIEH3zzTdWhwYAHqMeBOCtaAwCAACgwS1dulSTJk3SxIkT1bt3b61atUohISFat26d1aEBAABUX/5/pKM7Lj17IRqDAAAAaFAXLlzQ/v37lZKS4ljm5+enlJQUZWVlWRgZAACAh16fLL10x6VnL+SVNx8xxkiSiouLLY4EAKTS0lLHM8clAFa7fBy6XC81RqdPn1ZVVZXatm3rtLxt27b69NNP3a5TXl6u8vJyx+uioiJJ1IMAGgdvqwcvlJV6NN4b9gmNiydzzNP55en8rU/FxcXS91VSuZECq6Sr7EtD/d3zpB70ysZgSUmJJCkmJsbiSADgf5KTk60OAQAcSkpKFB4ebnUYdWbBggV66qmnXJZTDwJoTJpqPfjSQ1ZHgKbMm+eXc+wl0hN1W3vVNjfVqQe9sjEYHR2tEydOqEWLFrLZbNVer7i4WDExMTpx4oTCwsLqMULvQl7cIy/ukRdX5MQ98uIeeXFFTtyraV6MMSopKVF0dHQ9Rlc7kZGR8vf3V0FBgdPygoICRUVFuV1n9uzZSktLc7y+ePGiCgsLdc0111AP1hI5cY+8uEde3CMvrsiJe+TFPfLiXkPUg17ZGPTz81OHDh1qvH5YWBgTzQ3y4h55cY+8uCIn7pEX98iLK3LiXk3y0ti/KRgUFKQBAwZo586duu222yRdavTt3LlTU6dOdbuO3W6X3W53WhYREVHjGJhvrsiJe+TFPfLiHnlxRU7cIy/ukRf36rMe9MrGIAAAALxbWlqaxo8fr+uvv16JiYl6/vnnde7cOU2cONHq0AAAAHwGjUEAAAA0uLvuukvffvut5syZo1OnTqlfv37atm2byw1JAAAAUH98qjFot9s1d+5cl9NQfB15cY+8uEdeXJET98iLe+TFFTlxzxfyMnXq1CueOlxffCGvniIn7pEX98iLe+TFFTlxj7y4R17ca4i82Ex17l0MAAAAAAAAoEnxszoAAAAAAAAAAA2PxiAAAAAAAADgg2gMAgAAAAAAAD6oyTUGn3nmGQ0aNEghISGKiIio1jrGGM2ZM0ft2rVTcHCwUlJSlJeX5zSmsLBQ99xzj8LCwhQREaH77rtPpaWl9bAHdc/T2I8dOyabzeb28eqrrzrGuXt/48aNDbFLdaImP9PBgwe77PMDDzzgNOb48eMaPny4QkJC1KZNG82cOVOVlZX1uSt1ytO8FBYW6uGHH1ZsbKyCg4N17bXX6pFHHlFRUZHTOG+bLytWrFCnTp3UrFkzJSUlae/evT85/tVXX1XPnj3VrFkzxcXFacuWLU7vV+c44w08ycuaNWv0i1/8Qi1btlTLli2VkpLiMn7ChAku8yI1NbW+d6NOeZKT9evXu+xvs2bNnMb44lxxd2y12WwaPny4Y4y3z5V3331XI0eOVHR0tGw2mzZv3nzVdTIzM9W/f3/Z7XZ169ZN69evdxnj6bHKF1ALukc96B71oCtqwUuoBd2jFnSPetAVtaCrRlsPmiZmzpw5ZunSpSYtLc2Eh4dXa52FCxea8PBws3nzZvPRRx+ZW2+91XTu3NmUlZU5xqSmppr4+HjzwQcfmP/85z+mW7duZsyYMfW0F3XL09grKyvN119/7fR46qmnTPPmzU1JSYljnCSTnp7uNO6HOWvsavIzTU5ONpMmTXLa56KiIsf7lZWVpk+fPiYlJcUcPHjQbNmyxURGRprZs2fX9+7UGU/zkpOTY26//XaTkZFhjh49anbu3Gm6d+9u7rjjDqdx3jRfNm7caIKCgsy6devMoUOHzKRJk0xERIQpKChwO3737t3G39/f/OEPfzCHDx82TzzxhAkMDDQ5OTmOMdU5zjR2nubl7rvvNitWrDAHDx40ubm5ZsKECSY8PNx89dVXjjHjx483qampTvOisLCwoXap1jzNSXp6ugkLC3Pa31OnTjmN8cW5cubMGaecfPLJJ8bf39+kp6c7xnj7XNmyZYv53e9+Z15//XUjybzxxhs/Of6LL74wISEhJi0tzRw+fNgsX77c+Pv7m23btjnGeJpnX0Et6B71oHvUg66oBakFr4Ra0D3qQVfUgu411nqwyTUGL0tPT69WMXjx4kUTFRVlFi1a5Fj23XffGbvdbl555RVjjDGHDx82ksyHH37oGLN161Zjs9nMyZMn6zz2ulRXsffr18/8+te/dlpWnYncWNU0L8nJyWbatGlXfH/Lli3Gz8/P6cC+cuVKExYWZsrLy+sk9vpUV/Nl06ZNJigoyFRUVDiWedN8SUxMNFOmTHG8rqqqMtHR0WbBggVux//qV78yw4cPd1qWlJRk7r//fmNM9Y4z3sDTvPxYZWWladGihdmwYYNj2fjx482oUaPqOtQG42lOrva7iblyybJly0yLFi1MaWmpY5m3z5Ufqs7x8Le//a257rrrnJbdddddZsiQIY7Xtc1zU0ct+D/Ug+5RD7qiFryEWtA9akH3qAddUQteXWOqB5vcqcSeys/P16lTp5SSkuJYFh4erqSkJGVlZUmSsrKyFBERoeuvv94xJiUlRX5+ftqzZ0+Dx+yJuoh9//79ys7O1n333efy3pQpUxQZGanExEStW7dOl+Z341ebvLz88suKjIxUnz59NHv2bJ0/f95pu3FxcWrbtq1j2ZAhQ1RcXKxDhw7V/Y7Usbqa60VFRQoLC1NAQIDTcm+YLxcuXND+/fudjgl+fn5KSUlxHBN+LCsry2m8dOnnfnl8dY4zjV1N8vJj58+fV0VFhVq1auW0PDMzU23atFFsbKwefPBBnTlzpk5jry81zUlpaak6duyomJgYjRo1yunYwFy5ZO3atRo9erRCQ0OdlnvrXKmJqx1X6iLPuKSp14IS9eCVUA+6ohakFrwSakH3qAddUQvWnYaqBwOuPqRpO3XqlCQ5/eK+/Prye6dOnVKbNm2c3g8ICFCrVq0cYxqruoh97dq16tWrlwYNGuS0fP78+frlL3+pkJAQbd++XQ899JBKS0v1yCOP1Fn89aWmebn77rvVsWNHRUdH6+OPP9Zjjz2mI0eO6PXXX3ds191cuvxeY1cX8+X06dN6+umnNXnyZKfl3jJfTp8+raqqKrc/x08//dTtOlf6uf/wGHJ52ZXGNHY1ycuPPfbYY4qOjnb6xZWamqrbb79dnTt31ueff67HH39cQ4cOVVZWlvz9/et0H+paTXISGxurdevWqW/fvioqKtLixYs1aNAgHTp0SB06dGCuSNq7d68++eQTrV271mm5N8+VmrjScaW4uFhlZWU6e/Zsrf9O4pKmXgtK1INXQj3oilqQWvBKqAXdox50RS1YdxqqHvSKxuCsWbP03HPP/eSY3Nxc9ezZs4Eisl51c1JbZWVl+utf/6onn3zS5b0fLktISNC5c+e0aNEiS3+513defljgxMXFqV27drr55pv1+eefq2vXrjXebn1rqPlSXFys4cOHq3fv3po3b57Te41xvqDhLFy4UBs3blRmZqbTxZVHjx7t+HNcXJz69u2rrl27KjMzUzfffLMVodargQMHauDAgY7XgwYNUq9evbR69Wo9/fTTFkbWeKxdu1ZxcXFKTEx0Wu5rcwXOqAXdox50j3rQFbUgrEYt+D/Ugz+NWrDheUVjcMaMGZowYcJPjunSpUuNth0VFSVJKigoULt27RzLCwoK1K9fP8eYb775xmm9yspKFRYWOtZvaNXNSW1jf+2113T+/HmNGzfuqmOTkpL09NNPq7y8XHa7/arj60ND5eWypKQkSdLRo0fVtWtXRUVFudwBqKCgQJIsmytSw+SlpKREqampatGihd544w0FBgb+5PjGMF/ciYyMlL+/v+PndllBQcEVcxAVFfWT46tznGnsapKXyxYvXqyFCxdqx44d6tu370+O7dKliyIjI3X06NFG/wu+Njm5LDAwUAkJCTp69Kgk5sq5c+e0ceNGzZ8//6qf401zpSaudFwJCwtTcHCw/P39az3/vAm1oHvUg+5RD7qiFqw+akH3qAXdox50RS1YdxqsHqz21Qi9jKcXnF68eLFjWVFRkdsLTu/bt88x5u233/aKC07XNvbk5GSXO4pdye9//3vTsmXLGsfakOrqZ/ree+8ZSeajjz4yxvzvYtM/vAPQ6tWrTVhYmPn+++/rbgfqSU3zUlRUZG644QaTnJxszp07V63PaszzJTEx0UydOtXxuqqqyrRv3/4nLzg9YsQIp2UDBw50ueD0Tx1nvIGneTHGmOeee86EhYWZrKysan3GiRMnjM1mM2+++Wat420INcnJD1VWVprY2Fjzm9/8xhjj23PFmEu/u+12uzl9+vRVP8Pb5soPqZoXm+7Tp4/TsjFjxrhcbLo286+poxb8H+pB96gHXVELXkIt6B61oHvUg66oBa+uMdWDTa4x+OWXX5qDBw+ap556yjRv3twcPHjQHDx40JSUlDjGxMbGmtdff93xeuHChSYiIsK8+eab5uOPPzajRo1yuRV4amqqSUhIMHv27DHvvfee6d69uxkzZkyD7ltNXS32r776ysTGxpo9e/Y4rZeXl2dsNpvZunWryzYzMjLMmjVrTE5OjsnLyzMvvviiCQkJMXPmzKn3/akrnubl6NGjZv78+Wbfvn0mPz/fvPnmm6ZLly7mxhtvdKxTWVlp+vTpY2655RaTnZ1ttm3bZlq3bm1mz57d4PtXU57mpaioyCQlJZm4uDhz9OhRp9vHV1ZWGmO8b75s3LjR2O12s379enP48GEzefJkExER4bi74NixY82sWbMc43fv3m0CAgLM4sWLTW5urpk7d64JDAw0OTk5jjHVOc40dp7mZeHChSYoKMi89tprTvPi8vG4pKTEPProoyYrK8vk5+ebHTt2mP79+5vu3bs3+n84XeZpTp566inz9ttvm88//9zs37/fjB492jRr1swcOnTIMcYX58plP//5z81dd93lsrwpzJWSkhJHTSLJLF261Bw8eNB8+eWXxhhjZs2aZcaOHesY/8UXX5iQkBAzc+ZMk5uba1asWGH8/f3Ntm3bHGOulmdfRS3oHvWge9SDrqgFqQWvhFrQPepBV9SC7jXWerDJNQbHjx9vJLk8du3a5RgjyaSnpzteX7x40Tz55JOmbdu2xm63m5tvvtkcOXLEabtnzpwxY8aMMc2bNzdhYWFm4sSJTgVmY3a12PPz811yZIwxs2fPNjExMaaqqsplm1u3bjX9+vUzzZs3N6GhoSY+Pt6sWrXK7djGytO8HD9+3Nx4442mVatWxm63m27dupmZM2eaoqIip+0eO3bMDB061AQHB5vIyEgzY8YMU1FR0ZC7Viue5mXXrl1u/85JMvn5+cYY75wvy5cvN9dee60JCgoyiYmJ5oMPPnC8l5ycbMaPH+80ftOmTaZHjx4mKCjIXHfddeatt95yer86xxlv4EleOnbs6HZezJ071xhjzPnz580tt9xiWrdubQIDA03Hjh3NpEmTvK6p4UlOpk+f7hjbtm1bM2zYMHPgwAGn7fniXDHGmE8//dRIMtu3b3fZVlOYK1c6Vl7Ow/jx401ycrLLOv369TNBQUGmS5cuTrXLZT+VZ19FLege9aB71IOuqAUvoRZ0j1rQPepBV9SCrhprPWgzphHeIx4AAAAAAABAvfKzOgAAAAAAAAAADY/GIAAAAAAAAOCDaAwCAAAAAAAAPojGIAAAAAAAAOCDaAwCAAAAAAAAPojGIAAAAAAAAOCDaAwCAAAAAAAAPojGIAAAAAAAAOCDaAwCAAAAAAAAPojGIIAmY8KECbLZbLLZbAoKClK3bt00f/58VVZWWh0aAAAAAACNDo1BAE1Kamqqvv76a+Xl5WnGjBmaN2+eFi1aVG+fd+HChXrbtieMMTRAAQAAGoHGUh8CQHXQGATQpNjtdkVFRaljx4568MEHlZKSooyMDElSeXm5Hn30UbVv316hoaFKSkpSZmamY90zZ85ozJgxat++vUJCQhQXF6dXXnnFafuDBw/W1KlTNX36dEVGRmrIkCEyxmjevHm69tprZbfbFR0drUceecSxztmzZzVu3Di1bNlSISEhGjp0qPLy8hzvr1+/XhEREXr77bfVq1cvNW/e3NHgvJLMzEzZbDZt3bpVAwYMkN1u13vvvVdHWQQAAEB1uasPAcBb0BgE0KQFBwc7/td26tSpysrK0saNG/Xxxx/rzjvvVGpqqqNJ9/3332vAgAF666239Mknn2jy5MkaO3as9u7d67TNDRs2KCgoSLt379aqVav097//XcuWLdPq1auVl5enzZs3Ky4uzjF+woQJ2rdvnzIyMpSVlSVjjIYNG6aKigrHmPPnz2vx4sX6y1/+onfffVfHjx/Xo48+etX9mzVrlhYuXKjc3Fz17du3LlIGAAAAD/24PgQAb2EzxhirgwCAujBhwgR999132rx5s4wx2rlzp0aMGKGHH35YDz/8sLp06aLjx48rOjrasU5KSooSExP17LPPut3miBEj1LNnTy1evFjSpf8RLi4u1oEDBxxjli5dqtWrV+uTTz5RYGCg0/p5eXnq0aOHdu/erUGDBkm69M3EmJgYbdiwQXfeeafWr1+viRMn6ujRo+ratask6cUXX9T8+fN16tQpt3FlZmbqpptu0ubNmzVq1KiaJw0AAAC14q4+BABvEWB1AABQl/75z3+qefPmqqio0MWLF3X33Xdr3rx5yszMVFVVlXr06OE0vry8XNdcc40kqaqqSs8++6w2bdqkkydP6sKFCyovL1dISIjTOgMGDHB6feedd+r5559Xly5dlJqaqmHDhmnkyJEKCAhQbm6uAgIClJSU5Bh/zTXXKDY2Vrm5uY5lISEhjqagJLVr107ffPPNVff3+uuvr35yAAAAUC9+XB8CgLegMQigSbnpppu0cuVKBQUFKTo6WgEBlw5zpaWl8vf31/79++Xv7++0TvPmzSVJixYt0gsvvKDnn39ecXFxCg0N1fTp010uIB0aGur0OiYmRkeOHNGOHTv0r3/9Sw899JAWLVqkd955p9px//ibhjabTdX5QvePYwEAAEDDoyYD4K1oDAJoUkJDQ9WtWzeX5QkJCaqqqtI333yjX/ziF27X3b17t0aNGqV7771XknTx4kV99tln6t2791U/Nzg4WCNHjtTIkSM1ZcoU9ezZUzk5OerVq5cqKyu1Z88ep1OJjxw5Uq3tAgAAAABQX2gMAvAJPXr00D333KNx48ZpyZIlSkhI0LfffqudO3eqb9++Gj58uLp3767XXntN77//vlq2bKmlS5eqoKDgqg289evXq6qqSklJSQoJCdFLL72k4OBgdezYUddcc41GjRqlSZMmafXq1WrRooVmzZql9u3bc21AAAAAAICluCsxAJ+Rnp6ucePGacaMGYqNjdVtt92mDz/8UNdee60k6YknnlD//v01ZMgQDR48WFFRUbrtttuuut2IiAitWbNGP/vZz9S3b1/t2LFD//jHPxzXLkxPT9eAAQM0YsQIDRw4UMYYbdmyxeX0YQAAAAAAGhJ3JQYAAAAAAAB8EN8YBAAAAAAAAHwQjUEAAAAAAADAB9EYBAAAAAAAAHwQjUEAAAAAAADAB9EYBAAAAAAAAHwQjUEAAAAAAADAB9EYBAAAAAAAAHwQjUEAAAAAAADAB9EYBAAAAAAAAHwQjUEAAAAAAADAB9EYBAAAAAAAAHwQjUEAAAAAAADAB/1/aqW0Xg9+wN0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "corr_sum = feat_gen.feature_best_b_fragments_correlation(\n", + " precursor_fragments, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9bf7db05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzctJREFUeJzs3XdcE/cbB/DPZbOHgogiWBH3Kk7co+Ie1WqVVpy1VavWVa111tk6W1u1Q7RW66rV/tS6teJoa7GOqhVQxIWiIhtCSO73ByYlEjBBIICf9+uVl+Zyd3nuEsjx5Pk+X0EURRFERERERERERERFQGLtAIiIiIiIiIiI6OXBZBQRERERERERERUZJqOIiIiIiIiIiKjIMBlFRERERERERERFhskoIiIiIiIiIiIqMkxGERERERERERFRkWEyioiIiIiIiIiIigyTUUREREREREREVGSYjCIiIiIiIiIioiLDZBRRNoIgYPbs2Yb769evhyAIuHnzptViMsfgwYPh4+NTYPubPXs2BEEosP3p+fj4YPDgwQW+3+ImIiICHTt2hJOTEwRBwK5du0y+l9q0aYM2bdoUeXzJyclwd3fHpk2bivy5S5vHjx/Dzs4O+/bts3YoRERmsdZnjyUK+rqmqDx7HVkQisvr5ePjg27duj13vePHj0MQBBw/frxAn7+orl2K8lq1pL7PzXHz5k0IgoD169cXyv6nTp2KJk2aFMq+qegwGUUvja+++gqCIPAXVyE7ffo0Zs+ejfj4eGuHYjXBwcG4dOkS5s+fj40bN6Jhw4bWDsnIypUr4eDggDfffNPaoRjodDp8+umnqFy5MlQqFerWrYsff/zR7O0PHTqEFi1awNbWFi4uLujbt6/JJHJ6ejoWLlyImjVrwtbWFhUqVMAbb7yBy5cv52ufZcqUwfDhwzFjxgxLD5mIyCz6LzP0N5VKBT8/P4wZMwYPHjwo0lg2b96MFStWFOlzvgyuXLmC2bNnF/svP62pOF67kPWMHz8eFy5cwC+//GLtUOgFMBlFL41NmzbBx8cHf/75JyIjI83a5u2330ZaWhq8vb0LObrS4/Tp05gzZ47JZNS1a9fwzTffFH1QRSgtLQ1nzpzBsGHDMGbMGLz11luoWLFisXkvaTQarFy5EsOHD4dUKrVqLNlNnz4dH374IV577TV88cUXqFSpEgYOHIgtW7Y8d9s9e/agU6dOUKvVWLRoESZOnIjffvsNLVq0wMOHD43WDQoKwsyZM9GmTRt8/vnnGDlyJE6cOIFmzZohOjo6X/t89913ce7cORw9erRgTgYRkQlz587Fxo0bsWrVKgQEBGD16tVo1qwZUlNTLdrPwYMHcfDgwXzFUFTJqG+++QbXrl0r9OcpLq5cuYI5c+aYTEa9yOtlDa1atUJaWhpatWpVYPssymuXl+FatTTw8PBAz549sWTJEmuHQi+AySh6KURFReH06dNYtmwZ3NzczC7xlUqlUKlUhTJk7WWkVCohl8utHYZFdDod0tPTzV5fn6hwdnY2Wl5c3kt79uzBw4cP0a9fv+eum5KSUgQRAXfv3sXSpUsxevRofP311xgxYgT+97//oWXLlpg8eTK0Wm2e23/44Yd45ZVXcOrUKYwdOxYff/wxDh8+jJiYGCxatMjoeXbu3Inx48fjq6++wvDhwzFz5kxs2bIFSUlJ2Llzp8X7BIAaNWqgdu3ahVaKTkQEAJ07d8Zbb72F4cOHY/369Rg/fjyioqKwe/dui/ajUCigUCgKKcqCIZfLoVQqrRqDKIpIS0uzagxAyXi9spNIJFCpVJBICu7PTEuuXV6UOdeqRXV9RHnr168fTp48iRs3blg7FMonJqPopbBp0ya4uLiga9eu6Nu3r9nJKFN9fnQ6HWbPng1PT0/Y2tqibdu2uHLlSo4x5vptT506hQkTJsDNzQ12dnbo3bt3jsoKAPj111/RsmVL2NnZwcHBAV27djU5dGjXrl2oXbs2VCoVateujZ9//tmic2Hu82SX17jv7P0RZs+ejcmTJwMAKleubBhSoD9/psbh37hxA2+88QZcXV1ha2uLpk2bYu/evUbr6PsPbNu2DfPnz0fFihWhUqnQvn17s6rc9D2w/v33X/Tr1w+Ojo4oU6YMxo0blyPRJAgCxowZg02bNqFWrVpQKpXYv38/AODvv/9G586d4ejoCHt7e7Rv3x6///670fPoK58mT54MQRAMvQDM7T+mVqsxa9Ys+Pr6QqlUwsvLC1OmTIFarTZaTz+EzNnZGfb29qhWrRo++uij556LXbt2wcfHB1WqVDFaPnjwYNjb2+P69evo0qULHBwcEBQU9Nz9FYTdu3dDo9Fg1KhRhmWCIOC9997DnTt3cObMmVy3jYuLw5UrV9C7d2+ji/V69eqhRo0aRpVVSUlJAIBy5coZ7aN8+fIAABsbG4v3qffaa6/hf//7H0RRtOTQiYjyrV27dgCyvnADgMzMTHzyySeoUqUKlEolfHx88NFHH+X4/Hi2B5G5n7Ft2rTB3r17ER0dbfh8z6vfTXx8PKRSKT7//HPDskePHkEikaBMmTJGvy/fe+89eHh4GO6b6qWzZcsW+Pv7w8HBAY6OjqhTpw5WrlyZ4znHjx8PLy8vKJVK+Pr6YvHixdDpdHmfTPzXE+nAgQNo2LAhbGxssHbt2hfab3R0NEaNGoVq1arBxsYGZcqUwRtvvGF0LbB+/Xq88cYbAIC2bdsazq2+55KpnlGxsbEYNmwYypUrB5VKhXr16mHDhg1G6+iv3ZYsWYKvv/7a8L5o1KgRzp49a7Tu/fv3MWTIEFSsWBFKpRLly5dHz549TV6znDx5Eo0bN4ZKpcIrr7yC77//3uhxUz2j2rRpg9q1ayMsLAwBAQGwsbFB5cqVsWbNmjzPn97zrl1u3LiBwMBA2NnZwdPTE3Pnzs3xebxkyRIEBASgTJkysLGxgb+/P3bs2JHjuXK7nv/tt98watQouLu7o2LFiobHi+L6/a+//kJgYCDKli1rOHdDhw7N1/Hpr3O3b9+OmjVrwsbGBs2aNcOlS5cAAGvXroWvry9UKhXatGmT4z3woq/lv//+i759+8LV1RUqlQoNGzbMMdROo9Fgzpw5qFq1KlQqFcqUKYMWLVrg0KFDRut16NABACxOyFPxIbN2AERFYdOmTXj99dehUCgwYMAArF69GmfPnkWjRo0s3te0adPw6aefonv37ggMDMSFCxcQGBiYa/XM+++/DxcXF8yaNQs3b97EihUrMGbMGGzdutWwzsaNGxEcHIzAwEAsXrwYqampWL16NVq0aIG///7bcEF28OBB9OnTBzVr1sTChQvx+PFjw8WDOcx9nvx6/fXXER4ejh9//BHLly9H2bJlAQBubm4m13/w4AECAgKQmpqKsWPHokyZMtiwYQN69OiBHTt2oHfv3kbrL1q0CBKJBJMmTUJCQgI+/fRTBAUF4Y8//jArvn79+sHHxwcLFy7E77//js8//xxPnjzJcSF19OhRbNu2DWPGjEHZsmXh4+ODy5cvo2XLlnB0dMSUKVMgl8uxdu1atGnTBr/99huaNGmC119/Hc7Ozvjggw8wYMAAdOnSBfb29mafP51Ohx49euDkyZN45513UKNGDVy6dAnLly9HeHg4du3aBQC4fPkyunXrhrp162Lu3LlQKpWIjIzEqVOnnvscp0+fxquvvmrysczMTAQGBqJFixZYsmQJbG1tc92PRqNBQkKCWcfl6uqa5zekf//9N+zs7FCjRg2j5Y0bNzY83qJFC5Pb6v/I0ieSsrO1tcXly5dx//59eHh4oEqVKqhYsSKWLl2KatWqoUGDBrh37x6mTJmCypUrG/pQWLJPPX9/fyxfvhyXL19G7dq18zodREQF4vr16wCyetcBwPDhw7Fhwwb07dsXEydOxB9//IGFCxfi6tWrZv3h+7zP2OnTpyMhIQF37tzB8uXLASDPzzhnZ2fUrl0bJ06cwNixYwFkJTIEQTAk/WvVqgUACA0NRcuWLXPd16FDhzBgwAC0b98eixcvBgBcvXoVp06dwrhx4wAAqampaN26Ne7evYuRI0eiUqVKOH36NKZNm4aYmBizhhdeu3YNAwYMwMiRIzFixAhUq1bthfZ79uxZnD59Gm+++SYqVqyImzdvYvXq1WjTpg2uXLkCW1tbtGrVCmPHjsXnn3+Ojz76yPBZ+Oxnol5aWhratGmDyMhIjBkzBpUrV8b27dsxePBgxMfHG86H3ubNm5GUlISRI0dCEAR8+umneP3113Hjxg1DBVCfPn1w+fJlvP/++/Dx8UFsbCwOHTqEW7duGV0bRkZGom/fvhg2bBiCg4Oxbt06DB48GP7+/obXMjdPnjxBly5d0K9fPwwYMADbtm3De++9B4VCkSOx8qy8rl20Wi06deqEpk2b4tNPP8X+/fsxa9YsZGZmYu7cuYb1Vq5ciR49eiAoKAgZGRnYsmUL3njjDezZswddu3bN8/kBYNSoUXBzc8PMmTMNlVFFcf0eGxuLjh07ws3NDVOnToWzszNu3rxpVM1t6fGFhobil19+wejRowEACxcuRLdu3TBlyhR89dVXGDVqFJ48eYJPP/0UQ4cOzdGGIL+v5eXLl9G8eXNUqFABU6dOhZ2dHbZt24ZevXrhp59+Mlz3z549GwsXLsTw4cPRuHFjJCYm4q+//sK5c+fw2muvGfbn5OSEKlWq4NSpU/jggw+eey6pGBKJSrm//vpLBCAeOnRIFEVR1Ol0YsWKFcVx48blWBeAOGvWLMP9kJAQEYAYFRUliqIo3r9/X5TJZGKvXr2Mtps9e7YIQAwODs6xbYcOHUSdTmdY/sEHH4hSqVSMj48XRVEUk5KSRGdnZ3HEiBFG+7x//77o5ORktLx+/fpi+fLlDduKoigePHhQBCB6e3vneR4seZ5Zs2aJ2X89REVFiQDEkJCQHPt99px99tlnRucsO29vb6NzNH78eBGAGBoaahRn5cqVRR8fH1Gr1YqiKIrHjh0TAYg1atQQ1Wq1Yd2VK1eKAMRLly7leez64+nRo4fR8lGjRokAxAsXLhgdj0QiES9fvmy0bq9evUSFQiFev37dsOzevXuig4OD2KpVK8My/bn67LPPjLZ/9r0kiqLYunVrsXXr1ob7GzduFCUSidH5EEVRXLNmjQhAPHXqlCiKorh8+XIRgPjw4cM8j/tZGo1GFARBnDhxYo7HgoODRQDi1KlTzdqX/jUx52bqvZBd165dxVdeeSXH8pSUlOfGpNVqRWdnZ7F9+/ZGyx89eiTa2dmJAMS//vrLsPyPP/4Qq1SpYhSfv7+/GBMTk+99iqIonj59WgQgbt26Nc9jJSKylP7z4/Dhw+LDhw/F27dvi1u2bBHLlCkj2tjYiHfu3BHPnz8vAhCHDx9utO2kSZNEAOLRo0cNy5797LHkM7Zr167Pvd7IbvTo0WK5cuUM9ydMmCC2atVKdHd3F1evXi2Koig+fvxYFARBXLlypWG94OBgo+cZN26c6OjoKGZmZub6XJ988oloZ2cnhoeHGy2fOnWqKJVKxVu3buUZq7e3twhA3L9/f773++w1UWpqao7nOXPmjAhA/P777w3Ltm/fLgIQjx07lmP9Z1+vFStWiADEH374wbAsIyNDbNasmWhvby8mJiaKovjf9UiZMmXEuLg4w7q7d+8WAYj/+9//RFEUxSdPnpi8bnmW/vycOHHCsCw2NlZUKpVG1xX691P2Y2ndurUIQFy6dKlhmVqtFuvXry+6u7uLGRkZuT6vOdcu77//vmGZTqcTu3btKioUCqPrpGdfi4yMDLF27dpiu3btchynqev5Fi1aGL3/iur6/eeffxYBiGfPns1zPXOPD4CoVCqNrs3Wrl0rAhA9PDwM7x9RFMVp06aZvHY157U09bdD+/btxTp16ojp6emGZTqdTgwICBCrVq1qWFavXj2xa9eueR6vXseOHcUaNWqYtS4VPxymR6Xepk2bUK5cObRt2xZAVnlq//79sWXLluf2onnWkSNHkJmZaTScCMiqfsrNO++8Y9QnqGXLltBqtYZmyYcOHUJ8fDwGDBiAR48eGW5SqRRNmjTBsWPHAAAxMTE4f/48goOD4eTkZNjfa6+9hpo1az43dnOfpyjt27cPjRs3Nqp6sbe3xzvvvIObN2/iypUrRusPGTLEaNiU/ltUc8eK678B0tO/bvv27TNa3rp1a6NzqtVqcfDgQfTq1QuvvPKKYXn58uUxcOBAnDx5EomJiWbFkJft27ejRo0aqF69utFrpB+KoX+N9P2odu/ebdbQA724uDiIoggXF5dc13nvvffM2le9evVw6NAhs27ZK4hMSUtLM9kbRKVSGR7PjUQiwciRI3HkyBFMmzYNERERCAsLQ79+/ZCRkZFjexcXF9SvXx9Tp07Frl27sGTJEty8eRNvvPGGobrR0n3q9wtkDUEhIioMHTp0gJubG7y8vPDmm2/C3t4eP//8MypUqGD4HJswYYLRNhMnTgSAHMPfTXnRz1hTWrZsiQcPHhiakYeGhqJVq1Zo2bIlQkNDAWRVS4mimGdllLOzM1JSUnIM08lu+/btaNmyJVxcXIw+Qzt06ACtVosTJ048N97KlSsjMDCwwPabvcJWo9Hg8ePH8PX1hbOzM86dO/fceEzZt28fPDw8MGDAAMMyuVyOsWPHIjk5Gb/99pvR+v379zf63H/2dbWxsYFCocDx48fx5MmTPJ+7Zs2aRq+Tm5sbqlWrZtZ7RCaTYeTIkYb7CoUCI0eORGxsLMLCwnLdzpxrlzFjxhj+rx+GlpGRgcOHDxuWZ38tnjx5goSEBLRs2dLs12HEiBFGzdOL6vpdf823Z88eaDSaXNez5Pjat29vVPGmn2m8T58+cHBwyLH82dc3P69lXFwcjh49in79+iEpKclwvh4/fozAwEBERETg7t27hmO+fPkyIiIicj1ePf3PJZVMHKZHpZpWq8WWLVvQtm1bQ08FIOuX69KlS3HkyBF07NjR7P3pE0i+vr5Gy11dXXP9kKxUqZLRff16+g98/S9afcLhWY6OjkbPXbVq1RzrVKtW7bkfpuY+T1GKjo42fNBlpy9Nj46ONhry9Lxz+TzPnrsqVapAIpHkGA9fuXJlo/sPHz5EamoqqlWrZjJWnU6H27dvP7dE/XkiIiJw9erVXIc1xsbGAsi6sPz2228xfPhwTJ06Fe3bt8frr7+Ovn37mtUwVMylr5FMJjN7yKeLi4thrP6LsrGxydHTBIAhOWRquFx2c+fOxaNHj/Dpp58amot37NgRw4YNw5o1awzDSPQXZpMnTzb8gQYADRs2RJs2bRASEmJIxpm7Tz39ObV2g3qignLixAl89tlnCAsLQ0xMDH7++Wf06tXLon0cOHAAs2bNwuXLl6FSqdCqVSssXbr0hYeEv6y+/PJL+Pn5QSaToVy5cqhWrZrhd350dDQkEkmO6xMPDw84OzsbzRaamxf5jL1//77RfScnJ9jY2BgSF6GhoahYsSL+/vtvzJs3D25uboZZsEJDQ+Ho6Ih69erluv9Ro0Zh27Zt6Ny5MypUqICOHTuiX79+6NSpk2GdiIgIXLx48bmfoXl59vP/RfeblpaGhQsXIiQkBHfv3jX6/DV3qPuzoqOjUbVq1Ryf99mvnbJ73uuqVCqxePFiTJw4EeXKlUPTpk3RrVs3DBo0KMeXSc/uS78/c94jnp6esLOzM1rm5+cHIKu/VdOmTfPcPrdrF4lEYvRF4bP71duzZw/mzZuH8+fPG11zmPu5/ex7o6iu31u3bo0+ffpgzpw5WL58Odq0aYNevXph4MCBRl/kWXJ8z76O+iSZl5eXyeXPvr75eS0jIyMhiiJmzJiBGTNmmDzW2NhYVKhQAXPnzkXPnj3h5+eH2rVro1OnTnj77bdRt27dHNuIoshrrxKMySgq1Y4ePYqYmBhs2bLFZNPhTZs2WZSMyo/cpqDVf6jqK1s2btxosoJEJiuYH9MXeZ7cfslbWln2op53Li2V23E9L/lRWHQ6HerUqYNly5aZfFx/kWBjY4MTJ07g2LFj2Lt3L/bv34+tW7eiXbt2OHjwYK7nydXVFYIg5HrRqFQqzZ79JiMjA3FxcWat6+bmludUzOXLl8exY8dyXFDExMQAyLroyYtCocC3336L+fPnIzw8HOXKlYOfnx8GDhxo9MfZTz/9hAcPHqBHjx5G27du3RqOjo44deqUIRll7j719OdU3yeNqKRLSUlBvXr1MHToULz++usWbx8VFYWePXtiwoQJ2LRpExISEvDBBx/g9ddfz3dFyMuucePGaNiwYZ7rvMgfZS/yGaufCEIvJCQEgwcPhqenJypXrowTJ07Ax8cHoiiiWbNmcHNzw7hx4xAdHY3Q0FAEBATk+fnj7u6O8+fP48CBA/j111/x66+/IiQkBIMGDTI07tbpdHjttdcwZcoUk/vQ/7GcF1Of/y+y3/fffx8hISEYP348mjVrBicnJwiCgDfffNOiyuYXYc7rOn78eHTv3h27du3CgQMHMGPGDCxcuBBHjx5FgwYNLNpXQXvetYs5QkND0aNHD7Rq1QpfffUVypcvD7lcjpCQEGzevNmsfTz73iiq63dBELBjxw78/vvv+N///ocDBw5g6NChWLp0KX7//XfY29tbfHy5vY6F+frqz9ekSZNyVB/q6a+tWrVqhevXr2P37t04ePAgvv32Wyxfvhxr1qzB8OHDjbZ58uQJr71KMCajqFTbtGkT3N3d8eWXX+Z4bOfOnfj555+xZs0as5MP+pnSIiMjjb4hefz4cb4/JPUzg7i7u+dZaaJ/blMlq/ry94J4HlP036LFx8cbLTf1TaslF8Le3t4mY//3338NjxekiIgIo9ctMjISOp3uud/Su7m5wdbWNtdYJRJJjm+T8qNKlSq4cOEC2rdv/9zzKJFI0L59e7Rv3x7Lli3DggULMH36dBw7dizX11cmk6FKlSpGVYL5dfr0acPQ1+eJiorK8xzXr18f3377La5evWpUsq5vmlu/fn2znqdcuXKGmfK0Wi2OHz+OJk2aGKqYHjx4YHgsO1EUodVqkZmZafE+sx8jkHvDWaKSpnPnzujcuXOuj6vVakyfPh0//vgj4uPjUbt2bSxevNgw61dYWBi0Wi3mzZtnSDJMmjQJPXv2hEajee7U6WQZb29v6HQ6REREGP0eevDgAeLj4wvs8zS3z6Znh89lrxRu2bIlTpw4gcqVK6N+/fpwcHBAvXr14OTkhP379+PcuXOYM2fOc59boVCge/fu6N69O3Q6HUaNGoW1a9dixowZ8PX1RZUqVZCcnFxgVbt6L7LfHTt2IDg4GEuXLjUsS09Pz3E9Zem108WLF6HT6YwSeC967VSlShVMnDgREydOREREBOrXr4+lS5fihx9+yNf+nnXv3j2kpKQYVdSEh4cDQJ7XCM+7dtHpdLhx44ZRUvDZ/f70009QqVQ4cOCAUTVRSEhIfg+nyK7f9Zo2bYqmTZti/vz52Lx5M4KCgrBlyxYMHz68UI4vL/l5LfXVa3K53KyfJVdXVwwZMgRDhgxBcnIyWrVqhdmzZ+dIRkVFReVZVUnFG3tGUamVlpaGnTt3olu3bujbt2+O25gxY5CUlJRjOtG8tG/fHjKZDKtXrzZavmrVqnzHGRgYCEdHRyxYsMDkWPCHDx8CyPrWsX79+tiwYYNRafehQ4dy9FZ6kecxxdHREWXLls3RF+Grr77Ksa7+g+nZCy1TunTpgj///BNnzpwxLEtJScHXX38NHx8fs8bSW+LZpOQXX3wBAHn+wQVkfVPUsWNH7N6926jk+8GDB9i8eTNatGhRIMMc+/Xrh7t37+Kbb77J8VhaWpph9hZTFUn6hI2p4W7ZNWvWDH/99dcLx1qQPaN69uwJuVxu9H4SRRFr1qxBhQoVEBAQYFgeExODf//9N8++CUDWFMcxMTFGw/H0F6rPVkn+8ssvSElJMfr219x96oWFhcHJyemFh2oSlRRjxozBmTNnsGXLFly8eBFvvPEGOnXqZPiDy9/fHxKJBCEhIdBqtUhISMDGjRvRoUMHJqIKQZcuXQAgx8xu+kpbc2YLM4ednZ3J4WUdOnQwumWvlGrZsiVu3ryJrVu3GobtSSQSBAQEYNmyZdBoNHn2iwKyvvTLTiKRGIbs6D/3+vXrhzNnzuDAgQM5to+Pjzf5hYM5XmS/Uqk0R1XJF198keNLEUuvne7fv280K3NmZia++OIL2Nvbo3Xr1s/dR3apqak5ZoSuUqUKHBwcnntNYYnMzEysXbvWcD8jIwNr166Fm5sb/P3989z2edcu2a/DRVHEqlWrIJfL0b59ewBZr4MgCEbn/ebNm4ZZivOjqK7fnzx5kuM99Ow1X2EcX17y81q6u7ujTZs2WLt2raHyPbvsf4c8+/Nub28PX1/fHO/HhIQEXL9+3eg6kUoWVkZRqfXLL78gKSkpx5AcvaZNm8LNzQ2bNm1C//79zdpnuXLlMG7cOCxduhQ9evRAp06dcOHCBfz6668oW7ZsvsrjHR0dsXr1arz99tt49dVX8eabb8LNzQ23bt3C3r170bx5c8OH7MKFC9G1a1e0aNECQ4cORVxcHL744gvUqlULycnJBfY8pgwfPhyLFi3C8OHD0bBhQ5w4ccLwLUh2+g+h6dOn480334RcLkf37t1zjC0HgKlTp+LHH39E586dMXbsWLi6umLDhg2IiorCTz/9ZPaQMXNFRUUZXrczZ87ghx9+wMCBA836RmXevHk4dOgQWrRogVGjRkEmk2Ht2rVQq9X49NNPCyS+t99+G9u2bcO7776LY8eOoXnz5tBqtfj333+xbds2HDhwAA0bNsTcuXNx4sQJdO3aFd7e3oiNjcVXX32FihUrGjWDN6Vnz57YuHEjwsPDzRqykJuC7BlVsWJFjB8/Hp999hk0Gg0aNWqEXbt2ITQ0FJs2bTIqG582bZrhPaL/9u2HH37ATz/9hFatWsHe3h6HDx/Gtm3bMHz4cPTp08ewbffu3VGrVi3MnTsX0dHRaNq0KSIjI7Fq1SqUL18ew4YNM6xr7j71Dh06hO7du7NvAb0Ubt26hZCQENy6dcswjHbSpEnYv38/QkJCsGDBAlSuXBkHDx5Ev379MHLkSGi1WjRr1izHhBFUMOrVq4fg4GB8/fXXiI+PR+vWrfHnn39iw4YN6NWrl9mVrM/j7++PrVu3YsKECWjUqBHs7e3RvXv3PLfRJ5quXbuGBQsWGJa3atUKv/76K5RKJRo1apTnPoYPH464uDi0a9cOFStWRHR0NL744gvUr1/fUAk2efJk/PLLL+jWrRsGDx4Mf39/pKSk4NKlS9ixYwdu3ryZr+E8L7Lfbt26YePGjXByckLNmjVx5swZHD58GGXKlDFar379+pBKpVi8eDESEhKgVCrRrl07uLu759jnO++8g7Vr12Lw4MEICwuDj48PduzYgVOnTmHFihVGDajNER4ejvbt26Nfv36oWbMmZDIZfv75Zzx48ABvvvmmRfvKi6enJxYvXoybN2/Cz88PW7duxfnz5/H1118/N0Gd17WLSqXC/v37ERwcjCZNmuDXX3/F3r178dFHHxn6fHXt2hXLli1Dp06dMHDgQMTGxuLLL7+Er68vLl68mK/jKarr9w0bNuCrr75C7969UaVKFSQlJeGbb76Bo6OjIQldGMeXl/y+ll9++SVatGiBOnXqYMSIEXjllVfw4MEDnDlzBnfu3MGFCxcAZDXKb9OmDfz9/eHq6oq//voLO3bsMGpUDwCHDx+GKIro2bNngR8jFZEinLmPqEh1795dVKlUYkpKSq7rDB48WJTL5eKjR49EUcw5Ja9+OtfsU5pmZmaKM2bMED08PEQbGxuxXbt24tWrV8UyZcqI7777bo5tn52K1dSUt/rlgYGBopOTk6hSqcQqVaqIgwcPzjGF/E8//STWqFFDVCqVYs2aNcWdO3fmmAI5L+Y8z6xZs8Rnfz2kpqaKw4YNE52cnEQHBwexX79+YmxsbI5zJopZ0yBXqFBBlEgkRufv2elyRVEUr1+/Lvbt21d0dnYWVSqV2LhxY3HPnj0mz9n27duNlpuaNtYU/fFcuXJF7Nu3r+jg4CC6uLiIY8aMEdPS0ozWBSCOHj3a5H7OnTsnBgYGivb29qKtra3Ytm1b8fTp0yZjenaKZFPvpWenaxbFrKl4Fy9eLNaqVUtUKpWii4uL6O/vL86ZM0dMSEgQRVEUjxw5Ivbs2VP09PQUFQqF6OnpKQ4YMCDHtNOmqNVqsWzZsuInn3xitDw4OFi0s7N77vaFRavVigsWLBC9vb1FhUIh1qpVy2jaaj39NM7Zz+Mff/whtmrVSnRxcRFVKpVYr149cc2aNaJOp8uxfVxcnPjBBx+Ifn5+olKpFMuWLSu++eab4o0bN4zWs2SfV69eNUy7TlQaARB//vlnw/09e/aIAEQ7Ozujm0wmE/v16yeKoijGxMSIVatWFSdPniyeO3dO/O2338TWrVuL7du3N/lzRLnL7XriWRqNRpwzZ45YuXJlUS6Xi15eXuK0adOMplEXxZyfPZZ8xiYnJ4sDBw4UnZ2dzZqWXs/d3V0EID548MCw7OTJkyIAsWXLljnWf/a6ZseOHWLHjh1Fd3d3UaFQiJUqVRJHjhwpxsTEGG2XlJQkTps2TfT19RUVCoVYtmxZMSAgQFyyZIlhyvnceHt75zqdvLn7ffaa6MmTJ+KQIUPEsmXLivb29mJgYKD477//mrwe+uabb8RXXnlFlEqlRteJpq4VHjx4YNivQqEQ69Spk+NaKLfrkWfjfPTokTh69GixevXqop2dnejk5CQ2adJE3LZtm1nnJ7f3U/br3NatW4u1atUS//rrL7FZs2aiSqUSvb29xVWrVuXYnynPu3a5fv262LFjR9HW1lYsV66cOGvWLFGr1Rqt+91334lVq1YVlUqlWL16dTEkJMTk9e6zr83zfv4K+/r93Llz4oABA8RKlSqJSqVSdHd3F7t165Zj/+Yen6nr3NzeK6Z+N5j7WuZ2jX79+nVx0KBBooeHhyiXy8UKFSqI3bp1E3fs2GFYZ968eWLjxo1FZ2dn0cbGRqxevbo4f/78HD/D/fv3F1u0aJHn+aPiTRDFQuw4R/SSiI+Ph4uLC+bNm4fp06dbOxx6xuzZszFnzhw8fPiQTQ4BfPLJJwgJCUFERESejcXJPOPHj8eJEycQFhbGyigqlQRBMJpNb+vWrQgKCsLly5dz/A6xt7eHh4cHZsyYgf379+Ps2bOGx+7cuQMvLy+cOXPmuTNnEVHp0aZNGzx69Aj//PNPvvdh6tpl8ODB2LFjx3Ori6jgFMRrWRDu37+PypUrY8uWLayMKsHYM4rIQmlpaTmW6Xs06Bu3EhVnH3zwAZKTk03OMEmWefz4Mb799lvMmzePiSh6aTRo0ABarRaxsbHw9fU1uul7xKWmpuYYaq3/A7KoZhEjotKD1y6U3YoVK1CnTh0moko49owistDWrVuxfv16dOnSBfb29jh58iR+/PFHdOzYEc2bN7d2eETPZW9vj9jYWGuHUSqUKVOG38hSqZScnIzIyEjD/aioKJw/fx6urq7w8/NDUFAQBg0ahKVLl6JBgwZ4+PAhjhw5grp166Jr167o2rUrli9fjrlz52LAgAFISkrCRx99BG9v7+dOFkBE9Cxeu1B2ixYtsnYIVACYjCKyUN26dSGTyfDpp58iMTHR0NR83rx51g6NiIioQPz1119GTa8nTJgAAAgODsb69esREhKCefPmYeLEibh79y7Kli2Lpk2bolu3bgCAdu3aYfPmzfj000/x6aefwtbWFs2aNcP+/fthY2NjlWMiIiKi4oM9o4iIiIiIiIiIqMiwZxQRERERERERERUZJqOIiIiIiIiIiKjIvHQ9o3Q6He7duwcHBwfOfEREREQWE0URSUlJ8PT0zDFjXEnH6yQiIiLKL0uukV66ZNS9e/fg5eVl7TCIiIiohLt9+zYqVqxo7TAKFK+TiIiI6EWZc4300iWjHBwcAGSdHEdHRytHQ0RERCVNYmIivLy8DNcUpQmvk4iIiCi/LLlGeumSUfqSc0dHR15kERERUb6VxmFsvE4iIiKiF2XONVLpanRARERERERERETFGpNRRERERERERERUZJiMIiIiIiIiIiKiIvPS9YwiotJBq9VCo9FYOwwiKoXkcjmkUqm1wyAiIiIqtZiMIqISRRRF3L9/H/Hx8dYOhYhKMWdnZ3h4eJTKJuVERERE1sZkFBGVKPpElLu7O2xtbfmHIhEVKFEUkZqaitjYWABA+fLlrRwRERERUenDZBQRlRhardaQiCpTpoy1wyGiUsrGxgYAEBsbC3d3dw7ZIyIiohJPpxMRHpuEhFQNnGzl8HN3gERivS/2rdrA/MSJE+jevTs8PT0hCAJ27dr13G2OHz+OV199FUqlEr6+vli/fn2hx0lExYO+R5Stra2VIyGi0k7/e4a96YiIiKikC4uOw/it5zFh6wVM//kSJmy9gPFbzyMsOs5qMVk1GZWSkoJ69erhyy+/NGv9qKgodO3aFW3btsX58+cxfvx4DB8+HAcOHCjkSImoOOHQPCIqbPw9Q0RERKVBWHQc5u+9in/uJsBRJUNFF1s4qmS4fC8B8/detVpCyqrD9Dp37ozOnTubvf6aNWtQuXJlLF26FABQo0YNnDx5EsuXL0dgYGBhhUlEREREREREVKLodCI2nI5GfKoGPmX+67drp5TBViFFdFwqvj8djQZeLkU+ZM+qlVGWOnPmDDp06GC0LDAwEGfOnMl1G7VajcTERKMbUX5lanXYv34e/lnQCnFxj60dDlG+zZ49G+XKlTN7iPTL4PHjx3B3d8fNmzetHYrFbt68CUEQcP78+QLft4+PD1asWFHg+7WmqVOn4v3337d2GERERESFKjw2CZGxyXB3UOao+hYEAW72SkTEJiM8NqnIYytRyaj79++jXLlyRsvKlSuHxMREpKWlmdxm4cKFcHJyMty8vLyKIlQqpabsuIhKN7ahdsYFnD76P2uHQyXI4MGDIQiC4VamTBl06tQJFy9eLLDnmD17NurXr//c9a5evYo5c+Zg7dq1iImJsahCtaQZPHgwevXqZda68+fPR8+ePeHj41OoMb0oS46JTJs0aRI2bNiAGzduWDsUIiIiokKTkKpBRqYWKrnpyVhUcikyMrVISC36HpklKhmVH9OmTUNCQoLhdvv2bWuHRCXYrvN3oUDWD+qfEXchiqKVI6KSpFOnToiJiUFMTAyOHDkCmUyGbt26FXkc169fBwD07NkTHh4eUCqVOdbJyMgo6rCsKjU1Fd999x2GDRtm7VAoFwXZSLxs2bIIDAzE6tWrC2yfRERERMWNk60cCpkU6RqtycfTNVooZFI42cqLOLISlozy8PDAgwcPjJY9ePAAjo6OhmmYn6VUKuHo6Gh0I8ovnQjIkPWDnJyUiD+irDf7AJU8SqUSHh4e8PDwQP369TF16lTcvn0bDx8+NKxz+/Zt9OvXD87OznB1dUXPnj2Nho0dP34cjRs3hp2dHZydndG8eXNER0dj/fr1mDNnDi5cuGCovjI12+js2bPRvXt3AIBEIjGU6+qrbebPnw9PT09Uq1YNALBx40Y0bNgQDg4O8PDwwMCBAxEbG2u0z19++QVVq1aFSqVC27ZtsWHDBgiCgPj4eADA+vXr4ezsjD179qBatWqwtbVF3759kZqaig0bNsDHxwcuLi4YO3YstNr/PijVajUmTZqEChUqwM7ODk2aNMHx48cNj+v3e+DAAdSoUQP29vaGhJ/+WDds2IDdu3cbzkn27bPbt28flEolmjZtalj25MkTBAUFwc3NDTY2NqhatSpCQkIA/Dcsbtu2bWjZsiVsbGzQqFEjhIeH4+zZs2jYsCHs7e3RuXNno9dXp9Nh7ty5qFixIpRKJerXr4/9+/cbxXLp0iW0a9cONjY2KFOmDN555x0kJyebdUw3btxA27ZtYWtri3r16uUYxn7y5ElDvF5eXhg7dixSUlIMj8fGxqJ79+6wsbFB5cqVsWnTJpPnKy/Hjx+HIAg4cuQIGjZsCFtbWwQEBODatWtG661evRpVqlSBQqFAtWrVsHHjRqPHBUHA6tWr0aNHD9jZ2WH+/PmG6r9169ahUqVKsLe3x6hRo6DVavHpp5/Cw8MD7u7umD9//nPj7N69O7Zs2WLx8RERERGVFH7uDvB1t8fDZHWOQgpRFPEwWY2q7vbwc3co8thKVDKqWbNmOHLkiNGyQ4cOoVmzZlaKiF5GciETAKASNDh/O966wRBEUURqRqZVbi9SGZecnIwffvgBvr6+KFOmDICsyo/AwEA4ODggNDQUp06dMiRYMjIykJmZiV69eqF169a4ePEizpw5g3feeQeCIKB///6YOHEiatWqZai+6t+/f47nnTRpkiGhol9P78iRI7h27RoOHTqEPXv2GGL65JNPcOHCBezatQs3b97E4MGDDdtERUWhb9++6NWrFy5cuICRI0di+vTpOZ43NTUVn3/+ObZs2YL9+/fj+PHj6N27N/bt24d9+/Zh48aNWLt2LXbs2GHYZsyYMThz5gy2bNmCixcv4o033kCnTp0QERFhtN8lS5Zg48aNOHHiBG7duoVJkyYZjrVfv35GFWkBAQEmX4/Q0FD4+/sbLZsxYwauXLmCX3/9FVevXsXq1atRtmxZo3VmzZqFjz/+GOfOnYNMJsPAgQMxZcoUrFy5EqGhoYiMjMTMmTMN669cuRJLly7FkiVLcPHiRQQGBqJHjx6GY0pJSUFgYCBcXFxw9uxZbN++HYcPH8aYMWPMOqbp06dj0qRJOH/+PPz8/DBgwABkZmb9zrp+/To6deqEPn364OLFi9i6dStOnjxp2DeQlZS8ffs2jh07hh07duCrr77KkXw01/Tp07F06VL89ddfkMlkGDp0qOGxn3/+GePGjcPEiRPxzz//YOTIkRgyZAiOHTtmtI/Zs2ejd+/euHTpkmH769ev49dff8X+/fvx448/4rvvvkPXrl1x584d/Pbbb1i8eDE+/vhj/PHHH3nG17hxY9y5c6dE9ggjIiIiModEIiA4wBtONnJEx6UiRZ0JrU5EijoT0XGpcLKRY1CAd5E3LwesPJtecnIyIiMjDfejoqJw/vx5uLq6olKlSpg2bRru3r2L77//HgDw7rvvYtWqVZgyZQqGDh2Ko0ePYtu2bdi7d6+1DoFeQgpk/WFnAzU4Ss/60jRa1Jx5wCrPfWVuIGwV5v8a3bNnD+zt7QFkJR3Kly+PPXv2QCLJ+l5g69at0Ol0+Pbbbw0VSyEhIXB2dsbx48fRsGFDJCQkoFu3bqhSpQqArFlF9ezt7SGTyeDh4ZFrDPb29nB2dgaAHOvZ2dnh22+/hUKhMCzLnkB45ZVX8Pnnn6NRo0ZITk6Gvb091q5di2rVquGzzz4DAFSrVg3//PNPjsoUjUZjqIQBgL59+2Ljxo148OAB7O3tUbNmTbRt2xbHjh1D//79cevWLYSEhODWrVvw9PQEkJWI2b9/P0JCQrBgwQLDftesWWPY75gxYzB37lzDsdrY2ECtVud5TgAgOjra8Dx6t27dQoMGDdCwYUMAMNlLatKkSYbZXMeNG4cBAwbgyJEjaN68OQBg2LBhRhVqS5YswYcffog333wTALB48WIcO3YMK1aswJdffonNmzcjPT0d33//Pezs7AAAq1atQvfu3bF48WKUK1cuz2OaNGkSunbtCgCYM2cOatWqhcjISFSvXh0LFy5EUFAQxo8fDwCoWrUqPv/8c7Ru3RqrV6/GrVu38Ouvv+LPP/9Eo0aNAADfffed0XvMEvPnz0fr1q0BZDUM79q1K9LT06FSqbBkyRIMHjwYo0aNAgBMmDABv//+O5YsWYK2bdsa9jFw4EAMGTLEaL86nQ7r1q2Dg4OD4X1z7do17Nu3DxKJBNWqVTOc1yZNmuQan/71jo6OLvZ9woiIiIjyy9/bFdO71sCG09GIjE3Go2Q1FDIpans6YVCAN/y9Xa0Sl1Uro/766y80aNAADRo0AJB1MdqgQQPDt8gxMTG4deuWYf3KlStj7969OHToEOrVq4elS5fi22+/NfwhQFQU5E+TUSq8XD116MW1bdsW58+fx/nz5/Hnn38iMDAQnTt3RnR0NADgwoULiIyMhIODA+zt7WFvbw9XV1ekp6fj+vXrcHV1xeDBgxEYGIju3btj5cqVRpVNL6pOnTpGiSgACAsLQ/fu3VGpUiU4ODgYkgv6383Xrl0zJC70GjdunGPftra2hoQRkDX5hI+PjyE5p1+mr8K5dOkStFot/Pz8DOfC3t4ev/32m6Hnlan9li9fPl+VPGlpaVCpVEbL3nvvPWzZsgX169fHlClTcPr06Rzb1a1b1yh+IOs8mjqmxMRE3Lt3z5Co0mvevDmuXr0KIKu5fL169QyJKP3jOp0uxzA3U7LHU758eQAwPP+FCxewfv16o/MZGBgInU6HqKgoXL16FTKZzKhCrHr16obkpaXyiuXq1at5ngc9fSIwOx8fHzg4/FdKXq5cOdSsWdOQ1NUve977QD+8PzU11ZzDKRFmz55tNFGCIAioXr26tcMiIiIiK/P3dsWK/vWxrH89zO9dB8v618Py/vWtlogCrFwZ1aZNmzyHuZjqd9KmTRv8/fffhRgVUd70ySgbQW3lSAgAbORSXJlrnYS0TS6zUuTGzs4Ovr6+hvvffvstnJyc8M0332DevHlITk6Gv7+/yT49bm5uALIqpcaOHYv9+/dj69at+Pjjj3Ho0CGjXkf5lT0BAvw3ZCwwMBCbNm2Cm5sbbt26hcDAQIsbnMvlxk0RBUEwuUyn0wHIqpyVSqUICwuDVGp8nrMnsEztIz/DJ8uWLYsnT54YLdMnCvft24dDhw6hffv2GD16NJYsWWLy+fXVbM8u0x9TUTAVT/ZzOnLkSIwdOzbHdpUqVUJ4eHiRxWKuZ9+Tz+5Xv++83ku5iYvL6vmn/9kqLWrVqoXDhw8b7stkVr3UIyIiomJCIhFQ3aP49NDmFQqRhbJXRhX9BJj0LEEQLBoqV5wIggCJRIK0tDQAwKuvvoqtW7fC3d09z8kW9BWl06ZNQ7NmzbB582Y0bdoUCoXCqAH4i/r333/x+PFjLFq0CF5eXgCyKlqzq1atGvbt22e07OzZsy/83A0aNIBWq0VsbCxatmyZ7/2Ye04aNGiAH374IcdyNzc3BAcHIzg4GC1btsTkyZONklGWcHR0hKenJ06dOmWoMAOAU6dOGarJatSogfXr1yMlJcWQiDl16pRh+Jklx/SsV199FVeuXDFKiGZXvXp1ZGZmIiwszFDtdu3aNUMj+oJUo0YNnDp1CsHBwYZlp06dQs2aNQv8uXLzzz//QC6Xo1atWkX2nEXheUN1iYiIiIqDEtXAnMj6RCiErD8CbThMjyykVqtx//593L9/H1evXsX777+P5ORkw+x2QUFBKFu2LHr27InQ0FBERUXh+PHjGDt2LO7cuYOoqChMmzYNZ86cQXR0NA4ePIiIiAhDTx8fHx9D771Hjx5BrX6x6r1KlSpBoVDgiy++wI0bN/DLL7/gk08+MVpn5MiR+Pfff/Hhhx8iPDwc27ZtM1S16qth8sPPzw9BQUEYNGgQdu7ciaioKPz5559YuHChRX0CfXx8cPHiRVy7dg2PHj2CRmM6hRwYGIjLly8bVUfNnDkTu3fvRmRkJC5fvow9e/bku3+S3uTJk7F48WJs3boV165dw9SpU3H+/HmMGzcOQNZ7QKVSITg4GP/88w+OHTuG999/H2+//bZhGKC5x/SsDz/8EKdPn8aYMWNw/vx5REREYPfu3YYG5tWqVUOnTp0wcuRI/PHHHwgLC8Pw4cNzna32Rc/D+vXrsXr1akRERGDZsmXYuXOnofl8QRs0aBCmTZtmtCw0NNQws2BpEhERAU9PT7zyyisICgoyandgilqtRmJiotGNiIiIqLAxGUVkATn+q0ZQcZgeWWj//v0oX748ypcvjyZNmhhmS2vTpg2ArP5HJ06cQKVKlfD666+jRo0aGDZsGNLT0+Ho6AhbW1v8+++/6NOnD/z8/PDOO+9g9OjRGDlyJACgT58+6NSpE9q2bQs3Nzf8+OOPLxSvm5sb1q9fj+3bt6NmzZpYtGhRjqqgypUrY8eOHdi5cyfq1q2L1atXG2bTUyqVL/T8ISEhGDRoECZOnIhq1aqhV69eOHv2LCpVqmT2PkaMGIFq1aqhYcOGcHNzw6lTp0yuV6dOHbz66qvYtm2bYZlCocC0adNQt25dtGrVClKpFFu2bHmhYxo7diwmTJiAiRMnok6dOti/fz9++eUXVK1aFUDWe+DAgQOIi4tDo0aN0LdvX7Rv3x6rVq2y+JieVbduXfz2228IDw9Hy5YtDT0aszduDwkJgaenJ1q3bo3XX38d77zzDtzd3Y32M3jwYMN7Nr969eqFlStXYsmSJahVqxbWrl2LkJCQF95vbm7dupWjv9qWLVswYsSIQnk+a2nSpAnWr1+P/fv3Y/Xq1YiKikLLli2RlJSU6zYLFy6Ek5OT4aavgiQiIiIqTIL4InOTl0CJiYlwcnJCQkJCnsNgiEypOfUnXFFlzS62T9sYN9uvxqg2poe8UMFLT09HVFQUKleunKPZNBUf8+fPx5o1a3D79m1rh2KRvXv3YvLkyfjnn3+MmmGTsdatW6Nt27aYPXu2tUPJt19//RUTJ07ExYsXc+2plNfvm5JyLREfHw9vb28sW7YMw4YNM7mOWq02qqJMTEyEl5dXsT82IiIiKn4suUYqmY1WiKxE3y8K4Gx6RHpfffUVGjVqhDJlyuDUqVP47LPPDEO/SpKuXbsiIiICd+/eZXVILhISEnD9+nWLhkoWRykpKQgJCSn1zb2dnZ3h5+eHyMjIXNdRKpUvXMVIREREZKnSfRVGVMAU2ZJR7BlFlCUiIgLz5s1DXFwcKlWqhIkTJ+boz1NSjB8/3tohFGtOTk64c+eOtcN4YX379rV2CEUiOTkZ169fx9tvv23tUIiIiIiMMBlFZIHslVE27BlFBABYvnw5li9fbu0wiF56kyZNQvfu3eHt7Y179+5h1qxZkEqlGDBggLVDIyIiIjLCZBSRBWRCtgbmrIwiIqJi5M6dOxgwYAAeP34MNzc3tGjRAr///jvc3NysHRoRERGRESajiCzAnlFERFRcvehsj0RERERFhdMFEVlAwWF6RERERERERC+EySgiC8ifaWAuilYMhoiIiIiIiKgEYjKKyALGw/RYGUVERERERERkKSajiCygEDKz/V8LQczMY20iIiIiIiIiehaTUURmEkXRqDIKAGRaVkcRvajHjx/D3d0dN2/etHYoJd6VK1dQsWJFpKSkWDsUIiIiIqJcMRlFZIEcyShdupUioZJm8ODBEAQBgiBAoVDA19cXc+fORWYmq+vmz5+Pnj17wsfHBwBw8+ZNCIIAqVSKu3fvGq0bExMDmUwGQRCMklc///wzmjZtCicnJzg4OKBWrVoYP3680XYDBw6En58fJBKJ0WOlSc2aNdG0aVMsW7bM2qEQEREREeWKySgiC8ihNbov0zIZRebr1KkTYmJiEBERgYkTJ2L27Nn47LPPTK6bkZFRxNFlEUWxUBJkuR1PamoqvvvuOwwbNizHYxUqVMD3339vtGzDhg2oUKGC0bIjR46gf//+6NOnD/7880+EhYVh/vz50Gg0hnXUajXc3Nzw8ccfo169egVwRAWnoF/rIUOGYPXq1Ux0EhEREVGxxWQUkQUUOSqjOEyPzKdUKuHh4QFvb2+899576NChA3755RcAWZVTvXr1wvz58+Hp6Ylq1aoBAG7fvo1+/frB2dkZrq6u6NmzZ47hbOvWrUOtWrWgVCpRvnx5jBkzBsB/FUbnz583rBsfHw9BEHD8+HEAwPHjxyEIAn799Vf4+/tDqVTi5MmTuHDhAtq2bQsHBwc4OjrC398ff/31l2E/P/30k+E5fXx8sHTpUqOYfHx88Mknn2DQoEFwdHTEO++8Y/Kc7Nu3D0qlEk2bNs3xWHBwMEJCQoyWhYSEIDg42GjZ//73PzRv3hyTJ09GtWrV4Ofnh169euHLL780imflypUYNGgQnJycTMZiDh8fHyxYsABDhw6Fg4MDKlWqhK+//tponUuXLqFdu3awsbFBmTJl8M477yA5OdnwuKnXWv9abdu2DS1btoSNjQ0aNWqE8PBwnD17Fg0bNoS9vT06d+6Mhw8f5hnja6+9hri4OPz222/5Pk4iIiIiosLEZBSRBThMrxgSRSAjxTo3UXyh0G1sbIyqYo4cOYJr167h0KFD2LNnDzQaDQIDA+Hg4IDQ0FCcOnUK9vb26NSpk2G71atXY/To0XjnnXdw6dIl/PLLL/D19bU4lqlTp2LRokW4evUq6tati6CgIFSsWBFnz55FWFgYpk6dCrlcDgAICwtDv3798Oabb+LSpUuYPXs2ZsyYgfXr1xvtc8mSJahXrx7+/vtvzJgxw+TzhoaGwt/f3+RjPXr0wJMnT3Dy5EkAwMmTJ/HkyRN0797daD0PDw9cvnwZ//zzj8XHnR9Lly5Fw4YN8ffff2PUqFF47733cO3aNQBASkoKAgMD4eLigrNnz2L79u04fPiwIUGo9+xrrTdr1ix8/PHHOHfuHGQyGQYOHIgpU6Zg5cqVCA0NRWRkJGbOnJlnfAqFAvXr10doaGjBHzwRERERUQGQWTsAopJEJnCYXrGjSQUWeFrnuT+6ByjsLN5MFEUcOXIEBw4cwPvvv29Ybmdnh2+//RYKhQIA8MMPP0Cn0+Hbb7+FIAgAsiqDnJ2dcfz4cXTs2BHz5s3DxIkTMW7cOMN+GjVqZHFMc+fOxWuvvWa4f+vWLUyePBnVq1cHAFStWtXw2LJly9C+fXtDgsnPzw9XrlzBZ599hsGDBxvWa9euHSZOnJjn80ZHR8PT0/TrJ5fL8dZbb2HdunVo0aIF1q1bh7feesuQFNN7//33ERoaijp16sDb2xtNmzZFx44dERQUBKVSadF5MEeXLl0watQoAMCHH36I5cuX49ixY6hWrRo2b96M9PR0fP/997Czy3pvrFq1Ct27d8fixYtRrlw5ADlfa32126RJkxAYGAgAGDduHAYMGIAjR46gefPmAIBhw4blSPqZ4unpiejo6II8bCIiIiKiAsPKKCILPFsZJWdlFFlgz549sLe3h0qlQufOndG/f3/Mnj3b8HidOnUMyQkAuHDhAiIjI+Hg4AB7e3vY29vD1dUV6enpuH79OmJjY3Hv3j20b9/+hWNr2LCh0f0JEyZg+PDh6NChAxYtWoTr168bHrt69aohOaLXvHlzREREQKv9L2H77D5NSUtLg0qlyvXxoUOHYvv27bh//z62b9+OoUOH5ljHzs4Oe/fuRWRkJD7++GPY29tj4sSJaNy4MVJTU58bg6Xq1q1r+L8gCPDw8EBsbCyArHNTr149QyIKyDo3Op3OUD0F5HytTe1bn7iqU6eO0TL9c+XFxsamUI6diIiIqDTT6UT8ez8Rf9x4jH/vJ0Kne7GRENZSEo6DlVFEFni2Z5SUySjrk9tmVShZ67kt0LZtW6xevRoKhQKenp6QyYx/BWdPYABAcnIy/P39sWnTphz7cnNzg0SS9/cJ+sfFbMMJszf1zuu5Z8+ejYEDB2Lv3r349ddfMWvWLGzZsgW9e/fO8znz2qcpZcuWxZMnT3J9vE6dOqhevToGDBiAGjVqoHbt2kY9sLKrUqUKqlSpguHDh2P69Onw8/PD1q1bMWTIELNjNsezlVmCIECn01m0j9zOTfZ966vhnl1mznPFxcWhSpUqFsVERERE9DILi47DhtPRiIxNRkamFgqZFL7u9ggO8Ia/t6u1wzNbSTkOVkYRWSBHZRSH6VmfIGQNlbPG7WmywFx2dnbw9fVFpUqVciSiTHn11VcREREBd3d3+Pr6Gt2cnJzg4OAAHx8fHDlyxOT2bm5uAICYmBjDstwSOab4+fnhgw8+wMGDB/H6668bmonXqFEDp06dMlr31KlT8PPzg1QqNXv/ANCgQQNcuXIlz3WGDh2K48ePm6yKyo2Pjw9sbW2RkpJiUTwvqkaNGrhw4YLR8546dQoSicTQlL4o/PPPP2jQoEGRPR8RERFRSRYWHYf5e6/in7sJcFTJUNHFFo4qGS7fS8D8vVcRFh1n7RDNUpKOg8koIguwgTkVpaCgIJQtWxY9e/ZEaGgooqKicPz4cYwdOxZ37twBkFXBtHTpUnz++eeIiIjAuXPn8MUXXwDIGqrVtGlTQ2Py3377DR9//PFznzctLQ1jxozB8ePHER0djVOnTuHs2bOoUaMGAGDixIk4cuQIPvnkE4SHh2PDhg1YtWoVJk2aZPExBgYG4vLly3lWR40YMQIPHz7E8OHDTT4+e/ZsTJkyBcePH0dUVBT+/vtvDB06FBqNxqgP1vnz53H+/HkkJyfj4cOHOH/+/HMTYZYKCgqCSqVCcHAw/vnnHxw7dgzvv/8+3n77bcOwu4L0888/G/p66d28eRN3795Fhw4dCvz5iIiIiEobnU7EhtPRiE/VwKeMLeyUMkglAuyUMni72iIhTYPvT0cXy6Fu2ZW042AyishMogjIhWeSUayMokJka2uLEydOoFKlSnj99ddRo0YNDBs2DOnp6XB0dAQABAcHY8WKFfjqq69Qq1YtdOvWDREREYZ9rFu3DpmZmfD398f48eMxb9685z6vVCrF48ePMWjQIPj5+aFfv37o3Lkz5syZAyCrYmvbtm3YsmULateujZkzZ2Lu3LlGzcvNVadOHcP+ciOTyVC2bNlcq8lat26NGzduYNCgQahevTo6d+6M+/fv4+DBg0bVSA0aNECDBg0QFhaGzZs3o0GDBujSpYvh8ePHj0MQBEMz8fywtbXFgQMHEBcXh0aNGqFv375o3749Vq1ale995iUhIcGoFxUA/Pjjj+jYsSO8vb0L5TmJiIiISpPw2CRExibD3UFpaJOgJwgC3OyViIhNRnhskpUiNE9JOw5BFF9wbvISJjExEU5OTkhISDD8MUdkDp1OxNqZb+M92f8My056j0aLIQusGNXLJT09HVFRUahcuXKeTa+pZNm7dy8mT56Mf/7557l9sApTSEgIFixYgCtXruToC1VSZGRkoGrVqti8eXOOJvNkmbx+35Tma4nSfGxERESm/HHjMab/fAkVXWwhleRsw6HVibjzJBXze9dBk1fKWCFC8xSH47DkOoINzIks8OwwvbTUZCtFQlR6dO3aFREREbh79y68vLysFse+ffuwYMGCEpuIAoBbt27ho48+YiKKiIiIyExOtnIoZFKka7SwU+ZMkaRrspqAO9kW72vEknYcTEYRWSBHMiqleJQ4EpV048ePt3YI2L59u7VDeGH6BvdEREREZB4/dwf4utvj8r0E2CqkRkPcRFHEw2Q1ans6wc/dwYpRPl9JOw72jCKygD4ZJQpZM4ap04p2pi4iIiIiIiIqOBKJgOAAbzjZyBEdl4oUdSa0OhEp6kxEx6XCyUaOQQHekJgY+laclLTjYDKKyAIKQQsA0Cmfjn/VpCEpXWPFiIiIiIiIiOhF+Hu7YnrXGqjl6YTE9EzceZKKxPRM1PZ0wvSuNeDv7WrtEM1Sko6Dw/SILGAYpqd0AtKfwEbIQPTjVNSu4GTdwIiIiIiIiCjf/L1d0cDLBeGxSUhI1cDJVg4/d4diU0lkrpJyHExGEVlAph+mp3IEEgAV1Lj5OIXJqCKm0+msHQIRlXL8PUNERPTykUgEVPco+bPJloTjYDKKyAIKZA3TE5VZyScbZODa41RrhvRSUSgUkEgkuHfvHtzc3KBQKIwa8xERvShRFJGRkYGHDx9CIpFAoVBYOyQiIiKiUofJKCIzicjWwPxpzyiVkIGoR2xiXlQkEgkqV66MmJgY3Lt3z9rhEFEpZmtri0qVKkEiYXtNIiIiooLGZBSRmdSZWkMySmLzX2VUXEqGNcN66SgUClSqVAmZmZnQarXWDoeISiGpVAqZTMbKSyIiIqJCwmQUkZnSMrSQC1nJKOnTZJQKaiSnZ1ozrJeSIAiQy+WQy+XWDoWIiIiIiIgsxNpzIjOlabRQPK2MEmycAQA2QgaS1ExGEREREREREZmLySgiM6VrdIZhelDpK6MykJSusWJURERERERERCULk1FEZkrX/NczCk8bmNtAjWRWRhERERERERGZjckoIjOlZU9G6SujBA1S0jMgiqIVIyMiIiIiIiIqOZiMIjJTVgPzp7O3PU1GAYBMp0a6RmelqIiIiIiIiIhKFiajiMyUvYE5VI6G5SpkIEnNvlFERERERERE5mAyishM6RotZPpklEwFSJUAABtkIDmdfaOIiIiIiIiIzCGzdgBEJUVWA/Onw/SkckBuA2jVsBHUSGIyioiIiIiIqFjQ6USExyYhIVUDJ1s5/NwdIJEI1g7LKorruWAyishMaRnZhulJFYDcFkiPhwoazqhHRERERERUDIRFx2HD6WhExiYjI1MLhUwKX3d7BAd4w9/b1drhFanifC6sPkzvyy+/hI+PD1QqFZo0aYI///wzz/VXrFiBatWqwcbGBl5eXvjggw+Qnp5eRNHSyywtI9tselIFIFcBAFRgZRQREREREZG1hUXHYf7eq/jnbgIcVTJUdLGFo0qGy/cSMH/vVYRFx1k7xCJT3M+FVZNRW7duxYQJEzBr1iycO3cO9erVQ2BgIGJjY02uv3nzZkydOhWzZs3C1atX8d1332Hr1q346KOPijhyehmlazIgEcSsO1J5VmUUABshA0npbGBORET5ExISgtTUVGuHQUREVKLpdCI2nI5GfKoGPmVsYaeUQSoRYKeUwdvVFglpGnx/Oho6nWjtUAtdSTgXVk1GLVu2DCNGjMCQIUNQs2ZNrFmzBra2tli3bp3J9U+fPo3mzZtj4MCB8PHxQceOHTFgwIDnVlMRFQSNWv3fHcnTnlEAbKDmMD0iIsq3qVOnwsPDA8OGDcPp06etHQ4REVGJFB6bhMjYZLg7KCEIxj2RBEGAm70SEbHJCI9NslKERacknAurJaMyMjIQFhaGDh06/BeMRIIOHTrgzJkzJrcJCAhAWFiYIfl048YN7Nu3D126dCmSmOnllpmRbTioVGFIRqk4mx4REb2Au3fvYsOGDXj06BHatGmD6tWrY/Hixbh//761QyMiIioxElI1yMjUQiWXmnxcJZciI1OLhNTSP6qlJJwLqyWjHj16BK1Wi3LlyhktL1euXK4XXwMHDsTcuXPRokULyOVyVKlSBW3atMlzmJ5arUZiYqLRjSg/MjKyVUZJ5YDsaTJKyEASK6OIiCifZDIZevfujd27d+P27dsYMWIENm3ahEqVKqFHjx7YvXs3dDqdtcMkIiIq1pxs5VDIpEjXaE0+nq7JauDtZCsv4siKXkk4F1ZvYG6J48ePY8GCBfjqq69w7tw57Ny5E3v37sUnn3yS6zYLFy6Ek5OT4ebl5VWEEVNpkvk0GaUVZIAgGA3TYwNzIiIqCOXKlUOLFi3QrFkzSCQSXLp0CcHBwahSpQqOHz9u7fCIiIiKLT93B/i62+NhshqiaNwLSRRFPExWo6q7PfzcHawUYdEpCefCasmosmXLQiqV4sGDB0bLHzx4AA8PD5PbzJgxA2+//TaGDx+OOnXqoHfv3liwYAEWLlyY6zeG06ZNQ0JCguF2+/btAj8WejlkarKG6ekkT7PH+gbmyGDPKCIieiEPHjzAkiVLUKtWLbRp0waJiYnYs2cPoqKicPfuXfTr1w/BwcHWDpOIiKjYkkgEBAd4w8lGjui4VKSoM6HViUhRZyI6LhVONnIMCvCGRCI8f2clXEk4F1ZLRikUCvj7++PIkSOGZTqdDkeOHEGzZs1MbpOamgqJxDhkqTRrDOSz2T49pVIJR0dHoxtRfmRqsiqjREMy6r+eUZxNj4iI8qt79+7w8vLC+vXrMWLECNy9exc//vijoa+mnZ0dJk6caPEXaosWLYIgCBg/fnwhRE1ERFT8+Hu7YnrXGqhZ3hGxSWpEPEhCbJIatco7YnrXGvD3drV2iEVGfy5qeTohMT0Td56kIjE9E7U9nYrFuZBZ88knTJiA4OBgNGzYEI0bN8aKFSuQkpKCIUOGAAAGDRqEChUqYOHChQCyLtaWLVuGBg0aoEmTJoiMjMSMGTPQvXt3Q1KKqLDoNFkJJ1GiyFqgH6YnsIE5ERHln7u7O3777bdcv4wDADc3N0RFRZm9z7Nnz2Lt2rWoW7duQYRIRERU8gj/3UyXrpR+/t6uaODlgvDYJCSkauBkK4efu0OxqA6zajKqf//+ePjwIWbOnIn79++jfv362L9/v6Gp+a1bt4wqoT7++GMIgoCPP/4Yd+/ehZubG7p374758+db6xDoJZKpyQAAiNJnK6PUHKZHRET51rp1a7z66qs5lmdkZGDLli0YNGgQBEGAt7e3WftLTk5GUFAQvvnmG8ybN6+gwyUiIiq2wqLjMH/vVcSnauDuoIRKntXE+0pMIubvvVosKoKKmkQioLpH8RshZvUG5mPGjEF0dDTUajX++OMPNGnSxPDY8ePHsX79esN9mUyGWbNmITIyEmlpabh16xa+/PJLODs7F33g9NLRZT6dTU/6TGUUMpCWyywFREREzzNkyBAkJCTkWJ6UlGSoFrfE6NGj0bVrV8MwPyIiopeBTidiw+loxKdq4FPGFnZKGaQSAXZKGbxdbZGQpsH3p6Oh072sdVLFi1Uro4hKEl1mVmUUpM80MBfUVoqIiIhKA1EUIQg5y+Xv3LkDJycni/a1ZcsWnDt3DmfPnjVrfbVaDbX6v8+xxMREi56PiIiouAiPTUJkbDLcHZQ5PlcFQYCbvRIRsckIj00qlpVCLxsmo4jMpK+MEvSVUTIlAEAJNi8nIiLLNWjQAIIgQBAEtG/fHjLZf5dlWq0WUVFR6NSpk9n7u337NsaNG4dDhw5BpVKZtc3ChQsxZ84ci2MnIiIqbhJSNcjI1EIlV5p8XCWX4lGyGgmp/PutOGAyishMuswMQApApk9GZV3oMxlFRET50atXLwDA+fPnERgYCHt7e8NjCoUCPj4+6NOnj9n7CwsLQ2xsrFH/Ka1WixMnTmDVqlVQq9U5JnyZNm0aJkyYYLifmJgILy+vfB4RERGR9TjZyqGQZfWIslPmTHWka7RQyKRwspVbITp6FpNRRGbQ6UQIWg0gBST6YXpPK6MUTEYREVE+zJo1CwDg4+OD/v37m13NlJv27dvj0qVLRsuGDBmC6tWr48MPPzQ587BSqYRSafobZCIiopLEz90Bvu72uHwvAbYKqdFQPVEU8TBZjdqeTvBzd7BilKTHZBSRGdSZOsiRNWOe5GkSCtKnw/QEJqOIiCj/goODC2Q/Dg4OqF27ttEyOzs7lClTJsdyIiKi0kYiERAc4I35e68iOi4Vbvb/zab3MFkNJxs5BgV4QyLJ2aeRih6TUURmSNNosyWjOEyPiIhejKurK8LDw1G2bFm4uLiYbGCuFxcXV4SRERERlVz+3q6Y3rUGNpyORmRsMh4lq6GQSVHb0wmDArzh7+1q7RDpKSajiMyQptFCLmQlowSZcQNzDtMjIiJLLV++HA4ODob/55WMehHHjx8vlP0SEREVV/7ermjg5YLw2CQkpGrgZCuHn7sDK6KKGSajiMyQlqGF4mllFJ7pGcXKKCIislT2oXmDBw+2XiBERESlkEQioLqHo7XDoDxIrB0AUUmQnm2YHqTGlVHsGUVERC/i3LlzRo3Hd+/ejV69euGjjz5CRkaGFSMjIiIiKhxMRhGZITFNAxm0WXekxj2jOEyPiIhexMiRIxEeHg4AuHHjBvr37w9bW1ts374dU6ZMsXJ0RERERAWPySgiMySkabJVRj0dpvc0KcVhekRE9CLCw8NRv359AMD27dvRunVrbN68GevXr8dPP/1k3eCIiIiICgGTUURmiE/TQCE8O0yPs+kREdGLE0UROp0OAHD48GF06dIFAODl5YVHjx5ZMzQiIiKiQsFkFJEZjCujjHtGyQQdpKLWSpEREVFJ17BhQ8ybNw8bN27Eb7/9hq5duwIAoqKiUK5cOStHR0RERFTwmIwiMkNWMkrfM8p4Nj0AkLM6ioiI8mnFihU4d+4cxowZg+nTp8PX1xcAsGPHDgQEBFg5OiIiIqKCJ7N2AEQlQUKaBu7PVkZJ/0tGKcDZjoiIKH/q1q1rNJue3meffQapVGqFiIiIiIgKF5NRRGZISNVAoU9GSfQNzGUQBRkEMRNyMdN6wRERUamQkZGB2NhYQ/8ovUqVKlkpIiIiIqLCwWQUkRlMzqYHQCdVQJqZycooIiLKt/DwcAwbNgynT582Wi6KIgRBgFbLvoRERERUulicjEpJSYGdnV1hxEJUbCWkaSB/djY9AKJUCWSmQsGeUURElE9DhgyBTCbDnj17UL58eQiCYO2QiIiIiAqVxcmocuXKoV+/fhg6dChatGhRGDERFTsmZ9MDoHvaN0ouMhlFRET5c/78eYSFhaF69erWDoWIiIioSFg8m94PP/yAuLg4tGvXDn5+fli0aBHu3btXGLERFRsJadl6RmUbpic+TUwpRA7TIyKi/KlZsyYePXpk7TCIiIiIiozFyahevXph165duHv3Lt59911s3rwZ3t7e6NatG3bu3InMTDZyptJFpxORmJ53ZRSH6RERUX4tXrwYU6ZMwfHjx/H48WMkJiYa3YiIiIhKG4uTUXpubm6YMGECLl68iGXLluHw4cPo27cvPD09MXPmTKSmphZknERWk5SeCVEEZHjaQNbUMD0mo4iIKJ86dOiA33//He3bt4e7uztcXFzg4uICZ2dnuLi4WDs8IiIiogKX79n0Hjx4gA0bNmD9+vWIjo5G3759MWzYMNy5cweLFy/G77//joMHDxZkrERWkZCWlWhSSfTJqGzD9CQcpkdERC/m2LFj1g6BiIiIqEhZnIzauXMnQkJCcODAAdSsWROjRo3CW2+9BWdnZ8M6AQEBqFGjRkHGSWQ1RskoERymR0REBap169bWDoGIiIioSFk8TG/IkCHw9PTEqVOncP78eYwZM8YoEQUAnp6emD59ekHFSGRV8WlZVU//VUb9l4wSDckoVkYREVH+hYaG4q233kJAQADu3r0LANi4cSNOnjxp5ciIiIiICp7FyaiYmBisXbsWjRo1ynUdGxsbzJo164UCIyou9JVRSiHnMD2dYTY9Nu4nIqL8+emnnxAYGAgbGxucO3cOarUaAJCQkIAFCxZYOToiIiKigmdxMsrBwQGxsbE5lj9+/BhSqbRAgiIqTlLVWUkohYnZ9FgZRUREL2revHlYs2YNvvnmG8jl/33h0bx5c5w7d86KkREREREVDouTUaIomlyuVquhUChMPkZUkonIes9LTSSj2DOKiIhe1LVr19CqVascy52cnBAfH1/0AREREREVMrMbmH/++ecAAEEQ8O2338Le3t7wmFarxYkTJ1C9evWCj5ComJCJTxNO0v9+bMSniSk5k1FERJRPHh4eiIyMhI+Pj9HykydP4pVXXrFOUERERESFyOxk1PLlywFkVUatWbPGaEieQqGAj48P1qxZU/AREhUTMjGPYXoih+kREVH+jBgxAuPGjcO6desgCALu3buHM2fOYNKkSZgxY4a1wyMiIiIqcGYno6KiogAAbdu2xc6dO+Hi4lJoQREVR1JDZRSH6RERUcGZOnUqdDod2rdvj9TUVLRq1QpKpRKTJk3C+++/b+3wiIiIiAqc2ckovWPHjhVGHETFnszQM+q/5rL6YXpMRhERUX4JgoDp06dj8uTJiIyMRHJyMmrWrGnUEoGIiIioNDErGTVhwgR88sknsLOzw4QJE/Jcd9myZQUSGFFxIzUxTE/HYXpERPSChg4dipUrV8LBwQE1a9Y0LE9JScH777+PdevWWTE6IiIiooJnVjLq77//hkajMfw/N4IgFExURMWMBDpIocu6Y6pnFCujiIgonzZs2IBFixbBwcHBaHlaWhq+//57JqOIiIio1DErGZV9aB6H6dHLSK4fogcYDdPTV0ZxNj0iIrJUYmIiRFGEKIpISkqCSqUyPKbVarFv3z64u7tbMUIiIiKiwmFxz6hnJSYm4ujRo6hevTqqV69eEDERFTvGyShTs+kxGUVERJZxdnaGIAgQBAF+fn45HhcEAXPmzLFCZERERESFy+JkVL9+/dCqVSuMGTMGaWlpaNiwIW7evAlRFLFlyxb06dOnMOIksiqjZJQkZ2WUAuwZRUREljl27BhEUUS7du3w008/wdXV1fCYQqGAt7c3PD09rRghERERUeGwOBl14sQJTJ8+HQDw888/QxRFxMfHY8OGDZg3bx6TUVQqyaHN+o9EBkgkhuX62fQ4TI+IiCzVunVrAEBUVBS8vLwgyfb5QkREpul0IsJjk5CQqoGTrRx+7g6QSNi7OL8K4nzyNaH8sDgZlZCQYPjmbv/+/ejTpw9sbW3RtWtXTJ48ucADJCoOFELOmfSA7JVRTEYREVH+eHt7Iz4+Hn/++SdiY2Oh0+mMHh80aJCVIiMiKl7CouOw4XQ0ImOTkZGphUImha+7PYIDvOHv7fr8HZCRgjiffE0ovyxORnl5eeHMmTNwdXXF/v37sWXLFgDAkydPjBpvEpUmhmF62ZqXA9l7RnGYHhER5c///vc/BAUFITk5GY6OjkazEwuCwGQUERGykh7z915FfKoG7g5KqORKpGu0uHwvAfP3XsX0rjWY/LBAQZxPvib0IiyuBx8/fjyCgoJQsWJFeHp6ok2bNgCyhu/VqVOnoOMjKhYMySiJcTJKJ8mqlGJlFBER5dfEiRMxdOhQJCcnIz4+Hk+ePDHc4uLirB0eEZHV6XQiNpyORnyqBj5lbGGnlEEqEWCnlMHb1RYJaRp8fzoaOp1o7VBLhII4n3xN6EVZnIwaNWoUzpw5g3Xr1uHkyZOG/gavvPIK5s2bV+ABEhUHuVZGyThMj4iIXszdu3cxduxY2NraWjsUIqJiKTw2CZGxyXB3UBpVjwJZFaRu9kpExCYjPDbJShGWLAVxPvma0IuyeJgeADRs2BANGzY0Wta1a9cCCYioODI0MH8mGaXjMD0iInpBgYGB+Ouvv/DKK69YOxQiomIpIVWDjEwtVHKlycdVcikeJauRkMoviM1REOeTrwm9KIuTUVqtFuvXr8eRI0dMNtk8evRogQVHVFxIDbPpGSejINHPppdZxBEREVFpoZ8E5sqVK6hTpw7kcuPPmh49elgpMiKi4sHJVg6FTIp0jRZ2ypx/wqZrshpnO9nKTWxNzyqI88nXhF6UxcmocePGYf369ejatStq166doyTPUl9++SU+++wz3L9/H/Xq1cMXX3yBxo0b57p+fHw8pk+fjp07dyIuLg7e3t5YsWIFunTp8kJxEOVFLuiTUcY/Mv/NpsfKKCIiyp8RI0YAAObOnZvjMUEQoNVqizokIqJixc/dAb7u9rh8LwG2CqnR36CiKOJhshq1PZ3g5+5gxShLjoI4n3xN6EVZnIzasmULtm3bViDJn61bt2LChAlYs2YNmjRpghUrViAwMBDXrl2Du7t7jvUzMjLw2muvwd3dHTt27ECFChUQHR0NZ2fnF46FKDeimK0yKrfZ9JAJ6HSAxOI2bERE9JJ7tsqciIiMSSQCggO8MX/vVUTHpcLNXgmVPKsq52GyGk42cgwK8IZE8mKFEi+LgjiffE3oRVn8l7NCoYCvr2+BPPmyZcswYsQIDBkyBDVr1sSaNWtga2uLdevWmVx/3bp1iIuLw65du9C8eXP4+PigdevWqFevXoHEQ5QbQ88oidRouU6q+O+OltVRRERERESFwd/bFdO71kAtTyckpmfizpNUJKZnoranE6Z3rQF/b1drh1iiFMT55GtCL8LiyqiJEydi5cqVWLVq1QsN0cvIyEBYWBimTZtmWCaRSNChQwecOXPG5Da//PILmjVrhtGjR2P37t1wc3PDwIED8eGHH0IqlZrchqggyHLpGaWvjAIAZKYDclURRkVERCXV559/jnfeeQcqlQqff/55nuuOHTu2iKIiIire/L1d0cDLBeGxSUhI1cDJVg4/dwdW3+RTQZxPviaUXxYno06ePIljx47h119/Ra1atXI02dy5c6dZ+3n06BG0Wi3KlStntLxcuXL4999/TW5z48YNHD16FEFBQdi3bx8iIyMxatQoaDQazJo1y+Q2arUaarXacD8xMdGs+Iiy+6+BufGPjCiRQycKkAgikKk2sSUREVFOy5cvR1BQEFQqFZYvX57reoIgMBlFRJSNRCKguoejtcMoNQrifPI1ofywOBnl7OyM3r17F0Ysz6XT6eDu7o6vv/4aUqkU/v7+uHv3Lj777LNck1ELFy7EnDlzijhSKm3kufSMgiBADTlskAFomYwiIiLzREVFmfw/ERER0cvA4mRUSEhIgTxx2bJlIZVK8eDBA6PlDx48gIeHh8ltypcvD7lcbjQkr0aNGrh//z4yMjKgUChybDNt2jRMmDDBcD8xMRFeXl4Fcgz08sitMgoAMiDLSkaxMoqIiKxo9erVWL16NW7evAkAqFWrFmbOnInOnTtbNzAiIiKiZ+Rr6q/MzEwcPnwYa9euRVJSEgDg3r17SE5ONnsfCoUC/v7+OHLkiGGZTqfDkSNH0KxZM5PbNG/eHJGRkUazzoSHh6N8+fImE1EAoFQq4ejoaHQjspRcyD0ZpcbT915mehFGREREZKxixYpYtGgRwsLC8Ndff6Fdu3bo2bMnLl++bO3QiIiIiIxYnIyKjo5GnTp10LNnT4wePRoPHz4EACxevBiTJk2yaF8TJkzAN998gw0bNuDq1at47733kJKSgiFDhgAABg0aZNTg/L333kNcXBzGjRuH8PBw7N27FwsWLMDo0aMtPQwii0jxNAH67DA9AGrx6bJMzqZHRETW0717d3Tp0gVVq1aFn58f5s+fD3t7e/z+++/WDo2IiIjIiMXD9MaNG4eGDRviwoULKFOmjGF57969MWLECIv21b9/fzx8+BAzZ87E/fv3Ub9+fezfv9/Q1PzWrVuQSP7Ll3l5eeHAgQP44IMPULduXVSoUAHjxo3Dhx9+aOlhEFlEjsys/0hyztqYof8xYmUUEREVE1qtFtu3b0dKSkquFecAJ3ohIiIi67A4GRUaGorTp0/nGBbn4+ODu3fvWhzAmDFjMGbMGJOPHT9+PMeyZs2a8Rs+KnIyQ88oE5VRHKZHRETFxKVLl9CsWTOkp6fD3t4eP//8M2rWrJnr+pzohYiIiKzB4mF6Op0OWq02x/I7d+7AwcGhQIIiKm7yamCuxtMElZbD9IiIKH9u3bqF0NBQHDhwAOfOnTOqVrJEtWrVcP78efzxxx947733EBwcjCtXruS6/rRp05CQkGC43b59O7+HQERERGQ2iyujOnbsiBUrVuDrr78GAAiCgOTkZMyaNQtdunQp8ACJigO5PhllomcUh+kREVF+3Lx5E6tXr8aWLVtw584diKJoeEyhUKBly5Z455130KdPH6O2BXlRKBTw9fUFAPj7++Ps2bNYuXIl1q5da3J9pVIJpVL54gdDREREZAGLK6OWLl2KU6dOoWbNmkhPT8fAgQMNQ/QWL15cGDESWZ2hgfkzlVEyiSRbA/P8fYtNREQvn7Fjx6JevXqIiorCvHnzcOXKFSQkJCAjIwP379/Hvn370KJFC8ycORN169bF2bNn8/U8Op0u31VWRERERIXF4sqoihUr4sKFC9i6dSsuXLiA5ORkDBs2DEFBQbCxsSmMGImsTi7oG5gb/8g42shw39Azihf7RERkHjs7O9y4ccNoMhg9d3d3tGvXDu3atcOsWbOwf/9+3L59G40aNcpzn9OmTUPnzp1RqVIlJCUlYfPmzTh+/DgOHDhQWIdBRERElC8WJ6NOnDiBgIAABAUFISgoyLA8MzMTJ06cQKtWrQo0QKLiwFAZ9cwwPUeVHOqnP0ZaTRpyzrVHRESU08KFC81et1OnTmatFxsbi0GDBiEmJgZOTk6oW7cuDhw4gNdeey2/YRIREREVCouTUW3btkVMTAzc3d2NlickJKBt27Ymm5sTlXTyXBqYO6hkhgbm6rQ02BZ1YERERE9999131g6BiIiIyCwW94wSRRGCIORY/vjxY9jZ2RVIUETFjQymh+nJpBLoJFmNX9XqtKIOi4iISrGrV6/ilVdesXYYRERERAXO7Mqo119/HUDW7HmDBw82mnlFq9Xi4sWLCAgIKPgIiYqB3BqYZz2oAHRARnpq0QZFRESlWkZGBqKjo60dBhEREVGBMzsZ5eTkBCCrMsrBwcGoWblCoUDTpk0xYsSIgo+QqBiQ6yujnukZBQCCXAWoAQ0ro4iIyAITJkzI8/GHDx8WUSRERERERcvsZFRISAgAwMfHB5MmTeKQPHppiMi7MsqQjMpIL9rAiIioRFu5ciXq168PR0dHk48nJycXcURERERERcPiBuazZs0qjDiIijW5YLqBedYiFQBAm8HKKCIiMp+vry8++OADvPXWWyYfP3/+PPz9/Ys4KiIiIqLCZ3ED8wcPHuDtt9+Gp6cnZDIZpFKp0Y2oNJLqZ9MzMUxPqtAno1gZRURE5mvYsCHCwsJyfVwQBIiiWIQRERERERUNiyujBg8ejFu3bmHGjBkoX768yZn1iEobOXKvjJIps/qniRp1UYZEREQl3NKlS6FW5/7ZUa9ePeh0uiKMiIiIiKhoWJyMOnnyJEJDQ1G/fv1CCIeoeJLlkYySP62MEjNZGUVERObz8PCwdghEREREVmFxMsrLy4sl4/TSkeaRjFKobLP+k8nKKCIiejHp6enYunUrUlJS8Nprr6Fq1arWDomIiIiowFncM2rFihWYOnUqbt68WQjhEBVP8jx6RhmSUVomo4iIyHwTJkzA+++/b7ifkZGBZs2aYcSIEfjoo4/QoEEDnDlzxooREhERERUOi5NR/fv3x/Hjx1GlShU4ODjA1dXV6EZUGv1XGZUzGaVSZQ3TkzAZRUREFjh48CBee+01w/1NmzYhOjoaERERePLkCd544w3MmzfPihESERERFQ6Lh+mtWLGiEMIgKt7kgj4ZlXPGSJWNHQBAqssoypCIiKiEu3XrFmrWrGm4f/DgQfTt2xfe3t4AgHHjxqFLly7WCo+IiIio0FicjAoODi6MOIiKNWkew/RsbLKG6TEZRURElpBIJEZ9OH///XfMmDHDcN/Z2RlPnjyxRmhEREREhcqsYXqJiYlG/8/rRlQayfNoYG5rm1UZJROZjCIiIvPVqFED//vf/wAAly9fxq1bt9C2bVvD49HR0ShXrpy1wiMiIiIqNGZVRrm4uCAmJgbu7u5wdnaGIAg51hFFEYIgQKvVFniQRNYmy6NnlJ1tVmWUEhqka7RQyXMO5SMiInrWlClT8Oabb2Lv3r24fPkyunTpgsqVKxse37dvHxo3bmzFCImIiIgKh1nJqKNHjxqakx87dqxQAyIqjv5rYJ4z0WTztGeUAhokpWcyGUVERGbp3bs39u3bhz179qBjx45GM+sBgK2tLUaNGmWl6IiIctLpRITHJiEhVQMnWzn83B0gkeQsVCAieh6zklGtW7c2+X+il4U8j55RErkSQFZlVEJGJgBlEUZGREQlWfv27dG+fXuTj82aNauIoyEiyl1YdBw2nI5GZGwyMjK1UMik8HW3R3CAN/y9Oas6EVnG4gbmRC8jaR7D9CBTAchKRqWkZxZhVEREVJLdunXLrPUqVapUyJEQEeUtLDoO8/deRXyqBu4OSqjkSqRrtLh8LwHz917F9K41mJAiIoswGUVkBrmQewNzyLIqoSSCiFR1OgCnoguMiIhKrOz9ofSz6mXvy8l+nERUHOh0IjacjkZ8qgY+ZWwNv6fslDLYKqSIjkvF96ej0cDLhUP2iMhsTEYRmUEK3dP/5J6MAoC01GQAnPmIiIieTxAEVKxYEYMHD0b37t0hk/GyjIiKn/DYJETGJsPdQZljIitBEOBmr0REbDLCY5NQ3cPRSlESUUnDqx4iM8jwdPidqcooabZkVJq6iCIiIqKS7s6dO9iwYQNCQkKwZs0avPXWWxg2bBhq1Khh7dCIiAwSUjXIyNRCJTfdF1Ull+JRshoJqZoijoyISjJJfjbKzMzE4cOHsXbtWiQlJQEA7t27h+Tk5AINjqi4kOfVM0oiQSayZtBTp6cWYVRERFSSeXh44MMPP8S///6LHTt24MmTJ2jSpAmaNm2Kb775BjqdztohEhHByVYOhUyKdI3pIcPpmqxm5k62Jq6TiYhyYXEyKjo6GnXq1EHPnj0xevRoPHz4EACwePFiTJo0qcADJCoODMP0JFKTj2uFrA/fdHV6UYVERESlSIsWLfDdd98hIiICtra2ePfddxEfH2/tsIiI4OfuAF93ezxMVhv62+mJooiHyWpUdbeHn7uDlSIkopLI4mTUuHHj0LBhQzx58gQ2NjaG5b1798aRI0cKNDii4kAUAbl+mJ7U9Dc+2qcVUxnqtKIKi4iISpHTp09j+PDh8PPzQ3JyMr788ks4OztbOywiIkgkAoIDvOFkI0d0XCpS1JnQ6kSkqDMRHZcKJxs5BgV4s3k5EVnE4p5RoaGhOH36NBQKhdFyHx8f3L17t8ACIypO/quMMp2M0j2tjMpIZ2UUERGZJyYmBt9//z1CQkLw5MkTBAUF4dSpU6hdu7a1QyMiMuLv7YrpXWtgw+loRMYm41GyGgqZFLU9nTAowBv+3q7WDpGIShiLk1E6nc7kFMN37tyBgwNLM6kUEkXIBX3PKNM/MjpJVnI2g8P0iIjITJUqVUKFChUQHByMHj16QC6XQ6fT4eLFi0br1a1b10oREhH9x9/bFQ28XBAem4SEVA2cbOXwc3dgRRQR5YvFyaiOHTtixYoV+PrrrwFkTeeZnJyMWbNmoUuXLgUeIJG1CWK25Ks0l2TU0+F7Gg1n0yMiIvNotVrcunULn3zyCebNmwcAOfqxCIJg8ktAIiJrkEgEVPdwtHYYRFQKWJyMWrp0KQIDA1GzZk2kp6dj4MCBiIiIQNmyZfHjjz8WRoxEViURM7PdMf0jI0qzKqMy2TOKiIjMFBUVZe0QiIiIiKzC4mRUxYoVceHCBWzZsgUXL15EcnIyhg0bhqCgIKOG5kSlhaDLnozKZcrap8P0NJqMIoiIiIhKA29vb2uHQERERGQVFiej0tPToVKp8NZbbxVGPETFjiT7ML1cKqMEWVYySpvBnlFERPR8t27dQqVKlcxe/+7du6hQoUIhRkRERERUdCSWbuDu7o7g4GAcOnQIOp2uMGIiKlYkoibbHanplfTJKPaMIiIiMzRq1AgjR47E2bNnc10nISEB33zzDWrXro2ffvqpCKMjIiIiKlwWV0Zt2LABmzdvRs+ePeHk5IT+/fvjrbfeQsOGDQsjPiKr0zcwz4QMMsH0bCESmQoAoMtkMoqIiJ7vypUrmD9/Pl577TWoVCr4+/vD09MTKpUKT548wZUrV3D58mW8+uqr+PTTTzlJDBEREZUqFldG9e7dG9u3b8eDBw+wYMECXLlyBU2bNoWfnx/mzp1bGDESWZXkac8onZBLVRQAydPKKB0ro4iIyAxlypTBsmXLEBMTg1WrVqFq1ap49OgRIiIiAABBQUEICwvDmTNnmIgiIiKiUsfiyig9BwcHDBkyBEOGDMGVK1cQFBSEOXPmYObMmQUZH5HV6SujtHn8uEjkSgCAqGUyioiIzGdjY4O+ffuib9++1g6FiIiIqMhYXBmll56ejm3btqFXr1549dVXERcXh8mTJxdkbETFgkTMqozSCrn/uEifJqMErQaZWvZSIyIiIiIiIsqNxZVRBw4cwObNm7Fr1y7IZDL07dsXBw8eRKtWrQojPiKrk+iyGphrhdx/XGSKrJ5RCmQiVaOFozTfeV4iIiIiIiKiUs3iZFTv3r3RrVs3fP/99+jSpQvkcnlhxEVUbOiH6emQV8+orMooOTKRos6Eo4o/F0RERERERESmWJyMevDgARwcHAojFqJi6b9hern/uAhPG5grBA1S1NoiiYuIiIiIiIioJDJrLFFiYqLh/6IoIjExMdcbUWljaGCex2x6kD5NRkGLFHVmUYRFRESlgEajwdChQxEVFWXtUIiIiIiKjFnJKBcXF8TGxgIAnJ2d4eLikuOmX54fX375JXx8fKBSqdCkSRP8+eefZm23ZcsWCIKAXr165et5icwh0T2tjMpjmN5/ySgNUjNYGUVEROaRy+X46aefrB0GERERUZEya5je0aNH4erqCgA4duxYgQawdetWTJgwAWvWrEGTJk2wYsUKBAYG4tq1a3B3d891u5s3b2LSpElo2bJlgcZD9CzBjGF6eNozSgFNUYRERESlSK9evbBr1y588MEH1g6FiIiIqEiYlYxq3bq14f+VK1eGl5cXBEEwWkcURdy+fdviAJYtW4YRI0ZgyJAhAIA1a9Zg7969WLduHaZOnWpyG61Wi6CgIMyZMwehoaGIj4+3+HmJzKXvGZVXA3NIsxqWy8GqKCIiskzVqlUxd+5cnDp1Cv7+/rCzszN6fOzYsVaKjIiIiKhwWNzAvHLlyoiJiclRtRQXF4fKlStDqzX/j/GMjAyEhYVh2rRphmUSiQQdOnTAmTNnct1u7ty5cHd3x7BhwxAaGprnc6jVaqjVasN99rUiSwm6rGqnPCujpE8rowRWRhERkWW+++47ODs7IywsDGFhYUaPCYJgdjJq4cKF2LlzJ/7991/Y2NggICAAixcvRrVq1QojbCLKB51ORHhsEhJSNXCylcPP3QESifD8DanU43uDXjYWJ6NEUcxRFQUAycnJUKlUFu3r0aNH0Gq1KFeunNHycuXK4d9//zW5zcmTJ/Hdd9/h/PnzZj3HwoULMWfOHIviIspOl5lVGSVKnt8zSg42LyciIssUVPPy3377DaNHj0ajRo2QmZmJjz76CB07dsSVK1dyVFsRUdELi47DhtPRiIxNRkamFgqZFL7u9ggO8Ia/t6u1wyMr4nuDXkZmJ6MmTJgAIOsbuhkzZsDW1tbwmFarxR9//IH69esXeIDZJSUl4e2338Y333yDsmXLmrXNtGnTDLEDWZVRXl5ehRUilUKZmRlZ/5HIc19JlpWMUjIZRUREL0AURQAw+cXf8+zfv9/o/vr16+Hu7o6wsDC0atWqQOIjovwJi47D/L1XEZ+qgbuDEiq5EukaLS7fS8D8vVcxvWsNJh1eUnxv0MvK7GTU33//DSDrIunSpUtQKBSGxxQKBerVq4dJkyZZ9ORly5aFVCrFgwcPjJY/ePAAHh4eOda/fv06bt68ie7duxuW6XS6rAORyXDt2jVUqVLFaBulUgmlUmlRXETZZWqyht6JkryG6bEyioiI8u/777/HZ599hoiICACAn58fJk+ejLfffjvf+0xISAAAwyQ0RGQdOp2IDaejEZ+qgU8ZW0Oy2U4pg61Ciui4VHx/OhoNvFw4LOslw/cGvczMTkbpZ9EbMmQIVq5cCUdHxxd+coVCAX9/fxw5cgS9evUCkJVcOnLkCMaMGZNj/erVq+PSpUtGyz7++GMkJSVh5cqVrHiiQqF9WhklmJGM4mx6RERkqWXLlmHGjBkYM2YMmjdvDiCrLcG7776LR48e5WuWPZ1Oh/Hjx6N58+aoXbt2ruuxtyZR4QuPTUJkbDLcHZQ5qh4FQYCbvRIRsckIj01CdY8X/xuLSg6+N+hlZnHPqJCQkAINYMKECQgODkbDhg3RuHFjrFixAikpKYbZ9QYNGoQKFSpg4cKFUKlUOS6onJ2dASDPCy2iF6FPRulnzDNJXxklZLI2ioiILPLFF19g9erVGDRokGFZjx49UKtWLcyePTtfyajRo0fjn3/+wcmTJ/Ncj701iQpfQqoGGZlaqOSmR2uo5FI8SlYjIZVfar5s+N6gl5nFySgA+Ouvv7Bt2zbcunULGRkZRo/t3LnTon31798fDx8+xMyZM3H//n3Ur18f+/fvNzQ1v3XrFiQSSX7CJCoQOo0+GaXIfSXZ09n0wGQUERFZJiYmBgEBATmWBwQEICYmxuL9jRkzBnv27MGJEydQsWLFPNdlb02iwudkK4dCJkW6Rgs7Zc4/v9I1WQ2rnWzz+OKTSiW+N+hlZnGWZ8uWLQgICMDVq1fx888/Q6PR4PLlyzh69CicnJzyFcSYMWMQHR0NtVqNP/74A02aNDE8dvz4caxfvz7XbdevX49du3bl63mJzKHTD9PLKxn1tGpKwVQUERFZyNfXF9u2bcuxfOvWrahatarZ+xFFEWPGjMHPP/+Mo0ePonLlys/dRqlUwtHR0ehGRAXLz90Bvu72eJisNkxSoCeKIh4mq1HV3R5+7g5WipCshe8NeplZXBm1YMECLF++HKNHj4aDgwNWrlyJypUrY+TIkShfvnxhxEhkVaL2aTJKllcySl8ZxRJaIiKyzJw5c9C/f3+cOHHC0DPq1KlTOHLkiMkkVW5Gjx6NzZs3Y/fu3XBwcMD9+/cBAE5OTrCxsSmU2Ino+SQSAcEB3pi/9yqi41LhZq+ESp5VDfMwWQ0nGzkGBXizQfVLiO8NeplZXBl1/fp1dO3aFUBWA/KUlBQIgoAPPvgAX3/9dYEHSGRtor4ySpbHrIycTY+IiPKpT58++OOPP1C2bFns2rULu3btQtmyZfHnn3+id+/eZu9n9erVSEhIQJs2bVC+fHnDbevWrYUYPRGZw9/bFdO71kAtTyckpmfizpNUJKZnoranE6Z3rQF/b856+bLie4NeVhZXRrm4uCApKQkAUKFCBfzzzz+oU6cO4uPjkZqaWuABElnd08ooSV6VUU8fUwiZECHmvh4REZEJ/v7++OGHH15oH88O8SCi4sXf2xUNvFwQHpuEhFQNnGzl8HN3YNUL8b1BLyWLk1GtWrXCoUOHUKdOHbzxxhsYN24cjh49ikOHDqF9+/aFESORdWmzht5J5HkN02NlFBER5c+5c+cgl8tRp04dAMDu3bsREhKCmjVrYvbs2VAo8vj8IaISRSIRUN2DvdkoJ7436GVj8TC9VatW4c033wQATJ8+HRMmTMCDBw/Qp08ffPfddwUeIJHVPa2MkuYy5WrWg08ro5iMIiIiC40cORLh4eEAgBs3bqB///6wtbXF9u3bMWXKFCtHR0RERFTwLK6McnX9b8yqRCLB1KlTCzQgouJGosuqjJLm2cCcySgiIsqf8PBw1K9fHwCwfft2tG7dGps3b8apU6fw5ptvYsWKFVaNj4iIiKigmZWMSkxMNHuHnBKYShtBl1UZJcurMuppc3OloAHYs4OIiCwgiiJ0Oh0A4PDhw+jWrRsAwMvLC48ePbJmaERERESFwqxklLOzMwQh7+ZpoihCEARotdoCCYyouJDoMgEJIFU8f5geAAgiq6OIiMh8DRs2xLx589ChQwf89ttvWL16NQAgKioK5cqVs3J0RERERAXPrGTUsWPHCjsOomIpU6uDVMwapic3o2cUAAhPe0wRERGZY8WKFQgKCsKuXbswffp0+Pr6AgB27NiBgIAAK0dHREREVPDMSka1bt26sOMgKpbSM3WGGfLkClXuK8r+S1RJdExGERGRebRaLeLj43HixAm4uLgYPfbZZ59BKpVaKTIiIiKiwmPxbHoAEBoairfeegsBAQG4e/cuAGDjxo04efJkgQZHZG1pGVpDMkqW19TaEim0T3+cBK2mKEIjIqJSQCqVomPHjoiPj8/xmEqlglwuL/qgiIiIiAqZxcmon376CYGBgbCxscG5c+egVqsBAAkJCViwYEGBB0hkTekarWGGPEGaxzA9AJqnhYasjCIiIkvUrl0bN27csHYYREREREXG4mTUvHnzsGbNGnzzzTdG39Y1b94c586dK9DgiKwtTaOFHE+b8kvz/nY6E1mPCzpWRhERkfnmzZuHSZMmYc+ePYiJiUFiYqLRjag00ulE/Hs/EX/ceIx/7ydCp3t5ZyPmuSCil5FZPaOyu3btGlq1apVjuZOTk8kSc6KSLC1DC7nwdHY8aR7D9ABoBBkgAhI2MCciIgt06dIFANCjRw+j2Ys5UzGVVmHRcdhwOhqRscnIyNRCIZPC190ewQHe8Pd2tXZ4RYrngoheVhYnozw8PBAZGQkfHx+j5SdPnsQrr7xSUHERFQtpGi1sYF4y6r/KKCajiIjIfJy1mF4mYdFxmL/3KuJTNXB3UEIlVyJdo8XlewmYv/cqpnet8dIkYXguiOhlZnEyasSIERg3bhzWrVsHQRBw7949nDlzBpMmTcKMGTMKI0Yiq0nTaOFkSEblPUwvg5VRRESUD5y1mF4WOp2IDaejEZ+qgU8ZW0MloJ1SBluFFNFxqfj+dDQaeLlAIhGes7eSjeeCiF52Fiejpk6dCp1Oh/bt2yM1NRWtWrWCUqnEpEmT8P777xdGjERWk55tNj2zK6OYjCIiIgucOHEiz8dNtUcgKonCY5MQGZsMdwel0ZBUABAEAW72SkTEJiM8NgnVPRytFGXR4LkgopedxckoQRAwffp0TJ48GZGRkUhOTkbNmjVhb2+PtLQ02NjYFEacRFaR1cDcvGRUxtNkFGfTIyIiS7Rp0ybHsux/nLJnFJUWCakaZGRqoZKbnqFYJZfiUbIaCamlfzIYngsietlZPJuenkKhQM2aNdG4cWPI5XIsW7YMlStXLsjYiKwuTZO9gfnzhullJaskmemFHRYREZUiT548MbrFxsZi//79aNSoEQ4ePGjt8IgKjJOtHAqZFOka0wnWdE1WA28n27yvuUoDngsietmZXRmlVqsxe/ZsHDp0CAqFAlOmTEGvXr0QEhKC6dOnQyqV4oMPPijMWImKXJoFw/QykPXNlkSrLuywiIioFHFycsqx7LXXXoNCocCECRMQFhZmhaiICp6fuwN83e1x+V4CbBXSHLNHPkxWo7anE/zcHawYZdHguSCil53ZlVEzZ87E6tWr4ePjg5s3b+KNN97AO++8g+XLl2PZsmW4efMmPvzww8KMlajIpWu0UJiZjFLrK6O0rIwiIqIXV65cOVy7ds3aYRAVGIlEQHCAN5xs5IiOS0WKOhNanYgUdSai41LhZCPHoADvl6JhN88FEb3szK6M2r59O77//nv06NED//zzD+rWrYvMzExcuHAhR9M9otIiXaODHE/Lp80dpsdkFBERWeDixYtG90VRRExMDBYtWoT69etbJyiiQuLv7YrpXWtgw+loRMYm41GyGgqZFLU9nTAowBv+3q7WDrHI8FwQ0cvM7GTUnTt34O/vDwCoXbs2lEolPvjgAyaiqFSzpIG5Wj9Mjz2jiIjIAvXr14cgCBBF0Wh506ZNsW7dOitFRVR4/L1d0cDLBeGxSUhI1cDJVg4/d4eXsgqI54KIXlZmJ6O0Wi0Uiv/+GJfJZLC3ty+UoIiKi9T0DMgFfWXUc3pGGSqj2DOKiIjMFxUVZXRfIpHAzc0NKpXKShERFT6JREB1D0drh1Es8FwQ0cvI7GSUKIoYPHgwlMqs6o/09HS8++67sLOzM1pv586dBRshkRUlpqb+d+c5w/TU4DA9IiKynLe3t7VDICIiIipSZiejgoODje6/9dZbBR4MUXGTlJL2353nVkbpZ9NjMoqIiMw3duxY+Pr6YuzYsUbLV61ahcjISKxYscI6gREREREVErOTUSEhIYUZB1GxlJKfyij2jCIiIgv89NNP+OWXX3IsDwgIwKJFi5iMIiIiolJHYu0AiIqzlLSsxJIoSAGJNM91OZseERHlx+PHj+Hk5JRjuaOjIx49emSFiIiIiIgKF5NRRLkQRRFpaVmVUeJzhugBgCjLajSbmZH2nDWJiIj+4+vri/379+dY/uuvv+KVV16xQkREREREhcvsYXpEL5uUDC0kOg0AQHjOED0AcHJwBJKBjLTkwg6NiIhKkQkTJmDMmDF4+PAh2rVrBwA4cuQIli5dyiF6REREVCoxGUWUiycpGZAjM+uOGZVRzk4OQAygSU997rpERER6Q4cOhVqtxvz58/HJJ58AAHx8fLB69WoMGjTIytERERERFTwmo4hyEZ+qMSSjBDOSUWWcnQEAOg7TIyIiC7333nt477338PDhQ9jY2MDe3t7aIREREREVGvaMIsrFk9QMKAyVUc8fpufm8rT5bCaTUUREZJnMzEwcPnwYO3fuhCiKAIB79+4hOZlDv4mIiKj0YWUUUS6epFo2TK9cGWcAgEyXgScpGXCxe/42RERE0dHR6NSpE27dugW1Wo3XXnsNDg4OWLx4MdRqNdasWWPtEImIiIgKFCujiHIRn6qBXDA/GaWyscv6V8hA1OOUwgyNiIhKkXHjxqFhw4Z48uQJbGxsDMt79+6NI0eOWDEyIiIiosLByiiiXBhXRj1/mB5kWX9AqJCBqIcpeLWSSyFGR0REpUVoaChOnz4NhcL4iw8fHx/cvXvXSlERERERFR5WRhHlIj5Vk61nlBlD7uQqAFnJqLvx7BtFRETm0el00Gq1OZbfuXMHDg4OVoiIiIiIqHAxGfX/9u49Lqo6/x/465y5cQdBEEgE84J3RVNX3Mo2E80tLSszN82srNWsXFu1i1qtq5WbXdayq9rd7GfWV0sz0zJlvaB4F0URL4ioKDAMcz2f3x8jIwMz3JkZ4PV8PKacM5/zOe/PfDgzhzefz+cQuWEfGXX1l4PqJKPKjIy6WGRswMiIiKgpGTJkCN58803Hc0mSoNfrMWfOHNx+++3eC4yIiIiogXCaHpEblw0WhNdkmt7VkVEqSeCynmtGERFR9SxcuBBDhw5Fly5dYDQa8cADD+DYsWNo2bIlvvrqK2+HR0RERFTvmIwickNvtKBVDRYwLx0ZBQCFhbwVNxERVU9cXBz27t2LFStWYO/evdDr9Zg4cSLGjh3rtKA5ERERUVPBZBSRGwIos2ZUdRYw10FAggQBvb6oQWMjIqKmwWKxoFOnTlizZg3Gjh2LsWPHejskIiIiogbHNaOIKqGpyQLmkgSh1gEAig0cGUVERFXTaDQwGrnOIBERETUvTEYRVaJGySjAMVXPajLAaKl4ZyQiIqLyJk+ejFdffRVWq9XboRARERF5BKfpEVVCU5NpegAkjT9gvAw/mHGp2IzrwrjWBxERVW7nzp3YuHEjfv75Z3Tv3h2BgYFOr69atcpLkRF5j6IIHM0rQoHBgtAADTpGBUOWJW+HRURE9cQnklGLFy/G66+/jtzcXPTs2RPvvPMO+vXr57Lshx9+iE8//RQHDhwAAPTp0wf//ve/3ZYnqgttTRYwByBdvaOeH8y4WGRiMoqIiKoUFhaGUaNGeTsMIp+Rlp2P5duykZmnh9lqg1atQvuoIIxPjkef+HBvh0dERPXA68moFStWYNq0aViyZAn69++PN998EykpKcjIyEBUVFSF8ps3b8aYMWOQnJwMPz8/vPrqqxgyZAgOHjyI6667zgstoKasttP0/CQLLupNDRQVERE1JUuXLvV2CEQ+Iy07H/PWHsYVgwVRwTr4aXQwWmw4mFOAeWsP4/nhnZmQIiJqAry+ZtQbb7yBRx99FBMmTECXLl2wZMkSBAQE4JNPPnFZ/osvvsDf//539OrVC506dcJHH30ERVGwceNGD0dOzYEGV9d9UlczGVV2ZBSTUUREVAlFUfDqq69i4MCB6Nu3L2bOnImSkpI61fn777/jjjvuQGxsLCRJwurVq+snWCI3FEXgSG4htp+4hCO5hVAUUae6lm/LxhWDBQkRAQjUqaGSJQTq1IgPD0BBiQWfbsuu0zGIiMg3eHVklNlsRlpaGmbNmuXYJssyBg8ejNTU1GrVYTAYYLFYEB7Ov5BQ/av1yCiYcVFvbqCoiIioKZg3bx7mzp2LwYMHw9/fH2+99Rby8vLc/kGuOoqLi9GzZ088/PDDuPvuu+sxWqKK6ns63dG8ImTm6REVrIMkOa8PJUkSIoN0OJanx9G8InSKDqmvZhARkRd4NRl18eJF2Gw2tGrVyml7q1atcOTIkWrVMWPGDMTGxmLw4MEuXzeZTDCZro1QKSwsrH3A1KwIAehwNaFU3WSUpnSanhkXijgyioiI3Pv000/x7rvvYtKkSQCAX375BcOHD8dHH30EWa7d4PVhw4Zh2LBh9RkmkUsNMZ2uwGCB2WqDn0bn8nU/jQoX9SYUGCz10QQiIvIir0/Tq4sFCxbg66+/xnfffQc/Pz+XZebPn4/Q0FDHIy4uzsNRUmMWIF1NKGkCqrdDmWl6BSW8UCIiIvdOnTqF22+/3fF88ODBkCQJOTk5HovBZDKhsLDQ6UFUlYaaThcaoIFWrYLRYnP5utFiH30VGlC9uxwTEZHv8moyqmXLllCpVDh//rzT9vPnzyM6OrrSfRcuXIgFCxbg559/Ro8ePdyWmzVrFgoKChyP06dP10vs1DwE4GoySlvNZFSZaXpCcD0DIiJyz2q1VvhjmkajgcXiuT9m8I92VBs1mU5XEx2jgtE+KggX9KYK11FCCFzQm9AhKggdo4Lr3AYiIvIur07T02q16NOnDzZu3IiRI0cCgGMx8ilTprjd77XXXsO8efOwfv163HDDDZUeQ6fTQadzPdSXqCr+jmRUUDV3CAMAhEjFuNgwIRERURMhhMBDDz3kdJ1iNBrx+OOPIzAw0LFt1apVDRbDrFmzMG3aNMfzwsJCJqSoSg01nU6WJYxPjse8tYeRnW9AZJAOfhr7SKkLehNC/TUYlxwPWZaqroyIiHyaV5NRADBt2jSMHz8eN9xwA/r164c333wTxcXFmDBhAgBg3LhxuO666zB//nwAwKuvvorZs2fjyy+/REJCAnJzcwEAQUFBCAqqZsKAqJpqPE3P3742QjiKcKKBYiIioqZh/PjxFbb97W9/82gM/KMd1UbZ6XSBuoq/TtRlOl2f+HA8P7yzY2H0i3oTtGoVusWGYlwtF0YnIiLf4/Vk1OjRo3HhwgXMnj0bubm56NWrF9atW+dY1PzUqVNOi3i+9957MJvNuOeee5zqmTNnDubOnevJ0KkZCIDR/o/qTtMLiAAAtJBqNiydiIian6VLl3o7BKJaKZ1OdzCnAAFaldNUvdLpdN1iQ2s9na5PfDiS4lrgaF4RCgwWhAZo0DEqmCOiiIiaEK8nowBgypQpbqflbd682en5yZMnGz4goqsca0ZpAisv6NihdGSUHlwxioiIPE2v1yMzM9PxPCsrC+np6QgPD0ebNm28GBk1JZ6YTifLEjpFh9Rj1ERE5Esa9d30iBqaY5petUdG2ZNRYRwZRUREXrBr1y4kJSUhKSkJgH05hKSkJMyePdvLkVFTUzqdrmtsKAqNVpy5bECh0YpusaF4fnhnTqcjIqJK+cTIKCJfdW0B8+qOjLJP0wtnMoqIiLxg0KBBvJsreQyn0xERUW0xGUXkhhCiFtP0rq4ZhSKAvwwQERFRE8fpdEREVBucpkfkhhZmyNLVhFJ1p+ldvZueVrJBpxgaKDIiIiIiIiKixovJKCI3/ITx2hNNNZNR2gBYZT8AQKCtsAGiIiIiIiIiImrcmIwicqM0GWVT6QBZVe39jJowAECgtaAhwiIiIiIiIiJq1LhmFJEbutJklDoA1U9FASZNKIJMuQi0MRlFRETUHCiK8OlFvH09PiIian6YjCJy49rIqGpO0bvKqA0DAAQxGUVERNTkpWXnY/m2bGTm6WG22qBVq9A+Kgjjk+PRJz7c2+H5fHxERNQ8cZoekRuOZJTav0b7mTQtAIAjo4iIiJq4tOx8zFt7GAfOFiDET43WLQIQ4qfGwZwCzFt7GGnZ+YyPiIjIBSajiNyobTLKsWYUk1FERERNlqIILN+WjSsGCxIiAhCoU0MlSwjUqREfHoCCEgs+3ZYNRRGMj4iIqBwmo4jcKE1GKeqaTdMzaUIBMBlFRETUlB3NK0Jmnh5RwTpIkvP6S5IkITJIh2N5ehzNK2J8RERE5TAZReRG6QLm1homo4xa+zQ9rhlFRETUdBUYLDBbbfDTuL7NiZ9GBbPVhgKDxcOR2fl6fERE1LwxGUXkhmNklKqG0/Qcyagr9R0SERER+YjQAA20ahWMFpvL140W+2LhoQEaD0dm5+vxERFR88ZkFJEbOseaUTUdGWW/Mw2TUURERE1Xx6hgtI8KwgW9CUI4r7skhMAFvQkdooLQMSqY8REREZXDZBSRG/6iBEAtFjC/OjIq2HqlvkMiIiIiHyHLEsYnxyPUX4PsfAOKTVbYFIFikxXZ+QaE+mswLjkesixVXVkzjI+IiJo3JqOI3NAJE4CaJ6NKro6MClQKAZu13uMiIiIiz1MUgSO5hdh+4hKO5BZCUQT6xIfj+eGd0TU2FIVGK85cNqDQaEW32FA8P7wz+sSHezXm+ozPVfuJiIhqS+3tAIh8lZ9jml5gjfYza0JhExJUkgAMl4DgVg0RHhEREXlIWnY+lm/LRmaeHmarfa2l9lFBGJ8cjz7x4UiKa4GjeUUoMFgQGqBBx6hgnxlxVB/xVdV+IiKimmIyisgNHUqTUTUbGdWmZTAuIxgtUQhL0XlomIwiIiJqtNKy8zFv7WFcMVgQFayDn0YHo8WGgzkFmLf2sGOEUafoEG+H6pYsS7WOr7rtJyIiqglO0yNyw3E3vRomo27sEIkCKRQAsOfw8XqPi4iIiDxDUQSWb8vGFYMFCREBCNSpoZIlBOrUiA8PQEGJBZ9uy26yU9aae/uJiKjhMBlF5IZjmp6qZnfT06hkqEOiAAB7Dh+t97iIiIjIM47mFSEzT4+oYB0kyXlamyRJiAzS4VieHkfzirwUYcNq7u0nIqKGw2QUkRuOu+lpapaMAoAWLWMAAPl5Z2HjXwuJiIgapQKDBWarDX4alWObEAJ6oxWXDWZYFQGTxYoCg8WLUTYcV+0vy0+jgtlqa7LtJyKihsM1o4jcCFD0AADh16LG+wZFxAAngCClAJl5eiRGB9d3eERERNTAQgM00KpVMFpsCNSpccVgwZnLBhSbrVAEAAGoVRLOXinxdqgNonz7yzNa7IuZhwZovBAdERE1ZhwZReSCEAKBNvuQ8xYta74AuRxkn6YXgQKkn75cr7ERERGRZ3SMCkb7qCBc0JtwxWDGsbwiFJmsUMsy/NQyFAgoAvgsNRtp2fneDrfelW2/EM4jvYUQuKA3oUNUEDpG8Y9uRERUM0xGEblwpdiEENhHRkVFRde8goAIAECEVIT001fqMTIiIiLyFFmWMD45HiF+ahw5XwSzTYGf2n75bLQq0KpkdGwVhEJj01zIu7T9of4aZOcbUGyywqYIFJusyM43INRfg3HJ8ZBlqerKiIiIymAyisiFnPN5UEn2C0q/4IiaVxAYCQCIkAqRfrqgPkMjIiIiD+oTH44HB8RDJUmQIcFoVWBVBIL91OjQKhgtArRNeiHvPvHheH54Z3SNDUWh0Yozlw0oNFrRLTYUzw/vjD7x4d4OkYiIGiGuGUXkwsW8cwCAEskP/mpdzSsIsk/ti5bykZFbCItNgUbF3C8REVFjdF1YACKDdQgP0MImBDQqGYE6NUrHA/lpVLioNzXZhbz7xIcjKa4FjuYVocBgQWiABh2jgjkiioiIao3JKCIX8i/lAQBKVCHwr00FEe0BALG4BJ0wwqYIuLkRDREREfm40AANdGoVVLKEEF3Fxbqbw0LesiyhU3SIt8MgIqImgkM1iFwoumxPRlm0YbWrIDACwj8CsiRwvXSu/gIjIiIij+NC3kRERPWLySgiF0oKLgIAhH+LWtehtEwEALSXzkI0rfVMiYiIfJqiCBzJLcT2E5dwJLewWguLV7YPF/ImIiKqX5ymR+SCWX8JAKAKqEsyqiNUp7ehvZxTX2ERERFRFdKy87F8WzYy8/QwW+3T59pHBWF8crzbxbars0/pQt6l5S7qTdCqVegWG4pxldRNREREFTEZRVSOogjAkA/IgK42d9K7SkR0BHB1ZBQ4NIqIiKihpWXnY97aw7hisCAqWAc/jQ5Giw0Hcwowb+1hl3d/q8k+XMibiIiofjAZRVRO5gU9ApUiQAaCwiJrXY9oWZqM4sgoIiKihqYoAsu3ZeOKwYKEiABIkj1BFKhTI0CrQna+AZ9uy0ZSXAtH8qg2+3AhbyIiorrjmlFE5aRlX0aopAcAyIF1GBl1NRmVIOXCYjLWS2xERETk2tG8Ihw7X4QgnQpXSizQG63XFhuXJARq1dh75grWH8p1rAd1NK8ImXl6RAXrHImoUpIkITJIh2N5ehzNK/J0c4iIiJo0jowiKmd39mUMRbH9SR0WMFeHtcYlhCJCKsB/ln6FWY8/DH+tqp6iJCIiorJ2nMjH6csGCABCALIEBGrVCAvQ4kqJGXqjFWabggU/HsFP+3MxPjkeVpuA2WqDn0bnsk4/jQoX9SYUGCyebQwREVETx5FRROWknbqMsKsjo+qUjFKrYIu/EQAQnrcNH/9xoj7CIyIionLSsvPx1Y5TMFsFZEjwV8tQyzKulFiQmVeEK8UWyJIErVpGqL/asR7U2SsGaNUqGC02l/UaLfbFzEMDNB5uERERUdPGZBRRGVcMZpy4UIww1D0ZBQBRPW4DAAyQD2HJbydwSW+qa4hERETNkqIIHMktxPYTl3AktxCKIqAoAodyCvDGz0dRZLQi1F8FmxCAJEElS1CEgCIAAQGroiBIp0bLIB3iwwNQUGLB5iMX0C4yEBf0pmtT+q4SQuCC3oQOUUHoGBXspVYTERE1TZymR1TG+UJ7sihcrvs0PQBA25sAAL3lTNiMeqw/eB4P9G9TtzqJiIiambTsfCzflo3MPD3MVvtopfBADQAJOQUlOJNfArUsQaex/521xGKzJ6MUAUkCLDYBjUpG67Bri5RHBumQeaEYj9zYFmevlCA734DIIB38NPaRUhf0JoT6azAuOZ53yyMiIqpnHBlFVI4GVoSUjowKqP0C5gCAFm2B0DbQwIrhqu1upwEQERGRa2nZ+Zi39jD2n7kCtQwE6dQwWW3YkZWPnSfzoSgCKhnQqmWYrAokADq1DKtNwdV1yiHLwHVh/ggrM93OT6OC2WrDdWH+eH54Z3SNDUWh0Yozlw0oNFrRLTYUzw/vjD7x4d5pOBERURPGkVFE5bSRzkMFBdAGA0FRdatMkoC+E4Ff5mCKajVWFDwIIUSFO/YQERHRNYoicPTqWk/vbc7EqUvFsClAbqH97rQWm4AQAmqVhCKjFfLV71V/tYwSqwKtWsZ1YX44fqEYkiRBloAWAVqnY5RdD6pTdAiS4lrgaF4RCgwWhAZo0DEqmCOiiIiIGgiTUURlCAi0l3LsT1p2sCeT6qrfo9BvXoQE63lc3PYpHjx3D16/twdiQv3rXjcREVEToigCq/acwWep2Th7pQRGsw1687VRxbIEqCQJtqvT76w2BQazFf5aFYwWBf4aFbQqGcUmK+LDAxHsp8ZlgwXhAVoE6q7d0bZ0PahusaGO9aBkWUKn6BCPt5mIiKg5YjKKqJx20ln7P1p2rJ8KtYGQBj4N/DYXU9WrcUvmn/HMCgVfPzagfuonIiJqxEpHQf3v+CUs3ZqFU/klEG7KSgBsQkDAvtaEAGC2KogM0sFkMaPYbIVOJUNRAL3RAo1KhlYlQ62SYDDbuB4UERGRj2AyiqicdnKZkVH1JHDgJGDXu4grzsMM9df4z4l7cex8ETq04t15iIio+dqedRGv/ngYB3IKYa7Gsoo2cW3B09L1oBQA54tMkABYFQGL1T5tz2hVcEN8OPpdH47tJ/KRmafHRb0JWrUK3WJDMS45nutBEREReQmTUURlCAG0c0zTq6eRUQCgDQBu/ifw43Q8qv4Rf5H34PE3LyA4rhu+eORP8Neqqq6DiIioCTAarXht/RGs3H0GRaaa39hDkgAIOI2eUssS/DQqWG0Kis026DQy/n7L9bg7KQ6yLGFM3zZcD4qIiMiHMBlFVJYQaCeds/87MrF+6+77CIQuGCU/vYh2xnNYo30eH+QMR+/ZuRh3cxc8cXM7hJVbXLUxyMzT462Nx1BktMBiUxDqr8GUWzqgSyzX3SAiomusVgWD5/+Ek8V1q0fAvnaU4055sCejbIqARREI0KoQ7KfGlqOXcHdSnL0M14MiIiLyKXLVRRre4sWLkZCQAD8/P/Tv3x87duyotPzKlSvRqVMn+Pn5oXv37vjxxx89FCk1dWp9DoKlElghAy3a1m/lkgSp5/0IeDIVaH8bdJIFT6pXY5PuH2ix9V+Y+Mp/8ew3u/H6+iM4mFOAy8Xm+j1+PVMUgQtFJkz7Jh3/tzcHmzMuYGvmJfy4Pxe3v70Fk7/YDaOl5n/xJiKiuqnpdZUnfLE9G+1fqHsiCrAnocTVRJQEQJIBs02BVVEQ7KdGh6hgxLUIwLE8PY7mFdX9gERERFTvvD4yasWKFZg2bRqWLFmC/v37480330RKSgoyMjIQFRVVofy2bdswZswYzJ8/H3/961/x5ZdfYuTIkdi9eze6devmhRZQUyGEwOlfP0QHABlyB3RVN9AopcCWwNiVwJG1UNbNQnTBKTyuXoPH1WtQcPB17FOux64tMTgg2kIHC8Jbd4R/XE/cmNQNUcE6hAdqoVZ5P49893vbkH76iuN5v7bhuFxsRoi/BmnZl7F2/zms3X8Or4zshvv7xkHjAzETETV1Nb2u8oQvtmfj+e8O1Ft9/moJVgFYbQKBOhXatAiAn1YFjSwjUKeCdPVuexf1JhQYLPV2XCIiIqo/khDC3Q1LPKJ///7o27cv/vvf/wIAFEVBXFwcnnzyScycObNC+dGjR6O4uBhr1qxxbPvTn/6EXr16YcmSJVUer7CwEKGhoSgoKEBICIdrk12R0YIXv03D88fuRaRUiN393kDv2yc2/IEtRogja5G/53sEn/oVWqv7v+CahBpmaGCCBiZokae5Duqw61AScB2MQW2g00iwBcchzHwOtvD28NNqIJsKkCW3wfFifwzoGI0uMSF1SmQVlFjw0v8dRG6BEduOXwJgnyox767uuL9vHCTJvv7GhKU7sCnjgtO+/xrZDbd3j0F4YOObikhEVJYvX0vU9LqqvPpum9WqoP0LP9W5nlISAJUMqGQZKllC24gARIf6VyhXbLKi0GjFG6N7cnoeERGRh9TkOsKrI6PMZjPS0tIwa9YsxzZZljF48GCkpqa63Cc1NRXTpk1z2paSkoLVq1c3ZKjVln9iDwyXz8FiU1BVms/+suvFM4Wb7ZCubXfOI1YsL6Rq1F2mCnfl3ZPKV+EyjgrHdFG84nvloj01igNO75WDzQqV6TJUxitQmy5DZboMjekKjp08hWfMRxEpF0LvF4PeKePdHq1eafwgdR+FiO6jAJsVyN0L5B2Bcm4vik8fQAm0MOdlItZ2BjrJCh2sCEYJAOA660Xg4t4qD9EOwGAAxb/pUAwVChCEfITa5zVIMmySGjZJA0W2P2yyFjZZB3/JjDxbEALUQH5BIWSVGlprEXqIELSHHwaoZfSKj8SNnVsDqovALgtgscf2YaIKOTEWbDqWj4O5xVAgY9cPf2DHDxI0ahX81DJiwvwRFeIHtSxBlmWoSxeSlSRIACyqQAhZDbViggaWa69JEgCp3L9lSJDsXS7J9r6XVbCqAiBLAmrFDJVihgwFNpUfhKyFzlIAlWK2/1YjqSFk+wOSCpBVUAkrZMUCRe0PtbUYQqWDTRMMSDLUwgRZsUBIKkgqDWSbCZJQYNMEQlH72WOCAknA8X8Jiv0HXSj2n1ihQJIlKJIaQtZAyBrINiMkxQLIWiiyGhKulhcCkMrOS7nabgjHMSAEJAgISba3QZKcPy8glTmryp4bwl5UCNhXBL76f8dhZPv5K8kAJAhJcj47y4ZUA67Ku6tCclVYKJCEAknYAGGDpCiAsEGG/f+SsEFIGgiV/b2FrHFTeWVHdg60YhjS1f+6aozrOiU3x5MgVdwsuX0CoMznplT6GVj2A730f5LTc6dykuTme+paLKVtu/bjJDnFWhqVyy5yUXeFTS7LOG+sVj0u9vPzD0Jc23pe+8/H1ea6qqHVZyJKLQNRIX5oGxGIu3pfh98yLuDQuUIIIZw+J4QQuKA3oVtsKDpG8a61REREvsiryaiLFy/CZrOhVatWTttbtWqFI0eOuNwnNzfXZfnc3FyX5U0mE0wmk+N5YWFhHaOu3PFVL6Ov/tcGPQbVv+sAQAb06jAEjfovoPLCqaFSA9f1Aa7rAzlpLIIBOC6hzQag5DJsFiPy8gux9VAWgopOQG28hPDiTPib8wHFigjLOVyQWuJ663HYIOOS1AJxIgcyBAIl+3kQCgPaIM9e77W8A1DZ8k7y1XLlb/p39uqjHDWANgDGA4CrHIACIP/qg4ioARzU9gCe2+LtMDyqNtdVnr5Oqq3YED88Pqgd+l0f7rgTXtuWgZi39jCy8w2IDNLBT6OC0WLDBb0Jof4ajEuO5x3ziIiIfJTX14xqaPPnz8dLL73kseMV+8fgqD6+wl+/JRd/x3W1rfLtrrkrf23slVRhW0Mc030c7uqqeyw1fQ9tkKGXglEoB6NICoFeDoZeDoZBHQp1SDRuGzEOQVEtXTfAm7QBgDYAKgAxLYF7Oia5LRoF2EdZSRKCZBWg2ABjAcz6yzCaTLAW5UEpvgSLzQaLxQqb1QybxQybxQTFaoZiKYGwGGGWdNCU5MGiSPAPCoUaVrQIj0QLFEJlMwGKFbBdHQ1lvAKoNIDa3z6CRrGWedgAxQqhWGGxWlFiUVBUYoYQgHJ1JI59MdqrI3tgH6WjVQxQCSsskg5WqTSjdW3kjuT4d+lLV7ddfU0SCnRKCQQkWCUNrJIGNsjQCDM0woRiOQQmSQcZCmRhsz9gg0rYIEGBAhlWqKETRpRIAVDDggDFABk2mCUdLFBDhmKPERookgw/YYSfMDnOPAWyPSJJuhrV1edX/y8BUMEKtbBCAytM0MIqqaESNmhghX0MlQTF3iKnfra/V9K1x9VRAZIQUMHm4hyoOBbzWh2lI2gkp+flIy5tUflYhNO/6/kXPzcfK6XR2CQZCq49bI5/S1BBgQYWaIQVKjfZ1so+t6r6TKvNfrWps7b1VdYTNfnsdAzAgtvu8IqqftKsmiCPxNHYefo6qbaGdG2FcckJTtv6xIfj+eGdsXxbNjLz9LioN0GrVqFbbCjGJcejT3y4d4IlIiKiKnk1GdWyZUuoVCqcP3/eafv58+cRHR3tcp/o6OgalZ81a5bTtL7CwkLExcXVMXL3Bk1+t8HqJqq2siO7ZBUQEA5tQDjsqzV18UpIEgDt1UeoVyIgouakp7cD8ILaXFd5+jqptlqHB7jc3ic+HElxLXA0rwgFBgtCAzSOkVNERETku7x6eyutVos+ffpg48aNjm2KomDjxo0YMGCAy30GDBjgVB4ANmzY4La8TqdDSEiI04OIiIioqanNdVVDXye1roc6dCpgXP94t6/LsoRO0SHof30EOkWHMBFFRETUCHj9XuvTpk3Dhx9+iOXLl+Pw4cN44oknUFxcjAkTJgAAxo0b57QQ51NPPYV169bhP//5D44cOYK5c+di165dmDJlireaQEREROQTqrqu8rQ/Fgyvcx3jB14Prbb8ooVERETUmHl9zajRo0fjwoULmD17NnJzc9GrVy+sW7fOsfjmqVOnIMvXcmbJycn48ssv8cILL+C5555Dhw4dsHr1anTr1s1bTSAiIiLyCVVdV3nDyQXDkTBzbY33U8vAw3++Hs/d3rkBoiIiIiJvkoRwfWPnpqqwsBChoaEoKCjglD0iIiKqsaZ8LdGQbfvzzLU4U25btB8QEKCDVcjQqiT4aWS0DNQhuUNLPDSgLUdEERERNSI1uY7w+sgoIiIiImr66mPKHhERETUNXl8zioiIiIiIiIiImg8mo4iIiIiIiIiIyGOYjCIiIiIiIiIiIo9hMoqIiIiIiIiIiDyGySgiIiIiIiIiIvIYJqOIiIiIiIiIiMhj1N4OwNOEEACAwsJCL0dCREREjVHpNUTpNUVTwuskIiIiqq2aXCM1u2RUUVERACAuLs7LkRAREVFjVlRUhNDQUG+HUa94nURERER1VZ1rJEk0xT/rVUJRFOTk5CA4OBiSJNV4/8LCQsTFxeH06dMICQlpgAh9T3NsM9A8290c2wyw3c2p3c2xzUDzbHdDtlkIgaKiIsTGxkKWm9aKB3W9TqpKc/xZ9FXsC9/BvvAd7Avfwv7wHdXti5pcIzW7kVGyLKN169Z1rickJKTZnRDNsc1A82x3c2wzwHY3J82xzUDzbHdDtbmpjYgqVV/XSVVpjj+Lvop94TvYF76DfeFb2B++ozp9Ud1rpKb15zwiIiIiIiIiIvJpTEYREREREREREZHHMBlVQzqdDnPmzIFOp/N2KB7THNsMNM92N8c2A2x3c2p3c2wz0Dzb3Rzb3BiwX3wH+8J3sC98B/vCt7A/fEdD9EWzW8CciIiIiIiIiIi8hyOjiIiIiIiIiIjIY5iMIiIiIiIiIiIij2EyioiIiIiIiIiIPKbZJKN+//133HHHHYiNjYUkSVi9erXT66tWrcKQIUMQEREBSZKQnp5eoQ6j0YjJkycjIiICQUFBGDVqFM6fP1/pcYUQmD17NmJiYuDv74/Bgwfj2LFj9diyytW13fn5+XjyySeRmJgIf39/tGnTBlOnTkVBQUGlx33ooYcgSZLTY+jQofXcOtfqo68HDRpUIf7HH3+80uM29r4+efJkhTaXPlauXOn2uN7sa6DydlssFsyYMQPdu3dHYGAgYmNjMW7cOOTk5DjVkZ+fj7FjxyIkJARhYWGYOHEi9Hp9pcetzedBfalrm0+ePImJEyeibdu28Pf3R7t27TBnzhyYzeZKj1ub86I+1UdfJyQkVGjDggULKj2uN/saqHu7N2/e7Pbc3rlzp9vjerO/q/o8mzt3Ljp16oTAwEC0aNECgwcPxvbt253KNLbzuilZvHgxEhIS4Ofnh/79+2PHjh2Vll+5ciU6deoEPz8/dO/eHT/++KOHIm36atIXy5Ytq3DO+/n5eTDapquqzzRXNm/ejN69e0On06F9+/ZYtmxZg8fZHNS0L9x9h+bm5nom4CZs/vz56Nu3L4KDgxEVFYWRI0ciIyOjyv34nVH/atMX9fGd0WySUcXFxejZsycWL17s9vU///nPePXVV93W8cwzz+D//u//sHLlSvz222/IycnB3XffXelxX3vtNbz99ttYsmQJtm/fjsDAQKSkpMBoNNapPdVV13bn5OQgJycHCxcuxIEDB7Bs2TKsW7cOEydOrPLYQ4cOxblz5xyPr776qk5tqa766GsAePTRR53if+211yot39j7Oi4uzqm9586dw0svvYSgoCAMGzas0mN7q6+BytttMBiwe/duvPjii9i9ezdWrVqFjIwM3HnnnU7lxo4di4MHD2LDhg1Ys2YNfv/9dzz22GOVHrc2nwf1pa5tPnLkCBRFwfvvv4+DBw9i0aJFWLJkCZ577rkqj13T86I+1UdfA8DLL7/s1IYnn3yy0uN6s6+Burc7OTm5wrn9yCOPoG3btrjhhhsqPba3+ruqz7OOHTviv//9L/bv348//vgDCQkJGDJkCC5cuOAo09jO66ZixYoVmDZtGubMmYPdu3ejZ8+eSElJQV5ensvy27Ztw5gxYzBx4kTs2bMHI0eOxMiRI3HgwAEPR9701LQvACAkJMTpnM/OzvZgxE1XVZ9p5WVlZWH48OG45ZZbkJ6ejqeffhqPPPII1q9f38CRNn017YtSGRkZTudGVFRUA0XYfPz222+YPHky/ve//2HDhg2wWCwYMmQIiouL3e7D74yGUZu+AOrhO0M0QwDEd9995/K1rKwsAUDs2bPHafuVK1eERqMRK1eudGw7fPiwACBSU1Nd1qUoioiOjhavv/66Uz06nU589dVXdW5HTdWm3a588803QqvVCovF4rbM+PHjxYgRI2oXaD2qbZtvvvlm8dRTT1X7OE21r3v16iUefvjhSsv4Sl8LUXm7S+3YsUMAENnZ2UIIIQ4dOiQAiJ07dzrK/PTTT0KSJHH27FmXddTm86Ch1KbNrrz22muibdu2ldZT0/OiIdW23fHx8WLRokXVPo4v9bUQ9dPfZrNZREZGipdffrnSenylv6vT5oKCAgFA/PLLL0KIxn9eN2b9+vUTkydPdjy32WwiNjZWzJ8/32X5++67TwwfPtxpW//+/cWkSZMaNM7moKZ9sXTpUhEaGuqh6Jqv6nym/fOf/xRdu3Z12jZ69GiRkpLSgJE1P9Xpi02bNgkA4vLlyx6JqTnLy8sTAMRvv/3mtgy/MzyjOn1RH98ZzWZkVF2lpaXBYrFg8ODBjm2dOnVCmzZtkJqa6nKfrKws5ObmOu0TGhqK/v37u92nMSgoKEBISAjUanWl5TZv3oyoqCgkJibiiSeewKVLlzwUYf344osv0LJlS3Tr1g2zZs2CwWBwW7Yp9nVaWhrS09OrNQquMfV1QUEBJElCWFgYACA1NRVhYWFOI0QGDx4MWZYrTPspVZvPA28q32Z3ZcLDw6usqybnhbe5a/eCBQsQERGBpKQkvP7667BarW7raGx9DVTd3z/88AMuXbqECRMmVFlXY+hvs9mMDz74AKGhoejZsyeA5nFe+yKz2Yy0tDSn91CWZQwePNjte5iamupUHgBSUlL4ntdRbfoCAPR6PeLj4xEXF4cRI0bg4MGDngiXyuF54Xt69eqFmJgY3Hbbbdi6dau3w2mSSpeBqex6lOeGZ1SnL4C6f2dUnk0gh9zcXGi12goX961atXI7Z7h0e6tWraq9j6+7ePEiXnnllSqnOgwdOhR333032rZti+PHj+O5557DsGHDkJqaCpVK5aFoa++BBx5AfHw8YmNjsW/fPsyYMQMZGRlYtWqVy/JNsa8//vhjdO7cGcnJyZWWa0x9bTQaMWPGDIwZMwYhISEA7H1Xfqi1Wq1GeHh4ped2TT8PvMVVm8vLzMzEO++8g4ULF1ZaV03PC29y1+6pU6eid+/eCA8Px7Zt2zBr1iycO3cOb7zxhst6GlNfA9Xr748//hgpKSlo3bp1pXX5en+vWbMG999/PwwGA2JiYrBhwwa0bNkSQNM/r33VxYsXYbPZXH4XHjlyxOU+ubm5Teq701fUpi8SExPxySefoEePHigoKMDChQuRnJyMgwcPVvl5QfXL3XlRWFiIkpIS+Pv7eymy5icmJgZLlizBDTfcAJPJhI8++giDBg3C9u3b0bt3b2+H12QoioKnn34aAwcORLdu3dyW43dGw6tuX9THdwaTUVRthYWFGD58OLp06YK5c+dWWvb+++93/Lt79+7o0aMH2rVrh82bN+PWW29t4EjrrmyyrXv37oiJicGtt96K48ePo127dl6MzDNKSkrw5Zdf4sUXX6yybGPpa4vFgvvuuw9CCLz33nveDscjqtPms2fPYujQobj33nvx6KOPVlpfYzkvKmv3tGnTHP/u0aMHtFotJk2ahPnz50On03k61HpVnf4+c+YM1q9fj2+++abK+ny9v0vXUrl48SI+/PBD3Hfffdi+fTvX8SCqpQEDBmDAgAGO58nJyejcuTPef/99vPLKK16MjMh7EhMTkZiY6HienJyM48ePY9GiRfjss8+8GFnTMnnyZBw4cAB//PGHt0Np9qrbF/XxncFpetUUHR0Ns9mMK1euOG0/f/48oqOj3e5TWqa6+/iqoqIiDB06FMHBwfjuu++g0WhqtP/111+Pli1bIjMzs4EibFj9+/cHALfxN6W+BoBvv/0WBoMB48aNq/G+vtjXpb+kZ2dnY8OGDU4jRqKjoyss5mq1WpGfn1/puV3TzwNPq6zNpXJycnDLLbcgOTkZH3zwQY2PUdV54Q3VaXdZ/fv3h9VqxcmTJ12+3hj6Gqh+u5cuXYqIiAiXC7tXxdf6OzAwEO3bt8ef/vQnfPzxx1Cr1fj4448BNN3z2te1bNkSKpWqRt+F0dHRTea705fUpi/K02g0SEpK8plzvjlxd16EhIRwVJQP6NevH8+LejRlyhSsWbMGmzZtqnJEDb8zGlZN+qK82nxnMBlVTX369IFGo8HGjRsd2zIyMnDq1CmnjGBZbdu2RXR0tNM+hYWF2L59u9t9fFFhYSGGDBkCrVaLH374oVa3+T1z5gwuXbqEmJiYBoiw4aWnpwOA2/ibSl+X+vjjj3HnnXciMjKyxvv6Wl+X/pJ+7Ngx/PLLL4iIiHB6fcCAAbhy5QrS0tIc23799VcoiuL45bu82nweeFJVbQbsI6IGDRqEPn36YOnSpZDlmn8dVHVeeFp12l1eeno6ZFl2O5rG1/saqH67hRBYunQpxo0bV+M/KAC+19/lKYoCk8kEoGme142BVqtFnz59nN5DRVGwceNGt+/hgAEDnMoDwIYNG/ie11Ft+qI8m82G/fv3++w535TxvPBt6enpPC/qgRACU6ZMwXfffYdff/0Vbdu2rXIfnhsNozZ9UV6tvjPqtPx5I1JUVCT27Nkj9uzZIwCIN954Q+zZs8dxt6FLly6JPXv2iLVr1woA4uuvvxZ79uwR586dc9Tx+OOPizZt2ohff/1V7Nq1SwwYMEAMGDDA6TiJiYli1apVjucLFiwQYWFh4vvvvxf79u0TI0aMEG3bthUlJSWNot0FBQWif//+onv37iIzM1OcO3fO8bBarS7bXVRUJKZPny5SU1NFVlaW+OWXX0Tv3r1Fhw4dhNFo9Pk2Z2Zmipdfflns2rVLZGVlie+//15cf/314qabbnI6TlPr61LHjh0TkiSJn376yeVxfKmvS2Nw126z2SzuvPNO0bp1a5Genu7082symRx1DB06VCQlJYnt27eLP/74Q3To0EGMGTPG8fqZM2dEYmKi2L59u2NbdT4PfLXNZ86cEe3btxe33nqrOHPmjFMZd22u7nnhy+3etm2bWLRokUhPTxfHjx8Xn3/+uYiMjBTjxo1z224hvNvX9dHuUr/88osAIA4fPlzhGL7W35W1Wa/Xi1mzZonU1FRx8uRJsWvXLjFhwgSh0+nEgQMHHHU0tvO6qfj666+FTqcTy5YtE4cOHRKPPfaYCAsLE7m5uUIIIR588EExc+ZMR/mtW7cKtVotFi5cKA4fPizmzJkjNBqN2L9/v7ea0GTUtC9eeuklsX79enH8+HGRlpYm7r//fuHn5ycOHjzorSY0GVVdo82cOVM8+OCDjvInTpwQAQEB4tlnnxWHDx8WixcvFiqVSqxbt85bTWgyatoXixYtEqtXrxbHjh0T+/fvF0899ZSQZdlx91aqvSeeeEKEhoaKzZs3O12/GAwGRxl+Z3hGbfqiPr4zmk0yqvS2nOUf48ePF0LYb03o6vU5c+Y46igpKRF///vfRYsWLURAQIC46667KvwiD0AsXbrU8VxRFPHiiy+KVq1aCZ1OJ2699VaRkZHhgRbb1bXd7vYHILKysly222AwiCFDhojIyEih0WhEfHy8ePTRRx0XP77e5lOnTombbrpJhIeHC51OJ9q3by+effZZUVBQ4HScptbXpWbNmiXi4uKEzWZzeRxf6mshKm93VlaW25/fTZs2Oeq4dOmSGDNmjAgKChIhISFiwoQJoqioyPF6aT1l96nO54Gvttndz0LZv0+Ub3N1zwtfbndaWpro37+/CA0NFX5+fqJz587i3//+t1Pi1Nf6uj7aXWrMmDEiOTnZ5TF8rb8ra3NJSYm46667RGxsrNBqtSImJkbceeedYseOHU51NLbzuil55513RJs2bYRWqxX9+vUT//vf/xyv3XzzzY7vpVLffPON6Nixo9BqtaJr165i7dq1Ho646apJXzz99NOOsq1atRK333672L17txeibnqqukYbP368uPnmmyvs06tXL6HVasX111/vdM1JtVfTvnj11VdFu3bthJ+fnwgPDxeDBg0Sv/76q3eCb2LcXb+U/Vnnd4Zn1KYv6uM7Q7p6cCIiIiIiIiIiogbHNaOIiIiIiIiIiMhjmIwiIiIiIiIiIiKPYTKKiIiIiIiIiIg8hskoIiIiIiIiIiLyGCajiIiIiIiIiIjIY5iMIiIiIiIiIiIij2EyioiIiIiIiIiIPIbJKCIiIiIiIiIi8hgmo4iIiIiIqEmZO3cuWrVqBUmSsHr1am+H4xMuXbqEqKgonDx50tuh1NjJkychSRLS09Prve6EhAS8+eabAACz2YyEhATs2rWr0n02b94MSZJw5cqVeo+nvg0aNAhPP/20t8MgH/L777/jjjvuQGxsbK0+I+fOnQtJkio8AgMDa1QPk1FE1Cw99NBDjg9OjUaDtm3b4p///CeWLFni8sO17KMxXsQRERE1pLLfq5IkISIiAkOHDsW+ffvq7Rhz585Fr169qix3+PBhvPTSS3j//fdx7tw5DBs2rN5i8DUPPfQQRo4cWa2y8+bNw4gRI5CQkNCgMdVVTdpU37RaLaZPn44ZM2ZUWi45ORnnzp1DaGhotev2VrtWrVqFV155xfG8bPKNmqfi4mL07NkTixcvrtX+06dPx7lz55weXbp0wb333lujepiMIqJma+jQoTh37hxOnDiBRYsW4f3330dWVpbTB+uAAQPw6KOPOm2Li4vzduhEREQ+p/R79dy5c9i4cSPUajX++te/ejyO48ePAwBGjBiB6Oho6HS6CmXMZrOnw/Iqg8GAjz/+GBMnTvR2KD5v7Nix+OOPP3Dw4EG3ZbRaLaKjoyFJkgcjq53w8HAEBwd7OwzyIcOGDcO//vUv3HXXXS5fN5lMmD59Oq677joEBgaif//+2Lx5s+P1oKAgREdHOx7nz5/HoUOHavz5wmQUETVbOp0O0dHRiIuLw8iRIzF48GBs2LDB6cNVq9UiICDAaZtKpfJ26ERERD6n9Hs1OjoavXr1wsyZM3H69GlcuHDBUeb06dO47777EBYWhvDwcIwYMcJpxPHmzZvRr18/BAYGIiwsDAMHDkR2djaWLVuGl156CXv37nWMvlq2bFmFGObOnYs77rgDACDLsiNZUDoqZd68eYiNjUViYiIA4LPPPsMNN9yA4OBgREdH44EHHkBeXp5TnT/88AM6dOgAPz8/3HLLLVi+fLnTFK1ly5YhLCwMa9asQWJiIgICAnDPPffAYDBg+fLlSEhIQIsWLTB16lTYbDZHvVX9wlda7/r169G5c2cEBQU5En6lbV2+fDm+//57x3tSdv+yfvzxR+h0OvzpT39ybLt8+TLGjh2LyMhI+Pv7o0OHDli6dCmAa9PivvnmG9x4443w9/dH3759cfToUezcuRM33HADgoKCMGzYMKf+VRQFL7/8Mlq3bg2dTodevXph3bp1TrHs378ff/nLX+Dv74+IiAg89thj0Ov11WrTiRMncMsttyAgIAA9e/ZEamqqU91//PGHI964uDhMnToVxcXFjtfz8vJwxx13wN/fH23btsUXX3xR4b1q0aIFBg4ciK+//trlewlUnKZXl76q6pwo/dlduHAhYmJiEBERgcmTJ8NisTjKvPvuu46f0VatWuGee+5xvFZ2mt6gQYOQnZ2NZ555xhFHcXExQkJC8O233zq1cfXq1QgMDERRUZHb94GapilTpiA1NRVff/019u3bh3vvvRdDhw7FsWPHXJb/6KOP0LFjR9x44401Og6TUUREAA4cOIBt27ZBq9V6OxQiIqJGT6/X4/PPP0f79u0REREBALBYLEhJSUFwcDC2bNmCrVu3On5pN5vNsFqtGDlyJG6++Wbs27cPqampeOyxxyBJEkaPHo1//OMf6Nq1q2P01ejRoyscd/r06Y6ESmm5Uhs3bkRGRgY2bNiANWvWOGJ65ZVXsHfvXqxevRonT57EQw895NgnKysL99xzD0aOHIm9e/di0qRJeP755ysc12Aw4O2338bXX3+NdevWYfPmzbjrrrvw448/4scff8Rnn32G999/3+kX/ur8wmcwGLBw4UJ89tln+P3333Hq1ClMnz7d0db77rvPaURacnKyy/7YsmUL+vTp47TtxRdfxKFDh/DTTz/h8OHDeO+999CyZUunMnPmzMELL7yA3bt3Q61W44EHHsA///lPvPXWW9iyZQsyMzMxe/ZsR/m33noL//nPf7Bw4ULs27cPKSkpuPPOOx1tKi4uRkpKClq0aIGdO3di5cqV+OWXXzBlypRqten555/H9OnTkZ6ejo4dO2LMmDGwWq0A7CPihg4dilGjRmHfvn1YsWIF/vjjD0fdgD2xc/r0aWzatAnffvst3n333QrJRwDo168ftmzZ4vK9dKc2fVXVOVFq06ZNOH78ODZt2oTly5dj2bJljmTsrl27MHXqVLz88svIyMjAunXrcNNNN7mMcdWqVWjdujVefvllRxyBgYG4//77HedNqaVLl+Kee+7hqKpm5tSpU1i6dClWrlyJG2+8Ee3atcP06dPx5z//ucLPCAAYjUZ88cUXtRt1KYiImqHx48cLlUolAgMDhU6nEwCELMvi22+/dSp38803i6eeeso7QRIRETUSZb9XAwMDBQARExMj0tLSHGU+++wzkZiYKBRFcWwzmUzC399frF+/Xly6dEkAEJs3b3Z5jDlz5oiePXtWGct3330nyv+aM378eNGqVSthMpkq3Xfnzp0CgCgqKhJCCDFjxgzRrVs3pzLPP/+8ACAuX74shBBi6dKlAoDIzMx0lJk0aZIICAhw1COEECkpKWLSpElCCCGys7OFSqUSZ8+edar71ltvFbNmzXJb7+LFi0WrVq2c2jVixIhK2ySEECNGjBAPP/yw07Y77rhDTJgwwWX5rKwsAUB89NFHjm1fffWVACA2btzo2DZ//nyRmJjoeB4bGyvmzZvnVFffvn3F3//+dyGEEB988IFo0aKF0Ov1jtfXrl0rZFkWubm5btvkKp6DBw8KAOLw4cNCCCEmTpwoHnvsMaf9tmzZImRZFiUlJSIjI0MAEDt27HC8fvjwYQFALFq0yGm/t956SyQkJLh8b4QQYtOmTVX+DFSnr6o6J0r3i4+PF1ar1VHm3nvvFaNHjxZCCPH//t//EyEhIaKwsNBlrOWvZePj4yu0d/v27UKlUomcnBwhhBDnz58XarXa7blITQcA8d133zmer1mzRgBwfJaXPtRqtbjvvvsq7P/ll18KtVrtOH9rQl3z9BURUdNwyy234L333kNxcTEWLVoEtVqNUaNGeTssIiKiRqn0exWwTwF79913MWzYMOzYsQPx8fHYu3cvMjMzK4y0MBqNOH78OIYMGYKHHnoIKSkpuO222zB48GDcd999iImJqZf4unfvXmEEdFpaGubOnYu9e/fi8uXLUBQFgH10QJcuXZCRkYG+ffs67dOvX78KdQcEBKBdu3aO561atUJCQgKCgoKctpWOwtm/fz9sNhs6duzoVI/JZHKMJHNVb0xMjMuRPFUpKSmBn5+f07YnnngCo0aNwu7duzFkyBCMHDmywsiqHj16OMUP2N9HV20qLCxETk4OBg4c6FTHwIEDsXfvXgD2xeV79uzpdNetgQMHQlEUZGRkOI7hTtl4Sn8u8vLy0KlTJ+zduxf79u1zmnonhICiKMjKysLRo0ehVqudRoh16tQJYWFhFY7j7+8Pg8FQaSzl1aavqjonSnXt2tVpmYiYmBjs378fAHDbbbchPj4e119/PYYOHYqhQ4firrvuQkBAQLVj79evH7p27Yrly5dj5syZ+PzzzxEfH+92hBU1XXq9HiqVCmlpaRWWJin7eVbqo48+wl//+tcqz11XmIwiomYrMDAQ7du3BwB88skn6NmzJxf3JCIiqqWy36uA/ZeU0NBQfPjhh/jXv/4FvV6PPn36uFynJzIyEoB9atDUqVOxbt06rFixAi+88AI2bNjgtNZRXeIrq3TKWEpKCr744gtERkbi1KlTSElJqfEC5xqNxul56d16y28rTXZV9xc+V3XYBzPUTMuWLXH58mWnbcOGDUN2djZ+/PFHbNiwAbfeeismT56MhQsXujx+6fpb5beVtskTXMVT9j2dNGkSpk6dWmG/Nm3a4OjRo9U+Tn5+vuNnsjaxlcZXVV9V55xwV3dpu4ODg7F7925s3rwZP//8M2bPno25c+di586dLhNt7jzyyCNYvHgxZs6ciaVLl2LChAmNYoF2ql9JSUmw2WzIy8urcg2orKwsbNq0CT/88EOtjsU1o4iIYF/k9LnnnsMLL7yAkpISb4dDRETU6EmSBFmWHd+rvXv3xrFjxxAVFYX27ds7PUJDQx37JSUlYdasWdi2bRu6deuGL7/8EoD9DmZlFwCvqyNHjuDSpUtYsGABbrzxRnTq1KnCSJbExETs2rXLadvOnTvrfOyyv/CVfy+io6OrXU9135OkpCQcOnSowvbIyEiMHz8en3/+Od5880188MEHNWpHWSEhIYiNjcXWrVudtm/duhVdunQBAHTu3Bl79+51WlR869atkGXZsah8bfu5d+/eOHToUIX3s3379tBqtejUqROsVivS0tIc+2RkZDgWIS/rwIEDSEpKqnEMlXHVruqeE1VRq9UYPHgwXnvtNezbtw8nT57Er7/+Wu04AOBvf/sbsrOz8fbbb+PQoUMYP358zRpIjYZer0d6ejrS09MB2JNK6enpOHXqFDp27IixY8di3LhxWLVqFbKysrBjxw7Mnz8fa9eudarnk08+QUxMDIYNG1arOJiMIiK66t5774VKpcLixYu9HQoREVGjYzKZkJubi9zcXBw+fBhPPvkk9Hq94+52Y8eORcuWLTFixAhs2bIFWVlZ2Lx5M6ZOnYozZ84gKysLs2bNQmpqKrKzs/Hzzz/j2LFj6Ny5MwAgISHB8UvTxYsXYTKZ6hRvmzZtoNVq8c477+DEiRP44Ycf8MorrziVmTRpEo4cOYIZM2bg6NGj+OabbxwLR9dl1EhNfuGrTEJCAvbt24eMjAxcvHjR6Q5rZaWkpODgwYNOo6Nmz56N77//HpmZmTh48CDWrFnjeK9r69lnn8Wrr76KFStWICMjAzNnzkR6ejqeeuopAPafAT8/P4wfPx4HDhzApk2b8OSTT+LBBx90TPOpbpvKmzFjBrZt24YpU6YgPT0dx44dw/fff+9YwDwxMRFDhw7FpEmTsH37dqSlpeGRRx6Bv79/hbq2bNmCIUOG1Om9KM9Vu6o6J6pjzZo1ePvtt5Geno7s7Gx8+umnUBTFkdxzFcfvv/+Os2fP4uLFi47tLVq0wN13341nn30WQ4YMQevWreul3eR7du3ahaSkJEfCddq0aUhKSnLcjGDp0qUYN24c/vGPfyAxMREjR47Ezp070aZNG0cdiqJg2bJleOihh2p9p3Emo4iIrlKr1ZgyZQpee+01p7/YERERUdXWrVuHmJgYxMTEoH///o67pQ0aNAiAfU2d33//HW3atMHdd9+Nzp07Y+LEiTAajQgJCUFAQACOHDmCUaNGoWPHjnjssccwefJkTJo0CQAwatQoDB06FLfccgsiIyPx1Vdf1SneyMhILFu2DCtXrkSXLl2wYMECpylqANC2bVt8++23WLVqFXr06IH33nvPcTc9nU5Xp+NX5xe+qjz66KNITEzEDTfcgMjIyAqjkkp1794dvXv3xjfffOPYptVqMWvWLPTo0QM33XQTVCoVvv766zq1aerUqZg2bRr+8Y9/oHv37li3bh1++OEHdOjQAYD9Z2D9+vXIz89H3759cc899+DWW2/Ff//73xq3qbwePXrgt99+w9GjR3HjjTc6frmOjY11lFm6dCliY2Nx88034+6778Zjjz2GqKgop3pSU1NRUFCAe+65p07vRXmu2lXVOVEdYWFhWLVqFf7yl7+gc+fOWLJkCb766it07drVZfmXX34ZJ0+eRLt27SpMRZw4cSLMZjMefvjhOreXfNegQYMghKjwKE20azQavPTSS8jKyoLZbEZOTg5WrVrltF6cLMs4ffo05s2bV+s4JFGbScdERERERETN0Lx587BkyRKcPn3a26HUyNq1a/Hss8/iwIEDkGWOSXBn9OjR6NmzJ5577jlvh+Jxn332GZ555hnk5ORUWOyfqL5xAXMiIiIiIiI33n33XfTt2xcRERHYunUrXn/9dcfUr8Zk+PDhOHbsGM6ePYu4uDhvh+OTzGYzunfvjmeeecbboXiUwWDAuXPnsGDBAkyaNImJKPIIjowiIiIiIiJy45lnnsGKFSuQn5+PNm3a4MEHH8SsWbOgVvPv+tQ0zJ07F/PmzcNNN92E77//3umOjkQNhckoIiIiIiIiIiLyGE4WJiIiIiIiIiIij2EyioiIiIiIiIiIPIbJKCIiIiIiIiIi8hgmo4iIiIiIiIiIyGOYjCIiIiIiIiIiIo9hMoqIiIiIiIiIiDyGySgiIiIiIiIiIvIYJqOIiIiIiIiIiMhjmIwiIiIiIiIiIiKP+f/5OEjZr9GkOgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "0.9893134002735157" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "correlation = feat_gen.feature_precursor_best_fragment_correlation(\n", + " precursor, precursor_fragments, ms1dict, visualize=True\n", + ")\n", + "correlation" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "beaf33c4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0WpJREFUeJzs3Xl8DPcbB/DP7J07QQ5HJK4gbnFUXHEfcZY6W3FWi7q11M9ZR6mz1aJacZTGrYq6KUJbolRRcUQUIYjc12Z3fn/EbrOyid1Isjk+79drX6/s7MzsM7Ob7OTZ5/t8BVEURRAREREREREREeUDiaUDICIiIiIiIiKi4oPJKCIiIiIiIiIiyjdMRhERERERERERUb5hMoqIiIiIiIiIiPINk1FERERERERERJRvmIwiIiIiIiIiIqJ8w2QUERERERERERHlGyajiIiIiIiIiIgo3zAZRURERERERERE+YbJKKIMBEHA7Nmz9fc3bNgAQRBw7949i8VkisGDB8PT0zPX9jd79mwIgpBr+9Px9PTE4MGDc32/Bc2tW7fQvn17ODg4QBAE7N271+h7yc/PD35+fvkeX3x8PFxcXLBly5Z8f+6i5vnz57CxscHBgwctHQoRkUks9dljjty+rskvr15H5oaC8np5enqiS5cur13v1KlTEAQBp06dytXnz69rl/y8Vi2s73NT3Lt3D4IgYMOGDXmy/6lTp6Jx48Z5sm/KP0xGUbHxzTffQBAE/uHKY+fOncPs2bMRHR1t6VAsJiAgAFevXsX8+fOxefNmNGjQwNIhGVi5ciXs7OzQr18/S4eip9VqsXjxYlSoUAEqlQq1a9fGjz/+aPL2R48eRbNmzWBtbQ0nJyf07t3baBI5OTkZCxcuhLe3N6ytrVG2bFm88847uHbtWo72WbJkSQwfPhwzZsww95CJiEyi+zJDd1OpVPDy8sKYMWPw5MmTfI1l69atWLFiRb4+Z3Fw/fp1zJ49u8B/+WlJBfHahSxn/PjxuHLlCvbt22fpUOgNMBlFxcaWLVvg6emJP/74A7dv3zZpm/feew9JSUnw8PDI4+iKjnPnzmHOnDlGk1E3b97EunXr8j+ofJSUlITz589j2LBhGDNmDN59912UK1euwLyX1Go1Vq5cieHDh0MqlVo0loymT5+OTz75BO3atcNXX32F8uXLY8CAAQgKCnrttvv370fHjh2RkpKCzz//HJMmTcKvv/6KZs2a4enTpwbrDhw4EDNnzoSfnx++/PJLjBw5EqdPn0aTJk0QHh6eo31+8MEHuHTpEk6cOJE7J4OIyIi5c+di8+bNWLVqFXx9fbF69Wo0adIEiYmJZu3nyJEjOHLkSI5iyK9k1Lp163Dz5s08f56C4vr165gzZ47RZNSbvF6W0KJFCyQlJaFFixa5ts/8vHYpDteqRYGbmxu6d++OJUuWWDoUegNMRlGxEBYWhnPnzmHZsmVwdnY2ucRXKpVCpVLlyZC14kipVEIul1s6DLNotVokJyebvL4uUeHo6GiwvKC8l/bv34+nT5+iT58+r103ISEhHyICHj58iKVLl2L06NH49ttvMWLECPz8889o3rw5pkyZAo1Gk+32n3zyCSpWrIjg4GCMHTsW//vf/3Ds2DFERETg888/N3ie3bt3Y/z48fjmm28wfPhwzJw5E0FBQYiLi8Pu3bvN3icAVK9eHTVr1syzUnQiIgDo1KkT3n33XQwfPhwbNmzA+PHjERYWhp9++sms/SgUCigUijyKMnfI5XIolUqLxiCKIpKSkiwaA1A4Xq+MJBIJVCoVJJLc+zfTnGuXN2XKtWp+XR9R9vr06YOzZ8/i7t27lg6FcojJKCoWtmzZAicnJ/j7+6N3794mJ6OM9fnRarWYPXs2ypQpA2tra7Rq1QrXr1/PNMZct21wcDAmTpwIZ2dn2NjYoGfPnpkqKwDgl19+QfPmzWFjYwM7Ozv4+/sbHTq0d+9e1KxZEyqVCjVr1sSePXvMOhemPk9G2Y37ztgfYfbs2ZgyZQoAoEKFCvohBbrzZ2wc/t27d/HOO++gRIkSsLa2xltvvYUDBw4YrKPrP7B9+3bMnz8f5cqVg0qlQps2bUyqctP1wPrnn3/Qp08f2Nvbo2TJkhg3blymRJMgCBgzZgy2bNmCGjVqQKlU4tChQwCAP//8E506dYK9vT1sbW3Rpk0b/PbbbwbPo6t8mjJlCgRB0PcCMLX/WEpKCmbNmoXKlStDqVTC3d0dH3/8MVJSUgzW0w0hc3R0hK2tLapWrYpPP/30tedi79698PT0RKVKlQyWDx48GLa2trhz5w46d+4MOzs7DBw48LX7yw0//fQT1Go1Ro0apV8mCAI+/PBDPHjwAOfPn89y26ioKFy/fh09e/Y0uFivU6cOqlevblBZFRcXBwBwdXU12Efp0qUBAFZWVmbvU6ddu3b4+eefIYqiOYdORJRjrVu3BpD+hRsApKWl4bPPPkOlSpWgVCrh6emJTz/9NNPnx6s9iEz9jPXz88OBAwcQHh6u/3zPrt9NdHQ0pFIpvvzyS/2yZ8+eQSKRoGTJkgZ/Lz/88EO4ubnp7xvrpRMUFAQfHx/Y2dnB3t4etWrVwsqVKzM95/jx4+Hu7g6lUonKlStj0aJF0Gq12Z9M/NcT6fDhw2jQoAGsrKywdu3aN9pveHg4Ro0ahapVq8LKygolS5bEO++8Y3AtsGHDBrzzzjsAgFatWunPra7nkrGeUZGRkRg2bBhcXV2hUqlQp04dbNy40WAd3bXbkiVL8O233+rfFw0bNsSFCxcM1n38+DGGDBmCcuXKQalUonTp0ujevbvRa5azZ8+iUaNGUKlUqFixIjZt2mTwuLGeUX5+fqhZsyZCQkLg6+sLKysrVKhQAWvWrMn2/Om87trl7t276NChA2xsbFCmTBnMnTs30+fxkiVL4Ovri5IlS8LKygo+Pj7YuXNnpufK6nr+119/xahRo+Di4oJy5crpH8+P6/eLFy+iQ4cOKFWqlP7cDR06NEfHp7vO3bFjB7y9vWFlZYUmTZrg6tWrAIC1a9eicuXKUKlU8PPzy/QeeNPX8p9//kHv3r1RokQJqFQqNGjQINNQO7VajTlz5qBKlSpQqVQoWbIkmjVrhqNHjxqs17ZtWwAwOyFPBYfM0gEQ5YctW7bg7bffhkKhQP/+/bF69WpcuHABDRs2NHtf06ZNw+LFi9G1a1d06NABV65cQYcOHbKsnvnoo4/g5OSEWbNm4d69e1ixYgXGjBmDbdu26dfZvHkzAgIC0KFDByxatAiJiYlYvXo1mjVrhj///FN/QXbkyBH06tUL3t7eWLhwIZ4/f66/eDCFqc+TU2+//TZCQ0Px448/Yvny5ShVqhQAwNnZ2ej6T548ga+vLxITEzF27FiULFkSGzduRLdu3bBz50707NnTYP3PP/8cEokEkydPRkxMDBYvXoyBAwfi999/Nym+Pn36wNPTEwsXLsRvv/2GL7/8Ei9evMh0IXXixAls374dY8aMQalSpeDp6Ylr166hefPmsLe3x8cffwy5XI61a9fCz88Pv/76Kxo3boy3334bjo6OmDBhAvr374/OnTvD1tbW5POn1WrRrVs3nD17Fu+//z6qV6+Oq1evYvny5QgNDcXevXsBANeuXUOXLl1Qu3ZtzJ07F0qlErdv30ZwcPBrn+PcuXOoX7++0cfS0tLQoUMHNGvWDEuWLIG1tXWW+1Gr1YiJiTHpuEqUKJHtN6R//vknbGxsUL16dYPljRo10j/erFkzo9vq/snSJZIysra2xrVr1/D48WO4ubmhUqVKKFeuHJYuXYqqVauiXr16ePToET7++GNUqFBB34fCnH3q+Pj4YPny5bh27Rpq1qyZ3ekgIsoVd+7cAZDeuw4Ahg8fjo0bN6J3796YNGkSfv/9dyxcuBA3btww6R/f133GTp8+HTExMXjw4AGWL18OANl+xjk6OqJmzZo4ffo0xo4dCyA9kSEIgj7pX6NGDQDAmTNn0Lx58yz3dfToUfTv3x9t2rTBokWLAAA3btxAcHAwxo0bBwBITExEy5Yt8fDhQ4wcORLly5fHuXPnMG3aNERERJg0vPDmzZvo378/Ro4ciREjRqBq1apvtN8LFy7g3Llz6NevH8qVK4d79+5h9erV8PPzw/Xr12FtbY0WLVpg7Nix+PLLL/Hpp5/qPwtf/UzUSUpKgp+fH27fvo0xY8agQoUK2LFjBwYPHozo6Gj9+dDZunUr4uLiMHLkSAiCgMWLF+Ptt9/G3bt39RVAvXr1wrVr1/DRRx/B09MTkZGROHr0KO7fv29wbXj79m307t0bw4YNQ0BAANavX4/BgwfDx8dH/1pm5cWLF+jcuTP69OmD/v37Y/v27fjwww+hUCgyJVZeld21i0ajQceOHfHWW29h8eLFOHToEGbNmoW0tDTMnTtXv97KlSvRrVs3DBw4EKmpqQgKCsI777yD/fv3w9/fP9vnB4BRo0bB2dkZM2fO1FdG5cf1e2RkJNq3bw9nZ2dMnToVjo6OuHfvnkE1t7nHd+bMGezbtw+jR48GACxcuBBdunTBxx9/jG+++QajRo3CixcvsHjxYgwdOjRTG4KcvpbXrl1D06ZNUbZsWUydOhU2NjbYvn07evTogV27dumv+2fPno2FCxdi+PDhaNSoEWJjY3Hx4kVcunQJ7dq10+/PwcEBlSpVQnBwMCZMmPDac0kFkEhUxF28eFEEIB49elQURVHUarViuXLlxHHjxmVaF4A4a9Ys/f3AwEARgBgWFiaKoig+fvxYlMlkYo8ePQy2mz17tghADAgIyLRt27ZtRa1Wq18+YcIEUSqVitHR0aIoimJcXJzo6OgojhgxwmCfjx8/Fh0cHAyW161bVyxdurR+W1EUxSNHjogARA8Pj2zPgznPM2vWLDHjn4ewsDARgBgYGJhpv6+esy+++MLgnGXk4eFhcI7Gjx8vAhDPnDljEGeFChVET09PUaPRiKIoiidPnhQBiNWrVxdTUlL0665cuVIEIF69ejXbY9cdT7du3QyWjxo1SgQgXrlyxeB4JBKJeO3aNYN1e/ToISoUCvHOnTv6ZY8ePRLt7OzEFi1a6JfpztUXX3xhsP2r7yVRFMWWLVuKLVu21N/fvHmzKJFIDM6HKIrimjVrRABicHCwKIqiuHz5chGA+PTp02yP+1VqtVoUBEGcNGlSpscCAgJEAOLUqVNN2pfuNTHlZuy9kJG/v79YsWLFTMsTEhJeG5NGoxEdHR3FNm3aGCx/9uyZaGNjIwIQL168qF/++++/i5UqVTKIz8fHR4yIiMjxPkVRFM+dOycCELdt25btsRIRmUv3+XHs2DHx6dOn4r///isGBQWJJUuWFK2srMQHDx6Ily9fFgGIw4cPN9h28uTJIgDxxIkT+mWvfvaY8xnr7+//2uuNjEaPHi26urrq70+cOFFs0aKF6OLiIq5evVoURVF8/vy5KAiCuHLlSv16AQEBBs8zbtw40d7eXkxLS8vyuT777DPRxsZGDA0NNVg+depUUSqVivfv3882Vg8PDxGAeOjQoRzv99VrosTExEzPc/78eRGAuGnTJv2yHTt2iADEkydPZlr/1ddrxYoVIgDxhx9+0C9LTU0VmzRpItra2oqxsbGiKP53PVKyZEkxKipKv+5PP/0kAhB//vlnURRF8cWLF0avW16lOz+nT5/WL4uMjBSVSqXBdYXu/ZTxWFq2bCkCEJcuXapflpKSItatW1d0cXERU1NTs3xeU65dPvroI/0yrVYr+vv7iwqFwuA66dXXIjU1VaxZs6bYunXrTMdp7Hq+WbNmBu+//Lp+37NnjwhAvHDhQrbrmXp8AESlUmlwbbZ27VoRgOjm5qZ//4iiKE6bNs3otaspr6Wx/x3atGkj1qpVS0xOTtYv02q1oq+vr1ilShX9sjp16oj+/v7ZHq9O+/btxerVq5u0LhU8HKZHRd6WLVvg6uqKVq1aAUgvT+3bty+CgoJe24vmVcePH0daWprBcCIgvfopK++//75Bn6DmzZtDo9HomyUfPXoU0dHR6N+/P549e6a/SaVSNG7cGCdPngQARERE4PLlywgICICDg4N+f+3atYO3t/drYzf1efLTwYMH0ahRI4OqF1tbW7z//vu4d+8erl+/brD+kCFDDIZN6b5FNXWsuO4bIB3d63bw4EGD5S1btjQ4pxqNBkeOHEGPHj1QsWJF/fLSpUtjwIABOHv2LGJjY02KITs7duxA9erVUa1aNYPXSDcUQ/ca6fpR/fTTTyYNPdCJioqCKIpwcnLKcp0PP/zQpH3VqVMHR48eNemWsYLImKSkJKO9QVQqlf7xrEgkEowcORLHjx/HtGnTcOvWLYSEhKBPnz5ITU3NtL2TkxPq1q2LqVOnYu/evViyZAnu3buHd955R1/daO4+dfsF0oegEBHlhbZt28LZ2Rnu7u7o168fbG1tsWfPHpQtW1b/OTZx4kSDbSZNmgQAmYa/G/Omn7HGNG/eHE+ePNE3Iz9z5gxatGiB5s2b48yZMwDSq6VEUcy2MsrR0REJCQmZhulktGPHDjRv3hxOTk4Gn6Ft27aFRqPB6dOnXxtvhQoV0KFDh1zbb8YKW7VajefPn6Ny5cpwdHTEpUuXXhuPMQcPHoSbmxv69++vXyaXyzF27FjEx8fj119/NVi/b9++Bp/7r76uVlZWUCgUOHXqFF68eJHtc3t7exu8Ts7OzqhatapJ7xGZTIaRI0fq7ysUCowcORKRkZEICQnJcjtTrl3GjBmj/1k3DC01NRXHjh3TL8/4Wrx48QIxMTFo3ry5ya/DiBEjDJqn59f1u+6ab//+/VCr1VmuZ87xtWnTxqDiTTfTeK9evWBnZ5dp+auvb05ey6ioKJw4cQJ9+vRBXFyc/nw9f/4cHTp0wK1bt/Dw4UP9MV+7dg23bt3K8nh1dL+XVDhxmB4VaRqNBkFBQWjVqpW+pwKQ/sd16dKlOH78ONq3b2/y/nQJpMqVKxssL1GiRJYfkuXLlze4r1tP94Gv+0OrSzi8yt7e3uC5q1SpkmmdqlWrvvbD1NTnyU/h4eH6D7qMdKXp4eHhBkOeXncuX+fVc1epUiVIJJJM4+ErVKhgcP/p06dITExE1apVjcaq1Wrx77//vrZE/XVu3bqFGzduZDmsMTIyEkD6heV3332H4cOHY+rUqWjTpg3efvtt9O7d26SGoWIWfY1kMpnJQz6dnJz0Y/XflJWVVaaeJgD0ySFjw+Uymjt3Lp49e4bFixfrm4u3b98ew4YNw5o1a/TDSHQXZlOmTNH/gwYADRo0gJ+fHwIDA/XJOFP3qaM7p5ZuUE+UW06fPo0vvvgCISEhiIiIwJ49e9CjRw+z9nH48GHMmjUL165dg0qlQosWLbB06dI3HhJeXH399dfw8vKCTCaDq6srqlatqv+bHx4eDolEkun6xM3NDY6OjgazhWblTT5jHz9+bHDfwcEBVlZW+sTFmTNnUK5cOfz555+YN28enJ2d9bNgnTlzBvb29qhTp06W+x81ahS2b9+OTp06oWzZsmjfvj369OmDjh076te5desW/vrrr9d+hmbn1c//N91vUlISFi5ciMDAQDx8+NDg89fUoe6vCg8PR5UqVTJ93me8dsroda+rUqnEokWLMGnSJLi6uuKtt95Cly5dMGjQoExfJr26L93+THmPlClTBjY2NgbLvLy8AKT3t3rrrbey3T6raxeJRGLwReGr+9XZv38/5s2bh8uXLxtcc5j6uf3qeyO/rt9btmyJXr16Yc6cOVi+fDn8/PzQo0cPDBgwwOCLPHOO79XXUZckc3d3N7r81dc3J6/l7du3IYoiZsyYgRkzZhg91sjISJQtWxZz585F9+7d4eXlhZo1a6Jjx4547733ULt27UzbiKLIa69CjMkoKtJOnDiBiIgIBAUFGW06vGXLFrOSUTmR1RS0ug9VXWXL5s2bjVaQyGS582v6Js+T1R95cyvL3tTrzqW5sjqu1yU/8opWq0WtWrWwbNkyo4/rLhKsrKxw+vRpnDx5EgcOHMChQ4ewbds2tG7dGkeOHMnyPJUoUQKCIGR50ahUKk2e/SY1NRVRUVEmrevs7JztVMylS5fGyZMnM11QREREAEi/6MmOQqHAd999h/nz5yM0NBSurq7w8vLCgAEDDP4527VrF548eYJu3boZbN+yZUvY29sjODhYn4wydZ86unOq65NGVNglJCSgTp06GDp0KN5++22ztw8LC0P37t0xceJEbNmyBTExMZgwYQLefvvtHFeEFHeNGjVCgwYNsl3nTf4pe5PPWN1EEDqBgYEYPHgwypQpgwoVKuD06dPw9PSEKIpo0qQJnJ2dMW7cOISHh+PMmTPw9fXN9vPHxcUFly9fxuHDh/HLL7/gl19+QWBgIAYNGqRv3K3VatGuXTt8/PHHRveh+2c5O8Y+/99kvx999BECAwMxfvx4NGnSBA4ODhAEAf369TOrsvlNmPK6jh8/Hl27dsXevXtx+PBhzJgxAwsXLsSJEydQr149s/aV21537WKKM2fOoFu3bmjRogW++eYblC5dGnK5HIGBgdi6datJ+3j1vZFf1++CIGDnzp347bff8PPPP+Pw4cMYOnQoli5dit9++w22trZmH19Wr2Nevr668zV58uRM1Yc6umurFi1a4M6dO/jpp59w5MgRfPfdd1i+fDnWrFmD4cOHG2zz4sULXnsVYkxGUZG2ZcsWuLi44Ouvv8702O7du7Fnzx6sWbPG5OSDbqa027dvG3xD8vz58xx/SOpmBnFxccm20kT33MZKVnXl77nxPMbovkWLjo42WG7sm1ZzLoQ9PDyMxv7PP//oH89Nt27dMnjdbt++Da1W+9pv6Z2dnWFtbZ1lrBKJJNO3STlRqVIlXLlyBW3atHnteZRIJGjTpg3atGmDZcuWYcGCBZg+fTpOnjyZ5esrk8lQqVIlgyrBnDp37px+6OvrhIWFZXuO69ati++++w43btwwKFnXNc2tW7euSc/j6uqqnylPo9Hg1KlTaNy4sb6K6cmTJ/rHMhJFERqNBmlpaWbvM+MxAlk3nCUqbDp16oROnTpl+XhKSgqmT5+OH3/8EdHR0ahZsyYWLVqkn/UrJCQEGo0G8+bN0ycZJk+ejO7du0OtVr926nQyj4eHB7RaLW7dumXwd+jJkyeIjo7Otc/TrD6bXh0+l7FSuHnz5jh9+jQqVKiAunXrws7ODnXq1IGDgwMOHTqES5cuYc6cOa99boVCga5du6Jr167QarUYNWoU1q5dixkzZqBy5cqoVKkS4uPjc61qV+dN9rtz504EBARg6dKl+mXJycmZrqfMvXb666+/oNVqDRJ4b3rtVKlSJUyaNAmTJk3CrVu3ULduXSxduhQ//PBDjvb3qkePHiEhIcGgoiY0NBQAsr1GeN21i1arxd27dw2Sgq/ud9euXVCpVDh8+LBBNVFgYGBODyffrt913nrrLbz11luYP38+tm7dioEDByIoKAjDhw/Pk+PLTk5eS131mlwuN+l3qUSJEhgyZAiGDBmC+Ph4tGjRArNnz86UjAoLC8u2qpIKNvaMoiIrKSkJu3fvRpcuXdC7d+9MtzFjxiAuLi7TdKLZadOmDWQyGVavXm2wfNWqVTmOs0OHDrC3t8eCBQuMjgV/+vQpgPRvHevWrYuNGzcalHYfPXo0U2+lN3keY+zt7VGqVKlMfRG++eabTOvqPphevdAypnPnzvjjjz9w/vx5/bKEhAR8++238PT0NGksvTleTUp+9dVXAJDtP1xA+jdF7du3x08//WRQ8v3kyRNs3boVzZo1y5Vhjn369MHDhw+xbt26TI8lJSXpZ28xVpGkS9gYG+6WUZMmTXDx4sU3jjU3e0Z1794dcrnc4P0kiiLWrFmDsmXLwtfXV788IiIC//zzT7Z9E4D0KY4jIiIMhuPpLlRfrZLct28fEhISDL79NXWfOiEhIXBwcHjjoZpEhcWYMWNw/vx5BAUF4a+//sI777yDjh076v/h8vHxgUQiQWBgIDQaDWJiYrB582a0bduWiag80LlzZwDINLObrtLWlNnCTGFjY2N0eFnbtm0NbhkrpZo3b4579+5h27Zt+mF7EokEvr6+WLZsGdRqdbb9ooD0L/0ykkgk+iE7us+9Pn364Pz58zh8+HCm7aOjo41+4WCKN9mvVCrNVFXy1VdfZfpSxNxrp8ePHxvMypyWloavvvoKtra2aNmy5Wv3kVFiYmKmGaErVaoEOzu7115TmCMtLQ1r167V309NTcXatWvh7OwMHx+fbLd93bVLxutwURSxatUqyOVytGnTBkD66yAIgsF5v3fvnn6W4pzIr+v3Fy9eZHoPvXrNlxfHl52cvJYuLi7w8/PD2rVr9ZXvGWX8P+TV33dbW1tUrlw50/sxJiYGd+7cMbhOpMKFlVFUZO3btw9xcXGZhuTovPXWW3B2dsaWLVvQt29fk/bp6uqKcePGYenSpejWrRs6duyIK1eu4JdffkGpUqVyVB5vb2+P1atX47333kP9+vXRr18/ODs74/79+zhw4ACaNm2q/5BduHAh/P390axZMwwdOhRRUVH46quvUKNGDcTHx+fa8xgzfPhwfP755xg+fDgaNGiA06dP678FyUj3ITR9+nT069cPcrkcXbt2zTS2HACmTp2KH3/8EZ06dcLYsWNRokQJbNy4EWFhYdi1a5fJQ8ZMFRYWpn/dzp8/jx9++AEDBgww6RuVefPm4ejRo2jWrBlGjRoFmUyGtWvXIiUlBYsXL86V+N577z1s374dH3zwAU6ePImmTZtCo9Hgn3/+wfbt23H48GE0aNAAc+fOxenTp+Hv7w8PDw9ERkbim2++Qbly5QyawRvTvXt3bN68GaGhoSYNWchKbvaMKleuHMaPH48vvvgCarUaDRs2xN69e3HmzBls2bLFoGx82rRp+veI7tu3H374Abt27UKLFi1ga2uLY8eOYfv27Rg+fDh69eql37Zr166oUaMG5s6di/DwcLz11lu4ffs2Vq1ahdKlS2PYsGH6dU3dp87Ro0fRtWtX9i2gYuH+/fsIDAzE/fv39cNoJ0+ejEOHDiEwMBALFixAhQoVcOTIEfTp0wcjR46ERqNBkyZNMk0YQbmjTp06CAgIwLfffovo6Gi0bNkSf/zxBzZu3IgePXqYXMn6Oj4+Pti2bRsmTpyIhg0bwtbWFl27ds12G12i6ebNm1iwYIF+eYsWLfDLL79AqVSiYcOG2e5j+PDhiIqKQuvWrVGuXDmEh4fjq6++Qt26dfWVYFOmTMG+ffvQpUsXDB48GD4+PkhISMDVq1exc+dO3Lt3L0fDed5kv126dMHmzZvh4OAAb29vnD9/HseOHUPJkiUN1qtbty6kUikWLVqEmJgYKJVKtG7dGi4uLpn2+f7772Pt2rUYPHgwQkJC4OnpiZ07dyI4OBgrVqwwaEBtitDQULRp0wZ9+vSBt7c3ZDIZ9uzZgydPnqBfv35m7Ss7ZcqUwaJFi3Dv3j14eXlh27ZtuHz5Mr799tvXJqizu3ZRqVQ4dOgQAgIC0LhxY/zyyy84cOAAPv30U32fL39/fyxbtgwdO3bEgAEDEBkZia+//hqVK1fGX3/9laPjya/r940bN+Kbb75Bz549UalSJcTFxWHdunWwt7fXJ6Hz4viyk9PX8uuvv0azZs1Qq1YtjBgxAhUrVsSTJ09w/vx5PHjwAFeuXAGQ3ijfz88PPj4+KFGiBC5evIidO3caNKoHgGPHjkEURXTv3j3Xj5HyST7O3EeUr7p27SqqVCoxISEhy3UGDx4syuVy8dmzZ6IoZp6SVzeda8YpTdPS0sQZM2aIbm5uopWVldi6dWvxxo0bYsmSJcUPPvgg07avTsVqbMpb3fIOHTqIDg4OokqlEitVqiQOHjw40xTyu3btEqtXry4qlUrR29tb3L17d6YpkLNjyvPMmjVLfPXPQ2Jiojhs2DDRwcFBtLOzE/v06SNGRkZmOmeimD4NctmyZUWJRGJw/l6dLlcURfHOnTti7969RUdHR1GlUomNGjUS9+/fb/Sc7dixw2C5sWljjdEdz/Xr18XevXuLdnZ2opOTkzhmzBgxKSnJYF0A4ujRo43u59KlS2KHDh1EW1tb0draWmzVqpV47tw5ozG9OkWysffSq9M1i2L6VLyLFi0Sa9SoISqVStHJyUn08fER58yZI8bExIiiKIrHjx8Xu3fvLpYpU0ZUKBRimTJlxP79+2eadtqYlJQUsVSpUuJnn31msDwgIEC0sbF57fZ5RaPRiAsWLBA9PDxEhUIh1qhRw2Daah3dNM4Zz+Pvv/8utmjRQnRychJVKpVYp04dcc2aNaJWq820fVRUlDhhwgTRy8tLVCqVYqlSpcR+/fqJd+/eNVjPnH3euHFDP+06UVEEQNyzZ4/+/v79+0UAoo2NjcFNJpOJffr0EUVRFCMiIsQqVaqIU6ZMES9duiT++uuvYsuWLcU2bdoY/T2irGV1PfEqtVotzpkzR6xQoYIol8tFd3d3cdq0aQbTqIti5s8ecz5j4+PjxQEDBoiOjo4mTUuv4+LiIgIQnzx5ol929uxZEYDYvHnzTOu/el2zc+dOsX379qKLi4uoUCjE8uXLiyNHjhQjIiIMtouLixOnTZsmVq5cWVQoFGKpUqVEX19fccmSJfop57Pi4eGR5XTypu731WuiFy9eiEOGDBFLlSol2traih06dBD/+ecfo9dD69atEytWrChKpVKD60Rj1wpPnjzR71ehUIi1atXKdC2U1fXIq3E+e/ZMHD16tFitWjXRxsZGdHBwEBs3bixu377dpPOT1fsp43Vuy5YtxRo1aogXL14UmzRpIqpUKtHDw0NctWpVpv0Z87prlzt37ojt27cXra2tRVdXV3HWrFmiRqMxWPf7778Xq1SpIiqVSrFatWpiYGCg0evdV1+b1/3+5fX1+6VLl8T+/fuL5cuXF5VKpeji4iJ26dIl0/5NPT5j17lZvVeM/W0w9bXM6hr9zp074qBBg0Q3NzdRLpeLZcuWFbt06SLu3LlTv868efPERo0aiY6OjqKVlZVYrVo1cf78+Zl+h/v27Ss2a9Ys2/NHBZsginnYcY6omIiOjoaTkxPmzZuH6dOnWzocesXs2bMxZ84cPH36lE0OAXz22WcIDAzErVu3sm0sTqYZP348Tp8+jZCQEFZGUZEkCILBbHrbtm3DwIEDce3atUx/Q2xtbeHm5oYZM2bg0KFDuHDhgv6xBw8ewN3dHefPn3/tzFlEVHT4+fnh2bNn+Pvvv3O8D2PXLoMHD8bOnTtfW11EuSc3Xsvc8PjxY1SoUAFBQUGsjCrE2DOKyExJSUmZlul6NOgatxIVZBMmTEB8fLzRGSbJPM+fP8d3332HefPmMRFFxUa9evWg0WgQGRmJypUrG9x0PeISExMzDbXW/QOZX7OIEVHRwWsXymjFihWoVasWE1GFHHtGEZlp27Zt2LBhAzp37gxbW1ucPXsWP/74I9q3b4+mTZtaOjyi17K1tUVkZKSlwygSSpYsyW9kqUiKj4/H7du39ffDwsJw+fJllChRAl5eXhg4cCAGDRqEpUuXol69enj69CmOHz+O2rVrw9/fH/7+/li+fDnmzp2L/v37Iy4uDp9++ik8PDxeO1kAEdGreO1CGX3++eeWDoFyAZNRRGaqXbs2ZDIZFi9ejNjYWH1T83nz5lk6NCIiolxx8eJFg6bXEydOBAAEBARgw4YNCAwMxLx58zBp0iQ8fPgQpUqVwltvvYUuXboAAFq3bo2tW7di8eLFWLx4MaytrdGkSRMcOnQIVlZWFjkmIiIiKjjYM4qIiIiIiIiIiPINe0YREREREREREVG+YTKKiIiIiIiIiIjyTbHrGaXVavHo0SPY2dlx5iMiIiIymyiKiIuLQ5kyZTLNGFfY8TqJiIiIcsqca6Ril4x69OgR3N3dLR0GERERFXL//vsvypUrZ+kwchWvk4iIiOhNmXKNVOySUXZ2dgDST469vb2FoyEiIqLCJjY2Fu7u7vpriqKE10lERESUU+ZcIxW7ZJSu5Nze3p4XWURERJRjRXEYG6+TiIiI6E2Zco1UtBodEBERERERERFRgcZkFBERERERERER5Rsmo4iIiIiIiIiIKN8Uu55RRPTmNBoN1Gq1pcMgIsoTcrkcUqnU0mEQERERFVlMRhGRyURRxOPHjxEdHW3pUIiI8pSjoyPc3NyKZJNyIiIiIktjMoqITKZLRLm4uMDa2pr/pBFRkSOKIhITExEZGQkAKF26tIUjIiIiIip6mIwiIpNoNBp9IqpkyZKWDoeIKM9YWVkBACIjI+Hi4sIhe0RERFToabUiQiPjEJOohoO1HF4udpBILFdcYNEG5qdPn0bXrl1RpkwZCIKAvXv3vnabU6dOoX79+lAqlahcuTI2bNiQ53ESEfQ9oqytrS0cCRFR3tP9rWN/PCIiIirsQsKjMH7bZUzcdgXT91zFxG1XMH7bZYSER1ksJosmoxISElCnTh18/fXXJq0fFhYGf39/tGrVCpcvX8b48eMxfPhwHD58OI8jJSIdDs0jouKAf+uIiIioKAgJj8L8Azfw98MY2KtkKOdkDXuVDNcexWD+gRsWS0hZdJhep06d0KlTJ5PXX7NmDSpUqIClS5cCAKpXr46zZ89i+fLl6NChQ16FSURERERERERUqGi1IjaeC0d0ohqeJf/r+WujlMFaIUV4VCI2nQtHPXenfB+yZ9HKKHOdP38ebdu2NVjWoUMHnD9/PsttUlJSEBsba3Ajyqk0jRaHNszD3wtaICrquaXDoULG09MTK1assHQYAIBvv/0W7u7ukEgkBSYmS0tNTUXlypVx7tw5S4eSI6YOdzeXn58fxo8fn+v7taQ1a9aga9eulg6DiIiIKE+FRsbhdmQ8XOyUmaq+BUGAs60StyLjERoZl++xFapk1OPHj+Hq6mqwzNXVFbGxsUhKSjK6zcKFC+Hg4KC/ubu750eoVER9vPMvlL+7HTVTr+DciZ8tHQ6ZaPDgwRAEAR988EGmx0aPHg1BEDB48GD9sqdPn+LDDz9E+fLloVQq4ebmhg4dOiA4OBgAEBUVhY8++ghVq1aFlZUVypcvj7FjxyImJia/DsmoDRs2wNHR8bXrxcbGYsyYMfjkk0/w8OFDvP/++3kfnIXMnj0bdevWNWldXfWtr69v3gb1hsw5JjJu6NChuHTpEs6cOWPpUIiIiIjyTEyiGqlpGqjkxidjUcmlSE3TICYx/3tkFqpkVE5MmzYNMTEx+tu///5r6ZCoENt7+SEUSP9F/ePWQ4iiaOGIyFTu7u4ICgoySFwnJydj69atKF++vMG6vXr1wp9//omNGzciNDQU+/btg5+fH54/T6+Ge/ToER49eoQlS5bg77//xoYNG3Do0CEMGzYsX48pp+7fvw+1Wg1/f3+ULl3aaFP61NRUC0RmOaIoYtWqVYXmNSyOcvM9qVAoMGDAAHz55Ze5tk8iIiKigsbBWg6FTIpktcbo48lqDRQyKRys5fkcWSFLRrm5ueHJkycGy548eQJ7e3v9NMyvUiqVsLe3N7gR5ZRWBGRI/0WOj4vF72GWm32AzFO/fn24u7tj9+7d+mW7d+9G+fLlUa9ePf2y6OhonDlzBosWLUKrVq3g4eGBRo0aYdq0aejWrRsAoGbNmti1axe6du2KSpUqoXXr1pg/fz5+/vlnpKWlZRtHXFwc+vfvDxsbG5QtWzbTBA7R0dEYPnw4nJ2dYW9vj9atW+PKlSv6x69cuYJWrVrBzs4O9vb28PHxwcWLF3Hq1CkMGTIEMTExEAQBgiBg9uzZmZ5/w4YNqFWrFgCgYsWKEAQB9+7d01fbfPfdd6hQoQJUKhUA4NChQ2jWrBkcHR1RsmRJdOnSBXfu3DHY57lz51C3bl2oVCo0aNAAe/fuhSAIuHz5MoD0WVAFQcDhw4dRr149WFlZoXXr1oiMjMQvv/yC6tWrw97eHgMGDEBiYqJ+v1qtFgsXLkSFChVgZWWFOnXqYOfOnfrHdfs9fvw4GjRoAGtra/j6+uLmzZv6Y50zZw6uXLmiPydZzcAaEhKCO3fuwN/fX78sNTUVY8aMQenSpaFSqeDh4YGFCxfqHxcEAWvXrkWXLl1gbW2N6tWr4/z587h9+zb8/PxgY2MDX1/fTOdr9erVqFSpEhQKBapWrYrNmzcbPH7//n10794dtra2sLe3R58+ffSffa87pmfPnqFnz56wtrZGlSpVsG/fPoN9//333+jUqRNsbW3h6uqK9957D8+ePdM/npCQgEGDBsHW1halS5fW92g0x7179yAIAnbv3o1WrVrB2toaderUyTSkfteuXahRowaUSiU8PT0zPZenpyc+++wzDBo0CPb29nj//ff11X/79+9H1apVYW1tjd69eyMxMREbN26Ep6cnnJycMHbsWGg0xi+6dLp27Yp9+/ZlWVlNREREVNh5udihsostnsanZCqkEEURT+NTUMXFFl4udvkeW6FKRjVp0gTHjx83WHb06FE0adLEQhFRcSQX0pMNKkGNy/9GWzYYCxNFEYmpaRa55aQqbejQoQgMDNTfX79+PYYMGWKwjq2tLWxtbbF3716kpKSYvO+YmBjY29tDJst+XogvvvgCderUwZ9//ompU6di3LhxOHr0qP7xd955R5+kCQkJQf369dGmTRtERaUnPgcOHIhy5crhwoULCAkJwdSpUyGXy+Hr64sVK1bA3t4eERERiIiIwOTJkzM9f9++fXHs2DEAwB9//IGIiAj98OXbt29j165d2L17tz6RlJCQgIkTJ+LixYs4fvw4JBIJevbsCa1WCyB9yF/Xrl1Rq1YtXLp0CZ999hk++eQTo8c+e/ZsrFq1CufOncO///6LPn36YMWKFdi6dSsOHDiAI0eO4KuvvtKvv3DhQmzatAlr1qzBtWvXMGHCBLz77rv49ddfDfY7ffp0LF26FBcvXoRMJsPQoUP1xzpp0iTUqFFDf0769u1rNLYzZ87Ay8sLdnb/fRB/+eWX2LdvH7Zv346bN29iy5Yt8PT0NNhOlyy5fPkyqlWrhgEDBmDkyJGYNm0aLl68CFEUMWbMGP36e/bswbhx4zBp0iT8/fffGDlyJIYMGYKTJ08CSE/Ade/eHVFRUfj1119x9OhR3L17Vx/3645pzpw56NOnD/766y907twZAwcO1L93oqOj0bp1a9SrVw8XL17EoUOH8OTJE/Tp00e//ZQpU/Drr7/ip59+wpEjR3Dq1ClcunTJ6Dl7nenTp2Py5Mm4fPkyvLy80L9/f32yNiQkBH369EG/fv1w9epVzJ49GzNmzMiULFyyZIn+92XGjBkAgMTERHz55ZcICgrCoUOHcOrUKfTs2RMHDx7EwYMHsXnzZqxdu9YgcWlMgwYNkJaWht9//z1Hx0dERERU0EkkAgJ8PeBgJUd4VCISUtKg0YpISElDeFQiHKzkGOTrke/NywELz6YXHx+P27dv6++HhYXh8uXLKFGiBMqXL49p06bh4cOH2LRpEwDggw8+wKpVq/Dxxx9j6NChOHHiBLZv344DBw5Y6hCoGFIg/Z8pK6SguI/SS1Jr4D3zsEWe+/rcDrBWmPcn7N1338W0adMQHh4OAAgODkZQUBBOnTqlX0cmk2HDhg0YMWIE1qxZg/r166Nly5bo168fateubXS/z549w2effWZS76WmTZti6tSpAAAvLy8EBwdj+fLlaNeuHc6ePYs//vgDkZGRUCqVANL/Gd+7dy927tyJ999/H/fv38eUKVNQrVo1AECVKlX0+3ZwcIAgCHBzc8vy+a2srFCyZEkAgLOzs8G6qamp2LRpE5ydnfXLevXqZbD9+vXr4ezsjOvXr6NmzZrYunUrBEHAunXroFKp4O3tjYcPH2LEiBGZnnvevHlo2rQpAGDYsGGYNm0a7ty5g4oVKwIAevfujZMnT+KTTz5BSkoKFixYgGPHjum/cKhYsSLOnj2LtWvXomXLlvr9zp8/X39/6tSp8Pf3R3JyMqysrGBrawuZTJbtOQGA8PBwlClTxmDZ/fv3UaVKFTRr1gyCIMDDwyPTdkOGDNEncz755BM0adIEM2bM0M/wOm7cOIOE55IlSzB48GCMGjUKADBx4kT89ttvWLJkCVq1aoXjx4/j6tWrCAsL0ycJN23ahBo1auDChQto2LBhtsc0ePBg9O/fHwCwYMECfPnll/jjjz/QsWNHrFq1CvXq1cOCBQv0669fvx7u7u4IDQ1FmTJl8P333+OHH35AmzZtAAAbN25EuXLlsj13WZk8ebK+0mzOnDmoUaMGbt++jWrVqmHZsmVo06aNPsHk5eWF69ev44svvjDo39a6dWtMmjRJf//MmTNQq9X66jIg/X2zefNmPHnyBLa2tvD29karVq1w8uTJLJOPAGBtbQ0HBwf93wMiIiKiosjHowSm+1fHxnPhuB0Zj2fxKVDIpKhZxgGDfD3g41HCInFZtDLq4sWLqFevnn6IzMSJE1GvXj3MnDkTABAREYH79+/r169QoQIOHDiAo0ePok6dOli6dCm+++47/UU/UX6Qv0xGqVC8euoUBc7OzvD398eGDRsQGBgIf39/lCpVKtN6vXr1wqNHj7Bv3z507NgRp06dQv369Y0O8YqNjYW/vz+8vb2NDot71auVnE2aNMGNGzcApA/Bi4+PR8mSJfUVWra2tggLC9MP9Zo4cSKGDx+Otm3b4vPPP880BOxNeHh4GCSiAODWrVvo378/KlasCHt7e31lkO5v882bN1G7dm39sD4AaNSokdH9Z0zmubq6wtraWp+I0i2LjIwEkF6llZiYiHbt2hmci02bNmU65oz7LV26NADo92OqpKQkg2MA0hM7ly9fRtWqVTF27FgcOXLktccEQD8MUrcsOTlZP5PrjRs39Ak5naZNm+rfAzdu3IC7u7vBZBve3t5wdHTUr5OdjPHY2NjA3t5efy6uXLmCkydPGpxPXVLzzp07uHPnDlJTU9G4cWP9PkqUKIGqVau+9nlfF8urr0tW5+HWrVsGw+saNGiQab/W1tb6RBSQfo49PT1ha2trsMyU94CVlZXB0NDCbvbs2frhm7qb7jUmIiKi4svHowRW9K2LZX3rYH7PWljWtw6W961rsUQUYOHKKD8/v2yH2hj7x8/Pzw9//vlnHkZFlD1dMspKMH0IV1FlJZfi+lzLJIOtspgR4nWGDh2qHzb1ar+mjFQqFdq1a4d27dphxowZGD58OGbNmmVQtREXF4eOHTvCzs4Oe/bsgVz+Zo3/4uPjUbp0aYNKLR3dLHmzZ8/GgAEDcODAAfzyyy+YNWsWgoKC0LNnzzd6biA9efGqrl27wsPDA+vWrUOZMmWg1WpRs2bNHDWTznh+BEHIdL4EQdAP/4uPjwcAHDhwAGXLljVYT1c1ltV+Aej3Y6pSpUrh6tWrBsvq16+PsLAw/PLLLzh27Bj69OmDtm3bGgz/MvbcuRFPTr3unHbt2hWLFi3KtF3p0qUNKpVzO5acngdj70ljx5jdcWcnKioqUwK2sKtRo4Z+KC6A1w4dJiIiouJBIhFQza3g9NDmFQqRmTJWRuX/BJgFiyAIZg+Vs7SOHTsiNTUVgiCYVVXp7e2NvXv36u/HxsaiQ4cOUCqV2LdvX6aqmqz89ttvme5Xr14dQHry4/Hjx5DJZJl6E2Xk5eUFLy8vTJgwAf3790dgYCB69uwJhULx2qbN5nj+/Dlu3ryJdevWoXnz5gCAs2fPGqxTtWpV/PDDD0hJSdEniS5cuPDGz+3t7Q2lUon79+8bDMkzl6nnpF69eli9ejVEUdQnTgDA3t4effv2Rd++fdG7d2907NgRUVFRKFEiZ98iVa9eHcHBwQgICNAvCw4Ohre3t/7xf//9F//++6++Our69euIjo7Wr5PT17l+/frYtWsXPD09jSYoKlWqBLlcjt9//10/w+SLFy8QGhr6Rq+BMbrzkFFwcDC8vLwgleYs0WyuO3fuIDk52WACg6LAlGGpRERERJZWqBqYE1meCIWQ/k+gFYfpFUpSqRQ3btzA9evXjf7T+/z5c7Ru3Ro//PAD/vrrL4SFhWHHjh1YvHgxunfvDiA9EdW+fXskJCTg+++/R2xsLB4/fozHjx+/NkkQHByMxYsXIzQ0FF9//TV27NiBcePGAQDatm2LJk2aoEePHjhy5Aju3buHc+fOYfr06bh48SKSkpIwZswYnDp1CuHh4QgODsaFCxf0ySxPT0/Ex8fj+PHjePbs2RsPP3JyckLJkiXx7bff4vbt2zhx4gQmTpxosM6AAQOg1Wrx/vvv48aNGzh8+DCWLFkCAAZJHXPZ2dlh8uTJmDBhAjZu3Ig7d+7g0qVL+Oqrr7Bx40aT9+Pp6anvR/js2bMsm9K3atUK8fHxuHbtmn7ZsmXL8OOPP+Kff/5BaGgoduzYATc3N32VWk5MmTIFGzZswOrVq3Hr1i0sW7YMu3fv1jebb9u2LWrVqoWBAwfi0qVL+OOPPzBo0CC0bNlSP2TN1GN61ejRoxEVFYX+/fvjwoULuHPnDg4fPowhQ4ZAo9HA1tYWw4YNw5QpU3DixAn8/fffGDx4MCSS3L9UmDRpEo4fP47PPvsMoaGh2LhxI1atWmW06X5umDZtGgYNGmSw7MyZM6hYsaLBkL+i4NatWyhTpgwqVqyIgQMHGrQ7MCYlJQWxsbEGNyIiIqK8xmQUkRnk+C/RoOIwvULL3t4e9vbGS1RtbW3RuHFjLF++HC1atEDNmjUxY8YMjBgxAqtWrQIAXLp0Cb///juuXr2KypUro3Tp0vrbv//+m+1zT5o0Sd8vb968eVi2bJm+QksQBBw8eBAtWrTAkCFD4OXlhX79+iE8PByurq6QSqV4/vw5Bg0aBC8vL/Tp0wedOnXCnDlzAAC+vr744IMP0LdvXzg7O2Px4sVvdJ4kEgmCgoIQEhKCmjVrYsKECfjiiy8yncuff/4Zly9fRt26dTF9+nR93z9Tq8Wy8tlnn2HGjBlYuHAhqlevjo4dO+LAgQOoUKGCyfvo1asXOnbsiFatWsHZ2Rk//vij0fVKliyJnj17YsuWLfpldnZ2WLx4MRo0aICGDRvi3r17OHjw4BslZ3r06IGVK1diyZIlqFGjBtauXYvAwED4+fkBSH8P/PTTT3ByckKLFi3Qtm1bVKxYEdu2bTP7mF5VpkwZBAcHQ6PRoH379qhVqxbGjx8PR0dH/TF98cUXaN68Obp27Yq2bduiWbNm8PHxMdjP7Nmzs63cM0X9+vWxfft2BAUFoWbNmpg5cybmzp1rMAw2N73agxIAfvzxR6ON9guzxo0bY8OGDTh06BBWr16NsLAwNG/eHHFxcVlus3DhQjg4OOhvGfuVEREREeUVQczJ/OiFWGxsLBwcHPTTsBOZw3vqLlxXpU8bf1DTCPfarMYov8oWjip/JCcnIywsDBUqVHjjJAMVbVu2bMGQIUMQExMDKysrS4djsr/++gvt2rXDnTt3DJphk6GAgAAIgmC0r2Nhce3aNbRu3RqhoaFwcHAwuk52f/MKy7VEdHQ0PDw8sGzZMgwbNszoOikpKQbVdbGxsXB3dy/wx0ZEREQFjznXSIWr2QuRhen6RQGcTY9IZ9OmTahYsSLKli2LK1eu4JNPPkGfPn0KVSIKSJ/9bdGiRQgLCzOYEY/+I4oiTp06lal3WGETERGBTZs2ZZmIKiocHR3h5eWVbXN6pVKZaVIAIiIiorzGZBSRGRQZklHsGUWU7vHjx5g5cyYeP36M0qVL45133sH8+fMtHVaO5NUwsaJCEASEh4dbOow31rZtW0uHkC/i4+Nx584dvPfee5YOhYiIiMgAk1FEZshYGWXFnlFEAICPP/4YH3/8saXDICr2Jk+ejK5du8LDwwOPHj3CrFmzIJVK0b9/f0uHRkRERGSAySgiM8iEDA3MWRlFREQFyIMHD9C/f388f/4czs7OaNasGX777Tc4OztbOjQiIiIiA0xGEZmBPaOIiKigCgoKsnQIRERERCbJ+fzURMWQgsP0iIiIiIiIiN4Ik1FEZpC/0sBcFC0YDBEREREREVEhxGQUkRkMh+mxMoqIiIiIiIjIXExGEZlBIaRl+FkDQUzLZm0iIiIiIiIiehWTUUQmEkXRoDIKAGQaVkeReZ4/fw4XFxfcu3fP0qGYbOrUqfjoo4/y9Tlnz54NV1dXCIKAvXv35utzExERERFR3mIyisgMmZJR2mQLRULmGDx4MARBwAcffJDpsdGjR0MQBAwePFi/7OnTp/jwww9Rvnx5KJVKuLm5oUOHDggODtav8+2338LPzw/29vYQBAHR0dEmxTJ//nx0794dnp6eb3hU+Wfy5MnYuHEj7t69a9L68fHxWLp0KZo1awY3NzeULVsWrVu3xtq1a5GW9vpqwhs3bmDOnDlYu3YtIiIi0KlTpzc9BGzYsAGOjo5vvJ+cyun7hYiIiIioKGIyisgMcmgM7ss0TEYVFu7u7ggKCkJSUpJ+WXJyMrZu3Yry5csbrNurVy/8+eef2LhxI0JDQ7Fv3z74+fnh+fPn+nUSExPRsWNHfPrppybHkJiYiO+//x7Dhg178wN6DbVanWv7KlWqFDp06IDVq1e/dt2QkBB4e3tj7969GDFiBPbt24f9+/cjICAAGzZsQMOGDREZGZntPu7cuQMA6N69O9zc3KBUKnPlOHKDRqOBVqs1e7ucvF+IiIiIiIoqJqOIzKDIVBnFYXqFRf369eHu7o7du3frl+3evRvly5dHvXr19Muio6Nx5swZLFq0CK1atYKHhwcaNWqEadOmoVu3bvr1xo8fj6lTp+Ktt94yOYaDBw9CqVQabHPq1CkIgoDjx4+jQYMGsLa2hq+vL27evGmw7erVq1GpUiUoFApUrVoVmzdvNnhcEASsXr0a3bp1g42NDebPn4/Zs2ejbt26WL9+PcqXLw9bW1uMGjUKGo0GixcvhpubG1xcXDB//vzXxt61a1cEBQVlu054eDg6d+6MGTNm4MyZMwgICECjRo1Qr149BAQE4Ny5c+jatSs6deqUZbJs9uzZ6Nq1KwBAIpFAEAQAwIULF9CuXTuUKlUKDg4OaNmyJS5dumSwbXR0NEaOHAlXV1eoVCrUrFkT+/fvx6lTpzBkyBDExMRAEAQIgoDZs2cDAF68eIFBgwbByckJ1tbW6NSpE27duqXfp66iat++ffD29oZSqcT9+/dfe75elZP3CxERERFRUcVkFJEZOEzvFaIIpCZY5iaKZoc7dOhQBAYG6u+vX78eQ4YMMVjH1tYWtra22Lt3L1JScjfZeObMGfj4+Bh9bPr06Vi6dCkuXrwImUyGoUOH6h/bs2cPxo0bh0mTJuHvv//GyJEjMWTIEJw8edJgH7Nnz0bPnj1x9epV/fZ37tzBL7/8gkOHDuHHH3/E999/D39/fzx48AC//vorFi1ahP/973/4/fffs429UaNGePDgQba9rqZOnYohQ4ZgxIgRePDgAbp06QIXFxd06NABn332GT788EPMnTsXNjY2+OGHH4zuY/LkyfrXKCIiAhEREQCAuLg4BAQE4OzZs/jtt99QpUoVdO7cGXFxcQAArVaLTp06ITg4GD/88AOuX7+Ozz//HFKpFL6+vlixYgXs7e31+5w8eTKA9CGcFy9exL59+3D+/HmIoojOnTsbJMsSExOxaNEifPfdd7h27RpcXFywZcsW/Xslq9uZM2eyPadERERERMWVzNIBEBUmMoHD9AyoE4EFZSzz3J8+AhQ2Zm3y7rvvYtq0aQgPDwcABAcHIygoCKdOndKvI5PJsGHDBowYMQJr1qxB/fr10bJlS/Tr1w+1a9d+o5DDw8NRpozx8zV//ny0bNkSQHpSx9/fH8nJyVCpVFiyZAkGDx6MUaNGAQAmTpyI3377DUuWLEGrVq30+xgwYECm5JpWq8X69ethZ2cHb29vtGrVCjdv3sTBgwchkUhQtWpVLFq0CCdPnkTjxo2zjF0Xd3h4uNF+V/Hx8Thw4ADCwsIAAAEBAbC1tcWhQ4dw48YNfPDBB+jVq5f+scOHD2eKFUhPBup6O7m5uemXt27d2mC9b7/9Fo6Ojvj111/RpUsXHDt2DH/88Qdu3LgBLy8vAEDFihX16zs4OEAQBIN93rp1C/v27UNwcDB8fX0BAFu2bIG7uzv27t2Ld955B0D6kMdvvvkGderU0W/brVu3bM8XAJQtWzbbx4mIiIiIiismo4jM8GpllLy4V0YVMs7OzvD398eGDRsgiiL8/f1RqlSpTOv16tUL/v7+OHPmDH777Tf88ssvWLx4Mb777juDRufmSkpKgkqlMvpYxkRX6dKlAQCRkZEoX748bty4gffff99g/aZNm2LlypUGyxo0aJBpv56enrCzs9Pfd3V1hVQqhUQiMVj2uj5OVlZWANKrhIwJDQ2Fp6cnSpYsiYSEBJw4cQIPHz5EmTJlUL9+fZw6dUpfbVS6dGm8ePEi2+d71ZMnT/C///0Pp06dQmRkJDQaDRITE/VD5i5fvoxy5crpE1GmuHHjBmQymUFSqWTJkqhatSpu3LihX6ZQKDIlIu3s7AzOKxEREREVflqtiNDIOMQkquFgLYeXix0kEsHSYZmtMBwHk1FEZni1Z5S0uCej5NbpFUqWeu4cGDp0KMaMGQMA+Prrr7NcT6VSoV27dmjXrh1mzJiB4cOHY9asWW+UjCpVqlSWSRi5XK7/WdcnydxG2TY2mSvFMu5Xt29jy173XFFRUQDSE3rGpKWl6RNWuqRTxnhsbW31x37p0iVUrlw52+d7VUBAAJ4/f46VK1fCw8MDSqUSTZo0QWpqKoD/kmV5wcrKSv+a6GzZsgUjR47MdrtffvkFzZs3z7O4iIiIiCj3hIRHYeO5cNyOjEdqmgYKmRSVXWwR4OsBH48Slg7PZIXlONgzisgMmSqjivswPUFIHypniZuQs8x+x44dkZqaCrVajQ4dOpi8nbe3NxISEnL0nDr16tXD9evXzd6uevXqCA4ONlgWHBwMb2/vN4rHHH///Tfkcjlq1Khh9PGKFSsiNDQUarUajo6OqFGjBubPnw+1Wo1//vkHQUFB0Gq1OHDgAL7++mt9QtBUwcHBGDt2LDp37owaNWpAqVTi2bNn+sdr166NBw8eIDQ01Oj2CoUCGo3hMNvq1asjLS3NoF/W8+fPcfPmzdee227duuHy5cvZ3oxVqhERERFRwRMSHoX5B27g74cxsFfJUM7JGvYqGa49isH8AzcQEh5l6RBNUpiOg5VRRGZgA/PCTyqV6odgSaXSTI8/f/4c77zzDoYOHYratWvDzs4OFy9exOLFi9G9e3f9eo8fP8bjx49x+/ZtAMDVq1dhZ2eH8uXLo0QJ4984dOjQAdOmTcOLFy/g5ORkcsxTpkxBnz59UK9ePbRt2xY///wzdu/ejWPHjplz6CYbNGgQypYti4ULF+qXnTlzBs2bN8+yAqlUqVKoXbs2fvjhBwwZMgSBgYF4++23sWzZMri5uaFbt25Yt24drl27hu3bt6N69epmxVSlShVs3rwZDRo0QGxsLKZMmWIQS8uWLdGiRQv06tULy5YtQ+XKlfHPP/9AEAR07NgRnp6eiI+Px/Hjx1GnTh1YW1ujSpUq6N69O0aMGIG1a9fCzs4OU6dORdmyZQ1ea2PMHaaXk/cLEREREeU9rVbExnPhiE5Uw7Oktb4i3kYpg7VCivCoRGw6F4567k4FbqhbRoXtOFgZRWQiUQTkwivJqOJeGVVI2dvbw97e3uhjtra2aNy4MZYvX44WLVqgZs2amDFjBkaMGIFVq1bp11uzZg3q1auHESNGAABatGiBevXqYd++fVk+b61atVC/fn1s377drHh79OiBlStXYsmSJahRowbWrl2LwMBA+Pn5mbUfU92/f18/i51OUFCQ/lizsnDhQkyePBmXLl1Cw4YNcf/+fdy/fx/37t3D0qVLERUVhZCQkBwNXfv+++/x4sUL1K9fH++99x7Gjh0LFxcXg3V27dqFhg0bon///vD29sbHH3+sr4by9fXFBx98gL59+8LZ2RmLFy8GAAQGBsLHxwddunRBkyZNIIoiDh48mGko45vKyfuFiIiIiPJeaGQcbkfGw8VOmak1gyAIcLZV4lZkPEIj4ywUoWkK23EIopiD+dELsdjYWDg4OCAmJibLf0aJjNFqRayd+R4+lP2sX3bWYzSaDVlgwajyT3JyMsLCwlChQoUsm3DT6x04cABTpkzB33//bdBEvCD75ZdfMGnSJPz111+QybIvqN24cSPGjRuHsWPHYtCgQahUqRI0Gg3++OMPLFy4EK1bt8aECRPyKXKinMvub15RvpYoysdGRERkzO93n2P6nqso52QNqZGKIY1WxIMXiZjfsxYaVyxpgQhNUxCOw5zriMLxnxBRAfHqML2kxHgLRUKFlb+/P95//308fPjQ0qGYLCEhAYGBga9NRAHpjcZPnz6N69evo06dOlAoFFAqlXj33XfRrFkzjB49Oh8iJiIiIiIyjYO1HAqZFMlqjdHHk9XpTcAdrHO3cj63FbbjYM8oIjNkSkYlFIwSRypcxo8fb+kQzNK7d2+z1q9duzZ27tyJtLQ0PHnyBEqlEqVKlcqj6IiIiIiIcs7LxQ6VXWxx7VEMrBVSgyFuoijiaXwKapZxgJeL6f1CLaGwHQcro4jMoEtGiUJ64+uUpDebXY2oKJPJZChbtiwTUURERERUYEkkAgJ8PeBgJUd4VCISUtKg0YpISElDeFQiHKzkGOTrUSCafmensB0Hk1FEZlAI6SWPWuXL8a/qJMQlqy0YEREREREREb0JH48SmO5fHTXKOCA2OQ0PXiQiNjkNNcs4YLp/dfh4FI7ZjwvTcXCYHpEZ9MP0lA5A8gtYCakIf56ImmUdLBsYERERERER5ZiPRwnUc3dCaGQcYhLVcLCWw8vFrsBUEpmqsBwHk1FEZpDphump7IEYQIUU3HueUKySUVqt1tIhEBHlOf6tIyIiKn4kEgHV3Ar/bLKF4TiYjCIygwLpw/REZXryyQqpuPk80ZIh5RuFQgGJRIJHjx7B2dkZCoXCoCkeEVFRIIoiUlNT8fTpU0gkEigUCkuHRERERFTkMBlFZCIRGRqYv+wZpRJSEfaseDQxl0gkqFChAiIiIvDo0SNLh0NElKesra1Rvnx5SCRsr0lERESU25iMIjJRSppGn4ySWP1XGRWVkGrJsPKVQqFA+fLlkZaWBo1GY+lwiIjyhFQqhUwmY/UnERERUR5hMorIREmpGsiF9GSU9GUySoUUxCenWTKsfCcIAuRyOeRyuaVDISIiIiIiokKItedEJkpSa6B4WRklWDkCAKyEVMSlFK9kFBEREREREdGbYDKKyETJaq1+mB5UusqoVMQlqy0YFREREREREVHhwmQUkYmS1f/1jMLLBuZWSEE8K6OIiIiIiIiITMZkFJGJkjImo3SVUYIaCcmpEEXRgpERERERERERFR5MRhGZKL2B+csZ5F4mowBApk1BslproaiIiIiIiIiIChcmo4hMlLGBOVT2+uUqpCIuhX2jiIiIiIiIiEzBZBSRiZLVGsh0ySiZCpAqAQBWSEV8MvtGEREREREREZlCZukAiAqL9AbmL4fpSeWA3ArQpMBKSEEck1FEREREREQFglYrIjQyDjGJajhYy+HlYgeJRLB0WBZRUM8Fk1FEJkpKzTBMT6oA5NZAcjRUUHNGPSIiIiIiogIgJDwKG8+F43ZkPFLTNFDIpKjsYosAXw/4eJSwdHj5qiCfC4sP0/v666/h6ekJlUqFxo0b448//sh2/RUrVqBq1aqwsrKCu7s7JkyYgOTk5HyKloqzpNQMs+lJFYBcBQBQgZVRRERERERElhYSHoX5B27g74cxsFfJUM7JGvYqGa49isH8AzcQEh5l6RDzTUE/FxZNRm3btg0TJ07ErFmzcOnSJdSpUwcdOnRAZGSk0fW3bt2KqVOnYtasWbhx4wa+//57bNu2DZ9++mk+R07FUbI6FRJBTL8jladXRgGwElIRl8wG5kRElDOBgYFITEy0dBhERESFmlYrYuO5cEQnquFZ0ho2ShmkEgE2Shk8SlgjJkmNTefCodWKlg41zxWGc2HRZNSyZcswYsQIDBkyBN7e3lizZg2sra2xfv16o+ufO3cOTZs2xYABA+Dp6Yn27dujf//+r62mIsoN6pSU/+5IXvaMAmCFFA7TIyKiHJs6dSrc3NwwbNgwnDt3ztLhEBERFUqhkXG4HRkPFzslBMGwJ5IgCHC2VeJWZDxCI+MsFGH+KQznwmLJqNTUVISEhKBt27b/BSORoG3btjh//rzRbXx9fRESEqJPPt29excHDx5E586d8yVmKt7SUjMMB5Uq9MkoFWfTIyKiN/Dw4UNs3LgRz549g5+fH6pVq4ZFixbh8ePHlg6NiIio0IhJVCM1TQOVXGr0cZVcitQ0DWISi/6olsJwLiyWjHr27Bk0Gg1cXV0Nlru6umZ58TVgwADMnTsXzZo1g1wuR6VKleDn55ftML2UlBTExsYa3IhyIjU1Q2WUVA7IXiajhFTEsTKKiIhySCaToWfPnvjpp5/w77//YsSIEdiyZQvKly+Pbt264aeffoJWq7V0mERERAWag7UcCpkUyWqN0ceT1ekNvB2s5fkcWf4rDOfC4g3MzXHq1CksWLAA33zzDS5duoTdu3fjwIED+Oyzz7LcZuHChXBwcNDf3N3d8zFiKkrSXiajNIIMEASDYXpsYE5ERLnB1dUVzZo1Q5MmTSCRSHD16lUEBASgUqVKOHXqlKXDIyIiKrC8XOxQ2cUWT+NTIIqGvZBEUcTT+BRUcbGFl4udhSLMP4XhXFgsGVWqVClIpVI8efLEYPmTJ0/g5uZmdJsZM2bgvffew/Dhw1GrVi307NkTCxYswMKFC7P8xnDatGmIiYnR3/79999cPxYqHtLU6cP0tJKX2WNdA3OksmcUERG9kSdPnmDJkiWoUaMG/Pz8EBsbi/379yMsLAwPHz5Enz59EBAQYOkwiYiICiyJRECArwccrOQIj0pEQkoaNFoRCSlpCI9KhIOVHIN8PSCRCK/fWSFXGM6FxZJRCoUCPj4+OH78uH6ZVqvF8ePH0aRJE6PbJCYmQiIxDFkqTR8D+Wq2T0epVMLe3t7gRpQTaer0yihRn4z6r2cUZ9MjIqKc6tq1K9zd3bFhwwaMGDECDx8+xI8//qjvq2ljY4NJkyaZ/YXa559/DkEQMH78+DyImoiIqODx8SiB6f7V4V3aHpFxKbj1JA6RcSmoUdoe0/2rw8ejhKVDzDe6c1GjjANik9Pw4EUiYpPTULOMQ4E4FzJLPvnEiRMREBCABg0aoFGjRlixYgUSEhIwZMgQAMCgQYNQtmxZLFy4EED6xdqyZctQr149NG7cGLdv38aMGTPQtWtXfVKKKK9o1ekJJ1GiSF+gG6YnsIE5ERHlnIuLC3799dcsv4wDAGdnZ4SFhZm8zwsXLmDt2rWoXbt2boRIRERU+Aj/3YyXrhR9Ph4lUM/dCaGRcYhJVMPBWg4vF7sCUR1m0WRU37598fTpU8ycOROPHz9G3bp1cejQIX1T8/v37xtUQv3vf/+DIAj43//+h4cPH8LZ2Rldu3bF/PnzLXUIVIykqVMBAKL01cqoFA7TIyKiHGvZsiXq16+faXlqaiqCgoIwaNAgCIIADw8Pk/YXHx+PgQMHYt26dZg3b15uh0tERFRghYRHYf6BG4hOVMPFTgmVPL2J9/WIWMw/cKNAVATlN4lEQDW3gjdCzOINzMeMGYPw8HCkpKTg999/R+PGjfWPnTp1Chs2bNDfl8lkmDVrFm7fvo2kpCTcv38fX3/9NRwdHfM/cCp2tGkvZ9OTvlIZhVQkZTFLARER0esMGTIEMTExmZbHxcXpq8XNMXr0aPj7++uH+RERERUHWq2IjefCEZ2ohmdJa9goZZBKBNgoZfAoYY2YJDU2nQuHVltc66QKFotWRhEVJtq09MooSF9pYC6kWCgiIiIqCkRRhCBkLpd/8OABHBwczNpXUFAQLl26hAsXLpi0fkpKClJS/vsci42NNev5iIiICorQyDjcjoyHi50y0+eqIAhwtlXiVmQ8QiPjCmSlUHHDZBSRiXSVUYKuMkqmBAAoweblRERkvnr16kEQBAiCgDZt2kAm+++yTKPRICwsDB07djR5f//++y/GjRuHo0ePQqVSmbTNwoULMWfOHLNjJyIiKmhiEtVITdNAJVcafVwll+JZfApiEvn/W0HAZBSRibRpqYAUgEyXjEq/0GcyioiIcqJHjx4AgMuXL6NDhw6wtbXVP6ZQKODp6YlevXqZvL+QkBBERkYa9J/SaDQ4ffo0Vq1ahZSUlEwTvkybNg0TJ07U34+NjYW7u3sOj4iIiMhyHKzlUMjSe0TZKDOnOpLVGihkUjhYyy0QHb2KySgiE2i1IgSNGpACEt0wvZeVUQomo4iIKAdmzZoFAPD09ETfvn1NrmbKSps2bXD16lWDZUOGDEG1atXwySefGJ15WKlUQqk0/g0yERFRYeLlYofKLra49igG1gqpwVA9URTxND4FNcs4wMvFzoJRkg6TUUQmSEnTQo70GfMkL5NQkL4cpicwGUVERDkXEBCQK/uxs7NDzZo1DZbZ2NigZMmSmZYTEREVNRKJgABfD8w/cAPhUYlwtv1vNr2n8SlwsJJjkK8HJJLMfRop/zEZRWSCJLUmQzKKw/SIiOjNlChRAqGhoShVqhScnJyMNjDXiYqKysfIiIiICi8fjxKY7l8dG8+F43ZkPJ7Fp0Ahk6JmGQcM8vWAj0cJS4dILzEZRWSCJLUGciE9GSXIDBuYc5geERGZa/ny5bCzs9P/nF0y6k2cOnUqT/ZLRERUUPl4lEA9dyeERsYhJlENB2s5vFzsWBFVwDAZRWSCpFQNFC8ro/BKzyhWRhERkbkyDs0bPHiw5QIhIiIqgiQSAdXc7C0dBmVDYukAiAqD5AzD9CA1rIxizygiInoTly5dMmg8/tNPP6FHjx749NNPkZqaasHIiIiIiPIGk1FEJohNUkMGTfodqWHPKA7TIyKiNzFy5EiEhoYCAO7evYu+ffvC2toaO3bswMcff2zh6IiIiIhyH5NRRCaISVJnqIx6OUzvZVKKw/SIiOhNhIaGom7dugCAHTt2oGXLlti6dSs2bNiAXbt2WTY4IiIiojzAZBSRCaKT1FAIrw7T42x6RET05kRRhFarBQAcO3YMnTt3BgC4u7vj2bNnlgyNiIiIKE8wGUVkAsPKKMOeUTJBC6mosVBkRERU2DVo0ADz5s3D5s2b8euvv8Lf3x8AEBYWBldXVwtHR0RERJT7mIwiMkF6MkrXM8pwNj0AkLM6ioiIcmjFihW4dOkSxowZg+nTp6Ny5coAgJ07d8LX19fC0RERERHlPpmlAyAqDGKS1HB5tTJK+l8ySgHOdkRERDlTu3Ztg9n0dL744gtIpVILRERERESUt5iMIjJBTKIaCl0ySqJrYC6DKMggiGmQi2mWC46IiIqE1NRUREZG6vtH6ZQvX95CERERERHlDSajiExgdDY9AFqpAtK0NFZGERFRjoWGhmLYsGE4d+6cwXJRFCEIAjQa9iUkIiKiosXsZFRCQgJsbGzyIhaiAismSQ35q7PpARClSiAtEQr2jCIiohwaMmQIZDIZ9u/fj9KlS0MQBEuHRERERJSnzE5Gubq6ok+fPhg6dCiaNWuWFzERFThGZ9MDoH3ZN0ouMhlFREQ5c/nyZYSEhKBatWqWDoWIiIgoX5g9m94PP/yAqKgotG7dGl5eXvj888/x6NGjvIiNqMCIScrQMyrDMD3xZWJKIXKYHhER5Yy3tzeePXtm6TCIiIiI8o3ZyagePXpg7969ePjwIT744ANs3boVHh4e6NKlC3bv3o20NDZypqJFqxURm5x9ZRSH6RERUU4tWrQIH3/8MU6dOoXnz58jNjbW4EZERERU1JidjNJxdnbGxIkT8ddff2HZsmU4duwYevfujTJlymDmzJlITEzMzTiJLCYuOQ2iCMjwsoGssWF6TEYREVEOtW3bFr/99hvatGkDFxcXODk5wcnJCY6OjnBycrJ0eERERES5Lsez6T158gQbN27Ehg0bEB4ejt69e2PYsGF48OABFi1ahN9++w1HjhzJzViJLCImKT3RpJLoklEZhulJOEyPiIjezMmTJy0dAhEREVG+MjsZtXv3bgQGBuLw4cPw9vbGqFGj8O6778LR0VG/jq+vL6pXr56bcRJZjEEySgSH6RERUa5q2bKlpUMgIiIiyldmD9MbMmQIypQpg+DgYFy+fBljxowxSEQBQJkyZTB9+vTcipHIoqKT0que/quM+i8ZJeqTUayMIiKinDtz5gzeffdd+Pr64uHDhwCAzZs34+zZsxaOjIiIiCj3mZ2MioiIwNq1a9GwYcMs17GyssKsWbPeKDCigkJXGaUUMg/T0+pn02PjfiIiypldu3ahQ4cOsLKywqVLl5CSkgIAiImJwYIFCywcHREREVHuMzsZZWdnh8jIyEzLnz9/DqlUmitBERUkiSnpSSiFkdn0WBlFRERvat68eVizZg3WrVsHufy/LzyaNm2KS5cuWTAyIiIiorxhdjJKFEWjy1NSUqBQKIw+RlSYiUh/z0uNJKPYM4qIiN7UzZs30aJFi0zLHRwcEB0dnf8BEREREeUxkxuYf/nllwAAQRDw3XffwdbWVv+YRqPB6dOnUa1atdyPkKiAkIkvE07S/35txJeJKTmTUURElENubm64ffs2PD09DZafPXsWFStWtExQRERERHnI5GTU8uXLAaRXRq1Zs8ZgSJ5CoYCnpyfWrFmT+xESFRAyMZtheiKH6RERUc6MGDEC48aNw/r16yEIAh49eoTz589j8uTJmDFjhqXDIyIiIsp1JiejwsLCAACtWrXC7t274eTklGdBERVEUn1lFIfpERFR7pk6dSq0Wi3atGmDxMREtGjRAkqlEpMnT8ZHH31k6fCIiIiIcp3JySidkydP5kUcRAWeTN8z6r/msrphekxGERFRTgmCgOnTp2PKlCm4ffs24uPj4e3tbdASgYiIiKgoMSkZNXHiRHz22WewsbHBxIkTs1132bJluRIYUUEjNTJMT8thekRE9IaGDh2KlStXws7ODt7e3vrlCQkJ+Oijj7B+/XoLRkdERESU+0xKRv35559Qq9X6n7MiCELuREVUwEighRTa9DvGekaxMoqIiHJo48aN+Pzzz2FnZ2ewPCkpCZs2bWIyioiIiIock5JRGYfmcZgeFUdy3RA9wGCYnq4yirPpERGRuWJjYyGKIkRRRFxcHFQqlf4xjUaDgwcPwsXFxYIREhEREeUNs3tGvSo2NhYnTpxAtWrVUK1atdyIiajAMUxGGZtNj8koIiIyj6OjIwRBgCAI8PLyyvS4IAiYM2eOBSIjIiIiyltmJ6P69OmDFi1aYMyYMUhKSkKDBg1w7949iKKIoKAg9OrVKy/iJLIog2SUJHNllALsGUVEROY5efIkRFFE69atsWvXLpQoUUL/mEKhgIeHB8qUKWPBCImIiIjyhtnJqNOnT2P69OkAgD179kAURURHR2Pjxo2YN28ek1FUJMmhSf9BIgMkEv1y3Wx6HKZHRETmatmyJQAgLCwM7u7ukGT4fCEiIuO0WhGhkXGISVTDwVoOLxc7SCTsXZxTuXE++ZpQTpidjIqJidF/c3fo0CH06tUL1tbW8Pf3x5QpU3I9QKKCQCFknkkPyFgZxWQUERHljIeHB6Kjo/HHH38gMjISWq3W4PFBgwZZKDIiooIlJDwKG8+F43ZkPFLTNFDIpKjsYosAXw/4eJR4/Q7IQG6cT74mlFNmJ6Pc3d1x/vx5lChRAocOHUJQUBAA4MWLFwaNN4mKEv0wvQzNy4GMPaM4TI+IiHLm559/xsCBAxEfHw97e3uD2YkFQWAyiogI6UmP+QduIDpRDRc7JVRyJZLVGlx7FIP5B25gun91Jj/MkBvnk68JvQmz68HHjx+PgQMHoly5cihTpgz8/PwApA/fq1WrVm7HR1Qg6JNREsNklFaSXinFyigiIsqpSZMmYejQoYiPj0d0dDRevHihv0VFRVk6PCIii9NqRWw8F47oRDU8S1rDRimDVCLARimDRwlrxCSpselcOLRa0dKhFgq5cT75mtCbMjsZNWrUKJw/fx7r16/H2bNn9f0NKlasiHnz5uV6gEQFQZaVUTIO0yMiojfz8OFDjB07FtbW1pYOhYioQAqNjMPtyHi42CkNqkeB9ApSZ1slbkXGIzQyzkIRFi65cT75mtCbMnuYHgA0aNAADRo0MFjm7++fKwERFUT6BuavJKO0HKZHRERvqEOHDrh48SIqVqxo6VCIiAqkmEQ1UtM0UMmVRh9XyaV4Fp+CmER+QWyK3DiffE3oTZmdjNJoNNiwYQOOHz9utMnmiRMnci04ooJCqp9NzzAZBYluNr20fI6IiIiKCt0kMNevX0etWrUglxt+1nTr1s1CkRERFQwO1nIoZFIkqzWwUWb+FzZZnd4428FabmRrelVunE++JvSmzE5GjRs3Dhs2bIC/vz9q1qyZqSTPXF9//TW++OILPH78GHXq1MFXX32FRo0aZbl+dHQ0pk+fjt27dyMqKgoeHh5YsWIFOnfu/EZxEGVHLuiSUYa/Mv/NpsfKKCIiypkRI0YAAObOnZvpMUEQoNFo8jskIqICxcvFDpVdbHHtUQysFVKD/0FFUcTT+BTULOMALxc7C0ZZeOTG+eRrQm/K7GRUUFAQtm/fnivJn23btmHixIlYs2YNGjdujBUrVqBDhw64efMmXFxcMq2fmpqKdu3awcXFBTt37kTZsmURHh4OR0fHN46FKCuimKEyKqvZ9JAGaLWAxOw2bEREVMy9WmVORESGJBIBAb4emH/gBsKjEuFsq4RKnl6V8zQ+BQ5Wcgzy9YBE8maFEsVFbpxPvib0psz+z1mhUKBy5cq58uTLli3DiBEjMGTIEHh7e2PNmjWwtrbG+vXrja6/fv16REVFYe/evWjatCk8PT3RsmVL1KlTJ1fiIcqKvmeURGqwXCtV/HdHw+ooIiIiIqK84ONRAtP9q6NGGQfEJqfhwYtExCanoWYZB0z3rw4fjxKWDrFQyY3zydeE3oTZlVGTJk3CypUrsWrVqjcaopeamoqQkBBMmzZNv0wikaBt27Y4f/680W327duHJk2aYPTo0fjpp5/g7OyMAQMG4JNPPoFUKjW6DVFukGXRM0pXGQUASEsG5Kp8jIqIiAqrL7/8Eu+//z5UKhW+/PLLbNcdO3ZsPkVFRFSw+XiUQD13J4RGxiEmUQ0Hazm8XOxYfZNDuXE++ZpQTpmdjDp79ixOnjyJX375BTVq1MjUZHP37t0m7efZs2fQaDRwdXU1WO7q6op//vnH6DZ3797FiRMnMHDgQBw8eBC3b9/GqFGjoFarMWvWLKPbpKSkICUlRX8/NjbWpPiIMvqvgbnhr4wokUMrCpAIIpCWYmRLIiKizJYvX46BAwdCpVJh+fLlWa4nCAKTUUREGUgkAqq52Vs6jCIjN84nXxPKCbOTUY6OjujZs2dexPJaWq0WLi4u+PbbbyGVSuHj44OHDx/iiy++yDIZtXDhQsyZMyefI6WiRp5FzygIAlIghxVSAQ2TUUREZJqwsDCjPxMREREVB2YnowIDA3PliUuVKgWpVIonT54YLH/y5Anc3NyMblO6dGnI5XKDIXnVq1fH48ePkZqaCoVCkWmbadOmYeLEifr7sbGxcHd3z5VjoOIjq8ooAEiFLD0ZxcooIiKyoNWrV2P16tW4d+8eAKBGjRqYOXMmOnXqZNnAiIiIiF6Ro6m/0tLScOzYMaxduxZxcXEAgEePHiE+Pt7kfSgUCvj4+OD48eP6ZVqtFsePH0eTJk2MbtO0aVPcvn3bYNaZ0NBQlC5d2mgiCgCUSiXs7e0NbkTmkgtZJ6NS8PK9l5acjxEREREZKleuHD7//HOEhITg4sWLaN26Nbp3745r165ZOjQiIiIiA2Yno8LDw1GrVi10794do0ePxtOnTwEAixYtwuTJk83a18SJE7Fu3Tps3LgRN27cwIcffoiEhAQMGTIEADBo0CCDBucffvghoqKiMG7cOISGhuLAgQNYsGABRo8ebe5hEJlFipcJ0FeH6QFIEV8uS+NsekREZDldu3ZF586dUaVKFXh5eWH+/PmwtbXFb7/9ZunQiIiIiAyYPUxv3LhxaNCgAa5cuYKSJUvql/fs2RMjRowwa199+/bF06dPMXPmTDx+/Bh169bFoUOH9E3N79+/D4nkv3yZu7s7Dh8+jAkTJqB27dooW7Ysxo0bh08++cTcwyAyixxp6T9IMs/amKr7NWJlFBERFRAajQY7duxAQkJClhXnACd6ISIiIsswOxl15swZnDt3LtOwOE9PTzx8+NDsAMaMGYMxY8YYfezUqVOZljVp0oTf8FG+k+l7RhmpjOIwPSIiKiCuXr2KJk2aIDk5Gba2ttizZw+8vb2zXJ8TvRAREZElmD1MT6vVQqPRZFr+4MED2NnZ5UpQRAVNdg3MU/AyQaXhMD0iIsqZ+/fv48yZMzh8+DAuXbpkUK1kjqpVq+Ly5cv4/fff8eGHHyIgIADXr1/Pcv1p06YhJiZGf/v3339zeghEREREJjO7Mqp9+/ZYsWIFvv32WwCAIAiIj4/HrFmz0Llz51wPkKggkOuSUUZ6RnGYHhER5cS9e/ewevVqBAUF4cGDBxBFUf+YQqFA8+bN8f7776NXr14GbQuyo1AoULlyZQCAj48PLly4gJUrV2Lt2rVG11cqlVAqlW9+MERERERmMLsyaunSpQgODoa3tzeSk5MxYMAA/RC9RYsW5UWMRBanb2D+SmWUTCLJ0MA8Z99iExFR8TN27FjUqVMHYWFhmDdvHq5fv46YmBikpqbi8ePHOHjwIJo1a4aZM2eidu3auHDhQo6eR6vV5rjKioiIiCivmF0ZVa5cOVy5cgXbtm3DlStXEB8fj2HDhmHgwIGwsrLKixiJLE4u6BqYG/7K2FvJ8FjfM4oX+0REZBobGxvcvXvXYDIYHRcXF7Ru3RqtW7fGrFmzcOjQIfz7779o2LBhtvucNm0aOnXqhPLlyyMuLg5bt27FqVOncPjw4bw6DCIiIqIcMTsZdfr0afj6+mLgwIEYOHCgfnlaWhpOnz6NFi1a5GqARAWBvjLqlWF69io5Ul7+GmnUScg81x4REVFmCxcuNHndjh07mrReZGQkBg0ahIiICDg4OKB27do4fPgw2rVrl9MwiYiIiPKE2cmoVq1aISIiAi4uLgbLY2Ji0KpVK6PNzYkKO3kWDcztVDJ9A/OUpCRY53dgREREL33//feWDoGIiIjIJGb3jBJFEYIgZFr+/Plz2NjY5EpQRAWNDMaH6cmkEmgl6Y1fU1KS8jssIiIqwm7cuIGKFStaOgwiIiKiXGdyZdTbb78NIH32vMGDBxvMvKLRaPDXX3/B19c39yMkKgCyamCe/qAC0AKpyYn5GxQRERVpqampCA8Pt3QYRERERLnO5GSUg4MDgPTKKDs7O4Nm5QqFAm+99RZGjBiR+xESFQByXWXUKz2jAECQq4AUQM3KKCIiMsPEiROzffzp06f5FAkRERFR/jI5GRUYGAgA8PT0xOTJkzkkj4oNEdlXRumTUanJ+RsYEREVaitXrkTdunVhb29v9PH4+Ph8joiIiIgof5jdwHzWrFl5EQdRgSYXjDcwT1+kAgBoUlkZRUREpqtcuTImTJiAd9991+jjly9fho+PTz5HRURERJT3zG5g/uTJE7z33nsoU6YMZDIZpFKpwY2oKJLqZtMzMkxPqtAlo1gZRUREpmvQoAFCQkKyfFwQBIiimI8REREREeUPsyujBg8ejPv372PGjBkoXbq00Zn1iIoaObKujJIp0/unieqU/AyJiIgKuaVLlyIlJevPjjp16kCr1eZjRERERET5w+xk1NmzZ3HmzBnUrVs3D8IhKphk2SSj5C8ro8Q0VkYREZHp3NzcLB0CERERkUWYnYxyd3dnyTgVO9JsklEKlXX6D2msjCIiojeTnJyMbdu2ISEhAe3atUOVKlUsHRIRERFRrjO7Z9SKFSswdepU3Lt3Lw/CISqY5Nn0jNInozRMRhERkekmTpyIjz76SH8/NTUVTZo0wYgRI/Dpp5+iXr16OH/+vAUjJCIiIsobZiej+vbti1OnTqFSpUqws7NDiRIlDG5ERdF/lVGZk1EqVfowPQmTUUREZIYjR46gXbt2+vtbtmxBeHg4bt26hRcvXuCdd97BvHnzLBghERERUd4we5jeihUr8iAMooJNLuiSUZlnjFRZ2QAApNrU/AyJiIgKufv378Pb21t//8iRI+jduzc8PDwAAOPGjUPnzp0tFR4RERFRnjE7GRUQEJAXcRAVaNJshulZWaUP02MyioiIzCGRSAz6cP7222+YMWOG/r6joyNevHhhidCIiIiI8pRJw/RiY2MNfs7uRlQUybNpYG5tnV4ZJROZjCIiItNVr14dP//8MwDg2rVruH//Plq1aqV/PDw8HK6urpYKj4iIiCjPmFQZ5eTkhIiICLi4uMDR0RGCIGRaRxRFCIIAjUaT60ESWZosm55RNtbplVFKqJGs1kAlzzyUj4iI6FUff/wx+vXrhwMHDuDatWvo3LkzKlSooH/84MGDaNSokQUjJCIiIsobJiWjTpw4oW9OfvLkyTwNiKgg+q+BeeZEk9XLnlEKqBGXnMZkFBERmaRnz544ePAg9u/fj/bt2xvMrAcA1tbWGDVqlIWiIyLKTKsVERoZh5hENRys5fBysYNEkrlQgYjodUxKRrVs2dLoz0TFhTybnlESuRJAemVUTGoaAGU+RkZERIVZmzZt0KZNG6OPzZo1K5+jISLKWkh4FDaeC8ftyHikpmmgkElR2cUWAb4e8PHgrOpEZB6zG5gTFUfSbIbpQaYCkJ6MSkhOy8eoiIioMLt//75J65UvXz6PIyEiyl5IeBTmH7iB6EQ1XOyUUMmVSFZrcO1RDOYfuIHp/tWZkCIiszAZRWQCuZB1A3PI0iuhJIKIxJRkAA75FxgRERVaGftD6WbVy9iXk/04iagg0GpFbDwXjuhENTxLWuv/TtkoZbBWSBEelYhN58JRz92JQ/aIyGRMRhGZQArtyx+yTkYBQFJiPADOfERERK8nCALKlSuHwYMHo2vXrpDJeFlGRAVPaGQcbkfGw8VOmWkiK0EQ4GyrxK3IeIRGxqGam72FoiSiwoZXPUQmkOHl8DtjlVHSDMmopJR8ioiIiAq7Bw8eYOPGjQgMDMSaNWvw7rvvYtiwYahevbqlQyMi0otJVCM1TQOV3HhfVJVcimfxKYhJVOdzZERUmElyslFaWhqOHTuGtWvXIi4uDgDw6NEjxMfH52pwRAWFPLueURIJ0pA+g15KcmI+RkVERIWZm5sbPvnkE/zzzz/YuXMnXrx4gcaNG+Ott97CunXroNVqLR0iEREcrOVQyKRIVhsfMpysTm9m7mBt5DqZiCgLZiejwsPDUatWLXTv3h2jR4/G06dPAQCLFi3C5MmTcz1AooJAP0xPIjX6uEZI//BNTknOr5CIiKgIadasGb7//nvcunUL1tbW+OCDDxAdHW3psIiI4OVih8outngan6Lvb6cjiiKexqegiostvFzsLBQhERVGZiejxo0bhwYNGuDFixewsrLSL+/ZsyeOHz+eq8ERFQSiCMh1w/Skxr/x0bysmEpNScqvsIiIqAg5d+4chg8fDi8vL8THx+Prr7+Go6OjpcMiIoJEIiDA1wMOVnKERyUiISUNGq2IhJQ0hEclwsFKjkG+HmxeTkRmMbtn1JkzZ3Du3DkoFAqD5Z6ennj48GGuBUZUkPxXGWU8GaV9WRmVmszKKCIiMk1ERAQ2bdqEwMBAvHjxAgMHDkRwcDBq1qxp6dCIiAz4eJTAdP/q2HguHLcj4/EsPgUKmRQ1yzhgkK8HfDxKWDpEIipkzE5GabVao1MMP3jwAHZ2LM2kIkgUIRd0PaOM/8poJenJ2VQO0yMiIhOVL18eZcuWRUBAALp16wa5XA6tVou//vrLYL3atWtbKEIiov/4eJRAPXcnhEbGISZRDQdrObxc7FgRRUQ5YnYyqn379lixYgW+/fZbAOnTecbHx2PWrFno3LlzrgdIZGmCmCH5Ks0iGfVy+J5azdn0iIjINBqNBvfv38dnn32GefPmAUCmfiyCIBj9EpCIyBIkEgHV3OwtHQYRFQFmJ6OWLl2KDh06wNvbG8nJyRgwYABu3bqFUqVK4ccff8yLGIksSiKmZbhj/FdGlKZXRqWxZxQREZkoLCzM0iEQERERWYTZyahy5crhypUrCAoKwl9//YX4+HgMGzYMAwcONGhoTlRUCNqMyagspqx9OUxPrU7Nh4iIiKgo8PDwsHQIRERERBZhdjIqOTkZKpUK7777bl7EQ1TgSDIO08uiMkqQpSejNKnsGUVERK93//59lC9f3uT1Hz58iLJly+ZhRERERET5R2LuBi4uLggICMDRo0eh1WrzIiaiAkUiqjPckRpfSZeMYs8oIiIyQcOGDTFy5EhcuHAhy3ViYmKwbt061KxZE7t27crH6IiIiIjyltmVURs3bsTWrVvRvXt3ODg4oG/fvnj33XfRoEGDvIiPyOJ0DczTIINMMD5biESmAgBo05iMIiKi17t+/Trmz5+Pdu3aQaVSwcfHB2XKlIFKpcKLFy9w/fp1XLt2DfXr18fixYs5SQwREREVKWZXRvXs2RM7duzAkydPsGDBAly/fh1vvfUWvLy8MHfu3LyIkciiJC97RmmFLKqiAEheVkZpWRlFREQmKFmyJJYtW4aIiAisWrUKVapUwbNnz3Dr1i0AwMCBAxESEoLz588zEUVERERFjtmVUTp2dnYYMmQIhgwZguvXr2PgwIGYM2cOZs6cmZvxEVmcrjJKk82vi0SuBACIGiajiIjIdFZWVujduzd69+5t6VCIiIiI8o3ZlVE6ycnJ2L59O3r06IH69esjKioKU6ZMyc3YiAoEiZheGaURsv51kb5MRgkaNdI07KVGRERERERElBWzK6MOHz6MrVu3Yu/evZDJZOjduzeOHDmCFi1a5EV8RBYn0aY3MNcIWf+6yBTpPaMUSEOiWgN7aY7zvERERERERERFmtnJqJ49e6JLly7YtGkTOnfuDLlcnhdxERUYumF6WmTXMyq9MkqONCSkpMFexd8LIiIiIiIiImPMTkY9efIEdnZ2eRELUYH03zC9rH9dhJcNzBWCGgkpmnyJi4iIiIiIiKgwMmksUWxsrP5nURQRGxub5Y2oqNE3MM9mNj1IXyajoEFCSlp+hEVEREWAWq3G0KFDERYWZulQiIiIiPKNSckoJycnREZGAgAcHR3h5OSU6aZbnhNff/01PD09oVKp0LhxY/zxxx8mbRcUFARBENCjR48cPS+RKSTal5VR2QzT+y8ZpUZiKiujiIjINHK5HLt27bJ0GERERET5yqRheidOnECJEiUAACdPnszVALZt24aJEydizZo1aNy4MVasWIEOHTrg5s2bcHFxyXK7e/fuYfLkyWjevHmuxkP0KsGEYXp42TNKAXV+hEREREVIjx49sHfvXkyYMMHSoRARERHlC5OSUS1bttT/XKFCBbi7u0MQBIN1RFHEv//+a3YAy5Ytw4gRIzBkyBAAwJo1a3DgwAGsX78eU6dONbqNRqPBwIEDMWfOHJw5cwbR0dFmPy+RqXQ9o7JrYA5pesNyOVgVRURE5qlSpQrmzp2L4OBg+Pj4wMbGxuDxsWPHWigyIiIiorxhdgPzChUqICIiIlPVUlRUFCpUqACNxvR/xlNTUxESEoJp06bpl0kkErRt2xbnz5/Pcru5c+fCxcUFw4YNw5kzZ7J9jpSUFKSkpOjvs68VmUvQplc7ZVsZJX1ZGSWwMoqIiMzz/fffw9HRESEhIQgJCTF4TBAEk5NRCxcuxO7du/HPP//AysoKvr6+WLRoEapWrZoXYRNRDmi1IkIj4xCTqIaDtRxeLnaQSITXb0hFHt8bVNyYnYwSRTFTVRQAxMfHQ6VSmbWvZ8+eQaPRwNXV1WC5q6sr/vnnH6PbnD17Ft9//z0uX75s0nMsXLgQc+bMMSsuooy0aemVUaLk9T2j5GDzciIiMk9uNS//9ddfMXr0aDRs2BBpaWn49NNP0b59e1y/fj1TtRUR5b+Q8ChsPBeO25HxSE3TQCGTorKLLQJ8PeDjUcLS4ZEF8b1BxZHJyaiJEycCSP+GbsaMGbC2ttY/ptFo8Pvvv6Nu3bq5HmBGcXFxeO+997Bu3TqUKlXKpG2mTZumjx1Ir4xyd3fPqxCpCEpLS03/QSLPeiVZejJKyWQUERG9AVEUAcDoF3+vc+jQIYP7GzZsgIuLC0JCQtCiRYtciY+IciYkPArzD9xAdKIaLnZKqORKJKs1uPYoBvMP3MB0/+pMOhRTfG9QcWVyMurPP/8EkH6RdPXqVSgUCv1jCoUCderUweTJk8168lKlSkEqleLJkycGy588eQI3N7dM69+5cwf37t1D165d9cu0Wm36gchkuHnzJipVqmSwjVKphFKpNCsuoozS1OlD70RJdsP0WBlFREQ5t2nTJnzxxRe4desWAMDLywtTpkzBe++9l+N9xsTEAIB+EhoisgytVsTGc+GITlTDs6S1Ptlso5TBWiFFeFQiNp0LRz13Jw7LKmb43qDizORklG4WvSFDhmDlypWwt7d/4ydXKBTw8fHB8ePH0aNHDwDpyaXjx49jzJgxmdavVq0arl69arDsf//7H+Li4rBy5UpWPFGe0LysjBJMSEZxNj0iIjLXsmXLMGPGDIwZMwZNmzYFkN6W4IMPPsCzZ89yNMueVqvF+PHj0bRpU9SsWTPL9dhbkyjvhUbG4XZkPFzslJmqHgVBgLOtErci4xEaGYdqbm/+PxYVHnxvUHFmds+owMDAXA1g4sSJCAgIQIMGDdCoUSOsWLECCQkJ+tn1Bg0ahLJly2LhwoVQqVSZLqgcHR0BINsLLaI3oUtG6WbMM0pXGSWksTaKiIjM8tVXX2H16tUYNGiQflm3bt1Qo0YNzJ49O0fJqNGjR+Pvv//G2bNns12PvTWJ8l5MohqpaRqo5MZHa6jkUjyLT0FMIr/ULG743qDizOxkFABcvHgR27dvx/3795Gammrw2O7du83aV9++ffH06VPMnDkTjx8/Rt26dXHo0CF9U/P79+9DIpHkJEyiXKFV65JRiqxXkr2cTQ9MRhERkXkiIiLg6+ubabmvry8iIiLM3t+YMWOwf/9+nD59GuXKlct2XfbWJMp7DtZyKGRSJKs1sFFm/vcrWZ3esNrBOpsvPqlI4nuDijOzszxBQUHw9fXFjRs3sGfPHqjValy7dg0nTpyAg4NDjoIYM2YMwsPDkZKSgt9//x2NGzfWP3bq1Cls2LAhy203bNiAvXv35uh5iUyh1Q3Tyy4Z9bJqSsFUFBERmaly5crYvn17puXbtm1DlSpVTN6PKIoYM2YM9uzZgxMnTqBChQqv3UapVMLe3t7gRkS5y8vFDpVdbPE0PkU/SYGOKIp4Gp+CKi628HKxs1CEZCl8b1BxZnZl1IIFC7B8+XKMHj0adnZ2WLlyJSpUqICRI0eidOnSeREjkUWJmpfJKFl2yShdZRRLaImIyDxz5sxB3759cfr0aX3PqODgYBw/ftxokioro0ePxtatW/HTTz/Bzs4Ojx8/BgA4ODjAysoqT2InoteTSAQE+Hpg/oEbCI9KhLOtEip5ejXM0/gUOFjJMcjXgw2qiyG+N6g4M7sy6s6dO/D39weQ3oA8ISEBgiBgwoQJ+Pbbb3M9QCJLE3WVUbJsZmXkbHpERJRDvXr1wu+//45SpUph79692Lt3L0qVKoU//vgDPXv2NHk/q1evRkxMDPz8/FC6dGn9bdu2bXkYPRGZwsejBKb7V0eNMg6ITU7DgxeJiE1OQ80yDpjuXx0+Hpz1srjie4OKK7Mro5ycnBAXFwcAKFu2LP7++2/UqlUL0dHRSExMzPUAiSzuZWWUJLvKqJePKYQ0iBCzXo+IiMgIHx8f/PDDD2+0j1eHeBBRweLjUQL13J0QGhmHmEQ1HKzl8HKxY9UL8b1BxZLZyagWLVrg6NGjqFWrFt555x2MGzcOJ06cwNGjR9GmTZu8iJHIsjTpQ+8k8uyG6bEyioiIcubSpUuQy+WoVasWAOCnn35CYGAgvL29MXv2bCgU2Xz+EFGhIpEIqObG3myUGd8bVNyYPUxv1apV6NevHwBg+vTpmDhxIp48eYJevXrh+++/z/UAiSzuZWWUNIspV9MffFkZxWQUERGZaeTIkQgNDQUA3L17F3379oW1tTV27NiBjz/+2MLREREREeU+syujSpT4b8yqRCLB1KlTczUgooJGok2vjJJm28CcySgiIsqZ0NBQ1K1bFwCwY8cOtGzZElu3bkVwcDD69euHFStWWDQ+IiIiotxmUjIqNjbW5B1ySmAqagRtemWULLvKqJfNzZWCGmDPDiIiMoMoitBqtQCAY8eOoUuXLgAAd3d3PHv2zJKhEREREeUJk5JRjo6OEITsm6eJoghBEKDRaHIlMKKCQqJNAySAVPH6YXoAIIisjiIiItM1aNAA8+bNQ9u2bfHrr79i9erVAICwsDC4urpaODoiIiKi3GdSMurkyZN5HQdRgZSm0UIqpg/Tk5vQMwoAhJc9poiIiEyxYsUKDBw4EHv37sX06dNRuXJlAMDOnTvh6+tr4eiIiIiIcp9JyaiWLVvmdRxEBVJymlY/Q55cocp6Rdl/iSqJlskoIiIyjUajQXR0NE6fPg0nJyeDx7744gtIpVILRUZERESUd8yeTQ8Azpw5g3fffRe+vr54+PAhAGDz5s04e/ZsrgZHZGlJqRp9MkqW3dTaEik0L3+dBI06P0IjIqIiQCqVon379oiOjs70mEqlglwuz/+giIiIiPKY2cmoXbt2oUOHDrCyssKlS5eQkpICAIiJicGCBQtyPUAiS0pWa/Qz5AnSbIbpAVC/LDRkZRQREZmjZs2auHv3rqXDICIiIso3Ziej5s2bhzVr1mDdunUG39Y1bdoUly5dytXgiCwtSa2BHC+b8kuz/3Y6DemPC1pWRhERkenmzZuHyZMnY//+/YiIiEBsbKzBjago0mpF/PM4Fr/ffY5/HsdCqy2+sxHzXBBRcWRSz6iMbt68iRYtWmRa7uDgYLTEnKgwS0rVQC68nB1Pms0wPQBqQQaIgIQNzImIyAydO3cGAHTr1s1g9mLOVExFVUh4FDaeC8ftyHikpmmgkElR2cUWAb4e8PEoYenw8hXPBREVV2Yno9zc3HD79m14enoaLD979iwqVqyYW3ERFQhJag2sYFoy6r/KKCajiIjIdJy1mIqTkPAozD9wA9GJarjYKaGSK5Gs1uDaoxjMP3AD0/2rF5skDM8FERVnZiejRowYgXHjxmH9+vUQBAGPHj3C+fPnMXnyZMyYMSMvYiSymCS1Bg76ZFT2w/RSWRlFREQ5wFmLqbjQakVsPBeO6EQ1PEta6ysBbZQyWCukCI9KxKZz4ajn7gSJRHjN3go3ngsiKu7MTkZNnToVWq0Wbdq0QWJiIlq0aAGlUonJkyfjo48+yosYiSwmOcNseiZXRjEZRUREZjh9+nS2jxtrj0BUGIVGxuF2ZDxc7JQGQ1IBQBAEONsqcSsyHqGRcajmZm+hKPMHzwURFXdmJ6MEQcD06dMxZcoU3L59G/Hx8fD29oatrS2SkpJgZWWVF3ESWUR6A3PTklGpL5NRnE2PiIjM4efnl2lZxn9O2TOKioqYRDVS0zRQyY3PUKySS/EsPgUxiUV/MhieCyIq7syeTU9HoVDA29sbjRo1glwux7Jly1ChQoXcjI3I4pLUGRuYv26YXnqySpKWnNdhERFREfLixQuDW2RkJA4dOoSGDRviyJEjlg6PKNc4WMuhkEmRrDaeYE1WpzfwdrDO/pqrKOC5IKLizuTKqJSUFMyePRtHjx6FQqHAxx9/jB49eiAwMBDTp0+HVCrFhAkT8jJWonyXZMYwvVSkf7Ml0aTkdVhERFSEODg4ZFrWrl07KBQKTJw4ESEhIRaIiij3ebnYobKLLa49ioG1Qppp9sin8SmoWcYBXi52Fowyf/BcEFFxZ3Jl1MyZM7F69Wp4enri3r17eOedd/D+++9j+fLlWLZsGe7du4dPPvkkL2MlynfJag0UJiajUnSVURpWRhER0ZtzdXXFzZs3LR0GUa6RSAQE+HrAwUqO8KhEJKSkQaMVkZCShvCoRDhYyTHI16NYNOzmuSCi4s7kyqgdO3Zg06ZN6NatG/7++2/Url0baWlpuHLlSqame0RFRbJaCzlelk+bOkyPySgiIjLDX3/9ZXBfFEVERETg888/R926dS0TFFEe8fEogen+1bHxXDhuR8bjWXwKFDIpapZxwCBfD/h4lLB0iPmG54KIirP/t3fncVFW+x/AP88zKzuCIJAIrqi5r0m3spsJ5i1tNfPmkpV1NSuvXbVFra5XLW+2WbaqdVvMrlk/Lc1My9TrguIuiiIuiKgoMAyzPuf3x8jIwAw7zACf9+s15TxznvN8zxyeWb5zznkqnYw6c+YMevfuDQDo0qULdDodnn32WSaiqFGrygLm5uJpelwzioiIqqBHjx6QJAlCCJftN9xwAz799FMvRUVUd3rHhaFnbDMczSlAntGKEH8NOkQGNclRQHwuiKipqnQyym63Q6u99mVcrVYjMDCwToIi8hVGkwUaqXhkVAVrRjlHRnHNKCIiqryMjAyX+7IsIyIiAnq93ksREdU9WZbQMSrY22H4BD4XRNQUVToZJYTA2LFjodM5Rn+YTCY88cQTCAgIcCm3cuXK2o2QyIvyjcZrdyqYpmcGp+kREVHVxcXFeTsEIiIionpV6WTUmDFjXO7/9a9/rfVgiHxNQWHRtTsVjowqvpoek1FERFR5kydPRrt27TB58mSX7e+++y7S09Px5ptveicwIiIiojpS6WTUkiVL6jIOIp9UWJ2RUVwzioiIquC///0vfvjhhzLbExMTMW/ePCajiIiIqNGRvR0AkS8rLHIkloSkAmRVuWV5NT0iIqqOS5cuISQkpMz24OBgXLx40QsREREREdUtJqOIPBBCoKjIMTJKVDBFDwCE2rHQrM1SVEFJIiKia9q1a4e1a9eW2f7TTz+hTZs2XoiIiIiIqG5VepoeUVNTaLFDVqwAAKmCKXoAEBIUDBgAS5GhrkMjIqJGZMqUKZg0aRIuXLiAP//5zwCADRs24N///jen6BEREVGjxGQUkQeXCy3QwOa4U4mRUaEhQcA5wGoyVliWiIio2COPPAKz2Yw5c+bg1VdfBQDEx8fj/fffx+jRo70cHREREVHtYzKKyIMrRqszGSVVIhkVHhoKAFA4TY+IiKroySefxJNPPokLFy7Az88PgYGB3g6JiIiIqM5wzSgiDy4bLdA6R0ZVPE0votnVxWdtTEYREVHV2Gw2/PLLL1i5ciWEEACArKwsGAyc+k1ERESND0dGEXlw2Vi1aXotwkMBAGrFgsuFFjQLqHgfIiKizMxMJCcn49SpUzCbzbj99tsRFBSE+fPnw2w2Y/Hixd4OkYiIiKhWcWQUkQdXjFZopMono/R+AY7/SxZkXCqsy9CIiKgRefrpp9GnTx9cvnwZfn5+zu133303NmzY4MXIiIiIiOoGR0YReeA6MqriaXpQO75A6GFBxoVC9GrVrA6jIyKixmLz5s3YunUrtFrXHz7i4+Nx9uxZL0VFREREVHc4MorIgytGa4k1oyox5U6jB+BIRp29wnWjiIiochRFgd1uL7P9zJkzCAoK8kJERERERHWLySgiDxwjo65+OahMMqrEyKiLBaY6jIyIiBqTwYMH480333TelyQJBoMBs2bNwh133OG9wIiIiIjqCKfpEXlw2WhFWFWm6V0dGaWSBC4buGYUERFVzoIFC5CcnIzOnTvDZDLhoYcewrFjx9C8eXN89dVX3g6PiIiIqNYxGUXkgcFkRYsqLGBePDIKAPLzeSluIiKqnNjYWOzduxfLly/H3r17YTAYMH78eIwaNcplQXMiIiKixoLJKCIPBFBizajKLGCug4AECQIGQ0GdxkZERI2D1WpFx44dsXr1aowaNQqjRo3ydkhEREREdY5rRhGVQ1OVBcwlCUKtAwAUGjkyioiIKqbRaGAycZ1BIiIialqYjCIqR5WSUYBzqp7NbITJWvbKSERERKVNnDgR8+fPh81m83YoRERERPWC0/SIyqGpyjQ9AJLGDzBdhh4WXCq04LpQrvVBRETl27lzJzZs2ICff/4ZXbt2RUBAgMvjK1eu9FJkRN6jKAJHcwqQZ7QixF+DDpFBkGXJ22EREVEt8Ylk1KJFi/D6668jOzsb3bt3xzvvvIN+/fq5LfvRRx/hs88+w4EDBwAAvXv3xr/+9S+P5YlqQluVBcwBSFevqKeHBRcLzExGERFRhUJDQ3Hvvfd6Owwin5GSmYtlWzORnmOAxWaHVq1Cu8hAjEmMQ++4MG+HR0REtcDryajly5djypQpWLx4Mfr3748333wTSUlJSEtLQ2RkZJnymzZtwsiRI5GYmAi9Xo/58+dj8ODBOHjwIK677jovtIAas+pO09NLVlw0mOsoKiIiakyWLFni7RCIfEZKZi7mrDmMK0YrIoN00Gt0MFntOJiVhzlrDuOFoZ2YkCIiagS8vmbUG2+8gcceewzjxo1D586dsXjxYvj7++PTTz91W/6LL77A3/72N/To0QMdO3bExx9/DEVRsGHDhnqOnJoCDa6u+6SuZDKq5MgoJqOIiKgciqJg/vz5uPHGG9G3b19Mnz4dRUVFNarz999/x5133omYmBhIkoRVq1bVTrBEHiiKwJHsfGw/cQlHsvOhKKJGdS3bmokrRiviw/0RoFNDJUsI0KkRF+aPvCIrPtuaWaNjEBGRb/DqyCiLxYKUlBTMmDHDuU2WZQwaNAjbtm2rVB1GoxFWqxVhYfyFhGpftUdGwYKLBksdRUVERI3BnDlzMHv2bAwaNAh+fn546623kJOT4/EHucooLCxE9+7d8cgjj+Cee+6pxWiJyqrt6XRHcwqQnmNAZJAOkuS6PpQkSYgI1OFYjgFHcwrQMSq4tppBRERe4NVk1MWLF2G329GiRQuX7S1atMCRI0cqVce0adMQExODQYMGuX3cbDbDbL42QiU/P7/6AVOTIgSgw9WEUmWTUZriaXoWXCjgyCgiIvLss88+w3vvvYcJEyYAAH755RcMHToUH3/8MWS5eoPXhwwZgiFDhtRmmERu1cV0ujyjFRabHXqNzu3jeo0KFw1m5BmttdEEIiLyIq9P06uJefPm4euvv8Z3330HvV7vtszcuXMREhLivMXGxtZzlNSQ+UtXE0oa/8rtUGKaXl4RPygREZFnp06dwh133OG8P2jQIEiShKysrHqLwWw2Iz8/3+VGVJG6mk4X4q+BVq2CyWp3+7jJ6hh9FeJfuascExGR7/JqMqp58+ZQqVQ4f/68y/bz588jKiqq3H0XLFiAefPm4eeff0a3bt08lpsxYwby8vKct9OnT9dK7NQ0+ONqMkpbyWRUiWl6QnA9AyIi8sxms5X5MU2j0cBqrb8fM/ijHVVHVabTVUWHyCC0iwzEBYO5zOcoIQQuGMxoHxmIDpFBNW4DERF5l1en6Wm1WvTu3RsbNmzA8OHDAcC5GPmkSZM87vfaa69hzpw5WLduHfr06VPuMXQ6HXQ690N9iSri50xGBVZyh1AAQLBUiIt1ExIRETUSQgiMHTvW5XOKyWTCE088gYCAAOe2lStX1lkMM2bMwJQpU5z38/PzmZCiCtXVdDpZljAmMQ5z1hxGZq4REYE66DWOkVIXDGaE+GkwOjEOsixVXBkREfk0ryajAGDKlCkYM2YM+vTpg379+uHNN99EYWEhxo0bBwAYPXo0rrvuOsydOxcAMH/+fMycORNffvkl4uPjkZ2dDQAIDAxEYGAlEwZElVTlaXp+jrURwlCAE3UUExERNQ5jxowps+2vf/1rvcbAH+2oOkpOpwvQlf06UZPpdL3jwvDC0E7OhdEvGszQqlXoEhOC0dVcGJ2IiHyP15NRI0aMwIULFzBz5kxkZ2ejR48eWLt2rXNR81OnTrks4vn+++/DYrHgvvvuc6ln1qxZmD17dn2GTk2AP0yOf1R2mp5/OACgmVS1YelERNT0LFmyxNshEFVL8XS6g1l58NeqXKbqFU+n6xITUu3pdL3jwtAzthmO5hQgz2hFiL8GHSKDOCKKiKgR8XoyCgAmTZrkcVrepk2bXO6fPHmy7gMiusq5ZpQmoPyCzh2KR0YZwBWjiIiovhkMBqSnpzvvZ2RkIDU1FWFhYWjVqpUXI6PGpD6m08myhI5RwbUYNRER+ZIGfTU9orrmnKZX6ZFRjmRUKEdGERGRF+zatQs9e/ZEz549ATiWQ+jZsydmzpzp5ciosSmeTnd9TAjyTTacuWxEvsmGLjEheGFoJ06nIyKicvnEyCgiX3VtAfPKjoxyTNMLYzKKiIi8YODAgbyaK9UbTqcjIqLqYjKKyAMhRDWm6V1dMwoFAL8MEBERUSPH6XRERFQdnKZH5IEWFsjS1YRSZafpXb2anlayQ6cY6ygyIiIiIiIiooaLySgiD/TCdO2OppLJKK0/bLIeABBgz6+DqIiIiIiIiIgaNiajiDwoTkbZVTpAVlV6P5MmFAAQYMuri7CIiIiIiIiIGjSuGUXkga44GaX2R+VTUYBZE4JAczYC7ExGERERNQWKInx6EW9fj4+IiJoeJqOIPLg2MqqSU/SuMmlDAQCBTEYRERE1eimZuVi2NRPpOQZYbHZo1Sq0iwzEmMQ49I4L83Z4Ph8fERE1TZymR+SBMxml9qvSfmZNMwDgyCgiIqJGLiUzF3PWHMaBs3kI1qvRspk/gvVqHMzKw5w1h5GSmcv4iIiI3GAyisiD6iajnGtGMRlFRETUaCmKwLKtmbhitCI+3B8BOjVUsoQAnRpxYf7IK7Lis62ZUBTB+IiIiEphMorIg+JklKKu2jQ9syYEAJNRREREjdnRnAKk5xgQGaSDJLmuvyRJEiICdTiWY8DRnALGR0REVAqTUUQeFC9gbqtiMsqkdUzT45pRREREjVee0QqLzQ69xv1lTvQaFSw2O/KM1nqOzMHX4yMioqaNySgiD5wjo1RVnKbnTEZdqe2QiIiIyEeE+GugVatgstrdPm6yOhYLD/HX1HNkDr4eHxERNW1MRhF5oHOuGVXVkVGOK9MwGUVERNR4dYgMQrvIQFwwmCGE67pLQghcMJjRPjIQHSKDGB8REVEpTEYReeAnigBUYwHzqyOjgmxXajskIiIi8hGyLGFMYhxC/DTIzDWi0GyDXREoNNuQmWtEiJ8GoxPjIMtSxZU1wfiIiKhpYzKKyAOdMAOoejKq6OrIqAAlH7Dbaj0uIiIiqn+KInAkOx/bT1zCkex8KIpA77gwvDC0E66PCUG+yYYzl43IN9nQJSYELwzthN5xYV6NuTbjc9d+IiKi6lJ7OwAiX6V3TtMLqNJ+Fk0I7EKCShKA8RIQ1KIuwiMiIqJ6kpKZi2VbM5GeY4DF5lhrqV1kIMYkxqF3XBh6xjbD0ZwC5BmtCPHXoENkkM+MOKqN+CpqPxERUVUxGUXkgQ7FyaiqjYxq1TwIlxGE5siHteA8NExGERERNVgpmbmYs+YwrhitiAzSQa/RwWS142BWHuasOewcYdQxKtjboXoky1K146ts+4mIiKqC0/SIPHBeTa+Kyaib2kcgTwoBAOw5fLzW4yIiIqL6oSgCy7Zm4orRivhwfwTo1FDJEgJ0asSF+SOvyIrPtmY22ilrTb39RERUd5iMIvLAOU1PVbWr6WlUMtTBkQCAPYeP1npcREREVD+O5hQgPceAyCAdJMl1WpskSYgI1OFYjgFHcwq8FGHdaurtJyKiusNkFJEHzqvpaaqWjAKAZs2jAQC5OWdh56+FREREDVKe0QqLzQ69RuXcJoSAwWTDZaMFNkXAbLUhz2j1YpR1x137S9JrVLDY7I22/UREVHe4ZhSRB/6KAQAg9M2qvG9geDRwAghU8pCeY0BCVFBth0dERER1LMRfA61aBZPVjgCdGleMVpy5bEShxQZFABCAWiXh7JUib4daJ0q3vzST1bGYeYi/xgvRERFRQ8aRUURuCCEQYHcMOW/WvOoLkMuBjml64chD6unLtRobERER1Y8OkUFoFxmICwYzrhgtOJZTgAKzDWpZhl4tQ4GAIoDPt2UiJTPX2+HWupLtF8J1pLcQAhcMZrSPDESHSP7oRkREVcNkFJEbVwrNCIZjZFRkZFTVK/APBwCESwVIPX2lFiMjIiKi+iLLEsYkxiFYr8aR8wWw2BXo1Y6PzyabAq1KRocWgcg3Nc6FvIvbH+KnQWauEYVmG+yKQKHZhsxcI0L8NBidGAdZliqujIiIqAQmo4jcyDqfA5Xk+ECpDwqvegUBEQCAcCkfqafzajM0IiIiqke948Lw8IA4qCQJMiSYbApsikCQXo32LYLQzF/bqBfy7h0XhheGdsL1MSHIN9lw5rIR+SYbusSE4IWhndA7LszbIRIRUQPENaOI3LiYcw4AUCTp4afWVb2CQMfUvigpF2nZ+bDaFWhUzP0SERE1RNeF+iMiSIcwfy3sQkCjkhGgU6N4PJBeo8JFg7nRLuTdOy4MPWOb4WhOAfKMVoT4a9AhMogjooiIqNqYjCJyI/dSDgCgSBUMv+pUEN4OABCDS9AJE+yKgIcL0RAREZGPC/HXQKdWQSVLCNaVXay7KSzkLcsSOkYFezsMIiJqJDhUg8iNgsuOZJRVG1q9CgLCIfzCIUsCbaRztRcYERER1Tsu5E1ERFS7mIwicqMo7yIAQPg1q3YdSvMEAEA76SxE41rPlIiIyKcpisCR7HxsP3EJR7LzK7WweHn7cCFvIiKi2sVpekRuWAyXAAAq/5okozpAdXor2slZtRUWERERVSAlMxfLtmYiPccAi80xfa5dZCDGJMZ5XGy7MvsUL+RdXO6iwQytWoUuMSEYXU7dREREVBaTUUSlKIoAjLmADOiqcyW9q0R4BwBXR0aBQ6OIiIjqWkpmLuasOYwrRisig3TQa3QwWe04mJWHOWsOu736W1X24ULeREREtYPJKKJS0i8YEKAUADIQGBpR7XpE8+JkFEdGERER1TVFEVi2NRNXjFbEh/tDkhwJogCdGv5aFTJzjfhsayZ6xjZzJo+qsw8X8iYiIqo5rhlFVEpK5mWESAYAgBxQg5FRV5NR8VI2rGZTrcRGRERE7h3NKcCx8wUI1KlwpcgKg8l2bbFxSUKAVo29Z65g3aFs53pQR3MKkJ5jQGSQzpmIKiZJEiICdTiWY8DRnIL6bg4REVGjxpFRRKXszryMZBQ67tRgAXN1aEtcQgjCpTz8e8lXmPHEI/DTqmopSiIiIippx4lcnL5shAAgBCBLQIBWjVB/La4UWWAw2WCxK5j34xH8tD8bYxLjYLMLWGx26DU6t3XqNSpcNJiRZ7TWb2OIiIgaOY6MIiol5dRlhF4dGVWjZJRaBXvcTQCAsJyt+OSPE7URHhEREZWSkpmLr3acgsUmIEOCn1qGWpZxpciK9JwCXCm0QpYkaNUyQvzUzvWgzl4xQqtWwWS1u63XZHUsZh7ir6nnFhERETVuTEYRlXDFaMGJC4UIRc2TUQAQ2e12AMAA+RAW/3YClwzmmoZIRETUJCmKwJHsfGw/cQlHsvOhKAKKInAoKw9v/HwUBSYbQvxUsAsBSBJUsgRFCCgCEBCwKQoCdWo0D9QhLswfeUVWbDpyAW0jAnDBYL42pe8qIQQuGMxoHxmIDpFBXmo1ERFR48RpekQlnM93JIvC5JpP0wMAtL4ZANBLTofdZMC6g+fxUP9WNauTiIioiUnJzMWyrZlIzzHAYnOMVgoL0ACQkJVXhDO5RVDLEnQax++sRVa7IxmlCEgSYLULaFQyWoZeW6Q8IlCH9AuFePSm1jh7pQiZuUZEBOqg1zhGSl0wmBHip8HoxDheLY+IiKiWcWQUUSka2BBcPDLKv/oLmAMAmrUGQlpBAxuGqrZ7nAZARERE7qVk5mLOmsPYf+YK1DIQqFPDbLNjR0Yudp7MhaIIqGRAq5ZhtimQAOjUMmx2BVfXKYcsA9eF+iG0xHQ7vUYFi82O60L98MLQTrg+JgT5JhvOXDYi32RDl5gQvDC0E3rHhXmn4URERI0YR0YRldJKOg8VFEAbBARG1qwySQL6jgd+mYVJqlVYnvcwhBBlrthDRERE1yiKwNGraz29vykdpy4Vwq4A2fmOq9Na7QJCCKhVEgpMNshX31f91DKKbAq0ahnXhepx/EIhJEmCLAHN/LUuxyi5HlTHqGD0jG2GozkFyDNaEeKvQYfIII6IIiIiqiNMRhGVICDQTspy3Gne3pFMqql+j8GwaSHibedxcetnePjcfXj9/m6IDvGred1ERESNiKIIrNxzBp9vy8TZK0UwWewwWK6NKpYlQCVJsF+dfmezKzBabPDTqmCyKvDTqKBVySg02xAXFoAgvRqXjVaE+WsRoLt2Rdvi9aC6xIQ414OSZQkdo4Lrvc1ERERNEZNRRKW0lc46/tG8Q+1UqA2AdOMzwG+zMVm9Crem/wnPLlfw9eMDaqd+IiKiBqx4FNT/jl/Cki0ZOJVbBOGhrATALgQEHGtNCAAWm4KIQB3MVgsKLTboVDIUBTCYrNCoZGhVMtQqCUaLnetBERER+Qgmo4hKaSuXGBlVSwJunADseg+xhTmYpv4a/z5xP46dL0D7Frw6DxERNV3bMy5i/o+HcSArH5ZKLKtoF9cWPC1eD0oBcL7ADAmATRGw2hzT9kw2BX3iwtCvTRi2n8hFeo4BFw1maNUqdIkJwejEOK4HRURE5CVMRhGVIATQ1jlNr5ZGRgGA1h+45R/Aj1PxmPpH/FnegyfevICg2C744tEb4KdVVVwHERFRI2Ay2fDauiNYsfsMCsxVv7CHJAEQcBk9pZYl6DUq2OwKCi126DQy/nZrG9zTMxayLGFk31ZcD4qIiMiHMBlFVJIQaCudc/w7IqF26+77KIQuCEU/vYS2pnNYrX0BH2YNRa+Z2Rh9S2c8eUtbhJZaXLUhSM8x4K0Nx1BgssJqVxDip8GkW9ujcwzX3SAiomtsNgWD5v6Ek4U1q0fAsXaU80p5cCSj7IqAVRHw16oQpFdj89FLuKdnrKMM14MiIiLyKXLFRereokWLEB8fD71ej/79+2PHjh3lll+xYgU6duwIvV6Prl274scff6ynSKmxUxuyECQVwQYZaNa6diuXJEjdH4T/U9uAdrdDJ1nxlHoVNur+jmZb/onxr76L577ZjdfXHcHBrDxcLrTU7vFrmaIIXCgwY8o3qfi/vVnYlHYBW9Iv4cf92bjj7c2Y+MVumKxV/8WbiIhqpqqfq+rDF9sz0e7FmieiAEcSSlxNREkAJBmw2BXYFAVBejXaRwYhtpk/juUYcDSnoOYHJCIiolrn9ZFRy5cvx5QpU7B48WL0798fb775JpKSkpCWlobIyMgy5bdu3YqRI0di7ty5+Mtf/oIvv/wSw4cPx+7du9GlSxcvtIAaCyEETv/6EdoDSJPb43p1HY1SCmgOjFoBHFkDZe0MROWdwhPq1XhCvRp5B1/HPqUNdm2OxgHRGjpYEdayA/xiu+Omnl0QGaRDWIAWapX388j3vL8VqaevOO/3ax2Gy4UWBPtpkJJ5GWv2n8Oa/efw6vAueLBvLDQ+EDMRUWNX1c9V9eGL7Zl44bsDtVafn1qCTQA2u0CAToVWzfyh16qgkWUE6FSQrl5t76LBjDyjtdaOS0RERLVHEkJ4umBJvejfvz/69u2Ld999FwCgKApiY2Px1FNPYfr06WXKjxgxAoWFhVi9erVz2w033IAePXpg8eLFFR4vPz8fISEhyMvLQ3Awh2uTQ4HJipe+TcELx+5HhJSP3f3eQK87xtf9ga0miCNrkLvnewSd+hVam+dfcM1CDQs0MEMDM7TI0VwHdeh1KPK/DqbAVtBpJNiDYhFqOQd7WDvotRrI5jxkyK1wvNAPAzpEoXN0cI0SWXlFVrz8fweRnWfC1uOXADimSsy5uyse7BsLSXKsvzFuyQ5sTLvgsu8/h3fBHV2jERbQ8KYiEhGV5MufJar6uaq02m6bzaag3Ys/1bieYhIAlQyoZBkqWULrcH9EhfiVKVdotiHfZMMbI7pzeh4REVE9qcrnCK+OjLJYLEhJScGMGTOc22RZxqBBg7Bt2za3+2zbtg1Tpkxx2ZaUlIRVq1bVZaiVlntiD4yXz8FqV1BRms/xsPvFM4WH7ZCubXfNI5YtL6RK1F2iCk/lPZNKV+E2jjLHdFO87HPlpj1VigMuz5WT3QaV+TJUpitQmy9DZb4MjfkKjp08hWctRxEh58Ogj0avpDEej1arNHpIXe9FeNd7AbsNyN4L5ByBcm4vCk8fQBG0sOSkI8Z+BjrJBh1sCEIRAOA620Xg4t4KD9EWwCAAhb/pUAgV8hCIXIQ45jVIMuySGnZJA0V23OyyFnZZBz/Jghx7IPzVQG5ePmSVGlpbAbqJYLSDHgPUMnrEReCmTi0B1UVglxWwOmL7KEGFrGgrNh7LxcHsQiiQseuHP7DjBwkatQp6tYzoUD9EBuuhliXIsgx18UKykgQJgFUVACGroVbM0MB67TFJAiCV+rcMCZKjyyXZ0feyCjaVP2RJQK1YoFIskKHArtJDyFrorHlQKRbHtxpJDSE7bpBUgKyCStggK1Yoaj+obYUQKh3smiBAkqEWZsiKFUJSQVJpINvNkIQCuyYAilrviAkKJAHn/yUojj90oTj+YoUCSZagSGoIWQMhayDbTZAUKyBrochqSLhaXghAKjkv5Wq7IZzHgBCQICAk2dEGSXJ9vYBU4qwqeW4IR1Eh4FgR+Or/nYeRHeevJAOQICTJ9ewsGVIVuCvvqQrJXWGhQBIKJGEHhB2SogDCDhmO/0vCDiFpIFSO5xayxkPl5R3ZNdCyYUhX/+uuMe7rlDwcT4JUdrPk8Q6AEq+bUvFrYMkX9OL/SS73XcpJkof3qWuxFLft2p+T5BJrcVRuu8hN3WU2uS3jurFS9bjZT+8XiNjWtbz2n4+rzuequlabiSi1DEQG69E6PAB397oOv6VdwKFz+RBCuLxOCCFwwWBGl5gQdIjkVWuJiIh8kVeTURcvXoTdbkeLFi1ctrdo0QJHjhxxu092drbb8tnZ2W7Lm81mmM1m5/38/PwaRl2+4ytfQV/Dr3V6DKp91wGADBjUoQi8911A5YVTQ6UGrusNXNcbcs9RCALg/AhtMQJFl2G3mpCTm48thzIQWHACatMlhBWmw8+SCyg2hFvP4YLUHG1sx2GHjEtSM8SKLMgQCJAc50EIjGiFHEe91/IOQHnLO8lXy5W+6N/Zq7dS1ABaARgDAO5yAAqA3Ks3IqI6cFDbDXh+s7fDqFfV+VxV35+TqismWI8nBrZFvzZhzivhtW4egDlrDiMz14iIQB30GhVMVjsuGMwI8dNgdGIcr5hHRETko7y+ZlRdmzt3Ll5++eV6O16hXzSOGuLK/Potufkd19228re756n8tbFXUpltdXFMz3F4qqvmsVT1ObRDhkEKQr4chAIpGAY5CAY5CEZ1CNTBUbh92GgERjZ33wBv0voDWn+oAEQ3B+7r0NNj0UjAMcpKkhAoqwDFDpjyYDFchslshq0gB0rhJVjtdlitNthtFtitFtitZig2CxRrEYTVBIukg6YoB1ZFgl9gCNSwoVlYBJohHyq7GVBsgP3qaCjTFUClAdR+jhE0iq3EzQ4oNgjFBqvNhiKrgoIiC4QAlKsjcRyL0V4d2QPHKB2tYoRK2GCVdLBJxRmtayN3JOe/ix+6uu3qY5JQoFOKICDBJmlgkzSwQ4ZGWKARZhTKwTBLOshQIAu74wY7VMIOCQoUyLBBDZ0woUjyhxpW+CtGyLDDIulghRoyFEeM0ECRZOiFCXphdp55CmRHRJJ0Naqr96/+XwKggg1qYYMGNpihhU1SQyXs0MAGxxgqCYqjRS797HiupGu3q6MCJCGggt3NOVB2LOa1OopH0Egu90tHXNyi0rEIl3/X8hc/Dy8rxdHYJRkKrt3szn9LUEGBBlZohA0qD9nW8l63KnpNq85+1amzuvWV1xNVee10DsCCx+7wior+0myawHqJo6Gr789J1TX4+hYYnRjvsq13XBheGNoJy7ZmIj3HgIsGM7RqFbrEhGB0Yhx6x4V5J1giIiKqkFeTUc2bN4dKpcL58+ddtp8/fx5RUVFu94mKiqpS+RkzZrhM68vPz0dsbGwNI/ds4MT36qxuokorObJLVgH+YdD6h8GxWlNnr4QkAdBevYV4JQIiakq6ezsAL6jO56r6/pxUXS3D/N1u7x0Xhp6xzXA0pwB5RitC/DXOkVNERETku7x6eSutVovevXtjw4YNzm2KomDDhg0YMGCA230GDBjgUh4A1q9f77G8TqdDcHCwy42IiIiosanO56q6/pzUshbq0KmA0f3jPD4uyxI6RgWjf5twdIwKZiKKiIioAfD6tdanTJmCjz76CMuWLcPhw4fx5JNPorCwEOPGjQMAjB492mUhzqeffhpr167Fv//9bxw5cgSzZ8/Grl27MGnSJG81gYiIiMgnVPS5qr79MW9ojesYc2MbaLWlFy0kIiKihszra0aNGDECFy5cwMyZM5GdnY0ePXpg7dq1zsU3T506BVm+ljNLTEzEl19+iRdffBHPP/882rdvj1WrVqFLly7eagIRERGRT6joc5U3nJw3FPHT11R5P7UMPPKnNnj+jk51EBURERF5kySE+ws7N1b5+fkICQlBXl4ep+wRERFRlTXmzxJ12bY/TV+DM6W2RekBf38dbEKGViVBr5HRPECHxPbNMXZAa46IIiIiakCq8jnC6yOjiIiIiKjxq40pe0RERNQ4eH3NKCIiIiIiIiIiajqYjCIiIiIiIiIionrDZBQREREREREREdUbJqOIiIiIiIiIiKjeMBlFRERERERERET1hskoIiIiIiIiIiKqN2pvB1DfhBAAgPz8fC9HQkRERA1R8WeI4s8UjQk/JxEREVF1VeUzUpNLRhUUFAAAYmNjvRwJERERNWQFBQUICQnxdhi1ip+TiIiIqKYq8xlJEo3xZ71yKIqCrKwsBAUFQZKkKu+fn5+P2NhYnD59GsHBwXUQoe9pim0Gmma7m2KbAba7KbW7KbYZaJrtrss2CyFQUFCAmJgYyHLjWvGgpp+TKtIU/xZ9FfvCd7AvfAf7wrewP3xHZfuiKp+RmtzIKFmW0bJlyxrXExwc3OROiKbYZqBptrspthlgu5uSpthmoGm2u67a3NhGRBWrrc9JFWmKf4u+in3hO9gXvoN94VvYH76jMn1R2c9IjevnPCIiIiIiIiIi8mlMRhERERERERERUb1hMqqKdDodZs2aBZ1O5+1Q6k1TbDPQNNvdFNsMsN1Nqd1Nsc1A02x3U2xzQ8B+8R3sC9/BvvAd7Avfwv7wHXXRF01uAXMiIiIiIiIiIvIejowiIiIiIiIiIqJ6w2QUERERERERERHVGyajiIiIiIiIiIio3jSZZNTvv/+OO++8EzExMZAkCatWrXJ5fOXKlRg8eDDCw8MhSRJSU1PL1GEymTBx4kSEh4cjMDAQ9957L86fP1/ucYUQmDlzJqKjo+Hn54dBgwbh2LFjtdiy8tW03bm5uXjqqaeQkJAAPz8/tGrVCpMnT0ZeXl65xx07diwkSXK5JScn13Lr3KuNvh44cGCZ+J944olyj9vQ+/rkyZNl2lx8W7FihcfjerOvgfLbbbVaMW3aNHTt2hUBAQGIiYnB6NGjkZWV5VJHbm4uRo0aheDgYISGhmL8+PEwGAzlHrc6rwe1paZtPnnyJMaPH4/WrVvDz88Pbdu2xaxZs2CxWMo9bnXOi9pUG30dHx9fpg3z5s0r97je7Gug5u3etGmTx3N7586dHo/rzf6u6PVs9uzZ6NixIwICAtCsWTMMGjQI27dvdynT0M7rxmTRokWIj4+HXq9H//79sWPHjnLLr1ixAh07doRer0fXrl3x448/1lOkjV9V+mLp0qVlznm9Xl+P0TZeFb2mubNp0yb06tULOp0O7dq1w9KlS+s8zqagqn3h6T00Ozu7fgJuxObOnYu+ffsiKCgIkZGRGD58ONLS0ircj+8Zta86fVEb7xlNJhlVWFiI7t27Y9GiRR4f/9Of/oT58+d7rOPZZ5/F//3f/2HFihX47bffkJWVhXvuuafc47722mt4++23sXjxYmzfvh0BAQFISkqCyWSqUXsqq6btzsrKQlZWFhYsWIADBw5g6dKlWLt2LcaPH1/hsZOTk3Hu3Dnn7auvvqpRWyqrNvoaAB577DGX+F977bVyyzf0vo6NjXVp77lz5/Dyyy8jMDAQQ4YMKffY3uproPx2G41G7N69Gy+99BJ2796NlStXIi0tDXfddZdLuVGjRuHgwYNYv349Vq9ejd9//x2PP/54ucetzutBbalpm48cOQJFUfDBBx/g4MGDWLhwIRYvXoznn3++wmNX9byoTbXR1wDwyiuvuLThqaeeKve43uxroObtTkxMLHNuP/roo2jdujX69OlT7rG91d8VvZ516NAB7777Lvbv348//vgD8fHxGDx4MC5cuOAs09DO68Zi+fLlmDJlCmbNmoXdu3eje/fuSEpKQk5OjtvyW7duxciRIzF+/Hjs2bMHw4cPx/Dhw3HgwIF6jrzxqWpfAEBwcLDLOZ+ZmVmPETdeFb2mlZaRkYGhQ4fi1ltvRWpqKp555hk8+uijWLduXR1H2vhVtS+KpaWluZwbkZGRdRRh0/Hbb79h4sSJ+N///of169fDarVi8ODBKCws9LgP3zPqRnX6AqiF9wzRBAEQ3333ndvHMjIyBACxZ88el+1XrlwRGo1GrFixwrnt8OHDAoDYtm2b27oURRFRUVHi9ddfd6lHp9OJr776qsbtqKrqtNudb775Rmi1WmG1Wj2WGTNmjBg2bFj1Aq1F1W3zLbfcIp5++ulKH6ex9nWPHj3EI488Um4ZX+lrIcpvd7EdO3YIACIzM1MIIcShQ4cEALFz505nmZ9++klIkiTOnj3rto7qvB7Uleq02Z3XXntNtG7dutx6qnpe1KXqtjsuLk4sXLiw0sfxpb4Wonb622KxiIiICPHKK6+UW4+v9Hdl2pyXlycAiF9++UUI0fDP64asX79+YuLEic77drtdxMTEiLlz57ot/8ADD4ihQ4e6bOvfv7+YMGFCncbZFFS1L5YsWSJCQkLqKbqmqzKvaf/4xz/E9ddf77JtxIgRIikpqQ4ja3oq0xcbN24UAMTly5frJaamLCcnRwAQv/32m8cyfM+oH5Xpi9p4z2gyI6NqKiUlBVarFYMGDXJu69ixI1q1aoVt27a53ScjIwPZ2dku+4SEhKB///4e92kI8vLyEBwcDLVaXW65TZs2ITIyEgkJCXjyySdx6dKleoqwdnzxxRdo3rw5unTpghkzZsBoNHos2xj7OiUlBampqZUaBdeQ+jovLw+SJCE0NBQAsG3bNoSGhrqMEBk0aBBkWS4z7adYdV4PvKl0mz2VCQsLq7CuqpwX3uap3fPmzUN4eDh69uyJ119/HTabzWMdDa2vgYr7+4cffsClS5cwbty4CutqCP1tsVjw4YcfIiQkBN27dwfQNM5rX2SxWJCSkuLyHMqyjEGDBnl8Drdt2+ZSHgCSkpL4nNdQdfoCAAwGA+Li4hAbG4thw4bh4MGD9REulcLzwvf06NED0dHRuP3227FlyxZvh9MoFS8DU97nUZ4b9aMyfQHU/D2j/GwCOWVnZ0Or1Zb5cN+iRQuPc4aLt7do0aLS+/i6ixcv4tVXX61wqkNycjLuuecetG7dGsePH8fzzz+PIUOGYNu2bVCpVPUUbfU99NBDiIuLQ0xMDPbt24dp06YhLS0NK1eudFu+Mfb1J598gk6dOiExMbHccg2pr00mE6ZNm4aRI0ciODgYgKPvSg+1VqvVCAsLK/fcrurrgbe4a3Np6enpeOedd7BgwYJy66rqeeFNnto9efJk9OrVC2FhYdi6dStmzJiBc+fO4Y033nBbT0Pqa6By/f3JJ58gKSkJLVu2LLcuX+/v1atX48EHH4TRaER0dDTWr1+P5s2bA2j857WvunjxIux2u9v3wiNHjrjdJzs7u1G9d/qK6vRFQkICPv30U3Tr1g15eXlYsGABEhMTcfDgwQpfL6h2eTov8vPzUVRUBD8/Py9F1vRER0dj8eLF6NOnD8xmMz7++GMMHDgQ27dvR69evbwdXqOhKAqeeeYZ3HjjjejSpYvHcnzPqHuV7YvaeM9gMooqLT8/H0OHDkXnzp0xe/bscss++OCDzn937doV3bp1Q9u2bbFp0ybcdtttdRxpzZVMtnXt2hXR0dG47bbbcPz4cbRt29aLkdWPoqIifPnll3jppZcqLNtQ+tpqteKBBx6AEALvv/++t8OpF5Vp89mzZ5GcnIz7778fjz32WLn1NZTzorx2T5kyxfnvbt26QavVYsKECZg7dy50Ol19h1qrKtPfZ86cwbp16/DNN99UWJ+v93fxWioXL17ERx99hAceeADbt2/nOh5E1TRgwAAMGDDAeT8xMRGdOnXCBx98gFdffdWLkRF5T0JCAhISEpz3ExMTcfz4cSxcuBCff/65FyNrXCZOnIgDBw7gjz/+8HYoTV5l+6I23jM4Ta+SoqKiYLFYcOXKFZft58+fR1RUlMd9istUdh9fVVBQgOTkZAQFBeG7776DRqOp0v5t2rRB8+bNkZ6eXkcR1q3+/fsDgMf4G1NfA8C3334Lo9GI0aNHV3lfX+zr4i/pmZmZWL9+vcuIkaioqDKLudpsNuTm5pZ7blf19aC+ldfmYllZWbj11luRmJiIDz/8sMrHqOi88IbKtLuk/v37w2az4eTJk24fbwh9DVS+3UuWLEF4eLjbhd0r4mv9HRAQgHbt2uGGG27AJ598ArVajU8++QRA4z2vfV3z5s2hUqmq9F4YFRXVaN47fUl1+qI0jUaDnj17+sw535R4Oi+Cg4M5KsoH9OvXj+dFLZo0aRJWr16NjRs3Vjiihu8ZdasqfVFadd4zmIyqpN69e0Oj0WDDhg3ObWlpaTh16pRLRrCk1q1bIyoqymWf/Px8bN++3eM+vig/Px+DBw+GVqvFDz/8UK3L/J45cwaXLl1CdHR0HURY91JTUwHAY/yNpa+LffLJJ7jrrrsQERFR5X19ra+Lv6QfO3YMv/zyC8LDw10eHzBgAK5cuYKUlBTntl9//RWKoji/fJdWndeD+lRRmwHHiKiBAweid+/eWLJkCWS56m8HFZ0X9a0y7S4tNTUVsix7HE3j630NVL7dQggsWbIEo0ePrvIPCoDv9XdpiqLAbDYDaJzndUOg1WrRu3dvl+dQURRs2LDB43M4YMAAl/IAsH79ej7nNVSdvijNbrdj//79PnvON2Y8L3xbamoqz4taIITApEmT8N133+HXX39F69atK9yH50bdqE5flFat94waLX/egBQUFIg9e/aIPXv2CADijTfeEHv27HFebejSpUtiz549Ys2aNQKA+Prrr8WePXvEuXPnnHU88cQTolWrVuLXX38Vu3btEgMGDBADBgxwOU5CQoJYuXKl8/68efNEaGio+P7778W+ffvEsGHDROvWrUVRUVGDaHdeXp7o37+/6Nq1q0hPTxfnzp1z3mw2m9t2FxQUiKlTp4pt27aJjIwM8csvv4hevXqJ9u3bC5PJ5PNtTk9PF6+88orYtWuXyMjIEN9//71o06aNuPnmm12O09j6utixY8eEJEnip59+cnscX+rr4hg8tdtisYi77rpLtGzZUqSmprr8/ZrNZmcdycnJomfPnmL79u3ijz/+EO3btxcjR450Pn7mzBmRkJAgtm/f7txWmdcDX23zmTNnRLt27cRtt90mzpw541LGU5sre174cru3bt0qFi5cKFJTU8Xx48fFf/7zHxERESFGjx7tsd1CeLeva6PdxX755RcBQBw+fLjMMXytv8trs8FgEDNmzBDbtm0TJ0+eFLt27RLjxo0TOp1OHDhwwFlHQzuvG4uvv/5a6HQ6sXTpUnHo0CHx+OOPi9DQUJGdnS2EEOLhhx8W06dPd5bfsmWLUKvVYsGCBeLw4cNi1qxZQqPRiP3793urCY1GVfvi5ZdfFuvWrRPHjx8XKSkp4sEHHxR6vV4cPHjQW01oNCr6jDZ9+nTx8MMPO8ufOHFC+Pv7i+eee04cPnxYLFq0SKhUKrF27VpvNaHRqGpfLFy4UKxatUocO3ZM7N+/Xzz99NNClmXn1Vup+p588kkREhIiNm3a5PL5xWg0OsvwPaN+VKcvauM9o8kko4ovy1n6NmbMGCGE49KE7h6fNWuWs46ioiLxt7/9TTRr1kz4+/uLu+++u8wXeQBiyZIlzvuKooiXXnpJtGjRQuh0OnHbbbeJtLS0emixQ03b7Wl/ACIjI8Ntu41Goxg8eLCIiIgQGo1GxMXFiccee8z54cfX23zq1Clx8803i7CwMKHT6US7du3Ec889J/Ly8lyO09j6utiMGTNEbGyssNvtbo/jS30tRPntzsjI8Pj3u3HjRmcdly5dEiNHjhSBgYEiODhYjBs3ThQUFDgfL66n5D6VeT3w1TZ7+lso+ftE6TZX9rzw5XanpKSI/v37i5CQEKHX60WnTp3Ev/71L5fEqa/1dW20u9jIkSNFYmKi22P4Wn+X1+aioiJx9913i5iYGKHVakV0dLS46667xI4dO1zqaGjndWPyzjvviFatWgmtViv69esn/ve//zkfu+WWW5zvS8W++eYb0aFDB6HVasX1118v1qxZU88RN15V6YtnnnnGWbZFixbijjvuELt37/ZC1I1PRZ/RxowZI2655ZYy+/To0UNotVrRpk0bl8+cVH1V7Yv58+eLtm3bCr1eL8LCwsTAgQPFr7/+6p3gGxlPn19K/q3zPaN+VKcvauM9Q7p6cCIiIiIiIiIiojrHNaOIiIiIiIiIiKjeMBlFRERERERERET1hskoIiIiIiIiIiKqN0xGERERERERERFRvWEyioiIiIiIiIiI6g2TUUREREREREREVG+YjCIiIiIiIiIionrDZBQREREREREREdUbJqOIiIiIiKhRmT17Nlq0aAFJkrBq1Spvh+MTLl26hMjISJw8edLboVTZyZMnIUkSUlNTa73u+Ph4vPnmmwAAi8WC+Ph47Nq1q9x9Nm3aBEmScOXKlVqPp7YNHDgQzzzzjLfDIB/y+++/484770RMTEy1XiNnz54NSZLK3AICAqpUD5NRRNQkjR071vnCqdFo0Lp1a/zjH//A4sWL3b64lrw1xA9xREREdank+6okSQgPD0dycjL27dtXa8eYPXs2evToUWG5w4cP4+WXX8YHH3yAc+fOYciQIbUWg68ZO3Yshg8fXqmyc+bMwbBhwxAfH1+nMdVUVdpU27RaLaZOnYpp06aVWy4xMRHnzp1DSEhIpev2VrtWrlyJV1991Xm/ZPKNmqbCwkJ0794dixYtqtb+U6dOxblz51xunTt3xv3331+lepiMIqImKzk5GefOncOJEyewcOFCfPDBB8jIyHB5YR0wYAAee+wxl22xsbHeDp2IiMjnFL+vnjt3Dhs2bIBarcZf/vKXeo/j+PHjAIBhw4YhKioKOp2uTBmLxVLfYXmV0WjEJ598gvHjx3s7FJ83atQo/PHHHzh48KDHMlqtFlFRUZAkqR4jq56wsDAEBQV5OwzyIUOGDME///lP3H333W4fN5vNmDp1Kq677joEBASgf//+2LRpk/PxwMBAREVFOW/nz5/HoUOHqvz6wmQUETVZOp0OUVFRiI2NxfDhwzFo0CCsX7/e5cVVq9XC39/fZZtKpfJ26ERERD6n+H01KioKPXr0wPTp03H69GlcuHDBWeb06dN44IEHEBoairCwMAwbNsxlxPGmTZvQr18/BAQEIDQ0FDfeeCMyMzOxdOlSvPzyy9i7d69z9NXSpUvLxDB79mzceeedAABZlp3JguJRKXPmzEFMTAwSEhIAAJ9//jn69OmDoKAgREVF4aGHHkJOTo5LnT/88APat28PvV6PW2+9FcuWLXOZorV06VKEhoZi9erVSEhIgL+/P+677z4YjUYsW7YM8fHxaNasGSZPngy73e6st6IvfMX1rlu3Dp06dUJgYKAz4Vfc1mXLluH77793Picl9y/pxx9/hE6nww033ODcdvnyZYwaNQoRERHw8/ND+/btsWTJEgDXpsV98803uOmmm+Dn54e+ffvi6NGj2LlzJ/r06YPAwEAMGTLEpX8VRcErr7yCli1bQqfToUePHli7dq1LLPv378ef//xn+Pn5ITw8HI8//jgMBkOl2nTixAnceuut8Pf3R/fu3bFt2zaXuv/44w9nvLGxsZg8eTIKCwudj+fk5ODOO++En58fWrdujS+++KLMc9WsWTPceOON+Prrr90+l0DZaXo16auKzoniv90FCxYgOjoa4eHhmDhxIqxWq7PMe++95/wbbdGiBe677z7nYyWn6Q0cOBCZmZl49tlnnXEUFhYiODgY3377rUsbV61ahYCAABQUFHh8HqhxmjRpErZt24avv/4a+/btw/3334/k5GQcO3bMbfmPP/4YHTp0wE033VSl4zAZRUQE4MCBA9i6dSu0Wq23QyEiImrwDAYD/vOf/6Bdu3YIDw8HAFitViQlJSEoKAibN2/Gli1bnF/aLRYLbDYbhg8fjltuuQX79u3Dtm3b8Pjjj0OSJIwYMQJ///vfcf311ztHX40YMaLMcadOnepMqBSXK7ZhwwakpaVh/fr1WL16tTOmV199FXv37sWqVatw8uRJjB071rlPRkYG7rvvPgwfPhx79+7FhAkT8MILL5Q5rtFoxNtvv42vv/4aa9euxaZNm3D33Xfjxx9/xI8//ojPP/8cH3zwgcsX/sp84TMajViwYAE+//xz/P777zh16hSmTp3qbOsDDzzgMiItMTHRbX9s3rwZvXv3dtn20ksv4dChQ/jpp59w+PBhvP/++2jevLlLmVmzZuHFF1/E7t27oVar8dBDD+Ef//gH3nrrLWzevBnp6emYOXOms/xbb72Ff//731iwYAH27duHpKQk3HXXXc42FRYWIikpCc2aNcPOnTuxYsUK/PLLL5g0aVKl2vTCCy9g6tSpSE1NRYcOHTBy5EjYbDYAjhFxycnJuPfee7Fv3z4sX74cf/zxh7NuwJHYOX36NDZu3Ihvv/0W7733XpnkIwD069cPmzdvdvtcelKdvqronCi2ceNGHD9+HBs3bsSyZcuwdOlSZzJ2165dmDx5Ml555RWkpaVh7dq1uPnmm93GuHLlSrRs2RKvvPKKM46AgAA8+OCDzvOm2JIlS3DfffdxVFUTc+rUKSxZsgQrVqzATTfdhLZt22Lq1Kn405/+VOZvBABMJhO++OKL6o26FERETdCYMWOESqUSAQEBQqfTCQBClmXx7bffupS75ZZbxNNPP+2dIImIiBqIku+rAQEBAoCIjo4WKSkpzjKff/65SEhIEIqiOLeZzWbh5+cn1q1bJy5duiQAiE2bNrk9xqxZs0T37t0rjOW7774Tpb/mjBkzRrRo0UKYzeZy9925c6cAIAoKCoQQQkybNk106dLFpcwLL7wgAIjLly8LIYRYsmSJACDS09OdZSZMmCD8/f2d9QghRFJSkpgwYYIQQojMzEyhUqnE2bNnXeq+7bbbxIwZMzzWu2jRItGiRQuXdg0bNqzcNgkhxLBhw8Qjjzzisu3OO+8U48aNc1s+IyNDABAff/yxc9tXX30lAIgNGzY4t82dO1ckJCQ478fExIg5c+a41NW3b1/xt7/9TQghxIcffiiaNWsmDAaD8/E1a9YIWZZFdna2xza5i+fgwYMCgDh8+LAQQojx48eLxx9/3GW/zZs3C1mWRVFRkUhLSxMAxI4dO5yPHz58WAAQCxcudNnvrbfeEvHx8W6fGyGE2LhxY4V/A5Xpq4rOieL94uLihM1mc5a5//77xYgRI4QQQvz3v/8VwcHBIj8/322spT/LxsXFlWnv9u3bhUqlEllZWUIIIc6fPy/UarXHc5EaDwDiu+++c95fvXq1AOB8LS++qdVq8cADD5TZ/8svvxRqtdp5/laFuurpKyKixuHWW2/F+++/j8LCQixcuBBqtRr33nuvt8MiIiJqkIrfVwHHFLD33nsPQ4YMwY4dOxAXF4e9e/ciPT29zEgLk8mE48ePY/DgwRg7diySkpJw++23Y9CgQXjggQcQHR1dK/F17dq1zAjolJQUzJ49G3v37sXly5ehKAoAx+iAzp07Iy0tDX379nXZp1+/fmXq9vf3R9u2bZ33W7Rogfj4eAQGBrpsKx6Fs3//ftjtdnTo0MGlHrPZ7BxJ5q7e6OhotyN5KlJUVAS9Xu+y7cknn8S9996L3bt3Y/DgwRg+fHiZkVXdunVziR9wPI/u2pSfn4+srCzceOONLnXceOON2Lt3LwDH4vLdu3d3uerWjTfeCEVRkJaW5jyGJyXjKf67yMnJQceOHbF3717s27fPZeqdEAKKoiAjIwNHjx6FWq12GSHWsWNHhIaGljmOn58fjEZjubGUVp2+quicKHb99de7LBMRHR2N/fv3AwBuv/12xMXFoU2bNkhOTkZycjLuvvtu+Pv7Vzr2fv364frrr8eyZcswffp0/Oc//0FcXJzHEVbUeBkMBqhUKqSkpJRZmqTk61mxjz/+GH/5y18qPHfdYTKKiJqsgIAAtGvXDgDw6aefonv37lzck4iIqJpKvq8Cji8pISEh+Oijj/DPf/4TBoMBvXv3drtOT0REBADH1KDJkydj7dq1WL58OV588UWsX7/eZa2jmsRXUvGUsaSkJHzxxReIiIjAqVOnkJSUVOUFzjUajcv94qv1lt5WnOyq7Bc+d3U4BjNUTfPmzXH58mWXbUOGDEFmZiZ+/PFHrF+/HrfddhsmTpyIBQsWuD1+8fpbpbcVt6k+uIun5HM6YcIETJ48ucx+rVq1wtGjRyt9nNzcXOffZHViK46vor6qzDnhqe7idgcFBWH37t3YtGkTfv75Z8ycOROzZ8/Gzp073SbaPHn00UexaNEiTJ8+HUuWLMG4ceMaxALtVLt69uwJu92OnJycCteAysjIwMaNG/HDDz9U61hcM4qICI5FTp9//nm8+OKLKCoq8nY4REREDZ4kSZBl2fm+2qtXLxw7dgyRkZFo166dyy0kJMS5X8+ePTFjxgxs3boVXbp0wZdffgnAcQWzkguA19SRI0dw6dIlzJs3DzfddBM6duxYZiRLQkICdu3a5bJt586dNT52yS98pZ+LqKioStdT2eekZ8+eOHToUJntERERGDNmDP7zn//gzTffxIcfflildpQUHByMmJgYbNmyxWX7li1b0LlzZwBAp06dsHfvXpdFxbds2QJZlp2Lyle3n3v16oVDhw6VeT7btWsHrVaLjh07wmazISUlxblPWlqacxHykg4cOICePXtWOYbyuGtXZc+JiqjVagwaNAivvfYa9u3bh5MnT+LXX3+tdBwA8Ne//hWZmZl4++23cejQIYwZM6ZqDaQGw2AwIDU1FampqQAcSaXU1FScOnUKHTp0wKhRozB69GisXLkSGRkZ2LFjB+bOnYs1a9a41PPpp58iOjoaQ4YMqVYcTEYREV11//33Q6VSYdGiRd4OhYiIqMExm83Izs5GdnY2Dh8+jKeeegoGg8F5dbtRo0ahefPmGDZsGDZv3oyMjAxs2rQJkydPxpkzZ5CRkYEZM2Zg27ZtyMzMxM8//4xjx46hU6dOAID4+Hjnl6aLFy/CbDbXKN5WrVpBq9XinXfewYkTJ/DDDz/g1VdfdSkzYcIEHDlyBNOmTcPRo0fxzTffOBeOrsmokap84StPfHw89u3bh7S0NFy8eNHlCmslJSUl4eDBgy6jo2bOnInvv/8e6enpOHjwIFavXu18rqvrueeew/z587F8+XKkpaVh+vTpSE1NxdNPPw3A8Teg1+sxZswYHDhwABs3bsRTTz2Fhx9+2DnNp7JtKm3atGnYunUrJk2ahNTUVBw7dgzff/+9cwHzhIQEJCcnY8KECdi+fTtSUlLw6KOPws/Pr0xdmzdvxuDBg2v0XJTmrl0VnROVsXr1arz99ttITU1FZmYmPvvsMyiK4kzuuYvj999/x9mzZ3Hx4kXn9mbNmuGee+7Bc889h8GDB6Nly5a10m7yPbt27ULPnj2dCdcpU6agZ8+ezosRLFmyBKNHj8bf//53JCQkYPjw4di5cydatWrlrENRFCxduhRjx46t9pXGmYwiIrpKrVZj0qRJeO2111x+sSMiIqKKrV27FtHR0YiOjkb//v2dV0sbOHAgAMeaOr///jtatWqFe+65B506dcL48eNhMpkQHBwMf39/HDlyBPfeey86dOiAxx9/HBMnTsSECRMAAPfeey+Sk5Nx6623IiIiAl999VWN4o2IiMDSpUuxYsUKdO7cGfPmzXOZogYArVu3xrfffouVK1eiW7dueP/9951X09PpdDU6fmW+8FXkscceQ0JCAvr06YOIiIgyo5KKde3aFb169cI333zj3KbVajFjxgx069YNN998M1QqFb7++usatWny5MmYMmUK/v73v6Nr165Yu3YtfvjhB7Rv3x6A429g3bp1yM3NRd++fXHffffhtttuw7vvvlvlNpXWrVs3/Pbbbzh69Chuuukm55frmJgYZ5klS5YgJiYGt9xyC+655x48/vjjiIyMdKln27ZtyMvLw3333Vej56I0d+2q6JyojNDQUKxcuRJ//vOf0alTJyxevBhfffUVrr/+erflX3nlFZw8eRJt27YtMxVx/PjxsFgseOSRR2rcXvJdAwcOhBCizK040a7RaPDyyy8jIyMDFosFWVlZWLlypct6cbIs4/Tp05gzZ06145BEdSYdExERERERNUFz5szB4sWLcfr0aW+HUiVr1qzBc889hwMHDkCWOSbBkxEjRqB79+54/vnnvR1Kvfv888/x7LPPIisrq8xi/0S1jQuYExERERERefDee++hb9++CA8Px5YtW/D66687p341JEOHDsWxY8dw9uxZxMbGejscn2SxWNC1a1c8++yz3g6lXhmNRpw7dw7z5s3DhAkTmIiiesGRUURERERERB48++yzWL58OXJzc9GqVSs8/PDDmDFjBtRq/q5PjcPs2bMxZ84c3Hzzzfj+++9druhIVFeYjCIiIiIiIiIionrDycJERERERERERFRvmIwiIiIiIiIiIqJ6w2QUERERERERERHVGyajiIiIiIiIiIio3jAZRURERERERERE9YbJKCIiIiIiIiIiqjdMRhERERERERERUb1hMoqIiIiIiIiIiOoNk1FERERERERERFRv/h9RL49019yX8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA05RJREFUeJzs3Xl8DPcbB/DP7J07ETkckbiCuEWp1H0TZ6mzFWe1qCNoqZ866ih1tlpUK47SuFVR9xUJSpQqKo6IIhJE7nt3fn/EbrOyid1Isgmf9+u1r1d2dmb2mdlNdvLs832+giiKIoiIiIiIiIiIiIqAxNwBEBERERERERHRm4PJKCIiIiIiIiIiKjJMRhERERERERERUZFhMoqIiIiIiIiIiIoMk1FERERERERERFRkmIwiIiIiIiIiIqIiw2QUEREREREREREVGSajiIiIiIiIiIioyDAZRURERERERERERYbJKKJsBEHAzJkzdffXrVsHQRBw9+5ds8VkjMGDB8PDw6PA9jdz5kwIglBg+9Py8PDA4MGDC3y/xc3NmzfRvn172NnZQRAE7N692+B7qWXLlmjZsmWRx5eYmAhnZ2ds2rSpyJ/7dfP06VNYWVlh//795g6FiMgo5vrsMUVBX9cUlRevIwtCcXm9PDw80KVLl5eud+LECQiCgBMnThTo8xfVtUtRXquW1Pe5Me7evQtBELBu3bpC2f+UKVPQuHHjQtk3FR0mo+iN8f3330MQBP7hKmQhISGYOXMmYmNjzR2K2fj5+eHKlSuYO3cuNm7ciIYNG5o7JD3Lly+HjY0N+vXrZ+5QdDQaDRYuXIiKFStCpVKhTp06+OWXX4ze/vDhw2jatCksLS3h4OCA3r17G0wip6amYv78+fDy8oKlpSXKlSuH9957D1evXs3XPh0dHTF8+HBMnz7d1EMmIjKK9ssM7U2lUsHT0xNjxoxBVFRUkcayefNmLFu2rEif801w7do1zJw5s9h/+WlOxfHahcxn/PjxuHz5Mvbs2WPuUOgVMBlFb4xNmzbBw8MDf/zxB27dumXUNh988AFSUlLg7u5eyNG9PkJCQjBr1iyDyagbN25gzZo1RR9UEUpJScGZM2cwbNgwjBkzBu+//z7Kly9fbN5LGRkZWL58OYYPHw6pVGrWWLKbNm0aPvvsM7Rr1w7ffvstKlSogAEDBiAwMPCl2+7duxcdO3ZEWloavvrqK0ycOBEnT55E06ZN8fjxY711Bw4ciC+++AItW7bEN998g5EjR+LUqVNo0qQJIiIi8rXPjz76CBcvXsSxY8cK5mQQERkwe/ZsbNy4EStWrICPjw9WrlyJJk2aIDk52aT9HDp0CIcOHcpXDEWVjFqzZg1u3LhR6M9TXFy7dg2zZs0ymIx6ldfLHJo3b46UlBQ0b968wPZZlNcub8K16uvA1dUV3bt3x6JFi8wdCr0CJqPojRAeHo6QkBAsWbIETk5ORpf4SqVSqFSqQhmy9iZSKpWQy+XmDsMkGo0GqampRq+vTVTY29vrLS8u76W9e/fi8ePH6NOnz0vXTUpKKoKIgAcPHmDx4sUYPXo0fvjhB4wYMQK//fYbmjVrhsmTJ0OtVue5/WeffYZKlSohODgYY8eOxf/+9z8cOXIEkZGR+Oqrr/SeZ+fOnRg/fjy+//57DB8+HF988QUCAwORkJCAnTt3mrxPAKhRowZq1apVaKXoREQA0KlTJ7z//vsYPnw41q1bh/HjxyM8PBy//vqrSftRKBRQKBSFFGXBkMvlUCqVZo1BFEWkpKSYNQagZLxe2UkkEqhUKkgkBfdvpinXLq/KmGvVoro+orz16dMHp0+fxp07d8wdCuUTk1H0Rti0aRMcHBzg6+uL3r17G52MMtTnR6PRYObMmShbtiwsLS3RqlUrXLt2LccYc+22wcHB8Pf3h5OTE6ysrNCzZ88clRUA8Pvvv6NZs2awsrKCjY0NfH19DQ4d2r17N2rVqgWVSoVatWph165dJp0LY58nu7zGfWfvjzBz5kxMnjwZAFCxYkXdkALt+TM0Dv/OnTt47733UKpUKVhaWuLtt9/Gvn379NbR9h/YunUr5s6di/Lly0OlUqFNmzZGVblpe2D9888/6NOnD2xtbeHo6Ihx48blSDQJgoAxY8Zg06ZNqFmzJpRKJQ4cOAAA+PPPP9GpUyfY2trC2toabdq0wdmzZ/WeR1v5NHnyZAiCoOsFYGz/sbS0NMyYMQNVqlSBUqmEm5sbPv30U6Slpemtpx1CZm9vD2tra1SrVg2ff/75S8/F7t274eHhgcqVK+stHzx4MKytrXH79m107twZNjY2GDhw4Ev3VxB+/fVXZGRkYNSoUbplgiDg448/xv3793HmzJlct42JicG1a9fQs2dPvYv1unXrokaNGnqVVQkJCQAAFxcXvX2UKVMGAGBhYWHyPrXatWuH3377DaIomnLoRET51rp1awBZX7gBQGZmJr788ktUrlwZSqUSHh4e+Pzzz3N8frzYg8jYz9iWLVti3759iIiI0H2+59XvJjY2FlKpFN98841u2ZMnTyCRSODo6Kj39/Ljjz+Gq6ur7r6hXjqBgYHw9vaGjY0NbG1tUbt2bSxfvjzHc44fPx5ubm5QKpWoUqUKFixYAI1Gk/fJxH89kQ4ePIiGDRvCwsICq1evfqX9RkREYNSoUahWrRosLCzg6OiI9957T+9aYN26dXjvvfcAAK1atdKdW23PJUM9o6KjozFs2DC4uLhApVKhbt26WL9+vd462mu3RYsW4YcfftC9L9566y2cP39eb91Hjx5hyJAhKF++PJRKJcqUKYPu3bsbvGY5ffo0GjVqBJVKhUqVKmHDhg16jxvqGdWyZUvUqlULoaGh8PHxgYWFBSpWrIhVq1blef60XnbtcufOHXTo0AFWVlYoW7YsZs+enePzeNGiRfDx8YGjoyMsLCzg7e2N7du353iu3K7nT548iVGjRsHZ2Rnly5fXPV4U1+8XLlxAhw4dULp0ad25Gzp0aL6OT3udu23bNnh5ecHCwgJNmjTBlStXAACrV69GlSpVoFKp0LJlyxzvgVd9Lf/55x/07t0bpUqVgkqlQsOGDXMMtcvIyMCsWbNQtWpVqFQqODo6omnTpjh8+LDeem3btgUAkxPyVHzIzB0AUVHYtGkT3n33XSgUCvTv3x8rV67E+fPn8dZbb5m8r6lTp2LhwoXo2rUrOnTogMuXL6NDhw65Vs988skncHBwwIwZM3D37l0sW7YMY8aMwZYtW3TrbNy4EX5+fujQoQMWLFiA5ORkrFy5Ek2bNsWff/6puyA7dOgQevXqBS8vL8yfPx9Pnz7VXTwYw9jnya93330XYWFh+OWXX7B06VKULl0aAODk5GRw/aioKPj4+CA5ORljx46Fo6Mj1q9fj27dumH79u3o2bOn3vpfffUVJBIJJk2ahLi4OCxcuBADBw7EuXPnjIqvT58+8PDwwPz583H27Fl88803ePbsWY4LqWPHjmHr1q0YM2YMSpcuDQ8PD1y9ehXNmjWDra0tPv30U8jlcqxevRotW7bEyZMn0bhxY7z77ruwt7fHhAkT0L9/f3Tu3BnW1tZGnz+NRoNu3brh9OnT+PDDD1GjRg1cuXIFS5cuRVhYGHbv3g0AuHr1Krp06YI6depg9uzZUCqVuHXrFoKDg1/6HCEhIWjQoIHBxzIzM9GhQwc0bdoUixYtgqWlZa77ycjIQFxcnFHHVapUqTy/If3zzz9hZWWFGjVq6C1v1KiR7vGmTZsa3Fb7T5Y2kZSdpaUlrl69ikePHsHV1RWVK1dG+fLlsXjxYlSrVg3169fHw4cP8emnn6JixYq6PhSm7FPL29sbS5cuxdWrV1GrVq28TgcRUYG4ffs2gKzedQAwfPhwrF+/Hr1798bEiRNx7tw5zJ8/H9evXzfqH9+XfcZOmzYNcXFxuH//PpYuXQoAeX7G2dvbo1atWjh16hTGjh0LICuRIQiCLulfs2ZNAEBQUBCaNWuW674OHz6M/v37o02bNliwYAEA4Pr16wgODsa4ceMAAMnJyWjRogUePHiAkSNHokKFCggJCcHUqVMRGRlp1PDCGzduoH///hg5ciRGjBiBatWqvdJ+z58/j5CQEPTr1w/ly5fH3bt3sXLlSrRs2RLXrl2DpaUlmjdvjrFjx+Kbb77B559/rvssfPEzUSslJQUtW7bErVu3MGbMGFSsWBHbtm3D4MGDERsbqzsfWps3b0ZCQgJGjhwJQRCwcOFCvPvuu7hz546uAqhXr164evUqPvnkE3h4eCA6OhqHDx/GvXv39K4Nb926hd69e2PYsGHw8/PD2rVrMXjwYHh7e+tey9w8e/YMnTt3Rp8+fdC/f39s3boVH3/8MRQKRY7EyovyunZRq9Xo2LEj3n77bSxcuBAHDhzAjBkzkJmZidmzZ+vWW758Obp164aBAwciPT0dgYGBeO+997B37174+vrm+fwAMGrUKDg5OeGLL77QVUYVxfV7dHQ02rdvDycnJ0yZMgX29va4e/euXjW3qccXFBSEPXv2YPTo0QCA+fPno0uXLvj000/x/fffY9SoUXj27BkWLlyIoUOH5mhDkN/X8urVq3jnnXdQrlw5TJkyBVZWVti6dSt69OiBHTt26K77Z86cifnz52P48OFo1KgR4uPjceHCBVy8eBHt2rXT7c/Ozg6VK1dGcHAwJkyY8NJzScWQSPSau3DhgghAPHz4sCiKoqjRaMTy5cuL48aNy7EuAHHGjBm6+wEBASIAMTw8XBRFUXz06JEok8nEHj166G03c+ZMEYDo5+eXY9u2bduKGo1Gt3zChAmiVCoVY2NjRVEUxYSEBNHe3l4cMWKE3j4fPXok2tnZ6S2vV6+eWKZMGd22oiiKhw4dEgGI7u7ueZ4HU55nxowZYvY/D+Hh4SIAMSAgIMd+XzxnX3/9td45y87d3V3vHI0fP14EIAYFBenFWbFiRdHDw0NUq9WiKIri8ePHRQBijRo1xLS0NN26y5cvFwGIV65cyfPYtcfTrVs3veWjRo0SAYiXL1/WOx6JRCJevXpVb90ePXqICoVCvH37tm7Zw4cPRRsbG7F58+a6Zdpz9fXXX+tt/+J7SRRFsUWLFmKLFi109zdu3ChKJBK98yGKorhq1SoRgBgcHCyKoiguXbpUBCA+fvw4z+N+UUZGhigIgjhx4sQcj/n5+YkAxClTphi1L+1rYszN0HshO19fX7FSpUo5liclJb00JrVaLdrb24tt2rTRW/7kyRPRyspKBCBeuHBBt/zcuXNi5cqV9eLz9vYWIyMj871PURTFkJAQEYC4ZcuWPI+ViMhU2s+PI0eOiI8fPxb//fdfMTAwUHR0dBQtLCzE+/fvi5cuXRIBiMOHD9fbdtKkSSIA8dixY7plL372mPIZ6+vr+9LrjexGjx4turi46O77+/uLzZs3F52dncWVK1eKoiiKT58+FQVBEJcvX65bz8/PT+95xo0bJ9ra2oqZmZm5PteXX34pWllZiWFhYXrLp0yZIkqlUvHevXt5xuru7i4CEA8cOJDv/b54TZScnJzjec6cOSMCEDds2KBbtm3bNhGAePz48Rzrv/h6LVu2TAQg/vzzz7pl6enpYpMmTURra2sxPj5eFMX/rkccHR3FmJgY3bq//vqrCED87bffRFEUxWfPnhm8bnmR9vycOnVKtyw6OlpUKpV61xXa91P2Y2nRooUIQFy8eLFuWVpamlivXj3R2dlZTE9Pz/V5jbl2+eSTT3TLNBqN6OvrKyoUCr3rpBdfi/T0dLFWrVpi69atcxynoev5pk2b6r3/iur6fdeuXSIA8fz583muZ+zxARCVSqXetdnq1atFAKKrq6vu/SOKojh16lSD167GvJaG/ndo06aNWLt2bTE1NVW3TKPRiD4+PmLVqlV1y+rWrSv6+vrmebxa7du3F2vUqGHUulT8cJgevfY2bdoEFxcXtGrVCkBWeWrfvn0RGBj40l40Lzp69CgyMzP1hhMBWdVPufnwww/1+gQ1a9YMarVa1yz58OHDiI2NRf/+/fHkyRPdTSqVonHjxjh+/DgAIDIyEpcuXYKfnx/s7Ox0+2vXrh28vLxeGruxz1OU9u/fj0aNGulVvVhbW+PDDz/E3bt3ce3aNb31hwwZojdsSvstqrFjxbXfAGlpX7f9+/frLW/RooXeOVWr1Th06BB69OiBSpUq6ZaXKVMGAwYMwOnTpxEfH29UDHnZtm0batSogerVq+u9RtqhGNrXSNuP6tdffzVq6IFWTEwMRFGEg4NDrut8/PHHRu2rbt26OHz4sFG37BVEhqSkpBjsDaJSqXSP50YikWDkyJE4evQopk6dips3byI0NBR9+vRBenp6ju0dHBxQr149TJkyBbt378aiRYtw9+5dvPfee7rqRlP3qd0vkDUEhYioMLRt2xZOTk5wc3NDv379YG1tjV27dqFcuXK6zzF/f3+9bSZOnAgAOYa/G/Kqn7GGNGvWDFFRUbpm5EFBQWjevDmaNWuGoKAgAFnVUqIo5lkZZW9vj6SkpBzDdLLbtm0bmjVrBgcHB73P0LZt20KtVuPUqVMvjbdixYro0KFDge03e4VtRkYGnj59iipVqsDe3h4XL158aTyG7N+/H66urujfv79umVwux9ixY5GYmIiTJ0/qrd+3b1+9z/0XX1cLCwsoFAqcOHECz549y/O5vby89F4nJycnVKtWzaj3iEwmw8iRI3X3FQoFRo4ciejoaISGhua6nTHXLmPGjNH9rB2Glp6ejiNHjuiWZ38tnj17hri4ODRr1szo12HEiBF6zdOL6vpde823d+9eZGRk5LqeKcfXpk0bvYo37UzjvXr1go2NTY7lL76++XktY2JicOzYMfTp0wcJCQm68/X06VN06NABN2/exIMHD3THfPXqVdy8eTPX49XS/l5SycRhevRaU6vVCAwMRKtWrXQ9FYCsP66LFy/G0aNH0b59e6P3p00gValSRW95qVKlcv2QrFChgt597XraD3ztH1ptwuFFtra2es9dtWrVHOtUq1btpR+mxj5PUYqIiNB90GWnLU2PiIjQG/L0snP5Mi+eu8qVK0MikeQYD1+xYkW9+48fP0ZycjKqVatmMFaNRoN///33pSXqL3Pz5k1cv34912GN0dHRALIuLH/88UcMHz4cU6ZMQZs2bfDuu++id+/eRjUMFXPpaySTyYwe8ung4KAbq/+qLCwscvQ0AaBLDhkaLpfd7Nmz8eTJEyxcuFDXXLx9+/YYNmwYVq1apRtGor0wmzx5su4fNABo2LAhWrZsiYCAAF0yzth9amnPqbkb1BMVlFOnTuHrr79GaGgoIiMjsWvXLvTo0cOkfRw8eBAzZszA1atXoVKp0Lx5cyxevPiVh4S/qb777jt4enpCJpPBxcUF1apV0/3Nj4iIgEQiyXF94urqCnt7e73ZQnPzKp+xjx490rtvZ2cHCwsLXeIiKCgI5cuXx59//ok5c+bAyclJNwtWUFAQbG1tUbdu3Vz3P2rUKGzduhWdOnVCuXLl0L59e/Tp0wcdO3bUrXPz5k389ddfL/0MzcuLn/+vut+UlBTMnz8fAQEBePDggd7nr7FD3V8UERGBqlWr5vi8z37tlN3LXlelUokFCxZg4sSJcHFxwdtvv40uXbpg0KBBOb5MenFf2v0Z8x4pW7YsrKys9JZ5enoCyOpv9fbbb+e5fW7XLhKJRO+Lwhf3q7V3717MmTMHly5d0rvmMPZz+8X3RlFdv7do0QK9evXCrFmzsHTpUrRs2RI9evTAgAED9L7IM+X4XnwdtUkyNzc3g8tffH3z81reunULoihi+vTpmD59usFjjY6ORrly5TB79mx0794dnp6eqFWrFjp27IgPPvgAderUybGNKIq89irBmIyi19qxY8cQGRmJwMBAg02HN23aZFIyKj9ym4JW+6GqrWzZuHGjwQoSmaxgfk1f5Xly+yNvamXZq3rZuTRVbsf1suRHYdFoNKhduzaWLFli8HHtRYKFhQVOnTqF48ePY9++fThw4AC2bNmC1q1b49ChQ7mep1KlSkEQhFwvGpVKpdGz36SnpyMmJsaodZ2cnPKcirlMmTI4fvx4jguKyMhIAFkXPXlRKBT48ccfMXfuXISFhcHFxQWenp4YMGCA3j9nO3bsQFRUFLp166a3fYsWLWBra4vg4GBdMsrYfWppz6m2TxpRSZeUlIS6deti6NChePfdd03ePjw8HN27d4e/vz82bdqEuLg4TJgwAe+++26+K0LedI0aNULDhg3zXOdV/il7lc9Y7UQQWgEBARg8eDDKli2LihUr4tSpU/Dw8IAoimjSpAmcnJwwbtw4REREICgoCD4+Pnl+/jg7O+PSpUs4ePAgfv/9d/z+++8ICAjAoEGDdI27NRoN2rVrh08//dTgPrT/LOfF0Of/q+z3k08+QUBAAMaPH48mTZrAzs4OgiCgX79+JlU2vwpjXtfx48eja9eu2L17Nw4ePIjp06dj/vz5OHbsGOrXr2/Svgray65djBEUFIRu3bqhefPm+P7771GmTBnI5XIEBARg8+bNRu3jxfdGUV2/C4KA7du34+zZs/jtt99w8OBBDB06FIsXL8bZs2dhbW1t8vHl9joW5uurPV+TJk3KUX2opb22at68OW7fvo1ff/0Vhw4dwo8//oilS5di1apVGD58uN42z54947VXCcZkFL3WNm3aBGdnZ3z33Xc5Htu5cyd27dqFVatWGZ180M6UduvWLb1vSJ4+fZrvD0ntzCDOzs55Vppon9tQyaq2/L0gnscQ7bdosbGxessNfdNqyoWwu7u7wdj/+ecf3eMF6ebNm3qv261bt6DRaF76Lb2TkxMsLS1zjVUikeT4Nik/KleujMuXL6NNmzYvPY8SiQRt2rRBmzZtsGTJEsybNw/Tpk3D8ePHc319ZTIZKleurFclmF8hISG6oa8vEx4enuc5rlevHn788Udcv35dr2Rd2zS3Xr16Rj2Pi4uLbqY8tVqNEydOoHHjxroqpqioKN1j2YmiCLVajczMTJP3mf0YgdwbzhKVNJ06dUKnTp1yfTwtLQ3Tpk3DL7/8gtjYWNSqVQsLFizQzfoVGhoKtVqNOXPm6JIMkyZNQvfu3ZGRkfHSqdPJNO7u7tBoNLh586be36GoqCjExsYW2Odpbp9NLw6fy14p3KxZM5w6dQoVK1ZEvXr1YGNjg7p168LOzg4HDhzAxYsXMWvWrJc+t0KhQNeuXdG1a1doNBqMGjUKq1evxvTp01GlShVUrlwZiYmJBVa1q/Uq+92+fTv8/PywePFi3bLU1NQc11OmXjv99ddf0Gg0egm8V712qly5MiZOnIiJEyfi5s2bqFevHhYvXoyff/45X/t70cOHD5GUlKRXURMWFgYAeV4jvOzaRaPR4M6dO3pJwRf3u2PHDqhUKhw8eFCvmiggICC/h1Nk1+9ab7/9Nt5++23MnTsXmzdvxsCBAxEYGIjhw4cXyvHlJT+vpbZ6TS6XG/W7VKpUKQwZMgRDhgxBYmIimjdvjpkzZ+ZIRoWHh+dZVUnFG3tG0WsrJSUFO3fuRJcuXdC7d+8ctzFjxiAhISHHdKJ5adOmDWQyGVauXKm3fMWKFfmOs0OHDrC1tcW8efMMjgV//PgxgKxvHevVq4f169frlXYfPnw4R2+lV3keQ2xtbVG6dOkcfRG+//77HOtqP5hevNAypHPnzvjjjz9w5swZ3bKkpCT88MMP8PDwMGosvSleTEp+++23AJDnP1xA1jdF7du3x6+//qpX8h0VFYXNmzejadOmBTLMsU+fPnjw4AHWrFmT47GUlBTd7C2GKpK0CRtDw92ya9KkCS5cuPDKsRZkz6ju3btDLpfrvZ9EUcSqVatQrlw5+Pj46JZHRkbin3/+ybNvApA1xXFkZKTecDztheqLVZJ79uxBUlKS3re/xu5TKzQ0FHZ2dq88VJOopBgzZgzOnDmDwMBA/PXXX3jvvffQsWNH3T9c3t7ekEgkCAgIgFqtRlxcHDZu3Ii2bdsyEVUIOnfuDAA5ZnbTVtoaM1uYMaysrAwOL2vbtq3eLXulVLNmzXD37l1s2bJFN2xPIpHAx8cHS5YsQUZGRp79ooCsL/2yk0gkuiE72s+9Pn364MyZMzh48GCO7WNjYw1+4WCMV9mvVCrNUVXy7bff5vhSxNRrp0ePHunNypyZmYlvv/0W1tbWaNGixUv3kV1ycnKOGaErV64MGxubl15TmCIzMxOrV6/W3U9PT8fq1avh5OQEb2/vPLd92bVL9utwURSxYsUKyOVytGnTBkDW6yAIgt55v3v3rm6W4vwoquv3Z8+e5XgPvXjNVxjHl5f8vJbOzs5o2bIlVq9erat8zy77/yEv/r5bW1ujSpUqOd6PcXFxuH37tt51IpUsrIyi19aePXuQkJCQY0iO1ttvvw0nJyds2rQJffv2NWqfLi4uGDduHBYvXoxu3bqhY8eOuHz5Mn7//XeULl06X+Xxtra2WLlyJT744AM0aNAA/fr1g5OTE+7du4d9+/bhnXfe0X3Izp8/H76+vmjatCmGDh2KmJgYfPvtt6hZsyYSExML7HkMGT58OL766isMHz4cDRs2xKlTp3TfgmSn/RCaNm0a+vXrB7lcjq5du+YYWw4AU6ZMwS+//IJOnTph7NixKFWqFNavX4/w8HDs2LHD6CFjxgoPD9e9bmfOnMHPP/+MAQMGGPWNypw5c3D48GE0bdoUo0aNgkwmw+rVq5GWloaFCxcWSHwffPABtm7dio8++gjHjx/HO++8A7VajX/++Qdbt27FwYMH0bBhQ8yePRunTp2Cr68v3N3dER0dje+//x7ly5fXawZvSPfu3bFx40aEhYUZNWQhNwXZM6p8+fIYP348vv76a2RkZOCtt97C7t27ERQUhE2bNumVjU+dOlX3HtF++/bzzz9jx44daN68OaytrXHkyBFs3boVw4cPR69evXTbdu3aFTVr1sTs2bMRERGBt99+G7du3cKKFStQpkwZDBs2TLeusfvUOnz4MLp27cq+BfRGuHfvHgICAnDv3j3dMNpJkybhwIEDCAgIwLx581CxYkUcOnQIffr0wciRI6FWq9GkSZMcE0ZQwahbty78/Pzwww8/IDY2Fi1atMAff/yB9evXo0ePHkZXsr6Mt7c3tmzZAn9/f7z11luwtrZG165d89xGm2i6ceMG5s2bp1vevHlz/P7771AqlXjrrbfy3Mfw4cMRExOD1q1bo3z58oiIiMC3336LevXq6SrBJk+ejD179qBLly4YPHgwvL29kZSUhCtXrmD79u24e/duvobzvMp+u3Tpgo0bN8LOzg5eXl44c+YMjhw5AkdHR7316tWrB6lUigULFiAuLg5KpRKtW7eGs7Nzjn1++OGHWL16NQYPHozQ0FB4eHhg+/btCA4OxrJly/QaUBsjLCwMbdq0QZ8+feDl5QWZTIZdu3YhKioK/fr1M2lfeSlbtiwWLFiAu3fvwtPTE1u2bMGlS5fwww8/vDRBnde1i0qlwoEDB+Dn54fGjRvj999/x759+/D555/r+nz5+vpiyZIl6NixIwYMGIDo6Gh89913qFKlCv766698HU9RXb+vX78e33//PXr27InKlSsjISEBa9asga2trS4JXRjHl5f8vpbfffcdmjZtitq1a2PEiBGoVKkSoqKicObMGdy/fx+XL18GkNUov2XLlvD29kapUqVw4cIFbN++Xa9RPQAcOXIEoiiie/fuBX6MVESKcOY+oiLVtWtXUaVSiUlJSbmuM3jwYFEul4tPnjwRRTHnlLza6VyzT2mamZkpTp8+XXR1dRUtLCzE1q1bi9evXxcdHR3Fjz76KMe2L07FamjKW+3yDh06iHZ2dqJKpRIrV64sDh48OMcU8jt27BBr1KghKpVK0cvLS9y5c2eOKZDzYszzzJgxQ3zxz0NycrI4bNgw0c7OTrSxsRH79OkjRkdH5zhnopg1DXK5cuVEiUSid/5enC5XFEXx9u3bYu/evUV7e3tRpVKJjRo1Evfu3WvwnG3btk1vuaFpYw3RHs+1a9fE3r17izY2NqKDg4M4ZswYMSUlRW9dAOLo0aMN7ufixYtihw4dRGtra9HS0lJs1aqVGBISYjCmF6dINvReenG6ZlHMmop3wYIFYs2aNUWlUik6ODiI3t7e4qxZs8S4uDhRFEXx6NGjYvfu3cWyZcuKCoVCLFu2rNi/f/8c004bkpaWJpYuXVr88ssv9Zb7+fmJVlZWL92+sKjVanHevHmiu7u7qFAoxJo1a+pNW62lncY5+3k8d+6c2Lx5c9HBwUFUqVRi3bp1xVWrVokajSbH9jExMeKECRNET09PUalUiqVLlxb79esn3rlzR289U/Z5/fp13bTrRK8jAOKuXbt09/fu3SsCEK2srPRuMplM7NOnjyiKohgZGSlWrVpVnDx5snjx4kXx5MmTYosWLcQ2bdoY/D2i3OV2PfGijIwMcdasWWLFihVFuVwuurm5iVOnTtWbRl0Uc372mPIZm5iYKA4YMEC0t7c3alp6LWdnZxGAGBUVpVt2+vRpEYDYrFmzHOu/eF2zfft2sX379qKzs7OoUCjEChUqiCNHjhQjIyP1tktISBCnTp0qVqlSRVQoFGLp0qVFHx8fcdGiRbop53Pj7u6e63Tyxu73xWuiZ8+eiUOGDBFLly4tWltbix06dBD/+ecfg9dDa9asEStVqiRKpVK960RD1wpRUVG6/SoUCrF27do5roVyux55Mc4nT56Io0ePFqtXry5aWVmJdnZ2YuPGjcWtW7cadX5yez9lv85t0aKFWLNmTfHChQtikyZNRJVKJbq7u4srVqzIsT9DXnbtcvv2bbF9+/aipaWl6OLiIs6YMUNUq9V66/70009i1apVRaVSKVavXl0MCAgweL374mvzst+/wr5+v3jxoti/f3+xQoUKolKpFJ2dncUuXbrk2L+xx2foOje394qhvw3Gvpa5XaPfvn1bHDRokOjq6irK5XKxXLlyYpcuXcTt27fr1pkzZ47YqFEj0d7eXrSwsBCrV68uzp07N8fvcN++fcWmTZvmef6oeBNEsRA7zhG9IWJjY+Hg4IA5c+Zg2rRp5g6HXjBz5kzMmjULjx8/ZpNDAF9++SUCAgJw8+bNPBuLk3HGjx+PU6dOITQ0lJVR9FoSBEFvNr0tW7Zg4MCBuHr1ao6/IdbW1nB1dcX06dNx4MABnD9/XvfY/fv34ebmhjNnzrx05iwien20bNkST548wd9//53vfRi6dhk8eDC2b9/+0uoiKjgF8VoWhEePHqFixYoIDAxkZVQJxp5RRCZKSUnJsUzbo0HbuJWoOJswYQISExMNzjBJpnn69Cl+/PFHzJkzh4koemPUr18farUa0dHRqFKlit5N2yMuOTk5x1Br7T+QRTWLGBG9PnjtQtktW7YMtWvXZiKqhGPPKCITbdmyBevWrUPnzp1hbW2N06dP45dffkH79u3xzjvvmDs8opeytrZGdHS0ucN4LTg6OvIbWXotJSYm4tatW7r74eHhuHTpEkqVKgVPT08MHDgQgwYNwuLFi1G/fn08fvwYR48eRZ06deDr6wtfX18sXboUs2fPRv/+/ZGQkIDPP/8c7u7uL50sgIjoRbx2oey++uorc4dABYDJKCIT1alTBzKZDAsXLkR8fLyuqfmcOXPMHRoREVGBuHDhgl7Ta39/fwCAn58f1q1bh4CAAMyZMwcTJ07EgwcPULp0abz99tvo0qULAKB169bYvHkzFi5ciIULF8LS0hJNmjTBgQMHYGFhYZZjIiIiouKDPaOIiIiIiIiIiKjIsGcUEREREREREREVGSajiIiIiIiIiIioyLxxPaM0Gg0ePnwIGxsbznxEREREJhNFEQkJCShbtmyOGeNKOl4nERERUX6Zco30xiWjHj58CDc3N3OHQURERCXcv//+i/Lly5s7jALF6yQiIiJ6VcZcI71xySgbGxsAWSfH1tbWzNEQERFRSRMfHw83NzfdNcXrhNdJRERElF+mXCO9cckobcm5ra0tL7KIiIgo317HYWy8TiIiIqJXZcw10uvV6ICIiIiIiIiIiIo1JqOIiIiIiIiIiKjIMBlFRERERERERERF5o3rGUVEr06tViMjI8PcYRARFQq5XA6pVGruMIiIiIheW0xGEZHRRFHEo0ePEBsba+5QiIgKlb29PVxdXV/LJuVERERE5sZkFBEZTZuIcnZ2hqWlJf9JI6LXjiiKSE5ORnR0NACgTJkyZo6IiIiI6PXDZBQRGUWtVusSUY6OjuYOh4io0FhYWAAAoqOj4ezszCF7REREVOJpNCLCohMQl5wBO0s5PJ1tIJGYr7jArA3MT506ha5du6Js2bIQBAG7d+9+6TYnTpxAgwYNoFQqUaVKFaxbt67Q4yQi6HpEWVpamjkSIqLCp/1bx/54REREVNKFRsRg/JZL8N9yGdN2XYH/lssYv+USQiNizBaTWZNRSUlJqFu3Lr777juj1g8PD4evry9atWqFS5cuYfz48Rg+fDgOHjxYyJESkRaH5hHRm4B/64iIiOh1EBoRg7n7ruPvB3GwVclQ3sEStioZrj6Mw9x9182WkDLrML1OnTqhU6dORq+/atUqVKxYEYsXLwYA1KhRA6dPn8bSpUvRoUOHwgqTiIiIiIiIiKhE0WhErA+JQGxyBjwc/+v5a6WUwVIhRURMMjaERKC+m0ORD9kza2WUqc6cOYO2bdvqLevQoQPOnDmT6zZpaWmIj4/XuxHlV6ZagwPr5uDvec0RE/PU3OFQCePh4YFly5aZOwwAwA8//AA3NzdIJJJiE5O5paeno0qVKggJCTF3KPli7HB3U7Vs2RLjx48v8P2a06pVq9C1a1dzh0FERERUqMKiE3ArOhHONsocVd+CIMDJWomb0YkIi04o8thKVDLq0aNHcHFx0Vvm4uKC+Ph4pKSkGNxm/vz5sLOz093c3NyKIlR6TX26/S9UuLMVtdIvI+TYb+YOh4w0ePBgCIKAjz76KMdjo0ePhiAIGDx4sG7Z48eP8fHHH6NChQpQKpVwdXVFhw4dEBwcDACIiYnBJ598gmrVqsHCwgIVKlTA2LFjERcXV1SHZNC6detgb2//0vXi4+MxZswYfPbZZ3jw4AE+/PDDwg/OTGbOnIl69eoZta62+tbHx6dwg3pFphwTGTZ06FBcvHgRQUFB5g6FiIiIqNDEJWcgPVMNldzwZCwquRTpmWrEJRd9j8wSlYzKj6lTpyIuLk53+/fff80dEpVguy89gAJZv6h/3HwAURTNHBEZy83NDYGBgXqJ69TUVGzevBkVKlTQW7dXr174888/sX79eoSFhWHPnj1o2bIlnj7NqoZ7+PAhHj58iEWLFuHvv//GunXrcODAAQwbNqxIjym/7t27h4yMDPj6+qJMmTIGm9Knp6ebITLzEUURK1asKDGv4ZuoIN+TCoUCAwYMwDfffFNg+yQiIiIqbuws5VDIpEjNUBt8PDVDDYVMCjtLeRFHVsKSUa6uroiKitJbFhUVBVtbW900zC9SKpWwtbXVuxHll0YEZMj6RU5MiMe5cPPNPkCmadCgAdzc3LBz507dsp07d6JChQqoX7++bllsbCyCgoKwYMECtGrVCu7u7mjUqBGmTp2Kbt26AQBq1aqFHTt2oGvXrqhcuTJat26NuXPn4rfffkNmZmaecSQkJKB///6wsrJCuXLlckzgEBsbi+HDh8PJyQm2trZo3bo1Ll++rHv88uXLaNWqFWxsbGBrawtvb29cuHABJ06cwJAhQxAXFwdBECAIAmbOnJnj+detW4fatWsDACpVqgRBEHD37l1dtc2PP/6IihUrQqVSAQAOHDiApk2bwt7eHo6OjujSpQtu376tt8+QkBDUq1cPKpUKDRs2xO7duyEIAi5dugQgaxZUQRBw8OBB1K9fHxYWFmjdujWio6Px+++/o0aNGrC1tcWAAQOQnJys269Go8H8+fNRsWJFWFhYoG7duti+fbvuce1+jx49ioYNG8LS0hI+Pj64ceOG7lhnzZqFy5cv685JbjOwhoaG4vbt2/D19dUtS09Px5gxY1CmTBmoVCq4u7tj/vz5uscFQcDq1avRpUsXWFpaokaNGjhz5gxu3bqFli1bwsrKCj4+PjnO18qVK1G5cmUoFApUq1YNGzdu1Hv83r176N69O6ytrWFra4s+ffroPvtedkxPnjxBz549YWlpiapVq2LPnj16+/7777/RqVMnWFtbw8XFBR988AGePHmiezwpKQmDBg2CtbU1ypQpo+vRaIq7d+9CEATs3LkTrVq1gqWlJerWrZtjSP2OHTtQs2ZNKJVKeHh45HguDw8PfPnllxg0aBBsbW3x4Ycf6qr/9u7di2rVqsHS0hK9e/dGcnIy1q9fDw8PDzg4OGDs2LFQqw1fdGl17doVe/bsybWymoiIiKik83S2QRVnazxOTMtRSCGKIh4npqGqszU8nW2KPLYSlYxq0qQJjh49qrfs8OHDaNKkiZkiojeRXMhKNqiEDFz6N9a8wZiZKIpITs80yy0/VWlDhw5FQECA7v7atWsxZMgQvXWsra1hbW2N3bt3Iy0tzeh9x8XFwdbWFjJZ3vNCfP3116hbty7+/PNPTJkyBePGjcPhw4d1j7/33nu6JE1oaCgaNGiANm3aICYmK/E5cOBAlC9fHufPn0doaCimTJkCuVwOHx8fLFu2DLa2toiMjERkZCQmTZqU4/n79u2LI0eOAAD++OMPREZG6oYv37p1Czt27MDOnTt1iaSkpCT4+/vjwoULOHr0KCQSCXr27AmNRgMga8hf165dUbt2bVy8eBFffvklPvvsM4PHPnPmTKxYsQIhISH4999/0adPHyxbtgybN2/Gvn37cOjQIXz77be69efPn48NGzZg1apVuHr1KiZMmID3338fJ0+e1NvvtGnTsHjxYly4cAEymQxDhw7VHevEiRNRs2ZN3Tnp27evwdiCgoLg6ekJG5v/Poi/+eYb7NmzB1u3bsWNGzewadMmeHh46G2nTZZcunQJ1atXx4ABAzBy5EhMnToVFy5cgCiKGDNmjG79Xbt2Ydy4cZg4cSL+/vtvjBw5EkOGDMHx48cBZCXgunfvjpiYGJw8eRKHDx/GnTt3dHG/7JhmzZqFPn364K+//kLnzp0xcOBA3XsnNjYWrVu3Rv369XHhwgUcOHAAUVFR6NOnj277yZMn4+TJk/j1119x6NAhnDhxAhcvXjR4zl5m2rRpmDRpEi5dugRPT0/0799fl6wNDQ1Fnz590K9fP1y5cgUzZ87E9OnTcyQLFy1apPt9mT59OgAgOTkZ33zzDQIDA3HgwAGcOHECPXv2xP79+7F//35s3LgRq1ev1ktcGtKwYUNkZmbi3Llz+To+IiIiouJOIhHg5+MOOws5ImKSkZSWCbVGRFJaJiJikmFnIccgH/cib14OmHk2vcTERNy6dUt3Pzw8HJcuXUKpUqVQoUIFTJ06FQ8ePMCGDRsAAB999BFWrFiBTz/9FEOHDsWxY8ewdetW7Nu3z1yHQG8gBbL+mbJAGt70UXopGWp4fXHQLM99bXYHWCpM+xP2/vvvY+rUqYiIiAAABAcHIzAwECdOnNCtI5PJsG7dOowYMQKrVq1CgwYN0KJFC/Tr1w916tQxuN8nT57gyy+/NKr30jvvvIMpU6YAADw9PREcHIylS5eiXbt2OH36NP744w9ER0dDqVQCyPpnfPfu3di+fTs+/PBD3Lt3D5MnT0b16tUBAFWrVtXt287ODoIgwNXVNdfnt7CwgKOjIwDAyclJb9309HRs2LABTk5OumW9evXS237t2rVwcnLCtWvXUKtWLWzevBmCIGDNmjVQqVTw8vLCgwcPMGLEiBzPPWfOHLzzzjsAgGHDhmHq1Km4ffs2KlWqBADo3bs3jh8/js8++wxpaWmYN28ejhw5ovvCoVKlSjh9+jRWr16NFi1a6PY7d+5c3f0pU6bA19cXqampsLCwgLW1NWQyWZ7nBAAiIiJQtmxZvWX37t1D1apV0bRpUwiCAHd39xzbDRkyRJfM+eyzz9CkSRNMnz5dN8PruHHj9BKeixYtwuDBgzFq1CgAgL+/P86ePYtFixahVatWOHr0KK5cuYLw8HBdknDDhg2oWbMmzp8/j7feeivPYxo8eDD69+8PAJg3bx6++eYb/PHHH+jYsSNWrFiB+vXrY968ebr1165dCzc3N4SFhaFs2bL46aef8PPPP6NNmzYAgPXr16N8+fJ5nrvcTJo0SVdpNmvWLNSsWRO3bt1C9erVsWTJErRp00aXYPL09MS1a9fw9ddf6/Vva926NSZOnKi7HxQUhIyMDF11GZD1vtm4cSOioqJgbW0NLy8vtGrVCsePH881+QgAlpaWsLOz0/09ICIiInodebuXwjTfGlgfEoFb0Yl4kpgGhUyKWmXtMMjHHd7upcwSl1kroy5cuID69evrhsj4+/ujfv36+OKLLwAAkZGRuHfvnm79ihUrYt++fTh8+DDq1q2LxYsX48cff9Rd9BMVBfnzZJQKb1ZPndeBk5MTfH19sW7dOgQEBMDX1xelS5fOsV6vXr3w8OFD7NmzBx07dsSJEyfQoEEDg0O84uPj4evrCy8vL4PD4l70YiVnkyZNcP36dQBZQ/ASExPh6Oioq9CytrZGeHi4bqiXv78/hg8fjrZt2+Krr77KMQTsVbi7u+slogDg5s2b6N+/PypVqgRbW1tdZZD2b/ONGzdQp04d3bA+AGjUqJHB/WdP5rm4uMDS0lKXiNIui46OBpBVpZWcnIx27drpnYsNGzbkOObs+y1TpgwA6PZjrJSUFL1jALISO5cuXUK1atUwduxYHDp06KXHBEA3DFK7LDU1VTeT6/Xr13UJOa133nlH9x64fv063Nzc9Cbb8PLygr29vW6dvGSPx8rKCra2trpzcfnyZRw/flzvfGqTmrdv38bt27eRnp6Oxo0b6/ZRqlQpVKtW7aXP+7JYXnxdcjsPN2/e1Bte17Bhwxz7tbS01CWigKxz7OHhAWtra71lxrwHLCws9IaGlnQzZ87UDd/U3rSvMREREb25vN1LYVnfeljSty7m9qyNJX3rYmnfemZLRAFmroxq2bJlnkNtDP3j17JlS/z555+FGBVR3rTJKAvB+CFcrysLuRTXZpsnGWyRy4wQLzN06FDdsKkX+zVlp1Kp0K5dO7Rr1w7Tp0/H8OHDMWPGDL2qjYSEBHTs2BE2NjbYtWsX5PJXa/yXmJiIMmXK6FVqaWlnyZs5cyYGDBiAffv24ffff8eMGTMQGBiInj17vtJzA1nJixd17doV7u7uWLNmDcqWLQuNRoNatWrlq5l09vMjCEKO8yUIgm74X2JiIgBg3759KFeunN562qqx3PYLQLcfY5UuXRpXrlzRW9agQQOEh4fj999/x5EjR9CnTx+0bdtWb/iXoecuiHjy62XntGvXrliwYEGO7cqUKaNXqVzQseT3PBh6Txo6xryOOy8xMTE5ErAlXc2aNXVDcQG8dOgwERERvRkkEgHVXYtPD21eoRCZKHtlVNFPgFm8CIJg8lA5c+vYsSPS09MhCIJJVZVeXl7YvXu37n58fDw6dOgApVKJPXv25Kiqyc3Zs2dz3K9RowaArOTHo0ePIJPJcvQmys7T0xOenp6YMGEC+vfvj4CAAPTs2RMKheKlTZtN8fTpU9y4cQNr1qxBs2bNAACnT5/WW6datWr4+eefkZaWpksSnT9//pWf28vLC0qlEvfu3dMbkmcqY89J/fr1sXLlSoiiqEucAICtrS369u2Lvn37onfv3ujYsSNiYmJQqlT+vkWqUaMGgoOD4efnp1sWHBwMLy8v3eP//vsv/v33X1111LVr1xAbG6tbJ7+vc4MGDbBjxw54eHgYTFBUrlwZcrkc586d080w+ezZM4SFhb3Sa2CI9jxkFxwcDE9PT0il+Us0m+r27dtITU3Vm8DgdWDMsFQiIiIicytRDcyJzE+EQsj6J9CCw/RKJKlUiuvXr+PatWsG/+l9+vQpWrdujZ9//hl//fUXwsPDsW3bNixcuBDdu3cHkJWIat++PZKSkvDTTz8hPj4ejx49wqNHj16aJAgODsbChQsRFhaG7777Dtu2bcO4ceMAAG3btkWTJk3Qo0cPHDp0CHfv3kVISAimTZuGCxcuICUlBWPGjMGJEycQERGB4OBgnD9/XpfM8vDwQGJiIo4ePYonT5688vAjBwcHODo64ocffsCtW7dw7Ngx+Pv7660zYMAAaDQafPjhh7h+/ToOHjyIRYsWAYBeUsdUNjY2mDRpEiZMmID169fj9u3buHjxIr799lusX7/e6P14eHjo+hE+efIk16b0rVq1QmJiIq5evapbtmTJEvzyyy/4559/EBYWhm3btsHV1VVXpZYfkydPxrp167By5UrcvHkTS5Yswc6dO3XN5tu2bYvatWtj4MCBuHjxIv744w8MGjQILVq00A1ZM/aYXjR69GjExMSgf//+OH/+PG7fvo2DBw9iyJAhUKvVsLa2xrBhwzB58mQcO3YMf//9NwYPHgyJpOAvFSZOnIijR4/iyy+/RFhYGNavX48VK1YYbLpfEKZOnYpBgwbpLQsKCkKlSpX0hvy9Dm7evImyZcuiUqVKGDhwoF67A0PS0tIQHx+vdyMiIiIqbExGEZlAjv8SDSoO0yuxbG1tYWtruETV2toajRs3xtKlS9G8eXPUqlUL06dPx4gRI7BixQoAwMWLF3Hu3DlcuXIFVapUQZkyZXS3f//9N8/nnjhxoq5f3pw5c7BkyRJdhZYgCNi/fz+aN2+OIUOGwNPTE/369UNERARcXFwglUrx9OlTDBo0CJ6enujTpw86deqEWbNmAQB8fHzw0UcfoW/fvnBycsLChQtf6TxJJBIEBgYiNDQUtWrVwoQJE/D111/nOJe//fYbLl26hHr16mHatGm6vn/GVovl5ssvv8T06dMxf/581KhRAx07dsS+fftQsWJFo/fRq1cvdOzYEa1atYKTkxN++eUXg+s5OjqiZ8+e2LRpk26ZjY0NFi5ciIYNG+Ktt97C3bt3sX///ldKzvTo0QPLly/HokWLULNmTaxevRoBAQFo2bIlgKz3wK+//goHBwc0b94cbdu2RaVKlbBlyxaTj+lFZcuWRXBwMNRqNdq3b4/atWtj/PjxsLe31x3T119/jWbNmqFr165o27YtmjZtCm9vb739zJw5M8/KPWM0aNAAW7duRWBgIGrVqoUvvvgCs2fP1hsGW5Be7EEJAL/88ovBRvslWePGjbFu3TocOHAAK1euRHh4OJo1a4aEhIRct5k/fz7s7Ox0t+z9yoiIiIgKiyDmZ370Eiw+Ph52dna6adiJTOE1ZQeuqbKmjd+vboS7bVZiVMsqZo6qaKSmpiI8PBwVK1Z85SQDvd42bdqEIUOGIC4uDhYWFuYOx2h//fUX2rVrh9u3b+s1wyZ9fn5+EATBYF/HkuLq1ato3bo1wsLCYGdnZ3CdvP7mlZRridjYWLi7u2PJkiUYNmyYwXXS0tL0quvi4+Ph5uZW7I+NiIiIih9TrpFKVrMXIjPT9osCOJsekdaGDRtQqVIllCtXDpcvX8Znn32GPn36lKhEFJA1+9uCBQsQHh6uNyMe/UcURZw4cSJH77CSJjIyEhs2bMg1EfW6sLe3h6enZ57N6ZVKZY5JAYiIiIgKG5NRRCZQZEtGsWcUUZZHjx7hiy++wKNHj1CmTBm89957mDt3rrnDypfCGib2uhAEAREREeYO45W1bdvW3CEUicTERNy+fRsffPCBuUMhIiIi0sNkFJEJsldGWbBnFBEA4NNPP8Wnn35q7jCI3niTJk1C165d4e7ujocPH2LGjBmQSqXo37+/uUMjIiIi0sNkFJEJZEK2BuasjCIiomLk/v376N+/P54+fQonJyc0bdoUZ8+ehZOTk7lDIyIiItLDZBSRCdgzioiIiqvAwEBzh0BERERklPzPT030BlJwmB4RERERERHRK2EyisgE8hcamIuiGYMhIiIiIiIiKoGYjCIygf4wPVZGEREREREREZmKySgiEyiEzGw/qyGImXmsTUREREREREQvYjKKyEiiKOpVRgGATM3qKDLN06dP4ezsjLt375o7FKNNmTIFn3zySZE+58yZM+Hi4gJBELB79+4ifW4iIiIiIipcTEYRmSBHMkqTaqZIyBSDBw+GIAj46KOPcjw2evRoCIKAwYMH65Y9fvwYH3/8MSpUqAClUglXV1d06NABwcHBunV++OEHtGzZEra2thAEAbGxsUbFMnfuXHTv3h0eHh6veFRFZ9KkSVi/fj3u3Llj1PqJiYlYvHgxmjZtCldXV5QrVw6tW7fG6tWrkZn58mrC69evY9asWVi9ejUiIyPRqVOnVz0ErFu3Dvb29q+8n/xKTU3F6NGj4ejoCGtra/Tq1QtRUVFGb//RRx9BEAQsW7ZMb7mHhwcEQdC7ffXVVwUcPRERERFRwWIyisgEcqj17svUTEaVFG5ubggMDERKSopuWWpqKjZv3owKFSrordurVy/8+eefWL9+PcLCwrBnzx60bNkST58+1a2TnJyMjh074vPPPzc6huTkZPz0008YNmzYqx/QS2RkZBTYvkqXLo0OHTpg5cqVL103NDQUXl5e2L17N0aMGIE9e/Zg79698PPzw7p16/DWW28hOjo6z33cvn0bANC9e3e4urpCqVQWyHEUBLVaDY1GY/J2EyZMwG+//YZt27bh5MmTePjwId59912jtt21axfOnj2LsmXLGnx89uzZiIyM1N2KuoqNiIiIiMhUTEYRmUCRozKKw/RKigYNGsDNzQ07d+7ULdu5cycqVKiA+vXr65bFxsYiKCgICxYsQKtWreDu7o5GjRph6tSp6Natm2698ePHY8qUKXj77beNjmH//v1QKpV625w4cQKCIODo0aNo2LAhLC0t4ePjgxs3buhtu3LlSlSuXBkKhQLVqlXDxo0b9R4XBAErV65Et27dYGVlhblz52LmzJmoV68e1q5diwoVKsDa2hqjRo2CWq3GwoUL4erqCmdnZ8ydO/elsXft2hWBgYF5rhMREYHOnTtj+vTpCAoKgp+fHxo1aoT69evDz88PISEh6Nq1Kzp16pRrsmzmzJno2rUrAEAikUAQBADA+fPn0a5dO5QuXRp2dnZo0aIFLl68qLdtbGwsRo4cCRcXF6hUKtSqVQt79+7FiRMnMGTIEMTFxemqh2bOnAkAePbsGQYNGgQHBwdYWlqiU6dOuHnzpm6f2oqqPXv2wMvLC0qlEvfu3Xvp+couLi4OP/30E5YsWYLWrVvD29sbAQEBCAkJwdmzZ/Pc9sGDB/jkk0+wadMmyOVyg+vY2NjA1dVVd7OysjIpPiIiIiKiosZkFJEJOEzvBaIIpCeZ5yaKJoc7dOhQBAQE6O6vXbsWQ4YM0VvH2toa1tbW2L17N9LSCjbZGBQUBG9vb4OPTZs2DYsXL8aFCxcgk8kwdOhQ3WO7du3CuHHjMHHiRPz9998YOXIkhgwZguPHj+vtY+bMmejZsyeuXLmi2/727dv4/fffceDAAfzyyy/46aef4Ovri/v37+PkyZNYsGAB/ve//+HcuXN5xt6oUSPcv38/z15XU6ZMwZAhQzBixAjcv38fXbp0gbOzMzp06IAvv/wSH3/8MWbPng0rKyv8/PPPBvcxadIk3WukrfQBgISEBPj5+eH06dM4e/Ysqlatis6dOyMhIQEAoNFo0KlTJwQHB+Pnn3/GtWvX8NVXX0EqlcLHxwfLli2Dra2tbp+TJk0CkDWE88KFC9izZw/OnDkDURTRuXNnvWRZcnIyFixYgB9//BFXr16Fs7MzNm3apHuv5HYLCgoCkFUtlpGRgbZt2+r2Wb16dVSoUAFnzpzJ9XxqNBp88MEHmDx5MmrWrJnrel999RUcHR1Rv359fP3110YNhSQiIiIiMieZuQMgKklkAofp6clIBuYZHjpU6D5/CChMqwB5//33MXXqVERERAAAgoODERgYiBMnTujWkclkWLduHUaMGIFVq1ahQYMGaNGiBfr164c6deq8UsgRERG5DrWaO3cuWrRoASArqePr64vU1FSoVCosWrQIgwcPxqhRowAA/v7+OHv2LBYtWoRWrVrp9jFgwIAcyTWNRoO1a9fCxsYGXl5eaNWqFW7cuIH9+/dDIpGgWrVqWLBgAY4fP47GjRvnGrs27oiICIP9rhITE7Fv3z6Eh4cDAPz8/GBtbY0DBw7g+vXr+Oijj9CrVy/dYwcPHswRK5CVDNT2dnJ1ddUtb926td56P/zwA+zt7XHy5El06dIFR44cwR9//IHr16/D09MTAFCpUiXd+nZ2dhAEQW+fN2/exJ49exAcHAwfHx8AwKZNm+Dm5obdu3fjvffeA5A15PH7779H3bp1ddt269Ytz/MFAOXKlQMAPHr0CAqFIkfPKhcXFzx69CjX7RcsWACZTIaxY8fmus7YsWPRoEEDlCpVCiEhIZg6dSoiIyOxZMmSPGMjIiIiIjInJqOITPBiZZT8Ta+MKmGcnJzg6+uLdevWQRRF+Pr6onTp0jnW69WrF3x9fREUFISzZ8/i999/x8KFC/Hjjz/qNTo3VUpKClQqlcHHsie6ypQpAwCIjo5GhQoVcP36dXz44Yd667/zzjtYvny53rKGDRvm2K+HhwdsbGx0911cXCCVSiGRSPSWvayPk4WFBYCsKiFDwsLC4OHhAUdHRyQlJeHYsWN48OABypYtiwYNGuDEiRO6aqMyZcrg2bNneT7fi6KiovC///0PJ06cQHR0NNRqNZKTk3VD5i5duoTy5cvrElHGuH79OmQymV5SydHREdWqVcP169d1yxQKRY5EpI2Njd55LWihoaFYvnw5Ll68qBuqaIi/v7/u5zp16kChUGDkyJGYP39+seq1RURERFQSaDQiwqITEJecATtLOTydbSCR5H4tVlyVhONgMorIBC/2jJK+6ckouWVWhZK5njsfhg4dijFjxgAAvvvuu1zXU6lUaNeuHdq1a4fp06dj+PDhmDFjxislo0qXLp1rEiZ7PyBt8sHURtmGegW92GdIEASDy172XDExMQCyEnqGZGZm6hJW2qRT9nisra11x37x4kVUqVIlz+d7kZ+fH54+fYrly5fD3d0dSqUSTZo0QXp6OoD/kmWFwcLCIkdCaNOmTRg5cmSe2/3+++9o1qwZXF1dkZ6ejtjYWL3qqKioKL1KreyCgoJ0yUgttVqNiRMnYtmyZbkOl2zcuDEyMzNx9+5dVKtWzbgDJCIiIiKERsRgfUgEbkUnIj1TDYVMiirO1vDzcYe3eylzh2e0knIc7BlFZIIclVFv+jA9QcgaKmeOWx7VInnp2LEj0tPTkZGRgQ4dOhi9nZeXF5KSkvL1nFr169fHtWvXTN6uRo0aCA4O1lsWHBwMLy+vV4rHFH///TfkcnmuvYsqVaqEsLAwZGRkwN7eHjVr1sTcuXORkZGBf/75B4GBgdBoNNi3bx++++47XULQWMHBwRg7diw6d+6MmjVrQqlU4smTJ7rH69Spg/v37yMsLMzg9gqFAmq1/jDbGjVqIDMzU69f1tOnT3Hjxo2Xnttu3brh0qVLed60lWre3t6Qy+U4evSobvsbN27g3r17aNKkicH9f/DBB/jrr7/09le2bFlMnjwZBw8ezDWuS5cuQSKRwNnZOc/4iYiIiOg/oRExmLvvOv5+EAdblQzlHSxhq5Lh6sM4zN13HaERMeYO0Sgl6ThYGUVkAjYwL/mkUqluCJZUKs3x+NOnT/Hee+9h6NChqFOnDmxsbHDhwgUsXLgQ3bt316336NEjPHr0CLdu3QIAXLlyBTY2NqhQoQJKlTL8jUOHDh0wdepUPHv2DA4ODkbHPHnyZPTp0wf169dH27Zt8dtvv2Hnzp04cuSIKYdutEGDBqFcuXKYP3++bllQUBCaNWuWawVS6dKlUadOHfz8888YMmQIAgIC8O6772LJkiVwdXVFt27dsGbNGly9ehVbt25FjRo1TIqpatWq2LhxIxo2bIj4+HhMnjxZL5YWLVqgefPm6NWrF5YsWYIqVargn3/+gSAI6NixIzw8PJCYmIijR4+ibt26sLS0RNWqVdG9e3eMGDECq1evho2NDaZMmYJy5crpvdaGmDJMz87ODsOGDYO/vz9KlSoFW1tbfPLJJ2jSpInezIrVq1fH/Pnz0bNnTzg6OsLR0VFvP3K5HK6urrqKpzNnzuDcuXNo1aoVbGxscObMGUyYMAHvv/++Se8vIiIiojeZRiNifUgEYpMz4OFoqauIt1LKYKmQIiImGRtCIlDfzaHYDXXLrqQdByujiIwkioBceCEZ9aZXRpVQtra2sLW1NfiYtbU1GjdujKVLl6J58+aoVasWpk+fjhEjRmDFihW69VatWoX69etjxIgRAIDmzZujfv362LNnT67PW7t2bTRo0ABbt241Kd4ePXpg+fLlWLRoEWrWrInVq1cjICAALVu2NGk/xrp3755uFjutwMBA3bHmZv78+Zg0aRIuXryIt956C/fu3cO9e/dw9+5dLF68GDExMQgNDUWzZs1Mjumnn37Cs2fP0KBBA3zwwQcYO3ZsjuqfHTt24K233kL//v3h5eWFTz/9VFcN5ePjg48++gh9+/aFk5MTFi5cCAAICAiAt7c3unTpgiZNmkAURezfvz/HUMZXtXTpUnTp0gW9evVC8+bN4erqip07d+qtc+PGDcTFxRm9T6VSicDAQLRo0UJXiTZhwgT88MMPBRo7ERER0essLDoBt6IT4WyjzNGaQRAEOFkrcTM6EWHRCWaK0Dgl7TgEUczH/OglWHx8POzs7BAXF5frP6NEhmg0IlZ/8QE+lv2mW3bafTSaDplnxqiKTmpqKsLDw1GxYsVcm3DTy+3btw+TJ0/G33//rddEvDj7/fffMXHiRPz111+QyfIuqF2/fj3GjRuHsWPHYtCgQahcuTLUajX++OMPzJ8/H61bt8aECROKKHKi/Mvrb97rfC3xOh8bERGRIefuPMW0XVdQ3sESUgMVQ2qNiPvPkjG3Z200ruRoYA/FQ3E4DlOuI0rGf0JExcSLw/RSkhPNFAmVVL6+vvjwww/x4MEDc4ditKSkJAQEBLw0EQVkNRo/deoUrl27hrp160KhUECpVOL9999H06ZNMXr06CKImIiIiIjIOHaWcihkUqRmqA0+npqR1QTczrJgK+cLWkk7DvaMIjJBjmRUUvEocaSSZfz48eYOwSS9e/c2af06depg+/btyMzMRFRUFJRKJUqXLl1I0RERERER5Z+nsw2qOFvj6sM4WCqkekPcRFHE48Q01CprB09n4/qFmktJOw5WRhGZQJuMEoWsxtdpKa82uxrR60wmk6FcuXJMRBERERFRsSWRCPDzcYedhRwRMclISsuEWiMiKS0TETHJsLOQY5CPe7Fo+p2XknYcTEYRmUAhZJU8apTPx79mpCAhNcOMEREREREREdGr8HYvhWm+NVCzrB3iUzNx/1ky4lMzUausHab51oC3u+HZsoubknQcHKZHZALdMD2lHZD6DBZCOiKeJqNWOTvzBkZERERERET55u1eCvXdHBAWnYC45AzYWcrh6WxTbCqJjFVSjoPJKCITyLTD9FS2QBygQhruPk16o5JRGo3G3CEQERU6/q0jIiJ680gkAqq7lvzZZEvCcTAZRWQCBbKG6YnKrOSTBdJx42myOUMqMgqFAhKJBA8fPoSTkxMUCoVeUzwioteBKIpIT0/H48ePIZFIoFAozB0SERER0WuHySgiI4nI1sD8ec8olZCO8CdvRhNziUSCihUrIjIyEg8fPjR3OEREhcrS0hIVKlSARML2mkREREQFjckoIiOlZap1ySiJxX+VUTFJ6eYMq0gpFApUqFABmZmZUKvV5g6HiKhQSKVSyGQyVn8SERERFRImo4iMlJKuhlzISkZJnyejVEhDYmqmOcMqcoIgQC6XQy6XmzsUIiIiIiIiKoFYe05kpJQMNRTPK6MEC3sAgIWQjoS0NysZRURERERERPQqmIwiMlJqhkY3TA8qbWVUOhJSM8wYFREREREREVHJwmQUkZFSM/7rGYXnDcwtkIZEVkYRERERERERGY3JKCIjpWRPRmkro4QMJKWmQxRFM0ZGREREREREVHIwGUVkpKwG5s9nkHuejAIAmSYNqRkaM0VFREREREREVLIwGUVkpOwNzKGy1S1XIR0JaewbRURERERERGQMJqOIjJSaoYZMm4ySqQCpEgBggXQkprJvFBEREREREZExZOYOgKikyGpg/nyYnlQOyC0AdRoshDQkMBlFRERERERULGg0IsKiExCXnAE7Szk8nW0gkQjmDsssiuu5YDKKyEgp6dmG6UkVgNwSSI2FChmcUY+IiIiIiKgYCI2IwfqQCNyKTkR6phoKmRRVnK3h5+MOb/dS5g6vSBXnc2H2YXrfffcdPDw8oFKp0LhxY/zxxx95rr9s2TJUq1YNFhYWcHNzw4QJE5CamlpE0dKbLCU922x6UgUgVwEAVGBlFBERERERkbmFRsRg7r7r+PtBHGxVMpR3sIStSoarD+Mwd991hEbEmDvEIlPcz4VZk1FbtmyBv78/ZsyYgYsXL6Ju3bro0KEDoqOjDa6/efNmTJkyBTNmzMD169fx008/YcuWLfj888+LOHJ6E6VmpEMiiFl3pPKsyigAFkI6ElLZwJyIiPInICAAycnJ5g6DiIioRNNoRKwPiUBscgY8HC1hpZRBKhFgpZTBvZQl4lIysCEkAhqNaO5QC11JOBdmTUYtWbIEI0aMwJAhQ+Dl5YVVq1bB0tISa9euNbh+SEgI3nnnHQwYMAAeHh5o3749+vfv/9JqKqKCkJGW9t8dyfOeUQAskMZhekRElG9TpkyBq6srhg0bhpCQEHOHQ0REVCKFRSfgVnQinG2UEAT9nkiCIMDJWomb0YkIi04wU4RFpyScC7Mlo9LT0xEaGoq2bdv+F4xEgrZt2+LMmTMGt/Hx8UFoaKgu+XTnzh3s378fnTt3LpKY6c2WmZ5tOKhUoUtGqTibHhERvYIHDx5g/fr1ePLkCVq2bInq1atjwYIFePTokblDIyIiKjHikjOQnqmGSi41+LhKLkV6phpxya//qJaScC7Mlox68uQJ1Go1XFxc9Ja7uLjkevE1YMAAzJ49G02bNoVcLkflypXRsmXLPIfppaWlIT4+Xu9GlB/p6dkqo6RyQPY8GSWkI4GVUURElE8ymQw9e/bEr7/+in///RcjRozApk2bUKFCBXTr1g2//vorNBqNucMkIiIq1uws5VDIpEjNUBt8PDUjq4G3naW8iCMreiXhXJi9gbkpTpw4gXnz5uH777/HxYsXsXPnTuzbtw9ffvllrtvMnz8fdnZ2upubm1sRRkyvk8znySi1IAMEQW+YHhuYExFRQXBxcUHTpk3RpEkTSCQSXLlyBX5+fqhcuTJOnDhh7vCIiIiKLU9nG1RxtsbjxDSIon4vJFEU8TgxDVWdreHpbGOmCItOSTgXZktGlS5dGlKpFFFRUXrLo6Ki4OrqanCb6dOn44MPPsDw4cNRu3Zt9OzZE/PmzcP8+fNz/cZw6tSpiIuL093+/fffAj8WejNkZmQN09NInmePtQ3Mkc6eUURE9EqioqKwaNEi1KxZEy1btkR8fDz27t2L8PBwPHjwAH369IGfn5+5wyQiIiq2JBIBfj7usLOQIyImGUlpmVBrRCSlZSIiJhl2FnIM8nGHRCK8fGclXEk4F2ZLRikUCnh7e+Po0aO6ZRqNBkePHkWTJk0MbpOcnAyJRD9kqTRrDOSL2T4tpVIJW1tbvRtRfmRmZFVGibpk1H89ozibHhER5VfXrl3h5uaGdevWYcSIEXjw4AF++eUXXV9NKysrTJw40eQv1L766isIgoDx48cXQtRERETFj7d7KUzzrQGvMraITkjDzagERCekoWYZW0zzrQFv91LmDrHIaM9FzbJ2iE/NxP1nyYhPzUStsnbF4lzIzPnk/v7+8PPzQ8OGDdGoUSMsW7YMSUlJGDJkCABg0KBBKFeuHObPnw8g62JtyZIlqF+/Pho3boxbt25h+vTp6Nq1qy4pRVRYNBlZCSdRoshaoB2mJ7CBORER5Z+zszNOnjyZ65dxAODk5ITw8HCj93n+/HmsXr0aderUKYgQiYiISh7hv5vh0pXXn7d7KdR3c0BYdALikjNgZymHp7NNsagOM2syqm/fvnj8+DG++OILPHr0CPXq1cOBAwd0Tc3v3bunVwn1v//9D4Ig4H//+x8ePHgAJycndO3aFXPnzjXXIdAbJDMjHQAgSl+sjErjMD0iIsq3Fi1aoEGDBjmWp6enIzAwEIMGDYIgCHB3dzdqf4mJiRg4cCDWrFmDOXPmFHS4RERExVZoRAzm7ruO2OQMONsooZJnNfG+FhmPufuuF4uKoKImkQio7lr8RoiZvYH5mDFjEBERgbS0NJw7dw6NGzfWPXbixAmsW7dOd18mk2HGjBm4desWUlJScO/ePXz33Xewt7cv+sDpjaPJfD6bnvSFyiikIyWXWQqIiIheZsiQIYiLi8uxPCEhQVctborRo0fD19dXN8yPiIjoTaDRiFgfEoHY5Ax4OFrCSimDVCLASimDeylLxKVkYENIBDSaN7VOqngxa2UUUUmiycyqjIL0hQbmQpqZIiIioteBKIoQhJzl8vfv34ednZ1J+woMDMTFixdx/vx5o9ZPS0tDWtp/n2Px8fEmPR8REVFxERadgFvRiXC2Ueb4XBUEAU7WStyMTkRYdEKxrBR60zAZRWQkbWWUoK2MkikBAEqweTkREZmufv36EAQBgiCgTZs2kMn+uyxTq9UIDw9Hx44djd7fv//+i3HjxuHw4cNQqVRGbTN//nzMmjXL5NiJiIiKm7jkDKRnqqGSKw0+rpJL8SQxDXHJ/P+tOGAyishImsx0QApApk1GZV3oMxlFRET50aNHDwDApUuX0KFDB1hbW+seUygU8PDwQK9evYzeX2hoKKKjo/X6T6nVapw6dQorVqxAWlpajglfpk6dCn9/f939+Ph4uLm55fOIiIiIzMfOUg6FLKtHlJUyZ6ojNUMNhUwKO0u5GaKjFzEZRWQEjUaEoM4ApIBEO0zveWWUgskoIiLKhxkzZgAAPDw80LdvX6OrmXLTpk0bXLlyRW/ZkCFDUL16dXz22WcGZx5WKpVQKg1/g0xERFSSeDrboIqzNa4+jIOlQqo3VE8URTxOTEOtsnbwdLYxY5SkxWQUkRHSMjWQI2vGPMnzJBSkz4fpCUxGERFR/vn5+RXIfmxsbFCrVi29ZVZWVnB0dMyxnIiI6HUjkQjw83HH3H3XERGTDCfr/2bTe5yYBjsLOQb5uEMiydmnkYoek1FERkjJUGdLRnGYHhERvZpSpUohLCwMpUuXhoODg8EG5loxMTFFGBkREVHJ5e1eCtN8a2B9SARuRSfiSWIaFDIpapW1wyAfd3i7lzJ3iPQck1FERkjJUEMuZCWjBJl+A3MO0yMiIlMtXboUNjY2up/zSka9ihMnThTKfomIiIorb/dSqO/mgLDoBMQlZ8DOUg5PZxtWRBUzTEYRGSElXQ3F88oovNAzipVRRERkquxD8wYPHmy+QIiIiF5DEomA6q625g6D8iAxdwBEJUFqtmF6kOpXRrFnFBERvYqLFy/qNR7/9ddf0aNHD3z++edIT083Y2REREREhYPJKCIjxKdkQAZ11h2pfs8oDtMjIqJXMXLkSISFhQEA7ty5g759+8LS0hLbtm3Dp59+auboiIiIiAoek1FERohLychWGfV8mN7zpBSH6RER0asICwtDvXr1AADbtm1DixYtsHnzZqxbtw47duwwb3BEREREhYDJKCIjxKZkQCG8OEyPs+kREdGrE0URGo0GAHDkyBF07twZAODm5oYnT56YMzQiIiKiQsFkFJER9Cuj9HtGyQQNpKLaTJEREVFJ17BhQ8yZMwcbN27EyZMn4evrCwAIDw+Hi4uLmaMjIiIiKnhMRhEZISsZpe0ZpT+bHgDIWR1FRET5tGzZMly8eBFjxozBtGnTUKVKFQDA9u3b4ePjY+boiIiIiAqezNwBEJUEcSkZcH6xMkr6XzJKAc52RERE+VOnTh292fS0vv76a0ilUjNERERERFS4mIwiMkJccgYU2mSURNvAXAZRkEEQMyEXM80XHBERvRbS09MRHR2t6x+lVaFCBTNFRERERFQ4mIwiMoLB2fQAaKQKSDMzWRlFRET5FhYWhmHDhiEkJERvuSiKEAQBajX7EhIREdHrxeRkVFJSEqysrAojFqJiKy4lA/IXZ9MDIEqVQGYyFOwZRURE+TRkyBDIZDLs3bsXZcqUgSAI5g6JiIiIqFCZnIxycXFBnz59MHToUDRt2rQwYiIqdgzOpgdA87xvlFxkMoqIiPLn0qVLCA0NRfXq1c0dChEREVGRMHk2vZ9//hkxMTFo3bo1PD098dVXX+Hhw4eFERtRsRGXkq1nVLZheuLzxJRC5DA9IiLKHy8vLzx58sTcYRAREREVGZOTUT169MDu3bvx4MEDfPTRR9i8eTPc3d3RpUsX7Ny5E5mZbORMrxeNRkR8at6VURymR0RE+bVgwQJ8+umnOHHiBJ4+fYr4+Hi9GxEREdHrxuRklJaTkxP8/f3x119/YcmSJThy5Ah69+6NsmXL4osvvkBycnJBxklkNgmpmRBFQIbnDWQNDdNjMoqIiPKpbdu2OHv2LNq0aQNnZ2c4ODjAwcEB9vb2cHBwMHd4RERERAUu37PpRUVFYf369Vi3bh0iIiLQu3dvDBs2DPfv38eCBQtw9uxZHDp0qCBjJTKLuJSsRJNKok1GZRumJ+EwPSIiejXHjx83dwhERERERcrkZNTOnTsREBCAgwcPwsvLC6NGjcL7778Pe3t73To+Pj6oUaNGQcZJZDZ6ySgRHKZHREQFqkWLFuYOgYiIiKhImTxMb8iQIShbtiyCg4Nx6dIljBkzRi8RBQBly5bFtGnTCipGIrOKTcmqevqvMuq/ZJSoS0axMoqIiPIvKCgI77//Pnx8fPDgwQMAwMaNG3H69GkzR0ZERERU8ExORkVGRmL16tV46623cl3HwsICM2bMeKXAiIoLbWWUUsg5TE+jm02PjfuJiCh/duzYgQ4dOsDCwgIXL15EWloaACAuLg7z5s0zc3REREREBc/kZJSNjQ2io6NzLH/69CmkUmmBBEVUnCSnZSWhFAZm02NlFBERvao5c+Zg1apVWLNmDeTy/77weOedd3Dx4kUzRkZERERUOExORomiaHB5WloaFAqFwceISjIRWe95qYFkFHtGERHRq7px4waaN2+eY7mdnR1iY2OLPiAiIiKiQmZ0A/NvvvkGACAIAn788UdYW1vrHlOr1Th16hSqV69e8BESFRMy8XnCSfrfr434PDElZzKKiIjyydXVFbdu3YKHh4fe8tOnT6NSpUrmCYqIiIioEBmdjFq6dCmArMqoVatW6Q3JUygU8PDwwKpVqwo+QqJiQibmMUxP5DA9IiLKnxEjRmDcuHFYu3YtBEHAw4cPcebMGUyaNAnTp083d3hEREREBc7oZFR4eDgAoFWrVti5cyccHBwKLSii4kiqq4ziMD0iIio4U6ZMgUajQZs2bZCcnIzmzZtDqVRi0qRJ+OSTT8wdHhEREVGBMzoZpXX8+PHCiIOo2JPpekb911xWO0yPySgiIsovQRAwbdo0TJ48Gbdu3UJiYiK8vLz0WiIQERERvU6MSkb5+/vjyy+/hJWVFfz9/fNcd8mSJQUSGFFxIzUwTE/DYXpERPSKhg4diuXLl8PGxgZeXl665UlJSfjkk0+wdu1aM0ZHREREVPCMSkb9+eefyMjI0P2cG0EQCiYqomJGAg2k0GTdMdQzipVRRESUT+vXr8dXX30FGxsbveUpKSnYsGEDk1FERET02jEqGZV9aB6H6dGbSK4dogfoDdPTVkZxNj0iIjJVfHw8RFGEKIpISEiASqXSPaZWq7F//344OzubMUIiIiKiwmFyz6gXxcfH49ixY6hevTqqV69eEDERFTv6yShDs+kxGUVERKaxt7eHIAgQBAGenp45HhcEAbNmzTJDZERERESFy+RkVJ8+fdC8eXOMGTMGKSkpaNiwIe7evQtRFBEYGIhevXoVRpxEZqWXjJLkrIxSgD2jiIjINMePH4coimjdujV27NiBUqVK6R5TKBRwd3dH2bJlzRghERERUeEwORl16tQpTJs2DQCwa9cuiKKI2NhYrF+/HnPmzGEyil5LcqizfpDIAIlEt1w7mx6H6RERkalatGgBAAgPD4ebmxsk2T5fiIjIMI1GRFh0AuKSM2BnKYensw0kEvYuzq+COJ98TSg/TE5GxcXF6b65O3DgAHr16gVLS0v4+vpi8uTJBR4gUXGgEHLOpAdkr4xiMoqIiPLH3d0dsbGx+OOPPxAdHQ2NRqP3+KBBg8wUGRFR8RIaEYP1IRG4FZ2I9Ew1FDIpqjhbw8/HHd7upV6+A9JTEOeTrwnll8nJKDc3N5w5cwalSpXCgQMHEBgYCAB49uyZXuNNoteJbphetublQPaeURymR0RE+fPbb79h4MCBSExMhK2trd7sxIIgMBlFRISspMfcfdcRm5wBZxslVHIlUjPUuPowDnP3Xcc03xpMfpigIM4nXxN6FSbXg48fPx4DBw5E+fLlUbZsWbRs2RJA1vC92rVrF3R8RMWCLhkl0U9GaSRZlVKsjCIiovyaOHEihg4disTERMTGxuLZs2e6W0xMjLnDIyIyO41GxPqQCMQmZ8DD0RJWShmkEgFWShncS1kiLiUDG0IioNGI5g61RCiI88nXhF6VycmoUaNG4cyZM1i7di1Onz6t629QqVIlzJkzp8ADJCoOcq2MknGYHhERvZoHDx5g7NixsLS0NHcoRETFUlh0Am5FJ8LZRqlXPQpkVZA6WStxMzoRYdEJZoqwZCmI88nXhF6VycP0AKBhw4Zo2LCh3jJfX98CCYioONI1MH8hGaXhMD0iInpFHTp0wIULF1CpUiVzh0JEVCzFJWcgPVMNlVxp8HGVXIoniWmIS+YXxMYoiPPJ14RelcnJKLVajXXr1uHo0aMGm2weO3aswIIjKi6kutn09JNRkGhn08ss4oiIiOh1oZ0E5tq1a6hduzbkcv3Pmm7dupkpMiKi4sHOUg6FTIrUDDWslDn/hU3NyGqcbWcpN7A1vaggzidfE3pVJiejxo0bh3Xr1sHX1xe1atXKUZJnqu+++w5ff/01Hj16hLp16+Lbb79Fo0aNcl0/NjYW06ZNw86dOxETEwN3d3csW7YMnTt3fqU4iPIiF7TJKP1fmf9m02NlFBER5c+IESMAALNnz87xmCAIUKvVRR0SEVGx4ulsgyrO1rj6MA6WCqne/6CiKOJxYhpqlbWDp7ONGaMsOQrifPI1oVdlcjIqMDAQW7duLZDkz5YtW+Dv749Vq1ahcePGWLZsGTp06IAbN27A2dk5x/rp6elo164dnJ2dsX37dpQrVw4RERGwt7d/5ViIciOK2SqjcptND5mARgNITG7DRkREb7gXq8yJiEifRCLAz8cdc/ddR0RMMpyslVDJs6pyHiemwc5CjkE+7pBIXq1Q4k1REOeTrwm9KpP/c1YoFKhSpUqBPPmSJUswYsQIDBkyBF5eXli1ahUsLS2xdu1ag+uvXbsWMTEx2L17N9555x14eHigRYsWqFu3boHEQ5QbXc8oiVRvuUaq+O+OmtVRRERERESFwdu9FKb51kDNsnaIT83E/WfJiE/NRK2ydpjmWwPe7qXMHWKJUhDnk68JvQqTK6MmTpyI5cuXY8WKFa80RC89PR2hoaGYOnWqbplEIkHbtm1x5swZg9vs2bMHTZo0wejRo/Hrr7/CyckJAwYMwGeffQapVGpwG6KCIMulZ5S2MgoAkJkKyFVFGBUREZVU33zzDT788EOoVCp88803ea47duzYIoqKiKh483YvhfpuDgiLTkBccgbsLOXwdLZh9U0+FcT55GtC+WVyMur06dM4fvw4fv/9d9SsWTNHk82dO3catZ8nT55ArVbDxcVFb7mLiwv++ecfg9vcuXMHx44dw8CBA7F//37cunULo0aNQkZGBmbMmGFwm7S0NKSlpenux8fHGxUfUXb/NTDX/5URJXJoRAESQQQy0wxsSURElNPSpUsxcOBAqFQqLF26NNf1BEFgMoqIKBuJREB1V1tzh/HaKIjzydeE8sPkZJS9vT169uxZGLG8lEajgbOzM3744QdIpVJ4e3vjwYMH+Prrr3NNRs2fPx+zZs0q4kjpdSPPpWcUBAFpkMMC6YCaySgiIjJOeHi4wZ+JiIiI3gQmJ6MCAgIK5IlLly4NqVSKqKgoveVRUVFwdXU1uE2ZMmUgl8v1huTVqFEDjx49Qnp6OhQKRY5tpk6dCn9/f939+Ph4uLm5Fcgx0Jsjt8ooAEiHLCsZxcooIiIyo5UrV2LlypW4e/cuAKBmzZr44osv0KlTJ/MGRkRERPSCfE39lZmZiSNHjmD16tVISEgAADx8+BCJiYlG70OhUMDb2xtHjx7VLdNoNDh69CiaNGlicJt33nkHt27d0pt1JiwsDGXKlDGYiAIApVIJW1tbvRuRqeRC7smoNDx/72WmFmFERERE+sqXL4+vvvoKoaGhuHDhAlq3bo3u3bvj6tWr5g6NiIiISI/JyaiIiAjUrl0b3bt3x+jRo/H48WMAwIIFCzBp0iST9uXv7481a9Zg/fr1uH79Oj7++GMkJSVhyJAhAIBBgwbpNTj/+OOPERMTg3HjxiEsLAz79u3DvHnzMHr0aFMPg8gkUjxPgL44TA9Amvh8WSZn0yMiIvPp2rUrOnfujKpVq8LT0xNz586FtbU1zp49a+7QiIiIiPSYPExv3LhxaNiwIS5fvgxHR0fd8p49e2LEiBEm7atv3754/PgxvvjiCzx69Aj16tXDgQMHdE3N7927B4nkv3yZm5sbDh48iAkTJqBOnTooV64cxo0bh88++8zUwyAyiRyZWT9Ics7amK79NWJlFBERFRNqtRrbtm1DUlJSrhXnACd6ISIiIvMwORkVFBSEkJCQHMPiPDw88ODBA5MDGDNmDMaMGWPwsRMnTuRY1qRJE37DR0VOpusZZaAyisP0iIiomLhy5QqaNGmC1NRUWFtbY9euXfDy8sp1fU70QkREROZg8jA9jUYDtVqdY/n9+/dhY2NTIEERFTd5NTBPw/MElZrD9IiIKH/u3buHoKAgHDx4EBcvXtSrVjJFtWrVcOnSJZw7dw4ff/wx/Pz8cO3atVzXnzp1KuLi4nS3f//9N7+HQERERGQ0kyuj2rdvj2XLluGHH34AAAiCgMTERMyYMQOdO3cu8ACJigO5NhlloGcUh+kREVF+3L17FytXrkRgYCDu378PURR1jykUCjRr1gwffvghevXqpde2IC8KhQJVqlQBAHh7e+P8+fNYvnw5Vq9ebXB9pVIJpVL56gdDREREZAKTK6MWL16M4OBgeHl5ITU1FQMGDNAN0VuwYEFhxEhkdroG5i9URskkkmwNzPP3LTYREb15xo4di7p16yI8PBxz5szBtWvXEBcXh/T0dDx69Aj79+9H06ZN8cUXX6BOnTo4f/58vp5Ho9Hku8qKiIiIqLCYXBlVvnx5XL58GVu2bMHly5eRmJiIYcOGYeDAgbCwsCiMGInMTi5oG5jr/8rYWsjwSNczihf7RERkHCsrK9y5c0dvMhgtZ2dntG7dGq1bt8aMGTNw4MAB/Pvvv3jrrbfy3OfUqVPRqVMnVKhQAQkJCdi8eTNOnDiBgwcPFtZhEBEREeWLycmoU6dOwcfHBwMHDsTAgQN1yzMzM3Hq1Ck0b968QAMkKg50lVEvDNOzVcmR9vzXSJ2Rgpxz7REREeU0f/58o9ft2LGjUetFR0dj0KBBiIyMhJ2dHerUqYODBw+iXbt2+Q2TiIiIqFCYnIxq1aoVIiMj4ezsrLc8Li4OrVq1MtjcnKikk+fSwNxGJdM1ME9LSYFlUQdGRET03E8//WTuEIiIiIiMYnLPKFEUIQhCjuVPnz6FlZVVgQRFVNzIYHiYnkwqgUaS1fg1LS2lqMMiIqLX2PXr11GpUiVzh0FERERU4IyujHr33XcBZM2eN3jwYL2ZV9RqNf766y/4+PgUfIRExUBuDcyzHlQAGiA9NblogyIiotdaeno6IiIizB0GERERUYEzOhllZ2cHIKsyysbGRq9ZuUKhwNtvv40RI0YUfIRExYBcWxn1Qs8oABDkKiANyGBlFBERmcDf3z/Pxx8/flxEkRAREREVLaOTUQEBAQAADw8PTJo0iUPy6I0hIu/KKF0yKj21aAMjIqISbfny5ahXrx5sbW0NPp6YmFjEEREREREVDZMbmM+YMaMw4iAq1uSC4QbmWYtUAAB1OiujiIjIeFWqVMGECRPw/vvvG3z80qVL8Pb2LuKoiIiIiAqfyQ3Mo6Ki8MEHH6Bs2bKQyWSQSqV6N6LXkVQ7m56BYXpShTYZxcooIiIyXsOGDREaGprr44IgQBTFIoyIiIiIqGiYXBk1ePBg3Lt3D9OnT0eZMmUMzqxH9LqRI/fKKJkyq3+amJFWlCEREVEJt3jxYqSl5f7ZUbduXWg0miKMiIiIiKhomJyMOn36NIKCglCvXr1CCIeoeJLlkYySP6+MEjNZGUVERMZzdXU1dwhEREREZmFyMsrNzY0l4/TGkeaRjFKoLLN+yGRlFBERvZrU1FRs2bIFSUlJaNeuHapWrWrukIiIiIgKnMk9o5YtW4YpU6bg7t27hRAOUfEkz6NnlC4ZpWYyioiIjOfv749PPvlEdz89PR1NmjTBiBEj8Pnnn6N+/fo4c+aMGSMkIiIiKhwmJ6P69u2LEydOoHLlyrCxsUGpUqX0bkSvo/8qo3Imo1SqrGF6EiajiIjIBIcOHUK7du109zdt2oSIiAjcvHkTz549w3vvvYc5c+aYMUIiIiKiwmHyML1ly5YVQhhExZtc0Cajcs4YqbKwAgBINelFGRIREZVw9+7dg5eXl+7+oUOH0Lt3b7i7uwMAxo0bh86dO5srPCIiIqJCY3Iyys/PrzDiICrWpHkM07OwyBqmx2QUERGZQiKR6PXhPHv2LKZPn667b29vj2fPnpkjNCIiIqJCZdQwvfj4eL2f87oRvY7keTQwt7TMqoySiUxGERGR8WrUqIHffvsNAHD16lXcu3cPrVq10j0eEREBFxcXc4VHREREVGiMqoxycHBAZGQknJ2dYW9vD0EQcqwjiiIEQYBarS7wIInMTZZHzygry6zKKCUykJqhhkqecygfERHRiz799FP069cP+/btw9WrV9G5c2dUrFhR9/j+/fvRqFEjM0ZIREREVDiMSkYdO3ZM15z8+PHjhRoQUXH0XwPznIkmi+c9oxTIQEJqJpNRRERklJ49e2L//v3Yu3cv2rdvrzezHgBYWlpi1KhRZoqOiCgnjUZEWHQC4pIzYGcph6ezDSSSnIUKREQvY1QyqkWLFgZ/JnpTyPPoGSWRKwFkVUbFpWcCUBZhZEREVJK1adMGbdq0MfjYjBkzijgaIqLchUbEYH1IBG5FJyI9Uw2FTIoqztbw83GHtztnVSci05jcwJzoTSTNY5geZCoAWcmopNTMIoyKiIhKsnv37hm1XoUKFQo5EiKivIVGxGDuvuuITc6As40SKrkSqRlqXH0Yh7n7rmOabw0mpIjIJExGERlBLuTewByyrEooiSAiOS0VgF3RBUZERCVW9v5Q2ln1svflZD9OIioONBoR60MiEJucAQ9HS93fKSulDJYKKSJikrEhJAL13Rw4ZI+IjMZkFJERpNA8/yH3ZBQApCQnAuDMR0RE9HKCIKB8+fIYPHgwunbtCpmMl2VEVPyERSfgVnQinG2UOSayEgQBTtZK3IxORFh0Aqq72popSiIqaXjVQ2QEGZ4PvzNUGSXNloxKSSuiiIiIqKS7f/8+1q9fj4CAAKxatQrvv/8+hg0bhho1apg7NCIinbjkDKRnqqGSG+6LqpJL8SQxDXHJGUUcGRGVZJL8bJSZmYkjR45g9erVSEhIAAA8fPgQiYmJBRocUXEhz6tnlESCTGTNoJeWmlyEURERUUnm6uqKzz77DP/88w+2b9+OZ8+eoXHjxnj77bexZs0aaDQac4dIRAQ7SzkUMilSMwwPGU7NyGpmbmdp4DqZiCgXJiejIiIiULt2bXTv3h2jR4/G48ePAQALFizApEmTCjxAouJAN0xPIjX4uFrI+vBNTUstqpCIiOg10rRpU/z000+4efMmLC0t8dFHHyE2NtbcYRERwdPZBlWcrfE4MU3X305LFEU8TkxDVWdreDrbmClCIiqJTE5GjRs3Dg0bNsSzZ89gYWGhW96zZ08cPXq0QIMjKg5EEZBrh+lJDX/jo35eMZWellJUYRER0WskJCQEw4cPh6enJxITE/Hdd9/B3t7e3GEREUEiEeDn4w47CzkiYpKRlJYJtUZEUlomImKSYWchxyAfdzYvJyKTmNwzKigoCCEhIVAoFHrLPTw88ODBgwILjKg4+a8yynAySvO8Mio9lZVRRERknMjISGzYsAEBAQF49uwZBg4ciODgYNSqVcvcoRER6fF2L4VpvjWwPiQCt6IT8SQxDQqZFLXK2mGQjzu83UuZO0QiKmFMTkZpNBqDUwzfv38fNjYszaTXkChCLmh7Rhn+ldFIspKz6RymR0RERqpQoQLKlSsHPz8/dOvWDXK5HBqNBn/99ZfeenXq1DFThERE//F2L4X6bg4Ii05AXHIG7Czl8HS2YUUUEeWLycmo9u3bY9myZfjhhx8AZE3nmZiYiBkzZqBz584FHiCRuQlituSrNJdk1PPhexkZnE2PiIiMo1arce/ePXz55ZeYM2cOAOToxyIIgsEvAYmIzEEiEVDd1dbcYRDRa8DkZNTixYvRoUMHeHl5ITU1FQMGDMDNmzdRunRp/PLLL4URI5FZScTMbHcM/8qI0qzKqEz2jCIiIiOFh4ebOwQiIiIiszA5GVW+fHlcvnwZgYGB+Ouvv5CYmIhhw4Zh4MCBeg3NiV4XgiZ7MiqXKWufD9PLyEgvgoiIiOh14O7ubu4QiIiIiMzC5GRUamoqVCoV3n///cKIh6jYkWQfppdLZZQgy0pGqdPZM4qIiF7u3r17qFChgtHrP3jwAOXKlSvEiIiIiIiKjsTUDZydneHn54fDhw9Do9EURkxExYpEzMh2R2p4JW0yij2jiIjICG+99RZGjhyJ8+fP57pOXFwc1qxZg1q1amHHjh1FGB0RERFR4TK5Mmr9+vXYvHkzunfvDjs7O/Tt2xfvv/8+GjZsWBjxEZmdtoF5JmSQCYZnC5HIVAAATSaTUURE9HLXrl3D3Llz0a5dO6hUKnh7e6Ns2bJQqVR49uwZrl27hqtXr6JBgwZYuHAhJ4khIiKi14rJlVE9e/bEtm3bEBUVhXnz5uHatWt4++234enpidmzZxdGjERmJXneM0oj5FIVBUDyvDJKw8ooIiIygqOjI5YsWYLIyEisWLECVatWxZMnT3Dz5k0AwMCBAxEaGoozZ84wEUVERESvHZMro7RsbGwwZMgQDBkyBNeuXcPAgQMxa9YsfPHFFwUZH5HZaSuj1Hn8ukjkSgCAqGYyioiIjGdhYYHevXujd+/e5g6FiIiIqMiYXBmllZqaiq1bt6JHjx5o0KABYmJiMHny5IKMjahYkIhZlVFqIfdfF+nzZJSgzkCmmr3UiIiIiIiIiHJjcmXUwYMHsXnzZuzevRsymQy9e/fGoUOH0Lx588KIj8jsJJqsBuZqIfdfF5kiq2eUAplIzlDDVprvPC8RERERERHRa83kZFTPnj3RpUsXbNiwAZ07d4ZcLi+MuIiKDe0wPQ3y6hmVVRklRyaS0jJhq+LvBREREREREZEhJiejoqKiYGNjUxixEBVL/w3Ty/3XRXjewFwhZCApTV0kcRERERERERGVREaNJYqPj9f9LIoi4uPjc70RvW50DczzmE0P0ufJKKiRlJZZFGEREdFrICMjA0OHDkV4eLi5QyEiIiIqMkYloxwcHBAdHQ0AsLe3h4ODQ46bdnl+fPfdd/Dw8IBKpULjxo3xxx9/GLVdYGAgBEFAjx498vW8RMaQaJ5XRuUxTO+/ZFQGktNZGUVERMaRy+XYsWOHucMgIiIiKlJGDdM7duwYSpUqBQA4fvx4gQawZcsW+Pv7Y9WqVWjcuDGWLVuGDh064MaNG3B2ds51u7t372LSpElo1qxZgcZD9CLBiGF6eN4zSoGMogiJiIheIz169MDu3bsxYcIEc4dCREREVCSMSka1aNFC93PFihXh5uYGQRD01hFFEf/++6/JASxZsgQjRozAkCFDAACrVq3Cvn37sHbtWkyZMsXgNmq1GgMHDsSsWbMQFBSE2NhYk5+XyFjanlF5NTCHNKthuRysiiIiItNUrVoVs2fPRnBwMLy9vWFlZaX3+NixY80UGREREVHhMLmBecWKFREZGZmjaikmJgYVK1aEWm38P+Pp6ekIDQ3F1KlTdcskEgnatm2LM2fO5Lrd7Nmz4ezsjGHDhiEoKCjP50hLS0NaWpruPvtakakETVa1U56VUdLnlVECK6OIiMg0P/30E+zt7REaGorQ0FC9xwRBMDoZNX/+fOzcuRP//PMPLCws4OPjgwULFqBatWqFETYR5YNGIyIsOgFxyRmws5TD09kGEonw8g3ptcf3Br1pTE5GiaKYoyoKABITE6FSqUza15MnT6BWq+Hi4qK33MXFBf/884/BbU6fPo2ffvoJly5dMuo55s+fj1mzZpkUF1F2msysyihR8vKeUXKweTkREZmmoJqXnzx5EqNHj8Zbb72FzMxMfP7552jfvj2uXbuWo9qKiIpeaEQM1odE4FZ0ItIz1VDIpKjibA0/H3d4u5cyd3hkRnxv0JvI6GSUv78/gKxv6KZPnw5LS0vdY2q1GufOnUO9evUKPMDsEhIS8MEHH2DNmjUoXbq0UdtMnTpVFzuQVRnl5uZWWCHSaygzMz3rB4k895VkWckoJZNRRET0CkRRBACDX/y9zIEDB/Tur1u3Ds7OzggNDUXz5s0LJD4iyp/QiBjM3XcdsckZcLZRQiVXIjVDjasP4zB333VM863BpMMbiu8NelMZnYz6888/AWRdJF25cgUKhUL3mEKhQN26dTFp0iSTnrx06dKQSqWIiorSWx4VFQVXV9cc69++fRt3795F165ddcs0Gk3WgchkuHHjBipXrqy3jVKphFKpNCkuouwyM7KG3omSvIbpsTKKiIjyb8OGDfj6669x8+ZNAICnpycmT56MDz74IN/7jIuLAwDdJDREZB4ajYj1IRGITc6Ah6OlLtlspZTBUiFFREwyNoREoL6bA4dlvWH43qA3mdHJKO0sekOGDMHy5ctha2v7yk+uUCjg7e2No0ePokePHgCykktHjx7FmDFjcqxfvXp1XLlyRW/Z//73PyQkJGD58uWseKJCoX5eGSUYkYzibHpERGSqJUuWYPr06RgzZgzeeecdAFltCT766CM8efIkX7PsaTQajB8/Hu+88w5q1aqV63rsrUlU+MKiE3ArOhHONsocVY+CIMDJWomb0YkIi05AdddX/x+LSg6+N+hNZnLPqICAgAINwN/fH35+fmjYsCEaNWqEZcuWISkpSTe73qBBg1CuXDnMnz8fKpUqxwWVvb09AOR5oUX0KrTJKO2MeQZpK6OETNZGERGRSb799lusXLkSgwYN0i3r1q0batasiZkzZ+YrGTV69Gj8/fffOH36dJ7rsbcmUeGLS85AeqYaKrnh0RoquRRPEtMQl8wvNd80fG/Qm8zkZBQAXLhwAVu3bsW9e/eQnp6u99jOnTtN2lffvn3x+PFjfPHFF3j06BHq1auHAwcO6Jqa37t3DxKJJD9hEhUITYY2GaXIfSXZ89n0wGQUERGZJjIyEj4+PjmW+/j4IDIy0uT9jRkzBnv37sWpU6dQvnz5PNdlb02iwmdnKYdCJkVqhhpWypz/fqVmZDWstrPM44tPei3xvUFvMpOzPIGBgfDx8cH169exa9cuZGRk4OrVqzh27Bjs7OzyFcSYMWMQERGBtLQ0nDt3Do0bN9Y9duLECaxbty7XbdetW4fdu3fn63mJjKHRDtPLKxn1vGpKwVQUERGZqEqVKti6dWuO5Vu2bEHVqlWN3o8oihgzZgx27dqFY8eOoWLFii/dRqlUwtbWVu9GRAXL09kGVZyt8TgxTTdJgZYoinicmIaqztbwdLYxU4RkLnxv0JvM5MqoefPmYenSpRg9ejRsbGywfPlyVKxYESNHjkSZMmUKI0YisxLVz5NRsrySUdrKKJbQEhGRaWbNmoW+ffvi1KlTup5RwcHBOHr0qMEkVW5Gjx6NzZs349dff4WNjQ0ePXoEALCzs4OFhUWhxE5ELyeRCPDzccfcfdcREZMMJ2slVPKsapjHiWmws5BjkI87G1S/gfjeoDeZyZVRt2/fhq+vL4CsBuRJSUkQBAETJkzADz/8UOABEpmbqK2MkuUxKyNn0yMionzq1asXzp07h9KlS2P37t3YvXs3SpcujT/++AM9e/Y0ej8rV65EXFwcWrZsiTJlyuhuW7ZsKcToicgY3u6lMM23BmqWtUN8aibuP0tGfGomapW1wzTfGvB256yXbyq+N+hNZXJllIODAxISEgAA5cqVw99//43atWsjNjYWycnJBR4gkdk9r4yS5FUZ9fwxhZAJEWLu6xERERng7e2Nn3/++ZX28eIQDyIqXrzdS6G+mwPCohMQl5wBO0s5PJ1tWPVCfG/QG8nkZFTz5s1x+PBh1K5dG++99x7GjRuHY8eO4fDhw2jTpk1hxEhkXuqsoXcSeV7D9FgZRURE+XPx4kXI5XLUrl0bAPDrr78iICAAXl5emDlzJhSKPD5/iKhEkUgEVHdlbzbKie8NetOYPExvxYoV6NevHwBg2rRp8Pf3R1RUFHr16oWffvqpwAMkMrvnlVHSXKZczXrweWUUk1FERGSikSNHIiwsDABw584d9O3bF5aWlti2bRs+/fRTM0dHREREVPBMrowqVeq/MasSiQRTpkwp0ICIihuJJqsySppnA3Mmo4iIKH/CwsJQr149AMC2bdvQokULbN68GcHBwejXrx+WLVtm1viIiIiICppRyaj4+Hijd8gpgel1I2iyKqNkeVVGPW9urhQyAPbsICIiE4iiCI1GAwA4cuQIunTpAgBwc3PDkydPzBkaERERUaEwKhllb28PQci7eZooihAEAWq1ukACIyouJJpMQAJIFS8fpgcAgsjqKCIiMl7Dhg0xZ84ctG3bFidPnsTKlSsBAOHh4XBxcTFzdEREREQFz6hk1PHjxws7DqJiKVOtgVTMGqYnN6JnFAAIz3tMERERGWPZsmUYOHAgdu/ejWnTpqFKlSoAgO3bt8PHx8fM0REREREVPKOSUS1atCjsOIiKpdRMjW6GPLlClfuKsv8SVRINk1FERGQctVqN2NhYnDp1Cg4ODnqPff3115BKpWaKjIiIiKjwmDybHgAEBQXh/fffh4+PDx48eAAA2LhxI06fPl2gwRGZW0q6WpeMkuU1tbZECvXzXydBnVEUoRER0WtAKpWiffv2iI2NzfGYSqWCXC4v+qCIiIiICpnJyagdO3agQ4cOsLCwwMWLF5GWlgYAiIuLw7x58wo8QCJzSs1Q62bIE6R5DNMDkPG80JCVUUREZIpatWrhzp075g6DiIiIqMiYnIyaM2cOVq1ahTVr1uh9W/fOO+/g4sWLBRockbmlZKghx/Om/NK8v53ORNbjgoaVUUREZLw5c+Zg0qRJ2Lt3LyIjIxEfH693I3odaTQi/nkUj3N3nuKfR/HQaN7c2Yh5LojoTWRUz6jsbty4gebNm+dYbmdnZ7DEnKgkS0lXQy48nx1PmscwPQAZggwQAQkbmBMRkQk6d+4MAOjWrZve7MWcqZheV6ERMVgfEoFb0YlIz1RDIZOiirM1/Hzc4e1eytzhFSmeCyJ6U5mcjHJ1dcWtW7fg4eGht/z06dOoVKlSQcVFVCykZKhhAeOSUf9VRjEZRURExuOsxfQmCY2Iwdx91xGbnAFnGyVUciVSM9S4+jAOc/ddxzTfGm9MEobngojeZCYno0aMGIFx48Zh7dq1EAQBDx8+xJkzZzBp0iRMnz69MGIkMpuUDDXsdMmovIfppbMyioiI8oGzFtObQqMRsT4kArHJGfBwtNRVAlopZbBUSBERk4wNIRGo7+YAiUR4yd5KNp4LInrTmZyMmjJlCjQaDdq0aYPk5GQ0b94cSqUSkyZNwieffFIYMRKZTWq22fSMroxiMoqIiExw6tSpPB831B6BqCQKi07ArehEONso9YakAoAgCHCyVuJmdCLCohNQ3dXWTFEWDZ4LInrTmZyMEgQB06ZNw+TJ/2/vzuOirPY/gH+eZzb2QRAEEsF9yX1NupXdzCVvaauZN5csratZeS01S62uVy1vVjfLVrRui9k166elmWmZel1Q3EVRxAURFQWGYdbn/P4YGRlgYIBhBuHzfr3mpfPMec7zPXN4ZvnOOed5Hunp6TAYDOjQoQNCQkJQVFSEwMDA2oiTyC8cC5h7loyyXE1G8Wp6RERUFf369SuzreSXU64ZRfVFntEKi82OAE35VygO0Khw0WBGnrH+XwyGzwURNXRVvppeMa1Wiw4dOqB3797QaDR488030bx5c2/GRuR3RdaSC5hXNk3PkaySbabaDouIiOqRy5cvu9xycnKwdu1a9OrVCz///LO/wyPyGn2QBlq1CiZr+QlWk9WxgLc+qOLPXPUBnwsiaug8HhllNpsxZ84crF+/HlqtFi+88AKGDRuG5ORkzJw5EyqVCs8991xtxkrkc0VVmKZngeOXLdluru2wiIioHtHr9WW23XnnndBqtZgyZQpSUlL8EBWR97WJDkWr6BAczMpDkFZV5uqRFwxmdIzTo010qB+j9A0+F0TU0Hk8MmrWrFl4//33kZiYiJMnT+LBBx/E+PHjsWjRIrz55ps4efIkpk2bVpuxEvmcyWqH1sNklLl4ZJSdI6OIiKjmmjRpgrS0NH+HQeQ1sixhdFIC9IEaZOYaUWi2wa4IFJptyMw1Qh+owaikhAaxYDefCyJq6DweGbVixQp89tlnuOeee3DgwAF07twZNpsNe/fuLbPoHlF9YbIq0ODq8GlPp+kxGUVERFWwb98+l/tCCJw7dw7z589H165d/RMUUS3pkRCBmUPaY9nWTKTnGHDRYIZWrULHOD1GJSWgR0KEv0P0GT4XRNSQeZyMOnPmDHr06AEA6NixI3Q6HZ577jkmoqheq8oC5ubiaXpcM4qIiKqga9eukCQJQgiX7TfddBM+/fRTP0VFVHt6JESgW3wjHM0pQJ7RCn2QBm2iQxvkKCA+F0TUUHmcjLLb7dBqr30ZV6vVCAkJqZWgiOoKo8kCjVQ8MqqSNaOcI6O4ZhQREXkuIyPD5b4sy4iKikJAQICfIiKqfbIsoV1MmL/DqBP4XBBRQ+RxMkoIgTFjxkCnc4z+MJlMePLJJxEcHOxSbuXKld6NkMiP8o3Ga3cqmaZnBqfpERFR1SUkJPg7BCIiIiKf8jgZNXr0aJf7f/3rX70eDFFdU1BYdO1OpSOjiq+mx2QUERF5bvLkyWjVqhUmT57ssv3dd99Feno63nrrLf8ERkRERFRLPE5GJScn12YcRHVSYXVGRnHNKCIiqoL//ve/+OGHH8psT0pKwvz585mMIiIionpH9ncARHVZYZEjsSQkFSCrKizLq+kREVF1XLp0CXq9vsz2sLAwXLx40Q8REREREdUuJqOI3BBCoKjIMTJKVDJFDwCE2rHQrM1SVElJIiKia1q1aoW1a9eW2f7TTz+hRYsWfoiIiIiIqHZ5PE2PqKEptNghK1YAgFTJFD0A0IeGAQbAUmSo7dCIiKgemTJlCiZNmoQLFy7gz3/+MwBgw4YN+Ne//sUpekRERFQvMRlF5MblQgs0sDnueDAyKlwfCpwDrCZjpWWJiIiKPfbYYzCbzZg7dy5ee+01AEBiYiLef/99jBo1ys/REREREXkfk1FEblwxWp3JKMmDZFRkeDgAQOE0PSIiqqKnnnoKTz31FC5cuIDAwECEhIT4OyQiIiKiWsM1o4jcuGy0QOscGVX5NL2oRlcXn7UxGUVERFVjs9nwyy+/YOXKlRBCAACysrJgMHDqNxEREdU/HBlF5MZlY9Wm6TWJDAcAqBULLhda0Ci48n2IiIgyMzMxaNAgnDp1CmazGXfeeSdCQ0OxYMECmM1mLFmyxN8hEhEREXkVR0YRuXHFaIVG8jwZFRAY7PhXsiDjUmFthkZERPXIM888g549e+Ly5csIDAx0br/33nuxYcMGP0ZGREREVDs4MorIDdeRUZVP04Pa8QUiABZkXChE92aNajE6IiKqLzZv3oytW7dCq3X94SMxMRFnz571U1REREREtYcjo4jcuGK0llgzyoMpd5oAAI5k1NkrXDeKiIg8oygK7HZ7me1nzpxBaGioHyIiIiIiql1MRhG54RgZdfXLgSfJqBIjoy4WmGoxMiIiqk8GDBiAt956y3lfkiQYDAbMnj0bd911l/8CIyIiIqolnKZH5MZloxURVZmmd3VklEoSuGzgmlFEROSZhQsXYtCgQejQoQNMJhMeeeQRHDt2DI0bN8ZXX33l7/CIiIiIvI7JKCI3DCYrmlRhAfPikVEAkJ/PS3ETEZFn4uPjsXfvXixfvhx79+6FwWDAuHHjMHLkSJcFzYmIiIjqCyajiNwQQIk1ozxZwFwHAQkSBAyGglqNjYiI6ger1Yp27dph9erVGDlyJEaOHOnvkIiIiIhqHdeMIqqApioLmEsShFoHACg0cmQUERFVTqPRwGTiOoNERETUsDAZRVSBKiWjAOdUPZvZCJO17JWRiIiISps4cSIWLFgAm83m71CIiIiIfILT9IgqoKnKND0AkiYQMF1GACy4VGjBDeFc64OIiCq2c+dObNiwAT///DM6deqE4OBgl8dXrlzpp8iI/EdRBI7mFCDPaIU+SIM20aGQZcnfYRERkZfUiWTU4sWL8cYbbyA7OxtdunTBv//9b/Tu3bvcsh999BE+++wzHDhwAADQo0cP/POf/3RbnqgmtFVZwByAdPWKegGw4GKBmckoIiKqVHh4OO6//35/h0FUZ6Rk5mLZ1kyk5xhgsdmhVavQKjoEo5MS0CMhwt/hERGRF/g9GbV8+XJMmTIFS5YsQZ8+ffDWW29h4MCBSEtLQ3R0dJnymzZtwogRI5CUlISAgAAsWLAAAwYMwMGDB3HDDTf4oQVUn1V3ml6AZMVFg7mWoiIiovokOTnZ3yEQ1RkpmbmYu+YwrhitiA7VIUCjg8lqx8GsPMxdcxgzh7RnQoqIqB7w+5pRb775Jp544gmMHTsWHTp0wJIlSxAUFIRPP/203PJffPEF/va3v6Fr165o164dPv74YyiKgg0bNvg4cmoINLi67pPaw2RUyZFRTEYREVEFFEXBggULcPPNN6NXr16YPn06ioqKalTn77//jrvvvhtxcXGQJAmrVq3yTrBEbiiKwJHsfGw/cQlHsvOhKKJGdS3bmokrRisSI4MQrFNDJUsI1qmREBGEvCIrPtuaWaNjEBFR3eDXkVEWiwUpKSmYMWOGc5ssy+jfvz+2bdvmUR1GoxFWqxUREfyFhLyv2iOjYMFFg6WWoiIiovpg7ty5mDNnDvr374/AwEC8/fbbyMnJcfuDnCcKCwvRpUsXPPbYY7jvvvu8GC1RWd6eTnc0pwDpOQZEh+ogSa7rQ0mShKgQHY7lGHA0pwDtYsK81QwiIvIDvyajLl68CLvdjiZNmrhsb9KkCY4cOeJRHdOmTUNcXBz69+9f7uNmsxlm87URKvn5+dUPmBoUIQAdriaUPE1GaYqn6VlwoYAjo4iIyL3PPvsM7733HiZMmAAA+OWXXzBkyBB8/PHHkOXqDV4fPHgwBg8e7M0wicpVG9Pp8oxWWGx2BGh05T4eoFHhosGMPKPVG00gIiI/8vs0vZqYP38+vv76a3z33XcICAgot8y8efOg1+udt/j4eB9HSdezIOlqQkkT5NkOJabp5RXxgxIREbl36tQp3HXXXc77/fv3hyRJyMrK8lkMZrMZ+fn5LjeiytTWdDp9kAZatQomq73cx01Wx+grfZBnVzkmIqK6y6/JqMaNG0OlUuH8+fMu28+fP4+YmJgK9124cCHmz5+Pn3/+GZ07d3ZbbsaMGcjLy3PeTp8+7ZXYqWEIwtVklNbDZFSJaXpCcD0DIiJyz2azlfkxTaPRwGr13Y8Z/NGOqqMq0+mqok10KFpFh+CCwVzmc5QQAhcMZrSODkGb6NAat4GIiPzLr9P0tFotevTogQ0bNmDYsGEA4FyMfNKkSW73e/311zF37lysW7cOPXv2rPAYOp0OOl35Q32JKhPoTEaFeLhDOAAgTCrExdoJiYiI6gkhBMaMGePyOcVkMuHJJ59EcHCwc9vKlStrLYYZM2ZgypQpzvv5+flMSFGlams6nSxLGJ2UgLlrDiMz14ioEB0CNI6RUhcMZugDNRiVlABZliqvjIiI6jS/JqMAYMqUKRg9ejR69uyJ3r1746233kJhYSHGjh0LABg1ahRuuOEGzJs3DwCwYMECzJo1C19++SUSExORnZ0NAAgJCUFIiIcJAyIPVXmaXqBjbYQIFOBELcVERET1w+jRo8ts++tf/+rTGPijHVVHyel0wbqyXydqMp2uR0IEZg5p71wY/aLBDK1ahY5xeoyq5sLoRERU9/g9GTV8+HBcuHABs2bNQnZ2Nrp27Yq1a9c6FzU/deqUyyKe77//PiwWCx544AGXembPno05c+b4MnRqAIJgcvzH02l6QZEAgEZS1YalExFRw5OcnOzvEIiqpXg63cGsPARpVS5T9Yqn03WM01d7Ol2PhAh0i2+EozkFyDNaoQ/SoE10KEdEERHVI35PRgHApEmT3E7L27Rpk8v9kydP1n5ARFc514zSBFdc0LlD8cgoA7hiFBER+ZrBYEB6errzfkZGBlJTUxEREYFmzZr5MTKqT3wxnU6WJbSLCfNi1EREVJdc11fTI6ptzml6Ho+MciSjwjkyioiI/GDXrl3o1q0bunXrBsCxHEK3bt0wa9YsP0dG9U3xdLob4/TIN9lw5rIR+SYbOsbpMXNIe06nIyKiCtWJkVFEddW1Bcw9HRnlmKYXwWQUERH5Qb9+/Xg1V/IZTqcjIqLqYjKKyA0hRDWm6V1dMwoFAL8MEBERUT3H6XRERFQdnKZH5IYWFsjS1YSSp9P0rl5NTyvZoVOMtRQZERERERER0fWLySgiNwKE6dodjYfJKG0QbHIAACDYnl8LURERERERERFd35iMInKjOBllV+kAWeXxfiZNOAAg2JZXG2ERERERERERXde4ZhSRG7riZJQ6CJ6nogCzRo8QczaC7UxGERERNQSKIur0It51PT4iImp4mIwicuPayCgPp+hdZdKGAwBCmIwiIiKq91Iyc7FsaybScwyw2OzQqlVoFR2C0UkJ6JEQ4e/w6nx8RETUMHGaHpEbzmSUOrBK+5k1jQCAI6OIiIjquZTMXMxdcxgHzuYhLECNpo2CEBagxsGsPMxdcxgpmbmMj4iIqBxMRhG5Ud1klHPNKCajiIiI6i1FEVi2NRNXjFYkRgYhWKeGSpYQrFMjISIIeUVWfLY1E4oiGB8REVEpTEYRuVGcjFLUVZumZ9boATAZRUREVJ8dzSlAeo4B0aE6SJLr+kuSJCEqRIdjOQYczSlgfERERKUwGUXkRvEC5rYqJqNMWsc0Pa4ZRUREVH/lGa2w2OwI0JR/mZMAjQoWmx15RquPI3Oo6/EREVHDxmQUkRvOkVGqKk7Tcyajrng7JCIiIqoj9EEaaNUqmKz2ch83WR2LheuDND6OzKGux0dERA0bk1FEbuica0ZVdWSU48o0TEYRERHVX22iQ9EqOgQXDGYI4brukhACFwxmtI4OQZvoUMZHRERUCpNRRG4EiiIA1VjA/OrIqFDbFW+HRERERHWELEsYnZQAfaAGmblGFJptsCsChWYbMnON0AdqMCopAbIsVV5ZA4yPiIgaNiajiNzQCTOAqiejiq6OjApW8gG7zetxERERke8pisCR7HxsP3EJR7LzoSgCPRIiMHNIe9wYp0e+yYYzl43IN9nQMU6PmUPao0dChF9j9mZ85bWfiIioutT+DoCorgpwTtMLrtJ+Fo0ediFBJQnAeAkIbVIb4REREZGPpGTmYtnWTKTnGGCxOdZaahUdgtFJCeiREIFu8Y1wNKcAeUYr9EEatIkOrTMjjrwRX2XtJyIiqiomo4jc0KE4GVW1kVHNGofiMkLRGPmwFpyHhskoIiKi61ZKZi7mrjmMK0YrokN1CNDoYLLacTArD3PXHHaOMGoXE+bvUN2SZana8XnafiIioqrgND0iN5xX06tiMuqW1lHIk/QAgD2Hj3s9LiIiIvINRRFYtjUTV4xWJEYGIVinhkqWEKxTIyEiCHlFVny2NbPeTllr6O0nIqLaw2QUkRvOaXqqql1NT6OSoQ6LBgDsOXzU63ERERGRbxzNKUB6jgHRoTpIkuu0NkmSEBWiw7EcA47mFPgpwtrV0NtPRES1h8koIjecV9PTVC0ZBQCNGscCAHJzzsLOXwuJiIiuS3lGKyw2OwI0Kuc2IQQMJhsuGy2wKQJmqw15Rqsfo6w95bW/pACNChabvd62n4iIag/XjCJyI0gxAABEQKMq7xsSGQucAEKUPKTnGNA2JtTb4REREVEt0wdpoFWrYLLaEaxT44rRijOXjSi02KAIAAJQqyScvVLk71BrRen2l2ayOhYz1wdp/BAdERFdzzgyiqgcQggE2x1Dzhs1rvoC5HKIY5peJPKQevqyV2MjIiIi32gTHYpW0SG4YDDjitGCYzkFKDDboJZlBKhlKBBQBPD5tkykZOb6O1yvK9l+IVxHegshcMFgRuvoELSJ5o9uRERUNUxGEZXjSqEZYXCMjIqOjql6BUGRAIBIqQCpp694MTIiIiLyFVmWMDopAWEBahw5XwCLXUGA2vHx2WRToFXJaNMkBPmm+rmQd3H79YEaZOYaUWi2wa4IFJptyMw1Qh+owaikBMiyVHllREREJTAZRVSOrPM5UEmOD5QBoZFVryA4CgAQKeUj9XSeN0MjIiIiH+qREIFH+yZAJUmQIcFkU2BTBEID1GjdJBSNgrT1eiHvHgkRmDmkPW6M0yPfZMOZy0bkm2zoGKfHzCHt0SMhwt8hEhHRdYhrRhGV42LOOQBAkRSAQLWu6hWEOKb2xUi5SMvOh9WuQKNi7peIiOh6dEN4EKJCdYgI0sIuBDQqGcE6NYrHAwVoVLhoMNfbhbx7JESgW3wjHM0pQJ7RCn2QBm2iQzkiioiIqo3JKKJy5F7KAQAUqcIQWJ0KIlsBAOJwCTphgl0RcHMhGiIiIqrj9EEa6NQqqGQJYbqyi3U3hIW8ZVlCu5gwf4dBRET1BIdqEJWj4LIjGWXVhlevguBIiMBIyJJAC+mc9wIjIiIin+NC3kRERN7FZBRROYryLgIARGCjatehNG4LAGglnYWoX+uZEhER1WmKInAkOx/bT1zCkex8jxYWr2gfLuRNRETkXZymR1QOi+ESAEAVVJNkVBuoTm9FKznLW2ERERFRJVIyc7FsaybScwyw2BzT51pFh2B0UoLbxbY92ad4Ie/ichcNZmjVKnSM02NUBXUTERFRWUxGEZWiKAIw5gIyoKvOlfSuEpFtAFwdGQUOjSIiIqptKZm5mLvmMK4YrYgO1SFAo4PJasfBrDzMXXO43Ku/VWUfLuRNRETkHUxGEZWSfsGAYKUAkIGQ8Khq1yMaFyejODKKiIiotimKwLKtmbhitCIxMgiS5EgQBevUCNKqkJlrxGdbM9EtvpEzeVSdfbiQNxERUc1xzSiiUlIyL0MvGQAAcnANRkZdTUYlStmwmk1eiY2IiIjKdzSnAMfOFyBEp8KVIisMJtu1xcYlCcFaNfaeuYJ1h7Kd60EdzSlAeo4B0aE6ZyKqmCRJiArR4ViOAUdzCnzdHCIionqNI6OIStmdeRmDUOi4U4MFzNXhTXEJekRKefhX8leY8eRjCNSqvBQlERERlbTjRC5OXzZCABACkCUgWKtGeJAWV4osMJhssNgVzP/xCH7an43RSQmw2QUsNjsCNLpy6wzQqHDRYEae0erbxhAREdVzHBlFVErKqcsIvzoyqkbJKLUK9oRbAAAROVvxyR8nvBEeERERlZKSmYuvdpyCxSYgQ0KgWoZalnGlyIr0nAJcKbRCliRo1TL0gWrnelBnrxihVatgstrLrddkdSxmrg/S+LhFRERE9RuTUUQlXDFacOJCIcJR82QUAER3vhMA0Fc+hCW/ncAlg7mmIRIRETVIiiJwJDsf209cwpHsfCiKgKIIHMrKw5s/H0WByQZ9oAp2IQBJgkqWoAgBRQACAjZFQYhOjcYhOiREBCGvyIpNRy6gZVQwLhjM16b0XSWEwAWDGa2jQ9AmOtRPrSYiIqqfOE2PqITz+Y5kUYRc82l6AIDmtwIAusvpsJsMWHfwPB7p06xmdRIRETUwKZm5WLY1E+k5BlhsjtFKEcEaABKy8opwJrcIalmCTuP4nbXIanckoxQBSQKsdgGNSkbT8GuLlEeF6JB+oRCP39IcZ68UITPXiKgQHQI0jpFSFwxm6AM1GJWUwKvlEREReRlHRhGVooENYcUjo4Kqv4A5AKBRc0DfDBrYMES13e00ACIiIipfSmYu5q45jP1nrkAtAyE6Ncw2O3Zk5GLnyVwoioBKBrRqGWabAgmATi3DZldwdZ1yyDJwQ3ggwktMtwvQqGCx2XFDeCBmDmmPG+P0yDfZcOayEfkmGzrG6TFzSHv0SIjwT8OJiIjqMY6MIiqlmXQeKiiANhQIia5ZZZIE9BoH/DIbk1SrsDzvUQghylyxh4iIiK5RFIGjV9d6en9TOk5dKoRdAbLzHVentdoFhBBQqyQUmGyQr76vBqplFNkUaNUybggPwPELhZAkCbIENArSuhyj5HpQ7WLC0C2+EY7mFCDPaIU+SIM20aEcEUVERFRLmIwiKkFAoJWU5bjTuLUjmVRTvZ+AYdMiJNrO4+LWz/DouQfwxoOdEasPrHndRERE9YiiCKzccwafb8vE2StFMFnsMFiujSqWJUAlSbBfnX5nsyswWmwI1KpgsioI1KigVckoNNuQEBGM0AA1LhutiAjSIlh37Yq2xetBdYzTO9eDkmUJ7WLCfN5mIiKihojJKKJSWkpnHf9p3MY7FWqDId38LPDbHExWr8Lt6X/Cc8sVfD2+r3fqJyIiuo4Vj4L63/FLSN6SgVO5RRBuykoA7EJAwLHWhABgsSmICtHBbLWg0GKDTiVDUQCDyQqNSoZWJUOtkmC02LkeFBERUR3BZBRRKS3lEiOjvCT45gnArvcQX5iDaeqv8a8TD+LY+QK0bsKr8xARUcO1PeMiFvx4GAey8mHxYFlFu7i24GnxelAKgPMFZkgAbIqA1eaYtmeyKeiZEIHeLSKw/UQu0nMMuGgwQ6tWoWOcHqOSErgeFBERkZ8wGUVUghBAS+c0PS+NjAIAbRBw2wvAj1PxhPpH/FnegyffuoDQ+I744vGbEKhVVV4HERFRPWAy2fD6uiNYsfsMCsxVv7CHJAEQcBk9pZYlBGhUsNkVFFrs0Glk/O32FrivWzxkWcKIXs24HhQREVEdwmQUUUlCoKV0zvH/qLberbvX4xC6UBT99DJams5htXYmPswagu6zsjHqtg546raWCC+1uOr1ID3HgLc3HEOByQqrXYE+UINJt7dGhziuu0FERNfYbAr6z/sJJwtrVo+AY+0o55Xy4EhG2RUBqyIQpFUhNECNzUcv4b5u8Y4yXA+KiIioTpErL1L7Fi9ejMTERAQEBKBPnz7YsWNHheVXrFiBdu3aISAgAJ06dcKPP/7oo0ipvlMbshAqFcEGGWjU3LuVSxKkLg8j6OltQKs7oZOseFq9Cht1f0ejLf/AuNfexfPf7MYb647gYFYeLhdavHt8L1MUgQsFZkz5JhX/tzcLm9IuYEv6Jfy4Pxt3vbMZE7/YDZO16r94ExFRzVT1c5UvfLE9E61eqnkiCnAkocTVRJQEQJIBi12BTVEQGqBG6+hQxDcKwrEcA47mFNT8gEREROR1fh8ZtXz5ckyZMgVLlixBnz598NZbb2HgwIFIS0tDdHR0mfJbt27FiBEjMG/ePPzlL3/Bl19+iWHDhmH37t3o2LGjH1pA9YUQAqd//QitAaTJrXGjupZGKQU3BkauAI6sgbJ2BmLyTuFJ9Wo8qV6NvINvYJ/SArs2x+KAaA4drIho2gaB8V1wS7eOiA7VISJYC7XK/3nk+97fitTTV5z3ezePwOVCC8ICNUjJvIw1+89hzf5zeG1YRzzcKx6aOhAzEVF9V9XPVb7wxfZMzPzugNfqC1RLsAnAZhcI1qnQrFEQArQqaGQZwToVpKtX27toMCPPaPXacYmIiMh7JCGEuwuW+ESfPn3Qq1cvvPvuuwAARVEQHx+Pp59+GtOnTy9Tfvjw4SgsLMTq1aud22666SZ07doVS5YsqfR4+fn50Ov1yMvLQ1gYh2uTQ4HJipe/TcHMYw8iSsrH7t5vovtd42r/wFYTxJE1yN3zPUJP/Qqtzf0vuGahhgUamKGBGVrkaG6AOvwGFAXdAFNIM+g0Euyh8Qi3nIM9ohUCtBrI5jxkyM1wvDAQfdvEoENsWI0SWXlFVrzyfweRnWfC1uOXADimSsy9txMe7hUPSXKsvzE2eQc2pl1w2fcfwzrirk6xiAi+/qYiEhGVVJc/S1T1c1Vp3m6bzaag1Us/1bieYhIAlQyoZBkqWULzyCDE6APLlCs025BvsuHN4V04PY+IiMhHqvI5wq8joywWC1JSUjBjxgznNlmW0b9/f2zbtq3cfbZt24YpU6a4bBs4cCBWrVpVm6F6LPd4Copyz8JqF1BK5vmk0otkSiiTBixVRlwtV2q3a4+LcjaW2iTK21gyBnc7VkKUjFWUv58o02ZAlBODs4oKlRdrZXWj7PNut0FlvgyV6QrU5stQmS9DY76CYydP4TnLUUTJ+TAExKL7wNGVRuQVmgBIne5HZKf7AbsNyN4L5ByBcm4vCk8fQBG0sOSkI85+BjrJBh1sCEURAOAG20Xg4t5KD9ESQH8Ahb/pUAgV8hCCXOgd8xokGXZJDbukgSI7bnZZC7usQ6BkQY49BEFqIDcvH7JKDa2tAJ1FGFohAH3VMromROGW9k0B1UVglxWwOmL7qK0KWbFWbDyWi4PZhVAgY9cPf2DHDxI0ahUC1DJiwwMRHRYAtSxBlmWoixeSlSRIAKyqYAhZDbVihgbWa49JEgCp1P9lSJAc3S3Jjn6XVbCpgiBLAmrFApVigQwFdlUAhKyFzpoHlWJxfKuR1BCy4wZJBcgqqIQNsmKFog6E2lYIodLBrgkFJBlqYYasWCEkFSSVBrLdDEkosGuCoagDHDFBgSTg/FeC4jhpheL4SxUKJFmCIqkhZA2ErIFsN0FSrICshSKrHX/1QoEkBCCVnJdytd0QzmNACEgQEJLsaIMkufz9C0glzpCS54VwFBUCjhWBr/7rPIzsOLckGYAEIUmuZ1rJkKqgvPLuqpDKKywUSEKBJOyAsENSFEDYIUMBFBskKBCS6mqfqq89JyWO5NKWUo+5Pnel4ihVVoJ07fXn6mPlxixJbhsplfPaWNlz6voeIkGUeJUs/XrpWla42e4aanG9xfevtfpabKWKudzx5Jeu8o4vSu1ZbhkP9gsIDEV8Cy+v/VfHVedzVW3zZiJKLQPRYQFoHhmMe7vfgN/SLuDQuXwIIVzOOSEELhjM6BinR5toXrWWiIioLvJrMurixYuw2+1o0qSJy/YmTZrgyJEj5e6TnZ1dbvns7Oxyy5vNZpjNZuf9/Pz8GkZdsePf/QO9DL/W6jHI+24AABkwqMMRcv+7gMoPp4ZKDdzQA7ihB+RuIxEKwPkR2mIEii7DbjUhJzcfWw5lIKTgBNSmS4goTEegJRdQbIi0nsMFqTFa2I7DDhmXpEaIF1mQIRAsOc4DPYxohhxHvdfyDkBFyzvJV8uVvujf2au3UtQAmgEYDQCacupTAORevRER1YKD2s7Ai5v9HYZPVedzla8/J1VXXFgAnuzXEr1bRDivhNe8cTDmrjmMzFwjokJ0CNCoYLLaccFghj5Qg1FJCbxiHhERUR3l9zWjatu8efPwyiuv+Ox4hsA4HDY0h+OzT/Gv5uWNP/JsdqSn+3oyxsnzcVDVq78msfnquHbIMEihyJdDUSCFwSCHwiCHwqjWQx0WgzuHjkJIdONyo/MrbRCgDYIKQGxj4IE23dwWjQYco6wkCSGyClDsgCkPFsNlmMxm2ApyoBRegtVuh9Vqg91mgd1qgd1qhmKzQLEWQVhNsEg6aIpyYFUkBIbooYYNjSKi0Aj5UNnNgGID7FdHQ5muACoNoA50jKBRbCVudkCxQSg2WG02FFkVFBRZIASgXB2J41iMVjjHdkhCQKsYoRI2WCUdbFJxRuvayB3J+f/ih65uu/qYJBTolCIISLBJGtgkDeyQoREWaIQZhXIYzJIOMhTIwu64wQ6VsEOCAgUybFBDJ0wokoKghhVBihEy7LBIOlihhgzFESM0UCQZAcKEAGF2jmpUIDsikqSrUV29f/VfCYAKNqiFDRrYYIYWNkkNlbBDAxscY6gkKCVH3lzleK6ka7fiETlCQAV7OX//ZcdaXqujeGSh5HK/dMTFLSodi3D5v5e/+Ll5qSyOxi7JUHDtZnf+X4IMATVsUF3dAhSPALs2jujaaB/h8m/Jg1dcxvW+VOZ5Ln8fb/L/V23X57IyvorXpgnx0ZGub77+nFRdA25sglFJiS7beiREYOaQ9li2NRPpOQZcNJihVavQMU6PUUkJ6JEQ4Z9giYiIqFJ+TUY1btwYKpUK58+fd9l+/vx5xMTElLtPTExMlcrPmDHDZVpffn4+4uPjaxi5e7dPXFxrdRN5rOTILlkFBEVAGxQBx2pNHfwSkgRAe/Wm90sERNSQhPs7AD+ozucqX39Oqq6mEUHlbu+REIFu8Y1wNKcAeUYr9EEa58gpIiIiqrv8enkrrVaLHj16YMOGDc5tiqJgw4YN6Nu3b7n79O3b16U8AKxfv95teZ1Oh7CwMJcbERERUX1Tnc9Vtf05qakX6tCpgFF9Etw+LssS2sWEoU+LSLSLCWMiioiI6Drg92utT5kyBR999BGWLVuGw4cP46mnnkJhYSHGjh0LABg1apTLQpzPPPMM1q5di3/96184cuQI5syZg127dmHSpEn+agIRERFRnVDZ5ypf+2P+kBrXMfrmFtBqSy9aSERERNczv68ZNXz4cFy4cAGzZs1CdnY2unbtirVr1zoX3zx16hRk+VrOLCkpCV9++SVeeuklvPjii2jdujVWrVqFjh07+qsJRERERHVCZZ+r/OHk/CFInL6myvupZeCxP7XAi3e1r4WoiIiIyJ8kIdxd2Ll+ys/Ph16vR15eHqfsERERUZXV588Stdm2P01fgzOltsUEAEFBOtiEDK1KQoBGRuNgHZJaN8aYvs05IoqIiOg6UpXPEX4fGUVERERE9Z83puwRERFR/eD3NaOIiIiIiIiIiKjhYDKKiIiIiIiIiIh8hskoIiIiIiIiIiLyGSajiIiIiIiIiIjIZ5iMIiIiIiIiIiIin2EyioiIiIiIiIiIfEbt7wB8TQgBAMjPz/dzJERERHQ9Kv4MUfyZoj7h5yQiIiKqrqp8RmpwyaiCggIAQHx8vJ8jISIioutZQUEB9Hq9v8PwKn5OIiIiopry5DOSJOrjz3oVUBQFWVlZCA0NhSRJVd4/Pz8f8fHxOH36NMLCwmohwrqnIbYZaJjtbohtBtjuhtTuhthmoGG2uzbbLIRAQUEB4uLiIMv1a8WDmn5OqkxD/Fusq9gXdQf7ou5gX9Qt7I+6w9O+qMpnpAY3MkqWZTRt2rTG9YSFhTW4E6IhthlomO1uiG0G2O6GpCG2GWiY7a6tNte3EVHFvPU5qTIN8W+xrmJf1B3si7qDfVG3sD/qDk/6wtPPSPXr5zwiIiIiIiIiIqrTmIwiIiIiIiIiIiKfYTKqinQ6HWbPng2dTufvUHymIbYZaJjtbohtBtjuhtTuhthmoGG2uyG2+XrAfqk72Bd1B/ui7mBf1C3sj7qjNvqiwS1gTkRERERERERE/sORUURERERERERE5DNMRhERERERERERkc8wGUVERERERERERD7TYJJRv//+O+6++27ExcVBkiSsWrXK5fGVK1diwIABiIyMhCRJSE1NLVOHyWTCxIkTERkZiZCQENx///04f/58hccVQmDWrFmIjY1FYGAg+vfvj2PHjnmxZRWrabtzc3Px9NNPo23btggMDESzZs0wefJk5OXlVXjcMWPGQJIkl9ugQYO83LryeaOv+/XrVyb+J598ssLjXu99ffLkyTJtLr6tWLHC7XH92ddAxe22Wq2YNm0aOnXqhODgYMTFxWHUqFHIyspyqSM3NxcjR45EWFgYwsPDMW7cOBgMhgqPW53XA2+paZtPnjyJcePGoXnz5ggMDETLli0xe/ZsWCyWCo9bnfPCm7zR14mJiWXaMH/+/AqP68++Bmre7k2bNrk9t3fu3On2uP7s78pez+bMmYN27dohODgYjRo1Qv/+/bF9+3aXMtfbeV2fLF68GImJiQgICECfPn2wY8eOCsuvWLEC7dq1Q0BAADp16oQff/zRR5HWf1Xpi6VLl5Y55wMCAnwYbf1V2WtaeTZt2oTu3btDp9OhVatWWLp0aa3H2RBUtS/cvYdmZ2f7JuB6bN68eejVqxdCQ0MRHR2NYcOGIS0trdL9+J7hfdXpC2+8ZzSYZFRhYSG6dOmCxYsXu338T3/6ExYsWOC2jueeew7/93//hxUrVuC3335DVlYW7rvvvgqP+/rrr+Odd97BkiVLsH37dgQHB2PgwIEwmUw1ao+natrurKwsZGVlYeHChThw4ACWLl2KtWvXYty4cZUee9CgQTh37pzz9tVXX9WoLZ7yRl8DwBNPPOES/+uvv15h+eu9r+Pj413ae+7cObzyyisICQnB4MGDKzy2v/oaqLjdRqMRu3fvxssvv4zdu3dj5cqVSEtLwz333ONSbuTIkTh48CDWr1+P1atX4/fff8f48eMrPG51Xg+8paZtPnLkCBRFwQcffICDBw9i0aJFWLJkCV588cVKj13V88KbvNHXAPDqq6+6tOHpp5+u8Lj+7Gug5u1OSkoqc24//vjjaN68OXr27Fnhsf3V35W9nrVp0wbvvvsu9u/fjz/++AOJiYkYMGAALly44CxzvZ3X9cXy5csxZcoUzJ49G7t370aXLl0wcOBA5OTklFt+69atGDFiBMaNG4c9e/Zg2LBhGDZsGA4cOODjyOufqvYFAISFhbmc85mZmT6MuP6q7DWttIyMDAwZMgS33347UlNT8eyzz+Lxxx/HunXrajnS+q+qfVEsLS3N5dyIjo6upQgbjt9++w0TJ07E//73P6xfvx5WqxUDBgxAYWGh2334nlE7qtMXgBfeM0QDBEB899135T6WkZEhAIg9e/a4bL9y5YrQaDRixYoVzm2HDx8WAMS2bdvKrUtRFBETEyPeeOMNl3p0Op346quvatyOqqpOu8vzzTffCK1WK6xWq9syo0ePFkOHDq1eoF5U3Tbfdttt4plnnvH4OPW1r7t27Soee+yxCsvUlb4WouJ2F9uxY4cAIDIzM4UQQhw6dEgAEDt37nSW+emnn4QkSeLs2bPl1lGd14PaUp02l+f1118XzZs3r7Ceqp4Xtam67U5ISBCLFi3y+Dh1qa+F8E5/WywWERUVJV599dUK66kr/e1Jm/Py8gQA8csvvwghrv/z+nrWu3dvMXHiROd9u90u4uLixLx588ot/9BDD4khQ4a4bOvTp4+YMGFCrcbZEFS1L5KTk4Ver/dRdA2XJ69pL7zwgrjxxhtdtg0fPlwMHDiwFiNreDzpi40bNwoA4vLlyz6JqSHLyckRAMRvv/3mtgzfM3zDk77wxntGgxkZVVMpKSmwWq3o37+/c1u7du3QrFkzbNu2rdx9MjIykJ2d7bKPXq9Hnz593O5zPcjLy0NYWBjUanWF5TZt2oTo6Gi0bdsWTz31FC5duuSjCL3jiy++QOPGjdGxY0fMmDEDRqPRbdn62NcpKSlITU31aBTc9dTXeXl5kCQJ4eHhAIBt27YhPDzcZYRI//79IctymWk/xarzeuBPpdvsrkxERESldVXlvPA3d+2eP38+IiMj0a1bN7zxxhuw2Wxu67je+hqovL9/+OEHXLp0CWPHjq20ruuhvy0WCz788EPo9Xp06dIFQMM4r+sii8WClJQUl+dQlmX079/f7XO4bds2l/IAMHDgQD7nNVSdvgAAg8GAhIQExMfHY+jQoTh48KAvwqVSeF7UPV27dkVsbCzuvPNObNmyxd/h1EvFy8BU9HmU54ZveNIXQM3fMyrOJpBTdnY2tFptmQ/3TZo0cTtnuHh7kyZNPN6nrrt48SJee+21Sqc6DBo0CPfddx+aN2+O48eP48UXX8TgwYOxbds2qFQqH0VbfY888ggSEhIQFxeHffv2Ydq0aUhLS8PKlSvLLV8f+/qTTz5B+/btkZSUVGG566mvTSYTpk2bhhEjRiAsLAyAo+9KD7VWq9WIiIio8Nyu6uuBv5TX5tLS09Px73//GwsXLqywrqqeF/7krt2TJ09G9+7dERERga1bt2LGjBk4d+4c3nzzzXLruZ76GvCsvz/55BMMHDgQTZs2rbCuut7fq1evxsMPPwyj0YjY2FisX78ejRs3BlD/z+u66uLFi7Db7eW+Fx45cqTcfbKzs+vVe2ddUZ2+aNu2LT799FN07twZeXl5WLhwIZKSknDw4MFKXy/Iu9ydF/n5+SgqKkJgYKCfImt4YmNjsWTJEvTs2RNmsxkff/wx+vXrh+3bt6N79+7+Dq/eUBQFzz77LG6++WZ07NjRbTm+Z9Q+T/vCG+8ZTEaRx/Lz8zFkyBB06NABc+bMqbDsww8/7Px/p06d0LlzZ7Rs2RKbNm3CHXfcUcuR1lzJZFunTp0QGxuLO+64A8ePH0fLli39GJlvFBUV4csvv8TLL79cadnrpa+tViseeughCCHw/vvv+zscn/CkzWfPnsWgQYPw4IMP4oknnqiwvuvlvKio3VOmTHH+v3PnztBqtZgwYQLmzZsHnU7n61C9ypP+PnPmDNatW4dvvvmm0vrqen8Xr6Vy8eJFfPTRR3jooYewfft2ruNBVE19+/ZF3759nfeTkpLQvn17fPDBB3jttdf8GBmR/7Rt2xZt27Z13k9KSsLx48exaNEifP75536MrH6ZOHEiDhw4gD/++MPfoTR4nvaFN94zOE3PQzExMbBYLLhy5YrL9vPnzyMmJsbtPsVlPN2nriooKMCgQYMQGhqK7777DhqNpkr7t2jRAo0bN0Z6enotRVi7+vTpAwBu469PfQ0A3377LYxGI0aNGlXlfetiXxd/Sc/MzMT69etdRozExMSUWczVZrMhNze3wnO7qq8HvlZRm4tlZWXh9ttvR1JSEj788MMqH6Oy88IfPGl3SX369IHNZsPJkyfLffx66GvA83YnJycjMjKy3IXdK1PX+js4OBitWrXCTTfdhE8++QRqtRqffPIJgPp7Xtd1jRs3hkqlqtJ7YUxMTL1576xLqtMXpWk0GnTr1q3OnPMNibvzIiwsjKOi6oDevXvzvPCiSZMmYfXq1di4cWOlI2r4nlG7qtIXpVXnPYPJKA/16NEDGo0GGzZscG5LS0vDqVOnXDKCJTVv3hwxMTEu++Tn52P79u1u96mL8vPzMWDAAGi1Wvzwww/VuszvmTNncOnSJcTGxtZChLUvNTUVANzGX1/6utgnn3yCe+65B1FRUVXet671dfGX9GPHjuGXX35BZGSky+N9+/bFlStXkJKS4tz266+/QlEU55fv0qrzeuBLlbUZcIyI6tevH3r06IHk5GTIctXfDio7L3zNk3aXlpqaClmW3Y6mqet9DXjebiEEkpOTMWrUqCr/oADUvf4uTVEUmM1mAPXzvL4eaLVa9OjRw+U5VBQFGzZscPsc9u3b16U8AKxfv57PeQ1Vpy9Ks9vt2L9/f5095+sznhd1W2pqKs8LLxBCYNKkSfjuu+/w66+/onnz5pXuw3OjdlSnL0qr1ntGjZY/v44UFBSIPXv2iD179ggA4s033xR79uxxXm3o0qVLYs+ePWLNmjUCgPj666/Fnj17xLlz55x1PPnkk6JZs2bi119/Fbt27RJ9+/YVffv2dTlO27ZtxcqVK53358+fL8LDw8X3338v9u3bJ4YOHSqaN28uioqKrot25+XliT59+ohOnTqJ9PR0ce7cOefNZrOV2+6CggIxdepUsW3bNpGRkSF++eUX0b17d9G6dWthMpnqfJvT09PFq6++Knbt2iUyMjLE999/L1q0aCFuvfVWl+PUt74uduzYMSFJkvjpp5/KPU5d6uviGNy122KxiHvuuUc0bdpUpKamuvz9ms1mZx2DBg0S3bp1E9u3bxd//PGHaN26tRgxYoTz8TNnzoi2bduK7du3O7d58npQV9t85swZ0apVK3HHHXeIM2fOuJRx12ZPz4u63O6tW7eKRYsWidTUVHH8+HHxn//8R0RFRYlRo0a5bbcQ/u1rb7S72C+//CIAiMOHD5c5Rl3r74rabDAYxIwZM8S2bdvEyZMnxa5du8TYsWOFTqcTBw4ccNZxvZ3X9cXXX38tdDqdWLp0qTh06JAYP368CA8PF9nZ2UIIIR599FExffp0Z/ktW7YItVotFi5cKA4fPixmz54tNBqN2L9/v7+aUG9UtS9eeeUVsW7dOnH8+HGRkpIiHn74YREQECAOHjzorybUG5V9Rps+fbp49NFHneVPnDghgoKCxPPPPy8OHz4sFi9eLFQqlVi7dq2/mlBvVLUvFi1aJFatWiWOHTsm9u/fL5555hkhy7Lz6q1UfU899ZTQ6/Vi06ZNLp9fjEajswzfM3yjOn3hjfeMBpOMKr4sZ+nb6NGjhRCOSxOW9/js2bOddRQVFYm//e1volGjRiIoKEjce++9Zb7IAxDJycnO+4qiiJdfflk0adJE6HQ6cccdd4i0tDQftNihpu12tz8AkZGRUW67jUajGDBggIiKihIajUYkJCSIJ554wvnhp663+dSpU+LWW28VERERQqfTiVatWonnn39e5OXluRynvvV1sRkzZoj4+Hhht9vLPU5d6mshKm53RkaG27/fjRs3Ouu4dOmSGDFihAgJCRFhYWFi7NixoqCgwPl4cT0l9/Hk9aCuttnd30LJ3ydKt9nT86IutzslJUX06dNH6PV6ERAQINq3by/++c9/uiRO61pfe6PdxUaMGCGSkpLKPUZd6++K2lxUVCTuvfdeERcXJ7RarYiNjRX33HOP2LFjh0sd19t5XZ/8+9//Fs2aNRNarVb07t1b/O9//3M+dttttznfl4p98803ok2bNkKr1Yobb7xRrFmzxscR119V6Ytnn33WWbZJkybirrvuErt37/ZD1PVPZZ/RRo8eLW677bYy+3Tt2lVotVrRokULl8+cVH1V7YsFCxaIli1bioCAABERESH69esnfv31V/8EX8+4+/xS8m+d7xm+UZ2+8MZ7hnT14ERERERERERERLWOa0YREREREREREZHPMBlFREREREREREQ+w2QUERERERERERH5DJNRRERERERERETkM0xGERERERERERGRzzAZRUREREREREREPsNkFBERERERERER+QyTUURERERERERE5DNMRhERERERUb0yZ84cNGnSBJIkYdWqVf4Op064dOkSoqOjcfLkSX+HUmUnT56EJElITU31et2JiYl46623AAAWiwWJiYnYtWtXhfts2rQJkiThypUrXo/H2/r164dnn33W32FQHfL777/j7rvvRlxcXLVeI+fMmQNJksrcgoODq1QPk1FE1CCNGTPG+cKp0WjQvHlzvPDCC1iyZEm5L64lb9fjhzgiIqLaVPJ9VZIkREZGYtCgQdi3b5/XjjFnzhx07dq10nKHDx/GK6+8gg8++ADnzp3D4MGDvRZDXTNmzBgMGzbMo7Jz587F0KFDkZiYWKsx1VRV2uRtWq0WU6dOxbRp0yosl5SUhHPnzkGv13tct7/atXLlSrz22mvO+yWTb9QwFRYWokuXLli8eHG19p86dSrOnTvncuvQoQMefPDBKtXDZBQRNViDBg3CuXPncOLECSxatAgffPABMjIyXF5Y+/btiyeeeMJlW3x8vL9DJyIiqnOK31fPnTuHDRs2QK1W4y9/+YvP4zh+/DgAYOjQoYiJiYFOpytTxmKx+DosvzIajfjkk08wbtw4f4dS540cORJ//PEHDh486LaMVqtFTEwMJEnyYWTVExERgdDQUH+HQXXI4MGD8Y9//AP33ntvuY+bzWZMnToVN9xwA4KDg9GnTx9s2rTJ+XhISAhiYmKct/Pnz+PQoUNVfn1hMoqIGiydToeYmBjEx8dj2LBh6N+/P9avX+/y4qrVahEUFOSyTaVS+Tt0IiKiOqf4fTUmJgZdu3bF9OnTcfr0aVy4cMFZ5vTp03jooYcQHh6OiIgIDB061GXE8aZNm9C7d28EBwcjPDwcN998MzIzM7F06VK88sor2Lt3r3P01dKlS8vEMGfOHNx9990AAFmWncmC4lEpc+fORVxcHNq2bQsA+Pzzz9GzZ0+EhoYiJiYGjzzyCHJyclzq/OGHH9C6dWsEBATg9ttvx7Jly1ymaC1duhTh4eFYvXo12rZti6CgIDzwwAMwGo1YtmwZEhMT0ahRI0yePBl2u91Zb2Vf+IrrXbduHdq3b4+QkBBnwq+4rcuWLcP333/vfE5K7l/Sjz/+CJ1Oh5tuusm57fLlyxg5ciSioqIQGBiI1q1bIzk5GcC1aXHffPMNbrnlFgQGBqJXr144evQodu7ciZ49eyIkJASDBw926V9FUfDqq6+iadOm0Ol06Nq1K9auXesSy/79+/HnP/8ZgYGBiIyMxPjx42EwGDxq04kTJ3D77bcjKCgIXbp0wbZt21zq/uOPP5zxxsfHY/LkySgsLHQ+npOTg7vvvhuBgYFo3rw5vvjiizLPVaNGjXDzzTfj66+/Lve5BMpO06tJX1V2ThT/7S5cuBCxsbGIjIzExIkTYbVanWXee+89599okyZN8MADDzgfKzlNr1+/fsjMzMRzzz3njKOwsBBhYWH49ttvXdq4atUqBAcHo6CgwO3zQPXTpEmTsG3bNnz99dfYt28fHnzwQQwaNAjHjh0rt/zHH3+MNm3a4JZbbqnScZiMIiICcODAAWzduhVardbfoRAREV33DAYD/vOf/6BVq1aIjIwEAFitVgwcOBChoaHYvHkztmzZ4vzSbrFYYLPZMGzYMNx2223Yt28ftm3bhvHjx0OSJAwfPhx///vfceONNzpHXw0fPrzMcadOnepMqBSXK7ZhwwakpaVh/fr1WL16tTOm1157DXv37sWqVatw8uRJjBkzxrlPRkYGHnjgAQwbNgx79+7FhAkTMHPmzDLHNRqNeOedd/D1119j7dq12LRpE+699178+OOP+PHHH/H555/jgw8+cPnC78kXPqPRiIULF+Lzzz/H77//jlOnTmHq1KnOtj700EMuI9KSkpLK7Y/NmzejR48eLttefvllHDp0CD/99BMOHz6M999/H40bN3YpM3v2bLz00kvYvXs31Go1HnnkEbzwwgt4++23sXnzZqSnp2PWrFnO8m+//Tb+9a9/YeHChdi3bx8GDhyIe+65x9mmwsJCDBw4EI0aNcLOnTuxYsUK/PLLL5g0aZJHbZo5cyamTp2K1NRUtGnTBiNGjIDNZgPgGBE3aNAg3H///di3bx+WL1+OP/74w1k34EjsnD59Ghs3bsS3336L9957r0zyEQB69+6NzZs3l/tculOdvqrsnCi2ceNGHD9+HBs3bsSyZcuwdOlSZzJ2165dmDx5Ml599VWkpaVh7dq1uPXWW8uNceXKlWjatCleffVVZxzBwcF4+OGHnedNseTkZDzwwAMcVdXAnDp1CsnJyVixYgVuueUWtGzZElOnTsWf/vSnMn8jAGAymfDFF19Ub9SlICJqgEaPHi1UKpUIDg4WOp1OABCyLItvv/3Wpdxtt90mnnnmGf8ESUREdJ0o+b4aHBwsAIjY2FiRkpLiLPP555+Ltm3bCkVRnNvMZrMIDAwU69atE5cuXRIAxKZNm8o9xuzZs0WXLl0qjeW7774Tpb/mjB49WjRp0kSYzeYK9925c6cAIAoKCoQQQkybNk107NjRpczMmTMFAHH58mUhhBDJyckCgEhPT3eWmTBhgggKCnLWI4QQAwcOFBMmTBBCCJGZmSlUKpU4e/asS9133HGHmDFjhtt6Fy9eLJo0aeLSrqFDh1bYJiGEGDp0qHjsscdctt19991i7Nix5ZbPyMgQAMTHH3/s3PbVV18JAGLDhg3ObfPmzRNt27Z13o+LixNz5851qatXr17ib3/7mxBCiA8//FA0atRIGAwG5+Nr1qwRsiyL7Oxst20qL56DBw8KAOLw4cNCCCHGjRsnxo8f77Lf5s2bhSzLoqioSKSlpQkAYseOHc7HDx8+LACIRYsWuez39ttvi8TExHKfGyGE2LhxY6V/A570VWXnRPF+CQkJwmazOcs8+OCDYvjw4UIIIf773/+KsLAwkZ+fX26spT/LJiQklGnv9u3bhUqlEllZWUIIIc6fPy/UarXbc5HqDwDiu+++c95fvXq1AOB8LS++qdVq8dBDD5XZ/8svvxRqtdp5/laFuurpKyKi+uH222/H+++/j8LCQixatAhqtRr333+/v8MiIiK6LhW/rwKOKWDvvfceBg8ejB07diAhIQF79+5Fenp6mZEWJpMJx48fx4ABAzBmzBgMHDgQd955J/r374+HHnoIsbGxXomvU6dOZUZAp6SkYM6cOdi7dy8uX74MRVEAOEYHdOjQAWlpaejVq5fLPr179y5Td1BQEFq2bOm836RJEyQmJiIkJMRlW/EonP3798Nut6NNmzYu9ZjNZudIsvLqjY2NLXckT2WKiooQEBDgsu2pp57C/fffj927d2PAgAEYNmxYmZFVnTt3dokfcDyP5bUpPz8fWVlZuPnmm13quPnmm7F3714AjsXlu3Tp4nLVrZtvvhmKoiAtLc15DHdKxlP8d5GTk4N27dph79692Ldvn8vUOyEEFEVBRkYGjh49CrVa7TJCrF27dggPDy9znMDAQBiNxgpjKa06fVXZOVHsxhtvdFkmIjY2Fvv37wcA3HnnnUhISECLFi0waNAgDBo0CPfeey+CgoI8jr1379648cYbsWzZMkyfPh3/+c9/kJCQ4HaEFdVfBoMBKpUKKSkpZZYmKfl6Vuzjjz/GX/7yl0rP3fIwGUVEDVZwcDBatWoFAPj000/RpUsXLu5JRERUTSXfVwHHlxS9Xo+PPvoI//jHP2AwGNCjR49y1+mJiooC4JgaNHnyZKxduxbLly/HSy+9hPXr17usdVST+EoqnjI2cOBAfPHFF4iKisKpU6cwcODAKi9wrtFoXO4XX6239LbiZJenX/jKq8MxmKFqGjdujMuXL7tsGzx4MDIzM/Hjjz9i/fr1uOOOOzBx4kQsXLiw3OMXr79Veltxm3yhvHhKPqcTJkzA5MmTy+zXrFkzHD161OPj5ObmOv8mqxNbcXyV9ZUn54S7uovbHRoait27d2PTpk34+eefMWvWLMyZMwc7d+4sN9HmzuOPP47Fixdj+vTpSE5OxtixY6+LBdrJu7p16wa73Y6cnJxK14DKyMjAxo0b8cMPP1TrWFwziogIjkVOX3zxRbz00ksoKirydzhERETXPUmSIMuy8321e/fuOHbsGKKjo9GqVSuXm16vd+7XrVs3zJgxA1u3bkXHjh3x5ZdfAnBcwazkAuA1deTIEVy6dAnz58/HLbfcgnbt2pUZydK2bVvs2rXLZdvOnTtrfOySX/hKPxcxMTEe1+Ppc9KtWzccOnSozPaoqCiMHj0a//nPf/DWW2/hww8/rFI7SgoLC0NcXBy2bNnisn3Lli3o0KEDAKB9+/bYu3evy6LiW7ZsgSzLzkXlq9vP3bt3x6FDh8o8n61atYJWq0W7du1gs9mQkpLi3CctLc25CHlJBw4cQLdu3aocQ0XKa5en50Rl1Go1+vfvj9dffx379u3DyZMn8euvv3ocBwD89a9/RWZmJt555x0cOnQIo0ePrloD6bphMBiQmpqK1NRUAI6kUmpqKk6dOoU2bdpg5MiRGDVqFFauXImMjAzs2LED8+bNw5o1a1zq+fTTTxEbG4vBgwdXKw4mo4iIrnrwwQehUqmwePFif4dCRER03TGbzcjOzkZ2djYOHz6Mp59+GgaDwXl1u5EjR6Jx48YYOnQoNm/ejIyMDGzatAmTJ0/GmTNnkJGRgRkzZmDbtm3IzMzEzz//jGPHjqF9+/YAgMTEROeXposXL8JsNtco3mbNmkGr1eLf//43Tpw4gR9++AGvvfaaS5kJEybgyJEjmDZtGo4ePYpvvvnGuXB0TUaNVOULX0USExOxb98+pKWl4eLFiy5XWCtp4MCBOHjwoMvoqFmzZuH7779Heno6Dh48iNWrVzuf6+p6/vnnsWDBAixfvhxpaWmYPn06UlNT8cwzzwBw/A0EBARg9OjROHDgADZu3Iinn34ajz76qHOaj6dtKm3atGnYunUrJk2ahNTUVBw7dgzff/+9cwHztm3bYtCgQZgwYQK2b9+OlJQUPP744wgMDCxT1+bNmzFgwIAaPRelldeuys4JT6xevRrvvPMOUlNTkZmZic8++wyKojiTe+XF8fvvv+Ps2bO4ePGic3ujRo1w33334fnnn8eAAQPQtGlTr7Sb6p5du3ahW7duzoTrlClT0K1bN+fFCJKTkzFq1Cj8/e9/R9u2bTFs2DDs3LkTzZo1c9ahKAqWLl2KMWPGVPtK40xGERFdpVarMWnSJLz++usuv9gRERFR5dauXYvY2FjExsaiT58+zqul9evXD4BjTZ3ff/8dzZo1w3333Yf27dtj3LhxMJlMCAsLQ1BQEI4cOYL7778fbdq0wfjx4zFx4kRMmDABAHD//fdj0KBBuP322xEVFYWvvvqqRvFGRUVh6dKlWLFiBTp06ID58+e7TFEDgObNm+Pbb7/FypUr0blzZ7z//vvOq+npdLoaHd+TL3yVeeKJJ9C2bVv07NkTUVFRZUYlFevUqRO6d++Ob775xrlNq9VixowZ6Ny5M2699VaoVCp8/fXXNWrT5MmTMWXKFPz9739Hp06dsHbtWvzwww9o3bo1AMffwLp165Cbm4tevXrhgQcewB133IF33323ym0qrXPnzvjtt99w9OhR3HLLLc4v13Fxcc4yycnJiIuLw2233Yb77rsP48ePR3R0tEs927ZtQ15eHh544IEaPRelldeuys4JT4SHh2PlypX485//jPbt22PJkiX46quvcOONN5Zb/tVXX8XJkyfRsmXLMlMRx40bB4vFgscee6zG7aW6q1+/fhBClLkVJ9o1Gg1eeeUVZGRkwGKxICsrCytXrnRZL06WZZw+fRpz586tdhySqM6kYyIiIiIiogZo7ty5WLJkCU6fPu3vUKpkzZo1eP7553HgwAHIMsckuDN8+HB06dIFL774or9D8bnPP/8czz33HLKyssos9k/kbVzAnIiIiIiIyI333nsPvXr1QmRkJLZs2YI33njDOfXrejJkyBAcO3YMZ8+eRXx8vL/DqZMsFgs6deqE5557zt+h+JTRaMS5c+cwf/58TJgwgYko8gmOjCIiIiIiInLjueeew/Lly5Gbm4tmzZrh0UcfxYwZM6BW83d9qh/mzJmDuXPn4tZbb8X333/vckVHotrCZBQREREREREREfkMJwsTEREREREREZHPMBlFREREREREREQ+w2QUERERERERERH5DJNRRERERERERETkM0xGERERERERERGRzzAZRUREREREREREPsNkFBERERERERER+QyTUURERERERERE5DNMRhERERERERERkc/8P5bmRrSDueTNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0nNJREFUeJzs3XdcE/cbB/DPZbNBZTgQXKi4xWrFvQfOap2tOGur1m2r9WcddVTrbG3V2oqjWtzWqnVv0FahWqtWHIhVEVRkr5Dc7w9MSiRggkBAP+/XK68XudxdnrsEcjx5vs9XEEVRBBERERERERERUSGQWDoAIiIiIiIiIiJ6czAZRUREREREREREhYbJKCIiIiIiIiIiKjRMRhERERERERERUaFhMoqIiIiIiIiIiAoNk1FERERERERERFRomIwiIiIiIiIiIqJCw2QUEREREREREREVGiajiIiIiIiIiIio0DAZRZSFIAiYNWuW/v769eshCALu3r1rsZhMMXjwYHh6eubb/mbNmgVBEPJtfzqenp4YPHhwvu+3qLl58ybat28PBwcHCIKAPXv2GH0vtWzZEi1btiz0+BITE+Hi4oLNmzcX+nO/bp4+fQobGxscOHDA0qEQEZnEUp895sjv65rC8uJ1ZH4oKq+Xp6cnunTp8tL1Tp48CUEQcPLkyXx9/sK6dinMa9Xi+j43xd27dyEIAtavX18g+586dSoaNWpUIPumwsNkFL0xvvvuOwiCwD9cBSw4OBizZs1CbGyspUOxGH9/f1y5cgXz5s3Dpk2b0KBBA0uHZGDFihWws7NDv379LB2KnlarxaJFi1ChQgWoVCrUrl0bP//8s8nbHzlyBE2bNoW1tTWcnJzQu3dvo0nk1NRULFiwAN7e3rC2tkbZsmXx7rvv4urVq3naZ8mSJTF8+HDMmDHD3EMmIjKJ7ssM3U2lUsHLywtjxoxBVFRUocayZcsWLF++vFCf801w7do1zJo1q8h/+WlJRfHahSxn/PjxuHz5Mvbu3WvpUOgVMBlFb4zNmzfD09MTf/zxB27dumXSNu+//z5SUlLg4eFRwNG9PoKDgzF79myjyagbN25g7dq1hR9UIUpJScG5c+cwbNgwjBkzBu+99x7KlStXZN5LarUaK1aswPDhwyGVSi0aS1bTp0/Hp59+inbt2uGbb75B+fLlMWDAAAQGBr5023379qFjx45IS0vDl19+iUmTJuHUqVNo2rQpHj9+bLDuwIED8fnnn6Nly5b4+uuvMXLkSJw+fRqNGzdGREREnvb54YcfIjQ0FMePH8+fk0FEZMScOXOwadMmrFy5Er6+vli1ahUaN26M5ORks/Zz+PBhHD58OE8xFFYyau3atbhx40aBP09Rce3aNcyePdtoMupVXi9LaN68OVJSUtC8efN822dhXru8CdeqrwM3Nzd0794dixcvtnQo9AqYjKI3Qnh4OIKDg7F06VI4OzubXOIrlUqhUqkKZMjam0ipVEIul1s6DLNotVqkpqaavL4uUeHo6GiwvKi8l/bt24fHjx+jT58+L103KSmpECICHjx4gCVLlmD06NH4/vvvMWLECPz6669o1qwZpkyZAo1Gk+v2n376KSpWrIigoCCMHTsW//vf/3D06FFERkbiyy+/NHieXbt2Yfz48fjuu+8wfPhwfP755wgMDERCQgJ27dpl9j4BoHr16qhZs2aBlaITEQFAp06d8N5772H48OFYv349xo8fj/DwcPzyyy9m7UehUEChUBRQlPlDLpdDqVRaNAZRFJGSkmLRGIDi8XplJZFIoFKpIJHk37+Z5ly7vCpTrlUL6/qIctenTx+cPXsWd+7csXQolEdMRtEbYfPmzXBycoKfnx969+5tcjLKWJ8frVaLWbNmoUyZMrC2tkarVq1w7dq1bGPMddsGBQVh4sSJcHZ2ho2NDXr27JmtsgIAfvvtNzRr1gw2Njaws7ODn5+f0aFDe/bsQc2aNaFSqVCzZk3s3r3brHNh6vNkldu476z9EWbNmoUpU6YAACpUqKAfUqA7f8bG4d+5cwfvvvsuSpQoAWtra7z99tvYv3+/wTq6/gPbtm3DvHnzUK5cOahUKrRp08akKjddD6x//vkHffr0gb29PUqWLIlx48ZlSzQJgoAxY8Zg8+bNqFGjBpRKJQ4ePAgA+PPPP9GpUyfY29vD1tYWbdq0wfnz5w2eR1f5NGXKFAiCoO8FYGr/sbS0NMycOROVK1eGUqmEu7s7PvnkE6SlpRmspxtC5ujoCFtbW1StWhWfffbZS8/Fnj174OnpiUqVKhksHzx4MGxtbXH79m107twZdnZ2GDhw4Ev3lx9++eUXqNVqjBo1Sr9MEAR89NFHuH//Ps6dO5fjtjExMbh27Rp69uxpcLFep04dVK9e3aCyKiEhAQDg6upqsI/SpUsDAKysrMzep067du3w66+/QhRFcw6diCjPWrduDSDzCzcAyMjIwBdffIFKlSpBqVTC09MTn332WbbPjxd7EJn6GduyZUvs378fERER+s/33PrdxMbGQiqV4uuvv9Yve/LkCSQSCUqWLGnw9/Kjjz6Cm5ub/r6xXjqBgYHw8fGBnZ0d7O3tUatWLaxYsSLbc44fPx7u7u5QKpWoXLkyFi5cCK1Wm/vJxH89kQ4dOoQGDRrAysoKa9aseaX9RkREYNSoUahatSqsrKxQsmRJvPvuuwbXAuvXr8e7774LAGjVqpX+3Op6LhnrGRUdHY1hw4bB1dUVKpUKderUwYYNGwzW0V27LV68GN9//73+ffHWW2/hwoULBus+evQIQ4YMQbly5aBUKlG6dGl0797d6DXL2bNn0bBhQ6hUKlSsWBEbN240eNxYz6iWLVuiZs2aCAkJga+vL6ysrFChQgWsXr061/On87Jrlzt37qBDhw6wsbFBmTJlMGfOnGyfx4sXL4avry9KliwJKysr+Pj4YMeOHdmeK6fr+VOnTmHUqFFwcXFBuXLl9I8XxvX7xYsX0aFDB5QqVUp/7oYOHZqn49Nd527fvh3e3t6wsrJC48aNceXKFQDAmjVrULlyZahUKrRs2TLbe+BVX8t//vkHvXv3RokSJaBSqdCgQYNsQ+3UajVmz56NKlWqQKVSoWTJkmjatCmOHDlisF7btm0BwOyEPBUdMksHQFQYNm/ejHfeeQcKhQL9+/fHqlWrcOHCBbz11ltm72vatGlYtGgRunbtig4dOuDy5cvo0KFDjtUzH3/8MZycnDBz5kzcvXsXy5cvx5gxY7B161b9Ops2bYK/vz86dOiAhQsXIjk5GatWrULTpk3x559/6i/IDh8+jF69esHb2xsLFizA06dP9RcPpjD1efLqnXfeQVhYGH7++WcsW7YMpUqVAgA4OzsbXT8qKgq+vr5ITk7G2LFjUbJkSWzYsAHdunXDjh070LNnT4P1v/zyS0gkEkyePBlxcXFYtGgRBg4ciN9//92k+Pr06QNPT08sWLAA58+fx9dff41nz55lu5A6fvw4tm3bhjFjxqBUqVLw9PTE1atX0axZM9jb2+OTTz6BXC7HmjVr0LJlS5w6dQqNGjXCO++8A0dHR0yYMAH9+/dH586dYWtra/L502q16NatG86ePYsPPvgA1atXx5UrV7Bs2TKEhYVhz549AICrV6+iS5cuqF27NubMmQOlUolbt24hKCjopc8RHByM+vXrG30sIyMDHTp0QNOmTbF48WJYW1vnuB+1Wo24uDiTjqtEiRK5fkP6559/wsbGBtWrVzdY3rBhQ/3jTZs2Nbqt7p8sXSIpK2tra1y9ehWPHj2Cm5sbKlWqhHLlymHJkiWoWrUq6tWrh4cPH+KTTz5BhQoV9H0ozNmnjo+PD5YtW4arV6+iZs2auZ0OIqJ8cfv2bQCZvesAYPjw4diwYQN69+6NSZMm4ffff8eCBQtw/fp1k/7xfdln7PTp0xEXF4f79+9j2bJlAJDrZ5yjoyNq1qyJ06dPY+zYsQAyExmCIOiT/jVq1AAAnDlzBs2aNctxX0eOHEH//v3Rpk0bLFy4EABw/fp1BAUFYdy4cQCA5ORktGjRAg8ePMDIkSNRvnx5BAcHY9q0aYiMjDRpeOGNGzfQv39/jBw5EiNGjEDVqlVfab8XLlxAcHAw+vXrh3LlyuHu3btYtWoVWrZsiWvXrsHa2hrNmzfH2LFj8fXXX+Ozzz7Tfxa++Jmok5KSgpYtW+LWrVsYM2YMKlSogO3bt2Pw4MGIjY3Vnw+dLVu2ICEhASNHjoQgCFi0aBHeeecd3LlzR18B1KtXL1y9ehUff/wxPD09ER0djSNHjuDevXsG14a3bt1C7969MWzYMPj7+2PdunUYPHgwfHx89K9lTp49e4bOnTujT58+6N+/P7Zt24aPPvoICoUiW2LlRbldu2g0GnTs2BFvv/02Fi1ahIMHD2LmzJnIyMjAnDlz9OutWLEC3bp1w8CBA5Geno7AwEC8++672LdvH/z8/HJ9fgAYNWoUnJ2d8fnnn+srowrj+j06Ohrt27eHs7Mzpk6dCkdHR9y9e9egmtvc4ztz5gz27t2L0aNHAwAWLFiALl264JNPPsF3332HUaNG4dmzZ1i0aBGGDh2arQ1BXl/Lq1evokmTJihbtiymTp0KGxsbbNu2DT169MDOnTv11/2zZs3CggULMHz4cDRs2BDx8fG4ePEiQkND0a5dO/3+HBwcUKlSJQQFBWHChAkvPZdUBIlEr7mLFy+KAMQjR46IoiiKWq1WLFeunDhu3Lhs6wIQZ86cqb8fEBAgAhDDw8NFURTFR48eiTKZTOzRo4fBdrNmzRIBiP7+/tm2bdu2rajVavXLJ0yYIEqlUjE2NlYURVFMSEgQHR0dxREjRhjs89GjR6KDg4PB8rp164qlS5fWbyuKonj48GERgOjh4ZHreTDneWbOnClm/fMQHh4uAhADAgKy7ffFc/bVV18ZnLOsPDw8DM7R+PHjRQDimTNnDOKsUKGC6OnpKWo0GlEURfHEiRMiALF69epiWlqaft0VK1aIAMQrV67keuy64+nWrZvB8lGjRokAxMuXLxscj0QiEa9evWqwbo8ePUSFQiHevn1bv+zhw4einZ2d2Lx5c/0y3bn66quvDLZ/8b0kiqLYokULsUWLFvr7mzZtEiUSicH5EEVRXL16tQhADAoKEkVRFJctWyYCEB8/fpzrcb9IrVaLgiCIkyZNyvaYv7+/CECcOnWqSfvSvSam3Iy9F7Ly8/MTK1asmG15UlLSS2PSaDSio6Oj2KZNG4PlT548EW1sbEQA4sWLF/XLf//9d7FSpUoG8fn4+IiRkZF53qcoimJwcLAIQNy6dWuux0pEZC7d58fRo0fFx48fi//++68YGBgolixZUrSyshLv378vXrp0SQQgDh8+3GDbyZMniwDE48eP65e9+Nljzmesn5/fS683sho9erTo6uqqvz9x4kSxefPmoouLi7hq1SpRFEXx6dOnoiAI4ooVK/Tr+fv7GzzPuHHjRHt7ezEjIyPH5/riiy9EGxsbMSwszGD51KlTRalUKt67dy/XWD08PEQA4sGDB/O83xeviZKTk7M9z7lz50QA4saNG/XLtm/fLgIQT5w4kW39F1+v5cuXiwDEn376Sb8sPT1dbNy4sWhrayvGx8eLovjf9UjJkiXFmJgY/bq//PKLCED89ddfRVEUxWfPnhm9bnmR7vycPn1avyw6OlpUKpUG1xW691PWY2nRooUIQFyyZIl+WVpamli3bl3RxcVFTE9Pz/F5Tbl2+fjjj/XLtFqt6OfnJyoUCoPrpBdfi/T0dLFmzZpi69atsx2nsev5pk2bGrz/Cuv6fffu3SIA8cKFC7muZ+rxARCVSqXBtdmaNWtEAKKbm5v+/SOKojht2jSj166mvJbG/ndo06aNWKtWLTE1NVW/TKvVir6+vmKVKlX0y+rUqSP6+fnlerw67du3F6tXr27SulT0cJgevfY2b94MV1dXtGrVCkBmeWrfvn0RGBj40l40Lzp27BgyMjIMhhMBmdVPOfnggw8M+gQ1a9YMGo1G3yz5yJEjiI2NRf/+/fHkyRP9TSqVolGjRjhx4gQAIDIyEpcuXYK/vz8cHBz0+2vXrh28vb1fGrupz1OYDhw4gIYNGxpUvdja2uKDDz7A3bt3ce3aNYP1hwwZYjBsSvctqqljxXXfAOnoXrcDBw4YLG/RooXBOdVoNDh8+DB69OiBihUr6peXLl0aAwYMwNmzZxEfH29SDLnZvn07qlevjmrVqhm8RrqhGLrXSNeP6pdffjFp6IFOTEwMRFGEk5NTjut89NFHJu2rTp06OHLkiEm3rBVExqSkpBjtDaJSqfSP50QikWDkyJE4duwYpk2bhps3byIkJAR9+vRBenp6tu2dnJxQt25dTJ06FXv27MHixYtx9+5dvPvuu/rqRnP3qdsvkDkEhYioILRt2xbOzs5wd3dHv379YGtri927d6Ns2bL6z7GJEycabDNp0iQAyDb83ZhX/Yw1plmzZoiKitI3Iz9z5gyaN2+OZs2a4cyZMwAyq6VEUcy1MsrR0RFJSUnZhulktX37djRr1gxOTk4Gn6Ft27aFRqPB6dOnXxpvhQoV0KFDh3zbb9YKW7VajadPn6Jy5cpwdHREaGjoS+Mx5sCBA3Bzc0P//v31y+RyOcaOHYvExEScOnXKYP2+ffsafO6/+LpaWVlBoVDg5MmTePbsWa7P7e3tbfA6OTs7o2rVqia9R2QyGUaOHKm/r1AoMHLkSERHRyMkJCTH7Uy5dhkzZoz+Z90wtPT0dBw9elS/POtr8ezZM8TFxaFZs2Ymvw4jRowwaJ5eWNfvumu+ffv2Qa1W57ieOcfXpk0bg4o33UzjvXr1gp2dXbblL76+eXktY2JicPz4cfTp0wcJCQn68/X06VN06NABN2/exIMHD/THfPXqVdy8eTPH49XR/V5S8cRhevRa02g0CAwMRKtWrfQ9FYDMP65LlizBsWPH0L59e5P3p0sgVa5c2WB5iRIlcvyQLF++vMF93Xq6D3zdH1pdwuFF9vb2Bs9dpUqVbOtUrVr1pR+mpj5PYYqIiNB/0GWlK02PiIgwGPL0snP5Mi+eu0qVKkEikWQbD1+hQgWD+48fP0ZycjKqVq1qNFatVot///33pSXqL3Pz5k1cv349x2GN0dHRADIvLH/44QcMHz4cU6dORZs2bfDOO++gd+/eJjUMFXPoaySTyUwe8unk5KQfq/+qrKyssvU0AaBPDhkbLpfVnDlz8OTJEyxatEjfXLx9+/YYNmwYVq9erR9GorswmzJliv4fNABo0KABWrZsiYCAAH0yztR96ujOqaUb1BPll9OnT+Orr75CSEgIIiMjsXv3bvTo0cOsfRw6dAgzZ87E1atXoVKp0Lx5cyxZsuSVh4S/qb799lt4eXlBJpPB1dUVVatW1f/Nj4iIgEQiyXZ94ubmBkdHR4PZQnPyKp+xjx49Mrjv4OAAKysrfeLizJkzKFeuHP7880/MnTsXzs7O+lmwzpw5A3t7e9SpUyfH/Y8aNQrbtm1Dp06dULZsWbRv3x59+vRBx44d9evcvHkTf/3110s/Q3Pz4uf/q+43JSUFCxYsQEBAAB48eGDw+WvqUPcXRUREoEqVKtk+77NeO2X1stdVqVRi4cKFmDRpElxdXfH222+jS5cuGDRoULYvk17cl25/prxHypQpAxsbG4NlXl5eADL7W7399tu5bp/TtYtEIjH4ovDF/ers27cPc+fOxaVLlwyuOUz93H7xvVFY1+8tWrRAr169MHv2bCxbtgwtW7ZEjx49MGDAAIMv8sw5vhdfR12SzN3d3ejyF1/fvLyWt27dgiiKmDFjBmbMmGH0WKOjo1G2bFnMmTMH3bt3h5eXF2rWrImOHTvi/fffR+3atbNtI4oir72KMSaj6LV2/PhxREZGIjAw0GjT4c2bN5uVjMqLnKag1X2o6ipbNm3aZLSCRCbLn1/TV3menP7Im1tZ9qpedi7NldNxvSz5UVC0Wi1q1aqFpUuXGn1cd5FgZWWF06dP48SJE9i/fz8OHjyIrVu3onXr1jh8+HCO56lEiRIQBCHHi0alUmny7Dfp6emIiYkxaV1nZ+dcp2IuXbo0Tpw4ke2CIjIyEkDmRU9uFAoFfvjhB8ybNw9hYWFwdXWFl5cXBgwYYPDP2c6dOxEVFYVu3boZbN+iRQvY29sjKChIn4wydZ86unOq65NGVNwlJSWhTp06GDp0KN555x2ztw8PD0f37t0xceJEbN68GXFxcZgwYQLeeeedPFeEvOkaNmyIBg0a5LrOq/xT9iqfsbqJIHQCAgIwePBglClTBhUqVMDp06fh6ekJURTRuHFjODs7Y9y4cYiIiMCZM2fg6+ub6+ePi4sLLl26hEOHDuG3337Db7/9hoCAAAwaNEjfuFur1aJdu3b45JNPjO5D989ybox9/r/Kfj/++GMEBARg/PjxaNy4MRwcHCAIAvr162dWZfOrMOV1HT9+PLp27Yo9e/bg0KFDmDFjBhYsWIDjx4+jXr16Zu0rv73s2sUUZ86cQbdu3dC8eXN89913KF26NORyOQICArBlyxaT9vHie6Owrt8FQcCOHTtw/vx5/Prrrzh06BCGDh2KJUuW4Pz587C1tTX7+HJ6HQvy9dWdr8mTJ2erPtTRXVs1b94ct2/fxi+//ILDhw/jhx9+wLJly7B69WoMHz7cYJtnz57x2qsYYzKKXmubN2+Gi4sLvv3222yP7dq1C7t378bq1atNTj7oZkq7deuWwTckT58+zfOHpG5mEBcXl1wrTXTPbaxkVVf+nh/PY4zuW7TY2FiD5ca+aTXnQtjDw8No7P/884/+8fx08+ZNg9ft1q1b0Gq1L/2W3tnZGdbW1jnGKpFIsn2blBeVKlXC5cuX0aZNm5eeR4lEgjZt2qBNmzZYunQp5s+fj+nTp+PEiRM5vr4ymQyVKlUyqBLMq+DgYP3Q15cJDw/P9RzXrVsXP/zwA65fv25Qsq5rmlu3bl2TnsfV1VU/U55Go8HJkyfRqFEjfRVTVFSU/rGsRFGERqNBRkaG2fvMeoxAzg1niYqbTp06oVOnTjk+npaWhunTp+Pnn39GbGwsatasiYULF+pn/QoJCYFGo8HcuXP1SYbJkyeje/fuUKvVL506nczj4eEBrVaLmzdvGvwdioqKQmxsbL59nub02fTi8LmslcLNmjXD6dOnUaFCBdStWxd2dnaoU6cOHBwccPDgQYSGhmL27NkvfW6FQoGuXbuia9eu0Gq1GDVqFNasWYMZM2agcuXKqFSpEhITE/OtalfnVfa7Y8cO+Pv7Y8mSJfplqamp2a6nzL12+uuvv6DVag0SeK967VSpUiVMmjQJkyZNws2bN1G3bl0sWbIEP/30U57296KHDx8iKSnJoKImLCwMAHK9RnjZtYtWq8WdO3cMkoIv7nfnzp1QqVQ4dOiQQTVRQEBAXg+n0K7fdd5++228/fbbmDdvHrZs2YKBAwciMDAQw4cPL5Djy01eXktd9ZpcLjfpd6lEiRIYMmQIhgwZgsTERDRv3hyzZs3KlowKDw/PtaqSijb2jKLXVkpKCnbt2oUuXbqgd+/e2W5jxoxBQkJCtulEc9OmTRvIZDKsWrXKYPnKlSvzHGeHDh1gb2+P+fPnGx0L/vjxYwCZ3zrWrVsXGzZsMCjtPnLkSLbeSq/yPMbY29ujVKlS2foifPfdd9nW1X0wvXihZUznzp3xxx9/4Ny5c/plSUlJ+P777+Hp6WnSWHpzvJiU/OabbwAg13+4gMxvitq3b49ffvnFoOQ7KioKW7ZsQdOmTfNlmGOfPn3w4MEDrF27NttjKSkp+tlbjFUk6RI2xoa7ZdW4cWNcvHjxlWPNz55R3bt3h1wuN3g/iaKI1atXo2zZsvD19dUvj4yMxD///JNr3wQgc4rjyMhIg+F4ugvVF6sk9+7di6SkJINvf03dp05ISAgcHBxeeagmUXExZswYnDt3DoGBgfjrr7/w7rvvomPHjvp/uHx8fCCRSBAQEACNRoO4uDhs2rQJbdu2ZSKqAHTu3BkAss3spqu0NWW2MFPY2NgYHV7Wtm1bg1vWSqlmzZrh7t272Lp1q37YnkQiga+vL5YuXQq1Wp1rvygg80u/rCQSiX7Iju5zr0+fPjh37hwOHTqUbfvY2FijXziY4lX2K5VKs1WVfPPNN9m+FDH32unRo0cGszJnZGTgm2++ga2tLVq0aPHSfWSVnJycbUboSpUqwc7O7qXXFObIyMjAmjVr9PfT09OxZs0aODs7w8fHJ9dtX3btkvU6XBRFrFy5EnK5HG3atAGQ+ToIgmBw3u/evaufpTgvCuv6/dmzZ9neQy9e8xXE8eUmL6+li4sLWrZsiTVr1ugr37PK+n/Ii7/vtra2qFy5crb3Y1xcHG7fvm1wnUjFCyuj6LW1d+9eJCQkZBuSo/P222/D2dkZmzdvRt++fU3ap6urK8aNG4clS5agW7du6NixIy5fvozffvsNpUqVylN5vL29PVatWoX3338f9evXR79+/eDs7Ix79+5h//79aNKkif5DdsGCBfDz80PTpk0xdOhQxMTE4JtvvkGNGjWQmJiYb89jzPDhw/Hll19i+PDhaNCgAU6fPq3/FiQr3YfQ9OnT0a9fP8jlcnTt2jXb2HIAmDp1Kn7++Wd06tQJY8eORYkSJbBhwwaEh4dj586dJg8ZM1V4eLj+dTt37hx++uknDBgwwKRvVObOnYsjR46gadOmGDVqFGQyGdasWYO0tDQsWrQoX+J7//33sW3bNnz44Yc4ceIEmjRpAo1Gg3/++Qfbtm3DoUOH0KBBA8yZMwenT5+Gn58fPDw8EB0dje+++w7lypUzaAZvTPfu3bFp0yaEhYWZNGQhJ/nZM6pcuXIYP348vvrqK6jVarz11lvYs2cPzpw5g82bNxuUjU+bNk3/HtF9+/bTTz9h586daN68OWxtbXH06FFs27YNw4cPR69evfTbdu3aFTVq1MCcOXMQERGBt99+G7du3cLKlStRunRpDBs2TL+uqfvUOXLkCLp27cq+BfRGuHfvHgICAnDv3j39MNrJkyfj4MGDCAgIwPz581GhQgUcPnwYffr0wciRI6HRaNC4ceNsE0ZQ/qhTpw78/f3x/fffIzY2Fi1atMAff/yBDRs2oEePHiZXsr6Mj48Ptm7diokTJ+Ktt96Cra0tunbtmus2ukTTjRs3MH/+fP3y5s2b47fffoNSqcRbb72V6z6GDx+OmJgYtG7dGuXKlUNERAS++eYb1K1bV18JNmXKFOzduxddunTB4MGD4ePjg6SkJFy5cgU7duzA3bt38zSc51X226VLF2zatAkODg7w9vbGuXPncPToUZQsWdJgvbp160IqlWLhwoWIi4uDUqlE69at4eLikm2fH3zwAdasWYPBgwcjJCQEnp6e2LFjB4KCgrB8+XKDBtSmCAsLQ5s2bdCnTx94e3tDJpNh9+7diIqKQr9+/czaV27KlCmDhQsX4u7du/Dy8sLWrVtx6dIlfP/99y9NUOd27aJSqXDw4EH4+/ujUaNG+O2337B//3589tln+j5ffn5+WLp0KTp27IgBAwYgOjoa3377LSpXroy//vorT8dTWNfvGzZswHfffYeePXuiUqVKSEhIwNq1a2Fvb69PQhfE8eUmr6/lt99+i6ZNm6JWrVoYMWIEKlasiKioKJw7dw7379/H5cuXAWQ2ym/ZsiV8fHxQokQJXLx4ETt27DBoVA8AR48ehSiK6N69e74fIxWSQpy5j6hQde3aVVSpVGJSUlKO6wwePFiUy+XikydPRFHMPiWvbjrXrFOaZmRkiDNmzBDd3NxEKysrsXXr1uL169fFkiVLih9++GG2bV+citXYlLe65R06dBAdHBxElUolVqpUSRw8eHC2KeR37twpVq9eXVQqlaK3t7e4a9eubFMg58aU55k5c6b44p+H5ORkcdiwYaKDg4NoZ2cn9unTR4yOjs52zkQxcxrksmXLihKJxOD8vThdriiK4u3bt8XevXuLjo6OokqlEhs2bCju27fP6Dnbvn27wXJj08Yaozuea9euib179xbt7OxEJycnccyYMWJKSorBugDE0aNHG91PaGio2KFDB9HW1la0trYWW7VqJQYHBxuN6cUpko29l16crlkUM6fiXbhwoVijRg1RqVSKTk5Ooo+Pjzh79mwxLi5OFEVRPHbsmNi9e3exTJkyokKhEMuUKSP2798/27TTxqSlpYmlSpUSv/jiC4Pl/v7+oo2NzUu3LygajUacP3++6OHhISoUCrFGjRoG01br6KZxznoef//9d7F58+aik5OTqFKpxDp16oirV68WtVpttu1jYmLECRMmiF5eXqJSqRRLlSol9uvXT7xz547Beubs8/r16/pp14leRwDE3bt36+/v27dPBCDa2NgY3GQymdinTx9RFEUxMjJSrFKlijhlyhQxNDRUPHXqlNiiRQuxTZs2Rn+PKGc5XU+8SK1Wi7NnzxYrVKggyuVy0d3dXZw2bZrBNOqimP2zx5zP2MTERHHAgAGio6OjSdPS67i4uIgAxKioKP2ys2fPigDEZs2aZVv/xeuaHTt2iO3btxddXFxEhUIhli9fXhw5cqQYGRlpsF1CQoI4bdo0sXLlyqJCoRBLlSol+vr6iosXL9ZPOZ8TDw+PHKeTN3W/L14TPXv2TBwyZIhYqlQp0dbWVuzQoYP4zz//GL0eWrt2rVixYkVRKpUaXCcau1aIiorS71ehUIi1atXKdi2U0/XIi3E+efJEHD16tFitWjXRxsZGdHBwEBs1aiRu27bNpPOT0/sp63VuixYtxBo1aogXL14UGzduLKpUKtHDw0NcuXJltv0Z87Jrl9u3b4vt27cXra2tRVdXV3HmzJmiRqMxWPfHH38Uq1SpIiqVSrFatWpiQECA0evdF1+bl/3+FfT1e2hoqNi/f3+xfPnyolKpFF1cXMQuXbpk27+px2fsOjen94qxvw2mvpY5XaPfvn1bHDRokOjm5ibK5XKxbNmyYpcuXcQdO3bo15k7d67YsGFD0dHRUbSyshKrVasmzps3L9vvcN++fcWmTZvmev6oaBNEsQA7zhG9IWJjY+Hk5IS5c+di+vTplg6HXjBr1izMnj0bjx8/ZpNDAF988QUCAgJw8+bNXBuLk2nGjx+P06dPIyQkhJVR9FoSBMFgNr2tW7di4MCBuHr1ara/Iba2tnBzc8OMGTNw8OBBXLhwQf/Y/fv34e7ujnPnzr105iwien20bNkST548wd9//53nfRi7dhk8eDB27Njx0uoiyj/58Vrmh0ePHqFChQoIDAxkZVQxxp5RRGZKSUnJtkzXo0HXuJWoKJswYQISExONzjBJ5nn69Cl++OEHzJ07l4koemPUq1cPGo0G0dHRqFy5ssFN1yMuOTk521Br3T+QhTWLGBG9PnjtQlktX74ctWrVYiKqmGPPKCIzbd26FevXr0fnzp1ha2uLs2fP4ueff0b79u3RpEkTS4dH9FK2traIjo62dBivhZIlS/IbWXotJSYm4tatW/r74eHhuHTpEkqUKAEvLy8MHDgQgwYNwpIlS1CvXj08fvwYx44dQ+3ateHn5wc/Pz8sW7YMc+bMQf/+/ZGQkIDPPvsMHh4eL50sgIjoRbx2oay+/PJLS4dA+YDJKCIz1a5dGzKZDIsWLUJ8fLy+qfncuXMtHRoREVG+uHjxokHT64kTJwIA/P39sX79egQEBGDu3LmYNGkSHjx4gFKlSuHtt99Gly5dAACtW7fGli1bsGjRIixatAjW1tZo3LgxDh48CCsrK4scExERERUd7BlFRERERERERESFhj2jiIiIiIiIiIio0DAZRUREREREREREheaN6xml1Wrx8OFD2NnZceYjIiIiMpsoikhISECZMmWyzRhX3PE6iYiIiPLKnGukNy4Z9fDhQ7i7u1s6DCIiIirm/v33X5QrV87SYeQrXicRERHRqzLlGumNS0bZ2dkByDw59vb2Fo6GiIiIipv4+Hi4u7vrryleJ7xOIiIiorwy5xrpjUtG6UrO7e3teZFFREREefY6DmPjdRIRERG9KlOukV6vRgdERERERERERFSkMRlFRERERERERESFhskoIiIiIiIiIiIqNG9czygienUajQZqtdrSYRARFQi5XA6pVGrpMIiIiIheW0xGEZHJRFHEo0ePEBsba+lQiIgKlKOjI9zc3F7LJuVERERElsZkFBGZTJeIcnFxgbW1Nf9JI6LXjiiKSE5ORnR0NACgdOnSFo6IiIiI6PXDZBQRmUSj0egTUSVLlrR0OEREBcbKygoAEB0dDRcXFw7ZIyIiomJPqxURFp2AuGQ1HKzl8HKxg0RiueICizYwP336NLp27YoyZcpAEATs2bPnpducPHkS9evXh1KpROXKlbF+/foCj5OIoO8RZW1tbeFIiIgKnu5vHfvjERERUXEXEhGD8VsvYeLWy5i++wombr2M8VsvISQixmIxWTQZlZSUhDp16uDbb781af3w8HD4+fmhVatWuHTpEsaPH4/hw4fj0KFDBRwpEelwaB4RvQn4t46IiIheByERMZi3/zr+fhAHe5UM5ZysYa+S4erDOMzbf91iCSmLDtPr1KkTOnXqZPL6q1evRoUKFbBkyRIAQPXq1XH27FksW7YMHTp0KKgwiYiIiIiIiIiKFa1WxIbgCMQmq+FZ8r+evzZKGawVUkTEJGNjcATquTsV+pA9i1ZGmevcuXNo27atwbIOHTrg3LlzOW6TlpaG+Ph4gxtRXmVotDi4fi7+nt8cMTFPLR0OFTOenp5Yvny5pcMAAHz//fdwd3eHRCIpMjFZWnp6OipXrozg4GBLh5Inpg53N1fLli0xfvz4fN+vJa1evRpdu3a1dBhEREREBSosOgG3ohPhYqfMVvUtCAKcbZW4GZ2IsOiEQo+tWCWjHj16BFdXV4Nlrq6uiI+PR0pKitFtFixYAAcHB/3N3d29MEKl19QnO/5C+TvbUDP9MoKP/2rpcMhEgwcPhiAI+PDDD7M9Nnr0aAiCgMGDB+uXPX78GB999BHKly8PpVIJNzc3dOjQAUFBQQCAmJgYfPzxx6hatSqsrKxQvnx5jB07FnFxcYV1SEatX78ejo6OL10vPj4eY8aMwaeffooHDx7ggw8+KPjgLGTWrFmoW7euSevqqm99fX0LNqhXZM4xkXFDhw5FaGgozpw5Y+lQiIiIiApMXLIa6RkaqOTGJ2NRyaVIz9AgLrnwe2QWq2RUXkybNg1xcXH627///mvpkKgY23PpARTI/EX94+YDiKJo4YjIVO7u7ggMDDRIXKempmLLli0oX768wbq9evXCn3/+iQ0bNiAsLAx79+5Fy5Yt8fRpZjXcw4cP8fDhQyxevBh///031q9fj4MHD2LYsGGFekx5de/ePajVavj5+aF06dJGm9Knp6dbIDLLEUURK1euLDav4ZsoP9+TCoUCAwYMwNdff51v+yQiIiIqahys5VDIpEhVa4w+nqrWQCGTwsFaXsiRFbNklJubG6KiogyWRUVFwd7eXj8N84uUSiXs7e0NbkR5pRUBGTJ/kRMT4vF7uOVmHyDz1K9fH+7u7ti1a5d+2a5du1C+fHnUq1dPvyw2NhZnzpzBwoUL0apVK3h4eKBhw4aYNm0aunXrBgCoWbMmdu7cia5du6JSpUpo3bo15s2bh19//RUZGRm5xpGQkID+/fvDxsYGZcuWzTaBQ2xsLIYPHw5nZ2fY29ujdevWuHz5sv7xy5cvo1WrVrCzs4O9vT18fHxw8eJFnDx5EkOGDEFcXBwEQYAgCJg1a1a251+/fj1q1aoFAKhYsSIEQcDdu3f11TY//PADKlSoAJVKBQA4ePAgmjZtCkdHR5QsWRJdunTB7du3DfYZHByMunXrQqVSoUGDBtizZw8EQcClS5cAZM6CKggCDh06hHr16sHKygqtW7dGdHQ0fvvtN1SvXh329vYYMGAAkpOT9fvVarVYsGABKlSoACsrK9SpUwc7duzQP67b77Fjx9CgQQNYW1vD19cXN27c0B/r7NmzcfnyZf05yWkG1pCQENy+fRt+fn76Zenp6RgzZgxKly4NlUoFDw8PLFiwQP+4IAhYs2YNunTpAmtra1SvXh3nzp3DrVu30LJlS9jY2MDX1zfb+Vq1ahUqVaoEhUKBqlWrYtOmTQaP37t3D927d4etrS3s7e3Rp08f/Wffy47pyZMn6NmzJ6ytrVGlShXs3bvXYN9///03OnXqBFtbW7i6uuL999/HkydP9I8nJSVh0KBBsLW1RenSpfU9Gs1x9+5dCIKAXbt2oVWrVrC2tkadOnWyDanfuXMnatSoAaVSCU9Pz2zP5enpiS+++AKDBg2Cvb09PvjgA3313759+1C1alVYW1ujd+/eSE5OxoYNG+Dp6QknJyeMHTsWGo3xiy6drl27Yu/evTlWVhMREREVd14udqjsYovHiWnZCilEUcTjxDRUcbGFl4tdocdWrJJRjRs3xrFjxwyWHTlyBI0bN7ZQRPQmkguZyQaVoMalf2MtG4yFiaKI5PQMi9zyUpU2dOhQBAQE6O+vW7cOQ4YMMVjH1tYWtra22LNnD9LS0kzed1xcHOzt7SGT5T4vxFdffYU6dergzz//xNSpUzFu3DgcOXJE//i7776rT9KEhISgfv36aNOmDWJiMhOfAwcORLly5XDhwgWEhIRg6tSpkMvl8PX1xfLly2Fvb4/IyEhERkZi8uTJ2Z6/b9++OHr0KADgjz/+QGRkpH748q1bt7Bz507s2rVLn0hKSkrCxIkTcfHiRRw7dgwSiQQ9e/aEVqsFkDnkr2vXrqhVqxZCQ0PxxRdf4NNPPzV67LNmzcLKlSsRHByMf//9F3369MHy5cuxZcsW7N+/H4cPH8Y333yjX3/BggXYuHEjVq9ejatXr2LChAl47733cOrUKYP9Tp8+HUuWLMHFixchk8kwdOhQ/bFOmjQJNWrU0J+Tvn37Go3tzJkz8PLygp3dfx/EX3/9Nfbu3Ytt27bhxo0b2Lx5Mzw9PQ220yVLLl26hGrVqmHAgAEYOXIkpk2bhosXL0IURYwZM0a//u7duzFu3DhMmjQJf//9N0aOHIkhQ4bgxIkTADITcN27d0dMTAxOnTqFI0eO4M6dO/q4X3ZMs2fPRp8+ffDXX3+hc+fOGDhwoP69Exsbi9atW6NevXq4ePEiDh48iKioKPTp00e//ZQpU3Dq1Cn88ssvOHz4ME6ePInQ0FCj5+xlpk+fjsmTJ+PSpUvw8vJC//799cnakJAQ9OnTB/369cOVK1cwa9YszJgxI1uycPHixfrflxkzZgAAkpOT8fXXXyMwMBAHDx7EyZMn0bNnTxw4cAAHDhzApk2bsGbNGoPEpTENGjRARkYGfv/99zwdHxEREVFRJ5EI8Pf1gIOVHBExyUhKy4BGKyIpLQMRMclwsJJjkK9HoTcvByw8m15iYiJu3bqlvx8eHo5Lly6hRIkSKF++PKZNm4YHDx5g48aNAIAPP/wQK1euxCeffIKhQ4fi+PHj2LZtG/bv32+pQ6A3kAKZ/0xZIQ1v+ii9FLUG3p8fsshzX5vTAdYK8/6Evffee5g2bRoiIiIAAEFBQQgMDMTJkyf168hkMqxfvx4jRozA6tWrUb9+fbRo0QL9+vVD7dq1je73yZMn+OKLL0zqvdSkSRNMnToVAODl5YWgoCAsW7YM7dq1w9mzZ/HHH38gOjoaSqUSQOY/43v27MGOHTvwwQcf4N69e5gyZQqqVasGAKhSpYp+3w4ODhAEAW5ubjk+v5WVFUqWLAkAcHZ2Nlg3PT0dGzduhLOzs35Zr169DLZft24dnJ2dce3aNdSsWRNbtmyBIAhYu3YtVCoVvL298eDBA4wYMSLbc8+dOxdNmjQBAAwbNgzTpk3D7du3UbFiRQBA7969ceLECXz66adIS0vD/PnzcfToUf0XDhUrVsTZs2exZs0atGjRQr/fefPm6e9PnToVfn5+SE1NhZWVFWxtbSGTyXI9JwAQERGBMmXKGCy7d+8eqlSpgqZNm0IQBHh4eGTbbsiQIfpkzqefforGjRtjxowZ+hlex40bZ5DwXLx4MQYPHoxRo0YBACZOnIjz589j8eLFaNWqFY4dO4YrV64gPDxcnyTcuHEjatSogQsXLuCtt97K9ZgGDx6M/v37AwDmz5+Pr7/+Gn/88Qc6duyIlStXol69epg/f75+/XXr1sHd3R1hYWEoU6YMfvzxR/z0009o06YNAGDDhg0oV65crucuJ5MnT9ZXms2ePRs1atTArVu3UK1aNSxduhRt2rTRJ5i8vLxw7do1fPXVVwb921q3bo1Jkybp7585cwZqtVpfXQZkvm82bdqEqKgo2NrawtvbG61atcKJEydyTD4CgLW1NRwcHPR/D4iIiIheRz4eJTDdrzo2BEfgVnQiniSmQSGTomYZBwzy9YCPRwmLxGXRyqiLFy+iXr16+iEyEydORL169fD5558DACIjI3Hv3j39+hUqVMD+/ftx5MgR1KlTB0uWLMEPP/ygv+gnKgzy58koFd6snjqvA2dnZ/j5+WH9+vUICAiAn58fSpUqlW29Xr164eHDh9i7dy86duyIkydPon79+kaHeMXHx8PPzw/e3t5Gh8W96MVKzsaNG+P69esAMofgJSYmomTJkvoKLVtbW4SHh+uHek2cOBHDhw9H27Zt8eWXX2YbAvYqPDw8DBJRAHDz5k30798fFStWhL29vb4ySPe3+caNG6hdu7Z+WB8ANGzY0Oj+sybzXF1dYW1trU9E6ZZFR0cDyKzSSk5ORrt27QzOxcaNG7Mdc9b9li5dGgD0+zFVSkqKwTEAmYmdS5cuoWrVqhg7diwOHz780mMCoB8GqVuWmpqqn8n1+vXr+oScTpMmTfTvgevXr8Pd3d1gsg1vb284Ojrq18lN1nhsbGxgb2+vPxeXL1/GiRMnDM6nLql5+/Zt3L59G+np6WjUqJF+HyVKlEDVqlVf+rwvi+XF1yWn83Dz5k2D4XUNGjTItl9ra2t9IgrIPMeenp6wtbU1WGbKe8DKyspgaGhxN2vWLP3wTd1N9xoTERHRm8vHowSW962LpX3rYF7PWljatw6W9a1rsUQUYOHKqJYtW+Y61MbYP34tW7bEn3/+WYBREeVOl4yyEkwfwvW6spJLcW2OZZLBVjnMCPEyQ4cO1Q+berFfU1YqlQrt2rVDu3btMGPGDAwfPhwzZ840qNpISEhAx44dYWdnh927d0Muf7XGf4mJiShdurRBpZaObpa8WbNmYcCAAdi/fz9+++03zJw5E4GBgejZs+crPTeQmbx4UdeuXeHh4YG1a9eiTJky0Gq1qFmzZp6aSWc9P4IgZDtfgiDoh/8lJiYCAPbv34+yZcsarKerGstpvwD0+zFVqVKlcOXKFYNl9evXR3h4OH777TccPXoUffr0Qdu2bQ2Gfxl77vyIJ69edk67du2KhQsXZtuudOnSBpXK+R1LXs+DsfeksWPM7bhzExMTky0BW9zVqFFDPxQXwEuHDhMREdGbQSIRUM2t6PTQ5hUKkZmyVkYV/gSYRYsgCGYPlbO0jh07Ij09HYIgmFVV6e3tjT179ujvx8fHo0OHDlAqldi7d2+2qpqcnD9/Ptv96tWrA8hMfjx69AgymSxbb6KsvLy84OXlhQkTJqB///4ICAhAz549oVAoXtq02RxPnz7FjRs3sHbtWjRr1gwAcPbsWYN1qlatip9++glpaWn6JNGFCxde+bm9vb2hVCpx7949gyF55jL1nNSrVw+rVq2CKIr6xAkA2Nvbo2/fvujbty969+6Njh07IiYmBiVK5O1bpOrVqyMoKAj+/v76ZUFBQfD29tY//u+//+Lff//VV0ddu3YNsbGx+nXy+jrXr18fO3fuhKenp9EERaVKlSCXy/H777/rZ5h89uwZwsLCXuk1MEZ3HrIKCgqCl5cXpNK8JZrNdfv2baSmphpMYPA6MGVYKhEREZGlFasG5kSWJ0IhZP4TaMVhesWSVCrF9evXce3aNaP/9D59+hStW7fGTz/9hL/++gvh4eHYvn07Fi1ahO7duwPITES1b98eSUlJ+PHHHxEfH49Hjx7h0aNHL00SBAUFYdGiRQgLC8O3336L7du3Y9y4cQCAtm3bonHjxujRowcOHz6Mu3fvIjg4GNOnT8fFixeRkpKCMWPG4OTJk4iIiEBQUBAuXLigT2Z5enoiMTERx44dw5MnT155+JGTkxNKliyJ77//Hrdu3cLx48cxceJEg3UGDBgArVaLDz74ANevX8ehQ4ewePFiADBI6pjLzs4OkydPxoQJE7Bhwwbcvn0boaGh+Oabb7BhwwaT9+Pp6anvR/jkyZMcm9K3atUKiYmJuHr1qn7Z0qVL8fPPP+Off/5BWFgYtm/fDjc3N32VWl5MmTIF69evx6pVq3Dz5k0sXboUu3bt0jebb9u2LWrVqoWBAwciNDQUf/zxBwYNGoQWLVroh6yZekwvGj16NGJiYtC/f39cuHABt2/fxqFDhzBkyBBoNBrY2tpi2LBhmDJlCo4fP46///4bgwcPhkSS/5cKkyZNwrFjx/DFF18gLCwMGzZswMqVK4023c8P06ZNw6BBgwyWnTlzBhUrVjQY8vc6uHnzJsqUKYOKFSti4MCBBu0OjElLS0N8fLzBjYiIiKigMRlFZAY5/ks0qDhMr9iyt7eHvb3xElVbW1s0atQIy5YtQ/PmzVGzZk3MmDEDI0aMwMqVKwEAoaGh+P3333HlyhVUrlwZpUuX1t/+/fffXJ970qRJ+n55c+fOxdKlS/UVWoIg4MCBA2jevDmGDBkCLy8v9OvXDxEREXB1dYVUKsXTp08xaNAgeHl5oU+fPujUqRNmz54NAPD19cWHH36Ivn37wtnZGYsWLXql8ySRSBAYGIiQkBDUrFkTEyZMwFdffZXtXP7666+4dOkS6tati+nTp+v7/plaLZaTL774AjNmzMCCBQtQvXp1dOzYEfv370eFChVM3kevXr3QsWNHtGrVCs7Ozvj555+NrleyZEn07NkTmzdv1i+zs7PDokWL0KBBA7z11lu4e/cuDhw48ErJmR49emDFihVYvHgxatSogTVr1iAgIAAtW7YEkPke+OWXX+Dk5ITmzZujbdu2qFixIrZu3Wr2Mb2oTJkyCAoKgkajQfv27VGrVi2MHz8ejo6O+mP66quv0KxZM3Tt2hVt27ZF06ZN4ePjY7CfWbNm5Vq5Z4r69etj27ZtCAwMRM2aNfH5559jzpw5BsNg89OLPSgB4OeffzbaaL84a9SoEdavX4+DBw9i1apVCA8PR7NmzZCQkJDjNgsWLICDg4P+lrVfGREREVFBEcS8zI9ejMXHx8PBwUE/DTuRObyn7sQ1Vea08Qc0DXG3zSqMalnZwlEVjtTUVISHh6NChQqvnGSg19vmzZsxZMgQxMXFwcrKytLhmOyvv/5Cu3btcPv2bYNm2GTI398fgiAY7etYXFy9ehWtW7dGWFgYHBwcjK6T29+84nItERsbCw8PDyxduhTDhg0zuk5aWppBdV18fDzc3d2L/LERERFR0WPONVLxavZCZGG6flEAZ9Mj0tm4cSMqVqyIsmXL4vLly/j000/Rp0+fYpWIAjJnf1u4cCHCw8MNZsSj/4iiiJMnT2brHVbcREZGYuPGjTkmol4Xjo6O8PLyyrU5vVKpzDYpABEREVFBYzKKyAyKLMko9owiyvTo0SN8/vnnePToEUqXLo13330X8+bNs3RYeVJQw8ReF4IgICIiwtJhvLK2bdtaOoRCkZiYiNu3b+P999+3dChEREREBpiMIjJD1sooK/aMIgIAfPLJJ/jkk08sHQbRG2/y5Mno2rUrPDw88PDhQ8ycORNSqRT9+/e3dGhEREREBpiMIjKDTMjSwJyVUUREVITcv38f/fv3x9OnT+Hs7IymTZvi/PnzcHZ2tnRoRERERAaYjCIyA3tGERFRURUYGGjpEIiIiIhMkvf5qYneQAoO0yMiIiIiIiJ6JUxGEZlB/kIDc1G0YDBERERERERExRCTUURmMBymx8ooIiIiIiIiInMxGUVkBoWQkeVnDQQxI5e1iYiIiIiIiOhFTEYRmUgURYPKKACQaVgdReZ5+vQpXFxccPfuXUuHYrKpU6fi448/LtTnnDVrFlxdXSEIAvbs2VOoz01ERERERAWLySgiM2RLRmlTLRQJmWPw4MEQBAEffvhhtsdGjx4NQRAwePBg/bLHjx/jo48+Qvny5aFUKuHm5oYOHTogKChIv87333+Pli1bwt7eHoIgIDY21qRY5s2bh+7du8PT0/MVj6rwTJ48GRs2bMCdO3dMWj8xMRFLlixB06ZN4ebmhrJly6J169ZYs2YNMjJeXk14/fp1zJ49G2vWrEFkZCQ6der0qoeA9evXw9HR8ZX3k1epqakYPXo0SpYsCVtbW/Tq1QtRUVE5rq9Wq/Hpp5+iVq1asLGxQZkyZTBo0CA8fPiwEKMmIiIiIioYTEYRmUEOjcF9mYbJqOLC3d0dgYGBSElJ0S9LTU3Fli1bUL58eYN1e/XqhT///BMbNmxAWFgY9u7di5YtW+Lp06f6dZKTk9GxY0d89tlnJseQnJyMH3/8EcOGDXv1A3oJtVqdb/sqVaoUOnTogFWrVr103ZCQEHh7e2PPnj0YMWIE9u7di3379sHf3x/r16/HW2+9hejo6Fz3cfv2bQBA9+7d4ebmBqVSmS/HkR80Gg20Wq3Z202YMAG//vortm/fjlOnTuHhw4d45513clw/OTkZoaGhmDFjBkJDQ7Fr1y7cuHED3bp1e5XwiYiIiIiKBCajiMygyFYZxWF6xUX9+vXh7u6OXbt26Zft2rUL5cuXR7169fTLYmNjcebMGSxcuBCtWrWCh4cHGjZsiGnTphkkAsaPH4+pU6fi7bffNjmGAwcOQKlUGmxz8uRJCIKAY8eOoUGDBrC2toavry9u3LhhsO2qVatQqVIlKBQKVK1aFZs2bTJ4XBAErFq1Ct26dYONjQ3mzZuHWbNmoW7duli3bh3Kly8PW1tbjBo1ChqNBosWLYKbmxtcXFwwb968l8betWtXBAYG5rpOREQEOnfujBkzZuDMmTPw9/dHw4YNUa9ePfj7+yM4OBhdu3ZFp06dckyWzZo1C127dgUASCQSCIIAALhw4QLatWuHUqVKwcHBAS1atEBoaKjBtrGxsRg5ciRcXV2hUqlQs2ZN7Nu3DydPnsSQIUMQFxcHQRAgCAJmzZoFAHj27BkGDRoEJycnWFtbo1OnTrh586Z+n7qKqr1798Lb2xtKpRL37t176fnKKi4uDj/++COWLl2K1q1bw8fHBwEBAQgODsb58+eNbuPg4IAjR46gT58+qFq1Kt5++22sXLkSISEhZj8/EREREVFRw2QUkRk4TO8FogikJ1nmJopmhzt06FAEBATo769btw5DhgwxWMfW1ha2trbYs2cP0tLyN9l45swZ+Pj4GH1s+vTpWLJkCS5evAiZTIahQ4fqH9u9ezfGjRuHSZMm4e+//8bIkSMxZMgQnDhxwmAfs2bNQs+ePXHlyhX99rdv38Zvv/2GgwcP4ueff8aPP/4IPz8/3L9/H6dOncLChQvxv//9D7///nuusTds2BD379/PtdfV1KlTMWTIEIwYMQL3799Hly5d4OLigg4dOuCLL77ARx99hDlz5sDGxgY//fST0X1MnjxZ/xpFRkYiMjISAJCQkAB/f3+cPXsW58+fR5UqVdC5c2ckJCQAALRaLTp16oSgoCD89NNPuHbtGr788ktIpVL4+vpi+fLlsLe31+9z8uTJADKHcF68eBF79+7FuXPnIIoiOnfubJAsS05OxsKFC/HDDz/g6tWrcHFxwebNm/XvlZxuZ86cAZBZLaZWq9G2bVv9PqtVq4by5cvj3LlzuZ73rHTJNEsONyQiIiIiyg8ySwdAVJzIBA7TM6BOBuaXscxzf/YQUNiYtcl7772HadOmISIiAgAQFBSEwMBAnDx5Ur+OTCbD+vXrMWLECKxevRr169dHixYt0K9fP9SuXfuVQo6IiECZMsbP17x589CiRQsAmUkdPz8/pKamQqVSYfHixRg8eDBGjRoFAJg4cSLOnz+PxYsXo1WrVvp9DBgwIFtyTavVYt26dbCzs4O3tzdatWqFGzdu4MCBA5BIJKhatSoWLlyIEydOoFGjRjnGros7IiLCaL+rxMRE7N+/H+Hh4QAAf39/2Nra4uDBg7h+/To+/PBD9OrVS//YoUOHssUKZCYDdckWNzc3/fLWrVsbrPf999/D0dERp06dQpcuXXD06FH88ccfuH79Ory8vAAAFStW1K/v4OAAQRAM9nnz5k3s3bsXQUFB8PX1BQBs3rwZ7u7u2LNnD959910AmUMev/vuO9SpU0e/bbdu3XI9XwBQtmxZAMCjR4+gUCiyJZFcXV3x6NGjXPehk5qaik8//RT9+/eHvb29SdsQERERERVVTEYRmeHFyij5m14ZVcw4OzvDz88P69evhyiK8PPzQ6lSpbKt16tXL/j5+eHMmTM4f/48fvvtNyxatAg//PCDQaNzc6WkpEClUhl9LGuiq3Tp0gCA6OholC9fHtevX8cHH3xgsH6TJk2wYsUKg2UNGjTItl9PT0/Y2dnp77u6ukIqlUIikRgse1kfJysrKwCZVULGhIWFwdPTEyVLlkRSUhKOHz+OBw8eoEyZMqhfvz5OnjyprzYqXbo0nj17luvzvSgqKgr/+9//cPLkSURHR0Oj0SA5OVk/ZO3SpUsoV66cPhFliuvXr0MmkxkklUqWLImqVavi+vXr+mUKhSJbItLOzs7gvBYktVqNPn36QBRFk/p2EREREVHeaLUiwqITEJeshoO1HF4udpBIBEuHZbbicBxMRhGZ4cWeUdI3PRklt86sULLUc+fB0KFDMWbMGADAt99+m+N6KpUK7dq1Q7t27TBjxgwMHz4cM2fOfKVkVKlSpXJMwsjlcv3Puj5J5jbKtrHJXimWdb+6fRtb9rLniomJAZCZ0DMmIyNDn7DSJZ2yxmNra6s/9tDQUFSuXDnX53uRv78/nj59ihUrVsDDwwNKpRKNGzdGeno6gP+SZQXByspK/5robN68GSNHjsx1u99++w3NmjWDm5sb0tPTERsba1AdFRUVZVCpZYwuERUREYHjx4+zKoqIiIiogIRExGBDcARuRSciPUMDhUyKyi628Pf1gI9HCUuHZ7LichzsGUVkhmyVUW/6MD1ByBwqZ4mbkLfMfseOHZGeng61Wo0OHTqYvJ23tzeSkpLy9Jw69erVw7Vr18zernr16ggKCjJYFhQUBG9v71eKxxx///035HI5atSoYfTxihUrIiwsDGq1Go6OjqhRowbmzZsHtVqNf/75B4GBgdBqtdi/fz++/fZbfULQVEFBQRg7diw6d+6MGjVqQKlU4smTJ/rHa9eujfv37yMsLMzo9gqFAhqN4TDb6tWrIyMjw6Bf1tOnT3Hjxo2Xnttu3brh0qVLud50lWo+Pj6Qy+U4duyYfvsbN27g3r17aNy4cY7PoUtE3bx5E0ePHkXJkiVzjYmIiIiI8iYkIgbz9l/H3w/iYK+SoZyTNexVMlx9GId5+68jJCLG0iGapDgdByujiMzABubFn1Qq1Q/Bkkql2R5/+vQp3n33XQwdOhS1a9eGnZ0dLl68iEWLFqF79+769R49eoRHjx7h1q1bAIArV67Azs4O5cuXR4kSxr9x6NChA6ZNm4Znz57BycnJ5JinTJmCPn36oF69emjbti1+/fVX7Nq1C0ePHjXn0E02aNAglC1bFgsWLNAvO3PmDJo1a5ZjBVKpUqVQu3Zt/PTTTxgyZAgCAgLwzjvvYOnSpXBzc0O3bt2wdu1aXL16Fdu2bUP16tXNiqlKlSrYtGkTGjRogPj4eEyZMsUglhYtWqB58+bo1asXli5disqVK+Off/6BIAjo2LEjPD09kZiYiGPHjqFOnTqwtrZGlSpV0L17d4wYMQJr1qyBnZ0dpk6dirJlyxq81saYM0zPwcEBw4YNw8SJE1GiRAnY29vj448/RuPGjQ1mVqxWrRoWLFiAnj17Qq1Wo3fv3ggNDcW+ffug0Wj0/aVKlCgBhUJh1vkjIiIiIuO0WhEbgiMQm6yGZ0lrfUW8jVIGa4UUETHJ2BgcgXruTkVuqFtWxe04WBlFZCJRBOTCC8moN70yqpiyt7fPcbiTra0tGjVqhGXLlqF58+aoWbMmZsyYgREjRmDlypX69VavXo169ephxIgRAIDmzZujXr162Lt3b47PW6tWLdSvXx/btm0zK94ePXpgxYoVWLx4MWrUqIE1a9YgICAALVu2NGs/prp3755+FjudwMBA/bHmZMGCBZg8eTJCQ0Px1ltv4d69e7h37x7u3r2LJUuWICYmBiEhIWjWrJnZMf3444949uwZ6tevj/fffx9jx46Fi4uLwTo7d+7EW2+9hf79+8Pb2xuffPKJvhrK19cXH374Ifr27QtnZ2csWrQIABAQEAAfHx906dIFjRs3hiiKOHDgQLahjK9q2bJl6NKlC3r16oXmzZvDzc0Nu3btMljnxo0biIuLAwA8ePAAe/fuxf3791G3bl2ULl1afwsODs7X2IiIiIjeZGHRCbgVnQgXO2W21gyCIMDZVomb0YkIi06wUISmKW7HIYhiHuZHL8bi4+Ph4OCAuLg49t4gs2i1ItZ8/j4+kv2qX3bWYzSaDplvwagKT2pqKsLDw1GhQoUcm3DTy+3fvx9TpkzB33//bdBEvCj77bffMGnSJPz111+QyXIvqN2wYQPGjRuHsWPHYtCgQahUqRI0Gg3++OMPLFiwAK1bt8aECRMKKXKivMvtb97rfC3xOh8bERGRMb/feYrpu6+gnJM1pEYqhjRaEfefJWNez1poVLHotk0oCsdhznVE8fhPiKiIeHGYXkpyooUioeLKz88PH3zwAR48eGDpUEyWlJSEgICAlyaigMxG46dPn8a1a9dQp04dKBQKKJVKvPfee2jatClGjx5dCBETEREREZnGwVoOhUyKVLXG6OOp6swm4A7W+Vs5n9+K23GwZxSRGbIlo5KKRokjFS/jx4+3dAhm6d27t1nr165dGzt27EBGRgaioqKgVCpRqlSpAoqOiIiIiCjvvFzsUNnFFlcfxsFaITUY4iaKIh4npqFmGQd4uZjWL9RSittxsDKKyAy6ZJQoZDa+Tkt5tdnViF5nMpkMZcuWZSKKiIiIiIosiUSAv68HHKzkiIhJRlJaBjRaEUlpGYiISYaDlRyDfD2KRNPv3BS342AyisgMCiGz5FGrfD7+VZ2ChFS1BSMiIiIiIiKiV+HjUQLT/aqjRhkHxKdm4P6zZMSnZqBmGQdM96sOHw/js2UXNcXpODhMj8gM+mF6Sgcg9RmshHREPE1GzbIOlg2MiIiIiIiI8szHowTquTshLDoBcclqOFjL4eViV2QqiUxVXI6DySgiM8h0w/RU9kAcoEIa7j5NeqOSUVqt1tIhEBEVOP6tIyIievNIJAKquRX/2WSLw3EwGUVkBgUyh+mJyszkkxXSceNpsiVDKjQKhQISiQQPHz6Es7MzFAqFQVM8IqLXgSiKSE9Px+PHjyGRSKBQKCwdEhEREdFrh8koIhOJyNLA/HnPKJWQjvAnb0YTc4lEggoVKiAyMhIPHz60dDhERAXK2toa5cuXh0TC9ppERERE+Y3JKCITpWVo9MkoidV/lVExSemWDKtQKRQKlC9fHhkZGdBoNJYOh4ioQEilUshkMlZ/EhERERUQJqOITJSSroFcyExGSZ8no1RIQ2JqhiXDKnSCIEAul0Mul1s6FCIiIiIiIiqGWHtOZKIUtQaK55VRgpUjAMBKSEdC2puVjCIiIiIiIiJ6FUxGEZkoVa3VD9ODSlcZlY6EVLUFoyIiIiIiIiIqXpiMIjJRqvq/nlF43sDcCmlIZGUUERERERERkcmYjCIyUUrWZJSuMkpQIyk1HaIoWjAyIiIiIiIiouKDySgiE2U2MH8+g9zzZBQAyLRpSFVrLRQVERERERERUfHCZBSRibI2MIfKXr9chXQkpLFvFBEREREREZEpmIwiMlGqWgOZLhklUwFSJQDACulITGXfKCIiIiIiIiJTyCwdAFFxkdnA/PkwPakckFsBmjRYCWlIYDKKiIiIiIioSNBqRYRFJyAuWQ0Hazm8XOwgkQiWDssiiuq5YDKKyEQp6VmG6UkVgNwaSI2FCmrOqEdERERERFQEhETEYENwBG5FJyI9QwOFTIrKLrbw9/WAj0cJS4dXqIryubD4ML1vv/0Wnp6eUKlUaNSoEf74449c11++fDmqVq0KKysruLu7Y8KECUhNTS2kaOlNlpKeZTY9qQKQqwAAKrAyioiIiIiIyNJCImIwb/91/P0gDvYqGco5WcNeJcPVh3GYt/86QiJiLB1ioSnq58KiyaitW7di4sSJmDlzJkJDQ1GnTh106NAB0dHRRtffsmULpk6dipkzZ+L69ev48ccfsXXrVnz22WeFHDm9iVLV6ZAIYuYdqTyzMgqAlZCOhFQ2MCciorwJCAhAcnKypcMgIiIq1rRaERuCIxCbrIZnSWvYKGWQSgTYKGXwKGGNuBQ1NgZHQKsVLR1qgSsO58KiyailS5dixIgRGDJkCLy9vbF69WpYW1tj3bp1RtcPDg5GkyZNMGDAAHh6eqJ9+/bo37//S6upiPKDOi3tvzuS5z2jAFghjcP0iIgoz6ZOnQo3NzcMGzYMwcHBlg6HiIioWAqLTsCt6ES42CkhCIY9kQRBgLOtEjejExEWnWChCAtPcTgXFktGpaenIyQkBG3btv0vGIkEbdu2xblz54xu4+vri5CQEH3y6c6dOzhw4AA6d+5cKDHTmy0jPctwUKlCn4xScTY9IiJ6BQ8ePMCGDRvw5MkTtGzZEtWqVcPChQvx6NEjS4dGRERUbMQlq5GeoYFKLjX6uEouRXqGBnHJr/+oluJwLiyWjHry5Ak0Gg1cXV0Nlru6uuZ48TVgwADMmTMHTZs2hVwuR6VKldCyZctch+mlpaUhPj7e4EaUF+npWSqjpHJA9jwZJaQjgZVRRESURzKZDD179sQvv/yCf//9FyNGjMDmzZtRvnx5dOvWDb/88gu0Wq2lwyQiIirSHKzlUMikSFVrjD6eqs5s4O1gLS/kyApfcTgXFm9gbo6TJ09i/vz5+O677xAaGopdu3Zh//79+OKLL3LcZsGCBXBwcNDf3N3dCzFiep1kPE9GaQQZIAgGw/TYwJyIiPKDq6srmjZtisaNG0MikeDKlSvw9/dHpUqVcPLkSUuHR0REVGR5udihsostHiemQRQNeyGJoojHiWmo4mILLxc7C0VYeIrDubBYMqpUqVKQSqWIiooyWB4VFQU3Nzej28yYMQPvv/8+hg8fjlq1aqFnz56YP38+FixYkOM3htOmTUNcXJz+9u+//+b7sdCbIUOdOUxPK3mePdY1MEc6e0YREdEriYqKwuLFi1GjRg20bNkS8fHx2LdvH8LDw/HgwQP06dMH/v7+lg6TiIioyJJIBPj7esDBSo6ImGQkpWVAoxWRlJaBiJhkOFjJMcjXAxKJ8PKdFXPF4VxYLBmlUCjg4+ODY8eO6ZdptVocO3YMjRs3NrpNcnIyJBLDkKXSzDGQL2b7dJRKJezt7Q1uRHmRoc6sjBL1yaj/ekZxNj0iIsqrrl27wt3dHevXr8eIESPw4MED/Pzzz/q+mjY2Npg0aZLZX6h9+eWXEAQB48ePL4CoiYiIih4fjxKY7lcd3qXtEZ2QhptRCYhOSEON0vaY7lcdPh4lLB1iodGdixplHBCfmoH7z5IRn5qBmmUcisS5kFnyySdOnAh/f380aNAADRs2xPLly5GUlIQhQ4YAAAYNGoSyZctiwYIFADIv1pYuXYp69eqhUaNGuHXrFmbMmIGuXbvqk1JEBUWrzkw4iRJF5gLdMD2BDcyJiCjvXFxccOrUqRy/jAMAZ2dnhIeHm7zPCxcuYM2aNahdu3Z+hEhERFT8CP/djJeuvP58PEqgnrsTwqITEJeshoO1HF4udkWiOsyiyai+ffvi8ePH+Pzzz/Ho0SPUrVsXBw8e1Dc1v3fvnkEl1P/+9z8IgoD//e9/ePDgAZydndG1a1fMmzfPUodAb5AMdToAQJS+WBmVxmF6RESUZy1atED9+vWzLU9PT0dgYCAGDRoEQRDg4eFh0v4SExMxcOBArF27FnPnzs3vcImIiIqskIgYzNt/HbHJarjYKaGSZzbxvhYZj3n7rxeJiqDCJpEIqOZW9EaIWbyB+ZgxYxAREYG0tDT8/vvvaNSokf6xkydPYv369fr7MpkMM2fOxK1bt5CSkoJ79+7h22+/haOjY+EHTm8cbcbz2fSkL1RGIR0pOcxSQERE9DJDhgxBXFxctuUJCQn6anFzjB49Gn5+fvphfkRERG8CrVbEhuAIxCar4VnSGjZKGaQSATZKGTxKWCMuRY2NwRHQat/UOqmixaKVUUTFiTYjszIK0hcamAtpFoqIiIheB6IoQhCyl8vfv38fDg4OZu0rMDAQoaGhuHDhgknrp6WlIS3tv8+x+Ph4s56PiIioqAiLTsCt6ES42Cmzfa4KggBnWyVuRiciLDqhSFYKvWmYjCIyka4yStBVRsmUAAAl2LyciIjMV69ePQiCAEEQ0KZNG8hk/12WaTQahIeHo2PHjibv799//8W4ceNw5MgRqFQqk7ZZsGABZs+ebXbsRERERU1cshrpGRqo5Eqjj6vkUjxJTENcMv9/KwqYjCIykTYjHZACkOmSUZkX+kxGERFRXvTo0QMAcOnSJXTo0AG2trb6xxQKBTw9PdGrVy+T9xcSEoLo6GiD/lMajQanT5/GypUrkZaWlm3Cl2nTpmHixIn6+/Hx8XB3d8/jEREREVmOg7UcCllmjygbZfZUR6paA4VMCgdruQWioxcxGUVkAq1WhKBRA1JAohum97wySsFkFBER5cHMmTMBAJ6enujbt6/J1Uw5adOmDa5cuWKwbMiQIahWrRo+/fRTozMPK5VKKJXGv0EmIiIqTrxc7FDZxRZXH8bBWiE1GKoniiIeJ6ahZhkHeLnYWTBK0mEyisgEaRlayJE5Y57keRIK0ufD9AQmo4iIKO/8/f3zZT92dnaoWbOmwTIbGxuULFky23IiIqLXjUQiwN/XA/P2X0dETDKcbf+bTe9xYhocrOQY5OsBiSR7n0YqfExGEZkgRa3JkoziMD0iIno1JUqUQFhYGEqVKgUnJyejDcx1YmJiCjEyIiKi4svHowSm+1XHhuAI3IpOxJPENChkUtQs44BBvh7w8Shh6RDpOSajiEyQotZALmQmowSZYQNzDtMjIiJzLVu2DHZ2dvqfc0tGvYqTJ08WyH6JiIiKKh+PEqjn7oSw6ATEJavhYC2Hl4sdK6KKGCajiEyQkq6B4nllFF7oGcXKKCIiMlfWoXmDBw+2XCBERESvIYlEQDU3e0uHQbmQWDoAouIgNcswPUgNK6PYM4qIiF5FaGioQePxX375BT169MBnn32G9PR0C0ZGREREVDCYjCIyQXyKGjJoMu9IDXtGcZgeERG9ipEjRyIsLAwAcOfOHfTt2xfW1tbYvn07PvnkEwtHR0RERJT/mIwiMkFcijpLZdTzYXrPk1IcpkdERK8iLCwMdevWBQBs374dLVq0wJYtW7B+/Xrs3LnTssERERERFQAmo4hMEJuihkJ4cZgeZ9MjIqJXJ4oitFotAODo0aPo3LkzAMDd3R1PnjyxZGhEREREBYLJKCITGFZGGfaMkglaSEWNhSIjIqLirkGDBpg7dy42bdqEU6dOwc/PDwAQHh4OV1dXC0dHRERElP+YjCIyQWYyStczynA2PQCQszqKiIjyaPny5QgNDcWYMWMwffp0VK5cGQCwY8cO+Pr6Wjg6IiIiovwns3QARMVBXIoaLi9WRkn/S0YpwNmOiIgob2rXrm0wm57OV199BalUaoGIiIiIiAoWk1FEJohLVkOhS0ZJdA3MZRAFGQQxA3Ixw3LBERHRayE9PR3R0dH6/lE65cuXt1BERERERAWDySgiExidTQ+AVqqANCODlVFERJRnYWFhGDZsGIKDgw2Wi6IIQRCg0bAvIREREb1ezE5GJSUlwcbGpiBiISqy4lLUkL84mx4AUaoEMpKhYM8oIiLKoyFDhkAmk2Hfvn0oXbo0BEGwdEhEREREBcrsZJSrqyv69OmDoUOHomnTpgURE1GRY3Q2PQDa532j5CKTUURElDeXLl1CSEgIqlWrZulQiIiIiAqF2bPp/fTTT4iJiUHr1q3h5eWFL7/8Eg8fPiyI2IiKjLiULD2jsgzTE58nphQih+kREVHeeHt748mTJ5YOg4iIiKjQmJ2M6tGjB/bs2YMHDx7gww8/xJYtW+Dh4YEuXbpg165dyMhgI2d6vWi1IuJTc6+M4jA9IiLKq4ULF+KTTz7ByZMn8fTpU8THxxvciIiIiF43ZiejdJydnTFx4kT89ddfWLp0KY4ePYrevXujTJky+Pzzz5GcnJyfcRJZTEJqBkQRkOF5A1ljw/SYjCIiojxq27Ytzp8/jzZt2sDFxQVOTk5wcnKCo6MjnJycLB0eERERUb7L82x6UVFR2LBhA9avX4+IiAj07t0bw4YNw/3797Fw4UKcP38ehw8fzs9YiSwiLiUz0aSS6JJRWYbpSThMj4iIXs2JEycsHQIRERFRoTI7GbVr1y4EBATg0KFD8Pb2xqhRo/Dee+/B0dFRv46vry+qV6+en3ESWYxBMkoEh+kREVG+atGihaVDICIiIipUZg/TGzJkCMqUKYOgoCBcunQJY8aMMUhEAUCZMmUwffr0/IqRyKJiUzKrnv6rjPovGSXqk1GsjCIiorw7c+YM3nvvPfj6+uLBgwcAgE2bNuHs2bMWjoyIiIgo/5mdjIqMjMSaNWvw1ltv5biOlZUVZs6c+UqBERUVusoopZB9mJ5WP5seG/cTEVHe7Ny5Ex06dICVlRVCQ0ORlpYGAIiLi8P8+fMtHB0RERFR/jM7GWVnZ4fo6Ohsy58+fQqpVJovQREVJclpmUkohZHZ9FgZRUREr2ru3LlYvXo11q5dC7n8vy88mjRpgtDQUAtGRkRERFQwzE5GiaJodHlaWhoUCoXRx4iKMxGZ73mpkWQUe0YREdGrunHjBpo3b55tuYODA2JjYws/ICIiIqICZnID86+//hoAIAgCfvjhB9ja2uof02g0OH36NKpVq5b/ERIVETLxecJJ+t+vjfg8MSVnMoqIiPLIzc0Nt27dgqenp8Hys2fPomLFipYJioiIiKgAmZyMWrZsGYDMyqjVq1cbDMlTKBTw9PTE6tWr8z9CoiJCJuYyTE/kMD0iIsqbESNGYNy4cVi3bh0EQcDDhw9x7tw5TJ48GTNmzLB0eERERET5zuRkVHh4OACgVatW2LVrF5ycnAosKKKiSKqvjOIwPSIiyj9Tp06FVqtFmzZtkJycjObNm0OpVGLy5Mn4+OOPLR0eERERUb4zORmlc+LEiYKIg6jIk+l7Rv3XXFY3TI/JKCIiyitBEDB9+nRMmTIFt27dQmJiIry9vQ1aIhARERG9TkxKRk2cOBFffPEFbGxsMHHixFzXXbp0ab4ERlTUSI0M09NymB4REb2ioUOHYsWKFbCzs4O3t7d+eVJSEj7++GOsW7fOgtERERER5T+TklF//vkn1Gq1/uecCIKQP1ERFTESaCGFNvOOsZ5RrIwiIqI82rBhA7788kvY2dkZLE9JScHGjRuZjCIiIqLXjknJqKxD8zhMj95Ect0QPcBgmJ6uMoqz6RERkbni4+MhiiJEUURCQgJUKpX+MY1GgwMHDsDFxcWCERIREREVDLN7Rr0oPj4ex48fR7Vq1VCtWrX8iImoyDFMRhmbTY/JKCIiMo+joyMEQYAgCPDy8sr2uCAImD17tgUiIyIiIipYZiej+vTpg+bNm2PMmDFISUlBgwYNcPfuXYiiiMDAQPTq1asg4iSyKINklCR7ZZQC7BlFRETmOXHiBERRROvWrbFz506UKFFC/5hCoYCHhwfKlCljwQiJiIiICobZyajTp09j+vTpAIDdu3dDFEXExsZiw4YNmDt3LpNR9FqSQ5P5g0QGSCT65brZ9DhMj4iIzNWiRQsAQHh4ONzd3SHJ8vlCRETGabUiwqITEJeshoO1HF4udpBI2Ls4r/LjfPI1obwwOxkVFxen/+bu4MGD6NWrF6ytreHn54cpU6bke4BERYFCyD6THpC1MorJKCIiyhsPDw/Exsbijz/+QHR0NLRarcHjgwYNslBkRERFS0hEDDYER+BWdCLSMzRQyKSo7GILf18P+HiUePkOyEB+nE++JpRXZiej3N3dce7cOZQoUQIHDx5EYGAgAODZs2cGjTeJXif6YXpZmpcDWXtGcZgeERHlza+//oqBAwciMTER9vb2BrMTC4LAZBQRETKTHvP2X0dsshoudkqo5EqkqjW4+jAO8/Zfx3S/6kx+mCE/zidfE3oVZteDjx8/HgMHDkS5cuVQpkwZtGzZEkDm8L1atWrld3xERYI+GSUxTEZpJZmVUqyMIiKivJo0aRKGDh2KxMRExMbG4tmzZ/pbTEyMpcMjIrI4rVbEhuAIxCar4VnSGjZKGaQSATZKGTxKWCMuRY2NwRHQakVLh1os5Mf55GtCr8rsZNSoUaNw7tw5rFu3DmfPntX3N6hYsSLmzp2b7wESFQU5VkbJOEyPiIhezYMHDzB27FhYW1tbOhQioiIpLDoBt6IT4WKnNKgeBTIrSJ1tlbgZnYiw6AQLRVi85Mf55GtCr8rsYXoA0KBBAzRo0MBgmZ+fX74ERFQU6RuYv5CM0nKYHhERvaIOHTrg4sWLqFixoqVDISIqkuKS1UjP0EAlVxp9XCWX4kliGuKS+QWxKfLjfPI1oVdldjJKo9Fg/fr1OHbsmNEmm8ePH8+34IiKCql+Nj3DZBQkutn0Mgo5IiIiel3oJoG5du0aatWqBbnc8LOmW7duFoqMiKhocLCWQyGTIlWtgY0y+7+wqerMxtkO1nIjW9OL8uN88jWhV2V2MmrcuHFYv349/Pz8ULNmzWwleeb69ttv8dVXX+HRo0eoU6cOvvnmGzRs2DDH9WNjYzF9+nTs2rULMTEx8PDwwPLly9G5c+dXioMoN3JBl4wy/JX5bzY9VkYREVHejBgxAgAwZ86cbI8JggCNRlPYIRERFSleLnao7GKLqw/jYK2QGvwPKooiHiemoWYZB3i52FkwyuIjP84nXxN6VWYnowIDA7Ft27Z8Sf5s3boVEydOxOrVq9GoUSMsX74cHTp0wI0bN+Di4pJt/fT0dLRr1w4uLi7YsWMHypYti4iICDg6Or5yLEQ5EcUslVE5zaaHDECrBSRmt2EjIqI33ItV5kREZEgiEeDv64F5+68jIiYZzrZKqOSZVTmPE9PgYCXHIF8PSCSvVijxpsiP88nXhF6V2f85KxQKVK5cOV+efOnSpRgxYgSGDBkCb29vrF69GtbW1li3bp3R9detW4eYmBjs2bMHTZo0gaenJ1q0aIE6derkSzxEOdH3jJJIDZZrpYr/7mhYHUVEREREVBB8PEpgul911CjjgPjUDNx/loz41AzULOOA6X7V4eNRwtIhFiv5cT75mtCrMLsyatKkSVixYgVWrlz5SkP00tPTERISgmnTpumXSSQStG3bFufOnTO6zd69e9G4cWOMHj0av/zyC5ydnTFgwAB8+umnkEqlRrchyg+yHHpG6SqjAAAZqYBcVYhRERFRcfX111/jgw8+gEqlwtdff53rumPHji2kqIiIijYfjxKo5+6EsOgExCWr4WAth5eLHatv8ig/zidfE8ors5NRZ8+exYkTJ/Dbb7+hRo0a2Zps7tq1y6T9PHnyBBqNBq6urgbLXV1d8c8//xjd5s6dOzh+/DgGDhyIAwcO4NatWxg1ahTUajVmzpxpdJu0tDSkpaXp78fHx5sUH1FW/zUwN/yVESVyaEUBEkEEMtKMbElERJTdsmXLMHDgQKhUKixbtizH9QRBYDKKiCgLiURANTd7S4fx2siP88nXhPLC7GSUo6MjevbsWRCxvJRWq4WLiwu+//57SKVS+Pj44MGDB/jqq69yTEYtWLAAs2fPLuRI6XUjz6FnFAQBaZDDCumAhskoIiIyTXh4uNGfiYiIiN4EZiejAgIC8uWJS5UqBalUiqioKIPlUVFRcHNzM7pN6dKlIZfLDYbkVa9eHY8ePUJ6ejoUCkW2baZNm4aJEyfq78fHx8Pd3T1fjoHeHDlVRgFAOmSZyShWRhERkQWtWrUKq1atwt27dwEANWrUwOeff45OnTpZNjAiIiKiF+Rp6q+MjAwcPXoUa9asQUJCAgDg4cOHSExMNHkfCoUCPj4+OHbsmH6ZVqvFsWPH0LhxY6PbNGnSBLdu3TKYdSYsLAylS5c2mogCAKVSCXt7e4MbkbnkQs7JqDQ8f+9lpBZiRERERIbKlSuHL7/8EiEhIbh48SJat26N7t274+rVq5YOjYiIiMiA2cmoiIgI1KpVC927d8fo0aPx+PFjAMDChQsxefJks/Y1ceJErF27Fhs2bMD169fx0UcfISkpCUOGDAEADBo0yKDB+UcffYSYmBiMGzcOYWFh2L9/P+bPn4/Ro0ebexhEZpHieQL0xWF6ANLE58syOJseERFZTteuXdG5c2dUqVIFXl5emDdvHmxtbXH+/HlLh0ZERERkwOxheuPGjUODBg1w+fJllCxZUr+8Z8+eGDFihFn76tu3Lx4/fozPP/8cjx49Qt26dXHw4EF9U/N79+5BIvkvX+bu7o5Dhw5hwoQJqF27NsqWLYtx48bh008/NfcwiMwiR0bmD5Lsszam636NWBlFRERFhEajwfbt25GUlJRjxTnAiV6IiIjIMsxORp05cwbBwcHZhsV5enriwYMHZgcwZswYjBkzxuhjJ0+ezLascePG/IaPCp1M3zPKSGUUh+kREVERceXKFTRu3BipqamwtbXF7t274e3tneP6nOiFiIiILMHsYXparRYajSbb8vv378POzi5fgiIqanJrYJ6G5wkqDYfpERFR3ty7dw9nzpzBoUOHEBoaalCtZI6qVavi0qVL+P333/HRRx/B398f165dy3H9adOmIS4uTn/7999/83oIRERERCYzuzKqffv2WL58Ob7//nsAgCAISExMxMyZM9G5c+d8D5CoKJDrklFGekZxmB4REeXF3bt3sWrVKgQGBuL+/fsQRVH/mEKhQLNmzfDBBx+gV69eBm0LcqNQKFC5cmUAgI+PDy5cuIAVK1ZgzZo1RtdXKpVQKpWvfjBEREREZjC7MmrJkiUICgqCt7c3UlNTMWDAAP0QvYULFxZEjEQWp29g/kJllEwiydLAPG/fYhMR0Ztn7NixqFOnDsLDwzF37lxcu3YNcXFxSE9Px6NHj3DgwAE0bdoUn3/+OWrXro0LFy7k6Xm0Wm2eq6yIiIiICorZlVHlypXD5cuXsXXrVly+fBmJiYkYNmwYBg4cCCsrq4KIkcji5IKugbnhr4y9lQyP9D2jeLFPRESmsbGxwZ07dwwmg9FxcXFB69at0bp1a8ycORMHDx7Ev//+i7feeivXfU6bNg2dOnVC+fLlkZCQgC1btuDkyZM4dOhQQR0GERERUZ6YnYw6ffo0fH19MXDgQAwcOFC/PCMjA6dPn0bz5s3zNUCiokBfGfXCMD17lRxpz3+NNOoUZJ9rj4iIKLsFCxaYvG7Hjh1NWi86OhqDBg1CZGQkHBwcULt2bRw6dAjt2rXLa5hEREREBcLsZFSrVq0QGRkJFxcXg+VxcXFo1aqV0ebmRMWdPIcG5nYqmb6BeVpKCqwLOzAiIqLnfvzxR0uHQERERGQSs3tGiaIIQRCyLX/69ClsbGzyJSiiokYG48P0ZFIJtJLMxq9paSmFHRYREb3Grl+/jooVK1o6DCIiIqJ8Z3Jl1DvvvAMgc/a8wYMHG8y8otFo8Ndff8HX1zf/IyQqAnJqYJ75oALQAumpyYUbFBERvdbS09MRERFh6TCIiIiI8p3JySgHBwcAmZVRdnZ2Bs3KFQoF3n77bYwYMSL/IyQqAuS6yqgXekYBgCBXAWmAmpVRRERkhokTJ+b6+OPHjwspEiIiIqLCZXIyKiAgAADg6emJyZMnc0gevTFE5F4ZpU9GpacWbmBERFSsrVixAnXr1oW9vb3RxxMTEws5IiIiIqLCYXYD85kzZxZEHERFmlww3sA8c5EKAKBJZ2UUERGZrnLlypgwYQLee+89o49funQJPj4+hRwVERERUcEzu4F5VFQU3n//fZQpUwYymQxSqdTgRvQ6kupm0zMyTE+q0CWjWBlFRESma9CgAUJCQnJ8XBAEiKJYiBERERERFQ6zK6MGDx6Me/fuYcaMGShdurTRmfWIXjdy5FwZJVNm9k8T1WmFGRIRERVzS5YsQVpazp8dderUgVarLcSIiIiIiAqH2cmos2fP4syZM6hbt24BhENUNMlySUbJn1dGiRmsjCIiItO5ublZOgQiIiIiizA7GeXu7s6ScXrjSHNJRilU1pk/ZLAyioiIXk1qaiq2bt2KpKQktGvXDlWqVLF0SERERET5zuyeUcuXL8fUqVNx9+7dAgiHqGiS59IzSp+M0jAZRUREpps4cSI+/vhj/f309HQ0btwYI0aMwGeffYZ69erh3LlzFoyQiIiIqGCYnYzq27cvTp48iUqVKsHOzg4lSpQwuBG9jv6rjMqejFKpMofpSZiMIiIiMxw+fBjt2rXT39+8eTMiIiJw8+ZNPHv2DO+++y7mzp1rwQiJiIiICobZw/SWL19eAGEQFW1yQZeMyj5jpMrKBgAg1aYXZkhERFTM3bt3D97e3vr7hw8fRu/eveHh4QEAGDduHDp37myp8IiIiIgKjNnJKH9//4KIg6hIk+YyTM/KKnOYHpNRRERkDolEYtCH8/z585gxY4b+vqOjI549e2aJ0IiIiIgKlEnD9OLj4w1+zu1G9DqS59LA3No6szJKJjIZRUREpqtevTp+/fVXAMDVq1dx7949tGrVSv94REQEXF1dLRUeERERUYExqTLKyckJkZGRcHFxgaOjIwRByLaOKIoQBAEajSbfgySyNFkuPaNsrDMro5RQI1WtgUqefSgfERHRiz755BP069cP+/fvx9WrV9G5c2dUqFBB//iBAwfQsGFDC0ZIREREVDBMSkYdP35c35z8xIkTBRoQUVH0XwPz7Ikmq+c9oxRQIyE1g8koIiIySc+ePXHgwAHs27cP7du3N5hZDwCsra0xatQoC0VHRJSdVisiLDoBcclqOFjL4eViB4kke6ECEdHLmJSMatGihdGfid4U8lx6RknkSgCZlVFx6RkAlIUYGRERFWdt2rRBmzZtjD42c+bMQo6GiChnIREx2BAcgVvRiUjP0EAhk6Kyiy38fT3g48FZ1YnIPGY3MCd6E0lzGaYHmQpAZjIqKTWjEKMiIqLi7N69eyatV758+QKOhIgodyERMZi3/zpik9VwsVNCJVciVa3B1YdxmLf/Oqb7VWdCiojMwmQUkQnkQs4NzCHLrISSCCKS01IBOBReYEREVGxl7Q+lm1Uva19O9uMkoqJAqxWxITgCsclqeJa01v+dslHKYK2QIiImGRuDI1DP3YlD9ojIZExGEZlACu3zH3JORgFASnIiAM58RERELycIAsqVK4fBgweja9eukMl4WUZERU9YdAJuRSfCxU6ZbSIrQRDgbKvEzehEhEUnoJqbvYWiJKLihlc9RCaQ4fnwO2OVUdIsyaiUtEKKiIiIirv79+9jw4YNCAgIwOrVq/Hee+9h2LBhqF69uqVDIyLSi0tWIz1DA5XceF9UlVyKJ4lpiEtWF3JkRFScSfKyUUZGBo4ePYo1a9YgISEBAPDw4UMkJibma3BERYU8t55REgkykDmDXlpqciFGRURExZmbmxs+/fRT/PPPP9ixYweePXuGRo0a4e2338batWuh1WotHSIRERys5VDIpEhVGx8ynKrObGbuYG3kOpmIKAdmJ6MiIiJQq1YtdO/eHaNHj8bjx48BAAsXLsTkyZPzPUCiokA/TE8iNfq4Rsj88E1NSy2skIiI6DXStGlT/Pjjj7h58yasra3x4YcfIjY21tJhERHBy8UOlV1s8TgxTd/fTkcURTxOTEMVF1t4udhZKEIiKo7MTkaNGzcODRo0wLNnz2BlZaVf3rNnTxw7dixfgyMqCkQRkOuG6UmNf+OjeV4xlZ6WUlhhERHRayQ4OBjDhw+Hl5cXEhMT8e2338LR0dHSYRERQSIR4O/rAQcrOSJikpGUlgGNVkRSWgYiYpLhYCXHIF8PNi8nIrOY3TPqzJkzCA4OhkKhMFju6emJBw8e5FtgREXJf5VRxpNR2ueVUemprIwiIiLTREZGYuPGjQgICMCzZ88wcOBABAUFoWbNmpYOjYjIgI9HCUz3q44NwRG4FZ2IJ4lpUMikqFnGAYN8PeDjUcLSIRJRMWN2Mkqr1RqdYvj+/fuws2NpJr2GRBFyQdczyvivjFaSmZxN5zA9IiIyUfny5VG2bFn4+/ujW7dukMvl0Gq1+OuvvwzWq127toUiJCL6j49HCdRzd0JYdALiktVwsJbDy8WOFVFElCdmJ6Pat2+P5cuX4/vvvweQOZ1nYmIiZs6cic6dO+d7gESWJohZkq/SHJJRz4fvqdWcTY+IiEyj0Whw7949fPHFF5g7dy4AZOvHIgiC0S8BiYgsQSIRUM3N3tJhENFrwOxk1JIlS9ChQwd4e3sjNTUVAwYMwM2bN1GqVCn8/PPPBREjkUVJxIwsd4z/yojSzMqoDPaMIiIiE4WHh1s6BCIiIiKLMDsZVa5cOVy+fBmBgYH466+/kJiYiGHDhmHgwIEGDc2JXheCNmsyKocpa58P01Or0wshIiIieh14eHhYOgQiIiIiizA7GZWamgqVSoX33nuvIOIhKnIkWYfp5VAZJcgyk1GadPaMIiKil7t37x7Kly9v8voPHjxA2bJlCzAiIiIiosIjMXcDFxcX+Pv748iRI9BqtQURE1GRIhHVWe5Ija+kS0axZxQREZngrbfewsiRI3HhwoUc14mLi8PatWtRs2ZN7Ny5sxCjIyIiIipYZldGbdiwAVu2bEH37t3h4OCAvn374r333kODBg0KIj4ii9M1MM+ADDLB+GwhEpkKAKDNYDKKiIhe7tq1a5g3bx7atWsHlUoFHx8flClTBiqVCs+ePcO1a9dw9epV1K9fH4sWLeIkMURERPRaMbsyqmfPnti+fTuioqIwf/58XLt2DW+//Ta8vLwwZ86cgoiRyKIkz3tGaYUcqqIASJ5XRmlZGUVERCYoWbIkli5disjISKxcuRJVqlTBkydPcPPmTQDAwIEDERISgnPnzjERRURERK8dsyujdOzs7DBkyBAMGTIE165dw8CBAzF79mx8/vnn+RkfkcXpKqM0ufy6SORKAICoYTKKiIhMZ2Vlhd69e6N3796WDoWIiIio0JhdGaWTmpqKbdu2oUePHqhfvz5iYmIwZcqU/IyNqEiQiJmVURoh518X6fNklKBRI0PDXmpEREREREREOTG7MurQoUPYsmUL9uzZA5lMht69e+Pw4cNo3rx5QcRHZHESbWYDc42Q86+LTJHZM0qBDCSrNbCX5jnPS0RERERERPRaMzsZ1bNnT3Tp0gUbN25E586dIZfLCyIuoiJDN0xPi9x6RmVWRsmRgaS0DNir+HtBREREREREZIzZyaioqCjY2dkVRCxERdJ/w/Ry/nURnjcwVwhqJKVpCiUuIiIiIiIiouLIpLFE8fHx+p9FUUR8fHyON6LXjb6BeS6z6UH6PBkFDZLSMgojLCIieg2o1WoMHToU4eHhlg6FiIiIqNCYlIxycnJCdHQ0AMDR0RFOTk7ZbrrlefHtt9/C09MTKpUKjRo1wh9//GHSdoGBgRAEAT169MjT8xKZQqJ9XhmVyzC9/5JRaiSnszKKiIhMI5fLsXPnTkuHQURERFSoTBqmd/z4cZQoUQIAcOLEiXwNYOvWrZg4cSJWr16NRo0aYfny5ejQoQNu3LgBFxeXHLe7e/cuJk+ejGbNmuVrPEQvEkwYpofnPaMUUBdGSERE9Brp0aMH9uzZgwkTJlg6FCIiIqJCYVIyqkWLFvqfK1SoAHd3dwiCYLCOKIr4999/zQ5g6dKlGDFiBIYMGQIAWL16Nfbv349169Zh6tSpRrfRaDQYOHAgZs+ejTNnziA2Ntbs5yUyla5nVG4NzCHNbFguB6uiiIjIPFWqVMGcOXMQFBQEHx8f2NjYGDw+duxYC0VGREREVDDMbmBeoUIFREZGZqtaiomJQYUKFaDRmP7PeHp6OkJCQjBt2jT9MolEgrZt2+LcuXM5bjdnzhy4uLhg2LBhOHPmTK7PkZaWhrS0NP199rUicwnazGqnXCujpM8rowRWRhERkXl+/PFHODo6IiQkBCEhIQaPCYJgcjJqwYIF2LVrF/755x9YWVnB19cXCxcuRNWqVQsibCLKA61WRFh0AuKS1XCwlsPLxQ4SifDyDem1x/cGvWnMTkaJopitKgoAEhMToVKpzNrXkydPoNFo4OrqarDc1dUV//zzj9Ftzp49ix9//BGXLl0y6TkWLFiA2bNnmxUXUVbajMzKKFHy8p5RcrB5ORERmSe/mpefOnUKo0ePxltvvYWMjAx89tlnaN++Pa5du5at2oqICl9IRAw2BEfgVnQi0jM0UMikqOxiC39fD/h4lLB0eGRBfG/Qm8jkZNTEiRMBZH5DN2PGDFhbW+sf02g0+P3331G3bt18DzCrhIQEvP/++1i7di1KlSpl0jbTpk3Txw5kVka5u7sXVIj0GsrISM/8QSLPeSVZZjJKyWQUERG9AlEUAcDoF38vc/DgQYP769evh4uLC0JCQtC8efN8iY+I8iYkIgbz9l9HbLIaLnZKqORKpKo1uPowDvP2X8d0v+pMOryh+N6gN5XJyag///wTQOZF0pUrV6BQKPSPKRQK1KlTB5MnTzbryUuVKgWpVIqoqCiD5VFRUXBzc8u2/u3bt3H37l107dpVv0yr1WYeiEyGGzduoFKlSgbbKJVKKJVKs+IiyipDnTn0TpTkNkyPlVFERJR3GzduxFdffYWbN28CALy8vDBlyhS8//77ed5nXFwcAOgnoSEiy9BqRWwIjkBsshqeJa31yWYbpQzWCikiYpKxMTgC9dydOCzrDcP3Br3JTE5G6WbRGzJkCFasWAF7e/tXfnKFQgEfHx8cO3YMPXr0AJCZXDp27BjGjBmTbf1q1arhypUrBsv+97//ISEhAStWrGDFExUIzfPKKMGEZBRn0yMiInMtXboUM2bMwJgxY9CkSRMAmW0JPvzwQzx58iRPs+xptVqMHz8eTZo0Qc2aNXNcj701iQpeWHQCbkUnwsVOma3qURAEONsqcTM6EWHRCajm9ur/Y1HxwfcGvcnM7hkVEBCQrwFMnDgR/v7+aNCgARo2bIjly5cjKSlJP7veoEGDULZsWSxYsAAqlSrbBZWjoyMA5HqhRfQqdMko3Yx5Rukqo4QM1kYREZFZvvnmG6xatQqDBg3SL+vWrRtq1KiBWbNm5SkZNXr0aPz99984e/ZsruuxtyZRwYtLViM9QwOV3PhoDZVciieJaYhL5peabxq+N+hNZnYyCgAuXryIbdu24d69e0hPTzd4bNeuXWbtq2/fvnj8+DE+//xzPHr0CHXr1sXBgwf1Tc3v3bsHiUSSlzCJ8oVWrUtGKXJeSfZ8Nj0wGUVEROaJjIyEr69vtuW+vr6IjIw0e39jxozBvn37cPr0aZQrVy7Xddlbk6jgOVjLoZBJkarWwEaZ/d+vVHVmw2oH61y++KTXEt8b9CYzO8sTGBgIX19fXL9+Hbt374ZarcbVq1dx/PhxODg45CmIMWPGICIiAmlpafj999/RqFEj/WMnT57E+vXrc9x2/fr12LNnT56el8gUWt0wvdySUc+rphRMRRERkZkqV66Mbdu2ZVu+detWVKlSxeT9iKKIMWPGYPfu3Th+/DgqVKjw0m2USiXs7e0NbkSUv7xc7FDZxRaPE9P0kxToiKKIx4lpqOJiCy8XOwtFSJbC9wa9ycyujJo/fz6WLVuG0aNHw87ODitWrECFChUwcuRIlC5duiBiJLIoUfM8GSXLLRmlq4xiCS0REZln9uzZ6Nu3L06fPq3vGRUUFIRjx44ZTVLlZPTo0diyZQt++eUX2NnZ4dGjRwAABwcHWFlZFUjsRPRyEokAf18PzNt/HRExyXC2VUIlz6yGeZyYBgcrOQb5erBB9RuI7w16k5ldGXX79m34+fkByGxAnpSUBEEQMGHCBHz//ff5HiCRpYm6yihZLrMycjY9IiLKo169euH3339HqVKlsGfPHuzZswelSpXCH3/8gZ49e5q8n1WrViEuLg4tW7ZE6dKl9betW7cWYPREZAofjxKY7lcdNco4ID41A/efJSM+NQM1yzhgul91+Hhw1ss3Fd8b9KYyuzLKyckJCQkJAICyZcvi77//Rq1atRAbG4vk5OR8D5DI4p5XRklyq4x6/phCyIAIMef1iIiIjPDx8cFPP/30Svt4cYgHERUtPh4lUM/dCWHRCYhLVsPBWg4vFztWvRDfG/RGMjsZ1bx5cxw5cgS1atXCu+++i3HjxuH48eM4cuQI2rRpUxAxElmWJnPonUSe2zA9VkYREVHehIaGQi6Xo1atWgCAX375BQEBAfD29sasWbOgUOTy+UNExYpEIqCaG3uzUXZ8b9CbxuxheitXrkS/fv0AANOnT8fEiRMRFRWFXr164ccff8z3AIks7nlllDSHKVczH3xeGcVkFBERmWnkyJEICwsDANy5cwd9+/aFtbU1tm/fjk8++cTC0RERERHlP7Mro0qU+G/MqkQiwdSpU/M1IKKiRqLNrIyS5trAnMkoIiLKm7CwMNStWxcAsH37drRo0QJbtmxBUFAQ+vXrh+XLl1s0PiIiIqL8ZlIyKj4+3uQdckpget0I2szKKFlulVHPm5srBTXAnh1ERGQGURSh1WoBAEePHkWXLl0AAO7u7njy5IklQyMiIiIqECYloxwdHSEIuTdPE0URgiBAo9HkS2BERYVEmwFIAKni5cP0AEAQWR1FRESma9CgAebOnYu2bdvi1KlTWLVqFQAgPDwcrq6uFo6OiIiIKP+ZlIw6ceJEQcdBVCRlaLSQipnD9OQm9IwCAOF5jykiIiJTLF++HAMHDsSePXswffp0VK5cGQCwY8cO+Pr6Wjg6IiIiovxnUjKqRYsWBR0HUZGUmqHVz5AnV6hyXlH2X6JKomUyioiITKPRaBAbG4vTp0/DycnJ4LGvvvoKUqnUQpERERERFRyzZ9MDgDNnzuC9996Dr68vHjx4AADYtGkTzp49m6/BEVlaSrpGn4yS5Ta1tkQKzfNfJ0GjLozQiIjoNSCVStG+fXvExsZme0ylUkEulxd+UEREREQFzOxk1M6dO9GhQwdYWVkhNDQUaWlpAIC4uDjMnz8/3wMksqRUtUY/Q54gzWWYHgD180JDVkYREZE5atasiTt37lg6DCIiIqJCY3Yyau7cuVi9ejXWrl1r8G1dkyZNEBoamq/BEVlailoDOZ435Zfm/u10BjIfF7SsjCIiItPNnTsXkydPxr59+xAZGYn4+HiDG9HrSKsV8c+jePx+5yn+eRQPrfbNnY2Y54KI3kQm9YzK6saNG2jevHm25Q4ODkZLzImKs5R0DeTC89nxpLkM0wOgFmSACEjYwJyIiMzQuXNnAEC3bt0MZi/mTMX0ugqJiMGG4Ajcik5EeoYGCpkUlV1s4e/rAR+PEpYOr1DxXBDRm8rsZJSbmxtu3boFT09Pg+Vnz55FxYoV8ysuoiIhRa2BFUxLRv1XGcVkFBERmY6zFtObJCQiBvP2X0dsshoudkqo5EqkqjW4+jAO8/Zfx3S/6m9MEobngojeZGYno0aMGIFx48Zh3bp1EAQBDx8+xLlz5zB58mTMmDGjIGIkspgUtQYO+mRU7sP00lkZRUREecBZi+lNodWK2BAcgdhkNTxLWusrAW2UMlgrpIiIScbG4AjUc3eCRCK8ZG/FG88FEb3pzE5GTZ06FVqtFm3atEFycjKaN28OpVKJyZMn4+OPPy6IGIksJjXLbHomV0YxGUVERGY4ffp0ro8ba49AVByFRSfgVnQiXOyUBkNSAUAQBDjbKnEzOhFh0Qmo5mZvoSgLB88FEb3pzE5GCYKA6dOnY8qUKbh16xYSExPh7e0NW1tbpKSkwMrKqiDiJLKIzAbmpiWj0p8nozibHhERmaNly5bZlmX955Q9o+h1EZesRnqGBiq58RmKVXIpniSmIS759Z8MhueCiN50Zs+mp6NQKODt7Y2GDRtCLv9/e3ceF2W1/wH88zyzsQ+CIFAIrrjvS9Kt7GaieUtbzby5ZGldzcprqXVTq+tVy5ttlq1o3Raza9ZPSzPTMvW6oLiLoogLIioKDMPs5/fHwMQAAzMwzCB83q/XvHSeOc95vmcOzyzfOec8Krz++uto1aqVN2Mj8rsSc/kFzGuapmdPVskWQ32HRUREjciVK1ecbnl5eVi3bh369u2Ln376yd/hEXmNNkgFtVIBg7nqBKvBbF/AWxtU/WeuxoDPBRE1dW6PjDIajZg7dy42bNgAtVqN5557DiNGjEBqaipeeOEFKBQKPPPMM/UZK5HPlXgwTc8E+y9bstVY32EREVEjotVqK227/fbboVarMW3aNKSlpfkhKiLvax8dirbRITiUU4AgtaLS1SMv6ozoEqdF++hQP0bpG3wuiKipc3tk1OzZs/Hee+8hMTERp06dwv3334+JEydi8eLFeP3113Hq1CnMmDGjPmMl8jmD2Qq1m8koY9nIKCtHRhERUd21aNECGRkZ/g6DyGtkWcLY5ARoA1XIztej2GiB1SZQbLQgO18PbaAKY5ITmsSC3XwuiKipc3tk1MqVK/Hpp5/irrvuwsGDB9GtWzdYLBbs27ev0qJ7RI2FwWyDCqXDp92dpsdkFBEReWD//v1O94UQOH/+PBYsWIAePXr4JyiietI7IQIvDOuI5duykZmnwyWdEWqlAl3itBiTnIDeCRH+DtFn+FwQUVPmdjLq7Nmz6N27NwCgS5cu0Gg0eOaZZ5iIokbNkwXMjWXT9LhmFBEReaBHjx6QJAlCCKftN9xwAz755BM/RUVUf3onRKBnfDMcyytCgd4MbZAK7aNDm+QoID4XRNRUuZ2MslqtUKv/+DKuVCoREhJSL0ERNRR6gwkqqWxkVA1rRjlGRnHNKCIicl9WVpbTfVmWERUVhYCAAD9FRFT/ZFlCh5gwf4fRIPC5IKKmyO1klBAC48aNg0ZjH/1hMBjw+OOPIzg42KncqlWrvBshkR8V6vV/3Klhmp4RnKZHRESeS0hI8HcIRERERD7ldjJq7NixTvf/+te/ej0YooamqLjkjzs1jowqu5oek1FEROS+qVOnom3btpg6darT9nfeeQeZmZl44403/BMYERERUT1xOxmVmppan3EQNUjFtRkZxTWjiIjIA//973/x/fffV9qenJyMBQsWMBlFREREjY7s7wCIGrLiEntiSUgKQFZUW5ZX0yMiotq4fPkytFptpe1hYWG4dOmSHyIiIiIiql9MRhG5IIRASYl9ZJSoYYoeAAilfaFZi6mkhpJERER/aNu2LdatW1dp+48//ojWrVv7ISIiIiKi+uX2ND2ipqbYZIVsMwMApBqm6AGANjQM0AGmEl19h0ZERI3ItGnTMGXKFFy8eBF//vOfAQAbN27Ev//9b07RIyIiokaJySgiF64Um6CCxX7HjZFR4dpQ4DxgNuhrLEtERFTmkUcegdFoxLx58/DKK68AABITE/Hee+9hzJgxfo6OiIiIyPuYjCJy4are7EhGSW4koyLDwwEANk7TIyIiDz3xxBN44okncPHiRQQGBiIkJMTfIRERERHVG64ZReTCFb0JasfIqJqn6UU1K1181sJkFBERecZiseDnn3/GqlWrIIQAAOTk5ECn49RvIiIianw4MorIhSt6z6bptYgMBwAobSZcKTahWXDN+xAREWVnZ2PIkCE4ffo0jEYjbr/9doSGhmLhwoUwGo1YunSpv0MkIiIi8iqOjCJy4areDJXkfjIqIDDY/q9kQtbl4voMjYiIGpGnnnoKffr0wZUrVxAYGOjYfvfdd2Pjxo1+jIyIiIiofnBkFJELziOjap6mB6X9C0QATMi6WIxeLZvVY3RERNRYbNmyBdu2bYNa7fzDR2JiIs6dO+enqIiIiIjqD0dGEblwVW8ut2aUG1PuVAEA7Mmoc1e5bhQREbnHZrPBarVW2n727FmEhob6ISIiIiKi+sVkFJEL9pFRpV8O3ElGlRsZdanIUI+RERFRYzJ48GC88cYbjvuSJEGn02HOnDm44447/BcYERERUT3hND0iF67ozYjwZJpe6cgohSRwRcc1o4iIyD2LFi3CkCFD0KlTJxgMBjz00EM4fvw4mjdvji+//NLf4RERERF5HZNRRC7oDGa08GAB87KRUQBQWMhLcRMRkXvi4+Oxb98+rFixAvv27YNOp8OECRMwevRopwXNiYiIiBoLJqOIXBBAuTWj3FnAXAMBCRIEdLqieo2NiIgaB7PZjA4dOmDNmjUYPXo0Ro8e7e+QiIiIiOod14wiqobKkwXMJQlCqQEAFOs5MoqIiGqmUqlgMHCdQSIiImpamIwiqoZHySjAMVXPYtTDYK58ZSQiIqKKJk+ejIULF8Jisfg7FCIiIiKf4DQ9omqoPJmmB0BSBQKGKwiACZeLTbgunGt9EBFR9Xbt2oWNGzfip59+QteuXREcHOz0+KpVq/wUGZH/2GwCx/KKUKA3QxukQvvoUMiy5O+wiIjISxpEMmrJkiV47bXXkJubi+7du+Ptt99Gv379qiz74Ycf4tNPP8XBgwcBAL1798a//vUvl+WJ6kLtyQLmAKTSK+oFwIRLRUYmo4iIqEbh4eG49957/R0GUYORlp2P5duykZmng8lihVqpQNvoEIxNTkDvhAh/h0dERF7g92TUihUrMG3aNCxduhT9+/fHG2+8gZSUFGRkZCA6OrpS+c2bN2PUqFFITk5GQEAAFi5ciMGDB+PQoUO47rrr/NACasxqO00vQDLjks5YT1EREVFjkpqa6u8QiBqMtOx8zFt7BFf1ZkSHahCg0sBgtuJQTgHmrT2CF4Z1ZEKKiKgR8PuaUa+//joee+wxjB8/Hp06dcLSpUsRFBSETz75pMryn3/+Of72t7+hR48e6NChAz766CPYbDZs3LjRx5FTU6BC6bpPSjeTUeVHRjEZRURE1bDZbFi4cCFuvPFG9O3bFzNnzkRJSUmd6vztt99w5513Ii4uDpIkYfXq1d4JlsgFm03gaG4hdpy8jKO5hbDZRJ3qWr4tG1f1ZiRGBiFYo4RClhCsUSIhIggFJWZ8ui27TscgIqKGwa8jo0wmE9LS0jBr1izHNlmWMWjQIGzfvt2tOvR6PcxmMyIi+AsJeV+tR0bBhEs6Uz1FRUREjcG8efMwd+5cDBo0CIGBgXjzzTeRl5fn8gc5dxQXF6N79+545JFHcM8993gxWqLKvD2d7lheETLzdIgO1UCSnNeHkiQJUSEaHM/T4VheETrEhHmrGURE5Ad+TUZdunQJVqsVLVq0cNreokULHD161K06ZsyYgbi4OAwaNKjKx41GI4zGP0aoFBYW1j5galKEADQoTSi5m4xSlU3TM+FiEUdGERGRa59++ineffddTJo0CQDw888/Y9iwYfjoo48gy7UbvD506FAMHTrUm2ESVak+ptMV6M0wWawIUGmqfDxApcAlnREFerM3mkBERH7k92l6dbFgwQJ89dVX+PbbbxEQEFBlmfnz50Or1Tpu8fHxPo6SrmVBUmlCSRXk3g7lpukVlPCDEhERuXb69GnccccdjvuDBg2CJEnIycnxWQxGoxGFhYVON6Ka1Nd0Om2QCmqlAgaztcrHDWb76CttkHtXOSYioobLr8mo5s2bQ6FQ4MKFC07bL1y4gJiYmGr3XbRoERYsWICffvoJ3bp1c1lu1qxZKCgocNzOnDnjldipaQhCaTJK7WYyqtw0PSG4ngEREblmsVgq/ZimUqlgNvvuxwz+aEe14cl0Ok+0jw5F2+gQXNQZK32OEkLgos6IdtEhaB8dWuc2EBGRf/l1mp5arUbv3r2xceNGjBgxAgAci5FPmTLF5X6vvvoq5s2bh/Xr16NPnz7VHkOj0UCjqXqoL1FNAh3JqBA3dwgHAIRJxbhUPyEREVEjIYTAuHHjnD6nGAwGPP744wgODnZsW7VqVb3FMGvWLEybNs1xv7CwkAkpqlF9TaeTZQljkxMwb+0RZOfrERWiQYDKPlLqos4IbaAKY5ITIMtSzZUREVGD5tdkFABMmzYNY8eORZ8+fdCvXz+88cYbKC4uxvjx4wEAY8aMwXXXXYf58+cDABYuXIjZs2fjiy++QGJiInJzcwEAISEhCAlxM2FA5CaPp+kF2tdGiEARTtZTTERE1DiMHTu20ra//vWvPo2BP9pRbZSfThesqfx1oi7T6XonROCFYR0dC6Nf0hmhVirQJU6LMbVcGJ2IiBoevyejRo4ciYsXL2L27NnIzc1Fjx49sG7dOsei5qdPn3ZaxPO9996DyWTCfffd51TPnDlzMHfuXF+GTk1AEAz2/7g7TS8oEgDQTPJsWDoRETU9qamp/g6BqFbKptMdyilAkFrhNFWvbDpdlzhtrafT9U6IQM/4ZjiWV4QCvRnaIBXaR4dyRBQRUSPi92QUAEyZMsXltLzNmzc73T916lT9B0RUyrFmlCq4+oKOHcpGRunAFaOIiMjXdDodMjMzHfezsrKQnp6OiIgItGzZ0o+RUWPii+l0siyhQ0yYF6MmIqKG5Jq+mh5RfXNM03N7ZJQ9GRXOkVFEROQHu3fvRs+ePdGzZ08A9uUQevbsidmzZ/s5MmpsyqbTdY7TotBgwdkrehQaLOgSp8ULwzpyOh0REVWrQYyMImqo/ljA3N2RUfZpehFMRhERkR8MHDiQV3Mln+F0OiIiqi0mo4hcEELUYppe6ZpRKAL4ZYCIiIgaOU6nIyKi2uA0PSIX1DBBlkoTSu5O0yu9mp5askJj09dTZERERERERETXLiajiFwIEIY/7qjcTEapg2CRAwAAwdbCeoiKiIiIiIiI6NrGZBSRC2XJKKtCA8gKt/czqMIBAMGWgvoIi4iIiIiIiOiaxjWjiFzQlCWjlEFwPxUFGFVahBhzEWxlMoqIiKgpsNlEg17Eu6HHR0RETQ+TUUQu/DEyys0peqUM6nAAQAiTUURERI1eWnY+lm/LRmaeDiaLFWqlAm2jQzA2OQG9EyL8HV6Dj4+IiJomTtMjcsGRjFIGerSfUdUMADgyioiIqJFLy87HvLVHcPBcAcIClLi+WRDCApQ4lFOAeWuPIC07n/ERERFVgckoIhdqm4xyrBnFZBQREVGjZbMJLN+Wjat6MxIjgxCsUUIhSwjWKJEQEYSCEjM+3ZYNm00wPiIiogqYjCJyoSwZZVN6Nk3PqNICYDKKiIioMTuWV4TMPB2iQzWQJOf1lyRJQlSIBsfzdDiWV8T4iIiIKmAyisiFsgXMLR4mowxq+zQ9rhlFRETUeBXozTBZrAhQVX2ZkwCVAiaLFQV6s48js2vo8RERUdPGZBSRC46RUQoPp+k5klFXvR0SERERNRDaIBXUSgUMZmuVjxvM9sXCtUEqH0dm19DjIyKipo3JKCIXNI41ozwdGWW/Mg2TUURERI1X++hQtI0OwUWdEUI4r7skhMBFnRHtokPQPjqU8REREVXAZBSRC4GiBEAtFjAvHRkVarnq7ZCIiIiogZBlCWOTE6ANVCE7X49iowVWm0Cx0YLsfD20gSqMSU6ALEs1V9YE4yMioqaNySgiFzTCCMDzZFRJ6cioYFshYLV4PS4iIiLyPZtN4GhuIXacvIyjuYWw2QR6J0TghWEd0TlOi0KDBWev6FFosKBLnBYvDOuI3gkRfo3Zm/FV1X4iIqLaUvo7AKKGKsAxTS/Yo/1MKi2sQoJCEoD+MhDaoj7CIyIiIh9Jy87H8m3ZyMzTwWSxr7XUNjoEY5MT0DshAj3jm+FYXhEK9GZog1RoHx3aYEYceSO+mtpPRETkKSajiFzQoCwZ5dnIqJbNQ3EFoWiOQpiLLkDFZBQREdE1Ky07H/PWHsFVvRnRoRoEqDQwmK04lFOAeWuPOEYYdYgJ83eoLsmyVOv43G0/ERGRJzhNj8gFx9X0PExG3dQuCgWSFgCw98gJr8dFREREvmGzCSzflo2rejMSI4MQrFFCIUsI1iiREBGEghIzPt2W3WinrDX19hMRUf1hMorIBcc0PYVnV9NTKWQow6IBAHuPHPN6XEREROQbx/KKkJmnQ3SoBpLkPK1NkiREhWhwPE+HY3lFfoqwfjX19hMRUf1hMorIBcfV9FSeJaMAoFnzWABAft45WPlrIRER0TWpQG+GyWJFgErh2CaEgM5gwRW9CRabgNFsQYHe7Mco609V7S8vQKWAyWJttO0nIqL6wzWjiFwIsukAACKgmcf7hkTGAieBEFsBMvN0SIoJ9XZ4REREVM+0QSqolQoYzFYEa5S4qjfj7BU9ik0W2AQAASgVEs5dLfF3qPWiYvsrMpjti5lrg1R+iI6IiK5lHBlFVAUhBIKt9iHnzZp7vgC5HGKfpheJAqSfueLV2IiIiMg32keHom10CC7qjLiqN+F4XhGKjBYoZRkBShk2CNgE8Nn2bKRl5/s7XK8r334hnEd6CyFwUWdEu+gQtI/mj25EROQZJqOIqnC12Igw2EdGRUfHeF5BUCQAIFIqQvqZq16MjIiIiHxFliWMTU5AWIASRy8UwWS1IUBp//hssNigVsho3yIEhYbGuZB3Wfu1gSpk5+tRbLTAahMoNlqQna+HNlCFMckJkGWp5sqIiIjKYTKKqAo5F/KgkOwfKANCIz2vIDgKABApFSL9TIE3QyMiIiIf6p0QgYcHJEAhSZAhwWCxwWITCA1Qol2LUDQLUjfqhbx7J0TghWEd0TlOi0KDBWev6FFosKBLnBYvDOuI3gkR/g6RiIiuQVwziqgKl/LOAwBKpAAEKjWeVxBin9oXI+UjI7cQZqsNKgVzv0RERNei68KDEBWqQUSQGlYhoFLICNYoUTYeKEClwCWdsdEu5N07IQI945vhWF4RCvRmaINUaB8dyhFRRERUa0xGEVUh/3IeAKBEEYbA2lQQ2RYAEIfL0AgDrDYBFxeiISIiogZOG6SCRqmAQpYQpqm8WHdTWMhbliV0iAnzdxhERNRIcKgGURWKrtiTUWZ1eO0qCI6ECIyELAm0ls57LzAiIiLyOS7kTURE5F1MRhFVoaTgEgBABDardR225kkAgLbSOYjGtZ4pERFRg2azCRzNLcSOk5dxNLfQrYXFq9uHC3kTERF5F6fpEVXBpLsMAFAE1SUZ1R6KM9vQVs7xVlhERERUg7TsfCzflo3MPB1MFvv0ubbRIRibnOBysW139ilbyLus3CWdEWqlAl3itBhTTd1ERERUGZNRRBXYbALQ5wMyoKnNlfRKicj2AEpHRoFDo4iIiOpbWnY+5q09gqt6M6JDNQhQaWAwW3EopwDz1h6p8upvnuzDhbyJiIi8g8koogoyL+oQbCsCZCAkPKrW9YjmZckojowiIiKqbzabwPJt2biqNyMxMgiSZE8QBWuUCFIrkJ2vx6fbstEzvpkjeVSbfbiQNxERUd1xzSiiCtKyr0Ar6QAAcnAdRkaVJqMSpVyYjQavxEZERERVO5ZXhOMXihCiUeBqiRk6g+WPxcYlCcFqJfadvYr1h3Md60EdyytCZp4O0aEaRyKqjCRJiArR4HieDsfyinzdHCIiokaNI6OIKtiTfQVDUGy/U4cFzJXh1+MytIiUCvDv1C8x6/FHEKhWeClKIiIiKm/nyXycuaKHACAEIEtAsFqJ8CA1rpaYoDNYYLLasOCHo/jxQC7GJifAYhUwWawIUGmqrDNApcAlnREFerNvG0NERNTIcWQUUQVpp68gvHRkVJ2SUUoFrAk3AQAi8rbh499PeiM8IiIiqiAtOx9f7jwNk0VAhoRApQylLONqiRmZeUW4WmyGLElQK2VoA5WO9aDOXdVDrVTAYLZWWa/BbF/MXBuk8nGLiIiIGjcmo4jKuao34eTFYoSj7skoAIjudjsAYIB8GEt/PYnLOmNdQyQiImqSbDaBo7mF2HHyMo7mFsJmE7DZBA7nFOD1n46hyGCBNlABqxCAJEEhS7AJAZsABAQsNhtCNEo0D9EgISIIBSVmbD56EW2ignFRZ/xjSl8pIQQu6oxoFx2C9tGhfmo1ERFR48RpekTlXCi0J4si5LpP0wMAtLoZANBLzoTVoMP6QxfwUP+WdauTiIioiUnLzsfybdnIzNPBZLGPVooIVgGQkFNQgrP5JVDKEjQq+++sJWarPRllE5AkwGwVUClkXB/+xyLlUSEaZF4sxqM3tcK5qyXIztcjKkSDAJV9pNRFnRHaQBXGJCfwanlERERexpFRRBWoYEFY2ciooNovYA4AaNYK0LaEChYMU+xwOQ2AiIiIqpaWnY95a4/gwNmrUMpAiEYJo8WKnVn52HUqHzabgEIG1EoZRosNEgCNUobFakPpOuWQZeC68ECEl5tuF6BSwGSx4rrwQLwwrCM6x2lRaLDg7BU9Cg0WdInT4oVhHdE7IcI/DSciImrEODKKqIKW0gUoYAPUoUBIdN0qkySg7wTg5zmYoliNFQUPQwhR6Yo9RERE9AebTeBY6VpP723OxOnLxbDagNxC+9VpzVYBIQSUCglFBgvk0vfVQKWMEosNaqWM68IDcOJiMSRJgiwBzYLUTscovx5Uh5gw9IxvhmN5RSjQm6ENUqF9dChHRBEREdUTJqOIyhEQaCvl2O80b2dPJtVVv8eg27wYiZYLuLTtUzx8/j68dn83xGoD6143ERFRI2KzCazaexafbc/GuaslMJis0Jn+GFUsS4BCkmAtnX5nsdqgN1kQqFbAYLYhUKWAWiGj2GhBQkQwQgOUuKI3IyJIjWDNH1e0LVsPqkuc1rEelCxL6BAT5vM2ExERNUVMRhFV0EY6Z/9P8/beqVAdDOnGp4Ff52KqcjVuzfwTnllhw1cTB3infiIiomtY2Sio/524jNStWTidXwLhoqwEwCoEBOxrTQgAJosNUSEaGM0mFJss0Chk2GyAzmCGSiFDrZChVEjQm6xcD4qIiKiBYDKKqII2crmRUV4SfOMkYPe7iC/OwwzlV/j3yftx/EIR2rXg1XmIiKjp2pF1CQt/OIKDOYUwubGsolX8seBp2XpQNgAXioyQAFhsAmaLfdqewWJDn4QI9GsdgR0n85GZp8MlnRFqpQJd4rQYk5zA9aCIiIj8hMkoonKEANo4pul5aWQUAKiDgFueA36YjseUP+DP8l48/sZFhMZ3weeP3oBAtaLmOoiIiBoBg8GCV9cfxco9Z1Fk9PzCHpIEQMBp9JRSlhCgUsBitaHYZIVGJeNvt7bGPT3jIcsSRvVtyfWgiIiIGhAmo4jKEwJtpPP2/0clebfuvo9CaEJR8uOLaGM4jzXqF/BBzjD0mp2LMbd0whO3tEF4hcVVrwWZeTq8ufE4igxmmK02aANVmHJrO3SK47obRET0h7yrxei3YHOd6xGwrx3luFIe7Mkoq03AbBMIUisQGqDElmOXcU/PeHsZrgdFRETUoMg1F6l/S5YsQWJiIgICAtC/f3/s3Lmz2vIrV65Ehw4dEBAQgK5du+KHH37wUaTU2Cl1OQiVSmCBDDRr5d3KJQlS9wcR9OR2oO3t0EhmPKlcjU2av6PZ1n9iwivv4Nmv9+C19UdxKKcAV4pN3j2+l9lsAheLjJj2dTr+b18ONmdcxNbMy/jhQC7ueGsLJn++Bwaz5794ExFR3Xj6ucoXOs9e55VEFGBPQonSRJQEQJIBk9UGi82G0AAl2kWHIr5ZEI7n6XAsr8grxyQiIiLv8vvIqBUrVmDatGlYunQp+vfvjzfeeAMpKSnIyMhAdHR0pfLbtm3DqFGjMH/+fPzlL3/BF198gREjRmDPnj3o0qWLH1pAjYUQAmd/+RDtAGTI7dBZWU+jlIKbA6NXAkfXwrZuFmIKTuNx5Ro8rlyDgkOvYb+tNXZvicVB0QoamBFxfXsExnfHTT27IDpUg4hgNZQK/+eR73lvG9LPXHXc79cqAleKTQgLVCEt+wrWHjiPtQfO45URXfBg33ioGkDMRESNnaefq3yh8+x1KHZnQSg3BSolWARgsQoEaxRo2SwIAWoFVLKMYI0CUunV9i7pjCjQm712XCIiIvIeSQjh6oIlPtG/f3/07dsX77zzDgDAZrMhPj4eTz75JGbOnFmp/MiRI1FcXIw1a9Y4tt1www3o0aMHli5dWuPxCgsLodVqUVBQgLCwehiufXoHUHDG+/VSvSoxW/HVztO48/xbaC4VYk+/19Hrjgn1f2CzAeLoWuTv/Q6hp3+B2uL6F1yjUMIEFYxQwQg18lTXQRl+HUqCroMhpCU0KgnW0HiEm87DGtEWAWoVZGMBsuSWOFEciAHtY9ApNqxOiayCEjNe+r9DyC0wYNuJywDsUyXm3d0VD/aNhyTZ198Yn7oTmzIuOu37zxFdcEfXWEQEX3tTEYmIyqv3zxJ14Onnqoq83TZvTc0rIwFQyIBClqGQJbSKDEKMNrBSuWKjBYUGC14f2Z3T84iIiHzEk88Rfh0ZZTKZkJaWhlmzZjm2ybKMQYMGYfv27VXus337dkybNs1pW0pKClavXl2fobrNsG0pAo6u8ncY5KFAAOMBQAJ0AbHolTLWNwdWBUDqei8iu94LWC1A7j4g7yhs5/eh+MxBlEANU14m4qxnoZEs0MCCUJQAAK6zXAIu7avxEG0ADAJQ/KsGxVCgACHIh9Y+r0GSYZWUsEoq2GT7zSqrYZU1CJRMyLOGIEgJ5BcUQlYoobYUoZsIQ1sEYIBSRo+EKNzU8XpAcQnYbQbM9tg+TFIgJ9aMTcfzcSi3GDbI2P3979j5vQSVUoEApYzY8EBEhwVAKUuQZRnKsoVkJQkSALMiGEJWQmkzQgXzH49JEgCpwv9lSJDsi9pKsn11W1kBiyIIsiSgtJmgsJkgwwarIgBCVkNjLoDCZrJ/q5GUELL9BkkByAoohAWyzQybMhBKSzGEQgOrKhSQZCiFEbLNDCEpIClUkK1GSMIGqyoYNmWAPSbYIAk4/pVgs88rETZIgP1fWYJNUkLIKghZBdlqgGQzA7IaNlkJCaXlhQCk8vNSStsN4TgGhIAEASHJ9jZIUmk5OwH781paQbm/EGEvKgTsKwKX/us4jAxR+hwDEoQkOe2N8iF5oKryrqqQPKjcVVF71JUf9ChuqdJ/ytXtZhwuj+d5bI6fkkoLivLLOQsXZSs85OrnqLJjO9omOW/74//O5UX5dlRRd8VNVR1fQDj/7VZVxtV+5QQEhiK+tZfX/mvgavO5qr55MxGllIHosAC0igzG3b2uw68ZF3H4fCGEEE6vE0IIXNQZ0SVOi/bRvGotERFRQ+TXZNSlS5dgtVrRokULp+0tWrTA0aNHq9wnNze3yvK5ublVljcajTAajY77hYWFdYy6ej9d1KK5tVO9HoPqT5Q2GO2GzwQUfjg1FErgut7Adb0h9xyNUACOj9AmPVByBVazAXn5hdh6OAshRSehNFxGRHEmAk35gM2CSPN5XJSao7XlBKyQcVlqhniRAxkCwZL9PNBCj5bIs9f7R94BqG4GhVxaruJF/86V3ipQAmgJYCwAqKqozwYgv/RGRFQPDqm7Ac9v8XcYPlWbz1W+/pxUW3FhAXh8YBv0ax3huBJeq+bBmLf2CLLz9YgK0SBApYDBbMVFnRHaQBXGJCfwinlEREQNlN/XjKpv8+fPx0svveSz422/7hGsu3IHNEoFFF74AOTOr/Y1lanqV3uPj1FjDDVXUmMJH8WhkOy/6suSBFm2/6tSyEiICML0lCQgvPJwf79TBwHqICgAxDYH7mvf02XRaMA+ykqSECIrAJsVMBTApLsCg9EIS1EebMWXYbZaYTZbYLWYYDWbYDUbYbOYYDOXQJgNMEkaqEryYLZJCAzRQgkLmkVEoRkKobAaAZsFsJaOhjJcBRQqQBloH0Fjs5S7WQGbBcJmgdliQYnZhqISE4QAbKUjceyL0ZaO7IF9lI7apodCWGCWNLBIZRmtP0buSBAVhnuUbit9TBI2aGwlEJBgkVSwSCpYIUMlTFAJI4rlMBglDWTYIAur/QYrFMIKCTbYIMMCJTTCgBIpCEqYEWTTQ4YVJkkDM5SQYbPHCBVskowAYUCAMJaNK4INsj0iSSqNqvR+6b8SAAUsUAoLVLDACDUskhIKYYUKFthKR/PY7C1y6mf7cyX9cSv925eEgALW0ueivLKoqqqjbESL5HS/YsRlLaoYS73O9fZC5fbn2vtRevoK704E3o7TN+0Wjr9nd0pXXcr7cVpUIV6vszHy9eek2hrcuQXGJCc6beudEIEXhnXE8m3ZyMzT4ZLOCLVSgS5xWoxJTkDvhAj/BEtEREQ18msyqnnz5lAoFLhw4YLT9gsXLiAmJqbKfWJiYjwqP2vWLKdpfYWFhYiPj69j5K7Nv6cb5t/Trd7qJ3JL+ZFdsgIIioA6KAL21Zr8M3JPAqAuvWn9EgERNSXh/g7AD2rzucrXn5Nq6/qIoCq3906IQM/4ZjiWV4QCvRnaIJVj5BQRERE1XH69vJVarUbv3r2xceNGxzabzYaNGzdiwIABVe4zYMAAp/IAsGHDBpflNRoNwsLCnG5EREREjU1tPlfV9+ekdl6oQ6MAxvRPcPm4LEvoEBOG/q0j0SEmjIkoIiKia4Dfr7U+bdo0fPjhh1i+fDmOHDmCJ554AsXFxRg/fjwAYMyYMU4LcT711FNYt24d/v3vf+Po0aOYO3cudu/ejSlTpvirCUREREQNQk2fq3xtw4Jhda5j7I2toVZXXLSQiIiIrmV+XzNq5MiRuHjxImbPno3c3Fz06NED69atcyy+efr0acjyHzmz5ORkfPHFF/jHP/6B559/Hu3atcPq1avRpUsXfzWBiIiIqEGo6XOVP5xaMAyJM9d6vJ9SBh75U2s8f0fHeoiKiIiI/EkSwtWFnRunwsJCaLVaFBQUcMoeEREReawxf5aoz7bdPnMtjlfYFhMABAVpYBEy1AoJASoZzYM1SG7XHOMGtOKIKCIiomuIJ58j/D4yioiIiIgaP29M2SMiIqLGwe9rRhERERERERERUdPBZBQREREREREREfkMk1FEREREREREROQzTEYREREREREREZHPMBlFREREREREREQ+w2QUERERERERERH5jNLfAfiaEAIAUFhY6OdIiIiI6FpU9hmi7DNFY8LPSURERFRbnnxGanLJqKKiIgBAfHy8nyMhIiKia1lRURG0Wq2/w/Aqfk4iIiKiunLnM5IkGuPPetWw2WzIyclBaGgoJEnyeP/CwkLEx8fjzJkzCAsLq4cIG56m2Gagaba7KbYZYLubUrubYpuBptnu+myzEAJFRUWIi4uDLDeuFQ/q+jmpJk3xb7GhYl80HOyLhoN90bCwPxoOd/vCk89ITW5klCzLuP766+tcT1hYWJM7IZpim4Gm2e6m2GaA7W5KmmKbgabZ7vpqc2MbEVXGW5+TatIU/xYbKvZFw8G+aDjYFw0L+6PhcKcv3P2M1Lh+ziMiIiIiIiIiogaNySgiIiIiIiIiIvIZJqM8pNFoMGfOHGg0Gn+H4jNNsc1A02x3U2wzwHY3pXY3xTYDTbPdTbHN1wL2S8PBvmg42BcNB/uiYWF/NBz10RdNbgFzIiIiIiIiIiLyH46MIiIiIiIiIiIin2EyioiIiIiIiIiIfIbJKCIiIiIiIiIi8pkmk4z67bffcOeddyIuLg6SJGH16tVOj69atQqDBw9GZGQkJElCenp6pToMBgMmT56MyMhIhISE4N5778WFCxeqPa4QArNnz0ZsbCwCAwMxaNAgHD9+3Istq15d252fn48nn3wSSUlJCAwMRMuWLTF16lQUFBRUe9xx48ZBkiSn25AhQ7zcuqp5o68HDhxYKf7HH3+82uNe63196tSpSm0uu61cudLlcf3Z10D17TabzZgxYwa6du2K4OBgxMXFYcyYMcjJyXGqIz8/H6NHj0ZYWBjCw8MxYcIE6HS6ao9bm9cDb6lrm0+dOoUJEyagVatWCAwMRJs2bTBnzhyYTKZqj1ub88KbvNHXiYmJldqwYMGCao/rz74G6t7uzZs3uzy3d+3a5fK4/uzvml7P5s6diw4dOiA4OBjNmjXDoEGDsGPHDqcy19p53ZgsWbIEiYmJCAgIQP/+/bFz585qy69cuRIdOnRAQEAAunbtih9++MFHkTZ+nvTFsmXLKp3zAQEBPoy28arpNa0qmzdvRq9evaDRaNC2bVssW7as3uNsCjztC1fvobm5ub4JuBGbP38++vbti9DQUERHR2PEiBHIyMiocT++Z3hfbfrCG+8ZTSYZVVxcjO7du2PJkiUuH//Tn/6EhQsXuqzjmWeewf/93/9h5cqV+PXXX5GTk4N77rmn2uO++uqreOutt7B06VLs2LEDwcHBSElJgcFgqFN73FXXdufk5CAnJweLFi3CwYMHsWzZMqxbtw4TJkyo8dhDhgzB+fPnHbcvv/yyTm1xlzf6GgAee+wxp/hfffXVastf630dHx/v1N7z58/jpZdeQkhICIYOHVrtsf3V10D17dbr9dizZw9efPFF7NmzB6tWrUJGRgbuuusup3KjR4/GoUOHsGHDBqxZswa//fYbJk6cWO1xa/N64C11bfPRo0dhs9nw/vvv49ChQ1i8eDGWLl2K559/vsZje3peeJM3+hoAXn75Zac2PPnkk9Ue1599DdS93cnJyZXO7UcffRStWrVCnz59qj22v/q7ptez9u3b45133sGBAwfw+++/IzExEYMHD8bFixcdZa6187qxWLFiBaZNm4Y5c+Zgz5496N69O1JSUpCXl1dl+W3btmHUqFGYMGEC9u7dixEjRmDEiBE4ePCgjyNvfDztCwAICwtzOuezs7N9GHHjVdNrWkVZWVkYNmwYbr31VqSnp+Ppp5/Go48+ivXr19dzpI2fp31RJiMjw+nciI6OrqcIm45ff/0VkydPxv/+9z9s2LABZrMZgwcPRnFxsct9+J5RP2rTF4AX3jNEEwRAfPvtt1U+lpWVJQCIvXv3Om2/evWqUKlUYuXKlY5tR44cEQDE9u3bq6zLZrOJmJgY8dprrznVo9FoxJdfflnndniqNu2uytdffy3UarUwm80uy4wdO1YMHz68doF6UW3bfMstt4innnrK7eM01r7u0aOHeOSRR6ot01D6Wojq211m586dAoDIzs4WQghx+PBhAUDs2rXLUebHH38UkiSJc+fOVVlHbV4P6ktt2lyVV199VbRq1araejw9L+pTbdudkJAgFi9e7PZxGlJfC+Gd/jaZTCIqKkq8/PLL1dbTUPrbnTYXFBQIAOLnn38WQlz75/W1rF+/fmLy5MmO+1arVcTFxYn58+dXWf6BBx4Qw4YNc9rWv39/MWnSpHqNsynwtC9SU1OFVqv1UXRNlzuvac8995zo3Lmz07aRI0eKlJSUeoys6XGnLzZt2iQAiCtXrvgkpqYsLy9PABC//vqryzJ8z/ANd/rCG+8ZTWZkVF2lpaXBbDZj0KBBjm0dOnRAy5YtsX379ir3ycrKQm5urtM+Wq0W/fv3d7nPtaCgoABhYWFQKpXVltu8eTOio6ORlJSEJ554ApcvX/ZRhN7x+eefo3nz5ujSpQtmzZoFvV7vsmxj7Ou0tDSkp6e7NQruWurrgoICSJKE8PBwAMD27dsRHh7uNEJk0KBBkGW50rSfMrV5PfCnim12VSYiIqLGujw5L/zNVbsXLFiAyMhI9OzZE6+99hosFovLOq61vgZq7u/vv/8ely9fxvjx42us61rob5PJhA8++ABarRbdu3cH0DTO64bIZDIhLS3N6TmUZRmDBg1y+Rxu377dqTwApKSk8Dmvo9r0BQDodDokJCQgPj4ew4cPx6FDh3wRLlXA86Lh6dGjB2JjY3H77bdj69at/g6nUSpbBqa6z6M8N3zDnb4A6v6eUX02gRxyc3OhVqsrfbhv0aKFyznDZdtbtGjh9j4N3aVLl/DKK6/UONVhyJAhuOeee9CqVSucOHECzz//PIYOHYrt27dDoVD4KNrae+ihh5CQkIC4uDjs378fM2bMQEZGBlatWlVl+cbY1x9//DE6duyI5OTkastdS31tMBgwY8YMjBo1CmFhYQDsfVdxqLVSqURERES157anrwf+UlWbK8rMzMTbb7+NRYsWVVuXp+eFP7lq99SpU9GrVy9ERERg27ZtmDVrFs6fP4/XX3+9ynqupb4G3Ovvjz/+GCkpKbj++uurrauh9/eaNWvw4IMPQq/XIzY2Fhs2bEDz5s0BNP7zuqG6dOkSrFZrle+FR48erXKf3NzcRvXe2VDUpi+SkpLwySefoFu3bigoKMCiRYuQnJyMQ4cO1fh6Qd7l6rwoLCxESUkJAgMD/RRZ0xMbG4ulS5eiT58+MBqN+OijjzBw4EDs2LEDvXr18nd4jYbNZsPTTz+NG2+8EV26dHFZju8Z9c/dvvDGewaTUeS2wsJCDBs2DJ06dcLcuXOrLfvggw86/t+1a1d069YNbdq0webNm3HbbbfVc6R1Vz7Z1rVrV8TGxuK2227DiRMn0KZNGz9G5hslJSX44osv8OKLL9ZY9lrpa7PZjAceeABCCLz33nv+Dscn3GnzuXPnMGTIENx///147LHHqq3vWjkvqmv3tGnTHP/v1q0b1Go1Jk2ahPnz50Oj0fg6VK9yp7/Pnj2L9evX4+uvv66xvobe32VrqVy6dAkffvghHnjgAezYsYPreBDV0oABAzBgwADH/eTkZHTs2BHvv/8+XnnlFT9GRuQ/SUlJSEpKctxPTk7GiRMnsHjxYnz22Wd+jKxxmTx5Mg4ePIjff//d36E0ee72hTfeMzhNz00xMTEwmUy4evWq0/YLFy4gJibG5T5lZdzdp6EqKirCkCFDEBoaim+//RYqlcqj/Vu3bo3mzZsjMzOzniKsX/379wcAl/E3pr4GgG+++QZ6vR5jxozxeN+G2NdlX9Kzs7OxYcMGpxEjMTExlRZztVgsyM/Pr/bc9vT1wNeqa3OZnJwc3HrrrUhOTsYHH3zg8TFqOi/8wZ12l9e/f39YLBacOnWqysevhb4G3G93amoqIiMjq1zYvSYNrb+Dg4PRtm1b3HDDDfj444+hVCrx8ccfA2i853VD17x5cygUCo/eC2NiYhrNe2dDUpu+qEilUqFnz54N5pxvSlydF2FhYRwV1QD069eP54UXTZkyBWvWrMGmTZtqHFHD94z65UlfVFSb9wwmo9zUu3dvqFQqbNy40bEtIyMDp0+fdsoIlteqVSvExMQ47VNYWIgdO3a43KchKiwsxODBg6FWq/H999/X6jK/Z8+exeXLlxEbG1sPEda/9PR0AHAZf2Pp6zIff/wx7rrrLkRFRXm8b0Pr67Iv6cePH8fPP/+MyMhIp8cHDBiAq1evIi0tzbHtl19+gc1mc3z5rqg2rwe+VFObAfuIqIEDB6J3795ITU2FLHv+dlDTeeFr7rS7ovT0dMiy7HI0TUPva8D9dgshkJqaijFjxnj8gwLQ8Pq7IpvNBqPRCKBxntfXArVajd69ezs9hzabDRs3bnT5HA4YMMCpPABs2LCBz3kd1aYvKrJarThw4ECDPecbM54XDVt6ejrPCy8QQmDKlCn49ttv8csvv6BVq1Y17sNzo37Upi8qqtV7Rp2WP7+GFBUVib1794q9e/cKAOL1118Xe/fudVxt6PLly2Lv3r1i7dq1AoD46quvxN69e8X58+cddTz++OOiZcuW4pdffhG7d+8WAwYMEAMGDHA6TlJSkli1apXj/oIFC0R4eLj47rvvxP79+8Xw4cNFq1atRElJyTXR7oKCAtG/f3/RtWtXkZmZKc6fP++4WSyWKttdVFQkpk+fLrZv3y6ysrLEzz//LHr16iXatWsnDAZDg29zZmamePnll8Xu3btFVlaW+O6770Tr1q3FzTff7HScxtbXZY4fPy4kSRI//vhjlcdpSH1dFoOrdptMJnHXXXeJ66+/XqSnpzv9/RqNRkcdQ4YMET179hQ7duwQv//+u2jXrp0YNWqU4/GzZ8+KpKQksWPHDsc2d14PGmqbz549K9q2bStuu+02cfbsWacyrtrs7nnRkNu9bds2sXjxYpGeni5OnDgh/vOf/4ioqCgxZswYl+0Wwr997Y12l/n5558FAHHkyJFKx2ho/V1dm3U6nZg1a5bYvn27OHXqlNi9e7cYP3680Gg04uDBg446rrXzurH46quvhEajEcuWLROHDx8WEydOFOHh4SI3N1cIIcTDDz8sZs6c6Si/detWoVQqxaJFi8SRI0fEnDlzhEqlEgcOHPBXExoNT/vipZdeEuvXrxcnTpwQaWlp4sEHHxQBAQHi0KFD/mpCo1HTZ7SZM2eKhx9+2FH+5MmTIigoSDz77LPiyJEjYsmSJUKhUIh169b5qwmNhqd9sXjxYrF69Wpx/PhxceDAAfHUU08JWZYdV2+l2nviiSeEVqsVmzdvdvr8otfrHWX4nuEbtekLb7xnNJlkVNllOSvexo4dK4SwX5qwqsfnzJnjqKOkpET87W9/E82aNRNBQUHi7rvvrvRFHoBITU113LfZbOLFF18ULVq0EBqNRtx2220iIyPDBy22q2u7Xe0PQGRlZVXZbr1eLwYPHiyioqKESqUSCQkJ4rHHHnN8+GnobT59+rS4+eabRUREhNBoNKJt27bi2WefFQUFBU7HaWx9XWbWrFkiPj5eWK3WKo/TkPpaiOrbnZWV5fLvd9OmTY46Ll++LEaNGiVCQkJEWFiYGD9+vCgqKnI8XlZP+X3ceT1oqG129bdQ/veJim1297xoyO1OS0sT/fv3F1qtVgQEBIiOHTuKf/3rX06J04bW195od5lRo0aJ5OTkKo/R0Pq7ujaXlJSIu+++W8TFxQm1Wi1iY2PFXXfdJXbu3OlUx7V2Xjcmb7/9tmjZsqVQq9WiX79+4n//+5/jsVtuucXxvlTm66+/Fu3btxdqtVp07txZrF271scRN16e9MXTTz/tKNuiRQtxxx13iD179vgh6sanps9oY8eOFbfcckulfXr06CHUarVo3bq102dOqj1P+2LhwoWiTZs2IiAgQERERIiBAweKX375xT/BNzKuPr+U/1vne4Zv1KYvvPGeIZUenIiIiIiIiIiIqN5xzSgiIiIiIiIiIvIZJqOIiIiIiIiIiMhnmIwiIiIiIiIiIiKfYTKKiIiIiIiIiIh8hskoIiIiIiIiIiLyGSajiIiIiIiIiIjIZ5iMIiIiIiIiIiIin2EyioiIiIiIiIiIfIbJKCIiIiIialTmzp2LFi1aQJIkrF692t/hNAiXL19GdHQ0Tp065e9QPHbq1ClIkoT09HSv152YmIg33ngDAGAymZCYmIjdu3dXu8/mzZshSRKuXr3q9Xi8beDAgXj66af9HQY1IL/99hvuvPNOxMXF1eo1cu7cuZAkqdItODjYo3qYjCKiJmncuHGOF06VSoVWrVrhueeew9KlS6t8cS1/uxY/xBEREdWn8u+rkiQhMjISQ4YMwf79+712jLlz56JHjx41ljty5AheeuklvP/++zh//jyGDh3qtRgamnHjxmHEiBFulZ03bx6GDx+OxMTEeo2prjxpk7ep1WpMnz4dM2bMqLZccnIyzp8/D61W63bd/mrXqlWr8Morrzjul0++UdNUXFyM7t27Y8mSJbXaf/r06Th//rzTrVOnTrj//vs9qofJKCJqsoYMGYLz58/j5MmTWLx4Md5//31kZWU5vbAOGDAAjz32mNO2+Ph4f4dORETU4JS9r54/fx4bN26EUqnEX/7yF5/HceLECQDA8OHDERMTA41GU6mMyWTydVh+pdfr8fHHH2PChAn+DqXBGz16NH7//XccOnTIZRm1Wo2YmBhIkuTDyGonIiICoaGh/g6DGpChQ4fin//8J+6+++4qHzcajZg+fTquu+46BAcHo3///ti8ebPj8ZCQEMTExDhuFy5cwOHDhz1+fWEyioiaLI1Gg5iYGMTHx2PEiBEYNGgQNmzY4PTiqlarERQU5LRNoVD4O3QiIqIGp+x9NSYmBj169MDMmTNx5swZXLx40VHmzJkzeOCBBxAeHo6IiAgMHz7cacTx5s2b0a9fPwQHByM8PBw33ngjsrOzsWzZMrz00kvYt2+fY/TVsmXLKsUwd+5c3HnnnQAAWZYdyYKyUSnz5s1DXFwckpKSAACfffYZ+vTpg9DQUMTExOChhx5CXl6eU53ff/892rVrh4CAANx6661Yvny50xStZcuWITw8HGvWrEFSUhKCgoJw3333Qa/XY/ny5UhMTESzZs0wdepUWK1WR701feErq3f9+vXo2LEjQkJCHAm/srYuX74c3333neM5Kb9/eT/88AM0Gg1uuOEGx7YrV65g9OjRiIqKQmBgINq1a4fU1FQAf0yL+/rrr3HTTTchMDAQffv2xbFjx7Br1y706dMHISEhGDp0qFP/2mw2vPzyy7j++uuh0WjQo0cPrFu3zimWAwcO4M9//jMCAwMRGRmJiRMnQqfTudWmkydP4tZbb0VQUBC6d++O7du3O9X9+++/O+KNj4/H1KlTUVxc7Hg8Ly8Pd955JwIDA9GqVSt8/vnnlZ6rZs2a4cYbb8RXX31V5XMJVJ6mV5e+qumcKPvbXbRoEWJjYxEZGYnJkyfDbDY7yrz77ruOv9EWLVrgvvvuczxWfprewIEDkZ2djWeeecYRR3FxMcLCwvDNN984tXH16tUIDg5GUVGRy+eBGqcpU6Zg+/bt+Oqrr7B//37cf//9GDJkCI4fP15l+Y8++gjt27fHTTfd5NFxmIwiIgJw8OBBbNu2DWq12t+hEBERXfN0Oh3+85//oG3btoiMjAQAmM1mpKSkIDQ0FFu2bMHWrVsdX9pNJhMsFgtGjBiBW265Bfv378f27dsxceJESJKEkSNH4u9//zs6d+7sGH01cuTISsedPn26I6FSVq7Mxo0bkZGRgQ0bNmDNmjWOmF555RXs27cPq1evxqlTpzBu3DjHPllZWbjvvvswYsQI7Nu3D5MmTcILL7xQ6bh6vR5vvfUWvvrqK6xbtw6bN2/G3XffjR9++AE//PADPvvsM7z//vtOX/jd+cKn1+uxaNEifPbZZ/jtt99w+vRpTJ8+3dHWBx54wGlEWnJycpX9sWXLFvTu3dtp24svvojDhw/jxx9/xJEjR/Dee++hefPmTmXmzJmDf/zjH9izZw+USiUeeughPPfcc3jzzTexZcsWZGZmYvbs2Y7yb775Jv79739j0aJF2L9/P1JSUnDXXXc52lRcXIyUlBQ0a9YMu3btwsqVK/Hzzz9jypQpbrXphRdewPTp05Geno727dtj1KhRsFgsAOwj4oYMGYJ7770X+/fvx4oVK/D777876gbsiZ0zZ85g06ZN+Oabb/Duu+9WSj4CQL9+/bBly5Yqn0tXatNXNZ0TZTZt2oQTJ05g06ZNWL58OZYtW+ZIxu7evRtTp07Fyy+/jIyMDKxbtw4333xzlTGuWrUK119/PV5++WVHHMHBwXjwwQcd502Z1NRU3HfffRxV1cScPn0aqampWLlyJW666Sa0adMG06dPx5/+9KdKfyMAYDAY8Pnnn9du1KUgImqCxo4dKxQKhQgODhYajUYAELIsi2+++cap3C233CKeeuop/wRJRER0jSj/vhocHCwAiNjYWJGWluYo89lnn4mkpCRhs9kc24xGowgMDBTr168Xly9fFgDE5s2bqzzGnDlzRPfu3WuM5dtvvxUVv+aMHTtWtGjRQhiNxmr33bVrlwAgioqKhBBCzJgxQ3Tp0sWpzAsvvCAAiCtXrgghhEhNTRUARGZmpqPMpEmTRFBQkKMeIYRISUkRkyZNEkIIkZ2dLRQKhTh37pxT3bfddpuYNWuWy3qXLFkiWrRo4dSu4cOHV9smIYQYPny4eOSRR5y23XnnnWL8+PFVls/KyhIAxEcffeTY9uWXXwoAYuPGjY5t8+fPF0lJSY77cXFxYt68eU519e3bV/ztb38TQgjxwQcfiGbNmgmdTud4fO3atUKWZZGbm+uyTVXFc+jQIQFAHDlyRAghxIQJE8TEiROd9tuyZYuQZVmUlJSIjIwMAUDs3LnT8fiRI0cEALF48WKn/d58802RmJhY5XMjhBCbNm2q8W/Anb6q6Zwo2y8hIUFYLBZHmfvvv1+MHDlSCCHEf//7XxEWFiYKCwurjLXiZ9mEhIRK7d2xY4dQKBQiJydHCCHEhQsXhFKpdHkuUuMBQHz77beO+2vWrBEAHK/lZTelUikeeOCBSvt/8cUXQqlUOs5fTyg9T18RETUOt956K9577z0UFxdj8eLFUCqVuPfee/0dFhER0TWp7H0VsE8Be/fddzF06FDs3LkTCQkJ2LdvHzIzMyuNtDAYDDhx4gQGDx6McePGISUlBbfffjsGDRqEBx54ALGxsV6Jr2vXrpVGQKelpWHu3LnYt28frly5ApvNBsA+OqBTp07IyMhA3759nfbp169fpbqDgoLQpk0bx/0WLVogMTERISEhTtvKRuEcOHAAVqsV7du3d6rHaDQ6RpJVVW9sbGyVI3lqUlJSgoCAAKdtTzzxBO69917s2bMHgwcPxogRIyqNrOrWrZtT/ID9eayqTYWFhcjJycGNN97oVMeNN96Iffv2AbAvLt+9e3enq27deOONsNlsyMjIcBzDlfLxlP1d5OXloUOHDti3bx/279/vNPVOCAGbzYasrCwcO3YMSqXSaYRYhw4dEB4eXuk4gYGB0Ov11cZSUW36qqZzokznzp2dlomIjY3FgQMHAAC33347EhIS0Lp1awwZMgRDhgzB3XffjaCgILdj79evHzp37ozly5dj5syZ+M9//oOEhASXI6yo8dLpdFAoFEhLS6u0NEn517MyH330Ef7yl7/UeO5WhckoImqygoOD0bZtWwDAJ598gu7du3NxTyIioloq/74K2L+kaLVafPjhh/jnP/8JnU6H3r17V7lOT1RUFAD71KCpU6di3bp1WLFiBf7xj39gw4YNTmsd1SW+8sqmjKWkpODzzz9HVFQUTp8+jZSUFI8XOFepVE73y67WW3FbWbLL3S98VdVhH8zgmebNm+PKlStO24YOHYrs7Gz88MMP2LBhA2677TZMnjwZixYtqvL4ZetvVdxW1iZfqCqe8s/ppEmTMHXq1Er7tWzZEseOHXP7OPn5+Y6/ydrEVhZfTX3lzjnhqu6ydoeGhmLPnj3YvHkzfvrpJ8yePRtz587Frl27qky0ufLoo49iyZIlmDlzJlJTUzF+/PhrYoF28q6ePXvCarUiLy+vxjWgsrKysGnTJnz//fe1OhbXjCIign2R0+effx7/+Mc/UFJS4u9wiIiIrnmSJEGWZcf7aq9evXD8+HFER0ejbdu2TjetVuvYr2fPnpg1axa2bduGLl264IsvvgBgv4JZ+QXA6+ro0aO4fPkyFixYgJtuugkdOnSoNJIlKSkJu3fvdtq2a9euOh+7/Be+is9FTEyM2/W4+5z07NkThw8frrQ9KioKY8eOxX/+8x+88cYb+OCDDzxqR3lhYWGIi4vD1q1bnbZv3boVnTp1AgB07NgR+/btc1pUfOvWrZBl2bGofG37uVevXjh8+HCl57Nt27ZQq9Xo0KEDLBYL0tLSHPtkZGQ4FiEv7+DBg+jZs6fHMVSnqna5e07URKlUYtCgQXj11Vexf/9+nDp1Cr/88ovbcQDAX//6V2RnZ+Ott97C4cOHMXbsWM8aSNcMnU6H9PR0pKenA7AnldLT03H69Gm0b98eo0ePxpgxY7Bq1SpkZWVh586dmD9/PtauXetUzyeffILY2FgMHTq0VnEwGUVEVOr++++HQqHAkiVL/B0KERHRNcdoNCI3Nxe5ubk4cuQInnzySeh0OsfV7UaPHo3mzZtj+PDh2LJlC7KysrB582ZMnToVZ8+eRVZWFmbNmoXt27cjOzsbP/30E44fP46OHTsCABITEx1fmi5dugSj0VineFu2bAm1Wo23334bJ0+exPfff49XXnnFqcykSZNw9OhRzJgxA8eOHcPXX3/tWDi6LqNGPPnCV53ExETs378fGRkZuHTpktMV1spLSUnBoUOHnEZHzZ49G9999x0yMzNx6NAhrFmzxvFc19azzz6LhQsXYsWKFcjIyMDMmTORnp6Op556CoD9byAgIABjx47FwYMHsWnTJjz55JN4+OGHHdN83G1TRTNmzMC2bdswZcoUpKen4/jx4/juu+8cC5gnJSVhyJAhmDRpEnbs2IG0tDQ8+uijCAwMrFTXli1bMHjw4Do9FxVV1a6azgl3rFmzBm+99RbS09ORnZ2NTz/9FDabzZHcqyqO3377DefOncOlS5cc25s1a4Z77rkHzz77LAYPHozrr7/eK+2mhmf37t3o2bOnI+E6bdo09OzZ03ExgtTUVIwZMwZ///vfkZSUhBEjRmDXrl1o2bKlow6bzYZly5Zh3Lhxtb7SOJNRRESllEolpkyZgldffdXpFzsiIiKq2bp16xAbG4vY2Fj079/fcbW0gQMHArCvqfPbb7+hZcuWuOeee9CxY0dMmDABBoMBYWFhCAoKwtGjR3Hvvfeiffv2mDhxIiZPnoxJkyYBAO69914MGTIEt956K6KiovDll1/WKd6oqCgsW7YMK1euRKdOnbBgwQKnKWoA0KpVK3zzzTdYtWoVunXrhvfee89xNT2NRlOn47vzha8mjz32GJKSktCnTx9ERUVVGpVUpmvXrujVqxe+/vprxza1Wo1Zs2ahW7duuPnmm6FQKPDVV1/VqU1Tp07FtGnT8Pe//x1du3bFunXr8P3336Ndu3YA7H8D69evR35+Pvr27Yv77rsPt912G9555x2P21RRt27d8Ouvv+LYsWO46aabHF+u4+LiHGVSU1MRFxeHW265Bffccw8mTpyI6Ohop3q2b9+OgoIC3HfffXV6Liqqql01nRPuCA8Px6pVq/DnP/8ZHTt2xNKlS/Hll1+ic+fOVZZ/+eWXcerUKbRp06bSVMQJEybAZDLhkUceqXN7qeEaOHAghBCVbmWJdpVKhZdeeglZWVkwmUzIycnBqlWrnNaLk2UZZ86cwbx582odhyRqM+mYiIiIiIioCZo3bx6WLl2KM2fO+DsUj6xduxbPPvssDh48CFnmmARXRo4cie7du+P555/3dyg+99lnn+GZZ55BTk5OpcX+ibyNC5gTERERERG58O6776Jv376IjIzE1q1b8dprrzmmfl1Lhg0bhuPHj+PcuXOIj4/3dzgNkslkQteuXfHMM8/4OxSf0uv1OH/+PBYsWIBJkyYxEUU+wZFRRERERERELjzzzDNYsWIF8vPz0bJlSzz88MOYNWsWlEr+rk+Nw9y5czFv3jzcfPPN+O6775yu6EhUX5iMIiIiIiIiIiIin+FkYSIiIiIiIiIi8hkmo4iIiIiIiIiIyGeYjCIiIiIiIiIiIp9hMoqIiIiIiIiIiHyGySgiIiIiIiIiIvIZJqOIiIiIiIiIiMhnmIwiIiIiIiIiIiKfYTKKiIiIiIiIiIh8hskoIiIiIiIiIiLymf8H6n3GjE1evw0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGGCAYAAACHemKmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlZNJREFUeJzs3XlcVNX7B/DPzAAz7KAOm7KJCoImheFSYRoCSq6Vmpa4lJmWC31V/CquGW65fN1Sc+lnmkvikrkRZrnliiaKK+6yuAKibDPn9wcxObII48CAfN6vFy+dc8+995mHGXg4c869EiGEABERERFRFSM1dABERERERLpgIUtEREREVRILWSIiIiKqkljIEhEREVGVxEKWiIiIiKokFrJEREREVCWxkCUiIiKiKomFLBERERFVSSxkiYiIiKhKYiFLRC+Fq1evQiKRYOXKlXo9rpubG/r06aPXYxLRi1u1ahW8vLxgbGwMGxsbQ4dDBsJCll4qK1euhEQigUQiwf79+wttF0LA2dkZEokE7777rta2R48eYfz48WjUqBHMzc1Rs2ZN+Pr6YujQobh9+7amX1JSEiIiItC6dWtYWlpCIpFg7969OsU7YcIESCQSSKVS3Lhxo9D29PR0mJqaQiKR4IsvvtDadufOHQwdOhReXl4wNTWFnZ0d/P39MWrUKDx69EjTLzo6Gt27d0fdunVhZmYGT09PfPXVV3j48KFOMb+MDh48iAkTJlT7nOzdu1fz/vnxxx+L7PPGG29AIpGgUaNGWu05OTmYO3cuXn31VVhZWcHGxgY+Pj4YMGAAzp07p+lX8D4LCQlBjRo1yuWPD3r5nTt3Dn369IGHhweWLl2KJUuW6P0c27dvx4QJE/R+XNIvI0MHQFQeFAoF1qxZgzfffFOr/Y8//sDNmzchl8u12nNzcxEQEIBz584hLCwMX375JR49eoQzZ85gzZo16NKlC5ycnAAA58+fx7Rp01C/fn00btwYhw4deuF45XI5fvrpJ4wcOVKrPTo6usj+9+/fR9OmTZGeno5+/frBy8sL9+7dw99//41Fixbh888/h4WFBQBgwIABcHJywkcffQQXFxecPn0a8+fPx/bt23HixAmYmpq+cPxV3cGDBzFx4kT06dOn0MjO+fPnIZVWr7/5C94/H330kVb71atXcfDgQSgUikL7vPfee9ixYwc+/PBDfPrpp8jNzcW5c+ewbds2tGzZEl5eXgCAu3fvYtKkSXBxcUGTJk10/iOQqre9e/dCrVZj7ty5qFevXrmcY/v27ViwYAGL2UqOhSy9lNq3b48NGzbgf//7H4yM/n2Zr1mzBn5+frh7965W/82bNyMuLg6rV69Gz549tbZlZWUhJydH89jPzw/37t1DjRo18PPPP+ODDz7QS7xFFbJr1qxBaGgoNm7cqNW+bNkyXL9+HQcOHEDLli21tqWnp8PExETz+Oeff8bbb7+t1cfPzw9hYWFYvXo1PvnkkxeO/0VkZmbC3Ny8ULtarUZOTk6RRVNFevaPnuqgffv22Lp1K+7evYtatWpp2tesWQN7e3vUr18fDx480LQfPXoU27Ztw5QpU/Df//5X61jz58/XGul2dHREUlISHBwccOzYMbz++uvl/nzoxVSW9+LTUlNTAaDKTSmojLms6qrXMANVGx9++CHu3buHmJgYTVtOTg5+/vnnQoUqAFy+fBlA/semz1IoFLCystI8trS0RI0aNfQab8+ePXHy5Emtj2CTk5OxZ8+eYuOVyWRo3rx5oW1WVlZaPySfLWIBoEuXLgCAhISEUsW3Y8cOtGrVCpaWlrCyssLrr7+ONWvWaPXZsGED/Pz8YGpqilq1auGjjz7CrVu3tPr06dMHFhYWuHz5Mtq3bw9LS0v06tULADTTJ1avXg0fHx/I5XLs3LkTAHDr1i3069cP9vb2kMvl8PHxwfLly58b999//40+ffqgbt26UCgUcHBwQL9+/XDv3j1NnwkTJmDEiBEAAHd3d81H61evXgVQ9BzZxMREfPDBB6hRowbMzMzQvHlz/Prrr1p9Cj6mX79+PaZMmYI6depAoVDgnXfewaVLl0qM++eff4ZEIsEff/xRaNvixYshkUgQHx8PIP910rdvX9SpUwdyuRyOjo7o1KmTJn5ddOrUCXK5HBs2bNBqX7NmDbp16waZTKbVXtL7RyaToWbNmprHcrkcDg4OOsdW8Bq6fv063n33XVhYWKB27dpYsGABAOD06dNo06YNzM3N4erqWuh1ev/+ffznP/9B48aNYWFhASsrK7Rr1w6nTp0qdK558+bBx8cHZmZmsLW1RdOmTbWOl5GRgWHDhsHNzQ1yuRx2dnZo27YtTpw48dznsWXLFoSGhsLJyQlyuRweHh6YPHkyVCpVob6HDx9G+/btYWtrC3Nzc7zyyiuYO3euVp9z586hW7duUCqVMDU1haenJ8aMGaOVNzc3t0LHLpje9LSS3oszZ85Ey5YtUbNmTZiamsLPzw8///xzkc/xxx9/hL+/vyZ/AQEB2L17NwAgLCwMtWrVQm5ubqH9goKC4OnpWWzu3NzcMH78eACAUqmERCLRjJrqK699+vTRvKYKfiY8nafMzEx89dVXcHZ2hlwuh6enJ2bOnAkhRKlzSfrBQpZeSm5ubmjRogV++uknTduOHTuQlpaGHj16FOrv6uoKAPi///u/Qj+IKkJAQADq1Kmj9Uty3bp1sLCwQGhoaKH+rq6uUKlUWLVqlU7nS05OBgCt0bbirFy5EqGhobh//z5Gjx6NqVOnwtfXV+uH8cqVKzUFTlRUFD799FNER0fjzTffLDTvNC8vD8HBwbCzs8PMmTPx3nvvabbt2bMHw4cPR/fu3TF37ly4ubkhJSUFzZs3x2+//YYvvvhC81Fi//79MWfOnBJjj4mJQWJiIvr27Yt58+ahR48eWLt2Ldq3b6/5Pnft2hUffvghAGD27NlYtWoVVq1aBaVSWeQxU1JS0LJlS+zatQuDBg3ClClTkJWVhY4dO2LTpk2F+k+dOhWbNm3Cf/7zH4wePRp//fWXpngvTmhoKCwsLLB+/fpC29atWwcfHx/NHNX33nsPmzZtQt++fbFw4UIMGTIEGRkZuH79eonnKImZmRk6deqk9f45deoUzpw5U+QfVgXvn9WrVyMvL0/n85aWSqVCu3bt4OzsjOnTp8PNzQ1ffPEFVq5ciZCQEDRt2hTTpk2DpaUlevfujStXrmj2TUxMxObNm/Huu+9i1qxZGDFiBE6fPo1WrVppzYVfunQphgwZAm9vb8yZMwcTJ06Er68vDh8+rOkzcOBALFq0CO+99x4WLlyI//znPzA1NS3VH4grV66EhYUFwsPDMXfuXPj5+WHcuHGIiIjQ6hcTE4OAgACcPXsWQ4cOxbfffovWrVtj27Ztmj5///03mjVrhj179uDTTz/F3Llz0blzZ/zyyy8657io9yIAzTzoSZMm4ZtvvoGRkRE++OCDQn/ITZw4ER9//DGMjY0xadIkTJw4Ec7OztizZw8A4OOPP8a9e/ewa9curf0K/oB/dlrL0+bMmaP5Y3zRokVYtWoVunbtCkB/ef3ss8/Qtm1bAND8TCj4eSuEQMeOHTF79myEhIRg1qxZ8PT0xIgRIxAeHl7qXJKeCKKXyIoVKwQAcfToUTF//nxhaWkpHj9+LIQQ4oMPPhCtW7cWQgjh6uoqQkNDNfs9fvxYeHp6CgDC1dVV9OnTRyxbtkykpKSUeL4NGzYIAOL333/XKd7x48cLAOLOnTviP//5j6hXr55m2+uvvy769u0rhBACgBg8eLBmW3JyslAqlQKA8PLyEgMHDhRr1qwRDx8+LNV5+/fvL2Qymbhw4UKJ/R4+fCgsLS1Fs2bNxJMnT7S2qdVqIYQQOTk5ws7OTjRq1Eirz7Zt2wQAMW7cOE1bWFiYACAiIiIKnQuAkEql4syZM4VidXR0FHfv3tVq79Gjh7C2ttZ8f69cuSIAiBUrVmj6FGx72k8//SQAiD///FPTNmPGDAFAXLlypVB/V1dXERYWpnk8bNgwAUDs27dP05aRkSHc3d2Fm5ubUKlUQgghfv/9dwFANGzYUGRnZ2v6zp07VwAQp0+fLnSup3344YfCzs5O5OXladqSkpKEVCoVkyZNEkII8eDBAwFAzJgxo8RjlVZBzBs2bBDbtm0TEolEXL9+XQghxIgRI0TdunWFEEK0atVK+Pj4aPZTq9WiVatWAoCwt7cXH374oViwYIG4du1aiec7evRooe/Z8xS8hr755htN24MHD4SpqamQSCRi7dq1mvZz584JAGL8+PGatqysLM33qMCVK1eEXC7X5FUIITp16qT1HItibW2t9b4si6Jem5999pkwMzMTWVlZQggh8vLyhLu7u3B1dRUPHjzQ6lvw/hNCiICAAGFpaVko30/3CQsLE66uroXOWfAz6GnFvReLijsnJ0c0atRItGnTRtN28eJFIZVKRZcuXQrluiAmlUol6tSpI7p37661fdasWUIikYjExMRC5y4q7jt37pQYnxC653Xw4MGFciOEEJs3bxYAxNdff63V/v777wuJRCIuXbqkaSspl6QfHJGll1a3bt3w5MkTbNu2DRkZGdi2bVuRo0kAYGpqisOHD2s+Yl65ciX69+8PR0dHfPnll8jOzi73eHv27IlLly7h6NGjmn+Li9fe3h6nTp3CwIED8eDBA3z33Xfo2bMn7OzsMHny5BJHldesWYNly5bhq6++Qv369UuMKSYmBhkZGYiIiCg0p6vgY7Zjx44hNTUVgwYN0uoTGhoKLy+vQiM1APD5558Xeb5WrVrB29tb81gIgY0bN6JDhw4QQuDu3buar+DgYKSlpZX4Me7TC9mysrJw9+5dzXSM0nz8W5Tt27fD399fayGhhYUFBgwYgKtXr+Ls2bNa/fv27as1Z/mtt94CkD8yWJLu3bsjNTVVazHUzz//DLVaje7du2uen4mJCfbu3as1Z1UfgoKCUKNGDaxduxZCCKxdu1Yzcv0siUSCXbt24euvv4atrS1++uknDB48GK6urujevXu5XA3i6bndNjY28PT0hLm5Obp166Zp9/T0hI2NjVau5XK5ZvGeSqXCvXv3YGFhAU9PT63XhI2NDW7evImjR48WG4ONjQ0OHz6sNZJbWk+/NjMyMnD37l289dZbePz4sWaKUVxcHK5cuYJhw4YVmgta8P67c+cO/vzzT/Tr1w8uLi5F9tHFs+/FouJ+8OAB0tLS8NZbb2nlbvPmzVCr1Rg3blyhhZIFMUmlUvTq1Qtbt25FRkaGZvvq1avRsmVLuLu76xS3vvJaku3bt0Mmk2HIkCFa7V999RWEENixY4dWe3G5JP1gIUsvLaVSicDAQKxZswbR0dFQqVR4//33i+1vbW2N6dOn4+rVq7h69SqWLVsGT09PzJ8/H5MnTy7z+e/fv4/k5OQiv4ry6quvwsvLC2vWrMHq1avh4OCANm3aFHt8R0dHLFq0CElJSTh//jz+97//QalUYty4cVi2bFmR++zbtw/9+/dHcHAwpkyZ8tznUDD38dlLLT3t2rVrAFDknDYvLy/N9gJGRkaoU6dOkcd69pfXnTt38PDhQyxZsgRKpVLrq2/fvgD+XfRRlPv372Po0KGwt7eHqakplEql5hxpaWnF7leSa9euFflcGzZsqNn+tGeLC1tbWwB4buEZEhICa2trrFu3TtO2bt06+Pr6okGDBgDyi7Jp06Zhx44dsLe3R0BAAKZPn17sa6wsjI2N8cEHH2DNmjX4888/cePGjWL/sCqIZcyYMUhISMDt27fx008/oXnz5li/fn2hS8e9KIVCUWjqh7W1NerUqVOoELG2ttbKtVqtxuzZs1G/fn3I5XLUqlULSqUSf//9t9ZrYtSoUbCwsIC/vz/q16+PwYMH48CBA1rHnj59OuLj4+Hs7Ax/f39MmDBBq2h+9OiR1vv+zp07mm1nzpxBly5dYG1tDSsrKyiVSs3H6QVxlOb9V3C+kvroorhCctu2bWjevDkUCgVq1KgBpVKJRYsWaeXu8uXLkEqlzy3eevfujSdPnmim5Jw/fx7Hjx/Hxx9/rHPc+sprSa5duwYnJydYWlpqtRf3M0DXopxKh4UsvdR69uyJHTt24LvvvkO7du1KvcLV1dUV/fr1w4EDB2BjY4PVq1eX+dxdu3aFo6NjkV8lxbtu3TqsWbMG3bt3L9VlnyQSCRo0aIAvv/wSf/75J6RSaZHxnjp1Ch07dkSjRo3w888/a13NoSI9PSL2rGcvBaZWqwEAH330EWJiYor8KmqBUYFu3bph6dKlGDhwIKKjo7F7927N3N6CY5e3ZxdGFShp1BzIz1Pnzp2xadMm5OXl4datWzhw4IBmNLbAsGHDcOHCBURFRUGhUCAyMhINGzZEXFzcC8desAhxwoQJaNKkSalHlRwdHdGjRw/8+eefqF+/PtavX6/XubPF5bQ0uf7mm28QHh6OgIAA/Pjjj9i1axdiYmLg4+Oj9Zpo2LAhzp8/j7Vr1+LNN9/Exo0b8eabb2oWGQH5r6/ExETMmzcPTk5OmDFjBnx8fDQjcjNnztR63xdcoeHhw4do1aoVTp06hUmTJuGXX35BTEwMpk2bBqB8XpvFjTQWtQgKKPxeBPL/EO7YsSMUCgUWLlyI7du3IyYmBj179tRpbYG3tzf8/Pw01yz+8ccfYWJiojWqXhaGyGtp8BKH5YuX36KXWpcuXfDZZ5/hr7/+0hrZKi1bW1t4eHhoVoiXxbffflvmj3t79uyJcePGISkpSaeFXHXr1oWtrS2SkpK02i9fvoyQkBDY2dlh+/btmmvMPo+HhwcAID4+vthrNRYs9Dl//nyhEeTz589rtutCqVTC0tISKpUKgYGBZdr3wYMHiI2NxcSJEzFu3DhN+8WLFwv1LctHsK6urjh//nyh9oKPLV/k+T6re/fu+OGHHxAbG4uEhAQIIQoVskD+9+mrr77CV199hYsXL8LX1xfffvttsTc1KK0333wTLi4u2Lt3r6YYKAtjY2O88soruHjxIu7evftCVyvQl59//hmtW7cu9KnFw4cPCy1+NDc3R/fu3dG9e3fk5OSga9eumDJlCkaPHq2ZRuPo6IhBgwZh0KBBSE1NxWuvvYYpU6agXbt26N27t9YUlIKCZu/evbh37x6io6MREBCg2f70ojRA+/1X3Ou/bt26mj4lsbW1LXKKx7OjhyXZuHEjFAoFdu3apXVZuhUrVhSKW61W4+zZs/D19S3xmL1790Z4eDiSkpI0lxss+NSirPSZV6D4nwuurq747bffkJGRoTUqWx4/A+j5OCJLLzULCwssWrQIEyZMQIcOHYrtd+rUqULXlgXyf8ifPXu2xEvBFMfPzw+BgYFFfhXHw8MDc+bMQVRUFPz9/Yvtd/jwYWRmZhZqP3LkCO7du6cVb3JyMoKCgiCVSrFr165iV+MXJSgoCJaWloiKikJWVpbWtoIRmKZNm8LOzg7fffed1lziHTt2ICEhocirLpSWTCbDe++9h40bNxb5i/rpj2qL2vfpOAsUdaWDguvYlmYuZ/v27XHkyBGtG2FkZmZiyZIlcHNz0+tcuMDAQNSoUQPr1q3DunXr4O/vr/Ux5ePHjwt9Xzw8PGBpaan1vUhKSsK5c+eKvNRRSSQSCf73v/9h/PjxJX7ce/HixSKvkvDw4UMcOnQItra2ZXrdlSeZTFboNbFhw4ZCl4p7+hJtAGBiYgJvb28IIZCbmwuVSlVoeoqdnR2cnJw0ua9bt67W+77g04OiXps5OTlYuHCh1vFee+01uLu7Y86cOYVemwX7KpVKBAQEYPny5YW+B08f38PDA2lpafj77781bUlJSUVeaaM4MpkMEolEaxT36tWr2Lx5s1a/zp07QyqVYtKkSYVGQZ/N/YcffgiJRIKhQ4ciMTGxxKsVlCa+Z8+ha16B4n8utG/fHiqVCvPnz9dqnz17NiQSCdq1a6fzc6Cy44gsvfTCwsKe2ycmJgbjx49Hx44d0bx5c1hYWCAxMRHLly9HdnZ2oTu7fP311wDy52MB+ZdnKbgl7tixY18o3qFDhz63z6pVq7B69Wp06dIFfn5+MDExQUJCApYvXw6FQqF1UfqQkBAkJiZi5MiR2L9/v9ate+3t7TWXmCmKlZUVZs+ejU8++QSvv/46evbsCVtbW5w6dQqPHz/GDz/8AGNjY0ybNg19+/ZFq1at8OGHHyIlJUVzmZnhw4e/UD6mTp2K33//Hc2aNcOnn34Kb29v3L9/HydOnMBvv/2G+/fvFxt7wZzR3Nxc1K5dG7t37y40OgPk/9EBAGPGjEGPHj1gbGyMDh06FHmjhoiICPz0009o164dhgwZgho1auCHH37AlStXsHHjRr3eBczY2Bhdu3bF2rVrkZmZiZkzZ2ptv3DhAt555x1069YN3t7eMDIywqZNm5CSkqJ1mbnRo0drYizrpX86deqETp06ldjn1KlT6NmzJ9q1a4e33noLNWrUwK1bt/DDDz/g9u3bmDNnjtbH/gU3SShYJPXLL7/g5s2bAIAvv/wS1tbWZYqxLN59911MmjQJffv2RcuWLXH69GmsXr1aM7JZICgoCA4ODnjjjTdgb2+PhIQEzJ8/H6GhobC0tMTDhw9Rp04dvP/++2jSpAksLCzw22+/4ejRo/j2229LjKFly5awtbVFWFgYhgwZAolEglWrVhUq8qRSKRYtWoQOHTrA19cXffv2haOjI86dO4czZ85oLl31v//9D2+++SZee+01DBgwAO7u7rh69Sp+/fVXnDx5EgDQo0cPjBo1Cl26dMGQIUPw+PFjLFq0CA0aNCj1wsfQ0FDMmjULISEh6NmzJ1JTU7FgwQLUq1dPq0CuV68exowZg8mTJ+Ott95C165dIZfLcfToUTg5OSEqKkrTV6lUIiQkBBs2bICNjc0L/eGr77wW/FwYMmQIgoODIZPJ0KNHD3To0AGtW7fGmDFjcPXqVTRp0gS7d+/Gli1bMGzYMM2IL1WQCr1GAlE5e/ryWyV59vJbiYmJYty4caJ58+bCzs5OGBkZCaVSKUJDQ8WePXsK7Q+g2K+yKO4SMkWd7+nL/Pz9999ixIgR4rXXXhM1atQQRkZGwtHRUXzwwQfixIkTpY61VatWpYpz69atomXLlsLU1FRYWVkJf39/8dNPP2n1WbdunXj11VeFXC4XNWrUEL169RI3b97U6hMWFibMzc1L9RyflpKSIgYPHiycnZ2FsbGxcHBwEO+8845YsmSJpk9Rl9+6efOm6NKli7CxsRHW1tbigw8+ELdv3y50SSYhhJg8ebKoXbu2kEqlWpfievbyW0IIcfnyZfH+++8LGxsboVAohL+/v9i2bZtWn6cvZfW0ouIsSUxMjAAgJBKJuHHjhta2u3fvisGDBwsvLy9hbm4urK2tRbNmzcT69eu1+hVcsqqoy4uVJuZnPXv5rZSUFDF16lTRqlUr4ejoKIyMjIStra1o06aN+Pnnnwvt7+rqWuxr8nkxFvcaejamp8/19Hs9KytLfPXVV8LR0VGYmpqKN954Qxw6dEi0atVK6/2wePFiERAQIGrWrCnkcrnw8PAQI0aMEGlpaUIIIbKzs8WIESNEkyZNhKWlpTA3NxdNmjQRCxcuLDH+AgcOHBDNmzcXpqamwsnJSYwcOVLs2rWryMv57d+/X7Rt21ZznldeeUXMmzdPq098fLzmta5QKISnp6eIjIzU6rN7927RqFEjYWJiIjw9PcWPP/5Y7OW3insvLlu2TNSvX1/I5XLh5eUlVqxYUeQxhBBi+fLlmp8Jtra2olWrViImJqZQv/Xr1wsAYsCAAaVJnRCi+J+d+sxrXl6e+PLLL4VSqRQSiUTrOWZkZIjhw4cLJycnYWxsLOrXry9mzJihdfkuIUrOJemHRAgDXP2diIiICPl34+rcuTP+/PNPzeXpiEqLhSwREREZzLvvvouEhARcunTpha59S9UT58gSERFRhVu7di3+/vtv/Prrr5g7dy6LWNIJR2SJiIiowkkkElhYWKB79+747rvvDHZta6ra+KohIiKiCsdxNNIHXkeWiIiIiKokFrJEREREVCVxakElp1arcfv2bVhaWnIiPBEREb30hBDIyMiAk5PTc28yw0K2krt9+zacnZ0NHQYRERFRhbpx4wbq1KlTYh8WspWcpaUlgPxvppWVVbmeS61W486dO1AqlXq9zWZVwhwwBwBzUIB5YA4A5qAA81BxOUhPT4ezs7OmBioJC9lKrmA6gZWVVYUUsllZWbCysqrWb1LmgDlgDvIxD8wBwBwUYB4qPgelmVJZPb8TRERERFTlsZAlIiIioiqJhSwRERERVUksZImIiIioSmIhS0RERERVEgtZIiIiIqqSWMgSERERUYlUaoG/Eu9h97n7+CvxHlRqYeiQAPA6skRERERUgp3xSZj4y1kkpWX903IFjtYKjO/gjZBGjgaNjSOyRERERFSknfFJ+PzHE08VsfmS07Lw+Y8nsDM+yUCR5WMhS0RERESFqNQCE385i6ImERS0TfzlrEGnGXBqAREREVE5EkIgTy2gUgvkqtRQqfMf56kE8tTqf/7V/r9Kq10gT6UutI/mOJq+T/fJ30dV5P5P9y0+nodPcgqNxGo9LwBJaVk4cuU+WnjUrLiEPoWFLBERERmM6pkCrqCwylULqAoVZyUUcwWFWhEFYLHF3FP7qLSKvKf7/vvvk+wcSGWXi4yncJGq1hyrsiyMKi+pGcUXu+WNhSwRVSoqtcCRK/eRmpEFO0sF/N1rQCaVGDosogpXMIr33FG7ogoz1bP9Sh610/R5qvgq6JurUuNR5mMYmyRDJUqOp9BIYhGjgCqVQK7634JPvNw1XomMpBIYySQwkkr/+VcCmVT7sdb/ZdJ/tuf/30jz/3/6/fN/2VP/1+6rfR7joo731HkvpmZg2s7zz30edpaKCshW0VjIElGlUXhlLCrNyliqPIR4+iPVZ0btnlfMlTBqV6iPSiBXpcLD9EdQmKblF3Ga8xUeRXy6YFMVO4pYzAhhEf9/yQfxSiSV4JlC7d//y2QSGEv/KcCKKL7yCzntwq5woVaw/1P7FXW8pwo9mQTIfJSBmrY2MDaSau0je7agLFRA/nNOzfnyY5RIKvcf6a297PB/h64hOS2ryHmyEgAO1vkDDobCQpaIKoWClbHP/rAsWBm76KPXWMyWgvrpOXPP+wi2mI9tCwrD3Dw17j18CPObOVCpUbjgK3SMIoq5Ykbtiiscn42nuLl71ZnxP4WasaYw0i6+tEbaihm10+5T9Khd/jkkkEqA7CePYW1lCWMj2TPnkmri0Y6jcDGXf85nRwuLKC6lEkgr4acwarUaqampsLOzg1RaPdbKy6QSjO/gjc9/PAEJoPXzueA7NL6Dt0E/NWMhS0QG97yVsRLkr4xt6+2g8w/MZ0fxShq1y8nLw527mbjx5AHUAkUWX5q5cIUKtX+LwdznfMyqUquLnwf4VDxa8+6KOJ7qqf2qc40nk/5bfD1dqD1bsD1dfBk/OzIn0y70pBIgLycbFuZmMJZJiy3MNMXcM4WjTCotFE9RHyVrYv2nOC3Y59lRRKkEFT6KVx0LOPpXSCNHLProtUKfljlUkk/LWMgSkcEduXK/VCtjO87fD3MTo6JHEYuaS1iNFls8j3ERc+g0xdwzH40+XXypVbkwU8gLjfAVLroKF3NFFXrahaP0qT5PF55FzPGTSovo8+9jmaR8RvFYxBHlF7NtvR1wOPEuLt28g3p1lGhWt1alWL/AQpaIDK60K17P3E7X+7n/XVyhPfolEQJyY6Nn5uMVnof3bPH170jas4VaMYWjVAKZrPCo3bPFXKFRu6eKuaIWgzxdOOpa4LGII6ICMqkEzevWRF0LFezsalaa6R8sZInI4Eq74vWL1h7wdrIuXOgVKhxLLvSet9iCBRwRUdXAQpaIDM7fvQYcrBVILmZ6QcHK2OFtPSvFR1lERFQ5cKiBiAxOJpWgwytFLxioLCtjiYio8mEhS0QGl5mdh19OJQEALOTaHxQ5WCt46S0iIioSpxYQkcH9b89FJKdnwbmGKXYODcDfN9N4Zy8iInouFrJEZFAXUzKwbN8VAMCEDj4wlxuhhUdNA0dFRERVAacWEJHBCCEwbssZ5KkFAhva452G9oYOiYiIqhAWskRkMFtP3cahxHuQG0kxvoO3ocMhIqIqhoUsERlERlYupvyaAAD4onU9ONcwM3BERERU1bCQJSKDmPPbRaRmZMOtphk+Dahr6HCIiKgKYiFLRBXuXHI6Vh68CgCY0NEHCmOZYQMiIqIqiYUsEVUoIQTGbT4DlVogxMcBb3vaGTokIiKqoljIElGF2hR3C0eu3oepsQyRXOBFREQvgIUsEVWYtCe5+GZ7/gKvL9+ph9o2pgaOiIiIqjIWskRUYWbHXMDdRzmoqzTHJ29ygRcREb0YFrJEVCHib6Xh/w5dBQBM7tQIJkb88UNERC+Gv0mIqNyp1QLjtsRDLYB3X3HEG/VqGTokIiJ6CbCQJaJy9/Pxmzhx/SHMTWQYG8oFXkREpB8sZImoXD18nIOpO88BAIYFNoCDtcLAERER0cuChSwRlasZu87jfmYOGthboM8bboYOh4iIXiIsZImo3Px98yHWHLkOAJjUqRGMZfyRQ0RE+sPfKkRULlRqgcjN8RAC6OzrhOZ1axo6JCIieskYvJBdsGAB3NzcoFAo0KxZMxw5cqTYvrm5uZg0aRI8PDygUCjQpEkT7Ny5U6uPSqVCZGQk3N3dYWpqCg8PD0yePBlCCE2flJQU9OnTB05OTjAzM0NISAguXryodZzPPvsMHh4eMDU1hVKpRKdOnXDu3DmtPkOGDIGfnx/kcjl8fX2LjPnvv//GW2+9BYVCAWdnZ0yfPr2MGSKqmtYdvYFTN9NgKTfCf0MbGjocIiJ6CRm0kF23bh3Cw8Mxfvx4nDhxAk2aNEFwcDBSU1OL7D927FgsXrwY8+bNw9mzZzFw4EB06dIFcXFxmj7Tpk3DokWLMH/+fCQkJGDatGmYPn065s2bByD/Pu+dO3dGYmIitmzZgri4OLi6uiIwMBCZmZma4/j5+WHFihVISEjArl27IIRAUFAQVCqVVkz9+vVD9+7di4w3PT0dQUFBcHV1xfHjxzFjxgxMmDABS5YsedHUEVVq9zNzMH1X/h9+w9s2gJ0lF3gREVE5EAbk7+8vBg8erHmsUqmEk5OTiIqKKrK/o6OjmD9/vlZb165dRa9evTSPQ0NDRb9+/Yrtc/78eQFAxMfHa51XqVSKpUuXFhvrqVOnBABx6dKlQtvGjx8vmjRpUqh94cKFwtbWVmRnZ2vaRo0aJTw9PYs9z7PS0tIEAJGWllbqfXSlUqlEUlKSUKlU5X6uyoo50E8ORv18SriO2iaCZ/8hcvOqXi75OsjHPDAHQjAHBZiHistBWWofI0MV0Dk5OTh+/DhGjx6taZNKpQgMDMShQ4eK3Cc7OxsKhfbIjqmpKfbv36953LJlSyxZsgQXLlxAgwYNcOrUKezfvx+zZs3SHAOA1nGkUinkcjn279+PTz75pNB5MzMzsWLFCri7u8PZ2bnUz/HQoUMICAiAiYmJpi04OBjTpk3DgwcPYGtrW+RzLIgRyB/VBQC1Wg21Wl3qc+tCrVZDCFHu56nMmIMXz0Hc9QdYe/QGAGBSJx9IJahy+eTrIB/zwBwAzEEB5qHiclCW4xuskL179y5UKhXs7e212u3t7QvNRS0QHByMWbNmISAgAB4eHoiNjUV0dLTWx/0RERFIT0+Hl5cXZDIZVCoVpkyZgl69egEAvLy84OLigtGjR2Px4sUwNzfH7NmzcfPmTSQlJWmdb+HChRg5ciQyMzPh6emJmJgYraL0eZKTk+Hu7l7o+RVsK6qQjYqKwsSJEwu137lzB1lZWaU+ty7UajXS0tIghIBUavDp0wbBHLxYDlRqgdEbEwAAod414WKaW+xUocqMr4N8zANzADAHBZiHistBRkZGqfsarJDVxdy5c/Hpp5/Cy8sLEokEHh4e6Nu3L5YvX67ps379eqxevRpr1qyBj48PTp48iWHDhsHJyQlhYWEwNjZGdHQ0+vfvjxo1akAmkyEwMBDt2rXTWhAGAL169ULbtm2RlJSEmTNnolu3bjhw4EChUWF9Gj16NMLDwzWP09PT4ezsDKVSCSsrq3I7L5D/ApVIJFAqldX6Tcoc6J6D/zt0DRfuPIGVwgjjOzdBLQt5OUVZvvg6yMc8MAcAc1CAeai4HJSlzjJYIVurVi3IZDKkpKRotaekpMDBwaHIfZRKJTZv3oysrCzcu3cPTk5OiIiIQN26dTV9RowYgYiICPTo0QMA0LhxY1y7dg1RUVEICwsDkL+Q6+TJk0hLS0NOTg6USiWaNWuGpk2bap3P2toa1tbWqF+/Ppo3bw5bW1ts2rQJH374Yameo4ODQ5HPr2BbUeRyOeTywr/8pVJphbxxJBJJhZ2rsmIOdMvB3UfZ+DbmAgBgRLAn7KxMyyu8CsHXQT7mgTkAmIMCzEPF5KAsxzbYd8LExAR+fn6IjY3VtKnVasTGxqJFixYl7qtQKFC7dm3k5eVh48aN6NSpk2bb48ePCyVAJpMVOd/C2toaSqUSFy9exLFjx7SO8ywhBIQQWvNXn6dFixb4888/kZubq2mLiYmBp6dnkdMKiKqyqO3nkJGVh0a1rdCzmauhwyEiomrAoFMLwsPDERYWhqZNm8Lf3x9z5sxBZmYm+vbtCwDo3bs3ateujaioKADA4cOHcevWLfj6+uLWrVuYMGEC1Go1Ro4cqTlmhw4dMGXKFLi4uMDHxwdxcXGYNWsW+vXrp+mzYcMGKJVKuLi44PTp0xg6dCg6d+6MoKAgAEBiYiLWrVuHoKAgKJVK3Lx5E1OnToWpqSnat2+vOc6lS5fw6NEjJCcn48mTJzh58iQAwNvbGyYmJujZsycmTpyI/v37Y9SoUYiPj8fcuXMxe/bs8k4tUYU6evU+Np64CQCY3KkRZFKJgSMiIqLqwKCFbPfu3XHnzh2MGzcOycnJ8PX1xc6dOzULoq5fv641upqVlYWxY8ciMTERFhYWaN++PVatWgUbGxtNn3nz5iEyMhKDBg1CamoqnJyc8Nlnn2HcuHGaPklJSQgPD0dKSgocHR3Ru3dvREZGarYrFArs27cPc+bMwYMHD2Bvb4+AgAAcPHgQdnZ2mn6ffPIJ/vjjD83jV199FQBw5coVuLm5wdraGrt378bgwYPh5+eHWrVqYdy4cRgwYIDec0lkKHkqNSI3xwMAerzujFdd+GkDERFVDIl4doUTVSrp6emwtrZGWlpahSz2Sk1NhZ2dXbWd/8MclD0Hy/dfwaRtZ2FjZow9X72NGualv7JHZcXXQT7mgTkAmIMCzEPF5aAstU/1/E4QkV6kpmdh1j8LvEYGe70URSwREVUdLGSJSGffbE/Ao+w8NHG2QY/XS3+zECIiIn1gIUtEOjl0+R42n7wNiQSY3MkHUi7wIiKiCsZClojKLFelxrgt+Qu8ejVzwSt1bAwbEBERVUssZImozFYcuIKLqY9Qw9wE/wnyNHQ4RERUTbGQJaIySUp7gjm/XQQARLTzgo0ZF3gREZFhsJAlojL5+tcEPM5R4TUXG7z/Wh1Dh0NERNUYC1kiKrX9F+/i17+TIJUAkzs34gIvIiIyKBayRFQq2XkqjNuav8Crdws3+DhZGzgiIiKq7ljIElGpLNt/BYl3MlHLQo7hbRsYOhwiIiIWskT0fLcePsG82EsAgP+294K1qbGBIyIiImIhS0SlMPmXs3iSq4K/Ww10ebW2ocMhIiICwEKWiJ5j7/lU7DyTDJlUgkmdfSCRcIEXERFVDixkiahYWbkqjN96BgDQt6UbvBysDBwRERHRv1jIElGxlvyZiGv3HsPOUo6hgfUNHQ4REZEWFrJEVKQb9x9jwe/5C7zGvusNSwUXeBERUeXCQpaIijRpWwKy89RoUbcmOrziaOhwiIiICmEhS0SF7Et8iNhzqTCSSjCZC7yIiKiSYiFLRFqyclWYvfcGAKD/W+6oZ2dp4IiIiIiKxkKWiLQs+iMRt9Nz4GitwJA2XOBFRESVFwtZItK4ejcTi/9MBACMae8Fc7mRgSMiIiIqHgtZIgIACCEw4ZczyMlTo5mLFdo1cjB0SERERCV64UI2OztbH3EQkYHtOpOCvefvwEQmwVetnbnAi4iIKr0yF7I7duxAWFgY6tatC2NjY5iZmcHKygqtWrXClClTcPv27fKIk4jK0eOcPEzedhYA8OlbdeFiqzBwRERERM9X6kJ206ZNaNCgAfr16wcjIyOMGjUK0dHR2LVrF77//nu0atUKv/32G+rWrYuBAwfizp075Rk3EenR/D2XcOvhE9S2McWgtz0MHQ4REVGplHolx/Tp0zF79my0a9cOUmnh+rdbt24AgFu3bmHevHn48ccfMXz4cP1FSkTl4vKdR1i6L3+B1/gO3jA1kSHDwDERERGVRqkL2UOHDpWqX+3atTF16lSdAyKiiiOEwPgtZ5CrEmjtqURbb3sIIQwdFhERUamUeY5sbm4uPDw8kJCQUB7xEFEF2n46Gfsv3YWJkRQTOvIOXkREVLWUuZA1NjZGVlZWecRCRBXoUfa/C7w+b+UB15rmBo6IiIiobHS6/NbgwYMxbdo05OXl6TseIqog82IvIjk9Cy41zPA5F3gREVEVpNNte44ePYrY2Fjs3r0bjRs3hrm59khOdHS0XoIjovJxISUDy/ZfAQBM6OgNhbHMwBERERGVnU6FrI2NDd577z19x0JEFUAIgXFb4pGnFmjrbY82XvaGDomIiEgnOhWyK1as0HccRFRBtp66jb8S70NhLMW4d70NHQ4REZHOXvgWtURUdWRk5eLrX/OvOPJF63pwrmFm4IiIiIh0V+pCNiQkBH/99ddz+2VkZGDatGlYsGDBCwVGRPo3O+Yi7mRkw72WOT4NqGvocIiIiF5IqacWfPDBB3jvvfdgbW2NDh06oGnTpnBycoJCocCDBw9w9uxZ7N+/H9u3b0doaChmzJhRnnETURklJKXjh0NXAQATOvpAbsQFXkREVLWVupDt378/PvroI2zYsAHr1q3DkiVLkJaWBgCQSCTw9vZGcHAwjh49ioYNG5ZbwERUdgULvFRqgXaNHNCqgdLQIREREb2wMs2Rlcvl+Oijj/DLL7/gwYMHePDgAW7fvo2srCycPn0aM2fO1KmIXbBgAdzc3KBQKNCsWTMcOXKk2L65ubmYNGkSPDw8oFAo0KRJE+zcuVOrj0qlQmRkJNzd3WFqagoPDw9MnjxZ69abKSkp6NOnD5ycnGBmZoaQkBBcvHhR6zifffYZPDw8YGpqCqVSiU6dOuHcuXNafa5fv47Q0FCYmZnBzs4OI0aM0Lq+7t69eyGRSAp9JScnlzlPRLqKPnELR68+gKmxDJFc4EVERC+JF1rsZW1tDQcHBxgbG+t8jHXr1iE8PBzjx4/HiRMn0KRJEwQHByM1NbXI/mPHjsXixYsxb948nD17FgMHDkSXLl0QFxen6TNt2jQsWrQI8+fPR0JCAqZNm4bp06dj3rx5APJHpzp37ozExERs2bIFcXFxcHV1RWBgIDIzMzXH8fPzw4oVK5CQkIBdu3ZBCIGgoCCoVCoA+QVzaGgocnJycPDgQfzwww9YuXIlxo0bVyju8+fPIykpSfNlZ2enc86IyiLtSS6iduQv8BryTn042ZgaOCIiIiI9EQbm7+8vBg8erHmsUqmEk5OTiIqKKrK/o6OjmD9/vlZb165dRa9evTSPQ0NDRb9+/Yrtc/78eQFAxMfHa51XqVSKpUuXFhvrqVOnBABx6dIlIYQQ27dvF1KpVCQnJ2v6LFq0SFhZWYns7GwhhBC///67ACAePHhQUhqKlZaWJgCItLQ0nfYvC5VKJZKSkoRKpSr3c1VWL2MOxm0+LVxHbRNtZv4usnOf/7xexhyUFXOQj3lgDoRgDgowDxWXg7LUPga9/FZOTg6OHz+OwMBATZtUKkVgYCAOHTpU5D7Z2dlQKBRabaampti/f7/mccuWLREbG4sLFy4AAE6dOoX9+/ejXbt2mmMA0DqOVCqFXC7XOs7TMjMzsWLFCri7u8PZ2RkAcOjQITRu3Bj29v9eUD44OBjp6ek4c+aM1v6+vr5wdHRE27ZtceDAgZITQ6Qn8bfSsOqvawCAyZ0awcSIV9wjIqKXh043RNCXu3fvQqVSaRWCAGBvb19oLmqB4OBgzJo1CwEBAfDw8EBsbCyio6M1H/cDQEREBNLT0+Hl5QWZTAaVSoUpU6agV69eAAAvLy+4uLhg9OjRWLx4MczNzTF79mzcvHkTSUlJWudbuHAhRo4ciczMTHh6eiImJgYmJiYAgOTk5CJjL9gGAI6Ojvjuu+/QtGlTZGdn4/vvv8fbb7+Nw4cP47XXXiv0/LKzszWFNgCkp6cDANRqNdRq9fOT+gLUajWEEOV+nsrsZcqBWi0QuTkeagG8+4ojmtetUarn9TLlQFfMQT7mgTkAmIMCzEPF5aAsxzdoIauLuXPn4tNPP4WXlxckEgk8PDzQt29fLF++XNNn/fr1WL16NdasWQMfHx+cPHkSw4YNg5OTE8LCwmBsbIzo6Gj0798fNWrUgEwmQ2BgINq1a6e1IAwAevXqhbZt2yIpKQkzZ85Et27dcODAgUKjwsXx9PSEp6en5nHLli1x+fJlzJ49G6tWrSrUPyoqChMnTizUfufOHWRlZZU2TTpRq9VIS0uDEAJSafUcuXuZcrA1/i7ibjyEmbEUA/xrFTvv/FkvUw50xRzkYx6YA4A5KMA8VFwOMjIySt33hQrZnJwcpKamFqqcXVxcSrV/rVq1IJPJkJKSotWekpICBweHIvdRKpXYvHkzsrKycO/ePTg5OSEiIgJ16/57cfcRI0YgIiICPXr0AAA0btwY165dQ1RUFMLCwgDkL+Q6efIk0tLSkJOTA6VSiWbNmqFp06Za57O2toa1tTXq16+P5s2bw9bWFps2bcKHH34IBweHQldYKHguxcUPAP7+/sVOYRg9ejTCw8M1j9PT0+Hs7AylUgkrK6tij6kParUaEokESqWyWr9JX4YcPHycg0UH/wYADGvbAI3q1in1vi9LDl4Ec5CPeWAOAOagAPNQcTko7WAhoGMhe/HiRfTr1w8HDx7UahdCQCKRaH3MXxITExP4+fkhNjYWnTt3BpCfpNjYWHzxxRcl7qtQKFC7dm3k5uZi48aN6Natm2bb48ePCyVYJpMVOVRtbW2teU7Hjh3D5MmTiz2nEAJCCM1H/y1atMCUKVOQmpqquQpBTEwMrKys4O1d/CWOTp48CUdHxyK3yeVyyOXyQu1SqbRC3jgSiaTCzlVZvQw5mBlzEQ8e56KBvQX6vuFe5ufyMuTgRTEH+ZgH5gBgDgowDxWTg7IcW6dCtk+fPjAyMsK2bdvg6OgIiUSiy2EAAOHh4QgLC0PTpk3h7++POXPmIDMzE3379gUA9O7dG7Vr10ZUVBQA4PDhw7h16xZ8fX1x69YtTJgwAWq1GiNHjtQcs0OHDpgyZQpcXFzg4+ODuLg4zJo1C/369dP02bBhA5RKJVxcXHD69GkMHToUnTt3RlBQEAAgMTER69atQ1BQEJRKJW7evImpU6fC1NQU7du3BwAEBQXB29sbH3/8MaZPn47k5GSMHTsWgwcP1hSjc+bMgbu7O3x8fJCVlYXvv/8ee/bswe7du3XOGVFJTt14iJ+OXAeQv8DLWFZ9f+ASEdHLTadC9uTJkzh+/Di8vLxeOIDu3bvjzp07GDduHJKTk+Hr64udO3dqFk1dv35dqzLPysrC2LFjkZiYCAsLC7Rv3x6rVq2CjY2Nps+8efMQGRmJQYMGITU1FU5OTvjss8+0ru+alJSE8PBwpKSkwNHREb1790ZkZKRmu0KhwL59+zBnzhw8ePAA9vb2CAgIwMGDBzWjrzKZDNu2bcPnn3+OFi1awNzcHGFhYZg0aZLmODk5Ofjqq69w69YtmJmZ4ZVXXsFvv/2G1q1bv3DuiJ6lUgtEbomHEECXV2ujWd2ahg6JiIio3EjEs6ubSuH111/H7Nmz8eabb5ZHTPSU9PR0WFtbIy0trULmyBZMk6iuH5tU9RysPnwNYzbFw1JuhNj/tIKdZennGRWo6jnQB+YgH/PAHADMQQHmoeJyUJbaR6copk2bhpEjR2Lv3r24d+8e0tPTtb6IqOLde5SN6TvPAwDCgxroVMQSERFVJTpNLSi4gcE777yj1V7WxV5EpD/Td55H2pNcNHS0wsfNXQ0dDhERUbnTqZD9/fff9R0HEb2A49ceYN2xGwCArzv7wIgLvIiIqBrQqZBt1aqVvuMgIh2p/rmDFwB84FcHfq41DBwRERFRxdD5hggPHz7EsmXLkJCQAADw8fFBv379NNdlJaKK8eNf13A2KR1WCiOMavfiVxIhIiKqKnT6/PHYsWPw8PDA7Nmzcf/+fdy/fx+zZs2Ch4cHTpw4oe8YiagYdzKyMXN3/gKvESFeqGVR+GYaRERELyudRmSHDx+Ojh07YunSpTAyyj9EXl4ePvnkEwwbNgx//vmnXoMkoqJF7UhARlYeGte2Rk//0t0amoiI6GWhUyF77NgxrSIWAIyMjDBy5Eg0bdpUb8ERUfGOXLmP6BO3IJEAkzs3gkyq+x32iIiIqiKdphZYWVnh+vXrhdpv3LgBS0vLFw6KiEqWp1Jj3Jb8BV49XneGr7ONYQMiIiIyAJ0K2e7du6N///5Yt24dbty4gRs3bmDt2rX45JNP8OGHH+o7RiJ6xg+HruFccgZszIwxMpgLvIiIqHrSaWrBzJkzIZFI0Lt3b+Tl5QEAjI2N8fnnn2Pq1Kl6DZCItKWkZ2F2zAUAwKgQL9iamxg4IiIiIsPQqZA1MTHB3LlzERUVhcuXLwMAPDw8YGZmptfgiKiwb7Yn4FF2Hpo426B7U2dDh0NERGQwOl9HFgDMzMzQuHFjfcVCRM9x8PJdbDl5GxIJ8HWnRpBygRcREVVjpS5ku3btipUrV8LKygpdu3YtsW90dPQLB0ZE2nJVaozbcgYA8FEzVzSuw5uPEBFR9VbqQtba2hoSSf7oj5WVleb/RFQxlu+/gkupj1DT3AT/CfI0dDhEREQGV+pCdsWKFZr/r1y5sjxiIaJiJKU9wdzYiwCAiHZesDYzNnBEREREhqfT5bfatGmDhw8fFmpPT09HmzZtXjQmInrG19sS8DhHBT9XW7z3Wh1Dh0NERFQp6FTI7t27Fzk5OYXas7KysG/fvhcOioj+te/iHfx6OglSCTCZC7yIiIg0ynTVgr///lvz/7NnzyI5OVnzWKVSYefOnahdu7b+oiOq5rLzVBj/zwKv3i3c4O1kZeCIiIiIKo8yFbK+vr6QSCSQSCRFTiEwNTXFvHnz9BYcUXX3/b4rSLybiVoWcoQHNTB0OERERJVKmQrZK1euQAiBunXr4siRI1AqlZptJiYmsLOzg0wm03uQRNXRzQePMW9P/gKvMaFesFJwgRcREdHTylTIurq6AgDUanW5BENE/5q87SyyctXwd6+Bzr6cskNERPSsF7qz19mzZ3H9+vVCC786duz4QkERVXe/n0/FrjMpkEklmNypEa/bTEREVASdCtnExER06dIFp0+fhkQigRACADS/bFUqlf4iJKpmsnJVmLA1f4FXvzfc4OlgaeCIiIiIKiedLr81dOhQuLu7IzU1FWZmZjhz5gz+/PNPNG3aFHv37tVziETVy+I/EnHt3mPYW8kxNJALvIiIiIqj04jsoUOHsGfPHtSqVQtSqRRSqRRvvvkmoqKiMGTIEMTFxek7TqJq4fq9x1i49xIAYGyoNyzkLzT7h4iI6KWm04isSqWCpWX+x521atXC7du3AeQvBjt//rz+oiOqZib+cgbZeWq09KiJd19xNHQ4RERElZpOwz2NGjXCqVOn4O7ujmbNmmH69OkwMTHBkiVLULduXX3HSFQt/HY2BbHnUmEsk2ASF3gRERE9l06F7NixY5GZmQkAmDRpEt5991289dZbqFmzJtatW6fXAImqgyc5Kkz4JX+BV/8366KenYWBIyIiIqr8dCpkg4ODNf+vV68ezp07h/v378PW1pajSEQ6WLT3Em4+eAInawWGvFPP0OEQERFVCXpbSVKjRg19HYqoWrlyNxPf/ZEIAIh81xtmJlzgRUREVBql/o3ZtWvXUh80Ojpap2CIqhshBMZvPYMclRoBDZQIaeRg6JCIiIiqjFIXstbW1uUZB1G1tOtMMv68cAcmMikmdvTh1BwiIqIyKHUhu2LFivKMg6jaeZyTh0m/nAUAfNaqLtxrmRs4IiIioqpFp+vIAkBeXh5+++03LF68GBkZGQCA27dv49GjR3oLjuhlNm/PJdxOy0JtG1MMepsLvIiIiMpKp1Ul165dQ0hICK5fv47s7Gy0bdsWlpaWmDZtGrKzs/Hdd9/pO06il8ql1Ef4fl/+Aq8JHX1gaiIzcERERERVj04jskOHDkXTpk3x4MEDmJqaatq7dOmC2NhYvQVH9DLKX+AVj1yVQBsvOwQ2tDN0SERERFWSTiOy+/btw8GDB2FiYqLV7ubmhlu3buklMKKX1a+nk3Dg0j2YGEkxoQMXeBEREelKpxFZtVoNlUpVqP3mzZuwtLQs8/EWLFgANzc3KBQKNGvWDEeOHCm2b25uLiZNmgQPDw8oFAo0adIEO3fu1OqjUqkQGRkJd3d3mJqawsPDA5MnT4YQQtMnJSUFffr0gZOTE8zMzBASEoKLFy9qHeezzz6Dh4cHTE1NoVQq0alTJ5w7d06rz/Xr1xEaGgozMzPY2dlhxIgRyMvL0+qzd+9evPbaa5DL5ahXrx5WrlxZ5hzRy+FRdh4mb8tf4DXobQ+41DQzcERERERVl06FbFBQEObMmaN5LJFI8OjRI4wfPx7t27cv07HWrVuH8PBwjB8/HidOnECTJk0QHByM1NTUIvuPHTsWixcvxrx583D27FkMHDgQXbp0QVxcnKbPtGnTsGjRIsyfPx8JCQmYNm0apk+fjnnz5gHI/2i3c+fOSExMxJYtWxAXFwdXV1cEBgZqbr0LAH5+flixYgUSEhKwa9cuCCEQFBSkKeJVKhVCQ0ORk5ODgwcP4ocffsDKlSsxbtw4zTGuXLmC0NBQtG7dGidPnsSwYcPwySefYNeuXWXKE70c/hd7ESnp2XCpYYaBrTwMHQ4REVHVJnRw/fp14e3tLRo2bCiMjIxE8+bNRc2aNYWnp6dISUkp07H8/f3F4MGDNY9VKpVwcnISUVFRRfZ3dHQU8+fP12rr2rWr6NWrl+ZxaGio6NevX7F9zp8/LwCI+Ph4rfMqlUqxdOnSYmM9deqUACAuXbokhBBi+/btQiqViuTkZE2fRYsWCSsrK5GdnS2EEGLkyJHCx8dH6zjdu3cXwcHBxZ7naWlpaQKASEtLK1X/F6FSqURSUpJQqVTlfq7KqjxzcD45XXiM/lW4jtom9iSU7X1Skfg6YA4KMA/MgRDMQQHmoeJyUJbaR6c5ss7Ozjh16hTWrVuHU6dO4dGjR+jfvz969eqltfjreXJycnD8+HGMHj1a0yaVShEYGIhDhw4VuU92djYUCoVWm6mpKfbv36953LJlSyxZsgQXLlxAgwYNcOrUKezfvx+zZs3SHAOA1nGkUinkcjn279+PTz75pNB5MzMzsWLFCri7u8PZ2RkAcOjQITRu3Bj29vaafsHBwfj8889x5swZvPrqqzh06BACAwO1jhUcHIxhw4YV+/wK4gOA9PR0APnTOdRqdZH76ItarYYQotzPU5mVVw6EEIjcHI88tUCQtz1aNahVafPM1wFzUIB5YA4A5qAA81BxOSjL8ctcyObm5sLLywvbtm1Dr1690KtXr7IeQuPu3btQqVRahSAA2NvbF5qLWiA4OBizZs1CQEAAPDw8EBsbi+joaK05uxEREUhPT4eXlxdkMhlUKhWmTJmiidXLywsuLi4YPXo0Fi9eDHNzc8yePRs3b95EUlKS1vkWLlyIkSNHIjMzE56enoiJidEscktOTi4y9oJtJfVJT0/HkydPChX+UVFRmDhxYqHnfefOHWRlZRWdSD1Rq9VIS0uDEAJSqc6XGK7SyisHO8/dw+Er9yE3kuDz5spip85UBnwdMAcFmAfmAGAOCjAPFZeDgvsTlEaZC1ljY+NyL6hKMnfuXHz66afw8vKCRCKBh4cH+vbti+XLl2v6rF+/HqtXr8aaNWvg4+OjmZvq5OSEsLAwGBsbIzo6Gv3790eNGjUgk8kQGBiIdu3aaS0IA4BevXqhbdu2SEpKwsyZM9GtWzccOHCg0KiwvowePRrh4eGax+np6XB2doZSqYSVlVW5nLOAWq2GRCKBUqms1m9SfecgPSsXCw7EAwC+aFMfTeo56+W45YWvA+agAPPAHADMQQHmoeJyUJYaS6epBYMHD8a0adPw/fffw8hIp0MAAGrVqgWZTIaUlBSt9pSUFDg4OBS5j1KpxObNm5GVlYV79+7ByckJERERqFu3rqbPiBEjEBERgR49egAAGjdujGvXriEqKgphYWEA8hdynTx5EmlpacjJyYFSqUSzZs3QtGlTrfNZW1vD2toa9evXR/PmzWFra4tNmzbhww8/hIODQ6ErLBQ8l4L4HRwcinx+VlZWRU7DkMvlkMvlhdqlUmmFvHEkEkmFnauy0ncO5sZewp2MbNStZY4BAXWrRG75OmAOCjAPzAHAHBRgHiomB2U5tk5RHD16FNHR0XBxcUFwcDC6du2q9VVaJiYm8PPz07qJglqtRmxsLFq0aFHivgqFArVr10ZeXh42btyITp06abY9fvy4UBJkMlmRcy6sra2hVCpx8eJFHDt2TOs4zxJCQAihmcPaokULnD59Wutj4piYGFhZWcHb21vT59mbRMTExDz3+dHL4eztdPxw8CqA/Dt4yY14By8iIiJ90Wk41cbGBu+9955eAggPD0dYWBiaNm0Kf39/zJkzB5mZmejbty8AoHfv3qhduzaioqIAAIcPH8atW7fg6+uLW7duYcKECVCr1Rg5cqTmmB06dMCUKVPg4uICHx8fxMXFYdasWejXr5+mz4YNG6BUKuHi4oLTp09j6NCh6Ny5M4KCggAAiYmJWLduHYKCgqBUKnHz5k1MnToVpqammkuMBQUFwdvbGx9//DGmT5+O5ORkjB07FoMHD9aMqg4cOBDz58/HyJEj0a9fP+zZswfr16/Hr7/+qpf8UeWlVguM2xIPtQDaN3ZAQAOloUMiIiJ6qZS5kM3Ly0Pr1q0RFBRU7Mf/ZdG9e3fcuXMH48aNQ3JyMnx9fbFz507NAqnr169rja5mZWVh7NixSExMhIWFBdq3b49Vq1bBxsZG02fevHmIjIzEoEGDkJqaCicnJ3z22Wda13dNSkpCeHg4UlJS4OjoiN69eyMyMlKzXaFQYN++fZgzZw4ePHgAe3t7BAQE4ODBg7Czy7+lqEwmw7Zt2/D555+jRYsWMDc3R1hYGCZNmqQ5jru7O3799VcMHz4cc+fORZ06dfD9998jODj4hXNHlVt03C0cu/YAZiYyRL7rbehwiIiIXjoS8ezqplIwMzNDQkICXF1dyyMmekp6ejqsra2RlpZWIYu9UlNTYWdnV23n/+grB2mPc9Hm2724l5mDiHZeVermB3wdMAcFmAfmAGAOCjAPFZeDstQ+OkXh7++vdSctItL2bcx53MvMQT07C/R7w93Q4RAREb2UdJojO2jQIHz11Ve4efMm/Pz8YG5urrX9lVde0UtwRFVR/K00/PjXNQDApE4+MDGqnn+5ExERlTedCtmCy1oNGTJE0yaRSCCEgEQi0bo5AVF1olYLjN2cv8CrYxMntPSoZeiQiIiIXlo6FbJXrlzRdxxEL4X1x27g5I2HsJAbYUxoQ0OHQ0RE9FLTqZDlIi+iwh5k5mDazvxbKw8LrA97q/K5+xsRERHl0/m2XJcvX8acOXOQkJAAAPD29sbQoUPh4VF1VmcT6dP0Xefx4HEuPO0tEdbSzdDhEBERvfR0WoWya9cueHt748iRI3jllVfwyiuv4PDhw/Dx8UFMTIy+YySq9E7eeIi1R68DACZ3bgRjGRd4ERERlTedRmQjIiIwfPhwTJ06tVD7qFGj0LZtW70ER1QVqNQCkZvjIQTQ9dXa8HevYeiQiIiIqgWdho0SEhLQv3//Qu39+vXD2bNnXzgooqrkpyPXcfpWGizlRhjdngu8iIiIKopOhaxSqcTJkycLtZ88eVJz+1ai6uDeo2zM2HUeAPBVUAMoLeUGjoiIiKj60GlqwaeffooBAwYgMTERLVu2BAAcOHAA06ZNQ3h4uF4DJKrMpu08h7QnufB2tMJHzXk1DyIiooqkUyEbGRkJS0tLfPvttxg9ejQAwMnJCRMmTNC6SQLRy+z4tftYf+wmAGByZx8YcYEXERFRhdKpkJVIJBg+fDiGDx+OjIwMAIClpaVeAyOqzPJUakRuPgMA+MCvDvxcucCLiIiooul8Z6+8vDzUr19fq4C9ePEijI2N4ebmpq/4iCqlH/+6hrNJ6bBSGCGinZehwyEiIqqWdPostE+fPjh48GCh9sOHD6NPnz4vGhNRpXYnIxvf7r4AABgR4oWaFlzgRUREZAg6FbJxcXF44403CrU3b968yKsZEL1MorYnICM7D41rW6Onv4uhwyEiIqq2dCpkJRKJZm7s09LS0qBSqV44KKLK6nDiPUTH3YJEkn8HL5lUYuiQiIiIqi2dCtmAgABERUVpFa0qlQpRUVF488039RYcUWWSq1Jj3Jb8BV49XneBr7ONYQMiIiKq5nRa7DVt2jQEBATA09MTb731FgBg3759SE9Px549e/QaIFFl8cPBqzifkgFbM2OMDPY0dDhERETVnk4jst7e3vj777/RrVs3pKamIiMjA71798a5c+fQqFEjfcdIZHAp6VmY89tFAMCoEC/YmpsYOCIiIiLSaUQWyL8BwjfffKPPWIgqrSm/JuBRdh58nW3QramzocMhIiIi6DgiS1SdHLx0F1tP3YZEAnzduRGkXOBFRERUKbCQJSpBTp4a47bmL/D6qJkrGtW2NnBEREREVICFLFEJlh+4gkupj1DT3AT/CeICLyIiosqEhSxRMW4/fIL/xeYv8Ipo5wVrM2MDR0RERERPYyFLVIyvfz2LxzkqNHW1xXuv1TF0OERERPQMnQrZlJQUfPzxx3BycoKRkRFkMpnWF1FVt+/iHWw/nQypBJjUiQu8iIiIKiOdLr/Vp08fXL9+HZGRkXB0dIREwl/y9PLIyVNj/NbzAICwlm7wdrIycERERERUFJ0K2f3792Pfvn3w9fXVczhEhrfmRAqu3nsMpaUcw9s2MHQ4REREVAydphY4OztDCKHvWIgM7uaDx1hxJAkAMKZ9Q1gpuMCLiIiostKpkJ0zZw4iIiJw9epVPYdDZFhf/3oO2XkCzdxroJOvk6HDISIiohLoNLWge/fuePz4MTw8PGBmZgZjY+1Rq/v37+slOKKK9Pu5VOw+mwKZBJjY0Ztzv4mIiCo5nQrZOXPm6DkMIsPKylVh/D938Or+qj0a2FsaOCIiIiJ6Hp0K2bCwMH3HQWRQ3/1xGdfvP4a9lRz9mzsaOhwiIiIqBZ0KWQBQqVTYvHkzEhISAAA+Pj7o2LEjryNLVc71e4+xcO9lAPkLvMxN+BomIiKqCnQqZC9duoT27dvj1q1b8PTMv/98VFQUnJ2d8euvv8LDw0OvQRKVFyEEJvxyBjl5arxRryZCGzvgzp07hg6LiIiISkGnqxYMGTIEHh4euHHjBk6cOIETJ07g+vXrcHd3x5AhQ/QdI1G5+S0hFXvOpcJYJsHEjo24wIuIiKgK0WlE9o8//sBff/2FGjVqaNpq1qyJqVOn4o033tBbcETl6UmOChP+WeD1yVt1Uc/OAmq12sBRERERUWnpNCIrl8uRkZFRqP3Ro0cwMTEp07EWLFgANzc3KBQKNGvWDEeOHCm2b25uLiZNmgQPDw8oFAo0adIEO3fu1OqjUqkQGRkJd3d3mJqawsPDA5MnT9a6gUNKSgr69OkDJycnmJmZISQkBBcvXtRsv3//Pr788kt4enrC1NQULi4uGDJkCNLS0rTOFRsbi5YtW8LS0hIODg4YNWoU8vLyNNuvXr0KiURS6Ouvv/4qU46ofCzcewm3Hj6Bk7UCX7apZ+hwiIiIqIx0KmTfffddDBgwAIcPH4YQAkII/PXXXxg4cCA6duxY6uOsW7cO4eHhGD9+PE6cOIEmTZogODgYqampRfYfO3YsFi9ejHnz5uHs2bMYOHAgunTpgri4OE2fadOmYdGiRZg/fz4SEhIwbdo0TJ8+HfPmzQOQPyeyc+fOSExMxJYtWxAXFwdXV1cEBgYiMzMTAHD79m3cvn0bM2fORHx8PFauXImdO3eif//+mvOcOnUK7du3R0hICOLi4rBu3Tps3boVERERheL+7bffkJSUpPny8/MrdY6ofFy5m4nFfyQCAMZ18IaZic7rHomIiMhQhA4ePHggOnbsKCQSiTAxMREmJiZCKpWKzp07i4cPH5b6OP7+/mLw4MGaxyqVSjg5OYmoqKgi+zs6Oor58+drtXXt2lX06tVL8zg0NFT069ev2D7nz58XAER8fLzWeZVKpVi6dGmxsa5fv16YmJiI3NxcIYQQo0ePFk2bNtXqs3XrVqFQKER6eroQQogrV64IACIuLq7Y4z5PWlqaACDS0tJ0PkZpqVQqkZSUJFQqVbmfy5DUarX46Pu/hOuobeLjZYeFWq3WbKsuOSgJc8AcFGAemAMhmIMCzEPF5aAstY9Ow1A2NjbYsmULLl26pLn8VsOGDVGvXuk/ns3JycHx48cxevRoTZtUKkVgYCAOHTpU5D7Z2dlQKBRabaampti/f7/mccuWLbFkyRJcuHABDRo0wKlTp7B//37MmjVLcwwAWseRSqWQy+XYv38/PvnkkyLPnZaWBisrKxgZGZUYS1ZWFo4fP463335b096xY0dkZWWhQYMGGDlyZImj1tnZ2ZoYASA9PR0AoFary33+plqthhDipZ8nuiM+Gfsu3oWJTILx7zbUfKoAVJ8clIQ5YA4KMA/MAcAcFGAeKi4HZTn+C32eWq9ePdSrVw8qlQqnT5/GgwcPYGtrW6p97969C5VKBXt7e612e3t7nDt3rsh9goODMWvWLAQEBMDDwwOxsbGIjo6GSqXS9ImIiEB6ejq8vLwgk8mgUqkwZcoU9OrVCwDg5eUFFxcXjB49GosXL4a5uTlmz56NmzdvIikpqdhYJ0+ejAEDBmjFMmfOHPz000/o1q0bkpOTMWnSJADQHMfCwgLffvst3njjDUilUmzcuBGdO3fG5s2biy1mo6KiMHHixELtd+7cQVZWVnHp1Au1Wo20tDQIISCV6jTrpNJ7kqvCxH8WePXys4e5OhOpqZma7dUhB8/DHDAHBZgH5gBgDgowDxWXg6LWYRVHp0J22LBhaNy4Mfr37w+VSoVWrVrh4MGDMDMzw7Zt27RGI/Vp7ty5+PTTT+Hl5QWJRAIPDw/07dsXy5cv1/RZv349Vq9ejTVr1sDHxwcnT57EsGHD4OTkhLCwMBgbGyM6Ohr9+/dHjRo1IJPJEBgYiHbt2mktCCuQnp6O0NBQeHt7Y8KECZr2oKAgzJgxAwMHDsTHH38MuVyOyMhI7Nu3T/PNrVWrFsLDwzX7vP7667h9+zZmzJhRbCE7evRorX3S09Ph7OwMpVIJKyurF01hidRqNSQSCZRK5Uv7Jp228zxSH+Wijq0p/tP+FZg+c/OD6pCD52EOmIMCzANzADAHBZiHisvBs594l0SnQvbnn3/GRx99BAD45ZdfkJiYiHPnzmHVqlUYM2YMDhw48Nxj1KpVCzKZDCkpKVrtKSkpcHBwKHIfpVKJzZs3IysrC/fu3YOTkxMiIiJQt25dTZ8RI0YgIiICPXr0AAA0btwY165dQ1RUlObWun5+fjh58iTS0tKQk5MDpVKJZs2aoWnTplrny8jIQEhICCwtLbFp0yYYGxtrbQ8PD8fw4cORlJQEW1tbXL16FaNHj9aK51nNmjVDTExMsdvlcjnkcnmhdqlUWiFvHIlEUmHnqmiXUjOwbP8VAMD4Dj4wVxgX2e9lzkFpMQfMQQHmgTkAmIMCzEPF5KAsx9Ypirt372qKze3bt6Nbt25o0KAB+vXrh9OnT5fqGCYmJvDz80NsbKymTa1WIzY2Fi1atChxX4VCgdq1ayMvLw8bN25Ep06dNNseP35cKAEymazI+RbW1tZQKpW4ePEijh07pnWc9PR0BAUFwcTEBFu3bi32rwOJRAInJyeYmprip59+grOzM1577bViYz958iQcHR1LfH6kf0IIjNtyBnlqgXe87NDW2/75OxEREVGlptOIrL29Pc6ePQtHR0fs3LkTixYtApBfRMpkpb9PfXh4OMLCwtC0aVP4+/tjzpw5yMzMRN++fQEAvXv3Ru3atREVFQUAOHz4MG7dugVfX1/cunULEyZMgFqtxsiRIzXH7NChA6ZMmQIXFxf4+PggLi4Os2bNQr9+/TR9NmzYAKVSCRcXF5w+fRpDhw5F586dERQUBODfIvbx48f48ccfkZ6erll0pVQqNc9xxowZCAkJgVQqRXR0NKZOnYr169drtv/www8wMTHBq6++CgCIjo7G8uXL8f333+uSdnoB2/5OwsHL9yA3kmJ8Bx9Dh0NERER6oFMh27dvX3Tr1g2Ojo6QSCQIDAwEkF9oenl5lfo43bt3x507dzBu3DgkJyfD19cXO3fu1CwAu379utboalZWFsaOHYvExERYWFigffv2WLVqFWxsbDR95s2bh8jISAwaNAipqalwcnLCZ599hnHjxmn6JCUlITw8HCkpKXB0dETv3r0RGRmp2X7ixAkcPnwYAApdieHKlStwc3MDAOzYsQNTpkxBdnY2mjRpgi1btqBdu3Za/SdPnoxr167ByMgIXl5eWLduHd5///1S54he3KPsPHz961kAwKC368GlppmBIyIiIiJ9kIiiVjiVwsaNG3H9+nV88MEHqFOnDoD8EUgbGxutj+jpxaSnp8Pa2lpz+a/ypFarkZqaCjs7u5dq/s+UX89i6b4rcK1phl3DAqAwLv5Tg5c1B2XBHDAHBZgH5gBgDgowDxWXg7LUPmUekc3NzUVISAi+++47vPfee1rbChZTEVUW55MzsPzAVQDAhI4+JRaxREREVLWUuZw2NjbG33//XR6xEOmVEAKRW+KhUgsEedujtaedoUMiIiIiPdJpXPijjz7CsmXL9B0LkV5tPnkLR67ch8JYinEdvA0dDhEREemZTou98vLysHz5cvz222/w8/ODubm51vaC28ESGUp6Vi6m/Jp/h7gv29RHHVsu8CIiInrZ6FTIxsfHa66VeuHCBa1tEonkxaMiekGzdl/A3UfZqFvLHJ+85W7ocIiIiKgc6FTI/v777/qOg0hvzt5Ox/8dugoAmNjJB3IjLvAiIiJ6GVXP60fQS0utzl/gpRZAaGNHvFVfaeiQiIiIqJzoNCILAMeOHcP69etx/fp15OTkaG2Ljo5+4cCIdLHxxE0cv/YAZiYyjH23oaHDISIionKk04js2rVr0bJlSyQkJGDTpk3Izc3FmTNnsGfPHlhbW+s7RqJSSXuci6k78hd4DX2nPhytTQ0cEREREZUnnQrZb775BrNnz8Yvv/wCExMTzJ07F+fOnUO3bt3g4uKi7xiJSmXm7vO4l5mDenYW6PsGF3gRERG97HQqZC9fvozQ0FAAgImJCTIzMyGRSDB8+HAsWbJErwESlcbpm2n48fA1AMCkTj4wMeL0byIiopedTr/tbW1tkZGRAQCoXbs24uPjAQAPHz7E48eP9RcdUSmo1QJjt8RDCKBjEye09Khl6JCIiIioAui02CsgIAAxMTFo3LgxPvjgAwwdOhR79uxBTEwM3nnnHX3HSFSidcdu4NSNh7CQG2FMKBd4ERERVRc6FbLz589HVlYWAGDMmDEwNjbGwYMH8d5772Hs2LF6DZCoJA8yczBtZ/4Cr2GB9WFvpTBwRERERFRRdCpka9Soofm/VCpFRESE3gIiKovpu87h4eNceDlYok9LN0OHQ0RERBVI5xUxly9fxtixY/Hhhx8iNTUVALBjxw6cOXNGb8ERlSTu+gOsPXoDADCpUyMYybjAi4iIqDrR6Tf/H3/8gcaNG+Pw4cOIjo7Go0ePAACnTp3C+PHj9RogUVFU/9zBSwig62u14e9e4/k7ERER0UtFp0I2IiICX3/9NWJiYmBiYqJpb9OmDf766y+9BUdUnDVHriP+VjosFUYY3Y4LvIiIiKojnQrZ06dPo0uXLoXa7ezscPfu3RcOiqgkdx9lY8Y/C7z+E+QJpaXcwBERERGRIehUyNrY2CApKalQe1xcHGrXrv3CQRGVZNqOc0jPyoO3oxV6NeOd5IiIiKornQrZHj16YNSoUUhOToZEIoFarcaBAwfwn//8B71799Z3jEQax67ex4bjNwEAkztzgRcREVF1plMV8M0338DLywvOzs549OgRvL29ERAQgJYtW/I6slRu8lRqRG7JvypGt6Z14Odqa+CIiIiIyJB0uo6siYkJli5dinHjxuH06dN49OgRXn31VdSvX1/f8RFprPrrGhKS0mFtaoxRIV6GDoeIiIgMrEyFrFqtxowZM7B161bk5OTgnXfewfjx42Fqalpe8REBAFIzsjBr9wUAwIhgT9S04AIvIiKi6q5MUwumTJmC//73v7CwsEDt2rUxd+5cDB48uLxiI9KI2n4OGdl5eKWONT705wIvIiIiKmMh+3//939YuHAhdu3ahc2bN+OXX37B6tWroVaryys+IhxOvIdNcbcgkQCTOzWCTCoxdEhERERUCZSpkL1+/Trat2+veRwYGAiJRILbt2/rPTAiAMhVqRG5JR4A8KG/C5o42xg2ICIiIqo0ylTI5uXlQaFQaLUZGxsjNzdXr0ERFfjh4FVcSHkEWzNjjAjyNHQ4REREVImUabGXEAJ9+vSBXP7vQpusrCwMHDgQ5ubmmrbo6Gj9RUjVVnJaFmbH5C/wimjnBVtzk+fsQURERNVJmQrZsLCwQm0fffSR3oIhetqU7QnIzFHhVRcbfODnbOhwiIiIqJIpUyG7YsWK8oqDSMuBS3fxy6nbkP6zwEvKBV5ERET0DN7fkyqdnDw1xv2zwOuj5q5oVNvawBERERFRZcRCliqdZfuv4PKdTNQ0N8FXXOBFRERExWAhS5XK7YdP8L/YiwCA0e0bwtrU2MARERERUWXFQpYqlcnbzuJJrgqvu9nivddqGzocIiIiqsRYyFKl8ceFO9gRnwyZVIJJnRpBIuECLyIiIioeC1mqFLLzVJiw9QwAIKyFGxo6Whk4IiIiIqrsDF7ILliwAG5ublAoFGjWrBmOHDlSbN/c3FxMmjQJHh4eUCgUaNKkCXbu3KnVR6VSITIyEu7u7jA1NYWHhwcmT54MIYSmT0pKCvr06QMnJyeYmZkhJCQEFy9e1Gy/f/8+vvzyS3h6esLU1BQuLi4YMmQI0tLStM4VGxuLli1bwtLSEg4ODhg1ahTy8vK0+vz999946623oFAo4OzsjOnTp79Iul5aS/9MxJW7mVBayjGsbX1Dh0NERERVgEEL2XXr1iE8PBzjx4/HiRMn0KRJEwQHByM1NbXI/mPHjsXixYsxb948nD17FgMHDkSXLl0QFxen6TNt2jQsWrQI8+fPR0JCAqZNm4bp06dj3rx5APLvTta5c2ckJiZiy5YtiIuLg6urKwIDA5GZmQkAuH37Nm7fvo2ZM2ciPj4eK1euxM6dO9G/f3/NeU6dOoX27dsjJCQEcXFxWLduHbZu3YqIiAhNn/T0dAQFBcHV1RXHjx/HjBkzMGHCBCxZsqQ80lll3bj/GPN/vwQAGBvaEFYKLvAiIiKiUhAG5O/vLwYPHqx5rFKphJOTk4iKiiqyv6Ojo5g/f75WW9euXUWvXr00j0NDQ0W/fv2K7XP+/HkBQMTHx2udV6lUiqVLlxYb6/r164WJiYnIzc0VQggxevRo0bRpU60+W7duFQqFQqSnpwshhFi4cKGwtbUV2dnZmj6jRo0Snp6exZ7nWWlpaQKASEtLK/U+ulKpVCIpKUmoVKpyP9fTPvnhqHAdtU10X3xQqNXqCj33swyVg8qEOWAOCjAPzIEQzEEB5qHiclCW2sdgI7I5OTk4fvw4AgMDNW1SqRSBgYE4dOhQkftkZ2dDoVBotZmammL//v2axy1btkRsbCwuXLgAIH/kdP/+/WjXrp3mGAC0jiOVSiGXy7WO86y0tDRYWVnByMioxFiysrJw/PhxAMChQ4cQEBAAExMTTZ/g4GCcP38eDx48KPZc1cmecymIOZsCIy7wIiIiojIq0y1q9enu3btQqVSwt7fXare3t8e5c+eK3Cc4OBizZs1CQEAAPDw8EBsbi+joaKhUKk2fiIgIpKenw8vLCzKZDCqVClOmTEGvXr0AAF5eXnBxccHo0aOxePFimJubY/bs2bh58yaSkpKKjXXy5MkYMGCAVixz5szBTz/9hG7duiE5ORmTJk0CAM1xkpOT4e7uXuj5FWyztbUtdK7s7GxNsQ3kT08AALVaDbVaXWR8+qJWqyGEKPfzFMjKVWH8lvwFXn3fcEM9pXmFnbs4FZ2Dyog5YA4KMA/MAcAcFGAeKi4HZTm+wQpZXcydOxeffvopvLy8IJFI4OHhgb59+2L58uWaPuvXr8fq1auxZs0a+Pj44OTJkxg2bBicnJwQFhYGY2NjREdHo3///qhRowZkMhkCAwPRrl07rQVhBdLT0xEaGgpvb29MmDBB0x4UFIQZM2Zg4MCB+PjjjyGXyxEZGYl9+/ZBKtV9oDsqKgoTJ04s1H7nzh1kZWXpfNzSUKvVSEtLgxDihZ5DaS09dBs3HjyB0sIYPRpbFzs3uiJVdA4qI+aAOSjAPDAHAHNQgHmouBxkZGSUuq/BCtlatWpBJpMhJSVFqz0lJQUODg5F7qNUKrF582ZkZWXh3r17cHJyQkREBOrWravpM2LECERERKBHjx4AgMaNG+PatWuIiopCWFgYAMDPzw8nT55EWloacnJyoFQq0axZMzRt2lTrfBkZGQgJCYGlpSU2bdoEY2PtRUjh4eEYPnw4kpKSYGtri6tXr2L06NGaeBwcHIp8fgXbijJ69GiEh4drHqenp8PZ2RlKpRJWVuV7SSq1Wg2JRAKlUlnub9Jr9zKx6nh+Lsa96wP3Oo7ler7SqsgcVFbMAXNQgHlgDgDmoADzUHE5eHbqZkkMVsiamJjAz88PsbGx6Ny5M4D8BMXGxuKLL74ocV+FQoHatWsjNzcXGzduRLdu3TTbHj9+XCi5MpmsyGFqa2trAMDFixdx7NgxTJ48WbMtPT0dwcHBkMvl2Lp1a7FJlUgkcHJyAgD89NNPcHZ2xmuvvQYAaNGiBcaMGYPc3FxNERwTEwNPT88ipxUAgFwuh1wuL9QulUor5I0jkUjK/VxCCEzaloCcPDXerFcL7zZxqlRzYysiB5Udc8AcFGAemAOAOSjAPFRMDspybINOLQgPD0dYWBiaNm0Kf39/zJkzB5mZmejbty8AoHfv3qhduzaioqIAAIcPH8atW7fg6+uLW7duYcKECVCr1Rg5cqTmmB06dMCUKVPg4uICHx8fxMXFYdasWejXr5+mz4YNG6BUKuHi4oLTp09j6NCh6Ny5M4KCggD8e9msx48f48cff0R6erpmrqpSqYRMJgMAzJgxAyEhIZBKpYiOjsbUqVOxfv16zfaePXti4sSJ6N+/P0aNGoX4+HjMnTsXs2fPLv/kVmIxZ1Pw+/k7MJZJMLGTT6UqYomIiKjqMGgh2717d9y5cwfjxo1DcnIyfH19sXPnTs2CqOvXr2tV5VlZWRg7diwSExNhYWGB9u3bY9WqVbCxsdH0mTdvHiIjIzFo0CCkpqbCyckJn332GcaNG6fpk5SUhPDwcKSkpMDR0RG9e/dGZGSkZvuJEydw+PBhAEC9evW0Yr5y5Qrc3NwAADt27MCUKVOQnZ2NJk2aYMuWLZqrIwD5I767d+/G4MGD4efnh1q1amHcuHFai8aqmyc5Kkz85SwA4NO36sJDaWHgiIiIiKiqkoiiVjhRpZGeng5ra2vN5b/Kk1qtRmpqKuzs7MrtI4OZu85j/u+XUNvGFDHhATAzqVzrDSsiB5Udc8AcFGAemAOAOSjAPFRcDspS+1TP7wQZROKdR1jyZyIAIPJd70pXxBIREVHVwkKWKoQQAuO3nkGOSo1WDZQI9rF//k5EREREJWAhSxViR3wy9l28CxOZFBM7coEXERERvTgWslTuMrPzMHlb/gKvga3qwq2WuYEjIiIiopcBC1kqd//bcxFJaVmoY2uKQa3rPX8HIiIiolJgIUvl6lJqBpbtuwIAmNDBBwpjmYEjIiIiopcFC1kqN0IIRG4+gzy1QGBDOwR6c4EXERER6Q8LWSo3v/ydhEOJ9yA3kmJ8Bx9Dh0NEREQvGRayVC4ysnLx9T8LvAa3rgfnGmYGjoiIiIheNixkqVzM/e0iUjOy4VrTDAMC6ho6HCIiInoJsZAlvTuXnI4VB68CACZ25AIvIiIiKh8sZEmvhBAYt/kMVGqBYB97vO1pZ+iQiIiI6CXFQpb0alPcLRy5eh8KYynGcYEXERERlSMWsqQ3aU9y8c32BADAl23qo7aNqYEjIiIiopcZC1nSm9kxF3D3UQ7qKs3x6Vtc4EVERETli4Us6cWZ22n4v0NXAQCTOjaCiRFfWkRERFS+WG3QC1OrBSI3x0MtgNBXHPFm/VqGDomIiIiqARay9MJ+PnETJ64/hJmJDGNDGxo6HCIiIqomWMjSC3n4OAdTd5wDAAwLrA9Hay7wIiIioorBQpZeyMzd53E/Mwf17SzQ9w13Q4dDRERE1QgLWdLZ3zcfYvXh6wCASZ0awVjGlxMRERFVHFYepJOCBV5CAJ18ndDCo6ahQyIiIqJqhoUs6WTt0Rs4dTMNFnIjjGnPBV5ERERU8VjIUpndz8zB9F35C7yGt20AOyuFgSMiIiKi6oiFLJXZ9J3n8PBxLrwcLBHWwtXQ4RAREVE1xUKWyuTE9QdYe/QGAGBy50Yw4gIvIiIiMhBWIVRqKrXAuC3xAID3XquD191qGDgiIiIiqs5YyFKprTl8DfG30mGpMEJEOy9Dh0NERETVHAtZKpW7j7IxY9d5AMCIYE8oLeUGjoiIiIiqOxayVCpTd5xDelYefJys0KsZF3gRERGR4bGQpec6dvU+fj5+E0D+Ai+ZVGLgiIiIiIhYyNJz5KnUGLs5f4FX96bOeM3F1sAREREREeVjIUsl+r9D13AuOQPWpsYYxQVeREREVImwkKVipaZnYXbMBQDAyBBP1DA3MXBERERERP9iIUvF+mZ7AjKy89CkjjV6vO5i6HCIiIiItLCQpSL9lXgPm0/ehkTCBV5ERERUObGQpUJyVWrNHbx6+rvglTo2hg2IiIiIqAgsZKmQHw5ew4WUR6hhboIRwZ6GDoeIiIioSAYvZBcsWAA3NzcoFAo0a9YMR44cKbZvbm4uJk2aBA8PDygUCjRp0gQ7d+7U6qNSqRAZGQl3d3eYmprCw8MDkydPhhBC0yclJQV9+vSBk5MTzMzMEBISgosXL2q2379/H19++SU8PT1hamoKFxcXDBkyBGlpaVrnOnr0KN555x3Y2NjA1tYWwcHBOHXqlGb71atXIZFICn399ddfL5o2vVOpBf5KvIcNp1Ix658FXhEhXrAx4wIvIiIiqpwMWsiuW7cO4eHhGD9+PE6cOIEmTZogODgYqampRfYfO3YsFi9ejHnz5uHs2bMYOHAgunTpgri4OE2fadOmYdGiRZg/fz4SEhIwbdo0TJ8+HfPmzQMACCHQuXNnJCYmYsuWLYiLi4OrqysCAwORmZkJALh9+zZu376NmTNnIj4+HitXrsTOnTvRv39/zXkePXqEkJAQuLi44PDhw9i/fz8sLS0RHByM3Nxcrbh/++03JCUlab78/Pz0ncoXsjM+CW9O24Oe3x/Bt7/fQFaeGsYyCSzkRoYOjYiIiKhYEvH0UGUFa9asGV5//XXMnz8fAKBWq+Hs7Iwvv/wSERERhfo7OTlhzJgxGDx4sKbtvffeg6mpKX788UcAwLvvvgt7e3ssW7asyD4XLlyAp6cn4uPj4ePjozmvg4MDvvnmG3zyySdFxrphwwZ89NFHyMzMhJGREY4dO4bXX38d169fh7OzMwDg9OnTeOWVV3Dx4kXUq1cPV69ehbu7O+Li4uDr66tTjtLT02FtbY20tDRYWVnpdIyS7IxPwuc/nkBRLwIJgEUfvYaQRo56P29lpVarkZqaCjs7O0ilBv/AwiCYA+agAPPAHADMQQHmoeJyUJbax2BDbjk5OTh+/DhGjx6taZNKpQgMDMShQ4eK3Cc7OxsKhUKrzdTUFPv379c8btmyJZYsWYILFy6gQYMGOHXqFPbv349Zs2ZpjgFA6zhSqRRyuRz79+8vtpAtSKaRUX7KPD09UbNmTSxbtgz//e9/oVKpsGzZMjRs2BBubm5a+3bs2BFZWVlo0KABRo4ciY4dOxabl+zsbE2MQP43E8h/8ajV6mL304VKLTBh69kii9gCE385i3e87KrNVQvUajWEEHrPdVXCHDAHBZgH5gBgDgowDxWXg7Ic32CF7N27d6FSqWBvb6/Vbm9vj3PnzhW5T3BwMGbNmoWAgAB4eHggNjYW0dHRUKlUmj4RERFIT0+Hl5cXZDIZVCoVpkyZgl69egEAvLy84OLigtGjR2Px4sUwNzfH7NmzcfPmTSQlJRUb6+TJkzFgwABNm6WlJfbu3YvOnTtj8uTJAID69etj165dmmLXwsIC3377Ld544w1IpVJs3LgRnTt3xubNm4stZqOiojBx4sRC7Xfu3EFWVlZx6dTJ8RsZSE4v/pgCQFJaFnbHJcLP2VKv566s1Go10tLSIISo1n9xMwfMAcA8AMwBwBwUYB4qLgcZGRml7lulJkHOnTsXn376Kby8vCCRSODh4YG+ffti+fLlmj7r16/H6tWrsWbNGvj4+ODkyZMYNmwYnJycEBYWBmNjY0RHR6N///6oUaMGZDIZAgMD0a5dOxQ1yyI9PR2hoaHw9vbGhAkTNO1PnjxB//798cYbb+Cnn36CSqXCzJkzERoaiqNHj8LU1BS1atVCeHi4Zp/XX38dt2/fxowZM4otZEePHq21T3p6OpydnaFUKvU+tSA3Ka90/YxMYWdnp9dzV1ZqtRoSiQRKpbJa/6BiDpgDgHkAmAOAOSjAPFRcDp799L0kBitka9WqBZlMhpSUFK32lJQUODg4FLmPUqnE5s2bkZWVhXv37sHJyQkRERGoW7eups+IESMQERGBHj16AAAaN26Ma9euISoqCmFhYQAAPz8/nDx5EmlpacjJyYFSqUSzZs3QtGlTrfNlZGQgJCQElpaW2LRpE4yNjTXb1qxZg6tXr+LQoUOab+aaNWtga2uLLVu2aM7/rGbNmiEmJqbYvMjlcsjl8kLtUqlU7y8aeyvTUverTm9aiURSLvmuSpgD5qAA88AcAMxBAeahYnJQlmMb7DthYmICPz8/xMbGatrUajViY2PRokWLEvdVKBSoXbs28vLysHHjRnTq1Emz7fHjx4USIJPJipxvYW1tDaVSiYsXL+LYsWNax0lPT0dQUBBMTEywdevWQn8dFJxHIvl37mjB45Lmdpw8eRKOjpVj8ZS/ew04WitQ3OxXCQBHawX83WtUZFhEREREpWLQqQXh4eEICwtD06ZN4e/vjzlz5iAzMxN9+/YFAPTu3Ru1a9dGVFQUAODw4cO4desWfH19cevWLUyYMAFqtRojR47UHLNDhw6YMmUKXFxc4OPjg7i4OMyaNQv9+vXT9NmwYQOUSiVcXFxw+vRpDB06FJ07d0ZQUBCAf4vYx48f48cff0R6erpm0ZVSqYRMJkPbtm0xYsQIDB48GF9++SXUajWmTp0KIyMjtG7dGgDwww8/wMTEBK+++ioAIDo6GsuXL8f3339f/sktBZlUgvEdvPH5jycgAbQWfRUUt+M7eFebhV5ERERUtRi0kO3evTvu3LmDcePGITk5Gb6+vti5c6dmAdj169e1RlezsrIwduxYJCYmwsLCAu3bt8eqVatgY2Oj6TNv3jxERkZi0KBBSE1NhZOTEz777DOMGzdO0ycpKQnh4eFISUmBo6MjevfujcjISM32EydO4PDhwwCAevXqacV85coVuLm5wcvLC7/88gsmTpyIFi1aQCqV4tVXX8XOnTu1RlwnT56Ma9euwcjICF5eXli3bh3ef/99vebxRYQ0csSij17DxF/OIint34VfDtYKjO/gXa0uvUVERERVi0GvI0vPV97XkS2gUgscTryLSzfvoF4dJZrVrVUtR2J5nUDmAGAOCjAPzAHAHBRgHngdWarEZFIJmtetiboWKtjZ1YS0GhaxREREVLVUzz8piIiIiKjKYyFLRERERFUSC1kiIiIiqpJYyBIRERFRlcRCloiIiIiqJBayRERERFQl8fJblVzBZX4L7ixWntRqNTIyMqBQKKr1NfKYA+aAOcjHPDAHAHNQgHmouBwU1DyludUBC9lKLiMjAwDg7Oxs4EiIiIiIKk5GRgasra1L7MM7e1VyarUat2/fhqWlJSSS8r1JQXp6OpydnXHjxo1yvYtYZcYcMAcAc1CAeWAOAOagAPNQcTkQQiAjIwNOTk7PHfnliGwlJ5VKUadOnQo9p5WVVbV9kxZgDpgDgDkowDwwBwBzUIB5qJgcPG8ktkD1nORBRERERFUeC1kiIiIiqpJYyJKGXC7H+PHjIZfLDR2KwTAHzAHAHBRgHpgDgDkowDxUzhxwsRcRERERVUkckSUiIiKiKomFLBERERFVSSxkiYiIiKhKYiFbjSxYsABubm5QKBRo1qwZjhw5UmzfpUuX4q233oKtrS1sbW0RGBhYYv+qpCx5iI6ORtOmTWFjYwNzc3P4+vpi1apVFRht+ShLDp62du1aSCQSdO7cuXwDrABlycHKlSshkUi0vhQKRQVGW37K+lp4+PAhBg8eDEdHR8jlcjRo0ADbt2+voGjLR1ly8Pbbbxd6LUgkEoSGhlZgxPpX1tfBnDlz4OnpCVNTUzg7O2P48OHIysqqoGjLR1lykJubi0mTJsHDwwMKhQJNmjTBzp07KzBa/fvzzz/RoUMHODk5QSKRYPPmzc/dZ+/evXjttdcgl8tRr149rFy5stzjLERQtbB27VphYmIili9fLs6cOSM+/fRTYWNjI1JSUors37NnT7FgwQIRFxcnEhISRJ8+fYS1tbW4efNmBUeuX2XNw++//y6io6PF2bNnxaVLl8ScOXOETCYTO3furODI9aesOShw5coVUbt2bfHWW2+JTp06VUyw5aSsOVixYoWwsrISSUlJmq/k5OQKjlr/ypqH7Oxs0bRpU9G+fXuxf/9+ceXKFbF3715x8uTJCo5cf8qag3v37mm9DuLj44VMJhMrVqyo2MD1qKw5WL16tZDL5WL16tXiypUrYteuXcLR0VEMHz68giPXn7LmYOTIkcLJyUn8+uuv4vLly2LhwoVCoVCIEydOVHDk+rN9+3YxZswYER0dLQCITZs2ldg/MTFRmJmZifDwcHH27Fkxb948g/x+ZCFbTfj7+4vBgwdrHqtUKuHk5CSioqJKtX9eXp6wtLQUP/zwQ3mFWCFeNA9CCPHqq6+KsWPHlkd4FUKXHOTl5YmWLVuK77//XoSFhVX5QrasOVixYoWwtrauoOgqTlnzsGjRIlG3bl2Rk5NTUSGWuxf9mTB79mxhaWkpHj16VF4hlruy5mDw4MGiTZs2Wm3h4eHijTfeKNc4y1NZc+Do6Cjmz5+v1da1a1fRq1evco2zopSmkB05cqTw8fHRauvevbsIDg4ux8gK49SCaiAnJwfHjx9HYGCgpk0qlSIwMBCHDh0q1TEeP36M3Nxc1KhRo7zCLHcvmgchBGJjY3H+/HkEBASUZ6jlRtccTJo0CXZ2dujfv39FhFmudM3Bo0eP4OrqCmdnZ3Tq1AlnzpypiHDLjS552Lp1K1q0aIHBgwfD3t4ejRo1wjfffAOVSlVRYeuVPn42Llu2DD169IC5uXl5hVmudMlBy5Ytcfz4cc1H74mJidi+fTvat29fITHrmy45yM7OLjS9yNTUFPv37y/XWCuTQ4cOaeUMAIKDg0v93tEXowo9GxnE3bt3oVKpYG9vr9Vub2+Pc+fOleoYo0aNgpOTU6EXbVWiax7S0tJQu3ZtZGdnQyaTYeHChWjbtm15h1sudMnB/v37sWzZMpw8ebICIix/uuTA09MTy5cvxyuvvIK0tDTMnDkTLVu2xJkzZ1CnTp2KCFvvdMlDYmIi9uzZg169emH79u24dOkSBg0ahNzcXIwfP74iwtarF/3ZeOTIEcTHx2PZsmXlFWK50yUHPXv2xN27d/Hmm29CCIG8vDwMHDgQ//3vfysiZL3TJQfBwcGYNWsWAgIC4OHhgdjYWERHR1fZP+p0kZycXGTO0tPT8eTJE5iamlZIHByRpeeaOnUq1q5di02bNr00C1zKwtLSEidPnsTRo0cxZcoUhIeHY+/evYYOq0JkZGTg448/xtKlS1GrVi1Dh2MwLVq0QO/eveHr64tWrVohOjoaSqUSixcvNnRoFUqtVsPOzg5LliyBn58funfvjjFjxuC7774zdGgGsWzZMjRu3Bj+/v6GDqVC7d27F9988w0WLlyIEydOIDo6Gr/++ismT55s6NAqzNy5c1G/fn14eXnBxMQEX3zxBfr27QuplGVVReOIbDVQq1YtyGQypKSkaLWnpKTAwcGhxH1nzpyJqVOn4rfffsMrr7xSnmGWO13zIJVKUa9ePQCAr68vEhISEBUVhbfffrs8wy0XZc3B5cuXcfXqVXTo0EHTplarAQBGRkY4f/48PDw8yjdoPXuR90MBY2NjvPrqq7h06VJ5hFghdMmDo6MjjI2NIZPJNG0NGzZEcnIycnJyYGJiUq4x69uLvBYyMzOxdu1aTJo0qTxDLHe65CAyMhIff/wxPvnkEwBA48aNkZmZiQEDBmDMmDFVrpjTJQdKpRKbN29GVlYW7t27BycnJ0RERKBu3boVEXKl4ODgUGTOrKysKmw0FuCIbLVgYmICPz8/xMbGatrUajViY2PRokWLYvebPn06Jk+ejJ07d6Jp06YVEWq50jUPz1Kr1cjOzi6PEMtdWXPg5eWF06dP4+TJk5qvjh07onXr1jh58iScnZ0rMny90MfrQKVS4fTp03B0dCyvMMudLnl44403cOnSJc0fMwBw4cIFODo6VrkiFnix18KGDRuQnZ2Njz76qLzDLFe65ODx48eFitWCP25EFbzr/Yu8DhQKBWrXro28vDxs3LgRnTp1Ku9wK40WLVpo5QwAYmJiyvT7VC8qdGkZGczatWuFXC4XK1euFGfPnhUDBgwQNjY2mksIffzxxyIiIkLTf+rUqcLExET8/PPPWpeaycjIMNRT0Iuy5uGbb74Ru3fvFpcvXxZnz54VM2fOFEZGRmLp0qWGegovrKw5eNbLcNWCsuZg4sSJYteuXeLy5cvi+PHjokePHkKhUIgzZ84Y6inoRVnzcP36dWFpaSm++OILcf78ebFt2zZhZ2cnvv76a0M9hRem6/vhzTffFN27d6/ocMtFWXMwfvx4YWlpKX766SeRmJgodu/eLTw8PES3bt0M9RReWFlz8Ndff4mNGzeKy5cviz///FO0adNGuLu7iwcPHhjoGby4jIwMERcXJ+Li4gQAMWvWLBEXFyeuXbsmhBAiIiJCfPzxx5r+BZffGjFihEhISBALFizg5beofM2bN0+4uLgIExMT4e/vL/766y/NtlatWomwsDDNY1dXVwGg0Nf48eMrPnA9K0sexowZI+rVqycUCoWwtbUVLVq0EGvXrjVA1PpVlhw862UoZIUoWw6GDRum6Wtvby/at29fpa8X+bSyvhYOHjwomjVrJuRyuahbt66YMmWKyMvLq+Co9ausOTh37pwAIHbv3l3BkZafsuQgNzdXTJgwQXh4eAiFQiGcnZ3FoEGDqnQRJ0TZcrB3717RsGFDIZfLRc2aNcXHH38sbt26ZYCo9ef3338v8vd+wfMOCwsTrVq1KrSPr6+vMDExEXXr1jXI9ZQlQlTBzwGIiIiIqNrjHFkiIiIiqpJYyBIRERFRlcRCloiIiIiqJBayRERERFQlsZAlIiIioiqJhSwRERERVUksZImIiIioSmIhS0RERERVEgtZIqKX3IEDB9C4cWMYGxujc+fOhg6n1M6fPw8HBwdkZGTo5XgrV66EjY2NXo5VGbi5uWHOnDmGDkMvzp49izp16iAzM9PQoVAVw0KWqIro06cPJBIJBg4cWGjb4MGDIZFI0KdPH03bnTt38Pnnn8PFxQVyuRwODg4IDg7GgQMHNH2WLFmCt99+G1ZWVpBIJHj48GEFPBOqaOHh4fD19cWVK1ewcuVKvRxTIpFg8+bNejlWcUaPHo0vv/wSlpaW5XoeQ3uZClJdeXt7o3nz5pg1a5ahQ6EqhoUsURXi7OyMtWvX4smTJ5q2rKwsrFmzBi4uLlp933vvPcTFxeGHH37AhQsXsHXrVrz99tu4d++eps/jx48REhKC//73vxX2HKqrnJwcg5378uXLaNOmDerUqVPpRiRzc3OLbL9+/Tq2bdum9ccZAKSmpuLs2bNFHmf//v3lEeJLy5CvyaL07dsXixYtQl5enqFDoSqEhSxRFfLaa6/B2dkZ0dHRmrbo6Gi4uLjg1Vdf1bQ9fPgQ+/btw7Rp09C6dWu4urrC398fo0ePRseOHTX9hg0bhoiICDRv3rzUMbz99tv48ssvMWzYMNja2sLe3h5Lly5FZmYm+vbtC0tLS9SrVw87duzQ7KNSqdC/f3+4u7vD1NQUnp6emDt3rtZx9+7dC39/f5ibm8PGxgZvvPEGrl27BgA4deoUWrduDUtLS1hZWcHPzw/Hjh0rNsbLly+jU6dOsLe3h4WFBV5//XX89ttvWn2ys7MxatQoODs7Qy6Xo169eli2bJlm+5kzZ/Duu+/CysoKlpaWeOutt3D58mVNDoYNG6Z1vM6dO2sVXW5ubpg8eTJ69+4NKysrDBgwAAAwatQoNGjQAGZmZqhbty4iIyMLFXO//PILXn/9dSgUCtSqVQtdunQBAEyaNAmNGjUq9Hx9fX0RGRlZqP3q1auQSCS4d+8e+vXrB4lEgpUrV5bq+wEAy5cvh4+PD+RyORwdHfHFF19onhsAdOnSBRKJRPMYABYtWgQPDw+YmJjA09MTq1at0jqmRCLBokWL0LFjR5ibm2PKlCmFzgsA69evR5MmTVC7dm2t9lWrVqFNmzY4f/68pi0vLw8ffvghPv/8c6hUqiKP97TNmzejfv36UCgUCA4Oxo0bNzTbSvPaWbhwoWZ/e3t7vP/++5ptarUaUVFRmtw2adIEP//8c7GxvP3227h27RqGDx8OiUQCiUSi2bZx40ZN/t3c3PDtt9+W+LwePnyITz75BEqlElZWVmjTpg1OnTql2T5hwgT4+vri+++/h7u7OxQKBQBg586dePPNN2FjY4OaNWvi3Xff1bzWgX9fR9HR0WjdujXMzMzQpEkTHDp0SOv8Bw4cwNtvvw0zMzPY/n979x4UddX/AfyNsCwgyx0NClfugol5TUAfM6DVDAWvoBloOApJecFJ8kJKY+X9hmPouGpF6AjOmJhKKuQgKg7iaBI3QSJhYFBTAuL2/v3h8I2F5fb0NP54nvOa2Rn2fM8537PnnJ09+93z+WJuDpVKhcePH/e4X/z8/PDo0SOkp6d3+ToFQQMFQegTQkJCOH36dO7YsYM+Pj5Suo+PD3fu3Mnp06czJCSEJNnY2EhjY2MuX76c9fX13dZ9+fJlAuDjx4+7zTtx4kQqFArGxsYyPz+fsbGx1NXV5ZQpUxgfH8/8/HyGh4fT0tKSf/zxB0myoaGBGzZsYFZWFu/fv89vvvmGRkZGPH78uNReU1NTRkVFsbCwkPfu3eORI0f44MEDkuTQoUP57rvvMjc3l/n5+Txx4gRzcnI6bWNOTg4PHDjAO3fuMD8/n+vWraOBgYFUH0nOmTOHdnZ2TE5OZlFREX/88UcmJiaSJMvKymhhYcEZM2YwKyuLeXl5PHz4MH/55RepDz766CONc7btf5JUKpU0MTHhtm3bWFhYyMLCQpJkbGwsMzIyWFxczNOnT3PgwIH88ssvpXJnzpyhrq4uN2zYwHv37jEnJ4ebN28mSf7666/s168fb9y4IeXPzs6mjo4Oi4qKOvRDU1MTy8vLaWJiwl27drG8vJy1tbXdjgdJ7t+/nwYGBty1axfz8vJ448YN7ty5kyRZWVlJAFSr1SwvL2dlZSVJMjk5mTKZjHFxcczLy+P27dupq6vLS5cuSfUC4IABA3j48GEWFRVpjElb06ZN49KlS7Uei4iI4Msvv8zCwkI2NzczODiYDg4OLCsr05q/lVqtpkwm4+jRo3n16lXevHmTY8eOpZeXl5Snu7mTlZVFXV1dJiQksKSkhNnZ2dy9e7dU/rPPPuOQIUN47tw5FhUVUa1WUy6XMy0tTWubqqur+corr3DTpk0sLy9neXk5SfLmzZvs168fN23axLy8PKrVahoaGlKtVktllUqlNCYk6evrS39/f2ZlZTE/P5+rVq2ipaUlq6urSZIxMTHs378/J0+ezOzsbN6+fZskefLkSSYlJbGgoIC3bt2iv78/hw0bxubmZpJkcXExAXDIkCE8c+YM8/LyOGvWLCqVSjY2NpIkb926RblczvDwcObk5PDu3bvcu3cvq6qqetUvr7/+OmNiYrocR0FoSyxkBaGPaF3IVlZWUi6Xs6SkhCUlJTQwMGBVVVWHhdTJkydpbm5OAwMDenl5MTo6Wvrgaq+3C9nx48dLz5uamti/f38uWLBASisvLycAZmZmdlrPBx98wJkzZ5J8/mEOoNMPe4VCwSNHjnTbtq4MHTqUe/fuJUnm5eURAFNTU7XmjY6Opr29PRsaGrQe7+lCNiAgoNt2bd26laNGjZKee3p6cv78+Z3mnzJlCsPDw6XnkZGRfOONN7o8h6mpqcYCSJu240GStra2XLt2baf5AfDUqVMaaV5eXly8eLFG2uzZs/n2229rlFu+fHmXbSHJ4cOHc9OmTVqPtbS0cOHChRw0aJD0haS4uLjbOtVqNQHw2rVrUlpubi4B8Pr1652Wazt3kpKSaGJiwqdPn3bIV19fTyMjI169elUj/f3332dwcHCn9bdfkJLkvHnz6Ofnp5G2evVquru7ay135coVmpiYdPji6ujoyK+++ork84WsTCaTvnh0pqqqigB4584dkn8tZA8dOiTl+fnnnwmAubm5JMng4GB6e3trra83/RIYGMjQ0NAu2ycIbYmtBYLQx1hbW2Pq1Kk4cuQI1Go1pk6dCisrqw75Zs6ciYcPH+L06dOYPHky0tLSMHLkyP9IsI+Hh4f0t66uLiwtLTFs2DApbeDAgQCe72dsFRcXh1GjRsHa2hrGxsaIj49HaWkpAMDCwgKhoaFQqVTw9/fH7t27UV5eLpVduXIlwsLC4Ovriy+++ELjZ09jY2Pp0RoIV1NTg6ioKLi5ucHMzAzGxsbIzc2VzpeTkwNdXV1MnDhR6+vLycnBhAkTIJPJ/lY/jR49ukPa8ePH4e3tjZdeegnGxsZYt26d1K7Wc/v4+HRa5+LFi/Hdd9+hvr4eDQ0NSEhIwKJFi3rdtq7Go7KyEg8fPuyyHdrk5ubC29tbI83b2xu5ubkaadr6pb26ujrpp+/2dHR0cPDgQejr6+PEiRM4evSoxvaGrujp6WHMmDHS8yFDhsDMzExqY3dzx8/PD0qlEg4ODliwYAG+/fZb1NbWAgAKCwtRW1sLPz8/jXl57NgxjTnbE531ZUFBgdbtE7dv30ZNTQ0sLS01zl1cXKxxbqVSCWtra42yBQUFCA4OhoODA0xMTKS+bDsvAc33vY2NDYC/3uNdzdve9IuhoaHUn4LQE3ovugGCIPTeokWLpP2KcXFxneYzMDCAn58f/Pz8sH79eoSFhSEmJqZDAE1vtV/g6ejoaKS17vNraWkBACQmJiIqKgrbt2+Hp6cnFAoFtm7diuvXr0tl1Go1PvzwQ5w7dw7Hjx/HunXrkJqainHjxuHTTz/FvHnzkJKSgh9++AExMTFITExEYGAgcnJypDpMTEwAAFFRUUhNTcW2bdvg5OQEQ0NDzJo1SwpuMTQ07PL1dXe8X79+IKmRpi1oqX///hrPMzMzMX/+fGzcuBEqlQqmpqZITEzU2PvY3bn9/f0hl8tx6tQp6Ovro7GxUWOPZk90Nx7dteHvat8v2lhZWUn7K7VZtWoVampq8M4772DJkiVIT0+XFld/R3dzR6FQIDs7G2lpabhw4QI2bNiATz/9FFlZWaipqQEApKSkdNjbK5fL/3bbulJTUwMbGxukpaV1ONY2wE9b3/v7+0OpVOLgwYOwtbVFS0sLXn311Q7BYF29x7uaM73pl0ePHsHR0bHTugShPbGQFYQ+aPLkyWhoaICOjg5UKlWPy7m7u//jt0zSJiMjA15eXoiIiJDStF2hGjFiBEaMGIHo6Gh4enoiISFBCkRzcXGBi4sLVqxYgeDgYKjVagQGBsLJyUnr+UJDQ6UgqZqaGpSUlEjHhw0bhpaWFqSnp8PX17dDeQ8PDxw9ehSNjY1ar8paW1trXDFubm7G3bt3MWnSpC774erVq1AqlVi7dq2U1hrQ1vbcFy9exMKFC7XWoaenh5CQEKjVaujr6yMoKKjXC8/uxkOhUGDw4MG4ePFip69JJpN1uDLo5uaGjIwMhISEaJzL3d29V+0Dns8FbXcnAJ4HzCUkJCA9PR3Ozs6YNWsWfHx8kJ6e3uFqY3tNTU24efMmxo4dC+D5vWqfPHkCNzc3qb1dzR3g+Rj4+vrC19cXMTExMDMzw6VLl+Dn5we5XI7S0tJOr/Zro6+v32lftpWRkQEXFxfo6up2qGPkyJGoqKiAnp5ej69OA0B1dTXy8vJw8OBBTJgwAQD+rbs/tM7bjRs3djjm7u7e4365e/dur7+YCf/bxEJWEPogXV1d6adQbR9q1dXVmD17NhYtWgQPDw8oFArcvHkTW7ZswfTp06V8FRUVqKioQGFhIQDgzp07UCgUGDRoECwsLP5j7XV2dsaxY8dw/vx52Nvb4+uvv0ZWVhbs7e0BAMXFxYiPj8e0adNga2uLvLw8FBQU4L333kNdXR1Wr16NWbNmwd7eHmVlZcjKysLMmTO7PF9ycjL8/f2ho6OD9evXS1eOgOdR9yEhIVi0aBH27NmD4cOH48GDB6isrMScOXOwbNky7N27F0FBQYiOjoapqSmuXbuGsWPHwtXVFW+++SZWrlyJlJQUODo6YseOHT26B6+zszNKS0uRmJiIMWPGICUlBadOndLIExMTAx8fHzg6OiIoKAhNTU04e/YsPv74YylPWFiYxsKrt7obD+B5hPvSpUsxYMAATJkyBc+ePUNGRgYiIyOlPrx48SK8vb0hl8thbm6O1atXY86cORgxYgR8fX3x/fffIzk5uUPUf0+oVCqEhYWhublZY47v2bMHhw4dwuXLl6U+OHHiBAICAqBSqZCVlaX1PdFKJpMhMjISe/bsgZ6eHpYtW4Zx48ZJC9vu5s6ZM2dw//59/Otf/4K5uTnOnj2LlpYWuLq6QqFQICoqCitWrEBLSwvGjx+P33//HRkZGTAxMdFY4Lc1ePBg/PTTTwgKCoJcLoeVlRVWrVqFMWPGIDY2FnPnzkVmZib27duH/fv3a63D19cXnp6eCAgIwJYtW+Di4oKHDx8iJSUFgYGBnW7nMDc3h6WlJeLj42FjY4PS0lKsWbOm68HRIjo6GsOGDUNERASWLl0KfX19XL58GbNnz4aVlVWP+qWkpAS//fab1i+XgtCpF71JVxCEnmkN9upM22Cj+vp6rlmzhiNHjqSpqSmNjIzo6urKdevWsba2VioTExNDAB0eXQUGaQt00hasgjbBQPX19QwNDaWpqSnNzMwYHh7ONWvWcPjw4STJiooKBgQE0MbGhvr6+lQqldywYQObm5v5559/MigoiHZ2dtTX16etrS2XLVvGurq6TttYXFzMSZMm0dDQkHZ2dty3b1+HdtfV1XHFihXSOZ2cnHj48GHp+O3bt/nWW2/RyMiICoWCEyZMkO4M0NDQwPDwcFpYWHDAgAH8/PPPtQZ7te8T8nnAjqWlJY2NjTl37lzu3LmTpqamGnmSkpL42muvUV9fn1ZWVpwxY0aHeiZMmMChQ4d22gdttQ/26m48Wh04cICurq6UyWS0sbFhZGSkdOz06dN0cnKinp4elUqllL5//346ODhQJpPRxcWFx44d06gTWoLEtGlsbKStrS3PnTunkV5WVsbs7OwO+evq6njhwoUu61Sr1TQ1NWVSUhIdHBwol8vp6+urceeE7ubOlStXOHHiRJqbm9PQ0JAeHh4ad3toaWnhrl27pH6ztramSqVienp6p+3KzMykh4cH5XI5234snzx5ku7u7pTJZBw0aBC3bt2qUa79HHv69CkjIyNpa2tLmUxGOzs7zp8/n6WlpSSfv9/bjzFJpqam0s3NjXK5nB4eHkxLS9MYp9Zgr1u3bkllHj9+TAC8fPmylJaWlkYvLy/K5XKamZlRpVJJAaQ96ZfNmzdTpVJ12k+CoI0O2W6jlyAIgvD/Gkk4OzsjIiICK1eufNHN+cfExcXh9OnTOH/+/ItuivAPa2hogLOzMxISEjoEuQlCV8TWAkEQhD6kqqoKiYmJqKio6HQf7X+LJUuW4MmTJ3j27Nl//b+p/V9XWlqKTz75RCxihV4TV2QFQRD6EB0dHVhZWWH37t2YN2/ei26OIAjCCyWuyAqCIPQh4tqDIAjCX8Q/RBAEQRAEQRD6JLGQFQRBEARBEPoksZAVBEEQBEEQ+iSxkBUEQRAEQRD6JLGQFQRBEARBEPoksZAVBEEQBEEQ+iSxkBUEQRAEQRD6JLGQFQRBEARBEPoksZAVBEEQBEEQ+qT/A3EdgnJFNKjUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "array_results = feat_gen.feature_ms1_accuracy_correlations(\n", + " precursor, precursor_fragments, ms1dict, visualize=True, visualize_per_factor=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "fb1773dd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1n9JREFUeJzs3XdYU2cbBvD7kMVGUIYoggu3orjAugcqzrbuFnG1Vq27rdRa96y7to4OsK1WW1f9at17K+6tWEWrIiqyV0jO9wcmEgiQIBCQ+3dduWres56TE5qTJ+/7vIIoiiKIiIiIiIiIiIgKiZmpAyAiIiIiIiIiopKFCSkiIiIiIiIiIipUTEgREREREREREVGhYkKKiIiIiIiIiIgKFRNSRERERERERERUqJiQIiIiIiIiIiKiQsWEFBERERERERERFSompIiIiIiIiIiIqFAxIUVERERERERERIWKCSkq1gRBwLRp07TPQ0JCIAgC7t+/b7KYDBEYGAgPDw9Th5HFr7/+iurVq0Mmk6FUqVIAgFatWqFVq1bade7fvw9BEBASEmKSGKno69y5M4YNG2bqMIqsSZMmoUmTJqYOg4goy2d8UVRU75lyk/keNT8Ulevl4eGBLl265LreoUOHIAgCDh06lK/Hj4+Ph5OTE9atW5ev+83Mw8MDgYGBBXoMjeL6PjdEQX934H1V8caEFBVZ33//PQRB4P9gCsnNmzcRGBiIypUr44cffsCaNWtMHVKJ8NNPP6FGjRowNzdH1apV8e233xq87blz59CxY0fY2trCxsYGHTp0wMWLF7Osp1QqMX36dFSqVAkKhQKVKlXCrFmzkJaWlmXdlJQUfPHFF3B1dYWFhQWaNGmCvXv3GhzT8ePHsWfPHnzxxRdZlj19+hQTJ05E9erVYWlpCSsrK3h7e2PWrFmIjo7WrnfmzBmMGDEC3t7ekMlkEARB77GSkpIwZMgQ1K5dG3Z2drC2tka9evWwbNkyKJVKg2POLytXrkSvXr1QoUIFCIKQ7U3s2LFjcenSJWzfvr1wAySiYk/zw5vmYW5uDk9PT4waNQpPnz4t1FjWr1+PpUuXFuoxS4Lr169j2rRpRf7HVVNatmwZbGxs0LdvX1OHQkUA76uKN6mpAyDKzrp16+Dh4YEzZ84gLCwMVapUyXWbDz/8EH379oVCoSiECN8uhw4dglqtxrJly3Re6z179pgwqrfb6tWrMXz4cLz33nsYP348jh49itGjRyMxMVFvQiej8+fP45133oGbmxumTp0KtVqN77//Hi1btsSZM2dQrVo17boffPAB/vzzTwwePBgNGzbEqVOnMGXKFDx48CBL4jEwMBCbNm3C2LFjUbVqVYSEhKBz5844ePAg3nnnnVzP6ZtvvkHbtm2z/L2ePXsWnTt3Rnx8PD744AN4e3sDAEJDQzFv3jwcOXJE+177559/8OOPP6Ju3bqoVKkSbt++rfdYSUlJuHbtGjp37gwPDw+YmZnhxIkTGDduHE6fPo3169fnGm9+mj9/PuLi4tC4cWM8efIk2/VcXFzQvXt3LFy4EN26dSvECInobTFjxgxUrFgRycnJOHbsGFauXIl//vkHV69ehaWlpcH7eZPP+PXr1+Pq1asYO3ZsnvdhiB9++AFqtbpAj1GUXL9+HdOnT0erVq2y9JgpbvdkLVq0QFJSEuRyeb7tU6lUYtmyZRg3bhwkEkm+7VefW7duwcyM/TeKOt5XFXMiURH077//igDELVu2iI6OjuK0adP0rgdAnDp1auEGlw8GDhwouru7F+gx4uPjjVp/+vTpIgDx2bNnOa537949EYAYHBz8BtEVXca+bnmVmJgoli5dWvT399dpHzBggGhlZSVGRUXluH3nzp1Fe3t78fnz59q2x48fi9bW1uK7776rbTtz5owIQJwyZYrO9hMmTBAFQRAvXbqkbTt9+rQIQPzmm2+0bUlJSWLlypVFHx+fXM/p6dOnolQqFX/88Ued9pcvX4rlypUTnZ2dxRs3bmTZLiIiQpw5c6bO88TERFEURXHkyJGisR9Vo0aNEgGIT548MWq7N3X//n1RrVaLoiiKVlZW4sCBA7Ndd9OmTaIgCOLdu3cLKToiehsEBweLAMSzZ8/qtI8fP14EIK5fv77QYvH39y/we5miQq1Waz+XDJXXe9Q///xTBCAePHjQ6G0Li7u7e5b7l8KyZcsWEYAYFhZmkuNnll/3jYXx3cBUCuO7A++rii+mfKlIWrduHezt7eHv74/333/f4DHi+mpIqdVqTJs2Da6urrC0tETr1q1x/fr1LOPCNdseP34c48ePh6OjI6ysrNCzZ088e/Ysy7F27tyJ5s2bw8rKCjY2NvD398e1a9eyrLdt2zbUrl0b5ubmqF27NrZu3Wrw66AZo79nzx54eXnB3NwcNWvWxJYtW/Se9+HDhzFixAg4OTmhfPny2uXff/89atWqBYVCAVdXV4wcOVJniJSHhwemTp0KAHB0dNSpe2BovYKbN2/i/fffh4ODA8zNzdGwYcMsXWc1Q8eqVq0Kc3NzlC5dGu+8845RQ8Ly07Rp0yAIAq5fv47+/fvD3t7eoF5A+eHgwYN48eIFRowYodM+cuRIJCQkYMeOHTluf/ToUbRr1w6lS5fWtpUtWxYtW7bE33//jfj4eO16ALJ0a+/bty9EUcTGjRu1bZs2bYJEIsFHH32kbTM3N8eQIUNw8uRJPHz4MMeYduzYgbS0NLRr106nffXq1Xj06BEWL16M6tWrZ9nO2dkZX331lc5zCwuLHI+VE80vyhnf44XB3d092+GFmWleo7/++qsgQyKiEqJNmzYAgHv37gEA0tLSMHPmTFSuXBkKhQIeHh748ssvkZKSorNd5s94Tc2fP/74A7Nnz0b58uVhbm6Otm3bIiwsTGe7HTt2IDw8XDt8MKf6N9HR0ZBIJFi+fLm27fnz5zAzM0Pp0qUhiqK2/ZNPPoGLi4v2ub7aOhs2bIC3tzdsbGxga2uLOnXqYNmyZVmOOXbsWLi5uUGhUKBKlSqYP3++Qb2tNPdfu3fvRsOGDWFhYYHVq1e/0X7Dw8MxYsQIVKtWDRYWFihdujR69eqlc88aEhKCXr16AQBat26tfW01NZj03ZNFRkZiyJAhcHZ2hrm5OerVq4e1a9fqrKOp4bNw4UKsWbNG+75o1KgRzp49q7NuREQEBg0ahPLly0OhUKBs2bLo3r273iGEx44dQ+PGjWFubo5KlSrhl19+0Vmur4ZUq1atULt2bZw7dw6+vr6wsLBAxYoVsWrVqhxfP41t27bBw8MDlStX1mkPDAyEtbU1/v33X/j5+cHKygqurq6YMWOGzvsLABYuXAhfX1+ULl0aFhYW8Pb2xqZNm7IcK7vvCtndbxfGd4PQ0FD4+fmhTJky2tdu8ODBeTo/QRAwatQo/Pnnn6hZsyYsLCzg4+ODK1euAEi/f6tSpQrMzc3RqlWrLO+BN72W+fndgfdVxReH7FGRtG7dOrz77ruQy+Xo168fVq5cibNnz6JRo0ZG7ysoKAgLFixA165d4efnh0uXLsHPzw/Jycl61//0009hb2+PqVOn4v79+1i6dClGjRql88X9119/xcCBA+Hn54f58+cjMTERK1euxDvvvIMLFy5ob5z27NmD9957DzVr1sTcuXPx4sUL7Ye8oe7cuYM+ffpg+PDhGDhwIIKDg9GrVy/s2rUL7du311l3xIgRcHR0xNdff42EhAQA6UmX6dOno127dvjkk09w69Yt7et5/PhxyGQyLF26FL/88gu2bt2KlStXwtraGnXr1jU4xmvXrqFZs2YoV64cJk2aBCsrK/zxxx/o0aMHNm/ejJ49e2pjmTt3LoYOHYrGjRsjNjYWoaGhOH/+fJZzKUy9evVC1apVMWfOnCw3LRmp1WpERUUZtE87OzvIZLJsl1+4cAEA0LBhQ512b29vmJmZ4cKFC/jggw+y3T4lJUVv0sbS0hKpqam4evUqmjZtqv3ykXldzZCOc+fO6cTk6ekJW1tbnXUbN24MALh48SLc3NyyjenEiRMoXbo03N3dddq3b98OCwsLvP/++9lu+yZSU1MRGxuLpKQkhIaGYuHChXB3d891mG9+Xk9j2dnZoXLlyjh+/DjGjRuXb/slopLp7t27AKD9kWLo0KFYu3Yt3n//fUyYMAGnT5/G3LlzcePGDYO+/M6bNw9mZmaYOHEiYmJisGDBAgwYMACnT58GAEyePBkxMTH477//sGTJEgCAtbV1tvsrVaoUateujSNHjmD06NEA0pMZgiAgKioK169fR61atQCk/5DSvHnzbPe1d+9e9OvXD23btsX8+fMBADdu3MDx48cxZswYAEBiYiJatmyJR48e4eOPP0aFChVw4sQJBAUF4cmTJwbVvrp16xb69euHjz/+GMOGDUO1atXeaL9nz57FiRMn0LdvX5QvXx7379/HypUr0apVK1y/fh2WlpZo0aIFRo8ejeXLl+PLL79EjRo1AED738ySkpLQqlUrhIWFYdSoUahYsSL+/PNPBAYGIjo6Wvt6aKxfvx5xcXH4+OOPIQgCFixYgHfffRf//vuv9jPuvffew7Vr1/Dpp5/Cw8MDkZGR2Lt3Lx48eKCTGAwLC8P777+PIUOGYODAgfj5558RGBgIb29v7bXMzsuXL9G5c2f07t0b/fr1wx9//IFPPvkEcrk8S3IlsxMnTqBBgwZ6l6lUKnTs2BFNmzbFggULsGvXLkydOhVpaWmYMWOGdr1ly5ahW7duGDBgAFJTU7Fhwwb06tULf//9N/z9/XM8PqD/frswvhtERkaiQ4cOcHR0xKRJk1CqVCncv38/yw/Vxpzf0aNHsX37dowcORIAMHfuXHTp0gWff/45vv/+e4wYMQIvX77EggULMHjwYBw4cEBn+7xey/z+7sD7qmLMtB20iLIKDQ0VAYh79+4VRTG9m3T58uXFMWPGZFkXmbpDa7qy37t3TxTF9KE/UqlU7NGjh85206ZNEwHoDKnRbNuuXTvtsBtRFMVx48aJEolEjI6OFkVRFOPi4sRSpUqJw4YN09lnRESEaGdnp9Pu5eUlli1bVrutKIrinj17RAAGdct1d3cXAYibN2/WtsXExIhly5YV69evnyX2d955R0xLS9O2R0ZGinK5XOzQoYOoUqm07StWrBABiD///LO2berUqXqH7LVs2VJs2bKl9rm+brdt27YV69SpIyYnJ2vb1Gq16OvrK1atWlXbVq9ePZN18dZHc879+vUzaH3NuRvyyK2r/ciRI0WJRKJ3maOjo9i3b98ct69Tp47o6empc71TUlLEChUqiADETZs2iaIoips3bxYBiL/++qvO9qtWrRIBiLVr19a21apVS2zTpk2WY127dk0EIK5atSrHmN555x3R29s7S7u9vb1Yr169HLfNjiFD9n7//Xed175hw4bi5cuXc913fl7PzHIbsieKotihQwexRo0aRu2XiEo2zef9vn37xGfPnokPHz4UN2zYIJYuXVq0sLAQ//vvP/HixYsiAHHo0KE6206cOFEEIB44cEDblvkz/uDBgyIAsUaNGmJKSoq2fdmyZSIA8cqVK9o2Y4fsjRw5UnR2dtY+Hz9+vNiiRQvRyclJXLlypSiKovjixQtREARx2bJl2vUyD2UaM2aMaGtrq/P5l9nMmTNFKysr8fbt2zrtkyZNEiUSifjgwYMcY9Xcf+3atSvP+818j6pvyN/JkydFAOIvv/yibctpyF7m67V06VIRgPjbb79p21JTU0UfHx/R2tpajI2NFUXx9edd6dKldUoC/PXXXyIA8X//+58oiulD7JFp6L4+mtfnyJEj2rbIyEhRoVCIEyZM0LZp3k8Zz6Vly5YiAHHRokXatpSUFNHLy0t0cnISU1NTsz2uUqkUBUHQOYbGwIEDRQDip59+qm1Tq9Wiv7+/KJfLde5vM1+L1NRUsXbt2lnugdzd3fV+V8h8v11Y3w22bt2qd8huZoaeHwBRoVBovzeJoiiuXr1aBCC6uLho3z+iKIpBQUE637FE0fBrWVjfHXhfVTxxyB4VOevWrYOzszNat24NIL07aZ8+fbBhwwaoVCqj9rV//36kpaVlGRb16aefZrvNRx99pDPspnnz5lCpVAgPDweQ/stcdHQ0+vXrh+fPn2sfEokETZo0wcGDBwEAT548wcWLFzFw4EDY2dlp99e+fXvUrFnT4HNwdXXV/koAALa2tggICMCFCxcQERGhs+6wYcN0Cjzu27cPqampGDt2rE5RxmHDhsHW1jbXYWGGiIqKwoEDB9C7d2/ExcVpX48XL17Az88Pd+7cwaNHjwCk/0J67do13Llz542Pm5+GDx9u0HouLi7Yu3evQY969erluK+cinyam5sjKSkpx+1HjBiB27dvY8iQIbh+/TquXr2KgIAAbTFtzfadO3eGu7s7Jk6ciC1btiA8PBx//PEHJk+eDKlUqnOcpKQkvRMCmJub6+wzOy9evIC9vX2W9tjYWNjY2OS47Zto3bo19u7diz///BPDhw+HTCbT/mKZk/y8nnlhb2+P58+f5/t+iejt165dOzg6OsLNzQ19+/aFtbU1tm7dinLlyuGff/4BAIwfP15nmwkTJgCAQZ/9gwYN0vmM0vRY+vfff/Mcc/PmzfH06VPcunULQHrPjBYtWqB58+ba4eXHjh2DKIo59pAqVaoUEhISchzu/+eff6J58+ba/89qHu3atYNKpcKRI0dyjbdixYrw8/PLt/1m7KmsVCrx4sULVKlSBaVKlcL58+dzjUeff/75By4uLujXr5+2TSaTYfTo0YiPj8fhw4d11u/Tp4/O53Tm62phYQG5XI5Dhw7h5cuXOR67Zs2aOtfJ0dER1apVM+g9IpVK8fHHH2ufy+VyfPzxx4iMjNTpuZ1ZVFQURFHUe6+hMWrUKO2/NUPSUlNTsW/fPm17xmvx8uVLxMTEoHnz5gZfh8z324X13aBUqVIAgL///jvH2YSNOb+2bdvq9HzTzG7+3nvv6dy7adozX9+8XMuC+u7A+6riiUP2qEhRqVTYsGEDWrdura2DAKT/T3DRokXYv38/OnToYPD+NEmkzEN3HBwcsv0wq1Chgs5zzXqaD2bN/xA19Roy0wx30hy7atWqWdapVq2awR96VapUyVKXxtPTE0B6TYCMdRYqVqyos54mhowzrgHpHxaVKlXSLn8TYWFhEEURU6ZMwZQpU/SuExkZiXLlymHGjBno3r07PD09Ubt2bXTs2BEffvhhjsMDVSqV3hpehpBIJHB0dMx1vcyvW3bMzc2z1EfKKwsLC6SmpupdlpycnGsNpeHDh+Phw4f45ptvtLUiGjZsiM8//xyzZ8/WDp0wNzfHjh070Lt3b7z33nsAAIVCgQULFuisp4kpc30RTTya5bkR9Qx5tLW1RVxcXK7b5pWzszOcnZ0BAO+//z7mzJmD9u3b486dOzp/H5nl5/XMC1EUDa45RVSUHDlyBN988w3OnTuHJ0+eYOvWrejRo4dR+9i9ezemTp2Ka9euwdzcHC1atMCiRYtyrENEr3333Xfw9PSEVCqFs7MzqlWrpv3hKTw8HGZmZlnufVxcXFCqVCmDPvtzuxfKSeYfy+zs7GBhYaFNXhw9ehTly5fHhQsXMGvWLDg6OmLhwoXaZba2tjn+CDBixAj88ccf6NSpE8qVK4cOHTqgd+/e6Nixo3adO3fu4PLly9neA0RGRuZ6HvruDd5kv0lJSZg7dy6Cg4Px6NEjnc/LmJiYXOPRJzw8HFWrVs0yE5xmiF/ma53bdVUoFJg/fz4mTJgAZ2dnNG3aFF26dEFAQECWz9PM+9Lsz5D3iKurK6ysrHTaMt7bNm3aNMft9d1rAICZmRkqVaqU7X41/v77b8yaNQsXL17Uue8x9DM583ujsL4btGzZEu+99x6mT5+OJUuWoFWrVujRowf69++v84OiMeeX+TpqEmWZSzRo2jNf37xcy4L67sD7quKJCSkqUg4cOIAnT55gw4YN2LBhQ5bl69atMyohlRfZTSGr+fDTFK389ddf9X7ZlUpN92f1JoWg80rzekycODHLL4kampviFi1a4O7du/jrr7+wZ88e/Pjjj1iyZAlWrVqFoUOH6t324cOHBieMMnN3d9dbhDMzQ183Y5JjDg4OOU5zXLZsWahUKkRGRsLJyUnbnpqaihcvXsDV1TXXY8yePRsTJ07EtWvXYGdnhzp16uDLL78E8PpmAABq1aqFq1ev4vr163j58qW2cOW4cePQsmVLnZg0v0hlpOl1lVtMpUuX1nsjWr16dVy8eBGpqan5OvVzdt5//31MnjwZf/31l86vdpnl5/XMi5cvX6JMmTL5uk+iwpCQkIB69eph8ODBePfdd43e/t69e+jevTvGjx+PdevWISYmBuPGjcO7776b554iJU3jxo2z1CDM7E2+mOV2L5STsmXL6jwPDg5GYGAgXF1dUbFiRRw5cgQeHh4QRRE+Pj5wdHTEmDFjEB4ejqNHj8LX1zdLgiUjJycnXLx4Ebt378bOnTuxc+dOBAcHIyAgQPsDjVqtRvv27fH555/r3UfGz8js6Ls3eJP9fvrppwgODsbYsWPh4+MDOzs7CIKAvn37GlRoPT8Ycl3Hjh2Lrl27Ytu2bdi9ezemTJmCuXPn4sCBA6hfv75R+8pvDg4OEATBoKRXdo4ePYpu3bqhRYsW+P7771G2bFnIZDIEBwdj/fr1Bu0j83ujsL4bCIKATZs24dSpU/jf//6H3bt3Y/DgwVi0aBFOnToFa2tro88vu+tYkNe3oL478L6qeGJCioqUdevWwcnJCd99912WZVu2bMHWrVuxatUqgxMImuLKYWFhOkmNFy9e5PnDTDOrh5OTU469KzTH1tfFVNNd3RCaXxEy3ljevn0bAHL9JVkTw61bt3R+MUpNTcW9e/fypXeIZr8ymcyg/Tk4OGDQoEEYNGgQ4uPj0aJFC0ybNi3bhJRmWFVe5HeCzpjk2MGDB3OcndDLywtA+mwpnTt31raHhoZCrVZrl+cm88yA+/btQ/ny5bPMZicIgk6R0X/++QdqtVrnmnl5eeHgwYOIjY3VKWyuKWKbW0zVq1fH5s2bs7R37doVJ0+exObNm3WGFRQUzdDC3H5xzs/rmRf37t0rkKGARAWtU6dO6NSpU7bLU1JSMHnyZPz++++Ijo5G7dq1MX/+fO3f0Llz56BSqTBr1ixt4mHixIno3r07lEplvk4gUBK5u7tDrVbjzp07OsWwnz59iujo6CwTT+RVdgmvzJ/ZGT97mjdvjiNHjqBixYrw8vKCjY0N6tWrBzs7O+zatQvnz5/H9OnTcz22XC5H165d0bVrV6jVaowYMQKrV6/GlClTUKVKFVSuXBnx8fH53gv2Tfa7adMmDBw4EIsWLdK2JScnZ5kR1phEoru7Oy5fvgy1Wq2TxLt586Z2eV5UrlwZEyZMwIQJE3Dnzh14eXlh0aJF+O233/K0v8weP36MhIQEnZ41htzbSqVSVK5cWWcURUZqtRr//vuvTmIw8343b94Mc3Nz7N69W6dXUXBwcF5Pp9C/GzRt2hRNmzbF7NmzsX79egwYMAAbNmzA0KFDC+T8cpKXa1lQ3x14X1U8sYYUFRlJSUnYsmULunTpgvfffz/LY9SoUYiLi8syHWhO2rZtC6lUipUrV+q0r1ixIs9x+vn5wdbWFnPmzNE7flvT46Js2bLw8vLC2rVrdb4Y7927F9evXzf4eI8fP9aZESc2Nha//PILvLy8chyOBKTXmJDL5Vi+fLnOLxo//fQTYmJiDJpJJDdOTk5o1aoVVq9ere1Jk1HGHigvXrzQWWZtbY0qVaroHSamoRlWlZdHs2bN3vj8MsrPmkNt2rSBg4NDlvfmypUrYWlpqXNtnj9/jps3byIxMTHHfW7cuBFnz57NUjMss6SkJEyZMgVly5bVSRC9//77UKlUWLNmjbYtJSUFwcHBaNKkSY4z7AGAj48PXr58maW+wPDhw1G2bFlMmDBBe5OSUWRkJGbNmpXjvvV5/vy53l/qfvzxRwBZZzDMzJQ1pGJiYnD37l34+vrm636JioJRo0bh5MmT2LBhAy5fvoxevXqhY8eO2i9hmtlEg4ODoVKpEBMTg19//RXt2rVjMiofaH7kyDzj2+LFiwEgXz77AcDKykpv4j/zZ3HGHlPNmzfH/fv3sXHjRu0QPjMzM/j6+mLx4sVQKpU51o8Cst5LmJmZaYfvaO4nevfujZMnT2L37t1Zto+OjkZaWppxJ/vKm+xXIpFk+cz69ttvs9RH1Xyxz5yo0qdz586IiIjQmQk6LS0N3377LaytrXV6QRsiMTExyyzUlStXho2NTY73asZKS0vD6tWrtc9TU1OxevVqODo6wtvbO8dtfXx8EBoamu3yjPf4oihixYoVkMlkaNu2LYD06yAIgs7rfv/+fWzbti2PZ1N43w1evnyZ5T2k+bFQc30K4vxykpdrWRDfHXhfVXyxhxQVGdu3b0dcXBy6deumd3nTpk3h6OiIdevWoU+fPgbt09nZGWPGjMGiRYvQrVs3dOzYEZcuXcLOnTtRpkyZPHVnt7W1xcqVK/Hhhx+iQYMG6Nu3LxwdHfHgwQPs2LEDzZo1034Yzp07F/7+/njnnXcwePBgREVF4dtvv0WtWrUQHx9v0PE8PT0xZMgQnD17Fs7Ozvj555/x9OlTg37pcHR0RFBQEKZPn46OHTuiW7duuHXrFr7//ns0atQIH3zwgdHnr893332Hd955B3Xq1MGwYcNQqVIlPH36FCdPnsR///2HS5cuAUgvgNmqVSt4e3vDwcEBoaGh2LRpk04ByqIsv2tIzZw5EyNHjkSvXr3g5+eHo0eP4rfffsPs2bPh4OCgXXfFihWYPn26Ti+dI0eOYMaMGejQoQNKly6NU6dOITg4GB07dswyzXPv3r3h6uqKmjVrIjY2Fj///DP+/fdf7NixI0vByl69eiEoKAiRkZGoUqUK1q5di/v37+Onn37K9Zz8/f0hlUqxb98+fPTRR9p2e3t7bN26FZ07d4aXlxc++OAD7U3K+fPn8fvvv8PHx0e7fnh4OH799VcA0N50ahJW7u7u+PDDDwEAv/32G1atWoUePXqgUqVKiIuLw+7du7F371507do121oOGvldQ+p///uf9r2uVCpx+fJlbdzdunXTqXewb98+iKKI7t2759vxiYqCBw8eIDg4GA8ePNAO8504cSJ27dqF4OBgzJkzBxUrVsSePXvQu3dvfPzxx1CpVPDx8dEW46Y3U69ePQwcOBBr1qxBdHQ0WrZsiTNnzmDt2rXo0aOHdtKYN+Xt7Y2NGzdi/PjxaNSoEaytrdG1a9cct9Ekm27duoU5c+Zo21u0aIGdO3dCoVCgUaNGOe5j6NChiIqKQps2bVC+fHmEh4fj22+/hZeXl7ZH2GeffYbt27ejS5cuCAwMhLe3NxISEnDlyhVs2rQJ9+/fz9PQnjfZb5cuXfDrr7/Czs4ONWvWxMmTJ7Fv3z6ULl1aZz0vLy9IJBLMnz8fMTExUCgUaNOmjc7wfo2PPvoIq1evRmBgIM6dOwcPDw9s2rQJx48fx9KlS42eUOT27dto27YtevfujZo1a0IqlWLr1q14+vQp+vbta9S+cuLq6or58+fj/v378PT0xMaNG3Hx4kWsWbMm16R09+7d8euvv+L27dtZhkiam5tj165dGDhwIJo0aYKdO3dix44d+PLLL7V1v/z9/bF48WJ07NgR/fv3R2RkJL777jtUqVIFly9fztP5FNZ3g7Vr1+L7779Hz549UblyZcTFxeGHH36Ara2tNhFdEOeXk7xey/z+7sD7qmKsEGf0I8pR165dRXNzczEhISHbdQIDA0WZTCY+f/5cFMWsU+pqpmPNOCVpWlqaOGXKFNHFxUW0sLAQ27RpI964cUMsXbq0OHz48CzbZp5KVd+UtZp2Pz8/0c7OTjQ3NxcrV64sBgYGiqGhoTrrbd68WaxRo4aoUCjEmjVrilu2bMkyhXF23N3dRX9/f3H37t1i3bp1RYVCIVavXl38888/ddbLLnaNFStWiNWrVxdlMpno7OwsfvLJJ+LLly911pk6daoIQGdaXFHMOsWwvqlbRVEU7969KwYEBIguLi6iTCYTy5UrJ3bp0kXctGmTdp1Zs2aJjRs3FkuVKiVaWFiI1atXF2fPnp3jFL8FKbtzLkxr1qwRq1WrJsrlcrFy5crikiVLRLVarbOOJs6M78GwsDCxQ4cOYpkyZbTvi7lz5+pM060xf/58sXr16qK5ublob28vduvWTbxw4YLeeJKSksSJEyeKLi4uokKhEBs1apRl2uucdOvWTWzbtq3eZY8fPxbHjRsnenp6iubm5qKlpaXo7e0tzp49W4yJidGup/mb0/fI+F48e/as2KtXL7FChQqiQqEQraysxAYNGoiLFy8WlUqlwTHnF82U0/oemf9e+vTpI77zzjuFHiNRfgMgbt26Vfv877//FgGIVlZWOg+pVCr27t1bFEVRfPLkiVi1alXxs88+E8+fPy8ePnxYbNmypdi2bdss//8jXbl93msolUpx+vTpYsWKFUWZTCa6ubmJQUFBOlOsi2LWz3jN/38z32fo++yPj48X+/fvL5YqVcqgKes1nJycRADi06dPtW3Hjh0TAYjNmzfPsn7me6ZNmzaJHTp0EJ2cnES5XC5WqFBB/Pjjj8UnT57obBcXFycGBQWJVapUEeVyuVimTBnR19dXXLhwYa73HZr7L30M3W/me9SXL1+KgwYNEsuUKSNaW1uLfn5+4s2bN0V3d3dx4MCBOsf44YcfxEqVKokSiUTn8z/z9RJFUXz69Kl2v3K5XKxTp06WzxzN9fvmm2+ynE/GOJ8/fy6OHDlSrF69umhlZSXa2dmJTZo0Ef/44w+DXp/s3k8Z719atmwp1qpVSwwNDRV9fHxEc3Nz0d3dXVyxYkWW/emTkpIililTRpw5c6ZO+8CBA0UrKyvx7t27YocOHURLS0vR2dlZnDp1qqhSqXTW/emnn8SqVatq75+Cg4O191qZzzPjtcnt76+gvxucP39e7Nevn/a+x8nJSezSpUuW/Rt6fgDEkSNH6rRl917R9/8GQ69lYXx34H1V8SWIYgFWniMqoqKjo2Fvb49Zs2Zh8uTJpg4nWx4eHqhduzb+/vtvU4dCZJCjR4+iVatWuHnzpt5ZZCh9BqqKFStiw4YN/CWPij1BEHRm2du4cSMGDBiAa9euZSmKa21tDRcXF0yZMgW7du3C2bNntcv+++8/uLm54eTJk7nOsEVExVerVq3w/PlzXL16Nc/7mDlzJoKDg3Hnzh3t/2cCAwOxadMmg0cg0JvLj2uZH3hfVbyxhhS99TQFjjPS1FXI7yLFRCVd8+bN0aFDByxYsMDUoRRZS5cuRZ06dXjTRG+l+vXra2cQrVKlis5DU/cwMTExS507zZfKwpptjIiKr3HjxiE+Pl7vjNxU8vC+qnhjDSl6623cuBEhISHo3LkzrK2tcezYMfz+++/o0KFDvhe9JiJg586dpg6hSJs3b56pQyB6I/Hx8QgLC9M+v3fvHi5evAgHBwd4enpiwIABCAgIwKJFi1C/fn08e/YM+/fvR926deHv7w9/f38sWbIEM2bMQL9+/RAXF4cvv/wS7u7uOtPKExHpY21tjcjISFOHQUUE76uKNyak6K1Xt25dSKVSLFiwALGxsdpC53mZ1YuIiKikCw0N1SmMPX78eADAwIEDERISguDgYMyaNQsTJkzAo0ePUKZMGTRt2hRdunQBkD7L6Pr167FgwQIsWLAAlpaW8PHxwa5du2BhYWGScyIiIqLCxxpSRERERERERERUqFhDioiIiIiIiIiIChUTUkREREREREREVKhKXA0ptVqNx48fw8bGBoIgmDocIiIiKoJEUURcXBxcXV2zzAhXEvH+iYiIiHJj7P1TiUtIPX78GG5ubqYOg4iIiIqBhw8fonz58qYOw+R4/0RERESGMvT+qcQlpGxsbACkv0C2trYmjoaIiIiKotjYWLi5uWnvG0o63j8RERFRboy9fypxCSlNN3NbW1veUBEREVGOODwtHe+fiIiIyFCG3j+xKAIRERERERERERUqJqSIiIiIiIiIiKhQMSFFRERERERERESFqsTVkCIiyiu1Wo3U1FRTh0FE+UQulxs0JTERERER5T8mpIiIDJCamop79+5BrVabOhQiyidmZmaoWLEi5HK5qUMhIiIiKnGYkCIiyoUoinjy5AkkEgnc3NzYo4LoLaBWq/H48WM8efIEFSpU4Gx6RERERIWMCSkiolykpaUhMTERrq6usLS0NHU4RJRPHB0d8fjxY6SlpUEmk5k6HCIiIqICpVaLuB0Zh5hEJewsZfB0soGZmel+lDPpz/xHjhxB165d4erqCkEQsG3btly3OXToEBo0aACFQoEqVaogJCSkwOMkopJNpVIBAIf1EL1lNH/Tmr9xIiIiorfVufAojN14EeM3XsLkrVcwfuMljN14EefCo0wWk0kTUgkJCahXrx6+++47g9a/d+8e/P390bp1a1y8eBFjx47F0KFDsXv37gKOlIgIHNJD9Jbh3zQRERGVBOfCozB7xw1cfRQDW3MpyttbwtZcimuPYzB7xw2TJaVMOmSvU6dO6NSpk8Hrr1q1ChUrVsSiRYsAADVq1MCxY8ewZMkS+Pn5FVSYRERERERERETFjlotYu2JcEQnKuFR2lL7g5yVQgpLuQThUYn45UQ46rvZF/rwvWJVmffkyZNo166dTpufnx9OnjyZ7TYpKSmIjY3VeRDlxcGdf+LGrCa4c+mUqUMhKlY8PDywdOlSU4eh1aJFC6xfv97UYeRJQb2WgYGB6NGjR77v15R27doFLy8vzoxJREREJdrtyDiERcbDyUaRpXe4IAhwtFbgTmQ8bkfGFXpsxSohFRERAWdnZ502Z2dnxMbGIikpSe82c+fOhZ2dnfbh5uZWGKHSW+bXk/fR+vRQ1Ei7CYf/fWjqcIgMEhgYCEEQMHz48CzLRo4cCUEQEBgYqG179uwZPvnkE1SoUAEKhQIuLi7w8/PD8ePHAQBRUVH49NNPUa1aNVhYWKBChQoYPXo0YmJiCuuU9AoJCUGpUqUMWnf79u14+vQp+vbtW7BBvSFjzon069ixI2QyGdatW2fqUIiIiIhMJiZRidQ0FcxlEr3LzWUSpKapEJOoLOTIillCKi+CgoIQExOjfTx8+NDUIVExtO3iY+2/S6dF4kV8igmjITKcm5sbNmzYoJO0T05Oxvr161GhQgWddd977z1cuHABa9euxe3bt7F9+3a0atUKL168AAA8fvwYjx8/xsKFC3H16lWEhIRg165dGDJkSKGe05tYvnw5Bg0aBDOzt/7jr1hKTU3N1/0FBgZi+fLl+bpPIiIiouLEzlIGuVSCZKX+SVySlSrIpRLYWRb+jMPF6o7cxcUFT58+1Wl7+vQpbG1tYWFhoXcbhUIBW1tbnQeRsdSiqPM8Y4KKqChr0KAB3NzcsGXLFm3bli1bUKFCBdSvX1/bFh0djaNHj2L+/Plo3bo13N3d0bhxYwQFBaFbt24AgNq1a2Pz5s3o2rUrKleujDZt2mD27Nn43//+h7S0tBzjiIuLQ79+/WBlZYVy5cplmcwiOjoaQ4cOhaOjI2xtbdGmTRtcunRJu/zSpUto3bo1bGxsYGtrC29vb4SGhuLQoUMYNGgQYmJiIAgCBEHAtGnT9Mbw7NkzHDhwAF27dtW2iaKIadOmaXuFubq6YvTo0drlHh4emDVrFgICAmBtbQ13d3ds374dz549Q/fu3WFtbY26desiNDRU51ibN29GrVq1oFAo4OHhoa19qPHy5UsEBATA3t4elpaW6NSpE+7cuQMAuZ5TYmIiBg8eDBsbG1SoUAFr1qzR2ffDhw/Ru3dvlCpVCg4ODujevTvu37+vXa5SqTB+/HiUKlUKpUuXxueffw4x0//jDCEIAn788Uf07NkTlpaWqFq1KrZv366zzuHDh9G4cWMoFAqULVsWkyZN0nmvtGrVCqNGjcLYsWNRpkwZ+Pn54dChQxAEAbt370b9+vVhYWGBNm3aIDIyEjt37kSNGjVga2uL/v37IzExMccYu3btitDQUNy9e9fo8yMiIiJ6G3g62aCKkzWexadkuecTRRHP4lNQ1ckank42hR5bsUpI+fj4YP/+/Tpte/fuhY+Pj4kiopLq4sNoU4dAJiSKIhJT00zyyEviYPDgwQgODtY+//nnnzFo0CCddaytrWFtbY1t27YhJcXwHoAxMTGwtbWFVJrzHBnffPMN6tWrhwsXLmDSpEkYM2YM9u7dq13eq1cvbcLh3LlzaNCgAdq2bYuoqPQZPwYMGIDy5cvj7NmzOHfuHCZNmgSZTAZfX18sXboUtra2ePLkCZ48eYKJEyfqjeHYsWOwtLREjRo1tG2bN2/GkiVLsHr1aty5cwfbtm1DnTp1dLZbsmQJmjVrhgsXLsDf3x8ffvghAgIC8MEHH+D8+fOoXLkyAgICtNfm3Llz6N27N/r27YsrV65g2rRpmDJlCkJCQrT7DAwMRGhoKLZv346TJ09CFEV07twZSqUy13NatGgRGjZsiAsXLmDEiBH45JNPcOvWLQCAUqmEn58fbGxscPToURw/fhzW1tbo2LGjtvfRokWLEBISgp9//hnHjh1DVFQUtm7dmtul1mv69Ono3bs3Ll++jM6dO2PAgAHaa/bo0SN07twZjRo1wqVLl7By5Ur89NNPmDVrls4+1q5dC7lcjuPHj2PVqlXa9mnTpmHFihU4ceKENsm2dOlSrF+/Hjt27MCePXvw7bff5hhfhQoV4OzsjKNHj+bp/IiIiIiKOzMzAQN93WFnIUN4VCISUtKgUotISElDeFQi7CxkCPB1L/SC5oCJZ9mLj49HWFiY9vm9e/dw8eJFODg4oEKFCggKCsKjR4/wyy+/AACGDx+OFStW4PPPP8fgwYNx4MAB/PHHH9ixY4epToFKqLwkBejtkaRUoebXu01y7Osz/GApN+5/3R988AGCgoIQHh4OADh+/Dg2bNiAQ4cOadeRSqUICQnBsGHDsGrVKjRo0AAtW7ZE3759UbduXb37ff78OWbOnImPPvoo1xiaNWuGSZMmAQA8PT1x/PhxLFmyBO3bt8exY8dw5swZREZGQqFQAAAWLlyIbdu2YdOmTfjoo4/w4MEDfPbZZ6hevToAoGrVqtp929nZQRAEuLi45BhDeHg4nJ2ddYbrPXjwAC4uLmjXrh1kMhkqVKiAxo0b62zXuXNnfPzxxwCAr7/+GitXrkSjRo3Qq1cvAMAXX3wBHx8fPH36FC4uLli8eDHatm2LKVOmaM/3+vXr+OabbxAYGIg7d+5g+/btOH78OHx9fQEA69atg5ubG7Zt24ZevXrleE6dO3fGiBEjtMdesmQJDh48iGrVqmHjxo1Qq9X48ccftUUrg4ODUapUKRw6dAgdOnTA0qVLERQUhHfffRdA+gy2u3fn7f0cGBiIfv36AQDmzJmD5cuX48yZM+jYsSO+//57uLm5YcWKFRAEAdWrV8fjx4/xxRdf4Ouvv9Zeh6pVq2LBggXafT558gQAMGvWLDRr1gwAMGTIEAQFBeHu3buoVKkSAOD999/HwYMH8cUXX+QYo6urq/a9T0RERFQSebs7YLJ/Daw9EY6wyHg8j0+BXCpBbVc7BPi6w9vdwSRxmbSHVGhoKOrXr68dNjJ+/HjUr18fX3/9NYD0m9IHDx5o169YsSJ27NiBvXv3ol69eli0aBF+/PFH+Pn5mSR+IqLiwNHREf7+/ggJCUFwcDD8/f1RpkyZLOu99957ePz4MbZv346OHTvi0KFDaNCggU7PHo3Y2Fj4+/ujZs2a2Q6RyyhzT1YfHx/cuHEDQPpwvPj4eJQuXVrbU8va2hr37t3TDrUaP348hg4dinbt2mHevHl5GoKVlJQEc3NznbZevXohKSkJlSpVwrBhw7B169Ysww8zJuQ0E2tk7EWlaYuMjAQA3LhxQ5tI0WjWrBnu3LkDlUqFGzduQCqVokmTJtrlpUuXRrVq1bSvSU4yxqNJWmmOfenSJYSFhcHGxkb7Ojo4OCA5ORl3795FTEwMnjx5onNsqVSKhg0b5nrc3GKxsrKCra2tzuvg4+OjM5tLs2bNEB8fj//++0/b5u3tneu+nZ2dYWlpqU1Gado0x8qJhYVFrkP7iIiIiN523u4OWNrHC4v71MPsnnWwuE89LOnjZbJkFGDiHlKtWrXKsaeJvi9BrVq1woULFwowKiKinFnIJLg+wzSJcItsZsfIzeDBgzFq1CgAyFK/KSNzc3O0b98e7du3x5QpUzB06FBMnTpVZza+uLg4dOzYETY2Nti6dStksjcrgBgfH4+yZcvq9NjS0Mw0N23aNPTv3x87duzAzp07MXXqVGzYsAE9e/Y0+DhlypTBy5cvddrc3Nxw69Yt7Nu3D3v37sWIESPwzTff4PDhw9rzynh+muSKvja1Wm1wLG8i8+stCIL22PHx8fD29tY7s5yjo2OhxmIoKyurXPctCEKejxUVFVUg505ERERU3JiZCajuUnTqaps0IUVEVBwJgmD0sDlT09QQEgTBqF6lNWvWxLZt27TPY2Nj4efnB4VCge3bt2fpcZSdU6dOZXmuqeXUoEEDREREQCqVwsPDI9t9eHp6wtPTE+PGjUO/fv0QHByMnj17Qi6XQ6XSP2tIRvXr10dERARevnwJe3t7bbuFhQW6du2Krl27YuTIkahevTquXLmCBg0aGHRumdWoUQPHjx/XaTt+/Dg8PT0hkUhQo0YNpKWl4fTp09ohey9evMCtW7dQs2ZNADD4nDJr0KABNm7cCCcnp2wn8ShbtixOnz6NFi1aAADS0tK0dbvyU40aNbB582aIoqhN2h0/fhw2NjYoX758vh4rO5qeYRkL+BMRERFR0VCsipoTEVHeSCQS3LhxA9evX4dEkrWX1YsXL9CmTRv89ttvuHz5Mu7du4c///wTCxYsQPfu3QGkJ6M6dOiAhIQE/PTTT4iNjUVERAQiIiJyTZ4cP34cCxYswO3bt/Hdd9/hzz//xJgxYwAA7dq1g4+PD3r06IE9e/bg/v37OHHiBCZPnozQ0FAkJSVh1KhROHToEMLDw3H8+HGcPXtWm9Dy8PBAfHw89u/fj+fPn2c7PKt+/fooU6aMTrIoJCQEP/30E65evYp///0Xv/32GywsLODu7p6n1xkAJkyYgP3792PmzJm4ffs21q5dixUrVmgLk1etWhXdu3fHsGHDcOzYMVy6dAkffPABypUrp32tDT2nzAYMGIAyZcqge/fuOHr0KO7du4dDhw5h9OjR2mFyY8aMwbx587Bt2zbcvHkTI0aMQHR0dJ7PNzsjRozAw4cP8emnn+LmzZv466+/MHXqVIwfP16njld+WbFiBdq2bavTdurUKSgUCk5+QkRERFQEMSFFRFRC2NraZttrxtraGk2aNMGSJUvQokUL1K5dG1OmTMGwYcOwYsUKAMD58+dx+vRpXLlyBVWqVEHZsmW1j4cPH+Z47AkTJmjrBs6aNQuLFy/W9tQSBAH//PMPWrRogUGDBsHT0xN9+/bVFiGXSCR48eIFAgIC4Onpid69e6NTp06YPn06AMDX1xfDhw9Hnz594OjoqFMgOyOJRIJBgwbpDGcrVaoUfvjhBzRr1gx169bFvn378L///Q+lS5c2+vXVaNCgAf744w9s2LABtWvXxtdff40ZM2boDHsMDg6Gt7c3unTpAh8fH4iiiH/++Uc7LM3Qc8rM0tISR44cQYUKFfDuu++iRo0aGDJkCJKTk7XXfsKECfjwww8xcOBA+Pj4wMbGJsvQx5CQEJ3aT3lRrlw5/PPPPzhz5gzq1auH4cOHY8iQIfjqq6/eaL/Zef78eZbaYr///jsGDBgAS0vLAjkmEREREeWdIJaw6cJiY2NhZ2ennaqcyBA9vz+ODU+7QSGkFzseWfUAvhugvxAvvX2Sk5Nx7949VKxY0eAhalQ0RUREoFatWjh//vwb9YJ6202dOhWHDx/WW9eruHj+/DmqVauG0NBQVKxYUe86Of1t835BF18PIiIiyo2x9wvsIUVkIGWGkmtSUWnCSIgor1xcXPDTTz/pzOBKWe3cudPgXllF1f379/H9999nm4wiIiIiItMqXlV5iUwoDa/r7ijEJBNGQkRvokePHqYOocg7c+aMqUN4Yw0bNkTDhg1NHQYRERERZYM9pIgMZIbX04sr1ExIEREREREREeUVE1JEBhBFQI407XMmpIiIyFRWrlyJunXraicq8PHxwc6dO7NdX1OkPuOD9fCIiIjI1Dhkj8gQosiEFBERFQnly5fHvHnzULVqVYiiiLVr16J79+64cOECatWqpXcbW1tb3Lp1S/v8TWdRJCIiInpTTEgRGcAMapgJryekZEKKiIhMpWvXrjrPZ8+ejZUrV+LUqVPZJqQEQYCLi0thhEdERERkEA7ZIzKADLqz6jEhRURERYFKpcKGDRuQkJAAHx+fbNeLj4+Hu7s73Nzc0L17d1y7di3H/aakpCA2NlbnQURERJSfmJAiMoBU1E1ImasTTRQJERERcOXKFVhbW0OhUGD48OHYunUratasqXfdatWq4eeff8Zff/2F3377DWq1Gr6+vvjvv/+y3f/cuXNhZ2enfbi5uRXUqRAREVEJxYQUkQHYQ4qIiIqSatWq4eLFizh9+jQ++eQTDBw4ENevX9e7ro+PDwICAuDl5YWWLVtiy5YtcHR0xOrVq7Pdf1BQEGJiYrSPhw8fFtSpEBERUQnFhBSRAWSZekgpRCakiAzVqlUrjB071tRhFKgWLVpg/fr1pg6DMujbty8WLVpk6jAKjFwuR5UqVeDt7Y25c+eiXr16WLZsmUHbymQy1K9fH2FhYdmuo1AotLP4aR5EREQlgVot4mZELE7/+wI3I2KhVou5b1TEFJdzYEKKyABSMU3nOXtIUXEQGBgIQRAwfPjwLMtGjhwJQRAQGBiobXv27Bk++eQTVKhQAQqFAi4uLvDz88Px48e166xZswatWrWCra0tBEFAdHR0rnFs2bIFM2fOzI9TwqFDhww+bmHZvn07nj59ir59++q0X7hwAb169YKzszPMzc1RtWpVDBs2DLdv39auM3r0aHh7e0OhUMDLyyvLvm/duoXWrVtr91GpUiV89dVXUCqVWdY1VF6uYXH01VdfYfbs2YiJiTF1KIVCrVYjJSXFoHVVKhWuXLmCsmXLFnBURERExcu58CiM3XgR4zdewuStVzB+4yWM3XgR58KjTB2awYrTOTAhRWSArEP2WEOKigc3Nzds2LABSUmvk6jJyclYv349KlSooLPue++9hwsXLmDt2rW4ffs2tm/fjlatWuHFixfadRITE9GxY0d8+eWXBsfg4OAAGxubNz+ZImr58uUYNGgQzMxef6T+/fffaNq0KVJSUrBu3TrcuHEDv/32G+zs7DBlyhSd7QcPHow+ffro3bdMJkNAQAD27NmDW7duYenSpfjhhx8wderUPMebl2tYWN4k0ZZZ7dq1UblyZfz222/5ts+iIigoCEeOHMH9+/dx5coVBAUF4dChQxgwYAAAICAgAEFBQdr1Z8yYgT179uDff//F+fPn8cEHHyA8PBxDhw411SkQEREVOefCozB7xw1cfRQDW3MpyttbwtZcimuPYzB7x40imdDJrLidAxNSRAZgDykqrho0aAA3Nzds2bJF27ZlyxZUqFAB9evX17ZFR0fj6NGjmD9/Plq3bg13d3c0btwYQUFB6Natm3a9sWPHYtKkSWjatKnBMWQesvf999+jatWqMDc3h7OzM95//33tspSUFIwePRpOTk4wNzfHO++8g7NnzwIA7t+/j9atWwMA7O3tdXp45bQd8Lpn1Y4dO1C3bl2Ym5ujadOmuHr1qk6sx44dQ/PmzWFhYQE3NzeMHj0aCQkJ2Z7bs2fPcODAAXTt2lXblpiYiEGDBqFz587Yvn072rVrh4oVK6JJkyZYuHChTt2e5cuXY+TIkahUqZLe/VeqVAmDBg1CvXr14O7ujm7dumHAgAE4evRoLq969vJyDTMLCQlBqVKlsHv3btSoUQPW1tbo2LEjnjx5ol1HrVZjxowZKF++vLYH2K5du7TL79+/D0EQsHHjRrRs2RLm5uZYt24dAgMD0aNHD8yZMwfOzs4oVaoUZsyYgbS0NHz22WdwcHBA+fLlERwcnGucXbt2xYYNG/J8nkVVZGQkAgICUK1aNbRt2xZnz57F7t270b59ewDAgwcPdK7Fy5cvMWzYMNSoUQOdO3dGbGwsTpw4kW0RdCIiopJGrRax9kQ4ohOV8ChtCSuFFBIzAVYKKdwdLBGTpMQvJ8KL7NA3oHieAxNSRAZgDynSIYpAaoJpHqLxHyCDBw/W+fL+888/Y9CgQTrrWFtbw9raGtu2bTN42E9ehIaGYvTo0ZgxYwZu3bqFXbt2oUWLFtrln3/+OTZv3oy1a9fi/PnzqFKlCvz8/BAVFQU3Nzds3rwZQPpQtidPnmhr5uS0XUafffYZFi1ahLNnz8LR0RFdu3bV9sq5e/cuOnbsiPfeew+XL1/Gxo0bcezYMYwaNSrb8zl27BgsLS1Ro0YNbdvu3bvx/PlzfP7553q3KVWqVJ5eOwAICwvDrl270LJlS23bunXrtNcvu8ebJLCyk5iYiIULF+LXX3/FkSNH8ODBA0ycOFG7fNmyZVi0aBEWLlyIy5cvw8/PD926dcOdO3d09jNp0iSMGTMGN27cgJ+fHwDgwIEDePz4MY4cOYLFixdj6tSp6NKlC+zt7XH69GkMHz4cH3/8cY6zxAFA48aNcebMmQJ9T5vCTz/9hPv37yMlJQWRkZHYt2+fNhkFpCdgQ0JCtM+XLFmC8PBwpKSkICIiAjt27NBJSBMREZV0tyPjEBYZDycbBQRB0FkmCAIcrRW4ExmP25FxJoowd8XxHKSmDoCoOMjcQ0ouppooEioSlInAHFfTHPvLx4DcyqhNPvjgAwQFBSE8PBwAcPz4cWzYsAGHDh3SriOVShESEoJhw4Zh1apVaNCgAVq2bIm+ffuibt26+Rb+gwcPYGVlhS5dusDGxgbu7u7aL8YJCQlYuXIlQkJC0KlTJwDADz/8gL179+Knn37S9o4BACcnJ21ix5DtNKZOnar94r527VqUL18eW7duRe/evTF37lwMGDBA25uratWqWL58OVq2bImVK1fC3Nw8y/mEh4fD2dlZZ7ieJuFSvXr1fHvdfH19cf78eaSkpOCjjz7CjBkztMu6deuGJk2a5Lh9uXLl8i0WDaVSiVWrVqFy5coAgFGjRunEtXDhQnzxxRfa2lrz58/HwYMHsXTpUnz33Xfa9caOHYt3331XZ98ODg5Yvnw5zMzMUK1aNSxYsACJiYnaYYZBQUGYN28ejh07lqV2V0aurq5ITU1FREQE3N3d8+3ciYiI6O0Sk6hEapoK5jKF3uXmMgmex6cgJjH/ygvkt+J4DkxIERlAmqmHlFQsOn/ERLlxdHSEv78/QkJCIIoi/P39UaZMmSzrvffee/D398fRo0dx6tQp7Ny5EwsWLMCPP/6oU/z8TbRv3x7u7u6oVKkSOnbsiI4dO6Jnz56wtLTE3bt3oVQq0axZM+36MpkMjRs3xo0bN7LdpzHb+fj4aP/t4OCAatWqade5dOkSLl++jHXr1mnXEUURarUa9+7d0+kFpZGUlJQlUSXmoRdbbjZu3Ii4uDhcunQJn332GRYuXKjtgWVjY2OSGl2WlpbaZBQAlC1bFpGRkQCA2NhYPH78WOeaAECzZs1w6dIlnbaGDRtm2XetWrV0knzOzs6oXbu29rlEIkHp0qW1x8uOhYUFgPTeXERERETZsbOUQS6VIFmpgpUia5okWamCXCqBnaXMBNEZpjieAxNSRAbInICSsYdUySazTO+pZKpj58HgwYO1Q88y9k7JzNzcHO3bt0f79u0xZcoUDB06FFOnTs23hJSNjQ3Onz+PQ4cOYc+ePfj6668xbdo0nXpPphIfH4+PP/4Yo0ePzrIscwF4jTJlyuDly5c6bZ6engCAmzdv6iTA3oSbmxsAoGbNmlCpVPjoo48wYcIESCQSrFu3Dh9//HGO2+/cuRPNmzfPl1g0ZDLdmxlBEPKUjLOyytrjT9++9bWp1eoc960Zsuno6Gh0XERERFRyeDrZoIqTNa49joGlXKIz5E0URTyLT0FtVzt4OhXdiXqK4zmwhhSRATLXkJIyIVWyCUL6sDlTPDKNBzdUx44dkZqaCqVSqa3TY4iaNWvmWNQ7L6RSKdq1a4cFCxbg8uXLuH//Pg4cOIDKlStDLpfj+PHj2nWVSiXOnj2rLb4sl8sBpE9br2HIdhqnTp3S/vvly5e4ffu2tudTgwYNcP36dVSpUiXLQ3PczOrXr4+IiAidpFSHDh1QpkwZLFiwQO820dHRhrxM2VKr1VAqldpkTLdu3XDx4sUcH/p6IRUkW1tbuLq66lwTIH24aGEW0r569SrKly+vt0cgERERkYaZmYCBvu6ws5AhPCoRCSlpUKlFJKSkITwqEXYWMgT4usPMLG/34oWhOJ4De0gRGSBzDSkO2aPiRiKRaIemSSSSLMtfvHiBXr16YfDgwahbty5sbGwQGhqKBQsWoHv37tr1IiIiEBERgbCwMADAlStXYGNjgwoVKmjrO+Xk77//xr///osWLVrA3t4e//zzD9RqNapVqwYrKyt88skn2lpRFSpU0NYOGjJkCADA3d0dgiDg77//RufOnWFhYQFra+tct9OYMWMGSpcuDWdnZ0yePBllypRBjx49AABffPEFmjZtilGjRmHo0KGwsrLC9evXsXfvXqxYsULv+dSvXx9lypTB8ePH0aVLFwDpPX5+/PFH9OrVC926dcPo0aNRpUoVPH/+HH/88QcePHignfktLCwM8fHxiIiIQFJSEi5evAggPREol8uxbt06yGQy1KlTBwqFAqGhoQgKCkKfPn20PYaMHbL3ptfQUJ999hmmTp2KypUrw8vLC8HBwbh48aLOkMj81LZtW/Ts2VOnCP3Ro0fRoUOHAjkeERERvV283R0w2b8G1p4IR1hkPJ7Hp0AulaC2qx0CfN3h7Z5/90kFpbidAxNSRAbQ9JBKFeSQi6nsIUXFkq2tbbbLrK2t0aRJEyxZskRbk8nNzQ3Dhg3TFpIGgFWrVmH69Ona55oZ8oKDgw0a1leqVCls2bIF06ZNQ3JyMqpWrYrff/8dtWrVAgDMmzcParUaH374IeLi4tCwYUPs3r0b9vb2ANKLc0+fPh2TJk3CoEGDEBAQgJCQkFy305g3bx7GjBmDO3fuwMvLC//73/+0vZ/q1q2Lw4cPY/LkyWjevDlEUUTlypXRp0+fbM9HIpFg0KBBWLdunTYhBQDdu3fHiRMnMHfuXPTv3x+xsbFwc3NDmzZtMGvWLO16Q4cOxeHDh7XPNQXe7927Bw8PD0ilUsyfPx+3b9+GKIpwd3fHqFGjMG7cuFxf6+wYcg1btWoFDw8PnZnajDV69GjExMRgwoQJiIyMRM2aNbF9+3ZUrVo1z/vMyd27d/H8+XPt8+TkZGzbtg27du0qkOMRERHR28fb3QH13exxOzIOMYlK2FnK4OlkU6R6FeWmOJ2DIBZE9dUiLDY2FnZ2doiJicnxyxlRRt8t/Aoj479FjFkp2KmjESl1hdNX2RdZprdLcnIy7t27h4oVK+qdaY2KvkOHDqF169Z4+fKldna+/BIREYFatWrh/Pnzb81Mbu7u7pg+fXq+1Q4zhZUrV2Lr1q3Ys2dPtuvk9LfN+wVdfD2IiIgoN8beL7CGFJEBND2klFJrAICZKsWU4RBREeLi4oKffvoJDx48MHUo+eLatWuws7NDQECAqUN5IzKZDN9++62pwyAiIiKibHDIHpEBNDWkRIUNkAqYqVMhiqLOzAVEVHJp6lC9DWrVqoXLly+bOow3NnToUFOHQEREREQ5YA8pIgPIXhUxN1Ok95CSQ4ln8ewlRVRctGrVCqIo5vtwPSIiIiIiyhsmpIgMIH01ZE8tT5/JSg4lwl8kmjIkIiIiIiIiomKLCSkiA2h6SKXJXvWQElS4/yzOlCERERERERERFVtMSBEZQIr0GlKqV0XNAeDRs2gTRUOmUsImJSV66/FvmoiIiMh0WNScyACve0hZadv+exFjqnCokMlkMgiCgGfPnsHR0ZHF7IneAqIo4tmzZxAEATKZzNThEBEREZU4TEgRGUD6KiGlkr5OSEVERZsoGipsEokE5cuXx3///Yf79++bOhwiyieCIKB8+fKQSCSmDoWIiIioxGFCisgAZupXs+zJFFBLFDBTpSAxkUXNSxJra2tUrVoVSqXS1KEQUT6RyWRMRhERERGZCBNSRAYwU6cCAKQyBUSJAlClIDUlycRRUWGTSCT88kpEREREVEyo1SJuR8YhJlEJO0sZPJ1sYGZW8spvFNXXgQkpIgNoekhJ5ApAqgBSAVVqMkRRZD0hIiIiIiKiIuZceBTWnghHWGQ8UtNUkEslqOJkjYG+7vB2dzB1eIWmKL8OnGWPyAASUdNDyhyCVAEgvdB5YqrKlGERERERERFRJufCozB7xw1cfRQDW3MpyttbwtZcimuPYzB7xw2cC48ydYiFoqi/DkxIERlAok4DAMgUrxNSCigRn5JmyrCIiIiIiIgoA7VaxNoT4YhOVMKjtCWsFFJIzARYKaRwd7BETJISv5wIh1otmjrUAlUcXgcmpIhyoVKLkCJ9yJ5MroAgNQcAyAUl4pKZkCIiIiIiIioqbkfGISwyHk42iizlVQRBgKO1Anci43E7Ms5EERaO4vA6MCFFlItkpQpyvOohJbcApHIAgBxp7CFFRERERERUhMQkKpGapoK5TP9kROYyCVLTVIhJfLtnzy4OrwMTUkS5SFKqIM/QQwqvekgpoEQ8e0gREREREREVGXaWMsilEiQr9df7TVamF/a2s5QVcmSFqzi8DkxIEeUiWamC7FUPKTOZApBoekgpEZ/ydmfViYiIiIiIihNPJxtUcbLGs/gUiKJufSRRFPEsPgVVnazh6WRjoggLR3F4HZiQIspFxiF7kMhf95BiDSkiIiIiIqIixcxMwEBfd9hZyBAelYiElDSo1CISUtIQHpUIOwsZAnzdYWYm5L6zYqw4vA5MSBHlIilVDZmQMSGV3kOKs+wREREREREVPd7uDpjsXwO1XO0Qm5yG/14mIjY5DbVd7TDZvwa83R1MHWKhKOqvg8kTUt999x08PDxgbm6OJk2a4MyZMzmuv3TpUlSrVg0WFhZwc3PDuHHjkJycXEjRUkmUnPa6hhQkckCiAJBe1Jw9pIiIqLCtXLkSdevWha2tLWxtbeHj44OdO3fmuM2ff/6J6tWrw9zcHHXq1ME///xTSNESERGZhre7A5b28cLiPvUwu2cdLO5TD0v6eJk8CVPYivLrYNKE1MaNGzF+/HhMnToV58+fR7169eDn54fIyEi9669fvx6TJk3C1KlTcePGDfz000/YuHEjvvzyy0KOnEqSpNQMQ/akmYqas4cUEREVsvLly2PevHk4d+4cQkND0aZNG3Tv3h3Xrl3Tu/6JEyfQr18/DBkyBBcuXECPHj3Qo0cPXL16tZAjJyIiKlxmZgKqu9iiSaXSqO5i+9YP08tOUX0dTJqQWrx4MYYNG4ZBgwahZs2aWLVqFSwtLfHzzz/rXf/EiRNo1qwZ+vfvDw8PD3To0AH9+vXLtVcV0ZtI0qkhJdMO2ZODNaSIiKjwde3aFZ07d0bVqlXh6emJ2bNnw9raGqdOndK7/rJly9CxY0d89tlnqFGjBmbOnIkGDRpgxYoVhRw5ERER0WsmS0ilpqbi3LlzaNeu3etgzMzQrl07nDx5Uu82vr6+OHfunDYB9e+//+Kff/5B586dCyVmKpkyzrIHiUKnqDl7SBERkSmpVCps2LABCQkJ8PHx0bvOyZMnde63AMDPzy/b+y0ASElJQWxsrM6DiIiIKD9JTXXg58+fQ6VSwdnZWafd2dkZN2/e1LtN//798fz5c7zzzjsQRRFpaWkYPnx4jkP2UlJSkJKSon3OGyoyVkpqKqSCOv2JRJ7+QHoPqfhkpQkjIyKikurKlSvw8fFBcnIyrK2tsXXrVtSsWVPvuhEREXrvtyIiIrLd/9y5czF9+vR8jZmIiIgoI5MXNTfGoUOHMGfOHHz//fc4f/48tmzZgh07dmDmzJnZbjN37lzY2dlpH25uboUYMb0NUjIWzZfK0+tIgTWkiIjIdKpVq4aLFy/i9OnT+OSTTzBw4EBcv3493/YfFBSEmJgY7ePhw4f5tm8iIiIiwIQ9pMqUKQOJRIKnT5/qtD99+hQuLi56t5kyZQo+/PBDDB06FABQp04dJCQk4KOPPsLkyZNhZpY1vxYUFITx48drn8fGxjIpRUZJzdDDDpLXCSnOskdERKYil8tRpUoVAIC3tzfOnj2LZcuWYfXq1VnWdXFxMep+CwAUCgUUCkX+Bk1ERESUgcl6SMnlcnh7e2P//v3aNrVajf3792dbAyExMTFL0kkikQAARFHUu41CodBOi6x5EBlDmZqhh5REnl5HCoCcNaSIiKiIUKvVOiUKMvLx8dG53wKAvXv3Znu/RURERFQYTNZDCgDGjx+PgQMHomHDhmjcuDGWLl2KhIQEDBo0CAAQEBCAcuXKYe7cuQDSZ5VZvHgx6tevjyZNmiAsLAxTpkxB165dtYkpovyW9iohpRKkkAgCh+wREZFJBQUFoVOnTqhQoQLi4uKwfv16HDp0CLt37waQ9f5pzJgxaNmyJRYtWgR/f39s2LABoaGhWLNmjSlPg4iIiEo4kyak+vTpg2fPnuHrr79GREQEvLy8sGvXLm3hzQcPHuj0iPrqq68gCAK++uorPHr0CI6OjujatStmz55tqlOgEkCp1CSk5JAAGYbsKRGXnAZRFCEIgukCJCKiIq9ly5YYMmQIevXqBQsLizfaV2RkJAICAvDkyRPY2dmhbt262L17N9q3bw8g6/2Tr68v1q9fj6+++gpffvklqlatim3btqF27dpvFAcREVFRplaLuB0Zh5hEJewsZfB0soGZGb+3FSWCmN1Yt7dUbGws7OzsEBMTw+F7ZJCFv/2FiWEBSJbawfyrB8CljcDWj3BUVRsfKr/EndmdIJMUq/kBiIgoF/l9vzB27FisX78eKSkp6N27N4YMGYKmTZvmQ6SFg/dPRERUnJwLj8LaE+EIi4xHapoKcqkEVZysMdDXHd7uDqYO761l7P0Cv0UT5SJNmV6TQ20mT2/Q9JASOFyPiIgMs3TpUjx+/BjBwcGIjIxEixYtULNmTSxcuDBLwXEiIiLKu3PhUZi94wauPoqBrbkU5e0tYWsuxbXHMZi94wbOhUeZOkR6hQkpolyoUl8lpCSy9IYMNaSIiIgMJZVK8e677+Kvv/7Cf//9h/79+2PKlClwc3NDjx49cODAAVOHSEREVKyp1SLWnghHdKISHqUtYaWQQmImwEohhbuDJWKSlPjlRDjU6hI1UKzIYkKKKBdiWnoNKTFTDykmpIiIKC/OnDmDqVOnYtGiRXByckJQUBDKlCmDLl26YOLEiaYOj4iIqNi6HRmHsMh4ONkostT5FQQBjtYK3ImMx+3IOBNFSBmZtKg5UXGgUqam/0P6KiEleV3UnIiIyBCRkZH49ddfERwcjDt37qBr1674/fff4efnp71hDgwMRMeOHbFw4UITR0tERFQ8xSQqkZqmgrlMoXe5uUyC5/EpiEnkd7migAkpolyIaelD9iDR9JAyBwAoBP5PjIiIDFO+fHlUrlwZgwcPRmBgIBwdHbOsU7duXTRq1MgE0REREb0d7CxlkEslSFaqYKXImu5IVqYXOLezlJkgOsqMCSmiXKi1CalXWXbZq4QUe0gREZGB9u/fj+bNm+e4jq2tLQ4ePFhIEREREb19PJ1sUMXJGtcex8BSLtEZtieKIp7Fp6C2qx08nWxMGCVpsIYUUW5U6UP2BKmmqDkTUkREZJypU6ciOjo6S3tsbCzatGlT+AERERG9hczMBAz0dYedhQzhUYlISEmDSi0iISUN4VGJsLOQIcDXHWZmQu47owLHhBRRLsQ0TULqVQ8pFjUnIiIjHT58GKmpqVnak5OTcfToURNERERE9HbydnfAZP8aqOVqh9jkNPz3MhGxyWmo7WqHyf414O3uYOoQ6RUO2SPKhaBKBcwAM21CKmMNKU4XSkRE2bt8+TKA9GEC169fR0REhHaZSqXCrl27UK5cOVOFR0RE9FbydndAfTd73I6MQ0yiEnaWMng62bBnVBHDhBRRDpQqNcRXCSmJXLeHFMBeUkRElDMvLy8IggBBEPQOzbOwsMC3335rgsiIiIjebmZmAqq72Jo6DMoBE1JEOYhJUkL+KukkfVXMXNNDCgAUyDr8goiISOPevXsQRRGVKlXCmTNndGbXk8vlcHJygkQiMWGERERERKbBhBRRDtITUioAGYbsmUkhCmYQRDV7SBERUY7c3d0BAGq12sSREBERERUtTEgR5SBjDylIXs2yJwjpvaSUia/qSBEREWW1fft2dOrUCTKZDNu3b89x3W7duhVSVERERERFAxNSRDmISVJCJqSlP8lQO0qUKCAoE6GAEiLrmhMRkR49evRAREQEnJyc0KNHj2zXEwQBKpWq8AIjIiIiKgKYkCLKQWySEnK8SkhpekgB2uSUOYfsERFRNjIO0+OQPSIiIiJdZqYOgKgoi0lSQqZNSGXoIfWqsDmLmhMRUV5FR0ebOgQiIiIik2FCiigHMYnK14XLJfLXCzQJKdaQIiIiA8yfPx8bN27UPu/VqxccHBxQrlw5XLp0yYSREREREZmG0QmphISEgoiDqEiKzthDSvo6ISW+GrLHWfaIiMgQq1atgpubGwBg79692LdvH3bt2oVOnTrhs88+M3F0RERERIXP6ISUs7MzBg8ejGPHjhVEPERFSkySEnJNUfOMPaQkmiF7TEgREVHuIiIitAmpv//+G71790aHDh3w+eef4+zZsyaOjoiIiKjwGZ2Q+u233xAVFYU2bdrA09MT8+bNw+PHjwsiNiKT060hlXHIHntIERGR4ezt7fHw4UMAwK5du9CuXTsAgCiKnGGPiIiISiSjE1I9evTAtm3b8OjRIwwfPhzr16+Hu7s7unTpgi1btiAtLa0g4iQyiZgkJeR6akhph+wJLGpORES5e/fdd9G/f3+0b98eL168QKdOnQAAFy5cQJUqVUwcHREREVHhy3NRc0dHR4wfPx6XL1/G4sWLsW/fPrz//vtwdXXF119/jcTExPyMk8gkYpOUkGtrSL2eZU9b1Jw9pIiIyABLlizBqFGjULNmTezduxfW1tYAgCdPnmDEiBEmjo6IiIio8EnzuuHTp0+xdu1ahISEIDw8HO+//z6GDBmC//77D/Pnz8epU6ewZ8+e/IyVqNDp1pCSadtfFzVnDykiIsqdTCbDxIkTs7SPGzfOBNEQERERmZ7RCaktW7YgODgYu3fvRs2aNTFixAh88MEHKFWqlHYdX19f1KhRIz/jJDIJ3SF7GXpISVhDioiIjHPnzh0cPHgQkZGRUKvVOsu+/vprE0VFREREZBpGJ6QGDRqEvn374vjx42jUqJHedVxdXTF58uQ3Do7IlJQqNRJTVZDJ9RU1fzVkT2BCioiIcvfDDz/gk08+QZkyZeDi4gJBELTLBEFgQoqIiIhKHKMTUk+ePIGlpWWO61hYWGDq1Kl5DoqoKIhJSk82va4hpaeoOXtIERGRAWbNmoXZs2fjiy++MHUoREREREWC0UXNbWxsEBkZmaX9xYsXkEgk+RIUUVGQmJI+DbdCeDUdt74eUkxIERGRAV6+fIlevXrly77mzp2LRo0awcbGBk5OTujRowdu3bqV4zYhISEQBEHnYW5uni/xEBFR8adWi7gZEYvT/77AzYhYqNWiqUOiEsDoHlKiqP+NmZKSArlcrncZUXEkIv29rq+GlChhUXMiIjJcr169sGfPHgwfPvyN93X48GGMHDkSjRo1QlpaGr788kt06NAB169fh5WVVbbb2dra6iSuMg4bJCKikutceBTWnghHWGQ8UtNUkEslqOJkjYG+7vB2dzB1ePQWMzghtXz5cgDpNy8//vijdrpiAFCpVDhy5AiqV6+e/xESmZgMWWfZy1hDSpO4IiIiyk6VKlUwZcoUnDp1CnXq1IFMJtNZPnr0aIP3tWvXLp3nISEhcHJywrlz59CiRYtstxMEAS4uLsYFTkREb7Vz4VGYveMGohOVcLJRwFymQLJShWuPYzB7xw1M9q/BpBQVGIMTUkuWLAGQ3kNq1apVOsPz5HI5PDw8sGrVqvyPkMjEtD2kpBl6SHHIHhERGWHNmjWwtrbG4cOHcfjwYZ1lgiAYlZDKLCYmBgDg4JDzF4b4+Hi4u7tDrVajQYMGmDNnDmrVqqV33ZSUFKSkpGifx8bG5jk+IiIqmtRqEWtPhCM6UQmP0pbanrNWCiks5RKERyXilxPhqO9mDzMz9qql/GdwQurevXsAgNatW2PLli2wt7cvsKCIihL9PaRY1JyIiAynuY/Kb2q1GmPHjkWzZs1Qu3btbNerVq0afv75Z9StWxcxMTFYuHAhfH19ce3aNZQvXz7L+nPnzsX06dMLJGYiIioabkfGISwyHk42iizDuAVBgKO1Anci43E7Mg7VXWxNFCW9zYwuan7w4EEmo6hEkSJrUXPOskdERHmRmpqKW7duIS0tLV/2N3LkSFy9ehUbNmzIcT0fHx8EBATAy8sLLVu2xJYtW+Do6IjVq1frXT8oKAgxMTHax8OHD/MlXiIiKjpiEpVITVPBXKZ/cjJzmQSpaSrEJPI7DxUMg3pIjR8/HjNnzoSVlRXGjx+f47qLFy/Ol8CIigqJJiFlluHPRZI+ZM9cYFFzIiLKXWJiIj799FOsXbsWAHD79m1UqlQJn376KcqVK4dJkyYZvc9Ro0bh77//xpEjR/T2csqJTCZD/fr1ERYWpne5QqGAQqHQu4yIiN4OdpYyyKUSJCtVsFJkTQ0kK9MLnNtZyvRsTfTmDEpIXbhwAUqlUvvv7HC2FnrbCFBDIrwqWp4xIcUeUkREZISgoCBcunQJhw4dQseOHbXt7dq1w7Rp04xKSImiiE8//RRbt27FoUOHULFiRaPjUalUuHLlCjp37mz0tkRE9HbwdLJBFSdrXHscA0u5ROf7vCiKeBafgtqudvB0sjFhlPQ2MyghdfDgQb3/JnrbSaF+/SRDQopFzYmIyBjbtm3Dxo0b0bRpU50b/lq1auHu3btG7WvkyJFYv349/vrrL9jY2CAiIgIAYGdnBwsLCwBAQEAAypUrh7lz5wIAZsyYgaZNm6JKlSqIjo7GN998g/DwcAwdOjSfzpCIqHCp1SJuR8YhJlEJO0sZPJ1sWHjbSGZmAgb6umP2jhsIj0qEo7UC5rL0HlPP4lNgZyFDgK+7wa8rrwkZy+Ci5tmJjY3FgQMHUL16dVSvXj0/YiIqMrTD9YBsekhxyB4REeXu2bNncHJyytKekJBgdA/zlStXAgBatWql0x4cHIzAwEAAwIMHD2Bm9rpU6MuXLzFs2DBERETA3t4e3t7eOHHiBGrWrGnciRARFQHnwqOw9kQ4wiLjkZqWPqysipM1Bvq6w9s95xlHSZe3uwMm+9fQvp7P41Mgl0pQ29UOAUa8nrwmlBdGJ6R69+6NFi1aYNSoUUhKSkLDhg1x//59iKKIDRs24L333iuIOIlMQppNQkpb1FxgDykiIspdw4YNsWPHDnz66acAXpc5+PHHH+Hj42PUvkRRzHWdQ4cO6TxfsmQJlixZYtRxiIiKonPhUZi94waiE5VwslHAXKZAslKFa49jMHvHDUz2r8EEiJG83R1Q380+z72beE0or4xOSB05cgSTJ08GAGzduhWiKCI6Ohpr167FrFmzmJCit0p2CSlNUXMO2SMiIkPMmTMHnTp1wvXr15GWloZly5bh+vXrOHHiBA4fPmzq8IiIigW1WsTaE+GITlTCo7SlNrlvpZDCUi5BeFQifjkRjvpu9hwqZiQzMwHVXWyN3o7XhN6EWe6r6IqJiYGDQ3p2c9euXXjvvfdgaWkJf39/3LlzJ98DJDIl3RpSGaZDZVFzIiIywjvvvIOLFy8iLS0NderUwZ49e+Dk5ISTJ0/C29vb1OERERULtyPjEBYZDycbRZbhzoIgwNFagTuR8bgdGWeiCEseXhN6E0b3kHJzc8PJkyfh4OCAXbt2YcOGDQDSaxOYm5vne4BEpqStIWUmBTL+DzZDUXO1nu2IiIgyq1y5Mn744QdTh0FEVGzFJCqRmqaCuUyhd7m5TILn8SmISeSPxoWF14TehNE9pMaOHYsBAwagfPnycHV11RbUPHLkCOrUqZPf8RGZlEzIkJDKQDPLnkxQAeq0wg6LiIiKGYlEgsjIyCztL168gEQi0bMFERFlZmcpg1yaPgucPsnK9GLadpayQo6s5OI1oTdhdA+pESNGoHHjxnj48CHat2+vncGlUqVKmDVrVr4HSGRKOj2kMpJm+AUgLQWQ6/9FgIiICMi+EHlKSgrkcnkhR0NEVDx5OtmgipM1rj2OgaVcojNETBRFPItPQW1XO3g62ZgwypKF14TehNEJKSB9ppiGDRvqtPn7++dLQERFiTS7hJTkdQJKVKYUYkRERFScLF++HEB6HY0ff/wR1tbW2mUqlQpHjhxB9erVTRUeEVGxYmYmYKCvO2bvuIHwqEQ4WitgLkvvnfMsPgV2FjIE+LqzeHYh4jWhN2F0QkqlUiEkJAT79+9HZGQk1GrdCjoHDhzIt+CITE2iqRCVOSFlJkGqKIFcUAFpyYUfGBERFQtLliwBkP4r8apVq3SG58nlcnh4eGDVqlWmCo+IqNjxdnfAZP8aWHsiHGGR8XgenwK5VILarnYI8HWHt7uDqUMscXhNKK+MTkiNGTMGISEh8Pf3R+3atbNU0jfWd999h2+++QYRERGoV68evv32WzRu3Djb9aOjozF58mRs2bIFUVFRcHd3x9KlS9G5c+c3ioNIH1l2PaQApEAOOZIgMCFFRETZuHfvHgCgdevW2LJlC+zt7U0cERFR8eft7oD6bva4HRmHmEQl7Cxl8HSyYS8cE+I1obwwOiG1YcMG/PHHH/mSANq4cSPGjx+PVatWoUmTJli6dCn8/Pxw69YtODk5ZVk/NTUV7du3h5OTEzZt2oRy5cohPDwcpUqVeuNYiDITxQw1pCRZi/ClQAYbJLGHFBER5ergwYOmDoGI6K1iZiaguoutqcOgDHhNyFhGJ6TkcjmqVKmSLwdfvHgxhg0bhkGDBgEAVq1ahR07duDnn3/GpEmTsqz/888/IyoqCidOnIBMlp4g8PDwyJdYiPR5XUMq6wxIKXiVpEpjDSkiIsoZSx4QERER6TIzdoMJEyZg2bJl2c4WY6jU1FScO3cO7dq1ex2MmRnatWuHkydP6t1m+/bt8PHxwciRI+Hs7IzatWtjzpw5UKn0TzFJ9KayrSEFIEV8lZBSMSFFREQ5GzNmDMaMGQOVSoXatWujXr16Og8iIiKiksboHlLHjh3DwYMHsXPnTtSqVUvbU0ljy5YtBu3n+fPnUKlUcHZ21ml3dnbGzZs39W7z77//4sCBAxgwYAD++ecfhIWFYcSIEVAqlZg6darebVJSUpCS8jphEBsba1B8RAAgFXKqIZX+3mcNKSIiyk1+ljwgIiIiehsYnZAqVaoUevbsWRCx5EqtVsPJyQlr1qyBRCKBt7c3Hj16hG+++SbbhNTcuXMxffr0Qo6U3havh+zpryEFgEP2iIgoV/lZ8oCIiIjobWB0Qio4ODhfDlymTBlIJBI8ffpUp/3p06dwcXHRu03ZsmUhk8l0pkyuUaMGIiIikJqaCrlcnmWboKAgjB8/Xvs8NjYWbm5u+XIO9PaT5FhD6tX7jT2kiIgoF5qSBytWrHjjGYqJiIiI3gZGJ6QAIC0tDYcOHcLdu3fRv39/2NjY4PHjx7C1tYW1tbVB+5DL5fD29sb+/fvRo0cPAOk9oPbv349Ro0bp3aZZs2ZYv3491Go1zMzSy1/dvn0bZcuW1ZuMAgCFQgGFQmH8SRIBkBpSQ4o9pIiIKBf5VfKAiIiI6G1hdEIqPDwcHTt2xIMHD5CSkoL27dvDxsYG8+fPR0pKClatWmXwvsaPH4+BAweiYcOGaNy4MZYuXYqEhATtrHsBAQEoV64c5s6dCwD45JNPsGLFCowZMwaffvop7ty5gzlz5mD06NHGngaRQV4P2dNXQyo9CcoaUkRElBtTljwgIiIiKoqMTkiNGTMGDRs2xKVLl1C6dGlte8+ePTFs2DCj9tWnTx88e/YMX3/9NSIiIuDl5YVdu3ZpC50/ePBA2xMKANzc3LB7926MGzcOdevWRbly5TBmzBh88cUXxp4GkUG0CSkJa0gREVHe5VfJAyIiIqK3hdEJqaNHj+LEiRNZhsh5eHjg0aNHRgcwatSobIfoHTp0KEubj48PTp06ZfRxiPIi5xpSrxJSKvaQIiIiIiIiIjKG0QkptVoNlUqVpf2///6DjY1NvgRFVFQYVENKyYQUERFl1aBBA+zfvx/29vaoX79+jsXMz58/X4iREREREZme0QmpDh06YOnSpVizZg0AQBAExMfHY+rUqejcuXO+B0hkSlJB00Mq+yF7AofsERGRHt27d9dOrKKZwIWIiIiI0hmdkFq0aBH8/PxQs2ZNJCcno3///rhz5w7KlCmD33//vSBiJDIZaTZD9qRmZtqi5mplUmGHRURExcDUqVP1/puIiIiI8pCQKl++PC5duoSNGzfi0qVLiI+Px5AhQzBgwABYWFgURIxEJiPJZpY9c5kZlEJ6DyllShLkmTckIiIiIiIiomwZnZA6cuQIfH19MWDAAAwYMEDbnpaWhiNHjqBFixb5GiCRKWVXQ0oQBAhSc0AElKnsIUVERERERERkDDNjN2jdujWioqKytMfExKB169b5EhRRUSFFWvo/JFlrSAkycwBAWgqLmhMREREREREZw+iElCiKemeJefHiBaysrPIlKKKi4nUPKUmWZWavElJq9pAiIiIiIiIiMorBQ/beffddAOlDlQIDA7WzxgCASqXC5cuX4evrm/8REplQdjWkAECisAQSALWSPaSIiIiIiIiIjGFwQsrOzg5Aeg8pGxsbnQLmcrkcTZs2xbBhw/I/QiITkgr6a0gBgFSe/jegTmNCioiIsqdWq3H48GEcPXoU4eHhSExMhKOjI+rXr4927drBzc3NqP3NnTsXW7Zswc2bN2FhYQFfX1/Mnz8f1apVy3G7P//8E1OmTMH9+/dRtWpVzJ8/H507d36TUyMiIiLKM4MTUsHBwQAADw8PTJw4kcPz6K0nIkMNKbOsNaRkivQhe2BCioiI9EhKSsKiRYuwcuVKREVFwcvLC66urrCwsEBYWBi2bduGYcOGoUOHDvj666/RtGlTg/Z7+PBhjBw5Eo0aNUJaWhq+/PJLdOjQAdevX8/2/uzEiRPo168f5s6diy5dumD9+vXo0aMHzp8/j9q1a+fnaRMREREZxOhZ9qZOnVoQcRAVSZIcakjJFZYAACEtpTBDIiKiYsLT0xM+Pj744Ycf0L59e8hkWX/cCA8Px/r169G3b19MnjzZoN7mu3bt0nkeEhICJycnnDt3LtvZjpctW4aOHTvis88+AwDMnDkTe/fuxYoVK7Bq1ao8nB0RERHRmzG6qPnTp0/x4YcfwtXVFVKpFBKJROdB9DaR5lBDSm7xKiGlYkKKiIiy2rNnD/744w907txZbzIKANzd3REUFIQ7d+6gTZs2eTpOTEwMAMDBwSHbdU6ePIl27drptPn5+eHkyZN6109JSUFsbKzOg4iIiCg/Gd1DKjAwEA8ePMCUKVNQtmxZvTPuEb0ttD2kJFm/SJi/SkhJmJAiIiI9atSoYfC6MpkMlStXNvoYarUaY8eORbNmzXIcehcREQFnZ2edNmdnZ0REROhdf+7cuZg+fbrR8RAREREZyuiE1LFjx3D06FF4eXkVQDhERYtMW0Mq65+KuXl6QkqqZkKKiIjyJiEhIcehdrkZOXIkrl69imPHjuVrXEFBQRg/frz2eWxsrNHF14mIiIhyYnRCys3NDaIoFkQsREVOTjWkLF8VjpWKqYUZEhERvUXCwsLQunVrqFQqo7cdNWoU/v77bxw5cgTly5fPcV0XFxc8ffpUp+3p06dwcXHRu75CoYBCoTA6JiIiIiJDGV1DaunSpZg0aRLu379fAOEQFS051ZCytEhPSMmYkCIiokIkiiJGjRqFrVu34sCBA6hYsWKu2/j4+GD//v06bXv37oWPj09BhUlERESUI6N7SPXp0weJiYmoXLkyLC0tsxTpjIqKyrfgiExNKmgSUllrSFlbpyek5FACogiwnhoREWWSU6FxAHnqGTVy5EisX78ef/31F2xsbLR1oOzs7GBhYQEACAgIQLly5TB37lwAwJgxY9CyZUssWrQI/v7+2LBhA0JDQ7FmzRqjj09ERESUH4xOSC1durQAwiAqmnLqIWVtaZ2+CCLUaakwk3FoAxER6UpJScEnn3yCOnXq6F0eHh5udPHwlStXAgBatWql0x4cHIzAwEAAwIMHD2Bm9rojvK+vL9avX4+vvvoKX375JapWrYpt27blWAidiIiIqCAZnZAaOHBgQcRBVCTlVEPKxsZG+++ExATY2DEhRUREury8vODm5pbt/dOlS5eMTkgZUsvz0KFDWdp69eqFXr16GXUsIqLsqNUibkfGISZRCTtLGTydbGBmxhEDRGQ4gxJSsbGxsLW11f47J5r1iN4GOfWQUijMtf+OT4iHjV3OwzKIiKjk8ff3R3R0dLbLHRwcEBAQUHgBERHlg3PhUVh7IhxhkfFITVNBLpWgipM1Bvq6w9ud98REZBiDElL29vZ48uQJnJycUKpUKQh6auWIoghBEPJUC4GoqNImpCRZa0gJZmZIhhzmSEVcfALKFnJsRERU9H355Zc5Lndzc0NwcHAhRUNE9ObOhUdh9o4biE5UwslGAXOZAslKFa49jsHsHTcw2b8Gk1JEZBCDElIHDhzQFuU8ePBggQZEVJTk1EMKAJSQwRypSE5KKMSoiIiIiIgKn1otYu2JcEQnKuFR2lLbUcFKIYWlXILwqET8ciIc9d3sOXyPiHJlUEKqZcuWev9N9LZ7XUMqm4SUIAfEBCQnJRZiVEREVFzcvn0b0dHRaNy4sbZt//79mDVrFhISEtCjR49ce1ERERUVtyPjEBYZDycbRZZRM4IgwNFagTuR8bgdGYfqLizlQkQ5M8t9FaKSSyrk3EMqTUgfyqdMZkKKiIiy+uKLL/D3339rn9+7dw9du3aFXC6Hj48P5s6dyxmMiajYiElUIjVNBXNZ1gl/AMBcJkFqmgoxicpCjoyIiiMmpIhykNuQPZWZHACQkppSWCEREVExEhoaik6dOmmfr1u3Dp6enti9ezeWLVuGpUuXIiQkxHQBEhEZwc5SBrlUgmSl/rrBycr0Aud2llnrrxIRZcaEFFEOJLkkpNRm6R+2qSnJhRUSEREVI8+fP0f58uW1zw8ePIiuXbtqn7dq1Qr37983QWRERMbzdLJBFSdrPItPgSiKOstEUcSz+BRUdbKGp5ONiSIkouKECSmiHEhzqSElvkpIKZmQIiIiPRwcHPDkyRMAgFqtRmhoKJo2bapdnpqamuVLHRFRUWVmJmCgrzvsLGQIj0pEQkoaVGoRCSlpCI9KhJ2FDAG+7ixoTkQGyVNCKi0tDfv27cPq1asRFxcHAHj8+DHi4+PzNTgiU9P2kJJkk5CSvEpIpTIhRUREWbVq1QozZ87Ew4cPsXTpUqjVarRq1Uq7/Pr16/Dw8DBZfERExvJ2d8Bk/xqo5WqH2OQ0/PcyEbHJaajtaofJ/jXg7e5g6hCJqJgwaJa9jMLDw9GxY0c8ePAAKSkpaN++PWxsbDB//nykpKRg1apVBREnkUnIchmyh1c1pNKUqYUUERERFSezZ89G+/bt4e7uDolEguXLl8PKykq7/Ndff0WbNm1MGCERkfG83R1Q380etyPjEJOohJ2lDJ5ONuwZRURGMTohNWbMGDRs2BCXLl1C6dKlte09e/bEsGHD8jU4IlMSRTHXGlKQpiek2EOKiIj08fDwwI0bN3Dt2jU4OjrC1dVVZ/n06dN1akwRERUXZmYCqrvYmjoMIirGjE5IHT16FCdOnIBcLtdp9/DwwKNHj/ItMKKiILcaUpCk/x2olJxlj4iI9JNKpahXr57eZdm1ExEREb3tjE5IqdVqqFRZp/n877//YGPD2RTo7SIRcu4hZSZVAADUTEgREZEeM2bMMGi9r7/+uoAjISIiIipajE5IdejQAUuXLsWaNWsAAIIgID4+HlOnTkXnzp3zPUAiU8qthpTwasieOo01pIiIKKtp06bB1dUVTk5O2c6mJwgCE1JERERU4hidkFq0aBH8/PxQs2ZNJCcno3///rhz5w7KlCmD33//vSBiJDKZ3GpImTEhRUREOejUqRMOHDiAhg0bYvDgwejSpQvMzPI0yTERERHRW8XoO6Ly5cvj0qVL+PLLLzFu3DjUr18f8+bNw4ULF+Dk5FQQMRKZjLaGlESmd7lEnj5kT0zjkD0iIspqx44duHv3Lpo0aYLPPvsM5cqVwxdffIFbt26ZOjQiIiIikzK6h1RycjLMzc3xwQcfFEQ8REXK6x5SEv3LpZqElLKwQiIiomLG1dUVQUFBCAoKwpEjRxAcHIxGjRqhTp062LdvHywsLEwdIhEREVGhM7qHlJOTEwYOHIi9e/dCrVYXRExERYY0lyF70lc9pKDmkD0iIspdo0aN0Lp1a9SoUQMXLlyAUskfNIiIiKhkMjohtXbtWiQmJqJ79+4oV64cxo4di9DQ0IKIjcjkcktIyWTpCSlBlQq1Wn+xWiIiopMnT2LYsGFwcXHBt99+i4EDB+Lx48ewtbU1dWhEREREJmF0Qqpnz574888/8fTpU8yZMwfXr19H06ZN4enpafDUxkTFgqiGRHiVZDLTX0NK9qqHlAxpSFSqCisyIiIqJhYsWICaNWuie/fusLa2xtGjR3H27FmMGDECpUqVMnV4RERERCZjdA0pDRsbGwwaNAiDBg3C9evXMWDAAEyfPp3TFtPbQ50hwZRdDalXPaTkSENiShqsFXn+kyIiorfQpEmTUKFCBfTu3RuCICAkJETveosXLy7cwIiIiIhMLM/fnpOTk7F9+3asX78eu3btgrOzMz777LP8jI3IpAR12usn2QzZE6Sve0jFp6SB80wSEVFGLVq0gCAIuHbtWrbrCIJQiBERERERFQ1GJ6R2796N9evXY9u2bZBKpXj//fexZ88etGjRoiDiIzIdMfeEFCRyAIBMSENiKofsERGRrkOHDpk6BCIqotRqEbcj4xCTqISdpQyeTjYwM2OCuqTj+4JKEqMTUj179kSXLl3wyy+/oHPnzpDJ9NfWISrudHpISbJ5n79qlyMNCSlp+tchIiIiIsrgXHgU1p4IR1hkPFLTVJBLJajiZI2Bvu7wdncwdXhkInxfUEljdFHzp0+f4o8//kD37t2ZjKK3W8YaUkI2fyqaHlJgDykiItI1b948JCYmGrTu6dOnsWPHjgKOiIiKgnPhUZi94wauPoqBrbkU5e0tYWsuxbXHMZi94wbOhUeZOkQyAb4vqCQyKCEVGxur/bcoioiNjc32QfS2ENRKAIASEiC7+h6vElLyVzWkiIiINK5fvw53d3eMGDECO3fuxLNnz7TL0tLScPnyZXz//ffw9fVFnz59YGNjY8JoiagwqNUi1p4IR3SiEh6lLWGlkEJiJsBKIYW7gyVikpT45UQ41GrR1KFSIeL7gkoqgxJS9vb2iIyMBACUKlUK9vb2WR6a9rz47rvv4OHhAXNzczRp0gRnzpwxaLsNGzZAEAT06NEjT8clyonwqodUGvTPsAcAkL7uIZXEHlJERJTBL7/8gn379kGpVKJ///5wcXGBXC6HjY0NFAoF6tevj59//hkBAQG4efOmwfU4jxw5gq5du8LV1RWCIGDbtm05rn/o0CEIgpDlERERkQ9nSUTGuB0Zh7DIeDjZKLJMaCAIAhytFbgTGY/bkXEmipBMge8LKqkMqiF14MABODikj1k9ePBgvgawceNGjB8/HqtWrUKTJk2wdOlS+Pn54datW3Byyn7Osvv372PixIlo3rx5vsZDpPWqh5Qqp4RUhqLmREREmdWrVw8//PADVq9ejcuXLyM8PBxJSUkoU6YMvLy8UKZMGaP3mZCQgHr16mHw4MF49913Dd7u1q1bsLW11T7P6T6LiApGTKISqWkqmMsUepebyyR4Hp+CmERlIUdGpsT3BZVUBiWkWrZsqf13xYoV4ebmliVzK4oiHj58aHQAixcvxrBhwzBo0CAAwKpVq7Bjxw78/PPPmDRpkt5tVCoVBgwYgOnTp+Po0aOIjo42+rhEudEUNVfm9GeSoYYUERFRdszMzODl5QUvL6833lenTp3QqVMno7dzcnJCqVKl3vj4RJR3dpYyyKUSJCtVsFJkvcdMVqYXsrazZK3ekoTvCyqpjC5qXrFiRZ0aCBpRUVGoWLGiUftKTU3FuXPn0K5du9cBmZmhXbt2OHnyZLbbzZgxA05OThgyZEiux0hJSWGdK8obdSqAXIbsvZplT8GEFBERFXFeXl4oW7Ys2rdvj+PHj+e4Lu+fiAqGp5MNqjhZ41l8CkRRtx6QKIp4Fp+Cqk7W8HRiTbmShO8LKqmMTkiJopildxQAxMfHw9zc3Kh9PX/+HCqVCs7Ozjrtzs7O2dY1OHbsGH766Sf88MMPBh1j7ty5sLOz0z7c3NyMipFKrjSlJiHFHlJERFR8lS1bFqtWrcLmzZuxefNmuLm5oVWrVjh//ny22/D+iahgmJkJGOjrDjsLGcKjEpGQkgaVWkRCShrCoxJhZyFDgK87zMyymVCH3kp8X1BJZdCQPQAYP348gPSialOmTIGlpaV2mUqlwunTp/OlG3pO4uLi8OGHH+KHH34wuOZCUFCQNnYgfcZA3lSRIVJTUgAAaUIOXWOZkCIioiKuWrVqqFatmva5r68v7t69iyVLluDXX3/Vuw3vn4gKjre7Ayb718DaE+EIi4zH8/gUyKUS1Ha1Q4CvO7zdHUwdIpkA3xdUEhmckLpw4QKA9B5SV65cgVwu1y6Ty+WoV68eJk6caNTBy5QpA4lEgqdPn+q0P336FC4uLlnWv3v3Lu7fv4+uXbtq29RqdfqJSKW4desWKleurLONQqGAQqG/OBxRTpQpyQAAtWBADykWNSciomKkcePGOHbsWLbLef9EVLC83R1Q380etyPjEJOohJ2lDJ5ONuwBU8LxfUEljcEJKc3seoMGDcKyZct0ZmnJK7lcDm9vb+zfvx89evQAkJ5g2r9/P0aNGpVl/erVq+PKlSs6bV999RXi4uKwbNky/nJH+UqpTO8hpTIkIcUeUkREZICwsDDcvXsXLVq0gIWFRbalEAraxYsXUbZs2UI/LhG9ZmYmoLrLm3+norcL3xdUkhickNIIDg7O1wDGjx+PgQMHomHDhmjcuDGWLl2KhIQE7ax7AQEBKFeuHObOnQtzc3PUrl1bZ3vNbDGZ24neVFpqeg0ptVnuQ/ZY1JyIiHLy4sUL9OnTBwcOHIAgCLhz5w4qVaqEIUOGwN7eHosWLTJ4X/Hx8QgLC9M+v3fvHi5evAgHBwdUqFABQUFBePToEX755RcAwNKlS1GxYkXUqlULycnJ+PHHH3HgwAHs2bMn38+TiIiIyFBGJ6QAIDQ0FH/88QcePHiA1Fdf2jW2bNli1L769OmDZ8+e4euvv0ZERAS8vLywa9cubaHzBw8ewMzM6NrrRG9M00NKzLGHVHqyij2kiIgoJ+PGjYNUKsWDBw9Qo0YNbXufPn0wfvx4oxJSoaGhaN26tfa5ptbTwIEDERISgidPnuDBgwfa5ampqZgwYQIePXoES0tL1K1bF/v27dPZBxEREVFhMzohtWHDBgQEBMDPzw979uxBhw4dcPv2bTx9+hQ9e/bMUxCjRo3SO0QPAA4dOpTjtiEhIXk6JlFu0l4lpAzpIcWEFBER5WTPnj3YvXs3ypcvr9NetWpVhIeHG7WvVq1aZZkWPKPM90aff/45Pv/8c6OOQURERFTQjO56NGfOHCxZsgT/+9//IJfLsWzZMty8eRO9e/dGhQoVCiJGIpNQKdN7/4kSefYrSdMLvkoFNQRRVRhhERFRMZSQkKAzQ7FGVFQUi4cTERFRiWR0Quru3bvw9/cHkF6UPCEhAYIgYNy4cVizZk2+B0hkKqpXPaRglvuQPQAQ1OwlRURE+jVv3lxb0wkABEGAWq3GggULOHSOiIiISiSjh+zZ29sjLi4OAFCuXDlcvXoVderUQXR0NBITE/M9QCJTUacZ0EMqwzJBnZr9ekREVKItWLAAbdu2RWhoKFJTU/H555/j2rVriIqKwvHjx00dHhEREVGhM7qHVIsWLbB3714AQK9evTBmzBgMGzYM/fr1Q9u2bfM9QCJTUb1KSGXsBZVFhvpSEiakiIgoG7Vr18bt27fxzjvvoHv37khISMC7776LCxcuoHLlyqYOj4iIiKjQGd1DasWKFUhOTgYATJ48GTKZDCdOnMB7772Hr776Kt8DJDIVTQ8pIceElBnSIIEUKpiJykKKjIiIiiM7OztMnjzZ1GEQERERFQlGJ6QcHBy0/zYzM8OkSZPyNSCiokLUJqRyGLIHQCXIIBVVMFMzIUVERNl7+fIlfvrpJ9y4cQMAULNmTQwaNEjn3oqIiIiopDBoyF5sbKzBD6K3haaHFKQ5J6TShPQeVExIERFRdo4cOQIPDw8sX74cL1++xMuXL7F8+XJUrFgRR44cMXV4RERERIXOoB5SpUqVgiAIOa4jiiIEQYBKpcqXwIhMTpWeYDLLNSGV/mfEhBQREWVn5MiR6NOnD1auXAmJRAIAUKlUGDFiBEaOHIkrV66YOEIiIiKiwmVQQurgwYMFHQdRkSOq0ntISXJLSIEJKSIiyllYWBg2bdqkTUYBgEQiwfjx4/HLL7+YMDIiIiIi0zAoIdWyZcuCjoOo6DGwh5SKQ/aIiCgXDRo0wI0bN1CtWjWd9hs3bqBevXomioqIiIjIdIwuag4AR48exerVq/Hvv//izz//RLly5fDrr7+iYsWKeOedd/I7RiKTEF4lpHLtIaUZssdZ9oiIKBujR4/GmDFjEBYWhqZNmwIATp06he+++w7z5s3D5cuXtevWrVvXVGESERERFRqjE1KbN2/Ghx9+iAEDBuD8+fNISUkBAMTExGDOnDn4559/8j1IIpNQvxqyJ1PkuBqLmhMRUW769esHAPj888/1LhMEgfU4qcRTq0XcjoxDTKISdpYyeDrZwMws5zq2byO+DkRUUhidkJo1axZWrVqFgIAAbNiwQdverFkzzJo1K1+DIzIlQZ0GgAkpIiJ6c/fu3TN1CERF2rnwKKw9EY6wyHikpqkgl0pQxckaA33d4e3uYOrwCg1fByIqSYxOSN26dQstWrTI0m5nZ4fo6Oj8iImoSDBTKwEBkMlY1JyIiN6Mu7u7qUMgKrLOhUdh9o4biE5UwslGAXOZAslKFa49jsHsHTcw2b9GiUjG8HUgopLGzNgNXFxcEBYWlqX92LFjqFSpUr4ERWRqoihqa0JJ5Tn3kNIUNZe8GuJHRESkz927d/Hpp5+iXbt2aNeuHUaPHo27d++aOiwik1KrRaw9EY7oRCU8SlvCSiGFxEyAlUIKdwdLxCQp8cuJcKjVoqlDLVB8HYioJDI6ITVs2DCMGTMGp0+fhiAIePz4MdatW4eJEyfik08+KYgYiQqdUiVCKqbX8MgtIaUpai6whxQREWVj9+7dqFmzJs6cOYO6deuibt26OH36NGrVqoW9e/eaOjwik7kdGYewyHg42SggCLp1kgRBgKO1Anci43E7Ms5EERYOvg5EVBIZPWRv0qRJUKvVaNu2LRITE9GiRQsoFApMnDgRn376aUHESFTokpQqyJBeQyrXIXvsIUVERLmYNGkSxo0bh3nz5mVp/+KLL9C+fXsTRUZkWjGJSqSmqWCeTc1Oc5kEz+NTEJP4dv/wx9eBiEoio3tICYKAyZMnIyoqClevXsWpU6fw7NkzzJw5E0lJSQURI1GhS86QkJLmUtRcKaQnrMyYkCIiomzcuHEDQ4YMydI+ePBgXL9+3QQRERUNdpYyyKUSJCv1zy6ZrEwv7G1nKSvkyAoXXwciKomMTkhpyOVy1KxZE40bN4ZMJsPixYtRsWLF/IyNyGSSlSpIhfQbAkGacw8ppZCesJKokgs8LiIiKp4cHR1x8eLFLO0XL16E0//bu+/wqKr8f+Dve6elTxLSISQgEHoxSCSugksk8GUVxIKsuxQRcFfEhcWFWAB1WVBRbKzoqoAVwUX0BwoiEqVkKYFQQyiGoSQhQEiZTDL1/P5IMmSSSS+T8n49zzwwd84993PmzM3cfHLOuUFBzR8QUQvRI8gb3YK8cFVvhBCO6yMJIXBVb0T3IC/0CPJ2UYTNg+8DEbVHtU5IGY1GJCQkYPDgwYiNjcWmTZsAAKtXr0aXLl2wYsUKzJkzp6niJGpWRWYr1KUjpCBX/5coU2lCSmk1NnVYRETUSk2fPh0zZszAK6+8gl27dmHXrl1YtmwZZs6cienTp7s6PCKXkWUJk2MjoHVXQZdjQKHRAqtNoNBogS7HAK27CpNiIyDLUs2VtWJ8H4ioPar1GlILFy7E+++/j7i4OOzduxcPPfQQpk6div/9739444038NBDD0GhUDRlrETNpsh0c8oeFDWNkCpbQ4ojpIiIyLkXXngB3t7eeP3115GQkAAACAsLw+LFizF79mwXR0fkWtER/nhuTC+s3avD2Ww9rumNUCsV6BumxaTYCERH+Ls6xGbB94GI2ptaJ6Q2bNiATz75BPfddx+OHz+O/v37w2Kx4MiRI5XuBEHU2hWZrXBH6Rx+RfUjpG5O2eMIKSIick6SJMyZMwdz5sxBQUHJXbK8vTn1hqhMdIQ/BoX74XR2AfIMZmg9VOgR5N3uRgTxfSCi9qTWU/YuXbqE6OhoAEDfvn2h0WgwZ84cJqOoTSq/qHlNCamyKXsKGxNSRETk3O9//3vk5uYCKElElSWj8vPz8fvf/96FkRG1HLIsoWeID2K6dkDPEJ92m4Th+0BE7UWtE1JWqxVq9c2pS0qlEl5eXk0SFJGrGUzl1pCqacqeXPI6R0gREVFVEhMTYTJVvhtrcXExdu3a5YKIiIiIiFyr1lP2hBCYMmUKNJqS0SDFxcV44okn4Onp6VBu48aNjRshkQvcMJjtd9mrecpeaUKKI6SIiKiCo0eP2v9/8uRJZGVl2Z9brVZs3boVHTt2dEVoRERERC5V64TU5MmTHZ7/6U9/avRgiFqK3ELTzSl7tbzLnsLKRc2JiMjRwIEDIUkSJElyOjXP3d0d77zzTp3q/PXXX/Haa68hOTkZmZmZ+OabbzBu3Lhq90lMTMTcuXNx4sQJhIeH4/nnn8eUKVPqdFwiIiKixlTrhNTq1aubMg6iFuWGwVz7KXtcQ4qIiKqQnp4OIQS6du2K/fv3IzAw0P6aWq1GUFBQne9SXFhYiAEDBuCxxx7D+PHjaxXDmDFj8MQTT+Dzzz/Hjh078PjjjyM0NBTx8fF1bhMRERFRY6h1QoqoPck1mKCs5V32TBLXkCIiIuciIiIAADabrdHqHD16NEaPHl3r8qtWrUKXLl3w+uuvAwB69eqF3bt3Y8WKFUxIERERkcvUelFzovbkhsFU67vsKdXuAABh4ZQ9IiKq2rlz5/DUU08hLi4OcXFxmD17Ns6dO9fkx01KSkJcXJzDtvj4eCQlJTX5sYmIiIiqwoQUkRM3Ck1Q2Rc1r37KXgc/HwCAMBU1dVhERNRKbdu2Db1798b+/fvRv39/9O/fH/v27UOfPn2wffv2Jj12VlYWgoODHbYFBwcjPz8fRUXOv7uMRiPy8/MdHkRERESNiVP2iJwoLH+BXsMIqSB/XwCAxEXNiYioCgsWLMCcOXOwbNmyStvnz5+Pe+65x0WRObd06VK8+OKLrg6DiIiI2jCOkCJyQm8w3HxSw132Qvz9APAue0REVLXU1FRMmzat0vbHHnsMJ0+ebNJjh4SE4MqVKw7brly5Ah8fH7i7uzvdJyEhAXl5efbHxYsXmzRGIiIian+YkCKqwGoTKCoul1yqYcpeWGBJQkolzNAbLU0ZGhERtVKBgYFISUmptD0lJQVBQUFNeuyhQ4dix44dDtu2b9+OoUOHVrmPRqOBj4+Pw4OIiIioMXHKHlEF+UVmKEXJ+lECEiS5+ttxe3t6AQDcYELatUL07aht8hiJiKh1mT59OmbMmIHffvsNsbGxAIA9e/bglVdewdy5c+tUl16vx9mzZ+3P09PTkZKSAn9/f3Tu3BkJCQm4fPkyPvnkEwDAE088gXfffRf/+Mc/8Nhjj+Hnn3/G+vXrsWXLlsZrIBEREVEdMSFFVEH5O+xJChUgSdXvoCqZ7qCSrDifnceEFBERVfLCCy/A29sbr7/+OhISEgAAYWFhWLx4MWbPnl2nug4ePIi7777b/rwsoTV58mSsWbMGmZmZuHDhgv31Ll26YMuWLZgzZw7eeustdOrUCR9++CHi4+MboWVERERE9cOEFFEFNwxmqKTSqXc1TNcDACjd7P+9lJ0DoHPTBEZERK2WJEmYM2cO5syZg4KCAgCAt7d3veoaPnw4hBBVvr5mzRqn+xw+fLhexyMiIiJqClxDiqiC3HIjpGq6wx4Ah4TU1dy8JoqKiIhas6KiIhhKb5jh7e2NnJwcvPnmm/jxxx9dHBkRERGRazAhRVRBrsEMFUrWkKrpDnslZWRY5ZKRVAX6giaMjIiIWquxY8fa13TKzc3FkCFD8Prrr2Ps2LF47733XBwdERERUfNjQoqoghsOI6RqMWUPgE2hAQDo9YVNFRYREbVihw4dwp133gkA+PrrrxESEgKdTodPPvkEb7/9toujIyIiImp+XEOKqAK90VK3KXtAybQ9cwEMBn3TBUZERK2WwWCwrxn1448/Yvz48ZBlGbfffjt0Op2LoyNqHWw2gdPZBcgzmKH1UKFHkDdkuYabzxARUYvFhBRRBULg5pS92iakVO5AEVBs0EMIAammO/MREVG70q1bN2zatAn3338/tm3bhjlz5gAAsrOz4ePj4+LoiFq+ZF0O1u7V4Wy2HiaLFWqlAt2CvDA5NgLREf6uDo+IiOqBU/aInKjTXfYAKNTuAADJakShydpUYRERUSu1cOFCzJs3D5GRkYiJicHQoUMBlIyWGjRokIujI2rZknU5WLIlFccv58HHTYlOfh7wcVPiREYelmxJRbIux9UhEhFRPXCEFJETyjpO2ZNVJQkpDUy4VmCEl4anFhER3fTggw/id7/7HTIzMzFgwAD79hEjRuD+++93YWRELZvNJrB2rw65BjMiO3jYR6F7apTwUCugyzHgk706DAr34/Q9IqJWhr81EzmhLktI1eYue0DJGlIA3GDG9UIjIgM8mygyIiJqrUJCQhASEuKwbciQIS6Khqh1OJ1dgLPZegR5ayotiSBJEgK9NDiTrcfp7AL0DOH0VyKi1qRFJKRWrlyJ1157DVlZWRgwYADeeeedKi/Q/vOf/+CTTz7B8ePHAQDR0dH417/+xQs6alRuMJf8R6mp3Q6qsoSUCVcLTE0UFRERtTbjx4+vVbmNGzc2cSRErVOewQyTxQo3lfNrMjeVAtf0RuQZzM0cGRERNZTL15D66quvMHfuXCxatAiHDh3CgAEDEB8fj+zsbKflExMTMXHiROzcuRNJSUkIDw/HyJEjcfny5WaOnNoyN8lY8h91LUc6Kd1L9zPhmt7YRFEREVFro9Vqa/UgIue0HiqolQoUm52v0VlsLlngXOtRy1HtRETUYrh8hNQbb7yB6dOnY+rUqQCAVatWYcuWLfj444+xYMGCSuU///xzh+cffvgh/vvf/2LHjh2YNGlSs8RMbZ8HSpNKKo/a7VA6QkoDMxNSRERkt3r1aleHQNTsbDaB09kFyDOYofVQoUeQd73Xd+oR5I1uQV44kZEHD7XCYdqeEAJX9Ub0DdOiR5B3Y4VPRETNxKUJKZPJhOTkZCQkJNi3ybKMuLg4JCUl1aoOg8EAs9kMf3/e7pUaT50TUsqbU/aYkCIiIqL2KlmXg7V7dTibrYfJUjJ6qVuQFybHRiA6ou7X67IsYXJsBJZsSYUux4BALw3cVCUjpq7qjdC6qzApNoILmhMRtUIunbJ37do1WK1WBAcHO2wPDg5GVlZWreqYP38+wsLCEBcX5/R1o9GI/Px8hwdRTW5O2at7Quq6nmtIERERUfuTrMvBki2pOH45Dz5uSnTy84CPmxInMvKwZEsqknU59ao3OsIfz43phT5hWuQXW3DphgH5xRb0DdPiuTG96pXoIiIi13P5lL2GWLZsGdatW4fExES4ubk5LbN06VK8+OKLzRwZtXZ1n7J3cw2pXC6qSURERO2MzSawdq8OuQYzIjt42KfWeWqU8FAroMsx4JO9OgwK96vXaKboCH8MCvdrtKmARETkei4dIRUQEACFQoErV644bL9y5Uql2yJXtHz5cixbtgw//vgj+vfvX2W5hIQE5OXl2R8XL15slNipbXNH6SinekzZExBNFBURERFRy3Q6uwBns/UI8tY4rPMEAJIkIdBLgzPZepzOLqj3MWRZQs8QH8R07YCeIT5MRhERtXIuTUip1WpER0djx44d9m02mw07duzA0KFDq9zv1Vdfxcsvv4ytW7di8ODB1R5Do9HAx8fH4UFUHQHAva5T9jxKhor7S/W/yCIiIiJqrfIMZpgsVripFE5fd1MpYLJYkceR5EREVMrlU/bmzp2LyZMnY/DgwRgyZAjefPNNFBYW2u+6N2nSJHTs2BFLly4FALzyyitYuHAhvvjiC0RGRtrXmvLy8oKXl5fL2kFtS52n7HkGAQACkNdEERERERG1XFoPFdTKksXGPTWVf8UoNpcscK71ULkgOiIiaolcnpCaMGECrl69ioULFyIrKwsDBw7E1q1b7QudX7hwAbJ8cyDXe++9B5PJhAcffNChnkWLFmHx4sXNGTq1Ye51TUh5BQIAAiQmpIiIiKj96RHkjW5BXjiRkQcPtcJh2p4QAlf1RvQN06JHkLcLoyQiopbE5QkpAJg1axZmzZrl9LXExESH5+fPn2/6gKjdq/OUvbIRUkxIERERUTskyxImx0ZgyZZU6HIMCPTSwE1VMmLqqt4IrbsKk2IjuO4TERHZuXQNKaKW6uaUPc/a7eBVkpDygx6ysDZRVEREREQtV3SEP54b0wt9wrTIL7bg0g0D8ost6BumxXNjeiE6wt/VIRIRUQvSIkZIEbU0N6fsudduB48OEJAhSzZ4WTlKioiIiNqn6Ah/DAr3w+nsAuQZzNB6qNAjyJsjo4iIqBImpIicqPOUPVkBk8YPGuN1+NpymywuIiIiopZOliX0DOGdrYmIqHqcskfkRJ2n7AEwakqGoWttN5oiJCIiIiIiIqI2gyOkiJxwh6nkP7WdsgfAqOkA4Ay0ViakiIiICLDZRIudutaSYyMiovaBCSmiCiRhhUYylzxR136ElMktAACg5ZQ9IiKidi9Zl4O1e3U4m62HyWKFWqlAtyAvTI6NcPni3i05NiIiaj84ZY+oApW1qNyTWq4hhbIRUpyyR0RE1N4l63KwZEsqjl/Og4+bEp38PODjpsSJjDws2ZKKZF0OYyMionaPCSmiCpS2YgCADRKg1NR6P6OmZIQUFzUnIqLmsHLlSkRGRsLNzQ0xMTHYv39/lWXXrFkDSZIcHm5ubs0Ybfthswms3atDrsGMyA4e8NQooZAleGqUiPD3QF6RGZ/s1cFmE4yNiIjaNSakiCooGyFllt0AqfZrKZjcSkdIcQ0pIiJqYl999RXmzp2LRYsW4dChQxgwYADi4+ORnZ1d5T4+Pj7IzMy0P3Q6XTNG3H6czi7A2Ww9grw1kCpcR0iShEAvDc5k63E6u4CxERFRu8aEFFEFZQkpk1z7Bc0BwKQuWXPB25bf6DERERGV98Ybb2D69OmYOnUqevfujVWrVsHDwwMff/xxlftIkoSQkBD7Izg4uBkjbj/yDGaYLFa4qRROX3dTKWCyWJFnMDdzZC07NiIian+YkCKqQFU6Zc8s120qg0njCwDwEvyrIhERNR2TyYTk5GTExcXZt8myjLi4OCQlJVW5n16vR0REBMLDwzF27FicOHGiOcJtd7QeKqiVChSbrU5fLzaXLCKu9VA1c2QtOzYiImp/mJAiqkBZfspeHZhVWgCAl40JKSIiajrXrl2D1WqtNMIpODgYWVlZTveJiorCxx9/jG+//RafffYZbDYbYmNjcenSJafljUYj8vPzHR5UOz2CvNEtyAtX9UYI4bgWkxACV/VGdA/yQo8gb8ZGRETtGhNSRBWobEYAgKmuCanSEVIewgBYOdSdiIhajqFDh2LSpEkYOHAghg0bho0bNyIwMBDvv/++0/JLly6FVqu1P8LDw5s54tbDZhM4lZWPfb9dx6msksTd5NgIaN1V0OUYUGi0wGoTKDRaoMsxQOuuwqTYCMhy7depbCyyLDVqbBXbzsXQiYioLpSuDoCopVHZ6jlCSu1z80lRLuAV2IhRERERlQgICIBCocCVK1cctl+5cgUhISG1qkOlUmHQoEE4e/as09cTEhIwd+5c+/P8/HwmpZxI1uVg7V4dzmbrYbKUTHfrFuSFybEReG5ML/tr1/RGqJUK9A3TYlJsBKIj/F0Wc3SEf6PEVl3bXdk+IiJqPZiQIqrg5l326raoOSQF8oQHtJIBKLrBhBQRETUJtVqN6Oho7NixA+PGjQMA2Gw27NixA7NmzapVHVarFceOHcP//d//OX1do9FAo9E0VshtUrIuB0u2pCLXYEaQtwZuKg2KzVacyMjDki2peG5ML7w5YSBOZxcgz2CG1kOFHkHeLhkZVVF0hD8GhfvVO7batJ1JKSIiqgkTUkQVKEsXNa/rlD0AyBVepQmpnMYOi4iIyG7u3LmYPHkyBg8ejCFDhuDNN99EYWEhpk6dCgCYNGkSOnbsiKVLlwIAXnrpJdx+++3o1q0bcnNz8dprr0Gn0+Hxxx93ZTNaLZtNYO1eHXINZkR28IAklSRyPDVKeKgV0OUY8MleHQZN8EPPEJ8aanMNWZbqFVut2x7u1yKSb0RE1HIxIUVUgcpav7vsAcANeCEC2SUjpIiIiJrIhAkTcPXqVSxcuBBZWVkYOHAgtm7dal/o/MKFC5Dlm0uF3rhxA9OnT0dWVhb8/PwQHR2NvXv3onfv3q5qQqt2OrsAZ7P1CPLW2BMyZSRJQqCXBmey9TidXdBiE1L11Z7bTkREjYsJKaIKVDYDAMCkqNuUvc7+HrguvAAAhrxr8Gj0yIiIiG6aNWtWlVP0EhMTHZ6vWLECK1asaIao2oc8gxkmixVuKufTGt1UClzTG5FnaHs3OWnPbSciosbFu+wRVeBmKQAAFCvqdsvjPmE+sLn5AgBOnjvfyFERERFRS6H1UEGtVKDYbHX6erG5ZJFvrYeqmSNreu257URE1LiYkCKqQGNPSHnVaT9JkhAUHAYA+O3CxUaPi4iIiFqGHkHe6Bbkhat6I4QQDq8JIXBVb0T3IC/0CKrbH7dag/bcdiIialxMSBFVoLHoAQBFdRwhBQCRnToCAIz668gv5lB1IiKitkiWJUyOjYDWXQVdjgGFRgssVhuuFhTjVFYB1AoZfxrauU0u6u2s7VabQKHRAl2OAVp3FSbFRrTJthMRUeNiQoqoApUlHwBgUdU9IeXpGwgA8IMexy/lNWpcRERE1HJER/jjuTG90CdMi6z8YiRfuIG0K3rkF1tQZLbi06QLSNa1zbvulm97frEFl24YkF9sQd8wLZ4b0wvREf6uDpGIiFoBLmpOVIHSVJKQ8tQG1H1n95ILMC30SLmUi9hu9aiDiIiIWoXoCH/YbMDCbwvg46ZCgJcGfp5qGM1WnMjIw5ItqW02QRMd4Y9B4X44nV2APIMZWg8VegR5c2QUERHVGhNSRBWUrSHl61+fhJRfyb6SHkcu5jZiVERERNTS2GwCn/5PB6PFhp4h3pCkkmSMUqOEh1oBXY4Bn+zVYVC4X5tM1MiyhJ4hPq4Og4iIWilO2SOqwMNWsoZUQGBQ3XcuS0ihEEc5ZY+IiKhNO51dgLPZegR5a+zJqDKSJCHQS4Mz2Xqczi5wUYREREQtFxNSROUUGQxwgwkAEBwUUvcKPEtGVQVJubiSZ0BOoakxwyMiIqIWJM9ghslihZtK4fR1N5UCJosVeQbe6ISIiKgiJqSIysnKvgIAsAkJWm091nvw7Qwo3aCRzAiXsmG0WBs5QiIiImoptB4qqJUKFJudf98Xm61QKxXQeqiaOTIiIqKWjwkponKuXM0GABgkD0Cux+khK4CA7gCA7tLlxgyNiIiIGshmEziVlY99v13Hqax82GyiQfv0CPJGtyAvXNUbIYRjXUIIXNUb0T3ICz2C6n7nXiIioraOi5oTlZNz/SoAoFjpBa/6VhLYC8g6hh7SJYiar3OJiIioGSTrcrB2rw5ns/UwWUpGLnUL8sLk2Igq74JX0z6yLGFybASWbEmFLseAQC8N3FQlI6au6o3QuqswKTaiTS5oTkRE1FAcIUVUTsGNawAAi6oBd4wJ6gkA6C5faoyQiIiIqIGSdTlYsiUVxy/nwcdNiU5+HvBxU+JERh6WbElFsi6n3vtER/jjuTG90CdMi/xiCy7dMCC/2IK+YVo8N6ZXlckuIiKi9o4jpIjK0eeVJKSEpgEJqcDShJR0GRwgRURE5Fo2m8DavTrkGsyI7OBhvxuep0YJD7UCuhwDPtmrw6BwP/tIprruEx3hj0HhfjidXYA8gxlaDxV6BHlzZBQREVE1OEKKqJyyKXtqrwb8NbM0IdVNugzYuKg5ERGRK53OLsDZbD2CvDX2xJKdJMFTrcSRS7nYdjLLvj5UdftIkoRALw3OZOtxOrvAvl2WJfQM8UFM1w7oGeLDZBQREVENOEKKqFR2QTGshlxABfj4BdS/Ir9IGIQGHpIR0tVTgP/gRouRiIiI6ibPYIbRbIFFrcANgwkqWYanRoG80ul1+mILTFYbln1/Cj8cy8Lk2AhYrAImixVuKo3TOt1UClzTG5FnMDdza4iIiNoOjpAiKnX4Qi58JAMAQOXpV/+KZAWOKfsAAH749gvkF/NilYiIyFUu5xbhqt6Ekxn5OJVVgBOZeTh8MRepmfkoKLJAliSolTK07jfXh7qca4BaWbI4uTPF5pIFzrUeqmZuDRERUdvBhBRRqUMXbkCLwpInbtoG1RUW/QcAQFTB/7By59mGhkZERET1kKzLwadJOtgEYIOAm1KGUpaRX2xBsckKhQxYhYCXRokALw0i/D2QV2RG4qmruCXQE1f1RogKt8wVQuCq3ojuQV7oEeTtopYRERG1fkxIEZU6rMuFj9Q4CanwIfcBAG6T07B+zylk5hU1NDwiIiJywmYTOJWVj32/XceprHzYbAI2m8DJjDy88eNpXC0wonuQJ9QKGcUWG6xCQNgEIAEGkxUKCejkW7Jwedn6UGevFuLunkHQuqugyzGg0GiB1SZQaLRAl2OA1l2FSbERXCeKiIioAbiGFFGpKwXFCJZulDzxDGxYZR26Qfh2hib3AobYjmDL0QF4/M6uDQ+SiIiI7JJ1OVi7V4ez2XqYLCXT6Pw9VQAkZOQV4VJOEZSyBLPVhlCtO3KLTMgvMkMAkFCyQHm4nyd8y029K1sfqqOvO54b08te/zW9EWqlAn3DtJgUG4HoiAbcAIWIiIiYkCIqL1K6UvIf/wYmjyQJUq/7gKR3ca9iL3SWPzU8OCIionbGZhNIzcjHjrQrMJis6NdJi/heIVAqZSTrcrBkSypuFJrg7aaEWqNEgdGC/ekFkCQJoVo3KGRArZRRYLSgyGxF9yBvmLytOJuth0KWYBOAm9pxwkD59aF6hvhgULgfTmcXIM9ghtZDhR5B3hwZRURE1AiYkCIqpbEVI0jKLXni36XhFfZ7CEh6F3HyIbxx4zqEuKXy7aaJiIioEptNYFPKZbyz4wx01w2wlXvN10OJB24Nx9krBbhwvRBWG5CVXwwAMFsFhBBQKiQUFJcsWA4A7koZRRYbLuUa0DvUB9kFRuQVmaGUJajkmwmpsvWh+oZp7etDybKEniE+zdZ2IiKi9oIJKaJSYSILAGDR+ELp3oC77JUJHYBrbhEIKNYhP3k9/nhN4PWHByDM173hdRMREbVRybocvPHjaew5d93p67kGCz7ane6wTZYAhSTBahOQJMBitcFgssBdrUCx2QZ3lQJqhYxCowUGoxUdfd2Rayi7C66A1SZQbLbiqt7I9aGIiIiaCRc1JyoVZssEABi9IxqnQkmC5+2PAQBmK7/Bod8y8fS6w41Td0tiswEV7kBERERUH8m6HCz4+miVyaiqSCi5W17Z2lACgMlig5daCQlAockCIQRsNqCg2Iy8IjMiOnhgYLgfCoxWXLphQH6xBX3DtHhuTC+uD0VERNQMOEKKqFTH0hFSJu/O8GykOt3vmAkc+g/C8i/hP6rX8bruIZy50g/dg1vxbaKFAM7uAHS7gYzDwOVDgModuO9doMdIV0dHREStlM0msPi7EzhztbDO+1rFzb+y2kr/RmIDcKXACAmAxSZgtpRM4Su22NCvY8nC5FwfioiIyHWYkCIq1bFshJRPZONVqnIHRv0LYv1k3KU4hhj5FJ566wZywkfis8dj4KZSNN6xmsueN4GfFjtuM+YDX04AHloD9B7rgqCIiKi1e/3HNBy7nF/v/aXSoVHlx+wqZQluKgUsVhsKTVZoVDL+endXjB8Ubk88cX0oIiIi1+CUPaJSHUXJHfaMPp0bt+LeY4EndiMj6C5oJDM+UK/AtIyFiF+4Bsu3pSG/2FxzHS3F1TRg578AAMf978Fq/zl4PngldmhGAMIG8c0TQOZRFwdJREStic0mMHf9PqxMPNegegRK1pIqI6MkIWW1CZhtAh5qBbTuKuw6XbfpgERERNQ0WkRCauXKlYiMjISbmxtiYmKwf//+astv2LABPXv2hJubG/r164fvv/++mSKlNstqQTdbyQKpJm0j3GGvAimkL8JmbgRinoANMkYrDmCHeh7u2D0Fb7/8NF75bDPe+ukMUjPzkVfUQhNURj2wYQpgNeFSwJ34Q8YUvJhxGz7T+WFG3hT8Yu0PyWyA+fMJgD7b1dESEbV5beH6KVmXg67Pfo+Nh641uC6buLmkoQRAkgGT1QaLzQZvNyW6B3kj3M8DZ7L1OJ1d0ODjERERUcO4PCH11VdfYe7cuVi0aBEOHTqEAQMGID4+HtnZzn+h3bt3LyZOnIhp06bh8OHDGDduHMaNG4fjx483c+TUlhz79Rv4IR/XhA+kjtFNcxCFChj9CuS/7IGl6wgoJRuGKk7iedXnmH/2UYz89X4krZyOL5dMxWOLXscrqz7Cuh9341RmHq7rjbDZXLhweMEVYN1EIPsksoUvxl96BCWX+8CInkG4NTIAT5mfwjlbKFT6DGSvjEfOpTTXxUtE1Ma1heunZF0OHngvqdHqc1dKUCokSAA8NQpEBXmjV6gP+oRq0SfUB74eKripFDBZrMgztNA//hAREbUjkhCuvT1WTEwMbrvtNrz77rsAAJvNhvDwcDz11FNYsGBBpfITJkxAYWEhNm/ebN92++23Y+DAgVi1alWNx8vPz4dWq0VeXh58fLhmAAGfJp2H/w9PYIychF/8HsBdsz+CJDX9gqbi+m/Q/e8buKVvR4drB6CCxWm5POGBVBGBq8IX7iiG0b8n3P1CIGm8IGu8oFKpodK4w9qhOwIKUiH5dESBKgBp+WoYZTeM6hOCAC9N/RdpTfsBxf/9C9xMN1Ak1PiTKQHJIgrjb+2IF8b0hp+nGgDw+T4dPtr0I9ap/4kgKRd64YbjXaYi7Hd/Qudb+pQu7kFE1Dq09OuF1n79ZLMJdH228UZoSQAUMqCQZShkCV06eCBE616pXKHRgvxiC96YMIBrRxERETWyul4vuHRRc5PJhOTkZCQkJNi3ybKMuLg4JCU5/4tZUlIS5s6d67AtPj4emzZtaspQa+3G1qWwmothrWE0i/NXZQhJAiQZQlKU/isBkEv/LwOSBFH2HJLD9pL9Zft+wmG/cv+HdLNcuWPe3L/0dZQdr3IiQSptwc10prMWOdnmJP9ZY07U/nrV9Tm+4qSczQaFKReqomtQFl2DqugaVMXXYMm/guE3LiFcvgoAGHr/X5slGQUAUoeuiBzzdwB/B4pygeP/hfX6b8jNvgj3jP8hzywjwHoVWsmA26XUmzvmHQbyaq6/l1DikgiEvLUQp4UWFkmJAORDLZlRIHkjSw4GJBmyBCgkQJYlWGQ3XIMvzEpPaIw5CCz6DYPks3ADkGrrjKfMs6AJ7Y29kwYjzNfxQv/RmAgMjngEv6b2R+TOWRgsn8bt598Dzr8HvXDDJbkjrisCodIGo0gdAKvSHSpYUKT2h00quS23ZP/8KQBZUe6zq4AMKxQ2E1TCBNlmQaF7CISsgtJmhNJmhAwBo8YPEgBZWCHDBlnYAFmGTeEGjSkXkKSS/i2rV1bY/y+VPYdU8q8sQxKA2qIvrUMDoXQDJCVkYYEsLCXnmFx2vkoonSQCIQESJEAI+7kCoOS5hNIyZeUF5KrOgdp+FKWSEQFlSb+b56zj9rIKSxb+FSg5VwSk0v87xFp67ktlddl/FpTWIZe2o1KQTn5eVNEOZ5urOv+qeiskCZVikKooXZdTuy4xV1XY2eb6xlb+IyIq/cSTnJar9JOxqo9Z6WeyfBxSuVglqVy7ncUpUPp5rpqzY1dqRy2+MiruAwC+AaEIDO5Y7fHbmrZw/TSsEZNRShkI8nFDlw6euP/Wjvgl7SpOZuZDCOHwM0UIgat6I/qGadEjqBXf7ZaIiKiNcGlC6tq1a7BarQgODnbYHhwcjFOnTjndJysry2n5rKwsp+WNRiOMRqP9eX5+/e/eUhuqpLfgJxU16TGokcmAGQooY2ZAHd5E0/Vq4u4L3DYNCgAdSjd5AIDFBFxLgyXjKLKvZODMNSN8Cs5BaS6AbCmE0lIE2MzwttxAmPUyfpMjoLXlwgtF0Egm3CKV3DkwQHL83PuLfERYL9cclwwYhRJrrPF4w/IQXpsYg//rGwKlwvls36gQb0SFxGCz/zfYfHQ9Qs9tQH+RBi+pGD3FOcByDuBaskTUiJIi/4LAKctcHUazagvXTxcboQ6lDPTr6Iv7B3XEkK7+6BHkDVmW0CXAE0u2pEKXY0CglwZuKgWKzVZc1RuhdVdhUmxE/UcNExERUaNxaUKqOSxduhQvvvhisx3vO+XIktEaklTHGUolf+OWYYMMG0rGNwnn/xc3t0mSDbIo/T9spf/eLKuw719uH5Ts46y8Yz220uM6+5t05VEJ1W+vqmzt63VWR1Vjq5z9tV4veSFX8kWu7Ic82Rd5sh/yFL6weQRi6B3DcFf/HlXU5kJKNRDSD8qQfggDEFZdWXMxuqrcSv4vBHD9LJB3CUUqX5jzr8BsNsGo9ocRaoiCK5AKLsNiFbDYBMyl/8JUCFXRVdiK8iD7BMPiEQy52914OLIHZpZOzauNPwzoBAyYC2AucvL1KMg4g5PHkuFWfBVuputwM16HwmqAVcjwsORCEjYIlI63ETZIsEISApKwln7ebbBCAYukhllSwSbJ8DdfAYSAWVbDJGkAIeBlzYOQSs4iKxSwSTIUwgKlMEEv+8AGufTzb7MfS4at9JjC/v+S88EGACiUPCEJG9QwQy2MkIUNFkkJKxSl51jJaKySkUZlY4ZsDqOJysYf2UdPCUAqPedE6R5Vf+6rVzaqSapwNlTeXvYc5V6RcHNslGwvKdn3K18SlZ5XPKbT87GJJ4VXjKEpOTtScx7fmeb9lVqUnqe101yxySqPZjpS+9Lc1091oZCA+waGYfpdXdEz2KdScik6wh/PjemFtXt1OJutxzW9EWqlAn3DtJgUG4HoCH8XRU5ERETluTQhFRAQAIVCgStXrjhsv3LlCkJCQpzuExISUqfyCQkJDkPU8/PzER4e3sDIq/bHFz5psrqJqlWWjAJK5tgEdAcCusMdQOVVNJqPv48X/H0GIaLnIBdGQURtVYyrA3CBtnj9VFs9g72w+ak7oVRWf1+e6Ah/DAr3w+nsAuQZzNB6qOwjqIiIiKhlcOld9tRqNaKjo7Fjxw77NpvNhh07dmDo0KFO9xk6dKhDeQDYvn17leU1Gg18fHwcHkREREStVVu4fhqgqPs+034Xga1zhtWYjCojyxJ6hvggpmsH9AypPJKKiIiIXMvlU/bmzp2LyZMnY/DgwRgyZAjefPNNFBYWYurUqQCASZMmoWPHjli6dCkA4Omnn8awYcPw+uuvY8yYMVi3bh0OHjyIDz74wJXNICIiImo2rf366dslYxC5YEutymo1Mj6YchtiugQ0cVRERETUnFyekJowYQKuXr2KhQsXIisrCwMHDsTWrVvtC29euHABsnzzL2GxsbH44osv8Pzzz+PZZ59F9+7dsWnTJvTt29dVTSAiIiJqVm3h+un8spqTUptmDUX/MD+ObiIiImqDJCGquhF025Sfnw+tVou8vDxO3yMiIiKneL3gqCnfj7HPbcERq+O29U8MxJDIjo16HCIiImpadb1ecPkIKSIiIiJqv75dMsbVIRAREZELuHRRcyIiIiIiIiIian+YkCIiIiIiIiIiombFhBQRERERERERETUrJqSIiIiIiIiIiKhZMSFFRERERERERETNigkpIiIiIiIiIiJqVkpXB9DchBAAgPz8fBdHQkRERC1V2XVC2XVDe8frJyIiIqpJXa+f2l1CqqCgAAAQHh7u4kiIiIiopSsoKIBWq3V1GC7H6yciIiKqrdpeP0minf3pz2azISMjA97e3pAkqU775ufnIzw8HBcvXoSPj08TRdiysM1sc1vFNrf9Nre39gJsc2O2WQiBgoIChIWFQZa5wkFDrp9qoz1+dlsi9kPLwH5oGdgPLQP7oWWobT/U9fqp3Y2QkmUZnTp1alAdPj4+7e5kYJvbB7a5fWhvbW5v7QXY5sbCkVE3Ncb1U220x89uS8R+aBnYDy0D+6FlYD+0DLXph7pcP/FPfkRERERERERE1KyYkCIiIiIiIiIiombFhFQdaDQaLFq0CBqNxtWhNBu2uX1gm9uH9tbm9tZegG2m1ov92DKwH1oG9kPLwH5oGdgPLUNT9UO7W9SciIiIiIiIiIhciyOkiIiIiIiIiIioWTEhRUREREREREREzYoJKSIiIiIiIiIialbtJiH166+/4t5770VYWBgkScKmTZscXt+4cSNGjhyJDh06QJIkpKSkVKqjuLgYTz75JDp06AAvLy888MADuHLlSrXHFUJg4cKFCA0Nhbu7O+Li4nDmzJlGbFnVGtrmnJwcPPXUU4iKioK7uzs6d+6M2bNnIy8vr9rjTpkyBZIkOTxGjRrVyK1zrjH6efjw4ZXif+KJJ6o9bmvu5/Pnz1dqb9ljw4YNVR7XVf1cXXvNZjPmz5+Pfv36wdPTE2FhYZg0aRIyMjIc6sjJycGjjz4KHx8f+Pr6Ytq0adDr9dUetz7nf2NpaJvPnz+PadOmoUuXLnB3d8ctt9yCRYsWwWQyVXvc+pwLjaUx+jkyMrJS/MuWLav2uK25nxMTE6s8lw8cOFDlcVtqPwPA4sWL0bNnT3h6esLPzw9xcXHYt2+fQ5nWdj63ZytXrkRkZCTc3NwQExOD/fv3V1t+w4YN6NmzJ9zc3NCvXz98//33zRRp21aXflizZk2lnw9ubm7NGG3bVNPPPmcSExNx6623QqPRoFu3blizZk2Tx9nW1bUfqvqezcrKap6A26ClS5fitttug7e3N4KCgjBu3DikpaXVuB+/HxpXffqhsb4f2k1CqrCwEAMGDMDKlSurfP13v/sdXnnllSrrmDNnDv7f//t/2LBhA3755RdkZGRg/Pjx1R731Vdfxdtvv41Vq1Zh37598PT0RHx8PIqLixvUntpoaJszMjKQkZGB5cuX4/jx41izZg22bt2KadOm1XjsUaNGITMz0/748ssvG9SW2mqMfgaA6dOnO8T/6quvVlu+NfdzeHi4Q1szMzPx4osvwsvLC6NHj6722K7o5+raazAYcOjQIbzwwgs4dOgQNm7ciLS0NNx3330O5R599FGcOHEC27dvx+bNm/Hrr79ixowZ1R63Pud/Y2lom0+dOgWbzYb3338fJ06cwIoVK7Bq1So8++yzNR67rudCY2mMfgaAl156ySH+p556qtrjtuZ+jo2NrXQuP/744+jSpQsGDx5c7bFbYj8DQI8ePfDuu+/i2LFj2L17NyIjIzFy5EhcvXrVXqa1nc/t1VdffYW5c+di0aJFOHToEAYMGID4+HhkZ2c7Lb93715MnDgR06ZNw+HDhzFu3DiMGzcOx48fb+bI25a69gMA+Pj4OPx80Ol0zRhx21TTz76K0tPTMWbMGNx9991ISUnB3/72Nzz++OPYtm1bE0fattW1H8qkpaU5nBNBQUFNFGHb98svv+DJJ5/E//73P2zfvh1msxkjR45EYWFhlfvw+6Hx1acfgEb6fhDtEADxzTffOH0tPT1dABCHDx922J6bmytUKpXYsGGDfVtqaqoAIJKSkpzWZbPZREhIiHjttdcc6tFoNOLLL79scDvqoj5tdmb9+vVCrVYLs9lcZZnJkyeLsWPH1i/QRlTfNg8bNkw8/fTTtT5OW+zngQMHiscee6zaMi2hn6trb5n9+/cLAEKn0wkhhDh58qQAIA4cOGAv88MPPwhJksTly5ed1lGf87+p1KfNzrz66quiS5cu1dZT13OhqdS3zREREWLFihW1Pk5b62eTySQCAwPFSy+9VG09ramf8/LyBADx008/CSFa//ncngwZMkQ8+eST9udWq1WEhYWJpUuXOi3/8MMPizFjxjhsi4mJETNnzmzSONu6uvbD6tWrhVarbabo2qfa/Oz7xz/+Ifr06eOwbcKECSI+Pr4JI2tfatMPO3fuFADEjRs3miWm9ig7O1sAEL/88kuVZfj90PRq0w+N9f3QbkZINVRycjLMZjPi4uLs23r27InOnTsjKSnJ6T7p6enIyspy2Eer1SImJqbKfVq6vLw8+Pj4QKlUVlsuMTERQUFBiIqKwl/+8hdcv369mSJsHJ9//jkCAgLQt29fJCQkwGAwVFm2rfVzcnIyUlJSajUSrjX0c15eHiRJgq+vLwAgKSkJvr6+DiNG4uLiIMtypalAZepz/rtSxTZXVcbf37/GuupyLrhSVW1etmwZOnTogEGDBuG1116DxWKpso621s/fffcdrl+/jqlTp9ZYV2voZ5PJhA8++ABarRYDBgwA0D7O57bAZDIhOTnZ4T2XZRlxcXFVvudJSUkO5QEgPj6efdQA9ekHANDr9YiIiEB4eDjGjh2LEydONEe4VA7Ph5Zl4MCBCA0NxT333IM9e/a4Opw2pWxpmOquUXk+NL3a9APQON8P1WcVyC4rKwtqtbrShX9wcHCV84bLtgcHB9d6n5bs2rVrePnll2ucCjFq1CiMHz8eXbp0wblz5/Dss89i9OjRSEpKgkKhaKZo6++Pf/wjIiIiEBYWhqNHj2L+/PlIS0vDxo0bnZZva/380UcfoVevXoiNja22XGvo5+LiYsyfPx8TJ06Ej48PgJL+qji0WqlUwt/fv9pzua7nv6s4a3NFZ8+exTvvvIPly5dXW1ddzwVXqarNs2fPxq233gp/f3/s3bsXCQkJyMzMxBtvvOG0nrbWzx999BHi4+PRqVOnautq6f28efNmPPLIIzAYDAgNDcX27dsREBAAoO2fz23FtWvXYLVanX5Pnjp1yuk+WVlZbeZ7taWoTz9ERUXh448/Rv/+/ZGXl4fly5cjNjYWJ06cqPFnCzWeqs6H/Px8FBUVwd3d3UWRtS+hoaFYtWoVBg8eDKPRiA8//BDDhw/Hvn37cOutt7o6vFbPZrPhb3/7G+644w707du3ynL8fmhate2Hxvp+YEKKaiU/Px9jxoxB7969sXjx4mrLPvLII/b/9+vXD/3798ctt9yCxMREjBgxookjbbjyCbd+/fohNDQUI0aMwLlz53DLLbe4MLKmV1RUhC+++AIvvPBCjWVbej+bzWY8/PDDEELgvffec3U4zaI2bb58+TJGjRqFhx56CNOnT6+2vtZwLlTX5rlz59r/379/f6jVasycORNLly6FRqNp7lAbTW36+dKlS9i2bRvWr19fY30tvZ/L1ky5du0a/vOf/+Dhhx/Gvn37uGYHUTMYOnQohg4dan8eGxuLXr164f3338fLL7/swsiIml9UVBSioqLsz2NjY3Hu3DmsWLECn376qQsjaxuefPJJHD9+HLt373Z1KO1abfuhsb4fOGWvlkJCQmAymZCbm+uw/cqVKwgJCalyn7Iytd2nJSooKMCoUaPg7e2Nb775BiqVqk77d+3aFQEBATh79mwTRdi0YmJiAKDK+NtKPwPA119/DYPBgEmTJtV535bUz2W/sOt0Omzfvt1hBElISEilxVstFgtycnKqPZfrev43t+raXCYjIwN33303YmNj8cEHH9T5GDWdC82tNm0uLyYmBhaLBefPn3f6elvpZwBYvXo1OnTo4HSh95q0tH729PREt27dcPvtt+Ojjz6CUqnERx99BKDtns9tTUBAABQKRZ2+J0NCQtrE92pLUp9+qEilUmHQoEEt5udDe1HV+eDj48PRUS42ZMgQng+NYNasWdi8eTN27txZ4+gafj80nbr0Q0X1/X5gQqqWoqOjoVKpsGPHDvu2tLQ0XLhwwSEzWF6XLl0QEhLisE9+fj727dtX5T4tTX5+PkaOHAm1Wo3vvvuuXrdyvHTpEq5fv47Q0NAmiLDppaSkAECV8beFfi7z0Ucf4b777kNgYGCd920p/Vz2C/uZM2fw008/oUOHDg6vDx06FLm5uUhOTrZv+/nnn2Gz2ey/iFdUn/O/OdXUZqBkZNTw4cMRHR2N1atXQ5br/uO/pnOhOdWmzRWlpKRAluUqR9a0hX4GACEEVq9ejUmTJtX5DwhAy+pnZ2w2G4xGI4C2eT63RWq1GtHR0Q7vuc1mw44dO6p8z4cOHepQHgC2b9/OPmqA+vRDRVarFceOHWuxPx/aKp4PLVdKSgrPhwYQQmDWrFn45ptv8PPPP6NLly417sPzofHVpx8qqvf3Q4OXRW8lCgoKxOHDh8Xhw4cFAPHGG2+Iw4cP2+9OdP36dXH48GGxZcsWAUCsW7dOHD58WGRmZtrreOKJJ0Tnzp3Fzz//LA4ePCiGDh0qhg4d6nCcqKgosXHjRvvzZcuWCV9fX/Htt9+Ko0ePirFjx4ouXbqIoqKiFt/mvLw8ERMTI/r16yfOnj0rMjMz7Q+LxeK0zQUFBWLevHkiKSlJpKeni59++knceuutonv37qK4uLjFt/ns2bPipZdeEgcPHhTp6eni22+/FV27dhV33XWXw3HaUj+XOXPmjJAkSfzwww9Oj9NS+rm69ppMJnHfffeJTp06iZSUFIfPrNFotNcxatQoMWjQILFv3z6xe/du0b17dzFx4kT765cuXRJRUVFi37599m21Of9bapsvXbokunXrJkaMGCEuXbrkUKaqNtf2XGipbd67d69YsWKFSElJEefOnROfffaZCAwMFJMmTaqyzUK07n4u89NPPwkAIjU1tdIxWlM/6/V6kZCQIJKSksT58+fFwYMHxdSpU4VGoxHHjx+319Hazuf2at26dUKj0Yg1a9aIkydPihkzZghfX1+RlZUlhBDiz3/+s1iwYIG9/J49e4RSqRTLly8XqampYtGiRUKlUoljx465qgltQl374cUXXxTbtm0T586dE8nJyeKRRx4Rbm5u4sSJE65qQptQ07XbggULxJ///Gd7+d9++014eHiIZ555RqSmpoqVK1cKhUIhtm7d6qomtAl17YcVK1aITZs2iTNnzohjx46Jp59+WsiybL/zK9XdX/7yF6HVakViYqLDtY3BYLCX4fdD06tPPzTW90O7SUiV3aaz4mPy5MlCiJLbFjp7fdGiRfY6ioqKxF//+lfh5+cnPDw8xP3331/pl3oAYvXq1fbnNptNvPDCCyI4OFhoNBoxYsQIkZaW1gwtbnibq9ofgEhPT3faZoPBIEaOHCkCAwOFSqUSERERYvr06fYLnZbe5gsXLoi77rpL+Pv7C41GI7p16yaeeeYZkZeX53CcttTPZRISEkR4eLiwWq1Oj9NS+rm69qanp1f5md25c6e9juvXr4uJEycKLy8v4ePjI6ZOnSoKCgrsr5fVU36f2pz/LbXNVX0Gyv9NomKba3sutNQ2Jycni5iYGKHVaoWbm5vo1auX+Ne//uWQMG1r/Vxm4sSJIjY21ukxWlM/FxUVifvvv1+EhYUJtVotQkNDxX333Sf279/vUEdrO5/bs3feeUd07txZqNVqMWTIEPG///3P/tqwYcPs31tl1q9fL3r06CHUarXo06eP2LJlSzNH3DbVpR/+9re/2csGBweL//u//xOHDh1yQdRtS03XbpMnTxbDhg2rtM/AgQOFWq0WXbt2dbgOpfqpaz+88sor4pZbbhFubm7C399fDB8+XPz888+uCb6NqOrapvznm98PTa8+/dBY3w9SaQBERERERERERETNgmtIERERERERERFRs2JCioiIiIiIiIiImhUTUkRERERERERE1KyYkCIiIiIiIiIiombFhBQRERERERERETUrJqSIiIiIiIiIiKhZMSFFRERERERERETNigkpIiIiIiIiIiJqVkxIERERERFRm7V48WIEBwdDkiRs2rTJ1eG0CNevX0dQUBDOnz/v6lDq7Pz585AkCSkpKY1ed2RkJN58800AgMlkQmRkJA4ePFjtPomJiZAkCbm5uY0eT2MbPnw4/va3v7k6DHKxX3/9Fffeey/CwsLq9XNx8eLFkCSp0sPT07POsTAhRUTtxpQpU+w/MFUqFbp06YJ//OMfWLVqldMfquUfrfGCjYiIyBXKf99KkoQOHTpg1KhROHr0aKMdY/HixRg4cGCN5VJTU/Hiiy/i/fffR2ZmJkaPHt1oMbQ0U6ZMwbhx42pVdsmSJRg7diwiIyObNKaGqkubGptarca8efMwf/78asvFxsYiMzMTWq221nW7ql0bN27Eyy+/bH9ePgFH7UdhYSEGDBiAlStX1mv/efPmITMz0+HRu3dvPPTQQ3WuiwkpImpXRo0ahczMTPz2229YsWIF3n//faSnpzv8QB06dCimT5/usC08PNzVoRMREbUaZd+3mZmZ2LFjB5RKJf7whz80exznzp0DAIwdOxYhISHQaDSVyphMpuYOy6UMBgM++ugjTJs2zdWhtHiPPvoodu/ejRMnTlRZRq1WIyQkBJIkNWNk9ePv7w9vb29Xh0EuNnr0aPzzn//E/fff7/R1o9GIefPmoWPHjvD09ERMTAwSExPtr3t5eSEkJMT+uHLlCk6ePFmvnylMSBFRu6LRaBASEoLw8HCMGzcOcXFx2L59u8MPVbVaDQ8PD4dtCoXC1aETERG1GmXftyEhIRg4cCAWLFiAixcv4urVq/YyFy9exMMPPwxfX1/4+/tj7NixDiOSExMTMWTIEHh6esLX1xd33HEHdDod1qxZgxdffBFHjhyxj8Jas2ZNpRgWL16Me++9FwAgy7I9YVA2OmXJkiUICwtDVFQUAODTTz/F4MGD4e3tjZCQEPzxj39Edna2Q53fffcdunfvDjc3N9x9991Yu3atw3StNWvWwNfXF5s3b0ZUVBQ8PDzw4IMPwmAwYO3atYiMjISfnx9mz54Nq9Vqr7emXwDL6t22bRt69eoFLy8ve9KvrK1r167Ft99+a39Pyu9f3vfffw+NRoPbb7/dvu3GjRt49NFHERgYCHd3d3Tv3h2rV68GcHOK3Pr163HnnXfC3d0dt912G06fPo0DBw5g8ODB8PLywujRox3612az4aWXXkKnTp2g0WgwcOBAbN261SGWY8eO4fe//z3c3d3RoUMHzJgxA3q9vlZt+u2333D33XfDw8MDAwYMQFJSkkPdu3fvtscbHh6O2bNno7Cw0P56dnY27r33Xri7u6NLly74/PPPK71Xfn5+uOOOO7Bu3Tqn7yVQecpeQ/qqpnOi7LO7fPlyhIaGokOHDnjyySdhNpvtZf7973/bP6PBwcF48MEH7a+Vn7I3fPhw6HQ6zJkzxx5HYWEhfHx88PXXXzu0cdOmTfD09ERBQUGV7wO1HbNmzUJSUhLWrVuHo0eP4qGHHsKoUaNw5swZp+U//PBD9OjRA3feeWedj8WEFBG1W8ePH8fevXuhVqtdHQoREVGbpdfr8dlnn6Fbt27o0KEDAMBsNiM+Ph7e3t7YtWsX9uzZY//F3WQywWKxYNy4cRg2bBiOHj2KpKQkzJgxA5IkYcKECfj73/+OPn362EdhTZgwodJx582bZ0+qlJUrs2PHDqSlpWH79u3YvHmzPaaXX34ZR44cwaZNm3D+/HlMmTLFvk96ejoefPBBjBs3DkeOHMHMmTPx3HPPVTquwWDA22+/jXXr1mHr1q1ITEzE/fffj++//x7ff/89Pv30U7z//vsOv/TX5hdAg8GA5cuX49NPP8Wvv/6KCxcuYN68efa2Pvzwww4j02JjY532x65duxAdHe2w7YUXXsDJkyfxww8/IDU1Fe+99x4CAgIcyixatAjPP/88Dh06BKVSiT/+8Y/4xz/+gbfeegu7du3C2bNnsXDhQnv5t956C6+//jqWL1+Oo0ePIj4+Hvfdd5+9TYWFhYiPj4efnx8OHDiADRs24KeffsKsWbNq1abnnnsO8+bNQ0pKCnr06IGJEyfCYrEAKBkZN2rUKDzwwAM4evQovvrqK+zevdteN1CS3Ll48SJ27tyJr7/+Gv/+978rJSABYMiQIdi1a5fT97Iq9emrms6JMjt37sS5c+ewc+dOrF27FmvWrLEnZA8ePIjZs2fjpZdeQlpaGrZu3Yq77rrLaYwbN25Ep06d8NJLL9nj8PT0xCOPPGI/b8qsXr0aDz74IEdXtQMXLlzA6tWrsWHDBtx555245ZZbMG/ePPzud7+r9LkAgOLiYnz++ef1H3EpiIjaicmTJwuFQiE8PT2FRqMRAIQsy+Lrr792KDds2DDx9NNPuyZIIiKiVq78962np6cAIEJDQ0VycrK9zKeffiqioqKEzWazbzMajcLd3V1s27ZNXL9+XQAQiYmJTo+xaNEiMWDAgBpj+eabb0TFX3kmT54sgoODhdForHbfAwcOCACioKBACCHE/PnzRd++fR3KPPfccwKAuHHjhhBCiNWrVwsA4uzZs/YyM2fOFB4eHvZ6hBAiPj5ezJw5UwghhE6nEwqFQly+fNmh7hEjRoiEhIQq6125cqUIDg52aNfYsWOrbZMQQowdO1Y89thjDtvuvfdeMXXqVKfl09PTBQDx4Ycf2rd9+eWXAoDYsWOHfdvSpUtFVFSU/XlYWJhYsmSJQ1233Xab+Otf/yqEEOKDDz4Qfn5+Qq/X21/fsmWLkGVZZGVlVdkmZ/GcOHFCABCpqalCCCGmTZsmZsyY4bDfrl27hCzLoqioSKSlpQkAYv/+/fbXU1NTBQCxYsUKh/3eeustERkZ6fS9EUKInTt31vgZqE1f1XROlO0XEREhLBaLvcxDDz0kJkyYIIQQ4r///a/w8fER+fn5TmOteI0bERFRqb379u0TCoVCZGRkCCGEuHLlilAqlVWei9S6ARDffPON/fnmzZsFAPvP77KHUqkUDz/8cKX9v/jiC6FUKu3nbF0p65fGIiJqne6++2689957KCwsxIoVK6BUKvHAAw+4OiwiIqI2pez7FiiZDvbvf/8bo0ePxv79+xEREYEjR47g7NmzlUZcFBcX49y5cxg5ciSmTJmC+Ph43HPPPYiLi8PDDz+M0NDQRomvX79+lUZIJycnY/HixThy5Ahu3LgBm80GoGTEQO/evZGWlobbbrvNYZ8hQ4ZUqtvDwwO33HKL/XlwcDAiIyPh5eXlsK1sNM6xY8dgtVrRo0cPh3qMRqN9RJmzekNDQ52O6KlJUVER3NzcHLb95S9/wQMPPIBDhw5h5MiRGDduXKURVv3793eIHyh5H521KT8/HxkZGbjjjjsc6rjjjjtw5MgRACULzg8YMMDhzlx33HEHbDYb0tLS7MeoSvl4yj4X2dnZ6NmzJ44cOYKjR486TMMTQsBmsyE9PR2nT5+GUql0GCnWs2dP+Pr6VjqOu7s7DAZDtbFUVJ++qumcKNOnTx+HpSRCQ0Nx7NgxAMA999yDiIgIdO3aFaNGjcKoUaNw//33w8PDo9axDxkyBH369MHatWuxYMECfPbZZ4iIiKhypBW1LXq9HgqFAsnJyZWWLCn/M6zMhx9+iD/84Q81nq9VYUKKiNoVT09PdOvWDQDw8ccfY8CAAVzYk4iIqJGV/74FSn5p0Wq1+M9//oN//vOf0Ov1iI6OdrpuT2BgIICSaUKzZ8/G1q1b8dVXX+H555/H9u3bHdY+akh85ZVNH4uPj8fnn3+OwMBAXLhwAfHx8XVe9FylUjk8L7u7b8VtZQmv2v4C6KyOkgEOdRMQEIAbN244bBs9ejR0Oh2+//57bN++HSNGjMCTTz6J5cuXOz1+2XpcFbeVtak5OIun/Hs6c+ZMzJ49u9J+nTt3xunTp2t9nJycHPtnsj6xlcVXU1/V5pyoqu6ydnt7e+PQoUNITEzEjz/+iIULF2Lx4sU4cOCA02RbVR5//HGsXLkSCxYswOrVqzF16tRWsWg7NdygQYNgtVqRnZ1d45pQ6enp2LlzJ7777rt6H49rSBFRuyXLMp599lk8//zzKCoqcnU4REREbZYkSZBl2f59e+utt+LMmTMICgpCt27dHB5arda+36BBg5CQkIC9e/eib9+++OKLLwCU3Nms/KLgDXXq1Clcv34dy5Ytw5133omePXtWGtESFRWFgwcPOmw7cOBAg49d/hfAiu9FSEhIreup7XsyaNAgnDx5stL2wMBATJ48GZ999hnefPNNfPDBB3VqR3k+Pj4ICwvDnj17HLbv2bMHvXv3BgD06tULR44ccVhofM+ePZBl2b7QfH37+dZbb8XJkycrvZ/dunWDWq1Gz549YbFYkJycbN8nLS3NvjB5ecePH8egQYPqHEN1nLWrtudETZRKJeLi4vDqq6/i6NGjOH/+PH7++edaxwEAf/rTn6DT6fD222/j5MmTmDx5ct0aSC2aXq9HSkoKUlJSAJQkllJSUnDhwgX06NEDjz76KCZNmoSNGzciPT0d+/fvx9KlS7FlyxaHej7++GOEhoZi9OjR9Y6FCSkiatceeughKBQKrFy50tWhEBERtRlGoxFZWVnIyspCamoqnnrqKej1evtd7x599FEEBARg7Nix2LVrF9LT05GYmIjZs2fj0qVLSE9PR0JCApKSkqDT6fDjjz/izJkz6NWrFwAgMjLS/kvUtWvXYDQaGxRv586doVar8c477+C3337Dd999h5dfftmhzMyZM3Hq1CnMnz8fp0+fxvr16+2LSTdk9EhdfgGsTmRkJI4ePYq0tDRcu3bN4c5r5cXHx+PEiRMOo6QWLlyIb7/9FmfPnsWJEyewefNm+3tdX8888wxeeeUVfPXVV0hLS8OCBQuQkpKCp59+GkDJZ8DNzQ2TJ0/G8ePHsXPnTjz11FP485//bJ/+U9s2VTR//nzs3bsXs2bNQkpKCs6cOYNvv/3Wvqh5VFQURo0ahZkzZ2Lfvn1ITk7G448/Dnd390p17dq1CyNHjmzQe1GRs3bVdE7UxubNm/H2228jJSUFOp0On3zyCWw2mz3B5yyOX3/9FZcvX8a1a9fs2/38/DB+/Hg888wzGDlyJDp16tQo7aaW4eDBgxg0aJA90Tp37lwMGjTIflOC1atXY9KkSfj73/+OqKgojBs3DgcOHEDnzp3tddhsNqxZswZTpkxp0N3ImZAionZNqVRi1qxZePXVVx3+QkdERET1t3XrVoSGhiI0NBQxMTH2u6gNHz4cQMkaO7/++is6d+6M8ePHo1evXpg2bRqKi4vh4+MDDw8PnDp1Cg888AB69OiBGTNm4Mknn8TMmTMBAA888ABGjRqFu+++G4GBgfjyyy8bFG9gYCDWrFmDDRs2oHfv3li2bJnDdDUA6NKlC77++mts3LgR/fv3x3vvvWe/y55Go2nQ8WvzC2BNpk+fjqioKAwePBiBgYGVRieV6devH2699VasX7/evk2tViMhIQH9+/fHXXfdBYVCgXXr1jWoTbNnz8bcuXPx97//Hf369cPWrVvx3XffoXv37gBKPgPbtm1DTk4ObrvtNjz44IMYMWIE3n333Tq3qaL+/fvjl19+wenTp3HnnXfaf9kOCwuzl1m9ejXCwsIwbNgwjB8/HjNmzEBQUJBDPUlJScjLy8ODDz7YoPeiImftqumcqA1fX19s3LgRv//979GrVy+sWrUKX375Jfr06eO0/EsvvYTz58/jlltuqTQtcdq0aTCZTHjsscca3F5qWYYPHw4hRKVHWYJdpVLhxRdfRHp6OkwmEzIyMrBx40aHNeNkWcbFixexZMmSBsUiifpMPCYiIiIiImrnlixZglWrVuHixYuuDqVOtmzZgmeeeQbHjx+HLHOMQlUmTJiAAQMG4Nlnn3V1KM3u008/xZw5c5CRkVHpBgBEjYWLmhMREREREdXCv//9b9x2223o0KED9uzZg9dee80+Daw1GTNmDM6cOYPLly8jPDzc1eG0SCaTCf369cOcOXNcHUqzMhgMyMzMxLJlyzBz5kwmo6hJcYQUERERERFRLcyZMwdfffUVcnJy0LlzZ/z5z39GQkIClEr+nZ/ahsWLF2PJkiW466678O233zrc6ZGosTEhRUREREREREREzYoThomIiIiIiIiIqFkxIUVERERERERERM2KCSkiIiIiIiIiImpWTEgREREREREREVGzYkKKiIiIiIiIiIiaFRNSRERERERERETUrJiQIiIiIiIiIiKiZsWEFBERERERERERNSsmpIiIiIiIiIiIqFn9f9G4/XBBXaTaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2pJJREFUeJzs3Xdc1PUfB/DX7WMLskQRXDhyYyqae6AiauW2wFnmFq0kUzRXmgPL0rQELU3Llb/cuVcpzpyIA82Fiux99/39gXd53AF3CBzI6/l43KPu813v730P73vv+3zeH5EgCAKIiIiIiIiIiIiKidjcARARERERERERUdnChBQRERERERERERUrJqSIiIiIiIiIiKhYMSFFRERERERERETFigkpIiIiIiIiIiIqVkxIERERERERERFRsWJCioiIiIiIiIiIihUTUkREREREREREVKyYkCIiIiIiIiIiomLFhBSVaiKRCDNmzNA+Dw8Ph0gkwp07d8wWkzEGDx4MT09Pc4eh56effkKtWrUgk8lQrlw5AEDbtm3Rtm1b7Tp37tyBSCRCeHi4WWKkkq9bt24YMWKEucMosaZMmYJmzZqZOwwiIr3P+JKopN4z5SfnPWphKCnXy9PTE927d893vUOHDkEkEuHQoUOFevykpCQ4Oztj3bp1hbrfnDw9PTF48OAiPYZGaX2fG6Oovzvwvqp0Y0KKSqzvvvsOIpGI/8AUk2vXrmHw4MGoVq0aVq1ahZUrV5o7pDLhxx9/RO3ataFUKlGjRg188803Rm975swZdOnSBba2trCxsUHnzp1x/vx5vfUyMzMxc+ZMVK1aFQqFAlWrVsXs2bORlZWlt256ejo+/fRTuLm5wcLCAs2aNcO+ffuMjun48ePYu3cvPv30U71ljx8/xuTJk1GrVi1YWlrCysoK3t7emD17NuLi4rTrnTp1CqNGjYK3tzdkMhlEIpHBY6WmpmLYsGGoW7cu7OzsYG1tjQYNGmDp0qXIzMw0OubCcO/ePcycORNNmzaFvb09HB0d0bZtW/z55596606YMAEXLlzA9u3bizVGIir9ND+8aR5KpRJeXl4YM2YMHj9+XKyxrF+/HqGhocV6zLLgypUrmDFjRon/cdWcli5dChsbG/Tv39/coVAJwPuq0k1q7gCIcrNu3Tp4enri1KlTiIqKQvXq1fPd5v3330f//v2hUCiKIcLXy6FDh6BWq7F06VKd13rv3r1mjOr19v3332PkyJF49913ERQUhKNHj2LcuHFISUkxmNB52dmzZ/HWW2/B3d0dISEhUKvV+O6779CmTRucOnUKNWvW1K773nvv4bfffsPQoUPRpEkT/PXXX5g2bRru3r2rl3gcPHgwNm3ahAkTJqBGjRoIDw9Ht27dcPDgQbz11lv5ntNXX32FDh066P29nj59Gt26dUNSUhLee+89eHt7AwAiIiLw5Zdf4siRI9r32s6dO/HDDz+gfv36qFq1KiIjIw0eKzU1FZcvX0a3bt3g6ekJsViMEydOYOLEifj777+xfv36fOMtLL///jvmz5+PXr16ITAwEFlZWVi7di06deqE1atXY8iQIdp1XV1d0bNnTyxcuBA9evQothiJ6PXxxRdfoEqVKkhLS8OxY8ewfPly7Ny5E5cuXYKlpaXR+3mVz/j169fj0qVLmDBhQoH3YYxVq1ZBrVYX6TFKkitXrmDmzJlo27atXo+Z0nZP1rp1a6SmpkIulxfaPjMzM7F06VJMnDgREomk0PZryPXr1yEWs/9GScf7qlJOICqBbt26JQAQtmzZIjg5OQkzZswwuB4AISQkpHiDKwSBgYGCh4dHkR4jKSnJpPVnzpwpABCePHmS53q3b98WAAhhYWGvEF3JZerrVlApKSlC+fLlBT8/P532QYMGCVZWVkJsbGye23fr1k2wt7cXnj59qm178OCBYG1tLbzzzjvatlOnTgkAhGnTpulsP2nSJEEkEgkXLlzQtv39998CAOGrr77StqWmpgrVqlUTfHx88j2nx48fC1KpVPjhhx902p8/fy5UrFhRcHFxEa5evaq33aNHj4RZs2bpPE9JSREEQRBGjx4tmPpRNWbMGAGA8PDhQ5O2exWXLl3S+9tJS0sTatWqJVSqVElv/U2bNgkikUi4efNmcYVIRK+BsLAwAYBw+vRpnfagoCABgLB+/fpii8XPz6/I72VKCrVarf1cMlZB71F/++03AYBw8OBBk7ctLh4eHnr3L8Vly5YtAgAhKirKLMfPqbDuG4vju4G5FMd3B95XlV5M+VKJtG7dOtjb28PPzw+9e/c2eoy4oRpSarUaM2bMgJubGywtLdGuXTtcuXJFb1y4Ztvjx48jKCgITk5OsLKywttvv40nT57oHWvXrl1o1aoVrKysYGNjAz8/P1y+fFlvvW3btqFu3bpQKpWoW7cutm7davTroBmjv3fvXjRs2BBKpRJ16tTBli1bDJ734cOHMWrUKDg7O6NSpUra5d999x3eeOMNKBQKuLm5YfTo0TpDpDw9PRESEgIAcHJy0ql7YGy9gmvXrqF3795wcHCAUqlEkyZN9LrOaoaO1ahRA0qlEuXLl8dbb71l0pCwwjRjxgyIRCJcuXIFAwcOhL29vVG9gArDwYMH8ezZM4waNUqnffTo0UhOTsaOHTvy3P7o0aPo2LEjypcvr22rUKEC2rRpgz/++ANJSUna9QDodWvv378/BEHAxo0btW2bNm2CRCLBBx98oG1TKpUYNmwYTp48iXv37uUZ044dO5CVlYWOHTvqtH///fe4f/8+Fi9ejFq1ault5+Ligs8//1znuYWFRZ7HyovmF+WX3+NF7Y033oCjo6NOm0KhQLdu3fDvv/8iMTFRZ5nmNfr999+LLUYien21b98eAHD79m0AQFZWFmbNmoVq1apBoVDA09MTn332GdLT03W2y/kZr6n58+uvv2LOnDmoVKkSlEolOnTogKioKJ3tduzYgejoaO3wwbzq38TFxUEikeDrr7/Wtj19+hRisRjly5eHIAja9o8++giurq7a54Zq62zYsAHe3t6wsbGBra0t6tWrh6VLl+odc8KECXB3d4dCoUD16tUxf/58o3pbae6/9uzZgyZNmsDCwgLff//9K+03Ojoao0aNQs2aNWFhYYHy5cujT58+Oves4eHh6NOnDwCgXbt22tdWU4PJ0D1ZTEwMhg0bBhcXFyiVSjRo0ABr1qzRWUdTw2fhwoVYuXKl9n3x5ptv4vTp0zrrPnr0CEOGDEGlSpWgUChQoUIF9OzZ0+AQwmPHjqFp06ZQKpWoWrUq1q5dq7PcUA2ptm3bom7dujhz5gxatGgBCwsLVKlSBStWrMjz9dPYtm0bPD09Ua1aNZ32wYMHw9raGrdu3YKvry+srKzg5uaGL774Quf9BQALFy5EixYtUL58eVhYWMDb2xubNm3SO1Zu3xVyu98uju8GERER8PX1haOjo/a1Gzp0aIHOTyQSYcyYMfjtt99Qp04dWFhYwMfHB//88w+A7Pu36tWrQ6lUom3btnrvgVe9loX53YH3VaUXh+xRibRu3Tq88847kMvlGDBgAJYvX47Tp0/jzTffNHlfwcHBWLBgAfz9/eHr64sLFy7A19cXaWlpBtcfO3Ys7O3tERISgjt37iA0NBRjxozR+eL+008/ITAwEL6+vpg/fz5SUlKwfPlyvPXWWzh37pz2xmnv3r149913UadOHcybNw/Pnj3Tfsgb68aNG+jXrx9GjhyJwMBAhIWFoU+fPti9ezc6deqks+6oUaPg5OSE6dOnIzk5GUB20mXmzJno2LEjPvroI1y/fl37eh4/fhwymQyhoaFYu3Yttm7diuXLl8Pa2hr169c3OsbLly+jZcuWqFixIqZMmQIrKyv8+uuv6NWrFzZv3oy3335bG8u8efMwfPhwNG3aFAkJCYiIiMDZs2f1zqU49enTBzVq1MDcuXP1blpeplarERsba9Q+7ezsIJPJcl1+7tw5AECTJk102r29vSEWi3Hu3Dm89957uW6fnp5uMGljaWmJjIwMXLp0Cc2bN9d++ci5rmZIx5kzZ3Ri8vLygq2trc66TZs2BQCcP38e7u7uucZ04sQJlC9fHh4eHjrt27dvh4WFBXr37p3rtq8iIyMDCQkJSE1NRUREBBYuXAgPD498h/kW5vXMzaNHj2Bpaak3hMbOzg7VqlXD8ePHMXHiRJP3S0T0sps3bwKA9keK4cOHY82aNejduzcmTZqEv//+G/PmzcPVq1eN+vL75ZdfQiwWY/LkyYiPj8eCBQswaNAg/P333wCAqVOnIj4+Hv/++y+WLFkCALC2ts51f+XKlUPdunVx5MgRjBs3DkB2MkMkEiE2NhZXrlzBG2+8ASD7h5RWrVrluq99+/ZhwIAB6NChA+bPnw8AuHr1Ko4fP47x48cDAFJSUtCmTRvcv38fH374ISpXrowTJ04gODgYDx8+NKr21fXr1zFgwAB8+OGHGDFiBGrWrPlK+z19+jROnDiB/v37o1KlSrhz5w6WL1+Otm3b4sqVK7C0tETr1q0xbtw4fP311/jss89Qu3ZtAND+N6fU1FS0bdsWUVFRGDNmDKpUqYLffvsNgwcPRlxcnPb10Fi/fj0SExPx4YcfQiQSYcGCBXjnnXdw69Yt7Wfcu+++i8uXL2Ps2LHw9PRETEwM9u3bh7t37+okBqOiotC7d28MGzYMgYGBWL16NQYPHgxvb2/ttczN8+fP0a1bN/Tt2xcDBgzAr7/+io8++ghyuVwvuZLTiRMn0LhxY4PLVCoVunTpgubNm2PBggXYvXs3QkJCkJWVhS+++EK73tKlS9GjRw8MGjQIGRkZ2LBhA/r06YM//vgDfn5+eR4fMHy/XRzfDWJiYtC5c2c4OTlhypQpKFeuHO7cuaP3Q7Up53f06FFs374do0ePBgDMmzcP3bt3xyeffILvvvsOo0aNwvPnz7FgwQIMHToUBw4c0Nm+oNeysL878L6qFDNvBy0ifREREQIAYd++fYIgZHeTrlSpkjB+/Hi9dZGjO7SmK/vt27cFQcge+iOVSoVevXrpbDdjxgwBgBAYGKi3bceOHQW1Wq1tnzhxoiCRSIS4uDhBEAQhMTFRKFeunDBixAidfT569Eiws7PTaW/YsKFQoUIF7baCIAh79+4VABjVLdfDw0MAIGzevFnbFh8fL1SoUEFo1KiRXuxvvfWWkJWVpW2PiYkR5HK50LlzZ0GlUmnbly1bJgAQVq9erW0LCQkxOGSvTZs2Qps2bbTPDXW77dChg1CvXj0hLS1N26ZWq4UWLVoINWrU0LY1aNDAbF28DdGc84ABA4xaX3Puxjzy62o/evRoQSKRGFzm5OQk9O/fP8/t69WrJ3h5eelc7/T0dKFy5coCAGHTpk2CIAjC5s2bBQDCTz/9pLP9ihUrBABC3bp1tW1vvPGG0L59e71jXb58WQAgrFixIs+Y3nrrLcHb21uv3d7eXmjQoEGe2+bGmCF7v/zyi85r36RJE+HixYv57rswr6chN27cEJRKpfD+++8bXN65c2ehdu3aJu+XiMouzef9n3/+KTx58kS4d++esGHDBqF8+fKChYWF8O+//wrnz58XAAjDhw/X2Xby5MkCAOHAgQPatpyf8QcPHhQACLVr1xbS09O17UuXLhUACP/884+2zdQhe6NHjxZcXFy0z4OCgoTWrVsLzs7OwvLlywVBEIRnz54JIpFIWLp0qXa9nEOZxo8fL9ja2up8/uU0a9YswcrKSoiMjNRpnzJliiCRSIS7d+/mGavm/mv37t0F3m/Oe1RDQ/5OnjwpABDWrl2rbctryF7O6xUaGioAEH7++WdtW0ZGhuDj4yNYW1sLCQkJgiD893lXvnx5nZIAv//+uwBA+N///icIQvYQe+QYum+I5vU5cuSIti0mJkZQKBTCpEmTtG2a99PL59KmTRsBgLBo0SJtW3p6utCwYUPB2dlZyMjIyPW4mZmZgkgk0jmGRmBgoABAGDt2rLZNrVYLfn5+glwu17m/zXktMjIyhLp16+rdA3l4eBj8rpDzfru4vhts3brV4JDdnIw9PwCCQqHQfm8SBEH4/vvvBQCCq6ur9v0jCIIQHBys8x1LEIy/lsX13YH3VaUTh+xRibNu3Tq4uLigXbt2ALK7k/br1w8bNmyASqUyaV/79+9HVlaW3rCosWPH5rrNBx98oDOrV6tWraBSqRAdHQ0g+5e5uLg4DBgwAE+fPtU+JBIJmjVrhoMHDwIAHj58iPPnzyMwMBB2dnba/XXq1Al16tQx+hzc3Ny0vxIAgK2tLQICAnDu3Dk8evRIZ90RI0boFHj8888/kZGRgQkTJugUZRwxYgRsbW3zHRZmjNjYWBw4cAB9+/ZFYmKi9vV49uwZfH19cePGDdy/fx9A9i+kly9fxo0bN175uIVp5MiRRq3n6uqKffv2GfVo0KBBnvvKq8inUqlEampqntuPGjUKkZGRGDZsGK5cuYJLly4hICAADx8+1O4fALp16wYPDw9MnjwZW7ZsQXR0NH799VdMnToVUqlU5zipqakGJwRQKpU6+8zNs2fPYG9vr9eekJAAGxubPLd9Fe3atcO+ffvw22+/YeTIkZDJZNpfLPNSmNczp5SUFPTp0wcWFhb48ssvDa5jb2+Pp0+fmrRfIiIge3iKk5MT3N3d0b9/f1hbW2Pr1q2oWLEidu7cCQAICgrS2WbSpEkAYNRn/5AhQ3Q+ozQ9lm7dulXgmFu1aoXHjx/j+vXrALJ7ZrRu3RqtWrXSDi8/duwYBEHIs4dUuXLlkJycnOdw/99++w2tWrXS/jureXTs2BEqlQpHjhzJN94qVarA19e30Pb7ck/lzMxMPHv2DNWrV0e5cuVw9uzZfOMxZOfOnXB1dcWAAQO0bTKZDOPGjUNSUhIOHz6ss36/fv10PqdzXlcLCwvI5XIcOnQIz58/z/PYderU0blOTk5OqFmzplHvEalUig8//FD7XC6X48MPP0RMTIxOz+2cYmNjIQiCwXsNjTFjxmj/XzMkLSMjQ2fW25evxfPnzxEfH49WrVoZfR1y3m8X13eDcuXKAQD++OOPPGcTNuX8OnTooNPzTTO7+bvvvqtz76Zpz3l9C3Iti+q7A++rSicO2aMSRaVSYcOGDWjXrp22DgKQ/Y/gokWLsH//fnTu3Nno/WmSSDmH7jg4OOT6YVa5cmWd55r1NB/Mmn8QNfUactIMd9Icu0aNGnrr1KxZ0+gPverVq+tNe+/l5QUguybAy3UWqlSporOeJoaXZ1wDsj8sqlatql3+KqKioiAIAqZNm4Zp06YZXCcmJgYVK1bEF198gZ49e8LLywt169ZFly5d8P777+c5PFClUhms4WUMiUQCJyenfNfL+brlRqlU6tVHKigLCwtkZGQYXJaWlpZvDaWRI0fi3r17+Oqrr7S1Ipo0aYJPPvkEc+bM0Q6dUCqV2LFjB/r27Yt3330XQHZtowULFuisp4kpZ30RTTya5fkRDAx5tLW11auhVJhcXFzg4uICAOjduzfmzp2LTp064caNGzp/HzkV5vV8mUqlQv/+/XHlyhXs2rULbm5uBtcTBEHvb5uoNDhy5Ai++uornDlzBg8fPsTWrVvRq1cvk/axZ88ehISE4PLly1AqlWjdujUWLVqUZx0i+s+3334LLy8vSKVSuLi4oGbNmtofnqKjoyEWi/XufVxdXVGuXDmjPvvzuxfKS84fy+zs7GBhYaFNXhw9ehSVKlXCuXPnMHv2bDg5OWHhwoXaZba2tnn+CDBq1Cj8+uuv6Nq1KypWrIjOnTujb9++6NKli3adGzdu4OLFi7neA8TExOR7HobuDV5lv6mpqZg3bx7CwsJw//59nc/L+Pj4fOMxJDo6GjVq1NCbCU4zxC/ntc7vuioUCsyfPx+TJk2Ci4sLmjdvju7duyMgIEDv8zTnvjT7M+Y94ubmBisrK522l+9tmzdvnuf2hu41AEAsFqNq1aq57lfjjz/+wOzZs3H+/Hmd+x5jP5NzvjeK67tBmzZt8O6772LmzJlYsmQJ2rZti169emHgwIE6Pyiacn45r6MmUZazRIOmPef1Lci1LKrvDryvKp2YkKIS5cCBA3j48CE2bNiADRs26C1ft26dSQmpgshtClnNh5+maOVPP/1k8MuuVGq+P6tXKQRdUJrXY/LkyXq/JGpobopbt26Nmzdv4vfff8fevXvxww8/YMmSJVixYgWGDx9ucNt79+4ZnTDKycPDw2ARzpyMfd1MSY45ODjkOc1xhQoVoFKpEBMTA2dnZ217RkYGnj17lmsS42Vz5szB5MmTcfnyZdjZ2aFevXr47LPPAPx3MwBkF9y+dOkSrly5gufPn2sLV06cOBFt2rTRiUnzi9TLNL2u8oupfPnyBm9Ea9WqhfPnzyMjI6NQp37OTe/evTF16lT8/vvvOr/a5VSY1/NlI0aMwB9//IF169blenMKZN/U5SyETlQaJCcno0GDBhg6dCjeeecdk7e/ffs2evbsiaCgIKxbtw7x8fGYOHEi3nnnnQL3FClrmjZtqleDMKdX+WKW371QXipUqKDzPCwsDIMHD4abmxuqVKmCI0eOwNPTE4IgwMfHB05OThg/fjyio6Nx9OhRtGjRQi/B8jJnZ2ecP38ee/bswa5du7Br1y6EhYUhICBA+wONWq1Gp06d8Mknnxjcx8ufkbkxdG/wKvsdO3YswsLCMGHCBPj4+MDOzg4ikQj9+/c3qtB6YTDmuk6YMAH+/v7Ytm0b9uzZg2nTpmHevHk4cOAAGjVqZNK+CpuDgwNEIpFRSa/cHD16FD169EDr1q3x3XffoUKFCpDJZAgLC8P69euN2kfO90ZxfTcQiUTYtGkT/vrrL/zvf//Dnj17MHToUCxatAh//fUXrK2tTT6/3K5jUV7fovruwPuq0okJKSpR1q1bB2dnZ3z77bd6y7Zs2YKtW7dixYoVRicQNMWVo6KidJIaz549K/CHmWZWD2dn5zx7V2iObaiLqaa7ujE0vyK8fGMZGRkJAPn+kqyJ4fr16zq/GGVkZOD27duF0jtEs1+ZTGbU/hwcHDBkyBAMGTIESUlJaN26NWbMmJFrQkozrKogCjtBZ0py7ODBg3nOTtiwYUMA2bOldOvWTdseEREBtVqtXZ6fnDMD/vnnn6hUqZLebHYikUinyOjOnTuhVqt1rlnDhg1x8OBBJCQk6BQ21xSxzS+mWrVqYfPmzXrt/v7+OHnyJDZv3qwzrKCoaIYW5veLc2FeT42PP/4YYWFhCA0Nzfdcb9++bfJQQKKSoGvXrujatWuuy9PT0zF16lT88ssviIuLQ926dTF//nzt39CZM2egUqkwe/ZsbeJh8uTJ6NmzJzIzMws0gQD9x8PDA2q1Gjdu3NAphv348WPExcXpTTxRULklvHJ+Zr/82dOqVSscOXIEVapUQcOGDWFjY4MGDRrAzs4Ou3fvxtmzZzFz5sx8jy2Xy+Hv7w9/f3+o1WqMGjUK33//PaZNm4bq1aujWrVqSEpKKvResK+y302bNiEwMBCLFi3StqWlpenNCGtKItHDwwMXL16EWq3WSeJdu3ZNu7wgqlWrhkmTJmHSpEm4ceMGGjZsiEWLFuHnn38u0P5yevDgAZKTk3V61hhzbyuVSlGtWjWdURQvU6vVuHXrlk5iMOd+N2/eDKVSiT179uj0KgoLCyvo6RT7d4PmzZujefPmmDNnDtavX49BgwZhw4YNGD58eJGcX14Kci2L6rsD76tKJ9aQohIjNTUVW7ZsQffu3dG7d2+9x5gxY5CYmKg3HWheOnToAKlUiuXLl+u0L1u2rMBx+vr6wtbWFnPnzjU4flvT46JChQpo2LAh1qxZo/PFeN++fbhy5YrRx3vw4IHOjDgJCQlYu3YtGjZsmOdwJCC7xoRcLsfXX3+t84vGjz/+iPj4eKNmEsmPs7Mz2rZti++//17bk+ZlL/dAefbsmc4ya2trVK9e3eAwMQ3NsKqCPFq2bPnK5/eywqw51L59ezg4OOi9N5cvXw5LS0uda/P06VNcu3YNKSkpee5z48aNOH36tF7NsJxSU1Mxbdo0VKhQQSdp0rt3b6hUKqxcuVLblp6ejrCwMDRr1izPGfYAwMfHB8+fP9erLzBy5EhUqFABkyZN0t6kvCwmJgazZ8/Oc9+GPH361OAvdT/88AMA/RkMcyrsGlJfffUVFi5ciM8++0xvZqOc4uPjcfPmTbRo0SLf/RKVNmPGjMHJkyexYcMGXLx4EX369EGXLl20X8I0s4mGhYVBpVIhPj4eP/30Ezp27MhkVCHQ/MiRc8a3xYsXA0ChfPYDgJWVlcHEf87P4pd7TLVq1Qp37tzBxo0btUP4xGIxWrRogcWLFyMzMzPP+lGA/r2EWCzWDt/R3E/07dsXJ0+exJ49e/S2j4uLQ1ZWlmkn+8Kr7Fcikeh9Zn3zzTd69VE1X+xzJqoM6datGx49eqQzE3RWVha++eYbWFtb6/SCNkZKSoreLNTVqlWDjY1NnvdqpsrKysL333+vfZ6RkYHvv/8eTk5O8Pb2znNbHx8fRERE5Lr85Xt8QRCwbNkyyGQydOjQAUD2dRCJRDqv+507d7Bt27YCnk3xfTd4/vy53ntI82Oh5voUxfnlpSDXsii+O/C+qvRiDykqMbZv347ExET06NHD4PLmzZvDyckJ69atQ79+/Yzap4uLC8aPH49FixahR48e6NKlCy5cuIBdu3bB0dGxQN3ZbW1tsXz5crz//vto3Lgx+vfvDycnJ9y9exc7duxAy5YttR+G8+bNg5+fH9566y0MHToUsbGx+Oabb/DGG28gKSnJqON5eXlh2LBhOH36NFxcXLB69Wo8fvzYqF86nJycEBwcjJkzZ6JLly7o0aMHrl+/ju+++w5vvvkm3nvvPZPP35Bvv/0Wb731FurVq4cRI0agatWqePz4MU6ePIl///0XFy5cAJBdALNt27bw9vaGg4MDIiIisGnTJp0ClCVZYdeQmjVrFkaPHo0+ffrA19cXR48exc8//4w5c+bAwcFBu+6yZcswc+ZMnV46R44cwRdffIHOnTujfPny+OuvvxAWFoYuXbroJUP69u0LNzc31KlTBwkJCVi9ejVu3bqFHTt26BWs7NOnD4KDgxETE4Pq1atjzZo1uHPnDn788cd8z8nPzw9SqRR//vknPvjgA227vb09tm7dim7duqFhw4Z47733tDcpZ8+exS+//AIfHx/t+tHR0fjpp58AQHvTqUlYeXh44P333wcA/Pzzz1ixYgV69eqFqlWrIjExEXv27MG+ffvg7++f53A5oHCv59atW/HJJ5+gRo0aqF27tt6vyJ06ddLWuQKye7IJgoCePXsWyvGJSoq7d+8iLCwMd+/e1Q7znTx5Mnbv3o2wsDDMnTsXVapUwd69e9G3b198+OGHUKlU8PHx0RbjplfToEEDBAYGYuXKlYiLi0ObNm1w6tQprFmzBr169dJOGvOqvL29sXHjRgQFBeHNN9+EtbU1/P3989xGk2y6fv065s6dq21v3bo1du3aBYVCgTfffDPPfQwfPhyxsbFo3749KlWqhOjoaHzzzTdo2LChtkfYxx9/jO3bt6N79+4YPHgwvL29kZycjH/++QebNm3CnTt3CjS051X22717d/z000+ws7NDnTp1cPLkSfz5558oX768znoNGzaERCLB/PnzER8fD4VCgfbt2+sM79f44IMP8P3332Pw4ME4c+YMPD09sWnTJhw/fhyhoaEmTygSGRmJDh06oG/fvqhTpw6kUim2bt2Kx48fo3///ibtKy9ubm6YP38+7ty5Ay8vL2zcuBHnz5/HypUr801K9+zZEz/99BMiIyP1hkgqlUrs3r0bgYGBaNasGXbt2oUdO3bgs88+09b98vPzw+LFi9GlSxcMHDgQMTEx+Pbbb1G9enVcvHixQOdTXN8N1qxZg++++w5vv/02qlWrhsTERKxatQq2trbaRHRRnF9eCnotC/u7A++rSrFinNGPKE/+/v6CUqkUkpOTc11n8ODBgkwmE54+fSoIgv6UuprpWF+ekjQrK0uYNm2a4OrqKlhYWAjt27cXrl69KpQvX14YOXKk3rY5p1I1NGWtpt3X11ews7MTlEqlUK1aNWHw4MFCRESEznqbN28WateuLSgUCqFOnTrCli1b9KYwzo2Hh4fg5+cn7NmzR6hfv76gUCiEWrVqCb/99pvOernFrrFs2TKhVq1agkwmE1xcXISPPvpIeP78uc46ISEhAgCdaXEFQX+KYUNTtwqCINy8eVMICAgQXF1dBZlMJlSsWFHo3r27sGnTJu06s2fPFpo2bSqUK1dOsLCwEGrVqiXMmTMnzyl+i1Ju51ycVq5cKdSsWVOQy+VCtWrVhCVLlghqtVpnHU2cL78Ho6KihM6dOwuOjo7a98W8efN0punWmD9/vlCrVi1BqVQK9vb2Qo8ePYRz584ZjCc1NVWYPHmy4OrqKigUCuHNN9/Um/Y6Lz169BA6dOhgcNmDBw+EiRMnCl5eXoJSqRQsLS0Fb29vYc6cOUJ8fLx2Pc3fnKHHy+/F06dPC3369BEqV64sKBQKwcrKSmjcuLGwePFiITMz0+iYC4PmGuX2yPnvR79+/YS33nqrWGMkKgoAhK1bt2qf//HHHwIAwcrKSuchlUqFvn37CoIgCA8fPhRq1KghfPzxx8LZs2eFw4cPC23atBE6dOig9+8f6crv814jMzNTmDlzplClShVBJpMJ7u7uQnBwsM4U64Kg/xmv+fc3532Goc/+pKQkYeDAgUK5cuWMmrJew9nZWQAgPH78WNt27NgxAYDQqlUrvfVz3jNt2rRJ6Ny5s+Ds7CzI5XKhcuXKwocffig8fPhQZ7vExEQhODhYqF69uiCXywVHR0ehRYsWwsKFC/O979Dcfxli7H5z3qM+f/5cGDJkiODo6ChYW1sLvr6+wrVr1wQPDw8hMDBQ5xirVq0SqlatKkgkEp3PkJzXSxAE4fHjx9r9yuVyoV69enr3aJrr99VXX+mdz8txPn36VBg9erRQq1YtwcrKSrCzsxOaNWsm/Prrr0a9Prm9n17+DGzTpo3wxhtvCBEREYKPj4+gVCoFDw8PYdmyZXr7MyQ9PV1wdHQUZs2apdMeGBgoWFlZCTdv3hQ6d+4sWFpaCi4uLkJISIigUql01v3xxx+FGjVqaO+fwsLCtJ/jOc/z5WuT399fUX83OHv2rDBgwADtfY+zs7PQvXt3vf0be34AhNGjR+u05fZeMfRvg7HXsji+O/C+qvQSCUIRVp4jKqHi4uJgb2+P2bNnY+rUqeYOJ1eenp6oW7cu/vjjD3OHQmSUo0ePom3btrh27ZrBWWQoewaqKlWqYMOGDfwlj0o9kUikM8vexo0bMWjQIFy+fFmvKK61tTVcXV0xbdo07N69G6dPn9Yu+/fff+Hu7o6TJ0/mO8MWEZVebdu2xdOnT3Hp0qUC72PWrFkICwvDjRs3tP/ODB48GJs2bTJ6BAK9usK4loWB91WlG2tI0WtPU+D4ZZq6CsYUKSYi47Vq1QqdO3fGggULzB1KiRUaGop69erxpoleS40aNdLOIFq9enWdh6buYUpKil6dO82XyuKabYyISq+JEyciKSnJ4IzcVPbwvqp0Yw0peu1t3LgR4eHh6NatG6ytrXHs2DH88ssv6Ny5c6EXvSYiYNeuXeYOoUT78ssvzR0C0StJSkpCVFSU9vnt27dx/vx5ODg4wMvLC4MGDUJAQAAWLVqERo0a4cmTJ9i/fz/q168PPz8/+Pn5YcmSJfjiiy8wYMAAJCYm4rPPPoOHh4fOtPJERIZYW1sjJibG3GFQCcH7qtKNCSl67dWvXx9SqRQLFixAQkKCttB5QWb1IiIiKusiIiJ0CmMHBQUBAAIDAxEeHo6wsDDMnj0bkyZNwv379+Ho6IjmzZuje/fuALJnGV2/fj0WLFiABQsWwNLSEj4+Pti9ezcsLCzMck5ERERU/FhDioiIiIiIiIiIihVrSBERERERERERUbFiQoqIiIiIiIiIiIpVmashpVar8eDBA9jY2EAkEpk7HCIiIiqBBEFAYmIi3Nzc9GaEK4t4/0RERET5MfX+qcwlpB48eAB3d3dzh0FERESlwL1791CpUiVzh2F2vH8iIiIiYxl7/1TmElI2NjYAsl8gW1tbM0dDREREJVFCQgLc3d219w1lHe+fiIiIKD+m3j+VuYSUppu5ra0tb6iIiIgoTxyelo33T0RERGQsY++fWBSBiIiIiIiIiIiKFRNSRERERERERERUrJiQIiIiIiIiIiKiYlXmakgRERWUWq1GRkaGucMgokIgk8kgkUjMHQYRERFRmcWEFBGRETIyMnD79m2o1Wpzh0JEhaRcuXJwdXVl4XIiIiIiM2BCiogoH4Ig4OHDh5BIJHB3d4dYzNHORKWZIAhISUlBTEwMAKBChQpmjoiIiIio7GFCiogoH1lZWUhJSYGbmxssLS3NHQ4RFQILCwsAQExMDJydnTl8j4iIiF57arWAyJhExKdkws5SBi9nG4jF5uspbtaf+Y8cOQJ/f3+4ublBJBJh27Zt+W5z6NAhNG7cGAqFAtWrV0d4eHiRx0lEZZtKpQIAyOVyM0dCRIVJk2DOzMw0cyRERERERetMdCwmbDyPoI0XMHXrPwjaeAETNp7HmehYs8Vk1oRUcnIyGjRogG+//dao9W/fvg0/Pz+0a9cO58+fx4QJEzB8+HDs2bOniCMlIgLrzBC9Zvg3TURERGXBmehYzNlxFZfux8NWKUUle0vYKqW4/CAec3ZcNVtSyqxD9rp27YquXbsavf6KFStQpUoVLFq0CABQu3ZtHDt2DEuWLIGvr29RhUlEREREREREVOqo1QLWnIhGXEomPMtban+Qs1JIYSmXIDo2BWtPRKORu32xD98rVZV5T548iY4dO+q0+fr64uTJk7luk56ejoSEBJ0HUUEc2LEBV2c3R9SlU+YOhahU8fT0RGhoqLnD0GrdujXWr19v7jAKpKhey8GDB6NXr16Fvl9z2r17Nxo2bMiZMYmIiKhMi4xJRFRMEpxtFHq9w0UiEZysFbgRk4TImMRij61UJaQePXoEFxcXnTYXFxckJCQgNTXV4Dbz5s2DnZ2d9uHu7l4codJrJuz4bcT+tQ61s67i8sGN5g6HyCiDBw+GSCTCyJEj9ZaNHj0aIpEIgwcP1rY9efIEH330ESpXrgyFQgFXV1f4+vri+PHjAIDY2FiMHTsWNWvWhIWFBSpXroxx48YhPj6+uE7JoPDwcJQrV86odbdv347Hjx+jf//+RRvUKzLlnMiwLl26QCaTYd26deYOhYiIiMhs4lMykZGlglJmeAIXpUyCjCwV4lOKv6ZmqUpIFURwcDDi4+O1j3v37pk7JCqFtp1/ADmy/0D/jXmGuJQMM0dEZBx3d3ds2LBBJ2mflpaG9evXo3Llyjrrvvvuuzh37hzWrFmDyMhIbN++HW3btsWzZ88AAA8ePMCDBw+wcOFCXLp0CeHh4di9ezeGDRtWrOf0Kr7++msMGTIEYvFr//FXKmVkFO6/rYMHD8bXX39dqPssCQoyKUx6ejqmTp0KDw8PKBQKeHp6YvXq1UUfLBEREZmVnaUMcqkEaZkqg8vTMlWQSyWws5QVc2SlLCHl6uqKx48f67Q9fvwYtra22umbc1IoFLC1tdV5EJlKEATIkAUAkAoZ+P38AzNHRGScxo0bw93dHVu2bNG2bdmyBZUrV0ajRo20bXFxcTh69Cjmz5+Pdu3awcPDA02bNkVwcDB69OgBAKhbty42b94Mf39/VKtWDe3bt8ecOXPwv//9D1lZWXnGkZiYiAEDBsDKygoVK1bUm8wiLi4Ow4cPh5OTE2xtbdG+fXtcuHBBu/zChQto164dbGxsYGtrC29vb0RERODQoUMYMmQI4uPjIRKJIBKJMGPGDIMxPHnyBAcOHIC/v7+2TRAEzJgxQ9srzM3NDePGjdMu9/T0xOzZsxEQEABra2t4eHhg+/btePLkCXr27Alra2vUr18fEREROsfavHkz3njjDe0Xf03tQ43nz58jICAA9vb2sLS0RNeuXXHjxg0AyPecUlJSMHToUNjY2KBy5cpYuXKlzr7v3buHvn37oly5cnBwcEDPnj1x584d7XKVSoWgoCCUK1cO5cuXxyeffAJBEHK/eLkQiUT44Ycf8Pbbb8PS0hI1atTA9u3bddY5fPgwmjZtCoVCgQoVKmDKlCk675W2bdtizJgxmDBhAhwdHeHr64tDhw5BJBJhz549aNSoESwsLNC+fXvExMRg165dqF27NmxtbTFw4ECkpKTkGaO/vz8iIiJw8+ZNk8+vJDN1UhgA6Nu3L/bv348ff/wR169fxy+//IKaNWsWYZRERERUEng526C6szWeJKXr3fMJgoAnSemo4WwNL2ebYo+tVCWkfHx8sH//fp22ffv2wcfHx0wRUVmiSUgpkYHz9+LMGwyZlSAISMnIMsujIImDoUOHIiwsTPt89erVGDJkiM461tbWsLa2xrZt25Cenm70vuPj42FrawupNO85Mr766is0aNAA586dw5QpUzB+/Hjs27dPu7xPnz7ahMOZM2fQuHFjdOjQAbGx2TN+DBo0CJUqVcLp06dx5swZTJkyBTKZDC1atEBoaChsbW3x8OFDPHz4EJMnTzYYw7Fjx2BpaYnatWtr2zZv3owlS5bg+++/x40bN7Bt2zbUq1dPZ7slS5agZcuWOHfuHPz8/PD+++8jICAA7733Hs6ePYtq1aohICBAe23OnDmDvn37on///vjnn38wY8YMTJs2DeHh4dp9Dh48GBEREdi+fTtOnjwJQRDQrVs3ZGZm5ntOixYtQpMmTXDu3DmMGjUKH330Ea5fvw4AyMzMhK+vL2xsbHD06FEcP34c1tbW6NKli7b30aJFixAeHo7Vq1fj2LFjiI2NxdatW/O71AbNnDkTffv2xcWLF9GtWzcMGjRIe83u37+Pbt264c0338SFCxewfPly/Pjjj5g9e7bOPtasWQO5XI7jx49jxYoV2vYZM2Zg2bJlOHHihDbJFhoaivXr12PHjh3Yu3cvvvnmmzzjq1y5MlxcXHD06NECnV9J1bVrV8yePRtvv/22Uevv3r0bhw8fxs6dO9GxY0d4enrCx8cHLVu2LOJIiYiIyNzEYhECW3jAzkKG6NgUJKdnQaUWkJyehejYFNhZyBDQwqPYC5oDZp5lLykpCVFRUdrnt2/fxvnz5+Hg4IDKlSsjODgY9+/fx9q1awEAI0eOxLJly/DJJ59g6NChOHDgAH799Vfs2LHDXKdAZYhcm5DKLFBSgF4fqZkq1Jm+xyzHvvKFLyzlpv3T/d577yE4OBjR0dEAgOPHj2PDhg04dOiQdh2pVIrw8HCMGDECK1asQOPGjdGmTRv0798f9evXN7jfp0+fYtasWfjggw/yjaFly5aYMmUKAMDLywvHjx/HkiVL0KlTJxw7dgynTp1CTEwMFAoFAGDhwoXYtm0bNm3ahA8++AB3797Fxx9/jFq1agEAatSood23nZ0dRCIRXF1d84whOjoaLi4uOsP17t69C1dXV3Ts2BEymQyVK1dG06ZNdbbr1q0bPvzwQwDA9OnTsXz5crz55pvo06cPAODTTz+Fj48PHj9+DFdXVyxevBgdOnTAtGnTtOd75coVfPXVVxg8eDBu3LiB7du34/jx42jRogUAYN26dXB3d8e2bdvQp0+fPM+pW7duGDVqlPbYS5YswcGDB1GzZk1s3LgRarUaP/zwg7ZoZVhYGMqVK4dDhw6hc+fOCA0NRXBwMN555x0A2TPY7tlTsPfz4MGDMWDAAADA3Llz8fXXX+PUqVPo0qULvvvuO7i7u2PZsmUQiUSoVasWHjx4gE8//RTTp0/XXocaNWpgwYIF2n0+fPgQADB79mxtwmTYsGEIDg7GzZs3UbVqVQBA7969cfDgQXz66ad5xujm5qZ975dV27dvR5MmTbBgwQL89NNPsLKyQo8ePTBr1qxce5inp6frJKc5KQwREVHp5e3hgKl+tbHmRDSiYpLwNCkdcqkEdd3sENDCA94eDmaJy6w9pCIiItCoUSPtsJGgoCA0atQI06dPB5B9U3r37l3t+lWqVMGOHTuwb98+NGjQAIsWLcIPP/wAX19fs8RPZYsM2WNulSLWj6LSxcnJCX5+fggPD0dYWBj8/Pzg6Oiot967776LBw8eYPv27ejSpQsOHTqExo0b6/Ts0UhISICfnx/q1KmT6xC5l+Xsyerj44OrV68CyB6Ol5SUhPLly2t7allbW+P27dvaoVZBQUEYPnw4OnbsiC+//LJAQ7BSU1OhVCp12vr06YPU1FRUrVoVI0aMwNatW/WGH76ckNNMrPFyLypNW0xMDADg6tWrej1PWrZsiRs3bkClUuHq1auQSqVo1qyZdnn58uVRs2ZN7WuSl5fj0SStNMe+cOECoqKiYGNjo30dHRwckJaWhps3byI+Ph4PHz7UObZUKkWTJk3yPW5+sVhZWcHW1lbndfDx8dGZzaVly5ZISkrCv//+q23z9vbOd98uLi6wtLTUJqM0bZpj5cXCwiLfoX2vu1u3buHYsWO4dOkStm7ditDQUGzatEmb2DSEk8IQERG9Xrw9HBDaryEW92uAOW/Xw+J+DbCkX0OzJaMAM/eQatu2bZ49TQx9CWrbti3OnTtXhFERGSYTZX9JVaD4Zx+gksVCJsGVL8yTCLfIZXaM/AwdOhRjxowBgDzrziiVSnTq1AmdOnXCtGnTMHz4cISEhOjMxpeYmIguXbrAxsYGW7duhUz2agUQk5KSUKFCBZ0eWxqameZmzJiBgQMHYseOHdi1axdCQkKwYcMGo4csAYCjoyOeP3+u0+bu7o7r16/jzz//xL59+zBq1Ch89dVXOHz4sPa8Xj4/TXLFUJtarTY6lleR8/UWiUTaYyclJcHb29vgzHJOTk7FGouxrKys8t23SCQq8LFiY2OL5NxLE7VaDZFIhHXr1sHOzg4AsHjxYvTu3RvfffedwV5SwcHBCAoK0j5PSEhgUoqIiKiUE4tFqOVacupqmzUhRVSaaGbZU4I9pMo6kUhk8rA5c9PUEBKJRCb1Kq1Tp47ODF4JCQnw9fWFQqHA9u3b9Xoc5eavv/7Se66p5dS4cWM8evQIUqkUnp6eue7Dy8sLXl5emDhxIgYMGICwsDC8/fbbkMvlUKkMzxryskaNGuHRo0d4/vw57O3tte0WFhbw9/eHv78/Ro8ejVq1auGff/5B48aNjTq3nGrXro3jx4/rtB0/fhxeXl6QSCSoXbs2srKy8Pfff2uH7D179gzXr19HnTp1AMDoc8qpcePG2LhxI5ydnXOdxKNChQr4+++/0bp1awBAVlaWtm5XYapduzY2b94MQRC0Sbvjx4/DxsYGlSpVKtRj5UbTM+zlAv5lUYUKFVCxYkVtMgrIvj6CIODff//VGQKroVAotENoiYiIiIpCqSpqTmRO2qLmHLJHpZBEIsHVq1dx5coVSCT6vayePXuG9u3b4+eff8bFixdx+/Zt/Pbbb1iwYAF69uwJIDsZ1blzZyQnJ+PHH39EQkICHj16hEePHuWbPDl+/DgWLFiAyMhIfPvtt/jtt98wfvx4AEDHjh3h4+ODXr16Ye/evbhz5w5OnDiBqVOnIiIiAqmpqRgzZgwOHTqE6OhoHD9+HKdPn9YmtDw9PZGUlIT9+/fj6dOnuQ7PatSoERwdHXWSReHh4fjxxx9x6dIl3Lp1Cz///DMsLCzg4eFRoNcZACZNmoT9+/dj1qxZiIyMxJo1a7Bs2TJtYfIaNWqgZ8+eGDFiBI4dO4YLFy7gvffeQ8WKFbWvtbHnlNOgQYPg6OiInj174ujRo7h9+zYOHTqEcePGaYfJjR8/Hl9++SW2bduGa9euYdSoUYiLiyvw+eZm1KhRuHfvHsaOHYtr167h999/R0hICIKCgnTqeBWWZcuWoUOHDjptf/31FxQKRZmf/KRly5Z48OABkpKStG2RkZEQi8XFlhwkIiIiyokJKSIjaYqac8gelVa2tra59pqxtrZGs2bNsGTJErRu3Rp169bFtGnTMGLECCxbtgwAcPbsWfz999/4559/UL16dVSoUEH7uHfvXp7HnjRpkrZu4OzZs7F48WJtTy2RSISdO3eidevWGDJkCLy8vNC/f39tEXKJRIJnz54hICAAXl5e6Nu3L7p27YqZM2cCAFq0aIGRI0eiX79+cHJy0imQ/TKJRIIhQ4boDGcrV64cVq1ahZYtW6J+/fr4888/8b///Q/ly5c3+fXVaNy4MX799Vds2LABdevWxfTp0/HFF1/oDHsMCwuDt7c3unfvDh8fHwiCgJ07d2qHpRl7TjlZWlriyJEjqFy5Mt555x3Url0bw4YNQ1pamvbaT5o0Ce+//z4CAwPh4+MDGxsbvaGP4eHhOrWfCqJixYrYuXMnTp06hQYNGmDkyJEYNmwYPv/881fab26ePn2qV1vsl19+waBBg2BpaVkkxzSXpKQknD9/HufPnwfw36QwmrqbwcHBCAgI0K4/cOBAlC9fHkOGDMGVK1dw5MgRfPzxxxg6dGiuRc2JiIiIippIKGPThSUkJMDOzk47VTmRMfy/OYZvnwxGZfETXFVXxoo6a7G0f9keAlKWpKWl4fbt26hSpYrRQ9SoZHr06BHeeOMNnD179pV6Qb3uQkJCcPjwYYN1vUqLp0+fombNmoiIiECVKlUMrpPX33ZJvl84dOgQ2rVrp9ceGBiI8PBwDB48GHfu3NG5fteuXcPYsWNx/PhxlC9fHn379sXs2bONTkiV5NeDiIiISgZT7xdKVxEUIjOSibKHJClYQ4qo1HJ1dcWPP/6Iu3fvMiGVh127dml7xpVWd+7cwXfffZdrMqo0K8ikMLVq1cK+ffuKMCoiIiIi0zAhRWQk1pAiej306tXL3CGUeKdOnTJ3CK+sSZMmaNKkibnDICIiIqJcsIYUkZFYQ4qIiIiIiIiocDAhRWQkbQ8pDtkjIiIiIiIieiVMSBEZSSchVbbmAiAiIiIiIiIqVExIERlBLKggFakBABKRADFUZo6IiIiIiIiIqPRiQorICNIXvaM0ZKp0M0VCREREREREVPoxIUVkBKmQIyElMCFFREREREREVFBMSBEZIWcPKanAwuZEREREREREBcWEFJERciagZGr2kCIyVtu2bTFhwgRzh1GkWrdujfXr15s7DHpJ8+bNsXnzZnOHQURERES5YEKKyAg5e0jJ2UOKSoHBgwdDJBJh5MiRestGjx4NkUiEwYMHa9uePHmCjz76CJUrV4ZCoYCrqyt8fX1x/Phx7TorV65E27ZtYWtrC5FIhLi4uHzj2LJlC2bNmlUYp4RDhw4Zfdzisn37djx+/Bj9+/fXaT937hz69OkDFxcXKJVK1KhRAyNGjEBkZKR2nXHjxsHb2xsKhQINGzbU2/f169fRrl077T6qVq2Kzz//HJmZmQWKNTY2FmPHjkXNmjVhYWGBypUrY9y4cYiPjy/Q/kqyzz//HFOmTIFarTZ3KERERERkABNSREbQK2rOGlJUSri7u2PDhg1ITU3VtqWlpWH9+vWoXLmyzrrvvvsuzp07hzVr1iAyMhLbt29H27Zt8ezZM+06KSkp6NKlCz777DOjY3BwcICNjc2rn0wJ9fXXX2PIkCEQi//7SP3jjz/QvHlzpKenY926dbh69Sp+/vln2NnZYdq0aTrbDx06FP369TO4b5lMhoCAAOzduxfXr19HaGgoVq1ahZCQkALF+uDBAzx48AALFy7EpUuXEB4ejt27d2PYsGEF2l9hEgQBWVlZ+a9opK5duyIxMRG7du0qtH0SERERUeFhQorICDmLmkvV7CFFpUPjxo3h7u6OLVu2aNu2bNmCypUro1GjRtq2uLg4HD16FPPnz0e7du3g4eGBpk2bIjg4GD169NCuN2HCBEyZMgXNmzc3OoacQ/a+++471KhRA0qlEi4uLujdu7d2WXp6OsaNGwdnZ2colUq89dZbOH36NADgzp07aNeuHQDA3t5ep4dXXtsB//Ws2rFjB+rXrw+lUonmzZvj0qVLOrEeO3YMrVq1goWFBdzd3TFu3DgkJyfnem5PnjzBgQMH4O/vr21LSUnBkCFD0K1bN2zfvh0dO3ZElSpV0KxZMyxcuBDff/+9dt2vv/4ao0ePRtWqVQ3uv2rVqhgyZAgaNGgADw8P9OjRA4MGDcLRo0fzedUNq1u3LjZv3gx/f39Uq1YN7du3x5w5c/C///3PpGTQjBkz0LBhQ/z000/w9PSEnZ0d+vfvj8TERO06xl6TXbt2aXuJHTt2DG3btsXYsWMxYcIE2Nvbw8XFBatWrUJycjKGDBkCGxsbVK9ePd9Ek0QiQbdu3bBhwwbTXygiIiIiKnJMSBEZgT2kSIcgABnJ5nkIgsnhDh06FGFhYdrnq1evxpAhQ3TWsba2hrW1NbZt24b09KJ7f0dERGDcuHH44osvcP36dezevRutW7fWLv/kk0+wefNmrFmzBmfPnkX16tXh6+uL2NhYuLu7a2sCXb9+HQ8fPsTSpUvz3e5lH3/8MRYtWoTTp0/DyckJ/v7+2uFvN2/eRJcuXfDuu+/i4sWL2LhxI44dO4YxY8bkej7Hjh2DpaUlateurW3bs2cPnj59ik8++cTgNuXKlSvQawcAUVFR2L17N9q0aaNtW7dunfb65fbIK4EVHx8PW1tbSKVSk2K5efMmtm3bhj/++AN//PEHDh8+jC+//FK73NhrMmXKFHz55Ze4evUq6tevDwBYs2YNHB0dcerUKYwdOxYfffQR+vTpgxYtWuDs2bPo3Lkz3n//faSkpOQZY9OmTQucvCMiIiKiomXa3SdRGSUTMnM8Z0KqTMtMAea6mefYnz0A5FYmbfLee+8hODgY0dHRAIDjx49jw4YNOHTokHYdqVSK8PBwjBgxAitWrEDjxo3Rpk0b9O/fX5skKAx3796FlZUVunfvDhsbG3h4eGh7aiUnJ2P58uUIDw9H165dAQCrVq3Cvn378OOPP+Ljjz+Gg4MDAMDZ2Vmb2DFmO42QkBB06tQJQHbSo1KlSti6dSv69u2LefPmYdCgQdreXDVq1MDXX3+NNm3aYPny5VAqlXrnEx0dDRcXF53hejdu3AAA1KpVq9BeN00iJj09HR988AG++OIL7bIePXqgWbNmeW5fsWJFg+1Pnz7FrFmz8MEHH5gck1qtRnh4uHY45vvvv4/9+/djzpw5Jl2TL774QntNNBo0aIDPP/8cABAcHIwvv/wSjo6OGDFiBABg+vTpWL58OS5evJhnbz03Nzfcu3cParVa5xoRERERkfkxIUVkBBl0E1IcskeliZOTE/z8/BAeHg5BEODn5wdHR0e99d599134+fnh6NGj+Ouvv7Br1y4sWLAAP/zwg07x81fRqVMneHh4oGrVqujSpQu6dOmCt99+G5aWlrh58yYyMzPRsmVL7foymQxNmzbF1atXc92nKdv5+Pho/9/BwQE1a9bUrnPhwgVcvHgR69at064jCALUajVu376t0wtKIzU1VS9RJRSgF1t+Nm7ciMTERFy4cAEff/wxFi5cqO2BZWNjU6AaXQkJCfDz80OdOnUwY8YMk7f39PTUOW6FChUQExMDwLRr0qRJE719v5wElUgkKF++POrVq6dtc3FxAQDt8XJjYWEBtVqN9PR0WFhYmHB2RERERFTUmJAiMkLOGlKcZa+Mk1lm91Qy17ELYOjQodqhZ99++22u6ymVSnTq1AmdOnXCtGnTMHz4cISEhBRaQsrGxgZnz57FoUOHsHfvXkyfPh0zZszQqS1kLklJSfjwww8xbtw4vWU5C8BrODo64vnz5zptXl5eAIBr167pJMBehbu7OwCgTp06UKlU+OCDDzBp0iRIJBKsW7cOH374YZ7b79q1C61atdI+T0xMRJcuXWBjY4OtW7dCJpOZHFPObUQiUYFmtLOy0u/xZ2jfL7eJRCIAyPd4sbGxsLKyYjKKiIiIqARiQorICKwhRTpEIpOHzZlbly5dkJGRAZFIBF9fX6O3q1OnDrZt21aosUilUnTs2BEdO3ZESEgIypUrhwMHDsDX1xdyuRzHjx+Hh4cHACAzMxOnT5/WDqOTy+UAAJVKpd1ftWrV8t1O46+//tIml54/f47IyEhtz6fGjRvjypUrqF69utHn0qhRIzx69AjPnz+Hvb09AKBz585wdHTEggULsHXrVr1t4uLiXqmOlFqtRmZmJtRqNSQSiclD9hISEuDr6wuFQoHt27cbHIr4qky5JkXp0qVLOsX7iYiIiKjkYEKKyAg5e0jJ1ExIUekikUi0Q6UkEone8mfPnqFPnz4YOnQo6tevDxsbG0RERGDBggXo2bOndr1Hjx7h0aNHiIqKAgD8888/sLGxQeXKlbX1nfLyxx9/4NatW2jdujXs7e2xc+dOqNVq1KxZE1ZWVvjoo4+0taIqV66MBQsWICUlBcOGDQMAeHh4QCQS4Y8//kC3bt1gYWEBa2vrfLfT+OKLL1C+fHm4uLhg6tSpcHR0RK9evQAAn376KZo3b44xY8Zg+PDhsLKywpUrV7Bv3z4sW7bM4Pk0atQIjo6OOH78OLp37w4gu8fPDz/8gD59+qBHjx4YN24cqlevjqdPn+LXX3/F3bt3tTO/RUVFISkpCY8ePUJqairOnz8PIDsRKJfLsW7dOshkMtSrVw8KhQIREREIDg5Gv379tD2GTBmyl5CQgM6dOyMlJQU///wzEhISkJCQACB7aKeh90ZBGHMtC1utWrUwb948vP3229q2o0ePonPnzkVyPCIiIiJ6NUxIERlBqlfUnEP2qPSxtbXNdZm1tTWaNWuGJUuWaOv/uLu7Y8SIEfjss8+0661YsQIzZ87UPtfMkBcWFmbUsL5y5cphy5YtmDFjBtLS0lCjRg388ssveOONNwAAX375JdRqNd5//30kJiaiSZMm2LNnj7b3UcWKFTFz5kxMmTIFQ4YMQUBAAMLDw/PdTuPLL7/E+PHjcePGDTRs2BD/+9//tL2u6tevj8OHD2Pq1Klo1aoVBEFAtWrV0K9fv1zPRyKRYMiQIVi3bp02IQUAPXv2xIkTJzBv3jwMHDgQCQkJcHd3R/v27TF79mztesOHD8fhw4e1zzW9eW7fvg1PT09IpVLMnz8fkZGREAQBHh4eGDNmDCZOnJjva23I2bNn8ffffwOAXk8wzTGB7PpQgwcPLlBtKQ1jr0lhuX79OuLj47XP79+/jxMnTuDnn38ukuMRERER0asRCUVRfbUES0hIgJ2dnXaaayJjLPpqBiYlL9E+312uP7pM+N6MEVFxSktLw+3bt1GlSpUiGd5ERe/QoUNo164dnj9//krD5Qx59OgR3njjDZw9e1Y7PK00S0lJQfny5bFr1y60bdvW3OEU2Keffornz59j5cqVua6T19827xd08fUgIqKyQq0WEBmTiPiUTNhZyuDlbAOxWGTusExirnMw9X6BPaSIjJBzyF5GWoqZIiGiksbV1RU//vgj7t69+1okpA4ePIj27duX6mQUADg7OyMoKMjcYRAREVEpciY6FmtORCMqJgkZWSrIpRJUd7ZGYAsPeHvkX56iJChN5yA2dwBEpYEsR1Hz9LSUIpnanYhKp169eunMYlea+fn5YceOHeYO45VNmjQJLi4u5g6DiIiISokz0bGYs+MqLt2Ph61Sikr2lrBVSnH5QTzm7LiKM9Gx5g4xX6XtHJiQIjKCDLo1pMSqNDxPycxlbSIqadq2bQtBEAp9uB4RERERlX5qtYA1J6IRl5IJz/KWsFJIIRGLYKWQwsPBEvGpmVh7IhpqdcntlFAaz4EJKSIj5Byyp0QG7jxLNlM0RERUlh05cgT+/v5wc3ODSCTCtm3bjN72+PHjkEqlaNiwYZHFR0REVNpExiQiKiYJzjYKiES6tZZEIhGcrBW4EZOEyJhEM0WYv9J4DkxIERlB+qKHlCDKnhJdgUxEMyFFRERmkJycjAYNGuDbb781abu4uDgEBASgQ4cORRQZERFR6RSfkomMLBWUMonB5UqZBBlZKsSX4FEypfEcWNScyAiaHlJZMhvIMuKgRAb+ecrC5mUN64YRvV7UarW5QyiQrl27omvXriZvN3LkSAwcOBASicSkXlVERESvOztLGeRSCdIyVbBS6KdJ0jKzi4PbWcrMEJ1xSuM5MCFFZARNUfMsmXV2QkrEHlJliUwmg0gkwpMnT+Dk5KTXBZaIShdBEJCRkYEnT55ALBZDLpebO6QiFxYWhlu3buHnn3/G7Nmz810/PT0d6enp2ucJCQlFGR4REZFZeTnboLqzNS4/iIelXKJzvy8IAp4kpaOumx28nG3MGGXeSuM5MCFFZATJSz2kAE0NKfaQKiskEgkqVaqEf//9F3fu3DF3OERUSCwtLVG5cmWIxa93BYMbN25gypQpOHr0KKRS42795s2bh5kzZxZxZERERCWDWCxCYAsPzNlxFdGxKXCyVkApy+5t9CQpHXYWMgS08IBYXHJ/mC6N58CEFJERxOoMAIBaYQsgu4bU85QMc4ZExcza2ho1atRAZmbJGXNNRAUnkUgglUpf+x6PKpUKAwcOxMyZM+Hl5WX0dsHBwQgKCtI+T0hIgLu7e1GESEREVCJ4ezhgql9trDkRjaiYJDxNSodcKkFdNzsEtPCAt4eDuUPMV2k7ByakiIwgUr9IQij+6yGVmJaVxxb0OpJIJJBIDBcJJCIqiRITExEREYFz585hzJgxALJrZwmCAKlUir1796J9+/Z62ykUCigUiuIOl4iIyKy8PRzQyN0ekTGJiE/JhJ2lDF7ONiWqV1F+StM5MCFFZASxNiGV3UNKKcpAEhNSRERUwtna2uKff/7Rafvuu+9w4MABbNq0CVWqVDFTZERERCWTWCxCLVdbc4fxSkrLOTAhRWQEsToDEAEi5X9D9jJUaqRnqaCQsscMEREVn6SkJERFRWmf3759G+fPn4eDgwMqV66M4OBg3L9/H2vXroVYLEbdunV1tnd2doZSqdRrJyIiIipOTEgR5UMQBIjVWYAEkFjYAQAUyK4flZSWBYU1E1JERFR8IiIi0K5dO+1zTa2nwMBAhIeH4+HDh7h79665wiMiIiIyChNSRPnIUKkhQ/bwPInli4SUKAtiqJGUnoXy1qyxQURExadt27YQBCHX5eHh4XluP2PGDMyYMaNwgyIiIiIyERNSRPlIy/gvISW1KKdtV7CwORERERERUYmlVgulorh3USuprwMTUkT5SM1UQS560UPK4r/CcApkMiFFRERERERUAp2JjsWaE9GIiklCRpYKcqkE1Z2tEdjCA94eDuYOr9iU5NdBbNajE5UCaZkqbQ8pkdwSEGfncZXIQFI6E1JEREREREQlyZnoWMzZcRWX7sfDVilFJXtL2CqluPwgHnN2XMWZ6Fhzh1gsSvrrwIQUUT5SX0pIQSIHpBYAAKUoA0npmWaMjIiIiIiIiF6mVgtYcyIacSmZ8CxvCSuFFBKxCFYKKTwcLBGfmom1J6KhVudej/F1UBpeByakiPKhm5CSATIlgOwhe0kcskdERERERFRiRMYkIiomCc42CohEunWSRCIRnKwVuBGThMiYRDNFWDxKw+tg9oTUt99+C09PTyiVSjRr1gynTp3Kc/3Q0FDUrFkTFhYWcHd3x8SJE5GWllZM0VJZlJapgtxQDylkIJFD9oiIiIiIiEqM+JRMZGSpoJRJDC5XyiTIyFIhPuX1Hu1SGl4HsyakNm7ciKCgIISEhODs2bNo0KABfH19ERMTY3D99evXY8qUKQgJCcHVq1fx448/YuPGjfjss8+KOXIqS/QTUgoAgJI9pIiIiIiIiEoUO0sZ5FIJ0jJVBpenZWYX9razlBVzZMWrNLwOZk1ILV68GCNGjMCQIUNQp04drFixApaWlli9erXB9U+cOIGWLVti4MCB8PT0ROfOnTFgwIB8e1URvYrUDDVkIgND9kQsak5ERERERFSSeDnboLqzNZ4kpUMQdOsjCYKAJ0npqOFsDS9nGzNFWDxKw+tgtoRURkYGzpw5g44dO/4XjFiMjh074uTJkwa3adGiBc6cOaNNQN26dQs7d+5Et27diiVmKptyLWqODCSyhxQREREREVGJIRaLENjCA3YWMkTHpiA5PQsqtYDk9CxEx6bAzkKGgBYeEItF+e+sFCsNr4PUXAd++vQpVCoVXFxcdNpdXFxw7do1g9sMHDgQT58+xVtvvQVBEJCVlYWRI0fmOWQvPT0d6enp2ucJCQmFcwJUZqTlTEi96CGlRCYTUkRERERERCWMt4cDpvrVxpoT0YiKScLTpHTIpRLUdbNDQAsPeHs4mDvEYlHSXwezJaQK4tChQ5g7dy6+++47NGvWDFFRURg/fjxmzZqFadOmGdxm3rx5mDlzZjFHSq8T/RpS/w3Zi0l/vQvhERERERERlUbeHg5o5G6PyJhExKdkws5SBi9nm9e+Z1ROJfl1MFtCytHRERKJBI8fP9Zpf/z4MVxdXQ1uM23aNLz//vsYPnw4AKBevXpITk7GBx98gKlTp0Is1h+BGBwcjKCgIO3zhIQEuLu7F+KZ0OsuNSPnkL0XCSlksoYUERERERFRCSUWi1DL1dbcYZhdSX0dzFZDSi6Xw9vbG/v379e2qdVq7N+/Hz4+Pga3SUlJ0Us6SSTZUxjmLNKloVAoYGtrq/MgMkV6ZgYkohfvL4kMkP1XQ4qz7BERERERERGZzqxD9oKCghAYGIgmTZqgadOmCA0NRXJyMoYMGQIACAgIQMWKFTFv3jwAgL+/PxYvXoxGjRpph+xNmzYN/v7+2sQUUWHLeKkGWXYPKQWAFwkp9pAiIiIiIiIiMplZE1L9+vXDkydPMH36dDx69AgNGzbE7t27tYXO7969q9Mj6vPPP4dIJMLnn3+O+/fvw8nJCf7+/pgzZ465ToHKgIyMnAmp7B5SClEmEthDioiIjNCmTRsMGzYMffr0gYWFhbnDISIiIjI7sxc1HzNmDMaMGWNw2aFDh3SeS6VShISEICQkpBgiI8qmzkj774lE9tIsexnIyFJDEASIROYvCEdERCVXo0aNMHnyZIwdOxZ9+/bFsGHD0Lx5c3OHRURERGQ2ZqshRVRaZGZm95BSiaSASKTtIaVEhjnDIiKiUiQ0NBQPHjxAWFgYYmJi0Lp1a9SpUwcLFy7Um+CFiIiIqCxgQoooH1kvhuypxbLshpdqSBERERlLKpXinXfewe+//45///0XAwcOxLRp0+Du7o5evXrhwIED5g6RiIiIqNgwIUWUD9WLHlKCWJ7dIPuvhhQREZGpTp06hZCQECxatAjOzs4IDg6Go6MjunfvjsmTJ5s7PCIiIqJiYfYaUkQlXVZWdk8oQfIiISX9r4YUERGRMWJiYvDTTz8hLCwMN27cgL+/P3755Rf4+vpq6xAOHjwYXbp0wcKFC80cLRERUemnVguIjElEfEom7Cxl8HK2gVjM2r8lCRNSRPlQZ2h6SGmG7DEhRUREpqlUqRKqVauGoUOHYvDgwXByctJbp379+njzzTfNEB0REdHr5Ux0LNaciEZUTBIyslSQSyWo7myNwBYe8PZwMHd49AITUkT5UKteJJ40PaRezLLHIXtERGSs/fv3o1WrVnmuY2tri4MHDxZTRERERK+nM9GxmLPjKuJSMuFso4BSpkBapgqXH8Rjzo6rmOpXm0mpEoI1pIjyoX5RQwpSTQ+pFzWk2EOKiIiMFBISgri4OL32hIQEtG/fvvgDIiIieg2p1QLWnIhGXEomPMtbwkohhUQsgpVCCg8HS8SnZmLtiWio1YK5QyUwIUWUL00PKVGOHlJKsIcUEREZ5/Dhw8jI0P8hIy0tDUePHjVpX0eOHIG/vz/c3NwgEomwbdu2PNffsmULOnXqBCcnJ9ja2sLHxwd79uwx6ZhERESlQWRMIqJikuBso9DWaNQQiURwslbgRkwSImMSzRQhvYxD9ojyIAgCRFnpgPSlhJREAQCQMyFFRET5uHjxIoDsz5MrV67g0aNH2mUqlQq7d+9GxYoVTdpncnIyGjRogKFDh+Kdd97Jd/0jR46gU6dOmDt3LsqVK4ewsDD4+/vj77//RqNGjUw7ISIiohIsPiUTGVkqKGUKg8uVMgmeJqUjPoXf5UoCJqSI8pCWqYZInQUAEGv+UXuRmJKLsswVFhERlRINGzaESCSCSCQyODTPwsIC33zzjUn77Nq1K7p27Wr0+qGhoTrP586di99//x3/+9//mJAiIqLXip2lDHKpBGmZKlgp9NMdaZnZBc7tLGVmiI5yYkKKKA/xqZmQIzvxJJG96CElfZGQAhNSRESUt9u3b0MQBFStWhWnTp3SmV1PLpfD2dkZEomkWGNSq9VITEyEg0PuBV3T09ORnp6ufZ6QkFAcoREREb0SL2cbVHe2xuUH8bCUS3SG7QmCgCdJ6ajrZgcvZxszRkkaTEgR5SE+NROyF4knkUTTQ4pD9oiIyDgeHh4AspNAJcXChQuRlJSEvn375rrOvHnzMHPmzGKMioiI6NWJxSIEtvDAnB1XER2bAidrBZSy7B5TT5LSYWchQ0ALD4jFovx3RkWOCSmiPMSnZkKmGZqnrSGV3b1Txh5SRESUh+3bt6Nr166QyWTYvn17nuv26NGjWGJav349Zs6cid9//x3Ozs65rhccHIygoCDt84SEBLi7uxdHiERERK/E28MBU/1qY82JaETFJOFpUjrkUgnqutkhoIUHvD1y7yFMxYsJKaI8vNxDSpOIglTTQ4oJKSIiyl2vXr3w6NEjODs7o1evXrmuJxKJoFKpijyeDRs2YPjw4fjtt9/QsWPHPNdVKBRQKAwXhCUiIirpvD0c0MjdHpExiYhPyYSdpQxezjbsGVXCMCFFlIeXa0j910Mq+78ykQoilJwhGEREVLK8PEzP3EP2fvnlFwwdOhQbNmyAn5+fWWMhIiIqDmKxCLVcbc0dBuWBCSmiPOj2kNJNSAHsJUVERAUXFxeHcuXKmbxdUlISoqKitM9v376N8+fPw8HBAZUrV0ZwcDDu37+PtWvXAsgephcYGIilS5eiWbNmePToEYDsGf7s7OwK5VyIiIiITCU2dwBEJVleQ/YAJqSIiMg48+fPx8aNG7XP+/TpAwcHB1SsWBEXLlwwaV8RERFo1KgRGjVqBAAICgpCo0aNMH36dADAw4cPcffuXe36K1euRFZWFkaPHo0KFSpoH+PHjy+EMyMiIiIqGJN7SCUnJ8PKyqooYiEqcRJSM1E+Z1FzsUy7nIXNiYjIGCtWrMC6desAAPv27cOff/6J3bt349dff8XHH3+MvXv3Gr2vtm3bQhCEXJeHh4frPD906FBBQiYiIiIqUib3kHJxccHQoUNx7NixooiHqEQx2ENKLIbwIiklRyby+E5AREQEAHj06JF2lro//vgDffv2RefOnfHJJ5/g9OnTZo6OiIiIqPiZnJD6+eefERsbi/bt28PLywtffvklHjx4UBSxEZmdwaLmL/2/XMQeUkRElD97e3vcu3cPALB7927tLHeCIBTLDHtEREREJY3JCalevXph27ZtuH//PkaOHIn169fDw8MD3bt3x5YtW5CVxS/o9PrQ6SH1Uu0oQTPTHofsERGREd555x0MHDgQnTp1wrNnz9C1a1cAwLlz51C9enUzR0dERERU/Apc1NzJyQlBQUG4ePEiFi9ejD///BO9e/eGm5sbpk+fjpSUlMKMk8gsDA7ZA7Q9pBTINENURERU2ixZsgRjxoxBnTp1sG/fPlhbWwPILkA+atQoM0dHREREVPxMLmqu8fjxY6xZswbh4eGIjo5G7969MWzYMPz777+YP38+/vrrL5MKdBKVRPGpmZDlLGoOQHjRW4qz7BERkTFkMhkmT56s1z5x4kQzRENERERkfiYnpLZs2YKwsDDs2bMHderUwahRo/Dee++hXLly2nVatGiB2rVrF2acRGYRn5r5X52ol2tIvShqziF7RERkrBs3buDgwYOIiYmBWq3WWTZ9+nQzRUVERERkHiYnpIYMGYL+/fvj+PHjePPNNw2u4+bmhqlTp75ycETmlJapQkaWGjLZi2KzLw3ZEyQvekiJOGSPiIjyt2rVKnz00UdwdHSEq6srRCKRdplIJGJCioiIiMockxNSDx8+hKWlZZ7rWFhYICQkpMBBEZUE8anZySaDPaSkL2bZYw8pIiIywuzZszFnzhx8+umn5g6FiIiIqEQwuai5jY0NYmJi9NqfPXsGiURSKEERlQTJ6dnJJguxgRpSL4bsMSFFRETGeP78Ofr06WPuMIiIiIhKDJMTUoIgGGxPT0+HXC43uIyoNNK80w3Osqctas4he0RElL8+ffpwshciIiKilxg9ZO/rr78GkF3n4IcfftBOVwwAKpUKR44cQa1atQo/QiIz+y8hxR5SRERUMNWrV8e0adPw119/oV69epDJZDrLx40bZ6bIiIiIiMzD6ITUkiVLAGT3kFqxYoXO8Dy5XA5PT0+sWLGi8CMkMrP/ElKK/xpf9JCSiZiQIiKi/K1cuRLW1tY4fPgwDh8+rLNMJBIxIUVERERljtEJqdu3bwMA2rVrhy1btsDe3r7IgiIqSQwO2ZNoippzyB4REeVPcx9FRERERNlMriF18OBBJqOoTDE8ZE+uu4yIiMgIGRkZuH79OrKy+PlBREREZZtRPaSCgoIwa9YsWFlZISgoKM91Fy9eXCiBEZUUhhJSkGb/v4IJKSIiMkJKSgrGjh2LNWvWAAAiIyNRtWpVjB07FhUrVsSUKVPMHCEREZVlarWAyJhExKdkws5SBi9nG4jFInOHRa85oxJS586dQ2Zmpvb/cyMS8Q1Lrx9DQ/aEF/Wk5CIO2SMiovwFBwfjwoULOHToELp06aJt79ixI2bMmMGEFBERmc2Z6FisORGNqJgkZGSpIJdKUN3ZGoEtPODt4WDu8Og1ZlRC6uDBgwb/n6gskBrqIfUiOcUhe0REZIxt27Zh48aNaN68uc4PeG+88QZu3rxpxsiIiKgsOxMdizk7riIuJRPONgooZQqkZapw+UE85uy4iql+tZmUoiJjcg2pnBISErBt2zZcu3atMOIhKnHkBouaK3SXERER5eHJkydwdnbWa09OTmYPcyIiMgu1WsCaE9GIS8mEZ3lLWCmkkIhFsFJI4eFgifjUTKw9EQ21WjB3qPSaMjkh1bdvXyxbtgwAkJqaiiZNmqBv376oV68eNm/eXOgBEpmbwaLmnGWPiIhM0KRJE+zYsUP7XJOE+uGHH+Dj42OusIiIqAyLjElEVEwSnG0Uej+OiEQiOFkrcCMmCZExiWaKkF53Rg3Ze9mRI0cwdepUAMDWrVshCALi4uKwZs0azJ49G++++26hB0lkTlKDPaT+G7LH3wuIiCg/c+fORdeuXXHlyhVkZWVh6dKluHLlCk6cOIHDhw+bOzwiIiqD4lMykZGlglKmMLhcKZPgaVI64lP4IzwVDZN7SMXHx8PBIXsM6e7du/Huu+/C0tISfn5+uHHjRqEHSGROIqgh0aScxPpFzRUiDtkjIqL8vfXWWzh//jyysrJQr1497N27F87Ozjh58iS8vb3NHR4REZVBdpYyyKUSpGWqDC5Py8wucG5nKTO4nOhVmdxDyt3dHSdPnoSDgwN2796NDRs2AACeP38OpVJZ6AESmZMU6v+eiCX//T+H7BERkYmqVauGVatWmTsMIiIiAICXsw2qO1vj8oN4WMolOsP2BEHAk6R01HWzg5ezjRmjpNeZyT2kJkyYgEGDBqFSpUpwc3ND27ZtAWQP5atXr15hx0dkVhK89GuB5OUeUtkJKRkM/5pARET0MolEgpiYGL32Z8+eQSKRGNiCiIioaInFIgS28ICdhQzRsSlITs+CSi0gOT0L0bEpsLOQIaCFB8RiTr5BRcPkhNSoUaNw8uRJrF69GseOHYNYnL2LqlWrYvbs2YUeIJE5SV9OOIlf6lDIHlJERGQCQTBccTA9PR1yudzgstwcOXIE/v7+cHNzg0gkwrZt2/Ld5tChQ2jcuDEUCgWqV6+O8PBwk45JRESvJ28PB0z1q4033OyQkJaFf5+nICEtC3Xd7DDVrza8PRzMHSK9xkwesgdkzxTTpEkTnTY/P79CCYioJMktIaWpIcWEFBER5eXrr78GkD1b0Q8//ABra2vtMpVKhSNHjqBWrVom7TM5ORkNGjTA0KFD8c477+S7/u3bt+Hn54eRI0di3bp12L9/P4YPH44KFSrA19fXtBMiIqLXjreHAxq52yMyJhHxKZmws5TBy9mGPaOoyJmckFKpVAgPD8f+/fsRExMDtVqts/zAgQOFFhyRuf1XQ0qkU0NKJH0xy56IQ/aIiCh3S5YsAZDdQ2rFihU6w/Pkcjk8PT2xYsUKk/bZtWtXdO3a1ej1V6xYgSpVqmDRokUAgNq1a+PYsWNYsmQJE1JERAQge/heLVdbc4dBZYzJQ/bGjx+P8ePHQ6VSoW7dumjQoIHOw1TffvstPD09oVQq0axZM5w6dSrP9ePi4jB69GhUqFABCoUCXl5e2Llzp8nHJTKGFC9m0RPr5m61s+yxhxQREeXh9u3buH37Ntq0aYMLFy5on9++fRvXr1/Hnj170KxZsyKN4eTJk+jYsaNOm6+vL06ePJnrNunp6UhISNB5EBERERUmk3tIbdiwAb/++iu6dev2ygffuHEjgoKCsGLFCjRr1gyhoaHw9fXF9evX4ezsrLd+RkYGOnXqBGdnZ2zatAkVK1ZEdHQ0ypUr98qxEOUkCIBU9KKHVI6ElKbAuVyTsCIiIsrDwYMHzXbsR48ewcXFRafNxcUFCQkJSE1NhYWFhd428+bNw8yZM4srRCIiIiqDTE5IyeVyVK9evVAOvnjxYowYMQJDhgwBkN2lfMeOHVi9ejWmTJmit/7q1asRGxuLEydOQCbLTgh4enoWSixEhmhn2Xtphr3s59k9pGRMSBERkRFKW8mD4OBgBAUFaZ8nJCTA3d3djBERERHR68bkIXuTJk3C0qVLc50txlgZGRk4c+aMThdysViMjh075tqFfPv27fDx8cHo0aPh4uKCunXrYu7cuVCpWMeHioa2qLlYd0pugbPsERGRCQq75IEpXF1d8fjxY522x48fw9bW1mDvKABQKBSwtbXVeRAREREVJpN7SB07dgwHDx7Erl278MYbb2h7Kmls2bLFqP08ffoUKpXKYBfya9euGdzm1q1bOHDgAAYNGoSdO3ciKioKo0aNQmZmJkJCQgxuk56ejvT0dO1z1kAgU/yXkMo5ZC87ISUTsYcUERHlrzBLHpjKx8dHr97mvn374OPjU+yxEBEVFrVa4KxwJQyvCZnK5IRUuXLl8PbbbxdFLPlSq9VwdnbGypUrIZFI4O3tjfv37+Orr77KNSHFGgj0KrSz7Il1E6//9ZBiQoqIiPJXmCUPkpKSEBUVpX1++/ZtnD9/Hg4ODqhcuTKCg4Nx//59rF27FgAwcuRILFu2DJ988gmGDh2KAwcO4Ndff8WOHTsKJR4iouJ2JjoWa05EIyomCRlZKsilElR3tkZgCw94eziYO7wyideECsLkhFRYWFihHNjR0RESicRgF3JXV1eD21SoUAEymUxnyuTatWvj0aNHyMjIgFwu19uGNRDoVeQ2yx44ZI+IiEygKXmwbNkyiESv9mtxREQE2rVrp32uuc8JDAxEeHg4Hj58iLt372qXV6lSBTt27MDEiROxdOlSVKpUCT/88AN8fX1fKQ4iInM4Ex2LOTuuIi4lE842CihlCqRlqnD5QTzm7LiKqX61mQApZrwmVFAmJ6QAICsrC4cOHcLNmzcxcOBA2NjY4MGDB7C1tYW1tbVR+5DL5fD29sb+/fvRq1cvANk9oPbv348xY8YY3KZly5ZYv3491Go1xOLs8leRkZGoUKGCwWQUkF0DQaFQmH6SRAAkmh5SEt0/FfaQIiIiUxRWyQMAaNu2bZ61PMPDww1uc+7cOaOPQURUEqnVAtaciEZcSiY8y1tqE/xWCiks5RJEx6Zg7YloNHK351CxYsJrQq/C5IRUdHQ0unTpgrt37yI9PR2dOnWCjY0N5s+fj/T0dKxYscLofQUFBSEwMBBNmjRB06ZNERoaiuTkZO2sewEBAahYsSLmzZsHAPjoo4+wbNkyjB8/HmPHjsWNGzcwd+5cjBs3ztTTIDJKfjWk5Mh68aWA/7gSEVHuzFnygIjodREZk4iomCQ42yj0epuKRCI4WStwIyYJkTGJqOXKyRiKA68JvQqTE1Ljx49HkyZNcOHCBZQvX17b/vbbb2PEiBEm7atfv3548uQJpk+fjkePHqFhw4bYvXu3ttD53bt3tT2hAMDd3R179uzBxIkTUb9+fVSsWBHjx4/Hp59+auppEBlFKsolISXN7nUnFglQqTMBCXvhERFR7gqr5AERUVkWn5KJjCwVlDLD995KmQRPk9IRn8KyGsWF14RehckJqaNHj+LEiRN6Q+Q8PT1x//59kwMYM2ZMrkP0Dh06pNfm4+ODv/76y+TjEBVEbj2kBOlL02RnpgK5/ANMRERERESFw85SBrlUgrRMFawU+l9l0zKzi2nbWcoMbE1FgdeEXoXJCSm1Wg2VSqXX/u+//8LGxqZQgiIqKfIasqcSRJCIhOyEFMoVd2hERFTCNW7cGPv374e9vT0aNWqUZzHzs2fPFmNkRESlk5ezDao7W+Pyg3hYyiU6/64KgoAnSemo62YHL2d+Ly0uvCb0KkxOSHXu3BmhoaFYuXIlgOxxoUlJSQgJCUG3bt0KPUAic8o1ISUSIQVK2CAVyEwp/sCIiKjE69mzp3ZiFc0ELkREVHBisQiBLTwwZ8dVRMemwMlaAaUsu3fOk6R02FnIENDCg8WzixGvCb0KkxNSixYtgq+vL+rUqYO0tDQMHDgQN27cgKOjI3755ZeiiJHIbP6bZU+3i6lELEIa5LBBKrLSkiExQ2xERFSyhYSEGPx/IiIqOG8PB0z1q401J6IRFZOEp0npkEslqOtmh4AWHvD2cDB3iGUOrwkVlMkJqUqVKuHChQvYuHEjLly4gKSkJAwbNgyDBg2ChYVF/jsgKkVk2h5SuiknK7kUz5FdRy05OQGsIEVEREREVDy8PRzQyN0ekTGJiE/JhJ2lDF7ONuyFY0a8JlQQJiekjhw5ghYtWmDQoEEYNGiQtj0rKwtHjhxB69atCzVAInOS5DJkTywWIUOkBACkJicVd1hERERERGWaWCxCLVdbc4dBL+E1IVOJTd2gXbt2iI2N1WuPj49Hu3btCiUoopJCKtIkpPRnhcgQv0hIpTAhRURERERERGQKkxNSgiAYnCXm2bNnsLKyKpSgiEqKXIuaA8h6kZBKT0kszpCIiIiIiIiISj2jh+y98847ALJn1Rs8eLB21hgAUKlUuHjxIlq0aFH4ERKZ0X9FzfX/VFQSCyALyEhLLuaoiIiIiIiIiEo3oxNSdnZ2ALJ7SNnY2OgUMJfL5WjevDlGjBhR+BESmVFePaTUUiWQDmSmMiFFRES5U6vVOHz4MI4ePYro6GikpKTAyckJjRo1QseOHeHu7m7uEImIiIiKndEJqbCwMACAp6cnJk+ezOF5VAYIeSakBGl2UjYrnQkpIiLSl5qaikWLFmH58uWIjY1Fw4YN4ebmBgsLC0RFRWHbtm0YMWIEOnfujOnTp6N58+bmDpmIiIio2Jg8y15ISEhRxEFUIv2XkNIvag55dlJWxYQUEREZ4OXlBR8fH6xatQqdOnWCTKb/WRIdHY3169ejf//+mDp1KnubExERUZlhckLq8ePHmDx5Mvbv34+YmBgIgqCzXKVSFVpwROb2X0JKordMLLcEAKgzUoozJCIiKiX27t2L2rVr57mOh4cHgoODMXnyZNy9e7eYIiMiIiIyP5MTUoMHD8bdu3cxbdo0VKhQweCMe0SvC6ko9yF7moQUmJAiIiID8ktGvUwmk6FatWpFGA0RERFRyWJyQurYsWM4evQoGjZsWAThEJUs/82ypz/MQqp8kZDKSi3GiIiI6HWSnJyMM2fOoHXr1uYOhYiIiKhYiU3dwN3dXW+YHtHrSpZHUXOZwjp7ERNSRERUQFFRUWjXrp25wyAiIiIqdiYnpEJDQzFlyhTcuXOnCMIhKlkkedSQkllmJ6QkTEgRERERERERmcTkIXv9+vVDSkoKqlWrBktLS70ZY2JjYwstOCJzy2uWPYVF9ix7UjUTUkREZJiDg0OeyzkZDBEREZVVJiekQkNDiyAMopJJmseQPQtLGwCATJUOQRBY4J+IiPSkp6fjo48+Qr169Qwuj46OxsyZM4s5KiIiIiLzMzkhFRgYWBRxEJVI2iF7EgMJKavsIXtKpCM9Sw2lTH9YHxERlW0NGzaEu7t7rvdPFy5cYEKKiIiIyiSjElIJCQmwtbXV/n9eNOsRvQ6kmln2DPSQUlr8l5BKSM1kQoqIiPT4+fkhLi4u1+UODg4ICAgovoCIiIiISgijiprb29sjJiYGAFCuXDnY29vrPTTtRK8TqSj3IXsieXYNKUtROuJTM4szLCIiKiU+++wzhISE5Lrc3d0dYWFhBdr3t99+C09PTyiVSjRr1gynTp3Kc/3Q0FDUrFkTFhYWcHd3x8SJE5GWllagYxMRERG9KqN6SB04cEBblPPgwYNFGhBRSZJXUXPILAEAFsjAg/SsYoyKiIjKuo0bNyIoKAgrVqxAs2bNEBoaCl9fX1y/fh3Ozs56669fvx5TpkzB6tWr0aJFC0RGRmLw4MEQiURYvHixGc6AiIiIyjqjElJt2rQx+P9Er7v/ElIGhuPJLABkD9lLTucsSUREpC8yMhJxcXFo2rSptm3//v2YPXs2kpOT0atXL3z22Wcm73fx4sUYMWIEhgwZAgBYsWIFduzYgdWrV2PKlCl66584cQItW7bEwIEDAQCenp4YMGAA/v777wKeGREREdGrMWrIHlFZldcse5qElFykQkpaajFGRUREpcWnn36KP/74Q/v89u3b8Pf3h1wuh4+PD+bNm2fyDMYZGRk4c+YMOnbsqG0Ti8Xo2LEjTp48aXCbFi1a4MyZM9phfbdu3cLOnTvRrVs3g+unp6cjISFB50FE9DK1WsC1Rwn4+9YzXHuUALVaMHdIRFTKmDzLHlFZItEUNZfkPmQPANJTk4spIiIiKk0iIiLwySefaJ+vW7cOXl5e2LNnDwCgfv36+OabbzBhwgSj9/n06VOoVCq4uLjotLu4uODatWsGtxk4cCCePn2Kt956C4IgICsrCyNHjsy1d9a8efM4+x8R5epMdCzWnIhGVEwSMrJUkEslqO5sjcAWHvD2cDB3eERUSrCHFFEeZHhRG8pQDympAuoXf0IZKUnFGBUREZUWT58+RaVKlbTPDx48CH9/f+3ztm3b4s6dO0Uex6FDhzB37lx89913OHv2LLZs2YIdO3Zg1qxZBtcPDg5GfHy89nHv3r0ij5GISocz0bGYs+MqLt2Ph61Sikr2lrBVSnH5QTzm7LiKM9Gx5g6RiEoJ9pAiyoO2h5ShhJRIhAyxAkp1KjLSmJAiIiJ9Dg4OePjwIdzd3aFWqxEREYGgoCDt8oyMDAiCacNcHB0dIZFI8PjxY532x48fw9XV1eA206ZNw/vvv4/hw4cDAOrVq4fk5GR88MEHmDp1KsRi3d8oFQoFFAqFSXER0etPrRaw5kQ04lIy4VneEiKRCABgpZDCUi5BdGwK1p6IRiN3e4jFIjNHS0QlXYF6SGVlZeHPP//E999/j8TERADAgwcPkJTEL+X0epGK8qghBSBLrAQAZKZxyB4REelr27YtZs2ahXv37iE0NBRqtRpt27bVLr9y5Qo8PT1N2qdcLoe3tzf279+vbVOr1di/fz98fHwMbpOSkqKXdJJIsifsMDUhRkRlV2RMIqJikuBso9AmozREIhGcrBW4EZOEyJhEM0VIRKWJyT2koqOj0aVLF9y9exfp6eno1KkTbGxsMH/+fKSnp2PFihVFESeRWeRZ1ByASpz963FmelpxhURERKXInDlz0KlTJ3h4eEAikeDrr7+GlZWVdvlPP/2E9u3bm7zfoKAgBAYGokmTJmjatClCQ0ORnJysnXUvICAAFStWxLx58wAA/v7+WLx4MRo1aoRmzZohKioK06ZNg7+/vzYxRUSUn/iUTGRkqaCUGe5BqZRJ8DQpHfEpmcUcGRGVRiYnpMaPH48mTZrgwoULKF++vLb97bffxogRIwo1OCJzEgRAoklIGSpqDkAQZ7dnZDAhRURE+jw9PXH16lVcvnwZTk5OcHNz01k+c+ZMnRpTxurXrx+ePHmC6dOn49GjR2jYsCF2796tLXR+9+5dnR5Rn3/+OUQiET7//HPcv38fTk5O8Pf3x5w5c17tBImoTLGzlEEulSAtUwUrhf5XybTM7ALndpaG752JiF5mckLq6NGjOHHiBORyuU67p6cn7t+/X2iBEZUEUm0NKcO/HgsvElWZGenFFRIREZUyUqkUDRo0MLgst3ZjjBkzBmPGjDG47NChQ3oxhISEICQkpMDHIyLycrZBdWdrXH4QD0u5RGfYniAIeJKUjrpudvBytjFjlERUWpickFKr1VCpVHrt//77L2xs+A8PvV7yG7IHSXZiNosJKSIiMuCLL74war3p06cXcSRERK9OLBYhsIUH5uy4iujYFDhZK6CUZfeYepKUDjsLGQJaeLCgOREZxeSEVOfOnREaGoqVK1cCyC5el5SUhJCQEHTr1q3QAyQyp/8SUrl0O9YkpDKZkCIiIn0zZsyAm5sbnJ2dcy0eLhKJmJAiolLD28MBU/1qY82JaETFJOFpUjrkUgnqutkhoIUHvD0czB0iEZUSJiekFi1aBF9fX9SpUwdpaWkYOHAgbty4AUdHR/zyyy9FESOR2eTXQ0r0YsieigkpIiIyoGvXrjhw4ACaNGmCoUOHonv37nqz3RERlTbeHg5o5G6PyJhExKdkws5SBi9nG/aMIiKTmJyQqlSpEi5cuIANGzbg4sWLSEpKwrBhwzBo0CBYWFgURYxEZiMV5ZOQkmb3kGJCioiIDNmxYwcePHiANWvW4OOPP8aHH36IgIAADB06FDVr1jR3eEREBSYWi1DL1dbcYRBRKWZyQiotLQ1KpRLvvfdeUcRDVKJINEXNJYb/VMQvElLqrIziComIiEoZNzc3BAcHIzg4GEeOHEFYWBjefPNN1KtXD3/++Sd/0CMiIqIyyeQ+487OzggMDMS+ffugVquLIiaiEkOKrOz/yaWHFBNSRERkijfffBPt2rVD7dq1ce7cOWRmZpo7JCIiIiKzMDkhtWbNGqSkpKBnz56oWLEiJkyYgIiIiKKIjcjspJoeUrkkpCQyBYDshFRuxWqJiIhOnjyJESNGwNXVFd988w0CAwPx4MED2NpyuAsRERGVTSYnpN5++2389ttvePz4MebOnYsrV66gefPm8PLyMnpqY6LSQpJPUXOJLLuHlFTIQnoWewwSEZGuBQsWoE6dOujZsyesra1x9OhRnD59GqNGjUK5cuXMHR4RERGR2ZhcQ0rDxsYGQ4YMwZAhQ3DlyhUMGjQIM2fO5LTF9FqR5ZuQUrxYLwspGSooZZLiCo2IiEqBKVOmoHLlyujbty9EIhHCw8MNrrd48eLiDYyIiIjIzAqckEpLS8P27duxfv167N69Gy4uLvj4448LMzYis9P2kJLIDC4XS170kIIKyelZcLCSF1doRERUCrRu3RoikQiXL1/OdR2RiNOkExERUdljckJqz549WL9+PbZt2wapVIrevXtj7969aN26dVHER2RW+dWQwouElFyUheSMrGKKioiISotDhw6ZOwQiIiKiEsnkhNTbb7+N7t27Y+3atejWrRtkMsM9R4hKPbUKYtGLQuX5JKRkyEJyuqqYAiMiIiIiIiIq3UxOSD1+/Bg2NjZFEQtRiSISXurxlGtCKjshm11Dij2kiIjoP19++SXGjRsHS0vLfNf9+++/8fTpU/j5+RVDZERERETmZ1RCKiEhQTstsSAISEhIyHVdTl9Mrw21MQmpl3tIMSFFRET/uXLlCjw8PNCnTx/4+/ujSZMmcHJyAgBkZWXhypUrOHbsGH7++Wc8ePAAa9euNXPERERERMVHbMxK9vb2iImJAQCUK1cO9vb2eg9Ne0F8++238PT0hFKpRLNmzXDq1CmjttuwYQNEIhF69epVoOMS5UVkQkJK/mKWPSIiIo21a9fizz//RGZmJgYOHAhXV1fI5XLY2NhAoVCgUaNGWL16NQICAnDt2jXW4yQiIqIyxageUgcOHICDgwMA4ODBg4UawMaNGxEUFIQVK1agWbNmCA0Nha+vL65fvw5nZ+dct7tz5w4mT56MVq1aFWo8RFrqlxJMRgzZIyIiyqlBgwZYtWoVvv/+e1y8eBHR0dFITU2Fo6MjGjZsCEdHR3OHSERmpFYLiIxJRHxKJuwsZfBytoFYzJk3yzK+J6gsMSoh1aZNG+3/V6lSBe7u7npTFAuCgHv37pkcwOLFizFixAgMGTIEALBixQrs2LEDq1evxpQpUwxuo1KpMGjQIMycORNHjx5FXFycycclyo9InQkAUEEMiTiXzoSahJQoSzMfHxERkR6xWIyGDRuiYcOG5g6FiEqIM9GxWHMiGlExScjIUkEulaC6szUCW3jA28PB3OGRGfA9QWWNUUP2XlalShU8efJErz02NhZVqlQxaV8ZGRk4c+YMOnbs+F9AYjE6duyIkydP5rrdF198AWdnZwwbNizfY6SnpyMhIUHnQWQUIbuHlCqvP5OXakgRERERERnjTHQs5uy4ikv342GrlKKSvSVslVJcfhCPOTuu4kx0rLlDpGLG9wSVRSYnpARB0OsdBQBJSUlQKpUm7evp06dQqVRwcXHRaXdxccGjR48MbnPs2DH8+OOPWLVqlVHHmDdvHuzs7LQPd3d3k2KksiszIwMAkJVXR8IXPaTkYP0oIiIiIsqfWi1gzYloxKVkwrO8JawUUkjEIlgppPBwsER8aibWnoiGWi2YO1QqJnxPUFll1JA9AAgKCgIAiEQiTJs2TWcKY5VKhb///rvIu6EnJibi/fffx6pVq4yuuRAcHKyNHcieMZBJKTJGekY6AEANSe4rsYcUEREREZkgMiYRUTFJcLZR6P3QLxKJ4GStwI2YJETGJKKWK2cwLwv4nqCyyuiE1Llz5wBk95D6559/IJfLtcvkcjkaNGiAyZMnm3RwR0dHSCQSPH78WKf98ePHcHV11Vv/5s2buHPnDvz9/bVtanV25R6pVIrr16+jWrVqOtsoFAooFAqT4iICgIz07IRUliivHlJMSBERERGR8eJTMpGRpYJSZvg7ilImwdOkdMSnZBZzZGQufE9QWWV0Qkozu96QIUOwdOlS2Nq+emZWLpfD29sb+/fvR69evQBkJ5j279+PMWPG6K1fq1Yt/PPPPzptn3/+ORITE7F06VL2fKJClZGRBgDIEslyX+mlouZERET5iYqKws2bN9G6dWtYWFjkWgqBiF5fdpYyyKUSpGWqYKXQ/zqWlpldzNrOMo97UHqt8D1BZZXRCSmNsLCwQg0gKCgIgYGBaNKkCZo2bYrQ0FAkJydrZ90LCAhAxYoVMW/ePCiVStStW1dn+3LlygGAXjvRq8p6kZBS5ZmQ0vSQYg0pIiLK3bNnz9CvXz8cOHAAIpEIN27cQNWqVTFs2DDY29tj0aJF5g6RiIqJl7MNqjtb4/KDeFjKJTpJaUEQ8CQpHXXd7ODlbGPGKKk48T1BZZXJRc0BICIiAp988gn69++Pd955R+dhqn79+mHhwoWYPn06GjZsiPPnz2P37t3aQud3797Fw4cPCxIm0SvRJqTERvSQ4pA9IiLKw8SJEyGVSnH37l2dOpz9+vXD7t27C7TPb7/9Fp6enlAqlWjWrBlOnTqV5/pxcXEYPXo0KlSoAIVCAS8vL+zcubNAxyaighOLRQhs4QE7CxmiY1OQnJ4FlVpAcnoWomNTYGchQ0ALD4jF7D1ZVvA9QWWVyT2kNmzYgICAAPj6+mLv3r3o3LkzIiMj8fjxY7z99tsFCmLMmDEGh+gBwKFDh/LcNjw8vEDHJMpPpqaoeZ4Jqf9qSAmc9IKIiHKxd+9e7NmzB5UqVdJpr1GjBqKjo03e38aNGxEUFIQVK1agWbNmCA0Nha+vL65fvw5nZ2e99TMyMtCpUyc4Oztj06ZNqFixIqKjo7U9zYmoeHl7OGCqX22sORGNqJgkPE1Kh1wqQV03OwS08IC3h4O5Q6RixvcElUUmJ6Tmzp2LJUuWYPTo0bCxscHSpUtRpUoVfPjhh6hQoUJRxEhkFioTE1JERES5SU5O1ukZpREbG1ugyVcWL16MESNGaEscrFixAjt27MDq1asxZcoUvfVXr16N2NhYnDhxAjJZ9ueap6enycclosLj7eGARu72iIxJRHxKJuwsZfBytmEvmDKM7wkqa0wesnfz5k34+fkByC5KnpycDJFIhIkTJ2LlypWFHiCRuWRlaRJS8txXejFkT86i5kRElIdWrVph7dq12ucikQhqtRoLFixAu3btTNpXRkYGzpw5g44dO2rbxGIxOnbsiJMnTxrcZvv27fDx8cHo0aPh4uKCunXrYu7cuVCpDNdATE9PR0JCgs6DiAqfWCxCLVdbNKtaHrVcbZl4IL4nqEwxuYeUvb09EhMTAQAVK1bEpUuXUK9ePcTFxSElJaXQAyQyFyEzOyGl6QVlEHtIERGRERYsWIAOHTogIiICGRkZ+OSTT3D58mXExsbi+PHjJu3r6dOnUKlU2nqbGi4uLrh27ZrBbW7duoUDBw5g0KBB2LlzJ6KiojBq1ChkZmYiJCREb/158+Zh5syZJsVFREREZAqTe0i1bt0a+/btAwD06dMH48ePx4gRIzBgwAB06NCh0AMkMhfVi4SUwCF7RET0iurWrYvIyEi89dZb6NmzJ5KTk/HOO+/g3LlzqFatWpEfX61Ww9nZGStXroS3tzf69euHqVOnYsWKFQbXDw4ORnx8vPZx7969Io+RiIiIyhaTe0gtW7YMaWnZs49NnToVMpkMJ06cwLvvvovPP/+80AMkMhe1JiGVVw8pcfafkAyGhzwQERFp2NnZYerUqa+8H0dHR0gkEjx+/Fin/fHjx3B1dTW4TYUKFSCTySCRSLRttWvXxqNHj5CRkQG5XPezTqFQFKi2FREREZGxTE5IOTj8V91fLBYbLJxJ9DpQZ2UAAETS/IfsydlDioiI8vH8+XP8+OOPuHr1KgCgTp06GDJkiM69lTHkcjm8vb2xf/9+9OrVC0B2D6j9+/fnOmtxy5YtsX79eqjVaojF2R3kIyMjUaFCBb1kFBEREVFxMGrIXs6ilnk9iF4XgupFQkqSxy/ELw/ZE4TiCIuIiEqhI0eOwNPTE19//TWeP3+O58+f4+uvv0aVKlVw5MgRk/cXFBSEVatWYc2aNbh69So++ugjJCcna2fdCwgIQHBwsHb9jz76CLGxsRg/fjwiIyOxY8cOzJ07F6NHjy60cyQiIiIyhVE9pMqVKweRKO/q/oIgQCQS5TpbC1Gp82KWvbx7SGXXlxKLBIgEvveJiMiw0aNHo1+/fli+fLl22JxKpcKoUaMwevRo/PPPPybtr1+/fnjy5AmmT5+OR48eoWHDhti9e7e20Pndu3e1PaEAwN3dHXv27MHEiRNRv359VKxYEePHj8enn35aeCdJREREZAKjElIHDx4s6jiIShxBlQnAuCF7ACBSZxZ1SEREVEpFRUVh06ZNOjWcJBIJgoKCsHbt2gLtc8yYMbkO0Tt06JBem4+PD/76668CHYuIiIiosBmVkGrTpk1Rx0FU4ohU2T2kxDJl7iu9lJASC0xIERGRYY0bN8bVq1dRs2ZNnfarV6+iQYMGZoqKiIiIyHxMLmoOAEePHsX333+PW7du4bfffkPFihXx008/oUqVKnjrrbcKO0YisxC96CElMWLIHgCI1CxsTkREho0bNw7jx49HVFQUmjdvDgD466+/8O233+LLL7/ExYsXtevWr1/fXGESERERFRuTE1KbN2/G+++/j0GDBuHs2bNIT8/uRRIfH4+5c+di586dhR4kkVmos4uaS/LqISUSIQtSSJEFMYfsERFRLgYMGAAA+OSTTwwuE4lErMdJREREZYrJCanZs2djxYoVCAgIwIYNG7TtLVu2xOzZsws1OCJzEqs0Cam8p8POEkkhFbI4ZI+IiHJ1+/Ztc4dAREREVKKYnJC6fv06WrdurdduZ2eHuLi4woiJqEQQqzMBMSCR59FDCkCWSAYIaewhRUREufLw8DB3CEREREQliskJKVdXV0RFRcHT01On/dixY6hatWphxUVkVmq1AMmLHk9SuSLPdVUv/oyYkCIiorzcvHkToaGhuHr1KgCgTp06GD9+PKpVq2bmyIiIiIiKn9jUDUaMGIHx48fj77//hkgkwoMHD7Bu3f/bu/Pwpqr8DeDvvdnadEkXukpp2fe1CFJHRUGKP0ZBRBEdQURkHBEHBgcqyqLDgA6Ko8OIK+AK4uAy4ICIVBEqYKGsZSmUspZSSpc0bdbz+yNtJG3apmvS9v08T6G5Offc77knN7n59txzP8Hs2bPx5JNPNkaMRE3OaLFBBfsk5SpV9Qkpi8SEFBERVW/Lli3o0aMH9uzZgz59+qBPnz7YvXs3evbsia1bt3o6PCIiIqImV+sRUnPnzoXNZsOwYcNgMBhw6623QqPRYPbs2Xj66acbI0aiJlditkINe4JJpXHjkj0wIUVERFWbO3cuZs6ciaVLl1ZaPmfOHNx5550eioyIiIjIM2o9QkqSJMybNw95eXk4fPgwfvnlF1y5cgUvvfQSSkpKGiNGoiZnT0jZR0jJypou2VPYyzEhRUREVUhPT8eUKVMqLX/sscdw9OhRD0RERERE5Fm1TkiVU6vV6NGjBwYNGgSVSoXXXnsN7du3b8jYiDym1GyFCmW33VbUdJc9+wgpyWZq7LCIiKiZCgsLQ1paWqXlaWlpCA8Pb/qAiLyQzSZwLLsQu09fxbHsQthswtMheQT3AxG1Fm5fsmc0GrFw4UJs3boVarUaf/3rXzFmzBisWrUK8+bNg0KhwMyZMxszVqImU2KyQi2VjXiqISFl5RxSRERUg6lTp+KJJ57A6dOnkZCQAADYuXMnXn75ZcyaNcvD0RF5XmpWHtbsykJGjh4mixVqpQKdwv0xKSEW8bEhng6vyXA/EFFr4nZCav78+Xj77bcxfPhw7Nq1C/fffz8mT56MX375Ba+99hruv/9+KBSKxoyVqMmUXnfJXs0jpJiQIiKi6r3wwgsICAjAq6++iqSkJABAdHQ0Fi5ciBkzZng4OiLPSs3Kw+JN6cg3mBEeoIGPSoNSsxVHLhZg8aZ0zBvVvVUkY7gfiKi1cTshtX79enz44Ye45557cPjwYfTp0wcWiwUHDhyAJEmNGSNRkysxW+FfnpBS1pCQQtmk5oIJKSIick2SJMycORMzZ85EUVERACAgIMDDURF5ns0msGZXFvINZsSFah3fK/w0SmjVCmTlGfDhriz0jwmGLLfc7xzcD0TUGrk9h9T58+cRHx8PAOjVqxc0Gg1mzpzJZBS1SCUmK1RujpDiJXtERFSTO+64A/n5+QDsiajyZFRhYSHuuOMOD0ZG5FkncoqQkaNHeICm0vcKSZIQ5q/ByRw9TuQUeSjCpsH9QEStkdsJKavVCrX6ty/mSqUS/v7+jRIUkaeVOF2yV/1d9sxlk5orrJzUnIiIXEtOTobJVPlzorS0FDt27PBARETeocBghslihY/K9dQfPioFTBYrCgwt+w9/3A9E1Bq5fcmeEAKPPvooNBr7l/PS0lL88Y9/hJ+fn1O5DRs2NGyERB5wrdh03aTmqmrLmiQfezFrSWOHRUREzczBgwcdvx89ehTZ2dmOx1arFZs3b8YNN9zgidCIvIJOq4JaqUCp2Qo/TeWvJqVm+8TeOm3152PNHfcDEbVGbiekJk2a5PT4D3/4Q4MHQ+QtrhnMbl+yZyxLSCltpY0dFhERNTP9+vWDJEmQJMnlpXm+vr548803PRAZkXfoEh6ATuH+OHKxAFq1wulyNSEEruiN6BWtQ5fwlj3nGvcDEbVGbiekVq1a1ZhxEHmVfIPpt0v2apjU3CTbRw0qrExIERGRs8zMTAgh0KFDB+zZswdhYWGO59RqNcLDw3mXYmrVZFnCpIRYLN6Ujqw8A8L8NfBR2UcKXdEbofNVYWJCbIufyJv7gYhaI7cTUkStSZ1GSFl4yR4RETmLjY0FANhsNg9HQuS94mNDMG9Ud6zZlYWMHD1y9UaolQr0itZhYkIs4mNDPB1ik+B+IKLWhgkpIheuFRuhkdyb1FyofAEAVmNxY4dFRETN2KlTp/D6668jPT0dANCjRw8888wz6Nixo4cjI/K8+NgQ9I8JxomcIhQYzNBpVegSHtDqRgRxPxBRa8KEFJELesN1o51qmNTc318HXAVKS/SNHBURETVXW7ZswT333IN+/frh5ptvBgDs3LkTPXv2xH//+1/ceeedHo6QyPNkWUK3yEBPh+Fx3A9E1FowIUXkQnGJ4bcHyupHSOkC7ScMZiakiIioCnPnzsXMmTOxdOnSSsvnzJnDhBQRERG1OrKnAyDyRganEVLVzyEVpNMBAKxGQ7XliIio9UpPT8eUKVMqLX/sscdw9OjROtW5YsUKxMXFwcfHB4MHD8aePXvcWm/t2rWQJAljxoyp03aJiIiIGgITUkQVmK02GI32O+YJSQbk6u9+1CYkGAAgW0tQYrI2enxERNT8hIWFIS0trdLytLQ0hIeH17q+devWYdasWViwYAH27duHvn37IjExETk5OdWud+bMGcyePRu33HJLrbdJRERE1JCYkCKqIN9gdntCcwDw9w8AAPjCiDNXObE5ERFVNnXqVDzxxBN4+eWXsWPHDuzYsQNLly7FtGnTMHXq1FrX99prr2Hq1KmYPHkyevTogZUrV0Kr1eKDDz6och2r1YqHH34YixYtQocOHerTHCIiIqJ64xxSRBXkG0xQwZ6Qkmq4XA8AJLUfAEALI07mFqN7FCehJCIiZy+88AICAgLw6quvIikpCQAQHR2NhQsXYsaMGbWqy2QyITU11VEPAMiyjOHDhyMlJaXK9V588UWEh4djypQp2LFjR90aQkRERNRAmJAiquCawexISEFZc0IKKl8AgI9kQiZHSBERkQuSJGHmzJmYOXMmioqKAAABAQF1qis3NxdWqxURERFOyyMiInDs2DGX6/z88894//33XV426IrRaITRaHQ8LiwsrFOsRERERFXhJXtEFVwzmKCG2f7AjRFSUGkB2C/Zu3CtpIbCRETUGpWUlMBgsN/8IiAgAHl5eXj99dfx3XffNfq2i4qK8Mgjj+Ddd99FmzZt3FpnyZIl0Ol0jp+YmJhGjpKIiIhaG46QIqqgwGCGunyElEJV8wplCSktjLiqNzViZERE1FyNHj0aY8eOxR//+Efk5+dj0KBBUKvVyM3NxWuvvYYnn3zS7bratGkDhUKBy5cvOy2/fPkyIiMjK5U/deoUzpw5g7vvvtuxzGazAQCUSiWOHz+Ojh07Oq2TlJSEWbNmOR4XFhYyKUUeZ7MJnMgpQoHBDJ1WhS7hAZBlydNhERFRHTEhRVTBNYMJ6lpMau4YISWZcLWII6SIiKiyffv2Yfny5QCAL774ApGRkdi/fz/+85//YP78+bVKSKnVasTHx2Pbtm0YM2YMAHuCadu2bZg+fXql8t26dcOhQ4eclj3//PMoKirCP//5T5eJJo1GA43Gjc9AoiaSmpWHNbuykJGjh8lihVqpQKdwf0xKiEV8bIinwyMiojpgQoqoAr3R8tscUu5csqfWOn4t0hc1UlRERNScGQwGx5xR3333HcaOHQtZlnHTTTchKyur1vXNmjULkyZNwsCBAzFo0CC8/vrrKC4uxuTJkwEAEydOxA033IAlS5bAx8cHvXr1clo/KCgIACotJ/JGqVl5WLwpHfkGM8IDNPBRaVBqtuLIxQIs3pSOeaO6MylFRNQMMSFFVIEQ+G0OKXcmNVf6On4tLtY3UlRERNScderUCV999RXuvfdebNmyBTNnzgQA5OTkIDCw9ndnHT9+PK5cuYL58+cjOzsb/fr1w+bNmx0TnZ89exayzKlCqfmz2QTW7MpCvsGMuFAtJMl+iZ6fRgmtWoGsPAM+3JWF/jHBvHyPiKiZYUKKyAUVrPZf3BkhJcsQSl9IlhLYjMUoNVvho1I0boBERNSszJ8/Hw899BBmzpyJYcOGYciQIQDso6X69+9fpzqnT5/u8hI9AEhOTq523dWrV9dpm0RN7UROETJy9AgP0DiSUeUkSUKYvwYnc/Q4kVOEbpG1T+4SEZHnMCFF5IIGZZOTu5OQAgCVL2Apga9kRK7eiLbB2prXISKiVmPcuHH43e9+h0uXLqFv376O5cOGDcO9997rwciIvFuBwQyTxQofles5zXxUCuTqjSgwmJs4MiIiqi8mpIhc8JXKElJqP7fKSyotUJIHX5iQqzcxIUVERJVERkZWugveoEGDPBQNUfOg06qgVipQarbCT1P5q0up2T7BuU7rxp2RiYjIq3hFQmrFihX4xz/+gezsbPTt2xdvvvlmlSdo7777Lj788EMcPnwYABAfH4+///3vPKGjBuULo/0XlW/1BcuVTWyuhRFX9cZGioqIiJqbsWPHulVuw4YNjRwJUfPUJTwAncL9ceRiAbRqhdNle0IIXNEb0Stahy7hAR6MkoiI6sLjs12uW7cOs2bNwoIFC7Bv3z707dsXiYmJyMnJcVk+OTkZEyZMwPbt25GSkoKYmBiMGDECFy5caOLIqSXzLb9kz92EVFm58kv2iIiIAECn07n1Q0SuybKESQmx0PmqkJVnQLHRAqtNoNhoQVaeATpfFSYmxHJCcyKiZsjjI6Ree+01TJ061XGb4pUrV2LTpk344IMPMHfu3ErlP/nkE6fH7733Hv7zn/9g27ZtmDhxYpPETC2fj1Q+QsrNS+9U9kv7fMou2SMiIgKAVatWeToEomYvPjYE80Z1x5pdWcjI0SNXb4RaqUCvaB0mJsQiPjbE0yESEVEdeDQhZTKZkJqaiqSkJMcyWZYxfPhwpKSkuFWHwWCA2WxGSAg/iKjh1HWElBaluFLEEVJERETUetlsAidyilBgMEOnVaFLeEC9RzDFx4agf0xwg9dLRESe49GEVG5uLqxWKyIiIpyWR0RE4NixY27VMWfOHERHR2P48OEunzcajTAaf0sQFBYW1j1gajV+m0PKvUnNf7tkz4SrxRwhRURERK1TalaeYySTyWKfcLxTuD8mNcBIJlmW0C0ysIEiJSIiT/P4HFL1sXTpUqxduxZffvklfHx8XJZZsmSJ0xwNMTExTRwlNUeOu+y5Pam5PXHlCyPyDUxIERERUeuTmpWHxZvScfhCAQJ9lGgbrEWgjxJHLhZg8aZ0pGbleTpEIiLyIh5NSLVp0wYKhQKXL192Wn758uVKt0WuaNmyZVi6dCm+++479OnTp8pySUlJKCgocPycO3euQWKnls2ntnfZKx8hBV6uR0RERK2PzSawZlcW8g1mxIVq4adRQiFL8NMoERuiRUGJGR/uyoLNJjwdKhEReQmPJqTUajXi4+Oxbds2xzKbzYZt27ZhyJAhVa73yiuv4KWXXsLmzZsxcODAareh0WgQGBjo9ENUHQFx3RxStZvUXCsxIUVEREStz4mcImTk6BEeoIEkOc/rJEkSwvw1OJmjx4mcIg9FSERE3sbjd9mbNWsWJk2ahIEDB2LQoEF4/fXXUVxc7Ljr3sSJE3HDDTdgyZIlAICXX34Z8+fPx6effoq4uDhkZ2cDAPz9/eHv7++xdlDLUutJzX3sic5AGBopIiIiIiLvVWAww2Sxwkelcfm8j0qBXL0RBQZzE0dGRETeyuMJqfHjx+PKlSuYP38+srOz0a9fP2zevNkx0fnZs2chy78N5HrrrbdgMpkwbtw4p3oWLFiAhQsXNmXo1IL5SqX2X9wdIeXXBgDQRipopIiIiIiIvJdOq4JaqUCp2Qo/TeWvGKVm+wTnOq3KA9EREZE38nhCCgCmT5+O6dOnu3wuOTnZ6fGZM2caPyBq9Wo9QsovHIA9ISU4NQIRERG1Ml3CA9Ap3B9HLhZAq1Y4XbYnhMAVvRG9onXoEh7gwSiJiMibNOu77BE1Fsfk5O6OkPIvS0iBI6SIiIio9ZFlCZMSYqHzVSErz4BiowVWm0Cx0YKsPAN0vipMTIiFLEs1V0ZERK0CE1JELvhKtR0hFQaAl+wRERFR6xUfG4J5o7qjZ7QOhaUWnL9mQGGpBb2idZg3qjviY0M8HSIREXkRr7hkj8jb+NT6kj17QspPMkJjK2mkqIiIiIi8W3xsCPrHBONEThEKDGbotCp0CQ/gyCgiIqqECSmiioSo/SV7mgBYZQ0UNiMCbfmNFhoRERGRt5NlCd0iAz0dBhEReTleskdUgSwsUEo2+wO1mwkpSYJREwoACLTmN05gRERERERERC0ER0gRVaCylV73wM2EFACjJhTakovQ2fIaISoiIiJqbmw24bWXrnlzbERE1DowIUVUgbIsIWWFAgqFyu31OEKKiIiIyqVm5WHNrixk5OhhslihVirQKdwfkxJiPT65tzfHRkRErQcv2SOqQGW1J6TMsk+t1jP62BNSOs4hRURE1KqlZuVh8aZ0HL5QgEAfJdoGaxHoo8SRiwVYvCkdqVmeG03tzbEREVHrwoQUUQXKuiakHCOkrjV4TERERNQ82GwCa3ZlId9gRlyoFn4aJRSyBD+NErEhWhSUmPHhrizYbIKxERFRq8aEFFEF5ZfsmWVNrdYrT0jpbExIERERtVYncoqQkaNHeIAGkuQ8J5MkSQjz1+Bkjh4ncooYGxERtWpMSBFVoLIZAdRnhFRBg8dERERU0YoVKxAXFwcfHx8MHjwYe/bsqbLsu+++i1tuuQXBwcEIDg7G8OHDqy1PdVdgMMNkscJHpXD5vI9KAZPFigKDuYkj8+7YiIio9WFCiqgCla1ul+yZ1EEAAH9bYUOHRERE5GTdunWYNWsWFixYgH379qFv375ITExETk6Oy/LJycmYMGECtm/fjpSUFMTExGDEiBG4cOFCE0fe8um0KqiVCpSarS6fLzXbJxHXad2/cUpD8ebYiIio9WFCiqgClbUEQN0TUgFMSBERUSN77bXXMHXqVEyePBk9evTAypUrodVq8cEHH7gs/8knn+BPf/oT+vXrh27duuG9996DzWbDtm3bmjjylsdmEziWXYjdp6/iWHYhOrXxR6dwf1zRGyGE81xMQghc0RvROdwfXcIDmjzWLuEBDRpbxbZz7ikiIqoNpacDIPI25XNIWWqdkNIBAPxtRYAQQIW5GYiIiBqCyWRCamoqkpKSHMtkWcbw4cORkpLiVh0GgwFmsxkhISGNFWarkJqVhzW7spCRo4fJYh9d1CncH4M7hOD8NQOy8gwI89fAR2UflXRFb4TOV4WJCbGQ5aY/T5BlCZMSYrF4U3q9Y6uq7ZMSYhEfy9cVERHVjAkpogpUdZzU3KQOtq8PM2AqBjT+DR4bERFRbm4urFYrIiIinJZHRETg2LFjbtUxZ84cREdHY/jw4S6fNxqNMBqNjseFhRz9W1FqVh4Wb0pHvsGM8AANfFQalJqtOHKxAOevGXBffFvsPp2HjBw9cvVGqJUK9IrWYaKHEzbxsSGYN6q7I5lUl9iqa/viTemYN6o7k1JERFQjJqSIKihPSJkUvrVaz6rwhVGooJHMQEkeE1JEROSVli5dirVr1yI5ORk+Pq5HAy9ZsgSLFi1q4siaD5tNYM2uLOQbzIgL1TruWOenUUKrViArz4A9p/Pw2v19kZGrR4HBDJ1WhS7hAR4ZGVVRfGwI+scE40ROUa1jc6ftH+7KQv+YYK9oKxEReS/OIUVUgbLsLnsWqXYjpCBJuIayJJQhr4GjIiIismvTpg0UCgUuX77stPzy5cuIjIysdt1ly5Zh6dKl+O6779CnT58qyyUlJaGgoMDxc+7cuQaJvaU4kVOEjBw9wgM0joRMOUmSEOavwckcPTJy9egWGYjBHULRLTLQqxI0sizVKTZ3234ip6gxwiYiohaECSmiCjTWYgCASaGt1XrtQrS4JuwJKUPBlQaPi4iICADUajXi4+OdJiQvn6B8yJAhVa73yiuv4KWXXsLmzZsxcODAareh0WgQGBjo9EO/KTCYYbJY4aNSuHzeR6WAyWJFgcHcxJE1vtbcdiIialhMSBFVoLHoAQClitpdctcvJgilKvvE5vuPn27wuIiIiMrNmjUL7777LtasWYP09HQ8+eSTKC4uxuTJkwEAEydOdJr0/OWXX8YLL7yADz74AHFxccjOzkZ2djb0er2nmtCs6bQqqJX2ycBdKTXbJ/nWaVVNHFnja81tJyKihsWEFFEFGqt9iHltE1KSJEEXYp9g9khGZoPHRUREVG78+PFYtmwZ5s+fj379+iEtLQ2bN292THR+9uxZXLp0yVH+rbfegslkwrhx4xAVFeX4WbZsmaea0Kx1CQ9Ap3B/XNEbIYRwek4IgSt6IzqH+6NLeICHImw8rbntRETUsDipOVEF5ZfslSpqfyIVERkNXAGK86+g2GiBn4aHGBERNY7p06dj+vTpLp9LTk52enzmzJnGD6gVkWUJkxJisXhTOrLyDAjz18BHZR81dEVvhM5XhYkJsV41Z1RDac1tJyKihsURUkQVqMz2EVJWde3vkuenCwMABKEIhy8UNGhcRERE5D3iY0Mwb1R39IzWobDUgnN5xcgpMiIy0Ad/uKkd+scEezrERlOx7eevGVBYakGvaB3mjeqO+NgQT4dIRETNAIdvEFWgNBcCAAKCQmu/stZ+AhYsFeHg+QIM7lCHOoiIiKhZiI8NQf+YYHyVdgH/ST2PS4WlyC4sxXs7ziD5eC4mJcS22ORMedtP5BShwGCGTqtCl/AAjowiIiK3cYQUUQXlk5oHBbep/cq+ZQkp6JF2Pr8BoyIiIiJvtP/cNXz8SxYuFZQi3F+DmGAtAn2UOHKxAIs3pSM1K8/TITYaWZbQLTIQgzuEoltkIJNRRERUK0xIEV1PCGiFfQ6psLCI2q9fNkIqSNLjwLn8BgyMiIiIvI3NJrBmVxbyDWbEhWrhp1FCIUvw0ygRG6JFQYkZH+7Kgs0maq6MiIiolWFCiug6RfoiqGEBAESEh9W+Aq39Er1gFOH8tRIUlJgbMjwiIiLyIidyipCRo0d4gAaS5Dw6SJIkhPlrcDJHjxM5RR6KkIiIyHsxIUV0newrOQAAKyT4+wfVvgJ/+6iqCOkalLDAZLE1YHRERETkTQoMZpgsVvioFC6f91EpYLJYUWDgH6iIiIgqYkKK6DpXcuwJqRJJC8h1ODx0MYA6ABrJgvZSNgQ4RJ+IiKil0mlVUCsVKDVbXT5farZCrVRAp1U1cWRERETejwkpouvk5eUCAEoVAXWrQJaBiB4AgO7S2YYKi4iIiBqAzSZwLLsQu09fxbHsQrfmdqpunS7hAegU7o8reiOEcK5LCIEreiM6h/ujS3gdzyuIiIhaMKWnAyDyJkX59oSUVVWPE8eInsC53eguZ4EDpIiIiLxDalYe1uzKQkaOHiaLfeRSp3B/TEqIRXxsSJ3WkWUJkxJisXhTOrLyDAjz18BHZR8xdUVvhM5XhYkJsbz7HBERkQscIUV0naIC+62ZhU9g3SuJ6AUA6MYRUkRERF4hNSsPizel4/CFAgT6KNE2WItAHyWOXCzA4k3pSM3Kq/M68bEhmDeqO3pG61BYasH5awYUllrQK1qHeaO6V5nsIiIiau04QoroOnlXrwAA1H7Bda+kLCHVXT7LAVJEREQeZrMJrNmVhXyDGXGhWsfd8Pw0SmjVCmTlGfDhriz0jwl2jGSq7TrxsSHoHxOMEzlFKDCYodOq0CU8gCOjiIiIqsGEFFGZSwUlsJUUACogMDi07hWVzSEVKV3DxaIcILBdA0VIRETUuthsAkezC/BDeg5KTFb0ukGHxB6RUCrdH+R/IqcIJy8XwV+jQH6JGSpZhp9GYU8ySRL81EocOJ+PLUezkdgjErIs4UROETJy9AgP0DiSUeUkSUKYvwYnc/Q4kVOEbpH2UdWyLDl+JyIiopoxIUVUZv/ZfARKBgCA0jeo7hVpAnBaikEHcQ5r1n6Gp6f/Bf4aHmpERETustkEvkq7gDe3ncCZqyVOI45D/VSYNaIrHh4c61Zde07n4dw1AwQAIQBZAvzUSgRp1cgvMUFfaoHJasPSb4/hf4eyMSkhFhargMlihY9K47JOH5UCuXojCgzm+jeWiIioleIcUkRl9mVdQwDsCSn46OpVl1+XoQCAyGupWJl8qp6RERERtR6pWXmY+MEePLv+ADIrJKMA4GqxGYu+OYJPdme5Vddne87CZBGQIcFXKUMpy8gvMSMjpwj5xWbIkgS1UobO97f5oS7kG6BW2icnd6XUbJ/gXKdVNUCLiYiIWicmpIjK7Dt7zTFCCvWZ1BxARJ/hAIAh8lG8/3MmcgpL6xuedzKXAhajp6MgIqIWIjUrD3/beBR7MnNhrWYiRpNVYPnWE7BYbADsI6qOZRdi9+mrOJZdCJtNwGKx4c1tGcgvMcNfI8NiswGSBIUswSYEbAIQELDYbPDXKNHGX4PYEC0KSsxIPnYFHcP8cEVvhBDOgQghcEVvROdwf3QJr8ddeYmIiFo5XkdEVOZyoRHB0Nsf1HOEFGJvBgB0k8/Bt/Qavj10CY/e3L6eEXqRwovA9sXAof8AfmHAH74Awrp6OioiImrGyicSzyk0wuR6YJKTXL0JW9KzERnogzW7spCRo4fJYh+5FOKnQrHRiqOXCiFJgATAbBXQGy1QK2XYbAKSZF+mUshoG/TbxOVh/hpkXCnG47e0x4X8EmTlGRDmr4GPyj5i6oreCJ2vChMTYjlpORERUT0wIUV0nVgp2/5LcFz9KvIPA8J7AjlHcI9iF0otg+odm9e4dBBY9X+Aqcj+uOAs8P4IYOQSoN9Dno2NiIiarfKJxFUK95M8W49cxtk8A/INZoQHaOCj0uCK3oi9Z67BJgQk2OeLsgnAJqywCgGj2QqbACQJkGXghiBfBF136V35/FA3BPli3qjujmRXrt4ItVKBXtE6TEyIRXxsSCPsBSIiotaDCSmiMkphRox0xf4gtFP9Kxz0OLBxJp5UfoP3Cx6DEKLSnXqapV/esiejIvsAwxcA25cAF34FvnoSUPsBPUZ7OkIiImqGCgxmFJSYkF3g/mXu+89eg9FiQxt/DYwWe6LpSlEpZNjvhme2CVht9lFQ/moFSiw2qBQSZLMVsixDloBgrdqpzuvnh+oWGYj+McE4kVOEAoMZOq0KXcIDODKKiIioAXAOKaIyUbbLUEo2WJVaICCq/hX2+wMKVBGIkPJRsns1Hnl/T61Osr2SxQQc32T/feQSoNNw4LHNwIBJ9mV73/NcbERE1Kz9nJGLi/ml1c4dVVFWXgkuFxpx9FIhDp4vwIFz+bhabIZCluCjUgBCwGC2wlI2JEqtkGG1CWjVCpitNviplfDTKBz1uZofSpYldIsMxOAOoegWGchkFBERUQNhQoqoTIy4CAAw6drbx/HXl1IN5a1/BgBMUW7GzowczFyXVv96Pel0MlBaAPiFA+2G2JcpVMCtswFIQOZPQF6mJyMkIqJmaO+Zq1iz83SlO+q5Q5T9IwCYbTZYbQIlZiuKjGbYBGCxChSUmFFYaobVZoPFJiDLMtQKGUqFBIPJCqtNoNhoQVaegfNDERERNREmpIjKtCtLSBl1HRqsTr9BEwGNDnFSNkbKe5Fy+ioycvQNVn+TstmAlH/Zf+9xDyD/9hdlBLUDOgy1/56yoslDIyKi5stmE1jxwykUm2x1rwP2icvLWQVgLatOq1ZAqZBgsQrojfbkU+9oHZ4b1R3xsSEoLLXg/DUDCkst6BWtw7yy5URERNS4OIcUUZmYRkhIQeMPxE8Edr2JFao3sMY6Av/3mhn92kfgoymDoFEqaq7DW+x9D8j8EVD6Ajf9qfLzN88ATm8H9r4LdL8b6HBb08dIRETNzomcIhzLLqzVpXpVkSXAdl09ShnwUcrwUSlgsdpQbLIiWKvG23+Ih1qtwIQb23F+KCIiIg9hQoqoTPkIKVNg+4at+La5EAUXIB/ZgMnKLbhVPohPzw5Dwgtn8NDtAzDtto7w13j5oVhaCGxfbP/9zhdhCWqPv//3KDJz9bDYBApLzPjLiN74XfxkyKmrgP/OAP60G1D5eDZuIiLyejtPXEF2obHe9QgXCS2lbL8YwGoTMNsEfFQytGoFTucVO+aD6hYZWO9tExERUe15xSV7K1asQFxcHHx8fDB48GDs2bOn2vLr169Ht27d4OPjg969e+Pbb79tokipxTKXoouwz31kDO7YsHVr/CHdvwp4aD3gG4yO8iW8oPoYu9TTEfLTC/jLor9h4dqf8Ma2k0i/VIjCUnPDbr8h/Po+UJoPhHZGQa+J+GBnJj7YmYntx69gx8lcHDhfgIkf7MG9J++CxS8SuHYG2PGqp6MmImrRWsL509Of7sNL3x5rkLoEfhsdpYB9tBQkoMRig8VmQ4CPEp3DA6CUJRQYvPCzloiIqJXx+LCMdevWYdasWVi5ciUGDx6M119/HYmJiTh+/DjCw8Mrld+1axcmTJiAJUuW4Pe//z0+/fRTjBkzBvv27UOvXr080AJqCQ4nr0MvGHBBhEJxQ//G2UiXEcCMNODwF7CkfghN9gFMVm7BZGxBafq/cPRoLM4mB2GDrQuM6iCEt4lAUI/bcWP3DggL0CDIV+WZywgKLwI73wAA7IiahIl/2+b0V+ihXcNQbLRg75lrOJBjwTPyA1ihfgP46RXAZgaGJgFKTdPHTUTUgrWE86cZn+3Hfw9earD6tCoZZhtgtdmglCUEadWIDdHCIgRUsgw/jQIGkxVGpQI6rarBtktERER1IwnhaoBz0xk8eDBuvPFG/Otf9smSbTYbYmJi8PTTT2Pu3LmVyo8fPx7FxcXYuHGjY9lNN92Efv36YeXKlTVur7CwEDqdDgUFBQgM5BBtAlbvzETMlikYJqfi+9CHMfzpfzf+RoWALWM78n5+F6qrx6DTn3ZZrFhocA0BMAklChAAAYHMNkNhi+iDSPM5CN9QXI0eCj+1hJgrOxCSnwZT5EBcDeqN43pfmJT+GNkzEqF+6rols/Iygf88Dlz4FWfVnXBH4XxYyvLY98e3xfOjejhO6lfvzMTC/x4FIDBHuRZPKv8LADAHdYTqjiQguh8Q0sF5MnQiIi/l7ecLzf38qbTUgm4Lt9S7nnIyALXSftc8qw2wCYFe0YEI0qodZYQQyMozoFe0DsvH9+NcUURERA2stucLHh0hZTKZkJqaiqSkJMcyWZYxfPhwpKSkuFwnJSUFs2bNclqWmJiIr776qjFDdVvxRw9BmEtgqynP5+JpISsASQEhyRCSAij/Xy5fprQvKy8H++9Ckh3r2f+3r2u7rj6neq9bxwbFdXXan3fatiSXla2iGU7tcF2oUlMl53JV7yqp7Pka9qUk1XybaCEgm4uhMBZAYSqEwlQAhbEAhflX0fFCBm5RHAYA3Hr/0zXV1DAkCXLnO9Cm8x32HXBxP1B4EZacYyjM3I/S4nyIvEzcYL0APxjLdkU2AGBAXgaQd11dhwCrkKCQyvbCsY8RA6C3kHBQdMTWjTEIkwpQKAUgVwpFhJwPnWSAJCsQAAOuKsIgyzJusF6ETVbighwFjWyFX2kO+pnToJRsKBRa/KHoKVigRJ+2Orw7cSAiAp3nh5qUEIebOobi55O5+NumCThka49FqtUIyz8FbHgcAGCAL/J9Y1CiCkaJKhil6mCUqoJgkX1glVUQshpqWzFU1lIUadvCJikhQUCSJPv/EGXXGQtIEiBDQAKgtJkgw4Zi30gAEuTy54QNEmxQ2ozwNV61Hy8Kjf31DoX9eg5JAUCCJMuAJNt3ddnxAACSrAAkCZJUVlaSAFkBCTKEJNnLOY6Tsv8hl9Ur7LEKW9kLXUCGzb5clC0vj1OU3Q5K2CCVrffbDyCV3ddccrzYxW/1QAASINmskK0lkC2l9uNboYaQ1RAKddnvqrJ2SZWOw/LXpdP/kMqOwt/KirLnpOvKAIBsKYHCeA0Kc3GV1V7P/l6kgpBVsCns/wtZDSjUZfuwQh2Vq7Avd/mF0nVpyVUgVdXbAGUrLy67fsidstW8T4qK73jiuv5B1eXsdVTeviT91tOQrl8mVwrFZV+KygsrvSeXL5CqLuPqrb5SmcpFEBLRDiFhUS6eablawvlTQyajAECWAaVCQht/DWJCfHG50Ij8EjNUCvuE5qVmK67ojdD5qjAxIZbJKCIiIi/g0YRUbm4urFYrIiIinJZHRETg2DHX8wlkZ2e7LJ+dne2yvNFohNH420SZhYWF9Yy6eiJjG/yl0kbdBjUwBWCFDPnmZ6CO7N7025ck4IYBwA0DoOz+e4SU35xOCODCPsBmgdlYgnOXLuHM2bOIzd2OwJKLuKqKRIjxPMLNF6CQBM4oYnFQ6oZ4y34EoQh+Ugn6SxnoL2c4b688x1F+d22L89M9nWIDfrL2xmLLwzgrIrDioQFI7BkBpcJFwkCyTwzbLTIQYQEaHM/uiLG7B2Cs6b+4W5GCKOkq/KQSaEtOACUNsueIiLC721wMfjCp5oItSEs8f6orX5WMhwbHYmBcMIJ8VQj2U6NLeAD2n7uGNbuykJGjR67eCLVSgV7ROkxMiEV8bIinwyYiIiJ4wRxSjW3JkiVYtGhRk23vVdU0CJsFSln67S/ObhFQwAa57EdR6X+r02NXZeTyMuL6MsLxnKOccF2Py8dlddXE3ZZWOZapQgWSm1eSSlU+qKwEPiiW/aGX/GGQ/FAs+6NY9gd8gtDlpv/DoEEJbm2zyUgS0DYeAKAC0KEz0AEAMAcAEFZezpAHWEoRFxiNuOvXLzgPnP4RpisZMGkjYTNcAwovwqwKRKlvGKwWC4yyFgr9RVhsQJEmCjZLCTTF2Si2KuHjF4C8qFsR1K4H1oX5O132UJPR/W4AAPx1ZDdc1f8f8opN+OjoJQQWZcC3JBtq0zVojFfha8qHryUfCmGCwmaGQlhgltSwyGoEmS4BQpSNgYLjf9t1j8vGH8EC+2WDOktuWRn72CmbZB9TZYESBYoQADaobUbIsDpGFpWPTJLKXu/lv9tHIwnH618qG7kklY9yEvZj1r7M5vS7fN16v60lQUiSIzbxW2mnmH/7sUcirhsBKIT9ufLXesWyNkgohQ9MkhoybFAJE1SwQC3MUMEMJSzXjb4qe5mV/y8cW6zUn9dFUx6J07oAYIIKhVIAiiWto6/sMVd+fUgAZFihggWKsv9VwgIlzFA5YqyZy3INcBG6u9uvzQZrU2f53hNw5721cl/UNgZXS90c71qrT7m67AN3yGrfWpQmdzX1+VNtSQA6R/hj8ZjeuLF95QRTfGwI+scE40ROEQoMZui0KnQJD+DIKCIiIi/i0YRUmzZtoFAocPnyZaflly9fRmRkpMt1IiMja1U+KSnJaYh6YWEhYmJi6hl51RY8/2Kj1U3kkraKv/Tq2gL9H4YagPuppIYX6q9BqL8GnSMCAHTxYCRE1BKFejoAD2iJ50/ukgH0idHhDzfFYmz/ttUmmGTZPnKXiIiIvFPl626akFqtRnx8PLZt2+ZYZrPZsG3bNgwZMsTlOkOGDHEqDwBbt26tsrxGo0FgYKDTDxEREVFz1RLOn26sw8C2mzoE49s/34INT96McfExHO1ERETUzHn8kr1Zs2Zh0qRJGDhwIAYNGoTXX38dxcXFmDx5MgBg4sSJuOGGG7BkyRIAwDPPPIPbbrsNr776KkaNGoW1a9fi119/xTvvvOPJZhARERE1meZ+/rR+wSjEzd3kVlmNAlg9ZRCGdAiruTARERE1Gx5PSI0fPx5XrlzB/PnzkZ2djX79+mHz5s2OiTfPnj0LWf5tIFdCQgI+/fRTPP/883juuefQuXNnfPXVV+jVq5enmkBERETUpFrC+dOZpTUnpf4+ticeHMi74hEREbVEkhBuzh7dQhQWFkKn06GgoICX7xEREZFLPF9w1pj74/5Fm7C3wt1XX7y/A/7QvxsTUURERM1Ibc8XPD5CioiIiIhar/ULRnk6BCIiIvIAj05qTkRERERERERErQ8TUkRERERERERE1KSYkCIiIiIiIiIioibFhBQRERERERERETUpJqSIiIiIiIiIiKhJMSFFRERERERERERNSunpAJqaEAIAUFhY6OFIiIiIyFuVnyeUnze0djx/IiIioprU9vyp1SWkioqKAAAxMTEejoSIiIi8XVFREXQ6nafD8DiePxEREZG73D1/kkQr+9OfzWbDxYsXERAQAEmSarVuYWEhYmJicO7cOQQGBjZShN6FbWabW6rW1ubW1l6AbWab60cIgaKiIkRHR0OWOcNBfc6f3NEaX7veiP3gHdgP3oH94B3YD97B3X6o7flTqxshJcsy2rZtW686AgMDW93BwDa3Dmxzy9fa2guwza1FY7SZI6N+0xDnT+5oja9db8R+8A7sB+/AfvAO7Afv4E4/1Ob8iX/yIyIiIiIiIiKiJsWEFBERERERERERNSkmpGpBo9FgwYIF0Gg0ng6lybDNrQPb3PK1tvYCbHNr0Rrb3BKxH70D+8E7sB+8A/vBO7AfvENj9UOrm9SciIiIiIiIiIg8iyOkiIiIiIiIiIioSTEhRURERERERERETYoJKSIiIiIiIiIialKtJiH1008/4e6770Z0dDQkScJXX33l9PyGDRswYsQIhIaGQpIkpKWlVaqjtLQUTz31FEJDQ+Hv74/77rsPly9frna7QgjMnz8fUVFR8PX1xfDhw3Hy5MkGbFnV6tvmvLw8PP300+jatSt8fX3Rrl07zJgxAwUFBdVu99FHH4UkSU4/I0eObODWudYQ/Tx06NBK8f/xj3+sdrvNuZ/PnDlTqb3lP+vXr69yu57q5+raazabMWfOHPTu3Rt+fn6Ijo7GxIkTcfHiRac68vLy8PDDDyMwMBBBQUGYMmUK9Hp9tduty/HfUOrb5jNnzmDKlClo3749fH190bFjRyxYsAAmk6na7dblWGgoDdHPcXFxleJfunRptdttzv2cnJxc5bG8d+/eKrfrrf0MAAsXLkS3bt3g5+eH4OBgDB8+HLt373Yq09yO59ZsxYoViIuLg4+PDwYPHow9e/ZUW379+vXo1q0bfHx80Lt3b3z77bdNFGnLVpt+WL16daX3Bx8fnyaMtmWq6b3PleTkZAwYMAAajQadOnXC6tWrGz3Olq62/VDV52x2dnbTBNwCLVmyBDfeeCMCAgIQHh6OMWPG4Pjx4zWux8+HhlWXfmioz4dWk5AqLi5G3759sWLFiiqf/93vfoeXX365yjpmzpyJ//73v1i/fj1+/PFHXLx4EWPHjq12u6+88greeOMNrFy5Ert374afnx8SExNRWlpar/a4o75tvnjxIi5evIhly5bh8OHDWL16NTZv3owpU6bUuO2RI0fi0qVLjp/PPvusXm1xV0P0MwBMnTrVKf5XXnml2vLNuZ9jYmKc2nrp0iUsWrQI/v7+uOuuu6rdtif6ubr2GgwG7Nu3Dy+88AL27duHDRs24Pjx47jnnnucyj388MM4cuQItm7dio0bN+Knn37CE088Ue1263L8N5T6tvnYsWOw2Wx4++23ceTIESxfvhwrV67Ec889V+O2a3ssNJSG6GcAePHFF53if/rpp6vdbnPu54SEhErH8uOPP4727dtj4MCB1W7bG/sZALp06YJ//etfOHToEH7++WfExcVhxIgRuHLliqNMczueW6t169Zh1qxZWLBgAfbt24e+ffsiMTEROTk5Lsvv2rULEyZMwJQpU7B//36MGTMGY8aMweHDh5s48paltv0AAIGBgU7vD1lZWU0YcctU03tfRZmZmRg1ahRuv/12pKWl4c9//jMef/xxbNmypZEjbdlq2w/ljh8/7nRMhIeHN1KELd+PP/6Ip556Cr/88gu2bt0Ks9mMESNGoLi4uMp1+PnQ8OrSD0ADfT6IVgiA+PLLL10+l5mZKQCI/fv3Oy3Pz88XKpVKrF+/3rEsPT1dABApKSku67LZbCIyMlL84x//cKpHo9GIzz77rN7tqI26tNmVzz//XKjVamE2m6ssM2nSJDF69Oi6BdqA6trm2267TTzzzDNub6cl9nO/fv3EY489Vm0Zb+jn6tpbbs+ePQKAyMrKEkIIcfToUQFA7N2711Hmf//7n5AkSVy4cMFlHXU5/htLXdrsyiuvvCLat29fbT21PRYaS13bHBsbK5YvX+72dlpaP5tMJhEWFiZefPHFautpTv1cUFAgAIjvv/9eCNH8j+fWZNCgQeKpp55yPLZarSI6OlosWbLEZfkHHnhAjBo1ymnZ4MGDxbRp0xo1zpautv2watUqodPpmii61smd976//vWvomfPnk7Lxo8fLxITExsxstbFnX7Yvn27ACCuXbvWJDG1Rjk5OQKA+PHHH6ssw8+HxudOPzTU50OrGSFVX6mpqTCbzRg+fLhjWbdu3dCuXTukpKS4XCczMxPZ2dlO6+h0OgwePLjKdbxdQUEBAgMDoVQqqy2XnJyM8PBwdO3aFU8++SSuXr3aRBE2jE8++QRt2rRBr169kJSUBIPBUGXZltbPqampSEtLc2skXHPo54KCAkiShKCgIABASkoKgoKCnEaMDB8+HLIsV7oUqFxdjn9PqtjmqsqEhITUWFdtjgVPqqrNS5cuRWhoKPr3749//OMfsFgsVdbR0vr5m2++wdWrVzF58uQa62oO/WwymfDOO+9Ap9Ohb9++AFrH8dwSmEwmpKamOu1zWZYxfPjwKvd5SkqKU3kASExMZB/VQ136AQD0ej1iY2MRExOD0aNH48iRI00RLl2Hx4N36devH6KionDnnXdi586dng6nRSmfGqa6c1QeD43PnX4AGubzofqsAjlkZ2dDrVZXOvGPiIio8rrh8uURERFur+PNcnNz8dJLL9V4KcTIkSMxduxYtG/fHqdOncJzzz2Hu+66CykpKVAoFE0Ubd099NBDiI2NRXR0NA4ePIg5c+bg+PHj2LBhg8vyLa2f33//fXTv3h0JCQnVlmsO/VxaWoo5c+ZgwoQJCAwMBGDvr4pDq5VKJUJCQqo9lmt7/HuKqzZXlJGRgTfffBPLli2rtq7aHgueUlWbZ8yYgQEDBiAkJAS7du1CUlISLl26hNdee81lPS2tn99//30kJiaibdu21dbl7f28ceNGPPjggzAYDIiKisLWrVvRpk0bAC3/eG4pcnNzYbVaXX5OHjt2zOU62dnZLeZz1VvUpR+6du2KDz74AH369EFBQQGWLVuGhIQEHDlypMb3Fmo4VR0PhYWFKCkpga+vr4cia12ioqKwcuVKDBw4EEajEe+99x6GDh2K3bt3Y8CAAZ4Or9mz2Wz485//jJtvvhm9evWqshw/HxqXu/3QUJ8PTEiRWwoLCzFq1Cj06NEDCxcurLbsgw8+6Pi9d+/e6NOnDzp27Ijk5GQMGzaskSOtv+sTbr1790ZUVBSGDRuGU6dOoWPHjh6MrPGVlJTg008/xQsvvFBjWW/vZ7PZjAceeABCCLz11lueDqdJuNPmCxcuYOTIkbj//vsxderUautrDsdCdW2eNWuW4/c+ffpArVZj2rRpWLJkCTQaTVOH2mDc6efz589jy5Yt+Pzzz2usz9v7uXzOlNzcXLz77rt44IEHsHv3bs7ZQdQEhgwZgiFDhjgeJyQkoHv37nj77bfx0ksveTAyoqbXtWtXdO3a1fE4ISEBp06dwvLly/HRRx95MLKW4amnnsLhw4fx888/ezqUVs3dfmiozwdesuemyMhImEwm5OfnOy2/fPkyIiMjq1ynvIy763ijoqIijBw5EgEBAfjyyy+hUqlqtX6HDh3Qpk0bZGRkNFKEjWvw4MEAUGX8LaWfAeCLL76AwWDAxIkTa72uN/Vz+Rf2rKwsbN261WkESWRkZKXJWy0WC/Ly8qo9lmt7/De16tpc7uLFi7j99tuRkJCAd955p9bbqOlYaGrutPl6gwcPhsViwZkzZ1w+31L6GQBWrVqF0NBQlxO918Tb+tnPzw+dOnXCTTfdhPfffx9KpRLvv/8+gJZ7PLc0bdq0gUKhqNXnZGRkZIv4XPUmdemHilQqFfr37+817w+tRVXHQ2BgIEdHedigQYN4PDSA6dOnY+PGjdi+fXuNo2v4+dB4atMPFdX184EJKTfFx8dDpVJh27ZtjmXHjx/H2bNnnTKD12vfvj0iIyOd1iksLMTu3burXMfbFBYWYsSIEVCr1fjmm2/qdCvH8+fP4+rVq4iKimqECBtfWloaAFQZf0vo53Lvv/8+7rnnHoSFhdV6XW/p5/Iv7CdPnsT333+P0NBQp+eHDBmC/Px8pKamOpb98MMPsNlsji/iFdXl+G9KNbUZsI+MGjp0KOLj47Fq1SrIcu3f/ms6FpqSO22uKC0tDbIsVzmypiX0MwAIIbBq1SpMnDix1n9AALyrn12x2WwwGo0AWubx3BKp1WrEx8c77XObzYZt27ZVuc+HDBniVB4Atm7dyj6qh7r0Q0VWqxWHDh3y2veHlorHg/dKS0vj8VAPQghMnz4dX375JX744Qe0b9++xnV4PDS8uvRDRXX+fKj3tOjNRFFRkdi/f7/Yv3+/ACBee+01sX//fsfdia5evSr2798vNm3aJACItWvXiv3794tLly456vjjH/8o2rVrJ3744Qfx66+/iiFDhoghQ4Y4badr165iw4YNjsdLly4VQUFB4uuvvxYHDx4Uo0ePFu3btxclJSVe3+aCggIxePBg0bt3b5GRkSEuXbrk+LFYLC7bXFRUJGbPni1SUlJEZmam+P7778WAAQNE586dRWlpqde3OSMjQ7z44ovi119/FZmZmeLrr78WHTp0ELfeeqvTdlpSP5c7efKkkCRJ/O9//3O5HW/p5+raazKZxD333CPatm0r0tLSnF6zRqPRUcfIkSNF//79xe7du8XPP/8sOnfuLCZMmOB4/vz586Jr165i9+7djmXuHP/e2ubz58+LTp06iWHDhonz5887lamqze4eC97a5l27donly5eLtLQ0cerUKfHxxx+LsLAwMXHixCrbLETz7udy33//vQAg0tPTK22jOfWzXq8XSUlJIiUlRZw5c0b8+uuvYvLkyUKj0YjDhw876mhux3NrtXbtWqHRaMTq1avF0aNHxRNPPCGCgoJEdna2EEKIRx55RMydO9dRfufOnUKpVIply5aJ9PR0sWDBAqFSqcShQ4c81YQWobb9sGjRIrFlyxZx6tQpkZqaKh588EHh4+Mjjhw54qkmtAg1nbvNnTtXPPLII47yp0+fFlqtVjz77LMiPT1drFixQigUCrF582ZPNaFFqG0/LF++XHz11Vfi5MmT4tChQ+KZZ54Rsiw77vxKtffkk08KnU4nkpOTnc5tDAaDoww/HxpfXfqhoT4fWk1Cqvw2nRV/Jk2aJISw37bQ1fMLFixw1FFSUiL+9Kc/ieDgYKHVasW9995b6Us9ALFq1SrHY5vNJl544QUREREhNBqNGDZsmDh+/HgTtLj+ba5qfQAiMzPTZZsNBoMYMWKECAsLEyqVSsTGxoqpU6c6TnS8vc1nz54Vt956qwgJCREajUZ06tRJPPvss6KgoMBpOy2pn8slJSWJmJgYYbVaXW7HW/q5uvZmZmZW+Zrdvn27o46rV6+KCRMmCH9/fxEYGCgmT54sioqKHM+X13P9Ou4c/97a5qpeA9f/TaJim909Fry1zampqWLw4MFCp9MJHx8f0b17d/H3v//dKWHa0vq53IQJE0RCQoLLbTSnfi4pKRH33nuviI6OFmq1WkRFRYl77rlH7Nmzx6mO5nY8t2ZvvvmmaNeunVCr1WLQoEHil19+cTx32223OT63yn3++eeiS5cuQq1Wi549e4pNmzY1ccQtU2364c9//rOjbEREhPi///s/sW/fPg9E3bLUdO42adIkcdttt1Vap1+/fkKtVosOHTo4nYdS3dS2H15++WXRsWNH4ePjI0JCQsTQoUPFDz/84JngW4iqzm2uf33z86Hx1aUfGurzQSoLgIiIiIiIiIiIqElwDikiIiIiIiIiImpSTEgREREREREREVGTYkKKiIiIiIiIiIiaFBNSRERERERERETUpJiQIiIiIiIiIiKiJsWEFBERERERERERNSkmpIiIiIiIiIiIqEkxIUVERERERERERE2KCSkiIiIiImqxFi5ciIiICEiShK+++srT4XiFq1evIjw8HGfOnPF0KLV25swZSJKEtLS0Bq87Li4Or7/+OgDAZDIhLi4Ov/76a7XrJCcnQ5Ik5OfnN3g8DW3o0KH485//7OkwyMN++ukn3H333YiOjq7T++LChQshSVKlHz8/v1rHwoQUEbUajz76qOMNU6VSoX379vjrX/+KlStXunxTvf6nOZ6wERERecL1n7eSJCE0NBQjR47EwYMHG2wbCxcuRL9+/Wosl56ejkWLFuHtt9/GpUuXcNdddzVYDN7m0UcfxZgxY9wqu3jxYowePRpxcXGNGlN91aZNDU2tVmP27NmYM2dOteUSEhJw6dIl6HQ6t+v2VLs2bNiAl156yfH4+gQctR7FxcXo27cvVqxYUaf1Z8+ejUuXLjn99OjRA/fff3+t62JCiohalZEjR+LSpUs4ffo0li9fjrfffhuZmZlOb6hDhgzB1KlTnZbFxMR4OnQiIqJmo/zz9tKlS9i2bRuUSiV+//vfN3kcp06dAgCMHj0akZGR0Gg0lcqYTKamDsujDAYD3n//fUyZMsXToXi9hx9+GD///DOOHDlSZRm1Wo3IyEhIktSEkdVNSEgIAgICPB0Gedhdd92Fv/3tb7j33ntdPm80GjF79mzccMMN8PPzw+DBg5GcnOx43t/fH5GRkY6fy5cv4+jRo3V6T2FCiohaFY1Gg8jISMTExGDMmDEYPnw4tm7d6vSmqlarodVqnZYpFApPh05ERNRslH/eRkZGol+/fpg7dy7OnTuHK1euOMqcO3cODzzwAIKCghASEoLRo0c7jUhOTk7GoEGD4Ofnh6CgINx8883IysrC6tWrsWjRIhw4cMAxCmv16tWVYli4cCHuvvtuAIAsy46EQfnolMWLFyM6Ohpdu3YFAHz00UcYOHAgAgICEBkZiYceegg5OTlOdX7zzTfo3LkzfHx8cPvtt2PNmjVOl2utXr0aQUFB2LhxI7p27QqtVotx48bBYDBgzZo1iIuLQ3BwMGbMmAGr1eqot6YvgOX1btmyBd27d4e/v78j6Vfe1jVr1uDrr7927JPr17/et99+C41Gg5tuusmx7Nq1a3j44YcRFhYGX19fdO7cGatWrQLw2yVyn3/+OW655Rb4+vrixhtvxIkTJ7B3714MHDgQ/v7+uOuuu5z612az4cUXX0Tbtm2h0WjQr18/bN682SmWQ4cO4Y477oCvry9CQ0PxxBNPQK/Xu9Wm06dP4/bbb4dWq0Xfvn2RkpLiVPfPP//siDcmJgYzZsxAcXGx4/mcnBzcfffd8PX1Rfv27fHJJ59U2lfBwcG4+eabsXbtWpf7Eqh8yV59+qqmY6L8tbts2TJERUUhNDQUTz31FMxms6PMv//9b8drNCIiAuPGjXM8d/0le0OHDkVWVhZmzpzpiKO4uBiBgYH44osvnNr41Vdfwc/PD0VFRVXuB2o5pk+fjpSUFKxduxYHDx7E/fffj5EjR+LkyZMuy7/33nvo0qULbrnlllpviwkpImq1Dh8+jF27dkGtVns6FCIiohZLr9fj448/RqdOnRAaGgoAMJvNSExMREBAAHbs2IGdO3c6vribTCZYLBaMGTMGt912Gw4ePIiUlBQ88cQTkCQJ48ePx1/+8hf07NnTMQpr/PjxlbY7e/ZsR1KlvFy5bdu24fjx49i6dSs2btzoiOmll17CgQMH8NVXX+HMmTN49NFHHetkZmZi3LhxGDNmDA4cOIBp06Zh3rx5lbZrMBjwxhtvYO3atdi8eTOSk5Nx77334ttvv8W3336Ljz76CG+//bbTl353vgAaDAYsW7YMH330EX766SecPXsWs2fPdrT1gQcecBqZlpCQ4LI/duzYgfj4eKdlL7zwAo4ePYr//e9/SE9Px1tvvYU2bdo4lVmwYAGef/557Nu3D0qlEg899BD++te/4p///Cd27NiBjIwMzJ8/31H+n//8J1599VUsW7YMBw8eRGJiIu655x5Hm4qLi5GYmIjg4GDs3bsX69evx/fff4/p06e71aZ58+Zh9uzZSEtLQ5cuXTBhwgRYLBYA9pFxI0eOxH333YeDBw9i3bp1+Pnnnx11A/bkzrlz57B9+3Z88cUX+Pe//10pAQkAgwYNwo4dO1zuy6rUpa9qOibKbd++HadOncL27duxZs0arF692pGQ/fXXXzFjxgy8+OKLOH78ODZv3oxbb73VZYwbNmxA27Zt8eKLLzri8PPzw4MPPug4bsqtWrUK48aN4+iqVuDs2bNYtWoV1q9fj1tuuQUdO3bE7Nmz8bvf/a7S6wIASktL8cknn9R9xKUgImolJk2aJBQKhfDz8xMajUYAELIsiy+++MKp3G233SaeeeYZzwRJRETUzF3/eevn5ycAiKioKJGamuoo89FHH4muXbsKm83mWGY0GoWvr6/YsmWLuHr1qgAgkpOTXW5jwYIFom/fvjXG8uWXX4qKX3kmTZokIiIihNForHbdvXv3CgCiqKhICCHEnDlzRK9evZzKzJs3TwAQ165dE0IIsWrVKgFAZGRkOMpMmzZNaLVaRz1CCJGYmCimTZsmhBAiKytLKBQKceHCBae6hw0bJpKSkqqsd8WKFSIiIsKpXaNHj662TUIIMXr0aPHYY485Lbv77rvF5MmTXZbPzMwUAMR7773nWPbZZ58JAGLbtm2OZUuWLBFdu3Z1PI6OjhaLFy92quvGG28Uf/rTn4QQQrzzzjsiODhY6PV6x/ObNm0SsiyL7OzsKtvkKp4jR44IACI9PV0IIcSUKVPEE0884bTejh07hCzLoqSkRBw/flwAEHv27HE8n56eLgCI5cuXO633z3/+U8TFxbncN0IIsX379hpfA+70VU3HRPl6sbGxwmKxOMrcf//9Yvz48UIIIf7zn/+IwMBAUVhY6DLWiue4sbGxldq7e/duoVAoxMWLF4UQQly+fFkolcoqj0Vq3gCIL7/80vF448aNAoDj/bv8R6lUigceeKDS+p9++qlQKpWOY7a2lHVLYxERNU+333473nrrLRQXF2P58uVQKpW47777PB0WERFRi1L+eQvYLwf797//jbvuugt79uxBbGwsDhw4gIyMjEojLkpLS3Hq1CmMGDECjz76KBITE3HnnXdi+PDheOCBBxAVFdUg8fXu3bvSCOnU1FQsXLgQBw4cwLVr12Cz2QDYRwz06NEDx48fx4033ui0zqBBgyrVrdVq0bFjR8fjiIgIxMXFwd/f32lZ+WicQ4cOwWq1okuXLk71GI1Gx4gyV/VGRUW5HNFTk5KSEvj4+Dgte/LJJ3Hfffdh3759GDFiBMaMGVNphFWfPn2c4gfs+9FVmwoLC3Hx4kXcfPPNTnXcfPPNOHDgAAD7hPN9+/Z1ujPXzTffDJvNhuPHjzu2UZXr4yl/XeTk5KBbt244cOAADh486HQZnhACNpsNmZmZOHHiBJRKpdNIsW7duiEoKKjSdnx9fWEwGKqNpaK69FVNx0S5nj17Ok0lERUVhUOHDgEA7rzzTsTGxqJDhw4YOXIkRo4ciXvvvRdardbt2AcNGoSePXtizZo1mDt3Lj7++GPExsZWOdKKWha9Xg+FQoHU1NRKU5Zc/x5W7r333sPvf//7Go/XqjAhRUStip+fHzp16gQA+OCDD9C3b19O7ElERNTArv+8BexfWnQ6Hd5991387W9/g16vR3x8vMt5e8LCwgDYLxOaMWMGNm/ejHXr1uH555/H1q1bneY+qk981yu/fCwxMRGffPIJwsLCcPbsWSQmJtZ60nOVSuX0uPzuvhWXlSe83P0C6KoO+wCH2mnTpg2uXbvmtOyuu+5CVlYWvv32W2zduhXDhg3DU089hWXLlrncfvl8XBWXlbepKbiK5/p9Om3aNMyYMaPSeu3atcOJEyfc3k5eXp7jNVmX2Mrjq6mv3Dkmqqq7vN0BAQHYt28fkpOT8d1332H+/PlYuHAh9u7d6zLZVpXHH38cK1aswNy5c7Fq1SpMnjy5WUzaTvXXv39/WK1W5OTk1DgnVGZmJrZv345vvvmmztvjHFJE1GrJsoznnnsOzz//PEpKSjwdDhERUYslSRJkWXZ83g4YMAAnT55EeHg4OnXq5PSj0+kc6/Xv3x9JSUnYtWsXevXqhU8//RSA/c5m108KXl/Hjh3D1atXsXTpUtxyyy3o1q1bpREtXbt2xa+//uq0bO/evfXe9vVfACvui8jISLfrcXef9O/fH0ePHq20PCwsDJMmTcLHH3+M119/He+8806t2nG9wMBAREdHY+fOnU7Ld+7ciR49egAAunfvjgMHDjhNNL5z507IsuyYaL6u/TxgwAAcPXq00v7s1KkT1Go1unXrBovFgtTUVMc6x48fd0xMfr3Dhw+jf//+tY6hOq7a5e4xUROlUonhw4fjlVdewcGDB3HmzBn88MMPbscBAH/4wx+QlZWFN954A0ePHsWkSZNq10Dyanq9HmlpaUhLSwNgTyylpaXh7Nmz6NKlCx5++GFMnDgRGzZsQGZmJvbs2YMlS5Zg06ZNTvV88MEHiIqKwl133VXnWJiQIqJW7f7774dCocCKFSs8HQoREVGLYTQakZ2djezsbKSnp+Ppp5+GXq933PXu4YcfRps2bTB69Gjs2LEDmZmZSE5OxowZM3D+/HlkZmYiKSkJKSkpyMrKwnfffYeTJ0+ie/fuAIC4uDjHl6jc3FwYjcZ6xduuXTuo1Wq8+eabOH36NL755hu89NJLTmWmTZuGY8eOYc6cOThx4gQ+//xzx2TS9Rk9UpsvgNWJi4vDwYMHcfz4ceTm5jrdee16iYmJOHLkiNMoqfnz5+Prr79GRkYGjhw5go0bNzr2dV09++yzePnll7Fu3TocP34cc+fORVpaGp555hkA9teAj48PJk2ahMOHD2P79u14+umn8cgjjzgu/3G3TRXNmTMHu3btwvTp05GWloaTJ0/i66+/dkxq3rVrV4wcORLTpk3D7t27kZqaiscffxy+vr6V6tqxYwdGjBhRr31Rkat21XRMuGPjxo144403kJaWhqysLHz44Yew2WyOBJ+rOH766SdcuHABubm5juXBwcEYO3Ysnn32WYwYMQJt27ZtkHaTd/j111/Rv39/R6J11qxZ6N+/v+OmBKtWrcLEiRPxl7/8BV27dsWYMWOwd+9etGvXzlGHzWbD6tWr8eijj9brbuRMSBFRq6ZUKjF9+nS88sorTn+hIyIiorrbvHkzoqKiEBUVhcGDBzvuojZ06FAA9jl2fvrpJ7Rr1w5jx45F9+7dMWXKFJSWliIwMBBarRbHjh3Dfffdhy5duuCJJ57AU089hWnTpgEA7rvvPowcORK33347wsLC8Nlnn9Ur3rCwMKxevRrr169Hjx49sHTpUqfL1QCgffv2+OKLL7Bhwwb06dMHb731luMuexqNpl7bd+cLYE2mTp2Krl27YuDAgQgLC6s0Oqlc7969MWDAAHz++eeOZWq1GklJSejTpw9uvfVWKBQKrF27tl5tmjFjBmbNmoW//OUv6N27NzZv3oxvvvkGnTt3BmB/DWzZsgV5eXm48cYbMW7cOAwbNgz/+te/at2mivr06YMff/wRJ06cwC233OL4sh0dHe0os2rVKkRHR+O2227D2LFj8cQTTyA8PNypnpSUFBQUFGDcuHH12hcVuWpXTceEO4KCgrBhwwbccccd6N69O1auXInPPvsMPXv2dFn+xRdfxJkzZ9CxY8dKlyVOmTIFJpMJjz32WL3bS95l6NChEEJU+ilPsKtUKixatAiZmZkwmUy4ePEiNmzY4DRnnCzLOHfuHBYvXlyvWCRRlwuPiYiIiIiIWrnFixdj5cqVOHfunKdDqZVNmzbh2WefxeHDhyHLHKNQlfHjx6Nv37547rnnPB1Kk/voo48wc+ZMXLx4sdINAIgaCic1JyIiIiIicsO///1v3HjjjQgNDcXOnTvxj3/8w3EZWHMyatQonDx5EhcuXEBMTIynw/FKJpMJvXv3xsyZMz0dSpMyGAy4dOkSli5dimnTpjEZRY2KI6SIiIiIiIjcMHPmTKxbtw55eXlo164dHnnkESQlJUGp5N/5qWVYuHAhFi9ejFtvvRVff/21050eiRoaE1JERERERERERNSkeMEwERERERERERE1KSakiIiIiIiIiIioSTEhRURERERERERETYoJKSIiIiIiIiIialJMSBERERERERERUZNiQoqIiIiIiIiIiJoUE1JERERERERERNSkmJAiIiIiIiIiIqImxYQUERERERERERE1qf8Hp14YPsNNwn8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzrNJREFUeJzs3XdYU2cbBvA7m42ABBwILtyKYp11D1RcHe5WcbXWLbWt1Fr3bFVsbdXaFrXVauuqn9ZVt6J1a5040aqAyl4h43x/YCJhBgwE5P5dF5fk5JyT5+QEc/LkeZ9XJAiCACIiIiIiIiIioiIgtnQARERERERERERUejAZRURERERERERERYbJKCIiIiIiIiIiKjJMRhERERERERERUZFhMoqIiIiIiIiIiIoMk1FERERERERERFRkmIwiIiIiIiIiIqIiw2QUEREREREREREVGSajiIiIiIiIiIioyDAZRa8VkUiEGTNmGG6vWbMGIpEI9+/ft1hMpggICICXl5elw8jil19+Qc2aNSGTyVCmTBkAQNu2bdG2bVvDOvfv34dIJMKaNWssEiMVf926dcPIkSMtHUaxNWXKFDRt2tTSYRBRKZD5Pbw4Kq7XRHnJfA1qDsXlfHl5eaF79+55rnf48GGIRCIcPnzYrI+fmJgIpVKJ9evXm3W/mXl5eSEgIKBQH0OvpL7OTVHYnw143fT6YDKKSozvv/8eIpGI//kUkRs3biAgIABVq1bF6tWr8cMPP1g6pFLhp59+Qq1atWBlZYXq1avj22+/NXnbc+fOoUuXLnBwcIC9vT06d+6MixcvZllPp9Nh5cqV8PHxgZ2dHdzc3NC1a1eEhoZmWffWrVvo378/KlasCBsbG9SsWROzZs1CcnKySTGdOHEC+/btw2effZblvsjISEyePBk1a9aEjY0NbG1t4evrizlz5iA2Ntaw3unTpzF69Gj4+vpCJpNBJBJl+1gpKSkYPnw46tatC0dHR9jZ2aFBgwZYtmwZ1Gq1SfGaS35imThxIi5duoQdO3YUaYxEVPzpv1TT/1hZWcHb2xtjx45FZGRkkcayYcMGBAcHF+ljlgbXrl3DjBkziv0Xp5a0bNky2Nvbo3///pYOhYoBXje9PqSWDoDIVOvXr4eXlxdOnz6N27dvo1q1anlu8/7776N///5QKBRFEOHr5fDhw9DpdFi2bJnRc71v3z4LRvV6W7VqFUaNGoV33nkHgYGBOHbsGMaPH4/k5ORskzkZnT9/Hm+++SY8PDwwffp06HQ6fP/992jTpg1Onz6NGjVqGNb95JNPsGTJErz33nsYPXo0YmNjsWrVKrRp0wYnTpxAkyZNAAAPHz5EkyZN4OjoiLFjx8LZ2RknT57E9OnTce7cOfz55595HtNXX32FDh06ZPl7PXPmDLp164bExES899578PX1BQCcPXsWCxYswNGjRw2vtb/++gs//vgj6tevjypVqiAsLCzbx0pJScHVq1fRrVs3eHl5QSwWIzQ0FJMmTcI///yDDRs25BmvueQnFnd3d/Tq1Qtff/01evbsWWQxElHJMWvWLFSuXBmpqak4fvw4VqxYgb/++gtXrlyBjY2Nyft5lffwDRs24MqVK5g4cWKB92GK1atXQ6fTFepjFCfXrl3DzJkz0bZt2yyVMiXtmqt169ZISUmBXC432z7VajWWLVuGSZMmQSKRmG2/2bl58ybEYtZqFHe8bnqNCEQlwN27dwUAwtatWwVXV1dhxowZ2a4HQJg+fXrRBmcGQ4YMETw9PQv1MRITE/O1/syZMwUAwtOnT3Nd7969ewIAISQk5BWiK77y+7wVVHJysuDi4iL4+/sbLR80aJBga2srREdH57p9t27dBCcnJ+HZs2eGZY8fPxbs7OyEt99+27BMrVYL1tbWwrvvvmu0vf5vbPz48YZlc+fOFQAIV65cMVp38ODBAoA8Y4qMjBSkUqnw448/Gi2PiYkRKlSoILi5uQnXr1/Psl1ERIQwe/Zso9vJycmCIAjCmDFjhPy+dY0dO1YAIDx58iRf2xWGnGLZvHmzIBKJhDt37lgoMiIqjkJCQgQAwpkzZ4yWBwYGCgCEDRs2FFks/v7+hX6tUlzodDrD+46pCnoN+scffwgAhEOHDuV726Li6emZ5fqkqGzdulUAINy+fdsij5+Zua4Li+La31KK4rMBr5teD0z9Uomwfv16ODk5wd/fH++++67JY8az6xml0+kwY8YMlC9fHjY2NmjXrh2uXbuWZZy4ftsTJ04gMDAQrq6usLW1xVtvvYWnT59meazdu3ejVatWsLW1hb29Pfz9/XH16tUs623fvh1169aFlZUV6tati23btpn8POjH7O/btw8+Pj6wsrJC7dq1sXXr1myP+8iRIxg9ejSUSiUqVqxouP/7779HnTp1oFAoUL58eYwZM8ZoWJSXlxemT58OAHB1dTXqg2Bq/4IbN27g3XffhbOzM6ysrNC4ceMs5bRqtRozZ85E9erVYWVlBRcXF7z55pvYv3+/yc+JOc2YMQMikQjXrl3DwIED4eTkhDfffLNIHvvQoUN4/vw5Ro8ebbR8zJgxSEpKwq5du3Ld/tixY+jYsSNcXFwMy8qVK4c2bdpg586dSExMBJD+nKekpMDNzc1oe6VSCbFYDGtra8Oy+Ph4AMiybrly5SAWi/P85nPXrl3QaDTo2LGj0fJVq1bh0aNHWLJkCWrWrJllOzc3N3zxxRdGtzPGlV/6b5ozvsYtJadY9M+RKdVmRETt27cHANy7dw8AoNFoMHv2bFStWhUKhQJeXl74/PPPoVKpjLbL/B6u7/Hz+++/Y+7cuahYsSKsrKzQoUMH3L5922i7Xbt2ITw83DBkMLd+N7GxsZBIJPjmm28My549ewaxWAwXFxcIgmBY/tFHH8Hd3d1wO7teOhs3boSvry/s7e3h4OCAevXqYdmyZVkec+LEifDw8IBCoUC1atWwcOFCk6qs9NdXe/fuRePGjWFtbY1Vq1a90n7Dw8MxevRo1KhRA9bW1nBxcUGfPn2MrknXrFmDPn36AADatWtneG71PZeyu+aKiorC8OHD4ebmBisrKzRo0ABr1641Wkffs+frr7/GDz/8YHhdvPHGGzhz5ozRuhERERg6dCgqVqwIhUKBcuXKoVevXtkOGzx+/DiaNGkCKysrVKlSBevWrTO6P7ueUW3btkXdunVx7tw5tGjRAtbW1qhcuTJWrlyZ6/Ont337dnh5eaFq1apGywMCAmBnZ4e7d+/Cz88Ptra2KF++PGbNmmX0+gKAr7/+Gi1atICLiwusra3h6+uLzZs3Z3msnD4L5HQ9XRTX/mfPnoWfnx/Kli1reO6GDRtWoOMTiUQYO3Ys/vjjD9SuXRvW1tZo3rw5/v33XwDp12fVqlWDlZUV2rZtm+U18Krn0pyfDXjd9HrgMD0qEdavX4+3334bcrkcAwYMwIoVK3DmzBm88cYb+d5XUFAQFi1ahB49esDPzw+XLl2Cn58fUlNTs11/3LhxcHJywvTp03H//n0EBwdj7Nix2LRpk2GdX375BUOGDIGfnx8WLlyI5ORkrFixAm+++SYuXLhguKjat28f3nnnHdSuXRvz58/H8+fPDRcAprp16xb69euHUaNGYciQIQgJCUGfPn2wZ88edOrUyWjd0aNHw9XVFV9++SWSkpIApCdcZs6ciY4dO+Kjjz7CzZs3Dc/niRMnIJPJEBwcjHXr1mHbtm1YsWIF7OzsUL9+fZNjvHr1Klq2bIkKFSpgypQpsLW1xe+//47evXtjy5YteOuttwyxzJ8/HyNGjECTJk0QHx+Ps2fP4vz581mOpSj16dMH1atXx7x587Jc0GSk0+kQHR1t0j4dHR0hk8lyvP/ChQsAgMaNGxst9/X1hVgsxoULF/Dee+/luL1Kpco2YWNjY4O0tDRcuXIFzZo1g7W1NZo2bYo1a9agefPmaNWqFWJjYzF79mw4OTnhgw8+MGzbtm1bLFy4EMOHD8fMmTPh4uKC0NBQrFixAuPHj4etrW2uxxwaGgoXFxd4enoaLd+xYwesra3x7rvv5rp9QaWlpSE+Ph4pKSk4e/Ysvv76a3h6euY5tNec5zO/sTg6OqJq1ao4ceIEJk2aZFIMRFR63blzBwAMX0CMGDECa9euxbvvvouPP/4Y//zzD+bPn4/r16+b9MF3wYIFEIvFmDx5MuLi4rBo0SIMGjQI//zzDwBg6tSpiIuLw3///YelS5cCAOzs7HLcX5kyZVC3bl0cPXoU48ePB5CeyBCJRIiOjsa1a9dQp04dAOlfprRq1SrHfe3fvx8DBgxAhw4dsHDhQgDA9evXceLECUyYMAEAkJycjDZt2uDRo0f48MMPUalSJYSGhiIoKAhPnjwxqdfVzZs3MWDAAHz44YcYOXIkatSo8Ur7PXPmDEJDQw19F+/fv48VK1agbdu2uHbtGmxsbNC6dWuMHz8e33zzDT7//HPUqlULAAz/ZpaSkoK2bdvi9u3bGDt2LCpXrow//vgDAQEBiI2NNTwfehs2bEBCQgI+/PBDiEQiLFq0CG+//Tbu3r1reA975513cPXqVYwbNw5eXl6IiorC/v378eDBA6Ok4O3bt/Huu+9i+PDhGDJkCH7++WcEBATA19fXcC5zEhMTg27duqFv374YMGAAfv/9d3z00UeQy+VZEiuZhYaGolGjRtnep9Vq0aVLFzRr1gyLFi3Cnj17MH36dGg0GsyaNcuw3rJly9CzZ08MGjQIaWlp2LhxI/r06YOdO3fC398/18cHsr+eLopr/6ioKHTu3Bmurq6YMmUKypQpg/v372f5Ejo/x3fs2DHs2LEDY8aMAQDMnz8f3bt3x6efforvv/8eo0ePRkxMDBYtWoRhw4bh4MGDRtsX9Fya+7MBr5teExauzCLK09mzZwUAwv79+wVBSC+drlixojBhwoQs6yJTibS+vP3evXuCIKQP95FKpULv3r2NtpsxY4YAQBgyZEiWbTt27CjodDrD8kmTJgkSiUSIjY0VBEEQEhIShDJlyggjR4402mdERITg6OhotNzHx0coV66cYVtBEIR9+/YJAEwq1fX09BQACFu2bDEsi4uLE8qVKyc0bNgwS+xvvvmmoNFoDMujoqIEuVwudO7cWdBqtYbly5cvFwAIP//8s2HZ9OnTsx2m16ZNG6FNmzaG29mV4nbo0EGoV6+ekJqaalim0+mEFi1aCNWrVzcsa9CggcXKvrOjP+YBAwaYtL7+2E35yav8fsyYMYJEIsn2PldXV6F///65bl+vXj3B29vb6HyrVCqhUqVKAgBh8+bNhuW3bt0SGjVqZBRflSpVhBs3bmTZ7+zZswVra2ujdadOnZprLHpvvvmm4Ovrm2W5k5OT0KBBA5P2kZkpw/R+++03o3gbN24sXL58Oc99m/N8FiSWzp07C7Vq1TJpv0RUOujfz//++2/h6dOnwsOHD4WNGzcKLi4ugrW1tfDff/8JFy9eFAAII0aMMNp28uTJAgDh4MGDhmWZ38MPHTokABBq1aolqFQqw/Jly5YJAIR///3XsCy/w/TGjBkjuLm5GW4HBgYKrVu3FpRKpbBixQpBEATh+fPngkgkEpYtW2ZYL/PwpQkTJggODg5G72+ZzZ49W7C1tRXCwsKMlk+ZMkWQSCTCgwcPco1Vf321Z8+eAu838zVodsP8Tp48KQAQ1q1bZ1iW2zC9zOcrODhYACD8+uuvhmVpaWlC8+bNBTs7OyE+Pl4QhJfvZy4uLkZD6v/8808BgPC///1PEIT0YfMAhK+++iqXZ+fl83P06FHDsqioKEGhUAgff/yxYZn+9ZTxWNq0aSMAEBYvXmxYplKpBB8fH0GpVAppaWk5Pq5arRZEIpHRY+gNGTJEACCMGzfOsEyn0wn+/v6CXC43un7NfC7S0tKEunXrCu3bt89ynNl9Fsh8PV1U1/7btm3LdphuZqYeHwBBoVAYPhcJgiCsWrVKACC4u7sbXj+CIAhBQUFGn6EEwfRzWVSfDXjdVPJxmB4Ve+vXr4ebmxvatWsHIL3EtF+/fti4cSO0Wm2+9nXgwAFoNJosQ6HGjRuX4zYffPCB0exdrVq1glarRXh4OID0b+xiY2MxYMAAPHv2zPAjkUjQtGlTHDp0CADw5MkTXLx4EUOGDIGjo6Nhf506dULt2rVNPoby5csbvj0AAAcHBwwePBgXLlxARESE0bojR440avb4999/Iy0tDRMnTjRq0Dhy5Eg4ODjkORTMFNHR0Th48CD69u2LhIQEw/Px/Plz+Pn54datW3j06BGA9G9Or169ilu3br3y45rTqFGjTFrP3d0d+/fvN+mnQYMGue4rt4afVlZWSElJyXX70aNHIywsDMOHD8e1a9dw5coVDB48GE+ePDHsX8/e3h516tTBmDFjsHXrVnz//ffQaDTo3bs3nj17ZrRfLy8vtG7dGj/88AO2bNmCYcOGYd68eVi+fHmez8/z58/h5OSUZXl8fDzs7e3z3L6g2rVrh/379+OPP/7AqFGjIJPJDN9k5sac57MgsTg5OWV5/omIgPQhKa6urvDw8ED//v1hZ2eHbdu2oUKFCvjrr78AAIGBgUbbfPzxxwBg0nv70KFDjd6D9JVKd+/eLXDMrVq1QmRkJG7evAkgvSKjdevWaNWqFY4dOwYgvVpKEIRcK6PKlCmDpKSkXIfw//HHH2jVqpXh/1H9T8eOHaHVanH06NE8461cuTL8/PzMtt+M1cpqtRrPnz9HtWrVUKZMGZw/fz7PeLLz119/wd3dHQMGDDAsk8lkGD9+PBITE3HkyBGj9fv162f0Ppz5vFpbW0Mul+Pw4cOIiYnJ9bFr165tdJ5cXV1Ro0YNk14jUqkUH374oeG2XC7Hhx9+iKioKJw7dy7H7aKjoyEIQrbXEnpjx441/K4fhpaWloa///7bsDzjuYiJiUFcXBxatWpl8nnIfD1dVNf+ZcqUAQDs3Lkz11mB83N8HTp0MKp4089S/s477xhdm+mXZz6/BTmXhfXZgNdNJR+H6VGxptVqsXHjRrRr187QFwFI/w9y8eLFOHDgADp37mzy/vQJpMxDZJydnXN8o6tUqZLRbf16+jdt/X+W+v4NmTk4OBg9dvXq1bOsU6NGDZPfEKtVq5Zlantvb28A6T0CMvZdqFy5stF6+hgyzqwGpL+RVKlSxXD/q7h9+zYEQcC0adMwbdq0bNeJiopChQoVMGvWLPTq1Qve3t6oW7cuunTpgvfffz/XIYFarTbbnl2mkEgkcHV1zXO9zM9bTqysrLL0Qyooa2trpKWlZXtfampqnj2TRo0ahYcPH+Krr74y9I5o3LgxPv30U8ydO9cwnELfw6lt27b49ttvDdt37NgRderUwVdffWUYBrFx40Z88MEHCAsLM5STv/3229DpdPjss88wYMAAox5V2RGyGebo4OCAhISEXLd7FW5uboY+V++++y7mzZuHTp064datW0Z/H5mZ83wWJBZBELL8bRNZwtGjR/HVV1/h3LlzePLkCbZt24bevXubvL1+OHhmNjY2JiWGKavvvvsO3t7ekEqlcHNzQ40aNQxfKoWHh0MsFme5tnF3d0eZMmVMem/P61onN5m/CHN0dIS1tbUhcXHs2DFUrFgRFy5cwJw5c+Dq6oqvv/7acJ+Dg0OuCf7Ro0fj999/R9euXVGhQgV07twZffv2RZcuXQzr3Lp1C5cvX87xPT4qKirP48juvf9V9puSkoL58+cjJCQEjx49Mno/jIuLyzOe7ISHh6N69epZZnzTD+vLfK7zOq8KhQILFy7Exx9/DDc3NzRr1gzdu3fH4MGDs7xHZd6Xfn+mvEbKly+fZWh/xmvXZs2a5bp9dtcSACAWi1GlSpUc96u3c+dOzJkzBxcvXjTqo2bqe27m10ZRXfu3adMG77zzDmbOnImlS5eibdu26N27NwYOHGg0U3h+ji/zedQnyTw8PLJdnvn8FuRcFtZnA143lXxMRlGxdvDgQTx58gQbN27Exo0bs9y/fv36fCWjCiKnaWT1b4z6Bpa//PJLth90pVLL/Zm9StPngtI/H5MnT87yDaOe/oK5devWuHPnDv7880/s27cPP/74I5YuXYqVK1dixIgR2W778OFDk5NFmXl6embbkDMzU5+3/CTGnJ2dc234Xa5cOWi1WkRFRUGpVBqWp6Wl4fnz5yhfvnyejzF37lxMnjwZV69ehaOjI+rVq4fPP/8cwMsLhaNHj+LKlStYsmSJ0bbVq1dHrVq1cOLECcOy77//Hg0bNszS16Bnz55Ys2YNLly4kGvyxsXFJduL1Jo1a+LixYtIS0sz6/TPOXn33XcxdepU/Pnnn0bf5mVmzvNZkFhiYmJQtmzZfO+TyNySkpLQoEEDDBs2DG+//Xa+t588eXKWCtMOHToUqM8jpWvSpEmWnoKZvcqHsryudXJTrlw5o9shISEICAhA+fLlUblyZRw9ehReXl4QBAHNmzeHq6srJkyYgPDwcBw7dgwtWrTIklzJSKlU4uLFi9i7dy92796N3bt3IyQkBIMHDzZ8+aLT6dCpUyd8+umn2e5D/x6Ym+ze+19lv+PGjUNISAgmTpyI5s2bw9HRESKRCP379zepqbo5mHJeJ06ciB49emD79u3Yu3cvpk2bhvnz5+PgwYNo2LBhvvZlbs7OzhCJRCYlvHJy7Ngx9OzZE61bt8b333+PcuXKQSaTISQkBBs2bDBpH5lfG0V17S8SibB582acOnUK//vf/7B3714MGzYMixcvxqlTp2BnZ5fv48vpPBbm+S2szwa8bir5mIyiYm39+vVQKpX47rvvsty3detWbNu2DStXrjQ5eaBvpHz79m2jhMbz588L/Eann91DqVTm+sFc/9jZlZ3qS9hNof92IeNFZ1hYGADkOrNNxhhu3rxp9E1SWloa7t27Z5aqEP1+ZTKZSftzdnbG0KFDMXToUCQmJqJ169aYMWNGjsko/VCqgjB3ci4/ibFDhw7lOguhj48PgPRZU7p162ZYfvbsWeh0OsP9eck8A+Dff/+NihUrGmati4yMBIBsh7iq1WpoNBrD7cjIyGwrBvWl4hnXzU7NmjWxZcuWLMt79OiBkydPYsuWLUZDDQqLfohiXt9Em/N8FiSWe/fumTz8j6gwde3aFV27ds3xfpVKhalTp+K3335DbGws6tati4ULFxr+Juzs7IyaW1+6dAnXrl0zecYlyh9PT0/odDrcunXLqPF1ZGQkYmNjs0wiUVA5JbsyvydnbGbdqlUrHD16FJUrV4aPjw/s7e3RoEEDODo6Ys+ePTh//ny2VXSZyeVy9OjRAz169IBOp8Po0aOxatUqTJs2DdWqVUPVqlWRmJho9urWV9nv5s2bMWTIECxevNiwLDU1NctsqvlJInp6euLy5cvQ6XRGCbwbN24Y7i+IqlWr4uOPP8bHH3+MW7duwcfHB4sXL8avv/5aoP1l9vjxYyQlJRlV1Jhy7SqVSlG1alWj0REZ6XQ63L171ygpmHm/W7ZsgZWVFfbu3WtUTRQSElLQwynya/9mzZqhWbNmmDt3LjZs2IBBgwZh48aNGDFiRKEcX24Kci4L67MBr5tKPvaMomIrJSUFW7duRffu3fHuu+9m+Rk7diwSEhKyTAmamw4dOkAqlWLFihVGy03pf5MTPz8/ODg4YN68edmO59ZXWpQrVw4+Pj5Yu3at0QfR/fv349q1ayY/3uPHj41mxomPj8e6devg4+OT6xAkIH0ollwuxzfffGP0TcdPP/2EuLg4k2YUyYtSqUTbtm2xatUqQ7+ijDJWnjx//tzoPjs7O1SrVi3LVNQZ6YdSFeSnZcuWr3x8GZmzx1D79u3h7Oyc5bW5YsUK2NjYGJ2bZ8+e4caNG0hOTs51n5s2bcKZM2eMeoTpL9gyVxqeP38eN2/eNPoW1NvbGxcuXDBcZOj99ttvEIvFec6w2Lx5c8TExGTpNzBq1CiUK1cOH3/8cZZ9A+ml2nPmzMl139l59uxZtt/g/fjjjwCyzlSYmTnPZ35jiYuLw507d9CiRYtc90tUHIwdOxYnT57Exo0bcfnyZfTp0wddunTJscfHjz/+CG9v71z7AlHB6b/AyDyzm74C1hzv7QBga2ubbSI983ttxkqpVq1a4f79+9i0aZPh/IvFYrRo0QJLliyBWq3O83WR+Voh4/uP/nqhb9++OHnyJPbu3Ztl+9jY2Dy/PMnJq+xXIpFkeR/49ttvs3wZpP9QnzlJlZ1u3bohIiLCaEZnjUaDb7/9FnZ2dmjTpk2e+8goOTk5y2zSVatWhb29fa7XYvml0WiwatUqw+20tDSsWrUKrq6u8PX1zXXb5s2b4+zZsznen/EaXhAELF++HDKZDB06dACQfh5EIpHR837//n1s3769gEdTdNf+MTExWV5D+i8n9eenMI4vNwU5l4Xx2YDXTa8HVkZRsbVjxw4kJCSgZ8+e2d7frFkzuLq6Yv369ejXr59J+3Rzc8OECROwePFi9OzZE126dMGlS5ewe/dulC1btkAl7g4ODlixYgXef/99NGrUCP3794erqysePHiAXbt2oWXLloY3yvnz58Pf3x9vvvkmhg0bhujoaHz77beoU6cOEhMTTXo8b29vDB8+HGfOnIGbmxt+/vlnREZGmvQNiKurK4KCgjBz5kx06dIFPXv2xM2bN/H999/jjTfewHvvvZfv48/Od999hzfffBP16tXDyJEjUaVKFURGRuLkyZP477//cOnSJQDpzTDbtm0LX19fODs74+zZs9i8ebNRM8rizNw9o2bPno0xY8agT58+8PPzw7Fjx/Drr79i7ty5cHZ2Nqy7fPlyzJw506g65+jRo5g1axY6d+4MFxcXnDp1CiEhIejSpYvRVM++vr7o1KkT1q5di/j4eHTu3BlPnjzBt99+C2tra0ycONGw7ieffILdu3ejVatWGDt2LFxcXLBz507s3r0bI0aMyHPooL+/P6RSKf7++2988MEHhuVOTk7Ytm0bunXrBh8fH7z33nuGC5jz58/jt99+Q/PmzQ3rh4eH45dffgEAwwWpPlnl6emJ999/HwDw66+/YuXKlejduzeqVKmChIQE7N27F/v370ePHj1y7O2gZ87zmd9Y/v77bwiCgF69epnl8YkKy4MHDxASEoIHDx4Y/g+YPHky9uzZg5CQEMybN89o/dTUVKxfvx5TpkyxRLilQoMGDTBkyBD88MMPiI2NRZs2bXD69GmsXbsWvXv3NkwA86p8fX2xadMmBAYG4o033oCdnR169OiR6zb6RNPNmzeNXhutW7fG7t27oVAo8hy+OWLECERHR6N9+/aoWLEiwsPD8e2338LHx8dQCfbJJ59gx44d6N69OwICAuDr64ukpCT8+++/2Lx5M+7fv1+g4Tyvst/u3bvjl19+gaOjI2rXro2TJ0/i77//ztJr0cfHBxKJBAsXLkRcXBwUCgXat29vNGRf74MPPsCqVasQEBCAc+fOwcvLC5s3b8aJEycQHByc78lBwsLC0KFDB/Tt2xe1a9eGVCrFtm3bEBkZif79++drX7kpX748Fi5ciPv378Pb2xubNm3CxYsX8cMPP0Amk+W6ba9evfDLL78gLCwsy7BIKysr7NmzB0OGDEHTpk2xe/du7Nq1C59//rmhz5e/vz+WLFmCLl26YODAgYiKisJ3332HatWq4fLlywU6nqK69l+7di2+//57vPXWW6hatSoSEhKwevVqODg4GJLQhXF8uSnouTT3ZwNeN70mim7iPqL86dGjh2BlZSUkJSXluE5AQIAgk8mEZ8+eCYKQdVpd/ZSsGacl1Wg0wrRp0wR3d3fB2tpaaN++vXD9+nXBxcVFGDVqVJZtM0+nmt20tfrlfn5+gqOjo2BlZSVUrVpVCAgIEM6ePWu03pYtW4RatWoJCoVCqF27trB169Ys0xjnxNPTU/D39xf27t0r1K9fX1AoFELNmjWFP/74w2i9nGLXW758uVCzZk1BJpMJbm5uwkcffSTExMQYrTN9+nQBgNHUuIKQdZrh7KZvFQRBuHPnjjB48GDB3d1dkMlkQoUKFYTu3bsLmzdvNqwzZ84coUmTJkKZMmUEa2troWbNmsLcuXNznea3MOV0zEXphx9+EGrUqCHI5XKhatWqwtKlSwWdTme0jj7OjK/B27dvC507dxbKli1reF3Mnz/faKpuveTkZGHWrFlC7dq1BWtra8HR0VHo3r27cOHChSzr/vPPP0LXrl0N59Hb21uYO3euoFarTTqenj17Ch06dMj2vsePHwuTJk0SvL29BSsrK8HGxkbw9fUV5s6dK8TFxRnW0//NZfeT8bV45swZoU+fPkKlSpUEhUIh2NraCo0aNRKWLFlicrzmkt9Y+vXrJ7z55ptFGiORKQAI27ZtM9zeuXOnAECwtbU1+pFKpULfvn2zbL9hwwZBKpUKERERRRj16yOv93M9tVotzJw5U6hcubIgk8kEDw8PISgoyGgadUHI+h6u//8183VEdu/tiYmJwsCBA4UyZcqYNC29nlKpFAAIkZGRhmXHjx8XAAitWrXKsn7ma6LNmzcLnTt3FpRKpSCXy4VKlSoJH374ofDkyROj7RISEoSgoCChWrVqglwuF8qWLSu0aNFC+Prrr/O8rtBfX2XH1P1mvgaNiYkRhg4dKpQtW1aws7MT/Pz8hBs3bgienp7CkCFDjB5j9erVQpUqVQSJRGL0/p75fAmCIERGRhr2K5fLhXr16mW5BtOfv6+++irL8WSM89mzZ8KYMWOEmjVrCra2toKjo6PQtGlT4ffffzfp+cnp9ZTx+qRNmzZCnTp1hLNnzwrNmzcXrKysBE9PT2H58uVZ9pcdlUollC1bVpg9e7bR8iFDhgi2trbCnTt3hM6dOws2NjaCm5ubMH36dEGr1Rqt+9NPPwnVq1c3XB+FhIQYrqUyH2fGc5PX319hX/ufP39eGDBggOFaQqlUCt27d8+yf1OPD4AwZswYo2U5vVay+7/B1HNZFJ8NeN30ehAJQiF2nSMqIWJjY+Hk5IQ5c+Zg6tSplg4nR15eXqhbty527txp6VCITHLs2DG0bdsWN27cyHY2GUqfiapy5crYuHEjv+GjYkckEhnNprdp0yYMGjQIV69ezdLw1s7OLstw8Q4dOsDBwcFoeDkRlR5t27bFs2fPcOXKlQLvY/bs2QgJCcGtW7cM/+8EBARg8+bNJo8soFdnjnNpDrxuen2wZxSVOvoGwhnp+ywUpCExEeWsVatW6Ny5MxYtWmTpUIqt4OBg1KtXjxdUVCI0bNjQMPNntWrVjH4yJ6Lu3buHQ4cOYfjw4RaKloheB5MmTUJiYmK2M2tT6cPrptcHe0ZRqbNp0yasWbMG3bp1g52dHY4fP47ffvsNnTt3NnuDayICdu/ebekQirUFCxZYOgQiI4mJibh9+7bh9r1793Dx4kU4OzvD29sbgwYNwuDBg7F48WI0bNgQT58+xYEDB1C/fn2jZtk///wzypUrl+vMfEREebGzs0NUVJSlw6BigtdNrw8mo6jUqV+/PqRSKRYtWoT4+HhDU/OCzN5FRET0ujl79qxR0+vAwEAAwJAhQ7BmzRqEhIRgzpw5+Pjjj/Ho0SOULVsWzZo1Q/fu3Q3b6HQ6rFmzBgEBAVmG8xERERGxZxQRERERERERERUZ9owiIiIiIiIiIqIiw2QUEREREREREREVmVLXM0qn0+Hx48ewt7eHSCSydDhERERUAgmCgISEBJQvXx5i8evx3R6vkYiIiOhV5Of6qNQlox4/fgwPDw9Lh0FERESvgYcPH6JixYqWDsMseI1ERERE5mDK9VGpS0bZ29sDSH9yHBwcLBwNERERlUTx8fHw8PAwXFe8DniNRERERK8iP9dHpS4ZpS87d3Bw4IUWERERvZLXaTgbr5GIiIjIHEy5Pno9mhwQEREREREREVGJwGQUEREREREREREVGSajiIiIiIiIiIioyJS6nlFERIVFq9VCrVZbOgwiMgOZTAaJRGLpMIiIiIheS0xGERG9IkEQEBERgdjYWEuHQkRmVKZMGbi7u79WTcqJiIiIigMmo4iIXpE+EaVUKmFjY8MPrkQlnCAISE5ORlRUFACgXLlyFo6IiIiI6PXCZBQR0SvQarWGRJSLi4ulwyEiM7G2tgYAREVFQalUcsgeERFRKaDTCQiLSkBcshqONjJ4K+0hFpe8L5pLwnFYNBl19OhRfPXVVzh37hyePHmCbdu2oXfv3rluc/jwYQQGBuLq1avw8PDAF198gYCAgCKJl4goM32PKBsbGwtHQkTmpv+7VqvVTEYRERG95s6FR2NtaDhuRyUiTaOFXCpBNaUdhrTwhK+ns6XDM1lJOQ6LzqaXlJSEBg0a4LvvvjNp/Xv37sHf3x/t2rXDxYsXMXHiRIwYMQJ79+4t5EiJiHLHoXlErx/+XRMREZUO58KjMXfXdVx5FAcHKykqOtnAwUqKq4/jMHfXdZwLj7Z0iCbJ7Tjm7LyOref/wz93n+NGRDx0OsGisVq0Mqpr167o2rWryeuvXLkSlStXxuLFiwEAtWrVwvHjx7F06VL4+fkVVphERERERERE9BrS6QSsDQ1HbLIaXi4v+7/aKqSwkUsQHp2MdaHhaOjhVOyGumWU23GkaXUIi0zEjB1X4Wonh0ImtXi1lEUro/Lr5MmT6Nixo9EyPz8/nDx5MsdtVCoV4uPjjX6ICktymgbT/7yCVSuXQvtjZyDqhqVDIirWvLy8EBwcbOkwDFq3bo0NGzZYOowCKaznMiAgIM8h9CXNnj174OPjA51OZ+lQiIiIyMLCohJwOyoRSntFlqpokUgEVzsFbkUlIiwqwUIRmian44hNUeN2VCI0Wh00WgFOtopiUfVVopJRERERcHNzM1rm5uaG+Ph4pKSkZLvN/Pnz4ejoaPjx8PAoilCpFNLpBAxc/Q/OnzqEDyNmQPLfP8CVzZYOiyhbAQEBEIlEGDVqVJb7xowZA5FIZNSP7+nTp/joo49QqVIlKBQKuLu7w8/PDydOnAAAREdHY9y4cahRowasra1RqVIljB8/HnFxcUV1SNlas2YNypQpY9K6O3bsQGRkJPr371+4Qb2i/BwTZa9Lly6QyWRYv369pUMhIiIiC4tLViNNo4WVLPv+kFYyCdI0WsQlq4s4svzJ7jgEAP/FJEOjFWAjlwAiQCcIsFVI4elsg7gUNdaFhltkyF6JSkYVRFBQEOLi4gw/Dx8+tHRI9Jq6+ywJFx/GYrbsZ8MyAcW3jJPIw8MDGzduNErmp6amYsOGDahUqZLRuu+88w4uXLiAtWvXIiwsDDt27EDbtm3x/PlzAMDjx4/x+PFjfP3117hy5QrWrFmDPXv2YPjw4UV6TK/im2++wdChQyEWv/ZvjSVSWlqaWfcXEBCAb775xqz7JCIiopLH0UYGuVSCVLU22/tT1elNwB1tZEUcWf5kdxxJKg2SVFrIpWLoBEAsAmQvrnUtXfVVoq643d3dERkZabQsMjISDg4OhimYM1MoFHBwcDD6ISoMgpCeTfYQPTUsi4hNslQ4RHlq1KgRPDw8sHXrVsOyrVu3olKlSmjYsKFhWWxsLI4dO4aFCxeiXbt28PT0RJMmTRAUFISePXsCAOrWrYstW7agR48eqFq1Ktq3b4+5c+fif//7HzQaTa5xJCQkYMCAAbC1tUWFChWyTGoRGxuLESNGwNXVFQ4ODmjfvj0uXbpkuP/SpUto164d7O3t4eDgAF9fX5w9exaHDx/G0KFDERcXB5FIBJFIhBkzZmQbw9OnT3Hw4EH06NHDsEwQBMyYMcNQDVa+fHmMHz/ecL+XlxfmzJmDwYMHw87ODp6entixYweePn2KXr16wc7ODvXr18fZs2eNHmvLli2oU6cOFAoFvLy8DH0Q9WJiYjB48GA4OTnBxsYGXbt2xa1btwAgz2NKTk7GsGHDYG9vj0qVKuGHH34w2vfDhw/Rt29flClTBs7OzujVqxfu379vuF+r1SIwMBBlypSBi4sLPv30U8P/bfkhEonw448/4q233oKNjQ2qV6+OHTt2GK1z5MgRNGnSBAqFAuXKlcOUKVOMXitt27bF2LFjMXHiRJQtWxZ+fn44fPgwRCIR9u7di4YNG8La2hrt27dHVFQUdu/ejVq1asHBwQEDBw5EcnJyrjH26NEDZ8+exZ07d/J9fERERPT68Fbao5rSDk8TVVmuewRBwNNEFaor7eCttLdQhKbJ7jjUWh10ggCxCEjT6mCrkMJW8bJyypJVXyUqGdW8eXMcOHDAaNn+/fvRvHlzC0VElJWV6OUfclRs8R5XTIVDEAQkp2mK/KcgSYNhw4YhJCTEcPvnn3/G0KFDjdaxs7ODnZ0dtm/fDpVKZfK+4+Li4ODgAKk097kyvvrqKzRo0AAXLlzAlClTMGHCBOzfv99wf58+fQzJhnPnzqFRo0bo0KEDoqPTx7cPGjQIFStWxJkzZ3Du3DlMmTIFMpkMLVq0QHBwMBwcHPDkyRM8efIEkydPzjaG48ePw8bGBrVq1TIs27JlC5YuXYpVq1bh1q1b2L59O+rVq2e03dKlS9GyZUtcuHAB/v7+eP/99zF48GC89957OH/+PKpWrYrBgwcbzs25c+fQt29f9O/fH//++y9mzJiBadOmYc2aNYZ9BgQE4OzZs9ixYwdOnjwJQRDQrVs3qNXqPI9p8eLFaNy4MS5cuIDRo0fjo48+ws2bNwEAarUafn5+sLe3x7Fjx3DixAnY2dmhS5cuhqqjxYsXY82aNfj5559x/PhxREdHY9u2bXmd6mzNnDkTffv2xeXLl9GtWzcMGjTIcM4ePXqEbt264Y033sClS5ewYsUK/PTTT5gzZ47RPtauXQu5XI4TJ05g5cqVhuUzZszA8uXLERoaakiwBQcHY8OGDdi1axf27duHb7/9Ntf4KlWqBDc3Nxw7dqxAx0dERESvB7FYhCEtPOFoLUN4dDKSVBpodQKSVBqERyfD0VqGwS08i3XzciD745CIRIAAJKu1kIpFqFjGxqiflCWrviw6m15iYiJu375tuH3v3j1cvHgRzs7OqFSpEoKCgvDo0SOsW7cOADBq1CgsX74cn376KYYNG4aDBw/i999/x65duyx1CERZyPEyGSXWFe9xxVQ4UtRa1P5yb5E/7rVZfrCR5++/9ffeew9BQUEIDw8HAJw4cQIbN27E4cOHDetIpVKsWbMGI0eOxMqVK9GoUSO0adMG/fv3R/369bPd77NnzzB79mx88MEHecbQsmVLTJkyBQDg7e2NEydOYOnSpejUqROOHz+O06dPIyoqCgqFAgDw9ddfY/v27di8eTM++OADPHjwAJ988glq1qwJAKhevbph346OjhCJRHB3d881hvDwcLi5uRkN0Xvw4AHc3d3RsWNHyGQyVKpUCU2aNDHarlu3bvjwww8BAF9++SVWrFiBN954A3369AEAfPbZZ2jevDkiIyPh7u6OJUuWoEOHDpg2bZrheK9du4avvvoKAQEBuHXrFnbs2IETJ06gRYsWAID169fDw8MD27dvR58+fXI9pm7dumH06NGGx166dCkOHTqEGjVqYNOmTdDpdPjxxx8NFyEhISEoU6YMDh8+jM6dOyM4OBhBQUF4++23AaTPYrt3b8FeywEBARgwYAAAYN68efjmm29w+vRpdOnSBd9//z08PDywfPlyiEQi1KxZE48fP8Znn32GL7/80nAeqlevjkWLFhn2+eTJEwDAnDlz0LJlSwDA8OHDERQUhDt37qBKlSoAgHfffReHDh3CZ599lmuM5cuXN7z2iYiIqPTy9XTGVP9aWBsajttRiXiWqIJcKkHd8o4YbMEZ5/Ir83GoNFpIJSLoBKC60g5lMiSd9FVfdcs7WqTqy6LJqLNnz6Jdu3aG24GBgQCAIUOGYM2aNXjy5AkePHhguL9y5crYtWsXJk2ahGXLlqFixYr48ccf4efnV+SxE2VHAi1keDlGVyzkPjyJyNJcXV3h7++PNWvWQBAE+Pv7o2zZslnWe+edd+Dv749jx47h1KlT2L17NxYtWoQff/zRqNE5AMTHx8Pf3x+1a9fOcVhcRpmrW5s3b26YFe7SpUtITEyEi4uL0TopKSmG4VWBgYEYMWIEfvnlF3Ts2BF9+vRB1apVTX8SXuzPysrKaFmfPn0QHByMKlWqoEuXLujWrRt69OhhVOmVMRmnn2AjY/WUfllUVBTc3d1x/fp19OrVy+hxWrZsieDgYGi1Wly/fh1SqRRNmzY13O/i4oIaNWrg+vXreR5Hxnj0CauoqCgA6c/l7du3YW9vfLGRmpqKO3fuIC4uDk+ePDF6bKlUisaNGxeo6i5jLLa2tnBwcDDEcv36dTRv3tzom7mWLVsiMTER//33n6Fnma+vb577dnNzg42NjSERpV92+vTpPGO0trbOczgfERERlQ6+ns5o6OGEsKgExCWr4Wgjg7fSvthXRGWW+TgexSbjl5PhiE1RQyYRw0qW3lfqaaLKolVfFk1GtW3bNtcL3IzDFjJuc+HChUKMiqjgMlZFAYCElVGlkrVMgmuzij5Jbp3DDCB5GTZsGMaOHQsAWfo1ZWRlZYVOnTqhU6dOmDZtGkaMGIHp06cbJaMSEhLQpUsX2NvbY9u2bZDJXq3kNzExEeXKlTOq1NLTzyg3Y8YMDBw4ELt27cLu3bsxffp0bNy4EW+99ZbJj1O2bFnExMQYLfPw8MDNmzfx999/Y//+/Rg9ejS++uorHDlyxHBcGY9Pn1jJbplOpzM5lleR+fkWiUSGx05MTISvr2+2M8i5uroWaSymsrW1zXPfIpGowI8VHR1dKMdOREREJZNYLEJN95LfZ9r4OFzg6WJb7Kq+LJqMInrdKDIlo8QCk1GlkUgkyvdwOUvS9wwSiUT5qjStXbs2tm/fbrgdHx8PPz8/KBQK7NixI0ulUU5OnTqV5ba+d1OjRo0QEREBqVQKLy+vHPfh7e0Nb29vTJo0CQMGDEBISAjeeustyOVyaLXZz4ySUcOGDREREYGYmBg4OTkZlltbW6NHjx7o0aMHxowZg5o1a+Lff/9Fo0aNTDq2zGrVqoUTJ04YLTtx4gS8vb0hkUhQq1YtaDQa/PPPP4Zhes+fP8fNmzdRu3ZtADD5mDJr1KgRNm3aBKVSmeNkHuXKlcM///yD1q1bAwA0Go2hT5c51apVC1u2bIEgCIaE3YkTJ2Bvb4+KFSua9bFyoq8Iy9isn4iIiOh1VByrvkpUA3Oi4i5zMoqVUVQSSCQSXL9+HdeuXYNEkrW66vnz52jfvj1+/fVXXL58Gffu3cMff/yBRYsWGYacxcfHo3PnzkhKSsJPP/2E+Ph4REREICIiIs/EyYkTJ7Bo0SKEhYXhu+++wx9//IEJEyYAADp27IjmzZujd+/e2LdvH+7fv4/Q0FBMnToVZ8+eRUpKCsaOHYvDhw8jPDwcJ06cwJkzZwzJLC8vLyQmJuLAgQN49uxZjkOyGjZsiLJlyxolitasWYOffvoJV65cwd27d/Hrr7/C2toanp6eBXqeAeDjjz/GgQMHMHv2bISFhWHt2rVYvny5oQl59erV0atXL4wcORLHjx/HpUuX8N5776FChQqG59rUY8ps0KBBKFu2LHr16oVjx47h3r17OHz4MMaPH4///vsPADBhwgQsWLAA27dvx40bNzB69GjExsYW+HhzMnr0aDx8+BDjxo3DjRs38Oeff2L69OkIDAw06ttlLsuXL0eHDh2Mlp06dQoKhYKToBAREVGpoK+WalrFBTXdHSw+/JDJKCIzUohYGUUlk4ODQ47VMnZ2dmjatCmWLl2K1q1bo27dupg2bRpGjhyJ5cuXAwDOnz+Pf/75B//++y+qVauGcuXKGX4ePnyY62N//PHHOHv2LBo2bIg5c+ZgyZIlhgotkUiEv/76C61bt8bQoUPh7e2N/v37GxqOSyQSPH/+HIMHD4a3tzf69u2Lrl27YubMmQCAFi1aYNSoUejXrx9cXV2NmmFnJJFIMHToUKMhbGXKlMHq1avRsmVL1K9fH3///Tf+97//ZelflR+NGjXC77//jo0bN6Ju3br48ssvMWvWLKOhjiEhIfD19UX37t3RvHlzCIKAv/76yzAUzdRjyszGxgZHjx5FpUqV8Pbbb6NWrVoYPnw4UlNTDef+448/xvvvv48hQ4agefPmsLe3zzLccc2aNUa9ngqiQoUK+Ouvv3D69Gk0aNAAo0aNwvDhw/HFF1+80n5z8uzZM0OPMb3ffvsNgwYNgo2NTaE8JhERERHlTCQUpCtpCRYfHw9HR0fDlONE5hIWmYDRwRvwt+JTw7Jwl1bwHLfTglFRYUtNTcW9e/dQuXJlk4elUfEUERGBOnXq4Pz5869U/fS6mz59Oo4cOZJtH6+S4tmzZ6hRowbOnj2LypUr57hebn/fr+P1xOt4TERERFR08nMtwcooIjPK0jOKw/SISgx3d3f89NNPRrO4Ulb6mRRLsvv37+P777/PNRFFRERERIWn5HTYJSoBsjYw11goEiIqiN69e1s6hGLv9OnTlg7hlTVu3BiNGze2dBhEREREpRYro4jMKHPPKDYwJyIiIiIiIjLGZBSRGSmQZnSblVFERERERERExpiMIjKjrMP0WBlFRERERERElBGTUURmpE9GaSEBwGF6RERERERERJkxGUVkRvqeUSqxDQBWRhERERERERFlxmQUkRnpK6NSJbYAALGOPaOIiIiIiIiIMmIyisiMDMkoQ2UUk1FEREREREREGTEZRWQmgvAyGaUfpseeUUS5a9u2LSZOnGjpMApV69atsWHDBkuHQRk0a9YMW7ZssXQYRERERKUWk1FEZmToGaUfpseeUVRMBQQEQCQSYdSoUVnuGzNmDEQiEQICAgzLnj59io8++giVKlWCQqGAu7s7/Pz8cOLECcM6P/zwA9q2bQsHBweIRCLExsbmGcfWrVsxe/ZscxwSDh8+bPLjFpUdO3YgMjIS/fv3N1p+4cIF9OnTB25ubrCyskL16tUxcuRIhIWFGdYZP348fH19oVAo4OPjk2XfN2/eRLt27Qz7qFKlCr744guo1QX/f+fDDz9E1apVYW1tDVdXV/Tq1Qs3btwo8P6Kqy+++AJTpkyBTqezdChEREREpRKTUURmxGF6VJJ4eHhg48aNSElJMSxLTU3Fhg0bUKlSJaN133nnHVy4cAFr165FWFgYduzYgbZt2+L58+eGdZKTk9GlSxd8/vnnJsfg7OwMe3v7Vz+YYuqbb77B0KFDIRa/fLvduXMnmjVrBpVKhfXr1+P69ev49ddf4ejoiGnTphltP2zYMPTr1y/bfctkMgwePBj79u3DzZs3ERwcjNWrV2P69OkFjtfX1xchISG4fv069u7dC0EQ0LlzZ2i12gLv0xwEQYBGY77/T7t27YqEhATs3r3bbPskIiIiItMxGUVkRgqkAcg0TE8QLBkSUY4aNWoEDw8PbN261bBs69atqFSpEho2bGhYFhsbi2PHjmHhwoVo164dPD090aRJEwQFBaFnz56G9SZOnIgpU6agWbNmJseQeZje999/j+rVq8PKygpubm549913DfepVCqMHz8eSqUSVlZWePPNN3HmzBkAwP3799GuXTsAgJOTk1FlV27bAS8rqnbt2oX69evDysoKzZo1w5UrV4xiPX78OFq1agVra2t4eHhg/PjxSEpKyvHYnj59ioMHD6JHjx6GZcnJyRg6dCi6deuGHTt2oGPHjqhcuTKaNm2Kr7/+GqtWrTKs+80332DMmDGoUqVKtvuvUqUKhg4digYNGsDT0xM9e/bEoEGDcOzYsTye9Zx98MEHaN26Nby8vNCoUSPMmTMHDx8+xP37903ex4wZM+Dj44NffvkFXl5ecHR0RP/+/ZGQkGBYx9Rzsnv3bkN12PHjx9G2bVuMGzcOEydOhJOTE9zc3LB69WokJSVh6NChsLe3R7Vq1fJMMkkkEnTr1g0bN27M93NERERERK+OySgiM8rcM0oEAdBZtqKALEAQgLSkov8pQOJz2LBhCAkJMdz++eefMXToUKN17OzsYGdnh+3bt0OlUr3y05OTs2fPYvz48Zg1axZu3ryJPXv2oHXr1ob7P/30U2zZsgVr167F+fPnUa1aNfj5+SE6OhoeHh6GHkA3b97EkydPsGzZsjy3y+iTTz7B4sWLcebMGbi6uqJHjx6GIW937txBly5d8M477+Dy5cvYtGkTjh8/jrFjx+Z4PMePH4eNjQ1q1aplWLZ37148e/YMn376abbblClTpkDPHQDcvn0be/bsQZs2bQzL1q9fbzh/Of3klLxKSkpCSEgIKleuDA8Pj3zFcufOHWzfvh07d+7Ezp07ceTIESxYsMBwv6nnZMqUKViwYAGuX7+O+vXrAwDWrl2LsmXL4vTp0xg3bhw++ugj9OnTBy1atMD58+fRuXNnvP/++0hOTs41xiZNmrxS4o6IiIiICk5q6QCIXieZe0YBALRpgIR/aqWKOhmYV77oH/fzx4DcNu/1MnjvvfcQFBSE8PBwAMCJEyewceNGHD582LCOVCrFmjVrMHLkSKxcuRKNGjVCmzZt0L9/f0OCwBwePHgAW1tbdO/eHfb29vD09DRUaCUlJWHFihVYs2YNunbtCgBYvXo19u/fj59++gmffPIJnJ2dAQBKpdKQ1DFlO73p06ejU6dOANITHhUrVsS2bdvQt29fzJ8/H4MGDTJUcVWvXh3ffPMN2rRpgxUrVsDKyirL8YSHh8PNzc1oiN6tW7cAADVr1jTb86ZPwqhUKnzwwQeYNWuW4b6ePXuiadOmuW5foUIFo9vff/89Pv30UyQlJaFGjRrYv38/5HJ5vmLS6XRYs2aNYQjm+++/jwMHDmDu3Ln5OiezZs0ynBO9Bg0a4IsvvgAABAUFYcGCBShbtixGjhwJAPjyyy+xYsUKXL58OdcqvfLly+Phw4fQ6XRG54iIiIiICh+vvojMKHPPKAAAZ9SjYszV1RX+/v5Ys2YNQkJC4O/vj7Jly2ZZ75133sHjx4+xY8cOdOnSBYcPH0ajRo2wZs0as8XSqVMneHp6okqVKnj//fexfv16Q3XLnTt3oFar0bJlS8P6MpkMTZo0wfXr13PcZ362a968ueF3Z2dn1KhRw7DOpUuXsGbNGqOKIj8/P+h0Oty7dy/bx05JScmSpBIKYdjupk2bcP78eWzYsAG7du3C119/bbhPP2wttx9ra2uj/Q0aNAgXLlzAkSNH4O3tjb59+yI1NTVfMXl5eRn1AitXrhyioqIA5O+cNG7cOMu+MyZAJRIJXFxcUK9ePcMyNzc3ADA8Xk6sra2h0+kKtdqPiIiIiLLHcg0iM5JnGqYHANAyGVXqyGzSq5Qs8bgFMGzYMMNws++++y7H9aysrNCpUyd06tQJ06ZNw4gRIzB9+nSjWfdehb29Pc6fP4/Dhw9j3759+PLLLzFjxgyjXkKWkpiYiA8//BDjx4/Pcl/mZu96ZcuWRUxMjNEyb29vAMCNGzeMkl+vQj+Ernbt2tBqtfjggw/w8ccfQyKRYP369fjwww9z3X737t1o1aqV4bajoyMcHR1RvXp1NGvWDE5OTti2bRsGDBhgckwymczotkgkKtDMdba2WSv9stt3xmUikQgA8ny86Oho2NraZknGvS4WLFiAoKAgTJgwAcHBwZYOh4iIiMgIk1FEZqSvjFKLFVALEshE2vRhelS6iET5Hi5nSV26dEFaWhpEIhH8/PxM3q527drYvn27WWORSqXo2LEjOnbsiOnTp6NMmTI4ePAg/Pz8IJfLceLECXh6egIA1Go1zpw5Yxg6px9KlnHmt6pVq+a5nd6pU6cMiaWYmBiEhYUZ+j01atQI165dQ7Vq1Uw+loYNGyIiIgIxMTFwcnICAHTu3Blly5bFokWLsG3btizbxMbGvlLfKJ1OB7VaDZ1OB4lEUqBhehkJggBBEMxaPZSfc1KYrly5YtSo/3Vy5swZrFq1yqzDaImIiIjMickoIjPS94zSiORQQwoZmIyi4k8ikRiGR0kkkiz3P3/+HH369MGwYcNQv3592Nvb4+zZs1i0aBF69eplWC8iIgIRERG4ffs2AODff/+Fvb09KlWqZOjnlJudO3fi7t27aN26NZycnPDXX39Bp9OhRo0asLW1xUcffWToDVWpUiUsWrQIycnJGD58OADA09MTIpEIO3fuRLdu3WBtbQ07O7s8t9ObNWsWXFxc4ObmhqlTp6Js2bLo3bs3AOCzzz5Ds2bNMHbsWIwYMQK2tra4du0a9u/fj+XLl2d7PA0bNkTZsmVx4sQJdO/eHUB6pc+PP/6IPn36oGfPnhg/fjyqVauGZ8+e4ffff8eDBw8MM7zdvn0biYmJiIiIQEpKCi5evAggPQkol8uxfv16yGQy1KtXDwqFAmfPnkVQUBD69etnqBSyt7c3Gi6Xm7t372LTpk3o3LkzXF1d8d9//2HBggWwtrZGt27dTNqHKUw5l+ZWs2ZNzJ8/H2+99ZZh2bFjx9C5c+dCeTxLSkxMxKBBg7B69WrMmTPH0uEQERERZYvJKCIzESBkqIySQ40XH+o5TI9KAAcHhxzvs7OzQ9OmTbF06VJDvx8PDw+MHDkSn3/+uWG9lStXYubMmYbb+pnwQkJCTBrKV6ZMGWzduhUzZsxAamoqqlevjt9++w116tQBkD7sSKfT4f3330dCQgIaN26MvXv3GqqOKlSogJkzZ2LKlCkYOnQoBg8ejDVr1uS5nd6CBQswYcIE3Lp1Cz4+Pvjf//5nqLaqX78+jhw5gqlTp6JVq1YQBAFVq1ZFv379cjweiUSCoUOHYv369YZkFAD06tULoaGhmD9/PgYOHIj4+Hh4eHigffv2RsmDESNG4MiRI4bb+iqee/fuwcvLC1KpFAsXLkRYWBgEQYCnpyfGjh2LSZMm5flcZ8fKygrHjh1DcHAwYmJi4ObmhtatWyM0NBRKpdKwnpeXFwICAjBjxowCPQ6Q97k0t5s3byIuLs5w+9GjRwgNDcWvv/5aKI9nSWPGjIG/vz86duzIZBQREREVWyKhMLqpFmPx8fFwdHREXFxcrh++iPLrRkQ8dN+/idricPzktRg9782Eqyge+Ogk4Fbb0uFRIUlNTcW9e/dQuXLlbGdUo+Lv8OHDaNeuHWJiYl5piFx2IiIiUKdOHZw/f94wJK0kS05OhouLC3bv3o22bdtaOpwC++yzzxATE4Mffvgh1/Vy+/sujtcTGzduxNy5c3HmzBlYWVmhbdu28PHxybFnlEqlMhqCqU+MFqdjIiIiopIjP9dHnE2PyIwUSB+S5+hgD42+8JDD9IhKLXd3d/z000948OCBpUMxi0OHDqF9+/YlOhEFAEqlErNnz7Z0GGb18OFDTJgwAevXrzc5MT5//nxDw3pHR0dDM3wiIiKiwsZhekRmpO8Z5e7sCLUgAUTgMD2iUk7fd+p14O/vD39/f0uH8co+/vhjS4dgdufOnUNUVBQaNWpkWKbVanH06FEsX74cKpUqS0+4oKAgBAYGGm7rK6OIiIiIChuTUURmpO8ZVc7FCWpWRhGVCG3btkUpG7FOr6EOHTrg33//NVo2dOhQ1KxZE5999lm2kxMoFAooFIqiCpGIiIjIgMkoIjOSv0hGVShbBvde/HnFJ6eAnTeIiKgw2dvbo27dukbLbG1t4eLikmU5ERERkaWxZxSRGekro6ysbSCSpM/CFREdb8mQiIiIiIiIiIoVVkYRmYsgwOpFzyhIrSCRyYE0IComAd6WjYyKgE6ns3QIRGRmJf3v+vDhw5YOgYiIiChbTEYRmYlIl6E3lFQBmVwBpAFP4xItFxQVOrlcDrFYjMePH8PV1RVyuRwikcjSYRHRKxAEAWlpaXj69CnEYjHkcrmlQyIiIqJ80OkEhEUlIC5ZDUcbGbyV9hCLS+c1enF9LpiMIjIXterl71IF5PL0prDP45mMep2JxWJUrlwZT548wePHjy0dDhGZkY2NDSpVqgSxmF0NiIiISopz4dFYGxqO21GJSNNoIZdKUE1phyEtPOHr6Wzp8IpUcX4umIwiMpM0VfLLGxI5pHIrAEBKSoqFIqKiIpfLUalSJWg0Gmi1WkuHQ0RmIJFIIJVKWelIRERUgpwLj8bcXdcRm6yG0l4BK5kCqWotrj6Ow9xd1zHVv5bFkzBFpbg/F0xGEZlJWmp60kkFORQiESRSGQBAk7Fiil5bIpEIMpkMMpnM0qEQEREREZU6Op2AtaHhiE1Ww8vFxvCFkq1CChu5BOHRyVgXGo6GHk7FYphaYSoJzwXrzonMJC01vTJKLUpPRkhk6cP0tOq0HLchIiIiIiKiVxcWlYDbUYlQ2iuyVDaLRCK42ilwKyoRYVEJFoqw6JSE54LJKCIzSUtLr4DSiNIb3UpfJKM0TEYREREREREVqrhkNdI0WljJJNnebyWTIE2jRVyyuogjK3ol4blgMorITNJUqQAArSh99KvsRQNzaNOg0Zbs6cGJiIiIiIiKM0cbGeRSCVLV2fdwTVWnN/B2tHn922qUhOeCySgiM1G/6A2lFaf/QUtfTAUugwaJKo3F4iIiIiIiInrdeSvtUU1ph6eJKgiCYHSfIAh4mqhCdaUdvJX2Foqw6JSE54LJKCIz0ajSk1E6fc8oaXpllEykQUIqk1FERERERESFRSwWYUgLTzhayxAenYwklQZanYAklQbh0clwtJZhcAvP1755OVAyngsmo4jMRF8ZJbyojIJEXxmlRXzq6z8umYiIiIiIyJJ8PZ0x1b8W6pR3RHyqBv/FJCM+VYO65R0x1b8WfD2dLR1ikSnuz4XUoo9O9BrR6pNREn0yKv1fGTSIT2FlFBERERERUWHz9XRGQw8nhEUlIC5ZDUcbGbyV9qWiIiqz4vxcMBlFZCaaNH1lVHpFFMQvk1EJrIwiIiIiIiIqEmKxCDXdHSwdRrFQXJ8LDtMjMhOtJj0ZBUnmYXrsGUVERERERESkZ/Fk1HfffQcvLy9YWVmhadOmOH36dK7rBwcHo0aNGrC2toaHhwcmTZqE1NTUIoqWKGc6dVr6Ly+SUC+H6WlZGUVERERERFREdDoBNyLi8c/d57gREQ+dTsh7IypSFh2mt2nTJgQGBmLlypVo2rQpgoOD4efnh5s3b0KpVGZZf8OGDZgyZQp+/vlntGjRAmFhYQgICIBIJMKSJUsscAREL+k0mZNRLyqjOJseERERERFRkTgXHo21oeG4HZWINI0WcqkE1ZR2GNLC0+JNu+kli1ZGLVmyBCNHjsTQoUNRu3ZtrFy5EjY2Nvj555+zXT80NBQtW7bEwIED4eXlhc6dO2PAgAF5VlMRFQXdi2F6ImnmyigNZ9MjIiIiIiIqZOfCozF313VceRQHByspKjrZwMFKiquP4zB313WcC4+2dIj0gsWSUWlpaTh37hw6duz4MhixGB07dsTJkyez3aZFixY4d+6cIfl09+5d/PXXX+jWrVuRxEyUG31llDhTMkoOLSujiIiIiIiICpFOJ2BtaDhik9XwcrGBrUIKiVgEW4UUns42iEtRY11oOIfsFRMWG6b37NkzaLVauLm5GS13c3PDjRs3st1m4MCBePbsGd58800IggCNRoNRo0bh888/z/FxVCoVVCqV4XZ8fLx5DoAoM216MuplZRQbmBMRERERERWFsKgE3I5KhNJeAZFIZHSfSCSCq50Ct6ISERaVUCxnlyttLN7APD8OHz6MefPm4fvvv8f58+exdetW7Nq1C7Nnz85xm/nz58PR0dHw4+HhUYQRU2kivEhGSaSK9AUZklEcpkdERERERFR44pLVSNNoYSWTZHu/lUyCNI0Wccn8bFYcWCwZVbZsWUgkEkRGRhotj4yMhLu7e7bbTJs2De+//z5GjBiBevXq4a233sK8efMwf/586HS6bLcJCgpCXFyc4efhw4dmPxYiAIAm/T81scy4MkouUiOelVFERERERESFxtFGBrlUglS1Ntv7U9XpzcwdbWRFHBllx2LJKLlcDl9fXxw4cMCwTKfT4cCBA2jevHm22yQnJ0MsNg5ZIknPegpC9uM+FQoFHBwcjH6ICoNIl14ZJZW9qIx6USElhwYJrIwiIiIiIiIqNN5Ke1RT2uFpoipLfkAQBDxNVKG60g7eSnsLRUgZWXSYXmBgIFavXo21a9fi+vXr+Oijj5CUlIShQ4cCAAYPHoygoCDD+j169MCKFSuwceNG3Lt3D/v378e0adPQo0cPQ1KKyBIEQYBIm55wkmSujIKaPaOIiIiIiIgKkVgswpAWnnC0liE8OhlJKg20OgFJKg3Co5PhaC3D4BaeEItFee+MCp3FGpgDQL9+/fD06VN8+eWXiIiIgI+PD/bs2WNoav7gwQOjSqgvvvgCIpEIX3zxBR49egRXV1f06NEDc+fOtdQhEAEAVBodpEhPOLEyioiITNWmTRsMHz4cffr0gbW1taXDISIiKtF8PZ0x1b8W1oaG43ZUIp4lqiCXSlC3vCMGt/CEr6ezpUOkFyyajAKAsWPHYuzYsdned/jwYaPbUqkU06dPx/Tp04sgMiLTpaq1kOuTUXKr9IWS9GSUQqRGalr2Pc2IiKh0a9iwISZPnoxx48ahb9++GD58OJo1a2bpsIiIiEosX09nNPRwQlhUAuKS1XC0kcFbac+KqGKmRM2mR1RcJadpIXuRjJJIXwzTe1EZpQCrooiIKHvBwcF4/PgxQkJCEBUVhdatW6N27dr4+uuvs0zyQkRERKYRi0Wo6e6AplVcUNPdgYmoYojJKCIzSFFrIRe96AslMU5GyZmMIiKiXEilUrz99tv4888/8d9//2HgwIGYNm0aPDw80Lt3bxw8eNDSIRIRERGZFZNRRGaQkqEyCpIXU4UaGpizeTkREeXt9OnTmD59OhYvXgylUomgoCCULVsW3bt3x+TJky0dHhEREZHZWLxnFNHrIEWdMRmVXWWUkP2GRERUqkVFReGXX35BSEgIbt26hR49euC3336Dn58fRKL0IQUBAQHo0qULvv76awtHS0RERGQeTEYRmUFy2ssG5oZk1It/JSIBUmgtFBkRERVnFStWRNWqVTFs2DAEBATA1dU1yzr169fHG2+8YYHoiIiIiAoHk1FEZpCSpoVD5mF6UivD/RyqR0RE2Tlw4ABatWqV6zoODg44dOhQEUVEREREVPjYM4rIDFLUGshyaGAOsIk5ERFlb/r06YiNjc2yPD4+Hu3bty/6gIiIiIiKAJNRRGaQkqbL2jNKLIEgkgBgZRQREWXvyJEjSEtLy7I8NTUVx44ds0BERERERIWPw/SIzCA5TQO5vi+UfpgeAEgUgCYZchEro4iI6KXLly8DAARBwLVr1xAREWG4T6vVYs+ePahQoYKlwiMiIiIqVExGEZlBfIo6a2UUAEEqh0iTDAWH6RERUQY+Pj4QiUQQiUTZDseztrbGt99+a4HIiIiIiAofk1FEZhCbQzJK/zuTUURElNG9e/cgCAKqVKmC06dPG82iJ5fLoVQqIZFILBghERERUeFhMorIDGKS1RkamL8cpidI0mfUY88oIiLKyNPTEwCg0+ksHAkRERFR0WMyisgMYpPTXiacMlZGSdN/52x6RESkt2PHDnTt2hUymQw7duzIdd2ePXsWUVRERERERYfJKCIziMupZ9SL3+UiDQRBgEgkskR4RERUjPTu3RsRERFQKpXo3bt3juuJRCJotdqiC4yIiIioiDAZRWQGMclpGZJRmWbTAyujiIjopYxD8zhMj4iIiEojsaUDIHodxCbnXhnFBuZERGSq2NhYS4dAREREVKiYjCJ6RRqtDgmpashFL4ZSGPWM0jcwZzKKiIiyWrhwITZt2mS43adPHzg7O6NChQq4dOmSBSMjIiIiKjz5TkYlJSUVRhxEJVZ6v6gMPT2MZtN72TOKiIgos5UrV8LDwwMAsH//fvz999/Ys2cPunbtik8++cTC0REREREVjnwno9zc3DBs2DAcP368MOIhKnFiMzYvB4wrozhMj4iIchEREWFIRu3cuRN9+/ZF586d8emnn+LMmTMWjo6IiIiocOQ7GfXrr78iOjoa7du3h7e3NxYsWIDHjx8XRmxEJUJsxublgHHPKKm+gTkro4iIKCsnJyc8fPgQALBnzx507NgRACAIAmfSIyIiotdWvpNRvXv3xvbt2/Ho0SOMGjUKGzZsgKenJ7p3746tW7dCo+GHbipdYpPVGZJNIkAseXmnfpgeK6OIiCgbb7/9NgYOHIhOnTrh+fPn6Nq1KwDgwoULqFatmoWjIyIiIiocBW5g7urqisDAQFy+fBlLlizB33//jXfffRfly5fHl19+ieTkZHPGSVRsZZlJTyQy3CdI0iujOEyPiIiys3TpUowdOxa1a9fG/v37YWdnBwB48uQJRo8ebeHoiIiIiAqHtKAbRkZGYu3atVizZg3Cw8Px7rvvYvjw4fjvv/+wcOFCnDp1Cvv27TNnrETFUkxyGmSiDMmojPTD9ERMRhERUVYymQyTJ0/OsnzSpEkWiIaIiIioaOQ7GbV161aEhIRg7969qF27NkaPHo333nsPZcqUMazTokUL1KpVy5xxEhVbcRkbmGeYSQ94WRnFnlFERJSTW7du4dChQ4iKioJOpzO678svv7RQVERERESFJ9/JqKFDh6J///44ceIE3njjjWzXKV++PKZOnfrKwRGVBEY9ozJXRrFnFBER5WL16tX46KOPULZsWbi7u0OUYai3SCRiMoqIiIheS/lORj158gQ2Nja5rmNtbY3p06cXOCiikiQm42x6mZJRgiEZxcooIiLKas6cOZg7dy4+++wzS4dCREREVGTy3cDc3t4eUVFRWZY/f/4cEokkmy2IXm9JKs3LZJQ0c2XUiwbm7BlFRETZiImJQZ8+fSwdBhEREVGRyncyShCEbJerVCrI5fJs7yN6nQkAZCJt+o3MlVFSDtMjIqKc9enTxywTvqxYsQL169eHg4MDHBwc0Lx5c+zevdsMERIRERGZn8nD9L755hsA6f0LfvzxR8PUwwCg1Wpx9OhR1KxZ0/wREpUA8hwamENiBQBQQANBADK0AiEiIkK1atUwbdo0nDp1CvXq1YNMZvw+Mn78eJP2U7FiRSxYsADVq1eHIAhYu3YtevXqhQsXLqBOnTqFEToRERFRgZmcjFq6dCmA9MqolStXGg3Jk8vl8PLywsqVK80fIVEJkFPPKDYwJyKi3Pzwww+ws7PDkSNHcOTIEaP7RCKRycmoHj16GN2eO3cuVqxYgVOnTjEZRUREOdLpBIRFJSAuWQ1HGxm8lfYQi/kNOhU+k5NR9+7dAwC0a9cOW7duhZOTU6EFRVTS5NjAXMoG5kRElDP99ZU5abVa/PHHH0hKSkLz5s1zXE+lUkGlUhlux8fHmz0WIiIqvs6FR2NtaDhuRyUiTaOFXCpBNaUdhrTwhK+ns6XDo9dcvntGHTp0iIkookxkOQ7TS29gLmcDcyIiykVaWhpu3rwJjabgX178+++/sLOzg0KhwKhRo7Bt2zbUrl07x/Xnz58PR0dHw4+Hh0eBH5uIiEqWc+HRmLvrOq48ioODlRQVnWzgYCXF1cdxmLvrOs6FR1s6RHrNmVQZFRgYiNmzZ8PW1haBgYG5rrtkyRKzBEZUkshFOVRGvbit4DA9IiLKRnJyMsaNG4e1a9cCAMLCwlClShWMGzcOFSpUwJQpU0zeV40aNXDx4kXExcVh8+bNGDJkCI4cOZJjQiooKMjoui4+Pp4JKSKiUkCnE7A2NByxyWp4udhA9KKxra1CChu5BOHRyVgXGo6GHk4cskeFxqRk1IULF6BWqw2/50TE7sxUSuXYM0qa3sCcPaOIiCg7QUFBuHTpEg4fPowuXboYlnfs2BEzZszIVzJKLpejWrVqAABfX1+cOXMGy5Ytw6pVq7JdX6FQQKFQvNoBEBFRiRMWlYDbUYlQ2iuyfIYXiURwtVPgVlQiwqISUNPdwUJR0uvOpGTUoUOHsv2diNLlNExPkLBnFBER5Wz79u3YtGkTmjVrZvSBoE6dOrhz584r7Vun0xn1hCIiIgKAuGQ10jRaWMmy/0LCSibBs0QV4pL5hToVHpMbmOckPj4eBw8eRM2aNVGzZk1zxERU4uQ8mx57RhERUc6ePn0KpVKZZXlSUlK+Ks6DgoLQtWtXVKpUCQkJCdiwYQMOHz6MvXv3mjNcIiJ6DTjayCCXSpCq1sJWkTUlkKpOb2buaCPLZmsi88h3A/O+ffti+fLlAICUlBQ0btwYffv2Rb169bBlyxazB0hUEsihTf+FlVFERJQPjRs3xq5duwy39QmoH3/8MdeZ8DKLiorC4MGDUaNGDXTo0AFnzpzB3r170alTJ7PHTERkKTqdgBsR8fjn7nPciIiHTidYOqQSyVtpj2pKOzxNVEEQjJ9DQRDwNFGF6ko7eCvtTdofzwsVRL4ro44ePYqpU6cCALZt2wZBEBAbG4u1a9dizpw5eOedd8weJFFxl3PPKDYwJyKinM2bNw9du3bFtWvXoNFosGzZMly7dg2hoaE4cuSIyfv56aefCjFKIiLLOxcejbWh4bgdlYg0TXrlTjWlHYa08ISvp7OlwytRxGIRhrTwxNxd1xEenQxXOwWsZOmVUk8TVXC0lmFwC0+TmpfzvFBB5bsyKi4uDs7O6S+qPXv24J133oGNjQ38/f1x69YtswdIVBLIcpxN78UwPSajiIgoG2+++SYuXrwIjUaDevXqYd++fVAqlTh58iR8fX0tHR4RUbFwLjwac3ddx5VHcXCwkqKikw0crKS4+jgOc3ddx7nwaEuHWOL4ejpjqn8t1CnviPhUDf6LSUZ8qgZ1yztiqn8tkxJJPC/0KvJdGeXh4YGTJ0/C2dkZe/bswcaNGwEAMTExsLKyMnuARCVBTg3M9T2jFCINdIIAgDNOEhGRsapVq2L16tWWDoOIqFjS6QSsDQ1HbLIaXi42huHMtgopbOQShEcnY11oOBp6OJlUyUMv+Xo6o6GHE8KiEhCXrIajjQzeSnuTnkeeF3pV+a6MmjhxIgYNGoSKFSuifPnyaNu2LYD04Xv16tUzd3xEJYI8h2F6gjTDDBXatCKMiIiISgKJRIKoqKgsy58/fw6JRGKBiIiIipewqATcjkqE0l6RZWIHkUgEVzsFbkUlIiwqwUIRlmxisQg13R3QtIoLaro7mJw44nmhV5XvyqjRo0ejSZMmePjwITp16gSxOD2fVaVKFcyZM8fsARKVBDnPppfhtlYFgNWDRET0UubGsXoqlQpyuTzb+4iISpO4ZDXSNFpYyRTZ3m8lk+BZogpxyWyLUZR4XuhV5TsZBaTP/NK4cWOjZf7+/mYJiKgkynmY3ssPEoKGlVFERJTum2++AZD+7fGPP/4IOzs7w31arRZHjx5FzZo1LRUeEVGx4Wgjg1ya3lzbVpH142uqOr1ptqONLJutqbDwvNCryncySqvVYs2aNThw4ACioqKg0+mM7j948KDZgiMqKXJqYC4Si5EmSCAXaQFNqgUiIyKi4mjp0qUA0iujVq5caTQkTy6Xw8vLCytXrrRUeERExYa30h7VlHa4+jgONnKJ0ZAwQRDwNFGFuuUd4a20t2CUpQ/PC72qfPeMmjBhAiZMmACtVou6deuiQYMGRj/59d1338HLywtWVlZo2rQpTp8+nev6sbGxGDNmDMqVKweFQgFvb2/89ddf+X5cInPKqWcUAKjwYhl7RhER0Qv37t3DvXv30KZNG1y6dMlw+969e7h58yb27t2Lpk2bWjpMIiKLE4tFGNLCE47WMoRHJyNJpYFWJyBJpUF4dDIcrWUY3MKTTbKLGM8Lvap8V0Zt3LgRv//+O7p16/bKD75p0yYEBgZi5cqVaNq0KYKDg+Hn54ebN29CqVRmWT8tLQ2dOnWCUqnE5s2bUaFCBYSHh6NMmTKvHAtRQQkCIIM2/UbmYXoA0vR/ZhpVEUZFREQlwaFDhywdAhFRsefr6Yyp/rWwNjQct6MS8SxRBblUgrrlHTG4hSd8PZ0tHWKpxPNCryLfySi5XI5q1aqZ5cGXLFmCkSNHYujQoQCAlStXYteuXfj5558xZcqULOv//PPPiI6ORmhoKGSy9A/9Xl5eZomF6FXk2MAcQBpeJKi0TEYREZExtj8gIjKNr6czGno4ISwqAXHJajjayOCttGfljYXxvFBB5XuY3scff4xly5blOPuLqdLS0nDu3Dl07NjxZTBiMTp27IiTJ09mu82OHTvQvHlzjBkzBm5ubqhbty7mzZsHrVb7SrEQvapck1GCvjKKw/SIiMiYudsfEBG9zsRiEWq6O6BpFRfUdHdgwqOY4Hmhgsh3ZdTx48dx6NAh7N69G3Xq1DFUKOlt3brVpP08e/YMWq0Wbm5uRsvd3Nxw48aNbLe5e/cuDh48iEGDBuGvv/7C7du3MXr0aKjVakyfPj3bbVQqFVSqlxUp8fHxJsVHlB9yUQ6z6SFDZRQbmBMRUSbmbH9AREREVFLkOxlVpkwZvPXWW4URS550Oh2USiV++OEHSCQS+Pr64tGjR/jqq69yTEbNnz8fM2fOLOJIqbTJfZjeiz8zNjAnIqJMzNn+gIiIiKikyHcyKiQkxCwPXLZsWUgkEkRGRhotj4yMhLu7e7bblCtXDjKZzGj641q1aiEiIgJpaWmQy7MmAoKCghAYGGi4HR8fDw8PD7McA5FebskoFXtGERFRDvTtD5YvX240LTYRERHR6yzfySgA0Gg0OHz4MO7cuYOBAwfC3t4ejx8/hoODA+zs7Ezah1wuh6+vLw4cOIDevXsDSK98OnDgAMaOHZvtNi1btsSGDRug0+kgFqe3uwoLC0O5cuWyTUQBgEKhgEKhyP9BEuXDy2RUzsP0ROwZRUREmZir/QERERFRSZLvZFR4eDi6dOmCBw8eQKVSoVOnTrC3t8fChQuhUqmwcuVKk/cVGBiIIUOGoHHjxmjSpAmCg4ORlJRkmF1v8ODBqFChAubPnw8A+Oijj7B8+XJMmDAB48aNw61btzBv3jyMHz8+v4dBZFZyUxqYszKKiIgysWT7AyIiIiJLyXcyasKECWjcuDEuXboEFxcXw/K33noLI0eOzNe++vXrh6dPn+LLL79EREQEfHx8sGfPHkNT8wcPHhgqoADAw8MDe/fuxaRJk1C/fn1UqFABEyZMwGeffZbfwyAyK5OG6bEyioiIMjFX+wMiIiKikiTfyahjx44hNDQ0y7A4Ly8vPHr0KN8BjB07NsdheYcPH86yrHnz5jh16lS+H4eoMMlE2vRfsh2m9+LPjLPpEREREREREeU/GaXT6aDVarMs/++//2Bvb2+WoIhKmtwro14s4zA9IiIC0KhRIxw4cABOTk5o2LBhro3Lz58/X4SRERERERWNfCejOnfujODgYPzwww8AAJFIhMTEREyfPh3dunUze4BEJYFJPaM4TI+IiAD06tXLMLmKfhIXIiIiotIk38moxYsXw8/PD7Vr10ZqaioGDhyIW7duoWzZsvjtt98KI0aiYi+n2fQkYpFhNj2dOhXizBsSEVGpM3369Gx/JyIiIiot8p2MqlixIi5duoRNmzbh0qVLSExMxPDhwzFo0CBYW1sXRoxExV5Ow/TsFFKoRenJKJUqJf9/cERERERERESvmXx/Nj569ChatGiBQYMGYdCgQYblGo0GR48eRevWrc0aIFFxJxK0kIp06TcyJaNEIhFEL5alpabAtqiDIyIiIiIiIipm8j1qqF27doiOjs6yPC4uDu3atTNLUEQliRQZGvpnM5ueWJbeF0Sdxtn0iIiIiIiIiPKdjBIEIdtZX54/fw5bW9Z9UOkjEdQZbmRtYC6Wpw9fVauYjCIiIiIiIiIyeZje22+/DSB92FFAQIBhFhgA0Gq1uHz5Mlq0aGH+CImKOamgeXlDnLUySiKzAgBo1UxGEREREREREZmcjHJ0dASQXhllb29v1KxcLpejWbNmGDlypPkjJCrmpC8qo3QiKcTirMWGMvmLZBSH6RERUQY6nQ5HjhzBsWPHEB4ejuTkZLi6uqJhw4bo2LEjPDw8LB0iERERUaEwORkVEhICAPDy8sLkyZM5JI/oBcmLmfR0Ylm2415livRklE6jKsKoiIiouEpJScHixYuxYsUKREdHw8fHB+XLl4e1tTVu376N7du3Y+TIkejcuTO+/PJLNGvWzNIhExEREZlVvmfTmz59emHEQVRi6Yfp6bIZogcAcsWLKkINK6OIiAjw9vZG8+bNsXr1anTq1AkyWdb3j/DwcGzYsAH9+/fH1KlTWX1OREREr5V8J6MiIyMxefJkHDhwAFFRURAEweh+rVabw5ZEryeJYZhe9skohVV6MkrQpBVZTEREVHzt27cPtWrVynUdT09PBAUFYfLkyXjw4EERRUZERERUNPKdjAoICMCDBw8wbdo0lCtXLtuZ9YhKEylyr4xSWNsAAERaJqOIiAh5JqIykslkqFq1aiFGQ0RERFT08p2MOn78OI4dOwYfH59CCIeo5DE0MM8hGWX9ojJKzGQUERGZKCkpCefOnUPr1q0tHQoRERGR2WXXbzlXHh4eWYbmEZVmefWMsnlRGSXWMRlFRESmuX37Ntq1a2fpMIiIiIgKRb6TUcHBwZgyZQru379fCOEQlTwvh+llX2hoY5uejJIKTEYRERERERER5XuYXr9+/ZCcnIyqVavCxsYmywww0dHRZguOqCTQNzAXcqiMsrV5mYwSBIF91oiICM7OzrnezwlhiIiI6HWW72RUcHBwIYRBVHIZhunlMJueva0dAEAODZLStLBT5PvPjoiIXjMqlQofffQR6tWrl+394eHhmDlzZhFHRURERFQ08v2peMiQIYURB1GJlVfPKMWLBuZyqBGTnMZkFBERwcfHBx4eHjleV126dInJKCIiInptmfSpOD4+Hg4ODobfc6Nfj6i0kCL32fREUgWA9MqouBQ1KjoVWWhERFRM+fv7IzY2Nsf7nZ2dMXjw4KILiIiIiKgImZSMcnJywpMnT6BUKlGmTJlse97oe+GwxwGVNlIh92QUJOnJKJlIi7jEVACORRQZEREVV59//nmu93t4eCAkJKSIoiEiIiIqWiYlow4ePGhotHno0KFCDYiopMlrmB6kcsOvSSnJRRESERERERERUbFlUjKqTZs22f5ORCZURkmtDL+mMhlFREQAwsLCEBsbiyZNmhiWHThwAHPmzEFSUhJ69+6dZ/UUERERUUkltnQARCWdFLnPpgexFDqkD21NSU0pqrCIiKgY++yzz7Bz507D7Xv37qFHjx6Qy+Vo3rw55s+fzxmMiYiI6LXFab2IXpEkr8ookQhakQxiIQ2pTEYRERGAs2fP4tNPPzXcXr9+Pby9vbF3714AQP369fHtt99i4sSJFoqQiIiIqPCwMoroFeXZMwqAVpzeNyqNySgiIgLw7NkzVKxY0XD70KFD6NGjh+F227Ztcf/+fQtERkSUM51OwI2IePxz9zluRMRDpxMsHRIRlVCsjCJ6RYZherkmo2SAFlAzGUVERACcnZ3x5MkTeHh4QKfT4ezZswgMDDTcn5aWBkHghzwiKj7OhUdjbWg4bkclIk2jhVwqQTWlHYa08ISvp7OlwyOiEqZAlVEajQZ///03Vq1ahYSEBADA48ePkZiYaNbgiEqCPBuYA9C9qIxSqZiMIiKi9Mqn2bNn4+HDhwgODoZOp0Pbtm0N91+7dg1eXl4Wi4+IKKNz4dGYu+s6rjyKg4OVFBWdbOBgJcXVx3GYu+s6zoVHWzpEIiph8l0ZFR4eji5duuDBgwdQqVTo1KkT7O3tsXDhQqhUKqxcubIw4iQqtvTD9IRcklGCRAEAUKtSiyQmIiIq3ubOnYtOnTrB09MTEokE33zzDWxtbQ33//LLL2jfvr0FIyQiSqfTCVgbGo7YZDW8XGwgEqVPzGOrkMJGLkF4dDLWhYajoYcTxGKRhaMlopIi38moCRMmoHHjxrh06RJcXFwMy9966y2MHDnSrMERlQSGBuY5zaaHl8kojZrJKCIiAry8vHD9+nVcvXoVrq6uKF++vNH9M2fONOopRURkKWFRCbgdlQilvcKQiNITiURwtVPgVlQiwqISUNPdwUJRElFJk+9k1LFjxxAaGgq5XG603MvLC48ePTJbYEQlhaGBuSTnZBSk6X8vmjQmo4iIKJ1UKkWDBg2yvS+n5URERS0uWY00jRZWMkW291vJJHiWqEJcsrqIIyOikizfySidTgetVptl+X///Qd7e3uzBEVUkkiRd88okTT9zVvHyigiIgIwa9Ysk9b78ssvCzkSIioqOp2AsKgExCWr4Wgjg7fSvkQMa3O0kUEulSBVrYWtIuvHx1R1ejNzR5tcvpilXJXU1wbRq8h3Mqpz584IDg7GDz/8ACC9NDMxMRHTp09Ht27dzB4gUXFnqIzKZZieIRnFyigiIgIwY8YMlC9fHkqlMsdZ80QiEZNRRK+JkjwTnbfSHtWUdrj6OA42conRUD1BEPA0UYW65R3hrWRhQkGU5NcG0avI92x6ixcvxokTJ1C7dm2kpqZi4MCBhiF6CxcuLIwYiYo1iQkNzMUyawCAVqMqkpiIiKh469q1K54/f45KlSph5syZOHfuHC5cuGD0c/78eZP3N3/+fLzxxhuwt7eHUqlE7969cfPmzUI8AiIyVUmfiU4sFmFIC084WssQHp2MJJUGWp2AJJUG4dHJcLSWYXALT1byFEBJf20QvYp8J6MqVqyIS5cu4fPPP8ekSZPQsGFDLFiwABcuXIBSqSyMGImKNVOG6Un0Y+w1qhy/ASciotJj165duHPnDpo2bYpPPvkEFSpUwGeffVbgBNKRI0cwZswYnDp1Cvv374darUbnzp2RlJRk5siJKD8yz0Rnq5BCIhbBViGFp7MN4lLUWBcaDp2ueF8f+no6Y6p/LdQp74j4VA3+i0lGfKoGdcs7Yqp/LVbwFMDr8togKqh8D9NLTU2FlZUV3nvvvcKIh6jEMQzTyy0ZJVe8WFcNlUYHK5mkSGIjIqLiq3z58ggKCkJQUBCOHj2KkJAQvPHGG6hXrx7+/vtvWFtbm7yvPXv2GN1es2YNlEolzp07h9atW5s7dCIy0es0E52vpzMaejixt5GZvE6vDaKCyHdllFKpxJAhQ7B//37odLrCiImoRDElGSWVWQEA5FAjUaUpkriIiKjkeOONN9CuXTvUqlULFy5cgFr9arNSxcXFAQCcnVmtQGRJL2eiy/6LSCuZBGkabYmZiU4sFqGmuwOaVnFBTXcHJqJewev22iDKr3wno9auXYvk5GT06tULFSpUwMSJE3H27NnCiI2oRMjPbHoKqJGYymQUERGlO3nyJEaOHAl3d3d8++23GDJkCB4/fgwHh4J/C67T6TBx4kS0bNkSdevWzXE9lUqF+Ph4ox8iMq+MM9FlhzPRlV58bVBpl+9k1FtvvYU//vgDkZGRmDdvHq5du4ZmzZrB29vb5GmKiV4nEhMqo/AiGSUXaVgZRUREWLRoEWrXro1evXrBzs4Ox44dw5kzZzB69GiUKVPmlfY9ZswYXLlyBRs3bsx1vfnz58PR0dHw4+Hh8UqPS0RZ6Weie5qYtW+ofia66ko7zkRXCvG1QaWdSDBDN+Vr165h0KBBuHz5MrTa7DO7xUV8fDwcHR0RFxf3St86Eun9N6c+KmrCcazFz2jV+Z3sV9r3BRD6LVZp/OEz7Fs0reJStEESEZFZver1hFgsRqVKldC9e3fI5fIc11uyZEm+9jt27Fj8+eefOHr0KCpXrpzruiqVCirVy1le4+Pj4eHhwWskIjPTz5gWl6KGq50CVrL0apiniSo4WsvYALwU42uDXjf5uT7KdwNzvdTUVOzYsQMbNmzAnj174Obmhk8++aSguyMqsUwZpgfJi8ooaJCUxsooIqLSrnXr1hCJRLh69WqO62RuaJsbQRAwbtw4bNu2DYcPH84zEQUACoUCCoXC5McgooLRz0S3NjQct6MS8SxRBblUgrrlHTG4hSeTDaUYXxtUmuU7GbV3715s2LAB27dvh1Qqxbvvvot9+/ZxphYqtUxpYI6MPaNUxbt6kIiICt/hw4fNur8xY8Zgw4YN+PPPP2Fvb4+IiAgAgKOjY75m5SOiwsGZ6CgnfG1QaZXvZNRbb72F7t27Y926dejWrRtkMjZUo9LNpGSUJH0IhlykYQNzIiIyuxUrVgAA2rZta7Q8JCQEAQEBRR8QEWWhn4mOKDO+Nqg0yncyKjIyEvb2bKJGpCd5MUxPMKkyKg0xbGBORFSqLViwAOPHj4eNjU2e6/7zzz949uwZ/P39c13PDC1AiYiIiIqMScmo+Ph4Q/MpQRBynfqXDS+ptMlXZRQ4mx4RUWl37do1eHp6ok+fPujRowcaN24MV1dXAIBGo8G1a9dw/Phx/Prrr3j8+DHWrVtn4YiJiIiIzEtsykpOTk6IiooCAJQpUwZOTk5ZfvTLC+K7776Dl5cXrKys0LRpU5w+fdqk7TZu3AiRSITevXsX6HGJzMG0nlFWAAA51EhRs2cUEVFptm7dOvz9999Qq9UYOHAg3N3dIZfLYW9vD4VCgYYNG+Lnn3/G4MGDcePGDfblJCIioteOSZVRBw8ehLNzeif/Q4cOmTWATZs2ITAwECtXrkTTpk0RHBwMPz8/3Lx5E0qlMsft7t+/j8mTJ6NVq1ZmjYcoXwQBshfD9LTinKfm1g/Tk0PDoRRERIQGDRpg9erVWLVqFS5fvozw8HCkpKSgbNmy8PHxQdmyZS0dIhEREVGhMSkZ1aZNG8PvlStXhoeHR5bphgVBwMOHD/MdwJIlSzBy5EgMHToUALBy5Urs2rULP//8M6ZMmZLtNlqtFoMGDcLMmTNx7NgxxMbG5vtxicxC93LIXa49owwNzNWFHREREZUgYrEYPj4+8PHxsXQoREREREXGpGF6GVWuXBlPnz7Nsjw6OhqVK1fO177S0tJw7tw5dOzY8WVAYjE6duyIkydP5rjdrFmzoFQqMXz48DwfQ6VSIT4+3uiHyGy0aYZfdSJTGpgzGUVERERERESlW76TUYIgZKmKAoDExERYWVnla1/Pnj2DVquFm5ub0XI3NzdERERku83x48fx008/YfXq1SY9xvz58+Ho6Gj48fDwyFeMRLnKkIySyXN5/WdoYE5ERERERERUmpk0TA8AAgMDAQAikQjTpk0zmo5Yq9Xin3/+KfQS84SEBLz//vtYvXq1yb0UgoKCDLED6TMDMiFFZqNNr3TSCSJYyXPrGfWygTkRERERERFRaWZyMurChQsA0iuj/v33X8gzfPCWy+Vo0KABJk+enK8HL1u2LCQSCSIjI42WR0ZGwt3dPcv6d+7cwf3799GjRw/DMp1Ol34gUilu3ryJqlWrGm2jUCigUCjyFReRyV5URqkhhbUilz8nqb5nFCujiIiIiIiIqHQzORmln0Vv6NChWLZsGRwcHF75weVyOXx9fXHgwAH07t0bQHpy6cCBAxg7dmyW9WvWrIl///3XaNkXX3yBhIQELFu2jBVPVPReJKPSIIWNXJLzehL2jCIiopzdvn0bd+7cQevWrWFtbZ1jWwQiIiKi14HJySi9kJAQswYQGBiIIUOGoHHjxmjSpAmCg4ORlJRkmF1v8ODBqFChAubPnw8rKyvUrVvXaPsyZcoAQJblREXixTA9NSSwluWSjHrRwJzD9IiIKKPnz5+jX79+OHjwIEQiEW7duoUqVapg+PDhcHJywuLFiy0dIhEREZHZ5TsZBQBnz57F77//jgcPHiAtLc3ovq1bt+ZrX/369cPTp0/x5ZdfIiIiAj4+PtizZ4+hqfmDBw8gFue7zzpR0cg4TC/Xyqj0YXqsjCIioowmTZoEqVSKBw8eoFatWobl/fr1Q2BgIJNRRERE9FrKdzJq48aNGDx4MPz8/LBv3z507twZYWFhiIyMxFtvvVWgIMaOHZvtsDwAOHz4cK7brlmzpkCPSWQOOnUaxHiRjDKpMkoDQScUTXBERFTs7du3D3v37kXFihWNllevXh3h4eEWioqIiIiocOW75GjevHlYunQp/ve//0Eul2PZsmW4ceMG+vbti0qVKhVGjETFliotFQCQJkhhI8+tgXl6MkosEiAWtEURGhERlQBJSUlGMxTrRUdHcwIWIiIiem3lOxl1584d+Pv7A0hvQJ6UlASRSIRJkybhhx9+MHuARMVZmio9GaWGFAppLn9OkpcfKCRCWs7rERFRqdKqVSusW7fOcFskEkGn02HRokVo166dBSMjIiIiKjz5Hqbn5OSEhIQEAECFChVw5coV1KtXD7GxsUhOTjZ7gETFmT4ZpRVJIRbnMuuR9GUySiqwbxQREaVbtGgROnTogLNnzyItLQ2ffvoprl69iujoaJw4ccLS4REREREVinxXRrVu3Rr79+8HAPTp0wcTJkzAyJEjMWDAAHTo0MHsARIVZyqVCgCgFclyX1EsgQ7pPaWkOlVhh0VERCVE3bp1ERYWhjfffBO9evVCUlIS3n77bVy4cAFVq1a1dHhEREREhSLflVHLly9Hamp6NcjUqVMhk8kQGhqKd955B1988YXZAyQqztRp+sqoPJJRADRiGeQ6LSSsjCIiogwcHR0xdepUS4dBREREVGTynYxydnY2/C4WizFlyhSzBkRUkuiTUTpx3skorVgO6FIh0TEZRUREL8XExOCnn37C9evXAQC1a9fG0KFDja65iIiIiF4nJg3Ti4+PN/mHqDTRqNOH3JmSjNKI5AAAKRuYExHRC0ePHoWXlxe++eYbxMTEICYmBt988w0qV66Mo0ePWjo8IiIiokJhUmVUmTJlIBLl0pwZgCAIEIlE0Go5bT2VHpq09GSUYFJlVPo6rIwiIiK9MWPGoF+/flixYgUkkvTeglqtFqNHj8aYMWPw77//WjhCIiIiIvMzKRl16NChwo6DqETSqNOrnASJCcmoF5VRElZGERHRC7dv38bmzZsNiSgAkEgkCAwMxLp16ywYGREREVHhMSkZ1aZNm8KOg6hE0r4YpgeJPO91X1RGSXVMRhERUbpGjRrh+vXrqFGjhtHy69evo0GDBhaKioiIiKhw5buBOQAcO3YMq1atwt27d/HHH3+gQoUK+OWXX1C5cmW8+eab5o6RqNjSvqiMMiUZpWFlFBERZTJ+/HhMmDABt2/fRrNmzQAAp06dwnfffYcFCxbg8uXLhnXr169vqTCJiIiIzCrfyagtW7bg/fffx6BBg3D+/HmoVOmVIXFxcZg3bx7++usvswdJVFzpNPrKKBNn0wMgZc8oIiJ6YcCAAQCATz/9NNv7RCIR+3ISERHRayffyag5c+Zg5cqVGDx4MDZu3GhY3rJlS8yZM8eswREVdzpNepWTSGrKMD19ZRSTUURElO7evXuWDoGIiIioyOU7GXXz5k20bt06y3JHR0fExsaaIyaiEkPQJ6NMGqb3YjY9DtMjIqIXPD09LR0CERERUZHLdzLK3d0dt2/fhpeXl9Hy48ePo0qVKuaKi6hE0FdGiU2qjGIDcyIiyurOnTsIDg7G9evXAQC1a9fGhAkTULVqVQtHRkRERFQ4xPndYOTIkZgwYQL++ecfiEQiPH78GOvXr8fkyZPx0UcfFUaMRMWXVp+MUuS9qkjfM4rJKCIiSrd3717Url0bp0+fRv369VG/fn38888/qFOnDvbv32/p8IgKhU4n4EZEPP65+xw3IuKh0wmWDsmi+HwQUWmU78qoKVOmQKfToUOHDkhOTkbr1q2hUCgwefJkjBs3rjBiJCq+XiSjJDIThumxZxQREWUyZcoUTJo0CQsWLMiy/LPPPkOnTp0sFBlR4TgXHo21oeG4HZWINI0WcqkE1ZR2GNLCE76ezpYOr8jx+SCi0irflVEikQhTp05FdHQ0rly5glOnTuHp06eYPXs2UlJSCiNGouJLm55YEsvyURnFZBQREb1w/fp1DB8+PMvyYcOG4dq1axaIiKjwnAuPxtxd13HlURwcrKSo6GQDBysprj6Ow9xd13EuPNrSIRYpPh9EVJrlOxmlJ5fLUbt2bTRp0gQymQxLlixB5cqVzRkbUbEnelEZJTUlGfWiZ5SEw/SIiOgFV1dXXLx4McvyixcvQqlUFn1ARIVEpxOwNjQcsclqeLnYwFYhhUQsgq1CCk9nG8SlqLEuNLzUDFHj80FEpZ3Jw/RUKhVmzJiB/fv3Qy6X49NPP0Xv3r0REhKCqVOnQiKRYNKkSYUZK1GxI9KlVzlJ5ewZRURE+Tdy5Eh88MEHuHv3Llq0aAEAOHHiBBYuXIjAwEALR0dkPmFRCbgdlQilvQIikcjoPpFIBFc7BW5FJSIsKgE13R0sFGXR4fNBRKWdycmoL7/8EqtWrULHjh0RGhqKPn36YOjQoTh16hSWLFmCPn36QCKRFGasRMWOWJ+MMqEySiNOX0ciMBlFRETppk2bBnt7eyxevBhBQUEAgPLly2PGjBkYP368haMjMp+4ZDXSNFpY5XDNZCWT4FmiCnHJpaOdAZ8PIirtTE5G/fHHH1i3bh169uyJK1euoH79+tBoNLh06VKWbD5RaaFPRslNqIxSS6wAADJdaqHGREREJYdIJMKkSZMwadIkJCQkAADs7e0tHBWR+TnayCCXSpCq1sJWkfUjSKo6vXm3o43MAtEVPT4fRFTamdwz6r///oOvry8AoG7dulAoFJg0aRITUVSqiV80I5fJrfJcVy1mMoqIiIy1b98esbGxANKTUPpEVHx8PNq3b2/ByIjMy1tpj2pKOzxNVEEQjPsgCYKAp4kqVFfawVtZOpKxfD6IqLQzORml1Wohl7+cvl4qlcLOzq5QgiIqCbQ6ARJBAwCQK0wfpifTqQo1LiIiKjkOHz6MtLSsw7dTU1Nx7NgxC0REVDjEYhGGtPCEo7UM4dHJSFJpoNUJSFJpEB6dDEdrGQa38IRYXDq+6ObzQUSlncnD9ARBQEBAABQvPnSnpqZi1KhRsLW1NVpv69at5o2QqJiKTU6DDOnJKFtr6zzXf5mMYmUUEVFpd/nyZcPv165dQ0REhOG2VqvFnj17UKFCBUuERlRofD2dMdW/FtaGhuN2VCKeJaogl0pQt7wjBrfwhK+ns6VDLFJ8PoioNDM5GTVkyBCj2++9957ZgyEqSWKS0yB/kYySmNDA/OUwPVZGERGVdj4+PhCJRBCJRNkOx7O2tsa3335rgciICpevpzMaejghLCoBcclqONrI4K20L7UVQHw+iKi0MjkZFRISUphxEJU4zxPT4PIiGQWJPPeV8TIZJWVlFBFRqXfv3j0IgoAqVarg9OnTcHV1Ndwnl8uhVCo5SzG9tsRiEWq6O1g6jGKDzwcRlUYmJ6OIyFhMchrc85GM0nA2PSIiesHT0xMAoNPpLBwJERERUdFjMoqogKKT1JCJ9MmovKfdlVml91eTaJmMIiKil+7cuYPg4GBcv34dAFC7dm1MmDABVatWtXBkRJaj0wkcukZE9BpjMoqogKKTVIYG5qZURpUrm96EkskoIiLS27t3L3r27AkfHx+0bNkSAHDixAnUqVMH//vf/9CpUycLR0hU9M6FRxuaeqdptJBLJaimtMMQNvUmInptMBlFVEDRSWpDA3NTklEeShcAgFyngiAIEIn47R4RUWk3ZcoUTJo0CQsWLMiy/LPPPmMyikqdc+HRmLvrOmKT1VDaK2AlUyBVrcXVx3GYu+s6pvrXYkKKiOg1ILZ0AEQlVUxyGmTQpt8wYZheBWX6hZNCpEZEbFJhhkZERCXE9evXMXz48CzLhw0bhmvXrlkgIiLL0ekErA0NR2yyGl4uNrBVSCERi2CrkMLT2QZxKWqsCw2HTidYOlQiInpFTEYRFdDzpDTIoU6/YUrPKIWt4fe7T54VVlhERFSCuLq64uLFi1mWX7x4EUqlsugDIrKgsKgE3I5KhNJekaWCXCQSwdVOgVtRiQiLSrBQhEREZC4cpkdUQHGJKZCKXsyCJLXKe4MM6zyMfA7U9iqcwIiIqMQYOXIkPvjgA9y9exctWrQAkN4zauHChQgMDLRwdERFKy5ZjTSNFlYyRbb3W8kkeJaoQlyyuogjIyIic2MyiqiAEpMyDLWTZn/RZEQshlqsgEynwn9PYwovMCIiKjGmTZsGe3t7LF68GEFBQQCA8uXLY8aMGRg/fryFoyMqWo42MsilEqSqtbBVZP2YkqpOb2buaJN3RToRERVvTEYRFVBychIgeXFDYkIyCoBOYg3oVHjyNLrwAiMiohJDJBJh0qRJmDRpEhIS0oce2dvbWzgqIsvwVtqjmtIOVx/HwUYuMRqqJwgCniaqULe8I7yV/BshIirp2DOKqABS0rTQqVMBAIJYCkhMy+uKZNYAgNj4uEKLjYiISo6UlBQkJycDSE9CRUdHIzg4GPv27bNwZERFTywWYUgLTzhayxAenYwklQZanYAklQbh0clwtJZhcAtPiMWckZiIqKRjMoqoAKKT06AQvehXYEq/qBdEchsAQEpSAgSBM8EQEZV2vXr1wrp16wAAsbGxaNKkCRYvXoxevXphxYoVFo6OqOj5ejpjqn8t1CnviPhUDf6LSUZ8qgZ1yztiqn8t/L+9O4+Lqtz/AP45szDsq6yJYC5oLoioJG2WJpi3NLPMumldS283szK7apZLXX9aebPNslVt1eyadbUsM0lTrwuKCyKKIi6AiCjbwKzP74+BkZF1hmFmgM/79ZoXzJnnPOd7nnPOzJnvPOc58VGBzg6RiIjsgMkoIhtcLtdCVXUnPakp40VVkatMySiFsRIllfoWiY2IiFqP/fv345ZbbgEAfPfddwgLC0NOTg4+//xzvPPOO1bVtW3bNtx9992IiIiAJElYv359C0RM1PLiowLx1rh+eHNcLBbe2wdvjovF0nH9mIgiImpDmIwiskFJpQ4qaE1PrOgZJavqGeUBLS6WaloiNCIiakXUarV5jKhff/0VY8aMgUwmw4033oicnByr6iovL0dsbCyWLVvWEqESOZRMJqFHmC8Srg9CjzBfXppHRNTGcABzIlsImHtGNelOetWqxoxSQYuC0kp0DfFugeCIiKi16Nq1K9avX497770Xv/zyC5577jkAQEFBAXx9fa2qa8SIERgxYkRLhElERERkV+wZRWQjW8aMgrKqZ5TEnlFERATMnTsXM2bMQHR0NBISEjB48GAApl5ScXFxTo6OiIiIqGWwZxSRjWzqGVWVuPKAhskoIiLC2LFjcfPNNyMvLw+xsbHm6UOHDsW9997bosvWaDTQaK5+FpWUlLTo8oiIiIiqMRlFZKOrySgbekZxzCgiIqoSFhaGsLAwi2mDBg1q8eUuWrQICxYsaPHlEBEREV3LJZJRy5YtwxtvvIH8/HzExsbi3Xffrfck7OOPP8bnn3+OI0eOAADi4+Pxf//3fw45aSOq6eoA5taPGeUuaXCaySgionZrzJgxTSq3bt26Foth9uzZmD59uvl5SUkJIiMjW2x5RERERNWcnoxas2YNpk+fjuXLlyMhIQFvvfUWkpKSkJmZiZCQkFrlU1JSMH78eCQmJsLd3R2vvfYahg8fjvT0dFx33XVOWANqr2wbM6oqGVU1gDkREbVPfn5+zg4BKpUKKpUVP6gQERER2YnTk1FvvvkmnnjiCTz22GMAgOXLl2Pjxo347LPPMGvWrFrlv/rqK4vnn3zyCf7zn/9gy5YtmDBhgkNiJgJsvZseL9MjIiJgxYoVdq+zrKwMWVlZ5ufZ2dlIS0tDYGAgOnXqZPflEREREdnKqXfT02q1SE1NxbBhw8zTZDIZhg0bhl27djWpDrVaDZ1Oh8DAwJYKk6hOto0ZZeoZ5QENCpiMIiIiO9q3bx/i4uLMd+GbPn064uLiMHfuXCdHRkRERGTJqT2jCgsLYTAYEBoaajE9NDQUx44da1IdM2fOREREhEVCqybeKYZagkAzk1GSFlfUOmj0BqgUcvsHSERE7c6QIUMghHB2GNSOGI0CxwtKUazWwc9Tie4hPpDJJGeHRURErYDTL9NrjsWLF2P16tVISUmBu3vdCQHeKYZaikqqHsDcljGjTAnS4godQnyYjCIiIqLWJTWnCKt25iCroAxavQFuCjm6hnhjYmIU4qN4xQIRETXMqZfpdejQAXK5HBcuXLCYfuHChVq3OL7WkiVLsHjxYvz666/o27dvveVmz56N4uJi8+Ps2bN2iZ2oOWNGeVYnsvgDNhEREbUyqTlFWLgxA0fOF8PXXYGOAZ7wdVcgPbcYCzdmIDWnyNkhEhGRi3NqMsrNzQ3x8fHYsmWLeZrRaMSWLVswePDgeud7/fXX8eqrr2LTpk0YMGBAg8tQqVTw9fW1eBDZQ3Mu01NB2wIREREREbUso1Fg1c4cXFHrEB3kCS+VAnKZBC+VAlGBniiu0OHznTkwGvmLGxER1c+pySjANLjmxx9/jFWrViEjIwNPPvkkysvLzXfXmzBhAmbPnm0u/9prr+Hll1/GZ599hujoaOTn5yM/Px9lZWXOWgVqp2zrGWVKRnmCg5cTERFR63O8oBRZBWUI8VFBkizHh5IkCcHeKpwoKMPxglInRUhERK2B08eMGjduHC5evIi5c+ciPz8f/fr1w6ZNm8yDmp85cwYy2dWc2QcffACtVouxY8da1DNv3jzMnz/fkaFTO6eSbOgZ5e4PAPCXmDwlIiKi1qdYrYNWb4C7su4f49yVchSWaVCs1jk4MiIiak2cnowCgKlTp2Lq1Kl1vpaSkmLx/PTp0y0fEFETmC+1s6ZnlI9pLLQOKIYEI4eMIiIiolbFz1MJN4UclToDvFS1v0pU6kyDmft5Kp0QHRERtRZOv0yPqLWyacwor2AAEpSSAYFg93UiIiJqXbqH+KBriDculmkghOXPakIIXCzToFuIN7qH+DgpQiIiag2YjCKykU3JKLkS8AwCAIRIV+wfFBEREVELkskkTEyMgp+HEjlFapRr9DAYBco1euQUqeHnocSExCjIZFLjlRERUbvFZBSRDYSoOWaUFZfpAeZL9YKZjCIiIqJWKD4qEHNG9kSvCD+UVOpx7rIaJZV69I7ww5yRPREfFejsEImIyMW5xJhRRK2RTT2jAMA7FLhwhD2jiIiIqNWKjwpEXGQAjheUolitg5+nEt1DfNgjioiImoTJKCIbXU1GWdkzytt0p8gQXLFvQEREREQOJJNJ6BHm6+wwiIioFeJlekQ2cjffTc/KnlE+pmRUsHQFgrfTIyIiIiIionaGPaOIbGTzmFHepjGjQqTLdo6IiIiInMFoFC57uZorx0ZERO0Xk1FENlLZ2jPKOwQA76ZHRETUFqTmFGHVzhxkFZRBqzfATSFH1xBvTEyMcvpA3q4cGxERtW+8TI/IRjaPGVV9Nz0U2zkiIiIicqTUnCIs3JiBI+eL4euuQMcAT/i6K5CeW4yFGzOQmlPE2IiIiOrAZBSRjZp1Nz1U9YzioFFEREStktEosGpnDq6odYgO8oSXSgG5TIKXSoGoQE8UV+jw+c4cGI2O/6x35diIiIgAJqOIbGPUQyEZTf/beDc9T0kDSVtm58CIiIjIEY4XlCKroAwhPipIkuUYTJIkIdhbhRMFZTheUMrYiIiIrsFkFJENZAbN1SfW9oxSeaNMmOaR1BfsGBURERE5SrFaB63eAHelvM7X3ZVyaPUGFKt1Do7MtWMjIiICmIwisolkqLz6xNqeUQAuwxcAIFNfsldIRERE5EB+nkq4KeSo1BnqfL1SZxow3M9T6eDIXDs2IiIigMkoIpvIjKaeUTooAFndvzo25JKoSkZVMBlFRETk6oxGgWP5Jdh96hKO5ZfAaBToHuKDriHeuFimgbhmDEghBC6WadAtxBvdQ3wcHm9LxFZXGxAREdlK4ewAiFqj6sv0dFDClt8Ui8w9owrtGBURERHZW2pOEVbtzEFWQRm0elOPoq4h3piYGIWJiVFYuDEDOUVqBHur4K409Ua6WKaBn4cSExKjIJNJjS/EzmQyya6xNdQG8VGBLbw2RETUFrFnFJENZAYtAEArudk0/6WqZJScPaOIiIhcVmpOERZuzMCR88XwdVegY4AnfN0VSM8txsKNGQCAOSN7oleEH0oq9Th3WY2SSj16R/hhzsieTk3UxEcF2iW2xtogNaeohdeEiIjaIvaMIrJBdc8oLWxLRhVVXaYH9UV7hURERER2ZDQKrNqZgytqHaKDPM13pfNSKeDpJkdOkRqf78zB0nH9EDcuAMcLSlGs1sHPU4nuIT5O6RF1rfioQMRF2h5bU9sgLjLAJdaXiIhaDyajiGxgTkZJtg38KTw7ABqg8EIuHD+SBBERETXmeEEpsgrKEOKjMidhqkmShGBvFU4UlOF4QSl6hPmiR5ivkyJtmEwm2RybtW1ARETUVLxMj8gGcn05AEAjWX8nPQDo2fV6AMCVi7m1BhYlIiIi5ytW66DVG+CurPtGJe5KObR6A4rVOgdH5jhsAyIiailMRhHZQFlpGh+hWPKzaf4BN3QHALhrLyM157Ld4iIiIiL78PNUwk1hGvS7LpU600Defp629ZJuDdgGRETUUpiMIrKBUtO8ZJRXQCgAIEgqwbYTvKMeERGRq+ke4oOuId64WKap1YtZCIGLZRp0C/FG95C2e8E924CIiFoKk1FEtlCb7oJXJrctGQWvYABAAEpx4DTvqEdERORqZDIJExOj4OehRE6RGuUaPfQGIy6WVuJYfinc5DL8dXCnNj1wd11tYDAKlGv0yClSw89DiQmJUW26DYiIqGUwGUVkA11J1V3wvDrYVkHVfErJgJNnz8Ng5LhRREREriY+KhBzRvZErwg/5JdUIvXMZWReKENJpR4VOgO+2HUGqTlFzg6zRdVsg5JKPc5dVqOkUo/eEX6YM7In4qMCnR0iERG1QrybHpENRLkpGaX0CbatAoUKQuULSVMCd91lZOaX4oYI3oWGiIjI1cRHBcJoBOb+UApfdyU6eKsQ4OUGjc6A9NxiLNyY0eaTMvFRgYiLDMDxglIUq3Xw81Sie4gPe0QREZHNmIwisoGiagBzz4Awm+uQPIMATQmCUILUM5eZjCIiInJBRqPAF//LgUZvRI8wH0iSKQGjUCng6SZHTpEan+/MQVxkQJtOzshkEnqE8VyFiIjsg5fpEdnAXWu6A15AcLjtlVSNGxUoleDwuSt2iIqIiIjs7XhBKbIKyhDiozInoqpJkoRgbxVOFJTheEGpkyIkIiJqfZiMIrKS0SjgaywGAHQIibC9Il9TIitSugiN3miP0IiIiMjOitU6aPUGuCvldb7urpRDqzegWK1zcGREREStF5NRRFa6cKUEvpIaABAcep3tFYX2BgD0lOVAcPxyIiJqp4xGgaO5xVi77yzW7juLo3nFMLrQjT38PJVwU8hRqTPU+XqlzgA3hRx+nkoHR0ZERNR6ccwoIivl5Z5HOAA9ZFB4NWOw0qpk1A3SGfxhn9CIiIhaDaNRYH3aeazYcRqnCsug0wsAAu5KOfp29Mdzd3azaVBwo1HYNNB2ffN1D/FB1xBvpOcWw9NNbnGpnhACF8s06B3hh+4hPlbHSkRE1F4xGUVkpcKC8wCAcpkv/GTN6FwYZkpGdZXOQ27U2iM0IiKiViE1pwhLN5/AnuwiaA2mS9UlAEq5hAqdAXtPF2H2usNYNKaPVQmp1JwirNqZg6yCMmj1ph5LXUO88ciNUfDxUNSboKpvvomJUYiPCsTExCgs3JiBnCI1gr1VcFeaekpdLNPAz0OJCYlRbXrwciIiIntjMorISlcu5gEAKpQB8GtORX6R0Ch8oNKXIlSbAyDBHuERERG5tNScIvxrw1Fk5JWaE1EAIABoDabL8yQI5BSWY9WO002+S11qThEWbszAFbUOIT4quCtVqNQZkJpThO0nLsLPQwmFTKqVaKpvvvTcYizcmIE5I3siPioQc0b2NCesCss0cFPI0TvCDxOq6iEiIqKmYzKKyEoX8kw9o+DVoXkVSRKKfLoj/HIqrqvMan5grVH6eiB1BXD320BAtLOjISKiFmY0CqzamYNzlysavHmHAKAxCOw8dQnHC0rRI8y3SfVeUesQHeRpvpROZxQoqdChUm+ETJLQO8IXGr3RnGiafVcPfLHrTK35vFQKeLrJkVOkxuc7cxAXGYD4qEDERQbYdAkgERERWeIA5kRW0OqNKCky9YzyCghtdn2XvbsDAMLbSzIq6zdgSQzw51tA/mFg3WTgVArw2wJnR0ZERA5wvKAUB89eRlG5Fk0ZovxyuRZFpY1fyn68oBQnLpTCWyXHlQodyir1MAqBc5fVMBgBLzcFNHoDKnVGeKkUiAr0RHGFDu//fhJZBWUI8VFZjAUFAJIkIdhbhRMFZTheUAoAkMkk9AjzRcL1QegR5stEFBERkY2YjCKywpHcYvgYiwEA3gFhza5PF94fABB5eTfe+/1Es+tzeX+8AZTlA7/NAz68DTBoTNPTvwcuZjo3NiIianF7sotw/koFDE28WZ5BAEfzSxqv91QRzl5W42RhOY7llyI9rxiHzhWjpEIPN4UMcgkwCkBnrBqfqirRdKqwHKWVOrgr5XXW666UQ6s3oFita/I6EhERUeOYjCKywt7sIoThMgBA8m1+Mqr3bffDICkQIzuH9b9txaFzV5pdp8sqygbO/u/qc2EAQvsA1w8BIIAd7zgrMiIicgCjUWDL0Qto4Oq8OjXW+Sg1pwjf7DkDrV5ABgkeChkUMhnKNHpo9AYYhYBBmOpR1rjxiLtSDqMQkMskVOoMddZdqTMNZu7nqbQuaCIiImoQk1FEVth7uggRUqHpiW/HZtcn9wqAvMvtAIBkaQ8W/PcohGjiz8WtzcFvTH+vvx144STw7BHg79uBIbNN09O/BzRlzouPiIha1PGCUpwpUsOaC9vkMiDc3wOAKZl1LL8Eu09dwrH8EhiNAnq9Ee9uycKVCh28VTLojUZAkqCQSXBXyCAAVGgN0OgN8FIp4KW62gOqUmeAt0qB6CAvXCzT1Pr8FULgYpkG3UK80T3Exw4tQERERNU4gDmRFfKKKxEuFZme+F1nn0p7jQayNuNuxf/wXs5oZBWUoVtoGzvpNRqBtKpkVNxfLQd/j0wAArsARSeBjP8C/cY7J0YiImpRxWodSip1TRorqlqQlxvu7BGKvacvYdnvJ5FdWA6jEPBWKRDk7YZyjQFH80ogSYAEQGcQKNPo4aGUQy43XZ6nMwq4KWTo6H91gPLqRFPvCD/89cYoLPo5AzlFagR7q+CulKNSZ8DFMg38PJSYkBjFsaGIiIjsjD2jiKwhBCKkS6b//ZrfMwoA0GMkoHBHjHQWA6VMVOqsvH6hNTi9HSg+A6j8TOtbkyQBsVUJqLSvHB8bERE5xPkrapRUNn3sJQnA/fEd8daW43hsxV78mXUR+SUVKFJrkXulAruzi3AktxhCCHgq5VAp5JDLJBiEgEZvRKXOAIVMgkwCPNzkUMolGIwC5Ro9corU5kTTwM6BmDOyJ3pF+KGkUo9zl9UoqdSjd4Qf5ozsifiowJZrFCIionaKPaOIrOBjLIGHVHVXH1879YzyCABiHwRSV2KS4mecv/IQ+nT0s0/drqI6ydR7DKD0qP167Dhg60JT0upiJhAc49j4iIioRRmNAluPXYQMEtDEvlEqhQwrd+agXGsaz0kmATIBSAIo0xlgNApTgkkABqOAUi6Dt5scFXojPJRydAr0gMEIlFTqEB3khYJSDQrLNHBTyNE7wg8TEqPMiab4qEDERQbgeEEpitU6+Hkq0T3Ehz2iiIiIWgiTUURW6GA0jRelde8AN4XKfhXf+A8gdSWGy/bho9Uv4PmeT2HO6HgEernZbxnOoi0Hjv5o+r/fw3WX8e8ExNwFZG4Edi8H/rLUcfEREVGLO15QipMXyxHup8LposomzaM3GlGpv/pcginpVGE0wChMHWsFAFT1hFLIZZAkCW5yGTR6A5RyGUoqtYjt6I9/3x+LrMKyBhNNMpmEHmG+dltnIiIiqh8v0yOyQnUySuMZbt+Kg2NwucdDkEkCf1f8F2OOPY8F6/bZdxnOcnoHoK8A/CKBjgPqL3fjk6a/ad8A6iLHxEZERA5RrNahoLQSZy83LREFoNZd94xVHapE1UOCqcdV9ThQ5Vo99EYBmQTojQLnLleYL8VTKGToEeaLhOuD0CPMlz2eiIiInIzJKCIrhBgLAAAaLzsnowAEjHsfePAb6OSeuEmejjuPL8DxC6V2X47Dndxi+tvlDtPP2PWJvhkI7W1KXB1c7ZjYiIjIIf7MuohLZVoYmnHDWAGYByoHTMmp6kv0jEJAXzV4eZlGDyGAmFAfjvlERETkopiMIrLC1Z5REfavXJKAHnch/fZPoRNy/EX+P/z77SVIfmsbLpdr7b88Rzn5u+lv16ENl5MkYMBjpv9TVwKiGd9YiIjIZej1Rvwn9bxVd9GrT/XlecDVkafkMsBbpYC3SgG5zDS9V4QPPp4wgIkoIiIiF8Uxo4isEGK8CADQeIW12DJ6D07G0ZOPoW/2J1iq/ADrCg/jjlfvR9LAXph0c2d0C/VpsWXb3ZWzQOFxQJIDnW8DYPoFe9FPGThVWA6dwYjLai0euTEKyb3C4dfnfuDXl4HCTCBnh6m3FBERtWqbj13AhZKmX57XoOrr82pQyWXmSXKZDDAKeLkpeSkeERGRC3OJnlHLli1DdHQ03N3dkZCQgD179jRYfu3atejRowfc3d3Rp08f/PTTTw6KlNq7cGMeAEDjaac76dVBIZeh70MLgU6J8JQ0+KtiC35VzYT7/o8xYen3mPpVKl5YexB/nijEyYtl0BuMjVfqLLveM/3tOBDw8EdRuRafbD+FT/7Mxu/HCrD9RCGOnC/BzP8cxs2v/Y6vDl4B+ow1zbP+H0DZRaeFTkRE9vHGpmPNujyvJiOujiUlA+CjkkOSSajQG6E3GuHjrkDXYC9cKtfieEEbuNSdiIiojXJ6MmrNmjWYPn065s2bh/379yM2NhZJSUkoKCios/zOnTsxfvx4TJo0CQcOHMDo0aMxevRoHDlyxMGRU3uzb/d2xBhOwCAkGCP6t+zClO7AYz8BE/8LY4cYBEvFmK/8HLvcn8Ybx5Mx9fBY/LLyVRS+OxRb5w/FE2//B5NW7sW61Bxk5l5BYZkGBqOTL3PLTQP2fGT6f8hMzPn+MPq/uhmLfj5mLvLgwEjEdvRDgKcSpRo95nx/BFPy/gK1dyfgSg7w2XDTAOi8ZI+IqEms/YGvpf1rQzpOFartVp9cApRyCSq5DH07+mFgdCB6hfuhR5gPeoX7oVe4L4J93KHVG1Cs1tltuURERGRfkhDO/ZaXkJCAgQMH4r33TD0ojEYjIiMj8fTTT2PWrFm1yo8bNw7l5eXYsGGDedqNN96Ifv36Yfny5Y0ur6SkBH5+figuLoavL2/fS40zGgxYt34tAg9+iDtk+5HqPQT9n19vvntPi9NVAAe+ROXeL+BWeAQyYahVpFyosMXYH0Nl++ElaZArApFu7AyVzIATHrEIC78O/sYSyJQqlAb1geQVBHeFHEpPHyj8roO7mwIVOgOyC8qgLivGbTHBiPRXQXHpOODmBYT1ti7miivAx3cARSdxwPcOvBMwG1szr/ZyejihE15IioG/pxsAoLRShz7zfzW/3lnKw9eq/0M4LpkmhPQC4v4K9H0A8OpgdRMSEdmbK55PrFmzBhMmTMDy5cuRkJCAt956C2vXrkVmZiZCQkIand/e66TVGtB97qZm11PN002Gfh39kditAzYezIOfhxJeqtojTpRr9Cip1OPNcbHoEeYa24aIiKg9sOZcwqnJKK1WC09PT3z33XcYPXq0efrEiRNx5coV/PDDD7Xm6dSpE6ZPn45nn33WPG3evHlYv349Dh482OgyW/rk8cqJXagsyIJOb4QwGiAJPSSjATDqzf9LQg9UTzPqIQkDJKMeMCcZqpIckgQByeI5IJlH7hTmslXPzckRy/KW02s+b2BZ5nJSjWI1l2X53GJZoub8sHjdMtbqZcK8TqgRa814RI31BgDJqIXMoIVk0F7zvw4yoxaSofpv1evGGq8btOYyptd0kAxaCEkGg9IHeqUP9Epv6JU+0Cl9oM89iGj11Z53ur9tgbLTADiFrgIouwDs/QTY+S60HQejUquDb8E+m6u8IrxQARUkCPihHB5S7cHSf8JNOCbrDq3MHXqFBzwlPa5DAUoVgdAqfSDJldBBAY1eIAIX0f/Sf9FTdhbnRRDu0fwLl+AHALirTxjefKAf3JXyWssoLNPgZEEZnl97EOcuV8AX5Zit+Bpj5H9CJZl+3dZBgcuqjihRheCcb39IMjkqlIEodQ+H2i0IMhjhpSuCXOggkwCpxv4rQTLfhal695UkyXKvl6SqXbVqevV8teqQqspffZiKVM8n1dilpVqvQwJkVROv1g1zndcSV+esU3150WsnixrtUXf5ul+wNu9aX6L26uSmVVj/cq95r2u0fEP1156p0cXWmlx3J2Pr4pHst12srKd2XbXLXXumIGoMRV33WYRkRdmrMUjX7KOS+Ti52j4NHivX1O8REI4OUTfUv9BmcMVklLU/8F3L3usUPWtjs+sATN34IwI8MP3O7hjdz3SZ/LNr0pCeW4yoQE+L9xwhBHKK1Ogd4Yel4/px3CgiIiIHsuZcwqkDmBcWFsJgMCA0NNRiemhoKI4dO1bnPPn5+XWWz8/Pr7O8RqOBRqMxPy8pKWlm1A07tvE93HhlQ+MFqVVRCxWyFdfjhpv+4rxEFAAoPYCAaGD4v4Cbp8PNIwBuAJDxX+DYRqDXvUDHATDkHkLxuQyknytC5KXtMBgFLss7QKkrRaeKDCiEBhCAh1DDXyqHP8rrXNwl4YMAlOEuaQfuMu6oGqyjCXHKgFLhgcna6bgEP/QM98WCe3phUOf672rUwVuFDt4qfP+Pm7B6zxlcqdBh9p9PYJF+PO6R78L98j8QKzuFEM1phGhOo2uJcy89ISLXt9d/JDo8+7Wzw3AIrVaL1NRUzJ492zxNJpNh2LBh2LVrV53zOPocyRYyCUi8PgjPDe9ucWe8iYlRWLgxAzlFagR7q+CulKNSZ8DFMg38PJSYkBjFRBQREZELa/N301u0aBEWLFjgsOWVeEdj95XekEkSjJIcBshhgKzqrxz6qr8GqfZ0Y41f1039gqr6Pkmm5xCiRn+AGq9DVP1CLGr2Nap6vcZzUd3XSNR4HbXqMT8Xdbxe43nN5VlOqznP1ThqPq/5Oq5dl6pp9S0TAHRQQg8FdJISOph65VT/r4cCWqnqdSirpiugl5R1Tq/+Xy4M8IEa3lDDG+Wmv0INSDIc6PAXjBuWCKlTQOM7gaN41kjs3HCP6VFF3u0OBHa7A7c0VoeuEriUdbVXnps34BOGSgNQoTVADyUuntsH96NrICpLAF05JK0aRkhQe3aEvKIQMl05YNQDRh1gNKDCrQPKQ+Nx4fr78E6nKHQK9IRS3vTh6YJ9VHh6aDcAwIt39cSlcg0KSpKx7cRFHCo9DffKCwgqy0RIaQb0kMNLVwR/bR689JchIEeZMgA6SQXg6m2/q/+p2UOjrtdr/itBNNgbBKirt8i1T+pYnqgnhnpITSpV27Wx1eyn4kxSE5ffaLs0s1OvsCKWBuOopw5ra643FgdvrpZsk5olaqs9j9Tgqw0t4+qcle5BjcTSdtjyA5+jz5GsFeqrwgtJMRgT17FWYik+KhBzRvbEqp05yCooQ2GZBm4KOXpH+GFCYpRF4oqIiIhcj1OTUR06dIBcLseFCxcspl+4cAFhYWF1zhMWFmZV+dmzZ2P69Onm5yUlJYiMjGxm5PUb/vjCFqubnGecswNoKUr3OseDcgfg7lH1xO8WoFfttFZjaTl7XBgjl0kI8XFHiI87el/nB6Bro/N42WG5RNQ2RDs7ABfn6HOkplJIwF19IzCxkaRSfFQg4iIDcLygFMVqHfw8lege4sMeUURERK2AU++m5+bmhvj4eGzZssU8zWg0YsuWLRg8eHCd8wwePNiiPABs3ry53vIqlQq+vr4WDyIiIqK2xJYf+Fr6HKmnDfP0ivDBhmduwVvj+jWpd5NMJqFHmC8Srg9CjzBfJqKIiIhaCacmowBg+vTp+Pjjj7Fq1SpkZGTgySefRHl5OR577DEAwIQJEyzGP3jmmWewadMm/Pvf/8axY8cwf/587Nu3D1OnTnXWKhARERE5lS0/8LW0nxePbHJZhQQ8fks0Nk67lUklIiKidsDpY0aNGzcOFy9exNy5c5Gfn49+/fph06ZN5jEPzpw5A5nsas4sMTERX3/9NV566SW8+OKL6NatG9avX4/eva289TwRERFRGzJ9+nRMnDgRAwYMwKBBg/DWW29Z/MDnDKcXj2z0rnovjeyJCQlRcHOrfadVIiIiapskIZo5Cmwr44q3YiYiIqLWxVXPJ9577z288cYb5h/43nnnHSQkJDRp3pZcpxGzNiLjmmmrp8Tixs4d7bocIiIich5rziWYjCIiIiKyUls8n2iL60RERESOY825hNPHjCIiIiIiIiIiovaDySgiIiIiIiIiInIYJqOIiIiIiIiIiMhhmIwiIiIiIiIiIiKHYTKKiIiIiIiIiIgchskoIiIiIiIiIiJyGIWzA3A0IQQA0y0HiYiIiGxRfR5RfV7RFvAciYiIiJrDmvOjdpeMKi0tBQBERkY6ORIiIiJq7UpLS+Hn5+fsMOyC50hERERkD005P5JEW/pJrwmMRiNyc3Ph4+MDSZKsmrekpASRkZE4e/YsfH19WyhC18d2YBtUYzuwDaqxHUzYDu2nDYQQKC0tRUREBGSytjHqQXPOkZqivewbrQG3hWvh9nAd3BauhdvDdTR1W1hzftTuekbJZDJ07NixWXX4+vryYADbAWAbVGM7sA2qsR1M2A7tow3aSo+oavY4R2qK9rBvtBbcFq6F28N1cFu4Fm4P19GUbdHU86O28VMeERERERERERG1CkxGERERERERERGRwzAZZQWVSoV58+ZBpVI5OxSnYjuwDaqxHdgG1dgOJmwHtgHVj/uG6+C2cC3cHq6D28K1cHu4jpbYFu1uAHMiIiIiIiIiInIe9owiIiIiIiIiIiKHYTKKiIiIiIiIiIgchskoIiIiIiIiIiJymHaTjNq2bRvuvvtuREREQJIkrF+/3uL1devWYfjw4QgKCoIkSUhLS6tVR2VlJZ566ikEBQXB29sb9913Hy5cuNDgcoUQmDt3LsLDw+Hh4YFhw4bhxIkTdlyzpmtuGxQVFeHpp59GTEwMPDw80KlTJ0ybNg3FxcUNLvfRRx+FJEkWj+TkZDuvXdPZY18YMmRIrXX6+9//3uByXWlfAJrfDqdPn67VBtWPtWvX1rtcV9ofGmoDnU6HmTNnok+fPvDy8kJERAQmTJiA3NxcizqKiorw8MMPw9fXF/7+/pg0aRLKysoaXK4t7yUtqbntcPr0aUyaNAmdO3eGh4cHunTpgnnz5kGr1Ta4XFuOo5Zij30hOjq61vosXry4weW2tX0hJSWl3veFvXv31rtcV9oXqHmWLVuG6OhouLu7IyEhAXv27Gmw/Nq1a9GjRw+4u7ujT58++OmnnxwUadtnzbZYuXJlrWPQ3d3dgdG2XY2db9UlJSUF/fv3h0qlQteuXbFy5coWj7O9sHZ71Pe5lp+f75iA27BFixZh4MCB8PHxQUhICEaPHo3MzMxG5+Pnhv3Zsi3s8bnRbpJR5eXliI2NxbJly+p9/eabb8Zrr71Wbx3PPfcc/vvf/2Lt2rX4448/kJubizFjxjS43Ndffx3vvPMOli9fjt27d8PLywtJSUmorKxs1vrYorltkJubi9zcXCxZsgRHjhzBypUrsWnTJkyaNKnRZScnJyMvL8/8+Oabb5q1Ls1hj30BAJ544gmLdXr99dcbLO9K+wLQ/HaIjIy0WP+8vDwsWLAA3t7eGDFiRIPLdpX9oaE2UKvV2L9/P15++WXs378f69atQ2ZmJu655x6Lcg8//DDS09OxefNmbNiwAdu2bcPkyZMbXK4t7yUtqbntcOzYMRiNRnz44YdIT0/H0qVLsXz5crz44ouNLtva46il2GNfAIBXXnnFYn2efvrpBpfb1vaFxMTEWu8Ljz/+ODp37owBAwY0uGxX2RfIdmvWrMH06dMxb9487N+/H7GxsUhKSkJBQUGd5Xfu3Inx48dj0qRJOHDgAEaPHo3Ro0fjyJEjDo687bF2WwCAr6+vxTGYk5PjwIjbrsbOt66VnZ2NkSNH4vbbb0daWhqeffZZPP744/jll19aONL2wdrtUS0zM9Pi+AgJCWmhCNuPP/74A0899RT+97//YfPmzdDpdBg+fDjKy8vrnYefGy3Dlm0B2OFzQ7RDAMT3339f52vZ2dkCgDhw4IDF9CtXrgilUinWrl1rnpaRkSEAiF27dtVZl9FoFGFhYeKNN96wqEelUolvvvmm2evRHLa0QV2+/fZb4ebmJnQ6Xb1lJk6cKEaNGmVboC3M1na47bbbxDPPPNPk5bjyviCE/faHfv36ib/97W8NlnHV/aGhNqi2Z88eAUDk5OQIIYQ4evSoACD27t1rLvPzzz8LSZLE+fPn66zDlvcSR7KlHery+uuvi86dOzdYj7XHkaPY2gZRUVFi6dKlTV5Oe9gXtFqtCA4OFq+88kqD9bjqvkDWGTRokHjqqafMzw0Gg4iIiBCLFi2qs/wDDzwgRo4caTEtISFBTJkypUXjbA+s3RYrVqwQfn5+Doqu/WrK++o///lP0atXL4tp48aNE0lJSS0YWfvUlO2xdetWAUBcvnzZITG1ZwUFBQKA+OOPP+otw88Nx2jKtrDH50a76RnVXKmpqdDpdBg2bJh5Wo8ePdCpUyfs2rWrznmys7ORn59vMY+fnx8SEhLqnae1KS4uhq+vLxQKRYPlUlJSEBISgpiYGDz55JO4dOmSgyJsOV999RU6dOiA3r17Y/bs2VCr1fWWbQ/7QmpqKtLS0prUU6617g/FxcWQJAn+/v4AgF27dsHf39+ix8ewYcMgk8mwe/fuOuuw5b3E1VzbDvWVCQwMbLQua44jV1JfGyxevBhBQUGIi4vDG2+8Ab1eX28d7WFf+PHHH3Hp0iU89thjjdbVWvcFMtFqtUhNTbXYn2UyGYYNG1bv/rxr1y6L8gCQlJTUavZ/V2XLtgCAsrIyREVFITIyEqNGjUJ6erojwqVr8LhwTf369UN4eDjuvPNO7Nixw9nhtEnVQ780dP7I48MxmrItgOZ/bjScQSCz/Px8uLm51TrhDg0Nrfea4erpoaGhTZ6nNSksLMSrr77a6CVJycnJGDNmDDp37oyTJ0/ixRdfxIgRI7Br1y7I5XIHRWtfDz30EKKiohAREYFDhw5h5syZyMzMxLp16+os39b3BQD49NNP0bNnTyQmJjZYrrXuD5WVlZg5cybGjx8PX19fAKbtem03bYVCgcDAwAbfF6x9L3EldbXDtbKysvDuu+9iyZIlDdZl7XHkKuprg2nTpqF///4IDAzEzp07MXv2bOTl5eHNN9+ss572sC98+umnSEpKQseOHRusq7XuC3RVYWEhDAZDnZ9zx44dq3Oe/Pz8Nv256Cy2bIuYmBh89tln6Nu3L4qLi7FkyRIkJiYiPT290eOX7Ku+46KkpAQVFRXw8PBwUmTtU3h4OJYvX44BAwZAo9Hgk08+wZAhQ7B7927079/f2eG1GUajEc8++yxuuukm9O7du95y/NxoeU3dFvb43GAyimxSUlKCkSNH4oYbbsD8+fMbLPvggw+a/+/Tpw/69u2LLl26ICUlBUOHDm3hSFtGzQRcnz59EB4ejqFDh+LkyZPo0qWLEyNzjoqKCnz99dd4+eWXGy3bGvcHnU6HBx54AEIIfPDBB84Ox2ma0g7nz59HcnIy7r//fjzxxBMN1tcaj6OG2mD69Onm//v27Qs3NzdMmTIFixYtgkqlcnSoLaop+8K5c+fwyy+/4Ntvv220vta4LxC1JYMHD8bgwYPNzxMTE9GzZ098+OGHePXVV50YGZFzxcTEICYmxvw8MTERJ0+exNKlS/HFF184MbK25amnnsKRI0fw559/OjuUdq+p28Ienxu8TK+JwsLCoNVqceXKFYvpFy5cQFhYWL3zVJdp6jytQWlpKZKTk+Hj44Pvv/8eSqXSqvmvv/56dOjQAVlZWS0UoeMlJCQAQL3r1Fb3hWrfffcd1Go1JkyYYPW8rr4/VH/pzsnJwebNmy16gISFhdUaDFav16OoqKjB9wVr30tcQUPtUC03Nxe33347EhMT8dFHH1m9jMaOI2drShvUlJCQAL1ej9OnT9f5elveFwBgxYoVCAoKqnOg98a4+r5AtXXo0AFyudyqz7mwsLA2+7noTLZsi2splUrExcXxGHSC+o4LX19f9opyEYMGDeKxYUdTp07Fhg0bsHXr1kZ71PBzo2VZsy2uZcvnBpNRTRQfHw+lUoktW7aYp2VmZuLMmTMWGcGaOnfujLCwMIt5SkpKsHv37nrncXUlJSUYPnw43Nzc8OOPP9p0299z587h0qVLCA8Pb4EInSMtLQ0A6l2ntrgv1PTpp5/innvuQXBwsNXzuvL+UP2l+8SJE/jtt98QFBRk8frgwYNx5coVpKammqf9/vvvMBqN5i/T17LlvcTZGmsHwNQjasiQIYiPj8eKFSsgk1n/8dLYceRMTWmDa6WlpUEmk9V7x522ui8AgBACK1aswIQJE6z+wQJw7X2B6ubm5ob4+HiL/dloNGLLli317s+DBw+2KA8Amzdvdtn9v7WwZVtcy2Aw4PDhwzwGnYDHhetLS0vjsWEHQghMnToV33//PX7//Xd07ty50Xl4fLQMW7bFtWz63GjW8OetSGlpqThw4IA4cOCAACDefPNNceDAAfMdgC5duiQOHDggNm7cKACI1atXiwMHDoi8vDxzHX//+99Fp06dxO+//y727dsnBg8eLAYPHmyxnJiYGLFu3Trz88WLFwt/f3/xww8/iEOHDolRo0aJzp07i4qKCseseA3NbYPi4mKRkJAg+vTpI7KyskReXp75odfrzcup2QalpaVixowZYteuXSI7O1v89ttvon///qJbt26isrLS4W1QHVNz2iErK0u88sorYt++fSI7O1v88MMP4vrrrxe33nqrxXJceV8Qwj7HhBBCnDhxQkiSJH7++ec6l+PK+0NDbaDVasU999wjOnbsKNLS0iz2d41GY64jOTlZxMXFid27d4s///xTdOvWTYwfP978+rlz50RMTIzYvXu3eVpT3kscqbntcO7cOdG1a1cxdOhQce7cOYsy1a5th6YeR62lDXbu3CmWLl0q0tLSxMmTJ8WXX34pgoODxYQJE+ptAyHa3r5Q7bfffhMAREZGRq1luPq+QLZbvXq1UKlUYuXKleLo0aNi8uTJwt/fX+Tn5wshhHjkkUfErFmzzOV37NghFAqFWLJkicjIyBDz5s0TSqVSHD582Fmr0GZYuy0WLFggfvnlF3Hy5EmRmpoqHnzwQeHu7i7S09OdtQptRmPnW7NmzRKPPPKIufypU6eEp6eneOGFF0RGRoZYtmyZkMvlYtOmTc5ahTbF2u2xdOlSsX79enHixAlx+PBh8cwzzwiZTCZ+++03Z61Cm/Hkk08KPz8/kZKSYnFOoVarzWX4ueEYtmwLe3xutJtkVPVtOa99TJw4UQhhujVhXa/PmzfPXEdFRYX4xz/+IQICAoSnp6e49957a30xByBWrFhhfm40GsXLL78sQkNDhUqlEkOHDhWZmZkOWOPamtsG9c0PQGRnZ5uXU7MN1Gq1GD58uAgODhZKpVJERUWJJ554wnwy5AzNbYczZ86IW2+9VQQGBgqVSiW6du0qXnjhBVFcXGyxHFfeF4SwzzEhhBCzZ88WkZGRwmAw1LkcV94fGmqD7Ozsevf3rVu3muu4dOmSGD9+vPD29ha+vr7iscceE6WlpebXq+upOU9T3kscqbntUN++UvP3jmvboanHkaM0tw1SU1NFQkKC8PPzE+7u7qJnz57i//7v/yySrO1hX6g2fvx4kZiYWOcyXH1foOZ59913RadOnYSbm5sYNGiQ+N///md+7bbbbjN/xlT79ttvRffu3YWbm5vo1auX2Lhxo4Mjbrus2RbPPvusuWxoaKi46667xP79+50QddvT2PnWxIkTxW233VZrnn79+gk3Nzdx/fXXW5xPUvNYuz1ee+010aVLF+Hu7i4CAwPFkCFDxO+//+6c4NuY+s4pau7v/NxwDFu2hT0+N6SqhRMREREREREREbU4jhlFREREREREREQOw2QUERERERERERE5DJNRRERERERERETkMExGERERERERERGRwzAZRUREREREREREDsNkFBEREREREREROQyTUURERERERERE5DBMRhERERERERERkcMwGUVERERERG3G/PnzERoaCkmSsH79emeH4xIuXbqEkJAQnD592tmhWO306dOQJAlpaWl2rzs6OhpvvfUWAECr1SI6Ohr79u1rcJ6UlBRIkoQrV67YPR57GzJkCJ599llnh0EuZtu2bbj77rsRERFh0/vk/PnzIUlSrYeXl5dV9TAZRUTt1qOPPmp+81QqlejcuTP++c9/Yvny5XW+wdZ8tMaTOSIiopZQ8/NUkiQEBQUhOTkZhw4dstsy5s+fj379+jVaLiMjAwsWLMCHH36IvLw8jBgxwm4xuJpHH30Uo0ePblLZhQsXYtSoUYiOjm7RmJrLmnWyNzc3N8yYMQMzZ85ssFxiYiLy8vLg5+fX5LqdtV7r1q3Dq6++an5eM/lG7Vd5eTliY2OxbNkym+afMWMG8vLyLB433HAD7r//fqvqYTKKiNq15ORk5OXl4dSpU1i6dCk+/PBDZGdnW7y5Dh48GE888YTFtMjISGeHTkRE5DKqP0/z8vKwZcsWKBQK/OUvf3F4HCdPngQAjBo1CmFhYVCpVLXKaLVaR4flVGq1Gp9++ikmTZrk7FBc3sMPP4w///wT6enp9ZZxc3NDWFgYJElyYGS2CQwMhI+Pj7PDIBczYsQI/Otf/8K9995b5+sajQYzZszAddddBy8vLyQkJCAlJcX8ure3N8LCwsyPCxcu4OjRo1a/xzAZRUTtmkqlQlhYGCIjIzF69GgMGzYMmzdvtniDdXNzg6enp8U0uVzu7NCJiIhcRvXnaVhYGPr164dZs2bh7NmzuHjxornM2bNn8cADD8Df3x+BgYEYNWqURU/jlJQUDBo0CF5eXvD398dNN92EnJwcrFy5EgsWLMDBgwfNva9WrlxZK4b58+fj7rvvBgDIZDJzsqC6V8rChQsRERGBmJgYAMAXX3yBAQMGwMfHB2FhYXjooYdQUFBgUeePP/6Ibt26wd3dHbfffjtWrVplcYnWypUr4e/vjw0bNiAmJgaenp4YO3Ys1Go1Vq1ahejoaAQEBGDatGkwGAzmehv7sldd7y+//IKePXvC29vbnPCrXtdVq1bhhx9+MLdJzflr+umnn6BSqXDjjTeap12+fBkPP/wwgoOD4eHhgW7dumHFihUArl4W9+233+KWW26Bh4cHBg4ciOPHj2Pv3r0YMGAAvL29MWLECIvtazQa8corr6Bjx45QqVTo168fNm3aZBHL4cOHcccdd8DDwwNBQUGYPHkyysrKmrROp06dwu233w5PT0/ExsZi165dFnX/+eef5ngjIyMxbdo0lJeXm18vKCjA3XffDQ8PD3Tu3BlfffVVrbYKCAjATTfdhNWrV9fZlkDty/Sas60aOyaq990lS5YgPDwcQUFBeOqpp6DT6cxl3n//ffM+GhoairFjx5pfq3mZ3pAhQ5CTk4PnnnvOHEd5eTl8fX3x3XffWazj+vXr4eXlhdLS0nrbgdquqVOnYteuXVi9ejUOHTqE+++/H8nJyThx4kSd5T/55BN0794dt9xyi1XLYTKKiKjKkSNHsHPnTri5uTk7FCIiolarrKwMX375Jbp27YqgoCAAgE6nQ1JSEnx8fLB9+3bs2LHD/KVdq9VCr9dj9OjRuO2223Do0CHs2rULkydPhiRJGDduHJ5//nn06tXL3Ptq3LhxtZY7Y8YMc0Kluly1LVu2IDMzE5s3b8aGDRvMMb366qs4ePAg1q9fj9OnT+PRRx81z5OdnY2xY8di9OjROHjwIKZMmYI5c+bUWq5arcY777yD1atXY9OmTUhJScG9996Ln376CT/99BO++OILfPjhhxZf+JvyZU+tVmPJkiX44osvsG3bNpw5cwYzZswwr+sDDzxg0SMtMTGxzu2xfft2xMfHW0x7+eWXcfToUfz888/IyMjABx98gA4dOliUmTdvHl566SXs378fCoUCDz30EP75z3/i7bffxvbt25GVlYW5c+eay7/99tv497//jSVLluDQoUNISkrCPffcY16n8vJyJCUlISAgAHv37sXatWvx22+/YerUqU1apzlz5mDGjBlIS0tD9+7dMX78eOj1egCmHnHJycm47777cOjQIaxZswZ//vmnuW7AlNg5e/Ystm7diu+++w7vv/9+reQjAAwaNAjbt2+vsy3rY8u2auyYqLZ161acPHkSW7duxapVq7By5UpzMnbfvn2YNm0aXnnlFWRmZmLTpk249dZb64xx3bp16NixI1555RVzHF5eXnjwwQfNx021FStWYOzYsexV1Q6dOXMGK1aswNq1a3HLLbegS5cumDFjBm6++eZa+wkAVFZW4quvvrKt56UgImqnJk6cKORyufDy8hIqlUoAEDKZTHz33XcW5W677TbxzDPPOCdIIiIiF1fz89TLy0sAEOHh4SI1NdVc5osvvhAxMTHCaDSap2k0GuHh4SF++eUXcenSJQFApKSk1LmMefPmidjY2EZj+f7778W1X3EmTpwoQkNDhUajaXDevXv3CgCitLRUCCHEzJkzRe/evS3KzJkzRwAQly9fFkIIsWLFCgFAZGVlmctMmTJFeHp6musRQoikpCQxZcoUIYQQOTk5Qi6Xi/Pnz1vUPXToUDF79ux66122bJkIDQ21WK9Ro0Y1uE5CCDFq1Cjxt7/9zWLa3XffLR577LE6y2dnZwsA4pNPPjFP++abbwQAsWXLFvO0RYsWiZiYGPPziIgIsXDhQou6Bg4cKP7xj38IIYT46KOPREBAgCgrKzO/vnHjRiGTyUR+fn6961RXPOnp6QKAyMjIEEIIMWnSJDF58mSL+bZv3y5kMpmoqKgQmZmZAoDYs2eP+fWMjAwBQCxdutRivrfffltER0fX2TZCCLF169ZG94GmbKvGjonq+aKiooRerzeXuf/++8W4ceOEEEL85z//Eb6+vqKkpKTOWK89h42Kiqq1vrt37xZyuVzk5uYKIYS4cOGCUCgU9R6L1LYAEN9//735+YYNGwQA8/t59UOhUIgHHnig1vxff/21UCgU5mPYGgrr01dERG3H7bffjg8++ADl5eVYunQpFAoF7rvvPmeHRURE1KpUf54CpkvA3n//fYwYMQJ79uxBVFQUDh48iKysrFo9LSorK3Hy5EkMHz4cjz76KJKSknDnnXdi2LBheOCBBxAeHm6X+Pr06VOr53Nqairmz5+PgwcP4vLlyzAajQBMPQNuuOEGZGZmYuDAgRbzDBo0qFbdnp6e6NKli/l5aGgooqOj4e3tbTGtuhfO4cOHYTAY0L17d4t6NBqNuSdZXfWGh4fX2ZOnMRUVFXB3d7eY9uSTT+K+++7D/v37MXz4cIwePbpWz6q+fftaxA+Y2rGudSopKUFubi5uuukmizpuuukmHDx4EIBpcPnY2FiLO27ddNNNMBqNyMzMNC+jPjXjqd4vCgoK0KNHDxw8eBCHDh2yuPROCAGj0Yjs7GwcP34cCoXCoodYjx494O/vX2s5Hh4eUKvVDcZyLVu2VWPHRLVevXpZDA8RHh6Ow4cPAwDuvPNOREVF4frrr0dycjKSk5Nx7733wtPTs8mxDxo0CL169cKqVaswa9YsfPnll4iKiqq3hxW1bWVlZZDL5UhNTa01LEnN97Rqn3zyCf7yl780evzWhckoImrXvLy80LVrVwDAZ599htjYWA7ySUREZKWan6eA6QuKn58fPv74Y/zrX/9CWVkZ4uPj6xynJzg4GIDp0qBp06Zh06ZNWLNmDV566SVs3rzZYqyj5sRXU/UlY0lJSfjqq68QHByMM2fOICkpyeoBzpVKpcXz6rv0XjutOtnV1C97ddVh6shgnQ4dOuDy5csW00aMGIGcnBz89NNP2Lx5M4YOHYqnnnoKS5YsqXP51eNvXTutep0coa54arbplClTMG3atFrzderUCcePH2/ycoqKisz7pC2xVcfX2LZqyjFRX93V6+3j44P9+/cjJSUFv/76K+bOnYv58+dj7969dSba6vP4449j2bJlmDVrFlasWIHHHnusVQzQTvYXFxcHg8GAgoKCRseAys7OxtatW/Hjjz/atCyOGUVEVEUmk+HFF1/ESy+9hIqKCmeHQ0RE1GpJkgSZTGb+PO3fvz9OnDiBkJAQdO3a1eLh5+dnni8uLg6zZ8/Gzp070bt3b3z99dcATHcwqzkAeHMdO3YMly5dwuLFi3HLLbegR48etXqyxMTEYN++fRbT9u7d2+xl1/yyd21bhIWFNbmeprZJXFwcjh49Wmt6cHAwJk6ciC+//BJvvfUWPvroI6vWoyZfX19ERERgx44dFtN37NiBG264AQDQs2dPHDx40GJQ8R07dkAmk5kHlbd1O/fv3x9Hjx6t1Z5du3aFm5sbevToAb1ej9TUVPM8mZmZ5kHIazpy5Aji4uKsjqEhda1XU4+JxigUCgwbNgyvv/46Dh06hNOnT+P3339vchwA8Ne//hU5OTl45513cPToUUycONG6FaRWpaysDGlpaUhLSwNgSiqlpaXhzJkz6N69Ox5++GFMmDAB69atQ3Z2Nvbs2YNFixZh48aNFvV89tlnCA8Px4gRI2yKg8koIqIa7r//fsjlcixbtszZoRAREbUaGo0G+fn5yM/PR0ZGBp5++mmUlZWZ72738MMPo0OHDhg1ahS2b9+O7OxspKSkYNq0aTh37hyys7Mxe/Zs7Nq1Czk5Ofj1119x4sQJ9OzZEwAQHR1t/sJUWFgIjUbTrHg7deoENzc3vPvuuzh16hR+/PFHvPrqqxZlpkyZgmPHjmHmzJk4fvw4vv32W/PA0c3pNWLNl72GREdH49ChQ8jMzERhYaHFHdZqSkpKQnp6ukXvqLlz5+KHH35AVlYW0tPTsWHDBnNb2+qFF17Aa6+9hjVr1iAzMxOzZs1CWloannnmGQCmfcDd3R0TJ07EkSNHsHXrVjz99NN45JFHzJf4NHWdrjVz5kzs3LkTU6dORVpaGk6cOIEffvjBPIB5TEwMkpOTMWXKFOzevRupqal4/PHH4eHhUauu7du3Y/jw4c1qi2vVtV6NHRNNsWHDBrzzzjtIS0tDTk4OPv/8cxiNRnNyr644tm3bhvPnz6OwsNA8PSAgAGPGjMELL7yA4cOHo2PHjnZZb3JN+/btQ1xcnDnpOn36dMTFxZlvSLBixQpMmDABzz//PGJiYjB69Gjs3bsXnTp1MtdhNBqxcuVKPProozbfZZzJKCKiGhQKBaZOnYrXX3/d4pc7IiIiqt+mTZsQHh6O8PBwJCQkmO+WNmTIEACmMXW2bduGTp06YcyYMejZsycmTZqEyspK+Pr6wtPTE8eOHcN9992H7t27Y/LkyXjqqacwZcoUAMB9992H5ORk3H777QgODsY333zTrHiDg4OxcuVKrF27FjfccAMWL15scYkaAHTu3Bnfffcd1q1bh759++KDDz4w301PpVI1a/lN+bLXmCeeeAIxMTEYMGAAgoODa/VKqtanTx/0798f3377rXmam5sbZs+ejb59++LWW2+FXC7H6tWrm7VO06ZNw/Tp0/H888+jT58+2LRpE3788Ud069YNgGkf+OWXX1BUVISBAwdi7NixGDp0KN577z2r1+laffv2xR9//IHjx4/jlltuMX+xjoiIMJdZsWIFIiIicNttt2HMmDGYPHkyQkJCLOrZtWsXiouLMXbs2Ga1xbXqWq/Gjomm8Pf3x7p163DHHXegZ8+eWL58Ob755hv06tWrzvKvvPIKTp8+jS5dutS6FHHSpEnQarX429/+1uz1Jdc2ZMgQCCFqPaqT7UqlEgsWLEB2dja0Wi1yc3Oxbt06izHjZDIZzp49i4ULF9ochyRsufCYiIiIiIionVm4cCGWL1+Os2fPOjsUq2zcuBEvvPACjhw5ApmM/RHqM27cOMTGxuLFF190digO98UXX+C5555Dbm5urcH+iVoCBzAnIiIiIiKqw/vvv4+BAwciKCgIO3bswBtvvGG+9Ks1GTlyJE6cOIHz588jMjLS2eG4JK1Wiz59+uC5555zdigOpVarkZeXh8WLF2PKlClMRJHDsGcUERERERFRHZ577jmsWbMGRUVF6NSpEx555BHMnj0bCgV/06e2Yf78+Vi4cCFuvfVW/PDDDxZ3dCRqSUxGERERERERERGRw/CCYSIiIiIiIiIichgmo4iIiIiIiIiIyGGYjCIiIiIiIiIiIodhMoqIiIiIiIiIiByGySgiIiIiIiIiInIYJqOIiIiIiIiIiMhhmIwiIiIiIiIiIiKHYTKKiIiIiIiIiIgchskoIiIiIiIiIiJymP8Hhkw9nh/LjO0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:matplotlib.category:Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "INFO:matplotlib.category:Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGGCAYAAACHemKmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYyFJREFUeJzt3XdYFNf7NvB7QVhAmkpXpGkUFMUSEHtBQbFFo2I0KrHFaIxi5RsVjUmIMRpESSyxJhp7iRoxKmILwYpGRCyx0wSEpQkI8/7hy/xcl7KLuyDJ/bmuuZI558zZZ5bd8eFw5oxEEAQBREREREQ1jFZ1B0BEREREVBlMZImIiIioRmIiS0REREQ1EhNZIiIiIqqRmMgSERERUY3ERJaIiIiIaiQmskRERERUIzGRJSIiIqIaiYksEREREdVITGSJ/kU2bdoEiUSC+/fvq63P+/fvQyKRYNOmTWrrU9MkEgkWLlyodNspU6ZoNqAqVhN/ZtWta9eu6Nq1q1r7/C/9HMLDw+Hm5gY9PT1IJBJkZGRgzJgxsLe3l2unyneTSBlMZIkqcPfuXUycOBGOjo7Q09ODsbExOnTogBUrViAvL6+6w1Obbdu2ISQkpLrD0Ig///wTCxcuREZGhkb6l8lkWLRoEVq2bAlDQ0Po6+ujefPmmDNnDhISEsR28fHxmD59Otq3by/+g1/WLx3Tp09H69atUbduXRgYGMDZ2RkLFy5Edna2Rs5BFf/mz0pl/Nffj7S0NAwdOhT6+voICwvDzz//jNq1a1d3WPQfUau6AyB6mx0+fBhDhgyBVCrFqFGj0Lx5cxQUFODs2bOYNWsWYmNjsXbt2uoOUy22bduG69evY9q0aXLldnZ2yMvLg46OTvUEVgl5eXmoVev/Lm9//vknFi1ahDFjxsDU1FStr/XPP//Ay8sLDx8+xJAhQzBhwgTo6uri2rVrWL9+Pfbt24dbt24BAKKiohAaGgoXFxc4OzsjJiamzH4vXLiATp06wd/fH3p6erhy5Qq++eYbHD9+HKdPn4aWVtnjEJr+mZX1Wfmv+jd9dyrjwoULyMrKwuLFi+Hl5SWWr1u3DsXFxdUYGf0XMJElKsO9e/fg5+cHOzs7REREwNraWqybPHky7ty5g8OHD7/x6wiCgOfPn0NfX1+h7vnz59DV1S03adE0iUQCPT29anv9yqiqeF+8eIFBgwYhOTkZkZGR6Nixo1z9V199hSVLloj7/fv3R0ZGBoyMjPDdd9+Vm8iePXtWoczJyQkzZ87E+fPn0a5duzKPrYk/s3+jmvpzUPW6k5KSAgAKvyT+2xN4ejtwagFRGb799ltkZ2dj/fr1cklsiUaNGuGzzz4T91+8eIHFixfDyckJUqkU9vb2+N///of8/Hy54+zt7dG3b18cPXoUbdu2hb6+PtasWYPIyEhIJBJs374d8+bNQ/369WFgYACZTAYAiI6Oho+PD0xMTGBgYIAuXbrg3LlzFZ7HgQMH4OvrCxsbG0ilUjg5OWHx4sUoKioS23Tt2hWHDx/GgwcPIJFIIJFIxLltZc3zi4iIQKdOnVC7dm2YmppiwIABiIuLk2uzcOFCSCQS3LlzRxwNNTExgb+/P3Jzc8uNOzQ0FNra2nLTAZYtWwaJRIKAgACxrKioCEZGRpgzZ45Y9uo8vIULF2LWrFkAAAcHB/H8Xv+T/v79+9G8eXNIpVI0a9YM4eHh5cYHAHv27MHVq1fx+eefKySxAGBsbIyvvvpK3K9bty6MjIwq7LcsJT+TiqZIlPYzS0pKgr+/Pxo0aACpVApra2sMGDBA4X344Ycf0KxZM0ilUtjY2GDy5Mlyr1feZwV4mdSMHTsWlpaW0NPTQ8uWLbF58+ZS4/vuu+/w/fffw87ODvr6+ujSpQuuX7+ucD43b97E+++/j7p160JPTw9t27bFb7/9psxbhuLiYoSEhKBZs2bQ09ODpaUlJk6ciGfPnpV7XFnzzUu+p5GRkRW+H9X13SmJq3nz5rh06RLat28PfX19ODg4YPXq1aWeT1nXnV27dqFNmzbQ19eHmZkZRo4ciSdPnsi9zujRowEA7777LiQSCcaMGQMApc6RLc2TJ0/w0UcfwdLSUvz+bdiwQaHdypUr0axZMxgYGKBOnTpo27Yttm3bVmH/9O/GEVmiMhw8eBCOjo5o3769Uu3HjRuHzZs34/3338eMGTMQHR2N4OBgxMXFYd++fXJt4+PjMXz4cEycOBHjx49HkyZNxLrFixdDV1cXM2fORH5+PnR1dREREYHevXujTZs2CAoKgpaWFjZu3Iju3bvjzJkzcHd3LzOuTZs2wdDQEAEBATA0NERERAQWLFgAmUyGpUuXAgA+//xzZGZm4vHjx/j+++8BAIaGhmX2efz4cfTu3RuOjo5YuHAh8vLysHLlSnTo0AGXL19W+Mdr6NChcHBwQHBwMC5fvoyffvoJFhYWcqOVr+vUqROKi4tx9uxZ9O3bFwBw5swZaGlp4cyZM2K7K1euIDs7G507dy61n0GDBuHWrVv49ddf8f3338PMzAwAYG5uLrY5e/Ys9u7di08++QRGRkYIDQ3F4MGD8fDhQ9SrV6/MGEuSqQ8//LDMNm/ixYsXyMjIQEFBAa5fv4558+bByMio3J93WQYPHozY2Fh8+umnsLe3R0pKCo4dO4aHDx+KP6+FCxdi0aJF8PLywqRJkxAfH48ff/wRFy5cwLlz56Cjo1PuZyUvLw9du3bFnTt3MGXKFDg4OGDXrl0YM2YMMjIy5H7xA4AtW7YgKysLkydPxvPnz7FixQp0794df//9NywtLQEAsbGx6NChA+rXr4+5c+eidu3a2LlzJwYOHIg9e/bgvffeK/e8J06ciE2bNsHf3x9Tp07FvXv3sGrVKly5ckU8pzfxNn53Sjx79gx9+vTB0KFDMXz4cOzcuROTJk2Crq4uPvroI7m2pV13St63d999F8HBwUhOTsaKFStw7tw5XLlyBaampvj888/RpEkTrF27Fl988QUcHBzg5OSk9PuXnJyMdu3aiTddmpub48iRIxg7dixkMpk4XWPdunWYOnUq3n//fXz22Wd4/vw5rl27hujoaHzwwQdKvx79CwlEpCAzM1MAIAwYMECp9jExMQIAYdy4cXLlM2fOFAAIERERYpmdnZ0AQAgPD5dre/LkSQGA4OjoKOTm5orlxcXFQuPGjQVvb2+huLhYLM/NzRUcHByEnj17imUbN24UAAj37t2Ta/e6iRMnCgYGBsLz58/FMl9fX8HOzk6h7b179wQAwsaNG8UyNzc3wcLCQkhLSxPLrl69KmhpaQmjRo0Sy4KCggQAwkcffSTX53vvvSfUq1dP4bVeVVRUJBgbGwuzZ88W34d69eoJQ4YMEbS1tYWsrCxBEARh+fLlgpaWlvDs2TPxWABCUFCQuL906VKF9+XVtrq6usKdO3fkzgWAsHLlynJjbNWqlWBiYlJum7KUF1OJqKgoAYC4NWnSRDh58mSFfb/+M3v27JkAQFi6dGmZx6SkpAi6urpCr169hKKiIrF81apVAgBhw4YNYllZn5WQkBABgPDLL7+IZQUFBYKnp6dgaGgoyGQyufj09fWFx48fi22jo6MFAML06dPFsh49egiurq5yn9Xi4mKhffv2QuPGjct9H86cOSMAELZu3SpXHh4erlDepUsXoUuXLuJ+ad8lQfi/7+mrP4e37btTcj4AhGXLloll+fn54usXFBTInc/r152CggLBwsJCaN68uZCXlyeWHzp0SAAgLFiwQCwrea8uXLggF8Po0aMV3pfXv5tjx44VrK2thdTUVLl2fn5+gomJiRjTgAEDhGbNmlV43vTfw6kFRKUo+bOasn8G/v333wFA7k/eADBjxgwAUJhL6+DgAG9v71L7Gj16tNx82ZiYGNy+fRsffPAB0tLSkJqaitTUVOTk5KBHjx44ffp0uTdUvNpXVlYWUlNT0alTJ+Tm5uLmzZtKnd+rEhMTERMTgzFjxqBu3bpieYsWLdCzZ0/xvXjVxx9/LLffqVMnpKWlie9zabS0tNC+fXucPn0aABAXF4e0tDTMnTsXgiAgKioKwMtR2ubNm7/RTVxeXl5yo0gtWrSAsbEx/vnnn3KPk8lkbzRVoCIuLi44duwY9u/fj9mzZ6N27dqVWrVAX18furq6iIyMLPNP6sePH0dBQQGmTZsmNzdy/PjxMDY2Vmo++O+//w4rKysMHz5cLNPR0cHUqVORnZ2NU6dOybUfOHAg6tevL+67u7vDw8ND/Aylp6cjIiICQ4cOFT+7qampSEtLg7e3N27fvi33Z+7X7dq1CyYmJujZs6d4bGpqKtq0aQNDQ0OcPHmywnNSp6r67pSoVasWJk6cKO7r6upi4sSJSElJwaVLl+Tavn7duXjxIlJSUvDJJ5/IzfP19fVF06ZN1XZ/wJ49e9CvXz8IgiD3M/L29kZmZiYuX74M4OX828ePH+PChQtv/Lr078JElqgUxsbGAF4mfsp48OABtLS00KhRI7lyKysrmJqa4sGDB3LlDg4OZfb1et3t27cBvPyHxtzcXG776aefkJ+fj8zMzDL7i42NxXvvvQcTExMYGxvD3NwcI0eOBIByjytLybm8Oh2ihLOzs5hkv6phw4Zy+3Xq1AGACucpdurUCZcuXUJeXh7OnDkDa2trtG7dGi1bthSnF5w9exadOnVS+TzKi68kxoriMzY2VvozUhnGxsbw8vLCgAEDsGTJEsyYMQMDBgzA1atXVepHKpViyZIlOHLkCCwtLdG5c2d8++23SEpKEtuU9XPV1dWFo6Ojwme4NA8ePEDjxo0VbhJydnaWe40SjRs3VujjnXfeEeel3rlzB4IgYP78+Qqf/aCgIAD/d6NRaW7fvo3MzExYWFgoHJ+dnV3usZpQld8dALCxsVFYBuudd94BAIW5v69fd8qLtWnTpkp9Hiry9OlTZGRkYO3atQo/H39/fwD/9/OdM2cODA0N4e7ujsaNG2Py5MlK3SNA/36cI0tUCmNjY9jY2JR640l5JBKJUu1KW6GgrLqS0dalS5fCzc2t1GPKmpOXkZGBLl26wNjYGF988QWcnJygp6eHy5cvY86cOVW2NI62tnap5YIglHtcx44dUVhYiKioKJw5c0ZMWDt16oQzZ87g5s2bePr06RsnspWNr2nTprhy5QoePXoEW1vbN4pBGYMGDcKHH36I7du3o2XLliodO23aNPTr1w/79+/H0aNHMX/+fAQHByMiIgKtWrXSUMRvpuTzOXPmzDL/gvH6L4+vH29hYYGtW7eWWv/qPOnXlfVdfvUmyapQ2c+mqsq7JmlKyc935MiR4g1jr2vRogWAl4l+fHw8Dh06hPDwcOzZswc//PADFixYgEWLFlVZzPT2YSJLVIa+ffti7dq1iIqKgqenZ7lt7ezsUFxcjNu3b4ujT8DLGxkyMjJgZ2dX6ThK/uRdMjqnisjISKSlpWHv3r1yN0Pdu3dPoa2ySXjJucTHxyvU3bx5E2ZmZmpbDN3d3R26uro4c+YMzpw5I64+0LlzZ6xbtw4nTpwQ98uj7Lmpql+/fvj111/xyy+/IDAwUCOv8ar8/HwUFxdXaiQdePlZmjFjBmbMmIHbt2/Dzc0Ny5Ytwy+//CL3c3V0dBSPKSgowL179+Q+e2W9n3Z2drh27RqKi4vlRmVLprC8/j0o+WvDq27duiXe8FQSh46Ojsqf/ZLzPX78ODp06KByolYy8vn6ChGljUS+jd8dAEhISEBOTo5cnyVrGle0msCrsXbv3l2uLj4+/o2uaSXMzc1hZGSEoqIipX6+tWvXxrBhwzBs2DAUFBRg0KBB+OqrrxAYGFgjlzkj9eDUAqIylMxJHDduHJKTkxXq7969ixUrVgAA+vTpAwAKT/dZvnw5gJfzyiqrTZs2cHJywnfffVfq/MinT5+WeWzJaM6rozcFBQX44YcfFNrWrl1bqQTJ2toabm5u2Lx5s9w/8tevX8cff/whvhfqoKenh3fffRe//vorHj58KDcim5eXh9DQUDg5OZW6PNqrSv4hV/eTvd5//324urriq6++EufsviorKwuff/65yv1mZGSgsLBQofynn34CALRt21al/nJzc/H8+XO5MicnJxgZGYnLw3l5eUFXVxehoaFyn5f169cjMzNT7jNc1melT58+SEpKwo4dO8SyFy9eYOXKlTA0NESXLl3k2u/fv19ujuv58+cRHR2N3r17AwAsLCzQtWtXrFmzBomJiQqvV95nH3h5x39RUREWL16sUFeyIkRZSn6BLJmjDbwcjS3tAShv43cHeHmOa9asEfcLCgqwZs0amJubo02bNuUe27ZtW1hYWGD16tVySwgeOXIEcXFxb3RNK6GtrY3Bgwdjz549pf7169Wfb1pamlydrq4uXFxcIAhCqd8V+u/giCxRGZycnLBt2zYMGzYMzs7Ock/2+vPPP8VlhQCgZcuWGD16NNauXSv+Of/8+fPYvHkzBg4ciG7dulU6Di0tLfz000/o3bs3mjVrBn9/f9SvXx9PnjzByZMnYWxsjIMHD5Z6bPv27VGnTh2MHj0aU6dOhUQiwc8//1zqnyXbtGmDHTt2ICAgAO+++y4MDQ3Rr1+/UvtdunQpevfuDU9PT4wdO1ZcQsjExETtz1Hv1KkTvvnmG5iYmMDV1RXAywSnSZMmiI+PF38G5Sn5R/vzzz+Hn58fdHR00K9fvzce/dLR0cHevXvh5eWFzp07Y+jQoejQoQN0dHQQGxuLbdu2oU6dOuJaspmZmVi5ciUAiPP7Vq1aBVNTU5iammLKlCkAXo6klyw11LhxYxQUFODMmTPYu3cv2rZtK85xVtatW7fQo0cPDB06FC4uLqhVqxb27duH5ORk+Pn5AXg5OhYYGIhFixbBx8cH/fv3R3x8PH744Qe8++67cq9Z1mdlwoQJWLNmDcaMGYNLly7B3t4eu3fvxrlz5xASEqJwY1yjRo3QsWNHTJo0Cfn5+QgJCUG9evUwe/ZssU1YWBg6duwIV1dXjB8/Ho6OjkhOTkZUVBQeP35c7nzhLl26YOLEiQgODkZMTAx69eoFHR0d3L59G7t27cKKFSvw/vvvl3pss2bN0K5dOwQGBiI9PR1169bF9u3b8eLFC4W2b+t3x8bGBkuWLMH9+/fxzjvvYMeOHYiJicHatWsrXHZMR0cHS5Ysgb+/P7p06YLhw4eLy2/Z29tj+vTpaonxm2++wcmTJ+Hh4YHx48fDxcUF6enpuHz5Mo4fP4709HQAQK9evWBlZYUOHTrA0tIScXFxWLVqFXx9fTV6wyXVANW0WgJRjXHr1i1h/Pjxgr29vaCrqysYGRkJHTp0EFauXCm3JFBhYaGwaNEiwcHBQdDR0RFsbW2FwMBAuTaC8HL5LV9fX4XXKVkGZ9euXaXGceXKFWHQoEFCvXr1BKlUKtjZ2QlDhw4VTpw4IbYpbcmgc+fOCe3atRP09fUFGxsbYfbs2cLRo0cVlhDKzs4WPvjgA8HU1FQAIC6bU9oSQoIgCMePHxc6dOgg6OvrC8bGxkK/fv2EGzduyLUpWULo6dOncuVlLW1UmsOHDwsAhN69e8uVjxs3TgAgrF+/XuEYvLbEjyAIwuLFi4X69esLWlpacq8NQJg8ebJCH3Z2dsLo0aMrjE8QXi5vtWDBAsHV1VUwMDAQ9PT0hObNmwuBgYFCYmKi2K7kvSxte3WZojt37gijRo0SHB0dBX19fUFPT09o1qyZEBQUJGRnZ1cYz+s/s9TUVGHy5MlC06ZNhdq1awsmJiaCh4eHsHPnToVjV61aJTRt2lTQ0dERLC0thUmTJsktbSYIZX9WBEEQkpOTBX9/f8HMzEzQ1dUVXF1dFT47JfEtXbpUWLZsmWBraytIpVKhU6dOwtWrVxViunv3rjBq1CjByspK0NHREerXry/07dtX2L17d4XvhSAIwtq1a4U2bdoI+vr6gpGRkeDq6irMnj1bSEhIENu8vvxWyet6eXkJUqlUsLS0FP73v/8Jx44dqxHfnS5dugjNmjUTLl68KHh6egp6enqCnZ2dsGrVKrl2FV13duzYIbRq1UqQSqVC3bp1hREjRsgtmfZqTJVZfksQXn5mJk+eLNja2go6OjqClZWV0KNHD2Ht2rVimzVr1gidO3cWr39OTk7CrFmzhMzMzHLfB/r3kwiCmmeMExERleP+/ftwcHDA0qVLMXPmzOoO51+pa9euSE1NVfmGVaKahnNkiYiIiKhGYiJLRERERDUSE1kiIiIiqpE4R5aIiIiIaiSOyBIRERFRjcREloiIiIhqJD4QQQ2Ki4uRkJAAIyMjjT0Kk4iIiOi/QBAEZGVlwcbGRu5x16VhIqsGCQkJsLW1re4wiIiIiP41Hj16hAYNGpTbhomsGpQ8Hu/Ro0cwNjau5miIiIiIai6ZTAZbW1ulHj/MRFYNSqYTGBsbM5ElIiIiUgNlpmvWqJu9Tp8+jX79+sHGxgYSiQT79++v8JjIyEi0bt0aUqkUjRo1wqZNmxTahIWFwd7eHnp6evDw8MD58+fVHzwRERERqVWNSmRzcnLQsmVLhIWFKdX+3r178PX1Rbdu3RATE4Np06Zh3LhxOHr0qNhmx44dCAgIQFBQEC5fvoyWLVvC29sbKSkpmjoNIiIiIlKDGvtABIlEgn379mHgwIFltpkzZw4OHz6M69evi2V+fn7IyMhAeHg4AMDDwwPvvvsuVq1aBeDlCgS2trb49NNPMXfuXKVikclkMDExQWZmJqcWEBEREb0BVfIqlebIZmRkYN++fThz5gwePHiA3NxcmJubo1WrVvD29kb79u3fKHB1i4qKgpeXl1yZt7c3pk2bBgAoKCjApUuXEBgYKNZraWnBy8sLUVFRVRkqEREREalIqakFCQkJGDduHKytrfHll18iLy8Pbm5u6NGjBxo0aICTJ0+iZ8+ecHFxwY4dOzQds9KSkpJgaWkpV2ZpaQmZTIa8vDykpqaiqKio1DZJSUll9pufnw+ZTCa3EREREVHVUmpEtlWrVhg9ejQuXboEFxeXUtvk5eVh//79CAkJwaNHjzBz5ky1Bvo2CQ4OxqJFi6o7DCIiIqL/NKUS2Rs3bqBevXrlttHX18fw4cMxfPhwpKWlqSW4N2VlZYXk5GS5suTkZBgbG0NfXx/a2trQ1tYutY2VlVWZ/QYGBiIgIEDcL1nvrKrYzz1cZa9F/233v/Gt7hDKxO8BVaW39bvA7wFVpbfxe6DU1IKKktg3ba8pnp6eOHHihFzZsWPH4OnpCQDQ1dVFmzZt5NoUFxfjxIkTYpvSSKVScc1Yrh1LREREVD0qtfzWzz//jA4dOsDGxgYPHjwAAISEhODAgQNqDe512dnZiImJQUxMDICXy2vFxMTg4cOHAF6OlI4aNUps//HHH+Off/7B7NmzcfPmTfzwww/YuXMnpk+fLrYJCAjAunXrsHnzZsTFxWHSpEnIycmBv7+/Rs+FiIiIiN6Myonsjz/+iICAAPTp0wcZGRkoKioCAJiamiIkJETd8cm5ePEiWrVqhVatWgF4mYS2atUKCxYsAAAkJiaKSS0AODg44PDhwzh27BhatmyJZcuW4aeffoK3t7fYZtiwYfjuu++wYMECuLm5ISYmBuHh4Qo3gBERERHR20XldWRdXFzw9ddfY+DAgTAyMsLVq1fh6OiI69evo2vXrkhNTdVUrG+tql5HlnOiqKq8jfOhSvB7QFXpbf0u8HtAVamqvgeq5FUqj8jeu3dPHBF9lVQqRU5OjqrdERERERFVisqJrIODgzhH9VXh4eFwdnZWR0xERERERBVS6clewMt5qZMnT8bz588hCALOnz+PX3/9FcHBwfjpp580ESMRERERkQKVE9lx48ZBX18f8+bNQ25uLj744APY2NhgxYoV8PPz00SMREREREQKVE5kAWDEiBEYMWIEcnNzkZ2dDQsLC3XHRURERERUrkolsgCQkpKC+Ph4AIBEIoG5ubnagiIiIiIiqojKN3tlZWXhww8/hI2NDbp06YIuXbrAxsYGI0eORGZmpiZiJCIiIiJSoHIiO27cOERHR+Pw4cPIyMhARkYGDh06hIsXL2LixImaiJGIiIiISIHKUwsOHTqEo0ePomPHjmKZt7c31q1bBx8fH7UGR0RERERUFpVHZOvVqwcTExOFchMTE9SpU0ctQRERERERVUTlRHbevHkICAhAUlKSWJaUlIRZs2Zh/vz5ag2OiIiIiKgsKk8t+PHHH3Hnzh00bNgQDRs2BAA8fPgQUqkUT58+xZo1a8S2ly9fVl+kRERERESvUDmRHThwoAbCICIiIiJSjcqJbFBQkCbiICIiIiJSSaUfiHDp0iXExcUBAJo1a4ZWrVqpLSgiIiIiooqonMimpKTAz88PkZGRMDU1BQBkZGSgW7du2L59O5/wRURERERVQuVVCz799FNkZWUhNjYW6enpSE9Px/Xr1yGTyTB16lRNxEhEREREpEDlEdnw8HAcP34czs7OYpmLiwvCwsLQq1cvtQZHRERERFQWlUdki4uLoaOjo1Cuo6OD4uJitQRFRERERFQRlRPZ7t2747PPPkNCQoJY9uTJE0yfPh09evRQa3BERERERGVROZFdtWoVZDIZ7O3t4eTkBCcnJzg4OEAmk2HlypWaiJGIiIiISIHKc2RtbW1x+fJlHD9+HDdv3gQAODs7w8vLS+3BERERERGVReVEdsuWLRg2bBh69uyJnj17iuUFBQXYvn07Ro0apdYAiYiIiIhKo/LUAn9/f2RmZiqUZ2Vlwd/fXy1BERERERFVROVEVhAESCQShfLHjx/DxMRELUEREREREVVE6US2VatWaN26NSQSCXr06IHWrVuLW8uWLdGpU6cqmScbFhYGe3t76OnpwcPDA+fPny+zbdeuXSGRSBQ2X19fsc2YMWMU6n18fDR+HkRERET0ZpSeIztw4EAAQExMDLy9vWFoaCjW6erqwt7eHoMHD1Z7gK/asWMHAgICsHr1anh4eCAkJATe3t6Ij4+HhYWFQvu9e/eioKBA3E9LS0PLli0xZMgQuXY+Pj7YuHGjuC+VSjV3EkRERESkFkonskFBQQAAe3t7DBs2DHp6ehoLqizLly/H+PHjxbm4q1evxuHDh7FhwwbMnTtXoX3dunXl9rdv3w4DAwOFRFYqlcLKykpzgRMRERGR2qk8R3b06NHQ09PDpUuX8Msvv+CXX37BlStXNBGbnIKCAly6dElu+oKWlha8vLwQFRWlVB/r16+Hn58fateuLVceGRkJCwsLNGnSBJMmTUJaWppaYyciIiIi9VN5+a2UlBT4+fkhMjISpqamAICMjAx069YN27dvh7m5ubpjBACkpqaiqKgIlpaWcuWWlpbierblOX/+PK5fv47169fLlfv4+GDQoEFwcHDA3bt38b///Q+9e/dGVFQUtLW1S+0rPz8f+fn54r5MJqvEGRERERHRm1B5RPbTTz9FVlYWYmNjkZ6ejvT0dFy/fh0ymQxTp07VRIxqsX79eri6usLd3V2u3M/PD/3794erqysGDhyIQ4cO4cKFC4iMjCyzr+DgYJiYmIibra2thqMnIiIiotepnMiGh4fjhx9+gLOzs1jm4uKCsLAwHDlyRK3BvcrMzAza2tpITk6WK09OTq5wfmtOTg62b9+OsWPHVvg6jo6OMDMzw507d8psExgYiMzMTHF79OiRcidBRERERGqjciJbXFwMHR0dhXIdHR0UFxerJajS6Orqok2bNjhx4oRcLCdOnICnp2e5x+7atQv5+fkYOXJkha/z+PFjpKWlwdrausw2UqkUxsbGchsRERERVS2VE9nu3bvjs88+Q0JCglj25MkTTJ8+HT169FBrcK8LCAjAunXrsHnzZsTFxWHSpEnIyckRVzEYNWoUAgMDFY5bv349Bg4ciHr16smVZ2dnY9asWfjrr79w//59nDhxAgMGDECjRo3g7e2t0XMhIiIiojej8s1eq1atQv/+/WFvby/ODX306BGaN2+OX375Re0BvmrYsGF4+vQpFixYgKSkJLi5uSE8PFy8Aezhw4fQ0pLPzePj43H27Fn88ccfCv1pa2vj2rVr2Lx5MzIyMmBjY4NevXph8eLFXEuWiIiI6C2nciJra2uLy5cv4/jx4+JqAc7OzlXyVC8AmDJlCqZMmVJqXWk3aDVp0gSCIJTaXl9fH0ePHlVneERERERURVROZAFAIpGgZ8+e6NmzJ4CXy28REREREVUllefILlmyBDt27BD3hw4dinr16qF+/fq4evWqWoMjIiIiIiqLyons6tWrxbmxx44dw7Fjx3DkyBH07t0bs2bNUnuARERERESlUXlqQVJSkpjIHjp0CEOHDkWvXr1gb28PDw8PtQdIRERERFQalUdk69SpIz4AIDw8XLzJSxAEFBUVqTc6IiIiIqIyqDwiO2jQIHzwwQdo3Lgx0tLS0Lt3bwDAlStX0KhRI7UHSERERERUGpUT2e+//x729vZ49OgRvv32WxgaGgIAEhMT8cknn6g9QCIiIiKi0qicyOro6GDmzJkK5dOnT1dLQEREREREylAqkf3tt9/Qu3dv6Ojo4Lfffiu3bf/+/dUSGBERERFReZRKZAcOHIikpCRYWFhg4MCBZbaTSCS84YuIiIiIqoRSiWxxcXGp/09EREREVF1UXn6LiIiIiOhtwESWiIiIiGokJrJEREREVCMxkSUiIiKiGomJLBERERHVSGpLZF+8eIGHDx+qqzsiIiIionKpLZGNjY2Fg4ODurojIiIiIioXpxYQERERUY2k1AMRAKB169bl1ufl5b1xMEREREREylI6kb1x4wb8/PzKnD6QmJiIW7duqS0wIiIiIqLyKJ3INm/eHB4eHpg0aVKp9TExMVi3bp3aAiMiIiIiKo/Sc2Q7dOiA+Pj4MuuNjIzQuXNntQRFRERERFQRpUdkV6xYUW69k5MTTp48+cYBEREREREpg6sWEBEREVGNpHQim5qaigcPHsiVxcbGwt/fH0OHDsW2bdvUHhwRERERUVmUTmQ//fRThIaGivspKSno1KkTLly4gPz8fIwZMwY///yzRoJ8VVhYGOzt7aGnpwcPDw+cP3++zLabNm2CRCKR2/T09OTaCIKABQsWwNraGvr6+vDy8sLt27c1fRpERERE9IaUTmT/+usv9O/fX9zfsmUL6tati5iYGBw4cABff/01wsLCNBJkiR07diAgIABBQUG4fPkyWrZsCW9vb6SkpJR5jLGxMRITE8Xt9VHlb7/9FqGhoVi9ejWio6NRu3ZteHt74/nz5xo9FyIiIiJ6M0onsklJSbC3txf3IyIiMGjQINSq9fJ+sf79+2t8JHP58uUYP348/P394eLigtWrV8PAwAAbNmwo8xiJRAIrKytxs7S0FOsEQUBISAjmzZuHAQMGoEWLFtiyZQsSEhKwf/9+jZ4LEREREb0ZpRNZY2NjZGRkiPvnz5+Hh4eHuC+RSJCfn6/W4F5VUFCAS5cuwcvLSyzT0tKCl5cXoqKiyjwuOzsbdnZ2sLW1xYABAxAbGyvW3bt3D0lJSXJ9mpiYwMPDo9w+8/PzIZPJ5DYiIiIiqlpKJ7Lt2rVDaGgoiouLsXv3bmRlZaF79+5i/a1bt2Bra6uRIIGXN5sVFRXJjagCgKWlJZKSkko9pkmTJtiwYQMOHDiAX375BcXFxWjfvj0eP34MAOJxqvQJAMHBwTAxMRE3TZ43EREREZVO6UR28eLF+O2336Cvr49hw4Zh9uzZqFOnjli/fft2dOnSRSNBVpanpydGjRoFNzc3dOnSBXv37oW5uTnWrFnzRv0GBgYiMzNT3B49eqSmiImIiIhIWUo/EKFFixaIi4vDuXPnYGVlJTetAAD8/Pzg4uKi9gBLmJmZQVtbG8nJyXLlycnJsLKyUqoPHR0dtGrVCnfu3AEA8bjk5GRYW1vL9enm5lZmP1KpFFKpVMUzICIiIiJ1UumBCGZmZhgwYIBCEgsAvr6+cHBwUFtgr9PV1UWbNm1w4sQJsay4uBgnTpyAp6enUn0UFRXh77//FpNWBwcHWFlZyfUpk8kQHR2tdJ9EREREVD2UHpHdsmWLUu1GjRpV6WAqEhAQgNGjR6Nt27Zwd3dHSEgIcnJy4O/vL752/fr1ERwcDAD44osv0K5dOzRq1AgZGRlYunQpHjx4gHHjxgF4eYPatGnT8OWXX6Jx48ZwcHDA/PnzYWNjg4EDB2rsPIiIiIjozSmdyI4ZMwaGhoaoVasWBEEotY1EItFoIjts2DA8ffoUCxYsQFJSEtzc3BAeHi7erPXw4UNoaf3fIPOzZ88wfvx4JCUloU6dOmjTpg3+/PNPuSkQs2fPRk5ODiZMmICMjAx07NgR4eHhCg9OICIiIqK3i0QoKyt9TbNmzZCcnIyRI0fio48+QosWLTQdW40hk8lgYmKCzMxMGBsba/z17Oce1vhrEAHA/W98qzuEMvF7QFXpbf0u8HtAVamqvgeq5FVKz5GNjY3F4cOHkZeXh86dO6Nt27b48ccfuYYqEREREVULlW728vDwwJo1a5CYmIipU6di586dsLa2xogRIzT6MAQiIiIioteplMiW0NfXx6hRo7Bo0SK4u7tj+/btyM3NVXdsRERERERlUjmRffLkCb7++ms0btwYfn5+ePfddxEbGyv3cAQiIiIiIk1TetWCnTt3YuPGjTh16hS8vb2xbNky+Pr6QltbW5PxERERERGVSulE1s/PDw0bNsT06dNhaWmJ+/fvIywsTKHd1KlT1RogEREREVFplE5kGzZsCIlEgm3btpXZRiKRMJElIiIioiqhdCJ7//59DYZBRERERKSaSq1aQERERERU3ZjIEhEREVGNxESWiIiIiGokJrJEREREVCMxkSUiIiKiGomJLBERERHVSGpLZL28vODo6Kiu7oiIiIiIyqX0OrIVGThwINLS0tTVHRERERFRudSWyE6ZMkVdXRERERERVeiNpxbIZDLs378fcXFx6oiHiIiIiEgpKieyQ4cOxapVqwAAeXl5aNu2LYYOHYoWLVpgz549ag+QiIiIiKg0Kieyp0+fRqdOnQAA+/btgyAIyMjIQGhoKL788ku1B0hEREREVBqVE9nMzEzUrVsXABAeHo7BgwfDwMAAvr6+uH37ttoDJCIiIiIqjcqJrK2tLaKiopCTk4Pw8HD06tULAPDs2TPo6empPUAiIiIiotKovGrBtGnTMGLECBgaGsLOzg5du3YF8HLKgaurq7rjIyIiIiIqlcqJ7CeffAJ3d3c8evQIPXv2hJbWy0FdR0dHzpElIiIioiqjciJ79uxZdOzYEW3btpUr9/X1VVtQREREREQVUXmObPfu3eHg4IDPP/8csbGxmoipXGFhYbC3t4eenh48PDxw/vz5MtuuW7cOnTp1Qp06dVCnTh14eXkptB8zZgwkEonc5uPjo+nTICIiIqI3pHIim5CQgBkzZiAyMhKurq5wc3PD0qVL8fjxY03EJ2fHjh0ICAhAUFAQLl++jJYtW8Lb2xspKSmlto+MjMTw4cNx8uRJREVFwdbWFr169cKTJ0/k2vn4+CAxMVHcfv31V42fCxERERG9GZUTWTMzM0yZMgXnzp3D3bt3MWTIEGzevBn29vbo3r27JmIULV++HOPHj4e/vz9cXFywevVqGBgYYMOGDaW237p1Kz755BO4ubmhadOm+Omnn1BcXIwTJ07ItZNKpbCyshK3OnXqaPQ8iIiIiOjNvdEjah0cHDB37lx88803cHV1xalTp9QVl4KCggJcunQJXl5eYpmWlha8vLwQFRWlVB+5ubkoLCwU18EtERkZCQsLCzRp0gSTJk1CWlpauf3k5+dDJpPJbURERERUtSqdyJ47dw6ffPIJrK2t8cEHH6B58+Y4fPiwOmOTk5qaiqKiIlhaWsqVW1paIikpSak+5syZAxsbG7lk2MfHB1u2bMGJEyewZMkSnDp1Cr1790ZRUVGZ/QQHB8PExETcbG1tK3dSRERERFRpKq9aEBgYiO3btyMhIQE9e/bEihUrMGDAABgYGGgiPrX55ptvsH37dkRGRso9uMHPz0/8f1dXV7Ro0QJOTk6IjIxEjx49Su0rMDAQAQEB4r5MJmMyS0RERFTFVE5kT58+jVmzZmHo0KEwMzPTREylMjMzg7a2NpKTk+XKk5OTYWVlVe6x3333Hb755hscP34cLVq0KLeto6MjzMzMcOfOnTITWalUCqlUqtoJEBEREZFaqTy1oGRKQVUmsQCgq6uLNm3ayN2oVXLjlqenZ5nHffvtt1i8eDHCw8MV1r4tzePHj5GWlgZra2u1xE1EREREmvFGN3tVtYCAAKxbtw6bN29GXFwcJk2ahJycHPj7+wMARo0ahcDAQLH9kiVLMH/+fGzYsAH29vZISkpCUlISsrOzAQDZ2dmYNWsW/vrrL9y/fx8nTpzAgAED0KhRI3h7e1fLORIRERGRclSeWlCdhg0bhqdPn2LBggVISkqCm5sbwsPDxRvAHj58KD4yFwB+/PFHFBQU4P3335frJygoCAsXLoS2tjauXbuGzZs3IyMjAzY2NujVqxcWL17MqQNEREREb7kalcgCwJQpUzBlypRS6yIjI+X279+/X25f+vr6OHr0qJoiIyIiIqKqVKOmFhARERERlWAiS0REREQ1klJTC+rUqQOJRKJUh+np6W8UEBERERGRMpRKZENCQsT/T0tLw5dffglvb29x2auoqCgcPXoU8+fP10iQRERERESvUyqRHT16tPj/gwcPxhdffCF3w9XUqVOxatUqHD9+HNOnT1d/lEREREREr1F5juzRo0fh4+OjUO7j44Pjx4+rJSgiIiIiooqonMjWq1cPBw4cUCg/cOAA6tWrp5agiIiIiIgqovI6sosWLcK4ceMQGRkJDw8PAEB0dDTCw8Oxbt06tQdIRERERFQalRPZMWPGwNnZGaGhodi7dy8AwNnZGWfPnhUTWyIiIiIiTavUk708PDywdetWdcdCRERERKS0Sj0Q4e7du5g3bx4++OADpKSkAACOHDmC2NhYtQZHRERERFQWlRPZU6dOwdXVFdHR0dizZw+ys7MBAFevXkVQUJDaAyQiIiIiKo3KiezcuXPx5Zdf4tixY9DV1RXLu3fvjr/++kutwRERERERlUXlRPbvv//Ge++9p1BuYWGB1NRUtQRFRERERFQRlRNZU1NTJCYmKpRfuXIF9evXV0tQREREREQVUTmR9fPzw5w5c5CUlASJRILi4mKcO3cOM2fOxKhRozQRIxERERGRApUT2a+//hpNmzaFra0tsrOz4eLigs6dO6N9+/aYN2+eJmIkIiIiIlKg8jqyurq6WLduHebPn4/r168jOzsbrVq1QuPGjTURHxERERFRqSr1QAQAaNiwIRo2bKjOWIiIiIiIlKZyIltUVIRNmzbhxIkTSElJQXFxsVx9RESE2oIjIiIiIiqLyonsZ599hk2bNsHX1xfNmzeHRCLRRFxEREREROVSOZHdvn07du7ciT59+mgiHiIiIiIipai8aoGuri4aNWqkiViIiIiIiJSmciI7Y8YMrFixAoIgaCIeIiIiIiKlKDW1YNCgQXL7EREROHLkCJo1awYdHR25ur1796ovOiIiIiKiMig1ImtiYiK3vffee+jSpQvMzMwU6jQtLCwM9vb20NPTg4eHB86fP19u+127dqFp06bQ09ODq6srfv/9d7l6QRCwYMECWFtbQ19fH15eXrh9+7YmT4GIiIiI1ECpEdmNGzdqOg6l7NixAwEBAVi9ejU8PDwQEhICb29vxMfHw8LCQqH9n3/+ieHDhyM4OBh9+/bFtm3bMHDgQFy+fBnNmzcHAHz77bcIDQ3F5s2b4eDggPnz58Pb2xs3btyAnp5eVZ8iERERESlJ5Tmy3bt3R0ZGhkK5TCZD9+7d1RFTmZYvX47x48fD398fLi4uWL16NQwMDLBhw4ZS269YsQI+Pj6YNWsWnJ2dsXjxYrRu3RqrVq0C8HI0NiQkBPPmzcOAAQPQokULbNmyBQkJCdi/f79Gz4WIiIiI3ozKiWxkZCQKCgoUyp8/f44zZ86oJajSFBQU4NKlS/Dy8hLLtLS04OXlhaioqFKPiYqKkmsPAN7e3mL7e/fuISkpSa6NiYkJPDw8yuyTiIiIiN4OSq8je+3aNfH/b9y4gaSkJHG/qKgI4eHhqF+/vnqje0VqaiqKiopgaWkpV25paYmbN2+WekxSUlKp7UtiL/lveW1Kk5+fj/z8fHFfJpMBAG4kZMIw6/9WczDR14FtXQM8LyzCnZRshX6a1385p/ju02zkFRTJ1TWoow9TA12kZecjMfN5mbEQaVJmXiFM9HWQkvUcKbJ8uTpjPR00rGeAghfFuJWcpXCsi7UxtLQk+OdpNnJf+3zbmOqjbm1dpOcUICEjT67OQFcbjuaGKC4WcCNRptDvO5ZG0K2l8u/gRG/k+pNMuX1na2Noa0lwLzUHOfkv5OqsTfRQz1CKjNwCPH4m//nW19WGk7lhqX0CQCMLQ+jpaONRei4y8wrl6iyMpLAw1kPW80I8SMtVx2kRqeT6k0xYGuvB3EiKzNxCPHom/znU09FCIwsjse3rSj7fj5/lIiNX/vNtZiiFlYkesvNf4EaC4rFlUTqRdXNzg0QigUQiKXUKgb6+PlauXKn0C9dkwcHBWLRokUL50DV/QUtqIO4PdLNBiF8rJGU+R9+VZxXa3//GFwAwc9dVXHmYIVf3/bCWeK9VAxz+OxELDsTK1XVqbIafx3og63khXBf+odDvpXleqGcoxbjNF3A8LkWubp6vM8Z1csTha4mYvO2yXF0zG2McntoJAPDO50dQUCT/+OE/pnfGO5ZGmLP7GnZcfCRXN6mrE+b4NEXU3TQMX/eXXJ2VsR7++l8PAEC7r08gSSafmP86vh08nephSfhN/Bh5V65uWFtbLHm/BW4lZ6HX96fl6nS1tXDrq94AAN/QM4hNkE96wj5oDd8W1vjpzD/48nCcXJ2XswV+Gv0u0rLz0ebL43jd3wt7wUhPBx+uj8aZ26lydV8MaIZRnvbYd+Uxpu+4KlfXqqEp9n3SAQBgP/ewQr+RM7vC3qw2pm2/gv0xCXJ1n/VojOk938GpW08xeoP8TYx29QxwalY3AEDrxceQniP/V5E9k9qjjV0dLD50A+vP3pOr+7CdHRYPbI7rTzIVPoeG0lq4vsgbANBz+Sncfu0XrvP30tHTxRK7Lj7G0qPxcnV9XK3ww4g2SMvJL/XzHf+lD6Ra2gjc+zei76XL1X0zyBV+7g3xR2wS5u79W67Ow6Eudkz0RGFxcan9RgV2h7WJPvq4WuH3v+V/4Zzl3QSTuzXCsRvJGL/lolxdYwtDHAvoAgBoHnQU2a8lH4c+7Yjm9U0wf/91/PzXA7m6sR0dML+vCy49eIbBP/4pV1e3ti4uz+8JAOiy9KRCgrH5I3d0eccc3x+7hRUn5G8kLblG3E/NQdfvIhXOteQa8d4P58q8RmyJus9rRBVcI17/LJZcIxYcuF7mNeJkfEq514jSPt8l14hlf8SXeY24/DDjrblGrBvVFj1dLBF28k6Z14jEzDx4Bis+vj7+Sx9Ia2lj2JqoMq8R288/LPMakf+iCE3mhSv0W3KN+GTrJV4j1HyN6LvyrHiNOHsntdxrxKAf/izzGrHyxJ0yrxF/P87EsDXy14jySAQlF4R98OABBEGAo6Mjzp8/D3Nzc7FOV1cXFhYW0NbWVvqFVVVQUAADAwPs3r0bAwcOFMtHjx6NjIwMHDhwQOGYhg0bIiAgANOmTRPLgoKCsH//fly9ehX//PMPnJyccOXKFbi5uYltunTpAjc3N6xYsaLUWEobkbW1tUVU3EMYGhmL5Zoaka0trQUHs9ooKhYQV8qIVRMrI+hoa+FBWg6ynst/EaviN6n7qTlydbW0JWhq9fJ9uZkkw4si+Y+cvVltGEprISnzOVKz5Uf9TA100KBOxe/hnZQsPC+U/8LY1jGAiYEOnmblI/m1fxiN9GrBrl5tFBYVIz5JcTTxbRtt0a2lhXcsX/5s4hJlKCqWfw8dzGqjtrQWEjPzkJYt/w9Yndq6qG+qj7yCItx9Kv8eSiRAM5uX7+Ht5Czkv3jtPaxr8NaOyD5My4Xs+WvvobEUFkZ6yMwrxKN0+fdQWksLjf//exibkInXr3xO5obQ19XGk4w8PHstCahnqAtrE33k5L/Avdc+39paEjhbv/x830rOQsFr76FdPQMY6ekgRfYcKVny7yGvES/xGvF/eI14ideIl/6r14jr9xLh6dwQmZmZMDY2VujnVUonsm8DDw8PuLu7iyO/xcXFaNiwIaZMmYK5c+cqtB82bBhyc3Nx8OBBsax9+/Zo0aIFVq9eDUEQYGNjg5kzZ2LGjBkAXialFhYW2LRpE/z8/JSKSyaTwcTERKk3nIiIiIjKpkpepfTUglfdvXsXISEhiIt7+acYFxcXfPbZZ3BycqpMd0oLCAjA6NGj0bZtW7i7uyMkJAQ5OTnw9/cHAIwaNQr169dHcHAwAOCzzz5Dly5dsGzZMvj6+mL79u24ePEi1q5dCwCQSCSYNm0avvzySzRu3FhcfsvGxkZu1JeIiIiI3j4qJ7JHjx5F//794ebmhg4dXs7zOXfuHJo1a4aDBw+iZ8+eag+yxLBhw/D06VMsWLAASUlJcHNzQ3h4uHiz1sOHD6Gl9X83gbRv3x7btm3DvHnz8L///Q+NGzfG/v37xTVkAWD27NnIycnBhAkTkJGRgY4dOyI8PJxryBIRERG95VSeWtCqVSt4e3vjm2++kSufO3cu/vjjD1y+fLmMI/+9OLWAiIiISD1UyatUXsMmLi4OY8eOVSj/6KOPcOPGDVW7IyIiIiKqFJUTWXNzc8TExCiUx8TElPqYWCIiIiIiTVB5juz48eMxYcIE/PPPP2jfvj2Al3NklyxZgoCAALUHSERERERUGpXnyAqCgJCQECxbtgwJCS8Xa7axscGsWbMwdepUSCQSjQT6NuMcWSIiIiL1UCWveqN1ZLOyXi5wbGRkVNku/hWYyBIRERGph8bXkQWAp0+fIj7+5ePomjZtCjMzs8p2RURERESkMpVv9srJycFHH30Ea2trdO7cGZ07d4a1tTXGjh2L3NzcijsgIiIiIlIDlRPZgIAAnDp1CgcPHkRGRgYyMjJw4MABnDp1SnzMKxERERGRpqk8R9bMzAy7d+9G165d5cpPnjyJoUOH4unTp+qMr0bgHFkiIiIi9dDoAxFyc3PFR8K+ysLCglMLiIiIiKjKqJzIenp6IigoCM+fPxfL8vLysGjRInh6eqo1OCIiIiKisqi8asGKFSvg7e2NBg0aoGXLlgCAq1evQk9PD0ePHlV7gEREREREpanUOrK5ubnYunUrbt68CQBwdnbGiBEjoK+vr/YAawLOkSUiIiJSD42vI2tgYIDx48dXKjgiIiIiInWoVCKbkJCAs2fPIiUlBcXFxXJ1U6dOVUtgRERERETlUTmR3bRpEyZOnAhdXV3Uq1cPEolErJNIJExkiYiIiKhKqDxH1tbWFh9//DECAwOhpaXyogf/SpwjS0RERKQeGl9H1s/Pj0ksEREREVUrlbPRsWPHYteuXZqIhYiIiIhIaSpPLSgqKkLfvn2Rl5cHV1dX6OjoyNUvX75crQHWBJxaQERERKQeGl1+Kzg4GEePHkWTJk0AQOFmLyIiIiKiqqByIrts2TJs2LABY8aM0UA4RERERETKUXmOrFQqRYcOHTQRCxERERGR0lROZD/77DOsXLlSE7EQERERESlN5akF58+fR0REBA4dOoRmzZop3Oy1d+9etQVHRERERFQWlUdkTU1NMWjQIHTp0gVmZmYwMTGR2zQlPT0dI0aMgLGxMUxNTTF27FhkZ2eX2/7TTz9FkyZNoK+vj4YNG2Lq1KnIzMyUayeRSBS27du3a+w8iIiIiEg9VB6R3bhxoybiqNCIESOQmJiIY8eOobCwEP7+/pgwYQK2bdtWavuEhAQkJCTgu+++g4uLCx48eICPP/4YCQkJ2L17t1zbjRs3wsfHR9w3NTXV5KkQERERkRqovI5sXl4eBEGAgYEBAODBgwfYt28fXFxc0KtXL40EGRcXBxcXF1y4cAFt27YFAISHh6NPnz54/PgxbGxslOpn165dGDlyJHJyclCr1sscXiKRYN++fRg4cGCl4+M6skRERETqodFH1A4YMABbtmwBAGRkZMDd3R3Lli3DgAED8OOPP1Yu4gpERUXB1NRUTGIBwMvLC1paWoiOjla6n5I3pCSJLTF58mSYmZnB3d0dGzZsgIq5PRERERFVA5UT2cuXL6NTp04AgN27d8PKygoPHjzAli1bEBoaqvYAASApKQkWFhZyZbVq1ULdunWRlJSkVB+pqalYvHgxJkyYIFf+xRdfYOfOnTh27BgGDx6MTz75pMJVGfLz8yGTyeQ2IiIiIqpaKs+Rzc3NhZGREQDgjz/+wKBBg6ClpYV27drhwYMHKvU1d+5cLFmypNw2cXFxqoaoQCaTwdfXFy4uLli4cKFc3fz588X/b9WqFXJycrB06VJMnTq1zP6Cg4OxaNGiN46LiIiIiCpP5RHZRo0aYf/+/Xj06BGOHj0qzotNSUlReX7ojBkzEBcXV+7m6OgIKysrpKSkyB374sULpKenw8rKqtzXyMrKgo+PD4yMjLBv3z6F5cJe5+HhgcePHyM/P7/MNoGBgcjMzBS3R48eKX/SRERERKQWKo/ILliwAB988AGmT5+OHj16wNPTE8DL0dlWrVqp1Je5uTnMzc0rbOfp6YmMjAxcunQJbdq0AQBERESguLgYHh4eZR4nk8ng7e0NqVSK3377DXp6ehW+VkxMDOrUqQOpVFpmG6lUWm49EREREWmeyqsWAC/nrCYmJqJly5bQ0no5qHv+/HkYGxujadOmag8SAHr37o3k5GSsXr1aXH6rbdu24vJbT548QY8ePbBlyxa4u7tDJpOhV69eyM3Nxb59+1C7dm2xL3Nzc2hra+PgwYNITk5Gu3btoKenh2PHjmHmzJmYOXOmSlMHuGoBERERkXqoklepPCILAFZWVgp/0nd3d69MV0rbunUrpkyZgh49ekBLSwuDBw+Wu7mssLAQ8fHxyM3NBfDyprSSFQ0aNWok19e9e/dgb28PHR0dhIWFYfr06RAEAY0aNcLy5csxfvx4jZ4LEREREb25So3IkjyOyBIRERGph0bXkSUiIiIiehswkSUiIiKiGomJLBERERHVSConso8fP0Z2drZCeWFhIU6fPq2WoIiIiIiIKqJ0IpuYmAh3d3fY2dnB1NQUo0aNkkto09PT0a1bN40ESURERET0OqUT2blz50JLSwvR0dEIDw/HjRs30K1bNzx79kxswwUQiIiIiKiqKJ3IHj9+HKGhoWjbti28vLxw7tw5WFtbo3v37khPTwcASCQSjQVKRERERPQqpRPZzMxM1KlTR9yXSqXYu3cv7O3t0a1bN6SkpGgkQCIiIiKi0iidyDo6OuLatWtyZbVq1cKuXbvg6OiIvn37qj04IiIiIqKyKJ3I9u7dG2vXrlUoL0lm3dzc1BkXEREREVG5lH5E7YsXL5Cbm1vmo8JevHiBJ0+ewM7OTq0B1gR8RC0RERGRemjkEbW1atUqtbMXL14gOzsbtWrV+k8msURERERUPZROZA8ePIhNmzbJlX311VcwNDSEqakpevXqJbcUFxERERGRJimdyC5fvhw5OTni/p9//okFCxZg/vz52LlzJx49eoTFixdrJEgiIiIiotcpncjGxsaiffv24v7u3bvRs2dPfP755xg0aBCWLVuGgwcPaiRIIiIiIqLXKZ3IZmVloV69euL+2bNn0aNHD3G/WbNmSEhIUG90RERERERlUDqRrV+/PuLi4gAA2dnZuHr1qtwIbVpaGgwMDNQfIRERERFRKZROZIcMGYJp06bh559/xvjx42FlZYV27dqJ9RcvXkSTJk00EiQRERER0etqKdtwwYIFePLkCaZOnQorKyv88ssv0NbWFut//fVX9OvXTyNBEhERERG9TukHIlDZ+EAEIiIiIvXQyAMRiIiIiIjeJkpPLejevbtS7SIiIiodDBERERGRspROZCMjI2FnZwdfX1/o6OhoMiYiIiIiogopncguWbIEGzduxK5duzBixAh89NFHaN68uSZjIyIiIiIqk9JzZGfNmoUbN25g//79yMrKQocOHeDu7o7Vq1dDJpNpMkYiIiIiIgWVXrUgNzcXu3btQlhYGG7cuIGEhIT/7B37XLWAiIiISD2qZNWCy5cv49SpU4iLi0Pz5s01Pm82PT0dI0aMgLGxMUxNTTF27FhkZ2eXe0zXrl0hkUjkto8//liuzcOHD+Hr6wsDAwNYWFhg1qxZePHihSZPhYiIiIjUQOk5sgCQkJCATZs2YdOmTZDJZBg5ciSio6Ph4uKiqfhEI0aMQGJiIo4dO4bCwkL4+/tjwoQJ2LZtW7nHjR8/Hl988YW4/+pjdIuKiuDr6wsrKyv8+eefSExMxKhRo6Cjo4Ovv/5aY+dCRERERG9O6akFffr0wcmTJ9GrVy989NFH8PX1Ra1aKuXBlRYXFwcXFxdcuHABbdu2BQCEh4ejT58+ePz4MWxsbEo9rmvXrnBzc0NISEip9UeOHEHfvn2RkJAAS0tLAMDq1asxZ84cPH36FLq6ukrFx6kFREREROqhkakF4eHhqFu3Lh4+fIhFixbB3d0drVu3Vtg0ISoqCqampmISCwBeXl7Q0tJCdHR0ucdu3boVZmZmaN68OQIDA5GbmyvXr6urq5jEAoC3tzdkMhliY2PL7DM/Px8ymUxuIyIiIqKqpfSQalBQkCbjKFdSUhIsLCzkymrVqoW6desiKSmpzOM++OAD2NnZwcbGBteuXcOcOXMQHx+PvXv3iv2+msQCEPfL6zc4OBiLFi2q7OkQERERkRpUayI7d+5cLFmypNw2cXFxle5/woQJ4v+7urrC2toaPXr0wN27d+Hk5FTpfgMDAxEQECDuy2Qy2NraVro/IiIiIlJd1UxyLcOMGTMwZsyYcts4OjrCysoKKSkpcuUvXrxAeno6rKyslH49Dw8PAMCdO3fg5OQEKysrnD9/Xq5NcnIyAJTbr1QqhVQqVfp1iYiIiEj9lEpkfXx8sHDhQrRr167cdllZWfjhhx9gaGiIyZMnV9ivubk5zM3NK2zn6emJjIwMXLp0CW3atAEAREREoLi4WExOlRETEwMAsLa2Fvv96quvkJKSIk5dOHbsGIyNjatkJQYiIiIiqjylEtkhQ4Zg8ODBMDExQb9+/dC2bVvY2NhAT08Pz549w40bN3D27Fn8/vvv8PX1xdKlS9UapLOzM3x8fDB+/HisXr0ahYWFmDJlCvz8/MQVC548eYIePXpgy5YtcHd3x927d7Ft2zb06dMH9erVw7Vr1zB9+nR07twZLVq0AAD06tULLi4u+PDDD/Htt98iKSkJ8+bNw+TJkzniSkRERPSWU3r5rfz8fOzatQs7duzA2bNnkZmZ+bIDiQQuLi7w9vbG2LFj4ezsrJFA09PTMWXKFBw8eBBaWloYPHgwQkNDYWhoCAC4f/8+HBwccPLkSXTt2hWPHj3CyJEjcf36deTk5MDW1hbvvfce5s2bJ7eUw4MHDzBp0iRERkaidu3aGD16NL755huVlhbj8ltERERE6qFKXlXpR9RmZmYiLy8P9erV0/hTvd52TGSJiIiI1EOVvKrSN3uZmJjAxMSksocTEREREb0RpR+IQERERET0NmEiS0REREQ1EhNZIiIiIqqRVEpki4qKcPr0aWRkZGgoHCIiIiIi5aiUyGpra6NXr1549uyZpuIhIiIiIlKKylMLmjdvjn/++UcTsRARERERKU3lRPbLL7/EzJkzcejQISQmJkImk8ltRERERERVQeUHImhp/V/uK5FIxP8XBAESiQRFRUXqi66G4AMRiIiIiNRDow9EOHnyZKUDIyIiIiJSF5UT2S5dumgiDiIiIiIilXAdWSIiIiKqkZjIEhEREVGNxESWiIiIiGokJrJEREREVCMxkSUiIiKiGknlRDY5ORkffvghbGxsUKtWLWhra8ttRERERERVQeXlt8aMGYOHDx9i/vz5sLa2lnsoAhERERFRVVE5kT179izOnDkDNzc3DYRDRERERKQclacW2NraQsWn2hIRERERqZ3KiWxISAjmzp2L+/fvayAcIiIiIiLlqDy1YNiwYcjNzYWTkxMMDAygo6MjV5+enq624IiIiIiIyqJyIhsSEqKBMIiIiIiIVKNyIjt69GhNxEFEREREpBKVE1kAKCoqwv79+xEXFwcAaNasGfr37891ZImIiIioyqh8s9edO3fg7OyMUaNGYe/evdi7dy9GjhyJZs2a4e7du5qIEcDLubcjRoyAsbExTE1NMXbsWGRnZ5fZ/v79+5BIJKVuu3btEtuVVr99+3aNnQcRERERqYdEUHEtrT59+kAQBGzduhV169YFAKSlpWHkyJHQ0tLC4cOHNRJo7969kZiYiDVr1qCwsBD+/v549913sW3btlLbFxUV4enTp3Jla9euxdKlS5GYmAhDQ0MALxPZjRs3wsfHR2xnamoKPT09pWOTyWQwMTFBZmYmjI2NK3F2RERERASollepnMjWrl0bf/31F1xdXeXKr169ig4dOpQ7SlpZcXFxcHFxwYULF9C2bVsAQHh4OPr06YPHjx/DxsZGqX5atWqF1q1bY/369WKZRCLBvn37MHDgwErHx0SWiIiISD1UyatUnloglUqRlZWlUJ6dnQ1dXV1Vu1NKVFQUTE1NxSQWALy8vKClpYXo6Gil+rh06RJiYmIwduxYhbrJkyfDzMwM7u7u2LBhQ4UPfMjPz4dMJpPbiIiIiKhqqZzI9u3bFxMmTEB0dDQEQYAgCPjrr7/w8ccfo3///pqIEUlJSbCwsJArq1WrFurWrYukpCSl+li/fj2cnZ3Rvn17ufIvvvgCO3fuxLFjxzB48GB88sknWLlyZbl9BQcHw8TERNxsbW1VOyEiIiIiemMqJ7KhoaFwcnKCp6cn9PT0oKenhw4dOqBRo0ZYsWKFSn3NnTu3zBuySrabN2+qGqKCvLw8bNu2rdTR2Pnz56NDhw5o1aoV5syZg9mzZ2Pp0qXl9hcYGIjMzExxe/To0RvHSERERESqUXn5LVNTUxw4cAB37twRl99ydnZGo0aNVH7xGTNmYMyYMeW2cXR0hJWVFVJSUuTKX7x4gfT0dFhZWVX4Ort370Zubi5GjRpVYVsPDw8sXrwY+fn5kEqlpbaRSqVl1hERERFR1ajUOrIA0KhRIzRq1AhFRUX4+++/8ezZM9SpU0elPszNzWFubl5hO09PT2RkZODSpUto06YNACAiIgLFxcXw8PCo8Pj169ejf//+Sr1WTEwM6tSpw0SViIiI6C2n8tSCadOmiXf9FxUVoUuXLmjdujVsbW0RGRmp7vgAvBzx9fHxwfjx43H+/HmcO3cOU6ZMgZ+fn7hiwZMnT9C0aVOcP39e7tg7d+7g9OnTGDdunEK/Bw8exE8//YTr16/jzp07+PHHH/H111/j008/1ch5EBEREZH6qJzI7t69Gy1btgTwMhH8559/cPPmTUyfPh2ff/652gMssXXrVjRt2hQ9evRAnz590LFjR6xdu1asLywsRHx8PHJzc+WO27BhAxo0aIBevXop9Kmjo4OwsDB4enrCzc0Na9aswfLlyxEUFKSx8yAiIiIi9VB5HVk9PT3cuXMHDRo0wIQJE2BgYICQkBDcu3cPLVu2/E8uRcV1ZImIiIjUQ6PryFpaWuLGjRsoKipCeHg4evbsCQDIzc2FtrZ25SImIiIiIlKRyjd7+fv7Y+jQobC2toZEIoGXlxcAIDo6Gk2bNlV7gEREREREpVE5kV24cCFcXV3x8OFDDBkyRLy7X1tbG3PnzlV7gEREREREpVFpjmxhYSF8fHywevVqNG7cWJNx1SicI0tERESkHhqbI6ujo4Nr1669UXBEREREROqg8s1eI0eOFNeRJSIiIiKqLirPkX3x4gU2bNiA48ePo02bNqhdu7Zc/fLly9UWHBERERFRWVROZK9fv47WrVsDAG7duiVXJ5FI1BMVEREREVEFVE5kT548qYk4iIiIiIhUovIcWSIiIiKit4HKI7IAcPHiRezcuRMPHz5EQUGBXN3evXvVEhgRERERUXlUHpHdvn072rdvj7i4OOzbtw+FhYWIjY1FREQETExMNBEjEREREZEClRPZr7/+Gt9//z0OHjwIXV1drFixAjdv3sTQoUPRsGFDTcRIRERERKRA5UT27t278PX1BQDo6uoiJycHEokE06dPx9q1a9UeIBERERFRaVROZOvUqYOsrCwAQP369XH9+nUAQEZGBnJzc9UbHRERERFRGVS+2atz5844duwYXF1dMWTIEHz22WeIiIjAsWPH0KNHD03ESERERESkQOVEdtWqVXj+/DkA4PPPP4eOjg7+/PNPDB48GPPmzVN7gEREREREpZEIgiBUdxA1nUwmg4mJCTIzM2FsbFzd4RARERHVWKrkVZV6IMLdu3cxb948DB8+HCkpKQCAI0eOIDY2tjLdERERERGpTOVE9tSpU3B1dUV0dDT27t2L7OxsAMDVq1cRFBSk9gCJiIiIiEqjciI7d+5cfPnllzh27Bh0dXXF8u7du+Ovv/5Sa3BERERERGVROZH9+++/8d577ymUW1hYIDU1VS1BERERERFVROVE1tTUFImJiQrlV65cQf369dUSFBERERFRRVROZP38/DBnzhwkJSVBIpGguLgY586dw8yZMzFq1ChNxEhEREREpEDlRPbrr79G06ZNYWtri+zsbLi4uKBz585o374915ElIiIioiqjciKrq6uLdevW4Z9//sGhQ4fwyy+/4ObNm/j555+hra2tiRgBAF999RXat28PAwMDmJqaKnWMIAhYsGABrK2toa+vDy8vL9y+fVuuTXp6OkaMGAFjY2OYmppi7Nix4koMRERERPT2UjqRLS4uxpIlS9ChQwe8++67CAsLQ7du3TB06FA0btxYkzECAAoKCjBkyBBMmjRJ6WO+/fZbhIaGYvXq1YiOjkbt2rXh7e0tPpkMAEaMGIHY2FgcO3YMhw4dwunTpzFhwgRNnAIRERERqZHST/ZavHgxFi5cCC8vL+jr6+Po0aMYPnw4NmzYoOkY5WzatAnTpk1DRkZGue0EQYCNjQ1mzJiBmTNnAgAyMzNhaWmJTZs2wc/PD3FxcXBxccGFCxfQtm1bAEB4eDj69OmDx48fw8bGRqmY+GQvIiIiIvXQyJO9tmzZgh9++AFHjx7F/v37cfDgQWzduhXFxcVvHLAm3Lt3D0lJSfDy8hLLTExM4OHhgaioKABAVFQUTE1NxSQWALy8vKClpYXo6Ogy+87Pz4dMJpPbiIiIiKhqKZ3IPnz4EH369BH3vby8IJFIkJCQoJHA3lRSUhIAwNLSUq7c0tJSrEtKSoKFhYVcfa1atVC3bl2xTWmCg4NhYmIibra2tmqOnoiIiIgqonQi++LFC+jp6cmV6ejooLCwsNIvPnfuXEgkknK3mzdvVrp/TQkMDERmZqa4PXr0qLpDIiIiIvrPqaVsQ0EQMGbMGEilUrHs+fPn+Pjjj1G7dm2xbO/evUq/+IwZMzBmzJhy2zg6Oird36usrKwAAMnJybC2thbLk5OT4ebmJrZJSUmRO+7FixdIT08Xjy+NVCqVex+IiIiIqOopnciOHj1aoWzkyJFv9OLm5uYwNzd/oz7K4uDgACsrK5w4cUJMXGUyGaKjo8WVDzw9PZGRkYFLly6hTZs2AICIiAgUFxfDw8NDI3ERERERkXoonchu3LhRk3FU6OHDh0hPT8fDhw9RVFSEmJgYAECjRo1gaGgIAGjatCmCg4Px3nvvQSKRYNq0afjyyy/RuHFjODg4YP78+bCxscHAgQMBAM7OzvDx8cH48eOxevVqFBYWYsqUKfDz81N6xQIiIiIiqh5KJ7LVbcGCBdi8ebO436pVKwDAyZMn0bVrVwBAfHw8MjMzxTazZ89GTk4OJkyYgIyMDHTs2BHh4eFyc323bt2KKVOmoEePHtDS0sLgwYMRGhpaNSdFRERERJWm9DqyVDauI0tERESkHqrkVTVmRPZtVvK7ANeTJSIiInozJfmUMmOtTGTVICsrCwC4niwRERGRmmRlZcHExKTcNpxaoAbFxcVISEiAkZERJBJJdYdDpZDJZLC1tcWjR484/YP+s/g9IOL3oCYQBAFZWVmwsbGBllb5jzzgiKwaaGlpoUGDBtUdBinB2NiYFy76z+P3gIjfg7ddRSOxJZR+shcRERER0duEiSwRERER1UhMZOk/QSqVIigoiI8Wpv80fg+I+D34t+HNXkRERERUI3FEloiIiIhqJCayRERERFQjMZElIiIiohqJiSz9q50+fRr9+vWDjY0NJBIJ9u/fX90hEVWp4OBgvPvuuzAyMoKFhQUGDhyI+Pj46g6LqMr9+OOPaNGihbh+rKenJ44cOVLdYdEbYiJL/2o5OTlo2bIlwsLCqjsUompx6tQpTJ48GX/99ReOHTuGwsJC9OrVCzk5OdUdGlGVatCgAb755htcunQJFy9eRPfu3TFgwADExsZWd2j0BrhqAf1nSCQS7Nu3DwMHDqzuUIiqzdOnT2FhYYFTp06hc+fO1R0OUbWqW7culi5dirFjx1Z3KFRJfEQtEdF/SGZmJoCX/4AT/VcVFRVh165dyMnJgaenZ3WHQ2+AiSwR0X9EcXExpk2bhg4dOqB58+bVHQ5Rlfv777/h6emJ58+fw9DQEPv27YOLi0t1h0VvgIksEdF/xOTJk3H9+nWcPXu2ukMhqhZNmjRBTEwMMjMzsXv3bowePRqnTp1iMluDMZElIvoPmDJlCg4dOoTTp0+jQYMG1R0OUbXQ1dVFo0aNAABt2rTBhQsXsGLFCqxZs6aaI6PKYiJLRPQvJggCPv30U+zbtw+RkZFwcHCo7pCI3hrFxcXIz8+v7jDoDTCRpX+17Oxs3LlzR9y/d+8eYmJiULduXTRs2LAaIyOqGpMnT8a2bdtw4MABGBkZISkpCQBgYmICfX39ao6OqOoEBgaid+/eaNiwIbKysrBt2zZERkbi6NGj1R0avQEuv0X/apGRkejWrZtC+ejRo7Fp06aqD4ioikkkklLLN27ciDFjxlRtMETVaOzYsThx4gQSExNhYmKCFi1aYM6cOejZs2d1h0ZvgIksEREREdVIfLIXEREREdVITGSJiIiIqEZiIktERERENRITWSIiIiKqkZjIEhEREVGNxESWiIiIiGokJrJEREREVCMxkSUiIiKiGomJLBERVakPP/wQX3/9tbhvb2+PkJCQMtv7+flh2bJlVRAZEdU0TGSJiFSUlJSETz/9FI6OjpBKpbC1tUW/fv1w4sQJsc3atWvRtWtXGBsbQyKRICMjQ6Gf/v37o2HDhtDT04O1tTU+/PBDJCQkvFFsmzZtgqmp6Rv1oUlXr17F77//jqlTpyp9zLx58/DVV18hMzNTg5ERUU3ERJaISAX3799HmzZtEBERgaVLl+Lvv/9GeHg4unXrhsmTJ4vtcnNz4ePjg//9739l9tWtWzfs3LkT8fHx2LNnD+7evYv333+/Kk6j2qxcuRJDhgyBoaGh0sc0b94cTk5O+OWXXzQYGRHVSAIRESmtd+/eQv369YXs7GyFumfPnimUnTx5UgBQat3rDhw4IEgkEqGgoKDMNsuWLROaN28uGBgYCA0aNBAmTZokZGVlyb3Wq1tQUJAgCIKQnp4ufPjhh4Kpqamgr68v+Pj4CLdu3RL73bhxo2BiYiIcPHhQeOeddwR9fX1h8ODBQk5OjrBp0ybBzs5OMDU1FT799FPhxYsX4nFhYWFCo0aNBKlUKlhYWAiDBw8uM/YXL14IJiYmwqFDh+TK7ezshO+//17cX7dunWBiYiIcP35cLFu0aJHQsWPHCt9DIvpv4YgsEZGS0tPTER4ejsmTJ6N27doK9W/yJ/309HRs3boV7du3h46OTpnttLS0EBoaitjYWGzevBkRERGYPXs2AKB9+/YICQmBsbExEhMTkZiYiJkzZwIAxowZg4sXL+K3335DVFQUBEFAnz59UFhYKPadm5uL0NBQbN++HeHh4YiMjMR7772H33//Hb///jt+/vlnrFmzBrt37wYAXLx4EVOnTsUXX3yB+Ph4hIeHo3PnzmXGfu3aNWRmZqJt27Zltvn2228xd+5c/PHHH+jRo4dY7u7ujvPnzyM/P1+5N5SI/huqO5MmIqopoqOjBQDC3r17lT6mohHZ2bNnCwYGBgIAoV27dkJqaqpKMe3atUuoV6+euF8ysvqqW7duCQCEc+fOiWWpqamCvr6+sHPnTvE4AMKdO3fENhMnThQMDAzEEV9BEARvb29h4sSJgiAIwp49ewRjY2NBJpMpFeu+ffsEbW1tobi4WK68ZER29uzZgrW1tXD9+nWFY69evSoAEO7fv6/UaxHRfwNHZImIlCQIgtr7nDVrFq5cuYI//vgD2traGDVqVLmvc/z4cfTo0QP169eHkZERPvzwQ6SlpSE3N7fMY+Li4lCrVi14eHiIZfXq1UOTJk0QFxcnlhkYGMDJyUnct7S0hL29vdx8VktLS6SkpAAAevbsCTs7Ozg6OuLDDz/E1q1by40jLy8PUqkUEolEoW7ZsmVYt24dzp49i2bNminU6+vrA0C5/RPRfw8TWSIiJTVu3BgSiQQ3b95UW59mZmZ455130LNnT2zfvh2///47/vrrr1Lb3r9/H3379kWLFi2wZ88eXLp0CWFhYQCAgoKCN47l9SkNEomk1LLi4mIAgJGRES5fvoxff/0V1tbWWLBgAVq2bFnqCg3Ay3PNzc0tNdZOnTqhqKgIO3fuLPXY9PR0AIC5ubmqp0VE/2JMZImIlFS3bl14e3sjLCwMOTk5CvVlJXDKKkkQy5oHeunSJRQXF2PZsmVo164d3nnnHYXlunR1dVFUVCRX5uzsjBcvXiA6OlosS0tLQ3x8PFxcXN4o5lq1asHLywvffvstrl27hvv37yMiIqLUtm5ubgCAGzduKNS5u7vjyJEj+Prrr/Hdd98p1F+/fh0NGjSAmZnZG8VLRP8uTGSJiFQQFhaGoqIiuLu7Y8+ePbh9+zbi4uIQGhoKT09PsV1SUhJiYmJw584dAMDff/+NmJgYcWQxOjoaq1atQkxMDB48eICIiAgMHz4cTk5Ocv28qlGjRigsLMTKlSvxzz//4Oeff8bq1avl2tjb2yM7OxsnTpxAamoqcnNz0bhxYwwYMADjx4/H2bNncfXqVYwcORL169fHgAEDKv1eHDp0CKGhoeI5bNmyBcXFxWjSpEmp7c3NzdG6dWucPXu21Pr27dvj999/x6JFixQekHDmzBn06tWr0rES0b9UdU/SJSKqaRISEoTJkycLdnZ2gq6urlC/fn2hf//+wsmTJ8U2QUFBCkthARA2btwoCIIgXLt2TejWrZtQt25dQSqVCvb29sLHH38sPH78uNzXXr58uWBtbS3o6+sL3t7ewpYtWxRuJvv444+FevXqlbr8lomJiXhsactvvSooKEho2bKlXNno0aOFAQMGCIIgCGfOnBG6dOki1KlTR9DX1xdatGgh7Nixo9z4f/jhB6Fdu3ZyZa8vv3Xq1Cmhdu3aQmhoqCAIgpCXlyeYmJgIUVFR5fZNRP89EkHQwN0LREREpcjLy0OTJk2wY8eOMkeeX/fjjz9i3759+OOPPzQcHRHVNJxaQEREVUZfXx9btmxBamqq0sfo6Ohg5cqVGoyKiGoqjsgSERERUY3EEVkiIiIiqpGYyBIRERFRjcREloiIiIhqJCayRERERFQjMZElIiIiohqJiSwRERER1UhMZImIiIioRmIiS0REREQ1EhNZIiIiIqqRmMgSERERUY30/wCJ4bcCtRYfewAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "c13_corrs = feat_gen.feature_c13_isotope_correlations(\n", + " precursor, precursor_fragments, ms1dict, visualize=True, visualize_per_isotope=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "31387954", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyWpJREFUeJzs3XdYk2cXBvA7BAgbREBEEXCgIO4JVrAunFVr3RWcdVEH+rVSq7itHYrV1lULWrVura174d57b8CFiMiSnbzfHzQpgQAJBIJ6/64rl+TJO04ImJeT85xHJAiCACIiIiIiIiIiolKgp+sAiIiIiIiIiIjow8FkFBERERERERERlRomo4iIiIiIiIiIqNQwGUVERERERERERKWGySgiIiIiIiIiIio1TEYREREREREREVGpYTKKiIiIiIiIiIhKDZNRRERERERERERUapiMIiIiIiIiIiKiUsNkFNEHoFWrVmjVqpXifkREBEQiEcLCwnQWkzrCwsIgEokQERGh61CUnD9/Hl5eXjA1NYVIJMKVK1cwffp0iEQipe2cnZ0xaNCgUo/vyZMnMDIywsmTJ0v93O+b169fw9TUFLt379Z1KEREWpH7mqAsGjRoEJydnXUdhsZEIhGmT5+u1WOWldfL2dkZXbp0KXS78PBwiEQihIeHa/X8ycnJsLOzw7p167R63NxK89rtXf05V0dJ/60xefJkNGvWrESOTaWHySgiNbRq1QoikUjlzcDAQNfhUSnKzMxEr169EBcXh4ULF+KPP/6Ak5OTrsNSMnPmTDRr1gwtWrTQdSgK6enp+Prrr+Hg4ABjY2M0a9YMBw4cUGtfeaIv983IyEjl9qtWrYKbmxuMjIxQo0YNLF68OM82d+/exYQJE+Dl5QUjI6N8k57ly5fHsGHDMHXqVI2eLxGRtsg/mMn5f5+rqysCAgLw8uXLUo1l/fr1CAkJKdVzfghu3bqF6dOnl7kP38qSRYsWwdzcHH379tV1KFQGjB8/HlevXsXOnTt1HQoVg76uAyB6F0yZMgXDhg1TGnv79i1GjhyJ9u3b6yiqonNyckJqaioTaUXw8OFDREZGYuXKlUo/E99++y0mT56sw8iyvXr1CqtXr8bq1at1HYqSQYMGYcuWLRg/fjxq1KiBsLAwdOrUCUeOHMFHH32k1jGWLl0KMzMzxX2xWJxnm+XLl2PkyJHo2bMnAgMDcfz4cYwdOxYpKSn4+uuvFdudPn0aP//8M9zd3eHm5oYrV67ke96RI0fi559/xuHDh9G6dWv1nzQRkRbNnDkTLi4uSEtLw4kTJ7B06VLs3r0bN27cgImJidrH2b9/f5FjWL9+PW7cuIHx48cX+RjqWLlyJWQyWYmeoyy5desWZsyYgVatWuWplCnO66UL3t7eSE1NhaGhodaOmZmZiUWLFmHChAkq3/u16e7du9DTY71GWWdvb49u3brhxx9/xCeffKLrcKiImIwiUkO7du3yjK1duxYAMGDAgNIOp9gKqir50GRlZUEmk6l90RQTEwMAsLKyUhrX19eHvr7u/0tdu3Yt9PX10bVr10K3TUlJ0egPmKI6d+4cNmzYgB9++AGTJk0CAPj5+cHDwwNfffUVTp06pdZxPvvsM9jY2OT7eGpqKqZMmYLOnTtjy5YtAIDhw4dDJpNh1qxZ+OKLL1CuXDkAwCeffIL4+HiYm5vjxx9/LDAZ5ebmBg8PD4SFhTEZRUQ607FjRzRu3BgAMGzYMJQvXx4LFizAX3/9hX79+ql9HG0mCUpKWfiwTBAEpKWlwdjYWKdxvAuvV056enpav8b8559/8OrVK/Tu3Vurx1VFIpEUus3bt29hampa4rFQwXr37o1evXrh0aNHqFq1qq7DoSJg2pc+WEeOHIFIJML27dvzPLZ+/XqIRCKcPn063/3Xr18PU1NTdOvWrSTDLFBoaChat24NOzs7SCQSuLu7Y+nSpYXul9887s2bN8Pd3R1GRkbw8PDA9u3b88xnl+/7448/YsWKFahWrRokEgmaNGmC8+fP5znXnTt38Nlnn8Ha2hpGRkZo3LixypLamzdvonXr1jA2NkblypUxe/ZstT8VHTRoEMzMzPDo0SP4+vrC1NQUDg4OmDlzJgRBUBl7SEiIIvZbt24BAA4fPoyWLVvC1NQUVlZW6NatG27fvq10Hh8fHwBAr169IBKJFH0cVPWMUiU+Ph7jx4+Ho6MjJBIJqlevjvnz5+d5rhs2bECjRo1gbm4OCwsL1KlTB4sWLSr0+Dt27ECzZs2UKoiA7KmmHh4euHjxIry9vWFiYoJvvvmm0ONpw5YtWyAWi/HFF18oxoyMjDB06FCcPn0aT548Ues4giAgMTFR6TXN6ciRI3j9+jVGjx6tND5mzBi8ffsWu3btUoxZW1vD3Nxc7efQrl07/P333/mem4iotMmT448fPwaQ/eHKrFmzFO9tzs7O+Oabb5Cenq60X+4eRPIeP5s2bcKcOXNQuXJlGBkZoU2bNnjw4IHSfrt27UJkZKRiymBB/W7i4+MhFovx888/K8ZiY2Ohp6eH8uXLK/1/OmrUKNjb2yvuq+qlo877orrvsarIeyLt27cPjRs3hrGxMZYvX16s40ZGRmL06NGoWbMmjI2NUb58efTq1UtpOl5YWBh69eoFAPj4448V31t5zyVVPaNiYmIwdOhQVKhQAUZGRqhXr16eimhNrteio6MxePBgVK5cGRKJBBUrVkS3bt1UThs8ceIEmjZtCiMjI1StWhVr1qxRelxVz6ic1yBeXl4wNjaGi4sLli1bVuD3T27Hjh1wdnZGtWrVlMbVvf4DgB9//BFeXl4oX748jI2N0ahRI8UHVznl7hklnyZ79OhRjB49GnZ2dqhcubLi8T179iiuHc3NzdG5c2fcvHlT5XPw8PBQusZW14ULF+Dr6wsbGxvF927IkCFFen4ikQgBAQGKa35jY2N4enri+vXrALIrzKtXrw4jIyO0atUqz89AcV9Ldf4uyMzMxIwZM1CjRg0YGRmhfPny+Oijj/K0d2jbti0A4K+//lLr3FT26P5jfCIdadWqFRwdHbFu3Tr06NFD6bF169ahWrVq8PT0VLnvq1evcODAAfTp00enn4wsXboUtWvXxieffAJ9fX38/fffGD16NGQyGcaMGaPRsXbt2oU+ffqgTp06mDdvHt68eYOhQ4eiUqVKKrdfv349kpKSMGLECIhEInz//ff49NNP8ejRI8Unmjdv3kSLFi1QqVIlTJ48Gaampti0aRO6d++OrVu3Kr7v0dHR+Pjjj5GVlaXYbsWKFRp9GimVStGhQwc0b94c33//Pfbu3Yvg4GBkZWVh5syZStuGhoYiLS0NX3zxBSQSCaytrXHw4EF07NgRVatWxfTp05GamorFixejRYsWuHTpEpydnTFixAhUqlQJc+fOxdixY9GkSRNUqFBB7RhTUlLg4+ODZ8+eYcSIEahSpQpOnTqFoKAgvHjxQtGH48CBA+jXrx/atGmD+fPnAwBu376NkydPYty4cfkePzMzE+fPn8eoUaNUPv769Wt07NgRffv2xeeff15g7Onp6UhKSlLreRVUrQQAly9fhqurKywsLJTGmzZtCgC4cuUKHB0dCz1P1apVkZycDFNTU3Tv3h0//fST0nO4fPkyACgqB+QaNWoEPT09XL58GZ9//rlazym3Ro0aYeHChbh58yY8PDyKdAwiIm16+PAhgOzedkB2tdTq1avx2WefYeLEiTh79izmzZuH27dvq/WH73fffQc9PT1MmjQJCQkJ+P777zFgwACcPXsWQHbLgoSEBDx9+hQLFy4EgDwffORkZWUFDw8PHDt2DGPHjgWQncgQiUSIi4vDrVu3ULt2bQDA8ePH0bJly3yPpc77orrvsQW5e/cu+vXrhxEjRmD48OGoWbNmsY57/vx5nDp1Cn379kXlypURERGBpUuXolWrVrh16xZMTEzg7e2NsWPH4ueff8Y333wDNzc3AFD8m1tqaipatWqFBw8eICAgAC4uLti8eTMGDRqE+Pj4PNcJ6lyv9ezZEzdv3sSXX34JZ2dnxMTE4MCBA4iKilJKCj548ACfffYZhg4dCn9/f/z+++8YNGgQGjVqpHgt8/PmzRt06tQJvXv3Rr9+/bBp0yaMGjUKhoaGeRIruZ06dQoNGzZU+Zi613+LFi3CJ598ggEDBiAjIwMbNmxAr1698M8//6Bz584Fnh8ARo8eDVtbW0ybNg1v374FAPzxxx/w9/eHr68v5s+fj5SUFCxduhQfffQRLl++rPje7d+/Hz179oS7uzvmzZuH169fK5J/hYmJiUH79u1ha2uLyZMnw8rKChEREdi2bZvSdpo8v+PHj2Pnzp2KvxXmzZuHLl264KuvvsKvv/6K0aNH482bN/j+++8xZMgQHD58WGn/or6W6v5dMH36dMybNw/Dhg1D06ZNkZiYiAsXLuDSpUtKs1UsLS1RrVo1nDx5EhMmTCj0e0llkED0AQsKChIkEokQHx+vGIuJiRH09fWF4ODgfPdbvHixAEDYvXt3KUSZv5SUlDxjvr6+QtWqVZXGfHx8BB8fH8X9x48fCwCE0NBQxVidOnWEypUrC0lJSYqx8PBwAYDg5OSUZ9/y5csLcXFxivG//vpLACD8/fffirE2bdoIderUEdLS0hRjMplM8PLyEmrUqKEYGz9+vABAOHv2rGIsJiZGsLS0FAAIjx8/LvD74O/vLwAQvvzyS6XzdO7cWTA0NBRevXqlFLuFhYUQExOjdIz69esLdnZ2wuvXrxVjV69eFfT09AQ/Pz/F2JEjRwQAwubNm5X2Dw4OFnL/l+rk5CT4+/sr7s+aNUswNTUV7t27p7Td5MmTBbFYLERFRQmCIAjjxo0TLCwshKysrAKfd24PHjwQAAiLFy/O85iPj48AQFi2bJlaxwoNDRUAqHUrTO3atYXWrVvnGb9586ZaMYWEhAgBAQHCunXrhC1btgjjxo0T9PX1hRo1aggJCQmK7caMGSOIxWKVx7C1tRX69u2r8rEffvih0J+zU6dOCQCEjRs3FhgrEZG2yf8/PnjwoPDq1SvhyZMnwoYNG4Ty5csLxsbGwtOnT4UrV64IAIRhw4Yp7Ttp0iQBgHD48GHFWO5rAvn7mpubm5Cenq4YX7RokQBAuH79umKsc+fOStcEhRkzZoxQoUIFxf3AwEDB29tbsLOzE5YuXSoIgiC8fv1aEIlEwqJFixTb+fv7K51HnfdFdd9j8+Pk5CQAEPbu3Vvk4wJQun5UdZ12+vRpAYCwZs0axdjmzZsFAMKRI0fybJ/79QoJCREACGvXrlWMZWRkCJ6enoKZmZmQmJgoCIL612tv3rwRAAg//PBDAd+d/74/x44dU4zFxMQIEolEmDhxomJM/vOU87nIr0F++uknxVh6erri2isjIyPf82ZmZgoikUjpHHLqXv8JQt7XIiMjQ/Dw8MhzfZL72k3++/fRRx8p/fwlJSUJVlZWwvDhw5X2j46OFiwtLZXG69evL1SsWFHp7439+/fnucZWZfv27QIA4fz58wVup+7zAyBIJBKla57ly5cLAAR7e3vFz48gZP+dlPv6SN3XUtXfGur+XVCvXj2hc+fOBT5fufbt2wtubm5qbUtlD6fp0QfNz88P6enpSmWsGzduRFZWVoEVFOvXr4etra3KXlKlKWflUEJCAmJjY+Hj44NHjx4hISFB7eM8f/4c169fh5+fn9KnnD4+PqhTp47Kffr06aPovwNA8Ynmo0ePAABxcXE4fPgwevfujaSkJMTGxiI2NhavX7+Gr68v7t+/j2fPngEAdu/ejebNmysqZQDA1tZW435cAQEBiq/lZcgZGRk4ePCg0nY9e/aEra2t4v6LFy9w5coVDBo0CNbW1orxunXrol27dti9e7dGceRn8+bNaNmyJcqVK6f4fsTGxqJt27aQSqU4duwYgOxPk9++fav2anNyr1+/BgCl1yUniUSCwYMHq3UsX19fHDhwQK1bYVJTU1X2YJD3lEhNTS1w/3HjxmHx4sXo378/evbsiZCQEKxevRr379/Hr7/+qnSe/HprGBkZFXqegsi/p7GxsUU+BhFRcbRt2xa2trZwdHRE3759YWZmhu3bt6NSpUqK96nAwEClfSZOnAgAStOU8zN48GCl/0Nzv68XRcuWLfHy5UvcvXsXQHZFhre3N1q2bInjx48DyK6WEgShwMoodd4X1X2PLYiLiwt8fX21dtyc12mZmZl4/fo1qlevDisrK1y6dKnQeFTZvXs37O3tlfqEGRgYYOzYsUhOTsbRo0eVti/ses3Y2BiGhoYIDw/HmzdvCjy3u7u70utka2uLmjVrqvUzoq+vjxEjRijuGxoaYsSIEYiJicHFixfz3S8uLg6CIOR7bQOod/2X87V48+YNEhIS0LJlS7Vfh+HDhys1Tz9w4ADi4+PRr18/pZ8LsViMZs2a4ciRIwD+u8b09/eHpaWlYv927drB3d290PPKe5T+888/yMzMzHc7TZ5fmzZtlCremjVrBiD7+jhnCwP5eO7XtyivpSZ/F1hZWeHmzZu4f/9+vs9XTv57Se8mTtOjD1qtWrXQpEkTrFu3DkOHDgWQPUWvefPmqF69usp9Hj16hNOnTyMgIECthtUJCQlF/iPY0tKywKlqJ0+eRHBwME6fPo2UlJQ85835pleQyMhIAFD5nKtXr67yjaxKlSpK9+UXCfILmQcPHkAQBEydOhVTp05Ved6YmBhUqlQJkZGRije8nGrWrKlW/EB2w8zczQtdXV0BIM98dxcXF6X78uev6nxubm7Yt2+fVppV3r9/H9euXVNKhOUkb44+evRobNq0CR07dkSlSpXQvn179O7dGx06dFDrPEI+fY0qVaqkdiPUihUromLFimptWxhjY+M8PUsAIC0tTfG4pvr374+JEyfi4MGDilUMjY2NkZGRoXL74jahlX9P1ekLRvQ+OHbsGH744QdcvHgRL168wPbt29G9e3e1958+fTpmzJiRZ9zExEQxxYU088svv8DV1RX6+vqoUKECatasqVj1KzIyEnp6ennex+3t7WFlZaV4nytIYe/rBYmOjla6L79+kScujh8/jsqVK+Py5cuYPXs2bG1t8eOPPyoes7CwQL169fI9vjrvi+q+xxYk9/VBcY+bmpqKefPmITQ0FM+ePVN6f9bkQ8OcIiMjUaNGjTwrvsmn9eV+rQt7XSUSCebPn4+JEyeiQoUKaN68Obp06QI/Pz+lPl6qjiU/njo/Iw4ODnmuo3JepzVv3rzA/fO7tlH3+u+ff/7B7NmzceXKFaVrEnXf13P/bMgTJfktbCJvTSB/PWrUqJFnm5o1axaaDPPx8UHPnj0xY8YMLFy4EK1atUL37t3Rv39/pQ/6NHl+uV9H+d8LuVsmyMdzv75FeS01+btg5syZ6NatG1xdXeHh4YEOHTpg4MCBqFu3bp59BEHgtdk7jMko+uD5+flh3LhxePr0KdLT03HmzBksWbIk3+3Xr18PQP1V9MaNG5enqaS6QkNDlZoo5vTw4UO0adMGtWrVwoIFC+Do6AhDQ0Ps3r0bCxcuLPElkfNbWld+sSA//6RJk/J8yiiXX8KvpOlqZRyZTIZ27drhq6++Uvm4/I3czs4OV65cwb59+7Bnzx7s2bMHoaGh8PPzK/BnSd43JL+LQk2ed2pqqtoXyrkvVnOrWLGi4tOunF68eAEg+6KmKBwdHREXF6d0HqlUipiYGNjZ2SnGMzIy8Pr16yKfB/jve1pYfyyi98Xbt29Rr149DBkyBJ9++qnG+0+aNAkjR45UGmvTpg2aNGmirRA/OE2bNs3TEy+34vxRVtj7ekFyf3ghv35xcHCAi4sLjh07BmdnZwiCAE9PT9ja2mLcuHGIjIzE8ePH4eXllSe5kpM674vqvscWRNX7ZHGO++WXXyI0NBTjx4+Hp6cnLC0tIRKJ0Ldv3xK/TpNT53UdP348unbtih07dmDfvn2YOnUq5s2bh8OHD6NBgwYaHUvbrK2tIRKJ1Ep45ef48eP45JNP4O3tjV9//RUVK1aEgYEBQkNDFdf1hcn9syF//f744w+V10HaWmFZJBJhy5YtOHPmDP7++2/s27cPQ4YMwU8//YQzZ87AzMxM4+eX3+tYkq+vJn8XeHt74+HDh/jrr7+wf/9+/Pbbb1i4cCGWLVuGYcOGKe3z5s0bXpu9w5iMog9e3759ERgYiD///BOpqakwMDBAnz598t1+/fr1qFatWqGf4Mh99dVXRW6aXFAzyL///hvp6enYuXOn0icc8rJgTTg5OQGA0qo5cqrG1CH/lMrAwECx2kVB51dViisv61eHTCbDo0ePlC4K7927BwAFrvYjP39+57tz5w5sbGy00qi+WrVqSE5OLvT7AWSXPHft2hVdu3aFTCbD6NGjsXz5ckydOjXfJF6VKlVgbGysWFmpODZu3Kj2lL7CLlLq16+PI0eOIDExUamJubwpbv369TWOTxAEREREKF0ky49z4cIFdOrUSTF+4cIFyGSyIp1HTv49za+hLNH7pmPHjujYsWO+j6enp2PKlCn4888/ER8fDw8PD8yfP1+x6peZmZnStO+rV6/i1q1baq+4RJpxcnKCTCbD/fv3lf6fevnyJeLj4xXvc8WVX7Ir9/S5nNcvLVu2xLFjx+Di4oL69evD3Nwc9erVg6WlJfbu3YtLly6prKLLrbD3RU3eYzVRnONu2bIF/v7++OmnnxRjaWlpiI+PV9pOkySik5MTrl27BplMppTAu3PnjuLxoqhWrRomTpyIiRMn4v79+6hfvz5++uknrF27tkjHy+358+d5qszVuU7T19dHtWrV8r22Uef6b+vWrTAyMsK+ffuUqolCQ0OL+nQUK/vZ2dkV+LMhfz2Ke53bvHlzNG/eHHPmzMH69esxYMAAbNiwAcOGDSuR51eQoryWmvxdAGQnIQcPHozBgwcjOTkZ3t7emD59ep5k1OPHjwusqqSyjT2j6INnY2ODjh07Yu3atVi3bh06dOiQb4b98uXLuH37Nvr376/28d3d3dG2bdsi3QqaJiX/9CJ3yXdR3ngcHBzg4eGBNWvWIDk5WTF+9OhRxVKvmrKzs0OrVq2wfPlyRQVMTq9evVJ83alTJ5w5cwbnzp1TenzdunUanTNnRZsgCFiyZAkMDAzQpk2bAverWLEi6tevj9WrVytdIN64cQP79+9XSmwUR+/evXH69Gns27cvz2Px8fHIysoC8F/vJzk9PT1FabKq6W5yBgYGaNy4MS5cuFDsWLXZM+qzzz6DVCrFihUrFGPp6ekIDQ1Fs2bNlMrCo6KiFBfUcjl/VuSWLl2KV69eKU3RaN26NaytrbF06dI825qYmKi1Wk5+Ll68CEtLy0JXCyL6UAQEBOD06dPYsGEDrl27hl69eqFDhw759vj47bff4OrqWmBfICo6+ftU7pXdFixYAADF+v8vJ1NTU5VVswVdv7Rs2RIRERHYuHGj4vXX09ODl5cXFixYgMzMzEJ/LtR5X1T3PVZTxTmuWCzO84HN4sWLIZVKlcbkf9TnTlKp0qlTJ0RHR2Pjxo2KsaysLCxevBhmZmbw8fEp9Bg5paSkKKbNy1WrVg3m5uYFXnNoKisrC8uXL1fcz8jIwPLly2Fra4tGjRoVuK+np2eB1zaFXf+JxWKIRCKl73tERAR27NhRxGeTfZ1kYWGBuXPnquzlJL92yXmNmfN358CBA7h161ah53nz5k2enyH5h2vy16cknl9BivJaavJ3Qe7fdzMzM1SvXj3Pz2NCQgIePnwILy+v4jwd0iFWRhEhe6reZ599BgCYNWtWvtvJkyOaNtYuCe3bt1d8SjhixAgkJydj5cqVsLOzU/mffGHmzp2Lbt26oUWLFhg8eDDevHmDJUuWwMPDQylBpYlffvkFH330EerUqYPhw4ejatWqePnyJU6fPo2nT5/i6tWrALKrx/744w906NAB48aNg6mpKVasWKH49E8dRkZG2Lt3L/z9/dGsWTPs2bMHu3btwjfffJNvn4ecfvjhB3Ts2BGenp4YOnQoUlNTsXjxYlhaWmL69OlFev65/e9//8POnTvRpUsXxVLIb9++xfXr17FlyxZERETAxsYGw4YNQ1xcHFq3bo3KlSsjMjISixcvRv369QutzOnWrRumTJmSpwpJU9rsGdWsWTP06tULQUFBiImJQfXq1bF69WpERERg1apVStv6+fnh6NGjShdeTk5O6NOnD+rUqQMjIyOcOHECGzZsQP369ZUaaBobG2PWrFkYM2YMevXqBV9fXxw/fhxr167FnDlzlJrTJyQkYPHixQCye68B2RezVlZWsLKyUmqGCmRfNHbt2pV9CYiQnTQODQ1FVFSUYvrrpEmTsHfvXoSGhmLu3LlK26elpWHdunWK/m6kffXq1YO/vz9WrFiB+Ph4+Pj44Ny5c1i9ejW6d++Ojz/+WCvnadSoETZu3IjAwEA0adIEZmZm6Nq1a4H7yBNNd+/eVfrZ8Pb2xp49eyCRSAqdvqnO+6K677GaKs5xu3Tpgj/++AOWlpZwd3fH6dOncfDgQcW0ern69etDLBZj/vz5SEhIgEQiQevWrZWmnMt98cUXWL58OQYNGoSLFy/C2dkZW7ZswcmTJxESEqLUgFod9+7dQ5s2bdC7d2+4u7tDX18f27dvx8uXL9G3b1+NjlUQBwcHzJ8/HxEREXB1dcXGjRtx5coVrFixAgYGBgXu261bN/zxxx+4d+9enmmR6lz/de7cGQsWLECHDh3Qv39/xMTE4JdffkH16tXVvs7MzcLCAkuXLsXAgQPRsGFD9O3bF7a2toiKisKuXbvQokULRZJs3rx56Ny5Mz766CMMGTIEcXFxWLx4MWrXrl3oNfbq1avx66+/okePHqhWrRqSkpKwcuVKWFhYKJLQJfH8ClLU11Ldvwvc3d3RqlUrNGrUCNbW1rhw4QK2bNmS59rs4MGDEAQB3bp10/pzpFJSegv3EZVd6enpQrly5QRLS0shNTVV5TZSqVSoVKmS0LBhw1KOLn87d+4U6tatKxgZGQnOzs7C/Pnzhd9//13lMqw5lwVWtdyqIAjChg0bhFq1agkSiUTw8PAQdu7cKfTs2VOoVatWnn1VLQGMXEsaC4IgPHz4UPDz8xPs7e0FAwMDoVKlSkKXLl2ELVu2KG137do1wcfHRzAyMhIqVaokzJo1S1i1alWe56KKv7+/YGpqKjx8+FBo3769YGJiIlSoUEEIDg4WpFKpWrELgiAcPHhQaNGihWBsbCxYWFgIXbt2FW7duqW0jXzJ4s2bNyuNBwcHC7n/S829PLAgZC8FHBQUJFSvXl0wNDQUbGxsBC8vL+HHH39ULIe7ZcsWoX379oKdnZ1gaGgoVKlSRRgxYoTw4sWLAr8PgiAIL1++FPT19YU//vhDadzHx0eoXbt2ofuXlNTUVGHSpEmCvb29IJFIhCZNmuRZPlsQ/lsyOKdhw4YJ7u7ugrm5uWBgYCBUr15d+Prrr5WWH85pxYoVQs2aNQVDQ0OhWrVqwsKFCwWZTKa0jfxnQdUt9zLLt2/fViyrTvQhAiBs375dcf+ff/4RAAimpqZKN319faF379559l+/fr2gr68vREdHl2LU7w/50vKFLe2emZkpzJgxQ3BxcREMDAwER0dHISgoSGkZdUHIe02Q3/uaqmuF5ORkoX///oKVlZVay9LL2dnZCQCEly9fKsZOnDghABBatmyZZ3t/f3+lY6v7vqjOe2x+nJyc8l1OXt3j5r4OevPmjTB48GDBxsZGMDMzE3x9fYU7d+6ovD5YuXKlULVqVUEsFgsAhCNHjgiCkPf1EoTs93r5cQ0NDYU6derkuaZT93otNjZWGDNmjFCrVi3B1NRUsLS0FJo1ayZs2rRJre9Pfj9P8vjl29SuXVu4cOGC4OnpKRgZGQlOTk7CkiVL8hxPlfT0dMHGxkaYNWuW0ri613+CIAirVq0SatSoIUgkEqFWrVpCaGioWtduhf3+HTlyRPD19RUsLS0FIyMjoVq1asKgQYOECxcuKG23detWwc3NTZBIJIK7u7uwbdu2PD/nqly6dEno16+fUKVKFUEikQh2dnZCly5d8hxf3ecHQBgzZozSWH4/K6r+b1D3tczvbw11/i6YPXu20LRpU8HKykowNjYWatWqJcyZMyfP73CfPn2Ejz76qMDvH5VtIkEowY5zRO+IrKwsODg4oGvXrnkqNT509evXh62trVrTsXRl0KBB2LJlS5EruN43Q4cOxb179xTLZlPxjB8/HseOHcPFixdZGUUfJJFIpLSa3saNGzFgwADcvHkzT8NbMzOzPM1827RpAwsLC2zfvr20QiaiMqRVq1aIjY3FjRs3inyMWbNmITQ0FPfv31f8v8Prv9KnjddSG6Kjo+Hi4oINGzawMuodxp5RRAB27NiBV69ewc/PT9eh6ExmZmaevgfh4eG4evWqoiEtvRuCg4Nx/vx5xfQzKrrXr1/jt99+w+zZs5mIIvpXgwYNFCtXVq9eXemWOxH1+PFjHDlyBEOHDtVRtET0PpgwYQKSk5OxYcMGXYdCZUBISAjq1KnDRNQ7jj2j6IN29uxZXLt2DbNmzUKDBg00bvr4Pnn27Bnatm2Lzz//HA4ODrhz5w6WLVsGe3v7PMtzU9lWpUqVPM1IqWjKly/PT1zpg5ScnKy0murjx49x5coVWFtbw9XVFQMGDICfnx9++uknNGjQAK9evcKhQ4dQt25dpWbZv//+OypWrFjgynxERIUxMzNDTEyMrsOgMuK7777TdQikBUxG0Qdt6dKlWLt2LerXr4+wsDBdh6NT5cqVQ6NGjfDbb7/h1atXMDU1RefOnfHdd9/labRJRETvtwsXLig1vQ4MDAQA+Pv7IywsDKGhoZg9ezYmTpyIZ8+ewcbGBs2bN0eXLl0U+8hkMoSFhWHQoEF5pvMRERHRh409o4iIiIiIiIiIqNSwZxQREREREREREZUaJqOIiIiIiIiIiKjUfHA9o2QyGZ4/fw5zc3OujEREREQaEwQBSUlJcHBwgJ7e+/W5Hq+TiIiIqKg0uUb64JJRz58/h6Ojo67DICIionfckydPULlyZV2HoVW8TiIiIqLiUuca6YNLRpmbmwPI/uZYWFjoOBoiIiJ61yQmJsLR0VFxTfE+4XUSERERFZUm10gfXDJKXnJuYWHBiywiIiIqsvdxGhuvk4iIiKi41LlGer8aHRARERERERERUZnGZBQREREREREREZUaJqOIiIiIiIiIiKjUfHA9o4iISoJUKkVmZqauwyAiLTAwMIBYLNZ1GERERETvLSajiIiKQRAEREdHIz4+XtehEJEWWVlZwd7e/r1sUk5ERESka0xGEREVgzwRZWdnBxMTE/7hSvSOEwQBKSkpiImJAQBUrFhRxxERERERvX+YjCIiKiKpVKpIRJUvX17X4RCRlhgbGwMAYmJiYGdnxyl7RERE9M6TyQTci0lCQkomLE0M4GpnDj093X2QrtMG5seOHUPXrl3h4OAAkUiEHTt2FLpPeHg4GjZsCIlEgurVqyMsLKzE4yQiUkXeI8rExETHkRCRtsl/r9kLjoiIiN51FyPjMH7jFQRuvIop268jcONVjN94BRcj43QWk06TUW/fvkW9evXwyy+/qLX948eP0blzZ3z88ce4cuUKxo8fj2HDhmHfvn0lHCkRUf44NY/o/cPfayIiInofXIyMw5xdt3HjWQIsjPRRuZwJLIz0cfN5Aubsuq2zhJROp+l17NgRHTt2VHv7ZcuWwcXFBT/99BMAwM3NDSdOnMDChQvh6+tbUmESEREREREREb1TZDIBq09FIj4lE87l/+tvayrRh4mhGJFxKVhzKhINHMuV+pQ9nVZGaer06dNo27at0pivry9Onz6d7z7p6elITExUuhEVVZZUhr1hc3Bjrjfi4l7rOhyid56zszNCQkJ0HYaCt7c31q9fr+swiqSkvpeDBg1C9+7dtX5cXdq7dy/q168PmUym61CIiIiISsy9mCQ8iEmGnbkkT9W3SCSCrZkE92OScS8mqdRje6eSUdHR0ahQoYLSWIUKFZCYmIjU1FSV+8ybNw+WlpaKm6OjY2mESu+pr7ZcQ+VHm+CRcRUnjuzWdThERTZo0CCIRCKMHDkyz2NjxoyBSCTCoEGDFGOvXr3CqFGjUKVKFUgkEtjb28PX1xcnT54EAMTFxeHLL79EzZo1YWxsjCpVqmDs2LFISEgoraekUlhYGKysrNTadufOnXj58iX69u1bskEVkybPiVTr0KEDDAwMsG7dOl2HolVSqRRTp06Fi4sLjI2NUa1aNcyaNQuCIOg6NCIiItKBhJRMZGRJYWSgejEWIwMxMrKkSEgp/R6Z71QyqiiCgoKQkJCguD158kTXIdE7bMeVZ9BD9kX98XsxvMCnd5qjoyM2bNiglMxPS0vD+vXrUaVKFaVte/bsicuXL2P16tW4d+8edu7ciVatWuH16+wKwefPn+P58+f48ccfcePGDYSFhWHv3r0YOnRoqT6n4vj5558xePBg6Om992+N76SMjAytHm/QoEH4+eeftXpMXZs/fz6WLl2KJUuW4Pbt25g/fz6+//57LF68WNehERERkQ5YmhjAUF+MtEypysfTMqUw1BfD0sSglCN7x5JR9vb2ePnypdLYy5cvYWFhoViGOTeJRAILCwulG1FRyQRAhOxpHa+SUnH2se5WHyAqroYNG8LR0RHbtm1TjG3btg1VqlRBgwYNFGPx8fE4fvw45s+fj48//hhOTk5o2rQpgoKC8MknnwAAPDw8sHXrVnTt2hXVqlVD69atMWfOHPz999/IysoqMI6kpCT069cPpqamqFSpUp5FLeLj4zFs2DDY2trCwsICrVu3xtWrVxWPX716FR9//DHMzc1hYWGBRo0a4cKFCwgPD8fgwYORkJAAkUgEkUiE6dOnq4zh1atXOHz4MLp27aoYEwQB06dPV1SDOTg4YOzYsYrHnZ2dMXv2bPj5+cHMzAxOTk7YuXMnXr16hW7dusHMzAx169bFhQsXlM61detW1K5dGxKJBM7Ozoo+iHJv3ryBn58fypUrBxMTE3Ts2BH3798HgEKfU0pKCoYMGQJzc3NUqVIFK1asUDr2kydP0Lt3b1hZWcHa2hrdunVDRESE4nGpVIrAwEBYWVmhfPny+Oqrr4qUdBeJRPjtt9/Qo0cPmJiYoEaNGti5c6fSNkePHkXTpk0hkUhQsWJFTJ48WelnpVWrVggICMD48eNhY2MDX19fhIeHQyQSYd++fWjQoAGMjY3RunVrxMTEYM+ePXBzc4OFhQX69++PlJSUAmPs2rUrLly4gIcPH2r8/MqqU6dOoVu3bujcuTOcnZ3x2WefoX379jh37pyuQyMiIiIdcLUzR3U7M7xKTs9zTScIAl4lp6OGnRlc7cxLPbZ3Khnl6emJQ4cOKY0dOHAAnp6eOoqIPkSiHP9eeRKvw0ioLBIEASkZWaV+K2qV3pAhQxAaGqq4//vvv2Pw4MFK25iZmcHMzAw7duxAenq62sdOSEiAhYUF9PULXivjhx9+QL169XD58mVMnjwZ48aNw4EDBxSP9+rVS5FsuHjxIho2bIg2bdogLi47GTxgwABUrlwZ58+fx8WLFzF58mQYGBjAy8sLISEhsLCwwIsXL/DixQtMmjRJZQwnTpyAiYkJ3NzcFGNbt27FwoULsXz5cty/fx87duxAnTp1lPZbuHAhWrRogcuXL6Nz584YOHAg/Pz88Pnnn+PSpUuoVq0a/Pz8FK/PxYsX0bt3b/Tt2xfXr1/H9OnTMXXqVISFhSmOOWjQIFy4cAE7d+7E6dOnIQgCOnXqhMzMzEKf008//YTGjRvj8uXLGD16NEaNGoW7d+8CADIzM+Hr6wtzc3McP34cJ0+ehJmZGTp06KCoOvrpp58QFhaG33//HSdOnEBcXBy2b99e2Eut0owZM9C7d29cu3YNnTp1woABAxSv2bNnz9CpUyc0adIEV69exdKlS7Fq1SrMnj1b6RirV6+GoaEhTp48iWXLlinGp0+fjiVLluDUqVOKBFtISAjWr1+PXbt2Yf/+/YVWA1WpUgUVKlTA8ePHi/T8yiIvLy8cOnQI9+7dA5CdqD1x4oRGi8UQERHR+0NPTwR/LydYGhsgMi4Fb9OzIJUJeJuehci4FFgaG8DPy6nUm5cDOl5NLzk5GQ8ePFDcf/z4Ma5cuQJra2tUqVIFQUFBePbsGdasWQMAGDlyJJYsWYKvvvoKQ4YMweHDh7Fp0ybs2rVLV0+BPkCif6fpiSCAs/Qot9RMKdyn7Sv1896a6QsTQ83/S//8888RFBSEyMhIAMDJkyexYcMGhIeHK7bR19dHWFgYhg8fjmXLlqFhw4bw8fFB3759UbduXZXHjY2NxaxZs/DFF18UGkOLFi0wefJkAICrqytOnjyJhQsXol27djhx4gTOnTuHmJgYSCQSAMCPP/6IHTt2YMuWLfjiiy8QFRWF//3vf6hVqxYAoEaNGopjW1paQiQSwd7evsAYIiMjUaFCBaUpelFRUbC3t0fbtm1hYGCAKlWqoGnTpkr7derUCSNGjAAATJs2DUuXLkWTJk3Qq1cvAMDXX38NT09PvHz5Evb29liwYAHatGmDqVOnKp7vrVu38MMPP2DQoEG4f/8+du7ciZMnT8LLywsAsG7dOjg6OmLHjh3o1atXgc+pU6dOGD16tOLcCxcuxJEjR1CzZk1s3LgRMpkMv/32m6KBZWhoKKysrBAeHo727dsjJCQEQUFB+PTTTwFkr2K7b1/Rfp4HDRqEfv36AQDmzp2Ln3/+GefOnUOHDh3w66+/wtHREUuWLIFIJEKtWrXw/PlzfP3115g2bZridahRowa+//57xTFfvHgBAJg9ezZatGgBABg6dCiCgoLw8OFDVK1aFQDw2Wef4ciRI/j6668LjNHBwUHxs/8+mDx5MhITE1GrVi2IxWJIpVLMmTMHAwYMyHef9PR0pSQzF3ohIiJ6vzRyssaUzm5YfSoSD2KSEZucDkN9MTwcLOHn5YRGTtY6iUunlVEXLlxAgwYNFNNBAgMD0aBBA0ybNg1A9kVnVFSUYnsXFxfs2rULBw4cQL169fDTTz/ht99+g6+vr07ipw9TzmQU0bvO1tYWnTt3RlhYGEJDQ9G5c2fY2Njk2a5nz554/vw5du7ciQ4dOiA8PBwNGzZUquiRS0xMROfOneHu7p7vtLiccle3enp64vbt2wCyKzuSk5NRvnx5RYWWmZkZHj9+rJheFRgYiGHDhqFt27b47rvvijTtKjU1FUZGRkpjvXr1QmpqKqpWrYrhw4dj+/bteaYc5kzGyRfYyFk9JR+LiYkBANy+fVuRRJFr0aIF7t+/D6lUitu3b0NfXx/NmjVTPF6+fHnUrFlT8T0pSM545Akr+bmvXr2KBw8ewNzcXPF9tLa2RlpaGh4+fIiEhAS8ePFC6dz6+vpo3LhxoectLBZTU1NYWFgofR88PT2VVnVp0aIFkpOT8fTpU8VYo0aNCj12hQoVYGJiokhEycfk5yqIsbFxodP53iWbNm3CunXrsH79ely6dAmrV6/Gjz/+iNWrV+e7Dxd6ISIiev81crJGSJ/6WNCnHub0qIMFfephYZ/6OktEATqujGrVqlWBU0tU/ZHTqlUrXL58uQSjIiqYKNe/RDkZG4hxa2bpJ8iN81khQx1DhgxBQEAAAOTp15STkZER2rVrh3bt2mHq1KkYNmwYgoODlVbdS0pKQocOHWBubo7t27fDwKB4zRCTk5NRsWJFpUotOfmKctOnT0f//v2xa9cu7NmzB8HBwdiwYQN69Oih9nlsbGzw5s0bpTFHR0fcvXsXBw8exIEDBzB69Gj88MMPOHr0qOJ55Xx+8sSKqjGZTKZ2LMWR+/stEokU505OTkajRo1UriBna2tbqrGoy9TUtNBji0SiIp8rLi6uRJ67rvzvf//D5MmTFStC1qlTB5GRkZg3bx78/f1V7hMUFITAwEDF/cTERCakiIiI3kN6eiLUsi87PbR1mowiehexMooKIhKJijRdTpfkPYNEIpFGlabu7u7YsWOH4n5iYiJ8fX0hkUiwc+fOPJVG+Tlz5kye+/LeTQ0bNkR0dDT09fXh7Oyc7zFcXV3h6uqKCRMmoF+/fggNDUWPHj1gaGgIqVT16iE5NWjQANHR0Xjz5g3KlSunGDc2NkbXrl3RtWtXjBkzBrVq1cL169fRsGFDtZ5bbm5ubjh58qTS2MmTJ+Hq6gqxWAw3NzdkZWXh7Nmziml6r1+/xt27d+Hu7g4Aaj+n3Bo2bIiNGzfCzs4u38U8KlasiLNnz8Lb2xsAkJWVpejTpU1ubm7YunUrBEFQJOxOnjwJc3NzVK5cWavnyo+8Iixns/53XUpKSp7VIMVicYGJOYlEopgCS0RERFRa3qkG5kRlAZNR9L4Ri8W4ffs2bt26BbE4b4XV69ev0bp1a6xduxbXrl3D48ePsXnzZnz//ffo1q0bgOxEVPv27fH27VusWrUKiYmJiI6ORnR0dKGJk5MnT+L777/HvXv38Msvv2Dz5s0YN24cAKBt27bw9PRE9+7dsX//fkRERODUqVOYMmUKLly4gNTUVAQEBCA8PByRkZE4efIkzp8/r0hmOTs7Izk5GYcOHUJsbGy+U7IaNGgAGxsbpURRWFgYVq1ahRs3buDRo0dYu3YtjI2N4eTkVKTvMwBMnDgRhw4dwqxZs3Dv3j2sXr0aS5YsUTQhr1GjBrp164bhw4fjxIkTuHr1Kj7//HNUqlRJ8b1W9znlNmDAANjY2KBbt244fvw4Hj9+jPDwcIwdO1YxNW7cuHH47rvvsGPHDty5cwejR49GfHx8kZ9vfkaPHo0nT57gyy+/xJ07d/DXX38hODgYgYGBeZIp2rBkyRK0adNGaezMmTOQSCTv1SIoXbt2xZw5c7Br1y5ERERg+/btWLBggUZVgkRERESlgckooiLiND16n1hYWORbLWNmZoZmzZph4cKF8Pb2hoeHB6ZOnYrhw4djyZIlAIBLly7h7NmzuH79OqpXr46KFSsqbk+ePCnw3BMnTlT0EJw9ezYWLFigqNASiUTYvXs3vL29MXjwYLi6uqJv376KhuNisRivX7+Gn58fXF1d0bt3b3Ts2BEzZswAkL262MiRI9GnTx/Y2toqNcPOSSwWY/DgwUpT2KysrLBy5Uq0aNECdevWxcGDB/H333+jfPnyGn9/5Ro2bIhNmzZhw4YN8PDwwLRp0zBz5kylqY6hoaFo1KgRunTpAk9PTwiCgN27dyumoqn7nHIzMTHBsWPHUKVKFXz66adwc3PD0KFDkZaWpnjtJ06ciIEDB8Lf3x+enp4wNzfPk8gICwtT6vVUFJUqVcLu3btx7tw51KtXDyNHjsTQoUPx7bffFuu4+YmNjc3TS+zPP//EgAEDYGJiUiLn1IXFixfjs88+w+jRo+Hm5oZJkyZhxIgRmDVrlq5DIyIiIlIiEoq6Hvg7KjExEZaWloolx4k04Tx5Fw4bBqKqXjRGZIxHvfYDMbpVdV2HRTqSlpaGx48fw8XFRe0paVR2RUdHo3bt2rh06VKxqp/ed8HBwTh69KjKPl7vitjYWNSsWRMXLlyAi4uLym0K+v1+n68l3ufnRkRERCVLk+sIVkYRaei/aXpE9D6xt7fHqlWrlFZxpbz27NmjdjVWWRUREYFff/0130QUEREREZWsd6vLLlEZoPdvMkoPpbM6FhGVnu7du+s6hDLv3Llzug6h2Bo3bozGjRvrOgwiIiKiDxYro4g0xMooIiIiIiIioqJjMopIQyLFvx9UuzUiIiIiIiIirWAyikhDIpG8MorJKCIiIiIiIiJNMRlFVEScpkdERERERESkOSajiDT0X0WUAIHFUUREREREREQaYTKKSEP/NTBnJoqIiIiIiIhIU0xGEWlIlOtfIiIiIiIiIlIfk1FEahIE5YooVkYRqTZw4EDMnTtX12FoTatWrTB+/Hhdh1EiwsLCYGVlpeswtCo2NhZ2dnZ4+vSprkMhIiIionwwGUWkISaj6EMwaNAgiESiPLfatWsXuN/Vq1exe/dujB07Vmn8wYMHGDx4MCpXrgyJRAIXFxf069cPFy5cUGwzZ84ceHl5wcTERGWC5PXr1+jQoQMcHBwgkUjg6OiIgIAAJCYmauU5F4ezszNCQkJK5VzvYwJJm2xsbODn54fg4GBdh0JERERE+WAyikhDev8mofRETEbR+2vRokV48eKF4vbkyRNYW1ujV69eBe63ePFi9OrVC2ZmZoqxCxcuoFGjRrh37x6WL1+OW7duYfv27ahVqxYmTpyo2C4jIwO9evXCqFGjVB5bT08P3bp1w86dO3Hv3j2EhYXh4MGDGDlypHaedAmTSqWQyWS6DqNMysjI0OrxBg8ejHXr1iEuLk6rxyUiIiIi7WAyikhjrIyid9uaNWtQvnx5pKenK413794dAwcOBABYWlrC3t5ecbtw4QLevHmDwYMH53tcqVSKLVu2oGvXrooxQRAwaNAg1KhRA8ePH0fnzp1RrVo11K9fH8HBwfjrr78U286YMQMTJkxAnTp1VB6/XLlyGDVqFBo3bgwnJye0adMGo0ePxvHjxwt8vuHh4WjatClMTU1hZWWFFi1aIDIyEkB2BVj37t2Vth8/fjxatWqlNJaVlYWAgABYWlrCxsYGU6dOVUzdbdWqFSIjIzFhwgRFBRnwXwXTzp074e7uDolEgqioKJw/fx7t2rWDjY0NLC0t4ePjg0uXLimdLz4+HiNGjECFChVgZGQEDw8P/PPPPwgPD8fgwYORkJCgONf06dMBAOnp6Zg0aRIqVaoEU1NTNGvWDOHh4UrHDQsLQ5UqVWBiYoIePXrg9evXBX7vVGnVqhXGjh2Lr776CtbW1rC3t1fEIBcVFYVu3brBzMwMFhYW6N27N16+fKl4fPr06ahfvz5+++03uLi4wMjICAAgEomwfPlydOnSBSYmJnBzc8Pp06fx4MEDtGrVCqampvDy8sLDhw8LjLF27dpwcHDA9u3bNX5+RERERFTymIwi0hAbl1OBBAHIeFv6N0H95GivXr0glUqxc+dOxVhMTAx27dqFIUOGqNxn1apVaNu2LZycnPI97rVr15CQkIDGjRsrxq5cuYKbN29i4sSJ0NPL+5ZTnOlmz58/x7Zt2+Dj45PvNllZWejevTt8fHxw7do1nD59Gl988YUiYaSu1atXQ19fH+fOncOiRYuwYMEC/PbbbwCAbdu2oXLlypg5c6aikkwuJSUF8+fPx2+//YabN2/Czs4OSUlJ8Pf3x4kTJ3DmzBnUqFEDnTp1QlJSEgBAJpOhY8eOOHnyJNauXYtbt27hu+++g1gshpeXF0JCQmBhYaE416RJkwAAAQEBOH36NDZs2IBr166hV69e6NChA+7fvw8AOHv2LIYOHYqAgABcuXIFH3/8MWbPnq3R9yHn98PU1BRnz57F999/j5kzZ+LAgQOK+Lt164a4uDgcPXoUBw4cwKNHj9CnTx+lYzx48ABbt27Ftm3bcOXKFcX4rFmz4OfnhytXrqBWrVro378/RowYgaCgIFy4cAGCICAgIKDQGJs2bVpoopKIiIiIdENf1wEQvWvYM4oKlJkCzHUo/fN+8xwwNFVrU2NjY/Tv3x+hoaGKaXdr165FlSpV8lQEAdlJnz179mD9+vUFHjcyMhJisRh2dnaKMXkipFatWmo+kcL169cPf/31F1JTU9G1a1dFUkiVxMREJCQkoEuXLqhWrRoAwM3NTeNzOjo6YuHChRCJRKhZsyauX7+OhQsXYvjw4bC2toZYLIa5uTns7e2V9svMzMSvv/6KevXqKcZat26ttM2KFStgZWWFo0ePokuXLjh48CDOnTuH27dvw9XVFQBQtWpVxfaWlpYQiURK54qKikJoaCiioqLg4JD98zdp0iTs3bsXoaGhmDt3LhYtWoQOHTrgq6++AgC4urri1KlT2Lt3r8bfj7p16yp6MtWoUQNLlizBoUOH0K5dOxw6dAjXr1/H48eP4ejoCCC7Gq927do4f/48mjRpAiB7at6aNWtga2urdOzBgwejd+/eAICvv/4anp6emDp1Knx9fQEA48aNK7BCT87BwQGXL1/W+LkRERERUcljZRSRhv5LRhG9u4YPH479+/fj2bNnALKnb8mblue2evVqWFlZ5ZnOlltqaiokEonSMQQNKrbUtXDhQly6dAl//fUXHj58iMDAQADZCRkzMzPFbe7cubC2tsagQYPg6+uLrl27Knphaap58+ZKz8vT0xP379+HVCotcD9DQ0PUrVtXaezly5cYPnw4atSoAUtLS1hYWCA5ORlRUVEAsqvJKleurEhEqeP69euQSqVwdXVV+h4cPXpUMaXt9u3baNasmdJ+np6eap8jp9zPqWLFioiJiVGcx9HRUZGIAgB3d3dYWVnh9u3bijEnJ6c8iajcx65QoQIAKE3drFChAtLS0gptXG9sbIyUlBQNnhURERERlRZWRhFpSKT4l5VRpIKBSXaVki7Oq4EGDRqgXr16WLNmDdq3b4+bN29i165debYTBAG///47Bg4cCENDwwKPaWNjg5SUFGRkZCi2lSdU7ty5gwYNGmgUY37kfaxq1aoFa2trtGzZElOnToWDg4PSdC9ra2sAQGhoKMaOHYu9e/di48aN+Pbbb3HgwAE0b94cenp6eRJmmZmZWokTyE6I5E7w+fv74/Xr11i0aBGcnJwgkUjg6empaOJtbGys8XmSk5MhFotx8eJFiMVipcdyNpPXFgMDA6X7IpFI4+bspqaqK/lyHlv+vVM1Vtj54uLiVCa7iIiIiEj3mIwi0hCn6VGBRCK1p8vp2rBhwxASEoJnz56hbdu2SpUsckePHsWDBw8wdOjQQo9Xv359AMCtW7cUX9evXx/u7u746aef0KdPnzx9o+Lj44vVN0qekEhPT4e+vj6qV6+ucrsGDRqgQYMGCAoKgqenJ9avX4/mzZvD1tYWN27cUNr2ypUreZItZ8+eVbov7/UkT/wYGhoWWiUld/LkSfz666/o1KkTAODJkyeIjY1VPF63bl08ffoU9+7dU1kdpepcDRo0gFQqRUxMDFq2bKnyvG5ubiqfh7a5ubnhyZMnePLkieJn6tatW4iPj4e7u7vWz5efGzduqJx2SkRERES6x2l6RBriND16X/Tv3x9Pnz7FypUrC2xc3qxZM3h4eBR6PFtbWzRs2BAnTpxQjIlEIoSGhuLevXto2bIldu/ejUePHuHatWuYM2cOunXrptg2KioKV65cQVRUFKRSKa5cuYIrV64gOTkZALB7926Ehobixo0biIiIwK5duzBy5Ei0aNECzs7OKmN6/PgxgoKCcPr0aURGRmL//v24f/++om9U69atceHCBaxZswb3799HcHBwnuSUPLbAwEDcvXsXf/75JxYvXoxx48YpHnd2dsaxY8fw7NkzpcSSKjVq1MAff/yB27dv4+zZsxgwYIBSNZSPjw+8vb3Rs2dPHDhwAI8fP8aePXsUvZ2cnZ2RnJyMQ4cOITY2FikpKXB1dcWAAQPg5+eHbdu24fHjxzh37hzmzZunqHiTV4f9+OOPuH//PpYsWVKkflGFadu2LerUqYMBAwbg0qVLOHfuHPz8/ODj46PU3F5bzp07h1q1aimmnALZjeMvXryI9u3ba/18RERERFR8TEYRqUk+k4fT9Oh9YWlpiZ49e8LMzExlP6iEhARs3bpVraoouWHDhmHdunVKY02bNsWFCxdQvXp1DB8+HG5ubvjkk09w8+ZNhISEKLabNm0aGjRogODgYCQnJyuqmS5cuAAge/raypUr8dFHH8HNzQ0TJkzAJ598gn/++SffeExMTHDnzh307NkTrq6u+OKLLzBmzBiMGDECAODr64upU6fiq6++QpMmTZCUlAQ/P788x/Hz80NqaiqaNm2KMWPGYNy4cfjiiy8Uj8+cORMRERGoVq1aoVPDVq1ahTdv3qBhw4YYOHAgxo4dq9T0HQC2bt2KJk2aoF+/fnB3d8dXX32lqIby8vLCyJEj0adPH9ja2uL7778HkD0d0c/PDxMnTkTNmjXRvXt3nD9/HlWqVAGQ3fdq5cqVWLRoEerVq4f9+/fj22+/VTpvREQERCIRwsPDC3wOBRGJRPjrr79Qrlw5eHt7o23btqhatSo2btxY5GMWJCUlBXfv3lWaXvnXX3+hSpUq+VaJEREREZFuiYSS6C5bhiUmJsLS0hIJCQmwsLDQdTj0DpHJBFT9ZjeuSYbCQpSKbzMHo3yr0ZjQTv0mw/R+SUtLw+PHj+Hi4gIjIyNdh1Mkbdq0Qe3atfHzzz9r5XipqamoWbMmNm7cWOTm2KQ7R44cwaeffopHjx6hXLlyug6nyJo3b46xY8eif//+RT5GQb/f7/O1xPv83IiIiKhkaXIdwZ5RRBrSy9Ez6ll8qo6jISqaN2/eIDw8HOHh4fj111+1dlxjY2OsWbOm0KlqVDbt3r0b33zzzTudiIqNjcWnn36Kfv366ToUIiIiIsoHk1FEGsrZwDwi9q2OoyEqmgYNGuDNmzeYP38+atasqdVjs2n0u+uHH37QdQjFZmNjg6+++krXYRARERFRAdgzikhDohz/RrxO0WUoREUWERGBhIQETJo0SdehEJGWODs7QyQS5bmNGTNG16ERERERKWFlFJGGclZGxSanIyktE+ZGBoXsRUREVLLOnz+vaHQPADdu3EC7du3Qq1cvHUZFRERElBcro4g0JE9GmRmKAQCRrI4iIqIywNbWFvb29orbP//8g2rVqsHHx0fXoREREREpYTKKSEPyaXrWptnVUBGv2TfqQyeTyXQdAhFp2bv+e52RkYG1a9diyJAhEIlEhe9AREREVIo4TY9IY9mVUdamBkAsK6M+ZIaGhtDT08Pz589ha2sLQ0ND/tFH9I4TBAEZGRl49eoV9PT0YGhoqOuQimTHjh2Ij4/HoEGDCtwuPT0d6enpivuJiYklHBkRERERk1FEahP+/Vc+Ta+8SXZl1GOuqPfB0tPTg4uLC168eIHnz5/rOhwi0iITExNUqVIFenrvZhH5qlWr0LFjRzg4OBS43bx58zBjxoxSioqIiIgoG5NRRGpKz8puCiuvezE3yv71iXuboaOIqCwwNDRElSpVkJWVpdQ4mIjeXWKxGPr6+u9spWNkZCQOHjyIbdu2FbptUFAQAgMDFfcTExPh6OhYkuERERERMRlFpK7UDHkyKrsySqKf/UdKclqWzmKiskEkEsHAwAAGBlxVkYh0LzQ0FHZ2dujcuXOh20okEkgkklKIioiIiOg/72btOZEOpGZmJ6P05MkocXYyKimdySgiIiobZDIZQkND4e/vD319fuZIREREZROTUURqSsvMXllJT6RcGZWUlqmzmIiIiHI6ePAgoqKiMGTIEF2HQkRERJQvfmRGpKa0TOV+QIppeqyMIiKiMqJ9+/YQBKHwDYmIiIh0iJVRRGrKnqb33wW+RJz965OclsULfyIiIiIiIiI1MRlFpKbUDKmieTkAGP5bGZUlExRT+IiIiIiIiIioYExGEakpNVOKnIt8G+qJIF/1OymdfaOIiIiIiIiI1MFkFJGa0jKVK6NEAMwk2W3XktPYN4qIiIiIiIhIHUxGEakpdzIKEGD+bzIqickoIiIiIiIiIrUwGUWkpuyeUTkIAsyM/q2M4op6RERERERERGrReTLql19+gbOzM4yMjNCsWTOcO3euwO1DQkJQs2ZNGBsbw9HRERMmTEBaWlopRUsfstRMWd7KKCMDAKyMIiIiIiIiIlKXTpNRGzduRGBgIIKDg3Hp0iXUq1cPvr6+iImJUbn9+vXrMXnyZAQHB+P27dtYtWoVNm7ciG+++aaUI6cPUWruaXqCTNEzKimNDcyJiIiIiIiI1KHTZNSCBQswfPhwDB48GO7u7li2bBlMTEzw+++/q9z+1KlTaNGiBfr37w9nZ2e0b98e/fr1K7Saikgb8vSM4jQ9IiLSgiNHjug6BCIiIqJSpbNkVEZGBi5evIi2bdv+F4yeHtq2bYvTp0+r3MfLywsXL15UJJ8ePXqE3bt3o1OnTqUSM33YVDUwtzDianpERFQ8HTp0QLVq1TB79mw8efJE1+EQERERlTidJaNiY2MhlUpRoUIFpfEKFSogOjpa5T79+/fHzJkz8dFHH8HAwADVqlVDq1atCpyml56ejsTERKUbUVGobGAun6bHyigiIiqiZ8+eISAgAFu2bEHVqlXh6+uLTZs2ISMjQ9ehEREREZUInTcw10R4eDjmzp2LX3/9FZcuXcK2bduwa9cuzJo1K9995s2bB0tLS8XN0dGxFCOm90menlEQYCZhA3MiIioeGxsbTJgwAVeuXMHZs2fh6uqK0aNHw8HBAWPHjsXVq1d1HSIRERGRVuksGWVjYwOxWIyXL18qjb98+RL29vYq95k6dSoGDhyIYcOGoU6dOujRowfmzp2LefPmQSaTqdwnKCgICQkJihvL36mo2DOKiIhKWsOGDREUFISAgAAkJyfj999/R6NGjdCyZUvcvHlT1+ERERERaYXOklGGhoZo1KgRDh06pBiTyWQ4dOgQPD09Ve6TkpICPT3lkMViMQBAEARVu0AikcDCwkLpRlQU2ZVROQkwN+JqekREVHyZmZnYsmULOnXqBCcnJ+zbtw9LlizBy5cv8eDBAzg5OaFXr166DpOIiIhIK/R1efLAwED4+/ujcePGaNq0KUJCQvD27VsMHjwYAODn54dKlSph3rx5AICuXbtiwYIFaNCgAZo1a4YHDx5g6tSp6Nq1qyIpRVRS0jJleSqjzCVsYE5ERMXz5Zdf4s8//4QgCBg4cCC+//57eHh4KB43NTXFjz/+CAcHBx1GSURERKQ9Ok1G9enTB69evcK0adMQHR2N+vXrY+/evYqm5lFRUUqVUN9++y1EIhG+/fZbPHv2DLa2tujatSvmzJmjq6dAH5DUDCmQu2cUp+kREVEx3bp1C4sXL8ann34KiUSichsbGxscOXKklCMjIiIiKhk6TUYBQEBAAAICAlQ+Fh4ernRfX18fwcHBCA4OLoXIiJSl5Z6mJwgwNsiuyEvNlOokJiIievcFBwfDy8sL+vrKl2VZWVk4deoUvL29oa+vDx8fHx1FSERERKRd79RqekS6lJophR5yNMoXZBCJ8t+eiIhIHR9//DHi4uLyjCckJODjjz/WQUREREREJYvJKCI15W1gTkREVHyCIECk4tON169fw9TUVAcREREREZUsnU/TI3pXpGZIYZargTkREVFRffrppwAAkUiEQYMGKfWLkkqluHbtGry8vHQVHhEREVGJYTKKSA0ymYD0LBnMlUaZjCIioqKztLQEkF0ZZW5uDmNjY8VjhoaGaN68OYYPH66r8IiIiIhKDJNRRGpIz8ruFSViZRQREWlJaGgoAMDZ2RmTJk3ilDwiIiL6YDAZRaSG/1bLy5mAYjKKiIiKj6sEExER0YeGySgiNciTURL9HA1mWRlFRERF1LBhQxw6dAjlypVDgwYNVDYwl7t06ZLax3327Bm+/vpr7NmzBykpKahevTpCQ0PRuHFjbYRNREREpBVMRhGpITUjOxllpJ9zAUomo4iIqGi6deumaFjevXt3rRzzzZs3aNGiBT7++GPs2bMHtra2uH//PsqVK6eV4xMRERFpC5NRRGpI+7cyythAD8j8d5CVUUREVEQ5p+Zpa5re/Pnz4ejoqOhFBQAuLi5aOTYRERGRNukVvgkRJaZmZ6DMJeIco0xGERFR8T158gRPnz5V3D937hzGjx+PFStWaHScnTt3onHjxujVqxfs7OzQoEEDrFy5UtvhEhERERUbk1FEakj4NxllYZQjGSXIdBQNERG9T/r3748jR44AAKKjo9G2bVucO3cOU6ZMwcyZM9U+zqNHj7B06VLUqFED+/btw6hRozB27FisXr06333S09ORmJiodCMiIiIqaUxGEakhXp6MkuSY2cppekREpAU3btxA06ZNAQCbNm1CnTp1cOrUKaxbtw5hYWFqH0cmk6Fhw4aYO3cuGjRogC+++ALDhw/HsmXL8t1n3rx5sLS0VNwcHR2L+3SIiIiICsVkFJEa/quMytlmjckoIiIqvszMTEUz84MHD+KTTz4BANSqVQsvXrxQ+zgVK1aEu7u70pibmxuioqLy3ScoKAgJCQmK25MnT4rwDIiIiIg0w2QUkRrkyShz45zT9JiMIiKi4qtduzaWLVuG48eP48CBA+jQoQMA4Pnz5yhfvrzax2nRogXu3r2rNHbv3j04OTnlu49EIoGFhYXSjYiIiKikMRlFpIYEVdP0IAAQ6SQeIiJ6f8yfPx/Lly9Hq1at0K9fP9SrVw9AdkNy+fQ9dUyYMAFnzpzB3Llz8eDBA6xfvx4rVqzAmDFjSip0IiIioiLRL3wTIkpI+bcyyoiVUUREpF2tWrVCbGwsEhMTUa5cOcX4F198ARMTE7WP06RJE2zfvh1BQUGYOXMmXFxcEBISggEDBpRE2ERERERFxmQUkRoU0/TyVEYREREVn1gsVkpEAYCzs7PGx+nSpQu6dOmipaiIiIiISobG0/Tevn1bEnEQlWn/NTDPWRmlo2CIiOi98vLlSwwcOBAODg7Q19eHWCxWuhERERG9bzSujKpQoQJ69+6NIUOG4KOPPiqJmIjKHEVlVM5kVI5sFGfsERFRUQ0aNAhRUVGYOnUqKlasCJGI/QiJiIjo/aZxMmrt2rUICwtD69at4ezsjCFDhsDPzw8ODg4lER9RmaBymh4zUEREpAUnTpzA8ePHUb9+fV2HQkRERFQqNJ6m1717d+zYsQPPnj3DyJEjsX79ejg5OaFLly7Ytm0bsrKySiJOIp2RyQQkpmUno8wkOX5lBJmOIiIioveJo6MjBH7AQURERB8QjZNRcra2tggMDMS1a9ewYMECHDx4EJ999hkcHBwwbdo0pKSkaDNOIp1JSstSFEGZS1RP0yMiIiqqkJAQTJ48GREREboOhYiIiKhUFHk1vZcvX2L16tUICwtDZGQkPvvsMwwdOhRPnz7F/PnzcebMGezfv1+bsRLphHyKnrGBGIZ6OSujmIwiIqLi69OnD1JSUlCtWjWYmJjAwMBA6fG4uDgdRUZERERUMjRORm3btg2hoaHYt28f3N3dMXr0aHz++eewsrJSbOPl5QU3NzdtxkmkM/JklKWxAZSroZiMIiKi4gsJCdF1CERERESlSuNk1ODBg9G3b1+cPHkSTZo0UbmNg4MDpkyZUuzgiMqC+NQMAICViYFyNRQro4iISAv8/f11HQIRERFRqdI4GfXixQuYmJgUuI2xsTGCg4OLHBRRWSKvjLJgZRQREZWQhw8fIjQ0FA8fPsSiRYtgZ2eHPXv2oEqVKqhdu7auwyMiIiLSKo0bmJubmyMmJibP+OvXryEWi1XsQfRuS0mXAgDMJPqsjCIiIq07evQo6tSpg7Nnz2Lbtm1ITk4GAFy9epUf7hEREdF7SeNkVH5LD6enp8PQ0LDYARGVNcK/FVB6oux7OR8hIiIqrsmTJ2P27Nk4cOCA0rVU69atcebMGR1GRkRERFQy1J6m9/PPPwMARCIRfvvtN5iZmSkek0qlOHbsGGrVqqX9CInKElZGERGRll2/fh3r16/PM25nZ4fY2FgdRERERERUstRORi1cuBBAdmXUsmXLlKbkGRoawtnZGcuWLdN+hERlinJllEiks0CIiOg9YWVlhRcvXsDFxUVp/PLly6hUqZKOoiIiIiIqOWonox4/fgwA+Pjjj7Ft2zaUK1euxIIiKrMEmeqviYiIiqhv3774+uuvsXnzZohEIshkMpw8eRKTJk2Cn5+frsMjIiIi0jqNe0YdOXKEiSj6cCkVRnGaHhERFd/cuXNRq1YtODo6Ijk5Ge7u7vD29oaXlxe+/fZbXYdHREREpHVqVUYFBgZi1qxZMDU1RWBgYIHbLliwQCuBEZVNTEAREZF2GRoaYuXKlZg2bRquX7+O5ORkNGjQADVq1NB1aEREREQlQq1k1OXLl5GZman4Oj8iNtCh9x0bmBMRkZbNnDkTkyZNgqOjIxwdHRXjqamp+OGHHzBt2jQdRkdERESkfWolo44cOaLya6IPj5DP10REREUzY8YMjBw5EiYmJkrjKSkpmDFjBpNRRERE9N7RuGdUbomJidixYwfu3LmjjXiIyjZWRhERkZYJgqCyuvzq1auwtrbWQUREREREJUvt1fTkevfuDW9vbwQEBCA1NRWNGzdGREQEBEHAhg0b0LNnz5KIk6iMYGUUERFpR7ly5SASiSASieDq6qqUkJJKpUhOTsbIkSN1GCERERFRydA4GXXs2DFMmTIFALB9+3YIgoD4+HisXr0as2fPZjKK3m/5VEYJTEwREZGGQkJCIAgChgwZghkzZsDS0lLxmKGhIZydneHp6anDCImIiIhKhsbJqISEBEXJ+N69e9GzZ0+YmJigc+fO+N///qf1AInKFlZGERGRdvj7+wMAXFxc4OXlBQMDAx1HRERERFQ6NE5GOTo64vTp07C2tsbevXuxYcMGAMCbN29gZGSk9QCJyhT2jCIiIi3z8fGBTCbDvXv3EBMTA5lMpvS4t7e3jiIjIiIiKhkaJ6PGjx+PAQMGwMzMDE5OTmjVqhWA7Ol7derU0XZ8RGWLIFP9NRERURGdOXMG/fv3R2RkJIRcH3SIRCJIpVK1jjN9+nTMmDFDaaxmzZpcZIaIiIjKHI2TUaNHj0bTpk3x5MkTtGvXDnp62QvyVa1aFbNnz9Z6gERlC6fpERGRdo0cORKNGzfGrl27ULFiRZUr66mrdu3aOHjwoOK+vr7Gl3pEREREJa5IVyiNGzdG48aNlcY6d+6slYCIyjRO0yMiIi27f/8+tmzZgurVqxf7WPr6+rC3t9dCVEREREQlR+NklFQqRVhYGA4dOqSyr8Hhw4e1FhxR2aNcGVX0z66JiIiyNWvWDA8ePNBKMur+/ftwcHCAkZERPD09MW/ePFSpUkULURIRERFpj56mO4wbNw7jxo2DVCqFh4cH6tWrp3TT1C+//AJnZ2cYGRmhWbNmOHfuXIHbx8fHY8yYMahYsSIkEglcXV2xe/dujc9LVCSsjCIiIi378ssvMXHiRISFheHixYu4du2a0k1dzZo1Q1hYGPbu3YulS5fi8ePHaNmyJZKSkvLdJz09HYmJiUo3IiIiopKmcWXUhg0bsGnTJnTq1KnYJ9+4cSMCAwOxbNkyNGvWDCEhIfD19cXdu3dhZ2eXZ/uMjAy0a9cOdnZ22LJlCypVqoTIyEhYWVkVOxai/CjnnNgzioiItKtnz54AgCFDhijGRCIRBEHQqIF5x44dFV/XrVsXzZo1g5OTEzZt2oShQ4eq3GfevHl5mp4TERERlTSNk1GGhoZaKSMHgAULFmD48OEYPHgwAGDZsmXYtWsXfv/9d0yePDnP9r///jvi4uJw6tQpGBgYAACcnZ21EgtR4USsjCIiIq17/PhxiRzXysoKrq6uePDgQb7bBAUFITAwUHE/MTERjo6OJRIPERERkZzG0/QmTpyIRYsW5Vl6WFMZGRm4ePEi2rZt+18wenpo27YtTp8+rXKfnTt3wtPTE2PGjEGFChXg4eGBuXPnqv2JIVHxMQFFRETa5eTkVOCtqJKTk/Hw4UNUrFgx320kEgksLCyUbkREREQlTePKqBMnTuDIkSPYs2cPateurahQktu2bZtax4mNjYVUKkWFChWUxitUqIA7d+6o3OfRo0c4fPgwBgwYgN27d+PBgwcYPXo0MjMzERwcrHKf9PR0pKenK+6zFwIVi9IsPSamiIioaHbu3ImOHTvCwMAAO3fuLHDbTz75RK1jTpo0CV27doWTkxOeP3+O4OBgiMVi9OvXTxshExEREWmNxskoKysr9OjRoyRiKZRMJoOdnR1WrFgBsViMRo0a4dmzZ/jhhx/yTUaxFwJpV85perL8NyMiIipA9+7dER0dDTs7O3Tv3j3f7TTpGfX06VP069cPr1+/hq2tLT766COcOXMGtra2WoqaiIiISDs0TkaFhoZq5cQ2NjYQi8V4+fKl0vjLly9hb2+vcp+KFSvCwMAAYrFYMebm5obo6GhkZGTA0NAwzz7shUBapZSAYmUUEREVjUwmU/l1cWzYsEErxyEiIiIqaRr3jAKArKwsHDx4EMuXL1csF/z8+XMkJyerfQxDQ0M0atQIhw4dUozJZDIcOnQInp6eKvdp0aIFHjx4oHTRdu/ePVSsWFFlIgpgLwTSMjYwJyIiIiIiIioWjZNRkZGRqFOnDrp164YxY8bg1atXAID58+dj0qRJGh0rMDAQK1euxOrVq3H79m2MGjUKb9++Vayu5+fnh6CgIMX2o0aNQlxcHMaNG4d79+5h165dmDt3LsaMGaPp0yAqIiGfr4mIiIiIiIhIHRpP0xs3bhwaN26Mq1evonz58orxHj16YPjw4Rodq0+fPnj16hWmTZuG6Oho1K9fH3v37lU0NY+KioKe3n/5MkdHR+zbtw8TJkxA3bp1UalSJYwbNw5ff/21pk+DqGhYGUVERERERERULBono44fP45Tp07lmRbn7OyMZ8+eaRxAQEAAAgICVD4WHh6eZ8zT0xNnzpzR+DxE2sHKKCIiIiIiIqLi0HiankwmU7mqy9OnT2Fubq6VoIjKLFZGERERERERERWLxpVR7du3R0hICFasWAEge8nh5ORkBAcHo1OnTloPkKhsYWUUEREVX2JiotrbcvEVIiIiet9onIz66aef4OvrC3d3d6SlpaF///64f/8+bGxs8Oeff5ZEjERlR67KKP1/e5plZjExRURE6rOysoJIJFJrW1UV6URERETvMo2TUZUrV8bVq1exceNGXL16FcnJyRg6dCgGDBgAY2PjkoiRqAxRroyyMM7+FUpKy9RNOERE9E46cuSI4uuIiAhMnjwZgwYNgqenJwDg9OnTWL16NebNm6erEImIiIhKjMbJqGPHjsHLywsDBgzAgAEDFONZWVk4duwYvL29tRogUZmiVBklg4WRAQDgbYYUWVIZ9MUat2EjIqIPkI+Pj+LrmTNnYsGCBejXr59i7JNPPkGdOnWwYsUK+Pv76yJEIiIiohKj8V/OH3/8MeLi4vKMJyQk4OOPP9ZKUERlliDL8bUAc6P/8rmJaVk6CIiIiN51p0+fRuPGjfOMN27cGOfOndNBREREREQlS+NklCAIKnscvH79GqamploJiqjsUp6mpy/Wg5kkOyGVmMqpekREpDlHR0esXLkyz/hvv/0GR0dHHUREREREVLLUnqb36aefAshePW/QoEGQSCSKx6RSKa5duwYvLy/tR0hUlihN08v+x8JIH8npWUhk3ygiIiqChQsXomfPntizZw+aNWsGADh37hzu37+PrVu36jg6IiIiIu1TOxllaWkJILsyytzcXKlZuaGhIZo3b47hw4drP0KiMis7G2VhbIDnCWlIYGUUEREVQadOnXDv3j0sXboUd+7cAQB07doVI0eOZGUUERERvZfUTkaFhoYCAJydnTFp0iROyaMPhqB0R8jztYVxdhPzxFT2jCIioqJxdHTE3LlzdR0GERERUanQuGdUcHAwE1H0ARPyfC1fUY/T9IiIqKiOHz+Ozz//HF5eXnj27BkA4I8//sCJEyd0HBkRERGR9mmcjHr58iUGDhwIBwcH6OvrQywWK92I3lciEfKpjMouMOQ0PSIiKoqtW7fC19cXxsbGuHTpEtLT0wFkr1TMaikiIiJ6H6k9TU9u0KBBiIqKwtSpU1GxYkWVK+sRvb/yVkZZKqbpMRlFRESamz17NpYtWwY/Pz9s2LBBMd6iRQvMnj1bh5ERERERlQyNk1EnTpzA8ePHUb9+/RIIh6iMU1UZxWl6RERUDHfv3oW3t3eecUtLS8THx5d+QEREREQlTONpeo6OjhAEofANid5LOZNRMgD/NTBPYANzIiIqAnt7ezx48CDP+IkTJ1C1alUdRERERERUsjRORoWEhGDy5MmIiIgogXCIyrh/E1D/3gHAaXpERFQ8w4cPx7hx43D27FmIRCI8f/4c69atw6RJkzBq1Chdh0dERESkdRpP0+vTpw9SUlJQrVo1mJiYwMDAQOnxuLg4rQVHVOaonKaX/WvEaXpERFQUkydPhkwmQ5s2bZCSkgJvb29IJBJMmjQJX375pa7DIyIiItI6jZNRISEhJRAG0bsibwPz/6bpMRlFRESaE4lEmDJlCv73v//hwYMHSE5Ohru7O8zMzHQdGhEREVGJ0DgZ5e/vXxJxEL0bVFRG/TdNjz2jiIhIc0OGDMGiRYtgbm4Od3d3xfjbt2/x5Zdf4vfff9dhdERERETap1bPqMTERKWvC7oRvd/yr4ziND0iIiqK1atXIzU1Nc94amoq1qxZU+TjfvfddxCJRBg/fnwxoiMiIiLSPrUqo8qVK4cXL17Azs4OVlZWEIlEebYRBAEikQhSqVTrQRKVGQX0jMrIkiEtUwojA7EuIiMiondMYmIiBEGAIAhISkqCkZGR4jGpVIrdu3fDzs6uSMc+f/48li9fjrp162orXCIiIiKtUSsZdfjwYVhbWwMAjhw5UqIBEZVteSujTA31IRJl56aS0rKYjCIiIrXIP+ATiURwdXXN87hIJMKMGTM0Pm5ycjIGDBiAlStXYvbs2doIlYiIiEir1EpG+fj4qPya6IOjVBmV/Y+enggmBmK8zZAiJSMLgEQnoRER0bvlyJEjEAQBrVu3xtatWxUf/AGAoaEhnJyc4ODgoPFxx4wZg86dO6Nt27ZMRhEREVGZpHEDc6IPW97KKAAwkejjbYYUb9M5TZWIiNQj/4Dv8ePHqFKliso2CJrasGEDLl26hPPnz6u1fXp6OtLT0xX32f+TiIiISoNaDcyJ6F9KlVEyxZdmkuy87tsMrqhHRESaOXz4MLZs2ZJnfPPmzVi9erXax3ny5AnGjRuHdevWKfWfKsi8efNgaWmpuDk6Oqp9PiIiIqKiYjKKSBMqGpgDgIlhdp+ot+lMRhERkWbmzZsHGxubPON2dnaYO3eu2se5ePEiYmJi0LBhQ+jr60NfXx9Hjx7Fzz//DH19fZWLzAQFBSEhIUFxe/LkSbGeCxEREZE6OE2PSCOqp+mZyiujOE2PiIg0FBUVBRcXlzzjTk5OiIqKUvs4bdq0wfXr15XGBg8ejFq1auHrr7+GWJx3gQ2JRAKJhL0OiYiIqHQVKRmVlZWF8PBwPHz4EP3794e5uTmeP38OCwsLmJmZaTtGorIjn8ooU3llFKfpERGRhuzs7HDt2jU4OzsrjV+9ehXly5dX+zjm5ubw8PBQGjM1NUX58uXzjBMRFYVMJuBeTBISUjJhaWIAVztz6OkVv98dEX14NE5GRUZGokOHDoiKikJ6ejratWsHc3NzzJ8/H+np6Vi2bFlJxElURuTfwBzgND0iItJcv379MHbsWJibm8Pb2xsAcPToUYwbNw59+/bVcXRERNkuRsZh9alIPIhJRkaWFIb6YlS3M4O/lxMaOVkXfgAiohw0TkaNGzcOjRs3zvNpXY8ePTB8+HCtBkdUFghCPndyfG1mmP2rlJLBaXpERKSZWbNmISIiAm3atIG+fvb7iUwmg5+fn0Y9o1QJDw/XQoRE9KG7GBmHObtuIz4lE3bmEhgZSJCWKcXN5wmYs+s2pnR2Y0KKiDSicTLq+PHjOHXqFAwNDZXGnZ2d8ezZM60FRlTWZBcgq66M8ki/gBi953ibXq2UoyIionedoaEhNm7ciFmzZuHq1aswNjZGnTp14OTkpOvQiIggkwlYfSoS8SmZcC5vApEo+6rYVKIPE0MxIuNSsOZUJBo4luOUPSJSm8bJKJlMpnI1lqdPn8Lc3FwrQRGVWaoqo6RZ6PswCL0NsvB9akfdxEVERO88V1dXuLq66joMIiIl92KS8CAmGXbmEkUiSk4kEsHWTIL7Mcm4F5OEWvYWOoqSiN41Giej2rdvj5CQEKxYsQJA9n9AycnJCA4ORqdOnbQeIFHZoqIySpoBA1kaIAIy0lJ0EhUREb3bnj59ip07dyIqKgoZGRlKjy1YsEBHURERAQkpmcjIksLIQPXKm0YGYsQmpyMhJbOUIyOid5nGyaiffvoJvr6+cHd3R1paGvr374/79+/DxsYGf/75Z0nESFR2qKqMEv6rFEzL9QcEERFRYQ4dOoRPPvkEVatWxZ07d+Dh4YGIiAgIgoCGDRvqOjwi+sBZmhjAUF+MtEwpTCV5/3xMy8xuZm5pYqCD6IjoXaVxMqpy5cq4evUqNmzYgGvXriE5ORlDhw7FgAEDYGxsXBIxEpUhOZNRsux/Zf+toMdkFBERaSooKAiTJk3CjBkzYG5ujq1bt8LOzg4DBgxAhw4ddB0eEX3gXO3MUd3ODDefJ8DEUKw0VU8QBLxKToeHgyVc7diyhYjUp3EyKi0tDUZGRvj8889LIh6isk2egMq+k/2P7L+xtHQmo4iISDO3b99WVJfr6+sjNTUVZmZmmDlzJrp164ZRo0bpOEIi+pDp6Yng7+WEObtuIzIuBbZmEhgZZFdKvUpOh6WxAfy8nNi8nIg0oqfpDnZ2dvD398eBAwcgk8kK34HofaI0TU/+73/T9NIzOFeeiIg0Y2pqqugTVbFiRTx8+FDxWGxsrK7CIiJSaORkjSmd3VDbwRKJaVl4+iYFiWlZ8HCwxJTObmjkZK3rEInoHaNxZdTq1auxfv16dOvWDZaWlujTpw8+//xzNG7cuCTiIypjVDQwzzFNj8koIiLSVPPmzXHixAm4ubmhU6dOmDhxIq5fv45t27ahefPmug6PiAhAdkKqgWM53ItJQkJKJixNDOBqZ86KKCIqEo2TUT169ECPHj2QlJSELVu24M8//0Tz5s1RtWpVfP7555g2bVpJxElUNqhqYC5jZRQRERXdggULkJycDACYMWMGkpOTsXHjRtSoUYMr6RFRmaKnJ0Itewtdh0FE7wGNp+nJmZubY/Dgwdi/fz+uXbsGU1NTzJgxQ5uxEZVBKiqjckzTy8hkzygiIlKfVCrF06dPUaVKFQDZU/aWLVuGa9euYevWrXByctJxhERERETaV+RkVFpaGjZt2oTu3bujYcOGiIuLw//+9z9txkZU9ijlovJWRmVlZSFLyl5qRESkHrFYjPbt2+PNmze6DoWIiIio1Gg8TW/fvn1Yv349duzYAX19fXz22WfYv38/vL29SyI+ojJGVc+o/5JRYsiQkimFhbjIeV4iIvrAeHh44NGjR3BxcdF1KERERESlQuO/mHv06IHU1FSsWbMG0dHRWL58ORNR9OFQ1TMqxzQ9PcjwNj0LRERE6po9ezYmTZqEf/75By9evEBiYqLSjYiIiOh9o3Fl1MuXL2Fubl4SsRC9AwqujNKHFG/TpSAiIlJXp06dAACffPIJRKL/VqUSBAEikQhSKd9XiIiI6P2iVjIqMTERFhbZqyYIglDgp3Ty7YjeS0qVUf/2hhKUp+mxMoqIiDRx5MgRXYdAREREVKrUSkaVK1cOL168gJ2dHaysrJQ+tZMrzqd3v/zyC3744QdER0ejXr16WLx4MZo2bVrofhs2bEC/fv3QrVs37NixQ+PzEmlMyNGcXNHA/L/kkx5kSMngJ9hERKQ+FxcXODo65rm+EgQBT5480VFURERERCVHrWTU4cOHYW1tDUD7n95t3LgRgYGBWLZsGZo1a4aQkBD4+vri7t27sLOzy3e/iIgITJo0CS1bttRqPEQFUzVN778ElVjpcSIiosK5uLgoPvTLKS4uDi4uLpymR0RERO8dtZJRPj4+iq+1/endggULMHz4cAwePBgAsGzZMuzatQu///47Jk+erHIfqVSKAQMGYMaMGTh+/Dji4+M1Pi9RkRTWwFwkAxERkSbk1eW5JScnw8jISAcREREREZUsjRuYa/PTu4yMDFy8eBFBQUGKMT09PbRt2xanT5/Od7+ZM2fCzs4OQ4cOxfHjxws8R3p6OtLT0xX3uSoNaUpQVQ2V8+sc0/T0wU+viYhIPYGBgQAAkUiEqVOnwsTERPGYVCrF2bNnUb9+fR1FR0RERFRyNE5GafPTu9jYWEilUlSoUEFpvEKFCrhz547KfU6cOIFVq1bhypUrap1j3rx5mDFjhkZxEeWUkZVd7SQxEKuujJIpNzAnIiJSx+XLlwFkX1tdv34dhoaGiscMDQ1Rr149TJo0SVfhEREREZUYtZNRZeHTu6SkJAwcOBArV66EjY2NWvsEBQUpYgeyK6McHR1LKkR6D6VmZiebjA30oLIyKuc0PSajiIhITfI+nIMHD8aiRYu4IjERERF9MNRORpXEp3c2NjYQi8V4+fKl0vjLly9hb2+fZ/uHDx8iIiICXbt2VYzJ/m0era+vj7t376JatWpK+0gkEkgkEo3iIsopLUOejMpVGSWn1MCcySgiItJMaGio4mt5/01+cEZERETvM7WTUSXx6Z2hoSEaNWqEQ4cOoXv37gCyk0uHDh1CQEBAnu1r1aqF69evK419++23SEpKwqJFi3jhRiVCXhllZCAGcq+WJwhKPaOYjCIiIk1lZWVhxowZ+Pnnn5GcnAwAMDMzw5dffong4GAYGBjoOEIiIiIi7dK4Z1TOT++0ITAwEP7+/mjcuDGaNm2KkJAQvH37VrG6np+fHypVqoR58+bByMgIHh4eSvtbWVkBQJ5xIm1RSkblrowSBKVpekxGERGRpr788kts27YN33//PTw9PQEAp0+fxvTp0/H69WssXbpUreMsXboUS5cuRUREBACgdu3amDZtGjp27FhSoRMREREVicbJKAC4cOECNm3ahKioKGRkZCg9tm3bNo2O1adPH7x69QrTpk1DdHQ06tevj7179yqamkdFRUFPT68oYRJpRWpGdoLJ2FAMpOdORsnYwJyIiIpl/fr12LBhg1LSqG7dunB0dES/fv3UTkZVrlwZ3333HWrUqAFBELB69Wp069YNly9fRu3atUsqfCIiIiKNaZyM2rBhA/z8/ODr64v9+/ejffv2uHfvHl6+fIkePXoUKYiAgACV0/IAIDw8vMB9w8LCinROInWlZeboGZWWu2eU8jQ9NjAnIiJNSSQSODs75xl3cXFR6tFZmJw9NQFgzpw5WLp0Kc6cOcNkFBEREZUpGpcczZ07FwsXLsTff/8NQ0NDLFq0CHfu3EHv3r1RpUqVkoiRSKdSMwtoYC4I2dVR/2JlFBERaSogIACzZs1Cenq6Yiw9PR1z5szJ98O6wkilUmzYsAFv375VTP0jIiIiKis0rox6+PAhOnfuDCC7Afnbt28hEokwYcIEtG7dGjNmzNB6kES6lPrvanpGhioamENQnqYnkoKIiKgwn376qdL9gwcPonLlyqhXrx4A4OrVq8jIyECbNm00Ou7169fh6emJtLQ0mJmZYfv27XB3d893+/T0dKUkWGJiokbnIyIiIioKjZNR5cqVQ1JSEgCgUqVKuHHjBurUqYP4+HikpKRoPUAiXSu8Mkq5Z5SQJ2FFRESkzNLSUul+z549le4XdYXgmjVr4sqVK0hISMCWLVvg7++Po0eP5puQmjdvHj9IJCIiolKncTLK29sbBw4cQJ06ddCrVy+MGzcOhw8fxoEDBzT+9I7oXaDUM0plZdR/PaM4TY+IiNSh7dWJ5QwNDVG9enUAQKNGjXD+/HksWrQIy5cvV7l9UFAQAgMDFfcTExOLnAgjIiIiUpfGyaglS5YgLS0NADBlyhQYGBjg1KlT6NmzJ7799lutB0ika4rKKEM91ZVROabpsYE5ERGVJTKZTGkaXm4SiQQSiaQUIyIiIiIqQjLK2tpa8bWenh4mT56s1YCIyhp5ZZRRfpVROabp6TMZRUREGnJxcYFIJMr38UePHql1nKCgIHTs2BFVqlRBUlIS1q9fj/DwcOzbt09boRIRERFphVrJKE2aWVpYWBQ5GKKySN7APN+eUayMIiKiYhg/frzS/czMTFy+fBl79+7F//73P7WPExMTAz8/P7x48QKWlpaoW7cu9u3bh3bt2mk5YiIiIqLiUSsZZWVlVeAndgAgCAJEIhGkUq4mRu+XtMzsBFO+lVEy5QbmREREmhg3bpzK8V9++QUXLlxQ+zirVq3SVkhEREREJUqtZNSRI0dKOg6iMilLKkOGNDvBpLoySpZnNT0iIiJt6NixI4KCgkqs2TkRERGRrqiVjPLx8SnpOIjKpLSs/5JLxobi7ORTTpymR0REJWTLli1KvTqJiIiI3hcaNzAHgOPHj2P58uV49OgRNm/ejEqVKuGPP/6Ai4sLPvroI23HSKQz8n5RACDR14PqaXpZinv6Ik5TJSIizTRo0ECpHYIgCIiOjsarV6/w66+/6jAyIiIiopKhcTJq69atGDhwIAYMGIBLly4plgtOSEjA3LlzsXv3bq0HSaQr8pX0jA3E2X8oqGpgnqNaipVRRESkqe7duyvd19PTg62tLVq1aoVatWrpJigiIiKiEqRxMmr27NlYtmwZ/Pz8sGHDBsV4ixYtMHv2bK0GR6RrqfJklKH435HclVFgA3MiIiqW4OBgXYdAREREVKr0NN3h7t278Pb2zjNuaWmJ+Ph4bcREVGbIp+kZG/ybjFJVGZVjmp5YVbKKiIioAJcuXcL169cV9//66y90794d33zzDTIyMnQYGREREVHJ0DgZZW9vjwcPHuQZP3HiBKpWraqVoIjKCnlllJGB/FdFRc8opdX02DOKiIg0M2LECNy7dw8A8OjRI/Tp0wcmJibYvHkzvvrqKx1HR0RERKR9Giejhg8fjnHjxuHs2bMQiUR4/vw51q1bh0mTJmHUqFElESORzuSZppcnFyXknabH4igiItLAvXv3UL9+fQDA5s2b4ePjg/Xr1yMsLAxbt27VbXBEREREJUDjnlGTJ0+GTCZDmzZtkJKSAm9vb0gkEkyaNAlffvllScRIpDNpuafpqayMYgNzIiIqOkEQIJNlv38cPHgQXbp0AQA4OjoiNjZWl6ERERERlQiNk1EikQhTpkzB//73Pzx48ADJyclwd3eHmZkZUlNTYWxsXBJxEunEf9P01O0ZxWQUERFppnHjxpg9ezbatm2Lo0ePYunSpQCAx48fo0KFCjqOjoiIiEj7NJ6mJ2doaAh3d3c0bdoUBgYGWLBgAVxcXLQZG5HOKabp5VcZJci4mh4RERVLSEgILl26hICAAEyZMgXVq1cHAGzZsgVeXl46jo5IN2QyAXeiE3H20WvciU6ETMY+CERE7xO1K6PS09Mxffp0HDhwAIaGhvjqq6/QvXt3hIaGYsqUKRCLxZgwYUJJxkpU6uSr6f1XGZU72ZS7gTmTUUREpJm6desqraYn98MPP0AsFqvYg+j9djEyDqtPReJBTDIysqQw1Bejup0Z/L2c0MjJWtfhERGRFqhdGTVt2jQsXboUzs7OiIiIQK9evfDFF19g4cKFWLBgASIiIvD111+XZKxEpS4td2WUyml6OZJRIiajiIio6EaPHq3oE2VkZAQDAwMdR0RUui5GxmHOrtu48SwBFkb6qFzOBBZG+rj5PAFzdt3Gxcg4XYdIRERaoHYyavPmzVizZg22bNmC/fv3QyqVIisrC1evXkXfvn35yR29l9Iys5NLitX0VDUwz5GMYgNzIiIqjrVr1yIxMVHXYRDphEwmYPWpSMSnZMK5vAlMJfoQ64lgKtGHk7UJElIzseZUJKfsERG9B9RORj19+hSNGjUCAHh4eEAikWDChAkQiUQlFhyRrpkmPsRs/VWwlf27mpGqyihO0yMiIi0Rcr/PEH1A7sUk4UFMMuzMJXn+xhCJRLA1k+B+TDLuxSTpKEIiItIWtZNRUqkUhoaGivv6+vowMzMrkaCIyoq60Vvxuf4hNHiz99+RgiujxJCCiIiIiDSXkJKJjCzpf706czEyECMjS4qElMxSjoyIiLRN7QbmgiBg0KBBkEgkAIC0tDSMHDkSpqamSttt27ZNuxES6ZAsIwUAYCb+96JHZc+oLMVdVkYREVFxJCWx4oM+XJYmBjDUFyMtUwpTSd4/U9Iys5uZW5qwlxoR0btO7WSUv7+/0v3PP/9c68EQlTVZWdlJKGPFb4qKyihO0yMiomKQSqVKvTfPnj2L9PR0eHp6soE5fVBc7cxR3c4MN58nwMRQrDRVTxAEvEpOh4eDJVztzHUYJRERaYPayajQ0NCSjIOoTJLKk1Hif5NQhaymxwbmRESkrhcvXqBXr144c+YMWrRogR07dmDgwIHYvXs3AKBGjRoIDw9HxYoVdRwpUenQ0xPB38sJc3bdRmRcCmzNJDAyyK6UepWcDktjA/h5OUFPjz1riYjedWr3jCL6EGVlZU/BM1J8YK2qMuq/BBQro4iISF1ff/01BEHA9u3bUbFiRXTp0gWJiYl48uQJIiIiYGtrizlz5ug6TKJS1cjJGlM6u6G2gyUS07Lw9E0KEtOy4OFgiSmd3dDIyVrXIRIRkRaoXRlF9KERBAEyaSagBxjpF1QZpdwzKi4loxSjJCKid9XBgwexbds2NG/eHC1atICNjQ0OHDiASpUqAQBmzpyJ4cOH6zhKotLXyMkaDRzL4V5MEhJSMmFpYgBXO3NWRBERvUeYjCLKx9sMKfT+rXqS6P1b8STkqnwScq+mJ0NE7NvSCpGIiN5hb968USSerK2tYWJiAicnJ8Xj1atXx4sXL3QVHpFO6emJUMveQtdhEBFRCeE0PaJ8vHmbATGyE036+U6/y9XAXCTD49iUUoiOiIjedXZ2dkrJpoCAAFhb/zcF6c2bN3lWLSYiIiJ6HzAZRZSP+JRMRQ8okbz6SY0G5o9jk0srRCIieofVr18fp0+fVtz/7rvvlJJRJ06cQN26ddU+3rx589CkSROYm5vDzs4O3bt3x927d7UaMxEREZE2cJoeUT7epGRAH/IklDzhpKKBeY5klD6keMxpekREpIa//vqrwMebNGkCHx8ftY939OhRjBkzBk2aNEFWVha++eYbtG/fHrdu3WKFFREREZUpTEYR5eNNSgZs5NPz5E3KVVVGCcqVUW9SMvHmbQbKmRqWUqRERPQ+atq0qUbb7927V+l+WFgY7OzscPHiRXh7e2szNCIiIqJi4TQ9onzEp2RCX/RvokmxYl7BlVFG4ux/H79mdRQRERXPmzdvsGbNmiLvn5CQAABKU/+IiIiIygImo4jy8SYlQ9EzqsDKKEWiKkcy6hWTUUREVDxRUVEYPHhwkfaVyWQYP348WrRoAQ8Pj3y3S09PR2JiotKNiIiIqKRxmh5RPnI2MIdMvpqeisqoHNP0JP8mo57Fp5Z4fERE9G4rLPGTlJRU5GOPGTMGN27cwIkTJwrcbt68eZgxY0aRz0NERERUFExGEeUjuzIq1zQ9lZVRMsVdQ73sr2OT00sjRCIieodZWVlBJBLl+7ggCAU+np+AgAD8888/OHbsGCpXrlzgtkFBQQgMDFTcT0xMhKOjo8bnJCIiItIEk1FE+XiTkgn93NP0cldGCTKlaXr6IiajiIhIPebm5pgyZQqaNWum8vH79+9jxIgRah9PEAR8+eWX2L59O8LDw+Hi4lLoPhKJBBKJRO1zEBEREWkDk1FE+UhOy1RRGSXLtZXyND19UXayKjYpoxQiJCKid1nDhg0BAD4+Pioft7KygpC7IrcAY8aMwfr16/HXX3/B3Nwc0dHRAABLS0sYGxsXP2AiIiIiLWEDc6J8CECOnlH/JpxUTtPLkYwCK6OIiEg9/fv3h5GRUb6P29vbIzg4WO3jLV26FAkJCWjVqhUqVqyouG3cuFEb4RIRERFpDSujiAqgqIxSVD8V3MBcvv0rJqOIiKgQw4cPL/DxChUqaJSM0qSKioiIiEiXWBlFVIA8PaMKqYzS+3f7pLQspGVKQURERERERETKmIwiKoBYlKtnlKrKqBzJKJEgg6E4+9fq9Vv2jSIiovwdPnwY7u7uSExMzPNYQkICateujePHj+sgMiIiIqKSVSaSUb/88gucnZ1hZGSEZs2a4dy5c/luu3LlSrRs2RLlypVDuXLl0LZt2wK3JyqOwiujoDRNTyRIUd7MEAAQm8SpekRElL+QkBAMHz4cFhYWeR6ztLTEiBEjsGDBAh1ERkRERFSydJ6M2rhxIwIDAxEcHIxLly6hXr168PX1RUxMjMrtw8PD0a9fPxw5cgSnT5+Go6Mj2rdvj2fPnpVy5PQh0MvdwDwP5cooyGSwMcteIptNzImIqCBXr15Fhw4d8n28ffv2uHjxYilGRERE9GGTyQTciU7E2UevcSc6ETIZ+zGWFJ03MF+wYAGGDx+OwYMHAwCWLVuGXbt24ffff8fkyZPzbL9u3Tql+7/99hu2bt2KQ4cOwc/Pr1Ripg+HvryBuZqr6UGWBRt5ZRSTUUREVICXL1/CwMAg38f19fXx6tWrUoyIiIjow3UxMg6rT0XiQUwyMrKkMNQXo7qdGfy9nNDIyVrX4b13dFoZlZGRgYsXL6Jt27aKMT09PbRt2xanT59W6xgpKSnIzMyEtTV/OEj7xLmn6RWymh4EaY7KKPaMIiKi/FWqVAk3btzI9/Fr166hYsWKpRgRERHRh+liZBzm7LqNG88SYGGkj8rlTGBhpI+bzxMwZ9dtXIyM03WI7x2dJqNiY2MhlUpRoUIFpfEKFSogOjparWN8/fXXcHBwUEpo5ZSeno7ExESlG5E6BCFnZVR+PaNkuSqjpLAxz05GvWLPKCIiKkCnTp0wdepUpKWl5XksNTUVwcHB6NKliw4iIyIi+nDIZAJWn4pEfEomnMubwFSiD7GeCKYSfThZmyAhNRNrTkVyyp6W6XyaXnF899132LBhA8LDw2FkZKRym3nz5mHGjBmlHBm9L/L0jBJkyhskvchRNQVAkKKcSfaUi4TUzFKIkIiI3lXffvsttm3bBldXVwQEBKBmzZoAgDt37uCXX36BVCrFlClTdBwlERHR++1eTBIexCTDzlwCkUik9JhIJIKtmQT3Y5JxLyYJtezzLjpCRaPTZJSNjQ3EYjFevnypNP7y5UvY29sXuO+PP/6I7777DgcPHkTdunXz3S4oKAiBgYGK+4mJiXB0dCxe4PTByFMZlXua3ubBQM7/sASZotxQyF1FRURElEOFChVw6tQpjBo1CkFBQYr3DZFIBF9fX/zyyy95qseJiIhIuxJSMpGRJYWRgUTl40YGYsQmpyMhhcUG2qTTZJShoSEaNWqEQ4cOoXv37gAAmUyGQ4cOISAgIN/9vv/+e8yZMwf79u1D48aNCzyHRCKBRKL6h4qoICJBBrHo34SSkE8Dcwh5xkRCfivvERERKXNycsLu3bvx5s0bPHjwAIIgoEaNGihXrpyuQyMiIvogWJoYwFBfjLRMKUwleVMkaZnZzcwtTfJfdIQ0p/NpeoGBgfD390fjxo3RtGlThISE4O3bt4rV9fz8/FCpUiXMmzcPADB//nxMmzYN69evh7Ozs6K3lJmZGczMzHT2POj9o5iiBxTQwDwvEWSFbkNERJRTuXLl0KRJE12HQURE9MFxtTNHdTsz3HyeABNDsdJUPUEQ8Co5HR4OlnC1M9dhlO8fnSej+vTpg1evXmHatGmIjo5G/fr1sXfvXkVZelRUFPT0/uuzvnTpUmRkZOCzzz5TOk5wcDCmT59emqHTe04M5cbkAFRURuXFyigiIiIiIqJ3g56eCP5eTpiz6zYi41JgayaBkUF2pdSr5HRYGhvAz8sJenqiwg9GatN5MgoAAgIC8p2WFx4ernQ/IiKi5AMiQtEro/T+bXLOjlFERERERERlXyMna0zp7IbVpyLxICYZscnpMNQXw8PBEn5eTmjkZK3rEN87ZSIZRVQWiXNWOMmTUayMIiIiIiIieu80crJGA8dyuBeThISUTFiaGMDVzpwVUSWEySiifOipmqanTmUUe0YRERERERG9c/T0RKhlb6HrMD4IeoVvQvRhUkpGCdLsqii1KqOYjCIiIiIiIiLKD5NRRPnQy51UkklRYGWUSJy9HzhNj4iIiIiIiCg/TEYR5UOcO6kkywLyq3oSiQG97GQUe0YRERERERER5Y89o4jyIc7d+0mQ5l8YpacPiLJzu/JpemrM6CMiIiIiIiL64DAZRZQPce4KJ1kW8s1G6Yn/m6bHyigiIiIiIiKifHGaHlE+8vR+kknzL3cSiQE95cooIiIiIiIiIsqLlVFE+dDLPU2v0Mqo7GQUK6OIiIiIiEqGTCbgXkwSElIyYWliAFc7c+jpiXQdFhFpiMkoonyonKaXX2VUjmQUG5gTEREREWnfxcg4rD4ViQcxycjIksJQX4zqdmbw93JCIydrXYdHRBrgND2ifORdTU+KfCujRP/1jOI0PSIi0pVjx46ha9eucHBwgEgkwo4dO3QdEhEVQiYTcCc6EWcfvcad6ETIZFwFR5WLkXGYs+s2bjxLgIWRPiqXM4GFkT5uPk/AnF23cTEyTtchEpEGWBlFlI+8yaiCKqP0AVF2ebAIUgCifBfeo/+3d+fxTdT5/8Bfk7P3SU8pBTkKchaESlkFBGlZVBBRVL6CiMK6KF4oICqIyw9UdnFVFF1ZYD0Rv3h8wYVFBEXochTKWcpVylkKFHqlzTWf3x8hoWmTNumRpO3r+XiEksnMZ96ffDKZmXc+8xkiImosZWVl6NmzJx5//HGMHj3a2+EQUS3Y08c1siywcnserumMaBsZAOn6cXegVoUAjRJ5hTr8a3sekhPCeckeURPBZBSRE9XGfqqpZ5RCaUtGWcaaUjZqbERERI4MHz4cw4cP93YYROQCa0+fazojooO18FNrUWE023r6zB7RhQmp644WlOB4QSmig7W2RJSVJEmICtLiWEEpjhaUoHNsiJeirB+OhUUtDZNRRE64NWaUJNku01MIE5iMIiIiIiJn2NPHPUU6IwwmM/zUWoev+6mVuFyqR5HO6OHIGgZ7yFFLxDGjiJxweDc9p+NBSZbeUeCYUURE1HTo9XoUFxfbPYio8bnT04eA0AA1NColKoyObxRUYbQkcEID1B6OrP44Fha1VExGETlRbcyoa6fh9DI9oNLd9JiMIiKipmHBggUIDQ21PRISErwdElGLcKOnj+Pe9H5qJQwmc5Pt6dPQOkUHo0N0EC6V6iGqXKkghMClUj06RgehU3SwlyKsm6o95AK1KigVEgK1KiRGBKCo3Ih/bc/joPbULDEZReREtcv0vn7Y+WV6AAD7X7W40yAiIl83a9YsFBUV2R5nzpzxdkhELUJz7unTGBQKCRNSExHqr0ZeoQ5lehPMskCZ3oS8Qh1C/dUYn5rY5C5pZA85ask4ZhSRE9Uu0wNQY8+o62JC/AAAO3KvwGiWoVYy50tERL5Jq9VCq3U8Bgs5xkGGqSFYe/ocOl+EAI3SLhFh7enTLT60yfX0aUx9EiMwe0QX29hKl0v10KiU6BYfivFNdGyl5j4WFlFNmIwicqLaZXpALT2jLHq0DkOrIAMul+qxKbsA6d1iGyE6IiKi6kpLS3H8+HHb89zcXGRlZSEiIgJt2rTxYmTNAwcZpoZi7ekzf1028gp1iArSwk9t6Sl1qVTfZHv6NLY+iRFITghvNgnhyj3kArXVT83ZQ46aM3bZIHLCYTLKhZ5RKoWEMX1aAwBW7+blDkRE5Dm7d+9GcnIykpOTAQAvvPACkpOT8frrr3s5sqaPgwxTQ7P29OkaH4riChPOXtWhuMKEbvGhmD2iCxOcTigUEjrHhiDl5kh0jg1psokooPmOhUXkCvaMInJCUXXMKKDmXJSte7XAyF7xWPZrDv578jLMsoCyCe8kiYio6Rg0aFC1Exqqv6qDDFsvqQrUqhCgUSKvUId/bc9DckJ4kz4xJs9rbj19yD3sIUctGZNRRE6YzXXrGQUAnQLLsVv7FDbKfXC84A9IiuWvGURERE2VO4MMd44N8VKU1FRZe/pQy9Qcx8IicgWTUUQOCCFQoquoeoM8l8aMAgBlwQGESmW4TXEY285cZTKKiIioCeMgw0TUmNhDjloijhlF5MA1nREmk6MDyhqv07vx34oiAEAIdMg6c60hQyMiIiIPqzzIsCMcZJiI6qs5jYVF5Aomo4gcOHu13PEA5rLjg9BqriejglCOfaevNmBkRERE5GkcZJiIiKhhMRlF5MDZqzqoHCWjTBWOF6g8foQQtmSUQhI4e7EARrPcCFESERGRJ1gHGQ71VyOvUIcyvQlmWaBMb0JeoY6DDBMREbmJySgiB85eLYcCDhJIRp1rBVxPRgFAoCiHWeadjYiIiJoy6yDDXeNDUVxhwtmrOhRXmNAtPhSzR3ThIMNukmWBI/nF2HHyCo7kF0PmsRIRUYvCAcyJHDhzVQd/R8kos8H5QlL1MaMAIFhyMYFFREREPo2DDDeMzLxC253DDCbLeFsdooMwgXcOIyJqMdgzisgBp2NGuapyMgo6V2/CR0RERD6OgwzXT2ZeIeavy8bBc0UI8VOhdXgAQvxUOHS+CPPXZSMzr9DbIRIRkQcwGUXkgGXMqHqM88SeUUREROQjfOWSOFkWWLk9D9d0RrSNDECgVgWlQkKgVoXEiAAUlRvxr+15vGSPiKgF4GV6RFXIssCZwnIopTomo4Rsl4wKQTkEeFBFREREnudLl8QdLSjB8YJSRAdrIUn2PcokSUJUkBbHCkpxtKAEnWNDPBobERF5FntGEVVx/FIpyo1m+CndTCBpAi1/DWXsGUVERERe52uXxBXpjDCYzPBTKx2+7qdWwmAyo0hn9GhcRETkeUxGEVWRmXcVABAX7GbHQb8wy9/yq9XGjDKa2TOKiIiIPMcXL4kLDVBDo1Kiwuh4XM4Ko6XnVmiA2mMxERGRdzAZRVTFnuvJqPhgNw+E/MMtf6+eAkov2iYHSzo8uXI3yg31GBCdiIiIyA3uXBLnKZ2ig9EhOgiXSvUQVe7uIoTApVI9OkYHoVN0sMdiIiIi72AyiqiKzNOWZFSMuz2j/MMsf7cuspscqazAzlOFWPb7yQaIjoiIiKh2vnhJnEIhYUJqIkL91cgr1KFMb4JZFijTm5BXqEOovxrjUxN5h0IiohaAySiiSq7pDDh5qQwAEBVYx8v0qhiQoAEALP31JK6U6usTHhEREZFLfPWSuD6JEZg9ogu6xoeiuMKEs1d1KK4woVt8KGaP6OLxQdWJiMg7eDc9okouFluSRRGBGvgp3BxDwdozqorW/kZ0jg3GkfwSbDh0EY+ktKlnlERERC2PLAscLShBkc6I0AA1OkUH+0wPGl+MzXpJ3KHzRQjQKO0u1bNeEtctPtQrl8T1SYxAckK4z71nRETkOUxGETmgkADIJjeWkJz2jJL0JegYY0lGOft1koiIqKWrKaGTmVeIldvzcLygFAaTpUdPh+ggTEhNbLCeNHVNKHkitrqwXhI3f1028gp1iArSwk9t6Sl1qVTv9UviFAoJnWNDvLJuIiLyPiajiJyR3UwcWQcwr0pfDMnf8t+LJRUQQlQbSJSIiKgl23XqCpb8cgK5l8sgC4EgrQoxIX64s3M0gvyU+CwjD0XlJkQHa+Gn1qLCaMah80WYvy67QS7tqmtCKTOvEPPXZeOazthosdWH9ZI4a90ul+qhUSnRLT4U472cLCMiopaNySiiSgQqXZon3E1GhTmeXlGMYD8VFJBxZuuXmHJmEN4Ym4q4UP86x0lERNQcyLLA4p+PYvm2XFQY5etTBYQAjhWUIOPkFSgVEiQAnWODEai1HLoGalUI0CiRV6jDv7bnITkhvM49fOqaUJJlgZXb83BNZ0TbyADbD00NGVtD4CVxRETki5iMInJIcvMyPTi9TA/6Ijx/VyfcduV73HP2PXx5+gCeXxWAryf3r3eUPsVsApT8SiEiItdk5hXirxtykHGyEA5HaRSAEDJMZkCllHCsoBQdo4MRdn3AbUmS0CpIiwPni/C/e86ie+tQW5LF1Uvu6pNQOlpQguMFpYgO1lbr8SxJEqKCtDhWUIqjBSVevxyNl8QREZGv4ZkjkTPuJqOq9oxKfQbY/j6gL0GrQA3uCc8DzgK3KbLxyslCHLtoGUuqWchZD3w7EbjjJeD2F7wdDRER+bhduYV48ZssnL5aXuN85utZKj+FAnqTjFNXytDDLwQKhQLXyo04U1iGazoT3t14FKEBGnSIDkLKzRHYcbLQpUvu6pNQKtIZYTCZ4afWOozdT63E5VI9inRGN98dIiKi5k/h7QCIfImo/NNsfcaMUvkBA2dcL1QGTBXAhX0AgJsV+Zit+hzfvfciRn+4DeWGJjyoeclFIOtL4KuxgFEHbHoD+OoRYNWjgCzXvjwREbU4GScuY9LKXbUmoiorM5hhMMkoLDMg8/Q1nLhUimMXS1BcboJKISEuzB8hfirbJXe7TxUixE+F1uEBCPFT2S65y8wrtCv3RkJJ6XC9fmolDCazw4RSaIAaGpXS6c1JKoyWRFjo9Z5cREREdAN7RhE5ILl9Nz0Aan9AqQXMeiAwGkClX1gNZcDlY7anT6p+AgA8czYK3877Gy6nvIyJQ5IRFqCpf/CeYjYB/7gTKD5rPz1nneVvwWEgtpvn4yIiIp/1ypo9+HLnhTota/29qLjChOIKEyQAGpUCwf4qKCTAYJZRbjDDaJZhlgUCNEpIklTjJXeVE0rW8agqqymh1Ck6GB2ig3DofJFtXbZYhcClUj26xVsuHWzO6noXQiLyDc11GzaZZGw8chH5RRWIDfXDXZ1joFK1nL44TaFdfSIZtWTJErzzzjvIz89Hz5498f7776Nfv35O51+9ejVee+01nDp1Ch07dsRbb72FP/7xjx6MmFoEd3tGAZZL9UovAoGtrme0rvtpOuBgRIz3NR8AAN7bEYQP/+uPkE5/QHlMb/yxWzTiw0MQHui7ySk56wsoqiaiKls6AKY/TIdqwDPOB3cnIqIG5+5xlae0nbmuQcpRAJBh2asaTDJ0ehMOXyiBSZahN8pQSMC1ciMulegRZb38TpIQqFFh39lr2HA4H2m3xEKhkNxKKDk6sJ+Qmoj567KRV6hDVJAWfmpLYutSqR6h/mqMT030uYP/unJU/71nrtbpLoQtWVM4QaSWo653Eq3K1z7XX+zIw4ebj+NyqQGyEFBIEloFafDnwR0wLiXRa3F5iqN2jQ7W4s7O0eh3c4TX28dKEkI4HDPSU1atWoXx48dj6dKlSElJwbvvvovVq1cjJycH0dHR1ebfvn077rjjDixYsAB33303vvzyS7z11lvYs2cPunWrvRdGcXExQkNDUVRUhJAQDuRINwghMPfHQ/gx4wBiIiOwPuYj4ORm1xYObwc8mwV80A+4nAN0TAMe/gpYmAgYSlyOIV+EI0dOQHfFSTxueBmDlVk4lzgaN8eFY2CX1oiMikVEoAYqpRez+sZyYOPrwM5PXJr9YLuJSPqfv0HtzZiJiBqQLx9LuHtcVVVj1a2hElGApd9x5YNXpQQEaVUwyQJllS591yglhAdoEBagwbVyA0orTDCYZcSH+qNnQpjtZMt6aV9RudFhQmn2iC4A4PSEzdFrHaODML4ZJWQcndhEBGpQUFIBk1lcvwth9fetudS/oTTUiT9RQ6h+J9G6bcO+9rn+Ykce5q/LhtEsw0+lhFopwWgWqDCZoVYqMHtEl2adkKrarnqzjNNXylBSYYYkAXGhfujROqzR2sed4wivJ6NSUlLQt29ffPCBpYeILMtISEjAM888g5kzZ1abf+zYsSgrK8PatWtt02677Tb06tULS5curXV9vnwASd5TUmHEwlW/YPjxN/AH5SFcadUPkUFa4NRW1wqwJqOWDQPO7AB6jQNGfQh8Owk4+G29YisUQfCDESYoMMYwF8eQgCiVDi8HrIUiMRVyQCtEGc/jYuLd8NdqEaBRIsR8Df4BgTCpg3DuShFOXzNhwM1huOWm8LonsmQZxZfycOTLmehXtN7lxUqEPzbIfZHQ/XZ0HPEcIny4txcRkSt8+VjC3eOqqhqjbg2ZiNIqJahVCpTpzbaElFIC/NUqlBtNtgHPAUClAJQKBUxmGSqFAhqVAjIE2rcKRJnBbHey5ehkyppQAlDrCVtyQrhP9QpoSI5OWMsNJhy8UAyTWaBrfAjCKw0zIIRAXqEO3eJDsXhsr2bzPtRXQ534EzUEWRZ4blUWDp4rsruTKODeNuxrn2uTScbARZtRUKJHsFYFRaV6yUKgRG9CdLAWv04f3Cwv2avarkUVJhy7WAKTWUCtlGAwWy5hD/VXISxA0yjt485xhFcv0zMYDMjMzMSsWbNs0xQKBYYOHYqMjAyHy2RkZOCFF+zv1pWWlobvv/++MUN12ZUzR1B27RKMZgG5ljxfbWnAWrOELuQRa5vDtVRkLfVwpYgGiKO2vKkrcQhhmVGG5QtJCAEhgOXbc/FEyVIkK48DACIv7wQuu1Cg1dVcy1/rIOaBrSx/b7nXPhl192Jg7fNuFAxESKW2//9HOwOvGR/Dm8oVgB7A0e9trx098BHeMj2Euap/IUFxCQBQIdToAoGN8q3osHkvtsudYJTUCJHKcUJqg17SMeglLcySBhdU8bimikK8nI88v85oY85DnhyFBOkKgopycIsiDyEog7sXegRL5Rij/A04/BtweD5my39Cb+UJxPqbEaE24HJAB8hKf+i14fA3XsPF4FsQYLwKSVJAJQxQmfXQ+UUj0FCAck0klJAhJBXMSi38TMUo17SC1lwCoyoYCshQyXqY1EHwM16FXhMBlVwBSVJCKNRQmcuh94uE2lQGKFQwqQIBlQaSEJAkQAEBCQIS5Ov/ByApICmUgKQAJCUgAUpJQBIAJAEFAAnXP1hCQJIEJFHpubWcStOsJAn2l3PCwf8rv+5sXtv0mueVal3e/v+Sk2MPl08rLBV0/lKV0pyVK0mSw+3b0fzVYr7+fkuV+lJIdm1QuWRht0ytZduiqP5C9bZ1ELPkvO4CktP33zaPsC9DVH6XhIN5r6+l8nwOqypJ1dpHkm7EKFWO7fp/HIVqX7TkYJqjCVXq4SRGR2FXXc7PPwgJ7ZIczNl81eW4qrGlNmAiCrDsuzVKBSoUZphkyyV7AkCFyWz3CZAAyAKALEMWls+HSZYR4q9GqyAtWgF2Y0j1SYxwmFACgOdWZeGazmh3wlZtHKqx4dXuttccyLLAyu151epv/VaVJODctXKEBWhufEfUchfClsjZ+1jTeGZEjak+dxK18sXP9cYjF3G51AA/ldIuEQUACkmCn0qJy6UGbDxyEcO7xXkkJk+q3K6QJJy9qoPJLOCvUV7/zhbQm8xoFRSIK2UGr3/veDUZdfnyZZjNZsTExNhNj4mJwZEjRxwuk5+f73D+/Px8h/Pr9Xro9Xrb8+Li4npGXbOTq2ahb+kvjboOani3AoACKFcEwV+jBCqKbrwYFAuUVvl8xXQDLh6s9Ly75W/ITZa/YW0sfzsMBVT+gKkcuOc9QBN4Y5k7XgKObQQuZFUPqGMacGyD/TRNMGAowZvqFQ7r0ElxDss0f7Wb5idZ7v5zt/K/llUqD9he64tsWHMoAADzPkuCCwDK/2NfeJUfDvTQQgs9aiMUKkhVBoKfr1hqWafu+oSi32sth4jIXYc0PYBXXOzd2kzU5biqsY+TzjdoaYBZBsyyuH7SIyDDsosyywIKCVBI15NQsOxqZGFJmBjNAmqlAq3DbpwwVT3ZUiikaiddR/KL633C1pQ5O2E1Xk/yaZWWXmplehOCKg0A76dW4nKp3uFdCFuihjjxJ2pIN+4kqnX4uivbsC9+rvOLKiALSy8gR9RKCRUmgfyiCo/E42mV27VMb0KZ3gyNSmH7sUApAQYBmGThE987PjGAeWNasGAB3njjDY+tz6gNx/nSKNd7DtTGR34cqT0MHwnURZLtnxvPjeoQaO9eCP9OtwH/9xyQtw0ITQDGLAOyvgSCYiyX4LUbaOnxdGYHkJBieS2ul6WggTOA+F5AtzGW55pAYOhcy+V+3UZbpiXcBnQaBtz+InDnq8CFfcD3U4E7ZwP7vwECIoBBrwCntwPxycCayUDX+4DIDsB/PwTOZ1nu9Pf4BuDQGkCltax/618td7DTXQGGvwOc2w1cOQ70eQzI+TdM7e+CnLsVJnUwjP5RUBQeQ2lkTwSe2QxdYCIk/TUo9MUoCUxESOEBFAYnIaDsLHTKYCiDo6E1lUDZbRRiTv0A7a0TgXOZlvGjOqUD298DBs+2/G3dD9AGAcc2Qrrtz8APfwZufRzi+C+Qsn+AISAWRpMJZ0Jvhb+hEH7Gq7jk1xZ+xiLolQG4qSwbRZpomKGEWVLBLKkRbLyMInUUgkyFMEEDlTBALfQoU4Qg2FwInSIYAeYSCEmCXvKDv1yGEkUoguQiGCQtFEKGEiYYJC2CzVehUwRDEjL8hA5qYYCo1CfKkp+z9ouynNEoIEMhZFuvKcvrqLTMjWVhnet6r6DK81V+DtuzSp9JGwc9eJz0/au8Vtdfd7xeZ2XUiQvdHR3Vua6ssQsH30WVp1n/L2p5vb5qey8b4r12pwxX53Wv9q6W2TijAdQWq0kd1CjrbW48fZxUX5ZeUDK0KgUkWHpHSbD0eAYAtUKCSqmAwSzDZLb0l5MkQKEAbgrzR1ilu+K5crLVECdsTZmz+qsVCigkywmnLMswmmW712u6C2FL1NI/R+R76nMnUStf/FzHhvpBIVnGiNKqqh8pGM2WwcxjQ/08FpMnVW5Xo1mGLASUihu9CszC8qONWqHwie8dryajWrVqBaVSiYsXL9pNv3jxImJjYx0uExsb69b8s2bNsrusr7i4GAkJCfWM3LnUZ/7ZaGWTB41ZZv980PVxNm6deGNa+zstf/s9eWNacAzQe7z9srf9yfKwmlSlx1NcT+Cp672DkobfmN7lHsvfiT9VWudgx3E5eg2Tb/y393jLxt7vcVQesclyAcKLqJwLj7r+txWc6DvK8rfdHTemPbDC8vfe929M63qf5e+U3wAAUp/HAACa64/OlYq0/w0fCHOw2pucxeNETcP0hrtZFhE1PT29HYAX1OW4ytPHSQ0hUKNEbKgfTheWQzLLuCnMDxeKKizjQiklQJIghECARgWDyQxJkqCQYDeuEeDayVZDnLA1Zc7qH6hVIlCjQlGFEUpJsrtJSdW7EBI/R+R73LmTqDO++Lm+q3MMWgVpUFCih1opVRszqsJkRnSwFnd1rnr20TxUbtfIQA0UkgSzLKBSWPaLBrOMYD8VArVK6Aze/97x6qhdGo0Gffr0waZNm2zTZFnGpk2b0L9/f4fL9O/f325+ANi4caPT+bVaLUJCQuweRERERM1NXY6rGvs4Kb4BypAARAep4a9WIECrRJi/CoCE5DahSIwMAAAEaCx30zPJAuVGM1RKBTpEByLYTwWjWUagxnLwbWU92eoYHVTjyZb1wP5Sqb7a2JWultGUOau/JEloHe4PIW6MR2iWBcr0JuQV6hDqr8b41ESOf3RdS/8cke9RKCRMSE1EqL8aeYU6lOlNbm/Dvvi5VqkU+PPgDlArFSjRm6A3WXoH6U0ySvQmaJSW15vj4OWAfbteKTVAq5KgN5kt+0aTDJVCQuswy37TF753vN4KL7zwAv7xj39g5cqVyM7OxlNPPYWysjJMnGjpgTJ+/Hi7gTifffZZrF+/Hn/9619x5MgRzJ07F7t378bTTz/trSoQERER+YTajqs8bfvCEfVaXiEBiREBCPbXoHNcCN4c2Q0L7u+Jv43tiZUTU7BgdHd0uykMwX4qyEKg3CjDX61A+6ggqBUKqJUKaJQKqJQSdAaz2ydbDXHC1pTVVP9r5UYkRgagV0IoSipMOHtVh+IKE7rFh/LOcFW09M8R+aY+iRGYPaILusaHorgO27Cvfq7HpSRi9oguiA7WwmC2JKEMZhnRwVq8MqILxqUkejQeT7O1602hCPZTQwhAZzDBX6207BuVks9870iitluUecAHH3yAd955B/n5+ejVqxfee+89pKSkAAAGDRqEtm3bYsWKFbb5V69ejVdffRWnTp1Cx44d8fbbb+OPf/yjS+vy5dsxExERke/z9WOJmo6ratNYdWtbh7vq+akViAxQIzRAi47RQRifmujw5EiWBY4WlGDnyUL8cqQABSV6GEyWyw86Rgeh380R2HGyEMcLSu2mOyvPkcy8QqzcnlevMpqymurv6C6ETKo41tI/R+SbrN+hdd2GffVzbTLJ2HjkIvKLKhAb6oe7Osc02x5Rjtj2jbmF+CW7ABeLK2A0y43ePu4cR/hEMsqTfP0AkoiIiHxbcz6WaMy6pc5c5/Duev0SghAY4GcbtyS1QyR6xodDUgIl5Sa3To6cnVTV92SrprJbipZe/4bC95GaI36ufZsn24fJqBo05wNIIiIianzN+ViiOdeNiIiIGpc7xxEtp58aERERERERERF5HZNRRERERERERETkMUxGERERERERERGRxzAZRUREREREREREHsNkFBEREREREREReQyTUURERERERERE5DEqbwfgaUIIAJZbDhIRERG5y3oMYT2maE54nERERER15c4xUotLRpWUlAAAEhISvBwJERERNWUlJSUIDQ31dhgNisdJREREVF+uHCNJojn+rFcDWZZx/vx5BAcHQ5Ikt5cvLi5GQkICzpw5g5CQkEaI0Pe0xDoDLbPeLbHOAOvdkurdEusMtMx6N2adhRAoKSlBfHw8FIrmNeJBfY+TatMSP4u+im3hO9gWvoNt4VvYHr7D1bZw5xipxfWMUigUaN26db3LCQkJaXEbREusM9Ay690S6wyw3i1JS6wz0DLr3Vh1bm49oqwa6jipNi3xs+ir2Ba+g23hO9gWvoXt4TtcaQtXj5Ga1895RERERERERETk05iMIiIiIiIiIiIij2Eyyk1arRZz5syBVqv1dige0xLrDLTMerfEOgOsd0uqd0usM9Ay690S69wUsF18B9vCd7AtfAfbwrewPXxHY7RFixvAnIiIiIiIiIiIvIc9o4iIiIiIiIiIyGOYjCIiIiIiIiIiIo9hMoqIiIiIiIiIiDymxSSjfvvtN9xzzz2Ij4+HJEn4/vvv7V5fs2YNhg0bhsjISEiShKysrGplVFRUYOrUqYiMjERQUBDuv/9+XLx4scb1CiHw+uuvIy4uDv7+/hg6dCiOHTvWgDWrWX3rXVhYiGeeeQZJSUnw9/dHmzZtMG3aNBQVFdW43sceewySJNk90tPTG7h2jjVEWw8aNKha/H/6059qXG9Tb+tTp05Vq7P1sXr1aqfr9WZbAzXX22g0YsaMGejevTsCAwMRHx+P8ePH4/z583ZlFBYWYty4cQgJCUFYWBgmTZqE0tLSGtdbl++DhlLfOp86dQqTJk1Cu3bt4O/vj/bt22POnDkwGAw1rrcu20VDaoi2btu2bbU6LFy4sMb1erOtgfrXe8uWLU637V27djldrzfbu7bvs7lz56Jz584IDAxEeHg4hg4dih07dtjN09S26+ZkyZIlaNu2Lfz8/JCSkoKdO3fWOP/q1avRuXNn+Pn5oXv37vjpp588FGnz505brFixoto27+fn58Fom6/avtMc2bJlC3r37g2tVosOHTpgxYoVjR5nS+BuWzjbh+bn53sm4GZswYIF6Nu3L4KDgxEdHY1Ro0YhJyen1uW4z2h4dWmLhthntJhkVFlZGXr27IklS5Y4ff0Pf/gD3nrrLadlPP/88/i///s/rF69Gr/++ivOnz+P0aNH17jet99+G++99x6WLl2KHTt2IDAwEGlpaaioqKhXfVxV33qfP38e58+fx6JFi3Dw4EGsWLEC69evx6RJk2pdd3p6Oi5cuGB7fPXVV/Wqi6saoq0B4Mknn7SL/+23365x/qbe1gkJCXb1vXDhAt544w0EBQVh+PDhNa7bW20N1FxvnU6HPXv24LXXXsOePXuwZs0a5OTk4N5777Wbb9y4cTh06BA2btyItWvX4rfffsPkyZNrXG9dvg8aSn3rfOTIEciyjI8//hiHDh3C4sWLsXTpUrzyyiu1rtvd7aIhNURbA8C8efPs6vDMM8/UuF5vtjVQ/3qnpqZW27afeOIJtGvXDrfeemuN6/ZWe9f2fdapUyd88MEHOHDgAH7//Xe0bdsWw4YNw6VLl2zzNLXturlYtWoVXnjhBcyZMwd79uxBz549kZaWhoKCAofzb9++HQ8//DAmTZqEvXv3YtSoURg1ahQOHjzo4cibH3fbAgBCQkLstvm8vDwPRtx81fadVlVubi5GjBiBwYMHIysrC8899xyeeOIJbNiwoZEjbf7cbQurnJwcu20jOjq6kSJsOX799VdMnToV//3vf7Fx40YYjUYMGzYMZWVlTpfhPqNx1KUtgAbYZ4gWCID47rvvHL6Wm5srAIi9e/faTb927ZpQq9Vi9erVtmnZ2dkCgMjIyHBYlizLIjY2Vrzzzjt25Wi1WvHVV1/Vux7uqku9Hfnmm2+ERqMRRqPR6TwTJkwQI0eOrFugDaiudR44cKB49tlnXV5Pc23rXr16iccff7zGeXylrYWoud5WO3fuFABEXl6eEEKIw4cPCwBi165dtnn+/e9/C0mSxLlz5xyWUZfvg8ZSlzo78vbbb4t27drVWI6720Vjqmu9ExMTxeLFi11ejy+1tRAN094Gg0FERUWJefPm1ViOr7S3K3UuKioSAMTPP/8shGj623VT1q9fPzF16lTbc7PZLOLj48WCBQsczv/ggw+KESNG2E1LSUkRU6ZMadQ4WwJ322L58uUiNDTUQ9G1XK58p7388suia9eudtPGjh0r0tLSGjGylseVtti8ebMAIK5eveqRmFqygoICAUD8+uuvTufhPsMzXGmLhthntJieUfWVmZkJo9GIoUOH2qZ17twZbdq0QUZGhsNlcnNzkZ+fb7dMaGgoUlJSnC7TFBQVFSEkJAQqlarG+bZs2YLo6GgkJSXhqaeewpUrVzwUYcP44osv0KpVK3Tr1g2zZs2CTqdzOm9zbOvMzExkZWW51AuuKbV1UVERJElCWFgYACAjIwNhYWF2PUSGDh0KhUJR7bIfq7p8H3hT1To7myciIqLWstzZLrzNWb0XLlyIyMhIJCcn45133oHJZHJaRlNra6D29v7xxx9x5coVTJw4sdaymkJ7GwwGfPLJJwgNDUXPnj0BtIzt2hcZDAZkZmbavYcKhQJDhw51+h5mZGTYzQ8AaWlpfM/rqS5tAQClpaVITExEQkICRo4ciUOHDnkiXKqC24Xv6dWrF+Li4nDXXXdh27Zt3g6nWbIOA1PT8Si3Dc9wpS2A+u8zas4mkE1+fj40Gk21g/uYmBin1wxbp8fExLi8jK+7fPky3nzzzVovdUhPT8fo0aPRrl07nDhxAq+88gqGDx+OjIwMKJVKD0Vbd4888ggSExMRHx+P/fv3Y8aMGcjJycGaNWsczt8c23rZsmXo0qULUlNTa5yvKbV1RUUFZsyYgYcffhghISEALG1Xtau1SqVCREREjdu2u98H3uKozlUdP34c77//PhYtWlRjWe5uF97krN7Tpk1D7969ERERge3bt2PWrFm4cOEC/va3vzkspym1NeBaey9btgxpaWlo3bp1jWX5enuvXbsWDz30EHQ6HeLi4rBx40a0atUKQPPfrn3V5cuXYTabHe4Ljxw54nCZ/Pz8ZrXv9BV1aYukpCT885//RI8ePVBUVIRFixYhNTUVhw4dqvX7ghqWs+2iuLgY5eXl8Pf391JkLU9cXByWLl2KW2+9FXq9Hp9++ikGDRqEHTt2oHfv3t4Or9mQZRnPPfccBgwYgG7dujmdj/uMxudqWzTEPoPJKHJZcXExRowYgVtuuQVz586tcd6HHnrI9v/u3bujR48eaN++PbZs2YIhQ4Y0cqT1VznZ1r17d8TFxWHIkCE4ceIE2rdv78XIPKO8vBxffvklXnvttVrnbSptbTQa8eCDD0IIgY8++sjb4XiEK3U+d+4c0tPT8cADD+DJJ5+ssbymsl3UVO8XXnjB9v8ePXpAo9FgypQpWLBgAbRaradDbVCutPfZs2exYcMGfPPNN7WW5+vtbR1L5fLly/jHP/6BBx98EDt27OA4HkR11L9/f/Tv39/2PDU1FV26dMHHH3+MN99804uREXlPUlISkpKSbM9TU1Nx4sQJLF68GJ999pkXI2tepk6dioMHD+L333/3digtnqtt0RD7DF6m56LY2FgYDAZcu3bNbvrFixcRGxvrdBnrPK4u46tKSkqQnp6O4OBgfPfdd1Cr1W4tf/PNN6NVq1Y4fvx4I0XYuFJSUgDAafzNqa0B4Ntvv4VOp8P48ePdXtYX29p6kp6Xl4eNGzfa9RiJjY2tNpiryWRCYWFhjdu2u98HnlZTna3Onz+PwYMHIzU1FZ988onb66htu/AGV+pdWUpKCkwmE06dOuXw9abQ1oDr9V6+fDkiIyMdDuxeG19r78DAQHTo0AG33XYbli1bBpVKhWXLlgFovtu1r2vVqhWUSqVb+8LY2Nhms+/0JXVpi6rUajWSk5N9ZptvSZxtFyEhIewV5QP69evH7aIBPf3001i7di02b95ca48a7jMalzttUVVd9hlMRrmoT58+UKvV2LRpk21aTk4OTp8+bZcRrKxdu3aIjY21W6a4uBg7duxwuowvKi4uxrBhw6DRaPDjjz/W6Ta/Z8+exZUrVxAXF9cIETa+rKwsAHAaf3Npa6tly5bh3nvvRVRUlNvL+lpbW0/Sjx07hp9//hmRkZF2r/fv3x/Xrl1DZmambdovv/wCWZZtJ99V1eX7wJNqqzNg6RE1aNAg9OnTB8uXL4dC4f7uoLbtwtNcqXdVWVlZUCgUTnvT+HpbA67XWwiB5cuXY/z48W7/oAD4XntXJcsy9Ho9gOa5XTcFGo0Gffr0sXsPZVnGpk2bnL6H/fv3t5sfADZu3Mj3vJ7q0hZVmc1mHDhwwGe3+eaM24Vvy8rK4nbRAIQQePrpp/Hdd9/hl19+Qbt27WpdhttG46hLW1RVp31GvYY/b0JKSkrE3r17xd69ewUA8be//U3s3bvXdrehK1euiL1794p169YJAOLrr78We/fuFRcuXLCV8ac//Um0adNG/PLLL2L37t2if//+on///nbrSUpKEmvWrLE9X7hwoQgLCxM//PCD2L9/vxg5cqRo166dKC8vbxL1LioqEikpKaJ79+7i+PHj4sKFC7aHyWRyWO+SkhIxffp0kZGRIXJzc8XPP/8sevfuLTp27CgqKip8vs7Hjx8X8+bNE7t37xa5ubnihx9+EDfffLO444477NbT3Nra6tixY0KSJPHvf//b4Xp8qa2tMTirt8FgEPfee69o3bq1yMrKsvv86vV6Wxnp6ekiOTlZ7NixQ/z++++iY8eO4uGHH7a9fvbsWZGUlCR27Nhhm+bK94Gv1vns2bOiQ4cOYsiQIeLs2bN28zirs6vbhS/Xe/v27WLx4sUiKytLnDhxQnz++eciKipKjB8/3mm9hfBuWzdEva1+/vlnAUBkZ2dXW4evtXdNdS4tLRWzZs0SGRkZ4tSpU2L37t1i4sSJQqvVioMHD9rKaGrbdXPx9ddfC61WK1asWCEOHz4sJk+eLMLCwkR+fr4QQohHH31UzJw50zb/tm3bhEqlEosWLRLZ2dlizpw5Qq1WiwMHDnirCs2Gu23xxhtviA0bNogTJ06IzMxM8dBDDwk/Pz9x6NAhb1Wh2ajtGG3mzJni0Ucftc1/8uRJERAQIF566SWRnZ0tlixZIpRKpVi/fr23qtBsuNsWixcvFt9//704duyYOHDggHj22WeFQqGw3b2V6u6pp54SoaGhYsuWLXbHLzqdzjYP9xmeUZe2aIh9RotJRllvy1n1MWHCBCGE5daEjl6fM2eOrYzy8nLx5z//WYSHh4uAgABx3333VTuRByCWL19uey7LsnjttddETEyM0Gq1YsiQISInJ8cDNbaob72dLQ9A5ObmOqy3TqcTw4YNE1FRUUKtVovExETx5JNP2g5+fL3Op0+fFnfccYeIiIgQWq1WdOjQQbz00kuiqKjIbj3Nra2tZs2aJRISEoTZbHa4Hl9qayFqrndubq7Tz+/mzZttZVy5ckU8/PDDIigoSISEhIiJEyeKkpIS2+vWciov48r3ga/W2dlnofLvE1Xr7Op24cv1zszMFCkpKSI0NFT4+fmJLl26iP/3//6fXeLU19q6Iept9fDDD4vU1FSH6/C19q6pzuXl5eK+++4T8fHxQqPRiLi4OHHvvfeKnTt32pXR1Lbr5uT9998Xbdq0ERqNRvTr10/897//tb02cOBA237J6ptvvhGdOnUSGo1GdO3aVaxbt87DETdf7rTFc889Z5s3JiZG/PGPfxR79uzxQtTNT23HaBMmTBADBw6stkyvXr2ERqMRN998s90xJ9Wdu23x1ltvifbt2ws/Pz8REREhBg0aJH755RfvBN/MODt+qfxZ5z7DM+rSFg2xz5Cur5yIiIiIiIiIiKjRccwoIiIiIiIiIiLyGCajiIiIiIiIiIjIY5iMIiIiIiIiIiIij2EyioiIiIiIiIiIPIbJKCIiIiIiIiIi8hgmo4iIiIiIiIiIyGOYjCIiIiIiIiIiIo9hMoqIiIiIiIiIiDyGySgiIiIiImpW5s6di5iYGEiShO+//97b4fiEK1euIDo6GqdOnfJ2KG47deoUJElCVlZWg5fdtm1bvPvuuwAAg8GAtm3bYvfu3TUus2XLFkiShGvXrjV4PA1t0KBBeO6557wdBvmQ3377Dffccw/i4+Pr9B05d+5cSJJU7REYGOhWOUxGEVGL9Nhjj9m+ONVqNdq1a4eXX34ZS5cudfjlWvnRFA/iiIiIGlPl/aokSYiMjER6ejr279/fYOuYO3cuevXqVet82dnZeOONN/Dxxx/jwoULGD58eIPF4Gsee+wxjBo1yqV558+fj5EjR6Jt27aNGlN9uVOnhqbRaDB9+nTMmDGjxvlSU1Nx4cIFhIaGuly2t+q1Zs0avPnmm7bnlZNv1DKVlZWhZ8+eWLJkSZ2Wnz59Oi5cuGD3uOWWW/DAAw+4VQ6TUUTUYqWnp+PChQs4efIkFi9ejI8//hi5ubl2X6z9+/fHk08+aTctISHB26ETERH5HOt+9cKFC9i0aRNUKhXuvvtuj8dx4sQJAMDIkSMRGxsLrVZbbR6DweDpsLxKp9Nh2bJlmDRpkrdD8Xnjxo3D77//jkOHDjmdR6PRIDY2FpIkeTCyuomIiEBwcLC3wyAfMnz4cPzlL3/Bfffd5/B1vV6P6dOn46abbkJgYCBSUlKwZcsW2+tBQUGIjY21PS5evIjDhw+7/f3CZBQRtVharRaxsbFISEjAqFGjMHToUGzcuNHuy1Wj0SAgIMBumlKp9HboREREPse6X42NjUWvXr0wc+ZMnDlzBpcuXbLNc+bMGTz44IMICwtDREQERo4cadfjeMuWLejXrx8CAwMRFhaGAQMGIC8vDytWrMAbb7yBffv22XpfrVixoloMc+fOxT333AMAUCgUtmSBtVfK/PnzER8fj6SkJADAZ599hltvvRXBwcGIjY3FI488goKCArsyf/zxR3Ts2BF+fn4YPHgwVq5caXeJ1ooVKxAWFoa1a9ciKSkJAQEBGDNmDHQ6HVauXIm2bdsiPDwc06ZNg9lstpVb2wmftdwNGzagS5cuCAoKsiX8rHVduXIlfvjhB9t7Unn5yn766SdotVrcdttttmlXr17FuHHjEBUVBX9/f3Ts2BHLly8HcOOyuG+++Qa33347/P390bdvXxw9ehS7du3CrbfeiqCgIAwfPtyufWVZxrx589C6dWtotVr06tUL69evt4vlwIEDuPPOO+Hv74/IyEhMnjwZpaWlLtXp5MmTGDx4MAICAtCzZ09kZGTYlf3777/b4k1ISMC0adNQVlZme72goAD33HMP/P390a5dO3zxxRfV3qvw8HAMGDAAX3/9tcP3Eqh+mV592qq2bcL62V20aBHi4uIQGRmJqVOnwmg02ub58MMPbZ/RmJgYjBkzxvZa5cv0Bg0ahLy8PDz//PO2OMrKyhASEoJvv/3Wro7ff/89AgMDUVJS4vR9oObp6aefRkZGBr7++mvs378fDzzwANLT03Hs2DGH83/66afo1KkTbr/9drfWw2QUERGAgwcPYvv27dBoNN4OhYiIqMkrLS3F559/jg4dOiAyMhIAYDQakZaWhuDgYGzduhXbtm2znbQbDAaYTCaMGjUKAwcOxP79+5GRkYHJkydDkiSMHTsWL774Irp27WrrfTV27Nhq650+fbotoWKdz2rTpk3IycnBxo0bsXbtWltMb775Jvbt24fvv/8ep06dwmOPPWZbJjc3F2PGjMGoUaOwb98+TJkyBbNnz662Xp1Oh/feew9ff/011q9fjy1btuC+++7DTz/9hJ9++gmfffYZPv74Y7sTfldO+HQ6HRYtWoTPPvsMv/32G06fPo3p06fb6vrggw/a9UhLTU112B5bt25Fnz597Ka99tprOHz4MP79738jOzsbH330EVq1amU3z5w5c/Dqq69iz549UKlUeOSRR/Dyyy/j73//O7Zu3Yrjx4/j9ddft83/97//HX/961+xaNEi7N+/H2lpabj33nttdSorK0NaWhrCw8Oxa9curF69Gj///DOefvppl+o0e/ZsTJ8+HVlZWejUqRMefvhhmEwmAJYecenp6bj//vuxf/9+rFq1Cr///rutbMCS2Dlz5gw2b96Mb7/9Fh9++GG15CMA9OvXD1u3bnX4XjpTl7aqbZuw2rx5M06cOIHNmzdj5cqVWLFihS0Zu3v3bkybNg3z5s1DTk4O1q9fjzvuuMNhjGvWrEHr1q0xb948WxyBgYF46KGHbNuN1fLlyzFmzBj2qmphTp8+jeXLl2P16tW4/fbb0b59e0yfPh1/+MMfqn1GAKCiogJffPFF3XpdCiKiFmjChAlCqVSKwMBAodVqBQChUCjEt99+azffwIEDxbPPPuudIImIiJqIyvvVwMBAAUDExcWJzMxM2zyfffaZSEpKErIs26bp9Xrh7+8vNmzYIK5cuSIAiC1btjhcx5w5c0TPnj1rjeW7774TVU9zJkyYIGJiYoRer69x2V27dgkAoqSkRAghxIwZM0S3bt3s5pk9e7YAIK5evSqEEGL58uUCgDh+/LhtnilTpoiAgABbOUIIkZaWJqZMmSKEECIvL08olUpx7tw5u7KHDBkiZs2a5bTcJUuWiJiYGLt6jRw5ssY6CSHEyJEjxeOPP2437Z577hETJ050OH9ubq4AID799FPbtK+++koAEJs2bbJNW7BggUhKSrI9j4+PF/Pnz7crq2/fvuLPf/6zEEKITz75RISHh4vS0lLb6+vWrRMKhULk5+c7rZOjeA4dOiQAiOzsbCGEEJMmTRKTJ0+2W27r1q1CoVCI8vJykZOTIwCInTt32l7Pzs4WAMTixYvtlvv73/8u2rZt6/C9EUKIzZs31/oZcKWtatsmrMslJiYKk8lkm+eBBx4QY8eOFUII8b//+78iJCREFBcXO4y16rFsYmJitfru2LFDKJVKcf78eSGEEBcvXhQqlcrptkjNBwDx3Xff2Z6vXbtWALB9l1sfKpVKPPjgg9WW//LLL4VKpbJtv+5QuZ++IiJqHgYPHoyPPvoIZWVlWLx4MVQqFe6//35vh0VERNQkWfergOUSsA8//BDDhw/Hzp07kZiYiH379uH48ePVelpUVFTgxIkTGDZsGB577DGkpaXhrrvuwtChQ/Hggw8iLi6uQeLr3r17tR7QmZmZmDt3Lvbt24erV69ClmUAlt4Bt9xyC3JyctC3b1+7Zfr161et7ICAALRv3972PCYmBm3btkVQUJDdNGsvnAMHDsBsNqNTp0525ej1eltPMkflxsXFOezJU5vy8nL4+fnZTXvqqadw//33Y8+ePRg2bBhGjRpVrWdVjx497OIHLO+jozoVFxfj/PnzGDBggF0ZAwYMwL59+wBYBpfv2bOn3V23BgwYAFmWkZOTY1uHM5XjsX4uCgoK0LlzZ+zbtw/79++3u/ROCAFZlpGbm4ujR49CpVLZ9RDr3LkzwsLCqq3H398fOp2uxliqqktb1bZNWHXt2tVumIi4uDgcOHAAAHDXXXchMTERN998M9LT05Geno777rsPAQEBLsfer18/dO3aFStXrsTMmTPx+eefIzEx0WkPK2q+SktLoVQqkZmZWW1oksrfZ1affvop7r777lq3XUeYjCKiFiswMBAdOnQAAPzzn/9Ez549ObgnERFRHVXerwKWk5TQ0FD84x//wF/+8heUlpaiT58+DsfpiYqKAmC5NGjatGlYv349Vq1ahVdffRUbN260G+uoPvFVZr1kLC0tDV988QWioqJw+vRppKWluT3AuVqttntuvVtv1WnWZJerJ3yOyrB0ZnBPq1atcPXqVbtpw4cPR15eHn766Sds3LgRQ4YMwdSpU7Fo0SKH67eOv1V1mrVOnuAonsrv6ZQpUzBt2rRqy7Vp0wZHjx51eT2FhYW2z2RdYrPGV1tbubJNOCvbWu/g4GDs2bMHW7ZswX/+8x+8/vrrmDt3Lnbt2uUw0ebME088gSVLlmDmzJlYvnw5Jk6c2CQGaKeGlZycDLPZjIKCglrHgMrNzcXmzZvx448/1mldHDOKiAiWQU5feeUVvPrqqygvL/d2OERERE2eJElQKBS2/Wrv3r1x7NgxREdHo0OHDnaP0NBQ23LJycmYNWsWtm/fjm7duuHLL78EYLmDWeUBwOvryJEjuHLlChYuXIjbb78dnTt3rtaTJSkpCbt377abtmvXrnqvu/IJX9X3IjY21uVyXH1PkpOTcfjw4WrTo6KiMGHCBHz++ed499138cknn7hVj8pCQkIQHx+Pbdu22U3ftm0bbrnlFgBAly5dsG/fPrtBxbdt2waFQmEbVL6u7dy7d28cPny42vvZoUMHaDQadO7cGSaTCZmZmbZlcnJybIOQV3bw4EEkJye7HUNNHNXL1W2iNiqVCkOHDsXbb7+N/fv349SpU/jll19cjgMA/ud//gd5eXl47733cPjwYUyYMMG9ClKTUVpaiqysLGRlZQGwJJWysrJw+vRpdOrUCePGjcP48eOxZs0a5ObmYufOnViwYAHWrVtnV84///lPxMXFYfjw4XWKg8koIqLrHnjgASiVSixZssTboRARETU5er0e+fn5yM/PR3Z2Np555hmUlpba7m43btw4tGrVCiNHjsTWrVuRm5uLLVu2YNq0aTh79ixyc3Mxa9YsZGRkIC8vD//5z39w7NgxdOnSBQDQtm1b20nT5cuXodfr6xVvmzZtoNFo8P777+PkyZP48ccf8eabb9rNM2XKFBw5cgQzZszA0aNH8c0339gGjq5PrxF3Tvhq0rZtW+zfvx85OTm4fPmy3R3WKktLS8OhQ4fseke9/vrr+OGHH3D8+HEcOnQIa9eutb3XdfXSSy/hrbfewqpVq5CTk4OZM2ciKysLzz77LADLZ8DPzw8TJkzAwYMHsXnzZjzzzDN49NFHbZf5uFqnqmbMmIHt27fj6aefRlZWFo4dO4YffvjBNoB5UlIS0tPTMWXKFOzYsQOZmZl44okn4O/vX62srVu3YtiwYfV6L6pyVK/atglXrF27Fu+99x6ysrKQl5eHf/3rX5Bl2ZbccxTHb7/9hnPnzuHy5cu26eHh4Rg9ejReeuklDBs2DK1bt26QepPv2b17N5KTk20J1xdeeAHJycm2mxEsX74c48ePx4svvoikpCSMGjUKu3btQps2bWxlyLKMFStW4LHHHqvzncaZjCIiuk6lUuHpp5/G22+/bfeLHREREdVu/fr1iIuLQ1xcHFJSUmx3Sxs0aBAAy5g6v/32G9q0aYPRo0ejS5cumDRpEioqKhASEoKAgAAcOXIE999/Pzp16oTJkydj6tSpmDJlCgDg/vvvR3p6OgYPHoyoqCh89dVX9Yo3KioKK1aswOrVq3HLLbdg4cKFdpeoAUC7du3w7bffYs2aNejRowc++ugj2930tFptvdbvyglfbZ588kkkJSXh1ltvRVRUVLVeSVbdu3dH79698c0339imaTQazJo1Cz169MAdd9wBpVKJr7/+ul51mjZtGl544QW8+OKL6N69O9avX48ff/wRHTt2BGD5DGzYsAGFhYXo27cvxowZgyFDhuCDDz5wu05V9ejRA7/++iuOHj2K22+/3XZyHR8fb5tn+fLliI+Px8CBAzF69GhMnjwZ0dHRduVkZGSgqKgIY8aMqdd7UZWjetW2TbgiLCwMa9aswZ133okuXbpg6dKl+Oqrr9C1a1eH88+bNw+nTp1C+/btq12KOGnSJBgMBjz++OP1ri/5rkGDBkEIUe1hTbSr1Wq88cYbyM3NhcFgwPnz57FmzRq78eIUCgXOnDmD+fPn1zkOSdTlomMiIiIiIqIWaP78+Vi6dCnOnDnj7VDcsm7dOrz00ks4ePAgFAr2SXBm7Nix6NmzJ1555RVvh+Jxn332GZ5//nmcP3++2mD/RA2NA5gTERERERE58eGHH6Jv376IjIzEtm3b8M4779gu/WpKRowYgWPHjuHcuXNISEjwdjg+yWAwoHv37nj++ee9HYpH6XQ6XLhwAQsXLsSUKVOYiCKPYM8oIiIiIiIiJ55//nmsWrUKhYWFaNOmDR599FHMmjULKhV/16fmYe7cuZg/fz7uuOMO/PDDD3Z3dCRqLExGERERERERERGRx/BiYSIiIiIiIiIi8hgmo4iIiIiIiIiIyGOYjCIiIiIiIiIiIo9hMoqIiIiIiIiIiDyGySgiIiIiIiIiIvIYJqOIiIiIiIiIiMhjmIwiIiIiIiIiIiKPYTKKiIiIiIiIiIg8hskoIiIiIiIiIiLymP8PdBpV0BykM4AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKMAAAGGCAYAAACno0IzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxo5JREFUeJzs3XdYU9cbB/BvWGEvAQFlOVBxoagIVqAunNXWuivDUWfVor9WahW3tUOxyy1o1Wrdtu6Fe++9ARcgIkt2cn9/0KRGVoKBIH4/z5NHc3Lvue8laG7ee857RIIgCCAiIiIiIiIiIioHWpoOgIiIiIiIiIiI3h9MRhERERERERERUblhMoqIiIiIiIiIiMoNk1FERERERERERFRumIwiIiIiIiIiIqJyw2QUERERERERERGVGyajiIiIiIiIiIio3DAZRURERERERERE5YbJKCIiIiIiIiIiKjdMRhG9B/z8/ODn5yd/Hh0dDZFIhMjISI3FpIzIyEiIRCJER0drOhQFZ8+ehbe3N4yMjCASiXDp0iVMnToVIpFIYTtnZ2cEBQWVe3yPHj2Cvr4+jh8/Xu7Hrmxu3LgBHR0dXLt2TdOhEBGpxZvXBBVRUFAQnJ2dNR2GykQiEaZOnarWPivK++Xs7IyuXbuWuF1UVBREIhGioqLUevz09HTY2NhgzZo1au33TeV57fau/p4ro6y/a0ycOBGenp5l0jeVHyajiJQgS4oU9oiLi9N0eFSOcnNz0atXLyQlJWH+/Pn4448/4OTkpOmwFEyfPh2enp5o1aqVpkORy87Oxtdffw17e3sYGBjA09MT+/btU6mP9evXw8vLC0ZGRjA3N4e3tzcOHjxYYLvly5ejXr160NfXR+3atfHLL7+U2Hf79u0hEokwevRohXY3Nzd06dIFU6ZMUSlWIiJ1efMaRF9fH66urhg9ejTi4+PLNZa1a9ciPDy8XI/5Prhx4wamTp1a4W6+VSQLFiyAiYkJ+vbtq+lQqAIYN24cLl++jO3bt2s6FHoLOpoOgOhdMn36dLi4uCi0mZubayaYt+Dk5ITMzEzo6upqOpR3zv379xETE4OlS5diyJAh8vZvv/0WEydO1GBk+Z4/f46VK1di5cqVmg5FQVBQEDZu3Ihx48ahdu3aiIyMROfOnXHo0CF88MEHJe4/depUTJ8+HZ9++imCgoKQm5uLa9eu4cmTJwrbLV68GMOHD0fPnj0REhKCo0ePYsyYMcjIyMDXX39daN+bN2/GyZMnizz28OHD0blzZ9y/fx81a9ZU7cSJiNREdg2SlZWFY8eOYeHChdi5cyeuXbsGQ0NDpfvZu3dvqWNYu3Ytrl27hnHjxpW6D2UsXboUUqm0TI9Rkdy4cQPTpk2Dn59fgZEyb/N+aYKPjw8yMzOhp6entj5zc3OxYMECfPnll9DW1lZbv4W5ffs2tLQ4XqOis7W1Rffu3fHjjz/io48+0nQ4VEpMRhGpoFOnTmjWrJmmw3hrsjurBOTl5UEqlSp90ZSQkACgYBJSR0cHOjqa/y919erV0NHRQbdu3UrcNiMjQ6UvMKV15swZrFu3Dj/88AMmTJgAAAgICECDBg3w1Vdf4cSJE8Xuf+rUKUyfPh0//fQTvvzyyyK3y8zMxKRJk9ClSxds3LgRADB06FBIpVLMmDEDn3/+OSwsLBT2ycrKwvjx4/H1118XOfqpXbt2sLCwwMqVKzF9+nRVTp2ISG1evwYZMmQIqlSpgnnz5mHbtm3o16+f0v2oM0lQVirCzTJBEJCVlQUDAwONxvEuvF+v09LSUvs15j///IPnz5+jd+/eau23MGKxuMRtXr16BSMjozKPhYrXu3dv9OrVCw8ePECNGjU0HQ6VAtO+9N46dOgQRCIRtmzZUuC1tWvXQiQSFTpaIi0tDRKJpDxCLFFERATatGkDGxsbiMViuLm5YeHChSXuV9Q87g0bNsDNzQ36+vpo0KABtmzZUmA+u2zfH3/8EUuWLEHNmjUhFovRvHlznD17tsCxbt26hU8//RSWlpbQ19dHs2bNCh1Se/36dbRp0wYGBgaoXr06Zs6cqfRd0aCgIBgbG+PBgwfw9/eHkZER7O3tMX36dAiCUGjs4eHh8thv3LgBADh48CBat24tnwbWvXt33Lx5U+E4vr6+AIBevXpBJBLJ6zgUVjOqMMnJyRg3bhwcHBwgFotRq1YtzJ07t8C5rlu3Dh4eHjAxMYGpqSkaNmyIBQsWlNj/1q1b4enpCWNjY4V2Pz8/NGjQAOfPn4ePjw8MDQ3xzTfflNifOmzcuBHa2tr4/PPP5W36+voYPHgwTp48iUePHhW7f3h4OGxtbTF27FgIgoD09PRCtzt06BBevHiBkSNHKrSPGjUKr169wo4dOwrs8/3330MqlcqTZIXR1dWFn58ftm3bVmycRETlqU2bNgCAhw8fAsi/uTJjxgz5Z5uzszO++eYbZGdnK+z3Zg0iWY2fv/76C7NmzUL16tWhr6+Ptm3b4t69ewr77dixAzExMfIpg8XVu0lOToa2tjZ+/vlneVtiYiK0tLRQpUoVhc/nESNGwNbWVv68sFo6ynwuKvsZWxhZTaQ9e/agWbNmMDAwwOLFi9+q35iYGIwcORJ16tSBgYEBqlSpgl69eilMx4uMjESvXr0AAB9++KH8ZyuruVRYzaiEhAQMHjwYVatWhb6+Pho3blxgRLQq12txcXEIDg5G9erVIRaLYWdnh+7duxc6bfDYsWNo0aIF9PX1UaNGDaxatUrh9cJqRr1+DeLt7Q0DAwO4uLhg0aJFxf78ZLZu3QpnZ+cCo5OVvf4DgB9//BHe3t6oUqUKDAwM4OHhIb9x9bo3a0bJpskePnwYI0eOhI2NDapXry5/fdeuXfJrRxMTE3Tp0gXXr18v9BwaNGigcI2trHPnzsHf3x9WVlbyn92gQYNKdX6ykgSya34DAwN4eXnh6tWrAPJHmNeqVQv6+vrw8/Mr8Dvwtu+lMt8LcnNzMW3aNNSuXRv6+vqoUqUKPvjggwLlHdq1awcAvD57h2n+Nj6Rhvj5+cHBwQFr1qzBxx9/rPDamjVrULNmTXh5eSm0f/jhh0hPT4eenh78/f3x008/oXbt2uUZtoKFCxeifv36+Oijj6Cjo4O///4bI0eOhFQqxahRo1Tqa8eOHejTpw8aNmyIOXPm4OXLlxg8eDCqVatW6PZr165FWloahg0bBpFIhO+//x6ffPIJHjx4IL+jef36dbRq1QrVqlXDxIkTYWRkhL/++gs9evTApk2b5D/3uLg4fPjhh8jLy5Nvt2TJEpXuRkokEnTs2BEtW7bE999/j927dyMsLAx5eXkFRrNEREQgKysLn3/+OcRiMSwtLbF//3506tQJNWrUwNSpU5GZmYlffvkFrVq1woULF+Ds7Ixhw4ahWrVqmD17NsaMGYPmzZujatWqSseYkZEBX19fPHnyBMOGDYOjoyNOnDiB0NBQPHv2TF6HY9++fejXrx/atm2LuXPnAgBu3ryJ48ePY+zYsUX2n5ubi7Nnz2LEiBGFvv7ixQt06tQJffv2xWeffVZs7NnZ2UhLS1PqvKysrIp9/eLFi3B1dYWpqalCe4sWLQAAly5dgoODQ5H7HzhwAN7e3vj5558xc+ZMvHjxAra2tpg0aZJCjaeLFy8CQIHRix4eHtDS0sLFixfx2WefydtjY2Px3XffYcWKFSX+rnl4eGDbtm1ITU0tcB5ERJpw//59AECVKlUA5I+WWrlyJT799FOMHz8ep0+fxpw5c3Dz5k2lvvh+99130NLSwoQJE5CSkoLvv/8eAwYMwOnTpwEAkyZNQkpKCh4/foz58+cDQIEbH68zNzdHgwYNcOTIEYwZMwZAfiJDJBIhKSkJN27cQP369QEAR48eRevWrYvsS5nPRWU/Y4tz+/Zt9OvXD8OGDcPQoUNRp06dt+r37NmzOHHiBPr27Yvq1asjOjoaCxcuhJ+fH27cuAFDQ0P4+PhgzJgx+Pnnn/HNN9+gXr16ACD/802ZmZnw8/PDvXv3MHr0aLi4uGDDhg0ICgpCcnJygesEZa7XevbsievXr+OLL76As7MzEhISsG/fPsTGxiokBe/du4dPP/0UgwcPRmBgIFasWIGgoCB4eHjI38uivHz5Ep07d0bv3r3Rr18//PXXXxgxYgT09PQKJFbedOLECTRt2rTQ15S9/luwYAE++ugjDBgwADk5OVi3bh169eqFf/75B126dCn2+AAwcuRIWFtbY8qUKXj16hUA4I8//kBgYCD8/f0xd+5cZGRkYOHChfjggw9w8eJF+c9u79696NmzJ9zc3DBnzhy8ePFCnvwrSUJCAjp06ABra2tMnDgR5ubmiI6OxubNmxW2U+X8jh49iu3bt8u/K8yZMwddu3bFV199hd9//x0jR47Ey5cv8f3332PQoEEF6nOW9r1U9nvB1KlTMWfOHAwZMgQtWrRAamoqzp07hwsXLqB9+/by/szMzFCzZk0cP3682JHzVIEJRO+x0NBQQSwWC8nJyfK2hIQEQUdHRwgLC5O3rV+/XggKChJWrlwpbNmyRfj2228FQ0NDwcrKSoiNjdVA5PkyMjIKtPn7+ws1atRQaPP19RV8fX3lzx8+fCgAECIiIuRtDRs2FKpXry6kpaXJ26KiogQAgpOTU4F9q1SpIiQlJcnbt23bJgAQ/v77b3lb27ZthYYNGwpZWVnyNqlUKnh7ewu1a9eWt40bN04AIJw+fVrelpCQIJiZmQkAhIcPHxb7cwgMDBQACF988YXCcbp06SLo6ekJz58/V4jd1NRUSEhIUOjD3d1dsLGxEV68eCFvu3z5sqClpSUEBATI2w4dOiQAEDZs2KCwf1hYmPDmf6lOTk5CYGCg/PmMGTMEIyMj4c6dOwrbTZw4UdDW1pb/Lo0dO1YwNTUV8vLyij3vN927d08AIPzyyy8FXvP19RUACIsWLVKqr4iICAGAUo+S1K9fX2jTpk2B9uvXr5cYU1JSkvz3zdjYWPjhhx+E9evXCx07diyw76hRowRtbe1C+7G2thb69u2r0Pbpp58K3t7e8ucAhFGjRhW6/9q1awv8jhIRlQfZ/8f79+8Xnj9/Ljx69EhYt26dUKVKFcHAwEB4/PixcOnSJQGAMGTIEIV9J0yYIAAQDh48KG9785pA9rlWr149ITs7W96+YMECAYBw9epVeVuXLl0UrglKMmrUKKFq1ary5yEhIYKPj49gY2MjLFy4UBAEQXjx4oUgEomEBQsWyLcLDAxUOI4yn4vKfsYWxcnJSQAg7N69u9T9AlC4fizsOu3kyZMCAGHVqlXytg0bNggAhEOHDhXY/s33Kzw8XAAgrF69Wt6Wk5MjeHl5CcbGxkJqaqogCMpfr718+VIAIPzwww/F/HT++/kcOXJE3paQkCCIxWJh/Pjx8jbZ79Pr5yK7Bvnpp5/kbdnZ2fJrr5ycnCKPm5ubK4hEIoVjyCh7/ScIBd+LnJwcoUGDBgWuT968dpP9+/vggw8Ufv/S0tIEc3NzYejQoQr7x8XFCWZmZgrt7u7ugp2dncL3jb179xa4xi7Mli1bBADC2bNni91O2fMDIIjFYoVr68WLFwsABFtbW/nvjyDkf0968zpc2feysO8ayn4vaNy4sdClS5diz1emQ4cOQr169ZTalioeTtOj91pAQACys7MVhrGuX78eeXl5CiMoevfujYiICAQEBKBHjx6YMWMG9uzZgxcvXmDWrFmaCB0AFEZzpKSkIDExEb6+vnjw4AFSUlKU7ufp06e4evUqAgICFO5y+vr6omHDhoXu06dPH4X6O7I7mg8ePAAAJCUl4eDBg+jduzfS0tKQmJiIxMREvHjxAv7+/rh79668+PTOnTvRsmVL+UgZALC2tsaAAQOUPgcACqNkZMOQc3JysH//foXtevbsCWtra/nzZ8+e4dKlSwgKCoKlpaW8vVGjRmjfvj127typUhxF2bBhA1q3bg0LCwv5zyMxMRHt2rWDRCLBkSNHAOTfTX716pXKq829ePECAArURZIRi8UIDg5Wqi9/f3/s27dPqUdJMjMzC63BIKspkZmZWeS+sil5L168wLJlyzBhwgT07t0bO3bsgJubG2bOnKlwnKJqa+jr6ysc59ChQ9i0aZPSq0LJfqaJiYlKbU9EpG7t2rWDtbU1HBwc0LdvXxgbG2PLli2oVq2a/HMqJCREYZ/x48cDQKHTlN8UHBys8H/om5/rpdG6dWvEx8fj9u3bAPJHZPj4+KB169Y4evQogPzRUoIgFDsySpnPRWU/Y4vj4uICf39/tfX7+nVabm4uXrx4gVq1asHc3BwXLlwoMZ7C7Ny5E7a2tgp1wnR1dTFmzBikp6fj8OHDCtuXdL1mYGAAPT09REVF4eXLl8Ue283NTeF9sra2Rp06dZT6HdHR0cGwYcPkz/X09DBs2DAkJCTg/PnzRe6XlJQEQRCKvLYBlLv+e/29ePnyJVJSUtC6dWul34ehQ4cqFE/ft28fkpOT0a9fP4XfC21tbXh6euLQoUMA/rvGDAwMhJmZmXz/9u3bw83NrcTjymqU/vPPP8jNzS1yO1XOr23btgoj3jw9PQHkXx+bmJgUaH/z/S3Ne6nK9wJzc3Ncv34dd+/eLfJ8ZWT/LundxGl69F6rW7cumjdvjjVr1mDw4MEA8qfotWzZErVq1Sp23w8++ACenp4FEh1vSklJKfbLdnHMzMyKnT50/PhxhIWF4eTJk8jIyChw3Nc/9IoTExMDAIWec61atQr9IHN0dFR4LrtIkF3I3Lt3D4IgYPLkyZg8eXKhx01ISEC1atUQExMj/8B7XZ06dZSKH8gvmPlm8UJXV1cAKDDf/c0VEWXnX9jx6tWrhz179qilWOXdu3dx5coVhUTY62TF0UeOHIm//voLnTp1QrVq1dChQwf07t0bHTt2VOo4wht1EmSqVaumdCFUOzs72NnZKbVtSQwMDArULAHyi4fLXi9uXyD/QvvTTz+Vt2tpaaFPnz4ICwtDbGwsHB0dYWBggJycnEL7eb0IbV5eHsaMGYOBAweiefPmSp2D7GeqTF0wosrgyJEj+OGHH3D+/Hk8e/YMW7ZsQY8ePZTef+rUqZg2bVqBdkNDQ/kUF1LNb7/9BldXV+jo6KBq1aqoU6eOfNWvmJgYaGlpFfgct7W1hbm5ufxzrjglfa4XJy4uTuG57PpFlrg4evQoqlevjosXL2LmzJmwtrbGjz/+KH/N1NQUjRs3LrJ/ZT4Xlf2MLc6b1wdv229mZibmzJmDiIgIPHnyROHzWZWbhq+LiYlB7dq1C6z4JpvW9+Z7XdL7KhaLMXfuXIwfPx5Vq1ZFy5Yt0bVrVwQEBCjU8SqsL1l/yvyO2NvbF7iOev06rWXLlsXuX9S1jbLXf//88w9mzpyJS5cuKVyTKPu5/ubvhixRIqvd9ibZlH7Z+1FYWY86deqUmAzz9fVFz549MW3aNMyfPx9+fn7o0aMH+vfvr3CjT5Xze/N9lH1feLNkgqz9zfe3NO+lKt8Lpk+fju7du8PV1RUNGjRAx44dMXDgQDRq1KjAPoIg8NrsHcZkFL33AgICMHbsWDx+/BjZ2dk4deoUfv31V6X2dXBwkN/tK8rYsWMLFJVUVkREhEIRxdfdv38fbdu2Rd26dTFv3jw4ODhAT08PO3fuxPz588t8SeSiltaVXSzIjj9hwoQCdxllSkr4lRVNrYwjlUrRvn17fPXVV4W+Lvsgt7GxwaVLl7Bnzx7s2rULu3btko/MK+53SVY3pKiLQlXOOzMzU+kL5TcvVt9kZ2cnv9v1umfPngHIv6gpiqzApbm5eYHfORsbGwD55+vo6Ag7OztIJBIkJCTIXwOAnJwcvHjxQn6cVatW4fbt21i8eHGBRGVaWhqio6NhY2OjsNKg7GdaUn0sosri1atXaNy4MQYNGoRPPvlE5f0nTJiA4cOHK7S1bdtW6QQwFdSiRYsSV/R9my9lJX2uF+fNmxey6xd7e3u4uLjgyJEjcHZ2hiAI8PLygrW1NcaOHYuYmBgcPXoU3t7eBZIrr1Pmc1HZz9jiFPY5+Tb9fvHFF4iIiMC4cePg5eUFMzMziEQi9O3bt8yv02SUeV/HjRuHbt26YevWrdizZw8mT56MOXPm4ODBg2jSpIlKfambpaUlRCKRUgmvohw9ehQfffQRfHx88Pvvv8POzg66urqIiIjA2rVrlerjzd8N2fv3xx9/FHodpK4VlkUiETZu3IhTp07h77//xp49ezBo0CD89NNPOHXqFIyNjVU+v6Lex7J8f1X5XuDj44P79+9j27Zt2Lt3L5YtW4b58+dj0aJFGDJkiMI+L1++5LXZO4zJKHrv9e3bFyEhIfjzzz+RmZkJXV1d9OnTR6l9Hzx4UOSdMpmvvvpKYcqfKoorBvn3338jOzsb27dvV7jDIRsWrAonJycAUFg1R6awNmXI7lLp6urKV7so7viFDcUtKdH3OqlUigcPHihcFN65cwcAil3tR3b8oo5369YtWFlZqWUJ35o1ayI9Pb3EnweQP+S5W7du6NatG6RSKUaOHInFixdj8uTJRSbxZKODZCsrvY3169crPaWvpIsUd3d3HDp0qEDxb1lRXHd39yL31dLSgru7O86ePYucnByFkV1Pnz4FAPm/QVk/586dQ+fOneXbnTt3DlKpVP56bGwscnNz0apVqwLHW7VqFVatWlVgFMjDhw+hpaWl1JcZosqgU6dO6NSpU5GvZ2dnY9KkSfjzzz+RnJyMBg0aYO7cufJVv4yNjRWmfV++fBk3btxQesUlUo2TkxOkUinu3r2rUPg6Pj4eycnJ8s+5t1VUsuvN6XOvX7+0bt0aR44cgYuLC9zd3WFiYoLGjRvDzMwMu3fvxoULFwodRfemkj4XVfmMVcXb9Ltx40YEBgbip59+krdlZWUhOTlZYTtVkohOTk64cuUKpFKpQgLv1q1b8tdLo2bNmhg/fjzGjx+Pu3fvwt3dHT/99BNWr15dqv7e9PTp0wKjzJW5TtPR0UHNmjWLvLZR5vpv06ZN0NfXx549exRGE0VERJT2dOQr+9nY2BT7uyF7P972Ordly5Zo2bIlZs2ahbVr12LAgAFYt24dhgwZUibnV5zSvJeqfC8A8pOQwcHBCA4ORnp6Onx8fDB16tQCyaiHDx8WO6qSKjbWjKL3npWVFTp16oTVq1djzZo16NixY4EM+/Pnzwvst3PnTpw/f77EqVNubm5o165dqR7FTZOS3b14c8h3aT547O3t0aBBA6xatUpeowcADh8+LF/qVVU2Njbw8/PD4sWL5SNgXvf6z7Rz5844deoUzpw5o/D6mjVrVDrm6yPaBEHAr7/+Cl1dXbRt27bY/ezs7ODu7o6VK1cqXCBeu3YNe/fuVUhsvI3evXvj5MmT2LNnT4HXkpOTkZeXB+C/2k8yWlpa8qHJhU13k9HV1UWzZs1w7ty5t45VnTWjPv30U0gkEixZskTelp2djYiICHh6eioMC4+NjZVfUMv06dMHEolEYVRYVlYW1qxZAzc3N/mIpzZt2sDS0hILFy5U2H/hwoUwNDSUrybTt29fbNmypcADyP9d3LJlS4Fpo+fPn0f9+vWVnvpKVNmNHj0aJ0+exLp163DlyhX06tULHTt2LLLGx7Jly+Dq6lpsXSAqPdnn1Jt18ObNmwcASq0WpgwjI6NCR80Wd/3SunVrREdHY/369fL3X0tLC97e3pg3bx5yc3NL/L1Q5nNR2c9YVb1Nv9ra2gVu2Pzyyy+QSCQKbbIv9W8mqQrTuXNnxMXFYf369fK2vLw8/PLLLzA2Noavr2+JfbwuIyNDPm1epmbNmjAxMSn2mkNVeXl5WLx4sfx5Tk4OFi9eDGtra3h4eBS7r5eXV7HXNiVd/2lra0MkEin83KOjo7F169ZSnk3+dZKpqSlmz55daC0n2XXu69eYr//b2bdvH27cuFHicV6+fFngd0h2c032/pTF+RWnNO+lKt8L3vz3bmxsjFq1ahX4fUxJScH9+/fh7e39NqdDGsSRUUTIn6onq0czY8aMAq97e3ujSZMmaNasGczMzHDhwgWsWLECDg4O+Oabb8o7XABAhw4d5HcJhw0bhvT0dCxduhQ2NjaF/idfktmzZ6N79+5o1aoVgoOD8fLlS/z6669o0KCBQoJKFb/99hs++OADNGzYEEOHDkWNGjUQHx+PkydP4vHjx7h8+TKA/NFjf/zxBzp27IixY8fCyMgIS5Yskd/9U4a+vj52796NwMBAeHp6YteuXdixYwe++eabEkevAcAPP/yATp06wcvLC4MHD0ZmZiZ++eUXmJmZYerUqaU6/zf973//w/bt29G1a1f5UsivXr3C1atXsXHjRkRHR8PKygpDhgxBUlIS2rRpg+rVqyMmJga//PIL3N3di1zqWaZ79+6YNGlSgVFIqlJnzShPT0/06tULoaGhSEhIQK1atbBy5UpER0dj+fLlCtsGBATg8OHDChdew4YNw7JlyzBq1CjcuXMHjo6O+OOPPxATE4O///5bvp2BgQFmzJiBUaNGoVevXvD398fRo0exevVqzJo1S16cvm7duqhbt26hsbq4uBSoi5Obm4vDhw9j5MiRavl5EL3rYmNjERERgdjYWHkyeMKECdi9ezciIiIwe/Zshe1lyeOJEydqItz3QuPGjREYGIglS5YgOTkZvr6+OHPmDFauXIkePXrgww8/VMtxPDw8sH79eoSEhKB58+YwNjZGt27dit1Hlmi6ffu2wu+Gj48Pdu3aBbFYXOL0TWU+F5X9jFXV2/TbtWtX/PHHHzAzM4ObmxtOnjyJ/fv3y6fVy7i7u0NbWxtz585FSkoKxGIx2rRpozDlXObzzz/H4sWLERQUhPPnz8PZ2RkbN27E8ePHER4erlCAWhl37txB27Zt0bt3b7i5uUFHRwdbtmxBfHw8+vbtq1JfxbG3t8fcuXMRHR0NV1dXrF+/HpcuXcKSJUugq6tb7L7du3fHH3/8gTt37hQYoazM9V+XLl0wb948dOzYEf3790dCQgJ+++031KpVS+nrzDeZmppi4cKFGDhwIJo2bYq+ffvC2toasbGx2LFjB1q1aiVPks2ZMwddunTBBx98gEGDBiEpKQm//PIL6tevX+I19sqVK/H777/j448/Rs2aNZGWloalS5fC1NRUnoQui/MrTmnfS2W/F7i5ucHPzw8eHh6wtLTEuXPnsHHjRoVC9QCwf/9+CIKA7t27q/0cqZyU48p9RBVWdna2YGFhIZiZmQmZmZkFXp80aZLg7u4umJmZCbq6uoKjo6MwYsQIIS4uTgPR/mf79u1Co0aNBH19fcHZ2VmYO3eusGLFikKXYX19WeDCllsVBEFYt26dULduXUEsFgsNGjQQtm/fLvTs2VOoW7dugX0LWwIYbyxpLAiCcP/+fSEgIECwtbUVdHV1hWrVqgldu3YVNm7cqLDdlStXBF9fX0FfX1+oVq2aMGPGDGH58uUFzqUwgYGBgpGRkXD//n2hQ4cOgqGhoVC1alUhLCxMkEgkSsUuCIKwf/9+oVWrVoKBgYFgamoqdOvWTbhx44bCNrIlizds2KDQHhYWJrz5X+qbywMLQv5SwKGhoUKtWrUEPT09wcrKSvD29hZ+/PFH+XK4GzduFDp06CDY2NgIenp6gqOjozBs2DDh2bNnxf4cBEEQ4uPjBR0dHeGPP/5QaPf19RXq169f4v5lJTMzU5gwYYJga2sriMVioXnz5gWWzxaE/5YMflN8fLwQGBgoWFpaCmKxWPD09Cx0f0EQhCVLlgh16tQR9PT0hJo1awrz588XpFJpiTECEEaNGlWgfdeuXQIA4e7du0qcKVHlA0DYsmWL/Pk///wjABCMjIwUHjo6OkLv3r0L7L927VpBR0dH45+Z7yrZ0vIlLe2em5srTJs2TXBxcRF0dXUFBwcHITQ0VGEZdUEoeE1Q1OdaYdcK6enpQv/+/QVzc3OllqWXsbGxEQAI8fHx8rZjx44JAITWrVsX2D4wMFChb2U/F5X5jC2Kk5NTkcvJK9vvm9dBL1++FIKDgwUrKyvB2NhY8Pf3F27dulXo9cHSpUuFGjVqCNra2gIA4dChQ4IgFHy/BCH/M1HWr56entCwYcMC13TKXq8lJiYKo0aNEurWrSsYGRkJZmZmgqenp/DXX38p9fMp6vdJFr9sm/r16wvnzp0TvLy8BH19fcHJyUn49ddfC/RXmOzsbMHKykqYMWOGQruy13+CIAjLly8XateuLYjFYqFu3bpCRESEUtduJf37O3TokODv7y+YmZkJ+vr6Qs2aNYWgoCDh3LlzCttt2rRJqFevniAWiwU3Nzdh8+bNBX7PC3PhwgWhX79+gqOjoyAWiwUbGxuha9euBfpX9vwKu9Yp6nelsP8blH0vi/quocz3gpkzZwotWrQQzM3NBQMDA6Fu3brCrFmzCvwb7tOnj/DBBx8U+/Ojik0kCGVYcY7oHZGXlwd7e3t069atwEiN9527uzusra2Vmo6lKUFBQdi4cWOpR3BVNoMHD8adO3fky2bT2+nRowdEIpF8Kh/R+0b2+y8bNbh+/XoMGDAA169fL1Dw1tjYuEAx37Zt28LU1JT/hojeU35+fkhMTMS1a9dK3ceMGTMQERGBu3fvyv/f4fVf+VPHe6kOcXFxcHFxwbp16zgy6h3GmlFEALZu3Yrnz58jICBA06FoTG5uboG6B1FRUbh8+bK8IC29G8LCwnD27FkcP35c06G8827evIl//vmn0Om7RO+rJk2ayFeurFWrlsLjzUTUw4cPcejQIQwePFhD0RJRZfDll18iPT0d69at03QoVAGEh4ejYcOGTES941gzit5rp0+fxpUrVzBjxgw0adJE5aKPlcmTJ0/Qrl07fPbZZ7C3t8etW7ewaNEi2NraFliemyo2R0fHAsVIqXTq1atX6qK3RO+y9PR0hdVUHz58iEuXLsHS0hKurq4YMGAAAgIC8NNPP6FJkyZ4/vw5Dhw4gEaNGikUy16xYgXs7OyKXZmPiKgkxsbGSEhI0HQYVEF89913mg6B1IDJKHqvLVy4EKtXr4a7uzsiIyM1HY5GWVhYwMPDA8uWLcPz589hZGSELl264LvvvitQaJOIiCq3c+fOKRS9DgkJAQAEBgYiMjISERERmDlzJsaPH48nT57AysoKLVu2RNeuXeX7SKVSREZGIigoqMB0PiIiInq/sWYUERERERERERGVG9aMIiIiIiIiIiKicsNkFBERERERERERlZv3rmaUVCrF06dPYWJiApFIpOlwiIiI6B0jCALS0tJgb28PLa3KdV+P10lERERUWqpcI713yainT5/CwcFB02EQERHRO+7Ro0eoXr26psNQK14nERER0dtS5hrpvUtGmZiYAMj/4Ziammo4GiIiInrXpKamwsHBQX5NUZnwOomIiIhKS5VrpPcuGSUbcm5qasqLLCIiIiq1yjiNjddJRERE9LaUuUaqXIUOiIiIiIiIiIioQmMyioiIiIiIiIiIyg2TUUREREREREREVG7eu5pRRERlQSKRIDc3V9NhEJEa6OrqQltbW9NhEBEREVVaTEYREb0FQRAQFxeH5ORkTYdCRGpkbm4OW1vbSlmknIiIiEjTmIwiInoLskSUjY0NDA0N+cWV6B0nCAIyMjKQkJAAALCzs9NwRERERESVD5NRRESlJJFI5ImoKlWqaDocIlITAwMDAEBCQgJsbGw4ZY+IiIjeeVKpgDsJaUjJyIWZoS5cbUygpaW5G+kaLWB+5MgRdOvWDfb29hCJRNi6dWuJ+0RFRaFp06YQi8WoVasWIiMjyzxOIqLCyGpEGRoaajgSIlI32b9r1oIjIiKid935mCSMW38JIesvY9KWqwhZfxnj1l/C+ZgkjcWk0WTUq1ev0LhxY/z2229Kbf/w4UN06dIFH374IS5duoRx48ZhyJAh2LNnTxlHSkRUNE7NI6p8+O+aiIiIKoPzMUmYteMmrj1Jgam+DqpbGMJUXwfXn6Zg1o6bGktIaXSaXqdOndCpUyelt1+0aBFcXFzw008/AQDq1auHY8eOYf78+fD39y+rMImIiIiIiIiI3ilSqYCVJ2KQnJEL5yr/1bc1EuvAUE8bMUkZWHUiBk0cLMp9yp5GR0ap6uTJk2jXrp1Cm7+/P06ePFnkPtnZ2UhNTVV4EJVWnkSK3ZGzcG22D5KSXmg6HKJ3nrOzM8LDwzUdhpyPjw/Wrl2r6TBKpax+lkFBQejRo4fa+9Wk3bt3w93dHVKpVNOhEBEREZWZOwlpuJeQDhsTcYFR3yKRCNbGYtxNSMedhLRyj+2dSkbFxcWhatWqCm1Vq1ZFamoqMjMzC91nzpw5MDMzkz8cHBzKI1SqpL7aeAXVH/yFBjmXcezQTk2HQ1RqQUFBEIlEGD58eIHXRo0aBZFIhKCgIHnb8+fPMWLECDg6OkIsFsPW1hb+/v44fvw4ACApKQlffPEF6tSpAwMDAzg6OmLMmDFISUkpr1MqVGRkJMzNzZXadvv27YiPj0ffvn3LNqi3pMo5UeE6duwIXV1drFmzRtOhEBEREZWZlIxc5ORJoK9b+GIs+rrayMmTICWj/GtkvlPJqNIIDQ1FSkqK/PHo0SNNh0TvsK2XnkALAgDg6J0ECIKg4YiISs/BwQHr1q1TSOZnZWVh7dq1cHR0VNi2Z8+euHjxIlauXIk7d+5g+/bt8PPzw4sX+SMEnz59iqdPn+LHH3/EtWvXEBkZid27d2Pw4MHlek5v4+eff0ZwcDC0tCr9R+M7KScnR639BQUF4eeff1Zrn0REREQViZmhLvR0tJGVKyn09axcCfR0tGFmqFvOkb1jyShbW1vEx8crtMXHx8PU1FS+DPObxGIxTE1NFR5EpSUVABHyp3U8T8vE6YeaW32A6G01bdoUDg4O2Lx5s7xt8+bNcHR0RJMmTeRtycnJOHr0KObOnYsPP/wQTk5OaNGiBUJDQ/HRRx8BABo0aIBNmzahW7duqFmzJtq0aYNZs2bh77//Rl5eXrFxpKWloV+/fjAyMkK1atUKLGqRnJyMIUOGwNraGqampmjTpg0uX74sf/3y5cv48MMPYWJiAlNTU3h4eODcuXOIiopCcHAwUlJSIBKJIBKJMHXq1EJjeP78OQ4ePIhu3brJ2wRBwNSpU+Wjwezt7TFmzBj5687Ozpg5cyYCAgJgbGwMJycnbN++Hc+fP0f37t1hbGyMRo0a4dy5cwrH2rRpE+rXrw+xWAxnZ2d5HUSZly9fIiAgABYWFjA0NESnTp1w9+5dACjxnDIyMjBo0CCYmJjA0dERS5YsUej70aNH6N27N8zNzWFpaYnu3bsjOjpa/rpEIkFISAjMzc1RpUoVfPXVV6VKuotEIixbtgwff/wxDA0NUbt2bWzfvl1hm8OHD6NFixYQi8Wws7PDxIkTFX5X/Pz8MHr0aIwbNw5WVlbw9/dHVFQURCIR9uzZgyZNmsDAwABt2rRBQkICdu3ahXr16sHU1BT9+/dHRkZGsTF269YN586dw/3791U+PyIiIqJ3gauNCWrZGON5enaBazpBEPA8PRu1bYzhamNS7rG9U8koLy8vHDhwQKFt37598PLy0lBE9D4SvfbnpUfJGoyEKiJBEJCRk1fuj9KO0hs0aBAiIiLkz1esWIHg4GCFbYyNjWFsbIytW7ciOztb6b5TUlJgamoKHZ3i18r44Ycf0LhxY1y8eBETJ07E2LFjsW/fPvnrvXr1kicbzp8/j6ZNm6Jt27ZISspPBg8YMADVq1fH2bNncf78eUycOBG6urrw9vZGeHg4TE1N8ezZMzx79gwTJkwoNIZjx47B0NAQ9erVk7dt2rQJ8+fPx+LFi3H37l1s3boVDRs2VNhv/vz5aNWqFS5evIguXbpg4MCBCAgIwGeffYYLFy6gZs2aCAgIkL8/58+fR+/evdG3b19cvXoVU6dOxeTJkxEZGSnvMygoCOfOncP27dtx8uRJCIKAzp07Izc3t8Rz+umnn9CsWTNcvHgRI0eOxIgRI3D79m0AQG5uLvz9/WFiYoKjR4/i+PHjMDY2RseOHeWjjn766SdERkZixYoVOHbsGJKSkrBly5aS3upCTZs2Db1798aVK1fQuXNnDBgwQP6ePXnyBJ07d0bz5s1x+fJlLFy4EMuXL8fMmTMV+li5ciX09PRw/PhxLFq0SN4+depU/Prrrzhx4oQ8wRYeHo61a9dix44d2Lt3L3755Zdi43N0dETVqlVx9OjRUp0fERERUUWnpSVCoLcTzAx0EZOUgVfZeZBIBbzKzkNMUgbMDHQR4O1U7sXLAQ2vppeeno579+7Jnz98+BCXLl2CpaUlHB0dERoaiidPnmDVqlUAgOHDh+PXX3/FV199hUGDBuHgwYP466+/sGPHDk2dAr2HRP9O0xNBAGfp0ZsycyVwm7Kn3I97Y7o/DPVU/y/9s88+Q2hoKGJiYgAAx48fx7p16xAVFSXfRkdHB5GRkRg6dCgWLVqEpk2bwtfXF3379kWjRo0K7TcxMREzZszA559/XmIMrVq1wsSJEwEArq6uOH78OObPn4/27dvj2LFjOHPmDBISEiAWiwEAP/74I7Zu3YqNGzfi888/R2xsLP73v/+hbt26AIDatWvL+zYzM4NIJIKtrW2xMcTExKBq1aoKU/RiY2Nha2uLdu3aQVdXF46OjmjRooXCfp07d8awYcMAAFOmTMHChQvRvHlz9OrVCwDw9ddfw8vLC/Hx8bC1tcW8efPQtm1bTJ48WX6+N27cwA8//ICgoCDcvXsX27dvx/Hjx+Ht7Q0AWLNmDRwcHLB161b06tWr2HPq3LkzRo4cKT/2/PnzcejQIdSpUwfr16+HVCrFsmXL5AUsIyIiYG5ujqioKHTo0AHh4eEIDQ3FJ598AiB/Fds9e0r3+xwUFIR+/foBAGbPno2ff/4ZZ86cQceOHfH777/DwcEBv/76K0QiEerWrYunT5/i66+/xpQpU+TvQ+3atfH999/L+3z27BkAYObMmWjVqhUAYPDgwQgNDcX9+/dRo0YNAMCnn36KQ4cO4euvvy42Rnt7e/nvPhEREVFl5OFkiUld6mHliRjcS0hHYno29HS00cDeDAHeTvBwstRIXBodGXXu3Dk0adJEPh0kJCQETZo0wZQpUwDkX3TGxsbKt3dxccGOHTuwb98+NG7cGD/99BOWLVsGf39/jcRP76fXk1FE7zpra2t06dIFkZGRiIiIQJcuXWBlZVVgu549e+Lp06fYvn07OnbsiKioKDRt2lRhRI9MamoqunTpAjc3tyKnxb3uzdGtXl5euHnzJoD8KXjp6emoUqWKfISWsbExHj58KJ9eFRISgiFDhqBdu3b47rvvSjXtKjMzE/r6+gptvXr1QmZmJmrUqIGhQ4diy5YtBaYcvp6Mky2w8froKVlbQkICAODmzZvyJIpMq1atcPfuXUgkEty8eRM6Ojrw9PSUv16lShXUqVNH/jMpzuvxyBJWsmNfvnwZ9+7dg4mJifznaGlpiaysLNy/fx8pKSl49uyZwrF1dHTQrFmzEo9bUixGRkYwNTVV+Dl4eXkprOrSqlUrpKen4/Hjx/I2Dw+PEvuuWrUqDA0N5YkoWZvsWMUxMDAocTofERER0bvOw8kS4X3cMa9PY8z6uCHm9WmM+X3cNZaIAjQ8MsrPz6/YqSWFfcnx8/PDxYsXyzAqouKJ3viT6HUGutq4Mb38E+QGRayQoYxBgwZh9OjRAFCgXtPr9PX10b59e7Rv3x6TJ0/GkCFDEBYWprDqXlpaGjp27AgTExNs2bIFurpvVwwxPT0ddnZ2CiO1ZGQryk2dOhX9+/fHjh07sGvXLoSFhWHdunX4+OOPlT6OlZUVXr58qdDm4OCA27dvY//+/di3bx9GjhyJH374AYcPH5af1+vnJ0usFNYmlUqVjuVtvPnzFolE8mOnp6fDw8Oj0BXkrK2tyzUWZRkZGZXYt0gkKvWxkpKSyuTciYiIiCoaLS0R6tpWnBraGk1GEb2LODKKiiMSiUo1XU6TZDWDRCKRSiNN3dzcsHXrVvnz1NRU+Pv7QywWY/v27QVGGhXl1KlTBZ7Lajc1bdoUcXFx0NHRgbOzc5F9uLq6wtXVFV9++SX69euHiIgIfPzxx9DT04NEUvjqIa9r0qQJ4uLi8PLlS1hYWMjbDQwM0K1bN3Tr1g2jRo1C3bp1cfXqVTRt2lSpc3tTvXr1cPz4cYW248ePw9XVFdra2qhXrx7y8vJw+vRp+TS9Fy9e4Pbt23BzcwMApc/pTU2bNsX69ethY2NT5GIednZ2OH36NHx8fAAAeXl58jpd6lSvXj1s2rQJgiDIE3bHjx+HiYkJqlevrtZjFUU2Iuz1Yv1EREREVD7eqQLmRBUBk1FU2Whra+PmzZu4ceMGtLULjrB68eIF2rRpg9WrV+PKlSt4+PAhNmzYgO+//x7du3cHkJ+I6tChA169eoXly5cjNTUVcXFxiIuLKzFxcvz4cXz//fe4c+cOfvvtN2zYsAFjx44FALRr1w5eXl7o0aMH9u7di+joaJw4cQKTJk3CuXPnkJmZidGjRyMqKgoxMTE4fvw4zp49K09mOTs7Iz09HQcOHEBiYmKRU7KaNGkCKysrhURRZGQkli9fjmvXruHBgwdYvXo1DAwM4OTkVKqfMwCMHz8eBw4cwIwZM3Dnzh2sXLkSv/76q7wIee3atdG9e3cMHToUx44dw+XLl/HZZ5+hWrVq8p+1suf0pgEDBsDKygrdu3fH0aNH8fDhQ0RFRWHMmDHyqXFjx47Fd999h61bt+LWrVsYOXIkkpOTS32+RRk5ciQePXqEL774Ardu3cK2bdsQFhaGkJAQhbpd6vLrr7+ibdu2Cm2nTp2CWCzmIihEREREGsBkFFEpcZoeVSampqZFjpYxNjaGp6cn5s+fDx8fHzRo0ACTJ0/G0KFD8euvvwIALly4gNOnT+Pq1auoVasW7Ozs5I9Hjx4Ve+zx48fLawjOnDkT8+bNk4/QEolE2LlzJ3x8fBAcHAxXV1f07dtXXnBcW1sbL168QEBAAFxdXdG7d2906tQJ06ZNAwB4e3tj+PDh6NOnD6ytrRWKYb9OW1sbwcHBClPYzM3NsXTpUrRq1QqNGjXC/v378ffff6NKlSoq/3xlmjZtir/++gvr1q1DgwYNMGXKFEyfPl1hqmNERAQ8PDzQtWtXeHl5QRAE7Ny5Uz4VTdlzepOhoSGOHDkCR0dHfPLJJ6hXrx4GDx6MrKws+Xs/fvx4DBw4EIGBgfDy8oKJiUmB6Y6RkZEKtZ5Ko1q1ati5cyfOnDmDxo0bY/jw4Rg8eDC+/fbbt+q3KImJiQVqif35558YMGAADA0Ny+SYRERERFQ0kVDa9cDfUampqTAzM5MvOU6kCueJO3BQLwQ1tOIwLGccGncYiJF+tTQdFmlIVlYWHj58CBcXF6WnpFHFFRcXh/r16+PChQtvNfqpsgsLC8Phw4cLreP1rkhMTESdOnVw7tw5uLi4FLpNcf++K/O1RGU+NyIiIipbqlxHcGQUkYr+m6ZHRJWJra0tli9frrCKKxW0a9cupUdjVVTR0dH4/fffi0xEEREREVHZereq7BJVAFr/JqO0UD6rYxFR+enRo4emQ6jwzpw5o+kQ3lqzZs3QrFkzTYdBRERE9N7iyCgiFXFkFBEREREREVHpMRlFpCKR/M/3qtwaERERERERkVowGUWkIpFINjKKySgiIiIiIiIiVTEZRVRKnKZHREQVibOzM0QiUYHHqFGjNB0aERERkQIWMCdS0X8jogQIHBxFREQVxNmzZyGRSOTPr127hvbt26NXr14ajIqIiIioICajiFT0XwFzZqKIiKjisLa2Vnj+3XffoWbNmvD19dVQRERERESFYzKKSEWiN/4kIiKqaHJycrB69WqEhIRAJCr6Eys7OxvZ2dny56mpqeURHhEREb3nWDOKSEmCoDgiiiOjiAo3cOBAzJ49W9NhqI2fnx/GjRun6TDKRGRkJMzNzTUdhlolJibCxsYGjx8/1nQoGrV161YkJycjKCio2O3mzJkDMzMz+cPBwaF8AiQiIqL3GpNRRCpiMoreB1FRUYUWQo6Liyt2v8uXL2Pnzp0YM2aMQvu9e/cQHByM6tWrQywWw8XFBf369cO5c+fk28yaNQve3t4wNDQsNEHy4sULdOzYEfb29hCLxXBwcMDo0aMrxEgOZ2dnhIeHl8uxKmMCSZ2srKwQEBCAsLAwTYeiUcuXL0enTp1gb29f7HahoaFISUmRPx49elROERIREdH7jMkoIhVp/ZuE0hIxGUWV3+3bt/Hs2TP5w8bGptjtf/nlF/Tq1QvGxsbytnPnzsHDwwN37tzB4sWLcePGDWzZsgV169bF+PHj5dvl5OSgV69eGDFiRKF9a2lpoXv37ti+fTvu3LmDyMhI7N+/H8OHD1fPyZYxiUQCqVSq6TAqpJycHLX2FxwcjDVr1iApKUmt/b4rYmJisH//fgwZMqTEbcViMUxNTRUeRERERGWNySgilXFkFL3bVq1ahSpVqijUiQGAHj16YODAgQptNjY2sLW1lT+0tIr+2JBIJNi4cSO6desmbxMEAUFBQahduzaOHj2KLl26oGbNmnB3d0dYWBi2bdsm33batGn48ssv0bBhw0L7t7CwwIgRI9CsWTM4OTmhbdu2GDlyJI4ePVrs+UZFRaFFixYwMjKCubk5WrVqhZiYGABAUFAQevToobD9uHHj4Ofnp9CWl5eH0aNHw8zMDFZWVpg8ebJ86q6fnx9iYmLw5ZdfykeQAf+NYNq+fTvc3NwgFosRGxuLs2fPon379rCysoKZmRl8fX1x4cIFheMlJydj2LBhqFq1KvT19dGgQQP8888/iIqKQnBwMFJSUuTHmjp1KoD82j8TJkxAtWrVYGRkBE9PT0RFRSn0GxkZCUdHRxgaGuLjjz/Gixcviv3ZFcbPzw9jxozBV199BUtLS9ja2spjkImNjUX37t1hbGwMU1NT9O7dG/Hx8fLXp06dCnd3dyxbtgwuLi7Q19cHAIhEIixevBhdu3aFoaEh6tWrh5MnT+LevXvw8/ODkZERvL29cf/+/WJjrF+/Puzt7bFlyxaVz68yiIiIgI2NDbp06aLpUIiIiIgKxWQUkYpYuJyKJQhAzqvyfwjKJ0d79eoFiUSC7du3y9sSEhKwY8cODBo0SGFbd3d32NnZoX379jh+/Hix/V65cgUpKSlo1qyZvO3SpUu4fv06xo8fX2gi622mmz19+hSbN28udqWwvLw89OjRA76+vrhy5QpOnjyJzz//vNiCzoVZuXIldHR0cObMGSxYsADz5s3DsmXLAACbN29G9erVMX36dPkIMpmMjAzMnTsXy5Ytw/Xr12FjY4O0tDQEBgbi2LFjOHXqFGrXro3OnTsjLS0NACCVStGpUyccP34cq1evxo0bN/Ddd99BW1sb3t7eCA8Ph6mpqfxYEyZMAACMHj0aJ0+exLp163DlyhX06tULHTt2xN27dwEAp0+fxuDBgzF69GhcunQJH374IWbOnKnSz+H1n4eRkRFOnz6N77//HtOnT8e+ffvk8Xfv3h1JSUk4fPgw9u3bhwcPHqBPnz4Kfdy7dw+bNm3C5s2bcenSJXn7jBkzEBAQgEuXLqFu3bro378/hg0bhtDQUJw7dw6CIGD06NElxtiiRYsSE5WVkVQqRUREBAIDA6Gjw3VqiIiIqGLiVQqRilgzioqVmwHMLr5GS5n45imgZ6TUpgYGBujfvz8iIiLQq1cvAMDq1avh6OgoHxFkZ2eHRYsWoVmzZsjOzsayZcvg5+eH06dPo2nTpoX2GxMTA21tbYWpfLJESN26dd/i5BT169cP27ZtQ2ZmJrp16yZPChUmNTUVKSkp6Nq1K2rWrAkAqFevnsrHdHBwwPz58yESiVCnTh1cvXoV8+fPx9ChQ2FpaQltbW2YmJjA1tZWYb/c3Fz8/vvvaNy4sbytTZs2CtssWbIE5ubmOHz4MLp27Yr9+/fjzJkzuHnzJlxdXQEANWrUkG9vZmYGkUikcKzY2FhEREQgNjZWXiNowoQJ2L17NyIiIjB79mwsWLAAHTt2xFdffQUAcHV1xYkTJ7B7926Vfx6NGjWS12SqXbs2fv31Vxw4cADt27fHgQMHcPXqVTx8+FBeDHvVqlWoX78+zp49i+bNmwPIn5q3atUqWFtbK/QdHByM3r17AwC+/vpreHl5YfLkyfD39wcAjB07FsHBwSXGaG9vj4sXL6p8bu+6/fv3IzY2tkBimYiIiKgi4cgoIhX9l4wiencNHToUe/fuxZMnTwDkT98KCgqSjxiqU6cOhg0bBg8PD3h7e2PFihXw9vbG/Pnzi+wzMzMTYrFYYdSRoMKILWXNnz8fFy5cwLZt23D//n2EhIQAyE/IGBsbyx+zZ8+GpaUlgoKC4O/vj27dumHBggUKI5eU1bJlS4Xz8vLywt27dyGRSIrdT09PD40aNVJoi4+Px9ChQ1G7dm2YmZnB1NQU6enpiI2NBZA/mqx69eryRJQyrl69ColEAldXV4WfweHDh+VT2m7evAlPT0+F/by8vJQ+xuvePCc7OzskJCTIj+Pg4KCwKpubmxvMzc1x8+ZNeZuTk1OBRNSbfVetWhUAFKZuVq1aFVlZWSUWrjcwMEBGRoYKZ1U5dOjQAYIgqPT7Q0RERFTeODKKSEUi+Z8cGUWF0DXMH6WkieOqoEmTJmjcuDFWrVqFDh064Pr169ixY0ex+7Ro0QLHjh0r8nUrKytkZGQgJycHenp6ACD/Qnzr1i00adJEpRiLIqtfVbduXVhaWqJ169aYPHky7O3tFaZ7WVpaAsivnzNmzBjs3r0b69evx7fffot9+/ahZcuW0NLSKpAwy83NVUucQH5C5M0pgYGBgXjx4gUWLFgAJycniMVieHl5yYt4GxgYqHyc9PR0aGtr4/z589DW1lZ47fVi8uqiq6ur8FwkEqlcnN3IqPCRfK/3LfvZFdZW0vGSkpIKTXYRERERkeYxGUWkIk7To2KJREpPl9O0IUOGIDw8HE+ePEG7du0URrIU5tKlS7CzsyvydXd3dwDAjRs35H93d3eHm5sbfvrpJ/Tp06dA3ajk5OS3qhslS0hkZ2dDR0cHtWrVKnS7Jk2aoEmTJggNDYWXlxfWrl2Lli1bwtraGteuXVPY9tKlSwWSLadPn1Z4Lqv1JEv86OnplThKSub48eP4/fff0blzZwDAo0ePkJiYKH+9UaNGePz4Me7cuVPo6JbCjtWkSRNIJBIkJCSgdevWhR63Xr16hZ6HutWrVw+PHj3Co0eP5L9TN27cQHJyMtzc3NR+vKJcu3atQCF6IiIiIqoYOE2PSEWcpkeVRf/+/fH48WMsXbq0QH2Z8PBwbNu2Dffu3cO1a9cwbtw4HDx4EKNGjSqyP2trazRt2lRh9JRIJEJERATu3LmD1q1bY+fOnXjw4AGuXLmCWbNmoXv37vJtY2NjcenSJcTGxkIikeDSpUu4dOkS0tPTAQA7d+5EREQErl27hujoaOzYsQPDhw9Hq1at4OzsXGhMDx8+RGhoKE6ePImYmBjs3bsXd+/eldeNatOmDc6dO4dVq1bh7t27CAsLK5CcksUWEhKC27dv488//8Qvv/yCsWPHyl93dnbGkSNH8OTJE4XEUmFq166NP/74Azdv3sTp06cxYMAAhdFQvr6+8PHxQc+ePbFv3z48fPgQu3btktd2cnZ2Rnp6Og4cOIDExERkZGTA1dUVAwYMQEBAADZv3oyHDx/izJkzmDNnjnzEm2x02I8//oi7d+/i119/LVW9qJK0a9cODRs2xIABA3DhwgWcOXMGAQEB8PX1VShury5nzpxB3bp15VNOgfzC8efPn0eHDh3UfjwiIiIientMRhEpSTaTh9P0qLIwMzNDz549YWxsjB49eii8lpOTg/Hjx6Nhw4bw9fXF5cuXsX//frRt27bYPocMGYI1a9YotLVo0QLnzp1DrVq1MHToUNSrVw8fffQRrl+/jvDwcPl2U6ZMQZMmTRAWFob09HT5aKZz584ByJ++tnTpUnzwwQeoV68evvzyS3z00Uf4559/iozH0NAQt27dQs+ePeHq6orPP/8co0aNwrBhwwAA/v7+mDx5Mr766is0b94caWlpCAgIKNBPQEAAMjMz0aJFC4waNQpjx47F559/Ln99+vTpiI6ORs2aNUucGrZ8+XK8fPkSTZs2xcCBAzFmzBiFou8AsGnTJjRv3hz9+vWDm5sbvvrqK/loKG9vbwwfPhx9+vSBtbU1vv/+ewD50xEDAgIwfvx41KlTBz169MDZs2fh6OgIIL/u1dKlS7FgwQI0btwYe/fuxbfffqtw3OjoaIhEIkRFRRV7DsURiUTYtm0bLCws4OPjg3bt2qFGjRpYv359qfssTkZGBm7fvq0wvXLbtm1wdHQscpQYEREREWmWSCiL6rIVWGpqKszMzJCSkgJTU1NNh0PvEKlUQI1vduKKeDBMRZn4NjcYVfxG4sv2LBL7vsrKysLDhw/h4uICfX19TYdTKm3btkX9+vXx888/q6W/zMxM1KlTB+vXry91cWzSnEOHDuGTTz7BgwcPYGFhoelwSq1ly5YYM2YM+vfvX+o+ivv3XZmvJSrzuREREVHZUuU6gjWjiFSk9VrNqCfJmRqOhqh0Xr58iaioKERFReH3339XW78GBgZYtWpViVPVqGLauXMnvvnmm3c6EZWYmIhPPvkE/fr103QoRERERFQEJqOIVPR6AfPoxFcajoaodJo0aYKXL19i7ty5qFOnjlr7ZtHod9cPP/yg6RDempWVFb766itNh0FERERExWAyikhFotf+jH6RoclQiEotOjpa0yEQEREREdF7igXMiVT0+sioxPRspGXllrAHEREREREREckwGUWkIlkyylhPGwAQw9FRREREREREREpjMopIRbJpepZGugCA6BesG/W+k0qlmg6BiNSM/66JiIiIyg5rRhGpLH9klKWRLpDIkVHvMz09PWhpaeHp06ewtraGnp4eRCJRyTsSUYUlCAJycnLw/PlzaGlpQU9PT9MhEREREVU6TEYRKUn490/ZNL0qhvkjox5yRb33lpaWFlxcXPDs2TM8ffpU0+EQkRoZGhrC0dERWlocRE5ERESkbkxGESkpO08C4L9peib6+f98kl7laCgiqgj09PTg6OiIvLw8SCQSTYdDRGqgra0NHR0djnQkIiIiKiNMRhEpKTMnP9Gghfw6ImKd/C8p6Vl5GouJKgaRSARdXV3o6upqOhQiIiIiIqIKj2PPiZSUmas4Mkqsnf+3tGwmo4iIiIiIiIiUxWQUkZKycvNHRGmJ8mtGyUZGpWXlaiwmIiIiIiIioncNp+kRKSkrV7EekHyaHkdGERERERERVRhSqYA7CWlIyciFmaEuXG1MoKXFWpAVCZNRRErKn6YnyJ+LtfMHFqZn5UEQBBa6JSIiIiIi0rDzMUlYeSIG9xLSkZMngZ6ONmrZGCPQ2wkeTpaaDo/+xWl6RErKzJFA9FoySu/fkVF5UkE+hY+IiIiIiIg043xMEmbtuIlrT1Jgqq+D6haGMNXXwfWnKZi14ybOxyRpOkT6F5NRRErKzJXg9bFPepCgrfYFmCIdadmsG0VERERERKQpUqmAlSdikJyRC+cqhjAS60BbSwQjsQ6cLA2RkpmLVSdiIJUKJXdGZY7T9IiUlJWrODJKdHwBlutm4qa2A9KzusDGRIPBERERERERvcfuJKThXkI6bEzEBUqoiEQiWBuLcTchHXcS0lDX1lRDUZIMR0YRKenNZBTyMgEA9bQeIS2LRcyJiIiIiIg0JSUjFzl5Eujrahf6ur6uNnLyJEjJ4KyWioDJKCIl5deMKhxX1CMiIiIiItIcM0Nd6OloF1gFXSYrN7+YuZmhbjlHRoXReDLqt99+g7OzM/T19eHp6YkzZ84Uu314eDjq1KkDAwMDODg44Msvv0RWVlY5RUvvs8xcKbRQeKFyjowiIiIiIiLSHFcbE9SyMcbz9GwIgmJdKEEQ8Dw9G7VtjOHK+ioVgkaTUevXr0dISAjCwsJw4cIFNG7cGP7+/khISCh0+7Vr12LixIkICwvDzZs3sXz5cqxfvx7ffPNNOUdO76PMIjLsAJCWxaGeREREREREmqKlJUKgtxPMDHQRk5SBV9l5kEgFvMrOQ0xSBswMdBHg7QQtraLmu1B50mgyat68eRg6dCiCg4Ph5uaGRYsWwdDQECtWrCh0+xMnTqBVq1bo378/nJ2d0aFDB/Tr16/E0VRE6lCgZtRrOE2PiIhK69ChQ2rr68mTJ/jss89QpUoVGBgYoGHDhjh37pza+iciIqrIPJwsMalLPdS3N0NqVh4ev8xAalYeGtibYVKXevBwstR0iPQvja2ml5OTg/PnzyM0NFTepqWlhXbt2uHkyZOF7uPt7Y3Vq1fjzJkzaNGiBR48eICdO3di4MCB5RU2vceKTUZxmh4REZVSx44dUb16dQQHByMwMBAODg6l6ufly5do1aoVPvzwQ+zatQvW1ta4e/cuLCws1BwxERFRxeXhZIkmDha4k5CGlIxcmBnqwtXGhCOiKhiNJaMSExMhkUhQtWpVhfaqVavi1q1bhe7Tv39/JCYm4oMPPoAgCMjLy8Pw4cOLnaaXnZ2N7Oxs+fPU1FT1nAC9d4orYJ7GkVFERFRKT548wR9//IGVK1di2rRpaNOmDQYPHowePXpAT09P6X7mzp0LBwcHREREyNtcXFzKImQiIqIKTUtLhLq2ppoOg4qh8QLmqoiKisLs2bPx+++/48KFC9i8eTN27NiBGTNmFLnPnDlzYGZmJn+U9m4jUWYxI6NYwJyIiErLysoKX375JS5duoTTp0/D1dUVI0eOhL29PcaMGYPLly8r1c/27dvRrFkz9OrVCzY2NmjSpAmWLl1a7D7Z2dlITU1VeBARERGVNY0lo6ysrKCtrY34+HiF9vj4eNja2ha6z+TJkzFw4EAMGTIEDRs2xMcff4zZs2djzpw5kEoLX+UsNDQUKSkp8sejR4/Ufi70fmDNKCIiKmtNmzZFaGgoRo8ejfT0dKxYsQIeHh5o3bo1rl+/Xuy+Dx48wMKFC1G7dm3s2bMHI0aMwJgxY7By5coi9+FNOyIiItIEjSWj9PT04OHhgQMHDsjbpFIpDhw4AC8vr0L3ycjIgJaWYsja2toAUGDpRhmxWAxTU1OFB1Fp5I+MKhxX0yMioreRm5uLjRs3onPnznBycsKePXvw66+/Ij4+Hvfu3YOTkxN69epVbB9SqRRNmzbF7Nmz0aRJE3z++ecYOnQoFi1aVOQ+vGlHREREmqCxmlEAEBISgsDAQDRr1gwtWrRAeHg4Xr16heDgYABAQEAAqlWrhjlz5gAAunXrhnnz5qFJkybw9PTEvXv3MHnyZHTr1k2elCIqK1m5UhYwJyIitfviiy/w559/QhAEDBw4EN9//z0aNGggf93IyAg//vgj7O3ti+3Hzs4Obm5uCm316tXDpk2bitxHLBZDLBa/3QkQERERqUijyag+ffrg+fPnmDJlCuLi4uDu7o7du3fLi5rHxsYqjIT69ttvIRKJ8O233+LJkyewtrZGt27dMGvWLE2dAr1HMnMkAKfpERGRmt24cQO//PILPvnkkyITQ1ZWVjh06FCx/bRq1Qq3b99WaLtz5w6cnJzUFisRERGROoiEoua3VVKpqakwMzNDSkoKp+yRStr8GIWkxDhc0h9W4DVfo604/L8PNRAVERGVN3VfSxw5cgTe3t7Q0VG8R5iXl4cTJ07Ax8dHqX7Onj0Lb29vTJs2Db1798aZM2cwdOhQLFmyBAMGDFCqD14nERERUWmpch3xTq2mR6RJxa2mR0REVFoffvghkpKSCrSnpKTgww+Vv9HRvHlzbNmyBX/++ScaNGiAGTNmIDw8XOlEFBEREVF50eg0PaJ3SWauhNlbIiJSO0EQIBIVXCLjxYsXMDIyUqmvrl27omvXruoKjYiIiKhMMBlFpKTMHAmMOTKKiIjU5JNPPgEAiEQiBAUFKdSLkkgkuHLlCry9vTUVHhEREVGZYTKKSAlSqYDsPClMNB0IERFVGmZmZgDyR0aZmJjAwMBA/pqenh5atmyJoUOHaio8IiIiojLDZBSRErLzpADAmlFERKQ2ERERAABnZ2dMmDBB5Sl5RERERO8qJqOIlJCZK/n3b0xGERGReoWFhWk6BCIiIqJyxWQUkRJkySixTsECs0RERKpq2rQpDhw4AAsLCzRp0qTQAuYyFy5cKMfIiIiIiMoek1FESsjMyU9G6etwPT0iInp73bt3lxcs79Gjh2aDISIiIipnTEYRKSHr35FRBrpaQK6GgyEionfe61PzOE2PiIiI3jcc5kGkhNTM/AyUiVhbw5EQEVFl8+jRIzx+/Fj+/MyZMxg3bhyWLFmiwaiIiIiIyg6TUURKSPk3GWWqz2QUERGpV//+/XHo0CEAQFxcHNq1a4czZ85g0qRJmD59uoajIyIiIlI/JqOIlJAsS0aJObOViIjU69q1a2jRogUA4K+//kLDhg1x4sQJrFmzBpGRkZoNjoiIiKgMMBlFpIT/RkYxGUVEROqVm5srL2a+f/9+fPTRRwCAunXr4tmzZ5oMjYiIiKhMMBlFpARZMsrEgNP0iIhIverXr49Fixbh6NGj2LdvHzp27AgAePr0KapUqaLh6IiIiIjUj8koIiWkcJoeERGVkblz52Lx4sXw8/NDv3790LhxYwDA9u3b5dP3iIiIiCoTfrMmUkJKxr8jo1jAnIiI1MzPzw+JiYlITU2FhYWFvP3zzz+HoaGhBiMjIiIiKhtMRhEpQT5NjyOjiIioDGhrayskogDA2dlZM8EQERERlTGVp+m9evWqLOIgqtD+K2DOkVFERKRe8fHxGDhwIOzt7aGjowNtbW2FBxEREVFlo/Iwj6pVq6J3794YNGgQPvjgg7KIiajC+W9kVOFfCgShPKMhIqLKJCgoCLGxsZg8eTLs7OwgEok0HRIRERFRmVI5GbV69WpERkaiTZs2cHZ2xqBBgxAQEAB7e/uyiI+oQigpGUVERFRax44dw9GjR+Hu7q7pUIiIiIjKhcrT9Hr06IGtW7fiyZMnGD58ONauXQsnJyd07doVmzdvRl5eXlnESaQxUqmA1Kz8ZJQxp+kREZGaOTg4QOAQWyIiInqPqJyMkrG2tkZISAiuXLmCefPmYf/+/fj0009hb2+PKVOmICMjQ51xEmlMWlaefBoeR0YREZG6hYeHY+LEiYiOjtZ0KERERETlotRLg8XHx2PlypWIjIxETEwMPv30UwwePBiPHz/G3LlzcerUKezdu1edsRJphGyKnoGuNvS0Sp2/JSIiKlSfPn2QkZGBmjVrwtDQELq6ugqvJyUlaSgyIiIiorKhcjJq8+bNiIiIwJ49e+Dm5oaRI0fis88+g7m5uXwbb29v1KtXT51xEmmMLBllZqALgNMoiIhIvcLDwzUdAhEREVG5UjkZFRwcjL59++L48eNo3rx5odvY29tj0qRJbx0cUUWQnJkDADA31OWyeUREpHaBgYGaDoGIiIioXKmcjHr27BkMDQ2L3cbAwABhYWGlDoqoIpGNjDLlyCgiIioj9+/fR0REBO7fv48FCxbAxsYGu3btgqOjI+rXr6/p8IiIiIjUSuUCOCYmJkhISCjQ/uLFC2hrs7gzVT4Z2RIAgLFYhyOjiIhI7Q4fPoyGDRvi9OnT2Lx5M9LT0wEAly9f5s09IiIiqpRUTkYVtfRwdnY29PT03jogoopG+Hc0lJYo/xkREZE6TZw4ETNnzsS+ffsUrqXatGmDU6dOKd3P1KlTIRKJFB5169Yti5CJiIiI3orS0/R+/vlnAIBIJMKyZctgbGwsf00ikeDIkSO84KHKT5BqOgIiIqpkrl69irVr1xZot7GxQWJiokp91a9fH/v375c/19Ep9cLJRERERGVG6SuU+fPnA8gfGbVo0SKFKXl6enpwdnbGokWL1B8hUUXCaXpERKRm5ubmePbsGVxcXBTaL168iGrVqqnUl46ODmxtbdUZHhEREZHaKZ2MevjwIQDgww8/xObNm2FhYVFmQRFVXExGERGRevXt2xdff/01NmzYAJFIBKlUiuPHj2PChAkICAhQqa+7d+/C3t4e+vr68PLywpw5c+Do6FhGkRMRERGVjso1ow4dOsREFL2/mIsiIiI1mz17NurWrQsHBwekp6fDzc0NPj4+8Pb2xrfffqt0P56enoiMjMTu3buxcOFCPHz4EK1bt0ZaWlqR+2RnZyM1NVXhQURERFTWlBoZFRISghkzZsDIyAghISHFbjtv3jy1BEZUMRWRjeL0PSIiKiU9PT0sXboUU6ZMwdWrV5Geno4mTZqgdu3aKvXTqVMn+d8bNWoET09PODk54a+//sLgwYML3WfOnDmYNm3aW8VPREREpCqlklEXL15Ebm6u/O9FEYlE6omKqKIqIumkBRY2JyKi0pk+fTomTJgABwcHODg4yNszMzPxww8/YMqUKaXq19zcHK6urrh3716R24SGhircaExNTVWIgYiIiKgsKJWMOnToUKF/J3r/FJ6MEnH+HhERldK0adMwfPhwGBoaKrRnZGRg2rRppU5Gpaen4/79+xg4cGCR24jFYojF4lL1T0RERFRaKteMelNqaiq2bt2KW7duqSMeooqtiJFRTEYREVFpCYJQ6Ojyy5cvw9LSUul+JkyYgMOHDyM6OhonTpzAxx9/DG1tbfTr10+d4RIRERG9NaVX05Pp3bs3fHx8MHr0aGRmZqJZs2aIjo6GIAhYt24devbsWRZxElUQRU3TYzKKiIhUY2FhAZFIBJFIBFdXV4WElEQiQXp6OoYPH650f48fP0a/fv3w4sULWFtb44MPPsCpU6dgbW1dFuETERERlZrKyagjR45g0qRJAIAtW7ZAEAQkJydj5cqVmDlzJpNRVLkVWaicNaOIiEg14eHhEAQBgwYNwrRp02BmZiZ/TU9PD87OzvDy8lK6v3Xr1pVFmERERERqp3IyKiUlRT5kfPfu3ejZsycMDQ3RpUsX/O9//1N7gEQVilB40okFzImISFWBgYEAABcXF3h7e0NXV1fDERERERGVD5WTUQ4ODjh58iQsLS2xe/du+V24ly9fQl9fX+0BElUsrBlFRETq5evrC6lUijt37iAhIQFSqeINDh8fHw1FRkRERFQ2VE5GjRs3DgMGDICxsTGcnJzg5+cHIH/6XsOGDdUdH1HFUsQ0PdaMIiKi0jp16hT69++PmJgYCG98zohEIkgkEg1FRkRERFQ2VE5GjRw5Ei1atMCjR4/Qvn17aGnlL8hXo0YNzJw5U+0BElUsRY2M4jQ9IiIqneHDh6NZs2bYsWMH7OzsCl1Zj4iIiKgyUTkZBQDNmjVDs2bNFNq6dOmiloCIKjSOjCIiIjW7e/cuNm7ciFq1amk6FCIiIqJyoXIySiKRIDIyEgcOHCi0rsHBgwfVFhxRxcOaUUREpF6enp64d+8ek1FERET03tBSdYexY8di7NixkEgkaNCgARo3bqzwUNVvv/0GZ2dn6Ovrw9PTE2fOnCl2++TkZIwaNQp2dnYQi8VwdXXFzp07VT4uUakUMTKKySgiIiqtL774AuPHj0dkZCTOnz+PK1euKDyIiIiIKhuVR0atW7cOf/31Fzp37vzWB1+/fj1CQkKwaNEieHp6Ijw8HP7+/rh9+zZsbGwKbJ+Tk4P27dvDxsYGGzduRLVq1RATEwNzc/O3joWoKIr5p6Km6bFmFBERlU7Pnj0BAIMGDZK3iUQiCILAAuZERERUKamcjNLT01PbMPJ58+Zh6NChCA4OBgAsWrQIO3bswIoVKzBx4sQC269YsQJJSUk4ceIEdHV1AQDOzs5qiYWoZKKiR0YV0U5ERFSShw8fajoEIiIionKl8jS98ePHY8GCBQWWHlZVTk4Ozp8/j3bt2v0XjJYW2rVrh5MnTxa6z/bt2+Hl5YVRo0ahatWqaNCgAWbPns07hlSOWMCciIjUy8nJqdgHERERUWWj8sioY8eO4dChQ9i1axfq168vH6Eks3nzZqX6SUxMhEQiQdWqVRXaq1atilu3bhW6z4MHD3Dw4EEMGDAAO3fuxL179zBy5Ejk5uYiLCys0H2ys7ORnZ0tf56amqpUfESFKrJmFKfpERGR8rZv345OnTpBV1cX27dvL3bbjz76qJyiIiIiIiofKiejzM3N8fHHH5dFLCWSSqWwsbHBkiVLoK2tDQ8PDzx58gQ//PBDkcmoOXPmYNq0aeUcKVVaRSSjODKKiIhU0aNHD8TFxcHGxgY9evQocjvWjCIiIqLKSOVkVEREhFoObGVlBW1tbcTHxyu0x8fHw9bWttB97OzsoKurC21tbXlbvXr1EBcXh5ycHOjp6RXYJzQ0FCEhIfLnqampcHBwUMs50PuII6OIiOjtSaXSQv9ORERE9D5QuWYUAOTl5WH//v1YvHgx0tLSAABPnz5Fenq60n3o6enBw8MDBw4ckLdJpVIcOHAAXl5ehe7TqlUr3Lt3T+Gi7c6dO7Czsys0EQUAYrEYpqamCg+iUuPIKCIiIiIiIqK3onIyKiYmBg0bNkT37t0xatQoPH/+HAAwd+5cTJgwQaW+QkJCsHTpUqxcuRI3b97EiBEj8OrVK/nqegEBAQgNDZVvP2LECCQlJWHs2LG4c+cOduzYgdmzZ2PUqFGqngZRKRU1MorJKCIiIiIiIiJlqDxNb+zYsWjWrBkuX76MKlWqyNs//vhjDB06VKW++vTpg+fPn2PKlCmIi4uDu7s7du/eLS9qHhsbCy2t//JlDg4O2LNnD7788ks0atQI1apVw9ixY/H111+rehpEpVNkAXMmo4iIiIiIiIiUoXIy6ujRozhx4kSBaXHOzs548uSJygGMHj0ao0ePLvS1qKioAm1eXl44deqUyschUg9O0yMiIiIiIiJ6GypP05NKpYWu6vL48WOYmJioJSiiCqvIkVEsPktERERERESkDJVHRnXo0AHh4eFYsmQJgPwlh9PT0xEWFobOnTurPUCiioUjo4iI6O2lpqYqvS0XXyEiIqLKRuVk1E8//QR/f3+4ubkhKysL/fv3x927d2FlZYU///yzLGIkqjiEwkdASfI4MoqIiJRnbm4OkUik1LaFjUgnIiIiepepnIyqXr06Ll++jPXr1+Py5ctIT0/H4MGDMWDAABgYGJRFjEQVRxHT9DJzcso5ECIiepcdOnRI/vfo6GhMnDgRQUFB8PLyAgCcPHkSK1euxJw5czQVIhEREVGZUTkZdeTIEXh7e2PAgAEYMGCAvD0vLw9HjhyBj4+PWgMkqlgKT0Zl50qQJ5FCR1vlMmxERPQe8vX1lf99+vTpmDdvHvr16ydv++ijj9CwYUMsWbIEgYGBmgiRiIiIqMyo/M35ww8/RFJSUoH2lJQUfPjhh2oJiqjCKrKAuYDUrLxyDoaIiCqDkydPolmzZgXamzVrhjNnzmggIiIiIqKypXIyShCEQmscvHjxAkZGRmoJiqjiKrqAeWpmbjnHQkRElYGDgwOWLl1aoH3ZsmVwcHDQQEREREREZUvpaXqffPIJgPzV84KCgiAWi+WvSSQSXLlyBd7e3uqPkKgiKWJklBakSM1iMoqIiFQ3f/589OzZE7t27YKnpycA4MyZM7h79y42bdqk4eiIiIiI1E/pZJSZmRmA/JFRJiYmCsXK9fT00LJlSwwdOlT9ERK9A0QQkMKRUUREVAqdO3fGnTt3sHDhQty6dQsA0K1bNwwfPpwjo4iIiKhSUjoZFRERAQBwdnbGhAkTOCWP3hsKY6GKHBklIDWTNaOIiKh0HBwcMHv2bLX2+d133yE0NBRjx45FeHi4WvsmIiIiehsq14wKCwtjIoreY8UkozhNj4iISuno0aP47LPP4O3tjSdPngAA/vjjDxw7dqxU/Z09exaLFy9Go0aN1BkmERERkVqonIyKj4/HwIEDYW9vDx0dHWhrays8iCorkQhFj4wSSTlNj4iISmXTpk3w9/eHgYEBLly4gOzsbAD5KxWXZrRUeno6BgwYgKVLl8LCwkLd4RIRERG9NaWn6ckEBQUhNjYWkydPhp2dXaEr6xFVWoK00GYRV9MjIqJSmjlzJhYtWoSAgACsW7dO3t6qVSvMnDlT5f5GjRqFLl26oF27diXun52dLU9+AUBqaqrKxyMiIiJSlcrJqGPHjuHo0aNwd3cvg3CIKrrCR0aJOE2PiIhK6fbt2/Dx8SnQbmZmhuTkZJX6WrduHS5cuICzZ88qtf2cOXMwbdo0lY5BRERE9LZUnqbn4OAAoYipSkSVXjEFzFNYwJyIiErB1tYW9+7dK9B+7Ngx1KhRQ+l+Hj16hLFjx2LNmjXQ19dXap/Q0FCkpKTIH48ePVL6eERERESlpXIyKjw8HBMnTkR0dHQZhENU0RW3mh5HRhERkeqGDh2KsWPH4vTp0xCJRHj69CnWrFmDCRMmYMSIEUr3c/78eSQkJKBp06bQ0dGBjo4ODh8+jJ9//hk6OjqQSCQF9hGLxTA1NVV4EBEREZU1lafp9enTBxkZGahZsyYMDQ2hq6ur8HpSUpLagiOqcIoYGSWCFCmcpkdERKUwceJESKVStG3bFhkZGfDx8YFYLMaECRPwxRdfKN1P27ZtcfXqVYW24OBg1K1bF19//TUXmiEiIqIKQ+VkVHh4eBmEQfSuKG6aHpNRRESkOpFIhEmTJuF///sf7t27h/T0dLi5ucHY2FilfkxMTNCgQQOFNiMjI1SpUqVAOxEREZEmqZyMCgwMLIs4iN4NxdSMSmXNKCIiKoVBgwZhwYIFMDExgZubm7z91atX+OKLL7BixQoNRkdERESkfkrVjHp9md/U1NRiH0SVW1HJKClX0yMiolJZuXIlMjMzC7RnZmZi1apVb9V3VFQUR7UTERFRhaPUyCgLCws8e/YMNjY2MDc3h0gkKrCNIAgQiUSFFsckqjSKrBklICdPiqxcCfR1WZODiIhKlpqaCkEQIAgC0tLSFFbAk0gk2LlzJ2xsbDQYIREREVHZUCoZdfDgQVhaWgIADh06VKYBEVVshSejtEX57WlZeUxGERGRUmQ3+EQiEVxdXQu8LhKJMG3aNA1ERkRERFS2lEpG+fr6Fvp3oveOIC20WawtAiRARk4eAHH5xkRERO+kQ4cOQRAEtGnTBps2bZLf+AMAPT09ODk5wd7eXoMREhEREZUNlQuYE73XipimZ6CrBeQAr7I5TZWIiJQju8H38OFDODo6FloGgYioIpFKBdxJSENKRi7MDHXhamMCLS3+30VEqmMyikgNDHTyP4Rf5XBFPSIiUs3BgwdhbGyMXr16KbRv2LABGRkZXMmYiCqE8zFJWHkiBvcS0pGTJ4GejjZq2Rgj0NsJHk6WJXdARPQapVbTI6J/FTEySv/ftO6rbCajiIhINXPmzIGVlVWBdhsbG8yePVsDERERKTofk4RZO27i2pMUmOrroLqFIUz1dXD9aQpm7biJ8zFJmg6RiN4xTEYRqaSoZNS/I6M4TY+IiFQUGxsLFxeXAu1OTk6IjY3VQERERP+RSgWsPBGD5IxcOFcxhJFYB9paIhiJdeBkaYiUzFysOhEDqbTw62QiosKUKhmVl5eH/fv3Y/HixUhLSwMAPH36FOnp6WoNjqjCKWJk1IiU+Ziv+xun6RERkcpsbGxw5cqVAu2XL19GlSpVNBAREdF/7iSk4V5COmxMxAVq24lEIlgbi3E3IR13EtI0FCERvYtUrhkVExODjh07IjY2FtnZ2Wjfvj1MTEwwd+5cZGdnY9GiRWURJ1EFUXgySgcSfKx9HKvTXwJwKN+QiIjondavXz+MGTMGJiYm8PHxAQAcPnwYY8eORd++fTUcHRG971IycpGTJ4G+buErRuvraiMxPRspGbnlHBkRvctUHhk1duxYNGvWDC9fvoSBgYG8/eOPP8aBAwfUGhxRRaAwGKqIkVEyWTk5ZRsMERFVOjNmzICnpyfatm0LAwMDGBgYoEOHDmjTpg1rRhGRxpkZ6kJPRxtZuYWXo8jKzS9mbmaoW86REdG7TOWRUUePHsWJEyegp6en0O7s7IwnT56oLTCiiiZ/UHIJyahsJqOIiEg1enp6WL9+PWbMmIHLly/DwMAADRs2hJOTk6ZDIyKCq40JatkY4/rTFBjqaStM1RMEAc/Ts9HA3gyuNiYajJKI3jUqJ6OkUikkkoJZ8cePH8PEhP8BUSVXwsioTCajiIiolFxdXeHq6qrpMIiIFGhpiRDo7YRZO24iJikD1sZi6Ovmj5R6np4NMwNdBHg7QUtLVHJnRET/UjkZ1aFDB4SHh2PJkiUA8ovWpaenIywsDJ07d1Z7gEQViiAt9uWsHM6VJyIi1T1+/Bjbt29HbGwsct6Y8j1v3jwNRUVElM/DyRKTutTDyhMxuJeQjsT0bOjpaKOBvRkCvJ3g4WSp6RCJ6B2jcjLqp59+gr+/P9zc3JCVlYX+/fvj7t27sLKywp9//lkWMRJVIJymR0RE6nXgwAF89NFHqFGjBm7duoUGDRogOjoagiCgadOmmg6PiAhAfkKqiYMF7iSkISUjF2aGunC1MeGIKCIqFZWTUdWrV8fly5exbt06XLlyBenp6Rg8eDAGDBigUNCcqFIqqYB5bl45BUJERJVFaGgoJkyYgGnTpsHExASbNm2CjY0NBgwYgI4dO2o6PCIiOS0tEerammo6DCKqBFRORmVlZUFfXx+fffZZWcRDVMEVn4zK5sgoIiJS0c2bN+Wjy3V0dJCZmQljY2NMnz4d3bt3x4gRIzQcIREREZF6aam6g42NDQIDA7Fv3z5IpcXXzyGqdEoaGZXDZBQREanGyMhIXifKzs4O9+/fl7+WmJioqbCIiIiIyozKyaiVK1ciIyMD3bt3R7Vq1TBu3DicO3euLGIjqoCKT0blcJoeERGpqGXLljh27BgAoHPnzhg/fjxmzZqFQYMGoWXLlhqOjoiIiEj9VE5Gffzxx9iwYQPi4+Mxe/Zs3LhxAy1btoSrqyumT59eFjESVRwljIzK5sgoIiJS0bx58+Dp6QkAmDZtGtq2bYv169fD2dkZy5cv13B0REREROqncjJKxsTEBMHBwdi7dy+uXLkCIyMjTJs2TZ2xEVVAJY2Myi2nOIiIqDKQSCR4/PgxHB0dAeRP2Vu0aBGuXLmCTZs2wcnJScMREhEREalfqZNRWVlZ+Ouvv9CjRw80bdoUSUlJ+N///qfO2IgqnuJzUcjLkyBPwlpqRESkHG1tbXTo0AEvX77UdChERERE5Ubl1fT27NmDtWvXYuvWrdDR0cGnn36KvXv3wsfHpyziI6pYhOITTdqQIiNXAlPtUud5iYjoPdOgQQM8ePAALi4umg6FiIiIqFyUqmZUZmYmVq1ahbi4OCxevJiJKHqPFD80SgtSvMpmEXMiIlLezJkzMWHCBPzzzz949uwZUlNTFR5ERERElY3KI6Pi4+NhYmJSFrEQVXwlFDDXhhSvsiXlFAwREVUGnTt3BgB89NFHEIlE8nZBECASiSCR8HOFiIiIKhelklGpqakwNTUFkH9hVNxdOtl2RJVTCckoEUdGERGRag4dOqTpEIiIiIjKlVLT9CwsLJCQkAAAMDc3h4WFRYGHrL00fvvtNzg7O0NfXx+enp44c+aMUvutW7cOIpEIPXr0KNVxiVRWwsgoLUiRkcM72EREpDwXFxf4+PjA19dX4eHj46NSHamFCxeiUaNGMDU1hampKby8vLBr164yjJyIiIiodJQaGXXw4EFYWloCUP/du/Xr1yMkJASLFi2Cp6cnwsPD4e/vj9u3b8PGxqbI/aKjozFhwgS0bt1arfEQFa/kaXpERESqcHFxwbNnzwpc9yQlJcHFxUXpaXrVq1fHd999h9q1a0MQBKxcuRLdu3fHxYsXUb9+/bIInYiIiKhUlEpG+fr6yv/u4uICBwcHhZoGQP70vUePHqkcwLx58zB06FAEBwcDABYtWoQdO3ZgxYoVmDhxYqH7SCQSDBgwANOmTcPRo0eRnJys8nGJSkWJmlFERESqkNWGelN6ejr09fWV7qdbt24Kz2fNmoWFCxfi1KlTTEYRERFRhaJyAXN13b0DgJycHJw/fx6hoaHyNi0tLbRr1w4nT54scr/p06fDxsYGgwcPxtGjR4s9RnZ2NrKzs+XPuSoNqUpQGA1V8jQ9IiIiZYSEhAAARCIRJk+eDENDQ/lrEokEp0+fhru7e6n6lkgk2LBhA169egUvLy91hEtERESkNiono9R19w4AEhMTIZFIULVqVYX2qlWr4tatW4Xuc+zYMSxfvhyXLl1S6hhz5szBtGnTVIqL6HU5efkJJrGuNkdGERGR2ly8eBFA/rXV1atXoaenJ39NT08PjRs3xoQJE1Tq8+rVq/Dy8kJWVhaMjY2xZcsWuLm5Fbk9b9oRERGRJiidjCrLu3fKSktLw8CBA7F06VJYWVkptU9oaKg8diD/IsvBwaGsQqRKKDM3f7Sfga4WODKKiIjURVaHMzg4GAsWLFDLisR16tTBpUuXkJKSgo0bNyIwMBCHDx8uMiHFm3ZERESkCUono8ri7p2VlRW0tbURHx+v0B4fHw9bW9sC29+/fx/R0dEKNRGk0vwv/zo6Orh9+zZq1qypsI9YLIZYLFYpLqLXZeXIklHagFB8sokjo4iISFURERHyv8vqb5b2xpmenh5q1aoFAPDw8MDZs2exYMECLF68uNDtedOOiIiINEHpZFRZ3L3T09ODh4cHDhw4gB49egDITy4dOHAAo0ePLrB93bp1cfXqVYW2b7/9FmlpaViwYAEvnqhMyEZG6XOaHhERlYG8vDxMmzYNP//8M9LT0wEAxsbG+OKLLxAWFgZdXd1S9y2VShWm4b2JN+2IiIhIE1SuGfX63Tt1CAkJQWBgIJo1a4YWLVogPDwcr169kq+uFxAQgGrVqmHOnDnQ19dHgwYNFPY3NzcHgALtROqiSjKK0/SIiEhVX3zxBTZv3ozvv/9eXmz85MmTmDp1Kl68eIGFCxcq1U9oaCg6deoER0dHpKWlYe3atYiKisKePXvKMnwiIiIilamcjAKAc+fO4a+//kJsbCxycnIUXtu8ebNKffXp0wfPnz/HlClTEBcXB3d3d+zevVte1Dw2NhZaWlqlCZNILTJz8hNMBnraQBZHRhERkXqtXbsW69atQ6dOneRtjRo1goODA/r166d0MiohIQEBAQF49uwZzMzM0KhRI+zZswft27cvq9CJiIiISkXlZNS6desQEBAAf39/7N27Fx06dMCdO3cQHx+Pjz/+uFRBjB49utBpeQAQFRVV7L6RkZGlOiaRsrJyX6sZlVX8ttoiJqOIiEg1YrEYzs7OBdpdXFwUanSWZPny5WqMioiIiKjsqDzkaPbs2Zg/fz7+/vtv6OnpYcGCBbh16xZ69+4NR0fHsoiRSKMyX09GlThNr/jXiYiI3jR69GjMmDFDobZTdnY2Zs2aVeTNOiIiIqJ3mcojo+7fv48uXboAyC9A/urVK4hEInz55Zdo06YNlwemSifz39X09PW0gRKSTZymR0REyvjkk08Unu/fvx/Vq1dH48aNAQCXL19GTk4O2rZtq4nwiIiIiMqUyskoCwsLpKWlAQCqVauGa9euoWHDhkhOTkZGRobaAyTSNNVGRkkhcHQUERGVwMzMTOF5z549FZ5zhWAiIiKqzFRORvn4+GDfvn1o2LAhevXqhbFjx+LgwYPYt28f795RpaRQM4ojo4iISA3UvToxERER0btE5WTUr7/+iqys/CrOkyZNgq6uLk6cOIGePXvi22+/VXuARJomHxmlp1XiyCgmo4iIiIiIiIiKp3IyytLSUv53LS0tTJw4Ua0BEVU0spFR+rragFB8skmLySgiIlKRi4sLRCJRka8/ePCgHKMhIiIiKntKJaNSU1OV7tDU1LTUwRBVRLIC5pymR0REZWHcuHEKz3Nzc3Hx4kXs3r0b//vf/zQTFBEREVEZUioZZW5uXuwdOwAQBAEikQgSiUQtgRFVFFm5+QkmfSUKmDMZRUREqho7dmyh7b/99hvOnTtXztEQERERlT2lklGHDh0q6ziIKqQ8iRQ5kvwEkzIjozhNj4iI1KVTp04IDQ1lsXMiIiKqdJRKRvn6+pZ1HEQVUlbef8klAz2OjCIiovKzceNGhVqdRERERJWFygXMAeDo0aNYvHgxHjx4gA0bNqBatWr4448/4OLigg8++EDdMRJpjKxeFACIdbRQ4sgoUfGvExERvalJkyYK5RAEQUBcXByeP3+O33//XYOREREREZUNlZNRmzZtwsCBAzFgwABcuHAB2dnZAICUlBTMnj0bO3fuVHuQRJoiW0nPQFc7/4tCCSOjOE2PiIhU1aNHD4XnWlpasLa2hp+fH+rWrauZoIiIiIjKkMrJqJkzZ2LRokUICAjAunXr5O2tWrXCzJkz1RockaZlypJRetr/tnCaHhERqVdYWJimQyAiIiIqV1qq7nD79m34+PgUaDczM0NycrI6YiKqMGTT9PKLl4Mjo4iISO0uXLiAq1evyp9v27YNPXr0wDfffIOcnBwNRkZERERUNlRORtna2uLevXsF2o8dO4YaNWqoJSiiikI2MkpfV/ZPhSOjiIhIvYYNG4Y7d+4AAB48eIA+ffrA0NAQGzZswFdffaXh6IiIiIjUT+Vk1NChQzF27FicPn0aIpEIT58+xZo1azBhwgSMGDGiLGIk0pgC0/SUWU2PNcyJiEgFd+7cgbu7OwBgw4YN8PX1xdq1axEZGYlNmzZpNjgiIiKiMqByzaiJEydCKpWibdu2yMjIgI+PD8RiMSZMmIAvvviiLGIk0pgsTtMjIqIyJggCpNL8z4/9+/eja9euAAAHBwckJiZqMjQiIiKiMqFyMkokEmHSpEn43//+h3v37iE9PR1ubm4wNjZGZmYmDAwMyiJOIo34b5oeC5gTEVHZaNasGWbOnIl27drh8OHDWLhwIQDg4cOHqFq1qoajIyIiIlI/lafpyejp6cHNzQ0tWrSArq4u5s2bBxcXF3XGRqRx8ml6So6MYjKKiIhUFR4ejgsXLmD06NGYNGkSatWqBQDYuHEjvL29NRwdERHRu0cqFXArLhWnH7zArbhUSKWspVLRKD0yKjs7G1OnTsW+ffugp6eHr776Cj169EBERAQmTZoEbW1tfPnll2UZK1G5k62mp+zIKE7TIyIiVTVq1EhhNT2ZH374Adra2oXsQUREREU5H5OElSdicC8hHTl5EujpaKOWjTECvZ3g4WSp6fDoX0qPjJoyZQoWLlwIZ2dnREdHo1evXvj8888xf/58zJs3D9HR0fj666/LMlaicpfFkVFERFSORo4cKa8Tpa+vD11dXQ1HRERE9O44H5OEWTtu4tqTFJjq66C6hSFM9XVw/WkKZu24ifMxSZoOkf6ldDJqw4YNWLVqFTZu3Ii9e/dCIpEgLy8Ply9fRt++fXnnjiqlrNz85JJ8Nb2SRkaJmIwiIqLSW716NVJTUzUdBhER0TtHKhWw8kQMkjNy4VzFEEZiHWhriWAk1oGTpSFSMnOx6kQMp+xVEEonox4/fgwPDw8AQIMGDSAWi/Hll19CJBKVWXBEmlaggPnVDcVuz5FRRET0NoQSRuASERFR4e4kpOFeQjpsTMQF8hQikQjWxmLcTUjHnYQ0DUVIr1M6GSWRSKCnpyd/rqOjA2Nj4zIJiqiieJWdBwAw1NMG8nJK3J7JKCIiIiIiovKXkpGLnDzJa/V+FenraiMnT4KUjNxyjowKo3QBc0EQEBQUBLFYDADIysrC8OHDYWRkpLDd5s2b1RshkQa9zMhPQJkb6gLSvBK3ZwFzIiJ6G2lpvFtLRERUGmaGutDT0UZWrgRG4oKpjqzc/GLmZoasx1gRKJ2MCgwMVHj+2WefqT0Yoorm5b9ZcwtDPaWSUdol1JQiIiJ6k0QiUai9efr0aWRnZ8PLy4sFzImIiJTkamOCWjbGuP40BYZ62gpT9QRBwPP0bDSwN4OrjYkGoyQZpZNRERERZRkHUYWU/O/IKOWTURwZRUREynn27Bl69eqFU6dOoVWrVti6dSsGDhyInTt3AgBq166NqKgo2NnZKdXfnDlzsHnzZty6dQsGBgbw9vbG3LlzUadOnbI8DSIiogpBS0uEQG8nzNpxEzFJGbA2FkNfN3+k1PP0bJgZ6CLA2wlaWqx7XREoXTOK6H0kGxllbqgLCCUnmjhNj4iIlPX1119DEARs2bIFdnZ26Nq1K1JTU/Ho0SNER0fD2toas2bNUrq/w4cPY9SoUTh16hT27duH3NxcdOjQAa9evSrDsyAiIqo4PJwsMalLPdS3N0NqVh4ev8xAalYeGtibYVKXevBwstR0iPQvpUdGEb1vBEH4b2SUkR4gzSxxH21IkZRRcqFzIiKi/fv3Y/PmzWjZsiVatWoFKysr7Nu3D9WqVQMATJ8+HUOHDlW6v927dys8j4yMhI2NDc6fPw8fHx+1xk5ERFRReThZoomDBe4kpCElIxdmhrpwtTHhiKgKhskooiK8ypEgV5JfA8rCUBfIVK6AeXQi70ATEVHJXr58KU88WVpawtDQEE5OTvLXa9WqhWfPnpW6/5SUFHnfRERE7xMtLRHq2ppqOgwqBpNRREV4+Sp/hJOejhYMdLWBV8rVjHqYmFHWoRERUSVgY2ODZ8+ewcHBAQAwevRohcTRy5cvC6xarCypVIpx48ahVatWaNCgQZHbZWdnIzs7W/48NTW1VMcjIiIiUgVrRhEVIVm+kp5u/koMUkmJ+2iLpHiYmF7WoRERUSXg7u6OkydPyp9/9913CsmoY8eOoVGjRqXqe9SoUbh27RrWrVtX7HZz5syBmZmZ/CFLjBERERGVJY6MIirCy9dX0gOUSkZpQYqHnKZHRERK2LZtW7GvN2/eHL6+vir3O3r0aPzzzz84cuQIqlevXuy2oaGhCAkJkT9PTU1lQoqIiIjKHJNRREWQJaPMDXXzG6TKTdN7mZGLl69y8oueExERlVKLFi1U2l4QBHzxxRfYsmULoqKi4OLiUuI+YrEYYrG4tCESERFBKhVYLJxUxmQUURH+m6YnGxlVcjJKXzv/z4cvXjEZRUREb+Xly5f4+++/ERAQoNT2o0aNwtq1a7Ft2zaYmJggLi4OAGBmZgYDA4OyDJWIiN5T52OSsPJEDO4lpCMnTwI9HW3UsjFGoLcTPJy4gAYVjTWjiIrw38go5ZNRBv+mdx8+51Q9IiJ6O7GxsQgODlZ6+4ULFyIlJQV+fn6ws7OTP9avX1+GURIR0fvqfEwSZu24iWtPUmCqr4PqFoYw1dfB9acpmLXjJs7HJGk6RKrAODKKqAiykVGWRrJpeiXXjBL/OzLqSXJmWYVFRESVREkr16WlpanUnyAIbxMOUalweg7R+0kqFbDyRAySM3LhXMUwf8EnAEZiHRjqaSMmKQOrTsSgiYMF/0+gQjEZRVSEAgXMhZKTUXpa+V8EEtOzS9iSiIjed+bm5vKL98IIglDs60Saxuk5RO+vOwlpuJeQDhsTcYHPKpFIBGtjMe4mpONOQhrq2ppqKEqqyJiMIirCy39HRqkyTU9HJAXAZBQREZXMxMQEkyZNgqenZ6Gv3717F8OGDSvnqIiUI5uek5yRCxsTMfR1xcjKlcin50zqUo8JKaJKLCUjFzl5EujrFr4Ihr6uNhLTs5Hy73cqojcxGUVUhPSs/P84TfT//WeiRDJKVySBs+gZElMtyjI0IiKqBJo2bQoA8PX1LfR1c3NzTr2jConTc4jIzFAXejrayMqVwEhcMK2QlZs/WtJMtjI50RtYwJyoCLLLfy3ZsFMlklHG6TGIEo9HvZSoMouLiIgqh/79+0NfX7/I121tbREWFlaOEREpR5XpOURUObnamKCWjTGep2cXuHEiCAKep2ejto0xXG1MNBQhVXQcGUWkLKlU6U0tsh6VYSBERFQZDB06tNjXq1atymQUVUicnkNEWloiBHo7YdaOm4hJyoC1sRj6uvkjpZ6nZ8PMQBcB3k4cHUlF4sgoImUpMTJKvmluDrJySy54TkRERPSueX16TmE4PYfo/eDhZIlJXeqhvr0ZUrPy8PhlBlKz8tDA3ox146hEHBlFpCwVklG6ojy8eJWDauYGZRgQERG9yw4ePIjRo0fj1KlTMDVVXGkoJSUF3t7eWLRoEVq3bq2hCIkKJ5uec/1pCgz1tBWm6smm5zSwN+P0HKL3gIeTJZo4WOBOQhpSMnJhZqgLVxsTjoiiElWIkVG//fYbnJ2doa+vD09PT5w5c6bIbZcuXYrWrVvDwsICFhYWaNeuXbHbE6mNoPxIJ13kITGNK+oREVHRwsPDMXTo0AKJKAAwMzPDsGHDMG/ePA1ERlQ82fQcMwNdxCRl4FV2HiRSAa+y8xCTlMHpOUTvGS0tEeramsKzRhXUtTXlv31SisaTUevXr0dISAjCwsJw4cIFNG7cGP7+/khISCh0+6ioKPTr1w+HDh3CyZMn4eDggA4dOuDJkyflHDm9d6TKJ6P0kIfEdCajiIioaJcvX0bHjh2LfL1Dhw44f/58OUZEpDxOzyEioreh8Wl68+bNw9ChQxEcHAwAWLRoEXbs2IEVK1Zg4sSJBbZfs2aNwvNly5Zh06ZNOHDgAAICAsolZnpPqZCM0mUyioiIShAfHw9d3aJr6ujo6OD58+flGBGRajg9h4iISkujI6NycnJw/vx5tGvXTt6mpaWFdu3a4eTJk0r1kZGRgdzcXFha8u4LlTFVakYhD4npOWUYDBERveuqVauGa9euFfn6lStXYGdnV44REamO03OIiKg0NJqMSkxMhEQiQdWqVRXaq1atiri4OKX6+Prrr2Fvb6+Q0HpddnY2UlNTFR5EyhCENxpULGD+nDWjiIioGJ07d8bkyZORlZVV4LXMzEyEhYWha9euGoiMiIiIqGxpfJre2/juu++wbt06REVFQV9fv9Bt5syZg2nTppVzZFSZyO/vqZCM0kMeUjJzyyQeIiKqHL799lts3rwZrq6uGD16NOrUqQMAuHXrFn777TdIJBJMmjRJw1ESERERqZ9Gk1FWVlbQ1tZGfHy8Qnt8fDxsbW2L3ffHH3/Ed999h/3796NRo0ZFbhcaGoqQkBD589TUVDg4OLxd4PR+UqlmlARCgaFVRERE/6latSpOnDiBESNGIDQ0VP65IRKJ4O/vj99++63A6HEiIiKiykCjySg9PT14eHjgwIED6NGjBwBAKpXiwIEDGD16dJH7ff/995g1axb27NmDZs2aFXsMsVgMsViszrDpfSWoVsCciIioJE5OTti5cydevnyJe/fuQRAE1K5dGxYWFpoOjYiIiKjMaHyaXkhICAIDA9GsWTO0aNEC4eHhePXqlXx1vYCAAFSrVg1z5swBAMydOxdTpkzB2rVr4ezsLK8tZWxsDGNjY42dB70HVCxgTkREpCwLCws0b95c02EQERERlQuNJ6P69OmD58+fY8qUKYiLi4O7uzt2794tH5YeGxsLLa3/6qwvXLgQOTk5+PTTTxX6CQsLw9SpU8szdHrfqJSMUn4UFREREREREdH7ROPJKAAYPXp0kdPyoqKiFJ5HR0eXfUBEhVFxNT1WjCIiIiIiIiIqqEIko4jeCVKp0ptymh4RERERvUkqFXAnIQ0pGbkwM9SFq40JtLREJe9IRFTJMBlFpCwVRkbpMRlFRERERK85H5OElSdicC8hHTl5EujpaKOWjTECvZ3g4WSp6fCIiMqVVsmbEL2fCkyzYwFzIiIiIiqF8zFJmLXjJq49SYGpvg6qWxjCVF8H15+mYNaOmzgfk6TpEImIyhWTUUQl0JZkAWeXAUkPlN6HySgiIiIiAvKn5q08EYPkjFw4VzGEkVgH2loiGIl14GRpiJTMXKw6EQOplBVHiej9wWl6RCWocW0BcHu5SvvoipiMIiIiIiLgTkIa7iWkw8ZEDJFIsT6USCSCtbEYdxPScSchDXVtTTUUJRFR+eLIKKISVHl2ROV9dJEHgTe3iIiIiN57KRm5yMmTQF9Xu9DX9XW1kZMnQUpGbjlHRkSkOUxGEZVAS5qj8j4sYE5EREREAGBmqAs9HW1k5f6/vTuPb6LO/wf+mty9L3oupUWOckNBqJRVYWFp8QIvEP0JuCisC6IiLuAF4rJ44OKF4rXA4oHiIvoFhUUEQagchXJTrlKOthQo9EqbNJnP74/Q2LRp06Ztkqav5+ORB81k5jPv93wymZkPn/mM2e7n5RWWwcyDfNUujoyIyH3YGEXkgDONUWrYP9kgIiIiotalc0QAOkb441KJAaJa13khBC6VGNApwh+dIwLcFCERkeuxMYrIAYXZmcYo9owiIiLX27p1K+68807ExMRAkiSsWbPG3SERtXoKhYTxyXEI8lEju0CPUoMJZlmg1GBCdoEeQT5qjEuOg0IhOS6MiMhLsDGKyAFJbvj9+2rJDEnIzRANERFR7UpLS9G7d28sXrzY3aEQURX94kLx/O1d0T0mCEXlJpy/qkdRuQk9YoLw/O1d0S8u1N0hEhG5FJ+mR+SAM7fpAYBSsHcUERG51ogRIzBixAh3h0FEdvSLC0VibAiO5xejUF+BIF81OkcEsEcUEbVKbIwicsDZxigFb9UjIiIPZzAYYDAYrO+LiorcGA2R91MoJHSJCnR3GEREbsfb9Ihqc32ASWdvt1MKPp6XiIg824IFCxAUFGR9xcbGujskIiIiagXYGEXUTFS8TY+IiDzc7NmzUVhYaH2dO3fO3SERERFRK8Db9IiaCXtGERGRp9NqtdBqte4Og6hVk2XBcaSIqNVhYxRRM2HPKCIiIiKqS3p2AZbvyMbJ/BIYTWZoVEp0jPDH+OQ4PmGPiLwab9MjaiYKs3MDnxMRETmrpKQEGRkZyMjIAABkZWUhIyMDZ8+edW9gRFRDenYB5q87ikMXChGoU6FtiC8CdSoczinE/HVHkZ5d4O4QiYiaDRujiJrJ0QuXUWF2bvBzIiIiZ+zZsweJiYlITEwEAEyfPh2JiYl46aWX3BwZEVUlywLLd2Tjmr4C8WG+8NOqoFRI8NOqEBfqi8KyCvxnRzZkWbg7VCKiZsHb9IiaSam+HJuO5iO1R5S7QyEiolZi8ODBEIIXr0Se7nh+MU7mlyAiQAtJsh0fSpIkhPtrcSK/BMfzi9ElKtBNURIRNR/2jCJqJmqYsGoPn0pERERERLYK9RUwmszQqZV2P9eplTCazCjU84E4ROSd2BhF1EzUkgm/nb4CM7tXExEREVEVQb5qaFRKlFeY7X5eXmEZzDzIV+3iyIiIXIONUUS1KK9o3HhPASoZpUYzTuaXNFFEREREROQNOkcEoGOEPy6VGGrcWiuEwKUSAzpF+KNzRICbIiQial5sjCKyQwiBC9fKGlVGxzAtACDj3NWmCImIiIiIvIRCIWF8chyCfNTILtCj1GCCWRYoNZiQXaBHkI8a45LjoFBIjgsjImqB2BhFZMc1fQVKDKZGlfF7Y9S1JoiIiIiIiLxJv7hQPH97V3SPCUJRuQnnr+pRVG5Cj5ggPH97V/SLC3V3iEREzYZP0yOy4/xVS6+o8AAt4OS4kTeEWu7xzzhX2FRhEREREZEX6RcXisTYEBzPL0ahvgJBvmp0jghgjygi8npsjCKy4/xVPQCgbYgPkO9cGXHBlt0rM68IFWYZaiU7IhIRERGRLYVCQpeoQHeHQUTkUmyMIrKjsmdUbLDzjVE+CssA6LIAzLJALU/uJSIiomYmy4I9T4iIiDwIG6OI7Dh3vWdUu2CN84WYjU0UDRERETkrPbsAy3dk42R+CYwmMzQqJTpG+GN8chzH5CEiInIT3jdEZEdlz6h2QY1orzX/PthUtSf2EhERkQukZxdg/rqjOHShEIE6FdqG+CJQp8LhnELMX3cU6dkF7g6RiIioVWJjFJEd1jGjAp3fRSSZPaOIiIjcRZYFlu/IxjV9BeLDfOGnVUGpkOCnVSEu1BeFZRX4z45syDL/x4iIiMjVeJseUTWyLJBQ8At6K4vxh4AE5wsym6x/CvBEl4iIqLlVHRuqQG/EiYvFiAjQQpJsx4eSJAnh/lqcyC/B8fxiDh5NRETkYmyMIqrmZH4R3lW+CSgBc9lgp8uRqtymR0RERM2r+thQJlngcokBOnUA/LQ159eplbhcYkChnsdrIiIiV2NjFFE1B06dRefrfyvP7nC+oCq36VWY2TOKiIiouVSODXVNX4GIAC10ai0KSo3IuVaOE/nFSIgMRLCv2maZ8grLYOZB1abXpiU/ka8lx05ERN6JjVFE1ZzMOvv7m7O/OV2OUq5AqJ8GV0vLMXXpr/jo0Vvgo1E2QYRERERUqfrYUJW35LUJ0CK4qAxX9RU4f1WPIJ9A62dCCFwqMaBHTBA6RwQ4XEdLfiJfS46diIi8FwcwJ6rmXM75399c2ON0OQq5Am8/0Afva9/HBxcfwMpNzjdsERERkX3H84txMr+kxthQEoDYUD9olApc1RtxucQAsyxQajAhu0CPIB81xiXHOewh1JKfyNeSYyciIu/GxiiiKq7pjSi7lt80hZmNuLlTOIb4nIC/VI69v23GlRJD05RNRETUysiywLG8Iuw8fQXH8oqsT8Er1FfAaDJDp67Z+zjYR43OkQHQqJQoLDPh/FU9ispN6BEThOdv7+qwZ1BLfiJfS46diIi8H2/TI6riYpEBIShpmsLMRkCWoTVeBQCEmPKx4fBFPJjUrmnKJyIiaiXqutUsyFcNjUqJ8goz/LQ1T221KgXahfriiaEdEeqradCYSbX1ugI8/4l8LTl2IiLyfuwZRVRNiFTcNAUJAZRfgySbAADRUgHKK8xNUzYREVEr4ehWs+IyEzpG+ONSiQFC2PbyqRwbqlOEP1K6RSHphjB0iQqs9+DddfW6AixP5DOazB75RL6WHDsREXk/NkYRVdNkjVEAUHrZ+meUVICLxeU1TpSJiIhau+q34JlMMo7lFeG3U1fw7qaTuFpqrPVWs89+y8bDA9shyEeN7AI9Sg0mp8aGsncbYNVeV/Y09Il8rtSSYyciIu/H2/SIqhAQCEFTNUYJoPSS9V2idBLY8QzmZI3B4w+NRnSQTxOth4iIqGWSZYE1GRfw3/TzyC0sR4VZRoVZQBYCPmolZCGQX2yAv1aFwjITgqs0nFS91SxAp8bzt3e13sp3ucQAjUqJHjFBGFePp8bVdhvgwzfFoWOEPw7nFMJXo7S53a2hT+Rztc4RAS02diIi8n5sjCKqJlRqojGjAJvGqHjFRcTjIvxyy/H0V52xctLAplsPERFRC5OeXYBFG08gPfsqjGYZQhYQACr7D6sUEqKCtJAkQG8040R+MTpFBNg0SOnUSlwuMaBQX4GkG8KQGBuC4/nFKNRX1HtsqMrbAK/pKxARoIVOrUV5hRmHcwqx4MejuLdfW5y/qkd2gR7h/lro1JbeRpdKDPXudeUOCoWE8clxmL/uaIuLnYiIvB9v0yOqpmlv07tUY1I3RTZ+O12AExebcD1EREQtSHp2Af6x9gj2ZFvGUzTLAjJ+b4iSAJhlgdzCckAAGqUEkyxw/pre5nb3sgozZABnC/Q4llcEAOgSFVjvsaHq88S5XacLMPu2LugeE4Si8oY/kc+d+sWF4vnbu7bI2ImIyLuxZxRRFUKg6W7TEzLww4wak9tKl7FB83fkvxeEWVGv4bPHkuGjsT+4qMcruwoUXgCievw+beNLgKEYuO1NQMH2biIismUyyXhn0wkcyS2GwSTbnUfA0iAly4AJMkSFgEqpQHGZCSUGEwJ0alzVG3H8YgkUEvD2T8ehUioQH+aHKUM6on/7+jWy1PeJcwE6Nd4a06fBva48Qb+4UKd6jBERETUnNkYRVRNSeZueSgeYyp0vKO9grR8lKM4jAefx8YWtePflFZAGPo7H/tQdwb4a59fnDqsnQ5z4H/7V7j0clDrDz3gJi3Pftnw2YBIQ0dW98RERkUdZd/gsnlhxEPaboGxV9n8yyYAJAgazGRKA4xdLEOKnRs41y0NBdGoFruorYBYCOdfKsf/8NcxIScBDSXEO1/H7E+e0dj+vehugQiGhS1RgvXP1JC05dqLqZFl4ZeOqu/Ly1u3pLG/ZHlXzCNCpAAkoLjN5VE4e0Ri1ePFivPHGG8jLy0Pv3r3x7rvvYsCAAbXOv2rVKrz44os4c+YMOnXqhNdeew233XabCyMmryWqDGDuGwYUXXC+rMvHHc7ygfot+EhGLP6tDJ+kaeHXaRBKopJwW49IxIQEIMTPcxunZGMZpNObIUFAdfonbDGFYJgiHbge8opvVuP+x2bV+khpIiJqHg09r3KV+FnrGl2GAFBcXoGi8gqoFBJUCgkmM6BRKaBTSDCZZZQYTFi4IRNalYTYEL86T7yrPnHOT1vztNjeE+fsXagA8IqLl7o09QWao/K85YKQmlZtDxsYX48HFXgyd+XlrdvTWd6yParmUVhmRHG5CQAQoFMhyEfjMTm5vTHqq6++wvTp07FkyRIkJSXhrbfeQkpKCjIzMxEREVFj/h07dmDs2LFYsGAB7rjjDnzxxRcYNWoU9u7dix49ethZA1H9CCGwJu0IZkvX/7/WJ7RxjVH14CMZAQBTVN8DAIqy1uHE6T8gOi0XDxtnYahiH3Lj70ZUuxswvFs0IoJ8Eeqrgkrl9l0Xz7+/AgvMlvgHSJkY0D4Ug6+cAyyToMhJR5cX1+OVUT3wQP9YqJW8ZY+IqLk19LzKVRrbECXh955SEIAMoMIsAAEE+KhQ2UShViqglQWulVVgzndHEBWkg7aOi4mGPnHO3oVKqJ8agISCUmOLvnipS1NfoDkqz1suCKlp1fWwgfnrjrbYcdDclZe3bk9necv2qJqHj0aJorIKy/FSAorLTQj2UXtMTpKoOgqkGyQlJaF///547733AACyLCM2NhZPPPEEZs2aVWP+MWPGoLS0FGvXrrVOu+mmm9CnTx8sWbLE4fqKiooQFBSEwsJCBAayuzJZFJdXYPbqgzhwMANbtU/DpPSFKro7cH63E6XZnDI32ik5GlqpAnqhxXERi2TFITwvP46ssFswpEsEupbsQpgpDxfa3wcfnQ6+GiVCy89D6xcAoy4cuZcu40yxAoM6hqFbdCBUzjYKCYGigjz8+M2nSJO7I+r8esxSrwQAmBQ6KJ87C+nLB4BTPwMADsnxuMP4T+vi8+/qghE9oxEa4NvobUJE5E6efC7R0POq6pojt6boEVVJAuCrUaLUaAZgeRJPgE5l/Q+PCrNAiaECsgA0SgV6tQ2CUiFZnx5n78S78sS9sKzC7hPnKpepeaGixKUSA07mW27v7xjuh/AAnd1lWzJ7eTcmR0fl3duvLf6bfr7J1kfeQZYFnvoqA4cuFCI+zLdGw3F2gR49YoKwaEyfFtWDzl15eev2dJa3bI+qecSF+eJIbhGKy0yW8YmFQJlJRoBOhW5RATh7taxZcmrIeYRbu1cYjUakp6dj9uzZ1mkKhQLDhg1DWlqa3WXS0tIwffp0m2kpKSlYs2ZNc4Zab1cunETJtSuoMMuQHbTz2f+4/o0Y9tsRRR3vHMRQ68z1jKmOfB3GAUByuL0cfF6POMX1Z0bLAGQhIISAEMCK7SdgvpaLJEUZAEClbUSDiVINXO8xZFffcYBfBLBtYb2K66DItfwhAZ1h6an1puIdvHSpCBGXz+Au1QYAgPnoP/HXiqcxTLEXQ5S/QCFZtkcvIWGz3Ad+P+fBLF3CQREPWVLilBSHBCkbmcrOiMElGBQ+KFaGoJ18DrJCA7NSB7XxGgzqELQpOYZYKR+BMGIMgDEA8PsdC1DJ5UD6cmtDFAB0V57DhPaFSDtTCAC4Z8MEFG7wwxviNvRQZiNUJyFUVYFDbVIhVD5oYzgLrbkUQlKgXBUEk8oPskIFjbkMCkmGgAJ6bTg0sh4SgApVADSyHgZ1ENRmPcxKHRQAFBCoUPlCZyqEUR0Ms0oHSVJAJRuhksthVvpAZS6HrNJBKVdAIckwq/ygNpXArPKDUjYAChWgUEMhTDBpAizzK7VQmcuhkCsAlQaQlIAESJLi+v/IC0AISHZ+y6Xqf0nV/kWVf6XqS13/V1G5FtvpkiQBApBEBSTZDEmYAEgQSvX18mo7uFSJymaeqtN/nypqZmE3pZrl2H4grHHXFVG16bXkYG9qrenWUnrt89dcprZ5GxRHrWXU/MDRaYHtL55k8xtY4+dSVP2zjvkqS6usV2sF2077/W/b+W1WaafsGmHZnUc4nMfez3315XS+gWh7Qxc7C3svZ86rmltyEzZEVZLw+3/7CFhupVMpLF/SsgozZGH5yZQkwCwEArVq+GqUyC7Q4z87spEYG2Jz4l35xLnKnjiXSwzQqJToEROEcdd74lR/6p4kSRAALpcYoAAgKSRcLjUiMlAHP62qzvW1JPbyBuB0jg7Lu6LH+5tPQqNUoH0bv0avj7xHfR82cDy/uEWNj+auvLx1ezrLW7ZH1Tz0RjNKDWZoVNevVSQJGqUCpQYT9EbZI3Jya2PU5cuXYTabERkZaTM9MjISx44ds7tMXl6e3fnz8vLszm8wGGAwGKzvi4qKGhl13U5/+Sz6l/zseEbyKDcC1rGOAAAKpaWxwZ4OfwKKcoBLx4DgdsC1s7afh7QHLmfaXzY4DrjrXcvjgXZ+CBiLgVtnARcPAYOeBPb+B1BpgYwvgYpSyzIqHRDWCSjOhSgrQEVIJ/gWZGKh+kNrsSaooJJM+FjzrxqrVEgCQ5X7rO8TpZMAgH7IBATQ21RLrJWMqPuq2C8CKM0HfnzW8l6pBXSBkEovYW7u40CVMWF9YMSz0ueWqwdLux86Ff9W9/qJiJxwWNMLbZ/b5u4wXMqZ86rmPk/KadLSLIcjpVKCUmEZ2FwCYJIFzMJyy55JliFJlgG7lQrJ2mPK0cWEoyfO2btQKTWYUGowQ3t9bMTK9/46VYu6eKlLU1+gOSrPT6vC+WtlSIj0b9EXhNT0GvKwgZbEXXl56/Z0lrdsj6p5FJVXQBYCyipPN1dKgFEAFbKMQJ3a7Tm5f+CZZrZgwQK8/PLLLlufWROASwiu/L9/16y02mpEI9Zb27L1LbGxN6c1JnaL+i9f9RxHgoRwOd/yxj8S6DcBiOxuea/xA6J6AgHRQOcUILS9pTHqyPdAnweBs2lA6A1AwWng1Gag/6PAd38Dyq5aBjHv9QDQ/W7gl9eAu6/fSqpQADc/DZz+BRg4BdBdP6GKvT7AbPtbgW1vAqPet6xXFwyU5kMqvQRN6A3A9rct6w+MAQY8BlVwO2DdM5a4YgcAN04EMj4DCs4AAx4Fcg/A1KYLTOf3waTUokITDMWVkygJ6Qpd/j7off4AqbwAkqEEJT4x8L96FIW+cfDRX0C55AONbyAC9GchdR6ONulvQSq9ZIkz4TZLvutnA8brTyHs8yCgCwJ2vAcIy20UEAKiogxSRSmMPpEwmUzICk1G22t7EGTIRbG6DdTmMpwITEKb8rMQkgIlymAoYFm+Tfk5XNVEQi0bUK7wgwwJOlmPcoUvfM2FMCh8oZbLr39/JOjkUhQrg+FvLoRKVEAAMEMJo6SDRpTDKGmhFkaYJBXE9bL0Cj/o5DIYJS0UwgwVTJChgI/QwwAtNDDCAC2MkgZqUQFAQAHZ+p3//eZMycH3WECqMicASMLeZ79Pq1mq7fKApUHSDCXMkhKAgEqYobB5XtXv89beaae2Pdj+dEflVF/KUe9Hz9JyYnV/3wBLn6TGHT2ankkd4LZ1tySuPk9qLKUCUAJQKhQwyzJkWG7Vk683SAlhOcQqJAn+OpXNoOSOLibqeuKcvQuVyl7wSoUCEMJ6gl/f9bUETX2B5qg8hWTpua6opXupN2xTco4zDxtoCdyVl7duT2d5y/aomodaqYBCkmCWhaX3MADz9Z7DaoXCI3Jya2NUmzZtoFQqcfHiRZvpFy9eRFRUlN1loqKiGjT/7NmzbW7rKyoqQmxsbCMjr91N0/7TbGWTG3QbaX96YAxw018tf3dOsfzbptPvf0/8X81lElJt39/8jOVld713WV5VBURZXgAw5DnLq6q/rLd9Hzfw97+73w0VAFWfMTazBF3/N8xOCH+wHxnwp6k1p03dVXNa8hM2bytPKzXXX92rfFZ5ydiztnUCCK7jM3siHc9CRF4sxN0BuIEz51WuPk9qLJVCgXKzgFalQGSgDjlX9TAJoNwsQylJUEiAUpKgVSnQNsTXpjm0MSfe9i5Uqp7oA7+f4DfF+jxFU1+gOSrPcoulVOtQF96wTck5DX3YQEvhrry8dXs6y1u2R9U82oX6wk+rRHG5CUqFZcwoo9kyZpSvRmEdM8qdObn18VYajQb9+vXDpk2brNNkWcamTZswcOBAu8sMHDjQZn4A2LhxY63za7VaBAYG2ryIiIiIvI0z51XNfZ4U04RlSbD0egrQqdApIgAdw/0QGaRDRIAWUQE6hPlp4KtRWp+8Fuzze4NF5cVEpwh/p068K0/wL5UYrGNY+mlV8NMqYTCZYTTL1vdNsT5PYS/vSs7k6Ki8UoMJbfw1KDGYmmR95D0UCgnjk+MQ5KNGdoEepQYTzLLlO5NdoEeQjxrjkuNa3Fhi7srLW7ens7xle1TN42yBHm38tVBKQKnRhNLr4yu28dPg7NUyj8jJ7c9anz59Oj7++GMsX74cR48exeOPP47S0lI88sgjAIBx48bZDMT55JNPYv369XjzzTdx7NgxzJ07F3v27MHUqXZ6axARERG1Io7Oq1xtx6u3N7oMCYBGKSHMT4MO4f7oEhkAtVJCdoEekYE6LH6wLz4afyPeHN0HL4/sgU4R/igsq2jSiwl7FyqyLNDGXwtZAGZZoI2fBrJAi7t4qUtTX6A5LM9Xjb8N6YhgX02LviCk5lH5sIHuMUEoKjfh/FU9ispN6BET1KKfsuiuvLx1ezrLW7ZH1TyEAAJ91NAoFdAoFQjQWYYo8ZScJOHoEWUu8N577+GNN95AXl4e+vTpg3feeQdJSUkAgMGDByM+Ph7Lli2zzr9q1Sq88MILOHPmDDp16oTXX38dt912W73W5cmPYyYiIiLP5+nnEnWdVznSXLnFO/lUPbVSwk3tw5DaMwo7TxfgZH4JjCbLrVqdIvytT7urKj27wPpkPEfzNpS9ssP81RBCQkGpscnX5ymaeps6Kq8565BaPlkWtT5soCVzV17euj2d5S3bo2oeAToVIAHFZaZmz6kh5xEe0RjlSp5+AklERESezZvPJZozt+RZ6+w+Xe8PgSoYZMBPrUKwnwpBOg0CfNRI7tgGie1C0CUyEAqF1KALhOa8mLBXNgCvuHipS1NvU0flecsFIRFRa8LGqDp48wkkERERNT9vPpfw5tyIiIioeTXkPMLtY0YREREREREREVHrwcYoIiIiIiIiIiJyGTZGERERERERERGRy7AxioiIiIiIiIiIXIaNUURERERERERE5DJsjCIiIiIiIiIiIpdRuTsAVxNCALA8cpCIiIiooSrPISrPKbwJz5OIiIjIWQ05R2p1jVHFxcUAgNjYWDdHQkRERC1ZcXExgoKC3B1Gk+J5EhERETVWfc6RJOGN/61XB1mWkZOTg4CAAEiS1ODli4qKEBsbi3PnziEwMLAZIvQ8rTFnoHXm3RpzBph3a8q7NeYMtM68mzNnIQSKi4sRExMDhcK7Rjxo7HmSI63xu+ipWBeeg3XhOVgXnoX14TnqWxcNOUdqdT2jFAoF2rZt2+hyAgMDW90O0RpzBlpn3q0xZ4B5tyatMWegdebdXDl7W4+oSk11nuRIa/wueirWhedgXXgO1oVnYX14jvrURX3Pkbzrv/OIiIiIiIiIiMijsTGKiIiIiIiIiIhcho1RDaTVajFnzhxotVp3h+IyrTFnoHXm3RpzBph3a8q7NeYMtM68W2POLQHrxXOwLjwH68JzsC48C+vDczRHXbS6AcyJiIiIiIiIiMh92DOKiIiIiIiIiIhcho1RRERERERERETkMmyMIiIiIiIiIiIil2k1jVFbt27FnXfeiZiYGEiShDVr1th8vnr1agwfPhxhYWGQJAkZGRk1yigvL8eUKVMQFhYGf39/3Hvvvbh48WKd6xVC4KWXXkJ0dDR8fHwwbNgwnDhxogkzq1tj8y4oKMATTzyBhIQE+Pj4oF27dpg2bRoKCwvrXO+ECRMgSZLNKzU1tYmzs68p6nrw4ME14v/rX/9a53pbel2fOXOmRs6Vr1WrVtW6XnfWNVB33hUVFZg5cyZ69uwJPz8/xMTEYNy4ccjJybEpo6CgAA899BACAwMRHByMiRMnoqSkpM71OvN70FQam/OZM2cwceJEtG/fHj4+PujQoQPmzJkDo9FY53qd2S+aUlPUdXx8fI0cXn311TrX6866Bhqf95YtW2rdt3fv3l3ret1Z345+z+bOnYsuXbrAz88PISEhGDZsGHbu3GkzT0vbr73J4sWLER8fD51Oh6SkJOzatavO+VetWoUuXbpAp9OhZ8+e+OGHH1wUqfdrSF0sW7asxj6v0+lcGK33cvSbZs+WLVvQt29faLVadOzYEcuWLWv2OFuDhtZFbcfQvLw81wTsxRYsWID+/fsjICAAERERGDVqFDIzMx0ux2NG03OmLprimNFqGqNKS0vRu3dvLF68uNbP//jHP+K1116rtYynn34a//d//4dVq1bhl19+QU5ODu6555461/v666/jnXfewZIlS7Bz5074+fkhJSUF5eXljcqnvhqbd05ODnJycrBw4UIcOnQIy5Ytw/r16zFx4kSH605NTUVubq719eWXXzYql/pqiroGgMcee8wm/tdff73O+Vt6XcfGxtrkm5ubi5dffhn+/v4YMWJEnet2V10Ddeet1+uxd+9evPjii9i7dy9Wr16NzMxM3HXXXTbzPfTQQzh8+DA2btyItWvXYuvWrZg0aVKd63Xm96CpNDbnY8eOQZZlfPjhhzh8+DAWLVqEJUuW4LnnnnO47obuF02pKeoaAObNm2eTwxNPPFHnet1Z10Dj805OTq6xbz/66KNo3749brzxxjrX7a76dvR71rlzZ7z33ns4ePAgfv31V8THx2P48OG4dOmSdZ6Wtl97i6+++grTp0/HnDlzsHfvXvTu3RspKSnIz8+3O/+OHTswduxYTJw4Efv27cOoUaMwatQoHDp0yMWRe5+G1gUABAYG2uzz2dnZLozYezn6TasuKysLt99+O4YMGYKMjAw89dRTePTRR7Fhw4ZmjtT7NbQuKmVmZtrsGxEREc0UYevxyy+/YMqUKfjtt9+wceNGVFRUYPjw4SgtLa11GR4zmoczdQE0wTFDtEIAxLfffmv3s6ysLAFA7Nu3z2b6tWvXhFqtFqtWrbJOO3r0qAAg0tLS7JYly7KIiooSb7zxhk05Wq1WfPnll43Oo6Gcyduer7/+Wmg0GlFRUVHrPOPHjxcjR450LtAm5GzOt956q3jyySfrvR5vres+ffqIv/zlL3XO4yl1LUTdeVfatWuXACCys7OFEEIcOXJEABC7d++2zvPjjz8KSZLEhQsX7JbhzO9Bc3EmZ3tef/110b59+zrLaeh+0ZyczTsuLk4sWrSo3uvxpLoWomnq22g0ivDwcDFv3rw6y/GU+q5PzoWFhQKA+Omnn4QQLX+/bskGDBggpkyZYn1vNptFTEyMWLBggd35R48eLW6//XabaUlJSWLy5MnNGmdr0NC6WLp0qQgKCnJRdK1XfX7T/v73v4vu3bvbTBszZoxISUlpxshan/rUxebNmwUAcfXqVZfE1Jrl5+cLAOKXX36pdR4eM1yjPnXRFMeMVtMzqrHS09NRUVGBYcOGWad16dIF7dq1Q1pamt1lsrKykJeXZ7NMUFAQkpKSal2mJSgsLERgYCBUKlWd823ZsgURERFISEjA448/jitXrrgowqbx+eefo02bNujRowdmz54NvV5f67zeWNfp6enIyMioVy+4llTXhYWFkCQJwcHBAIC0tDQEBwfb9BAZNmwYFApFjdt+Kjnze+BO1XOubZ7Q0FCHZTVkv3C32vJ+9dVXERYWhsTERLzxxhswmUy1ltHS6hpwXN/ff/89rly5gkceecRhWS2hvo1GIz766CMEBQWhd+/eAFrHfu2JjEYj0tPTbbahQqHAsGHDat2GaWlpNvMDQEpKCrd5IzlTFwBQUlKCuLg4xMbGYuTIkTh8+LArwqVquF94nj59+iA6Ohp//vOfsX37dneH45Uqh4Gp63yU+4Zr1KcugMYfM+puTSCrvLw8aDSaGif3kZGRtd4zXDk9MjKy3st4usuXL+OVV15xeKtDamoq7rnnHrRv3x6nTp3Cc889hxEjRiAtLQ1KpdJF0TrvwQcfRFxcHGJiYnDgwAHMnDkTmZmZWL16td35vbGuP/30U3Tt2hXJycl1zteS6rq8vBwzZ87E2LFjERgYCMBSd9W7WqtUKoSGhta5bzf098Bd7OVc3cmTJ/Huu+9i4cKFdZbV0P3CnWrLe9q0aejbty9CQ0OxY8cOzJ49G7m5ufjXv/5lt5yWVNdA/er7008/RUpKCtq2bVtnWZ5e32vXrsUDDzwAvV6P6OhobNy4EW3atAHg/fu1p7p8+TLMZrPdY+GxY8fsLpOXl+dVx05P4UxdJCQk4N///jd69eqFwsJCLFy4EMnJyTh8+LDD3wtqWrXtF0VFRSgrK4OPj4+bImt9oqOjsWTJEtx4440wGAz45JNPMHjwYOzcuRN9+/Z1d3heQ5ZlPPXUUxg0aBB69OhR63w8ZjS/+tZFUxwz2BhF9VZUVITbb78d3bp1w9y5c+uc94EHHrD+3bNnT/Tq1QsdOnTAli1bMHTo0GaOtPGqNrb17NkT0dHRGDp0KE6dOoUOHTq4MTLXKCsrwxdffIEXX3zR4bwtpa4rKiowevRoCCHwwQcfuDscl6hPzhcuXEBqairuv/9+PPbYY3WW11L2i7rynj59uvXvXr16QaPRYPLkyViwYAG0Wq2rQ21S9anv8+fPY8OGDfj6668dlufp9V05lsrly5fx8ccfY/To0di5cyfH8SBy0sCBAzFw4EDr++TkZHTt2hUffvghXnnlFTdGRuQ+CQkJSEhIsL5PTk7GqVOnsGjRIqxYscKNkXmXKVOm4NChQ/j111/dHUqrV9+6aIpjBm/Tq6eoqCgYjUZcu3bNZvrFixcRFRVV6zKV89R3GU9VXFyM1NRUBAQE4Ntvv4VarW7Q8jfccAPatGmDkydPNlOEzSspKQkAao3fm+oaAL755hvo9XqMGzeuwct6Yl1XXqRnZ2dj48aNNj1GoqKiagzmajKZUFBQUOe+3dDfA1erK+dKOTk5GDJkCJKTk/HRRx81eB2O9gt3qE/eVSUlJcFkMuHMmTN2P28JdQ3UP++lS5ciLCzM7sDujnhaffv5+aFjx4646aab8Omnn0KlUuHTTz8F4L37tadr06YNlEplg46FUVFRXnPs9CTO1EV1arUaiYmJHrPPtya17ReBgYHsFeUBBgwYwP2iCU2dOhVr167F5s2bHfao4TGjeTWkLqpz5pjBxqh66tevH9RqNTZt2mSdlpmZibNnz9q0CFbVvn17REVF2SxTVFSEnTt31rqMJyoqKsLw4cOh0Wjw/fffO/WY3/Pnz+PKlSuIjo5uhgibX0ZGBgDUGr+31HWlTz/9FHfddRfCw8MbvKyn1XXlRfqJEyfw008/ISwszObzgQMH4tq1a0hPT7dO+/nnnyHLsvXiuzpnfg9cyVHOgKVH1ODBg9GvXz8sXboUCkXDDweO9gtXq0/e1WVkZEChUNTam8bT6xqof95CCCxduhTjxo1r8H8oAJ5X39XJsgyDwQDAO/frlkCj0aBfv34221CWZWzatKnWbThw4ECb+QFg48aN3OaN5ExdVGc2m3Hw4EGP3ee9GfcLz5aRkcH9ogkIITB16lR8++23+Pnnn9G+fXuHy3DfaB7O1EV1Th0zGjX8eQtSXFws9u3bJ/bt2ycAiH/9619i37591qcNXblyRezbt0+sW7dOABArV64U+/btE7m5udYy/vrXv4p27dqJn3/+WezZs0cMHDhQDBw40GY9CQkJYvXq1db3r776qggODhbfffedOHDggBg5cqRo3769KCsraxF5FxYWiqSkJNGzZ09x8uRJkZuba32ZTCa7eRcXF4sZM2aItLQ0kZWVJX766SfRt29f0alTJ1FeXu7xOZ88eVLMmzdP7NmzR2RlZYnvvvtO3HDDDeKWW26xWY+31XWlEydOCEmSxI8//mh3PZ5U15Ux1Ja30WgUd911l2jbtq3IyMiw+f4aDAZrGampqSIxMVHs3LlT/Prrr6JTp05i7Nix1s/Pnz8vEhISxM6dO63T6vN74Kk5nz9/XnTs2FEMHTpUnD9/3mae2nKu737hyXnv2LFDLFq0SGRkZIhTp06Jzz77TISHh4tx48bVmrcQ7q3rpsi70k8//SQAiKNHj9ZYh6fVd105l5SUiNmzZ4u0tDRx5swZsWfPHvHII48IrVYrDh06ZC2jpe3X3mLlypVCq9WKZcuWiSNHjohJkyaJ4OBgkZeXJ4QQ4uGHHxazZs2yzr99+3ahUqnEwoULxdGjR8WcOXOEWq0WBw8edFcKXqOhdfHyyy+LDRs2iFOnTon09HTxwAMPCJ1OJw4fPuyuFLyGo3O0WbNmiYcfftg6/+nTp4Wvr6949tlnxdGjR8XixYuFUqkU69evd1cKXqOhdbFo0SKxZs0aceLECXHw4EHx5JNPCoVCYX16Kznv8ccfF0FBQWLLli025y96vd46D48ZruFMXTTFMaPVNEZVPpaz+mv8+PFCCMujCe19PmfOHGsZZWVl4m9/+5sICQkRvr6+4u67765xIQ9ALF261PpelmXx4osvisjISKHVasXQoUNFZmamCzK2aGzetS0PQGRlZdnNW6/Xi+HDh4vw8HChVqtFXFyceOyxx6wnP56e89mzZ8Utt9wiQkNDhVarFR07dhTPPvusKCwstFmPt9V1pdmzZ4vY2FhhNpvtrseT6lqIuvPOysqq9fu7efNmaxlXrlwRY8eOFf7+/iIwMFA88sgjori42Pp5ZTlVl6nP74Gn5lzbd6Hq/09Uz7m++4Un552eni6SkpJEUFCQ0Ol0omvXruKf//ynTcOpp9V1U+RdaezYsSI5OdnuOjytvuvKuaysTNx9990iJiZGaDQaER0dLe666y6xa9cumzJa2n7tTd59913Rrl07odFoxIABA8Rvv/1m/ezWW2+1Hpcqff3116Jz585Co9GI7t27i3Xr1rk4Yu/VkLp46qmnrPNGRkaK2267Tezdu9cNUXsfR+do48ePF7feemuNZfr06SM0Go244YYbbM45yXkNrYvXXntNdOjQQeh0OhEaGioGDx4sfv75Z/cE72VqO3+p+l3nMcM1nKmLpjhmSNdXTkRERERERERE1Ow4ZhQREREREREREbkMG6OIiIiIiIiIiMhl2BhFREREREREREQuw8YoIiIiIiIiIiJyGTZGERERERERERGRy7AxioiIiIiIiIiIXIaNUURERERERERE5DJsjCIiIiIiIiIiIpdhYxQREREREXmVuXPnIjIyEpIkYc2aNe4OxyNcuXIFEREROHPmjLtDabAzZ85AkiRkZGQ0ednx8fF46623AABGoxHx8fHYs2dPncts2bIFkiTh2rVrTR5PUxs8eDCeeuopd4dBHmTr1q248847ERMT49Rv5Ny5cyFJUo2Xn59fg8phYxQRtUoTJkyw/nCq1Wq0b98ef//737FkyRK7P65VXy3xJI6IiKg5VT2uSpKEsLAwpKam4sCBA022jrlz56JPnz4O5zt69ChefvllfPjhh8jNzcWIESOaLAZPM2HCBIwaNape886fPx8jR45EfHx8s8bUWA3JqalpNBrMmDEDM2fOrHO+5ORk5ObmIigoqN5luyuv1atX45VXXrG+r9r4Rq1TaWkpevfujcWLFzu1/IwZM5Cbm2vz6tatG+6///4GlcPGKCJqtVJTU5Gbm4vTp09j0aJF+PDDD5GVlWXzwzpw4EA89thjNtNiY2PdHToREZHHqTyu5ubmYtOmTVCpVLjjjjtcHsepU6cAACNHjkRUVBS0Wm2NeYxGo6vDciu9Xo9PP/0UEydOdHcoHu+hhx7Cr7/+isOHD9c6j0ajQVRUFCRJcmFkzgkNDUVAQIC7wyAPMmLECPzjH//A3Xffbfdzg8GAGTNm4A9/+AP8/PyQlJSELVu2WD/39/dHVFSU9XXx4kUcOXKkwb8vbIwiolZLq9UiKioKsbGxGDVqFIYNG4aNGzfa/LhqNBr4+vraTFMqle4OnYiIyONUHlejoqLQp08fzJo1C+fOncOlS5es85w7dw6jR49GcHAwQkNDMXLkSJsex1u2bMGAAQPg5+eH4OBgDBo0CNnZ2Vi2bBlefvll7N+/39r7atmyZTVimDt3Lu68804AgEKhsDYWVPZKmT9/PmJiYpCQkAAAWLFiBW688UYEBAQgKioKDz74IPLz823K/P7779GpUyfodDoMGTIEy5cvt7lFa9myZQgODsbatWuRkJAAX19f3HfffdDr9Vi+fDni4+MREhKCadOmwWw2W8t1dMFXWe6GDRvQtWtX+Pv7Wxv8KnNdvnw5vvvuO+s2qbp8VT/88AO0Wi1uuukm67SrV6/ioYceQnh4OHx8fNCpUycsXboUwO+3xX399de4+eab4ePjg/79++P48ePYvXs3brzxRvj7+2PEiBE29SvLMubNm4e2bdtCq9WiT58+WL9+vU0sBw8exJ/+9Cf4+PggLCwMkyZNQklJSb1yOn36NIYMGQJfX1/07t0baWlpNmX/+uuv1nhjY2Mxbdo0lJaWWj/Pz8/HnXfeCR8fH7Rv3x6ff/55jW0VEhKCQYMGYeXKlXa3JVDzNr3G1JWjfaLyu7tw4UJER0cjLCwMU6ZMQUVFhXWe999/3/odjYyMxH333Wf9rOpteoMHD0Z2djaefvppaxylpaUIDAzEN998Y5PjmjVr4Ofnh+Li4lq3A3mnqVOnIi0tDStXrsSBAwdw//33IzU1FSdOnLA7/yeffILOnTvj5ptvbtB62BhFRATg0KFD2LFjBzQajbtDISIiavFKSkrw2WefoWPHjggLCwMAVFRUICUlBQEBAdi2bRu2b99uvWg3Go0wmUwYNWoUbr31Vhw4cABpaWmYNGkSJEnCmDFj8Mwzz6B79+7W3ldjxoypsd4ZM2ZYG1Qq56u0adMmZGZmYuPGjVi7dq01pldeeQX79+/HmjVrcObMGUyYMMG6TFZWFu677z6MGjUK+/fvx+TJk/H888/XWK9er8c777yDlStXYv369diyZQvuvvtu/PDDD/jhhx+wYsUKfPjhhzYX/PW54NPr9Vi4cCFWrFiBrVu34uzZs5gxY4Y119GjR9v0SEtOTrZbH9u2bUO/fv1spr344os4cuQIfvzxRxw9ehQffPAB2rRpYzPPnDlz8MILL2Dv3r1QqVR48MEH8fe//x1vv/02tm3bhpMnT+Kll16yzv/222/jzTffxMKFC3HgwAGkpKTgrrvusuZUWlqKlJQUhISEYPfu3Vi1ahV++uknTJ06tV45Pf/885gxYwYyMjLQuXNnjB07FiaTCYClR1xqairuvfdeHDhwAF999RV+/fVXa9mApWHn3Llz2Lx5M7755hu8//77NRofAWDAgAHYtm2b3W1ZG2fqytE+UWnz5s04deoUNm/ejOXLl2PZsmXWxtg9e/Zg2rRpmDdvHjIzM7F+/XrccsstdmNcvXo12rZti3nz5lnj8PPzwwMPPGDdbyotXboU9913H3tVtTJnz57F0qVLsWrVKtx8883o0KEDZsyYgT/+8Y81viMAUF5ejs8//9y5XpeCiKgVGj9+vFAqlcLPz09otVoBQCgUCvHNN9/YzHfrrbeKJ5980j1BEhERtRBVj6t+fn4CgIiOjhbp6enWeVasWCESEhKELMvWaQaDQfj4+IgNGzaIK1euCABiy5YtdtcxZ84c0bt3b4exfPvtt6L6Zc748eNFZGSkMBgMdS67e/duAUAUFxcLIYSYOXOm6NGjh808zz//vAAgrl69KoQQYunSpQKAOHnypHWeyZMnC19fX2s5QgiRkpIiJk+eLIQQIjs7WyiVSnHhwgWbsocOHSpmz55da7mLFy8WkZGRNnmNHDmyzpyEEGLkyJHiL3/5i820O++8UzzyyCN258/KyhIAxCeffGKd9uWXXwoAYtOmTdZpCxYsEAkJCdb3MTExYv78+TZl9e/fX/ztb38TQgjx0UcfiZCQEFFSUmL9fN26dUKhUIi8vLxac7IXz+HDhwUAcfToUSGEEBMnThSTJk2yWW7btm1CoVCIsrIykZmZKQCIXbt2WT8/evSoACAWLVpks9zbb78t4uPj7W4bIYTYvHmzw+9AferK0T5RuVxcXJwwmUzWee6//34xZswYIYQQ//3vf0VgYKAoKiqyG2v1c9m4uLga+e7cuVMolUqRk5MjhBDi4sWLQqVS1bovkvcAIL799lvr+7Vr1woA1t/yypdKpRKjR4+usfwXX3whVCqVdf9tCFXDm6+IiLzDkCFD8MEHH6C0tBSLFi2CSqXCvffe6+6wiIiIWqTK4ypguQXs/fffx4gRI7Br1y7ExcVh//79OHnyZI2eFuXl5Th16hSGDx+OCRMmICUlBX/+858xbNgwjB49GtHR0U0SX8+ePWv0gE5PT8fcuXOxf/9+XL16FbIsA7D0DujWrRsyMzPRv39/m2UGDBhQo2xfX1906NDB+j4yMhLx8fHw9/e3mVbZC+fgwYMwm83o3LmzTTkGg8Hak8xeudHR0XZ78jhSVlYGnU5nM+3xxx/Hvffei71792L48OEYNWpUjZ5VvXr1sokfsGxHezkVFRUhJycHgwYNsilj0KBB2L9/PwDL4PK9e/e2eerWoEGDIMsyMjMzreuoTdV4Kr8X+fn56NKlC/bv348DBw7Y3HonhIAsy8jKysLx48ehUqlseoh16dIFwcHBNdbj4+MDvV5fZyzVOVNXjvaJSt27d7cZJiI6OhoHDx4EAPz5z39GXFwcbrjhBqSmpiI1NRV33303fH196x37gAED0L17dyxfvhyzZs3CZ599hri4uFp7WJH3KikpgVKpRHp6eo2hSar+nlX65JNPcMcddzjcd+1hYxQRtVp+fn7o2LEjAODf//43evfuzcE9iYiInFT1uApYLlKCgoLw8ccf4x//+AdKSkrQr18/u+P0hIeHA7DcGjRt2jSsX78eX331FV544QVs3LjRZqyjxsRXVeUtYykpKfj8888RHh6Os2fPIiUlpcEDnKvVapv3lU/rrT6tsrGrvhd89sqwdGZomDZt2uDq1as200aMGIHs7Gz88MMP2LhxI4YOHYopU6Zg4cKFdtdfOf5W9WmVObmCvXiqbtPJkydj2rRpNZZr164djh8/Xu/1FBQUWL+TzsRWGZ+juqrPPlFb2ZV5BwQEYO/evdiyZQv+97//4aWXXsLcuXOxe/duuw1ttXn00UexePFizJo1C0uXLsUjjzzSIgZop6aVmJgIs9mM/Px8h2NAZWVlYfPmzfj++++dWhfHjCIigmWQ0+eeew4vvPACysrK3B0OERFRiydJEhQKhfW42rdvX5w4cQIRERHo2LGjzSsoKMi6XGJiImbPno0dO3agR48e+OKLLwBYnmBWdQDwxjp27BiuXLmCV199FTfffDO6dOlSoydLQkIC9uzZYzNt9+7djV531Qu+6tsiKiqq3uXUd5skJibiyJEjNaaHh4dj/Pjx+Oyzz/DWW2/ho48+alAeVQUGBiImJgbbt2+3mb59+3Z069YNANC1a1fs37/fZlDx7du3Q6FQWAeVd7ae+/btiyNHjtTYnh07doRGo0GXLl1gMpmQnp5uXSYzM9M6CHlVhw4dQmJiYoNjqIu9vOq7TziiUqkwbNgwvP766zhw4ADOnDmDn3/+ud5xAMD/+3//D9nZ2XjnnXdw5MgRjB8/vmEJUotRUlKCjIwMZGRkALA0KmVkZODs2bPo3LkzHnroIYwbNw6rV69GVlYWdu3ahQULFmDdunU25fz73/9GdHQ0RowY4VQcbIwiIrru/vvvh1KpxOLFi90dChERUYtjMBiQl5eHvLw8HD16FE888QRKSkqsT7d76KGH0KZNG4wcORLbtm1DVlYWtmzZgmnTpuH8+fPIysrC7NmzkZaWhuzsbPzvf//DiRMn0LVrVwBAfHy89aLp8uXLMBgMjYq3Xbt20Gg0ePfdd3H69Gl8//33eOWVV2zmmTx5Mo4dO4aZM2fi+PHj+Prrr60DRzem10hDLvjqEh8fjwMHDiAzMxOXL1+2ecJaVSkpKTh8+LBN76iXXnoJ3333HU6ePInDhw9j7dq11m3trGeffRavvfYavvrqK2RmZmLWrFnIyMjAk08+CcDyHdDpdBg/fjwOHTqEzZs344knnsDDDz9svc2nvjlVN3PmTOzYsQNTp05FRkYGTpw4ge+++846gHlCQgJSU1MxefJk7Ny5E+np6Xj00Ufh4+NTo6xt27Zh+PDhjdoW1dnLy9E+UR9r167FO++8g4yMDGRnZ+M///kPZFm2Nu7Zi2Pr1q24cOECLl++bJ0eEhKCe+65B88++yyGDx+Otm3bNkne5Hn27NmDxMREa4Pr9OnTkZiYaH0YwdKlSzFu3Dg888wzSEhIwKhRo7B79260a9fOWoYsy1i2bBkmTJjg9JPG2RhFRHSdSqXC1KlT8frrr9v8jx0RERE5tn79ekRHRyM6OhpJSUnWp6UNHjwYgGVMna1bt6Jdu3a455570LVrV0ycOBHl5eUIDAyEr68vjh07hnvvvRedO3fGpEmTMGXKFEyePBkAcO+99yI1NRVDhgxBeHg4vvzyy0bFGx4ejmXLlmHVqlXo1q0bXn31VZtb1ACgffv2+Oabb7B69Wr06tULH3zwgfVpelqttlHrr88FnyOPPfYYEhIScOONNyI8PLxGr6RKPXv2RN++ffH1119bp2k0GsyePRu9evXCLbfcAqVSiZUrVzYqp2nTpmH69Ol45pln0LNnT6xfvx7ff/89OnXqBMDyHdiwYQMKCgrQv39/3HfffRg6dCjee++9BudUXa9evfDLL7/g+PHjuPnmm60X1zExMdZ5li5dipiYGNx666245557MGnSJERERNiUk5aWhsLCQtx3332N2hbV2cvL0T5RH8HBwVi9ejX+9Kc/oWvXrliyZAm+/PJLdO/e3e788+bNw5kzZ9ChQ4catyJOnDgRRqMRf/nLXxqdL3muwYMHQwhR41XZ0K5Wq/Hyyy8jKysLRqMROTk5WL16tc14cQqFAufOncP8+fOdjkMSztx0TERERERE1ArNnz8fS5Yswblz59wdSoOsW7cOzz77LA4dOgSFgn0SajNmzBj07t0bzz33nLtDcbkVK1bg6aefRk5OTo3B/omaGgcwJyIiIiIiqsX777+P/v37IywsDNu3b8cbb7xhvfWrJbn99ttx4sQJXLhwAbGxse4OxyMZjUb07NkTTz/9tLtDcSm9Xo/c3Fy8+uqrmDx5MhuiyCXYM4qIiIiIiKgWTz/9NL766isUFBSgXbt2ePjhhzF79myoVPx/ffIOc+fOxfz583HLLbfgu+++s3miI1FzYWMUERERERERERG5DG8WJiIiIiIiIiIil2FjFBERERERERERuQwbo4iIiIiIiIiIyGXYGEVERERERERERC7DxigiIiIiIiIiInIZNkYREREREREREZHLsDGKiIiIiIiIiIhcho1RRERERERERETkMmyMIiIiIiIiIiIil/n/HTMLYLM1hS0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5+BJREFUeJzs3XdYk9fbB/BvCCFsEFmiCDhQEQdiVbDugYpUbd1WwNVaxapoW6l14KLWqmidbRXosO5aW61bW1e1oriqggNslaUIGJCVPO8f/MhrZCUIhPH9XBdXyckz7ieJzeF+zrmPSBAEAURERERERERERJVER9sBEBERERERERFR7cKEFBERERERERERVSompIiIiIiIiIiIqFIxIUVERERERERERJWKCSkiIiIiIiIiIqpUTEgREREREREREVGlYkKKiIiIiIiIiIgqFRNSRERERERERERUqZiQIiIiIiIiIiKiSsWEFNUqCxcuhEgkwpMnT7QdSoUTiURYuHCh8nF4eDhEIhFiY2O1FpM6/P394ejoqO0wCvn+++/RvHlzSCQSmJubAwC6d++O7t27K7eJjY2FSCRCeHh4pce3c+dOWFhYQCaTVfq5a5pDhw7B2NgYycnJ2g6FiKhCvfo9VhVV1X5BaV7th5WHqvJ+OTo6YuDAgaVud+rUKYhEIpw6dapczy+TyWBtbY0ff/yxXI/7KkdHR/j7+1foOQpU18+5Oiq6fzxnzhx07NixQo5NFY8JKaJiLFu2DJ06dYKVlRX09fXRtGlTzJgxg3+k1kK3b9+Gv78/GjdujG+++QZff/21tkNSIZfLsWDBAkybNg3GxsbaDkfp0aNHGD58OMzNzWFqaopBgwbh/v37pe5X0HEp7mfSpEmF9rl8+TLeeustWFhYwNDQEK6urli7dq3KNkeOHMGECRPg6uoKsVhcbMevX79+aNKkCUJCQsp03UREFaXg5lLBj76+PpydnREQEIDExMRKjWXbtm0IDQ2t1HPWBv/88w8WLlxY5W8gatOaNWtgYmKCkSNHajsUqgJmzJiBq1evYv/+/doOhcpAV9sBEFVVkZGRaNu2LUaOHAkTExPcunUL33zzDQ4cOICoqCgYGRlpO0SNjB07FiNHjoRUKtV2KNXOqVOnoFAosGbNGjRp0kTZfuTIES1G9f9+/fVX3LlzB++99562Q1GSyWTo0aMH0tLS8Omnn0IikWD16tXo1q0boqKiULdu3WL3tbKywvfff1+o/dChQ/jxxx/Rt29flfYjR47Ax8cHbm5umDdvHoyNjXHv3j38999/Kttt27YNO3bsQLt27WBnZ1di/O+//z5mz56N4OBgmJiYaHDlREQVb9GiRXByckJWVhbOnDmDjRs34uDBg7hx4wYMDQ3VPs7rfI9t27YNN27cwIwZM8p8DHV88803UCgUFXqOquSff/5BcHAwunfvXujGSVXpd6ira9euePHiBfT09MrtmLm5uVizZg1mzpwJsVhcbsctyp07d6Cjw/EbVZ2trS0GDRqEL7/8Em+99Za2wyENMSFFVIw9e/YUavPw8MDQoUPx66+/Vru7MmKxuMK/uKuLjIwMjRKKSUlJAKCcqlegPDtYryMsLAydO3dG/fr1S9xOoVAgJycH+vr6FR7Thg0bEBMTg4sXL+KNN94AAPTv3x+urq5YuXIlli1bVuy+RkZGePfddwu1h4eHw9TUFD4+Psq29PR0+Pr6wtvbG7t37y6x47hs2TJ88803kEgkGDhwIG7cuFHstu+88w6mTZuGXbt2Yfz48epcMhFRpenfvz/at28PAJg4cSLq1q2LVatW4ZdffsGoUaPUPk5V+R4riUQi0XYIEAQBWVlZMDAw0Goc1eH9epmOjk659zl+++03JCcnY/jw4eV63KKocxNX0z4lVYzhw4dj2LBhuH//Pho1aqTtcEgDTPlSrfTkyRMMHz4cpqamqFu3LqZPn46srKxS9yu4U5WamlqxARYjJycH8+fPh7u7O8zMzGBkZIQuXbrg5MmTpe5bVA0phUKBhQsXws7ODoaGhujRowf++eefQnPmC/Y9e/YsAgMDYWVlBSMjIwwZMqTIKYy///47unTpAiMjI5iYmMDb2xs3b94stN2+ffvg6uoKfX19uLq64ueff1b7tSioX3DkyBG0bdsW+vr6cHFxwd69e4u87j/++ANTpkyBtbU1GjRooHx+w4YNaNmyJaRSKezs7DB16lSV99fR0RELFiwAkD9y5+WaEOrWcrh9+zaGDh0KCwsL6Ovro3379oWGFefm5iI4OBhNmzaFvr4+6tatizfffBNHjx4t8dhZWVk4dOgQevfuXeg5kUiEgIAA/Pjjj8prPHToUKnxlofdu3fjjTfeUCajAKB58+bo1asXdu7cqfHx4uPjcfLkSbz99tsqndtt27YhMTERS5cuhY6ODjIyMoq9k25nZ6f2HzbW1tZo3bo1fvnlF41jJSKqbD179gQAPHjwAACQl5eHxYsXo3HjxpBKpXB0dMSnn36K7Oxslf1e/R4rqPmzc+dOLF26FA0aNIC+vj569eqFu3fvqux34MABxMXFKacPllT/JjU1FWKxWGUq9ZMnT6Cjo4O6detCEARl+wcffABbW1vl46Jq62zfvh3u7u4wMTGBqakpWrVqhTVr1hQ654wZM2Bvbw+pVIomTZpg+fLlao22KuhjHD58GO3bt4eBgQE2b978WseNi4vDlClT0KxZMxgYGKBu3boYNmyYSr8sPDwcw4YNAwD06NFD+doW1GAqqt+RlJSECRMmwMbGBvr6+mjTpg0iIiJUtimYCv/ll1/i66+/Vn4u3njjDfz9998q2yYkJGDcuHFo0KABpFIp6tWrh0GDBhU5hfDMmTPo0KED9PX10ahRI3z33XcqzxdVQ6p79+5wdXVFZGQkPD09YWBgACcnJ2zatKnE16/Avn374OjoiMaNG6u0+/v7w9jYGPfv34eXlxeMjIxgZ2eHRYsWqXy+AODLL7+Ep6cn6tatCwMDA7i7u2P37t2FzlVcf7i4PmVl9H8vXboELy8vWFpaKl+7V2+cqXt9Bf3EXbt2wcXFBQYGBvDw8MD169cBAJs3b0aTJk2gr6+P7t27F/oMvO57WZ7944J+MPtt1Q9HSFGtNHz4cDg6OiIkJAR//fUX1q5di2fPnhX6IhUEAU+fPkVeXh5iYmIwZ84ciMVirRWUTE9Px7fffotRo0Zh0qRJeP78ObZs2QIvLy9cvHgRbdu21eh4QUFB+OKLL+Dj4wMvLy9cvXoVXl5exSbnpk2bhjp16mDBggWIjY1FaGgoAgICsGPHDuU233//Pfz8/ODl5YXly5cjMzMTGzduxJtvvokrV64oO5VHjhzBO++8AxcXF4SEhODp06fKDpC6YmJiMGLECEyePBl+fn4ICwvDsGHDcOjQIfTp00dl2ylTpsDKygrz589HRkYGgPwi98HBwejduzc++OAD3LlzBxs3bsTff/+Ns2fPQiKRIDQ0FN999x1+/vlnbNy4EcbGxmjdurXaMd68eVM5emnOnDkwMjLCzp07MXjwYOzZswdDhgxRxhISEoKJEyeiQ4cOSE9Px6VLl3D58uVC1/KyyMhI5OTkoF27dkU+f+LECezcuRMBAQGwtLQs8Q8GmUymVmJWIpHAzMys2OcVCgWuXbtW5MiiDh064MiRI3j+/LlGU+G2b98OhUKBMWPGqLQfO3YMpqamePToEQYPHozo6GgYGRlh7NixWL169WvdmXV3d8e+ffvKvD8RUWW5d+8eACinQ0+cOBEREREYOnQoZs2ahQsXLiAkJAS3bt1S64/fzz//HDo6Opg9ezbS0tLwxRdfYMyYMbhw4QIAYO7cuUhLS8N///2H1atXA0CJNQzNzc3h6uqKP//8Ex9++CGA/GSGSCRCSkoK/vnnH7Rs2RIAcPr0aXTp0qXYYx09ehSjRo1Cr169sHz5cgDArVu3cPbsWUyfPh0AkJmZiW7duuHRo0d4//330bBhQ5w7dw5BQUGIj49Xq/bVnTt3MGrUKLz//vuYNGkSmjVr9lrH/fvvv3Hu3DmMHDkSDRo0QGxsLDZu3Iju3bvjn3/+gaGhIbp27YoPP/wQa9euxaeffooWLVoAgPK/r3rx4gW6d++Ou3fvIiAgAE5OTti1axf8/f2RmpqqfD0KbNu2Dc+fP8f7778PkUiEL774Am+//Tbu37+vvGHzzjvv4ObNm5g2bRocHR2RlJSEo0eP4uHDhyp9iLt372Lo0KGYMGEC/Pz8sHXrVvj7+8Pd3V35Xhbn2bNnGDBgAIYPH45Ro0Zh586d+OCDD6Cnp1fqqORz584V2+eRy+Xo168fOnXqhC+++AKHDh3CggULkJeXh0WLFim3W7NmDd566y2MGTMGOTk52L59O4YNG4bffvsN3t7eJZ4fKLpPWRn936SkJPTt2xdWVlaYM2cOzM3NERsbW+hmrCbXd/r0aezfvx9Tp04FAISEhGDgwIH4+OOPsWHDBkyZMgXPnj3DF198gfHjx+PEiRMq+5f1vSzv/rGZmRkaN26Ms2fPYubMmaW+llSFCES1yIIFCwQAwltvvaXSPmXKFAGAcPXqVZX2+Ph4AYDyp0GDBsKOHTsqM2QVeXl5QnZ2tkrbs2fPBBsbG2H8+PEq7QCEBQsWKB+HhYUJAIQHDx4IgiAICQkJgq6urjB48GCV/RYuXCgAEPz8/Art27t3b0GhUCjbZ86cKYjFYiE1NVUQBEF4/vy5YG5uLkyaNEnlmAkJCYKZmZlKe9u2bYV69eop9xUEQThy5IgAQHBwcCj1tXBwcBAACHv27FG2paWlCfXq1RPc3NwKxf7mm28KeXl5yvakpCRBT09P6Nu3ryCXy5Xt69atEwAIW7duVbYVfG6Sk5NVYujWrZvQrVs35eMHDx4IAISwsDBlW69evYRWrVoJWVlZyjaFQiF4enoKTZs2Vba1adNG8Pb2LvW6X/Xtt98KAITr168Xeg6AoKOjI9y8eVOtY/n5+al83ov7efmai5KcnCwAEBYtWlToufXr1wsAhNu3b6sVUwF3d3ehXr16Ku+VIAhC69atBUNDQ8HQ0FCYNm2asGfPHmHatGkCAGHkyJHFHs/b27vUz9myZcsEAEJiYqJGsRIRVZSC77Rjx44JycnJwr///its375dqFu3rmBgYCD8999/QlRUlABAmDhxosq+s2fPFgAIJ06cULa9+j128uRJAYDQokULlf7GmjVrCn3XqPP/0ZdNnTpVsLGxUT4ODAwUunbtKlhbWwsbN24UBEEQnj59KohEImHNmjXK7fz8/FTOM336dMHU1FTlO/1VixcvFoyMjITo6GiV9jlz5ghisVh4+PBhibEW9DEOHTpU5uO+2g/LzMwsdJ7z588LAITvvvtO2bZr1y4BgHDy5MlC27/6foWGhgoAhB9++EHZlpOTI3h4eAjGxsZCenq6IAj/3z+pW7eukJKSotz2l19+EQAIv/76qyAI+X1KAMKKFStKeHX+//X5888/lW1JSUmCVCoVZs2apWwr+Dy9fC3dunUTAAgrV65UtmVnZwtt27YVrK2thZycnGLPm5ubK4hEIpVzFCjow0ybNk3ZplAoBG9vb0FPT0+lD/fqe5GTkyO4uroKPXv2LHSdRfWHX+1TVlb/9+effxYACH///XeJ26l7fQAEqVSq/NtAEARh8+bNAgDB1tZW+fkRBEEICgpS+TtCENR/Lyurf9y3b1+hRYsWam1LVQen7FGtVHAXoMC0adMAAAcPHlRpt7CwwNGjR/Hrr79i0aJFsLS0hEwmq7Q4XyUWi5X1AxQKBVJSUpCXl4f27dvj8uXLGh3r+PHjyMvLw5QpU1TaC16Lorz33nsQiUTKx126dIFcLkdcXByA/LuWqampGDVqFJ48eaL8EYvF6Nixo3JqYXx8PKKiouDn56cy0qZPnz5wcXFR+xrs7OyUd1AAwNTUFL6+vrhy5QoSEhJUtp00aZJKDa1jx44hJycHM2bMUKk7NGnSJJiamuLAgQNqx1GclJQUnDhxAsOHD8fz58+Vr8fTp0/h5eWFmJgYPHr0CED+3eObN28iJiZGo3M8ffoUAFCnTp0in+/WrZvar+nHH3+Mo0ePlvqzcuXKEo/z4sULAEXXXigYsVSwjTqio6MRGRmJkSNHFqoRJZPJkJmZCV9fX6xduxZvv/021q5di/fffx/bt2/X+PV8WcFr+uTJkzIfg4ioIvTu3RtWVlawt7fHyJEjYWxsjJ9//hn169dX9mUCAwNV9pk1axYAqPX9Nm7cOJV6RQUjltRZKbU4Xbp0QWJiIu7cuQMgf2RG165d0aVLF5w+fRpA/qgpQRBKHCFlbm6OjIyMEqe079q1C126dEGdOnVU+iO9e/eGXC7Hn3/+WWq8Tk5O8PLyKrfjvlx/Kjc3F0+fPkWTJk1gbm6ucR+uwMGDB2Fra6tSN0wikeDDDz+ETCbDH3/8obL9iBEjVPoLr76vBgYG0NPTw6lTp/Ds2bMSz+3i4qLyPllZWaFZs2ZqfUZ0dXXx/vvvKx/r6enh/fffR1JSEiIjI4vdLyUlBYIgFNvnAYCAgADl7wVT0nJycnDs2DFl+8vvxbNnz5CWloYuXbqo/T682qesrP5vQS3T3377Dbm5ucVup8n19erVS2XkW8eOHQHkj5R7eSR7Qfur729Z3suK6h8X/Luk6oVT9qhWatq0qcrjxo0bQ0dHp9DcaD09PeWc5IEDB6JXr17o3LkzrK2tMXDgwGKPn5ycDLlcXqbYrKysSiw+HhERgZUrV+L27dsqX0ZOTk4anacgifTyqnFAfhKuuC/6hg0bqjwu2K6g01LwZVFQy+JVpqamKud+9X0AgGbNmqndIWjSpIlKggwAnJ2dAeTXS3i5BsWrr09BDM2aNVNp19PTQ6NGjZTPv467d+9CEATMmzcP8+bNK3KbpKQk1K9fH4sWLcKgQYPg7OwMV1dX9OvXD2PHjlV7eqDwSn2EApp8LlxcXDRKCBanoCP0aq0SAMopgZoUhv3xxx8BoNB0vZeP82oR39GjR2Pz5s04f/58kZ8zdRS8pq9+xohquz///BMrVqxAZGQk4uPj8fPPP2Pw4MEaHUMQBKxcuRJff/014uLiYGlpiSlTpmDu3LkVE3QNs379ejg7O0NXVxc2NjZo1qyZMmEfFxcHHR2dQt/vtra2MDc3V+v7rbTv+5K8ekPIzMwMBgYGyuTF6dOn0aBBA1y5cgVLliyBlZUVvvzyS+VzpqamaNOmTbHHnzJlCnbu3In+/fujfv366Nu3L4YPH45+/fopt4mJicG1a9dgZWVV5DEKFispSVHfn69z3BcvXiAkJARhYWF49OiRyvd2WlpaqfEUJS4uDk2bNi10s6Zgit+r73Vp76tUKsXy5csxa9Ys2NjYoFOnThg4cCB8fX1V+lRFHavgeOp8Ruzs7AoVAn+5/9apU6cS9y+uz6Ojo1OooPXLxy3w22+/YcmSJYiKilLpq6j7ff/qZ6Oy+r/dunXDO++8g+DgYKxevRrdu3fH4MGDMXr0aJWbgJpc36vvY0GizN7evsj2V9/fsryXFdU/FgSBfbZqiAkpIqj/BeTp6Yl69erhxx9/LDEh9cYbb5Q5ofHgwYNi6/z88MMP8Pf3x+DBg/HRRx/B2toaYrEYISEhyvoRFam4RFlBx6CgoOf3339fqOMC5N9F0RZtrIxT8HrMnj270F3WAgV/MHTt2hX37t3DL7/8giNHjuDbb7/F6tWrsWnTJkycOLHYcxTUC3n27FmR9Qc0ue60tDS1Ri7p6enBwsKi2OctLCwglUoRHx9f6LmCNjs7O7Xj2rZtG5o1awZ3d/dCz9nZ2eHmzZuwsbFRabe2tgag3h9PxSnY19LSsszHIKqJMjIy0KZNG4wfPx5vv/12mY4xffp0HDlyBF9++SVatWqFlJQUpKSklHOkNVeHDh2Uq+wV53X+MCvt+74k9erVU3kcFhYGf39/2NnZwcnJCX/++SccHR0hCAI8PDxgZWWF6dOnIy4uDqdPn4anp2eJK6ZaW1sjKioKhw8fxu+//47ff/8dYWFh8PX1VRbzVigU6NOnDz7++OMij1HwB3NJivr+fJ3jTps2DWFhYZgxYwY8PDxgZmYGkUiEkSNHqlVovTyo877OmDEDPj4+2LdvHw4fPox58+YhJCQEJ06cgJubm0bHKm8WFhYQiUSv9d1++vRpvPXWW+jatSs2bNiAevXqQSKRICwsDNu2bVPrGK9+Niqr/ysSibB792789ddf+PXXX3H48GGMHz8eK1euxF9//QVjY2ONr6+497Ei39+K6h8/e/aMfbZqiAkpqpViYmJU7m7cvXsXCoWixILPBbKyskq9k/Xjjz9qNCXpZUV9kRXYvXs3GjVqhL1796p0NAtWgdOEg4MDgPxrf/m1ePr0aZm/6AtWPLG2ti5y1bdXz13U8NuCofzqKLjD8vJrER0dDQClvpcFMdy5c0flblpOTg4ePHhQYvzqKjiuRCJR63gWFhYYN24cxo0bB5lMhq5du2LhwoUlJqSaN28OID+R2apVq9eKd/r06YVW5ilKt27dVFbMeZWOjg5atWqFS5cuFXruwoULaNSokdoFzS9cuIC7d++qFCN9mbu7O44ePYpHjx6pjHZ7/PgxABR7F1sdDx48gKWl5Wsdg6gm6t+/P/r371/s89nZ2Zg7dy5++uknpKamwtXVFcuXL1cuCHLr1i1s3LgRN27cUP671XSULxXPwcEBCoUCMTExKsWwExMTkZqaqvz+e13FJbxenUr3coHrLl264M8//4STkxPatm0LExMTtGnTBmZmZjh06BAuX76M4ODgUs+tp6cHHx8f+Pj4QKFQYMqUKdi8eTPmzZuHJk2aoHHjxpDJZOXyXf6y1znu7t274efnpzLtPSsrq9DKzZokEh0cHHDt2jUoFAqVJN7t27eVz5dF48aNMWvWLMyaNQsxMTFo27YtVq5ciR9++KFMx3vV48ePkZGRoTKyRp3+m66uLho3bqxcTfJVCoUC9+/fV0kMvnrcPXv2QF9fH4cPH1YZVRQWFlbWy6n0/m+nTp3QqVMnLF26FNu2bcOYMWOwfft2TJw4sUKuryRleS8rqn/84MGDEkdXUtXEGlJUK61fv17l8VdffQUAyg52RkYGMjMzC+23Z88ePHv2rNS7kp07d0bv3r3L9FPSqmAFdytevjtx4cIFnD9/Xr0Lf0mvXr2gq6uLjRs3qrSvW7dO42MV8PLygqmpKZYtW1bk3Pbk5GQA+XdP27Zti4iICJXk3tGjR/HPP/+ofb7Hjx+rrBaUnp6O7777Dm3bti0xsQfk19/Q09PD2rVrVV7PLVu2IC0tTa1VVkpjbW2N7t27Y/PmzUWOFip4PYD/rwVVwNjYGE2aNCly2tvL3N3doaenV2TyR1PlVUMKAIYOHYq///5bJa47d+7gxIkTyiWtC9y+fRsPHz4s8jgFd/NGjx5d5PPDhw8HkP++vezbb7+Frq7ua62IGRkZCQ8PjzLvT1RbBQQE4Pz589i+fTuuXbuGYcOGoV+/fso/wn799Vc0atQIv/32G5ycnODo6IiJEydyhFQ5GTBgAAAUWvFt1apVAFAu328AYGRkVOQNulf7NS+PmOrSpQtiY2OxY8cO5RQ+HR0deHp6YtWqVcjNzS2xfhRQ+PtSR0dHOX2n4Dtz+PDhOH/+PA4fPlxo/9TUVOTl5Wl2sf/zOscVi8WFRpd89dVXhUo8FPxh/2qiqigDBgxAQkKCymrHeXl5+Oqrr2BsbIxu3bqVeoyXZWZmFlptt3HjxjAxMSm1P6KJvLw8bN68Wfk4JycHmzdvhpWVVZGjoV/m4eFRYp/n5X6sIAhYt24dJBIJevXqBSD/fRCJRCqve2xs7GutqltZ/d9nz54V+gwVrLBd8P5UxPWVpCzvZUX0j9PS0nDv3j14enq+zuWQFnCEFNVKDx48wFtvvYV+/frh/Pnz+OGHHzB69GhlVj0mJga9e/fGiBEj0Lx5c+jo6ODSpUv44Ycf4OjoWGgZ3coycOBA7N27F0OGDIG3tzcePHiATZs2wcXFReNi6zY2Npg+fTpWrlypfC2uXr2K33//HZaWlmUa6m9qaoqNGzdi7NixaNeuHUaOHAkrKys8fPgQBw4cQOfOnZUdhZCQEHh7e+PNN9/E+PHjkZKSgq+++gotW7ZU+1qcnZ0xYcIE/P3337CxscHWrVuRmJio1l0gKysrBAUFITg4GP369cNbb72FO3fuYMOGDXjjjTfw7rvvanz9RVm/fj3efPNNtGrVCpMmTUKjRo2QmJiI8+fP47///sPVq1cB5Ndv6t69O9zd3WFhYYFLly5h9+7dKsU5i6Kvr4++ffvi2LFjxY4iUld51ZAC8mt8fPPNN/D29sbs2bMhkUiwatUq2NjYKAvrFmjRokWRo67kcjl27NiBTp06Ke8+vsrNzQ3jx4/H1q1bkZeXpzzOrl27EBQUpDI18Nq1a9i/fz+A/NF1aWlpWLJkCQCgTZs28PHxUW6blJSEa9euFVoAgYhK9vDhQ4SFheHhw4fKf3+zZ8/GoUOHEBYWhmXLluH+/fuIi4vDrl278N1330Eul2PmzJkYOnRooSXFSXNt2rSBn58fvv76a6SmpqJbt264ePEiIiIiMHjwYPTo0aNczuPu7o4dO3YgMDAQb7zxBoyNjVX+P1qUgmTTnTt3sGzZMmV7165d8fvvv0MqleKNN94o8RgFycuePXuiQYMGiIuLw1dffYW2bdsqR4R99NFH2L9/PwYOHAh/f3+4u7sjIyMD169fx+7duxEbG1umqT2vc9yBAwfi+++/h5mZGVxcXHD+/HkcO3ZMOfW+QNu2bSEWi7F8+XKkpaVBKpWiZ8+eyqnoL3vvvfewefNm+Pv7IzIyEo6Ojti9ezfOnj2L0NBQtUcjF4iOjkavXr0wfPhwuLi4QFdXFz///DMSExMxcuRIjY5VEjs7OyxfvhyxsbFwdnbGjh07EBUVha+//hoSiaTEfQcNGoTvv/8e0dHRhaZI6uvr49ChQ/Dz80PHjh3x+++/48CBA/j000+Vo529vb2xatUq9OvXD6NHj0ZSUhLWr1+PJk2a4Nq1a2W6nsrq/0ZERGDDhg0YMmQIGjdujOfPn+Obb76BqampMhFdEddXkrK+l+XdPz527BgEQcCgQYPK/RqpglXiin5EWrdgwQIBgPDPP/8IQ4cOFUxMTIQ6deoIAQEBwosXL5TbJScnC++9957QvHlzwcjISNDT0xOaNm0qzJgxQ2XZ2MqmUCiEZcuWCQ4ODoJUKhXc3NyE3377rdCSyIJQeLnhgqVqX16uNS8vT5g3b55ga2srGBgYCD179hRu3bol1K1bV5g8eXKhfV9dZrao5XwL2r28vAQzMzNBX19faNy4seDv7y9cunRJZbs9e/YILVq0EKRSqeDi4iLs3bu3yGspioODg+Dt7S0cPnxYaN26tSCVSoXmzZsLu3btUtmuuNgLrFu3TmjevLkgkUgEGxsb4YMPPhCePXumsk3B5+bV9/7V5ZeLWtZWEATh3r17gq+vr2BraytIJBKhfv36wsCBA4Xdu3crt1myZInQoUMHwdzcXDAwMBCaN28uLF26tMTljwvs3btXEIlEhZaxBiBMnTq11P0ryr///isMHTpUMDU1FYyNjYWBAwcKMTExhbYDoPI6Fjh06JAAQFi7dm2J58nJyREWLlwoODg4CBKJRGjSpImwevXqQtsVfBaK+nl5WWdBEISNGzcKhoaGKkseE1FhAISff/5Z+fi3334TAAhGRkYqP7q6usLw4cMFQRCESZMmCQCEO3fuKPeLjIwUAAi3b9+u7EuoVkr7TiuQm5srBAcHC05OToJEIhHs7e2FoKAglSXWBaHw91jB9/qr36VFfb/JZDJh9OjRgrm5uVpL1hewtrYWAAiJiYnKtjNnzggAhC5duhTa/tV+we7du4W+ffsK1tbWgp6entCwYUPh/fffF+Lj41X2e/78uRAUFCQ0adJE0NPTEywtLQVPT0/hyy+/LPW7taCPURR1j/tqP+zZs2fCuHHjBEtLS8HY2Fjw8vISbt++LTg4OBT6Dvrmm2+ERo0aCWKxWKWf9er7JQiCkJiYqDyunp6e0KpVq0L9kIL3b8WKFYWu5+U4nzx5IkydOlXZ/zUzMxM6duwo7Ny5U63Xp7jP08v9xG7dugktW7YULl26JHh4eAj6+vqCg4ODsG7dukLHK0p2drZgaWkpLF68WKXdz89PMDIyEu7duyf07dtXMDQ0FGxsbIQFCxYIcrlcZdstW7YITZs2VfYdw8LClH29V6/z5femtH9/Fd3/vXz5sjBq1CihYcOGglQqFaytrYWBAwcWOr6611dUP7G4z0pR/29Q972sjP7xiBEjhDfffLPE14+qJpEgVGDlOSKqdlJTU1GnTh0sWbKkSq925OjoCFdXV/z222/aDkXr5HI5XFxcMHz4cCxevFjb4dQIbm5u6N69O1avXq3tUIiqNJFIpLLK3o4dOzBmzBjcvHmzUFFcY2Nj2NraYsGCBYWmtrx48QKGhoY4cuQI+vTpU5mXQESVqHv37njy5Alu3LhR5mMsXrwYYWFhiImJUf5/xt/fH7t379Z4xgCVXXm8l+UhISEBTk5O2L59O0dIVUOsIUVUixVVeL2g5sTr1N6hyiUWi7Fo0SKsX7+eHbFycOjQIcTExCAoKEjboRBVO25ubpDL5UhKSkKTJk1Ufgpq+3Xu3Bl5eXkqq8MWFMEtr4LbRFRzzZw5EzKZDNu3b9d2KFQFhIaGolWrVkxGVVOsIUVUi+3YsQPh4eEYMGAAjI2NcebMGfz000/o27cvOnfurO3wSAMjRozAiBEjtB1GjdCvXz8m9ohKIJPJcPfuXeXjBw8eICoqChYWFnB2dsaYMWPg6+uLlStXws3NDcnJyTh+/Dhat24Nb29v9O7dG+3atcP48eMRGhoKhUKBqVOnok+fPoVqwhARvcrY2BhJSUnaDoOqiM8//1zbIdBrYEKKqBZr3bo1dHV18cUXXyA9PV1Z6Lyg0DMREdGrLl26pFIYOzAwEADg5+eH8PBwhIWFYcmSJZg1axYePXoES0tLdOrUCQMHDgSQvyrar7/+imnTpqFr164wMjJC//791VrBk4iIiGoO1pAiIiIiIiIiIqJKxRpSRERERERERERUqZiQIiIiIiIiIiKiSlXrakgpFAo8fvwYJiYmEIlE2g6HiIiIqiBBEPD8+XPY2dlBR4f379h/IiIiotJo2n+qdQmpx48fw97eXtthEBERUTXw77//okGDBtoOQ+vYfyIiIiJ1qdt/qnUJKRMTEwD5L5CpqamWoyEiIqKqKD09Hfb29sp+Q23H/hMRERGVRtP+U61LSBUMMzc1NWWHioiIiErE6Wn52H8iIiIidanbf2JRBCIiIiIiIiIiqlRMSBERERERERERUaViQoqIiIiIiIiIiCpVrashRURUVgqFAjk5OdoOg4jKiZ6enlpLEhMRERFR+WNCiohIDTk5OXjw4AEUCoW2QyGicqKjowMnJyfo6elpOxQiIiKiWocJKSKiUgiCgPj4eIjFYtjb23NEBVENoFAo8PjxY8THx6Nhw4ZcTY+IiIiokjEhRURUiry8PGRmZsLOzg6GhobaDoeIyomVlRUeP36MvLw8SCQSbYdDREREVKEUCgHRSc+RlpkLM0MJnK1NoKOjvZtyWr3N/+eff8LHxwd2dnYQiUTYt29fqfucOnUK7dq1g1QqRZMmTRAeHl7hcRJR7SaXywGA03qIapiCf9MF/8aJiIiIaqrIuBTM2BGFwB1XMffn6wjccRUzdkQhMi5FazFpNSGVkZGBNm3aYP369Wpt/+DBA3h7e6NHjx6IiorCjBkzMHHiRBw+fLiCIyUiAqf0ENUw/DdNREREtUFkXAqWHriFG4/SYKqviwZ1DGGqr4ubj9Ow9MAtrSWltDplr3///ujfv7/a22/atAlOTk5YuXIlAKBFixY4c+YMVq9eDS8vr4oKk4iIiIiIiIio2lEoBESci0NqZi4c6xoqb8gZSXVhqCdGXEomvjsXBzf7OpU+fa9aVeY9f/48evfurdLm5eWF8+fPF7tPdnY20tPTVX6IyuLk77txa0knxFz9S9uhEFUrjo6OCA0N1XYYSl27dsW2bdu0HUaZVNRr6e/vj8GDB5f7cbXp0KFDaNu2LVfGJCIiolotOuk57ibJYG0iLTQ6XCQSwcpYipgkGaKTnld6bNUqIZWQkAAbGxuVNhsbG6Snp+PFixdF7hMSEgIzMzPlj729fWWESjXM9+dj0ePCBLTIu4U6v/pqOxwitfj7+0MkEmHy5MmFnps6dSpEIhH8/f2VbcnJyfjggw/QsGFDSKVS2NrawsvLC2fPngUApKSkYNq0aWjWrBkMDAzQsGFDfPjhh0hLS6usSypSeHg4zM3N1dp2//79SExMxMiRIys2qNekyTVR0fr16weJRIIff/xR26EQERERaU1aZi5y8uTQl4iLfF5fIkZOnhxpmbmVHFk1S0iVRVBQENLS0pQ///77r7ZDompoX9Rj5e9Guc/wVJatxWiI1Gdvb4/t27erJO2zsrKwbds2NGzYUGXbd955B1euXEFERASio6Oxf/9+dO/eHU+fPgUAPH78GI8fP8aXX36JGzduIDw8HIcOHcKECRMq9Zpex9q1azFu3Djo6NT4r79qKScnp1yP5+/vj7Vr15brMYmIiIiqEzNDCfR0xcjKLXoRl6xcOfR0xTAzrPwVh6tVj9zW1haJiYkqbYmJiTA1NYWBgUGR+0ilUpiamqr8EGlKIQjK3wWIVBJURFVZu3btYG9vj7179yrb9u7di4YNG8LNzU3ZlpqaitOnT2P58uXo0aMHHBwc0KFDBwQFBeGtt94CALi6umLPnj3w8fFB48aN0bNnTyxduhS//vor8vLySozj+fPnGDVqFIyMjFC/fv1Ci1mkpqZi4sSJsLKygqmpKXr27ImrV68qn7969Sp69OgBExMTmJqawt3dHZcuXcKpU6cwbtw4pKWlQSQSQSQSYeHChUXGkJycjBMnTsDHx0fZJggCFi5cqBwVZmdnhw8//FD5vKOjI5YsWQJfX18YGxvDwcEB+/fvR3JyMgYNGgRjY2O0bt0aly5dUjnXnj170LJlS0ilUjg6OiprHxZ49uwZfH19UadOHRgaGqJ///6IiYkBgFKvKTMzE+PHj4eJiQkaNmyIr7/+WuXY//77L4YPHw5zc3NYWFhg0KBBiI2NVT4vl8sRGBgIc3Nz1K1bFx9//DGEl/4fpy6RSIRvv/0WQ4YMgaGhIZo2bYr9+/erbPPHH3+gQ4cOkEqlqFevHubMmaPyWenevTsCAgIwY8YMWFpawsvLC6dOnYJIJMLhw4fh5uYGAwMD9OzZE0lJSfj999/RokULmJqaYvTo0cjMzCwxRh8fH1y6dAn37t3T+PqIiIiIagJnaxM0sTZGsiy7UJ9PEAQky7LR1NoYztYmlR5btUpIeXh44Pjx4yptR48ehYeHh5YiotpIARGi/k3VdhikRYIgIDMnTys/ZUkcjB8/HmFhYcrHW7duxbhx41S2MTY2hrGxMfbt24fsbPVHAKalpcHU1BS6uiWvkbFixQq0adMGV65cwZw5czB9+nQcPXpU+fywYcOUCYfIyEi0a9cOvXr1QkpK/oofY8aMQYMGDfD3338jMjISc+bMgUQigaenJ0JDQ2Fqaor4+HjEx8dj9uzZRcZw5swZGBoaokWLFsq2PXv2YPXq1di8eTNiYmKwb98+tGrVSmW/1atXo3Pnzrhy5Qq8vb0xduxY+Pr64t1338Xly5fRuHFj+Pr6Kt+byMhIDB8+HCNHjsT169excOFCzJs3D+Hh4cpj+vv749KlS9i/fz/Onz8PQRAwYMAA5ObmlnpNK1euRPv27XHlyhVMmTIFH3zwAe7cuQMAyM3NhZeXF0xMTHD69GmcPXsWxsbG6Nevn3L00cqVKxEeHo6tW7fizJkzSElJwc8//1zaW12k4OBgDB8+HNeuXcOAAQMwZswY5Xv26NEjDBgwAG+88QauXr2KjRs3YsuWLViyZInKMSIiIqCnp4ezZ89i06ZNyvaFCxdi3bp1OHfunDLJFhoaim3btuHAgQM4cuQIvvrqqxLja9iwIWxsbHD69OkyXR8RERFRdaejI4KfpwPMDCSIS8lERnYe5AoBGdl5iEvJhJmBBL6eDpVe0BzQ8ip7MpkMd+/eVT5+8OABoqKiYGFhgYYNGyIoKAiPHj3Cd999BwCYPHky1q1bh48//hjjx4/HiRMnsHPnThw4cEBbl0C1kABRmZICVHO8yJXDZf5hrZz7n0VeMNTT7H/d7777LoKCghAXFwcAOHv2LLZv345Tp04pt9HV1UV4eDgmTZqETZs2oV27dujWrRtGjhyJ1q1bF3ncJ0+eYPHixXjvvfdKjaFz586YM2cOAMDZ2Rlnz57F6tWr0adPH5w5cwYXL15EUlISpFIpAODLL7/Evn37sHv3brz33nt4+PAhPvroIzRv3hwA0LRpU+WxzczMIBKJYGtrW2IMcXFxsLGxUZmu9/DhQ9ja2qJ3796QSCRo2LAhOnTooLLfgAED8P777wMA5s+fj40bN+KNN97AsGHDAACffPIJPDw8kJiYCFtbW6xatQq9evXCvHnzlNf7zz//YMWKFfD390dMTAz279+Ps2fPwtPTEwDw448/wt7eHvv27cOwYcNKvKYBAwZgypQpynOvXr0aJ0+eRLNmzbBjxw4oFAp8++23yqKVYWFhMDc3x6lTp9C3b1+EhoYiKCgIb7/9NoD8FWwPHy7b59nf3x+jRo0CACxbtgxr167FxYsX0a9fP2zYsAH29vZYt24dRCIRmjdvjsePH+OTTz7B/Pnzle9D06ZN8cUXXyiPGR8fDwBYsmQJOnfuDACYMGECgoKCcO/ePTRq1AgAMHToUJw8eRKffPJJiTHa2dkpP/tEREREtZG7gwXmerdAxLk43E2S4YksG3q6YrjamcHX0wHuDhZaiUurI6QuXboENzc35bSRwMBAuLm5Yf78+QDyO6UPHz5Ubu/k5IQDBw7g6NGjaNOmDVauXIlvv/0WXl5eWomfaiemoqi6sbKygre3N8LDwxEWFgZvb29YWloW2u6dd97B48ePsX//fvTr1w+nTp1Cu3btVEb2FEhPT4e3tzdcXFyKnSL3sldHsnp4eODWrVsA8qfjyWQy1K1bVzlSy9jYGA8ePFBOtQoMDMTEiRPRu3dvfP7552WagvXixQvo6+urtA0bNgwvXrxAo0aNMGnSJPz888+Fph++nJArWFjj5VFUBW1JSUkAgFu3bikTKQU6d+6MmJgYyOVy3Lp1C7q6uujYsaPy+bp166JZs2bK16QkL8dTkLQqOPfVq1dx9+5dmJiYKF9HCwsLZGVl4d69e0hLS0N8fLzKuXV1ddG+fftSz1taLEZGRjA1NVV5HTw8PFRWc+ncuTNkMhn+++8/ZZu7u3upx7axsYGhoaEyGVXQVnCukhgYGJQ6tY+IiIiopnN3sEDoiLZYNaINlg5phVUj2mD1iLZaS0YBWh4h1b179xJHmhT1R1D37t1x5cqVCoyKqGQCKn8oI1UtBhIx/lmknUS4QTGrY5Rm/PjxCAgIAIBC9Ztepq+vjz59+qBPnz6YN28eJk6ciAULFqisxvf8+XP069cPJiYm+PnnnyGRvF4BRJlMhnr16qmM2CpQsNLcwoULMXr0aBw4cAC///47FixYgO3bt2PIkCFqn8fS0hLPnj1TabO3t8edO3dw7NgxHD16FFOmTMGKFSvwxx9/KK/r5esrSK4U1aZQKNSO5XW8+nqLRCLluWUyGdzd3YtcWc7KyqpSY1GXkZFRqccWiURlPldKSkqFXDsRERFRdaOjI0Jz26pTV1urCSmi6ogJKRKJRBpPm9O2ghpCIpFIo1GlLi4u2Ldvn/Jxeno6vLy8IJVKsX///kIjjorz119/FXpcUMupXbt2SEhIgK6uLhwdHYs9hrOzM5ydnTFz5kyMGjUKYWFhGDJkCPT09CCXF71qyMvc3NyQkJCAZ8+eoU6dOsp2AwMD+Pj4wMfHB1OnTkXz5s1x/fp1tGvXTq1re1WLFi1w9uxZlbazZ8/C2dkZYrEYLVq0QF5eHi5cuKCcsvf06VPcuXMHLi4uAKD2Nb2qXbt22LFjB6ytrYtdxKNevXq4cOECunbtCgDIy8tT1u0qTy1atMCePXsgCIIyaXf27FmYmJigQYMG5Xqu4hSMDHu5gD8RERERVQ3Vqqg5UVWgYEKKqiGxWIxbt27hn3/+gVhceJTV06dP0bNnT/zwww+4du0aHjx4gF27duGLL77AoEGDAOQno/r27YuMjAxs2bIF6enpSEhIQEJCQqnJk7Nnz+KLL75AdHQ01q9fj127dmH69OkAgN69e8PDwwODBw/GkSNHEBsbi3PnzmHu3Lm4dOkSXrx4gYCAAJw6dQpxcXE4e/Ys/v77b2VCy9HRETKZDMePH8eTJ0+KnZ7l5uYGS0tLlWRReHg4tmzZghs3buD+/fv44YcfYGBgAAcHhzK9zgAwa9YsHD9+HIsXL0Z0dDQiIiKwbt06ZWHypk2bYtCgQZg0aRLOnDmDq1ev4t1330X9+vWVr7W61/SqMWPGwNLSEoMGDcLp06fx4MEDnDp1Ch9++KFymtz06dPx+eefY9++fbh9+zamTJmC1NTUMl9vcaZMmYJ///0X06ZNw+3bt/HLL79gwYIFCAwMVKnjVV7WrVuHXr16qbT99ddfkEqlXPyEiIiIqApiQopIQxwhRdWVqalpsaNmjI2N0bFjR6xevRpdu3aFq6sr5s2bh0mTJmHdunUAgMuXL+PChQu4fv06mjRpgnr16il//v333xLPPWvWLGXdwCVLlmDVqlXKkVoikQgHDx5E165dMW7cODg7O2PkyJHKIuRisRhPnz6Fr68vnJ2dMXz4cPTv3x/BwcEAAE9PT0yePBkjRoyAlZWVSoHsl4nFYowbN05lOpu5uTm++eYbdO7cGa1bt8axY8fw66+/om7duhq/vgXatWuHnTt3Yvv27XB1dcX8+fOxaNEilWmPYWFhcHd3x8CBA+Hh4QFBEHDw4EHltDR1r+lVhoaG+PPPP9GwYUO8/fbbaNGiBSZMmICsrCzlez9r1iyMHTsWfn5+8PDwgImJSaGpj+Hh4Sq1n8qifv36OHjwIC5evIg2bdpg8uTJmDBhAj777LPXOm5xnjx5Uqi22E8//YQxY8bA0NCwQs5JRERERGUnEmrZcmHp6ekwMzNTLlVOpI4hG87i56QBAIAngikWNPsF60eX7/QWqrqysrLw4MEDODk5qT1FjaqmhIQEtGzZEpcvX36tUVA13YIFC/DHH38UWderunjy5AmaNWuGS5cuwcnJqchtSvq3zf6CKr4eREREVBpN+wscIUWkoVqVwSWqYWxtbbFlyxaVFVypsN9//13tUVlVVWxsLDZs2FBsMqo6+/PPP+Hj4wM7OzuIRCKVOm9F2bt3L/r06QMrKyuYmprCw8MDhw8frpxgiYiIiIrBhBSRhgT+syGq1gYPHowuXbpoO4wq7eLFi+jQoYO2w3gt7du3x4gRI7QdRoXIyMhAmzZtSlwx82V//vkn+vTpg4MHDyIyMhI9evSAj48PVy0mIiIirapey0QRVQEcIUVERNrUv39/9O/fX+3tQ0NDVR4vW7YMv/zyC3799VeuQEhERERaw6EeRGp4udIai5oTEVF1plAo8Pz5c1hYWGg7FCIiIqrFOEKKSENMSBERUXX25ZdfQiaTYfjw4cVuk52djezsbOXj9PT0ygiNiIiIahGOkCLSkIIJKSIiqqa2bduG4OBg7Ny5E9bW1sVuFxISAjMzM+WPvb19JUZJREREtQETUkQaEiBiISkiIqp2tm/fjokTJ2Lnzp3o3bt3idsGBQUhLS1N+fPvv/9WUpRERERUW3DKHhEREVEN99NPP2H8+PHYvn07vL29S91eKpVCKpVWQmRERERUWzEhRaQhhcApe0REpD0ymQx3795VPn7w4AGioqJgYWGBhg0bIigoCI8ePcJ3330HIH+anp+fH9asWYOOHTsiISEBAGBgYAAzMzOtXAMRERERp+wRaYhFzam66N69O2bMmFEhx3769Cmsra0RGxtbIcevbLGxsRCJRIiKitJ2KBWiIj8L2rJp0yb4+PhoOwytuHTpEtzc3ODm5gYACAwMhJubG+bPnw8AiI+Px8OHD5Xbf/3118jLy8PUqVNRr1495c/06dO1Ej8RERERwIQUkcaYkKKaZOHChWjevDmMjIxQp04d9O7dGxcuXCh1v6VLl2LQoEFwdHRUad+zZw+6d+8OMzMzGBsbo3Xr1li0aBFSUlIA5P+hPHr0aDg7O0NHR6fIJMnevXvRvn17mJubw8jICG3btsX3339fHpf7Wk6dOgWRSITU1NRKOV9NTCKVp/Hjx+Py5cs4ffq0tkOpdN27d4cgCIV+wsPDAQDh4eE4deqUcvtTp06VuD0RERGRNjAhRaQh1jOnmsTZ2Rnr1q3D9evXcebMGTg6OqJv375ITk4udp/MzExs2bIFEyZMUGmfO3cuRowYgTfeeAO///47bty4gZUrV+Lq1avKhFJ2djasrKzw2WefoU2bNkUe38LCAnPnzsX58+dx7do1jBs3DuPGjcPhw4fL78IrUE5OjrZDqLLK87XR09PD6NGjsXbt2nI7JhERERFVHiakiDSk4D8bqkby8vIQEBAAMzMzWFpaYt68eRCE/0+rjh49Gr1790ajRo3QsmVLrFq1Cunp6bh27Vqxxzx48CCkUik6deqkbLt48SKWLVuGlStXYsWKFfD09ISjoyP69OmDPXv2wM/PDwDg6OiINWvWwNfXt9jaNd27d8eQIUPQokULNG7cGNOnT0fr1q1x5syZYmMSBAELFy5Ew4YNIZVKYWdnhw8//FD5vEgkwr59+1T2MTc3LzRC5Pbt2/D09IS+vj5cXV3xxx9/AMif0tejRw8AQJ06dSASieDv76+MNyAgADNmzIClpSW8vLwAAKtWrUKrVq1gZGQEe3t7TJkyBTKZTOV8Z8+eRffu3WFoaIg6derAy8sLz549g7+/P/744w+sWbMGIpEIIpFIOT3yxo0b6N+/P4yNjWFjY4OxY8fiyZMnymNmZGTA19cXxsbGqFevHlauXFns61acgimMe/fuRY8ePWBoaIg2bdrg/PnzKtvt2bMHLVu2hFQqhaOjY6FzOTo6YvHixfD19YWpqSnee+89hIeHw9zcHL/99huaNWsGQ0NDDB06FJmZmYiIiICjoyPq1KmDDz/8EHK5vMQ4fXx8sH//frx48ULjayQiIiIi7eJf1kRlIHCcVO0mCEBOhnZ+BM0+exEREdDV1cXFixexZs0arFq1Ct9++22R2+bk5ODrr7+GmZlZsaOXAOD06dNwd3dXafvxxx9hbGyMKVOmFLmPubm5RnEXEAQBx48fx507d9C1a9dit9uzZw9Wr16NzZs3IyYmBvv27UOrVq00Pt9HH32EWbNm4cqVK/Dw8ICPjw+ePn0Ke3t77NmzBwBw584dxMfHY82aNcr9IiIioKenh7Nnz2LTpk0AAB0dHaxduxY3b95EREQETpw4gY8//li5T1RUFHr16gUXFxecP38eZ86cgY+PD+RyOdasWQMPDw9MmjQJ8fHxiI+Ph729PVJTU9GzZ0+4ubnh0qVLOHToEBITEzF8+HCVa/jjjz/wyy+/4MiRIzh16hQuX76s8WsB5I96mz17NqKiouDs7IxRo0YhLy8PABAZGYnhw4dj5MiRuH79OhYuXIh58+YVSvJ9+eWXaNOmDa5cuYJ58+YByB9lt3btWmzfvh2HDh3CqVOnMGTIEBw8eBAHDx7E999/j82bN2P37t0lxte+fXvk5eWpNc2UiIiIaheFQsDthHRcuP8UtxPSoVDwb7iqhqvsEWmINaQIuZnAMjvtnPvTx4Cekdqb29vbY/Xq1RCJRGjWrBmuX7+O1atXY9KkScptfvvtN4wcORKZmZmoV68ejh49CktLy2KPGRcXBzs71euPiYlBo0aNIJFINL+mIqSlpaF+/frIzs6GWCzGhg0b0KdPn2K3f/jwIWxtbdG7d29IJBI0bNgQHTp00Pi8AQEBeOeddwAAGzduxKFDh7BlyxZ8/PHHsLCwAABYW1sXSrA1bdoUX3zxhUrby/WfHB0dsWTJEkyePBkbNmwAAHzxxRdo37698jEAtGzZUvm7np4eDA0NYWtrq2xbt24d3NzcsGzZMmXb1q1bYW9vj+joaNjZ2WHLli344Ycf0KtXLwD5ybIGDRpo/FoAwOzZs+Ht7Q0ACA4ORsuWLXH37l00b94cq1atQq9evZRJJmdnZ/zzzz9YsWKFcvQYAPTs2ROzZs1SPj59+jRyc3OxceNGNG7cGAAwdOhQfP/990hMTISxsTFcXFzQo0cPnDx5EiNGjCg2PkNDQ5iZmSEuLq5M10dERET5FAoB0UnPkZaZCzNDCZytTaCjU33/7omMS0HEuTjcTZIhJ08OPV0xmlgbw8/TAe4OFtoOj/6HI6SI1CCo/F59/8dMtU+nTp0gEv3/Z9bDwwMxMTEqU6F69OiBqKgonDt3Dv369cPw4cORlJRU7DFfvHgBfX19lTZBw5FbpTExMUFUVBT+/vtvLF26FIGBgcoizcuWLYOxsbHy5+HDhxg2bBhevHiBRo0aYdKkSfj555+VI3k04eHhofxdV1cX7du3x61bt0rd79URYwBw7Ngx9OrVC/Xr14eJiQnGjh2Lp0+fIjMzE8D/j5DSxNWrV3Hy5EmV62/evDkA4N69e7h37x5ycnLQsWNH5T4WFhZo1qyZRucp0Lp1a+Xv9erVAwDlZ+PWrVvo3LmzyvadO3cu9Plq3759oeMaGhoqk1EAYGNjA0dHRxgbG6u0lfQ5LGBgYKB8TYmIiEhzkXEpmLEjCoE7rmLuz9cRuOMqZuyIQmRcirZDK5PIuBQsPXALNx6lwVRfFw3qGMJUXxc3H6dh6YFb1fa6aiKOkCLSkIIJKZIY5o9U0ta5y5mRkRGaNGmCJk2aoFOnTmjatCm2bNmCoKCgIre3tLTEs2fPVNqcnZ1x5swZ5ObmlssoKR0dHTRp0gQA0LZtW9y6dQshISHo3r07Jk+erDJFzc7ODrq6urhz5w6OHTuGo0ePYsqUKVixYgX++OMPSCQSiESiQkmz3Nzc146zgJGR6qi12NhYDBw4EB988AGWLl0KCwsLnDlzBhMmTEBOTg4MDQ1hYGCg8XlkMhl8fHywfPnyQs/Vq1cPd+/eLfM1FOXl97IgsalQKDQ6xquvzavHLTh2UW3qnCslJQVWVlYaxURERET5CpI3qZm5sDaRQl8iRVauXJm8mevdolqNKFIoBESci0NqZi4c6xoq+y9GUl0Y6okRl5KJ787Fwc2+TrUeAVZTcIQUkYakyMWUR0HAha+1HQppi0iUP21OGz8izb44X62t89dff6Fp06YQi8XF7qNQKJCdnV3s825ubvjnn39U2kaPHg2ZTKYy/exlqamp6gddSkwWFhbKBFqTJk2gq5t/b8XAwAA+Pj5Yu3YtTp06hfPnz+P69esAACsrK8THxyuPFxMTU+Somr/++kv5e15eHiIjI9GiRQsA+VPoAJRaaBvIr6+kUCiwcuVKdOrUCc7Oznj8WDWJ2bp1axw/frzYY+jp6RU6V7t27XDz5k04OjqqvAZNmjSBkZERGjduDIlEovK+P3v2DNHR0aXGrKkWLVrg7NmzKm1nz56Fs7NziZ+v8nTv3j1kZWXBzc2tUs5HRERUk7yavDGS6kKsI4KRVBcOFoZIe5GL787FVavaS9FJz3E3SQZrE6nKLAEg/2aXlbEUMUkyRCc911KE9DImpIhK88cKBDwPVT501EmEa+YF4PePtBcTkZoePnyIwMBA3LlzBz/99BO++uorTJ8+HUD+amyffvop/vrrL8TFxSEyMhLjx4/Ho0ePMGzYsGKP6eXlhZs3b6qMkurYsSM+/vhjzJo1Cx9//DHOnz+PuLg4HD9+HMOGDUNERIRy26ioKERFRUEmkyE5ORlRUVEqCa6QkBAcPXoU9+/fx61bt7By5Up8//33ePfdd4uNKTw8HFu2bMGNGzdw//59/PDDDzAwMICDgwOA/DpG69atw5UrV3Dp0iVMnjy5yJFc69evx88//4zbt29j6tSpePbsGcaPHw8AcHBwgEgkwm+//Ybk5ORCK+a9rEmTJsjNzcVXX32F+/fv4/vvv1cWOy8QFBSEv//+G1OmTMG1a9dw+/ZtbNy4UblinqOjIy5cuIDY2Fg8efIECoUCU6dORUpKCkaNGoW///4b9+7dw+HDhzFu3DjI5XIYGxtjwoQJ+Oijj3DixAncuHED/v7+0NEp/6/7WbNm4fjx41i8eDGio6MRERGBdevWYfbs2eV+LiD/9fL19VVpO336NBo1aqQy/Y+IiIjUUxOTN2mZucjJk0NfUvTNMX2JGDl5cqRllt9IeSo7JqSISnNyCfpkHdF2FERl4uvrixcvXqBDhw6YOnUqpk+fjvfeew8AIBaLcfv2bbzzzjtwdnZWrih3+vRpleLar2rVqhXatWuHnTt3qrQvX74c27Ztw4ULF+Dl5YWWLVsiMDAQrVu3hp+fn3I7Nzc3uLm5ITIyEtu2bYObmxsGDBigfD4jIwNTpkxBy5Yt0blzZ+zZswc//PADJk6cWGxM5ubm+Oabb9C5c2e0bt0ax44dw6+//oq6desCAFauXAl7e3t06dIFo0ePxuzZs2FoWHj64+eff47PP/8cbdq0wZkzZ7B//35lgff69esjODgYc+bMgY2NDQICAoqNp02bNli1ahWWL18OV1dX/PjjjwgJCVHZxtnZGUeOHMHVq1fRoUMHeHh44JdfflGO+Jo9ezbEYjFcXFxgZWWFhw8fws7ODmfPnoVcLkffvn3RqlUrzJgxA+bm5sqk04oVK9ClSxf4+Pigd+/eePPNNwvVuFq4cCEcHR2LjV8dBZ+B7du3w9XVFfPnz8eiRYtUCpqXp/j4eDx8+FCl7aefflIp0E9ERETqq4nJGzNDCfR0xcjKLXpEe1ZufoFzM8PyWYiHXo9IKO9KtFVceno6zMzMkJaWBlNTU22HQ9XBQrMSnkurvDhIa7KysvDgwQM4OTkVKuZdWx04cAAfffQRbty4USGjb6hi+fn5QSQSITw8XNuhlNnNmzfRs2dPREdHw8yshP9Pl6Ckf9vsL6ji60FEVPPcTkhH4I6rMNXXhZG0cHnpjOw8pGflYdWINmhuWz3+369QCJixIwo3H6fBwcJQZeSXIAiIS8mEq50ZVo9oyxpSFUDT/gKLmhMRkca8vb0RExODR48ewd7eXtvhkAYEQcCpU6dw5swZbYfyWuLj4/Hdd9+VORlFRERU2zlbm6CJtTFuPk6DoZ64UPImWZYNVzszOFubaDFKzejoiODn6YClB24hLiUTVsZS6EvyR0wly7JhZiCBr6cDk1FVBBNSRERUJjNmzNB2CFQGIpEIcXFx2g7jtfXu3VvbIRAREVVrNTV54+5ggbneLRBxLg53k2R4IsuGnq4YrnZm8PV0qFarBtZ0TEgRlaR2zWglIiIiIqJapKYmb9wdLOBmXwfRSc+RlpkLM0MJnK1Nql1yraZjQoqoJExIERERERFRDVZTkzc6OqJqU/uqtmJCiqgkgkLbERAREREREVUoJm9IG7g0ElFJmJCil9SyRUmJajz+myYiIiLSHo6QIiqJINd2BFQFSCQSiEQiJCcnw8rKSmUFEiKqngRBQHJyMkQiESQSibbDISIiIqp1mJAiKglHSBEAsViMBg0a4L///kNsbKy2wyGiciISidCgQQOIxWJth0JERERU6zAhRVQSJqTof4yNjdG0aVPk5uZqOxQiKicSiYTJKCIiIiItYUKKqCRMSNFLxGIx/3glIiIiIiIqByxqTlSSUhJSLIhLREREREREpDkmpIhKoig5IZWZw6LnRERERERERJpiQoqoJKWMkJJl51VSIEREREREREQ1BxNSRCUpJSH1PIsJKSIiIiIiIiJNMSFFVBKOkCIiIiIiIiIqd0xIEZWktIQUR0gRERERERERaYwJKaKSlDpCKreSAiEiIiIiIiKqOZiQIiqJUPIqeqwhRURERERERKQ5JqSISsIaUkRERERERETlTusJqfXr18PR0RH6+vro2LEjLl68WOL2oaGhaNasGQwMDGBvb4+ZM2ciKyurkqKlWkcQSnyaI6SIiIiIiIiINKfVhNSOHTsQGBiIBQsW4PLly2jTpg28vLyQlJRU5Pbbtm3DnDlzsGDBAty6dQtbtmzBjh078Omnn1Zy5FRrlFrUnDWkiIiIiIiIiDSl1YTUqlWrMGnSJIwbNw4uLi7YtGkTDA0NsXXr1iK3P3fuHDp37ozRo0fD0dERffv2xahRo0odVUVUZkxIERFROTh58qS2QyAiIiKqUrSWkMrJyUFkZCR69+79/8Ho6KB37944f/58kft4enoiMjJSmYC6f/8+Dh48iAEDBlRKzFQLKUouap6RnVNJgRARUXXWr18/NG7cGEuWLMG///6r7XCIiIiItE5rCaknT55ALpfDxsZGpd3GxgYJCQlF7jN69GgsWrQIb775JiQSCRo3bozu3buXOGUvOzsb6enpKj9EaitlhFRGFhNSRERUukePHiEgIAC7d+9Go0aN4OXlhZ07dyInR/PvkT///BM+Pj6ws7ODSCTCvn37St3n1KlTaNeuHaRSKZo0aYLw8HDNL4KIiIioHGm9qLkmTp06hWXLlmHDhg24fPky9u7diwMHDmDx4sXF7hMSEgIzMzPlj729fSVGTNVeaQmpbE7ZIyKi0llaWmLmzJmIiorChQsX4OzsjClTpsDOzg4ffvghrl69qvaxMjIy0KZNG6xfv16t7R88eABvb2/06NEDUVFRmDFjBiZOnIjDhw+X9XKIiIiIXpuutk5saWkJsViMxMRElfbExETY2toWuc+8efMwduxYTJw4EQDQqlUrZGRk4L333sPcuXOho1M4vxYUFITAwEDl4/T0dCalSH2ljpBiQoqIiDTTrl072Nraom7duvj888+xdetWbNiwAR4eHti0aRNatmxZ4v79+/dH//791T7fpk2b4OTkhJUrVwIAWrRogTNnzmD16tXw8vJ6rWshIiIiKiutjZDS09ODu7s7jh8/rmxTKBQ4fvw4PDw8itwnMzOzUNJJLBYDAARBKHIfqVQKU1NTlR8itZWSkMrkCCkiIlJTbm4udu/ejQEDBsDBwQGHDx/GunXrkJiYiLt378LBwQHDhg0r9/OeP39epWYnAHh5eRVbs5OIiIioMmhthBQABAYGws/PD+3bt0eHDh0QGhqKjIwMjBs3DgDg6+uL+vXrIyQkBADg4+ODVatWwc3NDR07dsTdu3cxb948+Pj4KBNTROWqmERnASakiIhIHdOmTcNPP/0EQRAwduxYfPHFF3B1dVU+b2RkhC+//BJ2dnblfu6EhIQia3amp6fjxYsXMDAwKLRPdnY2srOzlY9Zg5OIiIjKm1YTUiNGjEBycjLmz5+PhIQEtG3bFocOHVJ2mh4+fKgyIuqzzz6DSCTCZ599hkePHsHKygo+Pj5YunSpti6BajqhtFX2ciEIAkQiUSUFRERE1dE///yDr776Cm+//TakUmmR21haWuLkyZOVHFnRQkJCEBwcrO0wiIiIqAbTakIKAAICAhAQEFDkc6dOnVJ5rKuriwULFmDBggWVEBkRSp2yJygUyFMIkIiZkCIiouItWLAAnp6e0NVV7Xrl5eXh3Llz6Nq1K3R1ddGtW7dyP7etrW2RNTtNTU2LHB0FsAYnERERVTytJ6SIqrRSElIilDylj4iICAB69OiB+Ph4WFtbq7SnpaWhR48ekMtLHpH7Ojw8PHDw4EGVtqNHjxZbsxPIr8FZ3EguIiIiovKgtaLmRNUCE1JERFQOipve/fTpUxgZGWl0LJlMhqioKERFRQEAHjx4gKioKDx8+BBA/ugmX19f5faTJ0/G/fv38fHHH+P27dvYsGEDdu7ciZkzZ5b9goiIiIheE0dIEZWklISUDhNSRERUgrfffhsAIBKJ4O/vrzLqSC6X49q1a/D09NTomJcuXUKPHj2Ujwum1vn5+SE8PBzx8fHK5BQAODk54cCBA5g5cybWrFmDBg0a4Ntvv4WXl9frXBoRERHRa2FCiqgkipKnUDAhRUREJTEzMwOQP0LKxMREpWaTnp4eOnXqhEmTJml0zO7du0MoYRXY8PDwIve5cuWKRuchIiIiqkhMSBGVpNQpeyU/T0REtVtYWBgAwNHREbNnz9Z4eh4RERFRTcWEFFFJSrgDDQBcW4+IiNTBFYKJiIiIVDEhRVSSUmtIcYQUEREVrV27djh+/Djq1KkDNze3IouaF7h8+XIlRkZERESkfUxIEZWERc2JiKiMBg0apCxiPnjwYO0GQ0RERFTFMCFFVBKh5KLmIiakiIioGC9P0+OUPSIiIiJVOtoOgKgqy5OXkpASMSFFRESl+/fff/Hff/8pH1+8eBEzZszA119/rcWoiIiIiLSHCSmiEmRm55T4PKfsERGROkaPHo2TJ08CABISEtC7d29cvHgRc+fOxaJFi7QcHREREVHlY0KKqASZ2bklPs+i5kREpI4bN26gQ4cOAICdO3eiVatWOHfuHH788UeEh4drNzgiIiIiLWBCiqgEL0pJSBW/XhIREdH/y83NVRY4P3bsGN566y0AQPPmzREfH6/N0IiIiIi0ggkpohKoM0JK4Kw9IiIqRcuWLbFp0yacPn0aR48eRb9+/QAAjx8/Rt26dbUcHREREVHlY0KKqARZOSXXkOIqe0REpI7ly5dj8+bN6N69O0aNGoU2bdoAAPbv36+cykdERERUm+hqOwCiquxFdl6Jz3PKHhERqaN79+548uQJ0tPTUadOHWX7e++9B0NDQy1GRkRERKQdTEgRleBFDouaExFR+RCLxSrJKABwdHTUTjBEREREWqbxlL2MjIyKiIOoSio9IcUpe0REVLrExESMHTsWdnZ20NXVhVgsVvkhIiIiqm00HiFlY2OD4cOHY/z48XjzzTcrIiaiKiMrp+Qpe0xIERGROvz9/fHw4UPMmzcP9erVg0jESd9ERERUu2mckPrhhx8QHh6Onj17wtHREePHj4evry/s7OwqIj4ircoupag5mJAiIiI1nDlzBqdPn0bbtm21HQoRERFRlaDxlL3Bgwdj3759ePToESZPnoxt27bBwcEBAwcOxN69e5GXV/KIEqLqhCOkiIioPNjb20MQ+J1BREREVEDjhFQBKysrBAYG4tq1a1i1ahWOHTuGoUOHws7ODvPnz0dmZmZ5xkmkFTm5pSWkWNSciIhKFxoaijlz5iA2NlbboRARERFVCWVeZS8xMREREREIDw9HXFwchg4digkTJuC///7D8uXL8ddff+HIkSPlGStRpcvKLbmoOSuAEBGROkaMGIHMzEw0btwYhoaGkEgkKs+npKRoKTIiIiIi7dA4IbV3716EhYXh8OHDcHFxwZQpU/Duu+/C3NxcuY2npydatGhRnnESaUV2Tl6J4wg5QoqIiNQRGhqq7RCIiIiIqhSNE1Ljxo3DyJEjcfbsWbzxxhtFbmNnZ4e5c+e+dnBE2pQrV0Aul5eYkBKxhhQREanBz89P2yEQERERVSkaJ6Ti4+NhaGhY4jYGBgZYsGBBmYMiqgrSXuSWOgKKRc2JiEhd9+7dQ1hYGO7du4c1a9bA2toav//+Oxo2bIiWLVtqOzwiIiKiSqVxUXMTExMkJSUVan/69CnEYnG5BEVUFWRmy0tNOHGEFBERqeOPP/5Aq1atcOHCBezduxcymQwAcPXqVd7EIyIiolpJ44RUcUsWZ2dnQ09P77UDIqoqBAilJqR0RExIERFR6ebMmYMlS5bg6NGjKv2lnj174q+//tJiZERERETaofaUvbVr1wIARCIRvv32WxgbGyufk8vl+PPPP9G8efPyj5BIi0SlTNkTQYDAUVJERFSK69evY9u2bYXara2t8eTJEy1ERERERKRdaiekVq9eDSB/hNSmTZtUpufp6enB0dERmzZtKv8IibSIU/aIiKg8mJubIz4+Hk5OTirtV65cQf369bUUFREREZH2qJ2QevDgAQCgR48e2Lt3L+rUqVNhQRFVFWIWNScionIwcuRIfPLJJ9i1axdEIhEUCgXOnj2L2bNnw9fXV9vhEREREVU6jWtInTx5kskoqjVKqxFV2ip8REREALBs2TI0b94c9vb2kMlkcHFxQdeuXeHp6YnPPvtM2+ERERERVTq1RkgFBgZi8eLFMDIyQmBgYInbrlq1qlwCI6oKSqshxRFSRESkDj09PXzzzTeYP38+rl+/DplMBjc3NzRt2lTboRERERFphVoJqStXriA3N1f5e3FEIlH5REVURZSecGJCioiISrdo0SLMnj0b9vb2sLe3V7a/ePECK1aswPz587UYHREREVHlUyshdfLkySJ/J6rpSktIcYQUERGpIzg4GJMnT4ahoaFKe2ZmJoKDg5mQIiIiolpH4xpSr0pPT8e+fftw+/bt8oiHqEphQoqIiMqDIAhFjiS/evUqLCwstBARERERkXapvcpegeHDh6Nr164ICAjAixcv0L59e8TGxkIQBGzfvh3vvPNORcRJpBWlFS1nUXMiIipJnTp1IBKJIBKJ4OzsrJKUksvlkMlkmDx5shYjJCIiItIOjRNSf/75J+bOnQsA+PnnnyEIAlJTUxEREYElS5YwIUU1SmkJJ1ZNIyKikoSGhkIQBIwfPx7BwcEwMzNTPqenpwdHR0d4eHiU6djr16/HihUrkJCQgDZt2uCrr75Chw4dSoxl48aNePjwISwtLTF06FCEhIRAX1+/TOcnIiIieh0aJ6TS0tKUQ8sPHTqEd955B4aGhvD29sZHH31U7gESaVNpU/JEnLJHREQl8PPzAwA4OTnB09MTEomkXI67Y8cOBAYGYtOmTejYsSNCQ0Ph5eWFO3fuwNrautD227Ztw5w5c7B161Z4enoiOjoa/v7+EIlEXCGZiIiItELjhJS9vT3Onz8PCwsLHDp0CNu3bwcAPHv2jHfYqMYpLeHEKXtERKSObt26QaFQIDo6GklJSVAoVL8/unbtqtHxVq1ahUmTJmHcuHEAgE2bNuHAgQPYunUr5syZU2j7c+fOoXPnzhg9ejQAwNHREaNGjcKFCxfKeEVEREREr0fjhNSMGTMwZswYGBsbw8HBAd27dweQP5WvVatW5R0fkVZxyh4REZWHv/76C6NHj0ZcXBwEQfVmh0gkglwuV/tYOTk5iIyMRFBQkLJNR0cHvXv3xvnz54vcx9PTEz/88AMuXryIDh064P79+zh48CDGjh1b5PbZ2dnIzs5WPk5PT1c7PiIiIiJ1aJyQmjJlCjp06IB///0Xffr0gY5O/kJ9jRo1wpIlS8o9QCJtErOoORERlYPJkyejffv2OHDgAOrVq1fkinvqevLkCeRyOWxsbFTabWxsil31ePTo0Xjy5AnefPNNCIKAvLw8TJ48GZ9++mmR24eEhCA4OLjMMRIRERGVRuOEFAC0b98e7du3V2nz9vYul4CIqhJ1akgJLCNFRESliImJwe7du9GkSROtnP/UqVNYtmwZNmzYgI4dO+Lu3buYPn06Fi9ejHnz5hXaPigoCIGBgcrH6enpsLe3r8yQiYiIqIbTOCEll8sRHh6O48ePF1kD4cSJE+UWHJG2lV5DitkoIiIqXUESqDwSUpaWlhCLxUhMTFRpT0xMhK2tbZH7zJs3D2PHjsXEiRMBAK1atUJGRgbee+89zJ07VznivYBUKoVUKn3tWImIiEj7FAoB0UnPkZaZCzNDCZytTaCjo/0CNBonpKZPn47w8HB4e3vD1dX1tYacA5ovWZyamoq5c+di7969SElJgYODA0JDQzFgwIDXioOoKFxlj4iIysO0adMwa9YsJCQkoFWrVoVW22vdurXax9LT04O7uzuOHz+OwYMHAwAUCgWOHz+OgICAIvfJzMwslHQSi8UAUKimFREREdUckXEpiDgXh7tJMuTkyaGnK0YTa2P4eTrA3cFCq7FpnJDavn07du7cWS4JIE2XLM7JyUGfPn1gbW2N3bt3o379+oiLi4O5uflrx0L0KkEovUYUR0gREZE63nnnHQDA+PHjlW0ikQiCIGhc1BwAAgMD4efnh/bt26NDhw4IDQ1FRkaGctU9X19f1K9fHyEhIQAAHx8frFq1Cm5ubsrRWvPmzYOPj48yMUVEREQ1S2RcCpYeuIXUzFxYm0ihL5EiK1eOm4/TsPTALcz1bqHVpJTGCSk9Pb1yq3+g6ZLFW7duRUpKCs6dO6e8s+jo6FgusRAVRUdUypQ9EYuaExFR6R48eFCuxxsxYgSSk5Mxf/58JCQkoG3btjh06JCy0PnDhw9VRkR99tlnEIlE+Oyzz/Do0SNYWVnBx8cHS5cuLde4iIiIqGpQKAREnItDamYuHOsaKme3GUl1YagnRlxKJr47Fwc3+zpam74nEjQcp71y5Urcv38f69ate63pejk5OTA0NMTu3buVw80BwM/PD6mpqfjll18K7TNgwABYWFjA0NAQv/zyC6ysrDB69Gh88sknat/dS09Ph5mZGdLS0mBqalrm+Knmi32SgStrhmGI+Gyx23yU+x4WL/wc+hLeXSYiqknYX1DF14OIiKh6uZ2QjsAdV2GqrwsjaeGxSBnZeUjPysOqEW3Q3LZ8vts17S9oPELqzJkzOHnyJH7//Xe0bNmyUA2EvXv3qnWcsixZfP/+fZw4cQJjxozBwYMHcffuXUyZMgW5ublYsGBBkftkZ2cjOztb+Tg9PV2t+IiA0qfkccoeEREVZ//+/ejfvz8kEgn2799f4rZvvfVWJUVFREREtUFaZi5y8uTQlxS9SIm+RIwnsmykZeZWcmT/T+OElLm5OYYMGVIRsZRKoVDA2toaX3/9NcRiMdzd3fHo0SOsWLGi2IRUSEgIgoODKzlSqilKryHFKXtERFS0wYMHIyEhAdbW1iqjwV9VlhpSRERERCUxM5RAT1eMrFx5kSOksnLzC5ybGUqK2LtyaJyQCgsLK5cTl2XJ4nr16kEikahMz2vRogUSEhKQk5MDPT29QvsEBQUhMDBQ+Tg9PR329vblcg1U85W2ih5HSBERUXEUCkWRvxMR1QRVdRl5IsrnbG2CJtbGuPk4DYZ6YpWSS4IgIFmWDVc7Mzhbm2gtRp3SNyksLy8Px44dw+bNm/H8+XMAwOPHjyGTydQ+xstLFhcoWLLYw8OjyH06d+6Mu3fvqnTqoqOjUa9evSKTUQAglUphamqq8kOkrtISTqUlrIiIiIiIaprIuBTM2BGFwB1XMffn6wjccRUzdkQhMi5F26ER0f/o6Ijg5+kAMwMJ4lIykZGdB7lCQEZ2HuJSMmFmIIGvp4NWE8kaJ6Ti4uLQqlUrDBo0CFOnTkVycjIAYPny5Zg9e7ZGxwoMDMQ333yDiIgI3Lp1Cx988EGhJYuDgoKU23/wwQdISUnB9OnTER0djQMHDmDZsmWYOnWqppdBpBZxKVPymJAiIiIiotqkYBn5G4/SYKqviwZ1DGGqr6tcRp5JKaKqw93BAnO9W6ClnRnSs/Lw37NMpGflwdXODHO9W8DdwUKr8Wk8ZW/69Olo3749rl69irp16yrbhwwZgkmTJml0LE2XLLa3t8fhw4cxc+ZMtG7dGvXr18f06dPxySefaHoZRGpRq6i5Qg6Aq+wRERERUc1WHZaRJyJV7g4WcLOvUyWn2GqckDp9+jTOnTtXaIqco6MjHj16pHEAAQEBCAgIKPK5U6dOFWrz8PDAX3/9pfF5iMpCVMoIqWBJBIS1vwMBfwMG5pUTFBERERGRFkQnPcfdJBmsTaQq9WiA/AUarIyliEmSITrpebktI09Er09HR1Ql/01qPGVPoVAUuRLMf//9BxMT7RXDIqoI6hQtF2UkATf2VEI0RERERETa8//LyBc9O0BfIkZOnlyry8gTUfWh8Qipvn37IjQ0FF9//TWA/Ey4TCbDggULMGDAgHIPkEib1F5FT1Sm9QGIiKgGS09PV3tbLrpCRNVBdVhGnoiqD40TUitXroSXlxdcXFyQlZWF0aNHIyYmBpaWlvjpp58qIkYirdEpZcqeEhNSRET0CnNz80JTWopT1OhzIqKqpjosI09E1YfGCakGDRrg6tWr2LFjB65evQqZTIYJEyZgzJgxMDAwqIgYibSGCSkiIiqrkydPKn+PjY3FnDlz4O/vDw8PDwDA+fPnERERgZCQEG2FSESkkYJl5JceuIW4lExYGUuhL8kfMZUsy64Sy8gTvS6FQqiSBcBrIpEgCBqtW//nn3/C09MTurqquay8vDycO3cOXbt2LdcAy1t6ejrMzMyQlpbG4fFUotgnGXi8pjc8xf+UvvGg9YDbuxUfFBERVYry7i/06tULEydOxKhRo1Tat23bhq+//rrIhVyqEvafiOhlkXEpiDgXh7tJMuTk5U/Ta2ptDF9PB60vI0/0Oor6bDexNoYfP9tq0bS/oPEIqR49eiA+Ph7W1tYq7WlpaejRoweHnFONoiNiDSkiInp958+fx6ZNmwq1t2/fHhMnTtRCREREZVeVl5EnKqvIuBQsPXALqZm5sDaRQl8iRVauHDcfp2HpgVuY692CSalypvFf0YIgFFkP4enTpzAyMiqXoIiqChGLmhMRUTmwt7fHN998U6j922+/hb29vRYiIiJ6PQXLyHdsVBfNbU2ZjKJqTaEQEHEuDqmZuXCsawgjqS7EOiIYSXXhYGGItBe5+O5cHBQKjSaYUSnUHiH19ttvA8hfVc/f3x9SqVT5nFwux7Vr1+Dp6Vn+ERJpEWtIERFReVi9ejXeeecd/P777+jYsSMA4OLFi4iJicGePXu0HB0REVHtFp30HHeTZLA2kRYagCMSiWBlLEVMkgzRSc/R3JZT18uL2gkpMzMzAPkjpExMTFQKmOvp6aFTp06YNGlS+UdIpEViJqSIiKgcDBgwANHR0di4cSNu374NAPDx8cHkyZM5QoqIiEjL0jJzkZMnh75EWuTz+hIxnsiykZaZW8mR1WxqJ6TCwsIAAI6Ojpg9ezan51GNJwDQUXvKHocoExFRyezt7bFs2TJth0FERESvMDOUQE83f8VII2nhNElWbn6BczNDiRaiq7k0HtaxYMECJqOo1mANKSIiKi+nT5/Gu+++C09PTzx69AgA8P333+PMmTNajoyIiKh2c7Y2QRNrYyTLsiEIqn8DCoKAZFk2mlobw9naREsR1kwa/xWdmJiIsWPHws7ODrq6uhCLxSo/RDUJa0gREVF52LNnD7y8vGBgYIDLly8jOzsbQP4qxRw1RUREpF06OiL4eTrAzECCuJRMZGTnQa4QkJGdh7iUTJgZSODr6cDi/eVM7Sl7Bfz9/fHw4UPMmzcP9erVK3LFPaKaQu0pe+C/AyIiKt6SJUuwadMm+Pr6Yvv27cr2zp07Y8mSJVqMrOpTKAQuLU9ERBXO3cECc71bIOJcHO4myfBElg09XTFc7czg6+kAdwcLbYdY42ickDpz5gxOnz6Ntm3bVkA4RFWL+gkpIiKi4t25cwddu3Yt1G5mZobU1NTKD6iaiIxLUf5hkJOXX7+jibUx/PiHARERVQB3Bwu42dfhjZBKovE8I3t7+0JzKolqKrWn7Anyig2EiIiqNVtbW9y9e7dQ+5kzZ9CoUSMtRFT1RcalYOmBW7jxKA2m+rpoUMcQpvq6uPk4DUsP3EJkXIq2QyQiohpIR0eE5ram6NioLprbmjIZVYE0TkiFhoZizpw5iI2NrYBwiKoWtUdICWomrmqa3Kz8HyIiKtGkSZMwffp0XLhwASKRCI8fP8aPP/6I2bNn44MPPtB2eFWOQiEg4lwcUjNz4VjXEEZSXYh1RDCS6sLBwhBpL3Lx3bk4KBS8SUpERFRdaTxlb8SIEcjMzETjxo1haGgIiUR12cOUFN6toppD/RFStbBDLM8DVjQGxBLgo3uADhc1ICIqzpw5c6BQKNCrVy9kZmaia9eukEqlmD17NqZNm6bt8Kqc6KTnuJskg7WJtFC9UpFIBCtjKWKSZIhOeo7mtqZaipKIiIheh8YJqdDQ0AoIg6hqEqk5QkqhkGs+3LC6e/4YyJHl/56bCUi5BCoRUXFEIhHmzp2Ljz76CHfv3oVMJoOLiwuMjY21HVqVlJaZi5w8OfQl0iKf15eI8USWjbTM3EqOjIiIiMqLxgkpPz+/ioiDqEpSd8pedm4eDCo4lionL/ulB5xXTURUkvHjx2PNmjUwMTGBi4uLsj0jIwPTpk3D1q1btRhd1WNmKIGerhhZuXIYSQt3V7Ny8wucmxlKitibiIiIqgO1BnWkp6er/F7SD1FNIlZzyl5Wdk4FR1IF5b74/99raw0tIiI1RURE4MWLF4XaX7x4ge+++04LEVVtztYmaGJtjGRZdqHFdARBQLIsG02tjeFszdG5RERE1ZVaI6Tq1KmD+Ph4WFtbw9zcvNBcfiC/cyASiSCXc7UxqjlEIvVGSL3IzkWdCo6lysl7qZg5E1JEREVKT0+HIAgQBAHPnz+Hvr6+8jm5XI6DBw/C2tpaixFWTTo6Ivh5OmDpgVuIS8mElbEU+pL8EVPJsmyYGUjg6+nAlY+IiIiqMbUSUidOnICFhQUA4OTJkxUaEFFVom5R8+y8vAqOpApiQoqIqFQFN/JEIhGcnZ0LPS8SiRAcHKyFyKo+dwcLzPVugYhzcbibJMMTWTb0dMVwtTODr6cD3B0stB0iERERvQa1ElLdunUr8neimk6TGlK1Ti4TUkREpTl58iQEQUDPnj2xZ88e5Q0+ANDT04ODgwPs7Oy0GGHV5u5gATf7OohOeo60zFyYGUrgbG3CkVFEREQ1gMZFzYlqE3UTUrm5tXCqam7m///OhBQRUZEKbuQ9ePAADRs2LLLsAZVMR0eE5ram2g6DiIiIylmtW6meSBMiNafs5ebVwmWnWdSciEhtJ06cwO7duwu179q1CxEREVqIiIiIiEi7mJAiKoG6q+zl1Mopexn//zsTUkREJQoJCYGlpWWhdmtrayxbtqxMx1y/fj0cHR2hr6+Pjh074uLFiyVun5qaiqlTp6JevXqQSqVwdnbGwYMHy3RuIiIiotfFKXtEJVB7yl5tLGqewyl7RETqevjwIZycnAq1Ozg44OHDhxofb8eOHQgMDMSmTZvQsWNHhIaGwsvLC3fu3Cly1b6cnBz06dMH1tbW2L17N+rXr4+4uDiYm5uX5XKIiIiIXluZRkjl5eXh2LFj2Lx5M54/fw4AePz4MWQyWbkGR6Rt6iekamMNKU7ZIyJSl7W1Na5du1ao/erVq6hbt67Gx1u1ahUmTZqEcePGwcXFBZs2bYKhoSG2bt1a5PZbt25FSkoK9u3bh86dO8PR0RHdunVDmzZtND43ERERUXnQOCEVFxeHVq1aYdCgQZg6dSqSk5MBAMuXL8fs2bPLPUAibRJxhFTxXp6yp6iFCTkiIg2MGjUKH374IU6ePAm5XA65XI4TJ05g+vTpGDlypEbHysnJQWRkJHr37q1s09HRQe/evXH+/Pki99m/fz88PDwwdepU2NjYwNXVFcuWLYNczv9/ExERkXZoPGVv+vTpaN++faE7ekOGDMGkSZPKNTgibRIEATpqFzWvhQkpTtkjIlLb4sWLERsbi169ekFXN7/7pVAo4Ovrq3ENqSdPnkAul8PGxkal3cbGBrdv3y5yn/v37+PEiRMYM2YMDh48iLt372LKlCnIzc3FggULCm2fnZ2N7Oxs5eP09HSNYiQiIiIqjcYJqdOnT+PcuXPQ09NTaXd0dMSjR4/KLTCiqkDdouZ5tTEhpTJlT72RZEREtZWenh527NiBxYsX4+rVqzAwMECrVq3g4OBQKedXKBSwtrbG119/DbFYDHd3dzx69AgrVqwoMiEVEhKC4ODgSomNiIiIaieNE1IKhaLI4d3//fcfTExMyiUooqpC/Sl7tXDKA1fZIyLSmLOzM5ydnV/rGJaWlhCLxUhMTFRpT0xMhK2tbZH71KtXDxKJBGKxWNnWokULJCQkICcnp9CNxqCgIAQGBiofp6enw97e/rXiJiIiInqZxgmpvn37IjQ0FF9//TUAQCQSQSaTYcGCBRgwYEC5B0ikTeoWNc+rjTU4WNSciEgj//33H/bv34+HDx8iJydH5blVq1apfRw9PT24u7vj+PHjGDx4MID8G4bHjx9HQEBAkft07twZ27Ztg0KhgI5OfgnR6Oho1KtXr1AyCgCkUimkUqnaMRERERFpSuOE1MqVK+Hl5QUXFxdkZWVh9OjRiImJgaWlJX766aeKiJFIa9StIVUrp+zlcIQUEZG6jh8/jrfeeguNGjXC7du34erqitjYWAiCgHbt2ml8vMDAQPj5+aF9+/bo0KEDQkNDkZGRgXHjxgEAfH19Ub9+fYSEhAAAPvjgA6xbtw7Tp0/HtGnTEBMTg2XLluHDDz8s1+skIiIiUpfGCakGDRrg6tWr2L59O65duwaZTIYJEyZgzJgxMDAwqIgYibRGLFJvhFStXKUo9+Wi5rXw+omINBAUFITZs2cjODgYJiYm2LNnD6ytrTFmzBj069dP4+ONGDECycnJmD9/PhISEtC2bVscOnRIWej84cOHypFQAGBvb4/Dhw9j5syZaN26NerXr4/p06fjk08+KbdrJCIiItKExgmprKws6Ovr4913362IeIiqDg0KdefVyhpSnLJHRKSuW7duKUeS6+rq4sWLFzA2NsaiRYswaNAgfPDBBxofMyAgoNgpeqdOnSrU5uHhgb/++kvj82iTQiEgOuk50jJzYWYogbO1CXR0RNoOi4iIiMqBxgkpa2trDBkyBO+++y569eqlcveNqEbRYNSPXFELE1KcskdEpDYjIyNl3ah69erh3r17aNmyJQDgyZMn2gytyoqMS0HEuTjcTZIhJ08OPV0xmlgbw8/TAe4OFtoOj4iIiF6TxtmkiIgIZGZmYtCgQahfvz5mzJiBS5cuVURsRNqlQZJFLpdDoVB/RFWNoDJljwkpIqKSdOrUCWfOnAEADBgwALNmzcLSpUsxfvx4dOrUScvRVT2RcSlYeuAWbjxKg6m+LhrUMYSpvi5uPk7D0gO3EBmXou0QiYiI6DVpnJAaMmQIdu3ahcTERCxbtgz//PMPOnXqBGdnZyxatKgiYiTSCpEGSRYdKJCZW8tGSalM2atlyTgiIg2tWrUKHTt2BAAEBwejV69e2LFjBxwdHbFlyxYtR1e1KBQCIs7FITUzF451DWEk1YVYRwQjqS4cLAyR9iIX352Lq303goiIiGqYMs+3MzExwbhx43DkyBFcu3YNRkZGCA4OLs/YiLRLgySLDgRkZteilfYEQXXK3pUfgLXtgORo7cVERFRFyeVy/Pfff2jYsCGA/Ol7mzZtwrVr17Bnzx44ODhoOcKqJTrpOe4myWBtIoVIpFovSiQSwcpYipgkGaKTnmspQiIiIioPZU5IZWVlYefOnRg8eDDatWuHlJQUfPTRR+UZG5F2aThCSlabElJ5WQBeStj98wuQcg+IO6O1kIiIqiqxWIy+ffvi2bNn2g6lWkjLzEVOnhz6EjGA/G8bWXYenmXmQJadB6lEjJw8OdIyc7UbKBEREb0WjYuaHz58GNu2bcO+ffugq6uLoUOH4siRI+jatWtFxEekPRoUNdeBgMycWjRl7+XpegCg+F8yrjYWdyciUoOrqyvu378PJycnbYdS5ZkZSqCnK0ZWrhy5CgH/PctERrYcCkGAjkgEqa4IJvoSmBlKtB0qERERvQaNE1JDhgzBwIED8d1332HAgAGQSNgZoJpJkxpSIgjIqE0jpF6ergcA8v/dpWYtKSKiIi1ZsgSzZ8/G4sWL4e7uDiMjI5XnTU1NtRRZ1eNsbYIm1saIjEtB+otcyBWAnq4OxDo6yJMrkJ6VB4UAPM/iCCkiIqLqTOOEVGJiIkxMTCoiFqIqRv2ElBiKWjZCKlP1saIgIVWLXgMiIg0MGDAAAPDWW2+p1EUSBAEikQhyOf//WUBHR4SxnRxwOiYZWXkKGOnpQiwC5AoBuQoBBhIxDPXE+OH8Q7g3tICOjqj0gxIREVGVo1ZCKj09XXnnThAEpKenF7st7/BRjaFRUfNaVkOqUELqf9euwagyIqLa5OTJk9oOoVoxMdCFmYEEOiIRsvPkyBEAHRFgoq+LBuaGkIhFysLmzW3Z9yQiIqqO1EpI1alTB/Hx8bC2toa5uXmhFU+A17vDt379eqxYsQIJCQlo06YNvvrqK3To0KHU/bZv345Ro0Zh0KBB2Ldvn8bnJSqJJlP2dCDgRW0aIZWXU3Q7a0gRERXJyckJ9vb2hfpQgiDg33//1VJUVVdaZi50dURwtTNFVq4CuQoFJDo6MJKK8/ubCgFPZNksbE5ERFSNqZWQOnHiBCwsLACU/x2+HTt2IDAwEJs2bULHjh0RGhoKLy8v3LlzB9bW1sXuFxsbi9mzZ6NLly7lGg+RkoY1pAgcIUVEVAwnJyflzb2XpaSkwMnJiVP2XlFQ2Dw7TwFj/cLd1axcOfR0xSxsTkQ1jkIhIDrpOdIyc2FmKIGztQmnJlONpVZCqlu3bsrfy/sO36pVqzBp0iSMGzcOALBp0yYcOHAAW7duxZw5c4rcRy6XY8yYMQgODsbp06eRmpqq8XmJSqXhKnsE1pAiIipGwUjyV8lkMujr62shoqqtoLD5zcdpMNQTF6q7lSzLhqudGZytWdeUiGqOyLgURJyLw90kGXLy8hPvTayN4efpAHcHC22HR1TuNC5qXp53+HJychAZGYmgoCBlm46ODnr37o3z588Xu9+iRYtgbW2NCRMm4PTp0yWeIzs7G9nZ2crHJdW/IlKhQQ0psUihQQn0GkzBV4GI6GWBgYEAAJFIhHnz5sHQ0FD5nFwux4ULF9C2bVstRVd16eiI4OfpgKUHbiEuJRNWxlLoS8TIypUjWZYNMwMJfD0dOGqAiGqMyLgULD1wC6mZubA2kUJfIkVWrhw3H6dh6YFbmOvdgkkpqnE0TkiV5x2+J0+eQC6Xw8bGRqXdxsYGt2/fLnKfM2fOYMuWLYiKilLrHCEhIQgODtYoLiIAyM1Tv0i5iOmofJyyR0Sk4sqVKwDy+0/Xr1+Hnp6e8jk9PT20adMGs2fP1lZ4VZq7gwXmerdQjhZ4IsuGnq4YrnZm8OVoASKqQRQKARHn4pCamQvHuobKv7eNpLow1BMjLiUT352Lg5t9HSbiqUZROyFVFe7wPX/+HGPHjsU333wDS0tLtfYJCgpSxg7kj5Cyt7evqBCpBsnKUT8hpQMBnKwGTtkjInpFQe3NcePGYc2aNVyNWEPuDhZws6/DeipEVKNFJz3H3SQZrE2khQZ/iEQiWBlLubIo1UhqJ6Qq4g6fpaUlxGIxEhMTVdoTExNha2tbaPt79+4hNjYWPj4+yjbF/6YI6erq4s6dO2jcuLHKPlKpFFKpVKO4iAAgO1ezhBSBI6SIiIoRFham/L2g5iZvkKlHR0fEP8CIqEZLy8xFTp4c+pKi/27Vl4i5sijVSGonpCriDp+enh7c3d1x/PhxDB48GEB+gun48eMICAgotH3z5s1x/fp1lbbPPvsMz58/x5o1a9ixo3KVnad+ckWHU/byKThCioioKHl5eQgODsbatWshk8kAAMbGxpg2bRoWLFgAiYSrxRER1VYFK4tm5cphJOXKolR7aFxD6uU7fOUhMDAQfn5+aN++PTp06IDQ0FBkZGQoV93z9fVF/fr1ERISAn19fbi6uqrsb25uDgCF2oleV3YuE1Ia45Q9IqIiTZs2DXv37sUXX3wBDw8PAMD58+excOFCPH36FBs3btRyhEREpC1cWZRqK40TUgBw6dIl7Ny5Ew8fPkROTo7Kc3v37tXoWCNGjEBycjLmz5+PhIQEtG3bFocOHVIWOn/48CF0dHTKEibRa8nKUz+5wil7/8Mpe0RERdq2bRu2b9+O/v37K9tat24Ne3t7jBo1igkpIqJajCuLUm2lcUJq+/bt8PX1hZeXF44cOYK+ffsiOjoaiYmJGDJkSJmCCAgIKHKKHgCcOnWqxH3Dw8PLdE6i0mRpNGWPCSkAgIIJKSKiokilUjg6OhZqd3JyUqnLSUREtRNXFqXaSOOE1LJly7B69WpMnToVJiYmWLNmDZycnPD++++jXr16FREjkVZk53CElMY4QoqIqEgBAQFYvHgxwsLClIutZGdnY+nSpcXelCMiotqFK4tSbaNxQurevXvw9vYGkF+UPCMjAyKRCDNnzkTPnj0RHBxc7kESaYMmRc1FrCGVjzWkiIiU3n77bZXHx44dQ4MGDdCmTRsAwNWrV5GTk4NevXppIzwiIqqCuLIo1SYaJ6Tq1KmD58+fAwDq16+PGzduoFWrVkhNTUVmZma5B0ikLdka1JASQwGBo6S4yh4R0UvMzMxUHr/zzjsqj7k6MBEREdVmGiekunbtiqNHj6JVq1YYNmwYpk+fjhMnTuDo0aO8w0c1CoualwGn7BERKZX3ysREtZ1CIXAqExFRDaJxQmrdunXIysoCAMydOxcSiQTnzp3DO++8g88++6zcAyTSluxcTabsMSEFgFP2iIiIqEJExqUoiz3n5MmhpytGE2tj+LHYMxFRtaVxQsrC4v//h6+jo4M5c+aUa0BEVUVWriYjpDgyCABHSBERFcPJyQkiUfEjOe7fv1+J0RBVL5FxKVh64BZSM3NhbSKFvkSKrFw5bj5Ow9IDtzDXuwWTUkRE1ZBaCan09HS1D2hqygJsVDMYZiWovS2n7P2PggkpIqKizJgxQ+Vxbm4urly5gkOHDuGjjz7STlBE1YBCISDiXBxSM3PhWNdQmdg1kurCUE+MuJRMfHcuDm72dTh9j4iomlErIWVubl7iXT0AEAQBIpEIcjmn7FANEH8Nsx7PUntzsYiJGACcskdEVIzp06cX2b5+/XpcunSpkqMhqj6ik57jbpIM1ibSQn+PiEQiWBlLEZMkQ3TSc65MRkRUzaiVkDp58mRFx0FUtTy9q9HmrCH1P5yyR0Skkf79+yMoKIgF0ImKkZaZi5w8OfQl0iKf15eI8USWjbTM3EqOjIiIXpdaCalu3bpVdBxEVYtCs5E+nLL3Pxq+bkREtd3u3btV6nMSkSozQwn0dMXIypXDSFr4T5es3PwC52aGEi1ER0REr0PjouYAcPr0aWzevBn379/Hrl27UL9+fXz//fdwcnLCm2++Wd4xElU+RZ5Gm7Oo+f9whBQRUZHc3NxUphsJgoCEhAQkJydjw4YNWoyMqGpztjZBE2tj3HycBkM9caF/R8mybLjamcHZ2kSLURIRUVlonJDas2cPxo4dizFjxuDy5cvIzs4GAKSlpWHZsmU4ePBguQdJVOk0TkhxhBQA1pAiIirG4MGDVR7r6OjAysoK3bt3R/PmzbUTFFE1oKMjgp+nA5YeuIW4lExYGUuhL8kfMZUsy4aZgQS+ng4saE5EVA1pnJBasmQJNm3aBF9fX2zfvl3Z3rlzZyxZsqRcgyPSGo6QKhuuskdEVKQFCxZoOwSiasvdwQJzvVsg4lwc7ibJ8ESWDT1dMVztzODr6QB3B057rY0UCgHRSc+RlpkLM0MJnK1NmJgkqmY0TkjduXMHXbt2LdRuZmaG1NTU8oiJSPs4QqpsOGWPiKhIly9fhkQiQatWrQAAv/zyC8LCwuDi4oKFCxdCT09P42OuX78eK1asQEJCAtq0aYOvvvoKHTp0KHW/7du3Y9SoURg0aBD27dun8XmJtMHdwQJu9nWYgCAAQGRcijJBmZOXX0esibUx/JigJKpWdDTdwdbWFnfvFl6B7MyZM2jUqFG5BEWkbQITUmXDKXtEREV6//33ER0dDQC4f/8+RowYAUNDQ+zatQsff/yxxsfbsWMHAgMDsWDBAly+fBlt2rSBl5cXkpKSStwvNjYWs2fPRpcuXcp0HUTapKMjQnNbU3RsVBfNbU2ZjKqlIuNSsPTALdx4lAZTfV00qGMIU31d3HychqUHbiEyLkXbIRKRmjROSE2aNAnTp0/HhQsXIBKJ8PjxY/z444+YPXs2Pvjgg4qIkajSyfM0WzpYBAUE5qQ4QoqIqBjR0dFo27YtAGDXrl3o1q0btm3bhvDwcOzZs0fj461atQqTJk3CuHHj4OLigk2bNsHQ0BBbt24tdh+5XI4xY8YgODiYNxGJqFpSKAREnItDamYuHOsawkiqC7GOCEZSXThYGCLtRS6+OxcHhYIdc6LqQOMpe3PmzIFCoUCvXr2QmZmJrl27QiqVYvbs2Zg2bVpFxEhU6XJzczX6x8ERUv+j4AgpIqKiCIIAxf/q7B07dgwDBw4EANjb2+PJkycaHSsnJweRkZEICgpStuno6KB37944f/58sfstWrQI1tbWmDBhAk6fPl2GqyAi0q7opOe4mySDtYlUZcVFABCJRLAyliImSYbopOdobmuqpSiJSF0aJ6REIhHmzp2Ljz76CHfv3oVMJoOLiwuMjY3x4sULGBgYVEScRJVKnpej0fZiFjXPxxFSRERFat++PZYsWYLevXvjjz/+wMaNGwEADx48gI2NjUbHevLkCeRyeaH9bGxscPv27SL3OXPmDLZs2YKoqCi1zpGdna1cSRkA0tPTNYqRiKgipGXmIidPDn2JtMjn9SViPJFlIy1Ts9kORKQdGk/ZK6CnpwcXFxd06NABEokEq1atgpOTU3nGRqQ1ebmaTtnjCCkATEgRERUjNDQUly9fRkBAAObOnYsmTZoAAHbv3g1PT88KPffz588xduxYfPPNN7C0tFRrn5CQEJiZmSl/7O3tKzRGIiJ1mBlKoKcrRlZu0aPys3LzC5ybGUoqOTIiKgu1R0hlZ2dj4cKFOHr0KPT09PDxxx9j8ODBCAsLw9y5cyEWizFz5syKjJWo0uRpWENKhyOk8nHKHhFRkVq3bo3r168Xal+xYgXEYrFGx7K0tIRYLEZiYqJKe2JiImxtbQttf+/ePcTGxsLHx0fZVjB9UFdXF3fu3EHjxo1V9gkKCkJgYKDycXp6OpNSRKR1ztYmaGJtjJuP02CoJ1aZticIApJl2XC1M4OztYkWoyQidak9Qmr+/PnYuHEjHB0dERsbi2HDhuG9997D6tWrsWrVKsTGxuKTTz6pyFiJKo3mCSmOkALAEVJERGqYMmWKsm6Uvr4+JBLN7uTr6enB3d0dx48fV7YpFAocP34cHh4ehbZv3rw5rl+/jqioKOXPW2+9hR49eiAqKqrIRJNUKoWpqanKDxGRtunoiODn6QAzAwniUjKRkZ0HuUJARnYe4lIyYWYgga+nA1dgJKom1B4htWvXLnz33Xd46623cOPGDbRu3Rp5eXm4evVqoYJyRNWdpjWkmJD6H4EjpIiISvPDDz9g9uzZak+fK0pgYCD8/PzQvn17dOjQAaGhocjIyMC4ceMAAL6+vqhfvz5CQkKgr68PV1dXlf3Nzc0BoFA7EVFV5+5ggbneLRBxLg53k2R4IsuGnq4YrnZm8PV0gLuDhbZDJCI1qZ2Q+u+//+Du7g4gv/MilUoxc+ZMJqOoRlLk5Wm0vY6II4MAcIQUEZEaBOH1b2KMGDECycnJmD9/PhISEtC2bVscOnRIWej84cOH0NEpc6lQIqIqzd3BAm72dRCd9BxpmbkwM5TA2dqEI6OIqhm1E1JyuRx6enr/v6OuLoyNjSskKCJtk3PKXtmwhhQRUaUJCAhAQEBAkc+dOnWqxH3Dw8PLPyAiokqkoyNCc1tOJyaqztROSAmCAH9/f0il+UtsZmVlYfLkyTAyMlLZbu/eveUbIZEW5Gi4yh6Lmv8Pp+wREZXq+fPn2g6BiIiISOvUTkj5+fmpPH733XfLPRiiqiI3hzWkyqQcpqEQEdVEcrlcZTW9CxcuIDs7Gx4eHhoXNSciIiKqCdROSIWFhVVkHERVSq7GU/Zq2wipYhJPnLJHRKQiPj4ew4YNw19//YXOnTtj3759GDt2LA4ePAjg/9q78/go6vvx46/ZO5s7gVwQAsot9ylYr4qA9QBPqlaQWuTbSj2oFvECtfxApWqtVLQqeItYPAoWiwheUE4BuQ9DOEOA3Nkke8zn98eSJZtskt0k5Hw/H499JJn5zMxndjK7M+95fz4f6NKlC6tXryY5ObmRa9q06LqSvmGEEKKZkc9uEaqgA1JCtCYel2RI1Yp0ai6EEH6mTZuGUopPPvmE9957j2uuuQaj0cjhw4fxeDzcdtttzJo1i5dffrmxq9pkbMrI9o2e5XR7sJiMdE6IYIKMniWEEE2WfHaL2pCAlBABhN6puU6OI7RlWiTpQ0oIIfx89dVXLFmyhAsvvJCLLrqINm3asGLFCtq1awfAU089xaRJkxq5lk3HpoxsZi3bRa7DRYTVhMVmQtdhx9E8Zi3bxaNX95AbGyGEaGLKf3YnRFqxma2UuDzsOCaf3Y2luWSrSUBKiABCDUhpKA6eKjpHtWlGpMmeEEL4ycnJ8QWf4uLisNvtpKWl+eZ37tyZ48ePN1b1mhRdV7y1JoMT+SW4PDpZBaXoSmHQNOwWAyVuD2+vyaB/amyTvKgWZzWXGyEhRN2VfXbnOlx0jLejad5zPdxqwm4xkpHtkM/uBtacstUkICVEALrHHVJ5A4r00xKQoiQPFt8JvW6CHtc0dm2EEKLRJSQkcPz4cVJTUwGYMmUKcXFnLwZzcnIqjVjcWu3NKmDbkVxyHS6UAovJgNFgwKMrCks9aHjYeiSXvVkFMtR7E9acboSEEHW3N6uA/VmFJERafcGoMpqm0TbCyr6sQvnsbiDNLVvN0NgVEKIp0j2hZUgZ0UlvLRlSzmr2szgbdnwC//tHw9VHCCGasH79+rF27Vrf33PmzPELSH3//ff06dOnMarW5OQWuThV6ETXFWEWIyaDhgaYDBphZiO6UpwqdJJbJE3km6qyG6HtR/OIsploH2snymby3Qhtyshu7CoKIepZnsOF0+3BZjYGnG8zG3G6PeRJ9ybnXMVstXCrCaNBI9xqIi3OTl6xi7fXZKDrTaf/Y8mQEqICj65QurvmcO30o1BwHF4ehAHFyYJSCkvdRFhb8Gn1v/mwfBoM/l315dylDVMfIYRo4j777LNq5w8ePJhLL720gWrTtOUUO3F5dCxGAxUbdXgDUwacHp2c4tAGHhENQ5rtCNE6RdvNWExGSlwewgPcB5W4vJmS0XZzI9SudWmO2WqSISVEBfnFLkxVdc595VOQ3A/GvQfWCLB4m1lYNRcvmOdxfO/mhqtoY1g+zftzw+vVl9NDa/IohBCt1ZAhQ+jVq1djV6NJiAkzYzZquHWFUv5Pb5VSuHWF2agREyY3NU1RKDdCQoiWo2tCJJ0TIjhZWBrws/tkYSldEiLomhDZSDVsPZpjtpoEpISoIMfhxKjpgWfGnQ+TvznbP5J29hS63vgDHf59SwPUsBmQzs2FECIoOTk5vP32241djSYhNtxCmwgrRgMUu3VfYMqtK4rdOkYDtImwEhtuaeyqigCa442QEKLuDAaNCcPTiA4zk5HtoKjUjUdXFJW6ych2EB1mZvzwNMmMbADls9UCaYrZahKQEqKCHIcLE1UFVCq0t9X8TyGrM+fcVKq50eViUwghgnHo0CEmTpzY2NVoEromRNK7XTR2ixGLyYDTrZ8JTOlEWk1Eh5np2z5GnrI3Uc3xRkgIUT8GpsXx6NU9uCAlmvwSN0dyHOSXuOmVEt3kOtFuyZpjtloL7uxGiNrJdTiJryogpSpkTmkS0w1ImuwJIQQA+fn51c4vKJDmS2V+PJxDjsNFQYkHl8eDyWDAZjIQH2FFKUWM3SJP2ZuwshuhHcfysFuMfs32ym6EeqVEN6kbISFE/RmYFkf/1Fj2ZhWQ53ARbTfTNSFSPrMbUFm22qxlu8jIdtA2worN7H1QcLKwtElmq0lASogKch0uEqmiyZ6qPkNKnCEBKSGEACAmJqZSfzrlKaWqnd9alB+mulMbO5l5JRQ5PRSWeih1FzOoYyz3j+gqT9mbsOZ4IySEqF8Gg9ZkOsturcqy1d5ak8H+rEJOFZZiMRnplRLN+OFpTe57VAJSQlSQ43BirGWTvXNG94CzEGzRDbO9upI+pIQQAoDIyEgeffRRhg4dGnD+vn37mDx5cgPXqmkpPzpbjN3M0dxiSt36mZH1NEBDKUX/1NjGrqqoQXO7ERJCiJaoOWWrSUBKiAoKS92Yq2yy10gBqTdHwZEN8MBOiG7XMNusC8mQEkIIAAYMGADApZdeGnB+TExMpX4eWpuy0dnCLEb2ZxXi9igsJgM2s4ZHV5S4PWzKyOXTLUe4YUBqY1dX1KA53QgJIURL1Vyy1aS9kRAVKEXVGVI19CFVoszn5sbiyAbvz91L63/d54JHOjUXQgiA2267DZvNVuX8pKQkZsyY0YA1anryHC5K3R5OFpTg9ijCLEZMBs2XIWU3G3Hrin9tOoqut+7gXXNRdiM09Lx4uidFSTBKCCFEQJIhJQTAV096g0tXPA6Aqao+pCqqEJByYsbt9BBhPUenVnPps0oypIQQAoBJkyZVOz8xMbHVB6Si7WYUUFjiwWIyUDF0oSswGwwczythb1ZBs3jiK4QQQoiaNZO7WyHOodJC+P55+G4uuIoBMGpBNtkzGP1XhZlTBaXnopZnttdMYsjSh5QQQoggdU2IJDnKhkvX0VC4dR2XR8et6+i6jtOjE2EzoaHIc0gGrhBCCNFSSEBKCHe5AJLHCVSTIVVDk71SzJwuqueAVPkgWIUAWJMlGVJCCAHA119/Tc+ePcnPz680Ly8vjwsuuIDvvvuuEWrWdBgMGjcObI+GRl6Jm/wSNwWl3p95Jd7vk7YRFqxmE9F2cyPXVgghhBD1pUkEpObNm0fHjh2x2WwMHTqU9evXV1n2n//8JxdffDGxsbHExsYyYsSIassLUSO93NNWj/fCt7aj7DmViZMFznqsHP4BM62RA1KGIG8EdHmCLYQQAC+++CKTJk0iKqpyM7Po6GgmT57M888/3wg1a1pSY+1YTQbft6zvWYzm7Usqt9hFl4QIuiZENlINhRBCCFHfGj0gtWjRIqZOncqMGTPYvHkzffv2ZdSoUWRlZQUsv3r1am699VZWrVrF2rVrSU1NZeTIkRw9erSBay5aDE+5ANKZQEptR9krxcypwnrOkHI5zv7e2BlSwTYZ1N2V3yshhGiFtm7dyujRo6ucP3LkSDZt2tSANWp6dF3xzv8yiAozEWExYjEZCLcaibSZibAYcXp0HE4PvxnWQTrHFkIIIVqQRg9IPf/880yaNImJEyfSs2dP5s+fj91u58033wxY/r333uMPf/gD/fr1o3v37rz++uvous7KlSsbuOaixSg/ItyZ34PPkKp4YazVf0DKXVJu80F2tn4u7FkO7uLgyzdmXYUQook4ceIEZnPV2aUmk4mTJ082YI2anr1ZBezPKiQ11k7XpCiiw8yAhsuj41EQZTMRHWYm0ibN9YQQQoiWpFF7SHY6nWzatInp06f7phkMBkaMGMHatWuDWofD4cDlchEXF3euqilauvIBqTMZUkH3IVWBCc85yJAqFwTy1HNzwFB8MC608rq78TO6hBCikbVr147t27fTuXPngPO3bdtGcnJyA9eqaclzuHC6PdjMVsINGtFh0RSVunF5dMxGAzazkaM5DunQXAghhGhhGjVD6tSpU3g8HhITE/2mJyYmkpmZGdQ6pk2bRkpKCiNGjAg4v7S0lPz8fL+XEH7KB3lq6kOqhmZoJtycLqzvPqTKZUh5mtHFeHOqqxBCnCO/+tWvePzxxykpKak0r7i4mBkzZnDNNdc0Qs2ajmi7GYvJSInL+92rARFWEzF2CwAnC0rQgUhbMxlpVgghhBBBadbf7HPmzOHDDz9k9erV2Gy2gGVmz57Nk08+2cA1E82KXiFDSpkwaVVlQlUfkDJrHnLr+wmuq3xAqhEzpEIlI+0JIQSPPfYYS5YsoWvXrkyZMoVu3boBsHv3bubNm4fH4+HRRx9t5Fo2rq4JkXROiGDHsTzsFiOappFb7OJIjoPCEjdOj06Y2cgrqw9w50UdGZgmWfFCCCFES9CoGVJt2rTBaDRy4sQJv+knTpwgKSmp2mXnzp3LnDlz+O9//0ufPn2qLDd9+nTy8vJ8r8OHD9dL3UULUqEPKa3K/qMIqsmeqiFoFTJ3E2myFyq9mvdRCCFaicTERNasWUOvXr2YPn06119/Pddffz2PPPIIvXr14vvvv6+UKd7aGAwaE4anER1mJiPbQWZ+CXsz88lzuPAoRZjZSGpsGDuP5zNr2S42ZWQ3dpWFEEIIUQ8aNUPKYrEwcOBAVq5cydixYwF8HZRPmTKlyuWeffZZZs2axZdffsmgQYOq3YbVasVqtdZntUVL49eHlBtNVdPvUY1N9s5BEMbVTJvsSYaUEEIAkJaWxhdffEFOTg779+9HKUWXLl2IjY1t7Ko1GQPT4nj06h4s/OEg3+w9SYlLx2o2EG410T7GTozdjFKKjGwHb6/JoH9qrIy4J4QQQjRzjd5kb+rUqUyYMIFBgwYxZMgQXnzxRYqKipg4cSIA48ePp127dsyePRuAZ555hieeeIL333+fjh07+vqaioiIICIiotH2QzRjfn1IuTDote+I20wtgjC6Dh/dAfGd4coAzUubQoZUDYG4gCQgJYQQfmJjYxk8eHBjV6PJGpgWR5jFyI5j+dhMBiJtZsKt3iZ8AJqm0TbCyr6sQvZmFdA9KaqRayyEEEKIumj0gNS4ceM4efIkTzzxBJmZmfTr14/ly5f70tcPHTqEwXC2ZeErr7yC0+nkpptu8lvPjBkzmDlzZkNWXbQUFUbZM1DdsNLnIEPqyHrYvdT7e6CAVFMYZa82mVl6M8rmEkII0SQUFLsxaJAQZcMYIAPKZjZyqrBURtwTQgghWoBGD0gBTJkypcomeqtXr/b7++DBg+e+QqJ10f2b7BlU3fqQClkN6/QPSDXSBbjLEfoy0oeUEEKIEJUfcS/cWvkytcTlwWIyEm2v7uGRaK50XbE3q4A8h4tou5muCZHSNFMIIVqwJhGQEqJR+TXZqykgVX2GlFVzh968zWg5+7uug6HCWAPuJjDKXq0CUtJkTwghRGgCjbhXRinFycJSeqVE0zUhshFrKc6FTRnZvLUmg/1ZhTjd3sBj54QIJgxPk5EVhRCihWrUUfaEaBI85QInugtN1S2QotWU8VSRsdxT3kABp6bQZK98HYIlASkhhBAhqjjiXlGpG4+uKCp1k5HtIDrMzPjhaZI108Jsyshm1rJdbD+aR5TNRPtYO1E2EzuO5cnIikII0YJJQEqIip2a1yFDCsAYasfm5TOkAgWc3E1glL3aZEg1pxEBhRCiGZo3bx4dO3bEZrMxdOhQ1q9fX2XZf/7zn1x88cXExsYSGxvLiBEjqi3fmMpG3LsgJZr8EjdHchzkl7jplRLNo1f3kGyZFkbXFW+tySDX4aJjvJ1wqwmjQSPcaiItzk5esYu312Sg67UYYEUIIUSTJk32hCgfBNLdGKrLkAoi+8kUaoaVX0AqQBCn2WZISR9SQghxrixatIipU6cyf/58hg4dyosvvsioUaPYs2cPCQkJlcqvXr2aW2+9leHDh2Oz2XjmmWcYOXIkO3bsoF27do2wB9UbmBZH/9RY6U+oFdibVcD+rEISIq1+TTRBRlYUQoiWTjKkhCjftKymDKkaRtkDMNamY3Pf9ksrT5M+pIQQQlTw/PPPM2nSJCZOnEjPnj2ZP38+drudN998M2D59957jz/84Q/069eP7t278/rrr6PrOitXrmzgmgfPYNDonhTF0PPi6Z4UJcGoFirP4cLp9mAzGwPOt5mNON0eGVlRCCFaIAlICeGXIVUPTfbq0gdVwD6kygWDGqsZnFMCUkII0VQ4nU42bdrEiBEjfNMMBgMjRoxg7dq1Qa3D4XDgcrmIiwvc/K20tJT8/Hy/lxDnQvmRFQORkRWFEKLlkoCUEOWDPDX2IRVEk706ZUgFarInGVJCCCHOOnXqFB6Ph8TERL/piYmJZGZmBrWOadOmkZKS4hfUKm/27NlER0f7XqmpqXWutxCBlI2seLKwFFXhwV/ZyIpdEiJkZEUhhGiBJCAlRPkgkO6ue5O9+s6QcpfvQ6qxOjWvTR9SklovhBBN0Zw5c/jwww/55JNPsNlsActMnz6dvLw83+vw4cMNXEvRWrTmkRV1XbE7M591P59md2a+dNwuhGh1pFNzIXT/DCmtusyeczHKXnnuAH1INYkMKenUXAghmoo2bdpgNBo5ceKE3/QTJ06QlJRU7bJz585lzpw5fPXVV/Tp06fKclarFavVWi/1FaImZSMrvrUmg/1ZhZwqLMViMtIrJZrxw9Na5MiKmzKyffvrdHubJXZOiGBCC91fIYQIRAJSQlToQ6r6DKdznSEVIKtIOjUXQghRjsViYeDAgaxcuZKxY8cC+DoonzJlSpXLPfvss8yaNYsvv/ySQYMGNVBt607XlYy21wq0ppEVN2VkM2vZLnIdLhIirdjMVkpcHnYcy2PWsl08enUPCUoJIVoFCUgJ4deHlButuoBSUH1I1Xen5s21yZ4EpIQQ4lyZOnUqEyZMYNCgQQwZMoQXX3yRoqIiJk6cCMD48eNp164ds2fPBuCZZ57hiSee4P3336djx46+vqYiIiKIiIhotP2oqGLwqaDExTtrD0kWSStRNrJiS6brirfWZJDrcNEx3o6meQNu4VYTdouRjGwHb6/JoH9qbIsMxgkhRHkSkBLCrw+p+hhlry6dmgfqQ6opZEgVhb5MYwXPhBCiFRg3bhwnT57kiSeeIDMzk379+rF8+XJfR+eHDh3CYDjbVegrr7yC0+nkpptu8lvPjBkzmDlzZkNWvUoVmzC5dUVesYsws5EOcXbJIhEtwt6sAvZnFZIQafUFo8pomkbbCCv7sgrZm1XQ4oNzQgghASkhygd5yo2ydzSsG+2G3gjx58O/7jpT4Bz3IdWiMqSkDykhhDiXpkyZUmUTvdWrV/v9ffDgwXNfoTqo2ITJaray/WguhWc6uHZ5FOFWTbJIRLOX53DhdHuwmQP30WYzGzlVWEqeQx7sCSFaPhllT4jyTct0Fwa8gRRdM8Fl06B3uafJwTTZCzZD6sgmmH8xHPzu7LSWFJA69iP8vLreqyKEEKJlqdiEyW41kV1UisPpwWoy4NYVR3IdqDNZyhWzSIRoTqLtZiwmIyWuwNeLJS5v09Rou7mBayaEEA1PAlJC+HVq7vFlSOmasXLZIEbjDTpDasFVkLkN/n1fuboE6tS8fECqiXVqrlXzEbLuFXjnBig6fW7qJIQQokUo34Qpr8TNjmN57M8qpMSlU+zy4HLr5Be7KCo9ewNvMxtxuj2SRSKana4JkXROiOBkYakvyFpGKcXJwlK6JETQNSGykWoohBANRwJSQlRqsucNKHm0QC1a63GUPU9p9XUp42oKfUhVkSFVXUAKQHnAcar+6yOEEKLFKGvCVOrR2XeigIJiNyajAW9LPA23rih16+Q4zn4HShaJaK4MBo0Jw9OIDjOTke2g6Eyz1KJSNxnZDqLDzIwfniZNUYUQrYIEpITwVGiyV22GVM0BKUNdRpdzVwhSKVUhQ6qRngQ7q+jUvKaAFFSdXSWEEEJwtgnTodNFuD2KMIsRi9GA0WBAKYWmeb8OT53JKJEsEtHcDUyL49Gre3BBSjT5JW6O5DjIL3HTKyVaOusXQrQq0qm5EH4ZUm60agNSNfchdSy7gLxiF9FhtXhqWzHgVDFA1dwypMA/w0sIIYSooGtCJAmRVvZnFRJmNpzpxFxHVwq93HOg3GIXGaeLQNMki0Q0ewPT4uifGsverALyHC6i7Wa6JkTK/7QQolWRDCkhdJff72VN9nQCBKSC6UTK4+TzrcdqV5eKAaeKHaTrrqCytOpdlQGpQO9RxWUlQ0oIIUTVDAaNy7u3RVeKglI3ecUuipwe3Lr/952u4HBOCSnRYZJFIloEg0Gje1IUQ8+Lp3tSlASjhBCtjgSkhCifleSpe5M9s+bh442Ha1mXIDKgGqPZXm06NfctW4sR+oQQQrQamzKy+fTHY7h1b0ZUxW9aowZ2s5Ews4HYcDOx4Rb6p8Y2Sl2ro+uK3Zn5rPv5NLsz89H1RniAJIQQQjQj0mRPCL9R9soHpAKcHkE02TPhYdvRPPJLXETZQmy2F1RAygkmS2jrras6NdmTgJQQQojANmVk85elO9l7ohCNysEow5lppW4P8REWOsbZ2Z9VyN6sAronRTV8hauwKSObt9ZksD+rEKfb2+F654QIJgxPa9GZXLqupMmZEEKIWpOAlBB+GVJuPGV/G2rXZK+t3YAqgO1H8hjeuU2IdanYZC/A9hqjH6mqgkqGIAJSbglICSGEqEzXFW+tyeBobjHFLk/Ab1gd0BSgQZtwG2EWE6eLnOQ5GmmQjwA2ZWQza9kuch0uEiKt2MxWSlwedhzLY9ayXS22eWFrDcI1BAn0CSFaCwlICeHx70Oq0OHthNtqtVYuG0STvQ4xZiiALUdy6x6QClimAS/CPW5493oozQs8XzKkhBBC1NLerAK2Hckl1+GiutZtZ+JRuHWdEpc38BFtr8XAIQHU9ca/LKiW63DRMd6OpnmXDbeasFuMZGQ7eHtNBv1TY1tUQKG1BuEaggT6hBCtiQSkhND9+5AqOBOQCgsUkAoiQ+rmk/M4YDzN1sOTQq+LO8gmew3l4LeQ/m3V84MKSEmn5kIIISrLLXJxsqAUt6fm71ZdwdHcYoqcbgalxdE1IbLO26+PG/+9WQXszyokIdLqC0aV0TSNthFW9jXBJoZ10VqDcA1BAn1CiNZGOjUXwq8PKTdFJd6AlN0WKEOq5j6kAB42f8i2I1VkFVUn5yDsWV4uE6v8RfqZi7raBKRcxfDlo3Dof6EtV5Jf/fxgAlJ7v4S3roOTe0PbthBCiBYtp9iJ06MT3DcrOJweHE4PvxnWoc6BjrIb/+1H84iymWgfayfKZvLd+G/KyA5qPXkOF063B5s58KizVrORghIXaw+0nI7OQwnCieBVDPSFW00YDRrhVhNpcXbyil28vSajRfwPCSFEGQlICeFxl/vVSanTmzEVbgvQcXgQTfbKnMhzkF1URfCoqvXs+xI+GAc7P4U9/4Hi3PILeX9sfssbWHIEd7EMwHd/hbUvw5ujgl8GwFlU/fxgAlKH1kL6N7Dhn6FtWwghRIsWE2YmlLiS0QBRNhORoQ4YUkF93vhH281YTEZKXJ5K83KLXWw/mktWQSlvfp/O1EVbuX/RlqCDXU1VTUE4m9mI0+1pUv18NQcS6BNCtEYSkBKiXMaRlrWTe42fAGA1Bdmp+T0bYMST0P8Ov8nhlFDqrnyBCoC7tPo6Lb4TPvg1vHtD5Xk//M0bWJo3pPp1lHd4ffBlyys6Wf38YAJSZYLMLhNCCNE6xIZbsFsCBzUCMRkN6Io6Bzrq88a/a0IknRMiOFlYiir3sCm32MXezHzyS9xEWE2c1ya8VhlYTVF1QTig3vv5ai0k0CeEaI0kICVEuYCUwVWEQauuZ9UA89p2hV/cT8VgVQTVdOYdbL9Kp6pp5lZTsKi8mjKdqlKYVf38UAJS7pLa1UEIIUSL1DUhkpiw4IMWulIYNK3OgY76vPE3GDQmDE8jOsxMRraDolI3bl1x8FQhJW6dMLORjvHhmIyGFtP0qqogHIBSipOFpXRJiKiXfr5aEwn0CSFaIwlICaG7ay5Tprome8e2+v0ZqTmqLt7QHX07C2u3XOGJ6ueHEpAqlRRzIYQQ/qzm4MbX0QClK85rE17nQEd93/gPTIvj0at7cEFKNPklbn4+WUhhqYcom5kuCZHElFtPS2h6FSgI59EVRaVuMrIdRIeZGT88TTo0D5EE+oQQrZGMsidEVZ2Ea4EupKoJSFXIAKo+Q6qaeedC+QwpparYt3KKTsPGN+HY5urLhRKQqqmDdCGEEK3K3qyCoPtmVHgzl/7wy/NrFejQdcXerALyHC4ibSbObxvOzuP52C1Gv2Z7ZTf+vVKiQ7rxH5gWR//UWPZmFbD2wGne/D6d89p4M6MqspmNnCosbdZNr8qCcGWjFJ4qLMViMtIrJZrxIYxSKM4qC/TNWraLjGwHbSOs2MzewOnJwlIJ9AkhWiQJSInWTSnwhHBBWN2Fs9H/SWqkVlx1+Kq2TegqWjvPOzJfj2vhqyfhmhcguU+A7ZXLkHI5wBJe/Xo//b23g/WaSIaUEEKIWspzuMgtDj5L+by2EQzsEHqgY1NGti9w4nR7s5/iws0YDVq93vgbDBrdk6IAWLzxCKVuPWBAqqU0vSofhMtzuIi2m+maECkBkzqQQJ8QorWRgJRo3XQP1WY9VVRdx9wG/9Mpkmqa5dVXk70vH/H+XP+a9+fbY2Baun8ZXffPTirJrzkgFUwwCmrOtCpPAlJCCCHKibabUUF+BydFWnF5vFlOZUGfYGzKyGbWsl3kOlwkRFqxma2UuDwczyvBaNBIjg4ju8hZrzf+ZU2vdhzLq7cMrKaqfBBO1A8J9AlRv8pnyMr51PRIQEq0blU116tSNRfOFQNSmgNPSSEQVrlsqAEpgxn0IDK5irMhYw3EpEF0O+80xylQ5frJKC0AkkPbfnU0Q3Aj6ElASgghRDldEyJJjQ3jRH4NI88CVpMh5BHGdF3x1poMch0uOsbbfYGhcKsJu8VIRraDuHALj1zdnYJid73dqEjTK1FXEugTon4EypDtnBDBBMk4bDKkU3PRulUX5AkUrAqhyd5s8xskzu9J4bHdlcs6QwxI2UP4wFxwFbzQ8+zf+cf855fWc19OwTbbq+/tCiGEaNYMBo0OcTVk7J6R43BiNhpCaua2N6uA/VmFJERa/bKU4Gzn4vuzCjFoGkPPi6d7UlS9BYkqdnR+JMdBfombXinRPHp1jyZxI6Trit2Z+az7+TS7M/Ob7ah/QggRSFmG7PajeUTZTLSPtRNlM7HjWB6zlu1iU0Z2Y1dRIBlSorWrrv+ogkAjzAWfIQVgxcnmf/+dYZPn+c8INUPKHl/ziHdVKTju/3dNgSE98KhDVdKMQBB9gDgLves2BB5mWwghROviduss3Xas5oKAw+UhKcoWUjO3PIcLp9uDzWwNOL++OhevqjlIU256JVkDQoiWLJgM2bfXZNA/NbZJfCa3ZhKQEq1btQGp45WnhdCHVJkNR0rpmFdMcnS5pnu1CUgl9ISsncEv43GD0VQ5Q6qm0e4Ks0KrWygdmzsLwRYNP6+GzO0w7J7Q+qESQgjRYiz76RhOT5BZOQou75EQ0o1DtN2MxeRtKhduNZWthqJSNy6Pjtuj6ty5eE2BnabY9KqqfrXKsgaaSgaXEELUVjAZsvuyCkPul1DUP2myJ1q36vqQKsg8+3tZ0OW8y6subwx8QRuuClm2rUJwqzZN9m79ILRlinO8P4tO+k9fPAFO7YONbwbOhso7Etp2QglIpX/rbfb49hj476PewFRFRzbBN8+FNvqhEEKIZueD9YeCLmsyaAzqGBvS+ss6Fz9ZWIpSitxiFzuO5bHjWD67juezO7OAvGInBSW1+75pjs1BKmYNhFtNGA0a4VYTaXF28opdvL0mQ5rvCSGatbMZsoFbZtjMxpD7JRTnhgSkROumV9PUrKhcptADO+E3/4Ie11Zd3hA4IJWg5VDqrpBZ5SoOoZJ4M6SsIUbvHae8PwPt48uDYOkDsO5VbwaVXq5+eYdD204oAalFv4FTe8/+fWQDfH4vnNp/dtrrv4RVf4Et74dWDyGEEM3K8dzgvws1g1Zlq/mq+kIq61w8OszMnhMF7D6eT77DhfdZuYbF5P1t9he7Qw4eNdfATihZA0II0VyVz5ANpMTlqXOGrKgf0mRPtG5lGVKa0X8kuoqikr2v6vziftj7n0qTE7RcNuaXoJQ6e/HnKgqtnvZ4sIY4PHTRqZrLfDnd++p9CyT38U4LZsS88kIJSIF3FMAyq2Z5f+Yd9jZJjEo5Oy+U5olCCCGaHb26fhkrMBk01qVnYzBofv0w1dRkbmBaHNOv6sH9i37E5dExGQ0oFFFhJtrH2IkOM9WqL5Hm2hykofrVEkKIxlSWIbvjWB52i9Hvc1opxcnCUnqlRIfUL6E4NyQgJVq3soCUJdzX2bfHHIExPB5+NTe0dXW4EP6cDofXwQe/9k1OIIe31maw90Qhf72lLykxYbVoshfvbRJosoG7JLhlHKe9P6sbGbDMTx95XwDdrwmtbqH2AXXof5WnHfja+yovUGZX2b5Iv1NCCNHsxYVZOJxTGlTZwlIP877exztrM0iNDeOKHolE2Iy8szaDvGJ3tX0hRYaZiLKZiQ+3YDIaMBsMhFvP3qDUJnjUXAM7gfrVKk+yBoQQLUFZhuysZbvIyHbQNsKKzez97DtZWEp0mJnxw9OkQ/MmQJrsidbNcyboYT7b4Xh++0vh/m3QdWTo67PHVWpa186UT5jZyNqfT3Pfhz96J9amU3MAS0TwyziCyJAKJFDAqDqhZkilfxtcuZyMytO+fx5mJcHxbbBnOeQH6HheCCFEs+BwBz+qqwJOF7k4eKqIb/ed4ullO3ns0x3sPVFIrN1cbZO5PIcLl0cnLtxKrN1ChM3k97S8pr5EAjUJbK7NQSr2q1VeWdZAl4QIyRoQQjR7A9PiePTqHlyQEk1+iZsjOQ7yS9z0SomWwRuaEMmQEq1bWRaO6ewTTt0UVkXhINn8A1IWvZgdptuYod/BOwdHsu9EAV1CDUiFnfnAtEYGH2gqOh3aNsqEGsgyBO4ssEoFwQ3xTW6FgJRSsPIp7++vXuz9mTIA7l4V2vaFEEI0Ol1XHMkOMuP3DMXZbqTcHoXb48Fi1NiXVUj72DBsZiNmo4Fwq4k2EVZ+OpbHvzYfIcJmwmw01CorqKomgXdcmNYsm4NI1oAQojUZmBZH/9RY9mYVkOdwEW03+zX7Fo1PAlKilStrAnY2qKKb7HVbZYC+ngzKw9PmhbzjuZIrX/iWpZH76FW+gGaovu8me1lAKpQMqbKA1DnuUDXUDKlg5R7ydrZuOLP+7J8rlzm2Gb57HpyFcPmj3tED23aTJn1CCNHEbT+WS3HFAT9CUPbNVupRuHQ3ezILMBs1TEYjZqOGUgqHU+fZ5buxW00UOz3kF7volhQZdPCobBS9XIerUpPA2f/ZxY0D23Mkx9HsAjtlWQNlgbZThaVYTEZ6pUQz/kzfW0II0VIYDFqT6stP+JOAlGi9cjLgq5ne38tdnNY5Q6qa0fA2hj9ArstER2cmlL9GDYstF0AKwNdkL4QnrbVtsheC43klWJWbc3Lp6i6Bk7u8HZ2bbPBzFZlQK5/0/jy8Hg5+B9e9DAPu8E7bs9y7jovulyCVEEI0IR+sC9Asu5bKBrLTdIWmKRxON7oCgwaFJW4KSt24PQqFotSj07ltRI3Bo4qj6JUFscKtJuwWIxnZDtb/nM30X3XnnbWHml1gR7IGhBBCNAVNIiA1b948nnvuOTIzM+nbty9///vfGTJkSJXlFy9ezOOPP87Bgwfp0qULzzzzDL/61a8asMaiWdN1WP+at/lX2Wh35bJvdHN43dZfzWh4bTxZtAmQUHTSHUbb6tZZFpAKJdup4ih7Rit4gus8tpKL7oecg7DzU7/JDqcHpSn/4Fp9emW4t96JPSG6ffVlD37n/fnVTG9AqjgXPp7o7a/LaIXYNDjvMlj/T4g7D3pe5y1/+gAsvR9+8QCc/0v/dZbkQ9FJiEmD41u9QbK8I7DqL3DVc951t+3urZ8QQoigfbur/vsAdOvg0T2+b0pdgdmoYTYZcXt0ipwe8opdHM8rxmw0VBs8CnYUvUibmRfH9WuWgR3JGhBCCNHYGj0gtWjRIqZOncr8+fMZOnQoL774IqNGjWLPnj0kJCRUKr9mzRpuvfVWZs+ezTXXXMP777/P2LFj2bx5M7169QqwhSbMVextYnRqL5TkeTNrrJGBX6bAo7iIEJ3cC59P8Y6EB2Awge4mP74vUae3AmC21TEgZQy9A9PMEhNtq2j5phut5DhNxJoVhuLc4FdacZQ9W5Q3uBKsK2bA9iUw6E4Y/DsA9r0xiS6HP/IVKcVCjMkDwfdLGzpPKRz70fsKhuMUfPEQxJ1/tvP4L6d7f4a3PfseXP8q9BwLb10H+UegOMc/ILV7GXw03tvPWKdL4OD3gObtM8vjhA/GnS3bdTToHrjhtbPNKwNxFnlHdAxEqcpZXEp5t7/hDUjqBR1/UfP+KwU56d6su7DYmsvXpHyzSeGllDcAmv4t9L/DG+wUohE05wd6Rwtr31yvKhr+j20MeIMuGmA2GoiwajicbhIibfxpZDdiwqsOHoUyip4EdoQQQoja0VTFITYa2NChQxk8eDAvv/wyALquk5qayh//+EcefvjhSuXHjRtHUVERS5cu9U278MIL6devH/Pnz69xe/n5+URHR5OXl0dUVANdPDiyvUGnk3v8f+YeIuiMF6PFP0BlqSJwVekV5R2ZzbdcRGg3l0p5s0KcRd5+epxF1fzuqDC9YrkiCG8DHYZB2jDvz/A2tXpLQ+ZxwZqXYPUz3gCHJQKufBIGTmT15wuYvVHjS9NU7y7/ai7akEl1215pAbhL4cR2WD3HO+3QWr8iKqk3WuZPAKw39meAZxumAJGd4yqOYaUvYzJo/GD+PYlablBVcFgTWDrsQ27c+BuMhcfg4gfhu7lB7oAGU3d6m8sB763L4Nu9J/nvjuM8ZVrIHaavACi++BHCfnr3zP9yZW8NXcrINqdJLvn5bNM68DbBC4uFgiqekFsivP87dRGRCIUnQlsmLA7GvOwN/Hw71/s/EwrN4M2mGngnXHTf2QCTuxS+fhrWzoPuV3vLAAyYAEc3QVgMfP5Hbyft1/0dbNHeTK8f3/Fmhp3cDaYwuGedf/DD44atH3jL97gWjm6Gr2aczRZr0xXaDYL2g6D9YEjoCcYzzyGKTnmPW0SCNyD+02JvgC6lnzf4l5MB2Qe858x5l8KlD0P7gd7Ps8PrwGz31tsW4/1pjap9s0ilvJ8PVfWR5irxBuYMRu//TqDt7F4Gmdu9ny3th3iPRWkBOAu8P0sLz/zM9/5vlZ/mcXq3XbYPusfbp5vuAVXhd12Hn1dD1g7vdm0x3kBk11G12/dg6R7IP+r9WfZZbrJKU9RzqFGuF0KwaNEixo8f7/dAb/HixdU+0Lvkkkv8Hug988wzQT/Qq+/3o+PDy+q8jupoeE+PSKu3Q3Pw9hdV5PKQGGnj1fEDqw0i7c7MZ+qirUTZTAE7Qi8qdZNf4ub5cX0lGCWEEEKcEer1QqMGpJxOJ3a7nY8//pixY8f6pk+YMIHc3Fw+++yzSst06NCBqVOncv/99/umzZgxg08//ZStW7fWuM1zeoGpFKe/fRW98BSGguNYc/djzd2PuaTqvnzclmhKYzrjtsVhcBVhdBVicBVidBZ4f7qL67eOgMccgcccjm6O8P5uiTwzLcI3TTdasWfvJOLEeswltRytLQjF0efjtsai6W405QHdfeb3M6PfoZ254dJQvt+905WmAQbQyuadKX+mnCr3u7n4FLZCb9AkO/kS9g75C8X2ZHYey+e5L/cAcNB2m3fVV//VlxFUbwqz4NVLvRk4W971TkvqDWcCUtz5BST1Qv3zCrTT+/wW/Vi7kgeLJwKw2zoBmxZ4WOqKXMpIhkqks+EYB/RkbvL8hSiTh2+0u2tcNt3ShfuiXmTbkTziwy2cLnL65r0Y/SFjSz/3/vHgfnj3eu9+jHuX/A0fstfclUF7ngegY8n7ABjQeTF8Idd5vIGstYm3sq7deNKKtnMyogfX7nmYnQnXcMXP3uDd4r5vcu2O+7G58yvV7VREN9oU7mFH6q0YlZsiWzID93sDR6eiLqBN/o6A+5QT1R2rMxc0sBdnBvUeViWvzQBOdvgV0ac20fbQfwKWyY/vR2F8b9zmSOKPfk147u6g1u2yxuGyxWPP21dpXn7bATjtSUSe/JGi+N7Y8tN95UrtSVgd3v1SmtF7PlXgMYVzotvtmJy5tDnwKQbd6TffbYmiKL430cd/CFi3gsSh2PL2B/xMcFuiKGrbn+LY7hg8JRhLczG4S9B0FwbdhW6ykt/uUjyWKDTlwVx0HFveAWy5B7Dm/4zJWUBxTFdyO11NafR5GF0FWPMPEnFsDWGnd6CdCd7rRivOiPY4I9vjjEjFFZUKSidpw7O+MgrN9/u5opvsuMKTseYdAKCwwy9xRqbijkjBbYtH85RidDswuIowuIrQXA403YU685mrWyLQLZEog9n7mYcOyoOmu0HpaLoHY0k2lryfMeemY87PwFChya0ymNBN4egW7+e5braf+Rw/+7duDsdjjkDT3RhLcjCWZGMqycZYmofHFoMzsgNue4I3W1QzgMGI0gzegR4MRu80zeh9kFE2De/NvaY7MRadwFSUiakoE2NRJgaXA2W0okxWdKMNZbKhjFZ0oxVltJ2ZbkWZbGemeV96WTmDBYOnxPu+OQv9f575fvT97vR+ZzqG/4nIy+6v92Pc1ANSzf2B3rkISIWZDZS4dBRgPHO5EGkzYTrzIM6tK1y6Tpzdwtyb+zL0vPgq16XrivsXbWHHsTzS4uyVOkLPyHbQKyWaF8b1axbN84QQQoiGEOr1QqM22Tt16hQej4fExES/6YmJiezeHfjmLTMzM2D5zMzAN5ilpaWUlp69iM/Pr3yDW280DfvXjxOmOSvNOqriOaCncEClsF+1Y7/ejv0qhdMlUZBf9YWMEQ/hlBBBMRFaMREUE6kVE37m70iKffPCz8wrXzaCEt/vZs17g2p0FWJ0FQKhZY84lJUirDiUDQdWHNgoUjbvzzPTi7Cd+Xl2fjFWirBRrKykalkMMexmsGEP3QxHCDtzM9cQclU4T7rG80n6LyD9CHDENy/Gboay1gNpF9X/xiMSvBlHmubtb+jwehgwHpZMgsumQ0fvNrVrXoBd/4bzL/dmDyX14ab2gxjj0dl1PJ8tK+7iwoz5HIgczPkFGwD4a8L/o0/Bd2geJyOcKwE4rcUSTw6dtWNkqljudk0lR4WR69HRrRoG7ezN+ofuy7jEuI0ULds3bV7RL9mWn+ddV7lg1Eu39ufq8HB493PodSNEtPVm9GRuh+7XENXjWgYVnYbnvAGpNhEWThU60THwquNyrrN6A1KTMy4nPyMHaAfk8/94BE7BJONtpGineXKdlWd4hunm91ni+QUPmP7FIMNeAO44fSdxWj4b9nXHibd55A7rq4Rrpdx98mb6G/rxuPk9AJzKyDq9Bxcbt/P7UzfxP70HJjx8b72PJC0nqEPnUFbsmvczJF+FEaUV88zx/rx/pCdxtGez7T9kqwj+5bmEicblrNQHcIVhM1GntxB1eotvPadUFG+6r+L/TP/mlIoiTisgRisiR0UQqxWyxtOTWK2QHqWHMJdmc0pF8bz7Zrprh9ijUplpeouok5t967M6vNllecqODRdWRya60liiX8wLrhtxYKWf4QD9Dfvor+2nn+EAke4iUna85lvHSRVFDEWYNQ8nVAyJzlyij/+AWxk4otrSXjvJ393X0147yfXG74k84W3qelTF41A2orUioinCqrkwOfOJPvoN0Ue/qfK9jDn0VbXvdVjuXsJ+3FttGYOn1BvICvDZ8aPemRTtlF8WYbGyUEgYBSqMImwUKjuF2CgkjCJloxA7LoxnPi+9DwB0DHjQzvw0+P3UMXBUxfNZyUWUFFp41PQuE0wriDj0dbX1rg+lyoQHo+//UdPdGJ15GJ1553zbTdmun48w5LLGrkXDcjqdbNq0ienTp/umGQwGRowYwdq1awMus3btWqZOneo3bdSoUXz66afnsqoNxmyAMLMRl0fHrXv7j7IYNYxnAklKKZwenTCzkQiriWh79c3rDQaNCcPTmLVsV7MbRU8IIYRoLhq9D6lzbfbs2Tz55JM1F6wnX5kuxqNDriGWQ4Z2ZGjtydDaUaxVHrnNhvd2vDre6yhvMxbHmVdWpfnVLF/W27RSWHASTjF2VUw4DuzKQbgqJlxzYFdnp4crB2GUcERLZqvxAtINaRRjQ9eMVdSx5ouxshJ5wHZG8iYQpfLp7tmHFSduzYiHspcBnbJtKTQUhjPZDtqZv7Vy88rlT/myIs6WO5sxscvUg0JjND00DYMGBk3DYNCID7fwmws7QId0KMiEhB417k+tlL1Pw+7xvgAeOuB/EDtd7H1VYDYa6NM+BsbPgqM3cH5KP29TL3s8f2rbDbjH25Tq+xeg76+JD28L616FwhNEXvwoH1niKHXrON06x/a/AQWZnOg4Btux/5HQdjg7Sooo2PUq9oIMDscPJy32ap6NCcNmNpIcbaNz2whiwy3eyqhkuP8niDrTyXhKf++rTHg8TN0FZjsbw2LILnKSXeRkxc7ufHlccSLsPG63nY/LrePWFUopdAUKhUP9gb0KbkWhFKxTs0hRsEiNZFv+D9g8RXSLuhClaYxWoCuFAp5yfUAb5xESrBdwhF/wbn4bOpXsYr/1An4Iv5Jl7hPYzO25RHlvSqap9xng+IGhxd+wzTKQVWFXMrTkOzJMnTDqLhI9xwjTixhYuoEPwm9nQOlGMowdiFAF9HduZlfMaHpoYUAUEzxvojQ4aUhgmfotpZqNdzxZDHT9SIKeRYQqokSz8ol1DLmGWL5Tt+DCTJzKIVE/wW5DV87T0/nZ0AkjHm4rXUS8ns2btjvIMcSy8czb+id3Dy5xfY+GYrOxLx31Q2RrsWwwDcSIm/b6MQ4Z2pNjiCUMCAMOqWQO8Qs+AwzKw0XuddzpfI/DhvZ8ZBnLDmMPNKVjwk2YKuGBklfI1aJZZLmeTC0BM06cmrf/lH/pd3C5+3uMuPnIdJ1vOoBVlZKmH6anvodU/RhFmp0CLZwSbLgw4cJEgjpFf892DOgoNE5rsRwypHBIa88hQwq5WjRD3D9yiWcdERRRiJ0cLYYthp78aLiAfCIx4iFG5ZOsskhRJ0hWJ0hWWSSrLPYaOvGi9Xd4lEYcubgw4yAMz5nPrUD5UlXlB6sqsqvKl7edeb3M/7Fa/yXd1M8kcppEdYpY8inGioMwHNgoxoZDs+HBgF2VEI73szYCB0Y8eNTZYJdbM/p+L8TOIZI5pKWQQTIntDbomhGD8hCGEzvF2CkmHO867ZR4/1be6WHlpusYyCWKXC2KfCLJ18KJUQW0U8eJIR+D0tFQnN26ByPeaQal+8JxZdNA4cHIKWLJIo6TWhxZWjwObJhxY8WJDScW5cKK0/vSXFhwYVFn5uH92/u7928rLkqxeB9uEIZDCzvzPnrfyyItjGItjCK8L4cWxphO/ai616SWqcU90KsHZVlQBs0AeLOkyprquXVvMMpk0LCZDXRNjKRrQs2j1g5Mi+PRq3vw1pqMZjeKnhBCCNEcNGpAqk2bNhiNRk6c8M/UOXHiBElJSQGXSUpKCqn89OnT/Z4I5ufnk5qaWseaV+3ax5ecs3WLBlBdh9TnQqj9vxhN0GGo9/e04f7z7HEw8umzf1/xOADhZ14+bW4EoD1Al5u4oGz6AG//UqlAhTVXrnNMh+rreabvKYC4cAtx4RY6J0QAf6x+uWoNAOC2oMoOBuAiYEKVZYYDD3Eh4G3EGLjD8GEA/MZv2i8DFazkRr+/xlVRyuvycr+PAKByj0SXUlbTGyvNC9YVwCN0BCqHPQG8Iw+OqXL5WwCo5wat5dxQaUrVdfHXm7q8L3U1otG2LMS50tAP9GpLA0xn2ucVlLoxGQx0jgvnRH4JpW4dt1IYDRphZiM2s4HEKFtImU0D0+LonxrbLEfRE0IIIZq6Rh06yWKxMHDgQFauXOmbpus6K1euZNiwYQGXGTZsmF95gBUrVlRZ3mq1EhUV5fcSQgghhGiuGuqBXl5enu91+PDh+qn8GW//rvYjIxsNEG4xYjEasJkNJERaSY4NY0jHOGZd34v/PnApb04czPDz25AYaSPObiEh0sqgMxlPoWY2lY2iN/S8eLonRUkwSgghhKgnjd5kb+rUqUyYMIFBgwYxZMgQXnzxRYqKipg40duJ8/jx42nXrh2zZ88G4L777uPSSy/lr3/9K1dffTUffvghGzdu5LXXXqtuM0IIIYQQLUL5B3plg8KUPdCbMmVKwGXKHuiVHxSmpgd6Vqs14Lz6cEnnNGB7SMsYNIi2mYiwmYmwmuiSGMll3drSLiasUubS4I7xvHlnnGQ2CSGEEE1Yowekxo0bx8mTJ3niiSfIzMykX79+LF++3NfPwaFDhzAYziZyDR8+nPfff5/HHnuMRx55hC5duvDpp58GNWSxEEIIIURL0BIe6B2cc3W1o+1pQJsIM73axXDDwHaM6p7Ez9lFQQeYyjKbhBBCCNE0aUpV1a1ry9TUh3EWQgghRONrDtcLL7/8Ms8995zvgd5LL73E0KHefgYvu+wyOnbsyMKFC33lFy9ezGOPPcbBgwfp0qULzz77LL/61a+C2ta5fD++3Z/B+NfPZkv1iYZxv7yA/qmx0kROCCGEaEZCvV6QgJQQQgghRAVyveBP3g8hhBBC1CTU64VG7dRcCCGEEEIIIYQQQrQ+EpASQgghhBBCCCGEEA1KAlJCCCGEEEIIIYQQokFJQEoIIYQQQgghhBBCNCgJSAkhhBBCCCGEEEKIBiUBKSGEEEIIIYQQQgjRoEyNXYGGppQCvMMRCiGEEEIEUnadUHbd0NrJ9ZMQQgghahLq9VOrC0gVFBQAkJqa2sg1EUIIIURTV1BQQHR0dGNXo9HJ9ZMQQgghghXs9ZOmWtmjP13XOXbsGJGRkWiaFtKy+fn5pKamcvjwYaKios5RDZsW2WfZ55ZK9rnl73Nr21+Qfa7PfVZKUVBQQEpKCgaD9HBQl+unYLTG/92mSI5D0yDHoWmQ49A0yHFoGoI9DqFeP7W6DCmDwUD79u3rtI6oqKhWdzLIPrcOss+tQ2vb59a2vyD7XF8kM+qs+rh+CkZr/N9tiuQ4NA1yHJoGOQ5NgxyHpiGY4xDK9ZM88hNCCCGEEEIIIYQQDUoCUkIIIYQQQgghhBCiQUlAKgRWq5UZM2ZgtVobuyoNRva5dZB9bh1a2z63tv0F2WfRfMlxbBrkODQNchyaBjkOTYMch6bhXB2HVtepuRBCCCGEEEIIIYRoXJIhJYQQQgghhBBCCCEalASkhBBCCCGEEEIIIUSDkoCUEEIIIYQQQgghhGhQrSYg9e2333LttdeSkpKCpml8+umnfvOXLFnCyJEjiY+PR9M0tmzZUmkdJSUl3HPPPcTHxxMREcGNN97IiRMnqt2uUoonnniC5ORkwsLCGDFiBPv27avHPataXfc5OzubP/7xj3Tr1o2wsDA6dOjAvffeS15eXrXbvfPOO9E0ze81evToet67wOrjOF922WWV6v9///d/1W63OR/ngwcPVtrfstfixYur3G5jHefq9tflcjFt2jR69+5NeHg4KSkpjB8/nmPHjvmtIzs7m9tvv52oqChiYmK46667KCwsrHa7tTn/60td9/ngwYPcdddddOrUibCwMM4//3xmzJiB0+msdru1ORfqS30c544dO1aq/5w5c6rdbnM+zqtXr67yXN6wYUOV222qxxlg5syZdO/enfDwcGJjYxkxYgTr1q3zK9PczufWbN68eXTs2BGbzcbQoUNZv359teUXL15M9+7dsdls9O7dmy+++KKBatqyhXIcFi5cWOnzwWazNWBtW6aaPvsCWb16NQMGDMBqtdK5c2cWLlx4zuvZ0oV6HKr6ns3MzGyYCrdAs2fPZvDgwURGRpKQkMDYsWPZs2dPjcvJ90P9qs1xqK/vh1YTkCoqKqJv377Mmzevyvm/+MUveOaZZ6pcxwMPPMC///1vFi9ezDfffMOxY8e44YYbqt3us88+y0svvcT8+fNZt24d4eHhjBo1ipKSkjrtTzDqus/Hjh3j2LFjzJ07l+3bt7Nw4UKWL1/OXXfdVeO2R48ezfHjx32vDz74oE77Eqz6OM4AkyZN8qv/s88+W2355nycU1NT/fb1+PHjPPnkk0RERHDVVVdVu+3GOM7V7a/D4WDz5s08/vjjbN68mSVLlrBnzx6uu+46v3K33347O3bsYMWKFSxdupRvv/2Wu+++u9rt1ub8ry913efdu3ej6zqvvvoqO3bs4IUXXmD+/Pk88sgjNW471HOhvtTHcQZ46qmn/Or/xz/+sdrtNufjPHz48Ern8u9+9zs6derEoEGDqt12UzzOAF27duXll1/mp59+4vvvv6djx46MHDmSkydP+so0t/O5tVq0aBFTp05lxowZbN68mb59+zJq1CiysrICll+zZg233nord911Fz/++CNjx45l7NixbN++vYFr3rKEehwAoqKi/D4fMjIyGrDGLVNNn30Vpaenc/XVV3P55ZezZcsW7r//fn73u9/x5ZdfnuOatmyhHocye/bs8TsnEhISzlENW75vvvmGe+65h//973+sWLECl8vFyJEjKSoqqnIZ+X6of7U5DlBP3w+qFQLUJ598EnBeenq6AtSPP/7oNz03N1eZzWa1ePFi37Rdu3YpQK1duzbgunRdV0lJSeq5557zW4/ValUffPBBnfcjFLXZ50A++ugjZbFYlMvlqrLMhAkT1JgxY2pX0XpU232+9NJL1X333Rf0dlrice7Xr5/67W9/W22ZpnCcq9vfMuvXr1eAysjIUEoptXPnTgWoDRs2+Mr85z//UZqmqaNHjwZcR23O/3OlNvscyLPPPqs6depU7XpCPRfOldruc1pamnrhhReC3k5LO85Op1O1bdtWPfXUU9Wupzkd57y8PAWor776SinV/M/n1mTIkCHqnnvu8f3t8XhUSkqKmj17dsDyt9xyi7r66qv9pg0dOlRNnjz5nNazpQv1OCxYsEBFR0c3UO1ap2A++/785z+rCy64wG/auHHj1KhRo85hzVqXYI7DqlWrFKBycnIapE6tUVZWlgLUN998U2UZ+X4494I5DvX1/dBqMqTqatOmTbhcLkaMGOGb1r17dzp06MDatWsDLpOenk5mZqbfMtHR0QwdOrTKZZq6vLw8oqKiMJlM1ZZbvXo1CQkJdOvWjd///vecPn26gWpYP9577z3atGlDr169mD59Og6Ho8qyLe04b9q0iS1btgSVCdccjnNeXh6aphETEwPA2rVriYmJ8csYGTFiBAaDoVJToDK1Of8bU8V9rqpMXFxcjesK5VxoTFXt85w5c4iPj6d///4899xzuN3uKtfR0o7z559/zunTp5k4cWKN62oOx9npdPLaa68RHR1N3759gdZxPrcETqeTTZs2+b3nBoOBESNGVPmer1271q88wKhRo+QY1UFtjgNAYWEhaWlppKamMmbMGHbs2NEQ1RXlyPnQtPTr14/k5GSuvPJKfvjhh8auTotS1jVMddeocj6ce8EcB6if74fqowrCJzMzE4vFUunCPzExscp2w2XTExMTg16mKTt16hRPP/10jU0hRo8ezQ033ECnTp04cOAAjzzyCFdddRVr167FaDQ2UG1r77bbbiMtLY2UlBS2bdvGtGnT2LNnD0uWLAlYvqUd5zfeeIMePXowfPjwass1h+NcUlLCtGnTuPXWW4mKigK8x6tiarXJZCIuLq7acznU87+xBNrnivbv38/f//535s6dW+26Qj0XGktV+3zvvfcyYMAA4uLiWLNmDdOnT+f48eM8//zzAdfT0o7zG2+8wahRo2jfvn2162rqx3np0qX8+te/xuFwkJyczIoVK2jTpg3Q8s/nluLUqVN4PJ6A35O7d+8OuExmZmaL+V5tKmpzHLp168abb75Jnz59yMvLY+7cuQwfPpwdO3bU+Nki6k9V50N+fj7FxcWEhYU1Us1al+TkZObPn8+gQYMoLS3l9ddf57LLLmPdunUMGDCgsavX7Om6zv33389FF11Er169qiwn3w/nVrDHob6+HyQgJYKSn5/P1VdfTc+ePZk5c2a1ZX/961/7fu/duzd9+vTh/PPPZ/Xq1VxxxRXnuKZ1Vz7g1rt3b5KTk7niiis4cOAA559/fiPW7NwrLi7m/fff5/HHH6+xbFM/zi6Xi1tuuQWlFK+88kpjV6dBBLPPR48eZfTo0dx8881MmjSp2vU1h3Ohun2eOnWq7/c+ffpgsViYPHkys2fPxmq1NnRV600wx/nIkSN8+eWXfPTRRzWur6kf57I+U06dOsU///lPbrnlFtatWyd9dgjRAIYNG8awYcN8fw8fPpwePXrw6quv8vTTTzdizYRoeN26daNbt26+v4cPH86BAwd44YUXeOeddxqxZi3DPffcw/bt2/n+++8buyqtWrDHob6+H6TJXpCSkpJwOp3k5ub6TT9x4gRJSUlVLlNWJthlmqKCggJGjx5NZGQkn3zyCWazOaTlzzvvPNq0acP+/fvPUQ3PraFDhwJUWf+WcpwBPv74YxwOB+PHjw952aZ0nMtu2DMyMlixYoVfBklSUlKlzlvdbjfZ2dnVnsuhnv8Nrbp9LnPs2DEuv/xyhg8fzmuvvRbyNmo6FxpaMPtc3tChQ3G73Rw8eDDg/JZynAEWLFhAfHx8wI7ea9LUjnN4eDidO3fmwgsv5I033sBkMvHGG28ALfd8bmnatGmD0WgM6XsyKSmpRXyvNiW1OQ4Vmc1m+vfv32Q+H1qLqs6HqKgoyY5qZEOGDJHzoR5MmTKFpUuXsmrVqhqza+T74dwJ5ThUVNvvBwlIBWngwIGYzWZWrlzpm7Znzx4OHTrkFxksr1OnTiQlJfktk5+fz7p166pcpqnJz89n5MiRWCwWPv/881oN5XjkyBFOnz5NcnLyOajhubdlyxaAKuvfEo5zmTfeeIPrrruOtm3bhrxsUznOZTfs+/bt46uvviI+Pt5v/rBhw8jNzWXTpk2+aV9//TW6rvtuxCuqzfnfkGraZ/BmRl122WUMHDiQBQsWYDCE/vFf07nQkILZ54q2bNmCwWCoMrOmJRxnAKUUCxYsYPz48SE/QICmdZwD0XWd0tJSoGWezy2RxWJh4MCBfu+5ruusXLmyyvd82LBhfuUBVqxYIceoDmpzHCryeDz89NNPTfbzoaWS86Hp2rJli5wPdaCUYsqUKXzyySd8/fXXdOrUqcZl5Hyof7U5DhXV+vuhzt2iNxMFBQXqxx9/VD/++KMC1PPPP69+/PFH3+hEp0+fVj/++KNatmyZAtSHH36ofvzxR3X8+HHfOv7v//5PdejQQX399ddq48aNatiwYWrYsGF+2+nWrZtasmSJ7+85c+aomJgY9dlnn6lt27apMWPGqE6dOqni4uImv895eXlq6NChqnfv3mr//v3q+PHjvpfb7Q64zwUFBerBBx9Ua9euVenp6eqrr75SAwYMUF26dFElJSVNfp/379+vnnrqKbVx40aVnp6uPvvsM3XeeeepSy65xG87Lek4l9m3b5/SNE395z//CbidpnKcq9tfp9OprrvuOtW+fXu1ZcsWv//Z0tJS3zpGjx6t+vfvr9atW6e+//571aVLF3Xrrbf65h85ckR169ZNrVu3zjctmPO/qe7zkSNHVOfOndUVV1yhjhw54lemqn0O9lxoqvu8Zs0a9cILL6gtW7aoAwcOqHfffVe1bdtWjR8/vsp9Vqp5H+cyX331lQLUrl27Km2jOR3nwsJCNX36dLV27Vp18OBBtXHjRjVx4kRltVrV9u3bfetobudza/Xhhx8qq9WqFi5cqHbu3KnuvvtuFRMTozIzM5VSSt1xxx3q4Ycf9pX/4YcflMlkUnPnzlW7du1SM2bMUGazWf3000+NtQstQqjH4cknn1RffvmlOnDggNq0aZP69a9/rWw2m9qxY0dj7UKLUNO128MPP6zuuOMOX/mff/5Z2e129dBDD6ldu3apefPmKaPRqJYvX95Yu9AihHocXnjhBfXpp5+qffv2qZ9++kndd999ymAw+EZ+FaH7/e9/r6Kjo9Xq1av9rm0cDoevjHw/nHu1OQ719f3QagJSZcN0VnxNmDBBKeUdtjDQ/BkzZvjWUVxcrP7whz+o2NhYZbfb1fXXX1/pph5QCxYs8P2t67p6/PHHVWJiorJareqKK65Qe/bsaYA9rvs+V7U8oNLT0wPus8PhUCNHjlRt27ZVZrNZpaWlqUmTJvkudJr6Ph86dEhdcsklKi4uTlmtVtW5c2f10EMPqby8PL/ttKTjXGb69OkqNTVVeTyegNtpKse5uv1NT0+v8n921apVvnWcPn1a3XrrrSoiIkJFRUWpiRMnqoKCAt/8svWUXyaY87+p7nNV/wPln0lU3Odgz4Wmus+bNm1SQ4cOVdHR0cpms6kePXqo//f//p9fwLSlHecyt956qxo+fHjAbTSn41xcXKyuv/56lZKSoiwWi0pOTlbXXXedWr9+vd86mtv53Jr9/e9/Vx06dFAWi0UNGTJE/e9///PNu/TSS33fW2U++ugj1bVrV2WxWNQFF1ygli1b1sA1bplCOQ7333+/r2xiYqL61a9+pTZv3twItW5Zarp2mzBhgrr00ksrLdOvXz9lsVjUeeed53cdKmon1OPwzDPPqPPPP1/ZbDYVFxenLrvsMvX11183TuVbiKqubcr/f8v3w7lXm+NQX98P2pkKCCGEEEIIIYQQQgjRIKQPKSGEEEIIIYQQQgjRoCQgJYQQQgghhBBCCCEalASkhBBCCCGEEEIIIUSDkoCUEEIIIYQQQgghhGhQEpASQgghhBBCCCGEEA1KAlJCCCGEEEIIIYQQokFJQEoIIYQQQgghhBBCNCgJSAkhhBBCCCGEEEKIBiUBKSGEEEIIIUSLNXPmTBITE9E0jU8//bSxq9MknD59moSEBA4ePNjYVQnZwYMH0TSNLVu21Pu6O3bsyIsvvgiA0+mkY8eObNy4sdplVq9ejaZp5Obm1nt96ttll13G/fff39jVEI3s22+/5dprryUlJaVWn4szZ85E07RKr/Dw8JDrIgEpIUSrceedd/o+MM1mM506deLPf/4z8+fPD/ihWv7VHC/YhBBCiMZQ/vtW0zTi4+MZPXo027Ztq7dtzJw5k379+tVYbteuXTz55JO8+uqrHD9+nKuuuqre6tDU3HnnnYwdOzaosrNmzWLMmDF07NjxnNaprkLZp/pmsVh48MEHmTZtWrXlhg8fzvHjx4mOjg563Y21X0uWLOHpp5/2/V0+ACdaj6KiIvr27cu8efNqtfyDDz7I8ePH/V49e/bk5ptvDnldEpASQrQqo0eP5vjx4/z888+88MILvPrqq6Snp/t9oA4bNoxJkyb5TUtNTW3sqgshhBDNRtn37fHjx1m5ciUmk4lrrrmmwetx4MABAMaMGUNSUhJWq7VSGafT2dDValQOh4M33niDu+66q7Gr0uTdfvvtfP/99+zYsaPKMhaLhaSkJDRNa8Ca1U5cXByRkZGNXQ3RyK666ir+8pe/cP311wecX1payoMPPki7du0IDw9n6NChrF692jc/IiKCpKQk3+vEiRPs3LmzVp8pEpASQrQqVquVpKQkUlNTGTt2LCNGjGDFihV+H6oWiwW73e43zWg0NnbVhRBCiGaj7Ps2KSmJfv368fDDD3P48GFOnjzpK3P48GFuueUWYmJiiIuLY8yYMX4ZyatXr2bIkCGEh4cTExPDRRddREZGBgsXLuTJJ59k69atviyshQsXVqrDzJkzufbaawEwGAy+gEFZdsqsWbNISUmhW7duALzzzjsMGjSIyMhIkpKSuO2228jKyvJb5+eff06XLl2w2WxcfvnlvPXWW37NtRYuXEhMTAxLly6lW7du2O12brrpJhwOB2+99RYdO3YkNjaWe++9F4/H41tvTTeAZev98ssv6dGjBxEREb6gX9m+vvXWW3z22We+96T88uV98cUXWK1WLrzwQt+0nJwcbr/9dtq2bUtYWBhdunRhwYIFwNkmch999BEXX3wxYWFhDB48mL1797JhwwYGDRpEREQEV111ld/x1XWdp556ivbt22O1WunXrx/Lly/3q8tPP/3EL3/5S8LCwoiPj+fuu++msLAwqH36+eefufzyy7Hb7fTt25e1a9f6rfv777/31Tc1NZV7772XoqIi3/ysrCyuvfZawsLC6NSpE++9916l9yo2NpaLLrqIDz/8MOB7CZWb7NXlWNV0TpT9786dO5fk5GTi4+O55557cLlcvjL/+Mc/fP+jiYmJ3HTTTb555ZvsXXbZZWRkZPDAAw/46lFUVERUVBQff/yx3z5++umnhIeHU1BQUOX7IFqOKVOmsHbtWj788EO2bdvGzTffzOjRo9m3b1/A8q+//jpdu3bl4osvDnlbEpASQrRa27dvZ82aNVgslsauihBCCNFiFRYW8u6779K5c2fi4+MBcLlcjBo1isjISL777jt++OEH34270+nE7XYzduxYLr30UrZt28batWu5++670TSNcePG8ac//YkLLrjAl4U1bty4Stt98MEHfUGVsnJlVq5cyZ49e1ixYgVLly711enpp59m69atfPrppxw8eJA777zTt0x6ejo33XQTY8eOZevWrUyePJlHH3200nYdDgcvvfQSH374IcuXL2f16tVcf/31fPHFF3zxxRe88847vPrqq343/cHcADocDubOncs777zDt99+y6FDh3jwwQd9+3rLLbf4ZaYNHz484PH47rvvGDhwoN+0xx9/nJ07d/Kf//yHXbt28corr9CmTRu/MjNmzOCxxx5j8+bNmEwmbrvtNv785z/zt7/9je+++479+/fzxBNP+Mr/7W9/469//Stz585l27ZtjBo1iuuuu863T0VFRYwaNYrY2Fg2bNjA4sWL+eqrr5gyZUpQ+/Too4/y4IMPsmXLFrp27cqtt96K2+0GvJlxo0eP5sYbb2Tbtm0sWrSI77//3rdu8AZ3Dh8+zKpVq/j444/5xz/+USkACTBkyBC+++67gO9lVWpzrGo6J8qsWrWKAwcOsGrVKt566y0WLlzoC8hu3LiRe++9l6eeeoo9e/awfPlyLrnkkoB1XLJkCe3bt+epp57y1SM8PJxf//rXvvOmzIIFC7jpppsku6oVOHToEAsWLGDx4sVcfPHFnH/++Tz44IP84he/qPR/AVBSUsJ7771X+4xLJYQQrcSECROU0WhU4eHhymq1KkAZDAb18ccf+5W79NJL1X333dc4lRRCCCGaufLft+Hh4QpQycnJatOmTb4y77zzjurWrZvSdd03rbS0VIWFhakvv/xSnT59WgFq9erVAbcxY8YM1bdv3xrr8sknn6iKtzwTJkxQiYmJqrS0tNplN2zYoABVUFCglFJq2rRpqlevXn5lHn30UQWonJwcpZRSCxYsUIDav3+/r8zkyZOV3W73rUcppUaNGqUmT56slFIqIyNDGY1GdfToUb91X3HFFWr69OlVrnfevHkqMTHRb7/GjBlT7T4ppdSYMWPUb3/7W79p1157rZo4cWLA8unp6QpQr7/+um/aBx98oAC1cuVK37TZs2erbt26+f5OSUlRs2bN8lvX4MGD1R/+8AellFKvvfaaio2NVYWFhb75y5YtUwaDQWVmZla5T4Hqs2PHDgWoXbt2KaWUuuuuu9Tdd9/tt9x3332nDAaDKi4uVnv27FGAWr9+vW/+rl27FKBeeOEFv+X+9re/qY4dOwZ8b5RSatWqVTX+DwRzrGo6J8qWS0tLU26321fm5ptvVuPGjVNKKfWvf/1LRUVFqfz8/IB1rXiNm5aWVml/161bp4xGozp27JhSSqkTJ04ok8lU5bkomjdAffLJJ76/ly5dqgDf53fZy2QyqVtuuaXS8u+//74ymUy+czZUptqFsYQQonm6/PLLeeWVVygqKuKFF17AZDJx4403Nna1hBBCiBal7PsWvM3B/vGPf3DVVVexfv160tLS2Lp1K/v376+UcVFSUsKBAwcYOXIkd955J6NGjeLKK69kxIgR3HLLLSQnJ9dL/Xr37l0pQ3rTpk3MnDmTrVu3kpOTg67rgDdjoGfPnuzZs4fBgwf7LTNkyJBK67bb7Zx//vm+vxMTE+nYsSMRERF+08qycX766Sc8Hg9du3b1W09paakvoyzQepOTkwNm9NSkuLgYm83mN+33v/89N954I5s3b2bkyJGMHTu2UoZVnz59/OoP3vcx0D7l5+dz7NgxLrroIr91XHTRRWzduhXwdjjft29fv5G5LrroInRdZ8+ePb5tVKV8fcr+L7KysujevTtbt25l27Ztfs3wlFLouk56ejp79+7FZDL5ZYp1796dmJiYStsJCwvD4XBUW5eKanOsajonylxwwQV+XUkkJyfz008/AXDllVeSlpbGeeedx+jRoxk9ejTXX389drs96LoPGTKECy64gLfeeouHH36Yd999l7S0tCozrUTLUlhYiNFoZNOmTZW6LCn/GVbm9ddf55prrqnxfK2KBKSEEK1KeHg4nTt3BuDNN9+kb9++0rGnEEIIUc/Kf9+C96YlOjqaf/7zn/zlL3+hsLCQgQMHBuy3p23btoC3mdC9997L8uXLWbRoEY899hgrVqzw6/uoLvUrr6z52KhRo3jvvfdo27Ythw4dYtSoUSF3em42m/3+Lhvdt+K0soBXsDeAgdbhTXAITZs2bcjJyfGbdtVVV5GRkcEXX3zBihUruOKKK7jnnnuYO3duwO2X9cdVcVrZPjWEQPUp/55OnjyZe++9t9JyHTp0YO/evUFvJzs72/c/WZu6ldWvpmMVzDlR1brL9jsyMpLNmzezevVq/vvf//LEE08wc+ZMNmzYEDDYVpXf/e53zJs3j4cffpgFCxYwceLEZtFpu6i7/v374/F4yMrKqrFPqPT0dFatWsXnn39e6+1JH1JCiFbLYDDwyCOP8Nhjj1FcXNzY1RFCCCFaLE3TMBgMvu/bAQMGsG/fPhISEujcubPfKzo62rdc//79mT59OmvWrKFXr168//77gHdks/KdgtfV7t27OX36NHPmzOHiiy+me/fulTJaunXrxsaNG/2mbdiwoc7bLn8DWPG9SEpKCno9wb4n/fv3Z+fOnZWmt23blgkTJvDuu+/y4osv8tprr4W0H+VFRUWRkpLCDz/84Df9hx9+oGfPngD06NGDrVu3+nU0/sMPP2AwGHwdzdf2OA8YMICdO3dWej87d+6MxWKhe/fuuN1uNm3a5Ftmz549vo7Jy9u+fTv9+/cPuQ7VCbRfwZ4TNTGZTIwYMYJnn32Wbdu2cfDgQb7++uug6wHwm9/8hoyMDF566SV27tzJhAkTQttB0aQVFhayZcsWtmzZAngDS1u2bOHQoUN07dqV22+/nfHjx7NkyRLS09NZv349s2fPZtmyZX7refPNN0lOTuaqq66qdV0kICWEaNVuvvlmjEYj8+bNa+yqCCGEEC1GaWkpmZmZZGZmsmvXLv74xz9SWFjoG/Xu9ttvp02bNowZM4bvvvuO9PR0Vq9ezb333suRI0dIT09n+vTprF27loyMDP773/+yb98+evToAUDHjh19N1GnTp2itLS0TvXt0KEDFouFv//97/z88898/vnnPP30035lJk+ezO7du5k2bRp79+7lo48+8nUmXZfskVBuAKvTsWNHtm3bxp49ezh16pTfyGvljRo1ih07dvhlST3xxBN89tln7N+/nx07drB06VLfe11bDz30EM888wyLFi1iz549PPzww2zZsoX77rsP8P4P2Gw2JkyYwPbt21m1ahV//OMfueOOO3zNf4Ldp4qmTZvGmjVrmDJlClu2bGHfvn189tlnvk7Nu3XrxujRo5k8eTLr1q1j06ZN/O53vyMsLKzSur777jtGjhxZp/eiokD7VdM5EYylS5fy0ksvsWXLFjIyMnj77bfRdd0X4AtUj2+//ZajR49y6tQp3/TY2FhuuOEGHnroIUaOHEn79u3rZb9F07Bx40b69+/vC7ROnTqV/v37+wYlWLBgAePHj+dPf/oT3bp1Y+zYsWzYsIEOHTr41qHrOgsXLuTOO++s02jkEpASQrRqJpOJKVOm8Oyzz/o9oRNCCCFE7S1fvpzk5GSSk5MZOnSobxS1yy67DPD2sfPtt9/SoUMHbrjhBnr06MFdd91FSUkJUVFR2O12du/ezY033kjXrl25++67ueeee5g8eTIAN954I6NHj+byyy+nbdu2fPDBB3Wqb9u2bVm4cCGLFy+mZ8+ezJkzx6+5GkCnTp34+OOPWbJkCX369OGVV17xjbJntVrrtP1gbgBrMmnSJLp168agQYNo27ZtpeykMr1792bAgAF89NFHvmkWi4Xp06fTp08fLrnkEoxGIx9++GGd9unee+9l6tSp/OlPf6J3794sX76czz//nC5dugDe/4Evv/yS7OxsBg8ezE033cQVV1zByy+/HPI+VdSnTx+++eYb9u7dy8UXX+y72U5JSfGVWbBgASkpKVx66aXccMMN3H333SQkJPitZ+3ateTl5XHTTTfV6b2oKNB+1XROBCMmJoYlS5bwy1/+kh49ejB//nw++OADLrjggoDln3rqKQ4ePMj5559fqVniXXfdhdPp5Le//W2d91c0LZdddhlKqUqvsgC72WzmySefJD09HafTybFjx1iyZIlfn3EGg4HDhw8za9asOtVFU7VpeCyEEEIIIYQQrdysWbOYP38+hw8fbuyqhGTZsmU89NBDbN++HYNBchSqMm7cOPr27csjjzzS2FVpcO+88w4PPPAAx44dqzQAgBD1RTo1F0IIIYQQQogg/OMf/2Dw4MHEx8fzww8/8Nxzz/magTUnV199Nfv27ePo0aOkpqY2dnWaJKfTSe/evXnggQcauyoNyuFwcPz4cebMmcPkyZMlGCXOKcmQEkIIIYQQQoggPPDAAyxatIjs7Gw6dOjAHXfcwfTp0zGZ5Dm/aBlmzpzJrFmzuOSSS/jss8/8RnoUor5JQEoIIYQQQgghhBBCNChpMCyEEEIIIYQQQgghGpQEpIQQQgghhBBCCCFEg5KAlBBCCCGEEEIIIYRoUBKQEkIIIYQQQgghhBANSgJSQgghhBBCCCGEEKJBSUBKCCGEEEIIIYQQQjQoCUgJIYQQQgghhBBCiAYlASkhhBBCCCGEEEII0aAkICWEEEIIIYQQQgghGtT/Bw2jX0Z92mN0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAy8FJREFUeJzs3XdYU+fbB/BvCBA2iBIBRcCBgjhxga3gqLhHrVsBV7WOqmir1tat1FoVW1tHW0FbLW5r6957VJx1L8AFqMiIQIDkvH/wkp8xjASBgHw/15WrzXPWfZJgTu7zPPcjEgRBABERERERERERUQkx0HcARERERERERERUvjAhRUREREREREREJYoJKSIiIiIiIiIiKlFMSBERERERERERUYliQoqIiIiIiIiIiEoUE1JERERERERERFSimJAiIiIiIiIiIqISxYQUERERERERERGVKCakiIiIiIiIiIioRDEhRfQe8vPzg5+fn+p5VFQURCIRwsPD9RaTNsLDwyESiRAVFaXvUNT8+++/8PHxgbm5OUQiES5fvoxZs2ZBJBKprefi4oKgoKASj+/Ro0cwMTHBqVOnSvzY75sbN27A0NAQ//33n75DISIqdm9fL5RGQUFBcHFx0XcYOhOJRJg1a1aR7rO0vF8uLi7o0qVLgesdPXoUIpEIR48eLdLjy2QySKVSrF+/vkj3+7aSvK4rq59zbRT375CpU6eiefPmxbJvKn5MSBHlITIyEl26dIG9vT0sLCxQv359/PDDD1AoFPoOjUpQZmYmevfujYSEBCxduhS///47nJ2d9R2Wmjlz5qB58+Zo2bKlvkNRkcvlmDJlChwdHWFqaormzZvjwIEDWm3r4uICkUiU66NWrVpq68bFxWHIkCGQSqUwNTVF48aNsXnzZo195iQQ336YmJiorefh4YHOnTtjxowZhT95IqJiknPj5s1/w9zc3DB27FjExcWVaCwbNmxAaGhoiR6zPLhx4wZmzZpV6m7OlSbLli2DpaUl+vXrp+9QqBSYMGECrly5gp07d+o7FCoEQ30HQFQaRUZGwsfHB7Vq1cKUKVNgZmaGPXv2YPz48bh//z6WLVum7xB14uzsjLS0NBgZGek7lDLn/v37iI6Oxi+//ILhw4er2r/++mtMnTpVj5Fle/78OdauXYu1a9fqOxQ1QUFB2LJlCyZMmIBatWohPDwcnTp1wpEjR/DBBx/ku21oaChkMplaW3R0NL7++mu0b99e1ZacnIwPPvgAcXFxGD9+POzt7bFp0yb06dMH69evx4ABAzT2vWLFClhYWKiei8VijXVGjRqFTp064f79+6hRo4aup05EVOzmzJkDV1dXpKen4+TJk1ixYgV2796N//77D2ZmZlrvZ//+/YWOYcOGDfjvv/8wYcKEQu9DG7/88guUSmWxHqM0uXHjBmbPng0/Pz+NHjPv8n7pQ6tWrZCWlgZjY+Mi22dmZiaWLVuGiRMn5vodXpRu374NAwP23yjt7O3t0b17d3z//ffo1q2bvsMhHTEhRZSLVatWAQCOHz8OW1tbAMDIkSPh6+uL8PDwMpeQyq0nSHmVlZUFpVKp9cVRfHw8AMDGxkat3dDQEIaG+v8n9I8//oChoSG6du1a4Lqpqak6/VAprPPnzyMiIgKLFi3C5MmTAQABAQHw9PTEl19+idOnT+e7fY8ePTTa5s2bBwAYOHCgqm3VqlW4d+8eDh06hDZt2gAAPvvsM7Ro0QKTJk3CJ598ovE+f/LJJ6hUqVK+x2/Xrh0qVKiAtWvXYs6cOQWeLxFRSevYsSOaNGkCABg+fDgqVqyIJUuW4K+//kL//v213k9RJgqKS2m4mSYIAtLT02FqaqrXOMrC+/UmAwODIr/+/Oeff/D8+XP06dOnSPebG4lEUuA6r1+/hrm5ebHHQvnr06cPevfujQcPHqB69er6Dod0wJQvlRtHjhyBSCTC9u3bNZZt2LABIpEIZ86cAZDd88LExEQjCeHg4KDXi5GwsDC0adMGUqkUEokEHh4eWLFiRYHb5TV2e/PmzfDw8ICJiQk8PT2xfft2jTHsOdt+//33WL16NWrUqAGJRIKmTZvi33//1TjWrVu38Mknn8DW1hYmJiZo0qRJrl1or1+/jjZt2sDU1BRVq1bFvHnztL4DGhQUBAsLCzx48AD+/v4wNzeHo6Mj5syZA0EQco09NDRUFfuNGzcAAIcPH8aHH34Ic3Nz2NjYoHv37rh586bacXx9fQEAvXv3hkgkUtVuyK2GVG4SExMxYcIEODk5QSKRoGbNmli4cKHGuUZERMDLywuWlpawsrJCvXr1tEp87tixA82bN1fr9QNk15nw9PREZGQkWrVqBTMzM3z11VcF7q8obNmyBWKxGJ9++qmqzcTEBMOGDcOZM2fw6NEjnfe5YcMGuLq6wsfHR9V24sQJ2NnZqZJRQPbFb58+fRAbG4tjx45p7EcQBCQnJ6t9Tt5mZGQEPz8//PXXXzrHSUSkDzn/Dj58+BBA9s2XuXPnqr73XFxc8NVXX0Eul6tt93ZNopyaP5s2bcL8+fNRtWpVmJiYoG3btrh3757adrt27UJ0dLRq+GB+9W8SExMhFovxww8/qNpevHgBAwMDVKxYUe3f5M8++wz29vaq57nV1tHmO1Pb79/c5NRI2rdvH5o0aQJTU1PVzcrC7jc6OhqjR49G7dq1YWpqiooVK6J3795qQ/PCw8PRu3dvAEDr1q1Vr21ODabcakjFx8dj2LBhqFy5MkxMTNCgQQONXtO6XMvFxsZiyJAhqFq1KiQSCRwcHNC9e/dchxCePHkSzZo1g4mJCapXr45169apLc+thtSb1yc+Pj4wNTWFq6srVq5cme/rl2PHjh1wcXHR6MGs7bUhAHz//ffw8fFBxYoVYWpqCi8vL2zZskXjWG/XkMoZMnvs2DGMHj0aUqkUVatWVS3fs2eP6rrS0tISnTt3xvXr13M9B09PT7Xrb21duHAB/v7+qFSpkuq1Gzp0aKHOTyQSYezYsarfA6ampvD29sa1a9cAZN/4q1mzJkxMTODn56fxGXjX91Kb3wyZmZmYPXs2atWqBRMTE1SsWBEffPCBRhmIdu3aAQCv3cog/d/eJyohfn5+cHJywvr169GzZ0+1ZevXr0eNGjXg7e2tWnfjxo0YOXIkgoODVUP2tm3bhkWLFukjfADZw43q1q2Lbt26wdDQEH///TdGjx4NpVKJMWPG6LSvXbt2oW/fvqhXrx5CQkLw6tUrDBs2DFWqVMl1/Q0bNiAlJQUjR46ESCTCd999h48//hgPHjxQ3b28fv06WrZsiSpVqmDq1KkwNzfHpk2b0KNHD2zdulX1usfGxqJ169bIyspSrbd69Wqdkn0KhQIdOnRAixYt8N1332Hv3r2YOXMmsrKyNHq1hIWFIT09HZ9++ikkEglsbW1x8OBBdOzYEdWrV8esWbOQlpaGH3/8ES1btsTFixfh4uKCkSNHokqVKliwYAE+//xzNG3aFJUrV9Y6xtTUVPj6+uLJkycYOXIkqlWrhtOnT2PatGl49uyZqvbGgQMH0L9/f7Rt2xYLFy4EANy8eROnTp3C+PHj89x/ZmYm/v33X3z22We5Ln/58iU6duyIfv36YdCgQfnGLpfLkZKSotV5FdTD6NKlS3Bzc4OVlZVae7NmzQAAly9fhpOTk1bHytnfzZs3MX36dI2Yc/vM5PQCi4yMxEcffaS2rHr16pDJZDA3N0ePHj2wePHiXF8XLy8v/PXXX0hOTtY4DyKi0ub+/fsAgIoVKwLI7jW1du1afPLJJ5g0aRLOnTuHkJAQ3Lx5U6sfv99++y0MDAwwefJkJCUl4bvvvsPAgQNx7tw5AMD06dORlJSEx48fY+nSpQCgcWPkTTY2NvD09MTx48fx+eefA8hOZohEIiQkJODGjRuoW7cugOybDR9++GGe+9LmO1Pb79/83L59G/3798fIkSMxYsQI1K5d+532+++//+L06dPo168fqlatiqioKKxYsQJ+fn64ceMGzMzM0KpVK3z++ef44Ycf8NVXX8Hd3R0AVP99W1paGvz8/HDv3j2MHTsWrq6u2Lx5M4KCgpCYmKhxDaHNtVyvXr1w/fp1jBs3Di4uLoiPj8eBAwcQExOjlhi8d+8ePvnkEwwbNgyBgYFYs2YNgoKC4OXlpXov8/Lq1St06tQJffr0Qf/+/bFp0yZ89tlnMDY21kiuvO306dNo3Lhxrsu0vTZctmwZunXrhoEDByIjIwMRERHo3bs3/vnnH3Tu3Dnf4wPA6NGjYWdnhxkzZuD169cAgN9//x2BgYHw9/fHwoULkZqaihUrVuCDDz7ApUuXVK/d/v370atXL3h4eCAkJAQvX75UJQALEh8fj/bt28POzg5Tp06FjY0NoqKisG3bNrX1dDm/EydOYOfOnarfESEhIejSpQu+/PJL/Pzzzxg9ejRevXqF7777DkOHDsXhw4fVti/se6ntb4ZZs2YhJCQEw4cPR7NmzZCcnIwLFy7g4sWLatd41tbWqFGjBk6dOoWJEycW+FpSKSIQlSPTpk0TJBKJkJiYqGqLj48XDA0NhZkzZ6rasrKyhLFjxwpGRkYCAAGAIBaLhRUrVugh6v9JTU3VaPP39xeqV6+u1ubr6yv4+vqqnj98+FAAIISFhana6tWrJ1StWlVISUlRtR09elQAIDg7O2tsW7FiRSEhIUHV/tdffwkAhL///lvV1rZtW6FevXpCenq6qk2pVAo+Pj5CrVq1VG0TJkwQAAjnzp1TtcXHxwvW1tYCAOHhw4f5vg6BgYECAGHcuHFqx+ncubNgbGwsPH/+XC12KysrIT4+Xm0fDRs2FKRSqfDy5UtV25UrVwQDAwMhICBA1XbkyBEBgLB582a17WfOnCm8/U+os7OzEBgYqHo+d+5cwdzcXLhz547aelOnThXEYrEQExMjCIIgjB8/XrCyshKysrLyPe+33bt3TwAg/PjjjxrLfH19BQDCypUrtdpXWFiY6rNe0KMgdevWFdq0aaPRfv36dZ1iyjFp0iQBgHDjxg219nHjxgkGBgZCVFSUWnu/fv0EAMLYsWNVbaGhocLYsWOF9evXC1u2bBHGjx8vGBoaCrVq1RKSkpI0jrlhwwaNzygRkb7l/Ft98OBB4fnz58KjR4+EiIgIoWLFioKpqanw+PFj4fLlywIAYfjw4WrbTp48WQAgHD58WNX29vVCzneeu7u7IJfLVe3Lli0TAAjXrl1TtXXu3FnteqEgY8aMESpXrqx6HhwcLLRq1UqQSqWq66uXL18KIpFIWLZsmWq9wMBAteNo852p7fdvXpydnQUAwt69ewu9XwBq15a5XcOdOXNGACCsW7dO1bZ582YBgHDkyBGN9d9+v0JDQwUAwh9//KFqy8jIELy9vQULCwshOTlZEATtr+VevXolABAWLVqUz6vzv9fn+PHjqrb4+HhBIpEIkyZNUrXlfJ7ePJec65PFixer2uRyueq6LCMjI8/jZmZmCiKRSO0YObS9NhQEzfciIyND8PT01Lh2efu6Lufv74MPPlD7/KWkpAg2NjbCiBEj1LaPjY0VrK2t1dobNmwoODg4qP0W2b9/v8b1d262b98uABD+/ffffNfT9vwACBKJRO26e9WqVQIAwd7eXvX5EYTs31BvX6Nr+17m9jtE298MDRo0EDp37pzv+eZo37694O7urtW6VHpwyB6VKwEBAZDL5WrdVjdu3IisrCwMGjRI1SYWi1GjRg34+/tj7dq12LhxI7p27Ypx48Zhx44deog825u9QZKSkvDixQv4+vriwYMHSEpK0no/T58+xbVr1xAQEKB2R9PX1xf16tXLdZu+ffuiQoUKquc5dy8fPHgAAEhISMDhw4fRp08fpKSk4MWLF3jx4gVevnwJf39/3L17F0+ePAEA7N69Gy1atFD1mAEAOzs7tfpA2hg7dqzq/3O6HWdkZODgwYNq6/Xq1Qt2dnaq58+ePcPly5cRFBSkqhEGAPXr18dHH32E3bt36xRHXjZv3owPP/wQFSpUUL0eL168QLt27aBQKHD8+HEA2XeOX79+rfUsdDlevnwJAGrvy5skEgmGDBmi1b78/f1x4MABrR4FSUtLy7XuQk4dibS0NK1iAgClUomIiAg0atRI4w7x8OHDIRaL0adPH5w+fRr3799HSEiI6u7/m8cZP348fvzxRwwYMAC9evVCaGgo1q5di7t37+Lnn3/WOG7Oa/rixQutYyUiKint2rWDnZ0dnJyc0K9fP1hYWGD79u2oUqWK6jssODhYbZtJkyYByO4hXZAhQ4ao1St6+zu/MD788EPExcXh9u3bALJ7ZrRq1QoffvghTpw4ASC715QgCPn2kNLmO1Pb79/8uLq6wt/fv8j2++Y1XGZmJl6+fImaNWvCxsYGFy9eLDCe3OzevRv29vZqdcOMjIzw+eefQyaTaQxdL+haztTUFMbGxjh69ChevXqV77E9PDzU3ic7OzvUrl1bq8+IoaEhRo4cqXpubGyMkSNHIj4+HpGRkXlul5CQAEEQ8rzuAbS7NnzzvXj16hWSkpLw4Ycfav0+jBgxQq2g+oEDB5CYmIj+/furfS7EYjGaN2+OI0eOAPjf9WdgYCCsra1V23/00Ufw8PAo8Lg5pUT++ecfZGZm5rmeLufXtm1btZ5vzZs3B5B97WxpaanR/vb7W5j3UpffDDY2Nrh+/Tru3r2b5/nmyPm7pLKFQ/aoXKlTpw6aNm2K9evXY9iwYQCyh+u1aNECNWvWVK337bffYtmyZbh7964qYdOnTx+0bt0aY8aMQZcuXfIsaJ2UlKTTD+43WVtb5zts7dSpU5g5cybOnDmD1NRUjeO++eWWn+joaABQO+ccNWvWzPULq1q1amrPcy4Gci5Y7t27B0EQ8M033+Cbb77J9bjx8fGoUqUKoqOjVV9sb6pdu7ZW8QPZtYLeLlro5uYGABpj3F1dXdWe55x/bsdzd3fHvn37iqRI5d27d3H16lW1ZNibcgqmjx49Gps2bULHjh1RpUoVtG/fHn369EGHDh20Oo6QRz2kKlWqaF0A1cHBAQ4ODlqtWxBTU1ONOiUAkJ6erlqurWPHjuHJkye5dr+uX78+NmzYgFGjRqFly5YAsmdaCQ0NxWeffZbv8BEAGDBgACZNmoSDBw9qzJiY85pqUyeMqLw5fvw4Fi1ahMjISDx79gzbt2/PdTKCvMyaNQuzZ8/WaDczM1MNf6H8/fTTT3Bzc4OhoSEqV66M2rVrq2YDi46OhoGBgcZ3vL29PWxsbFTfgfkp6Ds/P7GxsWrPc65tcpIXJ06cQNWqVXHp0iXMmzcPdnZ2+P7771XLrKys0KBBgzz3r813prbfv/l5+9rhXfeblpaGkJAQhIWF4cmTJ2rf3brcVHxTdHQ0atWqpTETXM4NnLff64LeV4lEgoULF2LSpEmoXLkyWrRogS5duiAgIECtrldu+8rZnzafEUdHR41rrDev4Vq0aJHv9nld92h7bfjPP/9g3rx5uHz5str1irbf+W9/NnKSJW/WtHxTztD/nPejVq1aGuvUrl27wISYr68vevXqhdmzZ2Pp0qXw8/NDjx49MGDAALUbgbqc39vvY85vibdLK+S0v/3+Fua91OU3w5w5c9C9e3e4ubnB09MTHTp0wODBg1G/fn2NbQRB4HVbGcSEFJU7AQEBGD9+PB4/fgy5XI6zZ89i+fLlauv8/PPPaNOmjcYP2m7duiE4OBhRUVG5JnOA7J4YbxeT1FZYWJha8cQ33b9/H23btkWdOnWwZMkSODk5wdjYGLt378bSpUuLfUrkvKbWzbkoyDn+5MmTNe4o5sjrNStu+ipEr1Qq8dFHH+HLL7/MdXnOF7ZUKsXly5exb98+7NmzB3v27EFYWBgCAgLy/Szl1ArJ6+JPl/NOS0vT+oL47YvStzk4OKjubL3p2bNnALIvXrS1fv16GBgY5Dlr1CeffIJu3brhypUrUCgUaNy4sap4as7rmx8nJyckJCRotOe8pgXVyyIqj16/fo0GDRpg6NCh+Pjjj3XefvLkyRg1apRaW9u2bdG0adOiCvG916xZM9Use3l5lx9mBX3n5+ftmxs51zaOjo5wdXXF8ePH4eLiAkEQ4O3tDTs7O4wfPx7R0dE4ceIEfHx8NBIsb9LmO1Pb79/85PYd+i77HTduHMLCwjBhwgR4e3vD2toaIpEI/fr1K/ZruBzavK8TJkxA165dsWPHDuzbtw/ffPMNQkJCcPjwYTRq1EinfRU1W1tbiEQirZJeeTlx4gS6deuGVq1a4eeff4aDgwOMjIwQFhaGDRs2aLWPtz8bOe/f77//nus1UlHNyiwSibBlyxacPXsWf//9N/bt24ehQ4di8eLFOHv2LCwsLHQ+v7zex+J8f3X5zdCqVSvcv38ff/31F/bv349ff/0VS5cuxcqVKzF8+HC1bV69esXrtjKICSkqd/r164fg4GD8+eefSEtLg5GREfr27au2TlxcHBQKhca2Od1js7Ky8tz/l19+qTb8Txf5FYH8+++/IZfLsXPnTrW7GTndgHXh7OwMAGoz5uTIrU0bOXekjIyMVDNd5Hf83Lre5nTj14ZSqcSDBw/ULv7u3LkDAPnO9JNz/LyOd+vWLVSqVKlIpvCtUaMGZDJZga8HkN3FuWvXrujatSuUSiVGjx6NVatW4ZtvvskzkVetWjWYmpqqZlV6Fxs3btR6eF9BFyMNGzbEkSNHNAqC5xTDbdiwoVbHkcvl2Lp1K/z8/PJNYhkbG6v9kM3pll/Q6y4IAqKiotQusHM8fPgQBgYGWv1oISpvOnbsiI4dO+a5XC6XY/r06fjzzz+RmJgIT09PLFy4UDU7mIWFhdoNnytXruDGjRtaz8xE+XN2doZSqcTdu3fVhjrHxcUhMTFR9R34rvJKeL09lO7Na5sPP/wQx48fh6urKxo2bAhLS0s0aNAA1tbW2Lt3Ly5evJhr77m3FfSdqcv3ry7eZb9btmxBYGAgFi9erGpLT09HYmKi2nq6JBKdnZ1x9epVKJVKtSTerVu3VMsLo0aNGpg0aRImTZqEu3fvomHDhli8eDH++OOPQu3vbU+fPtXoia7NNZyhoSFq1KiR53WPNteGW7duhYmJCfbt26fWqygsLKywp6Oa8U8qleb72ch5P971GrhFixZo0aIF5s+fjw0bNmDgwIGIiIjA8OHDi+X88lOY91KX3wxAdiJyyJAhGDJkCGQyGVq1aoVZs2ZpJKQePnyYb+9KKp1YQ4rKnUqVKqFjx474448/sH79enTo0EEjm+7m5oYDBw6oavQA2TN3bNq0CZaWlhpTzb7Jw8MD7dq1K9QjvyFTOXcq3u7iXZgvGEdHR3h6emLdunWQyWSq9mPHjqmmetWVVCqFn58fVq1apeoJ86bnz5+r/r9Tp044e/Yszp8/r7Z8/fr1Oh3zzZ5tgiBg+fLlMDIyQtu2bfPdzsHBAQ0bNsTatWvVLgT/++8/7N+/H506ddIpjrz06dMHZ86cwb59+zSWJSYmqhKbb37OgOwu5zldkXMb+pbDyMgITZo0wYULF9451qKsIfXJJ59AoVBg9erVqja5XI6wsDA0b95crRt4TEyM6sL5bbt370ZiYqJOtcXu3r2LlStXokuXLmoXpG9+/nKsWLECz58/z3VoZGRkJOrWrav1MFgi+p+xY8fizJkziIiIwNWrV9G7d2906NAhzxogv/76K9zc3PKtG0Tay/kOe3vGtyVLlgCAVrOIacPc3DzXnrX5Xdt8+OGHiIqKwsaNG1Xvt4GBAXx8fLBkyRJkZmYW+DnQ5jtT2+9fXb3LfsViscYNnR9//FHjBmjOD/u3E1W56dSpE2JjY7Fx40ZVW1ZWFn788UdYWFjA19e3wH28KTU1VTW8PkeNGjVgaWmZ7/WIrrKysrBq1SrV84yMDKxatQp2dnbw8vLKd1tvb+98r3sKujYUi8UQiURqr3tUVNQ71Yj19/eHlZUVFixYkGttp5xrkDevP9/82zlw4ABu3LhR4HFevXql8RnKucmX8/4Ux/nlpzDvpS6/Gd7+e7ewsEDNmjU1Po9JSUm4f/8+fHx83uV0SA/YQ4rKpYCAAHzyyScAgLlz52osnzp1KgYNGoTmzZvj008/hampKf78809ERkZi3rx5qqlxS1L79u1VdwRHjhwJmUyGX375BVKpNNd/zAuyYMECdO/eHS1btsSQIUPw6tUrLF++HJ6enmpJKl389NNP+OCDD1CvXj2MGDEC1atXR1xcHM6cOYPHjx/jypUrALJ7kf3+++/o0KEDxo8fD3Nzc6xevVp1p08bJiYm2Lt3LwIDA9G8eXPs2bMHu3btwldffZVnbYc3LVq0CB07doS3tzeGDRuGtLQ0/Pjjj7C2tsasWbMKdf5v++KLL7Bz50506dJFNRXy69evce3aNWzZsgVRUVGoVKkShg8fjoSEBLRp0wZVq1ZFdHQ0fvzxRzRs2DDPqZ5zdO/eHdOnT9fojaSroqwh1bx5c/Tu3RvTpk1DfHw8atasibVr1yIqKgq//fab2roBAQE4duxYrr2u1q9fD4lEgl69euV5LA8PD/Tu3RvVqlXDw4cPsWLFCtja2mr0tHB2dkbfvn1Rr149mJiY4OTJk4iIiEDDhg3VinEC2T0hjx07htGjR7/Dq0BUPsXExCAsLAwxMTGqno2TJ0/G3r17ERYWhgULFqitn56ejvXr12vUcaPCa9CgAQIDA7F69WokJibC19cX58+fx9q1a9GjRw+0bt26SI7j5eWFjRs3Ijg4GE2bNoWFhQW6du2a7zY5yabbt2+rfRZatWqFPXv2QCKRFDh0U5vvTG2/f3X1Lvvt0qULfv/9d1hbW8PDwwNnzpzBwYMHVcPvczRs2BBisRgLFy5EUlISJBIJ2rRpA6lUqrHPTz/9FKtWrUJQUBAiIyPh4uKCLVu24NSpUwgNDVUrSq2NO3fuoG3btujTpw88PDxgaGiI7du3Iy4uDv369dNpX/lxdHTEwoULERUVBTc3N2zcuBGXL1/G6tWrC7zG7t69O37//XfcuXNHoxezNteGnTt3xpIlS9ChQwcMGDAA8fHx+Omnn1CzZk2tr0HfZmVlhRUrVmDw4MFo3Lgx+vXrBzs7O8TExGDXrl1o2bKlKlEWEhKCzp0744MPPsDQoUORkJCAH3/8EXXr1i3w+nvt2rX4+eef0bNnT9SoUQMpKSn45ZdfYGVlpUpEF8f55aew76W2vxk8PDzg5+cHLy8v2Nra4sKFC9iyZYta8Xogu3e8IAjo3r17kZ8jFbOSm9CPqPSQy+VChQoVBGtrayEtLS3Xdfbu3Sv4+voKlSpVEoyNjYV69erpPF19Udu5c6dQv359wcTERHBxcREWLlworFmzJtdpWN+cFji36VYFQRAiIiKEOnXqCBKJRPD09BR27twp9OrVS6hTp47GtrlNAYy3pjQWBEG4f/++EBAQINjb2wtGRkZClSpVhC5dughbtmxRW+/q1auCr6+vYGJiIlSpUkWYO3eu8Ntvv2mcS24CAwMFc3Nz4f79+0L79u0FMzMzoXLlysLMmTMFhUKhVeyCIAgHDx4UWrZsKZiamgpWVlZC165dhRs3bqitkzNl8ebNm9XaZ86cKbz9T+jb0wMLQvZUwNOmTRNq1qwpGBsbC5UqVRJ8fHyE77//XjUd7pYtW4T27dsLUqlUMDY2FqpVqyaMHDlSePbsWb6vgyAIQlxcnGBoaCj8/vvvau2+vr5C3bp1C9y+uKSlpQmTJ08W7O3tBYlEIjRt2lRj+mxB+N+UwW9LSkoSTExMhI8//jjf4/Tr109wcnISjI2NBUdHR2HUqFFCXFycxnrDhw8XPDw8BEtLS8HIyEioWbOmMGXKFLUpjXPs2bNHACDcvXtXhzMmKp8ACNu3b1c9/+effwQAgrm5udrD0NBQ6NOnj8b2GzZsEAwNDYXY2NgSjLrsypl2vqBp3zMzM4XZs2cLrq6ugpGRkeDk5CRMmzZNbYp1QdC8XsjrOy+36wiZTCYMGDBAsLGx0WrK+hxSqVQAoPZv9cmTJwUAwocffqixfmBgoNq+tf3O1Ob7Ny/Ozs55TjWv7X7fvkZ69eqVMGTIEKFSpUqChYWF4O/vL9y6dSvXa4dffvlFqF69uiAWiwUAwpEjRwRB0Hy/BCH7OiBnvznXq29f72l7LffixQthzJgxQp06dQRzc3PB2tpaaN68ubBp0yatXp+8Pk858eesU7duXeHChQuCt7e3YGJiIjg7OwvLly/X2F9u5HK5UKlSJWHu3Llq7dpeGwqCIPz2229CrVq1BIlEItSpU0cICwvT6rquoL+/I0eOCP7+/oK1tbVgYmIi1KhRQwgKChIuXLigtt7WrVsFd3d3QSKRCB4eHsK2bds0Pue5uXjxotC/f3+hWrVqgkQiEaRSqdClSxeN/Wt7fgCEMWPGqLXl9VnJ7d8Gbd/LvH6HaPObYd68eUKzZs0EGxsbwdTUVKhTp44wf/58jb/hvn37Ch988EG+rx+VTiJBKMbKc0SlVFZWFhwdHdG1a1eNHhvlXcOGDWFnZ6fV0Cx9CQoKwpYtWwrdk+t9M2zYMNy5c0c1bTa9mx49ekAkEmH79u36DoWo1Mv5W8mZZW/jxo0YOHAgrl+/rlEU18LCQqPgb9u2bWFlZcW/N6Jyws/PDy9evMB///1X6H3MnTsXYWFhuHv3rurfGV4blryieC+LQmxsLFxdXREREcEeUmUQa0hRubRjxw48f/4cAQEB+g5FbzIzMzVqHRw9ehRXrlxRFZ6lsmHmzJn4999/cerUKX2HUubdvHkT//zzT65DeYmoYI0aNYJCoVAN133z8XYy6uHDhzhy5AiGDRump2iJqCyaOHEiZDIZIiIi9B0KlQKhoaGoV68ek1FlFGtIUbly7tw5XL16FXPnzkWjRo10Lvb4Pnny5AnatWuHQYMGwdHREbdu3cLKlSthb2+vMR03lW7VqlXTKEJKhePu7l7oYrdE5YVMJlObkfXhw4e4fPkybG1t4ebmhoEDByIgIACLFy9Go0aN8Pz5cxw6dAj169dXK6i9Zs0aODg45DtjHxHR2ywsLBAfH6/vMKiU+Pbbb/UdAr0DJqSoXFmxYgX++OMPNGzYEOHh4foOR68qVKgALy8v/Prrr3j+/DnMzc3RuXNnfPvttxoFNomIiHJcuHBBrTB2cHAwACAwMBDh4eEICwvDvHnzMGnSJDx58gSVKlVCixYt0KVLF9U2SqUS4eHhCAoK0hjaR0REROUDa0gREREREREREVGJYg0pIiIiIiIiIiIqUUxIERERERERERFRiSp3NaSUSiWePn0KS0tLiEQifYdDREREpZAgCEhJSYGjoyMMDHj/jtdPREREVBBdr5/KXULq6dOncHJy0ncYREREVAY8evQIVatW1XcYesfrJyIiItKWttdP5S4hZWlpCSD7BbKystJzNERERFQaJScnw8nJSXXdUN7x+omIiIgKouv1U7lLSOV0M7eysuIFFREREeWLw9Oy8fqJiIiItKXt9ROLIhARERERERERUYliQoqIiIiIiIiIiEoUE1JERERERERERFSiyl0NKSKiwlIqlcjIyNB3GERURIyNjbWakpiIiIiIih4TUkREWsjIyMDDhw+hVCr1HQoRFREDAwO4urrC2NhY36EQERERlTtMSBERFUAQBDx79gxisRhOTk7sUUH0HlAqlXj69CmePXuGatWqcTY9IiIiohLGhBQRUQGysrKQmpoKR0dHmJmZ6TscIioidnZ2ePr0KbKysmBkZKTvcIiIiIiKlVIp4E58CpJSM2FtZgQ3qSUMDPR3U06vt/mPHz+Orl27wtHRESKRCDt27Chwm6NHj6Jx48aQSCSoWbMmwsPDiz1OIirfFAoFAHBYD9F7JudvOudvnIiIiOh9FRmdgAkbLyN44xVM334NwRuvYMLGy4iMTtBbTHpNSL1+/RoNGjTATz/9pNX6Dx8+ROfOndG6dWtcvnwZEyZMwPDhw7Fv375ijpSICBzSQ/Se4d80ERERlQeR0QmYv+sm/nuSBCsTQ1StYAYrE0Ncf5qE+btu6i0ppdchex07dkTHjh21Xn/lypVwdXXF4sWLAQDu7u44efIkli5dCn9//+IKk4iIiIiIiIiozFEqBaw9HY3E1Ey4VDRT3ZAzlxjCzFiM6IRUrDsdjUZOFUp8+F6Zqsx75swZtGvXTq3N398fZ86cyXMbuVyO5ORktQdRYRzZswU357XAnavn9B0KUZni4uKC0NBQfYeh0qpVK2zYsEHfYRRKcb2WQUFB6NGjR5HvV5/27t2Lhg0bcmZMIiIiKtfuxKfgXrwMUkuJRu9wkUgEOwsJ7sbLcCc+pcRjK1MJqdjYWFSuXFmtrXLlykhOTkZaWlqu24SEhMDa2lr1cHJyKolQ6T3z+5kotD43DO5ZN1Hxr0H6DodIK0FBQRCJRBg1apTGsjFjxkAkEiEoKEjV9vz5c3z22WeoVq0aJBIJ7O3t4e/vj1OnTgEAEhISMG7cONSuXRumpqaoVq0aPv/8cyQlJZXUKeUqPDwcNjY2Wq27c+dOxMXFoV+/fsUb1DvS5Zwodx06dICRkRHWr1+v71CIiIiI9CYpNRMZWQqYGIlzXW5iJEZGlgJJqZklHFkZS0gVxrRp05CUlKR6PHr0SN8hURm04/JT1f9bZiXgpUyux2iItOfk5ISIiAi1pH16ejo2bNiAatWqqa3bq1cvXLp0CWvXrsWdO3ewc+dO+Pn54eXLlwCAp0+f4unTp/j+++/x33//ITw8HHv37sWwYcNK9JzexQ8//IAhQ4bAwOC9//orkzIyMop0f0FBQfjhhx+KdJ9EREREZYm1mRGMDcVIz8x9Epf0TAWMDcWwNiv5GYfL1BW5vb094uLi1Nri4uJgZWUFU1PTXLeRSCSwsrJSexDpSikIqv8XoJ6gIirNGjduDCcnJ2zbtk3Vtm3bNlSrVg2NGjVStSUmJuLEiRNYuHAhWrduDWdnZzRr1gzTpk1Dt27dAACenp7YunUrunbtiho1aqBNmzaYP38+/v77b2RlZeUbR0pKCvr37w9zc3NUqVJFYzKLxMREDB8+HHZ2drCyskKbNm1w5coV1fIrV66gdevWsLS0hJWVFby8vHDhwgUcPXoUQ4YMQVJSEkQiEUQiEWbNmpVrDM+fP8fhw4fRtWtXVZsgCJg1a5aqV5ijoyM+//xz1XIXFxfMmzcPAQEBsLCwgLOzM3bu3Innz5+je/fusLCwQP369XHhwgW1Y23duhV169aFRCKBi4uLqvZhjlevXiEgIAAVKlSAmZkZOnbsiLt37wJAgeeUmpqKoUOHwtLSEtWqVcPq1avV9v3o0SP06dMHNjY2sLW1Rffu3REVFaVarlAoEBwcDBsbG1SsWBFffvklhDf+jdOWSCTCr7/+ip49e8LMzAy1atXCzp071dY5duwYmjVrBolEAgcHB0ydOlXts+Ln54exY8diwoQJqFSpEvz9/XH06FGIRCLs27cPjRo1gqmpKdq0aYP4+Hjs2bMH7u7usLKywoABA5CamppvjF27dsWFCxdw//59nc+PiIiI6H3gJrVETakFnsvkGtd8giDguUyOWlILuEktSzy2MpWQ8vb2xqFDh9TaDhw4AG9vbz1FROXV5UeJ+g6B9EgQBKRmZOnlUZjEwdChQxEWFqZ6vmbNGgwZMkRtHQsLC1hYWGDHjh2Qy7XvAZiUlAQrKysYGuY/R8aiRYvQoEEDXLp0CVOnTsX48eNx4MAB1fLevXurEg6RkZFo3Lgx2rZti4SE7Bk/Bg4ciKpVq+Lff/9FZGQkpk6dCiMjI/j4+CA0NBRWVlZ49uwZnj17hsmTJ+caw8mTJ2FmZgZ3d3dV29atW7F06VKsWrUKd+/exY4dO1CvXj217ZYuXYqWLVvi0qVL6Ny5MwYPHoyAgAAMGjQIFy9eRI0aNRAQEKB6byIjI9GnTx/069cP165dw6xZs/DNN98gPDxctc+goCBcuHABO3fuxJkzZyAIAjp16oTMzMwCz2nx4sVo0qQJLl26hNGjR+Ozzz7D7du3AQCZmZnw9/eHpaUlTpw4gVOnTsHCwgIdOnRQ9T5avHgxwsPDsWbNGpw8eRIJCQnYvn17QW91rmbPno0+ffrg6tWr6NSpEwYOHKh6z548eYJOnTqhadOmuHLlClasWIHffvsN8+bNU9vH2rVrYWxsjFOnTmHlypWq9lmzZmH58uU4ffq0KskWGhqKDRs2YNeuXdi/fz9+/PHHfOOrVq0aKleujBMnThTq/IiIiIjKOgMDEQJ9nGFtaoTohFS8lmdBoRTwWp6F6IRUWJsaIcDHucQLmgN6nmVPJpPh3r17qucPHz7E5cuXYWtri2rVqmHatGl48uQJ1q1bBwAYNWoUli9fji+//BJDhw7F4cOHsWnTJuzatUtfp0DlkAhCoZIC9P5Iy1TAY8Y+vRz7xhx/mBnr9k/3oEGDMG3aNERHRwMATp06hYiICBw9elS1jqGhIcLDwzFixAisXLkSjRs3hq+vL/r164f69evnut8XL15g7ty5+PTTTwuMoWXLlpg6dSoAwM3NDadOncLSpUvx0Ucf4eTJkzh//jzi4+MhkUgAAN9//z127NiBLVu24NNPP0VMTAy++OIL1KlTBwBQq1Yt1b6tra0hEolgb2+fbwzR0dGoXLmy2nC9mJgY2Nvbo127djAyMkK1atXQrFkzte06deqEkSNHAgBmzJiBFStWoGnTpujduzcAYMqUKfD29kZcXBzs7e2xZMkStG3bFt98843qfG/cuIFFixYhKCgId+/exc6dO3Hq1Cn4+PgAANavXw8nJyfs2LEDvXv3zvecOnXqhNGjR6uOvXTpUhw5cgS1a9fGxo0boVQq8euvv6qKVoaFhcHGxgZHjx5F+/btERoaimnTpuHjjz8GkD2D7b59hfs8BwUFoX///gCABQsW4IcffsD58+fRoUMH/Pzzz3BycsLy5cshEolQp04dPH36FFOmTMGMGTNU70OtWrXw3Xffqfb57NkzAMC8efPQsmVLAMCwYcMwbdo03L9/H9WrVwcAfPLJJzhy5AimTJmSb4yOjo6qzz4RERFReeTlbIvpnd2x9nQ07sXL8EImh7GhGJ6O1gjwcYaXs61e4tJrD6kLFy6gUaNGqmEjwcHBaNSoEWbMmAEg+6I0JiZGtb6rqyt27dqFAwcOoEGDBli8eDF+/fVX+Pv76yV+Kp9KPm9M9G7s7OzQuXNnhIeHIywsDJ07d0alSpU01uvVqxeePn2KnTt3okOHDjh69CgaN26s1rMnR3JyMjp37gwPD488h8i96e2erN7e3rh58yaA7OF4MpkMFStWVPXUsrCwwMOHD1VDrYKDgzF8+HC0a9cO3377baGGYKWlpcHExEStrXfv3khLS0P16tUxYsQIbN++XWP44ZsJuZyJNd7sRZXTFh8fDwC4efOmKpGSo2XLlrh79y4UCgVu3rwJQ0NDNG/eXLW8YsWKqF27tuo1yc+b8eQkrXKOfeXKFdy7dw+Wlpaq19HW1hbp6em4f/8+kpKS8OzZM7VjGxoaokmTJgUet6BYzM3NYWVlpfY6eHt7q83m0rJlS8hkMjx+/FjV5uXlVeC+K1euDDMzM1UyKqct51j5MTU1LXBoHxEREdH7zsvZFqF9G2JJ3waY37MelvRtgKV9G+otGQXouYeUn59fvj1NcvsR5Ofnh0uXLhVjVET5E4G9o8o7UyMxbszRTyLcNI/ZMQoydOhQjB07FgA06je9ycTEBB999BE++ugjfPPNNxg+fDhmzpypNhtfSkoKOnToAEtLS2zfvh1GRu9WAFEmk8HBwUGtx1aOnJnmZs2ahQEDBmDXrl3Ys2cPZs6ciYiICPTs2VPr41SqVAmvXr1Sa3NycsLt27dx8OBBHDhwAKNHj8aiRYtw7Ngx1Xm9eX45yZXc2pRKpdaxvIu3X2+RSKQ6tkwmg5eXV64zy9nZ2ZVoLNoyNzcvcN8ikajQx0pISCiWcyciIiIqawwMRKhjX3rqaus1IUVUFjEhRSKRSOdhc/qWU0NIJBLp1KvUw8MDO3bsUD1PTk6Gv78/JBIJdu7cqdHjKC9nz57VeJ5Ty6lx48aIjY2FoaEhXFxc8tyHm5sb3NzcMHHiRPTv3x9hYWHo2bMnjI2NoVDkPmvImxo1aoTY2Fi8evUKFSpUULWbmpqia9eu6Nq1K8aMGYM6derg2rVraNy4sVbn9jZ3d3ecOnVKre3UqVNwc3ODWCyGu7s7srKycO7cOdWQvZcvX+L27dvw8PAAAK3P6W2NGzfGxo0bIZVK85zEw8HBAefOnUOrVq0AAFlZWaq6XUXJ3d0dW7duhSAIqqTdqVOnYGlpiapVqxbpsfKS0zPszQL+RERERFQ6lKmi5kREVDhisRg3b97EjRs3IBZr9rJ6+fIl2rRpgz/++ANXr17Fw4cPsXnzZnz33Xfo3r07gOxkVPv27fH69Wv89ttvSE5ORmxsLGJjYwtMnpw6dQrfffcd7ty5g59++gmbN2/G+PHjAQDt2rWDt7c3evTogf379yMqKgqnT5/G9OnTceHCBaSlpWHs2LE4evQooqOjcerUKfz777+qhJaLiwtkMhkOHTqEFy9e5Dk8q1GjRqhUqZJasig8PBy//fYb/vvvPzx48AB//PEHTE1N4ezsXKjXGQAmTZqEQ4cOYe7cubhz5w7Wrl2L5cuXqwqT16pVC927d8eIESNw8uRJXLlyBYMGDUKVKlVUr7W25/S2gQMHolKlSujevTtOnDiBhw8f4ujRo/j8889Vw+TGjx+Pb7/9Fjt27MCtW7cwevRoJCYmFvp88zJ69Gg8evQI48aNw61bt/DXX39h5syZCA4OVqvjVVSWL1+Otm3bqrWdPXsWEomEk58QERERlUJMSBHpiDWkqKyysrLKs9eMhYUFmjdvjqVLl6JVq1bw9PTEN998gxEjRmD58uUAgIsXL+LcuXO4du0aatasCQcHB9Xj0aNH+R570qRJqrqB8+bNw5IlS1Q9tUQiEXbv3o1WrVphyJAhcHNzQ79+/VRFyMViMV6+fImAgAC4ubmhT58+6NixI2bPng0A8PHxwahRo9C3b1/Y2dmpFch+k1gsxpAhQ9SGs9nY2OCXX35By5YtUb9+fRw8eBB///03KlasqPPrm6Nx48bYtGkTIiIi4OnpiRkzZmDOnDlqwx7DwsLg5eWFLl26wNvbG4IgYPfu3aphadqe09vMzMxw/PhxVKtWDR9//DHc3d0xbNgwpKenq977SZMmYfDgwQgMDIS3tzcsLS01hj6Gh4er1X4qjCpVqmD37t04f/48GjRogFGjRmHYsGH4+uuv32m/eXnx4oVGbbE///wTAwcOhJmZWbEck4iIiIgKTySUs+nCkpOTYW1trZqqnEgbPX8+he3xnVTPx7gdwU8DinZ4C5Ve6enpePjwIVxdXbUeokalU2xsLOrWrYuLFy++Uy+o993MmTNx7NixXOt6lRUvXrxA7dq1ceHCBbi6uua6Tn5/27xeUMfXg4iIiAqi6/UCe0gREVG5YW9vj99++01tBlfStGfPHq17ZZVWUVFR+Pnnn/NMRhERERGRfpWtqrxERETvqEePHvoOodQ7f/68vkN4Z02aNEGTJk30HQYRERER5YE9pIiIiIiIiIiIqEQxIUWkhfJVaY2IiIiIiIioeDEhRUREREREREREJYoJKSIiIiIiIiIiKlFMSBEVBofwERERERERERUaE1JERERERERERFSimJAiIiIiIiIiIqISxYQUERHp7JtvvsGnn36q7zCKTFBQEHr06KHvMIrF0aNHIRKJkJiYqO9QikxGRgZcXFxw4cIFfYeiFytWrED9+vVhZWUFKysreHt7Y8+ePflus3nzZtSpUwcmJiaoV68edu/eXULREhEREeWOCSkionJs/fr1aNCgAczMzODg4IChQ4fi5cuX+W4TGxuLZcuWYfr06Rrt48aNQ/Xq1SGRSODk5ISuXbvi0KFDqnVWr14NPz8/WFlZ5Zkk6datG6pVqwYTExM4ODhg8ODBePr0aZGc77vw8/PDhAkTSuRY72MSqSgZGxtj8uTJmDJlir5D0YuqVavi22+/RWRkJC5cuIA2bdqge/fuuH79eq7rnz59Gv3798ewYcNw6dIl9OjRAz169MB///1XwpETERER/Q8TUkRE5dSpU6cQEBCAYcOG4fr169i8eTPOnz+PESNG5Lvdr7/+Ch8fHzg7O6vaoqKi4OXlhcOHD2PRokW4du0a9u7di9atW2PMmDGq9VJTU9GhQwd89dVXee6/devW2LRpE27fvo2tW7fi/v37+OSTT979hEuAIAjIysrSdxilkkKhgFKpLLL9DRw4ECdPnswzCfM+69q1Kzp16oRatWrBzc0N8+fPh4WFBc6ePZvr+suWLUOHDh3wxRdfwN3dHXPnzkXjxo2xfPnyEo6ciIiI6H+YkCIieg+tW7cOFStWhFwuV2vv0aMHBg8eDAA4c+YMXFxc8Pnnn8PV1RUffPABRo4cifPnz+e774iICHTt2lWtbfTo0RCJRDh//jx69eoFNzc31K1bF8HBwWo/kidMmICpU6eiRYsWee5/4sSJaNGiBZydneHj44OpU6fi7NmzyMzMzHObK1euoHXr1rC0tISVlRW8vLxUw7lmzZqFhg0bqq0fGhoKFxcXjf3Mnj0bdnZ2sLKywqhRo5CRkQEge0jfsWPHsGzZMohEIohEIkRFRal6Mu3ZswdeXl6QSCQ4efIk7t+/j+7du6Ny5cqwsLBA06ZNcfDgQbVjyeVyTJkyBU5OTpBIJKhZsyZ+++03REVFoXXr1gCAChUqQCQSISgoCACgVCoREhICV1dXmJqaokGDBtiyZYvafnfv3g03NzeYmpqidevWiIqKyvN1y0vOEMbvv/8eDg4OqFixIsaMGaP2Hrx69QoBAQGoUKECzMzM0LFjR9y9e1e1PDw8HDY2Nti5cyc8PDwgkUgQExMDFxcXzJs3DwEBAbCwsICzszN27tyJ58+fo3v37rCwsED9+vULHI5XoUIFtGzZEhERETqf3/tEoVAgIiICr1+/hre3d67rnDlzBu3atVNr8/f3x5kzZ/Lcr1wuR3JystqDiIiIqCgxIUVUCAIEfYdA+iQIQMZr/TwE7T57vXv3hkKhwM6dO1Vt8fHx2LVrF4YOHQoA8Pb2xqNHj7B7924IgoC4uDhs2bIFnTp1ynO/CQkJuHHjBpo0aaLWtnfvXowZMwbm5uYa29jY2Gj5wuZ+vPXr18PHxwdGRkZ5rjdw4EBUrVoV//77LyIjIzF16tR818/NoUOHcPPmTRw9ehR//vkntm3bhtmzZwPI7mHi7e2NESNG4NmzZ3j27BmcnJxU206dOhXffvstbt68ifr160Mmk6FTp044dOgQLl26hA4dOqBr166IiYlRbRMQEIA///wTP/zwA27evIlVq1bBwsICTk5O2Lp1KwDg9u3bePbsGZYtWwYACAkJwbp167By5Upcv34dEydOxKBBg3Ds2DEAwKNHj/Dxxx+ja9euuHz5MoYPH46pU6fq9DrkOHLkCO7fv48jR45g7dq1CA8PR3h4uGp5UFAQLly4gJ07d+LMmTMQBAGdOnVSS1qlpqZi4cKF+PXXX3H9+nVIpVIAwNKlS9GyZUtcunQJnTt3xuDBgxEQEIBBgwbh4sWLqFGjBgICAiAU8Hlv1qwZTpw4UajzK+uuXbsGCwsLSCQSjBo1Ctu3b4eHh0eu68bGxqJy5cpqbZUrV0ZsbGye+w8JCYG1tbXq8ebnnYiIiKgoGOo7ACKiMiczFVjgqJ9jf/UUMNZM+rzN1NQUAwYMQFhYGHr37g0A+OOPP1CtWjX4+fkBAFq2bIn169ejb9++SE9PR1ZWFrp27Yqffvopz/3GxMRAEAQ4Ov7v/O/duwdBEFCnTp13O7c3TJkyBcuXL0dqaipatGiBf/75J9/1Y2Ji8MUXX6hiqFWrls7HNDY2xpo1a2BmZoa6detizpw5+OKLLzB37lxYW1vD2NgYZmZmsLe319h2zpw5+Oijj1TPbW1t0aBBA9XzuXPnYvv27di5cyfGjh2LO3fuYNOmTThw4ICq50r16tXVtgcAqVSqSujJ5XIsWLAABw8eVPWEqV69Ok6ePIlVq1bB19cXK1asQI0aNbB48WIAQO3atXHt2jUsXLhQ59ejQoUKWL58OcRiMerUqYPOnTvj0KFDGDFiBO7evYudO3fi1KlT8PHxAZBdj8zJyQk7duxQfeYyMzPx888/q70WANCpUyeMHDkSADBjxgysWLECTZs2VW03ZcoUeHt7Iy4uLtfXO4ejoyOio6N1Prf3Qe3atXH58mUkJSVhy5YtCAwMxLFjx/JMSulq2rRpCA4OVj1PTk5mUoqIiIiKFHtIEWmB/aGoLBoxYgT279+PJ0+eAMgeQhUUFASRSAQAuHHjBsaPH48ZM2YgMjISe/fuRVRUFEaNGpXnPtPS0gAAJiYmqraCerEUxhdffIFLly5h//79EIvFar1lLCwsVI+cWIODgzF8+HC0a9cO3377Le7fv6/zMXOKu+fw9vaGTCbDo0ePCtz2zR5jACCTyTB58mS4u7vDxsYGFhYWuHnzpqqH1OXLlyEWi+Hr66t1fPfu3UNqaio++ugjtddg3bp1qvO9efMmmjdvrrZdXsO4ClK3bl2IxWLVcwcHB8THx6uOY2hoqHasihUronbt2rh586aqzdjYGPXr19fY95ttOT136tWrp9GWc7y8mJqaIjU1VZfTem8YGxujZs2a8PLyQkhICBo0aKDqSfc2e3t7xMXFqbUVlOyTSCSqWfxyHkRERERFiT2kiIh0ZWSW3VNJX8fWUqNGjdCgQQOsW7cO7du3x/Xr17Fr1y7V8pCQELRs2RJffPEFgOwkgbm5OT788EPMmzcPDg4OGvusVKkSgOz6QXZ2dgCyeyOJRCLcunXrXc5M4ziVKlWCm5sb3N3d4eTkhLNnz8Lb2xuXL19WrZfzI3nWrFkYMGAAdu3ahT179mDmzJmIiIhAz549YWBgoJE0y68eVWG8PVRx8uTJOHDgAL7//nvUrFkTpqam+OSTT1Q1qUxNTXU+hkwmAwDs2rULVapUUVsmkUgKGXne3h7yKBKJdC5KbmpqqkqA5rXvnOW5tRV0vISEBNXnsLxTKpUaNeNyeHt749ChQ2qzRB44cKDQyUoiIiKiosCEFBGRrkQirYbNlQbDhw9HaGgonjx5gnbt2qkNuUlNTYWhofrXQE6PmLx6PdWoUQNWVla4ceMG3NzcAGQPL/P398dPP/2Ezz//XCM5k5iY+E51pHKSEjk/tmvWrJnrem5ubnBzc8PEiRPRv39/hIWFoWfPnrCzs0NsbCwEQVAlOt5MauW4cuUK0tLSVMmis2fPqmo6Adk9UhQKhVYxnzp1CkFBQejZsyeA7GTSm8XF69WrB6VSiWPHjmkUm845FgC1471ZGDyvnlXu7u5qdcNyzqOoubu7IysrC+fOnVMN2Xv58iVu375dZEPGtPHff/+hUaNGJXa80mLatGno2LEjqlWrhpSUFGzYsAFHjx7Fvn37AGTXJ6tSpQpCQkIAAOPHj4evry8WL16Mzp07IyIiAhcuXMDq1av1eRpERERUznHIHhHRe2zAgAF4/PgxfvnlF1Ux8xxdu3bFtm3bsGLFCjx48ACnTp3C559/jmbNmqnViHqTgYEB2rVrh5MnT6q1//TTT1AoFGjWrBm2bt2Ku3fv4ubNm/jhhx/UemHExsbi8uXLuHfvHoDswsyXL19GQkICAODcuXNYvnw5Ll++jOjoaBw+fBj9+/dHjRo18uzNkZaWhrFjx+Lo0aOIjo7GqVOn8O+//8Ld3R0A4Ofnh+fPn+O7777D/fv38dNPP2HPnj0a+8nIyMCwYcNw48YN7N69GzNnzsTYsWNhYJD9Veni4oJz584hKioKL168yLf3Tq1atbBt2zZcvnwZV65cwYABA9TWd3FxQWBgIIYOHYodO3bg4cOHOHr0KDZt2gQAcHZ2hkgkwj///IPnz59DJpPB0tISkydPxsSJE7F27Vrcv38fFy9exI8//oi1a9cCAEaNGoW7d+/iiy++wO3bt7Fhwwa1QuRFpVatWujevTtGjBiBkydP4sqVKxg0aBCqVKmC7t27F/nxnjx5gjp16mjMAHnixAm0b9++yI9X2sXHxyMgIAC1a9dG27Zt8e+//2Lfvn2qOmYxMTF49uyZan0fHx9s2LABq1evVs3MuGPHDnh6eurrFIiIiIgAoZxJSkoSAAhJSUn6DoXKkG7LTwrCTCvV47M/Lug7JCpBaWlpwo0bN4S0tDR9h1IogwcPFmxtbYX09HSNZT/88IPg4eEhmJqaCg4ODsLAgQOFx48f57u/3bt3C1WqVBEUCoVa+9OnT4UxY8YIzs7OgrGxsVClShWhW7duwpEjR1TrzJw5U0B2WTa1R1hYmCAIgnD16lWhdevWgq2trSCRSAQXFxdh1KhR+cYkl8uFfv36CU5OToKxsbHg6OgojB07Vu39WrFiheDk5CSYm5sLAQEBwvz58wVnZ2fV8sDAQKF79+7CjBkzhIoVKwoWFhbCiBEj1F6z27dvCy1atBBMTU0FAMLDhw+FI0eOCACEV69eqcX08OFDoXXr1oKpqang5OQkLF++XPD19RXGjx+vWictLU2YOHGi4ODgIBgbGws1a9YU1qxZo1o+Z84cwd7eXhCJREJgYKAgCIKgVCqF0NBQoXbt2oKRkZFgZ2cn+Pv7C8eOHVNt9/fffws1a9YUJBKJ8OGHHwpr1qzRiPHN1zw3Oa/Hm8aPHy/4+vqqnickJAiDBw8WrK2tBVNTU8Hf31+4c+eOanlYWJhgbW2tsW9nZ2dh6dKlam0AhO3bt6u9fgCES5cuqT1/87N0+vRpwcbGRkhNTc3zPAqS3982rxfU8fUgIiKiguh6vSAShGKoRluKJScnw9raGklJSSzQSVrr/tMp/PW8k+r5cNdD+DWwST5b0PskPT0dDx8+hKurq1ox77Kibdu2qFu3Ln744Yci2Z8gCGjevLlqaByVLQ8fPoSbmxtu3LhRqNkIS4u+ffuiQYMG+Oqrrwq9j/z+tnm9oI6vBxERERVE1+sFDtkjKoQniWn6DoGoQK9evcL27dtx9OhRjBkzpsj2KxKJsHr1amRlZRXZPqnk7N69G59++mmZTkZlZGSgXr16mDhxor5DISIiIqJCYlFzokKIfvlarUAyUWnUqFEjvHr1CgsXLkTt2rWLdN8NGzZEw4YNi3SfVDKKMjmpL8bGxvj666/1HQYRERERvQMmpIgKITVDgecyOaSWZW/4FpUfb87qRkREREREVJpwyB5RIUW/TNV3CERERERERERlEhNSRIUU9eK1vkMgIiIiIiIiKpOYkCIqJPaQKn/K2aSkRO89/k0TERER6Q9rSBEV0sOX7CFVXhgZGUEkEuH58+ews7NjMXui94AgCHj+/DlEIhGMjIz0HQ4RERFRucOEFJE2crmLHs2EVLkhFotRtWpVPH78mIXCid4jIpEIVatWhVgs1ncoREREROUOE1JEWpBnKTXaXr3O1EMkpC8WFhaoVasWMjP5vhO9L4yMjJiMIiIiItITJqSItJCWqdBoS05nYqK8EYvF/PFKRERERFQGKJUC7sSnICk1E9ZmRnCTWsLAgKU3ShMmpIi0kJ5LQkomz4IgCKwnREREREREVIpERidg7elo3IuXISNLAWNDMWpKLRDo4wwvZ1t9h0f/j7PsEWkhLUMzISUIQGou7URERERERKQfkdEJmL/rJv57kgQrE0NUrWAGKxNDXH+ahPm7biIyOkHfIdL/Y0KKSAvpmeo1pCqIZBBDAZk8S08RERERERER0ZuUSgFrT0cjMTUTLhXNYC4xhNhABHOJIZxtzZCUlol1p6OhVGpOWkUljwkpogIolAIyFOoJqbOSMfjJ6AekpDMhRUREREREVBrciU/BvXgZpJYSjdIqIpEIdhYS3I2X4U58ip4ipDcxIUVUgNzqR0mQCTfRI/aQIiIiIiIiKiWSUjORkaWAiVHuExGZGImRkaVAUionqCoNmJAiKkBuM+wBgAEEyNhDioiIiIiIqFSwNjOCsaE4104FQHZnA2NDMazNjEo4MsoNE1JEBcjrHzMDKCGTM7NORERERERUGrhJLVFTaoHnMjkEQb1OlCAIeC6To5bUAm5SSz1FSG9iQoqoAHkmpEQCa0gRERERERGVEgYGIgT6OMPa1AjRCal4Lc+CQingtTwL0QmpsDY1QoCPMwwMRAXvjIodE1JEBUjLUObaLoLAGlJERERERESliJezLaZ3dkddR2skp2fh8atUJKdnwdPRGtM7u8PL2VbfIdL/03tC6qeffoKLiwtMTEzQvHlznD9/Pt/1Q0NDUbt2bZiamsLJyQkTJ05Eenp6CUVL5VF6Vt41pNhDioiIiIiIqHTxcrZFaN+GWNK3Aeb3rIclfRtgad+GTEaVMob6PPjGjRsRHByMlStXonnz5ggNDYW/vz9u374NqVSqsf6GDRswdepUrFmzBj4+Prhz5w6CgoIgEomwZMkSPZwBlQdpGfnVkGJCioiIiIiIqLQxMBChjr2VvsOgfOi1h9SSJUswYsQIDBkyBB4eHli5ciXMzMywZs2aXNc/ffo0WrZsiQEDBsDFxQXt27dH//79C+xVRfQu8ptljz2kiIhIG0eOHNF3CERERESlit4SUhkZGYiMjES7du3+F4yBAdq1a4czZ87kuo2Pjw8iIyNVCagHDx5g9+7d6NSpU4nETOVTXkXNWUOKiIi01aFDB9SoUQPz5s3Do0eP9B0OERERkd7pLSH14sULKBQKVK5cWa29cuXKiI2NzXWbAQMGYM6cOfjggw9gZGSEGjVqwM/PD1999VWex5HL5UhOTlZ7EOkiz1n2oIQsPbOEoyEiorLoyZMnGDt2LLZs2YLq1avD398fmzZtQkZGhr5DIyIiItILvRc118XRo0exYMEC/Pzzz7h48SK2bduGXbt2Ye7cuXluExISAmtra9XDycmpBCOm90HeNaTYQ4qIiLRTqVIlTJw4EZcvX8a5c+fg5uaG0aNHw9HREZ9//jmuXLmi7xCJiIiISpTeElKVKlWCWCxGXFycWntcXBzs7e1z3eabb77B4MGDMXz4cNSrVw89e/bEggULEBISAqVSmes206ZNQ1JSkurBbvKkq7TM3D9brCFFRESF0bhxY0ybNg1jx46FTCbDmjVr4OXlhQ8//BDXr1/Xd3hEREREJUJvCSljY2N4eXnh0KFDqjalUolDhw7B29s7121SU1NhYKAeslgsBgAIgpDrNhKJBFZWVmoPIl2whhQRERWFzMxMbNmyBZ06dYKzszP27duH5cuXIy4uDvfu3YOzszN69+6t7zCJiIiISoShPg8eHByMwMBANGnSBM2aNUNoaChev36NIUOGAAACAgJQpUoVhISEAAC6du2KJUuWoFGjRmjevDnu3buHb775Bl27dlUlpoiKWr41pJiQIiIiLYwbNw5//vknBEHA4MGD8d1338HT01O13NzcHN9//z0cHR31GCURERFRydFrQqpv3754/vw5ZsyYgdjYWDRs2BB79+5VFTqPiYlR6xH19ddfQyQS4euvv8aTJ09gZ2eHrl27Yv78+fo6BSoH0vJMSGUP2RMEASKRqISjIiKisuTGjRv48ccf8fHHH0MikeS6TqVKlXDkyJESjoyIiIhIP0RCXmPd3lPJycmwtrZGUlISh++RVr7ccgWbLjxGlMkAtXa5YITa8rW4O78jjMRlan4AIiIqQFFfLxw/fhw+Pj4wNFS/F5iVlYXTp0+jVatW73yM4sTrJyIiIiqIrtcL/BVNVIC8ipqLkHs7ERHR21q3bo2EhASN9qSkJLRu3VqnfYWEhKBp06awtLSEVCpFjx49cPv27Xy3CQ8Ph0gkUnuYmJjodFwiInp/KZUCbsUm49yDl7gVmwylslz1WyE90euQPaKyIC0j7yF7RERE2shrePfLly9hbm6u076OHTuGMWPGoGnTpsjKysJXX32F9u3b48aNG/nuy8rKSi1xxeHmREQEAJHRCVh7Ohr34mXIyFLA2FCMmlILBPo4w8vZVt/h0XuMCSmiAsizck9IGYrYQ4qIiPL38ccfA8hO/gQFBanVj1IoFLh69Sp8fHx02ufevXvVnoeHh0MqlSIyMjLfoX8ikQj29vY6HYuIiN5vkdEJmL/rJhJTMyG1lMDESIL0TAWuP03C/F03Mb2zO5NSVGyYkCIqQF49pLKxlxQREeXN2toaQHYPKUtLS5iamqqWGRsbo0WLFhgxYsQ7HSMpKQkAYGub/w8GmUwGZ2dnKJVKNG7cGAsWLEDdunVzXVcul0Mul6ueJycnv1OMRERU+iiVAtaejkZiaiZcKpqpes6aSwxhZixGdEIq1p2ORiOnCjAwYK9aKnpMSBEVoIXsAJqKn+a6jMP2iIgoP2FhYQAAFxcXTJ48WefheQVRKpWYMGECWrZsCU9PzzzXq127NtasWYP69esjKSkJ33//PXx8fHD9+nVUrVpVY/2QkBDMnj27SGMlIqLS5U58Cu7FyyC1lGgM4xaJRLCzkOBuvAx34lNQx54TWlDRY0KKqACTXy8BjHJfZsDC5kREpIWZM2cWy37HjBmD//77DydPnsx3PW9vb3h7e6ue+/j4wN3dHatWrcLcuXM11p82bRqCg4NVz5OTk+Hk5FR0gRMRkd4lpWYiI0sBEyNJrstNjMR4IZMjKTWzhCOj8oIJKaJ3wB5SRESUl8aNG+PQoUOoUKECGjVqlG8R8YsXL+q8/7Fjx+Kff/7B8ePHc+3llB8jIyM0atQI9+7dy3W5RCJRq3dFRETvH2szIxgbipGeqYC5RDM1kJ6ZXeDc2iyPu/NE74gJKaJ3IGJCioiI8tC9e3dVUqdHjx5Ftl9BEDBu3Dhs374dR48ehaurq877UCgUuHbtGjp16lRkcRERUdniJrVETakFrj9NgpmxWO3GiSAIeC6Tw9PRGm5SSz1GSe8zJqSI3gGH7BERUV7eHKZXlEP2xowZgw0bNuCvv/6CpaUlYmNjAWQXUM8pmh4QEIAqVaogJCQEADBnzhy0aNECNWvWRGJiIhYtWoTo6GgMHz68yOIiIqKyxcBAhEAfZ8zfdRPRCamws5DAxCi7x9RzmRzWpkYI8HFmQXMqNkxIEeUjU6HMq3wUAA7ZIyIi7Tx69AgikUg1tO78+fPYsGEDPDw88Omnn+q0rxUrVgAA/Pz81NrDwsIQFBQEAIiJiYGBgYFq2atXrzBixAjExsaiQoUK8PLywunTp+Hh4VH4kyIiojLPy9kW0zu7Y+3paNyLl+GFTA5jQzE8Ha0R4OMML+f8Z3AlehdMSBHlIyktE5XyWc6EFBERaWPAgAH49NNPMXjwYMTGxqJdu3bw9PTE+vXrERsbixkzZmi9L0Eo+Lvn6NGjas+XLl2KpUuX6ho2ERGVA17OtmjkVAF34lOQlJoJazMjuEkt2TOKip1BwasQlV9JqRn5LhdxyB4REWnhv//+Q7NmzQAAmzZtQr169XD69GmsX78e4eHh+g2OiIjKPQMDEerYW6F59YqoY2/FZBSVCCakiPKRlJZ/Qoo9pIiISBuZmZmqAucHDx5Et27dAAB16tTBs2fP9BkaERERkV4wIUWUj+RUeb7LDSBAi5ETRERUztWtWxcrV67EiRMncODAAXTo0AEA8PTpU1SsWFHP0RERERGVPCakiPKRnFZwQoqIiKggCxcuxKpVq+Dn54f+/fujQYMGAICdO3eqhvIRERERlScsak6Uj+S0zHyXs4YUERFpw8/PDy9evEBycjIqVKigav/0009hZmamx8iIiIiI9IMJKaJ8JL9mDykiIioaYrFYLRkFAC4uLvoJhoiIiEjPdB6y9/r16+KIg6hUSiqghxQTUkREpI24uDgMHjwYjo6OMDQ0hFgsVnsQERERlTc695CqXLky+vTpg6FDh+KDDz4ojpiISo2UAmtIccgeEREVLCgoCDExMfjmm2/g4OAAkYjTaRMREVH5pnNC6o8//kB4eDjatGkDFxcXDB06FAEBAXB0dCyO+Ij0KiU9I9/lIhF7SBERUcFOnjyJEydOoGHDhvoOhYiIiKhU0HnIXo8ePbBjxw48efIEo0aNwoYNG+Ds7IwuXbpg27ZtyMrKKo44ifSioKLmHLJHRETacHJygiDwO4OIiIgoh84JqRx2dnYIDg7G1atXsWTJEhw8eBCffPIJHB0dMWPGDKSmphZlnER68Tot/x5SHLJHRETaCA0NxdSpUxEVFaXvUIiIiIhKhULPshcXF4e1a9ciPDwc0dHR+OSTTzBs2DA8fvwYCxcuxNmzZ7F///6ijJWoxBU0ZI89pIiISBt9+/ZFamoqatSoATMzMxgZGaktT0hI0FNkRERERPqhc0Jq27ZtCAsLw759++Dh4YHRo0dj0KBBsLGxUa3j4+MDd3f3ooyTSC9S0jPy7UcoYkKKiIi0EBoaqu8QiIiIiEoVnRNSQ4YMQb9+/XDq1Ck0bdo013UcHR0xffr0dw6OSJ8yFUrIM7IAk7zXYQ8pIiLSRmBgoL5DICIiIipVdE5IPXv2DGZmZvmuY2pqipkzZxY6KKLSICkts8CEE2tIERGRtu7fv4+wsDDcv38fy5Ytg1QqxZ49e1CtWjXUrVtX3+ERERERlSidi5pbWloiPj5eo/3ly5cQi8VFEhRRaZAqVwAFJqTYQ4qIiAp27Ngx1KtXD+fOncO2bdsgk8kAAFeuXOFNPCIiIiqXdE5I5TVlsVwuh7Gx8TsHRFRaCBC06CHFhBQRERVs6tSpmDdvHg4cOKB2vdSmTRucPXtWj5ERERER6YfWQ/Z++OEHAIBIJMKvv/4KCwsL1TKFQoHjx4+jTp06RR8hkR4VVLTcAEoITEoREVEBrl27hg0bNmi0S6VSvHjxQg8REREREemX1gmppUuXAsjuIbVy5Uq14XnGxsZwcXHBypUriz5CIj1iDSkiIioKNjY2ePbsGVxdXdXaL126hCpVqugpKiIiIiL90Toh9fDhQwBA69atsW3bNlSoUKHYgiIqLQxEHLJHRETvrl+/fpgyZQo2b94MkUgEpVKJU6dOYfLkyQgICNB3eEREREQlTucaUkeOHGEyisqR/BNOBQ3pIyIiAoAFCxagTp06cHJygkwmg4eHB1q1agUfHx98/fXX+g6PiIiIqMRp1UMqODgYc+fOhbm5OYKDg/Ndd8mSJUUSGFFpwCF7RERUFIyNjfHLL79gxowZuHbtGmQyGRo1aoRatWrpOzQiIiIivdAqIXXp0iVkZmaq/j8vIpGoaKIiKiUKSjhxyB4REWljzpw5mDx5MpycnODk5KRqT0tLw6JFizBjxgw9RkdERERU8rRKSB05ciTX/yd63xWUYi2oxhQREREAzJ49G6NGjYKZmZlae2pqKmbPns2EFBEREZU7OteQeltycjJ27NiBW7duFUU8RKVKQT2kWEOKiIi0IQhCrj3Jr1y5AltbWz1ERERERKRfWs+yl6NPnz5o1aoVxo4di7S0NDRp0gRRUVEQBAERERHo1atXccRJVCqxhhQREeWnQoUKEIlEEIlEcHNzU0tKKRQKyGQyjBo1So8REhEREemHzgmp48ePY/r06QCA7du3QxAEJCYmYu3atZg3bx4TUvReKbioOXtIERFR3kJDQyEIAoYOHYrZs2fD2tpatczY2BguLi7w9vbWY4RERERE+qFzQiopKUnVtXzv3r3o1asXzMzM0LlzZ3zxxRdFHiCRPrGoORERvYvAwEAAgKurK3x8fGBkZKTniIiIiIhKB50TUk5OTjhz5gxsbW2xd+9eREREAABevXoFExOTIg+QSJ8KKmou4pA9IiLSgq+vL5RKJe7cuYP4+HgolerfH61atdJTZERERET6oXNCasKECRg4cCAsLCzg7OwMPz8/ANlD+erVq1fU8RHpFXtIERFRUTh79iwGDBiA6OhoCIL6d4dIJIJCodBTZERERET6oXNCavTo0WjWrBkePXqEjz76CAYG2RP1Va9eHfPmzSvyAIn0qaBZ9JiQIiIibYwaNQpNmjTBrl274ODgkOuMe0RERETliUFhNmrSpAl69uwJCwsLVVvnzp3RsmXLIguMqDQoOCGlhMCcFBERFeDu3btYsGAB3N3dYWNjA2tra7WHLkJCQtC0aVNYWlpCKpWiR48euH37doHbbd68GXXq1IGJiQnq1auH3bt3F/Z0iIiIiN6Zzj2kFAoFwsPDcejQoVxrIBw+fLjIgiPSt4J6QBWUsCIiIgKA5s2b4969e6hZs+Y77+vYsWMYM2YMmjZtiqysLHz11Vdo3749bty4AXNz81y3OX36NPr374+QkBB06dIFGzZsQI8ePXDx4kV4enq+c0xEREREutK5h9T48eMxfvx4KBQKeHp6okGDBmoPXf30009wcXGBiYkJmjdvjvPnz+e7fmJiIsaMGQMHBwdIJBK4ubnxDh8Vm4ISUhyyR0RE2hg3bhwmTZqE8PBwREZG4urVq2oPXezduxdBQUGoW7cuGjRogPDwcMTExCAyMjLPbZYtW4YOHTrgiy++gLu7O+bOnYvGjRtj+fLl73pqRERERIWicw+piIgIbNq0CZ06dXrng2/cuBHBwcFYuXIlmjdvjtDQUPj7++P27duQSqUa62dkZOCjjz6CVCrFli1bUKVKFURHR8PGxuadYyF6myCwhhQRERWNXr16AQCGDh2qahOJRBAE4Z2LmiclJQEAbG1t81znzJkzCA4OVmvz9/fHjh07Cn1cIiIionehc0LK2Ni4SLqbA8CSJUswYsQIDBkyBACwcuVK7Nq1C2vWrMHUqVM11l+zZg0SEhJw+vRpGBkZAQBcXFyKJBai3GhTQ4qIiKggDx8+LJb9KpVKTJgwAS1btsx36F1sbCwqV66s1la5cmXExsbmur5cLodcLlc9T05OLpqAiYiIiP6fzkP2Jk2ahGXLlmlMWayrjIwMREZGol27dv8LxsAA7dq1w5kzZ3LdZufOnfD29saYMWNQuXJleHp6YsGCBZwqmYpNQQkp1pAiIiJtODs75/sorDFjxuC///5DREREEUabXTj9zaLrTk5ORbp/IiIiIp17SJ08eRJHjhzBnj17ULduXVVPpRzbtm3Taj8vXryAQqHI9W7drVu3ct3mwYMHOHz4MAYOHIjdu3fj3r17GD16NDIzMzFz5sxct+EdPnoXrCFFRESFtXPnTnTs2BFGRkbYuXNnvut269ZN5/2PHTsW//zzD44fP46qVavmu669vT3i4uLU2uLi4mBvb5/r+tOmTVMb4pecnMykFBERERUpnRNSNjY26NmzZ3HEUiClUgmpVIrVq1dDLBbDy8sLT548waJFi/JMSIWEhGD27NklHCm9LwpOSHHIHhER5a5Hjx6IjY2FVCpFjx498lxP1xpSgiBg3Lhx2L59O44ePQpXV9cCt/H29sahQ4cwYcIEVduBAwfg7e2d6/oSiQQSiUTrmIiIiIh0pXNCKiwsrEgOXKlSJYjFYp3u1jk4OMDIyAhisVjV5u7ujtjYWGRkZMDY2FhjG97ho3chEhWQkCpgORERlV9KpTLX/39XY8aMwYYNG/DXX3/B0tJSVQfK2toapqamAICAgABUqVIFISEhALJnSfb19cXixYvRuXNnRERE4MKFC1i9enWRxUVERESkC51rSAFAVlYWDh48iFWrViElJQUA8PTpU8hkMq33YWxsDC8vLxw6dEjVplQqcejQoTzv1rVs2RL37t1Tu6i7c+cOHBwcck1GAdl3+KysrNQeRNpiDSkiIiptVqxYgaSkJPj5+cHBwUH12Lhxo2qdmJgYPHv2TPXcx8cHGzZswOrVq9GgQQNs2bIFO3bsyLcQOhEREVFx0rmHVHR0NDp06ICYmBjI5XJ89NFHsLS0xMKFCyGXy7Fy5Uqt9xUcHIzAwEA0adIEzZo1Q2hoKF6/fq2ade/tu3ufffYZli9fjvHjx2PcuHG4e/cuFixYgM8//1zX0yDSSkFD8lhDioiISpo2E8scPXpUo613797o3bt3MUREREREpDudE1Ljx49HkyZNcOXKFVSsWFHV3rNnT4wYMUKnffXt2xfPnz/HjBkzEBsbi4YNG2Lv3r2qQucxMTEwMPhfJy4nJyfs27cPEydORP369VGlShWMHz8eU6ZM0fU0iLQiKmA5a0gRERERERER6U7nhNSJEydw+vRpjSFyLi4uePLkic4BjB07FmPHjs11WW5397y9vXH27Fmdj0NUGAUlnMRMSBERERERERHpTOcaUkqlMteZYB4/fgxLS8siCYqotCiohxRrSBERERERERHpTuceUu3bt0doaKhqVhaRSASZTIaZM2eiU6dORR4gkT6JWEOKiIgKKTk5Wet1OekKERERlTc6J6QWL14Mf39/eHh4ID09HQMGDMDdu3dRqVIl/Pnnn8URI5HeFJRwMoASmQolTIzEJRQRERGVFTY2NhCJCuprmy233udERERE7zOdE1JVq1bFlStXsHHjRly5cgUymQzDhg3DwIEDYWpqWhwxEulNQUPyDCAgJT0LliZGJRQRERGVFUeOHFH9f1RUFKZOnYqgoCB4e3sDAM6cOYO1a9eqZhMmIiIiKk90TkgdP34cPj4+GDhwIAYOHKhqz8rKwvHjx9GqVasiDZBInwrqISWCgOT0TDiCyVgiIlLn6+ur+v85c+ZgyZIl6N+/v6qtW7duqFevHlavXo3AwEB9hEhERESkNzoXNW/dujUSEhI02pOSktC6desiCYqotNBmyF5yWlYJRUNERGXVmTNn0KRJE432Jk2a4Pz583qIiIiIiEi/dE5ICYKQaz2Ely9fwtzcvEiCIio9Ch6yl5yWWUKxEBFRWeXk5IRffvlFo/3XX3+Fk5OTHiIiIiIi0i+th+x9/PHHALJn1QsKCoJEIlEtUygUuHr1Knx8fIo+QiI9KriHVPaQPSIiovwsXboUvXr1wp49e9C8eXMAwPnz53H37l1s3bpVz9ERERERlTytE1LW1tYAsntIWVpaqhUwNzY2RosWLTBixIiij5BIj7SqIcUeUkREVIBOnTrhzp07WLFiBW7dugUA6Nq1K0aNGsUeUkRERFQuaZ2QCgsLAwC4uLhg8uTJHJ5H7z0B2syyp0RyOmtIERFRwZycnLBgwQJ9h0FERERUKuhcQ2rmzJlMRlG5oc2QvST2kCIiIi2cOHECgwYNgo+PD548eQIA+P3333Hy5Ek9R0ZERERU8nROSMXFxWHw4MFwdHSEoaEhxGKx2oPo/VJAQkrEIXtERFSwrVu3wt/fH6amprh48SLkcjmA7FmK2WuKiIiIyiOth+zlCAoKQkxMDL755hs4ODjkOuMe0fui4BpSShY1JyKiAs2bNw8rV65EQEAAIiIiVO0tW7bEvHnz9BgZERERkX7onJA6efIkTpw4gYYNGxZDOESliwGUBSwXkJzGGlJERJS/27dvo1WrVhrt1tbWSExMLPmAiIiIiPRM5yF7Tk5OEIT8e40QvS8K6v9nAIE9pIiIqED29va4d++eRvvJkydRvXp1PUREREREpF86J6RCQ0MxdepUREVFFUM4RKWLgUiLHlJMSBERUQFGjBiB8ePH49y5cxCJRHj69CnWr1+PyZMn47PPPtN3eEREREQlTuche3379kVqaipq1KgBMzMzGBkZqS1PSEgosuCI9E2kTQ0pDtkjIqICTJ06FUqlEm3btkVqaipatWoFiUSCyZMnY9y4cfoOj4iIiKjE6ZyQCg0NLYYwiEonbYbspaRnQqkUYGDAAv9ERJQ7kUiE6dOn44svvsC9e/cgk8ng4eEBCwsLfYdGREREpBc6J6QCAwOLIw6iUkmbouZKAXidkQVLE6N81yUiovJr6NChWLZsGSwtLeHh4aFqf/36NcaNG4c1a9boMToiIiKikqdVDank5GS1/8/vQfQ+KajPk6Eoe0hfcjqH7RERUd7Wrl2LtLQ0jfa0tDSsW7dODxEREb0bpVLArdhknHvwErdik6FUcuIrItKNVj2kKlSogGfPnkEqlcLGxgYikebPdEEQIBKJoFAoijxIIn0pqIeUiaEIyASSUjNRxca0hKIiIqKyIjk5GYIgQBAEpKSkwMTERLVMoVBg9+7dkEqleoyQiEh3kdEJWHs6GvfiZcjIUsDYUIyaUgsE+jjDy9lW3+ERURmhVULq8OHDsLXN/oflyJEjxRoQUWlSUFFzyf//Bb3OYA8pIiLSlHMjTyQSwc3NTWO5SCTC7Nmz9RAZEVHhREYnYP6um0hMzYTUUgITIwnSMxW4/jQJ83fdxPTO7kxKEZFWtEpI+fr65vr/RO+7ghJSRv8/6FUmZ0KKiIg0HTlyBIIgoE2bNti6davqBh8AGBsbw9nZGY6OjnqMkIhIe0qlgLWno5GYmgmXimaqkTPmEkOYGYsRnZCKdaej0cipAif8IaIC6VzUnKg8MSggIdVZvgeWRo/xOnV9CUVERERlSc6NvIcPH6JatWq5lj0gIior7sSn4F68DFJLica/ZyKRCHYWEtyNl+FOfArq2FvpKUoiKiu0KmpOVF4VlJACgFbiazB8eb0EoiEiorLq8OHD2LJli0b75s2bsXbtWj1ERESku6TUTGRkKWBiJM51uYmRGBlZCiSlZpZwZERUFjEhRZSPgobs5ciQZxRzJEREVJaFhISgUqVKGu1SqRQLFizQQ0RERLqzNjOCsaEY6Zm5T2SVnpld4NzazKiEIyOisogJKaJ8aJuQkmfyLhAREeUtJiYGrq6uGu3Ozs6IiYnRQ0RERLpzk1qiptQCz2VyCIL6dbIgCHguk6OW1AJuUks9RUhEZUmhElJZWVk4ePAgVq1ahZSUFADA06dPIZPJijQ4In3TOiGVwYQUERHlTSqV4urVqxrtV65cQcWKFfUQERGR7gwMRAj0cYa1qRGiE1LxWp4FhVLAa3kWohNSYW1qhAAfZxY0JyKt6FzUPDo6Gh06dEBMTAzkcjk++ugjWFpaYuHChZDL5Vi5cmVxxEmkF9rUkAKADPaQIiKifPTv3x+ff/45LC0t0apVKwDAsWPHMH78ePTr10/P0RERac/L2RbTO7tj7elo3IuX4YVMDmNDMTwdrRHg4wwvZ9uCd0JEhEIkpMaPH48mTZpo3NHr2bMnRowYUaTBEemTIAhaJ6TS2UOKiIjyMXfuXERFRaFt27YwNMy+/FIqlQgICNC5htTx48exaNEiREZG4tmzZ9i+fTt69OiR5/pHjx5F69atNdqfPXsGe3t7nY5NRARkJ6UaOVXAnfgUJKVmwtrMCG5SS/aMIiKd6JyQOnHiBE6fPg1jY2O1dhcXFzx58qTIAiMqDbQdspfJHlJERJQPY2NjbNy4EXPnzsWVK1dgamqKevXqwdnZWed9vX79Gg0aNMDQoUPx8ccfa73d7du3YWX1v2nYpVKpzscmIsphYCBCHXurglckIsqDzgkppVIJhUJzVoXHjx/D0pLF6+j9ovUse5lZxRwJERG9D9zc3ODm5vZO++jYsSM6duyo83ZSqRQ2NjbvdGwiIiKioqJzQqp9+/YIDQ3F6tWrAQAikQgymQwzZ85Ep06dijxAIn0ygFKr9dhDioiICvL48WPs3LkTMTExyMjIUFu2ZMmSYj9+w4YNIZfL4enpiVmzZqFly5bFfkwiIiKivOickFq8eDH8/f3h4eGB9PR0DBgwAHfv3kWlSpXw559/FkeMRHqj7Sh4FjUnIqL8HDp0CN26dUP16tVx69YteHp6IioqCoIgoHHjxsV6bAcHB6xcuRJNmjSBXC7Hr7/+Cj8/P5w7dy7PY8vlcsjlctXz5OTkYo2RiIiIyh+dE1JVq1bFlStXEBERgatXr0Imk2HYsGEYOHAgTE1NiyNGIr0xEGnZQyqLQ/aIiChv06ZNw+TJkzF79mxYWlpi69atkEqlGDhwIDp06FCsx65duzZq166teu7j44P79+9j6dKl+P3333PdJiQkBLNnzy7WuIiIiKh80zkhlZ6eDhMTEwwaNKg44iEqVbQvas6EFBER5e3mzZuqnuSGhoZIS0uDhYUF5syZg+7du+Ozzz4r0XiaNWuGkydP5rl82rRpCA4OVj1PTk6Gk5NTSYRGRERE5YSBrhtIpVIEBgbiwIEDUCq16z1CVFZpm5DKyuKQPSIiypu5ubmqbpSDgwPu37+vWvbixYsSj+fy5ctwcHDIc7lEIoGVlZXag4iIiKgo6dxDau3atdiwYQO6d+8Oa2tr9O3bF4MGDUKTJk2KIz4ivTLQOiGVBaVSgIGBtlWniIioPGnRogVOnjwJd3d3dOrUCZMmTcK1a9ewbds2tGjRQqd9yWQy3Lt3T/X84cOHuHz5MmxtbVGtWjVMmzYNT548wbp16wAAoaGhcHV1Rd26dZGeno5ff/0Vhw8fxv79+4v0HImIiIh0oXNCqmfPnujZsydSUlKwZcsW/Pnnn2jRogWqV6+OQYMGYcaMGcURJ5FeaNtDSixSIjVTAQuJzn9SRERUDixZsgQymQwAMHv2bMhkMmzcuBG1atXSeYa9CxcuoHXr1qrnOUPrAgMDER4ejmfPniEmJka1PCMjA5MmTcKTJ09gZmaG+vXr4+DBg2r7ICIiIippIkEQtPvFnY8bN25g4MCBuHr1KhQKRVHEVWySk5NhbW2NpKQkdj+nfD14LsO+ZaPwmeHfBa77ZeYITJ4yD1IrkxKIjIiIiltRXi8oFAqcOnUK9evXh42NTdEEWMJ4/UREREQF0fV6QecaUjnS09OxadMm9OjRA40bN0ZCQgK++OKLwu6OqFTSuocUlJDJWdiciIg0icVitG/fHq9evdJ3KERERESlhs7ji/bt24cNGzZgx44dMDQ0xCeffIL9+/ejVatWxREfkV7pkpBKzSjdvQOJiEh/PD098eDBA7i6uuo7FCIiIqJSQeceUj179kRaWhrWrVuH2NhYrFq1iskoem9pW9TcAEq8Zg8pIiLKw7x58zB58mT8888/ePbsGZKTk9UeREREROWNzj2k4uLiYGlpWRyxEJU62iak2EOKiIjy06lTJwBAt27dIBL9b0ZWQRAgEolKfQ1OIiIioqKmVUIqOTlZVZBKEIR87+Sx0CW9T7QdsmfAGlJERJSPI0eO6DsEIiIiolJFq4RUhQoV8OzZM0ilUtjY2Kjd2cvxLnf4fvrpJyxatAixsbFo0KABfvzxRzRr1qzA7SIiItC/f390794dO3bs0Pm4RAXRpYZUGntIERFRHlxdXeHk5KRxDSUIAh49eqSnqIiIiOh9pFQKuBOfgqTUTFibGcFNagkDA808jr5plZA6fPgwbG1tART9Hb6NGzciODgYK1euRPPmzREaGgp/f3/cvn0bUqk0z+2ioqIwefJkfPjhh0UaD9GbtE9IabceERGVT66urqqbe29KSEiAq6srh+wRERFRkYiMTsDa09G4Fy9DRpYCxoZi1JRaINDHGV7OtvoOT41WCSlfX1/V/xf1Hb4lS5ZgxIgRGDJkCABg5cqV2LVrF9asWYOpU6fmuo1CocDAgQMxe/ZsnDhxAomJiTofl0gbuhQ1JyIiyktOT/K3yWQymJiY6CEiIiIiet9ERidg/q6bSEzNhNRSAhMjCdIzFbj+NAnzd93E9M7upSoppXNR86K8w5eRkYHIyEhMmzZN1WZgYIB27drhzJkzeW43Z84cSKVSDBs2DCdOnMj3GHK5HHK5XPWcM9mQtgRon2gSMyFFRES5CA4OBgCIRCJ88803MDMzUy1TKBQ4d+4cGjZsqKfoiIiI6H2hVApYezoaiamZcKloproRZi4xhJmxGNEJqVh3OhqNnCqUmuF7OiekivIO34sXL6BQKFC5cmW19sqVK+PWrVu5bnPy5En89ttvuHz5slbHCAkJwezZs3WKiwgAMrKU0PbPVCxiQoqIiDRdunQJQPb107Vr12BsbKxaZmxsjAYNGmDy5Mn6Co+IiIjeE3fiU3AvXgappUQjZyMSiWBnIcHdeBnuxKegjn3pmIxO64RUabjDl5KSgsGDB+OXX35BpUqVtNpm2rRpqtiB7B5STk5OxRUivUfSMhUQadnziUP2iIgoNzm1N4cMGYJly5ZxNmIiIqISVFaKexeFpNRMZGQpYGIkyXW5iZEYL2RyJKVmlnBkedM6IVUcd/gqVaoEsViMuLg4tfa4uDjY29trrH///n1ERUWha9euqjalMjsRYGhoiNu3b6NGjRpq20gkEkgkub8hRPlJz1BoXUOKQ/aIiCg/YWFhqv/PqbnJG2RERETFpywV9y4K1mZGMDYUIz1TAXOJZqonPTP7NbA2M9JDdLnTOiFVHHf4jI2N4eXlhUOHDqFHjx4AshNMhw4dwtixYzXWr1OnDq5du6bW9vXXXyMlJQXLli3jhR0VqeweUtphDykiIspPVlYWZs+ejR9++AEymQwAYGFhgXHjxmHmzJkwMio9F4dERERlXVkr7l0U3KSWqCm1wPWnSTAzFqsN2xMEAc9lcng6WsNNaqnHKNXpXEPqzTt8RSE4OBiBgYFo0qQJmjVrhtDQULx+/Vo1615AQACqVKmCkJAQmJiYwNPTU217GxsbANBoJ3pX6ZlKFjUnIqIiMW7cOGzbtg3fffcdvL29AQBnzpzBrFmz8PLlS6xYsULPERIREb0fymJx76JgYCBCoI8z5u+6ieiEVNhZSGBilN1j6rlMDmtTIwT4OJeqc9Y5IQUAFy5cwKZNmxATE4OMjAy1Zdu2bdNpX3379sXz588xY8YMxMbGomHDhti7d6+q0HlMTAwMDAwKEybRO0nLVMBAxCF7RET07jZs2ICIiAh07NhR1Va/fn04OTmhf//+TEgREREVkbJY3LuoeDnbYnpnd9VQxRcyOYwNxfB0tEZAKRyqqHNCKiIiAgEBAfD398f+/fvRvn173LlzB3FxcejZs2ehghg7dmyuQ/QA4OjRo/luGx4eXqhjEhUkLVMBMy1rSHHIHhER5UcikcDFxUWj3dXVVa0uJxEREb2bsljcuyh5OduikVOFMlHMXeeuRwsWLMDSpUvx999/w9jYGMuWLcOtW7fQp08fVKtWrThiJNILFjUnIqKiMnbsWMydOxdyuVzVJpfLMX/+/DxvyhEREZHu3izunZvSWNy7qBkYiFDH3grNq1dEHXurUpmMAgrRQ+r+/fvo3LkzgOyi5K9fv4ZIJMLEiRPRpk0bzJ49u8iDJNKH7KLmTEgREVHhfPzxx2rPDx48iKpVq6JBgwYAgCtXriAjIwNt27bVR3hERETvpbJY3Lu80jkhVaFCBaSkpAAAqlSpgv/++w/16tVDYmIiUlNTizxAIn1Jz9S+h5QBlBC0XJeIiMoHa2trtee9evVSe87ZgYmIiIpeWSzuXV7pnJBq1aoVDhw4gHr16qF3794YP348Dh8+jAMHDvAOH71X0nRISImhZB8pIiJSU9QzExMREZF2ylpx7/JK54TU8uXLkZ6eDgCYPn06jIyMcPr0afTq1Qtff/11kQdIpC/ZY4617CElYkKKiIiIiIiotChLxb3LK50TUra2/8skGhgYYOrUqUUaEFFpkaZjUfOsYo6HiIjKLldXV42pp9/04MGDEoyGiIiofMgp7k2lk1YJqeTkZK13aGXFN5veD7oO2SMiIsrLhAkT1J5nZmbi0qVL2Lt3L7744gv9BEVERESkR1olpGxsbPK9qwdkV6sXiURQKHKfWpGorEnPVGo9y54BE1JERJSP8ePH59r+008/4cKFCyUcDREREZH+aZWQOnLkSHHHQVTq6NZDijPsERGR7jp27Ihp06axADoRERGVO1olpHx9fYs7DqJSR5ei5hyyR0REhbFlyxa1+pxERERE5YXORc0B4MSJE1i1ahUePHiAzZs3o0qVKvj999/h6uqKDz74oKhjJNILXYqac8geERHlp1GjRmrlDwRBQGxsLJ4/f46ff/5Zj5ERERER6YfOCamtW7di8ODBGDhwIC5evAi5XA4ASEpKwoIFC7B79+4iD5JIH7KH7GmXaGIPKSIiyk+PHj3UnhsYGMDOzg5+fn6oU6eOfoIiIiIi0iOdE1Lz5s3DypUrERAQgIiICFV7y5YtMW/evCINjkif0jMVyL+U//+whxQREeVn5syZ+g6BiIiIqFQx0HWD27dvo1WrVhrt1tbWSExMLIqYiEqF9Ewle0gREVGRuHjxIq5du6Z6/tdff6FHjx746quvkJGRocfIiIiIiPRD54SUvb097t27p9F+8uRJVK9evUiCItI3QRCQlqmASNui5iImpIiIKG8jR47EnTt3AAAPHjxA3759YWZmhs2bN+PLL7/Uc3REREREJU/nhNSIESMwfvx4nDt3DiKRCE+fPsX69esxefJkfPbZZ8URI1GJy1QIUCgFrRNSBlBC0G5VIiIqh+7cuYOGDRsCADZv3gxfX19s2LAB4eHh2Lp1q077On78OLp27QpHR0eIRCLs2LGjwG2OHj2Kxo0bQyKRoGbNmggPD9f9JIiIiPKhVAq4FZuMcw9e4lZsMpRK/kCi/OlcQ2rq1KlQKpVo27YtUlNT0apVK0gkEkyePBnjxo0rjhiJSlxapgIAtJ5lj0P2iIgoP4IgQKnM/q44ePAgunTpAgBwcnLCixcvdNrX69ev0aBBAwwdOhQff/xxges/fPgQnTt3xqhRo7B+/XocOnQIw4cPh4ODA/z9/XU/GSIiordERidg7elo3IuXISNLAWNDMWpKLRDo4wwvZ1t9h0ellM4JKZFIhOnTp+OLL77AvXv3IJPJ4OHhAQsLC6SlpcHU1LQ44iQqUek5CSkRE1JERPTumjRpgnnz5qFdu3Y4duwYVqxYASA7WVS5cmWd9tWxY0d07NhR6/VXrlwJV1dXLF68GADg7u6OkydPYunSpUxIUZmiVAq4E5+CpNRMWJsZwU1qCQMDbaegIaLiEhmdgPm7biIxNRNSSwlMjCRIz1Tg+tMkzN91E9M7uzMpRbnSOSGVw9jYGB4eHgAAuVyOJUuW4LvvvkNsbGyRBUekLzkJKbGW1zicZY+IiPITGhqKgQMHYseOHZg+fTpq1qwJANiyZQt8fHyK9dhnzpxBu3bt1Nr8/f0xYcKEYj0uUVFi7wui0kmpFLD2dDQSUzPhUtEMIlH2DyhziSHMjMWITkjFutPRaORUgQlk0qB1Qkoul2PWrFk4cOAAjI2N8eWXX6JHjx4ICwvD9OnTIRaLMXHixOKMlajE5AzZM2QPKSIiKgL169dXm2Uvx6JFiyAWi4v12LGxsRq9sCpXrozk5OQ8e7fL5XLI5XLV8+Tk5GKNkSg/7H1BVHrdiU/BvXgZpJYSVTIqh0gkgp2FBHfjZbgTn4I69lZ6ipJKK62Lms+YMQMrVqyAi4sLoqKi0Lt3b3z66adYunQplixZgqioKEyZMqU4YyUqMWkZClhBBrGWfyHsIUVERNoaPXq0qm6UiYkJjIyM9ByRppCQEFhbW6seTk5O+g6Jyqm3e1+YSwwhNhDBXGIIZ1szJKVlYt3paBZPJtKTpNRMZGQpYGKU+80VEyMxMrIUSErNLOHIqCzQOiG1efNmrFu3Dlu2bMH+/fuhUCiQlZWFK1euoF+/fsV+d4+oJBnEXcVVk09RX3lLq/XZQ4qIiLT1xx9/lGiPI3t7e8TFxam1xcXFwcrKKs/an9OmTUNSUpLq8ejRo5IIlUiDLr0viKjkWZsZwdhQrCp58rb0zOwhttZmpe/mC+mf1kP2Hj9+DC8vLwCAp6cnJBIJJk6cqPHFQPQ+kF5fo9P6TEgREZG2BKFke3J4e3tj9+7dam0HDhyAt7d3nttIJBJIJJLiDo2oQP/rfZH759HESIwXMjl7XxDpiZvUEjWlFrj+NAlmxmK1/IAgCHguk8PT0RpuUks9RkmlldY9pBQKBYyNjVXPDQ0NYWFhUSxBEelbhki3i3AO2SMiopIik8lw+fJlXL58GUD2TH2XL19GTEwMgOzeTQEBAar1R40ahQcPHuDLL7/ErVu38PPPP2PTpk2s/UllAntfEJVuBgYiBPo4w9rUCNEJqXgtz4JCKeC1PAvRCamwNjVCgI8zC5pTrrTuISUIAoKCglR3y9LT0zFq1CiYm5urrbdt27aijZBID1KVuk1AyR5SRESkrZSUdxtadOHCBbRu3Vr1PDg4GAAQGBiI8PBwPHv2TJWcAgBXV1fs2rULEydOxLJly1C1alX8+uuv8Pf3f6c4iEoCe18QlX5ezraY3tldNRPmC5kcxoZieDpaI4AzYVI+tP7VHRgYqPZ80KBBRR4MUWnxWqHbXTYDLWfjIyKi8kmhUKjV2zx37hzkcjm8vb11Lmru5+eX77C/8PDwXLe5dOmSTschKg1yel/M33UT0QmpsLOQwMQou8fUc5mcvS+ISgkvZ1s0cqqAO/EpSErNhLWZEdyklvzbpHxpnZAKCwsrzjiIShWZgj2kiIjo3T179gy9e/fG2bNn0bJlS+zYsQODBw9W1XSqVasWjh49CgcHBz1HSlR6sfcFUdlgYCBCHXsrfYdBZYhuv7qJyglZlm6zRjIhRUREuZkyZQoEQcD27duxfv16dOnSBWKxGI8ePYJCocCAAQMwf/58LF++XN+hEpVq7H1BRPT+YUKKKBfJWVrX+wcAiKDEK87uQkREbzl48CC2bduGFi1aoGXLlqhUqRIOHDiAKlWqAADmzJmDESNG6DlKorKBvS+IiN4vuv3qJion0jKydFpfDCWiXrwupmiIiKisevXqlSr5ZGtrCzMzMzg7O6uW16xZE8+ePdNXeERERER6w4QUUS4yMzN0Wl8MJR6+ZEKKiIjUSaVStYTT2LFjYWv7v3o3r1690pixmIiIiKg8YEKKKBcZmboNvzOAgIfsIUVERG9p2LAhzpw5o3r+7bffqiWkTp48ifr16+sjNCIiIiK9Yg0porcolAKyMjN0+usQQ4nnKXLI5FmwkPDPioiIsv3111/5Lm/atCl8fX1LKBoiIiKi0oO/nInekpyWqfOseWJR9vpRL17Ds4p1cYRFRETvoWbNmuk7BCIiIiK94JA9ore8Ss2AGAqdtslJYHHYHhER6eLVq1dYt26dvsMgIiIiKnFMSBG95VVqJgx17CFlgP/1kCIiItJWTEwMhgwZou8wiIqUUingVmwyzj14iVuxyVAqBX2HREREpRCH7BG9JbEQPaQMIAAQ8CQxrXiCIiKiMik5OTnf5SkpKSUUCVHJiIxOwNrT0bgXL0NGlgLGhmLUlFog0McZXs62Be+AiIjKDSakiN6SmJoJQx0TUkD2sL0XMnkxRERERGWVjY0NRCJRnssFQch3OVFZEhmdgPm7biIxNRNSSwlMjCRIz1Tg+tMkzN91E9M7uzMpRUREKkxIEb3lVWoGjHUcsgfkJKQyiiEiIiIqqywtLTF9+nQ0b9481+V3797FyJEjSzgqoqKnVApYezoaiamZcKlopkq0mksMYWYsRnRCKtadjkYjpwowMGASloiImJAi0iCTZ0FaiB5SEw234EByt2KIiIiIyqrGjRsDAHx9fXNdbmNjA0FgfR0q++7Ep+BevAxSS4lGrz+RSAQ7CwnuxstwJz4Fdeyt9BQlERGVJkxIEb1FEP43a54uPjP8G4ZpgCD05vALIiICAAwYMABpaXnXF7S3t8fMmTNLMCKi4pGUmomMLAVMjCS5LjcxEuOFTI6k1MwSjoyIiEorJqSIcmEo0r2HFACYKVPxOkMBCwn/tIiICBgxYkS+yytXrsyEFL0XrM2MYGwoRnqmAua5XAelZ2YXOLc2M9JDdKWTUingTnwKklIzYW1mBDepJYczElG5wl/NRLnQdZa9HMbIxIsUORNSREREVK64SS1RU2qB60+TYGYsVustLggCnsvk8HS0hpvUUo9Rlh6cjZCICDDQdwBEpZFhIYbsAYCRKAsvX3OmPSIiynb48GF4eHggOTlZY1lSUhLq1q2LEydO6CEyoqJlYCBC4P+1d+fhTVV5H8C/N2v3dKGrlJa1ZQdZKnVUGJDCMAqKgsgryCAyDoiKOIALm8OAyIg6g+IKiAuIL4IvODiIVJF2WAplKaUslrCWAoVuaZOmOe8fJaFpkzbdkjT9fp4nT5ubc+/9nZzc5OaXc89JjIHGWwltng7FeiPKTQLFeiO0eTpovJWYkBjDHkC4PRvhsYv5CPBSoHWQDwK8FJbZCNO0ea4OkYjIKdwiIbVy5UrExsbCy8sLCQkJ2Ldvn92yH330Ee655x4EBQUhKCgIQ4YMqbE8UX3Ut4eUEkZcLeRMe0REVOHtt9/GlClTEBBQfRBnjUaDqVOn4q233nJBZESNr09MMF4Z0RldozQoKDXiwg0dCkqN6BalwSsjOrPnD6rPRuirVkAuk+CrViAm2Af5JWX4LEULk4mTHRCR53P5dUUbNmzAzJkzsWrVKiQkJODtt99GUlISsrKyEBYWVq18cnIyxo0bh8TERHh5eeGNN97A0KFDkZGRgTvuuMMFNSBPVN8eUioYcaWIPaSIiKjC4cOH8cYbb9h9fOjQoVi+fLkTIyJqWn1igtE7OohjI9nB2QiJiG5zeQ+pt956C1OmTMGkSZPQpUsXrFq1Cj4+Pvj0009tlv/iiy/wl7/8Bb169UJ8fDw+/vhjmEwm7Ny508mRkyer/xhSRlxjQoqIiG65cuUKlEr7gzgrFApcvXrViRERNT2ZTEJ8RAAS2oUgPiKAyahKbs9GKLf5uJdSDoOxnLMRElGL4NKElMFgQFpaGoYMGWJZJpPJMGTIEKSmpjq0DZ1Oh7KyMgQHswswNR5FAy7ZY0KKiIjM7rjjDhw7dszu40eOHEFkZKQTIyIiV6o8G6EtnI2QiFoSlyakrl27hvLycoSHh1stDw8PR05OjkPbmD17NqKioqySWpXp9XoUFBRY3YhqI6/vJXuSEdeLOIYUERFV+MMf/oDXXnsNpaWl1R4rKSnB/Pnz8cc//tEFkRGRK5hnI7xapIcQ1uNEmWcj7Bjmx9kIiahFcPklew2xdOlSrF+/Ht9++y28vLxsllmyZAk0Go3lFh0d7eQoqTlSSPXvIXWTXayJiOiWV199FXl5eejUqROWLVuGLVu2YMuWLXjjjTcQFxeHvLw8vPLKK64Ok4ichLMREhHd5tJBzVu1agW5XI4rV65YLb9y5QoiIiJqXHf58uVYunQpfvzxR/To0cNuublz52LmzJmW+wUFBUxKUa3q3UMKRghwVhQiIqoQHh6OlJQUPPPMM5g7d66lR4QkSUhKSsLKlSur9RQnIs9mno1wbYoWp3OLcK1ID5VCjm5RGkxIjOFshETUYrg0IaVSqdCnTx/s3LkTo0aNAgDLAOXTp0+3u96yZcuwePFi/PDDD+jbt2+N+1Cr1VCr1Y0ZNnk4gfqPIaUCe0cREZG1mJgYfP/997hx4wZOnz4NIQQ6duyIoKAgV4dGRC7C2QiJ3JfJJHhsOolLE1IAMHPmTEycOBF9+/ZF//798fbbb6O4uBiTJk0CAEyYMAF33HEHlixZAgB44403MG/ePHz55ZeIjY21jDXl5+cHPz8/l9WDPEt9Z9lTwtjIkRARkacICgpCv379XB0GEbkJ82yEROQ+0rR5lt6LBmPFJAMdwvwwkb0Xm4TLE1Jjx47F1atXMW/ePOTk5KBXr17Yvn27pfv6uXPnIJPdHurq/fffh8FgwCOPPGK1nfnz52PBggXODJ08mKKel+wp6zn2FBEREREREblOmjYPi7dl4qauDGH+angp1SgtK0fGpXws3paJV0Z0ZlKqkbk8IQUA06dPt3uJXnJystX9s2fPNn1A1OLVt4cUL9kjIiIiIiJqXkwmgbUpWtzUlSE2xAeSVHGJnq9aAR+VHNo8HT5L0aJ3dBAv32tEzXqWPaKmUt9BzXnJHhERERERUfNyMrcQp3OLEOavtiSjzCRJQqifGqdyi3Ayt9BFEXomJqSIbKh1UHOfVjYXq2CE4CR7REREREREzUa+rgwGYzm8lHKbj3sp5TAYy5Gv4xUxjYkJKSIb5JKdHlKhnYEx64CnfrT5sApGMCNFRETOsHLlSsTGxsLLywsJCQnYt2+f3bJr1qyBJElWNy8vLydGS0RE5L40PkqoFHKUltnumFBaVjHAucZH6eTIPBsTUkQ22O0hJVcCXR4EfEJsPiyTBGT1vNyPiIjIURs2bMDMmTMxf/58HDx4ED179kRSUhJyc3PtrhMQEIDLly9bblqt1okRExERua9OYf7oEOaHq0V6iCodDIQQuFqkR8cwP3QK83dRhJ6JCSkiG+wOai7VPoCdggObExFRE3vrrbcwZcoUTJo0CV26dMGqVavg4+ODTz/91O46kiQhIiLCcjPPaExERNTSyWQSJibGQOOthDZPh2K9EeUmgWK9Edo8HTTeSkxIjOGA5o2MCSkiGxR2eznV/gakFExIERFR0zEYDEhLS8OQIUMsy2QyGYYMGYLU1FS76xUVFSEmJgbR0dEYOXIkMjIynBEuERFRs9AnJhivjOiMrlEaFJQaceGGDgWlRnSL0uCVEZ3RJybY1SF6HIWrAyByRw3qISU40x4RETWda9euoby8vFoPp/DwcJw4ccLmOnFxcfj000/Ro0cP5OfnY/ny5UhMTERGRgZat25drbxer4der7fcLygoaNxKEBERuaE+McHoHR2Ek7mFyNeVQeOjRKcwf/aMaiJMSBHZ0JAeUgowIUVERO5lwIABGDBggOV+YmIiOnfujA8++ACvv/56tfJLlizBwoULnRkiERGRW5DJJMRHBLg6jBaBl+wRVSVEA3tI8ZI9IiJqOq1atYJcLseVK1esll+5cgUREREObUOpVKJ37944ffq0zcfnzp2L/Px8y+38+fMNjpuIiIioMiakiGywO8ueAz2k5ExIERFRE1KpVOjTpw927txpWWYymbBz506rXlA1KS8vx9GjRxEZGWnzcbVajYCAAKsbETmHySRwIqcAe3+7jhM5BTCZRO0rERE1Q7xkj6gqYYJcsvPB79Ase7xkj4iImtbMmTMxceJE9O3bF/3798fbb7+N4uJiTJo0CQAwYcIE3HHHHViyZAkAYNGiRbjrrrvQoUMH3Lx5E2+++Sa0Wi2eeuopV1aDiKpI0+ZhbYoWp3OLYDCWQ6WQo0OYHyYmxnBAZSLyOExIEVUhE/bGjwI4yx4REbmDsWPH4urVq5g3bx5ycnLQq1cvbN++3TLQ+blz5yCT3e4If+PGDUyZMgU5OTkICgpCnz59kJKSgi5duriqCkRURZo2D4u3ZeKmrgxh/mp4KdUoLStHxqV8LN6WyVm+iMjjMCFFVIWsplny2EOKiIjcxPTp0zF9+nSbjyUnJ1vdX7FiBVasWOGEqIioPkwmgbUpWtzUlSE2xAfSrXNOX7UCPio5tHk6fJaiRe/oIM72RUQeg2NIEVUh2R0/CoBU+yHDQc2JiIiIqC5O5hbidG4RwvzVlmSUmSRJCPVT41RuEU7mFrooQiKixseEFFEVMlFDQoqX7BERERFRI8vXlcFgLIeXUm7zcS+lHAZjOfJ1PM8kIs/BS/aIqqgxIWX5xcr+bCe8ZI+IiIiI6kLjo4RKIUdpWTl81dW/opWWVQxwrvFRuiA692QyCZzMLUS+rgwaHyU6hfnzckaiZoYJKaIqHOohVcPA5zITf7kiIiJqafjlmBqiU5g/OoT5IeNSPnxUcqvL9oQQuFqkR7coDTqF+bswSvfB2QiJPAMTUkRVSI70kDLZT0hdyctHfkkZNN78BYuIiKgl4JdjaiiZTMLExBgs3pYJbZ4OoX5qeCkrekxdLdJD463EhMQYJjnB2QiJPAnHkCKqosZZ9sxqSlqZyvDd4UuNFxARERG5LfOX42MX8xHgpUDrIB8EeCksX47TtHmuDpGaiT4xwXhlRGd0jdKgoNSICzd0KCg1oluUhkmWW6rORuirVkAuk+CrViAm2Af5JWX4LEULk8n+8BruzmQSOJFTgL2/XceJnIJmXRei2rCHFFEVDo0hZbJfRgUjvjlwHk/cFdPIkREREZE7qfrl2HyZla9aAR+VHNo8HT5L0aJ3dBB7tpBD+sQEo3d0EC//tKMusxHGRwS4KMr6Y29LamnYQ4qoCofGkPLS2C3xN+VqPHZlOQpKOZYUERGRJ6vLl2MiR8lkEuIjApDQLgTxEQFMRlXiybMRsrcltURMSBFVUWas4QPMfLKp8gGm7QemH7BZ7EFZCo5dyG+C6IiIiMhdePKXYyJ3VHk2Qlua62yELeFSRCJbmJAiquJavs6xgqGdgFYdbT7kDQPSz99oxKiIiIjI3Xjql2Mid2WejfBqkR5CWCdnzLMRdgzza3azEbK3JbVUTEgRVXGtoBgAYJJs/drpWJdpmSRw/NyVRoyKiIiI3I2nfjkmclfm2Qg13kpo83Qo1htRbhIo1huhzdM129kI2duSWiompIiqyCuq6CFl9LsDmLobeO7I7Qclxw+ZMxdzGzs0IiIiciOe+uWYyJ154myE7G1JLRVn2SOqpMRQjiKdHlADcqUSiOxhXUBy/ISysLAAecUGBPuqGjlKIiIichfmL8fmmbGuFemhUsjRLUqDCZwZi6hJeNpshObelhmX8uGjkltdtmfubdktSsPeluRxmJAiquTiTR0UUsUvE3K5rV8gHP+Q84IeemNNM/YRERGRK5lMolG+0Hral2Oi5sA8G6EnMPe2XLwtE9o8HUL91PBSVvSYulqkZ29L8lhMSBFVcv5GCeQwVdyR2Tg86tBDygf6RoqKiIiIGluaNs/Sq8lgrLgcpkOYHybWs1eTJ305JiLnY29LaomYkCKq5MKNEihwq1eTrP6DmgOAj6SH4MysREREbidNm4fF2zJxU1eGMH81vJRqlJaVI+NSPhZvy6zTODSN1cvK2Zpr3ESejL0tqaVhQoqokos3SiC3JKQa1kPKmz2kiIiI3I7JJLA2RYubujLEhvhYxmrxVSvgo5JDm6fDZyla9I4OqvVLYGP3snIWd42bSTIi9rakloUJKaJKwrRbMUf1j4o7thJSdekhBT3YQYqIiMj1Kic68nQGnLpSiDB/tdXAwQAgSRJC/dQ4lVuEk7mFNX4pbMxeVs7krnG7a5KMiIiaDhNSRJX8/sqnt++UFlQvUJcxpKTSRoiIiIiIGqJqosNoErhWpIeX0h++6urlvZRyXCvSI19XZnebjdnLypncNW53TZIREVHTkrk6ACJ3kVtYirLKk+JdzbRRqm6X7BnLTQ2Oi4iIiOrHnOg4djEfAV4KtA7yQYCXEgajwKncQty0kXQqLavonaPxsTXbboWTuYU4nVvkUC8rd+KOcVdNkvmqFZDLJPiqFYgJ9kF+SRk+S9HCZGK/cyIiT8OEFNEth87dvD1+lD116CEVKeXh3bVfoaDU/i+sRERE1DTsJTpa+asR6KOA3mjChRs6iEozkAghcLVIj45hfugU5m932/m6MhiM5fBS2poApaKXlcFYXmMvK1dwx7jdMUlGRETOwYQU0S0Hz91AoFRU9xXj/2j995ZnFP+HfxS8iE3/910jREdERER1YS/RIQGIDvaFSi7DDZ0B14r0KDcJFOuN0ObpoPFWYkJiTI2XrGl8lFAp5Cgts/1DliO9rFzBHeN2xyQZERE5BxNSRLekn82DBsU1F5JsHDKPrgVmHAK6PWxzleNHDuByfkkjREhERESOqinREeitRKdwf6gUcuSXGHHhhg4FpUZ0i9I4NF5RpzB/dAjzw9UivVUPK8DxXlau4I5xu2OSjIiInIMJKaJbCgtvQC7VMj6BrUv25AoguJ3dVQJM+dh25HIDoyMiIqK6qC3RoVbI0CbYB3P+EI/FD3XHW2N7YsXYXg4Nni2TSZiYGAONtxLaPB2K9cY697JyBXeM2x2TZERE5BxMSBHd4i8cuVyvhhM0o8Hm4hCpAHojBzcnIiJyJkcTHUldIpDQLgTxEQF1SsT0iQnGKyM6o2uUBgWlde9l5SqNGbfJJHAipwB7f7uOEzkF9Rp43B2TZERE5BwKVwdA5C4cSkjVNKi5wfb6IShARkEphBDVBuskIiKipmFOdCzelgltng6hfmp4KSt6TF0t0jdKoqNPTDB6RwfhZG4h8nVl0Pgo0SnM37JNk0nYfcyVaovbEWnaPKxN0eJ0bhEMxorL6jqE+WFiYkydk3HmJJl5e9eK9FAp5OgWpcGEemyPiIiaByakiG5pcA8pve3ZX4KlAqxN1eLklSL8Y0xPRAV61y9AIiKiFsKcyLlRbECezoCiUiNkkoSudwQgPtzxnkzOSHTIZBLiIwKqLW/MhE1TsBe3I9K0eVi8LRM3dWUI81fDS6lGaVk5Mi7lY/G2zHr1EGuMJBkRETUvTEgR3eIvHJhOuB49pOL9DfAulCP1t+t4bv0hbPxzYj0jJCIi8nzmRM6RCzdxOb8EBmPFZWAKmQRvlRw9Wgfihfs7OpzwcEWioykSNu7CZBJYm6LFTV0ZYkN8LL2/fdUK+Kjk0Obp8FmKFr2jg+r8HDckSUZERM0Px5AiuiXAkYRUjT2kbCekWquKsHJ8bwDA/rM3cOqKI/shIiJqecyJnD2nruLsdR30RgEBQAAoMwmUlJVj/9k8zN10FPuz8xwev8ic6OgXW5EE2n82r95jHtWmasLGV62AXCbBV61ATLAP8kvK8FmKtkn27QwncwtxOrcIYf7qakMRSJKEUD81TuUW4WQuz3eIiKhm7CFFdIufKAYAGFUBUBgKgD8sr16oph5Sdi7Zg+46IgJuX6Z3/4pf0DcmCJ8/lWBzKmoiIqKWyGQS+OSX33Do3E3YS9WUlQso5YD2ug7PfXUQGh8VDOUmCACRAV4Y3ac1RvW6w2bPHGddQleXhE1z7A2UryuDwVgOL6Xa5uNeSjmuFemRrytzcmRERNTcMCFFdEsAKhJK1zuNRfioxYDC1olWDQmpu54BDn8JBLcD8n67vdxQhM6tFFg2uge+P3YZyVlXcUB7A/Gvbcf0QR3w9H3tEOClbNzKNKXi6zD9uACyQ5/hP/4P4ai6N+4oPo7wBxfgnk7hUMjZ8ZKIiOrmZmEp+i/ZCYMDk9KWlVf0mbpUoAckCUaTCUWl5Tifp8PBczex6eBFvHB/R6vL9C7eLMG6VC3yS5r+EjpPT9hofJRQKSoGh/dVV/8qUVpWkezT+DSjcxsiIg/nrpNsuMU3x5UrVyI2NhZeXl5ISEjAvn37aiy/ceNGxMfHw8vLC927d8f333/vpEjJkwXcGtS8XB1oJxmFmntIRfYA5pwDxq2vvpruOsZ088OaiX3wZGKsZTOrdp3Au68/h7fW/S/e2XESmRdvIL/EjU9QhUD5uochO/QZAGBo4bd48do8PFayHsmfL8Gwd3bjJC9JJCJyCk85f4qdsw29FjuWjKrqUn4p8ooNkMsleClkMAmBQ+dvYM7/HsHo91Mw9bM0vPh1OuZvOYZTuUUI9FHW+RI6k0k4fGkgYJ2wsaW5J2w6hfmjQ5gfrhbpIYT1cyGEwNUiPTqG+aFTmL+LIiQiosrStHl4fkM6Zm44jFe+PYqZGw7j+Q3pSNPmuTo01yekNmzYgJkzZ2L+/Pk4ePAgevbsiaSkJOTm5tosn5KSgnHjxmHy5Mk4dOgQRo0ahVGjRuHYsWNOjpw8yS8nr0JZVgAAUPgG1VCyliyylwZQ+lRffuYn4M2OwDd/woIhkTg6vS2GdgnHePlOvKr8Ao+ffhGDdz8K/w/7YvKid7Fu/jjM+ngbvv5hF7LOX8b1Ir3rx5q4cRZnP3wc8px0mw8/KE9B+dVT8HmvF3754HlcK9I7Nz4iohbEU86fYudsa/A2jCagqNSIYkM5yspNKDGU41RuMdLP30ROQQmuFxugM5TDYCzH6dwi3Kz0w09tYx7V5yTe0xM2MpmEiYkx0Hgroc3ToVhvRLlJoFhvhDZPB423EhMSY9zil3ciopbOPDbjsYv5CPBSoHWQDwK8FJYewq5OSkmi6ielkyUkJKBfv37417/+BQAwmUyIjo7Gs88+izlz5lQrP3bsWBQXF2Pr1q2WZXfddRd69eqFVatW1bq/goICaDQa5OfnIyCg+V23T41vXcpvKNj+OqbJNgEAxOhPIXUfbV1ogabib89xwEO1vM50ecCytjUUkABJBjF+I6TPH641vksiGFmmaNwhXcc7xofxaPBvuBD7MHyUgMw7EOWaGISYrgNBsQg2XIA8sA10BiPO5BbDICkwrGsEWvmp639iqC/E5pSjGPjr/yCw/HqNRb8yDsI4xS4AwObyRPh1GYp2g59Cu2Z60k1ELZe7ny94wvlTYySjKlNIgEkA5o5WEoAALwWMJgGdoRwyGaCQyRDoo0TXKI3lJ6Zyk8CFGzosfqg7EtqFWLZXfaa8il5PV4v00Hgra7zMz7xufkkZQv3qtm5zYWtMro5hfpjQyGNyERFR/ZhMAs9vSMexi/lWs6ICFT+QaPN06BalwYqxvRrtR4S6ni+4dAwpg8GAtLQ0zJ0717JMJpNhyJAhSE1NtblOamoqZs6cabUsKSkJmzdvbspQHXbp5EHoy8pujW9wi42cn/08oI3ldsra3oaw8R8g2dmu7U0LG//biddm93ph857dGGwss74r7K9vLzqbz7kJQgACAiZRUeTs9WKUpm3BNMXtyxYknxp6SMkcOGRs9ZCqGq0odygZBQBRUh6i5BWZ65Wqd4EiAMe21rwSgBgRiFRTF5i2Z+KsUKMAfhCSHN6SHtdlIZBLgE7mh4vKNghCIW4qw6GSmeCvv4IiZSu0Ks1GZMlpxMquYBQMDsVqTkYBwCh5CpCVAmQtQI4IQonMD1mKeIQEeCPfqzUkuRxySQaF0OOqbyeoyksAmRwmmQq+hqtQm0qQ59se5TIlZJJU8cVBAmS3vkJIkgRJqvjCYf4LSXa7XKV1JJjL3VpHAgCZ5f+Kx6VK25GqL7+1wLKdmp4ISYK9Erav+rSzNRuLpZofsLG4+gNVB9mtHJuoUt5ePSWppkftxVb7tq1iq+kS2Wqbliotq/25r+2XGOtd17zt6mFKVVerObbaXk+oHK+Equ+awu7HjYBwpNLS7bjMz7/lWLA8bvnXKu7q+7S9KyFQ7Ymq9u5fuR7mPVUrUn1nmtAohIa3rh6EB/OE86cHX27cZBRQ8XIxVbkvhIBSLoMklUMIwCRERW8qvRF+t8Y/snUJXdWZ8szHhq9aAR+VHNo8HT5L0aJ3dJDNk/g+McF4ZURnS8LmWpEeKoUc3aI0HpOw6RMTbDVOlzuNSUJERM1jkg2XJqSuXbuG8vJyhIeHWy0PDw/HiRMnbK6Tk5Njs3xOTo7N8nq9Hnr97UuHCgoKGhh1zTRfDIevVNqk+6DG0xuofhSobPTmGbIQSFsDDHql9o3aG3/KnlZxwLWsiv/9woGiK3Vb344w6SZGylMq7lQ9NzSdrfhbDqCmIasa6aLeCOkGIG6gbdl5oOZOVkREdZIa+wxCn1zq6jCcyhPOn47UY7yo2ti6sl0AkMskKGQylJWbYDIJlEsCZeUVAZgvoesWpbG6hK4xTuJbQsJGJpOa5UyBREQtQXOYZMPjZ9lbsmQJFi5c6LT93ZRpUCrU1b7/V+11YG+ZLfbKico/W1uWWZPquG/bP6A7tr6j9Wno+sJOrwnb69tZVumpk8lkKOk6Fh29CoGLB4GI7tVX+d3zFTdHSBJw3xyg4CLQZSTwxaOA2r8imaXdA5QbgMA2wIX9QK/xQJ9JwLlUwDsIEOVA9m6g1+PA3lVA14crHjPqgdZ9gYOfAf2eAnb9HWj/e6DwEpB/AWg3CMj8DugxBjiyEQjvCpTmA1dPwBDRC7LfklHS5j6otMnQa9qjXEhQ3fwNN8LvgqrwHHSqEPjdPAGTkHDdrxOUxZdRFtgOrQoyoI++B62kfHiJ0op4f10B3L8I2P8xcHgDENQGuHkeUPkBChUw9G/Aqf9UJNpMRpQfWI28Lk8Ah9dDL/eFCTJoSi7gqlcsgkvP4bq6DYIMF6GTBwAQUJjK4F1eCEBAL/Ou2sh2+t/d/tdWDwph/x8727UuJd0q4Mj1zTX15LOtbuVtbd9ux5c6XpFd/X3Lnroc7eZt22252svXUrhqvxtbrHuMOq7p27MuZRv+WnEkFkf6oja0/R2Jw1GyWnulUn04+/ypMdh6lZl7yHor5Sg3mSw9pOWShGK90XIJXdUxjxrrJJ4JGyIicpXmMCuqSxNSrVq1glwux5Ur1j1Crly5goiICJvrRERE1Kn83LlzrbqoFxQUIDo6uoGR23fH/JNNtm1qRgbdvowCC27e/v+uP9su3/ae2/9H9ry1jZcr/obF336sdd+Kv49Xn8kPvcdX/O1mPf6V6tZf8+++lU+tfW2EEmY7wtse31Dx9w9vVtxsiR9h+Vd+9wyEAsD91peK3BqVC83/ogUicqUEVwfgAp54/tQY5LfGkDInpmQSLEkmpVyCt1KO4rJyKOQS8nQGqGu4hK45nMQTERHVxDzJRsalfPio5NXGkLLVQ9jZXDrLnkqlQp8+fbBz507LMpPJhJ07d2LAgAE21xkwYIBVeQDYsWOH3fJqtRoBAQFWNyIiIqLmyhPOn3o08hmohIqkk1wm3R43ELg1diRQVm6CvtyEQG8lFo7sgr8/1B1vje2JFWN72RzPydNnyiMiIs/XHGZFdWlCCgBmzpyJjz76CGvXrkVmZiaeeeYZFBcXY9KkSQCACRMmWA3a+dxzz2H79u34xz/+gRMnTmDBggU4cOAApk+f7qoqEBERETlVcz9/+u7vI2ovVAsJFb2gVHIJ7Vr5Ij4iADEh3lApZFDKJfiq5TCaBIoNRpSUmeCnVmBWUhwe6dMGCe1CEB8RYPckvDmcxBMREdXGPMlG1ygNCkqNuHBDh4JSI7pFadxixleXjyE1duxYXL16FfPmzUNOTg569eqF7du3WwbePHfuHGSy23mzxMREfPnll3j11Vfx8ssvo2PHjti8eTO6devmqioQEREROZUnnD+dXToCsXPqN9uer0qGcI03ojReACTkFRtQpDdCrVCgf9sgCFGxrLC0DHKZhLatfPGXgR3Qr63jJ94tYaY8IiLyfO48yYYkqvZD9nAFBQXQaDTIz8/n5XtERERkE88XrDXl8/Hgy9tszrp3R4AS3ioFAn2U0JcLBHurMKBDCBI7tkKJ3mQ5oQZQ7STb1rL6nnibTMItT+KJiIjcTV3PF1zeQ4qIiIiIWq7GuHzP1kx2jTW7HWfKIyIiahouH0OKiIiIiIiIiIhaFiakiIiIiIiIiIjIqZiQIiIiIiIiIiIip2JCioiIiIiIiIiInIoJKSIiIiIiIiIiciompIiIiIiIiIiIyKkUrg7A2YQQAICCggIXR0JERETuynyeYD5vaOl4/kRERES1qev5U4tLSBUWFgIAoqOjXRwJERERubvCwkJoNBpXh+FyPH8iIiIiRzl6/iSJFvbTn8lkwqVLl+Dv7w9Jkuq0bkFBAaKjo3H+/HkEBAQ0UYTuhXVmnT0V6+z5dW5p9QVY58assxAChYWFiIqKgkzGEQ4acv7kiJb42nVHbAf3wHZwD2wH98B2cA+OtkNdz59aXA8pmUyG1q1bN2gbAQEBLe5gYJ1bBta5ZWhpdW5p9QVY58bCnlG3Ncb5kyNa4mvXHbEd3APbwT2wHdwD28E9ONIOdTl/4k9+RERERERERETkVExIERERERERERGRUzEhVQdqtRrz58+HWq12dShOwzq3DKxzy9DS6tzS6guwztR8sR3dA9vBPbAd3APbwT2wHdxDU7VDixvUnIiIiIiIiIiIXIs9pIiIiIiIiIiIyKmYkCIiIiIiIiIiIqdiQoqIiIiIiIiIiJyqxSSkfvnlFzzwwAOIioqCJEnYvHmz1eObNm3C0KFDERISAkmSkJ6eXm0bpaWlmDZtGkJCQuDn54fRo0fjypUrNe5XCIF58+YhMjIS3t7eGDJkCE6dOtWINbOvoXXOy8vDs88+i7i4OHh7e6NNmzaYMWMG8vPza9zvk08+CUmSrG7Dhg1r5NrZ1hjtPHDgwGrx//nPf65xv825nc+ePVutvubbxo0b7e7XVe1cU33Lysowe/ZsdO/eHb6+voiKisKECRNw6dIlq23k5eVh/PjxCAgIQGBgICZPnoyioqIa91uf47+xNLTOZ8+exeTJk9G2bVt4e3ujffv2mD9/PgwGQ437rc+x0Fgao51jY2Orxb906dIa99uc2zk5Odnusbx//367+3XXdgaABQsWID4+Hr6+vggKCsKQIUOwd+9eqzLN7XhuyVauXInY2Fh4eXkhISEB+/btq7H8xo0bER8fDy8vL3Tv3h3ff/+9kyL1bHVphzVr1lR7f/Dy8nJitJ6ptvc+W5KTk3HnnXdCrVajQ4cOWLNmTZPH6enq2g72PmdzcnKcE7AHWrJkCfr16wd/f3+EhYVh1KhRyMrKqnU9fj40rvq0Q2N9PrSYhFRxcTF69uyJlStX2n38d7/7Hd544w2723jhhRfwf//3f9i4cSN+/vlnXLp0CQ8//HCN+122bBneffddrFq1Cnv37oWvry+SkpJQWlraoPo4oqF1vnTpEi5duoTly5fj2LFjWLNmDbZv347JkyfXuu9hw4bh8uXLlttXX33VoLo4qjHaGQCmTJliFf+yZctqLN+c2zk6OtqqrpcvX8bChQvh5+eH4cOH17hvV7RzTfXV6XQ4ePAgXnvtNRw8eBCbNm1CVlYWHnzwQaty48ePR0ZGBnbs2IGtW7fil19+wdNPP13jfutz/DeWhtb5xIkTMJlM+OCDD5CRkYEVK1Zg1apVePnll2vdd12PhcbSGO0MAIsWLbKK/9lnn61xv825nRMTE6sdy0899RTatm2Lvn371rhvd2xnAOjUqRP+9a9/4ejRo/j1118RGxuLoUOH4urVq5Yyze14bqk2bNiAmTNnYv78+Th48CB69uyJpKQk5Obm2iyfkpKCcePGYfLkyTh06BBGjRqFUaNG4dixY06O3LPUtR0AICAgwOr9QavVOjFiz1Tbe19V2dnZGDFiBAYNGoT09HQ8//zzeOqpp/DDDz80caSera7tYJaVlWV1TISFhTVRhJ7v559/xrRp0/Df//4XO3bsQFlZGYYOHYri4mK76/DzofHVpx2ARvp8EC0QAPHtt9/afCw7O1sAEIcOHbJafvPmTaFUKsXGjRstyzIzMwUAkZqaanNbJpNJREREiDfffNNqO2q1Wnz11VcNrkdd1KfOtnz99ddCpVKJsrIyu2UmTpwoRo4cWb9AG1F963zfffeJ5557zuH9eGI79+rVS/zpT3+qsYw7tHNN9TXbt2+fACC0Wq0QQojjx48LAGL//v2WMv/+97+FJEni4sWLNrdRn+O/qdSnzrYsW7ZMtG3btsbt1PVYaCr1rXNMTIxYsWKFw/vxtHY2GAwiNDRULFq0qMbtNKd2zs/PFwDEjz/+KIRo/sdzS9K/f38xbdo0y/3y8nIRFRUllixZYrP8mDFjxIgRI6yWJSQkiKlTpzZpnJ6uru2wevVqodFonBRdy+TIe99f//pX0bVrV6tlY8eOFUlJSU0YWcviSDvs2rVLABA3btxwSkwtUW5urgAgfv75Z7tl+PnQ9Bxph8b6fGgxPaQaKi0tDWVlZRgyZIhlWXx8PNq0aYPU1FSb62RnZyMnJ8dqHY1Gg4SEBLvruLv8/HwEBARAoVDUWC45ORlhYWGIi4vDM888g+vXrzspwsbxxRdfoFWrVujWrRvmzp0LnU5nt6yntXNaWhrS09Md6gnXHNo5Pz8fkiQhMDAQAJCamorAwECrHiNDhgyBTCardimQWX2Of1eqWmd7ZYKDg2vdVl2OBVeyV+elS5ciJCQEvXv3xptvvgmj0Wh3G57Wzt999x2uX7+OSZMm1bqt5tDOBoMBH374ITQaDXr27AmgZRzPnsBgMCAtLc3qOZfJZBgyZIjd5zw1NdWqPAAkJSWxjRqgPu0AAEVFRYiJiUF0dDRGjhyJjIwMZ4RLlfB4cC+9evVCZGQk7r//fuzZs8fV4XgU89AwNZ2j8nhoeo60A9A4nw81ZxXIIicnByqVqtqJf3h4uN3rhs3Lw8PDHV7HnV27dg2vv/56rZdCDBs2DA8//DDatm2LM2fO4OWXX8bw4cORmpoKuVzupGjr7/HHH0dMTAyioqJw5MgRzJ49G1lZWdi0aZPN8p7Wzp988gk6d+6MxMTEGss1h3YuLS3F7NmzMW7cOAQEBACoaK+qXasVCgWCg4NrPJbrevy7iq06V3X69Gn885//xPLly2vcVl2PBVexV+cZM2bgzjvvRHBwMFJSUjB37lxcvnwZb731ls3teFo7f/LJJ0hKSkLr1q1r3Ja7t/PWrVvx2GOPQafTITIyEjt27ECrVq0AeP7x7CmuXbuG8vJym5+TJ06csLlOTk6Ox3yuuov6tENcXBw+/fRT9OjRA/n5+Vi+fDkSExORkZFR63sLNR57x0NBQQFKSkrg7e3toshalsjISKxatQp9+/aFXq/Hxx9/jIEDB2Lv3r248847XR1es2cymfD888/j7rvvRrdu3eyW4+dD03K0HRrr84EJKXJIQUEBRowYgS5dumDBggU1ln3ssccs/3fv3h09evRA+/btkZycjMGDBzdxpA1XOeHWvXt3REZGYvDgwThz5gzat2/vwsiaXklJCb788ku89tprtZZ193YuKyvDmDFjIITA+++/7+pwnMKROl+8eBHDhg3Do48+iilTptS4veZwLNRU55kzZ1r+79GjB1QqFaZOnYolS5ZArVY7O9RG40g7X7hwAT/88AO+/vrrWrfn7u1sHjPl2rVr+OijjzBmzBjs3buXY3YQOcGAAQMwYMAAy/3ExER07twZH3zwAV5//XUXRkbkfHFxcYiLi7PcT0xMxJkzZ7BixQqsW7fOhZF5hmnTpuHYsWP49ddfXR1Ki+ZoOzTW5wMv2XNQREQEDAYDbt68abX8ypUriIiIsLuOuYyj67ijwsJCDBs2DP7+/vj222+hVCrrtH67du3QqlUrnD59uokibFoJCQkAYDd+T2lnAPjmm2+g0+kwYcKEOq/rTu1s/sKu1WqxY8cOqx4kERER1QZvNRqNyMvLq/FYruvx72w11dns0qVLGDRoEBITE/Hhhx/WeR+1HQvO5kidK0tISIDRaMTZs2dtPu4p7QwAq1evRkhIiM2B3mvjbu3s6+uLDh064K677sInn3wChUKBTz75BIDnHs+eplWrVpDL5XX6nIyIiPCIz1V3Up92qEqpVKJ3795u8/7QUtg7HgICAtg7ysX69+/P46ERTJ8+HVu3bsWuXbtq7V3Dz4emU5d2qKq+nw9MSDmoT58+UCqV2Llzp2VZVlYWzp07Z5UZrKxt27aIiIiwWqegoAB79+61u467KSgowNChQ6FSqfDdd9/VayrHCxcu4Pr164iMjGyCCJteeno6ANiN3xPa2eyTTz7Bgw8+iNDQ0Dqv6y7tbP7CfurUKfz4448ICQmxenzAgAG4efMm0tLSLMt++uknmEwmyxfxqupz/DtTbXUGKnpGDRw4EH369MHq1ashk9X97b+2Y8GZHKlzVenp6ZDJZHZ71nhCOwOAEAKrV6/GhAkT6vwDAuBe7WyLyWSCXq8H4JnHsydSqVTo06eP1XNuMpmwc+dOu8/5gAEDrMoDwI4dO9hGDVCfdqiqvLwcR48eddv3B0/F48F9paen83hoACEEpk+fjm+//RY//fQT2rZtW+s6PB4aX33aoap6fz40eFj0ZqKwsFAcOnRIHDp0SAAQb731ljh06JBldqLr16+LQ4cOiW3btgkAYv369eLQoUPi8uXLlm38+c9/Fm3atBE//fSTOHDggBgwYIAYMGCA1X7i4uLEpk2bLPeXLl0qAgMDxZYtW8SRI0fEyJEjRdu2bUVJSYnb1zk/P18kJCSI7t27i9OnT4vLly9bbkaj0WadCwsLxaxZs0RqaqrIzs4WP/74o7jzzjtFx44dRWlpqdvX+fTp02LRokXiwIEDIjs7W2zZskW0a9dO3HvvvVb78aR2Njt16pSQJEn8+9//trkfd2nnmuprMBjEgw8+KFq3bi3S09OtXrN6vd6yjWHDhonevXuLvXv3il9//VV07NhRjBs3zvL4hQsXRFxcnNi7d69lmSPHv7vW+cKFC6JDhw5i8ODB4sKFC1Zl7NXZ0WPBXeuckpIiVqxYIdLT08WZM2fE559/LkJDQ8WECRPs1lmI5t3OZj/++KMAIDIzM6vtozm1c1FRkZg7d65ITU0VZ8+eFQcOHBCTJk0SarVaHDt2zLKN5nY8t1Tr168XarVarFmzRhw/flw8/fTTIjAwUOTk5AghhHjiiSfEnDlzLOX37NkjFAqFWL58ucjMzBTz588XSqVSHD161FVV8Ah1bYeFCxeKH374QZw5c0akpaWJxx57THh5eYmMjAxXVcEj1HbuNmfOHPHEE09Yyv/222/Cx8dHvPTSSyIzM1OsXLlSyOVysX37dldVwSPUtR1WrFghNm/eLE6dOiWOHj0qnnvuOSGTySwzv1LdPfPMM0Kj0Yjk5GSrcxudTmcpw8+Hplefdmisz4cWk5AyT9NZ9TZx4kQhRMW0hbYenz9/vmUbJSUl4i9/+YsICgoSPj4+4qGHHqr2pR6AWL16teW+yWQSr732mggPDxdqtVoMHjxYZGVlOaHGDa+zvfUBiOzsbJt11ul0YujQoSI0NFQolUoRExMjpkyZYjnRcfc6nzt3Ttx7770iODhYqNVq0aFDB/HSSy+J/Px8q/14UjubzZ07V0RHR4vy8nKb+3GXdq6pvtnZ2XZfs7t27bJs4/r162LcuHHCz89PBAQEiEmTJonCwkLL4+btVF7HkePfXets7zVQ+TeJqnV29Fhw1zqnpaWJhIQEodFohJeXl+jcubP4+9//bpUw9bR2Nhs3bpxITEy0uY/m1M4lJSXioYceElFRUUKlUonIyEjx4IMPin379llto7kdzy3ZP//5T9GmTRuhUqlE//79xX//+1/LY/fdd5/lc8vs66+/Fp06dRIqlUp07dpVbNu2zckRe6a6tMPzzz9vKRseHi7+8Ic/iIMHD7ogas9S27nbxIkTxX333VdtnV69egmVSiXatWtndR5K9VPXdnjjjTdE+/bthZeXlwgODhYDBw4UP/30k2uC9xD2zm0qv775+dD06tMOjfX5IN0KgIiIiIiIiIiIyCk4hhQRERERERERETkVE1JERERERERERORUTEgREREREREREZFTMSFFREREREREREROxYQUERERERERERE5FRNSRERERERERETkVExIERERERERERGRUzEhRURERERERERETsWEFBEREREReawFCxYgPDwckiRh8+bNrg7HLVy/fh1hYWE4e/asq0Ops7Nnz0KSJKSnpzf6tmNjY/H2228DAAwGA2JjY3HgwIEa10lOToYkSbh582ajx9PYBg4ciOeff97VYZCL/fLLL3jggQcQFRVVr/fFBQsWQJKkajdfX986x8KEFBG1GE8++aTlDVOpVKJt27b461//ilWrVtl8U618a44nbERERK5Q+fNWkiSEhIRg2LBhOHLkSKPtY8GCBejVq1et5TIzM7Fw4UJ88MEHuHz5MoYPH95oMbibJ598EqNGjXKo7OLFizFy5EjExsY2aUwNVZc6NTaVSoVZs2Zh9uzZNZZLTEzE5cuXodFoHN62q+q1adMmvP7665b7lRNw1HIUFxejZ8+eWLlyZb3WnzVrFi5fvmx169KlCx599NE6b4sJKSJqUYYNG4bLly/jt99+w4oVK/DBBx8gOzvb6g11wIABmDJlitWy6OhoV4dORETUbJg/by9fvoydO3dCoVDgj3/8o9PjOHPmDABg5MiRiIiIgFqtrlbGYDA4OyyX0ul0+OSTTzB58mRXh+L2xo8fj19//RUZGRl2y6hUKkRERECSJCdGVj/BwcHw9/d3dRjkYsOHD8ff/vY3PPTQQzYf1+v1mDVrFu644w74+voiISEBycnJlsf9/PwQERFhuV25cgXHjx+v13sKE1JE1KKo1WpEREQgOjoao0aNwpAhQ7Bjxw6rN1WVSgUfHx+rZXK53NWhExERNRvmz9uIiAj06tULc+bMwfnz53H16lVLmfPnz2PMmDEIDAxEcHAwRo4cadUjOTk5Gf3794evry8CAwNx9913Q6vVYs2aNVi4cCEOHz5s6YW1Zs2aajEsWLAADzzwAABAJpNZEgbm3imLFy9GVFQU4uLiAADr1q1D37594e/vj4iICDz++OPIzc212uZ3332Hjh07wsvLC4MGDcLatWutLtdas2YNAgMDsXXrVsTFxcHHxwePPPIIdDod1q5di9jYWAQFBWHGjBkoLy+3bLe2L4Dm7f7www/o3Lkz/Pz8LEk/c13Xrl2LLVu2WJ6TyutX9v3330OtVuOuu+6yLLtx4wbGjx+P0NBQeHt7o2PHjli9ejWA25fIff3117jnnnvg7e2Nfv364eTJk9i/fz/69u0LPz8/DB8+3Kp9TSYTFi1ahNatW0OtVqNXr17Yvn27VSxHjx7F73//e3h7eyMkJARPP/00ioqKHKrTb7/9hkGDBsHHxwc9e/ZEamqq1bZ//fVXS7zR0dGYMWMGiouLLY/n5ubigQcegLe3N9q2bYsvvvii2nMVFBSEu+++G+vXr7f5XALVL9lrSFvVdkyYX7vLly9HZGQkQkJCMG3aNJSVlVnKvPfee5bXaHh4OB555BHLY5Uv2Rs4cCC0Wi1eeOEFSxzFxcUICAjAN998Y1XHzZs3w9fXF4WFhXafB/Ic06dPR2pqKtavX48jR47g0UcfxbBhw3Dq1Cmb5T/++GN06tQJ99xzT533xYQUEbVYx44dQ0pKClQqlatDISIi8lhFRUX4/PPP0aFDB4SEhAAAysrKkJSUBH9/f+zevRt79uyxfHE3GAwwGo0YNWoU7rvvPhw5cgSpqal4+umnIUkSxo4dixdffBFdu3a19MIaO3Zstf3OmjXLklQxlzPbuXMnsrKysGPHDmzdutUS0+uvv47Dhw9j8+bNOHv2LJ588knLOtnZ2XjkkUcwatQoHD58GFOnTsUrr7xSbb86nQ7vvvsu1q9fj+3btyM5ORkPPfQQvv/+e3z//fdYt24dPvjgA6sv/Y58AdTpdFi+fDnWrVuHX375BefOncOsWbMsdR0zZoxVz7TExESb7bF792706dPHatlrr72G48eP49///jcyMzPx/vvvo1WrVlZl5s+fj1dffRUHDx6EQqHA448/jr/+9a945513sHv3bpw+fRrz5s2zlH/nnXfwj3/8A8uXL8eRI0eQlJSEBx980FKn4uJiJCUlISgoCPv378fGjRvx448/Yvr06Q7V6ZVXXsGsWbOQnp6OTp06Ydy4cTAajQAqesYNGzYMo0ePxpEjR7Bhwwb8+uuvlm0DFcmd8+fPY9euXfjmm2/w3nvvVUtAAkD//v2xe/dum8+lPfVpq9qOCbNdu3bhzJkz2LVrF9auXYs1a9ZYErIHDhzAjBkzsGjRImRlZWH79u249957bca4adMmtG7dGosWLbLE4evri8cee8xy3JitXr0ajzzyCHtXtQDnzp3D6tWrsXHjRtxzzz1o3749Zs2ahd/97nfVXhcAUFpaii+++KL+PS4FEVELMXHiRCGXy4Wvr69Qq9UCgJDJZOKbb76xKnffffeJ5557zjVBEhERNXOVP299fX0FABEZGSnS0tIsZdatWyfi4uKEyWSyLNPr9cLb21v88MMP4vr16wKASE5OtrmP+fPni549e9Yay7fffiuqfuWZOHGiCA8PF3q9vsZ19+/fLwCIwsJCIYQQs2fPFt26dbMq88orrwgA4saNG0IIIVavXi0AiNOnT1vKTJ06Vfj4+Fi2I4QQSUlJYurUqUIIIbRarZDL5eLixYtW2x48eLCYO3eu3e2uXLlShIeHW9Vr5MiRNdZJCCFGjhwp/vSnP1kte+CBB8SkSZNsls/OzhYAxMcff2xZ9tVXXwkAYufOnZZlS5YsEXFxcZb7UVFRYvHixVbb6tevn/jLX/4ihBDiww8/FEFBQaKoqMjy+LZt24RMJhM5OTl262QrnoyMDAFAZGZmCiGEmDx5snj66aet1tu9e7eQyWSipKREZGVlCQBi3759lsczMzMFALFixQqr9d555x0RGxtr87kRQohdu3bV+hpwpK1qOybM68XExAij0Wgp8+ijj4qxY8cKIYT43//9XxEQECAKCgpsxlr1HDcmJqZafffu3Svkcrm4dOmSEEKIK1euCIVCYfdYpOYNgPj2228t97du3SoAWN6/zTeFQiHGjBlTbf0vv/xSKBQKyzFbV4r6pbGIiJqnQYMG4f3330dxcTFWrFgBhUKB0aNHuzosIiIij2L+vAUqLgd77733MHz4cOzbtw8xMTE4fPgwTp8+Xa3HRWlpKc6cOYOhQ4fiySefRFJSEu6//34MGTIEY8aMQWRkZKPE171792o9pNPS0rBgwQIcPnwYN27cgMlkAlDRY6BLly7IyspCv379rNbp379/tW37+Pigffv2lvvh4eGIjY2Fn5+f1TJzb5yjR4+ivLwcnTp1stqOXq+39Ciztd3IyEibPXpqU1JSAi8vL6tlzzzzDEaPHo2DBw9i6NChGDVqVLUeVj169LCKH6h4Hm3VqaCgAJcuXcLdd99ttY27774bhw8fBlAx4HzPnj2tZua6++67YTKZkJWVZdmHPZXjMb8ucnNzER8fj8OHD+PIkSNWl+EJIWAymZCdnY2TJ09CoVBY9RSLj49HYGBgtf14e3tDp9PVGEtV9Wmr2o4Js65du1oNJREZGYmjR48CAO6//37ExMSgXbt2GDZsGIYNG4aHHnoIPj4+Dsfev39/dO3aFWvXrsWcOXPw+eefIyYmxm5PK/IsRUVFkMvlSEtLqzZkSeX3MLOPP/4Yf/zjH2s9Xu1hQoqIWhRfX1906NABAPDpp5+iZ8+eHNiTiIiokVX+vAUqvrRoNBp89NFH+Nvf/oaioiL06dPH5rg9oaGhACouE5oxYwa2b9+ODRs24NVXX8WOHTusxj5qSHyVmS8fS0pKwhdffIHQ0FCcO3cOSUlJdR70XKlUWt03z+5bdZk54eXoF0Bb26jo4FA3rVq1wo0bN6yWDR8+HFqtFt9//z127NiBwYMHY9q0aVi+fLnN/ZvH46q6zFwnZ7AVT+XndOrUqZgxY0a19dq0aYOTJ086vJ+8vDzLa7I+sZnjq62tHDkm7G3bXG9/f38cPHgQycnJ+M9//oN58+ZhwYIF2L9/v81kmz1PPfUUVq5ciTlz5mD16tWYNGlSsxi0nRqud+/eKC8vR25ubq1jQmVnZ2PXrl347rvv6r0/jiFFRC2WTCbDyy+/jFdffRUlJSWuDoeIiMhjSZIEmUxm+by98847cerUKYSFhaFDhw5WN41GY1mvd+/emDt3LlJSUtCtWzd8+eWXACpmNqs8KHhDnThxAtevX8fSpUtxzz33ID4+vlqPlri4OBw4cMBq2f79+xu878pfAKs+FxEREQ5vx9HnpHfv3jh+/Hi15aGhoZg4cSI+//xzvP322/jwww/rVI/KAgICEBUVhT179lgt37NnD7p06QIA6Ny5Mw4fPmw10PiePXsgk8ksA83Xt53vvPNOHD9+vNrz2aFDB6hUKsTHx8NoNCItLc2yTlZWlmVg8sqOHTuG3r171zmGmtiql6PHRG0UCgWGDBmCZcuW4ciRIzh79ix++uknh+MAgP/5n/+BVqvFu+++i+PHj2PixIl1qyC5taKiIqSnpyM9PR1ARWIpPT0d586dQ6dOnTB+/HhMmDABmzZtQnZ2Nvbt24clS5Zg27ZtVtv59NNPERkZieHDh9c7FiakiKhFe/TRRyGXy7Fy5UpXh0JEROQx9Ho9cnJykJOTg8zMTDz77LMoKiqyzHo3fvx4tGrVCiNHjsTu3buRnZ2N5ORkzJgxAxcuXEB2djbmzp2L1NRUaLVa/Oc//8GpU6fQuXNnAEBsbKzlS9S1a9eg1+sbFG+bNm2gUqnwz3/+E7/99hu+++47vP7661Zlpk6dihMnTmD27Nk4efIkvv76a8tg0g3pPVKXL4A1iY2NxZEjR5CVlYVr165ZzbxWWVJSEjIyMqx6Sc2bNw9btmzB6dOnkZGRga1bt1qe6/p66aWX8MYbb2DDhg3IysrCnDlzkJ6ejueeew5AxWvAy8sLEydOxLFjx7Br1y48++yzeOKJJyyX/zhap6pmz56NlJQUTJ8+Henp6Th16hS2bNliGdQ8Li4Ow4YNw9SpU7F3716kpaXhqaeegre3d7Vt7d69G0OHDm3Qc1GVrXrVdkw4YuvWrXj33XeRnp4OrVaLzz77DCaTyZLgsxXHL7/8gosXL+LatWuW5UFBQXj44Yfx0ksvYejQoWjdunWj1Jvcw4EDB9C7d29LonXmzJno3bu3ZVKC1atXY8KECXjxxRcRFxeHUaNGYf/+/WjTpo1lGyaTCWvWrMGTTz7ZoNnImZAiohZNoVBg+vTpWLZsmdUvdERERFR/27dvR2RkJCIjI5GQkGCZRW3gwIEAKsbY+eWXX9CmTRs8/PDD6Ny5MyZPnozS0lIEBATAx8cHJ06cwOjRo9GpUyc8/fTTmDZtGqZOnQoAGD16NIYNG4ZBgwYhNDQUX331VYPiDQ0NxZo1a7Bx40Z06dIFS5cutbpcDQDatm2Lb775Bps2bUKPHj3w/vvvW2bZU6vVDdq/I18AazNlyhTExcWhb9++CA0NrdY7yax79+6488478fXXX1uWqVQqzJ07Fz169MC9994LuVyO9evXN6hOM2bMwMyZM/Hiiy+ie/fu2L59O7777jt07NgRQMVr4IcffkBeXh769euHRx55BIMHD8a//vWvOtepqh49euDnn3/GyZMncc8991i+bEdFRVnKrF69GlFRUbjvvvvw8MMP4+mnn0ZYWJjVdlJTU5Gfn49HHnmkQc9FVbbqVdsx4YjAwEBs2rQJv//979G5c2esWrUKX331Fbp27Wqz/KJFi3D27Fm0b9++2mWJkydPhsFgwJ/+9KcG15fcy8CBAyGEqHYzJ9iVSiUWLlyI7OxsGAwGXLp0CZs2bbIaM04mk+H8+fNYvHhxg2KRRH0uPCYiIiIiImrhFi9ejFWrVuH8+fOuDqVOtm3bhpdeegnHjh2DTMY+CvaMHTsWPXv2xMsvv+zqUJxu3bp1eOGFF3Dp0qVqEwAQNRYOak5EREREROSA9957D/369UNISAj27NmDN99803IZWHMyYsQInDp1ChcvXkR0dLSrw3FLBoMB3bt3xwsvvODqUJxKp9Ph8uXLWLp0KaZOncpkFDUp9pAiIiIiIiJywAsvvIANGzYgLy8Pbdq0wRNPPIG5c+dCoeDv/OQZFixYgMWLF+Pee+/Fli1brGZ6JGpsTEgREREREREREZFT8YJhIiIiIiIiIiJyKiakiIiIiIiIiIjIqZiQIiIiIiIiIiIip2JCioiIiIiIiIiInIoJKSIiIiIiIiIiciompIiIiIiIiIiIyKmYkCIiIiIiIiIiIqdiQoqIiIiIiIiIiJyKCSkiIiIiIiIiInKq/wfFBFFB9pf/WAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1kRJREFUeJzs3XdYU2cbBvA7BAgbRGQpAg7cImpFsEWcOErVukcRV4faqkhbrXWvWutqtaKtArZat9av7r1HHWjrXuACUREwssn5/qAcCQmQaCCA9++6cmnes56TADl5zvs+r0QQBAFEREREREREREQlxEDfARARERERERER0duFCSkiIiIiIiIiIipRTEgREREREREREVGJYkKKiIiIiIiIiIhKFBNSRERERERERERUopiQIiIiIiIiIiKiEsWEFBERERERERERlSgmpIiIiIiIiIiIqEQxIUVERERERERERCWKCSmicsbf3x/+/v7i8+joaEgkEkREROgtJk1ERERAIpEgOjpa36Eo+fvvv+Hr6wtzc3NIJBJERUVhypQpkEgkSuu5ubkhODi4xOO7f/8+TExMcPz48RI/dnmTmZkJFxcX/Pzzz/oOhYioROW/diiNgoOD4ebmpu8wtCaRSDBlyhSd7rO0vF9ubm54//33i1zv0KFDkEgkOHTokE6PL5fLYW9vj9WrV+t0v/mV5DVeWf0510RxfycZN24cvL29i2XfVHyYkCIqwL59+9C6dWtYW1vD0tISTZo0wbp16/QdFpWgzMxM9OzZEwkJCViwYAF+++03uLq66jssJdOmTYO3tzdatGih71BE6enp+Prrr+Hs7AxTU1N4e3tj7969Gm3r5uYGiUSi9lGzZk1xvdTUVAwZMgT169eHtbU1LCws4OnpiUWLFiEzM1Npn/v378fgwYPh4eEBMzMzVKtWDUOHDkVsbKzSekZGRggJCcHMmTORlpb25i8EEVExyb2Jk/swMTGBh4cHRo4cicePH5doLGvWrMHChQtL9JhvgytXrmDKlCml7kZdabJo0SJYWlqiT58++g6FSoHRo0fj4sWL2LZtm75DIS0Y6jsAotIoPDwcQ4YMQbt27TBr1ixIpVJcv34d9+/f13doWnN1dUVqaiqMjIz0HUqZc/v2bcTExOCXX37B0KFDxfZvv/0W48aN02NkOZ48eYLIyEhERkbqOxQlwcHB2LhxI0aPHo2aNWsiIiICnTp1wsGDB/Huu+8Wuu3ChQshl8uV2mJiYvDtt9+iffv2YltqaiouX76MTp06wc3NDQYGBjhx4gTGjBmD06dPY82aNeK6X3/9NRISEtCzZ0/UrFkTd+7cweLFi/HXX38hKioKjo6O4rqDBg3CuHHjsGbNGgwePFhHrwgRUfGYNm0a3N3dkZaWhmPHjmHp0qXYsWMH/v33X5iZmWm8nz179rx2DGvWrMG///6L0aNHv/Y+NPHLL79AoVAU6zFKkytXrmDq1Knw9/dX6THzJu+XPvj5+SE1NRXGxsY622dmZiYWLVqEMWPGQCqV6my/6ly/fh0GBuzHUdo5OjqiS5cu+OGHH/DBBx/oOxzSEBNSRPlER0djxIgR+Pzzz7Fo0SJ9h/PGcu+cEpCVlQWFQqHxBVF8fDwAwMbGRqnd0NAQhob6//P5+++/w9DQEIGBgUWum5KSotWXk9d15swZrF27FnPnzkVoaCgAICgoCPXr18dXX32FEydOFLp9165dVdpmzJgBAOjfv7/YZmtri1OnTimt9+mnn8La2hqLFy/G/PnzxUTT/Pnz8e677ypdTHbo0AEtW7bE4sWLxf0DOe91+/btERERwYQUEZV6HTt2RNOmTQEAQ4cORcWKFTF//nz8+eef6Nu3r8b70WWioLiUhhtrgiAgLS0Npqameo2jLLxfeRkYGOj8WvSvv/7CkydP0KtXL53uVx2ZTFbkOi9fvoS5uXmxx0KF69WrF3r27Ik7d+6gWrVq+g6HNMBUL70VDh48CIlEgi1btqgsW7NmDSQSCU6ePAkACAsLQ3Z2NqZNmwYgZ3y6IAglGq864eHhaN26Nezt7SGTyVC3bl0sXbq0yO0KGq+9YcMG1K1bFyYmJqhfvz62bNmiMm49d9sffvgBy5cvR/Xq1SGTyfDOO+/g77//VjnWtWvX0KNHD9ja2sLExARNmzZV22328uXLaN26NUxNTVGlShXMmDFD47uewcHBsLCwwJ07dxAQEABzc3M4Oztj2rRpSu9T3tgXLlwoxn7lyhUAwIEDB/Dee+/B3NwcNjY26NKlC65evap0nJYtWwIAevbsCYlEItZrUFdDSp3ExESMHj0aLi4ukMlkqFGjBubMmaNyrmvXrkWTJk1gaWkJKysrNGjQQKNk6NatW+Ht7Q0LCwuldn9/f9SvXx/nzp2Dn58fzMzM8M033xS5P13YuHEjpFIpPv74Y7HNxMQEQ4YMwcmTJ1+rl+GaNWvg7u4OX1/fItfN/flNTEwU2/z8/FTubPr5+cHW1lbpPc/Vrl07HDt2DAkJCVrHSkSkT61btwYA3L17F0DOjZjp06eLn4Fubm745ptvkJ6errRd/ppEuTV/1q9fj5kzZ6JKlSowMTFBmzZtcOvWLaXttm/fjpiYGHH4YGH1bxITEyGVSvHjjz+KbU+fPoWBgQEqVqyo9Dn+2WefKfVgVVdbR5PPT00/i9XJrZG0e/duNG3aFKampli2bNkb7TcmJgbDhw9HrVq1YGpqiooVK6Jnz55KQ/MiIiLQs2dPAECrVq3E1za3BpO6GlLx8fEYMmQIHBwcYGJiAk9PT5Ue1Npc18XFxWHQoEGoUqUKZDIZnJyc0KVLF7VDCI8dO4ZmzZrBxMQE1apVw6pVq5SWq6shlfdaxdfXF6ampnB3d0dYWFihr1+urVu3ws3NDdWrV1dq1/Q6EQB++OEH+Pr6omLFijA1NUWTJk2wceNGlWPlryGVO2T28OHDGD58OOzt7VGlShVx+c6dO8VrTEtLS3Tu3BmXL19Wew7169dXuhbX1NmzZxEQEAA7Ozvxtct/I03T85NIJBg5cqT43cDU1BQ+Pj74559/AADLli1DjRo1YGJiAn9/f5WfgTd9LzX5/pCZmYmpU6eiZs2aMDExQcWKFfHuu++qlIRo27YtAODPP//U6Nikf/q/xU9UAvz9/eHi4oLVq1ejW7duSstWr16N6tWrw8fHB0BO7ajatWtjx44d+PLLL/Hw4UNUqFABI0aMwNSpU/XWZXfp0qWoV68ePvjgAxgaGuJ///sfhg8fDoVCgREjRmi1r+3bt6N3795o0KABZs+ejefPn2PIkCGoXLmy2vXXrFmDFy9e4JNPPoFEIsH333+PDz/8EHfu3BHvWF6+fBktWrRA5cqVMW7cOJibm2P9+vXo2rUrNm3aJL7ucXFxaNWqFbKyssT1li9frtXdxuzsbHTo0AHNmzfH999/j127dmHy5MnIysoSE4m5wsPDkZaWho8//hgymQy2trbYt28fOnbsiGrVqmHKlClITU3FTz/9hBYtWuD8+fNwc3PDJ598gsqVK2PWrFn44osv8M4778DBwUHjGFNSUtCyZUs8fPgQn3zyCapWrYoTJ05g/PjxiI2NFett7N27F3379kWbNm0wZ84cAMDVq1dx/PhxjBo1qsD9Z2Zm4u+//8Znn32mdvmzZ8/QsWNH9OnTBwMGDCg09vT0dLx48UKj87Kzsyt0+YULF+Dh4QErKyul9mbNmgEAoqKi4OLiotGxcvd39epVTJgwQe3yjIwMJCcnIzU1FWfPnsUPP/wAV1dX1KhRo9D9yuVyyOVytefTpEkTCIKAEydOaFSslYiotLh9+zYAoGLFigByek1FRkaiR48eGDt2LE6fPo3Zs2fj6tWrGn35/e6772BgYIDQ0FAkJSXh+++/R//+/XH69GkAwIQJE5CUlIQHDx5gwYIFAKBykyQvGxsb1K9fH0eOHMEXX3wBICeZIZFIkJCQgCtXrqBevXoAgKNHj+K9994rcF+afH5q+llcmOvXr6Nv37745JNPMGzYMNSqVeuN9vv333/jxIkT6NOnD6pUqYLo6GgsXboU/v7+uHLlCszMzODn54cvvvgCP/74I7755hvUqVMHAMR/80tNTYW/vz9u3bqFkSNHwt3dHRs2bEBwcDASExNVric0ua7r3r07Ll++jM8//xxubm6Ij4/H3r17ce/ePaXE4K1bt9CjRw8MGTIEAwcOxMqVKxEcHIwmTZqI72VBnj9/jk6dOqFXr17o27cv1q9fj88++wzGxsZF9lI+ceIEGjdurHaZpteJixYtwgcffID+/fsjIyMDa9euRc+ePfHXX3+hc+fOhR4fAIYPH45KlSph0qRJePnyJQDgt99+w8CBAxEQEIA5c+YgJSUFS5cuxbvvvosLFy6Ir92ePXvQvXt31K1bF7Nnz8azZ8/EBGBR4uPj0b59e1SqVAnjxo2DjY0NoqOjsXnzZqX1tDm/o0ePYtu2beJ3itmzZ+P999/HV199hZ9//hnDhw/H8+fP8f3332Pw4ME4cOCA0vav+15q+v1hypQpmD17NoYOHYpmzZohOTkZZ8+exfnz59GuXTtxf9bW1qhevTqOHz+OMWPGFPlaUikgEL0lxo8fL8hkMiExMVFsi4+PFwwNDYXJkyeLbVZWVkKFChUEmUwmTJw4Udi4caPQr18/AYAwbtw4PUSeIyUlRaUtICBAqFatmlJby5YthZYtW4rP7969KwAQwsPDxbYGDRoIVapUEV68eCG2HTp0SAAguLq6qmxbsWJFISEhQWz/888/BQDC//73P7GtTZs2QoMGDYS0tDSxTaFQCL6+vkLNmjXFttGjRwsAhNOnT4tt8fHxgrW1tQBAuHv3bqGvw8CBAwUAwueff650nM6dOwvGxsbCkydPlGK3srIS4uPjlfbRqFEjwd7eXnj27JnYdvHiRcHAwEAICgoS2w4ePCgAEDZs2KC0/eTJk4X8fz5dXV2FgQMHis+nT58umJubCzdu3FBab9y4cYJUKhXu3bsnCIIgjBo1SrCyshKysrIKPe/8bt26JQAQfvrpJ5VlLVu2FAAIYWFhGu0rPDxcAKDRoyj16tUTWrdurdJ++fJlrWLKNXbsWAGAcOXKFbXL//jjD6X4mjZtKly6dKnI/U6fPl0AIOzfv19l2aNHjwQAwpw5c7SKlYiopOT+3d63b5/w5MkT4f79+8LatWuFihUrCqampsKDBw+EqKgoAYAwdOhQpW1DQ0MFAMKBAwfEtvzXDrmff3Xq1BHS09PF9kWLFgkAhH/++Uds69y5s9K1Q1FGjBghODg4iM9DQkIEPz8/wd7eXli6dKkgCILw7NkzQSKRCIsWLRLXGzhwoNJxNPn81PSzuCCurq4CAGHXrl2vvV8ASteZ6q7nTp48KQAQVq1aJbZt2LBBACAcPHhQZf3879fChQsFAMLvv/8utmVkZAg+Pj6ChYWFkJycLAiC5td1z58/FwAIc+fOLeTVefX6HDlyRGyLj48XZDKZMHbsWLEt9+cp77nkXqvMmzdPbEtPTxev0TIyMgo8bmZmpiCRSJSOkUvT60RBUH0vMjIyhPr166tcx+S/xsv9/Xv33XeVfv5evHgh2NjYCMOGDVPaPi4uTrC2tlZqb9SokeDk5KT0vWTPnj0q1+LqbNmyRQAg/P3334Wup+n5ARBkMpnSNfiyZcsEAIKjo6P48yMIOd+n8l+va/peqvtOoun3B09PT6Fz586Fnm+u9u3bC3Xq1NFoXdI/Dtmjt0ZQUBDS09OVuqquW7cOWVlZGDBggNgml8vx/PlzTJ06FdOmTUP37t2xevVqdOjQAYsWLdK4J4mu5e1BlJSUhKdPn6Jly5a4c+cOkpKSNN7Po0eP8M8//yAoKEjpLmbLli3RoEEDtdv07t0bFSpUEJ/n3rG8c+cOACAhIQEHDhxAr1698OLFCzx9+hRPnz7Fs2fPEBAQgJs3b+Lhw4cAgB07dqB58+ZijxkAqFSpklJ9IE2MHDlS/H9uV+OMjAzs27dPab3u3bujUqVK4vPY2FhERUUhODgYtra2YnvDhg3Rrl077NixQ6s4CrJhwwa89957qFChgvh6PH36FG3btkV2djaOHDkCIOdu8cuXLzWehS7Xs2fPAEDpfclLJpNh0KBBGu0rICAAe/fu1ehRlNTUVLW1FnJrR6SmpmoUEwAoFAqsXbsWXl5eBd4VbtWqFfbu3YsNGzbg008/hZGRkXiXsiBHjhzB1KlT0atXL3F4S165r+nTp081jpWISB/atm2LSpUqwcXFBX369IGFhQW2bNmCypUri59nISEhStuMHTsWQE5v6aIMGjRIqV5R/s//1/Hee+/h8ePHuH79OoCcnhl+fn547733cPToUQA5vaYEQSi0h5Qmn5+afhYXxt3dHQEBATrbb97ruczMTDx79gw1atSAjY0Nzp8/X2Q86uzYsQOOjo5KdcOMjIzwxRdfQC6X4/Dhw0rrF3VdZ2pqCmNjYxw6dAjPnz8v9Nh169ZVep8qVaqEWrVqafQzYmhoiE8++UR8bmxsjE8++QTx8fE4d+5cgdslJCRAEIQCr4EAza4T874Xz58/R1JSEt577z2N34dhw4YpFVTfu3cvEhMT0bdvX6WfC6lUCm9vbxw8eBDAq2vRgQMHwtraWty+Xbt2qFu3bpHHza1t+tdff6nMLJyXNufXpk0bpZ5v3t7eAHKuoy0tLVXa87+/r/NeavP9wcbGBpcvX8bNmzcLPN9cub+XVDZwyB69NWrXro133nkHq1evxpAhQwDkDNdr3ry50vAeU1NTvHz5UqUYaN++fbFr1y5cuHABfn5+ao+RlJSk1RfuvKytrQsdtnb8+HFMnjwZJ0+eREpKispx836gFSYmJgYA1A5pqlGjhtoPqapVqyo9z70AyL1IuXXrFgRBwMSJEzFx4kS1x42Pj0flypURExMjfpjlVatWLY3iB3KKY+YvVOjh4QEAKuPa3d3dlZ7nnr+649WpUwe7d+/WSWHKmzdv4tKlS0rJsLxyC6YPHz4c69evR8eOHVG5cmW0b98evXr1QocOHTQ6jlBAfbPKlStrXPTUyckJTk5OGq1bFFNTU5XaJACQlpYmLtfU4cOH8fDhw0K7XDs4OIjDEXv06IFZs2ahXbt2uHnzplLtkVzXrl1Dt27dUL9+ffz6669q95n7mmpSJ4zobXfkyBHMnTsX586dQ2xsLLZs2aJ2coKCTJkyBVOnTlVpNzMzKzK5TMCSJUvg4eEBQ0NDODg4oFatWmJpgZiYGBgYGKh83js6OsLGxkb8PCxMUZ//hYmLi1N6nnudk5u8OHr0KKpUqYILFy5gxowZqFSpEn744QdxmZWVFTw9PQvcvyafn5p+Fhcm/3XEm+43NTUVs2fPRnh4OB4+fKj0Oa7NDca8YmJiULNmTZWyErk3c/K/10W9rzKZDHPmzMHYsWPh4OCA5s2b4/3330dQUJDKZ2v+feXuT5OfEWdnZ5XrrbzXc82bNy90+4KugTS9Tvzrr78wY8YMREVFKV27aPr5n/9nIzdZou5mFwCxnEHu+1GzZk2VdWrVqlVkQqxly5bo3r07pk6digULFsDf3x9du3ZFv379lG4KanN++d/H3O8V+css5Lbnf39f573U5vvDtGnT0KVLF3h4eKB+/fro0KEDPvroIzRs2FBlG0EQeA1XhjAhRW+VoKAgjBo1Cg8ePEB6ejpOnTqFxYsXK63j7OyMmzdvqtTcsbe3B1D4RdioUaNUCkhqKjw8XKlgYl63b99GmzZtULt2bcyfPx8uLi4wNjbGjh07sGDBgmKfBrmg6XRzLwRyjx8aGqpyFzFXUTV9iou+ZsJRKBRo164dvvrqK7XLcz+k7e3tERUVhd27d2Pnzp3YuXMnwsPDERQUVOjPUm59kIJ+HrU579TUVI0vgtUlefJycnIS72blFRsbCyDn90tTq1evhoGBgVYzRfXo0QMTJkzAn3/+qXSnDgDu37+P9u3bw9raGjt27FC645dX7mtaVL0sIsqZWcrT0xODBw/Ghx9+qPX2oaGh+PTTT5Xa2rRpg3feeUdXIZZrzZo1E2fZK8ibfDEr6vO/MPlvdORe5zg7O8Pd3R1HjhyBm5sbBEGAj48PKlWqhFGjRiEmJgZHjx6Fr69voXU7Nfn81PSzuDDqPk/fZL+ff/45wsPDMXr0aPj4+MDa2hoSiQR9+vQp9uu5XJq8r6NHj0ZgYCC2bt2K3bt3Y+LEiZg9ezYOHDgALy8vrfala7a2tpBIJBolvQpy9OhRfPDBB/Dz88PPP/8MJycnGBkZITw8HGvWrNFoH/l/NnLfv99++03t9ZKuZmiWSCTYuHEjTp06hf/973/YvXs3Bg8ejHnz5uHUqVOwsLDQ+vwKeh+L8/3V5vuDn58fbt++jT///BN79uzBr7/+igULFiAsLAxDhw5V2ub58+e8hitDmJCit0qfPn0QEhKCP/74A6mpqTAyMkLv3r2V1mnSpInYRTTv3ZVHjx4BQIF3wwDgq6++Uhr+p43CCj/+73//Q3p6OrZt26Z0ByO36682XF1dAUBplpxc6to0kfs6GRkZibNbFHZ8dd1tc7vua0KhUODOnTtKF3w3btwAgEJn98k9fkHHu3btGuzs7HQybW/16tUhl8uLfD2AnG7NgYGBCAwMhEKhwPDhw7Fs2TJMnDixwERe1apVYWpqKs6k9CbWrVun8fC+oi5AGjVqhIMHDyI5OVmpsHluAdxGjRppdJz09HRs2rQJ/v7+WiWxcnso5k+wPXv2DO3bt0d6ejr2799faI+w3Ne0oGGCRPRKx44d0bFjxwKXp6enY8KECfjjjz+QmJiI+vXrY86cOeIMYRYWFkrDxy9evIgrV65oPDsTFczV1RUKhQI3b95U+nv2+PFjJCYmip+Hb6qghFf+oXR5r3Pee+89HDlyBO7u7mjUqBEsLS3h6ekJa2tr7Nq1C+fPn1fbcy6/oj4/tfks1sab7Hfjxo0YOHAg5s2bJ7alpaUpzQ4LaJdIdHV1xaVLl6BQKJSSeNeuXROXv47q1atj7NixGDt2LG7evIlGjRph3rx5+P33319rf/k9evRIpVe6JtdzhoaGqF69eoHXQJpcJ27atAkmJibYvXu3Uq+i8PDw1z0dccY/e3v7Qn82ct+PN70ebt68OZo3b46ZM2dizZo16N+/P9auXYuhQ4cWy/kV5nXeS22+PwA5ichBgwZh0KBBkMvl8PPzw5QpU1QSUnfv3i20dyWVLqwhRW8VOzs7dOzYEb///rtYFyp/Bj03QbVixQqxTaFQIDw8HLa2tmjSpEmB+69bty7atm37Wo/CviDn3p3I3637dT5UnJ2dUb9+faxatQpyuVxsP3z4sDi9q7bs7e3h7++PZcuWiT1h8nry5In4/06dOuHUqVM4c+aM0vLVq1drdcy8PdsEQcDixYthZGSENm3aFLqdk5MTGjVqhMjISKWLv3///Rd79uxBp06dtIqjIL169cLJkyexe/dulWWJiYnIysoC8KoWVC4DAwOx+7G6oW+5jIyM0LRpU5w9e/aNY9VlDakePXogOzsby5cvF9vS09MRHh4Ob29vpa7f9+7dEy+W89uxYwcSExMLrC329OlTtcmx3GF4eXsMvHz5Ep06dcLDhw+xY8cOtV3k8zp37hwkEok48yYRvb6RI0fi5MmTWLt2LS5duoSePXuiQ4cOBdYB+fXXX+Hh4VFo7SDSTO7nWf4Z3+bPnw8AGs0ipglzc3O1vWwLu8557733EB0djXXr1onvtYGBAXx9fTF//nxkZmYW+TOgyeenpp/F2nqT/UqlUpXPr59++gnZ2dlKbblf7PMnqtTp1KkT4uLisG7dOrEtKysLP/30EywsLNCyZcsi95FXSkqKONQ+V/Xq1WFpaVnotYm2srKysGzZMvF5RkYGli1bhkqVKhV6vQ0APj4+hV4DFXWdKJVKIZFIlF736OhobN269TXPJud6ysrKCrNmzVJb2yn3ejjvtWje3529e/fiypUrRR7n+fPnKj9DuTf8ct+f4ji/wrzOe6nN94f8v+8WFhaoUaOGys9jUlISbt++DV9f3zc5HSpB7CFFb52goCD06NEDADB9+nSV5V26dEGbNm0we/ZsPH36FJ6enti6dSuOHTuGZcuWqS3YXNzat28v3gX85JNPIJfL8csvv8De3l7tH/CizJo1C126dEGLFi0waNAgPH/+HIsXL0b9+vWVklTaWLJkCd599100aNAAw4YNQ7Vq1fD48WOcPHkSDx48wMWLFwHk9CL77bff0KFDB4waNQrm5uZYvny5eHdPEyYmJti1axcGDhwIb29v7Ny5E9u3b8c333xTaA+2XHPnzkXHjh3h4+ODIUOGIDU1FT/99BOsra0xZcqU1zr//L788kts27YN77//vjj98cuXL/HPP/9g48aNiI6Ohp2dHYYOHYqEhAS0bt0aVapUQUxMDH766Sc0atSoyB46Xbp0wYQJE1R6I2lLlzWkvL290bNnT4wfPx7x8fGoUaMGIiMjER0drZTkBXJ+Fw8fPqw2sbR69WrIZDJ0795d7XF+//13hIWFoWvXrqhWrRpevHiB3bt3Y+/evQgMDFSq39C/f3+cOXMGgwcPxtWrV3H16lVxmYWFhUq9m71796JFixbisEgiej337t1DeHg47t27J/Z0DA0Nxa5duxAeHo5Zs2YprZ+WlobVq1dj3Lhx+gi33PH09MTAgQOxfPlyJCYmomXLljhz5gwiIyPRtWtXtGrVSifHadKkCdatW4eQkBC88847sLCwQGBgYKHb5Cabrl+/rvRz4Ofnh507d0ImkxU5bFOTz09NP4u19Sb7ff/99/Hbb7/B2toadevWxcmTJ7Fv3z6Vz5xGjRpBKpVizpw5SEpKgkwmQ+vWrcUSEnl9/PHHWLZsGYKDg3Hu3Dm4ublh48aNOH78OBYuXFjgEPWC3LhxA23atEGvXr1Qt25dGBoaYsuWLXj8+DH69Omj1b4K4+zsjDlz5iA6OhoeHh5Yt24doqKisHz5chgZGRW6bZcuXfDbb7/hxo0bKkMkNblO7Ny5M+bPn48OHTqgX79+iI+Px5IlS1CjRg2Nr0fzs7KywtKlS/HRRx+hcePG6NOnDypVqoR79+5h+/btaNGihZgomz17Njp37ox3330XgwcPRkJCAn766SfUq1evyGvxyMhI/Pzzz+jWrRuqV6+OFy9e4JdffoGVlZWYiC6O8yvM676Xmn5/qFu3Lvz9/dGkSRPY2tri7Nmz2Lhxo1LxegDYt28fBEFAly5ddH6OVExKbkI/otIhPT1dqFChgmBtbS2kpqaqXefFixfCqFGjBEdHR8HY2Fho0KCB0lS6+rBt2zahYcOGgomJieDm5ibMmTNHWLlypdqpV/NOBaxuilVBEIS1a9cKtWvXFmQymVC/fn1h27ZtQvfu3YXatWurbKtu2l/km8ZYEATh9u3bQlBQkODo6CgYGRkJlStXFt5//31h48aNSutdunRJaNmypWBiYiJUrlxZmD59urBixQqVc1Fn4MCBgrm5uXD79m2hffv2gpmZmeDg4CBMnjxZyM7O1ih2QRCEffv2CS1atBBMTU0FKysrITAwULhy5YrSOrnTFG/YsEGpffLkyUL+P5/5pwQWhJyfo/Hjxws1atQQjI2NBTs7O8HX11f44YcfxClwN27cKLRv316wt7cXjI2NhapVqwqffPKJEBsbW+jrIAiC8PjxY8HQ0FD47bfflNpbtmwp1KtXr8jti0tqaqoQGhoqODo6CjKZTHjnnXdUpswWhFfTBOeXlJQkmJiYCB9++GGBx/j777+Fnj17ClWrVhVkMplgbm4uNG7cWJg/f76QmZmptG7utNTqHvmnVk5MTBSMjY2FX3/99fVOnugtBkDYsmWL+Pyvv/4SAAjm5uZKD0NDQ6FXr14q269Zs0YwNDQU4uLiSjDqsil32vmipn3PzMwUpk6dKri7uwtGRkaCi4uLMH78eKUp1gVB9dqhoM8/ddcUcrlc6Nevn2BjY6PRlPW57O3tBQDC48ePxbZjx44JAIT33ntPZf2BAwcq7VvTz09NPosL4urqWuBU85ruN//10vPnz4VBgwYJdnZ2goWFhRAQECBcu3ZN7XXEL7/8IlSrVk2QSqUCAOHgwYOCIKi+X4KQc02Qu9/ca9f8136aXtc9ffpUGDFihFC7dm3B3NxcsLa2Fry9vYX169dr9PoU9POUG3/uOvXq1RPOnj0r+Pj4CCYmJoKrq6uwePFilf2pk56eLtjZ2QnTp09Xatf0OlEQBGHFihVCzZo1BZlMJtSuXVsIDw/X6BqvqN+/gwcPCgEBAYK1tbVgYmIiVK9eXQgODhbOnj2rtN6mTZuEOnXqCDKZTKhbt66wefNmlZ9zdc6fPy/07dtXvAayt7cX3n//fZX9a3p+AIQRI0YotRX0s6Lub4Om72VB30k0+f4wY8YMoVmzZoKNjY1gamoq1K5dW5g5c6bK73Dv3r2Fd999t9DXj0oXiSAUY8U5olIoKysLzs7OCAwMVOmx8bZr1KgRKlWqpNHQLH0JDg7Gxo0bX7snV3kzZMgQ3LhxQ5wqm97MwoUL8f333+P27dt6K4hPVFZJJBKlWfbWrVuH/v374/LlyyqFcS0sLFSK/rZp0wZWVlbYsmVLSYVMRHri7++Pp0+f4t9//33tfUyfPh3h4eG4efOm+DeG14klTxfvpS7ExcXB3d0da9euZQ+pMoQ1pOits3XrVjx58gRBQUH6DkVvMjMzVeobHDp0CBcvXhQLzVLZMHnyZPz99984fvy4vkMp8zIzMzF//nx8++23TEYR6YCXlxeys7PF4bt5H/mTUXfv3sXBgwcxZMgQPUVLRGXNmDFjIJfLsXbtWn2HQqXAwoUL0aBBAyajyhjWkKK3xunTp3Hp0iVMnz4dXl5eWhd4LE8ePnyItm3bYsCAAXB2dsa1a9cQFhYGR0dHlem3qXSrWrWqSuFRej1GRka4d++evsMgKlPkcrnSDK13795FVFQUbG1t4eHhgf79+yMoKAjz5s2Dl5cXnjx5gv3796Nhw4ZKRbVXrlwJJyenQmfsIyLKy8LCAvHx8foOg0qJ7777Tt8h0GtgQoreGkuXLsXvv/+ORo0aISIiQt/h6FWFChXQpEkT/Prrr3jy5AnMzc3RuXNnfPfddyzkTEREGjt79qxSceyQkBAAwMCBAxEREYHw8HDMmDEDY8eOxcOHD2FnZ4fmzZvj/fffF7dRKBSIiIhAcHCwytA+IiIiKr9YQ4qIiIiIiIiIiEoUa0gREREREREREVGJYkKKiIiIiIiIiIhK1FtXQ0qhUODRo0ewtLSERCLRdzhERERUSgiCgBcvXsDZ2RkGBrxnVxheTxEREVF+2l5LvXUJqUePHsHFxUXfYRAREVEpdf/+fVSpUkXfYZRqvJ4iIiKigmh6LfXWJaQsLS0B5LxAVlZWeo6GiIiISovk5GS4uLiI1wpUMF5PERERUX7aXku9dQmp3G7lVlZWvIAiIiIiFRyCVjReTxEREVFBNL2WYoEEIiIiIiIiIiIqUUxIERERERERERFRiWJCioiIiIiIiIiIStRbV0OKiEgb2dnZyMzM1HcYRKQDRkZGkEql+g6DiIiIiMCEFBGRWoIgIC4uDomJifoOhYh0yMbGBo6OjixcTkRERKRnTEgREamRm4yyt7eHmZkZv7wSlXGCICAlJQXx8fEAACcnJz1HRERERPR2Y0KKiCif7OxsMRlVsWJFfYdDRDpiamoKAIiPj4e9vT2H7xEREZVzCoWAG/EvkJSSCWszI3jYW8LAgDeaSwu9FjU/cuQIAgMD4ezsDIlEgq1btxa5zaFDh9C4cWPIZDLUqFEDERERxR4nEb1dcmtGmZmZ6TkSItK13N9r1oYjIiIq387FJGD0uiiErLuICVv+Qci6ixi9LgrnYhL0HRr9R68JqZcvX8LT0xNLlizRaP27d++ic+fOaNWqFaKiojB69GgMHToUu3fvLuZIiehtxGF6ROUPf6+JiIjKv3MxCZi5/Sr+fZgEKxNDVKlgBisTQ1x+lISZ268yKVVK6HXIXseOHdGxY0eN1w8LC4O7uzvmzZsHAKhTpw6OHTuGBQsWICAgoLjCJCIiIiIiIqIyQKEQEHkiBokpmXCr+KoWrLnMEGbGUsQkpGDViRh4uVTg8D0902sPKW2dPHkSbdu2VWoLCAjAyZMnC9wmPT0dycnJSg+ikrD9Uix6hZ3EydvPgGMLgN+7A1kZ+g6LqES4ublh4cKF+g5D5OfnhzVr1ug7jNdSXK9lcHAwunbtqvP96tOuXbvQqFEjKBQKfYdCREREenIj/gVuxcthbylT6RktkUhQyUKGm/Fy3Ih/oacIKVeZSkjFxcXBwcFBqc3BwQHJyclITU1Vu83s2bNhbW0tPlxcXEoiVHrL/X4qBiPWnMeZ6ARM+vNfCH//CtzaBzz+V9+hUTkXHBwMiUSCTz/9VGXZiBEjIJFIEBwcLLY9efIEn332GapWrQqZTAZHR0cEBATg+PHjAICEhAR8/vnnqFWrFkxNTVG1alV88cUXSEpKKqlTUisiIgI2NjYarbtt2zY8fvwYffr0Kd6g3pA250TqdejQAUZGRli9erW+QyEiIiI9SUrJREZWNkyM1E9eYmIkRUZWNpJSWE9S38pUQup1jB8/HklJSeLj/v37+g6J3gKbzz8Q/38zXo7MzKycJwLv2lPxc3Fxwdq1a5US9WlpaVizZg2qVq2qtG737t1x4cIFREZG4saNG9i2bRv8/f3x7NkzAMCjR4/w6NEj/PDDD/j3338RERGBXbt2YciQISV6Tm/ixx9/xKBBg2BgUO4/8sqkjAzd9hwNDg7Gjz/+qNN9EhERUdlhbWYEY0Mp0jKz1S5Py8yGsaEU1mZGJRwZ5Vemrs4dHR3x+PFjpbbHjx/DyspKnMo5P5lMBisrK6UHUXFTCDn/2lnIAAAp6f9l35mQohLQuHFjuLi4YPPmzWLb5s2bUbVqVXh5eYltiYmJOHr0KObMmYNWrVrB1dUVzZo1w/jx4/HBBx8AAOrXr49NmzYhMDAQ1atXR+vWrTFz5kz873//Q1ZWVqFxvHjxAn379oW5uTkqV66sMoFFYmIihg4dikqVKsHKygqtW7fGxYsXxeUXL15Eq1atYGlpCSsrKzRp0gRnz57FoUOHMGjQICQlJUEikUAikWDKlClqY3jy5AkOHDiAwMBAsU0QBEyZMkXsFebs7IwvvvhCXO7m5oYZM2YgKCgIFhYWcHV1xbZt2/DkyRN06dIFFhYWaNiwIc6ePat0rE2bNqFevXqQyWRwc3MT6x3mev78OYKCglChQgWYmZmhY8eOuHnzJgAUeU4pKSkYPHgwLC0tUbVqVSxfvlxp3/fv30evXr1gY2MDW1tbdOnSBdHR0eLy7OxshISEwMbGBhUrVsRXX30FQRAKfvMKIJFI8Ouvv6Jbt24wMzNDzZo1sW3bNqV1Dh8+jGbNmkEmk8HJyQnjxo1T+lnx9/fHyJEjMXr0aNjZ2SEgIACHDh2CRCLB7t274eXlBVNTU7Ru3Rrx8fHYuXMn6tSpAysrK/Tr1w8pKSmFxhgYGIizZ8/i9u3bWp8fERERlX0e9paoYW+BJ/J0lesdQRDwRJ6OmvYW8LC31FOElKtMJaR8fHywf/9+pba9e/fCx8dHTxERFe7DxpUB5HwZBAC8xhdAKh0EQUBKRlaJP14naQAAgwcPRnh4uPh85cqVGDRokNI6FhYWsLCwwNatW5Genq7xvpOSkmBlZQVDw8LnxZg7dy48PT1x4cIFjBs3DqNGjcLevXvF5T179hQTDufOnUPjxo3Rpk0bJCTkzHrSv39/VKlSBX///TfOnTuHcePGwcjICL6+vli4cCGsrKwQGxuL2NhYhIaGqo3h2LFjMDMzQ506dcS2TZs2YcGCBVi2bBlu3ryJrVu3okGDBkrbLViwAC1atMCFCxfQuXNnfPTRRwgKCsKAAQNw/vx5VK9eHUFBQeL7c+7cOfTq1Qt9+vTBP//8gylTpmDixImIiIgQ9xkcHIyzZ89i27ZtOHnyJARBQKdOnZCZmVnkOc2bNw9NmzbFhQsXMHz4cHz22We4fv06ACAzMxMBAQGwtLTE0aNHcfz4cVhYWKBDhw5i76N58+YhIiICK1euxLFjx5CQkIAtW7YU9VarNXXqVPTq1QuXLl1Cp06d0L9/f/E9e/jwITp16oR33nkHFy9exNKlS7FixQrMmDFDaR+RkZEwNjbG8ePHERYWJrZPmTIFixcvxokTJ8Qk28KFC7FmzRps374de/bswU8//VRofFWrVoWDgwOOHj36WudHREREZZuBgQQDfV1hbWqEmIQUvEzPQrZCwMv0LMQkpMDa1AhBvq4saF4K6HWWPblcjlu3bonP7969i6ioKNja2qJq1aoYP348Hj58iFWrVgEAPv30UyxevBhfffUVBg8ejAMHDmD9+vXYvn27vk6BqFDmxjm/YhL8l1RgD6kyKzUzG3Un7S7x416ZFgAzY+3/VA8YMADjx49HTEwMAOD48eNYu3YtDh06JK5jaGiIiIgIDBs2DGFhYWjcuDFatmyJPn36oGHDhmr3+/TpU0yfPh0ff/xxkTG0aNEC48aNAwB4eHjg+PHjWLBgAdq1a4djx47hzJkziI+Ph0yW05Pwhx9+wNatW7Fx40Z8/PHHuHfvHr788kvUrl0bAFCzZk1x39bW1pBIJHB0dCw0hpiYGDg4OCgN17t37x4cHR3Rtm1bGBkZoWrVqmjWrJnSdp06dcInn3wCAJg0aRKWLl2Kd955Bz179gQAfP311/Dx8cHjx4/h6OiI+fPno02bNpg4caJ4vleuXMHcuXMRHByMmzdvYtu2bTh+/Dh8fX0BAKtXr4aLiwu2bt2Knj17FnpOnTp1wvDhw8VjL1iwAAcPHkStWrWwbt06KBQK/Prrr2LhzvDwcNjY2ODQoUNo3749Fi5ciPHjx+PDDz8EkDNr7e7dr/fzHBwcjL59+wIAZs2ahR9//BFnzpxBhw4d8PPPP8PFxQWLFy+GRCJB7dq18ejRI3z99deYNGmS+D7UrFkT33//vbjP2NhYAMCMGTPQokULAMCQIUMwfvx43L59G9WqVQMA9OjRAwcPHsTXX39daIzOzs7izz4RERG9fZq42mJC5zqIPBGDW/FyPJWnw9hQivrO1gjydUUTV1t9h0jQcw+ps2fPwsvLSxxCEhISAi8vL0yaNAlAzgXqvXv3xPXd3d2xfft27N27F56enpg3bx5+/fVXBAQE6CV+Ik0xIUUlrVKlSujcuTMiIiIQHh6Ozp07w87OTmW97t2749GjR9i2bRs6dOiAQ4cOoXHjxko9e3IlJyejc+fOqFu3boFD5PLK33vVx8cHV69eBZAzHE8ul6NixYpiTy0LCwvcvXtXHGoVEhKCoUOHom3btvjuu+9eawhWamoqTExMlNp69uyJ1NRUVKtWDcOGDcOWLVtUhh/mTcjlTqaRtxdVblt8fDwA4OrVq2IiJVeLFi1w8+ZNZGdn4+rVqzA0NIS3t7e4vGLFiqhVq5b4mhQmbzy5SavcY1+8eBG3bt2CpaWl+Dra2toiLS0Nt2/fRlJSEmJjY5WObWhoiKZNmxZ53KJiMTc3h5WVldLr4OPjozSjTYsWLSCXy/Hgwavaek2aNCly3w4ODjAzMxOTUbltuccqjKmpaZFD+4iIiKh8a+Jqi4W9G2F+b0/M7NYA83t7YkHvRkxGlSJ67SHl7+9f6HAUdV+I/P39ceHChWKMikj3DPBfIooJqTLL1EiKK9NKPvltWsDsIJoYPHgwRo4cCQAq9ZvyMjExQbt27dCuXTtMnDgRQ4cOxeTJk5Vm43vx4gU6dOgAS0tLbNmyBUZGb1YEUi6Xw8nJSanHVq7cmeamTJmCfv36Yfv27di5cycmT56MtWvXolu3bhofx87ODs+fP1dqc3FxwfXr17Fv3z7s3bsXw4cPx9y5c3H48GHxvPKeX25yRV2bQlEyv9P5X2+JRCIeWy6Xo0mTJmpnlqtUqVKJxqIpc3PzIvctkUhe+1gJCQnFcu5ERERUthgYSFDbkXWkSyu9JqSI3hZiDymwhlRZJZFIXmvonD7l1hCSSCRa9SStW7cutm7dKj5PTk5GQEAAZDIZtm3bptLjqCCnTp1SeZ5by6lx48aIi4uDoaEh3NzcCtyHh4cHPDw8MGbMGPTt2xfh4eHo1q0bjI2NX9VmK4SXlxfi4uLw/PlzVKhQQWw3NTVFYGAgAgMDMWLECNSuXRv//PMPGjdurNG55VenTh0cP35cqe348ePw8PCAVCpFnTp1kJWVhdOnT4tD9p49e4br16+jbt26AKDxOeXXuHFjrFu3Dvb29gVO3OHk5ITTp0/Dz88PAJCVlSXW7dKlOnXqYNOmTRAEQUzaHT9+HJaWlqhSpYpOj1WQ3J5heQv4ExEREVHpU6aKmhOVVQYcskd6IJVKcfXqVVy5cgVSqWpPq2fPnqF169b4/fffcenSJdy9excbNmzA999/jy5dugDISUa1b98eL1++xIoVK5CcnIy4uDjExcUVmTw5fvw4vv/+e9y4cQNLlizBhg0bMGrUKABA27Zt4ePjg65du2LPnj2Ijo7GiRMnMGHCBJw9exapqakYOXIkDh06hJiYGBw/fhx///23mNByc3ODXC7H/v378fTp0wKHZ3l5ecHOzk4pWRQREYEVK1bg33//xZ07d/D777/D1NQUrq6ur/U6A8DYsWOxf/9+TJ8+HTdu3EBkZCQWL14sFiavWbMmunTpgmHDhuHYsWO4ePEiBgwYgMqVK4uvtabnlF///v1hZ2eHLl264OjRo7h79y4OHTqEL774QhwmN2rUKHz33XfYunUrrl27huHDhyMxMfG1z7cgw4cPx/379/H555/j2rVr+PPPPzF58mSEhIQo1fHSlcWLF6NNmzZKbadOnYJMJuOEJ0RERFpSKARci0vG6TvPcC0uGQoFb6ZT8Spbt/uJyijWkCJ9KajHDJAzy563tzcWLFiA27dvIzMzEy4uLhg2bBi++eYbAMD58+dx+vRpAECNGjWUtr97926hvZvGjh2Ls2fPYurUqbCyssL8+fPFnloSiQQ7duzAhAkTMGjQIDx58gSOjo7w8/ODg4MDpFIpnj17hqCgIDx+/Bh2dnb48MMPMXXqVACAr68vPv30U/Tu3RvPnj3D5MmT1da1kkqlGDRoEFavXo33338fQM6QwO+++w4hISHIzs5GgwYN8L///Q8VK1bU+HXNr3Hjxli/fj0mTZqE6dOnw8nJCdOmTVMa9hgeHo5Ro0bh/fffR0ZGBvz8/LBjxw5xWJqm55SfmZkZjhw5gq+//hoffvghXrx4gcqVK6NNmzbi+z927FjExsZi4MCBMDAwwODBg9GtWzckJSWJ+4mIiMCgQYNee2ZHAKhcuTJ27NiBL7/8Ep6enrC1tcWQIUPw7bffvvY+C/P06VOV2mJ//PEH+vfvDzMzs2I5JhERUXl0LiZBLACekZUNY0MpathbYCALgFMxkghvcuVZBiUnJ8Pa2lqctpyoOHRZchwX7ydiTFsPLNh3A1dMBsMMacCATUCNtvoOj4qQlpaGu3fvwt3dXePhaVR6xcXFoV69ejh//vwb9YIq7yZPnozDhw+rretVVjx9+hS1atXC2bNn4e7urnadwn6/eY2gOb5WRETlx7mYBMzcfhWJKZmwt5TBxEiKtMxsPJGnw9rUCBM612FSijSi7fUBh+wR6Zog5DwA5E409aqouZ5iInqLOTo6YsWKFUqztpKqnTt34vvvv9d3GG8kOjoaP//8c4HJKCIiIlKmUAiIPBGDxJRMuFU0g7nMEFIDCcxlhnC1NUNSaiZWnYjh8D0qFkxIEemSIhv4pTUmJk8BAOROfM4he0T61bVrV7z33nv6DqNUO3PmDJo1a6bvMN5I06ZN0bt3b32HoVNHjhxBYGAgnJ2dIZFIlCYcUCc4OBgSiUTlUa9ePXGdKVOmqCyvXbt2MZ8JERGVRjfiX+BWvBz2ljJxQpJcEokElSxkuBkvx434F3qKkMozJqSIdCnlGfDoPJpm/K3UzKLmRET0Ol6+fAlPT08sWbJEo/UXLVqE2NhY8XH//n3Y2tqiZ8+eSuvVq1dPab1jx44VR/hERFTKJaVkIiMrGyZGqhPgAICJkRQZWdlISsks4cjobcCi5kS6pJRwetWtlT2kiIjodXTs2BEdO3bUeH1ra2tYW1uLz7du3Yrnz59j0KBBSusZGhrC0dFRZ3ESEVHZZG1mBGPDnJpR5jLV9EBaZk6Bc2szIz1ER+Ude0gR6VKehJOBuoQUi0gREVEJWrFiBdq2batS0P/mzZtwdnZGtWrV0L9//yJrrKWnpyM5OVnpQUREZZ+HvSVq2FvgiTxdZaZdQRDwRJ6OmvYW8LC31FOEVJ4xIUWkS3n+iIuFzAFIxaLm7CFFREQl49GjR9i5cyeGDh2q1O7t7Y2IiAjs2rULS5cuxd27d/Hee+/hxYuC64PMnj1b7H1lbW0NFxeX4g6fiIhKgIGBBAN9XWFtaoSYhBS8TM9CtkLAy/QsxCSkwNrUCEG+rjAwkBS9MyItMSFFpEtqe0gJapcTEREVp8jISNjY2KBr165K7R07dkTPnj3RsGFDBAQEYMeOHUhMTMT69esL3Nf48eORlJQkPu7fv1/M0RMRUUlp4mqLCZ3roJ6zNZLTsvDgeQqS07JQ39kaEzrXQRNXW32HSOUUa0gR6ZTyMD2JRHnoHhNSRERUEgRBwMqVK/HRRx/B2Ni40HVtbGzg4eGBW7duFbiOTCaDTCbTdZhERFRKNHG1hZdLBdyIf4GklExYmxnBw96SPaOoWLGHFJEuKfWQyvm/RCkhxRpSRERU/A4fPoxbt25hyJAhRa4rl8tx+/ZtODk5lUBkRERUWhkYSFDb0Qre1SqitqMVk1FU7JiQItIlNUP22EOKyouJEyfi448/1ncYOhMcHKwylKm8OHToECQSCRITE/Udis5kZGTAzc0NZ8+e1XcoJUoulyMqKgpRUVEAgLt37yIqKkosQj5+/HgEBQWpbLdixQp4e3ujfv36KstCQ0Nx+PBhREdH48SJE+jWrRukUin69u1brOdCRERElBcTUkS6pFTUXIBEIlEqbs4eUlQapKenY8KECXB1dYVMJoObmxtWrlxZ6DZxcXFYtGgRJkyYoNL++eefo1q1apDJZHBxcUFgYCD2798vrrN8+XL4+/vDysqqwCTJBx98gKpVq8LExAROTk746KOP8OjRI52c75vw9/fH6NGjS+RY5TGJpEvGxsYIDQ3F119/re9QStTZs2fh5eUFLy8vAEBISAi8vLwwadIkAEBsbKzKDHlJSUnYtGlTgb2jHjx4gL59+6JWrVro1asXKlasiFOnTqFSpUrFezJEREREebCGFJEuCXlrSKkbssceUqR/vXr1wuPHj7FixQrUqFEDsbGxUCgK/9n89ddf4evrqzR1fHR0NFq0aAEbGxvMnTsXDRo0QGZmJnbv3o0RI0bg2rVrAICUlBR06NABHTp0wPjx49Xuv1WrVvjmm2/g5OSEhw8fIjQ0FD169MCJEyd0d+LFRBAEZGdnw9CQH6n5ZWdn5yTmDXRz/6t///4YO3YsLl++jHr16ulkn6Wdv7+/yjTceUVERKi0WVtbIyUlpcBt1q5dq4vQiIiIiN4Ie0gR6ZRyDykgX0IK7CFFxWfVqlWoWLEi0tPTldq7du2Kjz76CACwa9cuHD58GDt27EDbtm3h5uYGHx8ftGjRotB9r127FoGBgUptw4cPh0QiwZkzZ9C9e3d4eHigXr16CAkJwalTp8T1Ro8ejXHjxqF58+YF7n/MmDFo3rw5XF1d4evri3HjxuHUqVPIzMwscJuLFy+iVatWsLS0hJWVFZo0aSIO55oyZQoaNWqktP7ChQvh5uamsp+pU6eiUqVKsLKywqeffoqMjAwAOUP6Dh8+jEWLFkEikUAikSA6OlrsybRz5040adIEMpkMx44dw+3bt9GlSxc4ODjAwsIC77zzDvbt26d0rPT0dHz99ddwcXGBTCZDjRo1sGLFCkRHR6NVq1YAgAoVKkAikSA4OBgAoFAoMHv2bLi7u8PU1BSenp7YuHGj0n537NgBDw8PmJqaolWrVoiOji7wdStI7hDGH374AU5OTqhYsSJGjBih9B48f/4cQUFBqFChAszMzNCxY0fcvHlTXB4REQEbGxts27YNdevWhUwmw7179+Dm5oYZM2YgKCgIFhYWcHV1xbZt2/DkyRN06dIFFhYWaNiwYZHD8SpUqIAWLVowoUJERERUDjAhRaRLeXpASVhDqnwRBCDjZck/tBjm2bNnT2RnZ2Pbtm1iW3x8PLZv347BgwcDALZt24amTZvi+++/R+XKleHh4YHQ0FCkpqYWuN+EhARcuXIFTZs2VWrbtWsXRowYAXNzc5VtbGxsNI5b3fFWr14NX19fGBkZFbhe//79UaVKFfz99984d+4cxo0bV+j66uzfvx9Xr17FoUOH8Mcff2Dz5s2YOnUqAGDRokXw8fHBsGHDEBsbi9jYWLi4uIjbjhs3Dt999x2uXr2Khg0bQi6Xo1OnTti/fz8uXLiADh06IDAwUGk4VVBQEP744w/8+OOPuHr1KpYtWwYLCwu4uLhg06ZNAIDr168jNjYWixYtAgDMnj0bq1atQlhYGC5fvowxY8ZgwIABOHz4MADg/v37+PDDDxEYGIioqCgMHToU48aN0+p1yHXw4EHcvn0bBw8eRGRkJCIiIpR64AQHB+Ps2bPYtm0bTp48CUEQ0KlTJ6WkVUpKCubMmYNff/0Vly9fhr29PQBgwYIFaNGiBS5cuIDOnTvjo48+QlBQEAYMGIDz58+jevXqCAoKKrQ3EAA0a9YMR48efa3zIyIiIqLSg+MLiHRJUO0hxYRUOZGZAsxyLvnjfvMIMFZN+KhjamqKfv36ITw8HD179gQA/P7776hatSr8/f0BAHfu3MGxY8dgYmKCLVu24OnTpxg+fDiePXuG8PBwtfu9d+8eBEGAs/Or87916xYEQUDt2rXf7Pzy+Prrr7F48WKkpKSgefPm+Ouvvwpd/969e/jyyy/FGGrWrKn1MY2NjbFy5UqYmZmhXr16mDZtGr788ktMnz4d1tbWMDY2hpmZGRwdHVW2nTZtGtq1ayc+t7W1haenp/h8+vTp2LJlC7Zt24aRI0fixo0bWL9+Pfbu3Yu2bdsCAKpVq6a0PQDY29uLCb309HTMmjUL+/btg4+Pj7jNsWPHsGzZMrRs2RJLly5F9erVMW/ePABArVq18M8//2DOnDlavx4VKlTA4sWLIZVKUbt2bXTu3Bn79+/HsGHDcPPmTWzbtg3Hjx+Hr68vAGD16tVwcXHB1q1bxZ+5zMxM/Pzzz0qvBQB06tQJn3zyCQBg0qRJWLp0Kd555x1xu6+//ho+Pj54/Pix2tc7l7OzM2JiYrQ+NyIiIiIqXdhDikiX1MyyJ1Eqas6EFBWvYcOGYc+ePXj48CGAnCFUwcHBkEhypu1VKBSQSCRYvXo1mjVrhk6dOmH+/PmIjIwssJdUbruJiYnYVlQvltfx5Zdf4sKFC9izZw+kUqlSbxkLCwvx8emnnwLIKe48dOhQtG3bFt999x1u376t9TE9PT1hZmYmPvfx8YFcLsf9+/eL3DZvjzEgZza00NBQ1KlTBzY2NrCwsMDVq1fFHlJRUVGQSqVo2bKlxvHdunULKSkpaNeundJrsGrVKvF8r169Cm9vb6XtcpNX2qpXrx6kUqn43MnJCfHx8eJxDA0NlY5VsWJF1KpVC1evXhXbjI2N0bBhQ5V9521zcHAAADRo0EClLfd4BTE1NS20PhIRERERlQ3sIUWkS0UO2WMNqTLLyCynt5I+jqsFLy8veHp6YtWqVWjfvj0uX76M7du3i8udnJxQuXJlWFtbi2116tSBIAh48OCB2l5GdnZ2AHLqB+XOwlWzZk1IJBKxcLku2NnZwc7ODh4eHqhTpw5cXFxw6tQp+Pj4iFPeA4CVlRWAnDpR/fr1w/bt27Fz505MnjwZa9euRbdu3WBgYKCSNCusHtXryD9UMTQ0FHv37sUPP/yAGjVqwNTUFD169BBrUpmammp9DLlcDgDYvn07KleurLRMJpO9ZuQFyz/kUSKRFFnwPj9TU1MxAVrQvnOXq2sr6ngJCQmcDY6IiIioHGBCikin8g7Z4yx75YpEovHQOX0bOnQoFi5ciIcPH6Jt27ZKdY9atGiBDRs2QC6Xw8LCAgBw48YNGBgYoEqVKmr3V716dVhZWeHKlSvw8PAAkDO8LCAgAEuWLMEXX3yhkpxJTEx8ozpSuUmJ3ALtNWrUULueh4cHPDw8MGbMGPTt2xfh4eHo1q0bKlWqhLi4OAiCICY68ia1cl28eBGpqalisujUqVNiTScgp7dPdna2RjEfP34cwcHB6NatG4CcZFLe4uINGjSAQqHA4cOHxSF7eRkbGwOA0vHyFgYvqGdVnTp1lOqG5Z6HrtWpUwdZWVk4ffq0OGTv2bNnuH79OurWravz4xXk33//hZeXV4kdj4iIiIiKB4fsEemSmiF7rCFFJa1fv3548OABfvnlF7GYed5lFStWxKBBg3DlyhUcOXIEX375JQYPHlxgDx4DAwO0bdsWx44dU2pfsmQJsrOz0axZM2zatAk3b97E1atX8eOPPyoNGYuLi0NUVBRu3boFAPjnn38QFRWFhIQEAMDp06exePFiREVFISYmBgcOHEDfvn1RvXr1AoeepaamYuTIkTh06BBiYmJw/Phx/P3336hTpw4AwN/fH0+ePMH333+P27dvY8mSJdi5c6fKfjIyMjBkyBBcuXIFO3bswOTJkzFy5EgYGOR8PLq5ueH06dOIjo7G06dPC+29U7NmTWzevBlRUVG4ePEi+vXrp7S+m5sbBg4ciMGDB2Pr1q24e/cuDh06hPXr1wMAXF1dIZFI8Ndff+HJkyeQy+WwtLREaGgoxowZg8jISNy+fRvnz5/HTz/9hMjISADAp59+ips3b+LLL7/E9evXsWbNGqVC5LpSs2ZNdOnSBcOGDcOxY8dw8eJFDBgwAJUrV0aXLl10fryHDx+idu3aOHPmjFL70aNH0b59e50fj4iIiIhKFhNSRLqUt6i5hAkp0g9ra2t0794dFhYW6Nq1q9IyCwsL7N27F4mJiWjatCn69++PwMBA/Pjjj4Xuc+jQoVi7dq1SgqVatWo4f/48WrVqhbFjx6J+/fpo164d9u/fj6VLl4rrhYWFwcvLC8OGDQMA+Pn5wcvLS+zVY2Zmhs2bN6NNmzaoVasWhgwZgoYNG+Lw4cMFDkuTSqV49uwZgoKC4OHhgV69eqFjx47iDHl16tTBzz//jCVLlsDT0xNnzpxBaGioyn7atGmDmjVrws/PD71798YHH3yAKVOmiMtDQ0MhlUpRt25dVKpUSWnGvPzmz5+PChUqwNfXF4GBgQgICEDjxo2V1lm6dCl69OiB4cOHo3bt2hg2bBhevnwJAKhcuTKmTp2KcePGwcHBASNHjgSQUxx94sSJmD17NurUqYMOHTpg+/btcHd3BwBUrVoVmzZtwtatW+Hp6YmwsDDMmjVLJT6JRPLGiarw8HA0adIE77//Pnx8fCAIAnbs2KH17IaayMzMxPXr15XqRZ08eRJJSUno0aOHzo9HRERERCVLIhRHZdpSLDk5GdbW1khKShLrkBDpzMPzwC+tAADvpS/AgA4tsWLnSZwxGZGzvNMPQLNhegyQNJGWloa7d+/C3d1dqZB3WdKmTRvUq1evyESTpgRBgLe3tzg0jsqWu3fvwsPDA1euXHmt2QhLi969e8PT0xPffPPNa++jsN9vXiNojq8VERER5aft9QF7SBHpUt4eUhDgbGMq1pLKWc4eUlS8nj9/ji1btuDQoUMYMWKEzvYrkUiwfPlyZGVl6WyfVHJ27NiBjz/+uEwnozIyMtCgQQOMGTNG36EQERERkQ6wqDmRTiknpMxlUjhYyYCM3MVMSFHx8vLywvPnzzFnzhzUqlVLp/tu1KgRGjVqpNN9UsnQZXJSX4yNjfHtt9/qOwwiIiIi0hEmpIh0KU/CKXd2PTdbEyBOdTlRccg7qxsREREREVFpxSF7RLqUZ8hebkLK1dZU7XIiIiIiIiKitxUTUkS6lKcHlIHYQ8pU7XIiIiIiIiKitxUTUkQ6lbeGVE7yqWqFPLM4MSFVpigUfL+Iyhv+XhMRERGVDqwhRaRLanpIueTpIZWtyIa0xIMibRkbG8PAwACPHj1CpUqVYGxsDIlEou+wiOgNCIKAjIwMPHnyBAYGBjA2NtZ3SERERERvNSakiHRJTUKqkrmR2JaYkoGKJR4UacvAwADu7u6IjY3Fo0eP9B0OEemQmZkZqlatCgMDdhInIiIi0icmpIh0SamouQImhlIxMQUAKWmZTEiVEcbGxqhatSqysrKQnZ2t73CISAekUikMDQ3Z45GIiIioFGBCikiX8vWQMjGWKrWlZ2bpIyp6TRKJBEZGRjAyMip6ZSIiIiIiItIY+6sT6VTeouYCzPIlpDKymJAiIiIiIiIiYkKKSJeUekgpYGZkiLxJqgz2kCIiIiIiIiJiQopIp/LUkAIA0/w9pDJZi4iIiIiIiIiICSkiXRLyDtlTqCakOGSPiIiIiIiIiAkpIp3KV9Tc1Ch/DykmpIiIiIiIiIiYkCLSqVc9pGSGgNRAotRrKjObQ/aIiIiIiIiImJAi0qU8vaFMDCX/teUtas6EFBERERERERETUkS6lCchZSompF61ZWVzyB4REWnuyJEjCAwMhLOzMyQSCbZu3Vro+ocOHYJEIlF5xMXFKa23ZMkSuLm5wcTEBN7e3jhz5kwxngURERGRKiakiHQpT28oEzUJqcws9pAiIiLNvXz5Ep6enliyZIlW212/fh2xsbHiw97eXly2bt06hISEYPLkyTh//jw8PT0REBCA+Ph4XYdPREREVCC9J6S0vUO3cOFC1KpVC6ampnBxccGYMWOQlpZWQtESFUHtkD0mpIiI6PV07NgRM2bMQLdu3bTazt7eHo6OjuLDwODVJd/8+fMxbNgwDBo0CHXr1kVYWBjMzMywcuVKXYdPREREVCC9JqS0vUO3Zs0ajBs3DpMnT8bVq1exYsUKrFu3Dt98800JR05UkFc9pNQN2cvMyoaQpxcVERFRcWjUqBGcnJzQrl07HD9+XGzPyMjAuXPn0LZtW7HNwMAAbdu2xcmTJ/URKhEREb2l9JqQ0vYO3YkTJ9CiRQv069cPbm5uaN++Pfr27cu6B1R65Ek+yXITUnmSVIKgQHqWAkREVH4dPHhQb8d2cnJCWFgYNm3ahE2bNsHFxQX+/v44f/48AODp06fIzs6Gg4OD0nYODg4qdabySk9PR3JystKDiIiI6E3oLSH1OnfofH19ce7cOTEBdefOHezYsQOdOnUqkZiJiiTk7SGV2/YqAWUABZLTMks4KCIiKkkdOnRA9erVMWPGDNy/f79Ej12rVi188sknaNKkCXx9fbFy5Ur4+vpiwYIFb7Tf2bNnw9raWny4uLjoKGIiIiJ6W+ktIfU6d+j69euHadOm4d1334WRkRGqV68Of3//Qofs8Y4elag8CSlj6X+/XnkSUhIAyamcaY+IqDx7+PAhRo4ciY0bN6JatWoICAjA+vXrkZGRoZd4mjVrhlu3bgEA7OzsIJVK8fjxY6V1Hj9+DEdHxwL3MX78eCQlJYmPkk60ERERUfmj96Lm2jh06BBmzZqFn3/+GefPn8fmzZuxfft2TJ8+vcBteEePSpRSUXPVNgMo8II9pIiIyjU7OzuMGTMGUVFROH36NDw8PDB8+HA4Ozvjiy++wMWLF0s0nqioKDg5OQEAjI2N0aRJE+zfv19crlAosH//fvj4+BS4D5lMBisrK6UHERER0ZswLHqV4vE6d+gmTpyIjz76CEOHDgUANGjQAC9fvsTHH3+MCRMmKM0gk2v8+PEICQkRnycnJzMpRcXoVQ8pmTS3qPmrNgMISE5jDykiordF48aN4ejoiIoVK+K7777DypUr8fPPP8PHxwdhYWGoV69eodvL5XKxdxMA3L17F1FRUbC1tUXVqlUxfvx4PHz4EKtWrQKQMxuxu7s76tWrh7S0NPz66684cOAA9uzZI+4jJCQEAwcORNOmTdGsWTMsXLgQL1++xKBBg4rnRSAiIiJSQ289pF7nDl1KSopK0kkqlQJAgTOX8Y4elai8Rc2luW2vfjYlEJCcyh5SRETlXWZmJjZu3IhOnTrB1dUVu3fvxuLFi/H48WPcunULrq6u6NmzZ5H7OXv2LLy8vODl5QUgJ5nk5eWFSZMmAQBiY2Nx7949cf2MjAyMHTsWDRo0QMuWLXHx4kXs27cPbdq0Edfp3bs3fvjhB0yaNAmNGjVCVFQUdu3apVJGgYiIiKg46a2HFFD0HbqgoCBUrlwZs2fPBgAEBgZi/vz58PLygre3N27duoWJEyciMDBQTEwR6VWe5JM4y55SDSkBL9hDioioXPv888/xxx9/QBAEfPTRR/j+++9Rv359cbm5uTl++OEHODs7F7kvf3//Am+6AUBERITS86+++gpfffVVkfsdOXIkRo4cWeR6RERERMVFrwmp3r1748mTJ5g0aRLi4uLQqFEjpTt09+7dU+oR9e2330IikeDbb7/Fw4cPUalSJQQGBmLmzJn6OgUiZXlrSElVE1IGEJDIGlJEROXalStX8NNPP+HDDz+ETCZTu46dnR0OHjxYwpERERERlR56TUgBhd+hO3TokNJzQ0NDTJ48GZMnTy6ByIheQ57kk7FUtc1AIiA1I7uEgyIiopI0efJk+Pr6wtBQ+TIrKysLJ06cgJ+fHwwNDdGyZUs9RUhERESkf2Vqlj2i0i9vUXPVNgkUICKi8q1Vq1ZISEhQaU9KSkKrVq30EBERERFR6cOEFJEuFdFDSlLC4RARUckTBAESiepf/GfPnsHc3FwPERERERGVPnofskdUruQtaq62hhR7SBERlVcffvghAEAikSA4OFipflR2djYuXboEX19ffYVHREREVKowIUWkS3mST0YFFDUnIqLyydraGkBODylLS0uYmpqKy4yNjdG8eXMMGzZMX+ERERERlSpMSBEVE7GGVJ5eU0xIERGVX+Hh4QAANzc3hIaGcngeERERUSGYkCLSJbU1pPImoZiQIiIq7zgbMBEREVHRmJAi0iGFIlucKcAo9z8cskdEVO41btwY+/fvR4UKFeDl5aW2qHmu8+fPl2BkRERERKUTE1JEOpSVrYDxf/83ZkKKiOit0aVLF7GIedeuXfUbDBEREVEZwIQUkQ5lZGWJCSn1PaQ4yx4RUXmUd5geh+wRERERFc2g6FWISFNpGVni/8XeUHkSUgUP4CAiovLi/v37ePDggfj8zJkzGD16NJYvX67HqIiIiIhKFyakiHQoLSPz1RMxEfVqmJ6EPaSIiMq9fv364eDBgwCAuLg4tG3bFmfOnMGECRMwbdo0PUdHREREVDowIUWkQ6npr3pIiQkp1pAiInqr/Pvvv2jWrBkAYP369WjQoAFOnDiB1atXIyIiQr/BEREREZUSTEgR6VBqJhNSRERvu8zMTLHA+b59+/DBBx8AAGrXro3Y2Fh9hkZERERUajAhRaRD6RmFJ6QkEJiSIiIq5+rVq4ewsDAcPXoUe/fuRYcOHQAAjx49QsWKFfUcHREREVHpwIQUkQ6l5e0hJRY1z1tDiukoIqLybs6cOVi2bBn8/f3Rt29feHp6AgC2bdsmDuUjIiIietsZ6jsAovIkTe2QvVdJKAMWNSciKvf8/f3x9OlTJCcno0KFCmL7xx9/DDMzMz1GRkRERFR6MCFFpENpRQzZYw0pIqK3g1QqVUpGAYCbm5t+giEiIiIqhbQesvfy5cviiIOoXFCuIZU7ZC9vDSkiIirvHj9+jI8++gjOzs4wNDSEVCpVehARERHRa/SQcnBwQK9evTB48GC8++67xRETUZmVkVVEDykJh+wREZV3wcHBuHfvHiZOnAgnJydIJLwdQURERJSf1gmp33//HREREWjdujXc3NwwePBgBAUFwdnZuTjiIypT0tXWkFKeZY+IiMq3Y8eO4ejRo2jUqJG+QyEiIiIqtbQeste1a1ds3boVDx8+xKeffoo1a9bA1dUV77//PjZv3oysvD1EiN4yahNSyFvUnAkpIqLyzsXFBYLAv/dEREREhdE6IZWrUqVKCAkJwaVLlzB//nzs27cPPXr0gLOzMyZNmoSUlBRdxklU6qVlZiNbkWdIHntIERG9lRYuXIhx48YhOjpa36EQERERlVqvPcve48ePERkZiYiICMTExKBHjx4YMmQIHjx4gDlz5uDUqVPYs2ePLmMlKtUSUzKVe0Bxlj0iordS7969kZKSgurVq8PMzAxGRkZKyxMSEvQUGREREVHpoXVCavPmzQgPD8fu3btRt25dDB8+HAMGDICNjY24jq+vL+rUqaPLOIlKvecpGco9oNT2kGJRcyKi8m7hwoX6DoGIiIio1NM6ITVo0CD06dMHx48fxzvvvKN2HWdnZ0yYMOGNgyMqS1QTUoLyv2APKSKit8HAgQN1tq8jR45g7ty5OHfuHGJjY7FlyxZ07dq1wPU3b96MpUuXIioqCunp6ahXrx6mTJmCgIAAcZ0pU6Zg6tSpStvVqlUL165d01ncREREREXRuoZUbGwsli1bVmAyCgBMTU0xefLkNwqMqKwpeMjeqzbWkCIiejvcvn0b3377Lfr27Yv4+HgAwM6dO3H58mWt9vPy5Ut4enpiyZIlGq1/5MgRtGvXDjt27MC5c+fQqlUrBAYG4sKFC0rr1atXD7GxseLj2LFjWsVFRERE9Ka07iFlaWmJ2NhY2NvbK7U/e/YM9vb2yM7O1llwRGWJPD2rgB5SrCFFRPQ2OXz4MDp27IgWLVrgyJEjmDlzJuzt7XHx4kWsWLECGzdu1HhfHTt2RMeOHTVeP/9wwVmzZuHPP//E//73P3h5eYnthoaGcHR01Hi/RERERLqmdQ+pgqYxTk9Ph7Gx8RsHRFRmCWBRcyIiwrhx4zBjxgzs3btX6dqodevWOHXqVInGolAo8OLFC9ja2iq137x5E87OzqhWrRr69++Pe/fulWhcRERERBr3kPrxxx8BABKJBL/++issLCzEZdnZ2Thy5Ahq166t+wiJypCii5oLSkP4iIio/Pnnn3+wZs0alXZ7e3s8ffq0RGP54YcfIJfL0atXL7HN29sbERERqFWrFmJjYzF16lS89957+Pfff2Fpaal2P+np6UhPTxefJycnF3vsREREVL5pnJBasGABgJweUmFhYZBKpeIyY2NjuLm5ISwsTPcREpUhGiWkiIioXLOxsUFsbCzc3d2V2i9cuIDKlSuXWBxr1qzB1KlT8eeffyqVWsg7BLBhw4bw9vaGq6sr1q9fjyFDhqjd1+zZs1UKoRMRERG9CY0TUnfv3gUAtGrVCps3b0aFChWKLSiiskrtkD1wlj0iordJnz598PXXX2PDhg2QSCRQKBQ4fvw4QkNDERQUVCIxrF27FkOHDsWGDRvQtm3bQte1sbGBh4cHbt26VeA648ePR0hIiPg8OTkZLi4uOouXiIiI3j5a15A6ePAgk1FEBSiqh5QBFCAiovJt1qxZqF27NlxcXCCXy1G3bl34+fnB19cX3377bbEf/48//sCgQYPwxx9/oHPnzkWuL5fLcfv2bTg5ORW4jkwmg5WVldKDiIiI6E1o1EMqJCQE06dPh7m5udLdMXXmz5+vk8CIyqKiippzyB4RUflnbGyMX375BZMmTcI///wDuVwOLy8v1KxZU+t9yeVypZ5Ld+/eRVRUFGxtbVG1alWMHz8eDx8+xKpVqwDkDNMbOHAgFi1aBG9vb8TFxQEATE1NYW1tDQAIDQ1FYGAgXF1d8ejRI0yePBlSqRR9+/bVwdkTERERaUajhNSFCxeQmZkp/r8gEolEN1ERlVHqe0gJ6pcTEVG5NG3aNISGhsLFxUVpWFtqairmzp2LSZMmabyvs2fPolWrVuLz3BuDAwcOREREBGJjY5VmyFu+fDmysrIwYsQIjBgxQmzPXR8AHjx4gL59++LZs2eoVKkS3n33XZw6dQqVKlV63VMmIiIi0ppEEN6uKb+Sk5NhbW2NpKQkdjcnnVr/931k//k5+hoezGnwGgB0WQLsGg+c+hkAEKOwx6Z3/0JI+1p6jJSIiNTR1TWCVCpFbGysUiFxAHj27Bns7e2RnZ39pqHqHa+niIiIKD9trw+0riGl7oBbt27FtWvX3nRXRGWe8pA9Qfnf/MuJiKhcEgRBba/xixcvwtbWVg8REREREZU+Gs+yl6tXr17w8/PDyJEjkZqaiqZNmyI6OhqCIGDt2rXo3r17ccRJVCYUVdRcImFCioiovKpQoQIkEgkkEgk8PDyUklLZ2dmQy+X49NNP9RghERERUemhdULqyJEjmDBhAgBgy5YtEAQBiYmJiIyMxIwZM5iQoreagYRFzYmI3lYLFy6EIAgYPHgwpk6dKhYRB3IKnbu5ucHHx0ePERIRERGVHlonpJKSksTu5rt27UL37t1hZmaGzp0748svv9R5gERlSVE9pDhkj4io/Bo4cCAAwN3dHb6+vjAyMtJzRERERESll9YJKRcXF5w8eRK2trbYtWsX1q5dCwB4/vw5TExMdB4gUVmiNiGFvDWkFCAiovKtZcuWUCgUuHHjBuLj46FQKP/t9/Pz01NkRERERKWH1gmp0aNHo3///rCwsICrqyv8/f0B5Azla9Cgga7jIypT2EOKiIhOnTqFfv36ISYmBvknM5ZIJOVilj0iIiKiN6V1Qmr48OFo1qwZ7t+/j3bt2sHAIGeivmrVqmHGjBk6D5CoLDEoIiEFJqSIiMq9Tz/9FE2bNsX27dvh5OSkdsY9IiIiored1gkpAGjatCmaNm2q1Na5c2edBERUlikNySughxRTUkRE5dvNmzexceNG1KhRQ9+hEBEREZVaWieksrOzERERgf3796uti3DgwAGdBUdU1ijdA88dpiHkrSHFdBQRUXnn7e2NW7duMSFFREREVAgDbTcYNWoURo0ahezsbNSvXx+enp5KD20tWbIEbm5uMDExgbe3N86cOVPo+omJiRgxYgScnJwgk8ng4eGBHTt2aH1couIgUdtDikXNiYjeJp9//jnGjh2LiIgInDt3DpcuXVJ6EBEREdFr9JBau3Yt1q9fj06dOr3xwdetW4eQkBCEhYXB29sbCxcuREBAAK5fvw57e3uV9TMyMtCuXTvY29tj48aNqFy5MmJiYmBjY/PGsRC9KQFCAT2kXiWhWEWEiKj86969OwBg8ODBYptEIoEgCCxqTkRERPQfrRNSxsbGOuuCPn/+fAwbNgyDBg0CAISFhWH79u1YuXIlxo0bp7L+ypUrkZCQgBMnTsDIyAgA4ObmppNYiHShqKLmEg7ZIyIq9+7evavvEIiIiIhKPa2H7I0dOxaLFi1SmcZYWxkZGTh37hzatm37KhgDA7Rt2xYnT55Uu822bdvg4+ODESNGwMHBAfXr18esWbN4p5FKjaKLmnPIHhFReefq6lrog4iIiIheo4fUsWPHcPDgQezcuRP16tUTeyrl2rx5s0b7efr0KbKzs+Hg4KDU7uDggGvXrqnd5s6dOzhw4AD69++PHTt24NatWxg+fDgyMzMxefJktdukp6cjPT1dfJ6cnKxRfESvQ3nInvpZ9oiIqPzZtm0bOnbsCCMjI2zbtq3QdT/44IMSioqIiIio9NI6IWVjY4Nu3boVRyxFUigUsLe3x/LlyyGVStGkSRM8fPgQc+fOLTAhNXv2bEydOrWEI6W3ldqi5nmSUByyR0RUPnXt2hVxcXGwt7dH165dC1yPNaSIiIiIcmidkAoPD9fJge3s7CCVSvH48WOl9sePH8PR0VHtNk5OTjAyMoJUKhXb6tSpg7i4OGRkZMDY2Fhlm/HjxyMkJER8npycDBcXF52cA1F+RfWQYkKKiKh8UigUav9PREREROppXUMKALKysrBv3z4sW7YML168AAA8evQIcrlc430YGxujSZMm2L9/v9imUCiwf/9++Pj4qN2mRYsWuHXrltKF3o0bN+Dk5KQ2GQUAMpkMVlZWSg+i4lJ0DSkmpIiIiIiIiIi0TkjFxMSgQYMG6NKlC0aMGIEnT54AAObMmYPQ0FCt9hUSEoJffvkFkZGRuHr1Kj777DO8fPlSnHUvKCgI48ePF9f/7LPPkJCQgFGjRuHGjRvYvn07Zs2ahREjRmh7GkTFQrmHlKD8L1jUnIiIiIiIiAh4jSF7o0aNQtOmTXHx4kVUrFhRbO/WrRuGDRum1b569+6NJ0+eYNKkSYiLi0OjRo2wa9cusdD5vXv3YGDwKmfm4uKC3bt3Y8yYMWjYsCEqV66MUaNG4euvv9b2NIiKRVE9pCQgIiIiIiIiIq0TUkePHsWJEydUhsi5ubnh4cOHWgcwcuRIjBw5Uu2yQ4cOqbT5+Pjg1KlTWh+HqCQo1YgSE1J5ekhJBKXnRERERERERG8jrYfsKRQKtbPDPHjwAJaWljoJiqisUi5anjtkL/8wPSakiIiIiIiI6O2mdQ+p9u3bY+HChVi+fDmAnOmL5XI5Jk+ejE6dOuk8QKKyxEBtDynlhJSEdaSIiMqd5ORkjdflBCtEREREr5GQmjdvHgICAlC3bl2kpaWhX79+uHnzJuzs7PDHH38UR4xEZYZyUXP1CanMLCakiIjKGxsbG0gkmlUKVNfTnIiIiOhto3VCqkqVKrh48SLWrVuHixcvQi6XY8iQIejfvz9MTU2LI0aiMsNAUnhRcwB4kZpeghEREVFJOHjwoPj/6OhojBs3DsHBwfDx8QEAnDx5EpGRkZg9e7a+QiQiIiIqVbROSB05cgS+vr7o378/+vfvL7ZnZWXhyJEj8PPz02mARGWJ2qLm+WpGJadklFxARERUIlq2bCn+f9q0aZg/fz769u0rtn3wwQdo0KABli9fjoEDB+ojRCIiIqJSReui5q1atUJCQoJKe1JSElq1aqWToIjKKvWz7OXvIcWEFBFReXby5Ek0bdpUpb1p06Y4c+aMHiIiIiIiKn20TkgJgqC2RsKzZ89gbm6uk6CIyirlouaC8r//SWJCioioXHNxccEvv/yi0v7rr7/CxcVFDxERERERlT4aD9n78MMPAeTMqhccHAyZTCYuy87OxqVLl+Dr66v7CInKEPaQIiKiBQsWoHv37ti5cye8vb0BAGfOnMHNmzexadMmrfZ15MgRzJ07F+fOnUNsbCy2bNmCrl27FrrNoUOHEBISgsuXL8PFxQXffvstgoODldZZsmQJ5s6di7i4OHh6euKnn35Cs2bNtIqNiIiI6E1o3EPK2toa1tbWEAQBlpaW4nNra2s4Ojri448/xu+//16csRKVegYaJaRY1JyIqDzr1KkTbty4gcDAQCQkJCAhIQGBgYG4ceMGOnXqpNW+Xr58CU9PTyxZskSj9e/evYvOnTujVatWiIqKwujRozF06FDs3r1bXGfdunUICQnB5MmTcf78eXh6eiIgIADx8fFaxUZERET0JjTuIRUeHg4AcHNzQ2hoKIfnEeWTMzJPXUJKecheakYWMrMVMJJqPWKWiIjKCBcXF8yaNeuN99OxY0d07NhR4/XDwsLg7u6OefPmAQDq1KmDY8eOYcGCBQgICAAAzJ8/H8OGDcOgQYPEbbZv346VK1di3LhxbxwzERERkSa0/kY8efJkJqOICqBJDykJBCSlZpZgVEREVNKOHj2KAQMGwNfXFw8fPgQA/Pbbbzh27FixHvfkyZNo27atUltAQABOnjwJAMjIyMC5c+eU1jEwMEDbtm3FddRJT09HcnKy0oOIiIjoTWidkHr8+DE++ugjODs7w9DQEFKpVOlB9DZTX9RcobJOYgoTUkRE5dWmTZsQEBAAU1NTnD9/HunpOUO1k5KSdNJrqjBxcXFwcHBQanNwcEBycjJSU1Px9OlTZGdnq10nLi6uwP3Onj1bqVwDi7MTERHRm9J4yF6u4OBg3Lt3DxMnToSTk5PaGfeI3laaFDU3gMCZ9oiIyrEZM2YgLCwMQUFBWLt2rdjeokULzJgxQ4+Rvb7x48cjJCREfJ6cnMykFBEREb0RrRNSx44dw9GjR9GoUaNiCIeobNNsyJ6CPaSIiMqx69evw8/PT6Xd2toaiYmJxXpsR0dHPH78WKnt8ePHsLKygqmpqdijXd06jo6OBe5XJpMpzbBMRERE9Ka0HrLn4uICIV+RZiLKpWbIHpR/XyQAa0gREZVjjo6OuHXrlkr7sWPHUK1atWI9to+PD/bv36/UtnfvXvj4+AAAjI2N0aRJE6V1FAoF9u/fL65DREREVBK0TkgtXLgQ48aNQ3R0dDGEQ1S2adJDyoA9pIiIyrVhw4Zh1KhROH36NCQSCR49eoTVq1cjNDQUn332mVb7ksvliIqKQlRUFADg7t27iIqKwr179wDkDKULCgoS1//0009x584dfPXVV7h27Rp+/vlnrF+/HmPGjBHXCQkJwS+//ILIyEhcvXoVn332GV6+fCnOukdERERUErQeste7d2+kpKSgevXqMDMzg5GRkdLyhIQEnQVHVNaoT0gJKusksocUEVG5NW7cOCgUCrRp0wYpKSnw8/ODTCZDaGgoPv/8c632dfbsWbRq1Up8nlvHaeDAgYiIiEBsbKyYnAIAd3d3bN++HWPGjMGiRYtQpUoV/PrrrwgICBDX6d27N548eYJJkyYhLi4OjRo1wq5du1QKnRMREREVJ60TUgsXLiyGMIjKB42KmksEJKWwqDkRUXklkUgwYcIEfPnll7h16xbkcjnq1q0LCwsLrffl7+9faKmEiIgItdtcuHCh0P2OHDkSI0eO1DoeIiIiIl3ROiE1cODA4oiDqFzQJCEF9pAiIirXBg8ejEWLFsHS0hJ169YV21++fInPP/8cK1eu1GN0RERERKWDRjWkkpOTlf5f2IPobaY+IaU6ZI9FzYmIyq/IyEikpqaqtKempmLVqlV6iIiIiIio9NGoh1SFChUQGxsLe3t72NjYQCKRqKwjCAIkEgmys7N1HiRRWaFpUfPnLGpORFTuJCcnQxAECIKAFy9ewMTERFyWnZ2NHTt2wN7eXo8REhEREZUeGiWkDhw4AFtbWwDAwYMHizUgorJMqYdU7v9VElIC5GlMSBERlTe5N+0kEgk8PDxUlkskEkydOlUPkRERERGVPholpFq2bKn2/0SkTJMeUhIIkKdnlWBURERUEg4ePAhBENC6dWts2rRJvJkHAMbGxnB1dYWzs7MeIyQiIiIqPbQuak5EBZNI8iakcv+vXENKAgEv0zm0lYiovMm9aXf37l1UrVpVbYkDIiIiIsqhUVFzItKMJrPsGfzXQ0qhKHgabyIiKrsOHDiAjRs3qrRv2LABkZGReoiIiIiIqPRhQopIh9QP2VOdZQ8AUjLZS4qIqDyaPXs27OzsVNrt7e0xa9YsPUREREREVPowIUWkQ5r0kDL877dOnsY6UkRE5dG9e/fg7u6u0u7q6op79+7pISIiIiKi0ue1ElJZWVnYt28fli1bhhcvXgAAHj16BLlcrtPgiMoaTYqamxvl/NrJ0znTHhFReWRvb49Lly6ptF+8eBEVK1bUQ0REREREpY/WRc1jYmLQoUMH3Lt3D+np6WjXrh0sLS0xZ84cpKenIywsrDjiJCoTJMiTfCpgyJ65sQGQBshZ2JyIqFzq27cvvvjiC1haWsLPzw8AcPjwYYwaNQp9+vTRc3REREREpYPWCalRo0ahadOmKnf5unXrhmHDhuk0OKKyRACgNJ9SgT2kctbikD0iovJp+vTpiI6ORps2bWBomHOppVAoEBQUxBpSRERERP/ROiF19OhRnDhxAsbGxkrtbm5uePjwoc4CIyqLDNT2kFJOSJnJpAAAeToTUkRE5ZGxsTHWrVuH6dOn4+LFizA1NUWDBg3g6uqq79CIiIiISg2tE1IKhQLZ2apDjR48eABLS0udBEVUVknyNwiCakIqt4cUE1JEROWah4cHPDw89B0GERERUamkdUKqffv2WLhwIZYvXw4AkEgkkMvlmDx5Mjp16qTzAInKEqUeUoDahFRuUfOXTEgREZVbDx48wLZt23Dv3j1kZGQoLZs/f76eoiIiIiIqPbROSM2bNw8BAQGoW7cu0tLS0K9fP9y8eRN2dnb4448/iiNGojJDtYeUAkC+oubiLHtMSBERlUf79+/HBx98gGrVquHatWuoX78+oqOjIQgCGjdurO/wiIiIiEoFrRNSVapUwcWLF7F27VpcunQJcrkcQ4YMQf/+/WFqalocMRKVGZJ8yScIilez7EkMAEEBUyakiIjKtfHjxyM0NBRTp06FpaUlNm3aBHt7e/Tv3x8dOnTQd3hEREREpYLWCam0tDSYmJhgwIABxREPUZmmOmRP8WrInoEhkJ0BM2POskdEVJ5dvXpV7DVuaGiI1NRUWFhYYNq0aejSpQs+++wzPUdIREREpH8G2m5gb2+PgQMHYu/evVAoFEVvQPQWUTtkL29CCoDpf0XNWUOKiKh8Mjc3F+tGOTk54fbt2+Kyp0+f6issIiIiolJF64RUZGQkUlJS0KVLF1SuXBmjR4/G2bNniyM2ojKnyB5SAMwMc37tXjAhRURULjVv3hzHjh0DAHTq1Aljx47FzJkzMXjwYDRv3lzP0RERERGVDlonpLp164YNGzbg8ePHmDVrFq5cuYLmzZvDw8MD06ZNK44YicoM9T2k8tSQAntIERGVd/Pnz4e3tzcAYOrUqWjTpg3WrVsHNzc3rFixQs/REREREZUOWiekcllaWmLQoEHYs2cPLl26BHNzc0ydOlWXsRGVOZJCe0hJAQBmLGpORFRuZWdn48GDB6hatSqAnOF7YWFhuHTpEjZt2gRXV1c9R0hERERUOrx2QiotLQ3r169H165d0bhxYyQkJODLL7/UZWxEZY6B2ln2lIfsmRj+V9ScCSkionJHKpWiffv2eP78ub5DISIiIirVtJ5lb/fu3VizZg22bt0KQ0ND9OjRA3v27IGfn19xxEdUpkhUElJCgUXNOcseEVH5VL9+fdy5cwfu7u76DoWIiIio1HqtGlKpqalYtWoV4uLisGzZMiajiP4jleRLSEH47wFAkjNkz9SQQ/aIiMqzGTNmIDQ0FH/99RdiY2ORnJys9CAiIiKi1+gh9fjxY1haWhZHLERlm5A/GQVAkf3q/wY5iSiT/3pIpWRkI1shQGqgUgqdiIjKsE6dOgEAPvjgA0gkr/7GC4IAiUSC7OzsgjYlIiIiemtolJBKTk6GlZUVgJyLqcLu7uWuR/T2UZeQytMLKreGlPTVl5OXGVmwMjEq7sCIiKgEHTx4UKf7W7JkCebOnYu4uDh4enrip59+QrNmzdSu6+/vj8OHD6u0d+rUCdu3bwcABAcHIzIyUml5QEAAdu3apdO4iYiIiAqjUUKqQoUKiI2Nhb29PWxsbJTu9uV6k7t+2lxo5bV27Vr07dsXXbp0wdatW7U+LpEuqdSPAtQmpIwMcnpFZSsEpGZkMyFFRFTOuLu7w8XFReV6SRAE3L9/X6t9rVu3DiEhIQgLC4O3tzcWLlyIgIAAXL9+Hfb29irrb968GRkZGeLzZ8+ewdPTEz179lRar0OHDggPDxefy2QyreIiIiIielMaJaQOHDgAW1tbALq/66fthVau6OhohIaG4r333tNpPESvLbd4eV5qElISAAYSIBvqR/kREVHZ5u7uLt7IyyshIQHu7u5a3bybP38+hg0bhkGDBgEAwsLCsH37dqxcuRLjxo1TWT/3ei3X2rVrYWZmppKQkslkcHR01DgOIiIiIl3TKCHVsmVL8f+6vOsHaH+hBQDZ2dno378/pk6diqNHjyIxMVHr4xLpmqSoGlKS/+YQUJe4IiKiciO313h+crkcJiYmGu8nIyMD586dw/jx48U2AwMDtG3bFidPntRoHytWrECfPn1gbm6u1H7o0CHY29ujQoUKaN26NWbMmIGKFSsWuJ/09HSkp6eLz1mcnYiIqPRSKATciH+BpJRMWJsZwcPeEgalsHax1kXNdXnX73UvtKZNmwZ7e3sMGTIER48eLfQYvICikiKoS0gJeYuaS/9rY0KKiKg8CgkJAQBIJBJMnDgRZmZm4rLs7GycPn0ajRo10nh/T58+RXZ2NhwcHJTaHRwccO3atSK3P3PmDP7991+sWLFCqb1Dhw748MMP4e7ujtu3b+Obb75Bx44dcfLkSUilUrX7mj17NqZOnapx7ERERKQf52ISEHkiBrfi5cjIyoaxoRQ17C0w0NcVTVxti95BCdI6IaWru37A611oHTt2DCtWrEBUVJRGx+AFFJWUjKxM1UY1Q/aYkCIiKp8uXLgAIOda6Z9//oGxsbG4zNjYGJ6enggNDS2xeFasWIEGDRqo1OXs06eP+P8GDRqgYcOGqF69Og4dOoQ2bdqo3df48ePFhBuQc4PPxcWleAInIiKi13IuJgEzt19FYkom7C1lMDGSIS0zG5cfJWHm9quY0LlOqUpKaZyQ0vVdv9fx4sULfPTRR/jll19gZ2en0Ta8gKKSkpqRtzeUYU4ySl1CioiIyqXcOpuDBg3CokWL3njmYTs7O0ilUjx+/Fip/fHjx0XWf3r58iXWrl2LadOmFXmcatWqwc7ODrdu3SowISWTyVj4nIiIqBRTKAREnohBYkom3CqaiR2JzGWGMDOWIiYhBatOxMDLpUKpGb6n8Tfk4rjrp+2F1u3btxEdHY3AwECxTaHI6W1iaGiI69evo3r16krb8AKKSkpaRp4eUhIpgCwgIyVfG9hDioionMs7e11ufc3XuRlmbGyMJk2aYP/+/ejatSuAnOue/fv3Y+TIkYVuu2HDBqSnp2PAgAFFHufBgwd49uwZnJyctI6RiIiISocb8S9wK14Oe0uZyqg2iUSCShYy3IyX40b8C9R2fLObZrqicUJK13f9AO0vtGrXro1//vlHqe3bb7/FixcvsGjRIvZ8Ir1Ky8jXGyo7Hfh3U542FjUnInobZGVlYerUqfjxxx8hl8sBABYWFvj8888xefJkGBkZabyvkJAQDBw4EE2bNkWzZs2wcOFCvHz5UpwMJigoCJUrV8bs2bOVtluxYgW6du2qUqhcLpdj6tSp6N69OxwdHXH79m189dVXqFGjBgICAt7wzImIiEhfklIykZGVDRMj9R1yTIykeCpPR1KKmlIzeqL1GKK8d/10QZsLLRMTE9SvX19pexsbGwBQaScqaWmZeX6xcwuYZ7zM08YaUkREb4PPP/8cmzdvxvfffw8fHx8AwMmTJzFlyhQ8e/YMS5cu1XhfvXv3xpMnTzBp0iTExcWhUaNG2LVrl1h/8969ezDIveHxn+vXr+PYsWPYs2ePyv6kUikuXbqEyMhIJCYmwtnZGe3bt8f06dPZo5yIiKgMszYzgrGhFGmZ2TCXqaZ60jJzCpxbm2l+Y6y4vVZRm7Nnz2L9+vW4d+8eMjIylJZt3rxZq329zoUWUWmUrtRD6r+EVFbaqzZxyJ6a2fiIiKjcWLNmDdauXYuOHTuKbQ0bNoSLiwv69u2rVUIKAEaOHFngEL1Dhw6ptNWqVUv9zK8ATE1NsXv3bq2OT0RERKWfh70lathb4PKjJJgZS5WG7QmCgCfydNR3toaHvaUeo1SmdUJq7dq1CAoKQkBAAPbs2YP27dvjxo0bePz4Mbp16/ZaQWh7oZVXRETEax2TSNdS8yakcpNP2XnrSqkO2RPA5BQRUXkjk8ng5uam0u7u7q5Ug5OIiIhIVwwMJBjo64qZ268iJiEFlSxkMDHK6TH1RJ4Oa1MjBPm6lpqC5gCgddejWbNmYcGCBfjf//4HY2NjLFq0CNeuXUOvXr1QtWrV4oiRqExIz1TTQyo7/VVbnoSUBKXnjwAREenWyJEjMX36dKSnv/oMSE9Px8yZM4ssRk5ERVMoBFyLS8bpO89wLS4ZCgVv8BGRem/b34smrraY0LkO6jlbIzktCw+epyA5LQv1na0xoXMdNHG11XeISrTuIXX79m107twZQE5R8pcvX0IikWDMmDFo3bo1pk6dqvMgicqCNLU9pPIMaVXTQ4qIiMqHDz/8UOn5vn37UKVKFXh6egIALl68iIyMDLRp00Yf4RGVG+diEhB5Iga34uXIyMqph1LD3gIDfV1L3RctItKvt/XvRRNXW3i5VMCN+BdISsmEtZkRPOwtS1XPqFxaJ6QqVKiAFy9eAAAqV66Mf//9Fw0aNEBiYiJSUlKK2Jqo/ErLzAYACJBAkpt8ysqbkMr9A1C+s/JERG8ja2trpefdu3dXes6ZgIne3LmYBMzcfhWJKZmwt5TBxEiGtMxsXH6UhJnbr5bKu/9EpB9v+98LAwMJajta6TuMImmdkPLz88PevXvRoEED9OzZE6NGjcKBAwewd+9e3vWjt1p6xn/1oiQGr3pDFTBkj4iIyhddz0JMRMoUCgGRJ2KQmJIJt4pmYrFec5khzIyliElIwaoTMfByqVAqewEQUcnh34uyQ+uE1OLFi5GWljNz2IQJE2BkZIQTJ06ge/fu+Pbbb3UeIFGZEH0M36TN+++J5FVvKHU9pDjLHhEREZFWbsS/wK14OewtZUozRwGARCJBJQsZbsbLcSP+RZnoFUBExYd/L8oOrRNStravurUZGBhg3LhxOg2IqEyK6Iwmuf9X6iHFGlJERG8bd3d3lQvgvO7cuVOC0RCVD0kpmcjIyoaJkUztchMjKZ7K05GUkql2ORG9Pfj3ouzQKCGVnJys8Q6trJhhpLdckQkp9pAiIirPRo8erfQ8MzMTFy5cwK5du/Dll1/qJyiiMs7azAjGhjnTl5vLVL/CpGXmFCy2NjPSQ3REVJrw70XZoVFCysbGptA7fQAgCAIkEgmys7N1EhhRmSXJM2SPPaSIiN46o0aNUtu+ZMkSnD17toSjISofPOwtUcPeApcfJcHMWKr03UQQBDyRp6O+szU87C31GCURlQa6+HuhUAhlYpa6sk6jhNTBgweLOw6i8iNvD6ms9LwLcv7Jk5BiZykiordHx44dMX78eBZAJ3oNBgYSDPR1xcztVxGTkIJKFjKYGOX0gHgiT4e1qRGCfF35hZGI3vjvxbmYBESeiMGteDkysnJ6U9Wwt8BAX9dyPTOfPmiUkGrZsmVxx0FUbkgkkqJrSPFaiYjorbNx40alWpxEpJ0mrraY0LmO+EXxqTwdxoZS1He2RhC/KBJRHq/79+JcTAJmbr+KxJRM2FvKYGIkQ1pmNi4/SsLM7VcxoXMd/q3RIa2LmgPA0aNHsWzZMty5cwcbNmxA5cqV8dtvv8Hd3R3vvvuurmMkKluKqiEFdosiIirPvLy8VIYHxMXF4cmTJ/j555/1GBlR2dfE1RZeLhU4lIaIiqTt3wuFQkDkiRgkpmTCraKZ+FluLjOEmbEUMQkpWHUiBl4uFfg3R0e0Tkht2rQJH330Efr374/z588jPT1nSFJSUhJmzZqFHTt26DxIojIlbw8pMzvgxaP/2llDiojobdC1a1el5wYGBqhUqRL8/f1Ru3Zt/QRFVI4YGEg4VTtRKVQa6y5p8/fiRvwL3IqXw95SplJDWyKRoJKFDDfj5bgR/4J/g3RE64TUjBkzEBYWhqCgIKxdu1Zsb9GiBWbMmKHT4IjKpjxFzas0Aa4+AiTSV8P0mJAiIirXJk+erO8QiIiISlR5qLuUlJKJjKxsmBjJ1C43MZLiqTwdSSmZJRzZmyuNyULgNRJS169fh5+fn0q7tbU1EhMTdRETUdmmNGQvK+ffWh3ZQ4qI6C1x/vx5GBkZoUGDBgCAP//8E+Hh4ahbty6mTJkCY2NjPUdIRESkO+Wl7pK1mRGMDXOKn5vLVFMlaZk5iTZrMyM9RPf6SnOy0KDoVZQ5Ojri1q1bKu3Hjh1DtWrVdBIUUZmWd8ie4r/suYFhnoSUfsIiIqKS8cknn+DGjRsAgDt37qB3794wMzPDhg0b8NVXX+k5OiIiIt3JX3fJXGYIqYEE5jJDuNqaISk1E6tOxEChKP1fgjzsLVHD3gJP5OkQ8k2HLggCnsjTUdPeAh72lnqKUHu5ycJ/HybBysQQVSqYwcrEUEwWnotJ0Gt8Wiekhg0bhlGjRuH06dOQSCR49OgRVq9ejdDQUHz22WfFESNR2SIxgDg+Lzs3ISVlDykiorfEjRs30KhRIwDAhg0b0LJlS6xZswYRERHYtGmTfoMjIiLSIW3qLpV2BgYSDPR1hbWpEWISUvAyPQvZCgEv07MQk5ACa1MjBPm6loqhbpooC8lCrYfsjRs3DgqFAm3atEFKSgr8/Pwgk8kQGhqKzz//vDhiJCpb8g7ZU/w3ZE8ihZikYkKKiKhcEwQBCkXO3/p9+/bh/fffBwC4uLjg6dOn+gyNiIhIp8pb3aUmrraY0LmOOMTtqTwdxoZS1He2RlApGOKmjbJQpF3rhJREIsGECRPw5Zdf4tatW5DL5ahbty4sLCyQmpoKU1PT4oiTqAyR5AzRA4DsjJx/DaSvCp0TEVG51rRpU8yYMQNt27bF4cOHsXTpUgDA3bt34eDgoOfoiIiIdKc81l1q4moLL5cKpbIIuDbKQrJQ6yF7uYyNjVG3bl00a9YMRkZGmD9/Ptzd3XUZG1HZJDF4lZDKSv+vTap21dI/kpqIiLS1cOFCnD9/HiNHjsSECRNQo0YNAMDGjRvh6+ur5+iIiIh0pzzWXQJyhu/VdrSCd7WKqO1oVeaSUYByslCd0pAs1LiHVHp6OqZMmYK9e/fC2NgYX331Fbp27Yrw8HBMmDABUqkUY8aMKc5YicoGiSSnRxTwKiFloJz7LXt/zoiISFMNGzbEP//8o9I+d+5cSKXqb1AQERGVRbl1l2Zuv4qYhBRUspDBxCgnCfJEnl7m6i6VJ7nJwsuPkmBmLFUatpebLKzvbK3XZKHGPaQmTZqEpUuXws3NDdHR0ejZsyc+/vhjLFiwAPPnz0d0dDS+/vrr4oyVqGzI20MqOzchpfXoWCIiKgeGDx8u1o0yMTGBkVHZGbJARESkidy6S/WcrZGcloUHz1OQnJaF+s7WmNC5Tpmqu1SelIUi7Rp/S96wYQNWrVqFDz74AP/++y8aNmyIrKwsXLx4UaVAFtFbTZKnhlTWfzWkJFJwgB4R0dvn999/R2hoKOzs7PQdChERUbEpL3WXypvSXqRd44TUgwcP0KRJEwBA/fr1IZPJMGbMGCajiFRI1PSQkr6acY+IiN4a+etpEBERlVe5dZeodCnNyUKNE1LZ2dkwNjZ+taGhISwsLIolKKIyTamGVN4eUkxIERERERERUckqrclCjRNSgiAgODgYMlnOlIFpaWn49NNPYW5urrTe5s2bdRshUVmjyM4zZC8t518DA0D95AZERFSOvXjxQt8hEBEREZVKGhc1HzhwIOzt7WFtbQ1ra2sMGDAAzs7O4vPcB9HbKDvvr1JW+quElCIz518WNSciemtkZyvfgTh9+jSOHDmCzMzM19rfkiVL4ObmBhMTE3h7e+PMmTMFrhsREQGJRKL0MDExUVpHEARMmjQJTk5OMDU1Rdu2bXHz5s3Xio2oMAqFgGtxyTh95xmuxSVDoeAQViIiekXjb8nh4eHFGQdRmaYQJJDmDsHNTldNQEk4zTcRUXkXGxuLnj174tSpU2jRogW2bt2Kjz76CDt27AAA1KxZE4cOHYKTk5PG+1y3bh1CQkIQFhYGb29vLFy4EAEBAbh+/Trs7e3VbmNlZYXr16+Lz/PX+/z+++/x448/IjIyEu7u7pg4cSICAgJw5coVleQV0es6F5MgFtHNyMqGsaEUNewtMLAUFNElIqLSQeMeUkSkXlpmNgygeNWQnfmqhlSu/M+JiKjc+frrryEIArZs2QInJye8//77SE5Oxv379xEdHY1KlSph5syZWu1z/vz5GDZsGAYNGoS6desiLCwMZmZmWLlyZYHbSCQSODo6ig8HBwdxmSAIWLhwIb799lt06dIFDRs2xKpVq/Do0SNs3br1dU+dSMm5mATM3H4V/z5MgpWJIapUMIOViSEuP0rCzO1XcS4mQd8hEhFRKcCEFNEbSpCnQyrJ0wU9q+geUpYmhv9tm1Hc4RERUQnZt28f5s2bh8DAQPz88884efIkJk+ejMqVK6Nq1aqYNm0adu7cqfH+MjIycO7cObRt21ZsMzAwQNu2bXHy5MkCt5PL5XB1dYWLiwu6dOmCy5cvi8vu3r2LuLg4pX1aW1vD29u70H0SaUqhEBB5IgaJKZlwq2gGc5khpAYSmMsM4WprhqTUTKw6EcPhe0RExIQU0ZtKkKcpNwjZqgkpA+VftWqVLBBocAKu61oBT24Uc4RERFQSnj9/jsqVKwMAbG1tYWZmBldXV3F5jRo1EBsbq/H+nj59iuzsbKUeTgDg4OCAuLg4tdvUqlULK1euxJ9//onff/8dCoUCvr6+ePDgAQCI22mzTwBIT09HcnKy0oNInRvxL3ArXg57S5nKcFGJRIJKFjLcjJfjRjwL/hMRve2YkCJ6Q8/lKaqNRfSQqmFvgU7S07B6cRv/b+/O46Mo8jaAPz1n7pOcEJJwhZtAgCwgggtLgheoKKJrgEVgFURFFBE5lRdEVjxeFNcDWC8QX0QW3LCIRBEiSCCc4QiEcIQkQCB3ZjIz9f4xzCSTTO5kZpI8389nCNNdXV1d3T3T/ZuqalxIaLrCERGRzfj7+1sEnGbOnAkfn7Kxcm7dulXp6cSNbdCgQYiLi0NkZCSGDRuGLVu2wM/PDx9//HGD8l2+fLnFQ2xCQkIaqcTU0uQWlUKr08NJaX24AielHFqdHrlF9Rvkn4iIWg4GpIga6HbFFlKAlTGkLANUnfzcoMCdpzDp2W2PiKgliIyMtOj2tmLFCouA1G+//YbevXvXOr82bdpALpcjKyvLYnpWVhYCAwNrlYdSqUTfvn2RmpoKAObl6prnvHnzkJuba35dvny51ttBrYunixIqhRwlpXqr80tKjQOce7oobVwyIiJyNAxIETXQrUJrAamKXfYqt5BSmgJSBv5CSETUEvzwww94/vnnq5w/YMAAvPfee7XOT6VSISoqCrt37zZPMxgM2L17NwYNGlSrPPR6PY4fP25+sl94eDgCAwMt8szLy8OBAweqzVOtVsPDw8PiRWRNF393dPJ3w/UCDYSwHCdKCIHrBRp09ndDF393O5WQiIgchaLmJERUnduFde+y1znADal3AlK6Ui1PRCKiVmDgwIF1Xmb27NmYOHEi+vfvj4EDB+Ldd99FYWEhJk+eDACIi4tD27ZtsXz5cgDA0qVL8ac//QmdOnXC7du38fbbbyM9PR1PP/00AOMYPi+88ALefPNNdO7cGeHh4ViwYAGCg4MxduzYRttWar1kMgkTB4di2Y4UpOcUwc9NDSelscXU9QINPJ2ViBscCplMqjkzIiJq0XgfTNRAufVoIRXo4YQrMoNx+YJC+DZV4YiIyGHcunUL//73vxEXF1frZcaPH4/r169j4cKFyMzMRGRkJOLj482Dkl+6dAmycg/OuHXrFqZOnYrMzEx4e3sjKioK+/fvR/fu3c1pXnnlFRQWFmLatGm4ffs27rrrLsTHx8PJyanxNpZatahQH8y/rxs27E9HanYBbhRooFLI0TPYE3GDQxEV6lNzJkRE1OIxIEXUQHlWA1IVxpCSLHvHSpIEVyUAHXA7v4gBKSKiVuDSpUuYPHlynQJSgHFw9JkzZ1qdl5CQYPF+9erVWL16dbX5SZKEpUuXYunSpXUqB1FdRIX6oG+IN85m5yO3qBSeLkp08XdnyygiIjJjQIqogfKKajOoeeUnzbgoBKADCouLm6hkRERkS3l5edXOz8/nY+6pdZHJJHQN5HhjRERkHQNSRA2UW6SpPLFSl73y740DfKrvdNnTaKwEtIiIqNnx8vKCJFXd+kMIUe18IiIiotaEASmiBsq32kLK2qDmljchZQEpKwEtIiJqdtzd3TF//nxER0dbnX/u3DlMnz7dxqUiIiIickwMSBE1UIlGC6gqTKxhUHMAUErGp+yVahmQIiJqCfr16wcAGDZsmNX5Xl5eEELYskhEREREDosBKaIGkqCvPLGGQc0BQHFnOV2ptimKRURENvbEE0+guJpxAQMDA7Fo0SIbloiImguDQXAAeCJqdRiQImogBQyVJ9aihZRpOX0pW0gREbUEU6dOrXZ+QEAAA1JEVElSeg427E9HanYBtDo9VAo5Ovm7YeLgUESF+ti7eERETaZysw0iqhNZrQJSlWO/cuiM/zHoUKTVNUHJiIiIiMiRJaXnYNmOFJy4mgsPJwXaebvAw0mBkxm5WLYjBUnpOfYuIhFRk2FAiqiBFFa77Fkb1LzCJIMxCKWEDtl5bCVFRNTc/fzzz+jevTvy8vIqzcvNzUWPHj2wd+9eO5SMiByRwSCwYX86bheVIszXBa5qBeQyCa5qBUJ9XJBbXIp/7U+HwcCx54ioZXKIgNSaNWsQFhYGJycnREdH4+DBg1Wm/eSTTzB06FB4e3vD29sbI0eOrDY9UVOrXQupGgJS+QxIERE1d++++y6mTp0KDw+PSvM8PT0xffp0vPPOO3YoGRE5orPZ+UjNLoC/uxqSZDlelCRJ8HNT41x2Ac5m59uphGQvBoPA6cw8HLhwE6cz8xiUpBbL7gGpTZs2Yfbs2Vi0aBEOHz6MPn36ICYmBtnZ2VbTJyQkYMKECdizZw8SExMREhKCUaNG4erVqzYuOZGR3GpAquKg5pUDUtCbAlJ6ZOWVNEHJiIjIlo4ePYrY2Ngq548aNQpJSUk2LBERObLcolJodXo4Ka1cJwJwUsqh1emRW1Rq45KRPSWl5+CFTcmYveko5n9/HLM3HcULm5LZfZNaJLsHpN555x1MnToVkydPRvfu3bF27Vq4uLjg888/t5r+q6++wrPPPovIyEh07doVn376KQwGA3bv3m3jkhMZ1W5Qcyun2p0WUgqJLaSIiFqCrKwsKJXKKucrFApcv37dhiUiIkfm6aKESiFHSamV4R8AlJQaBzj3dKn6c4VaFo4pRq2NXQNSWq0WSUlJGDlypHmaTCbDyJEjkZiYWKs8ioqKUFpaCh8fPoGC7KNWXfastZAyGH/tMnbZYwspIqLmrm3btjhx4kSV848dO4agoCAbloiIHFkXf3d08nfD9QINhLDskiWEwPUCDTr7u6GLv7udSki2xDHFqDWya0Dqxo0b0Ov1CAgIsJgeEBCAzMzMWuUxd+5cBAcHWwS1ytNoNMjLy7N4ETWmej1lTwhzCykl9LjOQc2JiJq9e++9FwsWLEBJSeUfGYqLi7Fo0SLcf//9digZETkimUzCxMGh8HRWIj2nCIUaHfQGgUKNDuk5RfB0ViJucChkMqnmzKjZ45hi1BpVfhZ9M7JixQps3LgRCQkJcHJysppm+fLlWLJkiY1LRq2J6Sl7QqaE5OQJ3P1y5TGkKr43lDXNVkKHW0Xapi4mERE1sddffx1btmxBly5dMHPmTERERAAATp8+jTVr1kCv12P+/Pl2LiUROZKoUB/Mv68bNuxPR2p2AW4UaKBSyNEz2BNxg0MRFcpeIK1F2ZhiaqvznZRy3CjQcEwxalHsGpBq06YN5HI5srKyLKZnZWUhMDCw2mVXrVqFFStW4KeffkLv3r2rTDdv3jzMnj3b/D4vLw8hISENKzhROTLJ2EJK59cdyr//AkgSkParZaKKXfbutI4CjAEtNrwlImr+AgICsH//fjzzzDOYN2+euQuOJEmIiYnBmjVrKrUKJyKKCvVB3xBvnM3OR25RKTxdlOji786WUa1M+THFXNWVb9M5phi1RHYNSKlUKkRFRWH37t0YO3YsAJgHKJ85c2aVy61cuRLLli3Dzp070b9//2rXoVaroVZbjzITNQbzU/YkuTEYBdQ8qLmh7JcNlaQDERG1DKGhofjxxx9x69YtpKamQgiBzp07w9vb295FIyIHJpNJ6BroYe9ikB2ZxhQ7mZELF5XcotueaUyxnsGeHFOMWhS7d9mbPXs2Jk6ciP79+2PgwIF49913UVhYiMmTJwMA4uLi0LZtWyxfvhwA8NZbb2HhwoX4+uuvERYWZh5rys3NDW5ubnbbDmq9zAGp8t3yahrUvEILKSIialm8vb0xYMAAexeDiIiaCdOYYst2pCA9pwh+bmo4KY0tpq4XaDimGLVIdg9IjR8/HtevX8fChQuRmZmJyMhIxMfHm5u0X7p0CbJyrUs++ugjaLVajBs3ziKfRYsWYfHixbYsOhGAsoCUKB90qjSGVIVTTV8WkFKCLaSIiIiIiFo7jilGrY3dA1IAMHPmzCq76CUkJFi8v3jxYtMXiKgO5KYWTtW1kKo0qHn5gJQegoNIERERERG1ehxTjFoThwhIETVnFmNImdTYZa9sDCm2kCIiIiIiIhOOKUathazmJERUnVqNIVVNCymOIUVEREREREStDQNSRA0kszaGVMUWUVKFU638GFKSHuyzR0RERERERK0JA1JEDVTWQqpcq6hKg5pX3ULKmAe77REREREREVHrwYAUUQOVBaTKnU6VuuyVey+ExRhSAKAQDEgRERERERFR68GAFFEDmZ+yJ5VvIWVlUHOp3JMx9JYBKBlbSBEREREREVErwoAUUQM1dFBzgC2kiIiIiIiIqHVhQIqogcoGNS/fZa+GQc0rdNmTMyBFRERVWLNmDcLCwuDk5ITo6GgcPHiwyrSffPIJhg4dCm9vb3h7e2PkyJGV0k+aNAmSJFm8YmNjm3oziIiIiCwwIEXUQAqrg5rXsYUUu+wREZEVmzZtwuzZs7Fo0SIcPnwYffr0QUxMDLKzs62mT0hIwIQJE7Bnzx4kJiYiJCQEo0aNwtWrVy3SxcbG4tq1a+bXN998Y4vNISIiIjJjQIqogcxd9qTquuxVeF9hDCm2kCIiImveeecdTJ06FZMnT0b37t2xdu1auLi44PPPP7ea/quvvsKzzz6LyMhIdO3aFZ9++ikMBgN2795tkU6tViMwMND88vb2tsXmEBEREZkxIEXUQOZBzasbQ0riGFJERFQ3Wq0WSUlJGDlypHmaTCbDyJEjkZiYWKs8ioqKUFpaCh8fH4vpCQkJ8Pf3R0REBJ555hncvHmzUctOREREVBNFzUmIqDpyyTSGVF0GNbccQ0omLN8TERHduHEDer0eAQEBFtMDAgJw+vTpWuUxd+5cBAcHWwS1YmNj8fDDDyM8PBznz5/Ha6+9htGjRyMxMRFyudxqPhqNBhqNxvw+Ly+vHltEREREVIYBKaIGkll9yp4MgARAGN+zhRQREdnYihUrsHHjRiQkJMDJyck8/fHHHzf/v1evXujduzc6duyIhIQEjBgxwmpey5cvx5IlS5q8zERERNR6sMseUQNZHdS84ntZhVOt4hhSHNSciIgqaNOmDeRyObKysiymZ2VlITAwsNplV61ahRUrVuC///0vevfuXW3aDh06oE2bNkhNTa0yzbx585Cbm2t+Xb58ufYbQkRERGQFA1JEDWRuISVVOJ1MAamKraMAtpAiIqIaqVQqREVFWQxIbhqgfNCgQVUut3LlSrzxxhuIj49H//79a1zPlStXcPPmTQQFBVWZRq1Ww8PDw+JFRERE1BAMSBE1kNWn7AFlAamKLaeASmNI8Sl7RERkzezZs/HJJ59gw4YNSElJwTPPPIPCwkJMnjwZABAXF4d58+aZ07/11ltYsGABPv/8c4SFhSEzMxOZmZkoKCgAABQUFODll1/G77//josXL2L37t0YM2YMOnXqhJiYGLtsIxEREbVOHEOKqIEUd56yJ6oayLzigOZApRZSMgMHNSciosrGjx+P69evY+HChcjMzERkZCTi4+PNA51funQJsnLdwj/66CNotVqMGzfOIp9FixZh8eLFkMvlOHbsGDZs2IDbt28jODgYo0aNwhtvvAG1Wm3TbSMiIqLWjQEpogaqV5e9CmNIXbqei9tFWni5qJqghERE1JzNnDkTM2fOtDovISHB4v3FixerzcvZ2Rk7d+5spJIRERER1R+77BE1UI2Dmlcc0Byo1EIK+lJsPnSl8QtHRERERERE5IAYkCJqIHMLqYpd86od1Nyyi54COvzr94sQQjRBCYmIiIiIiIgcCwNSRA1kGtRcVBrUvJoxpPSWASlnuQGXc4px4UZhUxSRiIiIiIiIyKEwIEXUAEVaHeSScVBzuaKqLnvWnrKnt3gb5m0cO+rQxZxGLyMRERERERGRo2FAiqgBLuUUmVtIOakqDEhehy574d5KAMChi7cavYxEREREREREjoYBKaIGSL9ZFpCqFHiqw6DmoXdaSCWlMyBFRERERERELR8DUkQNcKl8QKrSoOZ33ltrIVVhDKl27sY0F24U4kaBprGLSURERERERORQGJAiaoD0nMKaA1LWBjWvMIaUs1ygk78bAOD41dzGLiYRERERERGRQ2FAiqgB0m8WQWYOSNV2UHNRaQwp6LXwcjaOI6UpNTR+QYmIiIiIiIgciJXHfxFRbV3KKYICd1o7VTWGlHm6VDavwhhSll34RGMWkYiIiMoxGATOZucjt6gUni5KdPF3h0wm1bwgERERNSoGpIjqSac34OqtYsjlVXXZq2ZQc70pICUBEIC+FBKvhYmIiJpUUnoONuxPR2p2AbQ6PVQKOTr5u2Hi4FBEhfrYu3h2wyAdERHZAwNSRPWUcbsEOoOAUlFVl71qBjU3tZBSugClhYBea54l2ECKiIio0SWl52DZjhTcLiqFv7saTko1Skr1OJmRi2U7UjD/vm6tMijFIB0REdkLx5Aiqqe0m4UAABflnV8QpQqnk7mFlLWA1J0uekpn83vpTpc+58IrgIHjSBERETUWg0Fgw/503C4qRZivC1zVCshlElzVCoT6uCC3uBT/2p8Og6F1/SpkCtKduJoLDycF2nm7wMNJYQ7SJaXn2LuIRETUgjEgRVRPSem3AABuqjsBqaq67NXUQgowjyEVKzuI4fEjgV9XNnZxiYiIWq2z2flIzS6Av7saUoU+8pIkwc9NjXPZBTibnd9kZTAYBE5n5uHAhZs4nZln9+AXg3RERGRv7LJHVE8HLtwEAHiqJaAYdXjKHsrGkDK1kNKXAhLQXXbR+D7zeKOXl4iIqLXKLSqFVqeHk1Jtdb6TUo4bBRrkFpVand9Qjtgtri5Buq6BHnYpIxERtWxsIUVUDxqdHkcu3wYAuKnunEaVnrInt/xbnqFiQEqLYE8neKMAAJCXk9XIJSYiImq9PF2UUCnkKCnVW51fUmoMEnm6KBt93Y7aLa4sSGflOgXGIJ1Wp2+yIB0REREDUkT1cPRyLrQ6A9q4qaGW32nKXlULqYpjSwHlxpC602XPoMO8e7uhg2sJAODm9WtVXjQTERFR3XTxd0cnfzdcL9BAVHh6iBAC1ws06Ozvhi7+7o26XkfuFmfPIB0RERHAgBRRvRxMM3bXiw73gWS4cyEnq8ug5pVbSAV4OOFPgcYm826GPHz8y4XGLjYREVGzVt9xmGQyCRMHh8LTWYn0nCIUanTQGwQKNTqk5xTB01mJuMGhkMmkmjOrA0cYu6oq9grSERERmXAMKaJ6yMg1tmTqHOAG3L4TkKrUZa+aQc1NY0g5exn/luQBAOQlxoHSvVGAbw6k4/mRnRuz2ERERM1WUnoO1u+7iJMZedCU6qFWytEj2AOThoTVahymqFAfzL+vm3kspxsFGqgUcvQM9kRcE43lZO+xq6pjCtIt25GC9Jwi+Lmp4aQ0tpi6XqBpsiAdERGRCQNSRA0gk6Sy1k6VuuzJrU8HyrrsebU3/s3PNP4tMo4joZAMUJTa/tdSIiIiR5SUnoN5W47j6q1i6IWAEIAkAddyi3Hk8m3M/ksXjI1sW2PwJCrUB31DvHE2Ox+5RaXwdFGii797kwVdyneLc1VXvh6wd7c4ewTpiIiITBiQIqoHi5btwtRlr4oWUtV12fMMMf7NvwYYDEDRTXMSF30usvJKEODh1DiFdnRZJ4GcNKDb/fYuCRERORCDQWD1rnNIu1EIgzB2JxMCMH0VX7lVjNe3nsCe09m1ai0lk0k2e2qcqVvcyYxcuKjkFt32TN3iegZ72rVbnK2DdERERCYcQ4qoASQAMNTUZc/KaWbqsufZzpiLoRTIvQToNeYkLrpc3PXWz3hn11lodYbGLrrj+TYO2PQkkJ1i75IQEZEDOXb1Fn5Pu4FSvYDeYBmMMinR6nH40i27PrXOGnuNXVWfcnYN9EB0B190DfSwe3mIiKh1YAsponopdylsaEALKaUz4OoHFGYDmScskgwIEEjOFHh/9zm4qeWYdnfHRiq7AyotBm6mGv//wwxA5Qr0egzo95R9y0VERHb1Pz+mYN2+NOjKPQjO9A0slXtvAOCmliO3uBQb9qfDWSVHfrHOIVr7sFscERE5CoNBOFSLWAakiBpAklBNl707760Nam4aQ0qmADyCjAGprJMWSV4b7o/b59phZ9Jp3LMvDvmFMXAfvbBxN8BR5KSV/f9qUtk0BqSIiFqt/9mRgk/2XqjUGspEoCwoBQCFGj0Uchl2n87C8Su3IZdJUCnk6OTvhol2DvywWxy1ZI52g0tE1iWl55h/HNHq9A7xHcmAFFE9WIwhZW4hVXFQ81q0kJIpAY+2wLWjQNZxiyRS8S2093HBvfKD6Kw5gZLfz+BvV4bjkylDIW9pX/I5FypPy70M3LoIKF0AN3+bF4mIiOwn8cL1aoNRJuXnZ+aVQG8wTrspadHRzw1qhQwnM3Lx5vYUPDUoFG29nO12w2zLsauIbMURb3CJqLKk9Bws25GC20Wl8HdXw0mpRkmpHiczcrFsRwrm39fNLucsA1JEDWUKLlU1hpS1p+yZxpCSyQH3IOP/K7SQQtFNxA0Ow/WTqUAO4CSVQpu2HxGvF+CvfwrF9F4SgtyVQJvOjbcttnT5IHD+Z4i7ZuOXxEQMt5bmvT7Gv3/dAnQaYcPCERGRvfx6Jgtx6w7VeTnTcIsyCdDqDDh/vQCd/d3h6azE2awCLN52En5uKqiViia/YWaLkYZh/Rk5ej04yg2uo9cTkb0ZDAIb9qfjdlEpwnxdzA/YcFUr4KKSIz2nCP/an46+Id42P3ccIiC1Zs0avP3228jMzESfPn3wwQcfYODAgVWm37x5MxYsWICLFy+ic+fOeOutt3DvvffasMRERpIk1fyUPWuDmpuCWHKlscseULmVUNIGeA57FZ4FZRfld8uO4TddL2zZfwKzk16ARmbAp2H/wJOaTSjuOwV+fR+AQhKA3CFO7aqd/xn44iEAwKnL15Fx4UL1n0YnGZAiotarsa+ThBBYtGgRPvnkE9y+fRtDhgzBRx99hM6d7f8Dx5+X/wcXchv2IA8JgEJmDEpduFEAnd6AUr0BkiRBIZdBIQNOXL2NN7cX3mk15QJPFyU6tXFD6o2Cam9qa7rxNRgEtiZfxf8lXcG1vBJIANStpMVIYwUF2OLGyNHrwVFucB29nogcwdnsfKRmF8DfXW3xtFfAeD/r56bGuewCnM3Ot3lLXrvftW7atAmzZ8/G2rVrER0djXfffRcxMTE4c+YM/P0rd9PZv38/JkyYgOXLl+P+++/H119/jbFjx+Lw4cPo2bOnHbaAWpsL1wvw26lLiJEdgoeyM2Aw/SRbISDl0+HO33DL6b++XfZ/mQJwD7a+oqIbwNZnAG2BedKUoDQUdOmMgoT34SEVAQKYkTYDAKC5egw/bluLPyuO4R9B/8CQdnKEhXWBR7uu8FZooHTxbMhmN56zO4GvHzO/DU/9ArlS9QO2F6T8DOXg81ArlYBX+6YuIRGRw2iK66SVK1fi/fffx4YNGxAeHo4FCxYgJiYGp06dgpOTk6030Szs1R2Nko9eAIVaAyQJ0BQZIJcBEiToDAZcvFkEpVyCUi5DRm4JFm87BT93NfQGgVK9AUq5DIoqxp6q6cY3KT0Hq3edQ1L6LegMBihlMrg5yeHkLrd7l4im1lhBAUdpcWNvzaEeHOEGtznUE5EjyC0qhVanh5NSbXW+k1KOGwUa5BaV2rhkgCSEqKl7fpOKjo7GgAED8L//+78AAIPBgJCQEDz33HN49dVXK6UfP348CgsLsX37dvO0P/3pT4iMjMTatWtrXF9eXh48PT2Rm5sLDw/246e62XzoMpZuP4kdhploL7uOkrvmwun39wFdMfD8McA7tCyxEMYnx/l0BGQyYOuzQPJXlhnOTAJyL5lbC1VPAiCA5w4DH/SrVXnzhAt+NkTiftnv+ER6GBG4hI7uOuwLfw59buzAtcA/Q+sZhoCic8gPHQXfgtNQuLdBqWtb5F9LxfFiH3TwVmJoB084uXlVuuCok8KbKEjZBek/L8NVn2cxK1/hA3dd7R7TfXPQ6/AN6QJ0GA44OUiQjYhaBEe8Rmjs6yQhBIKDg/HSSy9hzpw5AIDc3FwEBARg/fr1ePzxx2tVrsauq87zd6BUX3O62lJIxifvGcpd5cokwF2tgN4AFJXqIASgkssQ7ueKyzlF0OoNUCtk6OzvDrVChusFGng6KzH/vm4AUOHGV46SUr05zSNR7fDdocs4m1UAvRBwUcphEIBWb4BCJqGTvxtyi0vRM9gTq8dHtqjuRJWDApZ1U9uggMEg8MKmZJy4mmvR4gYwtupLzylqkfVXUXOphwMXbmL+98fRztvF6timeoPAlVtFWPZQL0R38G309TeXeiJyBKcz8zB701F4OCngqq7cJqlQo0NeiQ7vjO/T4AByXa8P7NpCSqvVIikpCfPmzTNPk8lkGDlyJBITE60uk5iYiNmzZ1tMi4mJwdatW5uyqLVSqinGjdP7odHpoTdU90yYO/+rMhRYQ4ywwoLCWvpaTJKsJKpcJmtlKTetNvHMatIIK/+rbnVVr0LUNmFNCWDKynAnX8OdZa7eLsaPh65ggnQF7ZXXAQBOv71VtmjFFlKSZDm+k5NX5dXJ5JVbSPl0BHLOW06bcRDY+CRw81ytg1EA4CEVYax8PwDgGXxnnJgPhB6bDADodvX/oIUCTlIpcKDy8gpDV3SQrkGgBN/poxElT0UqQqCTqdARV1AguUGSJOTLPHFFGYYI/VnIJSBD3QF6gwG5Cl90L0mGb+F5hMmy4FZFOasLRl1XBMFPd8383jfxTSARyIUbvpHuhTosGv66DPhqr0KvcIVG6QmF0CLXKQR+hWchSQLX3brBq+QKSpTekMEAtS4XerkT9HInlCi9AUmCe0km5EIHvVyNQudgCJkCBkkBg8IZCoMWSn0BAAmQZJBkMgAySJIEl5JM6BQukCS5cZ/L5IAkg5DkkCQJQqYw/pXkkCTjMsbHM8ogSQJyQynkotT4pCip7IlRMiu/NlonWT5mqmxq+YWrrF+LlFaTSZCsz4AkAcLKPKl8gqrKBECUm1+5iFLVRbK+QLnlrJRJqpCkWnfWbXUdVdWGaTFr9SFZKUTlTaj5E0yqcrMla12Dy5VGVLvuivup4koka8msTxNW/2t8X2GCqJCBqCYtYDwnJBkglyQEhHWDk7OrlQK1LE1xnZSWlobMzEyMHDnSPN/T0xPR0dFITEysdUCqMWXk5DdqMAoAhARIFY4jhQTIZRKKS/UQwnge6AwGZOYWQwhjsKpEZ0BGbjF6BHkg1McF6TlF2LDvIgRQddekm0X4cE8qcCdPJ7kcMkmCTALkMjmKS/W4ersYYb6udusS0VQas9uWI7S4cQTNpR48XZRQKYzBR2s3uCWlxpZyni7KJll/c6knIkfQxd8dnfzdcDIjFy4qeaUA7vUCDXoGe6KLv7vNy2bXgNSNGzeg1+sREBBgMT0gIACnT5+2ukxmZqbV9JmZmVbTazQaaDQa8/u8vDyr6RrD9ewMBH//cJPlT/bVG8BoVTUJlC7VZxA1ESjJBXo/BmyZBug1gFsAIAyAXAXotcZ0Ad0tA1IjFwN+EcD97xhbUpnGnxo8yzgg+t5/AA+8B2x60jjdOxy4lWa1CFqZCzRyV7iXXke+3Bvu+ltwQil0kEMBPQyQICt3WxgtKzsPH1X8CgDogIyyO0fTXz2A0r3mtH1LKkS3Ktwrn1D2Rs/SY5YTnbwATZ6xPtoPAi4Zb7Z8ugwCTm2ptC2eKMDfxbdA2rdWt5WIWq60x35CePcB9i5Gk2uK6yTT37pcSwFNez01+oP9jZaXiTAYg1LlqRTGVkt6YYBcJt350QkoKTXASWkMIqnkMhRqdCjU6OHmpICfmxonMvIACVXe+LqqFbhyuxhtPZ1gEIC8QpzfmKceBoOAVqe3S5eIptKYQQFH7lJiS82lHux9g9tc6onIEchkEiYODsWyHSlIzymCn1vl1qxxg0Pt0prQ7mNINbXly5djyZIlNlmXWqXCBdEW5gYQVbDWoqCymtPU3NanmpYLdShLxV/Wa8/6L9+1SV9lWWpIU5sWBrUrSrmWG6Z/JUAhk+DrqoJn2y7A6JXAgbXArXQgZCDgUkNzdL8IYOwa4/9nHTYGllR3glh/3QIc+QIoyQMeeB/QFgKZJ4AuMcDAacY04XcD4z4HDn4CDJ8HhA0xTv/TM8a//SYCaneg71+BHS8Bd78MXD0EXNwHPPwJkPYLVIG9oVK7ARcS4N59DJCyHZDJoQgdAqRsg6zzKCDtFyA7Bej2APD7RxABPVDiEgzZuXgUhY+CIiMJeoMBJe6hcD//b+T79oZeyKAquIwcr17wunEE8tJ85Lh1hnPBFdxqEwUfzWUItScUvR5CYPL76DloBlBabAymQQDO3kDfOCCwF/D7h8Ddc4Dj3wEFWZAPmgHcOANETQIkCaXHvsON+z5D6v4f0P7qDrgXX0WOUwhuqttBqSuESlcAA2Tw1VxGjrothAD8NOm4oQ6Bky4fBkmOArkXFEILlaEYbrpbkAs9CuReCNRcwC1lAGRCB7nQQS70UIli6KFEkcz1zpEgIAmD8S8MkAsdvPU3kK7sBAkGyIQBEozzTf83/zW2uzO24REGCEgolZTQQQFDhWOz/LFsrTWjKVFDPimqzLcWyxqXr/syVtctrM+rKqfq23s1dJuqq6/ql7a6rGisctVxvbXMu6bjp/r6MLbPrcs3RNVHecX51W+TzNrTS6lJNeX1VKFG1+h5GmDZQkp2p3WUQRhbQssk41hTxpaeMHc5kkuAVgCld8aHdFLKoSnVA5Lx/9bIJMAgBJQKmTlfRbmDXS6ToNUbUKjVNWmLEXtozKCAvVvcOIrmUg/2vsFtLvVE5CiiQn0w/75u5vH+bhRooFLI0TPYE3F2fAiAXa/o2rRpA7lcjqysLIvpWVlZCAwMtLpMYGBgndLPmzfPoul6Xl4eQkJCGlhy63wDQuC75FST5E0O6s+v1285VYWuJuFDjS+Tp763vlz3McZXeabg2YPvl02b/KPxb8d7jIEpAOg1rmx+5BPGv33Gl02Lnm78W34Q9rC7IAFwBoDoSTBebv6t3MpfRfkt8Sv3/zZ3/lY62/qUdRNBj7EV55Ztx9ByXU6eLfv1XDlwKoIABD0yA4BxQHcfAJ0q54S25f4fZGW+NfVt1G3/Z1MRtR6tZYjaprhOMv3NyspCUFCQRZrIyMgqy9KU11OuagVyixsvKOWslMFFpYCbkwKZuSXQ6gwQwjielOnmWC8EZBKgkMsgkyToDQIKmQT9nWCVUmZs2ltSqodaKQckVHnjaxAwt65yVSmQr9FBbuqiDeNYOhKA/BId+rX3tkuXiKbSmEEBe7e4cRTNqR7seYPbnOqJyFFEhfqgb4h3ozwRtbFYH3TCRlQqFaKiorB7927zNIPBgN27d2PQoEFWlxk0aJBFegDYtWtXlenVajU8PDwsXkRERESOrimuk8LDwxEYGGiRJi8vDwcOHKgyT6Bpr6f+89zgRsurk58Lerf1Qp92nujo5wZPZwXkMgkqhbF1VKlObx6jTyGXwctFCXcnObR6AwxCQKs3wFWtgKtaXu6m1gM9gjxwvUCDis8CEkKgUKNDGzcVCrU6tPN2hkImoVhngM5gHIeyRKeHJElo4662W5eIpmIKClRVN9cLNOjs71aroICpxY2nsxLpOUUo1OigNxjrNz2nyK5dSmypudVDVKgP3h0fiXfG98Gyh3rhnfF9sHp8ZJO3tmhu9UTkKGQyCV0DPRDdwRddAz3sfo7YNSAFALNnz8Ynn3yCDRs2ICUlBc888wwKCwsxefJkAEBcXJzFYJ7PP/884uPj8Y9//AOnT5/G4sWLcejQIcycOdNem0BERETUJBr7OkmSJLzwwgt48803sW3bNhw/fhxxcXEIDg7G2LFj7bGJCPZxh0resAtibxclOvu7QtwZ/N8ggCKNDkq5DGqFDG1c1ejo54YuAe4I9XWBUm68BG7jqkJbLxdjCyaNDjIJCPZ0RpFWb76pnTgkDJOGhFV94+uixLP3dIKXiwq3i0sR4u0MN7UCWp0B+RodJAB923vi9Rb4CPrGDgqYWtz0CPZEXokOV24VIa9Eh57BnrV+Wl9L0NzqwV43uM2tnoioMrsPwjB+/Hhcv34dCxcuRGZmJiIjIxEfH28ebPPSpUuQycriZoMHD8bXX3+N119/Ha+99ho6d+6MrVu3omfPnvbaBCIiIqIm0RTXSa+88goKCwsxbdo03L59G3fddRfi4+Ph5ORk8+0zObvsXnSZ/yO0+tqNQ2ciA9CrrScWPtgdACp1Heof6oOBHXxw4EIOUrMLoNXpoVbIMTDcG0JIyCnUIr+kFH7uapTqDVDKZcgvKYXGSrejmromdQ10N893V8vhplYgyNMJj0S1xdjIdnb/FbqpNHa3LUfsUmIPrIfaYT0RNW+SqNi+toXLy8uDp6cncnNz2X2PiIiIzHiNUHtNVVcZOfkYvPLXStPdVUB7X1dEhXqhSAPkaXToFuSOv/QIQPdAT/PNp8EgrN6YWpsOwGJapzZuSL1RUO1NbVX513Z+S9aat52IiIzqen3AgBQREREReI1QF6wrIiIiqqiu1wd2H0OKiIiIiIiIiIhaFwakiIiIiIiIiIjIphiQIiIiIiIiIiIim2JAioiIiIiIiIiIbIoBKSIiIiIiIiIisikGpIiIiIiIiIiIyKYU9i6ArQkhABgfR0hERERkYro2MF0rUNV4PUVEREQV1fVaqtUFpPLz8wEAISEhdi4JEREROaL8/Hx4enrauxgOjddTREREVJXaXktJopX9DGgwGJCRkQF3d3dIklTr5fLy8hASEoLLly/Dw8OjCUvo+FgXZVgXllgfZVgXZVgXZVgXZRyxLoQQyM/PR3BwMGQyjmpQnfpeT9WGIx4brRH3g/1xH9gf94Fj4H6wv9rug7peS7W6FlIymQzt2rWr9/IeHh48Ce5gXZRhXVhifZRhXZRhXZRhXZRxtLpgy6jaaej1VG042rHRWnE/2B/3gf1xHzgG7gf7q80+qMu1FH/+IyIiIiIiIiIim2JAioiIiIiIiIiIbIoBqVpSq9VYtGgR1Gq1vYtid6yLMqwLS6yPMqyLMqyLMqyLMqwLqgqPDcfA/WB/3Af2x33gGLgf7K+p9kGrG9SciIiIiIiIiIjsiy2kiIiIiIiIiIjIphiQIiIiIiIiIiIim2JAioiIiIiIiIiIbKpVBKR+/fVXPPDAAwgODoYkSdi6davF/C1btmDUqFHw9fWFJElITk6ulEdJSQlmzJgBX19fuLm54ZFHHkFWVla16xVCYOHChQgKCoKzszNGjhyJc+fONeKW1V1D6yInJwfPPfccIiIi4OzsjPbt22PWrFnIzc2tdr2TJk2CJEkWr9jY2EbeurppjONi+PDhlbbr73//e7XrbYnHxcWLFyvVg+m1efPmKtfb3I6L0tJSzJ07F7169YKrqyuCg4MRFxeHjIwMizxycnLw5JNPwsPDA15eXpgyZQoKCgqqXW99PmNsoaH1cfHiRUyZMgXh4eFwdnZGx44dsWjRImi12mrXW59zq6k1xrERFhZWabtWrFhR7Xod8dhoaF0kJCRU+Znxxx9/VLleRzwuqH7WrFmDsLAwODk5ITo6GgcPHqw2/ebNm9G1a1c4OTmhV69e+PHHH21U0patLvth/fr1lc4/JycnG5a25anp+suahIQE9OvXD2q1Gp06dcL69eubvJwtWV33QVXfX5mZmbYpcAu0fPlyDBgwAO7u7vD398fYsWNx5syZGpfj90Ljqc8+aKzvhFYRkCosLESfPn2wZs2aKuffddddeOutt6rM48UXX8S///1vbN68Gb/88gsyMjLw8MMPV7velStX4v3338fatWtx4MABuLq6IiYmBiUlJQ3anoZoaF1kZGQgIyMDq1atwokTJ7B+/XrEx8djypQpNa47NjYW165dM7+++eabBm1LQzXGcQEAU6dOtdiulStXVpu+JR4XISEhFnVw7do1LFmyBG5ubhg9enS1625Ox0VRUREOHz6MBQsW4PDhw9iyZQvOnDmDBx980CLdk08+iZMnT2LXrl3Yvn07fv31V0ybNq3a9dbnM8YWGlofp0+fhsFgwMcff4yTJ09i9erVWLt2LV577bUa113Xc6upNcaxAQBLly612K7nnnuu2vU64rHR0LoYPHhwpc+Mp59+GuHh4ejfv3+163a044LqbtOmTZg9ezYWLVqEw4cPo0+fPoiJiUF2drbV9Pv378eECRMwZcoUHDlyBGPHjsXYsWNx4sQJG5e8ZanrfgAADw8Pi/MvPT3dhiVueWq6/qooLS0N9913H+655x4kJyfjhRdewNNPP42dO3c2cUlbrrruA5MzZ85YnAv+/v5NVMKW75dffsGMGTPw+++/Y9euXSgtLcWoUaNQWFhY5TL8Xmhc9dkHQCN9J4hWBoD4/vvvrc5LS0sTAMSRI0cspt++fVsolUqxefNm87SUlBQBQCQmJlrNy2AwiMDAQPH2229b5KNWq8U333zT4O1oDPWpC2u+/fZboVKpRGlpaZVpJk6cKMaMGVO/gtpAfeti2LBh4vnnn6/1elrTcREZGSn+9re/VZumOR8XJgcPHhQARHp6uhBCiFOnTgkA4o8//jCn+c9//iMkSRJXr161mkd9PmPsoT71Yc3KlStFeHh4tfnU9dyytfrWRWhoqFi9enWt19Mcjo3GOC60Wq3w8/MTS5curTYfRz8uqHYGDhwoZsyYYX6v1+tFcHCwWL58udX0jz32mLjvvvsspkVHR4vp06c3aTlburruh3Xr1glPT08bla71qc1n6SuvvCJ69OhhMW38+PEiJiamCUvWetRmH+zZs0cAELdu3bJJmVqj7OxsAUD88ssvVabh90LTqs0+aKzvhFbRQqqhkpKSUFpaipEjR5qnde3aFe3bt0diYqLVZdLS0pCZmWmxjKenJ6Kjo6tcprnKzc2Fh4cHFApFtekSEhLg7++PiIgIPPPMM7h586aNSti0vvrqK7Rp0wY9e/bEvHnzUFRUVGXa1nJcJCUlITk5uVYt55r7cZGbmwtJkuDl5QUASExMhJeXl0Urj5EjR0Imk+HAgQNW86jPZ4yjqlgfVaXx8fGpMa+6nFuOqKq6WLFiBXx9fdG3b1+8/fbb0Ol0VebRUo6Nmo6Lbdu24ebNm5g8eXKNeTX346K102q1SEpKsjimZTIZRo4cWeUxnZiYaJEeAGJiYprVOeBo6rMfAKCgoAChoaEICQnBmDFjcPLkSVsUl+7gueA4IiMjERQUhL/85S/Yt2+fvYvTopiGgqnuWpHnQtOqzT4AGuc7ofoIAgEAMjMzoVKpKl1IBwQEVNlf2DQ9ICCg1ss0Rzdu3MAbb7xRY3ek2NhYPPzwwwgPD8f58+fx2muvYfTo0UhMTIRcLrdRaRvfE088gdDQUAQHB+PYsWOYO3cuzpw5gy1btlhN31qOi88++wzdunXD4MGDq03X3I+LkpISzJ07FxMmTICHhwcA4z6u2GxboVDAx8en2s+Lun7GOCJr9VFRamoqPvjgA6xataravOp6bjmaqupi1qxZ6NevH3x8fLB//37MmzcP165dwzvvvGM1n5ZwbNTmuPjss88QExODdu3aVZtXcz8uyHjdoNfrrX4Pnj592uoymZmZLf5709bqsx8iIiLw+eefo3fv3sjNzcWqVaswePBgnDx5ssZzlxpHVedCXl4eiouL4ezsbKeStR5BQUFYu3Yt+vfvD41Gg08//RTDhw/HgQMH0K9fP3sXr9kzGAx44YUXMGTIEPTs2bPKdPxeaDq13QeN9Z3AgBTVW15eHu677z50794dixcvrjbt448/bv5/r1690Lt3b3Ts2BEJCQkYMWJEE5e06ZQPxPXq1QtBQUEYMWIEzp8/j44dO9qxZPZTXFyMr7/+GgsWLKgxbXM+LkpLS/HYY49BCIGPPvrI3sWxu9rUx9WrVxEbG4tHH30UU6dOrTa/5nxuVVcXs2fPNv+/d+/eUKlUmD59OpYvXw61Wm3roja52hwXV65cwc6dO/Htt9/WmF9zPi6ImrtBgwZh0KBB5veDBw9Gt27d8PHHH+ONN96wY8mIbCciIgIRERHm94MHD8b58+exevVqfPHFF3YsWcswY8YMnDhxAr/99pu9i9Jq1XYfNNZ3Arvs1UJgYCC0Wi1u375tMT0rKwuBgYFVLmNKU9tlmpP8/HzExsbC3d0d33//PZRKZZ2W79ChA9q0aYPU1NQmKqF9REdHA0CV29XSjwsA+O6771BUVIS4uLg6L9tcjgvTTXZ6ejp27dpl0eojMDCw0oCwOp0OOTk51X5e1PUzxpFUVx8mGRkZuOeeezB48GD885//rPM6ajq3HEVt6qK86Oho6HQ6XLx40er85nxs1LYu1q1bB19fX6sDwNekuRwXVKZNmzaQy+V1+h4MDAxs0d+b9lCf/VCRUqlE3759ef7ZUFXngoeHB1tH2dHAgQN5HjSCmTNnYvv27dizZ0+NLWz4vdA06rIPKqrvdwIDUrUQFRUFpVKJ3bt3m6edOXMGly5dsogKlhceHo7AwECLZfLy8nDgwIEql2ku8vLyMGrUKKhUKmzbtq1ej3e8cuUKbt68iaCgoCYoof0kJycDQJXb1ZKPC5PPPvsMDz74IPz8/Oq8bHM4Lkw32efOncNPP/0EX19fi/mDBg3C7du3kZSUZJ72888/w2AwmG+eK6rPZ4yjqKk+AGPLqOHDhyMqKgrr1q2DTFb3r56azi1HUJu6qCg5ORkymazKp/M012OjtnUhhMC6desQFxdX5x82gOZxXJAllUqFqKgoi2PaYDBg9+7dVR7TgwYNskgPALt27XLoc8DR1Wc/VKTX63H8+HGefzbEc8ExJScn8zxoACEEZs6cie+//x4///wzwsPDa1yG50Ljqs8+qKje3wkNHha9GcjPzxdHjhwRR44cEQDEO++8I44cOWJ+2s/NmzfFkSNHxI4dOwQAsXHjRnHkyBFx7do1cx5///vfRfv27cXPP/8sDh06JAYNGiQGDRpksZ6IiAixZcsW8/sVK1YILy8v8cMPP4hjx46JMWPGiPDwcFFcXGybDbeioXWRm5sroqOjRa9evURqaqq4du2a+aXT6czrKV8X+fn5Ys6cOSIxMVGkpaWJn376SfTr10907txZlJSU2L4S7mhoXaSmpoqlS5eKQ4cOibS0NPHDDz+IDh06iLvvvttiPa3huDA5d+6ckCRJ/Oc//7G6nuZ+XGi1WvHggw+Kdu3aieTkZIvjX6PRmPOIjY0Vffv2FQcOHBC//fab6Ny5s5gwYYJ5/pUrV0RERIQ4cOCAeVptPmPsoaH1ceXKFdGpUycxYsQIceXKFYs0JhXro7bnlq01tC72798vVq9eLZKTk8X58+fFl19+Kfz8/ERcXJx5Hc3l2GiM80QIIX766ScBQKSkpFRaR3M5LqjuNm7cKNRqtVi/fr04deqUmDZtmvDy8hKZmZlCCCGeeuop8eqrr5rT79u3TygUCrFq1SqRkpIiFi1aJJRKpTh+/Li9NqFFqOt+WLJkidi5c6c4f/68SEpKEo8//rhwcnISJ0+etNcmNHs1XX+9+uqr4qmnnjKnv3DhgnBxcREvv/yySElJEWvWrBFyuVzEx8fbaxOavbrug9WrV4utW7eKc+fOiePHj4vnn39eyGQy8dNPP9lrE5q9Z555Rnh6eoqEhASLa4aioiJzGn4vNK367IPG+k5oFQEp0+M5K74mTpwohDA+stDa/EWLFpnzKC4uFs8++6zw9vYWLi4u4qGHHqp0Mw5ArFu3zvzeYDCIBQsWiICAAKFWq8WIESPEmTNnbLDFVWtoXVS1PACRlpZmXk/5uigqKhKjRo0Sfn5+QqlUitDQUDF16lTzBY+9NLQuLl26JO6++27h4+Mj1Gq16NSpk3j55ZdFbm6uxXpaw3FhMm/ePBESEiL0er3V9TT34yItLa3K43/Pnj3mPG7evCkmTJgg3NzchIeHh5g8ebLIz883zzflU36Z2nzG2END66OqY6f87yEV66O255atNbQukpKSRHR0tPD09BROTk6iW7du4n/+538sArDN5dhojPNECCEmTJggBg8ebHUdzeW4oPr54IMPRPv27YVKpRIDBw4Uv//+u3nesGHDzN8/Jt9++63o0qWLUKlUokePHmLHjh02LnHLVJf98MILL5jTBgQEiHvvvVccPnzYDqVuOWq6/po4caIYNmxYpWUiIyOFSqUSHTp0sLjGpLqr6z546623RMeOHYWTk5Pw8fERw4cPFz///LN9Ct9CVHXNUP7Y5vdC06rPPmis7wTpTgGIiIiIiIiIiIhsgmNIERERERERERGRTTEgRURERERERERENsWAFBERERERERER2RQDUkREREREREREZFMMSBERERERERERkU0xIEVERERERERERDbFgBQREREREREREdkUA1JERERERERERGRTDEgREREREVGLt3jxYgQEBECSJGzdutXexXEIN2/ehL+/Py5evGjvotTZxYsXIUkSkpOTGz3vsLAwvPvuuwAArVaLsLAwHDp0qNplEhISIEkSbt++3ejlaWzDhw/HCy+8YO9ikJ38+uuveOCBBxAcHFyvz8PFixdDkqRKL1dX1zqXhQEpImrxJk2aZP6gVCqVCA8PxyuvvIK1a9da/TAt/2qOF2hERESOoPz3ryRJ8PX1RWxsLI4dO9Zo61i8eDEiIyNrTJeSkoIlS5bg448/xrVr1zB69OhGK4OjmTRpEsaOHVurtMuWLcOYMWMQFhbWpGVqqLpsU2NTqVSYM2cO5s6dW226wYMH49q1a/D09Kx13vbari1btuCNN94wvy8fgKOWr7CwEH369MGaNWvqtfycOXNw7do1i1f37t3x6KOP1jkvBqSIqFWIjY3FtWvXcOHCBaxevRoff/wx0tLSLD5IBw0ahKlTp1pMCwkJsXfRiYiImi3T9++1a9ewe/duKBQK3H///TYvx/nz5wEAY8aMQWBgINRqdaU0Wq3W1sWyq6KiInz22WeYMmWKvYvi8J588kn89ttvOHnyZJVpVCoVAgMDIUmSDUtWPz4+PnB3d7d3MchORo8ejTfffBMPPfSQ1fkajQZz5sxB27Zt4erqiujoaCQkJJjnu7m5ITAw0PzKysrCqVOn6vVZwoAUEbUKarUagYGBCAkJwdixYzFy5Ejs2rXL4sNUpVLBxcXFYppcLrd30YmIiJot0/dvYGAgIiMj8eqrr+Ly5cu4fv26Oc3ly5fx2GOPwcvLCz4+PhgzZoxFC+WEhAQMHDgQrq6u8PLywpAhQ5Ceno7169djyZIlOHr0qLkV1vr16yuVYfHixXjggQcAADKZzBwwMLVOWbZsGYKDgxEREQEA+OKLL9C/f3+4u7sjMDAQTzzxBLKzsy3y3LZtGzp37gwnJyfcc8892LBhg0V3rfXr18PLywvbt29HREQEXFxcMG7cOBQVFWHDhg0ICwuDt7c3Zs2aBb1eb863phtBU747d+5Et27d4ObmZg76mbZ1w4YN+OGHH8x1Un758n788Ueo1Wr86U9/Mk+7desWnnzySfj5+cHZ2RmdO3fGunXrAJR1kfv2228xdOhQODs7Y8CAATh79iz++OMP9O/fH25ubhg9erTF/jUYDFi6dCnatWsHtVqNyMhIxMfHW5Tl+PHj+POf/wxnZ2f4+vpi2rRpKCgoqNU2XbhwAffccw9cXFzQp08fJCYmWuT922+/mcsbEhKCWbNmobCw0Dw/OzsbDzzwAJydnREeHo6vvvqqUl15e3tjyJAh2Lhxo9W6BCp32WvIvqrpnDAdu6tWrUJQUBB8fX0xY8YMlJaWmtN8+OGH5mM0ICAA48aNM88r32Vv+PDhSE9Px4svvmguR2FhITw8PPDdd99ZbOPWrVvh6uqK/Pz8KuuBmr+ZM2ciMTERGzduxLFjx/Doo48iNjYW586ds5r+008/RZcuXTB06NA6r4sBKSJqdU6cOIH9+/dDpVLZuyhEREStRkFBAb788kt06tQJvr6+AIDS0lLExMTA3d0de/fuxb59+8w37lqtFjqdDmPHjsWwYcNw7NgxJCYmYtq0aZAkCePHj8dLL72EHj16mFthjR8/vtJ658yZYw6qmNKZ7N69G2fOnMGuXbuwfft2c5neeOMNHD16FFu3bsXFixcxadIk8zJpaWkYN24cxo4di6NHj2L69OmYP39+pfUWFRXh/fffx8aNGxEfH4+EhAQ89NBD+PHHH/Hjjz/iiy++wMcff2xx01+bG8GioiKsWrUKX3zxBX799VdcunQJc+bMMW/rY489ZtEybfDgwVb3x969exEVFWUxbcGCBTh16hT+85//ICUlBR999BHatGljkWbRokV4/fXXcfjwYSgUCjzxxBN45ZVX8N5772Hv3r1ITU3FwoULzenfe+89/OMf/8CqVatw7NgxxMTE4MEHHzRvU2FhIWJiYuDt7Y0//vgDmzdvxk8//YSZM2fWapvmz5+POXPmIDk5GV26dMGECROg0+kAGFvGxcbG4pFHHsGxY8ewadMm/Pbbb+a8AWNw5/Lly9izZw++++47fPjhh5UCkAAwcOBA7N2712pdVqU++6qmc8Jkz549OH/+PPbs2YMNGzZg/fr15oDsoUOHMGvWLCxduhRnzpxBfHw87r77bqtl3LJlC9q1a4elS5eay+Hq6orHH3/cfN6YrFu3DuPGjWPrqhbs0qVLWLduHTZv3oyhQ4eiY8eOmDNnDu66665KxwMAlJSU4Kuvvqp/S0tBRNTCTZw4UcjlcuHq6irUarUAIGQymfjuu+8s0g0bNkw8//zz9ikkERFRC1P++9fV1VUAEEFBQSIpKcmc5osvvhARERHCYDCYp2k0GuHs7Cx27twpbt68KQCIhIQEq+tYtGiR6NOnT41l+f7770XFW5+JEyeKgIAAodFoql32jz/+EABEfn6+EEKIuXPnip49e1qkmT9/vgAgbt26JYQQYt26dQKASE1NNaeZPn26cHFxMecjhBAxMTFi+vTpQggh0tPThVwuF1evXrXIe8SIEWLevHlV5rtmzRoREBBgsV1jxoypdpuEEGLMmDHib3/7m8W0Bx54QEyePNlq+rS0NAFAfPrpp+Zp33zzjQAgdu/ebZ62fPlyERERYX4fHBwsli1bZpHXgAEDxLPPPiuEEOKf//yn8Pb2FgUFBeb5O3bsEDKZTGRmZla5TdbKc/LkSQFApKSkCCGEmDJlipg2bZrFcnv37hUymUwUFxeLM2fOCADi4MGD5vkpKSkCgFi9erXFcu+9954ICwuzWjdCCLFnz54aj4Ha7KuazgnTcqGhoUKn05nTPProo2L8+PFCCCH+7//+T3h4eIi8vDyrZa14zRsaGlppew8cOCDkcrnIyMgQQgiRlZUlFApFleciNU8AxPfff29+v337dgHA/LlteikUCvHYY49VWv7rr78WCoXCfK7WlaJ+YSwioublnnvuwUcffYTCwkKsXr0aCoUCjzzyiL2LRURE1KKZvn8BY3ewDz/8EKNHj8bBgwcRGhqKo0ePIjU1tVKLi5KSEpw/fx6jRo3CpEmTEBMTg7/85S8YOXIkHnvsMQQFBTVK+Xr16lWpxXRSUhIWL16Mo0eP4tatWzAYDACMLQe6d++OM2fOYMCAARbLDBw4sFLeLi4u6Nixo/l9QEAAwsLC4ObmZjHN1Brn+PHj0Ov16NKli0U+Go3G3KLMWr5BQUFWW/TUpLi4GE5OThbTnnnmGTzyyCM4fPgwRo0ahbFjx1ZqYdW7d2+L8gPGerS2TXl5ecjIyMCQIUMs8hgyZAiOHj0KwDjgfJ8+fSye0DVkyBAYDAacOXPGvI6qlC+P6bjIzs5G165dcfToURw7dsyiG54QAgaDAWlpaTh79iwUCoVFS7GuXbvCy8ur0nqcnZ1RVFRUbVkqqs++qumcMOnRo4fF0BJBQUE4fvw4AOAvf/kLQkND0aFDB8TGxiI2NhYPPfQQXFxcal32gQMHokePHtiwYQNeffVVfPnllwgNDa2ypRW1DAUFBZDL5UhKSqo0dEn5zy6TTz/9FPfff3+N52lVGJAiolbB1dUVnTp1AgB8/vnn6NOnDwfyJCIiamLlv38B482Lp6cnPvnkE7z55psoKChAVFSU1XF7/Pz8ABi7Cc2aNQvx8fHYtGkTXn/9dezatcti7KOGlK88U/exmJgYfPXVV/Dz88OlS5cQExNT50HPlUqlxXvT034rTjMFvGp7I2gtD2NDh7pp06YNbt26ZTFt9OjRSE9Px48//ohdu3ZhxIgRmDFjBlatWmV1/abxuCpOM22TLVgrT/k6nT59OmbNmlVpufbt2+Ps2bO1Xk9OTo75mKxP2Uzlq2lf1eacqCpv03a7u7vj8OHDSEhIwH//+18sXLgQixcvxh9//GE12FaVp59+GmvWrMGrr76KdevWYfLkyc1i0Haqv759+0Kv1yM7O7vGMaHS0tKwZ88ebNu2rd7r4xhSRNTqyGQyvPbaa3j99ddRXFxs7+IQERG1GpIkQSaTmb9/+/Xrh3PnzsHf3x+dOnWyeHl6epqX69u3L+bNm4f9+/ejZ8+e+PrrrwEYn2xWflDwhjp9+jRu3ryJFStWYOjQoejatWulFi0RERE4dOiQxbQ//vijwesufyNYsS4CAwNrnU9t66Rv3744depUpel+fn6YOHEivvzyS7z77rv45z//WaftKM/DwwPBwcHYt2+fxfR9+/ahe/fuAIBu3brh6NGjFgON79u3DzKZzDzQfH33c79+/XDq1KlK9dmpUyeoVCp07doVOp0OSUlJ5mXOnDljHpi8vBMnTqBv3751LkN1rG1Xbc+JmigUCowcORIrV67EsWPHcPHiRfz888+1LgcA/PWvf0V6ejref/99nDp1ChMnTqzbBpJDKigoQHJyMpKTkwEYA0vJycm4dOkSunTpgieffBJxcXHYsmUL0tLScPDgQSxfvhw7duywyOfzzz9HUFAQRo8eXe+yMCBFRK3So48+CrlcjjVr1ti7KERERC2WRqNBZmYmMjMzkZKSgueeew4FBQXmp949+eSTaNOmDcaMGYO9e/ciLS0NCQkJmDVrFq5cuYK0tDTMmzcPiYmJSE9Px3//+1+cO3cO3bp1AwCEhYWZb6Zu3LgBjUbToPK2b98eKpUKH3zwAS5cuIBt27bhjTfesEgzffp0nD59GnPnzsXZs2fx7bffmgeTbkjrkbrcCFYnLCwMx44dw5kzZ3Djxg2LJ6+VFxMTg5MnT1q0klq4cCF++OEHpKam4uTJk9i+fbu5ruvr5ZdfxltvvYVNmzbhzJkzePXVV5GcnIznn38egPEYcHJywsSJE3HixAns2bMHzz33HJ566ilzN6DablNFc+fOxf79+zFz5kwkJyfj3Llz+OGHH8yDmkdERCA2NhbTp0/HgQMHkJSUhKeffhrOzs6V8tq7dy9GjRrVoLqoyNp21XRO1Mb27dvx/vvvIzk5Genp6fjXv/4Fg8FgDvBZK8evv/6Kq1ev4saNG+bp3t7eePjhh/Hyyy9j1KhRaNeuXaNsN9nXoUOH0LdvX3OAdfbs2ejbt6/5YQTr1q1DXFwcXnrpJURERGDs2LH4448/0L59e3MeBoMB69evx6RJkxr0VHIGpIioVVIoFJg5cyZWrlxp8YscERERNZ74+HgEBQUhKCgI0dHR5qeoDR8+HIBxjJ1ff/0V7du3x8MPP4xu3bphypQpKCkpgYeHB1xcXHD69Gk88sgj6NKlC6ZNm4YZM2Zg+vTpAIBHHnkEsbGxuOeee+Dn54dvvvmmQeX18/PD+vXrsXnzZnTv3h0rVqyw6K4GAOHh4fjuu++wZcsW9O7dGx999JH5KXtqtbpB66/NjWBNpk6dioiICPTv3x9+fn6VWieZ9OrVC/369cO3335rnqZSqTBv3jz07t0bd999N+RyOTZu3NigbZo1axZmz56Nl156Cb169UJ8fDy2bduGzp07AzAeAzt37kROTg4GDBiAcePGYcSIEfjf//3fOm9TRb1798Yvv/yCs2fPYujQoeab7uDgYHOadevWITg4GMOGDcPDDz+MadOmwd/f3yKfxMRE5ObmYty4cQ2qi4qsbVdN50RteHl5YcuWLfjzn/+Mbt26Ye3atfjmm2/Qo0cPq+mXLl2KixcvomPHjpW6JU6ZMgVarRZ/+9vfGry95BiGDx8OIUSllymwrlQqsWTJEqSlpUGr1SIjIwNbtmyxGCtOJpPh8uXLWLZsWYPKIon6dDgmIiIiIiIiAMCyZcuwdu1aXL582d5FqZMdO3bg5ZdfxokTJyCTsa1CVcaPH48+ffrgtddes3dRbO6LL77Aiy++iIyMjEoPACBqKA5qTkREREREVAcffvghBgwYAF9fX+zbtw9vv/22uRtYc3Lffffh3LlzuHr1KkJCQuxdHIek1WrRq1cvvPjii/Yuik0VFRXh2rVrWLFiBaZPn85gFDUJtpAiIiIiIiKqgxdffBGbNm1CTk4O2rdvj6eeegrz5s2DQsHf+6llWLx4MZYtW4a7774bP/zwg8WTHokaCwNSRERERERERERkU+woTERERERERERENsWAFBERERERERER2RQDUkREREREREREZFMMSBERERERERERkU0xIEVERERERERERDbFgBQREREREREREdkUA1JERERERERERGRTDEgREREREREREZFNMSBFREREREREREQ29f82UMrNeT6oTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAGGCAYAAABFf1lKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyspJREFUeJzs3XdYU2cbBvA7rLCXAoqyHLhFxKrgwomzalt3BdxWsVpX5bPuVbUqts7WCrZq3VpbrXvvirtOFHCxlL0hOd8flJSQAAkCAb1/15VL8571nCSQw3Pe93lFgiAIICIiIiIiIiIiKiNamg6AiIiIiIiIiIg+LExIERERERERERFRmWJCioiIiIiIiIiIyhQTUkREREREREREVKaYkCIiIiIiIiIiojLFhBQREREREREREZUpJqSIiIiIiIiIiKhMMSFFRERERERERERligkpIiIiIiIiIiIqU0xI0Qdh7ty5EIlEePPmjaZDKVVhYWEQiUQICgqSteWee3nn6ekJT09PTYehYPny5ahRowa0tbXRpEkTAICjoyN8fX1l65w5cwYikQhnzpwp8/iWLVuGunXrQiqVlvmx3zcbNmyAvb09MjIyNB0KEVGZK6/fw3n5+vrC0dFR02GoTSQSYe7cuSW6z/Lyfjk6OqJnz55Frlda10rJycmwtrbGtm3bSnS/+eW/9itNFfVzrgplf6uUpBkzZqBFixalsm8qHUxIERUiPj4e1tbWEIlE2LNnj6bDoTJ27NgxTJ8+Ha1atUJgYCAWL16s6ZDkJCYmYunSpfj666+hpVV+fp0/ePAAXbt2hbGxMSwtLTF06FDExMSovH1SUhKmT58OJycniMViVKtWDZ999hlSU1Nl63h6ekIkEil96Orqyu1v586d+Pzzz1G7dm2IRKICL+B9fX2RmZmJjRs3Fuu8iYjKUlBQkNzvPn19fTg7O8PPzw9RUVFlGsv27dsREBBQpsf8ENy/fx9z585FWFiYpkMpt1avXg0TExMMHDhQ06FQOTBp0iTcvn0bBw8e1HQopCIdTQdAVJ7Nnj1b7o/giuibb77BjBkzNB1GhXTq1CloaWnh559/hp6enqz90aNH5SIBtHnzZmRnZ2PQoEGaDkXm5cuXaNu2LczMzLB48WIkJyfju+++w927d3Ht2jW511GZhIQEtGvXDi9fvsTo0aNRq1YtxMTE4Pz588jIyIChoSEAYObMmRg5cqTctikpKRg7diy6dOki175+/XoEBwfjo48+wtu3bws8tr6+Pnx8fLBy5UpMmDChQvQsJCKaP38+nJyckJ6ejgsXLmD9+vU4fPgw7t27J/udqYpjx44VO4bt27fj3r17mDRpUrH3oYqffvrpg+oRfP/+fcybNw+enp4KPWbe5f3ShLZt2yItLa3I6wB1ZGVlYfXq1fjqq6+gra1dYvtVprxc+1HhqlSpgt69e+O7777Dxx9/rOlwSAVMSBEV4N69e1i/fj1mz56N2bNnazqcYtPR0YGODn/UgZyEhZGRkcrrR0dHw8DAQOHiSSwWl3RoxRIYGIiPP/4Y+vr6ha6XnZ0NqVRaoheBBVm8eDFSUlIQHBwMe3t7AEDz5s3RuXNnBAUFYfTo0YVu7+/vj/DwcNy4cQNOTk6y9q+//lpuvc6dOytsu3XrVgDAkCFD5Np//fVXVKtWDVpaWmjYsGGhx+/fvz+WLVuG06dPo0OHDoWuS0RUHnTr1g3NmjUDAIwcORKVKlXCypUr8fvvv6t1w6IsviPeVf4esJogCALS09NhYGCg0TgqwvuVl5aWVpHXK+r6888/ERMTg/79+5fofpVR5dpP3etMKh39+/dHv3798OzZM9SoUUPT4VARmOalD8qbN2/Qv39/mJqaolKlSpg4cSLS09OVrjtx4kT07dsXbdq0KeMoFcXGxmLq1Klo1KgRjI2NYWpqim7duuH27dtFbqushlRaWhq+/PJLVK5cGSYmJvj444/x6tUrhRoHuduGhITA19cX5ubmMDMzw7Bhw5T2HNu6dSvc3NxgYGAAS0tLDBw4EC9evFBY78cff0TNmjVhYGCA5s2b4/z58yq/FiKRCH5+fti2bRvq1KkDfX19uLm54dy5c0rP+/79+xg8eDAsLCzQunVrADkJmgULFqBmzZoQi8VwdHTE//73P7naQSKRCIGBgUhJSZENh8gd765qHYGrV6+ia9euMDMzg6GhIdq1a4eLFy/KrZOUlIRJkybB0dERYrEY1tbW6Ny5M27cuFHovkNDQ3Hnzh106tRJrj13bP53332HgIAA2Tnev3+/yHhLwt69e9GzZ09ZMgoAOnXqBGdnZ+zatavQbePj4xEYGIjRo0fDyckJmZmZatVz2r59O4yMjNC7d2+5djs7O5Xvarq5ucHS0hK///67ysclIipPcpPpoaGhAFT7zgMUaxLl1vzZtWsXFi1ahOrVq0NfXx8dO3ZESEiI3HaHDh1CeHi47PuysPo38fHx0NbWxvfffy9re/PmDbS0tFCpUiUIgiBr/+KLL1ClShXZc2W1dXbs2AE3NzeYmJjA1NQUjRo1wurVqxWOOWnSJNjZ2UEsFqNWrVpYunSpSr2tcmskHT16FM2aNYOBgYFsaHdx9xseHo5x48ahTp06MDAwQKVKldCvXz+5oXlBQUHo168fAKB9+/ay1za3BpOyGlLR0dEYMWIEbGxsoK+vDxcXF2zZskVunbzXCbnXY2KxGB999BH+/vtvuXUjIyMxbNgwVK9eHWKxGFWrVkXv3r2VDiG8cOECmjdvDn19fdSoUQO//PKL3HJlNaQ8PT3RsGFDBAcHw8PDAwYGBnBycsKGDRsKff1yHThwAI6OjqhZs6Zcu6+vL4yNjfHs2TN4eXnByMgItra2mD9/vtznCwC+++47eHh4oFKlSjAwMICbm5vSMh35r/1yh8yePXsW48aNg7W1NapXry5b/tdff6FNmzYwMjKCiYkJevTogX/++UfpOTRs2BD6+vpo2LAh9u/fr9K5A8D169fh5eWFypUry1674cOHF+v8cq+vd+/ejfr168PAwADu7u64e/cuAGDjxo2oVasW9PX14enpqfAZeNf38uHDh/jss89gaWkJfX19NGvWTGHYXVZWFubNm4fatWtDX18flSpVQuvWrXH8+HG59XKvjXktVzGw2wR9UPr37w9HR0csWbIEV65cwffff4+4uDiFL83du3fj0qVLePDgQbkYt//s2TMcOHAA/fr1g5OTE6KiorBx40a0a9cO9+/fh62trVr78/X1xa5duzB06FC0bNkSZ8+eRY8ePQpcv3///nBycsKSJUtw48YNbNq0CdbW1li6dKlsnUWLFmHWrFno378/Ro4ciZiYGPzwww9o27Ytbt68CXNzcwDAzz//jDFjxsDDwwOTJk3Cs2fP8PHHH8PS0hJ2dnYqxX/27Fns3LkTX375JcRiMdatW4euXbvi2rVrCj1g+vXrh9q1a2Px4sWyi5CRI0diy5Yt+OyzzzBlyhRcvXoVS5YswYMHD2QXAr/++it+/PFHXLt2DZs2bQIAeHh4qPwanzp1Ct26dYObmxvmzJkDLS0tBAYGokOHDjh//jyaN28OABg7diz27NkDPz8/1K9fH2/fvsWFCxfw4MEDNG3atMD9X7p0CQAKXCcwMBDp6ekYPXo0xGIxLC0tC9xXQkICsrKyijwnfX19GBsbF7j81atXiI6Olt2pz6t58+Y4fPhwofu/cOEC0tPTUatWLXz22Wc4cOAApFIp3N3dsXbtWllReWViYmJw/PhxDBgw4J3vTjZt2lQhcUhEVFE8ffoUAFCpUiUAqn3nFebbb7+FlpYWpk6dioSEBCxbtgxDhgzB1atXAeQMoU5ISMDLly+xatUqACj0u8Lc3BwNGzbEuXPn8OWXXwLI+f0vEokQGxuL+/fvo0GDBgCA8+fPF3pj8Pjx4xg0aBA6duwouyZ58OABLl68iIkTJwIAUlNT0a5dO7x69QpjxoyBvb09Ll26BH9/f0RERKhU++rRo0cYNGgQxowZg1GjRqFOnTrvtN+///4bly5dwsCBA1G9enWEhYVh/fr18PT0xP3792FoaIi2bdviyy+/xPfff4///e9/qFevHgDI/s0vLS0Nnp6eCAkJgZ+fH5ycnLB79274+voiPj5e9nrk2r59O5KSkjBmzBiIRCIsW7YMn3zyCZ49eybrifbpp5/in3/+wYQJE+Do6Ijo6GgcP34cz58/l0sMhoSE4LPPPsOIESPg4+ODzZs3w9fXF25ubrL3siBxcXHo3r07+vfvj0GDBmHXrl344osvoKenp5Bcye/SpUsFXgdJJBJ07doVLVu2xLJly3DkyBHMmTMH2dnZmD9/vmy91atX4+OPP8aQIUOQmZmJHTt2oF+/fvjzzz8LvTbONW7cOFhZWWH27NlISUkBkHMN6ePjAy8vLyxduhSpqalYv349WrdujZs3b8peu2PHjuHTTz9F/fr1sWTJErx9+1aWACxKdHQ0unTpAisrK8yYMQPm5uYICwvDvn375NZT5/zOnz+PgwcPYvz48QCAJUuWoGfPnpg+fTrWrVuHcePGIS4uDsuWLcPw4cNx6tQpue2L+17+888/aNWqFapVq4YZM2bAyMgIu3btQp8+fbB371707dsXQM7N5iVLlmDkyJFo3rw5EhMTcf36ddy4cUOu57yZmRlq1qyJixcv4quvvirytSQNE4g+AHPmzBEACB9//LFc+7hx4wQAwu3bt2Vtqampgr29veDv7y8IgiCcPn1aACDs3r27TGPOKz09XZBIJHJtoaGhglgsFubPny/XBkAIDAyUteWee67g4GABgDBp0iS5/fn6+goAhDlz5ihsO3z4cLl1+/btK1SqVEn2PCwsTNDW1hYWLVokt97du3cFHR0dWXtmZqZgbW0tNGnSRMjIyJCt9+OPPwoAhHbt2hX5WgAQAAjXr1+XtYWHhwv6+vpC3759FWIfNGiQ3Pa3bt0SAAgjR46Ua586daoAQDh16pSszcfHRzAyMlKIwcHBQfDx8ZE9z/2MnD59WhAEQZBKpULt2rUFLy8vQSqVytZLTU0VnJychM6dO8vazMzMhPHjxxd53vl98803AgAhKSlJrj33M2BqaipER0ertK927drJXtfCHnnPWZm///5bACD88ssvCsumTZsmABDS09ML3H7lypUCAKFSpUpC8+bNhW3btgnr1q0TbGxsBAsLC+H169cFbvvDDz8IAITDhw8XGmODBg2K/JyNHj1aMDAwKHQdIiJNCwwMFAAIJ06cEGJiYoQXL14IO3bsECpVqiQYGBgIL1++VOs7r127dnK/H3O/2+rVqyf3nb169WoBgHD37l1ZW48ePQQHBweVYx8/frxgY2Mjez558mShbdu2grW1tbB+/XpBEATh7du3gkgkElavXi1bz8fHR+44EydOFExNTYXs7OwCj7VgwQLByMhIePz4sVz7jBkzBG1tbeH58+eFxurg4CAAEI4cOVLs/ea/vkpNTVU4zuXLlxW+Q3fv3i13fZFX/vcrICBAACBs3bpV1paZmSm4u7sLxsbGQmJioiAI/10nVKpUSYiNjZWt+/vvvwsAhD/++EMQBEGIi4sTAAjLly8v5NX57/U5d+6crC06OloQi8XClClTZG35r5VyzwGAsGLFCllbRkaG0KRJE8Ha2lrIzMws8LhZWVmCSCSSO0YuHx8fAYAwYcIEWZtUKhV69Ogh6OnpCTExMbL2/O9FZmam0LBhQ6FDhw4K55n3Oij3569169Zyn7+kpCTB3NxcGDVqlNz2kZGRgpmZmVx7kyZNhKpVqwrx8fGytmPHjgkAivx52r9/vwBA+PvvvwtdT9XzAyCIxWIhNDRU1rZx40YBgFClShXZ50cQBMHf318AILeuqu+lsr9VOnbsKDRq1EjuGlEqlQoeHh5C7dq1ZW0uLi5Cjx49Cj3fXF26dBHq1aun0rqkWRyyRx+U3Ix/rgkTJgCAXM+Nb7/9FllZWfjf//5XprEVRiwWy4YcSSQSvH37FsbGxqhTp06RQ7vyO3LkCICcOzp55b4WyowdO1bueZs2bfD27VskJiYCAPbt2wepVIr+/fvjzZs3skeVKlVQu3ZtnD59GkBO1+Lo6GiMHTtWrvaBr68vzMzMVD4Hd3d3uLm5yZ7b29ujd+/eOHr0KCQSSaGx577XkydPlmufMmUKAODQoUMqx1GQW7du4cmTJxg8eDDevn0rez1SUlLQsWNHnDt3Ttad39zcHFevXsXr16/VOsbbt2+ho6NT4F3oTz/9FFZWVirta8WKFTh+/HiRj+nTpxe6n7S0NADK6yzk1o3IXUeZ5ORkADndxk+ePInBgwfjiy++wIEDBxAXF4e1a9cWuO327dthZWWltLaUuiwsLJCWllbhJzQgog9Dp06dYGVlBTs7OwwcOBDGxsbYv38/qlWrViLfecOGDZP7zs7tsfTs2bNix9ymTRtERUXh0aNHAHJ6ZrRt2xZt2rSRDeO/cOECBEEotIeUubk5UlJSFIbs5LV79260adMGFhYWctconTp1gkQiURjyr4yTkxO8vLxKbL95609lZWXh7du3qFWrFszNzdW+rst1+PBhVKlSRa5umK6uLr788kskJyfj7NmzcusPGDAAFhYWsuf539fcGppnzpxBXFxcoceuX7++3PtkZWWFOnXqqPQZ0dHRwZgxY2TP9fT0MGbMGERHRyM4OLjA7WJjYyEIgtw55Ofn5yf7f+6QtMzMTJw4cULWnve9iIuLQ0JCAtq0aaPy+zBq1Ci5gurHjx9HfHw8Bg0aJPe50NbWRosWLWTXxBEREbh16xZ8fHzkroE7d+6M+vXrF3nc3JEHf/75Z6G93NU5v44dO8r1fGvRogWAnGtKExMThfb8729x3svY2FicOnUK/fv3R1JSkuz1evv2Lby8vPDkyRO8evVKds7//PMPnjx5UuD55sr9uaTyj0P26INSu3Ztuec1a9aElpaWbFheWFgYli9fjrVr1xba3bwgkZGRxY4tb42E/KRSKVavXo1169YhNDRULumS2yVfVeHh4dDS0pIrGA0AtWrVKnCbvPWAAMi+/OPi4mBqaoonT55AEASF1zdXbtfv8PBwAIrvg66urlpFB5Udx9nZGampqYiJiZF7LfOfZ+755z/fKlWqwNzcXBbju8j9ovTx8SlwnYSEBFhYWGDZsmXw8fGBnZ0d3Nzc0L17d3h7e79zEcb8512YvMm9d5F70aOs7lNurbbCisDmLuvVq5fcz1/Lli3h5OQkG6aY37Nnz3D58mX4+fmVSAF/4d+hnZxlj0h1586dw/LlyxEcHIyIiAjs378fffr0UXn7uXPnYt68eQrthoaGsmEwpNzatWvh7OwMHR0d2NjYoE6dOrKbWCXxnVfYNUBR8l8XmZmZwcDAQJa8OH/+PKpXr46bN29i4cKFsLKywnfffSdbZmpqChcXlwL3P27cOOzatQvdunVDtWrV0KVLF/Tv3x9du3aVrfPkyRPcuXOnwJs00dHRRZ6Hsu/Ud9lvWloalixZgsDAQLx69UqurlFCQkKR8SgTHh6O2rVrK9RMzB3il/+9Lup9FYvFWLp0KaZMmQIbGxu0bNkSPXv2hLe3t8I1a/595e5Plc+Ira2twlB7Z2dnADnX5S1btix0eyFfTahcWlpaCtdSefeb688//8TChQtx69YthVqiqsj/2ci9BixoYhRTU1MABV8TA1DphnO7du3w6aefYt68eVi1ahU8PT3Rp08fDB48WO7GoDrnl/99zE2U5S+pkdue//0tznsZEhICQRAwa9YszJo1S+m5RkdHo1q1apg/fz569+4NZ2dnNGzYEF27dsXQoUPRuHFjhW0EQeB1XAXBhBR90PL/opo9ezaqVasmV6wv92IqJiYGYWFhsLe3L7BActWqVYsdS0FfqEDOzGWzZs3C8OHDsWDBAlhaWkJLSwuTJk0qk+mPC5pKNzdmqVQKkUiEv/76S+m6xUnulZSCEiCl+SWV+54sX768wLpHua9J//790aZNG+zfvx/Hjh3D8uXLsXTpUuzbtw/dunUr8BiVKlVCdnY2kpKS5O5a5VJn9p/Y2FhkZmYWuZ6BgUGhPdlyP/8REREKyyIiImBpaVnoLDW5tdBsbGwUlllbWxd4Ybt9+3YAirPrFVdcXBwMDQ01PoMSUUWSkpICFxcXDB8+HJ988ona20+dOlWhR2vHjh3x0UcflVSI763mzZsrrd2X17t85xV1DVCY/NdFgYGB8PX1ha2tLZycnHDu3Dk4OjpCEAS4u7vDysoKEydORHh4OM6fPw8PD49CJ6WwtrbGrVu3cPToUfz111/466+/EBgYCG9vb1kxb6lUis6dOxfYyzf3D+bCKPs+eJf9TpgwAYGBgZg0aRLc3d1hZmYGkUiEgQMHlsl1HaDa+zpp0iT06tULBw4cwNGjRzFr1iwsWbIEp06dgqurq1r7KmmWlpYQiUQqJb0Kcv78eXz88cdo27Yt1q1bh6pVq0JXVxeBgYGya4ui5P9s5L5/v/76q9KbzSU187VIJMKePXtw5coV/PHHHzh69CiGDx+OFStW4MqVKzA2Nlb7/Ap6H0vz/c19vaZOnarQCzFXbkK9bdu2ePr0KX7//XccO3YMmzZtwqpVq7BhwwaMHDlSbpu4uDhUrlz5neOj0seEFH1Qnjx5IncnIyQkBFKpVNY99fnz5wgJCVHaOyV3iFtcXJysm2x+hXUZfxd79uxB+/bt8fPPP8u1x8fHq/3L1sHBAVKpFKGhoXJ3ZfLOmKOumjVrQhAEODk5FXoB5uDgACDnfch75ygrKwuhoaGF3gXNS1lX3cePH8PQ0LDIYWq55//kyRO5wqBRUVGIj4+Xxfgucmd7MTU1VZgFT5mqVati3LhxGDduHKKjo9G0aVMsWrSo0IRU3bp1AeTMoqTszpA6PvnkE4Wu/Mr4+PjIZhpUplq1arCyssL169cVll27dq3QouTAfz21crtm5/X69WvZOee3fft21KxZs8i7qKoKDQ0tsGgsESnXrVu3Qn9nZWRkYObMmfjtt98QHx+Phg0bYunSpbJZwoyNjeVuXty+fRv3799XeYYmUq4svvOAghNe+a+L8ha4btOmDc6dOwcnJyc0adIEJiYmcHFxgZmZGY4cOYIbN24o7TWXn56eHnr16oVevXpBKpVi3Lhx2LhxI2bNmoVatWqhZs2aSE5OVun7WB3vst89e/bAx8cHK1askLWlp6cjPj5ebj11EokODg64c+cOpFKpXBLv4cOHsuXFUbNmTUyZMgVTpkzBkydP0KRJE6xYsQJbt24t1v7ye/36NVJSUuR61jx+/BgACp2tUUdHBzVr1pTNJpmfVCrFs2fP5K5L8+9379690NfXx9GjR+VumAUGBhb3dGTXgNbW1oV+NvJeE+eXO5RVFS1btkTLli2xaNEibN++HUOGDMGOHTswcuTIUjm/whTnvcz9m0tXV1elnyVLS0sMGzYMw4YNQ3JyMtq2bYu5c+cqJKTU+buCNIs1pOiDkr8GzQ8//AAAsovohQsXYv/+/XKPBQsWAACmT5+O/fv3FzqDV6dOnYr9KIy2trbCXYjdu3cr/cO9KLl3H9atWyfXnvtaFMcnn3wCbW1tzJs3TyFOQRDw9u1bAECzZs1gZWWFDRs2yPXICQoKUrgIK8zly5flujK/ePECv//+O7p06VLgXZxc3bt3BwCF2W9WrlwJACrNqFIUNzc31KxZE999952sLlJeMTExAHLqgeXvmm9tbQ1bW1ulw97ycnd3BwClyR91lVQNKSCnzsCff/6JFy9eyNpOnjyJx48fy6avBnKSkA8fPpTrTVWnTh24uLjg999/lxv3f+zYMbx48UJpfaibN2/iwYMHGDx4cHFPX8GNGzfUmlGRiIrm5+eHy5cvY8eOHbhz5w769euHrl27FlgLZNOmTXB2di60fhAVrSy+8wDAyMhI6VCz/Nc6eXtMtWnTBmFhYdi5c6fsfdbS0oKHhwdWrlyJrKysIt//3OuLXFpaWrKbNLnfo/3798fly5dx9OhRhe3j4+ORnZ2t3sn+6132q+y67ocfflCog5l7zanKNVL37t0RGRmJnTt3ytqys7Pxww8/wNjYGO3atStyH3mlpqbKhtvnqlmzJkxMTIq8RlFHdnY2Nm7cKHuemZmJjRs3wsrKqsiSAu7u7oVeB61Zs0b2f0EQsGbNGujq6qJjx44Act4HkUgk97qHhYXhwIEDxTybnOtsU1NTLF68WGltp9xrwKpVq6JJkybYsmWL3M/O8ePHcf/+/SKPExcXp/AZyr3xl/v+lMb5FaY476W1tTU8PT2xceNGpT3sc18vQPHn3djYGLVq1VL4PCYkJODp06e8lqsg2EOKPiihoaH4+OOP0bVrV1y+fBlbt27F4MGDZRn01q1bK2yT2xvqo48+UqseRknq2bMn5s+fj2HDhsHDwwN3797Ftm3bilVnyM3NDZ9++ikCAgLw9u1btGzZEmfPnpXdwShOt/6aNWti4cKF8Pf3R1hYGPr06QMTExOEhoZi//79GD16NKZOnQpdXV0sXLgQY8aMQYcOHTBgwACEhoYiMDBQrXNp2LAhvLy88OWXX0IsFsuSa6rcSXVxcYGPjw9+/PFHxMfHo127drh27Rq2bNmCPn36oH379mqff35aWlrYtGkTunXrhgYNGmDYsGGoVq0aXr16hdOnT8PU1BR//PEHkpKSUL16dXz22WdwcXGBsbExTpw4gb///lvurqkyNWrUQMOGDXHixIkip0UuSknVkAKA//3vf9i9ezfat2+PiRMnIjk5GcuXL0ejRo0wbNgw2XqvXr1CvXr1FHpdrVq1Cp07d0br1q0xZswYJCQkYOXKlXB2dsYXX3yhcLxt27YBKHy43rlz52TFZWNiYpCSkoKFCxcCyOn+3bZtW9m6wcHBiI2NRe/evd/pdSCi/zx//hyBgYF4/vy5bGju1KlTceTIEQQGBmLx4sVy66enp2Pbtm2YMWOGJsJ9r5TFdx6Q8z2yc+dOTJ48GR999BGMjY3Rq1evQrfJTTY9evRI7jPQtm1b/PXXXxCLxUUO2Rw5ciRiY2PRoUMHVK9eHeHh4fjhhx/QpEkTWY+wadOm4eDBg+jZsyd8fX3h5uaGlJQU3L17F3v27EFYWFixhva8y3579uyJX3/9FWZmZqhfvz4uX76MEydOKNQFbdKkCbS1tbF06VIkJCRALBajQ4cOsLa2Vtjn6NGjsXHjRvj6+iI4OBiOjo7Ys2cPLl68iICAAKXD+wvz+PFjdOzYEf3790f9+vWho6OD/fv3IyoqCgMHDlRrX4WxtbXF0qVLERYWBmdnZ+zcuRO3bt3Cjz/+KKtBWpDevXvj119/xePHjxV66Ovr6+PIkSPw8fFBixYt8Ndff+HQoUP43//+J+tN36NHD6xcuRJdu3bF4MGDER0djbVr16JWrVq4c+dOsc7H1NQU69evx9ChQ9G0aVMMHDgQVlZWeP78OQ4dOoRWrVrJEmVLlixBjx490Lp1awwfPhyxsbH44Ycf0KBBA6U3NPPasmUL1q1bh759+6JmzZpISkrCTz/9BFNTU1kiujTOrzDFfS/Xrl2L1q1bo1GjRhg1ahRq1KiBqKgoXL58GS9fvsTt27cB5BTP9/T0hJubGywtLXH9+nXs2bNHrng9AJw4cQKCIPBarqIowxn9iDRmzpw5AgDh/v37wmeffSaYmJgIFhYWgp+fn5CWllbotrnT1O7evbuMolWUnp4uTJkyRahatapgYGAgtGrVSrh8+bLClL/KplLNPfe8UlJShPHjxwuWlpaCsbGx0KdPH+HRo0cCAOHbb79V2Dbv9LiC8N9Ut3mnexUEQdi7d6/QunVrwcjISDAyMhLq1q0rjB8/Xnj06JHceuvWrROcnJwEsVgsNGvWTDh37pzCuRQEgDB+/Hhh69atQu3atQWxWCy4uroqTIlcUOyCkDNV8Lx58wQnJydBV1dXsLOzE/z9/eWmmxWEnGmDjYyMFLbPP/WvsqmMBUEQbt68KXzyySdCpUqVBLFYLDg4OAj9+/cXTp48KQhCznS406ZNE1xcXAQTExPByMhIcHFxEdatW1fk6yAIgrBy5UrB2NhYbkrf3M9AUdM0l6Z79+4JXbp0EQwNDQVzc3NhyJAhQmRkpNw6uXHmfR1zHT9+XGjZsqWgr68vWFpaCkOHDhUiIiIU1pNIJEK1atWEpk2bFhpP7mdB2SPvNNyCIAhff/21YG9vL0ilUrXPm4hyABD2798ve/7nn38KAGTfDbkPHR0doX///grbb9++XdDR0VH4vUHycr+Li5r2XdXvvPzfwwVd/yi71khOThYGDx4smJubqzRlfS5ra2sBgBAVFSVru3DhggBAaNOmjcL6Pj4+cvves2eP0KVLF8Ha2lrQ09MT7O3thTFjxih8ZyQlJQn+/v5CrVq1BD09PaFy5cqCh4eH8N1338mmoy+Ig4NDgVPNq7rf/N83cXFxwrBhw4TKlSsLxsbGgpeXl/Dw4UOF6wtBEISffvpJqFGjhqCtrS13raHsuikqKkq2Xz09PaFRo0Zy75MgFH6dkDfON2/eCOPHjxfq1q0rGBkZCWZmZkKLFi2EXbt2qfT6FPR5ynut1K5dO6FBgwbC9evXBXd3d0FfX19wcHAQ1qxZo7A/ZTIyMoTKlSsLCxYskGvPvX57+vSp7HrExsZGmDNnjiCRSOTW/fnnn2XXk3Xr1hUCAwOVXjvnf2+K+vk7ffq04OXlJZiZmQn6+vpCzZo1BV9fX+H69ety6+3du1eoV6+eIBaLhfr16wv79u1T+Jwrc+PGDWHQoEGCvb29IBaLBWtra6Fnz54K+1f1/HKvr/Mq6LOi7HeDqu+lst8fgiAIT58+Fby9vYUqVaoIurq6QrVq1YSePXsKe/bska2zcOFCoXnz5oK5ublgYGAg1K1bV1i0aJHCz/CAAQOE1q1bF/r6UfkhEoRSrDZHRBXGrVu34Orqiq1bt5ZYcejSIBKJMH78eLlu2B+qhIQE1KhRA8uWLcOIESM0HU6Fl5GRAUdHR8yYMQMTJ07UdDhEFZZIJJKbZW/nzp0YMmQI/vnnH4Vh1cbGxgqFfzt27AhTU1Ps37+/rEImIg3w9PTEmzdvcO/evWLvY8GCBQgMDMSTJ09kv198fX2xZ8+eInsZUckpifeyJERGRsLJyQk7duxgD6kKgjWkiD5AaWlpCm0BAQHQ0tKSG75E5ZuZmRmmT5+O5cuXl9msPO+zwMBA6OrqKsz0RUTvxtXVFRKJBNHR0ahVq5bcI38yKjQ0FKdPn2aSnYhU8tVXXyE5ORk7duzQdChUDgQEBKBRo0ZMRlUgrCFF9AFatmwZgoOD0b59e+jo6MimSh49ejTs7Ow0HR6p4euvv8bXX3+t6TDeC2PHjmUyiqiYkpOT5WZrDQ0Nxa1bt2BpaQlnZ2cMGTIE3t7eWLFiBVxdXRETE4OTJ0+icePGcoW1N2/ejKpVqxY6Yx8RUS5jY2NER0drOgwqJ7799ltNh0BqYkKK6APk4eGB48ePY8GCBUhOToa9vT3mzp2LmTNnajo0IiKqgK5fvy5XIHvy5MkAIJu4IDAwEAsXLsSUKVPw6tUrVK5cGS1btkTPnj1l20ilUgQFBcHX17fIGVOJiIio4mMNKSIiIiIiIiIiKlOsIUVERERERERERGWKCSkiIiIiIiIiIipTH1wNKalUitevX8PExAQikUjT4RAREZGGCYKApKQk2NraQkuL9+pUxWsqIiIiykvda6oPLiH1+vVrziJGRERECl68eIHq1atrOowKg9dUREREpIyq11QfXELKxMQEQM4LZGpqquFoiIiISNMSExNhZ2cnu0Yg1fCaioiIiPJS95rqg0tI5XYpNzU15cUTERERyXDYmXp4TUVERETKqHpNxUIJRERERERERERUppiQIiIiIiIiIiKiMsWEFBERERERERERlakProYUEZEqpFIpMjMzNR0GEZUQPT09laYfJiIiIqKywYQUEVE+mZmZCA0NhVQq1XQoRFRCtLS04OTkBD09PU2HQkRERERgQoqISI4gCIiIiIC2tjbs7OzYo4LoPSCVSvH69WtERETA3t6es+kRERERlQNMSBER5ZGdnY3U1FTY2trC0NBQ0+EQUQmxsrLC69evkZ2dDV1dXU2HQ0RERFTmpFIBj6OTkJCaBTNDXThbm0BLS3M36jR66//cuXPo1asXbG1tIRKJcODAgSK3OXPmDJo2bQqxWIxatWohKCio1OMkog+HRCIBAA7rIXrP5P5M5/6MExEREX1IgsNjMWnnLUzeeRsz99/F5J23MWnnLQSHx2osJo0mpFJSUuDi4oK1a9eqtH5oaCh69OiB9u3b49atW5g0aRJGjhyJo0ePlnKkRPSh4ZAeovcLf6aJiIjoQxUcHotFhx7g3qsEmOrroLqFIUz1dfDP6wQsOvRAY0kpjQ7Z69atG7p166by+hs2bICTkxNWrFgBAKhXrx4uXLiAVatWwcvLq7TCJCIiIiIiIiKqcKRSAVsuhSM+NQuOlQxlN+mMxDow1NNGeGwqfrkUDlc7izIfvlehqvVevnwZnTp1kmvz8vLC5cuXC9wmIyMDiYmJcg+i4krNzMaJtV/ixtJuSM/I1HQ4ROWOo6MjAgICNB2GTNu2bbF9+3ZNh1EspfVa+vr6ok+fPiW+X006cuQImjRpwpkxiYiIiPJ5HJ2EkOhkWJuIFXqMi0QiWBmL8SQ6GY+jk8o8tgqVkIqMjISNjY1cm42NDRITE5GWlqZ0myVLlsDMzEz2sLOzK4tQ6T0kCAJ8N/+NTjFb0DTtEm6c/V3TIRHJ+Pr6QiQSYezYsQrLxo8fD5FIBF9fX1lbTEwMvvjiC9jb20MsFqNKlSrw8vLCxYsXAQCxsbGYMGEC6tSpAwMDA9jb2+PLL79EQkJCWZ2SUkFBQTA3N1dp3YMHDyIqKgoDBw4s3aDekTrnRMp17doVurq62LZtm6ZDISIiIipXElKzkJktgb6uttLl+rrayMyWICE1q4wjq2AJqeLw9/dHQkKC7PHixQtNh0QV1Kv4NFwL+29s7aVHrzQYDZEiOzs77NixQy5Bn56eju3bt8Pe3l5u3U8//RQ3b97Eli1b8PjxYxw8eBCenp54+/YtAOD169d4/fo1vvvuO9y7dw9BQUE4cuQIRowYUabn9C6+//57DBs2DFpa7/1XXYWUmVmyvUx9fX3x/fffl+g+iYiIiCo6M0Nd6OloIz1L+cQu6VkS6Olow8yw7GchrlBX6VWqVEFUVJRcW1RUFExNTWFgYKB0G7FYDFNTU7kHUXEIgvzz+xFJeBGbqplgiJRo2rQp7OzssG/fPlnbvn37YG9vD1dXV1lbfHw8zp8/j6VLl6J9+/ZwcHBA8+bN4e/vj48//hgA0LBhQ+zduxe9evVCzZo10aFDByxatAh//PEHsrOzC40jKSkJgwYNgpGREapVq6YwcUV8fDxGjhwJKysrmJqaokOHDrh9+7Zs+e3bt9G+fXuYmJjA1NQUbm5uuH79Os6cOYNhw4YhISEBIpEIIpEIc+fOVRpDTEwMTp06hV69esnaBEHA3LlzZb3CbG1t8eWXX8qWOzo6YuHChfD29oaxsTEcHBxw8OBBxMTEoHfv3jA2Nkbjxo1x/fp1uWPt3bsXDRo0gFgshqOjo6zOYa64uDh4e3vDwsIChoaG6NatG548eQIARZ5Tamoqhg8fDhMTE9jb2+PHH3+U2/eLFy/Qv39/mJubw9LSEr1790ZYWJhsuUQiweTJk2Fubo5KlSph+vTpEPL/MlOBSCTCpk2b0LdvXxgaGqJ27do4ePCg3Dpnz55F8+bNIRaLUbVqVcyYMUPus+Lp6Qk/Pz9MmjQJlStXhpeXF86cOQORSISjR4/C1dUVBgYG6NChA6Kjo/HXX3+hXr16MDU1xeDBg5GaWvjv2169euH69et4+vSp2uf3PliyZAk++ugjmJiYwNraGn369MGjR4+K3G737t2oW7cu9PX10ahRIxw+fLgMoiUiIqKy4mxtglrWxohJzlC4DhQEATHJGahtbQxna5Myj61CJaTc3d1x8uRJubbjx4/D3d1dQxHRh+7Wi3hNh0ClTBAEpGZma+RRnMTB8OHDERgYKHu+efNmDBs2TG4dY2NjGBsb48CBA8jIyFB53wkJCTA1NYWOTuHzYSxfvhwuLi64efMmZsyYgYkTJ+L48eOy5f369ZMlHIKDg9G0aVN07NgRsbE5PRCHDBmC6tWr4++//0ZwcDBmzJgBXV1deHh4ICAgAKampoiIiEBERASmTp2qNIYLFy7A0NAQ9erVk7Xt3bsXq1atwsaNG/HkyRMcOHAAjRo1kttu1apVaNWqFW7evIkePXpg6NCh8Pb2xueff44bN26gZs2a8Pb2lr03wcHB6N+/PwYOHIi7d+9i7ty5mDVrFoKCgmT79PX1xfXr13Hw4EFcvnwZgiCge/fuyMrKKvKcVqxYgWbNmuHmzZsYN24cvvjiC1mSISsrC15eXjAxMcH58+dx8eJFGBsbo2vXrrLeRytWrEBQUBA2b96MCxcuIDY2Fvv37y/qrVZq3rx56N+/P+7cuYPu3btjyJAhsvfs1atX6N69Oz766CPcvn0b69evx88//4yFCxfK7WPLli3Q09PDxYsXsWHDBln73LlzsWbNGly6dEmWZAsICMD27dtx6NAhHDt2DD/88EOh8dnb28PGxgbnz58v1vlVdGfPnsX48eNx5coVHD9+HFlZWejSpQtSUlIK3ObSpUsYNGgQRowYgZs3b6JPnz7o06cP7t27V4aRExERUWnS0hLBx8MBZga6CI9NRUpGNiRSASkZ2QiPTYWZgS68PRzKvKA5oOFZ9pKTkxESEiJ7Hhoailu3bsHS0hL29vbw9/fHq1ev8MsvvwAAxo4dizVr1mD69OkYPnw4Tp06hV27duHQoUOaOgX6gAkQQf10AVU0aVkS1J99VCPHvj/fC4Z66v2a/vzzz+Hv74/w8HAAwMWLF7Fjxw6cOXNGto6Ojg6CgoIwatQobNiwAU2bNkW7du0wcOBANG7cWOl+37x5gwULFmD06NFFxtCqVSvMmDEDAODs7IyLFy9i1apV6Ny5My5cuIBr164hOjoaYrEYAPDdd9/hwIED2LNnD0aPHo3nz59j2rRpqFu3LgCgdu3asn2bmZlBJBKhSpUqhcYQHh4OGxsbueF6z58/R5UqVdCpUyfo6urC3t4ezZs3l9uue/fuGDNmDABg9uzZWL9+PT766CP069cPAPD111/D3d0dUVFRqFKlClauXImOHTti1qxZsvO9f/8+li9fDl9fXzx58gQHDx7ExYsX4eHhAQDYtm0b7OzscODAAfTr16/Qc+revTvGjRsnO/aqVatw+vRp1KlTBzt37oRUKsWmTZtkBSoDAwNhbm6OM2fOoEuXLggICIC/vz8++eQTADmz1R49WrzPs6+vLwYNGgQAWLx4Mb7//ntcu3YNXbt2xbp162BnZ4c1a9ZAJBKhbt26eP36Nb7++mvMnj1b9j7Url0by5Ytk+0zIiICALBw4UK0atUKADBixAj4+/vj6dOnqFGjBgDgs88+w+nTp/H1118XGqOtra3ss/+hOXLkiNzzoKAgWFtbIzg4GG3btlW6zerVq9G1a1dMmzYNALBgwQIcP34ca9askUsYEhERUcXm5mCJmT3qYculcIREJ+NNcgb0dLTR0NYM3h4OcHOw1EhcGu0hdf36dbi6usqGkkyePBmurq6YPXs2gJwL1efPn8vWd3JywqFDh3D8+HG4uLhgxYoV2LRpE7y8vDQSP33YmIyi8sjKygo9evRAUFAQAgMD0aNHD1SuXFlhvU8//RSvX7/GwYMH0bVrV5w5cwZNmzaV69mTKzExET169ED9+vULHCKXV/5eq+7u7njw4AGAnOF4ycnJqFSpkqynlrGxMUJDQ2VDrSZPnoyRI0eiU6dO+Pbbb4s1BCstLQ36+vpybf369UNaWhpq1KiBUaNGYf/+/QrDD/Mm5HIn0cjbiyq3LTo6GgDw4MEDWSIlV6tWrfDkyRNIJBI8ePAAOjo6aNGihWx5pUqVUKdOHdlrUpi88eQmrXKPffv2bYSEhMDExET2OlpaWiI9PR1Pnz5FQkICIiIi5I6to6ODZs2aFXncomIxMjKCqamp3Ovg7u4uN3NLq1atkJycjJcvX8ra3Nzcity3jY0NDA0NZcmo3LbcYxXGwMCgyKF9H4rcCQgsLQu+wCzO7MVERERUMbk5WCJgQBOsHOCCRX0bYeUAF6wa0ERjyShAwz2kPD09Cx2SouwPI09PT9y8ebMUoyJSVdl3aaSyZ6CrjfvzNZP0NihgJoyiDB8+HH5+fgCgUL8pL319fXTu3BmdO3fGrFmzMHLkSMyZM0duNr6kpCR07doVJiYm2L9/P3R1363YYXJyMqpWrSrXYytX7kxzc+fOxeDBg3Ho0CH89ddfmDNnDnbs2IG+ffuqfJzKlSsjLi5Ors3Ozg6PHj3CiRMncPz4cYwbNw7Lly/H2bNnZeeV9/xykyvK2qRSqcqxvIv8r7dIJJIdOzk5GW5ubkpnlrOysirTWFRlZGRU5L5FIlGxjxUbG1sq517RSKVSTJo0Ca1atULDhg0LXK+g2YsjIyOVrp+RkSE3zDcxMbFkAiYiIqIyoaUlQt0q5aeutkYTUkRE5Z1IJFJ72Jym5dYQEolEavUgrV+/Pg4cOCB7npiYCC8vL4jFYhw8eFChx1FBrly5ovA8t5ZT06ZNERkZCR0dHTg6Oha4D2dnZzg7O+Orr77CoEGDEBgYiL59+0JPTw8SifIZQvJydXVFZGQk4uLiYGFhIWs3MDBAr1690KtXL4wfPx5169bF3bt30bRpU5XOLb969erh4sWLcm0XL16Es7MztLW1Ua9ePWRnZ+Pq1auyIXtv377Fo0ePUL9+fQBQ+Zzya9q0KXbu3Alra+sCJ+yoWrUqrl69KhuylZ2dLavbVZLq1auHvXv3QhAEWdLu4sWLMDExQfXq1Uv0WAXJ7RmWt4D/h2r8+PG4d+8eLly4UKL7XbJkCebNm1ei+yQiIqIPV4Uqak5UngjsIUXllLa2Nh48eID79+9DW1uxl9Xbt2/RoUMHbN26FXfu3EFoaCh2796NZcuWoXfv3gByklG5BZF//vlnJCYmIjIyEpGRkUUmTy5evIhly5bh8ePHWLt2LXbv3o2JEycCADp16gR3d3f06dMHx44dQ1hYGC5duoSZM2fi+vXrSEtLg5+fH86cOYPw8HBcvHgRf//9tyyh5ejoiOTkZJw8eRJv3rwpcHiWq6srKleuLJcsCgoKws8//4x79+7h2bNn2Lp1KwwMDODg4FCs1xkApkyZgpMnT2LBggV4/PgxtmzZgjVr1sgKk9euXRu9e/fGqFGjcOHCBdy+fRuff/45qlWrJnutVT2n/IYMGYLKlSujd+/eOH/+PEJDQ3HmzBl8+eWXsmFyEydOxLfffosDBw7g4cOHGDduHOLj44t9vgUZN24cXrx4gQkTJuDhw4f4/fffMWfOHEyePFmujldJWbNmDTp27CjXduXKFYjF4g9+ohM/Pz/8+eefOH36dJHJwIJmLy6oRpu/vz8SEhJkjxcvXpRY3ERERPThYUKKqJhYQ4rKM1NT0wJ7zRgbG6NFixZYtWoV2rZti4YNG2LWrFkYNWoU1qxZAwC4ceMGrl69irt376JWrVqoWrWq7FHUH6FTpkyR1QhcuHAhVq5cKeupJRKJcPjwYbRt2xbDhg2Ds7MzBg4cKCtCrq2tjbdv38Lb2xvOzs7o378/unXrJuuV4eHhgbFjx2LAgAGwsrKSK5Cdl7a2NoYNGyY3nM3c3Bw//fQTWrVqhcaNG+PEiRP4448/UKlSJbVf31xNmzbFrl27sGPHDjRs2BCzZ8/G/Pnz5YY9BgYGws3NDT179oS7uzsEQcDhw4dlw9JUPaf8DA0Nce7cOdjb2+OTTz5BvXr1MGLECKSnp8ve+ylTpmDo0KHw8fGBu7s7TExMFIY+BgUFydV+Ko5q1arh8OHDuHbtGlxcXDB27FiMGDEC33zzzTvttyBv3rxRqC3222+/YciQITA0NCyVY5Z3giDAz88P+/fvx6lTp+Dk5FTkNurOXiwWi2W/Wwr7HUNERESkCpFQnHnFK7DExESYmZnJpi8nUtWL2FS0WXYKYfpDAABDM2fgs/7e6N2kmoYjo5KUnp6O0NBQODk5qTxEjcqnyMhINGjQADdu3HinXlDvuzlz5uDs2bNK63pVFG/evEGdOnVw/fr1AhMxhf1svw/XBuPGjcP27dvx+++/o06dOrJ2MzMzGBgYAAC8vb1RrVo1LFmyBABw6dIltGvXDt9++y169OiBHTt2YPHixbhx40ahtadyvQ+vGxEREZUcda8N2EOKSA1a7BdFVGFUqVIFP//8s9xsraTor7/+UrlXVnkVFhaGdevWqdQr6H21fv16JCQkwNPTU65H486dO2XrPH/+HBEREbLnHh4e2L59O3788Ue4uLhgz549OHDggErJKCIiIqJ3VbEq9RJpmIgJKaIKpU+fPpoOody7du2apkN4Z82aNUOzZs00HYZGqdLhXVkvuH79+qFfv36lEBERERFR4dhDikgNeXtIsag5ERERERERUfEwIUWkIkEAtCD977kGYyEiIiIiIiKqyJiQIlKDiD2kiIiIiIiIiN4ZE1JEamANKSIiIiIiIqJ3x4QUkRpYQ4qIiIiIiIjo3TEhRaQGLfaQIiIiIiIiInpnTEgRqUEkV9ScPaSIiIiIiIiIioMJKSI1MAVF5ZWnpycmTZpUKvt++/YtrK2tERYWVir7L2thYWEQiUS4deuWpkMpFaX5WdCUDRs2oFevXpoOg4iIiIhKEBNSRGrQytNDiqgiGzt2LEQiEQICAopcd9GiRejduzccHR3l2vfu3QtPT0+YmZnB2NgYjRs3xvz58xEbGwsAiIiIwODBg+Hs7AwtLS2lSZJ9+/ahWbNmMDc3h5GREZo0aYJff/21BM7w3Zw5cwYikQjx8fFlcrz3MYlUkoYPH44bN27g/Pnzmg6FiIiIiEoIE1JEamANKXof7N+/H1euXIGtrW2R66ampuLnn3/GiBEj5NpnzpyJAQMG4KOPPsJff/2Fe/fuYcWKFbh9+7YsoZSRkQErKyt88803cHFxUbp/S0tLzJw5E5cvX8adO3cwbNgwDBs2DEePHn33Ey0DmZmZmg6h3CrJ10ZPTw+DBw/G999/X2L7JCIiIiLNYkKKSA15E1IiJqeonMnOzoafnx/MzMxQuXJlzJo1C4Ig/zl99eoVJkyYgG3btkFXV7fIfR4+fBhisRgtW7aUtV27dg2LFy/GihUrsHz5cnh4eMDR0RGdO3fG3r174ePjAwBwdHTE6tWr4e3tDTMzM6X79/T0RN++fVGvXj3UrFkTEydOROPGjXHhwoUCYxIEAXPnzoW9vT3EYjFsbW3x5ZdfypaLRCIcOHBAbhtzc3MEBQXJtT18+BAeHh7Q19dHw4YNcfbsWQA5Q/rat28PALCwsIBIJIKvr68sXj8/P0yaNAmVK1eGl5cXAGDlypVo1KgRjIyMYGdnh3HjxiE5OVnueBcvXoSnpycMDQ1hYWEBLy8vxMXFwdfXF2fPnsXq1ashEokgEolkwyPv3buHbt26wdjYGDY2Nhg6dCjevHkj22dKSgq8vb1hbGyMqlWrYsWKFQW+bgXJHcK4b98+tG/fHoaGhnBxccHly5fl1tu7dy8aNGgAsVgMR0dHhWM5OjpiwYIF8Pb2hqmpKUaPHo2goCCYm5vjzz//RJ06dWBoaIjPPvsMqamp2LJlCxwdHWFhYYEvv/wSEomk0Dh79eqFgwcPIi0tTe1zJCIiIqLyhwkpIjXkT0IJzEm9/wQByEzRzEPND9iWLVugo6ODa9euYfXq1Vi5ciU2bdokWy6VSjF06FBMmzYNDRo0UGmf58+fh5ubm1zbtm3bYGxsjHHjxindxtzcXK24cwmCgJMnT+LRo0do27Ztgevt3bsXq1atwsaNG/HkyRMcOHAAjRo1Uvt406ZNw5QpU3Dz5k24u7ujV69eePv2Lezs7LB3714AwKNHjxAREYHVq1fLttuyZQv09PRw8eJFbNiwAQCgpaWF77//Hv/88w+2bNmCU6dOYfr06bJtbt26hY4dO6J+/fq4fPkyLly4gF69ekEikWD16tVwd3fHqFGjEBERgYiICNjZ2SE+Ph4dOnSAq6srrl+/jiNHjiAqKgr9+/eXO4ezZ8/i999/x7Fjx3DmzBncuHFD7dcCyOn1NnXqVNy6dQvOzs4YNGgQsrOzAQDBwcHo378/Bg4ciLt372Lu3LmYNWuWQpLvu+++g4uLC27evIlZs2YByOll9/3332PHjh04cuQIzpw5g759++Lw4cM4fPgwfv31V2zcuBF79uwpNL5mzZohOzsbV69eLdb5EREREVH5oqPpAIgqEhF7SH14slKBxUUPbSsV/3sN6BmpvLqdnR1WrVoFkUiEOnXq4O7du1i1ahVGjRoFAFi6dCl0dHTkehMVJTw8XGFo35MnT1CjRg2VelipIiEhAdWqVUNGRga0tbWxbt06dO7cucD1nz9/jipVqqBTp07Q1dWFvb09mjdvrvZx/fz88OmnnwIA1q9fjyNHjuDnn3/G9OnTYWlpCQCwtrZWSLDVrl0by5Ytk2vLW//J0dERCxcuxNixY7Fu3ToAwLJly9CsWTPZcwBySUE9PT0YGhqiSpUqsrY1a9bA1dUVixcvlrVt3rwZdnZ2ePz4MWxtbfHzzz9j69at6NixI4CcZFn16tXVfi0AYOrUqejRowcAYN68eWjQoAFCQkJQt25drFy5Eh07dpQlmZydnXH//n0sX75c1nsMADp06IApU6bInp8/fx5ZWVlYv349atasCQD47LPP8OuvvyIqKgrGxsaoX78+2rdvj9OnT2PAgAEFxmdoaAgzMzOEh4cX6/yIiIiIqHxhDykiFQkQOGSPyrWWLVtCJPpvLkh3d3c8efIEEokEwcHBWL16NYKCguTWKUpaWhr09fXl2vIPA3xXJiYmuHXrFv7++28sWrQIkydPxpkzZwAAixcvhrGxsezx/Plz9OvXD2lpaahRowZGjRqF/fv3y3ryqMPd3V32fx0dHTRr1gwPHjwocrv8PcYA4MSJE+jYsSOqVasGExMTDB06FG/fvkVqaiqA/3pIqeP27ds4ffq03PnXrVsXAPD06VM8ffoUmZmZaNGihWwbS0tL1KlTR63j5GrcuLHs/1WrVgUAREdHAwAePHiAVq1aya3fqlUr2ecrV7NmzRT2a2hoKEtGAYCNjQ0cHR1hbGws15Z7rMIYGBjIXlMiIiIiqtjYQ4pIDXln2VP9T3qq0HQNc3oqaerYJeT8+fOIjo6Gvb29rE0ikWDKlCkICAiQ1SzKr3LlyoiLi5Nrc3Z2xoULF5CVlVUivaS0tLRQq1YtAECTJk3w4MEDLFmyBJ6enhg7dqzcEDVbW1vo6Ojg0aNHOHHiBI4fP45x48Zh+fLlOHv2LHR1dSESiRSSZllZWe8cZy4jI/lea2FhYejZsye++OILLFq0CJaWlrhw4QJGjBiBzMxMGBoawsDAQO3jJCcno1evXli6dKnCsqpVqyIkJKTY56BM3vcyN2kplao3s2j+1yb/fnP3raxNlWPFxsbCyspKrZiIiIiIqHxiDykiNYhE7CH1wRGJcobNaeKhRk8mAAq1da5cuYLatWtDW1sbQ4cOxZ07d3Dr1i3Zw9bWFtOmTSt0RjtXV1fcv39frm3w4MFITk6WG36WV3x8vFpx5yeVSpGRkQEgp8dPrVq1ZA8dnZz7KAYGBujVqxe+//57nDlzBpcvX8bdu3cBAFZWVoiIiJDt78mTJ0p71Vy5ckX2/+zsbAQHB6NevXoAcobQASiy0DaQU19JKpVixYoVaNmyJZydnfH6tXwSs3Hjxjh58mSB+9DT01M4VtOmTfHPP//A0dFR7jWoVasWjIyMULNmTejq6sq973FxcXj8+HGRMaurXr16uHjxolzbxYsX4ezsDG1t7RI/njJPnz5Feno6XF1dy+R4RERERFS62EOKSA2sIUXl2fPnzzF58mSMGTMGN27cwA8//CCbCa1SpUqoVKmS3Pq6urqoUqVKoUO8vLy84O/vj7i4OFhYWAAAWrRogenTp2PKlCl49eoV+vbtC1tbW4SEhGDDhg1o3bo1Jk6cCCBnqBqQ09snJiYGt27dgp6eHurXrw8AWLJkCZo1a4aaNWsiIyNDVuR6/fr1BcYUFBQEiUSCFi1awNDQEFu3boWBgQEcHBwA5NQxWrNmDdzd3SGRSPD1118r7cm1du1a1K5dG/Xq1cOqVasQFxeH4cOHAwAcHBwgEonw559/onv37jAwMJAbYpZXrVq1kJWVhR9++AG9evWSK3aey9/fH40aNcK4ceMwduxY6Onp4fTp0+jXrx8qV64MR0dHXL16FWFhYTA2NoalpSXGjx+Pn376CYMGDZLVtQoJCcGOHTuwadMmGBsbY8SIEZg2bRoqVaoEa2trzJw5E1paJX+vacqUKfjoo4+wYMECDBgwAJcvX8aaNWsKTEq+K39/f7x69Qq//PKLrO38+fOoUaOG3PA/IiIiIqq42EOKSA15a0hpMSFF5Yy3tzfS0tLQvHlzjB8/HhMnTsTo0aPfaZ+NGjVC06ZNsWvXLrn2pUuXYvv27bh69Sq8vLzQoEEDTJ48GY0bN4aPj49sPVdXV7i6uiI4OBjbt2+Hq6srunfvLluekpKCcePGoUGDBmjVqhX27t2LrVu3YuTIkQXGZG5ujp9++gmtWrVC48aNceLECfzxxx+yhNuKFStgZ2eHNm3aYPDgwZg6dSoMDRWHP3777bf49ttv4eLiggsXLuDgwYOoXLkyAKBatWqYN28eZsyYARsbG/j5+RUYj4uLC1auXImlS5eiYcOG2LZtG5YsWSK3jrOzM44dO4bbt2+jefPmcHd3x++//y7r8TV16lRoa2ujfv36sLKywvPnz2Fra4uLFy9CIpGgS5cuaNSoESZNmgRzc3NZ0mn58uVo06YNevXqhU6dOqF169YKNa7mzp0LR0fHAuNXRe5nYMeOHWjYsCFmz56N+fPnyxU0L0kRERF4/vy5XNtvv/0mK9BPRERERBWfSCjp6rTlXGJiIszMzJCQkABTU1NNh0MVSPjbFPh+9xtOi3NmkPLNnIbun/igfzM7DUdGJSk9PR2hoaFwcnJSKOb9oTp06BCmTZuGe/fulUrvGypdPj4+EIlECAoK0nQoxfbPP/+gQ4cOePz4MczMzIq1j8J+tnltUDx83YiIiCgvda8NOGSPSA35i5q/jEvTXDBEZaRHjx548uQJXr16BTs7JmArEkEQcObMGVy4cEHTobyTiIgI/PLLL8VORhERERFR+cOEFFExiSAg/G2KpsMgKhOTJk3SdAhUDCKRCOHh4ZoO45116tRJ0yEQERERUQnj2AsiNWjlK2oe9oYJKSIiIiIiIiJ1MSFFpIb8Q/bC3ipOJU9EREREREREhWNCikgN+XtIJaRlIS4lU4MREREREREREVU8TEgRqUGUJyFlYagLAAhlHan30gc2ASnRe48/00RERETlC4uaE6khb0LKxkQPSAbC36agqb2FBqOikqSrqwuRSISYmBhYWVlBJBJpOiQiekeCICAmJgYikQi6urqaDoeIiIiIwIQUkcoEQX7Ino2pGIgAQt+wjtT7RFtbG9WrV8fLly8RFham6XCIqISIRCJUr14d2tramg6FiIiIiMCEFJHKMrKlckXNzfRzfnxiUzI0FRKVEmNjY9SuXRtZWVmaDoWISoiuri6TUURERETlCBNSRCpKy5Ig7+AtQ92cEmzJ6dmaCYhKlba2Nv94JSIiIiIiKiUsak6korRMiVwPKX3dnPRUcgYTUkRERERERETqYEKKSEXp2RK5oub6//aQSmQPKSIiIiIiIiK1MCFFpKL0TIlcUXMDnZzhXByyR0RERERERKQeJqSIVJSWJZ+Q4pA9IiIiIiIiouJhQopIRWlZEohE/yWkDHVyfnyS0jkTGxEREREREZE6mJAiUlFapnwNKXHuLHsZ2RAEoaDNiIiIiIiIiCgfJqSIVJSelW+WPZ2cIXtZEgEZ2dKCNiMiIiIiIiKifJiQIlJR/hpSYm0RRDk5KSSxsDkRERERERGRypiQIlJRepZUbsielggw1tMBwMLmREREREREROrQeEJq7dq1cHR0hL6+Plq0aIFr164Vun5AQADq1KkDAwMD2NnZ4auvvkJ6enoZRUsfsvw9pCAIMNb/NyHFHlJEREREREREKtNoQmrnzp2YPHky5syZgxs3bsDFxQVeXl6Ijo5Wuv727dsxY8YMzJkzBw8ePMDPP/+MnTt34n//+18ZR04fovR8Rc0BASb/JqQ40x4RERERERGR6jSakFq5ciVGjRqFYcOGoX79+tiwYQMMDQ2xefNmpetfunQJrVq1wuDBg+Ho6IguXbpg0KBBRfaqIioJafmKmkMQYCz+NyHFIXtERKSm06dPazoEIiIiIo3RWEIqMzMTwcHB6NSp03/BaGmhU6dOuHz5stJtPDw8EBwcLEtAPXv2DIcPH0b37t3LJGb6sKVlSSCSaxFgrK8LgEP2iIhIfV27dkXNmjWxcOFCvHjxQtPhEBEREZUpjSWk3rx5A4lEAhsbG7l2GxsbREZGKt1m8ODBmD9/Plq3bg1dXV3UrFkTnp6ehQ7Zy8jIQGJiotyDqDjSMhV7SHHIHhERFderV6/g5+eHPXv2oEaNGvDy8sKuXbuQmZmp6dCIiIiISp3Gi5qr48yZM1i8eDHWrVuHGzduYN++fTh06BAWLFhQ4DZLliyBmZmZ7GFnZ1eGEdP7JD1LSQ0pMWfZIyKi4qlcuTK++uor3Lp1C1evXoWzszPGjRsHW1tbfPnll7h9+7amQyQiIiIqNRpLSFWuXBna2tqIioqSa4+KikKVKlWUbjNr1iwMHToUI0eORKNGjdC3b18sXrwYS5YsgVQqVbqNv78/EhISZA92iafiSs+SKs6yxxpSRERUApo2bQp/f3/4+fkhOTkZmzdvhpubG9q0aYN//vlH0+ERERERlTiNJaT09PTg5uaGkydPytqkUilOnjwJd3d3pdukpqZCS0s+ZG1tbQCAIAjKNoFYLIapqancg6g40pT1kPq3hlQSa0gREVExZGVlYc+ePejevTscHBxw9OhRrFmzBlFRUQgJCYGDgwP69eun6TCJiIiISpyOJg8+efJk+Pj4oFmzZmjevDkCAgKQkpKCYcOGAQC8vb1RrVo1LFmyBADQq1cvrFy5Eq6urmjRogVCQkIwa9Ys9OrVS5aYIiotObPs5e0hJYXxvzWkWNSciIjUNWHCBPz2228QBAFDhw7FsmXL0LBhQ9lyIyMjfPfdd7C1tdVglERERESlQ6MJqQEDBiAmJgazZ89GZGQkmjRpgiNHjsgKnT9//lyuR9Q333wDkUiEb775Bq9evYKVlRV69eqFRYsWaeoU6AOSnpk/IcUaUkREVHz379/HDz/8gE8++QRisVjpOpUrV8bp06fLODIiIiKi0qfRhBQA+Pn5wc/PT+myM2fOyD3X0dHBnDlzMGfOnDKIjEhezpA9+Vpl+no5PfPSMiWaCImIiCqwOXPmwMPDAzo68pdj2dnZuHTpEtq2bQsdHR20a9dOQxESEdGHRioV8Dg6CQmpWTAz1IWztQm0tESaDoveUxpPSBFVBFkSKbKlAkR5S5gJAvirmYiIiqt9+/aIiIiAtbW1XHtCQgLat28PiYQ3O4iIqOwEh8diy6VwhEQnIzNbAj0dbdSyNoaPhwPcHCw1HR69hzRW1JyoIknPyvmjQEuuh5TyQvpERESqEAQBIpHirY23b9/CyMhIAxEREdGHKjg8FosOPcC9Vwkw1ddBdQtDmOrr4J/XCVh06AGCw2M1HSK9h9hDikgFaVkSmCIZ2qI8CakCZnYkIiIqzCeffAIAEIlE8PX1lasfJZFIcOfOHXh4eGgqPCIi+sBIpQK2XApHfGoWHCsZym6WGIl1YKinjfDYVPxyKRyudhYcvkcligkpIhVIIu7jhngssuR+ZJiQIiIi9ZmZmQHI6SFlYmICAwMD2TI9PT20bNkSo0aN0lR4RET0gXkcnYSQ6GRYm4gVeu6KRCJYGYvxJDoZj6OTULeKqYaipPcRE1JEKhCiH0JHJIUOMvM0MiFFRETqCwwMBAA4Ojpi6tSpHJ5HREQalZCahcxsCfR1lc/4qq+rjTfJGUhIzSrjyOh9x4QUkQoys7OVtDIhRURExcdZg4mIqDwwM9SFno420rMkMBIrpgjSs3IKnJsZ6mogOnqfMSFFpIIsZQkpQarYRkREVIimTZvi5MmTsLCwgKurq9Ki5rlu3LhRhpEREdGHytnaBLWsjfHP6wQY6mnLfTcJgoCY5Aw0tDWDs7WJBqOk9xETUkQqyMpWMvU2h+wREZGaevfuLSti3qdPH80GQ0REBEBLSwQfDwcsOvQA4bGpsDIWQ183p8dUTHIGzAx04e3hwILmVOKYkCJSgdIeUhyyR0REaso7TK8kh+ydO3cOy5cvR3BwMCIiIrB///5CE15nzpxB+/btFdojIiJQpUqVEouLiIgqBjcHS8zsUQ9bLoUjJDoZb5IzoKejjYa2ZvD2cICbg6WmQ6T3EBNSRCpIz1RSwI89pIiI6B28ePECIpEI1atXBwBcu3YN27dvR/369TF69Gi19pWSkgIXFxcMHz4cn3zyicrbPXr0CKam/82YZG1trdZxiYjo/eHmYAlXOws8jk5CQmoWzAx14Wxtwp5RVGqYkCJSQZqyhBR7SBER0TsYPHgwRo8ejaFDhyIyMhKdOnVCw4YNsW3bNkRGRmL27Nkq76tbt27o1q2b2jFYW1vD3Nxc7e2IiOj9pKUlQt0qpkWvSFQCtDQdAFFFkJaprKg5E1JERFR89+7dQ/PmzQEAu3btQqNGjXDp0iVs27YNQUFBZRJDkyZNULVqVXTu3BkXL14sdN2MjAwkJibKPYiIiIiKiwkpIhUoHbLHHlJERPQOsrKyZAXOT5w4gY8//hgAULduXURERJTqsatWrYoNGzZg79692Lt3L+zs7ODp6VnozH5LliyBmZmZ7GFnZ1eqMRIREdH7jQkpIhWkF9FDSmByioiI1NSgQQNs2LAB58+fx/Hjx9G1a1cAwOvXr1GpUqVSPXadOnUwZswYuLm5wcPDA5s3b4aHhwdWrVpV4Db+/v5ISEiQPV68eFGqMRIREdH7jQkpIhVkFNBDSsT6fkREVExLly7Fxo0b4enpiUGDBsHFxQUAcPDgQdlQvrLUvHlzhISEFLhcLBbD1NRU7kFERERUXCxqTqSConpIERERqcvT0xNv3rxBYmIiLCwsZO2jR4+GoaFhmcdz69YtVK1atcyPS0RERB8mJqSIVJCRxYQUERGVPG1tbblkFAA4OjqqvZ/k5GS53k2hoaG4desWLC0tYW9vD39/f7x69Qq//PILACAgIABOTk5o0KAB0tPTsWnTJpw6dQrHjh17p/MhIiIiUpXaCamUlBQYGRmVRixE5ZbShBTrRhER0TuIiorC1KlTcfLkSURHR0PId6NDIpGovK/r16+jffv2sueTJ08GAPj4+CAoKAgRERF4/vy5bHlmZiamTJmCV69ewdDQEI0bN8aJEyfk9kFERERUmtROSNnY2KB///4YPnw4WrduXRoxEZUrUqmAzOwsxZ8W9pAiIqJ34Ovri+fPn2PWrFmoWrUqRO9QmNDT01MhoZVXUFCQ3PPp06dj+vTpxT4eERER0btSOyG1detWBAUFoUOHDnB0dMTw4cPh7e0NW1vb0oiPSOOS0rMhUnqRz4QUEREV34ULF3D+/Hk0adJE06EQERERlTm1Z9nr06cPDhw4gFevXmHs2LHYvn07HBwc0LNnT+zbtw/Z2cqGNhFVXAlpWdBSlnxiDykiInoHdnZ2hfZqIiIiInqfqZ2QymVlZYXJkyfjzp07WLlyJU6cOIHPPvsMtra2mD17NlJTU0syTiKNiU/LVJ6QYg8pIiJ6BwEBAZgxYwbCwsI0HQoRERFRmSv2LHtRUVHYsmULgoKCEB4ejs8++wwjRozAy5cvsXTpUly5coUztdB7ISEtCyJIFRfwrjYREb2DAQMGIDU1FTVr1oShoSF0dXXllsfGxmooMiIiIqLSp3ZCat++fQgMDMTRo0dRv359jBs3Dp9//jnMzc1l63h4eKBevXolGSeRxiSkZUFbWUKKPaSIiOgdBAQEaDoEIiIiIo1ROyE1bNgwDBw4EBcvXsRHH32kdB1bW1vMnDnznYMjKg9YQ4qIiEqDj4+PpkMgIiIi0hi1E1IREREwNDQsdB0DAwPMmTOn2EERlSfxqVnQEilLSCnrNUVERKS6p0+fIjAwEE+fPsXq1athbW2Nv/76C/b29mjQoIGmwyMiIiIqNWoXNTcxMUF0dLRC+9u3b6GtrV0iQRGVJ6mZ2cprSHHIHhERvYOzZ8+iUaNGuHr1Kvbt24fk5GQAwO3bt3ljj4iIiN57aiekCpqeOCMjA3p6eu8cEFF5IwjgkD0iIipxM2bMwMKFC3H8+HG5a6gOHTrgypUrGoyMiIiIqPSpPGTv+++/BwCIRCJs2rQJxsbGsmUSiQTnzp1D3bp1Sz5ConJAaUIqTxtzU0REpK67d+9i+/btCu3W1tZ48+aNBiIiIiIiKjsqJ6RWrVoFIKeH1IYNG+SG5+np6cHR0REbNmwo+QiJyoGCekiJICr7YIiI6L1gbm6OiIgIODk5ybXfvHkT1apV01BURERERGVD5YRUaGgoAKB9+/bYt28fLCwsSi0oovJGeQ0pIiKi4hs4cCC+/vpr7N69GyKRCFKpFBcvXsTUqVPh7e2t6fCIiIiISpXaNaROnz7NZBR9cFhDioiIStrixYtRt25d2NnZITk5GfXr10fbtm3h4eGBb775RtPhEREREZUqlXpITZ48GQsWLICRkREmT55c6LorV64skcCIypOiakgRERGpS09PDz/99BNmz56Nu3fvIjk5Ga6urqhdu7amQyMiIiIqdSolpG7evImsrCzZ/wsiErGeDr2ftJQN2WMPKSIiegfz58/H1KlTYWdnBzs7O1l7Wloali9fjtmzZ2swOiIiIqLSpVJC6vTp00r/T/ShECkdsse6UkREVHzz5s3D2LFjYWhoKNeempqKefPmMSFFRERE7zW1a0jll5iYiAMHDuDhw4clEQ9RucQhe0REVNIEQVDau/z27duwtLTUQEREREREZUflWfZy9e/fH23btoWfnx/S0tLQrFkzhIWFQRAE7NixA59++mlpxEmkURyyR0REJcXCwgIikQgikQjOzs5ySSmJRILk5GSMHTtWgxESERERlT61E1Lnzp3DzJkzAQD79++HIAiIj4/Hli1bsHDhQiak6L3EHlJERFRSAgICIAgChg8fjnnz5sHMzEy2TE9PD46OjnB3d9dghERERESlT+2EVEJCgqwb+ZEjR/Dpp5/C0NAQPXr0wLRp00o8QKLyQHkNKSakiIhIfT4+PgAAJycneHh4QFdXV8MREREREZU9tRNSdnZ2uHz5MiwtLXHkyBHs2LEDABAXFwd9ff0SD5CoPGAPKSIiKmnt2rWDVCrF48ePER0dDalUfnh427ZtNRQZERERUelTOyE1adIkDBkyBMbGxnBwcICnpyeAnKF8jRo1Kun4iMoF1pAiIqKSduXKFQwePBjh4eEQ8n2niEQiSCQSDUVGREREVPrUTkiNGzcOzZs3x4sXL9C5c2doaeVM1FejRg0sXLiwxAMkKg+0ROwhRUREJWvs2LFo1qwZDh06hKpVqyqdcY+IiIjofaV2QgoAmjVrhmbNmsm19ejRo0QCIiqPiqohxdQUERGp68mTJ9izZw9q1aql6VCIiIiIypzaCSmJRIKgoCCcPHlSab2DU6dOlVhwROWF8iF7UvBmNhERFVeLFi0QEhLChBQRERF9kLTU3WDixImYOHEiJBIJGjZsCBcXF7mHutauXQtHR0fo6+ujRYsWuHbtWqHrx8fHY/z48ahatSrEYjGcnZ1x+PBhtY9LpA4WNSciopI2YcIETJkyBUFBQQgODsadO3fkHkRERETvM7V7SO3YsQO7du1C9+7d3/ngO3fuxOTJk7Fhwwa0aNECAQEB8PLywqNHj2Btba2wfmZmJjp37gxra2vs2bMH1apVQ3h4OMzNzd85FqKCCCggIcV8FBERvYNPP/0UADB8+HBZm0gkgiAILGpORERE7z21E1J6enol1rV85cqVGDVqFIYNGwYA2LBhAw4dOoTNmzdjxowZCutv3rwZsbGxuHTpEnR1dQEAjo6OJRILUWFEyobsMSNFRETvIDQ0VNMhEBEREWmM2kP2pkyZgtWrVytMT6yuzMxMBAcHo1OnTv8Fo6WFTp064fLly0q3OXjwINzd3TF+/HjY2NigYcOGWLx4Me8gUqlT3kOKCSkiIio+BweHQh9ERERE7zO1e0hduHABp0+fxl9//YUGDRrIeirl2rdvn0r7efPmDSQSCWxsbOTabWxs8PDhQ6XbPHv2DKdOncKQIUNw+PBhhISEYNy4ccjKysKcOXOUbpORkYGMjAzZ88TERJXiI8qLNaSIiKgkHDx4EN26dYOuri4OHjxY6Loff/xxGUVFREREVPbUTkiZm5ujb9++pRFLkaRSKaytrfHjjz9CW1sbbm5uePXqFZYvX15gQmrJkiWYN29eGUdK7xvls+wxIUVEROrp06cPIiMjYW1tjT59+hS4HmtIERER0ftO7YRUYGBgiRy4cuXK0NbWRlRUlFx7VFQUqlSponSbqlWrQldXF9ra2rK2evXqITIyEpmZmdDT01PYxt/fH5MnT5Y9T0xMhJ2dXYmcA3042EOKiIhKglQqVfp/IiIiog+N2jWkACA7OxsnTpzAxo0bkZSUBAB4/fo1kpOTVd6Hnp4e3NzccPLkSVmbVCrFyZMn4e7urnSbVq1aISQkRO4C7vHjx6hatarSZBQAiMVimJqayj2I1MUeUkREREREREQlR+2EVHh4OBo1aoTevXtj/PjxiImJAQAsXboUU6dOVWtfkydPxk8//YQtW7bgwYMH+OKLL5CSkiKbdc/b2xv+/v6y9b/44gvExsZi4sSJePz4MQ4dOoTFixdj/Pjx6p4GkVrYQ4qIiIiIiIio5Kg9ZG/ixIlo1qwZbt++jUqVKsna+/bti1GjRqm1rwEDBiAmJgazZ89GZGQkmjRpgiNHjsgKnT9//hxaWv/lzOzs7HD06FF89dVXaNy4MapVq4aJEyfi66+/Vvc0iNQiUjrLHodaEBERERERERWH2gmp8+fP49KlSwpD5BwdHfHq1Su1A/Dz84Ofn5/SZWfOnFFoc3d3x5UrV9Q+DtG74JA9IiIiIiIiopKj9pA9qVSqdNaXly9fwsTEpESCIipvOGSPiIiIiIiIqOSo3UOqS5cuCAgIwI8//gggZ1ri5ORkzJkzB927dy/xAInKAy2RsiF7TEgREZF6EhMTVV6XE7EQERHR+0zthNSKFSvg5eWF+vXrIz09HYMHD8aTJ09QuXJl/Pbbb6URI5HGKa0hBQHaWiIAQJaE9aSIiKho5ubmEIlEKq2rrEc6ERER0ftC7YRU9erVcfv2bezcuRO3b99GcnIyRowYgSFDhsDAwKA0YiTSuIJqSJnq6wIAktKzyzgiIiKqiE6fPi37f1hYGGbMmAFfX1+4u7sDAC5fvowtW7ZgyZIlmgqRiIiIqEyonZA6d+4cPDw8MGTIEAwZMkTWnp2djXPnzqFt27YlGiBReVBQDSlTg5wfoYS0rLINiIiIKqR27drJ/j9//nysXLkSgwYNkrV9/PHHaNSoEX788Uf4+PhoIkQiIiKiMqF2UfP27dsjNjZWoT0hIQHt27cvkaCIyhulCSlBgJlBTg+pRCakiIhITZcvX0azZs0U2ps1a4Zr165pICIiIiKisqN2QkoQBKW1D96+fQsjI6MSCYqovBEpG7IHwPTfhFRGthTpWaz1QUREqrOzs8NPP/2k0L5p0ybY2dlpICIiIiKisqPykL1PPvkEQM6ser6+vhCLxbJlEokEd+7cgYeHR8lHSFQOKO8hJYWxng5EopwJ9xLTs6Cvq132wRERUYW0atUqfPrpp/jrr7/QokULAMC1a9fw5MkT7N27V8PREREREZUulRNSZmZmAHJ6SJmYmMgVMNfT00PLli0xatSoko+QqBwoaMielpYIpvq6SEjLQmJaNqxNyj42IiKqmLp3747Hjx9j/fr1ePjwIQCgV69eGDt2LHtIERER0XtP5YRUYGAgAMDR0RFTp07l8Dz6YAhCwUXNAcDUQCcnIZXOOlJERKQeOzs7LF68WNNhEBEREZU5tWtIzZkzh8ko+uAorSEl/JuQ0s+pI8WZ9oiISF3nz5/H559/Dg8PD7x69QoA8Ouvv+LChQsajoyIiIiodKmdkIqKisLQoUNha2sLHR0daGtryz2I3keF9ZDiTHtERFQce/fuhZeXFwwMDHDjxg1kZGQAyJm5mL2miIiI6H2n8pC9XL6+vnj+/DlmzZqFqlWrKp1xj+h9U1ANKeC/HlJMSBERkToWLlyIDRs2wNvbGzt27JC1t2rVCgsXLtRgZERERESlT+2E1IULF3D+/Hk0adKkFMIhKp+0lA3Zy99DKj27DCMiIqKK7tGjR2jbtq1Cu5mZGeLj48s+ICIiIqIypPaQPTs7OwiCsuFLRO8vUWE9pAxy8rrsIUVEROqoUqUKQkJCFNovXLiAGjVqaCAiIiIiorKjdkIqICAAM2bMQFhYWCmEQ1Q+FTrLHouaExFRMYwaNQoTJ07E1atXIRKJ8Pr1a2zbtg1Tp07FF198oenwiIiIiEqV2kP2BgwYgNTUVNSsWROGhobQ1dWVWx4bG1tiwRGVF0qH7P3bQ8rMMHfIHhNSRESkuhkzZkAqlaJjx45ITU1F27ZtIRaLMXXqVEyYMEHT4RERERGVKrUTUgEBAaUQBlH5piVSNmQvJ0n1X1Fz1pAiIiLViUQizJw5E9OmTUNISAiSk5NRv359GBsbazo0IiIiolKndkLKx8enNOIgKteU1pDKV9ScQ/aIiEgdw4cPx+rVq2FiYoL69evL2lNSUjBhwgRs3rxZg9ERERERlS6VakglJibK/b+wB9H7SGkNqfxFzTlkj4iI1LBlyxakpaUptKelpeGXX37RQEREREREZUelhJSFhQWio6MBAObm5rCwsFB45LYTvY+0ldWQ+heLmhMRkToSExORkJAAQRCQlJQkd2MvLi4Ohw8fhrW1tVr7PHfuHHr16gVbW1uIRCIcOHCgyG3OnDmDpk2bQiwWo1atWggKCireCREREREVg0pD9k6dOgVLS0sAwOnTp0s1IKLySFRIUXOTfxNSyenZEAQBIpGoLEMjIqIKxtzcHCKRCCKRCM7OzgrLRSIR5s2bp9Y+U1JS4OLiguHDh+OTTz4pcv3Q0FD06NEDY8eOxbZt23Dy5EmMHDkSVatWhZeXl1rHJiIiIioOlRJS7dq1U/p/og+F0iF7/7YZirUBANlSAZkSKcQ62mUYGRERVTSnT5+GIAjo0KED9u7dK7vpBwB6enpwcHCAra2tWvvs1q0bunXrpvL6GzZsgJOTE1asWAEAqFevHi5cuIBVq1YxIUVERERlQu2i5kQfosJqSBnp/fdjlJIhYUKKiIgKlXtzLzQ0FPb29hrpWXv58mV06tRJrs3LywuTJk0q81iIiIjow6RSDSmiD52W0hpSOQkpbS0R9HVzfpRSMrLLMCoiIqrITp06hT179ii07969G1u2bCnVY0dGRsLGxkauzcbGBomJiUoLrQNARkYGJ7MhIiKiEsOEFJEKRIX0kAL+6yWVmikpq5CIiKiCW7JkCSpXrqzQbm1tjcWLF2sgosItWbIEZmZmsoednZ2mQyIiIqIKjAkpIhUoH7L3X68pI3FOQiqZPaSIiEhFz58/h5OTk0K7g4MDnj9/XqrHrlKlCqKiouTaoqKiYGpqCgMDA6Xb+Pv7IyEhQfZ48eJFqcZIRERE77diJaSys7Nx4sQJbNy4EUlJSQCA169fIzk5uUSDIyovCitqDgCGejl1o1IzmZAiIiLVWFtb486dOwrtt2/fRqVKlUr12O7u7jh58qRc2/Hjx+Hu7l7gNmKxGKampnIPIiIAkEoFPIxMxNVnb/EwMhFSqbJrZyIieWoXNQ8PD0fXrl3x/PlzZGRkoHPnzjAxMcHSpUuRkZGBDRs2lEacRBqltIZUniF7xv/2kGINKSIiUtWgQYPw5ZdfwsTEBG3btgUAnD17FhMnTsTAgQPV2ldycjJCQkJkz0NDQ3Hr1i1YWlrC3t4e/v7+ePXqFX755RcAwNixY7FmzRpMnz4dw4cPx6lTp7Br1y4cOnSo5E6QiD4IweGx2HIpHCHRycjMlkBPRxu1rI3h4+EANwfLondARB8stXtITZw4Ec2aNUNcXJxcl+6+ffsq3Gkjeh8IEJTXkMrbQ0qWkGINKSIiUs2CBQvQokULdOzYEQYGBjAwMECXLl3QoUMHtWtIXb9+Ha6urnB1dQUATJ48Ga6urpg9ezYAICIiQm4YoJOTEw4dOoTjx4/DxcUFK1aswKZNm+Dl5VVyJ0hE773g8FgsOvQA914lwFRfB9UtDGGqr4N/Xidg0aEHCA6P1XSIRFSOqd1D6vz587h06RL09PTk2h0dHfHq1asSC4yoPFFeQypvUfOcIXspHLJHREQq0tPTw86dO7FgwQLcvn0bBgYGaNSoERwcHNTel6enJwSh4CEyQUFBSre5efOm2sciIgJyhultuRSO+NQsOFYyhEgkApBTW9VQTxvhsan45VI4XO0soKUl0nC0RFQeqZ2QkkqlkEgUe4G8fPkSJiYmJRIUUXmjdMhebpJKEDAwbgOstA2QklG3TOMiIqKKz9nZGc7OzpoOg4hILY+jkxASnQxrE7EsGZVLJBLByliMJ9HJeBydhLpVWHOOiBSpnZDq0qULAgIC8OOPPwLI+WWTnJyMOXPmoHv37iUeIFF5oC0qpIfUq2C0e7sL7XSB7zLGl21gRERUob18+RIHDx7E8+fPkZmZKbds5cqVGoqKiKhoCalZyMyWQF9XrHS5vq423iRnICE1q4wjI6KKQu2E1IoVK+Dl5YX69esjPT0dgwcPxpMnT1C5cmX89ttvpREjkWYVOATi3/a0eFkLh+wREZGqTp48iY8//hg1atTAw4cP0bBhQ4SFhUEQBDRt2lTT4RERFcrMUBd6OtpIz5LASKz4Z2V6Vk6BczNDXQ1ER0QVgdoJqerVq+P27dvYsWMH7ty5g+TkZIwYMQJDhgyRK3JO9L4QKR2uh/8SVcJ/Q1g5yx4REanK398fU6dOxbx582BiYoK9e/fC2toaQ4YMQdeuXTUdHhFRoZytTVDL2hj/vE6AoZ623LA9QRAQk5yBhrZmcLZmWRciUk7thFR6ejr09fXx+eefl0Y8ROWOqKAeUrKE1H8Jq5RMzrJHRESqefDggax3uY6ODtLS0mBsbIz58+ejd+/e+OKLLzQcIRFRwbS0RPDxcMCiQw8QHpsKK2Mx9HVzekzFJGfAzEAX3h4OLGhORAXSUncDa2tr+Pj44Pjx45BKC+g5QvQeKbCHVO6QPWmeHlLpHCNPRESqMTIyktWNqlq1Kp4+fSpb9ubNG02FRUSkMjcHS8zsUQ8NbM2QmJ6Nl3GpSEzPRkNbM8zsUQ9uDpaaDpGIyjG1e0ht2bIF27dvR+/evWFmZoYBAwbg888/R7NmzUojPiKNK3rI3n/L0zKYkCIiItW0bNkSFy5cQL169dC9e3dMmTIFd+/exb59+9CyZUtNh0dEpBI3B0u42lngcXQSElKzYGaoC2drE/aMIqIiqZ2Q6tu3L/r27YukpCTs2bMHv/32G1q2bIkaNWrg888/x+zZs0sjTiKNKXDIHhQTUqlMSBERkYpWrlyJ5ORkAMC8efOQnJyMnTt3onbt2pxhj4gqFC0tEepWMdV0GERUwag9ZC+XiYkJhg0bhmPHjuHOnTswMjLCvHnzSjI2onJBnaLmGfmm7CYiIlJGIpHg5cuXsLe3B5AzfG/Dhg24c+cO9u7dCwcHBw1HSERERFS6ip2QSk9Px65du9CnTx80bdoUsbGxmDZtWknGRlQuFN1D6r/l7CFFRESq0NbWRpcuXRAXF6fpUIiIiIg0Qu0he0ePHsX27dtx4MAB6Ojo4LPPPsOxY8fQtm3b0oiPSOPUqSGVkcUeUkREpJqGDRvi2bNncHJy0nQoRERERGVO7R5Sffv2RVpaGn755RdERkZi48aNTEbRe02dGlIZmVmQSgtan4iI6D8LFy7E1KlT8eeffyIiIgKJiYlyDyIiIqL3mdo9pKKiomBiYlIasRCVU0X0kJL+V0NKG1KkZklgLFb7R4uIiD4w3bt3BwB8/PHHEIn+m41KEASIRCJIJJKCNiUiIiKq8FT6qzkxMRGmpjmzJgiCUOhdu9z1iN4XBQ7Zy+0hJc2WtWhDQEpGNhNSRERUpNOnT2s6BCIiIiKNUemvZgsLC0RERMDa2hrm5uZyd/FyvcvdvLVr12L58uWIjIyEi4sLfvjhBzRv3rzI7Xbs2IFBgwahd+/eOHDggNrHJVJFgUP2cofqSf8rZK4FKVIzeUebiIiK5uTkBDs7O4XrKkEQ8OLFCw1FRURERFQ2VEpInTp1CpaWlgBK/m7ezp07MXnyZGzYsAEtWrRAQEAAvLy88OjRI1hbWxe4XVhYGKZOnYo2bdqUaDxE+RVZ1FySt4dUQb2piIiI5Dk5Oclu+OUVGxsLJycnDtkjIiKi95pKCal27drJ/l/Sd/NWrlyJUaNGYdiwYQCADRs24NChQ9i8eTNmzJihdBuJRIIhQ4Zg3rx5OH/+POLj49U+LpGqtIQihuxJ/ptZT1vEhBQREakmt3d5fsnJydDX19dARERERERlR+1CNyV5Ny8zMxPBwcHw9/eXtWlpaaFTp064fPlygdvNnz8f1tbWGDFiBM6fP1/oMTIyMpCRkSF7zllrSF2ighJSsqLm8kP2iIiICjN58mQAgEgkwqxZs2BoaChbJpFIcPXqVTRp0kRD0RERERGVDbUTUiV5N+/NmzeQSCSwsbGRa7exscHDhw+VbnPhwgX8/PPPuHXrlkrHWLJkCebNm6dWXER5ZWUXlGTlkD0iIlLfzZs3AeRcU929exd6enqyZXp6enBxccHUqVM1FR4RERFRmVA5IVUe7uYlJSVh6NCh+Omnn1C5cmWVtvH395fFDuT0kLKzsyutEOk9lJmVrXxBbq3zPEP22EOKiIiKkluPc9iwYVi9ejVnKCYiIqIPksoJqdK4m1e5cmVoa2sjKipKrj0qKgpVqlRRWP/p06cICwtDr169ZG1SaU4CQEdHB48ePULNmjXlthGLxRCLxWrFRZRXRnYBCSkoDtljDykiIlJVYGCg7P+5dTh504yIiIg+FConpErjbp6enh7c3Nxw8uRJ9OnTB0BOgunkyZPw8/NTWL9u3bq4e/euXNs333yDpKQkrF69mhdxVCoyMwvqIcUhe0REVHzZ2dmYN28evv/+eyQnJwMAjI2NMWHCBMyZMwe6uroajpCIiIjeB1KpgMfRSUhIzYKZoS6crU2gpaVYiqmsqV1DKu/dvJIwefJk+Pj4oFmzZmjevDkCAgKQkpIim3XP29sb1apVw5IlS6Cvr4+GDRvKbW9ubg4ACu1EJaXIHlIcskdERMUwYcIE7Nu3D8uWLYO7uzsA4PLly5g7dy7evn2L9evXazhCIiIiquiCw2Ox5VI4QqKTkZktgZ6ONmpZG8PHwwFuDpYajU3thBQAXL9+Hbt27cLz58+RmZkpt2zfvn1q7WvAgAGIiYnB7NmzERkZiSZNmuDIkSOyQufPnz+HlpZWccIkKhFZBdaQ+jf5xCF7RERUDNu3b8eOHTvQrVs3WVvjxo1hZ2eHQYMGMSFFRERE7yQ4PBaLDj1AfGoWrE3E0NcVIz1Lgn9eJ2DRoQeY2aOeRpNSaiekduzYAW9vb3h5eeHYsWPo0qULHj9+jKioKPTt27dYQfj5+SkdogcAZ86cKXTboKCgYh2TSFWZBfWQ4pA9IiJ6B2KxGI6OjgrtTk5OcrU6iYiIiNQllQrYcikc8alZcKxkCJEoZ4iekVgHhnraCI9NxS+XwuFqZ6Gx4Xtqdz1avHgxVq1ahT/++AN6enpYvXo1Hj58iP79+8Pe3r40YiTSqAJn2eOQPSIiegd+fn5YsGABMjIyZG0ZGRlYtGhRgTfqiIiIiFTxODoJIdHJsDYRy5JRuUQiEayMxXgSnYzH0UkairAYPaSePn2KHj16AMgpSp6SkgKRSISvvvoKHTp0wLx580o8SCJNysqWKF8gcJY9IiJSzyeffCL3/MSJE6hevTpcXFwAALdv30ZmZiY6duyoifCIiIjoPZGQmoXMbAn0dcVKl+vrauNNcgYSUrOULi8LaiekLCwskJSUk0GrVq0a7t27h0aNGiE+Ph6pqaklHiCRphU4ZE/WQypPQkokhZCbqCIiIsrHzMxM7vmnn34q95wzBhMREVFJMDPUhZ6ONtKzJDASK6Z+0rNyCpybGWpuVl+1E1Jt27bF8ePH0ahRI/Tr1w8TJ07EqVOncPz4cd7No/dSVpYE0FayQNZD6r+EFYfsERFRYUp6tmIiIiIiZZytTVDL2hj/vE6AoZ623LA9QRAQk5yBhrZmcLY20ViMaiek1qxZg/T0dADAzJkzoauri0uXLuHTTz/FN998U+IBEmmSIAjIys5WnpBSUkOKQ/aIiIiIiIhI07S0RPDxcMCiQw8QHpsKK2Mx9HVzekzFJGfAzEAX3h4OGitoDhQjIWVp+d+UgFpaWpgxY0aJBkRUnmRkSyFCAUPwBMUhe+whRUREqnJyclIoMprXs2fPyjAaIiIiet+4OVhiZo962HIpHCHRyXiTnAE9HW00tDWDt4cD3Bwsi95JKVIpIZWYmKjyDk1NTYsdDFF5k5YpKSTJpDhkjz2kiIhIVZMmTZJ7npWVhZs3b+LIkSOYNm2aZoIiIiKi94qbgyVc7SzwODoJCalZMDPUhbO1iUZ7RuVSKSFlbm5e6B08IGdok0gkgkRSwIxkRBVQWpYEWkX2kOKQPSIiUt/EiROVtq9duxbXr18v42iIiIjofaWlJULdKuWv85BKCanTp0+XdhxE5VJalgRaInWG7HGGPSIiejfdunWDv78/C6ATERHRe02lhFS7du1KOw6iciktU1JwDSkO2SMiolKwZ88euZqdRERERO8jtYuaA8D58+exceNGPHv2DLt370a1atXw66+/wsnJCa1bty7pGIk0Jj2rkBpSHLJHRETvwNXVVWEK5sjISMTExGDdunUajIyIiIio9KmdkNq7dy+GDh2KIUOG4MaNG8jIyAAAJCQkYPHixTh8+HCJB0mkKYXWkAJn2SMiouLr06eP3HMtLS1YWVnB09MTdevW1UxQRERERGVE7YTUwoULsWHDBnh7e2PHjh2y9latWmHhwoUlGhyRpuXMsldEDSkO2SMiomKYM2eOpkMgIiIi0hgtdTd49OgR2rZtq9BuZmaG+Pj4koiJqNxIy5JAVGCSSXHInpaICSkiIlLNjRs3cPfuXdnz33//HX369MH//vc/ZGZmFrIlERERUcWndkKqSpUqCAkJUWi/cOECatSoUSJBEZUX6YUN2eMse0RE9A7GjBmDx48fAwCePXuGAQMGwNDQELt378b06dM1HB0RERFR6VI7ITVq1ChMnDgRV69ehUgkwuvXr7Ft2zZMnToVX3zxRWnESKQxhQ7ZK2CWPaakiIhIFY8fP0aTJk0AALt370a7du2wfft2BAUFYe/evZoNjoiIiKiUqV1DasaMGZBKpejYsSNSU1PRtm1biMViTJ06FRMmTCiNGIk0Ji1LqsIseyxqTkRE6hMEAVJpzvfGiRMn0LNnTwCAnZ0d3rx5o8nQiMo9qVTA4+gkJKRmwcxQF87WJtDSEhW9IRERlRtqJ6REIhFmzpyJadOmISQkBMnJyahfvz6MjY2RlpYGAwOD0oiTSCMKnWVP+Df5lKeGFIuaExGRqpo1a4aFCxeiU6dOOHv2LNavXw8ACA0NhY2NjYajIyq/gsNjseVSOEKik5GZLYGejjZqWRvDx8MBbg6Wmg6PiIhUpPaQvVx6enqoX78+mjdvDl1dXaxcuRJOTk4lGRuRxmVkSQrp9SQAUgmQJ2HFhBQREakqICAAN27cgJ+fH2bOnIlatWoBAPbs2QMPDw8NR0dUPgWHx2LRoQe49yoBpvo6qG5hCFN9HfzzOgGLDj1AcHispkMkIiIVqdxDKiMjA3PnzsXx48ehp6eH6dOno0+fPggMDMTMmTOhra2Nr776qjRjJSpzhfeQEuSG6wEcskdERKpr3Lix3Cx7uZYvXw5tbW0NRERUvkmlArZcCkd8ahYcKxlCJMoZomck1oGhnjbCY1Pxy6VwuNpZcPgeEVEFoHIPqdmzZ2P9+vVwdHREWFgY+vXrh9GjR2PVqlVYuXIlwsLC8PXXX5dmrERlrnbMCazR+6GApYLccD2APaSIiKh4xo0bJ6sbpa+vD11dXQ1HRFT+PI5OQkh0MqxNxLJkVC6RSAQrYzGeRCfjcXSShiIkIiJ1qJyQ2r17N3755Rfs2bMHx44dg0QiQXZ2Nm7fvo2BAwfyTh69l4a+nFPwQkGQm2EPYEKKiIiKZ+vWrUhMTNR0GETlWkJqFjKzJdDXVf53h76uNjKzJUhIzVK6nIiIyheVE1IvX76Em5sbAKBhw4YQi8X46quvFO5OEH04OGSPiIhKhiAUMDyciGTMDHWhp6ON9CyJ0uXpWTkFzs0M2cOQiKgiUDkhJZFIoKenJ3uuo6MDY2PjUgmKqMLgkD0iIiKiMuFsbYJa1saISc5QSOIKgoCY5AzUtjaGs7WJhiIkIiJ1qFzUXBAE+Pr6QiwWAwDS09MxduxYGBkZya23b9++ko2QqDyT5ushJWJCioiI1JeUxJo3REXR0hLBx8MBiw49QHhsKqyMxdDXzekxFZOcATMDXXh7OLCgORFRBaFyQsrHx0fu+eeff17iwRBVONnsIUVERMUjkUjkanBevXoVGRkZcHd3Z1FzogK4OVhiZo962HIpHCHRyXiTnAE9HW00tDWDt4cD3BwsNR0iERGpSOWEVGBgYGnGQVTuCIKAIu+vSTLknjIhRURERYmIiEC/fv1w5coVtGrVCgcOHMDQoUNx+PBhAEDt2rVx5swZVK1aVcOREpVPbg6WcLWzwOPoJCSkZsHMUBfO1ibsGUVEVMGoXEOK6EOTVkDBTDksak5ERGr6+uuvIQgC9u/fj6pVq6Jnz55ITEzEixcvEBYWBisrKyxatEjTYRKVa1paItStYooWNSqhbhVTJqOIiCoglXtIEX1o4lKzYFjUStmKPaTiUjIBq1ILi4iIKrgTJ05g3759aNmyJVq1aoXKlSvj+PHjqFatGgBg/vz5GDVqlIajJCIiIipd7CFFVIC4lMyiV1Iyy17om5RSioiIiN4HcXFxsuSTpaUlDA0N4eDgIFteq1YtREREaCo8IqIKRyoV8DAyEVefvcXDyERIpULRGxGRxrGHFFEB4lLzJaREWoCQb0iekiF7TEgREVFhrK2tERERATs7OwCAn58fLC3/K8QcFxenMIsxEREpFxweKytyn5ktgZ6ONmpZG8OHRe6Jyj32kCIqQFyqfLIJWkryt+whRUREamrSpAkuX74se/7tt9/KJaQuXLiAxo0bayI0IqIKJTg8FosOPcC9Vwkw1ddBdQtDmOrr4J/XCVh06AGCw2M1HSIRFYIJKaICxOfvIaU0ISVfQ4o9pIiIqCi///47Jk6cWODyjz76CKtXry7WvteuXQtHR0fo6+ujRYsWuHbtWoHrBgUFQSQSyT309fWLdVwiorImlQrYcikc8alZcKxkCCOxDrS1RDAS68DB0hAJaVn45VI4h+8RlWMcskdUgLgUVXpIya+jDQGhb1IglQqc7YWIiIqlefPmxdpu586dmDx5MjZs2IAWLVogICAAXl5eePToEaytrZVuY2pqikePHsmei0T87iKiiuFxdBJCopNhbSJW+N0lEolgZSzGk+hkPI5OQt0qphqKkjRNKhXwODoJCalZMDPUhbO1Cf9OK0eYkCIqgEINKS1txZWkErmnOiIpMrKkiEhMRzVzg1KMjoiI3ldxcXH4448/4O3trdZ2K1euxKhRozBs2DAAwIYNG3Do0CFs3rwZM2bMULqNSCRClSpV3jlmIqKylpCahcxsCfR1xUqX6+tq401yBhLyl+GgDwbri5V/HLJHVADFhJSy/K18F2BTcc6PVGgMh+0REVHxPH/+XJZUUlVmZiaCg4PRqVMnWZuWlhY6deokV68qv+TkZDg4OMDOzg69e/fGP//8U+C6GRkZSExMlHsQEWmKmaEu9HS0kZ4lUbo8PSsnAWFmqFvGkVF5wPpiFQMTUkQFUKmoeb5Z94z1crp/vopPLa2wiIiogsuf1Mn/SEpKUnufb968gUQigY2NjVy7jY0NIiMjlW5Tp04dbN68Gb///ju2bt0KqVQKDw8PvHz5Uun6S5YsgZmZmeyRO0sgEZEmOFuboJa1MWKSMyAI8jeJBUFATHIGalsbw9naREMRkqawvljFwSF7RAVQKGpuWg1IipBvy/flZ/DvT9Sb5HzbEhER/cvc3LzQWk2CIJRJLSd3d3e4u7vLnnt4eKBevXrYuHEjFixYoLC+v78/Jk+eLHuemJjIpBQRaYyWlgg+Hg5YdOgBwmNTYWUshr5uTo+pmOQMmBnowtvDgfWCPkCsL1ZxMCFFVACFIXtVGgGunwPGNsCOQf82Kk9IxSTJz75HRESUy8TEBDNnzkSLFi2ULn/y5AnGjBmj1j4rV64MbW1tREVFybVHRUWpXCNKV1cXrq6uCAkJUbpcLBZDLFZeq4WISBPcHCwxs0c9WZ2gN8kZ0NPRRkNbM3hX4DpBLMT9blhfrOJgQoqoAMnp2fINIi2g2TBAkqc9Xw8p8b91z98kMyFFRETKNW3aFADQrl07pcvNzc0Vhp8URU9PD25ubjh58iT69OkDAJBKpTh58iT8/PxU2odEIsHdu3fRvXt3tY5NRKRJbg6WcLWzeG8SOCzE/e7y1hczEiumPFhfrPxgQoqoIPnqQ0H0b8k1uW6fTEgREZF6Bg8ejLS0tAKXV6lSBXPmzFF7v5MnT4aPjw+aNWuG5s2bIyAgACkpKbIC6d7e3qhWrRqWLFkCAJg/fz5atmyJWrVqIT4+HsuXL0d4eDhGjhxZvBMjItIQLS3RezH0KrcQd3xqFqxNxNDXFSM9SyIrxD2zRz0mpVSQW1/sn9cJMNTTlhu2l1tfrKGtGeuLlQNMSBEVQBv5ZuzITUghT0Iq3x1sfa2c5xyyR0REBRk1alShy21sbIqVkBowYABiYmIwe/ZsREZGokmTJjhy5Iis0Pnz58+hpfXffDZxcXEYNWoUIiMjYWFhATc3N1y6dAn169dX+9hERPRu8hfizk2iGIl1YKinjfDYVPxyKRyudhYVtvdXWWF9sYqDCSmiAuggfw8pkfy/APL3kNLTznnOouZERKQJfn5+BQ7RO3PmjNzzVatWYdWqVWUQFRERFYWFuEvW+1pf7H3DhBRRAbQUElJKhuzl6yGl9+8qCWlZyMyWQk9HC0RERHmdOnUKfn5+uHLlCkxN5f+oSEhIgIeHBzZs2IA2bdpoKEIiIiprLMRd8t63+mLvo3Lx1/LatWvh6OgIfX19tGjRAteuXStw3Z9++glt2rSBhYUFLCws0KlTp0LXJyouhSF7cpT/EtMRSaHz7y+4tykctkdERIoCAgIwatQohWQUAJiZmWHMmDFYuXKlBiIjIiJNyVuIWxkW4i6e3PpiLWpUQt0qpkxGlTMaT0jt3LkTkydPxpw5c3Djxg24uLjAy8sL0dHRStc/c+YMBg0ahNOnT+Py5cuws7NDly5d8OrVqzKOnN53OoUlpHJ7SeUrfC4SpKhkrAcAeJPEYXtERKTo9u3b+H979x0fVZW3Afy5U9MrqRISaui9SCzAypIgKigIsr6CLArriqiIC4hKcVlQWbEsiq4KLBaKL6IvKCwiEYWIEAidUAyhhBAgIW2Sqef9Y5hhJplJJnUmk+f7cQy5c+6558zJnXvnN6ekpKQ4fX7YsGFIT09vxBIREZG7WSbivlqirbTSqmUi7vaRAZyIm7yK2wNSb731Fp588klMmjQJnTt3xooVK+Dn54dPP/3UYfrPP/8cf/3rX9GzZ0907NgRH3/8sXVZY6L6JK84ZM/uwiA52AZAmNAiwNzNlivtERGRI1euXIFS6fwbboVCgatXrzZiiYiIyN0sE3EH+yqRna9BqdYAo0mgVGtAdr6GE3GTV3JrQEqn0yE9PR1Dhw61bpPJZBg6dCjS0tJcykOj0UCv1yMsjJOSUf2qNIeU0abHk3UeqQoBKZPRGpC6yoAUERE5cNttt+Ho0aNOnz98+DBiYmIasUREROQJLBNxd4kNRlG5ARcLNCgqN6BrbDDmjujEibjJ67h1UvNr167BaDRalyO2iIqKwsmTJ13KY9asWYiNjbULatnSarXQam8FBoqKimpfYGpWKg3Zsw1IOe0hZWQPKSIiqtK9996LV155BSkpKfDx8bF7rqysDPPmzcN9993nptIREZE7cSJuak6a9Cp7S5Yswdq1a5Gamlrphs5i8eLFWLBgQSOXjLxBpUnNjTYrWlTRQyr05kSDXAGDiIgcefnll7Fx40Z06NAB06ZNQ2JiIgDg5MmTWL58OYxGI+bOnevmUhIRkbtYJuIm8nZuDUi1aNECcrkcV65csdt+5coVREdHV7nv0qVLsWTJEvzwww/o3r2703Rz5szBjBkzrL8XFRUhLi6ubgWnZqHykD3bHk/Oe0jJb357UeEZIiIiAOae4Hv27MFTTz2FOXPmWCevlSQJycnJWL58eaXe40RERETexq0BKZVKhT59+mDHjh0YNWoUAFgnKJ82bZrT/d544w0sWrQI27ZtQ9++fas8hlqthlqtrs9iUzMhFxUDUq70kKqwDxERkQPx8fH47rvvUFBQgDNnzkAIgfbt2yM0NNTdRSMiIiJqFG4fsjdjxgxMnDgRffv2Rf/+/fH222+jtLQUkyZNAgBMmDABt912GxYvXgwAeP311/Hqq6/iiy++QEJCAnJzcwEAAQEBCAgIcFs9yPtUGrJncNRDquJKfBX2ISIiqkJoaCj69evn7mIQERERNTq3B6TGjRuHq1ev4tVXX0Vubi569uyJrVu3Wruqnz9/HjLZrcUAP/jgA+h0OowZM8Yun3nz5mH+/PmNWXTycpXnkHKwyl7FIXsmBqSIiIiIiIiIquP2gBQATJs2zekQvdTUVLvfz5071/AFIgIgrzSHlG1AyhIkvRmQkuTm3lE2PaRExWAVEREREREREQEAZNUnIWqeqgxIVRyyJ5Obf7KHFBEREREREVG1GJAicqJGQ/akmwEpYbLGqoiIiIiIiIjIMQakiJyo3EPKZpU9VFhljz2kiIiIiIiIiFzGgBSRE1WuslchHnWrhxQDUkRERERERETVYUCKyIma9ZC6eSqxhxQRERERERFRtRiQInJCUWkOKdseUs7mkLJdZa8BC0dERERERETUhDEgReSEzJVV9irNIWWCxFnNiYiIiIiIiKrEgBSRE5VX2bMZsudCDykiIiIiIiIickzh7gIQearKASmbHlKSJZbLVfaIiIiI6pvJJHAqrxiFGj2C/ZToEBkImcx7e6E3t/oSEQEMSBE5VWnInslg84ulh9TNNJYAFXtIEREREdVJenY+Vu/Jxpm8EugMRqgUcrSLDMDEpHj0iQ9zd/HqXXOrLxGRBYfsETlRaVJzWxWH7LGHFBEREVGdpWfnY9GWEzh6qRBBPgq0DPVDkI8Cx3IKsWjLCaRn57u7iPWqudWXiMgWA1JETsgr9pCyU2FSc0er7DVIqYiIiIi8k8kksHpPNm5o9EgI94O/WgG5TIK/WoH4MD8Ulunxnz3ZMJm84y6rudWXiKgiBqSInKg0ZE+yOV2c9ZACIFUZyCIiIiIiR07lFeNMXgkiA9WQJPv5kyRJQkSAGqfzSnAqr9hNJaxfza2+REQVMSBF5IRlyJ7BPxqI6QlM+t7m2Qo9pGS3pmNrWXyoUcpHRERE5E0KNXroDEb4KOUOn/dRyqEzGFGo0Tt8vqlpbvUlIqqIASkiJyyr7JXH9Aem/gS0uv3Wk5KTSc0BhJRfaqwiEhEREXmNYD8lVAo5yvWO5+Qs15sn/A72UzZyyRpGc6svEVFFDEgROWGZQ0rIHC1G6XzInspU1sAlIyIiIvI+HSID0S4yAFdLtBDCft4kIQSulmjRPjIAHSID3VTC+tXc6ktEVBEDUkROWCc1lxycJpKTSc0BKI0aAICRE1ASERERuUwmkzAxKR7Bvkpk52tQqjXAaBIo1RqQna9BsK8SE5LiIZNJ1WfWBDS3+hIRVcSAFJETliF7DntIVTGpeYTaAADYc/ZapW+7iIiIiMi5PvFhmDuiE7rEBqOo3ICLBRoUlRvQNTYYc0d0Qp/4MHcXsV41t/oSEdlyNBaJiHArIGXb++mWCgEpmzTtQmXwUcpw6koJDl64gd6tQhu2oERERORxTCaBU3nFKNToEeynRIfIQPZ0cVGf+DD0igttNq9fc6svEZEFA1JETtyaQ8pBQKrSkL1bnQ3VxjLc2y0GGw9cwvp9FxiQIiIiambSs/Oxek82zuSVQGcwT0zdLjIAE5Pi2ePFRTKZhI7RQe4uRqNxVl8GNonImzEgReTErTmkXJjUXLK5MdCVYlTP27DxwCXsPnutQctIREREniU9Ox+LtpzADY0ekYFq+CjVKNcbcSynEIu2nOAwLHIZA5tE5O04hxSRA0IIwGSeC0omr2IOKTiYI0qvQc+4IIyQ/wpD/kVcL9E2XEGJiIjIY5hMAqv3ZOOGRo+EcD/4qxWQyyT4qxWID/NDYZke/9mTDRMXPqFqWAKbRy8VIshHgZahfgjyUVgDm+nZ+e4uIhFRnTEgReTA1RItYDLPIeXno3KQokIPKVu6EgQd/xLLle/i/9RzkXHhRoOVk4iIiDzHqbxinMkrQWSgGpJkP6xKkiREBKhxOq8Ep/KK3VRCagoY2CSi5oIBKSIHLhaUWYfsyRXKygmq6iGlKwWOfwMAaCEV4RADUkRERM1CoUYPncEIH6WjBVEAH6UcOoMRhRp9I5eMmhIGNomouWBAisgBc0Dq5ip7MhfmkLIVHAfoNNZfDzIgRURE1CwE+ymhUshRrjc6fL5cb54HKNjPwZddRDcxsElEzQUDUkQOXMjXQFFVQMpRD6muo80/AyLNvaRuOp5T1DCFJCIiIo/SITIQ7SIDcLVEa56P0oYQAldLtGgfGYAOkYFuKiE1BQxsElFzwYAUkQMXC8ogs66y5+jbKQc9pCI7m3/qywBdiXWz1mBqmEISERGRR5HJJExMikewrxLZ+RqUag0wmgRKtQZk52sQ7KvEhKR4yGRS9ZlRs8XAJhE1FwxIETlwsUADhSUgJXMQkJIsp47NTYLCx/zTUA7obw3ZU4LdqYmIiJoKk0ngZG4R9v5+HSdzi2o8cXSf+DDMHdEJXWKDUVRuwMUCDYrKDegaG4y5IzqhT3xYA5WcvAUDm0TUXDiaHIeo2btYUAa55MKQPWHT+0l5MyClLwO0t3pI+QkNiIiIyPOlZ+dj9Z5snMkrgc5gHhbVLjIAE5PiaxRI6hMfhl5xoTiVV4xCjR7Bfkp0iAxkAIFcZglsWv4er5VooVLI0TU2GBNq+PdIROSpGJAiqsBkErhUUAaFrIoeUo6G7Cl8zT81+YD+1hxSgWBAioiIyNOlZ+dj0ZYTuKHRIzJQDR+lGuV6I47lFGLRlhM17t0kk0noGB1kt81kEgxSkcsY2CQib8eAFFEFuUXl6GLKRHv5JfMGVyc1t/SQKsiyS+qPsvovJBEREdWJbXAo0EeBVbvP4YZGj4RwP0g3r/P+agX8VHJk52vwnz3Z6BUXWutgQH31vqLmxVFgk4jIWzAgRVTByTOn8bV63q0NVfaQshmyZ+khVXzZLiUDUkRERJ6lYnDIBOBasRZxob7WYJSFJEmICFDjdF4JTuUV1yo4UN+9r4iIiLwBJzUnquD875n2Gxytsuegg5S1h1QFfkIDYw0nRCUiIqKGYQkOHb1UiCAfBVqG+sFHIUOZ3ogLBWW4oam8GImPUg6dwYhCB89Vx2QSWL0n29r7yl+tgFwmwV+tQHyYHwrL9PjPnuwaT55ORETU1DEgRVTBhRz7Hk4Oh+w5ikhZekhVEGS6gedXpcJgNDl8noiIiBqHs+BQoI8SKrkMOqMJF29oIIR9cKhcbx5iF+yndOkYtqv0ncwtwpm8EkQGqqvtfUVERNSccMgekQ2twYjCa7n2Z0aVq+zZBqTUDvN8Q/lvFGV/hk2/bseYO7rVX2GJiIioRk7lFTsMDvmrFQjwUaCwTI9SrQGlWiMCfMzXfyEErpZo0TU2GB0iA6vM39E8UaF+ShSW6RAZ6Pg+wUcpx7USba16XxERETVl7CFFZOPopSIEi0L7ja72kFI67iEFAEFSGXb9uBUanaHOZSQiIqLaKdTooTMY4aO0H44vAWgZ6gelTILWYEJxuR5Gk0Cp1oDsfA2CfZWYkBRf5YTmjoYCBvkokJ2vQX6pDldLtA73q0nvKyIiIm/CgBSRjbyicoRKFbrMyxycJtLNbXY9pBzPIWVhLCvCrlPX6lhCIiIiqkrFIXO2czMF+ymhUshRrjdW2i/EV4lW4f7wVcpRbjDhYoEGReUGdI0NrnbS8armiWof4Q+ZTEL2dQ1MFYYCWnpftY8MqLb3FRERkbfhkD2iCsJQISBV6iCIJDlYZa+KHlIAEC3lQ2uofANMRERE9cPRkLl2kQGYmBSPPvFh6BAZiHaRATiWUwg/lRyQJJRqDdAbTVDIJJTrjBicGIm/DG6D4jIDgv2U6BAZWGXPKMD5UEAAkMlkSAjzw+/XNDiTV4LbQnzhozQHxa6WaF3qfUVEROSNGJAisiEAhFXsIWUod5DS0aTmVfeQipbykVtYDiFEpZtVIiIiqhvLkLkbGj0iA9XwUapRrjfiWE4hFm05Ye3lNDEpHou2nEDmlWKU640o15tgFAImE+CvlmNAmzB0jgmu0bFvDQV0PE9URKAPbpTp0SrMDwUaPa6VaKFSyNE1NhgTbgbLiIiImhsGpIgqqDRkT5JXTuRoUvOKPaRUgYDuVl7RUj6e+f4kDpwvwD8e7IbwAMc3rUREROQak0ngVF4xbpTqseKnsygo1aF1C3/rFz/+agX8VHJk52vwnz3Z6BUXij7xYRjdpyWWbstEqdYAmUwyD69TyeGjlOF/0y+iY3Sg0yCR5ZiFGr21B5XtUEB/deXb63K9EcG+Ksy9rxNkkmS3L3tGERFRc8WAFJENIYBwFNlvlDkISDnqISVX3dx+c5vaPiB1v/xX9JGdxuwTT+AVmYT3H+1TjyUnIiLyfrYBqP3Z17HnzHXkFmmhMxhxtUSHALUChTeH2lmG4inlMrQIUON0XglO5RWjQ2Qg9v6ejxBfJdpHBsBgElDKZPBXm6/3tsGrisEiZ0MCH7s93m4ooG1PaNtV+jpGBTEARUREdBMDUkQVVJ7U3MFp4qiHlCSZh+0Zysy/G3WVdouVruN95TvoeqQHsq6VonUL/3oqNRERkfcymQQ2HryIz9KycaFAg+JyPXRG89dAKrkMvmo5hBDQ6Iw4mVsElUIGvVHAJARkkgQ/lQxKuQxHLhbiyMVCHL1UiMhANQJ8Kq9sF2ETvOoYHWTdXtWQwMXfn8DoPi1xsUCD7HwNIgLUnCeKiIioGgxIEdkQwoAQlNhvlBwtRumghxQAKG0CUg73AwKkcvSRMjH1nxcQ2bYXVk3qB4WcC14SERE5knb2Gmasy8DlIm2l5wQAvdEEQ5kJJgFAGFFuAsp0Rvip5PBRyGASwA2NHgaTwLLtp2AwCRSU6nBDo0PrFgEI8bMPSvko5bhWokWhRm/dVnEVPUdDAn/7PR9z7u2INWnncSavhPNEERF5AEfDrF35cqC2+1HNMCBFZEOpK4JcqhBkcjRkz1EPKQBQ+AIoMP9bHQCU5jk8zv+qFyBfBODeM4vxzPz/ot2dD2PKoLYIdPBNrae7XFiGN7dmIl+jg8EoIJdJeHZoe/SKC+Hk7UREVGtFJVrcvfRH3Cg3VZnOBFi/H9LdTCoAaHRG6IwmKOQyGEwCQgBXi8shlyToTQIFGj2KLt1A2xYBaBl6ax7Icr15KF6wTaCqqlX0JEmy9qoK9FHi7XE9+SHGBj/UETUvnnTOV7fyan3v50k8qR2q4hEBqeXLl+PNN99Ebm4uevTogffeew/9+/d3mn7Dhg145ZVXcO7cObRv3x6vv/467r333kYsMXkrlc4cTCqRAhAgbvaUcjRkr6oeUhZthgBGAxDZCTi9rVIOYVIJfvV5BgDw4q4i/HNXOQI7DoEsqjOSu0QjNtQPIX6qOtao4QghcL1Uh5e/PoodJ+0Dbz+duoo72oXjX+N7I9Tfc+tARORtvOWeKmH2lnrJx2AS0BmNAMxXboMJ8FHLYYIJeqMJRqPA2asl8FfLEeqnspvvqUNkoDWf6lbRs+1VJZNJdkP9mor6+PBSMY/iMgPW/Nq0P9QRkes8KZDj6sqr9bWfJ/GkdqiO2wNS69atw4wZM7BixQoMGDAAb7/9NpKTk5GZmYnIyMhK6ffs2YPx48dj8eLFuO+++/DFF19g1KhROHDgALp27eqGGpC30BtN2HP4FIYAKJUHI8BwMyBV1Sp7md/bb1fYrLSn9AWezTAP3VsQUuWx31R+BAC4fGYzck6HI3z3VUzQvYD75L/ibPwjaN0yGoM63Ybw8HCE+6sh94Do9pP/SccPJ65Yf28T4Q9/lQK+Sjl+O5eP3Weuo9dr2/FiciIm3ZEAP5Xb326IiLyat9xT1VcwyrbnlOWfMsn88FXKYRICRpP5ce5aCZRRQbjmZL4nV1bRq9irqimpjw8vFfMwmAQKy/TwU8kRF+rXJD/UEZHrPCmQ48owa0eLV9R2P0/iSe3gCkmIimOOGteAAQPQr18//Otf/wIAmEwmxMXF4ZlnnsHs2bMrpR83bhxKS0uxefNm67bbb78dPXv2xIoVK6o9XlFREYKDg1FYWIigoKb37RU1jJwbZXhnzQbMv/YCfCUdSiN6wf/qQfOTD/0b6D7WfofXE4Cyglu/txoI/Hkr8O8/AJfSzduSngGG/d38752LgV/fB/zCgYKsGpdPKxS4jiD8Uz8W7WQ5+Az34v7gswhr1x8qtS/CxA2URXRHuDEPUnBLBEpa+Pr6wCT3wcWCMpzP12Bg23B0jQ2q03xVWoMR8745hpzCcuw6ddW6fc7wjph8Z2tr3nO/PoLP95632/flEZ1wb7cYxIb4gojIk3jLvYE33FPVVzDKwlcpQ7neZA5Gwfx9UqCPAgqZedJzjc4Ag8k83LxVuB+6OZnvyWQSeG5dBo7lFCI+zK/SKnrZ+Rp0jQ3GsnE9PfZDijOVP7zYT8buyoeXinmoFTIczSlCUbkePgoZOkQHIcTXHKxr6q8XEVVmeY88eqnQLpADuOecP5lbhBnrDiHIR+HwS4RSrQFF5Qa8Na6HXY/W2u7nKTyhHWp6b+DWLgs6nQ7p6emYM2eOdZtMJsPQoUORlpbmcJ+0tDTMmDHDbltycjI2bdrUkEV1iVZTiIITv0BrMMJYXZzPhTBgdUlciSXWT7Sx6lxcCWlWm8SVPOr+kprTCAGTML9+lm9P3/vhGP6h+AS+knllPH+TzcTmjuaQsg1GAcDVTPNPhc2QPdsCD5kDDPobUHgRWH0/0HcS8MN8F0psppYMiEU+/qkyf0B4Ct8CpQAOVb9vqCkCJaYuwI8XUCRdwRnREirJiHLJBwZJhSCpFJflsZBJMkgyGYJQgnJ5IApU0ThvCEWoyogbVy9DK/dHic6EGyIcvaQLuFNRjriWcUjuEgNZlAK4dBX4PRUwlOO1FiF4YkQ0zh5Lx8mLV6AXChz+PgaHvgcEJIT4qRDgq0JkVCwkuRJqSQ+5TAG1qRRlqjAYJRXkkoAEE2TCBBmMkEFABhNkMEF+86ckBORCD5NcDb0iAJJknstDws1BlZJk3gbLz5uPm+luJoHM5s1aJtmklSyDMyX7vG33x63t1g0OSA6eqPEUW7XOW3Lwr+oL4yyt0+0u1kdIjkrsPG9nc5E5r4uzzc5eJ9cboiZt5iytwzrabrXdsbrjiYq/3tpg+xZU8f2zJtcG23PF9i/JUkzJmq6KYjo5oLNyOEuv9PHHbR16OT9QM+YN91S313MwSgIgt70ZB6CUSdZtSrkEf7UCWoMRgWoFnhrUFqN7t3R4ky6TSZiYFI9FW0541Sp69dEbwFEeJeUGaA1G+KsU0BlNuFigQbBvsPWa6WwlQyJqmlydZ6+xzvmaDLOuj/08hae1gyvcGpC6du0ajEYjoqKi7LZHRUXh5MmTDvfJzc11mD43N9dheq1WC6321qosRUVFdSy1cxd+z0S7//tTg+VPDefjij3sywtv/dsvvPIOYz4F9q8EOo4AdiwE+jxu3h6fBGTvNv9bXiFTmRwIjQeeO2z+PeFuoPiyeUjfxinAfW8Bv34AhLUBii4B59OA9snm+adadACunapV3VrJrqKVLNX6e3/J5twS5kd3k4PzrdS27DfTVnydcm8+KpABaH3zMdTRu4wBQPHNBxGRi87I2wKvHHB3MTySN9xTOT5q3cjkEmQSYBTmAJWPUm69SRdCQGc0wU+lQHiAGt1aBlcZUOoTH4a5IzpZh6V5wyp69fHhxVEeepN51UO5BKjkMpRqjSjVGhBws8eBp3+oI6Ka8bRATm2HWTf14dme1g6u8PpJXRYvXowFCxY0yrHUvv44IRKsPSyaiqZU1uq4VhXJ8p91H0mSoPWLQkLKs/DZ80+gz0Tzk3kngNaDKmfRdbT5AQB9Jt2azHzIXCCmB3Dsa6DH+KqL0bLPrX/PuWBuCMvQQIMWyP/dPCH6xXQgvA2Qc9DcwyqyM7BtLtD/SSDjc8A3FIjqAhzbBPR8FDi4Bki4C5ArzPv2mwxk74YhPBHi1DagrABlt90B+dXj0IR1hvrKQeiVgZB0JfApzkZu9BAE5R+BVhEEhb4Qeigg9wlEcOFJIKwNfEylkIW0AnQl5p5hsb2A/CzAUGaexL34MtAhGSg4B4S3BS4fAkLiISCgN5igNxhxQ6ODJIzw1V0HhIBepoLMZIBW7gd/fQFkwgCTJIeADEKSbvWJkmQw95uSwyTJoDKVI0J3AdeVMXYvrbD+D5W3OyLse5Y43Uc42e6SBhodXe/ZunUUdw3UsJyNXC3L4aQm8nrWRzkFatLXrHZKlA6+IKBG05j3VPVBkgCd3mjuxSrMESlJkiCEgFHAvAKfTIKPUoYOUYF2k5g70yc+DL3iQpvEykWuqI8PL47yUMpk1kCgXCZBZzRPIm/h6R/qiKhmPC2Q0yEyEO0iA3AspxB+KjkqDl1ztHhFXfbzFJ7WDq5wa0CqRYsWkMvluHLlit32K1euIDo62uE+0dHRNUo/Z84cu+7oRUVFiIuLq2PJHYtr2wVY4MIYKvJsnVNqlt52ZT1JAjrdb37URMWooEJtDkYBtwJXbf9w6/nJN1ft6zbm1ra7XjD/vP0vlfPvNsZ8sg80P2d5C/J3UJQ2NSh2TUgAVDcfjo5bFxH1nB8ReaaY6pM0W952T1VXfio5YoJ8UKY3IthPiTvbtcBX6RdRqjVAJpMgl0nwVcrho5QhKsinRsPtmuoqeo7Ux4cXR3n4q+XwVylQrDVAKSTIJAnKm/NMNoUPdURUM54WyKntMOumPjzb09rBFbWf3bgeqFQq9OnTBzt27LBuM5lM2LFjBwYOHOhwn4EDB9qlB4Dt27c7Ta9WqxEUFGT3ICIiIvIm3nBP5TgMVnNqORDqp4RaKUe/hDD8fVRXzB3RGR9N6IOkti0QFeiDMD8VIgPV6HtzGF5THG5XHywfXq6WaCvNTWr58NI+MqDKDy+O8pAkCS1D/aCQSdDojVArJPgo5SjVGpCdr/H4D3VEVDOWQE6wrxLZ+RqUag0wmoRbz3nLMOsuscEoKjfgYoEGReUGdI0NrvJ9v7b7eQJPbIfquH2VvXXr1mHixIn48MMP0b9/f7z99ttYv349Tp48iaioKEyYMAG33XYbFi9eDMC8RPGgQYOwZMkSjBgxAmvXrsU//vEPl5co9paVdIiIiKh+eMu9gTfcU9V1lb2HesXiibvboLjM4HA4nckkvGa4XX2xrJBXWKZ32BugJqvsVczjQoEGGp0Rwb5KKGQSVAo52kcGNNk5t4ioaunZ+dZ59nQGo0ec87V932/K1wt3tkOTWmUPMC85fPXqVbz66qvIzc1Fz549sXXrVuskm+fPn4dMdqsjV1JSEr744gu8/PLLeOmll9C+fXts2rTJpRsnIiIiIm/lDfdU55aMqFVQSiED/nxnG7x0b6cq03nTcLv6Uh+TtTvLo298GP5nYCsE+iib5Ic6IqoZT5xnr7bv+035euGJ7eCM23tINTZv+RaUiIiI6gfvDWqnIV+322dvcbjqXkyQAv4qJWQyCUKSEBPogzvbt8DjA1tDpZLXaxmam/roDdCUexQQEVHdNbkeUkREREREtn5dMsLdRWh26qM3QFPuUUBERI3PrZOaExERERERERFR88OAFBERERERERERNSoGpIiIiIiIiIiIqFExIEVERERERERERI2KASkiIiIiIiIiImpUDEgREREREREREVGjUri7AI1NCAEAKCoqcnNJiIiIyBNY7gks9wjkGt5TERERka2a3lM1u4BUcXExACAuLs7NJSEiIiJPUlxcjODgYHcXo8ngPRURERE54uo9lSSa2deBJpMJOTk5CAwMhCRJNdq3qKgIcXFxuHDhAoKCghqohJ6H9W4+9W6OdQZYb9a7eWiO9Xa1zkIIFBcXIzY2FjIZZzNwVV3uqVzRHP9mPQ3bwP3YBu7HNnA/toH7NdQ9VbPrISWTydCyZcs65REUFNQsTwTWu/lojnUGWO/mhvVuPlypM3tG1Vx93FO5ojn+zXoatoH7sQ3cj23gfmwD96vveyp+DUhERERERERERI2KASkiIiIiIiIiImpUDEjVgFqtxrx586BWq91dlEbFejefejfHOgOsN+vdPDTHejfHOnsTtp/7sQ3cj23gfmwD92MbuF9DtUGzm9SciIiIiIiIiIjciz2kiIiIiIiIiIioUTEgRUREREREREREjYoBKSIiIiIiIiIialTNJiC1a9cu3H///YiNjYUkSdi0aZPd8xs3bsSwYcMQHh4OSZKQkZFRKY/y8nI8/fTTCA8PR0BAAEaPHo0rV65UeVwhBF599VXExMTA19cXQ4cOxenTp+uxZlWra73z8/PxzDPPIDExEb6+vmjVqhWmT5+OwsLCKo/7+OOPQ5Iku0dKSko9186x+mjrwYMHVyr/X/7ylyqP29Tb+ty5c5XqbHls2LDB6XHd2dZA1fXW6/WYNWsWunXrBn9/f8TGxmLChAnIycmxyyM/Px+PPvoogoKCEBISgsmTJ6OkpKTK49bm/aA+1bXe586dw+TJk9G6dWv4+vqibdu2mDdvHnQ6XZXHrc25UZ/qo70TEhIq1WHJkiVVHted7V3XOqempjo9t/ft2+f0uJ7c1gAwf/58dOzYEf7+/ggNDcXQoUOxd+9euzRN8dxubpYvX46EhAT4+PhgwIAB+O2336pMv2HDBnTs2BE+Pj7o1q0bvvvuu0YqqfeqSRusWrWq0vuCj49PI5bWu1T3PudIamoqevfuDbVajXbt2mHVqlUNXk5vV9N2cHZdzc3NbZwCe5nFixejX79+CAwMRGRkJEaNGoXMzMxq9+P1oP7Upg3q63rQbAJSpaWl6NGjB5YvX+70+TvvvBOvv/660zyef/55/N///R82bNiAn376CTk5OXjooYeqPO4bb7yBd999FytWrMDevXvh7++P5ORklJeX16k+rqprvXNycpCTk4OlS5fi6NGjWLVqFbZu3YrJkydXe+yUlBRcvnzZ+vjyyy/rVBdX1UdbA8CTTz5pV/433nijyvRNva3j4uLs6nv58mUsWLAAAQEBGD58eJXHdldbA1XXW6PR4MCBA3jllVdw4MABbNy4EZmZmXjggQfs0j366KM4duwYtm/fjs2bN2PXrl2YMmVKlcetzftBfaprvU+ePAmTyYQPP/wQx44dw7Jly7BixQq89NJL1R67pudGfaqP9gaAhQsX2tXhmWeeqfK47mzvutY5KSmp0rn9xBNPoHXr1ujbt2+Vx/bUtgaADh064F//+heOHDmCX375BQkJCRg2bBiuXr1qTdMUz+3mZN26dZgxYwbmzZuHAwcOoEePHkhOTkZeXp7D9Hv27MH48eMxefJkHDx4EKNGjcKoUaNw9OjRRi6596hpGwBAUFCQ3ftCdnZ2I5bYu1T3PldRVlYWRowYgSFDhiAjIwPPPfccnnjiCWzbtq2BS+rdatoOFpmZmXbnQmRkZAOV0Lv99NNPePrpp/Hrr79i+/bt0Ov1GDZsGEpLS53uw+tB/apNGwD1dD0QzRAA8fXXXzt8LisrSwAQBw8etNt+48YNoVQqxYYNG6zbTpw4IQCItLQ0h3mZTCYRHR0t3nzzTbt81Gq1+PLLL+tcj5qqTb0dWb9+vVCpVEKv1ztNM3HiRDFy5MjaFbQe1bbOgwYNEs8++6zLx/HWtu7Zs6f485//XGUaT2lrIaqut8Vvv/0mAIjs7GwhhBDHjx8XAMS+ffusab7//nshSZK4dOmSwzxq837QkGpTb0feeOMN0bp16yrzqem50ZBqW+/4+HixbNkyl4/jSe1dH22t0+lERESEWLhwYZX5NLW2LiwsFADEDz/8IITwjnPb2/Xv3188/fTT1t+NRqOIjY0Vixcvdph+7NixYsSIEXbbBgwYIKZOndqg5fRmNW2DlStXiuDg4EYqXfPiyvvc3/72N9GlSxe7bePGjRPJyckNWLLmxZV22LlzpwAgCgoKGqVMzU1eXp4AIH766SenaXg9aFiutEF9XQ+aTQ+pukpPT4der8fQoUOt2zp27IhWrVohLS3N4T5ZWVnIzc212yc4OBgDBgxwuk9TUFhYiKCgICgUiirTpaamIjIyEomJiXjqqadw/fr1Riph/fj888/RokULdO3aFXPmzIFGo3Ga1hvbOj09HRkZGS71hmtKbV1YWAhJkhASEgIASEtLQ0hIiF1PkaFDh0Imk1Ua/mNRm/cDd6tYb2dpwsLCqs2rJueGuzmr95IlSxAeHo5evXrhzTffhMFgcJpHU2vv6tr622+/xfXr1zFp0qRq82oqba3T6fDRRx8hODgYPXr0ANB8zu2mSqfTIT093e61lslkGDp0qNPXOi0tzS49ACQnJ7Ntaqk2bQAAJSUliI+PR1xcHEaOHIljx441RnEJPAc8Tc+ePRETE4M//vGP2L17t7uL4zUsU8NUdU/Kc6FhudIGQP1cD6qOKJBVbm4uVCpVpRv8qKgop+OFLdujoqJc3sfTXbt2Da+99lq1Qx5SUlLw0EMPoXXr1jh79ixeeuklDB8+HGlpaZDL5Y1U2tr705/+hPj4eMTGxuLw4cOYNWsWMjMzsXHjRofpvbGtP/nkE3Tq1AlJSUlVpmtKbV1eXo5Zs2Zh/PjxCAoKAmBuu4pdrBUKBcLCwqo8t2v6fuBOjupd0ZkzZ/Dee+9h6dKlVeZV03PDnZzVe/r06ejduzfCwsKwZ88ezJkzB5cvX8Zbb73lMJ+m1N6utPUnn3yC5ORktGzZssq8mkJbb968GY888gg0Gg1iYmKwfft2tGjRAkDzOLebsmvXrsFoNDq8bp48edLhPrm5uV51nXW32rRBYmIiPv30U3Tv3h2FhYVYunQpkpKScOzYsWrfU6junJ0DRUVFKCsrg6+vr5tK1rzExMRgxYoV6Nu3L7RaLT7++GMMHjwYe/fuRe/evd1dvCbNZDLhueeewx133IGuXbs6TcfrQcNxtQ3q63rAgBS5rKioCCNGjEDnzp0xf/78KtM+8sgj1n9369YN3bt3R9u2bZGamop77rmngUtad7YBt27duiEmJgb33HMPzp49i7Zt27qxZI2jrKwMX3zxBV555ZVq0zaVttbr9Rg7diyEEPjggw/cXZxG40q9L126hJSUFDz88MN48sknq8yvqZwbVdV7xowZ1n93794dKpUKU6dOxeLFi6FWqxu7qPXGlba+ePEitm3bhvXr11ebX1Noa8s8KteuXcO///1vjB07Fnv37uU8HkQNZODAgRg4cKD196SkJHTq1AkffvghXnvtNTeWjKjxJCYmIjEx0fp7UlISzp49i2XLlmHNmjVuLFnT9/TTT+Po0aP45Zdf3F2UZsvVNqiv6wGH7LkoOjoaOp0ON27csNt+5coVREdHO93HksbVfTxVcXExUlJSEBgYiK+//hpKpbJG+7dp0wYtWrTAmTNnGqiEDWvAgAEA4LT83tTWAPDVV19Bo9FgwoQJNd7XE9va8kE9Ozsb27dvt+s5Eh0dXWnyVoPBgPz8/CrP7Zq+H7hDVfW2yMnJwZAhQ5CUlISPPvqoxseo7txwB1fqbWvAgAEwGAw4d+6cw+ebQnu7WueVK1ciPDzc4UTv1fHEtvb390e7du1w++2345NPPoFCocAnn3wCwLvPbW/QokULyOXyGl03o6OjveY66wlq0wYVKZVK9OrVy6PeF7yZs3MgKCiIvaPcrH///jwP6mjatGnYvHkzdu7cWW0PG14PGkZN2qCi2l4PGJByUZ8+faBUKrFjxw7rtszMTJw/f94uMmirdevWiI6OttunqKgIe/fudbqPJyoqKsKwYcOgUqnw7bff1mo5x4sXL+L69euIiYlpgBI2vIyMDABwWn5vaWuLTz75BA888AAiIiJqvK+ntbXlg/rp06fxww8/IDw83O75gQMH4saNG0hPT7du+/HHH2EymawfwCuqzftBY6uu3oC5Z9TgwYPRp08frFy5EjJZzS8J1Z0bjc2VeleUkZEBmUzmtFeNp7e3q3UWQmDlypWYMGFCjb9UADyvrR0xmUzQarUAvPfc9hYqlQp9+vSxe61NJhN27Njh9LUeOHCgXXoA2L59O9umlmrTBhUZjUYcOXLEo98XvAnPAc+VkZHB86CWhBCYNm0avv76a/z4449o3bp1tfvwXKhftWmDimp9PajztOhNRHFxsTh48KA4ePCgACDeeustcfDgQesqRNevXxcHDx4UW7ZsEQDE2rVrxcGDB8Xly5etefzlL38RrVq1Ej/++KPYv3+/GDhwoBg4cKDdcRITE8XGjRutvy9ZskSEhISIb775Rhw+fFiMHDlStG7dWpSVlTWJehcWFooBAwaIbt26iTNnzojLly9bHwaDwWG9i4uLxcyZM0VaWprIysoSP/zwg+jdu7do3769KC8v9/g6nzlzRixcuFDs379fZGVliW+++Ua0adNG3H333XbH8ba2tjh9+rSQJEl8//33Do/jSW1tKYOzeut0OvHAAw+Ili1bioyMDLu/X61Wa80jJSVF9OrVS+zdu1f88ssvon379mL8+PHW5y9evCgSExPF3r17rdtceT/w5HpfvHhRtGvXTtxzzz3i4sWLdmmc1dvVc8OT671nzx6xbNkykZGRIc6ePSs+++wzERERISZMmOC03kK4t73r429cCCF++OEHAUCcOHGi0jGaWluXlJSIOXPmiLS0NHHu3Dmxf/9+MWnSJKFWq8XRo0eteTTFc7s5Wbt2rVCr1WLVqlXi+PHjYsqUKSIkJETk5uYKIYR47LHHxOzZs63pd+/eLRQKhVi6dKk4ceKEmDdvnlAqleLIkSPuqkKTV9M2WLBggdi2bZs4e/asSE9PF4888ojw8fERx44dc1cVmrTq7t1mz54tHnvsMWv633//Xfj5+YkXX3xRnDhxQixfvlzI5XKxdetWd1XBK9S0HZYtWyY2bdokTp8+LY4cOSKeffZZIZPJrKu8Us089dRTIjg4WKSmptrdx2g0GmsaXg8aVm3aoL6uB80mIGVZnrPiY+LEiUII87KFjp6fN2+eNY+ysjLx17/+VYSGhgo/Pz/x4IMPVvowD0CsXLnS+rvJZBKvvPKKiIqKEmq1Wtxzzz0iMzOzEWpsVtd6O9sfgMjKynJYb41GI4YNGyYiIiKEUqkU8fHx4sknn7Te3Hh6nc+fPy/uvvtuERYWJtRqtWjXrp148cUXRWFhod1xvK2tLebMmSPi4uKE0Wh0eBxPamshqq53VlaW07/fnTt3WvO4fv26GD9+vAgICBBBQUFi0qRJori42Pq8JR/bfVx5P/Dkejv7e7D9nqJivV09Nzy53unp6WLAgAEiODhY+Pj4iE6dOol//OMfdgFUT2vv+vgbF0KI8ePHi6SkJIfHaGptXVZWJh588EERGxsrVCqViImJEQ888ID47bff7PJoiud2c/Pee++JVq1aCZVKJfr37y9+/fVX63ODBg2yXsMs1q9fLzp06CBUKpXo0qWL2LJlSyOX2PvUpA2ee+45a9qoqChx7733igMHDrih1N6hunu3iRMnikGDBlXap2fPnkKlUok2bdrY3YtS7dS0HV5//XXRtm1b4ePjI8LCwsTgwYPFjz/+6J7CewFn9zG2f9u8HjSs2rRBfV0PpJsFICIiIiIiIiIiahScQ4qIiIiIiIiIiBoVA1JERERERERERNSoGJAiIiIiIiIiIqJGxYAUERERERERERE1KgakiIiIiIiIiIioUTEgRUREREREREREjYoBKSIiIiIiIiIialQMSBERERERERERUaNiQIqIiIiIiLze/PnzERUVBUmSsGnTJncXxyNcv34dkZGROHfunLuLUmPnzp2DJEnIyMio97wTEhLw9ttvAwB0Oh0SEhKwf//+KvdJTU2FJEm4ceNGvZenvg0ePBjPPfecu4tBbrJr1y7cf//9iI2NrdX74fz58yFJUqWHv79/jcvCgBQReb3HH3/c+kapVCrRunVr/O1vf8OKFSscvpnaPpriDRoREZEnsL3+SpKE8PBwpKSk4PDhw/V2jPnz56Nnz57Vpjtx4gQWLFiADz/8EJcvX8bw4cPrrQye5vHHH8eoUaNcSrto0SKMHDkSCQkJDVqmuqpJneqbSqXCzJkzMWvWrCrTJSUl4fLlywgODnY5b3fVa+PGjXjttdesv9sG4Mj7lZaWokePHli+fHmt9p85cyYuX75s9+jcuTMefvjhGufFgBQRNQspKSm4fPkyfv/9dyxbtgwffvghsrKy7N5IBw4ciCeffNJuW1xcnLuLTkRE1GRZrr+XL1/Gjh07oFAocN999zV6Oc6ePQsAGDlyJKKjo6FWqyul0el0jV0st9JoNPjkk08wefJkdxfF4z366KP45ZdfcOzYMadpVCoVoqOjIUlSI5asdsLCwhAYGOjuYpCbDB8+HH//+9/x4IMPOnxeq9Vi5syZuO222+Dv748BAwYgNTXV+nxAQACio6OtjytXruD48eO1ei9hQIqImgW1Wo3o6GjExcVh1KhRGDp0KLZv3273ZqpSqeDn52e3TS6Xu7voRERETZbl+hsdHY2ePXti9uzZuHDhAq5evWpNc+HCBYwdOxYhISEICwvDyJEj7Xoop6amon///vD390dISAjuuOMOZGdnY9WqVViwYAEOHTpk7YW1atWqSmWYP38+7r//fgCATCazBgwsvVMWLVqE2NhYJCYmAgDWrFmDvn37IjAwENHR0fjTn/6EvLw8uzy//fZbtG/fHj4+PhgyZAhWr15tN1xr1apVCAkJwebNm5GYmAg/Pz+MGTMGGo0Gq1evRkJCAkJDQzF9+nQYjUZrvtV9ELTku23bNnTq1AkBAQHWoJ+lrqtXr8Y333xjfU1s97f13XffQa1W4/bbb7duKygowKOPPoqIiAj4+vqiffv2WLlyJYBbQ+TWr1+Pu+66C76+vujXrx9OnTqFffv2oW/fvggICMDw4cPt2tdkMmHhwoVo2bIl1Go1evbsia1bt9qV5ciRI/jDH/4AX19fhIeHY8qUKSgpKXGpTr///juGDBkCPz8/9OjRA2lpaXZ5//LLL9byxsXFYfr06SgtLbU+n5eXh/vvvx++vr5o3bo1Pv/880qvVWhoKO644w6sXbvW4WsJVB6yV5e2qu6csPztLl26FDExMQgPD8fTTz8NvV5vTfP+++9b/0ajoqIwZswY63O2Q/YGDx6M7OxsPP/889ZylJaWIigoCF999ZVdHTdt2gR/f38UFxc7fR2o6Zs2bRrS0tKwdu1aHD58GA8//DBSUlJw+vRph+k//vhjdOjQAXfddVeNj8WAFBE1O0ePHsWePXugUqncXRQiIqJmo6SkBJ999hnatWuH8PBwAIBer0dycjICAwPx888/Y/fu3dYP7jqdDgaDAaNGjcKgQYNw+PBhpKWlYcqUKZAkCePGjcMLL7yALl26WHthjRs3rtJxZ86caQ2qWNJZ7NixA5mZmdi+fTs2b95sLdNrr72GQ4cOYdOmTTh37hwef/xx6z5ZWVkYM2YMRo0ahUOHDmHq1KmYO3dupeNqNBq8++67WLt2LbZu3YrU1FQ8+OCD+O677/Ddd99hzZo1+PDDD+0+9LvyQVCj0WDp0qVYs2YNdu3ahfPnz2PmzJnWuo4dO9auZ1pSUpLD9vj555/Rp08fu22vvPIKjh8/ju+//x4nTpzABx98gBYtWtilmTdvHl5++WUcOHAACoUCf/rTn/C3v/0N77zzDn7++WecOXMGr776qjX9O++8g3/+859YunQpDh8+jOTkZDzwwAPWOpWWliI5ORmhoaHYt28fNmzYgB9++AHTpk1zqU5z587FzJkzkZGRgQ4dOmD8+PEwGAwAzD3jUlJSMHr0aBw+fBjr1q3DL7/8Ys0bMAd3Lly4gJ07d+Krr77C+++/XykACQD9+/fHzz//7PC1dKY2bVXdOWGxc+dOnD17Fjt37sTq1auxatUqa0B2//79mD59OhYuXIjMzExs3boVd999t8Mybty4ES1btsTChQut5fD398cjjzxiPW8sVq5ciTFjxrB3lRc7f/48Vq5ciQ0bNuCuu+5C27ZtMXPmTNx5552V/h4AoLy8HJ9//nnte1oKIiIvN3HiRCGXy4W/v79Qq9UCgJDJZOKrr76ySzdo0CDx7LPPuqeQREREXsb2+uvv7y8AiJiYGJGenm5Ns2bNGpGYmChMJpN1m1arFb6+vmLbtm3i+vXrAoBITU11eIx58+aJHj16VFuWr7/+WlT86DNx4kQRFRUltFptlfvu27dPABDFxcVCCCFmzZolunbtapdm7ty5AoAoKCgQQgixcuVKAUCcOXPGmmbq1KnCz8/Pmo8QQiQnJ4upU6cKIYTIzs4WcrlcXLp0yS7ve+65R8yZM8dpvsuXLxdRUVF29Ro5cmSVdRJCiJEjR4o///nPdtvuv/9+MWnSJIfps7KyBADx8ccfW7d9+eWXAoDYsWOHddvixYtFYmKi9ffY2FixaNEiu7z69esn/vrXvwohhPjoo49EaGioKCkpsT6/ZcsWIZPJRG5urtM6OSrPsWPHBABx4sQJIYQQkydPFlOmTLHb7+effxYymUyUlZWJzMxMAUD89ttv1udPnDghAIhly5bZ7ffOO++IhIQEh6+NEELs3Lmz2r8BV9qqunPCsl98fLwwGAzWNA8//LAYN26cEEKI//3f/xVBQUGiqKjIYVkr3vPGx8dXqu/evXuFXC4XOTk5Qgghrly5IhQKhdNzkZomAOLrr7+2/r5582YBwPq+bXkoFAoxduzYSvt/8cUXQqFQWM/VmlLULoxFRNS0DBkyBB988AFKS0uxbNkyKBQKjB492t3FIiIi8mqW6y9gHg72/vvvY/jw4fjtt98QHx+PQ4cO4cyZM5V6XJSXl+Ps2bMYNmwYHn/8cSQnJ+OPf/wjhg4dirFjxyImJqZeytetW7dKPabT09Mxf/58HDp0CAUFBTCZTADMPQc6d+6MzMxM9OvXz26f/v37V8rbz88Pbdu2tf4eFRWFhIQEBAQE2G2z9MY5cuQIjEYjOnToYJePVqu19ihzlG9MTIzDHj3VKSsrg4+Pj922p556CqNHj8aBAwcwbNgwjBo1qlIPq+7du9uVHzC/jo7qVFRUhJycHNxxxx12edxxxx04dOgQAPOE8z169LBboeuOO+6AyWRCZmam9RjO2JbH8neRl5eHjh074tChQzh8+LDdMDwhBEwmE7KysnDq1CkoFAq7nmIdO3ZESEhIpeP4+vpCo9FUWZaKatNW1Z0TFl26dLGbWiImJgZHjhwBAPzxj39EfHw82rRpg5SUFKSkpODBBx+En5+fy2Xv378/unTpgtWrV2P27Nn47LPPEB8f77SnFXmHkpISyOVypKenV5q6xPa9y+Ljjz/GfffdV+156gwDUkTULPj7+6Ndu3YAgE8//RQ9evTgRJ5EREQNzPb6C5g/vAQHB+Pf//43/v73v6OkpAR9+vRxOG9PREQEAPMwoenTp2Pr1q1Yt24dXn75ZWzfvt1u7qO6lM+WZfhYcnIyPv/8c0REROD8+fNITk6u8aTnSqXS7nfLar8Vt1kCXq5+EHSUh7mjQ820aNECBQUFdtuGDx+O7OxsfPfdd9i+fTvuuecePP3001i6dKnD41vm46q4zVKnxuCoPLav6dSpUzF9+vRK+7Vq1QqnTp1y+Tj5+fnWv8nalM1SvuraypVzwlnelnoHBgbiwIEDSE1NxX//+1+8+uqrmD9/Pvbt2+cw2ObME088geXLl2P27NlYuXIlJk2a1CQmbafa69WrF4xGI/Ly8qqdEyorKws7d+7Et99+W+vjcQ4pImp2ZDIZXnrpJbz88ssoKytzd3GIiIiaDUmSIJPJrNff3r174/Tp04iMjES7du3sHsHBwdb9evXqhTlz5mDPnj3o2rUrvvjiCwDmlc1sJwWvq5MnT+L69etYsmQJ7rrrLnTs2LFSj5bExETs37/fbtu+ffvqfGzbD4IVX4vo6GiX83H1NenVqxeOHz9eaXtERAQmTpyIzz77DG+//TY++uijGtXDVlBQEGJjY7F792677bt370bnzp0BAJ06dcKhQ4fsJhrfvXs3ZDKZdaL52rZz7969cfz48UqvZ7t27aBSqdCxY0cYDAakp6db98nMzLROTG7r6NGj6NWrV43LUBVH9XL1nKiOQqHA0KFD8cYbb+Dw4cM4d+4cfvzxR5fLAQD/8z//g+zsbLz77rs4fvw4Jk6cWLMKkkcqKSlBRkYGMjIyAJgDSxkZGTh//jw6dOiARx99FBMmTMDGjRuRlZWF3377DYsXL8aWLVvs8vn0008RExOD4cOH17osDEgRUbP08MMPQy6XY/ny5e4uChERkdfSarXIzc1Fbm4uTpw4gWeeeQYlJSXWVe8effRRtGjRAiNHjsTPP/+MrKwspKamYvr06bh48SKysrIwZ84cpKWlITs7G//9739x+vRpdOrUCQCQkJBg/TB17do1aLXaOpW3VatWUKlUeO+99/D777/j22+/xWuvvWaXZurUqTh58iRmzZqFU6dOYf369dbJpOvSe6QmHwSrkpCQgMOHDyMzMxPXrl2zW3nNVnJyMo4dO2bXS+rVV1/FN998gzNnzuDYsWPYvHmz9bWurRdffBGvv/461q1bh8zMTMyePRsZGRl49tlnAZj/Bnx8fDBx4kQcPXoUO3fuxDPPPIPHHnvMOgzI1TpVNGvWLOzZswfTpk1DRkYGTp8+jW+++cY6qXliYiJSUlIwdepU7N27F+np6XjiiSfg6+tbKa+ff/4Zw4YNq9NrUZGjelV3Trhi8+bNePfdd5GRkYHs7Gz85z//gclksgb4HJVj165duHTpEq5du2bdHhoaioceeggvvvgihg0bhpYtW9ZLvcm99u/fj169elkDrDNmzECvXr2sixGsXLkSEyZMwAsvvIDExESMGjUK+/btQ6tWrax5mEwmrFq1Co8//nidViVnQIqImiWFQoFp06bhjTfesPtGjoiIiOrP1q1bERMTg5iYGAwYMMC6itrgwYMBmOfY2bVrF1q1aoWHHnoInTp1wuTJk1FeXo6goCD4+fnh5MmTGD16NDp06IApU6bg6aefxtSpUwEAo0ePRkpKCoYMGYKIiAh8+eWXdSpvREQEVq1ahQ0bNqBz585YsmSJ3XA1AGjdujW++uorbNy4Ed27d8cHH3xgXWVPrVbX6fiufBCszpNPPonExET07dsXERERlXonWXTr1g29e/fG+vXrrdtUKhXmzJmD7t274+6774ZcLsfatWvrVKfp06djxowZeOGFF9CtWzds3boV3377Ldq3bw/A/Dewbds25Ofno1+/fhgzZgzuuece/Otf/6pxnSrq3r07fvrpJ5w6dQp33XWX9UN3bGysNc3KlSsRGxuLQYMG4aGHHsKUKVMQGRlpl09aWhoKCwsxZsyYOr0WFTmqV3XnhCtCQkKwceNG/OEPf0CnTp2wYsUKfPnll+jSpYvD9AsXLsS5c+fQtm3bSsMSJ0+eDJ1Ohz//+c91ri95hsGDB0MIUelhCawrlUosWLAAWVlZ0Ol0yMnJwcaNG+3mipPJZLhw4QIWLVpUp7JIojYDjomIiIiIiAgAsGjRIqxYsQIXLlxwd1FqZMuWLXjxxRdx9OhRyGTsq+DMuHHj0KNHD7z00kvuLkqjW7NmDZ5//nnk5ORUWgCAqK44qTkREREREVENvP/+++jXrx/Cw8Oxe/duvPnmm9ZhYE3JiBEjcPr0aVy6dAlxcXHuLo5H0ul06NatG55//nl3F6VRaTQaXL58GUuWLMHUqVMZjKIGwR5SRERERERENfD8889j3bp1yM/PR6tWrfDYY49hzpw5UCj4fT95h/nz52PRokW4++678c0339it9EhUXxiQIiIiIiIiIiKiRsWBwkRERERERERE1KgYkCIiIiIiIiIiokbFgBQRERERERERETUqBqSIiIiIiIiIiKhRMSBFRERERERERESNigEpIiIiIiIiIiJqVAxIERERERERERFRo2JAioiIiIiIiIiIGhUDUkRERERERERE1Kj+H2mmedraDaLEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWIJJREFUeJzt3Xt8z/X///H7e+cDs2FsY4yRQ04haxLKshUfoZLS1+EjIlNIDjmfUpRQJD6EIj5JKqeIUM4RUchpjdjmtM02ttlevz/89v70toOtt3nvPbfr5fK+XLyfr+fr+X68Xs/3Xt6P1+v1fL5MhmEYAgAAAAArONg6AAAAAAD2j8QCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCQLHTvXt3lShRwtZh2FzLli3VsmVLW4dxx2zZskUmk0lbtmy5o+2aTCaNHTv2jrZ5J2VmZqpOnTqaNGmSrUPJZv369WrQoIHc3NxkMpkUHx9v65CKtM6dO6tTp062DgMoNCQWwD3o5MmTevnll1W1alW5ubnJy8tLDz/8sGbMmKFr166Z623YsEE9e/ZUnTp15OjoqKCgoBzbO3funF588UXVqFFDJUuWlLe3t5o0aaJFixbJMIy7tFUFl5KSorFjx97xH6oFsWPHDo0dO5YfZIVs7dq1RTp5yMvnn3+uM2fOKDIy0tahWLh06ZI6deokd3d3zZo1S59++qk8PT1tHZbNnTt3TmPHjtWBAweyLRs6dKi+/PJLHTx48O4HBtwFTrYOAMDdtWbNGj377LNydXVV165dVadOHaWlpemnn37SG2+8od9++01z586VJC1dulTLly9Xw4YNFRAQkGubFy9e1NmzZ/XMM8+oUqVKSk9P18aNG9W9e3cdO3ZMb7311t3avAJJSUnRuHHjJMlmZ/Z37NihcePGqXv37vL29rZJDPeCtWvXatasWTkmF9euXZOTU9H973Dq1Knq3LmzSpUqZetQLOzdu1dXr17VhAkTFBYWZutwioxz585p3LhxCgoKUoMGDSyWPfDAA2rcuLHee+89LV682DYBAoWo6B5JAdxxp0+fVufOnVW5cmVt3rxZ/v7+5mX9+vXTiRMntGbNGnPZW2+9pXnz5snZ2Vlt27bV4cOHc2y3Xr162c76R0ZG6l//+pdmzpypCRMmyNHRsVC26W5KTk7mjOw/kJKSIg8Pj2zlN27cUGZmplxcXGwQ1f+4ubnZ9PPz8ssvv+jgwYN67733bPL5ufWdJMXFxUlSvhLivNq513Tq1EljxozR7NmzuWUTxQ63QgH3kClTpigpKUnz58+3SCqyVKtWTa+99pr5fUBAgJydnf/x5wUFBSklJUVpaWm3rfvzzz8rPDxcZcuWlbu7u6pUqaJ///vf5uW53V8fFRUlk8mkhQsXZmvz1KlTCg8Pl6enpwICAjR+/HjzrVlRUVHy9fWVJI0bN04mk8niXvuscRonT57Uk08+qZIlS6pLly6SpB9//FHPPvusKlWqJFdXVwUGBmrgwIEWt5FlOXr0qDp16iRfX1+5u7urRo0aGjFihCRp7NixeuONNyRJVapUMccQFRVlXv+zzz5To0aN5O7urtKlS6tz5846c+ZMts+ZO3eugoOD5e7uriZNmujHH3+87T7/u88++0xNmjSRh4eHfHx81Lx5c23YsMGizuzZs3X//ffL1dVVAQEB6tevX7ZbuFq2bKk6depo3759at68uTw8PPTmm2+a++ndd9/V9OnTFRwcLFdXV/3+++/m/fTMM8+odOnScnNzU+PGjfXNN9/cNu789EX37t01a9YsSTLvY5PJZF6e0xiLX375RU888YS8vLxUokQJtWrVSrt27bKos3DhQplMJm3fvl2DBg2Sr6+vPD091aFDB124cMGi7u2+37lZtWqVXFxc1Lx5c4vysWPHymQymb9fXl5eKlOmjF577TVdv349Wzv5+R7l1nc5admypbp16yZJevDBB2UymdS9e/fbtvP111+rTZs2CggIkKurq4KDgzVhwgRlZGRk+4xZs2apatWqFt/pW8cNZR0X/vvf/2rcuHGqUKGCSpYsqWeeeUYJCQlKTU3VgAEDVK5cOZUoUUI9evRQamqqVfvn999/16OPPioPDw9VqFBBU6ZMsYjnwQcflCT16NHD/F37+/Hp8ccfV3JysjZu3JjjvgXsGVcsgHvIt99+q6pVq6pp06aF0v61a9eUnJyspKQkbd26VZ988olCQ0Pl7u6e53pxcXFq3bq1fH19NWzYMHl7eysqKkorV678x7FkZGQoIiJCDz30kKZMmaL169drzJgxunHjhsaPHy9fX1999NFH6tu3rzp06KCOHTtKunn1JcuNGzcUHh6uZs2a6d133zWfcf3iiy+UkpKivn37qkyZMtqzZ48++OADnT17Vl988YV5/V9//VWPPPKInJ2d1bt3bwUFBenkyZP69ttvNWnSJHXs2FF//PGHPv/8c73//vsqW7asJJkTnkmTJmnUqFHq1KmTXnrpJV24cEEffPCBmjdvrl9++cV8pnj+/Pl6+eWX1bRpUw0YMECnTp1Su3btVLp0aQUGBt52X40bN05jx45V06ZNNX78eLm4uGj37t3avHmzWrduLenmD9lx48YpLCxMffv21bFjx/TRRx9p79692r59u0UCeunSJT3xxBPq3LmzXnzxRZUvX9687JNPPtH169fVu3dvubq6qnTp0vrtt9/08MMPq0KFCho2bJg8PT313//+V+3bt9eXX36pDh065Bp7fvri5Zdf1rlz57Rx40Z9+umnt90fv/32mx555BF5eXlpyJAhcnZ21scff6yWLVtq69atCgkJsajfv39/+fj4aMyYMYqKitL06dMVGRmp5cuXS7Lu+71jxw7VqVMn1wS/U6dOCgoK0uTJk7Vr1y7NnDlTV65csbjNJr/fIynvvvu7ESNGqEaNGpo7d67Gjx+vKlWqKDg4+LbtLFy4UCVKlNCgQYNUokQJbd68WaNHj1ZiYqKmTp1qXv+jjz5SZGSkHnnkEQ0cOFBRUVFq3769fHx8VLFixWzxTJ48We7u7ho2bJhOnDihDz74QM7OznJwcNCVK1c0duxY7dq1SwsXLlSVKlU0evTof7R/rly5ooiICHXs2FGdOnXSihUrNHToUNWtW1dPPPGEatWqpfHjx2v06NHq3bu3HnnkEUmyOObWrl1b7u7u2r59e57fbcAuGQDuCQkJCYYk46mnnvpH67dp08aoXLlynnUmT55sSDK/WrVqZURHR9+27a+++sqQZOzduzfXOj/88IMhyfjhhx8syk+fPm1IMj755BNzWbdu3QxJRv/+/c1lmZmZRps2bQwXFxfjwoULhmEYxoULFwxJxpgxY7J9XlYbw4YNy7YsJSUlW9nkyZMNk8lk/Pnnn+ay5s2bGyVLlrQoy4oly9SpUw1JxunTpy3qREVFGY6OjsakSZMsyg8dOmQ4OTmZy9PS0oxy5coZDRo0MFJTU8315s6da0gyWrRokS3Wvzt+/Ljh4OBgdOjQwcjIyMgxzri4OMPFxcVo3bq1RZ0PP/zQkGQsWLDAXNaiRQtDkjFnzhyLtrL6ycvLy4iLi7NY1qpVK6Nu3brG9evXLT67adOmRvXq1c1lOX0H8tsX/fr1M3L7L+/W70D79u0NFxcX4+TJk+ayc+fOGSVLljSaN29uLvvkk08MSUZYWJhFnw4cONBwdHQ04uPjDcPI3/c7NxUrVjSefvrpbOVjxowxJBnt2rWzKH/llVcMScbBgwcNw8j/98gwcu+73GRt/63blVc7OfXXyy+/bHh4eJj7PzU11ShTpozx4IMPGunp6eZ6CxcuzPadzvpO1KlTx0hLSzOXP//884bJZDKeeOIJi88KDQ21OI79k/2zePFic1lqaqrh5+dn0Ud79+7Ndky61X333ZctNqA44FYo4B6RmJgoSSpZsmShfcbzzz+vjRs3aunSpXrhhRckKcfbg26VdUZw9erVSk9Pv2Px/H0WHZPJpMjISKWlpen777/Pdxt9+/bNVvb3KzDJycm6ePGimjZtKsMw9Msvv0iSLly4oG3btunf//63KlWqZLH+32/Dyc3KlSuVmZmpTp066eLFi+aXn5+fqlevrh9++EHSzVts4uLi1KdPH4uxCt27d8/XYN9Vq1YpMzNTo0ePloOD5X8JWXF+//33SktL04ABAyzq9OrVS15eXhbjciTJ1dVVPXr0yPHznn76afMVGUm6fPmyNm/erE6dOunq1avm7bx06ZLCw8N1/Phx/fXXX7nGn5++KIiMjAxt2LBB7du3V9WqVc3l/v7+euGFF/TTTz+Z/5ay9O7d26JPH3nkEWVkZOjPP/+UZN33+9KlS/Lx8cl1eb9+/Sze9+/fX9LNwepS/r9HWfLqu4LIrZ2/91dWfz/yyCNKSUnR0aNHJd38Tl+6dEm9evWyGFTfpUuXXPdF165dLa7qhISEyDCMbLebhYSE6MyZM7px44akgu+fEiVK6MUXXzS/d3FxUZMmTXTq1Kn87hpJko+Pjy5evFigdQB7wK1QwD3Cy8tL0s3/zAtL5cqVVblyZUk3k4zevXsrLCxMx44dk7u7u5KSkpSUlGSu7+joKF9fX7Vo0UJPP/20xo0bp/fff18tW7ZU+/bt9cILL8jV1fUfxeLg4GDxw1CS7rvvPkmyGMOQFycnpxxvu4iOjtbo0aP1zTff6MqVKxbLEhISJMn8Q6NOnToFDV2SdPz4cRmGoerVq+e4POtHVNaP11vrOTs7Z9v+nJw8eVIODg6qXbt2rnWyPqNGjRoW5S4uLqpatap5eZYKFSrkOiC7SpUqFu9PnDghwzA0atQojRo1Ksd14uLiVKFChRyX5acvCuLChQtKSUnJtq2SVKtWLWVmZurMmTO6//77zeW3Jo5ZP36z4rH2+23kMWXzrf0eHBwsBwcH83c8v9+jLHn1XUHk1s5vv/2mkSNHavPmzdkStKz+yvo+VatWzWK5k5NTrlNe39oHWUn1rbcClipVSpmZmUpISFCZMmUKvH8qVqyY7cSAj4+Pfv311xzXz41hGPk6wQDYGxIL4B7h5eWlgICAXGd2KgzPPPOM5s2bp23btik8PFzvvvuueXpX6WYikjWod8WKFdq1a5e+/fZbfffdd/r3v/+t9957T7t27VKJEiVy/U84p0Gfd4qrq2u2s/gZGRl6/PHHdfnyZQ0dOlQ1a9aUp6en/vrrL3Xv3l2ZmZl35LMzMzNlMpm0bt26HGfUKsqzyeQ1pubWZVn7a/DgwQoPD89xnVt/YGa5W31xO7nNeJaVEOTn+52bMmXKZEuY8nLr30lBv0e3Gw+VXzm1Ex8frxYtWsjLy0vjx49XcHCw3NzctH//fg0dOtSq/sqtD27XNwXdP7drL7+uXLmSazID2DMSC+Ae0rZtW82dO1c7d+5UaGhooX9e1m1QWWciu3btqmbNmpmX3/rj46GHHtJDDz2kSZMmaenSperSpYuWLVuml156yXwW+NZZiG49W54lMzNTp06dMl+lkKQ//vhDksxnPf/JGcNDhw7pjz/+0KJFi9S1a1dz+a0zvGRdLbhdIpdbDMHBwTIMQ1WqVLHYhltlXSE6fvy4HnvsMXN5enq6Tp8+rfr16+f5+cHBwcrMzNTvv/+ebc79Wz/j2LFjFldB0tLSdPr0aaueYZDVnrOzc4HbyW9fSPnva19fX3l4eOjYsWPZlh09elQODg75GhCfk7y+37mpWbOmTp8+nevy48ePW1wFOnHihDIzM83f8fx+j+6GLVu26NKlS1q5cqXFLFe3bl/W9+3EiRN69NFHzeU3btxQVFSUxQQL1iqM/XO779qNGzd05swZtWvX7o58HlCUMMYCuIcMGTJEnp6eeumllxQbG5tt+cmTJzVjxowCt3vr1JpZ5s+fL5PJpIYNG0q6+SMyLCzM/Hr44Ycl3Tx7d+sZv6wfuVlTQ1auXFmOjo7atm2bRb3Zs2fnGteHH35o/rdhGPrwww/l7OysVq1aSZJ5lqeCPPU664zl3+M1DCPbfvP19VXz5s21YMECRUdHWyz7+7pZz8W4NYaOHTvK0dFR48aNy7ZvDMPQpUuXJEmNGzeWr6+v5syZYzGt78KFC/O1Xe3bt5eDg4PGjx+f7Yxx1ueGhYXJxcVFM2fOtIhl/vz5SkhIUJs2bW77ObkpV66cWrZsqY8//ljnz5/Ptjy375aU/76Qct/PObXZunVrff311xa3zMXGxmrp0qVq1qyZ+bbC/MrP9zs3oaGhOnz4cK71sqbRzfLBBx9Ikp544glJ+f8e3Q059VdaWlq2v+HGjRurTJkymjdvnnkshCQtWbKkQFdv8qMw9s/tvmu///67rl+/Xmiz8wG2xBUL4B4SHByspUuX6rnnnlOtWrUsnry9Y8cOffHFF+a56KWb06VmPUvgxIkTSkhI0MSJEyVJ9evX17/+9S9JN6dr3L59uyIiIlSpUiVdvnxZX375pfbu3av+/fvneitLlkWLFmn27Nnq0KGDgoODdfXqVc2bN09eXl568sknJd28N/rZZ5/VBx98IJPJpODgYK1evdr8kK5bubm5af369erWrZtCQkK0bt06rVmzRm+++aZ58LC7u7tq166t5cuX67777lPp0qVVp06dPMdF1KxZU8HBwRo8eLD++usveXl56csvv8zxB8/MmTPVrFkzNWzYUL1791aVKlUUFRWlNWvW6MCBA5KkRo0aSbo5fWfnzp3l7Oysf/3rXwoODtbEiRM1fPhw81SbJUuW1OnTp/XVV1+pd+/eGjx4sJydnTVx4kS9/PLLeuyxx/Tcc8/p9OnT+uSTT/I1xqJatWoaMWKEJkyYoEceeUQdO3aUq6ur9u7dq4CAAE2ePFm+vr4aPny4xo0bp4iICLVr107Hjh3T7Nmz9eCDD1oMZv0nZs2apWbNmqlu3brq1auXqlatqtjYWO3cuVNnz57VwYMHc1yvIH2RtZ9fffVVhYeHy9HRUZ07d86x3YkTJ2rjxo1q1qyZXnnlFTk5Oenjjz9WamqqxTML8is/3+/cPPXUU5owYYK2bt1qnvr3706fPq127dopIiJCO3fu1GeffaYXXnjBfKUqv9+ju6Fp06by8fFRt27d9Oqrr8pkMunTTz/N9oPexcVFY8eOVf/+/fXYY4+pU6dOioqK0sKFCxUcHHxHxyYUxv4JDg6Wt7e35syZo5IlS8rT01MhISHmK0sbN26Uh4eHHn/88Tu2HUCRUejzTgEocv744w+jV69eRlBQkOHi4mKULFnSePjhh40PPvjAYsrPrOkkc3p169bNXG/Dhg1G27ZtjYCAAMPZ2dnc3ieffGIxDWdu9u/fbzz//PNGpUqVDFdXV6NcuXJG27ZtjZ9//tmi3oULF4ynn37a8PDwMHx8fIyXX37ZOHz4cI7TzXp6ehonT540WrdubXh4eBjly5c3xowZk21K1R07dhiNGjUyXFxcLKYdzWojJ7///rsRFhZmlChRwihbtqzRq1cv4+DBgzlOMXn48GGjQ4cOhre3t+Hm5mbUqFHDGDVqlEWdCRMmGBUqVDAcHByyTT375ZdfGs2aNTM8PT0NT09Po2bNmka/fv2MY8eOWbQxe/Zso0qVKoarq6vRuHFjY9u2bUaLFi1uO91slgULFhgPPPCA4erqavj4+BgtWrQwNm7caFHnww8/NGrWrGk4Ozsb5cuXN/r27WtcuXLFok6LFi2M+++/P1v7WdPNTp06NcfPP3nypNG1a1fDz8/PcHZ2NipUqGC0bdvWWLFihblOTtPN5rcvbty4YfTv39/w9fU1TCaTxdSzf+/3LPv37zfCw8ONEiVKGB4eHsajjz5q7Nixw6JObtOt3hpnfr/fualXr57Rs2dPi7Ks6WZ///1345lnnjFKlixp+Pj4GJGRkca1a9eytZGf71FufZebvKabza2d7du3Gw899JDh7u5uBAQEGEOGDDG+++67HKeSnjlzplG5cmXD1dXVaNKkibF9+3ajUaNGRkREhLlO1r7+4osv8hVb1n7LmnL6Tuyfbt26ZZuK++uvvzZq165tODk5ZfsuhoSEGC+++GKO+wewdybDKOCIIwAAcNd8+umn6tevn6Kjo81T12Y9sPDChQvmBysWd5mZmfL19VXHjh01b948W4fzjxw4cEANGzbU/v37cx3TBNgzxlgAAFCEdenSRZUqVco2nqI4u379erZbpBYvXqzLly+rZcuWtgnqDnj77bf1zDPPkFSg2GKMBQAARZiDg8NdnSa6KNi1a5cGDhyoZ599VmXKlNH+/fs1f/581alTR88++6ytw/vHli1bZusQgEJFYgEAAIqUoKAgBQYGaubMmbp8+bJKly6trl276u23374jD/ADUDgYYwEAAADAaoyxAAAAAGA1EgsAAAAAVmOMxR2QmZmpc+fOqWTJknf0wT0AAACALRmGoatXryogIEAODnlfkyCxuAPOnTunwMBAW4cBAAAAFIozZ86oYsWKedYhsbgDSpYsKenmDvfy8rJxNAAAAMCdkZiYqMDAQPPv3byQWNwBWbc/eXl5kVgAAACg2MnP7f52NXh727Zt+te//qWAgACZTCatWrXqtuts2bJFDRs2lKurq6pVq6aFCxdmqzNr1iwFBQXJzc1NISEh2rNnz50PHgAAACjG7CqxSE5OVv369TVr1qx81T99+rTatGmjRx99VAcOHNCAAQP00ksv6bvvvjPXWb58uQYNGqQxY8Zo//79ql+/vsLDwxUXF1dYmwEAAAAUO3b7gDyTyaSvvvpK7du3z7XO0KFDtWbNGh0+fNhc1rlzZ8XHx2v9+vWSpJCQED344IP68MMPJd2c4SkwMFD9+/fXsGHD8hVLYmKiSpUqpYSEBG6FAgAAQLFRkN+5dnXFoqB27typsLAwi7Lw8HDt3LlTkpSWlqZ9+/ZZ1HFwcFBYWJi5Tk5SU1OVmJho8QIAAADuZcU6sYiJiVH58uUtysqXL6/ExERdu3ZNFy9eVEZGRo51YmJicm138uTJKlWqlPnFVLMAAAC41xXrxKKwDB8+XAkJCebXmTNnbB0SAAAAYFPFerpZPz8/xcbGWpTFxsbKy8tL7u7ucnR0lKOjY451/Pz8cm3X1dVVrq6uhRIzAAAAYI+K9RWL0NBQbdq0yaJs48aNCg0NlSS5uLioUaNGFnUyMzO1adMmcx0AAAAAt2dXiUVSUpIOHDigAwcOSLo5neyBAwcUHR0t6eYtSl27djXX79Onj06dOqUhQ4bo6NGjmj17tv773/9q4MCB5jqDBg3SvHnztGjRIh05ckR9+/ZVcnKyevTocVe3DQAAALBndnUr1M8//6xHH33U/H7QoEGSpG7dumnhwoU6f/68OcmQpCpVqmjNmjUaOHCgZsyYoYoVK+o///mPwsPDzXWee+45XbhwQaNHj1ZMTIwaNGig9evXZxvQDQAAACB3dvsci6KE51gAAACgOOI5FgAAAADuKhILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFZzsnUAAAAUpqBha2wdQrEV9XYbW4cAoAjhigUAAAAAq9ldYjFr1iwFBQXJzc1NISEh2rNnT651W7ZsKZPJlO3Vps3/zrB079492/KIiIi7sSkAAABAsWFXt0ItX75cgwYN0pw5cxQSEqLp06crPDxcx44dU7ly5bLVX7lypdLS0szvL126pPr16+vZZ5+1qBcREaFPPvnE/N7V1bXwNgIAAAAohuzqisW0adPUq1cv9ejRQ7Vr19acOXPk4eGhBQsW5Fi/dOnS8vPzM782btwoDw+PbImFq6urRT0fH5+7sTkAAABAsWE3VyzS0tK0b98+DR8+3Fzm4OCgsLAw7dy5M19tzJ8/X507d5anp6dF+ZYtW1SuXDn5+Pjoscce08SJE1WmTJk7Gj8A+8cg4MLFQGAAsG92k1hcvHhRGRkZKl++vEV5+fLldfTo0duuv2fPHh0+fFjz58+3KI+IiFDHjh1VpUoVnTx5Um+++aaeeOIJ7dy5U46Ojjm2lZqaqtTUVPP7xMTEf7BFAAAAQPFhN4mFtebPn6+6deuqSZMmFuWdO3c2/7tu3bqqV6+egoODtWXLFrVq1SrHtiZPnqxx48YVarwAAACAPbGbMRZly5aVo6OjYmNjLcpjY2Pl5+eX57rJyclatmyZevbsedvPqVq1qsqWLasTJ07kWmf48OFKSEgwv86cOZO/jQAAAACKKbu5YuHi4qJGjRpp06ZNat++vSQpMzNTmzZtUmRkZJ7rfvHFF0pNTdWLL7542885e/asLl26JH9//1zruLq6MnMUAACFhPFMhYvxTCgsdnPFQpIGDRqkefPmadGiRTpy5Ij69u2r5ORk9ejRQ5LUtWtXi8HdWebPn6/27dtnG5CdlJSkN954Q7t27VJUVJQ2bdqkp556StWqVVN4ePhd2SYAAACgOLCbKxaS9Nxzz+nChQsaPXq0YmJi1KBBA61fv948oDs6OloODpa50rFjx/TTTz9pw4YN2dpzdHTUr7/+qkWLFik+Pl4BAQFq3bq1JkyYwBUJAAAAoADsKrGQpMjIyFxvfdqyZUu2sho1asgwjBzru7u767vvvruT4QEAAAD3JLu6FQoAAABA0URiAQAAAMBqJBYAAAAArEZiAQAAAMBqJBYAAAAArGZ3s0IBAACg6OHBhoXHXh5qyBULAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNR6QB9gIDxIqPPbyICEAAIoTrlgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsJrdJRazZs1SUFCQ3NzcFBISoj179uRad+HChTKZTBYvNzc3izqGYWj06NHy9/eXu7u7wsLCdPz48cLeDAAAAKBYsavEYvny5Ro0aJDGjBmj/fv3q379+goPD1dcXFyu63h5een8+fPm159//mmxfMqUKZo5c6bmzJmj3bt3y9PTU+Hh4bp+/Xphbw4AAABQbNhVYjFt2jT16tVLPXr0UO3atTVnzhx5eHhowYIFua5jMpnk5+dnfpUvX968zDAMTZ8+XSNHjtRTTz2levXqafHixTp37pxWrVp1F7YIAAAAKB7sJrFIS0vTvn37FBYWZi5zcHBQWFiYdu7cmet6SUlJqly5sgIDA/XUU0/pt99+My87ffq0YmJiLNosVaqUQkJC8mwTAAAAgCW7SSwuXryojIwMiysOklS+fHnFxMTkuE6NGjW0YMECff311/rss8+UmZmppk2b6uzZs5JkXq8gbUpSamqqEhMTLV4AAADAvczJ1gEUptDQUIWGhprfN23aVLVq1dLHH3+sCRMm/ON2J0+erHHjxt2JEO+IoGFrbB1CsRb1dhtbhwAAAFDk2c0Vi7Jly8rR0VGxsbEW5bGxsfLz88tXG87OznrggQd04sQJSTKvV9A2hw8froSEBPPrzJkzBdkUAAAAoNixm8TCxcVFjRo10qZNm8xlmZmZ2rRpk8VVibxkZGTo0KFD8vf3lyRVqVJFfn5+Fm0mJiZq9+7debbp6uoqLy8vixcAAABwL7OrW6EGDRqkbt26qXHjxmrSpImmT5+u5ORk9ejRQ5LUtWtXVahQQZMnT5YkjR8/Xg899JCqVaum+Ph4TZ06VX/++adeeuklSTdnjBowYIAmTpyo6tWrq0qVKho1apQCAgLUvn17W20mAAAAYHfsKrF47rnndOHCBY0ePVoxMTFq0KCB1q9fbx58HR0dLQeH/12EuXLlinr16qWYmBj5+PioUaNG2rFjh2rXrm2uM2TIECUnJ6t3796Kj49Xs2bNtH79+mwP0gMAAACQO7tKLCQpMjJSkZGROS7bsmWLxfv3339f77//fp7tmUwmjR8/XuPHj79TIQIAAAD3HLsZYwEAAACg6CKxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAVrO7xGLWrFkKCgqSm5ubQkJCtGfPnlzrzps3T4888oh8fHzk4+OjsLCwbPW7d+8uk8lk8YqIiCjszQAAAACKFbtKLJYvX65BgwZpzJgx2r9/v+rXr6/w8HDFxcXlWH/Lli16/vnn9cMPP2jnzp0KDAxU69at9ddff1nUi4iI0Pnz582vzz///G5sDgAAAFBs2FViMW3aNPXq1Us9evRQ7dq1NWfOHHl4eGjBggU51l+yZIleeeUVNWjQQDVr1tR//vMfZWZmatOmTRb1XF1d5efnZ375+Pjcjc0BAAAAig27SSzS0tK0b98+hYWFmcscHBwUFhamnTt35quNlJQUpaenq3Tp0hblW7ZsUbly5VSjRg317dtXly5dyrOd1NRUJSYmWrwAAACAe5ndJBYXL15URkaGypcvb1Fevnx5xcTE5KuNoUOHKiAgwCI5iYiI0OLFi7Vp0ya988472rp1q5544gllZGTk2s7kyZNVqlQp8yswMPCfbRQAAABQTDjZOoC75e2339ayZcu0ZcsWubm5mcs7d+5s/nfdunVVr149BQcHa8uWLWrVqlWObQ0fPlyDBg0yv09MTCS5AAAAwD3Nbq5YlC1bVo6OjoqNjbUoj42NlZ+fX57rvvvuu3r77be1YcMG1atXL8+6VatWVdmyZXXixIlc67i6usrLy8viBQAAANzLCpRYZGRkaNu2bYqPjy+kcHLn4uKiRo0aWQy8zhqIHRoamut6U6ZM0YQJE7R+/Xo1btz4tp9z9uxZXbp0Sf7+/nckbgAAAOBeUKDEwtHRUa1bt9aVK1cKK548DRo0SPPmzdOiRYt05MgR9e3bV8nJyerRo4ckqWvXrho+fLi5/jvvvKNRo0ZpwYIFCgoKUkxMjGJiYpSUlCRJSkpK0htvvKFdu3YpKipKmzZt0lNPPaVq1aopPDzcJtsIAAAA2KMCj7GoU6eOTp06pSpVqhRGPHl67rnndOHCBY0ePVoxMTFq0KCB1q9fbx7QHR0dLQeH/+VKH330kdLS0vTMM89YtDNmzBiNHTtWjo6O+vXXX7Vo0SLFx8crICBArVu31oQJE+Tq6npXtw0AAACwZwVOLCZOnKjBgwdrwoQJatSokTw9PS2WF/Z4g8jISEVGRua4bMuWLRbvo6Ki8mzL3d1d33333R2KDAAAALh3FTixePLJJyVJ7dq1k8lkMpcbhiGTyZTnNK0AAAAAiqcCJxY//PBDYcQBAAAAwI4VOLFo0aJFYcQBAAAAwI7ZzXMsAAAAABRdJBYAAAAArEZiAQAAAMBqJBYAAAAArEZiAQAAAMBqBU4sYmNj9X//938KCAiQk5OTHB0dLV4AAAAA7j0Fnm62e/fuio6O1qhRo+Tv72/xkDwAAAAA96YCJxY//fSTfvzxRzVo0KAQwgEAAABgjwp8K1RgYKAMwyiMWAAAAADYqQInFtOnT9ewYcMUFRVVCOEAAAAAsEcFvhXqueeeU0pKioKDg+Xh4SFnZ2eL5ZcvX75jwQEAAACwDwVOLKZPn14IYQAAAACwZwVOLLp161YYcQAAAACwYwVOLCQpIyNDq1at0pEjRyRJ999/v9q1a8dzLAAAAIB7VIETixMnTujJJ5/UX3/9pRo1akiSJk+erMDAQK1Zs0bBwcF3PEgAAAAARVuBZ4V69dVXFRwcrDNnzmj//v3av3+/oqOjVaVKFb366quFESMAAACAIq7AVyy2bt2qXbt2qXTp0uayMmXK6O2339bDDz98R4MDAAAAYB8KfMXC1dVVV69ezVaelJQkFxeXOxIUAAAAAPtS4MSibdu26t27t3bv3i3DMGQYhnbt2qU+ffqoXbt2hREjAAAAgCKuwInFzJkzFRwcrNDQULm5ucnNzU0PP/ywqlWrphkzZhRGjAAAAACKuAKPsfD29tbXX3+tEydOmKebrVWrlqpVq3bHgwMAAABgHwp8xSJLtWrV9K9//UtPPvmkkpKSdOXKlTsZV65mzZqloKAgubm5KSQkRHv27Mmz/hdffKGaNWvKzc1NdevW1dq1ay2WG4ah0aNHy9/fX+7u7goLC9Px48cLcxMAAACAYqfAicWAAQM0f/58STcflNeiRQs1bNhQgYGB2rJly52Oz8Ly5cs1aNAgjRkzRvv371f9+vUVHh6uuLi4HOvv2LFDzz//vHr27KlffvlF7du3V/v27XX48GFznSlTpmjmzJmaM2eOdu/eLU9PT4WHh+v69euFui0AAABAcVLgxGLFihWqX7++JOnbb7/VqVOndPToUQ0cOFAjRoy44wH+3bRp09SrVy/16NFDtWvX1pw5c+Th4aEFCxbkWH/GjBmKiIjQG2+8oVq1amnChAlq2LChPvzwQ0k3r1ZMnz5dI0eO1FNPPaV69epp8eLFOnfunFatWlWo2wIAAAAUJwUeY3Hx4kX5+flJktauXatOnTrpvvvu07///e9CHbydlpamffv2afjw4eYyBwcHhYWFaefOnTmus3PnTg0aNMiiLDw83Jw0nD59WjExMQoLCzMvL1WqlEJCQrRz50517tw5x3ZTU1OVmppqfp+YmChJ+v1cgkpcNf7XlruzAkt76Hp6hk7EJWVrp06FUpKkkxeSdC0tw2JZRR93eXu46FJSqs4nWF498XR1UpWynsrINHTkfGKOMeLOOfxXgsV7/1JuKlPCVfEpaTp75ZrFMncXRwX7lshxPUmqVq6E3JwddeZySuEFDCVcS8+2j12dHFS9fElJ0m/nEmQYlusE+5aQu4uj/oq/pivJaRbLypRwkX8p90KNGTcdjUnUjQzLzgkq66kSrk6KSbiui0mpFsu8PZxV0ef2x1kUjoRr6Srl7qy4q9cVl2jZN15uzqpUxkNpNzL1R2z2aepr+3vJwcGkUxeSlHLL/4EoXKcvJuf5O6KGX0k5Ozroz0vJunr9hsWy8l5u8i3pqoSUdJ25wv9ld0vWb4q//45IuJZuUadcSVeV83LT1evp+vOSZd+4ODnovv//f+CR84nKyLQ8zlYp6ylPVyedT7imS0mW/wc6ZeT/Lp4CJxbly5fX77//Ln9/f61fv14fffSRJCklJUWOjo4FbS7fLl68qIyMDJUvXz5bPEePHs1xnZiYmBzrx8TEmJdnleVWJyeTJ0/WuHHjspV3+niXHFw9zO/bNwjQ9M4PKCbhutp+8FO2+lFvt5EkDf7ioH6JjrdY9v5z9dXhgYpac+i8Rn/9m8WyR6qX1ac9Q5SSdiPHdveNDFOZEq56adFefX/E8jaxkW1q6aVHqmrNr+fVb+l+i2X3B3hpzauPSJLuG7FOaRmZFss3DGyu+8qX1NAVv2r5z2cslvVtGayhETW18+QlPT9vl8UyPy837XqzlSTpobc2KSbR8gv6ea+HFBpcRu+sP6qPtpy0WPZc40C980w9/RF7Va3f32axzMXRQX9MekKS1Gbmj/rtnOXBcdYLDdWmnr/+8+MpTVxzxGJZWK1y+k+3B3UpKVWNJn6vWx0a21ol3Zz1f/N3Z9vH45+6X11Dg/TDsTgNXH7QYtkDlbz11Ss3HxSZU99sGdxSQWU99d6GY9mWvdaqugY+fp+2/nFB3RZYjh2qXMZDW994VJLUcMJGXb7lh++XfZuqUWUfTVj9u+b/dNpi2f89VFkT2tfR4b8SssVUwtVJh8eFS5Ien7ZVx2/5YTava2M9Xru8Zv1wQlO/s4z5ybp+mt2lkc4nXFPo5M3ZtufYxAi5OjnquY93avfpyxbL3u5YV52bVNKyPdEatvKQxbKQKqW1/OVQpd7IUI2R67O1u3P4Y/Iv5a5XluzT2kOWf6dvhNdQv0eraePvseq1+GeLZdXLldDGQS0kSc99vEtJqZb/Wa7u30x1KpTSnC0n9emuPy2W9WxWRaPa1taXfZvq6Y92WCwr7emi/aMelyS1mPpDtoP5on83UYv7fPX+xj80Y5Pl+K2sY0TUxWS1fHdLtm3NOkZ0mL0912PE4p1RuR4jrl5PV92xG7K1W5SPEd0X7M31GLFoZ1Sux4joyynZvt9Zx4iot9sU6jHix+MXLZZlHSO++uVsnseIoGFrsrWbdYwYsOwXrTpwzmJZUTxG7Dl9WY/XLq8vfj6b6zHiUnJqjsfDYxMj5OrgqOErDxW5Y0SdMd/leowYtepwrseIfX9esYtjxOivD+frd8SE1b/neoz46cRFfkfcxWNEVj/9/XdEbseI/dHxeR4juvxnd67HiP/8eDrbMaJTvTLZti83JsO49bxd3saOHavp06fL399fKSkp+uOPP+Tq6qoFCxZo3rx5uV49sNa5c+dUoUIF7dixQ6GhoebyIUOGaOvWrdq9e3e2dVxcXLRo0SI9//zz5rLZs2dr3Lhxio2N1Y4dO/Twww/r3Llz8vf3N9fp1KmTTCaTli9fnmMsOV2xCAwM1M4j0SpR0stcbqsrFv/0TIObs4OqlbuZzeZ1tv3slRTFp1hmyWVLuMqvlJuSUm8o6mKyxTInR5Nq+t3cL4V1NvJE3FVdT7c8gAX6eKiUh7MuXE1V7C0HoZJuTqpcxlPpGZk6FpP9TFotfy85Oph0+mKykm/5z+VOXbG4W2cafDxdVMHbXdfSMnTyguU+NJmk+wNu7sPjsVeVeuOWfVjao1DORgZ4u6u0p4suJ6fpXLzlPvRwcVRV3xLKzDT0ew7f7/vKl5SLk4OiL6Uo8fot+9DLVeVKuhXaFYvk1Bs6fcv329HBpFr+N7/ff8ReVdot+7ByGQ+VdHNWXOJ1xV213IccI27iGPE/HCNu4hhxE8eImzhG/I+trljUquynhIQEeXl5KS8FTiwk6csvv1R0dLSeffZZVaxYUZK0aNEieXt766mnnipoc/mSlpYmDw8PrVixQu3btzeXd+vWTfHx8fr666+zrVOpUiUNGjRIAwYMMJeNGTNGq1at0sGDB3Xq1CkFBwfrl19+UYMGDcx1WrRooQYNGuT71q7ExESVKlUqXzscAAAAsBcF+Z1boMHb6enpatWqlerVq6eBAweakwrp5g/8wkoqpJtXHxo1aqRNmzaZyzIzM7Vp0yaLKxh/FxoaalFfkjZu3GiuX6VKFfn5+VnUSUxM1O7du3NtEwAAAEB2BRpj4ezsrF9//bWwYrmtQYMGqVu3bmrcuLGaNGmi6dOnKzk5WT169JAkde3aVRUqVNDkyZMlSa+99ppatGih9957T23atNGyZcv0888/a+7cuZIkk8mkAQMGaOLEiapevbqqVKmiUaNGKSAgwOKqCAAAAIC8FXjw9osvvqj58+fr7bffLox48vTcc8/pwoULGj16tGJiYtSgQQOtX7/ePPg6OjpaDg7/uwjTtGlTLV26VCNHjtSbb76p6tWra9WqVapTp465zpAhQ5ScnKzevXsrPj5ezZo10/r16+Xm5nbXtw8AAACwVwUeY9G/f38tXrxY1atXV6NGjeTp6WmxfNq0aXc0QHvAGAsAAAAURwX5nVvgKxaHDx9Ww4YNJUl//PGHxTKTyVTQ5gAAAAAUAwVOLH744YfCiAMAAACAHSvQrFAAAAAAkJMCX7GQpJ9//ln//e9/FR0drbQ0y4dorFy58o4EBgAAAMB+FPiKxbJly9S0aVMdOXJEX331ldLT0/Xbb79p8+bNKlWqVGHECAAAAKCIK3Bi8dZbb+n999/Xt99+KxcXF82YMUNHjx5Vp06dVKlSpcKIEQAAAEARV+DE4uTJk2rTpo2km0/DTk5Olslk0sCBA80PngMAAABwbylwYuHj46OrV69KkipUqKDDhw9LkuLj45WSknJnowMAAABgFwo8eLt58+bauHGj6tatq2effVavvfaaNm/erI0bN6pVq1aFESMAAACAIq7AicWHH36o69evS5JGjBghZ2dn7dixQ08//bRGjhx5xwMEAAAAUPSZDMMwbB2EvSvIo84BAAAAe1GQ37n/6AF5J0+e1MiRI/X8888rLi5OkrRu3Tr99ttv/6Q5AAAAAHauwInF1q1bVbduXe3evVsrV65UUlKSJOngwYMaM2bMHQ8QAAAAQNFX4MRi2LBhmjhxojZu3CgXFxdz+WOPPaZdu3bd0eAAAAAA2IcCJxaHDh1Shw4dspWXK1dOFy9evCNBAQAAALAvBU4svL29df78+Wzlv/zyiypUqHBHggIAAABgXwqcWHTu3FlDhw5VTEyMTCaTMjMztX37dg0ePFhdu3YtjBgBAAAAFHEFTizeeust1axZU4GBgUpKSlLt2rXVvHlzNW3alOdYAAAAAPeof/wcizNnzujQoUNKSkrSAw88oOrVq9/p2OwGz7EAAABAcVSQ37n5fvJ2Zmampk6dqm+++UZpaWlq1aqVxowZI3d3d6sDBgAAAGDf8n0r1KRJk/Tmm2+qRIkSqlChgmbMmKF+/foVZmwAAAAA7ES+E4vFixdr9uzZ+u6777Rq1Sp9++23WrJkiTIzMwszPgAAAAB2IN+JRXR0tJ588knz+7CwMJlMJp07d65QAgMAAABgP/KdWNy4cUNubm4WZc7OzkpPT7/jQQEAAACwL/lOLAzDUPfu3dWxY0fz6/r16+rTp49FWWG5fPmyunTpIi8vL3l7e6tnz55KSkrKs37//v1Vo0YNubu7q1KlSnr11VeVkJBgUc9kMmV7LVu2rNC2AwAAACiO8j0rVLdu3bKVvfjii3c0mLx06dJF58+f18aNG5Wenq4ePXqod+/eWrp0aY71z507p3Pnzundd99V7dq19eeff6pPnz46d+6cVqxYYVH3k08+UUREhPm9t7d3YW4KAAAAUOz84+dY3E1HjhxR7dq1tXfvXjVu3FiStH79ej355JM6e/asAgIC8tXOF198oRdffFHJyclycrqZU5lMJn311Vdq3779P46P51gAAACgOCrI79wCP3nbFnbu3Clvb29zUiHdHDzu4OCg3bt357udrB2SlVRk6devn8qWLasmTZpowYIFsoNcCwAAAChS8n0rlC3FxMSoXLlyFmVOTk4qXbq0YmJi8tXGxYsXNWHCBPXu3duifPz48Xrsscfk4eGhDRs26JVXXlFSUpJeffXVXNtKTU1Vamqq+X1iYmIBtgYAAAAofmyaWAwbNkzvvPNOnnWOHDli9eckJiaqTZs2ql27tsaOHWuxbNSoUeZ/P/DAA0pOTtbUqVPzTCwmT56scePGWR0XAAAAUFzYdIzFhQsXdOnSpTzrVK1aVZ999plef/11XblyxVyeNf3tF198oQ4dOuS6/tWrVxUeHi4PDw+tXr0625S5t1qzZo3atm2r69evy9XVNcc6OV2xCAwMZIwFAAAAipWCjLGw6RULX19f+fr63rZeaGio4uPjtW/fPjVq1EiStHnzZmVmZiokJCTX9RITExUeHi5XV1d98803t00qJOnAgQPy8fHJNamQJFdX1zyXAwAAAPcauxhjUatWLUVERKhXr16aM2eO0tPTFRkZqc6dO5tnhPrrr7/UqlUrLV68WE2aNFFiYqJat26tlJQUffbZZ0pMTDSPhfD19ZWjo6O+/fZbxcbG6qGHHpKbm5s2btyot956S4MHD7bl5gIAAAB2xy4SC0lasmSJIiMj1apVKzk4OOjpp5/WzJkzzcvT09N17NgxpaSkSJL2799vnjGqWrVqFm2dPn1aQUFBcnZ21qxZszRw4EAZhqFq1app2rRp6tWr193bMAAAAKAYsIvnWBR1PMcCAAAAxVGxe44FAAAAgKKNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1ewmsbh8+bK6dOkiLy8veXt7q2fPnkpKSspznZYtW8pkMlm8+vTpY1EnOjpabdq0kYeHh8qVK6c33nhDN27cKMxNAQAAAIodJ1sHkF9dunTR+fPntXHjRqWnp6tHjx7q3bu3li5dmud6vXr10vjx483vPTw8zP/OyMhQmzZt5Ofnpx07duj8+fPq2rWrnJ2d9dZbbxXatgAAAADFjckwDMPWQdzOkSNHVLt2be3du1eNGzeWJK1fv15PPvmkzp49q4CAgBzXa9mypRo0aKDp06fnuHzdunVq27atzp07p/Lly0uS5syZo6FDh+rChQtycXHJV3yJiYkqVaqUEhIS5OXlVfANBAAAAIqggvzOtYtboXbu3Clvb29zUiFJYWFhcnBw0O7du/Ncd8mSJSpbtqzq1Kmj4cOHKyUlxaLdunXrmpMKSQoPD1diYqJ+++23O78hAAAAQDFlF7dCxcTEqFy5chZlTk5OKl26tGJiYnJd74UXXlDlypUVEBCgX3/9VUOHDtWxY8e0cuVKc7t/Tyokmd/n1W5qaqpSU1PN7xMTEwu8TQAAAEBxYtPEYtiwYXrnnXfyrHPkyJF/3H7v3r3N/65bt678/f3VqlUrnTx5UsHBwf+43cmTJ2vcuHH/eH0AAACguLFpYvH666+re/fuedapWrWq/Pz8FBcXZ1F+48YNXb58WX5+fvn+vJCQEEnSiRMnFBwcLD8/P+3Zs8eiTmxsrCTl2e7w4cM1aNAg8/vExEQFBgbmOw4AAACguLFpYuHr6ytfX9/b1gsNDVV8fLz27dunRo0aSZI2b96szMxMc7KQHwcOHJAk+fv7m9udNGmS4uLizLdabdy4UV5eXqpdu3au7bi6usrV1TXfnwsAAAAUd3YxeLtWrVqKiIhQr169tGfPHm3fvl2RkZHq3LmzeUaov/76SzVr1jRfgTh58qQmTJigffv2KSoqSt988426du2q5s2bq169epKk1q1bq3bt2vq///s/HTx4UN99951Gjhypfv36kTgAAAAABWAXiYV0c3anmjVrqlWrVnryySfVrFkzzZ0717w8PT1dx44dM8/65OLiou+//16tW7dWzZo19frrr+vpp5/Wt99+a17H0dFRq1evlqOjo0JDQ/Xiiy+qa9euFs+9AAAAAHB7dvEci6KO51gAAACgOCp2z7EAAAAAULSRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKvZTWJx+fJldenSRV5eXvL29lbPnj2VlJSUa/2oqCiZTKYcX1988YW5Xk7Lly1bdjc2CQAAACg2nGwdQH516dJF58+f18aNG5Wenq4ePXqod+/eWrp0aY71AwMDdf78eYuyuXPnaurUqXriiScsyj/55BNFRESY33t7e9/x+AEAAIDizC4SiyNHjmj9+vXau3evGjduLEn64IMP9OSTT+rdd99VQEBAtnUcHR3l5+dnUfbVV1+pU6dOKlGihEW5t7d3troAAAAA8s8uboXauXOnvL29zUmFJIWFhcnBwUG7d+/OVxv79u3TgQMH1LNnz2zL+vXrp7Jly6pJkyZasGCBDMPIs63U1FQlJiZavAAAAIB7mV1csYiJiVG5cuUsypycnFS6dGnFxMTkq4358+erVq1aatq0qUX5+PHj9dhjj8nDw0MbNmzQK6+8oqSkJL366qu5tjV58mSNGzeu4BsCAAAAFFM2vWIxbNiwXAdYZ72OHj1q9edcu3ZNS5cuzfFqxahRo/Twww/rgQce0NChQzVkyBBNnTo1z/aGDx+uhIQE8+vMmTNWxwgAAADYM5tesXj99dfVvXv3POtUrVpVfn5+iouLsyi/ceOGLl++nK+xEStWrFBKSoq6du1627ohISGaMGGCUlNT5erqmmMdV1fXXJcBAAAA9yKbJha+vr7y9fW9bb3Q0FDFx8dr3759atSokSRp8+bNyszMVEhIyG3Xnz9/vtq1a5evzzpw4IB8fHxIHAAAAIACsIsxFrVq1VJERIR69eqlOXPmKD09XZGRkercubN5Rqi//vpLrVq10uLFi9WkSRPzuidOnNC2bdu0du3abO1+++23io2N1UMPPSQ3Nzdt3LhRb731lgYPHnzXtg0AAAAoDuwisZCkJUuWKDIyUq1atZKDg4OefvppzZw507w8PT1dx44dU0pKisV6CxYsUMWKFdW6detsbTo7O2vWrFkaOHCgDMNQtWrVNG3aNPXq1avQtwcAAAAoTkzG7eZWxW0lJiaqVKlSSkhIkJeXl63DAQAAAO6IgvzOtYvnWAAAAAAo2kgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFjNbhKLSZMmqWnTpvLw8JC3t3e+1jEMQ6NHj5a/v7/c3d0VFham48ePW9S5fPmyunTpIi8vL3l7e6tnz55KSkoqhC0AAAAAii+7SSzS0tL07LPPqm/fvvleZ8qUKZo5c6bmzJmj3bt3y9PTU+Hh4bp+/bq5TpcuXfTbb79p48aNWr16tbZt26bevXsXxiYAAAAAxZbJMAzD1kEUxMKFCzVgwADFx8fnWc8wDAUEBOj111/X4MGDJUkJCQkqX768Fi5cqM6dO+vIkSOqXbu29u7dq8aNG0uS1q9fryeffFJnz55VQEBAvmJKTExUqVKllJCQIC8vL6u2DwAAACgqCvI7126uWBTU6dOnFRMTo7CwMHNZqVKlFBISop07d0qSdu7cKW9vb3NSIUlhYWFycHDQ7t27c207NTVViYmJFi8AAADgXlZsE4uYmBhJUvny5S3Ky5cvb14WExOjcuXKWSx3cnJS6dKlzXVyMnnyZJUqVcr8CgwMvMPRAwAAAPbFponFsGHDZDKZ8nwdPXrUliHmaPjw4UpISDC/zpw5Y+uQAAAAAJtysuWHv/766+revXuedapWrfqP2vbz85MkxcbGyt/f31weGxurBg0amOvExcVZrHfjxg1dvnzZvH5OXF1d5erq+o/iAgAAAIojmyYWvr6+8vX1LZS2q1SpIj8/P23atMmcSCQmJmr37t3mmaVCQ0MVHx+vffv2qVGjRpKkzZs3KzMzUyEhIYUSFwAAAFAc2c0Yi+joaB04cEDR0dHKyMjQgQMHdODAAYtnTtSsWVNfffWVJMlkMmnAgAGaOHGivvnmGx06dEhdu3ZVQECA2rdvL0mqVauWIiIi1KtXL+3Zs0fbt29XZGSkOnfunO8ZoQAAAADY+IpFQYwePVqLFi0yv3/ggQckST/88INatmwpSTp27JgSEhLMdYYMGaLk5GT17t1b8fHxatasmdavXy83NzdznSVLligyMlKtWrWSg4ODnn76ac2cOfPubBQAAABQTNjdcyyKooSEBHl7e+vMmTM8xwIAAADFRmJiogIDAxUfH69SpUrlWddurlgUZVevXpUkpp0FAABAsXT16tXbJhZcsbgDMjMzde7cOZUsWVImk8nW4RRpWVkvV3fsC/1mf+gz+0S/2R/6zP7QZwVjGIauXr2qgIAAOTjkPTybKxZ3gIODgypWrGjrMOyKl5cXf8x2iH6zP/SZfaLf7A99Zn/os/y73ZWKLHYzKxQAAACAoovEAgAAAIDVSCxwV7m6umrMmDE8udzO0G/2hz6zT/Sb/aHP7A99VngYvA0AAADAalyxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxwB2VmZlp6xAAALgjmN8GKBgSC9wR+/fvl6TbPuodAO5lnHyxD1euXJEkmUwmG0eC/CABLDr4FQirLVu2TI0bN9aiRYtsHQryafbs2Zo3b56tw0A+Zf0YNQxDGRkZNo4GBbF//35t2LBBK1eulHTz5As/goq2zz//XCNHjtSvv/5q61CQD5mZmTKZTLp8+bIuXLhg63DueSQWsMpHH32kF154QSVKlNCuXbtsHQ7yYd68eYqMjJSPj4+tQ0E+ZGZmysHBQX/88YcGDhyop556SuPHj9elS5dsHRpuY8GCBXr66af16quvql+/furRo4ckzoIXZZ988ol69OihOnXqyN/f32IZV5uKJgcHB506dUoPPvigPvjgA507d87WId3TSCzwj82dO1f9+/fXtm3btGLFCi1YsEBbt261dVjIw9y5c/XKK69o+fLleuaZZ5SRkZHtDDhnU4uOrKTi0KFDeuSRR/TXX3+pYsWKmjRpkj788ENbh4c8rFq1Sq+99pref/99rVmzRuPHj9ehQ4eUkpJirsPfWtHy+++/65133tGCBQvUt29fOTs76/Tp0zp48KAkbvUtyjZu3KjTp09r9erVWrhwoWJiYszLDMPgb+0ucrJ1ALBPCxcuVJ8+fbRy5Uo1a9ZMp0+fVqNGjbRu3Tq1aNFCGRkZcnR0tHWY+JtNmzapT58+WrFihTp27KgjR47o448/1v79+xUcHKyHHnpIL7/8skwmkwzD4KxqEeDg4KDTp0+rXbt26tmzp9566y1Jkr+/v+Li4pSeni5nZ2dzffqtaEhPT9f69evVr18/tW/fXpJ0/fp1LVu2TN99950uX76sLl26yM3NjT4rQuLj4+Xh4aHnn39eBw8e1Kuvvqpz584pOTlZNWrU0PLly1WuXDlzwo+iIzQ0VF27dlX16tU1a9YsZWZmKjIyUt7e3vx93WX8ZaDAEhMT9dNPP+mbb74x/6dZpUoVtWzZUvPmzVNCQgJJRRGTmZkpJycn+fr66quvvtKRI0fUrl07RUdHq06dOoqLi9Ps2bP15ptvSuJWjaIiIyNDX375pZ544gkNGzbMXH727Fn98ssvevjhh9W3b199++23kui3osLZ2VknTpzQgQMHzGUjRozQ77//rsmTJ2vixIlq3LixkpKSzIk8bCfrFqc///xTqampysjI0Msvv6zQ0FDNnTtXn376qS5duqSIiAhJXLkoigzD0I4dO/Tmm2/q5Zdf1ty5c7Vo0SJ17NhRI0aMsHV49xYDKICMjIxsZenp6YZhGEZcXJxRs2ZNY+TIkUZmZubdDg25+Htf/PTTT0ZwcLBhMpmM4cOHG8nJyYZhGMbly5eN4cOHGw0bNjROnTplq1CRg7Nnzxo7d+40v58wYYLh6OhojBgxwpg5c6bx4IMPGo899phx/vx5G0YJw7D8W1u0aJFRo0YNo2HDhkbTpk2NypUrGydPnjTi4+ONK1euGFWrVjUiIyNtGC0Mw7LPzp07Z9SrV8/o2bOn8fjjjxvR0dHmZdHR0UaFChWM6dOn2yJM5EPr1q2N06dPG4ZhGFOmTDE8PT2NUqVKGd99951tA7vHcCsUCiTrTM2CBQsUHx+vQYMGma9OeHt7q1GjRvrhhx/Ml/cNLvPbXNb+X7x4sS5cuKAFCxZoxYoVeuGFF+Th4SHDMOTj46Onn35ab7/9tqKjo1WlShUbRw3p5lm4ChUqKCAgQJJ04cIFXbp0SatXrzafPQ0LC9P999+vAwcOmMtgG1l/a0uXLtUff/yhOXPm6M8//9TatWvVs2dPVa1aVZmZmcrMzFSdOnUYDFwEZPXZggUL9NdffyksLEyrVq1SZmamAgMDJUk3btxQmTJlVKlSJaWnp9syXOQg69a069eva9u2bQoKCtKxY8fk6Ogod3d3HTx4UHXq1DEfR1G4uJ6HAktNTdWXX36pbdu2Sbp5YM7IyJCzs7NGjBihAwcO6OOPPzYvg+2lpqZq2bJl2r59u5o3b64RI0aoTp06FnXS09PVuHFjVaxY0UZRQrKcUvby5ctKTk7WtWvXJEm+vr4aP368IiIiZBiGMjMzdePGDT3wwAOqUKGCLcPG/3f9+nV9+umnOnLkiFq2bKlu3bopJiZGJ06ckPS/6Wbj4+Pl5+dn42gh3Tw+rlixQsePH9cbb7yh++67T3/++aeGDx8uSXJycpKHh4dcXFxUokQJG0d7b/v78fHSpUtKTk5WUlKSpJvjLDIzM/Xqq69q3bp1OnDggF599VWNHTtWy5YtY6ruu8RkGNzcifzLugKxb98+PfbYY/r000/Vrl0787Lr16+rb9++iouL09KlS+Xt7W3bgGHRZ48++qiWLl2qtm3bWtS5du2aOnfurPT0dK1evZp7iG1g7dq1qlChgurXry9JWrlypaZMmaKLFy+qbt26atOmjV566aVsVwFHjBihTZs26dtvv5Wvr6+twoeyHx8XLlyoDh06aNSoUdq5c6fatGmjBx54QFOmTFFMTIz27NkjJyduHLClrD77+eef9eijj2rdunUKCgrSG2+8oe+//14PPvigHnzwQW3dulXx8fH6+eef6TMbyOv4WKdOHb3wwgvy8fFReHi4fH19tWbNGjVu3FiSNGXKFHXo0EHVq1e35SbcM0gskKfcbmVKTExUr1695O/vr+nTp1vMkvHRRx9pyZIl+vHHH7liYQP57TNJSklJ0aZNmzRjxgxduHBBP//8s5ydnZn15C6LjY1VaGioWrZsqZEjR+r69et66KGHNHToUDk5OSk6Olr/+c9/NG7cOPMg7sOHD2v58uWaOXOmfvzxR9WrV8/GW3Hvud3fmp+fn2bMmKEDBw7ovffe04YNG+Tv76/AwECtXLlSzs7OzKB3l+XVZy+99JL8/Pw0c+ZMnTlzRrt27dKcOXPk4+Oj0qVLa9asWfSZDdzu+Pjnn39q/vz5evHFF9WoUSM9/PDDql+/Pv+P2QiJBfLl/fffV2Zmpp577jnzrTLz5s3TwIEDdfDgQQUHB1v8ETPGwvby02fnzp3TBx98oNjYWM2dO1dOTk66ceMGZ+RsYP/+/Xr55ZcVEhIib29vpaamaurUqZJu/uj59NNPNXjwYM2dO9d89eKPP/7QkiVLzGfxYBt5/a398ssvql69ui5fvqzExETduHFDwcHBMplM/K3ZUG59NmDAAB04cCDXs9v0mW3kdXxMSEjQ0qVLNXToUE2dOlUvv/yyjaO9t5FY4LauXbumcePGac6cOWrUqJGCgoI0depUeXh46KWXXlKpUqU0ffp0i/n0JebUt6X89Nn7778vFxcXxcfHq1SpUvzQKQL279+vvn37KjY2Vm3btrV4CF5CQoIGDhyo1NRULVmyRIcOHZKPjw9jYmzsdn9rXl5eev/99+Xq6mqxHmdTbSc/fTZjxgw5Ojpa9BH/p9lWXsfHK1euaPDgwbp+/boWLlwoJycn+spGSCyQb2fPntW6des0Z84cpaSkqEmTJrp06ZIkadmyZSpRogQH3iImrz77/PPPVbJkSa4uFTG//vqrnnrqKbm5uenzzz9XgwYNzMtGjBihNWvWaM+ePXJxcbFdkMiG46P9oc/sz+2Oj2vXrtWePXuynejE3cPpEuRbxYoV1atXL+3bt0+DBg2Sj4+P1q5dq7Vr12rGjBmSmAWqqMmrz2bOnCnpf31G3xUN9erV0zfffCNnZ2fNmDFDBw8eNC+7ePGifH19mfKyCOL4aH/oM/tzu+Nj2bJllZaWZsMIwRULFMitZ2/27t2rWbNm6cKFC/r888/l5eVlw+iQk9v1WcmSJfnPswj65Zdf1LVrV6WkpKh58+ZydXXVihUr9P3331ucpUPRwfHR/tBn9onjY9FFYgGr7d69Wy1atNCGDRvUvHlzW4eDfKDP7MOhQ4fUsWNHpaam6pVXXtHzzz+vypUr2zosFAB/a/aHPrMPHB+LJm6FglUMw1BISIgeeOABRUVF2Toc5AN9Zj/q1q2rZcuWqWbNmurZsyf/adoZ/tbsD31mPzg+Fk1csYDV5s6dqz59+uj48eMKDg62dTjIB/rMvly/fl1ubm62DgP/AH9r9oc+sy8cH4sWEgtY7eTJk0pNTVXt2rVtHQryiT4D7g7+1uwPfQb8cyQWAAAAAKzGGAsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAQIF1795dJpMp2+vEiRO2Dq1QtGzZUgMGDLB1GABQpDnZOgAAgH2KiIjQJ598YlHm6+tr8T4tLU0uLi53MywAgI1wxQIA8I+4urrKz8/P4tWqVStFRkZqwIABKlu2rMLDwyVJ06ZNU926deXp6anAwEC98sorSkpKsmhv3rx5CgwMlIeHhzp06KBp06bJ29vbvHzs2LFq0KCBFixYoEqVKqlEiRJ65ZVXlJGRoSlTpsjPz0/lypXTpEmTLNqNj4/XSy+9JF9fX3l5eemxxx7TwYMHs7X76aefKigoSKVKlVLnzp119epVSTevzmzdulUzZswwX5mJiooqnJ0KAHaMxAIAcEctWrRILi4u2r59u+bMmSNJcnBw0MyZM/Xbb79p0aJF2rx5s4YMGWJeZ/v27erTp49ee+01HThwQI8//ni2BEGSTp48qXXr1mn9+vX6/PPPNX/+fLVp00Znz57V1q1b9c4772jkyJHavXu3eZ1nn31WcXFxWrdunfbt26eGDRuqVatWunz5skW7q1at0urVq7V69Wpt3bpVb7/9tiRpxowZCg0NVa9evXT+/HmdP39egYGBhbX7AMBumQzDMGwdBADAvnTv3l2fffaZ3NzczGVPPPGELly4oMTERO3fvz/P9VesWKE+ffro4sWLkqTOnTsrKSlJq1evNtd58cUXtXr1asXHx0u6eWVh6tSpiomJUcmSJSXdvB3r2LFjOnnypBwcbp4rq1mzprp3765hw4bpp59+Ups2bRQXFydXV1dz29WqVdOQIUPUu3fvHNsdMmSItm3bpl27dkm6OcaiQYMGmj59unU7DgCKMcZYAAD+kUcffVQfffSR+b2np6eef/55NWrUKFvd77//XpMnT9bRo0eVmJioGzdu6Pr160pJSZGHh4eOHTumDh06WKzTpEkTi0RDkoKCgsw//iWpfPnycnR0NCcVWWVxcXGSpIMHDyopKUllypSxaOfatWs6efJkru36+/ub2wAA5A+JBQDgH/H09FS1atVyLP+7qKgotW3bVn379tWkSZNUunRp/fTTT+rZs6fS0tLk4eGR7890dna2eG8ymXIsy8zMlCQlJSXJ399fW7ZsydbW38dv5NUGACB/SCwAAIVq3759yszM1HvvvWe+svDf//7Xok6NGjW0d+9ei7Jb3/8TDRs2VExMjJycnBQUFPSP23FxcVFGRobV8QBAccbgbQBAoapWrZrS09P1wQcf6NSpU/r000/Ng7qz9O/fX2vXrtW0adN0/Phxffzxx1q3bp1MJpNVnx0WFqbQ0FC1b99eGzZsUFRUlHbs2KERI0bo559/znc7QUFB2r17t6KionTx4kWuZgBADkgsAACFqn79+po2bZreeecd1alTR0uWLNHkyZMt6jz88MOaM2eOpk2bpvr162v9+vUaOHCgxeDwf8JkMmnt2rVq3ry5evToofvuu0+dO3fWn3/+qfLly+e7ncGDB8vR0VG1a9eWr6+voqOjrYoLAIojZoUCABRJvXr10tGjR/Xjjz/aOhQAQD4wxgIAUCS8++67evzxx+Xp6al169Zp0aJFmj17tq3DAgDkE1csAABFQqdOnbRlyxZdvXpVVatWVf/+/dWnTx9bhwUAyCcSCwAAAABWY/A2AAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKv9P/f9gY+ixWauAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([0.50148301, 0.60358949, 0.76141351, 0.79489284, 0.73245568,\n", + " 0.67058746])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_arr = feat_gen.feature_c13_subtracted_correlations(\n", + " precursor_fragments, ms2dict, visualize=True, visualize_per_fragment=True\n", + ")\n", + "corr_arr" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e60c2950", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWIJJREFUeJzt3Xt8z/X///H7e+cDs2FsY4yRQ04haxLKshUfoZLS1+EjIlNIDjmfUpRQJD6EIj5JKqeIUM4RUchpjdjmtM02ttlevz/89v70toOtt3nvPbfr5fK+XLyfr+fr+X68Xs/3Xt6P1+v1fL5MhmEYAgAAAAArONg6AAAAAAD2j8QCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCAAAAgNVILAAAAABYjcQCQLHTvXt3lShRwtZh2FzLli3VsmVLW4dxx2zZskUmk0lbtmy5o+2aTCaNHTv2jrZ5J2VmZqpOnTqaNGmSrUPJZv369WrQoIHc3NxkMpkUHx9v65CKtM6dO6tTp062DgMoNCQWwD3o5MmTevnll1W1alW5ubnJy8tLDz/8sGbMmKFr166Z623YsEE9e/ZUnTp15OjoqKCgoBzbO3funF588UXVqFFDJUuWlLe3t5o0aaJFixbJMIy7tFUFl5KSorFjx97xH6oFsWPHDo0dO5YfZIVs7dq1RTp5yMvnn3+uM2fOKDIy0tahWLh06ZI6deokd3d3zZo1S59++qk8PT1tHZbNnTt3TmPHjtWBAweyLRs6dKi+/PJLHTx48O4HBtwFTrYOAMDdtWbNGj377LNydXVV165dVadOHaWlpemnn37SG2+8od9++01z586VJC1dulTLly9Xw4YNFRAQkGubFy9e1NmzZ/XMM8+oUqVKSk9P18aNG9W9e3cdO3ZMb7311t3avAJJSUnRuHHjJMlmZ/Z37NihcePGqXv37vL29rZJDPeCtWvXatasWTkmF9euXZOTU9H973Dq1Knq3LmzSpUqZetQLOzdu1dXr17VhAkTFBYWZutwioxz585p3LhxCgoKUoMGDSyWPfDAA2rcuLHee+89LV682DYBAoWo6B5JAdxxp0+fVufOnVW5cmVt3rxZ/v7+5mX9+vXTiRMntGbNGnPZW2+9pXnz5snZ2Vlt27bV4cOHc2y3Xr162c76R0ZG6l//+pdmzpypCRMmyNHRsVC26W5KTk7mjOw/kJKSIg8Pj2zlN27cUGZmplxcXGwQ1f+4ubnZ9PPz8ssvv+jgwYN67733bPL5ufWdJMXFxUlSvhLivNq513Tq1EljxozR7NmzuWUTxQ63QgH3kClTpigpKUnz58+3SCqyVKtWTa+99pr5fUBAgJydnf/x5wUFBSklJUVpaWm3rfvzzz8rPDxcZcuWlbu7u6pUqaJ///vf5uW53V8fFRUlk8mkhQsXZmvz1KlTCg8Pl6enpwICAjR+/HjzrVlRUVHy9fWVJI0bN04mk8niXvuscRonT57Uk08+qZIlS6pLly6SpB9//FHPPvusKlWqJFdXVwUGBmrgwIEWt5FlOXr0qDp16iRfX1+5u7urRo0aGjFihCRp7NixeuONNyRJVapUMccQFRVlXv+zzz5To0aN5O7urtKlS6tz5846c+ZMts+ZO3eugoOD5e7uriZNmujHH3+87T7/u88++0xNmjSRh4eHfHx81Lx5c23YsMGizuzZs3X//ffL1dVVAQEB6tevX7ZbuFq2bKk6depo3759at68uTw8PPTmm2+a++ndd9/V9OnTFRwcLFdXV/3+++/m/fTMM8+odOnScnNzU+PGjfXNN9/cNu789EX37t01a9YsSTLvY5PJZF6e0xiLX375RU888YS8vLxUokQJtWrVSrt27bKos3DhQplMJm3fvl2DBg2Sr6+vPD091aFDB124cMGi7u2+37lZtWqVXFxc1Lx5c4vysWPHymQymb9fXl5eKlOmjF577TVdv349Wzv5+R7l1nc5admypbp16yZJevDBB2UymdS9e/fbtvP111+rTZs2CggIkKurq4KDgzVhwgRlZGRk+4xZs2apatWqFt/pW8cNZR0X/vvf/2rcuHGqUKGCSpYsqWeeeUYJCQlKTU3VgAEDVK5cOZUoUUI9evRQamqqVfvn999/16OPPioPDw9VqFBBU6ZMsYjnwQcflCT16NHD/F37+/Hp8ccfV3JysjZu3JjjvgXsGVcsgHvIt99+q6pVq6pp06aF0v61a9eUnJyspKQkbd26VZ988olCQ0Pl7u6e53pxcXFq3bq1fH19NWzYMHl7eysqKkorV678x7FkZGQoIiJCDz30kKZMmaL169drzJgxunHjhsaPHy9fX1999NFH6tu3rzp06KCOHTtKunn1JcuNGzcUHh6uZs2a6d133zWfcf3iiy+UkpKivn37qkyZMtqzZ48++OADnT17Vl988YV5/V9//VWPPPKInJ2d1bt3bwUFBenkyZP69ttvNWnSJHXs2FF//PGHPv/8c73//vsqW7asJJkTnkmTJmnUqFHq1KmTXnrpJV24cEEffPCBmjdvrl9++cV8pnj+/Pl6+eWX1bRpUw0YMECnTp1Su3btVLp0aQUGBt52X40bN05jx45V06ZNNX78eLm4uGj37t3avHmzWrduLenmD9lx48YpLCxMffv21bFjx/TRRx9p79692r59u0UCeunSJT3xxBPq3LmzXnzxRZUvX9687JNPPtH169fVu3dvubq6qnTp0vrtt9/08MMPq0KFCho2bJg8PT313//+V+3bt9eXX36pDh065Bp7fvri5Zdf1rlz57Rx40Z9+umnt90fv/32mx555BF5eXlpyJAhcnZ21scff6yWLVtq69atCgkJsajfv39/+fj4aMyYMYqKitL06dMVGRmp5cuXS7Lu+71jxw7VqVMn1wS/U6dOCgoK0uTJk7Vr1y7NnDlTV65csbjNJr/fIynvvvu7ESNGqEaNGpo7d67Gjx+vKlWqKDg4+LbtLFy4UCVKlNCgQYNUokQJbd68WaNHj1ZiYqKmTp1qXv+jjz5SZGSkHnnkEQ0cOFBRUVFq3769fHx8VLFixWzxTJ48We7u7ho2bJhOnDihDz74QM7OznJwcNCVK1c0duxY7dq1SwsXLlSVKlU0evTof7R/rly5ooiICHXs2FGdOnXSihUrNHToUNWtW1dPPPGEatWqpfHjx2v06NHq3bu3HnnkEUmyOObWrl1b7u7u2r59e57fbcAuGQDuCQkJCYYk46mnnvpH67dp08aoXLlynnUmT55sSDK/WrVqZURHR9+27a+++sqQZOzduzfXOj/88IMhyfjhhx8syk+fPm1IMj755BNzWbdu3QxJRv/+/c1lmZmZRps2bQwXFxfjwoULhmEYxoULFwxJxpgxY7J9XlYbw4YNy7YsJSUlW9nkyZMNk8lk/Pnnn+ay5s2bGyVLlrQoy4oly9SpUw1JxunTpy3qREVFGY6OjsakSZMsyg8dOmQ4OTmZy9PS0oxy5coZDRo0MFJTU8315s6da0gyWrRokS3Wvzt+/Ljh4OBgdOjQwcjIyMgxzri4OMPFxcVo3bq1RZ0PP/zQkGQsWLDAXNaiRQtDkjFnzhyLtrL6ycvLy4iLi7NY1qpVK6Nu3brG9evXLT67adOmRvXq1c1lOX0H8tsX/fr1M3L7L+/W70D79u0NFxcX4+TJk+ayc+fOGSVLljSaN29uLvvkk08MSUZYWJhFnw4cONBwdHQ04uPjDcPI3/c7NxUrVjSefvrpbOVjxowxJBnt2rWzKH/llVcMScbBgwcNw8j/98gwcu+73GRt/63blVc7OfXXyy+/bHh4eJj7PzU11ShTpozx4IMPGunp6eZ6CxcuzPadzvpO1KlTx0hLSzOXP//884bJZDKeeOIJi88KDQ21OI79k/2zePFic1lqaqrh5+dn0Ud79+7Ndky61X333ZctNqA44FYo4B6RmJgoSSpZsmShfcbzzz+vjRs3aunSpXrhhRckKcfbg26VdUZw9erVSk9Pv2Px/H0WHZPJpMjISKWlpen777/Pdxt9+/bNVvb3KzDJycm6ePGimjZtKsMw9Msvv0iSLly4oG3btunf//63KlWqZLH+32/Dyc3KlSuVmZmpTp066eLFi+aXn5+fqlevrh9++EHSzVts4uLi1KdPH4uxCt27d8/XYN9Vq1YpMzNTo0ePloOD5X8JWXF+//33SktL04ABAyzq9OrVS15eXhbjciTJ1dVVPXr0yPHznn76afMVGUm6fPmyNm/erE6dOunq1avm7bx06ZLCw8N1/Phx/fXXX7nGn5++KIiMjAxt2LBB7du3V9WqVc3l/v7+euGFF/TTTz+Z/5ay9O7d26JPH3nkEWVkZOjPP/+UZN33+9KlS/Lx8cl1eb9+/Sze9+/fX9LNwepS/r9HWfLqu4LIrZ2/91dWfz/yyCNKSUnR0aNHJd38Tl+6dEm9evWyGFTfpUuXXPdF165dLa7qhISEyDCMbLebhYSE6MyZM7px44akgu+fEiVK6MUXXzS/d3FxUZMmTXTq1Kn87hpJko+Pjy5evFigdQB7wK1QwD3Cy8tL0s3/zAtL5cqVVblyZUk3k4zevXsrLCxMx44dk7u7u5KSkpSUlGSu7+joKF9fX7Vo0UJPP/20xo0bp/fff18tW7ZU+/bt9cILL8jV1fUfxeLg4GDxw1CS7rvvPkmyGMOQFycnpxxvu4iOjtbo0aP1zTff6MqVKxbLEhISJMn8Q6NOnToFDV2SdPz4cRmGoerVq+e4POtHVNaP11vrOTs7Z9v+nJw8eVIODg6qXbt2rnWyPqNGjRoW5S4uLqpatap5eZYKFSrkOiC7SpUqFu9PnDghwzA0atQojRo1Ksd14uLiVKFChRyX5acvCuLChQtKSUnJtq2SVKtWLWVmZurMmTO6//77zeW3Jo5ZP36z4rH2+23kMWXzrf0eHBwsBwcH83c8v9+jLHn1XUHk1s5vv/2mkSNHavPmzdkStKz+yvo+VatWzWK5k5NTrlNe39oHWUn1rbcClipVSpmZmUpISFCZMmUKvH8qVqyY7cSAj4+Pfv311xzXz41hGPk6wQDYGxIL4B7h5eWlgICAXGd2KgzPPPOM5s2bp23btik8PFzvvvuueXpX6WYikjWod8WKFdq1a5e+/fZbfffdd/r3v/+t9957T7t27VKJEiVy/U84p0Gfd4qrq2u2s/gZGRl6/PHHdfnyZQ0dOlQ1a9aUp6en/vrrL3Xv3l2ZmZl35LMzMzNlMpm0bt26HGfUKsqzyeQ1pubWZVn7a/DgwQoPD89xnVt/YGa5W31xO7nNeJaVEOTn+52bMmXKZEuY8nLr30lBv0e3Gw+VXzm1Ex8frxYtWsjLy0vjx49XcHCw3NzctH//fg0dOtSq/sqtD27XNwXdP7drL7+uXLmSazID2DMSC+Ae0rZtW82dO1c7d+5UaGhooX9e1m1QWWciu3btqmbNmpmX3/rj46GHHtJDDz2kSZMmaenSperSpYuWLVuml156yXwW+NZZiG49W54lMzNTp06dMl+lkKQ//vhDksxnPf/JGcNDhw7pjz/+0KJFi9S1a1dz+a0zvGRdLbhdIpdbDMHBwTIMQ1WqVLHYhltlXSE6fvy4HnvsMXN5enq6Tp8+rfr16+f5+cHBwcrMzNTvv/+ebc79Wz/j2LFjFldB0tLSdPr0aaueYZDVnrOzc4HbyW9fSPnva19fX3l4eOjYsWPZlh09elQODg75GhCfk7y+37mpWbOmTp8+nevy48ePW1wFOnHihDIzM83f8fx+j+6GLVu26NKlS1q5cqXFLFe3bl/W9+3EiRN69NFHzeU3btxQVFSUxQQL1iqM/XO779qNGzd05swZtWvX7o58HlCUMMYCuIcMGTJEnp6eeumllxQbG5tt+cmTJzVjxowCt3vr1JpZ5s+fL5PJpIYNG0q6+SMyLCzM/Hr44Ycl3Tx7d+sZv6wfuVlTQ1auXFmOjo7atm2bRb3Zs2fnGteHH35o/rdhGPrwww/l7OysVq1aSZJ5lqeCPPU664zl3+M1DCPbfvP19VXz5s21YMECRUdHWyz7+7pZz8W4NYaOHTvK0dFR48aNy7ZvDMPQpUuXJEmNGzeWr6+v5syZYzGt78KFC/O1Xe3bt5eDg4PGjx+f7Yxx1ueGhYXJxcVFM2fOtIhl/vz5SkhIUJs2bW77ObkpV66cWrZsqY8//ljnz5/Ptjy375aU/76Qct/PObXZunVrff311xa3zMXGxmrp0qVq1qyZ+bbC/MrP9zs3oaGhOnz4cK71sqbRzfLBBx9Ikp544glJ+f8e3Q059VdaWlq2v+HGjRurTJkymjdvnnkshCQtWbKkQFdv8qMw9s/tvmu///67rl+/Xmiz8wG2xBUL4B4SHByspUuX6rnnnlOtWrUsnry9Y8cOffHFF+a56KWb06VmPUvgxIkTSkhI0MSJEyVJ9evX17/+9S9JN6dr3L59uyIiIlSpUiVdvnxZX375pfbu3av+/fvneitLlkWLFmn27Nnq0KGDgoODdfXqVc2bN09eXl568sknJd28N/rZZ5/VBx98IJPJpODgYK1evdr8kK5bubm5af369erWrZtCQkK0bt06rVmzRm+++aZ58LC7u7tq166t5cuX67777lPp0qVVp06dPMdF1KxZU8HBwRo8eLD++usveXl56csvv8zxB8/MmTPVrFkzNWzYUL1791aVKlUUFRWlNWvW6MCBA5KkRo0aSbo5fWfnzp3l7Oysf/3rXwoODtbEiRM1fPhw81SbJUuW1OnTp/XVV1+pd+/eGjx4sJydnTVx4kS9/PLLeuyxx/Tcc8/p9OnT+uSTT/I1xqJatWoaMWKEJkyYoEceeUQdO3aUq6ur9u7dq4CAAE2ePFm+vr4aPny4xo0bp4iICLVr107Hjh3T7Nmz9eCDD1oMZv0nZs2apWbNmqlu3brq1auXqlatqtjYWO3cuVNnz57VwYMHc1yvIH2RtZ9fffVVhYeHy9HRUZ07d86x3YkTJ2rjxo1q1qyZXnnlFTk5Oenjjz9WamqqxTML8is/3+/cPPXUU5owYYK2bt1qnvr3706fPq127dopIiJCO3fu1GeffaYXXnjBfKUqv9+ju6Fp06by8fFRt27d9Oqrr8pkMunTTz/N9oPexcVFY8eOVf/+/fXYY4+pU6dOioqK0sKFCxUcHHxHxyYUxv4JDg6Wt7e35syZo5IlS8rT01MhISHmK0sbN26Uh4eHHn/88Tu2HUCRUejzTgEocv744w+jV69eRlBQkOHi4mKULFnSePjhh40PPvjAYsrPrOkkc3p169bNXG/Dhg1G27ZtjYCAAMPZ2dnc3ieffGIxDWdu9u/fbzz//PNGpUqVDFdXV6NcuXJG27ZtjZ9//tmi3oULF4ynn37a8PDwMHx8fIyXX37ZOHz4cI7TzXp6ehonT540WrdubXh4eBjly5c3xowZk21K1R07dhiNGjUyXFxcLKYdzWojJ7///rsRFhZmlChRwihbtqzRq1cv4+DBgzlOMXn48GGjQ4cOhre3t+Hm5mbUqFHDGDVqlEWdCRMmGBUqVDAcHByyTT375ZdfGs2aNTM8PT0NT09Po2bNmka/fv2MY8eOWbQxe/Zso0qVKoarq6vRuHFjY9u2bUaLFi1uO91slgULFhgPPPCA4erqavj4+BgtWrQwNm7caFHnww8/NGrWrGk4Ozsb5cuXN/r27WtcuXLFok6LFi2M+++/P1v7WdPNTp06NcfPP3nypNG1a1fDz8/PcHZ2NipUqGC0bdvWWLFihblOTtPN5rcvbty4YfTv39/w9fU1TCaTxdSzf+/3LPv37zfCw8ONEiVKGB4eHsajjz5q7Nixw6JObtOt3hpnfr/fualXr57Rs2dPi7Ks6WZ///1345lnnjFKlixp+Pj4GJGRkca1a9eytZGf71FufZebvKabza2d7du3Gw899JDh7u5uBAQEGEOGDDG+++67HKeSnjlzplG5cmXD1dXVaNKkibF9+3ajUaNGRkREhLlO1r7+4osv8hVb1n7LmnL6Tuyfbt26ZZuK++uvvzZq165tODk5ZfsuhoSEGC+++GKO+wewdybDKOCIIwAAcNd8+umn6tevn6Kjo81T12Y9sPDChQvmBysWd5mZmfL19VXHjh01b948W4fzjxw4cEANGzbU/v37cx3TBNgzxlgAAFCEdenSRZUqVco2nqI4u379erZbpBYvXqzLly+rZcuWtgnqDnj77bf1zDPPkFSg2GKMBQAARZiDg8NdnSa6KNi1a5cGDhyoZ599VmXKlNH+/fs1f/581alTR88++6ytw/vHli1bZusQgEJFYgEAAIqUoKAgBQYGaubMmbp8+bJKly6trl276u23374jD/ADUDgYYwEAAADAaoyxAAAAAGA1EgsAAAAAVmOMxR2QmZmpc+fOqWTJknf0wT0AAACALRmGoatXryogIEAODnlfkyCxuAPOnTunwMBAW4cBAAAAFIozZ86oYsWKedYhsbgDSpYsKenmDvfy8rJxNAAAAMCdkZiYqMDAQPPv3byQWNwBWbc/eXl5kVgAAACg2MnP7f52NXh727Zt+te//qWAgACZTCatWrXqtuts2bJFDRs2lKurq6pVq6aFCxdmqzNr1iwFBQXJzc1NISEh2rNnz50PHgAAACjG7CqxSE5OVv369TVr1qx81T99+rTatGmjRx99VAcOHNCAAQP00ksv6bvvvjPXWb58uQYNGqQxY8Zo//79ql+/vsLDwxUXF1dYmwEAAAAUO3b7gDyTyaSvvvpK7du3z7XO0KFDtWbNGh0+fNhc1rlzZ8XHx2v9+vWSpJCQED344IP68MMPJd2c4SkwMFD9+/fXsGHD8hVLYmKiSpUqpYSEBG6FAgAAQLFRkN+5dnXFoqB27typsLAwi7Lw8HDt3LlTkpSWlqZ9+/ZZ1HFwcFBYWJi5Tk5SU1OVmJho8QIAAADuZcU6sYiJiVH58uUtysqXL6/ExERdu3ZNFy9eVEZGRo51YmJicm138uTJKlWqlPnFVLMAAAC41xXrxKKwDB8+XAkJCebXmTNnbB0SAAAAYFPFerpZPz8/xcbGWpTFxsbKy8tL7u7ucnR0lKOjY451/Pz8cm3X1dVVrq6uhRIzAAAAYI+K9RWL0NBQbdq0yaJs48aNCg0NlSS5uLioUaNGFnUyMzO1adMmcx0AAAAAt2dXiUVSUpIOHDigAwcOSLo5neyBAwcUHR0t6eYtSl27djXX79Onj06dOqUhQ4bo6NGjmj17tv773/9q4MCB5jqDBg3SvHnztGjRIh05ckR9+/ZVcnKyevTocVe3DQAAALBndnUr1M8//6xHH33U/H7QoEGSpG7dumnhwoU6f/68OcmQpCpVqmjNmjUaOHCgZsyYoYoVK+o///mPwsPDzXWee+45XbhwQaNHj1ZMTIwaNGig9evXZxvQDQAAACB3dvsci6KE51gAAACgOOI5FgAAAADuKhILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFZzsnUAAAAUpqBha2wdQrEV9XYbW4cAoAjhigUAAAAAq9ldYjFr1iwFBQXJzc1NISEh2rNnT651W7ZsKZPJlO3Vps3/zrB079492/KIiIi7sSkAAABAsWFXt0ItX75cgwYN0pw5cxQSEqLp06crPDxcx44dU7ly5bLVX7lypdLS0szvL126pPr16+vZZ5+1qBcREaFPPvnE/N7V1bXwNgIAAAAohuzqisW0adPUq1cv9ejRQ7Vr19acOXPk4eGhBQsW5Fi/dOnS8vPzM782btwoDw+PbImFq6urRT0fH5+7sTkAAABAsWE3VyzS0tK0b98+DR8+3Fzm4OCgsLAw7dy5M19tzJ8/X507d5anp6dF+ZYtW1SuXDn5+Pjoscce08SJE1WmTJk7Gj8A+8cg4MLFQGAAsG92k1hcvHhRGRkZKl++vEV5+fLldfTo0duuv2fPHh0+fFjz58+3KI+IiFDHjh1VpUoVnTx5Um+++aaeeOIJ7dy5U46Ojjm2lZqaqtTUVPP7xMTEf7BFAAAAQPFhN4mFtebPn6+6deuqSZMmFuWdO3c2/7tu3bqqV6+egoODtWXLFrVq1SrHtiZPnqxx48YVarwAAACAPbGbMRZly5aVo6OjYmNjLcpjY2Pl5+eX57rJyclatmyZevbsedvPqVq1qsqWLasTJ07kWmf48OFKSEgwv86cOZO/jQAAAACKKbu5YuHi4qJGjRpp06ZNat++vSQpMzNTmzZtUmRkZJ7rfvHFF0pNTdWLL7542885e/asLl26JH9//1zruLq6MnMUAACFhPFMhYvxTCgsdnPFQpIGDRqkefPmadGiRTpy5Ij69u2r5ORk9ejRQ5LUtWtXi8HdWebPn6/27dtnG5CdlJSkN954Q7t27VJUVJQ2bdqkp556StWqVVN4ePhd2SYAAACgOLCbKxaS9Nxzz+nChQsaPXq0YmJi1KBBA61fv948oDs6OloODpa50rFjx/TTTz9pw4YN2dpzdHTUr7/+qkWLFik+Pl4BAQFq3bq1JkyYwBUJAAAAoADsKrGQpMjIyFxvfdqyZUu2sho1asgwjBzru7u767vvvruT4QEAAAD3JLu6FQoAAABA0URiAQAAAMBqJBYAAAAArEZiAQAAAMBqJBYAAAAArGZ3s0IBAACg6OHBhoXHXh5qyBULAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNRILAAAAAFYjsQAAAABgNR6QB9gIDxIqPPbyICEAAIoTrlgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsBqJBQAAAACrkVgAAAAAsJrdJRazZs1SUFCQ3NzcFBISoj179uRad+HChTKZTBYvNzc3izqGYWj06NHy9/eXu7u7wsLCdPz48cLeDAAAAKBYsavEYvny5Ro0aJDGjBmj/fv3q379+goPD1dcXFyu63h5een8+fPm159//mmxfMqUKZo5c6bmzJmj3bt3y9PTU+Hh4bp+/Xphbw4AAABQbNhVYjFt2jT16tVLPXr0UO3atTVnzhx5eHhowYIFua5jMpnk5+dnfpUvX968zDAMTZ8+XSNHjtRTTz2levXqafHixTp37pxWrVp1F7YIAAAAKB7sJrFIS0vTvn37FBYWZi5zcHBQWFiYdu7cmet6SUlJqly5sgIDA/XUU0/pt99+My87ffq0YmJiLNosVaqUQkJC8mwTAAAAgCW7SSwuXryojIwMiysOklS+fHnFxMTkuE6NGjW0YMECff311/rss8+UmZmppk2b6uzZs5JkXq8gbUpSamqqEhMTLV4AAADAvczJ1gEUptDQUIWGhprfN23aVLVq1dLHH3+sCRMm/ON2J0+erHHjxt2JEO+IoGFrbB1CsRb1dhtbhwAAAFDk2c0Vi7Jly8rR0VGxsbEW5bGxsfLz88tXG87OznrggQd04sQJSTKvV9A2hw8froSEBPPrzJkzBdkUAAAAoNixm8TCxcVFjRo10qZNm8xlmZmZ2rRpk8VVibxkZGTo0KFD8vf3lyRVqVJFfn5+Fm0mJiZq9+7debbp6uoqLy8vixcAAABwL7OrW6EGDRqkbt26qXHjxmrSpImmT5+u5ORk9ejRQ5LUtWtXVahQQZMnT5YkjR8/Xg899JCqVaum+Ph4TZ06VX/++adeeuklSTdnjBowYIAmTpyo6tWrq0qVKho1apQCAgLUvn17W20mAAAAYHfsKrF47rnndOHCBY0ePVoxMTFq0KCB1q9fbx58HR0dLQeH/12EuXLlinr16qWYmBj5+PioUaNG2rFjh2rXrm2uM2TIECUnJ6t3796Kj49Xs2bNtH79+mwP0gMAAACQO7tKLCQpMjJSkZGROS7bsmWLxfv3339f77//fp7tmUwmjR8/XuPHj79TIQIAAAD3HLsZYwEAAACg6CKxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAVrO7xGLWrFkKCgqSm5ubQkJCtGfPnlzrzps3T4888oh8fHzk4+OjsLCwbPW7d+8uk8lk8YqIiCjszQAAAACKFbtKLJYvX65BgwZpzJgx2r9/v+rXr6/w8HDFxcXlWH/Lli16/vnn9cMPP2jnzp0KDAxU69at9ddff1nUi4iI0Pnz582vzz///G5sDgAAAFBs2FViMW3aNPXq1Us9evRQ7dq1NWfOHHl4eGjBggU51l+yZIleeeUVNWjQQDVr1tR//vMfZWZmatOmTRb1XF1d5efnZ375+Pjcjc0BAAAAig27SSzS0tK0b98+hYWFmcscHBwUFhamnTt35quNlJQUpaenq3Tp0hblW7ZsUbly5VSjRg317dtXly5dyrOd1NRUJSYmWrwAAACAe5ndJBYXL15URkaGypcvb1Fevnx5xcTE5KuNoUOHKiAgwCI5iYiI0OLFi7Vp0ya988472rp1q5544gllZGTk2s7kyZNVqlQp8yswMPCfbRQAAABQTDjZOoC75e2339ayZcu0ZcsWubm5mcs7d+5s/nfdunVVr149BQcHa8uWLWrVqlWObQ0fPlyDBg0yv09MTCS5AAAAwD3Nbq5YlC1bVo6OjoqNjbUoj42NlZ+fX57rvvvuu3r77be1YcMG1atXL8+6VatWVdmyZXXixIlc67i6usrLy8viBQAAANzLCpRYZGRkaNu2bYqPjy+kcHLn4uKiRo0aWQy8zhqIHRoamut6U6ZM0YQJE7R+/Xo1btz4tp9z9uxZXbp0Sf7+/nckbgAAAOBeUKDEwtHRUa1bt9aVK1cKK548DRo0SPPmzdOiRYt05MgR9e3bV8nJyerRo4ckqWvXrho+fLi5/jvvvKNRo0ZpwYIFCgoKUkxMjGJiYpSUlCRJSkpK0htvvKFdu3YpKipKmzZt0lNPPaVq1aopPDzcJtsIAAAA2KMCj7GoU6eOTp06pSpVqhRGPHl67rnndOHCBY0ePVoxMTFq0KCB1q9fbx7QHR0dLQeH/+VKH330kdLS0vTMM89YtDNmzBiNHTtWjo6O+vXXX7Vo0SLFx8crICBArVu31oQJE+Tq6npXtw0AAACwZwVOLCZOnKjBgwdrwoQJatSokTw9PS2WF/Z4g8jISEVGRua4bMuWLRbvo6Ki8mzL3d1d33333R2KDAAAALh3FTixePLJJyVJ7dq1k8lkMpcbhiGTyZTnNK0AAAAAiqcCJxY//PBDYcQBAAAAwI4VOLFo0aJFYcQBAAAAwI7ZzXMsAAAAABRdJBYAAAAArEZiAQAAAMBqJBYAAAAArEZiAQAAAMBqBU4sYmNj9X//938KCAiQk5OTHB0dLV4AAAAA7j0Fnm62e/fuio6O1qhRo+Tv72/xkDwAAAAA96YCJxY//fSTfvzxRzVo0KAQwgEAAABgjwp8K1RgYKAMwyiMWAAAAADYqQInFtOnT9ewYcMUFRVVCOEAAAAAsEcFvhXqueeeU0pKioKDg+Xh4SFnZ2eL5ZcvX75jwQEAAACwDwVOLKZPn14IYQAAAACwZwVOLLp161YYcQAAAACwYwVOLCQpIyNDq1at0pEjRyRJ999/v9q1a8dzLAAAAIB7VIETixMnTujJJ5/UX3/9pRo1akiSJk+erMDAQK1Zs0bBwcF3PEgAAAAARVuBZ4V69dVXFRwcrDNnzmj//v3av3+/oqOjVaVKFb366quFESMAAACAIq7AVyy2bt2qXbt2qXTp0uayMmXK6O2339bDDz98R4MDAAAAYB8KfMXC1dVVV69ezVaelJQkFxeXOxIUAAAAAPtS4MSibdu26t27t3bv3i3DMGQYhnbt2qU+ffqoXbt2hREjAAAAgCKuwInFzJkzFRwcrNDQULm5ucnNzU0PP/ywqlWrphkzZhRGjAAAAACKuAKPsfD29tbXX3+tEydOmKebrVWrlqpVq3bHgwMAAABgHwp8xSJLtWrV9K9//UtPPvmkkpKSdOXKlTsZV65mzZqloKAgubm5KSQkRHv27Mmz/hdffKGaNWvKzc1NdevW1dq1ay2WG4ah0aNHy9/fX+7u7goLC9Px48cLcxMAAACAYqfAicWAAQM0f/58STcflNeiRQs1bNhQgYGB2rJly52Oz8Ly5cs1aNAgjRkzRvv371f9+vUVHh6uuLi4HOvv2LFDzz//vHr27KlffvlF7du3V/v27XX48GFznSlTpmjmzJmaM2eOdu/eLU9PT4WHh+v69euFui0AAABAcVLgxGLFihWqX7++JOnbb7/VqVOndPToUQ0cOFAjRoy44wH+3bRp09SrVy/16NFDtWvX1pw5c+Th4aEFCxbkWH/GjBmKiIjQG2+8oVq1amnChAlq2LChPvzwQ0k3r1ZMnz5dI0eO1FNPPaV69epp8eLFOnfunFatWlWo2wIAAAAUJwUeY3Hx4kX5+flJktauXatOnTrpvvvu07///e9CHbydlpamffv2afjw4eYyBwcHhYWFaefOnTmus3PnTg0aNMiiLDw83Jw0nD59WjExMQoLCzMvL1WqlEJCQrRz50517tw5x3ZTU1OVmppqfp+YmChJ+v1cgkpcNf7XlruzAkt76Hp6hk7EJWVrp06FUpKkkxeSdC0tw2JZRR93eXu46FJSqs4nWF498XR1UpWynsrINHTkfGKOMeLOOfxXgsV7/1JuKlPCVfEpaTp75ZrFMncXRwX7lshxPUmqVq6E3JwddeZySuEFDCVcS8+2j12dHFS9fElJ0m/nEmQYlusE+5aQu4uj/oq/pivJaRbLypRwkX8p90KNGTcdjUnUjQzLzgkq66kSrk6KSbiui0mpFsu8PZxV0ef2x1kUjoRr6Srl7qy4q9cVl2jZN15uzqpUxkNpNzL1R2z2aepr+3vJwcGkUxeSlHLL/4EoXKcvJuf5O6KGX0k5Ozroz0vJunr9hsWy8l5u8i3pqoSUdJ25wv9ld0vWb4q//45IuJZuUadcSVeV83LT1evp+vOSZd+4ODnovv//f+CR84nKyLQ8zlYp6ylPVyedT7imS0mW/wc6ZeT/Lp4CJxbly5fX77//Ln9/f61fv14fffSRJCklJUWOjo4FbS7fLl68qIyMDJUvXz5bPEePHs1xnZiYmBzrx8TEmJdnleVWJyeTJ0/WuHHjspV3+niXHFw9zO/bNwjQ9M4PKCbhutp+8FO2+lFvt5EkDf7ioH6JjrdY9v5z9dXhgYpac+i8Rn/9m8WyR6qX1ac9Q5SSdiPHdveNDFOZEq56adFefX/E8jaxkW1q6aVHqmrNr+fVb+l+i2X3B3hpzauPSJLuG7FOaRmZFss3DGyu+8qX1NAVv2r5z2cslvVtGayhETW18+QlPT9vl8UyPy837XqzlSTpobc2KSbR8gv6ea+HFBpcRu+sP6qPtpy0WPZc40C980w9/RF7Va3f32axzMXRQX9MekKS1Gbmj/rtnOXBcdYLDdWmnr/+8+MpTVxzxGJZWK1y+k+3B3UpKVWNJn6vWx0a21ol3Zz1f/N3Z9vH45+6X11Dg/TDsTgNXH7QYtkDlbz11Ss3HxSZU99sGdxSQWU99d6GY9mWvdaqugY+fp+2/nFB3RZYjh2qXMZDW994VJLUcMJGXb7lh++XfZuqUWUfTVj9u+b/dNpi2f89VFkT2tfR4b8SssVUwtVJh8eFS5Ien7ZVx2/5YTava2M9Xru8Zv1wQlO/s4z5ybp+mt2lkc4nXFPo5M3ZtufYxAi5OjnquY93avfpyxbL3u5YV52bVNKyPdEatvKQxbKQKqW1/OVQpd7IUI2R67O1u3P4Y/Iv5a5XluzT2kOWf6dvhNdQv0eraePvseq1+GeLZdXLldDGQS0kSc99vEtJqZb/Wa7u30x1KpTSnC0n9emuPy2W9WxWRaPa1taXfZvq6Y92WCwr7emi/aMelyS1mPpDtoP5on83UYv7fPX+xj80Y5Pl+K2sY0TUxWS1fHdLtm3NOkZ0mL0912PE4p1RuR4jrl5PV92xG7K1W5SPEd0X7M31GLFoZ1Sux4joyynZvt9Zx4iot9sU6jHix+MXLZZlHSO++uVsnseIoGFrsrWbdYwYsOwXrTpwzmJZUTxG7Dl9WY/XLq8vfj6b6zHiUnJqjsfDYxMj5OrgqOErDxW5Y0SdMd/leowYtepwrseIfX9esYtjxOivD+frd8SE1b/neoz46cRFfkfcxWNEVj/9/XdEbseI/dHxeR4juvxnd67HiP/8eDrbMaJTvTLZti83JsO49bxd3saOHavp06fL399fKSkp+uOPP+Tq6qoFCxZo3rx5uV49sNa5c+dUoUIF7dixQ6GhoebyIUOGaOvWrdq9e3e2dVxcXLRo0SI9//zz5rLZs2dr3Lhxio2N1Y4dO/Twww/r3Llz8vf3N9fp1KmTTCaTli9fnmMsOV2xCAwM1M4j0SpR0stcbqsrFv/0TIObs4OqlbuZzeZ1tv3slRTFp1hmyWVLuMqvlJuSUm8o6mKyxTInR5Nq+t3cL4V1NvJE3FVdT7c8gAX6eKiUh7MuXE1V7C0HoZJuTqpcxlPpGZk6FpP9TFotfy85Oph0+mKykm/5z+VOXbG4W2cafDxdVMHbXdfSMnTyguU+NJmk+wNu7sPjsVeVeuOWfVjao1DORgZ4u6u0p4suJ6fpXLzlPvRwcVRV3xLKzDT0ew7f7/vKl5SLk4OiL6Uo8fot+9DLVeVKuhXaFYvk1Bs6fcv329HBpFr+N7/ff8ReVdot+7ByGQ+VdHNWXOJ1xV213IccI27iGPE/HCNu4hhxE8eImzhG/I+trljUquynhIQEeXl5KS8FTiwk6csvv1R0dLSeffZZVaxYUZK0aNEieXt766mnnipoc/mSlpYmDw8PrVixQu3btzeXd+vWTfHx8fr666+zrVOpUiUNGjRIAwYMMJeNGTNGq1at0sGDB3Xq1CkFBwfrl19+UYMGDcx1WrRooQYNGuT71q7ExESVKlUqXzscAAAAsBcF+Z1boMHb6enpatWqlerVq6eBAweakwrp5g/8wkoqpJtXHxo1aqRNmzaZyzIzM7Vp0yaLKxh/FxoaalFfkjZu3GiuX6VKFfn5+VnUSUxM1O7du3NtEwAAAEB2BRpj4ezsrF9//bWwYrmtQYMGqVu3bmrcuLGaNGmi6dOnKzk5WT169JAkde3aVRUqVNDkyZMlSa+99ppatGih9957T23atNGyZcv0888/a+7cuZIkk8mkAQMGaOLEiapevbqqVKmiUaNGKSAgwOKqCAAAAIC8FXjw9osvvqj58+fr7bffLox48vTcc8/pwoULGj16tGJiYtSgQQOtX7/ePPg6OjpaDg7/uwjTtGlTLV26VCNHjtSbb76p6tWra9WqVapTp465zpAhQ5ScnKzevXsrPj5ezZo10/r16+Xm5nbXtw8AAACwVwUeY9G/f38tXrxY1atXV6NGjeTp6WmxfNq0aXc0QHvAGAsAAAAURwX5nVvgKxaHDx9Ww4YNJUl//PGHxTKTyVTQ5gAAAAAUAwVOLH744YfCiAMAAACAHSvQrFAAAAAAkJMCX7GQpJ9//ln//e9/FR0drbQ0y4dorFy58o4EBgAAAMB+FPiKxbJly9S0aVMdOXJEX331ldLT0/Xbb79p8+bNKlWqVGHECAAAAKCIK3Bi8dZbb+n999/Xt99+KxcXF82YMUNHjx5Vp06dVKlSpcKIEQAAAEARV+DE4uTJk2rTpo2km0/DTk5Olslk0sCBA80PngMAAABwbylwYuHj46OrV69KkipUqKDDhw9LkuLj45WSknJnowMAAABgFwo8eLt58+bauHGj6tatq2effVavvfaaNm/erI0bN6pVq1aFESMAAACAIq7AicWHH36o69evS5JGjBghZ2dn7dixQ08//bRGjhx5xwMEAAAAUPSZDMMwbB2EvSvIo84BAAAAe1GQ37n/6AF5J0+e1MiRI/X8888rLi5OkrRu3Tr99ttv/6Q5AAAAAHauwInF1q1bVbduXe3evVsrV65UUlKSJOngwYMaM2bMHQ8QAAAAQNFX4MRi2LBhmjhxojZu3CgXFxdz+WOPPaZdu3bd0eAAAAAA2IcCJxaHDh1Shw4dspWXK1dOFy9evCNBAQAAALAvBU4svL29df78+Wzlv/zyiypUqHBHggIAAABgXwqcWHTu3FlDhw5VTEyMTCaTMjMztX37dg0ePFhdu3YtjBgBAAAAFHEFTizeeust1axZU4GBgUpKSlLt2rXVvHlzNW3alOdYAAAAAPeof/wcizNnzujQoUNKSkrSAw88oOrVq9/p2OwGz7EAAABAcVSQ37n5fvJ2Zmampk6dqm+++UZpaWlq1aqVxowZI3d3d6sDBgAAAGDf8n0r1KRJk/Tmm2+qRIkSqlChgmbMmKF+/foVZmwAAAAA7ES+E4vFixdr9uzZ+u6777Rq1Sp9++23WrJkiTIzMwszPgAAAAB2IN+JRXR0tJ588knz+7CwMJlMJp07d65QAgMAAABgP/KdWNy4cUNubm4WZc7OzkpPT7/jQQEAAACwL/lOLAzDUPfu3dWxY0fz6/r16+rTp49FWWG5fPmyunTpIi8vL3l7e6tnz55KSkrKs37//v1Vo0YNubu7q1KlSnr11VeVkJBgUc9kMmV7LVu2rNC2AwAAACiO8j0rVLdu3bKVvfjii3c0mLx06dJF58+f18aNG5Wenq4ePXqod+/eWrp0aY71z507p3Pnzundd99V7dq19eeff6pPnz46d+6cVqxYYVH3k08+UUREhPm9t7d3YW4KAAAAUOz84+dY3E1HjhxR7dq1tXfvXjVu3FiStH79ej355JM6e/asAgIC8tXOF198oRdffFHJyclycrqZU5lMJn311Vdq3779P46P51gAAACgOCrI79wCP3nbFnbu3Clvb29zUiHdHDzu4OCg3bt357udrB2SlVRk6devn8qWLasmTZpowYIFsoNcCwAAAChS8n0rlC3FxMSoXLlyFmVOTk4qXbq0YmJi8tXGxYsXNWHCBPXu3duifPz48Xrsscfk4eGhDRs26JVXXlFSUpJeffXVXNtKTU1Vamqq+X1iYmIBtgYAAAAofmyaWAwbNkzvvPNOnnWOHDli9eckJiaqTZs2ql27tsaOHWuxbNSoUeZ/P/DAA0pOTtbUqVPzTCwmT56scePGWR0XAAAAUFzYdIzFhQsXdOnSpTzrVK1aVZ999plef/11XblyxVyeNf3tF198oQ4dOuS6/tWrVxUeHi4PDw+tXr0625S5t1qzZo3atm2r69evy9XVNcc6OV2xCAwMZIwFAAAAipWCjLGw6RULX19f+fr63rZeaGio4uPjtW/fPjVq1EiStHnzZmVmZiokJCTX9RITExUeHi5XV1d98803t00qJOnAgQPy8fHJNamQJFdX1zyXAwAAAPcauxhjUatWLUVERKhXr16aM2eO0tPTFRkZqc6dO5tnhPrrr7/UqlUrLV68WE2aNFFiYqJat26tlJQUffbZZ0pMTDSPhfD19ZWjo6O+/fZbxcbG6qGHHpKbm5s2btyot956S4MHD7bl5gIAAAB2xy4SC0lasmSJIiMj1apVKzk4OOjpp5/WzJkzzcvT09N17NgxpaSkSJL2799vnjGqWrVqFm2dPn1aQUFBcnZ21qxZszRw4EAZhqFq1app2rRp6tWr193bMAAAAKAYsIvnWBR1PMcCAAAAxVGxe44FAAAAgKKNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1ewmsbh8+bK6dOkiLy8veXt7q2fPnkpKSspznZYtW8pkMlm8+vTpY1EnOjpabdq0kYeHh8qVK6c33nhDN27cKMxNAQAAAIodJ1sHkF9dunTR+fPntXHjRqWnp6tHjx7q3bu3li5dmud6vXr10vjx483vPTw8zP/OyMhQmzZt5Ofnpx07duj8+fPq2rWrnJ2d9dZbbxXatgAAAADFjckwDMPWQdzOkSNHVLt2be3du1eNGzeWJK1fv15PPvmkzp49q4CAgBzXa9mypRo0aKDp06fnuHzdunVq27atzp07p/Lly0uS5syZo6FDh+rChQtycXHJV3yJiYkqVaqUEhIS5OXlVfANBAAAAIqggvzOtYtboXbu3Clvb29zUiFJYWFhcnBw0O7du/Ncd8mSJSpbtqzq1Kmj4cOHKyUlxaLdunXrmpMKSQoPD1diYqJ+++23O78hAAAAQDFlF7dCxcTEqFy5chZlTk5OKl26tGJiYnJd74UXXlDlypUVEBCgX3/9VUOHDtWxY8e0cuVKc7t/Tyokmd/n1W5qaqpSU1PN7xMTEwu8TQAAAEBxYtPEYtiwYXrnnXfyrHPkyJF/3H7v3r3N/65bt678/f3VqlUrnTx5UsHBwf+43cmTJ2vcuHH/eH0AAACguLFpYvH666+re/fuedapWrWq/Pz8FBcXZ1F+48YNXb58WX5+fvn+vJCQEEnSiRMnFBwcLD8/P+3Zs8eiTmxsrCTl2e7w4cM1aNAg8/vExEQFBgbmOw4AAACguLFpYuHr6ytfX9/b1gsNDVV8fLz27dunRo0aSZI2b96szMxMc7KQHwcOHJAk+fv7m9udNGmS4uLizLdabdy4UV5eXqpdu3au7bi6usrV1TXfnwsAAAAUd3YxeLtWrVqKiIhQr169tGfPHm3fvl2RkZHq3LmzeUaov/76SzVr1jRfgTh58qQmTJigffv2KSoqSt988426du2q5s2bq169epKk1q1bq3bt2vq///s/HTx4UN99951Gjhypfv36kTgAAAAABWAXiYV0c3anmjVrqlWrVnryySfVrFkzzZ0717w8PT1dx44dM8/65OLiou+//16tW7dWzZo19frrr+vpp5/Wt99+a17H0dFRq1evlqOjo0JDQ/Xiiy+qa9euFs+9AAAAAHB7dvEci6KO51gAAACgOCp2z7EAAAAAULSRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKvZTWJx+fJldenSRV5eXvL29lbPnj2VlJSUa/2oqCiZTKYcX1988YW5Xk7Lly1bdjc2CQAAACg2nGwdQH516dJF58+f18aNG5Wenq4ePXqod+/eWrp0aY71AwMDdf78eYuyuXPnaurUqXriiScsyj/55BNFRESY33t7e9/x+AEAAIDizC4SiyNHjmj9+vXau3evGjduLEn64IMP9OSTT+rdd99VQEBAtnUcHR3l5+dnUfbVV1+pU6dOKlGihEW5t7d3troAAAAA8s8uboXauXOnvL29zUmFJIWFhcnBwUG7d+/OVxv79u3TgQMH1LNnz2zL+vXrp7Jly6pJkyZasGCBDMPIs63U1FQlJiZavAAAAIB7mV1csYiJiVG5cuUsypycnFS6dGnFxMTkq4358+erVq1aatq0qUX5+PHj9dhjj8nDw0MbNmzQK6+8oqSkJL366qu5tjV58mSNGzeu4BsCAAAAFFM2vWIxbNiwXAdYZ72OHj1q9edcu3ZNS5cuzfFqxahRo/Twww/rgQce0NChQzVkyBBNnTo1z/aGDx+uhIQE8+vMmTNWxwgAAADYM5tesXj99dfVvXv3POtUrVpVfn5+iouLsyi/ceOGLl++nK+xEStWrFBKSoq6du1627ohISGaMGGCUlNT5erqmmMdV1fXXJcBAAAA9yKbJha+vr7y9fW9bb3Q0FDFx8dr3759atSokSRp8+bNyszMVEhIyG3Xnz9/vtq1a5evzzpw4IB8fHxIHAAAAIACsIsxFrVq1VJERIR69eqlOXPmKD09XZGRkercubN5Rqi//vpLrVq10uLFi9WkSRPzuidOnNC2bdu0du3abO1+++23io2N1UMPPSQ3Nzdt3LhRb731lgYPHnzXtg0AAAAoDuwisZCkJUuWKDIyUq1atZKDg4OefvppzZw507w8PT1dx44dU0pKisV6CxYsUMWKFdW6detsbTo7O2vWrFkaOHCgDMNQtWrVNG3aNPXq1avQtwcAAAAoTkzG7eZWxW0lJiaqVKlSSkhIkJeXl63DAQAAAO6IgvzOtYvnWAAAAAAo2kgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFiNxAIAAACA1UgsAAAAAFjNbhKLSZMmqWnTpvLw8JC3t3e+1jEMQ6NHj5a/v7/c3d0VFham48ePW9S5fPmyunTpIi8vL3l7e6tnz55KSkoqhC0AAAAAii+7SSzS0tL07LPPqm/fvvleZ8qUKZo5c6bmzJmj3bt3y9PTU+Hh4bp+/bq5TpcuXfTbb79p48aNWr16tbZt26bevXsXxiYAAAAAxZbJMAzD1kEUxMKFCzVgwADFx8fnWc8wDAUEBOj111/X4MGDJUkJCQkqX768Fi5cqM6dO+vIkSOqXbu29u7dq8aNG0uS1q9fryeffFJnz55VQEBAvmJKTExUqVKllJCQIC8vL6u2DwAAACgqCvI7126uWBTU6dOnFRMTo7CwMHNZqVKlFBISop07d0qSdu7cKW9vb3NSIUlhYWFycHDQ7t27c207NTVViYmJFi8AAADgXlZsE4uYmBhJUvny5S3Ky5cvb14WExOjcuXKWSx3cnJS6dKlzXVyMnnyZJUqVcr8CgwMvMPRAwAAAPbFponFsGHDZDKZ8nwdPXrUliHmaPjw4UpISDC/zpw5Y+uQAAAAAJtysuWHv/766+revXuedapWrfqP2vbz85MkxcbGyt/f31weGxurBg0amOvExcVZrHfjxg1dvnzZvH5OXF1d5erq+o/iAgAAAIojmyYWvr6+8vX1LZS2q1SpIj8/P23atMmcSCQmJmr37t3mmaVCQ0MVHx+vffv2qVGjRpKkzZs3KzMzUyEhIYUSFwAAAFAc2c0Yi+joaB04cEDR0dHKyMjQgQMHdODAAYtnTtSsWVNfffWVJMlkMmnAgAGaOHGivvnmGx06dEhdu3ZVQECA2rdvL0mqVauWIiIi1KtXL+3Zs0fbt29XZGSkOnfunO8ZoQAAAADY+IpFQYwePVqLFi0yv3/ggQckST/88INatmwpSTp27JgSEhLMdYYMGaLk5GT17t1b8fHxatasmdavXy83NzdznSVLligyMlKtWrWSg4ODnn76ac2cOfPubBQAAABQTNjdcyyKooSEBHl7e+vMmTM8xwIAAADFRmJiogIDAxUfH69SpUrlWddurlgUZVevXpUkpp0FAABAsXT16tXbJhZcsbgDMjMzde7cOZUsWVImk8nW4RRpWVkvV3fsC/1mf+gz+0S/2R/6zP7QZwVjGIauXr2qgIAAOTjkPTybKxZ3gIODgypWrGjrMOyKl5cXf8x2iH6zP/SZfaLf7A99Zn/os/y73ZWKLHYzKxQAAACAoovEAgAAAIDVSCxwV7m6umrMmDE8udzO0G/2hz6zT/Sb/aHP7A99VngYvA0AAADAalyxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxwB2VmZlp6xAAALgjmN8GKBgSC9wR+/fvl6TbPuodAO5lnHyxD1euXJEkmUwmG0eC/CABLDr4FQirLVu2TI0bN9aiRYtsHQryafbs2Zo3b56tw0A+Zf0YNQxDGRkZNo4GBbF//35t2LBBK1eulHTz5As/goq2zz//XCNHjtSvv/5q61CQD5mZmTKZTLp8+bIuXLhg63DueSQWsMpHH32kF154QSVKlNCuXbtsHQ7yYd68eYqMjJSPj4+tQ0E+ZGZmysHBQX/88YcGDhyop556SuPHj9elS5dsHRpuY8GCBXr66af16quvql+/furRo4ckzoIXZZ988ol69OihOnXqyN/f32IZV5uKJgcHB506dUoPPvigPvjgA507d87WId3TSCzwj82dO1f9+/fXtm3btGLFCi1YsEBbt261dVjIw9y5c/XKK69o+fLleuaZZ5SRkZHtDDhnU4uOrKTi0KFDeuSRR/TXX3+pYsWKmjRpkj788ENbh4c8rFq1Sq+99pref/99rVmzRuPHj9ehQ4eUkpJirsPfWtHy+++/65133tGCBQvUt29fOTs76/Tp0zp48KAkbvUtyjZu3KjTp09r9erVWrhwoWJiYszLDMPgb+0ucrJ1ALBPCxcuVJ8+fbRy5Uo1a9ZMp0+fVqNGjbRu3Tq1aNFCGRkZcnR0tHWY+JtNmzapT58+WrFihTp27KgjR47o448/1v79+xUcHKyHHnpIL7/8skwmkwzD4KxqEeDg4KDTp0+rXbt26tmzp9566y1Jkr+/v+Li4pSeni5nZ2dzffqtaEhPT9f69evVr18/tW/fXpJ0/fp1LVu2TN99950uX76sLl26yM3NjT4rQuLj4+Xh4aHnn39eBw8e1Kuvvqpz584pOTlZNWrU0PLly1WuXDlzwo+iIzQ0VF27dlX16tU1a9YsZWZmKjIyUt7e3vx93WX8ZaDAEhMT9dNPP+mbb74x/6dZpUoVtWzZUvPmzVNCQgJJRRGTmZkpJycn+fr66quvvtKRI0fUrl07RUdHq06dOoqLi9Ps2bP15ptvSuJWjaIiIyNDX375pZ544gkNGzbMXH727Fn98ssvevjhh9W3b199++23kui3osLZ2VknTpzQgQMHzGUjRozQ77//rsmTJ2vixIlq3LixkpKSzIk8bCfrFqc///xTqampysjI0Msvv6zQ0FDNnTtXn376qS5duqSIiAhJXLkoigzD0I4dO/Tmm2/q5Zdf1ty5c7Vo0SJ17NhRI0aMsHV49xYDKICMjIxsZenp6YZhGEZcXJxRs2ZNY+TIkUZmZubdDg25+Htf/PTTT0ZwcLBhMpmM4cOHG8nJyYZhGMbly5eN4cOHGw0bNjROnTplq1CRg7Nnzxo7d+40v58wYYLh6OhojBgxwpg5c6bx4IMPGo899phx/vx5G0YJw7D8W1u0aJFRo0YNo2HDhkbTpk2NypUrGydPnjTi4+ONK1euGFWrVjUiIyNtGC0Mw7LPzp07Z9SrV8/o2bOn8fjjjxvR0dHmZdHR0UaFChWM6dOn2yJM5EPr1q2N06dPG4ZhGFOmTDE8PT2NUqVKGd99951tA7vHcCsUCiTrTM2CBQsUHx+vQYMGma9OeHt7q1GjRvrhhx/Ml/cNLvPbXNb+X7x4sS5cuKAFCxZoxYoVeuGFF+Th4SHDMOTj46Onn35ab7/9tqKjo1WlShUbRw3p5lm4ChUqKCAgQJJ04cIFXbp0SatXrzafPQ0LC9P999+vAwcOmMtgG1l/a0uXLtUff/yhOXPm6M8//9TatWvVs2dPVa1aVZmZmcrMzFSdOnUYDFwEZPXZggUL9NdffyksLEyrVq1SZmamAgMDJUk3btxQmTJlVKlSJaWnp9syXOQg69a069eva9u2bQoKCtKxY8fk6Ogod3d3HTx4UHXq1DEfR1G4uJ6HAktNTdWXX36pbdu2Sbp5YM7IyJCzs7NGjBihAwcO6OOPPzYvg+2lpqZq2bJl2r59u5o3b64RI0aoTp06FnXS09PVuHFjVaxY0UZRQrKcUvby5ctKTk7WtWvXJEm+vr4aP368IiIiZBiGMjMzdePGDT3wwAOqUKGCLcPG/3f9+nV9+umnOnLkiFq2bKlu3bopJiZGJ06ckPS/6Wbj4+Pl5+dn42gh3Tw+rlixQsePH9cbb7yh++67T3/++aeGDx8uSXJycpKHh4dcXFxUokQJG0d7b/v78fHSpUtKTk5WUlKSpJvjLDIzM/Xqq69q3bp1OnDggF599VWNHTtWy5YtY6ruu8RkGNzcifzLugKxb98+PfbYY/r000/Vrl0787Lr16+rb9++iouL09KlS+Xt7W3bgGHRZ48++qiWLl2qtm3bWtS5du2aOnfurPT0dK1evZp7iG1g7dq1qlChgurXry9JWrlypaZMmaKLFy+qbt26atOmjV566aVsVwFHjBihTZs26dtvv5Wvr6+twoeyHx8XLlyoDh06aNSoUdq5c6fatGmjBx54QFOmTFFMTIz27NkjJyduHLClrD77+eef9eijj2rdunUKCgrSG2+8oe+//14PPvigHnzwQW3dulXx8fH6+eef6TMbyOv4WKdOHb3wwgvy8fFReHi4fH19tWbNGjVu3FiSNGXKFHXo0EHVq1e35SbcM0gskKfcbmVKTExUr1695O/vr+nTp1vMkvHRRx9pyZIl+vHHH7liYQP57TNJSklJ0aZNmzRjxgxduHBBP//8s5ydnZn15C6LjY1VaGioWrZsqZEjR+r69et66KGHNHToUDk5OSk6Olr/+c9/NG7cOPMg7sOHD2v58uWaOXOmfvzxR9WrV8/GW3Hvud3fmp+fn2bMmKEDBw7ovffe04YNG+Tv76/AwECtXLlSzs7OzKB3l+XVZy+99JL8/Pw0c+ZMnTlzRrt27dKcOXPk4+Oj0qVLa9asWfSZDdzu+Pjnn39q/vz5evHFF9WoUSM9/PDDql+/Pv+P2QiJBfLl/fffV2Zmpp577jnzrTLz5s3TwIEDdfDgQQUHB1v8ETPGwvby02fnzp3TBx98oNjYWM2dO1dOTk66ceMGZ+RsYP/+/Xr55ZcVEhIib29vpaamaurUqZJu/uj59NNPNXjwYM2dO9d89eKPP/7QkiVLzGfxYBt5/a398ssvql69ui5fvqzExETduHFDwcHBMplM/K3ZUG59NmDAAB04cCDXs9v0mW3kdXxMSEjQ0qVLNXToUE2dOlUvv/yyjaO9t5FY4LauXbumcePGac6cOWrUqJGCgoI0depUeXh46KWXXlKpUqU0ffp0i/n0JebUt6X89Nn7778vFxcXxcfHq1SpUvzQKQL279+vvn37KjY2Vm3btrV4CF5CQoIGDhyo1NRULVmyRIcOHZKPjw9jYmzsdn9rXl5eev/99+Xq6mqxHmdTbSc/fTZjxgw5Ojpa9BH/p9lWXsfHK1euaPDgwbp+/boWLlwoJycn+spGSCyQb2fPntW6des0Z84cpaSkqEmTJrp06ZIkadmyZSpRogQH3iImrz77/PPPVbJkSa4uFTG//vqrnnrqKbm5uenzzz9XgwYNzMtGjBihNWvWaM+ePXJxcbFdkMiG46P9oc/sz+2Oj2vXrtWePXuynejE3cPpEuRbxYoV1atXL+3bt0+DBg2Sj4+P1q5dq7Vr12rGjBmSmAWqqMmrz2bOnCnpf31G3xUN9erV0zfffCNnZ2fNmDFDBw8eNC+7ePGifH19mfKyCOL4aH/oM/tzu+Nj2bJllZaWZsMIwRULFMitZ2/27t2rWbNm6cKFC/r888/l5eVlw+iQk9v1WcmSJfnPswj65Zdf1LVrV6WkpKh58+ZydXXVihUr9P3331ucpUPRwfHR/tBn9onjY9FFYgGr7d69Wy1atNCGDRvUvHlzW4eDfKDP7MOhQ4fUsWNHpaam6pVXXtHzzz+vypUr2zosFAB/a/aHPrMPHB+LJm6FglUMw1BISIgeeOABRUVF2Toc5AN9Zj/q1q2rZcuWqWbNmurZsyf/adoZ/tbsD31mPzg+Fk1csYDV5s6dqz59+uj48eMKDg62dTjIB/rMvly/fl1ubm62DgP/AH9r9oc+sy8cH4sWEgtY7eTJk0pNTVXt2rVtHQryiT4D7g7+1uwPfQb8cyQWAAAAAKzGGAsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAAAAAViOxAAAAAGA1EgsAQIF1795dJpMp2+vEiRO2Dq1QtGzZUgMGDLB1GABQpDnZOgAAgH2KiIjQJ598YlHm6+tr8T4tLU0uLi53MywAgI1wxQIA8I+4urrKz8/P4tWqVStFRkZqwIABKlu2rMLDwyVJ06ZNU926deXp6anAwEC98sorSkpKsmhv3rx5CgwMlIeHhzp06KBp06bJ29vbvHzs2LFq0KCBFixYoEqVKqlEiRJ65ZVXlJGRoSlTpsjPz0/lypXTpEmTLNqNj4/XSy+9JF9fX3l5eemxxx7TwYMHs7X76aefKigoSKVKlVLnzp119epVSTevzmzdulUzZswwX5mJiooqnJ0KAHaMxAIAcEctWrRILi4u2r59u+bMmSNJcnBw0MyZM/Xbb79p0aJF2rx5s4YMGWJeZ/v27erTp49ee+01HThwQI8//ni2BEGSTp48qXXr1mn9+vX6/PPPNX/+fLVp00Znz57V1q1b9c4772jkyJHavXu3eZ1nn31WcXFxWrdunfbt26eGDRuqVatWunz5skW7q1at0urVq7V69Wpt3bpVb7/9tiRpxowZCg0NVa9evXT+/HmdP39egYGBhbX7AMBumQzDMGwdBADAvnTv3l2fffaZ3NzczGVPPPGELly4oMTERO3fvz/P9VesWKE+ffro4sWLkqTOnTsrKSlJq1evNtd58cUXtXr1asXHx0u6eWVh6tSpiomJUcmSJSXdvB3r2LFjOnnypBwcbp4rq1mzprp3765hw4bpp59+Ups2bRQXFydXV1dz29WqVdOQIUPUu3fvHNsdMmSItm3bpl27dkm6OcaiQYMGmj59unU7DgCKMcZYAAD+kUcffVQfffSR+b2np6eef/55NWrUKFvd77//XpMnT9bRo0eVmJioGzdu6Pr160pJSZGHh4eOHTumDh06WKzTpEkTi0RDkoKCgsw//iWpfPnycnR0NCcVWWVxcXGSpIMHDyopKUllypSxaOfatWs6efJkru36+/ub2wAA5A+JBQDgH/H09FS1atVyLP+7qKgotW3bVn379tWkSZNUunRp/fTTT+rZs6fS0tLk4eGR7890dna2eG8ymXIsy8zMlCQlJSXJ399fW7ZsydbW38dv5NUGACB/SCwAAIVq3759yszM1HvvvWe+svDf//7Xok6NGjW0d+9ei7Jb3/8TDRs2VExMjJycnBQUFPSP23FxcVFGRobV8QBAccbgbQBAoapWrZrS09P1wQcf6NSpU/r000/Ng7qz9O/fX2vXrtW0adN0/Phxffzxx1q3bp1MJpNVnx0WFqbQ0FC1b99eGzZsUFRUlHbs2KERI0bo559/znc7QUFB2r17t6KionTx4kWuZgBADkgsAACFqn79+po2bZreeecd1alTR0uWLNHkyZMt6jz88MOaM2eOpk2bpvr162v9+vUaOHCgxeDwf8JkMmnt2rVq3ry5evToofvuu0+dO3fWn3/+qfLly+e7ncGDB8vR0VG1a9eWr6+voqOjrYoLAIojZoUCABRJvXr10tGjR/Xjjz/aOhQAQD4wxgIAUCS8++67evzxx+Xp6al169Zp0aJFmj17tq3DAgDkE1csAABFQqdOnbRlyxZdvXpVVatWVf/+/dWnTx9bhwUAyCcSCwAAAABWY/A2AAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKuRWAAAAACwGokFAAAAAKv9P/f9gY+ixWauAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEiCAYAAAD9DXUdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAINdJREFUeJzt3Xt8j/X/x/HnNvbZ2pFm1jKbQ8whFPLVwZklbVJKVJZMREqkvvL9NnzV+FZGB0sKHSgkh3IYiXzTwSFESVRYOaXy2Qwb9v790W+fvO1gn9lBedxvt8+tPtf1vq7rdX2uy57X+zp8Ph7GGCMAAP6fZ3kXAAC4sBAMAAALwQAAsBAMAAALwQAAsBAMAAALwQAAsBAMAAALwQAAsBAMf3HPPPOMatasKS8vLzVp0qS8yyl3UVFRuvnmm8u7jHLn4eGhUaNGlXcZJWbUqFHy8PAo0XmuXr1aHh4eWr16dYnO9+/gogqGrVu3qnv37oqMjJSPj48uv/xydezYUS+88EJ5l1Ysy5cv12OPPabrrrtO06dP19NPP33OaVavXq1bb71VYWFh8vb2VmhoqGJjY/Xee+9Z7VJSUnT77berevXq8vDw0L333pvv/NasWaO4uDhFRETIx8dHYWFhuvHGG7V27dqSWMVS880332jUqFHavXt3udUwa9YsTZw4sdyWf7GYPHmyZsyYUd5l/KVUKO8Cysqnn36qtm3bqnr16urXr5/CwsKUlpamzz//XJMmTdLgwYPLu0S3ffTRR/L09NRrr70mb2/vc7ZPTEzUmDFjdMUVV6h///6KjIzUr7/+qiVLlui2227TzJkz1atXL0nS+PHjlZGRoWuuuUb79+8vcJ7fffedPD09NWDAAIWFhen333/XW2+9pVatWmnx4sW68cYbS2x9S9I333yj0aNHq02bNoqKiiqXGmbNmqVt27ZpyJAh5bL8i8XkyZMVEhKS5+CmVatWOn78eJH+7VxsLppgeOqppxQUFKT169crODjYGnfo0KHyKeo8HTp0SL6+vkXasd99912NGTNG3bt316xZs1SxYkXXuOHDhys1NVUnT550Dfv4449dvQV/f/8C55uQkKCEhARr2MCBA1WzZk1NnDjxgg0GdxhjdOLECfn6+pZ3KX8pOTk5ys7Olo+PT55xmZmZ8vPzK4eq/uTp6ZlvbZBkLhJ169Y1bdq0OWe7H3/80Ugy06dPzzNOkklMTHS9T0xMNJLMjh07zF133WUCAwNNSEiI+de//mVycnLM3r17TVxcnAkICDBVq1Y1zz77bJFqPXnypBkzZoypWbOm8fb2NpGRkWbEiBHmxIkTVi1nv/KrOVd0dLSpXLmySU9PL1INZ/Lz8zPx8fFuTdOwYUPTokWLIrV9++23zdVXX238/f1NQECAadiwoZk4caJrfO7nfLbp06cbSebHH390DYuMjDRdunQxqamppnHjxsbhcJh69eqZefPm5Znu7NeqVauseSxbtsw0bdrUOBwOk5ycbIwxZtq0aaZt27amSpUqxtvb29SrV89Mnjw53/VasmSJadWqlWu9mjVrZmbOnGmMMaZ169Z5lh8ZGema9sSJE+bJJ580tWrVMt7e3qZatWpm+PDh1j6Q227IkCEmJCTE+Pv7m9jYWJOWlpZnXy3I8ePHTWJiorniiiuMw+EwYWFhplu3bmbXrl2uNkePHjVDhw411apVM97e3qZOnTrmmWeeMTk5Oda8JJlBgwaZt956y9SvX99UqFDBzJ8/3/V5r1692jzwwAOmSpUqJjg42Pqcrr/+enPJJZcYf39/c9NNN5lt27ZZ885vHyjKtoiMjMzzObdu3doYY8yqVaus7Z5rzpw55uqrrzY+Pj7m0ksvNXfddZf56aefrDbx8fHGz8/P/PTTT6Zr167Gz8/PhISEmGHDhplTp05Zbc+1f1+ILpoeQ2RkpD777DNt27ZNDRs2LNF59+jRQ/Xq1dO4ceO0ePFijR07VpUrV9aUKVPUrl07jR8/XjNnztSjjz6q5s2bq1WrVoXOLyEhQa+//rq6d++uYcOG6YsvvlBSUpK2b9+u+fPnS5LefPNNvfLKK1q3bp1effVVSdK1116b7/x27typb7/9Vvfdd58CAgJKdN1zpaenKzs7W4cPH9Ybb7yhbdu26YknnjjndCtWrFDPnj3Vvn17jR8/XpK0fft2rV27Vg8//HCxatm5c6d69OihAQMGKD4+XtOnT9ftt9+uZcuWqWPHjmrVqpUeeughPf/883riiSdUr149SXL9V5J27Nihnj17qn///urXr5/q1q0r6Y9rLw0aNFBcXJwqVKig999/XwMHDlROTo4GDRrkmn7GjBm677771KBBA40YMULBwcHatGmTli1bpl69emnkyJFyOp366aeflJycLEmunllOTo7i4uL0ySef6P7771e9evW0detWJScn67vvvtOCBQtcy0lISNBbb72lXr166dprr9VHH32kLl26FOlzOn36tG6++WatXLlSd955px5++GFlZGRoxYoV2rZtm2rVqiVjjOLi4rRq1Sr17dtXTZo0UWpqqoYPH66ff/7ZVXuujz76SHPmzNGDDz6okJAQRUVFafPmzZL+6ElWqVJFTz75pDIzMyX9sR/Hx8crJiZG48eP17Fjx5SSkqLrr79emzZtKvQ0X1G2xcSJEzV48GD5+/tr5MiRkqSqVasWOM8ZM2aoT58+at68uZKSknTw4EFNmjRJa9eu1aZNm6yzDadPn1ZMTIxatGihZ599Vh9++KGee+451apVSw888ICk0tm/y0R5J1NZWb58ufHy8jJeXl6mZcuW5rHHHjOpqakmOzvbalecHsP999/vGnbq1ClTrVo14+HhYcaNG+ca/vvvvxtfX99zHnlv3rzZSDIJCQnW8EcffdRIMh999JFrWO5Ry7ksXLjQSHId9bqrKD2GmJgY1xGZt7e36d+/vzl+/Pg55/3www+bwMDAPEdZZ3K3xyDJ6iE4nU5z2WWXmauuuso1bO7cufkeLZ45j2XLluUZd+zYsTzDYmJiTM2aNV3vjxw5YgICAkyLFi3yfAZnHmV36dLF6iXkevPNN42np6f53//+Zw1/+eWXjSSzdu1aY8yf+8rAgQOtdr169SpSj2HatGlGkpkwYUKecbl1LliwwEgyY8eOtcZ3797deHh4WD0LScbT09N8/fXXVtvc7XT99ddb2zkjI8MEBwebfv36We0PHDhggoKCrOH57QNF2RbGGNOgQQNXL+FMZ/cYsrOzTWhoqGnYsKG13T744AMjyTz55JOuYfHx8UaSGTNmjDXPq666yjRt2tT1vij794XoorkrqWPHjvrss88UFxenLVu26L///a9iYmJ0+eWXa9GiRec17zPPsXt5ealZs2Yyxqhv376u4cHBwapbt65++OGHQue1ZMkSSdLQoUOt4cOGDZMkLV682O360tPTJanUeguSNG7cOC1fvlyvvfaa/vGPfyg7O1unTp0653TBwcHKzMzUihUrSqyW8PBwdevWzfU+MDBQvXv31qZNm3TgwIEizaNGjRqKiYnJM/zM6wxOp1OHDx9W69at9cMPP8jpdEr64ygxIyND//znP/Ocwy7KLZdz585VvXr1FB0drcOHD7te7dq1kyStWrVK0p/7ykMPPWRNX9SL2fPmzVNISEi+N17k1rlkyRJ5eXnlWcawYcNkjNHSpUut4a1bt1b9+vXzXV6/fv3k5eXler9ixQodOXJEPXv2tNbTy8tLLVq0cK1nQYqyLdyxYcMGHTp0SAMHDrS2W5cuXRQdHZ3vv70BAwZY72+44Qbr33hp7N9l4aI5lSRJzZs313vvvafs7Gxt2bJF8+fPV3Jysrp3767NmzcXuEOfS/Xq1a33QUFB8vHxUUhISJ7hv/76a6Hz2rNnjzw9PVW7dm1reFhYmIKDg7Vnzx636wsMDJQkZWRkuD1tUZ35DMXdd9+tq6++Wvfee6/effddSdJvv/2m7OxsVxtfX18FBQVp4MCBmjNnjjp37qzLL79cnTp10h133HFeF61r166d5w9wnTp1JEm7d+9WWFjYOedRo0aNfIevXbtWiYmJ+uyzz3Ts2DFrnNPpVFBQkL7//ntJKvYpy507d2r79u2qUqVKvuNzb5bI3Vdq1apljc897XUu33//verWrasKFQr+M7Bnzx6Fh4fnOajIPe129v5Y0OeW37idO3dKkivwzpa73xakKNvCHbnrkt/nFx0drU8++cQa5uPjk2cbVapUSb///rvrfWns32XhogqGXN7e3mrevLmaN2+uOnXqqE+fPpo7d64SExMLPKI7ffp0gfM78yiosGHSH3e4FEVJPswTHR0t6Y/nOMqCt7e34uLiNG7cOB0/fly+vr669dZb9fHHH7vaxMfHa8aMGQoNDdXmzZuVmpqqpUuXaunSpZo+fbp69+6t119/XVLBn0Vh2+R85XcH0vfff6/27dsrOjpaEyZMUEREhLy9vbVkyRIlJycrJyenRJadk5OjK6+8UhMmTMh3fERERIkspzQUdufW2eNyP68333wz37AuLLDKalsUpqB/42cqyv59Iboog+FMzZo1kyTXvfqVKlWSJB05csRqV5wj9eKIjIxUTk6Odu7caV0MPXjwoI4cOaLIyEi351mnTh3VrVtXCxcu1KRJkwq9/bSkHD9+XMYYZWRkyNfXV88995x1JBUeHu76f29vb8XGxio2NlY5OTkaOHCgpkyZon//+9+qXbu2tU3OvPhX0DbZtWuXjDFWoHz33XeS5LqYWZzgff/995WVlaVFixZZvcSzT3nkHsFv27YtT8/vTAXVUKtWLW3ZskXt27cvtM7cfSX3yD/Xjh07irQ+tWrV0hdffKGTJ09aty+fvYwPP/xQGRkZVq/h22+/dY0vrtzPKTQ0VB06dHBr2qJuC6no2zp3XXbs2JGnF7Njx45ir+u59u8L0UVzjWHVqlX5Hq3nnqfN/YcVGBiokJAQrVmzxmo3efLk0i9S0k033SRJeZ6IzT16LOodJ2cbPXq0fv31VyUkJOR77n/58uX64IMP3J5vfs+AHDlyRPPmzVNERIRCQ0MlSU2bNlWHDh1cr9zTdmefWvP09FSjRo0kSVlZWZL+/ANy5jbJzMws8Ihr3759rru3pD+usbzxxhtq0qSJ68g09x76sw8ACpN7hHjmfuR0OjV9+nSrXadOnRQQEKCkpCSdOHHCGnfmtH5+fvmeC7/jjjv0888/a+rUqXnGHT9+3HVHT+fOnSVJzz//vNWmqE9T33bbbTp8+LBefPHFPONy67zpppt0+vTpPG2Sk5Pl4eHhqqE4YmJiFBgYqKefftp6hibXL7/8UuC0Rd0W0h+fc1G2c7NmzRQaGqqXX37Zte9J0tKlS7V9+/Zi/dsryv59IbpoegyDBw/WsWPH1K1bN0VHRys7O1uffvqpZs+eraioKPXp08fVNiEhQePGjVNCQoKaNWumNWvWuI44S1vjxo0VHx+vV155RUeOHFHr1q21bt06vf7667rlllvUtm3bYs23R48e2rp1q5566ilt2rRJPXv2dD35vGzZMq1cuVKzZs1ytX///fe1ZcsWSdLJkyf11VdfaezYsZKkuLg4187duXNnVatWTS1atFBoaKj27t2r6dOna9++fZo9e/Y560pISNBvv/2mdu3aqVq1atqzZ49eeOEFNWnSxNVj6tSpk6pXr66+fftq+PDh8vLy0rRp01SlShXt3bs3zzzr1Kmjvn37av369apataqmTZumgwcPWn80mjRpIi8vL40fP15Op1MOh0Pt2rVzBVl+OnXq5Dr669+/v44ePaqpU6cqNDTUejo8MDBQycnJSkhIUPPmzdWrVy9VqlRJW7Zs0bFjx1yB1rRpU82ePVtDhw5V8+bN5e/vr9jYWN1zzz2aM2eOBgwYoFWrVum6667T6dOn9e2332rOnDlKTU1Vs2bN1KRJE/Xs2VOTJ0+W0+nUtddeq5UrV2rXrl3n/NwlqXfv3nrjjTc0dOhQrVu3TjfccIMyMzP14YcfauDAgeratatiY2PVtm1bjRw5Urt371bjxo21fPlyLVy4UEOGDMlzfcMdgYGBSklJ0T333KOrr75ad955p2ubLl68WNddd12+oeXOtsj9nFNSUjR27FjVrl1boaGh+V7XqFixosaPH68+ffqodevW6tmzp+t21aioKD3yyCNur2NR9u8LUnndDlXWli5dau677z4THR1t/P39jbe3t6ldu7YZPHiwOXjwoNX22LFjpm/fviYoKMgEBASYO+64wxw6dKjA21V/+eUXa/qCbiNt3bq1adCgwTlrPXnypBk9erSpUaOGqVixoomIiMjzgFthyynMypUrTdeuXU1oaKipUKGCqVKliomNjTULFy7MM2/l8xCYzrqV98UXXzTXX3+9CQkJsea3Zs2aItXz7rvvmk6dOpnQ0FDj7e1tqlevbvr372/2799vtdu4caNp0aKFq82ECRPO+YBbo0aNjMPhMNHR0Wbu3Ll5lj116lRTs2ZN4+Xlle8DbvlZtGiRadSokfHx8TFRUVFm/Pjxrts+z6wjt+21115rfH19TWBgoLnmmmvM22+/7Rp/9OhR06tXLxMcHJznAbfs7Gwzfvx406BBA+NwOEylSpVM06ZNzejRo43T6XS1O378uHnooYfMpZdeavz8/Nx+wO3YsWNm5MiRrn0tLCzMdO/e3Xz//feuNhkZGeaRRx4x4eHhpmLFiuaKK64o9AG3s+Vup/Xr1+dbw6pVq0xMTIwJCgoyPj4+platWubee+81GzZscLXJ73bVom6LAwcOmC5dupiAgIAiPeA2e/Zsc9VVVxmHw2EqV65c6ANuZzu7zqLu3xcaD2OKeDUUAHBRuGiuMQAAioZgAABYCAYAgIVgAABYCAYAgIVgAABYyvwBt5ycHO3bt08BAQEl/uPeAID8mf//iprw8HB5ehbeJyjzYNi3b98F/SVgAPB3lpaWpmrVqhXapsyDIfeLuNLS0s75tboAgJKRnp6uiIiIIv0uS5kHQ+7po8DAQIIBAMpYUU7hc/EZAGA5r2AYN26cPDw8ivxTggCAC1+xg2H9+vWaMmWK6+uXAQB/D8W6xnD06FHdddddmjp1qus7+stS1D/z/ig3APzd7R5XvB/qclexegyDBg1Sly5d3P45PgDAhc/tHsM777yjL7/8UuvXry9S+6ysLOsn7NLT091dJACgDLnVY0hLS9PDDz+smTNnysfHp0jTJCUlKSgoyPXi4TYAuLC59QtuCxYsULdu3Vw/xC1Jp0+floeHhzw9PZWVlWWNk/LvMURERMjpdBb7OQauMQC4GJ3PNYb09HQFBQUV6W+vW6eS2rdvr61bt1rD+vTpo+joaD3++ON5QkGSHA6HHA6HO4sBAJQjt4IhICBADRs2tIb5+fnp0ksvzTMcAPDXxJPPAADLeX9X0urVq0ugDADAhYIeAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACwEAwDAQjAAACxuBUNKSooaNWqkwMBABQYGqmXLllq6dGlp1QYAKAduBUO1atU0btw4bdy4URs2bFC7du3UtWtXff3116VVHwCgjFVwp3FsbKz1/qmnnlJKSoo+//xzNWjQoEQLAwCUD7eC4UynT5/W3LlzlZmZqZYtWxbYLisrS1lZWa736enpxV0kAKAMuH3xeevWrfL395fD4dCAAQM0f/581a9fv8D2SUlJCgoKcr0iIiLOq2AAQOlyOxjq1q2rzZs364svvtADDzyg+Ph4ffPNNwW2HzFihJxOp+uVlpZ2XgUDAEqX26eSvL29Vbt2bUlS06ZNtX79ek2aNElTpkzJt73D4ZDD4Ti/KgEAZea8n2PIycmxriEAAP7a3OoxjBgxQp07d1b16tWVkZGhWbNmafXq1UpNTS2t+gAAZcytYDh06JB69+6t/fv3KygoSI0aNVJqaqo6duxYWvUBAMqYW8Hw2muvlVYdAIALBN+VBACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwEAwAAAvBAACwuBUMSUlJat68uQICAhQaGqpbbrlFO3bsKK3aAADlwK1g+PjjjzVo0CB9/vnnWrFihU6ePKlOnTopMzOztOoDAJSxCu40XrZsmfV+xowZCg0N1caNG9WqVasSLQwAUD7O6xqD0+mUJFWuXLlEigEAlD+3egxnysnJ0ZAhQ3TdddepYcOGBbbLyspSVlaW6316enpxFwkAKAPF7jEMGjRI27Zt0zvvvFNou6SkJAUFBbleERERxV0kAKAMFCsYHnzwQX3wwQdatWqVqlWrVmjbESNGyOl0ul5paWnFKhQAUDbcOpVkjNHgwYM1f/58rV69WjVq1DjnNA6HQw6Ho9gFAgDKllvBMGjQIM2aNUsLFy5UQECADhw4IEkKCgqSr69vqRQIAChbbp1KSklJkdPpVJs2bXTZZZe5XrNnzy6t+gAAZcztU0kAgL83visJAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFreDYc2aNYqNjVV4eLg8PDy0YMGCUigLAFBe3A6GzMxMNW7cWC+99FJp1AMAKGcV3J2gc+fO6ty5c2nUAgC4AHCNAQBgcbvH4K6srCxlZWW53qenp5f2IgEA56HUewxJSUkKCgpyvSIiIkp7kQCA81DqwTBixAg5nU7XKy0trbQXCQA4D6V+KsnhcMjhcJT2YgAAJcTtYDh69Kh27drlev/jjz9q8+bNqly5sqpXr16ixQEAyp7bwbBhwwa1bdvW9X7o0KGSpPj4eM2YMaPECgMAlA+3g6FNmzYyxpRGLQCACwDPMQAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBCMAAALAQDAMBSrGB46aWXFBUVJR8fH7Vo0ULr1q0r6boAAOXE7WCYPXu2hg4dqsTERH355Zdq3LixYmJidOjQodKoDwBQxtwOhgkTJqhfv37q06eP6tevr5dfflmXXHKJpk2bVhr1AQDKmFvBkJ2drY0bN6pDhw5/zsDTUx06dNBnn32W7zRZWVlKT0+3XgCAC1cFdxofPnxYp0+fVtWqVa3hVatW1bfffpvvNElJSRo9enTxK8zH7nFdSnR+AIA/lfpdSSNGjJDT6XS90tLSSnuRAIDz4FaPISQkRF5eXjp48KA1/ODBgwoLC8t3GofDIYfDUfwKAQBlyq0eg7e3t5o2baqVK1e6huXk5GjlypVq2bJliRcHACh7bvUYJGno0KGKj49Xs2bNdM0112jixInKzMxUnz59ijS9MUaSuAgNAGUo929u7t/gwrgdDD169NAvv/yiJ598UgcOHFCTJk20bNmyPBekC5KRkSFJioiIcHfRAIDzlJGRoaCgoELbeJiixEcJysnJ0b59+xQQECAPD4+yXDRwXtLT0xUREaG0tDQFBgaWdzmAW4wxysjIUHh4uDw9C7+KUObBAPxVpaenKygoSE6nk2DA3xpfogcAsBAMAAALwQAUkcPhUGJiIs/l4G+PawwAAAs9BgCAhWAAAFgIBgCAhWAAAFgIBvzt3XvvvfLw8MjzatOmTXmXBlyQCAb87fXq1UsVK1bU5MmTtX//ftfrvffeK7MasrOz8x1+8uTJMqsBKCqCAX97nTp10rRp0zRs2DB99913CgsLU1hYmCpXrlzodNOmTVODBg3kcDh02WWX6cEHH3SN27t3r7p27Sp/f38FBgbqjjvusH6nZNSoUWrSpIleffVV1ahRQz4+PpIkDw8PpaSkKC4uTn5+fnrqqadKZ6WB80Aw4KJw99136z//+Y/i4uL01VdfnbN9SkqKBg0apPvvv19bt27VokWLVLt2bUl/fBFk165d9dtvv+njjz/WihUr9MMPP6hHjx7WPHbt2qV58+bpvffe0+bNm13DR40apW7dumnr1q267777SnQ9gRJhgIvI3XffbcLDw82xY8cKbRceHm5GjhyZ77jly5cbLy8vs3fvXtewr7/+2kgy69atM8YYk5iYaCpWrGgOHTpkTSvJDBky5DzXAihd9Bhw0fj555+Vmpqq3r17y9fXt8B2hw4d0r59+9S+fft8x2/fvl0RERHWb4rUr19fwcHB2r59u2tYZGSkqlSpkmf6Zs2ancdaAKWPYMBF4dSpU+rRo4fq16+vsWPHFtq2sNBwh5+fn1vDgQsFwYCLwuOPP65du3bp7bfflpeXV6FtAwICFBUVZf22+Znq1auntLQ0paWluYZ98803OnLkiOrXr1+idQPlwe2f9gT+ahYsWKDk5GTNnDlTHh4eOnDggCTJy8sr31M90h8XiAcMGKDQ0FB17txZGRkZWrt2rQYPHqwOHTroyiuv1F133aWJEyfq1KlTGjhwoFq3bs1pIvwtEAz421uwYIGMMerVq5c1PDIyUrt37853mvj4eJ04cULJycl69NFHFRISou7du0v645bThQsXavDgwWrVqpU8PT1144036oUXXijtVQHKBF+7DQCwcI0BAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAFoIBAGAhGAAAlv8DBZzHqHZyzwQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "total = feat_gen.feature_sum_c13_subtracted_correlations(\n", + " precursor_fragments, ms2dict, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3c5a9bab", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAF2CAYAAAAVybr4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxoRJREFUeJzs3XdYU9cbB/DvJUAYCoiigANUQMWJWvcWt9a9qoLW8XNQB+4Ot3WitG4rgta9ba3bume1zrotqLhrBQSVkZzfHzbXxIQ9Avj9PE8eybnn3vsm3iQ3b859jySEECAiIiIiIiIiIiKibMHE2AEQERERERERERER0QdM2hIRERERERERERFlI0zaEhEREREREREREWUjTNoSERERERERERERZSNM2hIRERERERERERFlI0zaEhEREREREREREWUjTNoSERERERERERERZSNM2hIRERERERERERFlI0zaEhEREREREREREWUjTNoSZYI5c+agRIkSUCgUqFSpkrHDybV69+6NPHnyGDsMMrKWLVuif//+xg4jw02aNAmSJBk7jAwREhICSZIQFhaWYdtcunQpihUrhtjY2AzbJhHlHr1794arq2ua1zX2+UVmvG8SpdSmTZtgb2+P6OhoY4dClKuFhYVBkiSEhIQYO5Qco0aNGhgzZoyxw8gyTNqSUUmSlKLbkSNHMj0WTYKkUKFCePPmjd5yV1dXtG7dOtnt7N+/H2PGjEHt2rURHByM77//PjPCzXFOnTqFSZMmISIiwtihZGtv3rzBpEmTsuSYzw1OnjyJ/fv3Y+zYsXLbkSNHdN4/FAoFChYsiE6dOuHGjRsAPrzek7s1aNDASI8sfXLC623x4sXpOkHt3bs34uLisGzZsowLiogy1aZNmyBJErZv3663rGLFipAkCYcPH9ZbVqxYMdSqVSsrQkyV7PaZPWbMGEiShK5duxpcrvl83LJli8Hlfn5+Bn8sVKlUCA4ORoMGDWBvbw+lUglXV1f06dMH58+fz9DHQKmT3s9SQ1QqFSZOnIivvvpK58cLV1fXDDlfunHjBiRJgoWFRaLnKUl97zp//nyiSa5Lly6hZ8+eKFq0KJRKJezt7eHt7Y3g4GCoVKoUx/ipe/36NcaMGYPixYtDqVSicOHC6NSpk8HvyB9Tq9WYPXs2ihcvDgsLC1SoUAHr16832HfhwoUoU6aMvA9/f3/ExMRk9MNJkaCgIJQpUwYWFhZwd3fHggUL9Pok9Rpwd3c3QtSZ79atWxgxYgRq1aoFCwuLRH9M/Pj718e36dOnJ7uvu3fvolOnTsiXLx+srKxQp04dg+cEY8eOxaJFi/D06dOMeIjZnqmxA6BP288//6xzf/Xq1Thw4IBee5kyZbIspufPn2PJkiUYOXJkmtb//fffYWJigqCgIJibm2dwdDnXqVOnMHnyZPTu3Rt2dnbGDifbevPmDSZPngwAOTZhmJXmzJmDxo0bw83NTW/Z0KFD8dlnnyE+Ph5XrlzB0qVLceTIEVy7dg0dOnTQWSc6OhqDBg1C+/bt0aFDB7m9UKFCWfI4DPn2228xbty4NK2b3V5vvXr1Qrdu3aBUKuW2xYsXo0CBAujdu3eatmlhYQFfX1/MmzcPX331Va4ZlUyUm9WpUwcAcOLECbRv315uj4qKwrVr12BqaoqTJ0+iYcOG8rKHDx/i4cOH6NatW6r29dNPP0GtVmdM4InITp/ZQgisX78erq6u+PXXX/H69WvkzZs33dt9+/YtOnTogL1796JevXr4+uuvYW9vj7CwMGzatAmrVq3CgwcPUKRIkQx4FJRa6f0sNeTXX3/FrVu3MGDAAJ32smXL4v79+xg3bhzKli2rsyw150tr1qyBo6MjXr16hS1btqBfv34ZEveKFSswcOBAFCpUCL169YK7uztev36NQ4cOoW/fvnjy5Am+/vrrDNlXbhYZGYn69esjPDwcAwYMgJubG168eIHjx48jNjYWVlZWSa7/zTffYObMmejfvz8+++wz7Ny5E1988QUkSdJ5Hx87dixmz56NTp06YdiwYbh+/ToWLFiAv/76C/v27cvsh6lj2bJlGDhwIDp27Ah/f38cP34cQ4cOxZs3b3QGhgQGBuqNPr9//z6+/fZbNG3aNEtjziqnT5/Gjz/+CE9PT5QpUwaXLl0y2K9MmTJ6ORzgfb5n//79yT4/Dx8+RM2aNaFQKDB69GhYW1sjODgYTZs2xaFDh1CvXj25b9u2bWFjY4PFixdjypQp6Xp8OYIgykaGDBkijHVYTpw4UQAQlSpVEoUKFRJv3rzRWe7i4iJatWqV7Hb69OkjrK2tk+2nUqnE27dv0xxvTjNnzhwBQISGhmbYNn19fVP0XBsSHx8vYmNjMyyWjPLixQsBQEycONEo+89Jx+WzZ8+EqampWLFihU774cOHBQCxefNmnfYlS5YIAGLWrFl62zL2857RMuP1ltHKli0r6tevn65tnD9/XgAQhw4dypigiCjTFS9eXFSrVk2nbe/evUKSJNG9e3fRrFkznWXr1q0TAMTOnTuzLMaUnl9k5mdHcHBwqt7Hf//9dwFA/P7778LMzEyEhITo9Uns81HD0Hm4pm3+/Pl6/RMSEsScOXPEw4cPUxQjZbyM+Cz92Oeffy7q1Kmj1/7PP/+IEiVKiBIlSoh//vknTdtWq9XC1dVV+Pv7i/bt24sGDRoY7JfU964//vhDABDBwcFy2+nTp4VCoRB16tQRUVFRBtfR7i+EEKtWrUr0u8D169fF8ePHU/agMkhS5+DR0dFZFsegQYOEnZ2d+Pvvv1O9bnh4uDAzMxNDhgyR29Rqtahbt64oUqSISEhIEEII8fjxY2Fqaip69eqls/6CBQsEAPHLL7+k70H8R/M+mpQ3b96I/Pnz6x1vPXr0ENbW1uLff/9Ncv2pU6cKAOLkyZNpijE0NFTveM5OXr58Kb+m0vL9ws3NTbi7uyfbb/DgwcLU1FTcvHlTbouJiRFFixYVlStX1uvv5+cnXFxchFqtTnEsORXLI1C2FxMTg5EjR8qXuZQqVQpz586FEEKnnyRJ8PPzw9q1a1GqVClYWFigSpUqOHbsWKr2N2HCBDx79gxLlixJdaySJCE4OBgxMTHypQCaS3e04ytbtiyUSiX27t0LAJg7dy5q1aqF/Pnzw9LSElWqVDF46drbt28xdOhQFChQAHnz5sXnn3+OR48eQZIkTJo0Se6nufT79u3b6NmzJ2xtbeHg4IDvvvsOQgg8fPhQ/oXK0dERAQEBevuKjY3FxIkT4ebmBqVSiaJFi2LMmDF69SM1j2vHjh0oV64clEolypYtKz82TTyjR48GABQvXlx+bpKr03b27Fm0bNkS+fLlg7W1NSpUqIAffvhBr9+jR4/Qrl075MmTBw4ODhg1apTOJVCaWkFz585FYGAgSpYsCaVSievXrwN4Pzq6bt26sLa2hp2dHdq2bStfRp9Rz2lcXBwmTJiAKlWqwNbWFtbW1qhbt67OJR9hYWFwcHAAAEyePFl+nrT/b1MSK/D+EpWqVavCwsICJUuWxLJlywzWSM2I41Kzjc2bN8PT0xOWlpaoWbMmrl69CuD9r9dubm6wsLBAgwYN9P7f79y5g44dO8LR0REWFhYoUqQIunXrhsjISL19afvtt9+QkJAAb2/vJPtp1K1bFwBw7969FPVPypYtWyBJEo4ePaq3bNmyZZAkCdeuXQMAPH36FH369EGRIkWgVCrh5OSEtm3bJnv8J/X/ld7X25o1a1ClShVYWlrC3t4e3bp1w8OHD3X21aBBA5QrVw7Xr19Hw4YNYWVlhcKFC2P27Nl6sS5YsABly5aFlZUV8uXLh6pVq2LdunXy8o9rM7q6uuKvv/7C0aNHdS6t/PvvvyFJEubPn6+3j1OnTkGSJJ1L7KpUqQJ7e3vs3LkzyeeSiLKPOnXq4OLFi3j79q3cdvLkSZQtWxYtWrTAmTNndEbInjx5EpIkoXbt2nJbSt7DDNW0ffnyJXr16gUbGxvY2dnB19cXly9fTvRS66TOL1LymX3z5k106tQJ9vb2sLCwQNWqVfHLL7/o7eevv/5Co0aNYGlpiSJFimDatGmpHiW8du1aeHp6omHDhvD29sbatWtTtb4h4eHhWLZsGZo0aYLhw4frLVcoFBg1alSyo2zfvXuHSZMmwcPDAxYWFnByckKHDh10Po9Te76f1nMOzWfbhQsXUKtWLVhaWqJ48eJYunSpXtzPnz9H3759UahQIVhYWKBixYpYtWqVTh/tc8zly5fL55ifffYZ/vjjD71tpuSY0Hxmnjx5Ev7+/nBwcIC1tTXat2+PFy9eyP0S+ywFgPj4eEyePBnu7u6wsLBA/vz5UadOHRw4cCDZ/6u9e/caPLfKnz8/du7ciRcvXqBTp05ISEhIcluGnDx5EmFhYejWrRu6deuGY8eOITw8PNXb+ZjmNbh27VqDI8yrVq2qMxo5NDQU/fr1Q48ePfReaw8ePEDTpk3h7++vt53MOJY/PgfX/P8fPXoUgwcPRsGCBbNsJHtERASCg4MxYMAAFC9eHHFxcamaO2Dnzp2Ij4/H4MGD5TZJkjBo0CCEh4fj9OnTAN6P3kxISNC7gkJzf8OGDXpxDR8+XH5O3dzcMGvWrAy5muLw4cN4+fKlTswAMGTIEMTExOC3335Lcv1169ahePHieiV8Hjx4gJs3b6YpJk1d9eS+42YFe3v7NF+1ce7cOdy9exc9evRItu/x48fh5eWFUqVKyW1WVlb4/PPP8eeff+LOnTs6/Zs0aYL79+8nOvI3VzFqypjoIx//wq9Wq0WjRo2EJEmiX79+YuHChaJNmzYCgBg+fLjOugBEuXLlRIECBcSUKVPErFmzhIuLi7C0tBRXr15Ndt+akbYvXrwQjRo10httm5KRtj///LOoW7euUCqV4ueffxY///yzuHfvnhxfmTJlhIODg5g8ebJYtGiRuHjxohBCiCJFiojBgweLhQsXinnz5olq1aoJAGLXrl062+/SpYsAIHr16iUWLVokunTpIipWrKg3ykN71HD37t3F4sWLRatWrQQAMW/ePFGqVCkxaNAgsXjxYlG7dm0BQBw9elReX6VSiaZNmworKysxfPhwsWzZMuHn5ydMTU1F27Zt9Z73ihUrCicnJzF16lQRGBgoSpQoIaysrORf4S9fviy6d+8uj9TQPDdJ/Wq8f/9+YW5uLlxcXMTEiRPFkiVLxNChQ4W3t7fcx9fXV1hYWIiyZcuKL7/8UixZskR07NhRABCLFy+W+2l+wfT09BQlSpQQM2fOFPPnzxf3798XBw4cEKampsLDw0PMnj1bTJ48WRQoUEDky5dP51fE9D6nL168EE5OTsLf318sWbJEzJ49W5QqVUqYmZnJx0F0dLQ8GrR9+/by83T58mUhhEhxrH/++adQKpXC1dVVzJw5U0yfPl04OzvLx8rH/3/pPS4BiAoVKoiiRYuKmTNnipkzZwpbW1tRrFgxsXDhQuHp6SkCAgLEt99+K8zNzUXDhg3ldWNjY0Xx4sWFs7OzmDZtmlixYoWYPHmy+Oyzz0RYWFiix4cQQvTr10/kz59frz2xkUS7du0SAMTYsWP11kntaKk3b96IPHnyiMGDB+sta9iwoShbtqx8v1atWsLW1lZ8++23YsWKFeL7778XDRs21Dk+DNEcc9oy4vU2bdo0IUmS6Nq1q1i8eLF8HLm6uopXr17J+6pfv75wdnYWRYsWFcOGDROLFy8WjRo1EgDE7t275X7Lly8XAESnTp3EsmXLxA8//CD69u0rhg4dKvf5eMTY9u3bRZEiRUTp0qXl+Pbv3y+EEKJ27dqiSpUqes/H4MGDRd68eUVMTIxOu7e3t8H+RJQ9LVu2TAAQhw8fltsaNWokBgwYIO7evSsAyJ97QghRqVIlUaZMGfl+St/DfH19hYuLi3xfpVKJmjVrCoVCIfz8/MTChQtFkyZN5M9G7VFOKTm/SO4z+9q1a8LW1lZ4enqKWbNmiYULF4p69eoJSZLEtm3b5H09efJEODg4iHz58olJkyaJOXPmCHd3d1GhQoUUj2h69+6dsLOzE1OnThVCCLF69WqhUCjEkydPdPqldqSt5v199erVycaQmISEBNG4cWMBQHTr1k0sXLhQzJgxQzRq1Ejs2LFDCJH68/20nnMI8eGzrWDBgsLPz0/8+OOPok6dOgKACAoKkvu9efNGlClTRpiZmYkRI0aIH3/8UdStW1cAEIGBgXI/zTmml5eXcHNzE7NmzRKzZ88WBQoUEEWKFBFxcXFy35QeE5rPTC8vL9GoUSOxYMECMXLkSKFQKESXLl3kfkl9ln799ddCkiTRv39/8dNPP4mAgADRvXt3MXPmzCT/v06cOJHsSMedO3cKSZLEwIEDk9yWIQMHDhQlS5YUQnw4l5o9e7Zev9SMtI2JiRFmZmaiUaNGqYpl/fr1wsTERPTr109ue/78ufDw8BCFCxfWOw/NjGPZ0Dm45v/f09NT1K9fXyxYsCDZ/7cXL16k6Pbu3bskt/Prr78KAGL58uWiY8eOQqFQCEmSRK1ateTvB0np16+fsLa21hv9qHlv//HHH4UQH66g+P3333X6xcTECACiVKlSOm0VKlQQ+fPnF19//bVYunSp8PHxEZIkiWHDhiUZT0pG2k6bNk0AEM+ePdNpj42NFSYmJsLf3z/Rdf/8808BQHzzzTd6y+rXr5+iK4gNjbRN6XfcxLx+/TpFx0NERESy29KW2pG2Q4cOFQDEnTt3ku3r4eEh6tWrp9c+evRoAUCsX79epz08PFwAEAsWLEhRLDkZk7aUrXx8srhjxw4BQEybNk2nX6dOnYQkSeLu3btyGwABQJw/f15uu3//vrCwsBDt27dPdt/aSdujR4/KyTiNlJZHSOySOgDCxMRE/PXXX3rLPi7FEBcXJ8qVK6dz8nHhwgWDH/i9e/dONGk7YMAAuS0hIUEUKVJESJKk88H/6tUrYWlpKXx9feW2n3/+WZiYmOhdFrR06VK9yz8ACHNzc53/i8uXL+u9iabmTT4hIUEUL15cuLi46HwBE0LonAT4+voKAGLKlCk6fby8vHSSOJoPQxsbG/H8+XOdvpUqVRIFCxYUL1++1InfxMRE+Pj4yG3pfU4TEhL0LsF69eqVKFSokPjyyy/ltqSShymNtU2bNsLKyko8evRIbrtz544wNTU1mARMz3Gp2YZSqdT5v9V8KXd0dNS5TG38+PE6x8HFixeT/AKZlDp16hhM1mm+lK5cuVK8ePFCPH78WOzdu1e4ubkJSZLEuXPn9NZJyyWu3bt3FwULFpQv9RLi/ZdvExMT+Zh89eqVACDmzJmT6seXWNI2Pa+3sLAwoVAoxPTp03Xar169KkxNTXXaNSeb2l/WY2NjhaOjo+jYsaPc1rZtW50ktSGGLvNN7JJOzbFz48YNuS0uLk4UKFBA5zWlMWDAAGFpaZnk/oko+/jrr78EADnBGB8fL6ytrcWqVauEEEIUKlRILFq0SAghRFRUlFAoFKJ///5CiNS9h32ctN26datewk2lUsk/Rn38hTkl5xdJfXY0btxYlC9fXidJolarRa1atXQuFR0+fLgAIM6ePSu3PX/+XNja2qb4vGnLli06X4yjoqKEhYWFXkmD1CZtR4wYIQCkKFmTmJUrV+qdU2tozulSe76f1nMOIT58tgUEBMhtsbGx8jmWJskaGBgoAIg1a9bI/eLi4kTNmjVFnjx55P1ozjHz58+vcxn1zp07BQDx66+/ym0pPSY0n5ne3t46570jRowQCoVCJ9GS2GdpxYoVU/S95WMrVqwQAJId8DJ9+vRUJ0zi4uJE/vz5dRJcX3zxhahYsaJe39QkbTXnQckl8AzR/PAyevRoERkZKSpXrizs7e0NnhdnxrFs6Bxc8/9fp04dnXPMpGi+Byd3S+4S/Hnz5snHc7Vq1cTatWvF4sWLRaFChUS+fPnE48ePk1y/VatWokSJEnrtmmTsuHHjhBAfvtdqPgc09u7dKwCIPHnyyG1Tp04V1tbW4vbt2zp9x40bJxQKhXjw4EGi8aQkaTtkyBChUCgMLnNwcBDdunVLdN2RI0cKAOL69et6y9KbtE3JZ1BiNOsnd0ttaZXUfp8vVKiQXjmkxLRp00bY2dnplTepWbOmACDmzp2rt465ubkYNGhQirafk7E8AmVru3fvhkKhwNChQ3XaR44cCSEE9uzZo9Nes2ZNVKlSRb5frFgxtG3bFvv27UvVpQT16tVDw4YNMXv2bJ3L99Krfv368PT01Gu3tLSU/3716hUiIyNRt25d/Pnnn3K75vLnjy/d+OqrrxLdn3Zhf4VCgapVq0IIgb59+8rtdnZ2KFWqFP7++2+5bfPmzShTpgxKly6Nf/75R741atQIAPRmcfT29kbJkiXl+xUqVICNjY3ONlPj4sWLCA0NxfDhw/UmUTI02dDAgQN17tetW9fgvjt27ChfyggAT548waVLl9C7d2/Y29vrxN+kSRPs3r1bbxtpfU4VCoU8MZ1arca///6LhIQEVK1aVef/OTEpjVWlUuHgwYNo164dnJ2d5X5ubm5o0aKFwW2n57jUaNy4sc5lqNWrVwfw/jnXvqRG0655bmxtbQEA+/btS9GMtNpevnyJfPnyJbr8yy+/hIODA5ydndG8eXNERkbi559/xmeffZaq/SSma9eueP78uc6s4Vu2bIFarZZn7ra0tIS5uTmOHDmCV69eZch+0/N627ZtG9RqNbp06aLz2nZ0dIS7u7veaztPnjzo2bOnfN/c3BzVqlXT2ZednR3Cw8MNXgaaFl26dIGFhYXOpb379u3DP//8oxOLRr58+fD27dtUHz9EZBxlypRB/vz5ceLECQDA5cuXERMTI19aWqtWLZw8eRLA+0toVSqVPIFZat/DtO3duxdmZmbo37+/3GZiYoIhQ4Ykuk5Kzy8+9u+//+L3339Hly5d8Pr1aznOly9folmzZrhz5w4ePXoE4P25bo0aNVCtWjV5fQcHhxRdTqqxdu1aVK1aVZ5gM2/evGjVqlW6SyRERUXJ20urrVu3okCBAgbPVzXndKk930/rOYeGqakp/ve//8n3zc3N8b///Q/Pnz/HhQsX5JgcHR3RvXt3uZ+ZmRmGDh2K6OhovfJIXbt21Tkn0ZRk0uw7NceExoABA3TOe+vWrQuVSoX79+8jOXZ2dvjrr7/0LilOzsuXLwEgyfMr4P25h/bjS4k9e/bg5cuXOs9p9+7dcfnyZfz111+pilNbeo7TgQMHYtq0aZgzZw7Kly+P27dvY8+ePQbPizPjWE7sHBwA+vfvD4VCkaLHceDAgRTdmjVrluR2NJNsSZKEQ4cO4YsvvsCgQYOwY8cOvHr1CosWLUpy/bdv3+pMOqthYWEhLweAypUro3r16pg1axaCg4MRFhaGPXv24H//+x/MzMx0vn9v3rwZdevWRb58+XTe9729vaFSqXRKIb569Uqnj+bxaLf9888/OueMb9++TXTycAsLi0RzAWq1Ghs2bICXl5fBSdOPHDmiVxIjtdL6GTRmzJgUHQ+GSiRmlEOHDuHZs2cp/iwbNGgQIiIi0LVrV1y8eBG3b9/G8OHDcf78eQAw+P+gOSZyO1NjB5BRjh07hjlz5uDChQt48uQJtm/fjnbt2qV4/UmTJsmzv2qzsrJCTExMBkZKqXH//n04OzvrfQhr3hg/Pmlxd3fX24aHhwfevHmDFy9ewN7eHv/++6/OcgcHB4MfiJMmTUL9+vWxdOlSjBgxIr0PBcD7+pKG7Nq1C9OmTcOlS5d06gZpn6jdv38fJiYmetvQnKAbUqxYMZ37tra2sLCwQIECBfTaNSdpwPsaozdu3NBJcGp7/vx5kvsB3r+JpjVJpakLVa5cuWT7WlhY6MWZ2L4/fu40x4927RyNMmXKYN++fYiJiYG1tbXcntbnFABWrVqFgIAA3Lx5E/Hx8YnGZUhKY42KisLbt28NHheJHSvpOS41DD0vAFC0aFGD7Zr/n+LFi8Pf3x/z5s3D2rVrUbduXXz++edy3eDkJHUyNGHCBNStWxfR0dHYvn07NmzYABOTjPutsnnz5rC1tcXGjRvRuHFjAMDGjRtRqVIleHh4AACUSiVmzZqFkSNHolChQqhRowZat24NHx8fODo6pmm/6Xm93blzB0IIg++VwPsvpNqKFCmi9/+dL18+XLlyRb4/duxYHDx4ENWqVYObmxuaNm2KL774Qqf+ZGrY2dmhTZs2WLduHaZOnQrgfUKicOHC8g9H2jTHgKHjkig3y6nnvpIkoVatWjh27BjUajVOnjyJggULyp9RtWrVwsKFCwFATt5qkrapfQ/Tdv/+fTg5OenNfJ7YZ2Nqzi8+dvfuXQgh8N133+G7774z2Of58+coXLgw7t+/LycXtRn6vDckIiICu3fvhp+fH+7evSu3165dG1u3bsXt27flz6TUsrGxAQC8fv06TesD78/pSpUqBVPTxL92pvZ8P63nHBrOzs4653YA5OcoLCwMNWrUwP379+Hu7q533pDSmDRJT82+U3NMpHSbSZkyZQratm0LDw8PlCtXDs2bN0evXr3kZGtykjq/evHiBfr16wdPT098//33Kdoe8L4WdfHixaFUKuVjtWTJkrCyssLatWtTtS3gw+d+eo/TMWPGIDg4GPfu3cPQoUN1fkDRlhnHclLfAVLy/UAjpfM7JEczYKNNmzbIkyeP3F6jRg0UL14cp06dSnZ9QzVw3717p7N94H0SvGvXrvjyyy8BvB/g4u/vj6NHj+LWrVtyvzt37uDKlSsp+l7q5eVl8EeNj9edOHGiXH/c0tIScXFxBrf97t07nZi1HT16FI8ePcqwPMHH0vMZ5OnpmeiPAVll7dq1UCgU8kCW5LRo0QILFizAuHHjULlyZQDvP5+nT5+OMWPG6ByPGkKIT+L8P9ckbWNiYlCxYkV8+eWX6NChQ6rXHzVqlN4vGY0bN86wEVmUPZw6dQoNGzbUaQsNDdWbqAJ4P9q2QYMGmD17tt6xkVaG3vSPHz+Ozz//HPXq1cPixYvh5OQEMzMzBAcH60zkkxaGktGJ/WKrfXKmVqtRvnx5zJs3z2Dfj0+KU7LNzJLSX6ABw89/RuwvJY9/zZo16N27N9q1a4fRo0ejYMGCUCgUmDFjRoZMjJUeGXFcJvYcpOS5CQgIQO/evbFz507s378fQ4cOxYwZM3DmzJkkJ17Inz9/kicu5cuXl09i27Vrhzdv3qB///6oU6eO3jGcFkqlEu3atcP27duxePFiPHv2DCdPntT70jF8+HC0adMGO3bswL59+/Ddd99hxowZ+P333+Hl5ZXq/abn9aZWqyFJEvbs2WNwOx+fEKVkX2XKlMGtW7ewa9cu7N27F1u3bsXixYsxYcIEgwmhlPDx8cHmzZtx6tQplC9fHr/88gsGDx5sMOn+6tUrWFlZZcjrmygnycnnvnXq1MGvv/6Kq1ev4uTJkzoTuNSqVQujR4/Go0ePcOLECTg7O6NEiRIAUv8elh6pOb/4mGZynFGjRiU6si2pH91TY/PmzYiNjUVAQIDBUVNr166V34s/Hu32sTdv3sh9AKB06dIAgKtXr6JSpUoZEm9GSM85R2ZJbt9pOSbS83jq1auHe/fuyedWK1aswPz587F06VKdq8Y+lj9/fgDvP1sTOwfr378//v33X+zevVvneElKVFQUfv31V7x7987gjy7r1q3D9OnT5QRMUiMcNaMkNft2c3ODqampPBldaqjVavj6+iIsLAyNGzfGwoULUaNGDZ3RwJkpqXOX1JzXPH36NEX9bG1tk9yu5iq9QoUK6S0rWLBgsglDJycnHD58WC+Z9uTJE53tA0DhwoVx4sQJ3LlzB0+fPoW7uzscHR3h7Oys80OTWq1GkyZNMGbMGIP71O67du1aneNm//79mDNnjt4EfJrPFE3MKpUKz58/R8GCBeX2uLg4vHz5UidmbWvXroWJiUmmHSvp+QyKjIxM0dXC5ubmOldwZpS3b99i+/bt8Pb2NngsJcbPzw99+vTBlStXYG5ujkqVKiEoKAgADP74GBERoTdwKjfKNUnbFi1aJHrpLwDExsbim2++wfr16xEREYFy5cph1qxZ8gybefLk0TnRu3z5Mq5fv25wJlHKOi4uLjh48CBev36t84ulZiZGFxcXnf6GLgG6ffs2rKys4ODgAKVSqfemndRot0mTJqFBgwZYtmxZeh5GkrZu3QoLCwvs27dP53KS4OBgnX4uLi5Qq9UIDQ3VOdnRHlWRUUqWLInLly+jcePGGfbrVWq2o7n0+9q1axn2y7EhmuNH+9dcjZs3b6JAgQJ6IzHSasuWLShRogS2bdum81xMnDhRp19iz1NKY7WwsICFhYXB4yI1x0pKj8uMUr58eZQvXx7ffvstTp06hdq1a2Pp0qWYNm1aouuULl0aW7duTfE+Zs6cie3bt2P69OkZ9t7etWtXrFq1CocOHcKNGzcghDD4i3LJkiUxcuRIjBw5Enfu3EGlSpUQEBCANWvWZEgcH0vsOCpZsiSEEChevHiaR14ZYm1tja5du6Jr166Ii4tDhw4dMH36dIwfPz7RL3RJvSc0b94cDg4OWLt2LapXr443b96gV69eBvuGhoYavCyNKLfLyee+mpGzJ06cwMmTJzF8+HB5WZUqVaBUKnHkyBGcPXsWLVu2lJel5z3MxcUFhw8fxps3b3RG26bnPCqx9zFNQsDMzCzZ8xgXFxeD56+GPu8NWbt2LcqVK6d3PgEAy5Ytw7p16+SkbVLnEpp27XPrFi1aQKFQYM2aNYm+ByenZMmSOHv2LOLj4xMdCZ3a8/30evz4sd6VVLdv3wYAeSCHi4sLrly5ArVarfODYVpjSs0xkRpJfZba29ujT58+6NOnD6Kjo1GvXj1MmjQpyaStJlEfGhqK8uXL6y0PCgrCzp07MW3aNHk0XEps27YN7969w5IlS/SSLLdu3cK3336LkydPyu8NLi4uuH79usFtaY5fzf+BlZUVGjVqhN9//x0PHz5M1Q/zfn5+2LBhA4KDg9GzZ0907doVvr6+sLW11XnvAbLnsazh5OSUon7BwcHo3bt3oss1ZQY/LtUBvH/daI6PxFSqVAkrVqzAjRs3dEZ6nj17Vl7+MXd3d/m77fXr1/HkyROdGEuWLIno6OgUvW4+vsorPDwcQNIjkTUxnT9/Xuf//Pz581Cr1QZjjo2NxdatW9GgQYNEk7rGNGzYMKxatSrZfvXr19cp85ZRfvnlF7x+/TpVZX40rK2tUbNmTfn+wYMHYWlpqfd/++jRI8TFxX0S3wE+mZq2fn5+OH36NDZs2IArV66gc+fOaN68eaJ1flasWAEPDw+5HhEZR8uWLaFSqeTL5DTmz58PSZL0vqycPn1ap97mw4cPsXPnTjRt2hQKhQL58uWDt7e3zi2pX4jr16+PBg0aYNasWfJlHRlNoVBAkiSdmrthYWHYsWOHTj/Nr/KLFy/WaV+wYEGGx9SlSxc8evQIP/30k96yt2/fpumySc2JcURERLJ9K1eujOLFiyMwMFCvf0aOlnByckKlSpWwatUqnf1cu3YN+/fv1ztZSw/Nr6Xa8Z89exanT5/W6af5Ivnx405prAqFAt7e3tixYwceP34s97t7965eHa3k4k3JcZleUVFRSEhI0GkrX748TExMDF5epa1mzZp49epViuuplSxZEh07dkRISEiKRyQkx9vbG/b29ti4cSM2btyIatWq6VzO9ubNG733jpIlSyJv3rzJPr70SOz11qFDBygUCkyePFnvtSSE0CvpkRIfr2Nubg5PT08IIXTKgBiKMbH3A1NTU3Tv3h2bNm1CSEgIypcvn+glnX/++afOKD0iei87n/tWrVpVrl396NEjndewUqlE5cqVsWjRIsTExMhJHCB972HNmjVDfHy8zrmNWq1OtkZjUhL7zC5YsKD8o79mhJm2Fy9eyH+3bNkSZ86cwblz53SWp6Qe7cOHD3Hs2DF06dIFnTp10rv16dMHd+/elRMmmnOJNWvW6MV84cIFnDlzRufcumjRoujfvz/2799v8HxTrVYjICBATowY0rFjR/zzzz965/LAh3Oi1J7vp1dCQoLOgIy4uDgsW7YMDg4OctKqZcuWePr0KTZu3Kiz3oIFC5AnTx7Ur18/VftMzTGRGol9ln78WsiTJw/c3NySPfeoUqUKzM3N5TqS2kJDQzFixAjUrFkT48aNS1Wca9asQYkSJTBw4EC943TUqFHIkyePzjHfsmVLhIeH6513xsbGYsWKFShYsKBO0njixIkQQqBXr15yHVNtFy5c0EtiffPNN1iyZAkCAwPh6+sLhUKBdevWoUGDBujUqROOHz+u0z87HssaGVXTtlSpUqhYsSJ27typUyt0//79ePjwIZo0aSK3RUZG4ubNm4iMjJTb2rZtCzMzM53vq0IILF26FIULF07yfE2tVmPMmDGwsrLSuQqkS5cuOH36NPbt26e3TkREhN73iNRq1KgR7O3tsWTJEp32JUuWwMrKCq1atdJbZ/fu3YiIiEhTUjIrGLum7bp162BlZYX27dsbXG7o2DHk1KlT2LZtG/r27atXNk9Tf/xT+A6Qa0baJuXBgwcIDg7GgwcP5F9CRo0ahb179yI4OFjvUtZ3795h7dq1qf4woozXpk0bNGzYEN988w3CwsJQsWJF7N+/Hzt37sTw4cN1JuMB3tdAbdasGYYOHQqlUil/YKT1El3g/UnAxyUVMlKrVq0wb948NG/eHF988QWeP3+ORYsWwc3NTaduZJUqVdCxY0cEBgbi5cuXqFGjBo4ePSqPDMjIei69evXCpk2bMHDgQBw+fBi1a9eGSqXCzZs3sWnTJuzbtw9Vq1ZN1TY1J8HffPMNunXrBjMzM7Rp08bgSFYTExMsWbIEbdq0QaVKldCnTx84OTnh5s2b+Ouvvwx+aKfVnDlz0KJFC9SsWRN9+/bF27dvsWDBAtja2sq1jjJC69atsW3bNrRv3x6tWrVCaGgoli5dCk9PT52TS0tLS3h6emLjxo3w8PCAvb09ypUrh3LlyqU41kmTJmH//v2oXbs2Bg0aJJ88litXDpcuXUpRvCk9LtPr999/h5+fHzp37gwPDw8kJCTg559/hkKhQMeOHZON0dTUFAcPHsSAAQNStL/Ro0dj06ZNCAwMxMyZM9Mdv5mZGTp06IANGzYgJiYGc+fO1Vl++/ZtNG7cGF26dIGnpydMTU2xfft2PHv2DN26dUv3/hOT2OutZMmSmDZtGsaPH4+wsDC0a9cOefPmRWhoKLZv344BAwZg1KhRqdpX06ZN4ejoiNq1a6NQoUK4ceMGFi5ciFatWiU5KUiVKlWwZMkSTJs2DW5ubihYsKBOzVofHx/8+OOPOHz4MGbNmmVwGxcuXMC///6Ltm3bpipmotwuu5/7mpub47PPPsPx48ehVCp1JpEF3n8J03yZ1E7apuc9rF27dqhWrRpGjhyJu3fvonTp0vjll1/kuQ7Sch6V1Gf2okWLUKdOHZQvXx79+/dHiRIl8OzZM5w+fRrh4eG4fPkygPdfrn/++Wc0b94cw4YNg7W1NZYvXy6P9EzKunXrIITA559/bnB5y5YtYWpqKl+1AADz5s1Ds2bNUKlSJfTu3RvOzs64ceMGli9fDicnJ4wfP15nGwEBAXKtz23btqF169bIly8fHjx4gM2bN+PmzZtJfp75+Phg9erV8Pf3x7lz51C3bl3ExMTg4MGDGDx4MNq2bZvq8/30cnZ2xqxZsxAWFgYPDw9s3LgRly5dwvLly+URlAMGDMCyZcvQu3dvXLhwAa6urtiyZQtOnjyJwMDANE16ldJjIjUS+yz19PREgwYNUKVKFdjb2+P8+fPYsmUL/Pz8ktyehYUFmjZtioMHD2LKlCk6ywYMGIDXr1+jadOmWL9+vc6yPHnyJFpT+/Hjxzh8+LDe5FwaSqUSzZo1w+bNm/Hjjz/CzMwMAwYMwMqVK9G5c2d8+eWX8PLywsuXL7Fx40Zcu3YNq1ev1pk8qlatWli0aBEGDx6M0qVLo1evXnB3d8fr169x5MgR/PLLLzpXb4WGhmLOnDmYNGmSTlzm5ubyZd2jRo2Sf/AAsuexrJGRo7fnz5+PJk2aoE6dOvjf//6HyMhIzJs3Dx4eHhg0aJDcb/v27ejTp4/O6N0iRYpg+PDhmDNnDuLj4/HZZ59hx44dOH78uFzjVGPYsGF49+4dKlWqhPj4eKxbtw7nzp3DqlWrdOo5jx49Gr/88gtat26N3r17o0qVKoiJicHVq1exZcsWhIWFpesSeUtLS0ydOhVDhgxB586d0axZMxw/fhxr1qzB9OnTDZYPWLt2LZRKZZLfVRo0aICjR49mSXmWj2VkTdvIyEj5RztNnfmFCxfCzs4OdnZ2eu8p//77L/bs2YOOHTsmWrLI0LFz//59dOnSBZ9//jkcHR3x119/YenSpahQoYLBetcHDhxAsWLF0lRqLscRuRAAsX37dvn+rl27BABhbW2tczM1NRVdunTRW3/dunXC1NRUPH36NAujJiGEGDJkiPj4sHz9+rUYMWKEcHZ2FmZmZsLd3V3MmTNHqNVqnX4AxJAhQ8SaNWuEu7u7UCqVwsvLSxw+fDhF+544caIAIF68eKG3rH79+gKAaNWqVbLb8fX1FdbW1nrtmvgMCQoKkmMuXbq0CA4OluPRFhMTI4YMGSLs7e1Fnjx5RLt27cStW7cEADFz5sxkH0tisdWvX1+ULVtWpy0uLk7MmjVLlC1bViiVSpEvXz5RpUoVMXnyZBEZGZns43JxcRG+vr46bVOnThWFCxcWJiYmAoAIDQ01+HxonDhxQjRp0kTkzZtXWFtbiwoVKogFCxYk+3g+fu5CQ0MFADFnzhyD+zl48KCoXbu2sLS0FDY2NqJNmzbi+vXrBreZ1udUrVaL77//Xri4uMjH5q5du4Svr69wcXHRWffUqVOiSpUqwtzcXAAQEydOTFWsQghx6NAh4eXlJczNzUXJkiXFihUrxMiRI4WFhYVOv4w4Lg1tI7Hn/PDhwwKA2Lx5sxBCiL///lt8+eWXomTJksLCwkLY29uLhg0bioMHDxqM6WOff/65aNy4cZL7+FiDBg2EjY2NiIiIkNtevHih91yn1IEDBwQAIUmSePjwoc6yf/75RwwZMkSULl1aWFtbC1tbW1G9enWxadOmZLeb0udaiNS/3rZu3Srq1Kkjfx6WLl1aDBkyRNy6dUvuY+h9QQihd8wuW7ZM1KtXT+TPn18olUpRsmRJMXr0aJ33ieDgYL0Ynj59Klq1aiXy5s0rAIj69evr7ats2bLCxMREhIeHG3yOxo4dK4oVK6b3eUD0qcmJ577jx48XAEStWrX0lm3btk0AEHnz5hUJCQl6y1PyHmbo8/XFixfiiy++EHnz5hW2traid+/e4uTJkwKA2LBhg866KTm/ECLpz+x79+4JHx8f4ejoKMzMzEThwoVF69atxZYtW3S2ceXKFVG/fn1hYWEhChcuLKZOnSqCgoKSPVcqX768KFasWKLLhXj/mVewYEERHx8vt505c0a0bt1a5MuXT5iamorChQuLfv36Jfpem5CQIFasWCHq1q0rbG1thZmZmXBxcRF9+vQRFy9eTHL/Qgjx5s0b8c0334jixYsLMzMz4ejoKDp16iTu3bsn90nt+b62lJ5zCPHhs+38+fOiZs2awsLCQri4uIiFCxfqxf3s2TPRp08fUaBAAWFubi7Kly8vgoODU7RvTawfn1ek5JjQfGb+8ccfBh+P9nebxD5Lp02bJqpVqybs7OyEpaWlKF26tJg+fbqIi4vTi/Nj27ZtE5IkiQcPHui0u7i4CAAGbx+/1rQFBAQIAOLQoUOJ9gkJCREAxM6dO+W2V69eiREjRsjHjY2NjWjYsKHYs2dPotu5cOGC+OKLL+TjKF++fKJx48Zi1apVQqVS6fRN6tj9999/xf379/XaM/tYFiLx//+sdODAAVGjRg353LxXr17iyZMnOn00cX78mlCpVPJ3HnNzc1G2bFmxZs0avX0EBweLihUrCmtra5E3b17RuHFj8fvvvxuM5/Xr12L8+PHCzc1NmJubiwIFCohatWqJuXPnJnlMa2JMieXLl4tSpUrJ353mz59v8PwyMjJSWFhYiA4dOiS5vSpVqghHR8dk96t5D9F+HlPzGZTZNPGl9HW/dOlSAUD88ssviW7T0LHz77//irZt2wpHR0dhbm4uihcvLsaOHSuioqL01lepVMLJyUl8++23GfEQsz1JCCOk/jOZJEk6M+hu3LgRPXr0wF9//aVX0DlPnjx6NU0bN24MGxsbbN++PatCpgwgSRKGDBli8JKV3OzSpUvw8vLCmjVrsu0lGpQ9tGvXDn/99Veil8bmRMePH0eDBg1w8+bNRGcTp5zLy8sL9vb2OHTokN6y2NhYuLq6Yty4cRg2bJgRoiPKPnjum3Y7duxA+/btceLECb2aeZT7NGjQAP/88w+uXbtm7FCyLZVKBU9PT3Tp0gVTp041djhEOc7r169hb2+PwMBADBkyxNjh5Do7duzAF198gXv37qW4nnNO9knUtPXy8pJnBHRzc9O5fXzSGhoaisOHD6Nv375GipYocYZmgQwMDISJiQnq1atnhIgou/r4WLlz5w52794tT0CTW9StWxdNmzbF7NmzjR0KZbDz58/j0qVL8PHxMbg8ODgYZmZmOnXPiOg9nvsa9vFno0qlwoIFC2BjY5OqSZWIcjOFQoEpU6Zg0aJFBuvDElHSjh07hsKFC6N///7GDiVXmjVrFvz8/D6JhC2Qi2raRkdH68z+GhoaikuXLsHe3h4eHh7o0aMHfHx8EBAQAC8vL7x48QKHDh1ChQoVdIpLr1y5Ek5OTplWJJwoPWbPno0LFy6gYcOGMDU1xZ49e7Bnzx4MGDAgVTOlUu5XokQJ9O7dGyVKlMD9+/exZMkSmJubY8yYMcYOLcOlZoI1yv6uXbuGCxcuICAgAE5OTujatavBfgMHDmTClj5pPPdNva+++gpv375FzZo1ERsbi23btuHUqVP4/vvvYWlpaezwiLKNrl27Jvr5S0RJa9WqlcEJzChjfDyRd26Xa5K258+f15ksyt/fHwDg6+uLkJAQBAcHY9q0aRg5ciQePXqEAgUKoEaNGmjdurW8jlqtRkhICHr37q13KRlRdlCrVi0cOHAAU6dORXR0NIoVK4ZJkybhm2++MXZolM00b94c69evx9OnT6FUKlGzZk18//33LCFA2d6WLVswZcoUlCpVCuvXr4eFhYWxQyLKlnjum3qNGjVCQEAAdu3ahXfv3sHNzQ0LFixIdnImIiIiImPIlTVtiYiIiIiIiIiIiHKqT6KmLREREREREREREVFOwaQtERERERERERERUTaSo2vaqtVqPH78GHnz5oUkScYOh4iIiIjSQAiB169fw9nZGSYmHFOQFJ7/EhEREeVsKT33zdFJ28ePH6No0aLGDoOIiIiIMsDDhw9RpEgRY4eRrfH8l4iIiCh3SO7cN0cnbfPmzQvg/YO0sbExcjRERERElBZRUVEoWrSofG5HieP5LxEREVHOltJz3xydtNVcEmZjY8OTViIiIqIcjpf7J4/nv0RERES5Q3LnviwaRkRERERERERERJSN5OiRtkRERES5mUqlQnx8vLHDyDBmZmZQKBTGDoOIiIiIKNtj0paIiIgoG4qOjkZ4eDiEEMYOJcNIkoQiRYogT548xg6FiIjok6VWqxEXF2fsMIhyrYwaqMCkLREREVE2o1KpEB4eDisrKzg4OOSKWq9CCLx48QLh4eFwd3fniFsiIiIjiIuLQ2hoKNRqtbFDIcrV7Ozs4OjomK7zeCZtiYiIiLKZ+Ph4CCHg4OAAS0tLY4eTYRwcHBAWFob4+HgmbYmIiLKYEAJPnjyBQqFA0aJFYWLCaY6IMpoQAm/evMHz588BAE5OTmneFpO2RERERNlUbhhhqy23PR4iIqKcJCEhAW/evIGzszOsrKyMHQ5RrqUZdPH8+XMULFgwzYMV+LMKEREREREREVEup1KpAADm5uZGjoQo99P8MJKeSYWZtCUiIiKiNAsODkalSpXkW4ECBdChQwdjh0VERESJ4JUvRJkvI15nLI9AlAUeR7zFy+g4lC9ia+xQiIiIMlSfPn3Qp08f+X65cuXQo0cPI0ZERERERJTzMWlLlAUm7LyGv/+JwYYBNVAwr4WxwyEiohxECIHYhMyf4VlpapLkiIC5c+fi9u3bWL58OQAgIiICbm5uuH37Nuzt7QEAZ8+exfPnz/H5559nerxERERERLmZUZO2KpUKkyZNwpo1a/D06VM4Ozujd+/e+Pbbbzlcn3KVV2/iAQFEvY1n0paIiFIlNkGNlj8cz/T97B5WFxZmiU+S0K9fP3h4eGD27Nmws7NDcHAw2rZtKydsASAoKAi9evWCmZlZpsdLWcd13G9Zur+wma2ydH9ERJ86vs8TZU9GrWk7a9YsLFmyBAsXLsSNGzcwa9YszJ49GwsWLDBmWEQZTi3Ef/8aORAiIqI0srOzQ6dOnbBy5UoIIbBkyRL4+fnJy2NiYrBhwwb07dvXiFESERFRbnX69GkoFAq0aqWb9D1y5AgkSUJERITeOq6urggMDNRpO3z4MFq2bIn8+fPDysoKnp6eGDlyJB49epSJ0ROlnlFH2p46dQpt27aVX3Curq5Yv349zp07Z8ywiDLcfzlbOXlLRESUUkpTE+weVjdL9pOcoUOH4vPPP0eZMmXg4OAALy8vednmzZtRtmxZeHp6ZmaYRERE9IkKCgrCV199haCgIDx+/BjOzs6p3sayZcswePBg+Pr6YuvWrXB1dcWDBw+wevVqBAQEYN68eZkQOVHaGDVpW6tWLSxfvhy3b9+Gh4cHLl++jBMnTiT6IomNjUVsbKx8PyoqKqtCJUoXoRlpm/klCYmIKJeRJCnJsgVZqXTp0ihRogQGDBiA2bNn6ywLCgriKFsiIiLKFNHR0di4cSPOnz+Pp0+fIiQkBF9//XWqthEeHo6hQ4di6NChmD9/vtzu6uqKevXqGRypS2RMRi2PMG7cOHTr1g2lS5eGmZkZvLy8MHz48ERnHJ4xYwZsbW3lW9GiRbM4YqK00Yyv5UhbIiLK6fr374+EhAR06tRJbrt16xYuXbqErl27GjEyIiIiyq02bdqE0qVLo1SpUujZs6dcrik1Nm/ejLi4OIwZM8bgcjs7uwyIlCjjGDVpu2nTJqxduxbr1q3Dn3/+iVWrVmHu3LlYtWqVwf7jx49HZGSkfHv48GEWR0yUNkzWEhFRbnH48GEMHjxYZ7KxUqVK4fXr18ibN68RIyMiIqLcKigoCD179gQANG/eHJGRkTh69GiqtnHnzh3Y2NjAyckpM0IkynBGTdqOHj1aHm1bvnx59OrVCyNGjMCMGTMM9lcqlbCxsdG5EeUErGlLREQ53ePHj1G6dGn8+eefGD58uLHDyVQzZszAZ599hrx586JgwYJo164dbt26lex6mzdvRunSpWFhYYHy5ctj9+7dOsuFEJgwYQKcnJxgaWkJb29v3LlzJ7MeBhERUa5w69YtnDt3Dt27dwcAmJqaomvXrggKCkrVdoQQkCQpM0IkyhRGTdq+efMGJia6ISgUCqhZ+JNyGbXQ/ZeIiCincXZ2xs2bN3Hq1KlcP6L26NGjGDJkCM6cOYMDBw4gPj4eTZs2RUxMTKLrnDp1Ct27d0ffvn1x8eJFtGvXDu3atcO1a9fkPrNnz8aPP/6IpUuX4uzZs7C2tkazZs3w7t27rHhYREREOVJQUBASEhLg7OwMU1NTmJqaYsmSJdi6dSsiIyPlAX2RkZF660ZERMDW1hYA4OHhgcjISDx58iRL4ydKK6Mmbdu0aYPp06fjt99+Q1hYGLZv34558+ahffv2xgyLKMNpau2ktuYOERERZb29e/eid+/eKFu2LCpWrIiQkBA8ePAAFy5cSHSdH374Ac2bN8fo0aNRpkwZTJ06FZUrV8bChQsBvD8HCAwMxLfffou2bduiQoUKWL16NR4/fowdO3Zk0SMjIiLKWRISErB69WoEBATg0qVL8u3y5ctwdnbG+vXr4e7uDhMTE73P6b///huRkZHw8PAAAHTq1Anm5uZ6k6lqcCIyym5MjbnzBQsW4LvvvsPgwYPx/PlzODs743//+x8mTJhgzLCIMg1H2hIREeU8mpE79vb2ifY5ffo0/P39ddqaNWsmJ2RDQ0Px9OlTeHt7y8ttbW1RvXp1nD59Gt26dTO43djYWMTGxsr3o6Ki0vowKIdzHfdblu0rbGarLNsXEVFSdu3ahVevXqFv377yiFmNjh07IigoCAMHDkS/fv0wcuRImJqaonz58nj48CHGjh2LGjVqoFatWgCAokWLYv78+fDz80NUVBR8fHzg6uqK8PBwrF69Gnny5EFAQIAxHiaRQUZN2ubNmxeBgYEIDAw0ZhhEmU5Ty5Y1bYmIiHIWtVqN4cOHo3bt2ihXrlyi/Z4+fYpChQrptBUqVAhPnz6Vl2vaEutjyIwZMzB58uS0hk9ERJSs7PxDTVBQELy9vfUStsD7pO3s2bNx5coV/PDDD5g5cybGjh2L+/fvw9HREU2aNMH06dN16tgOHjwYHh4emDt3Ltq3b4+3b9/C1dUVrVu31vvxlcjYjJq0JfpUaEbYMmdLRESUswwZMgTXrl3DiRMnjLL/8ePH63yJjIqKQtGiRY0SCxERUVb79ddfE11WrVo1nRKEkyZNwqRJk5Ldpre3t86VL0TZFZO2RFmII22JiIhyDj8/P+zatQvHjh1DkSJFkuzr6OiIZ8+e6bQ9e/YMjo6O8nJNm5OTk06fSpUqJbpdpVIJpVKZxkdARERERDmVUSciI/pUsDwCERHlVkeOHIGlpSUqVaok396+fWvssNJFCAE/Pz9s374dv//+O4oXL57sOjVr1sShQ4d02g4cOICaNWsCAIoXLw5HR0edPlFRUTh79qzch4iIiIhIgyNtiTKZEALQ5GqZsyUiotQSAkh4l/n7MbUAtGq+pUapUqVw6dKljI3HiIYMGYJ169Zh586dyJs3r1xz1tbWFpaWlgAAHx8fFC5cGDNmzAAADBs2DPXr10dAQABatWqFDRs24Pz581i+fDkAQJIkDB8+HNOmTYO7uzuKFy+O7777Ds7OzmjXrp1RHicRERERZV9M2hJlMu3BtWombYmIKLUS3gFL62T+fgaeAMwsE108d+5c3L59W05CRkREwM3NTb6fmyxZsgQA0KBBA5324OBg9O7dGwDw4MEDmJh8uGitVq1aWLduHb799lt8/fXXcHd3x44dO3QmLxszZgxiYmIwYMAAREREoE6dOti7dy8sLCwy/TERERERUc7CpC1RJtPO07I8AhER5VT9+vWDh4cHZs+eDTs7OwQHB6Nt27awt7fHvXv3ULlyZSgUCvTp0weDBw82drjpIlLweX3kyBG9ts6dO6Nz586JriNJEqZMmYIpU6akJzwiIiIi+gQwaUuUyYQQqJtwCsXVDyDEZGOHQ0REOY2pxftRsFmxnyTY2dmhU6dOWLlyJUaMGIElS5Zg48aNKFmyJMLDw2Fra4vw8HC0bNkSBQoUQJcuXTI/ZiIiIiKiXIpJW6JMphZAh7hdsBev8CjqPoBCxg6JiIhyEklKsmxBVho6dCg+//xzlClTBg4ODvDy8tJZXqRIEXTv3h3Hjx9n0paIiIiIKB1Mku9CROkhIGCKhPd3VPHGDYaIiCgdSpcujRIlSmDAgAHw8/MDADx58gRqtRoA8Pr1a+zatUsvmUtERERERKnDpC1RJhMCkP6rbJuSGnlERETZWf/+/ZGQkIBOnToBALZu3Yry5cujYsWKqFGjBpo0aYI+ffoYOUoiIiIiopyN5RGIMpkQgAnU//2tMnI0RERE6XP48GEMHjwYZmZmAAA/Pz951C0RERHlQJNss3h/kVm7vwxw6NAh+Pn54dq1a1AoFMYOJ1s5cuQIGjZsiFevXsHOzi5Dty1JErZv34527doZXN6gQQNUqlQJgYGBGbrf5HTr1g2fffYZRo4cman74UhbokwmID6MtP3v8lEiIqKc5vHjxyhdujT+/PNPDB8+3NjhEBEREWWZMWPG4Ntvv/3kE7YNGjT4pM4Djxw5AkmSEBERodP+7bffYvr06YiMzNwfIJi0JcpkagGY/Je0hWDSloiIciZnZ2fcvHkTp06dQt68eY0dDhEREVGaxMXFGWyPjzc8B82JEydw7949dOzYMTPDohykXLlyKFmyJNasWZOp+2HSliiTCaE10pZJWyIiIiIiIqIUU6vVmD17Ntzc3KBUKlGsWDFMnz5dXn716lU0atQIlpaWyJ8/PwYMGIDo6Gh5ee/evdGuXTtMnz4dzs7OKFWqFMLCwiBJEjZu3Ij69evDwsICa9euNbj/DRs2oEmTJrCwsAAA3L59G5Ik4ebNmzr95s+fj5IlSwIAXr16hR49esDBwQGWlpZwd3dHcHBwih/z/fv30aZNG+TLlw/W1tYoW7Ysdu/eDeDD6M99+/bBy8sLlpaWaNSoEZ4/f449e/agTJkysLGxwRdffIE3b97I24yNjcXQoUNRsGBBWFhYoE6dOvjjjz909nv06FFUq1YNSqUSTk5OGDduHBISEuTn8ejRo/jhhx8gSRIkSUJYWJi87oULF1C1alVYWVmhVq1auHXrls62d+7cicqVK8PCwgIlSpTA5MmT5W0DwJ07d1CvXj1YWFjA09MTBw4cSNFzlZCQAD8/P9ja2qJAgQL47rvvdOYTio2NxahRo1C4cGFYW1ujevXqOHLkSLLPdVhYGBo2bAgAyJcvHyRJQu/eveX12rRpgw0bNqQoxrRiTVuiTCYAlkcgIiIiIiIiSoPx48fjp59+wvz581GnTh08efJETpjGxMSgWbNmqFmzJv744w88f/4c/fr1g5+fH0JCQuRtHDp0CDY2NnqJwHHjxiEgIABeXl5yUvZjx48fxxdffCHf9/DwQNWqVbF27VpMnTpVbl+7dq3c77vvvsP169exZ88eFChQAHfv3sXbt29T/JiHDBmCuLg4HDt2DNbW1rh+/Try5Mmj02fSpElYuHAhrKys0KVLF3Tp0gVKpRLr1q1DdHQ02rdvjwULFmDs2LEA3pd42Lp1K1atWgUXFxfMnj0bzZo1w927d2Fvb49Hjx6hZcuW6N27N1avXo2bN2+if//+sLCwwKRJk/DDDz/g9u3bKFeuHKZMmQIAcHBwkBO333zzDQICAuDg4ICBAwfiyy+/xMmTJ+Xn0MfHBz/++CPq1q2Le/fuYcCAAQCAiRMnQq1Wo0OHDihUqBDOnj2LyMjIFJdhWLVqFfr27Ytz587h/PnzGDBgAIoVK4b+/fsDeD//wvXr17FhwwY4Oztj+/btaN68Oa5evQp3d/dEn+uiRYti69at6NixI27dugUbGxtYWlrK+61WrRqmT5+O2NhYKJXKFP/fpgaTtkSZTKg/TESm5khbIiIiIiIiohR5/fo1fvjhByxcuBC+vr4AgJIlS6JOnToAgHXr1uHdu3dYvXo1rK2tAQALFy5EmzZtMGvWLBQqVAgAYG1tjRUrVsDc3BwA5ETj8OHD0aFDhyRjuH//PpydnXXaevTogYULF8pJ29u3b+PChQvy5fIPHjyAl5cXqlatCgBwdXVN1eN+8OABOnbsiPLlywMASpQooddn2rRpqF27NgCgb9++GD9+PO7duyf37dSpEw4fPoyxY8ciJiYGS5YsQUhICFq0aAEA+Omnn3DgwAEEBQVh9OjRWLx4MYoWLYqFCxdCkiSULl0ajx8/xtixYzFhwgTY2trC3NwcVlZWcHR01Itn+vTpqF+/PoD3yfBWrVrh3bt3sLCwwOTJkzFu3Dj5/7BEiRKYOnUqxowZg4kTJ+LgwYO4efMm9u3bJz/X33//vRxrUooWLYr58+dDkiSUKlUKV69exfz589G/f388ePAAwcHBePDggbzdUaNGYe/evQgODsb333+f5HNtb28PAChYsKDeJGvOzs6Ii4vD06dP4eLikmycacHyCESZTC0EpP+StZLWEH0iIiIiIiIiStyNGzcQGxuLxo0bJ7q8YsWKcsIWAGrXrg21Wq1zeX758uXlhK02TVI1KW/fvtUbhdutWzeEhYXhzJkzAN6Psq1cuTJKly4NABg0aBA2bNiASpUqYcyYMTh16lTyD1bL0KFD5aTsxIkTceXKFb0+FSpUkP8uVKgQrKysdBKOhQoVwvPnzwEA9+7dQ3x8vJzkBQAzMzNUq1YNN27cAPD+uaxZsyYkSZL71K5dG9HR0QgPD082Zu14nJycAEDe/+XLlzFlyhTkyZNHvvXv3x9PnjzBmzdvcOPGDRQtWlQnOV6zZs1k9wkANWrU0Im5Zs2auHPnDlQqFa5evQqVSgUPDw+dfR89ehT37t0DkLLn2hDNqFvtEhQZjUlbokz2vjzCf38LlTFDISIiSjNDM+dqNG3aFBUqVEClSpVQt25dXLx4MWuDIyIiolxJ+3L09NBO6qakXVuBAgXw6tUrnTZHR0c0atQI69atA/B+xG+PHj3k5S1atMD9+/cxYsQIPH78GI0bN8aoUaNSHG+/fv3w999/o1evXrh69SqqVq2KBQsW6PQxMzOT/5YkSee+pk2dhSUaP44HgLz/6OhoTJ48GZcuXZJvV69exZ07dxItS5ERoqOjoVAocOHCBZ1937hxAz/88AOAlD3Xhvz7778A3peIyCxM2hJlMiGEXB5BqFgegYiIcp9NmzbhypUruHTpEvz9/XUmaSAiIiJKK3d3d1haWuLQoUMGl5cpUwaXL19GTEyM3Hby5EmYmJigVKlSGRKDl5cXrl+/rtfeo0cPbNy4EadPn8bff/+Nbt266Sx3cHCAr68v1qxZg8DAQCxfvjxV+y1atCgGDhyIbdu2YeTIkfjpp5/S/BhKliwJc3NzucYsAMTHx+OPP/6Ap6cngPfP5enTp3Um8Tp58iTy5s2LIkWKAADMzc2hUqV+MFrlypVx69YtuLm56d1MTExQpkwZPHz4EE+ePJHX0YxiTs7Zs2d17p85cwbu7u5QKBTw8vKCSqXC8+fP9farXeIhsedaMzrb0GO+du0aihQpggIFCqT6+UgpJm2JMplarV0SgeURiIgodYQQeJfwLtNvIgUlfObOnQsvLy94eHjozLCsXeMrMjJS5xI1IiIiorSysLDA2LFjMWbMGKxevRr37t3DmTNnEBQUBOB94tTCwgK+vr64du0aDh8+jK+++gq9evWS69mmV7NmzXDixAm99g4dOuD169cYNGgQGjZsqHNp/4QJE7Bz507cvXsXf/31F3bt2oUyZcrIyxs3boyFCxcmus/hw4dj3759CA0NxZ9//onDhw/rrJ9a1tbWGDRoEEaPHo29e/fi+vXr6N+/P968eYO+ffsCAAYPHoyHDx/iq6++ws2bN7Fz505MnDgR/v7+MDF5nz50dXXF2bNnERYWhn/++SfFI3knTJiA1atXY/Lkyfjrr79w48YNbNiwAd9++y0AwNvbGx4eHvD19cXly5dx/PhxfPPNNyna9oMHD+Dv749bt25h/fr1WLBgAYYNGwbg/aRxPXr0gI+PD7Zt24bQ0FCcO3cOM2bMwG+//QYg6efaxcUFkiRh165dePHiBaKjo+X9Hj9+HE2bNk1RjGnFiciIMplQqwz+TURElBKxqlh0/rVzpu9nc5vNsDBN+vI0SZJw8eJF/P3336hatSpq164tT6zh4+ODw4cPAwB2796d2eESERFRRpkUaewIkvTdd9/B1NQUEyZMwOPHj+Hk5ISBAwcCAKysrLBv3z4MGzYMn332GaysrNCxY0fMmzcvw/bfo0cPjBkzBrdu3dIZvZs3b160adMGmzZtwsqVK3XWMTc3x/jx4xEWFgZLS0vUrVsXGzZskJffu3cP//zzT6L7VKlUGDJkCMLDw2FjY4PmzZtj/vz56XocM2fOhFqtRq9evfD69WtUrVoV+/btQ758+QAAhQsXxu7duzF69GhUrFgR9vb26Nu3r5xYBd5P4uXr6wtPT0+8ffsWoaGhKdp3s2bNsGvXLkyZMgWzZs2CmZkZSpcujX79+gEATExMsH37dvTt2xfVqlWDq6srfvzxRzRv3jzZbfv4+ODt27eoVq0aFAoFhg0bhgEDBsjLg4ODMW3aNIwcORKPHj1CgQIFUKNGDbRu3RpA0s914cKF5UnU+vTpAx8fH4SEhODdu3fYsWMH9u7dm7InP40kkZJhFZnE1dUV9+/f12sfPHgwFi1alOz6UVFRsLW1RWRkJGxsbDIjRKJ0e/bqNeJ+rAYAuFttChq2yPwv3kRElLO9e/cOoaGhKF68OGCKbJG0lSQJYWFh8uy47dq1Q4cOHeDj46PTb9WqVdi4caPBxK3249KuX8ZzupQzxnPlOu63LNmPRtjMVlm6v5wiK/8f+H9AlDsl9jlMyRs9ejSioqKwbNkyY4dC2cCSJUuwfft27N+/P9E+Sb3eUno+Z9SRtn/88YdOXYhr166hSZMm6NyZSS3KPYT25QLG+42EiIhyKKVCic1tNmfJflLLUBkEX19fDBw4EC9fvkT+/PkzIjQiIiIio/rmm2+wePFiqNVquVQAfbrMzMxSNFlZehk1afvxDGszZ85EyZIlUb9+fSNFRJTx1EKrPILgRGRERJQ6kiQlW7YgqwQHB2PSpEkICwvD8ePHERgYiIiICLx580au47Zjxw7kz58f9vb2Ro6WiIiIKGPY2dnh66+/NnYYlE1oyjpktmxT0zYuLg5r1qyBv79/opNXxMbGIjY2Vr4fFRWVVeERpZ3W6NqUFukmIiLKjlQqFby8vBATE4Mff/xRLnXVuXNnvH37FiYmJnBwcMCuXbs4GRkRERERUTpkm6Ttjh07EBERgd69eyfaZ8aMGZg8eXLWBUWUAbQnH5M40paIiHIozTQIU6dO1Wl3cXHBuXPnjBESEREREVGulW0KcQQFBaFFixbypXWGjB8/HpGRkfLt4cOHWRghUdoI9YeRtiyPQEREREREREREyckWI23v37+PgwcPYtu2bUn2UyqVUCpTP0kGkTHpJGqZtCUiIiIiIiIiomRki5G2wcHBKFiwIFq1amXsUIgynHZ5BKFV35aIiIiyr2PHjqFNmzZwdnaGJEnYsWNHkv179+4NSZL0bmXLlpX7TJo0SW956dKlM/mREBEREVFOZPSkrVqtRnBwMHx9fWFqmi0G/hJlKI60JSIiynliYmJQsWJFLFq0KEX9f/jhBzx58kS+PXz4EPb29ujcubNOv7Jly+r0O3HiRGaET0REREQ5nNGzpAcPHsSDBw/w5ZdfGjsUokyhFuLDryNqJm2JiIhyghYtWqBFixYp7m9rawtbW1v5/o4dO/Dq1Sv06dNHp5+pqSkcHR0zLE4iIiIiyp2MnrRt2rQpLxmn3I3lEYiIiD45QUFB8Pb2houLi077nTt34OzsDAsLC9SsWRMzZsxAsWLFEt1ObGwsYmNj5ftRUVGZFjMREX2ayq8qn6X7u+p7NUv3R5RTGb08AlFup13TFkKVeEciIiLKFR4/fow9e/agX79+Ou3Vq1dHSEgI9u7diyVLliA0NBR169bF69evE93WjBkz5FG8tra2KFq0aGaHT0RElC2dPn0aCoXC4HxIR44cgSRJiIiI0Fvm6uqKwMBAnbbDhw+jZcuWyJ8/P6ysrODp6YmRI0fi0aNHmRQ9UeoxaUuU2bRG1wrWtCUiolxGrVbD398fnp6eqFChAho2bIi7d+8aOyyjWrVqFezs7NCuXTud9hYtWqBz586oUKECmjVrht27dyMiIgKbNm1KdFvjx49HZGSkfHv48GEmR09ERJQ9BQUF4auvvsKxY8fw+PHjNG9n2bJl8Pb2hqOjI7Zu3Yrr169j6dKliIyMREBAQJLrHjlyxGD7sWPHoFJl7SCtuLg4vTaVSgU1yzLmGkzaEmUynZIITNoSEVEqCSGgfvcu029pLeHzyy+/4OTJk7h8+TKuXLmCxo0b4+uvv87gZyHnEEJg5cqV6NWrF8zNzZPsa2dnBw8PjyST3EqlEjY2Njo3IiKiT010dDQ2btyIQYMGoVWrVggJCUnTdsLDwzF06FAMHToUK1euRIMGDeDq6op69ephxYoVmDBhQqLr3r9/H23atNEbtbtlyxY0bdoUZ8+eTXLfERER+N///odChQrBwsIC5cqVw65du+TlW7duRdmyZaFUKuHq6qqXQHZ1dcXUqVPh4+MDGxsbDBgwACEhIbCzs8Mvv/wCT09PKJVKPHjwIPVPDGVLRq9pS5TbqXXKI7CmLRERpY6IjUVou/aZvp/iO7ZDsrBIdPncuXNx+/ZtLF++HMD7Lx5ubm4ICAhAbGws3r17B1NTU0RFRaFIkSKZHm92dfToUdy9exd9+/ZNtm90dDTu3buHXr16ZUFkRNlXVtbTZC1Nopxp06ZNKF26NEqVKoWePXti+PDhGD9+PCRJStV2Nm/ejLi4OIwZM8bgcjs7u0TXdXFxwa+//opWrVpBqVRi0KBB+OWXX9CzZ08EBQWhVq1aia6rVqvRokULvH79GmvWrEHJkiVx/fp1KBQKAMCFCxfQpUsXTJo0CV27dsWpU6cwePBg5M+fH71795a3M3fuXEyYMAETJ04EABw/fhxv3rzBrFmzsGLFCuTPnx8FCxZM1XNC2ReTtkSZTLemrRrv4lUwkSSYm3KgOxER5Rz9+vWDh4cHZs+eDTs7OwQHB6Nt27bo1asXLl68CEdHR+TNmxeFCxfG0aNHjR1uukVHR+uMgA0NDcWlS5dgb2+PYsWKYfz48Xj06BFWr16ts15QUBCqV6+OcuXK6W1z1KhRaNOmDVxcXPD48WNMnDgRCoUC3bt3z/THQ0RElJMFBQWhZ8+eAIDmzZsjMjISR48eRYMGDVK1nTt37sDGxgZOTk5piqNBgwbYvn072rZtixs3buCnn37CwoUL0aNHjyTXO3jwIM6dO4cbN27Aw8MDAFCiRAl5+bx589C4cWN89913AAAPDw9cv34dc+bM0UnaNmrUCCNHjpTvHz9+HPHx8Vi8eDEqVqyYpsdE2ReTtkSZTaskgkqths/Kc8ijNEWQb9VU/ypIRESfHkmpRPEd27NkP0mxs7NDp06dsHLlSowYMQJLlizBxo0bcf78eVy7dg2PHj2CjY0Nxo0bh4EDB2LNmjWZHnNmOn/+PBo2bCjf9/f3BwD4+voiJCQET5480bv8MDIyElu3bsUPP/xgcJvh4eHo3r07Xr58CQcHB9SpUwdnzpyBg4ND5j0QShJHeBIRZX+3bt3CuXPnsH37+/MhU1NTdO3aFUFBQalO2goh0v09vGnTphg/fjwmTpwIHx8fvYlHDbl06RKKFCkiJ2w/duPGDbRt21anrXbt2ggMDIRKpZJH5FatWlVvXXNzc1SoUCENj4SyOyZtiTKbVkmEd7Hx+Od1LP55HQshAOZsiYgoOZIkJVm2ICsNHToUn3/+OcqUKQMHBwd4eXnBz88PjRo1ki8n9PX1RdOmTY0baAZo0KBBknV+DdXSs7W1xZs3bxJdZ8OGDRkRGhER0SclKCgICQkJcHZ2ltuEEFAqlVi4cCFsbW3lmu+RkZF6JQ4iIiJga2sL4P0I1sjISDx58iTNo21PnDiB2bNno3fv3li/fj1atWqFLl26JLmOpaVlmvb1MWtra4Pb5oCw3InXZxNlMrXWSFuh9bea9W2JiCiHKV26NEqUKIEBAwbAz88PwPtL+37//Xd5BuNdu3YZLA1ARERElFoJCQlYvXo1AgICcOnSJfl2+fJlODs7Y/369QAAd3d3mJiY4MKFCzrr//3334iMjJRHuHbq1Anm5uaYPXu2wf1FREQkGc/Zs2fRqlUrTJo0CcHBwQgJCYGPjw927NiR5HoVKlRAeHg4bt++bXB5mTJlcPLkSZ22kydPwsPDQx5lS58ejrQlymRCrTb4t5o5WyIiyoH69+8PPz8/dOrUCQAwZMgQ3LhxAxUrVoSZmRkcHR2xdOlSI0dJREREucGuXbvw6tUr9O3bVx4tq9GxY0cEBQVh4MCByJs3L/r164eRI0fC1NQU5cuXx8OHDzF27FjUqFFDniSsaNGimD9/Pvz8/BAVFQUfHx+4uroiPDwcq1evRp48eRAQEGAwlgcPHqB58+YYM2YMRo0aBQDo1q0b4uLi0L17dxw5cgTVq1c3uG79+vVRr149dOzYEfPmzYObmxtu3rwJSZLQvHlzjBw5Ep999hmmTp2Krl274vTp01i4cCEWL16cgc8m5TRM2hJlMklndK1K629mbYmIKOc5fPgwBg8eDDMzMwCAUqnETz/9ZOSoiIiIKK2yc83toKAgeHt76yVsgfdJ29mzZ+PKlSuoUKECfvjhB8ycORNjx47F/fv34ejoiCZNmmD69Ok65QMGDx4MDw8PzJ07F+3bt8fbt2/h6uqK1q1byzXsDSlWrBh+/vlntG7dWqfdx8cHBQsWhJeXV5KPZevWrRg1ahS6d++OmJgYuLm5YebMmQCAypUrY9OmTZgwYQKmTp0KJycnTJkyRWcSMvr0MGlLlMm0yyNAzfIIRESUMz1+/BiNGjWCvb099u3bZ+xwiIiI6BPw66+/JrqsWrVqOvXnLSwsMGnSJEyaNCnZ7Xp7e8Pb2zvV8XycsNVo3rx5suva29tj5cqViS7v2LEjOnbsmOjysLAwvbbevXszsZuLMWlLlNnUH0bX6ta0NUYwREREaePs7IybN28aOwwiIiIiok8CJyIjymRCKzur/SsgR9oSEREREREREZEhTNoSZTqt5KxQG/qTiIiIiIiIiIhIxqQtUSYTqoQPf2vVtFVxpC0RERERERERERnApC1RJhPQLo+gNdKWSVsiIiIiIiLKYvwuSpT51Or0X17NiciIMpn26FpwpC0REREREREZgZmZGSRJwosXL+Dg4ABJkowdElGuI4RAXFwcXrx4ARMTE5ibm6d5W0zaEmU2ndG1aox6twAxkhWEqGHEoIiIiDLO1atX8dVXX+HZs2cAgOnTp6NDhw5GjoqIiIi0KRQKFClSBOHh4QgLCzN2OES5mpWVFYoVKwYTk7QXOWDSliiTXLj/CnuvPUEjq3jk+68tjyoC5VXXAQBqtcp4wRERUY4hhIAqPvNnr1SYmaRpxM2bN2/Qtm1brF69GnXq1IFKpcK///6bCRESERFReuXJkwfu7u6Ij483dihEuZZCoYCpqWm6R7MzaUuUSbZcCMfZv1/CyTkSRf5rMxEfErUqVeZ/ASciopxPFa/Gxul/ZPp+un7zGUzNFYkunzt3Lm7fvo3ly5cDACIiIuDm5oYxY8agRo0aqFOnDoD3J6kODg6ZHi8RERGljUKhgEKR+Gc+EWUPnIiMKJMk/JeUTUj48AumpJW0FRxpS0REOUi/fv2wY8cOREREAACCg4PRtm1bPH36FEqlEq1bt0alSpXg4+ODFy9eGDdYIiIiIqIcjiNtiTKJ+r95xrQnIjNRJ3xYzqQtERGlgMLMBF2/+SxL9pMUOzs7dOrUCStXrsSIESOwZMkSbNy4EcHBwTh48CDOnDkDZ2dnfP311xg0aBC2bNmS6TETEREREeVWRh9p++jRI/Ts2RP58+eHpaUlypcvj/Pnzxs7LKJ0E+J91lalyd4CMBEfkrbayVwiIqLESJIEU3NFpt9SUnNr6NChWLp0Kfbu3QsHBwd4eXmhWLFiaNiwIQoXLgxJktCzZ0+cOXMmC54ZIiIiIqLcy6hJ21evXqF27dowMzPDnj17cP36dQQEBCBfvnzJr0yUzWlStdojarWTtmombYmIKIcpXbo0SpQogQEDBsDPzw8A0KVLF/zxxx+IiooCAOzevRsVK1Y0ZphERERERDmeUcsjzJo1C0WLFkVwcLDcVrx4cSNGRJRxNCNsdcojaNe0FSyPQEREOU///v3h5+eHTp06AQCKFSuGr7/+GrVq1YKJiQkKFy4sT1ZGRERERERpY9SRtr/88guqVq2Kzp07o2DBgvDy8sJPP/2UaP/Y2FhERUXp3IiyK/V/5RG0k7Mm0J6IjCNtiYgo5zl8+DAGDx4MMzMzua1Xr164du0arly5gj179qBo0aJGjJCIiIiIKOczatL277//xpIlS+Du7o59+/Zh0KBBGDp0KFatWmWw/4wZM2Brayvf+IWAsjO5PILqQ3LWVCuBy4nIiIgoJ3n8+DFKly6NP//8E8OHDzd2OEREREREuZpRyyOo1WpUrVoV33//PQDAy8sL165dw9KlS+Hr66vXf/z48fD395fvR0VFMXFL2ZZmIjK1+JC0VUA7acuRtkRElHM4Ozvj5s2bxg6DiIiIiOiTYNSRtk5OTvD09NRpK1OmDB48eGCwv1KphI2Njc6NKLvS5GS1yyAoWB6BiIiIiIiIiIiSYdSkbe3atXHr1i2dttu3b8PFxcVIERFlHPFfgQTtEbWmOknbhCyPiYiIiIiIiIiIsj+jJm1HjBiBM2fO4Pvvv8fdu3exbt06LF++HEOGDDFmWEQZQv2hqK3cpsCHRC0H2hIREWVfx44dQ5s2beDs7AxJkrBjx44k+x85cgSSJOndnj59qtNv0aJFcHV1hYWFBapXr45z585l4qMgIiIiopzKqEnbzz77DNu3b8f69etRrlw5TJ06FYGBgejRo4cxwyLKEAZr2mr9zZG2RERE2VdMTAwqVqyIRYsWpWq9W7du4cmTJ/KtYMGC8rKNGzfC398fEydOxJ9//omKFSuiWbNmeP78eUaHT0REREQ5nFEnIgOA1q1bo3Xr1sYOgyjD5Y97jNLxZ2FiZiG36da0VRlajYiIKFuSJAmvXr2CnZ1don2Cg4Px5ZdfYvv27WjXrl2WxZYZWrRogRYtWqR6vYIFCyb6HM2bNw/9+/dHnz59AABLly7Fb7/9hpUrV2LcuHEG14mNjUVsbKx8PyoqKtUxEREREVHOY9SRtkS5WZOoregatx1l467IbTpJWyEMrUZERKRDCIH4uNhMv6X3cyksLAw//fQTatSokUGPPGeqVKkSnJyc0KRJE5w8eVJuj4uLw4ULF+Dt7S23mZiYwNvbG6dPn050ezNmzICtra18K1q0aKbGT0RERETZg9FH2hLlVubqdwAAS3WM3KY9EZmaI22JiCgFEuLj8POYoZm+n16zf4SZuTLJPnPnzsVvv/2GmJgYTJw4US5ppVar0a9fPyxYsAAjR47M9FizIycnJyxduhRVq1ZFbGwsVqxYgQYNGuDs2bOoXLky/vnnH6hUKhQqVEhnvUKFCuHmzZuJbnf8+PHw9/eX70dFRTFxS0RERPQJYNKWKJNI4n1S1kRoT0TG8ghERJRzSZKEixcv4u+//0bVqlVRu3ZtuLq6Yt68eahduzaqVKli7BCNplSpUihVqpR8v1atWrh37x7mz5+Pn3/+Oc3bVSqVUCqTTqYTERERUe7DpC1RJpHw/jJT7UStQiuBCzXLIxARUfJMzczRa/aPWbKf5PTr1w8AUKJECdSrVw/Hjh1DdHQ0tm7dimPHjmV2iDlOtWrVcOLECQBAgQIFoFAo8OzZM50+z549g6OjozHCIyIiIqJsjElbokwiCTUAwAwJH9rwIVGrFhxpS0REyZMkKdmyBcYiSRKOHz+OsLAwuLu7AwCePn2KAQMG4MmTJxg0aJCRIzSuS5cuwcnJCQBgbm6OKlWq4NChQ/IkbWq1GocOHYKfn58RoyQiIiKi7IhJW6JMoknaao+01SbU6qwMh4iIKN2Cg4MxadIkhIWF4fjx4wgMDISrq6tOcrZBgwYYPny4nJjMqaKjo3H37l35fmhoKC5dugR7e3sUK1YM48ePx6NHj7B69WoAQGBgIIoXL46yZcvi3bt3WLFiBX7//Xfs379f3oa/vz98fX1RtWpVVKtWDYGBgYiJiUGfPn2y/PERERERUfbGpC1RpvmvPEIiI2qZtCUiopxGpVLBy8sLMTEx+PHHH+Hq6mrskDLN+fPn0bBhQ/m+ZjIwX19fhISE4MmTJ3jw4IG8PC4uDiNHjsSjR49gZWWFChUq4ODBgzrb6Nq1K168eIEJEybg6dOnqFSpEvbu3as3ORkREREREZO2RJnEJNmRtgkG24mIiLIjId7/GDl16tQk+x05ciQLosl8DRo0kB+zISEhITr3x4wZgzFjxiS7XT8/P5ZDICIiIqJkmRg7AKLcK5mkLechIyIiIiIiIiIiA5i0Jcokmpq2phxpS0REREREREREqcCkLVEmkTQ1bTkRGRERERERERERpQKTtkSZRDPSNrGJyCCYtCUioqQlVVM1J8ptj4eIiIiIKLNwIjKiTGLyX01bzYjbj6k50paIiBJhZmYGSZLw4sULODg4QJIkY4eUbkIIvHjxApIkwczMzNjhEBERERFla0zaEmUSCUknZUViI3CJiOiTp1AoUKRIEYSHhyMsLMzY4WQYSZJQpEgRKBQKY4dCRERERJStMWlLlEmk5C4BVfMSUSIiSlyePHng7u6O+Ph4Y4eSYczMzJiwJSIiIiJKASZtiTIJR9oSEVF6KRQKJjmJiIiIiD5BnIiMKJMkN9JWcCIyIiIiIiIiIiIygElbokyS7EhbTkRGREREREREREQGMGlLlElMkknaQs3yCEREREREREREpI9JW6LMkmx5BE5ERkRERERERERE+pi0JcoEQgiOtCUiIiIiIiIiojQxatJ20qRJkCRJ51a6dGljhkSUIYRIQXkEwaQtERERERERERHpMzV2AGXLlsXBgwfl+6amRg+JKN0EAAksj0BERERERERERKln9AypqakpHB0djR0GUYZSp6A8glAnMxKXiIiIiIiIiIg+SUavaXvnzh04OzujRIkS6NGjBx48eJBo39jYWERFRenciLIjtRCQkuskmLQlIiIiIiIiIiJ9Rk3aVq9eHSEhIdi7dy+WLFmC0NBQ1K1bF69fvzbYf8aMGbC1tZVvRYsWzeKIiVImJTVtBZO2RERERERERERkgFGTti1atEDnzp1RoUIFNGvWDLt370ZERAQ2bdpksP/48eMRGRkp3x4+fJjFEROlTErKI0DNiciIiIiIiIiIiEif0WvaarOzs4OHhwfu3r1rcLlSqYRSqcziqIhSTy0AKZmJxjgRGRERERERERERGWL0mrbaoqOjce/ePTg5ORk7FKJ0EWp18iNtBUfaEhERERERERGRvjQlbX19fXHs2LF073zUqFE4evQowsLCcOrUKbRv3x4KhQLdu3dP97aJjEmdklG0TNoSEREREREREZEBaUraRkZGwtvbG+7u7vj+++/x6NGjNO08PDwc3bt3R6lSpdClSxfkz58fZ86cgYODQ5q2R5RdiBTUq+U8ZERERNnXsWPH0KZNGzg7O0OSJOzYsSPJ/tu2bUOTJk3g4OAAGxsb1KxZE/v27dPpM2nSJEiSpHMrXbp0Jj4KIiIiIsqp0pS03bFjBx49eoRBgwZh48aNcHV1RYsWLbBlyxbEx8eneDsbNmzA48ePERsbi/DwcGzYsAElS5ZMS0hE2YpanYKMLEfaEhERZVsxMTGoWLEiFi1alKL+x44dQ5MmTbB7925cuHABDRs2RJs2bXDx4kWdfmXLlsWTJ0/k24kTJzIjfCIiIiLK4dI8EZmDgwP8/f3h7++PP//8E8HBwejVqxfy5MmDnj17YvDgwXB3d8/IWIlyDKFKSEmnzA+EiIiI0qRFixZo0aJFivsHBgbq3P/++++xc+dO/Prrr/Dy8pLbTU1N4ejomFFhEhEREVEule6JyJ48eYIDBw7gwIEDUCgUaNmyJa5evQpPT0/Mnz8/I2IkynFUKah9kJKyt0RERJQzqdVqvH79Gvb29jrtd+7cgbOzM0qUKIEePXrgwYMHSW4nNjYWUVFROjciIiIiyv3SlLSNj4/H1q1b0bp1a7i4uGDz5s0YPnw4Hj9+jFWrVuHgwYPYtGkTpkyZktHxEuUMKSiPIHGkLRERUa41d+5cREdHo0uXLnJb9erVERISgr1792LJkiUIDQ1F3bp18fr160S3M2PGDNja2sq3okWLZkX4RERERGRkaSqP4OTkBLVaje7du+PcuXOoVKmSXp+GDRvCzs4uneER5UxCnfwwWsGZyIiIiHKldevWYfLkydi5cycKFiwot2uXW6hQoQKqV68OFxcXbNq0CX379jW4rfHjx8Pf31++HxUVxcQtERER0ScgTUnb+fPno3PnzrCwsEi0j52dHUJDQ9McGFFOplanpKYtk7ZERES5zYYNG9CvXz9s3rwZ3t7eSfa1s7ODh4cH7t69m2gfpVIJpVKZ0WESERERUTaXpvIIhw8fRnx8vF57TEwMvvzyy3QHRZTTiZQkbVNQQoGIiIhyjvXr16NPnz5Yv349WrVqlWz/6Oho3Lt3D05OTlkQHRERERHlJGlK2q5atQpv377Va3/79i1Wr16d7qCIcrqUlEfgSFsiIqLsKzo6GpcuXcKlS5cAAKGhobh06ZI8cdj48ePh4+Mj91+3bh18fHwQEBCA6tWr4+nTp3j69CkiIyPlPqNGjcLRo0cRFhaGU6dOoX379lAoFOjevXuWPjYiIiIiyv5SlbSNiopCZGQkhBB4/fq1ziy2r169wu7du3XqdhF9qkRKRtEyaUtERJThEhIScPDgQSxbtkye4Ovx48eIjo5O1XbOnz8PLy8veHl5AQD8/f3h5eWFCRMmAACePHkiJ3ABYPny5UhISMCQIUPg5OQk34YNGyb3CQ8PR/fu3VGqVCl06dIF+fPnx5kzZ+Dg4JDeh01EREREuUyqatra2dlBkiRIkgQPDw+95ZIkYfLkyRkWHFFOJdSqZPtIIvk+RERElHL3799H8+bN8eDBA8TGxqJJkybImzcvZs2ahdjYWCxdujTF22rQoAGESPzKmZCQEJ37R44cSXabGzZsSPH+iYiIiOjTlqqk7eHDhyGEQKNGjbB161bY29vLy8zNzeHi4gJnZ+cMD5IopxFQQ0qmjzqJL4JERESUesOGDUPVqlVx+fJl5M+fX25v3749+vfvb8TIiIiIiIhSJ1VJ2/r16wN4X9OrWLFikKTk0lJEnya1Sg1FMn0klkcgIiLKUMePH8epU6dgbm6u0+7q6opHjx4ZKSoiIiIiotRLcdL2ypUrKFeuHExMTBAZGYmrV68m2rdChQoZEhxRTpWS8gisaUtERJSx1Go1VCr9z+Dw8HDkzZvXCBEREREREaVNipO2lSpVwtOnT1GwYEFUqlQJkiQZrPMlSZLBk2WiT0tKJiJjeQQiIqKM1LRpUwQGBmL58uUA3p+XRkdHY+LEiWjZsqWRoyMiIiIiSrkUJ21DQ0PlmW1DQ0MzLSCi3ECdgh8uOBEZERFRxgoICECzZs3g6emJd+/e4YsvvsCdO3dQoEABrF+/3tjhEVEu4DrutyzbV9jMVlm2LyIiyn5SnLR1cXEx+DcR6RNq3ZG2J6wkhJlL+CJCDRNNH460JSIiylBFihTB5cuXsWHDBly5cgXR0dHo27cvevToAUtLS2OHR0RERESUYqmaiExj1apVKFCgAFq1ev/L35gxY7B8+XJ4enpi/fr1TOrSJ+/jmrY7bUwQoQAaRgOFE963cSIyIiKijGdqaoqePXsaOwwiIiIionRJU9L2+++/x5IlSwAAp0+fxsKFCxEYGIhdu3ZhxIgR2LZtW4YGSZTjfJSQjZfe/5sgabcyaUtERJSRVq9eneRyHx+fLIqEiIiIiCh90pS0ffjwIdzc3AAAO3bsQKdOnTBgwADUrl0bDRo0yMj4iHIk8VHSVv3Rv+87MWlLRESUkYYNG6ZzPz4+Hm/evIG5uTmsrKyYtCUiIiKiHMMk+S768uTJg5cvXwIA9u/fjyZNmgAALCws8Pbt24yLjiiH+rg8guq/EbZqSadT1gVERET0CXj16pXOLTo6Grdu3UKdOnU4ERkRERER5ShpGmnbpEkT9OvXD15eXrh9+zZatmwJAPjrr7/g6uqakfER5UjqjxKyqo/+BQAToZvYJSIioozn7u6OmTNnomfPnrh586axwyEiIiIiSpE0jbRdtGgRatasiRcvXmDr1q3Inz8/AODChQvo3r17hgZIlCNpjbQV0Bppq9VFCJGlIREREX2qTE1N8fjxY2OHQURERESUYmkaaWtnZ4eFCxfqtU+ePDndARHlBkL9IT2rnajVLo8gsTwCERFRhvrll1907gsh8OTJEyxcuBC1a9c2UlRERERERKmXpqQtAERERODcuXN4/vw51FoJKkmS0KtXr1Rvb+bMmRg/fjyGDRuGwMDAtIZFlC1oj6LVSdpq/S2BSVsiIqKM1K5dO537kiTBwcEBjRo1QkBAgHGCIiIiIiJKgzQlbX/99Vf06NED0dHRsLGxgSR9GD6YlqTtH3/8gWXLlqFChQppCYco2xHqBPlvldboWrUk4X3BBJZHICIiymjaAwmIiIiIiHKyNNW0HTlyJL788ktER0cjIiJCZ5bef//9N1Xbio6ORo8ePfDTTz8hX758SfaNjY1FVFSUzo0oO0rRSFuWRyAiIiIiIiIiIgPSNNL20aNHGDp0KKysrNIdwJAhQ9CqVSt4e3tj2rRpSfadMWMG6+ZSjiBpTUSWoD3SVrsTR9oSERGlm7+/f4r7zps3LxMjISIiIiLKOGlK2jZr1gznz59HiRIl0rXzDRs24M8//8Qff/yRov7jx4/XOTGPiopC0aJF0xUDUWbQnohMpdWuPRGZic4SIiIiSouLFy+mqJ92OS8iIiIiouwuTUnbVq1aYfTo0bh+/TrKly8PMzMzneWff/55stt4+PAhhg0bhgMHDsDCwiJF+1UqlVAqlWkJmShLqbVKH2gnanXStBxpS0RElG6HDx82dghERERERBkuTUnb/v37AwCmTJmit0ySJKhUyY8gvHDhAp4/f47KlSvLbSqVCseOHcPChQsRGxsLhUKRlvCIjE+7PIJWs06aljVtiYiIiIiIiIjIgDQlbTNiZt7GjRvj6tWrOm19+vRB6dKlMXbsWCZsKWfTnohMe6St1t8SmLQlIiLKaOfPn8emTZvw4MEDxMXF6Szbtm2bkaIiIiIiIkodk/Ru4N27d2laL2/evChXrpzOzdraGvnz50e5cuXSGxaRUQnxYaSt9rhz7ZG2JhxpS0RElKE2bNiAWrVq4caNG9i+fTvi4+Px119/4ffff4etra2xwyMiIiIiSrE0JW1VKhWmTp2KwoULI0+ePPj7778BAN999x2CgoIyNECiHEl7IrJEatoKCJy6+w+eRL7NuriIiIhyse+//x7z58/Hr7/+CnNzc/zwww+4efMmunTpgmLFiqVqW8eOHUObNm3g7OwMSZKwY8eOZNc5cuQIKleuDKVSCTc3N4SEhOj1WbRoEVxdXWFhYYHq1avj3LlzqYqLiIiIiD4NaUraTp8+HSEhIZg9ezbMzc3l9nLlymHFihVpDubIkSMIDAxM8/pE2YX2SFvt8bQ6pRISEvDtjmuYvfdW1gVGRESUi927dw+tWrUCAJibmyMmJgaSJGHEiBFYvnx5qrYVExODihUrYtGiRSnqHxoailatWqFhw4a4dOkShg8fjn79+mHfvn1yn40bN8Lf3x8TJ07En3/+iYoVK6JZs2Z4/vx5qmIjIiIiotwvTTVtV69ejeXLl6Nx48YYOHCg3F6xYkXcvHkzw4IjyqmE+kMhBO2RtroFEd73iXijW2+PiIiI0iZfvnx4/fo1AKBw4cK4du0aypcvj4iICLx58yZV22rRogVatGiR4v5Lly5F8eLFERAQAAAoU6YMTpw4gfnz56NZs2YAgHnz5qF///7o06ePvM5vv/2GlStXYty4camKj4goo5VfVT7L9nXV92rynYiIPnFpGmn76NEjuLm56bWr1WrEx8enOyiiHE8kyH9ql0TQHmlr8l/SNkGtXemWiIiIUuvatWsAgHr16uHAgQMAgM6dO2PYsGHo378/unfvjsaNG2dqDKdPn4a3t7dOW7NmzXD69GkAQFxcHC5cuKDTx8TEBN7e3nIfQ2JjYxEVFaVzIyIiIqLcL01JW09PTxw/flyvfcuWLfDy8kp3UEQ5nRDJj7TVTESmFkzaEhERpUeFChVQvXp1lC9fHp07dwYAfPPNN/D398ezZ8/QsWPHTJ934enTpyhUqJBOW6FChRAVFYW3b9/in3/+gUqlMtjn6dOniW53xowZsLW1lW9FixbNlPiJiIiIKHtJU3mECRMmwNfXF48ePYJarca2bdtw69YtrF69Grt27croGIlyHvWH8bU6I221/pb+G2mr4khbIiKidDl69CiCg4MxY8YMTJ8+HR07dkS/fv1yRcmB8ePHw9/fX74fFRXFxC0RERHRJyBNI23btm2LX3/9FQcPHoS1tTUmTJiAGzdu4Ndff0WTJk0yOkaiHEeID+lZlfRhqK12eQRzxGFAbAgqvD2blaERERHlOnXr1sXKlSvx5MkTLFiwAGFhYahfvz48PDwwa9asJEeyZhRHR0c8e/ZMp+3Zs2ewsbGBpaUlChQoAIVCYbCPo6NjottVKpWwsbHRuRERERFR7pempC3w/uT4wIEDeP78Od68eYMTJ06gadOmGRkbUY4laSVttUfXqgEcsZZwxlKCs/opaiechXfMniyPj4iIKDeytrZGnz59cPToUdy+fRudO3fGokWLUKxYMXz++eeZuu+aNWvi0KFDOm0HDhxAzZo1AQDm5uaoUqWKTh+1Wo1Dhw7JfYiIiIiINNKUtC1RogRevnyp1x4REYESJUqkOyiinE53pK3mLwkxJsA6OxOsymciJ3NNtCYtIyIioozh5uaGr7/+Gt9++y3y5s2L3377LVXrR0dH49KlS7h06RIAIDQ0FJcuXcKDBw8AvC9b4OPjI/cfOHAg/v77b4wZMwY3b97E4sWLsWnTJowYMULu4+/vj59++gmrVq3CjRs3MGjQIMTExKBPnz7pf8BERERElKukqaZtWFgYVCqVXntsbCwePXqU7qCIcjqhNjzS9o3J+0q2CRKgqWRrAv3XEhEREaXdsWPHsHLlSmzduhUmJibo0qUL+vbtm6ptnD9/Hg0bNpTva+rK+vr6IiQkBE+ePJETuABQvHhx/PbbbxgxYgR++OEHFClSBCtWrECzZs3kPl27dsWLFy8wYcIEPH36FJUqVcLevXv1JicjIiIiIkpV0vaXX36R/963bx9sbW3l+yqVCocOHYKrq2uGBUeUU2mXR0jQqmMbp/W3SgIUAjARTNoSERGl1+PHjxESEoKQkBDcvXsXtWrVwo8//oguXbrA2to61dtr0KABhEh8stCQkBCD61y8eDHJ7fr5+cHPzy/V8RARERHRpyVVSdt27doBACRJgq+vr84yMzMzuLq6IiAgIMOCI8qphFYiVjslq5201aR1tRO8RERElHotWrTAwYMHUaBAAfj4+ODLL79EqVKljB0WEREREVGapSppq/7vku/ixYvjjz/+QIECBTIlKKIcT3siMq1EbayBpC3LIxAREaWPmZkZtmzZgtatW0OhUBg7HCIiIiKidEtTTdvQ0NCMjoMod1F/uJxSOyUb/1F5BAjARKihVguYmGgtJCIiohTTLuFFRERERJQbpClpCwCHDh3CoUOH8Pz5c3kErsbKlSvTHRhRTqZTHiGRkbaaHgqooBYCJmDSloiIiIiIiIiI0pi0nTx5MqZMmYKqVavCyckJksRkE5EOrYlL5J80JAMjbQEooEaCWsCUV3MSERERERERERHSmLRdunQpQkJC0KtXr4yOhyhXkIQKJ6wkHMgjoUQcUOW6Gs4vJByv9aHPh5q2aqiTmJ2aiIiIiIiIiIg+LSZpWSkuLg61atVKviPRp0qocd5SwmMzCTeUQK3LAuXuqpE38kMXtTzSVgWVmklbIiIiIiIiIiJ6L01J2379+mHdunUZHQtRriHUarkUQrwkQaHStH/oo6lpayLUTNoSEREREREREZEsTeUR3r17h+XLl+PgwYOoUKECzMzMdJbPmzcvQ4IjyrGEWi5/ECsBJpqcrFZuVrNcgoBKpQIRERERERERERGQxqTtlStXUKlSJQDAtWvXMjIeotxBqOWJxuIlwOS/DK2J9khb7UnJEhKyLjYiIiIiIiIiIsrW0pS0PXz4cEbHQZS7CJVc/kAtAdJ/I2wVWgNqtfK3UKnjsyoyIiIiIiIiIiLK5lKVtO3QoUOyfSRJwtatW9McEFGuIAQStEbSakbYKrQytWqt5eoElkcgIiIiIiIiIqL3UjURma2tbbI3GxubFG9vyZIlqFChAmxsbGBjY4OaNWtiz549qX4QRNmOUH9Iygoh17RVGJiIDABUKpZHICIiIiIiIiKi91I10jY4ODhDd16kSBHMnDkT7u7uEEJg1apVaNu2LS5evIiyZctm6L6IspRQy0lZSWvyMZPERtqqWB6BiIiIiIgoJVzH/ZZl+wqb2SrL9kVEpC1NNW0zSps2bXTuT58+HUuWLMGZM2eYtKWcTaihkt5nZbUTtYmNtGV5BCIiIiIiIiIi0jBq0labSqXC5s2bERMTg5o1axrsExsbi9jYWPl+VFRUVoVHlCqSUEFT8MBEa6St9kRk75O67xeqOREZERERERERERH9J1U1bTPD1atXkSdPHiiVSgwcOBDbt2+Hp6enwb4zZszQqZ9btGjRLI6WKIUEoPqv/IH2SFsT9YcMrlYzVBxpS0RERERERERE/zF60rZUqVK4dOkSzp49i0GDBsHX1xfXr1832Hf8+PGIjIyUbw8fPsziaIlSSKjk8gc6I20TK4+g5kRkRERERERERET0ntHLI5ibm8PNzQ0AUKVKFfzxxx/44YcfsGzZMr2+SqUSSqUyq0MkSjVJqKGSAAkfj7T9bzk+noiMSVsiIiIiIiIiInrP6CNtP6ZWq3Xq1hLlSEKd7Ehb7fIITNoSEREREREREZGGUUfajh8/Hi1atECxYsXw+vVrrFu3DkeOHMG+ffuMGRZRugmhgtrASFvdici0+jNpS0RERERERERE/zFq0vb58+fw8fHBkydPYGtriwoVKmDfvn1o0qSJMcMiSjeVVsVanfIIWqNudUfaciIyIiIiIiIiIiJ6z6jlEYKCghAWFobY2Fg8f/4cBw8eZMKWcgW1+JCS1SmPoAKs3gooY4XOSFtOREZERJT9LFq0CK6urrCwsED16tVx7ty5RPs2aNAAkiTp3Vq1aiX36d27t97y5s2bZ8VDISIiIqIcxugTkRHlRmrxYeSspJW0NY8HBmxVI84MiGj6oZ3lEYiIiLKXjRs3wt/fH0uXLkX16tURGBiIZs2a4datWyhYsKBe/23btiEuLk6+//LlS1SsWBGdO3fW6de8eXMEBwfL9znJLhEREREZku0mIiPKDbSTttrlEfK8BSxjAdtoQK1dKoHlEYiIiLKVefPmoX///ujTpw88PT2xdOlSWFlZYeXKlQb729vbw9HRUb4dOHAAVlZWeklbpVKp0y9fvnxZ8XCIiIiIKIdh0pYoE6i1KtZqJ21NtQbUaidthTo+C6IiIiKilIiLi8OFCxfg7e0tt5mYmMDb2xunT59O0TaCgoLQrVs3WFtb67QfOXIEBQsWRKlSpTBo0CC8fPkyye3ExsYiKipK50ZEREREuR+TtkSZQGekrXZ5BK2krVbZWwiOtCUiIso2/vnnH6hUKhQqVEinvVChQnj69Gmy6587dw7Xrl1Dv379dNqbN2+O1atX49ChQ5g1axaOHj2KFi1aQJXEecCMGTNga2sr34oWLZq2B0VEREREOQpr2hJlAlWiI20/ZHCFdnkENZO2REREuUVQUBDKly+PatWq6bR369ZN/rt8+fKoUKECSpYsiSNHjqBx48YGtzV+/Hj4+/vL96Oiopi4JSIiIvoEcKQtUSZQIQUjbbXytELNiciIiIiyiwIFCkChUODZs2c67c+ePYOjo2OS68bExGDDhg3o27dvsvspUaIEChQogLt37ybaR6lUwsbGRudGRERERLkfk7ZEmUAIwyNtzbRzs9o1bVkegYiIKNswNzdHlSpVcOjQIblNrVbj0KFDqFmzZpLrbt68GbGxsejZs2ey+wkPD8fLly/h5OSU7piJiIiIKHdh0pYoE6i0k7ZayVkzrfnGdGracqQtERFRtuLv74+ffvoJq1atwo0bNzBo0CDExMSgT58+AAAfHx+MHz9eb72goCC0a9cO+fPn12mPjo7G6NGjcebMGYSFheHQoUNo27Yt3Nzc0KxZsyx5TERERESUc7CmLVEmUEONyjfUqHFF4I+yktyuM9JWBfkVKFRM2hIREWUnXbt2xYsXLzBhwgQ8ffoUlSpVwt69e+XJyR48eAATE93xD7du3cKJEyewf/9+ve0pFApcuXIFq1atQkREBJydndG0aVNMnToVSqUySx4TEREREeUcTNoSZQIV1PC4D9hGAy5PPrQrtEfXapdHECyPQERElN34+fnBz8/P4LIjR47otZUqVQpC+wNei6WlJfbt25eR4RERERFRLsakLVEmUEMlJ2iV8Yl2+oAjbYmIiIiIiD5p5VeVz9L9XfW9mqX7I6LUYU1bokygFmp5AjLzeMMjbqD+UDZBqDnSloiIiIiIiIiI3mPSligDnQ/7F52XnkJkbDwUqvfJWvNERtpyIjIiIiIiIiIiIjKE5RGIMtCYLVfe/yGpYfLfAFtN0lYtKSAJFdQw+X97dx4XVb3/D/x1zmzsCKgsikKueVU0zLVcrlzFa2Vli9b9amZmpZXyuy1U6nW5X0z7prcySXNpc2n1lpVds8zbjauFWi6pYbiBgKIwCMx6Pr8/BoYZ2VSGOQO8no/H1MznfM7nvM/nLMKbz3wONFAA1wG4HGlLREREREREREQVmLQlagQKhMv0CI7/C0hQoKmq5JKn5fQIRERERERERERUidMjEHlSxTS1QhLOB5HVNj2C+0hbTo9AREREREREREQOTNoSeZBe47ikFFQ9iKxWbnPacqQtERERERERERE5cHoEIg/qjmzcVf4eTvgVuyVtLfoImHXh8C/93VkmueRpJSZtiYiIiIiIiIioAkfaEnlQov1ndFROQ5EAjQIokuMSy213D87GToRVG1JV2WV6BCGYtCUiIiIiIiIiIgcmbYk8yCA55qa1AxUjbSXYoYFNG+wo1wY667qOtAVH2hIRERERERERUQUmbYk8SC855kSwVYy0BRwDaoWkcbyXqmYkkVwfRMaRtkREREREREREVEHVpG1aWhpuvPFGBAcHo23btrj99ttx9OhRNUMiahDnSFsJbnPaViZr3ZK2rg8q40hbIiIiIiIiIiKqoGrS9rvvvsOMGTPw3//+F9u3b4fVasWoUaNQWlqqZlhE10xXkYlVUJW0FZBgtZ2EybLfOcdtZSUrHCNx+SAyIiIiIiIiIiKqpK2/SuPZtm2b2+f169ejbdu2yMzMxNChQ1WKiuja6eBIvtohIAtAkRxTI1jsxyCECVaNxlnXJICZMRoMLBO4idMjEBERERERERFRBVWTtpcrLi4GAISHh9e43Gw2w2w2Oz8bjUavxEV0pSTFCgCwXzY1ghCOaRMUuWqkrbUiqftDoISbzTavxklERERERERERL7LZ5K2iqJg1qxZGDJkCHr27FljnbS0NMyfP9/LkRFdOakyOevykDHHQ8gqpk2Qq0baalzntOVIWyIiIiIiImoi4p793KvbO7F4rFe3R+QLVJ3T1tWMGTNw8OBBbNq0qdY6qampKC4udr5Onz7txQiJ6qepGGkrXJK2ikvSVrjMaat1zdMqrhlcIiIiIiIiIiJqyXxipO3MmTOxdetW7Nq1C+3bt6+1nsFggMFg8GJkRFencqStEBIcjxirHGnr4PogMteRtrLg9AhEREREREREROSg6khbIQRmzpyJTz75BN988w3i4+PVDIeowWSlYnoEl4SsIlf9bUSRZJSE9EJJUHdoXEbaWqw2vPnv33H6Qpm3QiUiIiIiIiIiIh+latJ2xowZePfdd7FhwwYEBwcjLy8PeXl5KC8vVzMsomsmO0faVpXZXeaxVWQ/nIu+DXkxd0JWJGd5ucmMDbtPYeOeU16LlYiIiIiIiIiIfJOqSduVK1eiuLgYw4cPR3R0tPO1efNmNcMiumbyZQ8iEwCEy0hbu0bnKJe00NiryiU4ht2WWfhAMiIiIiIiIiKilk7VOW2F63BEomag8kFkUIBLgV1Q1CoR+ku/OJe7TpUgCy1QkayVKh5UZrbxgWRERERERERERC2dqiNtiZobGVXTIxSF9UdZcFeUB3R0LndN2moUl7+ZSDYEiDJYmLQlIiIiIiIiImrxVB1pS9TcaBTHyFlFAEJ2TIVg1+idyxVJg8oZbiVRdfl1tv+GlWX/D98X3gcgwVvhEhERUR1WrFiBpUuXIi8vDwkJCXj11VfRv3//GuuuX78eU6ZMcSszGAwwmUzOz0IIzJs3D6tXr0ZRURGGDBmClStXokuXLo26H0RERNQ8xT37uVe3d2LxWK9ur6XjSFsiD9JUjLSFcMxbCwD2iuQt4EjaOuu6jLS1VTyTrK3p98YPkoiIiOq1efNmpKSkYN68edi7dy8SEhIwevRoFBQU1LpOSEgIzp4963ydPHnSbfmSJUvwyiuvID09Hbt370ZgYCBGjx7tltglIiIiIgKYtCXyKE3Fg8iEUpW0dZ0SQchVl5yE6klbWbF4IUoiIiKqz8svv4xp06ZhypQp6NGjB9LT0xEQEIC1a9fWuo4kSYiKinK+IiMjncuEEFi+fDleeOEFjBs3Dr1798bbb7+N3NxcbNmypdY2zWYzjEaj24uIiIiImj8mbYk8xK4IaCoeLAYBCNkxqlaRq0bXCkjO9xpFh/77tOhwVrgkba1ei5eIiIhqZrFYkJmZiaSkJGeZLMtISkpCRkZGretdunQJHTt2RGxsLMaNG4dDhw45l2VnZyMvL8+tzdDQUAwYMKDONtPS0hAaGup8xcbGNnDviIiIiKgp4Jy2RB5is9uhrRhpq1SMtBVCuE2JIKBAUS4BkgydRY/he20411qBbaBjuWznSFsiIiK1nT9/Hna73W2kLABERkbiyJEjNa7TrVs3rF27Fr1790ZxcTFeeuklDB48GIcOHUL79u2Rl5fnbOPyNiuX1SQ1NRUpKSnOz0ajkYlbIiKiRtTrrV5e3d6ByQe8uj1qOpi0JfIQm80OCQIAIAmgXMmByZwBnaZdVSVhRZllFyRJ40zmGixV0yNoBEfaEhERNUWDBg3CoEGDnJ8HDx6M66+/Hm+88QYWLlx4ze0aDAYYDAZPhEhERERETQinRyDyEJvVXPVBAaziAiAssNvPuxSXA7BBCDMUyfGAMp3NJWnLOW2JiIhU17p1a2g0GuTn57uV5+fnIyoq6ora0Ol06Nu3L7KysgDAuV5D2iQiIiKiloNJWyIPsduqRskKAQCK4z0sFf8HhKhK7FY+oExrA2wVZRrOaUtERKQ6vV6PxMRE7Nixw1mmKAp27NjhNpq2Lna7HQcOHEB0dDQAID4+HlFRUW5tGo1G7N69+4rbJCIiIqKWg9MjEHmI3Wpy+SBBVCZthWsytyppa694QJnWDlgrR9rCCkURkOWqB5YRERGR96WkpGDy5Mno168f+vfvj+XLl6O0tBRTpkwBAEyaNAnt2rVDWloaAGDBggUYOHAgOnfujKKiIixduhQnT57EQw89BACQJAmzZs3CokWL0KVLF8THx2POnDmIiYnB7bffrtZuEhEREZGPYtKWyENsLiNtIbQQsFd8UFxrVVWpHGlrB8oqyvTCCotdgZ+sAREREann3nvvxblz5zB37lzk5eWhT58+2LZtm/NBYqdOnYIsV31p7eLFi5g2bRry8vIQFhaGxMRE/PDDD+jRo4ezztNPP43S0lI8/PDDKCoqwk033YRt27bBz8/P6/tHRERERL6NSVsiD1GsVfPRyooGcCZta6kvVf2ip1RU1cEGq12Bn45JWyIiIrXNnDkTM2fOrHHZzp073T4vW7YMy5Ytq7M9SZKwYMECLFiwwFMhEhERETVLvd7q5bVtHZh8wGvbuhqc05bIQ+y2qqStULQQ4vKkrfuUB65JW3vFYFwdrLDaRWOFSERERERERERETQCTtkQe4vogMlloUW2k7WXT1CouUyBUJm21wgaL1QYiIiIiIiIiImq5mLQl8hDFZaQt7Fq4z2VbQ33X6RFcqlrMphpqExERERERERFRS8GkLZGHuCZtJaX+OWkVSUblRAjCZXCt1cqkLRERERERERFRS8akLZGH2G1WHNMDc9rK0CiVz/iTaqwrAAhZci51HWlrM5sbM0wiIiIiIiIiIvJxTNoSeYiwW7HfX0KeToIkHEnbuh4ppkhVCV3hmrS1MmlLRERERERERNSSMWlL5CF2qxlmSYICGRp7/dMjCJdRuMLlmWV2To9ARERERERERNSiMWlL5CHCboVZAuzQwib8662vyJJz9gTXpK3NwqQtEREREREREVFLxqQtkYcImyNpKyRAqpjTVqp5SltHfdf3LtMjcKQtEREREREREVHLxqQtkYcIuwVmGQAkSFdwaSmSoy4AwF6V3bVbLY0RHhERERERERERNRGqJm137dqFW2+9FTExMZAkCVu2bFEzHKIGUSpH2gKQlfovLbeHlLnOacvpEYiIiIiIiIiIWjRVk7alpaVISEjAihUr1AyDyCOE3QpTxehZSVSfF0GCBDhfjmkUANmRvLUDZRWrKFazN8IlIiIiIiIiIiIfpVVz42PGjMGYMWOuuL7ZbIbZXJXQMhqNjREW0TURdisszqRt5d9DqpK3kgQIUfVByBpkd5mN4OKDyNV8gSdjNBhfrKCrjUlbIiIiIiIiIqKWrEnNaZuWlobQ0FDnKzY2Vu2QiJyE3YrIXGD2xjK0KlXqry/ssEsGlAXGQ2NzlH0UKkPYOD0CEREREREREVFL1qSStqmpqSguLna+Tp8+rXZIRFXsVoz+TkFIqYDrCNsqbrPYQhFlKDN/hTKRDa3NpZzTIxARERERERERtWiqTo9wtQwGAwwGg9phENXIbrc43kgShOT4e4iEqlSt63sAEKIEAGDFRWhdHkQmKtshIiIiIiIiIqIWqUmNtCXyZVa7CSUBjveihitLqkjZSpeNuBWwQ2t3WcHGpC0RERERERERUUvGpC2Rh1jtJpT6O6ZFEFJd0yMIuI65FcIGrU1f9ZkPIiMiIiIiIiIiatFUnR7h0qVLyMrKcn7Ozs7G/v37ER4ejg4dOqgYGdHVswgzpIpcbE2PIatcJgGQnJMlSADskBUDAAsMCgCbGXZFQCPXlPglIiIiIiIiIqLmTtWRtj/99BP69u2Lvn37AgBSUlLQt29fzJ07V82wiK6JxW6G3ubIzIrL8q0V428rPomKz1WVNIoBVmhhk4CTBRdxy6vfY9+pi40eMxERERERERER+R5VR9oOHz4cQoj6KxI1ARZhgd7qeO8caSuJilyty5QIoqLcJWkbdMkf939xAT/2FpB0FlgsVvx8ugh9O4R5K3wiIiIiIiIiIvIRnNOWyEMsSlXSVkg1P3SsskyqVqxH/Fk7+hwTGKj8ByvL/wq/cz83bsBEREREREREROSTmLQl8pCqpG1VqtZ1lgTJbVS5e9bWLjsGvfubALME+ItyhF1g0paIiEhNK1asQFxcHPz8/DBgwADs2bOn1rqrV6/GzTffjLCwMISFhSEpKala/QceeACSJLm9kpOTG3s3iIiIiKgJYtKWyEOswgKbtj1OdZwKu6wD4Jq+rT1hCwB2jaN+gEnAVJnpNRU3XrBERERUp82bNyMlJQXz5s3D3r17kZCQgNGjR6OgoKDG+jt37sTEiRPx7bffIiMjA7GxsRg1ahRycnLc6iUnJ+Ps2bPO18aNG72xO0RERETUxDBpS+QhNpsFZ6PHo0zvDwGb2zLXB5FJ1dZ0GWlrBswVV6XGzKQtERGRWl5++WVMmzYNU6ZMQY8ePZCeno6AgACsXbu2xvrvvfceHnvsMfTp0wfdu3fHm2++CUVRsGPHDrd6BoMBUVFRzldYWN3z15vNZhiNRrcXERERETV/TNoSeYhitcIknUO5+TsIUQ4AkKXKFK1wmR5BQFyWurXLGkByTI9gqijTWvlLGRERkRosFgsyMzORlJTkLJNlGUlJScjIyLiiNsrKymC1WhEeHu5WvnPnTrRt2xbdunXDo48+isLCwjrbSUtLQ2hoqPMVGxt79TtERERERE0Ok7ZEHqJYbBB291+8dBUjaCUhoBEW6BQTdIq52rp2WQNAgkYBzHZHmcFa0tghExERUQ3Onz8Pu92OyMhIt/LIyEjk5eVdURvPPPMMYmJi3BK/ycnJePvtt7Fjxw68+OKL+O677zBmzBjY7fZa20lNTUVxcbHzdfr06WvbKSIiIiJqUrRqB0DUXAibFZJSDkhVo2j9NQIWsxmysEITFAippASSvx+E1X2krSJV/f3EagMgAX5KCeyKgEauaUIFIiIi8lWLFy/Gpk2bsHPnTvj5+TnLJ0yY4Hzfq1cv9O7dG506dcLOnTsxcuTIGtsyGAwwGAyNHjMRERER+RaOtCVqoMJLZkx/5yeYTVYokvtImYDwCOgUEzTCjoiu3aFt0wb+0e2qtWHXaGBslQibNgh2i6MsWJSixGT1xi4QERGRi9atW0Oj0SA/P9+tPD8/H1FRUXWu+9JLL2Hx4sX417/+hd69e9dZ97rrrkPr1q2RlZXV4JiJiIiIqHlh0paogXYdOI5xJ9PgbyuDAvekbds+N0ATEQ5tVBT+NH0mug4dgVtmP1OtDasuBAWRY1DYejiUijytQZhhvFTqjV0gIiIiF3q9HomJiW4PEat8qNigQYNqXW/JkiVYuHAhtm3bhn79+tW7nTNnzqCwsBDR0dEeiZuIiIiImg9Oj0DUQO1PfoIo+2FkWTRQ4D4yts8fkyH7adCxd18Eh7fGzRMn19iGXTmHS6YvIOnawt9SVV5aXAi0rfup0kREROR5KSkpmDx5Mvr164f+/ftj+fLlKC0txZQpUwAAkyZNQrt27ZCWlgYAePHFFzF37lxs2LABcXFxzrlvg4KCEBQUhEuXLmH+/PkYP348oqKicPz4cTz99NPo3LkzRo8erdp+EhEREZFvYtKWqIHMZpPjjTUAgB1A1Ry0hqAADLnnL/W2IYTj4WQmuRTFQsLS1hIeuKjgXO5ZFIhQDO3SGpLEuW2JiIi85d5778W5c+cwd+5c5OXloU+fPti2bZvz4WSnTp2CLFd9aW3lypWwWCy466673NqZN28e/va3v0Gj0eCXX37BW2+9haKiIsTExGDUqFFYuHAh56wlIiIiomqYtCVqIHt5CQBA2AKrLdP46Wtcp63UAeelQkTKrXDWdqaqLckOswU4ZpDwfqiM679/FwaYceD+F9E7LrLGtoiIiKhxzJw5EzNnzqxx2c6dO90+nzhxos62/P398dVXX3koMiIiIiJq7pi0JWogrem844214unQEgDheCvrar7E+l88iFJdGMytLuKsS7kiTPA3+0FjtcIkC/zRtgsAcPLXb4C4iY2zA0RERERERERE5FP4IDKiBtKbLzje2B1JW0nYoVNM0CvlkDSaGteRYUew9TyCr4uDI8tb+bKie3Ywnnrbjja5wlnfcj67MXeBiIiIiIiIiIh8CJO2RA0UYC3EEQNgVxzz0UkSoFPM0CqWWteJTV+JVvfcg5ip1R9MVq4PBgBE5LgUFp/2aMxEREREREREROS7mLQlagCT2YKT2hL8X2sNhOKYv1bS+UEOCoIcGlrrevq4OEQ8OAUBbVtXb1MXBEgSgosAW0WZ36Uc5BtNOFVY1gh7QUREREREREREvoRz2hI1gLEwD78ZgNYXBXQ2GXYAga06om2cP0Ijo+pdX2fwq/pQMRduuX9rFOjHILzoG+Roy6EBEGbJxf4VkxColCBo5vsIDw1urF3yaYoiIEmAJElqh0JERERERERE1GiYtCVqgJLCszAVAg/tUHCkHVCuBcJaheDWlL9e0fquyUdJ0kAIG0r1MsokAWHvj3WB/0ZJkITUglL0sBwAAGT98gP63zy6UfbHl+UXlWLDu6ugDQzHzAcmMXFLRERERERERM0Wk7ZEDWAqyoN/PiAgwy47Hhzmp726WUd0igl2SYfgwCAUl5TArpwDAFz0j8CtuwRku8DhAUB8Rf3i337Av078DENELIb9eaInd8cn/V5QgrM5p6D/11O4y5QNFAI7PrEhN+8sWv9hBP48bIjaIRIREREREREReRSTtkQNcOHiSQRfjMTh626CxZ4FAAgJCrmqNm6+sT9yD/yMgOGjsPezj5zlZtmCrvl6CEkD46lybOoOlMoS7j3zKYKECbZsLbJ63ozv/vM9uvdMxJBeXTy6b74gv/Aist6chuuth9zKux14Cd0AnP1+J+w3b4dG5qhbIiIiIiIiImo+mLQlaoCc4uNQxHUVCVtH4jA0POyq2kh46lkkADj6n0xnGwCgiBL8GjcWdlGCtjkHkeOfh8BygWNxJrRWgCDFhrK3HsAoJQcnsjvjt5B0HN7xLv4wYgI6xMYi52Ip4ts03blvhd2GE+/OrJawdRVty8Hxv/fDb1G3oEvyY+gaG+nFCImIiIiIiIiIGodPJG1XrFiBpUuXIi8vDwkJCXj11VfRv39/tcMiqpOiCOSdyIKkc08UGgL9r6m9VpHhzveyzh+KtQwW++8AgGK/ruiVFQdFY8A+3b8RVK7A4g/0j87Bu7KEHshCh/VJaK8B8jd/j6PBXRFX+G98O/B5aDUSjGeO4KbxjyMr7wIAILFzO5SUGBEQEAiNRnONPdA4hBD47rO3EPLzGsQo5yFsAOzAyXNtUHS+A/y0hQhunwOLyR/tAkrgH1KG3rnv48TmIwibuBihbTtAr/OtfSIiIiIiIiIiuhqqJ203b96MlJQUpKenY8CAAVi+fDlGjx6No0ePom3btmqHR1SjsyeP4odN06E7EgALygFJg/atWqG8tBSdbh1xTW227tAOBsUGWdIguH0MCrId0y0IAGWaYpQFAoAJ7c4OhlWjQ2ixgrJDh9E+qD1KpPNYHV+A9vntYIzMgWQ8jWMFrdDKngqTHRClWhSd+RY6ay50dgm5rW+AYvwROl1bhP7hLyj79QPo2t2MVrHXI//gl4hKvBcBgcHIOXEMvQYnoyBrP0rLLqHX4GSc/f0QZF0A2sd3w++nTiEiPAKtggNRWFiIsDBH4rnoUhnCQwKv6mFh586fx6+H9sHw2xcIOb4DRpMfsor7wlLeB+WGWEel0IrKFx3/+63MAr+z+yAMVnSIOID81eOQL/vhUs+/wD/6eihBUUj4Q0/InD6BiIiIiIiIiJoQ1ZO2L7/8MqZNm4YpU6YAANLT0/H5559j7dq1ePbZZ1WOzt3pktPIyM0A4BgNWElAVKvrWlZfXZ9kNQG5ewGgaUQsXKMUAIRLkaijXv3tON8qCqzbI2E1G2EpLwNs18GGMgCAvyYYd698rUG7oNHr8cCiRRCKghNHj+Nf2VmQoUDWG2CzWAFIEBC4pC0BAJg1wKW2MQAUAOGIyAtHOQBdXteKFiUUHYmEJOkhoKAoRweb3AaKMEN7tByQ+kMGoMn8DjY5BlLmb9Aox2DVyDjyn7chCwlQJBx+ZztkRYJVC/znzY+gsTtGsQqNHZJdA5tGQCMJyHYJouJhbJIiQdE4+k0WAOTKvpUAjQTJrlSEKAMKYJUFdIoGkqKHXY4AMNaxkqQB5BLAethRVygV+wsIyTGZRLkUCFiAorM3O5oUNoij+ZDEUQA2/FtjgU6pOJYyoAgZsmSHkCRAEZAlBYpGC6HIgKw44lQEJKnqgXKSJFVcuxIkSFAgIEECJAlCCEiSBAlw1qk6t1zeSxIkUfUebu8Vx/6hop8uWy4gKibOcPxXgYCMhiWiXc/0OluSXPcHjX9DaGB+vb4/FEiwQyvlNWwjVY15umKtggIb3ESFa4+l8pprTF7796bR/47jvT8UXWwXDGN0kMfa66vpgFDJ8Y2RxDuegFan91jbRERERER05VRN2losFmRmZiI1NdVZJssykpKSkJGRUa2+2WyG2Wx2fjYajV6Js9Ip4ym8c/gdr25TNYoVKM5ROwrfIgRuu/Q8LNZ9sNmLKgodv5j3HX6TRzYR0NWRcO3RrRusZ3PRpltXWLX++HLlKsTGd4ax/BLyc39HUEAYykylUBQztFp/2GzlFeFIl2XjZAjYAAAW2ewss0kAKhLO0ACA2eU9AHtlahSOuhUJWNgABdaKBQBgBWwVb4GqlS5/b3d5b0N19soIygBn3zpUpkEdsVsA4UggCI0NitBCEoAkKpKoNVFcNm+vuQqstS2gZkco0DWx4y0B6HzwtNphkI862k9CRqhcf8UrNLDge8RU3uZveYRJWyIiIiIilaiatD1//jzsdjsiI93nBI2MjMSRI0eq1U9LS8P8+fO9FV41bQPa4k8d/1StvHJkl2vSqKYy57LGHIHjqaatJuD0Ho83W5Nrb9t12NflrVT0v+uoO6n6crf3Um3RVG1HqzsCvWSFrAQiNuEGdLnhBugtJnQaNfya9qA2kiShzyPTnJ8fvdkxx7NQFBQf/Q2h3buitOA8cv77M7rc+kdkfZuBCydz0W/SHfhpwxZodTp0+dPN+Pcbb6F1bHu07d4dP23ZirjevWCylON4Zia69euPgpzTuJiXh04JfZB98BcoVjvad+qEU8eOQKPToVXbSJzL/h36VqHQGfxQkn8OgeFhUCwWmIwlCIoIR5mxGFarFYGhoTAZjYAkQR8YAFNxCWStFhq9HuayUmj1ekgCsFlMkPUGKEKBYrNBH+AHm9kEISkIjmiD0sKL8A8LQEy3rsj6716Ex0UhpE0Esn/8BXE3/AEWiwX5v/6OP4wYghM5Z3DxQhEG3HgjftmxE5KQENYxFgVHfock6WEI0aH0YjGg0UEryVAsZkhavWPEq90ORasHbAogbIBGrkg0y4AsQxF2SBXHQij2ipGwwjmyFkJUjICtLL9sUKpztGzlGFy39LPbeNw6z4WK/wvnfypbE5Ah11DPk2MVXUcMNxPCCq2uUO0grnqN3B7h17pqg7brcV4OQZ0z17s7GRwRgAT52uZSr0lpm3bIgR8AIFKj+heyiIiIiIharCb103hqaipSUlKcn41GI2JjY722/S5hXdAlrIvXtqe6fmoH4INuUXfzkiyj1fXdAABBkW3QbVwSAKDryCHOOgMn3eV8f8vzs53vr+vfy/l+6KS7q7U9FPd6PN6G+tNUlw8PV1/uOr65/7i7qlcgIiIiIiIiImqCVE3atm7dGhqNBvn5+W7l+fn5iIqKqlbfYDDAYDB4KzwiIiIiIiIiIiIir/PcJGjXQK/XIzExETt27HCWKYqCHTt2YNCgQSpGRkRERERERERERKQO1adHSElJweTJk9GvXz/0798fy5cvR2lpKaZMmaJ2aERERERERERERERep3rS9t5778W5c+cwd+5c5OXloU+fPti2bVu1h5MRERERERERERERtQSqJ20BYObMmZg5c6baYRARERERERERERGpTtU5bYmIiIiIiIiIiIjIHZO2RERERERERERERD6ESVsiIiIiohqsWLECcXFx8PPzw4ABA7Bnz54663/wwQfo3r07/Pz80KtXL3zxxRduy4UQmDt3LqKjo+Hv74+kpCT89ttvjbkLRERERNREMWlLRERERHSZzZs3IyUlBfPmzcPevXuRkJCA0aNHo6CgoMb6P/zwAyZOnIipU6di3759uP3223H77bfj4MGDzjpLlizBK6+8gvT0dOzevRuBgYEYPXo0TCaTt3aLiIiIiJoIJm2JiIiIiC7z8ssvY9q0aZgyZQp69OiB9PR0BAQEYO3atTXW/8c//oHk5GQ89dRTuP7667Fw4ULccMMNeO211wA4RtkuX74cL7zwAsaNG4fevXvj7bffRm5uLrZs2eLFPSMiIiKipkCrdgANIYQAABiNRpUjISIiIqJrVfmzXOXPdmqzWCzIzMxEamqqs0yWZSQlJSEjI6PGdTIyMpCSkuJWNnr0aGdCNjs7G3l5eUhKSnIuDw0NxYABA5CRkYEJEybU2K7ZbIbZbHZ+Li4uBuDdn38Vc5nXtgV4d9/s5Xavbauh++XN4+Dt3694HGrG41C75nocvHkMgIbtG/9t8Bweh5o1pXvStW6vvp99m3TStqSkBAAQGxurciRERERE1FAlJSUIDQ1VOwycP38edrsdkZGRbuWRkZE4cuRIjevk5eXVWD8vL8+5vLKstjo1SUtLw/z586uVN+eff0OXqx1B4wh9VP1z+0o112MA8Dj4Ch4H38Dj4Bt4HNSn1jGo72ffJp20jYmJwenTpxEcHAxJkq65HaPRiNjYWJw+fRohISEejLD5YB/Vjf1TP/ZR/dhHdWP/1I99VDf2T/3U6iMhBEpKShATE+O1bTYVqampbiN4FUXBhQsXEBER0aCff5sTXtu+gcfBN/A4+AYeB9/A46A+HoOaXenPvk06aSvLMtq3b++x9kJCQngS1YN9VDf2T/3YR/VjH9WN/VM/9lHd2D/1U6OPfGGEbaXWrVtDo9EgPz/frTw/Px9RUVE1rhMVFVVn/cr/5+fnIzo62q1Onz59ao3FYDDAYDC4lbVq1epKd6VF4bXtG3gcfAOPg2/gcfANPA7q4zGo7kp+9uWDyIiIiIiIXOj1eiQmJmLHjh3OMkVRsGPHDgwaNKjGdQYNGuRWHwC2b9/urB8fH4+oqCi3OkajEbt37661TSIiIiJquZr0SFsiIiIiosaQkpKCyZMno1+/fujfvz+WL1+O0tJSTJkyBQAwadIktGvXDmlpaQCAJ598EsOGDcP//d//YezYsdi0aRN++uknrFq1CgAgSRJmzZqFRYsWoUuXLoiPj8ecOXMQExOD22+/Xa3dJCIiIiIfxaQtHF87mzdvXrWvnlEV9lHd2D/1Yx/Vj31UN/ZP/dhHdWP/1I99VOXee+/FuXPnMHfuXOTl5aFPnz7Ytm2b80Fip06dgixXfWlt8ODB2LBhA1544QU899xz6NKlC7Zs2YKePXs66zz99NMoLS3Fww8/jKKiItx0003Ytm0b/Pz8vL5/zQnPW9/A4+AbeBx8A4+Db+BxUB+PQcNIQgihdhBERERERERERERE5MA5bYmIiIiIiIiIiIh8CJO2RERERERERERERD6ESVsiIiIiIiIiIiIiH8KkLREREREREREREZEPafJJ2127duHWW29FTEwMJEnCli1b3JZ//PHHGDVqFCIiIiBJEvbv31+tDZPJhBkzZiAiIgJBQUEYP3488vPz69yuEAJz585FdHQ0/P39kZSUhN9++82De+Y5De2jCxcu4PHHH0e3bt3g7++PDh064IknnkBxcXGd233ggQcgSZLbKzk52cN713CeOIeGDx9ebV8feeSROrfbks6hEydOVOufytcHH3xQ63abwzlktVrxzDPPoFevXggMDERMTAwmTZqE3NxctzYuXLiA+++/HyEhIWjVqhWmTp2KS5cu1bnda7l3qaWhfXTixAlMnToV8fHx8Pf3R6dOnTBv3jxYLJY6t3st16ZaPHEexcXFVdvfxYsX17ndpnIeNbR/du7cWet96Mcff6x1u83lHAKAv/3tb+jevTsCAwMRFhaGpKQk7N69261Oc78XUdOkKIraIRARkY8RQqgdAlGja/JJ29LSUiQkJGDFihW1Lr/pppvw4osv1trG7Nmz8dlnn+GDDz7Ad999h9zcXNx55511bnfJkiV45ZVXkJ6ejt27dyMwMBCjR4+GyWRq0P40hob2UW5uLnJzc/HSSy/h4MGDWL9+PbZt24apU6fWu+3k5GScPXvW+dq4cWOD9qUxeOIcAoBp06a57euSJUvqrN+SzqHY2Fi3vjl79izmz5+PoKAgjBkzps5tN/VzqKysDHv37sWcOXOwd+9efPzxxzh69Chuu+02t3r3338/Dh06hO3bt2Pr1q3YtWsXHn744Tq3ey33LrU0tI+OHDkCRVHwxhtv4NChQ1i2bBnS09Px3HPP1bvtq7021eKJ8wgAFixY4La/jz/+eJ3bbSrnUUP7Z/DgwdXuQw899BDi4+PRr1+/OrfdHM4hAOjatStee+01HDhwAN9//z3i4uIwatQonDt3zlmnud+LqGnZu3cvAECWm/yvLETUzPCPSeq5ePEiAECSJJUjIfIC0YwAEJ988kmNy7KzswUAsW/fPrfyoqIiodPpxAcffOAs+/XXXwUAkZGRUWNbiqKIqKgosXTpUrd2DAaD2LhxY4P3ozFdSx/V5P333xd6vV5YrdZa60yePFmMGzfu2gJVybX2z7Bhw8STTz55xdvhOSREnz59xIMPPlhnneZ2DlXas2ePACBOnjwphBDi8OHDAoD48ccfnXW+/PJLIUmSyMnJqbGNa7l3+Ypr6aOaLFmyRMTHx9fZztVem77iWvuoY8eOYtmyZVe8naZ6HnniHLJYLKJNmzZiwYIFdbbTnM+h4uJiAUB8/fXXQoiWdy8i37Zx40YhSZJYv3692qG0WCtWrBCrVq1SOwwin5CZmSm++uor8dFHHznLFEVRMaKWacOGDeKxxx4TP//8s9qhtFg8772rxf/ZOjMzE1arFUlJSc6y7t27o0OHDsjIyKhxnezsbOTl5bmtExoaigEDBtS6TnNTXFyMkJAQaLXaOuvt3LkTbdu2Rbdu3fDoo4+isLDQSxF633vvvYfWrVujZ8+eSE1NRVlZWa11W/o5lJmZif3791/RaO3meA4VFxdDkiS0atUKAJCRkYFWrVq5jfZLSkqCLMvVvrpc6VruXU3J5X1UW53w8PB627qaa7Mpqa2PFi9ejIiICPTt2xdLly6FzWartY3mfB7Vdw59+umnKCwsxJQpU+ptqzmeQxaLBatWrUJoaCgSEhIA8F5EvmPlypW47777EBQUhP/+979qh9MirV69GjNnzkRYWJjaobRolaM5hRCw2+0qR9NyrV27FuPHj8cTTzyBGTNmOH924EhP71q3bh2mTJmCnj17Ijo62m0ZRz57h6IokCQJFy5ccPumFjWeujNuLUBeXh70en21X+oiIyORl5dX6zqVda50nebk/PnzWLhwYb1fl0xOTsadd96J+Ph4HD9+HM899xzGjBmDjIwMaDQaL0XrHffddx86duyImJgY/PLLL3jmmWdw9OhRfPzxxzXWb+nn0Jo1a3D99ddj8ODBddZrjueQyWTCM888g4kTJyIkJASA43xo27atWz2tVovw8PA670NXe+9qKmrqo8tlZWXh1VdfxUsvvVRnW1d7bTYVtfXRE088gRtuuAHh4eH44YcfkJqairNnz+Lll1+usZ3meh5dyTm0Zs0ajB49Gu3bt6+zreZ2Dm3duhUTJkxAWVkZoqOjsX37drRu3RoA70XkG1atWoXHH38cu3btQllZGW699VZMmDABw4YNUzu0FmPVqlWYMWMGNm/ejLvuusuZLHT92UsIwYRVI1MUBbIs49ixY3j99deRlZWF/v37O+cQJ+/YsmULnnzySbzzzjvo1asXvvnmG7zxxhsoKytDQEAAAF4P3nD48GG8+OKLWLt2Le677z4UFRUhOzsbRqMRCQkJnEbHS2RZxu+//44//elPuP/++/HII48gJiZG7bCatRaftKWrYzQaMXbsWPTo0QN/+9vf6qw7YcIE5/tevXqhd+/e6NSpE3bu3ImRI0c2cqTe5ZrA7tWrF6KjozFy5EgcP34cnTp1UjEy31NeXo4NGzZgzpw59dZtbueQ1WrFPffcAyEEVq5cqXY4PulK+ignJwfJycm4++67MW3atDrba47XZl19lJKS4nzfu3dv6PV6TJ8+HWlpaTAYDN4OVRVXcg6dOXMGX331Fd5///1622tu59CIESOwf/9+nD9/HqtXr8Y999yD3bt3V0vWEqlh/fr1eOSRR/Dxxx/jpptuQnZ2NhITE/Hll19i2LBhsNvtTfaPtk3Fjh078Mgjj+DDDz/EnXfeiV9//RVvvPEG9u7di06dOmHgwIGYPn06JElioqoRVSZsDxw4gKSkJAwdOhTt27fH3//+dwghMG/ePLVDbBGsViu2bduGGTNm4Pbbbwfg+MPwpk2b8NVXXzkf3unn58froZEVFRUhICAAEydOxM8//4wnnngCubm5KC0tRbdu3bB582a0bdvWee1Q49m+fTuys7OxdetW+Pn54cEHH0RUVBSAqofD8VrwnBZ/NkdFRcFisaCoqMitPD8/33ni1bROZZ0rXac5KCkpQXJyMoKDg/HJJ59Ap9Nd1frXXXcdWrdujaysrEaK0HcMGDAAAGrd15Z6DgHAhx9+iLKyMkyaNOmq123K51BlIunkyZPYvn272+i/qKgoFBQUuNW32Wy4cOFCnfehq713+bq6+qhSbm4uRowYgcGDB2PVqlVXvY36rk1fdyV95GrAgAGw2Ww4ceJEjcub23l0pf2zbt06RERE1Pggt/o09XMoMDAQnTt3xsCBA7FmzRpotVqsWbMGAO9FpC6j0Yjvv/8en376qTM5Eh8fj+HDh2P16tUoLi5mwraRKYoCrVaLNm3a4JNPPsGvv/6K2267DadOnULPnj1RUFCA119/3fkQUP5S3nhkWUZ2djZuu+02TJ06FR988IHzAawFBQWwWq1u9SsTJeRZOp0OWVlZ2L9/v7Ps+eefx+HDh5GWloZFixahX79+uHTpkvMPGeRZldMenDx5EmazGXa7HdOnT8egQYOwatUqvPPOOygsLERycjIAPrjSGwYNGoRJkyZh/PjxWLFiBd58803nz4GSJPHfBg9r8Wd0YmIidDodduzY4Sw7evQoTp06hUGDBtW4Tnx8PKKiotzWMRqN2L17d63rNHVGoxGjRo2CXq/Hp59+Cj8/v6tu48yZMygsLKw2/0xzVPkPe2372hLPoUpr1qzBbbfdhjZt2lz1uk31HKpMJP3222/4+uuvq32lbdCgQSgqKkJmZqaz7JtvvoGiKM4E0eWu5d7ly+rrI8Axwnb48OFITEzEunXrrumHsvquTV92JX10uf3790OW5VpHUTan8+hK+0cIgXXr1mHSpElX/cdHoGmfQzVRFAVmsxkA70WkHkVREBISgjfffBO33HILADjn4549ezbatm2Ll156iQmRRiSEgCzLGDZsGD7++GNkZGTgD3/4A+6++268++67eP311/Huu+9i7Nix+Oqrr5Cdna12yM2a3W7HRx99hDFjxuDZZ591lp85cwb79u3DkCFD8Oijj+Kzzz4DwAS6p7neayZNmoQTJ04gMTERQ4YMwf79+/Gf//wH27dvx759+1BeXo7U1FQAPA6eVnlfAoDhw4dDq9XikUceQUhICGbMmIERI0Zg5MiR+Pzzz1FQUIB//OMfKkfcMggh8MMPP+C5557D9OnTsWrVKrz11lu488478fzzz6sdXrPT5KdHuHTpkttol+zsbOzfvx/h4eHo0KEDLly4gFOnTiE3NxeA4xcJwDEyJCoqCqGhoZg6dSpSUlIQHh6OkJAQPP744xg0aBAGDhzobLd79+5IS0vDHXfcAUmSMGvWLCxatAhdunRBfHw85syZg5iYGOfIAF/S0D6qTNiWlZXh3XffhdFohNFoBAC0adPGOerBtY8uXbqE+fPnY/z48YiKisLx48fx9NNPo3Pnzhg9erSXe6BuDe2f48ePY8OGDfjzn/+MiIgI/PLLL5g9ezaGDh2K3r17O9ttyedQpaysLOzatQtffPFFjdtpjudQdHQ07rrrLuzduxdbt26F3W53zvMYHh4OvV6P66+/HsnJyZg2bRrS09NhtVoxc+ZMTJgwwTlHUE5ODkaOHIm3334b/fv3v+J7l69oaB9VJmw7duyIl156yW3i+8pz7PI+utJr01c0tI8yMjKwe/dujBgxAsHBwcjIyMDs2bPxl7/8xfkgmaZ8HjW0fyp98803yM7OxkMPPVRtG835HIqIiMDf//533HbbbYiOjsb58+exYsUK5OTk4O677waAFnEvIt9U+Uv52rVrUVRUhJSUFOfPl61atUJiYiK+/fZb59eP+TVkz6vsz7fffhvnzp3D2rVr8eGHH+K+++5DQEAAhBAICwvD+PHjsXjxYpw6dQrx8fEqR918aTQaTJw4EadPn3Z+a2TRokVYt24dnn32WURGRuKdd97BsWPHcOONN/KbDR5WeT1s2LABx44dQ3p6Ok6ePIkvvvgCU6dOxXXXXQdFUaAoCnr27MmHYDWSyuOwdu1a5OTkICkpCVu2bIGiKIiNjQXg+ANfREQEOnToUG0EOjWOhIQExMfH4+TJk5g7dy78/f3x/PPPO5Pq5GGiifv2228FgGqvyZMnCyGEWLduXY3L582b52yjvLxcPPbYYyIsLEwEBASIO+64Q5w9e9ZtOwDEunXrnJ8VRRFz5swRkZGRwmAwiJEjR4qjR496YY+vXkP7qLb1AYjs7Gzndlz7qKysTIwaNUq0adNG6HQ60bFjRzFt2jSRl5fn3Z2/Ag3tn1OnTomhQ4eK8PBwYTAYROfOncVTTz0liouL3bbTks+hSqmpqSI2NlbY7fYat9Mcz6Hs7Oxar59vv/3W2UZhYaGYOHGiCAoKEiEhIWLKlCmipKTEubyyHdd1ruTe5Ssa2ke1nWOu/4xd3kdXem36iob2UWZmphgwYIAIDQ0Vfn5+4vrrrxf/+7//K0wmk3MbTfk88sR1JoQQEydOFIMHD65xG835HCovLxd33HGHiImJEXq9XkRHR4vbbrtN7Nmzx62N5n4vIt9lMpnEn//8ZzFu3Dhnmc1mE0IIcfjwYREYGChef/11laJrGUwmkxgzZoy44447hBDC7WcuRVGEEEJkZGSIG2+8UWRlZakSY0tR2d+V/y8oKBCzZs0SX375pbPO4cOHhSRJbmXkOeXl5SI5OVnceeedzrKhQ4eK1NRU52eLxSKGDh0qFixYoEaILULlfel//ud/xNmzZ0VycrKQJEk8++yzbvWGDRsmVq5cqVKULUfl7/FDhw4Vb731lhBCiKlTp4qQkBARFRUllixZInJyctQMsdmRhOD3jIiIiIiISB2iYuRsZmYm/vjHP+Kdd95xzjkthIDJZMKjjz6KgoICbNiwAa1atVI34GbI9RiMGDECGzZscE5VUam8vBwTJkyA1WrF1q1bOXekhwkhoCgKNBoNCgsL4efnB0mSEBAQAMDxfJHg4GAIISCEwKFDh/DAAw9g/fr16NWrl8rRNy+X35PWr1+PO+64A3PmzEFGRgbGjh2Lvn37YsmSJcjLy8OePXug1Tb5LzH7nMrj8NNPP2HEiBH48ssvERcXh6eeegpff/01brzxRtx444347rvvUFRUhJ9++onHwYNquifZ7XaEhITg2WefRffu3bF371589NFH+P7777Fp0yYsWrQICxcuxJNPPsl56D2E/9ISEREREZHXXD5mpPIrsF26dEFycjK++eYbAI65biVJgr+/PwYMGACj0YjQ0FCvx9sc1XUMxowZg6+//tq5rKysDJ999hluvfVWnDhxAv/85z8hyzK/Eu4hX3zxBX7++WdIkgSNRoOPP/4YY8eORUJCAu6//368+eabAICgoCAAjmMlyzI2bdoEnU7HqRE8oL570s6dOwEA48ePR3R0NBYvXoxZs2ZBo9Fg9+7d0Gq1sNvt3g672antOHTt2hVjxozB+++/j/bt22PJkiV4/fXXYTabcejQIXTt2hU//vgjj4OH1HVPmjRpEt5//32MHDkSDz74IDZv3ox//vOfiI+PR2pqKubNm4dbb72VCVsP4khbIiIiIiLyumXLlkFRFNx7771o3749AGD16tWYPXs2fv75Z3Tq1AmKojhHdFaOuqr8PzXclRyD3NxcvPrqq8jPz8eqVaug1Wphs9k4os0D8vPzMWjQIAwfPhwvvPACTCYTBg4ciGeeeQZarRanTp3Cm2++ifnz5zsfSHbw4EFs3rwZr7zyCv7973/75BzrTVVd18O+ffvQpUsXXLhwAUajETabDZ06dYIkSbwePKy24zBr1izs378fXbp0qXE9HoeGq++edPLkSaxZswZ/+ctfnA/nS0hIcPu3mjyLSVsiIiIiIvKq8vJyzJ8/H+np6UhMTERcXByWLl2KgIAAPPTQQwgNDcXy5cuh0+nc1mPC1nOu5BgsW7YMer0eRUVFCA0NZYKqEezduxfTp0/HgAED0KpVK5jNZixduhQAYDQa8c477+Cvf/0rVq1ahbFjx+Khhx7CsWPH8N577yEhIUHl6JuP+q6HkJAQLFu2DAaDwW09Jqs860qOwz/+8Q9oNBq3fue/DZ5T1z2puLgYGzZswDPPPIOlS5di+vTpKkfb/DFpS0REREREqjhz5gy+/PJLpKeno6ysDP3790dhYSEAYNOmTQgKCuIv442srmOwceNG5zyqHOXcePbu3YtHH30U+fn5uOWWW/Daa685lxUXF2P27Nkwm8147733cODAAYSFhTlHIJJn8Z7kG3gc1FXXPenixYv461//CpPJhPXr10Or1fI4NCImbYmIiIiISHWrV6/GoUOH8MorrwAAFi5ciOeff17lqFoWHgP1/PLLLxg3bhz8/PywceNG9OnTx7ns+eefx+eff449e/ZAr9erF2QLw+vBN/A4qKO+e9IXX3yBPXv2VPtGDHkWk7ZERERERKSay0dL/fjjj1ixYgXOnTuHjRs3IiQkRMXoWob6jkFwcDBHUnnBgQMHcP/99yMxMRGzZs1yTn8wffp0/P7779iyZQsCAwNVjrL54z3JN/A4qI/3JPUxaUtERERERD5l9+7dGDZsGP71r39h6NChaofTIvEYqGPfvn2YNGkSysrKMHToUBgMBnz44Yf4+uuv3Ua6kXfxevANPA7ex3uSujhjNhERERER+QwhBAYMGIC+ffvixIkTaofTIvEYqKdv377YsGEDZFnGjh07EBcXh8zMTCZHVMTrwTfwOKiD9yR1MWlLREREREQ+Q5IkrFq1Crt378aQIUPUDqdF4jFQV69evbBp0yZ0794dU6dORceOHdUOqUXj9eAbeBzUw3uSejg9AhGRD3jggQfw1ltvAQC0Wi3at2+Pu+++G9dddx0effTROtfNzs5GXFycF6IkIiLyjuPHj8NsNqNHjx5qh9Ji8Rioz2Qywc/PT+0wCLwefAWPg7p4T/I+Jm2JiHzAAw88gPz8fKxbtw5WqxWZmZmYPHkyHnnkEcyePdtZ784770TPnj2xYMECZ1mbNm2g0WjUCJuIiIiIiIiIGoFW7QCIiMjBYDAgKioKABAbG4ukpCRs374dL774orOOXq9HQECAsx4RERERERERNT+c05aIyAcdPHgQP/zwA/R6vdqhEBEREREREZGXcaQtEZGP2Lp1K4KCgmCz2WA2myHLMl577TW1wyIiIiIiIiIiL2PSlojIR4wYMQIrV65EaWkpli1bBq1Wi/Hjx6sdFhERERERERF5GadHICLyEYGBgejcuTMSEhKwdu1a7N69G2vWrFE7LCIiIiIiIiLyMiZtiYh8kCzLeO655/DCCy+gvLxc7XCIiIiIiIiIyIuYtCUi8lF33303NBoNVqxYoXYoRERERERERORFTNoSEfkorVaLmTNnYsmSJSgtLVU7HCIiIiIiIiLyEkkIIdQOgoiIiIiIiIiIiIgcONKWiIiIiIiIiIiIyIcwaUtERERERERERETkQ5i0JSIiIiIiIiIiIvIhTNoSERERERERERER+RAmbYmIiIiIiIiIiIh8CJO2RERERERERERERD6ESVsiIiIiIiIiIiIiH8KkLREREREREREREZEPYdKWiIiIiIiIiIiIyIcwaUtERERERERERETkQ5i0JSIiIiIiIiIiIvIh/x8cqV5qRYsunQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "np.float64(17.923927996065476)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "auc = feat_gen.feature_weighted_auc(precursor_fragments, visualize=True)\n", + "auc" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "429bbe4f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAGGCAYAAAAgvmlwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAp4pJREFUeJzs3Xd4U3UfBfCTpBnde1O6gLL3nmUvUTayyxIRBERUcCGoICpLEFBUQAHZKIKyQfbee1O6955J7vsHbyOhg6ZNejvO53n6QO48GU1vvvkNiSAIAoiIiIiIiIiIikgqdgAiIiIiIiIiKttYXCAiIiIiIiKiYmFxgYiIiIiIiIiKhcUFIiIiIiIiIioWFheIiIiIiIiIqFhYXCAiIiIiIiKiYmFxgYiIiIiIiIiKhcUFIiIiIiIiIioWFheIiIiIiIiIqFhYXCBRHDlyBBKJBEeOHDHqcSUSCT777DOjHrM0n9cUfHx8EBQUVKhtAwMDERgYaNI8xfHNN9/Az88PMpkM9evXFztOiVCr1Xj//ffh5eUFqVSK3r17ix2pXHv69ClUKhVOnDghdhSTe/F9bs2aNZBIJHj8+HGJ5njxPWrPnj2wsrJCdHR0ieYgovKpol7TVRSfffYZJBKJ3jKJRIJJkyaVyPnF+ttZUlhcoJfK+SXI+TEzM4OnpyeCgoIQGhpa4nn+/vvvcvOmDwBz587FH3/8IXaMfN28eROfffZZmXsT3LdvH95//320atUKq1evxty5c/PddsOGDVi8eHHJhctDUFAQJBIJ6tatC0EQcq0v7B++X375Bd988w369++PtWvX4p133jFF3DLHVO8bc+bMQbNmzdCqVSujH5sKp1u3bqhSpQrmzZsndhQi0ZS2a7WKitd0Jas0P96lOZtJCUQvsXr1agGAMGfOHOG3334TVq1aJYwZM0aQyWSCv7+/kJ6ebvAxDx8+LAAQDh8+bPC+EydOFPJ76aanpwvZ2dkGH7O4inNeS0tLYeTIkcYNVAwZGRlCVlaW7vaWLVvyfa4yMzOFzMzMEkxXeB988IEglUoLla9nz56Ct7e36UMVYOTIkQIAAYCwdevWXOsBCBMnTnzpcQYNGiR4enqaImKZVtD7RlFFRUUJcrlc2LBhg1GPW1oBEGbNmqW7rVarhfT0dEGr1ZZoDm9v71zvmcuXLxcsLCyEpKSkEs1CVFqY4lqtoqqo13RlUVEe7+zs7Fy/D4W9xjJEftnE+ttZUthygQqte/fuGDZsGMaOHYuffvoJ06dPx4MHD7Bz506xo+moVCqYmZlVmPOaglKphFwuL9S2CoUCCoXCxImKJioqCubm5qU2X17Mzc1RrVo1zJkzJ8/WC4URFRUFOzu7l26nVquRlZVVpHPQM+vWrYOZmRl69epV4ucuDc+fTCaDSqXK1bxUDP369UNmZia2bNkidhQiUZWFa7XSrqJe05V3qampAAAzMzOoVCrRcpSmv52mwOICFVmbNm0AAA8ePNBbfvv2bfTv3x8ODg5QqVRo3Lhxof6oHTt2DAMGDEDlypWhVCrh5eWFd955B+np6bptgoKC8P333wOAXvO/HM/3k9u6dSskEgn+/fffXOf64YcfIJFIcP369WLnfvG8wH/9ue7fv4+goCDY2dnB1tYWo0aNQlpamt5+qampWLt2re6+PN83LjQ0FKNHj4arqyuUSiVq1aqFX375Re/cOeNXbN68GV9++SUqVaoElUqFjh074v79+3rb3rt3D/369YObmxtUKhUqVaqE119/HYmJibptnu+ft2bNGgwYMAAA0L59e13GnLEy8hpzITMzE7NmzUKVKlV0z+P777+PzMxMve3279+P1q1bw87ODlZWVggICMCHH3740sdarVbj888/h7+/P5RKJXx8fPDhhx/qHV8ikWD16tVITU3VZV6zZk2exwsMDMTu3bvx5MkT3bY+Pj669VFRURgzZgxcXV2hUqlQr149rF27Vu8Yjx8/hkQiwbfffotFixbB29sb5ubmaNeund5r7GWkUik+/vhjXL16FTt27Cj0fs9nOHz4MG7cuKH3XD2fb/HixbrH7ubNm8jKysKnn36KRo0awdbWFpaWlmjTpg0OHz6c6xyxsbEYPnw4bGxsYGdnh5EjR+LKlSu5Ht+goCBYWVkhODgYr7zyCqysrODp6an73b127Ro6dOgAS0tLeHt7Y8OGDbnOlZCQgKlTp8LLywtKpRJVqlTB/PnzodVqc93nb7/9Fj/++KPufjVp0gTnzp3Ty1PQ+8bGjRvRqFEjWFtbw8bGBnXq1MGSJUte+pj/8ccfaNasGaysrPSWBwYGonbt2rh58ybat28PCwsLeHp64uuvv851DENfXy8+fznvNXfv3sWwYcNga2sLZ2dnfPLJJxAEAU+fPsVrr70GGxsbuLm5YcGCBXrHNuT5f9GL/UZzsuT18/z7mlarxeLFi1GrVi2oVCq4urpi/PjxiI+P1zu+IAj44osvUKlSJVhYWKB9+/a4ceNGnllcXFxQt25d/Pnnny/NTVSR5HWtVtjf+4YNG6Jv3756y+rUqQOJRIKrV6/qlm3atAkSiQS3bt3KN8fz1yqzZ8+Gp6cnrK2t0b9/fyQmJiIzMxNTp06Fi4sLrKysMGrUqFzXDatXr0aHDh3g4uICpVKJmjVrYsWKFXrbHDp0CFKpFJ9++qne8g0bNkAikeTaPi8V8Zpu5MiRcHJyQnZ2dq7Ho0uXLggICHjp43bmzBn06NED9vb2sLS0RN26dXP9LT106BDatGkDS0tL2NnZ4bXXXsv1ujHG451zjJs3b2LIkCGwt7dH69at9dblZf369QgICIBKpUKjRo1w9OhRvfVBQUF614gvZi5MtvzGXFi+fDlq1aoFpVIJDw8PTJw4EQkJCXrbGHJ9sXTpUtSqVQsWFhawt7dH48aN87zeMrbyUZYjUeT8Utjb2+uW3bhxA61atYKnpydmzJgBS0tLbN68Gb1798a2bdvQp0+ffI+3ZcsWpKWlYcKECXB0dMTZs2exdOlShISE6L6NGj9+PMLCwrB//3789ttvBebr2bMnrKyssHnzZrRr105v3aZNm1CrVi3Url272LkLMnDgQPj6+mLevHm4ePEifvrpJ7i4uGD+/PkAgN9++w1jx45F06ZN8cYbbwAA/P39AQCRkZFo3ry5rq+9s7Mz/vnnH4wZMwZJSUmYOnWq3rm++uorSKVSTJ8+HYmJifj6668xdOhQnDlzBsCzi4muXbsiMzMTb7/9Ntzc3BAaGopdu3YhISEBtra2ufK3bdsWkydPxnfffYcPP/wQNWrUAADdvy/SarV49dVXcfz4cbzxxhuoUaMGrl27hkWLFuHu3bu6vmc3btzAK6+8grp162LOnDlQKpW4f/9+oQbFGzt2LNauXYv+/fvj3XffxZkzZzBv3jzcunVL94H8t99+w48//oizZ8/ip59+AgC0bNkyz+N99NFHSExMREhICBYtWgQAug+L6enpCAwMxP379zFp0iT4+vpiy5YtCAoKQkJCAqZMmaJ3rF9//RXJycmYOHEiMjIysGTJEnTo0AHXrl2Dq6vrS+8bAAwZMgSff/455syZgz59+hS6su3s7IzffvsNX375JVJSUnT9z2vUqKEr0K1evRoZGRl44403oFQq4eDggKSkJPz0008YPHgwxo0bh+TkZPz888/o2rUrzp49qxsIU6vVolevXjh79iwmTJiA6tWr488//8TIkSPzzKPRaNC9e3e0bdsWX3/9NdavX49JkybB0tISH330EYYOHYq+ffti5cqVGDFiBFq0aAFfX18AQFpaGtq1a4fQ0FCMHz8elStXxsmTJzFz5kyEh4fnGh9jw4YNSE5Oxvjx4yGRSPD111+jb9++ePjwIeRyeYHvG/v378fgwYPRsWNH3e/lrVu3cOLEiVzP7/Oys7Nx7tw5TJgwIc/18fHx6NatG/r27YuBAwdi69at+OCDD1CnTh10794dgOGvr7yevxyDBg1CjRo18NVXX2H37t344osv4ODggB9++AEdOnTA/PnzsX79ekyfPh1NmjRB27ZtAaDQz39h9O3bF1WqVNFbduHCBSxevBguLi66ZePHj8eaNWswatQoTJ48GY8ePcKyZctw6dIlnDhxQvct26effoovvvgCPXr0QI8ePXDx4kV06dIl3xYbjRo1qpj9W4kKkNe1WmF/79u0aYPff/9dt19cXBxu3LgBqVSKY8eOoW7dugCefTnk7Oyc77XB8+bNmwdzc3PMmDED9+/fx9KlSyGXyyGVShEfH4/PPvsMp0+fxpo1a+Dr66tXJFixYgVq1aqFV199FWZmZvjrr7/w1ltvQavVYuLEiQCADh064K233sK8efPQu3dvNGzYEOHh4Xj77bfRqVMnvPnmm0V+LMvzNd3w4cPx66+/Yu/evXjllVd0+0RERODQoUOYNWtWgY/N/v378corr8Dd3R1TpkyBm5sbbt26hV27dun+lh04cADdu3eHn58fPvvsM6Snp2Pp0qVo1aoVLl68mOtDe3Ee7xwDBgxA1apVMXfu3Je2CP3333+xadMmTJ48GUqlEsuXL0e3bt1w9uxZ3eeFwipMtud99tlnmD17Njp16oQJEybgzp07WLFiBc6dO6f3dxEo3PXFqlWrMHnyZPTv3x9TpkxBRkYGrl69ijNnzmDIkCEG3ReDidsrg8qCnH58Bw4cEKKjo4WnT58KW7duFZydnQWlUik8ffpUt23Hjh2FOnXqCBkZGbplWq1WaNmypVC1alXdsrzGXEhLS8t17nnz5gkSiUR48uSJbllBfafxQp/gwYMHCy4uLoJardYtCw8PF6RSqTBnzhyDc+fnxfPOmjVLACCMHj1ab7s+ffoIjo6Oesvy65M1ZswYwd3dXYiJidFb/vrrrwu2tra6xyvnsaxRo4be+AJLliwRAAjXrl0TBEEQLl26JAAQtmzZUuB9ebE/c0H989q1aye0a9dOd/u3334TpFKpcOzYMb3tVq5cKQAQTpw4IQiCICxatEgAIERHRxeY5UWXL18WAAhjx47VWz59+nQBgHDo0CHdspEjRwqWlpaFOm5+Yy4sXrxYACCsW7dOtywrK0to0aKFYGVlpevf/ejRIwGAYG5uLoSEhOi2PXPmjABAeOedd16a4fm8a9euFQAI27dv161HIfsDtmvXTqhVq5bespx8NjY2QlRUlN46tVqda1yK+Ph4wdXVVe/1u23bNgGAsHjxYt0yjUYjdOjQQQAgrF69Wu++ABDmzp2rd0xzc3NBIpEIGzdu1C2/fft2rt+fzz//XLC0tBTu3r2rl2vGjBmCTCYTgoOD9e6Xo6OjEBcXp9vuzz//FAAIf/31l25Zfu8bU6ZMEWxsbPTeIwrj/v37AgBh6dKluda1a9dOACD8+uuvumWZmZmCm5ub0K9fP90yQ19feT1/Oe81b7zxhm6ZWq0WKlWqJEgkEuGrr77SLc95Dp7//S7s8y8Iud/ncv42PHr0KM/HKDo6WqhcubJQp04dISUlRRAEQTh27JgAQFi/fr3etnv27NFbHhUVJSgUCqFnz556/VI//PBDAUCe75lz584VAAiRkZF55iEqzwy5Vivs733O3/+bN28KgiAIO3fuFJRKpfDqq68KgwYN0m1Xt25doU+fPgXmy7lWqV27tt4YAIMHDxYkEonQvXt3ve1btGiR6+9yXteJXbt2Ffz8/PSWpaamClWqVBFq1aolZGRkCD179hRsbGz0riULUhGv6TQajVCpUiW951UQBGHhwoWCRCIRHj58mO851Gq14OvrK3h7ewvx8fF6655//65fv77g4uIixMbG6pZduXJFkEqlwogRI3TLjPF45xxj8ODB+a57Hv4/5tX58+d1y548eSKoVCq91/bIkSPzvF7M65j5ZXvxb2fO37suXboIGo1Gt92yZcsEAMIvv/yiW1bY64vXXnst17VgSWG3CCq0Tp06wdnZGV5eXujfvz8sLS2xc+dOVKpUCcCzivahQ4cwcOBAJCcnIyYmBjExMYiNjUXXrl1x7969AkcsNjc31/0/NTUVMTExaNmyJQRBwKVLl4qUedCgQYiKitKb8nLr1q3QarUYNGiQUXIX5MUKeZs2bRAbG4ukpKQC9xMEAdu2bUOvXr0gCIIuU0xMDLp27YrExERcvHhRb59Ro0bpjS+Q0xTy4cOHAKCrYu/du1evWZkxbdmyBTVq1ED16tX1Mnfo0AEAdE0uc8YE+PPPP/Waub/M33//DQCYNm2a3vJ3330XALB79+7i3oVc53Nzc8PgwYN1y+RyOSZPnoyUlJRcXW569+4NT09P3e2mTZuiWbNmutyFNXToUFStWrVYYy/kpV+/fnB2dtZbJpPJdK8brVaLuLg4qNVqNG7cWO81tmfPHsjlcowbN063TCqV6r4tysvYsWN1/7ezs0NAQAAsLS0xcOBA3fKAgADY2dnpXqfAs9dRmzZtYG9vr/c66tSpEzQaTa5mioMGDdL7Vu7F135B7OzskJqaiv3797902+fFxsYC0P828HlWVlYYNmyY7rZCoUDTpk31Mhn6+srr+cvx/GMtk8nQuHFjCIKAMWPG6JbnPAfPZyjs828ojUaDwYMHIzk5GTt27IClpSWAZ8+tra0tOnfurPfcNmrUCFZWVrr3iAMHDiArKwtvv/22XuudF7/de17OcxETE1Pk3ERl3cuu1YDC/97nvJfmvOceO3YMTZo0QefOnXHs2DEAz7qwXb9+Xbfty4wYMULvW9hmzZpBEASMHj1ab7tmzZrh6dOnUKvVumXPXycmJiYiJiYG7dq1w8OHD/W6AlhYWGDNmjW4desW2rZti927d2PRokWoXLlyoTLmpzxf00mlUgwdOhQ7d+5EcnKybvn69evRsmVLXcvCvFy6dAmPHj3C1KlTc435lPP+HR4ejsuXLyMoKEiv1V3dunXRuXPnPK+Tivp4F3SMgrRo0QKNGjXS3a5cuTJee+017N27FxqNptDHMVTO37upU6dCKv3vo/m4ceNgY2OT69q2MNcXdnZ2CAkJ0esiWlJYXKBC+/7777F//35s3boVPXr0QExMDJRKpW79/fv3IQgCPvnkEzg7O+v95DSnioqKyvf4wcHBujcdKysrODs767ozPP9HwxDdunWDra0tNm3apFu2adMm1K9fH9WqVTNK7oK8+Ics5+L3xb7FL4qOjkZCQgJ+/PHHXJlGjRqVZ6aXncvX1xfTpk3DTz/9BCcnJ3Tt2hXff/99kR/bvNy7dw83btzIlTnnsc7JPGjQILRq1Qpjx46Fq6srXn/9dWzevPmlhYYnT55AKpXmanrt5uYGOzs7PHnyxGj3Jed8VatW1XuzB/7rFvLi+apWrZrrGNWqVdM1S01PT0dERITeT15kMhk+/vhjXL582ajNvPO7OFi7di3q1q0LlUoFR0dHODs7Y/fu3XqvjSdPnsDd3R0WFhZ6+774XORQqVS5Pgjb2tqiUqVKubp62Nra6v1O3Lt3D3v27Mn1OurUqRMAw1/7BXnrrbdQrVo1dO/eHZUqVcLo0aOxZ8+el+6XI7/iT173097eXi+Toa+vgi7uXnwMbG1toVKp4OTklGv5i49LYZ5/Q3388cc4dOgQNmzYoNcU9N69e0hMTISLi0uu5zclJUX33Obc9xd/p5ydnfMt6OQ8F+V1kCyiwnjZtVqOwvzeu7q6omrVqrpCwrFjx9CmTRu0bdsWYWFhePjwIU6cOAGtVlvo4kJe71UA4OXllWu5VqvVy3PixAl06tRJ11/f2dlZN1bTi+9XrVq1woQJE3D27Fl07do1V/EiLi5O729xYd7vyvs13YgRI5Cenq7rYnrnzh1cuHABw4cPL3C/nPE8Cuo6kPOentfYDTVq1EBMTIxuwMUcxfnbnqOgv5svyu8aLi0tDdHR0YU+jqHye2wUCgX8/PxyXQsU5vrigw8+gJWVFZo2bYqqVati4sSJhep6bAwcc4EKrWnTpmjcuDGAZ9/Qtm7dGkOGDMGdO3dgZWWl+2A4ffp0dO3aNc9j5PdBRKPRoHPnzoiLi8MHH3yA6tWrw9LSEqGhoQgKCjLo2+3nKZVK9O7dGzt27MDy5csRGRmJEydOYO7cubptipP7ZWQyWZ7LX/ZtdE6mYcOG5dunPaevoyHnWrBgAYKCgvDnn39i3759mDx5MubNm4fTp0/rfatRVFqtFnXq1MHChQvzXJ9z8WBubo6jR4/i8OHD2L17N/bs2YNNmzahQ4cO2LdvX773JUdZ/fCwadMm3YVEjvxeC0OHDtWNvdC7d2+jnP/5b31yrFu3DkFBQejduzfee+89uLi4QCaTYd68ebkGazVEfs9hYV6nWq0WnTt3xvvvv5/ntjnFKkOOmR8XFxdcvnwZe/fuxT///IN//vkHq1evxogRI3INrPg8R0dHAPlf5BQnU37yev4KOl9hMpji+f/jjz8wf/58fP755+jWrZveOq1WCxcXF6xfvz7PffNrmVEYOc/FiwUVoorkZddqgGG/961bt8bBgweRnp6OCxcu4NNPP0Xt2rVhZ2eHY8eO4datW7CyskKDBg0Kla+ofxsePHiAjh07onr16li4cCG8vLygUCjw999/Y9GiRbmuEzMzM3WtVh88eIC0tDS94njfvn31WoeNHDky34GfC5sxP2Xlmq5mzZpo1KgR1q1bhxEjRmDdunVQKBR6rQ1LkjH+jhb0d7Mo8rv+NGXLhhcV5nGpUaMG7ty5g127dmHPnj3Ytm0bli9fjk8//RSzZ882aT4WF6hIcv4ItW/fHsuWLcOMGTPg5+cH4Fmz3pxvGAvr2rVruHv3LtauXYsRI0bolufVVNnQD5aDBg3C2rVrcfDgQdy6dQuCIOi6RAAoVm5jyOv+ODs7w9raGhqNxuiZ6tSpgzp16uDjjz/GyZMn0apVK6xcuRJffPFFofPlx9/fH1euXEHHjh1fup9UKkXHjh3RsWNHLFy4EHPnzsVHH32Ew4cP53ufvb29odVqce/ePb2BoyIjI5GQkABvb+9CZ31eflm9vb1x9epVaLVavW+Xb9++rVv/vHv37uU6xt27d3WDFHXt2rXQze9zWi/kXDiYytatW+Hn54ft27frPQ4vDt7k7e2Nw4cP57pAe3H0amPw9/dHSkqKUV/7Bb0eFQoFevXqhV69ekGr1eKtt97CDz/8gE8++STfwmLlypVhbm6OR48eFTmToa8vUyjs819Yd+/exciRI9G7d+88Z3/x9/fHgQMH0KpVqwIv+nLu+71793Tv0cCzbwDzK+g8evQITk5OxSpQEJUneV2rAYb93rdp0warV6/Gxo0bodFo0LJlS0ilUrRu3VpXXGjZsuVLvxQorr/++guZmZnYuXOn3jfa+c1sM2vWLNy6dQvffvstPvjgA8yYMQPfffedbv2CBQv03ks8PDyMkrOsX9ONGDEC06ZNQ3h4ODZs2ICePXvm21osR07rtOvXrxd4/QY8aw3xotu3b8PJyUnXfc4QxvyyKb9rOAsLC93fFXt7+1wzOAC5Wxoaku35x+b5v3dZWVl49OhRkV8zlpaWGDRoEAYNGoSsrCz07dsXX375JWbOnGnSqTjZLYKKLDAwEE2bNsXixYuRkZEBFxcXBAYG4ocffkB4eHiu7QtqUpTzR+n5qpsgCHlOB5fz5pPXL3deOnXqBAcHB2zatAmbNm1C06ZN9ZpJFSe3MVhaWua6LzKZDP369cO2bdvynMqwKJmSkpL0+i4Cz/4oSaXSXNM9vZgPKNzjPXDgQISGhmLVqlW51qWnp+uavMXFxeVanzM6dUFZevToAQC5ZgvIaSnRs2fPl2bMi6WlZZ5NCXv06IGIiAi9bjVqtRpLly6FlZVVrllI/vjjD73xOc6ePYszZ87oRu91d3dHp06d9H4KMmzYMFSpUsWkVea8fvfOnDmDU6dO6W3XtWtXZGdn6z23Wq1WN8WjMQ0cOBCnTp3C3r17c61LSEjI9ToujPxexzljJ+SQSqW6b5AKei3K5XI0btwY58+fNzhLDkNfX6ZQ2Oe/MFJSUtCnTx94enrqpt960cCBA6HRaPD555/nWqdWq3XPT6dOnSCXy7F06VK9bC/+7j/vwoULaNGihcG5icqzF6/VAMN+73O6O8yfPx9169bVdWNo06YNDh48iPPnzxe6S0Rx5JU5MTERq1evzrXtmTNn8O2332Lq1Kl499138d5772HZsmV6LRUaNWqk97e4Zs2aRslZ1q/pBg8eDIlEgilTpuDhw4d6ffvz07BhQ/j6+mLx4sW5jpvzfLm7u6N+/fpYu3at3jbXr1/Hvn37dNd3hsrr8S6qU6dO6Y198fTpU/z555/o0qWL7vXn7++PxMREvalYw8PD85w+vLDZOnXqBIVCge+++07v9f3zzz8jMTGxSNe2L17bKBQK1KxZE4Ig5DndqDGx5QIVy3vvvYcBAwZgzZo1ePPNN/H999+jdevWqFOnDsaNGwc/Pz9ERkbi1KlTCAkJwZUrV/I8TvXq1eHv74/p06cjNDQUNjY22LZtW57fUOUMtjJ58mR07doVMpkMr7/+er4Z5XI5+vbti40bNyI1NRXffvttrm2KmtsYGjVqhAMHDmDhwoXw8PCAr68vmjVrhq+++gqHDx9Gs2bNMG7cONSsWRNxcXG4ePEiDhw4kOcH9IIcOnQIkyZNwoABA1CtWjWo1Wr89ttvuj96+alfvz5kMhnmz5+PxMREKJVK3TzTLxo+fDg2b96MN998E4cPH0arVq2g0Whw+/ZtbN68GXv37kXjxo0xZ84cHD16FD179oS3tzeioqKwfPlyVKpUSTcPcV7q1auHkSNH4scff0RCQgLatWuHs2fPYu3atejduzfat29v0GOSo1GjRti0aROmTZuGJk2awMrKCr169cIbb7yBH374AUFBQbhw4QJ8fHywdetWnDhxAosXL4a1tbXecapUqYLWrVtjwoQJyMzMxOLFi+Ho6Jhv8/6Xkclk+Oijj3J1pTCmV155Bdu3b0efPn3Qs2dPPHr0CCtXrkTNmjWRkpKi2653795o2rQp3n33Xdy/fx/Vq1fHzp07da9DY3578N5772Hnzp145ZVXEBQUhEaNGiE1NRXXrl3D1q1b8fjxY4Obvuf3vjF27FjExcWhQ4cOqFSpEp48eYKlS5eifv36L51W7bXXXsNHH32EpKQk2NjYGHw/DX19mUJhn//CmD17Nm7evImPP/44V2sbf39/tGjRAu3atcP48eMxb948XL58GV26dIFcLse9e/ewZcsWLFmyBP3794ezszOmT5+OefPm4ZVXXkGPHj1w6dIl/PPPP3k+91FRUbh69WqBA4wSVVQvXqsZ8ntfpUoVuLm54c6dO3j77bd1y9u2bYsPPvgAAEqkuNClSxddK7Px48cjJSUFq1atgouLi94XQxkZGRg5ciSqVq2KL7/8EsCz96a//voLo0aNwrVr14r0DXlhlfVrOmdnZ3Tr1g1btmyBnZ1doT7YSqVSrFixAr169UL9+vUxatQouLu74/bt27hx44bui4JvvvkG3bt3R4sWLTBmzBjdVJS2trb47LPPDLr/OfJ7vIuidu3a6Nq1q95UlAD0vuB5/fXX8cEHH6BPnz6YPHky0tLSsGLFClSrVi3XoJyFzebs7IyZM2di9uzZ6NatG1599VXcuXMHy5cvR5MmTQpV4HlRly5d4ObmhlatWsHV1RW3bt3CsmXL0LNnT9NfW5h4NgoqB3KmTDl37lyudRqNRvD39xf8/f11U7k9ePBAGDFihODm5ibI5XLB09NTeOWVV4StW7fq9strKsqbN28KnTp1EqysrAQnJydh3LhxwpUrV3JNc6dWq4W3335bcHZ2FiQSid7UL3hh+qAc+/fvFwAIEolEbzqm5xUmd35ePG/OlDQvTrWY19Rtt2/fFtq2bSuYm5vnmmItMjJSmDhxouDl5SXI5XLBzc1N6Nixo/Djjz/qtsl5LF+cjihn+rqcx+7hw4fC6NGjBX9/f0GlUgkODg5C+/bthQMHDujt9+K0RYIgCKtWrRL8/PwEmUym97y9OBWlIDybSm/+/PlCrVq1BKVSKdjb2wuNGjUSZs+eLSQmJgqCIAgHDx4UXnvtNcHDw0NQKBSCh4eHMHjw4FxTD+YlOztbmD17tuDr6yvI5XLBy8tLmDlzpt40ooJg2FSUKSkpwpAhQwQ7OzsBgN40Q5GRkcKoUaMEJycnQaFQCHXq1NF7PQrCf4/1N998IyxYsEDw8vISlEql0KZNG+HKlSuFypBf3uzsbMHf398oU1F+8803ubbXarXC3LlzBW9vb0GpVAoNGjQQdu3aled0S9HR0cKQIUMEa2trwdbWVggKChJOnDghANCbXjK/+5JXNkF49prr2bOn3rLk5GRh5syZQpUqVQSFQiE4OTkJLVu2FL799lvdNGYF3a8Xfyfze9/YunWr0KVLF8HFxUVQKBRC5cqVhfHjxwvh4eG5jvmiyMhIwczMTPjtt98KdT/zekwNfX29KL/3msI+B4Y8/y8+pi++n+VMQZrXz4vvKT/++KPQqFEjwdzcXLC2thbq1KkjvP/++0JYWJhuG41GI8yePVtwd3cXzM3NhcDAQOH69et5vketWLFCsLCw0E3fSVTRGHKtZsjvvSAIwoABAwQAwqZNm3TLsrKyBAsLC0GhUAjp6ekvzZfftUp+ufN6b9u5c6dQt25dQaVSCT4+PsL8+fOFX375Re996J133hFkMplw5swZveOdP39eMDMzEyZMmPDSrBX1mi7H5s2bBbwwxXFhHD9+XOjcubNgbW0tWFpaCnXr1s01XfOBAweEVq1aCebm5oKNjY3Qq1cv3VSnOYzxeOd3jOfXPS/nGmvdunVC1apVdb8XeU3Dvm/fPqF27dqCQqEQAgIChHXr1uV5zPyy5TeN87Jly4Tq1asLcrlccHV1FSZMmJBras/CXl/88MMPQtu2bQVHR0dBqVQK/v7+wnvvvae7DjcliSAYcZ4zIqIK6PHjx/D19cU333yD6dOnix2nRP3xxx/o06cPjh8/jlatWokdp8SNGTMGd+/e1Y2mTuJo0KABAgMDsWjRIrGjEBGVaX/++Sd69+6No0ePlkirFCpfOOYCEREVSnp6ut5tjUaDpUuXwsbGBg0bNhQplbhmzZqFc+fOldgUT5Tbnj17cO/ePcycOVPsKEREZd6qVavg5+dXYDdVovxwzAUiIiqUt99+G+np6WjRogUyMzOxfft2nDx5EnPnzjX6dE9lReXKlXWDpJE4unXrZvD4EEREpG/jxo24evUqdu/ejSVLlpTZab9JXCwuEBFRoXTo0AELFizArl27kJGRgSpVqmDp0qWYNGmS2NGIiIioGAYPHgwrKyuMGTMGb731lthxqIzimAtEREREREREVCwcc4GIiIiIiIiIioXFBSIiIiIiIiIqlgo35oJWq0VYWBisra05UAkRERFVWIIgIDk5GR4eHpBK+X0TEREVT4UrLoSFhcHLy0vsGERERESlwtOnT1GpUiWxYxARURlX4YoL1tbWAJ79IbWxsRE5DREREZE4kpKS4OXlpbs2IiIiKo4KV1zI6QphY2PD4gIRERFVeOwmSkRExsAOdkRERERERERULCwuEBEREREREVGxsLhARERERERERMXC4gIRERERERERFQuLC0RERERERERULCwuEBEREREREVGxsLhARERERERERMUianHh6NGj6NWrFzw8PCCRSPDHH3+8dJ8jR46gYcOGUCqVqFKlCtasWWPynERERERERESUP1GLC6mpqahXrx6+//77Qm3/6NEj9OzZE+3bt8fly5cxdepUjB07Fnv37jVxUiIiIiIiIiLKj5mYJ+/evTu6d+9e6O1XrlwJX19fLFiwAABQo0YNHD9+HIsWLULXrl1NFZOIiIiIiIiIClCmxlw4deoUOnXqpLesa9euOHXqVL77ZGZmIikpSe+HiIiIiIiIiIxH1JYLhoqIiICrq6veMldXVyQlJSE9PR3m5ua59pk3bx5mz55dUhFz8ZmxW7RzlwWPv+opdgQiIiIiIiIqpjLVcqEoZs6cicTERN3P06dPxY5ERERERERUbgUGBmLq1Klix6ASVqaKC25uboiMjNRbFhkZCRsbmzxbLQCAUqmEjY2N3g8RERERERGJ780334REIsHixYvFjkLFVKaKCy1atMDBgwf1lu3fvx8tWrQQKREREREREREVxY4dO3D69Gl4eHiIHYWMQNTiQkpKCi5fvozLly8DeDbV5OXLlxEcHAzgWZeGESNG6LZ/88038fDhQ7z//vu4ffs2li9fjs2bN+Odd94RIz4RERERERHlQa1WY9KkSbC1tYWTkxM++eQTCIKgWx8aGoq3334b69evh1wuFzEpGYuoxYXz58+jQYMGaNCgAQBg2rRpaNCgAT799FMAQHh4uK7QAAC+vr7YvXs39u/fj3r16mHBggX46aefOA0lERERERFRKbJ27VqYmZnh7NmzWLJkCRYuXIiffvoJAKDVajF8+HC89957qFWrlshJyVhEnS0iMDBQr3r1ojVr1uS5z6VLl0yYioiIiIiIiIrDy8sLixYtgkQiQUBAAK5du4ZFixZh3LhxmD9/PszMzDB58mSxY5IRlakxF4iIiIiIiKj0a968OSQSie52ixYtcO/ePVy4cAFLlizBmjVr9NZT2cfiAhEREREREZWII0eOICoqCpUrV4aZmRnMzMzw5MkTvPvuu/Dx8RE7HhWDqN0iiIiIiIiIqPw5c+aM3u3Tp0+jatWqCAoKyjVmXteuXTF8+HCMGjWqJCOSkbG4QEREREREREYVHByMadOmYfz48bh48SKWLl2KBQsWwNHREY6OjnrbyuVyuLm5ISAgQKS0ZAwsLhAREREREZFRjRgxAunp6WjatClkMhmmTJmCN954Q+xYZEIsLhAREREREZHRHDlyRPf/FStWvHT7x48fmy4MlRgO6EhERERERERExcLiAhEREREREREVC7tFEBERERERlXEZ2RpoBQFaAYBWA7mghkQqhUQigUwuh1QqEzsilXMsLhAREREREZUyyRnZCE1IR1hCOsISMhCWkI6IpAwkpauRnJGN5Aw1kjOf/ZuSoYZaK+j27W6fiCoXN+gdT65UQWlhAYWFJZQWFlBaWEJhYQkLGxtYOzrD2skZNo7OsHF2gZW9AyRSNnInw7C4QEREREREJJLQhHTciUjC7Yhk3IlIxt3IFITEpSE5U23U82RnZiA7MwOIj3vptlKZDFYOTrB394CTlzecvX3h5OUNRy9vmMnlRs1F5QeLC0RERERERCUgKjkD5x7F4/yTOFwPTcSdiGQkZRi3iGAMWo0GSdGRSIqOxJOrl3TLJVIp7N084OTtC3f/qvAIqAFXvyqQmbHgQCwuEBERERERmcSjmFScexSHs4/jcP5xHB7HpokdqVgErRZxYSGICwvB3VPHAAAyuRxu/tXgVbM2KtWsA4+AGpArlCInJTGwuEDlhs+M3WJHKNUef9VT7AhERERE5VqWWovTD2Nx6HYUDt6OxNO4dLEjmZwmOxuht28g9PYNYPsmyORyVK5VF36NmsGvYRPYODmLHZFKCIsLRERERERERRSbkomDt6Nw8FYkjt+LQWqWRuxIotJkZ+PR5Qt4dPkCDv4MOPv4wb9RU/g3bApX/6qQSCRiRyQTYXGBiIiIiIjIAOlZGuy7GYEdl0Jx/F6M3kwNpC/68UNEP36I09s2wtrJGTVaB6JWu45w8KgkdjQyMhYXiIiIiIiIXkKrFXDqYSy2XwzF3hsRSDHybA4VQXJMNM7+sQVn/9gCN/+qqNm2A6q3agdzaxuxo5ERsLhARERERESUj5iUTKw/HYyN54IRnpghdpxyI+LBPUQ8uIcjv/4Mv4aNUa9LT/jUbSB2LCoGFheIiIiIiIhecDUkAWtOPMauq+HI0mjFjlNuaTVq3D93GvfPnYZjpcpo2P1V1GjbnjNOlEEsLhAREREREQFQa7TYfS0ca08+xsXgBLHjVDixIcHYv2oZjm38FXU7dEH9rq/A2tFJ7FhUSCwuEBERERFRhZap1mDL+RCsOPIAoQnlf/rI0i4jOQln/9yK87t2oHrLtmjWdxAHgCwDWFwgIiIiIqIKKVOtwcazT7HiyANEJHE8hdJGq9Hg5rHDuHX8XwS0bIMWA96Ag7ut2LEoHywuEBERERFRhZKt0WLL+RAsO3QPYRyksdQTBC3iwqKw8fOLqNbUFU1f8YWNk7nYsegFUrEDEBERERERlZQDNyPRZdFRfLjjGgsLZYhM2QKCVsCd0xFYP+s0jv5+Bxkp2WLHylNmZiY++ugjeHt7Q6lUwsfHB7/88ovYsUyOLReIiIiIiKjcuxeZjDm7buLYvRixo5CBXP1qIT7STndbqxFw7d9Q3D0fiWa9/FCrrSekUol4AV8wcOBAREZG4ueff0aVKlUQHh4Orbb8zzjC4gIREREREZVbCWlZWLT/LtafCYZaK4gdh4pAIm+e5/LMVDWObryLG8fD0HZQNXhUtTN5ll9//RXvvPMOwsLCoFT+N11m7969YW1tjaFDh+Lff//Fw4cP4eDgAADw8fExea7SgN0iiIiIiIio3BEEAevPPEHgt0ew9tQTFhbKKFf/OkiIKngQx9iQFOxYcBH7frqOlPhMk+YZMGAANBoNdu7cqVsWFRWF3bt3Y/To0di5cycaN26Mr7/+Gp6enqhWrRqmT5+O9PTyPwsJiwtERERERFSuPIlNxeBVp/HRjutISCud/fKpkGTNCr3pvfNRWP/ZaVw7EgJBME0xydzcHEOGDMHq1at1y9atW4fKlSsjMDAQDx8+xPHjx3H9+nXs2LEDixcvxtatW/HWW2+ZJE9pwm4RRERERERULmi1An458QgL9t1FerZG7DhUTG5V6iIh2sagfdSZGhzdeBcPLkWjw4jqsHE0/qwS48aNQ5MmTRAaGgpPT0+sWbMGQUFBkEgk0Gq1kEgkWL9+PWxtn7W4WLhwIfr374/ly5fD3Lz8znLBlgtERERERFTm3Y9KRv+VJ/HF7lssLJQTgrTwrRZeFHonHhs/P4sbx0KNmOiZBg0aoF69evj1119x4cIF3LhxA0FBQQAAd3d3eHp66goLAFCjRg0IgoCQkBCjZylNWFwgIiIiIqIy7Zfjj9Dju+O4GJwgdhQyEreq9ZEYbV2sY2RnaHBk/R38tfSy0cdiGDt2LNasWYPVq1ejU6dO8PLyAgC0atUKYWFhSElJ0W179+5dSKVSVKpUyagZShsWF4iIiIiIqExKTMvGuF/PY86um8hSl/+p/ioSLZoY7VjBN+Kw8fMzeHAxymjHHDJkCEJCQrBq1SqMHj1ab7mjoyNGjRqFmzdv4ujRo3jvvfcwevToct0lAmBxgYiIiIiIyqALT+LQ47tj2H8zUuwoZGTu1RoiKaZ4rRZelJmmxp4fr+P4lnvQaopfiLK1tUW/fv1gZWWF3r1765ZbWVlh//79SEhIQOPGjTF06FD06tUL3333XbHPWdpxQEciIiIiIiozBEHA8iMPsGj/XU4vWR5JJNBoG5vs8FcOPkXU4yR0HVcblnbKYh0rNDQUQ4cOhVKpf5zq1atj//79xTp2WcSWC0REREREVCYkZWRj9Jpz+GbvHRYWyimPqg2RFGtl0nOEP0jEpi/PIuR2XJH2j4+Px44dO3DkyBFMnDjRyOnKLrZcICIiIiKiUu9JbCrGrD2P+1EpL9+YyiaJBNka07VaeF56cjZ2fncFTXv5onF3H4P2bdCgAeLj4zF//nwEBASYJmAZZHBx4dGjRzh27BiePHmCtLQ0ODs7o0GDBmjRogVUKpUpMhIRERERUQV2+mEsJqy7gPi0bLGjkAl5VGuMuCjLEjufoBVw5s+HiAtLRccRNSCTF65h/+PHj00brIwqdHFh/fr1WLJkCc6fPw9XV1d4eHjA3NwccXFxePDgAVQqFYYOHYoPPvgA3t7epsxMREREREQVxKZzwfj4j+vI1rAbRHkmkUiRpW4kyrnvnYtESlwGuk+oA3MrhSgZyoNClWYaNGiA7777DkFBQXjy5AnCw8Nx4cIFHD9+HDdv3kRSUhL+/PNPaLVaNG7cGFu2bDF1biIiIiIiKscEQcAXu27ig23XWFioANwDGiMlzkK084c/SMTW+ReQEJUmWoayrlAtF7766it07do13/VKpRKBgYEIDAzEl19+yWYiRERERERUZGqNFtO3XMEfl8PEjkIlQCKRIjurodgxkBSdju3fXEDPifXg6mMjdpwyp1AtFwoqLLzI0dERjRqJ05yFiIiIiIjKtky1BhPWX2RhoQLxCGiC5HjxWi08Lz05G38suoTgG7FiRylzjDYVpVqtRnBwsLEOR0REREREFUxqphqjVp/D/puRYkehEiKRSpGRKX6rheepMzX4e8U1PL4WI3aUMsVoxYUbN27A19fXWIcjIiIiIqIKJDEtG8N+PoOTD/iNcUXiEdAMqQnmYsfIRaPW4p8fruHxVRYYCstoxQUiIiIiIiofgoKCIJFIcv3UqlXLJOeLT83CoB9P4VJwgkmOT6WTVCZDenoDsWPkS6sW8M+P1/DoSrTYUcqEQk9F2bBhwU1V0tPTix2GiIiIiIjEt2TJEnz11Ve622q1GvXq1cOAAQOMfq7kjGyMXH0WtyOSjX5sKt3cA5ohNlwldowCadUC9vx4HV3H1YZffWex45RqhW65cPPmTdStWxevvfZanj/t2rUrUoDvv/8ePj4+UKlUaNasGc6ePVvg9osXL0ZAQADMzc3h5eWFd955BxkZGUU6NxERERFRRfTrr7/C0dERmZmZest79+6N4cOHw9bWFm5ubrqf8+fPIz4+HqNGjTJqjvQsDcasOY+rIYlGPS6VflKZGTLS6osdo1C0GgF7V13Hg0tRYkcp1QrdcqF27dpo1qwZJkyYkOf6y5cvY9WqVQadfNOmTZg2bRpWrlyJZs2aYfHixejatSvu3LkDFxeXXNtv2LABM2bMwC+//IKWLVvi7t27uiZbCxcuNOjcREREREQV1YABAzB58mTs3LlT1xohKioKu3fvxr59+3Jt//PPP6NTp07w9vY2WoYstRZv/HYeZx/HGe2YVHZ4BDRHTClvtfA8rUbAvp9v4JVJZvCq7iB2nFKp0C0XWrVqhTt37uS73traGm3btjXo5AsXLsS4ceMwatQo1KxZEytXroSFhQV++eWXPLc/efIkWrVqhSFDhsDHxwddunTB4MGDX9ragYiIiIiI/mNubo4hQ4Zg9erVumXr1q1D5cqVERgYqLdtWFgY/vnnH4wdO9Zo59doBbz9+0Ucu8fB8ioiqcwMaSn1xI5hMK1awJ6V1xATwi48eSl0cWHJkiVYvHhxvuv9/f1x+PDhQp84KysLFy5cQKdOnf4LI5WiU6dOOHXqVJ77tGzZEhcuXNAVEx4+fIi///4bPXr0KPR5iYiIiIgIGDduHPbt24fQ0FAAwJo1a3Stgp+3du1a2NnZoXfv3kY794xtV7H3BqebrKg8qrdEWrJS7BhFkpWhwV9LryAplmMOvqjQ3SKMLSYmBhqNBq6urnrLXV1dcfv27Tz3GTJkCGJiYtC6dWsIggC1Wo0333wTH374Yb7nyczM1OtLlpSUZJw7QERERERUhjVo0AD16tXDr7/+ii5duuDGjRvYvXu33jaCIOCXX37B8OHDoVAojHLe7w/fx5YLIUY5FpU9MjMzpCbXETtGsaQlZmHX0ivo+14jqCzlYscpNcrUVJRHjhzB3LlzsXz5cly8eBHbt2/H7t278fnnn+e7z7x582Bra6v78fLyKsHERERERESl19ixY7FmzRqsXr0anTp1ynWt/O+//+L+/fsYM2aMUc73z7VwfLsv/67WVP55BLRCehlttfC8+Ig0/L3iKtTZGrGjlBpFKi7Y2Njg4cOHuf5vCCcnJ8hkMkRG6jeHioyMhJubW577fPLJJxg+fDjGjh2LOnXqoE+fPpg7dy7mzZsHrVab5z4zZ85EYmKi7ufp06cGZyUiIiIiKo+GDBmCkJAQrFq1CqNHj861/ueff0azZs1Qu3btYp/rakgCpm2+AkEo9qGojJLJ5UhOKtutFp4Xfj8RB1bfFDtGqVGkbhHCc+8IQhHfHRQKBRo1aoSDBw/q+m9ptVocPHgQkyZNynOftLQ0SKX69RCZTFZgDqVSCaWy7FfGiIiIiIiMzdbWFv369cPu3btzjamQmJiIbdu2YcmSJcU+T3hiOsauPY90fstbYr7cdQjxabnHBWjp742+jXIXi849eopN567qLTOTSvFV/+6620duP8DhO8++WG5f3R+BAX66dU9i47H94nVM7tgKMmne32F7BLRCdKhxuteUFg8uRuPi3ido2NV4M6mUVaKNuQAA06ZNw8iRI9G4cWM0bdoUixcvRmpqqm7+3BEjRsDT0xPz5s0DAPTq1QsLFy5EgwYN0KxZM9y/fx+ffPIJevXqpSsyEBERERFR4YWGhmLo0KG5vpCztbVFWlpasY+fnqXB2LXnEZWc+fKNyWimdGoF7XNfwEYkpeDHf8+grpd7vvuo5GZ4v1s73e3nB/cMS0jC3ht3Mbp1EwDAz8fPIcDVCe52NtBotdh24Tr6N66Tb2FBJlcgOaH4LWBKo9N/PoSLtzUqVfApKkUtLgwaNAjR0dH49NNPERERgfr162PPnj26QR6Dg4P1Wip8/PHHkEgk+PjjjxEaGgpnZ2f06tULX375pVh3gYiIiIioTIqPj8eRI0dw5MgRLF++3GTn+fiP67gRxkHVS5qVSr9YdPj2AzhaWcDfueAPwDbmqjyXRyWnwN3WBlVdnQAA7rY2iEpOhbudDY7ceQg/ZwdUdrDL97jlsdVCDkErYN/PNzBgZhNYO+T9+FUEohYXAGDSpEn5doM4cuSI3m0zMzPMmjULs2bNKoFkRERERETlV4MGDRAfH4/58+cjICDAJOfYdC4Y2y5yZgixqTVaXHgSinbV/HJNNfq8LLUGX+w6BEEQUMneFt3rBMDN1hoA4G5rjeiUVMSnpkOAgJjkFLjZWiEmJRXnHoVgaufW+R7XTKFAckIto9+v0iQ9ORt7fryOvtMbQmZWpuZNMBrRiwtERERERFTyHj9+bNLj3wpPwqd/3jDpOahwrodFICNbjca+lfLdxtnaCgOb1IW7rTUystU4cuchlh06ield28LOwhyuNtboXjsAPx49AwDoXqc6XG2s8cOR03ilXnXciYjGvht3IZNK8VqDmvB3dtQd271am3LbauF5UY+TcGzTXQQOrS52FFGwuEBEREREREaVlqXGpA0XkanOe0Y3KllnHz5FgJszbPPp8gAAPk728HGy17v99Z5/cfpBMLrVedaypWUVb7Ss8t/Aheceh0ApN4O3oz3m/3MEUzq1RmJ6OtafuoQPe7aHmUwGM4USSfE1THfnSpkbx8LgXsUOAc3yngGxPKuY7TWIiIiIiMhkZv15Aw+iU8WOQQDiUtNwLyoGzfy8DNpPJpXC084GMSl5D+qZmpmF/TfuoneDWgiOTYCztSWcrS1RxcUJGkFAdPKz5989oA0y08p/q4XnHd14F0mxuWfqKO+KVFwYNmwYbGxscv2fiIiIiIgqtj3Xw7HlAsdZKC3OPQqBlVKJGu4uBu2n1QoIT0yGjbkyz/V/Xr6JttV8YWdhDq0gQKMVnttXC60gQK5SITG24rRayJGVrsbBNbcgPPeYVARF6haxYsWKPP9PREREREQVV3xqFj7+47rYMej/tIKAc49D0NinUq4pIn8/cxm25ir0qPtsfIB9N+7B29EOTlaWSM/OxpHbDxGflo6mvrlbPNyNiEZ0cipeb1oPAODlYIuo5BTcCo9CYloGJBIJXKyt4F61DaJC5Ka/o6VQSkwqwrf/A4/+PcSOUmIMLi5kZGRApcq7r054eDjc3fOfN5WIiIiIiMqvWTtvICYlS+wY9H/3ImOQkJaOpnkM5Biflq43c0R6Vja2nL+G5IxMWCjk8LS3wdsdWupmi8iRrdZgx6UbGNa8AaT/39/Owhx9GtTC5nNXIZNK8XrTerCwskJ8bMUc2LCKexoq/fUFkv7OgGPD6lD6+YkdqUQYXFxo2LAhNmzYgPr16+st37ZtG958801ER0cbKxsREREREZURe29EYOeVMLFj0HMC3Jzx7cCeea57q30LvduvNaiJ1xrUfOkx5WYyfNA9MNfyZn6V0cyvsu62e9W2Fa7VgoW1GeokHIDl71sAAAKA8Jkfwvv3DZBIy/9whwbfw8DAQDRv3hzz588HAKSmpiIoKAjDhw/Hhx9+aPSARERERERUuiWksTsE/UdhboGEmACxY5QoHw81mpz4FJbHtugtT79yBXGr14gTqoQZ3HJh+fLl6NmzJ8aOHYtdu3YhPDwcVlZWOHv2LGrXrm2KjEREREREVIrN+esmopMzxY5BpYRb1baIelqk4f3KHJWFDLWzz8Bmw+p8t4n+7jtYtW8PpZ9vCSYreUVqm9G9e3f07dsXJ06cQHBwMObPn8/CAhERERFRBXTqQSy2XwoVOwaVEkoLSyREVxM7Ronw9ACaXZoPm/35FxYAQMjMROSXX5ZQKvEYXFx48OABWrRogV27dmHv3r14//338eqrr+L9999Hdna2KTISEREREVEppNEKmP3XDbFjUCniWqUtsjLKd6sFuVKKBla3EbBhImThjwq1T+qJE0g5dtzEycRlcHGhfv368PX1xZUrV9C5c2d88cUXOHz4MLZv346mTZuaIiMREREREZVCG84G43ZEstgxqJRQWlohPrKq2DFMytVNhuZ3lsF+11KD94365hsIWq0JUpUORRpzYfjw4XrLWrZsiUuXLmHq1KnGykVERERERKVYYlo2Fu67I3YMKkVc/dsh4okEf19YjXP3DiApLQ62lo5oVq0rujUcpjf15Yvuhl3G9lMrEBH3BHZWzujWcCiaB3TTrT937wD+PPMTMrPT0TygK/q1fEu3LjY5Ast2v4/3+66AucLSJPdNZiZBTZuncNr8NSRaTZGOkXn3LhK2bYP9gAFGTlc6GFxceLGwkMPa2ho///xzsQMREREREVHpt+jAXcSnsVs0PaOyskZcZBXsv7wRx27uxPDAD+Du4IPg6DtYd+QbmCssEVinb577xiSFY+U/H6F1zVcQ1OFD3Am9hA3/LoCNhSNqejVBSnoiNvy7AMMC34eTjTtW/PMRqnk2QB3vZ9Npbjq2BK81HWeywoKjsxlqXF8NxYHTxT5WzHdLYduzJ6QWFkZIVroUuTPMzZs3ERwcjKysLN0yiUSCXr16GSUYERERERGVTncjk7Hu9BOxY1Ap4uLXDlFPZXgYeQN1vVuitndzAICjtRvO3z+MJ1G38933+M2/4Gjthr4tJgAA3Oy98SDiGg5f3YaaXk0QkxwOlcISjaq0BwBU86iPyPhg1PFugfP3D0EmNUN9vzZGv08SKVDDKRYuf3wJaZZxZkNRR0cj9udf4Pz2JKMcrzQxuLjw8OFD9OnTB9euXYNEIoEgCACga+Ki0RStiQgREREREZUN3+69A7VWEDsGlRIqKxvERfgDAPxca+HErd2ITHgKVzsvhMQ+wMOIa7rCQV4eRd5EgGdDvWU1KjXBtlPLAQAutp7IVmfiacw9OFi54kn0HTSv3g1pmcnYdW41pvRaYPT7ZOsgR63Hm6E6dMDox4795RfYDRwIuauL0Y8tJoOLC1OmTIGvry8OHjwIX19fnD17FrGxsXj33Xfx7bffmiIjERERERGVEtdDE7HvZqTYMagUyWm1AACdGwxGRnYavtg0ChKpFIJWi1eajkaTqp3y3T8pPQ7WFvZ6y2ws7JGRlYosdSYslNYY3v4D/Hp4PrLVmWharTNqejXB+iPfoF2t3ohNisAPez6BRqtGj8Yj0MCvXdHvjASo6pYCz51fQpqaVPTjFEBIT0f0d0vgUc6mpzS4uHDq1CkcOnQITk5OkEqlkEqlaN26NebNm4fJkyfj0qVLpshJRERERESlwOIDd8WOQKWIubUtYiP8dLcvPjiCc/cOYmTHD+Fu74PQ2AfYevJ72Fo4onlA1yKfp55va9Tzba27fS/sCkLjHmFAq7fx2cYRGNXxI9hYOOCbHRNRxb0urM3tCzha3ixtzFAndg8sft9R5JyFlbjjDziMGAFVQIDJz1VSDJ6KUqPRwNraGgDg5OSEsLAwAIC3tzfu3OFosURERERE5dXVkAQcuBUldgwqRZx920GTLdPd/uP0j+hc/3U0rtIBno5+aFqtMzrU7Y/9l3/P9xg25g5ITovXW5aUFg+VwhIKM2Wu7bM1Wdh0fAkGt5mK6KRQaLUaVPWoB1c7L7jYVsLjyFsG3w9fj2w0+fcjWJwwfWEBAKDVIuqb8tXy3+CWC7Vr18aVK1fg6+uLZs2a4euvv4ZCocCPP/4IPz+/lx+AiIiIiIjKpEX72WqB/mNhY4fYcF+9ZVnqDEgl+t9hSyRSaAVtvsfxda2JG0/P6i27HXoBvi4189x+78X1qOnVBF7O1fA05h60wn/j/mm06gLP9SKVpRnqZJyA9YZfC72PsaQeP46M27ehql69xM9tCga3XPj444+h1T57subMmYNHjx6hTZs2+Pvvv/Hdd98ZPSAREREREYnvUnA8Dt+JFjsGlSJOPu2gUcv0ltXxboG9l9bj+pPTiE2OwJVHx3H46lbU8/mvS8OfZ37Cr4e+0t1uXbMXYpPC8cfpHxARH4yjN/7EpQdH0L5uv1znDI9/jAsPDqNn4yAAgKtdZUgkEpy8/TeuPzmNyIRgeLsUrqtBJQ+g6fm5sD5Y8oWFHHFr1op2bmMzuOVC167/9ZOpUqUKbt++jbi4ONjb2+tmjCAiIiIiovJl5b8PxI5ApYiFnQNiXmi1AAADWr2NXedWY9PxJUhJT4CtpSNa1XgF3RsN122TlBaLuJT/utc42bjjze5fYvvJFThybQfsrJwwpN27qOnVRO/YgiDg96OL0LfFBCjl5gAAhZkSwwLfx+bj30GtycbAVm/DztK5wOwKlQy1Zddgt+H74jwERpG0ezdcpr8LMycnsaMUm0TImUuygkhKSoKtrS0SExNhY2Nj8vP5zNht8nOUZY+/6mm0Y/GxLpgxH2siIir7SvqaiMq2p3FpaPfNYXD2ybKhu30iqlzcYNJzVK7XB1HBuYsLpZ2bmwzVTi6GWfBtsaPoOL31Fpwnvy12jGIzuOVCRkYGli5disOHDyMqKkrXRSLHxYsXjRaOiIiIiIjEt/bkY9EKC4mnNiPt7ilkx4VAYqaA0rMG7NsFQe5YSbdNdnw44g//jMyQmxA02TD3bQSHzuMhs8x/xoCE4+uReEJ/kEEzh0rwHLdSdzvu4CqkXj8IiVwFu3YjYVWrvW5d6u3jSL1+EC79Zxnx3pYNlnYOiAn1FjuGQWRyKWpZPYLjpm8gKWXfr8dv3AjHN8dDqlCIHaVYDC4ujBkzBvv27UP//v3RtGlTdoUgIiIiIirHUjPV2HT+qWjnz3h6HdYNe0LhVhUQNEj491dEbv4EHmNWQKpQQZuVgajNn0Du4gvXwXMBAAnH1iFq2xy4DV8AiST/YebkTpXhOujL/xZI/9s27f4ZpN76Fy4DP4c6Pgyx/yyBuW9DyCxsoc1MRcLRX+H6+hcmu9+lmWPlQEQ9NXj4PtE4uZih+pWfoLhzTuwoedLExSHpr79g1y/3GBNlicHFhV27duHvv/9Gq1atTJGHiIiIiIhKka0XQpCcoRbt/K4D5+jdduz5DkKWDkVW5H2ovGojM/Qm1IlRcA/6DlKlBQDAqec7eLr4dWQ8uQpzn/r5H1wqg8wq79YN2bFPofKqA6V7VSjdqyLu4CqoEyMhs7BF/OHVsG7QA2Y2Lsa6m2WGpb0TosMqix2jUKRSCao7RsFl+1xI1VlixylQ3Npfy3xxweByk6enJ6ytrU2RhYiIiIiIShFBELD25GOxY+jRZqYCAKQqKwCAoMkGAEhkct02EpkCkEiQGXKjwGOp48MQ8v0IhK4cg+i/voE66b9BBhXOvsiKuA9NRgoyI+5DUGfCzN4DGSE3kBX5ANaNehn7rpUJjl7tIGhKf6sFWwc5msdtgduWz0p9YQEAMu/eReqpU2LHKBaDXxULFizABx98gCdPnpgiDxERERERlRLH78fgYUyq2DF0BEGL+IOroPSsCYWzDwBA6VEdErkK8UdWQ5udAW1WBuIP/wwIWmhS4vM9ltI9AI493oHLgNlw6PIWNAmRiFj/AbSZaQAAc79GsKwViIi17yB29yI49XwHUrkScXuXw6HrRCRf+huhq8YjYt17yIquGJ+NrBycER3qJXaMgkmAAPdkNPj7HaguHxY7jUHK+rSUBneLaNy4MTIyMuDn5wcLCwvI5XK99XFxcUYLR0RERERE4tl2IUTsCHri9q1AVvQTuA39WrdMZmEL594zELdvOZIv/AVIJLCs2Q4KV3+ggPHhzP0b/3fDxRdKjwCErBiN1NvHYV2vCwDArvVQ2LUeqtss4fgGqHzqQyKVIfHUJniM/h7p988idvdCuActMf4dLmUcKrUr1WMtWNmaoXbUblj8vlPsKEWScvQoMh89gtK37M3CARShuDB48GCEhoZi7ty5cHV15YCORERERETlUEqmGntvRIodQydu/wqkPzgH1yFfwczGSW+duW9DeI7/CZq0REikMkhVVni6bBgs7NwKfXypygpyB0+oE8LyXJ8d+xSpNw/DPeg7pFzdD1Wl2pBZ2MKiehvE/rME2sw03ZgP5ZG1kyuiQ0pvqwU/j0xU3vUppEmxYkcpOkFA0l9/wXnyZLGTFInBxYWTJ0/i1KlTqFevninyEBERERFRKfD3tXCkZ2vEjgFBEBB/YCXS7p6C6+B5kBdQMJBZ2AIA0p9cgTY1ERZVmhX6PNqsdKgTwiGzbJ9rnSAIiN37Pew7jIVUYQ4IWgja/w9ymfOvoC38nSqD7DzaIfpp6fti2dzSDHXSjsJqw3qxoxhF0p69Fae4UL16daSnp5siCxERERERlRLbL5aOLhFx+1cg9ea/cOn7MaQKC904ChKlBaRyJQAg5ep+yB29ILWwRWbYbcQf+BHWTV6D3LGS7jiRGz+EedUWsPn/QIzxh36GeZWmMLN1gTo5DonH1wMSKSxrtsuVIeXKXsjMbXTFCqVnDSQc34DM0NtIf3gBcsfKugEmyyMbJ1fEhHiKHSOXyh5a+O7/HLLo0vFaNYashw+RcfcuVNWqiR3FYAYXF7766iu8++67+PLLL1GnTp1cYy7Y2NgYLRwREREREZW8kPg0nHlUOsZSS7n0NwAg8veZessde0yFVZ1OAIDsuFDEH10LbXoKzGxdYNtiIKyb9NbbPjs+Asr0JN1tdXIMYv76Bpr0JMjMbaGsVBNuwxfoWj/k0KTGI/HUZrgN+0a3TOkRAJumfRC1dTakFrZw6vmOMe9yqWPr3g7RIaWn1YJCJUMdyWXYblgpdhSTSN6zt0wWFySCIAiG7CCVPhvA48WxFgRBgEQigUYjftOpgiQlJcHW1haJiYklUgjxmbHb5Ocoyx5/1dNox+JjXTBjPtZERFT2lfQ1EZUt3x++j2/23hE7BhVRd/tEVLm4wSjHsnVxR6b6dUAoHcUFd3cpqh5fDLOn5ff1qfD3h//uXWLHMJjBLRcOHy5b03kQEREREZFh9lyPEDsClRI2rm1LRasFM7kUtSzuw2HjQkgM+368zMl68ACZ9+5BWbWq2FEMYnBxoV273H2QiIiIiIiofIhIzMD1sESxY1ApYOvqgegQD7FjwMnFDNUv/QDFvYtiRykxSXv2wrmMFRcKNUlpcHCwQQcNDQ0tUhgiIiIiIhLXgVuRKOdfDFMh2Ti3BSBeqwWpTIJazhGos21ihSosAEDS3j0mPf769etRr149WFhYwN3dHaNHj0ZsbPGm8SxUcaFJkyYYP348zp07l+82iYmJWLVqFWrXro1t27YVKxQREREREYnjwK1IsSNQKWDnWgnRoe6ind/e0QzNo3+H65bPIdGoRcshlqz7D5D54IFJjn3ixAmMGDECY8aMwY0bN7BlyxacPXsW48aNK9ZxC9Ut4ubNm/jyyy/RuXNnqFQqNGrUCB4eHlCpVIiPj8fNmzdx48YNNGzYEF9//TV69OhRrFBERERERFTy0rLUOPmgeN9eUvlg7dIWGSKMtSCRAAGuiXDf8Tkkmeklfv7SJGnPHjhPnGjwfr/++iveeecdhIWFQalU6pb37t0b1tbWqFevHnx8fDB58mQAgK+vL8aPH4/58+cXK2+hWi44Ojpi4cKFCA8Px7Jly1C1alXExMTg3r17AIChQ4fiwoULOHXqFAsLRERERERl1NG7MchSa8WOQSKzc/NCVIhriZ/X2k6O5qm74bHxwwpfWACA5AMHi7TfgAEDoNFosHPnTt2yqKgo7N69G6NHj0aLFi3w9OlT/P333xAEAZGRkdi6dWuxP8sbNKCjubk5+vfvj/79+xfrpEREREREVPr8ezda7AhUClg7tUVGaMm2WvB3z4DXXx9BmpJQouctzTJv34YmIQEyOzuD9jM3N8eQIUOwevVqDBgwAACwbt06VK5cGYGBgZBIJFi/fj0GDRqEjIwMqNVq9OrVC99//32x8haq5QIREREREZV/Zx6xS0RFZ+/hjahQlxI7n4WVGZoJx+D9+7ssLLxIEJB24UKRdh03bhz27dunm2xhzZo1CAoKgkQiwc2bNzFlyhR8+umnuHDhAvbs2YPHjx/jzTffLFZcg6eiJCIiIiKi8icmJRMPo1PFjkEis7Rvg/T0kmm14O2hgc/eLyCLDS+R85VFaWfPwbpjR4P3a9CgAerVq4dff/0VXbp0wY0bN7B7924AwLx589CqVSu89957AIC6devC0tISbdq0wRdffAF396IN5MniAhERERER4eyjOLEjkMgcPH0RE2b6VgtKcxlqay/AdsMqk5+rrEs9d7bI+44dOxaLFy9GaGgoOnXqBC8vLwBAWloazMz0SwEymQwAIBRjHlp2iyAiIiIiIhYXCOZ2rU1+Dg93CZpd/Ra2e1lYKIzM23egSUoq0r5DhgxBSEgIVq1ahdGjR+uW9+rVC9u3b8eKFSvw8OFDnDhxApMnT0bTpk3h4eFR5KwGFxdSU9lUioiIiIiovGFxoWJzrOSH2DBnkx3fTCFFfZt7qP77WzALvW+y85Q7Wi3Sr14r0q62trbo168frKys0Lt3b93yoKAgLFy4EMuWLUPt2rUxYMAABAQEYPv27cWKanBxwdXVFaNHj8bx48eLdeIc33//PXx8fKBSqdCsWTOcPVtws4+EhARMnDgR7u7uUCqVqFatGv7++2+jZCEiIiIiqoiSMrJxO6Jo345S+aCyNV2rBWdXGZo/WAGHnYtNdo7yLP3qlSLvGxoaiqFDh0KpVOotf/vtt3Hjxg2kpaUhLCwM69atg6enZ7FyGlxcWLduHeLi4tChQwdUq1YNX331FcLCwop08k2bNmHatGmYNWsWLl68iHr16qFr166IiorKc/usrCx07twZjx8/xtatW3Hnzh2sWrWq2A8CEREREVFFdi0kEdqid7WmMs7Ryx+xYU5GP65UJkFtxzDU3joJigdXjX78iiKjCC0X4uPjsWPHDhw5cgQTJ040QarcDC4u9O7dG3/88QdCQ0Px5ptvYsOGDfD29sYrr7yC7du3Q61WF/pYCxcuxLhx4zBq1CjUrFkTK1euhIWFBX755Zc8t//ll18QFxeHP/74A61atYKPjw/atWuHevXqGXo3iIiIiIjo/26EJYodgUSksm5l9GPaO8nRInIDXLZ9CYmm8J8RKbf0q4YXZho0aICgoCDMnz8fAQEBJkiVW5EHdHR2dsa0adNw9epVLFy4EAcOHED//v3h4eGBTz/9FGlpaQXun5WVhQsXLqBTp07/hZFK0alTJ5w6dSrPfXbu3IkWLVpg4sSJcHV1Re3atTF37lxoNJp8z5OZmYmkpCS9HyIiIiIi+s+NMF4jV1ROlasiNtx4rRYkEqC6azzq75wM5fWid6U/n5aGt0Keot39+6h55zYOJCfrrd+fnIyxT4PR4t5d1LxzG7cyMl56zGxBwPKYGHR9+AD1795Bn8ePcCw1RW+bv5IS0eHBfTS/dxfzoyL11oVmZ6H7wwdIKeDzpylo4uKQFRJi0D6PHz9GYmIipk+fbqJUuRW5uBAZGYmvv/4aNWvWxIwZM9C/f38cPHgQCxYswPbt2/UGjMhLTEwMNBoNXF1d9Za7uroiIiIiz30ePnyIrVu3QqPR4O+//8Ynn3yCBQsW4Isvvsj3PPPmzYOtra3uJ2f6DSIiIiIieuZWOIsLFZXCsqXRjmVjL0fzlL/gseljSLJe/mG/IGlaLQKUKnzywufFHOlaLRqaW+Bd58JPnfldTDQ2JybgQxdX/OXji0G2dpgcGoqb/y9MxKvV+DQiAu85u2BVJS/8lZSEIyn/FR/mREZimrMLrP4/bWNJyrh1q8TPaSizl2+ib/v27Vi9ejX27t2LmjVr4q233sKwYcNgZ2en26Zly5aoUaOGMXMCALRaLVxcXPDjjz9CJpOhUaNGCA0NxTfffINZs2bluc/MmTMxbdo03e2kpCQWGIiIiIiI/i9LrcWjGM4IVxE5e1dDXISjUY5VxT0Nlf76AtIU43SxaWtlhbZWVvmuf9XWFsCz1gSFtTMxCeMdHdHu/8d9XaHAqbRUrImLw9ceHnianQ0rqRTdbWwAAE0tLPAgKxOBsMLupCSYSSTobG1djHtVdNnBT0U5ryEMLi6MGjUKr7/+Ok6cOIEmTZrkuY2Hhwc++uijAo/j5OQEmUyGyEj9piaRkZFwc3PLcx93d3fI5XLInqsU1ahRAxEREcjKyoJCoci1j1KpzDUyJhERERERPfMwJgXZGo7mWBGZWbQEitloxcLaDHUSDsDy9y3GCWVCWYIWSolEb5lSIsXF9Gdd+r0VCmQIAm5mZMBDLsf1jAz0tbVFokaD72KiscarshixAQBZIeWwuBAeHg4LC4sCtzE3N8+3JUEOhUKBRo0a4eDBg7ouFFqtFgcPHsSkSZPy3KdVq1bYsGEDtFotpNJnPTru3r0Ld3f3PAsLRERERERUsHuRKS/fiModZ5/qiI9wKNYxvD3U8NkzB7K4yJdvXAq0trTCmvg4NLKwQGW5HKfT0nAgJRk5IyjYymSY5+aOmeHhyBC0eNXGBq0trfBxRDiG2tkjNDsbE0NDoBYETHRyQldrmxLLnv3UsDEXxGDwmAvW1tZ5ThUZGxur16KgMKZNm4ZVq1Zh7dq1uHXrFiZMmIDU1FSMGjUKADBixAjMnDlTt/2ECRMQFxeHKVOm4O7du9i9ezfmzp1bYlNrEBERERGVN8FxBQ/ETuWTmapFkfdVWsjQWHEB/humlJnCAgDMdHGBt0KBVx49RL27d/BFZCT62NrqfSjuZG2NP319sdfPH5OcnHEuLQ13MzMxwM4O74aFYaaLK5Z4euKTiAjEGjBTYnFlPy2HLRcEIe8mU5mZmQa3Hhg0aBCio6Px6aefIiIiAvXr18eePXt0gzwGBwfrWigAgJeXF/bu3Yt33nkHdevWhaenJ6ZMmYIPPvjA0LtBREREREQAQuLTxY5AJczFtwbiI+2LtK+nB1Dl8HzIwh8ZOZXpOZiZYZlnJWRqtUjQaOBiZoaFMdGoJJfnuX2WVos5kRGY7+6B4KwsaCCgyf9b8fsoFLiakY72ViUzBkN2WBgErRYSaZHnZDC5QhcXvvvuOwCARCLBTz/9BKvnBtfQaDQ4evQoqlevbnCASZMm5dsN4siRI7mWtWjRAqdPnzb4PERERERElFtoAosLFY1MaXirBblSitryW7Df8J0JEpUspVQKV6kU2YKAfcnJ6JZP94aVcbFobWmJmioVbmZkQP3cF+3ZgoCSHKpEyM6GOiICcg+PkjupgQpdXFi0aBGAZy0XVq5cqdcFQqFQwMfHBytXrjR+QiIiIiIiMpnQeHaLqEhc/WohPtLOsH3cZKh2Zhnkj66bJlQeUrVaBGf9NxNEaHY2bmVkwFYmg4dcjgSNBuHZ2Yj6f9eEx//f1snMDM5mzz7mzggPg4uZGab9f7rKK+npiFKrUV2pRKRaje9jYyAAGOOQe+yJ+5mZ+CcpCdt8fAEAfgoFpBIJtiUkwMnMDI+yslBHpTLlQ5BL1tOQ8lFcePToWbOX9u3bY/v27bC3L1ozGiIiIiIiKj3CEjLEjkAlSCJvXuhtZWYS1LR5CqfNX0Oi1bx8ByO6kZGOoOfGGZgf/Wzcv942Npjr7oHDKcn4KCJCt/7d8DAAwFuOjpjk5AwACM/O1htPIUsQsCQmGiHZ2bCQStHW0hLz3d1h88LYgYIg4LPICHzg4gqL/3dDUEmlmOvmjs8jI5AlCPjYxRWu+XSnMJXskKdAs6Ylek5DGDzmwuHDh02Rg4iIiIiISlhsSibSs0v2QyOJx9W/DhKibAu1rYOzGWpeXw3FAXG6pDe1sMTNgPy73fextUMfW7sCj7G2srfe7SYWFtjl6/fSc0skEqx7YV8ACLSyQqBVlZfubypZwaV7UMdCFRemTZuGzz//HJaWlpg2bVqB2y5cuNAowYiIiIiIyLTCE9lqoUKRNXvpJhIpUMM5Fi47voQ0K7MEQlFhlfYZIwpVXLh06RKys7N1/8+PRCIxTioiIiIiIjK5hLRssSNQCXGrUhcJ0XkPXJjD1kGOWo+3QHVofwmlIkOoo6LEjlCgQhUXnu8KwW4RRERERETlQ2I6iwsVhSAtoNWCBKjqlgrPnV9AmppUcqHIINr00j2zS7EnyUxKSsIff/yB27dvGyMPERERERGVkKQMFhcqAreq9ZEYbZ3nOksbMzTPOgCv399nYaGU02aU7m5MBhcXBg4ciGXLlgEA0tPT0bhxYwwcOBB16tTBtm3bjB6QiIiIiIhMI4ktFyoELZrkudzXIxuNj30CixM7SjgRFYVQ3louHD16FG3atAEA7NixA4IgICEhAd999x2++OILowckIiIiIiLTYMuF8s+9WkMkxei3WlBZmqGJ7Ax8N0yFLL509+On/5S7lguJiYlwcHAAAOzZswf9+vWDhYUFevbsiXv37hk9IBERERERmUZSulrsCGRKEgk02sZ6iyp5AE3Pz4X1wV9FCkVFVdqLC4Ua0PF5Xl5eOHXqFBwcHLBnzx5s3LgRABAfHw+VSmX0gEREREREZBqpWSwulGceVRsiLtoKACBXSlHb7DrsN3wvcioqKqG8FRemTp2KoUOHwsrKCt7e3ggMDATwrLtEnTp1jJ2PiIiIiIhMRBDETkAmI5EgW/Os1YKrmxQBp5bC7MlNkUNRsWi10GZmQqpUip0kTwYXF9566y00bdoUT58+RefOnSGVPutZ4efnxzEXiIiIiIjKEC2rC+WWR7XGSIy3Rl37R3Dc9A0kfK7LBSE9HSgvxQUAaNy4MRo31u+707NnT6MEIqLSz2fGbrEjlGqPv+L7IRERlQ38vFk+CZDAQlkfNYN/geLOObHjkBFpMzMhEztEPgwuLmg0GqxZswYHDx5EVFQUtFqt3vpDhw4ZLRwREREREZkOawvli61cjVHuwWiheoSQ0ASkVdZCpqgGs9BoCHHxYscjIyjN01EaXFyYMmUK1qxZg549e6J27dqQSCSmyEVERERERCYmsOlCmdfQNhmjnO+ipeY8HKLPQhL17MPnTw064XTCXd12Llpb1E93QUCqDSrHy+AUkwXL8ARIQiIgpJfugQLpP4JGI3aEfBlcXNi4cSM2b96MHj16mCIPERERERGVEJYWyh6lVIvX3cLR2+o6aiafhjL+DhCSe7sxCYk4/dztKGkq9lk+wj5LAC4AAp4tlwhANbUr6qY5oUqKBTxiAfvodChDYyFERAGl+MNsRSS1sBA7Qr4MLi4oFApUqVLFFFmIiIiIiKgEydgKuUzws8jAGLf7CJRcgkfMSUjiEoG4gvdp/ugcatdrh+tJjwrcTpAAd+SxuGMbC9gC8PxvnUqQo15WJdRMsYNvkhJusRpYR6TALCQSQnxCse8XGU5qbS12hHwZXFx49913sWTJEixbtoxdIoiIiIiIyjBLZZHGd6cS0MslGoNsb6J+xllYxlyBJEz78p1eMDpdi2nFyJAhUeOMMhRnlKGAIwDf/9a5aG3RIN0VASlW8Eowg1N0JiwjEtnNwpQkEkgtLcVOkS+D302OHz+Ow4cP459//kGtWrUgl8v11m/fvt1o4YiIiIiIyHSsVSwulBaOimyMdn+Mboqr8Ik7AVlSBJBUvGN2vHcCPrWa4XFqqHFCPidKmoq9lg+x1xKAK3J3s0h3QpUkC3jEAfZRaVCGxbGbRTFJLSxK9Rf8Br+b2NnZoU+fPqbIQkREREREJchSweKCmFrYJ2KE4x00U5+HffQ5SCIzjXp8qaDFKK0FZhn1qAXTdbOQxwI2ACr9t85Cq0DdLBfUTLWHb5IcrrFaWEckwywkit0sCkFqZSV2hAIZ/G6yevVqU+QgIiIiIqISZsWWCyXKXKbBUPcwvGZxDQFJp6BIeJDnYIzG1OvOMXxfrTaiMmJMe6JCSJNm47QqFKdVubtZuGnsUC/DBQEp1qgcL4NjzmwWoexmkaPcFRcAQK1W48iRI3jw4AGGDBkCa2trhIWFwcbGBlal/A4TEREREdEz1hxzweSqWaZjjOs9tJNchGvMKUhikkv0/HJNFkbIXfBtKSguFCRCloIIy5T/uln8n0QAAtRuqJPu+Fw3i3QoQ2OedbPQGj4WRVkltSq94y0ARSguPHnyBN26dUNwcDAyMzPRuXNnWFtbY/78+cjMzMTKlStNkZOIiIiIiIyMAzoan0QioK9LFAbY3ETd9DMwj7kGSZi4k34OuHMcP/p4IymrZAsbxiBIgNvyGNyWx+TRzUKJelmuqJFqC98kJVxjNLCOLL/dLGSWpfuLfIPfTaZMmYLGjRvjypUrcHR01C3v06cPxo0bZ9RwRERERERkOg6WCrEjlAtuyiyMcX+ETmZX4B13AtLEaCBR7FT/schMwWBzH/yQdU3sKEaVJs3GKVUITqlC8uxmUT/DFQHJVvBKlMEpKhMWObNZZJTNbhaleRpKoAjFhWPHjuHkyZNQKPTfiHx8fBAaavxRSImIiIiIyDTcbVViRyizAh3iMczxNppknYNN9AVIIrLFjlSgofdO41d3R6RryuYHa0NFyFKwxzIFeywBuEFvNovqajfUSXeCf6IKnvES2EWlQRkaW+q7WZS7bhFarRaaPKYPCQkJgXUpr6QQEREREdF/3FhcKDRLMw2C3J+ip+oaqiaehDzpCZAmdqrCs0+NRR/r5tiQUL5aLxhKkAC35DG4ldPNwuu/dTndLGqm2cEnQQHXWA1sIpMhKyXdLGS2dmJHKJDBxYUuXbpg8eLF+PHHHwEAEokEKSkpmDVrFnr06GH0gEREREREZBoquQwOlgrEpWaJHaVUqmOdilEud9FauAjn6NOQRKeKHalYgh5fxWZ7OdSCWuwopZJeNwsHAH7/rXPT2KFBhiuqpVjBK14Gp+iS72Yh9/QokfMUlcHFhQULFqBr166oWbMmMjIyMGTIENy7dw9OTk74/fffTZGRiIiIiIhMxM1GxeLC/8kkWgxyi0Rf6xuonXoaqtibQDnq+e0e/xTdfXvgr/jrYkcpcyJkKfjHMgX/5MxmUf3ZcokA1FC7o3aaA/yTzE3azULh5fXyjURkcHGhUqVKuHLlCjZt2oQrV64gJSUFY8aMwdChQ2Fubm6KjEREREREZCIedircDE8SO4ZoKqkyMdb9ITrKLsEz9iSk8XFAvNipTGd06APsspBAgLgzWJQXggS4KY/GTdtowBa5ulnUz3JDzVRbeCf+v5tFRDJkoUXrZiEvb8WFo0ePomXLlhg6dCiGDh2qW65Wq3H06FG0bdvWqAGJiIiIiMh03G0r3heE3Zxj8brdLTTKPAur6EuQhOceU668qhJ5B+0adMWRhFtiRyn30qTZOKl6ipOqp89ms3ium4W7xh71M1wQkGyFSgkyOEVnwSI8HpLQyLy7WUilUHh6llj2ojC4uNC+fXuEh4fDxcVFb3liYiLat2+f52CPRERERERUOvk4le4R6I3BVq7GaPdgdFdegV/CSZglhwLJYqcSz5iYSBwx+JMgGVO4LBnhlsnPulm4Qb+bRbY7aqc7oEqSBTziAbuoNJhnSSBRlO6pYw1+SQmCAIlEkmt5bGwsLC3L/xsTEREREVF5EuBaPmd8a2ibjFHOd9FScx4O0WcgiaoYUzAWRv2nl9GwfgdcTLwvdhR6gSABbiqicVOh382iuXtzrBI12csVurjQt29fAM9mhwgKCoJSqdSt02g0uHr1Klq2bGn8hEREREREZDLV3KzEjmAUSqkWr7uFo7fVddRMPg1l/B0gROxUpdeY5HRcFDsEFZqfrd/LNxJZoYsLtra2AJ61XLC2ttYbvFGhUKB58+YYN26c8RMSEREREZHJuFirYG8hR3xatthRDOZnkYExbvcRKLkEj5iTkMQlAnFipyob2j44hWp1WuNuSrDYUagQylVxYfXq1QAAHx8fTJ8+nV0giIiIiIjKiaqu1jj7qGx8Ku/lEo1BtjdRP+MsLGOuQBJmvKn+KprR2WaYIXYIKhR/O3+xI7yUwWMuzJo1yxQ5iIiIiIhIJAGluLjgrMjGKPfH6Kq4Cp+4E5AlRQAVd+ZMo+p25xiW1myI0LRIsaNQAaQSKWo61hQ7xksZXFyIjIzE9OnTcfDgQURFRUEQ9OdH5WwRRERERERlS3X30jWoYyv7RAx3vI1m6vOwiz4HSWSW2JHKJZmgQZDEHl+CxYXSzN/OHxZyC7FjvJTBxYWgoCAEBwfjk08+gbu7e54zRxARERERUdlR38tO1PObyzQY7h6KXubXEJB8CoqEhxyMsYT0uX0UK6sEIDYzXuwolI86TnXEjlAoBhcXjh8/jmPHjqF+/fomiENERERERCWthpsNrJVmSM5Ul9g5q1ulYbTrPbTFRbhGn4IkJqXEzk3/UaozMEzpgSUsLpRa5ba44OXllasrBBERERERlV1SqQT1K9vh2L0Yk51DIhHQzzUKA6xvok76aZjHXIcklJ8rSoNBd07i58oeSMlOFTsK5aHcFhcWL16MGTNm4IcffoCPj48JIhERERERUUlr7O1g9OKCuyoLY9weoZPZZVSOOwFpQgyQYNRTkBFYZyRigGVrrE64JnYUeoG5mTmq2FURO0ahGFxcGDRoENLS0uDv7w8LCwvI5XK99XFxpXOUWSIiIiIiyl9jH3ujHKeDYzyGOtxG46xzsIm+AElEtlGOS6Y14v55rHexRpaWg2eWJrUca0EmlYkdo1CK1HKBiIiIiIjKl/pedpBJJdBoDeuqYGmmwSj3p+ipuoqqiSdhlhQMsHV9meOUHIlXqzbG1ni2XihNmrs3FztCoRlcXBg5cqQpchARERERkYgslWao7WGDKyGJL922rk0KRrvcRSvtRThFn4EkmtWE8mD0kxvYYSuDRtCIHYX+r5VnK7EjFJq0MBslJSXp/b+gn6L4/vvv4ePjA5VKhWbNmuHs2bOF2m/jxo2QSCTo3bt3kc5LRERERET/aVvNOc/lcqmAoe5h2FZ1P257fI6dWW+gd8i3cA47BAkHASw3vGIfo5NddbFj0P/ZK+1R07Gm2DEKrVAtF+zt7REeHg4XFxfY2dlBIpHk2kYQBEgkEmg0hlW5Nm3ahGnTpmHlypVo1qwZFi9ejK5du+LOnTtwcXHJd7/Hjx9j+vTpaNOmjUHnIyIiIiKivAUGOGPpofsAgEqqTIx1f4iOsovwjD0FaXwcwNkKy70x4U+wVyV2CgKA5h7NIZUUqj1AqVCo4sKhQ4fg4OAAADh8+LBRAyxcuBDjxo3DqFGjAAArV67E7t278csvv2DGjBl57qPRaDB06FDMnj0bx44dQ0JCglEzERERERFVRPW97PFzjctomnoIVtGXIAln8/iKpkb4TbRs0BknE+6IHaXCa+VRdrpEAIUsLrRr1y7P/xdXVlYWLly4gJkzZ+qWSaVSdOrUCadOncp3vzlz5sDFxQVjxozBsWPHjJaHiKi08ZmxW+wIpdrjr3qKHYGIqFyRSSXoaP0EeHRe7CgkojHxCTiZu7E6lSAJJGVqvAWgkGMumEpMTAw0Gg1cXV31lru6uiIiIiLPfY4fP46ff/4Zq1atKtQ5MjMzjTIuBBERERFRhVCdhduKrunjc6hr4yd2jAotwCEATuZOYscwSNnpwAEgOTkZw4cPx6pVq+DkVLgHet68ebC1tdX9eHl5mTglEREREVEZVqUTYMZO9xXd6DR2iRFTF+8uYkcwmMFTURqTk5MTZDIZIiMj9ZZHRkbCzc0t1/YPHjzA48eP0atXL90yrVYLADAzM8OdO3fg7++vt8/MmTMxbdo03e2kpCQWGIiIiIiI8qOwBPwCgbt7xE5CIupw7zh8azfHo9RQoxwv9U4qYv6OQfqTdKgT1Kj8dmXYNLLRrQ9ZFYKEEwl6+1jVtoLPdJ8Cj5sdn42IzRFIuZoCbZYWClcFKo2pBHNfcwBAzD8xiP47GgDg3MMZTt3/+5I67UEawn4Ng/+n/pDISlc/kG6+3cSOYDBRiwsKhQKNGjXCwYMHddNJarVaHDx4EJMmTcq1ffXq1XHt2jW9ZR9//DGSk5OxZMmSPIsGSqUSSqXSJPmJiIiIiMql6j1ZXKjgJBAwWmuJT4x0PG2mFqrKKti3tUfw0uA8t7GqYwXPMZ6621J5wQ3tNakaPPziISxrWML7XW+YWZshMzITUstn+2U8zUDkjkh4T/UGADxZ9ARWta2g8lJB0AgIWxsGjyCPUldYqOtUF17WZe8L8SIVF9RqNY4cOYIHDx5gyJAhsLa2RlhYGGxsbGBlZWXQsaZNm4aRI0eicePGaNq0KRYvXozU1FTd7BEjRoyAp6cn5s2bB5VKhdq1a+vtb2dnBwC5lhMRERERUREF9AAkUwGBTeMrsp63/8X31esiIj262MeyrmsN67rWBW4jMZNAbicv9DGjd0dD7ihHpbGVdMsUzgrd/zPDM6GqpIJVzWefUVVeqmfLvFSI+ScGlgGWsPCzMPCemF5ZbLUAFKG48OTJE3Tr1g3BwcHIzMxE586dYW1tjfnz5yMzMxMrV6406HiDBg1CdHQ0Pv30U0RERKB+/frYs2ePbpDH4OBgSKVlamgIIiIiIqKyzdIJqNYNuMNZiyoyuTYbI2TO+BrFLy4URurtVNx6+xZkljJY1bCCSz8XmFnl/5E1+XIyrGpbIXhZMFLvpEJuL4dDBwc4BDoAAJSVlMiKzEJWbBYgAJkRmVBWUiIzKhPxx+Lh/5l/vscWi1QiRTefClJcmDJlCho3bowrV67A0dFRt7xPnz4YN25ckUJMmjQpz24QAHDkyJEC912zZk2RzklERERERAVoMobFBUK/O8fwo68fErISTXoeqzpWsGlsA4WTAllRWYjcFoknC57A7xM/SKR5d1vIispC3KE4OHZzhHMvZ6Q/Skf4+nBIzCSwb20PlYcKrv1c8fibxwAAt/5uUHmo8OjrR3Ab6IaU6ymI+iMKEpkE7kPdYRlgadL7WBiNXRvD2cJZ7BhFYnBx4dixYzh58iQUCoXech8fH4SGGmewDyIiIiIiEpl/B8DBH4h7IHYSEpFFVioGq7ywwsTFBbvmdrr/q7xUUHmpcPf9u0i9narr1pCLAKh8VXDr/2wyAHNvc2SEZCDucBzsW9sDwLOWDB0cdLvEH4+HVCWFRRUL3J1xF/6z/JEdn42nK56i2jfVXjrOg6n19Cu7U8Ea/MhptVpoNLn7XoWEhMDauuA+NEREREREVEZIJM9aL1CFN+TeaZibmZfoORUuCsisZciKzMp3GzM7M6g89KdNVXookR2bnef26mQ1ov6MgscwD6Q9TIPSTQmlmxJWNawgaARkReR/rpJgLbcus10igCIUF7p06YLFixfrbkskEqSkpGDWrFno0aOHMbMREREREZGY6g8F5KVvwDsqWXZpcehnVaVEz5kdlw1NigZmdvk3treoaoHMiEy9ZVkRWZA75T0oZPiGcDh1cYLcQQ5oAUEj6NYJGgGCVshzv5LyapVXYVGGf98MLi4sWLAAJ06cQM2aNZGRkYEhQ4boukTMnz/fFBmJiIiIiEgM5nZA7b5ip6BSYOSjKzCTFmmyQQCAJkOD9CfpSH+SDgDIislC+pN0ZMVmQZOhQcTGCKTdT0NWdBZSbqbgyZInULgoYFX7vy4Rj+Y/QuyBWN1txy6OSHuQhqi/opAZmYmEUwmIOxIHxw6Ouc6fcj0FWZFZcOj4rIuEua85MsMzkXw1GXFH4iCRSqB0Vxb5/hWXBBIMChgk2vmNweBXR6VKlXDlyhVs3LgRV69eRUpKCsaMGYOhQ4fC3Lxkm8oQEREREZGJNRkHXFondgoSmVtCCHr49cDO+OtF2j/9UToez3+sux3xewQAwK6VHTxGeiAjJAPxJ+KhTdPCzM4MVrWt4NrXVW8MhKyoLKiT1brbFn4WqPx2ZURujUT0n9FQOCvgPsQddi3t9M6tzdIibF0YvCZ46QaHlDvI4T7MHaE/hUIil6DS2EqQKsQbb6Gpe1P42vqKdn5jMLi4kJGRAZVKhWHDhpkiDxERERERlSYe9QHPRkDoBbGTkMjGhNzDX5YSCDC8+4BVDSvUXlM73/U+031eeoyABQG5ltnUt4FNfZsC95MqpKj2VbVcyx3aOcChnUMee5S8wQGDxY5QbAaXZlxcXDBy5Ejs378fWq3WFJmIiIiIiKg0aTJW7ARUCvhF3UOgXQ2xY5Q7rhauCPQKFDtGsRlcXFi7di3S0tLw2muvwdPTE1OnTsX58+dNkY2IiIiIiEqDWn0B89LxDS+Ja2x0uNgRyp0hNYZAJpWJHaPYDC4u9OnTB1u2bEFkZCTmzp2Lmzdvonnz5qhWrRrmzJljioxERERERCQmuQpoMFTsFFQK1A25gsa2VcWOUW7YKe3wesDrYscwiiKPWGFtbY1Ro0Zh3759uHr1KiwtLTF79mxjZiMiIiIiotKiyVigGLMFUPkxJilV7AjlxrAaw8r09JPPK3JxISMjA5s3b0bv3r3RsGFDxMXF4b333jNmNiIiIiIiKi3sfYCGI8VOQaVA64enUcPaW+wYZZ61whpDa5SfFkEGFxf27t2LkSNHwtXVFRMmTICrqyv27duHJ0+e4KuvvjJFRiIiIiIiKg0CZwIKK7FTUCkwOlO8aRvLi2E1hsGqHP0+FWnMhfT0dPz666+IiIjADz/8gLZt25oiGxERERERlSZWzkDLyWKnoFKg893jqGzhLnaMMstKblWuWi0AgMGdpiIjI2FtbW2KLEREREREVNq1nASc/wVIiRA7CYlIJmgwEjb4HJw9oigGVx8MW6Wt2DGMqlAtF5KSknT/FwQBSUlJ+f4QEREREVE5prAEAmeInYJKgd63j8JJySlKDeWgcsDo2qPFjmF0hSou2NvbIyoqCgBgZ2cHe3v7XD85y4mIiIiIqJxrOAJwri52ChKZQpOJYQp2jTDUxPoTy9VYCzkK1S3i0KFDcHB4VpE6fPiwSQMREREREVEpJ5UBnT4Dfn9d7CQkskF3T+DnypWQnJ0idpQyoZp9NfSr2k/sGCZRqOJCu3btdP/39fWFl5cXJBKJ3jaCIODp06fGTUdERERERKVTQHfAuzXw5LjYSYxq3rFMbL+djdsxWpibSdDSS4b5nZQIcJIBAB4naOG7JO8P0pv7m2NALflLz/HmrnT8cCEbi7oqMbW5EgCQqRYw9q8M/Hk7G25WUizvqUInv/8+rn1zIhPBiVos7WFuhHtpPFYZSRho6YufE66JHaVMeL/J+5BJZWLHMAmDZ4vw9fVFdHR0ruVxcXHw9fU1SigiIiIiIioDuswBIHnpZmXJv0/UmNhEgdNjLLF/uAWytUCXdWlIzRIAAF42EoS/a6X3MztQCSsF0L3qy7+73XErG6dDNPCw1n/cfryQjQthGpwaY4k3GskxZFs6BOHZOR/Fa7HqYja+7Kgy/h02gmH3zkEpU4odo9QL9ApEM/dmYscwGYOLC4Ig5Gq1AAApKSlQqUrni52IiIiIiEzAsxFQq7fYKYxqzzBLBNVXoJaLDPXcZFjzmgrBiQIuhGsAADKpBG5WUr2fHbezMbCmHFaKggstoUlavP1PBtb3NYf8hU9it2I0eDXADLVcZJjYRIHoNAExac+KCxN2p2N+JyVslKWzkOOUEoXXbKqJHaNUM5OaYXrj6WLHMKlCT0U5bdo0AIBEIsEnn3wCCwsL3TqNRoMzZ86gfv36Rg9IRERERESlWMdZwO2/AU2m2ElMIvH/d8vBPO8P9hfCNLgcocX3PQr+olUrCBi+Ix3vtXxWuHhRPVcZfruajfRsAXsfqOFuJYGThQTrr2ZDZSZBnxov724hpqAn17HNVgaNoBE7Sqk0qtYoeNt4ix3DpApdXLh06RKAZy0Xrl27BoVCoVunUChQr149TJ9evisxRERERET0AgdfoOMnwL6PxU5idFpBwNQ9GWjlJUPtPAoCAPDzpSzUcJKipVfBH63mH8+CmRSY3EyR5/rRDeS4GqlBzeUpcLKQYPMAc8RnAJ8eycCRkZb4+FAGNl7Phr+DFL+8ag5PG4MboZuUV+wTdPHugX/ir4sdpdTxt/XHm/XeFDuGyRW6uJAzS8SoUaOwZMkS2NjYmCwUERERERGVIS0mAXf3Ao+PiZ3EqCbuzsD1KA2Oj7bMc316toAN17LxSduCxxu4EKbBkjNZuDjeMs8u5gAgl0nwfU/9wRpH/ZmOyU0VuBShwR+31bjyphW+PpGJyXsysG2gRZ7HEdOYsMf4p3SNNyk6qUSK2a1mQyHLu6hUnhhc7lq9ejULC0RERERE9B+JBOizElDaip3EaCb9nY5d99Q4PNISlfJpJbD1ZjbSsoER9QrusnAsWI2oVAGVF6XAbE4SzOYk4UmigHf3ZcJncXKe+xx+pMaNKA0mNVXgyGMNelQ1g6VCgoG15DjyuHR2PQiIuIlWdtXFjlGqDK0xFPWc64kdo0QUuuXC886fP4/NmzcjODgYWVlZeuu2b99ulGBERERERFSG2FYCenwD7HhD7CTFIggC3v4nAztuq3FkpAV87fP/PvbnS9l4NcAMzpYFf2c7vK5cb1pJAOi6Lg3D68oxqn7uwkSGWsDEv58N/CiTSqDRAv+fOALZWkCjFQy/YyVkbFwsTpSuHhui8bL2wtsN3hY7Rokx+GnfuHEjWrZsiVu3bmHHjh3Izs7GjRs3cOjQIdjalp9KJRERERERGajeIKBWH7FTFMvEvzOw7mo2NvQ1h7VSgogULSJStEjP1v9Afz9Oi6NPNBjbMO/m7tWXpWDHrWwAgKOFFLVdZHo/cingZiVBgFPusRw+/zcTPaqaoYH7s3WtKsuw/XY2rkZqsOxsFlpVLtJ3xCWi8ZMLqG/jL3YM0UkgweyWs2FuVnH6iRj8qpw7dy4WLVqEiRMnwtraGkuWLIGvry/Gjx8Pd3d3U2QkIiIiIqKyoudCIPg0kBwudpIiWXH+WUEgcG2a3vLVr6kQVP+/QsIvl7JQyUaCLv55D/R4J1aLxEzDWxhcj9Jg8001Lo//b5yH/jXNcOSxGdqsTkWAoxQb+pW+8RaeNzo1C5PFDiGywdUHo4lbE7FjlCiDiwsPHjxAz549ATybJSI1NRUSiQTvvPMOOnTogNmzZxs9JBERERERlREWDsBr3wPr+gEovc338yPMKtz4cnM7qjC3Y/7TT77sOI+nWue5vLaLDPfettJbJpVIsLynOZb3LBvfggfeP4kqdVrifspTsaOIorpDdbzb+F2xY5Q4g7tF2NvbIzn52aAjnp6euH792VQjCQkJSEtLK2hXIiIiIiKqCKp0BJqOEzsFiUQCAaPUBc+gUV6Zm5nj67ZfV4jZIV5kcHGhbdu22L9/PwBgwIABmDJlCsaNG4fBgwejY8eORg9IRERERERlUOc5gFM1sVOQSHrcOQp3c2exY5S4j5t/DF9b30JtGxgYiKlTp5o2UAkyuFvEsmXLkJGRAQD46KOPIJfLcfLkSfTr1w8ff/yx0QMSERGVBJ8Zu8WOUKo9/qqn2BGIqKyRmwN9fwR+6gxos8VOQyXMTKvGSKkTvkK02FFKTL+q/fCq/6tGO95nn32GjRs34unTp1AoFGjUqBG+/PJLNGvWzGjnMCaDiwsODg66/0ulUsyYMcOogYiIiIiIqJzwaAB0+RzYw88MFVHfu8fwg68/4rMSxY5ictUdqmNms5lGPWa1atWwbNky+Pn5IT09HYsWLUKXLl1w//59ODuXvlYhheoWkZSUVOgfIiIiIiIineYTgEZBYqcgEZhnpWGwykvsGCbnoHLAosBFUMoMH2dCrVZj0qRJsLW1hZOTEz755BMIwrOBUIcMGYJOnTrBz88PtWrVwsKFC5GUlISrV68a+y4YRaFaLtjZ2UEikRS4jSAIkEgk0Gg0RglGRERERETlRI9vgdgHwONjYiehEjbk3ims8XRFmrp8Dv6vkCqwpP0SVLKuVKT9165dizFjxuDs2bM4f/483njjDVSuXBnjxukPiJqVlYUff/wRtra2qFevnjGiG12higuHDx82dQ4iIiIiIiqvZHJg0G/Aqo5A3AOx01AJsk2LRz+rlvgt4ZrYUUxiTqs5qO9Sv8j7e3l5YdGiRZBIJAgICMC1a9ewaNEiXXFh165deP3115GWlgZ3d3fs378fTk5ORkpvXIUqLrRr187UOYiIiKiC4OCZBePgmVRumdsDQzYDP3UEMhLETkMlaOTDS9joZI7scjaw5/i649HTr3jv2c2bN9frJdCiRQssWLAAGo0GMpkM7du3x+XLlxETE4NVq1Zh4MCBOHPmDFxcXIob3+gMnooSAI4dO4Zhw4ahZcuWCA0NBQD89ttvOH78uFHDERERERFROeJUBXh9PVCEvulUdrkmhqGnbXWxYxhVN59umFh/osnPY2lpiSpVqqB58+b4+eefYWZmhp9//tnk5y0Kg4sL27ZtQ9euXWFubo6LFy8iMzMTAJCYmIi5c+caPSAREREREZUjPq2BfqsASZG+56QyalTIHUjLyXNez7kevmj9xUvHJSyMM2fO6N0+ffo0qlatCplMluf2Wq1W9xm8tDH42f3iiy+wcuVKrFq1CnK5XLe8VatWuHjxolHDERERERFROVTzNaDHN2KnoBLkF3UfHexqiB2j2Go41MCKTiuKNDNEXoKDgzFt2jTcuXMHv//+O5YuXYopU6YgNTUVH374IU6fPo0nT57gwoULGD16NEJDQzFgwACjnNvYCjXmwvPu3LmDtm3b5lpua2uLhIQEY2QiIiIiIqLyrslYIDkSOPq12EmohIyJDMEBhdgpiq6KXRX80PkHWCusjXbMESNGID09HU2bNoVMJsOUKVPwxhtvIDMzE7dv38batWsRExMDR0dHNGnSBMeOHUOtWrWMdn5jMri44Obmhvv378PHx0dv+fHjx+Hn52esXEREREREVN51+AhIjQIurBE7CZWA2qHX0Kx+J5xJvCt2FIN523hjVZdVsFfZG+2YR44c0f1/xYoVeutUKhW2b99utHOVBIO7RYwbNw5TpkzBmTNnIJFIEBYWhvXr12P69OmYMGGCKTISEREREVF59cpioOkbYqegEjI6MUnsCAbzsPTAT11+gpN56ZwCsrQwuOXCjBkzoNVq0bFjR6SlpaFt27ZQKpWYPn063n77bVNkJCIiIqL/tXfv8THd+R/H35O7hFxoSBAbVWU1rgkalqKKVh8tWi3aH7KoS1XLolXaoqtubQhVERq3InbV2pZQrW7c6lIiWd0qpeISInEXJCIzvz9SU6lLI5PMkcnr+XjMgzlz5pz3fIzzmPnM93wP4KhMprz5F8qUlzZOMjoNilmzwztVp15L/XgpxegoBVKxTEXNazdPAV4BRke5793zyAWTyaTRo0fr7Nmz+uGHH7R9+3ZlZGTo/fff19WrV4sjIwAAAABH13qU9OQUSbbPwI/721/vz4sd3CKoXJAWPrlQQd5BRkcpEQp9LRA3NzfVqVNHTZo0kaurqyIjI1W9evWizAYAAACgNGnaX+oSIznd8wBrlCBPHNiiP3lVNjrGXT3s97AWPblIVctVNTpKiVHg5kJ2drZGjRqlsLAwNWvWTKtWrZIkzZ8/X9WrV9e0adM0dOjQQoWYNWuWgoOD5eHhoaZNm2rnzp13XHfu3Llq0aKF/Pz85Ofnp7Zt2951fQAAAAAlSL0XpBeXSC5ljE6CYuJkMau3pazRMe6oUcVGmt9hPnMs3KMCNxfeffddzZ49W8HBwUpJSVHXrl31yiuvaNq0aYqMjFRKSorefPPNew6wfPlyDRs2TO+9954SExNVv359tW/fXunp6bddPyEhQd27d9d//vMfbdu2TUFBQWrXrp1SU1Pved8AAAAA7kO1Okj/t1Jy9zE6CYrJsz9tUkWPCkbHuEWLKi0054k58nbzNjpKiVPg5sI///lPLVq0SCtWrND69euVm5ur69evKzk5Wd26dZOzs3OhAkRGRqpfv36KiIhQnTp1FB0dLU9PT8XGxt52/SVLlmjQoEFq0KCBateurXnz5slsNmvDhg2F2j8AAACA+9Cfmkm9V0teFY1OgmLgmntNL7tWMjpGPh0f7KioNlHycPEwOkqJVODmwvHjxxUaGipJCgkJkbu7u4YOHSqTqfATrly7dk27d+9W27Ztfwvk5KS2bdtq27ZtBdrGlStXlJOTo/Llyxc6BwAAAID7UGA96a/rJN9qRidBMXhh/1aVczX+9AiTTBrScIgmtZgkVydXo+OUWAVuLuTm5srNzc1638XFRWXL2vZGOH36tHJzc1WpUv6OVaVKlZSWllagbbz55puqXLlyvgbFzbKzs3Xx4sV8NwAAAAAlRIUa0l+/kgIbGJ0ERcwr+5K6eRp7UQAvVy/NaDND/er1MzSHIyjwNKwWi0W9e/eWu7u7JCkrK0sDBgyQl5dXvvVWrlxZtAnvYtKkSYqLi1NCQoI8PG4/dGXixIkaN26c3TIBAAAAKGLelaU+X0tfvyPtiDY6DYrQSwd3anGAr7Jy7X99ymrlqmlGmxmq4VvD7vt2RAUeudCrVy9VrFhRPj4+8vHx0csvv6zKlStb79+43YsHHnhAzs7OOnXqVL7lp06dUkBAwF2f++GHH2rSpElav3696tWrd8f1Ro0apQsXLlhvx44du6eMAAAAAO4DLm7Sk5OlbkslD1+j06CIVMjM0LPeD9t9v+GB4VracSmNhSJU4JEL8+fPL/Kdu7m5KTQ0VBs2bFCnTp0kyTo54+DBg+/4vClTpmjChAn66quvFBYWdtd9uLu7W0dbAAAAACjhaneUBmyWVvxVOv690WlQBCJS9upzXxddt1wv9n2ZZFJESISGNBwiZ6fCXZQAt1fgkQvFZdiwYZo7d64WLlyoffv2aeDAgbp8+bIiIiIkST179tSoUaOs60+ePFnvvPOOYmNjFRwcrLS0NKWlpSkzM9OolwAAAADAnnyrSRHrpGZDJBV+gnncH6qcPar2vrWLfT8Vy1RUTLsYDQ0dSmOhGBR45EJxefHFF5WRkaF3331XaWlpatCggdatW2ed5PHo0aNycvqtBzJ79mxdu3ZNzz//fL7tvPfeexo7dqw9owMAAAAwirOL1O59KbiFtGqAdOWM0Ylggz6phxTvaZJFlmLZfuug1hrfbLx8OaWm2BjeXJCkwYMH3/E0iISEhHz3U1JSij8QAAAAgJLh4XbSgC3S532lI1uNToNCqnlqv1o0bK9N5/cV6XY9nD00ovEIvVDrhSLdLm5l+GkRAAAAAGAT78pSry+lliMkE19xSqo+p9OLdHt/Lv9nxT0dR2PBTvifBwAAAKDkc3KW2oyR/vqVFFjf6DQohEbH9qiht+1XbyjjUkYjwkZoWcdlXA3CjmguAAAAAHAcQU2kfgnS09MlzwpGp8E96pOZbdPzW1ZtqVXPrlLPR3oyaaOd0VwAAAAA4FicnKSwCOm13VKTVyQTXzJLipaHtqlm2Wr3/Dz/Mv768LEPNevxWapctnIxJMMfobkAAAAAwDGV8ZOemioN2Jx3VQnc90yyKCLHtcDruzi5qEftHvp3p3+rfXD7YkyGP0JzAQAAAIBjq/SI1Hu19Px8ybuq0WnwB548sFlVPCv94XpP/OkJ/fvZf2tU01Eq51bODslwNzQXAAAAAJQOIV2kwd9LLYZLzu5Gp8EduJivq6fJ746PN6rYSJ899ZkiW0Wqmve9n0KB4kFzAQAAAEDp4eYpPf6O9OoO6ZEuXLryPtVl/2aVd/fNt6y6T3VFtY7SwicXqr4/VwS53/A/CQAAAEDpU7661HW+NHiX1Kin5OxmdCLcxCPnqnq4553C8pDvQ5rcYrL+9cy/1KZaG4OT4U5cjA4AAAAAAIapUEN6ZqbUapS0bZa0a76Uc9noVJDUPTNLD7WerjZBbWQymYyOgz9AcwEAAAAAvCtL7SdILf4m7fpU+j5WunTC6FSlj8lZqt1RavaavIOa6HGj86DAaC4AAAAAwA2e5aWWI6TmQ6V9X0g75kjHthudyvG5lZUaviw9OlDyCzY6DQqB5gIAAAAA/J6zS97VJUK6SCeS8poMP66Scq4YncxxmJyl4L9IIc9JdZ6VyvganQg2oLkAAAAAAHdTuYHUebbU8SPp4NfSj19IB76Srl0yOlkJZJKCmuY1FB7pJJWtaHQgFBGaCwAAAABQEG6eeb+w13lWup4tHdyQd+rE/ngp64LR6e5vlRv+2lDoLPlUNToNigHNBQAAAAAOKyEhQa1bt75l+cmTJxUQEFD4Dbu4S7Wfyrvl5ki/JEg//lv6aY109Wzht+tIKtb59dSS56TyDxqdBsWM5gIAAAAAh7d//355e3tb71esWITD8Z1dpZpP5N2eni4d2ZLXaDi4QTp/pOj2c78rFygFNck77aFGG6nin41OBDuiuQAAAACgxFq0aJGGDh2qEydOyN3d3bq8U6dOKleunPr06SMpr5ng6+tb/IGcXaQHW+XdJOnyGSl192+3E4nSlTPFn6O4OblIlR7JayQENc1rKvhWMzoVDERzAQAAAECJ1bVrVw0ZMkRffPGFunbtKklKT0/XmjVrtH79eut6DRo0UHZ2tkJCQjR27Fg1b97cPgG9KkgPt8u73XD28K/NhsS8P08mS9ev2idPYXn4/joq4deRCVVCJTcvo1PhPkJzAQAAAECJVaZMGfXo0UPz58+3Nhc+++wzVatWTa1atdKBAwcUHR2tsLAwZWdna968eWrVqpV27NihRo0aGRO6fPW8W93n8+7nXpfSf5ROJkkXjkuX0n69ncz788ppyWIu3kxuZSXvKnmTLfpUkXyC8v7uXSVvRIJfsGQyFW8GlGg0FwAAAACUaP369VPjxo2VmpqqKlWqaMGCBerdu7dMJpNq1aqlWrVqWddt1qyZDh06pGnTpmnx4sUGpr6Js4sUWC/vdju516XMU3mNhsybmg6XTkpXzkmW3Lzmgzn3t79bLHmnLji7SS5ueX86u+fND1HG79cmwk23Mn72fc1wODQXAAAAAJRoDRs2VP369bVo0SK1a9dO//vf/7RmzZo7rt+kSRNt2bLFjglt5Ozy62iCKkYnAe6I5gIAAACAEq9v376aPn26UlNT1bZtWwUFBd1x3aSkJAUGBtoxHeD4aC4AAAAAKPF69Oih4cOHa+7cuVq0aJF1+fTp01W9enU98sgjysrK0rx58/Ttt9/mm+wRgO1oLgAAAAAo8Xx8fPTcc89pzZo16tSpk3X5tWvX9Le//U2pqany9PRUvXr19M0336h169bGhQUcEM0FAAAAAA4hNTVVL730ktzd3a3LRo4cqZEjRxqYCigdaC4AAAAAKNHOnTunhIQEJSQk6JNPPjE6DlAq0VwAAAAAUKI1bNhQ586d0+TJk/NddhKA/dBcAAAAAFCipaSkGB0BKPWcjA4AAAAAAABKNpoLAAAAAADAJjQXAAAAAACATWguAAAAAAAAm9BcAAAAAAAANqG5AAAAAAAAbEJzAQAAAAAA2ITmAgAAAAAAsAnNBQAAAAAAYBOaCwAAAAAAwCY0FwAAAAAAgE1oLgAAAAAAAJvQXAAAAAAAADahuQAAAAAAAGxCcwEAAAAAANiE5gIAAAAAALAJzQUAAAAAAGCT+6K5MGvWLAUHB8vDw0NNmzbVzp0777r+P//5T9WuXVseHh6qW7eu4uPj7ZQUAAAAAAD8nuHNheXLl2vYsGF67733lJiYqPr166t9+/ZKT0+/7frfffedunfvrj59+mjPnj3q1KmTOnXqpB9++MHOyQEAAAAAgHQfNBciIyPVr18/RUREqE6dOoqOjpanp6diY2Nvu35UVJQ6dOigESNG6M9//rPef/99NWrUSB9//LGdkwMAAAAAAElyMXLn165d0+7duzVq1CjrMicnJ7Vt21bbtm277XO2bdumYcOG5VvWvn17rVq16rbrZ2dnKzs723r/woULkqSLFy/amL5gzNlX7LKfkqoo/x2o9d1Ra/uh1vZDre2HWtuPvT6j3NiPxWKxy/4AAI7N0ObC6dOnlZubq0qVKuVbXqlSJf3000+3fU5aWtpt109LS7vt+hMnTtS4ceNuWR4UFFTI1ChKPtONTlB6UGv7odb2Q63th1rbj71rfenSJfn4+Nh3pwAAh2Noc8EeRo0alW+kg9ls1tmzZ1WhQgWZTCYDk9nfxYsXFRQUpGPHjsnb29voOA6NWtsPtbYfam0/1Np+SnOtLRaLLl26pMqVKxsdBQDgAAxtLjzwwANydnbWqVOn8i0/deqUAgICbvucgICAe1rf3d1d7u7u+Zb5+voWPrQD8Pb2LnUfoIxCre2HWtsPtbYfam0/pbXWjFgAABQVQyd0dHNzU2hoqDZs2GBdZjabtWHDBoWHh9/2OeHh4fnWl6Svv/76jusDAAAAAIDiZfhpEcOGDVOvXr0UFhamJk2aaPr06bp8+bIiIiIkST179lSVKlU0ceJESdLrr7+uxx57TB999JE6duyouLg47dq1SzExMUa+DAAAAAAASi3DmwsvvviiMjIy9O677yotLU0NGjTQunXrrJM2Hj16VE5Ovw2waNasmZYuXaoxY8bo7bffVs2aNbVq1SqFhIQY9RJKDHd3d7333nu3nCaCoket7Yda2w+1th9qbT/UGgCAomGycP0hAAAAAABgA0PnXAAAAAAAACUfzQUAAAAAAGATmgsAAAAAAMAmNBcAAAAAAIBNaC6UQmaz2egIAIACYM5lAABQUtBcKEUSExMlKd+lPQGgMGhSFq9z585Jkkwmk8FJHBvNGwAAig7fMkuJuLg4hYWFaeHChUZHcXiffPKJ5s6da3QMh3fjy63FYlFubq7BaRxfYmKi1q9fr5UrV0rKa1Lyxax4LFu2TGPGjNF///tfo6M4NLPZLJPJpLNnzyojI8PoOAAAlHg0F0qB2bNnq0ePHipbtqy2b99udByHNnfuXA0ePFh+fn5GR3FoZrNZTk5OOnDggIYOHapnn31W48eP15kzZ4yO5pBiY2P13HPPaciQIXr11VcVEREhiV/Vi8P8+fMVERGhkJAQBQYG5nuM0SJFy8nJSb/88osaN26smTNn6sSJE0ZHAgCgRKO54OBiYmL02muvadOmTVqxYoViY2O1ceNGo2M5pJiYGA0aNEjLly/X888/r9zc3Ft+UeeXXtvdaCzs3btXLVq0UGpqqqpWraoJEybo448/Njqew1m1apVef/11TZs2TWvWrNH48eO1d+9eXblyxboO7+ui8eOPP2ry5MmKjY3VwIED5erqqsOHDys5OVkSp7QVh6+//lqHDx/W6tWrtWDBAqWlpVkfs1gsvLcBALgHLkYHQPFZsGCBBgwYoJUrV+ovf/mLDh8+rNDQUK1du1aPPfaYcnNz5ezsbHRMh7BhwwYNGDBAK1asUJcuXbRv3z7NmTNHiYmJqlGjhh599FH1799fJpNJFouFX3xt4OTkpMOHD+uZZ55Rnz599MEHH0iSAgMDlZ6erpycHLm6ulrXp96Fl5OTo3Xr1unVV19Vp06dJElZWVmKi4vTV199pbNnz+qll16Sh4cHdS4C58+fl6enp7p3767k5GQNGTJEJ06c0OXLl1WrVi0tX75cFStWtDbYYLvw8HD17NlTNWvW1KxZs2Q2mzV48GD5+vryfgYA4B7x6cRBXbx4UVu2bNEXX3xh/VJQvXp1tWrVSnPnztWFCxdoLBQRs9ksFxcX+fv761//+pf27dunZ555RkePHlVISIjS09P1ySef6O2335bEUHJb5ebm6vPPP9eTTz6pt956y7r8+PHj2rNnj5o3b66BAwfqyy+/lES9beHq6qqDBw8qKSnJumz06NH68ccfNXHiRP39739XWFiYMjMzrY0z3LsbpzscOXJE2dnZys3NVf/+/RUeHq6YmBgtXrxYZ86cUYcOHSQxgqEoWSwWfffdd3r77bfVv39/xcTEaOHCherSpYtGjx5tdDwAAEoUk4VPgw7ndr9qXb9+XS4uLsrIyFDLli31/PPPa/z48XzxstHNv9Zu3bpVvXr10i+//KK33npLY8aMkaenp86dO6epU6fqq6++0ooVK1S9enWDU5d8qampOnbsmB599FFJ0t///neNHTtWb731lipVqqTFixerXLlyWrJkiQICAgxOW/Lc/L5etGiRPvjgA3l5ecnDw0Opqan69ttvVaFCBVksFoWGhuqpp57SzJkzDU5dMt1c65MnT6pDhw5q3Lixjh49qk8//VRBQUGSpGPHjik8PFwjRozQ66+/bmRkh9O+fXvNmTNHwcHBmjp1qsaNGycXFxf94x//ULt27YyOBwBAicFpEQ7oRmMhNjZW58+f17Bhw6yjFHx9fRUaGqr//Oc/1g+1DGcuvJu/gGVkZCg2NlYrVqxQjx495OnpKYvFIj8/Pz333HOaNGmSjh49SnPBRhaLRVWqVFHlypUlSRkZGTpz5oxWr15t/WW3bdu2euSRR5SUlGRdhoK78b5eunSpDhw4oOjoaB05ckTx8fHq06ePHnzwQZnNZpnNZoWEhDDRoA1u1Do2Nlapqalq27atVq1aJbPZbG0sXL9+XRUqVFC1atWUk5NjZFyHcqMRn5WVpU2bNik4OFj79++Xs7OzypQpo+TkZIWEhFiPNQAA4O4YW+mgsrOz9fnnn2vTpk2S8j7A5ubmytXVVaNHj1ZSUpLmzJljfQyFl52drbi4OG3dulUtW7bU6NGjFRISkm+dnJwchYWFqWrVqgalLNluvtzk2bNndfnyZV29elWS5O/vr/Hjx6tDhw6yWCwym826fv26GjZsqCpVqhgZu0TLysrS4sWLtW/fPrVq1Uq9evVSWlqaDh48KOm3S1GeP3+e0SE2ys7O1ooVK/Tzzz9rxIgRevjhh3XkyBGNGjVKkuTi4iJPT0+5ubmpbNmyBqctmW4+hpw5c0aXL19WZmampLx5F8xms4YMGaK1a9cqKSlJQ4YM0dixYxUXF8elbgEAKCBOi3BAN0Yi7N69W23atNHixYv1zDPPWB/LysrSwIEDlZ6erqVLl8rX19fYwCXYzbVu3bq1li5dqqeffjrfOlevXlW3bt2Uk5Oj1atXc770PYiPj1eVKlVUv359SdLKlSs1ZcoUnT59WnXr1lXHjh3Vt2/fW0bfjB49Whs2bNCXX34pf39/o+KXWL8/hixYsECdO3fWO++8o23btqljx45q2LChpkyZorS0NO3cuVMuLgyEK4wbtd61a5dat26ttWvXKjg4WCNGjNA333yjxo0bq3Hjxtq4caPOnz+vXbt2Uet7cLdjSEhIiHr06CE/Pz+1b99e/v7+WrNmjcLCwiRJU6ZMUefOnVWzZk0jXwIAACUGzQUHcKfTGi5evKh+/fopMDBQ06dPzzcXw+zZs7VkyRJt3ryZkQv3oKC1lqQrV65ow4YNioqKUkZGhnbt2iVXV1dmei+gU6dOKTw8XK1atdKYMWOUlZWlRx99VG+++aZcXFx09OhRzZs3T+PGjbNO7PjDDz9o+fLlmjFjhjZv3qx69eoZ/CpKhj96XwcEBCgqKkpJSUn66KOPtH79egUGBiooKEgrV66Uq6srV58poLvVum/fvgoICNCMGTN07Ngxbd++XdHR0fLz81P58uU1a9Ysan0P/ugYcuTIEX366ad6+eWXFRoaqubNm6t+/focowEAKCSaCw5k2rRpMpvNevHFF63D7+fOnauhQ4cqOTlZNWrUyPehiTkXCq8gtT5x4oRmzpypU6dOKSYmRi4uLtaJNVEwiYmJ6t+/v5o2bSpfX19lZ2dr6tSpkvK+jC1evFjDhw9XTEyMdRTDgQMHtGTJEusvlSi4u72v9+zZo5o1a+rs2bO6ePGirl+/rho1ashkMvG+LoQ71fqNN95QUlLSHX8tp9b35m7HkAsXLmjp0qV68803NXXqVPXv39/gtAAAlGw0FxzE1atXNW7cOEVHRys0NNQ667Wnp6f69u0rHx8fTZ8+Xa6urvmeR2Ph3hWk1tOmTZObm5vOnz8vHx8fvoDZIDExUQMHDtSpU6f09NNP6+OPP7Y+duHCBQ0dOlTZ2dlasmSJ9u7dKz8/P+a2KIQ/el97e3tr2rRpcnd3z/c8fuW9dwWpdVRUlJydnfPVluN14dztGHLu3DkNHz5cWVlZWrBggVxcXKgxAACFRHPBwRw/flxr165VdHS0rly5oiZNmujMmTOSpLi4OJUtW5YPqEXkbrVetmyZypUrx+iQIvLf//5Xzz77rDw8PLRs2TI1aNDA+tjo0aO1Zs0a7dy5U25ubsaFdBAcQ+yHWtvPHx1D4uPjtXPnzlsa8AAAoOD4ucnBVK1aVf369dPu3bs1bNgw+fn5KT4+XvHx8YqKipLE1SGKyt1qPWPGDEm/1Zqa26ZevXr64osv5OrqqqioKCUnJ1sfO336tPz9/blEXxHhGGI/1Np+/ugY8sADD+jatWsGJgQAoORj5IID+v0vXd9//71mzZqljIwMLVu2TN7e3gamcyx/VOty5crx5aAI7dmzRz179tSVK1fUsmVLubu7a8WKFfrmm2/y/RIJ23AMsR9qbV8cQwAAKD40F0qJHTt26LHHHtP69evVsmVLo+M4NGpdvPbu3asuXbooOztbgwYNUvfu3fWnP/3J6FgOj/e1/VDr4sUxBACA4sFpEaWAxWJR06ZN1bBhQ6WkpBgdx6FR6+JXt25dxcXFqXbt2urTpw9fCuyA97X9UOvixzEEAIDiwciFUiImJkYDBgzQzz//rBo1ahgdx6FRa/vIysqSh4eH0TFKDd7X9kOt7YNjCAAARYvmQilx6NAhZWdnq06dOkZHcXjUGo6I97X9UGsAAFAS0VwAAAAAAAA2Yc4FAAAAAABgE5oLAAAAAADAJjQXAAAAAACATWguAAAAAAAAm9BcAAAAAAAANqG5AAAAAAAAbEJzAUCp1bt3b5lMpltuBw8eNDpasWjVqpXeeOMNo2MAAADAAbkYHQAAjNShQwfNnz8/3zJ/f/98969duyY3Nzd7xgIAAABKFEYuACjV3N3dFRAQkO/2+OOPa/DgwXrjjTf0wAMPqH379pKkyMhI1a1bV15eXgoKCtKgQYOUmZmZb3tz585VUFCQPD091blzZ0VGRsrX19f6+NixY9WgQQPFxsaqWrVqKlu2rAYNGqTc3FxNmTJFAQEBqlixoiZMmJBvu+fPn1ffvn3l7+8vb29vtWnTRsnJybdsd/HixQoODpaPj4+6deumS5cuScobpbFx40ZFRUVZR2ikpKQUT1EBAABQ6tBcAIDbWLhwodzc3LR161ZFR0dLkpycnDRjxgz973//08KFC/Xtt99q5MiR1uds3bpVAwYM0Ouvv66kpCQ98cQTtzQJJOnQoUNau3at1q1bp2XLlunTTz9Vx44ddfz4cW3cuFGTJ0/WmDFjtGPHDutzunbtqvT0dK1du1a7d+9Wo0aN9Pjjj+vs2bP5trtq1SqtXr1aq1ev1saNGzVp0iRJUlRUlMLDw9WvXz+dPHlSJ0+eVFBQUHGVDwAAAKWMyWKxWIwOAQBG6N27tz777DN5eHhYlz355JPKyMjQxYsXlZiYeNfnr1ixQgMGDNDp06clSd26dVNmZqZWr15tXefll1/W6tWrdf78eUl5IwymTp2qtLQ0lStXTlLeqRn79+/XoUOH5OSU1/OtXbu2evfurbfeektbtmxRx44dlZ6eLnd3d+u2H3roIY0cOVKvvPLKbbc7cuRIbdq0Sdu3b5eUN+dCgwYNNH36dNsKBwAAAPwOcy4AKNVat26t2bNnW+97eXmpe/fuCg0NvWXdb775RhMnTtRPP/2kixcv6vr168rKytKVK1fk6emp/fv3q3Pnzvme06RJk3zNBkkKDg62NgAkqVKlSnJ2drY2Fm4sS09PlyQlJycrMzNTFSpUyLedq1ev6tChQ3fcbmBgoHUbAAAAQHGiuQCgVPPy8tJDDz102+U3S0lJ0dNPP62BAwdqwoQJKl++vLZs2aI+ffro2rVr8vT0LPA+XV1d8903mUy3XWY2myVJmZmZCgwMVEJCwi3bunk+h7ttAwAAAChONBcAoAB2794ts9msjz76yDrC4B//+Ee+dWrVqqXvv/8+37Lf3y+MRo0aKS0tTS4uLgoODi70dtzc3JSbm2tzHgAAAOD3mNARAArgoYceUk5OjmbOnKlffvlFixcvtk70eMNrr72m+Ph4RUZG6ueff9acOXO0du1amUwmm/bdtm1bhYeHq1OnTlq/fr1SUlL03XffafTo0dq1a1eBtxMcHKwdO3YoJSVFp0+fZlQDAAAAigzNBQAogPr16ysyMlKTJ09WSEiIlixZookTJ+Zbp3nz5oqOjlZkZKTq16+vdevWaejQofkmjCwMk8mk+Ph4tWzZUhEREXr44YfVrVs3HTlyRJUqVSrwdoYPHy5nZ2fVqVNH/v7+Onr0qE25AAAAgBu4WgQAFKN+/frpp59+0ubNm42OAgAAABQb5lwAgCL04Ycf6oknnpCXl5fWrl2rhQsX6pNPPjE6FgAAAFCsGLkAAEXohRdeUEJCgi5duqQHH3xQr732mgYMGGB0LAAAAKBY0VwAAAAAAAA2YUJHAAAAAABgE5oLAAAAAADAJjQXAAAAAACATWguAAAAAAAAm9BcAAAAAAAANqG5AAAAAAAAbEJzAQAAAAAA2ITmAgAAAAAAsAnNBQAAAAAAYJP/B3+iKArtPC9/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "intensities = feat_gen.feature_relative_intensities_top_6(\n", + " precursor_fragments, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a03482a6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAGGCAYAAADrbBjiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAu3xJREFUeJzs3XdYFNf7NvB76R1EOtJERREE7Nh7R401asSGmigRJcaWWNBYExUVezcaa2xRo7FrrEHFr8auKBZA0QCC9D3vH77Mz5W2KLCU+3Nde+meOTPzzOyyc/bZM+fIhBACRERERERERERERFRsqKk6ACIiIiIiIiIiIiJSxMQtERERERERERERUTHDxC0RERERERERERFRMcPELREREREREREREVExw8QtERERERERERERUTHDxC0RERERERERERFRMcPELREREREREREREVExw8QtERERERERERERUTHDxC0RERERERERERFRMcPELREREX22Zs2aoVmzZp+8rpub22ftf+DAgXB0dPysbRAREVHRkMlk8Pf3V3UYpCRHR0d06tQpz3qnTp2CTCbDqVOnCj8oFfqcdi9RfjFxS8XOsmXLIJPJUK9ePVWHopQNGzZAJpNJDw0NDdja2mLgwIF4/vw5gPcJhQ/r5PQYOHBgkcSckJCAqVOnol27djA1NYVMJsOGDRuyrXv58mWMGDECtWrVgqamJmQyWY7bzem45syZk2dM//zzD/z9/VG9enXo6+vD3t4evXr1wr1797KtL5fLsXz5cnh6ekJXVxfly5dHixYtcP36danO48ePc4xp27Ztn3ycREUtOTkZEydOhKOjI/T09FC1alWMHTtW1WEVuRcvXmDatGkICwtTdShEVAaVtDYqERWt8+fPY9q0aYiNjVV1KFQM8f1Bn0pD1QEQfWzLli1wdHTE5cuX8eDBA1SqVEnVISll+vTpcHJyQnJyMi5evIgNGzbg77//xs2bNzF8+HC0atVKqhseHo4pU6Zg2LBhaNy4sVTu7OxcJLHGxMRg+vTpsLe3h4eHR66/iB46dAhr1qxBjRo1ULFixRwTqZlat24NX19fhTIvL688Y5o7dy7OnTuHnj17okaNGoiKikJISAhq1qyJixcvZumNN3jwYGzZsgW+vr7w9/dHYmIirl27hpcvX2bZdp8+fdChQweFMm9v7886TqKiNH78eCxevBiDBw9GvXr1cPfuXWzevBm//PKLqkOT/PXXX4W+jxcvXiAoKAiOjo7w9PRUWLZ69WrI5fJCj4GIyq6S2kYloqJx/vx5BAUFYeDAgTAxMVF1OCrRpEkTJCUlQUtLS9WhFKpPaffy/UGfiolbKlbCw8Nx/vx57N69G8OHD8eWLVswdepUVYellPbt26N27doAAD8/P5iZmWHu3LnYv38/evXqpZAoDA0NxZQpU+Dt7Y2vvvqqyGO1trZGZGQkrKysEBoaijp16uRY95tvvsH48eOhq6sLf3//PBOaVapU+aRjCgwMxG+//aZwke/duzfc3d0xZ84cbN68WSrfsWMHNm7ciN27d+OLL77Ic9s1a9bMM6b8HieVTunp6ZDL5cWusblt2zZ06NABa9eulcpmzZqlwoiyUvU509TUVOn+iah0K8ltVCo6iYmJ0NfXV3UYpR7Pc/aKw3lRU1ODjo6OSmMoCqpu91LZwqESqFjZsmULypUrh44dO6JHjx7YsmVLljqZt7//8ssvWLhwIRwcHKCrq4umTZvi5s2bWerfuXMHPXr0gKmpKXR0dFC7dm3s379fWv7y5UuYm5ujWbNmEEJI5Q8ePIC+vj569+79SceS2ZP24cOHn7R+YdLW1oaVlZVSdS0tLaGrq5uv7SclJSE5OTlf6zRo0CDLBbBy5cqoXr06bt++rVC+YMEC1K1bF1988QXkcjkSExPz3H5iYiJSU1NzXP4px1nYPnyvL126FBUrVoSenh7atGmDp0+fQgiBGTNmoEKFCtDV1UWXLl3w5s0bhW3s27cPHTt2hI2NDbS1teHs7IwZM2YgIyNDod79+/fRvXt3WFlZQUdHBxUqVMCXX36JuLg4qc7Ro0fRqFEjmJiYwMDAAC4uLpg0aVKex7F+/Xq0aNECFhYW0NbWhqurK5YvX55t3T///BNNmzaFoaEhjIyMUKdOHfz2228KdS5duoQOHTqgXLly0NfXR40aNbBo0SJpeU5jTn08BuqH5zc4OBjOzs7Q1tbGrVu3kJqaiilTpqBWrVowNjaGvr4+GjdujJMnT2bZrlwux6JFi+Du7g4dHR2Ym5ujXbt2CA0NBQA0bdoUHh4e2R6vi4sL2rZtm9cphJqamsLnE/D+71hZixcvhrq6usKtWfPnz4dMJkNgYKBUlpGRAUNDQ4wfP17h+IKDg1G9enXo6OjA0tISw4cPx3///aewj+zO+5MnT9C5c2fo6+vDwsICY8aMwZEjR3Ic++zWrVto3rw59PT0YGtri3nz5knLTp06Jf3INGjQIGnYk8xhXnJ7fVetWiW9vnXq1ME///yTZd87d+6Eq6srdHR04Obmhj179nDcXCKSlMQ26rRp0yCTyXDv3j189dVXMDY2hrm5OSZPngwhBJ4+fYouXbrAyMgIVlZWmD9/vsL6+bkWbtu2DbVq1ZKu3+7u7grX5rS0NAQFBaFy5crQ0dFB+fLl0ahRIxw9ejTXY3jz5g3Gjh0Ld3d3GBgYwMjICO3bt1cYGitTcnIypk2bhipVqkBHRwfW1tbo1q2bQls8r2t25muY3RBiMpkM06ZNy3J+b926hb59+6JcuXJo1KgRAOB///sfBg4ciIoVK0JHRwdWVlYYPHgwXr9+nWW7z58/x5AhQ6S2mpOTE7755hukpqbi0aNHkMlkWLhwYZb1zp8/D5lMhq1bt2Z77qKjo6GhoYGgoKAsy+7evQuZTIaQkBAAn/765CSv8/yhvXv3ws3NDdra2qhevToOHz6ssDy385yeno4ZM2ZI13hHR0dMmjQJKSkpCtvIHJ/11KlTqF27NnR1deHu7i61RXbv3i3FWqtWLVy7dk1hfWVez2nTpuH7778HADg5OUntlMePH+crVrlcjmnTpsHGxgZ6enpo3rw5bt26BUdHR4Vh9TKH6zt9+jRGjBgBCwsLVKhQAcD79teIESPg4uIiDSnXs2dPKZaPt3HmzBkMHz4c5cuXh5GREXx9fbO08zL9/fffqFu3LnR0dFCxYkVs2rRJYXlOY9zm1X7PSWxsLMaMGQNHR0doa2ujQoUK8PX1RUxMjFTn5cuXGDJkCCwtLaGjowMPDw9s3LhRYTv5aRdGRUVh0KBBqFChArS1tWFtbY0uXboonL/s2r1LlixB9erVoaenh3LlyqF27drS95i83h8AsHnzZtSqVQu6urowNTXFl19+iadPnyrsI3NeiNzazJly+0wUQsDR0RFdunTJdj1jY2MMHz485xeGipYgKkaqVq0qhgwZIoQQ4syZMwKAuHz5skKd8PBwAUC4u7sLR0dHMXfuXBEUFCRMTU2Fubm5iIqKkurevHlTGBsbC1dXVzF37lwREhIimjRpImQymdi9e7dUb+fOnQKAWLRokRBCiIyMDNGwYUNhaWkpYmJico15/fr1AoD4559/FMpDQkIEALF8+fIs6/zzzz8CgFi/fr3S5yY5OVm8evVKqUd+5CeWkSNHitw+NgAIfX19IZPJBABRrVo1sWXLlnzF8yG5XC5sbW1FmzZtpLK4uDghk8nEyJEjxcSJE4WBgYEAIJycnMT27dsV1s98r2TWkclkonbt2uLIkSOfdZxFJTN+T09P4erqKhYsWCB+/PFHoaWlJerXry8mTZokGjRoIBYvXixGjRolZDKZGDRokMI2unbtKnr16iV+/vlnsXz5ctGzZ08BQIwdO1aqk5KSIpycnISNjY346aefxJo1a0RQUJCoU6eOePz4sRDi/d+SlpaWqF27tli0aJFYsWKFGDt2rGjSpEmex1GnTh0xcOBAsXDhQrFkyRLRpk0bAUCEhIQo1Fu/fr2QyWTCzc1NzJw5UyxdulT4+fmJ/v37S3X++usvoaWlJRwcHMTUqVPF8uXLxahRo0SrVq2kOk2bNhVNmzbNEseAAQOEg4NDlvPr6uoqKlasKObMmSMWLlwonjx5Il69eiWsra1FYGCgWL58uZg3b55wcXERmpqa4tq1awrbHThwoAAg2rdvL4KDg8Uvv/wiunTpIpYsWSKEEGL16tUCgLhx44bCepcvXxYAxKZNm/I8hxMnThQymUwcOnQoz7rZuXr1qgAg/vjjD6msS5cuQk1NTdSuXVsqy/w8OHDggFTm5+cnNDQ0xNChQ8WKFSvE+PHjhb6+vqhTp45ITU2V6n183hMSEkTFihWFrq6umDBhgggODhZ169YVHh4eAoA4efKkwro2NjbCzs5OBAQEiGXLlokWLVoIANIxR0VFienTpwsAYtiwYeLXX38Vv/76q3j48KEQIufX18vLS1SqVEnMnTtXzJs3T5iZmYkKFSooxH7gwAEhk8lEjRo1xIIFC8TkyZNFuXLlhJubm8I2iajsKolt1KlTp0rtiD59+ohly5aJjh07CgBiwYIFwsXFRXzzzTdi2bJlomHDhgKAOH36tLS+stfCv/76SwAQLVu2FEuXLhVLly4V/v7+omfPnlKdSZMmCZlMJoYOHSpWr14t5s+fL/r06SPmzJmT6zH8888/wtnZWUyYMEGsXLlSTJ8+Xdja2gpjY2Px/PlzqV56erpo2bKlACC+/PJLERISImbPni1atGgh9u7dK9XL65qd+Rpm1y4GIKZOnZrl/Lq6uoouXbqIZcuWiaVLlwohhPjll19E48aNxfTp08WqVatEQECA0NXVFXXr1hVyuVzaxvPnz4WNjY3Q09MTo0ePFitWrBCTJ08W1apVE//9958QQoiGDRuKWrVqZYlnxIgRwtDQUCQmJuZ4/lq0aCFcXV2zlAcFBQl1dXXpPfmpr09O8jrPQrw/nx4eHsLa2lrMmDFDBAcHi4oVKwo9PT2F93Zu53nAgAECgOjRo4dYunSp8PX1FQBE165dFeJxcHAQLi4uwtraWkybNk0sXLhQ2NraCgMDA7F582Zhb28v5syZI+bMmSOMjY1FpUqVREZGhrS+Mq/n9evXRZ8+fQQAsXDhQqmdkpCQkK9Yx40bJwAIHx8fERISIoYOHSoqVKggzMzMxIABA6R6md9BXV1dRdOmTcWSJUuk12vnzp3Cw8NDTJkyRaxatUpMmjRJlCtXTjg4OCi8XzK34e7uLho3biwWL14sRo4cKdTU1ESTJk0U3quZ59DS0lJMmjRJhISEiJo1awqZTCZu3rwp1Tt58mSWdp4y7ffsvH37Vri5uQl1dXUxdOhQsXz5cjFjxgxRp04d6TPo3bt3olq1akJTU1OMGTNGLF68WDRu3FgAEMHBwdK28tMubNCggTA2NhY//vijWLNmjZg1a5Zo3ry5wufjx+3eVatWSa/vypUrxaJFi8SQIUPEqFGjlHp//PTTT0Imk4nevXuLZcuWiaCgIGFmZiYcHR2lz4LM/ebVZhZCuc/EH374QWhqaorXr18rnPcdO3YIAOLMmTO5vj5UdFSfmSD6/0JDQwUAcfToUSHE+6RdhQoVREBAgEK9zA9dXV1d8ezZM6n80qVLAoAYM2aMVNayZUvh7u4ukpOTpTK5XC4aNGggKleurLDdPn36CD09PXHv3j3x888/CwAKDb2cZF7wjh07Jl69eiWePn0qdu3aJczNzYW2trZ4+vRplnU+JXGbuR9lHvlRkInbBg0aiODgYLFv3z6xfPly4ebmJgCIZcuW5SumTL/++qsAINauXSuVZSagypcvLywtLcWyZcvEli1bRN26dYVMJhN//vmnVPfJkyeiTZs2Yvny5WL//v0iODhY2NvbCzU1NYXEVH6Ps6hkvtfNzc1FbGysVD5x4kSpsZuWliaV9+nTR2hpaSm839+9e5dlu8OHDxd6enpSvWvXrgkAYufOnTnGsnDhQgEg3z8M5BRD27ZtRcWKFaXnsbGxwtDQUNSrV08kJSUp1M1sNKanpwsnJyfh4OCg0ID5sI4Q+U/cGhkZiZcvXyrUTU9PFykpKQpl//33n7C0tBSDBw+Wyk6cOCEASI2y7GKKjY0VOjo6Yvz48QrLR40aJfT19aUGW07S0tLEV199JbS0tIS+vr44f/58rvWzk5GRIYyMjMS4ceOk2MqXLy969uwp1NXVxdu3b4UQQixYsECoqalJ5/fs2bMCQJYfYA4fPpyl/OPzPn/+/Cyfo0lJSaJq1arZJm4/TmKnpKQIKysr0b17d6kst8+rnF7f8uXLizdv3kjl+/bty5LEdnd3FxUqVJDOgxBCnDp1SgBg4paISmwbNTPhNWzYMKksPT1dVKhQQchkMoWk3H///Sd0dXUVEkPKXgsDAgKEkZGRSE9PzzEWDw8P0bFjxzxj/lhycrJCAk2I9+dZW1tbTJ8+XSpbt26dlJD+WOb1WJlr9qckbvv06ZOlbnZtn61bt2ZJhvj6+go1NbUsHUA+jGnlypUCgLh9+7a0LDU1NUsiLzuZ637847Grq6to0aKF9PxTX5/sKHOehXh/PrW0tMSDBw+ksuvXrwsACgnenM5zWFiYACD8/PwUyseOHSsAiBMnTkhlDg4OAoBCG+rIkSPS3+uTJ0+k8sxz9mE7RdnXM/PvMzw8/JNijYqKEhoaGlmSudOmTRMAsk3cNmrUKMvfXnbxXrhwIUtbK3MbtWrVUkhczps3TwAQ+/btk8oyz+GHx/vy5Uuhra0tvvvuO6ns48Stsu337EyZMkUAUPgx6+N1g4ODBQCxefNmaVlqaqrw9vYWBgYGIj4+XgihfLvwv//+EwDEzz//nGtsH7d7u3TpIqpXr57rOjm9Px4/fizU1dXFzJkzFcpv3LghNDQ0FMqVbTMr85l49+5dAWTtaNa5c2fh6OiY5+tDRYdDJVCxsWXLFlhaWqJ58+YA3t+O1Lt3b2zbti3Lbd0A0LVrV9ja2krP69ati3r16uHQoUMA3t9adeLECfTq1Qtv375FTEwMYmJi8Pr1a7Rt2xb379/H8+fPpfVDQkJgbGyMHj16YPLkyejfv3+2tw7kpFWrVjA3N4ednR169OgBfX197N+/X7pl5XO1bdsWR48eVeqhKufOnUNAQAA6d+6Mr7/+GleuXIGbmxsmTZqEpKSkfG3rzp07GDlyJLy9vTFgwACpPCEhAQDw+vVr7Nu3D9988w369u2L48ePo3z58vjpp5+kuvb29jhy5Ai+/vpr+Pj4ICAgANeuXYO5uTm+++67gjnoItCzZ08YGxtLzzNns/7qq6+goaGhUJ6amqrwvv5w+IfMv4PGjRvj3bt3uHPnDgBI2z5y5AjevXuXbQyZA+jv27cv3xNAfRhDXFwcYmJi0LRpUzx69EgaiuHo0aN4+/YtJkyYkGVcLJlMBgC4du0awsPDMXr06CwD+mfW+RTdu3eHubm5Qpm6uro0dIdcLsebN2+Qnp6O2rVr4+rVq1K933//HTKZLNtxDjNjMjY2RpcuXbB161bpVteMjAxs374dXbt2zXMssnHjxuHPP//EjRs3UK9ePXTo0AFhYWHS8sjISMhkMoXxbz+mpqaGBg0a4MyZMwCA27dv4/Xr15gwYQKEELhw4QIA4OzZs3Bzc5PO786dO2FsbIzWrVtLn6ExMTGoVasWDAwMsr1dNtPhw4dha2uLzp07S2U6OjoYOnRotvUNDAwUxqLW0tJC3bp18ejRo1zPT1569+6NcuXKSc8zh7HJ3O6LFy9w48YN+Pr6wsDAQKrXtGlTuLu7f9a+iah0KOltVD8/P+n/6urqqF27NoQQGDJkiFRuYmICFxcXhc9cZa+FJiYmSExMzLUNamJign///Rf3799XOm7g/bBAamrvv7JmZGTg9evX0nBNH1+PzczM8O2332bZRub1WJlr9qf4+uuvs5R92PZJTk5GTEwM6tevDwBS3HK5HHv37oWPj480T0Z2MfXq1Qs6OjoKw3McOXIEMTExec7h0K1bN2hoaGD79u1S2c2bN3Hr1i2FoTY+9fXJTn7Oc6tWrRQmZ65RowaMjIyyvfZ/fJ4z/54+HPIJgNTGP3jwoEK5q6urwpwjme3pFi1awN7ePkv5hzEo83rmRtlYjx8/jvT0dIwYMUKhXnbv60xDhw6Furq6QtmH8aalpeH169eoVKkSTExMso132LBhCnMFfPPNN9DQ0JDizuTq6qowsba5uXmWz42PfU77/ffff4eHh0e2c5pkrnvo0CFYWVmhT58+0jJNTU2MGjUKCQkJOH36tMJ6ebULdXV1oaWlhVOnTuU4XER2TExM8OzZs2yH48rL7t27IZfL0atXL4X2tpWVFSpXrpylva1Mm1mZz8QqVaqgXr16Cp8tb968wZ9//ol+/fp91uciFSwmbqlYyMjIwLZt29C8eXOEh4fjwYMHePDgAerVq4fo6GgcP348yzqVK1fOUlalShVpnJgHDx5ACIHJkyfD3Nxc4ZHZkHj58qW0rqmpKRYvXoz//e9/MDY2xuLFi/N1DEuXLsXRo0exa9cudOjQATExMfkagzIv1tbWaNWqlVKP4kJLSwv+/v6IjY3FlStXlF4vKioKHTt2hLGxMXbt2qXQGMlsiDg5OUkNK+D9BczHxweXL19Genp6jts2NTXFoEGDcPfuXTx79uwTjiqrN2/eICoq6pMeuY27m+nDxiTwf4lWOzu7bMs/bGT8+++/+OKLL2BsbAwjIyOYm5tLF/rMpKmTkxMCAwOxZs0amJmZoW3btli6dKnC+La9e/dGw4YN4efnB0tLS3z55ZfYsWOHUkncc+fOoVWrVtDX14eJiQnMzc2lsXEz95E5/pybm1uO21GmzqdwcnLKtnzjxo2oUaOGNNabubk5Dh48qHBeHj58CBsbG5iamua6D19fX0RERODs2bMAgGPHjiE6Ohr9+/fPdb3nz59j8eLFGD9+PKpUqYK9e/fCyckJbdq0wd27dwFAGjfxw7+H7DRu3BhXrlxBUlISzp49C2tra9SsWRMeHh5SXH///bdCg/z+/fuIi4uDhYVFls/RhIQEhc/Qjz158gTOzs5ZGn05zcJeoUKFLHXLlSuXr0Zzdj7++8lsrGdu98mTJznGxRnjiag0tFGza0fo6OjAzMwsS/nHn7nKXAtHjBiBKlWqoH379qhQoQIGDx6cZZzS6dOnIzY2FlWqVIG7uzu+//57/O9//8szdrlcjoULF6Jy5crQ1taGmZkZzM3N8b///S/L9djFxUXhB+2PKXvNzq/s2hFv3rxBQECANIeCubm5VC8z7levXiE+Pj7Pdo2JiQl8fHwUxvzfsmULbG1t0aJFi1zXNTMzQ8uWLbFjxw6pbPv27dDQ0EC3bt2ksk99fbKTn/P88XsTyPna//F5fvLkCdTU1LJcq62srGBiYiJd33PaV37a08q8nrlRNtac2iSmpqYKycYPZff+S0pKwpQpU2BnZ6fwdxMbG5ttvB9/ZhkYGMDa2jrLmLj5eb0yfU77/eHDh3mu9+TJE1SuXFn6gSdTtWrVpOUfyqtdqK2tjblz5+LPP/+EpaUlmjRpgnnz5iEqKirXOMaPHw8DAwPUrVsXlStXxsiRI3Hu3Lm8DxLv29tCCFSuXDnLNeH27dtZ2tvKtJmV+UwE3n9HOXfunHSedu7cibS0tDy/o1DRyv1VJCoiJ06cQGRkJLZt24Zt27ZlWb5lyxa0adMmX9vMTCiNHTs2x8l/Pr4oHjlyBMD7D+5nz55l+VUwN3Xr1pV+Le/atSsaNWqEvn374u7duwq9uD5VUlKSUg0DAEpPPFYUMhtDH0+alZO4uDi0b98esbGxOHv2LGxsbBSWZz63tLTMsq6FhQXS0tKQmJio0EM1t5gKokd0t27dsvyaq6yTJ09mO5HWhz7+FT2v8sxenbGxsWjatCmMjIwwffp0ODs7Q0dHB1evXsX48eMVkq7z58/HwIEDsW/fPvz1118YNWoUZs+ejYsXL0qTn505cwYnT57EwYMHcfjwYWzfvh0tWrTAX3/9lWMsDx8+RMuWLVG1alUsWLAAdnZ20NLSwqFDh7Bw4cJ8995VhkwmyzKRF4Bse0UByHZSus2bN2PgwIHo2rUrvv/+e1hYWEBdXR2zZ8/+pAkH27ZtC0tLS2zevBlNmjTB5s2bYWVllecPLZcuXUJGRobUq8PQ0BB//vknGjZsiFatWuHs2bNYtWoVPDw88mzYNmrUCGlpabhw4QLOnj0rJWgbN26Ms2fP4s6dO3j16pVC4lYul8PCwiLbSXgAZOmp/Dnyej8Xt+0SUdlQGtqo2X0OKvPZqOy10MLCAmFhYThy5Aj+/PNP/Pnnn1i/fj18fX2lCYKaNGmChw8fSu2MNWvWYOHChVixYoVCj+CPzZo1C5MnT8bgwYMxY8YMmJqaQk1NDaNHjy60NkR2cmpDANm3I3r16oXz58/j+++/h6enJwwMDCCXy9GuXbtPitvX1xc7d+7E+fPn4e7ujv3792PEiBFZklXZ+fLLLzFo0CCEhYXB09MTO3bsQMuWLRUS95/6+nyu/Fyjc5pEWNlegZ/angYK7vUsjB6M2Z2Xb7/9FuvXr8fo0aPh7e0NY2NjyGQyfPnll5/1d1Ma2lTKHMPo0aPh4+ODvXv34siRI5g8eTJmz56NEydOwMvLK9v1q1Wrhrt37+LAgQM4fPgwfv/9dyxbtgxTpkzJdoLAD8nlcshkMvz555/ZxvdxLqEgX4cvv/wSY8aMwZYtWzBp0iRs3rwZtWvXhouLS763RYWHiVsqFrZs2QILCwssXbo0y7Ldu3djz549WLFihcKFKbtbee7duyfNAF6xYkUA72+VUKYX6uHDh7FmzRqMGzcOW7ZswYABA3Dp0qU8f6XKTmajtnnz5ggJCcGECRPyvY2Pbd++HYMGDVKqbnG6eGbesqFMgic5ORk+Pj64d+8ejh07BldX1yx1bGxsYGVlpXALYaYXL15AR0cHhoaGBRaTMubPn//JvQI9PDwKJIbsnDp1Cq9fv8bu3bvRpEkTqTw8PDzb+u7u7nB3d8ePP/6I8+fPo2HDhlixYoU0/ISamhpatmyJli1bYsGCBZg1axZ++OEHnDx5Mse/sT/++AMpKSnYv3+/wi/cH9/yk3mb3M2bN3Ps5fhhndz+psuVK5ftLVsf/+Kem127dqFixYrYvXu3QiP749v+nJ2dceTIEbx58ybXniXq6uro27cvNmzYgLlz52Lv3r3Z3tr2scx9fzijrKWlJY4cOYKGDRuiadOmePbsGXbv3p3nMdWtWxdaWlo4e/Yszp49K81s26RJE6xevVrqNfbhe8XZ2RnHjh1Dw4YNc/zClBMHBwfcunULQgiFc/jgwYN8bedDhfGFx8HBAUD2cX1OrERUOpS2Nmp+KHstBN7fZeXj4wMfHx/I5XKMGDECK1euxOTJk6XreuZdT4MGDUJCQgKaNGmCadOm5ZoY3LVrF5o3b55lOKDY2FiFxKOzszMuXbqEtLQ0hVu+P6TMNTuz911sbKxCeX7aEP/99x+OHz+OoKAgTJkyRSr/+H1hbm4OIyMj6c6Z3LRr1w7m5ubYsmUL6tWrh3fv3indI65r164YPny4NFzCvXv3MHHixCz1PuX1yY6ybaPP5eDgALlcjvv370u9KwEgOjoasbGx0vX9cyn7egI5t1OUjfXDNsmHPWlfv36dr+8au3btwoABAzB//nypLDk5Ocv7+sNjyRwKBng/NF1kZCQ6dOig9D5zomz7Pad18/r7cHBwwP/+9z/I5XKFHzIyh4T71PeBs7MzvvvuO3z33Xe4f/8+PD09MX/+fGzevDnHdfT19dG7d2/07t0bqamp6NatG2bOnImJEydCR0cnx/eHs7MzhBBwcnJClSpVPine7LaZ12ci8P7vvmPHjtiyZQv69euHc+fOITg4uEBioILDoRJI5ZKSkrB792506tQJPXr0yPLw9/fH27dvsX//foX19u7dq5C8u3z5Mi5duoT27dsDeP/rf7NmzbBy5UpERkZm2e+rV6+k/8fGxsLPzw9169bFrFmzsGbNGly9ehWzZs365ONq1qwZ6tati+DgYCQnJ3/ydjIV9zFuPzyfmd6+fYvg4GCYmZmhVq1aUnlMTAzu3LmjMJ5qRkYGevfujQsXLmDnzp0KY1B9rHfv3nj69KnCscbExGDfvn1o0aKFdNHOLqbnz59j3bp1qFGjBqytrT/pWD9Wq1YtpYex+PiR021PBSEzKfhhIj81NRXLli1TqBcfH59leAl3d3eoqakhJSUFQPY9pj09PQFAqqNsDHFxcVi/fr1CvTZt2sDQ0BCzZ8/O8veSuW7NmjXh5OSE4ODgLA3PD7fv7Ows9R7NdP36daVvV8op7kuXLkljwWbq3r07hBDZ/pL+8Q8o/fv3x3///Yfhw4cjISEhz3HpgPe9ZLW1tTFnzhyFvxdnZ2cEBwcjIiICxsbGaNq0aZ7b0tHRQZ06dbB161ZEREQo9LhNSkrC4sWL4ezsrPB30atXL2RkZGDGjBlZtpeenp7jFwDg/WfW8+fPFT67k5OTsXr16jxjzUnmeMC57Te/bGxs4Obmhk2bNkljaAPA6dOncePGjQLbDxGVPKW1jaosZa+Fr1+/VniupqaGGjVqAPi/NsLHdQwMDFCpUqVc2xCZMXx8Pd25c2eWH/C7d++OmJgYhISEZNlG5vrKXLONjIxgZmYmjQmf6eO2U14xf7jNTB8nQ9TU1NC1a1f88ccfCA0NzTEmANDQ0ECfPn2wY8cObNiwAe7u7tI5zouJiQnatm2LHTt2YNu2bdDS0kLXrl0V6ijz+sTFxeHOnTt53gGYn7bR58hMKn58XhcsWAAA6NixY4HsR9nXE8i5naJsrC1btoSGhgaWL1+uUC+793VeMX8c75IlS3LsOb5q1SqkpaVJz5cvX4709HTpM+tzKNt+z0737t1x/fp17NmzJ8uyzHU7dOiAqKgohXGc09PTsWTJEhgYGCjVRv7Qu3fvsnwXcXZ2hqGhYa6fVx//DWlpacHV1RVCCOnc5vT+6NatG9TV1REUFJTlnAghsmxbGcp8Jmbq378/bt26he+//x7q6ur48ssv870/KlzscUsqt3//frx9+1ZhApsP1a9fX/qF+cNB9CtVqoRGjRrhm2++QUpKCoKDg1G+fHmMGzdOqrN06VI0atQI7u7uGDp0KCpWrIjo6GhcuHABz549w/Xr1wEAAQEBeP36NY4dOwZ1dXW0a9cOfn5++Omnn9ClS5dP7hX5/fffo2fPntiwYUO2Exfkh7W1dYElGoH3DYDY2Fi8ePECwPuekZljvn777bfSUANPnjzBr7/+CgBSozKzB6aDg4P0a//SpUulCRbs7e0RGRmJdevWISIiAr/++qs0uUXmvoOCghSGCfjuu++wf/9++Pj44M2bN1l+zfwwyTVx4kTs2LED3bt3R2BgIIyNjbFixQqkpaUpfJEZN26cdKu+jY0NHj9+jJUrVyIxMRGLFi1S2L6yx1mSNGjQAOXKlcOAAQMwatQoyGQy/Prrr1ku1idOnIC/vz969uyJKlWqID09Hb/++ivU1dXRvXt3AO/HPjtz5gw6duwIBwcHvHz5EsuWLUOFChXQqFGjHGNo06aN1AsnM2G5evVqWFhYKHxZNTIywsKFC+Hn54c6deqgb9++KFeuHK5fv453795h48aNUFNTw/Lly+Hj4wNPT08MGjQI1tbWuHPnDv7991/pNtLBgwdjwYIFaNu2LYYMGYKXL19ixYoVqF69OuLj45U6d506dcLu3bvxxRdfoGPHjggPD8eKFSvg6uqqkNxr3rw5+vfvj8WLF+P+/fvSLXNnz55F8+bN4e/vL9X18vKCm5sbdu7ciWrVqqFmzZp5xmFubo7Zs2cjMDAQ7u7uGDx4MKysrBAaGoqNGzeifv36uHr1Knr06IE///wz11/UgfdJ2jlz5sDY2FiaeMvCwgIuLi64e/cuBg4cqFC/adOmGD58OGbPno2wsDC0adMGmpqauH//Pnbu3IlFixahR48e2e5r+PDhCAkJQZ8+fRAQEABra2ts2bJFmnzuU3rPOjs7w8TEBCtWrIChoSH09fVRr169HMcpVtasWbPQpUsXNGzYEIMGDcJ///2HkJAQuLm5KbzeRFS2lOY2qjKUvRb6+fnhzZs3aNGiBSpUqIAnT55gyZIl8PT0lHoXurq6olmzZqhVqxZMTU0RGhqKXbt2KVwnc4ph+vTpGDRoEBo0aIAbN25gy5YtUq/lTL6+vti0aRMCAwNx+fJlNG7cGImJiTh27BhGjBiBLl26KH3N9vPzw5w5c+Dn54fatWvjzJkzuHfvntLnzcjISBoXMy0tDba2tvjrr7+yveNp1qxZ+Ouvv9C0aVMMGzYM1apVQ2RkJHbu3Im///5bYUgMX19fLF68GCdPnsTcuXOVjgd43+nhq6++wrJly9C2bdssQ20o8/rs2bMHgwYNwvr167O0Fz6Un7bR5/Dw8MCAAQOwatUqaXiwy5cvY+PGjejatatCD9LPkZ/XM7Ojyg8//IAvv/wSmpqa8PHxUTpWS0tLBAQEYP78+ejcuTPatWuH69ev488//4SZmZnSbadOnTrh119/hbGxMVxdXXHhwgUcO3YM5cuXz7Z+amoqWrZsiV69euHu3btYtmwZGjVqlONnX34o237Pzvfff49du3ahZ8+eGDx4MGrVqoU3b95g//79WLFiBTw8PDBs2DCsXLkSAwcOxJUrV+Do6Ihdu3ZJPUfzuhPzY/fu3ZPOhaurKzQ0NLBnzx5ER0fnmtBs06YNrKys0LBhQ1haWuL27dsICQlBx44dpRhyen84Ozvjp59+wsSJE/H48WN07doVhoaGCA8Px549ezBs2DCMHTs2X8ehzGdipo4dO6J8+fLYuXMn2rdvDwsLi3zti4qAIFIxHx8foaOjIxITE3OsM3DgQKGpqSliYmJEeHi4ACB+/vlnMX/+fGFnZye0tbVF48aNxfXr17Os+/DhQ+Hr6yusrKyEpqamsLW1FZ06dRK7du0SQgixb98+AUDMnz9fYb34+Hjh4OAgPDw8RGpqao6xrV+/XgAQ//zzT5ZlGRkZwtnZWTg7O4v09HSp/J9//hEAxPr16/M6PYXGwcFBAMj2ER4eLtU7efJkjvWaNm0q1fvrr79E69atpfNsYmIi2rRpI44fP55l31OnThUAxMmTJ6Wypk2b5rif7D6qHj58KL744gthZGQkdHV1RYsWLcTly5cV6vz222+iSZMmwtzcXGhoaAgzMzPxxRdfiCtXrmTZnrLHWZQ+fK9nF+vOnTsVyrN7L547d07Ur19f6OrqChsbGzFu3Dhx5MgRhfP/6NEjMXjwYOHs7Cx0dHSEqampaN68uTh27Ji0nePHj4suXboIGxsboaWlJWxsbESfPn3EvXv38jyO/fv3ixo1aggdHR3h6Ogo5s6dK9atW5flvZZZt0GDBkJXV1cYGRmJunXriq1btyrU+fvvv0Xr1q2FoaGh0NfXFzVq1BBLlixRqLN582ZRsWJFoaWlJTw9PcWRI0fEgAEDhIODQ57nVwgh5HK5mDVrlnBwcBDa2trCy8tLHDhwIMs2hBAiPT1d/Pzzz6Jq1apCS0tLmJubi/bt22f7Pps3b54AIGbNmpXnefvQ3r17RePGjYW+vr7Q1dUVtWvXFsuXLxfp6eli1apVAoAYPHhwnts5ePCgACDat2+vUO7n5ycAiLVr12a73qpVq0StWrWErq6uMDQ0FO7u7mLcuHHixYsXUp2mTZtm+Vt59OiR6Nixo9DV1RXm5ubiu+++E7///rsAIC5evKiwbvXq1bPsN7vzvW/fPuHq6io0NDQUPkfz8/oCEFOnTlUo27Ztm6hatarQ1tYWbm5uYv/+/aJ79+6iatWq2Z4TIir9SnobNbO99erVK4XyAQMGCH19/Sz1P/4sVvZauGvXLtGmTRthYWEhtLS0hL29vRg+fLiIjIyU6vz000+ibt26wsTEROjq6oqqVauKmTNn5hq/EEIkJyeL7777TlhbWwtdXV3RsGFDceHChWyvOe/evRM//PCDcHJyEpqamsLKykr06NFDPHz4UKqjzDX73bt3YsiQIcLY2FgYGhqKXr16iZcvX2a5duR0foUQ4tmzZ+KLL74QJiYmwtjYWPTs2VO8ePEi2+vPkydPhK+vrzA3Nxfa2tqiYsWKYuTIkSIlJSXLdqtXry7U1NTEs2fPcj1vH4uPjxe6uroCgNi8eXOW5cq8PpntTGW+vyhzngGIkSNHZlnXwcFBDBgwQHqe23lOS0sTQUFB0mtuZ2cnJk6cKJKTk7Nss2PHjlnWzy6G7NoP+Xk9Z8yYIWxtbYWamppCW1fZWNPT08XkyZOFlZWV9B3n9u3bonz58uLrr7+W6uX2HfS///4TgwYNEmZmZsLAwEC0bdtW3LlzJ8u5zdzG6dOnxbBhw0S5cuWEgYGB6Nevn3j9+rVS5/Djv8XM7ykffs8TQrn2e3Zev34t/P39ha2trdDS0hIVKlQQAwYMEDExMVKd6Oho6Xi1tLSEu7t7lvepsu3CmJgYMXLkSFG1alWhr68vjI2NRb169cSOHTtyPe6VK1eKJk2aiPLlywttbW3h7Owsvv/+exEXF6ewXk7vDyGE+P3330WjRo2Evr6+0NfXF1WrVhUjR44Ud+/eVdivsm1mZT4TM40YMUIAEL/99luWZaR6MiGK0WCYREp4/PgxnJyc8PPPP+f7lyciIlVatGgRxowZg8ePH2c7M29ZEBwcjDFjxuDZs2ewtbVVdTi58vT0hLm5ucqGoCGikoVtVCpsXl5eMDU1lcalp7IhNjYW5cqVw08//YQffvihwLa7YcMGDBo0CP/88480yTaVTWPGjMHatWsRFRUFPT09VYdDH+EYt0REREVACIG1a9eiadOmZSZpm5SUpPA8OTkZK1euROXKlYtV0jYtLS3LOM+nTp3C9evXpeFciIiIVCk0NBRhYWHw9fVVdShUiD5uOwH/NzYu2yRUGJKTk7F582Z0796dSdtiimPcEhERFaLExETs378fJ0+exI0bN7Bv3z5Vh1RkunXrBnt7e3h6eiIuLg6bN2/GnTt3sGXLFlWHpuD58+do1aoVvvrqK9jY2ODOnTtYsWIFrKysPnt8ciIios9x8+ZNXLlyBfPnz4e1tbXCeMpU+mzfvh0bNmxAhw4dYGBggL///htbt25FmzZt0LBhQ1WHR6XIy5cvcezYMezatQuvX79GQECAqkOiHDBxS0REVIhevXqFvn37wsTEBJMmTSqQiR5KirZt22LNmjXYsmULMjIy4Orqim3bthW7L53lypVDrVq1sGbNGrx69Qr6+vro2LEj5syZk+NEHkREREVh165dmD59OlxcXLB161Zpkk8qnWrUqAENDQ3MmzcP8fHx0oRlmZMmExWUW7duoV+/frCwsMDixYvh6emp6pAoBxzjloiIiIiIiIiIiKiY4Ri3RERERERERERERMUME7dERERERERERERExUyZG+NWLpfjxYsXMDQ0hEwmU3U4RERERJQPQgi8ffsWNjY2UFMru30Q2KYlIiIiKpny054tc4nbFy9ewM7OTtVhEBEREdFnePr0KSpUqKDqMFSGbVoiIiKikk2Z9myZS9waGhoCeH9yjIyMVBwNEREREeVHfHw87OzspDZdWVXUbdpbL+LQa+VF7BheH642xoW+PyIiIqLSKj/t2TKXuM28lczIyIiJWyIiIqISqqwPD1DUbVqDtwJq2nowMGQbmoiIiEqWGzdu4Ntvv0V0dDQAYObMmejWrZuKo1KuPVvmErdERERERJQ/hjoaaFXNAoY6/PpAREREJce7d+/QpUsXbNq0CY0aNUJGRgbevHmj6rCUVnZndCAiIiIiIqU4lNfHmgF14FBeX9WhEBEREWXxyy+/YNiwYdLz2NhYmJmZISQkBPXr10ejRo0AAOrq6jA3N1dVmPnGxC0REREREeUqLUOO1wkpSMuQqzoUIiIioiz8/Pywd+9exMbGAgDWr1+PLl26ICoqCtra2ujUqRM8PT3h6+uLV69eqTbYfOC9TjnIyMhAWlqaqsOgEkxLSwtqavxthIiIiEq+u1Fv0WnJ3zjwbSO42XJyMiIiIipeTExM0KNHD6xbtw5jxozB8uXLsX37dqxfvx7Hjh3DxYsXYWNjg0mTJuGbb77Brl27VB2yUpi4/YgQAlFRUVKGnuhTqampwcnJCVpaWqoOhYiIiIiIiIioVBs1ahQ6d+6MatWqwdzcHF5eXjh+/DiaN28OW1tbAMBXX32Ftm3bqjhS5TFx+5HMpK2FhQX09PTK/IzF9GnkcjlevHiByMhI2Nvb831ERERERERERPSZ7kTF4/DNKMQnpcNIVwPt3KxQ1coIAFC1alVUrFgRw4YNw7x58wAAvXr1wtq1axEfHw8jIyMcOnQIHh4eqjyEfGHi9gMZGRlS0rZ8+fKqDodKOHNzc7x48QLp6enQ1NRUdThERERERERERCXS45hEBO4Iw9WIWKiryaAmA+QCCD52H7UcymF+Tw84mulj6NCh8Pf3R48ePQAA9vb2mDRpEho0aAA1NTXY2tpi1apVKj4a5TFx+4HMMW319PRUHAmVBplDJGRkZDBxS0RERERERET0CR7HJKLL0nNISEkHAGTIBTI+WB72NBZdlp7DvpENcfLkSYwYMUIhD9O/f3/079+/iKMuGEzcZoO3tVNB4PuIiIiISotq1ka4Ma0N9LT49YGIiIiKVuCOMCSkpCNDLrJdniEXiI2JhrubK9wr2uLIkSNFHGHh4ZT3RERERESUK3U1GQx1NKGuxh+miYiIqOjciYrH1YjYHJO2mWT6pig/cBnW7T4MQ0PDIoqu8DFxS0REREREuQqPSUT/tZcQHpOo6lCIiIioDDl8M0rpH47V1WQ4cjO6kCMqWrzXSUmOEw4W6f4ez+lYpPsjIiIiIspJYko6zt6PQeL/H1uOiIiIqCjEJ6VDTQaFMW1zoiYD4pLSCj2mosTELRUraWlpWSbySk1NlSb6yo9PXY+IqCgU5Q+C/DGQiIiIiIhKIiNdDeQxSoJELgBj3dI1OTyHSiglmjVrBn9/f/j7+8PY2BhmZmaYPHkyhHj/7nZ0dMSMGTPQp08f6Ovrw9bWFkuXLlXYhkwmw8qVK9GpUyfo6emhWrVquHDhAh48eIBmzZpBX18fDRo0wMOHD5WOa9++fahZsyZ0dHRQsWJFBAUFIT39/3pqyGQyLF++HJ07d4a+vj5mzpyJadOmwdPTE2vWrIGTkxN0dHQAABEREejSpQsMDAxgZGSEXr16ITr6/7rA57QeERERERERERGVPO3crPIc3zZThlygnZtVIUdUtJi4LUU2btwIDQ0NXL58GYsWLcKCBQuwZs0aafnPP/8MDw8PXLt2DRMmTEBAQACOHj2qsI0ZM2bA19cXYWFhqFq1Kvr27Yvhw4dj4sSJCA0NhRAC/v7+SsVz9uxZ+Pr6IiAgALdu3cLKlSuxYcMGzJw5U6HetGnT8MUXX+DGjRsYPHgwAODBgwf4/fffsXv3boSFhUEul6NLly548+YNTp8+jaNHj+LRo0fo3bu3wrY+Xo+IiIiIiIiIiEqmqlZGqGlvkuc4t+pqMtR2KAcXq9IzMRnAoRJKFTs7OyxcuBAymQwuLi64ceMGFi5ciKFDhwIAGjZsiAkTJgAAqlSpgnPnzmHhwoVo3bq1tI1BgwahV69eAIDx48fD29sbkydPRtu2bQEAAQEBGDRokFLxBAUFYcKECRgwYAAAoGLFipgxYwbGjRuHqVOnSvX69u2bZZupqanYtGkTzM3NAQBHjx7FjRs3EB4eDjs7OwDApk2bUL16dfzzzz+oU6dOtusRERER0eezNtbB9C7VYW3MO5qIiIioaC3o5YkuS88hISU929636moyGGhr4JeeHiqIrnCxx20pUr9+fchk//cLhLe3N+7fv4+MjAzp+Ye8vb1x+/ZthbIaNWpI/7e0tAQAuLu7K5QlJycjPj4+z3iuX7+O6dOnw8DAQHoMHToUkZGRePfunVSvdu3aWdZ1cHBQSL7evn0bdnZ2UtIWAFxdXWFiYqJwDB+vR0RERESfr7yBNny9HVHeQFvVoRAREVEZ42imj30jG8LLzgTA+0StprpM6oXrZWeCfSMbwtFMX4VRFg72uCUFH04MlpkEzq5MLpfnua2EhAQEBQWhW7duWZZ9OP6svn7WP6zsypTxqesRERERUc5i36Xi5N2XaO5iARM9Tv5KRERERcvRTB+7vmmAO1HxOHIzGnFJaTDW1UQ7N6tSNzzCh5i4LUUuXbqk8PzixYuoXLky1NXVpecfL69WrVqhxVOzZk3cvXsXlSpV+uxtVatWDU+fPsXTp0+lXre3bt1CbGwsXF1dP3v7RERERJSzZ/8lYcz26zjwbSMmbomIiEhlqloZoaqVkarDKDJM3JYiERERCAwMxPDhw3H16lUsWbIE8+fPl5afO3cO8+bNQ9euXXH06FHs3LkTBw8eLLR4pkyZgk6dOsHe3h49evSAmpoarl+/jps3b+Knn37K17ZatWoFd3d39OvXD8HBwUhPT8eIESPQtGnTbIdaICIiIiIiIiIiKsk4xm0p4uvri6SkJNStWxcjR45EQEAAhg0bJi3/7rvvEBoaCi8vL/z0009YsGCBNOlYYWjbti0OHDiAv/76C3Xq1EH9+vWxcOFCODg45HtbMpkM+/btQ7ly5dCkSRO0atUKFStWxPbt2wshciIiIiIiIiIiItWSCSGyTsdWisXHx8PY2BhxcXEwMlLsWp2cnIzw8HA4OTkpjMFaEjRr1gyenp4IDg7OdrmjoyNGjx6N0aNHF2lcZVlJfj8RUeFznFB4dzx87PGcjkW2L6LClltbriwp6vNw83kcOi35Gwe+bQQ3W+NC3x8RERFRaZWfdpxKe9yeOXMGPj4+sLGxgUwmw969e/NcJyUlBT/88AMcHBygra0NR0dHrFu3rvCDJSIiIiIqo3S11OFlbwJdLXVVh0JERERUZqh0jNvExER4eHhg8ODB6Natm1Lr9OrVC9HR0Vi7di0qVaqEyMhIyOXyQo6UslO9enU8efIk22UrV65Ev379ijgiIiIiIioMzuYG2DOioarDICIiIipTVJq4bd++Pdq3b690/cOHD+P06dN49OgRTE1NAbwfAoCAU6dO5br88ePHBb7PQ4cOIS0tLdtllpaWBb4/IiIiouLozJkz+Pnnn3HlyhVERkZiz5496Nq1a67rpKSkYPr06di8eTOioqJgbW2NKVOmYPDgwUUTNBEREREVeypN3ObX/v37Ubt2bcybNw+//vor9PX10blzZ8yYMQO6urrZrpOSkoKUlBTpeXx8fFGFW+p9yiRjRERERKVNWbiLjGPcEhERERW9EpW4ffToEf7++2/o6Ohgz549iImJwYgRI/D69WusX78+23Vmz56NoKCgIo6UiIiIiMoK3kVGRERERIVBpZOT5ZdcLodMJsOWLVtQt25ddOjQAQsWLMDGjRuRlJSU7ToTJ05EXFyc9Hj69GkRR01ERERE9H8+vIvM1tYWVapUwdixY3NszxIRERFR2VSietxaW1vD1tYWxsb/d3tWtWrVIITAs2fPULly5SzraGtrQ1tbuyjDJCIiIiLK0afcRcbhv4iIiIjKnhLV47Zhw4Z48eIFEhISpLJ79+5BTU0NFSpUUGFkRERERETK+ZS7yGbPng1jY2PpYWdnV8RRExEREVFRU2niNiEhAWFhYQgLCwMAhIeHIywsDBEREQDeD3Pg6+sr1e/bty/Kly+PQYMG4datWzhz5gy+//57DB48OMfJyYiIiIiIipO87iLLjqqH/6pkYYBTY5uhkoVBke6XiIiIqCxTaeI2NDQUXl5e8PLyAgAEBgbCy8sLU6ZMAQBERkZKSVwAMDAwwNGjRxEbG4vatWujX79+8PHxweLFi1USP2Xv8ePHkMlkUkJe1dtRRmpqKipVqoTz58/nWu/w4cPw9PQs1rM+ExERUfH2KXeRaWtrw8jISOFRlHQ01eFopg8dTfUi3S8RERFRWabSMW6bNWsGIUSOyzds2JClrGrVqjh69GghRpWDacZ51ynQ/cUV7f5UbODAgYiNjcXevXulMjs7O0RGRsLMzKzQ979ixQo4OTmhQYMGudZr164dJk+ejC1btqB///6FHhcREREVfwkJCXjw4IH0PPMuMlNTU9jb22PixIl4/vw5Nm3aBOD9XWQzZszAoEGDEBQUhJiYmGJ/F9nTN+8w/6+7+K6NC+xM9VQdDhEREVGZUKLGuKWik5qamm15WlpakcWgrq4OKysraGgU7u8LQgiEhIRgyJAhudbLPPaBAweylzcRERFJysJdZHFJadgb9gJxSUXXFiQiIiIq65i4LSXkcjnmzZuHSpUqQVtbG/b29pg5c6a0/MaNG2jRogV0dXVRvnx5DBs2TOH2vIEDB6Jr166YOXMmbGxs4OLiIg1VsH37djRt2hQ6OjrYsmULAGDNmjWoVq0adHR0ULVqVSxbtizH2DIyMjBkyBA4OTlBV1cXLi4uWLRokbR82rRp2LhxI/bt2weZTAaZTIZTp05lO1TC6dOnUbduXWhra8Pa2hoTJkxAenq6tLxZs2YYNWoUxo0bB1NTU1hZWWHatGm5nrsrV67g4cOH6Nixo1SW27H7+PggNDQUDx8+zP1FISIiojIh8y6yjx+Zd49t2LABp06dUlgn8y6yd+/e4enTp5g/f36x7W1LRERERKqh0qESqOBMnDgRq1evxsKFC9GoUSNERkbizp07AIDExES0bdsW3t7e+Oeff/Dy5Uv4+fnB399fYTiK48ePw8jIKMtQFBMmTMD8+fPh5eUlJTCnTJmCkJAQeHl54dq1axg6dCj09fUxYMCALLHJ5XJUqFABO3fuRPny5XH+/HkMGzYM1tbW6NWrF8aOHYvbt28jPj4e69evBwCYmprixYsXCtt5/vw5OnTogIEDB2LTpk24c+cOhg4dCh0dHYXk7MaNGxEYGIhLly7hwoULGDhwIBo2bIjWrVtne+7Onj2LKlWqwNDQMMuyj48dAOzt7WFpaYmzZ8/C2dk57xeHiIiIiIiIiIgon5i4LQXevn2LRYsWISQkREqcOjs7o1GjRgCA3377DcnJydi0aRP09fUBACEhIfDx8cHcuXNhaWkJANDX18eaNWugpaUF4H2vUwAYPXo0unXrJu1v6tSpmD9/vlTm5OSEW7duYeXKldkmbjU1NREUFCQ9d3JywoULF7Bjxw706tULBgYG0NXVRUpKCqysrHI8zmXLlsHOzg4hISGQyWSoWrUqXrx4gfHjx2PKlClQU3vfgbxGjRqYOnUqAKBy5coICQnB8ePHc0zcPnnyBDY2Ntku+/jYM9nY2ODJkyc5xkpERERERERERPQ5mLgtBW7fvo2UlBS0bNkyx+UeHh5S0hZ4P5uxXC7H3bt3pcStu7u7lLT9UO3ataX/JyYm4uHDhxgyZAiGDh0qlaenp8PYOOcJ3JYuXYp169YhIiICSUlJSE1NhaenZ76P09vbGzKZTOE4EhIS8OzZM9jb2wN4n7j9kLW1NV6+fJnjdpOSkqTetB/78Ng/pKuri3fv3uUrfiIiIqKSysJQGwEtK8PCUFvVoRARERGVGUzclgIFNR7ah4ndnMozx8VdvXo16tWrp1BPXV092/W3bduGsWPHYv78+fD29oahoSF+/vlnXLp0qUDi/pimpqbCc5lMBrlcnmN9MzMz3LhxI9tlOZ2TN2/ewNzc/NODJCIiIipBLIx0MKZ1FVWHQURERFSmcHKyUqBy5crQ1dXF8ePHs11erVo1XL9+HYmJiVLZuXPnoKamBhcXl3zty9LSEjY2Nnj06BEqVaqk8HBycsp2nXPnzqFBgwYYMWIEvLy8UKlSpSwTe2lpaSEjIyPXfVerVg0XLlyAEEJh24aGhqhQoUK+juNDXl5euHPnjsJ2c5OcnIyHDx9KM0cTERERlXZvk9Nw+t4rvE1OU3UoRERERGUGE7elgI6ODsaPH49x48Zh06ZNePjwIS5evIi1a9cCAPr16wcdHR0MGDAAN2/exMmTJ/Htt9+if//+0jAJ+REUFITZs2dj8eLFuHfvHm7cuIH169djwYIF2davXLkyQkNDceTIEdy7dw+TJ0/GP//8o1DH0dER//vf/3D37l3ExMQgLS3rl4IRI0bg6dOn+Pbbb3Hnzh3s27cPU6dORWBgoDS+7ado3rw5EhIS8O+//ypV/+LFi9DW1oa3t/cn75OIiIioJHny+h0GrLuMJ685VBQRERFRUWHitpSYPHkyvvvuO0yZMgXVqlVD7969pXFd9fT0cOTIEbx58wZ16tRBjx490LJlS4SEhHzSvvz8/LBmzRqsX78e7u7uaNq0KTZs2JBjj9vhw4ejW7du6N27N+rVq4fXr19jxIgRCnWGDh0KFxcX1K5dG+bm5jh37lyW7dja2uLQoUO4fPkyPDw88PXXX2PIkCH48ccfP+k4MpUvXx5ffPEFtmzZolT9rVu3ol+/ftDT0/us/RIREREREREREeVEJpS9P7yUiI+Ph7GxMeLi4mBkZKSwLDk5GeHh4XBycspxsioqnf73v/+hdevWePjwIQwMDHKsFxMTAxcXF4SGhuaYqM7E9xMR5cZxwsEi29fjOR2LbF9EhS23tlxZUtTn4ebzOHRa8jcOfNsIbrY5T0hLRERERLnLTzuOPW6JANSoUQNz585FeHh4rvUeP36MZcuW5Zm0JSIiIiIiIiIi+hwaqg6AqLgYOHBgnnVq166N2rVrF34wRERERMWIloYaHMrrQUuD/T6IiIiIigoTt0RERERElKsqloY4/X1zVYdBREREVKbwJ3MiIiIiIiIiIiKiYoaJWyIiIiIiytXtyHjUnHEUtyPjVR0KERERUZnBxC0REREREeUqQy7wJjEVGXKh6lCIiIiIygwmbomIiIiIiIiIiIiKGSZuiYiIiIiIiIiIiIoZJm6JiIiIiIiIiIiIihkmbomIiIiIKFdOZvr4/ZsGcDLTV3UoRERERGWGhqoDKCncN7oX6f5uDLhRpPsjIiIiIsqJvrYGajmUU3UYRERERGUKe9xSsZOWlpalLDU19ZO2ldt6L1++xK1bt7Ld/99//52v/WRkZEAul+c7PiIiIqKSIDIuCTMO3EJkXJKqQyEiIiIqM5i4LSWaNWsGf39/+Pv7w9jYGGZmZpg8eTKEEFIdR0dHzJgxA3369IG+vj5sbW2xdOlShe3IZDKsXLkSnTp1gp6eHqpVq4YLFy7gwYMHaNasGfT19dGgQQM8fPhQ6dj27duHmjVrQkdHBxUrVkRQUBDS09MV9rl8+XJ07twZ+vr6mDlzJqZNmwZPT0+sWbMGTk5O0NHRAQBERESgS5cuMDAwgJGREXr16oXo6GhpWzmtl51ff/0VLVq0wN27d6Wy9PR09OnTB9988w0yMjJyXHfDhg0wMTHB/v374erqCm1tbURERCh9ToiIiIhKktcJqVj7dzheJ3zaj+lERERElH8qTdyeOXMGPj4+sLGxgUwmw969e5Ve99y5c9DQ0ICnp2ehxVfSbNy4ERoaGrh8+TIWLVqEBQsWYM2aNQp1fv75Z3h4eODatWuYMGECAgICcPToUYU6M2bMgK+vL8LCwlC1alX07dsXw4cPx8SJExEaGgohBPz9/ZWK6ezZs/D19UVAQABu3bqFlStXYsOGDZg5c6ZCvWnTpuGLL77AjRs3MHjwYADAgwcP8Pvvv2P37t0ICwuDXC5Hly5d8ObNG5w+fRpHjx7Fo0eP0Lt3b4VtfbxeTr777jt0794dLVu2xMOHDyGXy+Hr64tr167h8OHDUFdXz/XY3r17h7lz52LNmjX4999/YWFhodQ5ISIiIiIiIiIiyotKx7hNTEyEh4cHBg8ejG7duim9XmxsLHx9fdGyZUuF3pZlnZ2dHRYuXAiZTAYXFxfcuHEDCxcuxNChQ6U6DRs2xIQJEwAAVapUwblz57Bw4UK0bt1aqjNo0CD06tULADB+/Hh4e3tj8uTJaNu2LQAgICAAgwYNUiqmoKAgTJgwAQMGDAAAVKxYETNmzMC4ceMwdepUqV7fvn2zbDM1NRWbNm2Cubk5AODo0aO4ceMGwsPDYWdnBwDYtGkTqlevjn/++Qd16tTJdr3chISEICkpCS1atED9+vVx4cIFnDlzBra2tnmum5aWhmXLlsHDw0Opc0FERERERERERKQslSZu27dvj/bt2+d7va+//hp9+/aFurp6vnrplnb169eHTCaTnnt7e2P+/PnIyMiQeo96e3srrOPt7Y3g4GCFsho1akj/t7S0BAC4u7srlCUnJyM+Ph5GRka5xnT9+nWcO3dOoYdtRkYGkpOT8e7dO+jp6QEAateunWVdBwcHheTr7du3YWdnJyVtAcDV1RUmJia4ffu2lLj9eL3cyGQyrF69GlWrVsWOHTtw4sQJODo6KrWulpaWwrkiIiJO5klERERERFRQStwYt+vXr8ejR48UemtSwdLU1JT+n5kIzq5Mmcm4EhISEBQUhLCwMOlx48YN3L9/X2H8WX19/SzrZlemjPyu99133yEhIQGdOnXC8OHDERkZqdR6urq6ColyIiIiotKqnL4W+td3QDl9LVWHQkRERFRmqLTHbX7dv38fEyZMwNmzZ6GhoVzoKSkpSElJkZ7Hx8cXVngqd+nSJYXnFy9eROXKlRXGar148WKWOtWqVSu0mGrWrIm7d++iUqVKn72tatWq4enTp3j69KnU6/bWrVuIjY2Fq6vrJ21z/Pjx+O2333D69GlUrlwZPXr0QMuWLXH69Gmle+0SERERlXa2JrqY0dVN1WEQERERlSklpsdtRkYG+vbti6CgIFSpUkXp9WbPng1jY2Pp8eFt9qVNREQEAgMDcffuXWzduhVLlixBQECAQp1z585h3rx5uHfvHpYuXYqdO3dmqVOQpkyZgk2bNiEoKAj//vsvbt++jW3btuHHH3/M97ZatWoFd3d39OvXD1evXsXly5fh6+uLpk2bZjvUQl4WL16MNWvW4NixY6hWrRo0NDSwY8cOODo6om3btsjIyMj3NomIiIhKo6TUDNx8HoekVLaPiIiIiIpKiUncvn37FqGhofD394eGhgY0NDQwffp0XL9+HRoaGjhx4kS2602cOBFxcXHS4+nTp0UcedHx9fVFUlIS6tati5EjRyIgIADDhg1TqPPdd98hNDQUXl5e+Omnn7BgwQJp0rHC0LZtWxw4cAB//fUX6tSpg/r162PhwoVwcHDI97ZkMhn27duHcuXKoUmTJmjVqhUqVqyI7du3f1Js3bt3x7FjxxTGqdXS0sLu3bsxd+5chZ7KRERERGXZw1cJ6LTkbzx8laDqUIiIiIjKDJkQQqg6COB9Um7Pnj3o2rVrtsvlcjlu3bqlULZs2TKcOHECu3btgpOTk1Jjm8bHx8PY2BhxcXFZJtZKTk5GeHg4nJycFMZfLQmaNWsGT0/PLBONfcjR0RGjR4/G6NGjiyyusqwkv5+IqPA5TjhYZPt6PKdjke2Lk5NRYcutLVeWFPV5uPk8Dp2W/I0D3zaCm61xoe+PiIiIqLTKTztOpWPcJiQk4MGDB9Lz8PBwhIWFwdTUFPb29pg4cSKeP3+OTZs2QU1NDW5uiuNqWVhYQEdHJ0s5ERERERERERERUUmm0qESMm/Z9/LyAgAEBgbCy8sLU6ZMAQBERkYiIiJClSFSHqpXrw4DA4NsH1u2bFF1eERERERERERERCWSSnvcNmvWDLmN1LBhw4Zc1582bRqmTZtWsEGVUKdOncqzzuPHjwt8v4cOHUJaWlq2yywtLQt8f0RERETFzZkzZ/Dzzz/jypUriIyMzHX4r4+dO3cOTZs2hZubG8LCwgo1zs8hkwEG2hqQyVQdCREREVHZodLELZV8nzLJGBEREVFpkpiYCA8PDwwePBjdunVTer3Y2Fj4+vqiZcuWiI6OLsQIP191G2PcDCq8CW2JiIiIKCsmbomIiIiIPkP79u3Rvn37fK/39ddfo2/fvlBXV8fevXsLPjAiIiIiKtFUOsZtcZXb8A1EyuL7iIiIiHKyfv16PHr0CFOnTlWqfkpKCuLj4xUeRel+9Fu0XnAa96PfFul+iYiIiMoyJm4/oKmpCQB49+6diiOh0iA1NRUAoK6uruJIiIiIqDi5f/8+JkyYgM2bN0NDQ7kb4GbPng1jY2PpYWdnV8hRKkpJl+P+ywSkpMuLdL9EREREZRmHSviAuro6TExM8PLlSwCAnp4eZJyBgT6BXC7Hq1evoKenp/QXMiIiIir9MjIy0LdvXwQFBaFKlSpKrzdx4kQEBgZKz+Pj44s8eUtERERERYsZpY9YWVkBgJS8JfpUampqsLe3Z/KfiIiIJG/fvkVoaCiuXbsGf39/AO9/8BVCQENDA3/99RdatGiRZT1tbW1oa2sXdbhEREREpEJM3H5EJpPB2toaFhYWSEtLU3U4VIJpaWlBTY2jkRAREdH/MTIywo0bNxTKli1bhhMnTmDXrl1wcnJSUWREREREVNwwcZsDdXV1jk1KRERERHlKSEjAgwcPpOfh4eEICwuDqakp7O3tMXHiRDx//hybNm2Cmpoa3NzcFNa3sLCAjo5OlvLixM5UD6t9a8POVE/VoRARERGVGUzcEhERERF9htDQUDRv3lx6njkW7YABA7BhwwZERkYiIiJCVeEVCGNdTbR2tVR1GERERERlChO3RERERESfoVmzZhBC5Lh8w4YNua4/bdo0TJs2rWCDKmAv3yZjZ+gz9KxdARaGOqoOh4iIiKhM4ACcRERERESUq5fxKfj5yF28jE9RdShEREREZQYTt0RERERERERERETFDBO3RERERERERERERMUME7dERERERERERERExQwTt0RERERElCsjHU10cLeCkY6mqkMhIiIiKjM0VB0AEREREREVb/bl9bCsXy1Vh0FERERUprDHLRERERER5So1XY7IuCSkpstVHQoRERFRmcHELRERERER5epe9Ft4zz6Be9FvVR0KERERUZnBxC0RERERERERERFRMcPELRERERGVOcnJyTkui4yMLMJIiIiIiIiyx8QtEREREZU5NWvWRFhYWJby33//HTVq1Cj6gIiIiIiIPsLELRERERGVOc2aNUP9+vUxd+5cAEBiYiIGDhyI/v37Y9KkSSqOjoiIiIgI0FB1AERERERERW3ZsmXo2LEj/Pz8cODAAURGRsLAwACXL1+Gm5ubqsMrdlytjXD3p3bQVGO/DyIiIqKiwsQtEREREZVJ7du3R7du3bB8+XJoaGjgjz/+YNI2B2pqMmirqas6DCIiIqIyRaU/mZ85cwY+Pj6wsbGBTCbD3r17c62/e/dutG7dGubm5jAyMoK3tzeOHDlSNMESERERUanx8OFDeHt748CBAzhy5AjGjRuHzp07Y9y4cUhLS1N1eMXOo1cJ6L3yAh69SlB1KERERERlhkoTt4mJifDw8MDSpUuVqn/mzBm0bt0ahw4dwpUrV9C8eXP4+Pjg2rVrhRwpEREREZUmnp6ecHJywvXr19G6dWv89NNPOHnyJHbv3o26deuqOrxi511qBi6Fv8G71AxVh0JERERUZqh0qIT27dujffv2StcPDg5WeD5r1izs27cPf/zxB7y8vAo4OiIiIiIqrZYtW4b+/fsrlDVo0ADXrl3D6NGjVRMUEREREdEHSvQYt3K5HG/fvoWpqWmOdVJSUpCSkiI9j4+PL4rQiIiIiKgYy0zapqamIjw8HM7OztDQ0IChoSHWrl2r4uiIiIiIiFQ8VMLn+uWXX5CQkIBevXrlWGf27NkwNjaWHnZ2dkUYIREREREVR0lJSRgyZAj09PRQvXp1REREAAC+/fZbzJ07V8XRERERERGV4MTtb7/9hqCgIOzYsQMWFhY51ps4cSLi4uKkx9OnT4swSiIiIiIqjiZMmIDr16/j1KlT0NHRkcpbtWqFbdu2qTCy4snGRBdzurnDxkRX1aEQERERlRklcqiEbdu2wc/PDzt37kSrVq1yrautrQ1tbe0iioyIiIiISoK9e/di+/btqF+/PmQymVRevXp1PHz4UIWRFU+m+lr4sq69qsMgIiIiKlNKXI/brVu3YtCgQdi6dSs6duyo6nCIiIiIqAR69epVtndtJSYmKiRy6b03ianYdjkCbxJTVR0KERERUZmh0sRtQkICwsLCEBYWBgAIDw9HWFiYNMbYxIkT4evrK9X/7bff4Ovri/nz56NevXqIiopCVFQU4uLiVBE+EREREZVQtWvXxsGDB6XnmcnaNWvWwNvbW1VhFVsvYpMwYfcNvIhNUnUoRERERGWGSodKCA0NRfPmzaXngYGBAIABAwZgw4YNiIyMlJK4ALBq1Sqkp6dj5MiRGDlypFSeWZ+IiIiISBmzZs1C+/btcevWLaSnp2PRokW4desWzp8/j9OnT6s6PCIiIiIi1SZumzVrBiFEjss/TsaeOnWqcAMiIiIiojKhUaNGCAsLw5w5c+Du7o6//voLNWvWxIULF+Du7q7q8IiIiIiISubkZEREREREn8vZ2RmrV69WdRhERERERNli4paIiIiIyqSMjAzs2bMHt2/fBgC4urqiS5cu0NBgE/ljelrqqOdkCj0tdVWHQkRERFRmsFVKRERERGXOv//+i86dOyMqKgouLi4AgLlz58Lc3Bx//PEH3NzcVBxh8VLR3ADbh3PSNiIiIqKipKbqAIiIiIiIipqfnx+qV6+OZ8+e4erVq7h69SqePn2KGjVqYNiwYaoOr9iRywVS0jMgl+c8PwURERERFSwmbomIiIiozAkLC8Ps2bNRrlw5qaxcuXKYOXMmrl27psLIiqdbkfFw+fEwbkXGqzoUIiIiojKDiVsiIiIiKnOqVKmC6OjoLOUvX75EpUqV8rWtM2fOwMfHBzY2NpDJZNi7d2+u9Xfv3o3WrVvD3NwcRkZG8Pb2xpEjR/K1TyIiIiIq/Zi4JSIiIqIyZ/bs2Rg1ahR27dqFZ8+e4dmzZ9i1axdGjx6NuXPnIj4+XnrkJTExER4eHli6dKlS+z5z5gxat26NQ4cO4cqVK2jevDl8fHzY05eIiIiIFHByMiIiIiIqczp16gQA6NWrF2QyGQBAiPfjt/r4+EjPZTIZMjIyct1W+/bt0b59e6X3HRwcrPB81qxZ2LdvH/744w94eXkpvR0iIiIiKt2YuCUiIiKiMufkyZOqDkEil8vx9u1bmJqaqjoUIiIiIipGmLglIiIiojKnadOmqg5B8ssvvyAhIQG9evXKsU5KSgpSUlKk58oM4VCQqlga4sLEFiivr12k+yUiIiIqy5i4JSIiIqIy6927d4iIiEBqaqpCeY0aNYpk/7/99huCgoKwb98+WFhY5Fhv9uzZCAoKKpKYsqOloQZrY12V7Z+IiIioLGLiloiIiIjKnFevXmHQoEH4888/s12e17i2BWHbtm3w8/PDzp070apVq1zrTpw4EYGBgdLz+Ph42NnZFXaIkojX7zDn8G1MaFcN9uX1imy/RERERGWZmqoDICIiIiIqaqNHj0ZsbCwuXboEXV1dHD58GBs3bkTlypWxf//+Qt//1q1bMWjQIGzduhUdO3bMs762tjaMjIwUHkUpPjkNh25EIT45rUj3S0RERFSWscctERERlUmOEw4W2b4ez8k7MUdF68SJE9i3bx9q164NNTU1ODg4oHXr1jAyMsLs2bOVSqZmSkhIwIMHD6Tn4eHhCAsLg6mpKezt7TFx4kQ8f/4cmzZtAvB+eIQBAwZg0aJFqFevHqKiogAAurq6MDY2LtgDJSIiIqISiz1uiYiIiKjMSUxMlMaULVeuHF69egUAcHd3x9WrV/O1rdDQUHh5ecHLywsAEBgYCC8vL0yZMgUAEBkZiYiICKn+qlWrkJ6ejpEjR8La2lp6BAQEFMShEREREVEpwR63RYS9eoiIiIiKDxcXF9y9exeOjo7w8PDAypUr4ejoiBUrVsDa2jpf22rWrBmEEDku37Bhg8LzU6dOfULERERERFTWMHFLRERERGVOQEAAIiMjAQBTp05Fu3btsGXLFmhpaWVJtBJgYaSN79u6wMJIW9WhEBEREZUZTNwSERERUZnz1VdfSf+vVasWnjx5gjt37sDe3h5mZmYqjKx4sjDUwcjmlVQdBhEREVGZwjFuiYiIiKjM09PTQ82aNZm0zUFcUhqO3opGXFKaqkMhIiIiKjOYuCUiIiIiolw9ffMOQzeF4umbd6oOhYiIiKjMYOKWiIiIiIiIiIiIqJhh4paIiIiIiIiIiIjKBJlMhtjY2FzrrF+/HjKZDHv37i2SmHLCxC0RERERlTkREREQQmQpF0IgIiJCBRERERERUXHw+PFjrF69GvXr11d1KKpN3J45cwY+Pj6wsbFROot96tQp1KxZE9ra2qhUqRI2bNhQ6HESERERUeni5OSEV69eZSl/8+YNnJycVBBR8aatoYbKFgbQ1mC/DyIiIio+1q9fD09PT+lhZmaGbt265bneL7/8Ai8vL1SpUgVbtmyRyuVyOfz8/LBkyRJoa2sXZuhKUWnLKzExER4eHli6dKlS9cPDw9GxY0c0b94cYWFhGD16NPz8/HDkyJFCjpSIiIiIShMhBGQyWZbyhIQE6OjoqCCi4q2ypSGOBjZFZUtDVYdCREREJBk0aBDCwsKkh5WVFfr165fnejKZDNeuXcPhw4fx7bff4vHjxwCABQsWoGHDhqhVq1YhR64cDVXuvH379mjfvr3S9VesWAEnJyfMnz8fAFCtWjX8/fffWLhwIdq2bVtYYRIRERFRKREYGAjgfWN98uTJ0NPTk5ZlZGTg0qVL8PT0VFF0RERERJSdX375Bffu3cOqVasAALGxsahUqRLu3bsHU1NTAMClS5fw8uVLdO7cOc/t+fn5AQAqVqyIJk2a4MyZM0hISMDvv/+OM2fOFN6B5JNKE7f5deHCBbRq1UqhrG3bthg9erRqAiIiIiKiEuXatWsA3ve4vXHjBrS0tKRlWlpa8PDwwNixY1UVXrH174s49F55EduH10d1G2NVh0NERERljJ+fH6pUqYJ58+bBxMQE69evR5cuXaSkLQCsXbsW/fv3h6amZr63L5PJcPbsWTx+/BiVK1cGAERFRWHYsGGIjIzEN998U2DHkh8lKnEbFRUFS0tLhTJLS0vEx8cjKSkJurq6WdZJSUlBSkqK9Dw+Pr7Q4yQiIiKi4unkyZMA3t9Wt2jRIhgZGak4opJBCCAhJR3ZzOdGREREVOhMTEzQo0cPrFu3DmPGjMHy5cuxfft2aXliYiK2bduGixcvAgDuRMXj8M0oxCelw0hXA+3crFDV6v/afevXr8e0adPw+PFjnD17FsHBwXB0dFRI0DZr1gyjR49G165di+w4P1aiErefYvbs2QgKClJ1GERERERUjKxfv17VIRARERFRPowaNQqdO3dGtWrVYG5uDi8vL2nZzp07Ub16dehZOKDbsnO4GhELdTUZ1GSAXADBx+6jlkM5zO/pAeD9EFleXl5ITEzE4sWL4ejoqKKjyl2JStxaWVkhOjpaoSw6OhpGRkbZ9rYFgIkTJ0pjmQHve9za2dkVapxEREREVPyFhoZix44diIiIQGpqqsKy3bt3qygqIiIiorIrt56yVatWRcWKFTFs2DDMmzdPYb21a9eiS6+v0GXpOSSkpAMAMuQCGR/UCXsaiy5LzyH8VQIczfQxY8aMXGM5depUQR7aJ1FTdQD54e3tjePHjyuUHT16FN7e3jmuo62tDSMjI4UHEREREZVt27ZtQ4MGDXD79m3s2bMHaWlp+Pfff3HixAkYG3MMVyIiIqKi9DgmEd2WnUO74LNYcuIBfr34GEtOPEC74LPovvw8HsckAgCGDh2K9PR09OjRQ1r37t27CAsLwzlRBQkp6ciQZz+2U4ZcICElHWN3Xi+SYyoIn5S4TU9Px7Fjx7By5Uq8ffsWAPDixQskJCTkazsJCQkICwtDWFgYACA8PBxhYWGIiIgA8L63rK+vr1T/66+/xqNHjzBu3DjcuXMHy5Ytw44dOzBmzJhPOQwiIiIiKqNmzZqFhQsX4o8//oCWlhYWLVqEO3fuoFevXrC3t1d1eMWOs7kBDnzbCM7mBqoOhYiIiEqZxzGJ6LL0HK4/iwPwPsGaliGkBGxmT9nHMYk4efIkRowYoTABmYuLC/65/xw3XqbmmLTNlCEXCH3yH+5ElYw5sPI9VMKTJ0/Qrl07REREICUlBa1bt4ahoSHmzp2LlJQUrFixQulthYaGonnz5tLzzCENBgwYgA0bNiAyMlJK4gKAk5MTDh48iDFjxmDRokWoUKEC1qxZg7Zt2+b3MIiIiIioDHv48CE6duwIANDS0kJiYiJkMhnGjBmDFi1acI6Ej+hqqcPNlj2RiYiIqOAF7gjLs6dsbEw03N1c4V7RFkeOHMlS5/DNKKiryfJM3AKAupoMR25GK0xWVlzlO3EbEBCA2rVr4/r16yhfvrxU/sUXX2Do0KH52lazZs0gcpmadsOGDdmuc+3atXzth4iIiIjoQ+XKlZPuHLO1tcXNmzfh7u6O2NhYvHv3TsXRFT/PY5Ow4tRDfN3MGbYm2c8tQURERJRfd6LicTUiNs96Mn1TlB+4DOtGN4ahoWGW5fFJ6VCTQWFM25yoyYC4pLT8B6sC+R4q4ezZs/jxxx+hpaWlUO7o6Ijnz58XWGBERERERIWlSZMmOHr0KACgZ8+eCAgIwNChQ9GnTx+0bNlSxdEVP/8lpuLXi0/wX2Jq3pWJiIiIlJTZU1YZmT1ls2OkqwElOtsCAOQCMNbVzLtiMZDvHrdyuRwZGVnz18+ePcs2401EREREVNyEhIQgOTkZAPDDDz9AU1MT58+fR/fu3fHjjz+qODoiIiKisqGgesq2c7NC8LH7Su0zQy7Qzs0qH1GqTr4Tt23atEFwcDBWrVoFAJDJZEhISMDUqVPRoUOHAg+QiIiIiKigmZqaSv9XU1PDhAkTVBgNERERUdlUUD1lq1oZoaa9Ca4/i8t1nFt1NRm87EzgYlUyOp/me6iE+fPn49y5c3B1dUVycjL69u0rDZMwd+7cwoiRiIiIiIiIiIiISpl2blZKTSgG5N1TdkEvTxhoa+Q49IK6mgwG2hr4pafHJ8WqCvnucVuhQgVcv34d27Ztw//+9z8kJCRgyJAh6NevH3R1OVEBEVFx5zjhYJHu7/GcjkW6PyIiKnjlDbQwpJETyhto5V2ZiIiISEkF2VPW0Uwf+0Y2xNid1xH65D+oq8mgJnvfUzdDLuBlZ4JfenrA0Uy/MA6lUOQ7cQsAGhoa+Oqrrwo6FiIiIiIiKoasjXUxuZOrqsMgIiKiUmhBL090WXoOCSnp2SZv89NT1tFMH7u+aYA7UfE4cjMacUlpMNbVRDs3qxIzPMKH8p243bRpU67LfX19PzkYIiIiIvp87hvdi2xfNwbcKLJ9keokpqTjTtRbVLUyhL72J/X9ICIiIspWYfSUrWplhKpWRoUYddHId6srICBA4XlaWhrevXsHLS0t6OnpMXFLRERERMVaWloadHV1ERYWBjc3N1WHUyKExySi+/LzOPBtI7jZGqs6HCIiIiplSltP2YKS78Ttf//9l6Xs/v37+Oabb/D9998XSFBERERERIVFU1MT9vb2yMjIUHUoRERERPSB0tJTtqCoFcRGKleujDlz5mTpjUtEREREVBz98MMPmDRpEt68eaPqUIiIiIiIslVgA1RpaGjgxYsXBbU5IiIiIqJCExISggcPHsDGxgYODg7Q11ccM+3q1asqioyIiIiI6L18J27379+v8FwIgcjISISEhKBhw4YFFhgRERERUWHp2rWrqkMoUdTVZDDV14K6mkzVoRARERGVGflO3H7cyJXJZDA3N0eLFi0wf/78goqLSoiinLUa4MzVREREVDCmTp2q6hBKlGrWRrg6ubWqwyAiIiIqU/I9xq1cLld4ZGRkICoqCr/99husra0LI0YiIiIiokJx5coVbN68GZs3b8a1a9c+aRtnzpyBj48PbGxsIJPJsHfv3jzXOXXqFGrWrAltbW1UqlQJGzZs+KR9ExEREVHpVSCTkxERERERlSQvX75EixYtUKdOHYwaNQqjRo1CrVq10LJlS7x69Spf20pMTISHhweWLl2qVP3w8HB07NgRzZs3R1hYGEaPHg0/Pz8cOXLkUw6lSNyLfoumP5/Evei3qg6FiIiIqMxQaqiEwMBApTe4YMGCTw6GiIiIiKgofPvtt3j79i3+/fdfVKtWDQBw69YtDBgwAKNGjcLWrVuV3lb79u3Rvn17peuvWLECTk5O0jBj1apVw99//42FCxeibdu2+TuQIpKaLseT1++Qmi5XdShEREREZYZSiVtlbxuTyThZAREVI9OMi3BfcUW3LyIi+myHDx/GsWPHpKQtALi6umLp0qVo06ZNoe77woULaNWqlUJZ27ZtMXr06BzXSUlJQUpKivQ8Pj6+sMIjIiIiomJCqcTtyZMnCzsOIiIiIqIiI5fLoampmaVcU1MTcnnh9iqNioqCpaWlQpmlpSXi4+ORlJQEXV3dLOvMnj0bQUFBhRoXERERERUvSiVuiegTsLcnERFRsdWiRQsEBARg69atsLGxAQA8f/4cY8aMQcuWLVUcXVYTJ05UGL4sPj4ednZ2KoyIiIiIqGjI5XKMHTsWhw8fhoaGBsqXL4/Vq1ejUqVKqg6t0H1S4jY0NBQ7duxAREQEUlNTFZbt3r27QAIjIiIiKjWK8sc8AHCyL9r9lUAhISHo3LkzHB0dpQTo06dP4ebmhs2bNxfqvq2srBAdHa1QFh0dDSMjo2x72wKAtrY2tLW1CzWu3DiU18PGwXXhUF5PZTEQERFR2bR//36cO3cO169fh6amJn766SdMmjQJO3bsUHVohU4tvyts27YNDRo0wO3bt7Fnzx6kpaXh33//xYkTJ2BsXMRfSoiIiIiIPoGdnR2uXr2KgwcPYvTo0Rg9ejQOHTqEq1evokKFCoW6b29vbxw/flyh7OjRo/D29i7U/X4OQx1NNK1iDkOdrMNLEBERERWEX375BcOGDZOex8bGwszMDHFxcUhJSUFycjKEEIiPjy/09lpxke8et7NmzcLChQsxcuRIGBoaYtGiRXBycsLw4cNhbW1dGDESERHR5yjK3p7s6UklQFpaGnR1dREWFobWrVujdevWn7W9hIQEPHjwQHoeHh6OsLAwmJqawt7eHhMnTsTz58+xadMmAMDXX3+NkJAQjBs3DoMHD8aJEyewY8cOHDx48LPiKEwv45Ox5VIE+tWzh4WRjqrDISIiolLIz88PVapUwbx582BiYoL169ejS5cu6N+/P65duwYrKysYGhrC1tYWp0+fVnW4RSLfPW4fPnyIjh07AgC0tLSQmJgImUyGMWPGYNWqVQUeIBERERFRQdLU1IS9vT0yMjIKZHuhoaHw8vKCl5cXACAwMBBeXl6YMmUKACAyMhIRERFSfScnJxw8eBBHjx6Fh4cH5s+fjzVr1qBt27YFEk9hePk2BYuO38fLtymqDoWIiIhKKRMTE/To0QPr1q2DEALLly+Hv78/QkNDcfPmTTx//hwvXrxAy5Yt8fXXX6s63CKR7x635cqVw9u3bwEAtra2uHnzJtzd3REbG4t3794VeID0CdizioiIiChXP/zwAyZNmoRff/0Vpqamn7WtZs2aQQiR4/INGzZku861a9c+a79EREREpc2oUaPQuXNnVKtWDebm5vDy8oK/vz9atGgBExMTAMCAAQPQpk0b1QZaRJTucXvz5k0AQJMmTXD06FEAQM+ePREQEIChQ4eiT58+nzwD79KlS+Ho6AgdHR3Uq1cPly9fzrV+cHAwXFxcoKurCzs7O4wZMwbJycmftG8iIiIiKntCQkJw5swZ2NjYwMXFBTVr1lR4EBEREVHhuBMVj+Bj9zD9j1sIPnYPd6LipWVVq1ZFxYoVMWzYMPj7+wMAKlasiBMnTiA1NRUAcODAAbi5uakk9qKmdI/bGjVqoE6dOujatSt69uwJ4H1PBU1NTZw/fx7du3fHjz/+mO8Atm/fjsDAQKxYsQL16tVDcHAw2rZti7t378LCwiJL/d9++w0TJkzAunXr0KBBA9y7dw8DBw6ETCbDggUL8r1/IiIqZEV5F8C0uKLbFxGVaF27dlV1CERERERlyuOYRATuCMPViFioq8mgJgPkAgg+dh+1HMphfk8POJrpY+jQofD390ePHj0AACNHjsTt27fh4eEBTU1NWFlZYcWKFSo+mqKhdOL29OnTWL9+PWbPno2ZM2eie/fu8PPzw4QJEz4rgAULFmDo0KEYNGgQAGDFihU4ePAg1q1bl+22z58/j4YNG6Jv374AAEdHR/Tp0weXLl36rDiIiIiIqGxIT0+HTCbD4MGDy8yMxJ/LWFcTXT1tYKyrqepQiIiIqAR6HJOILkvPISElHQCQIRf4cLaBsKex6LL0HPaNbIiTJ09ixIgR0NR83+7Q1tbG6tWrVRC16ik9VELjxo2xbt06REZGYsmSJXj8+DGaNm2KKlWqYO7cuYiKisr3zlNTU3HlyhW0atXq/wJSU0OrVq1w4cKFbNdp0KABrly5Ig2n8OjRIxw6dAgdOnTItn5KSgri4+MVHkRERERUdmloaODnn39Genq6qkMpMexM9RD8pRfsTPVUHQoRERGVQIE7wpCQko4MefbzAmTIBWJjouHu5oqrV69i9OjRRRtgMaV04jaTvr4+Bg0ahNOnT+PevXvo2bMnli5dCnt7e3Tu3Dlf24qJiUFGRgYsLS0Vyi0tLXNMBPft2xfTp09Ho0aNoKmpCWdnZzRr1gyTJk3Ktv7s2bNhbGwsPezs7PIVIxERERGVPi1atMDp06dVHUaJkZyWgccxiUhOy8i7MhEREdEH7kTF42pEbI5J20wyfVOUH7gM63YfhqGhYRFFV7zlO3H7oUqVKmHSpEn48ccfYWhoiIMHDxZUXDk6deoUZs2ahWXLluHq1avYvXs3Dh48iBkzZmRbf+LEiYiLi5MeT58+LfQYiYiIiKh4a9++PSZMmICxY8di69at2L9/v8KDFD14mYBmv5zCg5cJqg6FiIiISpjDN6OgriZTqq66mgxHbkYXckQlh9Jj3H7szJkzWLduHX7//XeoqamhV69eGDJkSL62YWZmBnV1dURHK74g0dHRsLKyynadyZMno3///vDz8wMAuLu7IzExEcOGDcMPP/wANTXFXLS2tja0tbXzFRcRERERlW4jRowAgGwnt5XJZMjIYM9SIiIiooIQn5QONRmgTOtKTQbEJaUVekwlRb563L548QKzZs1ClSpV0KxZMzx48ACLFy/GixcvsHr1atSvXz9fO9fS0kKtWrVw/PhxqUwul+P48ePw9vbOdp13795lSc6qq6sDAITIvcs1ERERERHwvs2Z04NJWyIiIqKCY6SrgTxGSZDIBTgZ6geU7nHbvn17HDt2DGZmZvD19cXgwYPh4uLy2QEEBgZiwIABqF27NurWrYvg4GAkJiZi0KBBAABfX1/Y2tpi9uzZAAAfHx8sWLAAXl5eqFevHh48eIDJkyfDx8dHSuASUfHlOKHwh1TJ9FinyHZFREQlWHJyMnR0eNEgIiIiKgzt3KwQfOy+UnUz5ALt3LK/C78sUjpxq6mpiV27dqFTp04FmiDt3bs3Xr16hSlTpiAqKgqenp44fPiwNGFZRESEQg/bH3/8ETKZDD/++COeP38Oc3Nz+Pj4YObMmQUWExERERGVbhkZGZg1axZWrFiB6Oho3Lt3DxUrVsTkyZPh6OiY7yHAiIiIiCh7Va2MUNPeBNefxeU6QZm6mgxediZwseLEZJmUTtwW5iQN/v7+8Pf3z3bZqVOnFJ5raGhg6tSpmDp1aqHFQ0REJZP7Rvci29eNATeKbF9EVPBmzpyJjRs3Yt68eRg6dKhU7ubmhuDgYCZuP+Jma4zHczqqOgwiIiIqoRb08kSXpeeQkJKebfJWXU0GA20N/NLTQwXRFV/5GuOWiIiIiKg02LRpE1atWoV+/fop3E3m4eGBO3fuqDAyIiIiotLH0Uwf+0Y2hJedCYD3iVpNdRnU1WQAAC87E+wb2RCOZvoqjLL4UbrHLRERERFRafH8+XNUqlQpS7lcLkdaGmcy/tjDVwkYu/M6funpAWdzA1WHQ0RERCWQo5k+dn3TAHei4nHkZjTiktJgrKuJdm5WHB4hB0zcEhEREVGZ4+rqirNnz8LBwUGhfNeuXfDy8lJRVMVXUmoGrkXEIik1Q9WhEBERUQlX1coIVa2MVB1GicDELRERERGVOVOmTMGAAQPw/PlzyOVy7N69G3fv3sWmTZtw4MABVYdHRERERMQxbomIiIio7OnSpQv++OMPHDt2DPr6+pgyZQpu376NP/74A61bt1Z1eERERERE7HFLRERERGVT48aNcfTo0VzrbN26FZ07d4a+PifKICIiIqKixR63REREREQ5GD58OKKjo1UdhspVKKeLhb09UKGcrqpDISIiIioz2OOWiIiIiCgHQghVh1AsmOhp4QuvCqoOg4iIiKhMYY9bIiIiIiLK1euEFGy68BivE1JUHQoRERFRmcHELRERERER5SoyLhlT9v2LyLhkVYdCREREVGYwcUtERERERERERERUzDBxS0RERERERERERFTMMHFLRERERJQDBwcHaGpqqjoMIiIiIiqDNFQdABERERGRKiUkJEAulyuUGRkZAQBu3rypipCKHX1tDTSubAZ9bX59ICIiIioqbHkRERERUZkTHh4Of39/nDp1CsnJ/zfhlhACMpkMGRkZKoyu+HEy08evQ+qpOgwiIiKiMoWJWyKiAuC+0b1I93djwI0i3R8RUWnz1VdfQQiBdevWwdLSEjKZTNUhFWsZcoF3qenQ09KAuhrPFREREVFRYOKWiIiIiMqc69ev48qVK3BxcVF1KCXC7ch4dFryNw582whutsaqDoeIiIioTODkZERERERU5tSpUwdPnz5VdRhEREREVEzJZDLExsZmu6xNmzaoUaMGPD090bhxY1y7dq1QYmCPWyIiIiIqc9asWYOvv/4az58/h5ubGzQ1NRWW16hRQ0WREREREVFxt2PHDpiYmAAA9uzZg4EDB+L69esFvh/2uCUiIiKiMufVq1d4+PAhBg0ahDp16sDT0xNeXl7Sv/m1dOlSODo6QkdHB/Xq1cPly5dzrR8cHAwXFxfo6urCzs4OY8aMUZgkjYiIiIhU75dffoGXlxeqVKmCLVu2SOWZSVsAiIuLK7T5EtjjloiIiIjKnMGDB8PLywtbt2797MnJtm/fjsDAQKxYsQL16tVDcHAw2rZti7t378LCwiJL/d9++w0TJkzAunXr0KBBA9y7dw8DBw6ETCbDggULPuewiIiIiKgAyWQyXLt2DY8ePULt2rXRsGFDODo6AgB8fX1x8uRJAMChQ4cKZf9M3BIRERFRmfPkyRPs378flSpV+uxtLViwAEOHDsWgQYMAACtWrMDBgwexbt06TJgwIUv98+fPo2HDhujbty8AwNHREX369MGlS5c+O5bC4mJliCs/toKRrmbelYmIiIhKCT8/PwBAxYoV0aRJE5w5c0ZK3G7atAkAsHHjRowfP75QkrccKoGIiIiIypwWLVoUyDhkqampuHLlClq1aiWVqampoVWrVrhw4UK26zRo0ABXrlyRhlN49OgRDh06hA4dOnx2PIVFU10N5Q20oanOrw9ERERUdmV3l9aAAQNw8uRJvH79usD3VyxaXvkdEyw2NhYjR46EtbU1tLW1UaVKlULrkkxEREREpY+Pjw/GjBmDadOm4ffff8f+/fsVHsqKiYlBRkYGLC0tFcotLS0RFRWV7Tp9+/bF9OnT0ahRI2hqasLZ2RnNmjXDpEmTctxPSkoK4uPjFR5F6cnrRPht/AdPXicW6X6JiIiICtOdqHgEH7uH6X/cQvCxe7gTpdjGWr9+PQDg8ePHOHv2LBo3bozY2Fi8ePFCqrN3716UL18epqamBR6fyodKyO+YYKmpqWjdujUsLCywa9cu2Nra4smTJwqDAhMRERER5ebrr78GAEyfPj3LMplMhoyMjELb96lTpzBr1iwsW7YM9erVw4MHDxAQEIAZM2Zg8uTJ2a4ze/ZsBAUFFVpMeXmbnI5jt19idKsqKouBiIiIqKA8jklE4I4wXI2IhbqaDGoyQC6A4GP3UcuhHOb39AAAZGRkwMvLC4mJiVi8eDEcHR3x5MkT9OzZE0lJSVBTU4O5uTkOHDhQKBOUqTxxm98xwdatW4c3b97g/Pnz0NR8P8ZW5tgSRERERETKkMvlBbIdMzMzqKurIzo6WqE8OjoaVlZW2a4zefJk9O/fXxozzd3dHYmJiRg2bBh++OEHqKllvSlu4sSJCAwMlJ7Hx8fDzs6uQI6BiIiIqCx5HJOILkvPISElHQCQIRf48Cf7sKex6LL0HMJfJcDRTB8zZsxQWN/BwSHP0QIKikqHSviUMcH2798Pb29vjBw5EpaWlnBzc8OsWbNy7BWh6tvKiIiIiKj00tLSQq1atXD8+HGpTC6X4/jx4/D29s52nXfv3mVJzqqrqwMAhBDZrqOtrQ0jIyOFBxERERHlX+COMCSkpCNDnn27K0MukJCSjrE7P38+hM+l0sTtp4wJ9ujRI+zatQsZGRk4dOgQJk+ejPnz5+Onn37Ktv7s2bNhbGwsPdgzgYiIiIgA4Pjx4+jUqROcnZ3h7OyMTp064dixY/neTmBgIFavXo2NGzfi9u3b+Oabb5CYmCjdUebr64uJEydK9X18fLB8+XJs27YN4eHhOHr0KCZPngwfHx8pgUtEREREBe9OVDyuRsTmmLTNlCEXCH3yX5Yxb4uayodKyC+5XA4LCwusWrUK6urqqFWrFp4/f46ff/4ZU6dOzVKft5URERER0ceWLVuGgIAA9OjRAwEBAQCAixcvokOHDli4cCFGjhyp9LZ69+6NV69eYcqUKYiKioKnpycOHz4sdU6IiIhQ6GH7448/QiaT4ccff8Tz589hbm4OHx8fzJw5s2APsgBZGungx47VYGmko+pQiIiIiD7Z4ZtRUFeT5Zm4BQB1NRmO3IxGVSvV3emk0sTtp4wJZm1tDU1NTYXeCNWqVUNUVBRSU1OhpaWlUF9bWxva2toFHzwRERERlVizZs3CwoUL4e/vL5WNGjUKDRs2xKxZs/KVuAUAf39/hW196NSpUwrPNTQ0MHXq1Gw7HRRX5oba8GtcUdVhEBEREX2W+KR0qMkAZaahVZMBcUlphR5TrjGocuefMiZYw4YN8eDBA4UJJe7duwdra+ssSVsiIiIiouzExsaiXbt2WcrbtGmDuLg4FURUvMW9S8PB/0Ui7p1qv7wQERERfQ4jXQ0o0dkWACAXgLGuZuEGlAeVJm6B/I8J9s033+DNmzcICAjAvXv3cPDgwU/qFUFEREREZVfnzp2xZ8+eLOX79u1Dp06dVBBR8fb0v3cY+dtVPP3vnapDISIiIvpk7dyslBomAXg/zm07t+xHBCgqKh/jNr9jgtnZ2eHIkSMYM2YMatSoAVtbWwQEBGD8+PGqOgQiIiIiKmFcXV0xc+ZMnDp1SrrT6+LFizh37hy+++47LF68WKo7atQoVYVJRERERAWoqpURatqb4PqzuFwTuOpqMnjZmcDFyrAIo8tK5YlbIH9jggGAt7c3Ll68WMhREREREVFptXbtWpQrVw63bt3CrVu3pHITExOsXbtWei6TyZi4JSIiIipFFvTyRJel55CQkp5t8lZdTQYDbQ380tNDBdEpKhaJWyIiIiKiohQeHq7qEIiIiIhIBRzN9LFvZEOM3XkdoU/+g7qaDGqy92PaZsgFvOxM8EtPDzia6as6VCZuiYiIiKhsE+J9TwuZTKbiSIovHU01VLcxgo6myqfIICIiIvpsjmb62PVNA9yJiseRm9GIS0qDsa4m2rlZqXx4hA8xcUtEREREZdLatWuxcOFC3L9/HwBQuXJljB49Gn5+fiqOrPipZGGIg6MaqzoMIiIiogJV1coIVa2MVB1Gjpi4JSIiIqIyZ8qUKViwYAG+/fZbaXKyCxcuYMyYMYiIiMD06dNVHCERERERlXVM3BIRERFRmbN8+XKsXr0affr0kco6d+6MGjVq4Ntvv2Xi9iM3n8eh27Lz2D2iAdxsjVUdDhEREVGZwEGqiIiIiKjMSUtLQ+3atbOU16pVC+np6SqIqPhLzZCrOgQiIiKiMoWJWyIiIiIqc/r374/ly5dnKV+1ahX69eungoiIiIiIiBRxqAQiIiIiKpPWrl2Lv/76C/Xr1wcAXLp0CREREfD19UVgYKBUb8GCBaoKkYiIiIjKMCZuiYiIiKjMuXnzJmrWrAkAePjwIQDAzMwMZmZmuHnzplRPJpOpJD4iIiIiIiZuiYiIiKjMOXnypKpDKFEqWRjgrzFNYG+qp+pQiIiIiMoMJm6JiIiIiChXOprqqGJpqOowiIiIiMoUTk5GRERERES5evbfO4zf9T88+++dqkMhIiIiKjOYuCUiIiIiolzFvkvD9tCniH2XpupQiIiIiMoMJm6JiIiIiIiIiIiIihkmbomIiIiIiIiIiIiKGSZuiYiIiIiIiIiIiIoZJm6JiIiIiChXZgba+KaZM8wMtFUdChEREVGZoaHqAIiIiIiIqHizMtbB+HZVVR0GERERUZnCHrdERERERJSrhJR0XHj4Ggkp6aoOhYiIiKjMYOKWiIiIiIhy9TgmEX1WX8TjmERVh0JERERUZjBxS0RERERERERERFTMMHFLRERE9P/au9OwqI70beB3d7MLDSgKiETUcUFBVFRCiFEjBh1HZaLGUf4uDBoXcCNmXCOiiRo1ajJRCSgxOirMuCZK3IjEjbghxJ1gBNQRBA0iIIvd9X7wpceWRUDow3L/rqs/dJ065zznVJ0Wn66uIiIiIiIiqmWYuCUiIiIiIiIiIiKqZWpF4nb9+vVwcHCAkZER3NzccO7cuQrtFxERAZlMBm9v75oNkIiIiIioAdNTyGCjNIKeQiZ1KEREREQNhuSJ28jISAQGBiIoKAhxcXFwcXGBl5cXHjx4UO5+ycnJmD17Nnr16qWjSImIiIiIGqYONkr8Mr8fOtgopQ6FiIiIqMGQPHG7Zs0aTJw4Eb6+vujYsSNCQkJgYmKC8PDwMvdRqVTw8fFBcHAwWrdurcNoiYiIiIiIiIiIiGqepInbwsJCXLx4EZ6enpoyuVwOT09PxMbGlrnfkiVL0KxZM/j5+ekiTCIiIiKiBu1GWjbeXBaNG2nZUodCRERE1GBImrjNzMyESqWCtbW1Vrm1tTXS0tJK3efUqVPYvHkzwsLCKnSOgoICZGdna72IiIiIiKpTZddsyMrKgr+/P2xtbWFoaIh27dohKipKR9FW3jOVQFp2Pp6phNShEBERETUYkk+VUBlPnjzBmDFjEBYWBisrqwrts3z5cpibm2te9vb2NRwlERERETUklV2zobCwEP3790dycjJ27dqFmzdvIiwsDHZ2djqOnIiIiIhqMz0pT25lZQWFQoH09HSt8vT0dNjY2JSof+vWLSQnJ2Pw4MGaMrVaDQDQ09PDzZs30aZNG6195s2bh8DAQM377OxsJm+JiIiIqNq8uGYDAISEhODgwYMIDw/H3LlzS9QPDw/Ho0ePcObMGejr6wMAHBwcdBkyEREREdUBko64NTAwgKurK6KjozVlarUa0dHRcHd3L1G/Q4cOuHz5MuLj4zWvIUOGoG/fvoiPjy81IWtoaAilUqn1IiIiIiKqDlVZs+H777+Hu7s7/P39YW1tDScnJyxbtgwqlarM83D6LyIiIqKGR9IRtwAQGBiIcePGoXv37ujZsyfWrVuH3NxczYiFsWPHws7ODsuXL4eRkRGcnJy09rewsACAEuVERERERDWtvDUbbty4Ueo+v//+O3766Sf4+PggKioKSUlJmDp1KoqKihAUFFTqPsuXL0dwcHC1x19RDlaNsHPim3CwaiRZDEREREQNjeSJ25EjRyIjIwOLFi1CWloaunTpgkOHDmn++E1NTYVcXqem4iUiIiIiKpNarUazZs0QGhoKhUIBV1dX3Lt3D6tWrSozcSv19F+mhnpwb9NEZ+cjIiIiolqQuAWAgIAABAQElLotJiam3H23bNlS/QEREREREVVAZddsAABbW1vo6+tDoVBoyhwdHZGWlobCwkIYGBiU2MfQ0BCGhobVG3wlpD3Ox3exyRjn7gAbcyPJ4iAiIiJqSDiUlYiIiIioiiq7ZgMAeHh4ICkpSbPILgAkJibC1ta21KRtbZCZU4CNMbeQmVMgdShEREREDQYTt0REREREryEwMBBhYWH47rvvcP36dUyZMqXEmg3z5s3T1J8yZQoePXqEGTNmIDExEQcPHsSyZcvg7+8v1SUQERERUS1UK6ZKINIFh7kHdXq+ZP6KkIiIqEGo7JoN9vb2OHz4MGbNmoXOnTvDzs4OM2bMwJw5c6S6BCIiIiKqhZi4JSIiIiJ6TZVds8Hd3R2//PJLDUdFRERERHUZp0ogIiIiIqJyWZjoY2R3e1iY6EsdChEREVGDwRG3RERERERUrhaWJvh8eGepwyAiIiJqUDjiloiIiIiIypVfpEJi+hPkF6mkDoWIiIiowWDiloiIiIiIypX0IAfvrT2BpAc5UodCRERE1GAwcUtERERERERERERUyzBxS0RERERERERERFTLMHFLREREREREREREVMvoSR0AEb0+5++cdXauy+Mu6+xcREREVHsYKDjmg4iIiEiXmLglIiIiIqJyOdmZI/GzgVKHQURERNSg8GtzIiIiIiIiIiIiolqGiVsiIiIiIipX0oMnGPTVSSQ9eCJ1KEREREQNBhO3RERERERUrvwiNa7+Nxv5RWqpQyEiIiJqMJi4JSIiIiIiIiIiIqplmLglIiIiIiIiIiIiqmWYuCUiIiIiIiIiIiKqZZi4JSIiIiKictlbmmD96G6wtzSROhQiIiKiBkNP6gCIiIiIiKh2MzfRx6DOtlKHQURERNSgcMQtERERERGVK+NJATad/B0ZTwqkDoWIiIiowWDiloiIiIiIypWenY9PD15Hena+1KEQERERNRhM3BIRERERERERERHVMrUicbt+/Xo4ODjAyMgIbm5uOHfuXJl1w8LC0KtXL1haWsLS0hKenp7l1iciIiIiIiIiIiKqayRP3EZGRiIwMBBBQUGIi4uDi4sLvLy88ODBg1Lrx8TEYNSoUTh+/DhiY2Nhb2+P9957D/fu3dNx5EREREREREREREQ1Q/LE7Zo1azBx4kT4+vqiY8eOCAkJgYmJCcLDw0utv337dkydOhVdunRBhw4dsGnTJqjVakRHR+s4ciIiIiKihsHMSA+ejs1gZqQndShEREREDYakf3kVFhbi4sWLmDdvnqZMLpfD09MTsbGxFTpGXl4eioqK0Lhx41K3FxQUoKDgf6vfZmdnv17QREREREQNTMsmjbBpXA+pwyAiIiJqUCQdcZuZmQmVSgVra2utcmtra6SlpVXoGHPmzEHz5s3h6elZ6vbly5fD3Nxc87K3t3/tuImIiIiIGpIilRoPcwpQpFJLHQoRERFRgyH5VAmvY8WKFYiIiMDevXthZGRUap158+bh8ePHmtedO3d0HCURERERUd12M+0JXD89hptpT6QOhYiIiKjBkHSqBCsrKygUCqSnp2uVp6enw8bGptx9V69ejRUrVuDYsWPo3LlzmfUMDQ1haGhYLfESERERERERERER6YKkI24NDAzg6uqqtbBY8UJj7u7uZe63cuVKLF26FIcOHUL37t11ESoRERERERERERGRzki+LGxgYCDGjRuH7t27o2fPnli3bh1yc3Ph6+sLABg7dizs7OywfPlyAMDnn3+ORYsWYceOHXBwcNDMhWtqagpTU1PJroOIiIiIiIiIiIioukieuB05ciQyMjKwaNEipKWloUuXLjh06JBmwbLU1FTI5f8bGLxx40YUFhZi+PDhWscJCgrC4sWLdRk6ERERERERERERUY2oFYuTBQQEICUlBQUFBTh79izc3Nw022JiYrBlyxbN++TkZAghSryYtCUiIiIiqaxfvx4ODg4wMjKCm5sbzp07V6H9IiIiIJPJ4O3tXbMBviZHWyUuL34PjrZKqUMhIiIiajBqReKWiIiIiKiuioyMRGBgIIKCghAXFwcXFxd4eXnhwYMH5e6XnJyM2bNno1evXjqKtOoUchnMjPShkMukDoWIiIiowWDiloiIiIjoNaxZswYTJ06Er68vOnbsiJCQEJiYmCA8PLzMfVQqFXx8fBAcHIzWrVvrMNqquZ2ZizGbz+J2Zq7UoRARERE1GEzcEhERERFVUWFhIS5evAhPT09NmVwuh6enJ2JjY8vcb8mSJWjWrBn8/Px0EeZryy14hpO/ZSK34JnUoRARERHVuJiYGBgbG6NLly6a19OnT3Ueh+SLkxERERER1VWZmZlQqVSahXWLWVtb48aNG6Xuc+rUKWzevBnx8fEVPk9BQQEKCgo077Ozs6sULxERERFVTPv27Sv191pN4IhbIiIiIiIdefLkCcaMGYOwsDBYWVlVeL/ly5fD3Nxc87K3t6/BKImIiIgahtWrV+PDDz/UvM/KyoKVlRUePXokYVT/w8QtEREREVEVWVlZQaFQID09Xas8PT0dNjY2JerfunULycnJGDx4MPT09KCnp4etW7fi+++/h56eHm7dulXqeebNm4fHjx9rXnfu3KmR6yEiIiJqSCZMmIB9+/YhKysLAPDtt99i6NChaNy4MW7duoVu3bqhR48e2LBhgyTxcaoEIiIiIqIqMjAwgKurK6Kjo+Ht7Q0AUKvViI6ORkBAQIn6HTp0wOXLl7XKFi5ciCdPnuDLL78scyStoaEhDA0Nqz3+irI1N8KSoZ1ga24kWQxERERE1c3CwgLDhw9HeHg4Zs2ahY0bNyIyMhJt2rTB3bt3YW5ujrt37+LPf/4zrKys8MEHH+g0PiZuiYiIiIheQ2BgIMaNG4fu3bujZ8+eWLduHXJzc+Hr6wsAGDt2LOzs7LB8+XIYGRnByclJa38LCwsAKFFemzQxNcRYdwepwyAiIiKqdtOnT8eQIUPg6OiIpk2bomvXrlrbW7RogVGjRuHkyZNM3BIRERER1SUjR45ERkYGFi1ahLS0NHTp0gWHDh3SLFiWmpoKubxuz1CWlVeI4zcfoG/7ZrAwMZA6HCIiIqJKuZGWjUNX0pD99BmUxnoY4GSDDjZKAM9/EdW6dWt8+OGHWLlyJQDg/v37sLa2hlwux5MnT3DgwAH4+fnpPG4mbomIiIiIXlNAQECpUyMAQExMTLn7btmypfoDqmZ3/3iKWZEJODDtbSZuiYiIqM5IzsxF4L/jEZeaBYVcBrkMUAtg3bHf4NrSEl+McIGDVSNMnDgRAQEBGD58OABg9+7d2LhxI/T09PDs2TOMGDFC82sqXWLiloiIiIiIiIiIiOqV5MxcDF1/GjkFzwAAKrWA6oXt8XeyMHT9aez398Dx48cxdepU6OvrAyj/S3ldYuKWiIiIiIiIiIiI6pXAf8cjp+AZVGpR6naVWiArMx3OTh3h3NoOhw8f1nGEr1a3J9siIiIiIiIiIiIiesGNtGzEpWaVmbQtJmvUGE3Gb0D4nkMwMzPTUXQVx8QtERERERGVy9hAga5vWMDYQCF1KERERESvdOhKGhRyWYXqKuQyHL6SXsMRVQ2nSiAiIiIionK1aWqKvVM9pA6DiIiIqEKynz6DXAatOW3LIpcBj58W1XhMVcERt0RERERERERERFRvKI318IpZEjTUAjA31q/ZgKqIiVsiIiIiIirXlXuP4TD3IK7ceyx1KERERESvNMDJ5pXz2xZTqQUGONnUcERVw8QtERERERERERER1RsdbJTo9obFK+e5Vchl6N7SEu1tat/CZAATt0RERERERERERFTPrPmgC0wN9cpM3irkMpga6mH1CBcdR1ZxTNwSERERERERERFRveJg1Qj7/T3Q1d4CwPNErb5CpknkdrW3wH5/DzhYNZIwyvLpSR0AERERERERERERUXVzsGqEXVPewo20bBy+ko7HT4tgbqyPAU42tXZ6hBcxcUtEREREROX6UzNTxMzuAxtzI6lDISIiIqq0DjZKdLBRSh1GpTFxS0RERERE5TLSV9TqnxESERER1Ue1Yo7b9evXw8HBAUZGRnBzc8O5c+fKrf+f//wHHTp0gJGREZydnREVFaWjSImIiIiIGp47j/IwM+IS7jzKkzoUIiIiogZD8sRtZGQkAgMDERQUhLi4OLi4uMDLywsPHjwotf6ZM2cwatQo+Pn54dKlS/D29oa3tzeuXLmi48iJiIiIiBqGx0+LsC/+v3j8tEjqUIiIiIgaDMkTt2vWrMHEiRPh6+uLjh07IiQkBCYmJggPDy+1/pdffokBAwbg448/hqOjI5YuXYpu3brh66+/1nHkRERERERERERERDVD0sRtYWEhLl68CE9PT02ZXC6Hp6cnYmNjS90nNjZWqz4AeHl5lVmfiIiIiIiIiIiIqK6RdHGyzMxMqFQqWFtba5VbW1vjxo0bpe6TlpZWav20tLRS6xcUFKCgoEDz/vHjxwCA7Ozs1wm90tQFupsPLFsmdHYu1VOVzs4FvF676bINgPrbDq/77PBZqB58FkrHZ6F09bUNgLrzLOiyDYC69SxU9XxC6Pae1jbF16+r+5/zJBvqgjzkPMlGdrZMJ+ckIiIiqo8q8/espIlbXVi+fDmCg4NLlNvb20sQjW6Y6/Rs13V6NvMpur2611Ff24FtUBY+C2Wpr+3ANigLn4XS6D7K+v8sPHnyBObmdaP9a8KTJ08A6P5vWvd1Oj0dERERUb1Vkb9nJU3cWllZQaFQID09Xas8PT0dNjY2pe5jY2NTqfrz5s1DYGCg5r1arcajR4/QpEkTyGQcLVAsOzsb9vb2uHPnDpRKpdThNEhsg9qB7SA9tkHtwHaQHtugdEIIPHnyBM2bN5c6FEk1b94cd+7cgZmZmU7+pmV/pGLsC1SMfYGKsS9QMfaFiqnM37OSJm4NDAzg6uqK6OhoeHt7A3ieWI2OjkZAQECp+7i7uyM6OhozZ87UlB09ehTu7u6l1jc0NIShoaFWmYWFRXWEXy8plUo+XBJjG9QObAfpsQ1qB7aD9NgGJTXkkbbF5HI5WrRoofPzsj9SMfYFKsa+QMXYF6gY+8KrVfTvWcmnSggMDMS4cePQvXt39OzZE+vWrUNubi58fX0BAGPHjoWdnR2WL18OAJgxYwZ69+6NL774AoMGDUJERAQuXLiA0NBQKS+DiIiIiIiIiIiIqNpInrgdOXIkMjIysGjRIqSlpaFLly44dOiQZgGy1NRUyOVyTf233noLO3bswMKFCzF//ny0bdsW+/btg5OTk1SXQERERERERERERFStJE/cAkBAQECZUyPExMSUKBsxYgRGjBhRw1E1LIaGhggKCioxrQTpDtugdmA7SI9tUDuwHaTHNqDahP2RirEvUDH2BSrGvkDF2Beqn0wIIaQOgoiIiIiIiIiIiIj+R/7qKkRERERERERERESkS0zcEhEREREREREREdUyTNwSERERERERERER1TJM3DYAarVa6hCIiKgW4fT2RFSa9evXw8HBAUZGRnBzc8O5c+fKrf+f//wHHTp0gJGREZydnREVFaWjSKmmVaYvhIWFoVevXrC0tISlpSU8PT1f2Xeo7qjs50KxiIgIyGQyeHt712yApDOV7QtZWVnw9/eHra0tDA0N0a5dO/47UU9Uti+sW7cO7du3h7GxMezt7TFr1izk5+frKNq6j4nbeiwuLg4AIJezmYmoduEXStL4448/AAAymUziSIiotomMjERgYCCCgoIQFxcHFxcXeHl54cGDB6XWP3PmDEaNGgU/Pz9cunQJ3t7e8Pb2xpUrV3QcOVW3yvaFmJgYjBo1CsePH0dsbCzs7e3x3nvv4d69ezqOnKpbZftCseTkZMyePRu9evXSUaRU0yrbFwoLC9G/f38kJydj165duHnzJsLCwmBnZ6fjyKm6VbYv7NixA3PnzkVQUBCuX7+OzZs3IzIyEvPnz9dx5HWXTHDYTb0UERGB0aNH49tvv8W4ceOkDqfB2rBhA/T19TFx4kSpQyGSVFxcHDIzM5GTk4P3338fwPNRn0wg6s7OnTtx6tQpTJo0CZ07d5Y6nAaJfZ5qMzc3N/To0QNff/01gOdfsNnb22PatGmYO3duifojR45Ebm4uDhw4oCl788030aVLF4SEhOgsbqp+le0LL1OpVLC0tMTXX3+NsWPH1nS4VIOq0hdUKhXeeecd/P3vf8fJkyeRlZWFffv26TBqqgmV7QshISFYtWoVbty4AX19fV2HSzWosn0hICAA169fR3R0tKbso48+wtmzZ3Hq1CmdxV2XcShmPbRx40aMHj0apqam+OWXX6QOp8EKCwtDQEAALC0tpQ6lQSoe0SmEgEqlkjiahi08PBzDhg3D9OnT4e/vD19fXwAc9alL3377LXx9feHk5ARbW1utbRz9rBtqtRoymQyPHj1CRkaG1OEQaSksLMTFixfh6empKZPL5fD09ERsbGyp+8TGxmrVBwAvL68y61PdUJW+8LK8vDwUFRWhcePGNRUm6UBV+8KSJUvQrFkz+Pn56SJM0oGq9IXvv/8e7u7u8Pf3h7W1NZycnLBs2TL+v6yOq0pfeOutt3Dx4kXNdAq///47oqKi8Oc//1knMdcHelIHQNUrNDQU06ZNw4kTJ5CXl4fBgwfjb3/7G3r37i11aA1KaGgo/P39ERkZieHDh2v+gVIoFJo6HHlVc9RqNeRyORITE7FhwwYkJSWhZ8+e8Pf3R5MmTaQOr0HZt28fZsyYgW3btsHZ2Rk//fQTvvnmG+Tl5cHExAQAn4Wadu3aNXz++ecIDw/H6NGjkZWVhdu3byM7OxsuLi6cTkdH5HI5fv/9d/Tv3x8+Pj6YPHkymjdvLnVYRACAzMxMqFQqWFtba5VbW1vjxo0bpe6TlpZWav20tLQai5NqXlX6wsvmzJmD5s2bl0jsU91Slb5w6tQpbN68GfHx8TqIkHSlKn3h999/x08//QQfHx9ERUUhKSkJU6dORVFREYKCgnQRNtWAqvSF0aNHIzMzE2+//TaEEHj27BkmT57MqRIqgf9bq0e2bNmCyZMnY9euXXj77bfRtm1buLq64scffwQAfrulI9HR0Zg8eTIiIyMxYsQIXL9+HR999BH69u0LX19ffPPNNwCejzbkTCXVrzhpe/nyZfTq1Qv37t1DixYt8Nlnn2l+zkG6UVRUhEOHDsHf3x/e3t5o06YN3nrrLZibm+Pw4cPYvHkz8vPz+SzUsKysLJiYmGDUqFFISEjA0KFD8d5772HgwIHo27evZj4qjryteUePHsXt27dx4MABbNmyRSvBJYTgc0BEdd6KFSsQERGBvXv3wsjISOpwSIeePHmCMWPGICwsDFZWVlKHQxJTq9Vo1qwZQkND4erqipEjR2LBggWcSqcBiomJwbJly7BhwwbExcVhz549OHjwIJYuXSp1aHUGR9zWE9nZ2Th16hS+//57/OUvfwEAtGrVCn369ME333yDefPmwdzcXOIo6z+1Wg09PT00bdoUe/fuhaOjI4YMGQJnZ2c4OTkhJSUFGzZsQEpKCpYtW8ZRhjVALpfj9u3bGDJkCPz8/LBs2TIAgK2tLR48eICioiKteZY42rPm6OvrIykpCXp6//unZsGCBbh27RqWL1+OjIwMrF27Fr/88gtMTU3ZFtWs+EuMlJQUFBQUQKVSYdKkSejTpw+8vLygVqsxa9YsDBgwAHFxcRx5qwPu7u4YO3Ys2rZti/Xr10OtViMgIAAWFhbs+yQpKysrKBQKpKena5Wnp6fDxsam1H1sbGwqVZ/qhqr0hWKrV6/GihUrcOzYMc6lXg9Uti/cunULycnJGDx4sKas+EthPT093Lx5E23atKnZoKlGVOVzwdbWFvr6+lq/OHV0dERaWhoKCwthYGBQozFTzahKX/jkk08wZswYTJgwAQDg7OyM3NxcfPjhh1iwYAH/D1IBvEP1gFqthlKpxKZNmzRJ22fPngEAZs2ahWbNmmH16tUcyVPDhBCQy+Xo3bs39uzZg9jYWHTq1AkjRozAv/71L2zYsAH/+te/MGjQIBw+fBi3b9+WOuR6SaVSYffu3Rg4cKDW5Oh3797FpUuX4OHhgSlTpuCHH34AwHlWa8KLnzVjx45FcnIyXF1d4eHhgfj4eJw+fRpHjx7FpUuX8PTpU8ybNw8A26I6FX8eAUCfPn2gp6eHyZMnQ6lUwt/fH3379kW/fv1w8OBBPHjwAF9++aXEETcMQgicOXMG8+fPx6RJkxAaGorvvvsO77//PhYsWCB1eNSAGRgYwNXVVWvhELVajejoaLi7u5e6j7u7u1Z94Pmo8rLqU91Qlb4AACtXrsTSpUtx6NAhdO/eXRehUg2rbF/o0KEDLl++jPj4eM1ryJAh6Nu3L+Lj42Fvb6/L8KkaVeVzwcPDA0lJSVq/6EpMTIStrS2TtnVYVfpCXl5eieRscUKfOaqK4YjbeqD4IQgPD0dWVhYCAwM1D4KFhQVcXV1x/PhxzWg2jmqrGcX3dOvWrcjIyEB4eDh27dqF0aNHw8TEBEIIWFpaYtiwYVixYgVSU1PRqlUriaOufxQKBUaNGoU7d+5AqVQCAD799FN8++23mDt3LqytrbFt2zYkJiaiR48eHBlUA4qfhR07diAxMREhISFISUlBVFQU/Pz80Lp1a6jVaqjVajg5OfEn+jWguA3Cw8Nx7949eHp6Yt++fZpVX4HnX/A1adIEb7zxBoqKiqQMt8FwcXFBq1atkJKSgkWLFsHY2BgLFizQJNaJpBQYGIhx48ahe/fu6NmzJ9atW4fc3FzNgpJjx46FnZ0dli9fDgCYMWMGevfujS+++AKDBg1CREQELly4gNDQUCkvg6pBZfvC559/jkWLFmHHjh1wcHDQTANjamoKU1NTya6DXl9l+oKRkRGcnJy09rewsACAEuVU91T2c2HKlCn4+uuvMWPGDEybNg2//fYbli1bhunTp0t5GVQNKtsXBg8ejDVr1qBr165wc3NDUlISPvnkEwwePFhrRDaVjYnbeqKgoAC7d++Gvr4+AgMDIZPJoFKpoK+vjwULFqBHjx745ptvMGXKFCZta1BBQQEiIiJgZGSEjz76CO3bty8xcXdRURG6d++OFi1aSBRl/SaEgJ2dnWbRn4yMDDx8+BAHDhzAgAEDAACenp7o1KkT4uPjNWVUvfLz87Ft2zaYmJjg008/BfA8iZiUlATg+RdOKpUKWVlZHJlTQwoKCrBr1y5YWVlh5cqVuHbtGg4fPox58+Zh+fLl0NPTg56eHgwMDPgfax0onroiPz8fJ06cgIODA27evAmFQgFjY2MkJCTAycmJC5aRZEaOHImMjAwsWrQIaWlp6NKlCw4dOqT5OyY1NVVrxMxbb72FHTt2YOHChZg/fz7atm2Lffv2MUFTD1S2L2zcuBGFhYUYPny41nGCgoKwePFiXYZO1ayyfYHqr8r2BXt7exw+fBizZs1C586dYWdnhxkzZmDOnDlSXQJVk8r2hYULF0Imk2HhwoW4d+8emjZtisGDB+Ozzz6T6hLqHJng2OQ6r3gE7cWLF/Huu+9i27ZtGDJkiGZbfn4+pkyZggcPHmDHjh2abz6per3YDn379sWOHTs0U1cUe/r0Kf72t7+hqKgIBw4c4B861UQIAbVaDYVCgYcPH8LIyAgymQwmJiYAni+WYGZmpln85+rVqxg/fjy2bNkCZ2dniaOvf17+TNqyZQv++te/4pNPPkFsbCwGDRqErl27YuXKlUhLS8O5c+e05sGl11fcBhcuXEDfvn3x448/wsHBAR9//DGOHTuGHj16oEePHvj555+RlZWFCxcusA2qUWmfSSqVCkqlEnPnzkWHDh0QFxeH3bt349SpU4iIiMCnn36KpUuXYsaMGRx9QEREREREADjHbZ30cq69eARt27ZtMWDAAPz0008Ano/ukclkMDY2hpubG7Kzs7lAWTUqrx0GDhyIY8eOabbl5eXhhx9+wODBg5GcnIz9+/dDLpfzJ+KvKSoqCgkJCZDJZFAoFNizZw8GDRoEFxcX+Pj4YNOmTQCgGU0ok8kgl8sREREBfX19TpNQTV71mRQTEwMAGDZsGGxtbbFixQrMnDkTCoUCZ8+ehZ6eHlQqla7DrlfKaoN27dph4MCB+Pe//40WLVpg5cqV2LBhAwoKCnD16lW0a9cO58+fZxtUk/I+k8aOHYt///vf6NevH/7+978jMjIS+/fvR6tWrTBv3jwEBQXxJ2NERERERKSFI27rsLVr10KtVmPkyJGan92HhYVh1qxZSEhIQJs2bTQ/zQTAOW5rSEXa4b///S/++c9/Ij09HaGhodDT08OzZ884wu01pKenw93dHX369MHChQuRn5+PN998E3PmzIGenh5SU1OxadMmBAcHaxYpu3LlCiIjI/HVV1/h5MmTXPG4mpX3LFy6dAlt27bFo0ePkJ2djWfPnqFNmzaQyWR8FqpRWW0wc+ZMxMfHo23btqXuxzZ4fa/6TEpJScHmzZvxf//3f5rF+lxcXLT+nSYiIiIiInoRE7d11NOnTxEcHIyQkBC4urrCwcEBq1atgomJCSZMmABzc3OsW7cO+vr6WvsxaVu9KtIOa9euhYGBAbKysmBubs5EVTWKi4vDpEmT4ObmBgsLCxQUFGDVqlUAgOzsbGzbtg2zZ89GaGgoBg0ahAkTJiAxMRHbt2+Hi4uLxNHXL696FpRKJdauXQtDQ0Ot/Zi0qj4VaYMvv/wSCoVC657z34XqU95n0uPHj7Fjxw7MmTMHq1atwqRJkySOloiIiIiIajsmbuu4u3fv4scff0RISAjy8vLQs2dPPHz4EAAQEREBU1NT/qdcB8prh507d2rmV+WI5+oXFxeHKVOmID09HX/5y1/w9ddfa7Y9fvwYs2bNQkFBAbZv347Lly/D0tKSC8PVIH4mSY9tIK3yPpP++OMPzJ49G/n5+diyZQv09PTYDkREREREVCYmbuuRsLAwXL16FV999RUAYOnSpViwYIHEUTU8bAfd+/XXXzF06FAYGRlh586d6NKli2bbggULcPDgQZw7dw4GBgbSBdkA8VmQHttAGq/6TIqKisK5c+dK/CqGiIiIiIjoRUzc1gMvj5w6f/481q9fj4yMDOzcuRNKpVLC6BqOV7WDmZkZR1bVoMuXL8PHxweurq6YOXOmZiqESZMm4ffff8e+ffvQqFEjiaNsGPiZJD22gfT4mURERERERK+Lidt66uzZs+jduzeOHDmCd955R+pwGiy2g25dunQJY8eORV5eHt555x0YGhpi165dOHbsmNaIN9I9PgvSYxvoHj+TiIiIiIjodXBFmHpICAE3Nzd07doVycnJUofTYLEddK9r167YsWMH5HI5oqOj4eDggIsXLzJBIjE+C9JjG0iDn0lERERERPQ6mLith2QyGUJDQ3H27Fl4eHhIHU6DxXaQhrOzMyIiItChQwf4+fmhZcuWUofU4PFZkB7bQDr8TCIikp5MJsO+fftqzXGq05gxY7Bs2TLN+7y8PAwbNgxKpRIymQxZWVnSBUe1Tp8+fTBz5sxqP+7ixYvL/WI6JiZGkv547do1tGjRArm5uTo9L1F1YuK2nurXrx+uXLmCNm3aSB1Kg8Z2kIarqyu+//57NG3aVOpQ6P/jsyA9toF0+JlERA1JWloapk2bhtatW8PQ0BD29vYYPHgwoqOjpQ6twspKQt2/fx8DBw7UfUBlSEhIQFRUFKZPn64p++6773Dy5EmcOXMG9+/fh7m5uYQR1iwHBwesW7dO6jBqJakSpVIqLSndsWNHvPnmm1izZo00QRFVAz2pA6Cawf+Y1w5sB+kYGRlJHQK9gM+C9NgG0uJnEhE1BMnJyfDw8ICFhQVWrVoFZ2dnFBUV4fDhw/D398eNGzeqdNzCwkIYGBiUKC8qKoK+vv7rhl1hNjY2OjtXsbKuHQD++c9/YsSIETA1NdWU3bp1C46OjnBycqrSMYnqG19fX0ycOBHz5s2Dnh5TYFT3cMQtERERERERvbapU6dCJpPh3LlzGDZsGNq1a4dOnTohMDAQv/zyi6Zeamoqhg4dClNTUyiVSnzwwQdIT0/XbC8e8bpp0ya0atVK8+WXTCbDxo0bMWTIEDRq1AifffYZAGD//v3o1q0bjIyM0Lp1awQHB+PZs2dlxjlnzhy0a9cOJiYmaN26NT755BMUFRUBALZs2YLg4GAkJCRAJpNBJpNhy5YtmvO/OFXC5cuX8e6778LY2BhNmjTBhx9+iJycHM328ePHw9vbG6tXr4atrS2aNGkCf39/zblKU9a1v0ylUmHXrl0YPHiwpqxPnz744osvcOLECchkMvTp0wfA85GpS5cuxdixY6FUKvHhhx++8j4U+/TTT9GsWTOYmZlhwoQJmDt3rtZo5OJrXLZsGaytrWFhYYElS5bg2bNn+Pjjj9G4cWO0aNEC3377rdZx79y5gw8++AAWFhZo3Lgxhg4dqjUP/6vuXZ8+fZCSkoJZs2Zp2qk0o0ePxsiRI7XKioqKYGVlha1btwIAdu3aBWdnZ007enp6Vuqn9Rs2bEDbtm1hZGQEa2trDB8+XKtNpk2bhpkzZ8LS0hLW1tYICwtDbm4ufH19YWZmhj/96U/48ccftY75888/o2fPnjA0NIStrS3mzp2r1acLCgowffp0NGvWDEZGRnj77bdx/vx5AM+/QOnbty8AwNLSEjKZDOPHj9fsq1ar8Y9//AONGzeGjY0NFi9erHXurKwsTJgwAU2bNoVSqcS7776LhIQErTorVqyAtbU1zMzM4Ofnh/z8/Ardq9OnT6Nz584wMjLCm2++iStXrmhtP3XqFHr16gVjY2PY29tj+vTpWm1R1r0eP348fv75Z3z55Zea/lDcn/r3749Hjx7h559/rlCMRLWOICIiIiIiInoNDx8+FDKZTCxbtqzceiqVSnTp0kW8/fbb4sKFC+KXX34Rrq6uonfv3po6QUFBolGjRmLAgAEiLi5OJCQkCCGEACCaNWsmwsPDxa1bt0RKSoo4ceKEUCqVYsuWLeLWrVviyJEjwsHBQSxevFhzPABi7969mvdLly4Vp0+fFrdv3xbff/+9sLa2Fp9//rkQQoi8vDzx0UcfiU6dOon79++L+/fvi7y8vBLHycnJEba2tuL9998Xly9fFtHR0aJVq1Zi3LhxmvOMGzdOKJVKMXnyZHH9+nXxww8/CBMTExEaGlrm/Snr2l8WFxcnAIi0tDStNpg4caJwd3cX9+/fFw8fPhRCCNGyZUuhVCrF6tWrRVJSkkhKSnrlfRBCiH/961/CyMhIhIeHi5s3b4rg4GChVCqFi4uL1jWamZkJf39/cePGDbF582YBQHh5eYnPPvtMJCYmiqVLlwp9fX1x584dIYQQhYWFwtHRUfz9738Xv/76q7h27ZoYPXq0aN++vSgoKKjQvXv48KFo0aKFWLJkiaadSnPgwAFhbGwsnjx5oin74YcfhLGxscjOzhb//e9/hZ6enlizZo24ffu2+PXXX8X69eu16pfn/PnzQqFQiB07dojk5GQRFxcnvvzyS8323r17CzMzM7F06VLNvVAoFGLgwIEiNDRUJCYmiilTpogmTZqI3NxcIYQQd+/eFSYmJmLq1Kni+vXrYu/evcLKykoEBQVpjjt9+nTRvHlzERUVJa5evSrGjRsnLC0txcOHD8WzZ8/E7t27BQBx8+ZNcf/+fZGVlaWJR6lUisWLF4vExETx3XffCZlMJo4cOaI5tqenpxg8eLA4f/68SExMFB999JFo0qSJpj9FRkYKQ0NDsWnTJnHjxg2xYMECYWZmptUvXnb8+HEBQDg6OoojR46IX3/9VfzlL38RDg4OorCwUAghRFJSkmjUqJFYu3atSExMFKdPnxZdu3YV48ePf+W9zsrKEu7u7mLixIma/vDs2TPN+d3c3LTuH1FdwsQtERERERERvZazZ88KAGLPnj3l1jty5IhQKBQiNTVVU3b16lUBQJw7d04I8Tx5qa+vLx48eKC1LwAxc+ZMrbJ+/fqVSBZv27ZN2Nraau33YuL2ZatWrRKurq6a90FBQaUmoV48TmhoqLC0tBQ5OTma7QcPHhRyuVyTTB03bpxo2bKlVgJpxIgRYuTIkWXGUta1v2zv3r1CoVAItVqtVT5jxgytJLgQzxO33t7e5R5PiJL3wc3NTfj7+2vV8fDwKJG4bdmypVCpVJqy9u3bi169emneP3v2TDRq1Ejs3LlTCPG8fdq3b68Ve0FBgTA2NhaHDx/WOm55965ly5Zi7dq15V5TUVGRsLKyElu3btWUjRo1SnOcixcvCgAiOTm53OOUZffu3UKpVIrs7OxSt/fu3Vu8/fbbmvfF92LMmDGasvv37wsAIjY2VgghxPz580vcn/Xr1wtTU1OhUqlETk6O0NfXF9u3b9dsLywsFM2bNxcrV64UQvwvUfrHH3+UG48QQvTo0UPMmTNHCCHEyZMnhVKpFPn5+Vp12rRpI7755hshhBDu7u5i6tSpWtvd3NwqlLiNiIjQlD18+FAYGxuLyMhIIYQQfn5+4sMPP9Ta7+TJk0Iul4unT59W6F7PmDGj1G1//etfNQlgorqGUyUQERERERHRaxFCVKje9evXYW9vD3t7e01Zx44dYWFhgevXr2vKWrZsWeqijt27d9d6n5CQgCVLlsDU1FTzmjhxIu7fv4+8vLxSY4iMjISHhwdsbGxgamqKhQsXIjU1tULxv3gdLi4uaNSokabMw8MDarUaN2/e1JR16tQJCoVC897W1hYPHjwo99hlXfuLnj59CkNDwzKnCHjZy/cNePV9uHnzJnr27Km1z8vvgefXKJf/L7VgbW0NZ2dnzXuFQoEmTZporjshIQFJSUkwMzPTtFnjxo2Rn5+PW7duaR23svfuZXp6evjggw+wfft2AEBubi72798PHx8fAICLiwv69esHZ2dnjBgxAmFhYfjjjz8qfPz+/fujZcuWaN26NcaMGYPt27eX6HedO3cucS9evD/W1tYAoLm269evw93dXattPTw8kJOTg7t37+LWrVsoKiqCh4eHZru+vj569uyp9QyV5cV4AO37mpCQgJycHDRp0kTrmbp9+7amba5fvw43NzetY7i7u7/yvC/Xa9y4Mdq3b6+JOSEhAVu2bNE6r5eXF9RqNW7fvl2he10WY2PjCtclqm04MzMRERERERG9lrZt20Imk1V5AbKXvZgQLa88JycHwcHBeP/990vULW1+2NjYWPj4+CA4OBheXl4wNzdHREQEvvjii2qJ+2UvL54mk8mgVqvL3aesa3+RlZUV8vLyKrzQ2MvHrM77UNo1lnfdOTk5cHV11SRTX/Riwroq9640Pj4+6N27Nx48eICjR4/C2NgYAwYMAPA8kXr06FGcOXMGR44cwT//+U8sWLAAZ8+eRatWrV55bDMzM8TFxSEmJgZHjhzBokWLsHjxYpw/fx4WFhZlXseLZcUJ2qpcW1W8qm1sbW0RExNTYr/i66kpOTk5mDRpEqZPn15i2xtvvAEDA4NX3uuyPHr0iAv1Up3FEbdERERERET0Who3bgwvLy+sX7++1IWdsrKyAACOjo64c+cO7ty5o9l27do1ZGVloWPHjpU+b7du3XDz5k386U9/KvF6cRRosTNnzqBly5ZYsGABunfvjrZt2yIlJUWrjoGBAVQqVbnndXR0REJCgta1nj59GnK5HO3bt6/0dVRW8QJh165dq9L+FbkP7du31yx4Vezl91XRrVs3/Pbbb2jWrFmJNjM3N6/wcSrSTgDw1ltvwd7eHpGRkdi+fTtGjBhRInHq4eGB4OBgXLp0CQYGBti7d2+F49DT04OnpydWrlyJX3/9FcnJyfjpp58qvP/LHB0dERsbqzWK/fTp0zAzM0OLFi3Qpk0bGBgY4PTp05rtRUVFOH/+vOYZKk7mV+T+vKhbt25IS0uDnp5eibaxsrLSxHf27Fmt/V5cfLA8L9b7448/kJiYCEdHR825r127VuqzXHw95d3r8vrDlStX0LVr10rdC6LagolbIiIiIiIiem3r16+HSqVCz549sXv3bvz222+4fv06vvrqK81PpD09PeHs7AwfHx/ExcXh3LlzGDt2LHr37l3qz/lfZdGiRdi6dSuCg4Nx9epVXL9+HREREVi4cGGp9du2bYvU1FRERETg1q1b+Oqrr0ok6RwcHHD79m3Ex8cjMzMTBQUFJY7j4+MDIyMjjBs3DleuXMHx48cxbdo0jBkzRvPT95rUtGlTdOvWDadOnarS/hW5D9OmTcPmzZvx3Xff4bfffsOnn36KX3/9tcLTM5TFx8cHVlZWGDp0KE6ePInbt28jJiYG06dPx927dyt8HAcHB5w4cQL37t1DZmZmuXVHjx6NkJAQHD16VDNNAgCcPXsWy5Ytw4ULF5Camoo9e/YgIyNDk0zcu3cvOnToUOZxDxw4gK+++grx8fFISUnB1q1boVarXyt5P3XqVNy5cwfTpk3DjRs3sH//fgQFBSEwMBByuRyNGjXClClT8PHHH+PQoUO4du0aJk6ciLy8PPj5+QF4Pt2GTCbDgQMHkJGRgZycnAqd29PTE+7u7vD29saRI0eQnJyMM2fOYMGCBbhw4QIAYMaMGQgPD8e3336LxMREBAUF4erVqxU6/pIlSxAdHY0rV65g/PjxsLKygre3NwBgzpw5OHPmDAICAhAfH4/ffvsN+/fvR0BAAIBX32sHBwecPXsWycnJyMzM1IwiTk5Oxr179+Dp6VnhNiCqTZi4JSIiIiIiotfWunVrxMXFoW/fvvjoo4/g5OSE/v37Izo6Ghs3bgTwfHTj/v37YWlpiXfeeQeenp5o3bo1IiMjq3ROLy8vHDhwAEeOHEGPHj3w5ptvYu3atWjZsmWp9YcMGYJZs2YhICAAXbp0wZkzZ/DJJ59o1Rk2bBgGDBiAvn37omnTpti5c2eJ45iYmODw4cN49OgRevTogeHDh6Nfv374+uuvq3QdVTFhwoRSpxuoiIrcBx8fH8ybNw+zZ89Gt27dcPv2bYwfP77UKSgqw8TEBCdOnMAbb7yB999/H46OjvDz80N+fj6USmWFj7NkyRIkJyejTZs2r5wT2MfHB9euXYOdnZ3W3LBKpRInTpzAn//8Z7Rr1w4LFy7EF198gYEDBwIAHj9+rDVn8cssLCywZ88evPvuu3B0dERISAh27tyJTp06Vfg6XmZnZ4eoqCicO3cOLi4umDx5Mvz8/LS+jFixYgWGDRuGMWPGoFu3bkhKSsLhw4dhaWmpOUZwcDDmzp0La2trTfLzVWQyGaKiovDOO+/A19cX7dq1w9/+9jekpKRovpAYOXIkPvnkE/zjH/+Aq6srUlJSMGXKlAodf8WKFZgxYwZcXV2RlpaGH374QTOatnPnzvj555+RmJiIXr16oWvXrli0aBGaN28O4NX3evbs2VAoFOjYsSOaNm2qma95586deO+998r8TCCq7WSiorPIExEREREREVGt8PTpU7Rv3x6RkZEVXhzqdfXv3x82NjbYtm2bTs5H9DoKCwvRtm1b7NixQythT1SXcHEyIiIiIiIiojrG2NgYW7dufeU0AVWVl5eHkJAQeHl5QaFQYOfOnTh27BiOHj1aI+cjqm6pqamYP38+k7ZUp3HELRERERERERFpefr0KQYPHoxLly4hPz8f7du3x8KFC/H+++9LHRoRUYPBxC0RERERERERERFRLcPFyYiIiIiIiIiIiIhqGSZuiYiIiIiIiIiIiGoZJm6JiIiIiIiIiIiIahkmbomIiIiIiIiIiIhqGSZuiYiIiIiIiIiIiGoZJm6JiIiIiIiIiIiIahkmbomIiIiIiIiIiIhqGSZuiYiIiIiIiIiIiGoZJm6JiIiIiIiIiIiIapn/BzZ4yld34JaCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "weighted_arr = feat_gen.feature_weighted_mass_accuracy(\n", + " precursor_fragments, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "3891319d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAF2CAYAAAC/LyttAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAApkdJREFUeJzs3XdcU9f7B/DPTYAAIiACIqDi3gp17611W+v2p2hr1ap1tdb1dXVItdqirbuKtdWKu9Y6qrir1t1qrbjAgaI4GKIEknt+f2AikbADAfJ5v15pzbn3nvvkcgk3T855riSEECAiIiIiIiIiIspDCnMHQERERERERERElodJKSIiIiIiIiIiynNMShERERERERERUZ5jUoqIiIiIiIiIiPIck1JERERERERERJTnmJQiIiIiIiIiIqI8x6QUERERERERERHlOSaliIiIiIiIiIgozzEpRUREREREREREeY5JKcpTDx8+RK9evVC8eHFIkoTAwEBzh1RoSZKEMWPGmDsMKkDWrl0LSZIQHh6e6XXPnj2b+4EVcLNnz4YkSXj8+LG5QyEiyrYhQ4bAx8fHoE2SJMyePdug7cyZM2jcuDGKFCkCSZJw8eJFAMDevXvh6+sLW1tbSJKE6OjoPIk7v+LxMH5OGRMeHg5JkrB27dpcj4mI8h6TUhZAkqRMPQ4fPpzrsUyYMAH79u3D1KlT8dNPP+Htt9/O9X0WBEuXLuUf2kw4ceIEZs+ebZEXbuaSW+emLlGje1hbW8PHxwdjx47V/3xbtmyZqfeuNz8QEREVRrovA3QPKysreHl5YciQIYiIiACQ/CE/M++bQ4YMyZUYk5KS0Lt3bzx9+hTffvstfvrpJ5QpUwZPnjxBnz59YGdnhyVLluCnn35CkSJFciWGgsCSjsf9+/cxe/ZsfXKyIHj06BGmTJmCmjVrwsHBAba2tqhQoQKGDh2K48ePp7nd0qVLIUkSGjRokOY66f1ejhw5MtX6u3btwttvv43ixYvD1tYWlSpVwqRJk/D06dNU6w4ZMgQODg4AgLCwMNjb26N///5G4wgODoYkSViyZEmqbXXevA5zcXFBvXr1sGbNGsiyjKSkJLi6uqJp06Zpvl4hBEqVKoW33noLAHD48GFIkoQtW7akuY3uOKX8cl2XmFywYEGq/keMGMHrwQLOytwBUO776aefDJ6vW7cO+/fvT9VetWrVXI/l4MGD6N69Oz755JNc31dBsnTpUri6uubaRWJhceLECcyZMwdDhgyBs7OzucMpdAYNGoR+/fpBpVLp23L73Fy2bBkcHBwQHx+PkJAQfPfddzh//jyOHz+O6dOnY9iwYfp1z5w5g8WLF2PatGkG71e1atXKldiIiPKjzz77DGXLlkVCQgJOnTqFtWvX4vjx47h8+TJGjBiBtm3b6tcNCwvDzJkzMXz4cDRr1kzfXr58eZPE8vLlS1hZvf44cfPmTdy+fRurVq0yeP/eu3cv4uLi8PnnnxvEZ6nOnDljMcfj/v37mDNnDnx8fODr62uwbNWqVZBl2TyBpeH06dPo3Lkz4uLi0K9fP4wcORIqlQphYWHYsWMH1q5diyNHjqB58+aptl2/fj18fHxw+vRp3LhxAxUqVDC6j3bt2mHw4MGp2itVqmTw/JNPPsHChQtRu3ZtTJ48GS4uLjh//jy+++47BAcHIyQkBBUrVjS6j7Jly2LWrFmYMmUKhg4divbt2+uXxcbGYsKECWjQoAE+/PDDdI+Ht7c3AgICAABRUVFYt24d3n//fVy7dg1fffUVevfujRUrVuD27dsoU6ZMqu2PHj2Ke/fuYcKECenuJzuEEBg1ahRWrlyJGTNmMClVgDEpZQH+7//+z+D5qVOnsH///lTteeHRo0eZSibEx8cX2m+MCgIef+MK+3FRKpVQKpV5us9evXrB1dUVADBixAj069cPwcHBOH36NNq1a2ewrq2tLRYvXox27dqhZcuWeRpnduTV+aLRaCDLMmxsbHJ9X0Rkfh07dkTdunUBAMOGDYOrqyvmzZuHnTt3ok+fPmjUqJF+3bNnz2LmzJlo1KhRrlz32draGjx/9OgRAKS61kurPScK8t9kHo9k1tbW5g7BwLNnz9CjRw9YWVnh4sWLqFKlisHyL774Ahs3boSdnV2qbcPCwnDixAls27YNI0aMwPr16zFr1iyj+6lUqVKGv4+//PILFi5ciL59+2L9+vUG12dDhgxBq1at0Lt3b5w9e9YgMZzSxx9/jPXr12PUqFG4dOmSPu7p06cjKioKe/fuhUKR/sQpJycng1hHjBiBypUr4/vvv8fnn3+OgQMHYvny5fjll18wZcqUVNtv2LABCoUC/fr1S3c/2fHRRx9h+fLlmD59Oj777DOT9095h9P3CEDyH7KPP/4YpUqVgkqlQuXKlbFgwQIIIQzW0w2lXL9+PSpXrgxbW1vUqVMHR48eTbd/3ZBzIQSWLFmiHwaactmRI0cwatQouLu7w9vbGwBw+/ZtjBo1CpUrV4adnR2KFy+O3r17G615888//6BFixaws7ODt7c3vvjiCwQFBaWqkePj44MuXbrg8OHDqFu3Luzs7FCzZk399MVt27ahZs2a+td24cKFVPu6evUqevXqBRcXF9ja2qJu3brYuXOn0df8559/YuLEiXBzc0ORIkXwzjvvICoqyiCef//9F0eOHNEfl4w+cMuyjEWLFunjdHNzw9tvv220vs+OHTtQo0YNqFQqVK9eHXv37jVYrptGdeXKFQwYMADFihXTD8PVaDT4/PPPUb58eahUKvj4+GDatGlQq9UGfeT0mP7zzz8YMmQIypUrB1tbW3h4eOC9997DkydPDOKcNGkSgORvf3THSvezzWyssixj9uzZ8PT0hL29PVq1aoUrV67Ax8fHYDSQKc5LXR/Hjx/H2LFj4ebmBmdnZ4wYMQKJiYmIjo7G4MGDUaxYMRQrVgyffvppqt+5jRs3ok6dOihatCgcHR1Rs2ZNLFq0KNXPOaW33noLPXv2NGirWbMmJEnCP//8o2/TDd3+77//DOLVvY7MnJtqtTrd8zurdN/k37x5M9t9pNSyZUvUqFFD//5gb2+PChUq6IeNHzlyBA0aNICdnR0qV66MAwcOGGyf1Z+1sfPFmNu3b6NChQqoUaMGHj58CACIjo7G+PHj9e/DFSpUwLx58wy+RU45fD0wMFB/vl+5cgUA8N1336F69eqwt7dHsWLFULduXWzYsMEUh5KI8ilTv28Cr68dbG1tUaNGDWzfvt3oeimnzAwZMgQtWrQAAPTu3Vv/N6Nly5bw9/cHANSrVy/V9MG//voLb7/9NpycnGBvb48WLVrgzz//NNhPetcqAPDzzz+jTp06sLOzg4uLC/r164e7d+8a9KH7e3DlyhW0atUK9vb28PLywvz581O9roSEBMyePRuVKlWCra0tSpYsiZ49exocY1mWERgYiOrVq8PW1hYlSpTAiBEj8OzZs3SPbUbHY/PmzfrX4urqiv/7v//TT8/U0U21unnzJjp16oSiRYti4MCBae5Td/yuXr2KPn36wNHREcWLF8e4ceOQkJCQav2sHM9z586hcePGsLOzQ9myZbF8+XL9OocPH0a9evUAAEOHDtVfS+jKAhirKRUdHY0hQ4bAyckJzs7O8Pf3T7NsQ2aux4Hk343M/H4sX74cDx48QGBgYKqEFJB8vvfv31//mlJav349ihUrhs6dO6NXr15Yv359hvtLz5w5c1CsWDGsXLky1ReG9evXx+TJk/H3339j27ZtafZhZWWFlStXIiwsDF988QUA4Ny5c1i6dCk+/vjjbI00t7e3R8OGDREfH4+oqCg0adIEPj4+Rq81kpKSsGXLFrRq1Qqenp5Z3ld6xo0bhyVLlmDq1Kn610YFF0dKEYQQ6NatGw4dOoT3338fvr6+2LdvHyZNmoSIiAh8++23BusfOXIEwcHBGDt2LFQqFZYuXYq3334bp0+fRo0aNYzuo3nz5vjpp58waNCgNIesjho1Cm5ubpg5cybi4+MBJA9vPnHiBPr16wdvb2+Eh4dj2bJlaNmyJa5cuQJ7e3sAQEREBFq1agVJkjB16lQUKVIEP/zwg8E0pJRu3LiBAQMGYMSIEfi///s/LFiwAF27dsXy5csxbdo0jBo1CgAQEBCAPn36IDQ0VP9Nwr///osmTZrAy8sLU6ZMQZEiRbBp0yb06NEDW7duxTvvvGOwr48++gjFihXDrFmzEB4ejsDAQIwZMwbBwcEAgMDAQHz00UdwcHDA9OnTAQAlSpRI92f2/vvvY+3atejYsSOGDRsGjUaDY8eO4dSpU/pvTwHg+PHj2LZtG0aNGoWiRYti8eLFePfdd3Hnzh0UL17coM/evXujYsWKmDt3rj4xMmzYMPz444/o1asXPv74Y/z1118ICAjAf//9l+oCNSfHdP/+/bh16xaGDh0KDw8P/Pvvv1i5ciX+/fdfnDp1CpIkoWfPnrh27Rp++eUXfPvtt/rRNW5ublmKderUqZg/fz66du2KDh064O+//0aHDh2MXpQBOTsvU54DHh4emDNnDk6dOoWVK1fC2dkZJ06cQOnSpTF37lzs3r0bX3/9NWrUqKH//di/fz/69++PNm3aYN68eQCA//77D3/++SfGjRuX5vnRrFkz/PLLL/rnT58+xb///guFQoFjx47pL0KOHTsGNze3NKfuZubczOj8zipdsqdYsWLZ2t6YZ8+eoUuXLujXrx969+6NZcuWoV+/fli/fj3Gjx+PkSNHYsCAAfj666/Rq1cv3L17F0WLFgWQ9Z+1sfPlTTdv3kTr1q3h4uKC/fv3w9XVFS9evECLFi0QERGBESNGoHTp0jhx4gSmTp2qv0BOKSgoCAkJCRg+fDhUKhVcXFywatUqjB07Fr169dJ/0Pjnn3/w119/YcCAASY7nkSUv5j6ffOPP/7Au+++i2rVqiEgIABPnjzB0KFD0020A8kjKLy8vDB37lyMHTsW9erV0//NqFy5MlauXKmfeqibPnjw4EF07NgRderUwaxZs6BQKBAUFITWrVvj2LFjqF+/vsE+jF2rfPnll5gxYwb69OmDYcOGISoqCt999x2aN2+OCxcuGIxGevbsGd5++2307NkTffr0wZYtWzB58mTUrFkTHTt2BABotVp06dIFISEh6NevH8aNG4e4uDjs378fly9f1sc+YsQIrF27FkOHDsXYsWMRFhaG77//HhcuXMCff/6Z5iig6dOnp3k8dP3Vq1cPAQEBePjwIRYtWoQ///wz1WvRaDTo0KEDmjZtigULFqT6e2RMnz594OPjg4CAAJw6dQqLFy/Gs2fPsG7dOv06WT2enTp1Qp8+fdC/f39s2rQJH374IWxsbPDee++hatWq+Oyzz1JNIW3cuLHR+IQQ6N69O44fP46RI0eiatWq2L59uz6Jl1JWrsfbtGkDAEa/1E7pt99+g52dXaov9jJj/fr16NmzJ2xsbNC/f38sW7YMZ86cMZrASkhIMHrzE0dHR9jY2OD69esIDQ3FkCFD4OjoaHR/gwcPxqxZs/Dbb7+hT58+acbVsGFDfPjhh/j666/Rr18/jBgxAj4+PmmO4sqMW7duQalUwtnZGZIkYcCAAZg7dy7+/fdfVK9eXb/e3r178fTp03QTptkxYcIELF68GJMnT8bcuXNN2jeZiSCLM3r0aJHyR79jxw4BQHzxxRcG6/Xq1UtIkiRu3LihbwMgAIizZ8/q227fvi1sbW3FO++8k+G+AYjRo0cbtAUFBQkAomnTpkKj0Rgse/HiRao+Tp48KQCIdevW6ds++ugjIUmSuHDhgr7tyZMnwsXFRQAQYWFh+vYyZcoIAOLEiRP6tn379gkAws7OTty+fVvfvmLFCgFAHDp0SN/Wpk0bUbNmTZGQkKBvk2VZNG7cWFSsWDHV62rbtq2QZVnfPmHCBKFUKkV0dLS+rXr16qJFixZGjlhqBw8eFADE2LFjUy1LuR8AwsbGxuDn9/fffwsA4rvvvtO3zZo1SwAQ/fv3N+jr4sWLAoAYNmyYQfsnn3wiAIiDBw/q23J6TI39nH/55RcBQBw9elTf9vXXX6f6eWYl1sjISGFlZSV69OhhsN7s2bMFAOHv769vM8V5qeujQ4cOBj+bRo0aCUmSxMiRI/VtGo1GeHt7G5wH48aNE46Ojqn2n5HNmzcLAOLKlStCCCF27twpVCqV6Natm+jbt69+vVq1ahn83uriTXl80zo3s3J+G6M770JDQ0VUVJQIDw8Xa9asEXZ2dsLNzU3Ex8en+bpSnjsZadGihQAgNmzYoG+7evWqACAUCoU4deqUvl13zgYFBenbsvqzNna+6F5rVFSU+O+//4Snp6eoV6+eePr0qX6dzz//XBQpUkRcu3bNYNspU6YIpVIp7ty5I4QQIiwsTAAQjo6O4tGjRwbrdu/eXVSvXj3Tx4aIChbd+8yBAwdEVFSUuHv3rtiyZYtwc3MTKpVK3L17N9U2Z86cSfW+lhFfX19RsmRJg/fxP/74QwAQZcqUMVgXgJg1a5b++aFDhwQAsXnzZqOxnzlzRt8my7KoWLFiqr+RL168EGXLlhXt2rXTt6V1rRIeHi6USqX48ssvDdovXbokrKysDNp1fw9Svner1Wrh4eEh3n33XX3bmjVrBADxzTffpDo2ujiPHTsmAIj169cbLN+7d6/R9jcZOx6JiYnC3d1d1KhRQ7x8+VLfvmvXLgFAzJw5U9/m7+8vAIgpU6akux8d3fHr1q2bQfuoUaMEAPH3338LIbJ3PBcuXKhvU6vVwtfXV7i7u4vExEQhRPrnoL+/v8E5pftMMn/+fH2bRqMRzZo1S9VHZq/HhUi+Tn3z3DWmWLFiwtfXN1V7bGysiIqK0j+eP39usPzs2bMCgNi/f78+Dm9vbzFu3LhUfek+Sxl7/PLLLwbH4dtvv003XkdHR/HWW2/pn/v7+4siRYqkWi8mJkZ4enrqPxft3bs31TrGtm3RooWoUqWK/nX/999/YuzYsQKA6Nq1q369f//9VwAQU6dONdi+X79+wtbWVsTExOjb0nqPeNObnxl11z+6zxyTJk1Kd3sqWDh9j7B7924olUqMHTvWoP3jjz+GEAJ79uwxaG/UqBHq1Kmjf166dGl0794d+/btg1arzXYcH3zwQarhqSnnbCclJeHJkyeoUKECnJ2dcf78ef2yvXv3olGjRgYFFF1cXNLMzFerVs2g5oLuLhmtW7dG6dKlU7XfunULQPKIk4MHD6JPnz6Ii4vD48eP8fjxYzx58gQdOnTA9evXUw2xHj58uH6qIpA8ikWr1eL27duZOi5v2rp1KyRJMvoNR8r9AEDbtm0NipnWqlULjo6O+teT0pt3/Ni9ezcAYOLEiQbtH3/8MQDg999/N2jP7jEFDH/Oum+PGjZsCAAGP+e0ZDbWkJAQaDQa/agtnY8++ijNvnNyXuq8//77Bj+bBg0aQAiB999/X9+mVCpRt25dg+Pi7OyM+Ph47N+/P834jNF9E6mbVnvs2DHUq1cP7dq1w7FjxwAkD4+/fPmyQeHb7Mjp+V25cmW4ubnBx8cH7733HipUqIA9e/Zk6hvfzHJwcDCoZVC5cmU4OzujatWqBnfIyejczMzP2tj5onP58mW0aNECPj4+OHDggMGohs2bN6NZs2YoVqyY/n3l8ePHaNu2LbRabaop0u+++65+lKCOs7Mz7t27hzNnzmTmsBBRAdW2bVu4ubmhVKlS6NWrF4oUKYKdO3dmOJIpMx48eICLFy/C398fTk5O+vZ27dqhWrVqOe4/pYsXL+L69esYMGAAnjx5on/fi4+PR5s2bXD06NFURbDfvFbZtm0bZFlGnz59DN47PTw8ULFiRRw6dMhgfQcHB4P6ODY2Nqhfv77B+/7WrVvh6upq9NpA9/du8+bNcHJyQrt27Qz2W6dOHTg4OKTab2acPXsWjx49wqhRowxqdXXu3BlVqlRJdd0FIMMi1W8aPXq0wXPda9RdR2X1eFpZWWHEiBH65zY2NhgxYgQePXqEc+fOZSk2XRxWVlYGr0upVKb6WWT1ejw8PDzDUVJAcgHwN+9AByTfCMbNzU3/mDx5ssHy9evXo0SJEmjVqhWA5POkb9++2Lhxo9HPRt27d8f+/ftTPXTbx8XFAYB+1HZaihYtql83PY6OjggMDMTTp0/Rt29fdOjQIcNtdK5evap/3VWrVsV3332Hzp07Y82aNfp1qlWrBj8/P2zcuFHfFh8fj507d6JLly5pjvbKDl3JgzeLwlPBVmim7x09ehRff/01zp07hwcPHmD79u3o0aNHprefPXs25syZk6rd3t4+zSkYhcXt27fh6emZ6o1PN6XnzQ+Xxu7yUKlSJbx48QJRUVHw8PDIVhxly5ZN1fby5UsEBAQgKCgIERERBvV2YmJiDF5DyoSITlp3vUiZJAGgv/AqVaqU0XZdfYAbN25ACIEZM2ZgxowZRvt+9OgRvLy80tyX7oNoRjUH0nLz5k14enrCxcUlw3Xf3Ldu/8b2/ebxv337NhQKRapj6OHhAWdn51TnRXaPKZB8cTFnzhxs3LhRX/xTJ+XPOS2ZjVX3/zfXc3FxSXPaQ07OS52sHJuUx2XUqFHYtGkTOnbsCC8vL7Rv3x59+vTB22+/bTRWnRIlSqBixYo4duwYRowYgWPHjqFVq1Zo3rw5PvroI9y6dQv//fcfZFnOcVIqp+f31q1b4ejoiKioKCxevBhhYWFGC4jmhLe3d6qErZOTU6bOzaz+rI2dLzpdu3ZFiRIlsG/fvlQXvdevX8c///yTKtGk8+bvhbH9TJ48GQcOHED9+vVRoUIFtG/fHgMGDECTJk3SjImICp4lS5agUqVKiImJwZo1a3D06NE0yxVkle7vpLFrvcqVK2fqi6LMun79OgAYnZqlExMTY/D3+c33vuvXr0MIkeYdyN6cQmfs70GxYsUM6i3evHkTlStXTrN4tG6/MTExcHd3N7r8zffszNAd+8qVK6daVqVKFRw/ftygzcrKKsuJyDePU/ny5aFQKPQJm6weT09Pz1TF1XXJgvDwcP0XjJl1+/ZtlCxZMtXfyDePSXauxzOjaNGieP78ear2zz77DGPGjAGAVDdh0Wq12LhxI1q1aoWwsDB9e4MGDbBw4UKEhIQY3PkOSD4P07vrou4zWUYJp7i4uFQ1udKim0aYssxHZvj4+GDVqlWQJAm2traoWLGi0fN+4MCB+OSTT3DixAk0btwYO3bswIsXL0w+dW/y5MnYvXs3RowYAWdnZ/Tq1cuk/ZN5FJqkVHx8PGrXro333nsvW/OAP/nkk1TfvrRp08boPGDKHcY+iH700UcICgrC+PHj0ahRIzg5OUGSJPTr1y9Ht5BNayRDWu26D6K6fX7yySdpfsvwZsIjoz5zU1b2nVYi4M2Lt6zuKzMx9OnTBydOnMCkSZPg6+sLBwcHyLKMt99+O0s/58zGmhWmOC+zcmxSHhd3d3dcvHgR+/btw549e7Bnzx4EBQVh8ODB+PHHH9ONu2nTpggJCcHLly9x7tw5zJw5EzVq1ICzszOOHTuG//77Dw4ODvDz88voEKQrp+d38+bN9fXBunbtipo1a2LgwIE4d+5chneEyWmMmYk9qz/r9BJq7777Ln788UesX7/e4JtlIPm9pV27dvj000+NbvvmN4LG9lO1alWEhoZi165d2Lt3L7Zu3YqlS5di5syZRr90IaKCqX79+voPlj169EDTpk0xYMAAhIaGGh3lkV/p3kO//vprg5HuKb35et5875NlGZIkYc+ePUbf09/c3lTXZLIsw93dPc1i1ml9wWBKKpUqx38n37xuyurxNJfsXI9nRpUqVfD3338jKSnJIAGXXkHwgwcP4sGDB9i4caPBSCGd9evXp0pKZUQ3KjFlsvRNt2/fRmxsLMqVK5elvrOqSJEi6SbQdPr3749PP/0UGzZsQOPGjbFhwwYUK1YMnTp1Mmk8Dg4O2LNnD5o3b46BAwfC0dExy8eX8p9Ck5Tq2LGjvkChMWq1GtOnT8cvv/yC6Oho1KhRA/PmzdPfScrBwcHgjfbvv//GlStXDO4gUViVKVMGBw4cQFxcnMFoqatXr+qXp6T7Ziula9euwd7e3uR/hLds2QJ/f38sXLhQ35aQkJDqLhxlypTBjRs3Um1vrC0ndG/81tbWmXqDzqysJFPKly+Pffv24enTp5kaLZVdZcqUgSzLuH79ukEh7IcPHyI6OjrVeZFdz549Q0hICObMmYOZM2fq242dZ2kdp8zGqvv/jRs3DL5tffLkSZZGrmX2vDQFGxsbdO3aFV27doUsyxg1ahRWrFiBGTNmpHvB1axZMwQFBemHjjdu3BgKhQJNmzbVJ6UaN26c5gW6Tm4k+tLi4OCAWbNmYejQodi0aVOu3D44q0z5s/76669hZWWlv/FAyuLj5cuXx/Pnz3P8vlKkSBH07dsXffv2RWJiInr27Ikvv/wSU6dOTXXrdiIq+JRKJQICAtCqVSt8//33Rm/JnhW6v5PG/gaHhobmqO836coLODo6Zvu9r3z58hBCoGzZsiabzlO+fHn89ddfqRITb65z4MABNGnSxGSje3XHPjQ0FK1btzZYFhoaapLrruvXrxtc/9y4cQOyLOtH22T1eN6/fx/x8fEGo6WuXbsGAPo+s3IdUaZMGYSEhOD58+cGn8vePPdy63q8S5cuOHXqFLZv355u8fCU1q9fD3d3dyxZsiTVsm3btmH79u1Yvnx5ls6TihUronLlytixYwcWLVpkdBqfrjh97969M91vbvL09ESrVq2wefNmzJgxA/v378eQIUNgY2Nj8n0VL14cf/zxB5o0aYKePXti//79RmfMUMFhMTWlxowZg5MnT2Ljxo34559/0Lt3b7z99ttG/+gCwA8//IBKlSrleGpLQdCpUydotVp8//33Bu3ffvstJElKlew7efKkwfDtu3fv4tdff0X79u0z/ICbVUqlMtW3V999912q+dkdOnTAyZMncfHiRX3b06dPc3w71je5u7ujZcuWWLFiBR48eJBqeVRUVLb6LVKkSKY/5L777rsQQhgd+WDK0Ve6bzbevOvXN998AyC5xoEp6M6ZN2N/c78A9Bc9bx6rzMbapk0bWFlZYdmyZQbrvXnuZybmzJyXOfXkyROD5wqFQv9tnVqtTndb3XvXvHnzUKtWLf3UtGbNmiEkJARnz57N1PtbVs5NUxg4cCC8vb31dxs0N1P+rCVJwsqVK9GrVy/4+/sb3La6T58+OHnyJPbt25dqu+joaGg0mgz7f/N8sbGxQbVq1SCEQFJSUpbjJaKCoWXLlqhfvz4CAwPTvJNsZpUsWRK+vr748ccfDaYo79+/H1euXMlpqAbq1KmD8uXLY8GCBUanTGXmmqpnz55QKpWYM2dOqvdqIUSq98XMePfdd/H48WOj1wa6ffTp0wdarRaff/55qnU0Gk22/m7WrVsX7u7uWL58ucHf+D179uC///4zyXXXm4mT7777DgD01/pZPZ4ajQYrVqzQP09MTMSKFSvg5uamrz+b1rWbMZ06dYJGozG4TtNqtfo4dbJ6PX7z5k3cvHkzw/1/+OGHKFGiBCZMmKBPrqX05jF5+fIltm3bhi5duqBXr16pHmPGjEFcXJzB3/vMmjVrFp49e4aRI0emuuY4d+4c5s2bBz8/v3QHZeS1gQMH4tGjRxgxYgSSkpJMPnUvJS8vL+zfvx9FihRB586dcenSpVzbF+W+QjNSKj137txBUFAQ7ty5A09PTwDJwz337t2LoKCgVLeSTEhIwPr163P8bVNB0bVrV7Rq1QrTp09HeHg4ateujT/++AO//vorxo8fb1AoGwBq1KiBDh06YOzYsVCpVFi6dCkA5Mr0kC5duuCnn36Ck5MTqlWrhpMnT+LAgQMoXry4wXqffvopfv75Z7Rr1w4fffQRihQpgh9++AGlS5fG06dPTTraY8mSJWjatClq1qyJDz74AOXKlcPDhw9x8uRJ3Lt3D3///XeW+6xTpw6WLVuGL774AhUqVIC7u3uqb8l0WrVqhUGDBmHx4sW4fv26foqbrm6Qbs57TtWuXRv+/v5YuXIloqOj0aJFC5w+fRo//vgjevTooS/GmFOOjo5o3rw55s+fj6SkJHh5eeGPP/4wmJevo7vAmT59Ovr16wdra2t07do107GWKFEC48aNw8KFC9GtWze8/fbb+Pvvv7Fnzx64urpm+jzJ7HmZU8OGDcPTp0/RunVreHt74/bt2/juu+/g6+trMCLMmAoVKsDDwwOhoaEGBUKbN2+uL9CZmaRUVs5NU7C2tsa4ceMwadIk7N27N8P6WbnN1D9rhUKBn3/+GT169ECfPn2we/dutG7dGpMmTdIXBB0yZAjq1KmD+Ph4XLp0CVu2bEF4eLh+mmNa2rdvDw8PDzRp0gQlSpTAf//9h++//x6dO3fOsFgqERVskyZNQu/evbF27dpU5SiyKiAgAJ07d0bTpk3x3nvv4enTp/juu+9QvXp1o8mj7FIoFPjhhx/QsWNHVK9eHUOHDoWXlxciIiJw6NAhODo64rfffku3j/Lly+OLL77A1KlTER4ejh49eqBo0aIICwvD9u3bMXz4cHzyySdZimvw4MFYt24dJk6ciNOnT6NZs2aIj4/HgQMHMGrUKHTv3h0tWrTAiBEjEBAQgIsXL6J9+/awtrbG9evXsXnzZixatCjLtW6sra0xb948DB06FC1atED//v3x8OFDLFq0CD4+PpgwYUKW+jMmLCxMf/1z8uRJ/PzzzxgwYABq164NIOvH09PTE/PmzUN4eDgqVaqE4OBgXLx4EStXrtSPMitfvjycnZ2xfPlyFC1aFEWKFEGDBg2M1kbs2rUrmjRpgilTpiA8PBzVqlXDtm3bjNZwzMr1eJs2bQAgw2LnLi4u2L59u/7asl+/fqhXrx6sra1x9+5dbN68GcDrepo7d+5EXFwcunXrZrS/hg0bws3NDevXr0ffvn317deuXcPPP/+cav0SJUroa1b1798fZ8+exTfffIMrV65g4MCBKFasGM6fP481a9bAzc0NW7ZsSbf2WV579913MWrUKPz6668oVaoUmjdvnua6W7du1c/KScnf3z9Vzc+0VKxYEfv27UPLli3RoUMHHD9+PNenM1Iuyf0b/OU9AGL79u3657pbqRYpUsTgYWVlJfr06ZNq+w0bNggrKysRGRmZh1HnndGjR4s3f/RxcXFiwoQJwtPTU1hbW4uKFSuKr7/+2uAWvUK8vj3nzz//LCpWrChUKpXw8/PL9C3a8cbtPYUwfltcnWfPnomhQ4cKV1dX4eDgIDp06CCuXr0qypQpI/z9/Q3WvXDhgmjWrJlQqVTC29tbBAQEiMWLFwsABj/LMmXKiM6dO2cqNt3tR7/++muD9ps3b4rBgwcLDw8PYW1tLby8vESXLl3Eli1bMnxduluhpjxmkZGRonPnzqJo0aICgGjRooXR46ej0WjE119/LapUqSJsbGyEm5ub6Nixozh37ly6r0f3+lMeu5S3q39TUlKSmDNnjihbtqywtrYWpUqVElOnTjW4/a6uz5wc03v37ol33nlHODs7CycnJ9G7d29x//79VLeaFkKIzz//XHh5eQmFQiEAiLCwsCzFqtFoxIwZM4SHh4ews7MTrVu3Fv/9958oXry4GDlypH49U5yXafWR1jF/83a8W7ZsEe3btxfu7u7CxsZGlC5dWowYMUI8ePAgVUzG9O7dWwAQwcHB+rbExERhb28vbGxsDG45nTJe3TEVIu1zMyvntzHpnXcxMTHCyckp1e/B5s2bM9V3Si1atBDVq1dP1Z7ZczanP+u0XuuLFy9EixYthIODgzh16pQQIvl9eOrUqaJChQrCxsZGuLq6isaNG4sFCxbob62d1nuSEEKsWLFCNG/eXBQvXlyoVCpRvnx5MWnSJINbMRNRwZXe+4xWqxXly5cX5cuXFxqNRt9+5swZAUAEBQVlaV9bt24VVatWFSqVSlSrVk1s27ZN+Pv7izJlyhis9+bf6bRu955e7BcuXBA9e/bUv3eVKVNG9OnTR4SEhOjXSe9vhi7epk2b6q/xq1SpIkaPHi1CQ0P166T198DY63rx4oWYPn26/prCw8ND9OrVS9y8edNgvZUrV4o6deoIOzs7UbRoUVGzZk3x6aefivv37xuNMzPHIzg4WPj5+QmVSiVcXFzEwIEDxb1791LFnPJ6ISO643flyhXRq1cvUbRoUVGsWDExZsyYVNcCQmTteJ49e1Y0atRI2NraijJlyojvv/8+VX+//vqrqFatmrCysjI4H40d+ydPnohBgwYJR0dH4eTkJAYNGiQuXLhg9DzOzPW4EMl/89/cT3oePHggJk2aJKpVqybs7OyESqUS5cqVE4MHDxZHjx7Vr9e1a1dha2sr4uPj0+xryJAhwtraWjx+/FgIkfw7k9bD2PX/zp07Rdu2bYWzs7N+verVqxv9257eeZHe9UNa26b1O5Me3bXnp59+anS57j0ircexY8eEEKmvx9KL/9ixY8LOzk6ULVtWREREZCleyh8kIfKg2nIekyTJ4O57wcHBGDhwIP79999U08scHBxS3S2uTZs2cHR0xPbt2/Mq5AJDkiSMHj06y9OdzGX8+PFYsWIFnj9/bvKphVR4REdHo1ixYvjiiy8wffp0c4dDREREZDK6u4xHRUVlOOo2s1q2bInHjx/j8uXLJumPMmfYsGFYvXo1Vq1ahWHDhpk7HCKTyD/j/XKRn58ftFotHj16lOF0lbCwMBw6dChbc3/JvF6+fGlQRPDJkyf46aef0LRpUyakSO/N8wR4XYtKd+MDIiIiIqL8ZsWKFXj48CE+/PBDeHp6mvzudkTmUGiSUs+fPze401pYWBguXrwIFxcXVKpUCQMHDsTgwYOxcOFC+Pn5ISoqCiEhIahVq5ZB4cA1a9agZMmS+apoHGVOo0aN0LJlS1StWhUPHz7E6tWrERsbixkzZpg7NMpHgoODsXbtWnTq1AkODg44fvw4fvnlF7Rv3x5NmjQxd3hEREREREYplcoMa60RFTSFJil19uxZg8LLEydOBJBcLG3t2rUICgrCF198gY8//hgRERFwdXVFw4YN0aVLF/02sixj7dq1GDJkCEfWFECdOnXCli1bsHLlSkiShLfeegurV69Ot8geWZ5atWrBysoK8+fPR2xsrL74+RdffGHu0IiIiIiIiCxKoawpRURERERERERE+ZvC3AEQEREREREREZHlYVKKiIiIiIiIiIjyXIGuKSXLMu7fv4+iRYtCkiRzh0NEREQFlBACcXFx8PT0hEJhud/Z8dqKiIiITCGz11YFOil1//59lCpVytxhEBERUSFx9+5deHt7mzsMs+G1FREREZlSRtdWBTopVbRoUQDJL9LR0dHM0VBB1HrBYTyKU8O9qAoHP2mZb/skIqLcFRsbi1KlSumvLSwVr62IiIjIFDJ7bVWgk1K6YeWOjo68cKJssbItAkWiEla2tiY7hyZ388PLJC3srJU8L4mIChhLn7LGaysiIiIypYyurQp0UoooP+pdl9MeiIiIiIiIiDLCpBQREeUrWq0WSUlJ5g6DCilra2solUpzh0FEREREYFKKiIjykefPn+PevXsQQpg7FCqkJEmCt7c3HBwczB0KERERkcVjUoqIiPIFrVaLe/fuwd7eHm5ubhZf24dMTwiBqKgo3Lt3DxUrVuSIKSIiIiIzY1KKyMQazg1BZGwCPBxtcWpaG3OHQ1RgJCUlQQgBNzc32NnZmTscKqTc3NwQHh6OpKQkJqWIiIiIzExh7gCIiIhS4ggpyk08v4iIiIjyD46UIotWw8sRJZ1tUbyITb7uk4iIiIiIiKiwYVKKLNoP/vUKRJ9ElL8EBQVh0aJF+uf37t1D8+bNsW3bNjNGRURERERUsDApRRYtIvolnsUnooaXk7lDIaICZOjQoRg6dKj+eY0aNTBw4EAzRkREREREVPAwKUUWbfr2S7j79AU2j2wMF063I8pXhBBQa+Rc3YfKSpFujaEFCxbg2rVrWLlyJQAgOjoaFSpUwLVr1+Di4gIA+Ouvv/Do0SN069YtV2MlIiIiIipszJqU0mq1mD17Nn7++WdERkbC09MTQ4YMwf/+9z8WIqU88Sw+EUIAMS+TmJQiymfUGhmdFh3L1X3sHtcMttZp34Ft2LBhqFSpEubPnw9nZ2cEBQWhe/fu+oQUAKxevRqDBg2CtbV1rsZKRERkqXym/G7uEIgKpfCvOps7BPMmpebNm4dly5bhxx9/RPXq1XH27FkMHToUTk5OGDt2rDlDIwtx63E8EjUypm27hF+GNzRJn7N+vYyYl0lwsrPGnO41TNInEZmHs7MzevXqhTVr1mDChAlYtmwZgoOD9cvj4+OxceNGnDp1yoxREhEREREVTGZNSp04cQLdu3dH587J2TkfHx/88ssvOH36tDnDIgvyMlELjSxw/VGcyfrc9+9DRMYmwMPRlkkpohxQWSmwe1yzXN9HRsaOHYtu3bqhatWqcHNzg5+fn37Z5s2bUb16dVSrVi03wyQiIiIiKpTMmpRq3LgxVq5ciWvXrqFSpUr4+++/cfz4cXzzzTdG11er1VCr1frnsbGxeRUqERHlMUmS0p1al1eqVKmCcuXKYfjw4Zg/f77BstWrV+P99983U2RERERERAWbWZNSU6ZMQWxsLKpUqQKlUgmtVosvv/wyzTsYBQQEYM6cOXkcJVHWbB7ZCFpZQKlgXTSiwuKDDz7AmDFj0KtXL31baGgoLl68iN27d5sxMiIiIiKigsusSalNmzZh/fr12LBhA6pXr46LFy9i/Pjx8PT0hL+/f6r1p06diokTJ+qfx8bGolSpUnkZMlGGSrnYmzsEIjKxQ4cOYdSoUQbFzCtXroy4ONNN/SUiIiIisjRmTUpNmjQJU6ZMQb9+/QAANWvWxO3btxEQEGA0KaVSqaBSqfI6TLIAwtwBEFG+dP/+fbRu3RouLi7Yt2+fucMhIiIiIipUzJqUevHiBRQKwyKzSqUSsiybKSKyWMxKEZERnp6euHr1qrnDICIiIiIqlMyalOratSu+/PJLlC5dGtWrV8eFCxfwzTff4L333jNnWEQ5cvLmEyRqZdgoFWhUvri5wyEiIiIiIiLKl8yalPruu+8wY8YMjBo1Co8ePYKnpydGjBiBmTNnmjMsohyZEHwRkbEJ8HC0xalpbcwdDhEREREREVG+ZNakVNGiRREYGIjAwEBzhkEWjLP2iIiIiIiIiMzDrEkpInNztrOGVhbo5utpsj6HNSuLuAQNitry14uIiIiIiIgoLfzUTBbNyd4aEEC32qZMSpUzWV9EREREREREhZUi41WICjFh8D8iokw5fPgw7Ozs4Ovrq3+8fPnS3GERERERERUoHClFFksIYfTfRJRPCAFoEnJ3H1a2gCRla9PKlSvj4sWLpo2HiIiIiMiCMClFFksWgCwnJ6Pi1VozR0NEqWgSgOVNc3cfI48D1nZpLl6wYAGuXbuGlStXAgCio6NRoUIF/XMiIiIiIso+Tt8ji3Y3+iXCn77A+OCLJuvz7cCjeOvz/Xg78KjJ+iQi8xg2bBh27NiB6OhoAEBQUBC6d+8OFxcX3Lx5E2+99Rbq1auHpUuXmjdQIiIiIqICiCOlyGIJIaASaryADUxZVSr6RRKexifCRsmcL1GOWNkmj2TK7X2kw9nZGb169cKaNWswYcIELFu2DMHBwShfvjzu3bsHJycn3Lt3D506dYKrqyv69OmTu/ESERERERUiTEqRxZIFYIeE5KSULJusX+9idlBZK+DmoDJZn0QWSZLSnVqXV8aOHYtu3bqhatWqcHNzg5+fn8Fyb29v9O/fH8eOHWNSioiIiIgoC5iUIoslICDpR0iZbqTUlg8bm6wvIjK/KlWqoFy5chg+fDjmz58PAHjw4AFKlCgBhUKBuLg47Nq1C++//76ZIyUiIiIiKlg4v4gsFm+4R0SZ9cEHH0Cj0aBXr14AgK1bt6JmzZqoXbs2GjZsiHbt2mHo0KFmjpKIiIiIqGDhSCkiIqIMHDp0CKNGjYK1tTUAYMyYMRgzZoyZoyIiIiIiKtiYlCKLJRsMleKwKSJK7f79+2jdujVcXFywb98+c4dDRERERFSoMClFFiu3clKBB64hLkGDorZWGN+2kuk6JqI85+npiatXr5o7DCIiIiKiQolJKbJYci4Vldp4+i4iYxPg4WjLpBQRERERERFRGpiUIiIiIqI84zPld3OHQFRohX/V2dwhEBFlCZNSZLEEgC9t1kIWCjyrN8lk/a4aXBeJWhk2St7ckoiIiIiIiCgtTEqRxRIyUEURAQVkRDibLoFU09vJZH0RERERERERFVYcykEWS0BAATn530Jr5miIKL+SJAnR0dFGl7Vv3x61atWCr68vmjVrhgsXLuRtcEREREREBRhHSpHFkuXXhc6FLJsxEiIqqDZt2gRnZ2cAwPbt2zFkyBD8/fff5g2KiIiIiKiA4EgpsmACf2qr4pC2Fs4/NN1IqauRsbgcEYOrkbEm65PIEgkhkKBJyNWHyORdOBcsWAA/Pz9UqlQJ69ev17frElIAEBMTA0mSTH0YyMItWbIEPj4+sLW1RYMGDXD69Ol01w8MDETlypVhZ2eHUqVKYcKECUhISMijaImIiIiyhiOlyGLJsoyFie8iCs5wuSxjTG/T9DtkzRlExibAw9EWp6a1MU2nRBZIrVWj928m+sVMw+aum2FrZZvhepIk4cKFC7h16xbq1q2LJk2awMfHBwAwePBgHDp0CACwe/fu3AyXLExwcDAmTpyI5cuXo0GDBggMDESHDh0QGhoKd3f3VOtv2LABU6ZMwZo1a9C4cWNcu3YNQ4YMgSRJ+Oabb8zwCoiIiIjSZ9aRUj4+PpAkKdVj9OjR5gyLLETKKXuZGytBRJZq2LBhAIBy5cqhefPmOHr0qH7ZunXrcPfuXXzxxReYPHmyuUKkQuibb77BBx98gKFDh6JatWpYvnw57O3tsWbNGqPrnzhxAk2aNMGAAQPg4+OD9u3bo3///hmOriIiIiIyF7OOlDpz5gy02tfTpi5fvox27dqhd+/c/WacCHizuLnp0lLv1vFC7EsNHO04EJEoJ1RKFTZ33Zzr+8gOY9P0/P39MXLkSDx58gTFixfPaWhk4RITE3Hu3DlMnTpV36ZQKNC2bVucPHnS6DaNGzfGzz//jNOnT6N+/fq4desWdu/ejUGDBqW5H7VaDbVarX8eG8up50RERJR3zPqp2c3NzeD5V199hfLly6NFixZmiogsSW4VN5/UoUqu9EtkaSRJytTUurwQFBSE2bNnIzw8HMeOHUNgYCCio6Px4sULeHp6AgB27NiB4sWLw8XFxczRUmHw+PFjaLValChRwqC9RIkSuHr1qtFtBgwYgMePH6Np06YQQkCj0WDkyJGYNm1amvsJCAjAnDlzTBo7ERERUWblm6EciYmJ+PnnnzFx4sQ0C8Xy2zwyLU7aI6LM0Wq18PPzQ3x8PBYvXgwfHx/cvn0bvXv3xsuXL6FQKODm5oZdu3ax2DmZzeHDhzF37lwsXboUDRo0wI0bNzBu3Dh8/vnnmDFjhtFtpk6diokTJ+qfx8bGolSpUnkVMhEREVm4fJOU2rFjB6KjozFkyJA01+G3eWRKQuTOSCkiKlx0d+j7/PPPDdrLlCnDWj2Ua1xdXaFUKvHw4UOD9ocPH8LDw8PoNjNmzMCgQYP0NdBq1qyJ+Ph4DB8+HNOnT4dCkbqUqEqlgkqVvWmsRERERDll1kLnKa1evRodO3bUT4MwZurUqYiJidE/7t69m4cRUmEjZI6UIiKi/MnGxgZ16tRBSEiIvk2WZYSEhKBRo0ZGt3nx4kWqxJNSqQTwOrlKRERElJ/ki5FSt2/fxoEDB7Bt27Z01+O3eWRKci7VlOq/8hQeP1fD1UGFX4Y3zJV9EBFR4Tdx4kT4+/ujbt26qF+/PgIDAxEfH4+hQ4cCAAYPHgwvLy8EBAQAALp27YpvvvkGfn5++ul7M2bMQNeuXfXJKSIiIqL8JF8kpYKCguDu7o7OnTubOxSyKCmSUib8BjnscTwiYxMQl6AxWZ9ERGR5+vbti6ioKMycORORkZHw9fXF3r179cXP79y5YzAy6n//+x8kScL//vc/REREwM3NDV27dsWXX35prpdARERElC6zJ6VkWUZQUBD8/f1hZWX2cMiSyDLspETYiwTYKq1N1q29SgkHlRXsVfxWmoiIcmbMmDEYM2aM0WWHDx82eG5lZYVZs2Zh1qxZeRAZERERUc6ZPQt04MAB3LlzB++99565QyELI2QZ623nAwBu1p1psn4PftzSZH0RERERERERFVZmT0q1b9+exTfJLASEwTMiIiIiIiIiyjv55u57RHlNTnn3vVwqek5ERERERERExjEpRRZLEq8TUUIwKUVEmSfLMiZOnIhq1aqhVq1aaNWqFW7cuGHusIiIiIiIChSzT98jMhdZaLE8qQvihB20YXZoZaJ+fzwRjudqDRxUVvBv7GOiXoksjxACQq3O1X1IKhUkScrydjt37sSff/6Jv//+G9bW1vjiiy8wbdo0bNq0KReiJCIiIiIqnJiUIoslZIEQjS+i4IxiT7Qm63fZ4ZuIjE2Ah6Mtk1JEOSDUaoT1eCdX91F2x3ZItrZpLl+wYAGuXbuGlStXAgCio6NRoUIFLFy4EGq1GgkJCbCyskJsbCy8vb1zNVYiIiIiosKGSSmyXCmn7AkgLiEJRW2tzRcPEeU7w4YNQ6VKlTB//nw4OzsjKCgI3bt3x6BBg3DhwgV4eHigaNGi8PLywpEjR8wdLhERERFRgcKkFFmslHWkkrQyun//JyZ1qIyONUvmqN/5vWpBrZGhsmLJNqKckFQqlN2xPdf3kR5nZ2f06tULa9aswYQJE7Bs2TIEBwfj7NmzuHz5MiIiIuDo6IgpU6Zg5MiR+Pnnn3M1XiIiIiKiwoRJKbJYIsXd92SR/O9bj+Nz3G/zSm457oOIAEmS0p1al1fGjh2Lbt26oWrVqnBzc4Ofnx/GjBmD1q1bw9nZGQDg7++P9u3bmzdQIiIiIqIChkM5yIKlriMlhDCyHhFZsipVqqBcuXIYPnw4xowZAwAoV64cDh48iMTERADArl27UKNGDXOGSURERERU4DApRRYr5UgpHSNNRET44IMPoNFo0KtXLwDA6NGjUbZsWdSuXRu1atVCSEgIli1bZuYoiYiIiIgKFk7fI4uVsqaUjmyCkVKPYhOgFQJKSYK7o/mnHhFRzh06dAijRo2CtXXyzRBUKhVWrVpl5qiIiIiIiAo2JqXIYuXWSKlu3/+JyNgEeDja4tS0NjnvkIjM5v79+2jdujVcXFywb98+c4dDRERERFSoMClFFuz1SCnp1f9ZU4qIUvL09MTVq1fNHQYRERERUaHEpBRZLllGI+V/iBX2eGhVEmoUM8n0vVZV3BHzMhFOdjYmCJKIiIiIiIiocGJSiiyWLAQm2WwFAPxs0xv7URamGCgV0LNmzjshIiIiIiIiKuR49z2yXCkKnSuQnI3i3feIiIiIiIiI8gaTUmTBXmegpFf/Zk0pIiIiIiIiorzBpBRZLCFr9f+W9COlmJQiIiIiIiIiygusKUUWSwiBYQnj8FQUhZ1ag2/tZuCf2FEAquWo31Hrz+HJ80QUd7DB0oF1TBMsEeU7ly5dwkcffYSHDx8CAL788kv07NnTzFERERERERUcTEqRxXmZqEXggWvwSXyGp6IoouAMNzka7vJjlI67AKB/jvo/fzsakbEJ8HC0NU3ARBZKCAFtkpzxijmgtFZAkqQsb/fixQt0794d69atQ9OmTaHVavH06dNciJCIiIiIqPBiUooszi+n72D/lYeorH0IwN5wIafvEeUb2iQZwV+eydV99J1eD1Y2yjSXL1iwANeuXcPKlSsBANHR0ahQoQI+/fRTNGzYEE2bNgUAKJVKuLm55WqsRERERESFDZNSZHEeP1cDeF1HKiUJOR+VceTTljnug4jyh2HDhqFSpUqYP38+nJ2dERQUhO7duyMyMhIqlQpdunTBvXv3UKtWLSxcuJCJKSIiIiKiLGBSiiyObqaOsaSUKUZKqazSHnVBRJmntFag7/R6ub6P9Dg7O6NXr15Ys2YNJkyYgGXLliE4OBhBQUE4cOAATp06BU9PT0ybNg0ffvghtmzZkqvxEhEREREVJma/+15ERAT+7//+D8WLF4ednR1q1qyJs2fPmjssKsQkSK/+nzoBJUTu1q8hosyTJAlWNspcfWSmntTYsWOxfPly7N27F25ubvDz80Pp0qXRqlUreHl5QZIk/N///R9OnTqVB0eFiIiIiKjwMGtS6tmzZ2jSpAmsra2xZ88eXLlyBQsXLkSxYsXMGRYVcrk9UoqICpcqVaqgXLlyGD58OMaMGQMA6NOnD86cOYPY2FgAwO7du1G7dm1zhklEREREVOCYdfrevHnzUKpUKQQFBenbypYtm+b6arUaarVa/1z3YYAoO4zWlDLBSKlfL0bgZaIWdjZKdPf1ynF/RGR+H3zwAcaMGYNevXoBAEqXLo1p06ahcePGUCgU8PLy0hdDJyIiIiKizDHrSKmdO3eibt266N27N9zd3eHn54dVq1aluX5AQACcnJz0j1KlSuVhtFRY6CbrKIyOlMp5Uipg91VM2XYJAbuv5rgvIsofDh06hFGjRsHa2lrfNmjQIFy+fBn//PMP9uzZw79JRERERERZZNak1K1bt7Bs2TJUrFgR+/btw4cffoixY8fixx9/NLr+1KlTERMTo3/cvXs3jyOmwkBXQ8b4qChO3yOi1+7fv48qVarg/PnzGD9+vLnDISIiIiIqVMw6fU+WZdStWxdz584FAPj5+eHy5ctYvnw5/P39U62vUqmgUqnyOkwqpBQQ+ND6dyTAGrZISm40wUipqZ2q6KfvEVHB5unpiatXOeqRiIiIiCg3mDUpVbJkSVSrVs2grWrVqti6dauZIiLLItDO6oJBi2SCQuesI0VERERERESUMbNO32vSpAlCQ0MN2q5du4YyZcqYKSKyBOndfU8g5yOliIiIiIiIiChjZk1KTZgwAadOncLcuXNx48YNbNiwAStXrsTo0aPNGRYVcopXWSljhc5NMVKKiIiIiIiIiDJm1qRUvXr1sH37dvzyyy+oUaMGPv/8cwQGBmLgwIHmDIsKOUn/L4E7shvC5BK4I7u9asr5SCm1Rqt/EBEREREREZFxZq0pBQBdunRBly5dzB0GWRBJaNAxaT8cRDzGq0cgCs5wQzS22X0ByQTT91rMP4zI2AR4ONri1LQ2JoiYiMxJkiQ8e/YMzs7Oaa4TFBSE9957D9u3b0ePHj3yLDYiIiIiooLM7EkporzmEXcZDRK3AQDWoJ7hQhOMlCIi0xBCQJOUmKv7sLK2gSRJGa+YjvDwcKxatQoNGzY0UVRERERERJaBSSmyONbahDSXmaKm1FtlnPHkeSKKO9jkuC8iS6ZJSsRPn47N1X0Mmr8Y1jaqDNdbsGABfv/9d8THx2PWrFn6aeayLGPYsGH47rvv8PHHH+dqrEREREREhQ2TUmRxJCntxJMwQVJq6cA6Oe6DiPIXSZJw4cIF3Lp1C3Xr1kWTJk3g4+ODb775Bk2aNEGdOvy9JyIiIiLKKialyOKkNxrKFDWliMg0rKxtMGj+4lzfR2YMGzYMAFCuXDk0b94cR48exfPnz7F161YcPXo0N0MkIiIiIiq0mJQii6OQ0k48SawpRZRvSJKUqal15iBJEo4dO4bw8HBUrFgRABAZGYnhw4fjwYMH+PDDD80cIRERERFR/qcwdwBEeS39kVI5n75HRIVPUFAQgOSi5seOHUOzZs3w4Ycf4sGDBwgPD0d4eDgaNmyIlStXMiFFRERERJRJHClFFie9xJMpakpN3XYJMS8T4WRng4CeNXPcHxGZn1arhZ+fH+Lj47F48WL4+PiYOyQiIiIiogKPSSmyOIp06kaZoqbUoauPEBmbAA9H2xz3RUTmp0tWf/755+mud/jw4TyIhoiIiIio8OD0PbI46U7fM8FIKSIiIiIiIiLKGEdKkcWRpNeJp5W2iyBDkWL0VM6TUjvHNIFWCCglKcd9ERERERERERVWTEqRxUl5hz1XKc5woQnuvufOaXtEREREREREGeL0PbI4inRGQylMkJQiIiIiIiIioowxKUUWJ72775li+h4RERERERERZYzT98jipExK7dQ0wAuhgr2kRjervwym9mXX0WtRUGtkqKwUaF7JLcf9ERERERERERVGTEqRxUmZeFqb1A5RcIYbopOTUiYYKfXpln8QGZsAD0dbnJrWJsf9ERERERERERVGnL5HFojT94goa+Li4uDg4ID3338/T/c7e/ZsuLm5wdfXF1WrVkW3bt3w8OFDzJw5E76+vvD19YWDgwPKli2rfx4aGprj/Z45cwaNGzeGvb09evTokella9euhZOTkz6WVq1apbmPoUOHolKlSqhduzaaNGmCM2fOGCxfunQpqlatipo1a6J27dpISEgAAAwZMgReXl76fUyaNEm/zZo1a1CzZk1YWVkhMDAwR8cgv1iyZAl8fHxga2uLBg0a4PTp0+muHx0djdGjR6NkyZJQqVSoVKkSdu/enUfREhEREWUNR0qR5Ulvip4Jpu992LI8nqs1cFDx14uosAgODkadOnWwbds2LFq0CA4ODnm274EDByIwMBCyLKNfv36YM2cOli5dis8++wwA0LJlS4wfPz5VgignSpYsicDAQFy4cAF79uzJ9DIAaNWqFXbs2JHhPt555x2sWrUKVlZW2LVrF3r37o3w8HAAwK+//or169fj1KlTcHJyQlRUFKytrfXbTpo0CePHj0/VZ506dbBp0yYEBARk6fXmV8HBwZg4cSKWL1+OBg0aIDAwEB06dEBoaCjc3d1TrZ+YmIh27drB3d0dW7ZsgZeXF27fvg1nZ+e8D56IiIgoE/ipmSxOenWjJOQ8KeXf2CfHfRDRaz8cu4UfjoVluF4NL0f84F/PoG3Yj2dwOSLW6PrDmpXFsGblMhXD6tWrMWPGDKxYsQLBwcH6EVNr167FunXr4ODggBs3bsDV1RXr1q2Dj48PAGDBggXYtGkTNBoN3N3dsWLFCri7u6Nhw4aYMWMGevXqhZMnT6J///44c+YM3NzSrkOnUCjQqlUr7Nq1K1Mx54S3tze8vb1x5cqVLC3Lim7duun/3bBhQ0RERECj0cDKygpff/01Zs2aBScnJwBI97ikVLt2bQDJx6ow+Oabb/DBBx9g6NChAIDly5fj999/x5o1azBlypRU669ZswZPnz7FiRMn9Ek83bmYFrVaDbVarX8eG2v894WIiIgoNxSOqzaiLBDpJKUUgtP3iPKbuAQNImMTMnw8iU9Mte2T+MQ0149L0GRq/1euXMHdu3fRoUMHvP/++1i9erXB8j///BPz5s3DlStX0KVLFwwfPhwAsGHDBoSGhuLkyZM4f/48Bg4ciFGjRsHOzg6bN2/GhAkTcObMGQwcOBA//fRThokXtVqNXbt2oW/fvpk8cslCQ0P1U93efOiSHaZ0/Phx+Pr6onHjxti8eXOmtlm0aBE6deoEK6vk78quXLmCs2fPokmTJqhbty4WL16cav1atWqhS5cuuHjxoqlfQr6QmJiIc+fOoW3btvo2hUKBtm3b4uTJk0a32blzJxo1aoTRo0ejRIkSqFGjBubOnQutVpvmfgICAuDk5KR/lCpVyuSvhYiIiCgtHClFlifdKXpMShHlN0VtreDhaJvhesWL2BhtS2vboraZ+xO4evVqDB48GEqlEp06dcKIESPw33//oWrVqgCAxo0b6/89fPhw/O9//4NWq8WOHTtw5swZ1KlTBwAMEgOVKlXCvHnz0KhRI3z22Wdo1qxZmvtfv349Dh8+jJs3b6JmzZro06dPpuLWqVy5cp4lbrp06YI+ffrA3t4e//33H9q3b49SpUqhYcOGaW7z888/Y9OmTTh69Ki+TaPRICwsDEePHsWzZ8/QokULlCtXDl26dMGXX36JkiVLQqFQYPv27ejYsSOuX7+ep1Mq88Ljx4+h1WpRokQJg/YSJUrg6tWrRre5desWDh48iIEDB2L37t24ceMGRo0ahaSkJMyaNcvoNlOnTsXEiRP1z2NjY5mYIiIiojzDpBRZnnRrSjEpRZTfDGtWLtPT7N705nS+rEpKSsJPP/0Ea2trbNiwAQDw4sULrF69GgsWLEh3WyEEpk6dqh859abz58/Dzc0Nd+/eTbcfXU2pp0+fol27dpg1axbmzZuX6dcQGhqa5ugqPz8/BAUFZbqvjLi6uur/XbVqVXTq1Al//vlnmkmp4OBgzJkzByEhIQbJl9KlS6N///5QKpVwdXVFp06dcOrUKXTp0gVeXl769d555x1MmTIFoaGh+uSfJZNlGe7u7li5ciWUSiXq1KmDiIgI/XRIY1QqFVQqVR5HSkRERJTMrNP3Zs+eDUmSDB5VqlQxZ0hkCdJJPClMUFOq9cLDqDFrH1ovPJzjvojIvHbu3Ily5cohIiIC4eHhCA8Px6lTp/DTTz8hKSkJAHDy5En9yJUffvgBrVq1glKpRI8ePbB8+XI8ffoUQHKC68KFCwCAXbt2Yd++ffj333/x119/ITg4OMNYXFxc8MMPP2DJkiV48OBBpl+DbqSUsYcpE1IAEBERof/3w4cPcfDgQfj5+Rldd9OmTfjf//6HAwcOoHTp0gbLBgwYgL179wIAXr58icOHD+vrRd27d0+/3qlTp/DkyRNUqFDBpK8jJ86fP49Lly7pn//666/o0aMHpk2bhsTE1FNM0+Lq6gqlUomHDx8atD98+BAeHh5GtylZsiQqVaoEpVKpb6tatSoiIyOztG8iIiKivGL2mlLVq1fHgwcP9I/jx4+bOyQq7HJ5+t4LtRbP1Rq8UKddw4OICobVq1dj4MCBBm1Vq1aFl5cXfvvtNwDJ0/cmT56M6tWrY+fOnVixYgWA5BFOQ4YMQatWrVC7dm34+vri4MGDuHPnDj788EMEBwfDxcUFmzdvxieffILr169nGI+fnx969+6NuXPnmv7FphAaGgpvb29MnDgR+/btg7e3N5YuXZrhsiVLlqB69erw9fVFu3btMGHCBLRu3RoAcPbsWXTq1Em/j4EDByIhIQHdu3fX17h68uQJAGDixIl4+PAhqlWrhrp166Jjx47o3bs3AGDIkCGoWbMmfH19MWHCBGzevFlfEH3t2rXw9vbG5s2bMXv2bHh7e+sTgXllxIgRuHbtGoDk6XT9+vWDvb09Nm/ejE8//TTT/djY2KBOnToICQnRt8myjJCQEDRq1MjoNk2aNMGNGzcgy6//zl27dg0lS5aEjU3q6a1ERERE5iYJYb75SrNnz8aOHTuyXesiNjYWTk5OiImJgaOjo2mDo0LryLrPUS4seRrOOPVIPBUOcJGeY5FqOaIUrnhrxrEc9d9/5Sk8fq6Gq4MKvwxPu44KERlKSEhAWFgYypYtC1vbjGtI5Qdr167Fjh07sGPHDnOHQpmU1nlmqmsKJycnnD9/HuXLl8e8efNw8OBB7Nu3D3/++Sf69euX4XTNlIKDg+Hv748VK1agfv36CAwMxKZNm3D16lWUKFECgwcPhpeXFwICAgAAd+/eRfXq1eHv74+PPvoI169fx3vvvYexY8di+vTpmdpnXlxb+Uz5PVf6JSIg/KvO5g4hV/B9gyh35OZ7RmavKcxeU+r69evw9PSEra0tGjVqhICAgFTD+HV422IyiRR52EWq5QaLTDF9j4koIiLLJYTQj1Q6cOAAunTpAgAoVaoUHj9+nKW++vbti6ioKMycORORkZHw9fXF3r179fW37ty5A4Xi9aD3UqVKYd++fZgwYQJq1aoFLy8vjBs3DpMnTzbRqyMiIiIyLbMmpRo0aIC1a9eicuXKePDgAebMmYNmzZrh8uXLKFq0aKr1AwICMGfOHDNESoWKSGdaHeucE1EWDBkyBEOGDDF3GJSP1K1bF1988QXatm2LI0eOYNmyZQCAsLCwVHfSy4wxY8ZgzJgxRpcdPnw4VVujRo1w6tSpLO+HiIiIyBzMWlNKVyOiVq1a6NChA3bv3o3o6Ghs2rTJ6PpTp05FTEyM/pGVIfBEOlI6o6EUkGHGGa1ERFTAffvttzh//jzGjBmD6dOn64uwb9myBY0bNzZzdERERET5i9mn76Xk7OyMSpUq4caNG0aX87bFZBLpJJ0kCMgCUEp5GA8RERUatWvXNrj7ns7XX38NK6t8ddlFREREZHZmv/teSs+fP8fNmzdRsmRJc4dChVmKu+99ljgAE9Uf4LPEAQB0SamcjZT6et9VzNhxGV/vu5qjfoiIqOApV66c/i6CKSUkJKBSpUpmiIiIiIgo/8pWUsrf3x9Hjx7N8c4/+eQTHDlyBOHh4Thx4gTeeecdKJVK9O/fP8d9E6VFpEhKXdSWwxm5Mi5qywEwTVJq67kI/HTqNraei8hRP0REVPCEh4dDq01du1CtVuPevXtmiIiIiIgo/8pWUiomJgZt27ZFxYoVMXfuXEREZO/D971799C/f39UrlwZffr0QfHixXHq1Cm4ubllqz+izJDSqWaeXFMqD4MhonzPx8cHlStXhq+vL6pVq4YlS5bkuM/Lly/Dx8fH6LLZs2fDzc0Nvr6+qFq1Krp164aHDx9i5syZ8PX1ha+vLxwcHFC2bFn989DQ0BzHdObMGTRu3Bj29vbo0aNHppcBwJEjR1CvXj1Ur14d1apVw8mTJ43u49GjR3j77bdRsWJF1KhRw+ALrjNnzqBJkyaoXbs2fH19cfDgQf2yIUOGwMvLS/96J02apF/24sUL9O/fHxUqVEClSpWwZcuWnB2IbNq5cyd27twJANi3b5/++c6dO7F9+3Z8/vnnKFu2rFliIyIiIsqvslXcYMeOHYiKisJPP/2EH3/8EbNmzULbtm3x/vvvo3v37rC2ts5UPxs3bszO7olyRqRd6FyCyHFSau179aDRClixMBVRoREcHAxfX1/cvn0btWrVQrNmzVCrVi39cllOfl9RKEwzK37gwIEIDAyELMvo168f5syZg6VLl+Kzzz4DALRs2RLjx483miDKrpIlSyIwMBAXLlzAnj17Mr3s/v378Pf3x549e1C1alWo1Wq8fPnS6D6mTJmChg0bYu/evThz5gzeeecdhIWFwcrKCu+88w7Wrl2Ltm3b4tq1a2jbti1CQ0NhZ2cHAJg0aRLGjx+fqs8FCxZApVLhxo0bCAsLQ4MGDdCqVSsUL17cNAcmk3Q/C0mS4O/vb7DM2toaPj4+WLhwYZ7GRERERJTfZfvq2c3NDRMnTsTff/+Nv/76CxUqVMCgQYPg6emJCRMm4Pr166aMk8hkpAySUjmdvlfFwxE1vJxQxcMxR/0QUf5TpkwZVK5cGdeuXcPs2bPx7rvvokOHDqhRowYePHiAffv2oWnTpqhTpw7q16+PQ4cO6bedPXs2KlasiDp16mT6SxmFQoFWrVrh9u3bufWS9Ly9vVG/fn2jNxRJb9nSpUsxYMAAVK1aFUDyTUmcnZ2N7mPTpk0YOXIkAKBevXrw9PTEkSNH8OTJE0RFRaFt27YAgEqVKsHZ2TlVAsyY4OBgfZ9ly5ZFy5YtsX379ky9ZlOSZRmyLKN06dJ49OiR/rksy1Cr1QgNDUWXLl3yPC4iIiKi/CzHX+k+ePAA+/fvx/79+6FUKtGpUydcunQJ1apVw7fffmuKGIlMSqSTdFKYIClFRKb1w7FbaDg3BA3nhuDkTcMC0nefvtAvm/Xr5VTbDvvxjH65KVy6dAlXr15F7dq1AQAnT57EunXrcOXKFajVasyePRu7d+/GuXPnsGHDBgwYMABqtRq///47Nm/ejHPnzuHs2bMIDw/P1P7UajV27dqFvn37ZinO0NBQ/VS3Nx9Dhw7N6stO15UrV/Dy5Uu0bdsWvr6++OijjxAfH59qvSdPniApKQkeHh76Nh8fH9y5cweurq4oWbIkNm3aBCB5Kl9oaKjBcVq0aBFq1aqFLl264OLFi/r2O3fuoEyZMqn6NJewsDC4urqabf9EREREBUm2pu8lJSVh586dCAoKwh9//IFatWph/PjxGDBgABwdk0eHbN++He+99x4mTJhg0oCJcirjkVJ5GAwRZSguQYPI2AQAQKLW8PdXKwv9spiXSam2fRKfqF+eE3379oWdnR3s7e2xZs0aVKxYEQDQqVMnlChRAgCwd+9e3LhxA82bN9dvp1AocOfOHYSEhKBPnz76v5EjRozA8ePH09zf+vXrcfjwYdy8eRM1a9ZEnz59shRv5cqVDRI3uUmj0eDo0aM4cOAAHBwcMHToUMyaNQsLFizIUj+//vorJk+ejICAAFSvXh1NmzaFlVXyZcqXX36JkiVLQqFQYPv27ejYsSOuX78OBweH3HhJWbZ48WIMHz4ctra2WLx4cbrrjh07No+iIiIiIsr/spWUKlmyJGRZRv/+/XH69Gn4+vqmWqdVq1ZpDt8nMqt0RkIl15TKWVbq0r0YJGpl2CgVqOntlKO+iAgoamsFD0dbAICN0nCAr1Ih6Zc52aWuZ1i8iI1+eU7oakq9KWVSRAiBdu3aYcOGDRn2J0np15zT1ZR6+vQp2rVrh1mzZmHevHmZjjc0NDTN0VV+fn4ICgrKdF8ZKV26NHx9fVGsWDEAQP/+/REQEJBqveLFi8PKygqRkZH60VLh4eEoXbo0AKB27drYu3evfv2qVauievXqAAAvLy99+zvvvIMpU6YgNDQUderUQenSpXH79m2ULFlS32f79u1N9voy49tvv8XAgQNha2ub7ihxSZKYlCIiIiJKIVtJqW+//Ra9e/eGrW3aF/rOzs4ICwvLdmBEuSftkVIKyDkeKfXBurOIjE2Ah6MtTk1rk7POiAjDmpXDsGbljC4r5WKf7u/ZD/71ciusVDp06IA5c+bgn3/+0RdBP336NOrXr4+2bdvi008/xcSJE+Hg4ICVK1dmqk8XFxf88MMPaNasGcaPH69PvGQkL0dKDRgwAJMnT4ZarYZKpcKePXv00xvf1Lt3byxfvhyzZ8/GmTNnEBERgRYtWgBILgege32rVq1CkSJF0Lp1awDJd+v19vYGAJw6dQpPnjxBhQoVDPps2LAhwsLCcPjwYSxdujS3X7aBlNc7vPYhIiIiyrxs1ZQ6dOgQkpJST5OIj4/He++9l+OgiHJTutP3hJzjkVJEZJkqVKiADRs2YMSIEahduzaqVq2KwMBAAMnT/Hr16oW33noLdevW1Y8Oygw/Pz/07t0bc+fOzaXIk4WGhsLb2xsTJ07Evn374O3trU/upLescePG6NatG/z8/FCzZk08fvwYX375JQDg7Nmz6NSpk34f8+bNw4kTJ1CxYkUMGTIEP//8s/6OvStXrkSlSpVQsWJF/Pbbb9i+fbt+RNmQIUNQs2ZN+Pr6YsKECdi8eTOcnJJHok6aNAkvX75E+fLl0aFDB3z//fes6URERERUQEgiG5/AlUolHjx4AHd3d4P2x48fw8PDAxqNxmQBpic2NhZOTk6IiYnR1+kgysjxpR+iTNRhAEBQUjs8F7ZwkBIw1Ho/ZChgP/E83IqmvsNUZgUeuIa4BA2K2lphfNtKJoqaqPBLSEhAWFgYypYtm+5IXKKcSOs8M9U1hVarxdq1axESEqK/C19KBw8ezHbfeSEvrq18pvyeK/0SERD+VWdzh5Ar+L5BlDty8z0js9cUWZq+FxsbCyGSa+7ExcUZXMxptVrs3r07VaKKKN9JkYcdar3fYJECOR8pxUQUEZHlGjduHNauXYvOnTujRo0aGdYPIyIiIrJkWUpKOTs7Q5IkSJKESpVSf/CWJAlz5swxWXBEuSPt6XsAIPP2e0RElE0bN27Epk2bDKYtEhEREZFxWUpKHTp0CEIItG7dGlu3boWLi4t+mY2NDcqUKQNPT0+TB0lkSlIGI6FkWZtHkRARUWFjY2OjL8JOREREROnLUlJKd4ecsLAwlC5dmkPSqWBKp9A5AMgZLCei3MWbDVBuyu3z6+OPP8aiRYvw/fff8zqJiIiIKAOZTkr9888/qFGjBhQKBWJiYnDp0qU019XdCpsoP5JSTN/r+fJ/iIIz3BCNbXZfAACEnLOkVK9lJxD1XA03BxW2fNg4R30RWRJra2tIkoSoqCi4ubnxAz2ZnBACUVFRkCRJf9c/Uzt+/DgOHTqEPXv2oHr16qn2s23btlzZLxEREVFBlOmklK+vLyIjI+Hu7g5fX19IkmT020ZJkqDVcvoT5WMZjITKaVLq3rOXiIxNgDqJI66IskKpVMLb2xv37t1DeHi4ucOhQkqSJHh7e0OpVOZK/87OznjnnXdypW8iIiKiwibTSamwsDC4ubnp/01UUElIf+qGyOH0PWd7ayRqZTjb58638ESFmYODAypWrIikpCRzh0KFlLW1da4lpAAgKCgo1/omIiIiKmwynZQqU6aM0X8TFTgpRvipFUh1Mz45hyOl9o5vnqPtiSydUqnM1aQBERERERHlD1kqdK7z448/wtXVFZ07dwYAfPrpp1i5ciWqVauGX375hUkryt9SjIR68apmTVKK0jU5TUoREZHlKlu2bLr10G7dupWH0RARERHlb9lKSs2dOxfLli0DAJw8eRLff/89AgMDsWvXLkyYMIFFPClfk4zUQjNokVkTjYiIsmf8+PEGz5OSknDhwgXs3bsXkyZNMk9QRERERPlUtpJSd+/eRYUKFQAAO3bsQK9evTB8+HA0adIELVu2NGV8RLkgg5pSb87nIyIiyqRx48YZbV+yZAnOnj2bx9EQERER5W+K7Gzk4OCAJ0+eAAD++OMPtGvXDgBga2uLly9fmi46olwgifRHQuV0+t4Px27h2/3X8MMxTtEgIqJkHTt2xNatW80dBhEREVG+kq2RUu3atcOwYcPg5+eHa9euoVOnTgCAf//9Fz4+PqaMj8jkjN19L2X1DyGnP5IqIz8cC0NkbAI8HG0xrFm5HPVFRESFw5YtW+Di4mLuMIiIiIjylWwlpZYsWYL//e9/uHv3LrZu3YrixYsDAM6dO4f+/fubNEAik3tVUyqt1JPMmlJERJRNfn5+BoXOhRCIjIxEVFQUli5dasbIiIiIiPKfbCWlnJ2d8f3336dqnzNnTo4DIspt0quaUTKAkiU2Qggr9IxLBHS5qBxO3/u2ry8StTJslNmaHUtERAVYjx49DJ4rFAq4ubmhZcuWqFKlinmCIiIiIsqnspWUAoDo6GicPn0ajx49MqjBI0kSBg0alOX+vvrqK0ydOhXjxo1DYGBgdsMiyph4nZQqYp9c96lSgqxPSuW0plSj8sVztD0RERVcs2bNMncIRERERAVGtpJSv/32GwYOHIjnz5/D0dHRYJh6dpJSZ86cwYoVK1CrVq3shEOULdoUhaQkgyU5qylFRERERERERBnL1vyijz/+GO+99x6eP3+O6OhoPHv2TP94+vRplvp6/vw5Bg4ciFWrVqFYsWLprqtWqxEbG2vwIMoqxau776UcDyWJ14ko1pQiIiIiIiIiyn3ZSkpFRERg7NixsLe3z3EAo0ePRufOndG2bdsM1w0ICICTk5P+UapUqRzvnyzQqwSUVgLiX5TD8/hKuJZUPsXynCWl7j59gfDH8bj79EWO+iEiIiIiIiIqzLI1fa9Dhw44e/YsypXL2e3uN27ciPPnz+PMmTOZWn/q1KmYOHGi/nlsbCwTU5Rl0qvpeTKABw/7QaN1wlopGu/afpHcnrOSUui9/CQiYxPg4WiLU9Pa5DBaIiIiIiIiosIpW0mpzp07Y9KkSbhy5Qpq1qwJa2trg+XdunXLsI+7d+9i3Lhx2L9/P2xtbTO1X5VKBZVKlZ2QifSkV4XOtZLx5YLT94iIKIdu3LiBmzdvonnz5rCzs4MQwqAGJxERERFlMyn1wQcfAAA+++yzVMskSYJWm/GH+nPnzuHRo0d466239G1arRZHjx7F999/D7VaDaVSmZ3wiDIgUvwXqf+dw6RUh+olEPMyCU521hmvTEREhcqTJ0/Qt29fHDx4EJIk4fr16yhXrhzef/99FCtWDAsXLjR3iERERET5RraSUnJO5zcBaNOmDS5dumTQNnToUFSpUgWTJ09mQopyjfSqxHlaqSchcnb3vTnda+RoeyIiKrgmTJgAKysr3LlzB1WrVtW39+3bFxMnTmRSioiIiCiFbCWlUkpISMj09LuUihYtiho1DD+8FylSBMWLF0/VTmRKuul7clqzKETOk65ERGSZ/vjjD+zbtw/e3t4G7RUrVsTt27fNFBURERFR/pStu+9ptVp8/vnn8PLygoODA27dugUAmDFjBlavXm3SAIlMTVfoPK2RUv9GRONm1PO8C4iIiAqN+Ph4o3cnfvr0KetiEhEREb0hW0mpL7/8EmvXrsX8+fNhY2Ojb69RowZ++OGHbAdz+PBhBAYGZnt7oszIaKTUof8eYvr2S8YXEhERpaNZs2ZYt26d/rkkSZBlGfPnz0erVq3MGBkRERFR/pOt6Xvr1q3DypUr0aZNG4wcOVLfXrt2bVy9etVkwRHljuSRUikn6YkUCSoJMmJearLd+7Afz+BJfCKKF7HBD/71st0PEREVPPPnz0ebNm1w9uxZJCYm4tNPP8W///6Lp0+f4s8//zR3eERERET5SrZGSkVERKBChQqp2mVZRlJSUo6DIspNkkh/+p4EAVnOfrHzyxGxuHAnGpcjYrPdBxERFUw1atTAtWvX0LRpU3Tv3h3x8fHo2bMnLly4gPLly5s7PCIiIqJ8JVsjpapVq4Zjx46hTJkyBu1btmyBn5+fSQIjyi26u++lNX1PAQFtDu/AR0RElsvJyQnTp083dxhERERE+V62klIzZ86Ev78/IiIiIMsytm3bhtDQUKxbtw67du0ydYxEJvZ6pFSFsnMBAAOjZSA+eWlOR0qdmtYmpwESEVEBlpCQgH/++QePHj2CLBve0bVbt25mioqIiIgo/8lWUqp79+747bff8Nlnn6FIkSKYOXMm3nrrLfz2229o166dqWMkMimFkULnKVNQQxJ/wRGrxpDlFlAo0hhORUREZMTevXsxePBgPH78ONUySZKg1aY1eZyIiIjI8mSrphSQfHeZ/fv349GjR3jx4gWOHz+O9u3bmzI2olwhGSl0/kQJbHaU8FgJeMsRGJi4mVP4iIgoyz766CP07t0bDx48gCzLBg8mpIiIiIgMZSspVa5cOTx58iRVe3R0NMqVK5fjoIhy16vpe9LrUVD7iirwR1EFAl1f/0poczCFj4iILNPDhw8xceJElChRwtyhEBEREeV72Zq+Fx4ebvTbPrVajYiIiBwHRZSbJN30PQCPn7aFVmsLpTIBri4H8NDqdaJKzuZIqc1n7+JlkhZ21kr0rlvKFCETEVEB0atXLxw+fJh32iMiIiLKhCwlpXbu3Kn/9759++Dk5KR/rtVqERISAh8fH5MFR5QbpBSFzqNj6kOjdYKVMgauLgcM1svuSKmFf1xDZGwCPBxtmZQiIrIw33//PXr37o1jx46hZs2asLa2Nlg+duxYM0VGRERElP9kKSnVo0cPAMmFOv39/Q2WWVtbw8fHBwsXLjRZcES5QV9TKoMa5jm5Ax8REVmmX375BX/88QdsbW1x+PBhSCmmikuSxKQUERERUQpZqimlK9RZunRp/W2OdQ+1Wo3Q0FB06dIlt2IlMglFiul76cluQdrZ3arh2761MbtbtWxtT0REBdf06dMxZ84cxMTEIDw8HGFhYfrHrVu3stzfkiVL4OPjA1tbWzRo0ACnT5/O1HYbN26EJEn6LxSJiIiI8qNs1ZQKCwszdRxEeUZ6lY7SZjhSSpOt/t+uUTJb2xERUcGXmJiIvn37QqHI9g2O9YKDgzFx4kQsX74cDRo0QGBgIDp06IDQ0FC4u7unuV14eDg++eQTNGvWLMcxEBEREeWmbCWlACAkJAQhISH6EVMprVmzJseBEeWeV9P3MlhL1mQvKUVERJbL398fwcHBmDZtWo77+uabb/DBBx9g6NChAIDly5fj999/x5o1azBlyhSj22i1WgwcOBBz5szBsWPHEB0dneM4iIiIiHJLtpJSc+bMwWeffYa6deuiZMmSBvUSiPI7SbwudJ4eWc7e9D0iIrJcWq0W8+fPx759+1CrVq1Uhc6/+eabTPWTmJiIc+fOYerUqfo2hUKBtm3b4uTJk2lu99lnn8Hd3R3vv/8+jh07luF+1Go11Gq1/nlsbGym4iMiIiIyhWwlpZYvX461a9di0KBBpo6HKNfFKWQEFldAIwE2jwU0EqAbPZVSdmtKPVdrIISAJElwUGV7MCIRERVAly5dgp+fHwDg8uXLBsuy8iXe48ePodVqUaJECYP2EiVK4OrVq0a3OX78OFavXo2LFy9mej8BAQGYM2dOptcnIiIiMqVsfWJOTExE48aNTR0LUZ4IswHuWyd/MFAlAi9UgJWR/JOczaRU24VHEBmbAA9HW5ya1iYnoRIRUQFz6NAhs+w3Li4OgwYNwqpVq+Dq6prp7aZOnYqJEyfqn8fGxqJUqVK5ESIRERFRKtlKSg0bNgwbNmzAjBkzTB0PUa6TISMzN57MbqFzIiKinHJ1dYVSqcTDhw8N2h8+fAgPD49U69+8eRPh4eHo2rWrvk1X89PKygqhoaEoX758qu1UKhVUKpWJoyciIiLKnGwlpRISErBy5UocOHAgR/USiPKcEAZ33asSfQtx1kUQ7fIi9arZrCnVoJwLnsYnwqWITXajJCKiAqRnz55Yu3YtHB0d0bNnz3TX3bZtW6b6tLGxQZ06dRASEoIePXoASE4yhYSEYMyYManWr1KlCi5dumTQ9r///Q9xcXFYtGgRRz8RERFRvpStpNQ///wDX19fAKnrJRDla0KGnKJ81MirGwAAv7ZU4AoMa31otdkbKbWon1+2wyMiooLHyclJXy/KycnJZP1OnDgR/v7+qFu3LurXr4/AwEDEx8fr78Y3ePBgeHl5ISAgALa2tqhRo4bB9s7OzgCQqp2IiIgov8hWUspc9RKIcuyNkVLprsq77xERUSYEBQXhs88+wyeffIKgoCCT9du3b19ERUVh5syZiIyMhK+vL/bu3asvfn7nzh0oFBlPRyciIiLKr7KUlMpoSDqQfGeZrVu3ZjsgotwkhBbGUk3G8lRaDZNSRESUOXPmzMHIkSNhb29v0n7HjBljdLoeABw+fDjdbdeuXWvSWIiIiIhMLUtfrzk5OWX4cHR0zHR/y5YtQ61ateDo6AhHR0c0atQIe/bsyfKLIMosWZYhv8pASSLFPL5X/zRITrHQORERZZJI+TeFiIiIiDIlSyOlTDkkHQC8vb3x1VdfoWLFihBC4Mcff0T37t1x4cIFVK9e3aT7IgKQXFPq1T8lAXxVayRibByQhOcojlWQUnym0Mqy0S4y8snmvxH9IhHO9jZY0Lt2zmMmIqICQVdXioiIiIgyJ1s1pUwl5W2LAeDLL7/EsmXLcOrUKSalKFfIslZfU0qSgQf2rnimcoadiEZxGI6UkrNZ6Pz49ceIjE2Ah6NtjuMlIqKCo1KlShkmpp4+fZpH0RARERHlf2ZNSqWk1WqxefNmxMfHo1GjRkbXUavVUKvV+uexsbF5FR4VErKs1Y+UUhiZaZHyowQLnRMRUVbMmTPHpHffIyIiIirszJ6UunTpEho1aoSEhAQ4ODhg+/btqFatmtF1AwICMGfOnDyOkAoTIUM/UspYUkphsG72RkrtGdcMshBQcBoHEZFF6devH9zd3c0dBhEREVGBYfb7CFeuXBkXL17EX3/9hQ8//BD+/v64cuWK0XWnTp2KmJgY/ePu3bt5HC0VdEKW9XffkzIaKaXN3kipYkVsUNxBhWJFbLK1PRERFTysJ0VERESUdWYfKWVjY4MKFSoAAOrUqYMzZ85g0aJFWLFiRap1VSoVVCpVXodIhYgQWv3d9xRG6pinTFRx+h4REWUW775HRERElHVmT0q9SZZlg7pRRKYkC5HpkVJyNu++R0RElod/M4iIiIiyzqxJqalTp6Jjx44oXbo04uLisGHDBhw+fBj79u0zZ1hUmMkao4XOpTf+D2S/plTIfw+RkCTD1lqBNlVLZKsPIiIiIiIiosLOrEmpR48eYfDgwXjw4AGcnJxQq1Yt7Nu3D+3atTNnWFSIybL8utC5sel7KdfNZk2p6dsvIzI2AR6OtkxKEREREREREaXBrEmp1atXm3P3ZIGEnMb0PQG4RAskOaRoEqwpRURERERERJRb8l1NKaLcJIQM+dUdkhQy0P32fqiVKgilGh2PyTheXwJcXq2bzZFSY9tUxItEDext+OtFRERERERElBZ+aibLImT9SCmFAFo9+MtgsWMc9EkpZPPuewMalM52eERERERERESWQmHuAIjyUsqaUkbvvpeizpQ2m0kpIiIiIiIiIsoYk1JkUeSUd98zUug8ZZvEpBQRERERERFRruH0PbIssjAYKRVtUxQyFFBAhnNinMFIKcGkFBEREREREVGuYVKKLIwwqCk1+61xeKZyRjF1NAJPfWEwpU/O5t33ms0/iIcxapRwUuHYp61zHjIRERERERFRIcTpe2RRZFkL+dVIKYWRmlLKlHmobN59L0kjkKiVkaQxsgMiIiIiIiIiAsCRUmRhRMq77xmpKSUJQACQAIhsjpSq5FEUxR1sUNxBld0wiYiIiIiIiAo9JqXIoghZhs0LgVG/ynjqJOFMKcPlShmQASgBIJs1pda9Vz+nYRIREREREREVekxKkWWRZVS9LOD0HHB6LoA3k1La10kpFjonIiIiIiIiyj2sKUUWRchy8vy8NCgE9DWnIBuZ30dEREREREREJsGkFFkUWWihVUhpLldqoa85BaHJk5iIiIiIiIiILBGn75HF+PViBHbv+xf1085JQSGEfiCVyOZIqbm7/0PMiyQ42VtjWqeq2eqDiIiIiIiIqLDjSCmyGIsOXIcEGdo0klICUvJIqVfLs3v3vZ0X7yP47F3svHg/m5ESERERERERFX5MSpFFUUBANnrWSxCQoEhZcoqFzomIiIiIiIhyDafvkYUR0KZISk3+ewUSJWsoX42KUsqvR0plNym1/oMG0MoCynRqVxERERERERFZOialyKIo35i+V/JlFDRQ6p8rZEBfSSqb0/fKuzlkP0AiIiIiIiIiC8Hpe2QxGmlO49OExZBTJKXUNm54YV9W/1wpp7j7XjYLnRMRERERERFRxpiUIosxUh0EANAoXteNuu/dF5GlBkBjVRRA8kgpoUtaZXOkFBERERERERFljNP3yOIkj5SSoIECFx2KI1Fhhfvufmh+/wiUKafvZbOm1Lnbz5CokWFjpUCdMsVMFDURERERERFR4cKkFFke8fqfIY5FEKdUwNmuOZrfP/JGTansTd8bvf48ImMT4OFoi1PT2uQ4XCIiIiIiIqLCyKzT9wICAlCvXj0ULVoU7u7u6NGjB0JDQ80ZElkCYawxec6eUsbrmlPZHClFRERERERERBkz60ipI0eOYPTo0ahXrx40Gg2mTZuG9u3b48qVKyhSpIg5Q6NCTPFqAJSABCE0AGz0yyQBqMWrYufZHCk1qFEZPFdr4KDiQEQiIiIiIiKitJj1U/PevXsNnq9duxbu7u44d+4cmjdvbqaoqNDTJaUkJYDkpFTKwVMLiytQWgb6ZrPQ+ehWFXIaIREREREREVGhl6+GcsTExAAAXFxcjC5Xq9VQq9X657GxsXkSFxUeBjP3pDdnryYvVcpAmI0EJGZvpBQRERERERERZcysNaVSkmUZ48ePR5MmTVCjRg2j6wQEBMDJyUn/KFWqVB5HSQWdjOSkE6AbKaUj6f+lm94nyZo8i4uIiIiIiIjI0uSbpNTo0aNx+fJlbNy4Mc11pk6dipiYGP3j7t27eRghFQYyXiedZEkJ3eiolCOo9EmrbE7fIyIiIiIiIqKM5Yvpe2PGjMGuXbtw9OhReHt7p7meSqWCSqXKw8iosNFKycXMAUCG0ug6r5NS2Rsp1fW744iKU8OtqAq/fdQ0W30QERERERERFXZmHSklhMCYMWOwfft2HDx4EGXLljVnOFTYSZLB9D1ZoTRY9sS1BZKsHPUjqR7HJ2D18TCoNVkbMRUVp0ZkbAKi4tQZr0xERERERERkocw6Umr06NHYsGEDfv31VxQtWhSRkZEAACcnJ9jZ2ZkzNCqktNLr6XtCoYS9NgEAYC8kPCveHBIUUMqHk9cVGqw/dRtVPIqiSQXXTO/DrajK4P9ERERERERElJpZk1LLli0DALRs2dKgPSgoCEOGDMn7gKjQEkIAQhgkpWRJif4P9gAAVNZ1AKUXtErb10krJI+QildnbRofp+wRERERERERZcysSSkhRMYrEZmA/OpUS64pZYP7Xu9AaKIAPHm1xquC55KVfnpfcll0IEnL85SIiIiIiIjI1PLN3feIclOSNjnBJAOAwgfxDpUQ51gjxRrJy4Wk1I+UkiQNiojn0MgyiIiIiIiIiMi0mJQiiyDLyVPxZAlQCGtd6+sVhC4pZQXlq7rm5eSbWPpiEuyeXsnDSImIiIiIiIgsg1mn7xHlFY0mKfn/ACQoX03WkxFSvAESFDawF0XQ9fmrkVK6qX6vti1zZzuAdpne15JDN/BcrYGDygqjW1Uw3YsgIiIiIiIiKkSYlCKLoE1KTkrJUnJSCgCE0CLczhPPrYrAQZMIPE+AULweKaWVkv+vEVkbUPjTyduIjE2Ah6Mtk1JEREREREREaWBSiiyCrH2VlAIgCd1pn7pWlJCs0PCSgLUG0Dgkt2k5y5WIiIiIiIjI5JiUIoug1SQm/x+AJBSv7vxomJTSyk+ghRKlHkhwfypD2yG5PasjpZYMfAuJGhk2VkxmEREREREREaWFSSmyCFqNJvn/EiBDQrx6HyTJCkCpV2sk4WXin5DhBgBQJQGJr6bvaYWUpX3VKVPMRFETERERERERFV4cykEWQda8nr4nCxlAIoR4kWo9NR4CkKCQAe2rgVSaVzWoiIiI8tqSJUvg4+MDW1tbNGjQAKdPn05z3VWrVqFZs2YoVqwYihUrhrZt26a7PhEREZG5MSlFFkHWvh4pJZC5kU/yq7vwabI4UoqIiMgUgoODMXHiRMyaNQvnz59H7dq10aFDBzx69Mjo+ocPH0b//v1x6NAhnDx5EqVKlUL79u0RERGRx5ETERERZQ6TUmQRZI0aQHJNKaSblHq9TCt0/89aUupm1HNcexiHm1HPs7QdERFRSt988w0++OADDB06FNWqVcPy5cthb2+PNWvWGF1//fr1GDVqFHx9fVGlShX88MMPkGUZISEhae5DrVYjNjbW4EFERESUV5iUIoug1Y+UkiDSO+1T5J9k7attdUOmMmngqr/Q/tujGLjqr6yGSUREBABITEzEuXPn0LZtW32bQqFA27ZtcfLkyUz18eLFCyQlJcHFxSXNdQICAuDk5KR/lCpVKs11iYiIiEyNSSmyCNqk1zWl0vc6KyXrVpaTciMkIiKiND1+/BharRYlSpQwaC9RogQiIyMz1cfkyZPh6elpkNh609SpUxETE6N/3L17N0dxExEREWUF775HFkFoXyWlJCBl4qlS/G2oFTZQyYmv1331f1kGoAAkbdaSUt18PRHzIglO9tY5C5qIiCibvvrqK2zcuBGHDx+Gra1tmuupVCqoVKo8jIyIiIjoNSalyCLI8qvpezAsdN7s2XkjaysAaPUjpaQsjpSa1qlq9oIkIiJ6xdXVFUqlEg8fPjRof/jwITw8PNLddsGCBfjqq69w4MAB1KpVKzfDJCIiIsoRTt8jiyA0yYklbYY1yyUISZm8jT4plZjO+kRERKZnY2ODOnXqGBQp1xUtb9SoUZrbzZ8/H59//jn27t2LunXr5kWoRERERNnGkVJkEeRXhc5lvJ6eZ5wEobACtCmTUppcjo6IiCi1iRMnwt/fH3Xr1kX9+vURGBiI+Ph4DB06FAAwePBgeHl5ISAgAAAwb948zJw5Exs2bICPj4++9pSDgwMcHBzM9jqIiIiI0sKkFFkEoU3CCXsJPxZToLuU3nApBYSU/GuhS0opWOiciIjMoG/fvoiKisLMmTMRGRkJX19f7N27V1/8/M6dO1AoXg96X7ZsGRITE9GrVy+DfmbNmoXZs2fnZehEREREmcKkFFkEWatBUDHdhfvrsVLrvLoiXmmHItqXGBzxGwym72mT18lqTanBa07jyXM1ijuosO69+iaInoiILNWYMWMwZswYo8sOHz5s8Dw8PDz3AyIiIiIyISalyCIIbXJdKEkIg+l7SZIVEhU2sEmReNKNlMKrkVLKLCalrkXGITI2AR6Oad/tiIiIiIiIiMjSsdA5WQTxqqZUkrDR5ZrSIEN+IykliazVlLK2kmCjVMDaKsOq6kREREREREQWiyOlyCLoklIKrQQhpVfqXAv5jel7WR0pdezT1tkJkYiIiIiIiMiicKQUWQTx6g56kgBEBvff09WUgpw80kmZxZFSRERERERERJQxsyaljh49iq5du8LT0xOSJGHHjh3mDIcKM23yaCdJSEAGSSlZoUtKJf9PKXj3PSIiIiIiIiJTM2tSKj4+HrVr18aSJUvMGQZZAFk/fS+tkVKv6z9plTYQkAAt8EJKHikly+knsoiIiIiIiIgoa8xaU6pjx47o2LFjptdXq9VQq9X657GxsbkRFhVGr0ZKKQQgION1EiplMfLkUVRRHp3w0ukt3FOux8+eSnwclYhKsoCNInOFyzf8dQcvEjWwt7HCgAalTfkqiIiIiIiIiAqNAlVTKiAgAE5OTvpHqVKlzB0SFRBabSL8/pPx8caXQAb33wNkvLAtDatXhc6PFNEgSZvRNq8tDrmOL37/D4tDrmc7XiIiIiIiIqLCrkAlpaZOnYqYmBj94+7du+YOiQoItazG2yeSJ+5lVOj8hfogXmrOw0qb/OthL0SWklJERERERERElDGzTt/LKpVKBZVKZe4wqADSaNVQAoCkBKDVt7d6chpaSQml0Bqsr5UjYaW1AZAIO1lGUpIGgE2m9vXlOzWQkCTD1rpA5XyJiIiIiIiI8lSBSkoRZVeSSIQSgJCUSL77XnJ9qHIvI9LcRqG1BpAIawEkJSUAsM/UvtpULZHTcImIiIiIiIgKPQ7lIIuQKCcCALQK60xvYyUnj4xKkgBtUlKuxEVERERERERkqcw6Uur58+e4ceOG/nlYWBguXrwIFxcXlC7Nu5aR6STJyUklWVJmYu3ku/ApXiWlEiVArU7IveCIiIiIiIiILJBZR0qdPXsWfn5+8PPzAwBMnDgRfn5+mDlzpjnDokJII6uRaA3ICsOk1EMbFzxQueKhjcurFkm/TCGSk1JqScLUTWfx44nwTO3rWXwinjxX41l8oilCJyIiIiIiIiqUzDpSqmXLlhAi/TuhEZlCkkiCQgZkK90pn1xXapd7Czy3soeD5gXev7fdYBunGBsM2C0jrBFgDQ3O33kG/8Y+Ge6r46JjiIxNgIejLU5Na2Py10JERERERERUGLCmFFmERG0irLSAVpH29D3pjecahRVKPxAoFgnMezkbdR9ty90giYiIiIiIiCwI775HFkGr0dWUSu+Uf31XPgCQFcnrSq9m4bWJ2Qrg8wz31bSiK6JfJMLZ3iab0RIREREREREVfkxKkWVISkSsYw1ElmgOJJ4wuooEAWGQlEoeVaV4deM9OZMzTRf0rp2jUImIiIiIiIgsAafvkUXQJmnwwKM7ZPlp2iu9Ud9Mq7ACIEGZqFssoM1sZoqIiIiIiIiI0sWkFFkEWZOEhKSzSNRcTXMdCW8mpZJ/PaySXre/SNTkToBEREREREREFoZJKbIIQqOBVn6YsuXNNaAUSYYt0qukVOLrKX3PXybkUoREREREREREloU1pcgiCI02xTMJCqGFlVADkF+1CECpNMhVaV8lpawTX7e9iH0GFCua7r7GbbyAp/GJcClig0X9/Ez0CoiIiIiIiIgKFyalqFCTZYHPdl2B00tdZil51JMCSljJ8a/LmisUkGxsAPXrbTVWdohxrgOrxHOQkTysMCE+NsN9/nXrKSJjE+DhaGvCV0JERERERERUuHD6HhVqUXEJKHtpEWyTEg3aFQp7WLm5Aa/qRlmrbGGncjZYR2tli4fub0O2eQu6GXzq59F5EDURERERERFR4ceRUlSoxT++i9aaY/hN42TQrlC44a3uTbDO3hkV6jeEJEnYOvagwToa7T1otJFQWXlALQG2Akh8EZ3hPg983AJCCEiSlOG6RERERERERJaKSSkq1F7EPoYTAKGxM2iXJQX83u5q0CYZ/XXQIFE8xvziEnrGAQkRkVCGP0U9H5c09+mg4q8VERERERERUUY4fY8KNXXMYwCA0KgM2oVQp1q3hlcpKBUOsFKWMFwgFIiVJSwvrkD1mz/g+oZJePo89fZERERERERElHlMSlGhlhj3KiklGyalIOJTrettn4iWsc9R8/lDg3ZZYQWXWEASAs4iBs2STuBR2D+5FjMRERERERGRJeA8IyrU5Pgnyf/QWgMAJKGFElrYJd4HAPxw7BbiEjQoamuFd0uVRhFNCOIlBwDWr3oQ0Cok+P8m42w1CXLp5ExuzOOHqfals/fyA7xM0sLOWom3a5TMvRdHREREREREVIAxKUWFmnj5FHetgSRhDQnJSSkb+SU0r5b/cCwMkbEJ8HC0xXuf9IBISoK1VxlgxVJ9H1pJhoAEn/sCz30ARxlIeHInzX3O3nlF3yeTUkRERERERETGcfoeFWrqhCh85q4E5OSRT8JKCcnODlYl3FOtq7Cxgcv/DYRTjaoG7VpoIENCsVjg2asb6iVGR+D8nWfQyiLXXwMRERERERFRYcSRUlSoPdZEwVEtYJMoIUkCrO1dUayMExq+2z/NbWztbQ2eCyTiYcluKBZ9Do80d2FrBVSM2IGktbtxpOFstG7f3WD9j9tX0k/fK6i0soBSIZk7DCIiIiIiIirEmJSiQi0u4Sne+11GuKuEJCvA3d0LvWdMS3cbazvbN1pkRNnG44VbPZwTEfilhISASC2KyglQhv4OvJGU6l23lIlfRd7affwsrv25HQ06v4dGNcqbOxwiIiIiIiIqpJiUokJN+ywOtmoJ8quJqtZabYbbKBRKWAk1BJTQShIABbRyFGKlKPT5A7hVSsZ1X+AtGSgaE4p9a7+EXYnyaN6xX66+ltx2LTIW/50/irfOTEJNAGE7zmPdkYZQetXFwB6dzR0eERERERERFTJMSlGhJWQtRIyMUJ+eUIubAICiRYpkatuGVaoi7sF9/PNcAyEn6dtf2HnBJyIKxyuq8YeXhP7Rj1Dt9s9IvGODPUXL4f7dW+jzzrsoamudTu/5T9SzGNz+YTDe0l7Tt5XVhqPs43DEPvkdLzu2h52qYL0mIiIiIiIiyt+YlKJCK+F5DKTY0nghbgJIro9UtIhTpratN+cLAMA//fvrtwUErpfwgRLV4fPvcbiGx2NnTQkdbASctImoEeKPGgBCdiYA8Y9Qtt7b8C5TERoZKOFkZ/LXZ0rXN89AlRQJqZQcRRwezvPDhfKj8Hav4bBT8W2DiIiIiIiIci5ffLpcsmQJvv76a0RGRqJ27dr47rvvUL9+fXOHRQVcxP1wyEmuANT6Nit7VZb6kIQMgdcFy2URBxlxSLJqDPtEFWqfOo0rjo/wwhEoXlrgSZKETRes8URUR/Fr/2JpkQmwhhZXm83As6tHUKP9+7gflwgP1+IoX8IZ8fGxcHR0NtErzrqwm6G4ufl/qKy+DJEEJL2UcD2yHBKfu8HF9RKSbKzg7hAPRwcN6t74Dqe2PEfd7h+iqENRs8VMREREREREhYPZk1LBwcGYOHEili9fjgYNGiAwMBAdOnRAaGgo3N3dzR0eFVDnDgfj76OzkYSGAACVFVBEskHNQT2y1E/tcpXxz82rsLOyw3Ntor491uoRAEDx/+3deVhTV/4/8PdNIGETUEAWRaDivuBWKcyMy8hX8NupVq1adQqipcsUN562Do4tWmdGa211ptradkD9o9XKjFrtt60/ilqX4gbSSq2OWsANkEUB2UKS8/sDSYkkYRESAu/X8+RRTs4953xyuJebT07utRkAW9UwuOXXwuXqLSiV3VDTTwbYAFUa4HhBFSS1DA7HYqEpVKDqziFI1fdRLlfgssIGtdpqOPSeDnnRGdj0mQxNTQkkyNB7zHQU/PcMAh+PwO0L36FbrwHo1t0Dd4vvoO/g0bh07Rf0fywAGlU15HI5FAo7lFVWo3s3B0hS03fNy72ei9yM/4fu5z+AdFeB0/eHoLpyLKrsfAFbAN2BAs1koAq4WgU43EqHzP4e+tXuQf7lHfjBZxIchv4vHLz7Y2BfXgydiIiIiIiIWk4SQghLDiA4OBiPP/44tmzZAgDQarXw9fXF4sWL8ec//9nktmVlZXBxcUFpaSmcnZ3bfGw7//waKovLTNQQJn5qgqHKBqfCUILBHFPWsI+mkxxt07bpuIw9+/Do1EJAqtZAra1fISVDzJatcHJ3bbTt8zvPorhCBTdHBf4V9Xij57UqFcrPnUWJSuCLbVshQUALmcmxHug5AVUyJey1NZh65+iDwWsBSQZJaCBJSghRAxvYQ0g2sNFooZHLINcKCAAamQStXAu5RoKNRgshyVBro4UEQK6RQcg0EJCjVq6BQitBLQFySUDSStDKAUkLqGQCCgDQApDLINNooZXLIGkBNQBbrQ0kuEEtAYAGEhquIJPVlUm2EEL94BWWAGgflGkgSTJI2rsQUECSKiFDNYSkgZBkkKCFQN2/kMkfrDTT/PqKySRAKyBJ4sHLKEHIJAgAMmgArRaSJIOQAAEZAAmSEA+20wCSBAlS3f4iySDqftLNiahrEZDqm5cgibrXQpIBAqJuhA+2ra8oQUBA1G2rG21zfvdFg3qSyd8NPc1IHra/jjCGLsriL71lByAZ+F9zKJzssHDzP9p6OADa/5zCWpjjdfD/8/+1S7tEBOSs75w3p+Fxg6h9tOcxo7nnFBZdKaVSqZCeno74+HhdmUwmQ1hYGNLS0hrVr6mpQU3Nr1/FKiszlTB6dOU3SlCrqWzXPqj9OcicDCakABhMRDUkUyjgEvobuAD4n5xsOPfujZ+OpyP36n/Rq98AXL2UDoWNA1TqKghoAQm/JqIakupu/yckOQTUgCRHLVQAVFA/+HZgraxBfU1dPqm2/puD2rp/1A1zHmpApf+07j+SBtBdnl3z0L+o/0LjfaNx/5pmaZhwISKyLFVFbdOViIiIiMhqWDQpVVRUBI1GA09PT71yT09PXLp0qVH9devWYc2aNeYaHpTOdpDK2+gNeSd9X9/aT7vbmySXY/CECejp7g7/4FFt0uaQBc8BAHzDJurKKrJz4NDHFyWXs6GqqISTrzcufJGCoJn/ix8PpqB7b29ohBq56T9gcPj/IOOL/4Pv0CG4dfUKVJX34eEfgJwLWfAbMgQ5WT/A0dkVQqtF+b276OnTG4XXc+HQ0wPV90ohIGCjtMX9khK4urnj/t1SyJQ2kASgrq2FnaMjasruw9beDqqqKkASkNsqoampgUyphLa6GnKlLTTQQAst7OztUF1eAf9RQ3Hz4hXYuzjAzsUJxdm3MGTib/HTkWPw7P8YyvPuQF1di579/XEj8xLc+vZB8bUbkKCEZCtQW6GFraMc2poaSDI5hFYLIbSQ5DIIVTVgYwto5bqFQUIrIMkkCC0AWd36JEkrHqzFktWtIHqwalCCFg+WUAFaASGT6ZJyQhJ1K6iAB6um6ld01W1Zn0+ThICQxINVUXXrqsSDTR6kCnWb/LoqrEF5Q40WUDV/pV/7s1D/lg6buhS5ncWvOkBEREREbciqzu7i4+MRFxen+7msrAy+vr7t1l/Mh1vbrW3qHBwD/AEAboMDdWWhL84DAIREz9KVDZk8AQDgP2owAMDw+qz57TDC1vvdnOcsPQQiIiIiIiLqxCyalHJ3d4dcLkdBQYFeeUFBAby8vBrVVyqVUCpbdvc0IiIiIiIiIiLqeGRNV2k/CoUCo0ePRmpqqq5Mq9UiNTUVISEhFhwZdRXP7zyL6R+cxPM7z7ZZmwlfZGHZ7vNI+CKrzdokIiIiIiIi6mws/vW9uLg4REVFYcyYMRg7diw2b96MiooKREdHW3po1AVk3SpDflk1vJzt2qzNQz8V6NpcM21om7VLRERERERE1JlYPCk1Z84cFBYW4s0330R+fj5GjBiBb775ptHFz4mIiIiIiIiIqPOweFIKAGJjYxEbG2vpYRC1ieSXQqDRCshlHeuOhEREREREREQdSYdIShF1Jr49HCw9BCIiIiIiIqIOz6IXOiciIiIiIiIioq6JSSkiIiKiDmrr1q3w9/eHnZ0dgoODcebMGZP1k5OTMXDgQNjZ2WHYsGH46quvzDRSIiIiopZjUoqojaVdK8Z3/y1E2rViSw+FiIis2Oeff464uDgkJCQgIyMDQUFBCA8Px507dwzW//777zF37lwsWrQI58+fx9NPP42nn34aWVlZZh45ERERUfMwKUXUxpZ/nomopDNY/nmmpYdCRERW7L333kNMTAyio6MxePBgbNu2DQ4ODkhKSjJY/x//+AciIiLw2muvYdCgQVi7di1GjRqFLVu2mHnkRERERM1j1Rc6F0IAAMrKyiw8ErJW6uoKaGtqoK7WtNnvUXu0SURE7av+eF1/bmFpKpUK6enpiI+P15XJZDKEhYUhLS3N4DZpaWmIi4vTKwsPD8f+/fuN9lNTU4Oamhrdz6WlpQDa99xKW1PZbm0TdXWd9dyTxw2i9tGex4zmnltZdVKqvLwcAODr62vhkZC1uwHAZW3Hb5OIiNpXeXk5XFxcLD0MFBUVQaPRwNPTU6/c09MTly5dMrhNfn6+wfr5+flG+1m3bh3WrFnTqJznVkTWyWWzpUdARNbEHMeMps6trDop5ePjgxs3bqBbt26QJKlF25aVlcHX1xc3btyAs7NzO42w42HcXSfurhgz0DXj7ooxA10z7q4YM2CeuIUQKC8vh4+PT7u031HFx8frra7SarUoKSmBm5tbi8+tqPPpqsccImodHjOooeaeW1l1Ukomk6F3796P1Iazs3OX3GEYd9fRFWMGumbcXTFmoGvG3RVjBto/7o6wQqqeu7s75HI5CgoK9MoLCgrg5eVlcBsvL68W1QcApVIJpVKpV+bq6tq6QVOn1VWPOUTUOjxmUL3mnFvxQudEREREHYxCocDo0aORmpqqK9NqtUhNTUVISIjBbUJCQvTqA0BKSorR+kRERESWZtUrpYiIiIg6q7i4OERFRWHMmDEYO3YsNm/ejIqKCkRHRwMAIiMj0atXL6xbtw4AsHTpUowfPx7vvvsunnzySezevRvnzp3Dxx9/bMkwiIiIiIzqskkppVKJhISERkvWOzvG3XXi7ooxA10z7q4YM9A14+6KMQNdN+45c+agsLAQb775JvLz8zFixAh88803uouZX79+HTLZr4veQ0ND8dlnn2HVqlVYuXIl+vXrh/3792Po0KGWCoGsXFfd94iodXjMoNaQREe59zEREREREREREXUZvKYUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZmeVSaljx47hqaeego+PDyRJwv79+/We37t3LyZPngw3NzdIkoTMzMxGbVRXV+OVV16Bm5sbnJycMHPmTBQUFJjsVwiBN998E97e3rC3t0dYWBiuXLnShpGZ9qhxl5SUYPHixRgwYADs7e3Rp08fLFmyBKWlpSb7XbBgASRJ0ntERES0cXSGtcVcT5gwodH4X3rpJZP9Wvtc5+TkNIq5/pGcnGy0X0vONWA67traWqxYsQLDhg2Do6MjfHx8EBkZidu3b+u1UVJSgvnz58PZ2Rmurq5YtGgR7t+/b7Lf1hwP2sqjxpyTk4NFixYhICAA9vb26Nu3LxISEqBSqUz225r9oi21xVz7+/s3imH9+vUm+7XmuT569KjR/frs2bNG++3Icw0Aq1evxsCBA+Ho6Iju3bsjLCwMp0+f1qtjbfs1UUdy9OhR+Pv7W6RvSZKQk5Njkb6JqP2MGzcOn332me7n1atXY8GCBRYZy8PHuKKiIvTs2RM3b960yHio5awyKVVRUYGgoCBs3brV6PO//e1v8fbbbxttY/ny5Th48CCSk5Px3Xff4fbt25gxY4bJfjds2IB//vOf2LZtG06fPg1HR0eEh4ejurr6keJprkeN+/bt27h9+zY2btyIrKws7NixA9988w0WLVrUZN8RERHIy8vTPXbt2vVIsTRXW8w1AMTExOiNf8OGDSbrW/tc+/r66sWbl5eHNWvWwMnJCVOmTDHZt6XmGjAdd2VlJTIyMvDGG28gIyMDe/fuxeXLlzF16lS9evPnz8dPP/2ElJQUfPnllzh27BheeOEFk/225njQVh415kuXLkGr1eKjjz7CTz/9hE2bNmHbtm1YuXJlk323dL9oS20x1wDw1ltv6cWwePFik/1a81yHhoY22q+ff/55BAQEYMyYMSb77qhzDQD9+/fHli1bcOHCBZw4cQL+/v6YPHkyCgsLdXWsbb8msgYvvvii0Q+rVq9erUtiy+Vy+Pr64oUXXkBJSYnJBHn94+jRo+YPiIjalKEPkgDgwIEDKCgowLPPPtusdgYOHAhbW1vk5+c3eq7hB2d2dnbo378/1q1bByGE3nHI2MMQd3d3REZGIiEhoUXxkgUJKwdA7Nu3z+Bz2dnZAoA4f/68Xvm9e/eEra2tSE5O1pX9/PPPAoBIS0sz2JZWqxVeXl7inXfe0WtHqVSKXbt2PXIcLdWauA3Zs2ePUCgUora21midqKgoMW3atNYNtA21Nubx48eLpUuXNrufzjrXI0aMEAsXLjRZp6PMtRCm46535swZAUDk5uYKIYS4ePGiACDOnj2rq/P1118LSZLErVu3DLbRmuNBe2lNzIZs2LBBBAQEmGynpftFe2pt3H5+fmLTpk3N7qezzbVKpRIeHh7irbfeMtmOtc11aWmpACC+/fZbIYT179dElnbkyBHh5+enV1ZRUSGcnZ3Fc889JyIiIhptk5CQIIYMGSLy8vLEzZs3RUpKivD19RWzZ88WNTU1Ii8vT/eYPXu2iIiI0CurqakRQtTt89nZ2WaIkojaSsP919Df7EmTJol169bplSUkJIioqKhGdY8fPy7c3d3FlClTxPr16xs9P378eBETEyPy8vJETk6OSEpKEjY2NuKDDz4Q5eXleseV3r17i7feekuvTAjDx7isrCyhVCpFcXFx614EMiurXCn1qNLT01FbW4uwsDBd2cCBA9GnTx+kpaUZ3CY7Oxv5+fl627i4uCA4ONjoNtagtLQUzs7OsLGxMVnv6NGj6NmzJwYMGICXX34ZxcXFZhph2/j000/h7u6OoUOHIj4+HpWVlUbrdsa5Tk9PR2ZmZrNWxVnTXJeWlkKSJLi6ugIA0tLS4OrqqrdqJCwsDDKZrNHXgeq15nhgSQ/HbKxOjx49mmyrJfuFpRmLe/369XBzc8PIkSPxzjvvQK1WG22js831gQMHUFxcjOjo6Cbbspa5VqlU+Pjjj+Hi4oKgoCAAXWO/JjK35ORk9OrVC2+//TZSU1Nx48aNRnVsbGzg5eWFXr16ISwsDLNmzUJKSgoUCgW8vLx0D3t7eyiVSr0yhUJhgaiIuq5///vfGDZsGOzt7eHm5oawsDBUVFRAo9EgLi4Orq6ucHNzw+uvv46oqCg8/fTTum0nTJiA2NhYLFu2DO7u7ggPD9d9HW769OmQJEn3c2FhIQ4fPoynnnqqWeNKTEzErFmzEBUVhaSkJIN1HBwc4OXlBT8/P0RHR2P48OFISUmBk5OT3nFFLpejW7duemXGDBkyBD4+Pti3b1+zxkmWZToT0Unl5+dDoVA0OtH39PQ0uKywfpv6Os3dpqMrKirC2rVrm/wKREREBGbMmIGAgABcu3YNK1euxJQpU5CWlga5XG6m0bbevHnz4OfnBx8fH/z4449YsWIFLl++jL179xqs3xnnOjExEYMGDUJoaKjJetY019XV1VixYgXmzp0LZ2dnAHVz17NnT716NjY26NGjh8l9u6XHA0sxFPPDrl69ivfffx8bN2402VZL9wtLMhb3kiVLMGrUKPTo0QPff/894uPjkZeXh/fee89gO51trhMTExEeHo7evXubbMsa5vrLL7/Es88+i8rKSnh7eyMlJQXu7u4AOv9+TWQJiYmJmD9/Pry9vTFu3Djs2LEDb7zxhtH6OTk5OHToEJNNRB1QXl4e5s6diw0bNmD69OkoLy/H8ePHIYTAu+++ix07diApKQmDBg3Cu+++i3379uH3v/+9Xhs7d+7Eyy+/jJMnTwIAevTogZ49e2L79u2IiIjQvQ84ceIEHBwcMGjQoCbHVV5ejuTkZBw6dAijRo1CTEwMjh8/jt/97ncG6wshcOLECVy6dAn9+vV7xFcFGDt2LI4fP96sD+XJsrpkUoqAsrIyPPnkkxg8eDBWr15tsm7D7wsPGzYMw4cPR9++fXH06FFMmjSpnUf66Bom3YYNGwZvb29MmjQJ165dQ9++fS04MvOoqqrCZ599ZvJks561zHVtbS1mz54NIQQ+/PBDSw/HLJoT861btxAREYFZs2YhJibGZHvWsl+YijsuLk73/+HDh0OhUODFF1/EunXroFQqzT3UNtOcub558yYOHTqEPXv2NNmeNcz1xIkTkZmZiaKiInzyySeYPXs2Tp8+3SgZRUSP7sqVKzhx4gR27twJoO6abWvXrsWqVav0rtFy4cIFODk5QaPR6K6paSzpT0SWk5eXB7VajRkzZsDPzw9A3d97ANi8eTPi4+N111Tctm0bDh061KiNfv36GbzepKurq96KpNzcXHh6ekIma/oLV7t374aHhwdCQ0MhSRKmT5+OxMTERkmpDz74AP/617+gUqlQW1sLOzs7LFmypPkvgBE+Pj44f/78I7dD7a9Lfn3Py8sLKpUK9+7d0ysvKCgwugywvvzhO/eY2qajKi8vR0REBLp164Z9+/bB1ta2Rds/9thjcHd3x9WrV9tphO0rODgYAIyOvzPNNVC3nLeyshKRkZEt3rYjznX9G/bc3FykpKTorSLx8vLCnTt39Oqr1WqUlJSY3LdbejwwN1Mx17t9+zYmTpyI0NBQfPzxxy3uo6n9whKaE3dDwcHBUKvVRu/01FnmGgC2b98ONzc3gxd/b0pHnGtHR0cEBgbiiSeeQGJiImxsbJCYmAig8+7XRJaSlJSEkJAQBAQEAABmzpyJvLw8HD58WK/egAEDkJmZibNnz2LFihUIDw9v8mYSRGR+QUFBmDRpEoYNG4ZZs2bhk08+wd27d1FaWoq8vDzd332gbqWxoZujjB49ull9VVVVwc7Orll1k5KSMG/ePF2ye/78+UhOTkZ5eblevfnz5yMzMxMnT57ElClT8Je//KXJb3c0h729fYe9XAHp65JJqdGjR8PW1hapqam6ssuXL+P69esICQkxuE1AQAC8vLz0tikrK8Pp06eNbtMRlZWVYfLkyVAoFDhw4ECzDyoN3bx5E8XFxfD29m6HEba/zMxMADA6/s4y1/USExMxdepUeHh4tHjbjjbX9W/Yr1y5gm+//RZubm56z4eEhODevXtIT0/XlR0+fBharVbvD3JDrTkemFNTMQN1K6QmTJiA0aNHY/v27c369OphTe0X5tacuB+WmZkJmUxmdHVNZ5hroG55+/bt2xEZGdniDxWAjjfXhmi1WtTU1ADonPs1kaVoNBrs3LkT8+fP15U5OzvjD3/4Q6PrvSgUCgQGBmLo0KFYv3495HI51qxZY+4hE1ET5HI5UlJS8PXXX2Pw4MF4//33MWDAAKMf0hni6OjYrHru7u64e/duk/UuXryIU6dO6R1rJk2ahG7dumH37t16dV1cXBAYGIjHH38ce/bswZYtW/Dtt982e+zGlJSUtOr9D5mfVSal7t+/j8zMTN2JdXZ2NjIzM3H9+nUAdb+AmZmZuHjxIoC6E9HMzEzddSRcXFywaNEixMXF4ciRI0hPT0d0dDRCQkLwxBNP6PoZOHCg7uJokiRh2bJl+Otf/4oDBw7gwoULiIyMhI+Pj96F4jpy3PUJqYqKCiQmJqKsrAz5+fnIz8+HRqMxGPf9+/fx2muv4dSpU8jJyUFqaiqmTZuGwMBAhIeHd/iYr127hrVr1yI9PR05OTk4cOAAIiMjMW7cOAwfPtxgzJ1hrutdvXoVx44dw/PPP2+wn4401/VjMBZ3bW0tnnnmGZw7dw6ffvopNBqN7vdXpVIBAAYNGoSIiAjExMTgzJkzOHnyJGJjY/Hss8/Cx8cHQF0CZ+DAgThz5gyA5h8POmrM9QmpPn36YOPGjSgsLNTVqfdwzM3dLzpy3Glpadi8eTN++OEH/PLLL/j000+xfPly/PGPf0T37t0Nxm3tc13v8OHDyM7ONrhfW9tcV1RUYOXKlTh16hRyc3ORnp6OhQsX4tatW5g1axYA69yviTqqr776CoWFhZg9e7Ze+bx587B3795GqwsbWrVqFTZu3Ijbt2+38yiJqKUkScJvfvMbrFmzBufPn4dCoUBqaiq8vb31bgqiVqv1PuQxxdbWVu89IgCMHDkS+fn5TSamEhMTERQUhMGDB+vK5HI55syZo1sJbYiTkxOWLl2KV199FUKIZo3TmKysLIwcOfKR2iAzsdyN/1rvyJEjAkCjR/1tKLdv327w+YSEBF0bVVVV4k9/+pPo3r27cHBwENOnT9fdVrIeALF9+3bdz1qtVrzxxhvC09NTKJVKMWnSJHH58mUzRFznUeM2tj0eul1vw7grKyvF5MmThYeHh7C1tRV+fn4iJiZG5OfnW0XM169fF+PGjRM9evQQSqVSBAYGitdee02Ulpbq9dPZ5rpefHy88PX1FRqNxmA/HWmuhTAdd3Z2ttHf3yNHjujaKC4uFnPnzhVOTk7C2dlZREdHi/Lyct3z9e003KY5x4OOGrOx34WGh/eHY27uftGR405PTxfBwcHCxcVF2NnZiUGDBom///3vorq62mjcQlj3XNebO3euCA0NNdiHtc11VVWVmD59uvDx8REKhUJ4e3uLqVOnijNnzui1YW37NVFH0vB26dOmTRPBwcHiwoULeo9z584JOzs7sWXLFiFE3e3dg4KCGrU1duxY8corr+iVRUVFiWnTphns++FzTCJqe6dOnRJ/+9vfxNmzZ0Vubq7Ys2ePUCgU4quvvhLr168XPXr0EPv27RM///yziImJEd26ddPbZ8ePHy+WLl3aqN1+/fqJl19+WeTl5YmSkhIhhBBqtVp4eHiIgwcP6tVNSEjQvU9RqVTCw8NDxMbGNjrW7NixQwAQWVlZRvsuLi4W9vb2Ijk5Wa/cz89PbNq0qdE4Gx7j6lVUVAh7e3tx7Nixpl9AsjhJiEdMQRIRERERUYd09OhRLFiwAKdPn0bv3r2hVquN1h05ciQyMjKwevVq7N+/X7fCsd7u3buxYMECXLlyBb6+vgCABQsW4N69e9i/f3+j9iRJQnZ2tu528kTU9n7++WcsX74cGRkZKCsrg5+fHxYvXozY2Fio1Wq8+uqruss7LFy4EEVFRSgtLdXtsxMmTMCIESOwefNmvXYPHjyIuLg45OTkoFevXrqvA65YsQLXr1/Hrl27dHVXr16NnJwc7NixA//5z3/wzDPPmBzz8uXL8d577xnt+6WXXsKJEyfw448/6i5L4e/vj2XLlmHZsmV6deuPcQ2/rrhr1y6sWbMGly5davbrSJbDpBQRERERUSdl6A2buTApRdTxmEokN0d+fj6GDBmCjIwM3d3+GialzM3QMe6JJ57AkiVLMG/ePLOPh1rOKq8pRURERERERETm5eXlhcTERN21bjuaoqIizJgxA3PnzrX0UKiZbCw9ACIiIiIiIiKyDua6+VNruLu74/XXX7f0MKgFmJQiIiIiIuqk6q/DYgkJCQlwdXW1SN9EZFh7fMVuwoQJJu/e2Z4seYyjtsFrShERERERERERkdnxmlJERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRNQpLFiwAJIkQZIk2NraIiAgAK+//jq2bdumKzf2yMnJsfTwiYiIiIiIuhwmpYio04iIiEBeXh5++eUXbNq0CR999BGys7ORl5ene4SEhCAmJkavzNfX19JDJyIiIiIi6nJsLD0AIqK2olQq4eXlBQDw9fVFWFgYUlJS8Pbbb+vqKBQKODg46OoRERERERGRZXClFBF1SllZWfj++++hUCgsPRQiIiIiIiIygCuliKjT+PLLL+Hk5AS1Wo2amhrIZDJs2bLF0sMiIiIiIiIiA5iUIqJOY+LEifjwww9RUVGBTZs2wcbGBjNnzrT0sIiIiIiIiMgAfn2PiDoNR0dHBAYGIigoCElJSTh9+jQSExMtPSwiIiIiIiIygEkpIuqUZDIZVq5ciVWrVqGqqsrSwyEiIiIiIqKHMClFRJ3WrFmzIJfLsXXrVksPhYiIiIiIiB7CpBQRdVo2NjaIjY3Fhg0bUFFRYenhEBERERERUQOSEEJYehBERERERERERNS1cKUUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZ/X9hXEeTspwUWgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rt_result = feat_gen.feature_rt_prediction_difference(\n", + " precursor_fragments, deeplc_preds, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "c99a04e9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:matplotlib.category:Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n", + "INFO:matplotlib.category:Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQkAAAGGCAYAAADYVwfrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlbRJREFUeJzs3Xd8U9X/x/F3uksnUMqGspGtIMjeVEAUXKgoZYioICCigspysJSlIksFHMjGLQgIIoJfZSmgLGXJKLulLV3J/f3Br5F0piNN076ej0e0OTn33k/uvcm9fHKGyTAMQwAAAAAAAACKLDdnBwAAAAAAAADAuUgSAgAAAAAAAEUcSUIAAAAAAACgiCNJCAAAAAAAABRxJAkBAAAAAACAIo4kIQAAAAAAAFDEkSQEAAAAAAAAijiShAAAAAAAAEARR5IQAAAAAAAAKOJIEqJQ+/jjj1W7dm15enoqODjY2eEUWhMmTJDJZNLFixedHQoKiH79+iksLMzuuv7+/o4NCAAAF7VlyxaZTCZt2bIlT9drMpk0YcKEPF1nQd6uI4SFhalfv3521W3Xrp3atWvn0HgAILdIEiJbFi9eLJPJZPMIDQ1V+/bt9d133zlsu3FxcZowYUK2bo4OHjyofv36qVq1alq4cKEWLFjgsPhcyZ9//qkJEybo+PHjzg6lwJs0aZI+//xzZ4dRKOTkM2yvdu3a2Xwn+fr6qkGDBpo1a5YsFoskpfneyujhiPgKm+3bt2vChAm6evWqs0MBgAIn9b2yh4eHypcvr379+un06dP5Hs+3335baBJyUsG/N+M+GxkpbJ9FFF4ezg4ArunVV19VlSpVZBiGIiMjtXjxYnXr1k1fffWV7rrrrjzfXlxcnCZOnChJdv8Ct2XLFlksFs2ePVvVq1fP85hc1Z9//qmJEyeqXbt2drf0KqomTZqk+++/Xz179nR2KC5n4cKF1gSdlLPPcHZUqFBBkydPliRdvHhRS5cu1bPPPqsLFy7ojTfe0Mcff2xT/6OPPtKGDRvSlN9yyy15Hlths337dk2cOFH9+vWjhTYAZCDlXjk+Pl6//PKLFi9erG3btmn//v3y8fHJtzi+/fZbzZkzJ93kxPXr1+Xhkf//HMzNdgvavdmhQ4fk5vZfu5vM7rO///77fI4OBUlmn0WgICFJiBzp2rWrmjRpYn0+cOBAlS5dWp999plDkoQ5cf78eUnK8h+xhmEoPj5evr6++RAVUrNYLEpMTMzXG2ZX4OrnpaenZ75uLygoSI8++qj1+ZNPPqnatWvrnXfe0auvvmrzmiT98ssv2rBhQ5pyAADyws33yo8//rhCQkI0depUffnll3rwwQedHN0Nzrr3Kkz3fN7e3nbX9fLycmAkzhMfHy8vLy+bZCkA18UnGXkiODhYvr6+aX4VtFgsmjVrlurWrSsfHx+VLl1agwcP1pUrV2zq7dy5U+Hh4QoJCZGvr6+qVKmiAQMGSJKOHz+uUqVKSZImTpxo7b6R2a8wYWFhGj9+vCSpVKlSNvXDwsJ01113af369WrSpIl8fX01f/58SdKiRYvUoUMHhYaGytvbW3Xq1NHcuXPTrN9isWjChAkqV66cihUrpvbt2+vPP/9MMy5JSpeTbdu2adiwYSpVqpSCg4M1ePBgJSYm6urVq+rbt6+KFy+u4sWL64UXXpBhGDnahynva9u2bWratKl8fHxUtWpVffTRRzbxPPDAA5Kk9u3b293F8uDBg3rwwQdVqlQp+fr6qlatWnr55ZfT1Lt69aq1dVFQUJD69++vuLg4mzomk0lDhw7Vp59+qrp168rb21vr1q2TJO3Zs0ddu3ZVYGCg/P391bFjR/3yyy82y+fFPn3rrbfUokULlSxZUr6+vmrcuLFWrVqVJs7Y2FgtWbLEup9uPrb2xCpJf/zxh9q2bStfX19VqFBBr7/+uhYtWiSTyWTTFSUvzsuUdWzZssW6jvr161uP75o1a1S/fn35+PiocePG2rNnT5p1pD6e7u7uevvtt61lFy9elJubm0qWLGmzX5966imVKVPG+vzmMQnt/QyfPn1aPXv2lL+/v0qVKqVRo0bJbDZnGmNGfHx8dPvtt+vatWvWHwxya8OGDWrVqpWCg4Pl7++vWrVq6aWXXrKpk5CQoPHjx6t69ery9vZWxYoV9cILLyghIcGm3vXr1zVs2DCFhIQoICBAd999t06fPp1mv6SM93n48GE9+uijCgoKUqlSpTR27FgZhqFTp07pnnvuUWBgoMqUKaPp06enidvemFI+m59//rnq1asnb29v1a1b1/r5TInn+eeflyRVqVLFeixTzmV79hEAFEWtW7eWJP3999825QcPHtT999+vEiVKyMfHR02aNNGXX36Z5fp++uknPfDAA6pUqZL1u/3ZZ5/V9evXrXX69eunOXPmSLIddiPFzdecVatWyWQy6ccff0yzrfnz58tkMmn//v25jjv1dqX/rnVHjx7N9D4yq3uz06dPa8CAASpdurT1Gvbhhx/abDtlfMcVK1bojTfeUIUKFeTj46OOHTvq6NGjNnWPHDmi++67T2XKlJGPj48qVKighx56SFFRUdY6N9/7Z3Wfnd6YhPZeo3N6fb35vrtWrVrWe8CtW7emqZud/bds2TK98sorKl++vIoVK6bo6OgMY1i2bJkaN26sgIAABQYGqn79+po9e7ZNnatXr2rEiBGqWLGivL29Vb16dU2dOtWmV4okXbp0SY899pgCAwMVHBysiIgI/f777zKZTFq8eLG1Xsp41ydPntRdd90lf39/lS9f3vp52Ldvnzp06CA/Pz9VrlxZS5cuTRO3PTEdP35cJpNJb731lhYsWKBq1arJ29tbt99+u3777TebeDL7LAIFCS0JkSNRUVG6ePGiDMPQ+fPn9c477ygmJiZNq5zBgwdr8eLF6t+/v4YNG6Zjx47p3Xff1Z49e/Tzzz/L09NT58+fV5cuXVSqVCmNHj1awcHBOn78uNasWSPpRpJv7ty5euqpp9SrVy/de++9kqQGDRpkGN+sWbP00Ucfae3atZo7d678/f1t6h86dEgPP/ywBg8erEGDBqlWrVqSpLlz56pu3bq6++675eHhoa+++kpPP/20LBaLhgwZYl1+zJgxmjZtmnr06KHw8HD9/vvvCg8PV3x8fLrxPPPMMypTpowmTpyoX375RQsWLFBwcLC2b9+uSpUqadKkSfr222/15ptvql69eurbt2+29mGKo0eP6v7779fAgQMVERGhDz/8UP369VPjxo1Vt25dtWnTRsOGDdPbb7+tl156ydq1MrMuln/88Ydat24tT09PPfHEEwoLC9Pff/+tr776Sm+88YZN3QcffFBVqlTR5MmTtXv3br3//vsKDQ3V1KlTber98MMPWrFihYYOHaqQkBCFhYXpwIEDat26tQIDA/XCCy/I09NT8+fPV7t27fTjjz+qWbNmebZPZ8+erbvvvlt9+vRRYmKili1bpgceeEBff/21unfvLunGpDePP/64mjZtqieeeEKSVK1aNUmyO9bTp09bbxLHjBkjPz8/vf/++xn+6pzb8zLlHHjkkUc0ePBgPfroo3rrrbfUo0cPzZs3Ty+99JKefvppSdLkyZP14IMPpukmc7Pg4GDVq1dPW7du1bBhwyRJ27Ztk8lk0uXLl/Xnn3+qbt26km78YyXlH0Cp2fMZNpvNCg8PV7NmzfTWW29p48aNmj59uqpVq6annnoq3fVmJeXGLS+6xB44cEB33XWXGjRooFdffVXe3t46evSofv75Z2sdi8Wiu+++W9u2bdMTTzyhW265Rfv27dPMmTN1+PBhmzGU+vXrpxUrVuixxx7THXfcoR9//NF67qWnd+/euuWWWzRlyhR98803ev3111WiRAnNnz9fHTp00NSpU/Xpp59q1KhRuv3229WmTZtsxyTdOL5r1qzR008/rYCAAL399tu67777dPLkSZUsWVL33nuvDh8+rM8++0wzZ85USEiIpBvH2J59BABFVcqPKcWLF7eWHThwQC1btlT58uU1evRo+fn5acWKFerZs6dWr16tXr16Zbi+lStXKi4uTk899ZRKliypX3/9Ve+8847+/fdfrVy5UtKNe8gzZ86kO7xGat27d5e/v79WrFihtm3b2ry2fPly1a1bV/Xq1ct13JnJ6j4ys3uzyMhI3XHHHdakWKlSpfTdd99p4MCBio6O1ogRI2y2NWXKFLm5uWnUqFGKiorStGnT1KdPH/3vf/+TJCUmJio8PFwJCQnWe87Tp0/r66+/1tWrVxUUFJQm/uzeZ9t7jc7t9fXHH3/U8uXLNWzYMHl7e+u9997TnXfeqV9//dV6TLO7/1577TV5eXlp1KhRSkhIyLCV5IYNG/Twww+rY8eO1uP4119/6eeff9bw4cMl3RiSpm3btjp9+rQGDx6sSpUqafv27RozZozOnj2rWbNmWfdXjx499Ouvv+qpp55S7dq19cUXXygiIiLdbZvNZnXt2lVt2rTRtGnT9Omnn2ro0KHy8/PTyy+/rD59+ujee+/VvHnz1LdvXzVv3lxVqlTJVkwpli5dqmvXrmnw4MEymUyaNm2a7r33Xv3zzz/y9PTM1mcRcDoDyIZFixYZktI8vL29jcWLF9vU/emnnwxJxqeffmpTvm7dOpvytWvXGpKM3377LcPtXrhwwZBkjB8/3u5Yx48fb0gyLly4YFNeuXJlQ5Kxbt26NMvExcWlKQsPDzeqVq1qfX7u3DnDw8PD6Nmzp029CRMmGJKMiIgIa1nK/goPDzcsFou1vHnz5obJZDKefPJJa1lycrJRoUIFo23bttYye/fhze9r69at1rLz588b3t7exnPPPWctW7lypSHJ2Lx5c5r3mp42bdoYAQEBxokTJ2zKb34/Kft6wIABNnV69epllCxZ0qZMkuHm5mYcOHDAprxnz56Gl5eX8ffff1vLzpw5YwQEBBht2rSxluV2nxpG2uOcmJho1KtXz+jQoYNNuZ+fn83xzG6szzzzjGEymYw9e/ZYyy5dumSUKFHCkGQcO3bMWp7b8/LmdWzfvt1atn79ekOS4evra3MM58+fb9d5MGTIEKN06dLW5yNHjjTatGljhIaGGnPnzrW+J5PJZMyePdtaLyIiwqhcubL1eWaf4YiICEOS8eqrr9qU33rrrUbjxo0zjc8wDKNt27ZG7dq1jQsXLhgXLlwwDh48aDz//POGJKN79+4Zvq/sXAJnzpyZ7vfJzT7++GPDzc3N+Omnn2zK582bZ0gyfv75Z8MwDGPXrl2GJGPEiBE29fr165dmH6V8tp544glrWcp5bTKZjClTpljLr1y5Yvj6+tqcs/bGZBg3PpteXl7G0aNHrWW///67Icl45513rGVvvvlmmvPX3n0EAIVdyn3Kxo0bjQsXLhinTp0yVq1aZZQqVcrw9vY2Tp06Za3bsWNHo379+kZ8fLy1zGKxGC1atDBq1KhhLdu8eXOaa3Z69waTJ082TCaTzfU+s+td6mvOww8/bISGhhrJycnWsrNnzxpubm4212h7485IRtc6e+4jM7o3GzhwoFG2bFnj4sWLNuUPPfSQERQUZN1fKfvylltuMRISEqz1Zs+ebUgy9u3bZxiGYezZs8eQZKxcuTLT91K5cmWbeDK7z27btq3NPam91+jcXF9T/q22c+dOa9mJEycMHx8fo1evXtay7O6/qlWrpnsOpjZ8+HAjMDDQ5pxK7bXXXjP8/PyMw4cP25SPHj3acHd3N06ePGkYhmGsXr3akGTMmjXLWsdsNhsdOnQwJBmLFi2ylqfcW06aNMlalnKfZDKZjGXLllnLDx48mOactDemY8eOGZKMkiVLGpcvX7bW++KLLwxJxldffWUty+69J+AsdDdGjsyZM0cbNmzQhg0b9Mknn6h9+/Z6/PHHra3/pBu/cAYFBalz5866ePGi9dG4cWP5+/tr8+bNkv4bM/Drr79WUlJSvsRfpUoVhYeHpym/efy3lNaSbdu21T///GPtWrBp0yYlJydbW2SleOaZZzLc3sCBA22alDdr1kyGYWjgwIHWMnd3dzVp0kT//POPtczefZiiTp06Nq25SpUqpVq1atmsMzsuXLigrVu3asCAAapUqZLNa+k1kX/yySdtnrdu3VqXLl1K0wWhbdu2qlOnjvW52WzW999/r549e6pq1arW8rJly+qRRx7Rtm3b0qwjp/tUsj3OV65cUVRUlFq3bq3du3dnuC9yEuu6devUvHlzNWrUyFqvRIkS6tOnT7rrzs15maJOnTpq3ry59XlKq8YOHTrYHMOU8qzOjdatWysyMlKHDh2SdKPFYJs2bdS6dWv99NNPkm60PjMMI8OWhPZK7/yx99w9ePCgSpUqpVKlSql27dp68803dffdd9t0PcmNlO+pL774Ik3XlxQrV67ULbfcotq1a9t8Xjt06CBJ1s9rSvfd7HyHPP7449a/U87r1Od7cHBwms+7vTGl6NSpk7VVhnSjtWdgYKBdx8GefQQARUWnTp1UqlQpVaxYUffff7/8/Pz05ZdfqkKFCpKky5cv64cfftCDDz6oa9euWb+fL126pPDwcB05ciTT2ZBvvjeIjY3VxYsX1aJFCxmGkeVwIhnp3bu3zp8/bzMMzapVq2SxWNS7d+88iTsz9t5HpmYYhlavXq0ePXrIMAyb6114eLiioqLS3OP179/fpvVbyj1MyvUupaXg+vXr0wydk1fsvUbn9vravHlzNW7c2Pq8UqVKuueee7R+/XqZzeYc7b+IiAi7xs0ODg5WbGysNmzYkGGdlStXqnXr1ipevLjNtjt16iSz2WztGr1u3Tp5enpq0KBB1mXd3NzS9Kq52c33Tyn3SX5+fjbjgtaqVUvBwcFp7p/siSlF7969bVoJpz6fAFdSaJKEW7duVY8ePVSuXDmZTKY0XaiykjIWRuqHn5+fYwJ2cU2bNlWnTp3UqVMn9enTR998843q1KmjoUOHKjExUdKNcTyioqIUGhpq/cd7yiMmJsY6Tljbtm113333aeLEiQoJCdE999yjRYsWpRmLIz3Xr1/XuXPnbB72SGlKntrPP/+sTp06yc/PT8HBwSpVqpR1vI+UZMyJEyckKc2MySVKlLC5ONwsdYIt5cajYsWKacpvHmvQ3n2Y0XakG91aUo9faK+UC1tKV4SspN5+yv5Ivf3U+//ChQuKi4uzdq+92S233CKLxaJTp05lui1796l0IyF9xx13yMfHRyVKlLB2h02dcEtPdmI9ceJEujNrZzTbdm7OyxTZ2S9S2mOTWspNzk8//aTY2Fjt2bNHrVu3Vps2baxJwp9++kmBgYFq2LBhpuvKjI+Pj3XcwhTZOXfDwsK0YcMGrV+/Xu+9957Kly+vCxcu5Nng6L1791bLli31+OOPq3Tp0nrooYe0YsUKm5v1I0eO6MCBA2k+qzVr1pT032RKJ06ckJubW5rjndks7OkdVx8fH2t335vLU3+H2BNTRtuR7D8O9uwjACgqUn5QX7Vqlbp166aLFy/aDDdy9OhRGYahsWPHpvmOThlXO7MxdU+ePKl+/fqpRIkS1rF8U7oJ23M/k54777xTQUFBWr58ubVs+fLlatSokfW6kdu4M2PvfWRqFy5c0NWrV7VgwYI0MfXv3z/dmLLaVpUqVTRy5Ei9//77CgkJUXh4uObMmZPjfZsee6/Rub2+1qhRI01ZzZo1FRcXpwsXLuRo/2V0z5ra008/rZo1a6pr166qUKGCBgwYYDPWccp+WLduXZptd+rUyWbbJ06cUNmyZVWsWDGb5TO6f0rv3jIoKEgVKlRI09ghvfsne2JKkdNzFyiICs2YhLGxsWrYsKEGDBhgHe8qO0aNGpXm16uOHTvq9ttvz6sQCzU3Nze1b99es2fP1pEjR1S3bl1ZLBaFhobq008/TXeZlC9tk8mkVatW6ZdfftFXX32l9evXa8CAAZo+fbp++eUX+fv7Z7jd5cuXWy9eKYxUk1SkJ71fvv7++2917NhRtWvX1owZM1SxYkV5eXnp22+/1cyZM3P1D113d3e7y2+O3959mNV27NknecHe7efFjL053ac//fST7r77brVp00bvvfeeypYtK09PTy1atCjdQYvzU16cl9nZL1LW50a5cuVUpUoVbd26VWFhYTIMQ82bN1epUqU0fPhwnThxQj/99JNatGiRq1ntMorPXn5+ftYbN0lq2bKlbrvtNr300ks2E6/klK+vr7Zu3arNmzfrm2++0bp167R8+XJ16NBB33//vdzd3WWxWFS/fn3NmDEj3XWkTtRmR3r7x55jmt2YcvMdYs8+AoCiomnTptbZjXv27KlWrVrpkUce0aFDh+Tv72+9fo8aNSrdXgRSxskPs9mszp076/Lly3rxxRdVu3Zt+fn56fTp0+rXr1+O71m9vb3Vs2dPrV27Vu+9954iIyP1888/a9KkSdY6uYk7Kzm9BqXE9Oijj2Y4Pl3qsczt2db06dPVr18/ffHFF/r+++81bNgwTZ48Wb/88ou1RWhu2HuNdvT1NSf7z957+dDQUO3du1fr16/Xd999p++++06LFi1S3759tWTJEuv2O3furBdeeCHddaQkTbMrN/fE2Y3J2f8GA/JSoUkSdu3aVV27ds3w9YSEBL388sv67LPPdPXqVdWrV09Tp061zjDl7+9vk4z6/fff9eeff2revHmODr3QSE5OliTFxMRIujGQ8MaNG9WyZUu7LiR33HGH7rjjDr3xxhtaunSp+vTpo2XLlunxxx/PcPan8PDwTJuvZ8dXX32lhIQEffnllza/BqXujle5cmVJN35JvflXtEuXLuX5r0XZ3Yf2yM5MWindaW+ezc4RSpUqpWLFilm7tN7s4MGDcnNzy1WC5WarV6+Wj4+P1q9fb/OL/qJFi9LUTW9fZSfWypUrp5kpT1K6ZRmx97x0pNatW2vr1q2qUqWKGjVqpICAADVs2FBBQUFat26ddu/erYkTJ2a6jvyewa1BgwZ69NFHNX/+fI0aNSrdFnLZ5ebmpo4dO6pjx46aMWOGJk2apJdfflmbN2+2dtP9/fff1bFjx0zfb+XKlWWxWHTs2DGbX/ezc17Yy96YsiOz9WS1jwCgKHJ3d9fkyZPVvn17vfvuuxo9erT1HsvT0zPb34/79u3T4cOHtWTJEpuJ2dK7J87ud3/v3r21ZMkSbdq0SX/99ZcMw7B2NZaUq7jzQkb3ZgEBATKbzXkeU/369VW/fn298sor2r59u1q2bKl58+bp9ddftzu+jGTnGp2b6+uRI0fSlB0+fFjFihWzNjhw1P6TJC8vL/Xo0UM9evSQxWLR008/rfnz52vs2LGqXr26qlWrppiYmCy3XblyZW3evFlxcXE2rQkddf9kT0zZwWzGcBWFprtxVoYOHaodO3Zo2bJl+uOPP/TAAw/ozjvvTPdLU5Lef/991axZM9djbBUVSUlJ+v777+Xl5WWdwevBBx+U2WzWa6+9lqZ+cnKyrl69KulGM+zUv7KkjOGW0uU45UKQskyKsmXLWrs9pzxyKuUXoJtjiYqKSpM86tixozw8PDR37lyb8nfffTfH286IvfswO1K60NuzbKlSpdSmTRt9+OGHOnnypM1refnLmLu7u7p06aIvvvjCOvufdGOmtaVLl6pVq1YKDAzMs22ZTCaZzWZr2fHjx9MdosDPzy/NfspOrOHh4dqxY4f27t1rrXf58uUMW4ZmFK+U9XnpSK1bt9bx48e1fPly63eim5ubWrRooRkzZigpKSnL78qMPsOO9MILLygpKSnDX+iz4/Lly2nKUn9PPfjggzp9+rQWLlyYpu7169cVGxsrSdaWF++9955NnXfeeSfXcaZmb0zZkdF3iD37CACKqnbt2qlp06aaNWuW4uPjFRoaqnbt2mn+/Pk6e/ZsmvoXLlzIcF3p3RsYhqHZs2enqZud+z7pxliKJUqU0PLly7V8+XI1bdrU5kfx3MSdFzK6N7vvvvu0evXqdH/YzklM0dHR1gYQKerXry83N7dMr2nZ2d/2XqNze33dsWOHzZiCp06d0hdffKEuXbrI3d3dIfsvxaVLl2yeu7m5WVsl3nz/tGPHDq1fvz7N8levXrUeh/DwcCUlJdnsL4vFojlz5uQ4vozYG1N2ZPezCDhLoWlJmJmTJ09q0aJFOnnypMqVKyfpRhP5devWadGiRTZN6CUpPj5en376qUaPHu2McF3Cd999p4MHD0q6MSbD0qVLdeTIEY0ePdqaIGnbtq0GDx6syZMna+/everSpYs8PT115MgRrVy5UrNnz9b999+vJUuW6L333lOvXr1UrVo1Xbt2TQsXLlRgYKC6desm6UaT9jp16mj58uWqWbOmSpQooXr16tk9Vp49unTpYv2la/DgwYqJidHChQsVGhpqcxNUunRpDR8+XNOnT9fdd9+tO++8U7///ru+++47hYSE5OmvRPbuw+xo1KiR3N3dNXXqVEVFRcnb21sdOnRQaGhouvXffvtttWrVSrfddpueeOIJValSRcePH9c333xjk/zKrddff10bNmxQq1at9PTTT8vDw0Pz589XQkKCpk2blmfb6d69u2bMmKE777xTjzzyiM6fP685c+aoevXq+uOPP2zqNm7cWBs3btSMGTOs3W6bNWtmd6wvvPCCPvnkE3Xu3FnPPPOM/Pz89P7776tSpUq6fPmyXeeKveelI6UkAA8dOmTzfdmmTRt999138vb2znJohvz4DKdWp04ddevWTe+//77Gjh2rkiVL5nhdr776qrZu3aru3burcuXKOn/+vN577z1VqFBBrVq1kiQ99thjWrFihZ588klt3rxZLVu2lNls1sGDB7VixQqtX79eTZo0UePGjXXfffdp1qxZunTpku644w79+OOPOnz4sKS8/aXZ3piyI2Xw85dfflkPPfSQPD091aNHD7v2EQAUZc8//7weeOABLV68WE8++aTmzJmjVq1aqX79+ho0aJCqVq2qyMhI7dixQ//++69+//33dNdTu3ZtVatWTaNGjdLp06cVGBio1atXp9ujJeU7e9iwYQoPD5e7u7seeuihDGP09PTUvffeq2XLlik2NlZvvfVWmjo5jTsvZHRvNmXKFG3evFnNmjXToEGDVKdOHV2+fFm7d+/Wxo0b0020ZeaHH37Q0KFD9cADD6hmzZpKTk7Wxx9/bE2oZSQ799n2XqNze32tV6+ewsPDNWzYMHl7e1t/pLy5F0he778Ujz/+uC5fvqwOHTqoQoUKOnHihN555x01atTI2rDk+eef15dffqm77rpL/fr1U+PGjRUbG6t9+/Zp1apVOn78uEJCQtSzZ081bdpUzz33nI4eParatWvryy+/tMaWl/dP9saUHdn9LAJOkw8zKOc7ScbatWutz7/++mtDkuHn52fz8PDwMB588ME0yy9dutTw8PAwzp07l49Ru4ZFixYZkmwePj4+RqNGjYy5c+caFoslzTILFiwwGjdubPj6+hoBAQFG/fr1jRdeeME4c+aMYRiGsXv3buPhhx82KlWqZHh7exuhoaHGXXfdZezcudNmPdu3bzcaN25seHl5pZmmPj3jx483JBkXLlywKa9cubLRvXv3dJf58ssvjQYNGhg+Pj5GWFiYMXXqVOPDDz80JBnHjh2z1ktOTjbGjh1rlClTxvD19TU6dOhg/PXXX0bJkiWNJ598Ms3++u233+yKLSIiwvDz88v2PszsfbVt29Zo27atTdnChQuNqlWrGu7u7oYkY/PmzenujxT79+83evXqZQQHBxs+Pj5GrVq1jLFjx2b5flLe/837TpIxZMiQdLeze/duIzw83PD39zeKFStmtG/f3ti+fXu668zNPv3ggw+MGjVqGN7e3kbt2rWNRYsWWZe/2cGDB402bdoYvr6+hiQjIiIiW7EahmHs2bPHaN26teHt7W1UqFDBmDx5svH2228bkmy+Y/LivMxoHent82PHjhmSjDfffDPdbaYWGhpqSDIiIyOtZdu2bTMkGa1bt05TPyIiwqhcubJNWUaf4YzO+/SOSXratm1r1K1bN93XtmzZku73xZAhQ+xad4pNmzYZ99xzj1GuXDnDy8vLKFeunPHwww8bhw8ftqmXmJhoTJ061ahbt67h7e1tFC9e3GjcuLExceJEIyoqylovNjbWGDJkiFGiRAnD39/f6Nmzp3Ho0CFDkjFlypQ0+8De74r09oW9MWX02axcubLNuW8YhvHaa68Z5cuXN9zc3Kznob37CAAKs4zuUwzDMMxms1GtWjWjWrVqRnJysmEYhvH3338bffv2NcqUKWN4enoa5cuXN+666y5j1apV1uU2b96c5n7tzz//NDp16mT4+/sbISEhxqBBg4zff//dkGQsWrTIWi85Odl45plnjFKlShkmk8nm2pfR/fSGDRsMSYbJZDJOnTqV7vu0J+6MpN5udu4jM7s3i4yMNIYMGWJUrFjR8PT0NMqUKWN07NjRWLBggbVOyr5cuXKlzbZS7otS9t0///xjDBgwwKhWrZrh4+NjlChRwmjfvr2xceNGm+XSu0ZmdJ+d3j25Pdfo3FxfU67tn3zyifXe99Zbb0333j83+y8jq1atMrp06WKEhoYaXl5eRqVKlYzBgwcbZ8+etal37do1Y8yYMUb16tUNLy8vIyQkxGjRooXx1ltvGYmJidZ6Fy5cMB555BEjICDACAoKMvr162f8/PPPhiRj2bJl1nrZuU8yjPTvoe2JKbP76dTneWafRaAgMRlG4RtN02Qyae3aterZs6ekG5Nb9OnTRwcOHEgzqKi/v7/KlCljU9axY0cFBgZq7dq1+RUyCoGrV6+qePHiev311/Xyyy87OxwUYCNGjND8+fMVExPDZA6w2rt3r2699VZ98skn6tOnj7PDAQAALs5kMmnIkCEOGRapoPj888/Vq1cvbdu2TS1btnR2OIDLKxLdjW+99VaZzWadP38+y3Gzjh07ps2bN+vLL7/Mp+jgiq5fv55mIpFZs2ZJknUyHEBKe65cunRJH3/8sVq1akWCsAjL6DvEzc1Nbdq0cVJUAAAABVfq+yez2ax33nlHgYGBuu2225wYGVB4FJokYUxMjM3MRseOHdPevXtVokQJ1axZU3369FHfvn01ffp03Xrrrbpw4YI2bdqkBg0aqHv37tblPvzwQ5UtWzbTmZKB5cuXa/HixerWrZv8/f21bds2ffbZZ+rSpQu/YMFG8+bN1a5dO91yyy2KjIzUBx98oOjoaI0dO9bZocGJpk2bpl27dql9+/by8PDQd999p++++05PPPFEns3kDQAAUJg888wzun79upo3b66EhAStWbNG27dv16RJk9L8+AogZwpNknDnzp1q37699fnIkSMlSREREVq8eLEWLVqk119/Xc8995xOnz6tkJAQ3XHHHbrrrrusy1gsFi1evFj9+vWjhQ8y1aBBA3l4eGjatGmKjo62Tmby+uuvOzs0FDDdunXTqlWrtGDBAplMJt1222364IMPaC1WxLVo0UIbNmzQa6+9ppiYGFWqVEkTJkxgqAIAAIAMdOjQQdOnT9fXX3+t+Ph4Va9eXe+8846GDh3q7NCAQqNQjkkIAAAAAAAAwH5uzg4AAAAAAAAAgHORJAQAAAAAAACKOJcek9BisejMmTMKCAiQyWRydjgAAABOZRiGrl27pnLlysnNrej+Fsw9IgAAwH/svUd06SThmTNnmAUSAAAglVOnTqlChQrODsNpuEcEAABIK6t7RJdOEgYEBEi68SYDAwMdui2z2ayrV6/KZDIV6V/mC7rk5GRFRUUpODiYGaoLKI6Ra+A4uQaOk2uwWCwyDCNfjlN0dLQqVqxovUcqqvLzHhEAAKCgs/ce0aWThCndRwIDA/MlSWg2m+Xh4cE/xAqwxMREmc1mBQYGysvLy9nhIB0cI9fAcXINHCfXYDablZycrMDAwHy7hyjqXWzz8x4RAADAVWR1j0iTOAAAAAAAAKCII0kIAAAAAAAAFHEu3d0YAIDCxGKxKDk52e76Kd2NExMTHRgVcitlyJL4+Pg8627s6enJ8CcAAADIUyQJAQAoAK5fv66LFy/KMAy7lzEMQxaLRZcuXSryY9AVdIZh6MqVK3l2nEwmkypUqCB/f/88WR8AAABAkhAAACezWCy6ePGi/Pz8VLJkSbsTSYZhyGw2y93dnSRhAWYYhgzDkIeHR54cJ8MwdOHCBf3777+qUaMGLQoBAACQJ0gSAgDgZMnJyTIMQyVLlpSvr6/dyxmGoeTk5DxLPsEx8jpJKEmlSpXS8ePHlZSURJIQAAAAeYKJSwAAKCBI9MFenCsAAADIayQJAQBAuqpVq6Y6deqocePGqlevnh599FHFxsbmeH1LlizRwYMHM3z9l19+UaNGjdSkSROtX78+x9txhr1792r58uV21w8LC9PevXvTfa1///5q0KCBGjVqpNtvv12bNm3KoyidY+vWrerRo4fKlSsnk8mkzz//PMtltmzZottuu03e3t6qXr26Fi9e7PA4AQAAijqShAAAIENLly7Vrl279McffygqKkpLlizJ8bqWLFmiQ4cOZfj6xx9/rIceekg7d+5UeHi4zWvZmfXZGX7//fdsJQkzM3PmTP3xxx/au3evFixYoAceeEAWiyVP1u0MsbGxatiwoebMmWNX/WPHjql79+5q37699u7dqxEjRujxxx93ucQxAACAq2FMQgAAChjDMBSflHVS6MaYhGZ5WEzZ7n7q4+mWrWUSExMVFxen4sWLW8umT5+ulStXymw2q1SpUpo7d64qV66sr776SuPGjZObm5uSk5P12muv6cKFC9q1a5eee+45vfrqq3rttdfUrVs367qmTp2qFStWyNfXVytXrtSmTZvUuHFjPfDAA9qyZYtq1KihN998U3369NG1a9cUHx+vdu3aadasWXJzc1NSUpKeffZZbdq0ScWLF1eLFi20e/du/fDDD9qyZYuGDx+uVq1aafv27TIMQx999JFmzZql3bt3y9fXV6tWrVL58uUzfV8TJ07UwYMHFRcXp3/++UelS5fWihUrlJycrAkTJigqKkqNGzdWs2bN9N5772W5Tz/99FMNHDhQUVFRGjx4sJ5//nlJUnBwsLVOVFSU3ceooOratau6du1qd/158+apSpUqmj59uiTplltu0bZt2zRz5sw0yWMAAADkHZKEQA5sPXJJq/ae0yt3VldogLezwwFQyMQnWdRhxla76hqGkaPx6X4Y2Ua+XllPePHII4/I19dXx48f12233aYHHnhAkvTZZ5/p8OHD+vnnn+Xu7q5PPvlEQ4cO1VdffaXx48frvffeU/PmzWWxWBQdHa3g4GB9+umnGj58uO65554023nxxRd16NAhNWzYUMOHD7eWX758WTt27JDJZFJ8fLy++OIL+fv7y2w2q1evXlq5cqV69+6thQsX6siRI/rjjz8kSXfddZfN+g8ePKgPP/xQc+bM0bhx49S5c2f9+OOPql27tp555hnNnj1b06ZNy/R9SdKvv/6qX3/9VSVLltQjjzyiBQsWaPTo0ZowYYK++OILrVmzxrrNJ554Qj169EgTS4rIyEjt3LlTly5d0m233aaWLVuqRYsWkqTRo0dr5cqVunLlilavXi03t6LT+WPHjh3q1KmTTVl4eLhGjBjhnIAAAACKiKJzxwnkofV/XdD+M9e0+5Trt/AAgMykdDeOjIxUWFiYRo8eLUn64osvtGnTJjVt2lSNGzfWW2+9pVOnTkmS2rdvr2effVZvvvmm/vjjD5uWcdnVt29faxLUYrFozJgxuu2229SkSRPt2rXLOq7fDz/8oD59+sjT01Oenp7q27evzXqqV6+uxo0bS5KaNGmiatWqqXbt2pKk22+/XUePHs3yfUk3klUlS5aUJN1xxx36559/Mox9wYIF6tGjR4avDxw4UCaTSSEhIbr33nu1ceNG62tTpkzR33//rRUrVuiFF15QYmKivbvM5Z07d06lS5e2KStdurSio6N1/fr1dJdJSEhQdHS0zQMAAADZQ0tCIAfMxv//33WHiAJQgPl4uumHkW2yrHeju3GyPDw8ctTdODs8PDzUq1cva5LQMAy9+OKLGjRoUJq606dP14EDB7RlyxYNGDBADz/8sLUrbXb5+/tb/545c6bOnz+v7du3y8fHR88995wSEhLSXS71/vDx8bH+7ebmZvPc3d3dOuZhZu8r9XpuXi4vpHcMO3XqpKFDh2rfvn3WJCfSmjx5siZOnOjsMAAAAFwaLQmBHLBYbmQJDRlOjgRAYWQymeTr5e7QR066KG/evFk1a9aUJN1zzz1asGCBLl++LElKSkrSnj17JN3o2lu3bl0NGTJEgwcP1v/+9z9JUmBgYK7G2Lty5YrKlCkjHx8fnTt3TqtXr7a+1r59e3322WdKSkpSUlKSPv744xxtI7P3lZmcvLeUGXsvX76stWvXqmPHjkpKSrK2apRudG8+f/68qlatmq11u7IyZcooMjLSpiwyMlKBgYHy9fVNd5kxY8YoKirK+ri59ScAAADsQ0tCIAf+P0cogxwhgEIuZUzC5ORkVapUyTohxyOPPKJLly5Zx45LTk5Wv379dOutt+qVV17R4cOH5eXlJV9fX+usto8//rheeOEFzZ49O83EJfYYNmyYHnzwQTVo0EBly5ZVx44dra898cQT2r9/v+rXr6/g4GA1adJEZ86cydH7zeh9ZaZDhw6aPn26br31VjVv3lzvvfdelmMSlipVSo0bN1ZUVJSGDh2qFi1aKC4uThEREYqKipKHh4f8/Py0atUqmwljCrvmzZvr22+/tSnbsGGDmjdvnuEy3t7e8vZmjGAAAIDcMBmG66Y5oqOjFRQUpKioKAUGBjp0W2azWVeuXJGHh4fc3bMe6B3OkZiYqMuXL6tEiRLy8vJy2HaeW/On9pyK1vD2YbqnQRmHbacwyq9jhNzhOOWvxMREnTt3TmFhYTbdWbOSm+7GhdG1a9cUEBCgpKQkPfbYY7rtttv0wgsvODssGYYhwzDy9DjFx8fr2LFjqlKlis05k5/3RvaKiYmxto689dZbNWPGDLVv314lSpRQpUqVNGbMGJ0+fVofffSRJOnYsWOqV6+ehgwZogEDBuiHH37QsGHD9M0339g9u3FB3A8oeMJGf+PsEAq141O6OzsEAMD/s/feiJaEQA4YtCQEgAKnS5cuSkxMVHx8vFq2bKlnnnnG2SFB0s6dO9W+fXvr85EjR0qSIiIitHjxYp09e1YnT560vl6lShV98803evbZZzV79mxVqFBB77//vt0JQgAAAOQMSUIgByxGypiEAICCYseOHc4OAelo166dMuu4kjI2Y+pl7BkLEgAAAHmHiUuAHLDOakyWEAAAAAAAFAIkCYEcSGkRYaG/MQAAAAAAKARIEgI5kJIatJAjBJCHXHguMeQzzhUAAADkNcYkBHLgvzEJ+UcagNxLmfX20qVLKlmypN0z4BqGIbPZrOTkZGY3LsDyenZjwzB04cIFmUwmeXp65kGEAAAAAElCIEeY3RhAXnJzc1NISIguXryomJgYu5czDEMWi0Vubm4kCQs4wzDy9DiZTCZVqFBB7u7uebI+AAAAgCQhkAPWloQkCQHkEV9fX5UvX17Jycl2L5OYmKioqCgFBQXJy8vLgdEhN8xms8xmswIDA/Msqefp6UmCEAAAAHmKJCGQAyljEZIjBJCX3Nzcsp3sc3d3l5eXF0nCAiylS7iPjw+JPQAAABRYTFwC5ACzGwMAAAAAgMKkwCQJp0yZIpPJpBEjRjg7FCBLzGoMAAAAAAAKkwKRJPztt980f/58NWjQwNmhAHax0JIQAAAAAAAUIk5PEsbExKhPnz5auHChihcv7uxwALuk5AZpUQgAAAAAAAoDpycJhwwZou7du6tTp07ODgWwmzU5SJIQAAAAAAAUAk6d3XjZsmXavXu3fvvtN7vqJyQkKCEhwfo8OjraUaEBmUqZuMQgSwgAAAAAAAoBp7UkPHXqlIYPH65PP/1UPj4+di0zefJkBQUFWR8VK1Z0cJRA+lJaEjIkIQAAAAAAKAycliTctWuXzp8/r9tuu00eHh7y8PDQjz/+qLffflseHh4ym81plhkzZoyioqKsj1OnTjkhcuDmiUucHAgAAAAAAEAecFp3444dO2rfvn02Zf3791ft2rX14osvyt3dPc0y3t7e8vb2zq8QgQwZ1paEZAkBAAAAAIDrc1qSMCAgQPXq1bMp8/PzU8mSJdOUAwVNyliEpAgBAAAAAEBh4PTZjQFXlNLN2EJLQgAAAAAAUAg4dXbj1LZs2eLsEAC7kBwEAAAAAACFCS0JgRz4ryWhc+MAAAAAAADICyQJgRxIaUnIxCUAAAAAAKAwIEkI5IR1dmPnhgEAAAAAAJAXSBIWAklJSXruuedUqVIlVapUSaNGjVJycnKO6s6ZM0dVq1ZVw4YN9fPPP1vLr169qqZNm+rixYsOfz+uIKUlYWbdjf/55x/de++9qlSpkmrVqqVZs2ZZXzt48KB69OihSpUqqXr16ho2bJji4uIyXFdW9V955RVVqlRJLVq00MGDB63lx44dU8uWLRUfH5/zN1vEzJ8/X23btlVISIgefvjhTOtGR0drwIABKl++vKpVq6apU6favM5xcZzsfO9ldUw5To7D9QkAAABwHSQJC4Fp06bpl19+0a+//qpff/1VO3bs0FtvvZXtupGRkXrzzTe1fft2TZ48Wc8995x1ufHjx2vYsGEKCQnJl/dU0KUkBw2lnyU0m8166KGH1KhRI/3999/6+uuvtWDBAq1YsUKSNHDgQFWvXl1Hjx7VL7/8on379mnatGkZbi+z+rt27dLXX3+t/fv367HHHtO4ceOsy40cOVKTJk2Sj49PHr3zwq9s2bJ6/vnnFRERkWXd559/XleuXNGBAwe0bt06LVmyREuXLpXEcXG07HzvZXZMOU6OxfUJAAAAcB0kCQuBTz75RM8//7zKlCmjMmXKaNSoUfr444+zXffkyZOqVq2aypQpow4dOujYsWOSpF9++UV///23Hn300Xx7TwWddXbjDFoSHjlyREeOHNHo0aPl6empGjVq6LHHHtPixYslScePH9dDDz0kLy8vhYSEqFu3bjpw4ECG28us/vHjx3XrrbcqMDBQHTt2tB63FStWqHTp0mrbtm2eve+i4O6779Zdd92lkiVLZlovLi5Oq1ev1tixYxUcHKwaNWpo8ODB1s8Tx8WxsvO9l9kx5Tg5FtcnAAAAwHWQJHRxV65c0enTp1W/fn1rWf369XXq1ClFRUVlq261atV04sQJnT59Wps3b1adOnWUlJSkF154QTNnzsy39+QKUnKElgxet1gs/1/PsCnbv3+/JOmZZ57RZ599puvXrysyMlJff/21unbtmuH2Mqtfp04d7dmzR1evXtXmzZtVt25dXblyRdOnT9cbb7yR+zeLdB05ckSJiYlq0KCBtax+/frW5C3HxXGy872XFY6T43B9AgAAAFwLSUIXFxsbK0kKDg62lqX8HRMTk626JUqU0JtvvqlHHnlEc+bM0bvvvquZM2eqe/fuSk5O1r333qtu3brpq6++ctj7cRX/zW6c/us1atRQpUqV9MYbbyghIUF//fWXPvnkE127dk2S1LlzZ+3YsUPlypVTjRo1VL58eT322GMZbi+z+rfccoueeuopde/eXZs2bdLrr7+usWPHasSIETp06JDuuusu9ejRQzt27MjbnVDExcbGys/PTx4eHtayoKAg6zHmuDhOdr73ssJxchyuTwAAAIBr8ci6CgoyPz8/SVJUVJS1K11KCw1/f/9s1+3Vq5d69eolSTp69Ki++uorbdq0SXfeeadee+011alTRy1atFCrVq1UvHhxB7+7gsva2ziDLKGnp6eWLVum0aNHq1atWipfvrz69OmjRYsW6cqVK7rnnnv00ksv6fHHH1dsbKyef/55DRo0yNod+Wb21B88eLAGDx4sSfr555916tQp9e7dW3Xr1tW3334rwzDUo0cP7d+/XyaTyRG7pMjx8/NTXFyckpOTrYnC6OhoBQQEWOtwXBwjO9979uA4OQbXJwAAAMC10JLQxRUvXlzly5fXvn37rGX79u1ThQoVFBQUlOO60o1B+6dNmyYvLy/t379fTZo0UfHixVWuXDn9/fffjntTBZxh/DddSWazG99yyy364osvdPz4cf38889KTExUq1atdOzYMV2/fl1PPfWUvLy8VLx4cQ0YMEDr169Pdz3ZqZ+YmKjRo0drxowZunjxopKTk1WlShVVrVpViYmJzP6Zh2rUqCFPT880n6c6deqkqctxyVvZ/S6zF8cpb3F9AgAAAFwLScJCoE+fPnrrrbcUGRmpyMhITZ8+XX379s1V3U8//VRVqlRR8+bNJUlhYWH64YcfdPbsWf3999+qVKmSQ99TQWbY/J1xlnD//v2KjY1VYmKivvzyS3388cd6/vnnVbNmTfn5+WnhwoVKTk7WtWvXtHjxYpux7W6WnfrTp09Xz549Va1aNZUsWVIJCQnat2+f9u/fr8TERJUoUSK3b7/QS05OVnx8vJKTk2WxWBQfH6/ExMQ09YoVK6Z7771Xr7/+uqKionT06FHNnz8/3c8TxyXvZed7z95jynHKe1yfAAAAANdBd+NC4MUXX9Tly5d1++23S5IefPBBjRo1SpI0YsQISdKsWbOyrJvi0qVLevvtt21aqk2fPl1DhgxRTEyMRo8erdDQUAe/q4LLfFPzwcxaEq5Zs0YffPCBEhISVK9ePX322WeqV6+epBszp44bN06vvfaa3NzcdMcdd2jevHnWZe+99161aNFCo0aNkr+/f5b1pRsTaaxbt04bN26UJLm7u2vmzJm67777ZDKZNHv2bLm7u+fhniicpk2bpilTplifh4aGqlWrVvr2229tjoskvfXWWxo+fLhuueUW+fj46IknntAjjzxisz6Oi2Nk53svs2OaguPkGFyfAAAAANdhMjIaVM0FREdHKygoSFFRUQoMDHTotsxms65cuSIPDw/+oViAJSYm6vLlyypRooS8vLwcso0ks0Xh7/4qSQqvU0ovdq7mkO0UVvlxjJB7HCfXwHFyDWazWcnJySpevLjD7yHy896oIGM/wB5ho79xdgiF2vEp3Z0dAgDg/9l7b0R3YyCbbm496MI5dgAAAAAAACuShEA2WQz7uhsDAAAAAAC4CpKEQDYZRvp/AwAAAAAAuCqShEA23dySkO7GAAAAAACgMGB2YyCbbMYkdF4YAAA41MmTJ3XixAnFxcWpVKlSqlu3rry9vZ0dFgAAAByEJCGQTYZNS0InBgIAQB47fvy45s6dq2XLlunff/+1ueZ5eXmpdevWeuKJJ3TffffJzY0OKQAAAIUJd3dANt3cktBClhAAUEgMGzZMDRs21LFjx/T666/rzz//VFRUlBITE3Xu3Dl9++23atWqlcaNG6cGDRrot99+c3bIAAAAyEO0JASyicQgAKAw8vPz0z///KOSJUumeS00NFQdOnRQhw4dNH78eK1bt06nTp3S7bff7oRIAQAA4AgkCYFsujlHaLYYevHzv+Tv7aGxXWs4LygAAHJp8uTJdte98847HRgJAAAAnIHuxkA23Tw+09XryfrtRJQ2H74ks4UWhgAAAAAAwDWRJASyyZyqJWEKUoQAgMLur7/+UtWqVZ0dBgAAAByAJCGQTTe3JDTbzHRMmhAAULglJibqxIkTzg4DAAAADsCYhEA2WTJqSUiOEADg4kaOHJnp6xcuXMinSAAAAJDfSBIC2WTc1LE4+aYkIbMeAwBc3ezZs9WoUSMFBgam+3pMTEw+RwQAAID8QpIQyKabc4HJ5puThE4IBgCAPFS9enU9++yzevTRR9N9fe/evWrcuHE+RwUAAID8wJiEQDbd3MXYtrsxWUIAgGtr0qSJdu3aleHrJpMpx9e7OXPmKCwsTD4+PmrWrJl+/fXXTOvPmjVLtWrVkq+vrypWrKhnn31W8fHxOdo2AAAAskZLQiCbMhyT0AmxAACQl6ZPn66EhIQMX2/YsKEsFku217t8+XKNHDlS8+bNU7NmzTRr1iyFh4fr0KFDCg0NTVN/6dKlGj16tD788EO1aNFChw8fVr9+/WQymTRjxoxsbx8AAABZoyUhkAvJBt2NAQCFR5kyZVS5cuU8X++MGTM0aNAg9e/fX3Xq1NG8efNUrFgxffjhh+nW3759u1q2bKlHHnlEYWFh6tKlix5++OEsWx8CAAAg50gSAtl08wQldDcGACBziYmJ2rVrlzp16mQtc3NzU6dOnbRjx450l2nRooV27dplTQr+888/+vbbb9WtW7d8iRkAAKAoorsxkE0ZdTemJSEAAGldvHhRZrNZpUuXtikvXbq0Dh48mO4yjzzyiC5evKhWrVrJMAwlJyfrySef1EsvvZRu/YSEBJtu0tHR0Xn3BgAAAIoIWhIC2XRzi8FksyXdcgAAkHNbtmzRpEmT9N5772n37t1as2aNvvnmG7322mvp1p88ebKCgoKsj4oVK+ZzxAAAAK6PloRANtnMbnxTXpCWhAAApBUSEiJ3d3dFRkbalEdGRqpMmTLpLjN27Fg99thjevzxxyVJ9evXV2xsrJ544gm9/PLLcnOz/Z17zJgxGjlypPV5dHQ0iUIAAIBsoiUhkE035wLNZAYBAMiUl5eXGjdurE2bNlnLLBaLNm3apObNm6e7TFxcXJpEoLu7u6T0W+57e3srMDDQ5gEAAIDsIUkIZFNGvYotdDcGABQin332mWJjY9P8nRMjR47UwoULtWTJEv3111966qmnFBsbq/79+0uS+vbtqzFjxljr9+jRQ3PnztWyZct07NgxbdiwQWPHjlWPHj2syUIAAADkLbobA9mUUTKQRoUAgMJk8ODBatasmapWrWrzd0707t1bFy5c0Lhx43Tu3Dk1atRI69ats05mcvLkSZuWg6+88opMJpNeeeUVnT59WqVKlVKPHj30xhtv5Ml7AwAAQFokCQE7xSeZ9f72Uwr0Sf9jw8QlAIDC5ObrWl5c44YOHaqhQ4em+9qWLVtsnnt4eGj8+PEaP358rrcLAAAA+5AkBOy0+1SU1uw9J5Mp/ddpSQgAAAAAAFwVYxICdkpIvpEFzKgxhSGyhAAAAAAAwDWRJATslNXEJPQ2BgAAAAAArookIWCnrJKAdDcGAAAAAACuiiQhYCdzFlnCrFoaAgAAAAAAFFQkCQE7ZTWzIzlCAAAAAADgqkgSAnbKKgmYVRIRAABX8t1336l8+fJp/gYAAEDh5OHsAABXkVV3Y1KEAIDCpFWrVun+DQAAgMKJloSAnZi4BAAAAAAAFFYkCQE7ZTUxCd2NAQAAAACAqyJJCNgpq5aCtCQEAAAAAACuiiQhYKesWgpm1dIQAAAAAACgoCJJCNgpy5aC5AgBAAAAAICLYnZjwE6WLLKEtCQEABQWhmFo1apV2rx5s86fPy+LxWLz+po1a5wUGQAAAByFJCFgpyzHJMyfMAAAcLgRI0Zo/vz5at++vUqXLi2TyeTskAAAAOBgTk0Szp07V3PnztXx48clSXXr1tW4cePUtWtXZ4YFpIvZjQEARcXHH3+sNWvWqFu3bs4OBQAAAPnEqWMSVqhQQVOmTNGuXbu0c+dOdejQQffcc48OHDjgzLCAdGWVAmR2YwBAYREUFKSqVas6OwwAAADkI6cmCXv06KFu3bqpRo0aqlmzpt544w35+/vrl19+cWZYQLqybkmYT4EAAOBgEyZM0MSJE3X9+nVnhwIAAIB8UmDGJDSbzVq5cqViY2PVvHnzdOskJCQoISHB+jw6Ojq/wgNkyWLQQSYuAQAUFg8++KA+++wzhYaGKiwsTJ6enjav796920mRAQAAwFGcniTct2+fmjdvrvj4ePn7+2vt2rWqU6dOunUnT56siRMn5nOEwA1Glh2OAQAoHCIiIrRr1y49+uijTFwCAABQRDg9SVirVi3t3btXUVFRWrVqlSIiIvTjjz+mmygcM2aMRo4caX0eHR2tihUr5me4KMKynN2YloQAgELim2++0fr169WqVStnhwIAAIB84vQkoZeXl6pXry5Jaty4sX777TfNnj1b8+fPT1PX29tb3t7e+R0iIEmyZJElZOISAEBhUbFiRQUGBjo7DAAAAOQjp05ckh6LxWIz7iBQUGSVBKQhIQCgsJg+fbpeeOEFHT9+3NmhAAAAIJ84tSXhmDFj1LVrV1WqVEnXrl3T0qVLtWXLFq1fv96ZYQHpympMQoMsIQCgkHj00UcVFxenatWqqVixYmkmLrl8+bKTIgMAAICjODVJeP78efXt21dnz55VUFCQGjRooPXr16tz587ODAtIV9azG+dPHAAAONqsWbOcHQIAAADymVOThB988IEzNw9kS1YTk9CSEABQWERERDg7BAAAAOQzp09cArgKcxZJQFoSAgAKi5MnT2b6eqVKlfIpEgAAAOQXkoSAvbKauCR/ogAAwOHCwsJkMpkyfN1sNudjNAAAAMgPJAkBO2UxJGGW3ZEBAHAVe/bssXmelJSkPXv2aMaMGXrjjTecFBUAAAAciSQhYCdLFv2JyRECAAqLhg0bpilr0qSJypUrpzfffFP33nuvE6ICAACAI7k5OwDAVWQ15iAtCQEAhV2tWrX022+/OTsMAAAAOAAtCQE7ZZUEZOISAEBhER0dbfPcMAydPXtWEyZMUI0aNZwUFQAAAByJJCFgp6wbCpIlBAAUDsHBwWkmLjEMQxUrVtSyZcucFBUAAAAciSQhYKesWhLS2xgAUFhs3rzZ5rmbm5tKlSql6tWry8OD20cAAIDCiLs8wE5Zj0mYP3EAAOBobdu2dXYIAAAAyGdMXALYKesxCckSAgAKhyVLluibb76xPn/hhRcUHBysFi1a6MSJE06MDAAAAI5CkhCwU1Y5QHKEAIDCYtKkSfL19ZUk7dixQ++++66mTZumkJAQPfvss06ODgAAAI5Ad2PATrQkBAAUFadOnVL16tUlSZ9//rnuv/9+PfHEE2rZsqXatWvn3OAAAADgELQkBOyU5cQl+RQHAACO5u/vr0uXLkmSvv/+e3Xu3FmS5OPjo+vXrzszNAAAADgILQkBO2U1MYlBS0IAQCHRuXNnPf7447r11lt1+PBhdevWTZJ04MABhYWFOTc4AAAAOAQtCQE7ZZUEZHZjAEBhMWfOHDVv3lwXLlzQ6tWrVbJkSUnSrl279PDDDzs5OgAAADgCLQkBO2WVBGRMQgBAYREcHKx33303TfnEiROdEA0AAADyAy0JATtlOSYhOUIAgAs7efJktuqfPn3aQZEAAADAGUgSAnbKekzC/IkDAABHuP322zV48GD99ttvGdaJiorSwoULVa9ePa1evTofowMAAICj0d0YsFNWLQnpbgwAcGV//vmn3njjDXXu3Fk+Pj5q3LixypUrJx8fH125ckV//vmnDhw4oNtuu03Tpk2zTmYCAACAwoGWhICdssoBkiIEALiykiVLasaMGTp79qzeffdd1ahRQxcvXtSRI0ckSX369NGuXbu0Y8cOEoQAAACFEC0JATsxJiEAoCjw9fXV/fffr/vvv9/ZoQAAACAf5aglYUREhLZu3ZrXsQAFGrMbAwCQc3PmzFFYWJh8fHzUrFkz/frrr5nWv3r1qoYMGaKyZcvK29tbNWvW1LfffptP0QIAABQ9OUoSRkVFqVOnTqpRo4YmTZrE7HYoEixZZAnJEQIAkL7ly5dr5MiRGj9+vHbv3q2GDRsqPDxc58+fT7d+YmKiOnfurOPHj2vVqlU6dOiQFi5cqPLly+dz5AAAAEVHjpKEn3/+uU6fPq2nnnpKy5cvV1hYmLp27apVq1YpKSkpr2MECoSscoAGoxICAJCuGTNmaNCgQerfv7/q1KmjefPmqVixYvrwww/Trf/hhx/q8uXL+vzzz9WyZUuFhYWpbdu2atiwYT5HDgAAUHTkeOKSUqVKaeTIkfr999/1v//9T9WrV9djjz2mcuXK6dlnn7UOcg0UFlnPbpxPgQAA4EISExO1a9cuderUyVrm5uamTp06aceOHeku8+WXX6p58+YaMmSISpcurXr16mnSpEkym835FTYAAECRk+vZjc+ePasNGzZow4YNcnd3V7du3bRv3z7VqVNHM2fOzIsYgQKBMQkBAEVFbGxsnq3r4sWLMpvNKl26tE156dKlde7cuXSX+eeff7Rq1SqZzWZ9++23Gjt2rKZPn67XX3893foJCQmKjo62eQAAACB7cpQkTEpK0urVq3XXXXepcuXKWrlypUaMGKEzZ85oyZIl2rhxo1asWKFXX301r+MFnIbZjQEARUXp0qU1YMAAbdu2zSnbt1gsCg0N1YIFC9S4cWP17t1bL7/8subNm5du/cmTJysoKMj6qFixYj5HDAAA4PpylCQsW7asBg0apMqVK+vXX3/Vzp079eSTTyowMNBap3379goODs6rOAGnyyoJSEtCAEBh8cknn+jy5cvq0KGDatasqSlTpujMmTM5WldISIjc3d0VGRlpUx4ZGakyZcqku0zZsmVVs2ZNubu7W8tuueUWnTt3TomJiWnqjxkzRlFRUdbHqVOnchQrAABAUZajJOHMmTN15swZzZkzR40aNUq3TnBwsI4dO5ab2IAChZaEAICiomfPntaJ6p588kktXbpUlStX1l133aU1a9YoOTnZ7nV5eXmpcePG2rRpk7XMYrFo06ZNat68ebrLtGzZUkePHpXFYrGWHT58WGXLlpWXl1ea+t7e3goMDLR5AAAAIHtylCTcvHlzurMYx8bGasCAAbkOCiiIshqTkCQhAKCwSZmo7o8//tCMGTO0ceNG3X///SpXrpzGjRunuLg4u9YzcuRILVy4UEuWLNFff/2lp556SrGxserfv78kqW/fvhozZoy1/lNPPaXLly9r+PDhOnz4sL755htNmjRJQ4YMccj7BAAAQA6ThEuWLNH169fTlF+/fl0fffRRroMCCiJLFllCuhsDAAqbyMhITZs2TXXq1NHo0aN1//33a9OmTZo+fbrWrFmjnj172rWe3r1766233tK4cePUqFEj7d27V+vWrbNOZnLy5EmdPXvWWr9ixYpav369fvvtNzVo0EDDhg3T8OHDNXr0aEe8TQAAAEjyyE7l6OhoGYYhwzB07do1+fj4WF9LmX0uNDQ0z4MECoIsWxLmTxgAADjcmjVrtGjRIq1fv1516tTR008/rUcffdRmvOkWLVrolltusXudQ4cO1dChQ9N9bcuWLWnKmjdvrl9++SW7oQMAACCHspUkDA4OlslkkslkUs2aNdO8bjKZNHHixDwLDihIjCzSgLQkBAAUFv3799dDDz2kn3/+Wbfffnu6dcqVK6eXX345nyMDAACAo2QrSbh582YZhqEOHTpo9erVKlGihPU1Ly8vVa5cWeXKlcvzIIGC4Kax09NHjhAAUEicPXtWxYoVy7SOr6+vxo8fn08RAQAAwNGylSRs27atJOnYsWOqVKmSTCaTQ4ICCqKsWgpmlUMEAMBVBAQE6OzZs2mGkbl06ZJCQ0NlNpudFBkAAAAcxe4k4R9//KF69erJzc1NUVFR2rdvX4Z1GzRokCfBAQVJVr2J6W4MACgsjAyuaQkJCfLy8srnaAAAAJAf7E4SNmrUSOfOnVNoaKgaNWokk8mU7g2kyWTi12UUSlklAckRAgBc3dtvvy3pxv3c+++/L39/f+trZrNZW7duVe3atZ0VHgAAABzI7iThsWPHVKpUKevfQFGTVXdiWhICAFzdzJkzJd1oSThv3jy5u7tbX/Py8lJYWJjmzZvnrPAAAADgQHYnCStXrpzu30BRkVHXqxQWcoQAABeX8kNw+/bttWbNGhUvXtzJEQEAACC/uOVkoSVLluibb76xPn/hhRcUHBysFi1a6MSJE3kWHFCQmLPKApIkBAAUEps3byZBCAAAUMRka3bjFJMmTdLcuXMlSTt27NC7776rWbNm6euvv9azzz6rNWvW5GmQQEGQVQ6Q7sYAAFc2cuRIvfbaa/Lz89PIkSMzrTtjxox8igoAAAD5JUdJwlOnTql69eqSpM8//1z333+/nnjiCbVs2VLt2rXLy/iAAsOSRUtCuhsDAFzZnj17lJSUZP07IyaTKb9CAgAAQD7KUZLQ399fly5dUqVKlfT9999bf2328fHR9evX8zRAoKDIsrcxLQkBAC5s8+bN6f4NAACAoiFHScLOnTvr8ccf16233qrDhw+rW7dukqQDBw4oLCwsL+MDCgwmLgEAFFXR0dH64YcfVLt2bdWuXdvZ4QAAAMABcjRxyZw5c9S8eXNduHBBq1evVsmSJSVJu3bt0sMPP5ynAQIFBUlAAEBR8eCDD+rdd9+VJF2/fl1NmjTRgw8+qPr162v16tVOjg4AAACOkKOWhMHBwdYbx5tNnDgx1wEBBVVWE5MwcQkAoLDYunWrXn75ZUnS2rVrZRiGrl69qiVLluj111/Xfffd5+QIAQAAkNdylCSUpKtXr+rXX3/V+fPnZbFYrOUmk0mPPfZYngQHFCRZ5QDJEQIACouoqCiVKFFCkrRu3Trdd999KlasmLp3767nn3/eydEBAADAEXKUJPzqq6/Up08fxcTEKDAw0GaWO5KEKIwMw1BWOUBaEgIACouKFStqx44dKlGihNatW6dly5ZJkq5cuSIfHx8nRwcAAABHyNGYhM8995wGDBigmJgYXb16VVeuXLE+Ll++nNcxAk5nz3iElqyrAADgEkaMGKE+ffqoQoUKKleunNq1ayfpRjfk+vXrOzc4AAAAOESOWhKePn1aw4YNU7FixfI6HqBAsquVIC0JAQCFxNNPP62mTZvq1KlT6ty5s9zcbvyuXLVqVb3++utOjg4AAACOkKMkYXh4uHbu3KmqVavmdTxAgWRP/o/ZjwEAhUmTJk3UpEkTm7Lu3bs7KRoAAAA4Wo6ShCmDVv/555+qX7++PD09bV6/++678yQ4oKCwpyUhYxICAAoLs9msxYsXa9OmTWkmqZOkH374wUmRAQAAwFFylCQcNGiQJOnVV19N85rJZJLZbM5dVEABY08rQXKEAIDCYvjw4Vq8eLG6d++uevXq2UxSBwAAgMIpR0nC1L8m59TkyZO1Zs0aHTx4UL6+vmrRooWmTp2qWrVq5cn6gbxiX0vCfAgEAIB8sGzZMq1YsULdunVzdigAAADIJzma3fhm8fHxOV72xx9/1JAhQ/TLL79ow4YNSkpKUpcuXRQbG5vbsIA8ZU8rwZiEZH2284zORef8MwEAQEHg5eWl6tWrOzsMAAAA5KMcJQnNZrNee+01lS9fXv7+/vrnn38kSWPHjtUHH3xg93rWrVunfv36qW7dumrYsKEWL16skydPateuXTkJC3AYe1oSHj4fq4U/n9TTyw/kQ0QAADjOc889p9mzZ8tgLA0AAIAiI0fdjd944w0tWbJE06ZNs45PKEn16tXTrFmzNHDgwBwFExUVJUkqUaJEuq8nJCQoISHB+jw6OjpH2wGyKztdia/GJTkuEAAA8sG2bdu0efNmfffdd6pbt26aSerWrFnjpMgAAADgKDlKEn700UdasGCBOnbsqCeffNJa3rBhQx08eDBHgVgsFo0YMUItW7ZUvXr10q0zefJkTZw4MUfrB3KDmYsBAEVJcHCwevXq5ewwAAAAkI9ylCQ8ffp0uuPUWCwWJSXlrBXVkCFDtH//fm3bti3DOmPGjNHIkSOtz6Ojo1WxYsUcbQ/IDnKEAICiZNGiRc4OAQAAAPksR2MS1qlTRz/99FOa8lWrVunWW2/N9vqGDh2qr7/+Wps3b1aFChUyrOft7a3AwECbB5AfaEkIAChqkpOTtXHjRs2fP1/Xrl2TJJ05c0YxMTFOjgwAAACOkKOWhOPGjVNERIROnz4ti8WiNWvW6NChQ/roo4/09ddf270ewzD0zDPPaO3atdqyZYuqVKmSk3AAh8vOmIQAALi6EydO6M4779TJkyeVkJCgzp07KyAgQFOnTlVCQoLmzZvn7BABAACQx3LUkvCee+7RV199pY0bN8rPz0/jxo3TX3/9pa+++kqdO3e2ez1DhgzRJ598oqVLlyogIEDnzp3TuXPndP369ZyEBTgMLQkBAEXJ8OHD1aRJE125ckW+vr7W8l69emnTpk1OjAwAAACOkqOWhJLUunVrbdiwIVcbnzt3riSpXbt2NuWLFi1Sv379crVuIC+RIwQAFCU//fSTtm/fLi8vL5vysLAwnT592klRAQAAwJFy1JKwatWqunTpUpryq1evqmrVqnavxzCMdB8kCFHQ0JIQAFCUWCwWmc3mNOX//vuvAgICnBARAAAAHC1HScLjx4+ne+OYkJDAr8solBiTEABQlHTp0kWzZs2yPjeZTIqJidH48ePVrVs35wUGAAAAh8lWd+Mvv/zS+vf69esVFBRkfW42m7Vp0yaFhYXlWXBAQUFLQgBAUTJ9+nSFh4erTp06io+P1yOPPKIjR44oJCREn332mbPDAwAAgANkK0nYs2dPSTd+TY6IiLB5zdPTU2FhYZo+fXqeBQcUFOQIAQBFSYUKFfT7779r+fLl+v333xUTE6OBAweqT58+NhOZAAAAoPDIVpLQYrFIkqpUqaLffvtNISEhDgkKKGhoSQgAKEq2bt2qFi1aqE+fPurTp4+1PDk5WVu3blWbNm2cGB0AAAAcIUdjEh47dowEIYoUxiQEABQl7du31+XLl9OUR0VFqX379k6ICAAAAI6WrZaEN9u0aZM2bdqk8+fPW1sYpvjwww9zHRhQkFjIEgIAihDDMGQymdKUX7p0SX5+fk6ICAAAAI6WoyThxIkT9eqrr6pJkyYqW7ZsujeRQGFCd2MAQFFw7733Srox/nS/fv3k7e1tfc1sNuuPP/5QixYtnBUeAAAAHChHScJ58+Zp8eLFeuyxx/I6HqBAIkcIACgKgoKCJN1oSRgQEGAzSYmXl5fuuOMODRo0yFnhAQAAwIFylCRMTEzkV2QUKbQkBAAUBYsWLZIkhYWFadSoUXQtBgAAKEJyNHHJ448/rqVLl+Z1LECBZcm6CgAAhcb48eNJEAIAABQxOWpJGB8frwULFmjjxo1q0KCBPD09bV6fMWNGngQHFBTZmbiEEToBAK4uMjJSo0aNsk5SZ6RqUW82m50UGQAAABwlR0nCP/74Q40aNZIk7d+/Py/jAQqk7HQ2dnMjTQgAcG39+vXTyZMnNXbsWCapAwAAKCJylCTcvHlzXscBFGjZGZPQnX9HAQBc3LZt2/TTTz9ZfxQGAABA4ZetJOG9996bZR2TyaTVq1fnOCCgILJkY1BCd1oSAgBcXMWKFdN0MQYAAEDhlq0kYVBQkKPiAAq07LQkpLsxAMDVzZo1S6NHj9b8+fMVFhbm7HAAAACQD7KVJFy0aJGj4gAKtGzMW8LEJQAAl9e7d2/FxcWpWrVqKlasWJpJ6i5fvpztdc6ZM0dvvvmmzp07p4YNG+qdd95R06ZNs1xu2bJlevjhh3XPPffo888/z/Z2AQAAYJ8cjUkIFDXZ6XJF7ywAgKubNWtWnq5v+fLlGjlypObNm6dmzZpp1qxZCg8P16FDhxQaGprhcsePH9eoUaPUunXrPI0HAAAAaZEkBOyQnZaEZrKEAAAXFxERkafrmzFjhgYNGqT+/ftLkubNm6dvvvlGH374oUaPHp3uMmazWX369NHEiRP1008/6erVq3kaEwAAAGy5OTsAwBVkZ0xCS3YyigAAFBDR0dE2f2f2yI7ExETt2rVLnTp1spa5ubmpU6dO2rFjR4bLvfrqqwoNDdXAgQOz/2YAAACQbbQkBOyQnbwfOUIAgCsqXry4zp49q9DQUAUHB8tkSjvKrmEYMplMMpvNdq/34sWLMpvNKl26tE156dKldfDgwXSX2bZtmz744APt3bvXrm0kJCQoISHB+jy7iUwAAACQJATskp0xCc1kCQEALuiHH35QiRIlJEmbN292WhzXrl3TY489poULFyokJMSuZSZPnqyJEyc6ODIAAIDCjSQhYIfs5P0M/dfSAgAAV9G2bdt0/86tkJAQubu7KzIy0qY8MjJSZcqUSVP/77//1vHjx9WjRw9rmcVikSR5eHjo0KFDqlatms0yY8aM0ciRI63Po6OjVbFixTx7DwAAAEUBSULADtkZk1CSzIbkQY4QAAB5eXmpcePG2rRpk3r27CnpRtJv06ZNGjp0aJr6tWvX1r59+2zKXnnlFV27dk2zZ89ON/nn7e0tb29vh8QPAABQVJAkBOyQ3R7EN7onkyUEAECSRo4cqYiICDVp0kRNmzbVrFmzFBsba53tuG/fvipfvrwmT54sHx8f1atXz2b54OBgSUpTDgAAgLxDkhCwQ3bGJJRujEvo6e6gYAAAcDG9e/fWhQsXNG7cOJ07d06NGjXSunXrrJOZnDx5Um5ubk6OEgAAoGgjSQjYIaUloUk3xhy0tz4AALhh6NCh6XYvlqQtW7ZkuuzixYvzPiAAAADY4CdbwA4pYxK6u9nXhTi7YxgCAFDQJCcna+PGjZo/f76uXbsmSTpz5oxiYmKcHBkAAAAcgZaEgB1uThIm29FM0ExTQgCACztx4oTuvPNOnTx5UgkJCercubMCAgI0depUJSQkaN68ec4OEQAAAHmMloSAHVJyfh7u9rYkdGAwAAA42PDhw9WkSRNduXJFvr6+1vJevXpp06ZNTowMAAAAjkJLQsAOKROXeNjZ3ZiWhAAAV/bTTz9p+/bt8vLysikPCwvT6dOnnRQVAAAAHImWhIAdUnJ+7ibGJAQAFH4Wi0VmszlN+b///quAgAAnRAQAAABHI0kI2CG9iUsyyxeSJAQAuLIuXbpo1qxZ1ucmk0kxMTEaP368unXr5rzAAAAA4DB0NwbsYLHc+P/NYxK6mUwyZ5AMNFvyIyoAABxj+vTpCg8PV506dRQfH69HHnlER44cUUhIiD777DNnhwcAAAAHIEkI2CElFXhzd+PMOh7TkhAA4MoqVKig33//XcuWLdMff/yhmJgYDRw4UH369LGZyAQAAACFB0lCwA4pSb+bWxJm3t3Y0REBAOA48fHx8vHx0aOPPursUAAAAJBPGJMQsEO6YxJmUp/ZjQEAriw0NFQRERHasGGDLBbG0AAAACgKSBICdkhvdmNTJk0JDbobAwBc2JIlSxQXF6d77rlH5cuX14gRI7Rz505nhwUAAAAHIkkI2OP/c34ebjdPXJJx9WRaEgIAXFivXr20cuVKRUZGatKkSfrzzz91xx13qGbNmnr11VedHR4AAAAcgCQhYAdzumMSZpwlJEcIACgMAgIC1L9/f33//ff6448/5Ofnp4kTJzo7LAAAADgASULADumOSZjpxCVkCQEAri8+Pl4rVqxQz549ddttt+ny5ct6/vnnnR0WAAAAHIDZjYEs7DkVpY0HL0qyHZMwMxaaEgIAXNj69eu1dOlSff755/Lw8ND999+v77//Xm3atHF2aAAAAHAQkoRAFl5fd1RX4pIk2XY3dsskYWgmRwgAcGG9evXSXXfdpY8++kjdunWTp6ens0MCAACAg5EkBLJwLT7Z+vfNicHMJi6huzEAwJVFRkYqICDA2WEAAAAgH5EkBDJhGIbNTMUemWUGb0KSEADgaqKjoxUYGCjpxvUvOjo6w7op9QAAAFB4kCQEMpG62/DNScLMuhtbLI6KCAAAxyhevLjOnj2r0NBQBQcHy5TOdc4wDJlMJpnNZidECAAAAEciSQhkItlsm+2zmd04k+XMtCQEALiYH374QSVKlJAkbd682cnRAAAAIL+RJAQykZxqlmKbJGFmYxIyuzEAwMW0bdvW+neVKlVUsWLFNK0JDcPQqVOn8js0AAAA5AM3ZwcAFGTmVMm+m2c3Tq8blnU5coQAABdWpUoVXbhwIU355cuXVaVKFSdEBAAAAEcjSQhkIilVts8js+aDN6ElIQDAlaWMPZhaTEyMfHx8nBARAAAAHI3uxkAmMuturEzygMxuDABwRSNHjpR0o7X82LFjVaxYMetrZrNZ//vf/9SoUSMnRQcAAABHIkkIZCKz7sZGJllCGhICAFzRnj17JN1oSbhv3z55eXlZX/Py8lLDhg01atQoZ4UHAAAAByJJCGQiKdXsxm52djdmdmMAgCtKmdW4f//+mj17tgIDA50cEQAAAPILSUIgE6lbEt7c3djH011SUrrLGSQJAQAubNGiRc4OAQAAAPnMqUnCrVu36s0339SuXbt09uxZrV27Vj179nRmSICN1BOXuN/UknBkhyqas/WEHm5cTm+sP2pTL1UDRAAAXM7OnTu1YsUKnTx5UomJiTavrVmzxklRAQAAwFGcOrtxbGysGjZsqDlz5jgzDCBDmY1JWDWkmN7v00Ada4dkuRwAAK5k2bJlatGihf766y+tXbtWSUlJOnDggH744QcFBQU5OzwAAAA4gFNbEnbt2lVdu3Z1ZghAppJSJfs83Uwa3aWaksyGgnw9M1zObBhKMlvk6e7UPDwAADkyadIkzZw5U0OGDFFAQIBmz56tKlWqaPDgwSpbtqyzwwMAAIADkMEAMpFsSdtvuMstpdS9Xmimy72z5bjuXbhLF2MSM60HAEBB9Pfff6t79+6SbsxqHBsbK5PJpGeffVYLFixwcnQAAABwBJdKEiYkJCg6OtrmAThSsjnn3YZjE8z6al9kHkYDAED+KF68uK5duyZJKl++vPbv3y9Junr1quLi4pwZGgAAABzEpZKEkydPVlBQkPVRsWJFZ4eEQi45l2ML0t0YAOCK2rRpow0bNkiSHnjgAQ0fPlyDBg3Sww8/rI4dOzo5OgAAADiCU8ckzK4xY8Zo5MiR1ufR0dEkCuFQuWlJKEleN010AgCAq3j33XcVHx8vSXr55Zfl6emp7du367777tMrr7zi5OgAAADgCC6VJPT29pa3t7ezw0ARkmaW4mzm/Dw9aEkIAHA9JUqUsP7t5uam0aNHOzEaAAAA5AenJgljYmJ09OhR6/Njx45p7969KlGihCpVquTEyIAbktKZuCQ7PGlJCABwEdkZ6zkwMNCBkQAAAMAZnJok3Llzp9q3b299ntKVOCIiQosXL3ZSVMB/cjsmoSm7TQ8BAHCS4OBgmUyZX7cMw5DJZJLZbM6nqAAAAJBfnJokbNeunQwjd0kYwJGScjkmYZI5dy0RAQDIL5s3b3Z2CAAAAHAilxqTEMhvacYkzKbctkQEACC/tG3b1tkhAAAAwImYVQHIRG5nN87t8gAAOMtPP/2kRx99VC1atNDp06clSR9//LG2bdvm5MgAAADgCCQJgUzktiVgbic+AQDAGVavXq3w8HD5+vpq9+7dSkhIkCRFRUVp0qRJTo4OAAAAjkCSEMiEvd2NI5pVUHAxT3WsFWJTTktCAIArev311zVv3jwtXLhQnp6e1vKWLVtq9+7dTowMAAAAjkKSEMhE6olHMpqtOOKOClr9+G0qG+SdanmShAAA13Po0CG1adMmTXlQUJCuXr2a/wEBAADA4UgSApnITndjk8kkd5NtEpHZjQEArqhMmTI6evRomvJt27apatWqTogIAAAAjkaSEMhE6iRhVt2PU+UImd0YAOCSBg0apOHDh+t///ufTCaTzpw5o08//VSjRo3SU0895ezwAAAA4AAezg4AKMhSJ/mymojE3S11S0KShAAA1zN69GhZLBZ17NhRcXFxatOmjby9vTVq1Cg988wzzg4PAAAADkCSEMhE6olHEpMzT/q5pWpKmMzsxgAAF2QymfTyyy/r+eef19GjRxUTE6M6derI399f169fl6+vr7NDBAAAQB6juzGQidRJvsQsxhh0T9XdmJaEAABX5uXlpTp16qhp06by9PTUjBkzVKVKlRyta86cOQoLC5OPj4+aNWumX3/9NcO6CxcuVOvWrVW8eHEVL15cnTp1yrQ+AAAAco8kIZCJ1C0Jk5IzTxK6pepunHp5AAAKsoSEBI0ZM0ZNmjRRixYt9Pnnn0uSFi1apCpVqmjmzJl69tlns73e5cuXa+TIkRo/frx2796thg0bKjw8XOfPn0+3/pYtW/Twww9r8+bN2rFjhypWrKguXbro9OnTuXl7AAAAyARJQiATqcckTMwi6Zd6dmO6GwMAXMm4ceM0d+5chYWF6fjx43rggQf0xBNPaObMmZoxY4aOHz+uF198MdvrnTFjhgYNGqT+/furTp06mjdvnooVK6YPP/ww3fqffvqpnn76aTVq1Ei1a9fW+++/L4vFok2bNuX2LQIAACADjEkIZCIpTZIw86Rf6tmN6W4MAHAlK1eu1EcffaS7775b+/fvV4MGDZScnKzff/9dptQXOTslJiZq165dGjNmjLXMzc1NnTp10o4dO+xaR1xcnJKSklSiRIkcxQAAAICskSQEMmFOPbtxVmMSpu5ubCFJCABwHf/++68aN24sSapXr568vb317LPP5jhBKEkXL16U2WxW6dKlbcpLly6tgwcP2rWOF198UeXKlVOnTp3SfT0hIUEJCQnW59HR0TmOFwAAoKiiuzGQidRJwcSsxiRM9Y+orJKKAAAUJGazWV5eXtbnHh4e8vf3d2JE0pQpU7Rs2TKtXbtWPj4+6daZPHmygoKCrI+KFSvmc5QAAACuj5aEQCbStiTMXstAuhsDAFyJYRjq16+fvL29JUnx8fF68skn5efnZ1NvzZo1dq8zJCRE7u7uioyMtCmPjIxUmTJlMl32rbfe0pQpU7Rx40Y1aNAgw3pjxozRyJEjrc+jo6NJFAIAAGQTSUIgE6lnJ85qTMLULQ3pbgwAcCURERE2zx999NFcr9PLy0uNGzfWpk2b1LNnT0myTkIydOjQDJebNm2a3njjDa1fv15NmjTJdBve3t7WxCYAAAByhiQhkIk0sxsnZ570S0iVJKS7MQDAlSxatMgh6x05cqQiIiLUpEkTNW3aVLNmzVJsbKz69+8vSerbt6/Kly+vyZMnS5KmTp2qcePGaenSpQoLC9O5c+ckSf7+/k7v/gwAAFBYkSQEMpEmSZhF0s9i2NanJSEAAFLv3r114cIFjRs3TufOnVOjRo20bt0662QmJ0+elJvbf0Nlz507V4mJibr//vtt1jN+/HhNmDAhP0MHAAAoMkgSApnI/cQlJAkBAJCkoUOHZti9eMuWLTbPjx8/7viAAAAAYIPZjYFMpG442LxK8Uzru6X6RNGSEAAAAAAAuAJaEgKZSLbcyBK+cXctRV1PUvuaIZnWd0/TkpAxCQEAAAAAQMFHkhDIRMrsxqH+Xlm2IpTSdjdOPTsyAAAAAABAQUR3YyATKd2FPdzt+6ikyhHS3RgAAAAAALgEkoRAJqxJQjdTFjVvcE9Vz2wx0sx4DAAAAAAAUNCQJAQykfz/YwramyRM3d1YupEoBAAAAAAAKMhIEgKZSGlJmLqFYEbS65WcxLiEAAAAAACggCNJCGTAYhhKaQTo6W5fktCUTktCZjgGAAAAAAAFHUlCIAM3dxO2v7tx2r9pSQgAAAAAAAo6koRABm5O7tk7u/HNYxKmLJNsoSUhAAAAAAAo2EgSAhlIvqklob1jEt6cJEzpojxtwz/67sD5vA0OAAAAAAAgD5EkBDKQMrOxSZKdQxLa1Evporz332i9ufGfPI4OAAAAAAAg75AkBDJw88zG6U1Ikh63m1ocerrx8QIAAAAAAK6BLAaQgZQkoYe9zQiVfnfjFMxyDAAAAAAACiqShEAGUmY3tndmY0kq5e9l/Tt1cjE2wZw3gQEAAAAAAOQxkoRABlJmN7Z3ZmNJqhHqp2fahen1HrXkmWq52ESShAAAAAAAoGAiSQhkIDkHLQklqVfDMmpRtXiaGZFjEpLzLDYAAAAAAIC8RJIQyEDKGIKe2UwSprgSm2TznJaEAAAAAACgoCJJCGTAfNPsxjlxMTbR5jljEgIAAAAAgIKKJCGQjr3/RmvEqj8l5TxJmFpsIt2NAQAAAABAwUSSEEjHK18dsv6dRzlCxdCSEAAAAAAAFFAkCYF0xDlg/EC6GwMAAAAAgIKKJCGQDi/3PGo+eBO6GwMAAAAAgIKKJCGQjgAfD+vf568lZlLTfociYzVp/VGdi07Ik/UBAAAAAADkFZKEQDpuHj8wNo+6Hu87c00bD17U1O//zpP1AQAAAAAA5BWShEAq15PMSki2OGz9/1yKc9i6AQAAAAAAcoIkIZBK1PUkh66/RDFPh64fAAAAAAAgu0gSAqlcibOdYCSvJzG56uAkJAAAAAAAQHaRJARSuRJ3I4lXM9RPY7vW0PuPNsjRevo3ryBJur1ykE151PVkzd92QpPXH1WyxchdsAAAAAAAAHnAI+sqQNGS0t24eDFPta9ZMsfrefT28upQM0TubtIji/bavLZ811lJ0t31S6tuuYAcbwMAAAAAACAv0JIQSCWlJWFwLscONJlMKh/sI3/vjHPxhy/E5mobAAAAAAAAeYEkIZBKypiBwb5509DW19Pd+rcp1fCG2/6+rKeW7dPK3WfzZFsAAAAAAAA5QXdjIJWUiUuK++bNLMTubv9lBt1NJiUb/41DuOdUtCTp9NV4VS9VTOv/uqDBrSqreCGbATkx2aIDZ6+pHl2rAQAAAAAokApEknDOnDl68803de7cOTVs2FDvvPOOmjZt6uywUERZWxI6IFEX4u+lc9EJacpjEsx6bs1fN7br66lyQT5ydzOpe71QXY1LUqCvh9xSN0N0EQfPxeiN9Ud1+mq8vD3c1LpasDyNJD3dLlhezg4OAAAAAABIKgBJwuXLl2vkyJGaN2+emjVrplmzZik8PFyHDh1SaGios8NDEZQyJmFetub7OKKRIq8l6Mcjl/XVvshM6664qevx/rPX9P2fF3RPw9JqVCFI+89Eq2+zCjJbDHl7uMnH012GYchUABOIP/99WZ/tPKM/z8VYyxKSLdpw8JIshkWnrh3RPQ3L6o6wYPllMm4jAAAAAABwPKf/y3zGjBkaNGiQ+vfvL0maN2+evvnmG3344YcaPXq0k6NDUXIuOl5jvjikE5evS5IC8jBxVT7Y58YjyEcbD15Q+5oh+vbA+SyXW//nBUnS579H6vPfbyQXV+05Jw83k4KLeerWCoHa/s8VRdxRQaX8vXQ5Lkmda4do69HLqhXqp3LBPjp5+bpqhPrJJFmTiVHXk+Tn7SEPt7xNLiaZLVqx+6w+2H4qy7r7zsRo/9mjkqQR7auofvkAVSlZLE/jAQAAAAAA9nFqkjAxMVG7du3SmDFjrGVubm7q1KmTduzY4cTIbEXFJelcVJyuXbsuD3d3mdz+m4jCMAwZkgxDsvz/WHOGof8vu/GaPbJK1WTVUizr5e0MxIkx2BNiVjEkJSXpalSCoozr8vRMTvu62aJks6Eki0VJZkNJZosSkw0lWwwt23XGmiA0maSSfnnf3bh0oLc+H9xEHm4mNa4UpA93nNJzHatq5Oo/Jd3o4nz1/1syZibZYuhiTKI2HLwoSXpv6wnra+9sOZ7uMl7uJiWa/zsjQwO85O/todNX45VktqhO2QBdjk1SaICXvDzcdCk2USWKeepKXJK83N1UNshH0fFJKhvko2SzoZiEZAX6euhcVIIuxyUp2WLo5P/vv+yatfmY9e8QPy8F+LireDEv1Srtp2SzoeBinkoyWxSbaFaIn5d8PN0U6OOhq9eTlJBskbeHmxKSLAoN8FZcklle7m7ycDPpyvUkhfh5yWwxZDYM+Xu7KybBLG8PN3m6m2S2GPL1dFfS/+8XD3eTriea5eftIZPpxliKnu5uSsml3pxoNVn/85/YBLPc3Uzy9XSzGYvSZhnd+K64nmSWxZDcTJKbySR3k8m+D0Hazdpsw566N+pnvo3kpCRFRSfoUnKsPL3SPyfTjyOD7WUYR8FrBetKkpKSFBWVmOF3HgoGs9kss9ksD98ABfu5Z70AAAAA4AROTRJevHhRZrNZpUuXtikvXbq0Dh48mKZ+QkKCEhL+G88tOjra4TFK0sa/IjV13UFZLJb//wcw/6gtqAzDkMWwyM10JkfJh+LFPDW0bZhK+nmqVIC3AyKUPN1vTCrevmZJta9ZUpL0zoN1dT3JrArBvnpj3VH1alhaf52L0Vf7IjWuW02N+/qQSgd6q3mV4lqz95yaVA7SzhNRkqRyQT46ExWf5XZvThBK0vlriTp/LdH6fP+Za5Jks66/b6r/X7fhKLvfa9WQYvrnYpwk6daKgdaJWjJzMTZRF2OlY5eua/cp+7eFvPXfZ8mNRF4B9t9xOs1xKtAMGYb0Ri8Phdcr6+xgAAAAgHQ5vbtxdkyePFkTJ07M9+16ebjdaMmUlCyTm8k6gYTJZJKb/ms5Y5JJJtON59a/b7yQsSyaGmb2spHlshlXyHrZLGRSwf72k+ksm8u4LBZDZnOy3N09ZErVldYwDHm6ucnTwyQPN5M83d3k5X6jRZmn+42WaY82La+qIfnf5bVu2f9m/X3nwbqSbiQRn2hVSZ7ublox8DZ5e7ipmJe77qoXqgrFfXX+WoL+vRKvJpWD9P1fFxRWopi8PNy06dBF9WxQWtuPXdHFmCTdXT9U6/66oHKBPkqyWPTXuVjdXT9UJy5fl8W4cX5vOXxJZYO8lWwx9M/FON0RFqyjF+MU6OOhYF9Pbf/niioE+0i6kUSsU9Zfh8/HytvDTaEB3jpx6bra1yypv87FqISfpzrWCtHCn0/q/lvL6kJMgn7++4pGd6mm9346oUrB3qoWYNHnh2I1qFWYfjh0Uf9ejdf9t5bV+9tPqpS/l4J8PfX9XxdUM9RPCckWnbmaoIYVAnXsUpwSki2qWNxH0deTFeTrochriYqOT1a9sgE6fy1B/j4eSky2KMlsUfFinroQkyjP/29ZGB2frEAfDyX8/+sebm6KSzLL090kk2600PT1dNe1+GSZTDcSuklmy/+fP/+dfzefp4ZuvHD1epKCfT3l4+mm60kWmS03fRKMm+r+v2Je7nJ3M8li3DhvLYadn510qqS3VHqfpYzWn15di2HInJwsdw+P/5JP2VinvdtJN/YMl8/5d0thZRiGzGaz3N3d0yQJSRoWIIYhwzDk5cExAQAAQMFlMpz4r67ExEQVK1ZMq1atUs+ePa3lERERunr1qr744gub+um1JKxYsaKioqIUGBjo0FjNZrOuXLkiDw8PubvTVaigSkxM1OXLl1WiRAl5eTF3bkHEMXINHCfXwHFyDWazWcnJySpevLjD7yGio6MVFBSUL/dGBRn7AfYIG/2Ns0Mo1I5P6e7sEAAA/8/eeyO3fIwpDS8vLzVu3FibNm2yllksFm3atEnNmzdPU9/b21uBgYE2DwAAAAAAAAC54/TuxiNHjlRERISaNGmipk2batasWYqNjbXOdgwAAAAAAADAsZyeJOzdu7cuXLigcePG6dy5c2rUqJHWrVuXZjITAAAAAAAAAI7h9CShJA0dOlRDhw51dhgAAAAAAABAkeTUMQkBAAAAAAAAOB9JQgAAAAAAAKCII0kIAAAAAAAAFHEkCQEAAOBwc+bMUVhYmHx8fNSsWTP9+uuvmdZfuXKlateuLR8fH9WvX1/ffvttPkUKAABQNJEkBAAAgEMtX75cI0eO1Pjx47V79241bNhQ4eHhOn/+fLr1t2/frocfflgDBw7Unj171LNnT/Xs2VP79+/P58gBAACKjgIxuzEAAAAKrxkzZmjQoEHq37+/JGnevHn65ptv9OGHH2r06NFp6s+ePVt33nmnnn/+eUnSa6+9pg0bNujdd9/VvHnz8jV2AAVP2OhvnB1CoXZ8SndnhwDASWhJCAAAAIdJTEzUrl271KlTJ2uZm5ubOnXqpB07dqS7zI4dO2zqS1J4eHiG9QEAAJB7Lt2S0DAMSVJ0dLTDt2U2m3Xt2jWZTCa5uZFbLaiSk5MVExMjDw8Pubu7OzscpINj5Bo4Tq6B4+QaLBaLDMOQu7u7w49Tyj1Ryj1SQXDx4kWZzWaVLl3aprx06dI6ePBgusucO3cu3frnzp1Lt35CQoISEhKsz6OioiTlzz0iXJclIc7ZIRRqjvz8cewcy1HHrt749Q5ZL27YPzHc2SGgALP3HtGlk4TXrl2TJFWsWNHJkQAAABQc165dU1BQkLPDyDeTJ0/WxIkT05Rzjwg4T9AsZ0eAnOLYuSaOG+yR1T2iSycJy5Urp1OnTikgIEAmkylH64iOjlbFihV16tQpBQYG5nGErof98R/2hS32x3/YF7bYH7bYH/9hX9jKj/1hGIauXbumcuXKOWT9ORESEiJ3d3dFRkbalEdGRqpMmTLpLlOmTJls1R8zZoxGjhxpfW6xWHT58mWVLFkyx/eIhRWfS9fEcXNdHDvXxHFzTRy3jNl7j+jSSUI3NzdVqFAhT9YVGBjISXQT9sd/2Be22B//YV/YYn/YYn/8h31hy9H7o6C1IPTy8lLjxo21adMm9ezZU9KNJN6mTZs0dOjQdJdp3ry5Nm3apBEjRljLNmzYoObNm6db39vbW97e3jZlwcHBeRF+ocXn0jVx3FwXx841cdxcE8ctffbcI7p0khAAAAAF38iRIxUREaEmTZqoadOmmjVrlmJjY62zHfft21fly5fX5MmTJUnDhw9X27ZtNX36dHXv3l3Lli3Tzp07tWDBAme+DQAAgEKNJCEAAAAcqnfv3rpw4YLGjRunc+fOqVGjRlq3bp11cpKTJ0/aTAzXokULLV26VK+88opeeukl1ahRQ59//rnq1avnrLcAAABQ6BX5JKG3t7fGjx+fpotKUcX++A/7whb74z/sC1vsD1vsj/+wL2wV9f0xdOjQDLsXb9myJU3ZAw88oAceeMDBURU9Rf08dFUcN9fFsXNNHDfXxHHLPZOR1fzHAAAAAAAAAAo1t6yrAAAAAAAAACjMSBICAAAAAAAARRxJQgAAAAAAAKCIc+kk4datW9WjRw+VK1dOJpNJn3/+uc3ra9asUZcuXVSyZEmZTCbt3bs3zTri4+M1ZMgQlSxZUv7+/rrvvvsUGRmZ6XYNw9C4ceNUtmxZ+fr6qlOnTjpy5EgevrPsy+2+uHz5sp555hnVqlVLvr6+qlSpkoYNG6aoqKhMt9uvXz+ZTCabx5133pnH7y778uLcaNeuXZr39uSTT2a63YJ4bki53x/Hjx9Psy9SHitXrsxwuwXx/MhsXyQlJenFF19U/fr15efnp3Llyqlv3746c+aMzTouX76sPn36KDAwUMHBwRo4cKBiYmIy3W5OvmvyQ273x/HjxzVw4EBVqVJFvr6+qlatmsaPH6/ExMRMt5uTz1d+yIvzIywsLM17mzJlSqbbLYjnR273xZYtWzL83vjtt98y3K4rnhuSNGHCBNWuXVt+fn4qXry4OnXqpP/97382dQrTdwdcT1bnMAqmyZMn6/bbb1dAQIBCQ0PVs2dPHTp0yNlhIQtz585VgwYNFBgYqMDAQDVv3lzfffeds8NCNk2ZMkUmk0kjRoxwdijIwoQJE9LcP9auXdvZYbkkl04SxsbGqmHDhpozZ06Gr7dq1UpTp07NcB3PPvusvvrqK61cuVI//vijzpw5o3vvvTfT7U6bNk1vv/225s2bp//973/y8/NTeHi44uPjc/V+ciO3++LMmTM6c+aM3nrrLe3fv1+LFy/WunXrNHDgwCy3feedd+rs2bPWx2effZar95IX8uLckKRBgwbZvLdp06ZlWr8gnhtS7vdHxYoVbfbD2bNnNXHiRPn7+6tr166ZbrugnR+Z7Yu4uDjt3r1bY8eO1e7du7VmzRodOnRId999t029Pn366MCBA9qwYYO+/vprbd26VU888USm283Jd01+yO3+OHjwoCwWi+bPn68DBw5o5syZmjdvnl566aUst53dz1d+yIvzQ5JeffVVm/f2zDPPZLrdgnh+5HZftGjRIs33xuOPP64qVaqoSZMmmW7b1c4NSapZs6beffdd7du3T9u2bVNYWJi6dOmiCxcuWOsUpu8OuJ6szmEUTD/++KOGDBmiX375RRs2bFBSUpK6dOmi2NhYZ4eGTFSoUEFTpkzRrl27tHPnTnXo0EH33HOPDhw44OzQYKfffvtN8+fPV4MGDZwdCuxUt25dm/vHbdu2OTsk12QUEpKMtWvXpvvasWPHDEnGnj17bMqvXr1qeHp6GitXrrSW/fXXX4YkY8eOHemuy2KxGGXKlDHefPNNm/V4e3sbn332Wa7fR17Iyb5Iz4oVKwwvLy8jKSkpwzoRERHGPffck7NA80lO90fbtm2N4cOH270dVzg3DCPvzo9GjRoZAwYMyLROQT8/MtsXKX799VdDknHixAnDMAzjzz//NCQZv/32m7XOd999Z5hMJuP06dPpriMn3zXOkJP9kZ5p06YZVapUyXQ92f18OUNO90flypWNmTNn2r0dVzg/8uLcSExMNEqVKmW8+uqrma6nsJwbUVFRhiRj48aNhmEU7u8OuB57zmEUTOfPnzckGT/++KOzQ0E2FS9e3Hj//fedHQbscO3aNaNGjRrGhg0bXOK+BIYxfvx4o2HDhs4Oo1Bw6ZaEubVr1y4lJSWpU6dO1rLatWurUqVK2rFjR7rLHDt2TOfOnbNZJigoSM2aNctwGVcVFRWlwMBAeXh4ZFpvy5YtCg0NVa1atfTUU0/p0qVL+RSh43366acKCQlRvXr1NGbMGMXFxWVYtyidG7t27dLevXvtamnq6udHVFSUTCaTgoODJUk7duxQcHCwTUuoTp06yc3NLU3XwhQ5+a4pqFLvj4zqlChRIst1ZefzVVBltD+mTJmikiVL6tZbb9Wbb76p5OTkDNdRWM6PrM6NL7/8UpcuXVL//v2zXJernxuJiYlasGCBgoKC1LBhQ0l8dwDIGylDAdlznUXBYDabtWzZMsXGxqp58+bODgd2GDJkiLp3725z/UXBd+TIEZUrV05Vq1ZVnz59dPLkSWeH5JIyz/4UcufOnZOXl1eaf9CULl1a586dy3CZlDr2LuOKLl68qNdeey3LblB33nmn7r33XlWpUkV///23XnrpJXXt2lU7duyQu7t7PkXrGI888ogqV66scuXK6Y8//tCLL76oQ4cOac2aNenWLyrnhiR98MEHuuWWW9SiRYtM67n6+REfH68XX3xRDz/8sAIDAyXdOM6hoaE29Tw8PFSiRIlMvzey+11TEKW3P1I7evSo3nnnHb311luZriu7n6+CKKP9MWzYMN12220qUaKEtm/frjFjxujs2bOaMWNGuuspDOeHPefGBx98oPDwcFWoUCHTdbnyufH111/roYceUlxcnMqWLasNGzYoJCREUtH+7gCQNywWi0aMGKGWLVuqXr16zg4HWdi3b5+aN2+u+Ph4+fv7a+3atapTp46zw0IWli1bpt27d2c6fjIKnmbNmmnx4sWqVauWdWis1q1ba//+/QoICHB2eC6lSCcJkb7o6Gh1795dderU0YQJEzKt+9BDD1n/rl+/vho0aKBq1appy5Yt6tixo4MjdaybE6T169dX2bJl1bFjR/3999+qVq2aEyNzruvXr2vp0qUaO3ZslnVd+fxISkrSgw8+KMMwNHfuXGeH43T27I/Tp0/rzjvv1AMPPKBBgwZluj5X/3xltj9Gjhxp/btBgwby8vLS4MGDNXnyZHl7e+d3qA5nz7nx77//av369VqxYkWW63Plc6N9+/bau3evLl68qIULF+rBBx/U//73vzTJQQDIiSFDhmj//v2Ms+UiatWqpb179yoqKkqrVq1SRESEfvzxRxKFBdipU6c0fPhwbdiwQT4+Ps4OB9lw8zj5DRo0ULNmzVS5cmWtWLHCrt5v+E+R7m5cpkwZJSYm6urVqzblkZGRKlOmTIbLpNSxdxlXcu3aNd15550KCAjQ2rVr5enpma3lq1atqpCQEB09etRBETpPs2bNJCnD91bYz40Uq1atUlxcnPr27ZvtZV3l/EhJepw4cUIbNmywaRlVpkwZnT9/3qZ+cvL/tXfvQVHV7x/A38CyIC63XVdYUi6JApUZlxGxGb4gIqSCKJmijqLAVIqljTihEBODOjqMtzSxIsQUbWyyGMcmL0DgZbDQlbIZVFogBQeFFAkwhfP7w+H8WHWRi7os+37N7B97Lp/Pc575nMPh2XN5gMbGxm6PG7091gwk3eWjU21tLYKDgzFx4kR88cUXve7jafvXQNKTfHTl7++PBw8eoKqq6onzDXl89DQXOTk5UCgUT3zJy9MY0tgYOnQo3N3dMWHCBGRnZ0MikSA7OxuAcR47iOjZSUxMxJEjR1BYWPjUK7JpYJBKpXB3d4evry82bNiAcePGYdu2bfoOi7pRVlaG+vp6+Pj4QCKRQCKR4JdffsH27dshkUjQ3t6u7xCph+zs7DBmzBiDOH8caIy6SOjr6wtzc3OcPHlSnFZRUYGamhqdz4twc3ODo6Oj1jpNTU0oLS01+GdMNDU1YcqUKZBKpcjPz+/TryfXrl1DQ0MDVCrVc4hQv9RqNQDo3LbBPDa6ys7ORmRkJJRKZa/XNYTx0Vn0uHLlCk6cOAGFQqE1PyAgALdv30ZZWZk4raCgAB0dHWIx41F9OdYMFE/LB/DwCsKgoCD4+voiJycHpqa9/9PytP1roOhJPh6lVqthamqq82oyQx0fPc2FIAjIycnBwoULe/3DE2A4Y+NJOjo6cO/ePQDGd+wgomdDEAQkJibi8OHDKCgogJubm75Doj7q+jeBBqaQkBD8/vvvUKvV4sfPzw/z58+HWq02iMcl0UPNzc2orKw0yPNHfTPo242bm5u1KsMajQZqtRpyuRzOzs5obGxETU0NamtrATw8sQYe/jLv6OgIW1tbxMXF4aOPPoJcLoeNjQ2WL1+OgIAATJgwQWzX09MTGzZswMyZM2FiYoIVK1YgIyMDo0ePhpubG1JTU+Hk5ISoqKgXuv1d9TcXnQXClpYW7Nu3D01NTWhqagIAKJVK8YDYNRfNzc349NNPER0dDUdHR1RWVmL16tVwd3dHWFjYC86Atv7mo7KyEnl5eZg6dSoUCgXKy8uxcuVKBAYG4vXXXxfbNYSxAfQ/H52uXr2K4uJiHD169In9GML46C4XKpUKb7/9Ns6fP48jR46gvb1dfO6XXC6HVCqFl5cXwsPDkZCQgKysLNy/fx+JiYmYO3cunJycADwsmoWEhGDv3r0YP358j481+tDffHQWCF1cXJCZmYmbN2+KbXWOnUfz0dP9Sx/6m4+zZ8+itLQUwcHBsLa2xtmzZ7Fy5UosWLAA9vb2AAxnfPQ3F50KCgqg0WgQHx//WB+DZWwoFAqsW7cOkZGRUKlUuHXrFnbu3Inr169j9uzZADDojh1keJ52LkAD07Jly5CXl4cff/wR1tbW4rHW1tYWQ4YM0XN0pEtycjLeeustODs74+7du8jLy0NRURF+/vlnfYdG3bC2tn7seZ9Dhw6FQqHgc0AHuFWrViEiIgIuLi6ora1FWloazMzMEBMTo+/QDI8+X63cX4WFhQKAxz6LFi0SBEEQcnJynjg/LS1NbKO1tVVYunSpYG9vL1hZWQkzZ84U6urqtPoBIOTk5IjfOzo6hNTUVMHBwUGwsLAQQkJChIqKihewxbr1Nxe61gcgaDQasZ+uuWhpaRGmTJkiKJVKwdzcXHBxcRESEhKEGzduvNiNf4L+5qOmpkYIDAwU5HK5YGFhIbi7uwtJSUnCnTt3tPoxhLEhCM9mXxEEQUhOThZGjhwptLe3P7EfQxgf3eVCo9Ho3A8KCwvFNhoaGoSYmBhBJpMJNjY2wuLFi4W7d++K8zvb6bpOT441+tDffOgaO13/vDyaj57uX/rQ33yUlZUJ/v7+gq2trWBpaSl4eXkJ69evF9ra2sQ+DGV8PIt9RRAEISYmRpg4ceIT+xgsY6O1tVWYOXOm4OTkJEilUkGlUgmRkZHCuXPntNoYTMcOMjxPOxeggUnXsbbr+ScNPEuWLBFcXFwEqVQqKJVKISQkRDh27Ji+w6I++N///id8+OGH+g6DnmLOnDmCSqUSpFKp8NJLLwlz5swRrl69qu+wDJKJIAgCiIiIiIiIiIiIyGgZ9TMJiYiIiIiIiIiIiEVCIiIiIiIiIiIio8ciIRERERERERERkZFjkZCIiIiIiIiIiMjIsUhIRERERERERERk5FgkJCIiIiIiIiIiMnIsEhIRERERERERERk5FgmJiIiIiIiIiIiMHIuERERERERERAPUyZMn4eXlhfb2dr30n5WVhYiICL30TUQvFouEREQ9FBsbCxMTE5iYmMDc3Bxubm5YvXo1srKyxOm6PlVVVfoOn4iIiMgg3Lx5E++//z6cnZ1hYWEBR0dHhIWF4fTp0/oO7ZlxdXXF1q1be7Ts6tWrkZKSAjMzMwBAXV0d5s2bhzFjxsDU1BQrVqzoUwxBQUEwMTHBwYMHtaZv3boVrq6u4vclS5bg/PnzKCkp6VM/RGQ4WCQkIuqF8PBw1NXV4a+//sKWLVuwe/duaDQa1NXViZ+AgAAkJCRoTRs5cqS+QyciIiIyCNHR0bhw4QJyc3Nx+fJl5OfnIygoCA0NDfoO7YU7deoUKisrER0dLU67d+8elEolUlJSMG7cuH61b2lpiZSUFNy/f1/nMlKpFPPmzcP27dv71RcRDXwsEhIR9ULnr9kjR45EVFQUJk+ejOPHj8PR0VH8SKVSWFlZaU3r/OWXiIiIiHS7ffs2SkpKsHHjRgQHB8PFxQXjx49HcnIyIiMjtZaLj4+HUqmEjY0NJk2ahIsXL2q1lZGRgeHDh8Pa2hrx8fH4+OOP8cYbb4jzY2NjERUVhfXr18PBwQF2dnZIT0/HgwcPkJSUBLlcjhEjRiAnJ0er3b///hvvvPMO7OzsIJfLMWPGDK27RjrbzczMhEqlgkKhwLJly8RCXFBQEKqrq7Fy5UrxrhNdDh48iNDQUFhaWorTXF1dsW3bNixcuBC2trZ9SbMoJiYGt2/fxpdfftntchEREcjPz0dra2u/+iOigY1FQiKiPvrjjz9w5swZSKVSfYdCRERENCjIZDLIZDL88MMPuHfvns7lZs+ejfr6evz0008oKyuDj48PQkJC0NjYCADYv38/1q1bh40bN6KsrAzOzs7YtWvXY+0UFBSgtrYWxcXF2Lx5M9LS0jB9+nTY29ujtLQU7733Ht59911cu3YNAHD//n2EhYXB2toaJSUlOH36NGQyGcLDw/Hff/+J7RYWFqKyshKFhYXIzc3Fnj17sGfPHgDA999/jxEjRiA9PV2860SXkpIS+Pn59SWVPWJjY4O1a9ciPT0d//77r87l/Pz88ODBA5SWlj63WIhI/1gkJCLqhSNHjkAmk8HS0hJjx45FfX09kpKS9B0WERER0aAgkUiwZ88e5Obmws7ODm+++SbWrFmD8vJycZlTp07h3LlzOHToEPz8/DB69GhkZmbCzs4O3333HQDgs88+Q1xcHBYvXowxY8bgk08+wdixYx/rTy6XY/v27fDw8MCSJUvg4eGBlpYWrFmzBqNHj0ZycjKkUilOnToFAPj222/R0dGBr776CmPHjoWXlxdycnJQU1ODoqIisV17e3vs2LEDnp6emD59OqZNm4aTJ0+KfZqZmcHa2lq860SX6upqODk5PYvU6rR06VJYWlpi8+bNOpexsrKCra0tqqurn2ssRKRfLBISEfVCcHAw1Go1SktLsWjRIixevFjrGTFERERE1D/R0dGora1Ffn4+wsPDUVRUBB8fH/FKvIsXL6K5uRkKhUK88lAmk0Gj0aCyshIAUFFRgfHjx2u1++h3AHj11Vdhavr//xY7ODhoFRPNzMygUChQX18v9n316lVYW1uL/crlcrS1tYl9d7bb9XEzKpVKbKM3WltbtW41fh4sLCyQnp6OzMxM3Lp1S+dyQ4YMQUtLy3ONhYj0S6LvAIiIDMnQoUPh7u4OAPj6668xbtw4ZGdnIy4uTs+REREREQ0elpaWCA0NRWhoKFJTUxEfH4+0tDTExsaiubkZKpVK68q9TnZ2dr3qx9zcXOu7iYnJE6d1dHQAAJqbm+Hr64v9+/c/1pZSqey23c42emPYsGH4559/er1eby1YsACZmZnIyMjQerNxV42NjVrbSESDD68kJCLqI1NTU6xZswYpKSl8iDMRERHRc/TKK6+Iz8zz8fHBjRs3IJFI4O7urvUZNmwYAMDDwwO//vqrVhuPfu8LHx8fXLlyBcOHD3+s7968REQqlaK9vf2py3l7e+PPP//sT8g9Ympqig0bNmDXrl1aL2HpVFlZiba2Nnh7ez/3WIhIf1gkJCLqh9mzZ8PMzAw7d+7UdyhEREREBq+hoQGTJk3Cvn37UF5eDo1Gg0OHDmHTpk2YMWMGAGDy5MkICAhAVFQUjh07hqqqKpw5cwZr167Fb7/9BgBYvnw5srOzkZubiytXriAjIwPl5eXdvkm4J+bPn49hw4ZhxowZKCkpgUajQVFRET744APx5SY94erqiuLiYly/fr3bW3zDwsLE5yF2pVaroVar0dzcjJs3b0KtVmsVEw8fPgxPT0+tdTw9PXH48GGdfU2bNg3+/v7YvXv3Y/NKSkrw8ssvY9SoUT3ZPCIyUCwSEhH1g0QiQWJiIjZt2tTtG+GIiIiI6OlkMhn8/f2xZcsWBAYG4rXXXkNqaioSEhKwY8cOAA9v3T169CgCAwPFF5PMnTsX1dXVcHBwAPCwmJecnIxVq1bBx8cHGo0GsbGx/X6+n5WVFYqLi+Hs7IxZs2bBy8sLcXFxaGtrg42NTY/bSU9PR1VVFUaNGtXtLbzz58/HpUuXUFFRoTXd29sb3t7eKCsrQ15eHry9vTF16lRx/p07dx5bp6KiAnfu3Ok2ro0bN6Ktre2x6QcOHEBCQkJPNo2IDJiJIAiCvoMgIiIiIiIiep5CQ0Ph6OiIb775Rt+h9EpSUhKampqeeIXfi3Dp0iVMmjQJly9f7tUt1URkePjiEiIiIiIiIhpUWlpakJWVhbCwMJiZmeHAgQM4ceIEjh8/ru/Qem3t2rX4/PPP0dHRofUm5helrq4Oe/fuZYGQyAjwSkIiIiIiIiIaVFpbWxEREYELFy6gra0NHh4eSElJwaxZs/QdGhHRgMUiIRERERERERERkZHji0uIiIiIiIiIiIiMHIuERERERERERERERo5FQiIiIiIiIiIiIiPHIiEREREREREREZGRY5GQiIiIiIiIiIjIyLFISEREREREREREZORYJCQiIiIiIiIiIjJyLBISEREREREREREZORYJiYiIiIiIiIiIjNz/AXwwjU0yFSbOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([2.48026088e-04, 9.87761596e-01, 1.04720962e-02, 1.10124332e-03,\n", + " 4.17038413e-04])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array_splits = feat_gen.feature_scanning_window_splits(\n", + " precursor_fragments, visualize=True\n", + ")\n", + "\n", + "array_splits" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "37b864cd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAGGCAYAAAAAW6PhAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg3tJREFUeJzs3Xd4U+X///FXWmjZpewhQmUoyAZBhqBsQRBkg7JBkF1B4St7ispSEAQFFPHDVFBkT0ERRPYUkL1nSxkttPfvD36NpE2hKSkZfT6uK5fNnZNzXic5d/L25uQ+FmOMEQAAAAAAAADALfi4OgAAAAAAAAAA4D8M2gIAAAAAAACAG2HQFgAAAAAAAADcCIO2AAAAAAAAAOBGGLQFAAAAAAAAADfCoC0AAAAAAAAAuBEGbQEAAAAAAADAjTBoCwAAAAAAAABuhEFbAAAAAAAAAHAjDNoC8Ah58uRRmzZtrPc3bNggi8WiDRs2uCxTTDEzxsVisWjIkCGJnudpiO8+S9Krr76qV199NVHz2BMWFqYsWbJozpw5T33bT5u79JOY7/WBAweULFky7du376nmAAA4X2J9t3hTfeQod/n+fhTq3EdLqnXuiRMnZLFY9Nlnn7lk++7i3r17ypUrl7788ktXR4GXYdAWcIDFYonX7WkUWOfPn1e/fv302muvKW3atHFu9/bt25o8ebJq1Kih7NmzK23atCpRooSmTJmiyMjIRM/pbpYtW+bRheSoUaO0ePFiV8eI04EDBzRkyBCdOHHC1VGsJk6cqLRp06pZs2aujpJkFSpUSHXq1NGgQYNcHQUAkpRZs2bZ1KjJkiVTzpw51aZNG509e/ap5/H0OszdefrrS53rOG+vcw8dOqQPPvhAxYsXV9q0aZU9e3bVqVNH27dvf6L1TpkyRY0bN9azzz4ri8US5+D82rVr1a5dOxUoUECpUqXSc889pw4dOuj8+fM2yyVPnlzBwcEaOXKk7t69+0TZgIclc3UAwJPMnj3b5v53332n1atXx2ovWLBgomc5fPiwxowZo/z586tIkSLasmWL3eX+/fdfde/eXVWrVlVwcLDSpUunlStX6r333tOff/6pb7/9NtGzJoZKlSrpzp078vPzc+h5y5Yt0+TJk11a0N65c0fJkiXs43fUqFFq1KiR6tev79xQCXT48GH5+Pz3738HDhzQ0KFD9eqrrypPnjw2y65ateopp3vwr94TJ05U79695evr+9S372oJ7SeJoXPnzqpdu7aOHTumvHnzujoOACQpw4YNU1BQkO7evas///xTs2bN0ubNm7Vv3z6lSJHiqeV4VB32JPWRt6HOre/cUAlEnet6X3/9tb755hs1bNhQ7733nkJCQvTVV1/p5Zdf1ooVK1StWrUErXfMmDG6efOmypQpE2sA9mEffvihrl27psaNGyt//vz6999/NWnSJC1dulS7du1StmzZrMu2bdtW/fr10w8//KB27dolKBcQE9+KgAPefvttm/t//vmnVq9eHav9aShVqpSuXr2qDBkyaOHChWrcuLHd5bJly6a9e/fqxRdftLa9++67ateunWbOnKmBAwcqX758iZbz1q1bSp06tdPX6+Pj81T/J8OZPDW3Pf7+/vFe1hUDh0uXLtXly5fVpEmTp77tqKgoRUREuPT9dqd+Uq1aNQUGBurbb7/VsGHDXB0HAJKU119/XaVLl5YkdejQQZkyZdKYMWP0888/u+Q70h53+b5yBHVubJ6a2x5vqnMT61hNbM2bN9eQIUOUJk0aa1u7du1UsGBBDRkyJMGDths3brSeZfvwumMaN26cKlasaDN4X6tWLVWuXFmTJk3SiBEjrO3p06dXjRo1NGvWLAZt4TRMjwA42a1bt/T+++8rV65c8vf31/PPP6/PPvtMxhib5SwWi7p166Y5c+bo+eefV4oUKVSqVCn99ttv8dpO2rRplSFDhsculylTJpsB22gNGjSQJB08ePCRz394nqLx48crd+7cSpkypSpXrhxrfso2bdooTZo0OnbsmGrXrq20adOqZcuWkh4MYE2YMEEvvviiUqRIoaxZs+rdd9/V9evXbdZhjNGIESP0zDPPKFWqVHrttde0f//+WLnimutr69atql27tgIDA5U6dWoVLVpUEydOtOabPHmyJNupLqI5O2NcYs71NWTIEFksFh09elRt2rRR+vTpFRAQoLZt2+r27ds2z7t165a+/fZba/aHf8pz9uxZtWvXTlmzZpW/v79efPFFzZgxw+7rNn/+fI0cOVLPPPOMUqRIoapVq+ro0aM2yx45ckQNGzZUtmzZlCJFCj3zzDNq1qyZQkJCrMs8PNfXrFmzrP948Nprr8WaLsTeXF/h4eEaPHiw8uXLJ39/f+XKlUsffPCBwsPDbZZbvXq1KlasqPTp0ytNmjR6/vnn9X//93+Pfa0XL16sPHnyxDqzM/pYPXv2rOrXr680adIoc+bM6tOnT6xpQxLSp1988UX5+/trxYoV1p+mbt68WT169FDmzJmVPn16vfvuu4qIiNCNGzfUqlUrBQYGKjAwUB988EGsdX/22WcqX768MmbMqJQpU6pUqVJauHDhY/c/Zj+J+TPZh28x35vvv/9epUqVUsqUKZUhQwY1a9ZMp0+fjrWNadOmKW/evEqZMqXKlCmjTZs22c2SPHlyvfrqq1qyZMljcwMAEtcrr7wiSTp27JhN+6FDh9SoUSNlyJBBKVKkUOnSpfXzzz8/dn2bNm2y/tQ4+vu8d+/eunPnjnWZx9VhD9dHCxculMVi0caNG2Nt66uvvpLFYrGpQxOamzqXOteb61x7x2p8+urD64hPrRyTMUadOnWSn5+ffvzxR0kPzgoeOnSo8ufPrxQpUihjxoyqWLGiVq9e/ch1lSpVKtagasaMGfXKK6889v9jHyV37tw2/SMulSpVshmwjW7LkCGD3e1Xr15dmzdv1rVr1xKcDXgYZ9oCTmSMUb169bR+/Xq1b99exYsX18qVK9W3b1+dPXtW48ePt1l+48aNmjdvnnr06CF/f399+eWXqlWrlrZt26bChQsnatYLFy5IejCoGx/fffedbt68qa5du+ru3buaOHGiqlSpor179ypr1qzW5e7fv6+aNWuqYsWK+uyzz5QqVSpJD87unTVrltq2basePXro+PHjmjRpknbu3Knff/9dyZMnlyQNGjRII0aMUO3atVW7dm3t2LFDNWrUUERExGMzrl69Wm+88YayZ8+unj17Klu2bDp48KCWLl2qnj176t1339W5c+fsTmnxtDI+SpMmTRQUFKTRo0drx44d+vrrr5UlSxaNGTNG0oPpOTp06KAyZcqoU6dOkmQt0i5evKiXX37ZOnCYOXNmLV++XO3bt1doaKh69epls62PP/5YPj4+6tOnj0JCQvTJJ5+oZcuW2rp1qyQpIiJCNWvWVHh4uLp3765s2bLp7NmzWrp0qW7cuKGAgIBY+StVqqQePXro888/1//93/9ZpwmJa7qQqKgo1atXT5s3b1anTp1UsGBB7d27V+PHj9c///xjndNs//79euONN1S0aFENGzZM/v7+Onr0qH7//ffHvqZ//PGHSpYsafexyMhI1axZU2XLltVnn32mNWvWaOzYscqbN6+6dOkiyfE+vW7dOs2fP1/dunVTpkyZlCdPHu3atUuSrK/j0KFD9eeff2ratGlKnz69/vjjDz377LMaNWqUli1bpk8//VSFCxdWq1atrOudOHGi6tWrp5YtWyoiIkJz585V48aNtXTpUtWpU+exr0O0SpUqxTr2T548qQEDBihLlizWtpEjR2rgwIFq0qSJOnTooMuXL+uLL75QpUqVtHPnTqVPn16S9M033+jdd99V+fLl1atXL/3777+qV6+eMmTIoFy5csXafqlSpbRkyRKFhoYqXbp08c4NAHCu6Dk5AwMDrW379+9XhQoVlDNnTvXr10+pU6fW/PnzVb9+fS1atMj6D/72LFiwQLdv31aXLl2UMWNGbdu2TV988YXOnDmjBQsWSNJj67CH1alTR2nSpNH8+fNVuXJlm8fmzZunF1980VorP0nuaNS51LneVufGdazGp69Gi0+tHFNkZKTatWunefPm6aeffrLWqUOGDNHo0aOt73FoaKi2b9+uHTt2qHr16o/d15guXLgQ7/+PdbawsDCFhYXZ3X6pUqVkjNEff/yhN954wwXp4HUMgATr2rWrebgbLV682EgyI0aMsFmuUaNGxmKxmKNHj1rbJBlJZvv27da2kydPmhQpUpgGDRo4lGPBggVGklm/fn28lg8PDzeFChUyQUFB5t69e49c9vjx40aSSZkypTlz5oy1fevWrUaS6d27t7WtdevWRpLp16+fzTo2bdpkJJk5c+bYtK9YscKm/dKlS8bPz8/UqVPHREVFWZf7v//7PyPJtG7d2tq2fv16m32+f/++CQoKMrlz5zbXr1+32c7D64r5niVmxrhIMoMHD7beHzx4sJFk2rVrZ7NcgwYNTMaMGW3aUqdObXcb7du3N9mzZzdXrlyxaW/WrJkJCAgwt2/fNsb897oVLFjQhIeHW5ebOHGikWT27t1rjDFm586dRpJZsGDBI/cld+7cNnkedSxWrlzZVK5c2Xp/9uzZxsfHx2zatMlmualTpxpJ5vfffzfGGDN+/HgjyVy+fPmRWWK6d++esVgs5v3334/1WPSxOmzYMJv2EiVKmFKlSlnvO9qnfXx8zP79+22WnTlzppFkatasaXPMlCtXzlgsFtO5c2dr2/37980zzzxj8zoZY6zvX7SIiAhTuHBhU6VKFZv2mO9HzH4S0507d0ypUqVMjhw5zPnz540xxpw4ccL4+vqakSNH2iy7d+9ekyxZMmt7RESEyZIliylevLjNsTRt2jQjKdY+GGPMDz/8YCSZrVu32s0DAHCu6O+gNWvWmMuXL5vTp0+bhQsXmsyZMxt/f39z+vRp67JVq1Y1RYoUMXfv3rW2RUVFmfLly5v8+fNb2+x9t8T8njLGmNGjRxuLxWJOnjxpbYurDjMmdn3UvHlzkyVLFnP//n1r2/nz542Pj4/N93d8c9tDnUud+yieXufGPFaNiX9fjW+tHN2HPv30U3Pv3j3TtGlTkzJlSrNy5Uqb5xUrVszUqVPHoX2My2+//WYsFosZOHCgU9YX13EXl+HDhxtJZu3atbEeO3funJFkxowZ45RsANMjAE60bNky+fr6qkePHjbt77//vowxWr58uU17uXLlVKpUKev9Z599Vm+++aZWrlz52J+dPIlu3brpwIEDmjRpUrwvFFC/fn3lzJnTer9MmTIqW7asli1bFmvZmP/yumDBAgUEBKh69eq6cuWK9Rb9c5f169dLktasWaOIiAh1797d5ucqMf/13J6dO3fq+PHj6tWrl/UswGjx+enL08j4OJ07d7a5/8orr+jq1asKDQ195POMMVq0aJHq1q0rY4xN/po1ayokJEQ7duyweU7btm1t5t6K/pnkv//+K0nWMwxWrlxp89M1Z1qwYIEKFiyoF154wSZzlSpVJMn6mke/n0uWLFFUVFS813/t2jUZY2zOIorJ3mse/RpIjvfpypUrq1ChQna31b59e5tjpmzZsjLGqH379tY2X19flS5d2iaDJKVMmdL69/Xr1xUSEqJXXnkl1vvqqPfee0979+7VokWLrBdS+PHHHxUVFaUmTZrYvC/ZsmVT/vz5re/L9u3bdenSJXXu3NnmWGrTpo3dM1Sk/87ounLlyhPlBgA4plq1asqcObNy5cqlRo0aKXXq1Pr555/1zDPPSHrwnblu3To1adJEN2/etH72X716VTVr1tSRI0d09uzZONf/8PfUrVu3dOXKFZUvX17GGO3cuTNBmZs2bapLly7ZTBGwcOFCRUVFqWnTpk7JHY06lzrX2dyhzrV3NqyjffVxtXK0iIgI66/Ali1bpho1atg8nj59eu3fv19Hjhx57L49yqVLl9SiRQsFBQXpgw8+eKJ1JcRvv/2moUOHqkmTJtb38mHUunA2pkcAnOjkyZPKkSOH0qZNa9Me/bOZkydP2rTnz58/1joKFCig27dv6/Lly8qQIUOs+XAyZ878RFcH/fTTTzV9+nQNHz5ctWvXjvfz4so6f/58m7ZkyZJZ/wcg2pEjRxQSEmLz8+uHXbp0SdJ/r0/MbWXOnPmRBYn035xsCZ1W4mlkfJxnn33W5n70+q5fv/7In5JfvnxZN27c0LRp0zRt2jS7y0Tnj8+2JCkoKEjBwcEaN26c5syZo1deeUX16tXT22+/HeeAnKOOHDmigwcPKnPmzI/M3LRpU3399dfq0KGD+vXrp6pVq+qtt95So0aNYs0xZY+JMT9stBQpUsTadmBgoM3cbo726aCgoDhzxHzNo1/HmNMIBAQExJpfbunSpRoxYoR27dplMw9afP5HLS5fffWVZs6cab0Cb7QjR47IGGO3z0uy/nwyrr6QPHlyPffcc3afG/1ePEluAIDjJk+erAIFCigkJEQzZszQb7/9ZnORpaNHj8oYo4EDB2rgwIF213Hp0iWbgc2HnTp1SoMGDdLPP/8c6zvs4TlCHVGrVi0FBARo3rx5qlq1qqQHUyMUL15cBQoUcEruaNS51LneVufaO1Ylx/pqfGrlaKNHj1ZYWJiWL18ea25fSRo2bJjefPNNFShQQIULF1atWrX0zjvvqGjRoo/bRatbt27pjTfe0M2bN7V58+ZHXkAsMRw6dEgNGjRQ4cKF9fXXX9tdhloXzsagLeDG/vjjD7322ms2bcePH1eePHkStL5Zs2bpww8/VOfOnTVgwAAnJIzN398/VoERFRWlLFmyaM6cOXafE1cx8zS5Q8a4BuPjKsaiRf+r/Ntvv63WrVvbXSZmQRSfbY0dO1Zt2rTRkiVLtGrVKvXo0UOjR4/Wn3/+abcIdFRUVJSKFCmicePG2X08ejAzZcqU+u2337R+/Xr9+uuvWrFihebNm6cqVapo1apVce5LhgwZZLFY7BaWUtyvwZN4+OyF+G7PXvvD78OmTZtUr149VapUSV9++aWyZ8+u5MmTa+bMmfrhhx8SlHPbtm3q2bOnOnToYJ03LlpUVJQsFouWL19uN9uTFMjR74Wr5iADgKSqTJkyKl26tKQHZ5VWrFhRLVq00OHDh5UmTRprLdGnTx/VrFnT7jry5ctntz0yMlLVq1fXtWvX9OGHH+qFF15Q6tSpdfbsWbVp08ahswcf5u/vr/r16+unn37Sl19+qYsXL+r333/XqFGjrMs8Se6EZqLOTRjqXFuJXefaO1Yd7auO1Mo1a9bUihUr9Mknn+jVV19VihQpbB6vVKmSjh07Zn29v/76a40fP15Tp05Vhw4dHrv+iIgIvfXWW9qzZ49WrlyZ6Nd/ien06dOqUaOGAgICtGzZslgndESj1oWzMWgLOFHu3Lm1Zs0a3bx50+aD/NChQ9bHH2bv5yH//POPUqVKpcyZM8vf3z/WFTWjf8LsqCVLlqhDhw566623rFeWdURcWeMzgJw3b16tWbNGFSpUeOSgVvTrc+TIEZsz9S5fvhxnQfLwNiRp3759qlatWpzLxfWvnk8jozPYy585c2alTZtWkZGRj9z3hChSpIiKFCmiAQMG6I8//lCFChU0depUjRgxIt754pI3b17t3r1bVatWfezzfHx8VLVqVVWtWlXjxo3TqFGj9NFHH2n9+vVx7nOyZMmUN29eHT9+PN6ZYnK0TyeGRYsWKUWKFFq5cqXNWVEzZ85M0PouX76sRo0aqXjx4nY/C/LmzStjjIKCgqxnMtnzcF94+Odh9+7d0/Hjx1WsWLFYzzl+/Lh8fHweuV4AQOLy9fXV6NGj9dprr2nSpEnq16+ftaZJnjy5w7XE3r179c8//+jbb7+1uYimvavCO3r2WdOmTfXtt99q7dq1OnjwoIwx1qkRJD1R7odR5z55Rmegzk3cOteRvuqol19+WZ07d9Ybb7yhxo0b66effoo1DV+GDBnUtm1btW3bVmFhYapUqZKGDBny2EHbqKgotWrVSmvXrrV7ccLEdvXqVdWoUUPh4eFau3atsmfPHuey0e9HXBeoAxzFnLaAE9WuXVuRkZGaNGmSTfv48eNlsVj0+uuv27Rv2bLFZg6m06dPa8mSJapRo4Z8fX0VGBioatWq2dxi/qtlfPz2229q1qyZKlWqpDlz5sTrpzYxLV682GZOsG3btmnr1q2x9smeJk2aKDIyUsOHD4/12P3793Xjxg1JD+ZbS548ub744gubfwmfMGHCY7dRsmRJBQUFacKECdb1RXt4XalTp5akWMs8jYzOkDp16ljZfX191bBhQy1atEj79u2L9ZzLly87vJ3Q0FDdv3/fpq1IkSLy8fGx+Xm+vXxS7NfXniZNmujs2bOaPn16rMfu3LmjW7duSVKsKUIkqXjx4pL0yCzSg3mjt2/f/tgscXG0TycGX19fWSwWm3muT5w4Yb3qsCMiIyPVrFkzRUREaNGiRTbzvUV766235Ovrq6FDh8Y6+8UYo6tXr0qSSpcurcyZM2vq1Kk2V5SeNWtWnO//33//rRdffNFpPz0EACTMq6++qjJlymjChAm6e/eusmTJoldffVVfffWVzp8/H2v5R9US0WfjPfydYYzRxIkTYy3rSJ0gPai7MmTIoHnz5mnevHkqU6aMzVRET5L7YdS5T57RGahzH0isOteRvpoQ1apV09y5c7VixQq98847NmfuRteP0dKkSaN8+fI9dh8lqXv37po3b56+/PJLvfXWW3Eud+XKFR06dMhmnuLbt2/r0KFDCZ5j9tatW6pdu7bOnj2rZcuWxTl9WLS///5bFotF5cqVS9D2gJg40xZworp16+q1117TRx99pBMnTqhYsWJatWqVlixZol69eln/lTxa4cKFVbNmTfXo0UP+/v768ssvJUlDhw6N1/ai/xV4//79kqTZs2dr8+bNkmSd/uDkyZOqV6+eLBaLGjVqpAULFtiso2jRovGaSyhfvnyqWLGiunTpovDwcE2YMEEZM2aM1wTwlStX1rvvvqvRo0dr165dqlGjhpInT64jR45owYIFmjhxoho1aqTMmTOrT58+Gj16tN544w3Vrl1bO3fu1PLlyx/7ExMfHx9NmTJFdevWVfHixdW2bVtlz55dhw4d0v79+7Vy5UpJsl74rUePHqpZs6Z8fX3VrFmzp5LRGUqVKqU1a9Zo3LhxypEjh4KCglS2bFl9/PHHWr9+vcqWLauOHTuqUKFCunbtmnbs2KE1a9bYLQgfZd26derWrZsaN26sAgUK6P79+5o9e7a1cI5L8eLF5evrqzFjxigkJET+/v6qUqWK3TnU3nnnHc2fP1+dO3fW+vXrVaFCBUVGRurQoUOaP3++Vq5cqdKlS2vYsGH67bffVKdOHeXOnVuXLl3Sl19+qWeeeUYVK1Z85H68+eabmj17tv75558End3paJ9ODHXq1NG4ceNUq1YttWjRQpcuXdLkyZOVL18+7dmzx6F1TZ06VevWrbO+5g/LmjWrqlevrrx582rEiBHq37+/Tpw4ofr16ytt2rQ6fvy4fvrpJ3Xq1El9+vRR8uTJNWLECL377ruqUqWKmjZtquPHj2vmzJl257S9d++eNm7cqPfee++JXg8AgHP07dtXjRs31qxZs9S5c2dNnjxZFStWVJEiRdSxY0c999xzunjxorZs2aIzZ85o9+7ddtfzwgsvKG/evOrTp4/Onj2rdOnSadGiRXbPzIyrDotL8uTJ9dZbb2nu3Lm6deuWPvvss1jLJDT3w6hzqXOTQp3rSF9NqPr162vmzJlq1aqV0qVLp6+++kqSVKhQIb366qsqVaqUMmTIoO3bt2vhwoXq1q3bI9c3YcIEffnllypXrpxSpUql77//3ubxBg0aWAfTJ02apKFDh2r9+vXWeXW3bdum1157TYMHD9aQIUOsz/vll1+snw337t3Tnj17rP9vXa9ePev/H7ds2VLbtm1Tu3btdPDgQR08eNC6jjRp0qh+/fo2eVavXq0KFSooY8aMjr1wQFwMgATr2rWridmNbt68aXr37m1y5MhhkidPbvLnz28+/fRTExUVZbOcJNO1a1fz/fffm/z58xt/f39TokQJs379+nhvX1Kct2jr169/5HKDBw9+5DaOHz9uJJlPP/3UjB071uTKlcv4+/ubV155xezevdtm2datW5vUqVPHua5p06aZUqVKmZQpU5q0adOaIkWKmA8++MCcO3fOukxkZKQZOnSoyZ49u0mZMqV59dVXzb59+0zu3LlN69atY+1XzNdr8+bNpnr16iZt2rQmderUpmjRouaLL76wPn7//n3TvXt3kzlzZmOxWGK9f87MGJeYr/vgwYONJHP58mWb5WbOnGkkmePHj1vbDh06ZCpVqmRSpkxpJNls7+LFi6Zr164mV65cJnny5CZbtmymatWqZtq0abFetwULFthsK/p9njlzpjHGmH///de0a9fO5M2b16RIkcJkyJDBvPbaa2bNmjU2z7O3z9OnTzfPPfec8fX1tXmPKleubCpXrmyzbEREhBkzZox58cUXjb+/vwkMDDSlSpUyQ4cONSEhIcYYY9auXWvefPNNkyNHDuPn52dy5Mhhmjdvbv7555/HvNLGhIeHm0yZMpnhw4fbtMd1rEa/Fw9ztE/HFP0+/vXXX3a3FfN9t5ftm2++sX5OvPDCC2bmzJl2sz6un0Q/x94t5nuzaNEiU7FiRZM6dWqTOnVq88ILL5iuXbuaw4cP2yz35ZdfmqCgIOPv729Kly5tfvvtN7vv9fLly40kc+TIkVivEQAgccT1HWTMg3omb968Jm/evOb+/fvGGGOOHTtmWrVqZbJly2aSJ09ucubMad544w2zcOFC6/Ps1WAHDhww1apVM2nSpDGZMmUyHTt2NLt377apLYx5dB0WV126evVqI8lYLBZz+vRpu/sZn9z2UOdS5yalOteY+PfV+NbKD/ehh3355ZdGkunTp48xxpgRI0aYMmXKmPTp05uUKVOaF154wYwcOdJEREQ8ch9bt279yP+Xffj4ic72cL+JPiZifrY8ar0Pvw65c+eOc7ncuXPbrPPGjRvGz8/PfP3114/cJ8ARFmMeM/M3gERhsVjUtWvXWD+7djcnTpxQUFCQPv30U/Xp08fVcQCHDR8+XDNnztSRI0cS5eJjiJ/69evLYrHop59+cnUUAAAkUefC81Hnuo8JEybok08+0bFjxx45dzTgCOa0BQB4td69eyssLExz5851dZQk6+DBg1q6dKndufQAAACQMNS57uHevXsaN26cBgwYwIAtnIo5bQEAXi1NmjS6dOmSq2MkaQULFox1wQ8AAAA8Gepc95A8eXKdOnXK1THghTjTFgAAAAAAAADcCHPaAgAAAAAAAIAb4UxbAAAAAAAAAHAjDNoCAAAAAAAAgBtJchcii4qK0rlz55Q2bVpZLBZXxwEAAIADjDG6efOmcuTIIR+fpHv+ATUtAACAZ4pvPZvkBm3PnTunXLlyuToGAAAAnsDp06f1zDPPuDqGy1DTAgAAeLbH1bNJbtA2bdq0kh68MOnSpXNxGgAAADgiNDRUuXLlstZ0SRU1LQAAgGeKbz2b5AZto38+li5dOgpcAAAAD5XUpwSgpgUAAPBsj6tnk+5EYAAAAAAAAADghhi0BQAAAAAAAAA3wqAtAAAAAAAAALgRBm0BAAAAAAAAwI0waAsAAAAAAAAAboRBWwAAAAAAAABwIwzaAgAAAAAAAIAbcemg7W+//aa6desqR44cslgsWrx48WOfs2HDBpUsWVL+/v7Kly+fZs2aleg5AQAAgLhQ0wIAAMDZXDpoe+vWLRUrVkyTJ0+O1/LHjx9XnTp19Nprr2nXrl3q1auXOnTooJUrVyZyUgAAAMA+aloAAAA4WzJXbvz111/X66+/Hu/lp06dqqCgII0dO1aSVLBgQW3evFnjx49XzZo1EysmAAAAECdqWgAAADibR81pu2XLFlWrVs2mrWbNmtqyZUuczwkPD1doaKjNDQAAAHAValoAAAA8jkvPtHXUhQsXlDVrVpu2rFmzKjQ0VHfu3FHKlCljPWf06NEaOnTo04oYtyEBrk5g35AQVycAAABIUjy6pgUAAMBT4VFn2iZE//79FRISYr2dPn3a1ZEAAAAAh1DTAgAAJC0OnWl748YN/fTTT9q0aZNOnjyp27dvK3PmzCpRooRq1qyp8uXLJ1ZOSVK2bNl08eJFm7aLFy8qXbp0ds9IkCR/f3/5+/snai4AAAAgvqhpAQAA8DjxOtP23Llz6tChg7Jnz64RI0bozp07Kl68uKpWrapnnnlG69evV/Xq1VWoUCHNmzcv0cKWK1dOa9eutWlbvXq1ypUrl2jbBAAAAJyJmhYAAACPE68zbUuUKKHWrVvr77//VqFChewuc+fOHS1evFgTJkzQ6dOn1adPn8euNywsTEePHrXeP378uHbt2qUMGTLo2WefVf/+/XX27Fl99913kqTOnTtr0qRJ+uCDD9SuXTutW7dO8+fP16+//hqf3QAAAACcjpoWAAAAzhavQdsDBw4oY8aMj1wmZcqUat68uZo3b66rV6/Ga+Pbt2/Xa6+9Zr0fHBwsSWrdurVmzZql8+fP69SpU9bHg4KC9Ouvv6p3796aOHGinnnmGX399deqWbNmvLYHAAAAOBs1LQAAAJzNYowxrg7xNIWGhiogIEAhISFKly7d09vwkICnty1HDAlxdQIAAIB4c1kt52Z4HQAAADxTfOu4eM1pGx/Xr1+3/uQLAAAAAAAAAJAwThu0PXXqlNq2beus1QEAAAAAAABAkhSvOW2lB6fuPsrNmzefOAwAAAAAAAAAJHXxHrRNnz69LBZLnI8bYx75OAAAAAAAAADg8eI9aJs2bVp99NFHKlu2rN3Hjxw5onfffddpwQAAAAAAAAAgKYr3oG3JkiUlSZUrV7b7ePr06WWMcU4qAAAAAAAAAEii4n0hshYtWihFihRxPp4tWzYNHjzYKaEAAAAAAAAAIKmK95m2HTt2fOTjWbNmZdAWAAAAAAAAAJ5QvM+0BQAAAAAAAAAkPgZtAQAAAAAAAMCNMGgLAAAAAAAAAG6EQVsAAAAAAAAAcCMM2gIAAAAAAACAG2HQFgAAAAAAAADcSIIGbYsUKaLTp0/H+hsAAAAAAAAA8GQSNGh74sQJ3bt3L9bfAAAAAAAAAIAnw/QIAAAAAAAAAOBGGLQFAAAAAAAAADfCoC0AAAAAAAAAuBEGbQEAAAAAAADAjTBoCwAAAAAAAABuhEFbAAAAAAAAAHAjCRq0feWVV5QyZcpYfwMAAAAAAAAAnkyyhDxp2bJldv8GAAAAAAAAADwZpkcAAAAAAAAAADfCoC0AAAAAAAAAuBEGbQEAAAAAAADAjTBoCwAAAAAAAABuhEFbAAAAAAAAAHAjDg/azpo1y277/fv31b9//yfNAwAAAAAAAABJmsODtj169FDjxo11/fp1a9vhw4dVtmxZ/e9//3NqOAAAAAAAAABIahwetN25c6fOnDmjIkWKaPXq1Zo8ebJKliypF154Qbt3706MjAAAAAAAAACQZCRz9Al58+bV77//rl69eqlWrVry9fXVt99+q+bNmydGPgAAAMDpBg8erHbt2il37tyujgIAAADEkqALkf3666+aO3euypUrp/Tp0+ubb77RuXPnnJ0NAAAASBRLlixR3rx5VbVqVf3www8KDw93dSQAAADAyuFB23fffVeNGzfWhx9+qE2bNmnPnj3y8/NTkSJFNH/+/MTICAAAADjVrl279Ndff+nFF19Uz549lS1bNnXp0kV//fWXq6MBAAAAjg/a/v7779q6davef/99WSwWZcuWTcuWLdOwYcPUrl27xMgIAAAAOF2JEiX0+eef69y5c/rmm2905swZVahQQUWLFtXEiRMVEhLi6ogAAABIohwetP37779VrFixWO1du3bV33//7ZRQAAAAwNNijNG9e/cUEREhY4wCAwM1adIk5cqVS/PmzXN1PAAAACRBDg/a+vv7x/nY888//0RhAAAAgKfl77//Vrdu3ZQ9e3b17t1bJUqU0MGDB7Vx40YdOXJEI0eOVI8ePVwdEwAAAElQsoQ8aeHChZo/f75OnTqliIgIm8d27NjhlGAAAABAYilSpIgOHTqkGjVq6JtvvlHdunXl6+trs0zz5s3Vs2dPFyUEAABAUubwmbaff/652rZtq6xZs2rnzp0qU6aMMmbMqH///Vevv/56YmQEAAAAnKpJkyY6ceKEfv31V9WvXz/WgK0kZcqUSVFRUS5IBwAAgKTO4UHbL7/8UtOmTdMXX3whPz8/ffDBB1q9erV69OjBxRoAAADgEaLnro3pzp07GjZsmAsSAQAAAP9xeND21KlTKl++vCQpZcqUunnzpiTpnXfe0f/+9z/npgMAAAASwdChQxUWFhar/fbt2xo6dKgLEgEAAAD/cXjQNlu2bLp27Zok6dlnn9Wff/4pSTp+/LiMMc5NBwAAACQCY4wsFkus9t27dytDhgwuSAQAAAD8x+ELkVWpUkU///yzSpQoobZt26p3795auHChtm/frrfeeisxMgIAAABOERgYKIvFIovFogIFCtgM3EZGRiosLEydO3d2YUIAAAAgAYO206ZNs16QoWvXrsqYMaP++OMP1atXT++++67TAwIAAADOMmHCBBlj1K5dOw0dOlQBAQHWx/z8/JQnTx6VK1fOhQkBAACABEyP4OPjo2TJ/hvrbdasmT7//HN1795dfn5+DgeYPHmy8uTJoxQpUqhs2bLatm3bI5efMGGCnn/+eaVMmVK5cuVS7969dffuXYe3CwAAgKSndevWatOmjdavX68uXbqodevW1lvz5s0TPGBLTQsAAABncvhMW0m6e/eu9uzZo0uXLlnPuo1Wr169eK9n3rx5Cg4O1tSpU1W2bFlNmDBBNWvW1OHDh5UlS5ZYy//www/q16+fZsyYofLly+uff/5RmzZtZLFYNG7cuITsCgAAAJKI0NBQpUuXTpJUokQJ3blzR3fu3LG7bPRy8UFNCwAAAGezGAevHrZixQq1atVKV65cib0yi0WRkZHxXlfZsmX10ksvadKkSZKkqKgo5cqVS927d1e/fv1iLd+tWzcdPHhQa9eutba9//772rp1qzZv3hyvbYaGhiogIEAhISEOFeNPbEjA45dxhSEhrk4AAAAQb09Sy/n6+ur8+fPKkiWLfHx87F6ILPoCZdS0AAAASAzxreMcPtO2e/fuaty4sQYNGqSsWbMmOGBERIT+/vtv9e/f39rm4+OjatWqacuWLXafU758eX3//ffatm2bypQpo3///VfLli3TO++8E+d2wsPDFR4ebr0fGhqa4MwAAADwXOvWrVOGDBkkSevXr3fKOqlpAQAAkBgcHrS9ePGigoODn2jAVpKuXLmiyMjIWOvJmjWrDh06ZPc5LVq00JUrV1SxYkUZY3T//n117txZ//d//xfndkaPHq2hQ4c+UVYAAAB4vsqVK9v9+0lQ0wIAACAxOHwhskaNGmnDhg2JEOXxNmzYoFGjRunLL7/Ujh079OOPP+rXX3/V8OHD43xO//79FRISYr2dPn36KSYGAACAO1qxYoXNVASTJ09W8eLF1aJFC12/fj1Rt01NCwAAgMdx+EzbSZMmqXHjxtq0aZOKFCmi5MmT2zzeo0ePeK0nU6ZM8vX11cWLF23aL168qGzZstl9zsCBA/XOO++oQ4cOkqQiRYro1q1b6tSpkz766CP5+MQeg/b395e/v3+8MgEAACBp6Nu3r8aMGSNJ2rt3r4KDg/X+++9r/fr1Cg4O1syZM+O1HmpaAAAAJAaHB23/97//adWqVUqRIoU2bNhgcwEHi8US70FbPz8/lSpVSmvXrlX9+vUlPbhow9q1a9WtWze7z7l9+3asItbX11fSg4tGAAAAAPFx/PhxFSpUSJK0aNEi1a1bV6NGjdKOHTtUu3bteK+HmhYAAACJweFB248++khDhw5Vv3797J4F4Ijg4GC1bt1apUuXVpkyZTRhwgTdunVLbdu2lSS1atVKOXPm1OjRoyVJdevW1bhx41SiRAmVLVtWR48e1cCBA1W3bl1roQsAAAA8jp+fn27fvi1JWrNmjVq1aiVJypAhg8MX+aKmBQAAgLM5PGgbERGhpk2bPvGArSQ1bdpUly9f1qBBg3ThwgUVL15cK1assF7I4dSpUzbbGTBggCwWiwYMGKCzZ88qc+bMqlu3rkaOHPnEWQAAAJB0VKxYUcHBwapQoYK2bdumefPmSZL++ecfPfPMMw6ti5oWAAAAzmYxDv4Gq3fv3sqcOfMjr27rzkJDQxUQEKCQkBClS5fu6W14SMDT25YjhoS4OgEAAEC8OauWO3XqlN577z2dPn1aPXr0UPv27SU9qHUjIyP1+eefOytyonBZTQsAAIAnEt86zuEzbSMjI/XJJ59o5cqVKlq0aKwLkY0bN87xtAAAAMBT9Oyzz2rp0qWx2sePH++CNAAAAIAthwdt9+7dqxIlSkiS9u3bZ/PYwxclAwAAANxZVFSUjh49qkuXLikqKsrmsUqVKrkoFQAAAJCAQdv169cnRg4AAADgqfnzzz/VokULnTx5UjFnC7NYLIqMjHRRMgAAACABg7YAAACAp+vcubNKly6tX3/9VdmzZ+cXYwAAAHArPo9f5EFRe+bMmXitcN68eZozZ84ThQIAAAAS05EjRzRq1CgVLFhQ6dOnV0BAgM0NAAAAcKV4nWmbOXNmvfjii6pQoYLq1q2r0qVLK0eOHEqRIoWuX7+uAwcOaPPmzZo7d65y5MihadOmJXZuAAAAIMHKli2ro0ePKl++fK6OAgAAAMQSr0Hb4cOHq1u3bvr666/15Zdf6sCBAzaPp02bVtWqVdO0adNUq1atRAkKAAAAOEv37t31/vvv68KFCypSpIiSJ09u83jRokVdlAwAAACQLCbmlRfi4fr16zp16pTu3LmjTJkyKW/evB4zD1hoaKgCAgIUEhKidOnSPb0ND3HTn9kNCXF1AgAAgHhzVi3n4xN7ljCLxSJjjEdciMxlNS0AAACeSHzruARdiCwwMFCBgYEJDgcAAAC40vHjx10dAQAAAIhTggZtAQAAAE+WO3duV0cAAAAA4hT7d2EAAABAEjB79mxVqFBBOXLk0MmTJyVJEyZM0JIlS1ycDAAAAEkdg7YAAABIcqZMmaLg4GDVrl1bN27csM5hmz59ek2YMMG14QAAAJDkMWgLAACAJOeLL77Q9OnT9dFHH8nX19faXrp0ae3du9eFyQAAAIAEDNoOHjzY+vMxAAAAwBMdP35cJUqUiNXu7++vW7duuSARAAAA8B+HB22XLFmivHnzqmrVqvrhhx8UHh6eGLkAAACARBMUFKRdu3bFal+xYoUKFiz49AMBAAAAD3F40HbXrl3666+/9OKLL6pnz57Kli2bunTpor/++isx8gEAAABOFxwcrK5du2revHkyxmjbtm0aOXKk+vfvrw8++MDV8QAAAJDEJUvIk0qUKKESJUpo7Nix+uWXXzRz5kxVqFBBL7zwgtq3b682bdooICDA2VkBAAAAp+jQoYNSpkypAQMG6Pbt22rRooVy5MihiRMnqlmzZq6OBwAAgCTuiS5EZozRvXv3FBERIWOMAgMDNWnSJOXKlUvz5s1zVkYAAADA6Vq2bKkjR44oLCxMFy5c0JkzZ9S+fXtXxwIAAAASNmj7999/q1u3bsqePbt69+6tEiVK6ODBg9q4caOOHDmikSNHqkePHs7OCgAAADhFlSpVdOPGDUlSqlSplCVLFklSaGioqlSp4sJkAAAAQAIGbYsUKaKXX35Zx48f1zfffKPTp0/r448/Vr58+azLNG/eXJcvX3ZqUAAAAMBZNmzYoIiIiFjtd+/e1aZNm1yQCAAAAPiPw3PaNmnSRO3atVPOnDnjXCZTpkyKiop6omAAAACAs+3Zs8f694EDB3ThwgXr/cjISK1YseKRdS4AAADwNDg8aBs9d21Md+7c0aeffqpBgwY5JRgAAADgbMWLF5fFYpHFYrE7DULKlCn1xRdfuCAZAAAA8B+LMcY48gRfX1+dP3/eOu9XtKtXrypLliyKjIx0akBnCw0NVUBAgEJCQpQuXbqnt+EhAU9vW44YEuLqBAAAAPH2pLXcyZMnZYzRc889p23btilz5szWx/z8/JQlSxb5+vo6M3KicFlNCwAAgCcS3zouQWfaWiyWWO27d+9WhgwZHF0dAAAA8NTkzp1bkpjKCwAAAG4t3oO2gYGB1p+SFShQwGbgNjIyUmFhYercuXOihAQAAACc7ciRI1q/fr0uXboUaxCXKb8AAADgSvEetJ0wYYKMMWrXrp2GDh2qgID/fu7v5+enPHnyqFy5cokSEgAAAHCm6dOnq0uXLsqUKZOyZctmc0KCxWJh0BYAAAAuFe9B29atW0uSgoKCVL58eSVPnjzRQgEAAACJacSIERo5cqQ+/PBDV0cBAAAAYonXoG1oaKh1YtwSJUrozp07unPnjt1luRACAAAA3N3169fVuHFjV8cAAAAA7PKJz0KBgYG6dOmSJCl9+vQKDAyMdYtuBwAAANxd48aNtWrVKlfHAAAAAOyK15m269atU4YMGSRJ69evT9RAAAAAQGLLly+fBg4cqD///FNFihSJNfVXjx49XJQMAAAAkCzGGOPqEE9TaGioAgICFBIS8nSnchgS8PhlXGFIiKsTAAAAxJuzarmgoKA4H7NYLPr3338TvO6nwWU1LQAAAJ5IfOu4eF+ILNqKFSuUJk0aVaxYUZI0efJkTZ8+XYUKFdLkyZOZIgEAAABu7/jx466OAAAAAMQpXnPaPqxv374KDQ2VJO3du1fBwcGqXbu2jh8/ruDgYKcHBAAAAAAAAICkxOEzbY8fP65ChQpJkhYtWqS6detq1KhR2rFjh2rXru30gAAAAIAzBAcHa/jw4UqdOvVjTzYYN27cU0oFAAAAxObwoK2fn59u374tSVqzZo1atWolScqQIYP1DFwAAADA3ezcuVP37t2z/h0Xi8XytCIBAAAAdjk8aFuxYkUFBwerQoUK2rZtm+bNmydJ+ueff/TMM884PSAAAADgDOvXr7f7NwAAAOBuHJ7TdtKkSUqWLJkWLlyoKVOmKGfOnJKk5cuXq1atWk4PCAAAAAAAAABJicNn2j777LNaunRprPbx48c7JRAAAAAAAAAAJGUOD9pKUlRUlI4ePapLly4pKirK5rFKlSo5JRgAAAAAAAAAJEUOD9r++eefatGihU6ePCljjM1jFotFkZGRTgsHAAAAAAAAAEmNw4O2nTt3VunSpfXrr78qe/bsXF0XAAAAAAAAAJzI4UHbI0eOaOHChcqXL19i5AEAAAASxc8//xzvZevVq5eISQAAAIBHc3jQtmzZsjp69CiDtgAAAPAo9evXt7lvsVhspvt6+BdkTPkFAAAAV/Jx9Andu3fX+++/r1mzZunvv//Wnj17bG4AAACAO4qKirLeVq1apeLFi2v58uW6ceOGbty4oWXLlqlkyZJasWKFq6MCAAAgiXP4TNuGDRtKktq1a2dtiz5LgQuRAQAAwBP06tVLU6dOVcWKFa1tNWvWVKpUqdSpUycdPHjQhekAAACQ1Dl8pu3x48dj3f7991/rfx01efJk5cmTRylSpFDZsmW1bdu2Ry5/48YNde3aVdmzZ5e/v78KFCigZcuWObxdAAAAJF3Hjh1T+vTpY7UHBAToxIkTDq+PmhYAAADO5PCZtrlz53baxufNm6fg4GBNnTpVZcuW1YQJE1SzZk0dPnxYWbJkibV8RESEqlevrixZsmjhwoXKmTOnTp48abfgBgAAAOLy0ksvKTg4WLNnz1bWrFklSRcvXlTfvn1VpkwZh9ZFTQsAAABnc/hMW0maPXu2KlSooBw5cujkyZOSpAkTJmjJkiUOrWfcuHHq2LGj2rZtq0KFCmnq1KlKlSqVZsyYYXf5GTNm6Nq1a1q8eLEqVKigPHnyqHLlyipWrFhCdgMAAABJ1IwZM3T+/Hk9++yzypcvn/Lly6dnn31WZ8+e1TfffOPQuqhpAQAA4GwOD9pOmTJFwcHBql27tm7cuGGdwzZ9+vSaMGFCvNcTERGhv//+W9WqVfsvjI+PqlWrpi1btth9zs8//6xy5cqpa9euypo1qwoXLqxRo0Y9ch7d8PBwhYaG2twAAACQtOXLl0979uzRL7/8oh49eqhHjx5aunSp9u7dq3z58sV7PdS0AAAASAwOD9p+8cUXmj59uj766CP5+vpa20uXLq29e/fGez1XrlxRZGSk9edo0bJmzaoLFy7Yfc6///6rhQsXKjIyUsuWLdPAgQM1duxYjRgxIs7tjB49WgEBAdZbrly54p0RAAAA3stisahGjRrq1KmTunfvrurVq8tisTi0DmpaAAAAJIYEXYisRIkSsdr9/f1169Ytp4SKS1RUlLJkyaJp06apVKlSatq0qT766CNNnTo1zuf0799fISEh1tvp06cTNSMAAADcX1RUlIYPH66cOXMqTZo0On78uCRp4MCBDk+PkJBtU9MCAADgURwetA0KCtKuXbtita9YsUIFCxaM93oyZcokX19fXbx40ab94sWLypYtm93nZM+eXQUKFLA5w7dgwYK6cOGCIiIi7D7H399f6dKls7kBAAAgaRsxYoRmzZqlTz75RH5+ftb2woUL6+uvv473eqhpAQAAkBgcHrQNDg5W165dNW/ePBljtG3bNo0cOVL9+/fXBx98EO/1+Pn5qVSpUlq7dq21LSoqSmvXrlW5cuXsPqdChQo6evSooqKirG3//POPsmfPblNsAwAAAI/y3Xffadq0aWrZsqXN4GmxYsV06NCheK+HmhYAAACJweFB2w4dOmjMmDEaMGCAbt++rRYtWmjKlCmaOHGimjVr5tC6goODNX36dH377bc6ePCgunTpolu3bqlt27aSpFatWql///7W5bt06aJr166pZ8+e+ueff/Trr79q1KhR6tq1q6O7AQAAgCTs7Nmzdi84FhUVpXv37jm0LmpaAAAAOFuyhDypZcuWatmypW7fvq2wsDBlyZIlQRtv2rSpLl++rEGDBunChQsqXry4VqxYYb2Qw6lTp+Tj89+4cq5cubRy5Ur17t1bRYsWVc6cOdWzZ099+OGHCdo+AAAAkqZChQpp06ZNyp07t037woUL7V6/4VGoaQEAAOBsFmOMceQJVapU0Y8//qj06dPbtIeGhqp+/fpat26dM/M5XWhoqAICAhQSEvJ05wIbEvD0tuWIISGuTgAAABBvzqrllixZotatW6t///4aNmyYhg4dqsOHD+u7777T0qVLVb16dSemdj6X1bQAAAB4IvGt4xyeHmHDhg12L5Bw9+5dbdq0ydHVAQAAAE/dm2++qV9++UVr1qxR6tSpNWjQIB08eFC//PKL2w/YAgAAwPvFe3qEPXv2WP8+cOCALly4YL0fGRmpFStWKGfOnM5NB7eRp9+vro4QpxMf13F1BAAA4IFeeeUVrV692tUxPIY714MPozYEAADeIN6DtsWLF5fFYpHFYlGVKlViPZ4yZUp98cUXTg0HAAAAJIbnnntOf/31lzJmzGjTfuPGDZUsWVL//vuvi5IBAAAADgzaHj9+XMYYPffcc9q2bZsyZ85sfczPz09ZsmSRr69vooQEAAAAnOnEiROKjIyM1R4eHq6zZ8+6IBEAAADwn3gP2kZfWTcqKirRwgAAAACJ6eeff7b+vXLlSgUE/Hex2MjISK1du1Z58uRxQTIAAADgP/EetH3YkSNHtH79el26dCnWIO6gQYOcEgwAAABwtvr160uSLBaLWrdubfNY8uTJlSdPHo0dO9YFyQAAAID/ODxoO336dHXp0kWZMmVStmzZZLFYrI9ZLBYGbQEAAOC2ok84CAoK0l9//aVMmTK5OBEAAAAQm8ODtiNGjNDIkSP14YcfJkYeAAAAINEdP37c1REAAACAOPk4+oTr16+rcePGiZEFAAAAeCp69Oihzz//PFb7pEmT1KtXr6cfCAAAAHiIw4O2jRs31qpVqxIjCwAAAPBULFq0SBUqVIjVXr58eS1cuNAFiQAAAID/ODw9Qr58+TRw4ED9+eefKlKkiJInT27zeI8ePZwWDgAAAEgMV69eVUBAQKz2dOnS6cqVKy5IBAAAAPzH4UHbadOmKU2aNNq4caM2btxo85jFYmHQFgAAAG4vX758WrFihbp162bTvnz5cj333HMuSgUAAAA84PCgLRdtAAAAgKcLDg5Wt27ddPnyZVWpUkWStHbtWo0dO1YTJkxwbTgAAAAkeQ4P2gIAAACerl27dgoPD9fIkSM1fPhwSVKePHk0ZcoUtWrVysXpAAAAkNTFa9A2ODhYw4cPV+rUqRUcHPzIZceNG+eUYAAAAEBi6tKli7p06aLLly8rZcqUSpMmjasjAQAAAJLiOWi7c+dO3bt3z/p3XCwWi3NSAQAAAE9J5syZXR0BAAAAsBGvQdv169fb/RsAAADwFCVLltTatWsVGBioEiVKPPKEgx07djzFZAAAAIAt5rQFAABAkvDmm2/K399fklS/fn3XhgEAAAAegUFbAAAAJAmDBw+2+zcAAADgbnxcHQAAAAAAAAAA8B/OtAUAAECSEBgYGO8L5167di2R0wAAAABxY9AWAAAAScKECROsf1+9elUjRoxQzZo1Va5cOUnSli1btHLlSg0cONBFCQEAAIAH4jVo+/PPP8d7hfXq1UtwGAAAACCxtG7d2vp3w4YNNWzYMHXr1s3a1qNHD02aNElr1qxR7969XRERAAAAkBTPQduYV9e1WCwyxtjcjxYZGemcZAAAAEAiWblypcaMGROrvVatWurXr58LEgEAAAD/ideFyKKioqy3VatWqXjx4lq+fLlu3LihGzduaNmyZSpZsqRWrFiR2HkBAACAJ5YxY0YtWbIkVvuSJUuUMWNGFyQCAAAA/uPwnLa9evXS1KlTVbFiRWtbzZo1lSpVKnXq1EkHDx50akAAAADA2YYOHaoOHTpow4YNKlu2rCRp69atWrFihaZPn+7idAAAAEjqHB60PXbsmNKnTx+rPSAgQCdOnHBCJAAAACBxtWnTRgULFtTnn3+uH3/8UZJUsGBBbd682TqICwAAALiKw4O2L730koKDgzV79mxlzZpVknTx4kX17dtXZcqUcXpAAAAAIDGULVtWc+bMcXUMAAAAIJZ4zWn7sBkzZuj8+fN69tlnlS9fPuXLl0/PPvuszp49q2+++SYxMgIAAABOd+zYMQ0YMEAtWrTQpUuXJEnLly/X/v37XZwMAAAASZ3DZ9rmy5dPe/bs0erVq3Xo0CFJD35KVq1aNVksFqcHBAAAAJxt48aNev3111WhQgX99ttvGjFihLJkyaLdu3frm2++0cKFC10dEQAAAEmYw4O2kmSxWFSjRg1VqlRJ/v7+DNYCAADAo/Tr108jRoxQcHCw0qZNa22vUqWKJk2a5MJkAAAAQAKmR4iKitLw4cOVM2dOpUmTRsePH5ckDRw4kOkRAAAA4BH27t2rBg0axGrPkiWLrly54oJEAAAAwH8cHrQdMWKEZs2apU8++UR+fn7W9sKFC+vrr792ajgAAAAgMaRPn17nz5+P1b5z507lzJnTBYkAAACA/zg8aPvdd99p2rRpatmypXx9fa3txYoVs85xCwAAALizZs2a6cMPP9SFCxdksVgUFRWl33//XX369FGrVq1cHQ8AAABJnMODtmfPnlW+fPlitUdFRenevXtOCQUAAAAkplGjRumFF15Qrly5FBYWpkKFCqlSpUoqX768BgwY4Op4AAAASOIcvhBZoUKFtGnTJuXOndumfeHChSpRooTTggEAAACJwRijCxcu6PPPP9egQYO0d+9ehYWFqUSJEsqfP7+r4wEAAACOD9oOGjRIrVu31tmzZxUVFaUff/xRhw8f1nfffaelS5cmRkYAAADAaYwxypcvn/bv36/8+fMrV65cro4EAAAA2HB4eoQ333xTv/zyi9asWaPUqVNr0KBBOnjwoH755RdVr149MTICAAAATuPj46P8+fPr6tWrro4CAAAA2OXwmbaS9Morr2j16tXOzgIkmjz9fnV1hDid+LiOqyMAAJDkfPzxx+rbt6+mTJmiwoULuzoOXMSda8SHUS8CAJD0OHym7XPPPWf3rIQbN27oueeec0ooAAAAIDG1atVK27ZtU7FixZQyZUplyJDB5gYAAAC4ksNn2p44cUKRkZGx2sPDw3X27FmnhAIAAAAS04QJE1wdAQAAAIhTvAdtf/75Z+vfK1euVEBAgPV+ZGSk1q5dqzx58jg1HAAAAJAYWrdu7eoIAAAAQJziPWhbv359SZLFYolV5CZPnlx58uTR2LFjnRoOAAAASCyRkZH66aefdPDgQUlSoUKF9OabbypZsgRd9gEAAABwmnhXpFFRUZKkoKAg/fXXX8qUKVOihQIAAAAS0/79+1WvXj1duHBBzz//vCRpzJgxypw5s3755RcuTgYAAACXcvhCZMePH2fAFgAAAB6tQ4cOevHFF3XmzBnt2LFDO3bs0OnTp1W0aFF16tTJ1fEAAACQxDk8aNujRw99/vnnsdonTZqkXr16JSjE5MmTlSdPHqVIkUJly5bVtm3b4vW8uXPnymKxWKduAAAAAOJj165dGj16tAIDA61tgYGBGjlypHbu3Onw+qhnAQAA4EwOD9ouWrRIFSpUiNVevnx5LVy40OEA8+bNU3BwsAYPHqwdO3aoWLFiqlmzpi5duvTI5504cUJ9+vTRK6+84vA2AQAAkLQVKFBAFy9ejNV+6dIl5cuXz6F1Uc8CAADA2RwetL169aoCAgJitadLl05XrlxxOMC4cePUsWNHtW3bVoUKFdLUqVOVKlUqzZgxI87nREZGqmXLlho6dKiee+45h7cJAACApG306NHq0aOHFi5cqDNnzujMmTNauHChevXqpTFjxig0NNR6exzqWQAAADibw5fGzZcvn1asWKFu3brZtC9fvtzhgjMiIkJ///23+vfvb23z8fFRtWrVtGXLljifN2zYMGXJkkXt27fXpk2bHrmN8PBwhYeHW+/Hp/AGAACAd3vjjTckSU2aNJHFYpEkGWMkSXXr1rXet1gsioyMjHM9T6OelahpAQAAkhqHB22Dg4PVrVs3Xb58WVWqVJEkrV27VmPHjtWECRMcWteVK1cUGRmprFmz2rRnzZpVhw4dsvuczZs365tvvtGuXbvitY3Ro0dr6NChDuUCAACAd1u/fr1T1vM06lmJmhYAACCpcXjQtl27dgoPD9fIkSM1fPhwSVKePHk0ZcoUtWrVyukBH3bz5k298847mj59ujJlyhSv5/Tv31/BwcHW+6GhocqVK1diRQQAAIAHqFy5sku2m5B6VqKmBQAASGocHrSVpC5duqhLly66fPmyUqZMqTRp0iRo45kyZZKvr2+si0BcvHhR2bJli7X8sWPHdOLECetP1iQpKipKkpQsWTIdPnxYefPmtXmOv7+//P39E5QPAAAAeJSnUc9K1LQAAABJjcMXIntY5syZEzxgK0l+fn4qVaqU1q5da22LiorS2rVrVa5cuVjLv/DCC9q7d6927dplvdWrV0+vvfaadu3axdkGAAAAeKqoZwEAAJAY4nWmbcmSJbV27VoFBgaqRIkS1os12LNjxw6HAgQHB6t169YqXbq0ypQpowkTJujWrVtq27atJKlVq1bKmTOnRo8erRQpUqhw4cI2z0+fPr0kxWoHAAAAngbqWQAAADhbvAZt33zzTevPserXr+/UAE2bNtXly5c1aNAgXbhwQcWLF9eKFSusF3M4deqUfHye6IRgAAAAINFQzwIAAMDZLMYY4+oQT1NoaKgCAgIUEhKidOnSPb0NDwl4ettyxJCQeC2Wp9+viRwk4U58XOexy3h6fgAA8IAza7n79+9rw4YNOnbsmFq0aKG0adPq3LlzSpcu3RNNAfY0uKKmded66mGO1FbeuE8AAMC9xbeOS9CFyAAAAABPdvLkSdWqVUunTp1SeHi4qlevrrRp02rMmDEKDw/X1KlTXR0RAAAASVi8Bm0DAwMfOY/tw65du/ZEgQAAAIDE1rNnT5UuXVq7d+9WxowZre0NGjRQx44dXZgMAAAAiOeg7YQJE6x/X716VSNGjFDNmjWtV8TdsmWLVq5cqYEDByZKSAAAAMCZNm3apD/++EN+fn427Xny5NHZs2ddlAoAAAB4IF6Dtq1bt7b+3bBhQw0bNkzdunWztvXo0UOTJk3SmjVr1Lt3b+enBAAAAJwoKipKkZGRsdrPnDmjtGnTuiARAAAA8B+HL2O7cuVK1apVK1Z7rVq1tGbNGqeEAgAAABJTjRo1bH5NZrFYFBYWpsGDB6t27dquCwYAAAAoAYO2GTNm1JIlS2K1L1myxGY+MAAAAMBdjR07Vr///rsKFSqku3fvqkWLFtapEcaMGePqeAAAAEji4jU9wsOGDh2qDh06aMOGDSpbtqwkaevWrVqxYoWmT5/u9IAAAACAsz3zzDPavXu35s6dqz179igsLEzt27dXy5YtlTJlSlfHAwAAQBLn8KBtmzZtVLBgQX3++ef68ccfJUkFCxbU5s2brYO4AJwrT79fXR0hTic+ruPqCAAAOOzu3btKkSKF3n77bVdHAZzKnevGh1FDAgDwaA4P2kpS2bJlNWfOHGdnAQAAAJ6KLFmyqEGDBnr77bdVtWpV+fg4PGsYAAAAkGgSVJ0eO3ZMAwYMUIsWLXTp0iVJ0vLly7V//36nhgMAAAASw7fffqvbt2/rzTffVM6cOdWrVy9t377d1bEAAAAASQkYtN24caOKFCmirVu3atGiRQoLC5Mk7d69W4MHD3Z6QAAAAMDZGjRooAULFujixYsaNWqUDhw4oJdfflkFChTQsGHDXB0PAAAASZzDg7b9+vXTiBEjtHr1avn5+Vnbq1Spoj///NOp4QAAAIDElDZtWrVt21arVq3Snj17lDp1ag0dOtTVsQAAAJDEOTxou3fvXjVo0CBWe5YsWXTlyhWnhAIAAACehrt372r+/PmqX7++SpYsqWvXrqlv376ujgUAAIAkzuELkaVPn17nz59XUFCQTfvOnTuVM2dOpwUDAAAAEsvKlSv1ww8/aPHixUqWLJkaNWqkVatWqVKlSq6OBgAAADh+pm2zZs304Ycf6sKFC7JYLIqKitLvv/+uPn36qFWrVomREQAAAHCqBg0a6M6dO/ruu+904cIFffXVVwzYAgAAwG04fKbtqFGj1LVrV+XKlUuRkZEqVKiQIiMj1aJFCw0YMCAxMgIAAABOdfHiRaVNm9bVMQAAAAC7HBq0NcbowoUL+vzzzzVo0CDt3btXYWFhKlGihPLnz59YGQEAAIAnFhoaqnTp0kl6UNeGhobGuWz0cgAAAIArODxomy9fPu3fv1/58+dXrly5EisXAAAA4FSBgYE6f/68smTJovTp08tiscRaxhgji8WiyMhIFyQEAAAAHnBo0NbHx0f58+fX1atXObMWAAAAHmXdunXKkCGDJGn9+vUuTgMAAADEzeE5bT/++GP17dtXU6ZMUeHChRMjEwAAAOB0lStXtv4dFBSkXLlyxTrb1hij06dPP+1oAAAAgA2HB21btWql27dvq1ixYvLz81PKlCltHr927ZrTwgEAAACJISgoyDpVwsOuXbumoKAgpkcAAACASzk8aDthwoREiAEAAAA8PdFz18YUFhamFClSuCARAAAA8B+HB21bt26dGDkAAACARBccHCxJslgsGjhwoFKlSmV9LDIyUlu3blXx4sVdlA4AAAB4wOFBW+lBQfvTTz/p4MGDkqRChQrpzTffVLJkCVodAAAA8FTs3LlT0oMzbffu3Ss/Pz/rY35+fipWrJj69OnjqngAAACApAQM2u7fv1/16tXThQsX9Pzzz0uSxowZo8yZM+uXX37h4mQAAABwW+vXr5cktW3bVhMnTlS6dOlcnAgAAACIzcfRJ3To0EEvvviizpw5ox07dmjHjh06ffq0ihYtqk6dOiVGRgAAAMCpZs6cyYAtAAAA3JbDZ9ru2rVL27dvV2BgoLUtMDBQI0eO1EsvveTUcAAAAEBi2b59u+bPn69Tp04pIiLC5rEff/zRRakAAACABJxpW6BAAV28eDFW+6VLl5QvXz6nhAIAAAAS09y5c1W+fHkdPHhQP/30k+7du6f9+/dr3bp1CggIcHU8AAAAJHEOD9qOHj1aPXr00MKFC3XmzBmdOXNGCxcuVK9evTRmzBiFhoZabwAAAIA7GjVqlMaPH69ffvlFfn5+mjhxog4dOqQmTZro2WefdXU8AAAAJHEOT4/wxhtvSJKaNGkii8Ui6cHVdyWpbt261vsWi0WRkZHOygnAw+Xp96urI9h14uM6ro4AAHCBY8eOqU6dB98Bfn5+unXrliwWi3r37q0qVapo6NChLk4IQHLfGtIe6koAgDM5PGgbfcVdAAAAwFMFBgbq5s2bkqScOXNq3759KlKkiG7cuKHbt2+7OB0AAACSOocHbStXrpwYOQAAAICnplKlSlq9erWKFCmixo0bq2fPnlq3bp1Wr16tqlWrujoeAAAAkjiHB20BAAAATzdp0iTdvXtXkvTRRx8pefLk+uOPP9SwYUMNGDDAxekAAACQ1DFoCwAAgCQnQ4YM1r99fHzUr18/F6YBAAAAbDFoCwAAgCQhNDQ03sumS5cuEZMAAAAAj8agLQAAAJKE9OnTy2KxPHIZY4wsFosiIyOfUioAAAAgtgQN2t6/f18bNmzQsWPH1KJFC6VNm1bnzp1TunTplCZNGmdnBAAAAJ7Y+vXrXR0BAAAAiBeHB21PnjypWrVq6dSpUwoPD1f16tWVNm1ajRkzRuHh4Zo6dWpi5AQAAACeSOXKlV0dAQAAAIgXH0ef0LNnT5UuXVrXr19XypQpre0NGjTQ2rVrnRoOAAAASCybNm3S22+/rfLly+vs2bOSpNmzZ2vz5s0uTgYAAICkzuFB202bNmnAgAHy8/Ozac+TJ4+12AUAAADc2aJFi1SzZk2lTJlSO3bsUHh4uCQpJCREo0aNcnE6AAAAJHUOT48QFRVl98IMZ86cUdq0aZ0SCgDcTZ5+v7o6QpxOfFzH1REAwOOMGDFCU6dOVatWrTR37lxre4UKFTRixAgXJgPg7dy5rnwYNSYAuJbDZ9rWqFFDEyZMsN63WCwKCwvT4MGDVbt2bWdmAwAAABLF4cOHValSpVjtAQEBunHjxtMPBAAAADzE4UHbsWPH6vfff1ehQoV09+5dtWjRwjo1wpgxYxIjIwAAAOBU2bJl09GjR2O1b968Wc8995wLEgEAAAD/cXh6hGeeeUa7d+/W3LlztWfPHoWFhal9+/Zq2bKlzYXJAAAAAHfVsWNH9ezZUzNmzJDFYtG5c+e0ZcsW9enTRwMHDnR1PAAAACRxDg/a3r17VylSpNDbb7+dGHkAAACARNevXz9FRUWpatWqun37tipVqiR/f3/16dNH3bt3d3U8AAAAJHEOD9pmyZJFDRo00Ntvv62qVavKx8fhGRZimTx5sj799FNduHBBxYoV0xdffKEyZcrYXXb69On67rvvtG/fPklSqVKlNGrUqDiXBwC49wUvuMgFAFewWCz66KOP1LdvXx09elRhYWEqVKiQ0qRJozt37jj8CzLqWQBJmTvXmg+j7gTgSRwecf322291+/Ztvfnmm8qZM6d69eql7du3JzjAvHnzFBwcrMGDB2vHjh0qVqyYatasqUuXLtldfsOGDWrevLnWr1+vLVu2KFeuXKpRo4bOnj2b4AwAAABImvz8/FSoUCGVKVNGyZMn17hx4xQUFOTQOqhnAQAA4GwOD9o2aNBACxYs0MWLFzVq1CgdOHBAL7/8sgoUKKBhw4Y5HGDcuHHq2LGj2rZtq0KFCmnq1KlKlSqVZsyYYXf5OXPm6L333lPx4sX1wgsv6Ouvv1ZUVJTWrl3r8LYBAACQtISHh6t///4qXbq0ypcvr8WLF0uSZs6cqaCgII0fP169e/d2aJ3UswAAAHC2BM9tkDZtWrVt21arVq3Snj17lDp1ag0dOtShdUREROjvv/9WtWrV/gvk46Nq1appy5Yt8VrH7du3de/ePWXIkMHu4+Hh4QoNDbW5AQAAIGkaNGiQpkyZojx58ujEiRNq3LixOnXqpPHjx2vcuHE6ceKEPvzww3iv72nUsxI1LQAAQFLj8Jy20e7evauff/5ZP/zwg1asWKGsWbOqb9++Dq3jypUrioyMVNasWW3as2bNqkOHDsVrHR9++KFy5MhhUyg/bPTo0Q4PJgMA3Is7z5PG3GiAZ1mwYIG+++471atXT/v27VPRokV1//597d69WxaLxeH1PY16VqKmBYCnzZ3rz4dRiwLey+FB25UrV+qHH37Q4sWLlSxZMjVq1EirVq1SpUqVEiPfI3388ceaO3euNmzYoBQpUthdpn///goODrbeDw0NVa5cuZ5WRAAAJLlv4U+hj6TmzJkzKlWqlCSpcOHC8vf3V+/evRM0YOsM8alnJWpaAMCTcddaNCZqU+A/Dg/aNmjQQG+88Ya+++471a5dW8mTJ0/wxjNlyiRfX19dvHjRpv3ixYvKli3bI5/72Wef6eOPP9aaNWtUtGjROJfz9/eXv79/gjMCAADAe0RGRsrPz896P1myZEqTJk2C1/c06lmJmhYAACCpcXjQ9uLFi0qbNq1TNu7n56dSpUpp7dq1ql+/viRZL8LQrVu3OJ/3ySefaOTIkVq5cqVKly7tlCwAAADwfsYYtWnTxjoAevfuXXXu3FmpU6e2We7HH3+M1/qoZwEAAJAY4jVoGxoaqnTp0kl6UOg+6sIH0cvFV3BwsFq3bq3SpUurTJkymjBhgm7duqW2bdtKklq1aqWcOXNq9OjRkqQxY8Zo0KBB+uGHH5QnTx5duHBBkpQmTZonOksCAAAA3q9169Y2999+++0nXif1LAAAAJwtXoO2gYGBOn/+vLJkyaL06dPbnfPLGCOLxaLIyEiHAjRt2lSXL1/WoEGDdOHCBRUvXtx6YTNJOnXqlHx8fKzLT5kyRREREWrUqJHNegYPHqwhQ4Y4tG0AAAAkLTNnznT6OqlnAQAA4GzxGrRdt26dMmTIIElav36900N069Ytzp+Pbdiwweb+iRMnnL59AAAA4ElQzwIAAMCZ4jVoW7lyZevfQUFBypUrV6yzbY0xOn36tHPTAQAAAAAAAEAS4/P4RWwFBQXp8uXLsdqvXbumoKAgp4QCAAAAAAAAgKTK4UHb6LlrYwoLC1OKFCmcEgoAAAAAAAAAkqp4TY8gPbgqriRZLBYNHDhQqVKlsj4WGRmprVu3qnjx4k4PCAAAXC9Pv19dHSFOJz6u4+oIAAAAeMrcuT59GLUqEireg7Y7d+6U9OBM271798rPz8/6mJ+fn4oVK6Y+ffo4PyEAAAAAAAAAJCHxHrRdv369JKlt27aaOHGi0qVLl2ihAAAAAAAAACCpivegbbSZM2cmRg4AAAAAAAAAgBIwaCtJ27dv1/z583Xq1ClFRETYPPbjjz86JRgAAAAAAAAAJEU+jj5h7ty5Kl++vA4ePKiffvpJ9+7d0/79+7Vu3ToFBAQkRkYAAAAAAAAASDIcHrQdNWqUxo8fr19++UV+fn6aOHGiDh06pCZNmujZZ59NjIwAAAAAAAAAkGQ4PGh77Ngx1alTR5Lk5+enW7duyWKxqHfv3po2bZrTAwIAAAAAAABAUuLwoG1gYKBu3rwpScqZM6f27dsnSbpx44Zu377t3HQAAAAAAAAAkMQ4fCGySpUqafXq1SpSpIgaN26snj17at26dVq9erWqVq2aGBkBAAAAAAAAIMlweNB20qRJunv3riTpo48+UvLkyfXHH3+oYcOGGjBggNMDAgAAAAAAAEBS4vCgbYYMGax/+/j4qF+/fk4NBAAAAAAAAABJWbwGbUNDQ+O9wnTp0iU4DAAAAAAAAAAkdfEatE2fPr0sFssjlzHGyGKxKDIy0inBAAAAAAAAACApiteg7fr16xM7BwAAAAAAAABA8Ry0rVy5cmLnAAAAAAAAAABI8knIkzZt2qS3335b5cuX19mzZyVJs2fP1ubNm50aDgAAAAAAAACSGocHbRctWqSaNWsqZcqU2rFjh8LDwyVJISEhGjVqlNMDAgAAAAAAAEBS4vCg7YgRIzR16lRNnz5dyZMnt7ZXqFBBO3bscGo4AAAAAAAAAEhqHB60PXz4sCpVqhSrPSAgQDdu3HBGJgAAAAAAAABIshwetM2WLZuOHj0aq33z5s167rnnnBIKAAAAAAAAAJIqhwdtO3bsqJ49e2rr1q2yWCw6d+6c5syZoz59+qhLly6JkREAAAAAAAAAkoxkjj6hX79+ioqKUtWqVXX79m1VqlRJ/v7+6tOnj7p3754YGQEAAAAAAAAgyXB40NZiseijjz5S3759dfToUYWFhalQoUJKkyaN7ty5o5QpUyZGTgAAAAAAAABIEhyeHiGan5+fChUqpDJlyih58uQaN26cgoKCnJkNAAAAAAAAAJKceA/ahoeHq3///ipdurTKly+vxYsXS5JmzpypoKAgjR8/Xr17906snAAAAAAAAACQJMR7eoRBgwbpq6++UrVq1fTHH3+ocePGatu2rf7880+NGzdOjRs3lq+vb2JmBQAASJA8/X51dYQ4nfi4jqsjAAAAwA24c836MOrXpyPeg7YLFizQd999p3r16mnfvn0qWrSo7t+/r927d8tisSRmRgAAAAAAAABIMuI9aHvmzBmVKlVKklS4cGH5+/urd+/eDNgCAAAkMnc+64IzLQAAAGCPO9ewMbljTRvvOW0jIyPl5+dnvZ8sWTKlSZMmUUIBAAAAAAAAQFIV7zNtjTFq06aN/P39JUl3795V586dlTp1apvlfvzxR+cmBAAAAAAAAIAkJN6Dtq1bt7a5//bbbzs9DAAAAAAAAAAkdfEetJ05c2Zi5gAAAAAAAAAAyIE5bQEAAAAAAAAAiY9BWwAAAAAAAABwIwzaAgAAAAAAAIAbYdAWAAAAAAAAANwIg7YAAAAAAAAA4EYYtAUAAAAAAAAAN8KgLQAAAAAAAAC4EQZtAQAAAAAAAMCNMGgLAAAAAAAAAG7ELQZtJ0+erDx58ihFihQqW7astm3b9sjlFyxYoBdeeEEpUqRQkSJFtGzZsqeUFAAAAIiNehYAAADO5PJB23nz5ik4OFiDBw/Wjh07VKxYMdWsWVOXLl2yu/wff/yh5s2bq3379tq5c6fq16+v+vXra9++fU85OQAAAEA9CwAAAOdz+aDtuHHj1LFjR7Vt21aFChXS1KlTlSpVKs2YMcPu8hMnTlStWrXUt29fFSxYUMOHD1fJkiU1adKkp5wcAAAAoJ4FAACA8yVz5cYjIiL0999/q3///tY2Hx8fVatWTVu2bLH7nC1btig4ONimrWbNmlq8eLHd5cPDwxUeHm69HxISIkkKDQ19wvQOCjdPd3vxFc/XISr8diIHSbj4vJfkTzzx7Uvuug+enl9KGseQp+eX3HcfPD2/lDSOIU/PnxjbM8Y9aqunUc9K7lHTuvNx+DBHXhP2yXW84fsnJm/bp6R83Enet0/etj8S++RK3nbcSU+3pop3PWtc6OzZs0aS+eOPP2za+/bta8qUKWP3OcmTJzc//PCDTdvkyZNNlixZ7C4/ePBgI4kbN27cuHHjxo2bF91Onz7tnIL0CT2NetYYalpu3Lhx48aNGzdvuz2unnXpmbZPQ//+/W3OZIiKitK1a9eUMWNGWSwWFyZLmNDQUOXKlUunT59WunTpXB3HYZ6eX/L8fSC/a3l6fsnz94H8rkV+1/P0fTDG6ObNm8qRI4erozxV3lbTSp5/LNrDPrk/b9sfiX3yFN62T962PxL75Am8ZX/iW8+6dNA2U6ZM8vX11cWLF23aL168qGzZstl9TrZs2Rxa3t/fX/7+/jZt6dOnT3hoN5EuXTqPPkA9Pb/k+ftAftfy9PyS5+8D+V2L/K7nyfsQEBDg6ghWT6Oelby3ppU8+1iMC/vk/rxtfyT2yVN42z552/5I7JMn8Ib9iU8969ILkfn5+alUqVJau3attS0qKkpr165VuXLl7D6nXLlyNstL0urVq+NcHgAAAEgs1LMAAABIDC6fHiE4OFitW7dW6dKlVaZMGU2YMEG3bt1S27ZtJUmtWrVSzpw5NXr0aElSz549VblyZY0dO1Z16tTR3LlztX37dk2bNs2VuwEAAIAkinoWAAAAzubyQdumTZvq8uXLGjRokC5cuKDixYtrxYoVypo1qyTp1KlT8vH574Tg8uXL64cfftCAAQP0f//3f8qfP78WL16swoULu2oXnip/f38NHjw41s/jPIWn55c8fx/I71qenl/y/H0gv2uR3/W8YR/cDfVswnjjscg+uT9v2x+JffIU3rZP3rY/EvvkCbxtfx7HYowxrg4BAAAAAAAAAHjApXPaAgAAAAAAAABsMWgLAAAAAAAAAG6EQVsAAAAAAAAAcCMM2gIAAAAAAACAG2HQFi7FdfCQ1NEHXI/3AE+KYwhwHvoT8OToR56B9wmuwHHnWRi09VCXL1/W+fPnXR0jwc6dO6d///1XFovFKz40PHEfPP0Y8vT83tYHoqKiXB3BYd70Hnhifk/vw5J3HUOe2IfhXbypP8XkLfvjDZ/bMXnbPnlzP5K857vKm98nb9kfb/tskLz7uJO85/MhJgZtPdC+fftUsWJFDRkyRP/++6+r4zhs//79evnll9WpUyft2bPHoz80OnTooLlz53rcPnj6MeTp+b2pD3Tv3l1r166Vj4+PR31Rest7wGeQ63jLMeSpfRjexVv6U0ye+hltjzd8bsfkbfvkrf1I8q7vKm99n/i8c2/eetxJ3vX5YI/FeMs7lUSEhISoWbNmSpEihfLly6eoqCh17dpVzz33nIwxslgsro74SLdu3VKrVq2UNm1aFShQQNu3b9eQIUNUtGhRj8j/sE6dOumnn37StWvX9N1336lly5YesQ+efgx5en5v6gNt2rTRkiVLZLFYNHfuXNWoUUNRUVHy8XHvfw/0lveAzyDX8ZZjyFP7MLyLt/SnmDz1M9oeb/jcjsnb9slb+5HkXd9V3vo+8Xnn3rz1uJO86/MhLt6zJ0lAaGiorl69qu7du+uHH35Q1apVdfPmTU2aNElHjx61djZ3HYe/du2ajh49qr59+2r8+PGqW7eu8uXLpyFDhmjXrl3W/J7wryORkZFKlSqV/v33Xy1dulTvvPOOvv/+e1ksFt2/f9/V8eLk6ceQp+f3pj4QGhqq5MmTa9euXRo/fryaNWumlStXysfHx637gLe8B3wGuY63HEOe2ofhXbylP8XkqZ/R9njD53ZM3rZP3tqPJO/6rvLW94nPO/fmrced5F2fD49k4BHu3Llj3n77bbNs2TKb9uXLl5uOHTuaXr16mTt37pijR4+azZs3uyhl3CIiIkz//v3N7Nmzbdp3795t+vbta+rXr28uXbpkjhw5YubNm2ciIyNdlPTxPvvsM/P999+be/fumVu3bhljjFm4cKGxWCxm1qxZ1uWuXr3qqoh2efox5On5vakPfPXVV2blypXm5s2b5u7du8YYY7788ksTGBholi5dal0uJCTEVRHt8pb3gM8g1/GWY8hT+zC8i7f0p5g89TPaHm/43I7J2/bJW/uRMd71XeWt7xOfd+7NW487Y7zr8+FxONPWQ6RIkUK1a9fWkCFDdOrUKWt7rVq1VL9+fSVLlkxNmjRRsWLFFBkZ6cKk9iVPnlzly5fXyJEjdejQIWt70aJF1aJFC7300kt6/fXXVbJkSWXIkMGtT2fPkyePTpw4oWTJkilFihSKjIxUw4YNNXfuXHXo0EH/+9//VL9+fU2ePNnVUW14+jHk6fm9pQ/cvXtXoaGhOnHihNKkSSM/Pz8ZY9SlSxcNGzZMbdq00Zo1a9S6dWvNmTPH1XFteMt7wGeQ63jDMeTJfRjexRv6kz2e+hltjzd8bsfkbfvkrf3I276rvPV94vPOvXnrcedtnw+P5doxY8TH/fv3rX8PGzbMLFy40Bjz4F9Oog0dOtSkS5fO/Pzzz08936PcvHnT5v64cePMxx9/bO7du2ezX9H/KuJu+e3Zu3evqVixovn999+NMQ/en+j3YvHixcZisZiWLVu6MuIjedox9PBxYozn5Y/JG/rA5s2bzQsvvGB27dplbYvel6+++spYLBbTtGlTV8Wz6+F/Ofb098ATP4M8+XssmjcdQ57Yh+E9vLE2fJgnfkY/jqd+bj/M2+rJmLytHxnjPd9V3lQ/xOQtn3feUKfG5M3HnTHe8/kQHwzaurEjR46Yf/75x6btm2++MY0bN7bej4yMNBcvXjSFChUyCxYsMMYYExUVZaKiop5qVnuOHDliatSoYf766y9r2+rVq03r1q1NeHi4McaYe/fumevXr5siRYqYefPmGWPcJ/+jfPfdd6ZWrVrm3LlzNu1NmzY1zZs3t953l58YPPzh/PXXX3vMMXTo0CEzdepUc+XKFWubJ+U/ffq02bFjh9m+fbu1zVv6wJQpU8x7771nbty4YdNetWpV884771jvu7oPhISEmLCwMOtPtowxZtWqVR73Hty+fdvmvqd8Bl29etVcvXrVXLp0ydrmSX3YGGOuXLli3Y9oK1as8Lhj6PLlyzb3PaUPw7t4c234ME/5jH4UT60d7fH0ejImb64vY/Lk7ypvqUFj8tSa1B5vqFNj8pa61Z6kWssyaOumDh8+bPLly2d++OGHWI+9+eabZtCgQdb7N27cMMeOHTPGuE9nO3TokClSpIgJDAy0frhFa9GihenYsaNN2/nz540xxi2yxzRhwgQzdepUM2PGDGvbzZs3zUcffWQ2bdpkjHlQ2F65csWMHj3auoyrPxwOHz5sxo8fb71/794969/169d3+2Po4MGDJn/+/Gb69Omx8tStW9ft8x84cMCULFnSNG/e3Lzyyitmw4YN1seaNm3qUX1g5MiR5pNPPjGff/65tW3//v2mZ8+e5tSpU8aYB33gwoULJjg42LqMq/vA/v37Tc2aNU316tVNr169zJ9//ml9zJM+h1q1amWGDx9uUwx7wmfQgQMHTKVKlUyDBg1M+/btzf79+62PecL3mDHG7Nu3z1SsWNG89dZbpkWLFmbixInWxzypH/fs2dN8//33xpj/snlCH4Z38aba8GGeWifa4+m1oz2eXk/G5E31ZUyeWm/a4y01aEyeWpPa4w11akzeUrfak5RrWQZt3dD+/fvNSy+9ZObPn2/THv0v3rt27TLvv/9+rH/NchcHDhwwL730kvn111/NvHnzTFBQkLlw4YL18StXrpjOnTubbdu2uTBl/HTs2NHUqlXLjBo1ygQFBZkpU6ZYH/v4449No0aN7D7P1R8Ohw4dMtmzZzc5cuQwffr0sbZHT9K9Y8cO88EHH7jtMRQeHm5q165tvvzyS2PMgw/ma9eumRMnThhjHkyeHhwc7Lb5z549a4oXL27mzZtnbt26Zbp27Wr++usv678CXr9+3XTs2NEj+kCXLl1M7dq1zYwZM0zWrFltMnft2tVt+8DBgwdNsWLFzNy5c82mTZtM+/btbQoXT/kcunr1qsmXL5+pXr26mTJlis0x/9lnn5m33nrL7vNc/fpHf4/NmTPH7N2711StWtXs3bvX+ri7f48ZY8y5c+dMyZIlzY8//mhOnDhhpk+fbvz9/c2IESOMMQ/6cadOndz+GOrataupW7eu3ce6dOliczbJw1x9DMG7eFNt+DBPrRPt8fTa0R5Prydj8qb6MiZPrTft8ZYaNCZPrUnt8YY6NSZvqVvtSeq1rGfMNJyEREREaMSIEbpy5YoaN24sSerTp4/atm2rYcOG6bffflOBAgV05swZLVu2zMVpYwsJCdGIESPUqVMn1a5dW9WrV1epUqW0fft2SVJkZKRSpUql9OnTa+vWrS5O+2h9+/bVhQsXtHz5cvXv3199+vTRvn37rI9/+OGHkqSxY8fGeq4rJ/GOiorSL7/8ohYtWmjZsmXatm2b+vTpI0ny9/eXJOXMmVMnT57U0qVLXZbzUZIlSyY/Pz+98847kqTGjRurU6dOatGihT755BMVLVpU586dc8s+IEn//POPcubMqSZNmihVqlTatGmTBgwYoHr16mnkyJFKnz69MmfO7PZ94L333tPFixf166+/qm3btqpatar1viRNmjRJ/v7+WrBgQaznurIPhIeHa9q0aXrnnXfUtGlTVaxYUZUrV9bixYt17949GWOUMmVKBQYGasuWLS7LGR8ZMmRQtWrVVL58eX3//fdavHixbt26paNHj+r999+XxWJxu8+g8PBwffXVV2rbtq1atGihwoUL6+rVqxo1apSGDBmiH3/8US+++KLOnj3rtn1YetCPs2XLpgYNGih37tx69dVXVaVKFX3++eeaNGmS0qdPrwwZMrh1P+7QoYP27t2rn3/+WZK0adMm/fHHH9bX/csvv5Sfn5/b9WF4F2+qDR/mqXWiPd5QO9rj6fVkTN5SX8bkqfWmPd5Ug8bkiTWpPd5Sp8bkDXWrPdSy4kJk7ub+/ftm//79pmXLlqZhw4bmjTfeMMHBwebbb781ffv2NR06dDDGGLN161ZTsGBBc+jQIRcntnX79m1z8uRJ6/2oqCjTsWNHU61aNZvl9u7da7Jnz2527NjxtCPG21dffWU2b95svb9kyRJTtmxZc/fuXesp+Zs3bzbvv/9+rItquFpYWJi5ceOGCQ8PNxs3bjSVK1e2+ZmAMQ/OenHHYyj6tW3ZsqUZNGiQ6dq1qxk4cKA5ffq0WbVqlSlQoIA5cOCA2b59u1vmN8aYM2fOmNdee83Ur1/fFCpUyHTs2NGcPHnSrFq1yuTNm9fs2LHD7Nu3z+37wJw5c6zzcE2cONFkzJjRfPTRRyZ//vymXbt2xhhjvv32WzN06FBXxozl3r17ZseOHebGjRvm/v375t69e+b33383r732ms0cfceOHXPr9yA6a6dOncxff/1l1q9fb6pUqWJefvll6+u/adMm06dPH7f6DIr+WZwxD96LN954wzRv3txs3LjRTJo0ydSoUcOEhoaabdu2uW0fNsaYf/75xzRs2NDMmTPHGGPMrFmzTM+ePc2MGTOsPy/bvXu3Wx9D7733nildurS5fv26mTBhgnn55ZfNO++8Y5555hnz4YcfGmMe7Je79WF4F2+qDR/myXWiPZ5cO9rjDfVkTN5SX8bkqfWmPd5Sg8bkqTWpPd5Sp8bkDXWrPdSyTI/gllatWmW+//57U79+fdOmTRtr+44dO0zFihWtE2Vv3LjRVREfad26dWb37t3W+zdu3DBlypSxzl8W/aG/c+dOV8R7rIfndHl4ovW//vrLVK9e3Xp/1apV5tq1a6Zx48bm2rVrTzXj46xevdp6JcW7d++ajRs3mkqVKpnhw4ebv/76y7Ru3dpcunTJrF+/3rVB47BhwwYzYMAA88EHH5iaNWua0NBQ62Nt27a1/k+Su/aBZcuWmalTp5ply5aZWrVq2TzWqlUr6+v+8NUu3UnMn5JcunTJvPvuu9afsp4+fdrkyJHDnDp1yuzfv9+UK1fO3Lhxw63mQ1qxYoXZs2eP9f6xY8dMzZo1jTHG/Pbbb6Zbt24mKirKI4qWGTNmmK+++soYY0yNGjVMQECAGT9+vLl79645deqUW34GrVmzxvo98PDPsE6fPm1ef/11c/z4cWOM+/ZhYx5c9fjtt982zZs3N9WqVTMVKlQwp06dMgcOHDDly5e3/hzVHfvxw324W7duJn369KZ8+fLW/0nZtm2bKVWqlLl+/brb9mF4F0+vDR/mDXWiPZ5eO9rj6fVkTJ5eX8bkDfWmPd5Ug8bkiTWpPd5Qp8bkyXWrPdSy//GS84W9y8aNG/X999/rk08+0fTp063tUVFR8vX11f379yVJlSpVkiQZY1ySMy4rV65U//79df/+fUVFRcnf319lypTRjh07JEm+vr6SpOLFi0t6sF/uIjIyUhaLxXo/ZcqU1r+NMUqVKpUkqWHDhvruu+8UGBio2bNnKzAw8KlnfZQ1a9bo//7v/3Tv3j35+/urbNmymj59umbPnq0KFSqofv36ypw5s1599VVJ7ncMbdiwQWvXrlWyZMl0+PBhjR8/XpJ04MAB7dixw/q+uGsf+OOPP7R06VLVqlVLWbNm1f/+9z9J0qFDh7Rz506lSZNGklSsWDFJ7tcHYv6UJHPmzJo4caKyZs0qScqUKZNKlSqlqKgoFSpUSOvWrVNAQIBN33G19evXq1+/frp3754k6c6dO8qWLZs2btyo9957T7Vr15bFYlGJEiUkuc97EBkZGastU6ZM+vPPP/X+++/r/v37+vrrrzVjxgytXbtWuXLlcsvPoNWrV6t///66d++eXnrpJWv75cuXdf36dWufddc+LEn79u3T6dOnNXDgQI0ZM0aLFy9Wrly5dO3aNQUEBFgzu1s/ju7D0cfSF198oX79+mns2LHKmDGjJCl79uzKmTOnIiIi3LYPw7t4cm34MG+pE+3x9NrRHk+vJ2Py5PoyJm+pN+3x1Bo0Jm+pSe3xhjo1Jk+tW+2hlrWVzNUBEFvDhg118uRJZc6cWcmSPXiLNm3apB49emjo0KHKnj27zfLudmA2a9ZMp0+f1u3bt5UuXTqlSJFCtWvXVsOGDdWrVy9lypTJ5kvaneYa8fX1VVRUlBYtWqRbt26pfv36Sps2rXx9feXn56dz585Zi9boAfXkyZO7OHVsD78HAQEB8vf317Fjx3T9+nX99NNPql27towx1mPH3Y6hN954Q+fOnVPnzp0VFBSkFStWqEaNGrpw4YKGDx+ukiVL2izvbvkbNmyoo0eP6vr163rxxRf13XffacGCBTp8+LBGjx6t0qVL2yzvzn3gzTffVNq0aa1z2klSx44dlT17duXOnVuSbB5zFzH7wJ07d7R48WLt3LlTn376qWrVqmWzvLu8Bw+//mFhYWrcuLFefvllffbZZ7JYLFq9erWSJ0+uZ599VmXKlJEk+fn5uTh1bM2aNdOpU6d0584d62fkb7/9pp49e2ro0KEKCgqyWd7d+rAkvf766zp06JBy585tHYhZvHixBg4cqOHDhyt9+vQ2y7vbMfTjjz8qJCRELVu2tM6tGa1///7KmTOnsmTJIsk9+zC8iyfXhg/zljrRHk+vHe3x9HoyJk+uL2PylnrTHk+tQWPylprUHm+oU2Py1LrVHmrZGFxwdi/sOHz4sNmyZYv1fo0aNUy/fv2MMcbs2bPH1K1b1yxevNgYY9zylO9H5Y/277//Pu1Y8da9e3frfGvly5c3zZs3N4ULFzZNmjQxCxYsMFFRUWbnzp3GYrGY999/3/o8d7oi4ePegw8++MA6x01UVJTbHUcx81erVs0MHz7cen/v3r3WY8jdshsTO3/16tXNyJEjzb1798y6devM999/b/78809jjHvmf1QfWLhwoYmIiDAXL140NWrUsM6tbYx77cuj+sC5c+fMCy+8YH799VdXxXukR73+P/zwg/n111+tPx9+eE40T3n9//rrL1O/fn2zZMkSY4x75X6YvX2Ini8rPDzcfPDBB2bRokXGGPfbh7iOocaNG5uFCxeae/fumdDQULfuw/Aunl4bPswb6kR7PL12tMfT68mYPL2+jMkb6k17PLkGjckbalJ7vKFOjcmT61Z7qGXtY9DWDdy+fdv06dPH5MyZ03z00UdmxYoVZtu2baZTp07m7t275ubNm9aD1x0PyEflDwsLi1WwuuM+LFiwwGTOnNlMnDjRDBo0yBjzoNAeNmyYeeutt6wXlfjkk0+sz3GnQvxR70HMyeDd8fWPK3/Hjh1t5h9zV3Hlb9++vYmIiHB1vHh5VB9o2LChCQsLMyEhIWbWrFnW53hKHwgLCzM3b940//zzjzHGPftAXK//kCFDTPPmza0X6Hi4OHYnj3r9w8PDTVhYmDlz5owxxj1ff2MefwwZ898x7477EJ8+fOPGDTN9+nTrc9ypD8O7eENt+DBPrxPt8fTa0R5Prydj8ob6MiZPrzft8fQaNCZPr0nt8YY6NSZPr1vtoZa1j0FbN3Lo0CEzcuRIU69ePRMUFGTSpk3rUZP928vvSZN3r1ixwlgsFuu/TkV78cUXzY8//mjT5q4fDvbegw0bNrg6Vrx5+jHk6a9/XH2gUKFC1jP9o3lSH1i3bp2rY8XLoz6DfvrpJ9eEcpCnf48Z49n9+FHHkKf0YXgXT/9ef5g31In2ePJnXly86bgzxvveI2+oN+3x5Bo0Jm+oSe3xhjo1pqTy+ZCUa1mLMR4wq3IStHDhQq1Zs0Z37tzRV199JX9/f4+YSyXaw/mnTp2qFClSeET+1atXq1GjRtq3b59y5colSapevbo++OADVa9e3cXpHOOp70E08ruGt/YBT/kc5fV3L57Yj+M6hvr27asaNWq4OB2SMk/sTzF502e0Pd7wHsXkbfvkLfuTlPqSp9ZAvEeex9s/H5JqLcuFyNyM+f8T/Ddq1EhBQUH67LPP5Ofn5zGdzV5+T/oArF69uubMmaPChQurffv2kqTAwECP+mLy9PeA/K7lrX3AUz5Hef3dgyf347iOoaRY5MI9eHJ/iskbPqPt8ab3KJq37ZO37U9S6kueVgNF4z3yHEnl8yGp1rLue8m4JOrhjnX8+HFt3rxZ165dc2Eix3h6funBlWYXLlyoCRMmqHz58po/f74kKSoqysXJ4sfT3wPyux59wLV4/V3P0/fB048heBdP708xeWP/8rb3SPK+ffK2/ZHoS56A98gzeOM+eeOxl1BMj+DGfv/9dwUGBqpQoUKujpIgnp5/7969KlKkiKT//vXK03j6e0B+16IPuBavv3vw5H3whmMI3sWT+1NM3tq/vOk9iuZt++Rt+0Nfcn+8R57D2/bJW489RzBoCzxGVFSUfHw4KR1JF33AtXj98aQ4hoDEQ/8CnIO+5P54j+AqSfnYY9AWAAAAAAAAANxI0hyqBgAAAAAAAAA3xaAtAAAAAAAAALgRBm0BAAAAAAAAwI0waAsAAAAAAAAAboRBWwAAAAAAAABwIwzaAkAiaNOmjSwWS6zb0aNHXR0tUbz66qvq1auXq2MAAADASahnAcC1krk6AAB4q1q1amnmzJk2bZkzZ7a5HxERIT8/v6cZCwAAAIgX6lkAcB3OtAWAROLv769s2bLZ3KpWrapu3bqpV69eypQpk2rWrClJGjdunIoUKaLUqVMrV65ceu+99xQWFmazvunTpytXrlxKlSqVGjRooHHjxil9+vTWx4cMGaLixYtrxowZevbZZ5UmTRq99957ioyM1CeffKJs2bIpS5YsGjlypM16b9y4oQ4dOihz5sxKly6dqlSpot27d8da7+zZs5UnTx4FBASoWbNmunnzpqQHZ2Fs3LhREydOtJ6BceLEicR5UQEAAPDUUM8CgOswaAsAT9m3334rPz8//f7775o6daokycfHR59//rn279+vb7/9VuvWrdMHH3xgfc7vv/+uzp07q2fPntq1a5eqV68eq1iVpGPHjmn58uVasWKF/ve//+mbb75RnTp1dObMGW3cuFFjxozRgAEDtHXrVutzGjdurEuXLmn58uX6+++/VbJkSVWtWlXXrl2zWe/ixYu1dOlSLV26VBs3btTHH38sSZo4caLKlSunjh076vz58zp//rxy5cqVWC8fAAAAXIx6FgCeAgMAcLrWrVsbX19fkzp1auutUaNGpnLlyqZEiRKPff6CBQtMxowZrfebNm1q6tSpY7NMy5YtTUBAgPX+4MGDTapUqUxoaKi1rWbNmiZPnjwmMjLS2vb888+b0aNHG2OM2bRpk0mXLp25e/euzbrz5s1rvvrqqzjX27dvX1O2bFnr/cqVK5uePXs+dr8AAADgGahnAcC1mNMWABLJa6+9pilTpljvp06dWs2bN1epUqViLbtmzRqNHj1ahw4dUmhoqO7fv6+7d+/q9u3bSpUqlQ4fPqwGDRrYPKdMmTJaunSpTVuePHmUNm1a6/2sWbPK19dXPj4+Nm2XLl2SJO3evVthYWHKmDGjzXru3LmjY8eOxbne7NmzW9cBAAAA70Q9CwCuw6AtACSS1KlTK1++fHbbH3bixAm98cYb6tKli0aOHKkMGTJo8+bNat++vSIiIpQqVap4bzN58uQ29y0Wi922qKgoSVJYWJiyZ8+uDRs2xFrXw/OLPWodAAAA8E7UswDgOgzaAoCL/f3334qKitLYsWOtZxDMnz/fZpnnn39ef/31l01bzPsJUbJkSV24cEHJkiVTnjx5ErwePz8/RUZGPnEeAAAAeB7qWQBwPi5EBgAuli9fPt27d09ffPGF/v33X82ePdt6QYdo3bt317JlyzRu3DgdOXJEX331lZYvXy6LxfJE265WrZrKlSun+vXra9WqVTpx4oT++OMP/b/27hBVlTAMA/AnpwhmsYrBIMIsQLC5BbEaBItBsLkAEWSiWA1uQY2CSXABRjXbXIA333BhDueAI/d58vDPG19efmam02mcz+fM51Sr1TidTnG9XuPxeLi1AADwH9FnAX6f0RbgzZIkiTRNYz6fR7PZjM1mE7PZ7K9nWq1WrFarSNM0kiSJ/X4f4/E4isXij95dKBRiu91Gu92Ofr8f9Xo9er1e3G63qFQqmc+ZTCbx9fUVjUYjyuVy3O/3H+UCAOBz6LMAv6/wer1e7w4BwPcNBoO4XC5xPB7fHQUAAL5NnwX4N9+0BfgQi8UiOp1OlEql2O12sV6vY7lcvjsWAABkos8CZOemLcCH6Ha7cTgc4vl8Rq1Wi9FoFMPh8N2xAAAgE30WIDujLQAAAABAjvgRGQAAAABAjhhtAQAAAAByxGgLAAAAAJAjRlsAAAAAgBwx2gIAAAAA5IjRFgAAAAAgR4y2AAAAAAA5YrQFAAAAAMgRoy0AAAAAQI78AWzvkTfX4GeQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pred_ints = feat_gen.feature_relative_predicted_intensities(\n", + " precursor_fragments, ms2pip_preds, visualize=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c35115e2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAM0CAYAAACF4vodAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU2cbBvA7CRCWLAUBZYl7b+sEXEjVauuurah11DrbWittHdRVrVattmptP6COap3Vtm5xb62KdRQVlSqCCxCUAMn5/qA5EhIgQEgY9++6UpOT95zzJMby8uR5nyMRBEEAERERERERERGRkUhNHQAREREREREREZUvTEgREREREREREZFRMSFFRERERERERERGxYQUEREREREREREZFRNSRERERERERERkVExIERERERERERGRUTEhRURERERERERERsWEFBERERERERERGRUTUkREREREREREZFRMSBERUakjkUgwc+ZMU4eRJ29vbwwdOtSgx8z5usPDwyGRSHDnzh2Dnsff3x/+/v4GPWZJNHPmTEgkkmI59qFDhyCRSHDo0CGDHfP111/HyJEjDXY8oqKaOnUqWrVqZeowiIiolGJCioiIiuTWrVsYPXo0qlWrBktLS9jZ2aFt27ZYunQpXr58aerwDC4qKgp9+/aFl5cXLC0tUaVKFXTp0gXLli0zdWjF5sGDB5g5cyYuXrxYbOeYMmUKJBIJBgwYUGznKM2OHz+OvXv34tNPP9XYfufOHQwbNgy+vr6wtLSEq6srOnTogBkzZhjs3CdOnEC7du1gbW0NV1dXTJgwASkpKXrtGx8fj2HDhsHFxQVWVlZo2rQpNm3apDVu27ZtCAwMhLu7O+RyOapWrYq+ffviypUrWmO9vb0hkUi0bu+//36hX2N6ejqWLl2KJk2awM7ODg4ODqhXrx5GjRqF69evAwCUSiWaNWsGPz8/NGjQAN27d0d8fHyhz5ldUd7jpKQkTJkyBTVq1ICVlRW8vLzw3nvv4d69exrjbty4gQ8//BBt2rSBpaVlrslsdTI1t9ucOXPEsZMmTcKlS5ewY8eOIr1+IiIqnySCIAimDoKIiEqnP/74A/369YNcLseQIUNQv359pKen49ixY9iyZQuGDh2KH374weDnTUtLg5mZGczMzAx+7LycOHECAQEB8PT0RHBwMFxdXREbG4tTp07h1q1buHnzpjhWoVBAKpXC3NzcYOfP+brDw8MxbNgwxMTEwNvb22DnSU9PBwBYWFgAAM6dO4cWLVogLCzM4FVfACAIAjw9PWFmZob4+HjEx8ejQoUKBj9PTjNnzkRoaCiKYyqkUqmQnp4OCwsLSKVF//6vd+/eePnyJfbs2SNuu3nzJlq0aAErKysMHz4c3t7eiIuLw4ULF7Br1y6kpaUV+bwXL15E69atUadOHYwaNQr//vsvFi5ciICAAOzatSvPfZOTk9GsWTPEx8dj4sSJcHV1xa+//oojR45g3bp1ePvtt8WxX375Ja5evYomTZqgUqVKePjwIf73v/8hLi4OJ0+eRKNGjcSx3t7ecHR0xMcff6xxvpo1a6Jly5aFep09e/bErl27MGjQILRu3RoZGRm4fv06fv/9d8yaNUv83KelpcHS0hKCIKB9+/Z47bXXsHDhwkKdU60o77FKpcJrr72Gq1ev4oMPPkDNmjVx8+ZNfP/997Czs8O1a9fEf0vh4eF47733ULduXZiZmeHixYs6/98RHx+Pffv2aZ1rzZo12Lt3L86cOYMWLVqI2wcMGIC4uDgcOXKkSO8DERGVQwIREVEh3L59W7C1tRVq164tPHjwQOv56OhoYcmSJSaIrPi8/vrrgrOzs/Ds2TOt5+Lj440eT1hYmABAiImJMcjxUlNTdW4/e/asAEAICwszyHlyOnjwoABAOHjwoGBubi6Eh4cXy3lymjFjhlAapkLx8fGCmZmZ8OOPP2ps/+CDDwQzMzPhzp07OvcxhKCgIMHNzU1ISkoSt61evVoAIOzZsyfPfRcsWCAAEA4cOCBuUyqVQosWLQRXV1dBoVDkuf/Dhw8FMzMzYfTo0Rrbvby8hO7duxfi1eh25swZAYAwZ84crecyMzOFx48fa21PTU0VmjZtKmzYsKHI5y/Ke3z8+HEBgLB8+XKN7f/73/8EAMLWrVvFbU+ePBGSk5MFQRCEr7/+usD/76hevbpQo0YNre2bN28WJBKJcOvWLb2PRUREJAiCwCV7RERUKAsWLEBKSgp++uknuLm5aT1fvXp1TJw4UXycmZmJWbNmwdfXF3K5HN7e3vjss8+gUCg09jt37hwCAwNRqVIlWFlZwcfHB8OHD9cYk7OXkroX0M2bNzF06FA4ODjA3t4ew4YNw4sXL7RiW7t2LZo1awYrKys4OTlh4MCBiI2Nzfc137p1C/Xq1YODg4PWcy4uLhqPc/aQUvd7OnbsGCZMmABnZ2c4ODhg9OjRSE9PR2JiIoYMGQJHR0c4OjpiypQpWpU7+vTO+u2339C9e3dx6ZOvry9mzZoFpVKpMc7f3x/169fH+fPn0aFDB1hbW+Ozzz4Tn1P3kDp06JBYDTFs2DBx2U54eDhmzJgBc3NzPHr0SCuOUaNGwcHBQa8qnXXr1qFu3boICAhA586dsW7dOq0x6mVEv/76K+bMmYOqVavC0tISnTp10qhMA4CjR4+iX79+8PT0hFwuh4eHBz788MN8l5D6+flpVOJkV6tWLQQGBoqPN2zYgGbNmqFChQqws7NDgwYNsHTpUq14s/eQio6ORp8+feDq6gpLS0tUrVoVAwcORFJSUp5x/fHHH8jMzETnzp01tt+6dQtVq1aFl5eX1j45P4+FkZycjH379uGdd96BnZ2duH3IkCGwtbXFr7/+muf+R48ehbOzMzp27Chuk0ql6N+/Px4+fIjDhw/nub+Liwusra2RmJio8/n09HSkpqbq/4JycevWLQBA27ZttZ6TyWSoWLGixrbu3bvDy8sLUqm0yP2TivoeJycnAwAqV66ssV39/2QrKytxm5OTU6ErD8+cOYObN29i8ODBWs+pP5e//fZboY5NRETlFxNSRERUKDt37kS1atXQpk0bvcaPGDEC06dPR9OmTbF48WL4+flh3rx5GDhwoDgmISEBXbt2xZ07dzB16lQsW7YMgwcPxqlTp/Q6R//+/fH8+XPMmzcP/fv3R3h4OEJDQzXGzJkzB0OGDEGNGjXwzTffYNKkSThw4AA6dOiQ6y++al5eXjh//rzOvjb6Gj9+PKKjoxEaGoo33ngDP/zwA6ZNm4aePXtCqVRi7ty5aNeuHb7++musWbOmwMcPDw+Hra0tPvroIyxduhTNmjXD9OnTMXXqVK2xT548QVBQEBo3bowlS5YgICBAa0ydOnXw5ZdfAshKMq1ZswZr1qxBhw4d8O677yIzMxMbN27U2Cc9PR2bN29Gnz59YGlpmWe8CoUCW7ZswaBBgwAAgwYNwsGDB/Hw4UOd47/66its27YNkydPRkhICE6dOqX1S/KmTZvw4sULjBkzBsuWLUNgYCCWLVuGIUOG5BnLu+++i8uXL2v9/Z49exb//PMP3nnnHQDAvn37MGjQIDg6OmL+/Pn46quv4O/vj+PHj+d67PT0dAQGBuLUqVMYP348vvvuO4waNQq3b9/O93N34sQJVKxYUSvx5OXlhdjYWBw8eDDP/QEgJSUFjx8/zveWPTkWFRWFzMxMNG/eXONYFhYWaNy4Mf766688z6lQKDQSImrW1tYAgPPnz2s9l5iYiEePHiEqKgojRoxAcnIyOnXqpDXu4MGDsLa2hq2tLby9vTWSgQWlfl/XrVuHzMzMfMf/8ccfiI2NhZOTk0ZPL1O8x82bN4eNjQ2mTZuGgwcP4v79+zh8+DCmTJmCFi1aaCUxC0udJNaVkLK3t4evr2+en38iIiKdTF2iRUREpU9SUpIAQOjVq5de4y9evCgAEEaMGKGxffLkyeJSLUEQhG3btgkAhLNnz+Z5PADCjBkzxMfqpVfDhw/XGPfmm28KFStWFB/fuXNHkMlkWktzoqKiBDMzM51LdrLbu3evIJPJBJlMJrRu3VqYMmWKsGfPHiE9PV1rrJeXlxAcHCw+Vi+vCwwMFFQqlbi9devWgkQiEd5//31xW2ZmplC1alXBz88vz9eta8neixcvtGIZPXq0YG1tLaSlpYnb/Pz8BADCypUrtcb7+flpnDuvJXutW7cWWrVqpbFt69atAgAhMjJSa3xOmzdvFgAI0dHRgiAIQnJysmBpaSksXrxYY1xkZKQAQKhTp47GUq+lS5cKAISoqChxm673YN68eYJEIhHu3r0rbsu5ZC8xMVGwtLQUPv30U419J0yYINjY2AgpKSmCIAjCxIkTBTs7OyEzMzPX16WOV/0e/PXXXwIAYdOmTfm8I9ratWsnNGvWTGv7lStXBCsrKwGA0LhxY2HixInC9u3bdS69DA4OFgDke8v+975p0yYBgHDkyBGt4/Xr109wdXXNM+7x48cLUqlUa0nhwIEDBQDCuHHjtPapVauWGIutra3wxRdfCEqlUmNMz549hfnz5wvbt28XfvrpJ6F9+/YCAGHKlCl5xpMblUol/nuoXLmyMGjQIOG7777T+KwIgiC8fPlSI5a33npLeO+998THpniPBUEQfv/9d8HNzU3jHIGBgcLz589z3acgS/YyMzOFypUrCy1btsx1TNeuXYU6derkeywiIqLsWCFFREQFpl4mou/yjz///BMA8NFHH2lsVzcl/uOPPwBAXAr3+++/IyMjo8Bx5bzKVvv27fHkyRMx3q1bt0KlUqF///4aFQuurq6oUaMGIiMj8zx+ly5dcPLkSbzxxhu4dOkSFixYgMDAQFSpUkXvq0y99957kEgk4uNWrVpBEAS899574jaZTIbmzZvj9u3b+r50UfaKlOfPn+Px48do3749Xrx4IV4tTE0ul2PYsGEFPkd2Q4YMwenTp8VlT0BWNYWHhwf8/Pzy3X/dunVo3rw5qlevDiDrM9W9e3edy/aArGWD6mbrQNbfMQCN9yr7e5CamorHjx+jTZs2EAQhz4oTe3t79OrVC7/88ou4XFKpVGLjxo3o3bs3bGxsAGR9TlNTU3U2fs7r2ACwZ88enctI8/LkyRM4Ojpqba9Xrx4uXryId955B3fu3MHSpUvRu3dvVK5cGatXr9YYO2XKFOzbty/f26JFi8R91Esc5XK51rktLS3zXQI5YsQIyGQy9O/fHydOnMCtW7cwb948bNu2TeP42YWFhWH37t34/vvvUadOHbx8+VJruemOHTswZcoU9OrVC8OHD8fhw4cRGBiIb775Bv/++2+eMekikUiwZ88ezJ49G46Ojvjll18wduxYeHl5YcCAAWIF240bN9CuXTv4+fmhadOmkEgkmDt3rngcU7zHAODs7IwmTZpgzpw52L59O2bOnImjR48W+d+22oEDBxAfH6+zOkrN0dERjx8/Nsj5iIio/DDu5YmIiKhMUPc6ef78uV7j7969C6lUKiYd1FxdXeHg4IC7d+8CyOrh06dPH4SGhmLx4sXw9/dH79698fbbb+v8hS0nT09PjcfqX+KfPXsGOzs7REdHQxAE1KhRQ+f++lwRr0WLFti6dSvS09Nx6dIlbNu2DYsXL0bfvn1x8eJF1K1bt0AxqhMVHh4eWtufPXuWbzw5/f333/jiiy9w8OBBMRGnlrNXUZUqVTSSO4UxYMAATJo0CevWrcP06dORlJSE33//HR9++KFG4k2XxMRE/Pnnnxg3bpxGH6i2bdtiy5Yt+Oeff1CzZk2NffL6O1a7d+8epk+fjh07dmi9h/n1axoyZAg2btyIo0ePokOHDti/fz/i4+Px7rvvimM++OAD/PrrrwgKCkKVKlXQtWtX9O/fH926dcv1uD4+Pvjoo4/wzTffYN26dWjfvj3eeOMNvPPOO+JnIC9CLlcCrFmzJtasWQOlUomrV6/i999/x4IFCzBq1Cj4+PiIS7bq1q2b72czJ3ViL2efNyDranO6luNl17BhQ6xfvx7vv/++2J/J1dUVS5YswZgxY2Bra6u1T+vWrcX7AwcORJ06dQAgzyvZSSQSfPjhh9izZw8OHTokLq0sCLlcjs8//xyff/454uLicPjwYSxduhS//vorzM3NsXbtWjRq1AgnTpzI9RimeI9v376NgIAA/Pzzz+jTpw8AoFevXmIPu127diEoKKhAMeW0bt06yGQyDBgwINcxgiDk+++diIgoJ1ZIERFRgdnZ2cHd3b3AvZTy+4VFIpFg8+bNOHnyJMaNG4f79+9j+PDhaNasGVJSUvI9vkwm07ld/cu8SqWCRCLB7t27dVYurFq1Su/XYmFhgRYtWmDu3LlYsWIFMjIysGnTpkLHqGt7bkmI3CQmJsLPzw+XLl3Cl19+iZ07d2Lfvn2YP38+gKzXn11+v+zqw9HRET169BArmjZv3gyFQqFXUmDTpk1QKBRYtGgRatSoId7UlXS6qqTy+ztWKpXo0qUL/vjjD3z66afYvn079u3bh/DwcADa70FOgYGBqFy5MtauXQsgqwG+q6urRi8eFxcXXLx4ETt27MAbb7yByMhIBAUFITg4OM9jL1q0CJcvX8Znn32Gly9fYsKECahXr16+VT0VK1bMNzkpk8nQoEEDhISEiBVI2d+/pKQkPHz4MN/b06dPxX3UjbHj4uK0zhcXFwd3d/c8YwKAvn374sGDBzhz5gxOnjyJu3fvolq1agCglWzMydHRER07dsy1Wi47dUI3e/yF5ebmhoEDB+LIkSOoUaMGfv31V716S5niPQ4PD0daWhp69Oihsf2NN94AgCL3dXr58iW2bduGzp07azVOz+7Zs2eoVKlSkc5FRETlDyukiIioUHr06IEffvgBJ0+e1Khq0MXLywsqlQrR0dFixQMAxMfHIzExUatZ82uvvYbXXnsNc+bMwfr16zF48GBs2LABI0aMKFLMvr6+EAQBPj4++f4yXBDqhsS6fqk0pkOHDuHJkyfYunUrOnToIG6PiYkp0nHzSyQOGTIEvXr1wtmzZ7Fu3To0adIE9erVy/e469atQ/369TFjxgyt51atWoX169drNaXPT1RUFP755x9ERERoNDHXd3mdTCbD22+/jfDwcMyfPx/bt2/HyJEjtRJhFhYW6NmzJ3r27AmVSoUPPvgAq1atwrRp07QqAbNr0KABGjRogC+++AInTpxA27ZtsXLlSsyePTvXfWrXro0tW7boFT+g+/M4ceJERERE5Luvn5+feGXA+vXrw8zMDOfOnUP//v3FMenp6bh48aLGtryok7dq+/fvBwC9Gm6/fPky36o24NWSTWdnZ71i0oe5uTkaNmyI6OhocWlvXkzxHsfHx0MQBK1ljeolz/ok0vKyY8cOPH/+PM/lekDW/2Nyu0IlERFRblghRUREhTJlyhTY2NhgxIgRiI+P13r+1q1b4pWvXn/9dQDAkiVLNMZ88803ALIuow5kfcuesyqocePGAHQvaSmot956CzKZDKGhoVrnEQQBT548yXP/yMhInVVL6h5ZtWrVKnKMRaFOmmSPMT09Hd9//32RjqvunZTb1eCCgoJQqVIlzJ8/H4cPH9arOio2NhZHjhxB//790bdvX63bsGHDcPPmTZw+fbpAsep6DwRBKNBV2N599108e/YMo0ePRkpKitbryfk5kUqlaNiwIYDcP6fJyclayYEGDRpAKpXm+9lu3bo1nj17ptVT7OjRozp7ren6PBamv5G9vT06d+6MtWvXaizPXbNmDVJSUtCvXz9xm7pHWX59hKKjo7Fy5Ur06NFDIymckJCgNfbOnTs4cOCAxhXonj59qjP58tVXX8HCwkLnlSLzEx0djXv37mltT0xMxMmTJ+Ho6KhXossU73HNmjUhCAJ+/fVXjVh++eUXAECTJk30fyN0WL9+PaytrfHmm2/mOiYpKQm3bt3S+4qrREREaqyQIiKiQvH19cX69esxYMAA1KlTB0OGDEH9+vWRnp6OEydOYNOmTRg6dCgAoFGjRggODsYPP/wgLis7c+YMIiIi0Lt3b/GXyIiICHz//fd488034evri+fPn2P16tWws7MTk1pFjXn27NkICQnBnTt30Lt3b1SoUAExMTHYtm0bRo0ahcmTJ+e6//jx4/HixQu8+eabqF27tvhaN27cCG9vb4M1ES6sNm3awNHREcHBwZgwYQIkEgnWrFlT4KV/Ofn6+sLBwQErV65EhQoVYGNjg1atWsHHxwdAViXJwIEDsXz5cshkMgwaNCjfY65fvx6CIIhLi3J6/fXXYWZmhnXr1qFVq1Z6x1q7dm34+vpi8uTJuH//Puzs7LBly5YC9eNq0qQJ6tevj02bNqFOnTpo2rSpxvMjRozA06dP0bFjR1StWhV3797FsmXL0LhxY40KwOwOHjyIcePGoV+/fqhZsyYyMzOxZs0ayGQysfdPbrp37w4zMzPs378fo0aNErfPnz8f58+fx1tvvSUmxC5cuICff/4ZTk5OmDRpkji2MP2NAGDOnDlo06YN/Pz8MGrUKPz7779YtGgRunbtqtEz68yZMwgICMCMGTMwc+ZMjfP269cPnp6eiImJwYoVK+Dk5ISVK1dqnKdBgwbo1KkTGjduDEdHR0RHR+Onn34Sk01qO3bswOzZs9G3b1/4+Pjg6dOnWL9+Pa5cuYK5c+dqVDHduXMHPj4+CA4OFpds6nLp0iW8/fbbCAoKQvv27eHk5IT79+8jIiICDx48wJIlS3JdKpqdKd7joUOHYuHChRg9ejT++usv1KtXDxcuXMCPP/6IevXqaSSSkpKSsGzZMgCvlvItX74cDg4OcHBwwLhx4zTievr0KXbt2oU+ffro7Peltn//fgiCgF69ehX4tRMRUTlnzEv6ERFR2fPPP/8II0eOFLy9vQULCwuhQoUKQtu2bYVly5YJaWlp4riMjAwhNDRU8PHxEczNzQUPDw8hJCREY8yFCxeEQYMGCZ6enoJcLhdcXFyEHj16COfOndM4JwBhxowZ4uMZM2YIAIRHjx5pjAsLC9N5afMtW7YI7dq1E2xsbAQbGxuhdu3awtixY4UbN27k+Vp37dolDB8+XKhdu7Zga2srWFhYCNWrVxfGjx8vxMfHa4z18vISgoODtWI5e/asxrjcYg8ODhZsbGzyfN26Xt/x48eF1157TbCyshLc3d2FKVOmCHv27BEACJGRkeI4Pz8/oV69ejpfp5+fn8al6QVBEH777Tehbt26gpmZmQBACAsL03j+zJkzAgCha9euOo+ZU4MGDQRPT888x/j7+wsuLi5CRkaGEBkZKQAQNm3apDEmJiZGK56rV68KnTt3FmxtbYVKlSoJI0eOFC5duqQ1Tv3e67JgwQIBgDB37lyt5zZv3ix07dpVcHFxESwsLARPT09h9OjRQlxcnDhGHa/6Pb99+7YwfPhwwdfXV7C0tBScnJyEgIAAYf/+/fm8U1neeOMNoVOnThrbjh8/LowdO1aoX7++YG9vL5ibmwuenp7C0KFDhVu3bul1XH0cPXpUaNOmjWBpaSk4OzsLY8eOFZKTkzXGqF9v9s+nIAjCwIEDBQ8PD8HCwkJwd3cX3n//fa1/K4KQ9XfRvHlzwdHRUTAzMxPc3d2FgQMHCpcvX9YYd+7cOaFnz55ClSpVBAsLC8HW1lZo166d8Ouvv2odMyoqSgAgTJ06Nc/XFx8fL3z11VeCn5+f4ObmJpiZmQmOjo5Cx44dhc2bN+v5LhVNUd7jf//9Vxg+fLjg4+MjWFhYCG5ubsLIkSO1/p+i/rei6+bl5aUV08qVKwUAwo4dO/KMfcCAAUK7du0K9bqJiKh8kwhCEb82JSIionLv0qVLaNy4MX7++WeNK9KVVkuXLsWHH36IO3fuaF3ZzxSOHj0Kf39/XL9+PderRJKm77//HlOmTMGtW7fybMhNhffw4UP4+Phgw4YNrJAiIqICY0KKiIiIimzcuHGIiIjAw4cPxZ5TpZUgCGjUqBEqVqyIyMhIU4cjCgoKQtWqVbF69WpTh1Iq9OvXDzVq1MDcuXNNHUqZNXXqVBw8eBBnzpwxdShERFQKMSFFREREhbZz505cvXoV06ZNw7hx48RG9aVRamoqduzYgcjISKxevRq//fZbrj2uiIiIiKhomJAiIiKiQvP29kZ8fDwCAwOxZs0aVKhQwdQhFZq6CbaDgwM++OADzJkzx9QhEREREZVZTEgREREREREREZFRSU0dABERERERERERlS9MSBERERERERERkVExIUVEREREREREREbFhBQRERERERERERkVE1JERERERERERGRUTEgREREREREREZFRMSFFRERERERERERGxYQUEREREREREREZFRNSRERERERERERkVExIERERERERERGRUTEhRURERERERERERsWEFBERERERERERGRUTUkREBhQeHg6JRII7d+4Y9Lj+/v7w9/c36DFLoq+//hrVqlWDTCZD48aNAQDe3t4YOnSoOObQoUOQSCQ4dOiQSWIkIiIqrKFDh8Lb27vQ+9ra2hbp/DNnzoREIinSMcqT4prXEVEWJqSICkD9Qyn7zcXFBQEBAdi1a1exnffFixeYOXOm3r+Aq39h13UbOHBgscVZmvz555+YOXOm3uP9/f1zfU9r165tkJiuXr2KmTNnlqhJT87Pkrm5OapVq4YhQ4bg9u3bBj3X3r17MWXKFLRt2xZhYWGYO3euQY9PRESky6+//gqJRIJt27ZpPdeoUSNIJBJERkZqPefp6Yk2bdoYI8QCKei80ViGDh2a61xq9+7dJo1t7ty52L59u0ljICqPzEwdAFFp9OWXX8LHxweCICA+Ph7h4eF4/fXXsXPnTvTo0cPg53vx4gVCQ0MBoEBVMhMmTECLFi00thX2W7my5s8//8R3331XoKRU1apVMW/ePK3t9vb2Bonp6tWrCA0Nhb+/v9bf0969ew1yjsJSf5YyMjJw4cIF/PDDD/jjjz8QFRUFd3d3g5zj4MGDkEql+Omnn2BhYSFuv3HjBqRSfn9CRETFo127dgCAY8eO4c033xS3Jycn48qVKzAzM8Px48cREBAgPhcbG4vY2NgCf9G3evVqqFQqwwSei7zmjV988QWmTp1arOfPi1wux48//qi1vVGjRiaI5pW5c+eib9++6N27t8b2d999FwMHDoRcLjdNYERlHBNSRIUQFBSE5s2bi4/fe+89VK5cGb/88kuxJKQKq3379ujbt69eYzMzM6FSqTQSAaTJ3t4e77zzjknObeq/l+yfpWHDhqFmzZqYMGECIiIiEBISonOf1NRU2NjY6H2OhIQEWFlZab1WTgKJiKg4ubu7w8fHB8eOHdPYfvLkSQiCgH79+mk9p36sTmbpy9zcvGjBFpGZmRnMzEz3K6CZmZnJ5lKFIZPJIJPJTB0GUZnFr5yJDMDBwQFWVlZaP+BVKhWWLFmCevXqwdLSEpUrV8bo0aPx7NkzjXHnzp1DYGAgKlWqBCsrK/j4+GD48OEAgDt37sDZ2RkAEBoaKpY2F6SyJ6c7d+5AIpFg4cKFWLJkCXx9fSGXy3H16lWkp6dj+vTpaNasGezt7WFjY4P27dvrLFV/8uQJ3n33XdjZ2cHBwQHBwcG4dOkSJBIJwsPDxXHqngf37t1Djx49YGtriypVquC7774DAERFRaFjx46wsbGBl5cX1q9fr3WuxMRETJo0CR4eHpDL5ahevTrmz5+v8S1j9tf1ww8/iK+rRYsWOHv2rEY86nNnLxcvLrn9fWXvjRQeHo5+/foBAAICAsSY1OX2unpIJSQkiMlQS0tLNGrUCBERERpj9H1PCqpjx44AgJiYGACvelJcvXoVb7/9NhwdHcVJemZmJmbNmiWe29vbG5999hkUCoXGexQWFobU1FTxtas/Qzl7SOXm9OnT6NatG+zt7WFtbQ0/Pz8cP3680K+RiIjKj3bt2uGvv/7Cy5cvxW3Hjx9HvXr1EBQUhFOnTmnMOY4fPw6JRIK2bduK29auXYtmzZrBysoKTk5OGDhwIGJjYzXOo6uHlL7zKbX79++jd+/esLW1hbOzMyZPngylUgkg/3mjrh5SEokE48aNw/bt21G/fn3I5XLUq1dP5zK6Q4cOoXnz5rC0tISvry9WrVplsL5UufWIVM9ldM0t83ov1FQqFZYuXYoGDRrA0tISzs7O6NatG86dOye+/tTUVERERIjvV/b5ma4eUt9//z3q1asHuVwOd3d3jB07FomJiRpj/P39Ub9+fVy9ehUBAQGwtrZGlSpVsGDBgiK/V0RlBSukiAohKSkJjx8/hiAISEhIwLJly5CSkqL1jc/o0aMRHh6OYcOGYcKECYiJicHy5cvx119/4fjx4zA3N0dCQgK6du0KZ2dnTJ06FQ4ODrhz5w62bt0KAHB2dsaKFSswZswYvPnmm3jrrbcAAA0bNsw3zufPn+Px48ca25ycnMT7YWFhSEtLw6hRoyCXy+Hk5ITk5GT8+OOPGDRoEEaOHInnz5/jp59+QmBgIM6cOSM2mlapVOjZsyfOnDmDMWPGoHbt2vjtt98QHBysMxalUomgoCB06NABCxYswLp16zBu3DjY2Njg888/x+DBg/HWW29h5cqVGDJkCFq3bg0fHx8AWaXnfn5+uH//PkaPHg1PT0+cOHECISEhiIuLw5IlSzTOtX79ejx//hyjR4+GRCLBggUL8NZbb+H27dswNzfH6NGj8eDBA+zbtw9r1qzJ933M/hpyvp8AYGVlVaBKIF06dOiACRMm4Ntvv8Vnn32GOnXqAID4Z04vX76Ev78/bt68iXHjxsHHxwebNm3C0KFDkZiYiIkTJ2qMz+89Kahbt24BACpWrKixvV+/fqhRowbmzp0LQRAAACNGjEBERAT69u2Ljz/+GKdPn8a8efNw7do1sV/HmjVr8MMPP+DMmTNiKX9B+nIcPHgQQUFBaNasGWbMmAGpVIqwsDB07NgRR48eRcuWLQv8GomIqPxo164d1qxZg9OnT4tfAB0/fhxt2rRBmzZtkJSUhCtXrojzr+PHj6N27driz8E5c+Zg2rRp6N+/P0aMGIFHjx5h2bJl6NChA/766y84ODjoPG9h5lOBgYFo1aoVFi5ciP3792PRokXw9fXFmDFjCj1vPHbsGLZu3YoPPvgAFSpUwLfffos+ffrg3r174mv866+/0K1bN7i5uSE0NBRKpRJffvmlmADTV865lLm5eaHaH+T3Xqi99957CA8PR1BQEEaMGIHMzEwcPXoUp06dQvPmzbFmzRqMGDECLVu2xKhRowAAvr6+uZ535syZCA0NRefOnTFmzBjcuHEDK1aswNmzZ8X5vdqzZ8/QrVs3vPXWW+jfvz82b96MTz/9FA0aNEBQUFCBXzNRmSMQkd7CwsIEAFo3uVwuhIeHa4w9evSoAEBYt26dxvbdu3drbN+2bZsAQDh79myu53306JEAQJgxY4ZecUZGRuqME4AQExMjxMTECAAEOzs7ISEhQWPfzMxMQaFQaGx79uyZULlyZWH48OHiti1btggAhCVLlojblEql0LFjRwGAEBYWJm4PDg4WAAhz587VOKaVlZUgkUiEDRs2iNuvX7+u9VpnzZol2NjYCP/8849GXFOnThVkMplw7949QRAE8XVVrFhRePr0qTjut99+EwAIO3fuFLeNHTtWKMj/Av38/HJ9T0ePHi2OU39GYmJixG25/d15eXkJwcHB4uNNmzYJAITIyEid5/fz8xMfL1myRAAgrF27VtyWnp4utG7dWrC1tRWSk5ML/J7oov4s/e9//xMePXokPHjwQPjjjz8Eb29vQSKRiJ/bGTNmCACEQYMGaex/8eJFAYAwYsQIje2TJ08WAAgHDx4UtwUHBws2Njb5vk/qmNTvk0qlEmrUqCEEBgYKKpVKHPfixQvBx8dH6NKlS56vkYiI6O+//xYACLNmzRIEQRAyMjIEGxsbISIiQhAEQahcubLw3XffCYIgCMnJyYJMJhNGjhwpCIIg3LlzR5DJZMKcOXM0jhkVFSWYmZlpbA8ODha8vLzEx4WZT3355Zca52nSpInQrFkz8XFe80b1z+vsAAgWFhbCzZs3xW2XLl0SAAjLli0Tt/Xs2VOwtrYW7t+/L26Ljo4WzMzM9JpTqePPeVPPb3L+fFdTz2UK814cPHhQACBMmDBBK57scwYbGxuNuYZaznldQkKCYGFhIXTt2lVQKpXiuOXLl4vzJTX13PHnn38WtykUCsHV1VXo06dPru8TUXnCJXtEhfDdd99h37592LdvH9auXYuAgACMGDFCrGoCgE2bNsHe3h5dunTB48ePxVuzZs1ga2srLoFTf2P2+++/IyMjw6BxTp8+XYxTfXN1dRWf79Onj9a3WjKZTOzho1Kp8PTpU2RmZqJ58+a4cOGCOG737t0wNzfHyJEjxW1SqRRjx47NNZ4RI0aI9x0cHFCrVi3Y2Nigf//+4vZatWrBwcFB4wpumzZtQvv27eHo6KjxXnbu3BlKpRJHjhzROM+AAQPg6OgoPm7fvj0AFPmqcN7e3lrv5759+zBp0qQiHbcw/vzzT7i6umLQoEHiNnNzc0yYMAEpKSk4fPiwxviivifDhw+Hs7Mz3N3d0b17d7G0PXsvNQB4//33teIEgI8++khj+8cffwwA+OOPP/Q6f14uXryI6OhovP3223jy5In4+UhNTUWnTp1w5MiRYm8gS0REpVudOnVQsWJFsTfUpUuXkJqaKlbrtmnTRlwGfvLkSSiVSnFp+tatW6FSqdC/f3+NeYqrqytq1Kihs+2BWmHmUzl/1rZv377Ic5zOnTtrVAU1bNgQdnZ24nGVSiX279+P3r17a1zMpHr16gWq9LG0tNSaRy1atKjQcef3XmzZsgUSiQQzZszQ2rcwywz379+P9PR0TJo0SeOCKyNHjoSdnZ3WvMbW1lZjBYWFhQVatmxp8CsVE5VW5XrJ3pEjR/D111/j/PnziIuLw7Zt27SurJAXdblmTtbW1khNTTVgpFTStGzZUuMX8UGDBqFJkyYYN24cevToAQsLC0RHRyMpKQkuLi46j5GQkAAA8PPzQ58+fRAaGorFixfD398fvXv3xttvv13kZs4NGjRA586dc31evSQup4iICCxatAjXr1/XSJJlH3/37l24ubnB2tpaY9/q1avrPKZ6zX529vb2qFq1qtaEwN7eXqPPVnR0NC5fvpxrSbj6vVTz9PTUeKxOxOTs3VVQNjY2eb6fxnT37l3UqFFD6+pz6iV+d+/e1dhe1Pdk+vTpaN++PWQyGSpVqoQ6derobIqa8zN19+5dSKVSrc+Fq6srHBwctOIsjOjoaADIdXkDkLXMNntCjogKr6jzp7S0NLz//vs4f/48rl27hh49euR5ufXjx4/Dz88P9evXx8WLF4scP5EuEokEbdq0Eb/EOH78OFxcXMSfX23atMHy5csBQExMqRNS0dHREAQBNWrU0HnsvJbGG2I+5ejoWOQ5Ts55Qs7jJiQk4OXLlzrjyi1WXWQymcHmUvq8F7du3YK7u7tGy4qiUM9batWqpbHdwsIC1apV05rX6JrnOjo64vLlywaJh6i0K9cJqdTUVDRq1AjDhw8X11cXxOTJk7Wy8p06dUKLFi0MFSKVElKpFAEBAVi6dCmio6NRr149qFQquLi4YN26dTr3Uf8AlUgk2Lx5M06dOoWdO3diz549GD58OBYtWoRTp07B1ta22OK2srLS2rZ27VoMHToUvXv3xieffAIXFxfIZDLMmzdP7BtUGLldoSS37cJ//YeArEqtLl26YMqUKTrH1qxZs8DHLAlyNt0sTkV9T/JLbqrp+kwBhfsWUl/q6qevv/5a7HGWU3H+OyIqb4o6f1IqlbCyssKECROwZcuWPMcmJiZiyJAh6NSpE+Lj4wsbMpFe2rVrh507dyIqKkrsH6XWpk0bfPLJJ7h//z6OHTsGd3d3VKtWDUDWzyGJRIJdu3bp/HlryJ9BxXXFt5Iwd8ptrpDbfKk0XP2uJLyvRCVZuU5IBQUF5VliqlAo8Pnnn+OXX35BYmIi6tevj/nz54uNDm1tbTV+wFy6dAlXr17FypUrizt0KoEyMzMBACkpKQCymiHu378fbdu2zfWX9Oxee+01vPbaa5gzZw7Wr1+PwYMHY8OGDRgxYkSx/jKf0+bNm1GtWjVs3bpV47w5S529vLwQGRmJFy9eaHyrd/PmTYPH5Ovri5SUFINWJxnzPXV0dNS68kp6ejri4uIKHZOXlxcuX74MlUqlUSV1/fp18fmSwMvLCyqVCtHR0RoN2uPj45GYmGiQONVLDOzs7EpMBRtRWVbU+ZONjQ1WrFgBIKvSJOf/H7N7//338fbbb0Mmk+VZRUVkCOqKp2PHjuH48eMaS/KbNWsGuVyOQ4cO4fTp03j99dfF53x9fSEIAnx8fLS+JMtPccynimOO4+LiAktLS51xGWrup65kzvn/hKJUU/v6+mLPnj14+vRpnlVS+r5n6nnLjRs3xIQkkDWvi4mJ4TyEqIDYQyoP48aNw8mTJ7FhwwZcvnwZ/fr1Q7du3cTlITn9+OOPqFmzptibhcqPjIwM7N27FxYWFuIv3f3794dSqcSsWbO0xmdmZoo/bJ89e6b1LYm6ykOhUACAOEHJa9JuKOpvcrLHdPr0aZw8eVJjXGBgIDIyMrB69Wpxm0qlwnfffWfwmPr374+TJ09iz549Ws8lJiaKycCCUF8Vzxjvqa+vr1afqx9++EHrG7+CxPT666/j4cOH2Lhxo7gtMzMTy5Ytg62tLfz8/IoeuAGoJ+w5r4T4zTffAAC6d+9e5HM0a9YMvr6+WLhwoZgQzu7Ro0dFPgcR6a+g86fchIWF4fbt2zp7vxAVh+bNm8PS0hLr1q3D/fv3NSqk5HI5mjZtiu+++w6pqali8goA3nrrLchkMoSGhmrN6QRBwJMnT3I9Z3HMp4pj3qheard9+3Y8ePBA3H7z5k3s2rXLIOfw8vKCTCbTmjN9//33hT5mnz59IAiCzjYr2f+ubGxs9Hq/OnfuDAsLC3z77bca+//0009ISkoyyLyGqDwp1xVSebl37x7CwsJw7949sXHf5MmTsXv3boSFhWHu3Lka49PS0rBu3TpMnTrVFOGSke3atUusRElISMD69esRHR2NqVOnws7ODkBWb6jRo0dj3rx5uHjxIrp27Qpzc3NER0dj06ZNWLp0Kfr27YuIiAh8//33ePPNN+Hr64vnz59j9erVsLOzE3+Zt7KyQt26dbFx40bUrFkTTk5OqF+/PurXr2/w19ajRw9s3boVb775Jrp3746YmBisXLkSdevW1fhlv3fv3mjZsiU+/vhj3Lx5E7Vr18aOHTvw9OlTAIb9du6TTz7Bjh070KNHDwwdOhTNmjVDamoqoqKisHnzZty5cweVKlUq0DGbNWsGAJgwYQICAwMhk8kwcODAPPdJSkrC2rVrdT6XvWFlTiNGjMD777+PPn36oEuXLrh06RL27NmjFXPjxo0hk8kwf/58JCUlQS6Xo2PHjjr7kI0aNQqrVq3C0KFDcf78eXh7e2Pz5s04fvw4lixZggoVKuT3FhhFo0aNEBwcjB9++AGJiYnw8/PDmTNnEBERgd69eyMgIKDI55BKpfjxxx8RFBSEevXqYdiwYahSpQru37+PyMhI2NnZYefOnQZ4NUSUn4LOn3Kj/pl69OhRnf3qiIqDhYUFWrRogaNHj0Iul4tzBbU2bdqIDbizJ6R8fX0xe/ZshISE4M6dO+jduzcqVKiAmJgYbNu2DaNGjcLkyZN1nrM45lPFNW+cOXMm9u7di7Zt22LMmDFQKpVYvny5wfq72dvbo1+/fli2bBkkEgl8fX3x+++/a/UKLYiAgAC8++67+PbbbxEdHY1u3bpBpVLh6NGjCAgIwLhx4wBkzQv379+Pb775Bu7u7vDx8UGrVq20jufs7IyQkBCEhoaiW7dueOONN3Djxg18//33aNGiRZ7zQSLSxp/wuYiKioJSqdQqu1UoFKhYsaLW+G3btuH58+d5NtWlsmP69OnifUtLS9SuXRsrVqzA6NGjNcatXLkSzZo1w6pVq/DZZ5/BzMwM3t7eeOedd9C2bVsAEH9B37BhA+Lj42Fvb4+WLVti3bp1Gg2if/zxR4wfPx4ffvgh0tPTMWPGjGJJSA0dOhQPHz7EqlWrsGfPHtStWxdr167Fpk2bcOjQIXGcTCbDH3/8gYkTJyIiIgJSqRRvvvkmZsyYgbZt28LS0tJgMVlbW+Pw4cOYO3cuNm3ahJ9//hl2dnaoWbMmQkNDYW9vX+BjvvXWWxg/fjw2bNiAtWvXQhCEfBNS//77L959912dz+U1ARk5ciRiYmLw008/Yffu3Wjfvj327duHTp06aYxzdXXFypUrMW/ePLz33ntQKpWIjIzUmZCysrLCoUOHMHXqVERERCA5ORm1atVCWFgYhg4dmv8bYEQ//vgjqlWrhvDwcGzbtg2urq4ICQkxaNWDv78/Tp48iVmzZmH58uVISUmBq6srWrVqpfXvkoiKT0HnT7oolUq8/fbbCA0NLfDyJ6KiateuHY4ePSou0cuubdu2WLRoESpUqIBGjRppPDd16lTUrFkTixcvFqtxPDw80LVrV7zxxhu5nq+45lPFMW9s1qwZdu3ahcmTJ2PatGnw8PDAl19+iWvXrolf1BbVsmXLkJGRgZUrV0Iul6N///74+uuvixR7WFgYGjZsiJ9++gmffPIJ7O3t0bx5c40KuG+++QajRo3CF198gZcvXyI4OFhnQgrISsw5Oztj+fLl+PDDD+Hk5IRRo0Zh7ty5eTawJyJtEoEd1QBkffuQ/SoxGzduxODBg/H3339rNaOztbWFq6urxrZOnTrBzs4O27ZtM1bIRCXS9u3b8eabb+LYsWNi0o2IiMqmos6fhg4disTERI3+UImJiXB0dNTYX6VSQRAEyGQy7N27Fx07diy210RUEpSm+VTv3r3x999/F3hZLhERK6Ry0aRJEyiVSiQkJOTbEyomJgaRkZHYsWOHkaIjKhlevnyp0bBdqVRi2bJlsLOzQ9OmTU0YGRERmUJB5k+5sbOzQ1RUlMa277//HgcPHsTmzZs1qoeJyoLSNJ/KGWt0dDT+/PNPrhIhokIp1wmplJQUjatCxMTE4OLFi3ByckLNmjUxePBgDBkyBIsWLUKTJk3w6NEjHDhwAA0bNtRoWPe///0Pbm5ueV5xhqgsGj9+PF6+fInWrVtDoVBg69atOHHiBObOnavXlQWJiKj0McT86erVq0hPT8fTp0/x/Plzsf9M48aNIZVKtZbnqK/wVRxL1YlMrTTNp6pVq4ahQ4eiWrVquHv3LlasWAELCwtMmTLF1KERUSlUrpfsHTp0SGdD3eDgYISHhyMjIwOzZ8/Gzz//jPv376NSpUp47bXXEBoaigYNGgDIKiH38vLCkCFDMGfOHGO/BCKTWr9+PRYtWoSbN28iLS0N1atXx5gxY8QGkUREVPYYYv7k7e2t81LuuU1LZ86cie3btxukcTJRSVOa5lPDhg1DZGQkHj58CLlcjtatW2Pu3LklrpKLiEqHcp2QIiIiIiIiIiIi45OaOgAiIiIiIiIiIipfyl0PKZVKhQcPHqBChQqQSCSmDoeIiIhKKEEQ8Pz5c7i7u0Mq5Xd4nEMRERFRfgoyfyp3CakHDx7Aw8PD1GEQERFRKREbG4uqVauaOgyT4xyKiIiI9KXP/KncJaQqVKgAIOvNsbOzM3E0REREVFIlJyfDw8NDnDuUd5xDERERUX4KMn8qdwkpdYm5nZ0dJ1NERESULy5Py8I5FBEREelLn/kTGyIQEREREREREZFRMSFFRERERERERERGxYQUEREREREREREZVbnrIUVERKWfUqlERkaGqcOgUs7c3BwymczUYRjN/fv38emnn2LXrl148eIFqlevjrCwMDRv3tzUoREREVE5xIQUERGVGoIg4OHDh0hMTDR1KFRGODg4wNXVtcw3Ln/27Bnatm2LgIAA7Nq1C87OzoiOjoajo6OpQyMiIqJyigkpIiIqNdTJKBcXF1hbW5f5JAIVH0EQ8OLFCyQkJAAA3NzcTBxR8Zo/fz48PDwQFhYmbvPx8TFhRERERFTeMSFFRESlglKpFJNRFStWNHU4VAZYWVkBABISEuDi4lKml+/t2LEDgYGB6NevHw4fPowqVarggw8+wMiRI3PdR6FQQKFQiI+Tk5ONESoRERGVE2xqTkREpYK6Z5S1tbWJI6GyRP15Kus9yW7fvo0VK1agRo0a2LNnD8aMGYMJEyYgIiIi133mzZsHe3t78ebh4WHEiImIiKisY0KKiIhKFS7TI0MqL58nlUqFpk2bYu7cuWjSpAlGjRqFkSNHYuXKlbnuExISgqSkJPEWGxtrxIiJiIiorGNCioiIiKiMc3NzQ926dTW21alTB/fu3ct1H7lcDjs7O40bUWEIgmDqEIiIqARiQopIT48eAUuWAHfumDoSIiKigmnbti1u3Lihse2ff/6Bl5eXiSKi8uLB8wdouLIhvJZ44d/kf00dDhERlSBMSBHpad484MABYOJEU0dCRFQ0M2fOROXKlSGRSLB9+3ZTh0NG8OGHH+LUqVOYO3cubt68ifXr1+OHH37A2LFjTR0alXEDNw/ElYQruJd0D6vOrTJ1OEREVIIwIUWkJ3VllEpl0jCIqBQaOnQoJBKJeKtYsSK6deuGy5cvG+wcM2fOROPGjfMdd+3aNYSGhmLVqlWIi4tDUFCQwWIoaYYOHYrevXubOowSoUWLFti2bRt++eUX1K9fH7NmzcKSJUswePBgU4dGZdjpf0/j6L2j4uPDdw+bMBoiIippmJAi0hPbHxBRUXTr1g1xcXGIi4vDgQMHYGZmhh49ehg9jlu3bgEAevXqBVdXV8jlcq0x6enpxg6LjKBHjx6IiopCWloarl27hpEjR5o6JCrj9tzao/H4TuId0wRCREQlEhNSRERUagkCkJZm/FthEtRyuRyurq5wdXVF48aNMXXqVMTGxuLRo0fimNjYWPTv3x8ODg5wcnJCr169cCdb47pDhw6hZcuWsLGxgYODA9q2bYu7d+8iPDwcoaGhuHTpkliFFR4erhXDzJkz0bNnTwCAVCoVrzCnriSaM2cO3N3dUatWLQDAmjVr0Lx5c1SoUAGurq54++23kZCQoHHMHTt2oEaNGrC0tERAQAAiIiIgkUiQmJgIAAgPD4eDgwN+//131KpVC9bW1ujbty9evHiBiIgIeHt7w9HRERMmTIBSqRSPq1AoMHnyZFSpUgU2NjZo1aoVDh06JD6vPu6ePXtQp04d2Nraikk/9WuNiIjAb7/9Jr4n2fcnouKXqcrUeBybHIsnL56YKBoiIippzEwdABERUWEpFEC/fsY/76ZNgKVl4fdPSUnB2rVrUb16dVSsWBEAkJGRgcDAQLRu3RpHjx6FmZkZZs+eLS7tk0ql6N27N0aOHIlffvkF6enpOHPmDCQSCQYMGIArV65g9+7d2L9/PwDA3t5e67yTJ0+Gt7c3hg0bJiZu1A4cOAA7Ozvs27dP3JaRkYFZs2ahVq1aSEhIwEcffYShQ4fizz//BADExMSgb9++mDhxIkaMGIG//voLkydP1jrvixcv8O2332LDhg14/vw53nrrLbz55ptwcHDAn3/+idu3b6NPnz5o27YtBgwYAAAYN24crl69ig0bNsDd3R3btm1Dt27dEBUVhRo1aojHXbhwIdasWQOpVIp33nkHkydPxrp16zB58mRcu3YNycnJCAsLAwA4OTkV/i+NiAziUvwldPTpaOowiIioBGBCioiIyAh+//132NraAgBSU1Ph5uaG33//HVJpVrHyxo0boVKp8OOPP4qVS2FhYXBwcMChQ4fQvHlzJCUloUePHvD19QUA1KlTRzy+ra0tzMzM4OrqmmsMtra2cHBwAACtcTY2Nvjxxx9hYWEhbhs+fLh4v1q1avj222/RokULpKSkwNbWFqtWrUKtWrXw9ddfAwBq1aqFK1euYM6cORrHzsjIwIoVK8S4+/btizVr1iA+Ph62traoW7cuAgICEBkZiQEDBuDevXsICwvDvXv34O7uDiArmbZ7926EhYVh7ty54nFXrlwpHnfcuHH48ssvxddqZWUFhUKR53tCRMZ18eFFJqSIiAgAE1JERFSKyeVZ1UqmOG9BBQQEYMWKFQCAZ8+e4fvvv0dQUBDOnDkDLy8vXLp0CTdv3kSFChU09ktLS8OtW7fQtWtXDB06FIGBgejSpQs6d+6M/v37w83NzRAvCQ0aNNBIRgHA+fPnMXPmTFy6dAnPnj2D6r+rOty7dw9169bFjRs30KJFC419WrZsqXVsa2trMWkEAJUrV4a3t7eYoFNvUy8HjIqKglKpRM2aNTWOo1AoxIoyXcd1c3PTWlJIRCXLtUfXTB0CERGVEExIEemJTc2JSh6JpGhL54zJxsYG1atXFx//+OOPsLe3x+rVqzF79mykpKSgWbNmWLdunda+zs7OALIqpiZMmIDdu3dj48aN+OKLL7Bv3z689tprBokvu9TUVAQGBiIwMBDr1q2Ds7Mz7t27h8DAwAI3PTc3N9d4LJFIdG5TJ7xSUlIgk8lw/vx5yGQyjXHZk1i6jiHwf9ZEJVqGKsPUIRARUQnBhBQREZEJSCQSSKVSvHz5EgDQtGlTbNy4ES4uLrCzs8t1vyZNmqBJkyYICQlB69atsX79erz22muwsLDQaApeVNevX8eTJ0/w1VdfwcPDAwBw7tw5jTG1atUS+0mpnT17tsjnbtKkCZRKJRISEtC+fftCH8fQ7wkRERERGQ6vskekJ37pTkRFoVAo8PDhQzx8+BDXrl3D+PHjkZKSIl71bvDgwahUqRJ69eqFo0ePIiYmBocOHcKECRPw77//IiYmBiEhITh58iTu3r2LvXv3Ijo6Wuwj5e3tjZiYGFy8eBGPHz+GQqEoUryenp6wsLDAsmXLcPv2bezYsQOzZs3SGDN69Ghcv34dn376Kf755x/8+uuv4tX91H2wCqNmzZoYPHgwhgwZgq1btyImJgZnzpzBvHnz8Mcff+h9HG9vb1y+fBk3btzA48ePkZHBygwiIiKikoIJKSIiIiPYvXs33Nzc4ObmhlatWuHs2bPYtGkT/P39AWT1Qzpy5Ag8PT3x1ltvoU6dOnjvvfeQlpYGOzs7WFtb4/r16+jTpw9q1qyJUaNGYezYsRg9ejQAoE+fPujWrRsCAgLg7OyMX375pUjxOjs7Izw8HJs2bULdunXx1VdfYeHChRpjfHx8sHnzZmzduhUNGzbEihUr8PnnnwMA5IVptJVNWFgYhgwZgo8//hi1atVC7969cfbsWXh6eup9jJEjR6JWrVpo3rw5nJ2dcfz48SLFRERERESGIxHKWbOF5ORk2NvbIykpKc8lEUQ5vfHGqyqpnTtNGwtReZSWloaYmBj4+PjAsrQ0jiqH5syZg5UrVyI2NtbUoeglr88V5wya+H5QQU2PnI5ZRzQrK4MbBSO8d7hpAiIiomJXkPkCe0gRERFRoX3//fdo0aIFKlasiOPHj+Prr7/GuHHjTB0WEREREZVwTEgRERFRoUVHR2P27Nl4+vQpPD098fHHHyMkJMTUYRERERFRCceEFJGeytfiViIi/SxevBiLFy82dRhEREREVMqwqTkRERERERERERkVE1JERERERERERGRUpToh9dVXX0EikWDSpEmmDoWIiIiIiIiIiPRUahNSZ8+exapVq9CwYUNTh0JERERERERERAVQKhNSKSkpGDx4MFavXg1HR8c8xyoUCiQnJ2vciIiIiIiIiIjIdEplQmrs2LHo3r07OnfunO/YefPmwd7eXrx5eHgYIUIiIiIiIiIiIspNqUtIbdiwARcuXMC8efP0Gh8SEoKkpCTxFhsbW8wREhERlW4SiQTbt283+HH9/f3Z95GIiIiIAJSyhFRsbCwmTpyIdevWwdLSUq995HI57OzsNG5ERETG9OjRI4wZMwaenp6Qy+VwdXVFYGAgjh8/btK4Zs6cicaNG5s0BiIiIiIqn8xMHUBBnD9/HgkJCWjatKm4TalU4siRI1i+fDkUCgVkMpkJIyQiItLWp08fpKenIyIiAtWqVUN8fDwOHDiAJ0+emDo0IiIiIiKTKFUVUp06dUJUVBQuXrwo3po3b47Bgwfj4sWLTEYREVGJk5iYiKNHj2L+/PkICAiAl5cXWrZsiZCQELzxxhsAspbIrVq1Cj169IC1tTXq1KmDkydP4ubNm/D394eNjQ3atGmDW7duaRx7xYoV8PX1hYWFBWrVqoU1a9ZoPH/v3j306tULtra2sLOzQ//+/REfHw8ACA8PR2hoKC5dugSJRAKJRILw8HBx38ePH+PNN9+EtbU1atSogR07dmgc+8qVKwgKCoKtrS0qV66Md999F48fPxafT01NxZAhQ2Braws3NzcsWrTIkG8rEZVSAgRTh0BERCVEqUpIVahQAfXr19e42djYoGLFiqhfv76pwyMiIlNo3hyoWtW4t+bN9Q7P1tYWtra22L59OxQKRa7jZs2ahSFDhuDixYuoXbs23n77bYwePRohISE4d+4cBEHAuHHjxPHbtm3DxIkT8fHHH+PKlSsYPXo0hg0bhsjISACASqVCr1698PTpUxw+fBj79u3D7du3MWDAAADAgAED8PHHH6NevXqIi4tDXFyc+BwAhIaGon///rh8+TJef/11DB48GE+fPgWQlWTr2LEjmjRpgnPnzmH37t2Ij49H//79xf0/+eQTHD58GL/99hv27t2LQ4cO4cKFC3q/b0RERERUtpWqJXtERERaHj4E7t83dRS5MjMzQ3h4OEaOHImVK1eiadOm8PPzw8CBA9GwYUNx3LBhw8SEzqefforWrVtj2rRpCAwMBABMnDgRw4YNE8cvXLgQQ4cOxQcffAAA+Oijj3Dq1CksXLgQAQEBOHDgAKKiohATEyNeYfbnn39GvXr1cPbsWbRo0QK2trYwMzODq6urVtxDhw7FoEGDAABz587Ft99+izNnzqBbt25Yvnw5mjRpgrlz54rj//e//8HDwwP//PMP3N3d8dNPP2Ht2rXo1KkTACAiIgJVq1Y15FtLRCWcILAaioiIclfqE1KHDh0ydQhERGRKOpIpJe2cffr0Qffu3XH06FGcOnUKu3btwoIFC/Djjz9i6NChAKCRnKpcuTIAoEGDBhrb0tLSkJycDDs7O1y7dg2jRo3SOE/btm2xdOlSAMC1a9fg4eEhJqMAoG7dunBwcMC1a9fQokWLPGPOHo+NjQ3s7OyQkJAAALh06RIiIyNha2urtd+tW7fw8uVLpKeno1WrVuJ2Jycn1KpVK89zEhEREVH5UeoTUkREVM6dO2fqCPRiaWmJLl26oEuXLpg2bRpGjBiBGTNmiAkpc3NzcaxEIsl1m0qlMkq82c+tPr/63CkpKejZsyfmz5+vtZ+bmxtu3rxplBiJiIiIqPQqVT2kiIiIyoq6desiNTW10PvXqVMHx48f19h2/Phx1K1bV3w+NjYWsbGx4vNXr15FYmKiOMbCwgJKpbLA527atCn+/vtveHt7o3r16ho3Gxsb+Pr6wtzcHKdPnxb3efbsGf7555/CvFQiIiIiKoOYkCIiIipGT548QceOHbF27VpcvnwZMTEx2LRpExYsWIBevXoV+riffPIJwsPDsWLFCkRHR+Obb77B1q1bMXnyZABA586d0aBBAwwePBgXLlzAmTNnMGTIEPj5+aH5f03Zvb29ERMTg4sXL+Lx48d5Nl3PbuzYsXj69CkGDRqEs2fP4tatW9izZw+GDRsGpVIJW1tbvPfee/jkk09w8OBBXLlyBUOHDoVUymkHEREREWXhzJCIiKgY2draolWrVli8eDE6dOiA+vXrY9q0aRg5ciSWL19e6OP27t0bS5cuxcKFC1GvXj2sWrUKYWFh8Pf3B5C1xO63336Do6MjOnTogM6dO6NatWrYuHGjeIw+ffqgW7duCAgIgLOzM3755Re9zu3u7o7jx49DqVSia9euaNCgASZNmgQHBwcx6fT111+jffv26NmzJzp37ox27dqhWbNmhX69RERERFS2SIRydvmL5ORk2NvbIykpCXZ2dqYOh0qRnj1f3d+503RxEJVXaWlpiImJgY+PDywtLU0dDpUReX2uOGfQxPeDCmrawWmYfXS2xrYhjYYgoneEiSIiIqLiVpD5AiukiIiIiIiIiIjIqJiQIiIiIiIiIiIio2JCioiIiIiIiIiIjIoJKSIiIiIiIiIiMiompIiIqFRRqVSmDoHKEH6eiIiIiEzDzNQBEBER6cPCwgJSqRQPHjyAs7MzLCwsIJFITB0WlVKCICA9PR2PHj2CVCqFhYWFqUMiIiIiKleYkCIiolJBKpXCx8cHcXFxePDgganDoTLC2toanp6ekEpZNE5ERERkTExIERFRqWFhYQFPT09kZmZCqVSaOhwq5WQyGczMzMpFpd3MmTMRGhqqsa1WrVq4fv26iSIiIiKi8o4JKSIiKlUkEgnMzc1hbm5u6lCISpV69eph//794mMzM04DiYiIyHQ4EyEiIiIqB8zMzODq6qr3eIVCAYVCIT5OTk4ujrConBEEwdQhEBFRCcGGCURERETlQHR0NNzd3VGtWjUMHjwY9+7dy3P8vHnzYG9vL948PDyMFCkRERGVB0xIEREREZVxrVq1Qnh4OHbv3o0VK1YgJiYG7du3x/Pnz3PdJyQkBElJSeItNjbWiBETERFRWccle0RERERlXFBQkHi/YcOGaNWqFby8vPDrr7/ivffe07mPXC6HXC43VohERERUzrBCioiIiKiccXBwQM2aNXHz5k1Th0JERETlFBNSRIWQkAAkJZk6CiIiosJJSUnBrVu34ObmZupQiIiIqJxiQoqoEN57D3jnHVNHQUREpJ/Jkyfj8OHDuHPnDk6cOIE333wTMpkMgwYNMnVoREREVE6xhxQRERFRGffvv/9i0KBBePLkCZydndGuXTucOnUKzs7Opg6NiIiIyikmpIiIiIjKuA0bNpg6BCqHBAimDoGIiEowLtkjIiIiIiIiIiKjYkKKiIiIiIiIiIiMigkpIiIiIiIiIiIyKiakiIpAYGsEIiIiIiIiogJjQoqIiIiIiIiIiIyKCSmiIlCpTB0BERERERERUenDhBRREXDJHhEREREREVHBMSFFVARMSBEREREREREVHBNSREXAhBQRERERERFRwTEhRVQE7CFFREREpL+XmS9NHQIREZUQTEgREREREZFRPH7x2NQhEBFRCcGEFFERsEKKiIiISH9MSBERkRoTUkRFwB5SRERERPp7lPrI1CEQEVEJwYQUURGwQoqIiIhIf49fPIbAb/SIiAiAmakDICrpdu8G/vrL1FEQERERlV4yiQxKQQmloERiWiIcrRxNHRIREZkYK6SI8vHbb8CJE7qfY4UUERERUf4qWVcS77OPFBERAUxIEeVLqcz9OVacExEREeXP2cZZvM+EFBERAUxIEeUrr6QTE1JERERE+cteIfXoBRubExERE1JE+cprWR4TUkRERET5c7ZmhRQREWliQoooH3klpNhDioiIiCh/GhVSqayQIiIiJqSI8sUle0RERERFwwopIiLKiQkponwwIUVERERUNOwhRUREOTEhRZQP9pAiIiIiKhpeZY+IiHJiQoooH3klndhDioiIiEg3lfBqolTRqiIkkABghRQREWVhQoooH0w6ERERERVchjJDvG9lbgUbCxsAQEp6iqlCIiKiEoQJKaJ8sEKKiIiIqODSlenifQuZBazMrAAAaZlppgqJiIhKECakiPLBpuZEREREBZc9IWUuNYelmSUA4GXGS1OFREREJQgTUkT5YFNzIiIiooLTqpAyz6qQepnJhBQRETEhRZQvJqSIiIiICi5dpZmQUldIcckeEREBTEgR5Ys9pIiIiIgKLq8eUgK/1SMiKveYkCLKByukiIiIiAouZ0JKXSEFAAqlwhQhERFRCVLqElIrVqxAw4YNYWdnBzs7O7Ru3Rq7du0ydVhUhrGpOREREVHB5dZDCmBjcyIiKoUJqapVq+Krr77C+fPnce7cOXTs2BG9evXC33//berQqIxihRQRERFRweW2ZA9gHykiIgLMTB1AQfXs2VPj8Zw5c7BixQqcOnUK9erV0xqvUCigULwqCU5OTi72GKlsYQ8pIiIiooLLa8ker7RHRESlrkIqO6VSiQ0bNiA1NRWtW7fWOWbevHmwt7cXbx4eHkaOkkqz/CqgWCFFREREpFv2hJS5zFyjQopL9oiIqFQmpKKiomBrawu5XI73338f27ZtQ926dXWODQkJQVJSkniLjY01crRUmjEhRURERFQ46oSUmdQMUolUo0KKS/aIiKhUJqRq1aqFixcv4vTp0xgzZgyCg4Nx9epVnWPlcrnYAF19I9JXfkvymJAiIqLS6KuvvoJEIsGkSZNMHQqVYeqElIXMAgA0m5pzyR4RUblX6npIAYCFhQWqV68OAGjWrBnOnj2LpUuXYtWqVSaOjMoaJqSIiKisOXv2LFatWoWGDRuaOhQq43ImpFghRURE2ZXKCqmcVCqVRuNyIkPhkj0iIipLUlJSMHjwYKxevRqOjo6mDofKOK0KKfaQIiKibEpdQiokJARHjhzBnTt3EBUVhZCQEBw6dAiDBw82dWhUBuWXcOJV9oiIqDQZO3Ysunfvjs6dO+c7VqFQIDk5WeNGVBB5LdljhRQREZW6JXsJCQkYMmQI4uLiYG9vj4YNG2LPnj3o0qWLqUOjMohL9oiIqKzYsGEDLly4gLNnz+o1ft68eQgNDS3mqKgsy2vJHntIERFRqUtI/fTTT6YOgcoRLtkjIqKyIDY2FhMnTsS+fftgaWmZ/w7Iqkr/6KOPxMfJycnw8PAorhCpDOKSPSIiykupS0gRGRMrpIiIqCw4f/48EhIS0LRpU3GbUqnEkSNHsHz5cigUCshkMo195HI55HK5sUOlMoRNzYmIKC9MSBHlgRVSRERUFnTq1AlRUVEa24YNG4batWvj008/1UpGERlCXj2kuGSPiIiYkCLKA5uaExFRWVChQgXUr19fY5uNjQ0qVqyotZ3IEJQqJVRC1kSJFVJERKRLqbvKHpExcckeERERUcGpq6MA9pAiIiLdWCFFlAcmpIiIqKw6dOiQqUOgMkxnQirbkj1WSBERESukiPLAHlJEREREBacrIZV9yR57SBERERNSRHnIr0KKPaSIiIiItOW7ZI8JKSKico8JKaI8sAKKiIiIqODyq5Dikj0iImJCiigPrJAiIiIiKrj8ekixqTkRETEhRZQH9pAiIiIiKjiNhJSUFVJERKSNCSmiPDAhRURERFRw7CFFRET5MTN1AEQlWX5L8piQIiKi4nLt2jVs2LABR48exd27d/HixQs4OzujSZMmCAwMRJ8+fSCXy00dJpFOuhJSMqkM5lJzZKgyuGSPiIhYIUWUl/wSTuwhRUREhnbhwgV07twZTZo0wbFjx9CqVStMmjQJs2bNwjvvvANBEPD555/D3d0d8+fPh0KhMHXIRFp0JaSAV8v2uGSPiIhYIUWUB1ZIERGRsfXp0weffPIJNm/eDAcHh1zHnTx5EkuXLsWiRYvw2WefGS9AIj3klpCyMrfC8/TnXLJHRERMSBHlhQkpIiIytn/++Qfm5ub5jmvdujVat26NjIwMI0RFVDCskCIiovxwyR5RHtjUnIiIjE2fZFRRxhMZQ64VUv81NmcPKSIiYkKKKA/5VUixhxQRERWHiIgItG7dGmfPngUAvP766yaOiKhgWCFFRET5YUKKKA+sgCIiIlNYsGABFi5ciJCQEFy9ehXPnj0zdUhEBZJbQspcllXRl6HiUlMiovKOPaSI8sCr7BERkSlUrlwZbdu2xfr16/H2228jNTXV1CERFUhuCSkJJKYIh4iISiBWSBHlgU3NiYjIFORyOVQqFVxcXDB79mxcv37d1CERFUhuCSkiIiI1JqSI8sAKKSIiMoXNmzdDKs2apr322mu4f/++iSMiKhgmpIiIKD9GS0gFBwfjyJEjxjodkUEw4URERKZgY2Oj8fju3btYs2YN1qxZg3PnzpkoKiL9MSFFRET5MVoPqaSkJHTu3BleXl4YNmwYgoODUaVKFWOdnqhQeJU9IiIypX///ReDBg3C8ePH4eDgAABITExEmzZtsGHDBlStWtW0ARLlggkpIiLKj9EqpLZv34779+9jzJgx2LhxI7y9vREUFITNmzcjI4NX2aCSKb8le+whRURExWnEiBHIyMjAtWvX8PTpUzx9+hTXrl2DSqXCiBEjTB0eUa6YkCIiovwYtYeUs7MzPvroI1y6dAmnT59G9erV8e6778Ld3R0ffvghoqOjjRkOUb6YkCIiIlM6fPgwVqxYgVq1aonbatWqhWXLlrEVApVoTEgREVF+TNLUPC4uDvv27cO+ffsgk8nw+uuvIyoqCnXr1sXixYtNERKRTrzKHhERmZKHh4fOSnKlUgl3d3cTRESkHyakiIgoP0ZLSGVkZGDLli3o0aMHvLy8sGnTJkyaNAkPHjxAREQE9u/fj19//RVffvmlsUIiyhevskdERKb09ddfY/z48RqNzM+dO4eJEydi4cKFJoyMKG9MSBERUX6M1tTczc0NKpUKgwYNwpkzZ9C4cWOtMQEBAWLDTqKSIHvCSSoo4fzyHh5ZeUIlkZkuKCIiKtMcHR0hkUjEx6mpqWjVqhXMzLKmbZmZmTAzM8Pw4cPRu3dvE0VJlDcmpIiIKD9GS0gtXrwY/fr1g6WlZa5jHBwcEBMTY6yQiPKlrpBq9Gg/3r8yFlVT/8E55yDMarkTKomMFVJERGRwS5YsMXUIREWWrmJCioiI8ma0hFRkZCR69+6tlZBKTU3F+PHj8b///c9YoRDpTRCy/jPlwgDYZTwFADR/tAs9Y77Fb9U+ZA8pIiIyuODgYFOHQFRkrJAiIqL8GK2HVEREBF6+fKm1/eXLl/j555+NFQZRgahUgASCmIxSG3xjGiyUL1khRUREBpeamlqs44mMgQkpIiLKT7EnpJKTk5GUlARBEPD8+XMkJyeLt2fPnuHPP/+Ei4tLcYdBVCi5VUBZKVPhoIg3bjBERFQuVK9eHV999RXi4uJyHSMIAvbt24egoCB8++23RoyOSD9MSBERUX6Kfcmeg4MDJBIJJBIJatasqfW8RCJBaGhocYdBVCj5VUCxQoqIiAzt0KFD+OyzzzBz5kw0atQIzZs3h7u7OywtLfHs2TNcvXoVJ0+ehJmZGUJCQjB69GhTh0ykJTX9VeWejYWNCSMhIqKSqtgTUpGRkRAEAR07dsSWLVvg5OQkPmdhYQEvLy+4u7sXdxhEhZJfwok9pIiIyNBq1aqFLVu24N69e9i0aROOHj2KEydO4OXLl6hUqRKaNGmC1atXIygoCDIZr/pKJVNKeop439rc2oSREBFRSVXsCSk/Pz8AQExMDDw9PTUuY0xU0uWXcGJCioiIiounpyc+/vhjfPzxx6YOhajA1Akpa3NrSCVGa1tLRESlSLEmpC5fvoz69etDKpUiKSkJUVFRuY5t2LBhcYZCVCiskCIiIiIquNSMrCV7tha2Jo6EiIhKqmJNSDVu3BgPHz6Ei4sLGjduDIlEAkHHb/ASiQRKpbI4QyEqlLwSThII7CFFREREpIO6QooJKSIiyk2xJqRiYmLg7Ows3icqbQQhK/GU1/NEREREpIkJKSIiyk+xJqS8vLx03icqLbhkj4iIiKhgMlWZSMtMA8CEFBER5c5oHQYjIiLwxx9/iI+nTJkCBwcHtGnTBnfv3jVWGEQFwqbmRERkSvfu3dPZ7kAQBNy7d88EERHlLzU9VbzPhBQREeXGaAmpuXPnwsrKCgBw8uRJLF++HAsWLEClSpXw4YcfGisMogJhhRQREZmSj48PHj16pLX96dOn8PHxMUFERPlTL9cDABtzGxNGQkREJVmxLtnLLjY2FtWrVwcAbN++HX379sWoUaPQtm1b+Pv7GysMogLJMyElCExIERFRsRIEARKJRGt7SkoKLC0tTRARUf7UV9gDWCFFRES5M1pCytbWFk+ePIGnpyf27t2Ljz76CABgaWmJly9fGisMogLJL+HEq+wREVFxUM+TJBIJpk2bBmtra/E5pVKJ06dPo3Hjxnofb8WKFVixYgXu3LkDAKhXrx6mT5+OoKAgQ4ZNBECzQooJKSIiyo3RElJdunTBiBEj0KRJE/zzzz94/fXXAQB///03vL29jRUGUYFwyR4REZnCX3/9BSCrQioqKgoWFhbicxYWFmjUqBEmT56s9/GqVq2Kr776CjVq1IAgCIiIiECvXr3w119/oV69egaPn8o3fRJSunqjERFR+WK0hNR3332HL774ArGxsdiyZQsqVqwIADh//jwGDRpkrDCICkQQkGfWiXMpIiIqDpGRkQCAYcOGYenSpbCzsyvS8Xr27KnxeM6cOVixYgVOnTqVa0JKoVBAoVCIj5OTk4sUA5UfeSWkdC1BJSKi8sloCSkHBwcsX75ca3toaKixQiAqMF5lj4iITCksLMzgx1Qqldi0aRNSU1PRunXrXMfNmzeP8zQqFC7ZIyIifRgtIQUAiYmJOHPmDBISEqDKthZKIpHg3XffNWYoRHrJa8meBGxqTkRExSs1NRVfffUVDhw4oDV/AoDbt2/rfayoqCi0bt0aaWlpsLW1xbZt21C3bt1cx4eEhIi9rICsCikPD4+Cvwgqd5iQIiIifRgtIbVz504MHjwYKSkpsLOz0yjXZUKKSqq8Ek7uqdFQqXyNFwwREZU7I0aMwOHDh/Huu+/Czc2tSMudatWqhYsXLyIpKQmbN29GcHAwDh8+nGtSSi6XQy6XF/p8VH6lpr+6yp6NuY0JIyEiopLMaAmpjz/+GMOHD8fcuXM1rhRDVJLlVSFV/8lhPBa6GS8YIiIqd3bt2oU//vgDbdu2LfKxLCwsUL16dQBAs2bNcPbsWSxduhSrVq0q8rGJsmOFFBER6UNqrBPdv38fEyZMYDKKSpWcFVIPrKuL9xs8OcQle0REVKwcHR3h5ORULMdWqVQaTcuJDIUJKSIi0ofRElKBgYE4d+6csU5HZBA5K6SeWbriX5taAIDqSecgS0vVsRcREZFhzJo1C9OnT8eLFy+KdJyQkBAcOXIEd+7cQVRUFEJCQnDo0CEMHjzYQJESvcKEFBER6cNoS/a6d++OTz75BFevXkWDBg1gbm6u8fwbb7xhrFCI9CYIWc3Ls4uq6I+qqTdgJmTCJeY0gI6mCY6IiMqkJk2aaPSKunnzJipXrgxvb2+t+dOFCxf0OmZCQgKGDBmCuLg42Nvbo2HDhtizZw+6dOli0NiJACakiIhIP0ZLSI0cORIA8OWXX2o9J5FIoFQqjRUKkd5UKsA6M1l8/FJWAXfsGoqPKzy5Y4KoiIioLOvdu7fBj/nTTz8Z/JhEuUnJYEKKiIjyZ7SEVM7LFBOVBoIA2GY8Ex+nmDviqdxNfGyd/NAUYRERURk2Y8YMU4dAVCQaV9mz4FX2iIhIN6P1kMouLS2t0PvOmzcPLVq0QIUKFeDi4oLevXvjxo0bBoyO6BWVSjsh9czyVUIq8XocvvwSeP7cFNERERERlTxcskdERPowWkJKqVRi1qxZqFKlCmxtbXH79m0AwLRp0wpURn748GGMHTsWp06dwr59+5CRkYGuXbsiNZXNpcnwtCqkLDQrpOxT43D2LLBhgymiIyKisk59lb2ct4oVK6JKlSrw8/NDWFiYqcMk0qBOSMkkMshlchNHQ0REJZXRElJz5sxBeHg4FixYAAsLC3F7/fr18eOPP+p9nN27d2Po0KGoV68eGjVqhPDwcNy7dw/nz5/XOV6hUCA5OVnjRqQvQQBsclZIyV3Fx46KOACskCIiouIxffp0SKVSdO/eHaGhoQgNDUX37t0hlUoxduxY1KxZE2PGjMHq1atNHSqRSJ2QsrWw1WjQT0RElJ3Rekj9/PPP+OGHH9CpUye8//774vZGjRrh+vXrhT5uUlISAMDJyUnn8/PmzUNoaGihj0/lm64le5kyOZLNnWCX8RRO/yWkpCZZ/EpERGXdsWPHMHv2bI25EwCsWrUKe/fuxZYtW9CwYUN8++234gVkiExNoVQAAORmrI4iIqLcGe3X6Pv376N69epa21UqFTIyMgp1TJVKhUmTJqFt27aoX7++zjEhISFISkoSb7GxsYU6F5VPOZfspZo7AgAS/6uSckx7CAgCE1JERFQs9uzZg86dO2tt79SpE/bs2QMAeP3118VWCEQliQSsjiIiotwZ7dfounXr4ujRo1rbN2/ejCZNmhTqmGPHjsWVK1ewIY8GPnK5HHZ2dho3In2pVIBtumaFFAA8/a+xuVz1EtaZyUxIERFRsXBycsLOnTu1tu/cuVOsDk9NTUWFChWMHRoRERFRkRhtyd706dMRHByM+/fvQ6VSYevWrbhx4wZ+/vln/P777wU+3rhx4/D777/jyJEjqFq1ajFETJSVkKqQ8VR8rE5IPcvW2NxJEQep1N7osRERUdk3bdo0jBkzBpGRkWjZsiUA4OzZs/jzzz+xcuVKAMC+ffvg5+dnyjCJiIiICsxoCalevXph586d+PLLL2FjY4Pp06ejadOm2LlzJ7p06aL3cQRBwPjx47Ft2zYcOnQIPj4+xRg1lXdaV9lTV0hlS0g5psVBJqtt9NiIiKjsGzlyJOrWrYvly5dj69atAIBatWrh8OHDaNOmDQDg448/NmWIRERERIVitIQUALRv3x779u0r0jHGjh2L9evX47fffkOFChXw8OFDAIC9vT2srKwMESaRSKXSvsoeADyz1KyQksmMHhoREZUTbdu2Rdu2bU0dBhEREZFBGa3zTbVq1fDkyROt7YmJiahWrZrex1mxYgWSkpLg7+8PNzc38bZx40ZDhksEQLNCKlNihjSZDQDtCin2kCIiIkNJTk7WuJ/XjYiIiKi0MlqF1J07d6BUKrW2KxQK3L9/X+/jCIJgyLCI8pQ9IZVi7ghIsq4W89LsVfNYufIFMpmQIiIiA3F0dERcXBxcXFzg4OAAiUT7SmWCIEAikeicWxERERGVBsWekNqxY4d4f8+ePbC3f9X8WalU4sCBA/D29i7uMIgKRaXKkZD6j5DjMsZcskdERIZy8OBB8Qp6kZGRJo6GiIiIqHgUe0Kqd+/eAACJRILg4GCN58zNzeHt7Y1FixYVdxhEhaNUwiYza0lE9oRUTlyyR0REhpL9inm8eh4RERGVVcX+a7RKpYJKpYKnpycSEhLExyqVCgqFAjdu3ECPHj2KOwyiQjFPTRTvpzIhRUREJnD06FG88847aNOmjdjmYM2aNTh27JiJIyMiIiIqPKP9Gh0TE4NKlSoZ63REBmGRqn2FPV2YkCIiouKwZcsWBAYGwsrKChcuXIBCoQAAJCUlYe7cuSaOjoiIiKjwjNbUHAAOHDiAAwcOiJVS2f3vf/8zZihEerFMeSzef27uZMJIiIioPJo9ezZWrlyJIUOGYMOGDeL2tm3bYvbs2SaMjKhoBPBCRURE5Z3RElKhoaH48ssv0bx5c7i5uem8YgxRSWPzLFa8/9jKI9dxvPgjEREVhxs3bqBDhw5a2+3t7ZGYmGj8gIiKSAL+DkBERFmMlpBauXIlwsPD8e677xrrlERFZvfsnnj/kZVnruN41W0iIioOrq6uuHnzptYViY8dO4Zq1aqZJigiIiIiAzBa55v09HS0adPGWKcjMogKeiakcqxAJSIiMoiRI0di4sSJOH36NCQSCR48eIB169Zh8uTJGDNmjKnDIyIiIio0o1VIjRgxAuvXr8e0adOMdUqiIquQyIQUERGZztSpU6FSqdCpUye8ePECHTp0gFwux+TJkzF+/HhTh0dERERUaEZLSKWlpeGHH37A/v370bBhQ5ibm2s8/8033xgrFCK92f2XkFJKZHgqd8t1HBNSRERkSDExMfDx8YFEIsHnn3+OTz75BDdv3kRKSgrq1q0LW1tbU4dIREREVCRGS0hdvnwZjRs3BgBcuXLFWKclKhK7pKym5k8sq0Al1f3PRQKBTc2JiMigfH194eXlhYCAAHTs2BEBAQGoW7euqcMiIiIiMhijJaQiIyONdSoiw3j5EjapjwDoWK6X4yqRrJAiIiJDOnjwIA4dOoRDhw7hl19+QXp6OqpVqyYmpwICAlC5cmVTh0lERERUaMWekHrrrbfyHSORSLBly5biDoWoYGJjxbuPLHPvHwUwIUVERIbl7+8Pf39/AFltD06cOCEmqCIiIpCRkYHatWvj77//Nm2gRERERIVU7Akpe3v74j4FUfG4p19DcwBQKos7GCIiKq8sLS3RsWNHtGvXDgEBAdi1axdWrVqF69evmzo0IiIiokIr9oRUWFhYcZ+CqHg8fCjefWrpnudQ9pAiIiJDS09Px6lTpxAZGYlDhw7h9OnT8PDwQIcOHbB8+XL4+fmZOkQiIiKiQjNaDymiUidb2VOm1DyPgVyyR0REhtWxY0ecPn0aPj4+8PPzw+jRo7F+/Xq4ueV+xVciIiKi0oQJKSIDYEKKiIgM6ejRo3Bzc0PHjh3h7+8PPz8/VKxY0dRhERERERmM1NQBEJUFTEgREZEhJSYm4ocffoC1tTXmz58Pd3d3NGjQAOPGjcPmzZvx6NEjU4dIREREVCSskCIyACakiIjIkGxsbNCtWzd069YNAPD8+XMcO3YMkZGRWLBgAQYPHowaNWrgypUrJo6UiIiIqHBYIUVkAExIERFRcbKxsYGTkxOcnJzg6OgIMzMzXLt2zdRhERERERUaK6SIDIAJKSIiMiSVSoVz587h0KFDiIyMxPHjx5GamooqVaogICAA3333HQICAkwdJpFOAi8/TEREemBCiqjIBCakiIjIoBwcHJCamgpXV1cEBARg8eLF8Pf3h6+vr6lDI9KbRCIxdQhERFSCMSFFVAgCNCdYTEgREZEhff311wgICEDNmjVNHQoRERFRsWBCisgAmJAiIiJDGj16tKlDICIiIipWbGpOZABMSBERUUk2b948tGjRAhUqVICLiwt69+6NGzdumDosIiIiKseYkCIyACakiIioJDt8+DDGjh2LU6dOYd++fcjIyEDXrl2Rmppq6tCIiIionOKSPSIDYEKKiIhKst27d2s8Dg8Ph4uLC86fP48OHTro3EehUEChUIiPk5OTizVGIiIiKl9YIUVkAExIERFRaZKUlAQAcHJyynXMvHnzYG9vL948PDyMFR4RERGVA0xIERmAIJg6AiIiIv2oVCpMmjQJbdu2Rf369XMdFxISgqSkJPEWGxtrxCiJiIiorOOSPaLcFCDLxAopIiIqLcaOHYsrV67g2LFjeY6Ty+WQy+VGioqIiIjKGyakiPQiyfNZpdJIYRARERXBuHHj8Pvvv+PIkSOoWrWqqcMhIiKicoxL9ogMgBVSRERUkgmCgHHjxmHbtm04ePAgfHx8TB0SlVNm0lffh2coM0wYCRERmRorpIgKIV1mJd63zkxmDykiIirRxo4di/Xr1+O3335DhQoV8PDhQwCAvb09rKys8tmbyHDs5Hbi/WRFMipaVzRhNEREZEqskCIqhMeWr5Y5VHr5LyukiIioRFuxYgWSkpLg7+8PNzc38bZx40ZTh0bljL2lvXg/SZFkwkiIiMjUWCFFVAhPLKuI9yumMSFFREQlm8BSXioh7CxeVUglpTEhRURUnrFCiqgQMmSWSLKoBACoxIQUERERkV5YIUVERGpMSBEV0mNLDwBAxbT7UGXwMntERERE+bGXv0pIJSuSTRgJERGZGhNSRIX02Cqrj5RMUKLCi3gTR0NERERU8mlUSHHJHhFRucaEFFEhPcnW2Nz++b8mjISIiIiodMheIcUle0RE5RsTUkS5eP487+cfWXmI9x2exxZzNERERESlHyukiIhIjQkpIh3i4oCffsp7TPYKKYcUVkgRERER5YcVUkREpMaEFJEOf/2V/5jHTEgRERERFQgrpIiISI0JKSIdpHr8y3icbcmeYyqX7BERERHlhxVSRESkxoQUkQ4SCQAIeY55JncV79u9TCjegIiIiIjKAI0KKSakiIjKNSakiHTISki9IkCiNSZNZgOF1AoAUCGNCSkiIiKi/NjJ7cT7XLJHRFS+MSFFpEPOhFRug5LkzgAAu7RHxRsQERERURlgJjWDjbkNAFZIERGVd0xIEemgTw8pAEiycAEAVEh/DKhUxRgRERERUdmgXrbHCikiovKNCSkiHfRPSGVVSEkFFfD0aTFGRERERFQ2qJftsUKKiKh8Y0KKqAiS5C6vHiSwjxQRERGRkM+FYdRX2ktJT4FSpTRGSEREVAIxIUWkg76r79QVUgCAR+wjRURERKQm0XFRGEDzSnvJimRjhUNERCUME1JEOmRm6jcukRVSRERERAWirpACmJAiIirPmJAi0kGpZ/V4MiukiIiIiAoke0KKfaSIiMovJqSIdMgvIWVllfVnosWrCikhnhVSRERERPlRNzUHgOeK5yaMhIiITIkJKSIdcluy5+UFfP01sHJl1uNk+asKKYEVUkRERET5qiCvIN7nkj0iovKr1CWkjhw5gp49e8Ld3R0SiQTbt283dUhUBuWskGrRArCwAMaPB2rXBuz++2Ive4UUWCFFRERElK8KFq8SUs/TWSFFRFRelbqEVGpqKho1aoTvvvvO1KFQGZazQqpxY2DTJqBWLc3t2Suk4q88wp07xR4aERERUamWvUKKS/aIiMovM1MHUFBBQUEICgrSe7xCoYBCoRAfJyezLJjyp6uHlFSqfV8hs0aazBqWyhfIePAI48cDO3caJ0YiIiKi0kijhxQrpIiIyq1SVyFVUPPmzYO9vb148/DwMHVIVArk19RcInl1P11qCQCQCRnFGBERERFR2ZB9yR57SBERlV9lPiEVEhKCpKQk8RYbG2vqkKgUyMwEpIIq1+ezJ6SIiIiISH9cskdEREApXLJXUHK5HHK53NRhUCmjVALWma++sRMq2OUxmoiIiIj0xabmREQElIMKKaLCyMwEbDOevtrg6Gi6YIiIiIjKEPaQIiIigAkpIp2USsA2/Zn4WHBgQoqIiIjIELIv2WMPKSKi8qvULdlLSUnBzZs3xccxMTG4ePEinJyc4OnpacLIqCxRKgHbjGwJKUenfPeRCEJxhkRERERUJmgs2WMPKSKicqvUJaTOnTuHgIAA8fFHH30EAAgODkZ4eLiJoqKyRishxQopIiIiIoOwNLOETCKDUlByyR4RUTlW6hJS/v7+EFiJQsUsq4fUq4QUHBxMFgsRERFRWSKRSGAnt8OztGeskCIiKsfYQ4pIh6wKqaym5qlmdoBMlsdoiXGCIiIiIioj1H2k2EOKiKj8YkKKSIfsFVIp5lyuR0RERGRI6j5SXLJHRFR+lbole0TGoMwUsiWknGCrY8z06cCjR4Bkn3oLl5ISERER6UNdIfUi4wWUKiVk0ryq0YmIqCxiQopIB1laKsyETABZFVISHavyWrTI+pPf6xEREREVjJ3cTryfkp4Ce0t7E0ZDRESmwCV7RDqYp7xqaM4le0RERESGpV6yB7CPFBFRecWEFJEO8tSn4v38ElK86CMRERFRwaiX7AHsI0VEVF4xIUWkg0Vq4SukVCpDR0NERFR0R44cQc+ePeHu7g6JRILt27ebOiQqx7JXSD1XMCFFRFQeMSFFpIPly2wJKQunPMcK0GwwlZlZLCEREREVSWpqKho1aoTvvvvO1KEQafSQYoUUEVH5xKbmRDrIXxS8Qkry31X2lMpiCYmIiKhIgoKCEBQUZOowiACwhxQRETEhRaSTRoVUAZfssUKKiIjKAoVCAYVCIT5OTmbSgAzHytxKvJ+WmWbCSIiIyFS4ZI9IB6uX+jc1z4kJKSIiKgvmzZsHe3t78ebh4WHqkKgMkeRoeUBEROUPE1JEOtilxon3kyycISnAnIlL9oiIqCwICQlBUlKSeIuNjTV1SFRKCLwEMRER6YFL9oh0qPg8Rrwfb+1ToH0zMgwdDRERkfHJ5XLI5XJTh0GlkHoJnqWZpYkjISKikowVUkQ6OKdkJaSSzZ3wwtw+z7Hqq+yZqbIyUayQIiIiovIsSZEEQPNKekRERDmxQooop4wMVHyRtSxBn+qoh9bV4JD+CM5psXBQxCMzs3JxR0hERFRgKSkpuHnzpvg4JiYGFy9ehJOTEzw9PU0YGZUlikwF0pXpAJiQIiKivLFCiiine/cgFVQA9EtIRVUMEO83eBzJpuZERFQinTt3Dk2aNEGTJk0AAB999BGaNGmC6dOnmzgyKkuSFa+uxqhvQoo9p4iIyicmpIhyisnWP8pKj4RUpVcJqYZPIrlkj4iISiR/f38IgqB1Cw8PN3VoVIYUJiFFRETlExNSRDkIt7UbmqtUuY+/6tgWGRJzAECDJ5Fsak5ERETlFhNSRESkLyakiHKK0U5I5bUMT2Fmg2iHlgCAKqnRwJMnxRoeERERUUnFhBQREemLCSmiHFTZKqQeWlcDANjY5L3PHbuG4n2zWzeKJS4iIiKiki57QspenvuViiUSiTHCISKiEoxX2SPK6dEj8e68MFeYVwTM8vmX8q9tbfG+xe3rANoUU3BEREREJRcrpIiISF9MSBHlkP1CL3aOMphVyH+f7Akpecz1YoiKiIiIqORjQoqIiPTFJXtEOWRPSMlk+u2TPSFleYcJKSIiIiqfCpOQEiDkP4iIiMocJqSIcsiekNK3vcFjy6pIk1kDAKzuMiFFRERE5RMrpIiISF9MSBHlVIgv6QSJFPdtagEALONuA+npBg6KiIiIqORjQoqIiPTFhBRRDkIhq8b/tc1KSElVSuDWLQNGRERERFQ6JKczIUVERPphQoooh8ImpJIsXF49SE7OfSARERFRGcUKKSIi0hcTUkQ5CKrCZaQEfRtOEREREZVRTEgREZG+mJAiykGjQopJJiIiIiK9qRNSUokU1ubWuY6TgHMsIqLyjgkpohwMceHhDb8IhV76R0RERFRaqRNSdnI7SPT8Yk/gpImIqFxiQoooh8LPiV5Nus6dYxspIiIiKn+yJ6SIiIjywoQUUQ6G+pIuLc0wxyEiIiIqLZiQIiIifTEhRZSDYRJSAl68MMRxiIiIiEqHTFUmXmRkTYCYkCIiovwwIUWUUwETUtWqqXfT7JPw8qWB4iEiIiIqBR6/eCzed7B0MF0gRERUKjAhRZRDQRtrhoYCo0YB1atrbmeFFBEREZUnt57eEu9Xc6hmwkiIiKg0YEKKKAeNfJQeV4dxcAB69gQsLLLtJgiskCIiIqJy5ebTm+J9XydfvfdTCariCIeIiEo4JqSIcihsDympTDN5xQopIiIiKk9uPXtVIVXdqXoeI4HKtpXF+1EJUcUWExERlVxMSBHlYKir7LFCioiIiMqT7BVS+SWkArwDIPmv/+aeW3uKNS4iIiqZmJAiyubyZSA2tnD7KtJfVUhVSotlhRQRERGVK+oKKQkk8HHwyXNsReuKaFGlBQDgSsIV3E++X+zxERFRycKEFFE2X35Z+H3/rfqaeP+9qx8j80mSASIiIiIiKh3UFVIe9h6Qm8nzHd/Nt5t4f++tvcUWFxERlUxMSBFlo1AUft97Lfrgr0pdAACV0u7Dd/8qA0VFREREVLI9e/kMT18+BZD/cj21Lr5dxPvH7h0rlriIiKjkYkKKKBtzc8Au/QkAQCWRAmZmeu8rM5NgZf3l4uOap382XEMqIiIiohIsJjFGvO/rqN8V9pq6NYVUkvXryPm488USFxERlVxMSBFl42KdAs/nVwAAD50bZGWo9CSTAQ9sa+KqYxsAgHP831j78V94+rRYQiUiIiIqMV5kvGqeaS+312sfa3Nr1HWuCwD4+9HfSMtMK5bYiIioZGJCiigbj/hzkEEFALhm91o+ozWpi6kOVg0Wt1ns3IK1aw0WHhEREVGZ0sytGQAgU5WJy/GXTRwNEREZExNSRP8RBMDj/inxcZRNwRJSMlnWnzftm4nbbDOeIS7OIOERERERlTnqhBQAnHtwzoSREBGRsTEhRfSfFy+Amk9fJaRuOBauQgoSSbatAipUKHpsRERERCWZUMi+mc3cXyWkzj9gHykiovKECSmi/yQ/Tkfdp1lXeEkxs4eqes0C7a+ukBIg0dj+7JlBwiMiIiIqc2pVrCXef5DywISREBGRsTEhRfQf1W87YZeRdYW9pNbdMGtOwf55NG2a9Wf2hNTrd1cCV69iyRLgxAlDRUpERERUckkkkvwH/UcmlYn3C1tlRUREpZP+17QnKuNsNvwo3q8y7T3ApWD7e3kB338PWCa5QdVAAimyJlWf7/fH1BdHceBALezcaciIiYiIiIiIiEonVkgRAcDz57A/tQcA8MzeC+jUqVCH8fAAnOpUxtzm2/DQ2gcA4JD+COMujwQApKcbJlwiIiKikkRA4aqbJNkqywt7DCIiKp2YkCICgJQUSP4rE39ctQkgLfw/DZkMOO3aC5PaX8AzeWUAQP2nR9Ho0X58s1CFJUuAzExDBE1ERERUuhVkeR8REZUtTEgRAUC2ngVm5oaZGKWaO+CxZVXx8ezTXdBvfnOc3J2EyEhgzRogMdEgpzKZFy+AhARTR0FEREQliQSFm0uxhxQRUfnCHlJEgGZCysJw39Tt9hwNnysfwEzIKonyTf4LG/c4YOeNcdhb/XMkJLiiZUvA1RWoUcNgpzWK8+eBxYuBpCSge3fA3h4IDAScnEwdGREREZUW2ZNX+27vw6PUR3C2cTZhREREZCxMSBEBmgkps6InpBYvBm7fBpYtG4njbn0x+a/BaP5ol/h8zzvL0fPOcjw44YtHVp7YUXscKjaogjPPauDD6RVwNdoc7dq9Su6UpGr26Bsq/PHTQ7yx6nWsfHkXUkEJ69+fI01mjb3NPkOdr4fDp40bzPh/FyIionIjU1W4fgRyMznkMjkUSgUAoMXqFtjzzh7UqlTLkOEREVEJVGqX7H333Xfw9vaGpaUlWrVqhTNnzpg6JCqlhOcpiBq9THxsiCV71asDXbsCI0YAqRaO+Pn1DdjnMQzJ5prlQ+4vbqHRk0h8fLwPhq58Dd9vrIga9SzQq7cEj2q0RoJ9dexpE4rTAxdjU7efkPDNWlxaG4WkC7cQf/Ye7p+Lg/DoMdIeJgKpqVld09XJtbQ04MmTIr8WAEBmJm5vvoAT9UfCvb4jJn1dBdWSL8E2IxHWmc8BAJbKF3jjzBeo4eeOWx5+ePz+F8i8eQdQKg0TAxERFRnnT1QcniueY1rkNPGxi43+lyq2kFlgdc/VsJfbAwDuJt1F7e9qQ5GpMHicRERUskiEUrhYe+PGjRgyZAhWrlyJVq1aYcmSJdi0aRNu3LgBF5e8fwAmJyfD3t4eSUlJsLOzM2xgcXEQjh0H0tMhUWaKeYHsfwrCqw0q9Tuf829Ax1+JRoVMXn9l+f115nhe7+Pqej5n3ibb81opnQIcW6saKN+PaB7nzba/SpXVTFz9p1IFSP+5AbuIZRrD49/9GJV/XpjPOfUjCMDDh4CjI/DBB0DlyoDtvm1oF/cr/B5sMMg5dFFJpJAKKgBAom0VpFk6QiY3g1JqBqmFGVRSMyglZsiEGSTmZjCzNIMgNYPE4r8/zWSQJD6Fw81zeOZUHe53TxY6lkypOZIqVoPC0RVmLk6AoxNUNhWgghRScykACeRWUgiQQJBmPU7LkMLGRoJMpQQyCykEQYIMpRTWNhIoMqWQyyVQClJIpBJIzbOeN7f4b7y5FJlKCaQyCczlUmRkSiAzk2R9rv77gKg/J9k/axJJ1mdCpQTMzQGJ9L8n1X9KshYVCCoB6ekCoBIgkWT1v9engi3XMfnsnOfTkhwvKPtTegRU6LiLWrJXlP31jLs4zmuKfQXBdOc22b65yeNngaRrFyCfn/+FUaxzBhMoyvwJKN7348DtA3jyMu8vUfSZsup7lbaSeCx9p+Ql7Vh/PfwLy868mktVtauKi6MvoqJ1Rb1iUIt7Hocq31TRiqmrb1dUqVAFFjILmEvNYSGzEG/mslePsz9nJjXTen3ZX4d6e1G2Zd+u77ac27PLvnQxe6N39XZd2wwxNvv24hpLRCWTi40L/L39DX7cgswXSmVCqlWrVmjRogWWL18OAFCpVPDw8MD48eMxdepUjbEKhQIKxatvWJKTk+Hh4VE8k8s//8xqpkOl1t3O78Fj61JIK9gY/NhKZdbvaLduAWfOAE0bKbFj3F508r0Dy+0b8MLGGS1jtyDVzA42mckGP7+h7fYchd1eo3HLvinkmalokfAH3v5nBjxSrps6NCIqb44cAdq3N/hhy1pCqiDzJ8C4c6g2P7XByX8L/+UHlRzHhh1DW8+2hdr3w90fYsnpJYYNiIiIdOro0xEHhhww+HELMn8qdV1e0tPTcf78eYSEhIjbpFIpOnfujJMntScy8+bNQ2hoqHGCMzc3znmoWAh//Amv14OK7fgyWdafNWqoG5jLUDsyCBIJkPTNGEgkQJoFcDUKaNIEuLr3X3go7+DJned4fj8Z1Z+eQdzFh3BxM0NcbCZsLTMgzczA88RMuDhmIPlJBqzMMpDxMhMyZQasHCyQppDC8eFVQKGAVJUJqSoTMqHwS+ietghEuOOHaPhRZxw7KoNbBaBbI+C332zQZU5/zF7VH0HdBFitXIyK9/6Cs1UKVDdvoUraLVhkvDDI+0hERAVX0PkTYOQ5FJUJF0ZdQBO3JoXef4b/DFS0rojDdw9j/+39BoyMiIhKolJXIfXgwQNUqVIFJ06cQOvWrcXtU6ZMweHDh3H69GmN8UatkLp3D2lrfoVgZgFBZiYu+RGrVSVZy2jEVTZSibhNp3zKXAV9LqmbX6lsjue1Pg3Zns+twLiw5xfPpWNMjoWFhT6H+nlByEoIqW8au9jYAG3aZF3qrjwQhKxyrczMvG/m5lk3Z2fAzKxAS3AEQXu48OIlJM+eAk+fAs+fv1rDqlJBUAmQCFl/QqWCBFl/qp/X+DPntv/uCyoBEggax1JmCjCTZt1X/3sRl9CKgWnGLJMBGen/ldursj2ZbZCFXAKJVAIBEjGUwvw1FHRHjeHqJQGF+T+4IBgtZt0HKfy+hd1bUsTzmmTfIu9ffHHn+X8DQ7zm3P5/o2O7RALIB70FuLsX7bw6lKUKqYLOnwDjzqE2XNmAuOdx+Y7TZwmQRJ/5UQk9lr5LnErasaQSKbr6doWnvade59SHUqXEv8n/IkOVgXRlOjKUWX+mK9PFbeLjHM9lKDOMuuytsGPV8lsSWJTtxXlsfbcTUcnkYe+BvnX7Gvy4ZbpCqqDkcjnkcrlxTubpCcvPJxvnXESFJZFkJZiK8TJ4uuatEmsrwLoKUKWK9nM5/izUOXX8aZbtfkGObVGAc8oKcFwiotLEmHOogfUHGuU8VHrIpDJ4OXiZOgwiIipGpe4qe5UqVYJMJkN8fLzG9vj4eLiWlwoXIiIiogLg/ImIiIhKmlKXkLKwsECzZs1w4MCr5lsqlQoHDhzQKEEnIiIioiycPxEREVFJUyqX7H300UcIDg5G8+bN0bJlSyxZsgSpqakYNmyYqUMjIiIiKpE4fyIiIqKSpFQmpAYMGIBHjx5h+vTpePjwIRo3bozdu3ejcuXKpg6NiIiIqETi/ImIiIhKklJ3lb2iKktXzCEiIqLiwzmDJr4fRERElJ+CzBdKXQ8pIiIiIiIiIiIq3ZiQ+j979x3eVPnFAfybpHukpXuX0jKVVfYGGWXKFBCUgoAooiCiggqIgigq46cgIAiiqAwBZSgCgoBsCsq2hbZQWkoHbbpX3t8f4d7mJjerSdN1Ps/DQ5u8ufe9Wb05Oee8hBBCCCGEEEIIIcSqKCBFCCGEEEIIIYQQQqyKAlKEEEIIIYQQQgghxKooIEUIIYQQQgghhBBCrMqmqidgbdyiggqFoopnQgghhJDqjDtXqGMLEutE51CEEEIIMcSU86c6F5DKyckBAAQHB1fxTAghhBBSE+Tk5MDNza2qp1Hl6ByKEEIIIcYy5vxJwurY135KpRLJyclwdXWFRCIx6bYKhQLBwcG4d+8e5HJ5Jc2weqFjpmOureiY6Zhrq7p2zJV5vIwx5OTkICAgAFIpdTmgcyjT0DHX/mOua8cL0DHTMddedMyWO2ZTzp/qXIaUVCpFUFCQWduQy+V15knKoWOuG+iY6wY65rqhrh1zZR0vZUaVo3OoiqFjrv3q2vECdMx1BR1z3VAZx2zs+RN93UcIIYQQQgghhBBCrIoCUoQQQgghhBBCCCHEqiggZQJ7e3ssXLgQ9vb2VT0Vq6FjrhvomOsGOua6oa4dc1073pqqLj5OdMy1X107XoCOua6gY64bqsMx17mm5oQQQgghhBBCCCGkalGGFCGEEEIIIYQQQgixKgpIEUIIIYQQQgghhBCrooAUIYQQQgghhBBCCLEqCkgRQgghhBBCCCGEEKuigBQhhBBCCCGEEEIIsao6E5A6fvw4hgwZgoCAAEgkEuzZs0dw/a5du9CvXz94enpCIpHg8uXLWtsoLCzEK6+8Ak9PT7i4uGDkyJFITU3Vu1/GGBYsWAB/f384OjqiT58+iI2NteCR6WbuMWdmZuLVV19F48aN4ejoiJCQELz22mvIzs7Wu9+JEydCIpEI/vXv39/CRyfOEo9zz549teb/0ksv6d1vTX6cExIStI6X+7djxw6d+62uj3NJSQnefvttNG/eHM7OzggICMCECROQnJws2EZmZibGjx8PuVwOd3d3TJ48Gbm5uXr3W5H3AEsx95gTEhIwefJkhIWFwdHREeHh4Vi4cCGKi4v17rcirwdLsMRjXL9+fa25f/zxx3r3W5Mf42PHjul8LZ8/f17nfqvqMQYMv3+9//77aNKkCZydnVGvXj306dMHZ8+eFYypaa/lmqiunUPR+ROdPwF0/kTnTyo17fwJoHMoOodSqSnnUHUmIJWXl4eWLVti9erVOq/v2rUrPvnkE53beP3117F3717s2LEDf/31F5KTkzFixAi9+122bBn+97//Ye3atTh79iycnZ0RFRWFwsJCs47HGOYec3JyMpKTk/HZZ5/h6tWr2Lx5M37//XdMnjzZ4L779++PlJQU/t+PP/5o1rEYyxKPMwBMnTpVMP9ly5bpHV+TH+fg4GDBsaakpGDRokVwcXHBgAED9O67Oj7O+fn5iImJwfz58xETE4Ndu3bh1q1bePrppwXjxo8fj2vXruHQoUPYt28fjh8/jhdffFHvfivyHmAp5h7zzZs3oVQqsW7dOly7dg0rVqzA2rVr8c477xjct6mvB0uwxGMMAB988IFg7q+++qre/dbkx7hz585ar+UpU6YgLCwMbdu21bvvqniMAcPvX40aNcKXX36JK1eu4OTJk6hfvz769euHtLQ0fkxNey3XRHXtHIrOn8Svp/MnITp/qhnvuXXt/AmgcyhNdA5Vzc+hWB0EgO3evVv0uvj4eAaAXbp0SXB5VlYWs7W1ZTt27OAvu3HjBgPATp8+LbotpVLJ/Pz82KeffirYjr29Pfvxxx/NPg5TVOSYxWzfvp3Z2dmxkpISnWOio6PZ0KFDKzZRC6roMffo0YPNnDnT6P3Uxse5VatW7IUXXtA7piY8zpxz584xACwxMZExxtj169cZAHb+/Hl+zG+//cYkEgm7f/++6DYq8h5QWSpyzGKWLVvGwsLC9G7H1NdDZajo8YaGhrIVK1YYvZ/a9hgXFxczb29v9sEHH+jdTnV4jBkz7pizs7MZAHb48GHGWM1/LddEde0cis6fhOj8ST86f9JWnd5z69r5E2N0DqULnUNVn9dzncmQMtfFixdRUlKCPn368Jc1adIEISEhOH36tOht4uPj8eDBA8Ft3Nzc0KFDB523qe6ys7Mhl8thY2Ojd9yxY8fg4+ODxo0b4+WXX0ZGRoaVZmgZW7duhZeXF5588knMmzcP+fn5OsfWtsf54sWLuHz5slHf5NaUxzk7OxsSiQTu7u4AgNOnT8Pd3V3wjUefPn0glUq1Ulk5FXkPqEqax6xrjIeHh8FtmfJ6qCq6jvfjjz+Gp6cnWrdujU8//RSlpaU6t1HbHuNff/0VGRkZmDRpksFt1YTHuLi4GOvXr4ebmxtatmwJoG68lmsDOoei8ycxte0xpvOn2vGeW9fOnwA6hxJD51DWez3r/6tIeA8ePICdnZ3Wk9bX1xcPHjzQeRtujLG3qc7S09Px4YcfGkzj69+/P0aMGIGwsDDcvn0b77zzDgYMGIDTp09DJpNZabYVN27cOISGhiIgIAD//vsv3n77bdy6dQu7du0SHV/bHueNGzeiadOm6Ny5s95xNeVxLiwsxNtvv41nn30WcrkcgOox8/HxEYyzsbGBh4eH3tezqe8BVUXsmDXFxcXhiy++wGeffaZ3W6a+HqqCruN97bXXEBkZCQ8PD5w6dQrz5s1DSkoKli9fLrqd2vYYb9y4EVFRUQgKCtK7rer+GO/btw9jx45Ffn4+/P39cejQIXh5eQGo/a/l2qKun0PR+ROdP6mrKY8znT/V/vMngM6h6Byq6l/PFJAiRlEoFBg0aBCaNWuG999/X+/YsWPH8j83b94cLVq0QHh4OI4dO4bevXtX8kzNp37C2Lx5c/j7+6N37964ffs2wsPDq3Bmla+goAA//PAD5s+fb3BsTXicS0pKMHr0aDDG8NVXX1X1dKzCmGO+f/8++vfvj2eeeQZTp07Vu73q/nrQd7yzZ8/mf27RogXs7Owwbdo0LF26FPb29taeqsUY8xgnJSXh4MGD2L59u8HtVffHuFevXrh8+TLS09Px9ddfY/To0Th79qzWSRQh1RGdP1Wf95LKROdPNV9dO38C6ByKzqGqByrZM5Kfnx+Ki4uRlZUluDw1NRV+fn46b8ONMfY21VFOTg769+8PV1dX7N69G7a2tibdvkGDBvDy8kJcXFwlzbBydejQAQB0zr+2PM4AsHPnTuTn52PChAkm37a6Pc7cH5zExEQcOnRI8A2In58fHj58KBhfWlqKzMxMva9nU98DrE3fMXOSk5PRq1cvdO7cGevXrzd5H4ZeD9ZkzPGq69ChA0pLS5GQkCB6fW15jAFg06ZN8PT0FG1Sakh1eowBwNnZGREREejYsSM2btwIGxsbbNy4EUDtfS3XNnX1HIrOn+j8yRjV7XGm86faf/4E0DkUnUNVn9czBaSM1KZNG9ja2uLIkSP8Zbdu3cLdu3fRqVMn0duEhYXBz89PcBuFQoGzZ8/qvE11o1Ao0K9fP9jZ2eHXX3+Fg4ODydtISkpCRkYG/P39K2GGlY9b5lfX/GvD48zZuHEjnn76aXh7e5t82+r0OHN/cGJjY3H48GF4enoKru/UqROysrJw8eJF/rI///wTSqWS/0OiqSLvAdZk6JgB1Td7PXv2RJs2bbBp0yZIpab/CTD0erAWY45X0+XLlyGVSnV+K1QbHmNAtYz6pk2bMGHCBJM/AAPV5zHWRalUoqioCEDtfC3XRnXxHIrOn+j8yVjV6XGm86faf/4E0DkUnUNVs3OoCrVCr4FycnLYpUuX2KVLlxgAtnz5cnbp0iW+s35GRga7dOkS279/PwPAfvrpJ3bp0iWWkpLCb+Oll15iISEh7M8//2QXLlxgnTp1Yp06dRLsp3HjxmzXrl387x9//DFzd3dnv/zyC/v333/Z0KFDWVhYGCsoKKj2x5ydnc06dOjAmjdvzuLi4lhKSgr/r7S0VPSYc3Jy2Jw5c9jp06dZfHw8O3z4MIuMjGQNGzZkhYWF1f6Y4+Li2AcffMAuXLjA4uPj2S+//MIaNGjAunfvLthPbXqcObGxsUwikbDffvtNdD815XEuLi5mTz/9NAsKCmKXL18WPG+Lior4bfTv35+1bt2anT17lp08eZI1bNiQPfvss/z1SUlJrHHjxuzs2bP8Zca8B1TXY05KSmIRERGsd+/eLCkpSTBG1zEb+3qojsd76tQptmLFCnb58mV2+/Zt9v333zNvb282YcIEncfLWM1+jDmHDx9mANiNGze09lGdHmNDx5ybm8vmzZvHTp8+zRISEtiFCxfYpEmTmL29Pbt69Sq/jZr2Wq6J6to5FJ0/0fmTMcfMofOn6v2eW9fOnyxxzHQORedQuo6ZMcs/znUmIHX06FEGQOtfdHQ0Y4yxTZs2iV6/cOFCfhsFBQVs+vTprF69eszJyYkNHz5c648SALZp0yb+d6VSyebPn898fX2Zvb096927N7t165YVjtj8Y9Z1ewAsPj5e9Jjz8/NZv379mLe3N7O1tWWhoaFs6tSp7MGDBzXimO/evcu6d+/OPDw8mL29PYuIiGBvvvkmy87OFuynNj3OnHnz5rHg4GBWVlYmup+a8jhzyzOL/Tt69Ci/jYyMDPbss88yFxcXJpfL2aRJk1hOTg5/Pbcd9dsY8x5QXY9Z1/NA/XsJzWM29vVQHY/34sWLrEOHDszNzY05ODiwpk2bso8++khwwl/bHmPOs88+yzp37iy6j+r0GDOm/5gLCgrY8OHDWUBAALOzs2P+/v7s6aefZufOnRNso6a9lmuiunYORedPdP5kzDFz6Pyper/n1rXzJ0scM51D0TmUrmNmzPKPs4QxxkAIIYQQQgghhBBCiJVQDylCCCGEEEIIIYQQYlUUkCKEEEIIIYQQQgghVkUBKUIIIYQQQgghhBBiVRSQIoQQQgghhBBCCCFWRQEpQgghhBBCCCGEEGJVFJAihBBCCCGEEEIIIVZFASlCCCGEEEIIIYQQYlUUkCKEEEIIIYQQQgghVkUBKUJInTFx4kRIJBJIJBLY2toiLCwMb731FtauXctfrutfQkJCVU+fEEIIIaRK0DkUIaQyUECKEFKn9O/fHykpKbhz5w5WrFiBdevWIT4+HikpKfy/Tp06YerUqYLLgoODq3rqhBBCCCFVhs6hCCGWZlPVEyCEEGuyt7eHn58fACA4OBh9+vTBoUOH8Mknn/Bj7Ozs4OTkxI8jhBBCCKnr6ByKEGJplCFFCKmzrl69ilOnTsHOzq6qp0IIIYQQUmPQORQhxBIoQ4oQUqfs27cPLi4uKC0tRVFREaRSKb788suqnhYhhBBCSLVG51CEEEujgBQhpE7p1asXvvrqK+Tl5WHFihWwsbHByJEjq3pahBBCCCHVGp1DEUIsjUr2CCF1irOzMyIiItCyZUt88803OHv2LDZu3FjV0yKEEEIIqdboHIoQYmkUkCKE1FlSqRTvvPMO3nvvPRQUFFT1dAghhBBCagQ6hyKEWAIFpAghddozzzwDmUyG1atXV/VUCCGEEEJqDDqHIoSYiwJShJA6zcbGBjNmzMCyZcuQl5dX1dMhhBBCCKkR6ByKEGIuCWOMVfUkCCGEEEIIIYQQQkjdQRlShBBCCCGEEEIIIcSqKCBFCCGEEEIIIYQQQqyKAlKEEEIIIYQQQgghxKooIEUIIYQQQgghhBBCrIoCUoQQQgghhBBCCCHEqiggRQghhBBCCCGEEEKsigJShBBCCCGEEEIIIcSqKCBFCCGEEEIIIYQQQqyKAlKEEEIIIYQQQgghxKooIEUIIYQQQgghhBBCrIoCUoQQQgghhBBCCCHEqiggRQghhBBCCCGEEEKsigJShBBCCCGEEEIIIcSqKCBFCCGEEEIIIYQQQqyKAlKEEEIIIYQQQgghxKooIEUIIYQQQgghhBBCrIoCUoQQQgghhBBCCCHEqiggRQipFSZOnIj69etX9TT0ev/99yGRSCy6TbHjlkgkeP/99y26n82bN0MikSAhIcHg2GPHjkEikeDYsWMWnQMhhBACAPXr18fEiRP536vj3x3NOdYU3H25c+fOqp6K1fXs2RM9e/Y0amxubi58fHywdevWKpuDsSrj/FNTx44d8dZbb1XqPkjtRAEpQqyE+0DP/XNwcECjRo0wY8YMpKamVvr+69evL9i/s7Mz2rdvjy1btgAAEhISBNfr+2coKFFYWIgVK1agQ4cOcHNzExzrf//9V+nHam25ublYuHAhnnzySTg7O8PT0xOtWrXCzJkzkZycXNXTqzRr1qzB5s2bq3oahBBCrKiqz2cs6cCBAxb/Aqc6ysjIwJtvvonGjRvDwcEBHh4eiIqKwr59+6p6ajXWqlWr4OrqirFjx1b1VAAA+fn5eP/996ssKPv2229j9erVePDgQZXsn9RcNlU9AULqmg8++ABhYWEoLCzEyZMn8dVXX+HAgQO4evUqnJycKnXfrVq1whtvvAEASElJwYYNGxAdHY2ioiKMGzcO3333nWD8559/jqSkJKxYsUJwube3t859pKeno3///rh48SIGDx6McePGwcXFBbdu3cJPP/2E9evXo7i42OLH9vXXX0OpVFp8u4aUlJSge/fuuHnzJqKjo/Hqq68iNzcX165dww8//IDhw4cjICAAAPDee+9h7ty5Ft2/tY77+eefx9ixY2Fvb89ftmbNGnh5eWl9A9y9e3cUFBTAzs6u0udFCCGkalTl+Yymiv7dOXDgAFavXl2rg1K3bt1C7969kZaWhkmTJqFt27bIysrC1q1bMWTIEMyZMweffvppVU+zRikpKcGqVavw+uuvQyaTVfV0AKgCUosWLQIArQyryjj/1DR06FDI5XKsWbMGH3zwQaXui9QuFJAixMoGDBiAtm3bAgCmTJkCT09PLF++HL/88gueffZZs7adn5+v9yQwMDAQzz33HP/7xIkT0aBBA6xYsQJTp04VXAcAP/30Ex49eqR1uT4TJ07EpUuXsHPnTowcOVJw3Ycffoh3333X6G2ZwtbWtlK2a8iePXtw6dIlbN26FePGjRNcV1hYKAi+2djYwMbGsm+7lX3ceXl5cHZ2hkwmM/qkSyqVwsHBoVLnRQghpGpV5HyG+5tiafR3R1xJSQlGjRqFR48e4fjx4+jQoQN/3euvv47x48fjs88+Q9u2bTFmzJgqnKk4Q+e1VWXfvn1IS0vD6NGjDY6trOe8KSrj/FOTVCrFqFGjsGXLFixatKjSSwRJ7UEle4RUsaeeegoAEB8fz1/2/fffo02bNnB0dISHhwfGjh2Le/fuCW7Xs2dPPPnkk7h48SK6d+8OJycnvPPOOybt29vbG02aNMHt27fNPxAAZ8+exf79+zF58mStYBQA2Nvb47PPPhNc9ueff6Jbt25wdnaGu7s7hg4dihs3bgjG5OTkYNasWahfvz7s7e3h4+ODvn37IiYmhh+j2UuJK0H87LPPsH79eoSHh8Pe3h7t2rXD+fPnteZ28+ZNjBo1Ch4eHnBwcEDbtm3x66+/Gjxm7r7r0qWL1nUODg6Qy+X872I1/BKJBDNmzMCOHTvQrFkzODo6olOnTrhy5QoAYN26dYiIiICDgwN69uypVS5pTO+sxMRETJ8+HY0bN4ajoyM8PT3xzDPPaG2LK8P466+/MH36dPj4+CAoKEhwHXeb+vXr49q1a/jrr7/4sg3uGzldvTzOnj2L/v37w83NDU5OTujRowf+/vtvwRhjHmtCCCHVj+b5zMSJE+Hi4oLbt29j4MCBcHV1xfjx4wEASqUSK1euxBNPPAEHBwf4+vpi2rRpePTokWCbjDEsXrwYQUFBcHJyQq9evXDt2jWtfev7uzNw4EDUq1cPzs7OaNGiBVatWsXPb/Xq1QAgKEHkWHqOmkpKSuDh4YFJkyZpXadQKODg4IA5c+bwl33xxRd44okn4OTkhHr16qFt27b44Ycf9O7j559/xtWrVzF37lxBMAoAZDIZ1q1bB3d3d9EMsbKyMrzzzjvw8/ODs7Mznn76aa1z0djYWIwcORJ+fn5wcHBAUFAQxo4di+zsbME4c85rBw8ejAYNGogeX6dOnfigqCn7AsCfGzo6OqJ9+/Y4ceKEzvtR0549e1C/fn2Eh4cLLrfEc15TcXExFixYgDZt2sDNzQ3Ozs7o1q0bjh49yo9JSEjgqxe4YJB6P1HN888nn3wSvXr10tqXUqlEYGAgRo0aJbjM2Hn37dsXiYmJuHz5sv47kBA1lCFFSBXjAhqenp4AgCVLlmD+/PkYPXo0pkyZgrS0NHzxxRfo3r07Ll26BHd3d/62GRkZGDBgAMaOHYvnnnsOvr6+Ju27tLQUSUlJqFevnkWOhQvgPP/880aNP3z4MAYMGIAGDRrg/fffR0FBAb744gt06dIFMTExfKDlpZdews6dOzFjxgw0a9YMGRkZOHnyJG7cuIHIyEi9+/jhhx+Qk5ODadOmQSKRYNmyZRgxYgTu3LnDZxddu3YNXbp0QWBgIObOnQtnZ2ds374dw4YNw88//4zhw4fr3H5oaCgAYMuWLXjvvfcq9I3QiRMn8Ouvv+KVV14BACxduhSDBw/GW2+9hTVr1mD69Ol49OgRli1bhhdeeAF//vmnSds/f/48Tp06hbFjxyIoKAgJCQn46quv0LNnT1y/fl3r28fp06fD29sbCxYsQF5enug2V65ciVdffRUuLi581pu+59+ff/6JAQMGoE2bNli4cCGkUik2bdqEp556CidOnED79u0BmPdYE0IIqTqa5zOA6jwjKioKXbt2xWeffcb/vZk2bRo2b96MSZMm4bXXXkN8fDy+/PJLXLp0CX///Tf/93nBggVYvHgxBg4ciIEDByImJgb9+vUzqvT/0KFDGDx4MPz9/TFz5kz4+fnhxo0b2LdvH2bOnIlp06YhOTkZhw4d0mpZYI052traYvjw4di1axfWrVsnKDfcs2cPioqK+P5EX3/9NV577TWMGjUKM2fORGFhIf7991+cPXtWKztb3d69ewEAEyZMEL3ezc0NQ4cOxbfffou4uDhERETw1y1ZsgQSiQRvv/02Hj58iJUrV6JPnz64fPkyHB0dUVxcjKioKBQVFeHVV1+Fn58f7t+/j3379iErKwtubm78dsw5r23Tpg0mTJiA8+fPo127dvzYxMREnDlzRlBuaOy+Nm7ciGnTpqFz586YNWsW7ty5g6effhoeHh4IDg7W+7gBwKlTp3Sek5j7nNekUCiwYcMGPPvss5g6dSpycnKwceNGREVF4dy5c2jVqhW8vb3x1Vdf4eWXX8bw4cMxYsQIAECLFi1EtzlmzBi8//77ePDgAfz8/PjLT548ieTkZEFfLFPm3aZNGwDA33//jdatWxu8HwkBADBCiFVs2rSJAWCHDx9maWlp7N69e+ynn35inp6ezNHRkSUlJbGEhAQmk8nYkiVLBLe9cuUKs7GxEVzeo0cPBoCtXbvWqP2Hhoayfv36sbS0NJaWlsauXLnCnn/+eQaAvfLKK6K3GTRoEAsNDTX6GIcPH84AsEePHhk1vlWrVszHx4dlZGTwl/3zzz9MKpWyCRMm8Je5ubnpnCMnOjpaMNf4+HgGgHl6erLMzEz+8l9++YUBYHv37uUv6927N2vevDkrLCzkL1Mqlaxz586sYcOGevebn5/PGjduzACw0NBQNnHiRLZx40aWmpqqNXbhwoVM820XALO3t2fx8fH8ZevWrWMAmJ+fH1MoFPzl8+bNYwAEYzWPm9vmwoULBXPUdPr0aQaAbdmyhb+Me4527dqVlZaWCsZz16nv+4knnmA9evTQ2vbRo0cZAHb06FHGmOq+bNiwIYuKimJKpVIwr7CwMNa3b1/+MmMea0IIIVXHmPMZxlR/nwCwuXPnCm5/4sQJBoBt3bpVcPnvv/8uuPzhw4fMzs6ODRo0SPC345133mEAWHR0NH+Z5t+d0tJSFhYWxkJDQ7XOSdS39corr2j9Xa6sOYo5ePCg1jkJY4wNHDiQNWjQgP996NCh7IknntC7LTGtWrVibm5uescsX76cAWC//vorY6z8vgwMDBScg2zfvp0BYKtWrWKMMXbp0iUGgO3YsUPnti1xXpudnc3s7e3ZG2+8Ibh82bJlTCKRsMTERJP2VVxczHx8fFirVq1YUVERP279+vUMgOh5jbqSkhImkUi05sOY+c957n5Qn0Npaalgnowx9ujRI+br68teeOEF/rK0tDSt8z+O5vnnrVu3GAD2xRdfCMZNnz6dubi48OeNpsybY2dnx15++WWtywnRhUr2CLGyPn36wNvbG8HBwRg7dixcXFywe/duBAYGYteuXVAqlRg9ejTS09P5f35+fmjYsKEgPRdQlcCJpXrr8scff8Db2xve3t5o3rw5vvvuO0yaNMlizSwVCgUAwNXV1eDYlJQUXL58GRMnToSHhwd/eYsWLdC3b18cOHCAv8zd3R1nz56t0Ip1Y8aMEWSAdevWDQBw584dAEBmZib+/PNPjB49Gjk5Ofx9npGRgaioKMTGxuL+/fs6t+/o6IizZ8/izTffBKAqbZs8eTL8/f3x6quvoqioyOAce/fuLSi749LqR44cKbgvucu5uRvL0dGR/7mkpAQZGRmIiIiAu7u7aCnc1KlTLdqk8/Lly4iNjcW4ceOQkZHB38d5eXno3bs3jh8/zjdmN+exJoQQYj36zmfUvfzyy4Lfd+zYATc3N/Tt21dwrtOmTRu4uLjw5zqHDx9GcXExXn31VUH28axZswzO7dKlS4iPj8esWbMEGTgAjMpktsYcAVWZo5eXF7Zt28Zf9ujRIxw6dEjQ08nd3R1JSUmiLQf0ycnJMXhOxl3PncNxJkyYILjtqFGj4O/vz5+fcRlQBw8eRH5+vui2LXFeK5fLMWDAAGzfvh2MMf7ybdu2oWPHjggJCTFpXxcuXMDDhw/x0ksvCbLSJk6cyB+TPpmZmWCM6a0uqOhzXoxMJuPnqVQqkZmZidLSUrRt27bC7QwaNWqEVq1aCZ53ZWVl2LlzJ4YMGcKfN1Zk3vXq1UN6enqF5kXqJirZI8TKVq9ejUaNGsHGxga+vr5o3LgxpFJVbDg2NhaMMTRs2FD0tprpvIGBgYI/ptnZ2SgoKOB/t7OzEwR7OnTogMWLF6OsrAxXr17F4sWL8ejRI4uthsb1S8rJydE6AdSUmJgIAGjcuLHWdU2bNsXBgwf5RpDLli1DdHQ0goOD0aZNGwwcOBATJkzQ2VNAHXeiwuFOILja97i4ODDGMH/+fMyfP190Gw8fPtQ6wVbn5uaGZcuWYdmyZUhMTMSRI0fw2Wef4csvv4SbmxsWL15s0hy5EyLNtHHuckP9BjQVFBRg6dKl2LRpE+7fvy84odPs8wAAYWFhJm3fkNjYWABAdHS0zjHZ2dmoV6+eWY81IYQQ69F3PsOxsbHhexFyYmNjkZ2dDR8fH9HtPnz4EED5eYLmOZG3t7fBVgNc+eCTTz5p/AFZeY6A6v4ZOXIkfvjhBxQVFcHe3h67du1CSUmJICD19ttv4/Dhw2jfvj0iIiLQr18/jBs3TrR/pTpXV1eDwYGcnBx+rDrNY5JIJIiIiOB7SYaFhWH27NlYvnw5tm7dim7duuHpp5/Gc889x5+vmHteyxkzZgz27NmD06dPo3Pnzrh9+zYuXryIlStX8mOM3Zeux8zW1takcw31cyl15jzndfn222/x+eef4+bNmygpKeEvN+d8bcyYMXjnnXdw//59BAYG4tixY3j48KHgeVeReTPGqKE5MQkFpAixsvbt22s1YOQolUpIJBL89ttvohkqLi4ugt/VM18AYObMmfj222/533v06CFo8Onl5YU+ffoAAKKiotCkSRMMHjwYq1atwuzZsyt6SLwmTZoAAK5cucJnIlnC6NGj0a1bN+zevRt//PEHPv30U3zyySfYtWsXBgwYoPe2ujJ9uBMJLjNnzpw5iIqKEh2r3lPBkNDQULzwwgsYPnw4GjRogK1btxoMSOmao6G5G+vVV1/Fpk2bMGvWLHTq1Alubm6QSCQYO3Ysf/zqNJ9X5uL28emnn6JVq1aiY7jntjmPNSGEEOvRdz7Dsbe31wpSKZVK+Pj4YOvWraK34ZozVyVrznHs2LFYt24dfvvtNwwbNgzbt29HkyZN0LJlS35M06ZNcevWLezbtw+///47fv75Z6xZswYLFizAokWLdG67adOmuHz5Mu7evav15Rfn33//BQA0a9bM5Ll//vnnmDhxIn755Rf88ccfeO2117B06VKcOXMGQUFBZp/XcoYMGQInJyds374dnTt3xvbt2yGVSvHMM8/wY0zdV0V5eHhAIpHo/HLQ0s/577//HhMnTsSwYcPw5ptvwsfHBzKZDEuXLjVrUaIxY8Zg3rx52LFjB2bNmoXt27fDzc0N/fv3N2veWVlZ8PLyqvC8SN1DASlCqpHw8HAwxhAWFoZGjRqZfPu33noLzz33HP+7oW/nBg0ahB49euCjjz7CtGnTzF6WdsiQIVi6dCm+//57gwEprhn4rVu3tK67efMmvLy8BPPx9/fH9OnTMX36dDx8+BCRkZFYsmSJ2UEK7tswW1tbPlhnCfXq1UN4eDiuXr1qsW1W1M6dOxEdHY3PP/+cv6ywsBBZWVlmbdfYb8C4VWjkcrlR93FlPdaEEEKqXnh4OA4fPowuXbro/QKEO0+IjY0VZK6kpaUZzBTm/u5cvXpV798dXX/HrDFHTvfu3eHv749t27aha9eu+PPPP/nFQtQ5OztjzJgxGDNmDIqLizFixAgsWbIE8+bNg4ODg+i2Bw8ejB9//JFfeEWTQqHAL7/8giZNmmh9+cZlN3MYY4iLi9NqlN28eXM0b94c7733Hk6dOoUuXbpg7dq1WLx4sdnnterHPnjwYOzYsQPLly/Htm3b0K1bNwQEBPBjjN2X+mPGrQwJqFoaxMfHCwKBYmxsbBAeHi5YHdsQY59PYnbu3IkGDRpg165dgufrwoULBeNMzUoKCwtD+/btsW3bNsyYMQO7du3CsGHDYG9vX+F5379/H8XFxWjatKlJcyF1G/WQIqQaGTFiBGQyGRYtWqSVBcMYQ0ZGht7bN2vWDH369OH/catd6PP2228jIyMDX3/9tVlzB1TL7/bv3x8bNmzAnj17tK4vLi7mlzD29/dHq1at8O233woCI1evXsUff/yBgQMHAlDVtGuWlfn4+CAgIMCo/kyG+Pj4oGfPnli3bh1SUlK0rk9LS9N7+3/++Uc0HT4xMRHXr18XLUm0NplMpvV8+uKLL1BWVmbWdp2dnY0KarVp0wbh4eH47LPPkJubq3U9dx9X9mNNCCGk6o0ePRplZWX48MMPta4rLS3l/6706dMHtra2+OKLLwR/w9TLtHSJjIxEWFgYVq5cqfV3Sn1b3BdfmmOsMUeOVCrFqFGjsHfvXnz33XcoLS0VlE0B0Dr/s7OzQ7NmzcAYE5RwaRo1ahSaNWuGjz/+GBcuXBBcp1Qq8fLLL+PRo0dawQ1AtXowV84HqAIjKSkp/JdDCoUCpaWlgts0b94cUqmU/5tt7nmtujFjxiA5ORkbNmzAP//8o3UfGbuvtm3bwtvbG2vXrhWshLh582ajv6jr1KmT1v2pj7HPJzFctpf6MZ09exanT58WjONW8zPly8YxY8bgzJkz+Oabb5Cenq51n5o674sXLwIAOnfubPQcCKEMKUKqkfDwcCxevBjz5s1DQkIChg0bBldXV8THx2P37t148cUX+YCOpQwYMABPPvkkli9fjldeeUXnsrPG2rJlC/r164cRI0ZgyJAh6N27N5ydnREbG4uffvoJKSkp+OyzzwCoSrgGDBiATp06YfLkySgoKMAXX3wBNzc3vP/++wBUvQ2CgoIwatQotGzZEi4uLjh8+DDOnz8vyPgxx+rVq9G1a1c0b94cU6dORYMGDZCamorTp08jKSkJ//zzj87bHjp0CAsXLsTTTz+Njh07wsXFBXfu3ME333yDoqIi/jiq0uDBg/Hdd9/Bzc0NzZo1w+nTp3H48GHB0twV0aZNG3z11VdYvHgxIiIi4OPjI/i2kSOVSrFhwwYMGDAATzzxBCZNmoTAwEDcv38fR48ehVwux969e63yWBNCCKlaPXr0wLRp07B06VJcvnwZ/fr1g62tLWJjY7Fjxw6sWrUKo0aNgre3N+bMmYOlS5di8ODBGDhwIC5duoTffvvNYEmQVCrFV199hSFDhqBVq1aYNGkS/P39cfPmTVy7dg0HDx4EUL5M/WuvvYaoqCjIZDKMHTvWKnNUN2bMGHzxxRdYuHAhmjdvrpVh0q9fP/j5+aFLly7w9fXFjRs38OWXX2LQoEF6m5bb2dlh586d6N27N7p27YpJkyahbdu2yMrKwg8//ICYmBi88cYbGDt2rNZtPTw8+NukpqZi5cqViIiIwNSpUwEAf/75J2bMmIFnnnkGjRo1QmlpKb777jvIZDKMHDkSgGXPawcOHAhXV1fMmTNHsA+OsfuytbXF4sWLMW3aNDz11FMYM2YM4uPjsWnTJqN7SA0dOhTfffcd/vvvP6Myv4x9PokZPHgwdu3aheHDh2PQoEGIj4/H2rVr0axZM8GXfI6OjmjWrBm2bduGRo0awcPDA08++aTePmqjR4/GnDlzMGfOHHh4eGhlE5o670OHDiEkJAStW7c2eJ8QwrPSan6E1HncMsnnz583OPbnn39mXbt2Zc7OzszZ2Zk1adKEvfLKK+zWrVv8mB49epi0BHBoaCgbNGiQ6HWbN29mANimTZsElw8aNIiFhoYavQ9Ofn4+++yzz1i7du2Yi4sLs7OzYw0bNmSvvvoqi4uLE4w9fPgw69KlC3N0dGRyuZwNGTKEXb9+nb++qKiIvfnmm6xly5bM1dWVOTs7s5YtW7I1a9YIthMdHS2Ya3x8PAPAPv30U635QWRZ3Nu3b7MJEyYwPz8/ZmtrywIDA9ngwYPZzp079R7rnTt32IIFC1jHjh2Zj48Ps7GxYd7e3mzQoEHszz//FIzVXHaXm8srr7wiuEzX3LmlmNWXWNY8brHje/ToEZs0aRLz8vJiLi4uLCoqit28eZOFhoYKlqTW9xzlrouPj+cve/DgARs0aBBzdXUVLJWsufw259KlS2zEiBHM09OT2dvbs9DQUDZ69Gh25MgRxpjxjzUhhJCqY+z5THR0NHN2dtZ5/fr161mbNm2Yo6Mjc3V1Zc2bN2dvvfUWS05O5seUlZWxRYsWMX9/f+bo6Mh69uzJrl69qvX3S9ffnZMnT7K+ffvyf1NatGghWOq+tLSUvfrqq8zb25tJJBKtv9GWnKM+SqWSBQcHMwBs8eLFWtevW7eOde/enf/7GR4ezt58802WnZ1t1PYfPnzIZs+ezSIiIpi9vT1zd3dnffr0Yb/++qvWWO6+/PHHH9m8efOYj48Pc3R0ZIMGDWKJiYn8uDt37rAXXniBhYeHMwcHB+bh4cF69erFDh8+rLVNS53Xjh8/ngFgffr00TnGmH0xxtiaNWtYWFgYs7e3Z23btmXHjx9nPXr04M9l9CkqKmJeXl7sww8/FFxuiee85hyUSiX76KOPWGhoKLO3t2etW7dm+/btEz3/O3XqFGvTpg2zs7MTnAuKnX9yunTpwgCwKVOmmDXvsrIy5u/vz9577z2d2yFEjIQxE7vjEkIIIYQQQgghddSHH36ITZs2ITY2VuciNHXJnj17MG7cONy+fRv+/v5VPR1Sg1APKUIIIYQQQgghxEivv/46cnNz8dNPP1X1VKqFTz75BDNmzKBgFDEZZUgRQgghhBBCCCGEEKuiDClCCCGEEEIIIYQQYlVVGpA6fvw4hgwZgoCAAEgkEtFl4jUdO3YMkZGRsLe3R0REBDZv3lzp8ySEEEIIIYQQQgghllOlAam8vDy0bNkSq1evNmp8fHw8Bg0ahF69euHy5cuYNWsWpkyZwi/dSgghhBBCCCGEEEKqv2rTQ0oikWD37t0YNmyYzjFvv/029u/fj6tXr/KXjR07FllZWfj999+tMEtCCCGEEEIIIYQQYi6bqp6AKU6fPo0+ffoILouKisKsWbN03qaoqAhFRUX870qlEpmZmfD09IREIqmsqRJCCCGkhmOMIScnBwEBAZBKqe2mUqlEcnIyXF1d6RyKEEIIIaJMOX+qUQGpBw8ewNfXV3CZr68vFAoFCgoK4OjoqHWbpUuXYtGiRdaaIiGEEEJqmXv37iEoKKiqp1HlkpOTERwcXNXTIIQQQkgNYMz5U40KSFXEvHnzMHv2bP737OxshISE4N69e5DL5VU4M0IIIYRUZwqFAsHBwXB1da3qqVQL3P1A51CEEEII0cWU86caFZDy8/NDamqq4LLU1FTI5XLR7CgAsLe3h729vdblcrmcTqYIIYQQYhCVp6lw9wOdQxFCCCHEEGPOn2pUQ4ROnTrhyJEjgssOHTqETp06VdGMCCGEEEIIIYQQQoipqjQglZubi8uXL+Py5csAgPj4eFy+fBl3794FoCq3mzBhAj/+pZdewp07d/DWW2/h5s2bWLNmDbZv347XX3+9KqZPCCGEEEIIIYQQQiqgSgNSFy5cQOvWrdG6dWsAwOzZs9G6dWssWLAAAJCSksIHpwAgLCwM+/fvx6FDh9CyZUt8/vnn2LBhA6Kioqpk/oQQQgghhBBCCCHEdBLGGKvqSViTQqGAm5sbsrOzqf8BIUZSJCmQEZsBz4aeAMD/LA8y/TWkvq2K3J4QQqyFzhmE6P4ghBAhxhhKS0tRVlZW1VMhxGpkMhlsbGx09ogy5XyhRjU1J4RYX8zGGOx7cR+YkgHcew4DJFIJBq8fjMjJkRXalkQqQe+PeyOgbUCVB6coSEYIIYQQQkxRXFyMlJQU5OfnV/VUCLE6Jycn+Pv7w87OzqztUECKEKKTIklRHowCALV8SqZk2DdtHyKiInQGcTQzq9S3xZQMh986DKBiwa2K0gw+aQbJrDUPQgghhBBSMymVSsTHx0MmkyEgIAB2dna0IiupExhjKC4uRlpaGuLj49GwYUNIpRXvBEUBKUKIThmxGeXBKBGsjOHe6Xt44pknAAiDPXEH4wSBno6zO+rcFlMy7J26F2XFZWg8pLHZWUq6Mp7EMrSOzD0iCJIZCrIRQgghhJC6rbi4GEqlEsHBwXBycqrq6RBiVY6OjrC1tUViYiKKi4vh4OBQ4W1RQIqQWqSipWe6bufZ0BMSqURvUGrnmJ24f+4+XHxdcPjtw+VjJeAzqpiS4fTnp/VPggEHph/AgVcOYMjXQyqcpaQr40kz24spGQ7PPQwoNaZRxpAZl0kBKUIIIYQQopc5mSGE1GSWeu7TK4iQGkaRpED80XgokhSCy2M2xmBl6EpseWoLVoauRMzGGKO2p367FSEr8Mebf0CRpIAiSYG7p+4icqqBwBADTn92GofePCQMXGnGsIxdPoEB+6bt0zo+Y4gFnbht3Tt1TzuwpkR5X6zHJDIJPCI8TN43IYRY0/HjxzFkyBAEBARAIpFgz549Bm9z7NgxREZGwt7eHhEREdi8eXOlz5MQQgghRBfKkCLEisxtnq3ZYLzTG53QcWZHANr9mfSVnnHzsHOx0+oRdfqz06pspipcf7OiWUpiJYasjOHsqrM49fkprfESmQQRAyMQuzeW/33wusGUHUUIqfby8vLQsmVLvPDCCxgxYoTB8fHx8Rg0aBBeeuklbN26FUeOHMGUKVPg7++PqKgoK8yYEEIIIUSIAlKEQDxQpC94pB7QKc4t1juGa+h9ZtUZnFl+pkLNs7lsJbHg0ZnlZ0T7M4kFdRRJCsE81MvqhDc2alqVpqJZSnYudtrHJIUqGKVxTBKpKvhUnFvMB6RmJcyqtP5VlYVWCCSkbhowYAAGDBhg9Pi1a9ciLCwMn3/+OQCgadOmOHnyJFasWKEzIFVUVISioiL+d4XC9MxVQgipSyZvPm/V/W2c2M6q+yPE0iggReo8sawjQT8kjUwkQUDnMa5BdkDbANi52OHa9mt6gz7qGUwA9Aa3BPMTobM/kxSwdbblfz312SkcevOQxo1NuKOsRQI+S8mUYMuF9Rew/6X9gmPimqmf/kz7/mn9YmvUa1APd0/c5S8zN6Bj7RX7aIVAQoixTp8+jT59+ggui4qKwqxZs3TeZunSpVi0aFElz6ya+WFMVc8AGLfN7E1Y+0OxGPqgTEjdNnHiRGRlZfEl5T179kSrVq2wcuVKq87j2LFj6NWrFx49egR3d3ed444cOYIZM2bg6tWrkMlkFd7f+++/jz179uDy5cui11+/fh39+vXDrVu34OzsXOH91BYUkCJ1mmbPIS7rSMCIMjamZDj81mEdV+q4uIzh+JLjiFkfoze4pS8YpXcfSmBjx40YvH4wCjILdM+vmum1uBciJ0fqLE8Uy0S7e+quVjAKAAatHYSGAxqKPnYx62IQszZG0EOKMVbhJXt19a+qrBX7rL0/QkjN9uDBA/j6+gou8/X1hUKhQEFBARwdHbVuM2/ePMyePZv/XaFQIDg4uNLnSgghpHJMnDgR3377LQDA1tYWISEhmDBhAt555x3Y2FRuaGDXrl2wtbU1PBDGB5Es6a233sJ7771nVjDKGM2aNUPHjh2xfPlyzJ8/v1L3VRNQQIrUaWI9h3SqhGyii2svau9GPbilq6TOSEzJsPfFvdUzE0oHZy9nnYHCM8vPCLKADGWP5afnQx4kR0RUBOJ+jxNeyTT+B1BWXAYb+4q9LerqX6VeNmnJ8jpj9kcIIeawt7eHvb19VU+DEEKIBfXv3x+bNm1CUVERDhw4gFdeeQW2traYN2+e1tji4mLY2dlZZL8eHtV30aCTJ0/i9u3bGDlypM4xlrwvJk2ahKlTp2LevHmVHgis7miVPVKneTb0hERasYwYq7BEIElpoe1YSWFWoc5AofqqeffP3zeYPWbnrPqjEdgx0Kh9lxWVVWzSUD2X9K3YV9FVEPXtT/O5SysEEkJ08fPzQ2pqquCy1NRUyOVy0ewoQgghtZO9vT38/PwQGhqKl19+GX369MGvv/4KQJVBNWzYMCxZsgQBAQFo3LgxAODevXsYPXo03N3d4eHhgaFDhyIhIYHfZllZGWbPng13d3d4enrirbfeAmPCc/SePXsKysSLiorw9ttvIzg4mF/9dePGjUhISECvXr0AAPXq1YNEIsHEiRMBAEqlEkuXLkVYWBgcHR3RsmVL7Ny5U7CfAwcOoFGjRnB0dESvXr0E89Tlp59+Qt++feHg4MBf9v7776NVq1bYsGEDwsLC+OuysrIwZcoUeHt7Qy6X46mnnsI///xj1H3P6du3LzIzM/HXX3+ZdLvaqO6G4/LyALF0PJkMUHsiIi9P9zakUkD9JM6Usfn5ANPxQVoiAZycKja2oABQKnXPQ71O1ZSxhYVAmZ4P66aMdXJSzRsAioqA0lLLjHV0VN3PAFBcDJSUGBwrD5Kj/2dP4fDs33QOLYUN2OPYrRSlkEH3fSYcWwYZdN8PpZCBQWbyWAnKYKNnbBlkUKqPlZTpDEgJxyphA933bxmkUMIGbV5qg5i1540aq6KErQljix8+QvLxPNiiWGusElKUldmoVs377G/YQvdjrISUD9jIbKWi2ysfK0EZbFFaVAp72Gu9lhX3FciMy4RHhAfkIfVE3yPk9WToMPlJxGxQBZokUgn6fzGQ74W178V9sFEWcTvEwRd3IaKbP+SBj7OZRN4jFEnZ5fsNVMt6kkggD5Jj8PrB2DtlL2xQDKlEggH/GwB5PZlw/hZ6jxDcB9xcHo9VJCmQeS0ZHmFuwnnq2m4Neo8waqyDQ/nfE1PGlpSoxutibw9w35qZMra0VHVf6GJnB3Ap86aMLStTPXa62Nqqxps6VqlUPdcsMdbGRnVfAKq/m/n55o3V93e9hunUqRMOHDgguOzQoUPo1KlTFc2IEEJIdeDo6IiMjAz+9yNHjkAul+PQIVXv2ZKSEkRFRaFTp044ceIEbGxssHjxYvTv3x///vsv7Ozs8Pnnn2Pz5s345ptv0LRpU3z++efYvXs3nnrqKZ37nTBhAk6fPo3//e9/aNmyJeLj45Geno7g4GD8/PPPGDlyJG7duiX44mTp0qX4/vvvsXbtWjRs2BDHjx/Hc889B29vb/To0QP37t3DiBEj8Morr+DFF1/EhQsX8MYbbxi8D06cOIFx48ZpXR4XF4eff/4Zu3bt4kv5nnnmGTg6OuK3336Dm5sb1q1bh969e+O///4zOgvMzs4OrVq1wokTJ9C7d2+jblNb1d2AVECA+OUDBwL795f/7uOj+4S2Rw/g2LHy3+vXB9LTxce2bQucV2sw2awZkJgoPrZZM+DatfLf27UDrl8XHxsaCqhHfbt3By5cEB/r5QWkpZX/PmAAoCsq6+QkPBEfORLQOJEVUA+YPf88oBGpFsjNLf9wOm0a8LiOWdTDh4C3t+rn2bOBNWt0j42PVz0GAPDuu8Bnn+kee/Uq8MQTAIAWifvQHp/oHPo1piIZqgybjjiLvjikc+xmRCMRYQCANriIgdB9n/2AcYhFIwBAc/yLYfhF59gdeAbXoZpvU9zEM9ihc+weDMU/aA0AaCi5g2fZVp1jD2AgzqM9ACAEiZgI3Y/FIfTFaWlXdH+3O8r+PoOhVz7SOfYYeuAvqL7Z8EY6pkP343YKnXEI/QAAbshGr8+HAAC6iIw9j3Y4IBmE08tPwwn5eBOf6tzuZbRE9iNVA1+Wl4d3oHu+19AMOzG6PEPKxUVwvfzxPwDIbt4Fbv+eLL9S7T2i/+N/AFSZadtOAi8f4zO+ZmIlnJFffn3jJeXb0XiPKAqJgDwjBaLhncfvES0ntMTeKXsxFV/Dh6UBrywBXtEYa6H3CPX7AAD/HsGVTY5Vfg85YsW3C9To9wh89BGgr7HzuXOq92kAhR98AoclC3SPPXoU6NlT9fP69cCMGbrH7tsHDBqk+nnrVmDSJN1jt28HnnlG9fPu3cDo0brHbtoEPP6mEQcPAoMH6x775ZfAK4+fVCdOAI+/sRS1bBnw5puqn2NigPbtdY9duBB4/33VzzduAE8+qXvsnDnAp49f63fvAmFhusdOnw6sXq36OT1d9frUJToa2LxZ9XN+vtbrvrrLzc1FXFx5KXJ8fDwuX74MDw8PhISEYN68ebh//z62bNkCAHjppZfw5Zdf4q233sILL7yAP//8E9u3b8d+9XMeQgghdQZjDEeOHMHBgwfx6quv8pc7Oztjw4YNfHna999/D6VSiQ0bNvC9Vjdt2gR3d3ccO3YM/fr1w8qVKzFv3jyMGDECgGpl14MHD+rc93///Yft27fj0KFD/IIbDRo04K/nAjs+Pj58D6mioiJ89NFHOHz4MP9lSoMGDXDy5EmsW7cOPXr0wFdffYXw8HB+RdnGjRvjypUr+OQT3Z/1ACAxMREBIvGB4uJibNmyBd6PzzVPnjyJc+fO4eHDh3xJ+2effYY9e/Zg586dePHFF/XuR11AQAASdcUD6pC6G5Ai5LHse9lwMDysRvJp4QOYlkGqV8volpAHyeHV2Au4YrntmoRBKwVYl8IsVYZGaaGerBk1pUWGxz288hCSJIVJfZr4cj4jSycVSQooMwpgqHNLSZ6eTJxKxhiQo9nrq46L2RiDjI9OoG9VT4TUCRcuXOBLGgDwzcejo6OxefNmpKSk4O7d8lVEw8LCsH//frz++utYtWoVgoKCsGHDBkRFRVl97oQQQqrOvn374OLigpKSEiiVSowbNw7vc18SAWjevLmgV9I///yDuLg4uLq6CrZTWFiI27dvIzs7GykpKejQoQN/nY2NDdq2bavznP3y5cuQyWTo0aOH0fOOi4tDfn4++vYVnmkVFxejdWvVl/E3btwQzAOAUZnABQUFgnI9TmhoKB+MAlT3RW5uLjw9PbVuf/v2baOPBVBlpuXry+SuI+puQCo5GZCLfKDULON7+FD3NqQaLbj01adqjr1+XX8Znrrz540fe/y4/nIcdb/9ZvzYn3/WX2Kj7rvvyr91FqNePrRuXfm32YbGLl+u+gZeF/VypyVLyr991zNWkaTAsZLOuA3d6ZWlai+TM+iA89C9jLH62Itog8topWds+XPtClrwGVCGxt5AE3yEd3SOLVMb+/c/Ljhr5Ni7CDWwXSmUmy8juEswUm0DtcYO/HIgWk1shV9e+AX/br/BX54GL4Pb5WTDTe9YpdrYfDgZHNv8cUCquMzGwFjV66is+PFzPDcXAJDwVwJ+GPSD1tjn1BuHq71HXPrmEn57TVX+OS9nHiSP30/kQXK0nNASq76dBQCQSCQY8OUAtIpuVb5htfeIjNgM/IDpmi2pMP7AeIR2D+Vf90U5qlKrrzEV4/Y+i7BeIpkjZr5HJBy9o3UfAMD4n8dDqdbraztGQ/o44sbPU5ca9B4BAHjnnfLMHzEODnxZpoSVv0dIpBK8cuMVYRmj+snOiy+WZyqJUW8mPX58eQaUobHDh/PPYVHqDTmjoowf262b/rHqK+dERho/tmlT48eGhOgfq94Y1MvL+LFOTuJjFQrdGdVVrGfPnnqD85tFXmM9e/bEpUuXKnFWhBBCqrtevXrhq6++gp2dHQICArSaajurt1mAKiO3TZs22LpVu+pCPVhjior0Lsx9/Hd6//79CAwU9oc1dwEOLy8vPHr0SOtysfvC398fx9SrpB4zdTXAzMxMhIeHm3Sb2qjuBqScnYU9TfSNM2WbxlL/EGXJsaa8uE0ZKxIxtshYe3vhBylLjbWzE36QEiFcoc24FROUsNHTQUpzbHl/JkuOZZChpFLGSlFi6H5gUFu1Tzg2Lw+AszMcAj3VekIBMGa7FRorMTi2KEsVsCkrVhq1Xb5kz1m10l9uLkOp1F6QAaTVOFztdV8iseP3o7R3hMy2/L73auLFXzdm9xg0GdpE5zw8G3qiVGInyKiSyCSo1zxIsL/iXFVPoVLYQWnvaNx7kInvER4tgkXvg3rNg1Q/SyVgSoYy2KJMxzy11JD3CFPGcmWZTP09QglkJhdB3kjHfWFrKwy26GPKWBsbYbDFUmNlMuP/zpkyViqtnLESifljjf0ihhBCCKkhnJ2dERERYfT4yMhIbNu2DT4+PpCLJXQA8Pf3x9mzZ9G9e3cAQGlpKS5evIjIyEjR8c2bN4dSqcRff/3Fl+yp4zK0ytT+Djdr1gz29va4e/euzsyqpk2b8g3aOWfOnDF4jK1bt8Z1XS1y1ERGRuLBgwewsbFBfa4NRAVdvXoVo0aNMmsbtUHdDUiROk1BpUYVpyMil5em6jnm4ld9+rCYWrJ399RdOHk5Ie5gXPnzQy3BSCKVYPC6wTrL9dRL/sqKygQBKe7+4bajjzxIjsD2gbh/9r5qvEx8v1xACgBYWeU8l+VBcvRe2huH3z6smovGfdBhZgecWVH+h77J0CYmlTPWFmJlmbTqISGEEFK3bJyou5Kipho/fjw+/fRTDB06FB988AGCgoKQmJiIXbt24a233kJQUBBmzpyJjz/+GA0bNkSTJk2wfPlyZGVl6dxm/fr1ER0djRdeeIFvap6YmIiHDx9i9OjRCA0NhUQiwb59+zBw4EA4OjrC1dUVc+bMweuvvw6lUomuXbsiOzsbf//9N+RyOaKjo/HSSy/h888/x5tvvokpU6bg4sWLohnDmqKiovCtvp6lj/Xp0wedOnXCsGHDsGzZMjRq1AjJycnYv38/hg8fjrZt22rdZvfu3Zg3bx5u3rzJX5aQkID79++LBuPqGqnhIYTUPhlqpUbqWka3NBgsaDqqKTrP6Vw+TgpETouEVn1VbSUVD6g4e6uyC5x9TcgUrGS5qbmIPxqPgkw9q3Kp+e2V37AiZAX2Tt1b/vxQe5r0/rg3Iidrf9OjSFIg/mi8IOik2Y8qP628Rjw/3XC9uMxOFczyauKFWQmzRPdbnKMWkKrE4Gr9XvX5n4d8PUQwFydvVQanrbMqe+fe6Xu4c/gOFEkKk/bB3Yem3q66kAfJ4dvCl/9dVxCREEIIIaQmcXJywvHjxxESEoIRI0agadOmmDx5MgoLC/mMqTfeeAPPP/88oqOj0alTJ7i6umL48OF6t/vVV19h1KhRmD59Opo0aYKpU6ci7/GiWoGBgVi0aBHmzp0LX19fzHi8CMyHH36I+fPnY+nSpWjatCn69++P/fv3I+zxgichISH4+eefsWfPHrRs2RJr167FRx/pXtiIM378eFy7dg23bt3SO04ikeDAgQPo3r07Jk2ahEaNGmHs2LFITEyEr6+v6G2ys7O1tvvjjz+iX79+CA3V0+KijpAwY7sD1xIKhQJubm7Izs7WmXJIaj9FkgIrQlYIm0xLgNfvvq7Kjpm2T5VxIgGaPdMMDQc0RGFWIYK7BCOwXSC/jcy4THhEeEAeJFeVAD6+nUQmQe+lvXFk7pFalYUlkUoweL1qRS7+PnpsyNdDEDklEnG/x2HrAN0r+9Vk/f/XHx1eFTZKFJR+qmXIzL4/G64B5c0ftw7YirjfVSti9f20LzrP6ax3XytDVyL7bjYC2gZg6vmpomNu/XoLPw39CQDw7N5n0WhwowoemX7/7fsPPw75EQDwzM5n0GxkM/667SO348auG+j1YS/8/cnffNYW91wRC6RpUr8PTbldVVMkKZARmwHPhp6QB8nxTddvcO/vewjrE4Zhm4ZRMKoWoHMGoTpxf/wwpqpnAIzbZvYmJm8+b3hQJauNmSKEcAoLCxEfH4+wsDDRZtik5nnzzTehUCiwbt26St1PcXExGjZsiB9++AFduoitK14z6HsNmHK+QCV7pE6SB8kR9lQY4o/E85eFPRUGeZAckZMjEREVIQg26dqG+nVit3P0cFT1XDK28ZSJuP49+tg42KC0uNT8OUiByWcm8wG5iKgIxB2Mw94pewXDqlPJnqXlpOQIftcq/VR7KDQzpNSzpwxlSClLlVDcV2UK6Xt8BSV7lRj4zE0tb/asLBU+kZIvJAMAPBt7ojhPOJ990/YhIipCb2BG8z409nZVTSyIVpChysRz8nCq1nMnhBBCCCFC7777LtasWQOlUgmp5oJkFnT37l288847NToYZUkUkCJ1loO7MJIb3CWY/1kz2GQssSCVbwtfbOy4URgwkKhSPisSROj0Ziec/vQ0AGD87+Mhs5Uh+UIyDs89LNpHqLSwFH2W9UH+w3ycXnG6Qr2GuPIjLhgFqI41Ikq7IeKdI3dM3n61ppb19PfHf8Mj3IPP3tFV+gmoNUh/TFfJnmaWDQDkJOfwj5O+5wi3yp6hcebKSy0PpilLygNSeWl5yL6bDUAV+ITGFFgZQ6b6ioQixO5D7nbc9er3TVVRf5wAiAbRuPcUfrVGQgghhBBSI7i7u+Odd3Svym0pERERJjWVr+0oIEXqLM1eNfZy85YL1SWwXSAGrx8sKOcbvE6j7E0K1Yd5jRJCAFpNksP7hvMBKQd3BwS2C0T9nvXx5NgnkRmXieLcYvw09CfBh/wj845gVsIsdJjZAZlxmdgzcQ+yE7MF8+Syrbhyw8B2gbB1tkVJXonOTDGHeuVBveK8YiiSFDj81mFz7q5qRyKRlC+tziDI3rFzsdOZpabZSF0sQ0pXqVpWYhY/tjpnSKVcTAEAeDbyhH9rf637wpim3p4NPVXPf7XEK4lMgvvn72NL7y2C+yYiKqJKAlSaj1PH2R1Fg2iFj1RN9MtKKCBFCCGEEEKIIRSQInWWZkDKwa3y6r91lQGqX6beu0osaMVdFv9neZnhxo4b+SAGl50VfzReZ8ZJ/Z71IQ+S86vPqRuzZwzsXe31lilqsnUqX4a+ILNAb8aQMeWF1ZGu+1KwEp8I9ZK94rxilBaU/16QUSBaqrb3xb3wbeErCBbqDUhZqam5eoaUerCFK9cLaBsAeZAcg9cNxt6pqhJOQysScuRBcrR/pT3OfXGOvyy0W6ggsMmUDHun7uWzCq3ZZ0rscTq9/LToinpcVpt6Fpk5+60u2WGEEEIIIYRUBgpIkTpJWapEbkqu4LKy0srNahArA1S/zJigFQCsmLqCv71Yvx3Php4GM1WKsstLvTj1GtSDzxM+Jh2TRFK+2p7inkJ03/xcwRDePxy3f79t0j6qnEbgAVJVZpK+YBQgLNlTL9cDVL2orm2/pn17pSrI2HhoY/4iczKkLBXUEJTsqWVI3T15FwBQL6IeACBySiTOf3UeD2IeoP8X/Y0OGIV0CxEEpBKOJWgPYuAz1azZZ0o0yKqE4LkskUnw1JKncGTuEQDml+zV1CbvhBBCCCGEmKLyunURUo3lPsjV+pB54JUDiNkYU0UzUpEHyfksJrHLMmIzdPbpUR8/eP1gSGSqYJHm8vO6jtHe1fSSRfVtXd50GXEH41Sr8Im9syi1+3bVCJpxHiXw45AfDWYkqWdIqZfrAcCj24/wxxt/iO9OyXBzz03B72IUSQpk3MrQOS5mYwxWhq7Elqe2YGXoSrOe24KSvcfZPzEbY3D7oCogc2LxCX77fq38AAD5D/U3blenWd5oDM3nfWXhgqzqJDIJgjoE8b9POjEJDfo04H83p2RPV5N3zYzOqqJIUiD+aHy1mQ8hhBBCCKm5KEOK1EmiH6aUqParexmT/QTozrbiPuyKsXO1M2kuYtvaN20fZiXMwpQzU7QauUtkErj41t4V+DSJZUjZudgJspp0Uostqd+HXMZTysUUHHr7kKDvkuY4S65cp5khpfnYq2/fu6k3ACD9RrrR21cvZxQl0mPNmP5UliAPkqPpqKa4vv26ar+PSxEV98rfQyRSCQoyC/jfzSnZ09fkvarflyhzixBCCCGEWBJlSJE6Sde3+9bKuqgoQ9lPmmM1s6309XgyNUNK3wdnrpG75jydfZz1bpMbX1k0M10qk1iGlFHBKA3cfaye8XToTWEwChCu3Gdo5TpTlJWUCYMtpUq92/dq6gUASLuRZvQ+SgpKdF8pBWYlzMKA/w0QXGxMfypLsXUo75U2aO0gRE6ORGF2eR+2vNQ8FGSU30fmZEjpysiyRvBNn+qeuUUIIYQQQmoeypAidZKuD1HV4YOfIbqyn4yhr8dT7oNcs7elfv+JzfPU56f0bnNWwizcPXkXPz/7s9HzMMXE4xOhLFHi217fVsr21enrIWWIzE7G9yFiSqYVDBCTk5zD/+zZ0FO06XZFntt5D4XlhmUlZXq3z807478MKEuVkNoY/t6Dy5AK7hyMpLNJfBN/VsYAJWDraCsoiXP0crRqZs6Dyw/4n7lgkXofttzUXEFWlDk9pORBcvT7vB8Ovn6Qv2zwWusF33SpzplbhBBCSLXxwxjr7m/ctkrbdP369TFr1izMmjWr0vZhTcYcT3FxMZo1a4YtW7agc+fO1puclUkkEuzevRvDhg0TvX7s2LFo164d3njjjUqfCwWkSJ3EBaRcA1wFH+RbPNeiRny4EmuQbuztBq8fzK/cpx5UWBm60qQSHM1tiWVrac7TxkH/W448SC4IPFhavbB6iP0tttK2r060h5Rmg3Qd1AMaTMn0ZrZxnLyd+J/lQXKEdAnhm44DQJsX2wgeC2MbnquX6wGqDCl5kBxNhjXBzd2qXlfqj72yTAkbRxuUFpTiUfwjVfDKAC5DyrelL0ZtG8UHMde1Xof89HzkpOQIgnoF6QUozi2GnYtpZaYVUVpUirTr5dle3AqV6itV5j3MEzyu5q6yx/Xh4jQc1NCs7VmCseXChBDCs/YHczGV+GGdkJrq3r17WLhwIX7//Xekp6fD398fw4YNw4IFC+Dpafi8rTZbu3YtwsLCanUwyhjvvfceunfvjilTpsDNza1S90Ule6RO4gJSOSk5gsv//f7fWl+CEjk5ErMSZmHU9lGCyytSgsNtK/poNGYlzDIYzLKxNxwDt3W2NTimogoyCnT20LI0sQypJsOamFyWyJQMdi52BssN1RvGl5WU8UEU7yfKezpxzahNaXiu3tAcKA+2OHo6AgBaRrcUPPZSmRRejb34fRqDa2pu42gjKDV18Vf1HMtJzhEEjgEg87Z1SmvTb6QLVhbkAlHqGVJ5qXnIzygPmJlTsgcAD68+FPyuHhCrKvIgOQatHSS4rP2M9jUigE8IIYQQlTt37qBt27aIjY3Fjz/+iLi4OKxduxZHjhxBp06dkJlZda1LysrKoFSa96WeORhj+PLLLzF58uQqm4O5Skr0tMEwwZNPPonw8HB8//33FtmePhSQInVSzv3HH24NrFhXW8mD5HDycrLI8Yv1qtLFUIaUsWMqKjsp22CmkaWoZ0hxAamIARGYlTALPT/oafD2MjsZAKAop0irQbwY9euvbb+GgswCOHg4YMwu1TfUCccSsOWpLVgRsgJ7p+41uheQWIYUAGQnZAMA6vfSfuxN7SPFlezZOgqDka4BrgCA3JRcrYDUo9uPjNq2udTL9QC1DCmNHlKFmeW/m1OyB1g/IGXsynnh/cIFv/Pvo4QQQgipEV555RXY2dnhjz/+QI8ePRASEoIBAwbg8OHDuH//Pt59913B+JycHDz77LNwdnZGYGAgVq9ezV/HGMP777+PkJAQ2NvbIyAgAK+99hp/fVFREebMmYPAwEA4OzujQ4cOOHbsGH/95s2b4e7ujl9//RXNmjWDvb09NmzYAAcHB2RlZQnmMXPmTDz11FP87ydPnkS3bt3g6OiI4OBgvPbaa8jLKz9nffjwIYYMGQJHR0eEhYVh69atBu+bixcv4vbt2xg0qPwLuISEBEgkEmzfvp3fX7t27fDff//h/PnzaNu2LVxcXDBgwACkpZWfr50/fx59+/aFl5cX3Nzc0KNHD8TElH8BfOzYMdjZ2eHEiRP8ZcuWLYOPjw9SU1MNzpUjkUjw1Vdf4emnn4azszOWLFkCAPjll18QGRkJBwcHNGjQAIsWLUJpqWmrWg8ZMgQ//fSTSbepCApIkTqJ++BVHZsHW0tVNE+W2csMjpFIDGQQmdGX3LuZt0UamxuzDfUMKa5kz9nbGfIgORoONFyCxQVjCh8VGhVEU29+vvv53fxtb/5yU2MgRAOR13ZcEw1IaGZIcdk/j+JVASH3+u5at+ECUgl/JhiVcceV7Nk4CoORrv6q+yAnRSRDykqBYy4gJbVV/bksylJlRqmX7OWm5goypMwt2eMCUm6hqhTpygxImZItx93n3IqcN/bcwI3dN2p9VikhhBBSG2RmZuLgwYOYPn06HB0dBdf5+flh/Pjx2LZtGxgrP1H89NNP0bJlS1y6dAlz587FzJkzcejQIQDAzz//jBUrVmDdunWIjY3Fnj170Lx5c/62M2bMwOnTp/HTTz/h33//xTPPPIP+/fsjNra8fUZ+fj4++eQTbNiwAdeuXcP48ePh7u6On38u7ydbVlaGbdu2Yfz48QCA27dvo3///hg5ciT+/fdfbNu2DSdPnsSMGTP420ycOBH37t3D0aNHsXPnTqxZswYPHwq/8NN04sQJNGrUCK6urlrXLVy4EO+99x5iYmJgY2ODcePG4a233sKqVatw4sQJxMXFYcGCBfz4nJwcREdH4+TJkzhz5gwaNmyIgQMHIidHdT7bs2dPzJo1C88//zyys7Nx6dIlzJ8/Hxs2bICvr6/eeWp6//33MXz4cFy5cgUvvPACTpw4gQkTJmDmzJm4fv061q1bh82bN/PBKmO1b98e586dQ1FRkeHBZqCAFKlzmJJBcV/1Aar3x72NWrGuNjJlxT5LsUT2U5Phppe9Aarjcw91x+D1g82ew4AvBhh89+TK0IDyFfC4Pk9uweK12Pby8pUOsxKyTJrT3RN3cf/8feydurc84MSAw3MPG3X7P2b/IRqQEMuQUpYpkX1XlSFVL6ye1rZyk1VBrNt/3DYY5ADKM6Q0nx9cyZ56hhRXmmitkr3Uf1TfUgV1CAKgu2RPfSVCc0r2GGN8QOqJ0U8AML700VSKJIVJ2XKZsar7vH6P+nALdQMrZdg+YrtRjzEhhBBCqlZsbCwYY2jatKno9U2bNsWjR48EmT5dunTB3Llz0ahRI7z66qsYNWoUVqxYAQC4e/cu/Pz80KdPH4SEhKB9+/aYOnUqf92mTZuwY8cOdOvWDeHh4ZgzZw66du2KTZs28dsvKSnBmjVr0LlzZzRu3BjOzs4YO3YsfvjhB37MkSNHkJWVhZEjRwIAli5divHjx2PWrFlo2LAhOnfujP/973/YsmULCgsL8d9//+G3337D119/jY4dO6JNmzbYuHEjCgrKz9XEJCYmIiAgQPS6OXPmICoqCk2bNsXMmTNx8eJFzJ8/H126dEHr1q0xefJkHD16lB//1FNP4bnnnkOTJk3QtGlTrF+/Hvn5+fjrr7/4MYsXL0a9evXw4osv4rnnnkN0dDSefvppvXMUM27cOEyaNAkNGjRASEgIFi1ahLlz5yI6OhoNGjRA37598eGHH2LdunUmbTcgIADFxcV48OCB4cFmoIAUqXPy0vKgLFFCIpWg46yOJvVAqm1M7QFlLrEeUurBJWMyLcL7hWNWwixEDIyo0L7NPUaZnQxtX26L1xNfh0dD3dlkYiV7Tl6qgJR6A3J1RYqKfwNxZesVbGi/QbtpuhLaWWU64nliAQkuIMU1EFeWKJGTnANliWoFPddA4bdIiiQFLq6/qHebmnSV7IkFpEK6hgAAHsVVfskeY4zPkArtGQpAFZBijAlL9h4KA1LmZEjl3M9BUXYRJDIJmgxvAqDyMqQyYjNMKtvlLnfydeIDkkDF+s8RQgghpGqoZ0AZ0qlTJ63fb9y4AQB45plnUFBQgAYNGmDq1KnYvXs3XxZ25coVlJWVoVGjRnBxceH//fXXX7h9+za/PTs7O7Ro0UKwj/Hjx+PYsWNITk4GAGzduhWDBg2Cu7s7AOCff/7B5s2bBduNioqCUqlEfHw8bty4ARsbG7Rp04bfZpMmTfjb61JQUAAHBwfR69TnyGUwqWeD+fr6CjKwUlNTMXXqVDRs2BBubm6Qy+XIzc3F3bvlCw7Z2dlh69at+Pnnn1FYWMgH+kzVtm1bwe///PMPPvjgA8H9M3XqVKSkpCA/3/iVv7ksOlNuUxEUkCJ1DvehydnXGTJbmUk9kGojax6/WIaUzLa8jM+UTIu43+JM2retk2WapTt6OkIikUAeJEdg+0Cd47iSvdKiUj7Q5OztDAC49M0lo/dnblaZRCbBE2OeEPze/b3uAMTvE82ABFeyxwWelKVKPnvLLcQNUpnwz4jYioCGepOpNzVXJ1ayF9JNFZCyRoZU9t1sFGYVQmorRXDnYACqgFRpQakg6FSQWYDcB+Wljeb0kOKyozwbecK3heqEJz8tv3ylRgvybOipFZzUV7bLl+w529XZ/nuEEEJITRUREQGJRMIHlDTduHED9erVg7e3t1HbCw4Oxq1bt7BmzRo4Ojpi+vTp6N69O0pKSpCbmwuZTIaLFy/i8uXL/L8bN25g1apV/DYcHR212nW0a9cO4eHh+Omnn1BQUIDdu3fz5XoAkJubi2nTpgm2+88//yA2Nhbh4cJ+l6bw8vLCo0fiX3ja2pafM3Pz1bxMvSF7dHQ0Ll++jFWrVuHUqVO4fPkyPD09UVxcLNjuqVOnAKjKKSvaUN7Z2Vnwe25uLhYtWiS4f65cuYLY2FidATcx3HyMfT5UFAWkSJ3DBaTqagCqKon1kFIvbeMyLQwRy+zQNOXcFDz9TXnaq6WapTu4lb+R69smlyHFletJZBI4uDtAkaQwaaU/c+YtkarKMJsMVWXa+LbyxayEWfBspFrS16e5j8GABJchxb1elCVKZMVnARDvH1WR3mRcDyldGVLqq+yFdldlKmXfzRZkoVUGrlzPu6k3nH1Uf+wLswr57CiJVMJn+KmX8JlTsscFpHye9IGdsx1/H1dG2Z48SA7/1v7874bKdrmAU2C7wDrdf48QQgipiTw9PdG3b1+sWbNGq3ztwYMH2Lp1K8aMGSMIEJ05c0Yw7syZM4KSP0dHRwwZMgT/+9//cOzYMZw+fRpXrlxB69atUVZWhocPHyIiIkLwz8/Pz+Bcx48fj61bt2Lv3r2QSqWCRuORkZG4fv261nYjIiJgZ2eHJk2aoLS0FBcvlmfs37p1S6tRuqbWrVvj5s2bJmWQ6fL333/jtddew8CBA/HEE0/A3t4e6enCc7nbt2/j9ddfx9dff40OHTogOjraIqsMRkZG4tatW6L3j1RqfPjn6tWrCAoKgpeXl9lz0ocCUqTOoYBU1TEmuMLKDP8REAt6aApsF8gHL4zdtzHUs3g0M3rUcRlS6uV6EqlENIOI49nYs7yn1+Pj0/tHUd9dIAUmn5mMyMmRfENue1d7yIPkfAmYX2s/dJjZoXxzIgEJLkNKHvg4IKWWIeUe5q61W643Gb9NqeHeZHwPKc0MqceN3bMTs/n706+Vn6p8kJneZ8tUXLmeXys/vndVYVYhH3yyd7Pns94EGKAsq9gJhXpAClA14geMX7HQVA71VMcltZNiZvxMnSWtTMn4lQ2DOgVh4FcD+evqWv89QgghpKb68ssvUVRUhKioKBw/fhz37t3D77//jr59+yIwMFCr8fXff/+NZcuW4b///sPq1auxY8cOzJw5E4BqlbyNGzfi6tWruHPnDr7//ns4OjoiNDQUjRo1wvjx4zFhwgTs2rUL8fHxOHfuHJYuXYr9+/cbnOf48eMRExODJUuWYNSoUbC3L++z+vbbb+PUqVOYMWMGLl++jNjYWPzyyy98U/PGjRujf//+mDZtGs6ePYuLFy9iypQpWo3cNfXq1Qu5ubm4du2aqXerloYNG+K7777DjRs3cPbsWYwfP16w/7KyMjz33HOIiorCpEmTsGnTJvz777/4/PPPzd73ggULsGXLFixatAjXrl3DjRs38NNPP+G9997TeZvevXvjyy+/FFx24sQJ9OvXz+z5GFJ566sTUk1RQKrqiPWQggSCbCeJTGIwKCUPkqPrO11xYvEJvePUM24sFpBS245mRo86LoCivsIeUB5MEwtKudd3x4TDE5AZlwmpTIpN3TdBWao7sNFsVDMUZhXizqE7gvuNCxAEtlOVFEptVAEprsyMC0h5N/OGdzNvnF15Fu5h7ph0fJLgdaEsVfIBNTu5HX+ZvgwpQNWn6+yqs3h45SGGbhqKlhNa6jwGQG2VPQfxkj3uvnL0cISNgw3qhddD6j+peHT7EbwaV963NlxAyreVLx+QKs4t5rPeHNwcYO9mX16up/ZcLisug9TR9O98+IBUc1VAyquZF2IPxFZaHymuSbuyWMn3CROTk5yD0sJSSG2kcA91R9sX2+LPd/9EQXoBnt33LBr2N7xyJCGEEFLrjdtW1TPQq2HDhrhw4QIWLlyI0aNHIzMzE35+fhg2bBgWLlwIDw9htvMbb7yBCxcuYNGiRZDL5Vi+fDmioqIAAO7u7vj4448xe/ZslJWVoXnz5ti7dy88PVWZ+Js2bcLixYvxxhtv4P79+/Dy8kLHjh0xeLDhBYYiIiL4Vd5WrlwpuK5Fixb466+/8O6776Jbt25gjCE8PBxjxozhx2zatAlTpkxBjx494Ovri8WLF2P+/Pl69+np6Ynhw4dj69atWLp0qTF3p04bN27Eiy++iMjISAQHB+Ojjz7CnDlz+OuXLFmCxMRE7Nunqprw9/fH+vXr8eyzz6Jfv35o2bIlNm/ejEmTJpmcsRUVFYV9+/bhgw8+wCeffAJbW1s0adIEU6ZM0Xmb27dvCzK4CgsLsWfPHvz+++8mHrnpKCBF6pycJFXpDwWkrE8sKBTUIQj3z98HK2N8IGXvlL0Gt9X82eYGA1Lq+6vIynyGGFWy9zigI7GRQJGk4DOI9k3bpxV4k9mpeprJg+R4dEeVjaKvQbaDuwPfB4oL2jR9pin6L+8veH5zfbq4UjL1gBTXA8rW0VbrNXH2f2f5n8+vPs9vIydF9RoSy5DiuPi54OGVh/qzuB7T1dTcxsEGDu4OfNCEy5jyiPBA6j+piP0tFr4tfM1+LSuSFMiIzYBnQ0/BtriSPb+WfoJSzazELACqDCkXXxekQjXOycuJf7yVJUpA/xdxWpRlSv6x4TOkmqoypNKvV85Ke+qlhjn3c+BYT3zSXLmee5g7H+B0D3FHQXoBWKn5qe2EEEIIsY7Q0FBs3rzZ4LiEhAS91w8bNgzDhg3Teb2trS0WLVqERYsWiV4/ceJETJw4Ueftz549q/O6du3a4Y8//tB5vZ+fHx/s4Tz//PM6x3Peffdd9O3bF++++y5cXFxQv359rYBQz549tS7TPJbWrVvj/PnzgjGjRo3if16wYAEWLFgguH7EiBEoKio/L4uPj0ePHj30zldXsCoqKooPHBpzO83HetOmTWjfvj06duyod/+WQCV7pM6hDKmqI9ZDyi3UTXulPyOCGMY0KReUgFnoM7N6KZYxJXu39t4CAKReTuWbtnOrG47/bbzgNjK78vuHK9nTlyEls5OVly4+Pr569etpPbe5kj1liRKlhaV86ZV3M28+UKdZYqZIUuDQm4fKL3i8/aKcovKSPR0ZUoAqmwmAYPU5XXQ1NQfK+0gB5QGp4jxVQ8jzX543qRG+mJiNMVgZuhJbntoi2FZhdiEfFPRt6QupjZTPIMpOVK0w5+DuwPeWAgAX3/K5VqSPVFZ8FkoLSlVZYA3qAVAr2avkDCkAUNzXvUoeF5BS7xPFNbrXdztCCCGEkJqiRYsW+OSTTxAfH1/VU8Fvv/2GZcuWVcm+bW1t8cUXX1hlXxSQInUOBaSqjlhGkbJEqbXSn52z7tIhjlEBKZESQWODF01GNDG4X30le6VFpci+l41rP5XXoXNN27lMqQZ9GghuIxaQ0tVvClAFmrSaS4v01uJL9kqVyPhP1cPKwd0BLn4ufIaUZuBLV6+rwsxCKO6pXkP1wurpnJspASldTc2B8rI9QBWQUiQpcPtg+XLB6vepqbgG89xxqm8r9V9V1pM8WA4nTycA4Mv2uICcg5sDnH3LA1JO3k7lgUQ9mW26cOV66plrXk1VJYk5yTl8M3VLYYwJtplzP0fnWH0BKX23I4QQQgipSSZOnIjmzZtX9TRw7tw5tG/fvkr2PWXKFDRu3Ngq+6KAFKlTGGMUkKpCYgEisUwSQw3LAeMCUurb4R57Y1e4i4iKQN9P+2rNJfFYIh/U0leyV5RdhD/maKcSszLGf7iXyCSCbDCxgJQ+ggwp7nYipYnqJXvq5XoSiYQPVmmWD+pqHJ+fng+mZJDaSvVmb5mUIaWjqTkgzJByCXARXWFR/T41hVjQjduWerkehwtIcRlS9m72woCUpxOfjVZWbHqGVOoV1T65cj1AFfTiAj+WXmmvtKBUEDgzOUMqgDKkCCGEEEJIxVFAitQpBZkFfHkQ92GKWI9YyZ5mJokiSYEiRZHWOE1Xfrxi0r6Lc4tx79Q9vRlHmjrP6YzJZyZrBWa4LBp9JXv3Tt3D9e3XtS6XyCT8h3qJRCIIQpkckLIVCUiJZUiplezxAaknvPn5ANole/IgOTq8rrYC3+PtctlByhIlVoWt0plxxgWkCjMNZ/XoamoOCF+nrv6uooEy9fvUFJ4NPbUu47al3tCcw2dIPe4h5eDuICjTc/Bw0OrXZYq0q48fmye9BZdzfaQsXbanmXGlN0MqVjsgxa28SBlShBBCCCGkIiggReoULjvKydvJYquuEeNxZUjqND+4Z8RmGNyOIkmB/S8ZXjJWXVZ8FnaO3WlUfyp1xbnFOrNo9JXsieGatgsajqsHpOwrkCGlkREldh9zQRJlqRLJF5IBlAd6uPFiKxuG9w0HANQLr4eBXw3Uul5fuZyjp3EZUmUlZfy+xe5PzR5S8iA5+n1WvgSt2H1qrOLcYsHv6tviAlJ+rQxkSKn1kHL0cOQfT3NK9tQzpADVSntAJQSksowLSDHG9JfsJVNAihBCSN1k6gpohNQWlnru0ydyUqdQuV71o/nBncuA0ZXJVPCoQGd/I01agRIGQKIKPIgFYMSIzYfLoinKMZzJxYlaEYVmo5ppPffMyZAytYdUoaIQcb/FAQD++vAvyIPlCGwfCEC8eTr32Dh6OAoygdRxwTnN4zK2ZI/LWATES/bUe0hxx9FhZgf88eYfYGUMk09PRmC7QL370OX6TmEG24xbM+AR7gFlqZIPDokFpLg5a/WQMqNkr7SoFBn/qYKxmgEprrG5pUv21FfYA3SX3uU+yEVJfgkkUomgkT1lSBFCCKmrbG1VX6Ll5+fD0dHEZXUJqQXy81UrS3OvhYqigBSpUyggVbXEyrs0M6TkQXIMXj8Ye1/cC4gkmeQ/zNcdtJJA0F9INNuKASN/HAlnb2fsf3k/0m+Kf8gveFQgmM++afvAypggiybthnEZKxKZRDQYBQj7alVWDykuSFKsUMsIUqpKD58/pFoCV7NkDygPUkltpHyWlSZd5XJGB6QK1AJSIlmLKTEp/M/bhm/D4PWDETk5UtXg/J55vYuu79AuqQSA9FvpKCsqg52LnaBxu727vWCcZskegAqX7GX8lwFlqRL2cnut50llrbTHZUhJbaVQlih1Bpa47Ci3UDfBc5TLkCrILEBJQYnJGYOEEEJITSWTyeDu7o6HD1VfYDk5OUEiMTENn5AaiDGG/Px8PHz4EO7u7pDJxD8jGIsCUqROoYBU1dHVULwkr0TrssjJkfBt4YuNHTdqBZ2cfJy0gkSQAp1md4IiSSFY1U5Xj6DgTsGQB8lh66z7A3TewzzBfCKiIpAZlwmPCA/++WPMB3BDJWXW6CGlK5jEysqb/ItljHFBFZmtjM9OEuxLz7EZG5BS7x+leSKnSFLg9Oeny+f7uEQwIioCrv6qgFRFy8Uy/stA6r+pkMgkcPZxRm5KLrITs+ERrtY/qqWv4P7kMqQ49m72uLXvFv/7obcO8aWKppbsqZfrad4PXA+prIQsFOcVG7UKpTG4HlKejTyRdi0NeQ/zUFZcJngeAuINzQHV/WHjaIPSglLkJOfAI9z0Pl6EEEJITeXnp8qi5oJShNQl7u7u/GvAHBSQInVKTpLqwysFpKxPV5ldcV6xyGggsF2gMOj0mKO76gO/WJBo/3RhXynNx1kzgKL5wVudem8gblua21MvMRMrAwzpHoKRW0fqfb6ZFZASyZAS6yElFkzi5sxlAImW7KllSHFZVpwWE1qg95LeOo+ND0g9KgBTMp3Hw6+wJ5IdpW8VPK4HVkUDUly5XoPeDQAAuSm5fLNysf5RgHZAqqy4DAdePqA2OaAgXRWAMzVDigtIaTY0BwAnLyc4eTshPy0f6TfTEdAmwKRt68JlSHmEeyAzNhNlxWXIScmBe6i7YJyugJREIoE8UI7MuEzk3KeAFCGEkLpFIpHA398fPj4+KCnR/oKVkNrK1tbW7MwoDgWkSJ1CGVJVR1eZnViJGYcLOiVfTMa2YdsACEvLNINEYqv4cWydbTHj5gzheC5zSKIKAAkCX/UM9wNQD6LYOtqiOLdYcIwhXUIMPtes0kPKVk92U7BqfqIle4+zfKS2Uq2gllcTL73Hxt9/TJWJ41jPEYokBTJiM+DZ0JO/LdePSax/lL7+XS4BqlI5cwNSTUc1RfJ5VaP37LuqZuWp/6QCUGVIqdMMSBVlF+nsZWZqDyluhT3N/lEc72beSPwrEek3LBeQ4npIOdRzgGuAK7ISspBzXzsg9SjuEQDAo6F2wMk1wBWZcZk6+08RQgghtZ1MJrPYh3NC6hpaZY/UKRSQqjpcmZ1mAMpQvb08SI6wp8L43/WVQqn3Y9JsaK4sVepsKG5jb4M+H/cRXHf35F298wKEJXtcQMXOtbycysnLyeA21INQ6vO3ZA8pzZI9qZ0UsxJmIXJypN5V9rgMKbGSPUOrVMrsZLBzUd0XBZkFiNkQgxWhK7DlqS1YGbqS7yfGleyJlT9qPmfUM9zMyZDKvJ2JB5ceQCKToOnwpnALdQOgWj2PMWZ0hpT3E946HydzSvbEVEYfKS5Dyt7Nnu8HJRZY0pUhBdBKe4QQQgghpOIoIEXqFApIVa3IyZGYlTAL0Uej+cuM+eCuHlDRVwr18Hp5Db960AMAyoq0b8dlDklkEhx++7Dguitbr2iv0qdBPauHC9CoBygOvXlItJG7Omv0kNLMkLJ1tOVfA1ywRyxDiruvxZqaGwpIAeVle+nX0wVN6rleUIokRXnJnkiGFCB8znBBNAB8QCo3JdfgPDRx2VFhvcLg5OUEt5DygFRuSi7y0/IhkUq0gkOaASmvxl5aATP3MHcAppXsFecV49EdVRaSroCUV1MvABYOSD3uIeXg7qBzxTzGmHEBKVppjxBCCCGEmKjKA1KrV69G/fr14eDggA4dOuDcuXN6x69cuRKNGzeGo6MjgoOD8frrr6OwsNBKsyU1WZGiCMW5qn5F3IcoYn3yIDnq96zP/27MB3f1gIquAJYiSYHYfbH871zQQx8+ACSBdq8iZfkHcV3UgzJcplHho/L3I/XAi8E5wHo9pNT3o54hxZjwPuB7SImU7JkSkHp4/aFg9UNuf5lxmYKm5rpwzxn1QLKrf8Uzc7jV9ZqOagoAfIlaVmIWHvyjyo7ybOyplbWlGZBycHfQCphxgR1TSva4IJOzjzOcvZ1Fx3AZUikXUwwGSo1VlPW4ZM/NQWeGVH56PooURYAEghUHOboCWYQQQgghhBhSpQGpbdu2Yfbs2Vi4cCFiYmLQsmVLREVF6Vyp4IcffsDcuXOxcOFC3LhxAxs3bsS2bdvwzjvvWHnmpCbiPsQ51HOw2CpVxHzGZEipB1l0BbAyYjNEgx7qND/Iq5fsiWUaiWWEqBMELHTEj7jAiy7W6CGlmd0kCEipBZq4oJwiSYH4o/HIT8vnx2hmWZkSkLJ1stW6f7heUFyGlDErFqqraMneo/hHSLmYAolUVa4HgC/ZU9xTICUmBYB2uR4gDEjJ7GT8faAeMOPuJ1NK9gyV6wHljdYVSQqt7L+KUs+Q0pXplBmreu66BbuJPub6Sv0IIYQQQgjRp0oDUsuXL8fUqVMxadIkNGvWDGvXroWTkxO++eYb0fGnTp1Cly5dMG7cONSvXx/9+vXDs88+qzerqqioCAqFQvCP1E1Urlc9mboama7ME64BtjrNfkqaH+S5QI2Ngw0Grx8sGNt8fHPDDcn1NFFXn4O+wJalM6TEekhpBpME+1Ebz8oYYjbGYGXoSmx5agv++uAv1fgK9JACAEdPVUBKIpEguFOwYJ9cLyh9Tc314QJS+Wn5JmUjceV6oT1C+ZUUXQNcIZFKUFZchtsHbwMQD0ipN7q3d7MX3T73nBJ7XnOBPs3AKB+Qai4ekFIkKXD4rfKSUmMy74yh3kNKV6aTvnI9gDKkCCGEEEJIxVVZQKq4uBgXL15Enz7ljYSlUin69OmD06dPi96mc+fOuHjxIh+AunPnDg4cOICBAwfq3M/SpUvh5ubG/wsODtY5ltRuFJCqnkxt/qxrvFgD7N5LewvGaH6Q5wIzMlsZIidHwr+tPz82pFuIwbmoN2QvyinSvl4t8KKLNXpIaV4mVrIHqErW9r24r7x88fF/JUUlZvWQKsgsQL0G5eVe6r2g9DU117ttT0c+0Jb7wPg+Ujd23gAANHumGX+ZzFbGZ/rc+/seAPGAlL28PAilWb7Hb+vxfav5PFUP9GkGRg2tsJcRm6FdUmog884Y/Cp77rpL9rh91IvQLtcDhE3NNUs+CSGEEEII0ce0r6QtKD09HWVlZfD1FS6r7evri5s3b4reZty4cUhPT0fXrl3BGENpaSleeuklvSV78+bNw+zZs/nfFQoFBaXqKApIVU+WypACVA2wI6IikBmXCY8ID1UZnwbug7x6eRX3v6O7o9Z4YxWkFwgvkAKTT09GYLtAvbcTBKTsTc+Q0uwZJdZDSiKRQGor5YMkujKkMv7TDnwAQGl+qVk9pAoyCwTbVX8NGmpqrotEIoFrgCuyE7ORk5zDNybXJysxC/fP3Qck4Mv1OO6h7lDcU/Dz9G3pq3V7qY0Udq52KM4phoObeECKey6pP08VSQpBoI8LjEZERUAeJEfqlVQAugNSXPaf+n1oKPPOGFyGlIObA/9Y5dxXBZa4YKuhDCmul1dZcRny0/N19sAihBBCCCFEU5U3NTfFsWPH8NFHH2HNmjWIiYnBrl27sH//fnz44Yc6b2Nvbw+5XC74R+omCkhVT6ZmSBkKYKn389FVxsd9uFbPkAJMD4ropQRK8koMDtOVIQUYDkoZ20MKEPaR0tVDyr2+u2gvLEcPR7N6SBVkFoiu4gfAqKbmuvCNzVOMKxe78bMqOyq0eyhc/FwE13F9pADAxc8FLr7C6zlcZpQpJXv6MpzyM/L5lQK5xuWauOw//rGRwGDmnTH4gJS7A18CWVpYKmjMbyggJbOTwcnbCUDFGswTQgghhJC6q8oCUl5eXpDJZEhNTRVcnpqaCj8/7VIJAJg/fz6ef/55TJkyBc2bN8fw4cPx0UcfYenSpVAqTftQS/TT1eukJqOAVPXEreRmLFP6BYmV8al/kOcCM1ywxdbJtLIxfY2ljc1gkdqVvw2bGpAytocUIAw86SrZc/Fzgc8T2lk6DvUczM6Q0vU4VzRDCjC9sTm3ul6zUc20rlPPsBIr1+NwASlTSvbEVvXknh9p11Tlem6hboKSQE2RkyPRY2EPAEDDgQ35kseKUpYq+VVH7d3sYeNgw/f8Ui/bMxSQAqiPFCGEEEIIqZgqK9mzs7NDmzZtcOTIEQwbNgwAoFQqceTIEcyYMUP0Nvn5+ZBKNZrzylQn/9S7wnJiNsbw5SUSqQSD1w82+8NPdUABqdrB1IwqzTI+9cefC0RxWS2m9DHiyrDEGNM7imNOhpSxPaQAYWNz9Wwp9fHJF5Px8Jr2KqdSG6l2QMretICUrowjrqm5qT2kAMAlQLVNYwJS2feykXQmSVWuN6Kp1vXqGVLuYe46t8MFziQ2+u9n9cBpyoUUwRiJtPz5cevXWwD0r7DH8W2hKiPkVj80R5GivOcZV34oD5SjIKMAOfdz4NvcFwWZBXy2lEe47oCUa6ArHlx+QCvtEUIIIYQQk1Rpyd7s2bPx9ddf49tvv8WNGzfw8ssvIy8vD5MmTQIATJgwAfPmzePHDxkyBF999RV++uknxMfH49ChQ5g/fz6GDBnCB6aIeXT1OqkNmVIUkKodTA1IAcIyPnWaGVKmZOmIlWEBQNSKKEHTbkPMCkiJZEiJ9ZACdJfsAeVZVVv7b+UbmWve1tym5gZL9szIkMpNNtzUnCvXC+kSwt9OXfrNdP7nC2sviGa/xWyMQfK5ZADA9e3XRcfwASm1kr1/v/tXMOapj57inx/8CntGBKTcQ90BqHphmaswWxVosnWy5Z8Pmo3Nuewo10BXvdmDfGNzypAihBBCCCEmqLIMKQAYM2YM0tLSsGDBAjx48ACtWrXC77//zjc6v3v3riAj6r333oNEIsF7772H+/fvw9vbG0OGDMGSJUuq6hBqHX29TmpyIKc4r5j/pr8mHwcxrWTPEC7IUpEeUroaTTcb1cyk55i1ekgJMqREAlKsjIkGowAdGVJmlOwpy5R84Iwr2atIhpQpJXvXdz4u13tGu1xPkaTAuf+dK7+AQdB0nBsjyIgTGQOUP5e4wGluai5u/3Fbte9RzXB953XB6nimBKS4LK681DyUFpZWqO8Wh+sfpd4LSzOwZEy5HlBeskcZUoQQQgghxBRV3tR8xowZSExMRFFREc6ePYsOHTrw1x07dgybN2/mf7exscHChQsRFxeHgoIC3L17F6tXr4a7u7v1J15LeTb01GpqbInVnKoa9wHLzvmktYQAAIiXSURBVNVOb58WUv2ZuiqfPlxgRpGswP3z900KihjqT2XqHADtMjhr9JACwK+opovUVmp+U3P1gJRalhvfQ6oSm5or7itw7+97AMTL9fQF4k0ZA5Tft1zg9OpPV8GUDIEdAtF8fHMA4LOsGGMmBaQcPRxh66x6jmbfyzY4Xp+ibFXJnnovLM3AkrEBKcqQIoQQQgghFVHlASlSvciD5ILmvhX9kF3dULle9WZKSaglM6Su/6zKmnkU9wgb2m/Af/v/M+n2kZMjMSthFqKPRptUpqfOWj2k9JXsaWY/aZLaaGdimRKQYmVMsHKb+mNoiZI9QxlSN3apyvWCOweLvgcYWo3R2DGAdsnele+vAABaPNcCAe0CAKiyoorzipGbkovCR4WQSCXwauKl/2ChChxy78/ZieYFpPgV9tzKA1JaGVKxpmVI0Sp71rd69WrUr18fDg4O6NChA86dO6d3/MqVK9G4cWM4OjoiODgYr7/+OgoLC/XehhBCCCGkslBAigiUlZTxS5ADwNRzU6mhOal0K0NX6l2xTl1FekiJuX/+vlaz6dTLqTpG66arP5WxrNVDSl/JnubvmlmSMluZVhaVzN5w3z4bBxu+91Dewzz+cvWAlDlNzbmAVEFGAUqLSnWO41bXazpKOzsKMC7bzdiMOPWSvfSb6Ui+kAyJTIInxjwBeaAcrgGuYEqGB5ceIP5oPADArb6b0RliluojxfWQEsuQMrVkjw8MUoaUVW3btg2zZ8/GwoULERMTg5YtWyIqKgoPH2ovTAAAP/zwA+bOnYuFCxfixo0b2LhxI7Zt24Z33nnHyjMnhBBCCFGp0h5SpPpJu54m+LBoKHOipqCAVPWimRHFNc/X7Mcjpii3SO/1xrp74q5FtmMuq/WQUnstS+2Er2vNIFbP93vi2MJjgv1obU9H4EuTo4cjSvJLkPugPNCtXnbJl+xVIEPKoZ4DZPYylBWpAunu9d21xuSk5ODuSdVj3WyUdv8ojr7VGE0Zw5fslZTh362qZuYR/SPg7O0MAAhoF4Bbv9zCn/P/ROJfiQCArDtZiNkYY1Twn+sjZakMKbEeUhUt2ctPz0dpUalRKzAS8y1fvhxTp07lF4JZu3Yt9u/fj2+++QZz587VGn/q1Cl06dIF48aNAwDUr18fzz77LM6ePWvVeRNCCCGEcGpHtIFYTEqMMGMkLy1Px8iahQJS1UtGbIbWZWL9eDjq2VP3z9w3OptKn5BuIWZvwxIsnSGlq4eUMavscbgAA8ecwDRXtqce6BYr2atIhpREIjFYtndj1w2AAUEdg+AW7CY6hmNMtpuhMXzJXlGZoFyPn/PjxyvxWKKgibyxq5laKiClr4dUflo+8h7mIT89HwBQL7ye3m05ejjyGXNUtmcdxcXFuHjxIvr06cNfJpVK0adPH5w+fVr0Np07d8bFixf5sr47d+7gwIEDGDhwoM79FBUVQaFQCP4RQgghhFgKBaSIgGZAKj8t32LbViQpEH803qR+QZbcN0ABqerC2H48gMjqZjD+w7s+ge0C0TK6peCy0B6hZm2zIszKkBLp7WTUKnu2Gj2kNLKduDI7XeNNwQWk1AlK9sxoag6oNTbXFZDaqeofpatcz9K4+yrxeCKyErJg52KHxk83BqB6Lt/85abo7fQFZNXxPaTuWj5DytGzPLCUeEKVveXs6wx7V/0LQUgkEq1yP1K50tPTUVZWxq9KzPH19cWDBw9EbzNu3Dh88MEH6Nq1K2xtbREeHo6ePXvqLdlbunQp3Nzc+H/BwcEWPQ5CCCGE1G0UkCICD2JUJ7LcB2P1vi/miNkYg5WhK7HlqS0m9QuyFApIVS+mrFBn7OpmFTFs8zBMOTcFUSuiMOXcFHR6o5PZ2zSVehBKszROX0BKaiuFRCIxuoeUKU3N7Zzt9F5vCrGAlHofMHOamgNq/YtEVtrLTc1F4nFVYEVfuZ4lcffto9uPAABNRzblA3wZsRmAjhZoxq5mWpk9pNQzzrhyQmNXWNUs9yPVz7Fjx/DRRx9hzZo1iImJwa5du7B//358+OGHOm8zb948ZGdn8//u3btnxRkTQgghpLajRg+EpyxT4sFlVUAqpGsI4v+Mt0jJHpfhwgUVTOkXZCnchzexXjikahjTjwcoz6ZSD0oZ++HdGIHtAhHYLhAAcOfIHYts0xRcAENmp904XD3Y5NPcBwP+NwDHlxxH/OF4PsCkWW5nTA8pQyV7mhlS5rxuHDwctC6zVFNzAHAJcAEgniF1c/dNMCVDQLsAPpBT2TTvK/VyPbHnMmDaaqZcyZ7ingLKMqXRvbw0FWU9LtlzEz4+8kA5suKzTA5IUYaU6YqKimBvrz/7TBcvLy/IZDKkpgoXYkhNTYWfn5/obebPn4/nn38eU6ZMAQA0b94ceXl5ePHFF/Huu+9CKtV+Ltnb21d4joQQQgghhtCnc8LL+C8DJfklsHW2RXAXVVq+JUr20m6kVVqGizEurL2AwkxVNsDW/lutnp1FdDO2Z4+x2VTmUg+KaAaHKgvXAFprpTsIg0s2Djao37M+H0DgxhvbQ0rfKnvqQQ2JVKJVPmfpDCnRkj0zM6Ryk3O1ruNW12v2jHWyowBhJpprgCvq96rP/675XIYU6DSnE2YlzDJ6NVPXAFdIZBIoS5WCFVFNJZYhBZRnOqVeUQU6TM2Qoh5Suv3222+Ijo5GgwYNYGtrCycnJ8jlcvTo0QNLlixBcnKy0duys7NDmzZtcOTIEf4ypVKJI0eOoFMn8UzP/Px8raCTTKZ6vjLGxG5CCCGEEFKpKEOK8Lj+UX6t/ODip8o6MLdkr6ykDGdWnNG63JIZLrqU5Jfg1r5b2D99P39ZVWRnEfMZm01lrooGRcyhniGlST3YxP3MBTy4AJOxPaSMbWoutZFqXW/xHlIllmlqDkBnU/O8tDwkHEsAYL1yPUAY+Gs4pKFWBpO5z2WpTAp5kBzZidnIvptd4dcC996u/lgAag3tH8cnTA5IUYaUlt27d+Ptt99GTk4OBg4ciLfffhsBAQFwdHREZmYmrl69isOHD+PDDz/ExIkT8eGHH8Lb29vgdmfPno3o6Gi0bdsW7du3x8qVK5GXl8evujdhwgQEBgZi6dKlAIAhQ4Zg+fLlaN26NTp06IC4uDjMnz8fQ4YM4QNThBBCCCHWRAEpwuMCUv6R/nDydgJgXoaUslSJXeN3Ie63OEhkErCyx59wJKiUDJf89HzcPXmX/5dyMQXKUu2GLVx2FgWkahZ5kLzSH7OKBkXMwQV/GGNQJCkExygakNIIYBnbQ0pfyZ76dVJb7YCUVTKkLNzUnCvX82/jj3ph+leJs6R7f5f32Ln09SUEtgvUyn4y97nsHuqO7MRsZCVmIbiz6U2mYzbG4OGVhwCAX1/4FcpSJT9HrvSO49HQyIBUAPWQ0mXZsmVYsWIFBgwYIFoWN3r0aADA/fv38cUXX+D777/H66+/bnC7Y8aMQVpaGhYsWIAHDx6gVatW+P333/lG53fv3hXs77333oNEIsF7772H+/fvw9vbG0OGDMGSJUssdKSEEEIIIaahgBThcQ3N/SP94ezjDAAV7iGlLFVi13O7cH3HdUhtpRizewwKMgqwJ3oP3EPdjS5P0YUxhqz4LNw9eReJJxJx7+Q9pN9M1xrn7OeMvAfCY7BGdhapmaoiQ+rOYVXfqsJHhVgZuhKD1w/mXx/qwSYu0CS1U/3P95CqyCp7ekr2ZLYy7etNaLauSV9ASlmq5IPGZjc11whIXd/5uFzPitlRiiSFoCS4sjIyuT5S2Ymmr7SnuWql5hz5DKnHPMKph5S5Tp8+bdS4wMBAfPzxxyZte8aMGZgxY4bodceOHRP8bmNjg4ULF2LhwoUm7YMQQgghpLJQQIoAUH0oUc+Q4jIiKlKypyxTYk/0Hlzbdg1SWylG/zwajQY1QsGjAgBAVkIWclNz4eLronMbiiQFMmIz4NnQE/IgOZRlSqT+m6rKfjqhyoAS65/i3cwbId1CENJV9c8t1A2XvrmEfdP2gZWxSu0/RGo+zWbelU2RpBCUtGoGByqSIaWrh5Q5JXuaGVK69iHGydNJ6zJulT2uoTlgfsleYVYh/56Rn56P+D/jAVg3ICW2il5lZGRyAamKrLSnb9VKeZBckCHl5OWk1WNKF/VV9hhjVuvBRgghhBBCai4KSBEAwKP4RyhSFEFmL4NXUy8UZatWYCp8VIiykjKje8goy5T4ZeIvuPLDFUhtpHhmxzNoPKQxAMCxniO8n/BG2rU03Dt1D02HNxXdRszGmPJV+SSqIFP23WwU5xQLxkltpQhoG8AHoII7B4t++LVW/yFS81m7ZM9QcMCSPaQ0y/IE18n0l+xpvv5NKeHTlyHF9Y8CKl6yx2VCAcDqJqsxeP1gFGQWgJUxeDfztmo2ZGWvCMnhVgysSIaUoTmqZ0iZMm8uMFhWVIaCzALR92Ki271797Bw4UJ88803VT0VQgghhBCroYAUAQCkXFRlR/m28IXMVgZHD0f+Q0t+ej7fp0UfZZkSv77wK/79/l9IZBKM2jYKTYY2EYwJ6RqiCkj9LR6Q4spJ+A9LDEi7lgYAsJfbI7hzMIK7BiO0WygC2gUYHUCwRv8hUvNZu2TPUHBAEJCSmdlDSl/JnnqwyogMKV37EKMvIMX1j5LZy0wqA+QokhTYN01YfrZ36l6+IXfajTTEbIwxu0TYWNwqepWdkekW8rhk767pASl5kBxRK6Pw+2u/A9BetZILLAGAi7/uLFZNNvY2cPJyQn56PnKScyggZaLMzEx8++23FJAihBBCSJ1CASkCQNjQHFB9yHX0dER+Wj7y0wwHpJiSYe+Uvfhnyz+qYNRPo9B0hHbAKbhLMC6uuyho/KtOLGMEAIZ8PQStJrUy6YMwIaaSyqSQ2kr5krLKZiiAobdkz4I9pNRL8IzpIWV2hlSJMEOqotlRou8XTPiztVfVtEZGpnoPqYqUxzUZ1gS/v/Y7pDZSzIyfKZjjv9//y/98c89NkwJ6Tt6qgFTq5VT4Nvc1aU613a+//qr3+jt37lhpJoQQQggh1QcFpAgA7YAUADj7OCM/Ld9gY3OmZNj74l5c3nwZEpkEI38YqbNvS0iXEABA8sVklBSUaGU4OXlpf6sukUkQ0T+CglHEKmwdbVFUUmS1/ekLYOgLSOks2atADylByZ5IhpQ5JXs2jjaQ2ctQVlS+sp5mhlRFSyXFMsw0VcWqmpWdkcllSBXnFqPwUaFo0E+f4lxV+bO93F4wT82G56YE9GI2xiD9hmphid3Ru1FaXGq1zLSaYNiwYZBIJGBM93OV+m4RQgghpK6hT/gEjDHxgJT345X29DQ2Z0qGfS/vw6WNlyCRSjDi+xF4YvQTOse7h7nDxc8FyhIlki8ka10f93uc4HdqQk6szdqNzQFVAKN+z/paz3OxgBQXiCrOK4YiSVGhHlJ6S/ZEekiZ09RcIpFoBUz4gNTjpuYVLZXkMsygZzq1cVVNW0dbfiXUijQ25wJSdq52gsv19TTTRzSQ9eI+KJIUJs+ttvL398euXbugVCpF/8XExBjeCCGEEEJILUMBKQLFPQUKMgogtZHCp7kPf7mTtypbKT8tX/R2jDEcmHEAMetjIJFKMGzLMDw59km9+5JIJAjuEgwAWmV7yjIlLqy5AADo+2lfRB+NxqyEWfQtO7Eqa/eR0kc9uMRlMT249AAAkHo5FStDV+LOYWGpT0V6SGmusqdVoqfxu74AkBjNgBRXEsmV7JnTTD5yciRaPNcCANBhVgfUf6p++TRrcUDbnD5SfEDKRRiQ4jLO1BkT0BMNZCkZdozegUd3Hpk8v9qoTZs2uHjxos7rDWVPEUIIIYTURhSQInx2lM+TPrCxL/8wzn0DL1ayxxjDb6/+hgtfXQAkwNDNQ9FifAuj9qcrIBV7IBZZCVlw9HBEu1faiWaMEFLZrL3Snj6aGVKKJIVgVTmmZDj/5Xmdt1FnbMmezFYGiUQiCEJJbaSI2ViewZH3IE/wuyE6M6Qel+xVtIcURx6sep9gSsa/h3Wc3bFWB7TV+0iZiluxVDMgxWWccQFKYwN6YoEsAEg6nYTVzVbj6MKjKMkvEbll3fHmm2+ic+fOOq+PiIjA0aNHrTgjQgghhJCqV31SAUiV4QJSfpF+gsu5DCnNkj3GGH6f+TvOrz6vCkZ9MxQtn29p9P64PlL3Tt0DUzL+gwz3wbr15NbVKihA6hbuw3hBZkEVz0Q7IJURmyFs2g1oZaboKqfTV7InyJB6HIiS2cr4TKb89HxhSRZMaxauKyDFNzU3MyvNwd0BAFCUVYRHt1UZOQ0HNqzVAW0uIGVWyZ5GQAqoWFN2seb8Pd7vgcRjiYg/Eo/jHxzHP9/+g/4r+6Px0MZ1sldSt27d9F7v7OyMHj16WGk2hBBCCCHVAwWkiGj/KKC8h5R6yR5jDAdnH8S5L84BAJ7e8DRaTWxl0v78WvvBxtEGBZkFSL+ZDu9m3sj4LwO3/7gNSIC2L7c142gIqbiYjTF4eOUhAODw3MNw9HSs0gwbQUBKJhFt4i32uxhByZ6eJuXczzI7GZ/Vorin0NlbqEIBqRLLNDXncAGp/Ix8PIpXBaQ8wmtX3yhN7qHuACqYIaUnIAVUrCm7WCCLvctw4+cbODj7ILITs7Ft+DaER4VjwP8GwLORp8nzJoQQQgghtQuV7BHdASkfYUCKMYZDbx7C2ZVnAQBDvh6C1i+0Nnl/MlsZAtsHAgDu/n0XAHB+jSo7qtHgRqgXVq8CR0GIeXStMFaVjZk1M6TESqo6vt5RcBtdPaRMKdnTHOPR0KNCvYU4imThfXj/3H0A5jc153ABqYdXH0JZooTUVsqX8dVWfA8pMwJS9q72Fp2TZnN+iUSCZqOa4ZUbr6Dbu90gs5Ph9sHbWPPkGhyed5ifBwHWrFmDDz74oKqnQQghhBBiVRSQquNyUnKQm5ILiVQC3xa+guvUS/YYYzg89zBOf34aADBo7SBETql45oh6H6ni3GJc3nQZANDulXYV3iYh5qjoCmOVSWyVvcjJkZiVMItv+t9ocCOdt1FnSlNzzTFuIW4V6i0EqAJ9d/4QNl6P+y0OiiSFRZqaA+UBKS44417fXWdgrrbge0hVoKl5UU4RAMDWxTql0XbOdnhq8VN4+erLiBgQAWWJEn9//DdWN12Na9uvUTNvAD///DM2b95c1dMghBBCCLEqKtmr47gVu7yaeMHOWVi+wZXsKZIVODDjAL8C3sDVA9F2mnlldSFdH/eR+vse/v3+XxQpiuDR0APhfcPN2i4hFSVaDmdCFlBlEAtIAcKSKs1VzCrSQ0o9eMP3kFIbI7OVVai3EADRvldgQGZcpsWamjvWE5YEVuVjZi1cyV7ewzyUFJSYFNQzVLJXWTwbemLc/nH4b99/+H3m78iKz8LOMTtRf219DPhiAHye8DG8kVrqyJEjVT0FQgghhBCrq91fIRODdJXrAVD1dAJQklvCB6MGfDEA7aabn8UU3CkYkKg+lP79yd8AVNlRurI7CKlsFV1hrDKpvx50ZfxoldJVZJU9HT2kNC/TLMkyhugKbBJV0MjSTc059cJrf9mvQz0HPqBkapZUVQWkAFUZX+MhjTH92nT0XNQTNg42SDiagHWt1uHgGweRdiMN8Ufjq7RUlhBCCCGEWAdlSNVxulbYUyQp8McbfwgHS4Amw5pYZL8O7g7wecIHD68+RFZCFmwcbdAqupVFtk1IRVU0C6iy6MqQ0jUG0B24MrZkT6yHlPptTaW5AhugWmlTHiS3eA8pTm1vaA6oAjtuIW5Iu56G7MRseDX2Mvq2JbmqQKCle0iZwtbRFj0W9EDLCS1x8PWDuLnnJs4sP4Mzy88AUD2vB68fXKWLClhTSkoKSkpKEBISUtVTIYQQQgixGsqQquN0ZUiJ9dPhymwsxdGzvMymtLAU13++brFtE1JRFckCqiwVCUjp7CGlp2TPUA8p9dtWBNf3qs1LbQAA9RqoMpgstcqevZswsFIXMqSAiveRqsoMKU3u9d0xZvcYDN8yXHA5U7IqX1TAmp566imEhYVV9TQIIYQQQqyKAlJ1WH5GPt8E2K+VMENKrMzGkv10FEkKJB5PLL+gGqxoRkh1I3gN6ni3FnudijF2lT2tHlIS3VlXppAHyeHVRJXFU1ZcBgAWK9mT2coEwZW6kCEFlAekshKzTLod19S8OgSkOK5BrlqXVfWiAta0ZcsW/Pnnn1U9DUIIIYQQqzL5U8adO3cMDyI1AtfQ3CPCAw5uwpKXyu6nI9bouC59+CDEGJbsIaVedqdZgifoIaURkDI3O0odt00uIGWppuaAsGzPPczd7O3VBFxjc+6LBWNVpwwpTmV/CVLdtWvXDj169KjqaRBCCCGEWJXJnwIiIiLQo0cPTJ48GaNGjYKDg4PhG5FqSV9Dc6By++lUxxXNCKluLNpDSqRxOb8NPSV76plV5uIDUiXCgJS5JXuAKiClSFLANdDVIturCfiSvVoQkOK+BNk7ZS+Axz2kqnhRgcpQWlqKa9eu4cED1RdCfn5+aNasGWxt68ZzlhBCCCFEnclffcfExKBFixaYPXs2/Pz8MG3aNJw7d64y5kYqma6G5uoqq59OdVzRjJDqRj1QpDMgJTMuQ0q9WblEojuIpdnU3JyG5rrmwGdIWaipufo26tJ7iFtIxUr2+ICUa/UJSAGqL0F8W/oCAIZsGFKrGporlUq899578Pb2RuvWrTFgwAAMGDAArVu3ho+PD+bPnw+lUlnV0ySEEEIIsSqTP2m0atUKq1atQnJyMr755hukpKSga9euePLJJ7F8+XKkpaVVxjxJJTCUIVXZuEbH0UejMSthVq368EGIJQgypHT0hjK2h5RWbygdt9HMkKrMkj2uh5S5GU0xG2OQfD4ZAHD/3H3EbIwxa3s1BVeyp0hSQFlmfDCjOKf6ZUhxnL2dAVg2M686mDt3LtavX4+PP/4Yd+7cQV5eHvLy8nDnzh188sknWL9+PebNm1fV0ySEEEIIsaoKf9KwsbHBiBEjsGPHDnzyySeIi4vDnDlzEBwcjAkTJiAlJcWS8yQWVphdiMxYVb8m/9ZVE5ACqteKZoRUN5ZcZY//gC+B1uIB+npIVUbJnrJEFTzhe0iZkSGlSFJg34v7yi+oQwskuPi7QGojBStjyEnOMfp21bFkj8OtmFiYXVjFM7GsLVu24LvvvsO0adNQv359ODo6wtHREfXr18eLL76ILVu2YPPmzVU9TUIIIYQQq6pwQOrChQuYPn06/P39sXz5csyZMwe3b9/GoUOHkJycjKFDh1pynsTCHlxW9a9wC3GDk5dTFc+GECLG5ICUBFrleJy4g3EAVNkxK0NXCrKIBKvsVWKGFBfs0lplz4ym5hmxGYJedEDdWSBBKpNCHqwK5hvbR6qsuIy//6t1QCqrdgWkcnJyEBAQoPN6f39/5OXlWXFGhBBCCCFVz+RPGsuXL0fz5s3RuXNnJCcnY8uWLUhMTMTixYsRFhaGbt26YfPmzYiJqRslEzVVVZfrEUIMMzUgpWuMIkmB05+d5n9nSibIIlIv2eMyorjgkUV7SOlYZc+ckr26vjqbqX2kivOK+Z+rY0CKWy2xKLuoimdiWT179sScOXOQnp6udV16ejrefvtt9OzZ0/oTI4QQQgipQiZ/Lf3VV1/hhRdewMSJE+HvLx7M8PHxwcaNG82eHKk8D2Ier/Cjp6E5IaRqqQdadK2eZ8wYfVlE8iC56Ap8ldpDqsRyTc25BRL2TdsHVsbq3AIJ7qHuSEQisu8alyHF9Y+S2cuqZZ8mBzdVQKq2leytXbsWAwcOhL+/P5o3bw5fX1Xz9tTUVFy5cgXNmjXDvn37DGyFEEIIIaR2MflTwKFDhxASEgKpVPghhTGGe/fuISQkBHZ2doiOjrbYJInlUYYUIdWfpTKkuCwi9aCUehaRoGSvMntI2VZOU/PIyZGIiIpAZlwmPCI86kwwCgDcQlUZUsaW7FXn/lFAeclebcuQCg4Oxj///IODBw/izJkzePBA9aVQ+/bt8dFHH6Ffv35a51WEEEIIIbWdyQGp8PBwpKSkwMfHR3B5ZmYmwsLCUFZWZrHJkcpRnFeM9JuqsgEKSBFSfZkckNKxwp6hLCKxkj1rrLJniabmHHmQvE4Foji1LSDFZ0jVsh5SACCVSjFgwAAMGDCgqqdCCCGEEFItmPwpgDEmenlubi4cHBzMnhCpfKn/poIpGVz8XODq71rV0yGE6GBMsMmYoBWgP4tIb1PzSughxa2yZ4mm5nWdyT2kqntAqhb2kLp79y5CQkKMHn///n0EBgZW4owIIYQQQqoHoz8FzJ49G4BqBacFCxbAyal8ZbaysjKcPXsWrVq1svgEieXx5XptKDuKkOrM1AwpXT2kOLqyiAQ9pGyts8qeskzJB6bMLdmry9xD3QEA2XezwRjTucoihwtI2bvaV/bUKoRfZa8W9ZBq164dhg0bhilTpqBdu3aiY7Kzs7F9+3asWrUKL774Il577TUrz5IQQgghxPqMDkhdunQJgCpD6sqVK7CzK/921c7ODi1btsScOXMsP0NicdQ/ipCawVI9pAzuRy37SjNDyqI9pNRK9riG5oBlSvbqKi5DqiSvBAWZBXDydNI7vihHlXlUbTOk3GpfhtT169exZMkS9O3bFw4ODmjTpg0CAgLg4OCAR48e4fr167h27RoiIyOxbNkyDBw4sKqnTAghhBBiFUZ/Cjh69CgAYNKkSVi1ahXk8rrXq6O24FbYo4AUIdWbpXpIGaKeWaXZQ6oopwiKJIVF+jOpr7LH9Y8CKEPKHDYONnD2dUZeah6yE7MNBqSqe8kenyFVi3pIeXp6Yvny5ViyZAn279+PkydPIjExEQUFBfDy8sL48ePx//buPD6me/0D+GcyyUxklz2IBFFLERWl0d9FikYtLd0UreVqLlqqcilqqy7Wlihug9qqlFZV29RSQuylEktpUYrUkkREMlknycz5/ZHOyMhiJiZz5sx83q/XvF6ZM+ecec6ZTHLmmef7fKOjo9GqVSuxQyUiIiKyKJO/ll6zZk1txEEWUqouRcbZDABMSBFZO2OG45Vfbs4KqZvJNwEA6afTERcShz4r+qDdiHY12r9O+Vn2dP2j5Ap5jeOmMl4hXshPz0f2tewH/l239oSUrodUSUEJNCUas1boia1OnTp48cUX8eKLL4odChEREZFVMCoh9fzzz2Pt2rXw8PDA888/X+26W7duNUtgVDsyzmZAW6pFHZ868AhmlRuRNTN3D6mq3N9DSnVdhbNfndUvE7QCEkYmICw67KEqpXQVUoJGQEk+G5qbi2dDT9w4fsOomfb0CSl360xIKT3u9bZSq9QPrPgiIiIiIuky6pOAp6envlGqp6dnrQZEtat8/6gHNb8lInFZqofU/bPs3fnzDnDfhKqCRkDWpSyzJKSAsmQDwP5R5uAZUvZ/OSfViIRUrnVXSMmd5HBycUJJQQnUOUxIEREREdkyoz4J6IbpCYKAWbNmwc/PD3Xq1KnVwKh2sKE5kXQY0x/KHD2kym8nd5LDp6kPZA4yCFrBYB3vMO8a7V9HN8secC8hxf5RD0+fkDKlQspKE1JAWR+pkoISm5ppj4iIiIgqMml8hyAICAsLw/Xr12srHqplbGhOJB2iVEg5OcCjgQf6rOijT1TJ5DL0Wd7noRubs0KqdniFeAEAsq9lP3BdKSSkdH2kbKmxORERERFVZNInAQcHBzRt2hR37txB06ZNaysmqiWaEg3STjMhRSQVovSQ+ufndiPaISw6DFmXsuAd5m2WWfYc5A76yitd9Qt7SD08z4a2VSHl7FmWkFLnqEWOxPzy8/Ph6uoqdhhEREREVsHkTy9z587FxIkTcfbs2QevTFYl83wmNGoNlB5K1G1cV+xwiOgBLFUhdf+QPR2PBh4I7RpqlmSUjm7Yni7ZwCF7D083ZK8gswAlBSXVrqvvIWWlTc2BsiF7AGxyyF5AQAD+/e9/49ChQ2KHQkRERCQ6kxNSQ4YMwfHjxxEeHo46derA29vb4EbWS9c/KvCxQE6zTiQBxlQ/maOH1P1NzWuTbtgeh+yZj7OXsz7B9KDG5qyQEteXX36JrKwsPPXUU3jkkUcwd+5c3Lx5U+ywiIiIiERh8ieBuLg4swawbNkyLFiwAGlpaQgPD8eSJUvQoUOHKtfPzs7G1KlTsXXrVmRlZSEkJARxcXHo1auXWeOyRWxoTiQtFush5WjYQ6o23Z+QYoXUw5PJZPAK8ULG2QxkX8uGb3PfKteVQkJK6fVPhZQN9pDq168f+vXrh9u3b2P9+vVYu3Ytpk+fjujoaPz73//Gs88+C0dHJmmJiIjIPph81TN06FCzPfnmzZsRGxuL+Ph4dOzYEXFxcYiOjsaFCxfg7+9fYf3i4mL06NED/v7+2LJlC+rXr49r167By8vLbDHZslvJTEgRSYmlekiVr6yq9Qqpf4YE6ntIsULKLDwbeiLjbMYD+0hJISGlq5CyxSF7On5+foiNjUVsbCyWLFmCiRMnYvv27fD19cWoUaMwefJkuLi4iB0mERERUa16qE8CRUVFKC4uNljm4WF8r5GFCxciJiYGw4cPBwDEx8fjp59+wurVqzF58uQK669evRpZWVk4cuQInJzKvlUPDQ2t+QHYEa1Gi7RTbGhOJCVizLJXvodUbdBVSBWryv53sKm5eej6SD1opj1dQkrprqztkGpM10PKFofs6aSnp2PdunVYu3Ytrl27hhdffBEjRozA9evXMW/ePPzyyy/4+eefxQ6TiIiIqFaZ/EkgPz8fkyZNwtdff407d+5UeFyj0Ri1n+LiYiQnJ2PKlCn6ZQ4ODujevTuOHj1a6TY//PADIiMj8eabb+L777+Hn58fBg0ahEmTJkEur/xDlFqthlp976JWpVIZFZ+tyfozCyX5JXCs4wifZj5ih0NERjCqP1S5xTXtIWXRCikFK6Rqgy4hpUqt/n+cOrfs/6EUKqRsMSG1detWrFmzBrt27ULLli3xxhtv4NVXXzWo9O7UqRNatGghXpBEREREFmLyJ4933nkHe/fuxWeffQalUonPP/8cs2bNQr169fDFF18YvZ/MzExoNBoEBAQYLA8ICEBaWlql2/z111/YsmULNBoNtm/fjunTp+OTTz7Bhx9+WOXzzJkzB56envpbcHCw0THaEn1D87aBNR7WQ0SWZVSFlEymf0wKPaQ4y17t8ArxAlB9hZSmWANtiRaAlSekvP4ZsmeDPaSGDx+OevXq4fDhwzh16hTGjBlToe1AvXr1MHXqVHECJCIiIrIgk7+a/vHHH/HFF1+ga9euGD58OP71r38hLCwMISEh2LBhAwYPHlwbcQIAtFot/P39sWLFCsjlckRERODGjRtYsGABZs6cWek2U6ZMQWxsrP6+SqWyy6QUG5oTSY+xw/FkDjIIWqHGyWYxhuxxlj3z8mxYViFVXQ8p3XA9wLoTUrohe7bYQ+rWrVsP7A1Vp06dKq9piIiIiGyJyZ9esrKy0LhxYwBl/aKysrIAAP/3f/+HAwcOGL0fX19fyOVypKenGyxPT09HYGBgpdsEBQXhkUceMRie16JFC6SlpVXoZaWjVCrh4eFhcLNHTEgRSY+xDcsftkJKjCF7nGXPvPRD9m6ooC3VVrqOLiHl6OxY66/zw7DlIXvu7u7IyMiosPzOnTtVth4gIiIislUmX5E2btwYV65cAQA0b94cX3/9NYCyyilTZrtTKBSIiIhAYmKifplWq0ViYiIiIyMr3ebJJ5/EpUuXoNXeu9i+ePEigoKCoFBY77e9YhMEgQkpIgkypUIKqHkPqfLJrtoesldhlj02NTcL9yB3ODg5QNAIyL2ZW+k6UugfBdh2hZQgCJUuV6vVvI4hIiIiu2PyJ4Hhw4fj9OnT6NKlCyZPnoy+ffti6dKlKCkpwcKFC03aV2xsLIYOHYr27dujQ4cOiIuLQ35+vn7WvSFDhqB+/fqYM2cOAGD06NFYunQpxo0bh7Fjx+LPP//E7Nmz8dZbb5l6GHYl+0o21DlqyBVy+LX0EzscIjKSyQkpCVVIFef+U63DIXtmIXOQwTPYE3f/uovsa9n6IXzl6SqkrD0hZYs9pD799FMAZT3fPv/8c7i5uekf02g0OHDgAJo3by5WeERERESiMPmTwPjx4/U/d+/eHefPn0dycjLCwsLQpk0bk/Y1YMAA3L59GzNmzEBaWhratm2LnTt36hudp6amwsHh3oej4OBg7Nq1C+PHj0ebNm1Qv359jBs3DpMmTTL1MOyKrjrKv7W//sMgEVk/UxNSNZ6woFzRhqV6SOlwyJ75eIaUJaRyruUA/6r4uGQSUv8M2dOoNShVl8JRKf2k5aJFiwCUVUjFx8cbDM9TKBQIDQ1FfHy8yftdtmwZFixYgLS0NISHh2PJkiXo0KFDletnZ2dj6tSp2Lp1K7KyshASEoK4uDj06tXL9IMiIiIiekgPfZUXEhKCkJCQGm8/ZswYjBkzptLHkpKSKiyLjIzEL7/8UuPns0f64XoRHK5HJCUGCalqhuM9bIWUoL2XkartCqn7hwSyQsp8dFVRVc20J5WElML9XnzqHDUc/aX/O6JrdRAVFYWtW7eibt26D73PzZs3IzY2FvHx8ejYsSPi4uIQHR2NCxcuwN/fv8L6xcXF6NGjB/z9/bFlyxbUr18f165dM6ndAhEREZE5GXWVpys1NwaHz1kf9o8ikiZL9ZAq39em1ntIsUKq1ugam1c1055umGT5hI81cpA7QOGuQHFuMYpyiuDq7yp2SGazb98+s+1r4cKFiImJ0bc5iI+Px08//YTVq1dj8uTJFdZfvXo1srKycOTIETg5lb3vQkNDzRYPERERkamMSkjpSs0fRCaTMSFlZdjQnEi6LNVDqvyQvby0PHiFeNVsP0a4PyHFpubmo3vdclKrSEhJpEIKKOsjVZxbbBN9pGJjY/HBBx/A1dUVsbGx1a5rbC/O4uJiJCcnY8qUKfplDg4O6N69O44ePVrpNj/88AMiIyPx5ptv4vvvv4efnx8GDRqESZMmVTnDn1qthlp9b7ZDlUplVHxERERExjDqk4Cu1JykJ/dGLgpuF0AmlyGgdYDY4RCRCconmKrrD/WwPaQu/HhB//OnjT9FnxV90G5Euxrt60Hu71HFIXvm88AKKSklpDydofpbBXWO+sErW7mTJ0+ipKRE/3NVZDLjE8qZmZnQaDT6nps6AQEBOH/+fKXb/PXXX9i7dy8GDx6M7du349KlS3jjjTdQUlKCmTNnVrrNnDlzMGvWLKPjIiIiIjIFPwnYOH1D80f9WYlAJDGWqJBSXVfhyPwj+vuCVkDCyASERYfBo4GHyft7EAeFYdKMQ/bMp3wPKUEQKiQ4pJSQUnoqAQBFOdKvkCo/TM+cQ/ZMpdVq4e/vjxUrVkAulyMiIgI3btzAggULqkxITZkyxaCqS6VSITg42FIhExERkY0zKkNRG+XmZBkcrkckXZboIXXnzzsGTc0BQNAIyLqUVSsJqQpD9lghZTaewWUJqdLCUhRkFsDVz7D3kj4hZeU9pIB7M+3ZQoVUdVQqFfbu3YvmzZujefPmRm/n6+sLuVyO9PR0g+Xp6ekIDAysdJugoCA4OTkZDM9r0aIF0tLSUFxcDIWi4u+FUqmEUqk0Oi4iIiIiUxj1SaA2ys3JMnQJqcB2lV+gEpH1MjohJa95hZRPUx/IHGQGSSmZXAbvMG+T92WM+4fssULKfBydHeEW6Ia8tDzkpOZUSEipc8uSO1KokHL2KktI2UIPqfJefvlldO7cGWPGjEFhYSHat2+Pq1evQhAEbNq0CS+88IJR+1EoFIiIiEBiYiL69esHoKwCKjExscqZi5988kls3LgRWq0WDg5llYoXL15EUFBQpckoIiIiotpmVELKWsrNyXSskCKSrvIVT9VVPz1MDymPBh7os6IPEkYmQNAIkMll6LO8T61URwFsal7bPEM8yxJS13JQL6KewWMleWVfLEkhIWVLQ/bKO3DgAKZOnQoA+O677yAIArKzs7Fu3Tp8+OGHRiekgLLq9aFDh6J9+/bo0KED4uLikJ+fr591b8iQIahfvz7mzJkDABg9ejSWLl2KcePGYezYsfjzzz8xe/ZsTkZDREREouEnARuWl56H3Bu5gAwIDGeFFJHUWGqWvXYj2iEsOgxZl7LgHeZda8kogEP2aptnQ0/cOHYD2deyKzwmxR5StjZkLycnB97eZdWHO3fuxAsvvAAXFxf07t0bEydONGlfAwYMwO3btzFjxgykpaWhbdu22Llzp77ReWpqqr4SCgCCg4Oxa9cujB8/Hm3atEH9+vUxbtw4TJo0yXwHSERERGQCkz8JFBUVYcmSJdi3bx8yMjKg1WoNHk9JSTFbcPRwdNVRvs18JfEBhIgMWaKHlI5HA49aTUTpODixqXltqm6mPSklpGy1h1RwcDCOHj0Kb29v7Ny5E5s2bQIA3L17F87Ozibvb8yYMVUO0UtKSqqwLDIyEr/88ovJz0NERERUG0xOSI0YMQI///wzXnzxRXTo0IF9o6wYh+sRSVv5JFR1w/EetkLKkjhkr3Z5hXgBqDwhpeshpXS3/ibVttpD6u2338bgwYPh5uaGkJAQdO3aFUDZUL7WrVuLG5yVGLH2V1Gff5X152uJiIhshsmfBBISErB9+3Y8+eSTtREPmVFaShoANjQnkipTK6Rq0kPK0sonpBwcHeDgaP0xS4m+QipV2hVSttpD6o033kCHDh3w999/o0ePHvohdY0bN8aHH34ocnRERERElmVyQqp+/fpwd3evjVjIzFghRSRtpiakIIHcTvlZ9tg/yvw8G5YlpKTeQ8pWh+wBQPv27dG+fXuDZb179xYpGiIiIiLxmPxp4JNPPsGkSZMQHx+PkJCQ2oiJzKAwqxDZV7MBAEGPMSFFJEW2XiHF/lHmpxuyV3inEMX5xVC43ks+SSkhZasVUhqNBmvXrkViYmKlfTj37t0rUmRERERElmdyQqp9+/YoKipC48aN4eLiAicnww8UWVlZZguOau7WybLqqLqN6+p7cRCRtBgkpKppWC7VHlKskDI/Zy9nKD2UUKvUyLmWA7+WfgAAQRBQnPtPQsrd+hNSttpDaty4cVi7di169+6NVq1asQ8nERER2TWTPw0MHDgQN27cwOzZsxEQEMCLKSvF4XpE0mfJWfYspfwse6yQqh2eIZ7I+C0DOan3ElKaYg20pWXVOFKokCo/ZE8QBJu51ti0aRO+/vpr9OrVS+xQiIiIiERnckLqyJEjOHr0KMLDw2sjHjITNjQnkj6TE1JSq5DiDHu1wivECxm/ZRj0kdIN1wNgMIzPWumG7GlLtSgtLIWTi20kLxUKBcLCwsQOg4iIiMgqmNxwpHnz5igsLKyNWMiMWCFFJH223kOKQ/Zqh0dDDwBAzrV7M+3pElKOzo6SmNlQ4abQ/17bUh+p//73v1i8eDEEQRA7FCIiIiLRmfxpYO7cufjvf/+Ljz76CK1bt67QQ8rDw8NswVHNqFVq3Ll4BwAbmhNJWfkkVHXJJklVSDmxqXlt0zU2rywhJYXhegAgk8mg9FSi6G4RirKL4B5kG7P7Hjp0CPv27cOOHTvw6KOPVriG2rp1q0iREREREVmeyQmpnj17AgC6detmsFzX40Gj0ZgnMqqxtNNlw/U8GnjA1d9V5GiIqKaMrZDSJauk0EOKFVK1zzPEEwAMh+xJqKG5jrOnM4ruFkGdoxY7FLPx8vJC//79xQ6DiIiIyCqY/Glg3759tREHmRGH6xHZBlvvIcUKqdqhr5BKlW6FFHCvj5QtDdlbs2aN2CEQERERWQ2TE1JdunSpjTjIjHQNzYMimJAikjKDhFQ11U9S6iFVfpY9NjWvHZ4Nyyqkcm/kQlOigdxJLsmEVPmZ9mxJaWkpkpKScPnyZQwaNAju7u64efMmPDw84ObmJnZ4RERERBZj1KeBM2fOoFWrVnBwcMCZM2eqXbdNmzZmCYxqjhVSRLbB1iukOGSvdrgFukGukENTrEHujVx4hXpJMyHlVZaQKsq2nQqpa9euoWfPnkhNTYVarUaPHj3g7u6OefPmQa1WIz4+XuwQiYiIiCzGqE8Dbdu2RVpaGvz9/dG2bVvIZLJKZ4hhDynxlRSU4PbvtwEwIUUkdSYnpNhDilD2++AR7IG7l+8i+1o2vEK9oM4tqzJSuitFjs54tjhkb9y4cWjfvj1Onz4NHx8f/fL+/fsjJiZGxMiIyGptHCB2BMCgzWJHQEQ2yqhPA1euXIGfn5/+Z7Je6b+lQ9AKcA1whVsQS/+JpMwmK6Q4y55FeIV44e7lu/o+UlKskNIlpGxpyN7Bgwdx5MgRKBSGr0NoaChu3LghUlRERERE4jAqIRUSElLpz2R9yg/Xk8ms/8MpEVWtfIKpuv5QUuohxQopy9D1kcq5ZpiQcnKTThJQ10PKliqktFptpZXk169fh7u7uwgREREREYnH6E8vFy9exPHjxw2WJSYmIioqCh06dMDs2bPNHhyZjv2jiGyHTVZIlU9Isal5rfEMKUtIZV/LBiDNCildDyl1tu1USD399NOIi4vT35fJZMjLy8PMmTPRq1cv8QIjIiIiEoHRCalJkyYhISFBf//KlSvo27cvFAoFIiMjMWfOHIOLLBKHfoY9JqSIJM8We0iVn2WPQ/Zqjy4hpa+QypVeQsoWe0h98sknOHz4MFq2bImioiIMGjRIP1xv3rx5YodHREREZFFGfz194sQJvPPOO/r7GzZswCOPPIJdu3YBKJtdb8mSJXj77bfNHiQZp1RdivTf0gEwIUVkCwwSUtUkmyRbIcUhe7XGK8QLQMUhe1Jqaq4bsmdLPaQaNGiA06dPY/PmzTh9+jTy8vIwYsQIDB48GHXq1BE7PCIiIiKLMvrTQGZmJho0aKC/v2/fPvTt21d/v2vXrvjvf/9r3ujIJLfP3Ya2RAvnus76b8eJSLpMrZCSWg8pVkjVHn0PqdQcCIIgySF7tlghdeDAAXTq1AmDBw/G4MGD9ctLS0tx4MABdO7cWcToiIiIiCzL6E8v3t7euHWrrD+RVqvFiRMn8MQTT+gfLy4uhiAI5o+QjMaG5kS2xdiEVKm6FACgVll/JUn5WfZYIVV7PII9AAClRaUouF0gyYSUvql5tu0kpKKiopCVlVVheU5ODqKiokSIiIiIiEg8Riekunbtig8++AB///034uLioNVq0bVrV/3jv//+O0JDQ2shRDIWG5oT2RZjElIpq1JwJfEKAGD/+/uRsirFIrHVFJuaW4aj0hFuQW4AyhqbSzIh5WV7Q/YEQaj0C6M7d+7A1dVVhIiIiIiIxGP0p4GPPvoIPXr0QEhICORyOT799FODi6f169fjqaeeqpUgyThMSBHZlvJJqMqG46muq5Dwn3uTTUAAEkYmICw6DB4NPCwRosnK98LSJUmodniFeCHvVh5yruXca2ruLp2ElG7InlqlrjKRIxXPP/88gLJZ9YYNGwal8l4vL41GgzNnzqBTp05ihUdEREQkCqMTUqGhofjjjz9w7tw5+Pn5oV69egaPz5o1y6DHFFmWtlSL9NNsaE5kSx5UIXXnzzsQtIZDpQWNgKxLWVabkDq5+qT+562DtqI4rxjtRrQTMSLb5Rniieu/XEdOao40K6T+GbInaMt6YEmpIfv9PD3LenoJggB3d3eDBuYKhQJPPPEEYmJixAqPiIiISBQmjZdwdHREeHh4pY9VtZwsI/N8JkqLSqFwU8A7zFvscIjIDB6UkPJp6gOZg8wgKSWTy6z2b8D9FV2CVrD6ii4p0zU2l+qQPcc6jnBwdIC2VIui7CJJJ6TWrFkDoOzLvQkTJnB4HhERERFM6CFF1k03XC/wsUBJTP1ORA9mkJCSV3xfezTwQJ8VffSPyeQy9Fnex2qTO9VVdJH56WZbzbkmzQopmUxmc32kZs6cyWQUERER0T/YUdZGsH8Uke0xSEhV0T+n3Yh2CIsOQ9alLHiHeVttMgqQXkWX1HmFeAEA7ly8A22pFoC0ElJAWR+pgswCFOXYxkx76enpmDBhAhITE5GRkVFhdmKNRiNSZERERESWx4SUjWBCisj26BJSD6p69GjgYdWJKB1dRVfCyAQIGsHqK7qkTlchdefiHf0yqSWkdH2kbKVCatiwYUhNTcX06dMRFBQk6UbtRERERA+LCSkbIGgFpJ1MA8CEFJEtMTYhJSVSquiSOl0PKUFTVoXjWMex0tkarZlupr2ibNuokDp06BAOHjyItm3bih0KERERkehqdGV68OBBvPrqq4iMjMSNGzcAAOvXr8ehQ4fMGhwZJ+tSForziuHo7Ajf5r5ih0NEZqJPRMnKGoLbCo8GHgjtGspkVC1z9nTWJ3QA6VVHAdD3kLKVIXvBwcEVhukRERER2SuTE1LffvstoqOjUadOHZw8eRJqdVkZfU5ODmbPnm32AOnBdMP1AsID4OAorW+/iahqf2z9AwCgLdEiLiQOKatSRI6IpEbXRwqQaELKxobsxcXFYfLkybh69arYoRARERGJzuTsxYcffoj4+HisXLkSTk5O+uVPPvkkUlL4YUkM7B9FZHtU11VImpGkvy9oBSSMTLCpSimqfbo+UgCgdFdWs6Z10g/Zs5EKqQEDBiApKQlNmjSBu7s7vL29DW5ERERE9sTkHlIXLlxA586dKyz39PREdna2OWIiE+kTUhFMSBHZijt/3jGYjQ4o6wWUdSmLQ93IaLo+UoA0K6R0CSlbqpAiIiIiojImJ6QCAwNx6dIlhIaGGiw/dOgQGjdubK64yEiCILBCisgG+TT1gcxBZpCUksll8A5jFQUZr3yFlBQTUvoeUjbS1Hzo0KFih0BERERkNUweshcTE4Nx48bh2LFjkMlkuHnzJjZs2IAJEyZg9OjRtREjVSPnWg6K7hbBwckB/o/6ix0OEZmJRwMP9FnRBzL5PzPtyWXos7wPq6PIJLbeQ0p1XYUr+65Y9VBWlUpl8HN1NyIiIiJ7YnKF1OTJk6HVatGtWzcUFBSgc+fOUCqVmDBhAsaOHVsbMVI19A3NWwdArpCLHA0RmVO7Ee0QFh2GrEtZ8A7zZjKKTGZQIeUuvYRUdT2kUj5PQcLIBAhaATIHGfqs6IN2I9pZOsQHqlu3Lm7dugV/f394eXlBJpNVWEcQBMhkMmg0GhEiJCIiIhKHyQkpmUyGqVOnYuLEibh06RLy8vLQsmVLuLm51UZ89AC6hFRgu0CRIyGi2uDRwIOJKKoxW62QUl1X6ZNRwL2m/2HRYVb3ftm7d6++Yfm+fftEjoaIiIjIepickNJRKBRo2bKlOWOhGriVzP5RRERUOVd/Vzg4OUBboq3QJF8KquohJaWm/126dKn0ZyIiIiJ7Z3JCKj8/H3PnzkViYiIyMjKg1WoNHv/rr7/MFhxVTxAE3Ey+CYAJKSIiqujkmpPQlpT9nz4RfwJBEUFWOaytKlUN2WPTfyIiIiLpMzkh9frrr2P//v147bXXEBQUVGkvBLKM3Ju5KLhdAJlchoA2AWKHQ0REVkR1XYWE/yTcWyDAaoe1VUU3ZK84txhajRYO8rK5WDwaeKDjuI74ZdEvANj0n4iIiEiKTE5I7dixAz/99BOefPLJ2oiHTKDrH+XXwg9OdZxEjoaIiKyJlIa1VUVXIQWUJaV0Q/gAoNFTjfDLol/g29wXr+1+TTLHRERERERlHEzdoG7duvrmnCQuXUKKw/WIiOh+umFt5UltWJuj0hGOzmXfnd3fR6q0qBRAWZ8sJqOIiIiIpMfkhNQHH3yAGTNmoKCgwGxBLFu2DKGhoXB2dkbHjh1x/Phxo7bbtGkTZDIZ+vXrZ7ZYpCQtJQ0AZ9gjIqKKPBp4oM+KPpDJy5JSUh3WVlUfKV1CSq6UWzymh1FaWoo9e/Zg+fLlyM3NBQDcvHkTeXl5IkdGREREZFkmD9n75JNPcPnyZQQEBCA0NBROToZDxVJSUkza3+bNmxEbG4v4+Hh07NgRcXFxiI6OxoULF+Dv71/ldlevXsWECRPwr3/9y9RDsBmskCIiouq0G9EOYdFhyLqUBe8wb8klo4CyPlL56flQ56gNlusSUroKKim4du0aevbsidTUVKjVavTo0QPu7u6YN28e1Go14uPjxQ6RiIiIyGJMvoozdzXSwoULERMTg+HDhwMA4uPj8dNPP2H16tWYPHlypdtoNBoMHjwYs2bNwsGDB5GdnV3l/tVqNdTqexexKpXKrPGLJT8jH6rrZccS2JYVUkREVDmPBh6STETpVFkhpZZeQmrcuHFo3749Tp8+DR8fH/3y/v37IyYmRsTIiIiIiCzP5Ku4mTNnmu3Ji4uLkZycjClTpuiXOTg4oHv37jh69GiV273//vvw9/fHiBEjcPDgwWqfY86cOZg1a5bZYrYWt06WVUf5POIDpbvyAWsTERFJk66ReVU9pByV0klIHTx4EEeOHIFCoTBYHhoaihs3bogUFREREZE4TO4hZU6ZmZnQaDQICAgwWB4QEIC0tLRKtzl06BBWrVqFlStXGvUcU6ZMQU5Ojv72999/P3Tc1oDD9YiIyB44e5YlpKoasid3lk4PKa1WC41GU2H59evX4e7uLkJEREREROIx6mtFb29vXLx4Eb6+vqhbty5kMlmV62ZlZZktuPvl5ubitddew8qVK+Hr62vUNkqlEkql7VUQsaE5ERHZgwc1NZfSkL2nn34acXFxWLFiBQBAJpMhLy8PM2fORK9evUSOjoiIiMiyjLqKW7Rokf6bu0WLFlWbkDKFr68v5HI50tPTDZanp6cjMLBiouXy5cu4evUq+vbtq1+m1WoBAI6Ojrhw4QKaNGliltisHSukiIjIHugSUvdXSGnUZZVGUkpIffLJJ4iOjkbLli1RVFSEQYMG4c8//4Svry+++uork/e3bNkyLFiwAGlpaQgPD8eSJUvQoUOHB263adMmDBw4EM899xy2bdtWgyMhIiIienhGXcUNHTpU//OwYcPM9uQKhQIRERFITEzUN0vXarVITEzEmDFjKqzfvHlz/PbbbwbLpk2bhtzcXCxevBjBwcFmi82aFd4txN2/7gIAgh5jQoqIiGyXLfWQatCgAU6fPo1NmzbhzJkzyMvLw4gRIzB48GDUqVPHpH1xlmIiIiKSOpOv4lJSUuDk5ITWrVsDAL7//nusWbMGLVu2xHvvvVehUeeDxMbGYujQoWjfvj06dOiAuLg45Ofn62fdGzJkCOrXr485c+bA2dkZrVq1Mtjey8sLACost2Vpp8qG63mFeqGOt2kXsERERFLyoB5SUqqQKioqgrOzM1599dWH3ldtz1IM2O5MxURkhzYOEDsCYNBmsSMgsjomNzUfOXIkLl68CAD466+/MGDAALi4uOCbb77BO++8Y3IAAwYMwMcff4wZM2agbdu2OHXqFHbu3KlvdJ6amopbt26ZvF9bxuF6RERkL6rqISXFIXv+/v4YOnQodu/erW85UBO6WYq7d++uX2bqLMXGmDNnDjw9PfU3e6lEJyIiIsswOSF18eJFtG3bFgDwzTffoEuXLti4cSPWrl2Lb7/9tkZBjBkzBteuXYNarcaxY8fQsWNH/WNJSUlYu3ZtlduuXbvW7vofsKE5ERHZC1uqkFq3bh0KCgrw3HPPoX79+nj77bdx4sQJk/djiVmKAdudqZiIiIisg8kJKUEQ9N/q7dmzRz8rTHBwMDIzM80bHVVKVyFVL6KeyJEQERHVrgf1kJIr5RaPqab69++Pb775Bunp6Zg9ezZ+//13PPHEE3jkkUfw/vvv19rz1mSWYqBspmIPDw+DGxEREZG5mJyQat++PT788EOsX78e+/fvR+/evQEAV65cqfBNHZlfcV4xMi+UJf4CH2OFFBER2baqhuxJsUJKx93dHcOHD8fPP/+MM2fOwNXVFbNmzTJ6+4eZpdjR0RGOjo744osv8MMPP8DR0RGXL19+6GMiIiIiMpXJCam4uDikpKRgzJgxmDp1KsLCwgAAW7ZsQadOncweIBlKO50GCIB7fXe4BbiJHQ4REVGtqnLInlq6CamioiJ8/fXX6NevH9q1a4esrCxMnDjR6O3Lz1Kso5ulODIyssL6ulmKT506pb89++yziIqKwqlTp9gbioiIiERh8lVcmzZt8Ntvv1VYvmDBAsjl0imbl6pbyWxoTkRE9kNXIVVSUAJNiQZyp7JrDX2FlFI6Caldu3Zh48aN2LZtGxwdHfHiiy/i559/RufOnU3eF2cpJiIiIqmr8VVccnIy/vjjDwBAy5Yt0a5dO7MFRVXjDHtERGRPdBVSQFmVlIuvCwBpDtnr378/+vTpgy+++AK9evWCk5NTjfc1YMAA3L59GzNmzEBaWhratm1bYZZiBweTC+GJiIiILMbkq7iMjAwMGDAA+/fv13+7lp2djaioKGzatAl+fn7mjpHKYUKKiIjsiYOjA5xcnVCSX4KinCJ9Qkqj1gCQVkIqPT0d7u7uZtvfmDFjMGbMmEofS0pKqnbb6mYwJiIiIrIEk786Gzt2LPLy8nDu3DlkZWUhKysLZ8+ehUqlwltvvVUbMdI/SgpLcPv32wCYkCIiIvtRWR8pqVRIqVQq/c+CIEClUlV5IyIiIrInJl/F7dy5E3v27EGLFi30y1q2bIlly5bh6aefNmtwZCjjtwwIGgEufi5wr2++b1iJiIismdJTidybuQYz7ekSUnKldfevrFu3Lm7dugV/f394eXlBJpNVWEcQBMhkMmg0GhEiJCIiIhKHyQkprVZbac8DJycnaLVaswRFlSs/XK+yC1oiIiJb5OxVViFVlF0xIWXtFVJ79+6Ft7c3AGDfvn0iR0NERERkPUy+invqqacwbtw4fPXVV6hXrx4A4MaNGxg/fjy6detm9gDpHvaPIiIie1TpkD21NBJSXbp00f/cqFEjBAcHV/hSSRAE/P3335YOjYiIiEhUJveQWrp0KVQqFUJDQ9GkSRM0adIEjRo1gkqlwpIlS2ojRvoHE1JERGSPlJ5KANAP2RMEQTIVUuU1atQIt2/frrA8KysLjRo1EiEiIiIiIvGYfBUXHByMlJQU7NmzB+fPnwcAtGjRAt27dzd7cHSPpliDjN8yADAhRURE9kWXkNJVSGlLtIBQ9pijUjoJKV2vqPvl5eXB2dlZhIiIiIiIxFOjqziZTIYePXqgR48e5o6HqnD799vQFGug9FTCq5GX2OEQERFZzP09pHTD9QBpVEjFxsYCKLt+mj59OlxcXPSPaTQaHDt2DG3bthUpOiIiIiJxGD1kb+/evWjZsmWl0xLn5OTg0UcfxcGDB80aHN3DhuZERGSvdD2kdEP2dMP1AOufZQ8ATp48iZMnT0IQBPz222/6+ydPnsT58+cRHh6OtWvXih0mERERkUUZ/bViXFwcYmJi4OHhUeExT09PjBw5EgsXLsS//vUvswZIZdg/ioiI7NX9Q/Z0CSm5Qi6JL2l0s+sNHz4cixcvrvRaioiIiMjeGF0hdfr0afTs2bPKx59++mkkJyebJSiqiAkpIiKyV/fPsifFhuYAsGbNGiajiIiIiP5h9JVceno6nJycqt6Ro2OlM8fQw9NqtEg7lQaACSkiIrI/9/eQ0qg1AKSXkAKAEydO4Ouvv0ZqaiqKi4sNHtu6datIURERERFZntEVUvXr18fZs2erfPzMmTMICmKypDbcuXAHpYWlcHJ1gndTb7HDISIisijdkL37e0hJLSG1adMmdOrUCX/88Qe+++47lJSU4Ny5c9i7dy88PT3FDo+IiIjIooxOSPXq1QvTp09HUVFRhccKCwsxc+ZM9OnTx6zBURndcL3AtoFwkBv9khEREdmEqobsSaGheXmzZ8/GokWL8OOPP0KhUGDx4sU4f/48Xn75ZTRs2FDs8IiIiIgsyujsxrRp05CVlYVHHnkE8+fPx/fff4/vv/8e8+bNQ7NmzZCVlYWpU6fWZqx2i/2jiIjInlWokFJLs0Lq8uXL6N27NwBAoVAgPz8fMpkM48ePx4oVK0SOjoiIiMiyjL6SCwgIwJEjRzB69GhMmTIFgiAAAGQyGaKjo7Fs2TIEBATUWqD2jAkpIiKyZ7oeUhq1BqVFpZIdsle3bl3k5uYCuNcKoXXr1sjOzkZBQYHI0RERERFZlklXciEhIdi+fTvu3r2LS5cuQRAENG3aFHXr1q2t+OyeoBXuJaQimJAiIiL7o3RXAjIAQlmVlFQTUp07d8bu3bvRunVrvPTSSxg3bhz27t2L3bt3o1u3bmKHR0RERGRRNbqSq1u3Lh5//HFzx0KVyLqcheLcYjg6O8KvhZ/Y4RAREVmczEEGpbsSapUa6hz1vYSUUloJqaVLl+p7cU6dOhVOTk44cuQIXnjhBUybNk3k6IiIiIgsS1pXcnZIVx0V0CYADo5saE5ERPZJ6VmWkCrKKYJGrQEgvQopb+97M+U6ODhg8uTJIkZDREREJC5pXcnZIf0Me+0CRY6EiIhIPM6ezlD9rUJRtrSG7KlUKqPX9fDwqMVIiIiIiKyL9V/J2bm0lDQAbGhORET2TdfYvPyQPblSLmZIRvHy8oJMJqt2HUEQIJPJoNFoLBQVERERkfiYkLJigiBwhj0iIiKUDdkDpNfUfN++fWKHQERERGSVrP9Kzo7lpOagMKsQDo4O8G/lL3Y4REREonH2LFchpZZOQqpLly5ih0BERERkldgl24rpqqP8W/lLbiYhIiIic9JXSEmsh9T9Dh48iFdffRWdOnXCjRs3AADr16/HoUOHRI6MiIiIyLKYkLJibGhORERURtdDqvyQPSn0kCrv22+/RXR0NOrUqYOUlBSo1WoAQE5ODmbPni1ydERERESWxYSUFWNDcyIiojK6Cil1jhoadVnzb6lVSH344YeIj4/HypUr4eTkpF/+5JNPIiUlRcTIiIiIiCxPWldydoYNzYmIiMqU7yGlI7WE1IULF9C5c+cKyz09PZGdnW35gIiIiIhExAopK5V7Kxd5aXmQOcgQ0CZA7HCIiIhEZQs9pAIDA3Hp0qUKyw8dOoTGjRuLEBERERGReJiQslK66ijf5r5QuCpEjoaIiEhclfWQktqEHzExMRg3bhyOHTsGmUyGmzdvYsOGDZgwYQJGjx4tdnhEREREFiWtKzk7wuF6RERE95QfsifVHlKTJ0+GVqtFt27dUFBQgM6dO0OpVGLChAkYO3as2OERERERWZS0ruTsiK6hOWfYIyIiKjdkL0e6Q/ZkMhmmTp2KiRMn4tKlS8jLy0PLli3h5uaGwsJC1KlTR+wQiYjISo1Y+6vYIWDVsMfFDoFsjLSu5OwIK6SIiIjuKV8hpUtIyZVyMUOqMYVCgZYtWwIA1Go1Fi5ciPnz5yMtLU3kyIiIiKqxcYDYEQCDNosdAZkRe0hZoYLMAuSk5gAAAtuyQoqIiEjXQ0pbqkVhViEA6VRIqdVqTJkyBe3bt0enTp2wbds2AMCaNWvQqFEjLFq0COPHjxc3SCIiIiILk8aVnJ25dbKsOso7zFv/jTAREZE9c3J1gkwug6ARkJeeB0A6CakZM2Zg+fLl6N69O44cOYKXXnoJw4cPxy+//IKFCxfipZdeglwuzWovIiIiopqSxpWcneFwPSIiIkMymQxKDyWK7hZBnaMGIJ2E1DfffIMvvvgCzz77LM6ePYs2bdqgtLQUp0+fhkwmEzs8IiIiIlFwyJ4VupVclpBiQ3MiIqJ77q8adlRKIyF1/fp1REREAABatWoFpVKJ8ePHMxlFREREdk0aV3J2hhVSREREFen6SOlIpUJKo9FAoVDo7zs6OsLNzU3EiIiIiEg0bA6vJ40rOTtSlF2Eu5fvAmBCioiIqDylp9LgvlQSUoIgYNiwYVAqy+IvKirCqFGj4OrqarDe1q1bxQiPiIiISBTSuJKzI2mnyqZ89gzxhIuPi8jREBERWY8KQ/YkkpAaOnSowf1XX31VpEiIiIiIrIc0ruTsCIfrERERVe7+Cim5Uhoz061Zs0bsEIiIiIisDpuaWxkmpIiIiCon1R5SRERERFQRE1JWhgkpIiKiylXoISWRWfaIiIiIqCJeyVmR4vxiZJ7PBMCEFBER0f3K95BycHKAzEEmYjRERGSMEWt/FTsErFI8eB0isjxWSFmR9NPpgAC4BbnBLZDTQRMREZVXvkKKw/WIiIiIpI0JKSvC4XpERERVK99DigkpIiIiImmzioTUsmXLEBoaCmdnZ3Ts2BHHjx+vct2VK1fiX//6F+rWrYu6deuie/fu1a4vJUxIERERVa38kD0mpIiIiIikTfSE1ObNmxEbG4uZM2ciJSUF4eHhiI6ORkZGRqXrJyUlYeDAgdi3bx+OHj2K4OBgPP3007hx44aFIzc/JqSIiIiqZjBkjw3NiYiIiCRN9ITUwoULERMTg+HDh6Nly5aIj4+Hi4sLVq9eXen6GzZswBtvvIG2bduiefPm+Pzzz6HVapGYmGjhyM2rtKgUt8/dBsCEFBERUWVYIUVERERkO0S9misuLkZycjKmTJmiX+bg4IDu3bvj6NGjRu2joKAAJSUl8Pb2rvRxtVoNtVqtv69SqR4u6FqScTYD2lIt6vjUgUewh9jhEBERWR32kDK0bNkyLFiwAGlpaQgPD8eSJUvQoUOHStdduXIlvvjiC5w9exYAEBERgdmzZ1e5PhFxdjgiotomaoVUZmYmNBoNAgICDJYHBAQgLS3NqH1MmjQJ9erVQ/fu3St9fM6cOfD09NTfgoODHzru2lB+uJ5MxmmsiYiI7sdZ9u5hywMiIiKSOtGH7D2MuXPnYtOmTfjuu+/g7Oxc6TpTpkxBTk6O/vb3339bOErjsH8UERFR9RydHeHgVHbpIlfKRY5GXGx5QERERFIn6teLvr6+kMvlSE9PN1ienp6OwMDAarf9+OOPMXfuXOzZswdt2rSpcj2lUgmlUlnl49aCCSkiIqLqyWQyOHs6oyCzwK4rpCzR8gCQTtsDIiIikiZRr+YUCgUiIiKQmJiIfv36AYD+27oxY8ZUud38+fPx0UcfYdeuXWjfvr2Foq09mhIN0s+UJeWYkCIiIqqasxcTUtW1PDh//rxR+3hQywOgrO3BrFmzHipWIiIiayN2fzj2hrtH9CF7sbGxWLlyJdatW4c//vgDo0ePRn5+PoYPHw4AGDJkiME3gPPmzcP06dOxevVqhIaGIi0tDWlpacjLyxPrEB5a5h+Z0Kg1UHooUbdxXbHDISIislq6PlL2nJB6WMa0PACk0/aAiIiIpEn0q7kBAwbg9u3bmDFjBtLS0tC2bVvs3LlT/61famoqHBzu5c0+++wzFBcX48UXXzTYz8yZM/Hee+9ZMvRKqa6rkHokFTLIENwpGB4NHjxj3uXdlwEAvi19IXNgQ3MiIqKqOCrLLl00pRqRIxGPJVoeANJpe0BERETSJHpCCgDGjBlT5RC9pKQkg/tXr16t/YBqKGVVCn6M+REQ/lkgA/qu7It2I9pVu83uibsBADeO3UDKqpRq1yciIrJXKatS8PeRsiqd37/+HSk97PN/JlseEBERkS2wioSULVBdVxkmowBAAH6M+RHXDlyDwq3iQNHivGKcWX/m3jYCkDAyAWHRYUZVVhEREdkL1XUVEv6TcG+Bnf/PjI2NxdChQ9G+fXt06NABcXFxFVoe1K9fH3PmzAFQ1vJgxowZ2Lhxo77lAQC4ubnBzc1NtOMgIiIi+8WElJnc+fOOYTJKRwDOfHHG6P0IGgFZl7Ls8uKaiIioKnf+vANBa/iP1p7/Z9paywMiIiKyP0xImYlPUx9AhopJKRnwxNtPQOlRsQeDWqXGL3G/GGwjk8vgHVb1FMxERET2yKepD2QOMoOklL3/z7SVlgdERERkn5iQMhOPBh7ou7KvwbA9mYMMfVb0qba/hd+jfkgYmQBBI0Aml6HP8j52+U0vERFRdTwaeKDPij78n0lERERkI5iQMqN2I9ohLDoMfx8ta7gaHPngWfZ022RdyoJ3mDcvrImIiKrA/5lEREREtoMJKTPzaOCBR1961ORteFFNRET0YPyfSURERGQbHB68ChERERERERERkfkwIUVERERERERERBbFhBQREREREREREVkUE1JERERERERERGRRTEgREREREREREZFFMSFFREREREREREQWxYQUERERERERERFZFBNSRERERERERERkUUxIERERERERERGRRTEhRUREREREREREFsWEFBERERERERERWRQTUkREREREREREZFFMSBERERERERERkUUxIUVERERERERERBbFhBQREREREREREVmUo9gBWCuNRoOSkhKxwyCyOCcnJ8jlcrHDICIiIiIiIhvGhNR9BEFAWloasrOzxQ6FSDReXl4IDAyETCYTOxQiIiIiIiKyQUxI3UeXjPL394eLiws/kJNdEQQBBQUFyMjIAAAEBQWJHBERERERERHZIiakytFoNPpklI+Pj9jhEImiTp06AICMjAz4+/tz+B4RERERERGZHZual6PrGeXi4iJyJETi0r0H2EeNiIiIiIiIagMTUpXgMD2yd3wPEBERERERUW1iQoqIiIiIiIiIiCyKCSkiIiIiIiIiIrIoJqSoSklJSZDJZMjOzjZ6m/feew9t27attZju17VrV7z99tsWez4iIiIiIiIienhMSNmA+Ph4uLu7o7S0VL8sLy8PTk5O6Nq1q8G6uiTT5cuXH7jfTp064datW/D09DRrvPacRFq2bBlCQ0Ph7OyMjh074vjx49WuX1JSgvfffx9NmjSBs7MzwsPDsXPnToN1PvvsM7Rp0wYeHh7w8PBAZGQkduzYYbBO165dIZPJDG6jRo0y+/ERERERERERGYMJKRsQFRWFvLw8nDhxQr/s4MGDCAwMxLFjx1BUVKRfvm/fPjRs2BBNmjR54H4VCgUCAwPZ4NpMNm/ejNjYWMycORMpKSkIDw9HdHQ0MjIyqtxm2rRpWL58OZYsWYLff/8do0aNQv/+/XHy5En9Og0aNMDcuXORnJyMEydO4KmnnsJzzz2Hc+fOGewrJiYGt27d0t/mz59fa8dKREREREREVB0mpIyVn1/1rVzC54HrFhYat64JmjVrhqCgICQlJemXJSUl4bnnnkOjRo3wyy+/GCyPiooCAGi1WsyZMweNGjVCnTp1EB4eji1bthise/+QvZUrVyI4OBguLi7o378/Fi5cCC8vrwoxrV+/HqGhofD09MQrr7yC3NxcAMCwYcOwf/9+LF68WF+pc/XqVQDA2bNn8cwzz8DNzQ0BAQF47bXXkJmZWe5U5WPIkCFwc3NDUFAQPvnkkweem8uXL+O5555DQEAA3Nzc8Pjjj2PPnj36x99991107Nixwnbh4eF4//33AQClpaV466234OXlBR8fH0yaNAlDhw5Fv379Hvj85S1cuBAxMTEYPnw4WrZsifj4eLi4uGD16tVVbrN+/Xq8++676NWrFxo3bozRo0ejV69eBsfet29f9OrVC02bNsUjjzyCjz76CG5ubgavOwC4uLggMDBQf/Pw8DApfiIiIiIiIiJzYULKWG5uVd9eeMFwXX//qtd95hnDdUNDK1/PRFFRUdi3b5/+/r59+9C1a1d06dJFv7ywsBDHjh3TJ6TmzJmDL774AvHx8Th37hzGjx+PV199Ffv376/0OQ4fPoxRo0Zh3LhxOHXqFHr06IGPPvqownqXL1/Gtm3bkJCQgISEBOzfvx9z584FACxevBiRkZEG1TrBwcHIzs7GU089hcceewwnTpzAzp07kZ6ejpdfflm/34kTJ2L//v34/vvv8fPPPyMpKQkpKSnVnpe8vDz06tULiYmJOHnyJHr27Im+ffsiNTUVADB48GAcP37cYAjjuXPncObMGQwaNAgAMG/ePGzYsAFr1qzB4cOHoVKpsG3bNoPnWbt2bbWVZMXFxUhOTkb37t31yxwcHNC9e3ccPXq0yu3UajWcnZ0NltWpUweHDh2qdH2NRoNNmzYhPz8fkZGRBo9t2LABvr6+aNWqFaZMmYKCgoIqn5eIiIiIiIioNjmKHQCZR1RUFN5++22UlpaisLAQJ0+eRJcuXVBSUoL4+HgAwNGjR6FWqxEVFQW1Wo3Zs2djz549+sRF48aNcejQISxfvhxdunSp8BxLlizBM888gwkTJgAAHnnkERw5cgQJCQkG62m1Wqxduxbu7u4AgNdeew2JiYn46KOP4OnpCYVCoa/W0Vm6dCkee+wxzJ49W79s9erVCA4OxsWLF1GvXj2sWrUKX375Jbp16wYAWLduHRo0aFDteQkPD0d4eLj+/gcffIDvvvsOP/zwA8aMGYNHH30U4eHh2LhxI6ZPnw6gLHHTsWNHhIWF6Y97ypQp6N+/vz7W7du3GzyPp6cnmjVrVmUcmZmZ0Gg0CAgIMFgeEBCA8+fPV7lddHQ0Fi5ciM6dO6NJkyZITEzE1q1bodFoDNb77bffEBkZiaKiIri5ueG7775Dy5Yt9Y8PGjQIISEhqFevHs6cOYNJkybhwoUL2Lp1a3Wnj4iIiIiIiKhWMCFlrLy8qh+Tyw3vV9MTCA73FaX9M1ztYXXt2hX5+fn49ddfcffuXTzyyCPw8/NDly5dMHz4cBQVFSEpKQmNGzdGw4YNce7cORQUFKBHjx4G+ykuLsZjjz1W6XNcuHBBn5TR6dChQ4WEVGhoqD4ZBQBBQUHV9kkCgNOnT2Pfvn1wq6Q67PLlyygsLERxcbHB8Dpvb+9qk0BAWYXUe++9h59++gm3bt3SJ+x0FVJAWZXU6tWrMX36dAiCgK+++gqxsbEAgJycHKSnp6NDhw769eVyOSIiIqDVavXL+vfvX+HcmMPixYsRExOD5s2bQyaToUmTJhg+fHiFYX7NmjXDqVOnkJOTgy1btmDo0KHYv3+/Pin1n//8R79u69atERQUhG7duuHy5ctG9RMjIiIiIiIiMicmpIzl6ir+utUICwtDgwYNsG/fPty9e1df4VSvXj0EBwfjyJEj2LdvH5566ikAZYkaAPjpp59Qv359g30plcqHisXJycngvkwmM0jeVCYvLw99+/bFvHnzKjwWFBSES5cu1SiWCRMmYPfu3fj4448RFhaGOnXq4MUXX0RxcbF+nYEDB2LSpElISUlBYWEh/v77bwwYMKBGz1cVX19fyOVypKenGyxPT083qBS7n5+fH7Zt24aioiLcuXMH9erVw+TJk9G4cWOD9RQKhb6iKyIiAr/++isWL16M5cuXV7pfXWLv0qVLTEgRERERERGRxbGHlA2JiopCUlISkpKS0LVrV/3yzp07Y8eOHTh+/Li+f1TLli2hVCqRmpqKsLAwg1twcHCl+2/WrBl+/fVXg2X33zeGQqGoMOSsXbt2OHfuHEJDQyvE4+rqiiZNmsDJyQnHjh3Tb3P37l1cvHix2uc6fPgwhg0bhv79+6N169YIDAzUN1HXadCgAbp06YINGzZgw4YN6NGjB/z9/QGUDcULCAgwOE6NRvPA3lWVHXNERAQSExP1y7RaLRITEyv0eqqMs7Mz6tevj9LSUnz77bd47rnnql1fq9VCrVZX+fipU6cAlCX7iIiIiIiIiCyNFVI2JCoqCm+++SZKSkoMekB16dIFY8aMQXFxsT4h5e7ujgkTJmD8+PHQarX4v//7P+Tk5ODw4cPw8PDA0KFDK+x/7Nix6Ny5MxYuXIi+ffti79692LFjR7XNvCsTGhqKY8eO4erVq3Bzc4O3tzfefPNNrFy5EgMHDsQ777wDb29vXLp0CZs2bcLnn38ONzc3jBgxAhMnToSPjw/8/f0xdepUONw/BPI+TZs2xdatW9G3b1/IZDJMnz690mqtwYMHY+bMmSguLsaiRYsqHPecOXMQFhaG5s2bY8mSJbh7967BcX/33XeYMmVKtf2gYmNjMXToULRv3x4dOnRAXFwc8vPzMXz4cP06Q4YMQf369TFnzhwAwLFjx3Djxg20bdsWN27cwHvvvQetVot33nlHv82UKVPwzDPPoGHDhsjNzcXGjRuRlJSEXbt2ASgb8rhx40b06tULPj4+OHPmDMaPH4/OnTujTZs21Z4/IiIiIiIiotrAhJQNiYqKQmFhIZo3b27QPLtLly7Izc1Fs2bNDCpiPvjgA/j5+WHOnDn466+/4OXlhXbt2uHdd9+tdP9PPvkk4uPjMWvWLEybNg3R0dEYP348li5dalKcEyZMwNChQ9GyZUsUFhbiypUrCA0NxeHDhzFp0iQ8/fTTUKvVCAkJQc+ePfVJpwULFuiH9rm7u+O///0vcnJyqn2uhQsX4t///jc6deoEX19fTJo0CSqVqsJ6L774IsaMGQO5XI5+/foZPDZp0iSkpaVhyJAhkMvl+M9//oPo6GjIy/UOy8nJwYULF6qNZcCAAbh9+zZmzJiBtLQ0tG3bFjt37jR4rVJTUw2SbEVFRZg2bRr++usvuLm5oVevXli/fj28vLz062RkZGDIkCG4desWPD090aZNG+zatUvfH0yhUGDPnj36BFhwcDBeeOEFTJs2rdp4iYiIiIiIiGqLTBAEQewgLEmlUsHT0xM5OTnw8PAweKyoqAhXrlxBo0aN4OzsLFKE0hITE4Pz58/j4MGDYodiMVqtFi1atMDLL7+MDz74QOxwagXfC0RE1V8z2CNLnI8Ra01vBWBOqxQfi/r8AIBBmx96F2KfR8A2ziXP4z94Hs2D59E8bOBvpK2cx6qYcr3ACikyyccff4wePXrA1dUVO3bswLp16/C///1P7LBq1bVr1/Dzzz+jS5cuUKvVWLp0Ka5cuYJBgwaJHRoRERERERGRJDEhRSY5fvw45s+fj9zcXDRu3BiffvopXn/9dbHDqlUODg5Yu3YtJkyYAEEQ0KpVK+zZswctWrQQOzQiIiIiIiIiSWJCikzy9ddfix2CxQUHB+Pw4cNih0FERERERERkM6qfooyIiIiIiIiIiMjMmJCqhFarFTsEIlHxPUBERERERES1iUP2ylEoFHBwcMDNmzfh5+cHhUIBmUwmdlhEFiMIAoqLi3H79m04ODhAoVCIHRIRERERERHZICakynFwcECjRo1w69Yt3Lx5U+xwiETj4uKChg0bwsGBRZRERERERERkfkxI3UehUKBhw4YoLS2FRqMROxwii5PL5XB0dGR1IBEREREREdUaJqQqIZPJ4OTkBCcnJ7FDISIiIiIiIiKyORyPQ0REREREREREFmUVCally5YhNDQUzs7O6NixI44fP17t+t988w2aN28OZ2dntG7dGtu3b7dQpERERETWgddPREREJGWiJ6Q2b96M2NhYzJw5EykpKQgPD0d0dDQyMjIqXf/IkSMYOHAgRowYgZMnT6Jfv37o168fzp49a+HIiYiIiMTB6yciIiKSOtF7SC1cuBAxMTEYPnw4ACA+Ph4//fQTVq9ejcmTJ1dYf/HixejZsycmTpwIAPjggw+we/duLF26FPHx8RXWV6vVUKvV+vs5OTkAAJVKVRuHQ0RERDZCd60gCILIkVRU29dPgDjXUMWFebW2b2OoSktEff6yIB7+/Ip9HgHbOJc8j7ogeB7NEwTPo3mCkP7fSFs5j1Xv2oTrJ0FEarVakMvlwnfffWewfMiQIcKzzz5b6TbBwcHCokWLDJbNmDFDaNOmTaXrz5w5UwDAG2+88cYbb7zxVqPb33//bY7LHrOxxPWTIPAaijfeeOONN954q/nNmOsnUSukMjMzodFoEBAQYLA8ICAA58+fr3SbtLS0StdPS0urdP0pU6YgNjZWf1+r1SIrKws+Pj4mT2uvUqkQHByMv//+Gx4eHiZtK1U8Zh6zreIx85htlb0dc20eryAIyM3NRb169cy634dliesnwLzXUFJgb++d2sRzaR48j+bB82gePI/mYQ/n0ZTrJ9GH7NU2pVIJpVJpsMzLy+uh9unh4WGzvzxV4THbBx6zfeAx2wd7O+baOl5PT0+z71MqauMaSgrs7b1Tm3guzYPn0Tx4Hs2D59E8bP08Gnv9JGpTc19fX8jlcqSnpxssT09PR2BgYKXbBAYGmrQ+ERERkS3h9RMRERHZAlETUgqFAhEREUhMTNQv02q1SExMRGRkZKXbREZGGqwPALt3765yfSIiIiJbwusnIiIisgWiD9mLjY3F0KFD0b59e3To0AFxcXHIz8/XzxozZMgQ1K9fH3PmzAEAjBs3Dl26dMEnn3yC3r17Y9OmTThx4gRWrFhR67EqlUrMnDmzQvm6LeMx2wces33gMdsHeztmezteHSldP0mFvf4u1QaeS/PgeTQPnkfz4Hk0D55HQzJBEH8u46VLl2LBggVIS0tD27Zt8emnn6Jjx44AgK5duyI0NBRr167Vr//NN99g2rRpuHr1Kpo2bYr58+ejV69eIkVPREREZHm8fiIiIiIps4qEFBERERERERER2Q9Re0gREREREREREZH9YUKKiIiIiIiIiIgsigkpIiIiIiIiIiKyKCakiIiIiIiIiIjIouwmIXXgwAH07dsX9erVg0wmw7Zt2wwe37p1K55++mn4+PhAJpPh1KlTFfZRVFSEN998Ez4+PnBzc8MLL7yA9PT0ap9XEATMmDEDQUFBqFOnDrp3744///zTjEdWtYc95qysLIwdOxbNmjVDnTp10LBhQ7z11lvIycmp9nmHDRsGmUxmcOvZs6eZj65y5nidu3btWiH+UaNGVfu8Un6dr169WuF4dbdvvvmmyue11te5pKQEkyZNQuvWreHq6op69ephyJAhuHnzpsE+srKyMHjwYHh4eMDLywsjRoxAXl5etc9bk78B5vKwx3z16lWMGDECjRo1Qp06ddCkSRPMnDkTxcXF1T5vTd4P5mCO1zg0NLRC7HPnzq32eaX8GiclJVX5Xv7111+rfF6xXmPgwX+/3nvvPTRv3hyurq6oW7cuunfvjmPHjhmsI7X3MkmDVqsVOwQiIqvFedHIXOwmIZWfn4/w8HAsW7asysf/7//+D/PmzatyH+PHj8ePP/6Ib775Bvv378fNmzfx/PPPV/u88+fPx6effor4+HgcO3YMrq6uiI6ORlFR0UMdjzEe9phv3ryJmzdv4uOPP8bZs2exdu1a7Ny5EyNGjHjgc/fs2RO3bt3S37766quHOhZjmeN1BoCYmBiD+OfPn1/t+lJ+nYODgw2O9datW5g1axbc3NzwzDPPVPvc1vg6FxQUICUlBdOnT0dKSgq2bt2KCxcu4NlnnzVYb/DgwTh37hx2796NhIQEHDhwAP/5z3+qfd6a/A0wl4c95vPnz0Or1WL58uU4d+4cFi1ahPj4eLz77rsPfG5T3w/mYI7XGADef/99g9jHjh1b7fNK+TXu1KlThffy66+/jkaNGqF9+/bVPrcYrzHw4L9fjzzyCJYuXYrffvsNhw4dQmhoKJ5++mncvn1bv47U3stk3VJSUgAADg52c4lMZFeYbH44d+/eBQDIZDKRI5EmJvIqIdghAMJ3331X6WNXrlwRAAgnT540WJ6dnS04OTkJ33zzjX7ZH3/8IQAQjh49Wum+tFqtEBgYKCxYsMBgP0qlUvjqq68e+jhMUZNjrszXX38tKBQKoaSkpMp1hg4dKjz33HM1C9SManrMXbp0EcaNG2f089ji69y2bVvh3//+d7XrSOF11jl+/LgAQLh27ZogCILw+++/CwCEX3/9Vb/Ojh07BJlMJty4caPSfdTkb0BtqckxV2b+/PlCo0aNqt2Pqe+H2lDT4w0JCREWLVpk9PPY2mtcXFws+Pn5Ce+//361+7GG11gQjDvmnJwcAYCwZ88eQRCk/14m6/LVV18JMplMWLt2rdihSNqyZcuEFStWiB2GpGk0GkEQyq4xS0tLRY5G2pKTk4Vdu3YJ3377rX6ZVqsVMSLp2rhxo/DGG28Ip0+fFjsUSdK9r+/cuSNkZGSIHI314Nc/RkpOTkZJSQm6d++uX9a8eXM0bNgQR48erXSbK1euIC0tzWAbT09PdOzYscptrF1OTg48PDzg6OhY7XpJSUnw9/dHs2bNMHr0aNy5c8dCEZrHhg0b4Ovri1atWmHKlCkoKCiocl1be52Tk5Nx6tQpoyrhpPI65+TkQCaTwcvLCwBw9OhReHl5GVSNdO/eHQ4ODhWGA+nU5G+AmO4/5qrW8fb2fuC+THk/iKWq4507dy58fHzw2GOPYcGCBSgtLa1yH7b2Gv/www+4c+cOhg8f/sB9SeE1Li4uxooVK+Dp6Ynw8HAA9vFeJsv47LPPMGjQILi5ueGXX34ROxzJWrlyJcaMGYO6deuKHYpkabVaODg44OLFixg/fjyee+45vP/++1Z7jWXNVq9ejRdeeAFvvfUW3nzzTf3/Q1b3mG7NmjUYPnw4WrVqhaCgIIPHWHVmHAcHB/z11194/PHHsWTJkgqtJuxV9VkF0ktLS4NCoahw4R8QEIC0tLQqt9GtY+w21iwzMxMffPDBA4dC9OzZE88//zwaNWqEy5cv491338UzzzyDo0ePQi6XWyjamhs0aBBCQkJQr149nDlzBpMmTcKFCxewdevWSte3tdd51apVaNGiBTp16lTtelJ5nYuKijBp0iQMHDgQHh4eAMpeM39/f4P1HB0d4e3tXe372dS/AWKp7Jjvd+nSJSxZsgQff/xxtfsy9f0ghqqO96233kK7du3g7e2NI0eOYMqUKbh16xYWLlxY6X5s7TVetWoVoqOj0aBBg2r3Ze2vcUJCAl555RUUFBQgKCgIu3fvhq+vLwDbfy+TZaxYsQJjx47FgQMHUFBQgL59++KVV15Bly5dxA5NUlasWIE333wTmzdvxosvvgiNRgMABtcEgiAwGVANXTLqt99+Q/fu3dG5c2c0aNAAH330EQRBwMyZM8UOUTK2bduGcePGYf369WjdujX27t2L5cuXo6CgAC4uLgD4+2is33//HfPmzcPq1asxaNAgZGdn48qVK1CpVAgPD+cQZxPs3r0bV65cQUJCApydnfHvf/8bgYGBAO4N57O330kmpMgoKpUKvXv3RsuWLfHee+9Vu+4rr7yi/7l169Zo06YNmjRpgqSkJHTr1q2WI3145RNurVu3RlBQELp164bLly+jSZMmIkZW+woLC7Fx40ZMnz79getK4XUuKSnByy+/DEEQ8Nlnn4kdjkUYc8w3btxAz5498dJLLyEmJqba/Vn7+6G6442NjdX/3KZNGygUCowcORJz5syBUqm0dKhmY8xrfP36dezatQtff/31A/dn7a9xVFQUTp06hczMTKxcuRIvv/wyjh07ViERRVQTa9euxahRo7B161b83//9H65cuYKIiAjs2LEDXbp0gUajsaovWaxVYmIiRo0ahS1btuD555/HH3/8geXLlyMlJQVNmjTBE088gZEjR0ImkzEJUA0HBwdcuXIFzz77LEaMGIHZs2cDAIKCgpCRkYGSkhI4OTnp1+e5rFxJSQl27tyJN998E/369QNQ9kXOpk2bsGvXLv1kGM7OzjyHRsjOzoaLiwsGDhyI06dP46233sLNmzeRn5+PZs2aYfPmzfD399cnVKlqkZGRGDJkCJo2bYply5ZBq9VizJgx8PLystvfQ/7GGCkwMBDFxcXIzs42WJ6enq7Pala2jW4dY7exRrm5uejZsyfc3d3x3XffGfwjNEbjxo3h6+uLS5cu1VKEtatjx44AUGX8tvI6A8CWLVtQUFCAIUOGmLyttb3Oug/t165dw+7duw2qSAIDA5GRkWGwfmlpKbKysqp9P5v6N8DSqjtmnZs3byIqKgqdOnXCihUrTH6OB70fLMmY4y2vY8eOKC0txdWrVyt93FZeY6CstN7Hx6fSRu8PYk2vMQC4uroiLCwMTzzxBFatWgVHR0esWrUKgO2+l8kyVCoVDh06hB9++EH/obVRo0bo2rUrVq5ciZycHCajjKDVauHo6Ag/Pz989913+OOPP/Dss88iNTUVrVq1QkZGBv73v//pJ9Gw1w9dxtBoNPj222/xzDPPYPLkyfrl169fx8mTJ/Hkk09i9OjR+PHHHwHwXFbFyckJly5dMphZeurUqfj9998xZ84cfPjhh2jfvj3y8vL0SVKqSDcU79q1a1Cr1dBoNBg5ciQiIyOxYsUKrF+/Hnfu3NHPss1k1IMJgoAjR47g3XffxciRI7FixQqsW7cOzz//PKZOnSp2eKLgb42RIiIi4OTkhMTERP2yCxcuIDU1FZGRkZVu06hRIwQGBhpso1KpcOzYsSq3sTYqlQpPP/00FAoFfvjhBzg7O5u8j+vXr+POnTsVxhtLhe6fWVXx28LrrLNq1So8++yz8PPzM3lba3qddR/a//zzT+zZswc+Pj4Gj0dGRiI7OxvJycn6ZXv37oVWq9V/GL9fTf4GWNKDjhkoq4zq2rUrIiIisGbNmhpdODzo/WApxhzv/U6dOgUHB4cqK2ts4TUGyi521qxZgyFDhpj8BQJgPa9xVbRaLdRqNQDbfC+TZWi1Wnh4eODzzz9Hnz59AEDfY278+PHw9/fHxx9/zA+qDyAIAhwcHNClSxds3boVR48exaOPPoqXXnoJX375Jf73v//hyy+/RO/evbFr1y5cuXJF7JCtmlwux8CBAzFkyBD9Fw4ffvgh1qxZg6eeegqvvfYakpOTERcXxyHGlSj/fh0yZAiuXr2KiIgIPPnkkzh16hQOHz6M3bt34+TJkygsLMSUKVMAMLFXGd17GwC6du0KR0dHjBo1Ch4eHnjzzTcRFRWFbt264aeffkJGRgYWL14scsTSEB4ejkaNGuHatWuYMWMGxo4di6lTp2Lv3r12O0zcbobs5eXlGXzbe+XKFZw6dQre3t5o2LAhsrKykJqaqm8uduHCBQBl36QGBgbC09MTI0aMQGxsLLy9veHh4YGxY8ciMjISTzzxhH6/zZs3x5w5c9C/f3/IZDK8/fbb+PDDD9G0aVM0atQI06dPR7169fTfxFnzMeuSUQUFBfjyyy+hUqmgUqkAAH5+fvpvDcsfc15eHmbNmoUXXngBgYGBuHz5Mt555x2EhYUhOjra6o/58uXL2LhxI3r16gUfHx+cOXMG48ePR+fOndGmTRv9fm3pdda5dOkSDhw4gO3bt1f6PFJ5nYOCgvDiiy8iJSUFCQkJ0Gg0+os2b29vKBQKtGjRAj179kRMTAzi4+NRUlKCMWPG4JVXXkG9evUAlCVvunXrhi+++AIdOnQw+m+AtR6zLhkVEhKCjz/+GLdv39bvS/d7cP8xG/t+sMbjPXr0KI4dO4aoqCi4u7vj6NGjGD9+PF599VV9s11be4119u7diytXruD111+v8BzW9Bo/6Jh9fHzw0Ucf4dlnn0VQUBAyMzOxbNky3LhxAy+99BIASPK9TNZB90Fr9erVyM7ORmxsrP66xsvLCxEREdi3b59+OA+H9VROd06++OIL3L59G6tXr8aWLVswaNAguLi4QBAE1K1bFy+88ALmzp2L1NRUNGrUSOSorZcgCKhfv77+79ft27dx584dJCQk6KtQunfvjkcffRSnTp3SL6Myut/HjRs34uLFi4iPj8e1a9ewfft2jBgxAo0bN4ZWq4VWq0WrVq3YjLsaunO5evVq3LhxA927d8e2bdug1WoRHBwMoCyJ7+Pjg4YNG6KkpETMcCVBN6SxqKgIBw4cQGhoKC5cuAC5XI46derg9OnTaNWqlf79bzcsOaWfmPbt2ycAqHAbOnSoIAiCsGbNmkofnzlzpn4fhYWFwhtvvCHUrVtXcHFxEfr37y/cunXL4HkACGvWrNHf12q1wvTp04WAgABBqVQK3bp1Ey5cuGCBI374Y65qewDClStXKj3mgoIC4emnnxb8/PwEJycnISQkRIiJiRHS0tIkccypqalC586dBW9vb0GpVAphYWHCxIkThZycHIPnsaXXWWfKlClCcHCwfkrS+0nldb5y5UqVv7f79u3T7+POnTvCwIEDBTc3N8HDw0MYPny4kJubq39ct5/y2xjzN8Baj7mq34Py/wbuP2Zj3w/WeLzJyclCx44dBU9PT8HZ2Vlo0aKFMHv2bKGoqKjK4xUEab/GOgMHDhQ6depU6XNY02ssCNUfc2FhodC/f3+hXr16gkKhEIKCgoRnn31WOH78uME+pPZeJutRVFQk9OrVS3juuef0y0pLSwVBEITff/9dcHV1Ff73v/+JFJ10FBUVCc8884zQv39/QRAEg2sBrVYrCIIgHD16VHj88ceFS5cuiRKjNdNqtfrfu8zMTCEvL0/Iz8/XP65SqfTraTQa4cyZM0K7du2EM2fOiBKvtSssLBR69uwpPP/88/plnTt3FqZMmaK/X1xcLHTu3Fl4//33xQhRMnTv7ddee024deuW0LNnT0EmkwmTJ082WK9Lly7CZ599JlKU1qmy97Xu2mrSpEnCmjVrhLFjxwr16tUT/vrrL2H27NmCi4uL8Mknn+i3sxcyQWAtMhERERHZD+Gfiqfk5GQ89dRTWL9+vb7nmiAIKCoqwujRo5GRkYGNGzdWmJWRypQ/j1FRUdi4caN+CKROYWEhXnnlFZSUlCAhIYF9Zv6xfft21K9fH+Hh4QCArVu3Yv78+cjMzETr1q3Ru3dvvP766xWq86ZOnYrExET8+OOPNWqxYMvuf1+vXbsW/fv3x/Tp03H06FH07t0bjz32GObPn4+0tDQcP34cjo52M2DIJLpzeeLECURFRWHHjh0IDQ3FxIkTsWfPHjz++ON4/PHHsX//fmRnZ+PEiRM8l6j+fd2qVSsMGjQIdevWRXR0NPz8/PDTTz+hffv2AID58+ejf//+aNq0qZiHYHFMSBERERGRTbv/Q72OSqVCTEwMgoKCEBcXZzBL1GeffYYNGzbg4MGDHK73D2PPIwAUFBQgMTERixcvxu3bt3HixAk4OTlxJi6UTaIQGRmJrl27Ytq0aSgqKsITTzyBSZMmwdHREampqfj8888xa9YsfXPzs2fPYvPmzfj0009x8OBBiwyrtnYP+n0MDAzE4sWLcerUKXzyySf4+eefERQUhODgYGzduhVOTk6cSfMf1Z3L119/HYGBgfj000/x999/45dffkF8fDzq1q0Lb29vLFu2jOcSD35fX7t2DatWrcKrr76q720WHh5u938TmZAiIiIiIruwaNEiaLVaDBgwAA0aNAAArFy5EuPHj8fp06fRpEkTgw8Hug9pVX1Ys1fGnMebN29iyZIlSE9Px4oVK+Do6IjS0lJWUfwjJSUFI0eORMeOHeHl5QW1Wo0FCxYAKEsCrF+/HhMmTMCKFSv01VIXL17Ehg0b9NUXVKa638eTJ0+iadOmyMrKgkqlQmlpKZo0aQKZTMbfx0pUdS7ffvttnDp1qsrqHZ7LMtW9r3NycrBx40ZMmjQJCxYswMiRI0WO1jowIUVERERENq+wsBCzZs1CfHw8IiIiEBoaigULFsDFxQWvv/46PD09ERcXV2F2SiajDBlzHhctWgSFQoHs7Gx4enryw38VUlJSMHr0aKSnp6NPnz5YunSp/rGcnByMHz8earUaGzZswG+//Ya6devqkwRU5kG/jx4eHli0aBGUSqXBdvZelVIZY87l4sWLIZfLDc4d/0Yaqu59fffuXUyYMAFFRUVYu3YtHB0d7f7cMSFFRERERHbj+vXr2LFjB+Lj41FQUIAOHTrgzp07AIBNmzbBzc2NH7CMUN15/Oqrr+Du7s4KMyOcOXMGzz33HJydnfHVV1+hbdu2+semTp2Kn376CcePHzeYTZUq4vvafHguH96D3tfbt2/H8ePHK3wBYo+YFiYiIiIiu9GgQQPExMQgOTkZsbGxqFu3LrZv347t27dj8eLFAMAPWkao7jx++umnAO6dR57PqrVp0wY//PADnJycsHjxYpw+fVr/WGZmJvz8/FBSUiJihNLA97X58Fw+vAe9r319fVFcXCxihNaDFVJEREREZFfu/3b/119/xbJly3D79m189dVX8PDwEDE66XjQeXR3d+cHVyOdPHkSQ4YMQUFBATp37gylUoktW7Zgz549BtUVVDW+r82H59I8+L5+MCakiIiIiMjuHTt2DF26dMHPP/+Mzp07ix2OZPE81txvv/2G559/Hmq1Gm+88QYGDhyIkJAQscOSNP4+mg/PZc3wfV09DtkjIiIiIrsmCAI6duyIxx57DFevXhU7HMnieXw4rVu3xqZNm9C8eXOMGDGCH1ofEn8fzYfnsub4vq4eK6SIiIiIyO6tWLECo0aNwp9//okmTZqIHY5k8Tw+vKKiIjg7O4sdhk3g76P58Fw+HL6vK8eEFBHZjWHDhmHdunUAAEdHRzRo0AAvvfQSGjdujNGjR1e77ZUrVxAaGmqBKImISAyXL1+GWq1Gy5YtxQ5F0ngeyZrw99F8eC6pNjAhRUR2Y9iwYUhPT8eaNWtQUlKC5ORkDB06FKNGjcL48eP16z3//PNo1aoV3n//ff0yPz8/yOVyMcImIiIiIiKyOY5iB0BEZElKpRKBgYEAgODgYHTv3h27d+/GvHnz9OsoFAq4uLjo1yMiIiIiIiLzYlNzIrJbZ8+exZEjR6BQKMQOhYiIiIiIyK6wQoqI7EpCQgLc3NxQWloKtVoNBwcHLF26VOywiIiIiIiI7AoTUkRkV6KiovDZZ58hPz8fixYtgqOjI1544QWxwyIiIiIiIrIrHLJHRHbF1dUVYWFhCA8Px+rVq3Hs2DGsWrVK7LCIiIiIiIjsChNSRGS3HBwc8O6772LatGkoLCwUOxwiIiIiIiK7wYQUEdm1l156CXK5HMuWLRM7FCIiIiKTDRs2DDKZrMLt0qVLYodWK7p27Yq3335b7DCIyAyYkCIiu+bo6IgxY8Zg/vz5yM/PFzscIiIiIpP17NkTt27dMrg1atTIYJ3i4mKRoiMiqhwTUkRkN9auXYtt27ZVWD558mRkZGTA1dUVAJCUlIS4uDjLBkdERERUQ0qlEoGBgQa3bt26YcyYMXj77bfh6+uL6OhoAMDChQvRunVruLq6Ijg4GG+88Qby8vIM9rdy5UoEBwfDxcUF/fv3x8KFC+Hl5aV//L333kPbtm2xevVqNGzYEG5ubnjjjTeg0Wgwf/58BAYGwt/fHx999JHBfrOzs/H666/Dz88PHh4eeOqpp3D69OkK+12/fj1CQ0Ph6emJV155Bbm5uQDKqsH279+PxYsX6yvBrl69WjsnlYhqHRNSRERERERENmjdunVQKBQ4fPgw4uPjAZT10Pz0009x7tw5rFu3Dnv37sU777yj3+bw4cMYNWoUxo0bh1OnTqFHjx4VEksAcPnyZezYsQM7d+7EV199hVWrVqF37964fv069u/fj3nz5mHatGk4duyYfpuXXnoJGRkZ2LFjB5KTk9GuXTt069YNWVlZBvvdtm0bEhISkJCQgP3792Pu3LkAgMWLFyMyMhIxMTH6SrDg4ODaOn1EVMtkgiAIYgdBREREREREphs2bBi+/PJLODs765c988wzuH37NlQqFVJSUqrdfsuWLRg1ahQyMzMBAK+88gry8vKQkJCgX+fVV19FQkICsrOzAZRVMi1YsABpaWlwd3cHUDZs8MKFC7h8+TIcHMrqHpo3b45hw4Zh8uTJOHToEHr37o2MjAwolUr9vsPCwvDOO+/gP//5T6X7feedd3DgwAH88ssvAMp6SLVt25bV7EQ2wFHsAIiIiIiIiKjmoqKi8Nlnn+nvu7q6YuDAgYiIiKiw7p49ezBnzhycP38eKpUKpaWlKCoqQkFBAVxcXHDhwgX079/fYJsOHToYJKgAIDQ0VJ80AoCAgADI5XJ9Mkq3LCMjAwBw+vRp5OXlwcfHx2A/hYWFuHz5cpX7DQoK0u+DiGwLE1JEREREREQS5urqirCwsEqXl3f16lX06dMHo0ePxkcffQRvb28cOnQII0aMQHFxMVxcXIx+TicnJ4P7Mpms0mVarRYAkJeXh6CgICQlJVXYV/n+VNXtg4hsCxNSREREREREdiA5ORlarRaffPKJvpLp66+/NlinWbNm+PXXXw2W3X+/Jtq1a4e0tDQ4OjoiNDS0xvtRKBTQaDQPHQ8RiY9NzYmIiIiIiOxAWFgYSkpKsGTJEvz1119Yv369vtm5ztixY7F9+3YsXLgQf/75J5YvX44dO3ZAJpM91HN3794dkZGR6NevH37++WdcvXoVR44cwdSpU3HixAmj9xMaGopjx47h6tWryMzMZPUUkYQxIUVERERERGQHwsPDsXDhQsybNw+tWrXChg0bMGfOHIN1nnzyScTHx2PhwoUIDw/Hzp07MX78eIOm6TUhk8mwfft2dO7cGcOHD8cjjzyCV155BdeuXUNAQIDR+5kwYQLkcjlatmwJPz8/pKamPlRcRCQezrJHREREREREVYqJicH58+dx8OBBsUMhIhvCHlJERERERESk9/HHH6NHjx5wdXXFjh07sG7dOvzvf/8TOywisjGskCIiIiIiIiK9l19+GUlJScjNzUXjxo0xduxYjBo1SuywiMjGMCFFREREREREREQWxabmRERERERERERkUUxIERERERERERGRRTEhRUREREREREREFsWEFBERERERERERWRQTUkREREREREREZFFMSBERERERERERkUUxIUVERERERERERBbFhBQREREREREREVnU/wOoeVchI9bVEwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "feat_array = feat_gen.feature_cos_pred_obs_weighted(\n", + " precursor_fragments, ms2pip_preds, visualize=True, use_all_rt=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "01fab4ec", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(672.4002760000001)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mz = feat_gen.feature_precursor_mz(precursor)\n", + "mz" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/visualize_diann_features.ipynb b/notebook_helpers/visualize_diann_features.ipynb new file mode 100644 index 0000000..4c1ddcc --- /dev/null +++ b/notebook_helpers/visualize_diann_features.ipynb @@ -0,0 +1,3800 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 33, + "id": "81944848", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "a4e1880a", + "metadata": {}, + "outputs": [], + "source": [ + "features = pd.read_csv(\"/home/robbe/MuMDIA/debug/outfile.pin\", sep=\"\\t\")\n", + "psms = pd.read_csv(\"../results/config_playing/df_psms.tsv\", sep=\"\\t\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "809c1f50", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "psm_id", + "rawType": "int64", + "type": "integer" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "scannr", + "rawType": "object", + "type": "string" + }, + { + "name": "peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "stripped_peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "proteins", + "rawType": "object", + "type": "string" + }, + { + "name": "num_proteins", + "rawType": "int64", + "type": "integer" + }, + { + "name": "rank", + "rawType": "int64", + "type": "integer" + }, + { + "name": "is_decoy", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "expmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "calcmass", + "rawType": "float64", + "type": "float" + }, + { + "name": "charge", + "rawType": "int64", + "type": "integer" + }, + { + "name": "peptide_len", + "rawType": "int64", + "type": "integer" + }, + { + "name": "missed_cleavages", + "rawType": "int64", + "type": "integer" + }, + { + "name": "semi_enzymatic", + "rawType": "bool", + "type": "boolean" + }, + { + "name": "ms2_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "isotope_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_ppm", + "rawType": "float64", + "type": "float" + }, + { + "name": "hyperscore", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_next", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_best", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "aligned_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_rt", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_rt_model", + "rawType": "float64", + "type": "float" + }, + { + "name": "ion_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "predicted_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_mobility", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_peaks", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_b", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y", + "rawType": "int64", + "type": "integer" + }, + { + "name": "longest_y_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_intensity_pct", + "rawType": "float64", + "type": "float" + }, + { + "name": "scored_candidates", + "rawType": "int64", + "type": "integer" + }, + { + "name": "poisson", + "rawType": "float64", + "type": "float" + }, + { + "name": "sage_discriminant_score", + "rawType": "float64", + "type": "float" + }, + { + "name": "posterior_error", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "protein_q", + "rawType": "float64", + "type": "float" + }, + { + "name": "reporter_ion_intensity", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity", + "rawType": "float64", + "type": "float" + } + ], + "ref": "fd99ff02-8131-4250-b45f-dcc19a4c2214", + "rows": [ + [ + "0", + "1573", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9771", + "AEGGSDER", + "AEGGSDER", + "sp|P10903|NARK_ECOLI|386|394", + "1", + "5", + "False", + "823.6175", + "819.3358", + "1", + "8", + "0", + "False", + "5778.0884", + "2.0067", + "2772.7622", + "3.3235693", + "9.580939", + "0.0", + "7.5621266", + "6.2315145", + "6.2315145", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9910882", + "10", + "-0.39908993", + "0.63587785", + "-9.1445465", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "5778.0884" + ], + [ + "1", + "1572", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9771", + "AGEKTYR", + "AGEKTYR", + "sp|P30126|LEUD_ECOLI|154|161", + "1", + "4", + "False", + "823.6175", + "823.4187", + "1", + "7", + "0", + "False", + "5778.0884", + "2.0067", + "2198.0256", + "3.204871", + "9.580939", + "0.0", + "7.5621266", + "6.2315145", + "6.2315145", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9910882", + "10", + "-0.39908993", + "0.5829506", + "-6.1692834", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "5778.0884" + ], + [ + "2", + "135", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11454", + "TGGGAKGNNASPAGSGNTK", + "TGGGAKGNNASPAGSGNTK", + "sp|P19934|TOLA_ECOLI|309|328", + "1", + "3", + "False", + "1647.235", + "1644.7816", + "2", + "19", + "0", + "False", + "14769.849", + "3.01005", + "338.51007", + "0.59014726", + "10.519349", + "0.0", + "0.0", + "7.3051367", + "7.3051367", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "14.408293", + "10", + "-0.39908993", + "0.5696887", + "-5.489716", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "14769.849" + ], + [ + "3", + "2241", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=19582", + "AANTGPHAAR", + "AANTGPHAAR", + "sp|P0ADH5|FIMB_ECOLI|23|33", + "1", + "4", + "False", + "967.6829", + "964.4839", + "1", + "10", + "0", + "False", + "6838.0205", + "2.0067", + "1235.4784", + "12.901953", + "9.749338", + "9.749338", + "0.0", + "12.487231", + "12.487231", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.966263", + "4", + "-0.39908993", + "0.42733616", + "-0.67158073", + "0.05882353", + "0.3274262", + "0.32759383", + null, + "6838.0205" + ], + [ + "4", + "2511", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8718", + "KPGSAAASGPK", + "KPGSAAASGPK", + "sp|P0AA80|GARP_ECOLI|228|239", + "1", + "5", + "False", + "967.6829", + "969.5243", + "1", + "11", + "0", + "False", + "5298.7236", + "2.0067", + "3976.9211", + "5.191354", + "9.494349", + "9.494349", + "0.0", + "5.5593333", + "5.5593333", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.6469091", + "5", + "-0.39908993", + "0.40063596", + "-0.5514434", + "0.05882353", + "0.33426434", + "0.33445042", + null, + "5298.7236" + ], + [ + "5", + "68", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=12235", + "IEKDGGDGR", + "IEKDGGDGR", + "rev_sp|P64610|YRBL_ECOLI|167|176", + "1", + "1", + "True", + "951.67566", + "945.45154", + "1", + "9", + "0", + "False", + "5233.884", + "3.01005", + "3393.7405", + "10.251222", + "9.4820385", + "9.4820385", + "0.0", + "7.80209", + "7.80209", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.0536244", + "1", + "-0.39908993", + "0.378411", + "-0.5040385", + "0.11111111", + "0.41020367", + "0.41035864", + null, + "5233.884" + ], + [ + "6", + "1935", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8565", + "SKAASASENT", + "SKAASASENT", + "sp|P37019|CLCA_ECOLI|463|473", + "1", + "4", + "False", + "967.6829", + "964.4461", + "1", + "10", + "0", + "False", + "5774.821", + "2.0067", + "1274.6512", + "5.7018843", + "9.580374", + "9.580374", + "0.0", + "5.461824", + "5.461824", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.1546266", + "4", + "-0.39908993", + "0.37730575", + "-0.50219625", + "0.11111111", + "0.41020367", + "0.41035864", + null, + "5774.821" + ], + [ + "7", + "139", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11454", + "HAPETAAK", + "HAPETAAK", + "rev_sp|P0AFZ1|SSEB_ECOLI|237|245", + "1", + "7", + "True", + "823.6175", + "823.41876", + "1", + "8", + "0", + "False", + "5581.6245", + "3.01005", + "3420.0425", + "4.200363", + "9.546352", + "0.0", + "0.97299653", + "7.3051367", + "7.3051367", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.44499", + "10", + "-0.39908993", + "0.374453", + "-0.49753475", + "0.16666667", + "0.45814025", + "0.45818296", + null, + "5581.6245" + ], + [ + "8", + "1949", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8410", + "STVAVTNKK", + "STVAVTNKK", + "sp|Q46834|YGHF_ECOLI|190|199", + "1", + "2", + "False", + "951.67566", + "946.54474", + "1", + "9", + "0", + "False", + "5819.521", + "2.0067", + "3295.2197", + "5.964056", + "9.588083", + "9.588083", + "0.0", + "5.363048", + "5.363048", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.6528933", + "2", + "-0.39908993", + "0.36457163", + "-0.4818115", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "5819.521" + ], + [ + "9", + "1708", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5297", + "KSASDASTSAR", + "KSASDASTSAR", + "sp|P76072|STFR_ECOLI|128|139", + "1", + "2", + "False", + "1070.973", + "1079.5208", + "2", + "11", + "0", + "False", + "6220.053", + "-1.00335", + "7013.1436", + "6.3132324", + "9.654633", + "9.654633", + "1.7992246", + "3.3785563", + "3.3785563", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5442871", + "2", + "-0.39908993", + "0.34312555", + "-0.44553852", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "6220.053" + ], + [ + "10", + "2512", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=7950", + "PSSSNSRSK", + "PSSSNSRSK", + "sp|P0A8H6|YIHI_ECOLI|2|11", + "1", + "1", + "False", + "943.67206", + "948.46246", + "1", + "9", + "0", + "False", + "5652.1255", + "-1.00335", + "4000.8235", + "2.9793282", + "9.558903", + "9.558903", + "0.0", + "5.0697036", + "5.0697036", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "4.3801956", + "1", + "-0.39908993", + "0.33267778", + "-0.4271298", + "0.18518518", + "0.45814025", + "0.45818296", + null, + "5652.1255" + ], + [ + "11", + "74", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=13464", + "NGEVGRNNK", + "NGEVGRNNK", + "rev_sp|P00452|RIR1_ECOLI|433|442", + "1", + "3", + "True", + "983.69025", + "986.4893", + "1", + "9", + "0", + "False", + "5245.432", + "0.0", + "2841.4387", + "5.78001", + "9.484242", + "9.484242", + "0.0", + "8.586997", + "8.586997", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "4.620146", + "3", + "-0.39908993", + "0.32377696", + "-0.41248703", + "0.22222222", + "0.50613093", + "0.5061545", + null, + "5245.432" + ], + [ + "12", + "1023", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15296", + "GEKTTGQAR", + "GEKTTGQAR", + "rev_sp|P0AEJ4|ENVZ_ECOLI|0|9", + "1", + "1", + "True", + "951.67566", + "946.48315", + "1", + "9", + "0", + "False", + "5478.301", + "3.01005", + "2303.2017", + "7.9379396", + "9.527671", + "0.0", + "0.0", + "9.754573", + "9.754573", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9345824", + "4", + "-0.39908993", + "0.31839633", + "-0.40455726", + "0.2413793", + "0.5422543", + "0.5422491", + null, + "5478.301" + ], + [ + "13", + "1695", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=4859", + "QASAAKSSATTASTK", + "QASAAKSSATTASTK", + "sp|P76072|STFR_ECOLI|402|417", + "1", + "2", + "False", + "1407.1257", + "1408.7157", + "2", + "15", + "0", + "False", + "6864.1113", + "3.01005", + "3270.7366", + "5.6135583", + "9.753146", + "0.0", + "0.0", + "3.0987215", + "3.0987215", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.2665813", + "5", + "-0.39908993", + "0.31197894", + "-0.39631698", + "0.2413793", + "0.5422543", + "0.5422491", + null, + "6864.1113" + ], + [ + "14", + "2113", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=951", + "GPGHGGHHDHPAK", + "GPGHGGHHDHPAK", + "rev_sp|P75616|YAAX_ECOLI|4|17", + "1", + "5", + "True", + "1303.0785", + "1302.5966", + "2", + "13", + "0", + "False", + "6164.8374", + "3.01005", + "1942.7137", + "5.510533", + "9.645718", + "9.645718", + "0.0", + "0.60767347", + "0.60767347", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.352143", + "5", + "-0.39908993", + "0.30561385", + "-0.38964567", + "0.29032257", + "0.5721068", + "0.57209045", + null, + "6164.8374" + ], + [ + "15", + "2825", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=17508", + "HPEQCQHDHSVQVKK", + "HPEQCQHDHSVQVKK", + "sp|P0AC51|ZUR_ECOLI|153|168", + "1", + "3", + "False", + "1799.3041", + "1798.8531", + "2", + "15", + "0", + "False", + "5760.9263", + "3.01005", + "1423.6537", + "10.1925955", + "9.577966", + "0.0", + "0.0", + "11.163845", + "11.163845", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9978765", + "9", + "-0.39908993", + "0.30163586", + "-0.3862883", + "0.29032257", + "0.5721068", + "0.57209045", + null, + "5760.9263" + ], + [ + "16", + "1170", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6726", + "AITKHVDR", + "AITKHVDR", + "rev_sp|P07813|SYL_ECOLI|150|158", + "1", + "1", + "True", + "943.67206", + "938.5298", + "1", + "8", + "0", + "False", + "5968.465", + "3.01005", + "2269.2979", + "8.740949", + "9.613351", + "0.0", + "0.0", + "4.288631", + "4.288631", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.9498186", + "5", + "-0.39908993", + "0.29750973", + "-0.38347933", + "0.32258064", + "0.61173946", + "0.6117211", + null, + "5968.465" + ], + [ + "17", + "1554", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6731", + "RAQEEAER", + "RAQEEAER", + "rev_sp|P0A705|IF2_ECOLI|773|781", + "1", + "2", + "True", + "983.69025", + "987.4734", + "1", + "8", + "0", + "False", + "5489.4346", + "0.0", + "3838.486", + "5.608914", + "9.529701", + "9.529701", + "0.0", + "4.292582", + "4.292582", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.0744724", + "2", + "-0.39908993", + "0.29688793", + "-0.3831206", + "0.34375", + "0.6272221", + "0.62723595", + null, + "5489.4346" + ], + [ + "18", + "810", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5805", + "NQFHKNK", + "NQFHKNK", + "rev_sp|P76445|LPXT_ECOLI|1|8", + "1", + "2", + "True", + "919.6611", + "914.4722", + "1", + "7", + "0", + "False", + "5682.092", + "3.01005", + "2379.7336", + "2.6676805", + "9.564189", + "9.564189", + "0.0", + "3.702085", + "3.702085", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.657813", + "2", + "-0.39908993", + "0.29206756", + "-0.38082632", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5682.092" + ], + [ + "19", + "1026", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15296", + "ESAKTPAPR", + "ESAKTPAPR", + "sp|P77743|PRPR_ECOLI|484|493", + "1", + "4", + "False", + "951.67566", + "955.50854", + "1", + "9", + "0", + "False", + "5478.301", + "0.0", + "4019.4185", + "7.9379396", + "9.527671", + "9.527671", + "0.0", + "9.754573", + "9.754573", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9345824", + "4", + "-0.39908993", + "0.2883251", + "-0.379677", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5478.301" + ], + [ + "20", + "49", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=11855", + "THTTTASQK", + "THTTTASQK", + "sp|P27297|BAX_ECOLI|28|37", + "1", + "1", + "False", + "971.68475", + "973.4829", + "1", + "9", + "0", + "False", + "6506.784", + "2.0067", + "3916.152", + "8.368304", + "9.699693", + "0.0", + "0.0", + "7.560082", + "7.560082", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.8237934", + "4", + "-0.39908993", + "0.28751677", + "-0.37950596", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6506.784" + ], + [ + "21", + "1605", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5343", + "HEVVHNR", + "HEVVHNR", + "sp|P62623|ISPH_ECOLI|36|43", + "1", + "1", + "False", + "895.6502", + "889.4518", + "1", + "7", + "0", + "False", + "5130.647", + "3.01005", + "3578.2388", + "2.2350564", + "9.46212", + "9.46212", + "0.0", + "3.408107", + "3.408107", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "3.3155992", + "1", + "-0.39908993", + "0.28736565", + "-0.37947437", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5130.647" + ], + [ + "22", + "2767", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=7571", + "GGDGSGGVSKR", + "GGDGSGGVSKR", + "rev_sp|P0AC30|FTSX_ECOLI|321|332", + "1", + "1", + "True", + "971.68475", + "975.4734", + "1", + "11", + "0", + "False", + "6073.7734", + "0.0", + "3891.451", + "12.749407", + "9.630838", + "0.0", + "0.0", + "4.8279467", + "4.8279467", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.09090909", + "1.3248506", + "7", + "-0.39908993", + "0.28450534", + "-0.37905264", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6073.7734" + ], + [ + "23", + "21", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1296", + "AKAGNEYAK", + "AKAGNEYAK", + "sp|P36683|ACNB_ECOLI|135|144", + "1", + "1", + "False", + "955.6775", + "950.4822", + "1", + "9", + "0", + "False", + "5729.8257", + "3.01005", + "2296.4695", + "7.1708083", + "9.572554", + "0.0", + "0.0", + "0.82920074", + "0.82920074", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5431116", + "6", + "-0.39908993", + "0.28292137", + "-0.37894985", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5729.8257" + ], + [ + "24", + "1485", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=12578", + "SANRGDCSQACR", + "SANRGDCSQACR", + "sp|P76104|RLHA_ECOLI|185|197", + "1", + "5", + "False", + "1271.0638", + "1266.5194", + "2", + "12", + "0", + "False", + "5734.3555", + "3.01005", + "1210.7628", + "2.4300547", + "9.573343", + "9.573343", + "0.0", + "8.021089", + "8.021089", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.597828", + "5", + "-0.39908993", + "0.28153118", + "-0.37892655", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "5734.3555" + ], + [ + "25", + "8", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3938", + "LENRDHDSGHGK", + "LENRDHDSGHGK", + "sp|P0AEC0|YOAE_ECOLI|108|120", + "1", + "5", + "False", + "1359.1039", + "1363.6229", + "2", + "12", + "0", + "False", + "6601.2217", + "3.01005", + "5536.6743", + "5.2054935", + "9.7141", + "9.7141", + "0.0", + "2.5119288", + "2.5119288", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "6.373807", + "5", + "-0.39908993", + "0.2791188", + "-0.37892655", + "0.36585367", + "0.6272221", + "0.62723595", + null, + "6601.2217" + ], + [ + "26", + "1904", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=8563", + "AGAAKCAAGAR", + "AGAAKCAAGAR", + "rev_sp|P0AAI9|FABD_ECOLI|121|132", + "1", + "1", + "True", + "951.67566", + "945.48145", + "1", + "11", + "0", + "False", + "6064.162", + "3.01005", + "3362.1084", + "11.795926", + "9.629255", + "9.629255", + "0.0", + "5.460596", + "5.460596", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "0", + "0.0", + "2.7552056", + "1", + "-0.39908993", + "0.2668688", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "6064.162" + ], + [ + "27", + "22", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1296", + "QGGSLQHPK", + "QGGSLQHPK", + "rev_sp|P31134|POTG_ECOLI|223|232", + "1", + "2", + "True", + "955.6775", + "950.49335", + "1", + "9", + "0", + "False", + "5729.8257", + "3.01005", + "2284.7183", + "7.1708083", + "9.572554", + "0.0", + "0.0", + "0.82920074", + "0.82920074", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.5431116", + "6", + "-0.39908993", + "0.26677233", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5729.8257" + ], + [ + "28", + "1827", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=5271", + "SGGRNNNGR", + "SGGRNNNGR", + "sp|P60422|RL2_ECOLI|39|48", + "1", + "2", + "False", + "931.66656", + "930.438", + "1", + "9", + "0", + "False", + "5107.909", + "3.01005", + "1916.4958", + "10.753521", + "9.45768", + "0.0", + "0.0", + "3.362189", + "3.362189", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "3.061437", + "5", + "-0.39908993", + "0.26606488", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5107.909" + ], + [ + "29", + "2203", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=18161", + "AGAKGSK", + "AGAKGSK", + "sp|P31802|NARP_ECOLI|121|128", + "1", + "1", + "False", + "623.5265", + "617.3497", + "1", + "7", + "0", + "False", + "5601.376", + "3.01005", + "5116.4966", + "7.1818843", + "9.549885", + "9.549885", + "0.0", + "11.579249", + "11.579249", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.064814", + "1", + "-0.39908993", + "0.26467454", + "-0.37892655", + "0.4347826", + "0.6499173", + "0.6500736", + null, + "5601.376" + ], + [ + "30", + "2884", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=2392", + "SGSTTNGGAARSGPAHGR", + "SGSTTNGGAARSGPAHGR", + "rev_sp|P0A8H6|YIHI_ECOLI|114|132", + "1", + "1", + "True", + "1654.4813", + "1639.7775", + "3", + "18", + "0", + "False", + "6976.0244", + "3.01005", + "7106.0005", + "0.0", + "9.769317", + "9.769317", + "0.0", + "1.5267044", + "1.5267044", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.055555556", + "5.8483434", + "1", + "-0.39908993", + "0.26455668", + "-0.37892655", + "0.45652175", + "0.6499173", + "0.6500736", + null, + "6976.0244" + ], + [ + "31", + "2074", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=18009", + "HAERTDEGGER", + "HAERTDEGGER", + "rev_sp|P30015|LHR_ECOLI|1457|1468", + "1", + "4", + "True", + "1263.0603", + "1255.5541", + "2", + "11", + "0", + "False", + "5960.078", + "3.01005", + "3574.6287", + "4.5151024", + "9.611945", + "9.611945", + "0.0", + "11.482276", + "11.482276", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "5.2359047", + "4", + "-0.39908993", + "0.2622958", + "-0.37892655", + "0.4680851", + "0.6499173", + "0.6500736", + null, + "5960.078" + ], + [ + "32", + "31", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3274", + "TTSGKIQK", + "TTSGKIQK", + "sp|P38135|FADK_ECOLI|538|546", + "1", + "1", + "False", + "867.63745", + "861.49194", + "1", + "8", + "0", + "False", + "5491.627", + "3.01005", + "3632.9558", + "3.1522455", + "9.530101", + "0.0", + "0.0", + "2.0901284", + "2.0901284", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.125", + "4.282148", + "7", + "-0.39908993", + "0.26060477", + "-0.37892655", + "0.4680851", + "0.6499173", + "0.6500736", + null, + "5491.627" + ], + [ + "33", + "3091", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=16214", + "GHQAEQQR", + "GHQAEQQR", + "rev_sp|P0AED9|DCM_ECOLI|4|12", + "1", + "5", + "True", + "951.67566", + "952.4475", + "1", + "8", + "0", + "False", + "6621.0293", + "2.0067", + "2921.5356", + "0.7761806", + "9.717095", + "9.717095", + "0.0", + "10.339558", + "10.339558", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.7943908", + "5", + "-0.39908993", + "0.25691748", + "-0.37892655", + "0.46938777", + "0.6499173", + "0.6500736", + null, + "6621.0293" + ], + [ + "34", + "2937", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=16140", + "ADGRHEHR", + "ADGRHEHR", + "sp|P24174|MANC_ECOLI|356|364", + "1", + "1", + "False", + "971.68475", + "976.45874", + "1", + "8", + "0", + "False", + "6386.276", + "-1.00335", + "3869.0125", + "4.488186", + "9.681002", + "9.681002", + "0.0", + "10.292344", + "10.292344", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.4230332", + "1", + "-0.39908993", + "0.25013283", + "-0.37892655", + "0.46938777", + "0.6499173", + "0.6500736", + null, + "6386.276" + ], + [ + "35", + "809", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6117", + "VAVRGTHAR", + "VAVRGTHAR", + "rev_sp|P0CF53|INSD1_ECOLI|179|188;rev_sp|P0CF54|INSD2_ECOLI|179|188;rev_sp|P0CF55|INSD3_ECOLI|179|188;rev_sp|P0CF56|INSD4_ECOLI|179|188;rev_sp|P0CF57|INSD5_ECOLI|179|188;rev_sp|P0CF58|INSD6_ECOLI|179|188;rev_sp|P0CF60|INSD8_ECOLI|179|188", + "7", + "5", + "True", + "967.6829", + "965.5519", + "1", + "9", + "0", + "False", + "6335.3228", + "2.0067", + "128.77034", + "1.9949963", + "9.672993", + "9.672993", + "0.0", + "3.9005907", + "3.9005907", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.11111111", + "1.5098244", + "5", + "-0.39908993", + "0.24968958", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6335.3228" + ], + [ + "36", + "2024", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=2443", + "KEDPSDTR", + "KEDPSDTR", + "rev_sp|P0AGC7|SMP_ECOLI|142|150", + "1", + "2", + "True", + "951.67566", + "946.43555", + "1", + "8", + "0", + "False", + "5593.8066", + "3.01005", + "2353.5022", + "12.860307", + "9.5485325", + "9.5485325", + "0.0", + "1.5602791", + "1.5602791", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.125", + "2.4956791", + "2", + "-0.39908993", + "0.2477995", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "5593.8066" + ], + [ + "37", + "2070", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9974", + "NAGHTPKPVAHV", + "NAGHTPKPVAHV", + "sp|P21503|YCAD_ECOLI|370|382", + "1", + "5", + "False", + "1223.0421", + "1226.6519", + "2", + "12", + "0", + "False", + "6325.666", + "3.01005", + "5411.235", + "0.4400624", + "9.671467", + "9.671467", + "0.0", + "6.361402", + "6.361402", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.7498095", + "5", + "-0.39908993", + "0.2461784", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6325.666" + ], + [ + "38", + "914", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=14256", + "VKCSNCEQSGK", + "VKCSNCEQSGK", + "sp|P13024|FDHE_ECOLI|226|237", + "1", + "2", + "False", + "1191.0275", + "1181.517", + "2", + "11", + "0", + "False", + "7259.485", + "3.01005", + "5486.688", + "4.6277046", + "9.80914", + "9.80914", + "0.0", + "9.091375", + "9.091375", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "0", + "1", + "0.09090909", + "5.5672293", + "2", + "-0.39908993", + "0.24544947", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "7259.485" + ], + [ + "39", + "3", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=49", + "PAPHKAR", + "PAPHKAR", + "sp|P08194|GLPT_ECOLI|6|13", + "1", + "3", + "False", + "779.5975", + "775.4453", + "1", + "7", + "0", + "False", + "6806.026", + "1.00335", + "4052.4207", + "4.5674944", + "9.744649", + "9.744649", + "0.0", + "0.033146437", + "0.033146437", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "6.1682415", + "3", + "-0.39908993", + "0.24427609", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "6806.026" + ], + [ + "40", + "1609", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6492", + "AHDYSRR", + "AHDYSRR", + "sp|P00935|METB_ECOLI|42|49", + "1", + "4", + "False", + "907.65564", + "903.431", + "1", + "7", + "0", + "False", + "4917.8984", + "3.01005", + "1343.4822", + "8.972303", + "9.419779", + "9.419779", + "0.0", + "4.1396317", + "4.1396317", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.454881", + "4", + "-0.39908993", + "0.24291994", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "4917.8984" + ], + [ + "41", + "859", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=3862", + "HQPGGGK", + "HQPGGGK", + "sp|TAU_HUMAN||583|590", + "1", + "3", + "False", + "683.5538", + "679.34015", + "1", + "7", + "0", + "False", + "7403.804", + "3.01005", + "1770.1116", + "0.38450307", + "9.828823", + "9.828823", + "0.0", + "2.463481", + "2.463481", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "2.8671043", + "3", + "-0.39908993", + "0.241431", + "-0.37892655", + "0.47272727", + "0.6499173", + "0.6500736", + null, + "7403.804" + ], + [ + "42", + "40", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=1799", + "GGTGNHR", + "GGTGNHR", + "rev_sp|PPIA_HUMAN||90|97", + "1", + "1", + "True", + "703.56287", + "697.32556", + "1", + "7", + "0", + "False", + "5472.3154", + "3.01005", + "4617.3613", + "0.33645222", + "9.526578", + "9.526578", + "0.0", + "1.1486698", + "1.1486698", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.4510626", + "1", + "-0.39908993", + "0.23688504", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5472.3154" + ], + [ + "43", + "1493", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6268", + "TM[Oxidation]HDETAK", + "TMHDETAK", + "sp|P46883|AMO_ECOLI|528|536", + "1", + "3", + "False", + "951.67566", + "947.4018", + "1", + "8", + "0", + "False", + "5990.8613", + "1.00335", + "3446.1401", + "5.06422", + "9.617096", + "9.617096", + "0.0", + "3.9967763", + "3.9967763", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.3905919", + "3", + "-0.39908993", + "0.23188733", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5990.8613" + ], + [ + "44", + "2152", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=9483", + "KHLQDEAK", + "KHLQDEAK", + "sp|P28249|ASMA_ECOLI|583|591", + "1", + "2", + "False", + "967.6829", + "967.50867", + "1", + "8", + "0", + "False", + "5801.824", + "3.01005", + "2935.3296", + "6.389246", + "9.585038", + "0.0", + "0.0", + "6.0472193", + "6.0472193", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.8763411", + "5", + "-0.39908993", + "0.23127502", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5801.824" + ], + [ + "45", + "2527", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=17812", + "AENSNTSR", + "AENSNTSR", + "sp|P0A8M0|SYN_ECOLI|234|242", + "1", + "4", + "False", + "883.6447", + "877.3889", + "1", + "8", + "0", + "False", + "5308.1235", + "3.01005", + "3692.4968", + "4.8575788", + "9.49612", + "0.0", + "0.043696582", + "11.357638", + "11.357638", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.9520878", + "15", + "-0.39908993", + "0.23105012", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5308.1235" + ], + [ + "46", + "1651", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=15553", + "GGCGSSCGGSKGGCGSCGGSK", + "GGCGSSCGGSKGGCGSCGGSK", + "sp|KRUC_SHEEP||52|73", + "1", + "5", + "False", + "1702.5032", + "1691.612", + "3", + "21", + "0", + "False", + "5190.175", + "3.01005", + "4648.0796", + "3.3743997", + "9.473654", + "9.473654", + "0.0", + "9.918019", + "9.918019", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "0.612054", + "5", + "-0.39908993", + "0.22974098", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "5190.175" + ], + [ + "47", + "1532", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=13749", + "TNGQTDGK", + "TNGQTDGK", + "rev_sp|P77286|YDEU_ECOLI|415|423", + "1", + "7", + "True", + "823.6175", + "819.37225", + "1", + "8", + "0", + "False", + "4101.5547", + "1.00335", + "3948.741", + "2.287845", + "9.238304", + "9.238304", + "0.18357746", + "8.766931", + "8.766931", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "1.3151433", + "7", + "-0.39908993", + "0.22874297", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "4101.5547" + ], + [ + "48", + "448", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=14805", + "CQPEKANAQQHR", + "CQPEKANAQQHR", + "sp|P06134|ADA_ECOLI|71|83", + "1", + "2", + "False", + "1407.1257", + "1408.663", + "2", + "12", + "0", + "False", + "8062.929", + "3.01005", + "3233.3018", + "3.6446626", + "9.914095", + "0.0", + "0.0", + "9.440571", + "9.440571", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "3.0952537", + "5", + "-0.39908993", + "0.22824515", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "8062.929" + ], + [ + "49", + "1606", + "part_0.0_783.2013244628906.mzml", + "controllerType=0 controllerNumber=1 scan=6492", + "DAHEGQTR", + "DAHEGQTR", + "sp|P0AG24|SPOT_ECOLI|31|39", + "1", + "1", + "False", + "907.65564", + "912.405", + "1", + "8", + "0", + "False", + "4917.8984", + "-1.00335", + "4114.122", + "8.877856", + "9.419779", + "0.0", + "0.0", + "4.1396317", + "4.1396317", + "0.0", + "0.999", + "0.0", + "0.0", + "0.999", + "1", + "1", + "0", + "0.0", + "4.454881", + "4", + "-0.39908993", + "0.2278661", + "-0.37892655", + "0.48026314", + "0.6499173", + "0.6500736", + null, + "4917.8984" + ] + ], + "shape": { + "columns": 43, + "rows": 6895741 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
psm_idfilenamescannrpeptidestripped_peptideproteinsnum_proteinsrankis_decoyexpmass...matched_intensity_pctscored_candidatespoissonsage_discriminant_scoreposterior_errorspectrum_qpeptide_qprotein_qreporter_ion_intensityfragment_intensity
01573part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=9771AEGGSDERAEGGSDERsp|P10903|NARK_ECOLI|386|39415False823.6175...1.99108810-0.3990900.635878-9.1445470.0588240.3274260.327594NaN5778.0884
11572part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=9771AGEKTYRAGEKTYRsp|P30126|LEUD_ECOLI|154|16114False823.6175...1.99108810-0.3990900.582951-6.1692830.0588240.3274260.327594NaN5778.0884
2135part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=11454TGGGAKGNNASPAGSGNTKTGGGAKGNNASPAGSGNTKsp|P19934|TOLA_ECOLI|309|32813False1647.2350...14.40829310-0.3990900.569689-5.4897160.0588240.3274260.327594NaN14769.8490
32241part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=19582AANTGPHAARAANTGPHAARsp|P0ADH5|FIMB_ECOLI|23|3314False967.6829...4.9662634-0.3990900.427336-0.6715810.0588240.3274260.327594NaN6838.0205
42511part_0.0_783.2013244628906.mzmlcontrollerType=0 controllerNumber=1 scan=8718KPGSAAASGPKKPGSAAASGPKsp|P0AA80|GARP_ECOLI|228|23915False967.6829...1.6469095-0.3990900.400636-0.5514430.0588240.3342640.334450NaN5298.7236
..................................................................
689573628313250part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=230359GLPHNVATKGGVSSDVQSLLTTPVQIFRGLPHNVATKGGVSSDVQSLLTTPVQIFRrev_sp|P07639|AROB_ECOLI|212|240115True2915.0542...1.88607615-0.399090-0.788482-0.2391770.9989561.0000001.000000NaN6062.3057
689573728323411part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=235604VSASNGYYPENLAFPSTKIFTSIFRVSASNGYYPENLAFPSTKIFTSIFRrev_sp|P04152|UMUC_ECOLI|112|137137True2814.2515...2.25709973-0.399090-0.788485-0.2391670.9989561.0000001.000000NaN5381.6064
689573828314945part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=229854QRSLYIPYAGPVLLEFPLLNKQRSLYIPYAGPVLLEFPLLNKsp|P26616|MAO1_ECOLI|7|2816False2446.0842...2.88545624-0.407381-0.788575-0.2388360.9995361.0000001.000000NaN6749.7075
689573928322986part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=235515IDVLQLAQVLRQTITKIDVLQLAQVLRQTITKrev_sp|P52140|YFJY_ECOLI|22|3814True1834.5632...2.27846510-0.399090-0.788578-0.2388360.9996521.0000001.000000NaN8583.5570
689574028315296part_8615.214569091797_9398.415893554688.mzmlcontrollerType=0 controllerNumber=1 scan=227224PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTKPMQVISYLSDVGSLAASQVPVGLVPVLTKrev_sp|P0AG18|PURE_ECOLI|58|87153True2975.0815...2.101609188-0.399090-0.788579-0.2388360.9997681.0000001.000000NaN5571.7363
\n", + "

6895741 rows × 43 columns

\n", + "
" + ], + "text/plain": [ + " psm_id filename \\\n", + "0 1573 part_0.0_783.2013244628906.mzml \n", + "1 1572 part_0.0_783.2013244628906.mzml \n", + "2 135 part_0.0_783.2013244628906.mzml \n", + "3 2241 part_0.0_783.2013244628906.mzml \n", + "4 2511 part_0.0_783.2013244628906.mzml \n", + "... ... ... \n", + "6895736 28313250 part_8615.214569091797_9398.415893554688.mzml \n", + "6895737 28323411 part_8615.214569091797_9398.415893554688.mzml \n", + "6895738 28314945 part_8615.214569091797_9398.415893554688.mzml \n", + "6895739 28322986 part_8615.214569091797_9398.415893554688.mzml \n", + "6895740 28315296 part_8615.214569091797_9398.415893554688.mzml \n", + "\n", + " scannr \\\n", + "0 controllerType=0 controllerNumber=1 scan=9771 \n", + "1 controllerType=0 controllerNumber=1 scan=9771 \n", + "2 controllerType=0 controllerNumber=1 scan=11454 \n", + "3 controllerType=0 controllerNumber=1 scan=19582 \n", + "4 controllerType=0 controllerNumber=1 scan=8718 \n", + "... ... \n", + "6895736 controllerType=0 controllerNumber=1 scan=230359 \n", + "6895737 controllerType=0 controllerNumber=1 scan=235604 \n", + "6895738 controllerType=0 controllerNumber=1 scan=229854 \n", + "6895739 controllerType=0 controllerNumber=1 scan=235515 \n", + "6895740 controllerType=0 controllerNumber=1 scan=227224 \n", + "\n", + " peptide \\\n", + "0 AEGGSDER \n", + "1 AGEKTYR \n", + "2 TGGGAKGNNASPAGSGNTK \n", + "3 AANTGPHAAR \n", + "4 KPGSAAASGPK \n", + "... ... \n", + "6895736 GLPHNVATKGGVSSDVQSLLTTPVQIFR \n", + "6895737 VSASNGYYPENLAFPSTKIFTSIFR \n", + "6895738 QRSLYIPYAGPVLLEFPLLNK \n", + "6895739 IDVLQLAQVLRQTITK \n", + "6895740 PM[Oxidation]QVISYLSDVGSLAASQVPVGLVPVLTK \n", + "\n", + " stripped_peptide proteins \\\n", + "0 AEGGSDER sp|P10903|NARK_ECOLI|386|394 \n", + "1 AGEKTYR sp|P30126|LEUD_ECOLI|154|161 \n", + "2 TGGGAKGNNASPAGSGNTK sp|P19934|TOLA_ECOLI|309|328 \n", + "3 AANTGPHAAR sp|P0ADH5|FIMB_ECOLI|23|33 \n", + "4 KPGSAAASGPK sp|P0AA80|GARP_ECOLI|228|239 \n", + "... ... ... \n", + "6895736 GLPHNVATKGGVSSDVQSLLTTPVQIFR rev_sp|P07639|AROB_ECOLI|212|240 \n", + "6895737 VSASNGYYPENLAFPSTKIFTSIFR rev_sp|P04152|UMUC_ECOLI|112|137 \n", + "6895738 QRSLYIPYAGPVLLEFPLLNK sp|P26616|MAO1_ECOLI|7|28 \n", + "6895739 IDVLQLAQVLRQTITK rev_sp|P52140|YFJY_ECOLI|22|38 \n", + "6895740 PMQVISYLSDVGSLAASQVPVGLVPVLTK rev_sp|P0AG18|PURE_ECOLI|58|87 \n", + "\n", + " num_proteins rank is_decoy expmass ... matched_intensity_pct \\\n", + "0 1 5 False 823.6175 ... 1.991088 \n", + "1 1 4 False 823.6175 ... 1.991088 \n", + "2 1 3 False 1647.2350 ... 14.408293 \n", + "3 1 4 False 967.6829 ... 4.966263 \n", + "4 1 5 False 967.6829 ... 1.646909 \n", + "... ... ... ... ... ... ... \n", + "6895736 1 15 True 2915.0542 ... 1.886076 \n", + "6895737 1 37 True 2814.2515 ... 2.257099 \n", + "6895738 1 6 False 2446.0842 ... 2.885456 \n", + "6895739 1 4 True 1834.5632 ... 2.278465 \n", + "6895740 1 53 True 2975.0815 ... 2.101609 \n", + "\n", + " scored_candidates poisson sage_discriminant_score \\\n", + "0 10 -0.399090 0.635878 \n", + "1 10 -0.399090 0.582951 \n", + "2 10 -0.399090 0.569689 \n", + "3 4 -0.399090 0.427336 \n", + "4 5 -0.399090 0.400636 \n", + "... ... ... ... \n", + "6895736 15 -0.399090 -0.788482 \n", + "6895737 73 -0.399090 -0.788485 \n", + "6895738 24 -0.407381 -0.788575 \n", + "6895739 10 -0.399090 -0.788578 \n", + "6895740 188 -0.399090 -0.788579 \n", + "\n", + " posterior_error spectrum_q peptide_q protein_q \\\n", + "0 -9.144547 0.058824 0.327426 0.327594 \n", + "1 -6.169283 0.058824 0.327426 0.327594 \n", + "2 -5.489716 0.058824 0.327426 0.327594 \n", + "3 -0.671581 0.058824 0.327426 0.327594 \n", + "4 -0.551443 0.058824 0.334264 0.334450 \n", + "... ... ... ... ... \n", + "6895736 -0.239177 0.998956 1.000000 1.000000 \n", + "6895737 -0.239167 0.998956 1.000000 1.000000 \n", + "6895738 -0.238836 0.999536 1.000000 1.000000 \n", + "6895739 -0.238836 0.999652 1.000000 1.000000 \n", + "6895740 -0.238836 0.999768 1.000000 1.000000 \n", + "\n", + " reporter_ion_intensity fragment_intensity \n", + "0 NaN 5778.0884 \n", + "1 NaN 5778.0884 \n", + "2 NaN 14769.8490 \n", + "3 NaN 6838.0205 \n", + "4 NaN 5298.7236 \n", + "... ... ... \n", + "6895736 NaN 6062.3057 \n", + "6895737 NaN 5381.6064 \n", + "6895738 NaN 6749.7075 \n", + "6895739 NaN 8583.5570 \n", + "6895740 NaN 5571.7363 \n", + "\n", + "[6895741 rows x 43 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psms" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a6b8ce59", + "metadata": {}, + "outputs": [], + "source": [ + "features = features.merge(\n", + " psms[[\"psm_id\", \"is_decoy\"]], left_on=\"PSMId\", right_on=\"psm_id\", how=\"left\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "cb8a56b4", + "metadata": {}, + "outputs": [], + "source": [ + "features[\"Label\"] = features[\"is_decoy\"].apply(lambda x: -1 if x else 1)\n", + "features = features.drop(columns=[\"is_decoy\", \"psm_id\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "ca71fbb0", + "metadata": {}, + "outputs": [], + "source": [ + "df_targets = features[features[\"Label\"] == 1.0]\n", + "df_decoys = features[features[\"Label\"] == -1.0]" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b55255f3", + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "\n", + "features[\"ScanNr\"] = features[\"ScanNr\"].apply(\n", + " lambda x: int(re.findall(r\"\\d+\", x)[2]) if isinstance(x, str) else x\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "76d7fec2", + "metadata": {}, + "outputs": [], + "source": [ + "features.rename(columns={\"PSMId\": \"SpecID\"}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "59b53ad5", + "metadata": {}, + "outputs": [], + "source": [ + "features.to_csv(\"./outfile.pin\", sep=\"\\t\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "f667a8d7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOR5JREFUeJzt3XtUVPe9//8XoIC3waoBpBK1Gi9EFEXFSXPRSBwVc2JjWo0eQwzGowtdUaoirQsvzSmNSaq23ppjKrZHGzWNppGIIRi06hgTlOMl0W+0ppijA6aJjBIFhfn90R/7ZCoaB0Hk4/Ox1l5x9n7vz7z3Z01mXmvPno2fx+PxCAAAwDD+9d0AAABAXSDkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAgA+effZZdejQob7bAHATCDkA6k1mZqb8/PysJTg4WF26dNHUqVNVVFRk1X3++eeaMGGCOnXqpODgYIWHh+vhhx/WvHnzvMYbOHCg/Pz8dN9991X7fDk5OdZzvfnmm9f08fHHH9fNgQKoF43quwEAWLhwoTp27KjLly9r9+7dWrlypd59910dOXJEZ86cUb9+/dSkSRM999xz6tChg86ePasDBw7opZde0oIFC7zGCg4O1okTJ7R//37179/fa9u6desUHBysy5cv387DA1BPCDkA6t2wYcPUt29fSdLEiRPVunVr/frXv9bbb7+t3bt36+LFiyooKFD79u299isuLr5mrE6dOunq1av605/+5BVyLl++rM2bNyshIUF//vOf6/aAANwR+LoKwB3n0UcflSSdOnVKJ0+eVLt27a4JOJIUGhpa7f5PP/20NmzYoMrKSmvdO++8o2+++UY/+clPbrqPLVu2qEePHgoODlaPHj20efNmH48EQH0i5AC445w8eVKS1Lp1a7Vv316nT5/Wjh07bnr/sWPH6uzZs8rLy7PWrV+/XoMHD75uMPpX7733nkaNGiU/Pz9lZGRo5MiRmjBhAtftAA0IX1cBqHclJSX68ssvdfnyZe3Zs0cLFy5UkyZNNGLECD344IP64x//qMGDBysmJkaPPPKIBg0apMcee0xNmzatdrz77rtPffv21fr16/Xoo4/q/Pnzevfdd/Vf//VfN91TamqqwsLCtHv3boWEhEiSHnnkEQ0ZMqTas0oA7jycyQFQ7+Lj43XPPfcoMjJSY8aMUfPmzbV582Z9//vf1/3336+CggL9+7//uz7//HMtXbpUI0eOVFhY2A1Dy9ixY/XWW2+pvLxcb775pgICAvSjH/3opvo5e/asCgoKlJiYaAUcSXrssccUFRV1y8cL4PYg5ACod8uXL1dOTo4++OADffLJJ/rb3/4mh8Nhbe/SpYv++Mc/6ssvv9ShQ4f0y1/+Uo0aNdKkSZP0/vvvVzvmmDFjVFJSom3btmndunUaMWKEWrRocVP9/P3vf5ekan+K3rVr1xocIYD6wNdVAOpd//79rV9X3UhAQICio6MVHR0tu92uQYMGad26dYqPj7+mtm3btho4cKBeffVV7dmzh19UAXchzuQAaJCqQtHZs2evWzN27Fj99a9/lc1m0/Dhw2967Kprbj777LNrth0/ftzHTgHUF0IOgDvaX//6V125cuWa9e+++66kG3999NRTT2nevHlasWKFAgMDb/o527Ztq5iYGK1du1YlJSXW+pycHH3yySc+dA+gPvF1FYA72ksvvaT8/Hw9+eST6tmzpyTpwIED+sMf/qBWrVpp+vTp1903JCRE8+fPr9HzZmRkKCEhQQ8++KCee+45ffXVV/rtb3+r+++/XxcvXqzRmABuL87kALij/exnP9OoUaO0a9cupaamatq0acrOztaYMWP00UcfqWPHjnXyvEOHDtWmTZtUUVGhtLQ0vfXWW1qzZs1NXTsE4M7g5/F4PPXdBAAAQG3jTA4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJHu6psBVlZW6syZM2rRooX8/Pzqux0AAHATPB6PLly4oIiICPn7X/98zV0dcs6cOaPIyMj6bgMAANTA6dOn1a5du+tuv6tDTosWLST9c5JsNls9dwMAAG6G2+1WZGSk9Tl+PXd1yKn6ispmsxFyAABoYL7rUhMuPAYAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwUqP6bsBUi3P+X3234LMZj3Wp7xYAAKg1nMkBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGCkWwo5v/rVr+Tn56fp06db6y5fvqzk5GS1bt1azZs316hRo1RUVOS1X2FhoRISEtS0aVOFhoZq1qxZunr1qldNXl6e+vTpo6CgIHXu3FmZmZnXPP/y5cvVoUMHBQcHKy4uTvv377+VwwEAAAapccj56KOP9Lvf/U49e/b0Wj9jxgy988472rRpk3bu3KkzZ87oySeftLZXVFQoISFB5eXl2rt3r9auXavMzEylp6dbNadOnVJCQoIGDRqkgoICTZ8+XRMnTtT27dutmg0bNiglJUXz5s3TgQMH1KtXLzkcDhUXF9f0kAAAgEH8PB6Px9edLl68qD59+mjFihV68cUXFRMToyVLlqikpET33HOP1q9fr6eeekqSdOzYMXXv3l1Op1MDBgzQtm3bNGLECJ05c0ZhYWGSpFWrVik1NVXnzp1TYGCgUlNTlZWVpSNHjljPOWbMGJ0/f17Z2dmSpLi4OPXr10/Lli2TJFVWVioyMlLTpk3TnDlzbuo43G63QkJCVFJSIpvN5us03BD3yQEAoG7c7Od3jW4GmJycrISEBMXHx+vFF1+01ufn5+vKlSuKj4+31nXr1k333nuvFXKcTqeio6OtgCNJDodDU6ZM0dGjR9W7d285nU6vMapqqr4WKy8vV35+vtLS0qzt/v7+io+Pl9PpvG7fZWVlKisrsx673e6aHP5NGVD4Wp2NXXdeqe8GAACoNT6HnDfeeEMHDhzQRx99dM02l8ulwMBAtWzZ0mt9WFiYXC6XVfPtgFO1vWrbjWrcbrcuXbqkr7/+WhUVFdXWHDt27Lq9Z2RkaMGCBTd3oAAAoEHz6Zqc06dP64UXXtC6desUHBxcVz3VmbS0NJWUlFjL6dOn67slAABQR3wKOfn5+SouLlafPn3UqFEjNWrUSDt37tRvfvMbNWrUSGFhYSovL9f58+e99isqKlJ4eLgkKTw8/JpfW1U9/q4am82mJk2aqE2bNgoICKi2pmqM6gQFBclms3ktAADATD6FnMGDB+vw4cMqKCiwlr59+2rcuHHWvxs3bqzc3Fxrn+PHj6uwsFB2u12SZLfbdfjwYa9fQeXk5MhmsykqKsqq+fYYVTVVYwQGBio2NtarprKyUrm5uVYNAAC4u/l0TU6LFi3Uo0cPr3XNmjVT69atrfVJSUlKSUlRq1atZLPZNG3aNNntdg0YMECSNGTIEEVFRWn8+PFatGiRXC6X5s6dq+TkZAUFBUmSJk+erGXLlmn27Nl67rnntGPHDm3cuFFZWVnW86akpCgxMVF9+/ZV//79tWTJEpWWlmrChAm3NCEAAMAMNfp11Y0sXrxY/v7+GjVqlMrKyuRwOLRixQpre0BAgLZu3aopU6bIbrerWbNmSkxM1MKFC62ajh07KisrSzNmzNDSpUvVrl07rV69Wg6Hw6oZPXq0zp07p/T0dLlcLsXExCg7O/uai5EBAMDdqUb3yTFFXd4nx/n6zFod73awJ/ETcgDAne9mP7/521UAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJF8CjkrV65Uz549ZbPZZLPZZLfbtW3bNmv7wIED5efn57VMnjzZa4zCwkIlJCSoadOmCg0N1axZs3T16lWvmry8PPXp00dBQUHq3LmzMjMzr+ll+fLl6tChg4KDgxUXF6f9+/f7cigAAMBwPoWcdu3a6Ve/+pXy8/P18ccf69FHH9UTTzyho0ePWjXPP/+8zp49ay2LFi2ytlVUVCghIUHl5eXau3ev1q5dq8zMTKWnp1s1p06dUkJCggYNGqSCggJNnz5dEydO1Pbt262aDRs2KCUlRfPmzdOBAwfUq1cvORwOFRcX38pcAAAAg/h5PB7PrQzQqlUrvfzyy0pKStLAgQMVExOjJUuWVFu7bds2jRgxQmfOnFFYWJgkadWqVUpNTdW5c+cUGBio1NRUZWVl6ciRI9Z+Y8aM0fnz55WdnS1JiouLU79+/bRs2TJJUmVlpSIjIzVt2jTNmTPnpnt3u90KCQlRSUmJbDZbDWeges7XZ9bqeLeDPemV+m4BAIDvdLOf3zW+JqeiokJvvPGGSktLZbfbrfXr1q1TmzZt1KNHD6Wlpembb76xtjmdTkVHR1sBR5IcDofcbrd1NsjpdCo+Pt7ruRwOh5xOpySpvLxc+fn5XjX+/v6Kj4+3aq6nrKxMbrfbawEAAGZq5OsOhw8flt1u1+XLl9W8eXNt3rxZUVFRkqSxY8eqffv2ioiI0KFDh5Samqrjx4/rrbfekiS5XC6vgCPJeuxyuW5Y43a7denSJX399deqqKiotubYsWM37D0jI0MLFizw9ZABAEAD5HPI6dq1qwoKClRSUqI333xTiYmJ2rlzp6KiojRp0iSrLjo6Wm3bttXgwYN18uRJderUqVYbr4m0tDSlpKRYj91utyIjI+uxIwAAUFd8DjmBgYHq3LmzJCk2NlYfffSRli5dqt/97nfX1MbFxUmSTpw4oU6dOik8PPyaX0EVFRVJksLDw63/Vq37do3NZlOTJk0UEBCggICAamuqxrieoKAgBQUF+XC0AACgobrl++RUVlaqrKys2m0FBQWSpLZt20qS7Ha7Dh8+7PUrqJycHNlsNusrL7vdrtzcXK9xcnJyrOt+AgMDFRsb61VTWVmp3Nxcr2uDAADA3c2nMzlpaWkaNmyY7r33Xl24cEHr169XXl6etm/frpMnT2r9+vUaPny4WrdurUOHDmnGjBl6+OGH1bNnT0nSkCFDFBUVpfHjx2vRokVyuVyaO3eukpOTrTMskydP1rJlyzR79mw999xz2rFjhzZu3KisrCyrj5SUFCUmJqpv377q37+/lixZotLSUk2YMKEWpwYAADRkPoWc4uJiPfPMMzp79qxCQkLUs2dPbd++XY899phOnz6t999/3wockZGRGjVqlObOnWvtHxAQoK1bt2rKlCmy2+1q1qyZEhMTtXDhQqumY8eOysrK0owZM7R06VK1a9dOq1evlsPhsGpGjx6tc+fOKT09XS6XSzExMcrOzr7mYmQAAEzBrUl8d8v3yWnIuE+Ot/p+MQIAro/Plf9T5/fJAQAAuJMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEZqVN8NAAD+z+Kc/1ffLfhsxmNd6rsFoFqcyQEAAEbiTA4AYzXEsyIDCl+r7xZq4JX6bgCoFmdyAACAkQg5AADASIQcAABgJK7JAWCshnl9C4DawpkcAABgJJ9CzsqVK9WzZ0/ZbDbZbDbZ7XZt27bN2n758mUlJyerdevWat68uUaNGqWioiKvMQoLC5WQkKCmTZsqNDRUs2bN0tWrV71q8vLy1KdPHwUFBalz587KzMy8ppfly5erQ4cOCg4OVlxcnPbv3+/LoQAAAMP59HVVu3bt9Ktf/Ur33XefPB6P1q5dqyeeeEIHDx7U/fffrxkzZigrK0ubNm1SSEiIpk6dqieffFJ79uyRJFVUVCghIUHh4eHau3evzp49q2eeeUaNGzfWL3/5S0nSqVOnlJCQoMmTJ2vdunXKzc3VxIkT1bZtWzkcDknShg0blJKSolWrVikuLk5LliyRw+HQ8ePHFRoaWstTBAC4oQ8y6rsD3w1Kq+8OcBv4eTwez60M0KpVK7388st66qmndM8992j9+vV66qmnJEnHjh1T9+7d5XQ6NWDAAG3btk0jRozQmTNnFBYWJklatWqVUlNTde7cOQUGBio1NVVZWVk6cuSI9RxjxozR+fPnlZ2dLUmKi4tTv379tGzZMklSZWWlIiMjNW3aNM2ZM+e6vZaVlamsrMx67Ha7FRkZqZKSEtlstluZhms4X59Zq+PdDvYk7nUBszTE/w8bIvsPWtd3C75rgCGnIb6e6+pzxe12KyQk5Ds/v2t84XFFRYU2bdqk0tJS2e125efn68qVK4qPj7dqunXrpnvvvdcKOU6nU9HR0VbAkSSHw6EpU6bo6NGj6t27t5xOp9cYVTXTp0+XJJWXlys/P19paf/3AvX391d8fLycTucNe87IyNCCBQtqesgAgGo4//aP+m7BZ/ZB9d0BbgefLzw+fPiwmjdvrqCgIE2ePFmbN29WVFSUXC6XAgMD1bJlS6/6sLAwuVwuSZLL5fIKOFXbq7bdqMbtduvSpUv68ssvVVFRUW1N1RjXk5aWppKSEms5ffq0r4cPAAAaCJ/P5HTt2lUFBQUqKSnRm2++qcTERO3cubMueqt1QUFBCgoKqu82AADAbeBzyAkMDFTnzp0lSbGxsfroo4+0dOlSjR49WuXl5Tp//rzX2ZyioiKFh4dLksLDw6/5FVTVr6++XfOvv8gqKiqSzWZTkyZNFBAQoICAgGprqsYAAAC45fvkVFZWqqysTLGxsWrcuLFyc3OtbcePH1dhYaHsdrskyW636/DhwyouLrZqcnJyZLPZFBUVZdV8e4yqmqoxAgMDFRsb61VTWVmp3NxcqwYAAMCnMzlpaWkaNmyY7r33Xl24cEHr169XXl6etm/frpCQECUlJSklJUWtWrWSzWbTtGnTZLfbNWDAAEnSkCFDFBUVpfHjx2vRokVyuVyaO3eukpOTra+RJk+erGXLlmn27Nl67rnntGPHDm3cuFFZWVlWHykpKUpMTFTfvn3Vv39/LVmyRKWlpZowYUItTg2Ab2uQf9G7vhsAUK98CjnFxcV65plndPbsWYWEhKhnz57avn27HnvsMUnS4sWL5e/vr1GjRqmsrEwOh0MrVqyw9g8ICNDWrVs1ZcoU2e12NWvWTImJiVq4cKFV07FjR2VlZWnGjBlaunSp2rVrp9WrV1v3yJGk0aNH69y5c0pPT5fL5VJMTIyys7OvuRgZAADcvW75PjkN2c3+zr4muJ8BTNMgz+Twt6twHQ3x/Y7Plf9zs5/f/O0qAABgJP4KOYCbwlkRAA0NIQeWhvh1xIzHutR3CwCAOxRfVwEAACNxJgeWhvl1RMO7eBAAcHtwJgcAABiJkAMAAIxEyAEAAEbimhzgNmuIv2KT+BMJABoezuQAAAAjEXIAAICRCDkAAMBIXJMD3GYN835EgFka4rVxXBfnO0IOGjTeqAAA10PIQYPGWREAwPVwTQ4AADASZ3IAAHcdzgLfHTiTAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkn0JORkaG+vXrpxYtWig0NFQjR47U8ePHvWoGDhwoPz8/r2Xy5MleNYWFhUpISFDTpk0VGhqqWbNm6erVq141eXl56tOnj4KCgtS5c2dlZmZe08/y5cvVoUMHBQcHKy4uTvv37/flcAAAgMF8Cjk7d+5UcnKy9u3bp5ycHF25ckVDhgxRaWmpV93zzz+vs2fPWsuiRYusbRUVFUpISFB5ebn27t2rtWvXKjMzU+np6VbNqVOnlJCQoEGDBqmgoEDTp0/XxIkTtX37dqtmw4YNSklJ0bx583TgwAH16tVLDodDxcXFNZ0LAABgED+Px+Op6c7nzp1TaGiodu7cqYcffljSP8/kxMTEaMmSJdXus23bNo0YMUJnzpxRWFiYJGnVqlVKTU3VuXPnFBgYqNTUVGVlZenIkSPWfmPGjNH58+eVnZ0tSYqLi1O/fv20bNkySVJlZaUiIyM1bdo0zZkz56b6d7vdCgkJUUlJiWw2W02noVrO12fW6ngAADQ09qRX6mTcm/38vqVrckpKSiRJrVq18lq/bt06tWnTRj169FBaWpq++eYba5vT6VR0dLQVcCTJ4XDI7Xbr6NGjVk18fLzXmA6HQ06nU5JUXl6u/Px8rxp/f3/Fx8dbNdUpKyuT2+32WgAAgJka1XTHyspKTZ8+XT/84Q/Vo0cPa/3YsWPVvn17RURE6NChQ0pNTdXx48f11ltvSZJcLpdXwJFkPXa5XDescbvdunTpkr7++mtVVFRUW3Ps2LHr9pyRkaEFCxbU9JABAEADUuOQk5ycrCNHjmj37t1e6ydNmmT9Ozo6Wm3bttXgwYN18uRJderUqead1oK0tDSlpKRYj91utyIjI+uxIwAAUFdqFHKmTp2qrVu3ateuXWrXrt0Na+Pi4iRJJ06cUKdOnRQeHn7Nr6CKiookSeHh4dZ/q9Z9u8Zms6lJkyYKCAhQQEBAtTVVY1QnKChIQUFBN3eQAACgQfPpmhyPx6OpU6dq8+bN2rFjhzp27Pid+xQUFEiS2rZtK0my2+06fPiw16+gcnJyZLPZFBUVZdXk5uZ6jZOTkyO73S5JCgwMVGxsrFdNZWWlcnNzrRoAAHB38+lMTnJystavX6+3335bLVq0sK6hCQkJUZMmTXTy5EmtX79ew4cPV+vWrXXo0CHNmDFDDz/8sHr27ClJGjJkiKKiojR+/HgtWrRILpdLc+fOVXJysnWWZfLkyVq2bJlmz56t5557Tjt27NDGjRuVlZVl9ZKSkqLExET17dtX/fv315IlS1RaWqoJEybU1twAAIAGzKeQs3LlSkn//Jn4t61Zs0bPPvusAgMD9f7771uBIzIyUqNGjdLcuXOt2oCAAG3dulVTpkyR3W5Xs2bNlJiYqIULF1o1HTt2VFZWlmbMmKGlS5eqXbt2Wr16tRwOh1UzevRonTt3Tunp6XK5XIqJiVF2dvY1FyMDAIC70y3dJ6eh4z45AADUnQZ9nxwAAIA7FSEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkn0JORkaG+vXrpxYtWig0NFQjR47U8ePHvWouX76s5ORktW7dWs2bN9eoUaNUVFTkVVNYWKiEhAQ1bdpUoaGhmjVrlq5evepVk5eXpz59+igoKEidO3dWZmbmNf0sX75cHTp0UHBwsOLi4rR//35fDgcAABjMp5Czc+dOJScna9++fcrJydGVK1c0ZMgQlZaWWjUzZszQO++8o02bNmnnzp06c+aMnnzySWt7RUWFEhISVF5err1792rt2rXKzMxUenq6VXPq1CklJCRo0KBBKigo0PTp0zVx4kRt377dqtmwYYNSUlI0b948HThwQL169ZLD4VBxcfGtzAcAADCEn8fj8dR053Pnzik0NFQ7d+7Uww8/rJKSEt1zzz1av369nnrqKUnSsWPH1L17dzmdTg0YMEDbtm3TiBEjdObMGYWFhUmSVq1apdTUVJ07d06BgYFKTU1VVlaWjhw5Yj3XmDFjdP78eWVnZ0uS4uLi1K9fPy1btkySVFlZqcjISE2bNk1z5sy5qf7dbrdCQkJUUlIim81W02molvP1mbU6HgAADY096ZU6GfdmP79v6ZqckpISSVKrVq0kSfn5+bpy5Yri4+Otmm7duunee++V0+mUJDmdTkVHR1sBR5IcDofcbreOHj1q1Xx7jKqaqjHKy8uVn5/vVePv76/4+HirpjplZWVyu91eCwAAMFONQ05lZaWmT5+uH/7wh+rRo4ckyeVyKTAwUC1btvSqDQsLk8vlsmq+HXCqtldtu1GN2+3WpUuX9OWXX6qioqLamqoxqpORkaGQkBBriYyM9P3AAQBAg1DjkJOcnKwjR47ojTfeqM1+6lRaWppKSkqs5fTp0/XdEgAAqCONarLT1KlTtXXrVu3atUvt2rWz1oeHh6u8vFznz5/3OptTVFSk8PBwq+ZffwVV9eurb9f86y+yioqKZLPZ1KRJEwUEBCggIKDamqoxqhMUFKSgoCDfDxgAADQ4Pp3J8Xg8mjp1qjZv3qwdO3aoY8eOXttjY2PVuHFj5ebmWuuOHz+uwsJC2e12SZLdbtfhw4e9fgWVk5Mjm82mqKgoq+bbY1TVVI0RGBio2NhYr5rKykrl5uZaNQAA4O7m05mc5ORkrV+/Xm+//bZatGhhXf8SEhKiJk2aKCQkRElJSUpJSVGrVq1ks9k0bdo02e12DRgwQJI0ZMgQRUVFafz48Vq0aJFcLpfmzp2r5ORk6yzL5MmTtWzZMs2ePVvPPfecduzYoY0bNyorK8vqJSUlRYmJierbt6/69++vJUuWqLS0VBMmTKituQEAAA2YTyFn5cqVkqSBAwd6rV+zZo2effZZSdLixYvl7++vUaNGqaysTA6HQytWrLBqAwICtHXrVk2ZMkV2u13NmjVTYmKiFi5caNV07NhRWVlZmjFjhpYuXap27dpp9erVcjgcVs3o0aN17tw5paeny+VyKSYmRtnZ2ddcjAwAAO5Ot3SfnIaO++QAAFB3GvR9cgAAAO5UhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJF8Djm7du3S448/roiICPn5+WnLli1e25999ln5+fl5LUOHDvWq+eqrrzRu3DjZbDa1bNlSSUlJunjxolfNoUOH9NBDDyk4OFiRkZFatGjRNb1s2rRJ3bp1U3BwsKKjo/Xuu+/6ejgAAMBQPoec0tJS9erVS8uXL79uzdChQ3X27Flr+dOf/uS1fdy4cTp69KhycnK0detW7dq1S5MmTbK2u91uDRkyRO3bt1d+fr5efvllzZ8/X6+99ppVs3fvXj399NNKSkrSwYMHNXLkSI0cOVJHjhzx9ZAAAICB/Dwej6fGO/v5afPmzRo5cqS17tlnn9X58+evOcNT5dNPP1VUVJQ++ugj9e3bV5KUnZ2t4cOH64svvlBERIRWrlypn//853K5XAoMDJQkzZkzR1u2bNGxY8ckSaNHj1Zpaam2bt1qjT1gwADFxMRo1apVN9W/2+1WSEiISkpKZLPZajAD1+d8fWatjgcAQENjT3qlTsa92c/vOrkmJy8vT6GhoerataumTJmif/zjH9Y2p9Opli1bWgFHkuLj4+Xv768PP/zQqnn44YetgCNJDodDx48f19dff23VxMfHez2vw+GQ0+m8bl9lZWVyu91eCwAAMFOth5yhQ4fqD3/4g3Jzc/XSSy9p586dGjZsmCoqKiRJLpdLoaGhXvs0atRIrVq1ksvlsmrCwsK8aqoef1dN1fbqZGRkKCQkxFoiIyNv7WABAMAdq1FtDzhmzBjr39HR0erZs6c6deqkvLw8DR48uLafzidpaWlKSUmxHrvdboIOAACGqvOfkP/gBz9QmzZtdOLECUlSeHi4iouLvWquXr2qr776SuHh4VZNUVGRV03V4++qqdpenaCgINlsNq8FAACYqc5DzhdffKF//OMfatu2rSTJbrfr/Pnzys/Pt2p27NihyspKxcXFWTW7du3SlStXrJqcnBx17dpV3/ve96ya3Nxcr+fKycmR3W6v60MCAAANgM8h5+LFiyooKFBBQYEk6dSpUyooKFBhYaEuXryoWbNmad++ffr888+Vm5urJ554Qp07d5bD4ZAkde/eXUOHDtXzzz+v/fv3a8+ePZo6darGjBmjiIgISdLYsWMVGBiopKQkHT16VBs2bNDSpUu9vmp64YUXlJ2drVdffVXHjh3T/Pnz9fHHH2vq1Km1MC0AAKCh8znkfPzxx+rdu7d69+4tSUpJSVHv3r2Vnp6ugIAAHTp0SP/2b/+mLl26KCkpSbGxsfrrX/+qoKAga4x169apW7duGjx4sIYPH64HH3zQ6x44ISEheu+993Tq1CnFxsbqpz/9qdLT073upfPAAw9o/fr1eu2119SrVy+9+eab2rJli3r06HEr8wEAAAxxS/fJaei4Tw4AAHXHyPvkAAAA1DdCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASD6HnF27dunxxx9XRESE/Pz8tGXLFq/tHo9H6enpatu2rZo0aaL4+Hh99tlnXjVfffWVxo0bJ5vNppYtWyopKUkXL170qjl06JAeeughBQcHKzIyUosWLbqml02bNqlbt24KDg5WdHS03n33XV8PBwAAGMrnkFNaWqpevXpp+fLl1W5ftGiRfvOb32jVqlX68MMP1axZMzkcDl2+fNmqGTdunI4ePaqcnBxt3bpVu3bt0qRJk6ztbrdbQ4YMUfv27ZWfn6+XX35Z8+fP12uvvWbV7N27V08//bSSkpJ08OBBjRw5UiNHjtSRI0d8PSQAAGAgP4/H46nxzn5+2rx5s0aOHCnpn2dxIiIi9NOf/lQzZ86UJJWUlCgsLEyZmZkaM2aMPv30U0VFRemjjz5S3759JUnZ2dkaPny4vvjiC0VERGjlypX6+c9/LpfLpcDAQEnSnDlztGXLFh07dkySNHr0aJWWlmrr1q1WPwMGDFBMTIxWrVp1U/273W6FhISopKRENputptNQLefrM2t1PAAAGhp70it1Mu7Nfn7X6jU5p06dksvlUnx8vLUuJCREcXFxcjqdkiSn06mWLVtaAUeS4uPj5e/vrw8//NCqefjhh62AI0kOh0PHjx/X119/bdV8+3mqaqqepzplZWVyu91eCwAAMFOthhyXyyVJCgsL81ofFhZmbXO5XAoNDfXa3qhRI7Vq1cqrproxvv0c16up2l6djIwMhYSEWEtkZKSvhwgAABqIu+rXVWlpaSopKbGW06dP13dLAACgjtRqyAkPD5ckFRUVea0vKiqytoWHh6u4uNhr+9WrV/XVV1951VQ3xref43o1VdurExQUJJvN5rUAAAAz1WrI6dixo8LDw5Wbm2utc7vd+vDDD2W32yVJdrtd58+fV35+vlWzY8cOVVZWKi4uzqrZtWuXrly5YtXk5OSoa9eu+t73vmfVfPt5qmqqngcAANzdfA45Fy9eVEFBgQoKCiT982LjgoICFRYWys/PT9OnT9eLL76ov/zlLzp8+LCeeeYZRUREWL/A6t69u4YOHarnn39e+/fv1549ezR16lSNGTNGERERkqSxY8cqMDBQSUlJOnr0qDZs2KClS5cqJSXF6uOFF15Qdna2Xn31VR07dkzz58/Xxx9/rKlTp976rAAAgAavka87fPzxxxo0aJD1uCp4JCYmKjMzU7Nnz1ZpaakmTZqk8+fP68EHH1R2draCg4OtfdatW6epU6dq8ODB8vf316hRo/Sb3/zG2h4SEqL33ntPycnJio2NVZs2bZSenu51L50HHnhA69ev19y5c/Wzn/1M9913n7Zs2aIePXrUaCIAAIBZbuk+OQ0d98kBAKDuGHWfHAAAgDsFIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKRaDznz58+Xn5+f19KtWzdr++XLl5WcnKzWrVurefPmGjVqlIqKirzGKCwsVEJCgpo2barQ0FDNmjVLV69e9arJy8tTnz59FBQUpM6dOyszM7O2DwUAADRgdXIm5/7779fZs2etZffu3da2GTNm6J133tGmTZu0c+dOnTlzRk8++aS1vaKiQgkJCSovL9fevXu1du1aZWZmKj093ao5deqUEhISNGjQIBUUFGj69OmaOHGitm/fXheHAwAAGqBGdTJoo0YKDw+/Zn1JSYlef/11rV+/Xo8++qgkac2aNerevbv27dunAQMG6L333tMnn3yi999/X2FhYYqJidEvfvELpaamav78+QoMDNSqVavUsWNHvfrqq5Kk7t27a/fu3Vq8eLEcDsd1+yorK1NZWZn12O121/KRAwCAO0WdnMn57LPPFBERoR/84AcaN26cCgsLJUn5+fm6cuWK4uPjrdpu3brp3nvvldPplCQ5nU5FR0crLCzMqnE4HHK73Tp69KhV8+0xqmqqxriejIwMhYSEWEtkZGStHC8AALjz1HrIiYuLU2ZmprKzs7Vy5UqdOnVKDz30kC5cuCCXy6XAwEC1bNnSa5+wsDC5XC5Jksvl8go4Vdurtt2oxu1269KlS9ftLS0tTSUlJdZy+vTpWz1cAABwh6r1r6uGDRtm/btnz56Ki4tT+/bttXHjRjVp0qS2n84nQUFBCgoKqtceAADA7VHnPyFv2bKlunTpohMnTig8PFzl5eU6f/68V01RUZF1DU94ePg1v7aqevxdNTabrd6DFAAAuDPUeci5ePGiTp48qbZt2yo2NlaNGzdWbm6utf348eMqLCyU3W6XJNntdh0+fFjFxcVWTU5Ojmw2m6Kioqyab49RVVM1BgAAQK2HnJkzZ2rnzp36/PPPtXfvXv3oRz9SQECAnn76aYWEhCgpKUkpKSn64IMPlJ+frwkTJshut2vAgAGSpCFDhigqKkrjx4/X//zP/2j79u2aO3eukpOTra+aJk+erL/97W+aPXu2jh07phUrVmjjxo2aMWNGbR8OAABooGr9mpwvvvhCTz/9tP7xj3/onnvu0YMPPqh9+/bpnnvukSQtXrxY/v7+GjVqlMrKyuRwOLRixQpr/4CAAG3dulVTpkyR3W5Xs2bNlJiYqIULF1o1HTt2VFZWlmbMmKGlS5eqXbt2Wr169Q1/Pg4AAO4ufh6Px1PfTdQXt9utkJAQlZSUyGaz1erYztdn1up4AAA0NPakV+pk3Jv9/OZvVwEAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjNTgQ87y5cvVoUMHBQcHKy4uTvv376/vlgAAwB2gQYecDRs2KCUlRfPmzdOBAwfUq1cvORwOFRcX13drAACgnjXokPPrX/9azz//vCZMmKCoqCitWrVKTZs21e9///v6bg0AANSzRvXdQE2Vl5crPz9faWlp1jp/f3/Fx8fL6XRWu09ZWZnKysqsxyUlJZIkt9td6/2VXir77iIAAAxWF5+v3x7X4/HcsK7Bhpwvv/xSFRUVCgsL81ofFhamY8eOVbtPRkaGFixYcM36yMjIOukRAIC72rRldTr8hQsXFBISct3tDTbk1ERaWppSUlKsx5WVlfrqq6/UunVr+fn51drzuN1uRUZG6vTp07LZbLU27t2C+as55u7WMH81x9zdGubPNx6PRxcuXFBERMQN6xpsyGnTpo0CAgJUVFTktb6oqEjh4eHV7hMUFKSgoCCvdS1btqyrFmWz2Xix3gLmr+aYu1vD/NUcc3drmL+bd6MzOFUa7IXHgYGBio2NVW5urrWusrJSubm5stvt9dgZAAC4EzTYMzmSlJKSosTERPXt21f9+/fXkiVLVFpaqgkTJtR3awAAoJ416JAzevRonTt3Tunp6XK5XIqJiVF2dvY1FyPfbkFBQZo3b941X43h5jB/Ncfc3Rrmr+aYu1vD/NUNP893/f4KAACgAWqw1+QAAADcCCEHAAAYiZADAACMRMgBAABGIuQAAAAjEXJqaPny5erQoYOCg4MVFxen/fv337B+06ZN6tatm4KDgxUdHa133333NnV6Z/Jl/jIzM+Xn5+e1BAcH38Zu7xy7du3S448/roiICPn5+WnLli3fuU9eXp769OmjoKAgde7cWZmZmXXe553I17nLy8u75nXn5+cnl8t1exq+w2RkZKhfv35q0aKFQkNDNXLkSB0/fvw79+O9r2Zzx/te7SDk1MCGDRuUkpKiefPm6cCBA+rVq5ccDoeKi4urrd+7d6+efvppJSUl6eDBgxo5cqRGjhypI0eO3ObO7wy+zp/0z1udnz171lr+/ve/38aO7xylpaXq1auXli9fflP1p06dUkJCggYNGqSCggJNnz5dEydO1Pbt2+u40zuPr3NX5fjx416vvdDQ0Drq8M62c+dOJScna9++fcrJydGVK1c0ZMgQlZaWXncf3vv+qSZzJ/G+Vys88Fn//v09ycnJ1uOKigpPRESEJyMjo9r6n/zkJ56EhASvdXFxcZ7/+I//qNM+71S+zt+aNWs8ISEht6m7hkOSZ/PmzTesmT17tuf+++/3Wjd69GiPw+Gow87ufDczdx988IFHkufrr7++LT01NMXFxR5Jnp07d163hve+6t3M3PG+Vzs4k+Oj8vJy5efnKz4+3lrn7++v+Ph4OZ3OavdxOp1e9ZLkcDiuW2+ymsyfJF28eFHt27dXZGSknnjiCR09evR2tNvg8dq7dTExMWrbtq0ee+wx7dmzp77buWOUlJRIklq1anXdGl5/1buZuZN436sNhBwfffnll6qoqLjmT0eEhYVd97t6l8vlU73JajJ/Xbt21e9//3u9/fbb+u///m9VVlbqgQce0BdffHE7Wm7Qrvfac7vdunTpUj111TC0bdtWq1at0p///Gf9+c9/VmRkpAYOHKgDBw7Ud2v1rrKyUtOnT9cPf/hD9ejR47p1vPdd62bnjve92tGg/3YV7g52u93rL8s/8MAD6t69u373u9/pF7/4RT12BpN17dpVXbt2tR4/8MADOnnypBYvXqw//vGP9dhZ/UtOTtaRI0e0e/fu+m6lwbnZueN9r3ZwJsdHbdq0UUBAgIqKirzWFxUVKTw8vNp9wsPDfao3WU3m7181btxYvXv31okTJ+qiRaNc77Vns9nUpEmTeuqq4erfv/9d/7qbOnWqtm7dqg8++EDt2rW7YS3vfd58mbt/xftezRByfBQYGKjY2Fjl5uZa6yorK5Wbm+uVur/Nbrd71UtSTk7OdetNVpP5+1cVFRU6fPiw2rZtW1dtGoPXXu0qKCi4a193Ho9HU6dO1ebNm7Vjxw517NjxO/fh9fdPNZm7f8X7Xg3V95XPDdEbb7zhCQoK8mRmZno++eQTz6RJkzwtW7b0uFwuj8fj8YwfP94zZ84cq37Pnj2eRo0aeV555RXPp59+6pk3b56ncePGnsOHD9fXIdQrX+dvwYIFnu3bt3tOnjzpyc/P94wZM8YTHBzsOXr0aH0dQr25cOGC5+DBg56DBw96JHl+/etfew4ePOj5+9//7vF4PJ45c+Z4xo8fb9X/7W9/8zRt2tQza9Ysz6effupZvny5JyAgwJOdnV1fh1BvfJ27xYsXe7Zs2eL57LPPPIcPH/a88MILHn9/f8/7779fX4dQr6ZMmeIJCQnx5OXlec6ePWst33zzjVXDe1/1ajJ3vO/VDkJODf32t7/13HvvvZ7AwEBP//79Pfv27bO2PfLII57ExESv+o0bN3q6dOniCQwM9Nx///2erKys29zxncWX+Zs+fbpVGxYW5hk+fLjnwIED9dB1/av6WfO/LlXzlZiY6HnkkUeu2ScmJsYTGBjo+cEPfuBZs2bNbe/7TuDr3L300kueTp06eYKDgz2tWrXyDBw40LNjx476af4OUN3cSfJ6PfHeV72azB3ve7XDz+PxeG7feSMAAIDbg2tyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAIBatWvXLj3++OOKiIiQn5+ftmzZ4tP+8+fPl5+f3zVLs2bNfBqHkAMAAGpVaWmpevXqpeXLl9do/5kzZ+rs2bNeS1RUlH784x/7NA4hBwAA1Kphw4bpxRdf1I9+9KNqt5eVlWnmzJn6/ve/r2bNmikuLk55eXnW9ubNmys8PNxaioqK9MknnygpKcmnPgg5AADgtpo6daqcTqfeeOMNHTp0SD/+8Y81dOhQffbZZ9XWr169Wl26dNFDDz3k0/MQcgAAwG1TWFioNWvWaNOmTXrooYfUqVMnzZw5Uw8++KDWrFlzTf3ly5e1bt06n8/iSFKj2mgYAADgZhw+fFgVFRXq0qWL1/qysjK1bt36mvrNmzfrwoULSkxM9Pm5CDkAAOC2uXjxogICApSfn6+AgACvbc2bN7+mfvXq1RoxYoTCwsJ8fi5CDgAAuG169+6tiooKFRcXf+c1NqdOndIHH3ygv/zlLzV6LkIOAACoVRcvXtSJEyesx6dOnVJBQYFatWqlLl26aNy4cXrmmWf06quvqnfv3jp37pxyc3PVs2dPJSQkWPv9/ve/V9u2bTVs2LAa9eHn8Xg8t3w0AAAA/7+8vDwNGjTomvWJiYnKzMzUlStX9OKLL+oPf/iD/vd//1dt2rTRgAEDtGDBAkVHR0uSKisr1b59ez3zzDP6z//8zxr1QcgBAABG4ifkAADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADDS/wefhE7OmtV1ZgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMr5JREFUeJzt3XtUVOe9//EPoAxeMkO9AFLxFhOVxkvFiJMmRitxTEhXaMypGleC1ujRg64ojRdSi0nas2hMWjXVaHvSBnsaW7UnMY0kWIqiK5FgRKlKg1VLSqwZvAVGaQSF/fsjP/Zy1CggF+F5v9baazl7f5893/1kAp+1Z+9NgGVZlgAAAAwU2NINAAAAtBSCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAON88sknCggI0Msvv9xo+8zJyVFAQIBycnIabZ8Amh5BCECrkZ6eroCAAO3du7elWwHQRhCEAACAsQhCAADAWAQhAG1GVVWVUlNTFRMTI5fLpU6dOum+++7Tjh07vnLMihUr1Lt3b3Xo0EH333+/Dh06dFVNUVGRHnvsMXXp0kUhISEaMWKE/vSnPzXloQBoJu1augEAaCw+n0+vvfaapkyZopkzZ+rcuXP69a9/LY/Hoz179mjYsGF+9b/97W917tw5JSUl6cKFC1q1apW+/e1v6+DBgwoPD5ckFRYW6lvf+pa+/vWva8mSJerUqZM2bdqkhIQE/d///Z+++93vtsCRAmgsBCEAbcbXvvY1ffLJJwoODrbXzZw5UwMHDtQvfvEL/frXv/arP3r0qI4cOaKvf/3rkqQJEyYoNjZWL774on7+859Lkp5++mn16tVLH330kRwOhyTpv/7rv3Tvvfdq8eLFBCGgleOrMQBtRlBQkB2CampqdPbsWV26dEkjRozQvn37rqpPSEiwQ5AkjRw5UrGxsXr33XclSWfPntX27dv1ve99T+fOndPp06d1+vRpnTlzRh6PR0eOHNG//vWv5jk4AE2CIASgTVm/fr2GDBmikJAQde3aVd27d1dGRobKy8uvqr3jjjuuWnfnnXfqk08+kfTlGSPLsvSjH/1I3bt391uWLVsmSTp58mSTHg+ApsVXYwDajN/97neaNm2aEhIStHDhQoWFhSkoKEhpaWk6duxYvfdXU1MjSXrmmWfk8XiuWdO/f/+b6hlAyyIIAWgz/vjHP6pfv3568803FRAQYK+vPXtzpSNHjly17u9//7v69OkjSerXr58kqX379oqLi2v8hgG0OL4aA9BmBAUFSZIsy7LX5eXlKTc395r1W7Zs8bvGZ8+ePcrLy9ODDz4oSQoLC9OYMWP0y1/+Up999tlV40+dOtWY7QNoAZwRAtDq/OY3v1FmZuZV68eMGaM333xT3/3udxUfH6/i4mKtW7dO0dHROn/+/FX1/fv317333qs5c+aosrJSK1euVNeuXbVo0SK7Zs2aNbr33ns1ePBgzZw5U/369VNpaalyc3N1/Phx/fWvf23SYwXQtAhCAFqdtWvXXnN9SUmJzp8/r1/+8pfatm2boqOj9bvf/U6bN2++5h9DffLJJxUYGKiVK1fq5MmTGjlypFavXq0ePXrYNdHR0dq7d6+ef/55paen68yZMwoLC9M3v/lNpaamNtUhAmgmAdbl55ABAAAMwjVCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADG4jlC11FTU6MTJ07otttu83tcPwAAuHVZlqVz584pMjJSgYHXP+dDELqOEydOKCoqqqXbAAAADfDpp5+qZ8+e160hCF3HbbfdJunLiXQ6nS3cDQAAqAufz6eoqCj79/j1EISuo/brMKfTSRACAKCVqctlLVwsDQAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCsdi3dAAAAbc2KrL83eOyCB+5sxE5wI5wRAgAAxiIIAQAAYxGEAACAsbhGCK3DjrSGjx2b0nh9AADaFM4IAQAAYxGEAACAsQhCAADAWPUKQmvXrtWQIUPkdDrldDrldrv13nvv2dsvXLigpKQkde3aVZ07d9bEiRNVWlrqt4+SkhLFx8erY8eOCgsL08KFC3Xp0iW/mpycHA0fPlwOh0P9+/dXenr6Vb2sWbNGffr0UUhIiGJjY7Vnzx6/7XXpBQAAmK1eQahnz5766U9/qvz8fO3du1ff/va39cgjj6iwsFCStGDBAr3zzjvavHmzdu7cqRMnTujRRx+1x1dXVys+Pl5VVVXavXu31q9fr/T0dKWmpto1xcXFio+P19ixY1VQUKD58+frqaee0rZt2+yajRs3Kjk5WcuWLdO+ffs0dOhQeTwenTx50q65US8AAAABlmVZN7ODLl266KWXXtJjjz2m7t27a8OGDXrsscckSUVFRRo0aJByc3M1atQovffee3r44Yd14sQJhYeHS5LWrVunxYsX69SpUwoODtbixYuVkZGhQ4cO2e8xefJklZWVKTMzU5IUGxuru+++W6tXr5Yk1dTUKCoqSvPmzdOSJUtUXl5+w16upbKyUpWVlfZrn8+nqKgolZeXy+l03sw04WZx1xiAVoQnS7csn88nl8tVp9/fDb5GqLq6Wn/4wx9UUVEht9ut/Px8Xbx4UXFxcXbNwIED1atXL+Xm5kqScnNzNXjwYDsESZLH45HP57PPKuXm5vrto7amdh9VVVXKz8/3qwkMDFRcXJxdU5deriUtLU0ul8teoqKiGjo9AACgFah3EDp48KA6d+4sh8Oh2bNn66233lJ0dLS8Xq+Cg4MVGhrqVx8eHi6v1ytJ8nq9fiGodnvttuvV+Hw+ffHFFzp9+rSqq6uvWXP5Pm7Uy7WkpKSovLzcXj799NO6TQoAAGiV6v1AxQEDBqigoEDl5eX64x//qMTERO3cubMpemt2DodDDoejpdsAAADNpN5BKDg4WP3795ckxcTE6KOPPtKqVas0adIkVVVVqayszO9MTGlpqSIiIiRJERERV93dVXsn1+U1V97dVVpaKqfTqQ4dOigoKEhBQUHXrLl8HzfqBQAA4KafI1RTU6PKykrFxMSoffv2ys7OtrcdPnxYJSUlcrvdkiS3262DBw/63d2VlZUlp9Op6Ohou+byfdTW1O4jODhYMTExfjU1NTXKzs62a+rSCwAAQL3OCKWkpOjBBx9Ur169dO7cOW3YsEE5OTnatm2bXC6XZsyYoeTkZHXp0kVOp1Pz5s2T2+2279IaP368oqOj9cQTT2j58uXyer1aunSpkpKS7K+kZs+erdWrV2vRokX6/ve/r+3bt2vTpk3KyMiw+0hOTlZiYqJGjBihkSNHauXKlaqoqND06dMlqU69AAAA1CsInTx5Uk8++aQ+++wzuVwuDRkyRNu2bdMDDzwgSVqxYoUCAwM1ceJEVVZWyuPx6NVXX7XHBwUFaevWrZozZ47cbrc6deqkxMREvfDCC3ZN3759lZGRoQULFmjVqlXq2bOnXnvtNXk8Hrtm0qRJOnXqlFJTU+X1ejVs2DBlZmb6XUB9o14AAABu+jlCbVl9nkOAJsZzhAC0IjxHqGU1y3OEAAAAWjuCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMaqVxBKS0vT3Xffrdtuu01hYWFKSEjQ4cOH/WrGjBmjgIAAv2X27Nl+NSUlJYqPj1fHjh0VFhamhQsX6tKlS341OTk5Gj58uBwOh/r376/09PSr+lmzZo369OmjkJAQxcbGas+ePX7bL1y4oKSkJHXt2lWdO3fWxIkTVVpaWp9DBgAAbVi9gtDOnTuVlJSkDz/8UFlZWbp48aLGjx+viooKv7qZM2fqs88+s5fly5fb26qrqxUfH6+qqirt3r1b69evV3p6ulJTU+2a4uJixcfHa+zYsSooKND8+fP11FNPadu2bXbNxo0blZycrGXLlmnfvn0aOnSoPB6PTp48adcsWLBA77zzjjZv3qydO3fqxIkTevTRR+s9SQAAoG0KsCzLaujgU6dOKSwsTDt37tTo0aMlfXlGaNiwYVq5cuU1x7z33nt6+OGHdeLECYWHh0uS1q1bp8WLF+vUqVMKDg7W4sWLlZGRoUOHDtnjJk+erLKyMmVmZkqSYmNjdffdd2v16tWSpJqaGkVFRWnevHlasmSJysvL1b17d23YsEGPPfaYJKmoqEiDBg1Sbm6uRo0adcPj8/l8crlcKi8vl9PpbOg0oTHsSGv42LEpjdcHANTBiqy/N3jsggfubMROzFSf3983dY1QeXm5JKlLly5+69944w1169ZNd911l1JSUvTvf//b3pabm6vBgwfbIUiSPB6PfD6fCgsL7Zq4uDi/fXo8HuXm5kqSqqqqlJ+f71cTGBiouLg4uyY/P18XL170qxk4cKB69epl11ypsrJSPp/PbwEAAG1Xu4YOrKmp0fz58/Wtb31Ld911l73+8ccfV+/evRUZGakDBw5o8eLFOnz4sN58801Jktfr9QtBkuzXXq/3ujU+n09ffPGFPv/8c1VXV1+zpqioyN5HcHCwQkNDr6qpfZ8rpaWl6fnnn6/nTAAAgNaqwUEoKSlJhw4d0vvvv++3ftasWfa/Bw8erB49emjcuHE6duyYbr/99oZ32gxSUlKUnJxsv/b5fIqKimrBjgAAQFNq0Fdjc+fO1datW7Vjxw717NnzurWxsbGSpKNHj0qSIiIirrpzq/Z1RETEdWucTqc6dOigbt26KSgo6Jo1l++jqqpKZWVlX1lzJYfDIafT6bcAAIC2q15ByLIszZ07V2+99Za2b9+uvn373nBMQUGBJKlHjx6SJLfbrYMHD/rd3ZWVlSWn06no6Gi7Jjs7228/WVlZcrvdkqTg4GDFxMT41dTU1Cg7O9uuiYmJUfv27f1qDh8+rJKSErsGAACYrV5fjSUlJWnDhg16++23ddttt9nX2rhcLnXo0EHHjh3Thg0b9NBDD6lr1646cOCAFixYoNGjR2vIkCGSpPHjxys6OlpPPPGEli9fLq/Xq6VLlyopKUkOh0OSNHv2bK1evVqLFi3S97//fW3fvl2bNm1SRkaG3UtycrISExM1YsQIjRw5UitXrlRFRYWmT59u9zRjxgwlJyerS5cucjqdmjdvntxud53uGAMAAG1fvYLQ2rVrJX15i/zlXn/9dU2bNk3BwcH6y1/+YoeSqKgoTZw4UUuXLrVrg4KCtHXrVs2ZM0dut1udOnVSYmKiXnjhBbumb9++ysjI0IIFC7Rq1Sr17NlTr732mjwej10zadIknTp1SqmpqfJ6vRo2bJgyMzP9LqBesWKFAgMDNXHiRFVWVsrj8ejVV1+t1wQBAIC266aeI9TW8RyhWwjPEQLQivAcoZbVbM8RAgAAaM0IQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxVryCUlpamu+++W7fddpvCwsKUkJCgw4cP+9VcuHBBSUlJ6tq1qzp37qyJEyeqtLTUr6akpETx8fHq2LGjwsLCtHDhQl26dMmvJicnR8OHD5fD4VD//v2Vnp5+VT9r1qxRnz59FBISotjYWO3Zs6fevQAAAHPVKwjt3LlTSUlJ+vDDD5WVlaWLFy9q/PjxqqiosGsWLFigd955R5s3b9bOnTt14sQJPfroo/b26upqxcfHq6qqSrt379b69euVnp6u1NRUu6a4uFjx8fEaO3asCgoKNH/+fD311FPatm2bXbNx40YlJydr2bJl2rdvn4YOHSqPx6OTJ0/WuRcAAGC2AMuyrIYOPnXqlMLCwrRz506NHj1a5eXl6t69uzZs2KDHHntMklRUVKRBgwYpNzdXo0aN0nvvvaeHH35YJ06cUHh4uCRp3bp1Wrx4sU6dOqXg4GAtXrxYGRkZOnTokP1ekydPVllZmTIzMyVJsbGxuvvuu7V69WpJUk1NjaKiojRv3jwtWbKkTr3ciM/nk8vlUnl5uZxOZ0OnCY1hR1rDx45Nabw+AKAOVmT9vcFjFzxwZyN2Yqb6/P6+qWuEysvLJUldunSRJOXn5+vixYuKi4uzawYOHKhevXopNzdXkpSbm6vBgwfbIUiSPB6PfD6fCgsL7ZrL91FbU7uPqqoq5efn+9UEBgYqLi7OrqlLL1eqrKyUz+fzWwAAQNvV4CBUU1Oj+fPn61vf+pbuuusuSZLX61VwcLBCQ0P9asPDw+X1eu2ay0NQ7fbabder8fl8+uKLL3T69GlVV1dfs+byfdyolyulpaXJ5XLZS1RUVB1nAwAAtEYNDkJJSUk6dOiQ/vCHPzRmPy0qJSVF5eXl9vLpp5+2dEsAAKAJtWvIoLlz52rr1q3atWuXevbsaa+PiIhQVVWVysrK/M7ElJaWKiIiwq658u6u2ju5Lq+58u6u0tJSOZ1OdejQQUFBQQoKCrpmzeX7uFEvV3I4HHI4HPWYCQAA0JrV64yQZVmaO3eu3nrrLW3fvl19+/b12x4TE6P27dsrOzvbXnf48GGVlJTI7XZLktxutw4ePOh3d1dWVpacTqeio6Ptmsv3UVtTu4/g4GDFxMT41dTU1Cg7O9uuqUsvAADAbPU6I5SUlKQNGzbo7bff1m233WZfa+NyudShQwe5XC7NmDFDycnJ6tKli5xOp+bNmye3223fpTV+/HhFR0friSee0PLly+X1erV06VIlJSXZZ2Nmz56t1atXa9GiRfr+97+v7du3a9OmTcrIyLB7SU5OVmJiokaMGKGRI0dq5cqVqqio0PTp0+2ebtQLAAAwW72C0Nq1ayVJY8aM8Vv/+uuva9q0aZKkFStWKDAwUBMnTlRlZaU8Ho9effVVuzYoKEhbt27VnDlz5Ha71alTJyUmJuqFF16wa/r27auMjAwtWLBAq1atUs+ePfXaa6/J4/HYNZMmTdKpU6eUmpoqr9erYcOGKTMz0+8C6hv1AgAAzHZTzxFq63iO0C2E5wgBaEV4jlDLarbnCAEAALRmBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGqncQ2rVrl77zne8oMjJSAQEB2rJli9/2adOmKSAgwG+ZMGGCX83Zs2c1depUOZ1OhYaGasaMGTp//rxfzYEDB3TfffcpJCREUVFRWr58+VW9bN68WQMHDlRISIgGDx6sd99912+7ZVlKTU1Vjx491KFDB8XFxenIkSP1PWQAANBG1TsIVVRUaOjQoVqzZs1X1kyYMEGfffaZvfz+97/32z516lQVFhYqKytLW7du1a5duzRr1ix7u8/n0/jx49W7d2/l5+frpZde0nPPPadf/epXds3u3bs1ZcoUzZgxQ/v371dCQoISEhJ06NAhu2b58uV65ZVXtG7dOuXl5alTp07yeDy6cOFCfQ8bAAC0QQGWZVkNHhwQoLfeeksJCQn2umnTpqmsrOyqM0W1Pv74Y0VHR+ujjz7SiBEjJEmZmZl66KGHdPz4cUVGRmrt2rX64Q9/KK/Xq+DgYEnSkiVLtGXLFhUVFUmSJk2apIqKCm3dutXe96hRozRs2DCtW7dOlmUpMjJSP/jBD/TMM89IksrLyxUeHq709HRNnjz5hsfn8/nkcrlUXl4up9PZkClCY9mR1vCxY1Marw8AqIMVWX9v8NgFD9zZiJ2YqT6/v5vkGqGcnByFhYVpwIABmjNnjs6cOWNvy83NVWhoqB2CJCkuLk6BgYHKy8uza0aPHm2HIEnyeDw6fPiwPv/8c7smLi7O7309Ho9yc3MlScXFxfJ6vX41LpdLsbGxds2VKisr5fP5/BYAANB2NXoQmjBhgn77298qOztbL774onbu3KkHH3xQ1dXVkiSv16uwsDC/Me3atVOXLl3k9XrtmvDwcL+a2tc3qrl8++XjrlVzpbS0NLlcLnuJioqq9/EDAIDWo11j7/Dyr5wGDx6sIUOG6Pbbb1dOTo7GjRvX2G/XqFJSUpScnGy/9vl8hCEAANqwJr99vl+/furWrZuOHj0qSYqIiNDJkyf9ai5duqSzZ88qIiLCriktLfWrqX19o5rLt18+7lo1V3I4HHI6nX4LAABou5o8CB0/flxnzpxRjx49JElut1tlZWXKz8+3a7Zv366amhrFxsbaNbt27dLFixftmqysLA0YMEBf+9rX7Jrs7Gy/98rKypLb7ZYk9e3bVxEREX41Pp9PeXl5dg0AADBbvYPQ+fPnVVBQoIKCAklfXpRcUFCgkpISnT9/XgsXLtSHH36oTz75RNnZ2XrkkUfUv39/eTweSdKgQYM0YcIEzZw5U3v27NEHH3yguXPnavLkyYqMjJQkPf744woODtaMGTNUWFiojRs3atWqVX5fWz399NPKzMzUz372MxUVFem5557T3r17NXfuXElf3tE2f/58/eQnP9Gf/vQnHTx4UE8++aQiIyP97nIDAADmqvc1Qnv37tXYsWPt17XhJDExUWvXrtWBAwe0fv16lZWVKTIyUuPHj9ePf/xjORwOe8wbb7yhuXPnaty4cQoMDNTEiRP1yiuv2NtdLpf+/Oc/KykpSTExMerWrZtSU1P9njV0zz33aMOGDVq6dKmeffZZ3XHHHdqyZYvuuusuu2bRokWqqKjQrFmzVFZWpnvvvVeZmZkKCQmp72EDAIA26KaeI9TW8RyhWwjPEQLQivAcoZbV4s8RAgAAaA0IQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxV7yC0a9cufec731FkZKQCAgK0ZcsWv+2WZSk1NVU9evRQhw4dFBcXpyNHjvjVnD17VlOnTpXT6VRoaKhmzJih8+fP+9UcOHBA9913n0JCQhQVFaXly5df1cvmzZs1cOBAhYSEaPDgwXr33Xfr3QsAADBXvYNQRUWFhg4dqjVr1lxz+/Lly/XKK69o3bp1ysvLU6dOneTxeHThwgW7ZurUqSosLFRWVpa2bt2qXbt2adasWfZ2n8+n8ePHq3fv3srPz9dLL72k5557Tr/61a/smt27d2vKlCmaMWOG9u/fr4SEBCUkJOjQoUP16gUAAJgrwLIsq8GDAwL01ltvKSEhQdKXZ2AiIyP1gx/8QM8884wkqby8XOHh4UpPT9fkyZP18ccfKzo6Wh999JFGjBghScrMzNRDDz2k48ePKzIyUmvXrtUPf/hDeb1eBQcHS5KWLFmiLVu2qKioSJI0adIkVVRUaOvWrXY/o0aN0rBhw7Ru3bo69XIjPp9PLpdL5eXlcjqdDZ0mNIYdaQ0fOzal8foAgDpYkfX3Bo9d8MCdjdiJmerz+7tRrxEqLi6W1+tVXFycvc7lcik2Nla5ubmSpNzcXIWGhtohSJLi4uIUGBiovLw8u2b06NF2CJIkj8ejw4cP6/PPP7drLn+f2pra96lLL1eqrKyUz+fzWwAAQNvVqEHI6/VKksLDw/3Wh4eH29u8Xq/CwsL8trdr105dunTxq7nWPi5/j6+quXz7jXq5Ulpamlwul71ERUXV4agBAEBrxV1jl0lJSVF5ebm9fPrppy3dEgAAaEKNGoQiIiIkSaWlpX7rS0tL7W0RERE6efKk3/ZLly7p7NmzfjXX2sfl7/FVNZdvv1EvV3I4HHI6nX4LAABouxo1CPXt21cRERHKzs621/l8PuXl5cntdkuS3G63ysrKlJ+fb9ds375dNTU1io2NtWt27dqlixcv2jVZWVkaMGCAvva1r9k1l79PbU3t+9SlFwAAYLZ6B6Hz58+roKBABQUFkr68KLmgoEAlJSUKCAjQ/Pnz9ZOf/ER/+tOfdPDgQT355JOKjIy07ywbNGiQJkyYoJkzZ2rPnj364IMPNHfuXE2ePFmRkZGSpMcff1zBwcGaMWOGCgsLtXHjRq1atUrJycl2H08//bQyMzP1s5/9TEVFRXruuee0d+9ezZ07V5Lq1AsAADBbu/oO2Lt3r8aOHWu/rg0niYmJSk9P16JFi1RRUaFZs2aprKxM9957rzIzMxUSEmKPeeONNzR37lyNGzdOgYGBmjhxol555RV7u8vl0p///GclJSUpJiZG3bp1U2pqqt+zhu655x5t2LBBS5cu1bPPPqs77rhDW7Zs0V133WXX1KUXAABgrpt6jlBbx3OEbiE8RwhAK8JzhFpWiz1HCAAAoDUhCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADBWoweh5557TgEBAX7LwIED7e0XLlxQUlKSunbtqs6dO2vixIkqLS3120dJSYni4+PVsWNHhYWFaeHChbp06ZJfTU5OjoYPHy6Hw6H+/fsrPT39ql7WrFmjPn36KCQkRLGxsdqzZ09jHy4AAGjFmuSM0De+8Q199tln9vL+++/b2xYsWKB33nlHmzdv1s6dO3XixAk9+uij9vbq6mrFx8erqqpKu3fv1vr165Wenq7U1FS7pri4WPHx8Ro7dqwKCgo0f/58PfXUU9q2bZtds3HjRiUnJ2vZsmXat2+fhg4dKo/Ho5MnTzbFIQMAgFYowLIsqzF3+Nxzz2nLli0qKCi4alt5ebm6d++uDRs26LHHHpMkFRUVadCgQcrNzdWoUaP03nvv6eGHH9aJEycUHh4uSVq3bp0WL16sU6dOKTg4WIsXL1ZGRoYOHTpk73vy5MkqKytTZmamJCk2NlZ33323Vq9eLUmqqalRVFSU5s2bpyVLllyz98rKSlVWVtqvfT6foqKiVF5eLqfT2SjzgwbakdbwsWNTGq8PAKiDFVl/b/DYBQ/c2YidmMnn88nlctXp93eTnBE6cuSIIiMj1a9fP02dOlUlJSWSpPz8fF28eFFxcXF27cCBA9WrVy/l5uZKknJzczV48GA7BEmSx+ORz+dTYWGhXXP5PmpravdRVVWl/Px8v5rAwEDFxcXZNdeSlpYml8tlL1FRUTc5EwAA4FbW6EEoNjZW6enpyszM1Nq1a1VcXKz77rtP586dk9frVXBwsEJDQ/3GhIeHy+v1SpK8Xq9fCKrdXrvtejU+n09ffPGFTp8+rerq6mvW1O7jWlJSUlReXm4vn376aYPmAAAAtA7tGnuHDz74oP3vIUOGKDY2Vr1799amTZvUoUOHxn67RuVwOORwOFq6DQAA0Eya/Pb50NBQ3XnnnTp69KgiIiJUVVWlsrIyv5rS0lJFRERIkiIiIq66i6z29Y1qnE6nOnTooG7duikoKOiaNbX7AAAAaPIgdP78eR07dkw9evRQTEyM2rdvr+zsbHv74cOHVVJSIrfbLUlyu906ePCg391dWVlZcjqdio6Otmsu30dtTe0+goODFRMT41dTU1Oj7OxsuwYAAKDRg9AzzzyjnTt36pNPPtHu3bv13e9+V0FBQZoyZYpcLpdmzJih5ORk7dixQ/n5+Zo+fbrcbrdGjRolSRo/fryio6P1xBNP6K9//au2bdumpUuXKikpyf7aavbs2frHP/6hRYsWqaioSK+++qo2bdqkBQsW2H0kJyfrf/7nf7R+/Xp9/PHHmjNnjioqKjR9+vTGPmQAANBKNfo1QsePH9eUKVN05swZde/eXffee68+/PBDde/eXZK0YsUKBQYGauLEiaqsrJTH49Grr75qjw8KCtLWrVs1Z84cud1uderUSYmJiXrhhRfsmr59+yojI0MLFizQqlWr1LNnT7322mvyeDx2zaRJk3Tq1CmlpqbK6/Vq2LBhyszMvOoCagAAYK5Gf45QW1Kf5xCgifEcIQCtCM8Ralkt/hwhAACA1oAgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLGMCEJr1qxRnz59FBISotjYWO3Zs6elWwIAALeANh+ENm7cqOTkZC1btkz79u3T0KFD5fF4dPLkyZZuDQAAtLA2H4R+/vOfa+bMmZo+fbqio6O1bt06dezYUb/5zW9aujUAANDC2rV0A02pqqpK+fn5SklJsdcFBgYqLi5Oubm5V9VXVlaqsrLSfl1eXi5J8vl8Td8srq/iQsPH8t8PQDO7UHG+wWP5nXPzaufQsqwb1rbpIHT69GlVV1crPDzcb314eLiKioquqk9LS9Pzzz9/1fqoqKgm6xHN4YWWbgAA6uzZlm6gDTl37pxcLtd1a9p0EKqvlJQUJScn269ramp09uxZde3aVQEBAY36Xj6fT1FRUfr000/ldDobdd9tDXNVd8xV3TFXdcdc1Q/zVXdNNVeWZencuXOKjIy8YW2bDkLdunVTUFCQSktL/daXlpYqIiLiqnqHwyGHw+G3LjQ0tClblNPp5H+UOmKu6o65qjvmqu6Yq/phvuquKebqRmeCarXpi6WDg4MVExOj7Oxse11NTY2ys7PldrtbsDMAAHAraNNnhCQpOTlZiYmJGjFihEaOHKmVK1eqoqJC06dPb+nWAABAC2vzQWjSpEk6deqUUlNT5fV6NWzYMGVmZl51AXVzczgcWrZs2VVfxeFqzFXdMVd1x1zVHXNVP8xX3d0KcxVg1eXeMgAAgDaoTV8jBAAAcD0EIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQakb//d//rXvuuUcdO3as8xOrp02bpoCAAL9lwoQJTdvoLaAhc2VZllJTU9WjRw916NBBcXFxOnLkSNM2egs4e/aspk6dKqfTqdDQUM2YMUPnz1//Dz6OGTPmqs/V7Nmzm6nj5rNmzRr16dNHISEhio2N1Z49e65bv3nzZg0cOFAhISEaPHiw3n333WbqtOXVZ67S09Ov+vyEhIQ0Y7ctZ9euXfrOd76jyMhIBQQEaMuWLTcck5OTo+HDh8vhcKh///5KT09v8j5vBfWdq5ycnKs+VwEBAfJ6vU3aJ0GoGVVVVek//uM/NGfOnHqNmzBhgj777DN7+f3vf99EHd46GjJXy5cv1yuvvKJ169YpLy9PnTp1ksfj0YULN/GX61uBqVOnqrCwUFlZWdq6dat27dqlWbNm3XDczJkz/T5Xy5cvb4Zum8/GjRuVnJysZcuWad++fRo6dKg8Ho9Onjx5zfrdu3drypQpmjFjhvbv36+EhAQlJCTo0KFDzdx586vvXElf/kmEyz8///znP5ux45ZTUVGhoUOHas2aNXWqLy4uVnx8vMaOHauCggLNnz9fTz31lLZt29bEnba8+s5VrcOHD/t9tsLCwpqow//PQrN7/fXXLZfLVafaxMRE65FHHmnSfm5ldZ2rmpoaKyIiwnrppZfsdWVlZZbD4bB+//vfN2GHLetvf/ubJcn66KOP7HXvvfeeFRAQYP3rX//6ynH333+/9fTTTzdDhy1n5MiRVlJSkv26urraioyMtNLS0q5Z/73vfc+Kj4/3WxcbG2v953/+Z5P2eSuo71zV52dYWybJeuutt65bs2jRIusb3/iG37pJkyZZHo+nCTu79dRlrnbs2GFJsj7//PNm6akWZ4RagZycHIWFhWnAgAGaM2eOzpw509It3XKKi4vl9XoVFxdnr3O5XIqNjVVubm4Ldta0cnNzFRoaqhEjRtjr4uLiFBgYqLy8vOuOfeONN9StWzfdddddSklJ0b///e+mbrfZVFVVKT8/3+/zEBgYqLi4uK/8POTm5vrVS5LH42nTnx+pYXMlSefPn1fv3r0VFRWlRx55RIWFhc3Rbqtj6ufqZgwbNkw9evTQAw88oA8++KDJ36/N/4mN1m7ChAl69NFH1bdvXx07dkzPPvusHnzwQeXm5iooKKil27tl1H6HfOWfTgkPD2/y75dbktfrveq0cbt27dSlS5frHvfjjz+u3r17KzIyUgcOHNDixYt1+PBhvfnmm03dcrM4ffq0qqurr/l5KCoquuYYr9dr3OdHathcDRgwQL/5zW80ZMgQlZeX6+WXX9Y999yjwsJC9ezZsznabjW+6nPl8/n0xRdfqEOHDi3U2a2nR48eWrdunUaMGKHKykq99tprGjNmjPLy8jR8+PAme1+C0E1asmSJXnzxxevWfPzxxxo4cGCD9j958mT734MHD9aQIUN0++23KycnR+PGjWvQPltKU89VW1LXuWqoy68hGjx4sHr06KFx48bp2LFjuv322xu8X5jB7XbL7Xbbr++55x4NGjRIv/zlL/XjH/+4BTtDazZgwAANGDDAfn3PPffo2LFjWrFihf73f/+3yd6XIHSTfvCDH2jatGnXrenXr1+jvV+/fv3UrVs3HT16tNUFoaacq4iICElSaWmpevToYa8vLS3VsGHDGrTPllTXuYqIiLjqgtZLly7p7Nmz9pzURWxsrCTp6NGjbSIIdevWTUFBQSotLfVbX1pa+pXzEhERUa/6tqIhc3Wl9u3b65vf/KaOHj3aFC22al/1uXI6nZwNqoORI0fq/fffb9L3IAjdpO7du6t79+7N9n7Hjx/XmTNn/H7ZtxZNOVd9+/ZVRESEsrOz7eDj8/mUl5dX77v0bgV1nSu3262ysjLl5+crJiZGkrR9+3bV1NTY4aYuCgoKJKlVfq6uJTg4WDExMcrOzlZCQoIkqaamRtnZ2Zo7d+41x7jdbmVnZ2v+/Pn2uqysLL8zH21RQ+bqStXV1Tp48KAeeuihJuy0dXK73Vc9hsGEz1VjKSgoaPqfS816abbh/vnPf1r79++3nn/+eatz587W/v37rf3791vnzp2zawYMGGC9+eablmVZ1rlz56xnnnnGys3NtYqLi62//OUv1vDhw6077rjDunDhQksdRrOo71xZlmX99Kc/tUJDQ623337bOnDggPXII49Yffv2tb744ouWOIRmM2HCBOub3/ymlZeXZ73//vvWHXfcYU2ZMsXefvz4cWvAgAFWXl6eZVmWdfToUeuFF16w9u7daxUXF1tvv/221a9fP2v06NEtdQhN4g9/+IPlcDis9PR0629/+5s1a9YsKzQ01PJ6vZZlWdYTTzxhLVmyxK7/4IMPrHbt2lkvv/yy9fHHH1vLli2z2rdvbx08eLClDqHZ1Heunn/+eWvbtm3WsWPHrPz8fGvy5MlWSEiIVVhY2FKH0GzOnTtn/zySZP385z+39u/fb/3zn/+0LMuylixZYj3xxBN2/T/+8Q+rY8eO1sKFC62PP/7YWrNmjRUUFGRlZma21CE0m/rO1YoVK6wtW7ZYR44csQ4ePGg9/fTTVmBgoPWXv/ylSfskCDWjxMRES9JVy44dO+waSdbrr79uWZZl/fvf/7bGjx9vde/e3Wrfvr3Vu3dva+bMmfYPp7asvnNlWV/eQv+jH/3ICg8PtxwOhzVu3Djr8OHDzd98Mztz5ow1ZcoUq3PnzpbT6bSmT5/uFxiLi4v95q6kpMQaPXq01aVLF8vhcFj9+/e3Fi5caJWXl7fQETSdX/ziF1avXr2s4OBga+TIkdaHH35ob7v//vutxMREv/pNmzZZd955pxUcHGx94xvfsDIyMpq545ZTn7maP3++XRseHm499NBD1r59+1qg6+ZXe4v3lUvt/CQmJlr333//VWOGDRtmBQcHW/369fP7udWW1XeuXnzxRev222+3QkJCrC5dulhjxoyxtm/f3uR9BliWZTXtOScAAIBbE88RAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICx/h939EbHuHxWGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAReFJREFUeJzt3XtYVXXe///XBuUQCogKyIhKairl6OQBKTUtxt1kB0pLyjEy0qnAUvJYhtbXYrLMQ5rkXbc0jV6ZNZqpoaSp952EijoqE6bm2e9GTWErJaCs3x/zY33dggccbAPr+biufV3tz+e913qvtXftV2uvtbAZhmEIAADAgjzc3QAAAIC7EIQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYSAy5g8ebJsNptOnjzp7lau6sCBA7LZbHrnnXeqZXn5+fkaOHCgGjduLJvNphkzZlTLclE3lP+7UZ3WrVsnm82mdevWVetygaup5+4GAPw/b775piIjIxUbG+vWPkaNGqVVq1Zp0qRJCg0NVdeuXd3aT03x/vvv66abbtJTTz3l7lZqLfYhahqCEFCDvPnmmxo4cKDbg9DatWv10EMPafTo0W7to6Z5//331aRJE77E/wOX24e9e/fWr7/+Ki8vL/c0BsvipzEAFRw/flyBgYFXrSsqKrrxzaBalJWV6dy5c5XO1YT30cPDQz4+PvLw4GsJvy0+ccBVnDx5Uo899pj8/f3VuHFjvfjiixW+UP7+97+rS5cu8vX1VVBQkOLi4nT48GGXmj179mjAgAEKDQ2Vj4+Pmjdvrri4OBUWFkqSbDabioqK9PHHH8tms8lms13XkYfp06erZcuW8vX11V133aVdu3Zd82vT09Nls9lkGIbmzJlj9nHx3Pr16/X8888rODhYzZs3lyQdPHhQzz//vNq1aydfX181btxYjz76qA4cOFBhHTt27NBdd90lX19fNW/eXFOmTNH8+fNls9lc6lu1aqX7779f69atU9euXeXr66uOHTua55D84x//UMeOHeXj46MuXbpo27ZtFdaVl5engQMHKigoSD4+PuratauWLVtW6TZ/9913Sk5OVtOmTeXn56eHH35YJ06ccOknNzdX69evN/dLnz59JEmlpaV67bXX1LZtW/n4+Khx48bq2bOnMjMzr3nfS9K5c+c0efJk3XLLLfLx8VGzZs30yCOPaN++fWZNUVGRXnrpJYWHh8vb21vt2rXTO++8I8MwXJZls9mUlJSkBQsW6NZbb5W3t7cyMjKu+D5K0tdff61evXrJz89PDRs2VP/+/ZWbm3vV3ufPn6+7775bwcHB8vb2VmRkpObOnetSc6V9eLlzhBYvXmz+u9WkSRP9+c9/1tGjR11qnnrqKTVo0EBHjx5VbGysGjRooKZNm2r06NG6cOHCtex6WBg/jQFX8dhjj6lVq1ZKTU3V999/r1mzZun06dP629/+Jkl644039Oqrr+qxxx7TM888oxMnTui9995T7969tW3bNgUGBqqkpER2u13FxcUaMWKEQkNDdfToUS1fvlwFBQUKCAjQJ598omeeeUbdu3fX8OHDJUmtW7euUq9/+9vfdObMGSUmJurcuXOaOXOm7r77bu3cuVMhISFXfX3v3r31ySefaMiQIfrjH/+oJ598skLN888/r6ZNmyolJcU8krB582Zt3LhRcXFxat68uQ4cOKC5c+eqT58++te//qWbbrpJknT06FH17dtXNptNEyZMkJ+fnz788EN5e3tX2s/evXv1xBNP6C9/+Yv+/Oc/65133tEDDzygtLQ0vfzyy3r++eclSampqXrssce0e/du84hCbm6u7rzzTv3ud7/T+PHj5efnp88++0yxsbH64osv9PDDD7usa8SIEWrUqJEmTZqkAwcOaMaMGUpKStKiRYskSTNmzNCIESPUoEEDvfLKK5Jk7tPJkycrNTXVfP+cTqe2bNmirVu36o9//ONV97skXbhwQffff7/WrFmjuLg4vfjiizpz5owyMzO1a9cutW7dWoZh6MEHH9S3336rhIQEde7cWatWrdKYMWN09OhRTZ8+3WWZa9eu1WeffaakpCQ1adJErVq10vbt2y/7Pn7yySeKj4+X3W7XW2+9pV9++UVz585Vz549tW3bNrVq1eqy/c+dO1e33nqrHnzwQdWrV09fffWVnn/+eZWVlSkxMfGq+7Ay6enpGjp0qLp166bU1FTl5+dr5syZ+u6778x/ty7ef3a7XVFRUXrnnXf0zTffaNq0aWrdurWee+65a3oPYFEGgEpNmjTJkGQ8+OCDLuPPP/+8Icn45z//aRw4cMDw9PQ03njjDZeanTt3GvXq1TPHt23bZkgyFi9efMV1+vn5GfHx8VXudf/+/YYkw9fX1zhy5Ig5np2dbUgyRo0aVaXlSTISExNdxubPn29IMnr27GmcP3/eZe6XX36psIysrCxDkvG3v/3NHBsxYoRhs9mMbdu2mWM///yzERQUZEgy9u/fb463bNnSkGRs3LjRHFu1apW5nQcPHjTHP/jgA0OS8e2335pj99xzj9GxY0fj3Llz5lhZWZlxxx13GG3btq2wXTExMUZZWZk5PmrUKMPT09MoKCgwx2699VbjrrvuqrCtnTp1Mvr3719hvCr++7//25BkvPvuuxXmyvtaunSpIcmYMmWKy/zAgQMNm81m7N271xyTZHh4eBi5ubkutZd7H8+cOWMEBgYaw4YNc6l3OBxGQECAy3j5vxsXq+wzYLfbjZtvvtll7HL78Ntvv3V5D0tKSozg4GDjtttuM3799Vezbvny5YYkIyUlxRyLj483JBmvv/66yzL/8Ic/GF26dKmwLuBi/DQGXEX5/82WGzFihCRp5cqV+sc//qGysjI99thjOnnypPkIDQ1V27Zt9e2330qSAgICJEmrVq3SL7/8csN6jY2N1e9+9zvzeffu3RUVFaWVK1dW2zqGDRsmT09PlzFfX1/zn0tLS/Xzzz+rTZs2CgwM1NatW825jIwMRUdHq3PnzuZYUFCQBg8eXOm6IiMjFR0dbT6PioqSJN19991q0aJFhfGffvpJknTq1CmtXbtWjz32mM6cOWO+Lz///LPsdrv27NlT4eeV4cOHu1wS3qtXL124cEEHDx686j4JDAxUbm6u9uzZc9Xay/niiy/UpEkT8/N1sfK+Vq5cKU9PT73wwgsu8y+99JIMw9DXX3/tMn7XXXcpMjKy0vVd+j5mZmaqoKBAjz/+uMtn2dPTU1FRUeZn+XIu/gwUFhbq5MmTuuuuu/TTTz+ZP/9WxZYtW3T8+HE9//zz8vHxMcf79++v9u3ba8WKFRVe8+yzz7o879Wrl/mZAC6Hn8aAq2jbtq3L89atW8vDw0MHDhyQh4eHDMOoUFOufv36kqSIiAglJyfr3Xff1YIFC9SrVy89+OCD+vOf/2yGpBvRqyTdcsst+uyzz6ptHRERERXGfv31V6Wmpmr+/Pk6evSoy/kqF38JHjx40CXYlGvTpk2l67o47Ej/L1CGh4dXOn769GlJ//5JzTAMvfrqq3r11VcrXfbx48ddQuOl62rUqJHLMq/k9ddf10MPPaRbbrlFt912m+69914NGTJEv//976/62nL79u1Tu3btVK/e5f+zfPDgQYWFhalhw4Yu4x06dDDnL1bZe3W5ufIQd/fdd1da7+/vf/nmJX333XeaNGmSsrKyKoT9wsLCKn/Oy7elXbt2Febat2+v//3f/3UZ8/HxUdOmTV3GGjVqdE3vH6yNIARU0cVHDcrKymSz2fT1119XOEoiSQ0aNDD/edq0aXrqqaf05ZdfavXq1XrhhRfM844uPlm1prv4//zLjRgxQvPnz9fIkSMVHR2tgIAA2Ww2xcXFqays7LrXVdk+vdJ4eQArX+fo0aNlt9srrb00fF1tmVfSu3dv7du3z3xvP/zwQ02fPl1paWl65plnrvr6G6Wy9+pyc+X77JNPPlFoaGiF+isFtH379umee+5R+/bt9e677yo8PFxeXl5auXKlpk+f/h99Bq7V5d4/4GoIQsBV7Nmzx+X/nvfu3auysjK1atVKnp6eMgxDERERuuWWW666rI4dO6pjx46aOHGiNm7cqDvvvFNpaWmaMmWKJP3Hd+ut7KeZH3/88YonuVaHzz//XPHx8Zo2bZo5du7cORUUFLjUtWzZUnv37q3w+srG/hM333yzpH8fkYuJiam25V7p/QkKCtLQoUM1dOhQnT17Vr1799bkyZOvOQi1bt1a2dnZKi0tNY8kXqply5b65ptvdObMGZejQnl5eeb89So/MT84OLjK++yrr75ScXGxli1b5nJkrbKf0671M16+Lbt3765wlGr37t3/0bYCF+McIeAq5syZ4/L8vffekyT96U9/0iOPPCJPT0+99tprFY4cGIahn3/+WZLkdDp1/vx5l/mOHTvKw8NDxcXF5pifn1+F8FAVS5cudTn3ZdOmTcrOztaf/vSn617mtSgPhBd77733Kly6bLfblZWVZV65JP37fJ4FCxZUaz/BwcHq06ePPvjgA/3f//t/K8xffFl8VVzu/Sl/n8s1aNBAbdq0cXlvr2bAgAE6efKkZs+eXWGufN/ed999unDhQoWa6dOny2az/Ufvs91ul7+/v958802VlpZWmL/SPis/GnPpT6Lz58+vUHutn/GuXbsqODhYaWlpLvvx66+/1g8//KD+/ftfdRnAteCIEHAV+/fv14MPPqh7771XWVlZ+vvf/64nnnhCnTp1kiRNmTJFEyZM0IEDBxQbG6uGDRtq//79WrJkiYYPH67Ro0dr7dq1SkpK0qOPPqpbbrlF58+f1yeffCJPT08NGDDAXFeXLl30zTff6N1331VYWJgiIiLME4GvRZs2bdSzZ08999xzKi4u1owZM9S4cWONHTu22vfLxe6//3598sknCggIUGRkpLKysvTNN9+ocePGLnVjx47V3//+d/3xj3/UiBEjzMvnW7RooVOnTlXr36+aM2eOevbsqY4dO2rYsGG6+eablZ+fr6ysLB05ckT//Oc/q7zMLl26aO7cuZoyZYratGmj4OBg3X333YqMjFSfPn3UpUsXBQUFacuWLfr888+VlJR0zct+8skn9be//U3JycnatGmTevXqpaKiIn3zzTd6/vnn9dBDD+mBBx5Q37599corr+jAgQPq1KmTVq9erS+//FIjR46s8u0WLubv76+5c+dqyJAhuv322xUXF6emTZvq0KFDWrFihe68885KQ5ok9evXT15eXnrggQf0l7/8RWfPntV//dd/KTg4uEIQvdw+vFT9+vX11ltvaejQobrrrrv0+OOPm5fPt2rVSqNGjbrubQVcuOdiNaDmK79E+F//+pcxcOBAo2HDhkajRo2MpKQkl8t5DcMwvvjiC6Nnz56Gn5+f4efnZ7Rv395ITEw0du/ebRiGYfz000/G008/bbRu3drw8fExgoKCjL59+xrffPONy3Ly8vKM3r17G76+voaka76Uvvzy+bffftuYNm2aER4ebnh7exu9evUy/vnPf1Z523WFy+c3b95cof706dPG0KFDjSZNmhgNGjQw7Ha7kZeXZ7Rs2bLCNmzbts3o1auX4e3tbTRv3txITU01Zs2aZUgyHA6HWdeyZctKL0mvrLeLt/9i+/btM5588kkjNDTUqF+/vvG73/3OuP/++43PP//8qtt16eXchvHvS8n79+9vNGzY0JBkXgY+ZcoUo3v37kZgYKDh6+trtG/f3njjjTeMkpKSijv3Cn755RfjlVdeMSIiIoz69esboaGhxsCBA419+/aZNWfOnDFGjRplhIWFGfXr1zfatm1rvP322y6X/l9uP11pey/ebrvdbgQEBBg+Pj5G69atjaeeesrYsmWLWVPZ5fPLli0zfv/73xs+Pj5Gq1atjLfeesu8JcDFt0W43D6sbH8bhmEsWrTI+MMf/mB4e3sbQUFBxuDBg11uEWEY/7583s/Pr8K2VNYncCmbYVzDmYAAcAONHDlSH3zwgc6ePctJrwB+U5wjBOA39euvv7o8//nnn/XJJ5+oZ8+ehCAAvznOEQJqsAsXLlz1xN4GDRq4XKZ/OSUlJTp16tQVawICAq54yXV1iI6OVp8+fdShQwfl5+fro48+ktPpvOz9fmq7mrLfAVSOIATUYIcPH77iTfEkadKkSZo8efJVl7Vx40b17dv3ijXz58+/rj/0WhX33XefPv/8c82bN082m0233367PvroI/Xu3fuGrtddasp+B1A5zhECarBz585VuIPupW6++WbzvjlXcvr0aeXk5Fyx5tZbb1WzZs2q1COujP0O1GwEIQAAYFmcLA0AACyLc4SuoKysTMeOHVPDhg2r9UZvAADgxjEMQ2fOnFFYWJg8PK58zIcgdAXHjh2r8FeuAQBA7XD48OGr/lFrgtAVlP9Rw8OHD8vf39/N3QAAgGvhdDoVHh7u8seJL4cgdAXlP4f5+/sThAAAqGWu5bQWTpYGAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWVc/dDQCAu2R9NNrdLVyX6IR33N0CUGdwRAgAAFgWQQgAAFgWQQgAAFhWlYPQhg0b9MADDygsLEw2m01Lly6tUPPDDz/owQcfVEBAgPz8/NStWzcdOnTInD937pwSExPVuHFjNWjQQAMGDFB+fr7LMg4dOqT+/fvrpptuUnBwsMaMGaPz58+71Kxbt0633367vL291aZNG6Wnp1foZc6cOWrVqpV8fHwUFRWlTZs2VXWTAQBAHVXlIFRUVKROnTppzpw5lc7v27dPPXv2VPv27bVu3Trt2LFDr776qnx8fMyaUaNG6auvvtLixYu1fv16HTt2TI888og5f+HCBfXv318lJSXauHGjPv74Y6WnpyslJcWs2b9/v/r376++fftq+/btGjlypJ555hmtWrXKrFm0aJGSk5M1adIkbd26VZ06dZLdbtfx48erutkAAKAOshmGYVz3i202LVmyRLGxseZYXFyc6tevr08++aTS1xQWFqpp06ZauHChBg4cKEnKy8tThw4dlJWVpR49eujrr7/W/fffr2PHjikkJESSlJaWpnHjxunEiRPy8vLSuHHjtGLFCu3atctl3QUFBcrIyJAkRUVFqVu3bpo9e7YkqaysTOHh4RoxYoTGjx9/1e1zOp0KCAhQYWGh/P39r2sfAai5uGoMqJuq8v1drecIlZWVacWKFbrllltkt9sVHBysqKgol5/PcnJyVFpaqpiYGHOsffv2atGihbKysiRJWVlZ6tixoxmCJMlut8vpdCo3N9esuXgZ5TXlyygpKVFOTo5LjYeHh2JiYsyaSxUXF8vpdLo8AABA3VWtQej48eM6e/as/vrXv+ree+/V6tWr9fDDD+uRRx7R+vXrJUkOh0NeXl4KDAx0eW1ISIgcDodZc3EIKp8vn7tSjdPp1K+//qqTJ0/qwoULldaUL+NSqampCggIMB/h4eHXtyMAAECtUO1HhCTpoYce0qhRo9S5c2eNHz9e999/v9LS0qpzVTfEhAkTVFhYaD4OHz7s7pYAAMANVK1BqEmTJqpXr54iIyNdxjt06GBeNRYaGqqSkhIVFBS41OTn5ys0NNSsufQqsvLnV6vx9/eXr6+vmjRpIk9Pz0prypdxKW9vb/n7+7s8AABA3VWtQcjLy0vdunXT7t27XcZ//PFHtWzZUpLUpUsX1a9fX2vWrDHnd+/erUOHDik6OlqSFB0drZ07d7pc3ZWZmSl/f38zZEVHR7sso7ymfBleXl7q0qWLS01ZWZnWrFlj1gAAAGur8t8aO3v2rPbu3Ws+379/v7Zv366goCC1aNFCY8aM0aBBg9S7d2/17dtXGRkZ+uqrr7Ru3TpJUkBAgBISEpScnKygoCD5+/trxIgRio6OVo8ePSRJ/fr1U2RkpIYMGaKpU6fK4XBo4sSJSkxMlLe3tyTp2Wef1ezZszV27Fg9/fTTWrt2rT777DOtWLHC7C05OVnx8fHq2rWrunfvrhkzZqioqEhDhw79T/YZAACoI6ochLZs2aK+ffuaz5OTkyVJ8fHxSk9P18MPP6y0tDSlpqbqhRdeULt27fTFF1+oZ8+e5mumT58uDw8PDRgwQMXFxbLb7Xr//ffNeU9PTy1fvlzPPfecoqOj5efnp/j4eL3++utmTUREhFasWKFRo0Zp5syZat68uT788EPZ7XazZtCgQTpx4oRSUlLkcDjUuXNnZWRkVDiBGgAAWNN/dB+huo77CAF1G/cRAuomt91HCAAAoDYhCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMuqchDasGGDHnjgAYWFhclms2np0qWXrX322Wdls9k0Y8YMl/FTp05p8ODB8vf3V2BgoBISEnT27FmXmh07dqhXr17y8fFReHi4pk6dWmH5ixcvVvv27eXj46OOHTtq5cqVLvOGYSglJUXNmjWTr6+vYmJitGfPnqpuMgAAqKOqHISKiorUqVMnzZkz54p1S5Ys0ffff6+wsLAKc4MHD1Zubq4yMzO1fPlybdiwQcOHDzfnnU6n+vXrp5YtWyonJ0dvv/22Jk+erHnz5pk1Gzdu1OOPP66EhARt27ZNsbGxio2N1a5du8yaqVOnatasWUpLS1N2drb8/Pxkt9t17ty5qm42AACog2yGYRjX/WKbTUuWLFFsbKzL+NGjRxUVFaVVq1apf//+GjlypEaOHClJ+uGHHxQZGanNmzera9eukqSMjAzdd999OnLkiMLCwjR37ly98sorcjgc8vLykiSNHz9eS5cuVV5eniRp0KBBKioq0vLly8319ujRQ507d1ZaWpoMw1BYWJheeukljR49WpJUWFiokJAQpaenKy4u7qrb53Q6FRAQoMLCQvn7+1/vbgJQQ2V9NNrdLVyX6IR33N0CUKNV5fu72s8RKisr05AhQzRmzBjdeuutFeazsrIUGBhohiBJiomJkYeHh7Kzs82a3r17myFIkux2u3bv3q3Tp0+bNTExMS7LttvtysrKkiTt379fDofDpSYgIEBRUVFmzaWKi4vldDpdHgAAoO6q9iD01ltvqV69enrhhRcqnXc4HAoODnYZq1evnoKCguRwOMyakJAQl5ry51eruXj+4tdVVnOp1NRUBQQEmI/w8PCrbi8AAKi9qjUI5eTkaObMmUpPT5fNZqvORf8mJkyYoMLCQvNx+PBhd7cEAABuoGoNQv/zP/+j48ePq0WLFqpXr57q1aungwcP6qWXXlKrVq0kSaGhoTp+/LjL686fP69Tp04pNDTUrMnPz3epKX9+tZqL5y9+XWU1l/L29pa/v7/LAwAA1F3VGoSGDBmiHTt2aPv27eYjLCxMY8aM0apVqyRJ0dHRKigoUE5Ojvm6tWvXqqysTFFRUWbNhg0bVFpaatZkZmaqXbt2atSokVmzZs0al/VnZmYqOjpakhQREaHQ0FCXGqfTqezsbLMGAABYW72qvuDs2bPau3ev+Xz//v3avn27goKC1KJFCzVu3Nilvn79+goNDVW7du0kSR06dNC9996rYcOGKS0tTaWlpUpKSlJcXJx5qf0TTzyh1157TQkJCRo3bpx27dqlmTNnavr06eZyX3zxRd11112aNm2a+vfvr08//VRbtmwxL7G32WwaOXKkpkyZorZt2yoiIkKvvvqqwsLCKlzlBgAArKnKQWjLli3q27ev+Tw5OVmSFB8fr/T09GtaxoIFC5SUlKR77rlHHh4eGjBggGbNmmXOBwQEaPXq1UpMTFSXLl3UpEkTpaSkuNxr6I477tDChQs1ceJEvfzyy2rbtq2WLl2q2267zawZO3asioqKNHz4cBUUFKhnz57KyMiQj49PVTcbAADUQf/RfYTqOu4jBNRt3EcIqJvceh8hAACA2oIgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALKvKQWjDhg164IEHFBYWJpvNpqVLl5pzpaWlGjdunDp27Cg/Pz+FhYXpySef1LFjx1yWcerUKQ0ePFj+/v4KDAxUQkKCzp4961KzY8cO9erVSz4+PgoPD9fUqVMr9LJ48WK1b99ePj4+6tixo1auXOkybxiGUlJS1KxZM/n6+iomJkZ79uyp6iYDAIA6qspBqKioSJ06ddKcOXMqzP3yyy/aunWrXn31VW3dulX/+Mc/tHv3bj344IMudYMHD1Zubq4yMzO1fPlybdiwQcOHDzfnnU6n+vXrp5YtWyonJ0dvv/22Jk+erHnz5pk1Gzdu1OOPP66EhARt27ZNsbGxio2N1a5du8yaqVOnatasWUpLS1N2drb8/Pxkt9t17ty5qm42AACog2yGYRjX/WKbTUuWLFFsbOxlazZv3qzu3bvr4MGDatGihX744QdFRkZq8+bN6tq1qyQpIyND9913n44cOaKwsDDNnTtXr7zyihwOh7y8vCRJ48eP19KlS5WXlydJGjRokIqKirR8+XJzXT169FDnzp2VlpYmwzAUFhaml156SaNHj5YkFRYWKiQkROnp6YqLi7vq9jmdTgUEBKiwsFD+/v7Xu5sA1FBZH412dwvXJTrhHXe3ANRoVfn+vuHnCBUWFspmsykwMFCSlJWVpcDAQDMESVJMTIw8PDyUnZ1t1vTu3dsMQZJkt9u1e/dunT592qyJiYlxWZfdbldWVpYkaf/+/XI4HC41AQEBioqKMmsuVVxcLKfT6fIAAAB11w0NQufOndO4ceP0+OOPm4nM4XAoODjYpa5evXoKCgqSw+Ewa0JCQlxqyp9frebi+YtfV1nNpVJTUxUQEGA+wsPDq7zNAACg9rhhQai0tFSPPfaYDMPQ3Llzb9RqqtWECRNUWFhoPg4fPuzulgAAwA1U70YstDwEHTx4UGvXrnX5fS40NFTHjx93qT9//rxOnTql0NBQsyY/P9+lpvz51Wouni8fa9asmUtN586dK+3b29tb3t7eVd1cAABQS1X7EaHyELRnzx598803aty4sct8dHS0CgoKlJOTY46tXbtWZWVlioqKMms2bNig0tJSsyYzM1Pt2rVTo0aNzJo1a9a4LDszM1PR0dGSpIiICIWGhrrUOJ1OZWdnmzUAAMDaqhyEzp49q+3bt2v79u2S/n1S8vbt23Xo0CGVlpZq4MCB2rJlixYsWKALFy7I4XDI4XCopKREktShQwfde++9GjZsmDZt2qTvvvtOSUlJiouLU1hYmCTpiSeekJeXlxISEpSbm6tFixZp5syZSk5ONvt48cUXlZGRoWnTpikvL0+TJ0/Wli1blJSUJOnfV7SNHDlSU6ZM0bJly7Rz5049+eSTCgsLu+JVbgAAwDqqfPn8unXr1Ldv3wrj8fHxmjx5siIiIip93bfffqs+ffpI+vcNFZOSkvTVV1/Jw8NDAwYM0KxZs9SgQQOzfseOHUpMTNTmzZvVpEkTjRgxQuPGjXNZ5uLFizVx4kQdOHBAbdu21dSpU3XfffeZ84ZhaNKkSZo3b54KCgrUs2dPvf/++7rllluuaVu5fB6o27h8HqibqvL9/R/dR6iuIwgBdRtBCKibatR9hAAAAGoqghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsKgehDRs26IEHHlBYWJhsNpuWLl3qMm8YhlJSUtSsWTP5+voqJiZGe/bscak5deqUBg8eLH9/fwUGBiohIUFnz551qdmxY4d69eolHx8fhYeHa+rUqRV6Wbx4sdq3by8fHx917NhRK1eurHIvAADAuqochIqKitSpUyfNmTOn0vmpU6dq1qxZSktLU3Z2tvz8/GS323Xu3DmzZvDgwcrNzVVmZqaWL1+uDRs2aPjw4ea80+lUv3791LJlS+Xk5Ojtt9/W5MmTNW/ePLNm48aNevzxx5WQkKBt27YpNjZWsbGx2rVrV5V6AQAA1mUzDMO47hfbbFqyZIliY2Ml/fsITFhYmF566SWNHj1aklRYWKiQkBClp6crLi5OP/zwgyIjI7V582Z17dpVkpSRkaH77rtPR44cUVhYmObOnatXXnlFDodDXl5ekqTx48dr6dKlysvLkyQNGjRIRUVFWr58udlPjx491LlzZ6WlpV1TL1fjdDoVEBCgwsJC+fv7X+9uAlBDZX002t0tXJfohHfc3QJQo1Xl+7tazxHav3+/HA6HYmJizLGAgABFRUUpKytLkpSVlaXAwEAzBElSTEyMPDw8lJ2dbdb07t3bDEGSZLfbtXv3bp0+fdqsuXg95TXl67mWXi5VXFwsp9Pp8gAAAHVXtQYhh8MhSQoJCXEZDwkJMeccDoeCg4Nd5uvVq6egoCCXmsqWcfE6Lldz8fzVerlUamqqAgICzEd4ePg1bDUAAKituGrsIhMmTFBhYaH5OHz4sLtbAgAAN1C1BqHQ0FBJUn5+vst4fn6+ORcaGqrjx4+7zJ8/f16nTp1yqalsGRev43I1F89frZdLeXt7y9/f3+UBAADqrmoNQhEREQoNDdWaNWvMMafTqezsbEVHR0uSoqOjVVBQoJycHLNm7dq1KisrU1RUlFmzYcMGlZaWmjWZmZlq166dGjVqZNZcvJ7ymvL1XEsvAADA2qochM6ePavt27dr+/btkv59UvL27dt16NAh2Ww2jRw5UlOmTNGyZcu0c+dOPfnkkwoLCzOvLOvQoYPuvfdeDRs2TJs2bdJ3332npKQkxcXFKSwsTJL0xBNPyMvLSwkJCcrNzdWiRYs0c+ZMJScnm328+OKLysjI0LRp05SXl6fJkydry5YtSkpKkqRr6gUAAFhbvaq+YMuWLerbt6/5vDycxMfHKz09XWPHjlVRUZGGDx+ugoIC9ezZUxkZGfLx8TFfs2DBAiUlJemee+6Rh4eHBgwYoFmzZpnzAQEBWr16tRITE9WlSxc1adJEKSkpLvcauuOOO7Rw4UJNnDhRL7/8stq2baulS5fqtttuM2uupRcAAGBd/9F9hOo67iME1G3cRwiom9x2HyEAAIDahCAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq9qD0IULF/Tqq68qIiJCvr6+at26tf7P//k/MgzDrDEMQykpKWrWrJl8fX0VExOjPXv2uCzn1KlTGjx4sPz9/RUYGKiEhASdPXvWpWbHjh3q1auXfHx8FB4erqlTp1boZ/HixWrfvr18fHzUsWNHrVy5sro3GQAA1FLVHoTeeustzZ07V7Nnz9YPP/ygt956S1OnTtV7771n1kydOlWzZs1SWlqasrOz5efnJ7vdrnPnzpk1gwcPVm5urjIzM7V8+XJt2LBBw4cPN+edTqf69eunli1bKicnR2+//bYmT56sefPmmTUbN27U448/roSEBG3btk2xsbGKjY3Vrl27qnuzAQBALWQzLj5UUw3uv/9+hYSE6KOPPjLHBgwYIF9fX/3973+XYRgKCwvTSy+9pNGjR0uSCgsLFRISovT0dMXFxemHH35QZGSkNm/erK5du0qSMjIydN999+nIkSMKCwvT3Llz9corr8jhcMjLy0uSNH78eC1dulR5eXmSpEGDBqmoqEjLly83e+nRo4c6d+6stLS0q26L0+lUQECACgsL5e/vX237CEDNkPXRaHe3cF2iE95xdwtAjVaV7+9qPyJ0xx13aM2aNfrxxx8lSf/85z/1v//7v/rTn/4kSdq/f78cDodiYmLM1wQEBCgqKkpZWVmSpKysLAUGBpohSJJiYmLk4eGh7Oxss6Z3795mCJIku92u3bt36/Tp02bNxesprylfz6WKi4vldDpdHgAAoO6qV90LHD9+vJxOp9q3by9PT09duHBBb7zxhgYPHixJcjgckqSQkBCX14WEhJhzDodDwcHBro3Wq6egoCCXmoiIiArLKJ9r1KiRHA7HFddzqdTUVL322mvXs9kAAKAWqvYg9Nlnn2nBggVauHChbr31Vm3fvl0jR45UWFiY4uPjq3t11WrChAlKTk42nzudToWHh7uxIwCoaHrmj+5uocpG/fEWd7cAVKrag9CYMWM0fvx4xcXFSZI6duyogwcPKjU1VfHx8QoNDZUk5efnq1mzZubr8vPz1blzZ0lSaGiojh8/7rLc8+fP69SpU+brQ0NDlZ+f71JT/vxqNeXzl/L29pa3t/f1bDYA/GZ6HJp39aIah/OaUDNV+zlCv/zyizw8XBfr6empsrIySVJERIRCQ0O1Zs0ac97pdCo7O1vR0dGSpOjoaBUUFCgnJ8esWbt2rcrKyhQVFWXWbNiwQaWlpWZNZmam2rVrp0aNGpk1F6+nvKZ8PQAAwNqqPQg98MADeuONN7RixQodOHBAS5Ys0bvvvquHH35YkmSz2TRy5EhNmTJFy5Yt086dO/Xkk08qLCxMsbGxkqQOHTro3nvv1bBhw7Rp0yZ99913SkpKUlxcnMLCwiRJTzzxhLy8vJSQkKDc3FwtWrRIM2fOdPlp68UXX1RGRoamTZumvLw8TZ48WVu2bFFSUlJ1bzYAAKiFqv2nsffee0+vvvqqnn/+eR0/flxhYWH6y1/+opSUFLNm7NixKioq0vDhw1VQUKCePXsqIyNDPj4+Zs2CBQuUlJSke+65Rx4eHhowYIBmzZplzgcEBGj16tVKTExUly5d1KRJE6WkpLjca+iOO+7QwoULNXHiRL388stq27atli5dqttuu626NxsAANRC1X4fobqE+wgBdVttvY9QbcS9j/Bbcut9hAAAAGoLghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsGxKEjh49qj//+c9q3LixfH191bFjR23ZssWcNwxDKSkpatasmXx9fRUTE6M9e/a4LOPUqVMaPHiw/P39FRgYqISEBJ09e9alZseOHerVq5d8fHwUHh6uqVOnVuhl8eLFat++vXx8fNSxY0etXLnyRmwyAACohao9CJ0+fVp33nmn6tevr6+//lr/+te/NG3aNDVq1MismTp1qmbNmqW0tDRlZ2fLz89Pdrtd586dM2sGDx6s3NxcZWZmavny5dqwYYOGDx9uzjudTvXr108tW7ZUTk6O3n77bU2ePFnz5s0zazZu3KjHH39cCQkJ2rZtm2JjYxUbG6tdu3ZV92YDAIBayGYYhlGdCxw/fry+++47/c///E+l84ZhKCwsTC+99JJGjx4tSSosLFRISIjS09MVFxenH374QZGRkdq8ebO6du0qScrIyNB9992nI0eOKCwsTHPnztUrr7wih8MhLy8vc91Lly5VXl6eJGnQoEEqKirS8uXLzfX36NFDnTt3Vlpa2lW3xel0KiAgQIWFhfL39/+P9guAmifro9HubsEyohPecXcLsJCqfH9X+xGhZcuWqWvXrnr00UcVHBysP/zhD/qv//ovc37//v1yOByKiYkxxwICAhQVFaWsrCxJUlZWlgIDA80QJEkxMTHy8PBQdna2WdO7d28zBEmS3W7X7t27dfr0abPm4vWU15Sv51LFxcVyOp0uDwAAUHdVexD66aefNHfuXLVt21arVq3Sc889pxdeeEEff/yxJMnhcEiSQkJCXF4XEhJizjkcDgUHB7vM16tXT0FBQS41lS3j4nVcrqZ8/lKpqakKCAgwH+Hh4VXefgAAUHtUexAqKyvT7bffrjfffFN/+MMfNHz4cA0bNuyafopytwkTJqiwsNB8HD582N0tAQCAG6jag1CzZs0UGRnpMtahQwcdOnRIkhQaGipJys/Pd6nJz88350JDQ3X8+HGX+fPnz+vUqVMuNZUt4+J1XK6mfP5S3t7e8vf3d3kAAIC6q9qD0J133qndu3e7jP34449q2bKlJCkiIkKhoaFas2aNOe90OpWdna3o6GhJUnR0tAoKCpSTk2PWrF27VmVlZYqKijJrNmzYoNLSUrMmMzNT7dq1M69Qi46OdllPeU35egAAgLVVexAaNWqUvv/+e7355pvau3evFi5cqHnz5ikxMVGSZLPZNHLkSE2ZMkXLli3Tzp079eSTTyosLEyxsbGS/n0E6d5779WwYcO0adMmfffdd0pKSlJcXJzCwsIkSU888YS8vLyUkJCg3NxcLVq0SDNnzlRycrLZy4svvqiMjAxNmzZNeXl5mjx5srZs2aKkpKTq3mwAAFAL1avuBXbr1k1LlizRhAkT9PrrrysiIkIzZszQ4MGDzZqxY8eqqKhIw4cPV0FBgXr27KmMjAz5+PiYNQsWLFBSUpLuueceeXh4aMCAAZo1a5Y5HxAQoNWrVysxMVFdunRRkyZNlJKS4nKvoTvuuEMLFy7UxIkT9fLLL6tt27ZaunSpbrvtturebAAAUAtV+32E6hLuIwTUbdxH6LfDfYTwW3LrfYQAAABqC4IQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwrBsehP7617/KZrNp5MiR5ti5c+eUmJioxo0bq0GDBhowYIDy8/NdXnfo0CH1799fN910k4KDgzVmzBidP3/epWbdunW6/fbb5e3trTZt2ig9Pb3C+ufMmaNWrVrJx8dHUVFR2rRp043YTAAAUAvd0CC0efNmffDBB/r973/vMj5q1Ch99dVXWrx4sdavX69jx47pkUceMecvXLig/v37q6SkRBs3btTHH3+s9PR0paSkmDX79+9X//791bdvX23fvl0jR47UM888o1WrVpk1ixYtUnJysiZNmqStW7eqU6dOstvtOn78+I3cbAAAUEvYDMMwbsSCz549q9tvv13vv/++pkyZos6dO2vGjBkqLCxU06ZNtXDhQg0cOFCSlJeXpw4dOigrK0s9evTQ119/rfvvv1/Hjh1TSEiIJCktLU3jxo3TiRMn5OXlpXHjxmnFihXatWuXuc64uDgVFBQoIyNDkhQVFaVu3bpp9uzZkqSysjKFh4drxIgRGj9+/FW3wel0KiAgQIWFhfL396/uXQTAzbI+Gu3uFiwjOuEdd7cAC6nK9/cNOyKUmJio/v37KyYmxmU8JydHpaWlLuPt27dXixYtlJWVJUnKyspSx44dzRAkSXa7XU6nU7m5uWbNpcu22+3mMkpKSpSTk+NS4+HhoZiYGLPmUsXFxXI6nS4PAABQd9W7EQv99NNPtXXrVm3evLnCnMPhkJeXlwIDA13GQ0JC5HA4zJqLQ1D5fPnclWqcTqd+/fVXnT59WhcuXKi0Ji8vr9K+U1NT9dprr137hgIAgFqt2o8IHT58WC+++KIWLFggHx+f6l78DTVhwgQVFhaaj8OHD7u7JQAAcANVexDKycnR8ePHdfvtt6tevXqqV6+e1q9fr1mzZqlevXoKCQlRSUmJCgoKXF6Xn5+v0NBQSVJoaGiFq8jKn1+txt/fX76+vmrSpIk8PT0rrSlfxqW8vb3l7+/v8gAAAHVXtQehe+65Rzt37tT27dvNR9euXTV48GDzn+vXr681a9aYr9m9e7cOHTqk6OhoSVJ0dLR27tzpcnVXZmam/P39FRkZadZcvIzymvJleHl5qUuXLi41ZWVlWrNmjVkDAACsrdrPEWrYsKFuu+02lzE/Pz81btzYHE9ISFBycrKCgoLk7++vESNGKDo6Wj169JAk9evXT5GRkRoyZIimTp0qh8OhiRMnKjExUd7e3pKkZ599VrNnz9bYsWP19NNPa+3atfrss8+0YsUKc73JycmKj49X165d1b17d82YMUNFRUUaOnRodW82AACohW7IydJXM336dHl4eGjAgAEqLi6W3W7X+++/b857enpq+fLleu655xQdHS0/Pz/Fx8fr9ddfN2siIiK0YsUKjRo1SjNnzlTz5s314Ycfym63mzWDBg3SiRMnlJKSIofDoc6dOysjI6PCCdQAAMCabth9hOoC7iME1G3cR+i3w32E8FuqEfcRAgAAqOkIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLLqubsBAABqoumZP7q7hSob9cdb3N1CrcMRIQAAYFkcEQIAoBI9Ds1zdwvX4R13N1DrcEQIAABYFkEIAABYFkEIAABYVrUHodTUVHXr1k0NGzZUcHCwYmNjtXv3bpeac+fOKTExUY0bN1aDBg00YMAA5efnu9QcOnRI/fv310033aTg4GCNGTNG58+fd6lZt26dbr/9dnl7e6tNmzZKT0+v0M+cOXPUqlUr+fj4KCoqSps2baruTQYAALVUtQeh9evXKzExUd9//70yMzNVWlqqfv36qaioyKwZNWqUvvrqKy1evFjr16/XsWPH9Mgjj5jzFy5cUP/+/VVSUqKNGzfq448/Vnp6ulJSUsya/fv3q3///urbt6+2b9+ukSNH6plnntGqVavMmkWLFik5OVmTJk3S1q1b1alTJ9ntdh0/fry6NxsAANRCNsMwjBu5ghMnTig4OFjr169X7969VVhYqKZNm2rhwoUaOHCgJCkvL08dOnRQVlaWevTooa+//lr333+/jh07ppCQEElSWlqaxo0bpxMnTsjLy0vjxo3TihUrtGvXLnNdcXFxKigoUEZGhiQpKipK3bp10+zZsyVJZWVlCg8P14gRIzR+/Pir9u50OhUQEKDCwkL5+/tX964B4GZZH412dwuWEZ1Q+65mqo2fj9q4n2+Eqnx/3/BzhAoLCyVJQUFBkqScnByVlpYqJibGrGnfvr1atGihrKwsSVJWVpY6duxohiBJstvtcjqdys3NNWsuXkZ5TfkySkpKlJOT41Lj4eGhmJgYs+ZSxcXFcjqdLg8AAFB33dAgVFZWppEjR+rOO+/UbbfdJklyOBzy8vJSYGCgS21ISIgcDodZc3EIKp8vn7tSjdPp1K+//qqTJ0/qwoULldaUL+NSqampCggIMB/h4eHXt+EAAKBWuKFBKDExUbt27dKnn356I1dTbSZMmKDCwkLzcfjwYXe3BAAAbqAbdmfppKQkLV++XBs2bFDz5s3N8dDQUJWUlKigoMDlqFB+fr5CQ0PNmkuv7iq/quzimkuvNMvPz5e/v798fX3l6ekpT0/PSmvKl3Epb29veXt7X98GAwCAWqfajwgZhqGkpCQtWbJEa9euVUREhMt8ly5dVL9+fa1Zs8Yc2717tw4dOqTo6GhJUnR0tHbu3OlydVdmZqb8/f0VGRlp1ly8jPKa8mV4eXmpS5cuLjVlZWVas2aNWQMAAKyt2o8IJSYmauHChfryyy/VsGFD83ycgIAA+fr6KiAgQAkJCUpOTlZQUJD8/f01YsQIRUdHq0ePHpKkfv36KTIyUkOGDNHUqVPlcDg0ceJEJSYmmkdsnn32Wc2ePVtjx47V008/rbVr1+qzzz7TihUrzF6Sk5MVHx+vrl27qnv37poxY4aKioo0dOjQ6t5sAABQC1V7EJo7d64kqU+fPi7j8+fP11NPPSVJmj59ujw8PDRgwAAVFxfLbrfr/fffN2s9PT21fPlyPffcc4qOjpafn5/i4+P1+uuvmzURERFasWKFRo0apZkzZ6p58+b68MMPZbfbzZpBgwbpxIkTSklJkcPhUOfOnZWRkVHhBGoAAGBNN/w+QrUZ9xEC6rbaeJ+Y2qo23t+mNn4+auN+vhFq1H2EAAAAaiqCEAAAsKwbdvk8AADlpmf+6O4WqqyHuxvAb4IgBAC44XocmufuFoBK8dMYAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLP76PIBqMT3zR3e3UGU93N0AUM1q47+Ho/54i1vXTxACUC16HJrn7hYAoMr4aQwAAFgWR4QAAKgjaueR2XfcunaCEFATfZvq7g4AwBIIQkANlPXTz+5uAQAsgXOEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZVkiCM2ZM0etWrWSj4+PoqKitGnTJne3BAAAaoA6H4QWLVqk5ORkTZo0SVu3blWnTp1kt9t1/Phxd7cGAADcrM4HoXfffVfDhg3T0KFDFRkZqbS0NN1000367//+b3e3BgAA3KxO/9HVkpIS5eTkaMKECeaYh4eHYmJilJWVVaG+uLhYxcXF5vPCwkJJktPpvPHN1hKb/vaKu1sAANQhN+I7tnyZhmFctbZOB6GTJ0/qwoULCgkJcRkPCQlRXl5ehfrU1FS99tprFcbDw8NvWI8AAFjaiNk3bNFnzpxRQEDAFWvqdBCqqgkTJig5Odl8XlZWplOnTqlx48ay2WzVui6n06nw8HAdPnxY/v7+1brsuoZ9de3YV9eOfVU17K9rx766djdqXxmGoTNnzigsLOyqtXU6CDVp0kSenp7Kz893Gc/Pz1doaGiFem9vb3l7e7uMBQYG3sgW5e/vz78o14h9de3YV9eOfVU17K9rx766djdiX13tSFC5On2ytJeXl7p06aI1a9aYY2VlZVqzZo2io6Pd2BkAAKgJ6vQRIUlKTk5WfHy8unbtqu7du2vGjBkqKirS0KFD3d0aAABwszofhAYNGqQTJ04oJSVFDodDnTt3VkZGRoUTqH9r3t7emjRpUoWf4lAR++rasa+uHfuqathf1459de1qwr6yGddybRkAAEAdVKfPEQIAALgSghAAALAsghAAALAsghAAALAsghAAALAsglAN8OCDD6pFixby8fFRs2bNNGTIEB07dszdbdU4Bw4cUEJCgiIiIuTr66vWrVtr0qRJKikpcXdrNdYbb7yhO+64QzfddNMNv0t6bTNnzhy1atVKPj4+ioqK0qZNm9zdUo20YcMGPfDAAwoLC5PNZtPSpUvd3VKNlJqaqm7duqlhw4YKDg5WbGysdu/e7e62aqy5c+fq97//vXlH6ejoaH399ddu6YUgVAP07dtXn332mXbv3q0vvvhC+/bt08CBA93dVo2Tl5ensrIyffDBB8rNzdX06dOVlpaml19+2d2t1VglJSV69NFH9dxzz7m7lRpl0aJFSk5O1qRJk7R161Z16tRJdrtdx48fd3drNU5RUZE6deqkOXPmuLuVGm39+vVKTEzU999/r8zMTJWWlqpfv34qKipyd2s1UvPmzfXXv/5VOTk52rJli+6++2499NBDys3N/c174T5CNdCyZcsUGxur4uJi1a9f393t1Ghvv/225s6dq59++sndrdRo6enpGjlypAoKCtzdSo0QFRWlbt26afbsf//V67KyMoWHh2vEiBEaP368m7uruWw2m5YsWaLY2Fh3t1LjnThxQsHBwVq/fr169+7t7nZqhaCgIL399ttKSEj4TdfLEaEa5tSpU1qwYIHuuOMOQtA1KCwsVFBQkLvbQC1SUlKinJwcxcTEmGMeHh6KiYlRVlaWGztDXVJYWChJ/PfpGly4cEGffvqpioqK3PJ3QAlCNcS4cePk5+enxo0b69ChQ/ryyy/d3VKNt3fvXr333nv6y1/+4u5WUIucPHlSFy5cqPBndkJCQuRwONzUFeqSsrIyjRw5Unfeeaduu+02d7dTY+3cuVMNGjSQt7e3nn32WS1ZskSRkZG/eR8EoRtk/PjxstlsV3zk5eWZ9WPGjNG2bdu0evVqeXp66sknn5RVfrWs6r6SpKNHj+ree+/Vo48+qmHDhrmpc/e4nv0F4LeTmJioXbt26dNPP3V3KzVau3bttH37dmVnZ+u5555TfHy8/vWvf/3mfXCO0A1y4sQJ/fzzz1esufnmm+Xl5VVh/MiRIwoPD9fGjRvdcpjwt1bVfXXs2DH16dNHPXr0UHp6ujw8rJXnr+ezxTlC/09JSYluuukmff755y7nusTHx6ugoICjsVfAOUJXl5SUpC+//FIbNmxQRESEu9upVWJiYtS6dWt98MEHv+l66/xfn3eXpk2bqmnTptf12rKyMklScXFxdbZUY1VlXx09elR9+/ZVly5dNH/+fMuFIOk/+2xB8vLyUpcuXbRmzRrzC72srExr1qxRUlKSe5tDrWUYhkaMGKElS5Zo3bp1hKDrUFZW5pbvPYKQm2VnZ2vz5s3q2bOnGjVqpH379unVV19V69atLXE0qCqOHj2qPn36qGXLlnrnnXd04sQJcy40NNSNndVchw4d0qlTp3To0CFduHBB27dvlyS1adNGDRo0cG9zbpScnKz4+Hh17dpV3bt314wZM1RUVKShQ4e6u7Ua5+zZs9q7d6/5fP/+/dq+fbuCgoLUokULN3ZWsyQmJmrhwoX68ssv1bBhQ/N8s4CAAPn6+rq5u5pnwoQJ+tOf/qQWLVrozJkzWrhwodatW6dVq1b99s0YcKsdO3YYffv2NYKCggxvb2+jVatWxrPPPmscOXLE3a3VOPPnzzckVfpA5eLj4yvdX99++627W3O79957z2jRooXh5eVldO/e3fj+++/d3VKN9O2331b6GYqPj3d3azXK5f7bNH/+fHe3ViM9/fTTRsuWLQ0vLy+jadOmxj333GOsXr3aLb1wjhAAALAs651gAQAA8P8jCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMv6/wDr21O6/1LTQAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAShJJREFUeJzt3X9czff/P/7bqZxT4pyEynlJMoamiSiZHzO9HBNbw2syL2Jhs/IrvzfyY7ZotmF+NJvJ5/XixXiNbSEao40WoqGpYc2PeZ1i6RyFfj6+f+zb8+2pUDlJPW/Xy+VcLjuPx/35fD4ez2dHtz3P8/lMJYQQICIiIlIgq5oeABEREVFNYRAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECKqw0aPHo2WLVvW9DCoip5//nk8//zzFl3nggULoFKpLLpOotqMQYjoMXnvvffw0ksvwdnZGSqVCgsWLCi3bseOHTAYDNDr9dBoNGjevDmGDh2KM2fOPN4BP8TVq1exYMECpKSk1PRQ6B63bt3CggULcPDgwZoeyiNZu3Yt/vGPf6BFixZQqVQYPXp0TQ+J6iAGIaLHZO7cuTh27Bg6der0wLrTp0+jUaNGmDx5MtasWYMJEybg5MmT8PHxwc8//1ypbX722WdIT09/lGHf19WrV7Fw4UIGoSfQrVu3sHDhwnKD0Ny5c3H79u3HP6gqWLp0KQ4cOIBnnnkGNjY2NT0cqqP4k0X0mGRkZKBly5a4fv06mjZtet+6iIiIMm1jx45F8+bNsXbtWkRHR1d4m/Xq1avSWKnq7ty5A7VaDSursv+fmZeXB3t7+xoY1f+xsbGpNaHi0KFD0tmgBg0a1PRwqI7iGSEiC/njjz8QEhIifaXl7u6OCRMmoKCgAAAe6VodJycn1K9fHzk5OZVarrxrhLZs2QJvb280bNgQWq0Wnp6eWLFihazmt99+wz/+8Q84Ojqifv366NatG3bt2iX1Hzx4EF27dgUAjBkzBiqVCiqVCjExMVLNtm3b4O3tDTs7OzRp0gT//Oc/8ccff5QZX4MGDfDbb7/BYDDA3t4eer0eixYtghBCVltSUoLly5fjmWeega2tLZydnfHGG2/gxo0bldonwMOPVUX2Qel+UKlU2LJlC+bOnYu//e1vqF+/PsxmszS3CxcuYMCAAWjYsCFGjBjxSHMpKChAREQEvL29odPpYG9vj549e+L777+Xan7//XcpaC9cuFA6NqVfxZZ3jVBRURHeffddPPXUU9BoNGjZsiXefvtt5Ofny+patmyJgQMH4scff4SPjw9sbW3RqlUr/L//9/9kdYWFhVi4cCHatGkDW1tbNG7cGD169EB8fHwFjs7/cXNz4/VMVO1qx/8WED3hrl69Ch8fH+Tk5GD8+PFo164d/vjjD2zfvh23bt2CWq2u9DpzcnJQWFgIo9GI5cuXw2w2o2/fvo80zvj4eAwfPhx9+/bF0qVLAQBnz57F4cOHMXnyZABAZmYmunfvjlu3bmHSpElo3LgxNm7ciJdeegnbt2/HK6+8gvbt22PRokWIiIjA+PHj0bNnTwBA9+7dAQAxMTEYM2YMunbtisjISGRmZmLFihU4fPgwTp48CQcHB2lMxcXF6N+/P7p164aoqCjExcVh/vz5KCoqwqJFi6S6N954Q1rvpEmTkJGRgVWrVuHkyZM4fPhwhc9+VeRYVWQf3O3dd9+FWq3G9OnTkZ+fLx3voqIiGAwG9OjRA8uWLUP9+vUfaS5msxmff/45hg8fjnHjxuHmzZtYv349DAYDjh49Ci8vLzRt2hRr167FhAkT8Morr2Dw4MEAgGefffa++2Ts2LHYuHEjhg4dimnTpiEpKQmRkZE4e/YsduzYIas9f/48hg4dipCQEAQHB+OLL77A6NGj4e3tjWeeeQbAX2ErMjISY8eOhY+PD8xmM44fP44TJ07g73//e4WOE9FjI4jokY0aNUpYWVmJY8eOlekrKSmRvb927ZoAIObPn//AdbZt21YAEABEgwYNxNy5c0VxcXGlxhUcHCzc3Nyk95MnTxZarVYUFRXdd5kpU6YIAOKHH36Q2m7evCnc3d1Fy5YtpTEcO3ZMABAbNmyQLV9QUCCcnJxEhw4dxO3bt6X22NhYAUBERETIxgdATJw4UWorKSkRAQEBQq1Wi2vXrgkhhPjhhx8EALFp0ybZtuLi4sptf5CKHKuK7oPvv/9eABCtWrUSt27dkq2rdG6zZ8+WtVdmLr179xa9e/eW3hcVFYn8/HzZcjdu3BDOzs7i9ddfl9oe9DM2f/58cfc//SkpKQKAGDt2rKxu+vTpAoA4cOCA1Obm5iYAiISEBKktKytLaDQaMW3aNKmtY8eOIiAgoMy2H4W9vb0IDg626DqJhBCCX40RPaKSkhLs3LkTgwYNQpcuXcr0V/XU/oYNGxAXF4c1a9agffv2uH37NoqLix9prA4ODsjLy3vgVxS7d++Gj48PevToIbU1aNAA48ePx++//45ffvnlgds4fvw4srKy8NZbb8HW1lZqDwgIQLt27cp8vQQAYWFh0n+rVCqEhYWhoKAA3333HYC/vmbT6XT4+9//juvXr0svb29vNGjQQPbV0INU9FhVdh8EBwfDzs6u3G1OmDBB9v5R5mJtbS2dbSopKUF2djaKiorQpUsXnDhxokL74F67d+8GAISHh8vap02bBgBljpeHh4d0BhAAmjZtirZt2+K3336T2hwcHJCamopz585VaUxEjxO/GiN6RNeuXYPZbEaHDh0sul4/Pz/pv4OCgtC+fXsAwLJly6q8zrfeegtffvklXnzxRfztb39Dv3798Oqrr6J///5SzcWLF+Hr61tm2dLtX7x48YFzvXjxIgCgbdu2ZfratWuHH3/8UdZmZWWFVq1aydqefvppAH9d7wIA586dg8lkgpOTU7nbzMrKuu947lbRY1XZfeDu7l7uemxsbNC8eXNZ26POZePGjfjwww+RlpaGwsLCh47hYS5evAgrKyu0bt1a1u7i4gIHBwfpeJZq0aJFmXU0atRIdn3TokWL8PLLL+Ppp59Ghw4d0L9/f4wcOfKBX88R1RQGIaJaoFGjRnjhhRewadOmRwpCTk5OSElJwd69e7Fnzx7s2bMHGzZswKhRo7Bx40YLjtiySkpK4OTkhE2bNpXb/6C78B6H+50N0mg0Ze4ee5S5/Pvf/8bo0aMRGBiIGTNmwMnJCdbW1oiMjMSFCxeqPgFU/MyltbV1ue3irovbe/XqhQsXLuDrr7/Gvn378Pnnn+Pjjz9GdHQ0xo4d+0jjJLI0BiGiR9S0aVNotdpqf+Dh7du3YTKZHnk9arUagwYNwqBBg1BSUoK33noLn376KebNm4fWrVvDzc2t3GcPpaWlAfjrTh7g/r84S/vT09PxwgsvyPrS09Ol/lIlJSX47bffpLNAAPDrr78C+L877Z566il89913eO655+4bOiqioseqovugKh5lLtu3b0erVq3w1Vdfyfb//PnzZXWV+TrWzc0NJSUlOHfunHTGC/jrovmcnJwqz9XR0RFjxozBmDFjkJubi169emHBggUMQvTE4TVCRI/IysoKgYGB+Pbbb3H8+PEy/eKe28AfpryvRn7//Xfs37+/3OtaKuPPP/+UvbeyspK+rii9VXrAgAE4evQoEhMTpbq8vDysW7cOLVu2hIeHBwBIz8O595b+Ll26wMnJCdHR0bLbr/fs2YOzZ88iICCgzLhWrVol/bcQAqtWrUK9evWku+ReffVVFBcX49133y2zbFFRUYUfK1DRY1XRfVAVjzKX0rMxd/9MJSUlycYJQLo7rSL7ZcCAAQCA5cuXy9o/+ugjACj3eD3MvT9nDRo0QOvWrcvcjk/0JOAZISILeP/997Fv3z707t0b48ePR/v27fG///0P27Ztw48//ggHBwf861//wsWLF3Hr1i0AQEJCAhYvXgwAGDlypPR/3p6enujbty+8vLzQqFEjnDt3DuvXr0dhYSGWLFnySOMcO3YssrOz8cILL6B58+a4ePEiPvnkE3h5eUlnA2bPno3//Oc/ePHFFzFp0iQ4Ojpi48aNyMjIwH//+1/pq56nnnoKDg4OiI6ORsOGDWFvbw9fX1+4u7tj6dKlGDNmDHr37o3hw4dLt8+3bNkSU6dOlY3J1tYWcXFxCA4Ohq+vL/bs2YNdu3bh7bfflr4m6t27N9544w1ERkYiJSUF/fr1Q7169XDu3Dls27YNK1aswNChQy12rCq6D6riUeYycOBAfPXVV3jllVcQEBCAjIwMREdHw8PDA7m5uVKdnZ0dPDw8sHXrVjz99NNwdHREhw4dyr02qmPHjggODsa6deuQk5OD3r174+jRo9i4cSMCAwPRp0+fSs/Rw8MDzz//PLy9veHo6Ijjx49j+/btsoviK+Lbb7+VnqZeWFiIU6dOSZ+Zl156idcckWXU6D1rRHXIxYsXxahRo0TTpk2FRqMRrVq1EqGhodLtzr1795Zuh7/39f3330vrmT9/vujSpYto1KiRsLGxEXq9XgQFBYlTp05Vekz33j6/fft20a9fP+Hk5CTUarVo0aKFeOONN8T//vc/2XIXLlwQQ4cOFQ4ODsLW1lb4+PiI2NjYMuv/+uuvhYeHh7CxsSlzK/3WrVtFp06dhEajEY6OjmLEiBHiypUrZcZnb28vLly4IPr16yfq168vnJ2dxfz588t9VMC6deuEt7e3sLOzEw0bNhSenp5i5syZ4urVq5XaLw87VhXdB6W3z2/btq3MNkrndj8Vmcu9t8+XlJSI999/X7i5uQmNRiM6deokYmNjyxxnIYQ4cuSI8Pb2Fmq1WnYr/b23zwshRGFhoVi4cKFwd3cX9erVE66urmLOnDnizp07sjo3N7dyb4u/d5yLFy8WPj4+wsHBQdjZ2Yl27dqJ9957TxQUFNx3f5Sn9BEE5b3ufWwDUVWphKjkeXsiIgsZPXo0tm/fLjubQUT0OPEaISIiIlIsXiNEVAtlZ2fL/i7WvaytrWv8lvLHLTc396Fnlpo2bXrf27/p8SgoKEB2dvYDa3Q63SPdHUhUGQxCRLXQ4MGDcejQofv2u7m5SQ8jVIply5Zh4cKFD6zJyMh4pD9+S4/uyJEjD70Ae8OGDRg9evTjGRApHq8RIqqFkpOTH/iXyu3s7PDcc889xhHVvN9++032Zx7K06NHD9mf/aDH78aNG0hOTn5gzTPPPINmzZo9phGR0jEIERERkWLxYmkiIiJSLF4j9AAlJSW4evUqGjZsWOW/IE5ERESPlxACN2/ehF6vf+gDUBmEHuDq1atwdXWt6WEQERFRFVy+fBnNmzd/YA2D0AM0bNgQwF87UqvV1vBoiIiIqCLMZjNcXV2l3+MPwiD0AKVfh2m1WgYhIiKiWqYil7XwYmkiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiybmh4AEVFN+Tj+15oeQpVM/fvTNT0EojqDQYiIFKvbpXU1PYQqWlbTAyCqM/jVGBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpVqWDUEJCAgYNGgS9Xg+VSoWdO3eWqTl79ixeeukl6HQ62Nvbo2vXrrh06ZLUf+fOHYSGhqJx48Zo0KABhgwZgszMTNk6Ll26hICAANSvXx9OTk6YMWMGioqKZDUHDx5E586dodFo0Lp1a8TExJQZy+rVq9GyZUvY2trC19cXR48ereyUiYiIqI6qdBDKy8tDx44dsXr16nL7L1y4gB49eqBdu3Y4ePAgTp06hXnz5sHW1laqmTp1Kr799lts27YNhw4dwtWrVzF48GCpv7i4GAEBASgoKMCRI0ewceNGxMTEICIiQqrJyMhAQEAA+vTpg5SUFEyZMgVjx47F3r17pZqtW7ciPDwc8+fPx4kTJ9CxY0cYDAZkZWVVdtpERERUB6mEEKLKC6tU2LFjBwIDA6W2oKAg1KtXD//617/KXcZkMqFp06bYvHkzhg4dCgBIS0tD+/btkZiYiG7dumHPnj0YOHAgrl69CmdnZwBAdHQ0Zs2ahWvXrkGtVmPWrFnYtWsXzpw5I9t2Tk4O4uLiAAC+vr7o2rUrVq1aBQAoKSmBq6srJk6ciNmzZz90fmazGTqdDiaTCVqttkr7iIieXInrp9f0EKrEL2RZTQ+B6IlWmd/fFr1GqKSkBLt27cLTTz8Ng8EAJycn+Pr6yr4+S05ORmFhIfz9/aW2du3aoUWLFkhMTAQAJCYmwtPTUwpBAGAwGGA2m5GamirV3L2O0prSdRQUFCA5OVlWY2VlBX9/f6nmXvn5+TCbzbIXERER1V0WDUJZWVnIzc3FkiVL0L9/f+zbtw+vvPIKBg8ejEOHDgEAjEYj1Go1HBwcZMs6OzvDaDRKNXeHoNL+0r4H1ZjNZty+fRvXr19HcXFxuTWl67hXZGQkdDqd9HJ1da3ajiAiIqJaweJnhADg5ZdfxtSpU+Hl5YXZs2dj4MCBiI6OtuSmqsWcOXNgMpmk1+XLl2t6SERERFSNLBqEmjRpAhsbG3h4eMja27dvL9015uLigoKCAuTk5MhqMjMz4eLiItXcexdZ6fuH1Wi1WtjZ2aFJkyawtrYut6Z0HffSaDTQarWyFxEREdVdFg1CarUaXbt2RXp6uqz9119/hZubGwDA29sb9erVw/79+6X+9PR0XLp0CX5+fgAAPz8/nD59WnZ3V3x8PLRarRSy/Pz8ZOsorSldh1qthre3t6ympKQE+/fvl2qIiIhI2Wwqu0Bubi7Onz8vvc/IyEBKSgocHR3RokULzJgxA8OGDUOvXr3Qp08fxMXF4dtvv8XBgwcBADqdDiEhIQgPD4ejoyO0Wi0mTpwIPz8/dOvWDQDQr18/eHh4YOTIkYiKioLRaMTcuXMRGhoKjUYDAHjzzTexatUqzJw5E6+//joOHDiAL7/8Ert27ZLGFh4ejuDgYHTp0gU+Pj5Yvnw58vLyMGbMmEfZZ0RERFRHVDoIHT9+HH369JHeh4eHAwCCg4MRExODV155BdHR0YiMjMSkSZPQtm1b/Pe//0WPHj2kZT7++GNYWVlhyJAhyM/Ph8FgwJo1a6R+a2trxMbGYsKECfDz84O9vT2Cg4OxaNEiqcbd3R27du3C1KlTsWLFCjRv3hyff/45DAaDVDNs2DBcu3YNERERMBqN8PLyQlxcXJkLqImIiEiZHuk5QnUdnyNEVLfxOUJEdVONPUeIiIiIqDZhECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsWqdBBKSEjAoEGDoNfroVKpsHPnzvvWvvnmm1CpVFi+fLmsPTs7GyNGjIBWq4WDgwNCQkKQm5srqzl16hR69uwJW1tbuLq6Iioqqsz6t23bhnbt2sHW1haenp7YvXu3rF8IgYiICDRr1gx2dnbw9/fHuXPnKjtlIiIiqqMqHYTy8vLQsWNHrF69+oF1O3bswE8//QS9Xl+mb8SIEUhNTUV8fDxiY2ORkJCA8ePHS/1msxn9+vWDm5sbkpOT8cEHH2DBggVYt26dVHPkyBEMHz4cISEhOHnyJAIDAxEYGIgzZ85INVFRUVi5ciWio6ORlJQEe3t7GAwG3Llzp7LTJiIiojpIJYQQVV5YpcKOHTsQGBgoa//jjz/g6+uLvXv3IiAgAFOmTMGUKVMAAGfPnoWHhweOHTuGLl26AADi4uIwYMAAXLlyBXq9HmvXrsU777wDo9EItVoNAJg9ezZ27tyJtLQ0AMCwYcOQl5eH2NhYabvdunWDl5cXoqOjIYSAXq/HtGnTMH36dACAyWSCs7MzYmJiEBQUVGY++fn5yM/Pl96bzWa4urrCZDJBq9VWdTcR0RMqcf30mh5ClfiFLKvpIRA90cxmM3Q6XYV+f1v8GqGSkhKMHDkSM2bMwDPPPFOmPzExEQ4ODlIIAgB/f39YWVkhKSlJqunVq5cUggDAYDAgPT0dN27ckGr8/f1l6zYYDEhMTAQAZGRkwGg0ymp0Oh18fX2lmntFRkZCp9NJL1dX1yruBSIiIqoNLB6Eli5dChsbG0yaNKncfqPRCCcnJ1mbjY0NHB0dYTQapRpnZ2dZTen7h9Xc3X/3cuXV3GvOnDkwmUzS6/Llyw+dLxEREdVeNpZcWXJyMlasWIETJ05ApVJZctWPhUajgUajqelhEBER0WNi0TNCP/zwA7KystCiRQvY2NjAxsYGFy9exLRp09CyZUsAgIuLC7KysmTLFRUVITs7Gy4uLlJNZmamrKb0/cNq7u6/e7nyaoiIiEjZLBqERo4ciVOnTiElJUV66fV6zJgxA3v37gUA+Pn5IScnB8nJydJyBw4cQElJCXx9faWahIQEFBYWSjXx8fFo27YtGjVqJNXs379ftv34+Hj4+fkBANzd3eHi4iKrMZvNSEpKkmqIiIhI2Sr91Vhubi7Onz8vvc/IyEBKSgocHR3RokULNG7cWFZfr149uLi4oG3btgCA9u3bo3///hg3bhyio6NRWFiIsLAwBAUFSbfav/baa1i4cCFCQkIwa9YsnDlzBitWrMDHH38srXfy5Mno3bs3PvzwQwQEBGDLli04fvy4dIu9SqXClClTsHjxYrRp0wbu7u6YN28e9Hp9mbvciIiISJkqHYSOHz+OPn36SO/Dw8MBAMHBwYiJianQOjZt2oSwsDD07dsXVlZWGDJkCFauXCn163Q67Nu3D6GhofD29kaTJk0QEREhe9ZQ9+7dsXnzZsydOxdvv/022rRpg507d6JDhw5SzcyZM5GXl4fx48cjJycHPXr0QFxcHGxtbSs7bSIiIqqDHuk5QnVdZZ5DQES1D58jRFQ31ehzhIiIiIhqCwYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlKsSgehhIQEDBo0CHq9HiqVCjt37pT6CgsLMWvWLHh6esLe3h56vR6jRo3C1atXZevIzs7GiBEjoNVq4eDggJCQEOTm5spqTp06hZ49e8LW1haurq6IiooqM5Zt27ahXbt2sLW1haenJ3bv3i3rF0IgIiICzZo1g52dHfz9/XHu3LnKTpmIiIjqqEoHoby8PHTs2BGrV68u03fr1i2cOHEC8+bNw4kTJ/DVV18hPT0dL730kqxuxIgRSE1NRXx8PGJjY5GQkIDx48dL/WazGf369YObmxuSk5PxwQcfYMGCBVi3bp1Uc+TIEQwfPhwhISE4efIkAgMDERgYiDNnzkg1UVFRWLlyJaKjo5GUlAR7e3sYDAbcuXOnstMmIiKiOkglhBBVXlilwo4dOxAYGHjfmmPHjsHHxwcXL15EixYtcPbsWXh4eODYsWPo0qULACAuLg4DBgzAlStXoNfrsXbtWrzzzjswGo1Qq9UAgNmzZ2Pnzp1IS0sDAAwbNgx5eXmIjY2VttWtWzd4eXkhOjoaQgjo9XpMmzYN06dPBwCYTCY4OzsjJiYGQUFBD52f2WyGTqeDyWSCVqut6m4ioidU4vrpNT2EKvELWVbTQyB6olXm93e1XyNkMpmgUqng4OAAAEhMTISDg4MUggDA398fVlZWSEpKkmp69eolhSAAMBgMSE9Px40bN6Qaf39/2bYMBgMSExMBABkZGTAajbIanU4HX19fqeZe+fn5MJvNshcRERHVXdUahO7cuYNZs2Zh+PDhUiIzGo1wcnKS1dnY2MDR0RFGo1GqcXZ2ltWUvn9Yzd39dy9XXs29IiMjodPppJerq2ul50xERES1R7UFocLCQrz66qsQQmDt2rXVtRmLmjNnDkwmk/S6fPlyTQ+JiIiIqpFNday0NARdvHgRBw4ckH0/5+LigqysLFl9UVERsrOz4eLiItVkZmbKakrfP6zm7v7StmbNmslqvLy8yh23RqOBRqOp7HSJiIiolrL4GaHSEHTu3Dl89913aNy4sazfz88POTk5SE5OltoOHDiAkpIS+Pr6SjUJCQkoLCyUauLj49G2bVs0atRIqtm/f79s3fHx8fDz8wMAuLu7w8XFRVZjNpuRlJQk1RAREZGyVToI5ebmIiUlBSkpKQD+uig5JSUFly5dQmFhIYYOHYrjx49j06ZNKC4uhtFohNFoREFBAQCgffv26N+/P8aNG4ejR4/i8OHDCAsLQ1BQEPR6PQDgtddeg1qtRkhICFJTU7F161asWLEC4eHh0jgmT56MuLg4fPjhh0hLS8OCBQtw/PhxhIWFAfjrjrYpU6Zg8eLF+Oabb3D69GmMGjUKer3+gXe5ERERkXJU+vb5gwcPok+fPmXag4ODsWDBAri7u5e73Pfff4/nn38ewF8PVAwLC8O3334LKysrDBkyBCtXrkSDBg2k+lOnTiE0NBTHjh1DkyZNMHHiRMyaNUu2zm3btmHu3Ln4/fff0aZNG0RFRWHAgAFSvxAC8+fPx7p165CTk4MePXpgzZo1ePrppys0V94+T1S38fZ5orqpMr+/H+k5QnUdgxBR3cYgRFQ3PVHPESIiIiJ6UjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiVToIJSQkYNCgQdDr9VCpVNi5c6esXwiBiIgINGvWDHZ2dvD398e5c+dkNdnZ2RgxYgS0Wi0cHBwQEhKC3NxcWc2pU6fQs2dP2NrawtXVFVFRUWXGsm3bNrRr1w62trbw9PTE7t27Kz0WIiIiUq5KB6G8vDx07NgRq1evLrc/KioKK1euRHR0NJKSkmBvbw+DwYA7d+5INSNGjEBqairi4+MRGxuLhIQEjB8/Xuo3m83o168f3NzckJycjA8++AALFizAunXrpJojR45g+PDhCAkJwcmTJxEYGIjAwECcOXOmUmMhIiIi5VIJIUSVF1apsGPHDgQGBgL46wyMXq/HtGnTMH36dACAyWSCs7MzYmJiEBQUhLNnz8LDwwPHjh1Dly5dAABxcXEYMGAArly5Ar1ej7Vr1+Kdd96B0WiEWq0GAMyePRs7d+5EWloaAGDYsGHIy8tDbGysNJ5u3brBy8sL0dHRFRrLw5jNZuh0OphMJmi12qruJiJ6QiWun17TQ6gSv5BlNT0EoidaZX5/W/QaoYyMDBiNRvj7+0ttOp0Ovr6+SExMBAAkJibCwcFBCkEA4O/vDysrKyQlJUk1vXr1kkIQABgMBqSnp+PGjRtSzd3bKa0p3U5FxnKv/Px8mM1m2YuIiIjqLosGIaPRCABwdnaWtTs7O0t9RqMRTk5Osn4bGxs4OjrKaspbx93buF/N3f0PG8u9IiMjodPppJerq2sFZk1ERES1Fe8au8ucOXNgMpmk1+XLl2t6SERERFSNLBqEXFxcAACZmZmy9szMTKnPxcUFWVlZsv6ioiJkZ2fLaspbx93buF/N3f0PG8u9NBoNtFqt7EVERER1l0WDkLu7O1xcXLB//36pzWw2IykpCX5+fgAAPz8/5OTkIDk5Wao5cOAASkpK4OvrK9UkJCSgsLBQqomPj0fbtm3RqFEjqebu7ZTWlG6nImMhIiIiZat0EMrNzUVKSgpSUlIA/HVRckpKCi5dugSVSoUpU6Zg8eLF+Oabb3D69GmMGjUKer1eurOsffv26N+/P8aNG4ejR4/i8OHDCAsLQ1BQEPR6PQDgtddeg1qtRkhICFJTU7F161asWLEC4eHh0jgmT56MuLg4fPjhh0hLS8OCBQtw/PhxhIWFAUCFxkJERETKZlPZBY4fP44+ffpI70vDSXBwMGJiYjBz5kzk5eVh/PjxyMnJQY8ePRAXFwdbW1tpmU2bNiEsLAx9+/aFlZUVhgwZgpUrV0r9Op0O+/btQ2hoKLy9vdGkSRNERETInjXUvXt3bN68GXPnzsXbb7+NNm3aYOfOnejQoYNUU5GxEBERkXI90nOE6jo+R4iobuNzhIjqphp7jhARERFRbcIgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKZfEgVFxcjHnz5sHd3R12dnZ46qmn8O6770IIIdUIIRAREYFmzZrBzs4O/v7+OHfunGw92dnZGDFiBLRaLRwcHBASEoLc3FxZzalTp9CzZ0/Y2trC1dUVUVFRZcazbds2tGvXDra2tvD09MTu3bstPWUiIiKqpSwehJYuXYq1a9di1apVOHv2LJYuXYqoqCh88sknUk1UVBRWrlyJ6OhoJCUlwd7eHgaDAXfu3JFqRowYgdTUVMTHxyM2NhYJCQkYP3681G82m9GvXz+4ubkhOTkZH3zwARYsWIB169ZJNUeOHMHw4cMREhKCkydPIjAwEIGBgThz5oylp01ERES1kErcfarGAgYOHAhnZ2esX79eahsyZAjs7Ozw73//G0II6PV6TJs2DdOnTwcAmEwmODs7IyYmBkFBQTh79iw8PDxw7NgxdOnSBQAQFxeHAQMG4MqVK9Dr9Vi7di3eeecdGI1GqNVqAMDs2bOxc+dOpKWlAQCGDRuGvLw8xMbGSmPp1q0bvLy8EB0d/dC5mM1m6HQ6mEwmaLVai+0jInoyJK6fXtNDqBK/kGU1PQSiJ1plfn9b/IxQ9+7dsX//fvz6668AgJ9//hk//vgjXnzxRQBARkYGjEYj/P39pWV0Oh18fX2RmJgIAEhMTISDg4MUggDA398fVlZWSEpKkmp69eolhSAAMBgMSE9Px40bN6Sau7dTWlO6nXvl5+fDbDbLXkRERFR32Vh6hbNnz4bZbEa7du1gbW2N4uJivPfeexgxYgQAwGg0AgCcnZ1lyzk7O0t9RqMRTk5O8oHa2MDR0VFW4+7uXmYdpX2NGjWC0Wh84HbuFRkZiYULF1Zl2kRERFQLWfyM0JdffolNmzZh8+bNOHHiBDZu3Ihly5Zh48aNlt6Uxc2ZMwcmk0l6Xb58uaaHRERERNXI4meEZsyYgdmzZyMoKAgA4OnpiYsXLyIyMhLBwcFwcXEBAGRmZqJZs2bScpmZmfDy8gIAuLi4ICsrS7beoqIiZGdnS8u7uLggMzNTVlP6/mE1pf330mg00Gg0VZk2ERER1UIWPyN069YtWFnJV2ttbY2SkhIAgLu7O1xcXLB//36p32w2IykpCX5+fgAAPz8/5OTkIDk5Wao5cOAASkpK4OvrK9UkJCSgsLBQqomPj0fbtm3RqFEjqebu7ZTWlG6HiIiIlM3iQWjQoEF47733sGvXLvz+++/YsWMHPvroI7zyyisAAJVKhSlTpmDx4sX45ptvcPr0aYwaNQp6vR6BgYEAgPbt26N///4YN24cjh49isOHDyMsLAxBQUHQ6/UAgNdeew1qtRohISFITU3F1q1bsWLFCoSHh0tjmTx5MuLi4vDhhx8iLS0NCxYswPHjxxEWFmbpaRMREVEtZPGvxj755BPMmzcPb731FrKysqDX6/HGG28gIiJCqpk5cyby8vIwfvx45OTkoEePHoiLi4Otra1Us2nTJoSFhaFv376wsrLCkCFDsHLlSqlfp9Nh3759CA0Nhbe3N5o0aYKIiAjZs4a6d++OzZs3Y+7cuXj77bfRpk0b7Ny5Ex06dLD0tImIiKgWsvhzhOoSPkeIqG7jc4SI6qYafY4QERERUW3BIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREilUtQeiPP/7AP//5TzRu3Bh2dnbw9PTE8ePHpX4hBCIiItCsWTPY2dnB398f586dk60jOzsbI0aMgFarhYODA0JCQpCbmyurOXXqFHr27AlbW1u4uroiKiqqzFi2bduGdu3awdbWFp6enti9e3d1TJmIiIhqIYsHoRs3buC5555DvXr1sGfPHvzyyy/48MMP0ahRI6kmKioKK1euRHR0NJKSkmBvbw+DwYA7d+5INSNGjEBqairi4+MRGxuLhIQEjB8/Xuo3m83o168f3NzckJycjA8++AALFizAunXrpJojR45g+PDhCAkJwcmTJxEYGIjAwECcOXPG0tMmIiKiWkglhBCWXOHs2bNx+PBh/PDDD+X2CyGg1+sxbdo0TJ8+HQBgMpng7OyMmJgYBAUF4ezZs/Dw8MCxY8fQpUsXAEBcXBwGDBiAK1euQK/XY+3atXjnnXdgNBqhVqulbe/cuRNpaWkAgGHDhiEvLw+xsbHS9rt16wYvLy9ER0c/dC5msxk6nQ4mkwlarfaR9gsRPXkS10+v6SFUiV/IspoeAtETrTK/vy1+Ruibb75Bly5d8I9//ANOTk7o1KkTPvvsM6k/IyMDRqMR/v7+UptOp4Ovry8SExMBAImJiXBwcJBCEAD4+/vDysoKSUlJUk2vXr2kEAQABoMB6enpuHHjhlRz93ZKa0q3c6/8/HyYzWbZi4iIiOouiweh3377DWvXrkWbNm2wd+9eTJgwAZMmTcLGjRsBAEajEQDg7OwsW87Z2VnqMxqNcHJykvXb2NjA0dFRVlPeOu7exv1qSvvvFRkZCZ1OJ71cXV0rPX8iIiKqPSwehEpKStC5c2e8//776NSpE8aPH49x48ZV6KuomjZnzhyYTCbpdfny5ZoeEhEREVUjiwehZs2awcPDQ9bWvn17XLp0CQDg4uICAMjMzJTVZGZmSn0uLi7IysqS9RcVFSE7O1tWU9467t7G/WpK+++l0Wig1WplLyIiIqq7LB6EnnvuOaSnp8vafv31V7i5uQEA3N3d4eLigv3790v9ZrMZSUlJ8PPzAwD4+fkhJycHycnJUs2BAwdQUlICX19fqSYhIQGFhYVSTXx8PNq2bSvdoebn5yfbTmlN6XaIiIhI2SwehKZOnYqffvoJ77//Ps6fP4/Nmzdj3bp1CA0NBQCoVCpMmTIFixcvxjfffIPTp09j1KhR0Ov1CAwMBPDXGaT+/ftj3LhxOHr0KA4fPoywsDAEBQVBr9cDAF577TWo1WqEhIQgNTUVW7duxYoVKxAeHi6NZfLkyYiLi8OHH36ItLQ0LFiwAMePH0dYWJilp01ERES1kI2lV9i1a1fs2LEDc+bMwaJFi+Du7o7ly5djxIgRUs3MmTORl5eH8ePHIycnBz169EBcXBxsbW2lmk2bNiEsLAx9+/aFlZUVhgwZgpUrV0r9Op0O+/btQ2hoKLy9vdGkSRNERETInjXUvXt3bN68GXPnzsXbb7+NNm3aYOfOnejQoYOlp01ERES1kMWfI1SX8DlCRHUbnyNEVDfV6HOEiIiIiGoLBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUqxqD0JLliyBSqXClClTpLY7d+4gNDQUjRs3RoMGDTBkyBBkZmbKlrt06RICAgJQv359ODk5YcaMGSgqKpLVHDx4EJ07d4ZGo0Hr1q0RExNTZvurV69Gy5YtYWtrC19fXxw9erQ6pklERES1ULUGoWPHjuHTTz/Fs88+K2ufOnUqvv32W2zbtg2HDh3C1atXMXjwYKm/uLgYAQEBKCgowJEjR7Bx40bExMQgIiJCqsnIyEBAQAD69OmDlJQUTJkyBWPHjsXevXulmq1btyI8PBzz58/HiRMn0LFjRxgMBmRlZVXntImIiKiWUAkhRHWsODc3F507d8aaNWuwePFieHl5Yfny5TCZTGjatCk2b96MoUOHAgDS0tLQvn17JCYmolu3btizZw8GDhyIq1evwtnZGQAQHR2NWbNm4dq1a1Cr1Zg1axZ27dqFM2fOSNsMCgpCTk4O4uLiAAC+vr7o2rUrVq1aBQAoKSmBq6srJk6ciNmzZz90DmazGTqdDiaTCVqt1tK7iIhqWOL66TU9hCrxC1lW00MgeqJV5vd3tZ0RCg0NRUBAAPz9/WXtycnJKCwslLW3a9cOLVq0QGJiIgAgMTERnp6eUggCAIPBALPZjNTUVKnm3nUbDAZpHQUFBUhOTpbVWFlZwd/fX6q5V35+Psxms+xFREREdZdNdax0y5YtOHHiBI4dO1amz2g0Qq1Ww8HBQdbu7OwMo9Eo1dwdgkr7S/seVGM2m3H79m3cuHEDxcXF5dakpaWVO+7IyEgsXLiw4hMlIiKiWs3iZ4QuX76MyZMnY9OmTbC1tbX06qvVnDlzYDKZpNfly5drekhERERUjSwehJKTk5GVlYXOnTvDxsYGNjY2OHToEFauXAkbGxs4OzujoKAAOTk5suUyMzPh4uICAHBxcSlzF1np+4fVaLVa2NnZoUmTJrC2ti63pnQd99JoNNBqtbIXERER1V0WD0J9+/bF6dOnkZKSIr26dOmCESNGSP9dr1497N+/X1omPT0dly5dgp+fHwDAz88Pp0+flt3dFR8fD61WCw8PD6nm7nWU1pSuQ61Ww9vbW1ZTUlKC/fv3SzVERESkbBa/Rqhhw4bo0KGDrM3e3h6NGzeW2kNCQhAeHg5HR0dotVpMnDgRfn5+6NatGwCgX79+8PDwwMiRIxEVFQWj0Yi5c+ciNDQUGo0GAPDmm29i1apVmDlzJl5//XUcOHAAX375JXbt2iVtNzw8HMHBwejSpQt8fHywfPly5OXlYcyYMZaeNhEREdVC1XKx9MN8/PHHsLKywpAhQ5Cfnw+DwYA1a9ZI/dbW1oiNjcWECRPg5+cHe3t7BAcHY9GiRVKNu7s7du3ahalTp2LFihVo3rw5Pv/8cxgMBqlm2LBhuHbtGiIiImA0GuHl5YW4uLgyF1ATERHVCd9H1vQIKq/PnBrdfLU9R6gu4HOEiOo2PkeI6pra+DNdHT/PT8RzhIiIiIiedAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWDY1PQBF+z6ypkdQeX3m1PQIiIiILIZBqAYl/vZnTQ+h0vz61PQIiIiILIdfjREREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWJZPAhFRkaia9euaNiwIZycnBAYGIj09HRZzZ07dxAaGorGjRujQYMGGDJkCDIzM2U1ly5dQkBAAOrXrw8nJyfMmDEDRUVFspqDBw+ic+fO0Gg0aN26NWJiYsqMZ/Xq1WjZsiVsbW3h6+uLo0ePWnrKREREVEtZPAgdOnQIoaGh+OmnnxAfH4/CwkL069cPeXl5Us3UqVPx7bffYtu2bTh06BCuXr2KwYMHS/3FxcUICAhAQUEBjhw5go0bNyImJgYRERFSTUZGBgICAtCnTx+kpKRgypQpGDt2LPbu3SvVbN26FeHh4Zg/fz5OnDiBjh07wmAwICsry9LTJiIiolpIJYQQ1bmBa9euwcnJCYcOHUKvXr1gMpnQtGlTbN68GUOHDgUApKWloX379khMTES3bt2wZ88eDBw4EFevXoWzszMAIDo6GrNmzcK1a9egVqsxa9Ys7Nq1C2fOnJG2FRQUhJycHMTFxQEAfH190bVrV6xatQoAUFJSAldXV0ycOBGzZ89+6NjNZjN0Oh1MJhO0Wq2ldw0S10+3+Dqrm1/IspoeApHF1MbPIMDPId1fbfyZro6f58r8/q72a4RMJhMAwNHREQCQnJyMwsJC+Pv7SzXt2rVDixYtkJiYCABITEyEp6enFIIAwGAwwGw2IzU1Vaq5ex2lNaXrKCgoQHJysqzGysoK/v7+Us298vPzYTabZS8iIiKqu6o1CJWUlGDKlCl47rnn0KFDBwCA0WiEWq2Gg4ODrNbZ2RlGo1GquTsElfaX9j2oxmw24/bt27h+/TqKi4vLrSldx70iIyOh0+mkl6ura9UmTkRERLVCtQah0NBQnDlzBlu2bKnOzVjMnDlzYDKZpNfly5drekhERERUjartj66GhYUhNjYWCQkJaN68udTu4uKCgoIC5OTkyM4KZWZmwsXFRaq59+6u0rvK7q65906zzMxMaLVa2NnZwdraGtbW1uXWlK7jXhqNBhqNpmoTJiIiolrH4meEhBAICwvDjh07cODAAbi7u8v6vb29Ua9ePezfv19qS09Px6VLl+Dn5wcA8PPzw+nTp2V3d8XHx0Or1cLDw0OquXsdpTWl61Cr1fD29pbVlJSUYP/+/VINERERKZvFzwiFhoZi8+bN+Prrr9GwYUPpehydTgc7OzvodDqEhIQgPDwcjo6O0Gq1mDhxIvz8/NCtWzcAQL9+/eDh4YGRI0ciKioKRqMRc+fORWhoqHTG5s0338SqVaswc+ZMvP766zhw4AC+/PJL7Nq1SxpLeHg4goOD0aVLF/j4+GD58uXIy8vDmDFjLD1tIiIiqoUsHoTWrl0LAHj++edl7Rs2bMDo0aMBAB9//DGsrKwwZMgQ5Ofnw2AwYM2aNVKttbU1YmNjMWHCBPj5+cHe3h7BwcFYtGiRVOPu7o5du3Zh6tSpWLFiBZo3b47PP/8cBoNBqhk2bBiuXbuGiIgIGI1GeHl5IS4urswF1ERERKRMFg9CFXkska2tLVavXo3Vq1fft8bNzQ27d+9+4Hqef/55nDx58oE1YWFhCAsLe+iYiIiISHn4t8aIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixqu2vzxORsnwc/2tND6HSutX0AIioxjEIET2BamOoIKprEtdPr+kh0GPAIET0BOp2aV1ND4HIompjuOcZQ2VgECIiqmVqZahguKcnFIMQEVEtw1BBZDkMQlTn1cr/e67pARARKQSDENV5/L9nIiK6Hz5HiIiIiBSLQYiIiIgUi1+NUaXwuRpERFSX8IwQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmWIoLQ6tWr0bJlS9ja2sLX1xdHjx6t6SERERHRE6DOB6GtW7ciPDwc8+fPx4kTJ9CxY0cYDAZkZWXV9NCIiIiohtX5IPTRRx9h3LhxGDNmDDw8PBAdHY369evjiy++qOmhERERUQ2zqekBVKeCggIkJydjzpw5UpuVlRX8/f2RmJhYpj4/Px/5+fnSe5PJBAAwm83VMr682/kPLyIiIqrDquN3bOk6hRAPra3TQej69esoLi6Gs7OzrN3Z2RlpaWll6iMjI7Fw4cIy7a6urtU2RiIiIkWbuKraVn3z5k3odLoH1tTpIFRZc+bMQXh4uPS+pKQE2dnZaNy4MVQqlUW3ZTab4erqisuXL0Or1Vp03U+Cuj4/oO7PkfOr/er6HOv6/IC6P8fqmp8QAjdv3oRer39obZ0OQk2aNIG1tTUyMzNl7ZmZmXBxcSlTr9FooNFoZG0ODg7VOURotdo6+cNdqq7PD6j7c+T8ar+6Pse6Pj+g7s+xOub3sDNBper0xdJqtRre3t7Yv3+/1FZSUoL9+/fDz8+vBkdGRERET4I6fUYIAMLDwxEcHIwuXbrAx8cHy5cvR15eHsaMGVPTQyMiIqIaVueD0LBhw3Dt2jVERETAaDTCy8sLcXFxZS6gftw0Gg3mz59f5qu4uqKuzw+o+3Pk/Gq/uj7Huj4/oO7P8UmYn0pU5N4yIiIiojqoTl8jRERERPQgDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxC1eS9995D9+7dUb9+/Qo/nVoIgYiICDRr1gx2dnbw9/fHuXPnZDXZ2dkYMWIEtFotHBwcEBISgtzc3GqYwcNVdiy///47VCpVua9t27ZJdeX1b9my5XFMSaYq+/r5558vM/Y333xTVnPp0iUEBASgfv36cHJywowZM1BUVFSdUylXZeeXnZ2NiRMnom3btrCzs0OLFi0wadIk6Y8Tl6rJ47d69Wq0bNkStra28PX1xdGjRx9Yv23bNrRr1w62trbw9PTE7t27Zf0V+Uw+TpWZ32effYaePXuiUaNGaNSoEfz9/cvUjx49usyx6t+/f3VP44EqM8eYmJgy47e1tZXV1OZjWN6/JyqVCgEBAVLNk3QMExISMGjQIOj1eqhUKuzcufOhyxw8eBCdO3eGRqNB69atERMTU6amsp/rShNULSIiIsRHH30kwsPDhU6nq9AyS5YsETqdTuzcuVP8/PPP4qWXXhLu7u7i9u3bUk3//v1Fx44dxU8//SR++OEH0bp1azF8+PBqmsWDVXYsRUVF4n//+5/stXDhQtGgQQNx8+ZNqQ6A2LBhg6zu7n3wuFRlX/fu3VuMGzdONnaTyST1FxUViQ4dOgh/f39x8uRJsXv3btGkSRMxZ86c6p5OGZWd3+nTp8XgwYPFN998I86fPy/2798v2rRpI4YMGSKrq6njt2XLFqFWq8UXX3whUlNTxbhx44SDg4PIzMwst/7w4cPC2tpaREVFiV9++UXMnTtX1KtXT5w+fVqqqchn8nGp7Pxee+01sXr1anHy5Elx9uxZMXr0aKHT6cSVK1ekmuDgYNG/f3/ZscrOzn5cUyqjsnPcsGGD0Gq1svEbjUZZTW0+hn/++adsbmfOnBHW1tZiw4YNUs2TdAx3794t3nnnHfHVV18JAGLHjh0PrP/tt99E/fr1RXh4uPjll1/EJ598IqytrUVcXJxUU9l9VhUMQtVsw4YNFQpCJSUlwsXFRXzwwQdSW05OjtBoNOI///mPEEKIX375RQAQx44dk2r27NkjVCqV+OOPPyw+9gex1Fi8vLzE66+/LmuryAeoulV1fr179xaTJ0++b//u3buFlZWV7B/rtWvXCq1WK/Lz8y0y9oqw1PH78ssvhVqtFoWFhVJbTR0/Hx8fERoaKr0vLi4Wer1eREZGllv/6quvioCAAFmbr6+veOONN4QQFftMPk6Vnd+9ioqKRMOGDcXGjRultuDgYPHyyy9beqhVVtk5Puzf17p2DD/++GPRsGFDkZubK7U9acewVEX+HZg5c6Z45plnZG3Dhg0TBoNBev+o+6wi+NXYEyIjIwNGoxH+/v5Sm06ng6+vLxITEwEAiYmJcHBwQJcuXaQaf39/WFlZISkp6bGO1xJjSU5ORkpKCkJCQsr0hYaGokmTJvDx8cEXX3wB8Zif+/ko89u0aROaNGmCDh06YM6cObh165ZsvZ6enrInmxsMBpjNZqSmplp+IvdhqZ8lk8kErVYLGxv5Q+of9/ErKChAcnKy7PNjZWUFf39/6fNzr8TERFk98NexKK2vyGfycanK/O5169YtFBYWwtHRUdZ+8OBBODk5oW3btpgwYQL+/PNPi469oqo6x9zcXLi5ucHV1RUvv/yy7HNU147h+vXrERQUBHt7e1n7k3IMK+thn0FL7LOKqPN/YqO2MBqNAFDmT384OztLfUajEU5OTrJ+GxsbODo6SjWPiyXGsn79erRv3x7du3eXtS9atAgvvPAC6tevj3379uGtt95Cbm4uJk2aZLHxP0xV5/faa6/Bzc0Ner0ep06dwqxZs5Ceno6vvvpKWm95x7i073GxxPG7fv063n33XYwfP17WXhPH7/r16yguLi5336alpZW7zP2Oxd2ft9K2+9U8LlWZ371mzZoFvV4v+6XSv39/DB48GO7u7rhw4QLefvttvPjii0hMTIS1tbVF5/AwVZlj27Zt8cUXX+DZZ5+FyWTCsmXL0L17d6SmpqJ58+Z16hgePXoUZ86cwfr162XtT9IxrKz7fQbNZjNu376NGzduPPLPfUUwCFXC7NmzsXTp0gfWnD17Fu3atXtMI7K8is7xUd2+fRubN2/GvHnzyvTd3dapUyfk5eXhgw8+sMgv0uqe392hwNPTE82aNUPfvn1x4cIFPPXUU1Veb0U9ruNnNpsREBAADw8PLFiwQNZXncePqmbJkiXYsmULDh48KLuYOCgoSPpvT09PPPvss3jqqadw8OBB9O3btyaGWil+fn7w8/OT3nfv3h3t27fHp59+infffbcGR2Z569evh6enJ3x8fGTttf0YPgkYhCph2rRpGD169ANrWrVqVaV1u7i4AAAyMzPRrFkzqT0zMxNeXl5STVZWlmy5oqIiZGdnS8s/qorO8VHHsn37dty6dQujRo16aK2vry/effdd5OfnP/If5ntc8yvl6+sLADh//jyeeuopuLi4lLnjITMzEwAscgwfx/xu3ryJ/v37o2HDhtixYwfq1av3wHpLHr/7adKkCaytraV9WSozM/O+83FxcXlgfUU+k49LVeZXatmyZViyZAm+++47PPvssw+sbdWqFZo0aYLz588/9l+ijzLHUvXq1UOnTp1w/vx5AHXnGObl5WHLli1YtGjRQ7dTk8ewsu73GdRqtbCzs4O1tfUj/0xUiMWuNqJyVfZi6WXLlkltJpOp3Iuljx8/LtXs3bu3Ri+WrupYevfuXeZuo/tZvHixaNSoUZXHWhWW2tc//vijACB+/vlnIcT/XSx99x0Pn376qdBqteLOnTuWm8BDVHV+JpNJdOvWTfTu3Vvk5eVVaFuP6/j5+PiIsLAw6X1xcbH429/+9sCLpQcOHChr8/PzK3Ox9IM+k49TZecnhBBLly4VWq1WJCYmVmgbly9fFiqVSnz99dePPN6qqMoc71ZUVCTatm0rpk6dKoSoG8dQiL9+j2g0GnH9+vWHbqOmj2EpVPBi6Q4dOsjahg8fXuZi6Uf5majQWC22JpK5ePGiOHnypHR7+MmTJ8XJkydlt4m3bdtWfPXVV9L7JUuWCAcHB/H111+LU6dOiZdffrnc2+c7deokkpKSxI8//ijatGlTo7fPP2gsV65cEW3bthVJSUmy5c6dOydUKpXYs2dPmXV+88034rPPPhOnT58W586dE2vWrBH169cXERER1T6fe1V2fufPnxeLFi0Sx48fFxkZGeLrr78WrVq1Er169ZKWKb19vl+/fiIlJUXExcWJpk2b1tjt85WZn8lkEr6+vsLT01OcP39edrtuUVGREKJmj9+WLVuERqMRMTEx4pdffhHjx48XDg4O0h16I0eOFLNnz5bqDx8+LGxsbMSyZcvE2bNnxfz588u9ff5hn8nHpbLzW7JkiVCr1WL79u2yY1X6b9DNmzfF9OnTRWJiosjIyBDfffed6Ny5s2jTps1jDeWPMseFCxeKvXv3igsXLojk5GQRFBQkbG1tRWpqqlRTm49hqR49eohhw4aVaX/SjuHNmzel33UAxEcffSROnjwpLl68KIQQYvbs2WLkyJFSfent8zNmzBBnz54Vq1evLvf2+QftM0tgEKomwcHBAkCZ1/fffy/V4P9/3kqpkpISMW/ePOHs7Cw0Go3o27evSE9Pl633zz//FMOHDxcNGjQQWq1WjBkzRhauHqeHjSUjI6PMnIUQYs6cOcLV1VUUFxeXWeeePXuEl5eXaNCggbC3txcdO3YU0dHR5dZWt8rO79KlS6JXr17C0dFRaDQa0bp1azFjxgzZc4SEEOL3338XL774orCzsxNNmjQR06ZNk91+/rhUdn7ff/99uT/TAERGRoYQouaP3yeffCJatGgh1Gq18PHxET/99JPU17t3bxEcHCyr//LLL8XTTz8t1Gq1eOaZZ8SuXbtk/RX5TD5OlZmfm5tbucdq/vz5Qgghbt26Jfr16yeaNm0q6tWrJ9zc3MS4ceMs+gumKiozxylTpki1zs7OYsCAAeLEiROy9dXmYyiEEGlpaQKA2LdvX5l1PWnH8H7/RpTOKTg4WPTu3bvMMl5eXkKtVotWrVrJfieWetA+swSVEI/5vmQiIiKiJwSfI0RERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREivX/AfXCMpdrvR0cAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAStxJREFUeJzt3XtcVNX+P/4XF2dAdAYRAeeIiGkiSaIoOGZeksQki9KTmEfRUMvAG14xxUsWRVZqmmSZ+D1Hj2YnrVBRwoxSQkU5KgmpkZc8AxoyI6hc1++PfuyPWxABBxH26/l4zOPhrPXee6+1N8O8nNl7YyGEECAiIiJSIMuGHgARERFRQ2EQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiasLGjx+PDh06NPQwqI4GDhyIgQMHmnWdS5YsgYWFhVnXSdSYMQgRPSBvvfUWnnvuOTg7O8PCwgJLliypsm7Hjh0ICAiATqeDWq1Gu3btMHLkSJw6derBDvgeLl++jCVLliA9Pb2hh0J3uHHjBpYsWYIDBw409FDq7OLFi1i6dCl8fX3RqlUrODo6YuDAgfjuu+8aemjUxDAIET0gCxcuxJEjR9CjR49q606ePIlWrVph+vTp+PjjjzFlyhQcP34cvr6++O9//1urbX766afIysq6n2Hf1eXLl7F06VIGoYfQjRs3sHTp0iqD0MKFC3Hz5s0HP6ha+vrrr/Huu++iU6dOWL58ORYtWoTr16/j6aefxsaNGxt6eNSEWDf0AIiUIjs7Gx06dMDVq1fRpk2bu9ZFRUVVaps4cSLatWuHdevWITY2tsbbbNasWZ3GSnV369YtqFQqWFpW/n9mYWEh7OzsGmBU/8fa2hrW1g//r/5BgwbhwoULcHR0lNpee+01eHt7IyoqChMmTGjA0VFTwk+EiMzkjz/+QGhoqPSVlru7O6ZMmYLi4mIAuK9zdZycnNC8eXPk5+fXarmqzhHaunUrfHx80LJlS2g0Gnh5eWHVqlWymt9++w1///vf4eDggObNm6NPnz7YtWuX1H/gwAH07t0bADBhwgRYWFjAwsICcXFxUs327dvh4+MDW1tbODo64h//+Af++OOPSuNr0aIFfvvtNwQEBMDOzg46nQ7Lli2DEEJWW15ejpUrV+Kxxx6DjY0NnJ2d8eqrr+LatWu12ifAvY9VTfZBxX6wsLDA1q1bsXDhQvztb39D8+bNYTKZpLmdO3cOw4YNQ8uWLTFmzJj7mktxcTGioqLg4+MDrVYLOzs7PPnkk/j++++lmt9//10K2kuXLpWOTcVXsVWdI1RaWoo333wTjzzyCNRqNTp06IAFCxagqKhIVtehQwc8++yz+Omnn+Dr6wsbGxt07NgR/+///T9ZXUlJCZYuXYrOnTvDxsYGrVu3Rr9+/ZCYmFiDo/OXxx57TBaCAECtVmPYsGG4dOkSrl+/XuN1EVXn4f9vAVEjcPnyZfj6+iI/Px+TJ0+Gh4cH/vjjD3z55Ze4ceMGVCpVrdeZn5+PkpISGAwGrFy5EiaTCYMHD76vcSYmJmL06NEYPHgw3n33XQDA6dOncfDgQUyfPh0AkJOTg759++LGjRuYNm0aWrdujU2bNuG5557Dl19+iRdeeAFdu3bFsmXLEBUVhcmTJ+PJJ58EAPTt2xcAEBcXhwkTJqB3796Ijo5GTk4OVq1ahYMHD+L48eOwt7eXxlRWVoahQ4eiT58+iImJQUJCAhYvXozS0lIsW7ZMqnv11Vel9U6bNg3Z2dlYs2YNjh8/joMHD9b406+aHKua7IPbvfnmm1CpVJg9ezaKioqk411aWoqAgAD069cPK1asQPPmze9rLiaTCZ999hlGjx6NSZMm4fr169iwYQMCAgJw+PBheHt7o02bNli3bh2mTJmCF154AS+++CIA4PHHH7/rPpk4cSI2bdqEkSNHYtasWUhNTUV0dDROnz6NHTt2yGrPnj2LkSNHIjQ0FCEhIfj8888xfvx4+Pj44LHHHgPwV9iKjo7GxIkT4evrC5PJhKNHj+LYsWN4+umna3Sc7sZgMKB58+bSviS6b4KI7tu4ceOEpaWlOHLkSKW+8vJy2fMrV64IAGLx4sXVrrNLly4CgAAgWrRoIRYuXCjKyspqNa6QkBDh5uYmPZ8+fbrQaDSitLT0rsvMmDFDABA//vij1Hb9+nXh7u4uOnToII3hyJEjAoDYuHGjbPni4mLh5OQkunXrJm7evCm1x8fHCwAiKipKNj4AYurUqVJbeXm5CAwMFCqVSly5ckUIIcSPP/4oAIjNmzfLtpWQkFBle3Vqcqxqug++//57AUB07NhR3LhxQ7auirnNnz9f1l6buQwYMEAMGDBAel5aWiqKiopky127dk04OzuLV155RWqr7mds8eLF4vZf/enp6QKAmDhxoqxu9uzZAoDYv3+/1Obm5iYAiOTkZKktNzdXqNVqMWvWLKmte/fuIjAwsNK279eZM2eEjY2NGDt2rNnXTcrFr8aI7lN5eTl27tyJ4cOHo1evXpX663qp8saNG5GQkICPP/4YXbt2xc2bN1FWVnZfY7W3t0dhYWG1X1Hs3r0bvr6+6Nevn9TWokULTJ48Gb///jt++eWXardx9OhR5Obm4vXXX4eNjY3UHhgYCA8Pj0pfLwFAeHi49G8LCwuEh4ejuLhYukJo+/bt0Gq1ePrpp3H16lXp4ePjgxYtWsi+GqpOTY9VbfdBSEgIbG1tq9zmlClTZM/vZy5WVlbSp03l5eXIy8tDaWkpevXqhWPHjtVoH9xp9+7dAICIiAhZ+6xZswCg0vHy9PSUPgEEgDZt2qBLly747bffpDZ7e3tkZGTgzJkzdRpTVW7cuIG///3vsLW1xTvvvGO29RLxqzGi+3TlyhWYTCZ069bNrOvV6/XSv4ODg9G1a1cAwIoVK+q8ztdffx1ffPEFnnnmGfztb3/DkCFD8NJLL2Ho0KFSzfnz5+Hn51dp2Yrtnz9/vtq5nj9/HgDQpUuXSn0eHh746aefZG2Wlpbo2LGjrO3RRx8F8Nf5LgBw5swZGI1GODk5VbnN3Nzcu47ndjU9VrXdB+7u7lWux9raGu3atZO13e9cNm3ahPfffx+ZmZkoKSm55xju5fz587C0tESnTp1k7S4uLrC3t5eOZ4X27dtXWkerVq1k5zctW7YMzz//PB599FF069YNQ4cOxdixY6v9eq46ZWVlCA4Oxi+//II9e/ZAp9PVaT1EVWEQImoEWrVqhaeeegqbN2++ryDk5OSE9PR07N27F3v27MGePXuwceNGjBs3Dps2bTLjiM2rvLwcTk5O2Lx5c5X91V2F9yDc7dMgtVpd6eqx+5nLv/71L4wfPx5BQUGYM2cOnJycYGVlhejoaJw7d67uE0DNP7m0srKqsl3cdnJ7//79ce7cOXz99dfYt28fPvvsM3z44YeIjY3FxIkTaz22SZMmIT4+Hps3b8ZTTz1V6+WJqsMgRHSf2rRpA41GU+83PLx58yaMRuN9r0elUmH48OEYPnw4ysvL8frrr+OTTz7BokWL0KlTJ7i5uVV576HMzEwAgJubG4C7v3FW9GdlZVV608rKypL6K5SXl+O3336TPgUCgF9//RXA/11p98gjj+C7777DE088cdfQURM1PVY13Qd1cT9z+fLLL9GxY0d89dVXsv2/ePFiWV1tvo51c3NDeXk5zpw5I33iBfx10nx+fn6d5+rg4IAJEyZgwoQJKCgoQP/+/bFkyZJaB6E5c+Zg48aNWLlyJUaPHl2nsRBVh+cIEd0nS0tLBAUF4dtvv8XRo0cr9Ys7LgO/l6q+Gvn999+RlJRU5XkttfHnn3/KnltaWkpfV1RcKj1s2DAcPnwYKSkpUl1hYSHWr1+PDh06wNPTEwCk++HceUl/r1694OTkhNjYWNnl13v27MHp06cRGBhYaVxr1qyR/i2EwJo1a9CsWTPpKrmXXnoJZWVlePPNNystW1paWuPbCtT0WNV0H9TF/cyl4tOY23+mUlNTZeMEIF1RVZP9MmzYMADAypUrZe0ffPABAFR5vO7lzp+zFi1aoFOnTpUux7+X9957DytWrMCCBQukqxqJzI2fCBGZwdtvv419+/ZhwIABmDx5Mrp27Yr//e9/2L59O3766SfY29vjn//8J86fP48bN24AAJKTk7F8+XIAwNixY6X/eXt5eWHw4MHw9vZGq1atcObMGWzYsAElJSX3fZLoxIkTkZeXh6eeegrt2rXD+fPn8dFHH8Hb21v6NGD+/Pn497//jWeeeQbTpk2Dg4MDNm3ahOzsbPznP/+Rvup55JFHYG9vj9jYWLRs2RJ2dnbw8/ODu7s73n33XUyYMAEDBgzA6NGjpcvnO3TogJkzZ8rGZGNjg4SEBISEhMDPzw979uzBrl27sGDBAulrogEDBuDVV19FdHQ00tPTMWTIEDRr1gxnzpzB9u3bsWrVKowcOdJsx6qm+6Au7mcuzz77LL766iu88MILCAwMRHZ2NmJjY+Hp6YmCggKpztbWFp6enti2bRseffRRODg4oFu3blWeG9W9e3eEhIRg/fr1yM/Px4ABA3D48GFs2rQJQUFBGDRoUK3n6OnpiYEDB8LHxwcODg44evQovvzyS9lJ8feyY8cOzJ07F507d0bXrl3xr3/9S9b/9NNPw9nZudZjI6qkQa9ZI2pCzp8/L8aNGyfatGkj1Gq16NixowgLC5Mudx4wYIB0Ofydj++//15az+LFi0WvXr1Eq1athLW1tdDpdCI4OFicOHGi1mO68/L5L7/8UgwZMkQ4OTkJlUol2rdvL1599VXxv//9T7bcuXPnxMiRI4W9vb2wsbERvr6+Ij4+vtL6v/76a+Hp6Smsra0rXUq/bds20aNHD6FWq4WDg4MYM2aMuHTpUqXx2dnZiXPnzokhQ4aI5s2bC2dnZ7F48eIqbxWwfv164ePjI2xtbUXLli2Fl5eXmDt3rrh8+XKt9su9jlVN90HF5fPbt2+vtI2Kud1NTeZy5+Xz5eXl4u233xZubm5CrVaLHj16iPj4+ErHWQghDh06JHx8fIRKpZJdSn/n5fNCCFFSUiKWLl0q3N3dRbNmzYSrq6uIjIwUt27dktW5ublVeVn8neNcvny58PX1Ffb29sLW1lZ4eHiIt956SxQXF991f9ypYpw1ec0Q3Q8LIWr5uT0RkZmMHz8eX375pezTDCKiB4nnCBEREZFi8RwhokYoLy9P9nex7mRlZdXgl5Q/aAUFBff8ZKlNmzZ3vfybHozi4mLk5eVVW6PVau/r6kCi2mAQImqEXnzxRfzwww937Xdzc5NuRqgUK1aswNKlS6utyc7Ovq8/fkv379ChQ/c8AXvjxo0YP378gxkQKR7PESJqhNLS0qr9S+W2trZ44oknHuCIGt5vv/0m+zMPVenXr5/sz37Qg3ft2jWkpaVVW/PYY4+hbdu2D2hEpHQMQkRERKRYPFmaiIiIFIvnCFWjvLwcly9fRsuWLev8F8SJiIjowRJC4Pr169DpdPe8ASqDUDUuX74MV1fXhh4GERER1cHFixfRrl27amsYhKrRsmVLAH/tSI1G08CjISIiopowmUxwdXWV3serwyBUjYqvwzQaDYMQERFRI1OT01p4sjQREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKZZ1Qw+AiKjBfB/d0COom0GRDT0CoiaDnwgRERGRYvETISJSrJTf/mzoIdSJflBDj4Co6eAnQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFi1DkLJyckYPnw4dDodLCwssHPnzko1p0+fxnPPPQetVgs7Ozv07t0bFy5ckPpv3bqFsLAwtG7dGi1atMCIESOQk5MjW8eFCxcQGBiI5s2bw8nJCXPmzEFpaams5sCBA+jZsyfUajU6deqEuLi4SmNZu3YtOnToABsbG/j5+eHw4cO1nTIRERE1UbUOQoWFhejevTvWrl1bZf+5c+fQr18/eHh44MCBAzhx4gQWLVoEGxsbqWbmzJn49ttvsX37dvzwww+4fPkyXnzxRam/rKwMgYGBKC4uxqFDh7Bp0ybExcUhKipKqsnOzkZgYCAGDRqE9PR0zJgxAxMnTsTevXulmm3btiEiIgKLFy/GsWPH0L17dwQEBCA3N7e20yYiIqImyEIIIeq8sIUFduzYgaCgIKktODgYzZo1wz//+c8qlzEajWjTpg22bNmCkSNHAgAyMzPRtWtXpKSkoE+fPtizZw+effZZXL58Gc7OzgCA2NhYzJs3D1euXIFKpcK8efOwa9cunDp1Srbt/Px8JCQkAAD8/PzQu3dvrFmzBgBQXl4OV1dXTJ06FfPnz7/n/EwmE7RaLYxGIzQaTZ32ERE9vFI2zG7oIdSJPnRFQw+B6KFWm/dvs54jVF5ejl27duHRRx9FQEAAnJyc4OfnJ/v6LC0tDSUlJfD395faPDw80L59e6SkpAAAUlJS4OXlJYUgAAgICIDJZEJGRoZUc/s6Kmoq1lFcXIy0tDRZjaWlJfz9/aWaOxUVFcFkMskeRERE1HSZNQjl5uaioKAA77zzDoYOHYp9+/bhhRdewIsvvogffvgBAGAwGKBSqWBvby9b1tnZGQaDQaq5PQRV9Ff0VVdjMplw8+ZNXL16FWVlZVXWVKzjTtHR0dBqtdLD1dW1bjuCiIiIGgWzfyIEAM8//zxmzpwJb29vzJ8/H88++yxiY2PNual6ERkZCaPRKD0uXrzY0EMiIiKiemTWIOTo6Ahra2t4enrK2rt27SpdNebi4oLi4mLk5+fLanJycuDi4iLV3HkVWcXze9VoNBrY2trC0dERVlZWVdZUrONOarUaGo1G9iAiIqKmy6xBSKVSoXfv3sjKypK1//rrr3BzcwMA+Pj4oFmzZkhKSpL6s7KycOHCBej1egCAXq/HyZMnZVd3JSYmQqPRSCFLr9fL1lFRU7EOlUoFHx8fWU15eTmSkpKkGiIiIlI269ouUFBQgLNnz0rPs7OzkZ6eDgcHB7Rv3x5z5szBqFGj0L9/fwwaNAgJCQn49ttvceDAAQCAVqtFaGgoIiIi4ODgAI1Gg6lTp0Kv16NPnz4AgCFDhsDT0xNjx45FTEwMDAYDFi5ciLCwMKjVagDAa6+9hjVr1mDu3Ll45ZVXsH//fnzxxRfYtWuXNLaIiAiEhISgV69e8PX1xcqVK1FYWIgJEybczz4jIiKiJqLWQejo0aMYNGiQ9DwiIgIAEBISgri4OLzwwguIjY1FdHQ0pk2bhi5duuA///kP+vXrJy3z4YcfwtLSEiNGjEBRURECAgLw8ccfS/1WVlaIj4/HlClToNfrYWdnh5CQECxbtkyqcXd3x65duzBz5kysWrUK7dq1w2effYaAgACpZtSoUbhy5QqioqJgMBjg7e2NhISESidQExERkTLd132EmjreR4ioaeN9hIiapga7jxARERFRY8IgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREilXrIJScnIzhw4dDp9PBwsICO3fuvGvta6+9BgsLC6xcuVLWnpeXhzFjxkCj0cDe3h6hoaEoKCiQ1Zw4cQJPPvkkbGxs4OrqipiYmErr3759Ozw8PGBjYwMvLy/s3r1b1i+EQFRUFNq2bQtbW1v4+/vjzJkztZ0yERERNVG1DkKFhYXo3r071q5dW23djh078PPPP0On01XqGzNmDDIyMpCYmIj4+HgkJydj8uTJUr/JZMKQIUPg5uaGtLQ0vPfee1iyZAnWr18v1Rw6dAijR49GaGgojh8/jqCgIAQFBeHUqVNSTUxMDFavXo3Y2FikpqbCzs4OAQEBuHXrVm2nTURERE2QhRBC1HlhCwvs2LEDQUFBsvY//vgDfn5+2Lt3LwIDAzFjxgzMmDEDAHD69Gl4enriyJEj6NWrFwAgISEBw4YNw6VLl6DT6bBu3Tq88cYbMBgMUKlUAID58+dj586dyMzMBACMGjUKhYWFiI+Pl7bbp08feHt7IzY2FkII6HQ6zJo1C7NnzwYAGI1GODs7Iy4uDsHBwfecn8lkglarhdFohEajqetuIqKHVMqG2Q09hDrRh65o6CEQPdRq8/5t9nOEysvLMXbsWMyZMwePPfZYpf6UlBTY29tLIQgA/P39YWlpidTUVKmmf//+UggCgICAAGRlZeHatWtSjb+/v2zdAQEBSElJAQBkZ2fDYDDIarRaLfz8/KSaOxUVFcFkMskeRERE1HSZPQi9++67sLa2xrRp06rsNxgMcHJykrVZW1vDwcEBBoNBqnF2dpbVVDy/V83t/bcvV1XNnaKjo6HVaqWHq6vrPedLREREjZdZg1BaWhpWrVqFuLg4WFhYmHPVD0RkZCSMRqP0uHjxYkMPiYiIiOqRWYPQjz/+iNzcXLRv3x7W1tawtrbG+fPnMWvWLHTo0AEA4OLigtzcXNlypaWlyMvLg4uLi1STk5Mjq6l4fq+a2/tvX66qmjup1WpoNBrZg4iIiJouswahsWPH4sSJE0hPT5ceOp0Oc+bMwd69ewEAer0e+fn5SEtLk5bbv38/ysvL4efnJ9UkJyejpKREqklMTESXLl3QqlUrqSYpKUm2/cTEROj1egCAu7s7XFxcZDUmkwmpqalSDRERESmbdW0XKCgowNmzZ6Xn2dnZSE9Ph4ODA9q3b4/WrVvL6ps1awYXFxd06dIFANC1a1cMHToUkyZNQmxsLEpKShAeHo7g4GDpUvuXX34ZS5cuRWhoKObNm4dTp05h1apV+PDDD6X1Tp8+HQMGDMD777+PwMBAbN26FUePHpUusbewsMCMGTOwfPlydO7cGe7u7li0aBF0Ol2lq9yIiIhImWodhI4ePYpBgwZJzyMiIgAAISEhiIuLq9E6Nm/ejPDwcAwePBiWlpYYMWIEVq9eLfVrtVrs27cPYWFh8PHxgaOjI6KiomT3Gurbty+2bNmChQsXYsGCBejcuTN27tyJbt26STVz585FYWEhJk+ejPz8fPTr1w8JCQmwsbGp7bSJiIioCbqv+wg1dbyPEFHTxvsIETVNDXofISIiIqLGgkGIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSr1kEoOTkZw4cPh06ng4WFBXbu3Cn1lZSUYN68efDy8oKdnR10Oh3GjRuHy5cvy9aRl5eHMWPGQKPRwN7eHqGhoSgoKJDVnDhxAk8++SRsbGzg6uqKmJiYSmPZvn07PDw8YGNjAy8vL+zevVvWL4RAVFQU2rZtC1tbW/j7++PMmTO1nTIRERE1UbUOQoWFhejevTvWrl1bqe/GjRs4duwYFi1ahGPHjuGrr75CVlYWnnvuOVndmDFjkJGRgcTERMTHxyM5ORmTJ0+W+k0mE4YMGQI3NzekpaXhvffew5IlS7B+/Xqp5tChQxg9ejRCQ0Nx/PhxBAUFISgoCKdOnZJqYmJisHr1asTGxiI1NRV2dnYICAjArVu3ajttIiIiaoIshBCizgtbWGDHjh0ICgq6a82RI0fg6+uL8+fPo3379jh9+jQ8PT1x5MgR9OrVCwCQkJCAYcOG4dKlS9DpdFi3bh3eeOMNGAwGqFQqAMD8+fOxc+dOZGZmAgBGjRqFwsJCxMfHS9vq06cPvL29ERsbCyEEdDodZs2ahdmzZwMAjEYjnJ2dERcXh+Dg4HvOz2QyQavVwmg0QqPR1HU3EdFDKmXD7IYeQp3oQ1c09BCIHmq1ef+u93OEjEYjLCwsYG9vDwBISUmBvb29FIIAwN/fH5aWlkhNTZVq+vfvL4UgAAgICEBWVhauXbsm1fj7+8u2FRAQgJSUFABAdnY2DAaDrEar1cLPz0+quVNRURFMJpPsQURERE1XvQahW7duYd68eRg9erSUyAwGA5ycnGR11tbWcHBwgMFgkGqcnZ1lNRXP71Vze//ty1VVc6fo6GhotVrp4erqWus5ExERUeNRb0GopKQEL730EoQQWLduXX1txqwiIyNhNBqlx8WLFxt6SERERFSPrOtjpRUh6Pz589i/f7/s+zkXFxfk5ubK6ktLS5GXlwcXFxepJicnR1ZT8fxeNbf3V7S1bdtWVuPt7V3luNVqNdRqdW2nS0RERI2U2T8RqghBZ86cwXfffYfWrVvL+vV6PfLz85GWlia17d+/H+Xl5fDz85NqkpOTUVJSItUkJiaiS5cuaNWqlVSTlJQkW3diYiL0ej0AwN3dHS4uLrIak8mE1NRUqYaIiIiUrdZBqKCgAOnp6UhPTwfw10nJ6enpuHDhAkpKSjBy5EgcPXoUmzdvRllZGQwGAwwGA4qLiwEAXbt2xdChQzFp0iQcPnwYBw8eRHh4OIKDg6HT6QAAL7/8MlQqFUJDQ5GRkYFt27Zh1apViIiIkMYxffp0JCQk4P3330dmZiaWLFmCo0ePIjw8HMBfV7TNmDEDy5cvxzfffIOTJ09i3Lhx0Ol01V7lRkRERMpR68vnDxw4gEGDBlVqDwkJwZIlS+Du7l7lct9//z0GDhwI4K8bKoaHh+Pbb7+FpaUlRowYgdWrV6NFixZS/YkTJxAWFoYjR47A0dERU6dOxbx582Tr3L59OxYuXIjff/8dnTt3RkxMDIYNGyb1CyGwePFirF+/Hvn5+ejXrx8+/vhjPProozWaKy+fJ2raePk8UdNUm/fv+7qPUFPHIETUtDEIETVND9V9hIiIiIgeVgxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYtQ5CycnJGD58OHQ6HSwsLLBz505ZvxACUVFRaNu2LWxtbeHv748zZ87IavLy8jBmzBhoNBrY29sjNDQUBQUFspoTJ07gySefhI2NDVxdXRETE1NpLNu3b4eHhwdsbGzg5eWF3bt313osREREpFy1DkKFhYXo3r071q5dW2V/TEwMVq9ejdjYWKSmpsLOzg4BAQG4deuWVDNmzBhkZGQgMTER8fHxSE5OxuTJk6V+k8mEIUOGwM3NDWlpaXjvvfewZMkSrF+/Xqo5dOgQRo8ejdDQUBw/fhxBQUEICgrCqVOnajUWIiIiUi4LIYSo88IWFtixYweCgoIA/PUJjE6nw6xZszB79mwAgNFohLOzM+Li4hAcHIzTp0/D09MTR44cQa9evQAACQkJGDZsGC5dugSdTod169bhjTfegMFggEqlAgDMnz8fO3fuRGZmJgBg1KhRKCwsRHx8vDSePn36wNvbG7GxsTUay72YTCZotVoYjUZoNJq67iYiekilbJjd0EOoE33oioYeAtFDrTbv32Y9Ryg7OxsGgwH+/v5Sm1arhZ+fH1JSUgAAKSkpsLe3l0IQAPj7+8PS0hKpqalSTf/+/aUQBAABAQHIysrCtWvXpJrbt1NRU7GdmozlTkVFRTCZTLIHERERNV1mDUIGgwEA4OzsLGt3dnaW+gwGA5ycnGT91tbWcHBwkNVUtY7bt3G3mtv77zWWO0VHR0Or1UoPV1fXGsyaiIiIGiteNXabyMhIGI1G6XHx4sWGHhIRERHVI7MGIRcXFwBATk6OrD0nJ0fqc3FxQW5urqy/tLQUeXl5spqq1nH7Nu5Wc3v/vcZyJ7VaDY1GI3sQERFR02XWIOTu7g4XFxckJSVJbSaTCampqdDr9QAAvV6P/Px8pKWlSTX79+9HeXk5/Pz8pJrk5GSUlJRINYmJiejSpQtatWol1dy+nYqaiu3UZCxERESkbLUOQgUFBUhPT0d6ejqAv05KTk9Px4ULF2BhYYEZM2Zg+fLl+Oabb3Dy5EmMGzcOOp1OurKsa9euGDp0KCZNmoTDhw/j4MGDCA8PR3BwMHQ6HQDg5ZdfhkqlQmhoKDIyMrBt2zasWrUKERER0jimT5+OhIQEvP/++8jMzMSSJUtw9OhRhIeHA0CNxkJERETKZl3bBY4ePYpBgwZJzyvCSUhICOLi4jB37lwUFhZi8uTJyM/PR79+/ZCQkAAbGxtpmc2bNyM8PByDBw+GpaUlRowYgdWrV0v9Wq0W+/btQ1hYGHx8fODo6IioqCjZvYb69u2LLVu2YOHChViwYAE6d+6MnTt3olu3blJNTcZCREREynVf9xFq6ngfIaKmjfcRImqaGuw+QkRERESNCYMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmW2YNQWVkZFi1aBHd3d9ja2uKRRx7Bm2++CSGEVCOEQFRUFNq2bQtbW1v4+/vjzJkzsvXk5eVhzJgx0Gg0sLe3R2hoKAoKCmQ1J06cwJNPPgkbGxu4uroiJiam0ni2b98ODw8P2NjYwMvLC7t37zb3lImIiKiRMnsQevfdd7Fu3TqsWbMGp0+fxrvvvouYmBh89NFHUk1MTAxWr16N2NhYpKamws7ODgEBAbh165ZUM2bMGGRkZCAxMRHx8fFITk7G5MmTpX6TyYQhQ4bAzc0NaWlpeO+997BkyRKsX79eqjl06BBGjx6N0NBQHD9+HEFBQQgKCsKpU6fMPW0iIiJqhCzE7R/VmMGzzz4LZ2dnbNiwQWobMWIEbG1t8a9//QtCCOh0OsyaNQuzZ88GABiNRjg7OyMuLg7BwcE4ffo0PD09ceTIEfTq1QsAkJCQgGHDhuHSpUvQ6XRYt24d3njjDRgMBqhUKgDA/PnzsXPnTmRmZgIARo0ahcLCQsTHx0tj6dOnD7y9vREbG3vPuZhMJmi1WhiNRmg0GrPtIyJ6OKRsmN3QQ6gTfeiKhh4C0UOtNu/fZv9EqG/fvkhKSsKvv/4KAPjvf/+Ln376Cc888wwAIDs7GwaDAf7+/tIyWq0Wfn5+SElJAQCkpKTA3t5eCkEA4O/vD0tLS6Smpko1/fv3l0IQAAQEBCArKwvXrl2Tam7fTkVNxXbuVFRUBJPJJHsQERFR02Vt7hXOnz8fJpMJHh4esLKyQllZGd566y2MGTMGAGAwGAAAzs7OsuWcnZ2lPoPBACcnJ/lAra3h4OAgq3F3d6+0joq+Vq1awWAwVLudO0VHR2Pp0qV1mTYRERE1Qmb/ROiLL77A5s2bsWXLFhw7dgybNm3CihUrsGnTJnNvyuwiIyNhNBqlx8WLFxt6SERERFSPzP6J0Jw5czB//nwEBwcDALy8vHD+/HlER0cjJCQELi4uAICcnBy0bdtWWi4nJwfe3t4AABcXF+Tm5srWW1pairy8PGl5FxcX5OTkyGoqnt+rpqL/Tmq1Gmq1ui7TJiIiokbI7J8I3bhxA5aW8tVaWVmhvLwcAODu7g4XFxckJSVJ/SaTCampqdDr9QAAvV6P/Px8pKWlSTX79+9HeXk5/Pz8pJrk5GSUlJRINYmJiejSpQtatWol1dy+nYqaiu0QERGRspk9CA0fPhxvvfUWdu3ahd9//x07duzABx98gBdeeAEAYGFhgRkzZmD58uX45ptvcPLkSYwbNw46nQ5BQUEAgK5du2Lo0KGYNGkSDh8+jIMHDyI8PBzBwcHQ6XQAgJdffhkqlQqhoaHIyMjAtm3bsGrVKkREREhjmT59OhISEvD+++8jMzMTS5YswdGjRxEeHm7uaRMREVEjZPavxj766CMsWrQIr7/+OnJzc6HT6fDqq68iKipKqpk7dy4KCwsxefJk5Ofno1+/fkhISICNjY1Us3nzZoSHh2Pw4MGwtLTEiBEjsHr1aqlfq9Vi3759CAsLg4+PDxwdHREVFSW711Dfvn2xZcsWLFy4EAsWLEDnzp2xc+dOdOvWzdzTJiIiokbI7PcRakp4HyGipo33ESJqmhr0PkJEREREjQWDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVa9BKE//vgD//jHP9C6dWvY2trCy8sLR48elfqFEIiKikLbtm1ha2sLf39/nDlzRraOvLw8jBkzBhqNBvb29ggNDUVBQYGs5sSJE3jyySdhY2MDV1dXxMTEVBrL9u3b4eHhARsbG3h5eWH37t31MWUiIiJqhMwehK5du4YnnngCzZo1w549e/DLL7/g/fffR6tWraSamJgYrF69GrGxsUhNTYWdnR0CAgJw69YtqWbMmDHIyMhAYmIi4uPjkZycjMmTJ0v9JpMJQ4YMgZubG9LS0vDee+9hyZIlWL9+vVRz6NAhjB49GqGhoTh+/DiCgoIQFBSEU6dOmXvaRERE1AhZCCGEOVc4f/58HDx4ED/++GOV/UII6HQ6zJo1C7NnzwYAGI1GODs7Iy4uDsHBwTh9+jQ8PT1x5MgR9OrVCwCQkJCAYcOG4dKlS9DpdFi3bh3eeOMNGAwGqFQqads7d+5EZmYmAGDUqFEoLCxEfHy8tP0+ffrA29sbsbGx95yLyWSCVquF0WiERqO5r/1CRA+flA2zG3oIdaIPXdHQQyB6qNXm/dvsnwh988036NWrF/7+97/DyckJPXr0wKeffir1Z2dnw2AwwN/fX2rTarXw8/NDSkoKACAlJQX29vZSCAIAf39/WFpaIjU1Varp37+/FIIAICAgAFlZWbh27ZpUc/t2KmoqtnOnoqIimEwm2YOIiIiaLrMHod9++w3r1q1D586dsXfvXkyZMgXTpk3Dpk2bAAAGgwEA4OzsLFvO2dlZ6jMYDHBycpL1W1tbw8HBQVZT1Tpu38bdair67xQdHQ2tVis9XF1daz1/IiIiajzMHoTKy8vRs2dPvP322+jRowcmT56MSZMm1eirqIYWGRkJo9EoPS5evNjQQyIiIqJ6ZPYg1LZtW3h6esraunbtigsXLgAAXFxcAAA5OTmympycHKnPxcUFubm5sv7S0lLk5eXJaqpax+3buFtNRf+d1Go1NBqN7EFERERNl9mD0BNPPIGsrCxZ26+//go3NzcAgLu7O1xcXJCUlCT1m0wmpKamQq/XAwD0ej3y8/ORlpYm1ezfvx/l5eXw8/OTapKTk1FSUiLVJCYmokuXLtIVanq9XradipqK7RAREZGymT0IzZw5Ez///DPefvttnD17Flu2bMH69esRFhYGALCwsMCMGTOwfPlyfPPNNzh58iTGjRsHnU6HoKAgAH99gjR06FBMmjQJhw8fxsGDBxEeHo7g4GDodDoAwMsvvwyVSoXQ0FBkZGRg27ZtWLVqFSIiIqSxTJ8+HQkJCXj//feRmZmJJUuW4OjRowgPDzf3tImIiKgRsjb3Cnv37o0dO3YgMjISy5Ytg7u7O1auXIkxY8ZINXPnzkVhYSEmT56M/Px89OvXDwkJCbCxsZFqNm/ejPDwcAwePBiWlpYYMWIEVq9eLfVrtVrs27cPYWFh8PHxgaOjI6KiomT3Gurbty+2bNmChQsXYsGCBejcuTN27tyJbt26mXvaRERE1AiZ/T5CTQnvI0TUtPE+QkRNU4PeR4iIiIiosWAQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFqvcg9M4778DCwgIzZsyQ2m7duoWwsDC0bt0aLVq0wIgRI5CTkyNb7sKFCwgMDETz5s3h5OSEOXPmoLS0VFZz4MAB9OzZE2q1Gp06dUJcXFyl7a9duxYdOnSAjY0N/Pz8cPjw4fqYJhERETVC9RqEjhw5gk8++QSPP/64rH3mzJn49ttvsX37dvzwww+4fPkyXnzxRam/rKwMgYGBKC4uxqFDh7Bp0ybExcUhKipKqsnOzkZgYCAGDRqE9PR0zJgxAxMnTsTevXulmm3btiEiIgKLFy/GsWPH0L17dwQEBCA3N7c+p01ERESNhIUQQtTHigsKCtCzZ098/PHHWL58Oby9vbFy5UoYjUa0adMGW7ZswciRIwEAmZmZ6Nq1K1JSUtCnTx/s2bMHzz77LC5fvgxnZ2cAQGxsLObNm4crV65ApVJh3rx52LVrF06dOiVtMzg4GPn5+UhISAAA+Pn5oXfv3lizZg0AoLy8HK6urpg6dSrmz59/zzmYTCZotVoYjUZoNBpz7yIiamApG2Y39BDqRB+6oqGHQPRQq837t3V9DSIsLAyBgYHw9/fH8uXLpfa0tDSUlJTA399favPw8ED79u2lIJSSkgIvLy8pBAFAQEAApkyZgoyMDPTo0QMpKSmydVTUVHwFV1xcjLS0NERGRkr9lpaW8Pf3R0pKSpVjLioqQlFRkfTcZDLd1z4gIiJ6kD5M/LWhh1BrM59+tEG3Xy9BaOvWrTh27BiOHDlSqc9gMEClUsHe3l7W7uzsDIPBINXcHoIq+iv6qqsxmUy4efMmrl27hrKysiprMjMzqxx3dHQ0li5dWvOJEhERUaNm9nOELl68iOnTp2Pz5s2wsbEx9+rrVWRkJIxGo/S4ePFiQw+JiIiI6pHZg1BaWhpyc3PRs2dPWFtbw9raGj/88ANWr14Na2trODs7o7i4GPn5+bLlcnJy4OLiAgBwcXGpdBVZxfN71Wg0Gtja2sLR0RFWVlZV1lSs405qtRoajUb2ICIioqbL7F+NDR48GCdPnpS1TZgwAR4eHpg3bx5cXV3RrFkzJCUlYcSIEQCArKwsXLhwAXq9HgCg1+vx1ltvITc3F05OTgCAxMREaDQaeHp6SjW7d++WbScxMVFah0qlgo+PD5KSkhAUFATgr5Olk5KSEB4ebu5pExERNbg+F9Y39BDqoGFP/jd7EGrZsiW6desma7Ozs0Pr1q2l9tDQUERERMDBwQEajQZTp06FXq9Hnz59AABDhgyBp6cnxo4di5iYGBgMBixcuBBhYWFQq9UAgNdeew1r1qzB3Llz8corr2D//v344osvsGvXLmm7ERERCAkJQa9eveDr64uVK1eisLAQEyZMMPe0iYiIqBGqt6vGqvPhhx/C0tISI0aMQFFREQICAvDxxx9L/VZWVoiPj8eUKVOg1+thZ2eHkJAQLFu2TKpxd3fHrl27MHPmTKxatQrt2rXDZ599hoCAAKlm1KhRuHLlCqKiomAwGODt7Y2EhIRKJ1ATERGRMtXbfYSaAt5HiKhp432EqKlpjD/T9fHzXJv3b/6tMSIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLOuGHoCifR/d0COovUGRDT0CIiIis2EQakApv/3Z0EOoNf2ghh4BERGR+fCrMSIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLLMHoejoaPTu3RstW7aEk5MTgoKCkJWVJau5desWwsLC0Lp1a7Ro0QIjRoxATk6OrObChQsIDAxE8+bN4eTkhDlz5qC0tFRWc+DAAfTs2RNqtRqdOnVCXFxcpfGsXbsWHTp0gI2NDfz8/HD48GFzT5mIiIgaKbMHoR9++AFhYWH4+eefkZiYiJKSEgwZMgSFhYVSzcyZM/Htt99i+/bt+OGHH3D58mW8+OKLUn9ZWRkCAwNRXFyMQ4cOYdOmTYiLi0NUVJRUk52djcDAQAwaNAjp6emYMWMGJk6ciL1790o127ZtQ0REBBYvXoxjx46he/fuCAgIQG5urrmnTURERI2QhRBC1OcGrly5AicnJ/zwww/o378/jEYj2rRpgy1btmDkyJEAgMzMTHTt2hUpKSno06cP9uzZg2effRaXL1+Gs7MzACA2Nhbz5s3DlStXoFKpMG/ePOzatQunTp2SthUcHIz8/HwkJCQAAPz8/NC7d2+sWbMGAFBeXg5XV1dMnToV8+fPv+fYTSYTtFotjEYjNBqNuXcNUjbMNvs665s+dEVDD4HIbBrjaxDg65DurjH+TNfHz3Nt3r/r/Rwho9EIAHBwcAAApKWloaSkBP7+/lKNh4cH2rdvj5SUFABASkoKvLy8pBAEAAEBATCZTMjIyJBqbl9HRU3FOoqLi5GWliarsbS0hL+/v1Rzp6KiIphMJtmDiIiImq56DULl5eWYMWMGnnjiCXTr1g0AYDAYoFKpYG9vL6t1dnaGwWCQam4PQRX9FX3V1ZhMJty8eRNXr15FWVlZlTUV67hTdHQ0tFqt9HB1da3bxImIiKhRqNcgFBYWhlOnTmHr1q31uRmziYyMhNFolB4XL15s6CERERFRPaq3vzUWHh6O+Ph4JCcno127dlK7i4sLiouLkZ+fL/tUKCcnBy4uLlLNnVd3VVxVdnvNnVea5eTkQKPRwNbWFlZWVrCysqqypmIdd1Kr1VCr1XWbMBERETU6Zv9ESAiB8PBw7NixA/v374e7u7us38fHB82aNUNSUpLUlpWVhQsXLkCv1wMA9Ho9Tp48Kbu6KzExERqNBp6enlLN7euoqKlYh0qlgo+Pj6ymvLwcSUlJUg0REREpm9k/EQoLC8OWLVvw9ddfo2XLltL5OFqtFra2ttBqtQgNDUVERAQcHByg0WgwdepU6PV69OnTBwAwZMgQeHp6YuzYsYiJiYHBYMDChQsRFhYmfWLz2muvYc2aNZg7dy5eeeUV7N+/H1988QV27doljSUiIgIhISHo1asXfH19sXLlShQWFmLChAnmnjYRERE1QmYPQuvWrQMADBw4UNa+ceNGjB8/HgDw4YcfwtLSEiNGjEBRURECAgLw8ccfS7VWVlaIj4/HlClToNfrYWdnh5CQECxbtkyqcXd3x65duzBz5kysWrUK7dq1w2effYaAgACpZtSoUbhy5QqioqJgMBjg7e2NhISESidQExERkTKZPQjV5LZENjY2WLt2LdauXXvXGjc3N+zevbva9QwcOBDHjx+vtiY8PBzh4eH3HBMREREpD//WGBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVa9/fV5IiKixuzDxF8begi11qehB9AIMQgRkVmkbJjd0EMgIqo1BiGihxD/J0pNTWMMyvyZVgYGIaKHUJ8L6xt6CEREisAgRETUyDTGT1eIHla8aoyIiIgUi58IUZPH/z0TEdHd8BMhIiIiUiwGISIiIlIsBiEiIiJSLJ4jRLXC822IiKgp4SdCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFiKCEJr165Fhw4dYGNjAz8/Pxw+fLihh0REREQPgSYfhLZt24aIiAgsXrwYx44dQ/fu3REQEIDc3NyGHhoRERE1sCYfhD744ANMmjQJEyZMgKenJ2JjY9G8eXN8/vnnDT00IiIiamBN+q/PFxcXIy0tDZGRkVKbpaUl/P39kZKSUqm+qKgIRUVF0nOj0QgAMJlM9TK+wptF9y4iIiJqwurjPbZinUKIe9Y26SB09epVlJWVwdnZWdbu7OyMzMzMSvXR0dFYunRppXZXV9d6GyMREZGiTV1Tb6u+fv06tFpttTVNOgjVVmRkJCIiIqTn5eXlyMvLQ+vWrWFhYWHWbZlMJri6uuLixYvQaDRmXffDoKnPD2j6c+T8Gr+mPsemPj+g6c+xvuYnhMD169eh0+nuWdukg5CjoyOsrKyQk5Mja8/JyYGLi0ulerVaDbVaLWuzt7evzyFCo9E0yR/uCk19fkDTnyPn1/g19Tk29fkBTX+O9TG/e30SVKFJnyytUqng4+ODpKQkqa28vBxJSUnQ6/UNODIiIiJ6GDTpT4QAICIiAiEhIejVqxd8fX2xcuVKFBYWYsKECQ09NCIiImpgTT4IjRo1CleuXEFUVBQMBgO8vb2RkJBQ6QTqB02tVmPx4sWVvoprKpr6/ICmP0fOr/Fr6nNs6vMDmv4cH4b5WYiaXFtGRERE1AQ16XOEiIiIiKrDIERERESKxSBEREREisUgRERERIrFIERERESKxSBUT9566y307dsXzZs3r/HdqYUQiIqKQtu2bWFrawt/f3+cOXNGVpOXl4cxY8ZAo9HA3t4eoaGhKCgoqIcZ3Fttx/L777/DwsKiysf27duluqr6t27d+iCmJFOXfT1w4MBKY3/ttddkNRcuXEBgYCCaN28OJycnzJkzB6WlpfU5lSrVdn55eXmYOnUqunTpAltbW7Rv3x7Tpk2T/jhxhYY8fmvXrkWHDh1gY2MDPz8/HD58uNr67du3w8PDAzY2NvDy8sLu3btl/TV5TT5ItZnfp59+iieffBKtWrVCq1at4O/vX6l+/PjxlY7V0KFD63sa1arNHOPi4iqN38bGRlbTmI9hVb9PLCwsEBgYKNU8TMcwOTkZw4cPh06ng4WFBXbu3HnPZQ4cOICePXtCrVajU6dOiIuLq1RT29d1rQmqF1FRUeKDDz4QERERQqvV1miZd955R2i1WrFz507x3//+Vzz33HPC3d1d3Lx5U6oZOnSo6N69u/j555/Fjz/+KDp16iRGjx5dT7OoXm3HUlpaKv73v//JHkuXLhUtWrQQ169fl+oAiI0bN8rqbt8HD0pd9vWAAQPEpEmTZGM3Go1Sf2lpqejWrZvw9/cXx48fF7t37xaOjo4iMjKyvqdTSW3nd/LkSfHiiy+Kb775Rpw9e1YkJSWJzp07ixEjRsjqGur4bd26VahUKvH555+LjIwMMWnSJGFvby9ycnKqrD948KCwsrISMTEx4pdffhELFy4UzZo1EydPnpRqavKafFBqO7+XX35ZrF27Vhw/flycPn1ajB8/Xmi1WnHp0iWpJiQkRAwdOlR2rPLy8h7UlCqp7Rw3btwoNBqNbPwGg0FW05iP4Z9//imb26lTp4SVlZXYuHGjVPMwHcPdu3eLN954Q3z11VcCgNixY0e19b/99pto3ry5iIiIEL/88ov46KOPhJWVlUhISJBqarvP6oJBqJ5t3LixRkGovLxcuLi4iPfee09qy8/PF2q1Wvz73/8WQgjxyy+/CADiyJEjUs2ePXuEhYWF+OOPP8w+9uqYayze3t7ilVdekbXV5AVU3+o6vwEDBojp06fftX/37t3C0tJS9st63bp1QqPRiKKiIrOMvSbMdfy++OILoVKpRElJidTWUMfP19dXhIWFSc/LysqETqcT0dHRVda/9NJLIjAwUNbm5+cnXn31VSFEzV6TD1Jt53en0tJS0bJlS7Fp0yapLSQkRDz//PPmHmqd1XaO9/r92tSO4YcffihatmwpCgoKpLaH7RhWqMnvgblz54rHHntM1jZq1CgREBAgPb/ffVYT/GrsIZGdnQ2DwQB/f3+pTavVws/PDykpKQCAlJQU2Nvbo1evXlKNv78/LC0tkZqa+kDHa46xpKWlIT09HaGhoZX6wsLC4OjoCF9fX3z++ecQD/i+n/czv82bN8PR0RHdunVDZGQkbty4IVuvl5eX7M7mAQEBMJlMyMjIMP9E7sJcP0tGoxEajQbW1vKb1D/o41dcXIy0tDTZ68fS0hL+/v7S6+dOKSkpsnrgr2NRUV+T1+SDUpf53enGjRsoKSmBg4ODrP3AgQNwcnJCly5dMGXKFPz5559mHXtN1XWOBQUFcHNzg6urK55//nnZ66ipHcMNGzYgODgYdnZ2svaH5RjW1r1eg+bYZzXR5P/ERmNhMBgAoNKf/nB2dpb6DAYDnJycZP3W1tZwcHCQah4Uc4xlw4YN6Nq1K/r27StrX7ZsGZ566ik0b94c+/btw+uvv46CggJMmzbNbOO/l7rO7+WXX4abmxt0Oh1OnDiBefPmISsrC1999ZW03qqOcUXfg2KO43f16lW8+eabmDx5sqy9IY7f1atXUVZWVuW+zczMrHKZux2L219vFW13q3lQ6jK/O82bNw86nU72pjJ06FC8+OKLcHd3x7lz57BgwQI888wzSElJgZWVlVnncC91mWOXLl3w+eef4/HHH4fRaMSKFSvQt29fZGRkoF27dk3qGB4+fBinTp3Chg0bZO0P0zGsrbu9Bk0mE27evIlr167d9899TTAI1cL8+fPx7rvvVltz+vRpeHh4PKARmV9N53i/bt68iS1btmDRokWV+m5v69GjBwoLC/Hee++Z5Y20vud3eyjw8vJC27ZtMXjwYJw7dw6PPPJInddbUw/q+JlMJgQGBsLT0xNLliyR9dXn8aO6eeedd7B161YcOHBAdjJxcHCw9G8vLy88/vjjeOSRR3DgwAEMHjy4IYZaK3q9Hnq9Xnret29fdO3aFZ988gnefPPNBhyZ+W3YsAFeXl7w9fWVtTf2Y/gwYBCqhVmzZmH8+PHV1nTs2LFO63ZxcQEA5OTkoG3btlJ7Tk4OvL29pZrc3FzZcqWlpcjLy5OWv181neP9juXLL7/EjRs3MG7cuHvW+vn54c0330RRUdF9/2G+BzW/Cn5+fgCAs2fP4pFHHoGLi0ulKx5ycnIAwCzH8EHM7/r16xg6dChatmyJHTt2oFmzZtXWm/P43Y2joyOsrKykfVkhJyfnrvNxcXGptr4mr8kHpS7zq7BixQq88847+O677/D4449XW9uxY0c4Ojri7NmzD/xN9H7mWKFZs2bo0aMHzp49C6DpHMPCwkJs3boVy5Ytu+d2GvIY1tbdXoMajQa2trawsrK675+JGjHb2UZUpdqeLL1ixQqpzWg0Vnmy9NGjR6WavXv3NujJ0nUdy4ABAypdbXQ3y5cvF61atarzWOvCXPv6p59+EgDEf//7XyHE/50sffsVD5988onQaDTi1q1b5pvAPdR1fkajUfTp00cMGDBAFBYW1mhbD+r4+fr6ivDwcOl5WVmZ+Nvf/lbtydLPPvusrE2v11c6Wbq61+SDVNv5CSHEu+++KzQajUhJSanRNi5evCgsLCzE119/fd/jrYu6zPF2paWlokuXLmLmzJlCiKZxDIX4631ErVaLq1ev3nMbDX0MK6CGJ0t369ZN1jZ69OhKJ0vfz89EjcZqtjWRzPnz58Xx48ely8OPHz8ujh8/LrtMvEuXLuKrr76Snr/zzjvC3t5efP311+LEiRPi+eefr/Ly+R49eojU1FTx008/ic6dOzfo5fPVjeXSpUuiS5cuIjU1VbbcmTNnhIWFhdizZ0+ldX7zzTfi008/FSdPnhRnzpwRH3/8sWjevLmIioqq9/ncqbbzO3v2rFi2bJk4evSoyM7OFl9//bXo2LGj6N+/v7RMxeXzQ4YMEenp6SIhIUG0adOmwS6fr838jEaj8PPzE15eXuLs2bOyy3VLS0uFEA17/LZu3SrUarWIi4sTv/zyi5g8ebKwt7eXrtAbO3asmD9/vlR/8OBBYW1tLVasWCFOnz4tFi9eXOXl8/d6TT4otZ3fO++8I1Qqlfjyyy9lx6rid9D169fF7NmzRUpKisjOzhbfffed6Nmzp+jcufMDDeX3M8elS5eKvXv3inPnzom0tDQRHBwsbGxsREZGhlTTmI9hhX79+olRo0ZVan/YjuH169el9zoA4oMPPhDHjx8X58+fF0IIMX/+fDF27FipvuLy+Tlz5ojTp0+LtWvXVnn5fHX7zBwYhOpJSEiIAFDp8f3330s1+P/vt1KhvLxcLFq0SDg7Owu1Wi0GDx4ssrKyZOv9888/xejRo0WLFi2ERqMREyZMkIWrB+leY8nOzq40ZyGEiIyMFK6urqKsrKzSOvfs2SO8vb1FixYthJ2dnejevbuIjY2tsra+1XZ+Fy5cEP379xcODg5CrVaLTp06iTlz5sjuIySEEL///rt45plnhK2trXB0dBSzZs2SXX7+oNR2ft9//32VP9MARHZ2thCi4Y/fRx99JNq3by9UKpXw9fUVP//8s9Q3YMAAERISIqv/4osvxKOPPipUKpV47LHHxK5du2T9NXlNPki1mZ+bm1uVx2rx4sVCCCFu3LghhgwZItq0aSOaNWsm3NzcxKRJk8z6BlMXtZnjjBkzpFpnZ2cxbNgwcezYMdn6GvMxFEKIzMxMAUDs27ev0roetmN4t98RFXMKCQkRAwYMqLSMt7e3UKlUomPHjrL3xArV7TNzsBDiAV+XTERERPSQ4H2EiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEix/j9s6l+dZQDwjAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAASwpJREFUeJzt3X9YFOX+P/4nP9wF0V1EBNwjIqapJImC4JppJkdMskg9R8yjaKhlYCr+gjL8kUWRlZomWSZ+ztGj6UkrVJQ0o3RDQTkqCamRWp4FDdkVVH7e3z/6Mm9HUAEXEeb5uK69Lve+XzNz3zMs+3R3ZrASQggQERERKZB1Yw+AiIiIqLEwCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIETVjEydORKdOnRp7GFRPTzzxBJ544gmLrnPRokWwsrKy6DqJmjIGIaL75M0338QzzzwDV1dXWFlZYdGiRTXWbd++HUFBQdDpdFCr1ejQoQNGjx6NkydP3t8B38XFixexaNEiZGZmNvZQ6BbXrl3DokWLcODAgcYeSr1dv34d4eHh6NmzJ7RaLVq1aoVevXphxYoVKCsra+zhUTNi29gDIFKKBQsWwM3NDb1798aePXtuW3fixAm0adMGM2bMgLOzM4xGIz777DP4+/vDYDCgV69etd7mJ598gsrKSksMv5qLFy9i8eLF6NSpE3x8fBpkG1Q/165dw+LFiwGg2idKCxYsQHR0dCOMqm6uX7+OrKwsDB8+HJ06dYK1tTUOHTqEWbNmIS0tDZs2bWrsIVIzwSBEdJ/k5uaiU6dOuHz5Mtq1a3fbutjY2GptkydPRocOHbBmzRokJCTUepstWrSo11ip/m7cuAGVSgVr6+ofuBcXF8PBwaERRvV/bG1tYWv74P/qd3Jywo8//ihre+mll6DVarFq1Sq8//77cHNza6TRUXPCr8aILOT3339HeHi49JWWp6cnpk2bhtLSUgC4p3N1XFxc0LJlSxQWFtZpuZrOEdq8eTN8fX3RunVraDQaeHt7Y8WKFbKaX375BX/729/g5OSEli1bol+/fti5c6fUf+DAAfTt2xcAMGnSJFhZWcHKygqJiYlSzdatW+Hr6wt7e3s4OzvjH//4B37//fdq42vVqhV++eUXBAUFwcHBATqdDkuWLIEQQlZbWVmJ5cuX45FHHoGdnR1cXV3x4osv4sqVK3XaJ8Ddj1Vt9kHVfrCyssLmzZuxYMEC/OUvf0HLli1hNpuluZ09exbDhw9H69atMW7cuHuaS2lpKWJjY+Hr6wutVgsHBwc8/vjj+Pbbb6WaX3/9VQraixcvlo5N1VexNZ0jVF5ejjfeeAMPPfQQ1Go1OnXqhFdffRUlJSWyuk6dOuHpp5/GDz/8AH9/f9jZ2aFz5874f//v/8nqysrKsHjxYnTt2hV2dnZo27YtBgwYgJSUlFocnTur+nmu62uB6HYe/P8WEDUBFy9ehL+/PwoLCzF16lR0794dv//+O7Zt24Zr165BpVLVeZ2FhYUoKyuD0WjE8uXLYTabMWTIkHsaZ0pKCsaOHYshQ4bgnXfeAQCcOnUKBw8exIwZMwAAeXl56N+/P65du4ZXXnkFbdu2xYYNG/DMM89g27ZteO6559CjRw8sWbIEsbGxmDp1Kh5//HEAQP/+/QEAiYmJmDRpEvr27Yu4uDjk5eVhxYoVOHjwII4dOwZHR0dpTBUVFRg2bBj69euH+Ph4JCcnY+HChSgvL8eSJUukuhdffFFa7yuvvILc3FysWrUKx44dw8GDB2v96VdtjlVt9sHN3njjDahUKsyZMwclJSXS8S4vL0dQUBAGDBiAZcuWoWXLlvc0F7PZjE8//RRjx47FlClTcPXqVaxbtw5BQUE4fPgwfHx80K5dO6xZswbTpk3Dc889h5EjRwIAHn300dvuk8mTJ2PDhg0YPXo0Zs+ejbS0NMTFxeHUqVPYvn27rPbMmTMYPXo0wsPDERYWhs8++wwTJ06Er68vHnnkEQB/hq24uDhMnjwZ/v7+MJvNSE9Px9GjR/HXv/61VsepSmlpKcxmM65fv4709HQsW7YMHh4e6NKlS53WQ3Rbgoju2YQJE4S1tbU4cuRItb7KykrZ80uXLgkAYuHChXdcZ7du3QQAAUC0atVKLFiwQFRUVNRpXGFhYcLDw0N6PmPGDKHRaER5efltl5k5c6YAIL7//nup7erVq8LT01N06tRJGsORI0cEALF+/XrZ8qWlpcLFxUX07NlTXL9+XWpPSkoSAERsbKxsfADE9OnTpbbKykoRHBwsVCqVuHTpkhBCiO+//14AEBs3bpRtKzk5ucb2O6nNsartPvj2228FANG5c2dx7do12bqq5hYdHS1rr8tcBg0aJAYNGiQ9Ly8vFyUlJbLlrly5IlxdXcULL7wgtd3pZ2zhwoXi5l/9mZmZAoCYPHmyrG7OnDkCgNi/f7/U5uHhIQCI1NRUqS0/P1+o1Woxe/Zsqa1Xr14iODi42rbr49///rf0OgAg/Pz8xPHjxy2ybiIhhOBXY0T3qLKyEjt27MCIESPg5+dXrb++lyqvX78eycnJ+Oijj9CjRw9cv34dFRUV9zRWR0dHFBcX3/Eril27dsHf3x8DBgyQ2lq1aoWpU6fi119/xU8//XTHbaSnpyM/Px8vv/wy7OzspPbg4GB079692tdLABAZGSn928rKCpGRkSgtLcU333wD4M+v2bRaLf7617/i8uXL0sPX1xetWrWSfTV0J7U9VnXdB2FhYbC3t69xm9OmTZM9v5e52NjYSJ82VVZWoqCgAOXl5fDz88PRo0drtQ9utWvXLgBAVFSUrH327NkAUO14eXl5SZ8AAkC7du3QrVs3/PLLL1Kbo6MjsrKycPr06XqN6WaDBw9GSkoKtm7dipdeegktWrRAcXHxPa+XqAq/GiO6R5cuXYLZbEbPnj0tul69Xi/9OzQ0FD169AAALFu2rN7rfPnll/H555/jqaeewl/+8hcMHToUf//73zFs2DCp5ty5cwgICKi2bNX2z507d8e5njt3DgDQrVu3an3du3fHDz/8IGuztrZG586dZW0PP/wwgD/PdwGA06dPw2QywcXFpcZt5ufn33Y8N6vtsarrPvD09KxxPba2tujQoYOs7V7nsmHDBrz33nvIzs6WXUZ+uzHczblz52BtbV3tqyY3Nzc4OjpKx7NKx44dq62jTZs2svOblixZgmeffRYPP/wwevbsiWHDhmH8+PF3/HrudlxdXeHq6goAGD16NN566y389a9/xenTp3myNFkEgxBRE9CmTRs8+eST2Lhx4z0FIRcXF2RmZmLPnj3YvXs3du/ejfXr12PChAnYsGGDBUdsWZWVlXBxccHGjRtr7L/TVXj3w+0+DVKr1dWuHruXufzrX//CxIkTERISgrlz58LFxQU2NjaIi4vD2bNn6z8B1P6TSxsbmxrbxU0ntw8cOBBnz57Fl19+ib179+LTTz/FBx98gISEBEyePPmexjl69Gi89tpr+PLLL/Hiiy/e07qIAAYhonvWrl07aDSaBr/h4fXr12Eyme55PSqVCiNGjMCIESNQWVmJl19+GR9//DFef/11dOnSBR4eHsjJyam2XHZ2NgDAw8MDwO3fOKv6c3Jy8OSTT8r6cnJypP4qlZWV+OWXX6RPgQDg559/BvB/Vwg99NBD+Oabb/DYY4/dNnTURm2PVW33QX3cy1y2bduGzp0744svvpDt/4ULF8rq6vJ1rIeHByorK3H69GnpEy/gz5PmCwsL6z1XJycnTJo0CZMmTUJRUREGDhyIRYsW3XMQun79OgBY5LVABPDyeaJ7Zm1tjZCQEHz99ddIT0+v1i9uuQz8bmr6auTXX3/Fvn37ajyvpS7++OMP2XNra2vp64qqS6WHDx+Ow4cPw2AwSHXFxcVYu3YtOnXqBC8vLwCQ7odz62XMfn5+cHFxQUJCguzy6927d+PUqVMIDg6uNq5Vq1ZJ/xZCYNWqVWjRooV0ldzf//53VFRU4I033qi2bHl5ea0vpa7tsartPqiPe5lL1acxN/9MpaWlycYJQLo6rTb7Zfjw4QCA5cuXy9rff/99AKjxeN3NrT9nrVq1QpcuXapdjn8nly9frvG18+mnnwLAPb8WiKrwEyEiC3jrrbewd+9eDBo0CFOnTkWPHj3wv//9D1u3bsUPP/wAR0dH/POf/8S5c+dw7do1AEBqaiqWLl0KABg/frz0P29vb28MGTIEPj4+aNOmDU6fPo1169ahrKwMb7/99j2Nc/LkySgoKMCTTz6JDh064Ny5c/jwww/h4+MjfRoQHR2Nf//733jqqafwyiuvwMnJCRs2bEBubi7+85//SF/1PPTQQ3B0dERCQgJat24NBwcHBAQEwNPTE++88w4mTZqEQYMGYezYsdLl8506dcKsWbNkY7Kzs0NycjLCwsIQEBCA3bt3Y+fOnXj11Velr4kGDRqEF198EXFxccjMzMTQoUPRokULnD59Glu3bsWKFSswevRoix2r2u6D+riXuTz99NP44osv8NxzzyE4OBi5ublISEiAl5cXioqKpDp7e3t4eXlhy5YtePjhh+Hk5ISePXvWeG5Ur169EBYWhrVr16KwsBCDBg3C4cOHsWHDBoSEhGDw4MF1nqOXlxeeeOIJ+Pr6wsnJCenp6di2bZvspPi7+de//oWEhASEhISgc+fOuHr1Kvbs2YOUlBSMGDGi2qeNRPXWmJesETUn586dExMmTBDt2rUTarVadO7cWUREREiXOw8aNEh2GfDNj2+//VZaz8KFC4Wfn59o06aNsLW1FTqdToSGhtbrkuFbL5/ftm2bGDp0qHBxcREqlUp07NhRvPjii+J///ufbLmzZ8+K0aNHC0dHR2FnZyf8/f1FUlJStfV/+eWXwsvLS9ja2la7lH7Lli2id+/eQq1WCycnJzFu3Djx22+/VRufg4ODOHv2rBg6dKho2bKlcHV1FQsXLqzxVgFr164Vvr6+wt7eXrRu3Vp4e3uLefPmiYsXL9Zpv9ztWNV2H1RdPr9169Zq26ia2+3UZi63Xj5fWVkp3nrrLeHh4SHUarXo3bu3SEpKqnachRDi0KFDwtfXV6hUKtml9LdePi+EEGVlZWLx4sXC09NTtGjRQri7u4uYmBhx48YNWZ2Hh0eNl8XfOs6lS5cKf39/4ejoKOzt7UX37t3Fm2++KUpLS2+7P2515MgR8be//U107NhRqNVq4eDgIPr06SPef/99UVZWVuv1EN2NlRB1/NyeiMhCJk6ciG3btsk+zSAiup94jhAREREpFs8RImqCCgoKZH8X61Y2NjaNfkn5/VZUVHTXT5batWt328u/6f4oLS1FQUHBHWu0Wu09XR1IVBcMQkRN0MiRI/Hdd9/dtt/Dw0O6GaFSLFu2DIsXL75jTW5u7j398Vu6d4cOHbrrCdjr16/HxIkT78+ASPF4jhBRE5SRkXHHv1Rub2+Pxx577D6OqPH98ssvsj/zUJMBAwbI/uwH3X9XrlxBRkbGHWseeeQRtG/f/j6NiJSOQYiIiIgUiydLExERkWLxHKE7qKysxMWLF9G6det6/wVxIiIiur+EELh69Sp0Ot1db4DKIHQHFy9ehLu7e2MPg4iIiOrhwoUL6NChwx1rGITuoHXr1gD+3JEajaaRR0NERES1YTab4e7uLr2P3wmD0B1UfR2m0WgYhIiIiJqY2pzWwpOliYiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixbBt7AEREjebbuMYeQf0MjmnsERA1G/xEiIiIiBSLQYiIiIgUi1+NEZFiGX75o7GHUC/6wY09AqLmg58IERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWLVOQilpqZixIgR0Ol0sLKywo4dO6rVnDp1Cs888wy0Wi0cHBzQt29fnD9/Xuq/ceMGIiIi0LZtW7Rq1QqjRo1CXl6ebB3nz59HcHAwWrZsCRcXF8ydOxfl5eWymgMHDqBPnz5Qq9Xo0qULEhMTq41l9erV6NSpE+zs7BAQEIDDhw/XdcpERETUTNU5CBUXF6NXr15YvXp1jf1nz57FgAED0L17dxw4cADHjx/H66+/Djs7O6lm1qxZ+Prrr7F161Z89913uHjxIkaOHCn1V1RUIDg4GKWlpTh06BA2bNiAxMRExMbGSjW5ubkIDg7G4MGDkZmZiZkzZ2Ly5MnYs2ePVLNlyxZERUVh4cKFOHr0KHr16oWgoCDk5+fXddpERETUDFkJIUS9F7aywvbt2xESEiK1hYaGokWLFvjnP/9Z4zImkwnt2rXDpk2bMHr0aABAdnY2evToAYPBgH79+mH37t14+umncfHiRbi6ugIAEhISMH/+fFy6dAkqlQrz58/Hzp07cfLkSdm2CwsLkZycDAAICAhA3759sWrVKgBAZWUl3N3dMX36dERHR991fmazGVqtFiaTCRqNpl77iIgeXIZ1cxp7CPWiD1/W2EMgeqDV5f3boucIVVZWYufOnXj44YcRFBQEFxcXBAQEyL4+y8jIQFlZGQIDA6W27t27o2PHjjAYDAAAg8EAb29vKQQBQFBQEMxmM7KysqSam9dRVVO1jtLSUmRkZMhqrK2tERgYKNXcqqSkBGazWfYgIiKi5suiQSg/Px9FRUV4++23MWzYMOzduxfPPfccRo4cie+++w4AYDQaoVKp4OjoKFvW1dUVRqNRqrk5BFX1V/XdqcZsNuP69eu4fPkyKioqaqypWset4uLioNVqpYe7u3v9dgQRERE1CRb/RAgAnn32WcyaNQs+Pj6Ijo7G008/jYSEBEtuqkHExMTAZDJJjwsXLjT2kIiIiKgBWTQIOTs7w9bWFl5eXrL2Hj16SFeNubm5obS0FIWFhbKavLw8uLm5STW3XkVW9fxuNRqNBvb29nB2doaNjU2NNVXruJVarYZGo5E9iIiIqPmyaBBSqVTo27cvcnJyZO0///wzPDw8AAC+vr5o0aIF9u3bJ/Xn5OTg/Pnz0Ov1AAC9Xo8TJ07Iru5KSUmBRqORQpZer5eto6qmah0qlQq+vr6ymsrKSuzbt0+qISIiImWzresCRUVFOHPmjPQ8NzcXmZmZcHJyQseOHTF37lyMGTMGAwcOxODBg5GcnIyvv/4aBw4cAABotVqEh4cjKioKTk5O0Gg0mD59OvR6Pfr16wcAGDp0KLy8vDB+/HjEx8fDaDRiwYIFiIiIgFqtBgC89NJLWLVqFebNm4cXXngB+/fvx+eff46dO3dKY4uKikJYWBj8/Pzg7++P5cuXo7i4GJMmTbqXfUZERETNRJ2DUHp6OgYPHiw9j4qKAgCEhYUhMTERzz33HBISEhAXF4dXXnkF3bp1w3/+8x8MGDBAWuaDDz6AtbU1Ro0ahZKSEgQFBeGjjz6S+m1sbJCUlIRp06ZBr9fDwcEBYWFhWLJkiVTj6emJnTt3YtasWVixYgU6dOiATz/9FEFBQVLNmDFjcOnSJcTGxsJoNMLHxwfJycnVTqAmIiIiZbqn+wg1d7yPEFHzxvsIETVPjXYfISIiIqKmhEGIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSrzkEoNTUVI0aMgE6ng5WVFXbs2HHb2pdeeglWVlZYvny5rL2goADjxo2DRqOBo6MjwsPDUVRUJKs5fvw4Hn/8cdjZ2cHd3R3x8fHV1r9161Z0794ddnZ28Pb2xq5du2T9QgjExsaiffv2sLe3R2BgIE6fPl3XKRMREVEzVecgVFxcjF69emH16tV3rNu+fTt+/PFH6HS6an3jxo1DVlYWUlJSkJSUhNTUVEydOlXqN5vNGDp0KDw8PJCRkYF3330XixYtwtq1a6WaQ4cOYezYsQgPD8exY8cQEhKCkJAQnDx5UqqJj4/HypUrkZCQgLS0NDg4OCAoKAg3btyo67SJiIioGbISQoh6L2xlhe3btyMkJETW/vvvvyMgIAB79uxBcHAwZs6ciZkzZwIATp06BS8vLxw5cgR+fn4AgOTkZAwfPhy//fYbdDod1qxZg9deew1GoxEqlQoAEB0djR07diA7OxsAMGbMGBQXFyMpKUnabr9+/eDj44OEhAQIIaDT6TB79mzMmTMHAGAymeDq6orExESEhobedX5msxlarRYmkwkajaa+u4mIHlCGdXMaewj1og9f1thDIHqg1eX92+LnCFVWVmL8+PGYO3cuHnnkkWr9BoMBjo6OUggCgMDAQFhbWyMtLU2qGThwoBSCACAoKAg5OTm4cuWKVBMYGChbd1BQEAwGAwAgNzcXRqNRVqPVahEQECDV3KqkpARms1n2ICIioubL4kHonXfega2tLV555ZUa+41GI1xcXGRttra2cHJygtFolGpcXV1lNVXP71Zzc//Ny9VUc6u4uDhotVrp4e7uftf5EhERUdNl0SCUkZGBFStWIDExEVZWVpZc9X0RExMDk8kkPS5cuNDYQyIiIqIGZNEg9P333yM/Px8dO3aEra0tbG1tce7cOcyePRudOnUCALi5uSE/P1+2XHl5OQoKCuDm5ibV5OXlyWqqnt+t5ub+m5erqeZWarUaGo1G9iAiIqLmy6JBaPz48Th+/DgyMzOlh06nw9y5c7Fnzx4AgF6vR2FhITIyMqTl9u/fj8rKSgQEBEg1qampKCsrk2pSUlLQrVs3tGnTRqrZt2+fbPspKSnQ6/UAAE9PT7i5uclqzGYz0tLSpBoiIiJSNtu6LlBUVIQzZ85Iz3Nzc5GZmQknJyd07NgRbdu2ldW3aNECbm5u6NatGwCgR48eGDZsGKZMmYKEhASUlZUhMjISoaGh0qX2zz//PBYvXozw8HDMnz8fJ0+exIoVK/DBBx9I650xYwYGDRqE9957D8HBwdi8eTPS09OlS+ytrKwwc+ZMLF26FF27doWnpydef/116HS6ale5ERERkTLVOQilp6dj8ODB0vOoqCgAQFhYGBITE2u1jo0bNyIyMhJDhgyBtbU1Ro0ahZUrV0r9Wq0We/fuRUREBHx9feHs7IzY2FjZvYb69++PTZs2YcGCBXj11VfRtWtX7NixAz179pRq5s2bh+LiYkydOhWFhYUYMGAAkpOTYWdnV9dpExERUTN0T/cRau54HyGi5o33ESJqnhr1PkJERERETQWDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpVp2DUGpqKkaMGAGdTgcrKyvs2LFD6isrK8P8+fPh7e0NBwcH6HQ6TJgwARcvXpSto6CgAOPGjYNGo4GjoyPCw8NRVFQkqzl+/Dgef/xx2NnZwd3dHfHx8dXGsnXrVnTv3h12dnbw9vbGrl27ZP1CCMTGxqJ9+/awt7dHYGAgTp8+XdcpExERUTNV5yBUXFyMXr16YfXq1dX6rl27hqNHj+L111/H0aNH8cUXXyAnJwfPPPOMrG7cuHHIyspCSkoKkpKSkJqaiqlTp0r9ZrMZQ4cOhYeHBzIyMvDuu+9i0aJFWLt2rVRz6NAhjB07FuHh4Th27BhCQkIQEhKCkydPSjXx8fFYuXIlEhISkJaWBgcHBwQFBeHGjRt1nTYRERE1Q1ZCCFHvha2ssH37doSEhNy25siRI/D398e5c+fQsWNHnDp1Cl5eXjhy5Aj8/PwAAMnJyRg+fDh+++036HQ6rFmzBq+99hqMRiNUKhUAIDo6Gjt27EB2djYAYMyYMSguLkZSUpK0rX79+sHHxwcJCQkQQkCn02H27NmYM2cOAMBkMsHV1RWJiYkIDQ296/zMZjO0Wi1MJhM0Gk19dxMRPaAM6+Y09hDqRR++rLGHQPRAq8v7d4OfI2QymWBlZQVHR0cAgMFggKOjoxSCACAwMBDW1tZIS0uTagYOHCiFIAAICgpCTk4Orly5ItUEBgbKthUUFASDwQAAyM3NhdFolNVotVoEBARINbcqKSmB2WyWPYiIiKj5atAgdOPGDcyfPx9jx46VEpnRaISLi4usztbWFk5OTjAajVKNq6urrKbq+d1qbu6/ebmaam4VFxcHrVYrPdzd3es8ZyIiImo6GiwIlZWV4e9//zuEEFizZk1DbcaiYmJiYDKZpMeFCxcae0hERETUgGwbYqVVIejcuXPYv3+/7Ps5Nzc35Ofny+rLy8tRUFAANzc3qSYvL09WU/X8bjU391e1tW/fXlbj4+NT47jVajXUanVdp0tERERNlMU/EaoKQadPn8Y333yDtm3byvr1ej0KCwuRkZEhte3fvx+VlZUICAiQalJTU1FWVibVpKSkoFu3bmjTpo1Us2/fPtm6U1JSoNfrAQCenp5wc3OT1ZjNZqSlpUk1REREpGx1DkJFRUXIzMxEZmYmgD9PSs7MzMT58+dRVlaG0aNHIz09HRs3bkRFRQWMRiOMRiNKS0sBAD169MCwYcMwZcoUHD58GAcPHkRkZCRCQ0Oh0+kAAM8//zxUKhXCw8ORlZWFLVu2YMWKFYiKipLGMWPGDCQnJ+O9995DdnY2Fi1ahPT0dERGRgL484q2mTNnYunSpfjqq69w4sQJTJgwATqd7o5XuREREZFy1Pny+QMHDmDw4MHV2sPCwrBo0SJ4enrWuNy3336LJ554AsCfN1SMjIzE119/DWtra4waNQorV65Eq1atpPrjx48jIiICR44cgbOzM6ZPn4758+fL1rl161YsWLAAv/76K7p27Yr4+HgMHz5c6hdCYOHChVi7di0KCwsxYMAAfPTRR3j44YdrNVdePk/UvPHyeaLmqS7v3/d0H6HmjkGIqHljECJqnh6o+wgRERERPagYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIseochFJTUzFixAjodDpYWVlhx44dsn4hBGJjY9G+fXvY29sjMDAQp0+fltUUFBRg3Lhx0Gg0cHR0RHh4OIqKimQ1x48fx+OPPw47Ozu4u7sjPj6+2li2bt2K7t27w87ODt7e3ti1a1edx0JERETKVecgVFxcjF69emH16tU19sfHx2PlypVISEhAWloaHBwcEBQUhBs3bkg148aNQ1ZWFlJSUpCUlITU1FRMnTpV6jebzRg6dCg8PDyQkZGBd999F4sWLcLatWulmkOHDmHs2LEIDw/HsWPHEBISgpCQEJw8ebJOYyEiIiLlshJCiHovbGWF7du3IyQkBMCfn8DodDrMnj0bc+bMAQCYTCa4uroiMTERoaGhOHXqFLy8vHDkyBH4+fkBAJKTkzF8+HD89ttv0Ol0WLNmDV577TUYjUaoVCoAQHR0NHbs2IHs7GwAwJgxY1BcXIykpCRpPP369YOPjw8SEhJqNZa7MZvN0Gq1MJlM0Gg09d1NRPSAMqyb09hDqBd9+LLGHgLRA60u798WPUcoNzcXRqMRgYGBUptWq0VAQAAMBgMAwGAwwNHRUQpBABAYGAhra2ukpaVJNQMHDpRCEAAEBQUhJycHV65ckWpu3k5VTdV2ajOWW5WUlMBsNsseRERE1HxZNAgZjUYAgKurq6zd1dVV6jMajXBxcZH129rawsnJSVZT0zpu3sbtam7uv9tYbhUXFwetVis93N3dazFrIiIiaqp41dhNYmJiYDKZpMeFCxcae0hERETUgCwahNzc3AAAeXl5sva8vDypz83NDfn5+bL+8vJyFBQUyGpqWsfN27hdzc39dxvLrdRqNTQajexBREREzZdFg5Cnpyfc3Nywb98+qc1sNiMtLQ16vR4AoNfrUVhYiIyMDKlm//79qKysREBAgFSTmpqKsrIyqSYlJQXdunVDmzZtpJqbt1NVU7Wd2oyFiIiIlK3OQaioqAiZmZnIzMwE8OdJyZmZmTh//jysrKwwc+ZMLF26FF999RVOnDiBCRMmQKfTSVeW9ejRA8OGDcOUKVNw+PBhHDx4EJGRkQgNDYVOpwMAPP/881CpVAgPD0dWVha2bNmCFStWICoqShrHjBkzkJycjPfeew/Z2dlYtGgR0tPTERkZCQC1GgsREREpm21dF0hPT8fgwYOl51XhJCwsDImJiZg3bx6Ki4sxdepUFBYWYsCAAUhOToadnZ20zMaNGxEZGYkhQ4bA2toao0aNwsqVK6V+rVaLvXv3IiIiAr6+vnB2dkZsbKzsXkP9+/fHpk2bsGDBArz66qvo2rUrduzYgZ49e0o1tRkLERERKdc93UeoueN9hIiaN95HiKh5arT7CBERERE1JQxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYFg9CFRUVeP311+Hp6Ql7e3s89NBDeOONNyCEkGqEEIiNjUX79u1hb2+PwMBAnD59WraegoICjBs3DhqNBo6OjggPD0dRUZGs5vjx43j88cdhZ2cHd3d3xMfHVxvP1q1b0b17d9jZ2cHb2xu7du2y9JSJiIioibJ4EHrnnXewZs0arFq1CqdOncI777yD+Ph4fPjhh1JNfHw8Vq5ciYSEBKSlpcHBwQFBQUG4ceOGVDNu3DhkZWUhJSUFSUlJSE1NxdSpU6V+s9mMoUOHwsPDAxkZGXj33XexaNEirF27Vqo5dOgQxo4di/DwcBw7dgwhISEICQnByZMnLT1tIiIiaoKsxM0f1VjA008/DVdXV6xbt05qGzVqFOzt7fGvf/0LQgjodDrMnj0bc+bMAQCYTCa4uroiMTERoaGhOHXqFLy8vHDkyBH4+fkBAJKTkzF8+HD89ttv0Ol0WLNmDV577TUYjUaoVCoAQHR0NHbs2IHs7GwAwJgxY1BcXIykpCRpLP369YOPjw8SEhLuOhez2QytVguTyQSNRmOxfUREDwbDujmNPYR60Ycva+whED3Q6vL+bfFPhPr37499+/bh559/BgD897//xQ8//ICnnnoKAJCbmwuj0YjAwEBpGa1Wi4CAABgMBgCAwWCAo6OjFIIAIDAwENbW1khLS5NqBg4cKIUgAAgKCkJOTg6uXLki1dy8naqaqu3cqqSkBGazWfYgIiKi5svW0iuMjo6G2WxG9+7dYWNjg4qKCrz55psYN24cAMBoNAIAXF1dZcu5urpKfUajES4uLvKB2trCyclJVuPp6VltHVV9bdq0gdFovON2bhUXF4fFixfXZ9pERETUBFn8E6HPP/8cGzduxKZNm3D06FFs2LABy5Ytw4YNGyy9KYuLiYmByWSSHhcuXGjsIREREVEDsvgnQnPnzkV0dDRCQ0MBAN7e3jh37hzi4uIQFhYGNzc3AEBeXh7at28vLZeXlwcfHx8AgJubG/Lz82XrLS8vR0FBgbS8m5sb8vLyZDVVz+9WU9V/K7VaDbVaXZ9pExERURNk8U+Erl27Bmtr+WptbGxQWVkJAPD09ISbmxv27dsn9ZvNZqSlpUGv1wMA9Ho9CgsLkZGRIdXs378flZWVCAgIkGpSU1NRVlYm1aSkpKBbt25o06aNVHPzdqpqqrZDREREymbxIDRixAi8+eab2LlzJ3799Vds374d77//Pp577jkAgJWVFWbOnImlS5fiq6++wokTJzBhwgTodDqEhIQAAHr06IFhw4ZhypQpOHz4MA4ePIjIyEiEhoZCp9MBAJ5//nmoVCqEh4cjKysLW7ZswYoVKxAVFSWNZcaMGUhOTsZ7772H7OxsLFq0COnp6YiMjLT0tImIiKgJsvhXYx9++CFef/11vPzyy8jPz4dOp8OLL76I2NhYqWbevHkoLi7G1KlTUVhYiAEDBiA5ORl2dnZSzcaNGxEZGYkhQ4bA2toao0aNwsqVK6V+rVaLvXv3IiIiAr6+vnB2dkZsbKzsXkP9+/fHpk2bsGDBArz66qvo2rUrduzYgZ49e1p62kRERNQEWfw+Qs0J7yNE1LzxPkJEzVOj3keIiIiIqKlgECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWqQIPT777/jH//4B9q2bQt7e3t4e3sjPT1d6hdCIDY2Fu3bt4e9vT0CAwNx+vRp2ToKCgowbtw4aDQaODo6Ijw8HEVFRbKa48eP4/HHH4ednR3c3d0RHx9fbSxbt25F9+7dYWdnB29vb+zatashpkxERERNkMWD0JUrV/DYY4+hRYsW2L17N3766Se89957aNOmjVQTHx+PlStXIiEhAWlpaXBwcEBQUBBu3Lgh1YwbNw5ZWVlISUlBUlISUlNTMXXqVKnfbDZj6NCh8PDwQEZGBt59910sWrQIa9eulWoOHTqEsWPHIjw8HMeOHUNISAhCQkJw8uRJS0+biIiImiArIYSw5Aqjo6Nx8OBBfP/99zX2CyGg0+kwe/ZszJkzBwBgMpng6uqKxMREhIaG4tSpU/Dy8sKRI0fg5+cHAEhOTsbw4cPx22+/QafTYc2aNXjttddgNBqhUqmkbe/YsQPZ2dkAgDFjxqC4uBhJSUnS9vv16wcfHx8kJCTcdS5msxlarRYmkwkajeae9gsRPXgM6+Y09hDqRR++rLGHQPRAq8v7t8U/Efrqq6/g5+eHv/3tb3BxcUHv3r3xySefSP25ubkwGo0IDAyU2rRaLQICAmAwGAAABoMBjo6OUggCgMDAQFhbWyMtLU2qGThwoBSCACAoKAg5OTm4cuWKVHPzdqpqqrZzq5KSEpjNZtmDiIiImi+LB6FffvkFa9asQdeuXbFnzx5MmzYNr7zyCjZs2AAAMBqNAABXV1fZcq6urlKf0WiEi4uLrN/W1hZOTk6ymprWcfM2bldT1X+ruLg4aLVa6eHu7l7n+RMREVHTYfEgVFlZiT59+uCtt95C7969MXXqVEyZMqVWX0U1tpiYGJhMJulx4cKFxh4SERERNSCLB6H27dvDy8tL1tajRw+cP38eAODm5gYAyMvLk9Xk5eVJfW5ubsjPz5f1l5eXo6CgQFZT0zpu3sbtaqr6b6VWq6HRaGQPIiIiar4sHoQee+wx5OTkyNp+/vlneHh4AAA8PT3h5uaGffv2Sf1msxlpaWnQ6/UAAL1ej8LCQmRkZEg1+/fvR2VlJQICAqSa1NRUlJWVSTUpKSno1q2bdIWaXq+Xbaeqpmo7REREpGwWD0KzZs3Cjz/+iLfeegtnzpzBpk2bsHbtWkRERAAArKysMHPmTCxduhRfffUVTpw4gQkTJkCn0yEkJATAn58gDRs2DFOmTMHhw4dx8OBBREZGIjQ0FDqdDgDw/PPPQ6VSITw8HFlZWdiyZQtWrFiBqKgoaSwzZsxAcnIy3nvvPWRnZ2PRokVIT09HZGSkpadNRERETZCtpVfYt29fbN++HTExMViyZAk8PT2xfPlyjBs3TqqZN28eiouLMXXqVBQWFmLAgAFITk6GnZ2dVLNx40ZERkZiyJAhsLa2xqhRo7By5UqpX6vVYu/evYiIiICvry+cnZ0RGxsru9dQ//79sWnTJixYsACvvvoqunbtih07dqBnz56WnjYRERE1QRa/j1BzwvsIETVvvI8QUfPUqPcRIiIiImoqGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEaPAi9/fbbsLKywsyZM6W2GzduICIiAm3btkWrVq0watQo5OXlyZY7f/48goOD0bJlS7i4uGDu3LkoLy+X1Rw4cAB9+vSBWq1Gly5dkJiYWG37q1evRqdOnWBnZ4eAgAAcPny4IaZJRERETVCDBqEjR47g448/xqOPPiprnzVrFr7++mts3boV3333HS5evIiRI0dK/RUVFQgODkZpaSkOHTqEDRs2IDExEbGxsVJNbm4ugoODMXjwYGRmZmLmzJmYPHky9uzZI9Vs2bIFUVFRWLhwIY4ePYpevXohKCgI+fn5DTltIiIiaiKshBCiIVZcVFSEPn364KOPPsLSpUvh4+OD5cuXw2QyoV27dti0aRNGjx4NAMjOzkaPHj1gMBjQr18/7N69G08//TQuXrwIV1dXAEBCQgLmz5+PS5cuQaVSYf78+di5cydOnjwpbTM0NBSFhYVITk4GAAQEBKBv375YtWoVAKCyshLu7u6YPn06oqOj7zoHs9kMrVYLk8kEjUZj6V1ERI3MsG5OYw+hXvThyxp7CEQPtLq8f9s21CAiIiIQHByMwMBALF26VGrPyMhAWVkZAgMDpbbu3bujY8eOUhAyGAzw9vaWQhAABAUFYdq0acjKykLv3r1hMBhk66iqqfoKrrS0FBkZGYiJiZH6ra2tERgYCIPBUOOYS0pKUFJSIj03m833tA+IiIjupw9Sfm7sIdTZrL8+3Kjbb5AgtHnzZhw9ehRHjhyp1mc0GqFSqeDo6Chrd3V1hdFolGpuDkFV/VV9d6oxm824fv06rly5goqKihprsrOzaxx3XFwcFi9eXPuJEhERUZNm8XOELly4gBkzZmDjxo2ws7Oz9OobVExMDEwmk/S4cOFCYw+JiIiIGpDFg1BGRgby8/PRp08f2NrawtbWFt999x1WrlwJW1tbuLq6orS0FIWFhbLl8vLy4ObmBgBwc3OrdhVZ1fO71Wg0Gtjb28PZ2Rk2NjY11lSt41ZqtRoajUb2ICIioubL4kFoyJAhOHHiBDIzM6WHn58fxo0bJ/27RYsW2Ldvn7RMTk4Ozp8/D71eDwDQ6/U4ceKE7OqulJQUaDQaeHl5STU3r6OqpmodKpUKvr6+sprKykrs27dPqiEiIiJls/g5Qq1bt0bPnj1lbQ4ODmjbtq3UHh4ejqioKDg5OUGj0WD69OnQ6/Xo168fAGDo0KHw8vLC+PHjER8fD6PRiAULFiAiIgJqtRoA8NJLL2HVqlWYN28eXnjhBezfvx+ff/45du7cKW03KioKYWFh8PPzg7+/P5YvX47i4mJMmjTJ0tMmIiJqdP3Or23sIdRD414F2WBXjd3JBx98AGtra4waNQolJSUICgrCRx99JPXb2NggKSkJ06ZNg16vh4ODA8LCwrBkyRKpxtPTEzt37sSsWbOwYsUKdOjQAZ9++imCgoKkmjFjxuDSpUuIjY2F0WiEj48PkpOTq51ATURERMrUYPcRag54HyGi5o33EaLmpin+TDfEz3Nd3r/5t8aIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLFsG3sAivZtXGOPoO4GxzT2CIiIiCyGQagRGX75o7GHUGf6wY09AiIiIsvhV2NERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgWD0JxcXHo27cvWrduDRcXF4SEhCAnJ0dWc+PGDURERKBt27Zo1aoVRo0ahby8PFnN+fPnERwcjJYtW8LFxQVz585FeXm5rObAgQPo06cP1Go1unTpgsTExGrjWb16NTp16gQ7OzsEBATg8OHDlp4yERERNVEWD0LfffcdIiIi8OOPPyIlJQVlZWUYOnQoiouLpZpZs2bh66+/xtatW/Hdd9/h4sWLGDlypNRfUVGB4OBglJaW4tChQ9iwYQMSExMRGxsr1eTm5iI4OBiDBw9GZmYmZs6cicmTJ2PPnj1SzZYtWxAVFYWFCxfi6NGj6NWrF4KCgpCfn2/paRMREVETZCWEEA25gUuXLsHFxQXfffcdBg4cCJPJhHbt2mHTpk0YPXo0ACA7Oxs9evSAwWBAv379sHv3bjz99NO4ePEiXF1dAQAJCQmYP38+Ll26BJVKhfnz52Pnzp04efKktK3Q0FAUFhYiOTkZABAQEIC+ffti1apVAIDKykq4u7tj+vTpiI6OvuvYzWYztFotTCYTNBqNpXcNDOvmWHydDU0fvqyxh0BkMU3xNQjwdUi31xR/phvi57ku798Nfo6QyWQCADg5OQEAMjIyUFZWhsDAQKmme/fu6NixIwwGAwDAYDDA29tbCkEAEBQUBLPZjKysLKnm5nVU1VSto7S0FBkZGbIaa2trBAYGSjW3Kikpgdlslj2IiIio+WrQIFRZWYmZM2fiscceQ8+ePQEARqMRKpUKjo6OslpXV1cYjUap5uYQVNVf1XenGrPZjOvXr+Py5cuoqKiosaZqHbeKi4uDVquVHu7u7vWbOBERETUJDRqEIiIicPLkSWzevLkhN2MxMTExMJlM0uPChQuNPSQiIiJqQA32t8YiIyORlJSE1NRUdOjQQWp3c3NDaWkpCgsLZZ8K5eXlwc3NTaq59equqqvKbq659UqzvLw8aDQa2Nvbw8bGBjY2NjXWVK3jVmq1Gmq1un4TJiIioibH4p8ICSEQGRmJ7du3Y//+/fD09JT1+/r6okWLFti3b5/UlpOTg/Pnz0Ov1wMA9Ho9Tpw4Ibu6KyUlBRqNBl5eXlLNzeuoqqlah0qlgq+vr6ymsrIS+/btk2qIiIhI2Sz+iVBERAQ2bdqEL7/8Eq1bt5bOx9FqtbC3t4dWq0V4eDiioqLg5OQEjUaD6dOnQ6/Xo1+/fgCAoUOHwsvLC+PHj0d8fDyMRiMWLFiAiIgI6RObl156CatWrcK8efPwwgsvYP/+/fj888+xc+dOaSxRUVEICwuDn58f/P39sXz5chQXF2PSpEmWnjYRERE1QRYPQmvWrAEAPPHEE7L29evXY+LEiQCADz74ANbW1hg1ahRKSkoQFBSEjz76SKq1sbFBUlISpk2bBr1eDwcHB4SFhWHJkiVSjaenJ3bu3IlZs2ZhxYoV6NChAz799FMEBQVJNWPGjMGlS5cQGxsLo9EIHx8fJCcnVzuBmoiIiJTJ4kGoNrclsrOzw+rVq7F69erb1nh4eGDXrl13XM8TTzyBY8eO3bEmMjISkZGRdx0TERERKQ//1hgREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESlWg/31eSIioqbsg5SfG3sIddavsQfQBDEIEZFF8E2DiJoiBiGiB1CTDBXn1zb2EOgBxp9pelAxCBE9gPgLmJob/kzTg4pBiIioiTGsm9PYQyBqNnjVGBERESkWPxGiZq9JnpvQ2AMgIlIIBiFq9nhuAhER3Q6/GiMiIiLFYhAiIiIixeJXY1QnvFqFiIiaE34iRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIqliCC0evVqdOrUCXZ2dggICMDhw4cbe0hERET0AGj2QWjLli2IiorCwoULcfToUfTq1QtBQUHIz89v7KERERFRI2v2Qej999/HlClTMGnSJHh5eSEhIQEtW7bEZ5991thDIyIiokbWrP/6fGlpKTIyMhATEyO1WVtbIzAwEAaDoVp9SUkJSkpKpOcmkwkAYDabG2R8xddL7l5ERETUjDXEe2zVOoUQd61t1kHo8uXLqKiogKurq6zd1dUV2dnZ1erj4uKwePHiau3u7u4NNkYiIiJFm76qwVZ99epVaLXaO9Y06yBUVzExMYiKipKeV1ZWoqCgAG3btoWVlZVFt2U2m+Hu7o4LFy5Ao9FYdN0PguY+P6D5z5Hza/qa+xyb+/yA5j/HhpqfEAJXr16FTqe7a22zDkLOzs6wsbFBXl6erD0vLw9ubm7V6tVqNdRqtazN0dGxIYcIjUbTLH+4qzT3+QHNf46cX9PX3OfY3OcHNP85NsT87vZJUJVmfbK0SqWCr68v9u3bJ7VVVlZi37590Ov1jTgyIiIiehA060+EACAqKgphYWHw8/ODv78/li9fjuLiYkyaNKmxh0ZERESNrNkHoTFjxuDSpUuIjY2F0WiEj48PkpOTq51Afb+p1WosXLiw2ldxzUVznx/Q/OfI+TV9zX2OzX1+QPOf44MwPytRm2vLiIiIiJqhZn2OEBEREdGdMAgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEINZA333wT/fv3R8uWLWt9d2ohBGJjY9G+fXvY29sjMDAQp0+fltUUFBRg3Lhx0Gg0cHR0RHh4OIqKihpgBndX17H8+uuvsLKyqvGxdetWqa6m/s2bN9+PKcnUZ18/8cQT1cb+0ksvyWrOnz+P4OBgtGzZEi4uLpg7dy7Ky8sbcio1quv8CgoKMH36dHTr1g329vbo2LEjXnnlFemPE1dpzOO3evVqdOrUCXZ2dggICMDhw4fvWL9161Z0794ddnZ28Pb2xq5du2T9tXlN3k91md8nn3yCxx9/HG3atEGbNm0QGBhYrX7ixInVjtWwYcMaehp3VJc5JiYmVhu/nZ2drKYpH8Oafp9YWVkhODhYqnmQjmFqaipGjBgBnU4HKysr7Nix467LHDhwAH369IFarUaXLl2QmJhYraaur+s6E9QgYmNjxfvvvy+ioqKEVqut1TJvv/220Gq1YseOHeK///2veOaZZ4Snp6e4fv26VDNs2DDRq1cv8eOPP4rvv/9edOnSRYwdO7aBZnFndR1LeXm5+N///id7LF68WLRq1UpcvXpVqgMg1q9fL6u7eR/cL/XZ14MGDRJTpkyRjd1kMkn95eXlomfPniIwMFAcO3ZM7Nq1Szg7O4uYmJiGnk41dZ3fiRMnxMiRI8VXX30lzpw5I/bt2ye6du0qRo0aJatrrOO3efNmoVKpxGeffSaysrLElClThKOjo8jLy6ux/uDBg8LGxkbEx8eLn376SSxYsEC0aNFCnDhxQqqpzWvyfqnr/J5//nmxevVqcezYMXHq1CkxceJEodVqxW+//SbVhIWFiWHDhsmOVUFBwf2aUjV1neP69euFRqORjd9oNMpqmvIx/OOPP2RzO3nypLCxsRHr16+Xah6kY7hr1y7x2muviS+++EIAENu3b79j/S+//CJatmwpoqKixE8//SQ+/PBDYWNjI5KTk6Wauu6z+mAQamDr16+vVRCqrKwUbm5u4t1335XaCgsLhVqtFv/+97+FEEL89NNPAoA4cuSIVLN7925hZWUlfv/9d4uP/U4sNRYfHx/xwgsvyNpq8wJqaPWd36BBg8SMGTNu279r1y5hbW0t+2W9Zs0aodFoRElJiUXGXhuWOn6ff/65UKlUoqysTGprrOPn7+8vIiIipOcVFRVCp9OJuLi4Guv//ve/i+DgYFlbQECAePHFF4UQtXtN3k91nd+tysvLRevWrcWGDRuktrCwMPHss89aeqj1Vtc53u33a3M7hh988IFo3bq1KCoqktoetGNYpTa/B+bNmyceeeQRWduYMWNEUFCQ9Pxe91lt8KuxB0Rubi6MRiMCAwOlNq1Wi4CAABgMBgCAwWCAo6Mj/Pz8pJrAwEBYW1sjLS3tvo7XEmPJyMhAZmYmwsPDq/VFRETA2dkZ/v7++OyzzyDu830/72V+GzduhLOzM3r27ImYmBhcu3ZNtl5vb2/Znc2DgoJgNpuRlZVl+YnchqV+lkwmEzQaDWxt5Tepv9/Hr7S0FBkZGbLXj7W1NQIDA6XXz60MBoOsHvjzWFTV1+Y1eb/UZ363unbtGsrKyuDk5CRrP3DgAFxcXNCtWzdMmzYNf/zxh0XHXlv1nWNRURE8PDzg7u6OZ599VvY6am7HcN26dQgNDYWDg4Os/UE5hnV1t9egJfZZbTT7P7HRVBiNRgCo9qc/XF1dpT6j0QgXFxdZv62tLZycnKSa+8USY1m3bh169OiB/v37y9qXLFmCJ598Ei1btsTevXvx8ssvo6ioCK+88orFxn839Z3f888/Dw8PD+h0Ohw/fhzz589HTk4OvvjiC2m9NR3jqr77xRLH7/Lly3jjjTcwdepUWXtjHL/Lly+joqKixn2bnZ1d4zK3OxY3v96q2m5Xc7/UZ363mj9/PnQ6nexNZdiwYRg5ciQ8PT1x9uxZvPrqq3jqqadgMBhgY2Nj0TncTX3m2K1bN3z22Wd49NFHYTKZsGzZMvTv3x9ZWVno0KFDszqGhw8fxsmTJ7Fu3TpZ+4N0DOvqdq9Bs9mM69ev48qVK/f8c18bDEJ1EB0djXfeeeeONadOnUL37t3v04gsr7ZzvFfXr1/Hpk2b8Prrr1fru7mtd+/eKC4uxrvvvmuRN9KGnt/NocDb2xvt27fHkCFDcPbsWTz00EP1Xm9t3a/jZzabERwcDC8vLyxatEjW15DHj+rn7bffxubNm3HgwAHZycShoaHSv729vfHoo4/ioYcewoEDBzBkyJDGGGqd6PV66PV66Xn//v3Ro0cPfPzxx3jjjTcacWSWt27dOnh7e8Pf31/W3tSP4YOAQagOZs+ejYkTJ96xpnPnzvVat5ubGwAgLy8P7du3l9rz8vLg4+Mj1eTn58uWKy8vR0FBgbT8vartHO91LNu2bcO1a9cwYcKEu9YGBATgjTfeQElJyT3/Yb77Nb8qAQEBAIAzZ87goYcegpubW7UrHvLy8gDAIsfwfszv6tWrGDZsGFq3bo3t27ejRYsWd6y35PG7HWdnZ9jY2Ej7skpeXt5t5+Pm5nbH+tq8Ju+X+syvyrJly/D222/jm2++waOPPnrH2s6dO8PZ2Rlnzpy572+i9zLHKi1atEDv3r1x5swZAM3nGBYXF2Pz5s1YsmTJXbfTmMewrm73GtRoNLC3t4eNjc09/0zUisXONqIa1fVk6WXLlkltJpOpxpOl09PTpZo9e/Y06snS9R3LoEGDql1tdDtLly4Vbdq0qfdY68NS+/qHH34QAMR///tfIcT/nSx98xUPH3/8sdBoNOLGjRuWm8Bd1Hd+JpNJ9OvXTwwaNEgUFxfXalv36/j5+/uLyMhI6XlFRYX4y1/+cseTpZ9++mlZm16vr3ay9J1ek/dTXecnhBDvvPOO0Gg0wmAw1GobFy5cEFZWVuLLL7+85/HWR33meLPy8nLRrVs3MWvWLCFE8ziGQvz5PqJWq8Xly5fvuo3GPoZVUMuTpXv27ClrGzt2bLWTpe/lZ6JWY7XYmkjm3Llz4tixY9Ll4ceOHRPHjh2TXSberVs38cUXX0jP3377beHo6Ci+/PJLcfz4cfHss8/WePl87969RVpamvjhhx9E165dG/Xy+TuN5bfffhPdunUTaWlpsuVOnz4trKysxO7du6ut86uvvhKffPKJOHHihDh9+rT46KOPRMuWLUVsbGyDz+dWdZ3fmTNnxJIlS0R6errIzc0VX375pejcubMYOHCgtEzV5fNDhw4VmZmZIjk5WbRr167RLp+vy/xMJpMICAgQ3t7e4syZM7LLdcvLy4UQjXv8Nm/eLNRqtUhMTBQ//fSTmDp1qnB0dJSu0Bs/fryIjo6W6g8ePChsbW3FsmXLxKlTp8TChQtrvHz+bq/J+6Wu83v77beFSqUS27Ztkx2rqt9BV69eFXPmzBEGg0Hk5uaKb775RvTp00d07dr1vobye5nj4sWLxZ49e8TZs2dFRkaGCA0NFXZ2diIrK0uqacrHsMqAAQPEmDFjqrU/aMfw6tWr0nsdAPH++++LY8eOiXPnzgkhhIiOjhbjx4+X6qsun587d644deqUWL16dY2Xz99pn1kCg1ADCQsLEwCqPb799lupBv///VaqVFZWitdff124uroKtVothgwZInJycmTr/eOPP8TYsWNFq1athEajEZMmTZKFq/vpbmPJzc2tNmchhIiJiRHu7u6ioqKi2jp3794tfHx8RKtWrYSDg4Po1auXSEhIqLG2odV1fufPnxcDBw4UTk5OQq1Wiy5duoi5c+fK7iMkhBC//vqreOqpp4S9vb1wdnYWs2fPll1+fr/UdX7ffvttjT/TAERubq4QovGP34cffig6duwoVCqV8Pf3Fz/++KPUN2jQIBEWFiar//zzz8XDDz8sVCqVeOSRR8TOnTtl/bV5Td5PdZmfh4dHjcdq4cKFQgghrl27JoYOHSratWsnWrRoITw8PMSUKVMs+gZTH3WZ48yZM6VaV1dXMXz4cHH06FHZ+pryMRRCiOzsbAFA7N27t9q6HrRjeLvfEVVzCgsLE4MGDaq2jI+Pj1CpVKJz586y98Qqd9pnlmAlxH2+LpmIiIjoAcH7CBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYv1/ScZ+S93i908AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS/1JREFUeJzt3XtYVOXePvCbgwyIzgASjPOKiIdQkiQ1ccxDJjkmWuyoRN2KRtoBTMRDWobaCUUtD5lk28RdujX6JZUaSpixS0RFTUUxLTxlAxoyI6gcn98fvazXJagMDiKs+3Ndc9U8z3fWep61BuZ2zVoLGyGEABEREZEC2Tb0AIiIiIgaCoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxCRwsydOxc2Nja4ePFiQw+lQY0bNw7t2rVr6GHUGxsbG8ydO9eqy3z00Ufx6KOPWnWZRA2NQYjIQu+++y6efPJJeHp63vLDZtOmTTAYDNDpdFCpVGjTpg2eeeYZHDly5O4O+A689957SE5ObrD1Hz16FHPnzsWpU6cabAxK0xS2eVFREebMmYMhQ4bAzc0NNjY2SExMbOhh0T2KQYjIQrNnz8bevXvx0EMP3bLu8OHDcHV1xeTJk/HRRx/h5ZdfxoEDB9CrVy/88ssvd2m0d+ZeCELz5s1r1B/Kjc2ttvn27duxffv2uz8oC128eBFvvfUWjh07hm7dujX0cOgeZ9/QAyBqbHJzc9GuXTtcvHgR9913303rYmNjq7W98MILaNOmDVauXImEhIT6HOZdV1xcDGdn54YeRqN2s20ohMC1a9fg5OTUAKP6Pw4ODg26/tpq3bo1/vzzT2i1Wuzbtw8PP/xwQw+J7mE8IkR0gz/++AMRERHSV1o+Pj54+eWXUVpaCgB3dF6Jh4cHmjdvjsLCQoted+LECYSGhkKr1cLR0RFt2rRBWFgYTCYTAODUqVM3Pfx/s6/vLl68iOeeew5qtRqtWrXC5MmTce3aNdnriouLsXbtWtjY2MDGxgbjxo0D8H/nGR09ehSjRo2Cq6sr+vbtCwA4dOgQxo0bh/bt28PR0RFarRbPP/88/vrrr2pjuNW2TkxMxLPPPgsAGDhwoDSGnTt3Sq//7rvv0K9fPzg7O6Nly5YIDg5GdnZ2tfUkJyeja9eucHR0RNeuXbFp06babvpqMjMzMXToULi6usLZ2RkPPvggli5dKqvZsWOHNC4XFxc89dRTOHbsmKzmVtuwXbt2GDZsGLZt24aePXvCyckJH3/8MQCgsLAQ0dHR8PLygkqlQseOHbFgwQJUVlbectynT5/GK6+8Al9fXzg5OaFVq1Z49tlnZUd+brfNazpHKD8/HxEREfD09ISjoyO6deuGtWvXymqq3p+LFi3CqlWr0KFDB6hUKjz88MPYu3evrNZoNGL8+PFo06YNVCoVWrdujaeeesqio4IqlQparbbW9aRsPCJEdJ3z58+jV69eKCwsxMSJE9G5c2f88ccf+PLLL3HlypU6/Yu4sLAQZWVlMBqNWLJkCcxmMwYNGlTr15eWlsJgMKCkpASTJk2CVqvFH3/8gc2bN6OwsBAajcbiMQHAc889h3bt2iEuLg67d+/GsmXLcOnSJfz73/8GAHz22Wd44YUX0KtXL0ycOBEA0KFDB9kynn32WXTq1AnvvfcehBAAgNTUVPz+++8YP348tFotsrOzsWrVKmRnZ2P37t2wsbEBcPtt3b9/f7z66qtYtmwZXn/9dXTp0gUApP9+9tlnCA8Ph8FgwIIFC3DlyhWsXLkSffv2xYEDB6TAun37doSGhsLPzw9xcXH466+/pA9aS6WmpmLYsGFo3bo1Jk+eDK1Wi2PHjmHz5s2YPHkyAOD777/HE088gfbt22Pu3Lm4evUqli9fjkceeQT79++vFqRr2oYAcPz4cYwcORIvvvgiJkyYAF9fX1y5cgUDBgzAH3/8gRdffBFt27bFrl27MGvWLPz5559YsmTJTce+d+9e7Nq1C2FhYWjTpg1OnTqFlStX4tFHH8XRo0fRvHnz227zG129ehWPPvooTp48iaioKPj4+CApKQnjxo1DYWGhtE2qrF+/HpcvX8aLL74IGxsbxMfH4+mnn8bvv/+OZs2aAQBCQ0ORnZ2NSZMmoV27dsjPz0dqairOnDnTpE9upwYkiEgyduxYYWtrK/bu3Vutr7KyUvb8woULAoCYM2fOLZfp6+srAAgAokWLFmL27NmioqKi1mM6cOCAACCSkpJuWpObmysAiDVr1lTru3GMc+bMEQDEk08+Kat75ZVXBADxyy+/SG3Ozs4iPDy82jKrljFy5MhqfVeuXKnW9p///EcAEOnp6VJbbbZ1UlKSACB++OEHWf/ly5eFi4uLmDBhgqzdaDQKjUYjaw8ICBCtW7cWhYWFUtv27dsFAOHt7V1t3TdTXl4ufHx8hLe3t7h06VKN461an4eHh/jrr7+ktl9++UXY2tqKsWPHSm232obe3t4CgEhJSZG1v/3228LZ2Vn8+uuvsvaZM2cKOzs7cebMGantxv1e037JyMgQAMS///1vqe1m21wIIQYMGCAGDBggPV+yZIkAID7//HOprbS0VOj1etGiRQthNpuFEP/3/mzVqpUoKCiQar/++msBQHz77bdCCCEuXbokAIiFCxdWW3dd7d2796Y/G0RCCMGvxoj+V2VlJZKTkzF8+HD07NmzWn/VkQxLrVmzBikpKfjoo4/QpUsXXL16FRUVFbV+fdURn23btuHKlSt1GkNNIiMjZc8nTZoEANi6dWutl/HSSy9Va7v+PJZr167h4sWL6N27NwBg//79AO58W6empqKwsBAjR47ExYsXpYednR0CAwPxww8/AAD+/PNPHDx4EOHh4bIjZ48//jj8/PxqPU8AOHDgAHJzcxEdHQ0XF5cax1u1vnHjxsHNzU3qf/DBB/H444/XuG1r2oYA4OPjA4PBIGtLSkpCv3794OrqKpt3UFAQKioqkJ6eftPxX79fysrK8Ndff6Fjx45wcXGR9oultm7dCq1Wi5EjR0ptzZo1w6uvvoqioiL8+OOPsvoRI0bA1dVVet6vXz8AwO+//y6N0cHBATt37sSlS5fqNCYiS/GrMaL/deHCBZjNZnTt2tWqy9Xr9dL/h4WFSV8zLFq0qFav9/HxQUxMDN5//32sW7cO/fr1w5NPPol//vOfdf5aDAA6deoke96hQwfY2tpadC6Gj49PtbaCggLMmzcPGzZsQH5+vqyv6pymO93WJ06cAAA89thjNfar1WoAf58XA1SfKwD4+vpaFAB+++03ALjlmKvW5+vrW62vS5cu2LZtW7UTomvahjdrP3HiBA4dOnTTk/Rv3N7Xu3r1KuLi4rBmzRr88ccfsq/hqvaLpU6fPo1OnTrB1lb+b+qq93jV9qjStm1b2fOqUFQVelQqFRYsWICpU6fC09MTvXv3xrBhwzB27Fie80P1hkGI6C5ydXXFY489hnXr1tU6CAHA4sWLMW7cOHz99dfYvn07Xn31VencnjZt2tz0CIolR57qcsSrpquYnnvuOezatQvTp09HQEAAWrRogcrKSgwZMuS2J/TWVtVyPvvssxo/IO3tG8+vtptdCVZTe2VlJR5//HHMmDGjxtfcf//9N13PpEmTsGbNGkRHR0Ov10Oj0cDGxgZhYWFW2y+3Y2dnV2P79aEsOjoaw4cPR3JyMrZt24Y333wTcXFx2LFjx21vWUFUF43ntwVRPbvvvvugVqvr/YaHV69erdO/wP39/eHv74/Zs2dj165deOSRR5CQkIB33nlH+pf1jVej3fgv8uudOHFCdtTh5MmTqKyslJ2Qamk4unTpEtLS0jBv3jzZ7QOqjuBUqe22vtn6q07a9vDwQFBQ0E1f7+3tXeP6gb9PRrZE1TqPHDly03VWra+mZefk5MDd3f2ObjHQoUMHFBUV3XLON/Pll18iPDwcixcvltquXbtW7T1jyT739vbGoUOHUFlZKTsqlJOTI/XXRYcOHTB16lRMnToVJ06cQEBAABYvXozPP/+8TssjuhWeI0T0v2xtbRESEoJvv/0W+/btq9Z//b9aa6OmrylOnTqFtLS0Gs+LuRmz2Yzy8nJZm7+/P2xtbVFSUgLg76+C3N3dq50j8tFHH910uStWrJA9X758OQDgiSeekNqcnZ0tutS/6l/8N26rG69mqu22rgoNN47BYDBArVbjvffeQ1lZWbXXX7hwAcDf95MJCAjA2rVrZeEzNTUVR48erfW8AKB79+7w8fHBkiVLqo2narzXr+/6miNHjmD79u0YOnSoReu80XPPPYeMjAxs27atWl9hYWG198n17Ozsqu2X5cuXVztqeLNtXpOhQ4fCaDRi48aNUlt5eTmWL1+OFi1aYMCAAbddxvWuXLkiu4UD8HcoatmypfReJ7I2HhEius57772H7du3Y8CAAZg4cSK6dOmCP//8E0lJSfjpp5/g4uKCzz77DKdPn5ZOXE5PT8c777wDABgzZoz0r2B/f38MGjQIAQEBcHV1xYkTJ7B69WqUlZVh/vz5tR7Tjh07EBUVhWeffRb3338/ysvL8dlnn8HOzg6hoaFS3QsvvID58+fjhRdeQM+ePZGeno5ff/31psvNzc3Fk08+iSFDhiAjIwOff/45Ro0aJbsTb48ePfD999/j/fffh06ng4+PDwIDA2+6TLVajf79+yM+Ph5lZWX4n//5H2zfvh25ubl12tYBAQGws7PDggULYDKZoFKp8Nhjj8HDwwMrV67EmDFj0L17d4SFheG+++7DmTNnsGXLFjzyyCP48MMPAQBxcXEIDg5G37598fzzz6OgoADLly/HAw88gKKiolrvB1tbW6xcuRLDhw9HQEAAxo8fj9atWyMnJwfZ2dlSOFm4cCGeeOIJ6PV6RERESJfPazSaO/7bX9OnT8c333yDYcOGYdy4cejRoweKi4tx+PBhfPnllzh16hTc3d1rfO2wYcPw2WefQaPRwM/PDxkZGfj+++/RqlUrWd2ttvmNJk6ciI8//hjjxo1DVlYW2rVrhy+//BI///wzlixZgpYtW1o0v19//RWDBg3Cc889Bz8/P9jb22PTpk3Iy8tDWFiYRcv68MMPUVhYiPPnzwMAvv32W5w7dw7A318T3sn5ddTENOAVa0T3pNOnT4uxY8eK++67T6hUKtG+fXsRGRkpSkpKhBB/X0KM/70c/sbH9Zccz5kzR/Ts2VO4uroKe3t7odPpRFhYmDh06JBF4/n999/F888/Lzp06CAcHR2Fm5ubGDhwoPj+++9ldVeuXBERERFCo9GIli1biueee07k5+ff9PL5o0ePimeeeUa0bNlSuLq6iqioKHH16lXZMnNyckT//v2Fk5OTACBdSl+1jAsXLlQb77lz58Q//vEP4eLiIjQajXj22WfF+fPna7zVwO22tRBCfPLJJ6J9+/bCzs6u2jb+4YcfhMFgEBqNRjg6OooOHTqIcePGiX379snW8//+3/8TXbp0ESqVSvj5+YmvvvpKhIeHW3T5fJWffvpJPP7446Jly5bC2dlZPPjgg2L58uWymu+//1488sgjwsnJSajVajF8+HBx9OhRWc2ttqG3t7cIDg6ucf2XL18Ws2bNEh07dhQODg7C3d1d9OnTRyxatEiUlpZKdTdu70uXLonx48cLd3d30aJFC2EwGEROTo7w9vaudouEm23zGy+fF0KIvLw8abkODg7C39+/2qXqVZfP13RZ/PXjvHjxooiMjBSdO3cWzs7OQqPRiMDAQPHFF1/UuC1upeoWBDU9cnNzLV4eNV02Qlh4vJ+IiIioieA5QkRERKRYPEeIqAEVFBRIf8OsJnZ2drf8w65kHdwPjUNRUdFtz+u67777bnqZPlFN+NUYUQN69NFHq91993re3t4W3eCQ6ob7oXGYO3cu5s2bd8ua3Nxc/k0ysgiDEFEDysrKuuWfEnBycsIjjzxyF0ekTNwPjcPvv/8u/TmOm+nbty8cHR3v0oioKWAQIiIiIsXiydJERESkWDxZ+hYqKytx/vx5tGzZss5/eZyIiIjuLiEELl++DJ1OV+2PAt+IQegWzp8/Dy8vr4YeBhEREdXB2bNn0aZNm1vWMAjdQtXt4c+ePQu1Wt3AoyEiIqLaMJvN8PLyqtWfeWEQuoWqr8PUajWDEBERUSNTm9NaeLI0ERERKRaDEBERESmWxUEoPT0dw4cPh06ng42NDZKTk6vVHDt2DE8++SQ0Gg2cnZ3x8MMP48yZM1L/tWvXEBkZiVatWqFFixYIDQ1FXl6ebBlnzpxBcHAwmjdvDg8PD0yfPh3l5eWymp07d6J79+5QqVTo2LEjEhMTq41lxYoVaNeuHRwdHREYGIg9e/ZYOmUiIiJqoiwOQsXFxejWrRtWrFhRY/9vv/2Gvn37onPnzti5cycOHTqEN998U3anzylTpuDbb79FUlISfvzxR5w/fx5PP/201F9RUYHg4GCUlpZi165dWLt2LRITExEbGyvV5ObmIjg4GAMHDsTBgwcRHR2NF154Adu2bZNqNm7ciJiYGMyZMwf79+9Ht27dYDAYkJ+fb+m0iYiIqCkSdwCA2LRpk6xtxIgR4p///OdNX1NYWCiaNWsmkpKSpLZjx44JACIjI0MIIcTWrVuFra2tMBqNUs3KlSuFWq0WJSUlQgghZsyYIR544IFq6zYYDNLzXr16icjISOl5RUWF0Ol0Ii4urlbzM5lMAoAwmUy1qiciIqKGZ8nnt1XPEaqsrMSWLVtw//33w2AwwMPDA4GBgbKvz7KyslBWVoagoCCprXPnzmjbti0yMjIAABkZGfD394enp6dUYzAYYDabkZ2dLdVcv4yqmqpllJaWIisrS1Zja2uLoKAgqeZGJSUlMJvNsgcRERE1XVYNQvn5+SgqKsL8+fMxZMgQbN++Hf/4xz/w9NNPS3/Z2Wg0wsHBAS4uLrLXenp6wmg0SjXXh6Cq/qq+W9WYzWZcvXoVFy9eREVFRY01Vcu4UVxcHDQajfTgzRSJiIiaNqsfEQKAp556ClOmTEFAQABmzpyJYcOGISEhwZqrqhezZs2CyWSSHmfPnm3oIREREVE9smoQcnd3h729Pfz8/GTtXbp0ka4a02q1KC0tRWFhoawmLy8PWq1WqrnxKrKq57erUavVcHJygru7O+zs7GqsqVrGjVQqlXTzRN5EkYiIqOmzahBycHDAww8/jOPHj8vaf/31V3h7ewMAevTogWbNmiEtLU3qP378OM6cOQO9Xg8A0Ov1OHz4sOzqrtTUVKjVailk6fV62TKqaqqW4eDggB49eshqKisrkZaWJtUQERGRsln8JzaKiopw8uRJ6Xlubi4OHjwINzc3tG3bFtOnT8eIESPQv39/DBw4ECkpKfj222+xc+dOAIBGo0FERARiYmLg5uYGtVqNSZMmQa/Xo3fv3gCAwYMHw8/PD2PGjEF8fDyMRiNmz56NyMhIqFQqAMBLL72EDz/8EDNmzMDzzz+PHTt24IsvvsCWLVukscXExCA8PBw9e/ZEr169sGTJEhQXF2P8+PF3ss2IiIioqbD0krQffvhBAKj2CA8Pl2pWr14tOnbsKBwdHUW3bt1EcnKybBlXr14Vr7zyinB1dRXNmzcX//jHP8Sff/4pqzl16pR44oknhJOTk3B3dxdTp04VZWVl1cYSEBAgHBwcRPv27cWaNWuqjXf58uWibdu2wsHBQfTq1Uvs3r271nPl5fNERESNjyWf3zZCCNGAOeyeZjabodFoYDKZeL4QERFRI2HJ5zf/1hgREREplsXnCBERNRk/xDX0COpm4KyGHgFRk8EjQkRERKRYDEJERESkWAxCREREpFg8R4iIFCvj978aegh1oh/Y0CMgajp4RIiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUy+IglJ6ejuHDh0On08HGxgbJyck3rX3ppZdgY2ODJUuWyNoLCgowevRoqNVquLi4ICIiAkVFRbKaQ4cOoV+/fnB0dISXlxfi4+OrLT8pKQmdO3eGo6Mj/P39sXXrVlm/EAKxsbFo3bo1nJycEBQUhBMnTlg6ZSIiImqiLA5CxcXF6NatG1asWHHLuk2bNmH37t3Q6XTV+kaPHo3s7GykpqZi8+bNSE9Px8SJE6V+s9mMwYMHw9vbG1lZWVi4cCHmzp2LVatWSTW7du3CyJEjERERgQMHDiAkJAQhISE4cuSIVBMfH49ly5YhISEBmZmZcHZ2hsFgwLVr1yydNhERETVBNkIIUecX29hg06ZNCAkJkbX/8ccfCAwMxLZt2xAcHIzo6GhER0cDAI4dOwY/Pz/s3bsXPXv2BACkpKRg6NChOHfuHHQ6HVauXIk33ngDRqMRDg4OAICZM2ciOTkZOTk5AIARI0aguLgYmzdvltbbu3dvBAQEICEhAUII6HQ6TJ06FdOmTQMAmEwmeHp6IjExEWFhYbedn9lshkajgclkglqtrutmIqJ7VMbqaQ09hDrRRyxq6CEQ3dMs+fy2+jlClZWVGDNmDKZPn44HHnigWn9GRgZcXFykEAQAQUFBsLW1RWZmplTTv39/KQQBgMFgwPHjx3Hp0iWpJigoSLZsg8GAjIwMAEBubi6MRqOsRqPRIDAwUKq5UUlJCcxms+xBRERETZfVg9CCBQtgb2+PV199tcZ+o9EIDw8PWZu9vT3c3NxgNBqlGk9PT1lN1fPb1Vzff/3raqq5UVxcHDQajfTw8vK67XyJiIio8bJqEMrKysLSpUuRmJgIGxsbay76rpg1axZMJpP0OHv2bEMPiYiIiOqRVYPQf//7X+Tn56Nt27awt7eHvb09Tp8+jalTp6Jdu3YAAK1Wi/z8fNnrysvLUVBQAK1WK9Xk5eXJaqqe367m+v7rX1dTzY1UKhXUarXsQURERE2XVYPQmDFjcOjQIRw8eFB66HQ6TJ8+Hdu2bQMA6PV6FBYWIisrS3rdjh07UFlZicDAQKkmPT0dZWVlUk1qaip8fX3h6uoq1aSlpcnWn5qaCr1eDwDw8fGBVquV1ZjNZmRmZko1REREpGz2lr6gqKgIJ0+elJ7n5ubi4MGDcHNzQ9u2bdGqVStZfbNmzaDVauHr6wsA6NKlC4YMGYIJEyYgISEBZWVliIqKQlhYmHSp/ahRozBv3jxERETgtddew5EjR7B06VJ88MEH0nInT56MAQMGYPHixQgODsaGDRuwb98+6RJ7GxsbREdH45133kGnTp3g4+ODN998EzqdrtpVbkRERKRMFgehffv2YeDAgdLzmJgYAEB4eDgSExNrtYx169YhKioKgwYNgq2tLUJDQ7Fs2TKpX6PRYPv27YiMjESPHj3g7u6O2NhY2b2G+vTpg/Xr12P27Nl4/fXX0alTJyQnJ6Nr165SzYwZM1BcXIyJEyeisLAQffv2RUpKChwdHS2dNhERETVBd3QfoaaO9xEiatp4HyGipqlB7yNERERE1FgwCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWJZHITS09MxfPhw6HQ62NjYIDk5WeorKyvDa6+9Bn9/fzg7O0On02Hs2LE4f/68bBkFBQUYPXo01Go1XFxcEBERgaKiIlnNoUOH0K9fPzg6OsLLywvx8fHVxpKUlITOnTvD0dER/v7+2Lp1q6xfCIHY2Fi0bt0aTk5OCAoKwokTJyydMhERETVRFgeh4uJidOvWDStWrKjWd+XKFezfvx9vvvkm9u/fj6+++grHjx/Hk08+KasbPXo0srOzkZqais2bNyM9PR0TJ06U+s1mMwYPHgxvb29kZWVh4cKFmDt3LlatWiXV7Nq1CyNHjkRERAQOHDiAkJAQhISE4MiRI1JNfHw8li1bhoSEBGRmZsLZ2RkGgwHXrl2zdNpERETUBNkIIUSdX2xjg02bNiEkJOSmNXv37kWvXr1w+vRptG3bFseOHYOfnx/27t2Lnj17AgBSUlIwdOhQnDt3DjqdDitXrsQbb7wBo9EIBwcHAMDMmTORnJyMnJwcAMCIESNQXFyMzZs3S+vq3bs3AgICkJCQACEEdDodpk6dimnTpgEATCYTPD09kZiYiLCwsNvOz2w2Q6PRwGQyQa1W13UzEdE9KmP1tIYeQp3oIxY19BCI7mmWfH7X+zlCJpMJNjY2cHFxAQBkZGTAxcVFCkEAEBQUBFtbW2RmZko1/fv3l0IQABgMBhw/fhyXLl2SaoKCgmTrMhgMyMjIAADk5ubCaDTKajQaDQIDA6WaG5WUlMBsNsseRERE1HTVaxC6du0aXnvtNYwcOVJKZEajER4eHrI6e3t7uLm5wWg0SjWenp6ymqrnt6u5vv/619VUc6O4uDhoNBrp4eXlZfGciYiIqPGotyBUVlaG5557DkIIrFy5sr5WY1WzZs2CyWSSHmfPnm3oIREREVE9sq+PhVaFoNOnT2PHjh2y7+e0Wi3y8/Nl9eXl5SgoKIBWq5Vq8vLyZDVVz29Xc31/VVvr1q1lNQEBATWOW6VSQaVSWTpdIiIiaqSsfkSoKgSdOHEC33//PVq1aiXr1+v1KCwsRFZWltS2Y8cOVFZWIjAwUKpJT09HWVmZVJOamgpfX1+4urpKNWlpabJlp6amQq/XAwB8fHyg1WplNWazGZmZmVINERERKZvFQaioqAgHDx7EwYMHAfx9UvLBgwdx5swZlJWV4ZlnnsG+ffuwbt06VFRUwGg0wmg0orS0FADQpUsXDBkyBBMmTMCePXvw888/IyoqCmFhYdDpdACAUaNGwcHBAREREcjOzsbGjRuxdOlSxMTESOOYPHkyUlJSsHjxYuTk5GDu3LnYt28foqKiAPx9RVt0dDTeeecdfPPNNzh8+DDGjh0LnU53y6vciIiISDksvnx+586dGDhwYLX28PBwzJ07Fz4+PjW+7ocffsCjjz4K4O8bKkZFReHbb7+Fra0tQkNDsWzZMrRo0UKqP3ToECIjI7F37164u7tj0qRJeO2112TLTEpKwuzZs3Hq1Cl06tQJ8fHxGDp0qNQvhMCcOXOwatUqFBYWom/fvvjoo49w//3312quvHyeqGnj5fNETZMln993dB+hpo5BiKhpYxAiapruqfsIEREREd2rGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixLA5C6enpGD58OHQ6HWxsbJCcnCzrF0IgNjYWrVu3hpOTE4KCgnDixAlZTUFBAUaPHg21Wg0XFxdERESgqKhIVnPo0CH069cPjo6O8PLyQnx8fLWxJCUloXPnznB0dIS/vz+2bt1q8ViIiIhIuSwOQsXFxejWrRtWrFhRY398fDyWLVuGhIQEZGZmwtnZGQaDAdeuXZNqRo8ejezsbKSmpmLz5s1IT0/HxIkTpX6z2YzBgwfD29sbWVlZWLhwIebOnYtVq1ZJNbt27cLIkSMRERGBAwcOICQkBCEhIThy5IhFYyEiIiLlshFCiDq/2MYGmzZtQkhICIC/j8DodDpMnToV06ZNAwCYTCZ4enoiMTERYWFhOHbsGPz8/LB371707NkTAJCSkoKhQ4fi3Llz0Ol0WLlyJd544w0YjUY4ODgAAGbOnInk5GTk5OQAAEaMGIHi4mJs3rxZGk/v3r0REBCAhISEWo3ldsxmMzQaDUwmE9RqdV03ExHdozJWT2voIdSJPmJRQw+B6J5myee3Vc8Rys3NhdFoRFBQkNSm0WgQGBiIjIwMAEBGRgZcXFykEAQAQUFBsLW1RWZmplTTv39/KQQBgMFgwPHjx3Hp0iWp5vr1VNVUrac2Y7lRSUkJzGaz7EFERERNl1WDkNFoBAB4enrK2j09PaU+o9EIDw8PWb+9vT3c3NxkNTUt4/p13Kzm+v7bjeVGcXFx0Gg00sPLy6sWsyYiIqLGileNXWfWrFkwmUzS4+zZsw09JCIiIqpHVg1CWq0WAJCXlydrz8vLk/q0Wi3y8/Nl/eXl5SgoKJDV1LSM69dxs5rr+283lhupVCqo1WrZg4iIiJouqwYhHx8faLVapKWlSW1msxmZmZnQ6/UAAL1ej8LCQmRlZUk1O3bsQGVlJQIDA6Wa9PR0lJWVSTWpqanw9fWFq6urVHP9eqpqqtZTm7EQERGRslkchIqKinDw4EEcPHgQwN8nJR88eBBnzpyBjY0NoqOj8c477+Cbb77B4cOHMXbsWOh0OunKsi5dumDIkCGYMGEC9uzZg59//hlRUVEICwuDTqcDAIwaNQoODg6IiIhAdnY2Nm7ciKVLlyImJkYax+TJk5GSkoLFixcjJycHc+fOxb59+xAVFQUAtRoLERERKZu9pS/Yt28fBg4cKD2vCifh4eFITEzEjBkzUFxcjIkTJ6KwsBB9+/ZFSkoKHB0dpdesW7cOUVFRGDRoEGxtbREaGoply5ZJ/RqNBtu3b0dkZCR69OgBd3d3xMbGyu411KdPH6xfvx6zZ8/G66+/jk6dOiE5ORldu3aVamozFiIiIlKuO7qPUFPH+wgRNW28jxBR09Rg9xEiIiIiakwYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLGsHoQqKirw5ptvwsfHB05OTujQoQPefvttCCGkGiEEYmNj0bp1azg5OSEoKAgnTpyQLaegoACjR4+GWq2Gi4sLIiIiUFRUJKs5dOgQ+vXrB0dHR3h5eSE+Pr7aeJKSktC5c2c4OjrC398fW7dutfaUiYiIqJGyehBasGABVq5ciQ8//BDHjh3DggULEB8fj+XLl0s18fHxWLZsGRISEpCZmQlnZ2cYDAZcu3ZNqhk9ejSys7ORmpqKzZs3Iz09HRMnTpT6zWYzBg8eDG9vb2RlZWHhwoWYO3cuVq1aJdXs2rULI0eOREREBA4cOICQkBCEhITgyJEj1p42ERERNUI24vpDNVYwbNgweHp6YvXq1VJbaGgonJyc8Pnnn0MIAZ1Oh6lTp2LatGkAAJPJBE9PTyQmJiIsLAzHjh2Dn58f9u7di549ewIAUlJSMHToUJw7dw46nQ4rV67EG2+8AaPRCAcHBwDAzJkzkZycjJycHADAiBEjUFxcjM2bN0tj6d27NwICApCQkHDbuZjNZmg0GphMJqjVaqttIyK6N2SsntbQQ6gTfcSihh4C0T3Nks9vqx8R6tOnD9LS0vDrr78CAH755Rf89NNPeOKJJwAAubm5MBqNCAoKkl6j0WgQGBiIjIwMAEBGRgZcXFykEAQAQUFBsLW1RWZmplTTv39/KQQBgMFgwPHjx3Hp0iWp5vr1VNVUredGJSUlMJvNsgcRERE1XfbWXuDMmTNhNpvRuXNn2NnZoaKiAu+++y5Gjx4NADAajQAAT09P2es8PT2lPqPRCA8PD/lA7e3h5uYmq/Hx8am2jKo+V1dXGI3GW67nRnFxcZg3b15dpk1ERESNkNWPCH3xxRdYt24d1q9fj/3792Pt2rVYtGgR1q5da+1VWd2sWbNgMpmkx9mzZxt6SERERFSPrH5EaPr06Zg5cybCwsIAAP7+/jh9+jTi4uIQHh4OrVYLAMjLy0Pr1q2l1+Xl5SEgIAAAoNVqkZ+fL1tueXk5CgoKpNdrtVrk5eXJaqqe366mqv9GKpUKKpWqLtMmIiKiRsjqR4SuXLkCW1v5Yu3s7FBZWQkA8PHxgVarRVpamtRvNpuRmZkJvV4PANDr9SgsLERWVpZUs2PHDlRWViIwMFCqSU9PR1lZmVSTmpoKX19fuLq6SjXXr6eqpmo9REREpGxWD0LDhw/Hu+++iy1btuDUqVPYtGkT3n//ffzjH/8AANjY2CA6OhrvvPMOvvnmGxw+fBhjx46FTqdDSEgIAKBLly4YMmQIJkyYgD179uDnn39GVFQUwsLCoNPpAACjRo2Cg4MDIiIikJ2djY0bN2Lp0qWIiYmRxjJ58mSkpKRg8eLFyMnJwdy5c7Fv3z5ERUVZe9pERETUCFn9q7Hly5fjzTffxCuvvIL8/HzodDq8+OKLiI2NlWpmzJiB4uJiTJw4EYWFhejbty9SUlLg6Ogo1axbtw5RUVEYNGgQbG1tERoaimXLlkn9Go0G27dvR2RkJHr06AF3d3fExsbK7jXUp08frF+/HrNnz8brr7+OTp06ITk5GV27drX2tImIiKgRsvp9hJoS3keIqGnjfYSImqYGvY8QERERUWPBIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIpl39ADICIiIuv4IPXXhh6CxaY8fn+Drp9HhIiIiEixGISIiIhIsfjVGBERURPR+8yqhh5CHSxq0LXziBAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVa9BKE//vgD//znP9GqVSs4OTnB398f+/btk/qFEIiNjUXr1q3h5OSEoKAgnDhxQraMgoICjB49Gmq1Gi4uLoiIiEBRUZGs5tChQ+jXrx8cHR3h5eWF+Pj4amNJSkpC586d4ejoCH9/f2zdurU+pkxERESNkNWD0KVLl/DII4+gWbNm+O6773D06FEsXrwYrq6uUk18fDyWLVuGhIQEZGZmwtnZGQaDAdeuXZNqRo8ejezsbKSmpmLz5s1IT0/HxIkTpX6z2YzBgwfD29sbWVlZWLhwIebOnYtVq1ZJNbt27cLIkSMRERGBAwcOICQkBCEhIThy5Ii1p01ERESNkI0QQlhzgTNnzsTPP/+M//73vzX2CyGg0+kwdepUTJs2DQBgMpng6emJxMREhIWF4dixY/Dz88PevXvRs2dPAEBKSgqGDh2Kc+fOQafTYeXKlXjjjTdgNBrh4OAgrTs5ORk5OTkAgBEjRqC4uBibN2+W1t+7d28EBAQgISHhtnMxm83QaDQwmUxQq9V3tF2I6N6TsXpaQw+hTvQRixp6CHSPaozv6fp4P1vy+W31I0LffPMNevbsiWeffRYeHh546KGH8Mknn0j9ubm5MBqNCAoKkto0Gg0CAwORkZEBAMjIyICLi4sUggAgKCgItra2yMzMlGr69+8vhSAAMBgMOH78OC5duiTVXL+eqpqq9dyopKQEZrNZ9iAiIqKmy+pB6Pfff8fKlSvRqVMnbNu2DS+//DJeffVVrF27FgBgNBoBAJ6enrLXeXp6Sn1GoxEeHh6yfnt7e7i5uclqalrG9eu4WU1V/43i4uKg0Wikh5eXl8XzJyIiosbD6kGosrIS3bt3x3vvvYeHHnoIEydOxIQJE2r1VVRDmzVrFkwmk/Q4e/ZsQw+JiIiI6pHVg1Dr1q3h5+cna+vSpQvOnDkDANBqtQCAvLw8WU1eXp7Up9VqkZ+fL+svLy9HQUGBrKamZVy/jpvVVPXfSKVSQa1Wyx5ERETUdFk9CD3yyCM4fvy4rO3XX3+Ft7c3AMDHxwdarRZpaWlSv9lsRmZmJvR6PQBAr9ejsLAQWVlZUs2OHTtQWVmJwMBAqSY9PR1lZWVSTWpqKnx9faUr1PR6vWw9VTVV6yEiIiJls3oQmjJlCnbv3o333nsPJ0+exPr167Fq1SpERkYCAGxsbBAdHY133nkH33zzDQ4fPoyxY8dCp9MhJCQEwN9HkIYMGYIJEyZgz549+PnnnxEVFYWwsDDodDoAwKhRo+Dg4ICIiAhkZ2dj48aNWLp0KWJiYqSxTJ48GSkpKVi8eDFycnIwd+5c7Nu3D1FRUdaeNhERETVC9tZe4MMPP4xNmzZh1qxZeOutt+Dj44MlS5Zg9OjRUs2MGTNQXFyMiRMnorCwEH379kVKSgocHR2lmnXr1iEqKgqDBg2Cra0tQkNDsWzZMqlfo9Fg+/btiIyMRI8ePeDu7o7Y2FjZvYb69OmD9evXY/bs2Xj99dfRqVMnJCcno2vXrtaeNhERETVCVr+PUFPC+wgRNW2N8Z4rAO8jRDfXGN/TTe4+QkRERESNBYMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpVr0Hofnz58PGxgbR0dFS27Vr1xAZGYlWrVqhRYsWCA0NRV5enux1Z86cQXBwMJo3bw4PDw9Mnz4d5eXlspqdO3eie/fuUKlU6NixIxITE6utf8WKFWjXrh0cHR0RGBiIPXv21Mc0iYiIqBGq1yC0d+9efPzxx3jwwQdl7VOmTMG3336LpKQk/Pjjjzh//jyefvppqb+iogLBwcEoLS3Frl27sHbtWiQmJiI2Nlaqyc3NRXBwMAYOHIiDBw8iOjoaL7zwArZt2ybVbNy4ETExMZgzZw7279+Pbt26wWAwID8/vz6nTURERI1EvQWhoqIijB49Gp988glcXV2ldpPJhNWrV+P999/HY489hh49emDNmjXYtWsXdu/eDQDYvn07jh49is8//xwBAQF44okn8Pbbb2PFihUoLS0FACQkJMDHxweLFy9Gly5dEBUVhWeeeQYffPCBtK73338fEyZMwPjx4+Hn54eEhAQ0b94cn376aX1Nm4iIiBqRegtCkZGRCA4ORlBQkKw9KysLZWVlsvbOnTujbdu2yMjIAABkZGTA398fnp6eUo3BYIDZbEZ2drZUc+OyDQaDtIzS0lJkZWXJamxtbREUFCTV3KikpARms1n2ICIioqbLvj4WumHDBuzfvx979+6t1mc0GuHg4AAXFxdZu6enJ4xGo1RzfQiq6q/qu1WN2WzG1atXcenSJVRUVNRYk5OTU+O44+LiMG/evNpPlIiIiBo1qx8ROnv2LCZPnox169bB0dHR2ouvV7NmzYLJZJIeZ8+ebeghERERUT2yehDKyspCfn4+unfvDnt7e9jb2+PHH3/EsmXLYG9vD09PT5SWlqKwsFD2ury8PGi1WgCAVqutdhVZ1fPb1ajVajg5OcHd3R12dnY11lQt40YqlQpqtVr2ICIioqbL6kFo0KBBOHz4MA4ePCg9evbsidGjR0v/36xZM6SlpUmvOX78OM6cOQO9Xg8A0Ov1OHz4sOzqrtTUVKjVavj5+Uk11y+jqqZqGQ4ODujRo4esprKyEmlpaVINERERKZvVzxFq2bIlunbtKmtzdnZGq1atpPaIiAjExMTAzc0NarUakyZNgl6vR+/evQEAgwcPhp+fH8aMGYP4+HgYjUbMnj0bkZGRUKlUAICXXnoJH374IWbMmIHnn38eO3bswBdffIEtW7ZI642JiUF4eDh69uyJXr16YcmSJSguLsb48eOtPW0iIiJqhOrlZOnb+eCDD2Bra4vQ0FCUlJTAYDDgo48+kvrt7OywefNmvPzyy9Dr9XB2dkZ4eDjeeustqcbHxwdbtmzBlClTsHTpUrRp0wb/+te/YDAYpJoRI0bgwoULiI2NhdFoREBAAFJSUqqdQE1ERETKZCOEEA09iHuV2WyGRqOByWTi+UJETVDG6mkNPYQ60Ucsaugh0D2qMb6n6+P9bMnnN//WGBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmW1YNQXFwcHn74YbRs2RIeHh4ICQnB8ePHZTXXrl1DZGQkWrVqhRYtWiA0NBR5eXmymjNnziA4OBjNmzeHh4cHpk+fjvLyclnNzp070b17d6hUKnTs2BGJiYnVxrNixQq0a9cOjo6OCAwMxJ49e6w9ZSIiImqkrB6EfvzxR0RGRmL37t1ITU1FWVkZBg8ejOLiYqlmypQp+Pbbb5GUlIQff/wR58+fx9NPPy31V1RUIDg4GKWlpdi1axfWrl2LxMRExMbGSjW5ubkIDg7GwIEDcfDgQURHR+OFF17Atm3bpJqNGzciJiYGc+bMwf79+9GtWzcYDAbk5+dbe9pERETUCNkIIUR9ruDChQvw8PDAjz/+iP79+8NkMuG+++7D+vXr8cwzzwAAcnJy0KVLF2RkZKB379747rvvMGzYMJw/fx6enp4AgISEBLz22mu4cOECHBwc8Nprr2HLli04cuSItK6wsDAUFhYiJSUFABAYGIiHH34YH374IQCgsrISXl5emDRpEmbOnHnbsZvNZmg0GphMJqjVamtvGiJqYBmrpzX0EOpEH7GooYdA96jG+J6uj/ezJZ/f9X6OkMlkAgC4ubkBALKyslBWVoagoCCppnPnzmjbti0yMjIAABkZGfD395dCEAAYDAaYzWZkZ2dLNdcvo6qmahmlpaXIysqS1dja2iIoKEiquVFJSQnMZrPsQURERE1XvQahyspKREdH45FHHkHXrl0BAEajEQ4ODnBxcZHVenp6wmg0SjXXh6Cq/qq+W9WYzWZcvXoVFy9eREVFRY01Vcu4UVxcHDQajfTw8vKq28SJiIioUajXIBQZGYkjR45gw4YN9bkaq5k1axZMJpP0OHv2bEMPiYiIiOqRfX0tOCoqCps3b0Z6ejratGkjtWu1WpSWlqKwsFB2VCgvLw9arVaqufHqrqqryq6vufFKs7y8PKjVajg5OcHOzg52dnY11lQt40YqlQoqlapuEyYiIqJGx+pBSAiBSZMmYdOmTdi5cyd8fHxk/T169ECzZs2QlpaG0NBQAMDx48dx5swZ6PV6AIBer8e7776L/Px8eHh4AABSU1OhVqvh5+cn1WzdulW27NTUVGkZDg4O6NGjB9LS0hASEgLg76/q0tLSEBUVZe1pExFRE/NB6q8NPQSL9W7oATRCVg9CkZGRWL9+Pb7++mu0bNlSOh9Ho9HAyckJGo0GERERiImJgZubG9RqNSZNmgS9Xo/evf/ehYMHD4afnx/GjBmD+Ph4GI1GzJ49G5GRkdIRm5deegkffvghZsyYgeeffx47duzAF198gS1btkhjiYmJQXh4OHr27IlevXphyZIlKC4uxvjx4609bSIiImqErB6EVq5cCQB49NFHZe1r1qzBuHHjAAAffPABbG1tERoaipKSEhgMBnz00UdSrZ2dHTZv3oyXX34Zer0ezs7OCA8Px1tvvSXV+Pj4YMuWLZgyZQqWLl2KNm3a4F//+hcMBoNUM2LECFy4cAGxsbEwGo0ICAhASkpKtROoiYiISJnq/T5CjRnvI0TUtDXGe64AvI/Q3dJY3x+NTZO/jxARERHRvYpBiIiIiBSr3i6fJyIiqsIrsOhexSNCREREpFg8IkRERPWu95lVDT0EohoxCDWgxnhFAq9WISKipoRfjREREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYvGqMSKiRoY3JySyHh4RIiIiIsXiESEiokaGNycksh4eESIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixeJVY0RkFby3DRE1RgxCRGQVvKSbiBojfjVGREREisUgRERERIrFr8aI7kE834aI6O5gECK6B/F8GyKiu4NfjREREZFiMQgRERGRYvGrMWryeL4NERHdDIMQNXk834aIiG6GX40RERGRYvGIEFkkY/W0hh4CERGR1fCIEBERESkWgxAREREpFoMQERERKZYigtCKFSvQrl07ODo6IjAwEHv27GnoIREREdE9oMkHoY0bNyImJgZz5szB/v370a1bNxgMBuTn5zf00IiIiKiBNfkg9P7772PChAkYP348/Pz8kJCQgObNm+PTTz9t6KERERFRA2vSl8+XlpYiKysLs2bNktpsbW0RFBSEjIyMavUlJSUoKSmRnptMJgCA2Wyul/EVXy25fREREVETVh+fsVXLFELctrZJB6GLFy+ioqICnp6esnZPT0/k5ORUq4+Li8O8efOqtXt5edXbGImIiBRt0of1tujLly9Do9HcsqZJByFLzZo1CzExMdLzyspKFBQUoFWrVrCxsbHqusxmM7y8vHD27Fmo1WqrLvte0NTnBzT9OXJ+jV9Tn2NTnx/Q9OdYX/MTQuDy5cvQ6XS3rW3SQcjd3R12dnbIy8uTtefl5UGr1VarV6lUUKlUsjYXF5f6HCLUanWTfHNXaerzA5r+HDm/xq+pz7Gpzw9o+nOsj/nd7khQlSZ9srSDgwN69OiBtLQ0qa2yshJpaWnQ6/UNODIiIiK6FzTpI0IAEBMTg/DwcPTs2RO9evXCkiVLUFxcjPHjxzf00IiIiKiBNfkgNGLECFy4cAGxsbEwGo0ICAhASkpKtROo7zaVSoU5c+ZU+yquqWjq8wOa/hw5v8avqc+xqc8PaPpzvBfmZyNqc20ZERERURPUpM8RIiIiIroVBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAahevLuu++iT58+aN68ea3vTi2EQGxsLFq3bg0nJycEBQXhxIkTspqCggKMHj0aarUaLi4uiIiIQFFRUT3M4PYsHcupU6dgY2NT4yMpKUmqq6l/w4YNd2NKMnXZ1o8++mi1sb/00kuymjNnziA4OBjNmzeHh4cHpk+fjvLy8vqcSo0snV9BQQEmTZoEX19fODk5oW3btnj11VelP05cpSH334oVK9CuXTs4OjoiMDAQe/bsuWV9UlISOnfuDEdHR/j7+2Pr1q2y/tr8TN5Nlszvk08+Qb9+/eDq6gpXV1cEBQVVqx83bly1fTVkyJD6nsYtWTLHxMTEauN3dHSU1TTmfVjT7xMbGxsEBwdLNffSPkxPT8fw4cOh0+lgY2OD5OTk275m586d6N69O1QqFTp27IjExMRqNZb+XFtMUL2IjY0V77//voiJiREajaZWr5k/f77QaDQiOTlZ/PLLL+LJJ58UPj4+4urVq1LNkCFDRLdu3cTu3bvFf//7X9GxY0cxcuTIeprFrVk6lvLycvHnn3/KHvPmzRMtWrQQly9fluoAiDVr1sjqrt8Gd0tdtvWAAQPEhAkTZGM3mUxSf3l5uejatasICgoSBw4cEFu3bhXu7u5i1qxZ9T2daiyd3+HDh8XTTz8tvvnmG3Hy5EmRlpYmOnXqJEJDQ2V1DbX/NmzYIBwcHMSnn34qsrOzxYQJE4SLi4vIy8ursf7nn38WdnZ2Ij4+Xhw9elTMnj1bNGvWTBw+fFiqqc3P5N1i6fxGjRolVqxYIQ4cOCCOHTsmxo0bJzQajTh37pxUEx4eLoYMGSLbVwUFBXdrStVYOsc1a9YItVotG7/RaJTVNOZ9+Ndff8nmduTIEWFnZyfWrFkj1dxL+3Dr1q3ijTfeEF999ZUAIDZt2nTL+t9//100b95cxMTEiKNHj4rly5cLOzs7kZKSItVYus3qgkGonq1Zs6ZWQaiyslJotVqxcOFCqa2wsFCoVCrxn//8RwghxNGjRwUAsXfvXqnmu+++EzY2NuKPP/6w+thvxVpjCQgIEM8//7ysrTY/QPWtrvMbMGCAmDx58k37t27dKmxtbWW/rFeuXCnUarUoKSmxythrw1r774svvhAODg6irKxMamuo/derVy8RGRkpPa+oqBA6nU7ExcXVWP/cc8+J4OBgWVtgYKB48cUXhRC1+5m8myyd343Ky8tFy5Ytxdq1a6W28PBw8dRTT1l7qHVm6Rxv9/u1qe3DDz74QLRs2VIUFRVJbffaPqxSm98DM2bMEA888ICsbcSIEcJgMEjP73Sb1Qa/GrtH5Obmwmg0IigoSGrTaDQIDAxERkYGACAjIwMuLi7o2bOnVBMUFARbW1tkZmbe1fFaYyxZWVk4ePAgIiIiqvVFRkbC3d0dvXr1wqeffgpxl+/7eSfzW7duHdzd3dG1a1fMmjULV65ckS3X399fdmdzg8EAs9mM7Oxs60/kJqz1XjKZTFCr1bC3l9+k/m7vv9LSUmRlZcl+fmxtbREUFCT9/NwoIyNDVg/8vS+q6mvzM3m31GV+N7py5QrKysrg5uYma9+5cyc8PDzg6+uLl19+GX/99ZdVx15bdZ1jUVERvL294eXlhaeeekr2c9TU9uHq1asRFhYGZ2dnWfu9sg8tdbufQWtss9po8n9io7EwGo0AUO1Pf3h6ekp9RqMRHh4esn57e3u4ublJNXeLNcayevVqdOnSBX369JG1v/XWW3jsscfQvHlzbN++Ha+88gqKiorw6quvWm38t1PX+Y0aNQre3t7Q6XQ4dOgQXnvtNRw/fhxfffWVtNya9nFV391ijf138eJFvP3225g4caKsvSH238WLF1FRUVHjts3JyanxNTfbF9f/vFW13azmbqnL/G702muvQafTyT5UhgwZgqeffho+Pj747bff8Prrr+OJJ55ARkYG7OzsrDqH26nLHH19ffHpp5/iwQcfhMlkwqJFi9CnTx9kZ2ejTZs2TWof7tmzB0eOHMHq1atl7ffSPrTUzX4GzWYzrl69ikuXLt3x+742GIQsMHPmTCxYsOCWNceOHUPnzp3v0oisr7ZzvFNXr17F+vXr8eabb1bru77toYceQnFxMRYuXGiVD9L6nt/1ocDf3x+tW7fGoEGD8Ntvv6FDhw51Xm5t3a39ZzabERwcDD8/P8ydO1fWV5/7j+pm/vz52LBhA3bu3Ck7mTgsLEz6f39/fzz44IPo0KEDdu7ciUGDBjXEUC2i1+uh1+ul53369EGXLl3w8ccf4+23327AkVnf6tWr4e/vj169esnaG/s+vBcwCFlg6tSpGDdu3C1r2rdvX6dla7VaAEBeXh5at24ttefl5SEgIECqyc/Pl72uvLwcBQUF0uvvVG3neKdj+fLLL3HlyhWMHTv2trWBgYF4++23UVJScsd/mO9uza9KYGAgAODkyZPo0KEDtFpttSse8vLyAMAq+/BuzO/y5csYMmQIWrZsiU2bNqFZs2a3rLfm/rsZd3d32NnZSduySl5e3k3no9Vqb1lfm5/Ju6Uu86uyaNEizJ8/H99//z0efPDBW9a2b98e7u7uOHny5F3/EL2TOVZp1qwZHnroIZw8eRJA09mHxcXF2LBhA956663brqch96GlbvYzqFar4eTkBDs7uzt+T9SK1c42ohpZerL0okWLpDaTyVTjydL79u2TarZt29agJ0vXdSwDBgyodrXRzbzzzjvC1dW1zmOtC2tt659++kkAEL/88osQ4v9Olr7+ioePP/5YqNVqce3aNetN4DbqOj+TySR69+4tBgwYIIqLi2u1rru1/3r16iWioqKk5xUVFeJ//ud/bnmy9LBhw2Rter2+2snSt/qZvJssnZ8QQixYsECo1WqRkZFRq3WcPXtW2NjYiK+//vqOx1sXdZnj9crLy4Wvr6+YMmWKEKJp7EMh/v4cUalU4uLFi7ddR0Pvwyqo5cnSXbt2lbWNHDmy2snSd/KeqNVYrbYkkjl9+rQ4cOCAdHn4gQMHxIEDB2SXifv6+oqvvvpKej5//nzh4uIivv76a3Ho0CHx1FNP1Xj5/EMPPSQyMzPFTz/9JDp16tSgl8/faiznzp0Tvr6+IjMzU/a6EydOCBsbG/Hdd99VW+Y333wjPvnkE3H48GFx4sQJ8dFHH4nmzZuL2NjYep/PjSyd38mTJ8Vbb70l9u3bJ3Jzc8XXX38t2rdvL/r37y+9pury+cGDB4uDBw+KlJQUcd999zXY5fOWzM9kMonAwEDh7+8vTp48Kbtct7y8XAjRsPtvw4YNQqVSicTERHH06FExceJE4eLiIl2hN2bMGDFz5kyp/ueffxb29vZi0aJF4tixY2LOnDk1Xj5/u5/Ju8XS+c2fP184ODiIL7/8Uravqn4HXb58WUybNk1kZGSI3Nxc8f3334vu3buLTp063dVQfidznDdvnti2bZv47bffRFZWlggLCxOOjo4iOztbqmnM+7BK3759xYgRI6q132v78PLly9JnHQDx/vvviwMHDojTp08LIYSYOXOmGDNmjFRfdfn89OnTxbFjx8SKFStqvHz+VtvMGhiE6kl4eLgAUO3xww8/SDX43/utVKmsrBRvvvmm8PT0FCqVSgwaNEgcP35ctty//vpLjBw5UrRo0UKo1Woxfvx4Wbi6m243ltzc3GpzFkKIWbNmCS8vL1FRUVFtmd99950ICAgQLVq0EM7OzqJbt24iISGhxtr6Zun8zpw5I/r37y/c3NyESqUSHTt2FNOnT5fdR0gIIU6dOiWeeOIJ4eTkJNzd3cXUqVNll5/fLZbO74cffqjxPQ1A5ObmCiEafv8tX75ctG3bVjg4OIhevXqJ3bt3S30DBgwQ4eHhsvovvvhC3H///cLBwUE88MADYsuWLbL+2vxM3k2WzM/b27vGfTVnzhwhhBBXrlwRgwcPFvfdd59o1qyZ8Pb2FhMmTLDqB0xdWDLH6OhoqdbT01MMHTpU7N+/X7a8xrwPhRAiJydHABDbt2+vtqx7bR/e7HdE1ZzCw8PFgAEDqr0mICBAODg4iPbt28s+E6vcaptZg40Qd/m6ZCIiIqJ7BO8jRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESK9f8BuH+XMUtxQqcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR59JREFUeJzt3XtcFPX+P/DXgrEgsguKsOxXRLyEoiipiZjXJFdDy5OlaCUoSnnQRMwLZXjrhPe8ZFIdEys9lp0kjxqKpHHK9YaSimKoqJUuXmEFFQU+vz/6MYeRi6yCCPN6Ph770J15z8znM8OyL2Y/M6sSQggQERERKZBVTTeAiIiIqKYwCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIESnIrFmzoFKpcOXKlZpuSo0KCQlBs2bNaroZ1UalUmHWrFlVus7evXujd+/eVbpOoscBgxCRBf7xj3/ghRdegKura4VvNps2bYLBYIBer4darUaTJk3w8ssv49ixY4+2wQ/hgw8+QHx8fI1t//jx45g1axbOnj1bY21Qmrqwzw8cOIDx48ejbdu2sLe3R9OmTTF06FD89ttvNd00ekwxCBFZYMaMGThw4ACeeuqpCuuOHj0KJycnTJw4ER9//DHGjRuHw4cPo0uXLvj1118fUWsfzuMQhGbPnl2r35Rrm4r2+Y4dO7Bjx45H3ygLzZ8/H//+97/Rt29fLFu2DGFhYUhOTkbHjh1r1R8i9OjUq+kGENUmmZmZaNasGa5cuYLGjRuXWxcdHV1q2pgxY9CkSROsWrUKsbGx1dnMRy4vLw/29vY13Yxarbx9KITA7du3YWdnVwOt+h8bG5sa3X5lRUZGYv369bL2Dhs2DD4+Ppg3bx6++uqrGmwdPY54RoiohD///BOhoaHSR1qenp4YN24c7ty5AwAPNa7ExcUF9evXR3Z2tkXLZWRkYMiQIdDpdLC1tUWTJk0QFBSEnJwcAMDZs2ehUqkQFxdXatnyPr67cuUKhg4dCo1Gg0aNGmHixIm4ffu2bLm8vDysXbsWKpUKKpUKISEhAP43zuj48eMYMWIEnJyc0L17dwDAkSNHEBISgubNm8PW1hY6nQ6jR4/G1atXS7Whon0dFxeHV155BQDQp08fqQ27d++Wlv/hhx/Qo0cP2Nvbw8HBAYGBgUhLSyu1nfj4eLRr1w62trZo164dNm3aVNldX8q+ffvw/PPPw8nJCfb29mjfvj2WLVsmq/nxxx+ldjk6OuLFF1/EiRMnZDUV7cNmzZph4MCB2L59Ozp37gw7Ozt88sknAIDs7GxERETA3d0darUaLVu2xPz581FUVFRhu8+dO4e///3v8PLygp2dHRo1aoRXXnlFdubnfvu8rDFCly5dQmhoKFxdXWFra4sOHTpg7dq1sprin89Fixbh008/RYsWLaBWq/H000/jwIEDslqTyYRRo0ahSZMmUKvVcHNzw4svvmjRWcFu3bqVCm2tWrVC27ZtSx0HIoBnhIgkFy5cQJcuXZCdnY2wsDC0bt0af/75J7799lvcvHnzgf4izs7Oxt27d2EymbB06VKYzWb07du30svfuXMHBoMB+fn5mDBhAnQ6Hf78809s2bIF2dnZ0Gq1FrcJAIYOHYpmzZohJiYGe/fuxfLly3H9+nV88cUXAIAvv/wSY8aMQZcuXRAWFgYAaNGihWwdr7zyClq1aoUPPvgAQggAQGJiIs6cOYNRo0ZBp9MhLS0Nn376KdLS0rB3716oVCoA99/XPXv2xFtvvYXly5fjnXfeQZs2bQBA+vfLL79EcHAwDAYD5s+fj5s3b2LVqlXo3r07Dh8+LAXWHTt2YMiQIfD29kZMTAyuXr0qvdFaKjExEQMHDoSbmxsmTpwInU6HEydOYMuWLZg4cSIAYOfOnRgwYACaN2+OWbNm4datW1ixYgWeeeYZHDp0qFSQLmsfAsDJkycxfPhwvPHGGxg7diy8vLxw8+ZN9OrVC3/++SfeeOMNNG3aFHv27EFUVBQuXryIpUuXltv2AwcOYM+ePQgKCkKTJk1w9uxZrFq1Cr1798bx48dRv379++7ze926dQu9e/fGqVOnMH78eHh6emLjxo0ICQlBdna2tE+KrV+/Hjdu3MAbb7wBlUqFBQsW4KWXXsKZM2fwxBNPAACGDBmCtLQ0TJgwAc2aNcOlS5eQmJiI8+fPP9QfIUIIZGVloW3btg+8DqrDBBEJIYQYOXKksLKyEgcOHCg1r6ioSPb88uXLAoCYOXNmhev08vISAAQA0aBBAzFjxgxRWFhY6TYdPnxYABAbN24styYzM1MAEGvWrCk17942zpw5UwAQL7zwgqzu73//uwAgfv31V2mavb29CA4OLrXO4nUMHz681LybN2+Wmvavf/1LABDJycnStMrs640bNwoAYteuXbL5N27cEI6OjmLs2LGy6SaTSWi1Wtl0X19f4ebmJrKzs6VpO3bsEACEh4dHqW2Xp6CgQHh6egoPDw9x/fr1MttbvD0XFxdx9epVadqvv/4qrKysxMiRI6VpFe1DDw8PAUAkJCTIps+dO1fY29uL3377TTZ9+vTpwtraWpw/f16adu9xL+u4GI1GAUB88cUX0rTy9rkQQvTq1Uv06tVLer506VIBQHz11VfStDt37gh/f3/RoEEDYTabhRD/+/ls1KiRuHbtmlT7/fffCwDiP//5jxBCiOvXrwsAYuHChaW2/bC+/PJLAUCsXr26ytdNtR8/GiMCUFRUhPj4eAwaNAidO3cuNb/4TIal1qxZg4SEBHz88cdo06YNbt26hcLCwkovX3zGZ/v27bh58+YDtaEs4eHhsucTJkwAAGzbtq3S63jzzTdLTSs5juX27du4cuUKunbtCgA4dOgQgIff14mJicjOzsbw4cNx5coV6WFtbQ0/Pz/s2rULAHDx4kWkpqYiODhYdubsueeeg7e3d6X7CQCHDx9GZmYmIiIi4OjoWGZ7i7cXEhKChg0bSvPbt2+P5557rsx9W9Y+BABPT08YDAbZtI0bN6JHjx5wcnKS9TsgIACFhYVITk4ut/0lj8vdu3dx9epVtGzZEo6OjtJxsdS2bdug0+kwfPhwadoTTzyBt956C7m5ufjpp59k9cOGDYOTk5P0vEePHgCAM2fOSG20sbHB7t27cf369QdqU1nS09MRHh4Of39/BAcHV9l6qe7gR2NEAC5fvgyz2Yx27dpV6Xr9/f2l/wcFBUkfMyxatKhSy3t6eiIyMhJLlizBunXr0KNHD7zwwgt47bXXHvhjMeCvMRMltWjRAlZWVhaNxfD09Cw17dq1a5g9ezY2bNiAS5cuyeYVj2l62H2dkZEBAHj22WfLnK/RaAD8NS4GKN1XAPDy8rIoAJw+fRoAKmxz8fa8vLxKzWvTpg22b99eakB0WfuwvOkZGRk4cuRIuYP0793fJd26dQsxMTFYs2YN/vzzT9nHcMXHxVLnzp1Dq1atYGUl/3u6+Ge8eH8Ua9q0qex5cSgqDj1qtRrz58/H5MmT4erqiq5du2LgwIEYOXIkdDrdA7XRZDIhMDAQWq0W3377LaytrR9oPVS3MQgRPSJOTk549tlnsW7dukoHIQBYvHgxQkJC8P3332PHjh146623pLE9TZo0KfcMiiVnnh7kjFdZVzENHToUe/bswZQpU+Dr64sGDRqgqKgI/fv3v++A3soqXs+XX35Z5htkvXq159daeVeClTW9qKgIzz33HKZOnVrmMk8++WS525kwYQLWrFmDiIgI+Pv7Q6vVQqVSISgoqMqOy/2UF0JKhrKIiAgMGjQI8fHx2L59O9577z3ExMTgxx9/vO8tK+6Vk5ODAQMGIDs7G//973+h1+sfqv1Ud9We3xhE1ahx48bQaDTVfp+RW7duPdBf4D4+PvDx8cGMGTOwZ88ePPPMM4iNjcX7778v/WV979Vo9/5FXlJGRobsrMOpU6dQVFQkG5BqaTi6fv06kpKSMHv2bNntA4rP4BSr7L4ub/vFg7ZdXFwQEBBQ7vIeHh5lbh/4azCyJYq3eezYsXK3Wby9stadnp4OZ2fnh7rFQIsWLZCbm1thn8vz7bffIjg4GIsXL5am3b59u9TPjCXH3MPDA0eOHEFRUZHsrFB6ero0/0G0aNECkydPxuTJk5GRkQFfX18sXrzYosveb9++jUGDBuG3337Dzp07Lf4olJSFY4SIAFhZWWHw4MH4z3/+g4MHD5aaX/Kv1soo62OKs2fPIikpqcxxMeUxm80oKCiQTfPx8YGVlRXy8/MB/PVRkLOzc6kxIh9//HG56125cqXs+YoVKwAAAwYMkKbZ29tbdKl/8V/89+6re69mquy+Lg4N97bBYDBAo9Hggw8+wN27d0stf/nyZQCAm5sbfH19sXbtWln4TExMxPHjxyvdLwDo2LEjPD09sXTp0lLtKW5vye2VrDl27Bh27NiB559/3qJt3mvo0KEwGo3Yvn17qXnZ2dmlfk5Ksra2LnVcVqxYUeqsYXn7vCzPP/88TCYTvv76a2laQUEBVqxYgQYNGqBXr173XUdJN2/elN3CAfgrFDk4OEg/65VRWFiIYcOGwWg0YuPGjbKPp4nKwjNCRP/fBx98gB07dqBXr14ICwtDmzZtcPHiRWzcuBE///wzHB0d8eWXX+LcuXPSwOXk5GS8//77AIDXX39d+ivYx8cHffv2ha+vL5ycnJCRkYHVq1fj7t27mDdvXqXb9OOPP2L8+PF45ZVX8OSTT6KgoABffvklrK2tMWTIEKluzJgxmDdvHsaMGYPOnTsjOTm5wq8UyMzMxAsvvID+/fvDaDTiq6++wogRI9ChQwepplOnTti5cyeWLFkCvV4PT09P+Pn5lbtOjUaDnj17YsGCBbh79y7+7//+Dzt27EBmZuYD7WtfX19YW1tj/vz5yMnJgVqtxrPPPgsXFxesWrUKr7/+Ojp27IigoCA0btwY58+fx9atW/HMM8/go48+AgDExMQgMDAQ3bt3x+jRo3Ht2jWsWLECbdu2RW5ubqWPg5WVFVatWoVBgwbB19cXo0aNgpubG9LT05GWliaFk4ULF2LAgAHw9/dHaGiodPm8Vqt96O/+mjJlCjZv3oyBAwciJCQEnTp1Ql5eHo4ePYpvv/0WZ8+ehbOzc5nLDhw4EF9++SW0Wi28vb1hNBqxc+dONGrUSFZX0T6/V1hYGD755BOEhIQgJSUFzZo1w7fffotffvkFS5cuhYODg0X9++2339C3b18MHToU3t7eqFevHjZt2oSsrCwEBQVVej2TJ0/G5s2bMWjQIFy7dq3UmaTXXnvNonaRAtTgFWtEj51z586JkSNHisaNGwu1Wi2aN28uwsPDRX5+vhDir0uI8f8vh7/3UfKS45kzZ4rOnTsLJycnUa9ePaHX60VQUJA4cuSIRe05c+aMGD16tGjRooWwtbUVDRs2FH369BE7d+6U1d28eVOEhoYKrVYrHBwcxNChQ8WlS5fKvXz++PHj4uWXXxYODg7CyclJjB8/Xty6dUu2zvT0dNGzZ09hZ2cnAEiX0hev4/Lly6Xa+8cff4i//e1vwtHRUWi1WvHKK6+ICxculHmrgfvtayGE+Oyzz0Tz5s2FtbV1qX28a9cuYTAYhFarFba2tqJFixYiJCREHDx4ULadf//736JNmzZCrVYLb29v8d1334ng4GCLLp8v9vPPP4vnnntOODg4CHt7e9G+fXuxYsUKWc3OnTvFM888I+zs7IRGoxGDBg0Sx48fl9VUtA89PDxEYGBgmdu/ceOGiIqKEi1bthQ2NjbC2dlZdOvWTSxatEjcuXNHqrt3f1+/fl2MGjVKODs7iwYNGgiDwSDS09OFh4dHqVsklLfP7718XgghsrKypPXa2NgIHx+fUrdxKL58vqzL4ku288qVKyI8PFy0bt1a2NvbC61WK/z8/MQ333xT5r4oT0WvUb7lUVlUQlh4zp+IiIiojuAYISIiIlIsjhEiqiHXrl2TvsOsLNbW1hV+sStVDR6H2iE3N/e+47oaN27MewWRxfjRGFEN6d27d6m775bk4eFh0Q0O6cHwONQOs2bNwuzZsyusyczMfKjvJCNlYhAiqiEpKSkVfpWAnZ0dnnnmmUfYImXicagdzpw5I30dR3m6d+8OW1vbR9QiqisYhIiIiEixOFiaiIiIFIuDpStQVFSECxcuwMHB4YG/fZyIiIgeLSEEbty4Ab1eX+qLge/FIFSBCxcuwN3dvaabQURERA/g999/R5MmTSqsYRCqQPEt4n///XdoNJoabg0RERFVhtlshru7e6W+6oVBqALFH4dpNBoGISIiolqmMsNaOFiaiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSrXk03gIioxuyKqekWWK5PVE23gKhO4RkhIiIiUiyLg1BycjIGDRoEvV4PlUqF+Ph42XyVSlXmY+HChVJNs2bNSs2fN2+ebD1HjhxBjx49YGtrC3d3dyxYsKBUWzZu3IjWrVvD1tYWPj4+2LZtm2y+EALR0dFwc3ODnZ0dAgICkJGRYWmXiYiIqI6y+KOxvLw8dOjQAaNHj8ZLL71Uav7Fixdlz3/44QeEhoZiyJAhsulz5szB2LFjpecODg7S/81mM/r164eAgADExsbi6NGjGD16NBwdHREWFgYA2LNnD4YPH46YmBgMHDgQ69evx+DBg3Ho0CG0a9cOALBgwQIsX74ca9euhaenJ9577z0YDAYcP34ctra2lnadiOoY45mrNd0Ei/n3qekWENUtFgehAQMGYMCAAeXO1+l0sufff/89+vTpg+bNm8umOzg4lKottm7dOty5cweff/45bGxs0LZtW6SmpmLJkiVSEFq2bBn69++PKVOmAADmzp2LxMREfPTRR4iNjYUQAkuXLsWMGTPw4osvAgC++OILuLq6Ij4+HkFBQZZ2nYiIiOqYah0jlJWVha1btyI0NLTUvHnz5qFRo0Z46qmnsHDhQhQUFEjzjEYjevbsCRsbG2mawWDAyZMncf36dakmICBAtk6DwQCj0QgAyMzMhMlkktVotVr4+flJNffKz8+H2WyWPYiIiKjuqtarxtauXQsHB4dSH6G99dZb6NixIxo2bIg9e/YgKioKFy9exJIlSwAAJpMJnp6esmVcXV2leU5OTjCZTNK0kjUmk0mqK7lcWTX3iomJwezZsx+wt0RERFTbVGsQ+vzzz/Hqq6+WGo8TGRkp/b99+/awsbHBG2+8gZiYGKjV6upsUoWioqJkbTObzXB3d6+x9hAREVH1qraPxv773//i5MmTGDNmzH1r/fz8UFBQgLNnzwL4a5xRVlaWrKb4efG4ovJqSs4vuVxZNfdSq9XQaDSyBxEREdVd1RaEVq9ejU6dOqFDhw73rU1NTYWVlRVcXFwAAP7+/khOTsbdu3elmsTERHh5ecHJyUmqSUpKkq0nMTER/v7+AABPT0/odDpZjdlsxr59+6QaIiIiUjaLPxrLzc3FqVOnpOeZmZlITU1Fw4YN0bRpUwB/BY6NGzdi8eLFpZY3Go3Yt28f+vTpAwcHBxiNRkyaNAmvvfaaFHJGjBiB2bNnIzQ0FNOmTcOxY8ewbNkyfPjhh9J6Jk6ciF69emHx4sUIDAzEhg0bcPDgQXz66acA/rqfUUREBN5//320atVKunxer9dj8ODBlnabiIiI6iCLg9DBgwfRp8//bmRRPKYmODgYcXFxAIANGzZACIHhw4eXWl6tVmPDhg2YNWsW8vPz4enpiUmTJsnG5mi1WuzYsQPh4eHo1KkTnJ2dER0dLV06DwDdunXD+vXrMWPGDLzzzjto1aoV4uPjpXsIAcDUqVORl5eHsLAwZGdno3v37khISOA9hIiIiAgAoBJCiJpuxOPKbDZDq9UiJyeH44WI6iDj6rdrugkW8w9dVNNNIHrsWfL+ze8aIyIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFsjgIJScnY9CgQdDr9VCpVIiPj5fNDwkJgUqlkj369+8vq7l27RpeffVVaDQaODo6IjQ0FLm5ubKaI0eOoEePHrC1tYW7uzsWLFhQqi0bN25E69atYWtrCx8fH2zbtk02XwiB6OhouLm5wc7ODgEBAcjIyLC0y0RERFRHWRyE8vLy0KFDB6xcubLcmv79++PixYvS41//+pds/quvvoq0tDQkJiZiy5YtSE5ORlhYmDTfbDajX79+8PDwQEpKChYuXIhZs2bh008/lWr27NmD4cOHIzQ0FIcPH8bgwYMxePBgHDt2TKpZsGABli9fjtjYWOzbtw/29vYwGAy4ffu2pd0mIiKiOkglhBAPvLBKhU2bNmHw4MHStJCQEGRnZ5c6U1TsxIkT8Pb2xoEDB9C5c2cAQEJCAp5//nn88ccf0Ov1WLVqFd59912YTCbY2NgAAKZPn474+Hikp6cDAIYNG4a8vDxs2bJFWnfXrl3h6+uL2NhYCCGg1+sxefJkvP322wCAnJwcuLq6Ii4uDkFBQfftn9lshlarRU5ODjQazYPsIiJ6jBlXv13TTbCYf+iimm4C0WPPkvfvahkjtHv3bri4uMDLywvjxo3D1atXpXlGoxGOjo5SCAKAgIAAWFlZYd++fVJNz549pRAEAAaDASdPnsT169elmoCAANl2DQYDjEYjACAzMxMmk0lWo9Vq4efnJ9XcKz8/H2azWfYgIiKiuqvKg1D//v3xxRdfICkpCfPnz8dPP/2EAQMGoLCwEABgMpng4uIiW6ZevXpo2LAhTCaTVOPq6iqrKX5+v5qS80suV1bNvWJiYqDVaqWHu7u7xf0nIiKi2qNeVa+w5EdOPj4+aN++PVq0aIHdu3ejb9++Vb25KhUVFYXIyEjpudlsZhgiIiKqw6r98vnmzZvD2dkZp06dAgDodDpcunRJVlNQUIBr165Bp9NJNVlZWbKa4uf3qyk5v+RyZdXcS61WQ6PRyB5ERERUd1V7EPrjjz9w9epVuLm5AQD8/f2RnZ2NlJQUqebHH39EUVER/Pz8pJrk5GTcvXtXqklMTISXlxecnJykmqSkJNm2EhMT4e/vDwDw9PSETqeT1ZjNZuzbt0+qISIiImWzOAjl5uYiNTUVqampAP4alJyamorz588jNzcXU6ZMwd69e3H27FkkJSXhxRdfRMuWLWEwGAAAbdq0Qf/+/TF27Fjs378fv/zyC8aPH4+goCDo9XoAwIgRI2BjY4PQ0FCkpaXh66+/xrJly2QfW02cOBEJCQlYvHgx0tPTMWvWLBw8eBDjx48H8NcVbREREXj//fexefNmHD16FCNHjoRer5dd5UZERETKZfEYoYMHD6JPnz7S8+JwEhwcjFWrVuHIkSNYu3YtsrOzodfr0a9fP8ydOxdqtVpaZt26dRg/fjz69u0LKysrDBkyBMuXL5fma7Va7NixA+Hh4ejUqROcnZ0RHR0tu9dQt27dsH79esyYMQPvvPMOWrVqhfj4eLRr106qmTp1KvLy8hAWFobs7Gx0794dCQkJsLW1tbTbREREVAc91H2E6jreR4iobuN9hIjqphq/jxARERFRbcAgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKZXEQSk5OxqBBg6DX66FSqRAfHy/Nu3v3LqZNmwYfHx/Y29tDr9dj5MiRuHDhgmwdzZo1g0qlkj3mzZsnqzly5Ah69OgBW1tbuLu7Y8GCBaXasnHjRrRu3Rq2trbw8fHBtm3bZPOFEIiOjoabmxvs7OwQEBCAjIwMS7tMREREdZTFQSgvLw8dOnTAypUrS827efMmDh06hPfeew+HDh3Cd999h5MnT+KFF14oVTtnzhxcvHhRekyYMEGaZzab0a9fP3h4eCAlJQULFy7ErFmz8Omnn0o1e/bswfDhwxEaGorDhw9j8ODBGDx4MI4dOybVLFiwAMuXL0dsbCz27dsHe3t7GAwG3L5929JuExERUR2kEkKIB15YpcKmTZswePDgcmsOHDiALl264Ny5c2jatCmAv84IRUREICIiosxlVq1ahXfffRcmkwk2NjYAgOnTpyM+Ph7p6ekAgGHDhiEvLw9btmyRluvatSt8fX0RGxsLIQT0ej0mT56Mt99+GwCQk5MDV1dXxMXFISgo6L79M5vN0Gq1yMnJgUajqcwuIaJaxLj67ZpugsX8QxfVdBOIHnuWvH9X+xihnJwcqFQqODo6yqbPmzcPjRo1wlNPPYWFCxeioKBAmmc0GtGzZ08pBAGAwWDAyZMncf36dakmICBAtk6DwQCj0QgAyMzMhMlkktVotVr4+flJNffKz8+H2WyWPYiIiKjuqledK799+zamTZuG4cOHyxLZW2+9hY4dO6Jhw4bYs2cPoqKicPHiRSxZsgQAYDKZ4OnpKVuXq6urNM/JyQkmk0maVrLGZDJJdSWXK6vmXjExMZg9e/ZD9JiIiIhqk2oLQnfv3sXQoUMhhMCqVatk8yIjI6X/t2/fHjY2NnjjjTcQExMDtVpdXU26r6ioKFnbzGYz3N3da6w9REREVL2q5aOx4hB07tw5JCYm3vfzOT8/PxQUFODs2bMAAJ1Oh6ysLFlN8XOdTldhTcn5JZcrq+ZearUaGo1G9iAiIqK6q8qDUHEIysjIwM6dO9GoUaP7LpOamgorKyu4uLgAAPz9/ZGcnIy7d+9KNYmJifDy8oKTk5NUk5SUJFtPYmIi/P39AQCenp7Q6XSyGrPZjH379kk1REREpGwWfzSWm5uLU6dOSc8zMzORmpqKhg0bws3NDS+//DIOHTqELVu2oLCwUBqP07BhQ9jY2MBoNGLfvn3o06cPHBwcYDQaMWnSJLz22mtSyBkxYgRmz56N0NBQTJs2DceOHcOyZcvw4YcfStudOHEievXqhcWLFyMwMBAbNmzAwYMHpUvsVSoVIiIi8P7776NVq1bw9PTEe++9B71eX+FVbkRERKQcFgehgwcPok+fPtLz4jE1wcHBmDVrFjZv3gwA8PX1lS23a9cu9O7dG2q1Ghs2bMCsWbOQn58PT09PTJo0STY2R6vVYseOHQgPD0enTp3g7OyM6OhohIWFSTXdunXD+vXrMWPGDLzzzjto1aoV4uPj0a5dO6lm6tSpyMvLQ1hYGLKzs9G9e3ckJCTA1tbW0m4TERFRHfRQ9xGq63gfIaK6jfcRIqqbHqv7CBERERE9rhiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEsDkLJyckYNGgQ9Ho9VCoV4uPjZfOFEIiOjoabmxvs7OwQEBCAjIwMWc21a9fw6quvQqPRwNHREaGhocjNzZXVHDlyBD169ICtrS3c3d2xYMGCUm3ZuHEjWrduDVtbW/j4+GDbtm0Wt4WIiIiUy+IglJeXhw4dOmDlypVlzl+wYAGWL1+O2NhY7Nu3D/b29jAYDLh9+7ZU8+qrryItLQ2JiYnYsmULkpOTERYWJs03m83o168fPDw8kJKSgoULF2LWrFn49NNPpZo9e/Zg+PDhCA0NxeHDhzF48GAMHjwYx44ds6gtREREpFwqIYR44IVVKmzatAmDBw8G8NcZGL1ej8mTJ+Ptt98GAOTk5MDV1RVxcXEICgrCiRMn4O3tjQMHDqBz584AgISEBDz//PP4448/oNfrsWrVKrz77rswmUywsbEBAEyfPh3x8fFIT08HAAwbNgx5eXnYsmWL1J6uXbvC19cXsbGxlWrL/ZjNZmi1WuTk5ECj0TzobiKix5Rx9ds13QSL+YcuqukmED32LHn/rtIxQpmZmTCZTAgICJCmabVa+Pn5wWg0AgCMRiMcHR2lEAQAAQEBsLKywr59+6Sanj17SiEIAAwGA06ePInr169LNSW3U1xTvJ3KtOVe+fn5MJvNsgcRERHVXVUahEwmEwDA1dVVNt3V1VWaZzKZ4OLiIptfr149NGzYUFZT1jpKbqO8mpLz79eWe8XExECr1UoPd3f3SvSaiIiIaiteNVZCVFQUcnJypMfvv/9e000iIiKialSlQUin0wEAsrKyZNOzsrKkeTqdDpcuXZLNLygowLVr12Q1Za2j5DbKqyk5/35tuZdarYZGo5E9iIiIqO6q0iDk6ekJnU6HpKQkaZrZbMa+ffvg7+8PAPD390d2djZSUlKkmh9//BFFRUXw8/OTapKTk3H37l2pJjExEV5eXnBycpJqSm6nuKZ4O5VpCxERESmbxUEoNzcXqampSE1NBfDXoOTU1FScP38eKpUKEREReP/997F582YcPXoUI0eOhF6vl64sa9OmDfr374+xY8di//79+OWXXzB+/HgEBQVBr9cDAEaMGAEbGxuEhoYiLS0NX3/9NZYtW4bIyEipHRMnTkRCQgIWL16M9PR0zJo1CwcPHsT48eMBoFJtISIiImWrZ+kCBw8eRJ8+faTnxeEkODgYcXFxmDp1KvLy8hAWFobs7Gx0794dCQkJsLW1lZZZt24dxo8fj759+8LKygpDhgzB8uXLpflarRY7duxAeHg4OnXqBGdnZ0RHR8vuNdStWzesX78eM2bMwDvvvINWrVohPj4e7dq1k2oq0xYiIiJSroe6j1Bdx/sIEdVtvI8QUd1UY/cRIiIiIqpNGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLGqPAg1a9YMKpWq1CM8PBwA0Lt371Lz3nzzTdk6zp8/j8DAQNSvXx8uLi6YMmUKCgoKZDW7d+9Gx44doVar0bJlS8TFxZVqy8qVK9GsWTPY2trCz88P+/fvr+ruEhERUS1W5UHowIEDuHjxovRITEwEALzyyitSzdixY2U1CxYskOYVFhYiMDAQd+7cwZ49e7B27VrExcUhOjpaqsnMzERgYCD69OmD1NRUREREYMyYMdi+fbtU8/XXXyMyMhIzZ87EoUOH0KFDBxgMBly6dKmqu0xERES1lEoIIapzAxEREdiyZQsyMjKgUqnQu3dv+Pr6YunSpWXW//DDDxg4cCAuXLgAV1dXAEBsbCymTZuGy5cvw8bGBtOmTcPWrVtx7NgxabmgoCBkZ2cjISEBAODn54enn34aH330EQCgqKgI7u7umDBhAqZPn16ptpvNZmi1WuTk5ECj0TzEXiCix5Fx9ds13QSL+YcuqukmED32LHn/rtYxQnfu3MFXX32F0aNHQ6VSSdPXrVsHZ2dntGvXDlFRUbh586Y0z2g0wsfHRwpBAGAwGGA2m5GWlibVBAQEyLZlMBhgNBql7aakpMhqrKysEBAQINWUJT8/H2azWfYgIiKiuqteda48Pj4e2dnZCAkJkaaNGDECHh4e0Ov1OHLkCKZNm4aTJ0/iu+++AwCYTCZZCAIgPTeZTBXWmM1m3Lp1C9evX0dhYWGZNenp6eW2NyYmBrNnz37g/hIREVHtUq1BaPXq1RgwYAD0er00LSwsTPq/j48P3Nzc0LdvX5w+fRotWrSozubcV1RUFCIjI6XnZrMZ7u7uNdgiIiIiqk7VFoTOnTuHnTt3Smd6yuPn5wcAOHXqFFq0aAGdTlfq6q6srCwAgE6nk/4tnlayRqPRwM7ODtbW1rC2ti6zpngdZVGr1VCr1ZXrIBEREdV61TZGaM2aNXBxcUFgYGCFdampqQAANzc3AIC/vz+OHj0qu7orMTERGo0G3t7eUk1SUpJsPYmJifD39wcA2NjYoFOnTrKaoqIiJCUlSTVERERE1RKEioqKsGbNGgQHB6Nevf+ddDp9+jTmzp2LlJQUnD17Fps3b8bIkSPRs2dPtG/fHgDQr18/eHt74/XXX8evv/6K7du3Y8aMGQgPD5fO1rz55ps4c+YMpk6divT0dHz88cf45ptvMGnSJGlbkZGR+Oyzz7B27VqcOHEC48aNQ15eHkaNGlUdXSYiIqJaqFo+Gtu5cyfOnz+P0aNHy6bb2Nhg586dWLp0KfLy8uDu7o4hQ4ZgxowZUo21tTW2bNmCcePGwd/fH/b29ggODsacOXOkGk9PT2zduhWTJk3CsmXL0KRJE/zzn/+EwWCQaoYNG4bLly8jOjoaJpMJvr6+SEhIKDWAmoiIiJSr2u8jVJvxPkJEdRvvI0RUNz029xEiIiIiepwxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYtWr6QYQERFR1fgw8beaboLFJj33ZI1un2eEiIiISLEYhIiIiEix+NEYERFRHdH1/Kc13YQHsKhGt84zQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYVR6EZs2aBZVKJXu0bt1amn/79m2Eh4ejUaNGaNCgAYYMGYKsrCzZOs6fP4/AwEDUr18fLi4umDJlCgoKCmQ1u3fvRseOHaFWq9GyZUvExcWVasvKlSvRrFkz2Nraws/PD/v376/q7hIREVEtVi1nhNq2bYuLFy9Kj59//lmaN2nSJPznP//Bxo0b8dNPP+HChQt46aWXpPmFhYUIDAzEnTt3sGfPHqxduxZxcXGIjo6WajIzMxEYGIg+ffogNTUVERERGDNmDLZv3y7VfP3114iMjMTMmTNx6NAhdOjQAQaDAZcuXaqOLhMREVEtVC1BqF69etDpdNLD2dkZAJCTk4PVq1djyZIlePbZZ9GpUyesWbMGe/bswd69ewEAO3bswPHjx/HVV1/B19cXAwYMwNy5c7Fy5UrcuXMHABAbGwtPT08sXrwYbdq0wfjx4/Hyyy/jww8/lNqwZMkSjB07FqNGjYK3tzdiY2NRv359fP7559XRZSIiIqqFqiUIZWRkQK/Xo3nz5nj11Vdx/vx5AEBKSgru3r2LgIAAqbZ169Zo2rQpjEYjAMBoNMLHxweurq5SjcFggNlsRlpamlRTch3FNcXruHPnDlJSUmQ1VlZWCAgIkGrKkp+fD7PZLHsQERFR3VXlQcjPzw9xcXFISEjAqlWrkJmZiR49euDGjRswmUywsbGBo6OjbBlXV1eYTCYAgMlkkoWg4vnF8yqqMZvNuHXrFq5cuYLCwsIya4rXUZaYmBhotVrp4e7u/kD7gIiIiGqHKv/S1QEDBkj/b9++Pfz8/ODh4YFvvvkGdnZ2Vb25KhUVFYXIyEjpudlsZhgiIiKqw6r98nlHR0c8+eSTOHXqFHQ6He7cuYPs7GxZTVZWFnQ6HQBAp9OVuoqs+Pn9ajQaDezs7ODs7Axra+sya4rXURa1Wg2NRiN7EBERUd1V7UEoNzcXp0+fhpubGzp16oQnnngCSUlJ0vyTJ0/i/Pnz8Pf3BwD4+/vj6NGjsqu7EhMTodFo4O3tLdWUXEdxTfE6bGxs0KlTJ1lNUVERkpKSpBoiIiKiKg9Cb7/9Nn766SecPXsWe/bswd/+9jdYW1tj+PDh0Gq1CA0NRWRkJHbt2oWUlBSMGjUK/v7+6Nq1KwCgX79+8Pb2xuuvv45ff/0V27dvx4wZMxAeHg61Wg0AePPNN3HmzBlMnToV6enp+Pjjj/HNN99g0qRJUjsiIyPx2WefYe3atThx4gTGjRuHvLw8jBo1qqq7TERERLVUlY8R+uOPPzB8+HBcvXoVjRs3Rvfu3bF37140btwYAPDhhx/CysoKQ4YMQX5+PgwGAz7++GNpeWtra2zZsgXjxo2Dv78/7O3tERwcjDlz5kg1np6e2Lp1KyZNmoRly5ahSZMm+Oc//wmDwSDVDBs2DJcvX0Z0dDRMJhN8fX2RkJBQagA1ERERKZdKCCFquhGPK7PZDK1Wi5ycHI4XIqqDjKvfrukmWMw/dFFNN4EeY/yZ/osl79/8rjEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlKsKg9CMTExePrpp+Hg4AAXFxcMHjwYJ0+elNX07t0bKpVK9njzzTdlNefPn0dgYCDq168PFxcXTJkyBQUFBbKa3bt3o2PHjlCr1WjZsiXi4uJKtWflypVo1qwZbG1t4efnh/3791d1l4mIiKiWqvIg9NNPPyE8PBx79+5FYmIi7t69i379+iEvL09WN3bsWFy8eFF6LFiwQJpXWFiIwMBA3LlzB3v27MHatWsRFxeH6OhoqSYzMxOBgYHo06cPUlNTERERgTFjxmD79u1Szddff43IyEjMnDkThw4dQocOHWAwGHDp0qWq7jYRERHVQiohhKjODVy+fBkuLi746aef0LNnTwB/nRHy9fXF0qVLy1zmhx9+wMCBA3HhwgW4uroCAGJjYzFt2jRcvnwZNjY2mDZtGrZu3Ypjx45JywUFBSE7OxsJCQkAAD8/Pzz99NP46KOPAABFRUVwd3fHhAkTMH369Pu23Ww2Q6vVIicnBxqN5mF2AxE9hoyr367pJljMP3RRTTeBHmP8mf6LJe/f1T5GKCcnBwDQsGFD2fR169bB2dkZ7dq1Q1RUFG7evCnNMxqN8PHxkUIQABgMBpjNZqSlpUk1AQEBsnUaDAYYjUYAwJ07d5CSkiKrsbKyQkBAgFRzr/z8fJjNZtmDiIiI6q561bnyoqIiRERE4JlnnkG7du2k6SNGjICHhwf0ej2OHDmCadOm4eTJk/juu+8AACaTSRaCAEjPTSZThTVmsxm3bt3C9evXUVhYWGZNenp6me2NiYnB7NmzH67TREREVGtUaxAKDw/HsWPH8PPPP8umh4WFSf/38fGBm5sb+vbti9OnT6NFixbV2aQKRUVFITIyUnpuNpvh7u5eY+0hIiKi6lVtQWj8+PHYsmULkpOT0aRJkwpr/fz8AACnTp1CixYtoNPpSl3dlZWVBQDQ6XTSv8XTStZoNBrY2dnB2toa1tbWZdYUr+NearUaarW68p0kIiKiWq3KxwgJITB+/Hhs2rQJP/74Izw9Pe+7TGpqKgDAzc0NAODv74+jR4/Kru5KTEyERqOBt7e3VJOUlCRbT2JiIvz9/QEANjY26NSpk6ymqKgISUlJUg0REREpW5WfEQoPD8f69evx/fffw8HBQRrTo9VqYWdnh9OnT2P9+vV4/vnn0ahRIxw5cgSTJk1Cz5490b59ewBAv3794O3tjddffx0LFiyAyWTCjBkzEB4eLp2xefPNN/HRRx9h6tSpGD16NH788Ud888032Lp1q9SWyMhIBAcHo3PnzujSpQuWLl2KvLw8jBo1qqq7TURERLVQlQehVatWAfjrEvmS1qxZg5CQENjY2GDnzp1SKHF3d8eQIUMwY8YMqdba2hpbtmzBuHHj4O/vD3t7ewQHB2POnDlSjaenJ7Zu3YpJkyZh2bJlaNKkCf75z3/CYDBINcOGDcPly5cRHR0Nk8kEX19fJCQklBpATURERMpU7fcRqs14HyGiuo33XKG6hj/Tf3ms7iNERERE9LhiECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixaq2b58nIiKqzT5M/K2mm2CxrjXdgFqIZ4SIiIhIsXhGiIiIqAxdz39a002gR4BnhIiIiEixGISIiIhIsRiEiIiISLE4RoiIiKodr8CixxWDUE3aFVPTLbBcn6iabgER1UIceEyPKwahGmQ8c7Wmm2Ax/z413QIiIqKqwzFCREREpFgMQkRERKRYDEJERESkWBwjRERUi9TGq68AXoFFjy+eESIiIiLF4hkhIqJahJehE1UtnhEiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixeJgaSKqEsbVb9d0E4iILMYzQkRERKRYPCNE9BiqjTfN4w3ziKg2YhAiegzxXjFERI8GPxojIiIixeIZIarz+DETERGVh0GI6jx+zEREROVhECKL8OwKERHVJQxCZBGeXSEiorqEg6WJiIhIsRQRhFauXIlmzZrB1tYWfn5+2L9/f003iYiIiB4DdT4Iff3114iMjMTMmTNx6NAhdOjQAQaDAZcuXarpphEREVENq/NBaMmSJRg7dixGjRoFb29vxMbGon79+vj8889rumlERERUw+r0YOk7d+4gJSUFUVFR0jQrKysEBATAaDSWqs/Pz0d+fr70PCcnBwBgNpurpX15t/LvX0RERFSHVcd7bPE6hRD3ra3TQejKlSsoLCyEq6urbLqrqyvS09NL1cfExGD27Nmlpru7u1dbG4mIiBRtwkfVtuobN25Aq9VWWFOng5CloqKiEBkZKT0vKirCtWvX0KhRI6hUqirdltlshru7O37//XdoNJoqXffjoK73D6j7fWT/ar+63kf2r/arrj4KIXDjxg3o9fr71tbpIOTs7Axra2tkZWXJpmdlZUGn05WqV6vVUKvVsmmOjo7V2URoNJo6+wMO1P3+AXW/j+xf7VfX+8j+1X7V0cf7nQkqVqcHS9vY2KBTp05ISkqSphUVFSEpKQn+/v412DIiIiJ6HNTpM0IAEBkZieDgYHTu3BldunTB0qVLkZeXh1GjRtV004iIiKiG1fkgNGzYMFy+fBnR0dEwmUzw9fVFQkJCqQHUj5parcbMmTNLfRRXV9T1/gF1v4/sX+1X1/vI/tV+j0MfVaIy15YRERER1UF1eowQERERUUUYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISqyT/+8Q9069YN9evXr/TdqYUQiI6OhpubG+zs7BAQEICMjAxZzbVr1/Dqq69Co9HA0dERoaGhyM3NrYYe3J+lbTl79ixUKlWZj40bN0p1Zc3fsGHDo+iSzIPs6969e5dq+5tvvimrOX/+PAIDA1G/fn24uLhgypQpKCgoqM6ulMnS/l27dg0TJkyAl5cX7Ozs0LRpU7z11lvSlxMXq8njt3LlSjRr1gy2trbw8/PD/v37K6zfuHEjWrduDVtbW/j4+GDbtm2y+ZV5TT5KlvTvs88+Q48ePeDk5AQnJycEBASUqg8JCSl1rPr371/d3aiQJX2Mi4sr1X5bW1tZTW0+hmX9PlGpVAgMDJRqHqdjmJycjEGDBkGv10OlUiE+Pv6+y+zevRsdO3aEWq1Gy5YtERcXV6rG0te1xQRVi+joaLFkyRIRGRkptFptpZaZN2+e0Gq1Ij4+Xvz666/ihRdeEJ6enuLWrVtSTf/+/UWHDh3E3r17xX//+1/RsmVLMXz48GrqRcUsbUtBQYG4ePGi7DF79mzRoEEDcePGDakOgFizZo2sruQ+eFQeZF/36tVLjB07Vtb2nJwcaX5BQYFo166dCAgIEIcPHxbbtm0Tzs7OIioqqrq7U4ql/Tt69Kh46aWXxObNm8WpU6dEUlKSaNWqlRgyZIisrqaO34YNG4SNjY34/PPPRVpamhg7dqxwdHQUWVlZZdb/8ssvwtraWixYsEAcP35czJgxQzzxxBPi6NGjUk1lXpOPiqX9GzFihFi5cqU4fPiwOHHihAgJCRFarVb88ccfUk1wcLDo37+/7Fhdu3btUXWpFEv7uGbNGqHRaGTtN5lMsprafAyvXr0q69uxY8eEtbW1WLNmjVTzOB3Dbdu2iXfffVd89913AoDYtGlThfVnzpwR9evXF5GRkeL48eNixYoVwtraWiQkJEg1lu6zB8EgVM3WrFlTqSBUVFQkdDqdWLhwoTQtOztbqNVq8a9//UsIIcTx48cFAHHgwAGp5ocffhAqlUr8+eefVd72ilRVW3x9fcXo0aNl0yrzAqpuD9q/Xr16iYkTJ5Y7f9u2bcLKykr2y3rVqlVCo9GI/Pz8Kml7ZVTV8fvmm2+EjY2NuHv3rjStpo5fly5dRHh4uPS8sLBQ6PV6ERMTU2b90KFDRWBgoGyan5+feOONN4QQlXtNPkqW9u9eBQUFwsHBQaxdu1aaFhwcLF588cWqbuoDs7SP9/v9WteO4YcffigcHBxEbm6uNO1xO4bFKvN7YOrUqaJt27ayacOGDRMGg0F6/rD7rDL40dhjIjMzEyaTCQEBAdI0rVYLPz8/GI1GAIDRaISjoyM6d+4s1QQEBMDKygr79u17pO2tirakpKQgNTUVoaGhpeaFh4fD2dkZXbp0weeffw7xiO/7+TD9W7duHZydndGuXTtERUXh5s2bsvX6+PjI7mxuMBhgNpuRlpZW9R0pR1X9LOXk5ECj0aBePflN6h/18btz5w5SUlJkrx8rKysEBARIr597GY1GWT3w17Eorq/Ma/JReZD+3evmzZu4e/cuGjZsKJu+e/duuLi4wMvLC+PGjcPVq1ertO2V9aB9zM3NhYeHB9zd3fHiiy/KXkd17RiuXr0aQUFBsLe3l01/XI6hpe73GqyKfVYZdf4rNmoLk8kEAKW++sPV1VWaZzKZ4OLiIptfr149NGzYUKp5VKqiLatXr0abNm3QrVs32fQ5c+bg2WefRf369bFjxw78/e9/R25uLt56660qa//9PGj/RowYAQ8PD+j1ehw5cgTTpk3DyZMn8d1330nrLesYF897VKri+F25cgVz585FWFiYbHpNHL8rV66gsLCwzH2bnp5e5jLlHYuSr7fiaeXVPCoP0r97TZs2DXq9Xvam0r9/f7z00kvw9PTE6dOn8c4772DAgAEwGo2wtrau0j7cz4P00cvLC59//jnat2+PnJwcLFq0CN26dUNaWhqaNGlSp47h/v37cezYMaxevVo2/XE6hpYq7zVoNptx69YtXL9+/aF/7iuDQcgC06dPx/z58yusOXHiBFq3bv2IWlT1KtvHh3Xr1i2sX78e7733Xql5Jac99dRTyMvLw8KFC6vkjbS6+1cyFPj4+MDNzQ19+/bF6dOn0aJFiwdeb2U9quNnNpsRGBgIb29vzJo1SzavOo8fPZh58+Zhw4YN2L17t2wwcVBQkPR/Hx8ftG/fHi1atMDu3bvRt2/fmmiqRfz9/eHv7y8979atG9q0aYNPPvkEc+fOrcGWVb3Vq1fDx8cHXbp0kU2v7cfwccAgZIHJkycjJCSkwprmzZs/0Lp1Oh0AICsrC25ubtL0rKws+Pr6SjWXLl2SLVdQUIBr165Jyz+syvbxYdvy7bff4ubNmxg5cuR9a/38/DB37lzk5+c/9BfzPar+FfPz8wMAnDp1Ci1atIBOpyt1xUNWVhYAVMkxfBT9u3HjBvr37w8HBwds2rQJTzzxRIX1VXn8yuPs7Axra2tpXxbLysoqtz86na7C+sq8Jh+VB+lfsUWLFmHevHnYuXMn2rdvX2Ft8+bN4ezsjFOnTj3yN9GH6WOxJ554Ak899RROnToFoO4cw7y8PGzYsAFz5sy573Zq8hhaqrzXoEajgZ2dHaytrR/6Z6JSqmy0EZXJ0sHSixYtkqbl5OSUOVj64MGDUs327dtrdLD0g7alV69epa42Ks/7778vnJycHritD6Kq9vXPP/8sAIhff/1VCPG/wdIlr3j45JNPhEajEbdv3666DtzHg/YvJydHdO3aVfTq1Uvk5eVValuP6vh16dJFjB8/XnpeWFgo/u///q/CwdIDBw6UTfP39y81WLqi1+SjZGn/hBBi/vz5QqPRCKPRWKlt/P7770KlUonvv//+odv7IB6kjyUVFBQILy8vMWnSJCFE3TiGQvz1PqJWq8WVK1fuu42aPobFUMnB0u3atZNNGz58eKnB0g/zM1GptlbZmkjm3Llz4vDhw9Ll4YcPHxaHDx+WXSbu5eUlvvvuO+n5vHnzhKOjo/j+++/FkSNHxIsvvljm5fNPPfWU2Ldvn/j5559Fq1atavTy+Yra8scffwgvLy+xb98+2XIZGRlCpVKJH374odQ6N2/eLD777DNx9OhRkZGRIT7++GNRv359ER0dXe39uZel/Tt16pSYM2eOOHjwoMjMzBTff/+9aN68uejZs6e0TPHl8/369ROpqakiISFBNG7cuMYun7ekfzk5OcLPz0/4+PiIU6dOyS7XLSgoEELU7PHbsGGDUKvVIi4uThw/flyEhYUJR0dH6Qq9119/XUyfPl2q/+WXX0S9evXEokWLxIkTJ8TMmTPLvHz+fq/JR8XS/s2bN0/Y2NiIb7/9Vnasin8H3bhxQ7z99tvCaDSKzMxMsXPnTtGxY0fRqlWrRxrKH6aPs2fPFtu3bxenT58WKSkpIigoSNja2oq0tDSppjYfw2Ldu3cXw4YNKzX9cTuGN27ckN7rAIglS5aIw4cPi3PnzgkhhJg+fbp4/fXXpfriy+enTJkiTpw4IVauXFnm5fMV7bOqwCBUTYKDgwWAUo9du3ZJNfj/91spVlRUJN577z3h6uoq1Gq16Nu3rzh58qRsvVevXhXDhw8XDRo0EBqNRowaNUoWrh6l+7UlMzOzVJ+FECIqKkq4u7uLwsLCUuv84YcfhK+vr2jQoIGwt7cXHTp0ELGxsWXWVjdL+3f+/HnRs2dP0bBhQ6FWq0XLli3FlClTZPcREkKIs2fPigEDBgg7Ozvh7OwsJk+eLLv8/FGxtH+7du0q82cagMjMzBRC1PzxW7FihWjatKmwsbERXbp0EXv37pXm9erVSwQHB8vqv/nmG/Hkk08KGxsb0bZtW7F161bZ/Mq8Jh8lS/rn4eFR5rGaOXOmEEKImzdvin79+onGjRuLJ554Qnh4eIixY8dW6RvMg7CkjxEREVKtq6ureP7558WhQ4dk66vNx1AIIdLT0wUAsWPHjlLretyOYXm/I4r7FBwcLHr16lVqGV9fX2FjYyOaN28ue08sVtE+qwoqIR7xdclEREREjwneR4iIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFOv/AWeZNNIRZgY/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS7pJREFUeJzt3Xl8TPf+P/DXJGQSkZmEyHZFxFKkQoqKUWulBqF1qyX0khBL3VCR2tKrEdrbqK2WWrqoaEst/VWoJUQs+bZGEFKEqCVoy8SaDEHWz++PfnO+ORKRIRHJeT0fj3lwznmfcz6fczLm5cznnKiEEAJERERECmRR2Q0gIiIiqiwMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCRAoSGRkJlUqFGzduVHZTKlVQUBAaNmxY2c2oMCqVCpGRkeW6zW7duqFbt27luk2i5wGDEJEZ/vvf/+L111+Hs7NzqR82mzZtgl6vh5ubG9RqNerXr4+33noLJ0+efLYNfgqffPIJYmJiKm3/p06dQmRkJC5evFhpbVCa6nDMU1JS8Pbbb6NRo0aoVasWHB0d0aVLF/z888+V3TR6TjEIEZlh+vTpOHz4MF566aVS606cOAEHBwdMmDABy5Ytw9ixY3Hs2DG0b98ev/322zNq7dN5HoLQzJkzq/SHclVT2jHftWsXdu3a9ewbZaZLly7hzp07CAwMxKJFi/Dhhx8CAF5//XV8+eWXldw6eh7VqOwGEFUlaWlpaNiwIW7cuIF69eo9si4iIqLYvJEjR6J+/fpYvnw5VqxYUZHNfOaysrJga2tb2c2o0h51DIUQePDgAWxsbCqhVf/HysqqUvdfVn369EGfPn1k88aNG4e2bdtiwYIFGD16dCW1jJ5XvCJEVMRff/2F4OBg6SstT09PjB07Fjk5OQDwVONKnJycUKtWLWRkZJi13tmzZzFgwAC4uLjA2toa9evXR0BAADIzMwEAFy9ehEqlQnR0dLF1H/X13Y0bNzBw4EBoNBrUrVsXEyZMwIMHD2TrZWVlYfXq1VCpVFCpVAgKCgLwf+OMTp06hSFDhsDBwQGdOnUCABw/fhxBQUFo1KgRrK2t4eLighEjRuDmzZvF2lDasY6Ojsbbb78NAOjevbvUhn379knr79ixA507d4atrS3s7Ozg7++PlJSUYvuJiYlBy5YtYW1tjZYtW2LTpk1lPfTFJCYmok+fPnBwcICtrS1atWqFRYsWyWr27Nkjtcve3h5vvPEGTp8+Lasp7Rg2bNgQffv2xc6dO9GuXTvY2Njgiy++AABkZGQgNDQU7u7uUKvVaNKkCT799FMUFBSU2u5Lly7h3//+N5o1awYbGxvUrVsXb7/9tuzKz+OOeUljhK5du4bg4GA4OzvD2toarVu3xurVq2U1hT+f8+bNw5dffonGjRtDrVbj5ZdfxuHDh2W1RqMRw4cPR/369aFWq+Hq6oo33njjqa8KWlpawt3d3ez3HikDrwgR/a8rV66gffv2yMjIwOjRo9G8eXP89ddf+PHHH3Hv3r0n+h9xRkYGcnNzYTQasXDhQphMJvTo0aPM6+fk5ECv1yM7Oxvjx4+Hi4sL/vrrL2zduhUZGRnQarVmtwkABg4ciIYNGyIqKgoHDx7E4sWLcfv2bXz77bcAgO+++w4jR45E+/btpf9BN27cWLaNt99+G02bNsUnn3wCIQQAIC4uDhcuXMDw4cPh4uKClJQUfPnll0hJScHBgwehUqkAPP5Yd+nSBe+99x4WL16MDz74AC1atAAA6c/vvvsOgYGB0Ov1+PTTT3Hv3j0sX74cnTp1wrFjx6TAumvXLgwYMABeXl6IiorCzZs3pQ9ac8XFxaFv375wdXXFhAkT4OLigtOnT2Pr1q2YMGECAGD37t3o3bs3GjVqhMjISNy/fx9LlizBK6+8gqNHjxYL0iUdQwA4c+YMBg8ejDFjxmDUqFFo1qwZ7t27h65du+Kvv/7CmDFj0KBBAxw4cADh4eG4evUqFi5c+Mi2Hz58GAcOHEBAQADq16+PixcvYvny5ejWrRtOnTqFWrVqPfaYP+z+/fvo1q0bzp07h3HjxsHT0xMbN25EUFAQMjIypGNSaO3atbhz5w7GjBkDlUqFOXPm4M0338SFCxdQs2ZNAMCAAQOQkpKC8ePHo2HDhrh27Rri4uJw+fJls/8TkpWVhfv37yMzMxNbtmzBjh07MGjQILO2QQohiEgIIcSwYcOEhYWFOHz4cLFlBQUFsunr168LAGLGjBmlbrNZs2YCgAAgateuLaZPny7y8/PL3KZjx44JAGLjxo2PrElLSxMAxKpVq4ote7iNM2bMEADE66+/Lqv797//LQCI3377TZpna2srAgMDi22zcBuDBw8utuzevXvF5v3www8CgEhISJDmleVYb9y4UQAQe/fulS2/c+eOsLe3F6NGjZLNNxqNQqvVyub7+PgIV1dXkZGRIc3btWuXACA8PDyK7ftR8vLyhKenp/Dw8BC3b98usb2F+3NychI3b96U5v3222/CwsJCDBs2TJpX2jH08PAQAERsbKxs/kcffSRsbW3F77//Lps/bdo0YWlpKS5fvizNe/i8l3ReDAaDACC+/fZbad6jjrkQQnTt2lV07dpVml64cKEAIL7//ntpXk5OjtDpdKJ27drCZDIJIf7v57Nu3bri1q1bUu3mzZsFAPHzzz8LIYS4ffu2ACDmzp1bbN9PYsyYMdJ7z8LCQrz11luy/RMV4ldjRAAKCgoQExODfv36oV27dsWWF17JMNeqVasQGxuLZcuWoUWLFrh//z7y8/PLvH7hFZ+dO3fi3r17T9SGkoSEhMimx48fDwDYvn17mbfx7rvvFptXdBzLgwcPcOPGDXTo0AEAcPToUQBPf6zj4uKQkZGBwYMH48aNG9LL0tISvr6+2Lt3LwDg6tWrSE5ORmBgoOzK2WuvvQYvL68y9xMAjh07hrS0NISGhsLe3r7E9hbuLygoCHXq1JGWt2rVCq+99lqJx7akYwgAnp6e0Ov1snkbN25E586d4eDgIOu3n58f8vPzkZCQ8Mj2Fz0vubm5uHnzJpo0aQJ7e3vpvJhr+/btcHFxweDBg6V5NWvWxHvvvYe7d+9i//79svpBgwbBwcFBmu7cuTMA4MKFC1IbrayssG/fPty+ffuJ2lRUaGgo4uLisHr1avTu3Rv5+fnSV9xERfGrMSIA169fh8lkQsuWLct1uzqdTvp7QECA9DXDvHnzyrS+p6cnwsLCsGDBAqxZswadO3fG66+/jn/9619P/LUYADRt2lQ23bhxY1hYWJg1FsPT07PYvFu3bmHmzJlYt24drl27JltWOKbpaY/12bNnAQCvvvpqics1Gg2Av8fFAMX7CgDNmjUzKwCcP38eAEptc+H+mjVrVmxZixYtsHPnzmIDoks6ho+af/bsWRw/fvyRg/QfPt5F3b9/H1FRUVi1ahX++usv2ddwhefFXJcuXULTpk1hYSH//3Thz3jh8SjUoEED2XRhKCoMPWq1Gp9++inef/99ODs7o0OHDujbty+GDRsGFxcXs9vXvHlzNG/eHAAwbNgw9OzZE/369UNiYuIT/8eGqicGIaJnxMHBAa+++irWrFlT5iAEAPPnz0dQUBA2b96MXbt24b333pPG9tSvX/+R/6ibc+XpST4YSrqLaeDAgThw4AAmT54MHx8f1K5dGwUFBejVq9djB/SWVeF2vvvuuxI/IGvUqDr/rD3qTrCS5hcUFOC1117DlClTSlznhRdeeOR+xo8fj1WrViE0NBQ6nQ5arRYqlQoBAQHldl4ex9LSssT5RUNZaGgo+vXrh5iYGOzcuRMffvghoqKisGfPnsc+suJx3nrrLYwZMwa///57iWGVlKvq/ItBVIHq1asHjUZT4Q88LBy8aS5vb294e3tj+vTpOHDgAF555RWsWLECH3/8sfQ/64fviHn4f+RFnT17VnbV4dy5cygoKJANSDU3HN2+fRvx8fGYOXOm7PEBhVdwCpX1WD9q/4WDtp2cnODn5/fI9T08PErcP/D3YGRzFO7z5MmTj9xn4f5K2nZqaiocHR2f6hEDjRs3xt27d0vt86P8+OOPCAwMxPz586V5Dx48KPYzY8459/DwwPHjx1FQUCC7KpSamiotfxKNGzfG+++/j/fffx9nz56Fj48P5s+fj++///6Jtlfo/v37AJ78ChhVXxwjRATAwsIC/fv3x88//4wjR44UW170f61lUdLXFBcvXkR8fHyJ42IexWQyIS8vTzbP29sbFhYWyM7OBvD3V0GOjo7FxogsW7bskdtdunSpbHrJkiUAgN69e0vzbG1tzbrduPB//A8fq4fvZirrsS4MDQ+3Qa/XQ6PR4JNPPkFubm6x9a9fvw4AcHV1hY+PD1avXi378IuLi8OpU6fK3C8AaNOmDTw9PbFw4cJi7Slsb9H9Fa05efIkdu3aVezZNuYaOHAgDAYDdu7cWWxZRkZGsZ+ToiwtLYudlyVLlhS7avioY16SPn36wGg0Yv369dK8vLw8LFmyBLVr10bXrl0fu42i7t27J3uEA/B3KLKzs5N+1suipPdebm4uvv32W9jY2Jg9PoyqP14RIvpfn3zyCXbt2oWuXbti9OjRaNGiBa5evYqNGzfil19+gb29Pb777jtcunRJGrickJCAjz/+GAAwdOhQ6X/B3t7e6NGjB3x8fODg4ICzZ89i5cqVyM3NxezZs8vcpj179mDcuHF4++238cILLyAvLw/fffcdLC0tMWDAAKlu5MiRmD17NkaOHIl27dohISEBv//++yO3m5aWhtdffx29evWCwWDA999/jyFDhqB169ZSTdu2bbF7924sWLAAbm5u8PT0hK+v7yO3qdFo0KVLF8yZMwe5ubn4xz/+gV27diEtLe2JjrWPjw8sLS3x6aefIjMzE2q1Gq+++iqcnJywfPlyDB06FG3atEFAQADq1auHy5cvY9u2bXjllVfw+eefAwCioqLg7++PTp06YcSIEbh16xaWLFmCF198EXfv3i3zebCwsMDy5cvRr18/+Pj4YPjw4XB1dUVqaipSUlKkcDJ37lz07t0bOp0OwcHB0u3zWq32qX/31+TJk7Flyxb07dsXQUFBaNu2LbKysnDixAn8+OOPuHjxIhwdHUtct2/fvvjuu++g1Wrh5eUFg8GA3bt3o27durK60o75w0aPHo0vvvgCQUFBSEpKQsOGDfHjjz/i119/xcKFC2FnZ2dW/37//Xf06NEDAwcOhJeXF2rUqIFNmzYhPT0dAQEBZd7OmDFjYDKZ0KVLF/zjH/+A0WjEmjVrkJqaivnz56N27dpmtYsUoBLvWCN67ly6dEkMGzZM1KtXT6jVatGoUSMREhIisrOzhRB/30KM/70l9+FX0VuOZ8yYIdq1ayccHBxEjRo1hJubmwgICBDHjx83qz0XLlwQI0aMEI0bNxbW1taiTp06onv37mL37t2yunv37ong4GCh1WqFnZ2dGDhwoLh27dojb58/deqUeOutt4SdnZ1wcHAQ48aNE/fv35dtMzU1VXTp0kXY2NgIANKt9IXbuH79erH2/vnnn+Kf//ynsLe3F1qtVrz99tviypUrJT5q4HHHWgghvvrqK9GoUSNhaWlZ7Bjv3btX6PV6odVqhbW1tWjcuLEICgoSR44cke3n//2//ydatGgh1Gq18PLyEj/99JMIDAw06/b5Qr/88ot47bXXhJ2dnbC1tRWtWrUSS5YskdXs3r1bvPLKK8LGxkZoNBrRr18/cerUKVlNacfQw8ND+Pv7l7j/O3fuiPDwcNGkSRNhZWUlHB0dRceOHcW8efNETk6OVPfw8b59+7YYPny4cHR0FLVr1xZ6vV6kpqYKDw+PYo9IeNQxf/j2eSGESE9Pl7ZrZWUlvL29iz3GofD2+ZJuiy/azhs3boiQkBDRvHlzYWtrK7RarfD19RUbNmwo8Vg8yg8//CD8/PyEs7OzqFGjhnBwcBB+fn5i8+bNZm2HlEMlhJnX/ImIiIiqCY4RIiIiIsXiGCGiSnLr1q1SH/BmaWlZ6i92pfLB81A13L1797HjuurVq/fI2/SJHoVfjRFVkm7duhV7+m5RHh4eT/3LJunxeB6qhsjISMycObPUmrS0tKf6xcikTAxCRJUkKSmp1F8lYGNjg1deeeUZtkiZeB6qhgsXLki/juNROnXqBGtr62fUIqouGISIiIhIsThYmoiIiBSLg6VLUVBQgCtXrsDOzo6/pI+IiKiKEELgzp07cHNzK/aLgR/GIFSKK1euwN3dvbKbQURERE/gjz/+QP369UutYRAqReEj4v/44w9oNJpKbg0RERGVhclkgru7e5l+1QuDUCkKvw7TaDQMQkRERFVMWYa1cLA0ERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREplllBKCoqCi+//DLs7Ozg5OSE/v3748yZM7KaBw8eICQkBHXr1kXt2rUxYMAApKeny2ouX74Mf39/1KpVC05OTpg8eTLy8vJkNfv27UObNm2gVqvRpEkTREdHF2vP0qVL0bBhQ1hbW8PX1xeHDh0yuy1ERESkXGYFof379yMkJAQHDx5EXFwccnNz0bNnT2RlZUk1EydOxM8//4yNGzdi//79uHLlCt58801peX5+Pvz9/ZGTk4MDBw5g9erViI6ORkREhFSTlpYGf39/dO/eHcnJyQgNDcXIkSOxc+dOqWb9+vUICwvDjBkzcPToUbRu3Rp6vR7Xrl0rc1uIiIhI4cRTuHbtmgAg9u/fL4QQIiMjQ9SsWVNs3LhRqjl9+rQAIAwGgxBCiO3btwsLCwthNBqlmuXLlwuNRiOys7OFEEJMmTJFvPjii7J9DRo0SOj1emm6ffv2IiQkRJrOz88Xbm5uIioqqsxteZzMzEwBQGRmZpapnoiIiCqfOZ/fTzVGKDMzEwBQp04dAEBSUhJyc3Ph5+cn1TRv3hwNGjSAwWAAABgMBnh7e8PZ2Vmq0ev1MJlMSElJkWqKbqOwpnAbOTk5SEpKktVYWFjAz89PqilLWx6WnZ0Nk8kkexEREVH19cRBqKCgAKGhoXjllVfQsmVLAIDRaISVlRXs7e1ltc7OzjAajVJN0RBUuLxwWWk1JpMJ9+/fx40bN5Cfn19iTdFtPK4tD4uKioJWq5Ve7u7uZTwaREREVBXVeNIVQ0JCcPLkSfzyyy/l2Z5KFR4ejrCwMGnaZDIxDBFVZ3ujKrsF5useXtktIKpWnigIjRs3Dlu3bkVCQgLq168vzXdxcUFOTg4yMjJkV2LS09Ph4uIi1Tx8d1fhnVxFax6+uys9PR0ajQY2NjawtLSEpaVliTVFt/G4tjxMrVZDrVabcSSIiIioKjPrqzEhBMaNG4dNmzZhz5498PT0lC1v27Ytatasifj4eGnemTNncPnyZeh0OgCATqfDiRMnZHd3xcXFQaPRwMvLS6opuo3CmsJtWFlZoW3btrKagoICxMfHSzVlaQsREREpm1lXhEJCQrB27Vps3rwZdnZ20lgbrVYLGxsbaLVaBAcHIywsDHXq1IFGo8H48eOh0+nQoUMHAEDPnj3h5eWFoUOHYs6cOTAajZg+fTpCQkKkqzHvvvsuPv/8c0yZMgUjRozAnj17sGHDBmzbtk1qS1hYGAIDA9GuXTu0b98eCxcuRFZWFoYPHy616XFtISJlM1y4WdlNMJuue2W3gKh6MSsILV++HADQrVs32fxVq1YhKCgIAPDZZ5/BwsICAwYMQHZ2NvR6PZYtWybVWlpaYuvWrRg7dix0Oh1sbW0RGBiIWbNmSTWenp7Ytm0bJk6ciEWLFqF+/fr4+uuvodfrpZpBgwbh+vXriIiIgNFohI+PD2JjY2UDqB/XFiIiIlI2lRBCVHYjnlcmkwlarRaZmZnQaDSV3RwiKmeGlZMquwlm0wXPq+wmED33zPn85u8aIyIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixTI7CCUkJKBfv35wc3ODSqVCTEyMbLlKpSrxNXfuXKmmYcOGxZbPnj1btp3jx4+jc+fOsLa2hru7O+bMmVOsLRs3bkTz5s1hbW0Nb29vbN++XbZcCIGIiAi4urrCxsYGfn5+OHv2rLldJiIiomrK7CCUlZWF1q1bY+nSpSUuv3r1quz1zTffQKVSYcCAAbK6WbNmyerGjx8vLTOZTOjZsyc8PDyQlJSEuXPnIjIyEl9++aVUc+DAAQwePBjBwcE4duwY+vfvj/79++PkyZNSzZw5c7B48WKsWLECiYmJsLW1hV6vx4MHD8ztNhEREVVDNcxdoXfv3ujdu/cjl7u4uMimN2/ejO7du6NRo0ay+XZ2dsVqC61ZswY5OTn45ptvYGVlhRdffBHJyclYsGABRo8eDQBYtGgRevXqhcmTJwMAPvroI8TFxeHzzz/HihUrIITAwoULMX36dLzxxhsAgG+//RbOzs6IiYlBQECAuV0nIiKiaqZCxwilp6dj27ZtCA4OLrZs9uzZqFu3Ll566SXMnTsXeXl50jKDwYAuXbrAyspKmqfX63HmzBncvn1bqvHz85NtU6/Xw2AwAADS0tJgNBplNVqtFr6+vlLNw7Kzs2EymWQvIiIiqr7MviJkjtWrV8POzg5vvvmmbP57772HNm3aoE6dOjhw4ADCw8Nx9epVLFiwAABgNBrh6ekpW8fZ2Vla5uDgAKPRKM0rWmM0GqW6ouuVVPOwqKgozJw58wl7S0RERFVNhQahb775Bu+88w6sra1l88PCwqS/t2rVClZWVhgzZgyioqKgVqsrskmlCg8Pl7XNZDLB3d290tpDREREFavCvhr7n//5H5w5cwYjR458bK2vry/y8vJw8eJFAH+PM0pPT5fVFE4Xjit6VE3R5UXXK6nmYWq1GhqNRvYiIiKi6qvCgtDKlSvRtm1btG7d+rG1ycnJsLCwgJOTEwBAp9MhISEBubm5Uk1cXByaNWsGBwcHqSY+Pl62nbi4OOh0OgCAp6cnXFxcZDUmkwmJiYlSDRERESmb2V+N3b17F+fOnZOm09LSkJycjDp16qBBgwYA/g4cGzduxPz584utbzAYkJiYiO7du8POzg4GgwETJ07Ev/71LynkDBkyBDNnzkRwcDCmTp2KkydPYtGiRfjss8+k7UyYMAFdu3bF/Pnz4e/vj3Xr1uHIkSPSLfYqlQqhoaH4+OOP0bRpU3h6euLDDz+Em5sb+vfvb263iYiIqBoyOwgdOXIE3bt3l6YLx9QEBgYiOjoaALBu3ToIITB48OBi66vVaqxbtw6RkZHIzs6Gp6cnJk6cKBubo9VqsWvXLoSEhKBt27ZwdHRERESEdOs8AHTs2BFr167F9OnT8cEHH6Bp06aIiYlBy5YtpZopU6YgKysLo0ePRkZGBjp16oTY2NhiY5aIiIhImVRCCFHZjXhemUwmaLVaZGZmcrwQUTVkWDmpsptgNl3wvMpuAtFzz5zPb/6uMSIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiyzg1BCQgL69esHNzc3qFQqxMTEyJYHBQVBpVLJXr169ZLV3Lp1C++88w40Gg3s7e0RHByMu3fvymqOHz+Ozp07w9raGu7u7pgzZ06xtmzcuBHNmzeHtbU1vL29sX37dtlyIQQiIiLg6uoKGxsb+Pn54ezZs+Z2mYiIiKops4NQVlYWWrdujaVLlz6yplevXrh69ar0+uGHH2TL33nnHaSkpCAuLg5bt25FQkICRo8eLS03mUzo2bMnPDw8kJSUhLlz5yIyMhJffvmlVHPgwAEMHjwYwcHBOHbsGPr374/+/fvj5MmTUs2cOXOwePFirFixAomJibC1tYVer8eDBw/M7TYRERFVQyohhHjilVUqbNq0Cf3795fmBQUFISMjo9iVokKnT5+Gl5cXDh8+jHbt2gEAYmNj0adPH/z5559wc3PD8uXL8Z///AdGoxFWVlYAgGnTpiEmJgapqakAgEGDBiErKwtbt26Vtt2hQwf4+PhgxYoVEELAzc0N77//PiZNmgQAyMzMhLOzM6KjoxEQEPDY/plMJmi1WmRmZkKj0TzJISKi55hh5aTKboLZdMHzKrsJRM89cz6/K2SM0L59++Dk5IRmzZph7NixuHnzprTMYDDA3t5eCkEA4OfnBwsLCyQmJko1Xbp0kUIQAOj1epw5cwa3b9+Wavz8/GT71ev1MBgMAIC0tDQYjUZZjVarha+vr1TzsOzsbJhMJtmLiIiIqq9yD0K9evXCt99+i/j4eHz66afYv38/evfujfz8fACA0WiEk5OTbJ0aNWqgTp06MBqNUo2zs7OspnD6cTVFlxddr6Sah0VFRUGr1Uovd3d3s/tPREREVUeN8t5g0a+cvL290apVKzRu3Bj79u1Djx49ynt35So8PBxhYWHStMlkYhgiIiKqxir89vlGjRrB0dER586dAwC4uLjg2rVrspq8vDzcunULLi4uUk16erqspnD6cTVFlxddr6Sah6nVamg0GtmLiIiIqq8KD0J//vknbt68CVdXVwCATqdDRkYGkpKSpJo9e/agoKAAvr6+Uk1CQgJyc3Olmri4ODRr1gwODg5STXx8vGxfcXFx0Ol0AABPT0+4uLjIakwmExITE6UaIiIiUjazg9Ddu3eRnJyM5ORkAH8PSk5OTsbly5dx9+5dTJ48GQcPHsTFixcRHx+PN954A02aNIFerwcAtGjRAr169cKoUaNw6NAh/Prrrxg3bhwCAgLg5uYGABgyZAisrKwQHByMlJQUrF+/HosWLZJ9bTVhwgTExsZi/vz5SE1NRWRkJI4cOYJx48YB+PuOttDQUHz88cfYsmULTpw4gWHDhsHNzU12lxsREREpl9ljhI4cOYLu3btL04XhJDAwEMuXL8fx48exevVqZGRkwM3NDT179sRHH30EtVotrbNmzRqMGzcOPXr0gIWFBQYMGIDFixdLy7VaLXbt2oWQkBC0bdsWjo6OiIiIkD1rqGPHjli7di2mT5+ODz74AE2bNkVMTAxatmwp1UyZMgVZWVkYPXo0MjIy0KlTJ8TGxsLa2trcbhMREVE19FTPEaru+BwhouqNzxEiqp4q/TlCRERERFUBgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmW2UEoISEB/fr1g5ubG1QqFWJiYqRlubm5mDp1Kry9vWFraws3NzcMGzYMV65ckW2jYcOGUKlUstfs2bNlNcePH0fnzp1hbW0Nd3d3zJkzp1hbNm7ciObNm8Pa2hre3t7Yvn27bLkQAhEREXB1dYWNjQ38/Pxw9uxZc7tMRERE1ZTZQSgrKwutW7fG0qVLiy27d+8ejh49ig8//BBHjx7FTz/9hDNnzuD1118vVjtr1ixcvXpVeo0fP15aZjKZ0LNnT3h4eCApKQlz585FZGQkvvzyS6nmwIEDGDx4MIKDg3Hs2DH0798f/fv3x8mTJ6WaOXPmYPHixVixYgUSExNha2sLvV6PBw8emNttIiIiqoZUQgjxxCurVNi0aRP69+//yJrDhw+jffv2uHTpEho0aADg7ytCoaGhCA0NLXGd5cuX4z//+Q+MRiOsrKwAANOmTUNMTAxSU1MBAIMGDUJWVha2bt0qrdehQwf4+PhgxYoVEELAzc0N77//PiZNmgQAyMzMhLOzM6KjoxEQEFBsv9nZ2cjOzpamTSYT3N3dkZmZCY1GY9axIaLnn2HlpMpugtl0wfMquwlEzz2TyQStVlumz+8KHyOUmZkJlUoFe3t72fzZs2ejbt26eOmllzB37lzk5eVJywwGA7p06SKFIADQ6/U4c+YMbt++LdX4+fnJtqnX62EwGAAAaWlpMBqNshqtVgtfX1+p5mFRUVHQarXSy93d/an6TkRERM+3Cg1CDx48wNSpUzF48GBZInvvvfewbt067N27F2PGjMEnn3yCKVOmSMuNRiOcnZ1l2yqcNhqNpdYUXV50vZJqHhYeHo7MzEzp9ccffzxJt4mIiKiKqFFRG87NzcXAgQMhhMDy5ctly8LCwqS/t2rVClZWVhgzZgyioqKgVqsrqkmPpVarK3X/RERE9GxVyBWhwhB06dIlxMXFPfb7OV9fX+Tl5eHixYsAABcXF6Snp8tqCqddXFxKrSm6vOh6JdUQERGRspV7ECoMQWfPnsXu3btRt27dx66TnJwMCwsLODk5AQB0Oh0SEhKQm5sr1cTFxaFZs2ZwcHCQauLj42XbiYuLg06nAwB4enrCxcVFVmMymZCYmCjVEBERkbKZ/dXY3bt3ce7cOWk6LS0NycnJqFOnDlxdXfHWW2/h6NGj2Lp1K/Lz86XxOHXq1IGVlRUMBgMSExPRvXt32NnZwWAwYOLEifjXv/4lhZwhQ4Zg5syZCA4OxtSpU3Hy5EksWrQIn332mbTfCRMmoGvXrpg/fz78/f2xbt06HDlyRLrFXqVSITQ0FB9//DGaNm0KT09PfPjhh3Bzcyv1LjciIiJSDrOD0JEjR9C9e3dpunC8T2BgICIjI7FlyxYAgI+Pj2y9vXv3olu3blCr1Vi3bh0iIyORnZ0NT09PTJw4UTZuSKvVYteuXQgJCUHbtm3h6OiIiIgIjB49Wqrp2LEj1q5di+nTp+ODDz5A06ZNERMTg5YtW0o1U6ZMQVZWFkaPHo2MjAx06tQJsbGxsLa2NrfbREREVA091XOEqjtznkNARFUPnyNEVD09V88RIiIiInpeMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWKZHYQSEhLQr18/uLm5QaVSISYmRrZcCIGIiAi4urrCxsYGfn5+OHv2rKzm1q1beOedd6DRaGBvb4/g4GDcvXtXVnP8+HF07twZ1tbWcHd3x5w5c4q1ZePGjWjevDmsra3h7e2N7du3m90WIiIiUi6zg1BWVhZat26NpUuXlrh8zpw5WLx4MVasWIHExETY2tpCr9fjwYMHUs0777yDlJQUxMXFYevWrUhISMDo0aOl5SaTCT179oSHhweSkpIwd+5cREZG4ssvv5RqDhw4gMGDByM4OBjHjh1D//790b9/f5w8edKsthAREZFyqYQQ4olXVqmwadMm9O/fH8DfV2Dc3Nzw/vvvY9KkSQCAzMxMODs7Izo6GgEBATh9+jS8vLxw+PBhtGvXDgAQGxuLPn364M8//4SbmxuWL1+O//znPzAajbCysgIATJs2DTExMUhNTQUADBo0CFlZWdi6davUng4dOsDHxwcrVqwoU1sex2QyQavVIjMzExqN5kkPExE9pwwrJ1V2E8ymC55X2U0geu6Z8/ldrmOE0tLSYDQa4efnJ83TarXw9fWFwWAAABgMBtjb20shCAD8/PxgYWGBxMREqaZLly5SCAIAvV6PM2fO4Pbt21JN0f0U1hTupyxteVh2djZMJpPsRURERNVXuQYho9EIAHB2dpbNd3Z2lpYZjUY4OTnJlteoUQN16tSR1ZS0jaL7eFRN0eWPa8vDoqKioNVqpZe7u3sZek1ERERVFe8aKyI8PByZmZnS648//qjsJhEREVEFKtcg5OLiAgBIT0+XzU9PT5eWubi44Nq1a7LleXl5uHXrlqympG0U3cejaoouf1xbHqZWq6HRaGQvIiIiqr7KNQh5enrCxcUF8fHx0jyTyYTExETodDoAgE6nQ0ZGBpKSkqSaPXv2oKCgAL6+vlJNQkICcnNzpZq4uDg0a9YMDg4OUk3R/RTWFO6nLG0hIiIiZTM7CN29exfJyclITk4G8Peg5OTkZFy+fBkqlQqhoaH4+OOPsWXLFpw4cQLDhg2Dm5ubdGdZixYt0KtXL4waNQqHDh3Cr7/+inHjxiEgIABubm4AgCFDhsDKygrBwcFISUnB+vXrsWjRIoSFhUntmDBhAmJjYzF//nykpqYiMjISR44cwbhx4wCgTG0hIiIiZath7gpHjhxB9+7dpenCcBIYGIjo6GhMmTIFWVlZGD16NDIyMtCpUyfExsbC2tpaWmfNmjUYN24cevToAQsLCwwYMACLFy+Wlmu1WuzatQshISFo27YtHB0dERERIXvWUMeOHbF27VpMnz4dH3zwAZo2bYqYmBi0bNlSqilLW4iIiEi5nuo5QtUdnyNEVL3xOUJE1VOlPUeIiIiIqCphECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixSr3INSwYUOoVKpir5CQEABAt27dii179913Zdu4fPky/P39UatWLTg5OWHy5MnIy8uT1ezbtw9t2rSBWq1GkyZNEB0dXawtS5cuRcOGDWFtbQ1fX18cOnSovLtLREREVVi5B6HDhw/j6tWr0isuLg4A8Pbbb0s1o0aNktXMmTNHWpafnw9/f3/k5OTgwIEDWL16NaKjoxERESHVpKWlwd/fH927d0dycjJCQ0MxcuRI7Ny5U6pZv349wsLCMGPGDBw9ehStW7eGXq/HtWvXyrvLREREVEWphBCiIncQGhqKrVu34uzZs1CpVOjWrRt8fHywcOHCEut37NiBvn374sqVK3B2dgYArFixAlOnTsX169dhZWWFqVOnYtu2bTh58qS0XkBAADIyMhAbGwsA8PX1xcsvv4zPP/8cAFBQUAB3d3eMHz8e06ZNK1PbTSYTtFotMjMzodFonuIoENHzyLByUmU3wWy64HmV3QSi5545n98VOkYoJycH33//PUaMGAGVSiXNX7NmDRwdHdGyZUuEh4fj3r170jKDwQBvb28pBAGAXq+HyWRCSkqKVOPn5yfbl16vh8FgkPablJQkq7GwsICfn59UU5Ls7GyYTCbZi4iIiKqvGhW58ZiYGGRkZCAoKEiaN2TIEHh4eMDNzQ3Hjx/H1KlTcebMGfz0008AAKPRKAtBAKRpo9FYao3JZML9+/dx+/Zt5Ofnl1iTmpr6yPZGRUVh5syZT9xfIiIiqloqNAitXLkSvXv3hpubmzRv9OjR0t+9vb3h6uqKHj164Pz582jcuHFFNuexwsPDERYWJk2bTCa4u7tXYouIiIioIlVYELp06RJ2794tXel5FF9fXwDAuXPn0LhxY7i4uBS7uys9PR0A4OLiIv1ZOK9ojUajgY2NDSwtLWFpaVliTeE2SqJWq6FWq8vWQSIiIqryKmyM0KpVq+Dk5AR/f/9S65KTkwEArq6uAACdTocTJ07I7u6Ki4uDRqOBl5eXVBMfHy/bTlxcHHQ6HQDAysoKbdu2ldUUFBQgPj5eqiEiIiKqkCBUUFCAVatWITAwEDVq/N9Fp/Pnz+Ojjz5CUlISLl68iC1btmDYsGHo0qULWrVqBQDo2bMnvLy8MHToUPz222/YuXMnpk+fjpCQEOlqzbvvvosLFy5gypQpSE1NxbJly7BhwwZMnDhR2ldYWBi++uorrF69GqdPn8bYsWORlZWF4cOHV0SXiYiIqAqqkK/Gdu/ejcuXL2PEiBGy+VZWVti9ezcWLlyIrKwsuLu7Y8CAAZg+fbpUY2lpia1bt2Ls2LHQ6XSwtbVFYGAgZs2aJdV4enpi27ZtmDhxIhYtWoT69evj66+/hl6vl2oGDRqE69evIyIiAkajET4+PoiNjS02gJqIiIiUq8KfI1SV8TlCRNUbnyNEVD09N88RIiIiInqeMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWKVexCKjIyESqWSvZo3by4tf/DgAUJCQlC3bl3Url0bAwYMQHp6umwbly9fhr+/P2rVqgUnJydMnjwZeXl5spp9+/ahTZs2UKvVaNKkCaKjo4u1ZenSpWjYsCGsra3h6+uLQ4cOlXd3iYiIqAqrkCtCL774Iq5evSq9fvnlF2nZxIkT8fPPP2Pjxo3Yv38/rly5gjfffFNanp+fD39/f+Tk5ODAgQNYvXo1oqOjERERIdWkpaXB398f3bt3R3JyMkJDQzFy5Ejs3LlTqlm/fj3CwsIwY8YMHD16FK1bt4Zer8e1a9cqostERERUBamEEKI8NxgZGYmYmBgkJycXW5aZmYl69eph7dq1eOuttwAAqampaNGiBQwGAzp06IAdO3agb9++uHLlCpydnQEAK1aswNSpU3H9+nVYWVlh6tSp2LZtG06ePCltOyAgABkZGYiNjQUA+Pr64uWXX8bnn38OACgoKIC7uzvGjx+PadOmlakvJpMJWq0WmZmZ0Gg0T3NYiOg5ZFg5qbKbYDZd8LzKbgLRc8+cz+8KuSJ09uxZuLm5oVGjRnjnnXdw+fJlAEBSUhJyc3Ph5+cn1TZv3hwNGjSAwWAAABgMBnh7e0shCAD0ej1MJhNSUlKkmqLbKKwp3EZOTg6SkpJkNRYWFvDz85NqSpKdnQ2TySR7ERERUfVV7kHI19cX0dHRiI2NxfLly5GWlobOnTvjzp07MBqNsLKygr29vWwdZ2dnGI1GAIDRaJSFoMLlhctKqzGZTLh//z5u3LiB/Pz8EmsKt1GSqKgoaLVa6eXu7v5Ex4CIiIiqhhrlvcHevXtLf2/VqhV8fX3h4eGBDRs2wMbGprx3V67Cw8MRFhYmTZtMJoYhIiKiaqzCb5+3t7fHCy+8gHPnzsHFxQU5OTnIyMiQ1aSnp8PFxQUA4OLiUuwussLpx9VoNBrY2NjA0dERlpaWJdYUbqMkarUaGo1G9iIiIqLqq8KD0N27d3H+/Hm4urqibdu2qFmzJuLj46XlZ86cweXLl6HT6QAAOp0OJ06ckN3dFRcXB41GAy8vL6mm6DYKawq3YWVlhbZt28pqCgoKEB8fL9UQERERlXsQmjRpEvbv34+LFy/iwIED+Oc//wlLS0sMHjwYWq0WwcHBCAsLw969e5GUlIThw4dDp9OhQ4cOAICePXvCy8sLQ4cOxW+//YadO3di+vTpCAkJgVqtBgC8++67uHDhAqZMmYLU1FQsW7YMGzZswMSJE6V2hIWF4auvvsLq1atx+vRpjB07FllZWRg+fHh5d5mIiIiqqHIfI/Tnn39i8ODBuHnzJurVq4dOnTrh4MGDqFevHgDgs88+g4WFBQYMGIDs7Gzo9XosW7ZMWt/S0hJbt27F2LFjodPpYGtri8DAQMyaNUuq8fT0xLZt2zBx4kQsWrQI9evXx9dffw29Xi/VDBo0CNevX0dERASMRiN8fHwQGxtbbAA1ERERKVe5P0eoOuFzhIiqNz5HiKh6qvTnCBERERFVBQxCREREpFgMQkRERKRY5T5YmoiIiCrHZ3G/V3YTzDbxtRcqdf+8IkRERESKxSBEREREisWvxoiIiKqJDpe/rOwmPIHKfSQErwgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWKVexCKiorCyy+/DDs7Ozg5OaF///44c+aMrKZbt25QqVSy17vvviuruXz5Mvz9/VGrVi04OTlh8uTJyMvLk9Xs27cPbdq0gVqtRpMmTRAdHV2sPUuXLkXDhg1hbW0NX19fHDp0qLy7TERERFVUuQeh/fv3IyQkBAcPHkRcXBxyc3PRs2dPZGVlyepGjRqFq1evSq85c+ZIy/Lz8+Hv74+cnBwcOHAAq1evRnR0NCIiIqSatLQ0+Pv7o3v37khOTkZoaChGjhyJnTt3SjXr169HWFgYZsyYgaNHj6J169bQ6/W4du1aeXebiIiIqiCVEEJU5A6uX78OJycn7N+/H126dAHw9xUhHx8fLFy4sMR1duzYgb59++LKlStwdnYGAKxYsQJTp07F9evXYWVlhalTp2Lbtm04efKktF5AQAAyMjIQGxsLAPD19cXLL7+Mzz//HABQUFAAd3d3jB8/HtOmTXts200mE7RaLTIzM6HRaJ7mMBDRc8iwclJlN8FsuuB5ld0Eeo7xZ/pv5nx+V/gYoczMTABAnTp1ZPPXrFkDR0dHtGzZEuHh4bh37560zGAwwNvbWwpBAKDX62EymZCSkiLV+Pn5ybap1+thMBgAADk5OUhKSpLVWFhYwM/PT6p5WHZ2Nkwmk+xFRERE1VeNitx4QUEBQkND8corr6Bly5bS/CFDhsDDwwNubm44fvw4pk6dijNnzuCnn34CABiNRlkIAiBNG43GUmtMJhPu37+P27dvIz8/v8Sa1NTUEtsbFRWFmTNnPl2niYiIqMqo0CAUEhKCkydP4pdffpHNHz16tPR3b29vuLq6okePHjh//jwaN25ckU0qVXh4OMLCwqRpk8kEd3f3SmsPERERVawKC0Ljxo3D1q1bkZCQgPr165da6+vrCwA4d+4cGjduDBcXl2J3d6WnpwMAXFxcpD8L5xWt0Wg0sLGxgaWlJSwtLUusKdzGw9RqNdRqddk7SURERFVauY8REkJg3Lhx2LRpE/bs2QNPT8/HrpOcnAwAcHV1BQDodDqcOHFCdndXXFwcNBoNvLy8pJr4+HjZduLi4qDT6QAAVlZWaNu2raymoKAA8fHxUg0REREpW7lfEQoJCcHatWuxefNm2NnZSWN6tFotbGxscP78eaxduxZ9+vRB3bp1cfz4cUycOBFdunRBq1atAAA9e/aEl5cXhg4dijlz5sBoNGL69OkICQmRrti8++67+PzzzzFlyhSMGDECe/bswYYNG7Bt2zapLWFhYQgMDES7du3Qvn17LFy4EFlZWRg+fHh5d5uIiIiqoHIPQsuXLwfw9y3yRa1atQpBQUGwsrLC7t27pVDi7u6OAQMGYPr06VKtpaUltm7dirFjx0Kn08HW1haBgYGYNWuWVOPp6Ylt27Zh4sSJWLRoEerXr4+vv/4aer1eqhk0aBCuX7+OiIgIGI1G+Pj4IDY2ttgAaiIiIlKmCn+OUFXG5wgRVW985gpVN/yZ/ttz9RwhIiIioucVgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVa5//Z5IiKi6uCzuN8ruwlm61DZDaiCeEWIiIiIFItXhIiIiErQ4fKXld0EegZ4RYiIiIgUi1eEiIiownG8DT2vGISIiKjC8Wsmel4xCFUiw8pJld0Es+mC51V2E4iIiMoNxwgRERGRYjEIERERkWLxqzEioiqkKg46BjjwmJ5fDEJERFUIBx0TlS9+NUZERESKxSBEREREisWvxoioXFTFsSsct0JEDEJEVC44doWIqiIGIaLnUFV82CYRUVXEMUJERESkWLwiRNUex64QEdGjMAhRtcexK0RE9CgMQmQWjl0hIqLqhGOEiIiISLEUEYSWLl2Khg0bwtraGr6+vjh06FBlN4mIiIieA9U+CK1fvx5hYWGYMWMGjh49itatW0Ov1+PatWuV3TQiIiKqZNU+CC1YsACjRo3C8OHD4eXlhRUrVqBWrVr45ptvKrtpREREVMmq9WDpnJwcJCUlITw8XJpnYWEBPz8/GAyGYvXZ2dnIzs6WpjMzMwEAJpOpQtqXdT/78UVERETVWEV8xhZuUwjx2NpqHYRu3LiB/Px8ODs7y+Y7OzsjNTW1WH1UVBRmzpxZbL67u3uFtZGIiEjRxn9eYZu+c+cOtFptqTXVOgiZKzw8HGFhYdJ0QUEBbt26hbp160KlUpXrvkwmE9zd3fHHH39Ao9GU67afB9W9f0D17yP7V/VV9z6yf1VfRfVRCIE7d+7Azc3tsbXVOgg5OjrC0tIS6enpsvnp6elwcXEpVq9Wq6FWq2Xz7O3tK7KJ0Gg01fYHHKj+/QOqfx/Zv6qvuveR/av6KqKPj7sSVKhaD5a2srJC27ZtER8fL80rKChAfHw8dDpdJbaMiIiIngfV+ooQAISFhSEwMBDt2rVD+/btsXDhQmRlZWH48OGV3TQiIiKqZNU+CA0aNAjXr19HREQEjEYjfHx8EBsbW2wA9bOmVqsxY8aMYl/FVRfVvX9A9e8j+1f1Vfc+sn9V3/PQR5Uoy71lRERERNVQtR4jRERERFQaBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAahCvLf//4XHTt2RK1atcr8dGohBCIiIuDq6gobGxv4+fnh7Nmzsppbt27hnXfegUajgb29PYKDg3H37t0K6MHjmduWixcvQqVSlfjauHGjVFfS8nXr1j2LLsk8ybHu1q1bsba/++67sprLly/D398ftWrVgpOTEyZPnoy8vLyK7EqJzO3frVu3MH78eDRr1gw2NjZo0KAB3nvvPemXExeqzPO3dOlSNGzYENbW1vD19cWhQ4dKrd+4cSOaN28Oa2treHt7Y/v27bLlZXlPPkvm9O+rr75C586d4eDgAAcHB/j5+RWrDwoKKnauevXqVdHdKJU5fYyOji7Wfmtra1lNVT6HJf17olKp4O/vL9U8T+cwISEB/fr1g5ubG1QqFWJiYh67zr59+9CmTRuo1Wo0adIE0dHRxWrMfV+bTVCFiIiIEAsWLBBhYWFCq9WWaZ3Zs2cLrVYrYmJixG+//SZef/114enpKe7fvy/V9OrVS7Ru3VocPHhQ/M///I9o0qSJGDx4cAX1onTmtiUvL09cvXpV9po5c6aoXbu2uHPnjlQHQKxatUpWV/QYPCtPcqy7du0qRo0aJWt7ZmamtDwvL0+0bNlS+Pn5iWPHjont27cLR0dHER4eXtHdKcbc/p04cUK8+eabYsuWLeLcuXMiPj5eNG3aVAwYMEBWV1nnb926dcLKykp88803IiUlRYwaNUrY29uL9PT0Eut//fVXYWlpKebMmSNOnTolpk+fLmrWrClOnDgh1ZTlPfmsmNu/IUOGiKVLl4pjx46J06dPi6CgIKHVasWff/4p1QQGBopevXrJztWtW7eeVZeKMbePq1atEhqNRtZ+o9Eoq6nK5/DmzZuyvp08eVJYWlqKVatWSTXP0zncvn27+M9//iN++uknAUBs2rSp1PoLFy6IWrVqibCwMHHq1CmxZMkSYWlpKWJjY6Uac4/Zk2AQqmCrVq0qUxAqKCgQLi4uYu7cudK8jIwMoVarxQ8//CCEEOLUqVMCgDh8+LBUs2PHDqFSqcRff/1V7m0vTXm1xcfHR4wYMUI2ryxvoIr2pP3r2rWrmDBhwiOXb9++XVhYWMj+sV6+fLnQaDQiOzu7XNpeFuV1/jZs2CCsrKxEbm6uNK+yzl/79u1FSEiINJ2fny/c3NxEVFRUifUDBw4U/v7+snm+vr5izJgxQoiyvSefJXP797C8vDxhZ2cnVq9eLc0LDAwUb7zxRnk39YmZ28fH/fta3c7hZ599Juzs7MTdu3elec/bOSxUln8HpkyZIl588UXZvEGDBgm9Xi9NP+0xKwt+NfacSEtLg9FohJ+fnzRPq9XC19cXBoMBAGAwGGBvb4927dpJNX5+frCwsEBiYuIzbW95tCUpKQnJyckIDg4utiwkJASOjo5o3749vvnmG4hn/NzPp+nfmjVr4OjoiJYtWyI8PBz37t2Tbdfb21v2ZHO9Xg+TyYSUlJTy78gjlNfPUmZmJjQaDWrUkD+k/lmfv5ycHCQlJcnePxYWFvDz85PePw8zGAyyeuDvc1FYX5b35LPyJP172L1795Cbm4s6derI5u/btw9OTk5o1qwZxo4di5s3b5Zr28vqSft49+5deHh4wN3dHW+88YbsfVTdzuHKlSsREBAAW1tb2fzn5Rya63HvwfI4ZmVR7X/FRlVhNBoBoNiv/nB2dpaWGY1GODk5yZbXqFEDderUkWqelfJoy8qVK9GiRQt07NhRNn/WrFl49dVXUatWLezatQv//ve/cffuXbz33nvl1v7HedL+DRkyBB4eHnBzc8Px48cxdepUnDlzBj/99JO03ZLOceGyZ6U8zt+NGzfw0UcfYfTo0bL5lXH+bty4gfz8/BKPbWpqaonrPOpcFH2/Fc57VM2z8iT9e9jUqVPh5uYm+1Dp1asX3nzzTXh6euL8+fP44IMP0Lt3bxgMBlhaWpZrHx7nSfrYrFkzfPPNN2jVqhUyMzMxb948dOzYESkpKahfv361OoeHDh3CyZMnsXLlStn85+kcmutR70GTyYT79+/j9u3bT/1zXxYMQmaYNm0aPv3001JrTp8+jebNmz+jFpW/svbxad2/fx9r167Fhx9+WGxZ0XkvvfQSsrKyMHfu3HL5IK3o/hUNBd7e3nB1dUWPHj1w/vx5NG7c+Im3W1bP6vyZTCb4+/vDy8sLkZGRsmUVef7oycyePRvr1q3Dvn37ZIOJAwICpL97e3ujVatWaNy4Mfbt24cePXpURlPNotPpoNPppOmOHTuiRYsW+OKLL/DRRx9VYsvK38qVK+Ht7Y327dvL5lf1c/g8YBAyw/vvv4+goKBSaxo1avRE23ZxcQEApKenw9XVVZqfnp4OHx8fqebatWuy9fLy8nDr1i1p/adV1j4+bVt+/PFH3Lt3D8OGDXtsra+vLz766CNkZ2c/9S/me1b9K+Tr6wsAOHfuHBo3bgwXF5didzykp6cDQLmcw2fRvzt37qBXr16ws7PDpk2bULNmzVLry/P8PYqjoyMsLS2lY1koPT39kf1xcXEptb4s78ln5Un6V2jevHmYPXs2du/ejVatWpVa26hRIzg6OuLcuXPP/EP0afpYqGbNmnjppZdw7tw5ANXnHGZlZWHdunWYNWvWY/dTmefQXI96D2o0GtjY2MDS0vKpfybKpNxGG1GJzB0sPW/ePGleZmZmiYOljxw5ItXs3LmzUgdLP2lbunbtWuxuo0f5+OOPhYODwxO39UmU17H+5ZdfBADx22+/CSH+b7B00TsevvjiC6HRaMSDBw/KrwOP8aT9y8zMFB06dBBdu3YVWVlZZdrXszp/7du3F+PGjZOm8/PzxT/+8Y9SB0v37dtXNk+n0xUbLF3ae/JZMrd/Qgjx6aefCo1GIwwGQ5n28ccffwiVSiU2b9781O19Ek/Sx6Ly8vJEs2bNxMSJE4UQ1eMcCvH354harRY3btx47D4q+xwWQhkHS7ds2VI2b/DgwcUGSz/Nz0SZ2lpuWyKZS5cuiWPHjkm3hx87dkwcO3ZMdpt4s2bNxE8//SRNz549W9jb24vNmzeL48ePizfeeKPE2+dfeuklkZiYKH755RfRtGnTSr19vrS2/Pnnn6JZs2YiMTFRtt7Zs2eFSqUSO3bsKLbNLVu2iK+++kqcOHFCnD17VixbtkzUqlVLREREVHh/HmZu/86dOydmzZoljhw5ItLS0sTmzZtFo0aNRJcuXaR1Cm+f79mzp0hOThaxsbGiXr16lXb7vDn9y8zMFL6+vsLb21ucO3dOdrtuXl6eEKJyz9+6deuEWq0W0dHR4tSpU2L06NHC3t5eukNv6NChYtq0aVL9r7/+KmrUqCHmzZsnTp8+LWbMmFHi7fOPe08+K+b2b/bs2cLKykr8+OOPsnNV+G/QnTt3xKRJk4TBYBBpaWli9+7dok2bNqJp06bPNJQ/TR9nzpwpdu7cKc6fPy+SkpJEQECAsLa2FikpKVJNVT6HhTp16iQGDRpUbP7zdg7v3LkjfdYBEAsWLBDHjh0Tly5dEkIIMW3aNDF06FCpvvD2+cmTJ4vTp0+LpUuXlnj7fGnHrDwwCFWQwMBAAaDYa+/evVIN/vd5K4UKCgrEhx9+KJydnYVarRY9evQQZ86ckW335s2bYvDgwaJ27dpCo9GI4cOHy8LVs/S4tqSlpRXrsxBChIeHC3d3d5Gfn19smzt27BA+Pj6idu3awtbWVrRu3VqsWLGixNqKZm7/Ll++LLp06SLq1Kkj1Gq1aNKkiZg8ebLsOUJCCHHx4kXRu3dvYWNjIxwdHcX7778vu/38WTG3f3v37i3xZxqASEtLE0JU/vlbsmSJaNCggbCyshLt27cXBw8elJZ17dpVBAYGyuo3bNggXnjhBWFlZSVefPFFsW3bNtnysrwnnyVz+ufh4VHiuZoxY4YQQoh79+6Jnj17inr16omaNWsKDw8PMWrUqHL9gHkS5vQxNDRUqnV2dhZ9+vQRR48elW2vKp9DIYRITU0VAMSuXbuKbet5O4eP+jeisE+BgYGia9euxdbx8fERVlZWolGjRrLPxEKlHbPyoBLiGd+XTERERPSc4HOEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEix/j9axdzomY0E2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOsJJREFUeJzt3XtYFeXe//EPoBw8rIWGgjwS4iEPiVKaSHmoJLG0cmcl1lNgpNVW0yhL26Z22FlmZZlptUvd7dqVPWllhppl/kqyJE1FcWthZgYeAcUjcP/+6GEel6CyFEW536/rWletme+a+d4zLNeHWTODjzHGCAAAwEK+Vd0AAABAVSEIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBFhk/frx8fHy0c+fOqm6lSiUnJ6tJkyZV3cYZ4+Pjo/Hjx1fqMq+88kpdeeWVlbpM4FxAEAK88Pe//1033HCDQkNDT/hhM2fOHCUkJCg8PFwBAQFq3Lixbr75Zq1du/bsNnwann76ac2dO7fK1r9u3TqNHz9emzdvrrIebFMdt/nf//53+fj4qG3btlXdCs5RBCHAC2PGjNEPP/ygSy655IR1a9asUb169TR8+HC9+uqruu+++7Ry5Up16tRJP/3001nq9vScC0Ho8ccfr1Yfyue6E23zhQsXauHChWe/qdOwdetWPf3006pdu3ZVt4JzWI2qbgA4n2RnZ6tJkybauXOnGjRocNy6sWPHlpl29913q3Hjxpo2bZqmT59+Jts86woLC/mwOU3H24bGGB08eFBBQUFV0NX/8ff3r9L1n4qHHnpInTt3VnFxsfVfB+P4OCIEHOX3339XSkqK85VWVFSU7rvvPh0+fFiSTuu8koYNG6pWrVrKy8vz6nUbN25Uv379FBYWpsDAQDVu3FiJiYnKz8+XJG3evFk+Pj6aOXNmmdce7+u7nTt36tZbb5XL5dIFF1yg4cOH6+DBgx6vKyws1KxZs+Tj4yMfHx8lJydL+r/zjNatW6fbbrtN9erVU5cuXSRJq1evVnJyspo2barAwECFhYXprrvu0q5du8r0cKJtPXPmTN1yyy2SpKuuusrpYcmSJc7rP//8c3Xt2lW1a9dW3bp11bt3b2VmZpZZz9y5c9W2bVsFBgaqbdu2mjNnTkU3fRnLly/Xddddp3r16ql27dpq166dXnrpJY+aL7/80ukrODhYN954o9avX+9Rc6Jt2KRJE/Xp00cLFixQx44dFRQUpNdee02SlJeXpxEjRigiIkIBAQFq3ry5nn32WZWUlJyw719//VV//etf1bJlSwUFBemCCy7QLbfc4nHk52TbvLxzhLZv366UlBSFhoYqMDBQ7du316xZszxqSn8+J02apNdff13NmjVTQECALrvsMv3www8etTk5ORo4cKAaN26sgIAANWrUSDfeeOMpHRVcunSpPvzwQ02ePNnr18IuHBEC/te2bdvUqVMn5eXlafDgwWrVqpV+//13ffjhh9q/f/8p/Uacl5enI0eOKCcnR5MnT1ZBQYF69OhR4dcfPnxYCQkJOnTokIYNG6awsDD9/vvvmjdvnvLy8uR2u73uSZJuvfVWNWnSRBMmTNB3332nl19+WXv27NE///lPSdLbb7+tu+++W506ddLgwYMlSc2aNfNYxi233KIWLVro6aefljFGkrRo0SL98ssvGjhwoMLCwpSZmanXX39dmZmZ+u677+Tj4yPp5Nu6W7duuv/++/Xyyy/r0UcfVevWrSXJ+e/bb7+tpKQkJSQk6Nlnn9X+/fs1bdo0denSRStXrnQC68KFC9WvXz+1adNGEyZM0K5du5wPWm8tWrRIffr0UaNGjTR8+HCFhYVp/fr1mjdvnoYPHy5J+uKLL3TttdeqadOmGj9+vA4cOKApU6boiiuu0I8//lgmSJe3DSVpw4YNGjBggO655x4NGjRILVu21P79+9W9e3f9/vvvuueee3ThhRdq2bJlGj16tP74448TfuD/8MMPWrZsmRITE9W4cWNt3rxZ06ZN05VXXql169apVq1aJ93mxzpw4ICuvPJKbdq0SUOHDlVUVJRmz56t5ORk5eXlOduk1Lvvvqu9e/fqnnvukY+PjyZOnKibbrpJv/zyi2rWrClJ6tevnzIzMzVs2DA1adJE27dv16JFi7RlyxavfgkpLi7WsGHDdPfddys6OrrCr4OlDABjjDF33nmn8fX1NT/88EOZeSUlJR7Pd+zYYSSZcePGnXCZLVu2NJKMJFOnTh0zZswYU1xcXOGeVq5caSSZ2bNnH7cmOzvbSDIzZswoM+/YHseNG2ckmRtuuMGj7q9//auRZH766SdnWu3atU1SUlKZZZYuY8CAAWXm7d+/v8y0f//730aSWbp0qTOtItt69uzZRpL56quvPObv3bvXBAcHm0GDBnlMz8nJMW6322N6TEyMadSokcnLy3OmLVy40EgykZGRZdZ9PEVFRSYqKspERkaaPXv2lNtv6foaNmxodu3a5Uz76aefjK+vr7nzzjudaSfahpGRkUaSSUtL85j+5JNPmtq1a5v//Oc/HtNHjRpl/Pz8zJYtW5xpx+738vZLenq6kWT++c9/OtOOt82NMaZ79+6me/fuzvPJkycbSeZf//qXM+3w4cMmLi7O1KlTxxQUFBhj/u/n84ILLjC7d+92aj/++GMjyXz66afGGGP27NljJJnnnnuuzLq99corrxi32222b9/u9H7xxRef9nJRPfHVGCCppKREc+fO1fXXX6+OHTuWmV96JMNbM2bMUFpaml599VW1bt1aBw4cUHFxcYVfX3rEZ8GCBdq/f/8p9VCeIUOGeDwfNmyYJGn+/PkVXsa9995bZtrR57EcPHhQO3fuVOfOnSVJP/74o6TT39aLFi1SXl6eBgwYoJ07dzoPPz8/xcbG6quvvpIk/fHHH1q1apWSkpI8jpxdc801atOmTYXHKUkrV65Udna2RowYoeDg4HL7LV1fcnKy6tev78xv166drrnmmnK3bXnbUJKioqKUkJDgMW327Nnq2rWr6tWr5zHu+Ph4FRcXa+nSpcft/+j9cuTIEe3atUvNmzdXcHCws1+8NX/+fIWFhWnAgAHOtJo1a+r+++/Xvn379PXXX3vU9+/fX/Xq1XOed+3aVZL0yy+/OD36+/tryZIl2rNnzyn1JEm7du3S2LFj9dhjj53wPD6gFF+NAZJ27NihgoKCSr/ENi4uzvn/xMRE52uGSZMmVej1UVFRSk1N1QsvvKB33nlHXbt21Q033KD//u//PuWvxSSpRYsWHs+bNWsmX19fr87FiIqKKjNt9+7devzxx/Xee+9p+/btHvNKz2k63W29ceNGSdLVV19d7nyXyyXpz/NipLJjlaSWLVt6FQB+/vlnSTphz6Xra9myZZl5rVu31oIFC8qcEF3eNjze9I0bN2r16tXH/XA/dnsf7cCBA5owYYJmzJih33//3eNruNL94q1ff/1VLVq0kK+v5+/TpT/jpduj1IUXXujxvDQUlYaegIAAPfvss3rwwQcVGhqqzp07q0+fPrrzzjsVFhZW4b7GjBmj+vXrO+EeOBmCEHCW1KtXT1dffbXeeeedCgchSXr++eeVnJysjz/+WAsXLtT999/vnNvTuHHj4x5B8ebI06kc8SrvKqZbb71Vy5Yt08iRIxUTE6M6deqopKREvXr1OukJvRVVupy333673A/IGjXOn3/WjnclWHnTS0pKdM011+jhhx8u9zUXXXTRcdczbNgwzZgxQyNGjFBcXJzcbrd8fHyUmJhYafvlZPz8/MqdfnQoGzFihK6//nrNnTtXCxYs0GOPPaYJEyboyy+/POktK6Q/w+Lrr7+uyZMna9u2bc70gwcP6siRI9q8ebNcLpfHETvg/PkXAziDGjRoIJfLdcZveHjgwIFT+g08Ojpa0dHRGjNmjJYtW6YrrrhC06dP11NPPeX8Zn3s1WjH/kZ+tI0bN3ocddi0aZNKSko8Tkj1Nhzt2bNHixcv1uOPP+5x+4DSIzilKrqtj7f+0pO2GzZsqPj4+OO+PjIystz1S3+ejOyN0nWuXbv2uOssXV95y87KylJISMhp3WKgWbNm2rdv3wnHfDwffvihkpKS9PzzzzvTDh48WOZnxpt9HhkZqdWrV6ukpMTjqFBWVpYz/1Q0a9ZMDz74oB588EFt3LhRMTExev755/Wvf/3rpK/9/fffVVJSovvvv1/3339/mflRUVEaPnw4V5LBA+cIAZJ8fX3Vt29fffrpp1qxYkWZ+Uf/1loR5X1NsXnzZi1evLjc82KOp6CgQEVFRR7ToqOj5evrq0OHDkn686ugkJCQMueIvPrqq8dd7tSpUz2eT5kyRZJ07bXXOtNq167t1aX+pb/xH7utjv3Qqei2Lg0Nx/aQkJAgl8ulp59+WkeOHCnz+h07dkiSGjVqpJiYGM2aNcsjfC5atEjr1q2r8Lgk6dJLL1VUVJQmT55cpp/Sfo9e39E1a9eu1cKFC3Xdddd5tc5j3XrrrUpPT9eCBQvKzMvLyyvzc3I0Pz+/MvtlypQpZY4aHm+bl+e6665TTk6O3n//fWdaUVGRpkyZojp16qh79+4nXcbR9u/f73ELB+nPUFS3bl3nZ/1kSm+PcOzj4osv1oUXXqg5c+YoJSXFq75Q/XFECPhfTz/9tBYuXKju3btr8ODBat26tf744w/Nnj1b33zzjYKDg/X222/r119/dU5cXrp0qZ566ilJ0h133OH8FhwdHa0ePXooJiZG9erV08aNG/Xmm2/qyJEjeuaZZyrc05dffqmhQ4fqlltu0UUXXaSioiK9/fbb8vPzU79+/Zy6u+++W88884zuvvtudezYUUuXLtV//vOf4y43OztbN9xwg3r16qX09HT961//0m233ab27ds7NR06dNAXX3yhF154QeHh4YqKilJsbOxxl+lyudStWzdNnDhRR44c0X/9139p4cKFys7OPqVtHRMTIz8/Pz377LPKz89XQECArr76ajVs2FDTpk3THXfcoUsvvVSJiYlq0KCBtmzZos8++0xXXHGFXnnlFUnShAkT1Lt3b3Xp0kV33XWXdu/erSlTpujiiy/Wvn37KrwffH19NW3aNF1//fWKiYnRwIED1ahRI2VlZSkzM9MJJ88995yuvfZaxcXFKSUlxbl83u12n/bf/ho5cqQ++eQT9enTR8nJyerQoYMKCwu1Zs0affjhh9q8ebNCQkLKfW2fPn309ttvy+12q02bNkpPT9cXX3yhCy64wKPuRNv8WIMHD9Zrr72m5ORkZWRkqEmTJvrwww/17bffavLkyapbt65X4/vPf/6jHj166NZbb1WbNm1Uo0YNzZkzR7m5uUpMTKzQMkJCQtS3b98y00vDeHnzAC6fB47y66+/mjvvvNM0aNDABAQEmKZNm5ohQ4aYQ4cOGWP+vAxX/3s5/LGPoy85HjdunOnYsaOpV6+eqVGjhgkPDzeJiYlm9erVXvXzyy+/mLvuuss0a9bMBAYGmvr165urrrrKfPHFFx51+/fvNykpKcbtdpu6deuaW2+91Wzfvv24l8+vW7fO3HzzzaZu3bqmXr16ZujQoebAgQMey8zKyjLdunUzQUFBRpJzKX3pMnbs2FGm361bt5q//OUvJjg42LjdbnPLLbeYbdu2lXurgZNta2OMeeONN0zTpk2Nn59fmW381VdfmYSEBON2u01gYKBp1qyZSU5ONitWrPBYz//8z/+Y1q1bm4CAANOmTRvz0UcfmaSkJK8uny/1zTffmGuuucbUrVvX1K5d27Rr185MmTLFo+aLL74wV1xxhQkKCjIul8tcf/31Zt26dR41J9qGkZGRpnfv3uWuf+/evWb06NGmefPmxt/f34SEhJjLL7/cTJo0yRw+fNipO3Z779mzxwwcONCEhISYOnXqmISEBJOVlWUiIyPL3CLheNv82MvnjTEmNzfXWa6/v7+Jjo4ucxuH0svny7ss/ug+d+7caYYMGWJatWplateubdxut4mNjTUffPBBudvCG1w+jxPxMcbLY/4AAADVBOcIAQAAa3GOEFBFdu/e7fwNs/L4+flxQ7izgP1wfti3b99Jz+tq0KDBcS/TB46Hr8aAKnLllVeWufvu0SIjI0/pj03CO+yH88P48eP1+OOPn7AmOzv7tP4wMuxEEAKqSEZGxgn/lEBQUJCuuOKKs9iRndgP54dffvnF+XMcx9OlSxcFBgaepY5QXRCEAACAtThZGgAAWIuTpU+gpKRE27ZtU926dU/5r48DAICzyxijvXv3Kjw8vMwfBj4WQegEtm3bpoiIiKpuAwAAnILffvtNjRs3PmENQegESm8R/9tvv8nlclVxNwAAoCIKCgoUERFRoT/1QhA6gdKvw1wuF0EIAIDzTEVOa+FkaQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABr1ajqBgCgynw1oao78N5Vo6u6A6Ba4YgQAACwFkEIAABYiyAEAACsxTlCAKyV/suuqm7Ba3FXVXUHQPXCESEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1vApCEyZM0GWXXaa6deuqYcOG6tu3rzZs2OBRc/DgQQ0ZMkQXXHCB6tSpo379+ik3N9ejZsuWLerdu7dq1aqlhg0bauTIkSoqKvKoWbJkiS699FIFBASoefPmmjlzZpl+pk6dqiZNmigwMFCxsbH6/vvvve4FAADYy6sg9PXXX2vIkCH67rvvtGjRIh05ckQ9e/ZUYWGhU/PAAw/o008/1ezZs/X1119r27Ztuummm5z5xcXF6t27tw4fPqxly5Zp1qxZmjlzpsaOHevUZGdnq3fv3rrqqqu0atUqjRgxQnfffbcWLFjg1Lz//vtKTU3VuHHj9OOPP6p9+/ZKSEjQ9u3bK9wLAACwm48xxpzqi3fs2KGGDRvq66+/Vrdu3ZSfn68GDRro3Xff1c033yxJysrKUuvWrZWenq7OnTvr888/V58+fbRt2zaFhoZKkqZPn65HHnlEO3bskL+/vx555BF99tlnWrt2rbOuxMRE5eXlKS0tTZIUGxuryy67TK+88ookqaSkRBERERo2bJhGjRpVoV5OpqCgQG63W/n5+XK5XKe6mQCco9LffKiqW/BaXMqkqm4BOOd58/l9WucI5efnS5Lq168vScrIyNCRI0cUHx/v1LRq1UoXXnih0tPTJUnp6emKjo52QpAkJSQkqKCgQJmZmU7N0csorSldxuHDh5WRkeFR4+vrq/j4eKemIr0c69ChQyooKPB4AACA6uuUg1BJSYlGjBihK664Qm3btpUk5eTkyN/fX8HBwR61oaGhysnJcWqODkGl80vnnaimoKBABw4c0M6dO1VcXFxuzdHLOFkvx5owYYLcbrfziIiIqODWAAAA56NTDkJDhgzR2rVr9d5771VmP1Vq9OjRys/Pdx6//fZbVbcEAADOoBqn8qKhQ4dq3rx5Wrp0qRo3buxMDwsL0+HDh5WXl+dxJCY3N1dhYWFOzbFXd5VeyXV0zbFXd+Xm5srlcikoKEh+fn7y8/Mrt+boZZysl2MFBAQoICDAiy0BAADOZ14dETLGaOjQoZozZ46+/PJLRUVFeczv0KGDatasqcWLFzvTNmzYoC1btiguLk6SFBcXpzVr1nhc3bVo0SK5XC61adPGqTl6GaU1pcvw9/dXhw4dPGpKSkq0ePFip6YivQAAALt5dURoyJAhevfdd/Xxxx+rbt26zrk2brdbQUFBcrvdSklJUWpqqurXry+Xy6Vhw4YpLi7OuUqrZ8+eatOmje644w5NnDhROTk5GjNmjIYMGeIcjbn33nv1yiuv6OGHH9Zdd92lL7/8Uh988IE+++wzp5fU1FQlJSWpY8eO6tSpkyZPnqzCwkINHDjQ6elkvQAAALt5FYSmTZsmSbryyis9ps+YMUPJycmSpBdffFG+vr7q16+fDh06pISEBL366qtOrZ+fn+bNm6f77rtPcXFxql27tpKSkvTEE084NVFRUfrss8/0wAMP6KWXXlLjxo31j3/8QwkJCU5N//79tWPHDo0dO1Y5OTmKiYlRWlqaxwnUJ+sFAADY7bTuI1TdcR8hoHrjPkJA9XTW7iMEAABwPiMIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2vg9DSpUt1/fXXKzw8XD4+Ppo7d67H/OTkZPn4+Hg8evXq5VGze/du3X777XK5XAoODlZKSor27dvnUbN69Wp17dpVgYGBioiI0MSJE8v0Mnv2bLVq1UqBgYGKjo7W/PnzPeYbYzR27Fg1atRIQUFBio+P18aNG70dMgAAqKa8DkKFhYVq3769pk6detyaXr166Y8//nAe//73vz3m33777crMzNSiRYs0b948LV26VIMHD3bmFxQUqGfPnoqMjFRGRoaee+45jR8/Xq+//rpTs2zZMg0YMEApKSlauXKl+vbtq759+2rt2rVOzcSJE/Xyyy9r+vTpWr58uWrXrq2EhAQdPHjQ22EDAIBqyMcYY075xT4+mjNnjvr27etMS05OVl5eXpkjRaXWr1+vNm3a6IcfflDHjh0lSWlpabruuuu0detWhYeHa9q0afrb3/6mnJwc+fv7S5JGjRqluXPnKisrS5LUv39/FRYWat68ec6yO3furJiYGE2fPl3GGIWHh+vBBx/UQw89JEnKz89XaGioZs6cqcTExJOOr6CgQG63W/n5+XK5XKeyiQCcw9LffKiqW/BaXMqkqm4BOOd58/l9Rs4RWrJkiRo2bKiWLVvqvvvu065du5x56enpCg4OdkKQJMXHx8vX11fLly93arp16+aEIElKSEjQhg0btGfPHqcmPj7eY70JCQlKT0+XJGVnZysnJ8ejxu12KzY21qk51qFDh1RQUODxAAAA1VelB6FevXrpn//8pxYvXqxnn31WX3/9ta699loVFxdLknJyctSwYUOP19SoUUP169dXTk6OUxMaGupRU/r8ZDVHzz/6deXVHGvChAlyu93OIyIiwuvxAwCA80eNyl7g0V85RUdHq127dmrWrJmWLFmiHj16VPbqKtXo0aOVmprqPC8oKCAMAQBQjZ3xy+ebNm2qkJAQbdq0SZIUFham7du3e9QUFRVp9+7dCgsLc2pyc3M9akqfn6zm6PlHv668mmMFBATI5XJ5PAAAQPV1xoPQ1q1btWvXLjVq1EiSFBcXp7y8PGVkZDg1X375pUpKShQbG+vULF26VEeOHHFqFi1apJYtW6pevXpOzeLFiz3WtWjRIsXFxUmSoqKiFBYW5lFTUFCg5cuXOzUAAMBuXgehffv2adWqVVq1apWkP09KXrVqlbZs2aJ9+/Zp5MiR+u6777R582YtXrxYN954o5o3b66EhARJUuvWrdWrVy8NGjRI33//vb799lsNHTpUiYmJCg8PlyTddttt8vf3V0pKijIzM/X+++/rpZde8vjaavjw4UpLS9Pzzz+vrKwsjR8/XitWrNDQoUMl/XlF24gRI/TUU0/pk08+0Zo1a3TnnXcqPDzc4yo3AABgL6/PEVqxYoWuuuoq53lpOElKStK0adO0evVqzZo1S3l5eQoPD1fPnj315JNPKiAgwHnNO++8o6FDh6pHjx7y9fVVv3799PLLLzvz3W63Fi5cqCFDhqhDhw4KCQnR2LFjPe41dPnll+vdd9/VmDFj9Oijj6pFixaaO3eu2rZt69Q8/PDDKiws1ODBg5WXl6cuXbooLS1NgYGB3g4bAABUQ6d1H6HqjvsIAdUb9xECqqcqv48QAADA+YAgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLW8DkJLly7V9ddfr/DwcPn4+Gju3Lke840xGjt2rBo1aqSgoCDFx8dr48aNHjW7d+/W7bffLpfLpeDgYKWkpGjfvn0eNatXr1bXrl0VGBioiIgITZw4sUwvs2fPVqtWrRQYGKjo6GjNnz/f614AAIC9vA5ChYWFat++vaZOnVru/IkTJ+rll1/W9OnTtXz5ctWuXVsJCQk6ePCgU3P77bcrMzNTixYt0rx587R06VINHjzYmV9QUKCePXsqMjJSGRkZeu655zR+/Hi9/vrrTs2yZcs0YMAApaSkaOXKlerbt6/69u2rtWvXetULAACwl48xxpzyi318NGfOHPXt21fSn0dgwsPD9eCDD+qhhx6SJOXn5ys0NFQzZ85UYmKi1q9frzZt2uiHH35Qx44dJUlpaWm67rrrtHXrVoWHh2vatGn629/+ppycHPn7+0uSRo0apblz5yorK0uS1L9/fxUWFmrevHlOP507d1ZMTIymT59eoV5OpqCgQG63W/n5+XK5XKe6mQCco9LffKiqW/BaXMqkqm4BOOd58/ldqecIZWdnKycnR/Hx8c40t9ut2NhYpaenS5LS09MVHBzshCBJio+Pl6+vr5YvX+7UdOvWzQlBkpSQkKANGzZoz549Ts3R6ymtKV1PRXo51qFDh1RQUODxAAAA1VelBqGcnBxJUmhoqMf00NBQZ15OTo4aNmzoMb9GjRqqX7++R015yzh6HcerOXr+yXo51oQJE+R2u51HREREBUYNAADOV1w1dpTRo0crPz/fefz2229V3RIAADiDKjUIhYWFSZJyc3M9pufm5jrzwsLCtH37do/5RUVF2r17t0dNecs4eh3Hqzl6/sl6OVZAQIBcLpfHAwAAVF+VGoSioqIUFhamxYsXO9MKCgq0fPlyxcXFSZLi4uKUl5enjIwMp+bLL79USUmJYmNjnZqlS5fqyJEjTs2iRYvUsmVL1atXz6k5ej2lNaXrqUgvAADAbl4HoX379mnVqlVatWqVpD9PSl61apW2bNkiHx8fjRgxQk899ZQ++eQTrVmzRnfeeafCw8OdK8tat26tXr16adCgQfr+++/17bffaujQoUpMTFR4eLgk6bbbbpO/v79SUlKUmZmp999/Xy+99JJSU1OdPoYPH660tDQ9//zzysrK0vjx47VixQoNHTpUkirUCwAAsFsNb1+wYsUKXXXVVc7z0nCSlJSkmTNn6uGHH1ZhYaEGDx6svLw8denSRWlpaQoMDHRe884772jo0KHq0aOHfH191a9fP7388svOfLfbrYULF2rIkCHq0KGDQkJCNHbsWI97DV1++eV69913NWbMGD366KNq0aKF5s6dq7Zt2zo1FekFAADY67TuI1TdcR8hoHrjPkJA9VRl9xECAAA4nxCEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsFalB6Hx48fLx8fH49GqVStn/sGDBzVkyBBdcMEFqlOnjvr166fc3FyPZWzZskW9e/dWrVq11LBhQ40cOVJFRUUeNUuWLNGll16qgIAANW/eXDNnzizTy9SpU9WkSRMFBgYqNjZW33//fWUPFwAAnMfOyBGhiy++WH/88Yfz+Oabb5x5DzzwgD799FPNnj1bX3/9tbZt26abbrrJmV9cXKzevXvr8OHDWrZsmWbNmqWZM2dq7NixTk12drZ69+6tq666SqtWrdKIESN09913a8GCBU7N+++/r9TUVI0bN04//vij2rdvr4SEBG3fvv1MDBkAAJyHfIwxpjIXOH78eM2dO1erVq0qMy8/P18NGjTQu+++q5tvvlmSlJWVpdatWys9PV2dO3fW559/rj59+mjbtm0KDQ2VJE2fPl2PPPKIduzYIX9/fz3yyCP67LPPtHbtWmfZiYmJysvLU1pamiQpNjZWl112mV555RVJUklJiSIiIjRs2DCNGjWqQmMpKCiQ2+1Wfn6+XC7X6WwWAOeg9DcfquoWvBaXMqmqWwDOed58fp+RI0IbN25UeHi4mjZtqttvv11btmyRJGVkZOjIkSOKj493alu1aqULL7xQ6enpkqT09HRFR0c7IUiSEhISVFBQoMzMTKfm6GWU1pQu4/Dhw8rIyPCo8fX1VXx8vFNTnkOHDqmgoMDjAQAAqq9KD0KxsbGaOXOm0tLSNG3aNGVnZ6tr167au3evcnJy5O/vr+DgYI/XhIaGKicnR5KUk5PjEYJK55fOO1FNQUGBDhw4oJ07d6q4uLjcmtJllGfChAlyu93OIyIi4pS2AQAAOD/UqOwFXnvttc7/t2vXTrGxsYqMjNQHH3ygoKCgyl5dpRo9erRSU1Od5wUFBYQhAACqsTN++XxwcLAuuugibdq0SWFhYTp8+LDy8vI8anJzcxUWFiZJCgsLK3MVWenzk9W4XC4FBQUpJCREfn5+5daULqM8AQEBcrlcHg8AAFB9nfEgtG/fPv38889q1KiROnTooJo1a2rx4sXO/A0bNmjLli2Ki4uTJMXFxWnNmjUeV3ctWrRILpdLbdq0cWqOXkZpTeky/P391aFDB4+akpISLV682KkBAACo9CD00EMP6euvv9bmzZu1bNky/eUvf5Gfn58GDBggt9utlJQUpaam6quvvlJGRoYGDhyouLg4de7cWZLUs2dPtWnTRnfccYd++uknLViwQGPGjNGQIUMUEBAgSbr33nv1yy+/6OGHH1ZWVpZeffVVffDBB3rggQecPlJTU/XGG29o1qxZWr9+ve677z4VFhZq4MCBlT1kAABwnqr0c4S2bt2qAQMGaNeuXWrQoIG6dOmi7777Tg0aNJAkvfjii/L19VW/fv106NAhJSQk6NVXX3Ve7+fnp3nz5um+++5TXFycateuraSkJD3xxBNOTVRUlD777DM98MADeumll9S4cWP94x//UEJCglPTv39/7dixQ2PHjlVOTo5iYmKUlpZW5gRqAABgr0q/j1B1wn2EgOqN+wgB1VOV30cIAADgfEAQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGvVqOoGAABA5Xhx0X+qugWvPXDNRVW6fo4IAQAAaxGEAACAtQhCAADAWpwjBABANdF5y+tV3cIpmFSla+eIEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAa9Wo6gYAADgXvbjoP1Xdgtc6V3UD5yGOCAEAAGsRhAAAgLX4agwAcMadl18zbXm9qlvAWcARIQAAYC2OCAEAzjiOruBcRRCqQulvPlTVLXgtLmVSVbcAAEClIQgBwHnkfDzXRuKybpy7CEIAcB7hKyagcnGyNAAAsBZHhABUivPxKxu+rgFAEALOQedlqOArGwDnIYIQcA4iVADA2UEQQrV3Xh5dqeoGAMASBCFUexxdAQAcD0EIXjkfbwIJAMDxWHH5/NSpU9WkSRMFBgYqNjZW33//fVW3BAAAzgHVPgi9//77Sk1N1bhx4/Tjjz+qffv2SkhI0Pbt26u6NQAAUMWqfRB64YUXNGjQIA0cOFBt2rTR9OnTVatWLb311ltV3RoAAKhi1fococOHDysjI0OjR492pvn6+io+Pl7p6ell6g8dOqRDhw45z/Pz8yVJBQUFZ6S/wgOHTl4EAEA1diY+Y0uXaYw5aW21DkI7d+5UcXGxQkNDPaaHhoYqKyurTP2ECRP0+OOPl5keERFxxnoEAMBqw145Y4veu3ev3G73CWuqdRDy1ujRo5Wamuo8Lykp0e7du3XBBRfIx8enUtdVUFCgiIgI/fbbb3K5XJW67HNBdR+fVP3HyPjOf9V9jIzv/HemxmiM0d69exUeHn7S2modhEJCQuTn56fc3FyP6bm5uQoLCytTHxAQoICAAI9pwcHBZ7JFuVyuavsDLlX/8UnVf4yM7/xX3cfI+M5/Z2KMJzsSVKpanyzt7++vDh06aPHixc60kpISLV68WHFxcVXYGQAAOBdU6yNCkpSamqqkpCR17NhRnTp10uTJk1VYWKiBAwdWdWsAAKCKVfsg1L9/f+3YsUNjx45VTk6OYmJilJaWVuYE6rMtICBA48aNK/NVXHVR3ccnVf8xMr7zX3UfI+M7/50LY/QxFbm2DAAAoBqq1ucIAQAAnAhBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEzpC///3vuvzyy1WrVq0K353aGKOxY8eqUaNGCgoKUnx8vDZu3OhRs3v3bt1+++1yuVwKDg5WSkqK9u3bdwZGcHLe9rJ582b5+PiU+5g9e7ZTV978995772wMycOpbOsrr7yyTO/33nuvR82WLVvUu3dv1apVSw0bNtTIkSNVVFR0JodSLm/Ht3v3bg0bNkwtW7ZUUFCQLrzwQt1///3OHycuVZX7b+rUqWrSpIkCAwMVGxur77///oT1s2fPVqtWrRQYGKjo6GjNnz/fY35F3pNnkzfje+ONN9S1a1fVq1dP9erVU3x8fJn65OTkMvuqV69eZ3oYJ+TNGGfOnFmm/8DAQI+a83kflvfviY+Pj3r37u3UnEv7cOnSpbr++usVHh4uHx8fzZ0796SvWbJkiS699FIFBASoefPmmjlzZpkab9/XXjM4I8aOHWteeOEFk5qaatxud4Ve88wzzxi3223mzp1rfvrpJ3PDDTeYqKgoc+DAAaemV69epn379ua7774z/+///T/TvHlzM2DAgDM0ihPztpeioiLzxx9/eDwef/xxU6dOHbN3716nTpKZMWOGR93R2+BsOZVt3b17dzNo0CCP3vPz8535RUVFpm3btiY+Pt6sXLnSzJ8/34SEhJjRo0ef6eGU4e341qxZY2666SbzySefmE2bNpnFixebFi1amH79+nnUVdX+e++994y/v7956623TGZmphk0aJAJDg42ubm55dZ/++23xs/Pz0ycONGsW7fOjBkzxtSsWdOsWbPGqanIe/Js8XZ8t912m5k6dapZuXKlWb9+vUlOTjZut9ts3brVqUlKSjK9evXy2Fe7d+8+W0Mqw9sxzpgxw7hcLo/+c3JyPGrO5324a9cuj7GtXbvW+Pn5mRkzZjg159I+nD9/vvnb3/5mPvroIyPJzJkz54T1v/zyi6lVq5ZJTU0169atM1OmTDF+fn4mLS3NqfF2m50KgtAZNmPGjAoFoZKSEhMWFmaee+45Z1peXp4JCAgw//73v40xxqxbt85IMj/88INT8/nnnxsfHx/z+++/V3rvJ1JZvcTExJi77rrLY1pF3kBn2qmOr3v37mb48OHHnT9//nzj6+vr8Y/1tGnTjMvlMocOHaqU3iuisvbfBx98YPz9/c2RI0ecaVW1/zp16mSGDBniPC8uLjbh4eFmwoQJ5dbfeuutpnfv3h7TYmNjzT333GOMqdh78mzydnzHKioqMnXr1jWzZs1ypiUlJZkbb7yxsls9Zd6O8WT/vla3ffjiiy+aunXrmn379jnTzrV9WKoi/w48/PDD5uKLL/aY1r9/f5OQkOA8P91tVhF8NXaOyM7OVk5OjuLj451pbrdbsbGxSk9PlySlp6crODhYHTt2dGri4+Pl6+ur5cuXn9V+K6OXjIwMrVq1SikpKWXmDRkyRCEhIerUqZPeeustmbN838/TGd8777yjkJAQtW3bVqNHj9b+/fs9lhsdHe1xZ/OEhAQVFBQoMzOz8gdyHJX1s5Sfny+Xy6UaNTxvUn+299/hw4eVkZHh8f7x9fVVfHy88/45Vnp6uke99Oe+KK2vyHvybDmV8R1r//79OnLkiOrXr+8xfcmSJWrYsKFatmyp++67T7t27arU3ivqVMe4b98+RUZGKiIiQjfeeKPH+6i67cM333xTiYmJql27tsf0c2Ufeutk78HK2GYVUe3/xMb5IicnR5LK/OmP0NBQZ15OTo4aNmzoMb9GjRqqX7++U3O2VEYvb775plq3bq3LL7/cY/oTTzyhq6++WrVq1dLChQv117/+Vfv27dP9999faf2fzKmO77bbblNkZKTCw8O1evVqPfLII9qwYYM++ugjZ7nl7ePSeWdLZey/nTt36sknn9TgwYM9plfF/tu5c6eKi4vL3bZZWVnlvuZ4++Lo91vptOPVnC2nMr5jPfLIIwoPD/f4UOnVq5duuukmRUVF6eeff9ajjz6qa6+9Vunp6fLz86vUMZzMqYyxZcuWeuutt9SuXTvl5+dr0qRJuvzyy5WZmanGjRtXq334/fffa+3atXrzzTc9pp9L+9Bbx3sPFhQU6MCBA9qzZ89p/9xXBEHIC6NGjdKzzz57wpr169erVatWZ6mjylfRMZ6uAwcO6N1339Vjjz1WZt7R0y655BIVFhbqueeeq5QP0jM9vqNDQXR0tBo1aqQePXro559/VrNmzU55uRV1tvZfQUGBevfurTZt2mj8+PEe887k/sOpeeaZZ/Tee+9pyZIlHicTJyYmOv8fHR2tdu3aqVmzZlqyZIl69OhRFa16JS4uTnFxcc7zyy+/XK1bt9Zrr72mJ598sgo7q3xvvvmmoqOj1alTJ4/p5/s+PBcQhLzw4IMPKjk5+YQ1TZs2PaVlh4WFSZJyc3PVqFEjZ3pubq5iYmKcmu3bt3u8rqioSLt373Zef7oqOsbT7eXDDz/U/v37deedd560NjY2Vk8++aQOHTp02n+Y72yNr1RsbKwkadOmTWrWrJnCwsLKXPGQm5srSZWyD8/G+Pbu3atevXqpbt26mjNnjmrWrHnC+srcf8cTEhIiPz8/Z1uWys3NPe54wsLCTlhfkffk2XIq4ys1adIkPfPMM/riiy/Url27E9Y2bdpUISEh2rRp01n/ED2dMZaqWbOmLrnkEm3atElS9dmHhYWFeu+99/TEE0+cdD1VuQ+9dbz3oMvlUlBQkPz8/E77Z6JCKu1sI5TL25OlJ02a5EzLz88v92TpFStWODULFiyo0pOlT7WX7t27l7na6HieeuopU69evVPu9VRU1rb+5ptvjCTz008/GWP+72Tpo694eO2114zL5TIHDx6svAGcxKmOLz8/33Tu3Nl0797dFBYWVmhdZ2v/derUyQwdOtR5XlxcbP7rv/7rhCdL9+nTx2NaXFxcmZOlT/SePJu8HZ8xxjz77LPG5XKZ9PT0Cq3jt99+Mz4+Pubjjz8+7X5PxamM8WhFRUWmZcuW5oEHHjDGVI99aMyfnyMBAQFm586dJ11HVe/DUqrgydJt27b1mDZgwIAyJ0ufzs9EhXqttCXBw6+//mpWrlzpXB6+cuVKs3LlSo/LxFu2bGk++ugj5/kzzzxjgoODzccff2xWr15tbrzxxnIvn7/kkkvM8uXLzTfffGNatGhRpZfPn6iXrVu3mpYtW5rly5d7vG7jxo3Gx8fHfP7552WW+cknn5g33njDrFmzxmzcuNG8+uqrplatWmbs2LFnfDzH8nZ8mzZtMk888YRZsWKFyc7ONh9//LFp2rSp6datm/Oa0svne/bsaVatWmXS0tJMgwYNquzyeW/Gl5+fb2JjY010dLTZtGmTx+W6RUVFxpiq3X/vvfeeCQgIMDNnzjTr1q0zgwcPNsHBwc4VenfccYcZNWqUU//tt9+aGjVqmEmTJpn169ebcePGlXv5/Mnek2eLt+N75plnjL+/v/nwww899lXpv0F79+41Dz30kElPTzfZ2dnmiy++MJdeeqlp0aLFWQ3lpzPGxx9/3CxYsMD8/PPPJiMjwyQmJprAwECTmZnp1JzP+7BUly5dTP/+/ctMP9f24d69e53POknmhRdeMCtXrjS//vqrMcaYUaNGmTvuuMOpL718fuTIkWb9+vVm6tSp5V4+f6JtVhkIQmdIUlKSkVTm8dVXXzk1+t/7rZQqKSkxjz32mAkNDTUBAQGmR48eZsOGDR7L3bVrlxkwYICpU6eOcblcZuDAgR7h6mw6WS/Z2dllxmyMMaNHjzYRERGmuLi4zDI///xzExMTY+rUqWNq165t2rdvb6ZPn15u7Znm7fi2bNliunXrZurXr28CAgJM8+bNzciRIz3uI2SMMZs3bzbXXnutCQoKMiEhIebBBx/0uPz8bPF2fF999VW5P9OSTHZ2tjGm6vfflClTzIUXXmj8/f1Np06dzHfffefM6969u0lKSvKo/+CDD8xFF11k/P39zcUXX2w+++wzj/kVeU+eTd6MLzIystx9NW7cOGOMMfv37zc9e/Y0DRo0MDVr1jSRkZFm0KBBlfoBcyq8GeOIESOc2tDQUHPdddeZH3/80WN55/M+NMaYrKwsI8ksXLiwzLLOtX14vH8jSseUlJRkunfvXuY1MTExxt/f3zRt2tTjM7HUibZZZfAx5ixflwwAAHCO4D5CAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALDW/wdAyZgKduxEzwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOwRJREFUeJzt3XtYVWXe//EPoBw8bFARkJEUD3lIlNJEzFNJYmnlZCXWFBhpNWoZZWnjqB0mS+1optWYOk1NZU9amaFmmb8SLUnziKOJWRl4BATPcv/+6GE9bkFlI4pwv1/Xta/aa333Wt97Lbb7w9prLbyMMUYAAAAW8q7oBgAAACoKQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCLDI+PHj5eXlpT179lR0KxUqKSlJjRs3rug2zhsvLy+NHz++XJfZo0cP9ejRo1yXCVwMCEKAB/7xj3/oxhtvVGho6Bk/bObOnav4+HiFh4fLz89PDRs21C233KL169df2IbPwTPPPKN58+ZV2Po3btyo8ePHa/v27RXWg22qwjZfunSpvLy8SnysWLGiotvDRahaRTcAVCZjxoxRWFiYLr/8ci1cuPC0devWrVOdOnX04IMPKjg4WFlZWXrrrbfUsWNHpaWlqV27dhew67J55plndMstt6hfv34Vsv6NGzfqiSeeUI8ePar00ZuLyZm2+aJFiyqmqTJ64IEHdOWVV7pNa9asWQV1g4sZQQjwQGZmpho3bqw9e/aofv36p60bO3ZssWn33HOPGjZsqGnTpmn69Onns80LrqCgQDVr1qzoNiq1021DY4wOHz6sgICACujq//j6+lbo+j3VtWtX3XLLLRXdBioBvhoDTvLbb78pOTnZ+UorMjJS999/v44ePSpJ53RkIiQkRDVq1FBOTo5Hr9uyZYv69++vsLAw+fv7q2HDhkpISFBubq4kafv27fLy8tKsWbOKvfZ0X9/t2bNHt912m1wul+rVq6cHH3xQhw8fdntdQUGBZs+e7XytkJSUJOn/zjPauHGjbr/9dtWpU0ddunSRJK1du1ZJSUlq0qSJ/P39FRYWprvvvlt79+4t1sOZtvWsWbN06623SpKuvvpqp4elS5c6r//888/VtWtX1axZU7Vr11afPn20YcOGYuuZN2+e2rRpI39/f7Vp00Zz584t7aYvZuXKlbr++utVp04d1axZU23bttXLL7/sVvPll186fQUFBemmm27Spk2b3GrOtA0bN26svn37auHCherQoYMCAgL0+uuvS5JycnI0YsQIRUREyM/PT82aNdNzzz2nwsLCM/b9888/669//atatGihgIAA1atXT7feeqvbV2Bn2+YlnSO0a9cuJScnKzQ0VP7+/mrXrp1mz57tVlP08zl58mS98cYbatq0qfz8/HTllVfq+++/d6vNysrSoEGD1LBhQ/n5+alBgwa66aabyvxV3YEDB3T8+PEyvRb24IgQ8L927typjh07KicnR0OGDFHLli3122+/6cMPP9TBgwfL9BtxTk6Ojh07pqysLL300kvKy8tTz549S/36o0ePKj4+XkeOHNHw4cMVFham3377TfPnz1dOTo4CAwM97kmSbrvtNjVu3FgTJkzQihUr9Morr2j//v3617/+JUl6++23dc8996hjx44aMmSIJKlp06Zuy7j11lvVvHlzPfPMMzLGSJIWL16sbdu2adCgQQoLC9OGDRv0xhtvaMOGDVqxYoW8vLwknX1bd+vWTQ888IBeeeUVPf7442rVqpUkOf99++23lZiYqPj4eD333HM6ePCgpk2bpi5dumj16tVOYF20aJH69++v1q1ba8KECdq7d6/zQeupxYsXq2/fvmrQoIEefPBBhYWFadOmTZo/f74efPBBSdIXX3yh6667Tk2aNNH48eN16NAhTZkyRVdddZV++OGHYkG6pG0oSZs3b9bAgQN17733avDgwWrRooUOHjyo7t2767ffftO9996rSy65RMuXL9fo0aP1+++/66WXXjpt799//72WL1+uhIQENWzYUNu3b9e0adPUo0cPbdy4UTVq1DjrNj/VoUOH1KNHD23dulXDhg1TZGSk5syZo6SkJOXk5DjbpMi7776rAwcO6N5775WXl5cmTpyom2++Wdu2bVP16tUlSf3799eGDRs0fPhwNW7cWLt27dLixYu1Y8cOj38JGTRokPLz8+Xj46OuXbtq0qRJ6tChg0fLgCUMAGOMMXfddZfx9vY233//fbF5hYWFbs93795tJJlx48adcZktWrQwkowkU6tWLTNmzBhz4sSJUve0evVqI8nMmTPntDWZmZlGkpk5c2axeaf2OG7cOCPJ3HjjjW51f/3rX40k8+OPPzrTatasaRITE4sts2gZAwcOLDbv4MGDxab95z//MZLMsmXLnGml2dZz5swxksxXX33lNv/AgQMmKCjIDB482G16VlaWCQwMdJseHR1tGjRoYHJycpxpixYtMpJMo0aNiq37dI4fP24iIyNNo0aNzP79+0vst2h9ISEhZu/evc60H3/80Xh7e5u77rrLmXambdioUSMjyaSmprpNf+qpp0zNmjXNf//7X7fpo0aNMj4+PmbHjh3OtFP3e0n7JS0tzUgy//rXv5xpp9vmxhjTvXt30717d+f5Sy+9ZCSZf//73860o0ePmtjYWFOrVi2Tl5dnjPm/n8969eqZffv2ObUff/yxkWQ+/fRTY4wx+/fvN5LMpEmTiq3bE99++63p37+/mTFjhvn444/NhAkTTL169Yy/v7/54YcfzmnZqJr4agyQVFhYqHnz5umGG24o8bfGoiMZnpo5c6ZSU1P12muvqVWrVjp06JBOnDhR6tcXHfFZuHChDh48WKYeSjJ06FC358OHD5ckLViwoNTLuO+++4pNO/k8lsOHD2vPnj3q1KmTJOmHH36QdO7bevHixcrJydHAgQO1Z88e5+Hj46OYmBh99dVXkqTff/9da9asUWJiotuRs2uvvVatW7cu9TglafXq1crMzNSIESMUFBRUYr9F60tKSlLdunWd+W3bttW1115b4rYtaRtKUmRkpOLj492mzZkzR127dlWdOnXcxh0XF6cTJ05o2bJlp+3/5P1y7Ngx7d27V82aNVNQUJCzXzy1YMEChYWFaeDAgc606tWr64EHHlB+fr6+/vprt/oBAwaoTp06zvOuXbtKkrZt2+b06Ovrq6VLl2r//v1l6kmSOnfurA8//FB33323brzxRo0aNco5Gjl69OgyLxdVF1+NAZJ2796tvLw8tWnTplyXGxsb6/x/QkKC8zXD5MmTS/X6yMhIpaSk6IUXXtA777yjrl276sYbb9Rf/vKXMn8tJknNmzd3e960aVN5e3t7dC5GZGRksWn79u3TE088offee0+7du1ym1d0TtO5bustW7ZIkq655poS57tcLkl/nBcjFR+rJLVo0cKjAPDTTz9J0hl7LlpfixYtis1r1aqVFi5cWOyE6JK24emmb9myRWvXrj3tSfqnbu+THTp0SBMmTNDMmTP122+/uX0NV7RfPPXzzz+refPm8vZ2/3266Ge8aHsUueSSS9yeF4WiotDj5+en5557Tg8//LBCQ0PVqVMn9e3bV3fddZfCwsLK1GORZs2a6aabbtJHH32kEydOyMfH55yWh6qFIARcIHXq1NE111yjd955p9RBSJKef/55JSUl6eOPP9aiRYv0wAMPOOf2NGzY8LRHUDw58lSWI14lXcV02223afny5Ro5cqSio6NVq1YtFRYWqnfv3mc9obe0ipbz9ttvl/gBWa1a5fln7XRXgpU0vbCwUNdee60effTREl9z6aWXnnY9w4cP18yZMzVixAjFxsYqMDBQXl5eSkhIKLf9cjanCx8nh7IRI0bohhtu0Lx587Rw4UL9/e9/14QJE/Tll1/q8ssvP6f1R0RE6OjRoyooKHDCMiARhABJUv369eVyuc77DQ8PHTpUpt/Ao6KiFBUVpTFjxmj58uW66qqrNH36dD399NPOb9anXo126m/kJ9uyZYvbUYetW7eqsLDQ7YRUT8PR/v37tWTJEj3xxBNutw8oOoJTpLTb+nTrLzppOyQkRHFxcad9faNGjUpcv/THycieKFrn+vXrT7vOovWVtOyMjAwFBwef0y0GmjZtqvz8/DOO+XQ+/PBDJSYm6vnnn3emHT58uNjPjCf7vFGjRlq7dq0KCwvdjgplZGQ488uiadOmevjhh/Xwww9ry5Ytio6O1vPPP69///vfZVpekW3btsnf31+1atU6p+Wg6uEcIUCSt7e3+vXrp08//VSrVq0qNv/k31pLo6SvKbZv364lS5Z4dOVKXl5esct/o6Ki5O3trSNHjkj646ug4ODgYueIvPbaa6dd7tSpU92eT5kyRZJ03XXXOdNq1qzp0aX+Rb/xn7qtTr2aqbTbuig0nNpDfHy8XC6XnnnmGR07dqzY63fv3i1JatCggaKjozV79my38Ll48WJt3Lix1OOSpCuuuEKRkZF66aWXivVT1O/J6zu5Zv369Vq0aJGuv/56j9Z5qttuu01paWkl3sgzJyfnjJeJ+/j4FNsvU6ZMKXbU8HTbvCTXX3+9srKy9P777zvTjh8/rilTpqhWrVrq3r37WZdxsoMHD7rdwkH6IxTVrl3b+VkvjaL9f7Iff/xRn3zyiXr16lXsqzyAI0LA/3rmmWe0aNEide/eXUOGDFGrVq30+++/a86cOfrmm28UFBSkt99+Wz///LNz4vKyZcv09NNPS5LuvPNO57fgqKgo9ezZU9HR0apTp462bNmiGTNm6NixY3r22WdL3dOXX36pYcOG6dZbb9Wll16q48eP6+2335aPj4/69+/v1N1zzz169tlndc8996hDhw5atmyZ/vvf/552uZmZmbrxxhvVu3dvpaWl6d///rduv/12tztet2/fXl988YVeeOEFhYeHKzIyUjExMaddpsvlUrdu3TRx4kQdO3ZMf/rTn7Ro0SJlZmaWaVtHR0fLx8dHzz33nHJzc+Xn56drrrlGISEhmjZtmu68805dccUVSkhIUP369bVjxw599tlnuuqqq/Tqq69KkiZMmKA+ffqoS5cuuvvuu7Vv3z5NmTJFl112mfLz80u9H7y9vTVt2jTdcMMNio6O1qBBg9SgQQNlZGRow4YNTjiZNGmSrrvuOsXGxio5Odm5fD4wMPCc//bXyJEj9cknn6hv375KSkpS+/btVVBQoHXr1unDDz/U9u3bFRwcXOJr+/btq7fffluBgYFq3bq10tLS9MUXX6hevXpudWfa5qcaMmSIXn/9dSUlJSk9PV2NGzfWhx9+qG+//VYvvfSSateu7dH4/vvf/6pnz5667bbb1Lp1a1WrVk1z585Vdna2EhISSr2cAQMGKCAgQJ07d1ZISIg2btyoN954QzVq1PDovQeLVOAVa8BF5+effzZ33XWXqV+/vvHz8zNNmjQxQ4cONUeOHDHG/HEJsf73cvhTHydfcjxu3DjToUMHU6dOHVOtWjUTHh5uEhISzNq1az3qZ9u2bebuu+82TZs2Nf7+/qZu3brm6quvNl988YVb3cGDB01ycrIJDAw0tWvXNrfddpvZtWvXaS+f37hxo7nllltM7dq1TZ06dcywYcPMoUOH3JaZkZFhunXrZgICAowk51L6omXs3r27WL+//vqr+fOf/2yCgoJMYGCgufXWW83OnTtLvNXA2ba1Mca8+eabpkmTJsbHx6fYNv7qq69MfHy8CQwMNP7+/qZp06YmKSnJrFq1ym09//M//2NatWpl/Pz8TOvWrc1HH31kEhMTPbp8vsg333xjrr32WlO7dm1Ts2ZN07ZtWzNlyhS3mi+++MJcddVVJiAgwLhcLnPDDTeYjRs3utWcaRs2atTI9OnTp8T1HzhwwIwePdo0a9bM+Pr6muDgYNO5c2czefJkc/ToUafu1O29f/9+M2jQIBMcHGxq1apl4uPjTUZGhmnUqFGxWyScbpufevm8McZkZ2c7y/X19TVRUVHFbuNQdPl8SZfFn9znnj17zNChQ03Lli1NzZo1TWBgoImJiTEffPBBidvidF5++WXTsWNHU7duXVOtWjXToEED85e//MVs2bLFo+XAHl7GeHjMHwAAoIrgy1IAAGAtzhECKsi+ffucv2FWEh8fnzP+YVeUD/ZD5ZCfn3/W87rq16/PPYLgMb4aAypIjx49it1992SNGjUq8x+bROmxHyqH8ePH64knnjhjTWZm5jn9YWTYiSAEVJD09PQz/imBgIAAXXXVVRewIzuxHyqHbdu2OX+O43S6dOkif3//C9QRqgqCEAAAsBYnSwMAAGtxsvQZFBYWaufOnapdu3aZ//o4AAC4sIwxOnDggMLDw896N3GC0Bns3LlTERERFd0GAAAog19++UUNGzY8Yw1B6AyKbhH/yy+/8NeKAQCoJPLy8hQREVGqP/VCEDqDoq/DXC4XQQgAgEqmNKe1cLI0AACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLWqVXQDAFBhvppQ0R147urRFd0BUKVwRAgAAFiLIAQAAKxFEAIAANbiHCEA1krbtreiW/BY7NUV3QFQtXBECAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoeBaEJEyboyiuvVO3atRUSEqJ+/fpp8+bNbjWHDx/W0KFDVa9ePdWqVUv9+/dXdna2W82OHTvUp08f1ahRQyEhIRo5cqSOHz/uVrN06VJdccUV8vPzU7NmzTRr1qxi/UydOlWNGzeWv7+/YmJi9N1333ncCwAAsJdHQejrr7/W0KFDtWLFCi1evFjHjh1Tr169VFBQ4NQ89NBD+vTTTzVnzhx9/fXX2rlzp26++WZn/okTJ9SnTx8dPXpUy5cv1+zZszVr1iyNHTvWqcnMzFSfPn109dVXa82aNRoxYoTuueceLVy40Kl5//33lZKSonHjxumHH35Qu3btFB8fr127dpW6FwAAYDcvY4wp64t3796tkJAQff311+rWrZtyc3NVv359vfvuu7rlllskSRkZGWrVqpXS0tLUqVMnff755+rbt6927typ0NBQSdL06dP12GOPaffu3fL19dVjjz2mzz77TOvXr3fWlZCQoJycHKWmpkqSYmJidOWVV+rVV1+VJBUWFioiIkLDhw/XqFGjStXL2eTl5SkwMFC5ublyuVxl3UwALlJpMx6p6BY8Fps8uaJbAC56nnx+n9M5Qrm5uZKkunXrSpLS09N17NgxxcXFOTUtW7bUJZdcorS0NElSWlqaoqKinBAkSfHx8crLy9OGDRucmpOXUVRTtIyjR48qPT3drcbb21txcXFOTWl6OdWRI0eUl5fn9gAAAFVXmYNQYWGhRowYoauuukpt2rSRJGVlZcnX11dBQUFutaGhocrKynJqTg5BRfOL5p2pJi8vT4cOHdKePXt04sSJEmtOXsbZejnVhAkTFBgY6DwiIiJKuTUAAEBlVOYgNHToUK1fv17vvfdeefZToUaPHq3c3Fzn8csvv1R0SwAA4DyqVpYXDRs2TPPnz9eyZcvUsGFDZ3pYWJiOHj2qnJwctyMx2dnZCgsLc2pOvbqr6Equk2tOvborOztbLpdLAQEB8vHxkY+PT4k1Jy/jbL2cys/PT35+fh5sCQAAUJl5dETIGKNhw4Zp7ty5+vLLLxUZGek2v3379qpevbqWLFniTNu8ebN27Nih2NhYSVJsbKzWrVvndnXX4sWL5XK51Lp1a6fm5GUU1RQtw9fXV+3bt3erKSws1JIlS5ya0vQCAADs5tERoaFDh+rdd9/Vxx9/rNq1azvn2gQGBiogIECBgYFKTk5WSkqK6tatK5fLpeHDhys2Nta5SqtXr15q3bq17rzzTk2cOFFZWVkaM2aMhg4d6hyNue+++/Tqq6/q0Ucf1d13360vv/xSH3zwgT777DOnl5SUFCUmJqpDhw7q2LGjXnrpJRUUFGjQoEFOT2frBQAA2M2jIDRt2jRJUo8ePdymz5w5U0lJSZKkF198Ud7e3urfv7+OHDmi+Ph4vfbaa06tj4+P5s+fr/vvv1+xsbGqWbOmEhMT9eSTTzo1kZGR+uyzz/TQQw/p5ZdfVsOGDfXPf/5T8fHxTs2AAQO0e/dujR07VllZWYqOjlZqaqrbCdRn6wUAANjtnO4jVNVxHyGgauM+QkDVdMHuIwQAAFCZEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArOVxEFq2bJluuOEGhYeHy8vLS/PmzXObn5SUJC8vL7dH79693Wr27dunO+64Qy6XS0FBQUpOTlZ+fr5bzdq1a9W1a1f5+/srIiJCEydOLNbLnDlz1LJlS/n7+ysqKkoLFixwm2+M0dixY9WgQQMFBAQoLi5OW7Zs8XTIAACgivI4CBUUFKhdu3aaOnXqaWt69+6t33//3Xn85z//cZt/xx13aMOGDVq8eLHmz5+vZcuWaciQIc78vLw89erVS40aNVJ6eromTZqk8ePH64033nBqli9froEDByo5OVmrV69Wv3791K9fP61fv96pmThxol555RVNnz5dK1euVM2aNRUfH6/Dhw97OmwAAFAFeRljTJlf7OWluXPnql+/fs60pKQk5eTkFDtSVGTTpk1q3bq1vv/+e3Xo0EGSlJqaquuvv16//vqrwsPDNW3aNP3tb39TVlaWfH19JUmjRo3SvHnzlJGRIUkaMGCACgoKNH/+fGfZnTp1UnR0tKZPny5jjMLDw/Xwww/rkUcekSTl5uYqNDRUs2bNUkJCwlnHl5eXp8DAQOXm5srlcpVlEwG4iKXNeKSiW/BYbPLkim4BuOh58vl9Xs4RWrp0qUJCQtSiRQvdf//92rt3rzMvLS1NQUFBTgiSpLi4OHl7e2vlypVOTbdu3ZwQJEnx8fHavHmz9u/f79TExcW5rTc+Pl5paWmSpMzMTGVlZbnVBAYGKiYmxqk51ZEjR5SXl+f2AAAAVVe5B6HevXvrX//6l5YsWaLnnntOX3/9ta677jqdOHFCkpSVlaWQkBC311SrVk1169ZVVlaWUxMaGupWU/T8bDUnzz/5dSXVnGrChAkKDAx0HhERER6PHwAAVB7VynuBJ3/lFBUVpbZt26pp06ZaunSpevbsWd6rK1ejR49WSkqK8zwvL48wBABAFXbeL59v0qSJgoODtXXrVklSWFiYdu3a5VZz/Phx7du3T2FhYU5Ndna2W03R87PVnDz/5NeVVHMqPz8/uVwutwcAAKi6znsQ+vXXX7V37141aNBAkhQbG6ucnBylp6c7NV9++aUKCwsVExPj1CxbtkzHjh1zahYvXqwWLVqoTp06Ts2SJUvc1rV48WLFxsZKkiIjIxUWFuZWk5eXp5UrVzo1AADAbh4Hofz8fK1Zs0Zr1qyR9MdJyWvWrNGOHTuUn5+vkSNHasWKFdq+fbuWLFmim266Sc2aNVN8fLwkqVWrVurdu7cGDx6s7777Tt9++62GDRumhIQEhYeHS5Juv/12+fr6Kjk5WRs2bND777+vl19+2e1rqwcffFCpqal6/vnnlZGRofHjx2vVqlUaNmyYpD+uaBsxYoSefvppffLJJ1q3bp3uuusuhYeHu13lBgAA7OXxOUKrVq3S1Vdf7TwvCieJiYmaNm2a1q5dq9mzZysnJ0fh4eHq1auXnnrqKfn5+TmveeeddzRs2DD17NlT3t7e6t+/v1555RVnfmBgoBYtWqShQ4eqffv2Cg4O1tixY93uNdS5c2e9++67GjNmjB5//HE1b95c8+bNU5s2bZyaRx99VAUFBRoyZIhycnLUpUsXpaamyt/f39NhAwCAKuic7iNU1XEfIaBq4z5CQNVU4fcRAgAAqAwIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABreRyEli1bphtuuEHh4eHy8vLSvHnz3OYbYzR27Fg1aNBAAQEBiouL05YtW9xq9u3bpzvuuEMul0tBQUFKTk5Wfn6+W83atWvVtWtX+fv7KyIiQhMnTizWy5w5c9SyZUv5+/srKipKCxYs8LgXAABgL4+DUEFBgdq1a6epU6eWOH/ixIl65ZVXNH36dK1cuVI1a9ZUfHy8Dh8+7NTccccd2rBhgxYvXqz58+dr2bJlGjJkiDM/Ly9PvXr1UqNGjZSenq5JkyZp/PjxeuONN5ya5cuXa+DAgUpOTtbq1avVr18/9evXT+vXr/eoFwAAYC8vY4wp84u9vDR37lz169dP0h9HYMLDw/Xwww/rkUcekSTl5uYqNDRUs2bNUkJCgjZt2qTWrVvr+++/V4cOHSRJqampuv766/Xrr78qPDxc06ZN09/+9jdlZWXJ19dXkjRq1CjNmzdPGRkZkqQBAwaooKBA8+fPd/rp1KmToqOjNX369FL1cjZ5eXkKDAxUbm6uXC5XWTcTgItU2oxHKroFj8UmT67oFoCLnief3+V6jlBmZqaysrIUFxfnTAsMDFRMTIzS0tIkSWlpaQoKCnJCkCTFxcXJ29tbK1eudGq6devmhCBJio+P1+bNm7V//36n5uT1FNUUrac0vZzqyJEjysvLc3sAAICqq1yDUFZWliQpNDTUbXpoaKgzLysrSyEhIW7zq1Wrprp167rVlLSMk9dxupqT55+tl1NNmDBBgYGBziMiIqIUowYAAJUVV42dZPTo0crNzXUev/zyS0W3BAAAzqNyDUJhYWGSpOzsbLfp2dnZzrywsDDt2rXLbf7x48e1b98+t5qSlnHyOk5Xc/L8s/VyKj8/P7lcLrcHAACouso1CEVGRiosLExLlixxpuXl5WnlypWKjY2VJMXGxionJ0fp6elOzZdffqnCwkLFxMQ4NcuWLdOxY8ecmsWLF6tFixaqU6eOU3PyeopqitZTml4AAIDdPA5C+fn5WrNmjdasWSPpj5OS16xZox07dsjLy0sjRozQ008/rU8++UTr1q3TXXfdpfDwcOfKslatWql3794aPHiwvvvuO3377bcaNmyYEhISFB4eLkm6/fbb5evrq+TkZG3YsEHvv/++Xn75ZaWkpDh9PPjgg0pNTdXzzz+vjIwMjR8/XqtWrdKwYcMkqVS9AAAAu1Xz9AWrVq3S1Vdf7TwvCieJiYmaNWuWHn30URUUFGjIkCHKyclRly5dlJqaKn9/f+c177zzjoYNG6aePXvK29tb/fv31yuvvOLMDwwM1KJFizR06FC1b99ewcHBGjt2rNu9hjp37qx3331XY8aM0eOPP67mzZtr3rx5atOmjVNTml4AAIC9zuk+QlUd9xECqjbuIwRUTRV2HyEAAIDKhCAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYK1yD0Ljx4+Xl5eX26Nly5bO/MOHD2vo0KGqV6+eatWqpf79+ys7O9ttGTt27FCfPn1Uo0YNhYSEaOTIkTp+/LhbzdKlS3XFFVfIz89PzZo106xZs4r1MnXqVDVu3Fj+/v6KiYnRd999V97DBQAAldh5OSJ02WWX6ffff3ce33zzjTPvoYce0qeffqo5c+bo66+/1s6dO3XzzTc780+cOKE+ffro6NGjWr58uWbPnq1Zs2Zp7NixTk1mZqb69Omjq6++WmvWrNGIESN0zz33aOHChU7N+++/r5SUFI0bN04//PCD2rVrp/j4eO3atet8DBkAAFRCXsYYU54LHD9+vObNm6c1a9YUm5ebm6v69evr3Xff1S233CJJysjIUKtWrZSWlqZOnTrp888/V9++fbVz506FhoZKkqZPn67HHntMu3fvlq+vrx577DF99tlnWr9+vbPshIQE5eTkKDU1VZIUExOjK6+8Uq+++qokqbCwUBERERo+fLhGjRpVqrHk5eUpMDBQubm5crlc57JZAFyE0mY8UtEteCw2eXJFtwBc9Dz5/D4vR4S2bNmi8PBwNWnSRHfccYd27NghSUpPT9exY8cUFxfn1LZs2VKXXHKJ0tLSJElpaWmKiopyQpAkxcfHKy8vTxs2bHBqTl5GUU3RMo4ePar09HS3Gm9vb8XFxTk1JTly5Ijy8vLcHgAAoOoq9yAUExOjWbNmKTU1VdOmTVNmZqa6du2qAwcOKCsrS76+vgoKCnJ7TWhoqLKysiRJWVlZbiGoaH7RvDPV5OXl6dChQ9qzZ49OnDhRYk3RMkoyYcIEBQYGOo+IiIgybQMAAFA5VCvvBV533XXO/7dt21YxMTFq1KiRPvjgAwUEBJT36srV6NGjlZKS4jzPy8sjDAEAUIWd98vng4KCdOmll2rr1q0KCwvT0aNHlZOT41aTnZ2tsLAwSVJYWFixq8iKnp+txuVyKSAgQMHBwfLx8SmxpmgZJfHz85PL5XJ7AACAquu8B6H8/Hz99NNPatCggdq3b6/q1atryZIlzvzNmzdrx44dio2NlSTFxsZq3bp1bld3LV68WC6XS61bt3ZqTl5GUU3RMnx9fdW+fXu3msLCQi1ZssSpAQAAKPcg9Mgjj+jrr7/W9u3btXz5cv35z3+Wj4+PBg4cqMDAQCUnJyslJUVfffWV0tPTNWjQIMXGxqpTp06SpF69eql169a688479eOPP2rhwoUaM2aMhg4dKj8/P0nSfffdp23btunRRx9VRkaGXnvtNX3wwQd66KGHnD5SUlL05ptvavbs2dq0aZPuv/9+FRQUaNCgQeU9ZAAAUEmV+zlCv/76qwYOHKi9e/eqfv366tKli1asWKH69etLkl588UV5e3urf//+OnLkiOLj4/Xaa685r/fx8dH8+fN1//33KzY2VjVr1lRiYqKefPJJpyYyMlKfffaZHnroIb388stq2LCh/vnPfyo+Pt6pGTBggHbv3q2xY8cqKytL0dHRSk1NLXYCNQAAsFe530eoKuE+QkDVxn2EgKqpwu8jBAAAUBkQhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWKtaRTcAAADKx4uL/1vRLXjsoWsvrdD1c0QIAABYiyAEAACsxVdjAABUEZ12vFHRLZTB5ApdO0eEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFrVKroBAAAuRi8u/m9Ft+CxThXdQCXEESEAAGAtjggBAM67Snl0ZccbFd0CLgCOCAEAAGtxRKgCVcbfkB669tKKbgFAJcTRFVysCEIVqHL+wzC5ohsArFYZf4GSOIkXFy+CEABUIpXzFyjg4kUQAlAuKuORCo5SACAIARehtBmPVHQLHiNUAKiMCEKo8jhSAQA4HYIQqjzOqQAAnI4VQWjq1KmaNGmSsrKy1K5dO02ZMkUdO3as6LYqpcr4lQ0AAKdT5W+o+P777yslJUXjxo3TDz/8oHbt2ik+Pl67du2q6NYAAEAFq/JB6IUXXtDgwYM1aNAgtW7dWtOnT1eNGjX01ltvVXRrAACgglXpr8aOHj2q9PR0jR492pnm7e2tuLg4paWlFas/cuSIjhw54jzPzc2VJOXl5Z2X/goOHTl7EQAAVdj5+IwtWqYx5qy1VToI7dmzRydOnFBoaKjb9NDQUGVkZBSrnzBhgp544oli0yMiIs5bjwAAWG34q+dt0QcOHFBgYOAZa6p0EPLU6NGjlZKS4jwvLCzUvn37VK9ePXl5eZXruvLy8hQREaFffvlFLperXJd9Majq45Oq/hgZX+VX1cfI+Cq/8zVGY4wOHDig8PDws9ZW6SAUHBwsHx8fZWdnu03Pzs5WWFhYsXo/Pz/5+fm5TQsKCjqfLcrlclXZH3Cp6o9PqvpjZHyVX1UfI+Or/M7HGM92JKhIlT5Z2tfXV+3bt9eSJUucaYWFhVqyZIliY2MrsDMAAHAxqNJHhCQpJSVFiYmJ6tChgzp27KiXXnpJBQUFGjRoUEW3BgAAKliVD0IDBgzQ7t27NXbsWGVlZSk6OlqpqanFTqC+0Pz8/DRu3LhiX8VVFVV9fFLVHyPjq/yq+hgZX+V3MYzRy5Tm2jIAAIAqqEqfIwQAAHAmBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEDpP/vGPf6hz586qUaNGqe9ObYzR2LFj1aBBAwUEBCguLk5btmxxq9m3b5/uuOMOuVwuBQUFKTk5Wfn5+edhBGfnaS/bt2+Xl5dXiY85c+Y4dSXNf++99y7EkNyUZVv36NGjWO/33XefW82OHTvUp08f1ahRQyEhIRo5cqSOHz9+PodSIk/Ht2/fPg0fPlwtWrRQQECALrnkEj3wwAPOHycuUpH7b+rUqWrcuLH8/f0VExOj77777oz1c+bMUcuWLeXv76+oqCgtWLDAbX5p3pMXkifje/PNN9W1a1fVqVNHderUUVxcXLH6pKSkYvuqd+/e53sYZ+TJGGfNmlWsf39/f7eayrwPS/r3xMvLS3369HFqLqZ9uGzZMt1www0KDw+Xl5eX5s2bd9bXLF26VFdccYX8/PzUrFkzzZo1q1iNp+9rjxmcF2PHjjUvvPCCSUlJMYGBgaV6zbPPPmsCAwPNvHnzzI8//mhuvPFGExkZaQ4dOuTU9O7d27Rr186sWLHC/L//9/9Ms2bNzMCBA8/TKM7M016OHz9ufv/9d7fHE088YWrVqmUOHDjg1EkyM2fOdKs7eRtcKGXZ1t27dzeDBw926z03N9eZf/z4cdOmTRsTFxdnVq9ebRYsWGCCg4PN6NGjz/dwivF0fOvWrTM333yz+eSTT8zWrVvNkiVLTPPmzU3//v3d6ipq/7333nvG19fXvPXWW2bDhg1m8ODBJigoyGRnZ5dY/+233xofHx8zceJEs3HjRjNmzBhTvXp1s27dOqemNO/JC8XT8d1+++1m6tSpZvXq1WbTpk0mKSnJBAYGml9//dWpSUxMNL1793bbV/v27btQQyrG0zHOnDnTuFwut/6zsrLcairzPty7d6/b2NavX298fHzMzJkznZqLaR8uWLDA/O1vfzMfffSRkWTmzp17xvpt27aZGjVqmJSUFLNx40YzZcoU4+PjY1JTU50aT7dZWRCEzrOZM2eWKggVFhaasLAwM2nSJGdaTk6O8fPzM//5z3+MMcZs3LjRSDLff/+9U/P5558bLy8v89tvv5V772dSXr1ER0ebu+++221aad5A51tZx9e9e3fz4IMPnnb+ggULjLe3t9s/1tOmTTMul8scOXKkXHovjfLafx988IHx9fU1x44dc6ZV1P7r2LGjGTp0qPP8xIkTJjw83EyYMKHE+ttuu8306dPHbVpMTIy59957jTGle09eSJ6O71THjx83tWvXNrNnz3amJSYmmptuuqm8Wy0zT8d4tn9fq9o+fPHFF03t2rVNfn6+M+1i24dFSvPvwKOPPmouu+wyt2kDBgww8fHxzvNz3WalwVdjF4nMzExlZWUpLi7OmRYYGKiYmBilpaVJktLS0hQUFKQOHTo4NXFxcfL29tbKlSsvaL/l0Ut6errWrFmj5OTkYvOGDh2q4OBgdezYUW+99ZbMBb7v57mM75133lFwcLDatGmj0aNH6+DBg27LjYqKcruzeXx8vPLy8rRhw4byH8hplNfPUm5urlwul6pVc79J/YXef0ePHlV6errb+8fb21txcXHO++dUaWlpbvXSH/uiqL4078kLpSzjO9XBgwd17Ngx1a1b12360qVLFRISohYtWuj+++/X3r17y7X30irrGPPz89WoUSNFRETopptucnsfVbV9OGPGDCUkJKhmzZpu0y+Wfeips70Hy2OblUaV/xMblUVWVpYkFfvTH6Ghoc68rKwshYSEuM2vVq2a6tat69RcKOXRy4wZM9SqVSt17tzZbfqTTz6pa665RjVq1NCiRYv017/+Vfn5+XrggQfKrf+zKev4br/9djVq1Ejh4eFau3atHnvsMW3evFkfffSRs9yS9nHRvAulPPbfnj179NRTT2nIkCFu0yti/+3Zs0cnTpwocdtmZGSU+JrT7YuT329F005Xc6GUZXyneuyxxxQeHu72odK7d2/dfPPNioyM1E8//aTHH39c1113ndLS0uTj41OuYzibsoyxRYsWeuutt9S2bVvl5uZq8uTJ6ty5szZs2KCGDRtWqX343Xffaf369ZoxY4bb9ItpH3rqdO/BvLw8HTp0SPv37z/nn/vSIAh5YNSoUXruuefOWLNp0ya1bNnyAnVU/ko7xnN16NAhvfvuu/r73/9ebN7J0y6//HIVFBRo0qRJ5fJBer7Hd3IoiIqKUoMGDdSzZ0/99NNPatq0aZmXW1oXav/l5eWpT58+at26tcaPH+8273zuP5TNs88+q/fee09Lly51O5k4ISHB+f+oqCi1bdtWTZs21dKlS9WzZ8+KaNUjsbGxio2NdZ537txZrVq10uuvv66nnnqqAjsrfzNmzFBUVJQ6duzoNr2y78OLAUHIAw8//LCSkpLOWNOkSZMyLTssLEySlJ2drQYNGjjTs7OzFR0d7dTs2rXL7XXHjx/Xvn37nNefq9KO8Vx7+fDDD3Xw4EHdddddZ62NiYnRU089pSNHjpzzH+a7UOMrEhMTI0naunWrmjZtqrCwsGJXPGRnZ0tSuezDCzG+AwcOqHfv3qpdu7bmzp2r6tWrn7G+PPff6QQHB8vHx8fZlkWys7NPO56wsLAz1pfmPXmhlGV8RSZPnqxnn31WX3zxhdq2bXvG2iZNmig4OFhbt2694B+i5zLGItWrV9fll1+urVu3Sqo6+7CgoEDvvfeennzyybOupyL3oadO9x50uVwKCAiQj4/POf9MlEq5nW2EEnl6svTkyZOdabm5uSWeLL1q1SqnZuHChRV6snRZe+nevXuxq41O5+mnnzZ16tQpc69lUV7b+ptvvjGSzI8//miM+b+TpU++4uH11183LpfLHD58uPwGcBZlHV9ubq7p1KmT6d69uykoKCjVui7U/uvYsaMZNmyY8/zEiRPmT3/60xlPlu7bt6/btNjY2GInS5/pPXkheTo+Y4x57rnnjMvlMmlpaaVaxy+//GK8vLzMxx9/fM79lkVZxniy48ePmxYtWpiHHnrIGFM19qExf3yO+Pn5mT179px1HRW9D4uolCdLt2nTxm3awIEDi50sfS4/E6XqtdyWBDc///yzWb16tXN5+OrVq83q1avdLhNv0aKF+eijj5znzz77rAkKCjIff/yxWbt2rbnppptKvHz+8ssvNytXrjTffPONad68eYVePn+mXn799VfTokULs3LlSrfXbdmyxXh5eZnPP/+82DI/+eQT8+abb5p169aZLVu2mNdee83UqFHDjB079ryP51Sejm/r1q3mySefNKtWrTKZmZnm448/Nk2aNDHdunVzXlN0+XyvXr3MmjVrTGpqqqlfv36FXT7vyfhyc3NNTEyMiYqKMlu3bnW7XPf48ePGmIrdf++9957x8/Mzs2bNMhs3bjRDhgwxQUFBzhV6d955pxk1apRT/+2335pq1aqZyZMnm02bNplx48aVePn82d6TF4qn43v22WeNr6+v+fDDD932VdG/QQcOHDCPPPKISUtLM5mZmeaLL74wV1xxhWnevPkFDeXnMsYnnnjCLFy40Pz0008mPT3dJCQkGH9/f7NhwwanpjLvwyJdunQxAwYMKDb9YtuHBw4ccD7rJJkXXnjBrF692vz888/GGGNGjRpl7rzzTqe+6PL5kSNHmk2bNpmpU6eWePn8mbZZeSAInSeJiYlGUrHHV1995dTof++3UqSwsND8/e9/N6GhocbPz8/07NnTbN682W25e/fuNQMHDjS1atUyLpfLDBo0yC1cXUhn6yUzM7PYmI0xZvTo0SYiIsKcOHGi2DI///xzEx0dbWrVqmVq1qxp2rVrZ6ZPn15i7fnm6fh27NhhunXrZurWrWv8/PxMs2bNzMiRI93uI2SMMdu3bzfXXXedCQgIMMHBwebhhx92u/z8QvF0fF999VWJP9OSTGZmpjGm4vfflClTzCWXXGJ8fX1Nx44dzYoVK5x53bt3N4mJiW71H3zwgbn00kuNr6+vueyyy8xnn33mNr8078kLyZPxNWrUqMR9NW7cOGOMMQcPHjS9evUy9evXN9WrVzeNGjUygwcPLtcPmLLwZIwjRoxwakNDQ831119vfvjhB7flVeZ9aIwxGRkZRpJZtGhRsWVdbPvwdP9GFI0pMTHRdO/evdhroqOjja+vr2nSpInbZ2KRM22z8uBlzAW+LhkAAOAiwX2EAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGCt/w+HhnRtt1BkJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQBxJREFUeJzt3XtYFfXe/vEbUA4eFqgIyCMhHvKQKKWJdFBLEgsrd5ZiXYVGWm60lDK17VY77CyzMs1DB1N35a5sp5Uaipr6K8mKNBXFtDArA4+wFI/I9/dHD/O4BJWFKMq8X9e1rlozn5n5fGdAbmbNDB7GGCMAAAAb8qzsBgAAACoLQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQiwkXHjxsnDw0N79+6t7FYqVb9+/dSoUaPKbuOC8fDw0Lhx4yp0nV26dFGXLl0qdJ3ApYAgBLjhX//6l+644w4FBwef9YfN/PnzFRcXp9DQUPn4+Khhw4a6++67tWnTpovb8Hl4/vnntWDBgkrb/ubNmzVu3Djt2LGj0nqwm6q0z3/44Qfdcccdqlu3rmrUqKHWrVtr8uTJld0WLkEEIcANo0eP1nfffaerr776rHUbN25UnTp19Nhjj2natGkaNGiQ1q1bpw4dOujHH3+8SN2en0shCD399NNV4ofy5eJs+3zp0qVaunTpxW+qHJYuXaqYmBjt3r1b//znP/Xaa6+pR48e+v333yu7NVyCqlV2A8DlJDs7W40aNdLevXtVv379M9aNGTOmxLSHHnpIDRs21PTp0zVjxowL2eZFV1BQoJo1a1Z2G5e1M+1DY4yOHj0qPz+/Sujq/3h7e1fq9svK6XTqgQceUHx8vD7++GN5evL7Ps6OrxDgFH/88YeSkpKsj7QiIiI0aNAgHT9+XJLO67qSoKAg1ahRQ3l5eW4tt23bNvXq1UshISHy9fVVw4YNlZCQoPz8fEnSjh075OHhodmzZ5dY9kwf3+3du1e9e/eWw+FQvXr19Nhjj+no0aMuyxUUFGjOnDny8PCQh4eH+vXrJ+n/rjPavHmz7r33XtWpU0c33HCDJGnDhg3q16+fGjduLF9fX4WEhOjBBx/Uvn37SvRwtn09e/Zs3XPPPZKkm266yeph5cqV1vJffPGFbrzxRtWsWVO1a9dWfHy8MjMzS2xnwYIFat26tXx9fdW6dWvNnz+/rLu+hLVr1+q2225TnTp1VLNmTbVp00avvfaaS82KFSusvgICAnTnnXdqy5YtLjVn24eNGjVSjx49tGTJErVv315+fn564403JEl5eXkaOnSowsLC5OPjo6ZNm+rFF19UUVHRWfv+9ddf9fe//13NmzeXn5+f6tWrp3vuucflzM+59nlp1wjt3r1bSUlJCg4Olq+vr9q2bas5c+a41BR/fU6cOFFvvvmmmjRpIh8fH1177bX67rvvXGpzcnLUv39/NWzYUD4+PmrQoIHuvPNOt84Kzp07V7m5ufrXv/4lT09PFRQUnHP/wN44IwT8r127dqlDhw7Ky8vTwIED1aJFC/3xxx/6+OOPdfjw4XL9RpyXl6cTJ04oJydHkyZNktPpVNeuXcu8/PHjxxUXF6djx45pyJAhCgkJ0R9//KGFCxcqLy9P/v7+bvckSb1791ajRo00fvx4ffPNN5o8ebIOHDigf//735Kkd999Vw899JA6dOiggQMHSpKaNGniso577rlHzZo10/PPPy9jjCQpLS1Nv/zyi/r376+QkBBlZmbqzTffVGZmpr755ht5eHhIOve+7tSpkx599FFNnjxZTz31lFq2bClJ1n/fffddJSYmKi4uTi+++KIOHz6s6dOn64YbbtC6deuswLp06VL16tVLrVq10vjx47Vv3z7rB6270tLS1KNHDzVo0ECPPfaYQkJCtGXLFi1cuFCPPfaYJGnZsmW69dZb1bhxY40bN05HjhzRlClTdP311+uHH34oEaRL24eStHXrVvXt21cPP/ywBgwYoObNm+vw4cPq3Lmz/vjjDz388MO64oortGbNGo0aNUp//vmnJk2adMbev/vuO61Zs0YJCQlq2LChduzYoenTp6tLly7avHmzatSocc59frojR46oS5cu2r59uwYPHqyIiAjNmzdP/fr1U15enrVPis2dO1cHDx7Uww8/LA8PD02YMEF33XWXfvnlF1WvXl2S1KtXL2VmZmrIkCFq1KiRdu/erbS0NO3cubPMv4QsW7ZMDodDf/zxh3r27KmffvpJNWvW1P33369XX31Vvr6+ZVoPbMQAMMYY88ADDxhPT0/z3XfflZhXVFTk8n7Pnj1Gkhk7duxZ19m8eXMjyUgytWrVMqNHjzYnT54sc0/r1q0zksy8efPOWJOdnW0kmVmzZpWYd3qPY8eONZLMHXfc4VL397//3UgyP/74ozWtZs2aJjExscQ6i9fRt2/fEvMOHz5cYtp//vMfI8msXr3amlaWfT1v3jwjyXz55Zcu8w8ePGgCAgLMgAEDXKbn5OQYf39/l+lRUVGmQYMGJi8vz5q2dOlSI8mEh4eX2PaZFBYWmoiICBMeHm4OHDhQar/F2wsKCjL79u2zpv3444/G09PTPPDAA9a0s+3D8PBwI8mkpqa6TH/22WdNzZo1zU8//eQyfeTIkcbLy8vs3LnTmnb6cS/tuKSnpxtJ5t///rc17Uz73BhjOnfubDp37my9nzRpkpFk3nvvPWva8ePHTUxMjKlVq5ZxOp3GmP/7+qxXr57Zv3+/Vfvpp58aSebzzz83xhhz4MABI8m89NJLJbbtjjZt2pgaNWqYGjVqmCFDhpj//ve/ZsiQIUaSSUhIOK91o2riozFAUlFRkRYsWKDbb79d7du3LzG/+EyGu2bNmqXU1FRNmzZNLVu21JEjR3Ty5MkyL198xmfJkiU6fPhwuXooTXJyssv7IUOGSJIWL15c5nU88sgjJaadeh3L0aNHtXfvXnXs2FHSX3fxSOe/r9PS0pSXl6e+fftq79691svLy0vR0dH68ssvJUl//vmn1q9fr8TERJczZ7fccotatWpV5nFK0rp165Sdna2hQ4cqICCg1H6Lt9evXz/VrVvXmt+mTRvdcsstpe7b0vahJEVERCguLs5l2rx583TjjTeqTp06LuOOjY3VyZMntXr16jP2f+pxOXHihPbt26emTZsqICDAOi7uWrx4sUJCQtS3b19rWvXq1fXoo4/q0KFDWrVqlUt9nz59VKdOHev9jTfeKEn65ZdfrB69vb21cuVKHThwoFw9SdKhQ4d0+PBhPfDAA5o8ebLuuusuTZ48WQ8//LA++OADbdu2rdzrRtVEEAIk7dmzR06nU61bt67Q9cbExCguLk6DBg3SkiVL9N5772nUqFFlXj4iIkIpKSl6++23FRgYqLi4OE2dOtW6Pqi8mjVr5vK+SZMm8vT0dOtajIiIiBLT9u/fr8cee0zBwcHy8/NT/fr1rbrins93Xxf/ILv55ptVv359l9fSpUu1e/duSX9dFyOVHKskNW/e3K1t/vzzz5J01p6Lt1faulu2bKm9e/eqoKDAZXpp+/BM07dt26bU1NQSY46NjZUka9ylOXLkiMaMGWNdWxQYGKj69esrLy+v3F9Lv/76q5o1a1biYuTij9KK90exK664wuV9cSgqDj0+Pj568cUX9cUXXyg4OFidOnXShAkTlJOT41ZfxaHv1IAmSffee68kKT093a31oerjGiHgIqlTp45uvvlmvf/++5o4cWKZl3v55ZfVr18/ffrpp1q6dKkeffRR69qehg0bnvEMijtnnspzxqu0u5h69+6tNWvWaPjw4YqKilKtWrVUVFSk7t27V9gFq8XreffddxUSElJifrVql88/a2e6E6y06UVFRbrlllv05JNPlrrMlVdeecbtDBkyRLNmzdLQoUMVExMjf39/eXh4KCEh4aJdSOzl5VXqdHPKtVFDhw7V7bffrgULFmjJkiX65z//qfHjx2vFihXnfGRFsdDQUGVmZio4ONhlelBQkCSd19kmVE2Xz78YwAVUv359ORyOC/7AwyNHjpTrN/DIyEhFRkZq9OjRWrNmja6//nrNmDFDzz33nPWb9el3o53+G/mptm3b5nLWYfv27SoqKnK5INXdcHTgwAEtX75cTz/9tMvjA07/KKKs+/pM2y++aDsoKMg6G1Ka8PDwUrcv/XUxsjuKt7lp06YzbrN4e6WtOysrS4GBgef1iIEmTZro0KFDZx3zmXz88cdKTEzUyy+/bE07evRoia8Zd455eHi4NmzYoKKiIpezQllZWdb88mjSpIkef/xxPf7449q2bZuioqL08ssv67333ivT8u3atVNaWpr++OMPl7Nzu3btkqSzPvYC9sRHY4AkT09P9ezZU59//rm+//77EvNP/a21LEr7mGLHjh1avnx5qdfFnInT6VRhYaHLtMjISHl6eurYsWOSJIfDocDAwBLXiEybNu2M6506darL+ylTpkiSbr31VmtazZo13brVv/g3/tP31el3M5V1XxeHhtN7iIuLk8Ph0PPPP68TJ06UWH7Pnj2SpAYNGigqKkpz5sxxCZ9paWnavHlzmcclSddcc40iIiI0adKkEv0U93vq9k6t2bRpk5YuXarbbrvNrW2ernfv3kpPT9eSJUtKzMvLyyvxdXIqLy+vEsdlypQpJc4anmmfl+a2225TTk6OPvzwQ2taYWGhpkyZolq1aqlz587nXMepDh8+7PIIB+mvUFS7dm3ra70sevfuLUmaOXOmy/S3335b1apV48+EoATOCAH/6/nnn9fSpUvVuXNnDRw4UC1bttSff/6pefPm6auvvlJAQIDeffdd/frrr9aFy6tXr9Zzzz0nSbr//vut34IjIyPVtWtXRUVFqU6dOtq2bZtmzpypEydO6IUXXihzTytWrNDgwYN1zz336Morr1RhYaHeffddeXl5qVevXlbdQw89pBdeeEEPPfSQ2rdvr9WrV+unn34643qzs7N1xx13qHv37kpPT9d7772ne++9V23btrVq2rVrp2XLlumVV15RaGioIiIiFB0dfcZ1OhwO67qOEydO6H/+53+0dOlSZWdnl2tfR0VFycvLSy+++KLy8/Pl4+Ojm2++WUFBQZo+fbruv/9+XXPNNUpISFD9+vW1c+dOLVq0SNdff71ef/11SdL48eMVHx+vG264QQ8++KD279+vKVOm6KqrrtKhQ4fKfBw8PT01ffp03X777YqKilL//v3VoEEDZWVlKTMz0wonL730km699VbFxMQoKSnJun3e39//vP/21/Dhw/XZZ5+pR48e6tevn9q1a6eCggJt3LhRH3/8sXbs2KHAwMBSl+3Ro4feffdd+fv7q1WrVkpPT9eyZctUr149l7qz7fPTDRw4UG+88Yb69eunjIwMNWrUSB9//LG+/vprTZo0SbVr13ZrfD/99JO6du2q3r17q1WrVqpWrZrmz5+v3NxcJSQklHk9V199tR588EG98847KiwsVOfOnbVy5UrNmzdPo0aNUmhoqFt9wQYq85Y14FLz66+/mgceeMDUr1/f+Pj4mMaNG5vk5GRz7NgxY8xftxDrf2+HP/116i3HY8eONe3btzd16tQx1apVM6GhoSYhIcFs2LDBrX5++eUX8+CDD5omTZoYX19fU7duXXPTTTeZZcuWudQdPnzYJCUlGX9/f1O7dm3Tu3dvs3v37jPePr9582Zz9913m9q1a5s6deqYwYMHmyNHjrisMysry3Tq1Mn4+fkZSdat9MXr2LNnT4l+f//9d/O3v/3NBAQEGH9/f3PPPfeYXbt2lfqogXPta2OMeeutt0zjxo2Nl5dXiX385Zdfmri4OOPv7298fX1NkyZNTL9+/cz333/vsp3//ve/pmXLlsbHx8e0atXKfPLJJyYxMdGt2+eLffXVV+aWW24xtWvXNjVr1jRt2rQxU6ZMcalZtmyZuf76642fn59xOBzm9ttvN5s3b3apOds+DA8PN/Hx8aVu/+DBg2bUqFGmadOmxtvb2wQGBprrrrvOTJw40Rw/ftyqO31/HzhwwPTv398EBgaaWrVqmbi4OJOVlWXCw8NLPCLhTPv89NvnjTEmNzfXWq+3t7eJjIws8RiH4tvnS7st/tQ+9+7da5KTk02LFi1MzZo1jb+/v4mOjjYfffRRqfvibI4fP27GjRtnwsPDTfXq1U3Tpk3Nq6++6vZ6YA8exrh5zh8AAKCK4BohAABgW1wjBFSS/fv3W3/DrDReXl7c4XIRcBwuD4cOHTrndV3169c/4236wJnw0RhQSbp06VLi6bunCg8Pd+sBhygfjsPlYdy4cXr66afPWpOdnX1efxgZ9kQQAipJRkbGWR/u5ufnp+uvv/4idmRPHIfLwy+//GL9OY4zueGGG/ijqnAbQQgAANgWF0sDAADb4mLpsygqKtKuXbtUu3btcv/1cQAAcHEZY3Tw4EGFhoaW+MPApyMIncWuXbsUFhZW2W0AAIBy+O2339SwYcOz1hCEzqL4EfG//fabHA5HJXcDAADKwul0KiwsrEx/6oUgdBbFH4c5HA6CEAAAl5myXNbCxdIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23ApC48eP17XXXqvatWsrKChIPXv21NatW11qunTpIg8PD5fXI4884lKzc+dOxcfHq0aNGgoKCtLw4cNVWFjoUrNy5Updc8018vHxUdOmTTV79uwS/UydOlWNGjWSr6+voqOj9e2337rMP3r0qJKTk1WvXj3VqlVLvXr1Um5urjtDBgAAVZhbQWjVqlVKTk7WN998o7S0NJ04cULdunVTQUGBS92AAQP0559/Wq8JEyZY806ePKn4+HgdP35ca9as0Zw5czR79myNGTPGqsnOzlZ8fLxuuukmrV+/XkOHDtVDDz2kJUuWWDUffvihUlJSNHbsWP3www9q27at4uLitHv3bqtm2LBh+vzzzzVv3jytWrVKu3bt0l133eX2TgIAAFWThzHGlHfhPXv2KCgoSKtWrVKnTp0k/XVGKCoqSpMmTSp1mS+++EI9evTQrl27FBwcLEmaMWOGRowYoT179sjb21sjRozQokWLtGnTJmu5hIQE5eXlKTU1VZIUHR2ta6+9Vq+//rokqaioSGFhYRoyZIhGjhyp/Px81a9fX3PnztXdd98tScrKylLLli2Vnp6ujh07nnN8TqdT/v7+ys/Pl8PhKO9uAnCp+nJ8ZXfgvptGVXYHwCXPnZ/f53WNUH5+viSpbt26LtPff/99BQYGqnXr1ho1apQOHz5szUtPT1dkZKQVgiQpLi5OTqdTmZmZVk1sbKzLOuPi4pSeni5JOn78uDIyMlxqPD09FRsba9VkZGToxIkTLjUtWrTQFVdcYdWc7tixY3I6nS4vAABQdVUr74JFRUUaOnSorr/+erVu3dqafu+99yo8PFyhoaHasGGDRowYoa1bt+qTTz6RJOXk5LiEIEnW+5ycnLPWOJ1OHTlyRAcOHNDJkydLrcnKyrLW4e3trYCAgBI1xds53fjx4/X000+7uScAAMDlqtxBKDk5WZs2bdJXX33lMn3gwIHW/0dGRqpBgwbq2rWrfv75ZzVp0qT8nV4Eo0aNUkpKivXe6XQqLCysEjsCAAAXUrmC0ODBg7Vw4UKtXr1aDRs2PGttdHS0JGn79u1q0qSJQkJCStzdVXwnV0hIiPXf0+/uys3NlcPhkJ+fn7y8vOTl5VVqzanrOH78uPLy8lzOCp1aczofHx/5+PicY/QAqor0X/ZVdgtui7mpsjsAqha3rhEyxmjw4MGaP3++VqxYoYiIiHMus379eklSgwYNJEkxMTHauHGjy91daWlpcjgcatWqlVWzfPlyl/WkpaUpJiZGkuTt7a127dq51BQVFWn58uVWTbt27VS9enWXmq1bt2rnzp1WDQAAsDe3zgglJydr7ty5+vTTT1W7dm3rWht/f3/5+fnp559/1ty5c3XbbbepXr162rBhg4YNG6ZOnTqpTZs2kqRu3bqpVatWuv/++zVhwgTl5ORo9OjRSk5Ots7GPPLII3r99df15JNP6sEHH9SKFSv00UcfadGiRVYvKSkpSkxMVPv27dWhQwdNmjRJBQUF6t+/v9VTUlKSUlJSVLduXTkcDg0ZMkQxMTFlumMMAABUfW4FoenTp0v66xb5U82aNUv9+vWTt7e3li1bZoWSsLAw9erVS6NHj7Zqvby8tHDhQg0aNEgxMTGqWbOmEhMT9cwzz1g1ERERWrRokYYNG6bXXntNDRs21Ntvv624uDirpk+fPtqzZ4/GjBmjnJwcRUVFKTU11eUC6ldffVWenp7q1auXjh07pri4OE2bNs2tHQQAAKqu83qOUFXHc4SAqi195hOV3YLbYpImVnYLwCXvoj1HCAAA4HJGEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALblVhAaP368rr32WtWuXVtBQUHq2bOntm7d6lJz9OhRJScnq169eqpVq5Z69eql3Nxcl5qdO3cqPj5eNWrUUFBQkIYPH67CwkKXmpUrV+qaa66Rj4+PmjZtqtmzZ5foZ+rUqWrUqJF8fX0VHR2tb7/91u1eAACAfbkVhFatWqXk5GR98803SktL04kTJ9StWzcVFBRYNcOGDdPnn3+uefPmadWqVdq1a5fuuusua/7JkycVHx+v48ePa82aNZozZ45mz56tMWPGWDXZ2dmKj4/XTTfdpPXr12vo0KF66KGHtGTJEqvmww8/VEpKisaOHasffvhBbdu2VVxcnHbv3l3mXgAAgL15GGNMeRfes2ePgoKCtGrVKnXq1En5+fmqX7++5s6dq7vvvluSlJWVpZYtWyo9PV0dO3bUF198oR49emjXrl0KDg6WJM2YMUMjRozQnj175O3trREjRmjRokXatGmTta2EhATl5eUpNTVVkhQdHa1rr71Wr7/+uiSpqKhIYWFhGjJkiEaOHFmmXs7F6XTK399f+fn5cjgc5d1NAC5R6TOfqOwW3BaTNLGyWwAuee78/D6va4Ty8/MlSXXr1pUkZWRk6MSJE4qNjbVqWrRooSuuuELp6emSpPT0dEVGRlohSJLi4uLkdDqVmZlp1Zy6juKa4nUcP35cGRkZLjWenp6KjY21asrSy+mOHTsmp9Pp8gIAAFVXuYNQUVGRhg4dquuvv16tW7eWJOXk5Mjb21sBAQEutcHBwcrJybFqTg1BxfOL552txul06siRI9q7d69OnjxZas2p6zhXL6cbP368/P39rVdYWFgZ9wYAALgclTsIJScna9OmTfrggw8qsp9KNWrUKOXn51uv3377rbJbAgAAF1C18iw0ePBgLVy4UKtXr1bDhg2t6SEhITp+/Ljy8vJczsTk5uYqJCTEqjn97q7iO7lOrTn97q7c3Fw5HA75+fnJy8tLXl5epdacuo5z9XI6Hx8f+fj4uLEnAADA5cytM0LGGA0ePFjz58/XihUrFBER4TK/Xbt2ql69upYvX25N27p1q3bu3KmYmBhJUkxMjDZu3Ohyd1daWpocDodatWpl1Zy6juKa4nV4e3urXbt2LjVFRUVavny5VVOWXgAAgL25dUYoOTlZc+fO1aeffqratWtb19r4+/vLz89P/v7+SkpKUkpKiurWrSuHw6EhQ4YoJibGukurW7duatWqle6//35NmDBBOTk5Gj16tJKTk62zMY888ohef/11Pfnkk3rwwQe1YsUKffTRR1q0aJHVS0pKihITE9W+fXt16NBBkyZNUkFBgfr372/1dK5eAACAvbkVhKZPny5J6tKli8v0WbNmqV+/fpKkV199VZ6enurVq5eOHTumuLg4TZs2zar18vLSwoULNWjQIMXExKhmzZpKTEzUM888Y9VERERo0aJFGjZsmF577TU1bNhQb7/9tuLi4qyaPn36aM+ePRozZoxycnIUFRWl1NRUlwuoz9ULAACwt/N6jlBVx3OEgKqN5wgBVdNFe44QAADA5YwgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbMvtILR69WrdfvvtCg0NlYeHhxYsWOAyv1+/fvLw8HB5de/e3aVm//79uu++++RwOBQQEKCkpCQdOnTIpWbDhg268cYb5evrq7CwME2YMKFEL/PmzVOLFi3k6+uryMhILV682GW+MUZjxoxRgwYN5Ofnp9jYWG3bts3dIQMAgCrK7SBUUFCgtm3baurUqWes6d69u/7880/r9Z///Mdl/n333afMzEylpaVp4cKFWr16tQYOHGjNdzqd6tatm8LDw5WRkaGXXnpJ48aN05tvvmnVrFmzRn379lVSUpLWrVunnj17qmfPntq0aZNVM2HCBE2ePFkzZszQ2rVrVbNmTcXFxeno0aPuDhsAAFRBHsYYU+6FPTw0f/589ezZ05rWr18/5eXllThTVGzLli1q1aqVvvvuO7Vv316SlJqaqttuu02///67QkNDNX36dP3jH/9QTk6OvL29JUkjR47UggULlJWVJUnq06ePCgoKtHDhQmvdHTt2VFRUlGbMmCFjjEJDQ/X444/riSeekCTl5+crODhYs2fPVkJCwjnH53Q65e/vr/z8fDkcjvLsIgCXsPSZT1R2C26LSZpY2S0Alzx3fn5fkGuEVq5cqaCgIDVv3lyDBg3Svn37rHnp6ekKCAiwQpAkxcbGytPTU2vXrrVqOnXqZIUgSYqLi9PWrVt14MABqyY2NtZlu3FxcUpPT5ckZWdnKycnx6XG399f0dHRVs3pjh07JqfT6fICAABVV4UHoe7du+vf//63li9frhdffFGrVq3SrbfeqpMnT0qScnJyFBQU5LJMtWrVVLduXeXk5Fg1wcHBLjXF789Vc+r8U5crreZ048ePl7+/v/UKCwtze/wAAODyUa2iV3jqR06RkZFq06aNmjRpopUrV6pr164VvbkKNWrUKKWkpFjvnU4nYQgAgCrsgt8+37hxYwUGBmr79u2SpJCQEO3evdulprCwUPv371dISIhVk5ub61JT/P5cNafOP3W50mpO5+PjI4fD4fICAABV1wUPQr///rv27dunBg0aSJJiYmKUl5enjIwMq2bFihUqKipSdHS0VbN69WqdOHHCqklLS1Pz5s1Vp04dq2b58uUu20pLS1NMTIwkKSIiQiEhIS41TqdTa9eutWoAAIC9uR2EDh06pPXr12v9+vWS/rooef369dq5c6cOHTqk4cOH65tvvtGOHTu0fPly3XnnnWratKni4uIkSS1btlT37t01YMAAffvtt/r66681ePBgJSQkKDQ0VJJ07733ytvbW0lJScrMzNSHH36o1157zeVjq8cee0ypqal6+eWXlZWVpXHjxun777/X4MGDJf11R9vQoUP13HPP6bPPPtPGjRv1wAMPKDQ01OUuNwAAYF9uXyP0/fff66abbrLeF4eTxMRETZ8+XRs2bNCcOXOUl5en0NBQdevWTc8++6x8fHysZd5//30NHjxYXbt2laenp3r16qXJkydb8/39/bV06VIlJyerXbt2CgwM1JgxY1yeNXTddddp7ty5Gj16tJ566ik1a9ZMCxYsUOvWra2aJ598UgUFBRo4cKDy8vJ0ww03KDU1Vb6+vu4OGwAAVEHn9Ryhqo7nCAFVG88RAqqmSn+OEAAAwOWAIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGzL7SC0evVq3X777QoNDZWHh4cWLFjgMt8YozFjxqhBgwby8/NTbGystm3b5lKzf/9+3XfffXI4HAoICFBSUpIOHTrkUrNhwwbdeOON8vX1VVhYmCZMmFCil3nz5qlFixby9fVVZGSkFi9e7HYvAADAvtwOQgUFBWrbtq2mTp1a6vwJEyZo8uTJmjFjhtauXauaNWsqLi5OR48etWruu+8+ZWZmKi0tTQsXLtTq1as1cOBAa77T6VS3bt0UHh6ujIwMvfTSSxo3bpzefPNNq2bNmjXq27evkpKStG7dOvXs2VM9e/bUpk2b3OoFAADYl4cxxpR7YQ8PzZ8/Xz179pT01xmY0NBQPf7443riiSckSfn5+QoODtbs2bOVkJCgLVu2qFWrVvruu+/Uvn17SVJqaqpuu+02/f777woNDdX06dP1j3/8Qzk5OfL29pYkjRw5UgsWLFBWVpYkqU+fPiooKNDChQutfjp27KioqCjNmDGjTL2ci9PplL+/v/Lz8+VwOMq7mwBcotJnPlHZLbgtJmliZbcAXPLc+fldodcIZWdnKycnR7GxsdY0f39/RUdHKz09XZKUnp6ugIAAKwRJUmxsrDw9PbV27VqrplOnTlYIkqS4uDht3bpVBw4csGpO3U5xTfF2ytLL6Y4dOyan0+nyAgAAVVeFBqGcnBxJUnBwsMv04OBga15OTo6CgoJc5lerVk1169Z1qSltHadu40w1p84/Vy+nGz9+vPz9/a1XWFhYGUYNAAAuV9w1dopRo0YpPz/fev3222+V3RIAALiAKjQIhYSESJJyc3Ndpufm5lrzQkJCtHv3bpf5hYWF2r9/v0tNaes4dRtnqjl1/rl6OZ2Pj48cDofLCwAAVF0VGoQiIiIUEhKi5cuXW9OcTqfWrl2rmJgYSVJMTIzy8vKUkZFh1axYsUJFRUWKjo62alavXq0TJ05YNWlpaWrevLnq1Klj1Zy6neKa4u2UpRcAAGBvbgehQ4cOaf369Vq/fr2kvy5KXr9+vXbu3CkPDw8NHTpUzz33nD777DNt3LhRDzzwgEJDQ607y1q2bKnu3btrwIAB+vbbb/X1119r8ODBSkhIUGhoqCTp3nvvlbe3t5KSkpSZmakPP/xQr732mlJSUqw+HnvsMaWmpurll19WVlaWxo0bp++//16DBw+WpDL1AgAA7K2auwt8//33uummm6z3xeEkMTFRs2fP1pNPPqmCggINHDhQeXl5uuGGG5SamipfX19rmffff1+DBw9W165d5enpqV69emny5MnWfH9/fy1dulTJyclq166dAgMDNWbMGJdnDV133XWaO3euRo8eraeeekrNmjXTggUL1Lp1a6umLL0AAAD7Oq/nCFV1PEcIqNp4jhBQNVXac4QAAAAuJwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWxUehMaNGycPDw+XV4sWLaz5R48eVXJysurVq6datWqpV69eys3NdVnHzp07FR8frxo1aigoKEjDhw9XYWGhS83KlSt1zTXXyMfHR02bNtXs2bNL9DJ16lQ1atRIvr6+io6O1rffflvRwwUAAJexC3JG6KqrrtKff/5pvb766itr3rBhw/T5559r3rx5WrVqlXbt2qW77rrLmn/y5EnFx8fr+PHjWrNmjebMmaPZs2drzJgxVk12drbi4+N10003af369Ro6dKgeeughLVmyxKr58MMPlZKSorFjx+qHH35Q27ZtFRcXp927d1+IIQMAgMuQhzHGVOQKx40bpwULFmj9+vUl5uXn56t+/fqaO3eu7r77bklSVlaWWrZsqfT0dHXs2FFffPGFevTooV27dik4OFiSNGPGDI0YMUJ79uyRt7e3RowYoUWLFmnTpk3WuhMSEpSXl6fU1FRJUnR0tK699lq9/vrrkqSioiKFhYVpyJAhGjlyZJnG4nQ65e/vr/z8fDkcjvPZLQAuQekzn6jsFtwWkzSxslsALnnu/Py+IGeEtm3bptDQUDVu3Fj33Xefdu7cKUnKyMjQiRMnFBsba9W2aNFCV1xxhdLT0yVJ6enpioyMtEKQJMXFxcnpdCozM9OqOXUdxTXF6zh+/LgyMjJcajw9PRUbG2vVlObYsWNyOp0uLwAAUHVVeBCKjo7W7NmzlZqaqunTpys7O1s33nijDh48qJycHHl7eysgIMBlmeDgYOXk5EiScnJyXEJQ8fzieWercTqdOnLkiPbu3auTJ0+WWlO8jtKMHz9e/v7+1issLKxc+wAAAFweqlX0Cm+99Vbr/9u0aaPo6GiFh4fro48+kp+fX0VvrkKNGjVKKSkp1nun00kYAgCgCrvgt88HBAToyiuv1Pbt2xUSEqLjx48rLy/PpSY3N1chISGSpJCQkBJ3kRW/P1eNw+GQn5+fAgMD5eXlVWpN8TpK4+PjI4fD4fICAABV1wUPQocOHdLPP/+sBg0aqF27dqpevbqWL19uzd+6dat27typmJgYSVJMTIw2btzocndXWlqaHA6HWrVqZdWcuo7imuJ1eHt7q127di41RUVFWr58uVUDAABQ4UHoiSee0KpVq7Rjxw6tWbNGf/vb3+Tl5aW+ffvK399fSUlJSklJ0ZdffqmMjAz1799fMTEx6tixoySpW7duatWqle6//379+OOPWrJkiUaPHq3k5GT5+PhIkh555BH98ssvevLJJ5WVlaVp06bpo48+0rBhw6w+UlJS9NZbb2nOnDnasmWLBg0apIKCAvXv37+ihwwAAC5TFX6N0O+//66+fftq3759ql+/vm644QZ98803ql+/viTp1Vdflaenp3r16qVjx44pLi5O06ZNs5b38vLSwoULNWjQIMXExKhmzZpKTEzUM888Y9VERERo0aJFGjZsmF577TU1bNhQb7/9tuLi4qyaPn36aM+ePRozZoxycnIUFRWl1NTUEhdQAwAA+6rw5whVJTxHCKjaeI4QUDVV+nOEAAAALgcEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFvVKrsBAABQMV5N+6myW3DbsFuurNTtc0YIAADYFkEIAADYFh+NAQBQRXTc+WZlt1AOEyt165wRAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtsXfGgMAoBSvpv1U2S24rWNlN3AZIggBAC64yzFUwB4IQgCAC+7y/KvosAOCUCVKn/lEZbfgtpikiZXdAmBrl+uZFT6ywaWKIAQAlxHOrAAViyAEXIIux7OFAHA5IgihyrscP0rgYwQAuDhsEYSmTp2ql156STk5OWrbtq2mTJmiDh06VHZbuEj4KAEAcCZVPgh9+OGHSklJ0YwZMxQdHa1JkyYpLi5OW7duVVBQUGW3d9nhIxsAQFVS5Z8s/corr2jAgAHq37+/WrVqpRkzZqhGjRp65513Krs1AABQyar0GaHjx48rIyNDo0aNsqZ5enoqNjZW6enpJeqPHTumY8eOWe/z8/MlSU6n84L0V3Dk2LmLAACowi7Ez9jidRpjzllbpYPQ3r17dfLkSQUHB7tMDw4OVlZWVon68ePH6+mnny4xPSws7IL1CACArQ15/YKt+uDBg/L39z9rTZUOQu4aNWqUUlJSrPdFRUXav3+/6tWrJw8PjwrdltPpVFhYmH777Tc5HI4KXfeloKqPT6r6Y2R8l7+qPkbGd/m7UGM0xujgwYMKDQ09Z22VDkKBgYHy8vJSbm6uy/Tc3FyFhISUqPfx8ZGPj4/LtICAgAvZohwOR5X9Apeq/vikqj9Gxnf5q+pjZHyXvwsxxnOdCSpWpS+W9vb2Vrt27bR8+XJrWlFRkZYvX66YmJhK7AwAAFwKqvQZIUlKSUlRYmKi2rdvrw4dOmjSpEkqKChQ//79K7s1AABQyap8EOrTp4/27NmjMWPGKCcnR1FRUUpNTS1xAfXF5uPjo7Fjx5b4KK6qqOrjk6r+GBnf5a+qj5HxXf4uhTF6mLLcWwYAAFAFVelrhAAAAM6GIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIHSB/Otf/9J1112nGjVqlPnp1MYYjRkzRg0aNJCfn59iY2O1bds2l5r9+/frvvvuk8PhUEBAgJKSknTo0KELMIJzc7eXHTt2yMPDo9TXvHnzrLrS5n/wwQcXY0guyrOvu3TpUqL3Rx55xKVm586dio+PV40aNRQUFKThw4ersLDwQg6lVO6Ob//+/RoyZIiaN28uPz8/XXHFFXr00UetP05crDKP39SpU9WoUSP5+voqOjpa33777Vnr582bpxYtWsjX11eRkZFavHixy/yyfE9eTO6M76233tKNN96oOnXqqE6dOoqNjS1R369fvxLHqnv37hd6GGflzhhnz55don9fX1+Xmsv5GJb274mHh4fi4+OtmkvpGK5evVq33367QkND5eHhoQULFpxzmZUrV+qaa66Rj4+PmjZtqtmzZ5eocff72m0GF8SYMWPMK6+8YlJSUoy/v3+ZlnnhhReMv7+/WbBggfnxxx/NHXfcYSIiIsyRI0esmu7du5u2bduab775xvy///f/TNOmTU3fvn0v0CjOzt1eCgsLzZ9//unyevrpp02tWrXMwYMHrTpJZtasWS51p+6Di6U8+7pz585mwIABLr3n5+db8wsLC03r1q1NbGysWbdunVm8eLEJDAw0o0aNutDDKcHd8W3cuNHcdddd5rPPPjPbt283y5cvN82aNTO9evVyqaus4/fBBx8Yb29v884775jMzEwzYMAAExAQYHJzc0ut//rrr42Xl5eZMGGC2bx5sxk9erSpXr262bhxo1VTlu/Ji8Xd8d17771m6tSpZt26dWbLli2mX79+xt/f3/z+++9WTWJiounevbvLsdq/f//FGlIJ7o5x1qxZxuFwuPSfk5PjUnM5H8N9+/a5jG3Tpk3Gy8vLzJo1y6q5lI7h4sWLzT/+8Q/zySefGElm/vz5Z63/5ZdfTI0aNUxKSorZvHmzmTJlivHy8jKpqalWjbv7rDwIQhfYrFmzyhSEioqKTEhIiHnppZesaXl5ecbHx8f85z//McYYs3nzZiPJfPfdd1bNF198YTw8PMwff/xR4b2fTUX1EhUVZR588EGXaWX5BrrQyju+zp07m8cee+yM8xcvXmw8PT1d/rGePn26cTgc5tixYxXSe1lU1PH76KOPjLe3tzlx4oQ1rbKOX4cOHUxycrL1/uTJkyY0NNSMHz++1PrevXub+Ph4l2nR0dHm4YcfNsaU7XvyYnJ3fKcrLCw0tWvXNnPmzLGmJSYmmjvvvLOiWy03d8d4rn9fq9oxfPXVV03t2rXNoUOHrGmX2jEsVpZ/B5588klz1VVXuUzr06ePiYuLs96f7z4rCz4au0RkZ2crJydHsbGx1jR/f39FR0crPT1dkpSenq6AgAC1b9/eqomNjZWnp6fWrl17UfutiF4yMjK0fv16JSUllZiXnJyswMBAdejQQe+8847MRX7u5/mM7/3331dgYKBat26tUaNG6fDhwy7rjYyMdHmyeVxcnJxOpzIzMyt+IGdQUV9L+fn5cjgcqlbN9SH1F/v4HT9+XBkZGS7fP56enoqNjbW+f06Xnp7uUi/9dSyK68vyPXmxlGd8pzt8+LBOnDihunXrukxfuXKlgoKC1Lx5cw0aNEj79u2r0N7LqrxjPHTokMLDwxUWFqY777zT5fuoqh3DmTNnKiEhQTVr1nSZfqkcQ3ed63uwIvZZWVT5P7FxucjJyZGkEn/6Izg42JqXk5OjoKAgl/nVqlVT3bp1rZqLpSJ6mTlzplq2bKnrrrvOZfozzzyjm2++WTVq1NDSpUv197//XYcOHdKjjz5aYf2fS3nHd++99yo8PFyhoaHasGGDRowYoa1bt+qTTz6x1lvaMS6ed7FUxPHbu3evnn32WQ0cONBlemUcv7179+rkyZOl7tusrKxSlznTsTj1+6142plqLpbyjO90I0aMUGhoqMsPle7du+uuu+5SRESEfv75Zz311FO69dZblZ6eLi8vrwodw7mUZ4zNmzfXO++8ozZt2ig/P18TJ07Uddddp8zMTDVs2LBKHcNvv/1WmzZt0syZM12mX0rH0F1n+h50Op06cuSIDhw4cN5f92VBEHLDyJEj9eKLL561ZsuWLWrRosVF6qjilXWM5+vIkSOaO3eu/vnPf5aYd+q0q6++WgUFBXrppZcq5AfphR7fqaEgMjJSDRo0UNeuXfXzzz+rSZMm5V5vWV2s4+d0OhUfH69WrVpp3LhxLvMu5PFD+bzwwgv64IMPtHLlSpeLiRMSEqz/j4yMVJs2bdSkSROtXLlSXbt2rYxW3RITE6OYmBjr/XXXXaeWLVvqjTfe0LPPPluJnVW8mTNnKjIyUh06dHCZfrkfw0sBQcgNjz/+uPr163fWmsaNG5dr3SEhIZKk3NxcNWjQwJqem5urqKgoq2b37t0uyxUWFmr//v3W8uerrGM8314+/vhjHT58WA888MA5a6Ojo/Xss8/q2LFj5/2H+S7W+IpFR0dLkrZv364mTZooJCSkxB0Pubm5klQhx/BijO/gwYPq3r27ateurfnz56t69epnra/I43cmgYGB8vLysvZlsdzc3DOOJyQk5Kz1ZfmevFjKM75iEydO1AsvvKBly5apTZs2Z61t3LixAgMDtX379ov+Q/R8xlisevXquvrqq7V9+3ZJVecYFhQU6IMPPtAzzzxzzu1U5jF015m+Bx0Oh/z8/OTl5XXeXxNlUmFXG6FU7l4sPXHiRGtafn5+qRdLf//991bNkiVLKvVi6fL20rlz5xJ3G53Jc889Z+rUqVPuXsujovb1V199ZSSZH3/80RjzfxdLn3rHwxtvvGEcDoc5evRoxQ3gHMo7vvz8fNOxY0fTuXNnU1BQUKZtXazj16FDBzN48GDr/cmTJ83//M//nPVi6R49erhMi4mJKXGx9Nm+Jy8md8dnjDEvvviicTgcJj09vUzb+O2334yHh4f59NNPz7vf8ijPGE9VWFhomjdvboYNG2aMqRrH0Ji/fo74+PiYvXv3nnMblX0Mi6mMF0u3bt3aZVrfvn1LXCx9Pl8TZeq1wtYEF7/++qtZt26ddXv4unXrzLp161xuE2/evLn55JNPrPcvvPCCCQgIMJ9++qnZsGGDufPOO0u9ff7qq682a9euNV999ZVp1qxZpd4+f7Zefv/9d9O8eXOzdu1al+W2bdtmPDw8zBdffFFinZ999pl56623zMaNG822bdvMtGnTTI0aNcyYMWMu+HhO5+74tm/fbp555hnz/fffm+zsbPPpp5+axo0bm06dOlnLFN8+361bN7N+/XqTmppq6tevX2m3z7szvvz8fBMdHW0iIyPN9u3bXW7XLSwsNMZU7vH74IMPjI+Pj5k9e7bZvHmzGThwoAkICLDu0Lv//vvNyJEjrfqvv/7aVKtWzUycONFs2bLFjB07ttTb58/1PXmxuDu+F154wXh7e5uPP/7Y5VgV/xt08OBB88QTT5j09HSTnZ1tli1bZq655hrTrFmzixrKz2eMTz/9tFmyZIn5+eefTUZGhklISDC+vr4mMzPTqrmcj2GxG264wfTp06fE9EvtGB48eND6WSfJvPLKK2bdunXm119/NcYYM3LkSHP//fdb9cW3zw8fPtxs2bLFTJ06tdTb58+2zyoCQegCSUxMNJJKvL788kurRv/7vJViRUVF5p///KcJDg42Pj4+pmvXrmbr1q0u6923b5/p27evqVWrlnE4HKZ///4u4epiOlcv2dnZJcZsjDGjRo0yYWFh5uTJkyXW+cUXX5ioqChTq1YtU7NmTdO2bVszY8aMUmsvNHfHt3PnTtOpUydTt25d4+PjY5o2bWqGDx/u8hwhY4zZsWOHufXWW42fn58JDAw0jz/+uMvt5xeLu+P78ssvS/2almSys7ONMZV//KZMmWKuuOIK4+3tbTp06GC++eYba17nzp1NYmKiS/1HH31krrzySuPt7W2uuuoqs2jRIpf5ZfmevJjcGV94eHipx2rs2LHGGGMOHz5sunXrZurXr2+qV69uwsPDzYABAyr0B0x5uDPGoUOHWrXBwcHmtttuMz/88IPL+i7nY2iMMVlZWUaSWbp0aYl1XWrH8Ez/RhSPKTEx0XTu3LnEMlFRUcbb29s0btzY5WdisbPts4rgYcxFvi8ZAADgEsFzhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG39f6vPm4BKZr8yAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGzCAYAAADJ3dZzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPSlJREFUeJzt3XtYlHX+//EXB2dAEfAIkidSU1lPhYpTWVmsZOxuppW6lqSWX10shSy1dfHQ7tJlJw+ZbIcVW/ProV3LtDAWFdvEE+bmeXXDsNUBTWHUFBTu3x/74/46geYgOnL3fFzXXJdzf97zud/3R3Je3dxzj49hGIYAAAAsytfbDQAAAFxLhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB3gGkpPT5ePj48OHTokSbrnnnt0zz33mOPr16+Xj4+PPvjgA+80eI1kZGSoW7duCggIkI+Pj4qKirzdEoCfMMIOgBr13Xff6dFHH1VgYKDmzZunv/zlL6pXr5632/K6I0eOaNq0adqxY4e3W6lx33//vaZNm6b169d7uxWgSv7ebgD4Kfnss8+83cI1t3XrVp06dUovvviiYmNjvd3ODePIkSOaPn26WrdurW7dunm7nRr1/fffa/r06ZLkduYSuFFwZge4jmw2m2w2W43N9/33398Qc1yssLBQkhQaGnrd9w0AVSHsANfRD6/ZqVBWVqYXXnhB4eHhqlevnn71q1/p8OHDlV7bqVMn5ebm6q677lLdunX1wgsvSJI++ugjxcfHKyIiQna7XW3atNGLL76osrKyK5ojISFBjRs31vnz5yv11rdvX7Vv3/6Kjy8hIUGS1KNHD/n4+OiJJ56osf4lad68ebr55psVGBionj176vPPP7/ktVDLli3T9OnTddNNN6l+/fp6+OGHVVxcrJKSEo0fP15NmzZVUFCQhg8frpKSkkr7WrRokaKjoxUYGKiGDRtq8ODBl/x72bNnj/r06aO6devqpptu0syZM9366dGjhyRp+PDh8vHxkY+Pj9LT069oXSWpqKhISUlJat26tex2u5o3b65hw4bp+PHjZk1hYaFGjhypsLAwBQQEqGvXrlq4cKHbPBVr88NfOR06dKhST0888YSCgoL0n//8R/3791dQUJCaNGmiCRMmmH83hw4dUpMmTSRJ06dPN49t2rRpV3xswLXGr7GAG8Af/vAH+fj4aOLEiSosLNSsWbMUGxurHTt2KDAw0Kz77rvv1K9fPw0ePFiPPfaYwsLCJP33QuigoCAlJycrKChIa9euVUpKilwul15++WW3fVU1R7169fTee+9pzZo1+sUvfmHWOp1OrV27VlOnTr2i4/jtb3+r9u3b66233tKMGTMUGRmpNm3a1Fj/8+fP19ixY9W7d28lJSXp0KFD6t+/vxo0aKDmzZtX6ic1NVWBgYGaNGmSDh48qLlz56pOnTry9fXVyZMnNW3aNG3atEnp6emKjIxUSkqK29/J7373Oz366KN68skndezYMc2dO1d33XWXvvzyS7czVydPntT999+vAQMG6NFHH9UHH3ygiRMnqnPnzurXr586duyoGTNmKCUlRaNGjVLv3r0lSbfffvsVrevp06fVu3dv7d27VyNGjNBtt92m48ePa+XKlfr222/VuHFjnT17Vvfcc48OHjyosWPHKjIyUsuXL9cTTzyhoqIijRs37or29UNlZWWKi4tTTEyMXnnlFf3973/Xq6++qjZt2mjMmDFq0qSJ5s+frzFjxuihhx7SgAEDJEldunSp1v6Aa8IAcM0sWLDAkGTk5eUZhmEYd999t3H33Xeb4+vWrTMkGTfddJPhcrnM7cuWLTMkGbNnzza33X333YYkIy0trdJ+vv/++0rb/ud//seoW7euce7cuR+do6yszGjevLkxaNAgt+2vvfaa4ePjY3z99dceH/PWrVvdtl9t/yUlJUajRo2MHj16GOfPnzfr0tPTDUlVrmunTp2M0tJSc/uQIUMMHx8fo1+/fm77cjgcRqtWrcznhw4dMvz8/Iw//OEPbnU7d+40/P393bZXHNd7771nbispKTHCw8ONgQMHmtu2bt1qSDIWLFhQ6Vh/TEpKiiHJ+Nvf/lZprLy83DAMw5g1a5YhyVi0aJE5VlpaajgcDiMoKMj8+apYm3Xr1rnNk5eXV6m/hIQEQ5IxY8YMt9pbb73ViI6ONp8fO3bMkGRMnTrV42MDrgd+jQXcAIYNG6b69eubzx9++GE1a9ZMn3zyiVud3W7X8OHDK73+4rM/p06d0vHjx9W7d299//332rdv34/O4evrq6FDh2rlypU6deqUuf3999/X7bffrsjIyKs6vprof9u2bfruu+/01FNPyd///05KDx06VA0aNKhyf8OGDVOdOnXM5zExMTIMQyNGjHCri4mJ0eHDh3XhwgVJ0t/+9jeVl5fr0Ucf1fHjx81HeHi42rVrp3Xr1rm9PigoSI899pj53GazqWfPnvr666+vdGku669//au6du2qhx56qNKYj4+PJOmTTz5ReHi4hgwZYo7VqVNHzzzzjE6fPq3s7Oxq73/06NFuz3v37l1jxwZcD4Qd4AbQrl07t+c+Pj5q27ateX+eCjfddFOVFzjv3r1bDz30kEJCQhQcHKwmTZqYb77FxcVXNMewYcN09uxZrVixQpK0f/9+5ebm6vHHH7+aQ6ux/r/55htJUtu2bd1e6+/vr9atW1e5v5YtW7o9DwkJkSS1aNGi0vby8nJzXwcOHJBhGGrXrp2aNGni9ti7d695EXaF5s2bm6GjQoMGDXTy5MlLroUn/v3vf6tTp06Xrfnmm2/Url07+fq6/7PesWNHc7w6AgICzGtyKtTksQHXA9fsALXIxWdAKhQVFenuu+9WcHCwZsyYoTZt2iggIEDbt2/XxIkTVV5e/qNzSFJUVJSio6O1aNEiDRs2TIsWLZLNZtOjjz56Q/XvCT8/P4+2G4YhSSovL5ePj48+/fTTKmuDgoI8mu9G8sNQVqGqi8GlSx8bUJsQdoAbwIEDB9yeG4ahgwcPXtFFnuvXr9d3332nv/3tb7rrrrvM7Xl5eR73MWzYMCUnJ+vo0aNavHix4uPjL/kroppypf23atVKknTw4EH16dPH3H7hwgUdOnSoRi+IbdOmjQzDUGRkpG655ZYamfNSIeNK+9m1a9dla1q1aqWvvvpK5eXlbmd3Kn4NWLF+FX+fP7yrdXXP/EhXd2zA9cCvsYAbwHvvved2rcwHH3ygo0ePql+/fj/62or/8774LEJpaanefPNNj/sYMmSIfHx8NG7cOH399ddu16FcK1faf/fu3dWoUSO9/fbb5rU10n+vK6rpX6kMGDBAfn5+mj59eqWzM4Zh6LvvvvN4zoq7SFfnqzMGDhyof/7zn+avGH/YjyQ98MADcjqdWrp0qTl24cIFzZ07V0FBQbr77rsl/Tf0+Pn5acOGDW7zVOfnpULdunUlVe/YgOuBMzvADaBhw4a68847NXz4cBUUFGjWrFlq27atnnrqqR997e23364GDRooISFBzzzzjHx8fPSXv/ylWr9CadKkie6//34tX75coaGhio+Pr87heORK+7fZbJo2bZqefvpp3XvvvXr00Ud16NAhpaenq02bNjV6dqFNmzb6/e9/r8mTJ5sfb69fv77y8vK0YsUKjRo1ShMmTPB4ztDQUKWlpal+/fqqV6+eYmJiruji7+eee04ffPCBHnnkEY0YMULR0dE6ceKEVq5cqbS0NHXt2lWjRo3Sn/70Jz3xxBPKzc1V69at9cEHH+iLL77QrFmzzAvgQ0JC9Mgjj2ju3Lny8fFRmzZttGrVqkrXIXkiMDBQUVFRWrp0qW655RY1bNhQnTp1+tHrjIDrhTM7wA3ghRdeUHx8vFJTUzV79mzdd999ysrKMv+P+XIaNWqkVatWqVmzZpoyZYpeeeUV/fznP3e7qZ0nhg0bJkl69NFHZbfbqzWHJzzpf+zYsZozZ47y8/M1YcIEff7551q5cqVCQ0MVEBBQo31NmjRJf/3rX+Xr66vp06drwoQJWrlypfr27atf/epXHs9Xp04dLVy4UH5+fho9erSGDBlyxZ+QCgoK0ueff64xY8bok08+0TPPPKM333xT7du3N+8vFBgYqPXr12vo0KFauHChnn32WZ04cUILFiyodI+duXPn6sEHH1RaWpqmTJmili1bVrr5oKfeeecd3XTTTUpKStKQIUMs9+W2qN18jBvxCjoAXvPRRx+pf//+2rBhg3nzuxtZeXm5mjRpogEDBujtt9/2djsAbkCc2QHg5u2339bNN9+sO++809utVHLu3LlKv9567733dOLECb6AEsAlcc0OAEnSkiVL9NVXX2n16tWaPXt2pWtgiouLdfbs2cvOER4efi1b1KZNm5SUlKRHHnlEjRo10vbt2/Xuu++qU6dOeuSRR67pvq+Fs2fPVroP0g81bNiwRr88Fvgp4tdYACT99+PDQUFBGjRokNLS0tzuUiz990shf+y6jmv9z8mhQ4f0zDPPaMuWLTpx4oQaNmyoBx54QC+99JKaNm16Tfd9LaSnp1d5R+mLrVu3jrNWwFUi7AC4Inv27NGRI0cuWxMbG3udurGGo0ePavfu3ZetiY6Ovub3OgKsjrADAAAsjQuUAQCApf2kL1AuLy/XkSNHVL9+fW53DgBALWEYhk6dOqWIiIhKX35blZ902Dly5Eilbz8GAAC1w+HDh80ba17OTzrsVNw+/fDhwwoODvZyNwAA4Eq4XC61aNHCfB//UYYHWrVqZUiq9PjNb35jGIZhnD171vjNb35jNGzY0KhXr54xYMAAw+l0us3xzTffGA888IARGBhoNGnSxJgwYYJx/vx5t5p169YZt956q2Gz2Yw2bdoYCxYsqNTLG2+8YbRq1cqw2+1Gz549jc2bN3tyKIZhGEZxcbEhySguLvb4tQAAwDs8ff/26ALlrVu36ujRo+YjMzNTksybeSUlJenjjz/W8uXLlZ2drSNHjmjAgAHm68vKyhQfH6/S0lJt3LhRCxcuVHp6ulJSUsyavLw8xcfHq0+fPtqxY4fGjx+vJ598UmvWrDFrli5dquTkZE2dOlXbt29X165dFRcXd1VfZAcAACzqapLVuHHjjDZt2hjl5eVGUVGRUadOHWP58uXm+N69ew1JRk5OjmEYhvHJJ58Yvr6+bmd75s+fbwQHBxslJSWGYRjG888/b/zsZz9z28+gQYOMuLg483nPnj2NxMRE83lZWZkRERFhpKamXrbfc+fOGcXFxebj8OHDnNkBAKCWuaZndi5WWlqqRYsWacSIEfLx8VFubq7Onz/vdlOxDh06qGXLlsrJyZEk5eTkqHPnzgoLCzNr4uLi5HK5zBtr5eTkVLoxWVxcnDlHaWmpcnNz3Wp8fX0VGxtr1lxKamqqQkJCzAcXJwMAYH3VDjsffvihioqK9MQTT0iSnE6nbDabQkND3erCwsLkdDrNmouDTsV4xdjlalwul86ePavjx4+rrKysypqKOS5l8uTJKi4uNh+HDx/26JgBAEDtU+1PY7377rvq16+fIiIiarKfa8put8tut3u7DQAAcB1V68zON998o7///e968sknzW3h4eEqLS1VUVGRW21BQYH5Tcjh4eEqKCioNF4xdrma4OBgBQYGqnHjxvLz86uy5lp/4zIAAKh9qhV2FixYoKZNmyo+Pt7cFh0drTp16igrK8vctn//fuXn58vhcEiSHA6Hdu7c6fapqczMTAUHBysqKsqsuXiOipqKOWw2m6Kjo91qysvLlZWVZdYAAACYPL0CuqyszGjZsqUxceLESmOjR482WrZsaaxdu9bYtm2b4XA4DIfDYY5fuHDB6NSpk9G3b19jx44dRkZGhtGkSRNj8uTJZs3XX39t1K1b13juueeMvXv3GvPmzTP8/PyMjIwMs2bJkiWG3W430tPTjT179hijRo0yQkNDK93T58dwnx0AAGofT9+/PQ47a9asMSQZ+/fvrzRWcVPBBg0aGHXr1jUeeugh4+jRo241hw4dMvr162cEBgYajRs3Np599tkqbyrYrVs3w2azGTfffHOVNxWcO3eu0bJlS8Nmsxk9e/Y0Nm3a5OmhEHYAAKiFPH3/9jEMw/DqqSUvcrlcCgkJUXFxMV8XAQBALeHp+3e1P3oOAABQGxB2AACApRF2AACApRF2AACApVX7Dsr4EetSvd2B5/pM9nYHAADUOM7sAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS+OmgtdIztffebsFjzn6eLsDAABqHmd2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApXkcdv7zn//oscceU6NGjRQYGKjOnTtr27Zt5rhhGEpJSVGzZs0UGBio2NhYHThwwG2OEydOaOjQoQoODlZoaKhGjhyp06dPu9V89dVX6t27twICAtSiRQvNnDmzUi/Lly9Xhw4dFBAQoM6dO+uTTz7x9HAAAIDFeRR2Tp48qTvuuEN16tTRp59+qj179ujVV19VgwYNzJqZM2dqzpw5SktL0+bNm1WvXj3FxcXp3LlzZs3QoUO1e/duZWZmatWqVdqwYYNGjRpljrtcLvXt21etWrVSbm6uXn75ZU2bNk1vvfWWWbNx40YNGTJEI0eO1Jdffqn+/furf//+2rVr19WsBwAAsBgfwzCMKy2eNGmSvvjiC33++edVjhuGoYiICD377LOaMGGCJKm4uFhhYWFKT0/X4MGDtXfvXkVFRWnr1q3q3r27JCkjI0MPPPCAvv32W0VERGj+/Pn67W9/K6fTKZvNZu77ww8/1L59+yRJgwYN0pkzZ7Rq1Spz/7169VK3bt2UlpZWZX8lJSUqKSkxn7tcLrVo0ULFxcUKDg6+0mW4IjnvTqjR+a4Hx8hXvN0CAAA/yuVyKSQk5Irfvz06s7Ny5Up1795djzzyiJo2bapbb71Vb7/9tjmel5cnp9Op2NhYc1tISIhiYmKUk5MjScrJyVFoaKgZdCQpNjZWvr6+2rx5s1lz1113mUFHkuLi4rR//36dPHnSrLl4PxU1FfupSmpqqkJCQsxHixYtPDl8AABQC3kUdr7++mvNnz9f7dq105o1azRmzBg988wzWrhwoSTJ6XRKksLCwtxeFxYWZo45nU41bdrUbdzf318NGzZ0q6lqjov3camaivGqTJ48WcXFxebj8OHDnhw+AACohfw9KS4vL1f37t31xz/+UZJ06623ateuXUpLS1NCQsI1abAm2e122e12b7cBAACuI4/O7DRr1kxRUVFu2zp27Kj8/HxJUnh4uCSpoKDAraagoMAcCw8PV2Fhodv4hQsXdOLECbeaqua4eB+XqqkYBwAAkDwMO3fccYf279/vtu1f//qXWrVqJUmKjIxUeHi4srKyzHGXy6XNmzfL4XBIkhwOh4qKipSbm2vWrF27VuXl5YqJiTFrNmzYoPPnz5s1mZmZat++vfnJL4fD4bafipqK/QAAAEgehp2kpCRt2rRJf/zjH3Xw4EEtXrxYb731lhITEyVJPj4+Gj9+vH7/+99r5cqV2rlzp4YNG6aIiAj1799f0n/PBN1///166qmntGXLFn3xxRcaO3asBg8erIiICEnSr3/9a9lsNo0cOVK7d+/W0qVLNXv2bCUnJ5u9jBs3ThkZGXr11Ve1b98+TZs2Tdu2bdPYsWNraGkAAIAVeHTNTo8ePbRixQpNnjxZM2bMUGRkpGbNmqWhQ4eaNc8//7zOnDmjUaNGqaioSHfeeacyMjIUEBBg1rz//vsaO3as7rvvPvn6+mrgwIGaM2eOOR4SEqLPPvtMiYmJio6OVuPGjZWSkuJ2L57bb79dixcv1pQpU/TCCy+oXbt2+vDDD9WpU6erWQ8AAGAxHt1nx2o8/Zy+J7jPDgAA18Y1vc8OAABAbUPYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlubv7QYA4Fp5PfNf3m7BY0k/v8XbLQCWw5kdAABgaYQdAABgaR79GmvatGmaPn2627b27dtr3759kqRz587p2Wef1ZIlS1RSUqK4uDi9+eabCgsLM+vz8/M1ZswYrVu3TkFBQUpISFBqaqr8/f+vlfXr1ys5OVm7d+9WixYtNGXKFD3xxBNu+503b55efvllOZ1Ode3aVXPnzlXPnj09PX4AFtYr/y1vt1ANr3i7AcByPD6z87Of/UxHjx41H//4xz/MsaSkJH388cdavny5srOzdeTIEQ0YMMAcLysrU3x8vEpLS7Vx40YtXLhQ6enpSklJMWvy8vIUHx+vPn36aMeOHRo/fryefPJJrVmzxqxZunSpkpOTNXXqVG3fvl1du3ZVXFycCgsLq7sOAADAojwOO/7+/goPDzcfjRs3liQVFxfr3Xff1WuvvaZ7771X0dHRWrBggTZu3KhNmzZJkj777DPt2bNHixYtUrdu3dSvXz+9+OKLmjdvnkpLSyVJaWlpioyM1KuvvqqOHTtq7Nixevjhh/X666+bPbz22mt66qmnNHz4cEVFRSktLU1169bVn//858v2XlJSIpfL5fYAAADW5nHYOXDggCIiInTzzTdr6NChys/PlyTl5ubq/Pnzio2NNWs7dOigli1bKicnR5KUk5Ojzp07u/1aKy4uTi6XS7t37zZrLp6joqZijtLSUuXm5rrV+Pr6KjY21qy5lNTUVIWEhJiPFi1aeHr4AACglvEo7MTExCg9PV0ZGRmaP3++8vLy1Lt3b506dUpOp1M2m02hoaFurwkLC5PT6ZQkOZ1Ot6BTMV4xdrkal8uls2fP6vjx4yorK6uypmKOS5k8ebKKi4vNx+HDhz05fAAAUAt5dIFyv379zD936dJFMTExatWqlZYtW6bAwMAab66m2e122e12b7cBAACuo6v66HloaKhuueUWHTx4UOHh4SotLVVRUZFbTUFBgcLDwyVJ4eHhKigoqDReMXa5muDgYAUGBqpx48by8/OrsqZiDgAAgApXFXZOnz6tf//732rWrJmio6NVp04dZWVlmeP79+9Xfn6+HA6HJMnhcGjnzp1un5rKzMxUcHCwoqKizJqL56ioqZjDZrMpOjraraa8vFxZWVlmDQAAQAWPws6ECROUnZ2tQ4cOaePGjXrooYfk5+enIUOGKCQkRCNHjlRycrLWrVun3NxcDR8+XA6HQ7169ZIk9e3bV1FRUXr88cf1z3/+U2vWrNGUKVOUmJho/npp9OjR+vrrr/X8889r3759evPNN7Vs2TIlJSWZfSQnJ+vtt9/WwoULtXfvXo0ZM0ZnzpzR8OHDa3BpAACAFXh0zc63336rIUOG6LvvvlOTJk105513atOmTWrSpIkk6fXXX5evr68GDhzodlPBCn5+flq1apXGjBkjh8OhevXqKSEhQTNmzDBrIiMjtXr1aiUlJWn27Nlq3ry53nnnHcXFxZk1gwYN0rFjx5SSkiKn06lu3bopIyOj0kXLAGpObfyeqV7ebgDADcHHMAzD2014i8vlUkhIiIqLixUcHFyjc+e8O6FG57seHCO5cysurVaGnVp4B2X+OwR+nKfv33w3FgAAsDTCDgAAsDTCDgAAsDTCDgAAsDSPPo0F4KerNl7sCwASZ3YAAIDFEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClXVXYeemll+Tj46Px48eb286dO6fExEQ1atRIQUFBGjhwoAoKCtxel5+fr/j4eNWtW1dNmzbVc889pwsXLrjVrF+/Xrfddpvsdrvatm2r9PT0SvufN2+eWrdurYCAAMXExGjLli1XczgAAMCCqh12tm7dqj/96U/q0qWL2/akpCR9/PHHWr58ubKzs3XkyBENGDDAHC8rK1N8fLxKS0u1ceNGLVy4UOnp6UpJSTFr8vLyFB8frz59+mjHjh0aP368nnzySa1Zs8asWbp0qZKTkzV16lRt375dXbt2VVxcnAoLC6t7SAAAwIKqFXZOnz6toUOH6u2331aDBg3M7cXFxXr33Xf12muv6d5771V0dLQWLFigjRs3atOmTZKkzz77THv27NGiRYvUrVs39evXTy+++KLmzZun0tJSSVJaWpoiIyP16quvqmPHjho7dqwefvhhvf766+a+XnvtNT311FMaPny4oqKilJaWprp16+rPf/7z1awHAACwmGqFncTERMXHxys2NtZte25urs6fP++2vUOHDmrZsqVycnIkSTk5OercubPCwsLMmri4OLlcLu3evdus+eHccXFx5hylpaXKzc11q/H19VVsbKxZU5WSkhK5XC63BwAAsDZ/T1+wZMkSbd++XVu3bq005nQ6ZbPZFBoa6rY9LCxMTqfTrLk46FSMV4xdrsblcuns2bM6efKkysrKqqzZt2/fJXtPTU3V9OnTr+xAAQCAJXh0Zufw4cMaN26c3n//fQUEBFyrnq6ZyZMnq7i42HwcPnzY2y0BAIBrzKOwk5ubq8LCQt12223y9/eXv7+/srOzNWfOHPn7+yssLEylpaUqKipye11BQYHCw8MlSeHh4ZU+nVXx/MdqgoODFRgYqMaNG8vPz6/Kmoo5qmK32xUcHOz2AAAA1uZR2Lnvvvu0c+dO7dixw3x0795dQ4cONf9cp04dZWVlma/Zv3+/8vPz5XA4JEkOh0M7d+50+9RUZmamgoODFRUVZdZcPEdFTcUcNptN0dHRbjXl5eXKysoyawAAACQPr9mpX7++OnXq5LatXr16atSokbl95MiRSk5OVsOGDRUcHKynn35aDodDvXr1kiT17dtXUVFRevzxxzVz5kw5nU5NmTJFiYmJstvtkqTRo0frjTfe0PPPP68RI0Zo7dq1WrZsmVavXm3uNzk5WQkJCerevbt69uypWbNm6cyZMxo+fPhVLQgAALAWjy9Q/jGvv/66fH19NXDgQJWUlCguLk5vvvmmOe7n56dVq1ZpzJgxcjgcqlevnhISEjRjxgyzJjIyUqtXr1ZSUpJmz56t5s2b65133lFcXJxZM2jQIB07dkwpKSlyOp3q1q2bMjIyKl20DAAAftp8DMMwvN2Et7hcLoWEhKi4uLjGr9/JeXdCjc53PThGvuLtFnADq40/07UR/x0CP87T92++GwsAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFiav7cbAH5qXs/8l7dbqJZe3m4AAKqJMzsAAMDSCDsAAMDSCDsAAMDSuGYHuM565b/l7RZwA6uN13Ql/fwWb7cAXBZndgAAgKVxZgcAbiC188zfK95uALgszuwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABL8yjszJ8/X126dFFwcLCCg4PlcDj06aefmuPnzp1TYmKiGjVqpKCgIA0cOFAFBQVuc+Tn5ys+Pl5169ZV06ZN9dxzz+nChQtuNevXr9dtt90mu92utm3bKj09vVIv8+bNU+vWrRUQEKCYmBht2bLFk0MBAAA/ER6FnebNm+ull15Sbm6utm3bpnvvvVcPPvigdu/eLUlKSkrSxx9/rOXLlys7O1tHjhzRgAEDzNeXlZUpPj5epaWl2rhxoxYuXKj09HSlpKSYNXl5eYqPj1efPn20Y8cOjR8/Xk8++aTWrFlj1ixdulTJycmaOnWqtm/frq5duyouLk6FhYVXux4AAMBifAzDMK5mgoYNG+rll1/Www8/rCZNmmjx4sV6+OGHJUn79u1Tx44dlZOTo169eunTTz/VL37xCx05ckRhYWGSpLS0NE2cOFHHjh2TzWbTxIkTtXr1au3atcvcx+DBg1VUVKSMjAxJUkxMjHr06KE33nhDklReXq4WLVro6aef1qRJk664d5fLpZCQEBUXFys4OPhqlqGSnHcn1Oh814NjJLd8vx5q488GcDn824HrzdP372pfs1NWVqYlS5bozJkzcjgcys3N1fnz5xUbG2vWdOjQQS1btlROTo4kKScnR507dzaDjiTFxcXJ5XKZZ4dycnLc5qioqZijtLRUubm5bjW+vr6KjY01ay6lpKRELpfL7QEAAKzN47Czc+dOBQUFyW63a/To0VqxYoWioqLkdDpls9kUGhrqVh8WFian0ylJcjqdbkGnYrxi7HI1LpdLZ8+e1fHjx1VWVlZlTcUcl5KamqqQkBDz0aJFC08PHwAA1DIeh5327dtrx44d2rx5s8aMGaOEhATt2bPnWvRW4yZPnqzi4mLzcfjwYW+3BAAArjF/T19gs9nUtm1bSVJ0dLS2bt2q2bNna9CgQSotLVVRUZHb2Z2CggKFh4dLksLDwyt9aqri01oX1/zwE1wFBQUKDg5WYGCg/Pz85OfnV2VNxRyXYrfbZbfbPT1kAABQi131fXbKy8tVUlKi6Oho1alTR1lZWebY/v37lZ+fL4fDIUlyOBzauXOn26emMjMzFRwcrKioKLPm4jkqairmsNlsio6OdqspLy9XVlaWWQMAAFDBozM7kydPVr9+/dSyZUudOnVKixcv1vr167VmzRqFhIRo5MiRSk5OVsOGDRUcHKynn35aDodDvXr1kiT17dtXUVFRevzxxzVz5kw5nU5NmTJFiYmJ5hmX0aNH64033tDzzz+vESNGaO3atVq2bJlWr15t9pGcnKyEhAR1795dPXv21KxZs3TmzBkNHz68BpcGAABYgUdhp7CwUMOGDdPRo0cVEhKiLl26aM2aNfr5z38uSXr99dfl6+urgQMHqqSkRHFxcXrzzTfN1/v5+WnVqlUaM2aMHA6H6tWrp4SEBM2YMcOsiYyM1OrVq5WUlKTZs2erefPmeueddxQXF2fWDBo0SMeOHVNKSoqcTqe6deumjIyMShctAwAAXPV9dmoz7rPjjntlXB+18WcDuBz+7cD1dt3uswMAAFAbEHYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClefTdWAAA/NDrmf/ydgseS/r5Ld5uAdcRZ3YAAIClcWYHAHBVeuW/5e0WqoEvL/0p4cwOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNH9vNwBcjdcz/+XtFjzWy9sNAMBPDGd2AACApRF2AACApRF2AACApRF2AACApRF2AACApfFpLNRqvfLf8nYLAIAbHGd2AACApXkUdlJTU9WjRw/Vr19fTZs2Vf/+/bV//363mnPnzikxMVGNGjVSUFCQBg4cqIKCArea/Px8xcfHq27dumratKmee+45Xbhwwa1m/fr1uu2222S329W2bVulp6dX6mfevHlq3bq1AgICFBMToy1btnhyOAAA4CfAo7CTnZ2txMREbdq0SZmZmTp//rz69u2rM2fOmDVJSUn6+OOPtXz5cmVnZ+vIkSMaMGCAOV5WVqb4+HiVlpZq48aNWrhwodLT05WSkmLW5OXlKT4+Xn369NGOHTs0fvx4Pfnkk1qzZo1Zs3TpUiUnJ2vq1Knavn27unbtqri4OBUWFl7NegAAAIvxMQzDqO6Ljx07pqZNmyo7O1t33XWXiouL1aRJEy1evFgPP/ywJGnfvn3q2LGjcnJy1KtXL3366af6xS9+oSNHjigsLEySlJaWpokTJ+rYsWOy2WyaOHGiVq9erV27dpn7Gjx4sIqKipSRkSFJiomJUY8ePfTGG29IksrLy9WiRQs9/fTTmjRp0hX173K5FBISouLiYgUHB1d3GaqU8+6EGp3venCMfMXbLXisNq4zAO+rjf/e4f94+v59VdfsFBcXS5IaNmwoScrNzdX58+cVGxtr1nTo0EEtW7ZUTk6OJCknJ0edO3c2g44kxcXFyeVyaffu3WbNxXNU1FTMUVpaqtzcXLcaX19fxcbGmjVVKSkpkcvlcnsAAABrq3bYKS8v1/jx43XHHXeoU6dOkiSn0ymbzabQ0FC32rCwMDmdTrPm4qBTMV4xdrkal8uls2fP6vjx4yorK6uypmKOqqSmpiokJMR8tGjRwvMDBwAAtUq1w05iYqJ27dqlJUuW1GQ/19TkyZNVXFxsPg4fPuztlgAAwDVWrfvsjB07VqtWrdKGDRvUvHlzc3t4eLhKS0tVVFTkdnanoKBA4eHhZs0PPzVV8Wmti2t++AmugoICBQcHKzAwUH5+fvLz86uypmKOqtjtdtntds8PGAAA1FoendkxDENjx47VihUrtHbtWkVGRrqNR0dHq06dOsrKyjK37d+/X/n5+XI4HJIkh8OhnTt3un1qKjMzU8HBwYqKijJrLp6joqZiDpvNpujoaLea8vJyZWVlmTUAAACSh2d2EhMTtXjxYn300UeqX7++eX1MSEiIAgMDFRISopEjRyo5OVkNGzZUcHCwnn76aTkcDvXq1UuS1LdvX0VFRenxxx/XzJkz5XQ6NWXKFCUmJppnXUaPHq033nhDzz//vEaMGKG1a9dq2bJlWr16tdlLcnKyEhIS1L17d/Xs2VOzZs3SmTNnNHz48JpaGwAAYAEehZ358+dLku655x637QsWLNATTzwhSXr99dfl6+urgQMHqqSkRHFxcXrzzTfNWj8/P61atUpjxoyRw+FQvXr1lJCQoBkzZpg1kZGRWr16tZKSkjR79mw1b95c77zzjuLi4syaQYMG6dixY0pJSZHT6VS3bt2UkZFR6aJlAAB+6PXMf3m7BY8l/fwWb7dQa13VfXZqO+6z46423neiNq4zAO/b1HKUt1vwGGHn/1zX++wAAADc6PjWcwDAT06v/Le83UI11L6z7zcKzuwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABL8zjsbNiwQb/85S8VEREhHx8fffjhh27jhmEoJSVFzZo1U2BgoGJjY3XgwAG3mhMnTmjo0KEKDg5WaGioRo4cqdOnT7vVfPXVV+rdu7cCAgLUokULzZw5s1Ivy5cvV4cOHRQQEKDOnTvrk08+8fRwAACAxXkcds6cOaOuXbtq3rx5VY7PnDlTc+bMUVpamjZv3qx69eopLi5O586dM2uGDh2q3bt3KzMzU6tWrdKGDRs0atQoc9zlcqlv375q1aqVcnNz9fLLL2vatGl66623zJqNGzdqyJAhGjlypL788kv1799f/fv3165duzw9JAAAYGE+hmEY1X6xj49WrFih/v37S/rvWZ2IiAg9++yzmjBhgiSpuLhYYWFhSk9P1+DBg7V3715FRUVp69at6t69uyQpIyNDDzzwgL799ltFRERo/vz5+u1vfyun0ymbzSZJmjRpkj788EPt27dPkjRo0CCdOXNGq1atMvvp1auXunXrprS0tCvq3+VyKSQkRMXFxQoODq7uMlQp590JNTrf9eAY+Yq3W/BYbVxnAKiO2vhv9LXi6ft3jV6zk5eXJ6fTqdjYWHNbSEiIYmJilJOTI0nKyclRaGioGXQkKTY2Vr6+vtq8ebNZc9ddd5lBR5Li4uK0f/9+nTx50qy5eD8VNRX7qUpJSYlcLpfbAwAAWFuNhh2n0ylJCgsLc9seFhZmjjmdTjVt2tRt3N/fXw0bNnSrqWqOi/dxqZqK8aqkpqYqJCTEfLRo0cLTQwQAALXMT+rTWJMnT1ZxcbH5OHz4sLdbAgAA11iNhp3w8HBJUkFBgdv2goICcyw8PFyFhYVu4xcuXNCJEyfcaqqa4+J9XKqmYrwqdrtdwcHBbg8AAGBtNRp2IiMjFR4erqysLHOby+XS5s2b5XA4JEkOh0NFRUXKzc01a9auXavy8nLFxMSYNRs2bND58+fNmszMTLVv314NGjQway7eT0VNxX4AAACkaoSd06dPa8eOHdqxY4ek/16UvGPHDuXn58vHx0fjx4/X73//e61cuVI7d+7UsGHDFBERYX5iq2PHjrr//vv11FNPacuWLfriiy80duxYDR48WBEREZKkX//617LZbBo5cqR2796tpUuXavbs2UpOTjb7GDdunDIyMvTqq69q3759mjZtmrZt26axY8de/aoAAADL8Pf0Bdu2bVOfPn3M5xUBJCEhQenp6Xr++ed15swZjRo1SkVFRbrzzjuVkZGhgIAA8zXvv/++xo4dq/vuu0++vr4aOHCg5syZY46HhITos88+U2JioqKjo9W4cWOlpKS43Yvn9ttv1+LFizVlyhS98MILateunT788EN16tSpWgsBAACs6arus1PbcZ8dd7XxHg61cZ0B4KfiWr2vePU+OwAAADcawg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALC0Wh925s2bp9atWysgIEAxMTHasmWLt1sCAAA3kFoddpYuXark5GRNnTpV27dvV9euXRUXF6fCwkJvtwYAAG4QtTrsvPbaa3rqqac0fPhwRUVFKS0tTXXr1tWf//xnb7cGAABuEP7ebqC6SktLlZubq8mTJ5vbfH19FRsbq5ycnCpfU1JSopKSEvN5cXGxJMnlctV4f2fOlvx40Q3mWqzDtVYb1xkAfiqu1ftKxbyGYVxRfa0NO8ePH1dZWZnCwsLctoeFhWnfvn1VviY1NVXTp0+vtL1FixbXpMda5+k3vN0BAMBKrvH7yqlTpxQSEvKjdbU27FTH5MmTlZycbD4vLy/XiRMn1KhRI/n4+NTYflwul1q0aKHDhw8rODi4xua1Otatelg3z7Fm1cO6VQ/rVj2XWzfDMHTq1ClFRERc0Vy1Nuw0btxYfn5+KigocNteUFCg8PDwKl9jt9tlt9vdtoWGhl6rFhUcHMwPdjWwbtXDunmONase1q16WLfqudS6XckZnQq19gJlm82m6OhoZWVlmdvKy8uVlZUlh8Phxc4AAMCNpNae2ZGk5ORkJSQkqHv37urZs6dmzZqlM2fOaPjw4d5uDQAA3CBqddgZNGiQjh07ppSUFDmdTnXr1k0ZGRmVLlq+3ux2u6ZOnVrpV2a4PNatelg3z7Fm1cO6VQ/rVj01uW4+xpV+bgsAAKAWqrXX7AAAAFwJwg4AALA0wg4AALA0wg4AALA0wg4AALA0ws41MG/ePLVu3VoBAQGKiYnRli1bvN3SDWXDhg365S9/qYiICPn4+OjDDz90GzcMQykpKWrWrJkCAwMVGxurAwcOeKfZG0Rqaqp69Oih+vXrq2nTpurfv7/279/vVnPu3DklJiaqUaNGCgoK0sCBAyvdYfynZv78+erSpYt5B1aHw6FPP/3UHGfNftxLL70kHx8fjR8/3tzGulU2bdo0+fj4uD06dOhgjrNml/af//xHjz32mBo1aqTAwEB17txZ27ZtM8dr4j2BsFPDli5dquTkZE2dOlXbt29X165dFRcXp8LCQm+3dsM4c+aMunbtqnnz5lU5PnPmTM2ZM0dpaWnavHmz6tWrp7i4OJ07d+46d3rjyM7OVmJiojZt2qTMzEydP39effv21ZkzZ8yapKQkffzxx1q+fLmys7N15MgRDRgwwItde1/z5s310ksvKTc3V9u2bdO9996rBx98ULt375bEmv2YrVu36k9/+pO6dOnitp11q9rPfvYzHT161Hz84x//MMdYs6qdPHlSd9xxh+rUqaNPP/1Ue/bs0auvvqoGDRqYNTXynmCgRvXs2dNITEw0n5eVlRkRERFGamqqF7u6cUkyVqxYYT4vLy83wsPDjZdfftncVlRUZNjtduN///d/vdDhjamwsNCQZGRnZxuG8d81qlOnjrF8+XKzZu/evYYkIycnx1tt3pAaNGhgvPPOO6zZjzh16pTRrl07IzMz07j77ruNcePGGYbBz9qlTJ061ejatWuVY6zZpU2cONG48847LzleU+8JnNmpQaWlpcrNzVVsbKy5zdfXV7GxscrJyfFiZ7VHXl6enE6n2xqGhIQoJiaGNbxIcXGxJKlhw4aSpNzcXJ0/f95t3Tp06KCWLVuybv9fWVmZlixZojNnzsjhcLBmPyIxMVHx8fFu6yPxs3Y5Bw4cUEREhG6++WYNHTpU+fn5klizy1m5cqW6d++uRx55RE2bNtWtt96qt99+2xyvqfcEwk4NOn78uMrKyip9XUVYWJicTqeXuqpdKtaJNby08vJyjR8/XnfccYc6deok6b/rZrPZFBoa6lbLukk7d+5UUFCQ7Ha7Ro8erRUrVigqKoo1u4wlS5Zo+/btSk1NrTTGulUtJiZG6enpysjI0Pz585WXl6fevXvr1KlTrNllfP3115o/f77atWunNWvWaMyYMXrmmWe0cOFCSTX3nlCrvxsL+ClKTEzUrl273K4HwKW1b99eO3bsUHFxsT744AMlJCQoOzvb223dsA4fPqxx48YpMzNTAQEB3m6n1ujXr5/55y5duigmJkatWrXSsmXLFBgY6MXObmzl5eXq3r27/vjHP0qSbr31Vu3atUtpaWlKSEiosf1wZqcGNW7cWH5+fpWusC8oKFB4eLiXuqpdKtaJNaza2LFjtWrVKq1bt07Nmzc3t4eHh6u0tFRFRUVu9aybZLPZ1LZtW0VHRys1NVVdu3bV7NmzWbNLyM3NVWFhoW677Tb5+/vL399f2dnZmjNnjvz9/RUWFsa6XYHQ0FDdcsstOnjwID9rl9GsWTNFRUW5bevYsaP5K8Caek8g7NQgm82m6OhoZWVlmdvKy8uVlZUlh8Phxc5qj8jISIWHh7utocvl0ubNm3/Sa2gYhsaOHasVK1Zo7dq1ioyMdBuPjo5WnTp13NZt//79ys/P/0mvW1XKy8tVUlLCml3Cfffdp507d2rHjh3mo3v37ho6dKj5Z9btx50+fVr//ve/1axZM37WLuOOO+6odBuNf/3rX2rVqpWkGnxPuJqrqFHZkiVLDLvdbqSnpxt79uwxRo0aZYSGhhpOp9Pbrd0wTp06ZXz55ZfGl19+aUgyXnvtNePLL780vvnmG8MwDOOll14yQkNDjY8++sj46quvjAcffNCIjIw0zp496+XOvWfMmDFGSEiIsX79euPo0aPm4/vvvzdrRo8ebbRs2dJYu3atsW3bNsPhcBgOh8OLXXvfpEmTjOzsbCMvL8/46quvjEmTJhk+Pj7GZ599ZhgGa3alLv40lmGwblV59tlnjfXr1xt5eXnGF198YcTGxhqNGzc2CgsLDcNgzS5ly5Ythr+/v/GHP/zBOHDggPH+++8bdevWNRYtWmTW1MR7AmHnGpg7d67RsmVLw2azGT179jQ2bdrk7ZZuKOvWrTMkVXokJCQYhvHfjxr+7ne/M8LCwgy73W7cd999xv79+73btJdVtV6SjAULFpg1Z8+eNX7zm98YDRo0MOrWrWs89NBDxtGjR73X9A1gxIgRRqtWrQybzWY0adLEuO+++8ygYxis2ZX6Ydhh3SobNGiQ0axZM8Nmsxk33XSTMWjQIOPgwYPmOGt2aR9//LHRqVMnw263Gx06dDDeeustt/GaeE/wMQzDqPb5JwAAgBsc1+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABL+380KEXBQVEQPgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARr1JREFUeJzt3XlcVnX+///nJcoFLoCKgIyEpoa7piXRuCYfscjJyRq3Eo20TE0lTSnDJWc0tcXKtBpTZ0bHsilzXDA0zRkld3JJHTWXLHGHS1FR5P37ox/n6yWoYCDKedxvt3OL6/1+nXPe7+tweT27rnMODmOMEQAAgA2VKu4BAAAAFBeCEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEADcwUaPHi2Hw1Go21y1apUcDodWrVpVqNsFbkcEIaAYnT17VqNGjVKHDh1UqVIlORwOzZo1q7iHBZv44IMP7vjft6+//lqxsbFq0KCBPDw8VL169eIeEu4wBCGgGJ04cUJjx47Vzp071bhx4+IeDmzmWkGoVatWOn/+vFq1anXrB1VAc+fO1dy5c+Xr66vg4ODiHg7uQAQhoBhVrVpVR44c0cGDBzVp0qTiHs4tlZGRUdxDKDbZ2dm6cOFCnn23w/NSqlQpeXl5qVSp2/8t4i9/+YtcLpfWrFnD/0zgptz+v+VAMco5/+J///ufnnrqKfn6+qpKlSp67bXXZIzRTz/9pMcee0w+Pj4KCgrSm2++6bb+e++9p/r166ts2bKqWLGi7rvvPs2dO9fqdzqdCgoKKpSxHjx4UC+88ILCwsLk7e2typUr68knn9SBAwdy1aalpWnIkCGqXr26nE6nqlWrpp49e+rEiRNWzYULFzR69Gjdc8898vLyUtWqVfX4449r3759kq59HsmBAwdyfcXXq1cvlS9fXvv27dMjjzyiChUqqEePHpKk//znP3ryySd11113yel0KiQkREOGDNH58+dzjXvXrl3605/+pCpVqsjb21thYWF69dVXJUkrV66Uw+HQl19+mWu9uXPnyuFwKDk5Od/P543mL/0aWl566SWFhITI6XQqLCxMkydPljHGbVsOh0MDBgzQnDlzVL9+fTmdTiUmJmrWrFlyOBz69ttv9cILLyggIEDVqlWz1lu6dKlatmypcuXKqUKFCoqOjtaOHTtuOPaZM2fqoYceUkBAgJxOp+rVq6dp06a51VSvXl07duzQt99+K4fDIYfDoTZt2ki69rGdP3++mjVrJm9vb/n7++upp57Szz//7FaTc6x//vlnderUSeXLl1eVKlU0dOhQXb582a123rx5atasmSpUqCAfHx81bNhQU6ZMueH8rhQcHKwyZcoUaB3gSqWLewDAnaBLly6qW7euJkyYoMWLF2vcuHGqVKmSPvzwQz300EN64403NGfOHA0dOlT333+/WrVqpY8//lgvvviinnjiCQ0aNEgXLlzQ1q1btW7dOnXv3r3Qx7hhwwatXbtWXbt2VbVq1XTgwAFNmzZNbdq00Q8//KCyZctK+vW8pJYtW2rnzp165pln1LRpU504cUILFy7U4cOH5e/vr8uXL+vRRx/VihUr1LVrVw0aNEhnzpxRUlKStm/frpo1axZ4fFlZWYqKilKLFi00efJkazzz58/XuXPn1K9fP1WuXFnr16/Xe++9p8OHD2v+/PnW+lu3blXLli1VpkwZ9e3bV9WrV9e+ffv073//W3/+85/Vpk0bhYSEaM6cOfrjH//otu85c+aoZs2aioiIyNdY8zN/Y4z+8Ic/aOXKlYqNjVWTJk20bNkyDRs2TD///LPefvttt21+8803+uyzzzRgwAD5+/urevXqSklJkSS98MILqlKlihISEqxPhP7+978rJiZGUVFReuONN3Tu3DlNmzZNLVq00JYtW657Lsy0adNUv359/eEPf1Dp0qX173//Wy+88IKys7PVv39/SdI777yjgQMHqnz58laYDAwMvOY2Z82apd69e+v+++/X+PHjdfToUU2ZMkVr1qzRli1b5Ofn5/b8RUVFKTw8XJMnT9by5cv15ptvqmbNmurXr58kKSkpSd26dVO7du30xhtvSJJ27typNWvWaNCgQfk6TkChMACuadSoUUaS6du3r9WWlZVlqlWrZhwOh5kwYYLVfvr0aePt7W1iYmKMMcY89thjpn79+vne14YNG4wkM3PmzJsa67lz53K1JScnG0nmb3/7m9WWkJBgJJkvvvgiV312drYxxphPPvnESDJvvfXWNWtWrlxpJJmVK1e69e/fvz/XPGJiYowkM2LEiHyNe/z48cbhcJiDBw9aba1atTIVKlRwa7tyPMYYEx8fb5xOp0lLS7Pajh07ZkqXLm1GjRqVaz/Xkp/5L1iwwEgy48aNc+t/4oknjMPhMHv37rXaJJlSpUqZHTt2uNXOnDnTSDItWrQwWVlZVvuZM2eMn5+f6dOnj1t9amqq8fX1dWvP+R29Ul7PaVRUlLn77rvd2urXr29at26dq/bqY3vx4kUTEBBgGjRoYM6fP2/VLVq0yEgyCQkJVlvOsR47dqzbNu+9917TrFkz6/GgQYOMj4+P27x/q+joaBMaGlpo24M98NUYkA/PPvus9bOHh4fuu+8+GWMUGxtrtfv5+SksLEw//vij9fjw4cPasGHDLRmjt7e39fOlS5d08uRJ1apVS35+ftq8ebPV969//UuNGzfO9amJJOsy7H/961/y9/fXwIEDr1lzM3I+DbjWuDMyMnTixAk9+OCDMsZoy5YtkqTjx49r9erVeuaZZ3TXXXddczw9e/ZUZmamPv/8c6vt008/VVZWlp566ql8jzM/81+yZIk8PDz04osvuvW/9NJLMsZo6dKlbu2tW7dWvXr18txfnz595OHhYT1OSkpSWlqaunXrphMnTliLh4eHwsPDtXLlyuuO/8rnND09XSdOnFDr1q31448/Kj09/fqTz8PGjRt17NgxvfDCC/Ly8rLao6OjVadOHS1evDjXOs8//7zb45YtW1qvDenX10dGRoaSkpIKPB6gMBGEgHy4+s3X19dXXl5e8vf3z9V++vRpSdLw4cNVvnx5NW/eXLVr11b//v21Zs2aIhvj+fPnlZCQYJ2v4u/vrypVqigtLc3tzW/fvn1q0KDBdbe1b98+hYWFqXTpwvv2vHTp0m7nv+Q4dOiQevXqpUqVKlnnk7Ru3VqSrHHnvIHeaNx16tTR/fffrzlz5lhtc+bM0QMPPKBatWrle6z5mf/BgwcVHBysChUquLXXrVvX6r9SjRo1rrmtq/v27NkjSXrooYdUpUoVt+Xrr7/WsWPHrjv+NWvWKDIyUuXKlZOfn5+qVKmiV155RZJuKgjlzCUsLCxXX506dXLN1cvLS1WqVHFrq1ixovXakH79OvCee+7Rww8/rGrVqumZZ55RYmJigccG/FacIwTkw5X/t369NknWibJ169bV7t27tWjRIiUmJupf//qXPvjgAyUkJGjMmDGFPsaBAwdq5syZGjx4sCIiIuTr6yuHw6GuXbsqOzu70Pd3rU+Grj4hNofT6cx1FdLly5f1f//3fzp16pSGDx+uOnXqqFy5cvr555/Vq1evmxp3z549NWjQIB0+fFiZmZn67rvv9P777xd4O4Xtyk9pbtSXM++///3veZ5Mf72Atm/fPrVr10516tTRW2+9pZCQEHl6emrJkiV6++23i+R34WrXem1cKSAgQCkpKVq2bJmWLl2qpUuXaubMmerZs6dmz55d5GMEchCEgCJUrlw5denSRV26dNHFixf1+OOP689//rPi4+PdvmIoDJ9//rliYmLcrly7cOGC0tLS3Opq1qyp7du3X3dbNWvW1Lp163Tp0qVrXpFTsWJFScq1/as/Hbiebdu26X//+59mz56tnj17Wu1Xf11y9913S9INxy1JXbt2VVxcnP75z3/q/PnzKlOmjLp06ZLvMUn5m39oaKiWL1+uM2fOuH0qtGvXLqv/ZuWcjB4QEKDIyMgCrfvvf/9bmZmZWrhwodsnmXl9nZbfrzlz5rJ792499NBDbn27d+++6bl6enqqY8eO6tixo7Kzs/XCCy/oww8/1GuvvVagT/CA34KvxoAicvLkSbfHnp6eqlevnowxunTpUqHvz8PDI9dl2++9916uT2g6d+6s77//Ps/LzHPW79y5s06cOJHnJyk5NaGhofLw8NDq1avd+j/44IMCjfnKbeb8fPUl1FWqVFGrVq30ySef6NChQ3mOJ4e/v78efvhh/eMf/9CcOXPUoUOHXF9h3kh+5v/II4/o8uXLuWrefvttORwOPfzwwwXa55WioqLk4+Ojv/zlL3n+rhw/fvya6+b1nKanp2vmzJm5asuVK5cryOblvvvuU0BAgKZPn67MzEyrfenSpdq5c6eio6NvuI2rXf36KFWqlBo1aiRJbvsAihqfCAFFpH379goKCtLvf/97BQYGaufOnXr//fcVHR3t9gnC+++/r7S0NP3yyy+Sfv0/+sOHD0v69esuX1/ffO3v0Ucf1d///nf5+vqqXr16Sk5O1vLly1W5cmW3umHDhunzzz/Xk08+qWeeeUbNmjXTqVOntHDhQk2fPl2NGzdWz5499be//U1xcXFav369WrZsqYyMDC1fvlwvvPCCHnvsMfn6+urJJ5/Ue++9J4fDoZo1a2rRokU3PH/lSnXq1FHNmjU1dOhQ/fzzz/Lx8dG//vUvt3NJcrz77rtq0aKFmjZtqr59+6pGjRo6cOCAFi9ebF2GnqNnz5564oknJEmvv/56vsdz5fo3mn/Hjh3Vtm1bvfrqqzpw4IAaN26sr7/+Wl999ZUGDx58U7cYyOHj46Np06bp6aefVtOmTdW1a1dVqVJFhw4d0uLFi/X73//+ml/3tW/f3vqk5bnnntPZs2f18ccfKyAgQEeOHHGrbdasmaZNm6Zx48apVq1aCggIyPWJjySVKVNGb7zxhnr37q3WrVurW7du1uXz1atX15AhQwo8x2effVanTp3SQw89pGrVqungwYN677331KRJE+s8q/zYunWrFi5cKEnau3ev0tPTNW7cOElS48aN1bFjxwKPDTZTLNeqAXeInEuTjx8/7tYeExNjypUrl6u+devW1iXzH374oWnVqpWpXLmycTqdpmbNmmbYsGEmPT3dbZ3Q0FAjKc9l//79+R7r6dOnTe/evY2/v78pX768iYqKMrt27TKhoaHWJf05Tp48aQYMGGB+97vfGU9PT1OtWjUTExNjTpw4YdWcO3fOvPrqq6ZGjRqmTJkyJigoyDzxxBNm3759Vs3x48dN586dTdmyZU3FihXNc889Z7Zv357n5fN5PV/GGPPDDz+YyMhIU758eePv72/69Oljvv/++zxvJbB9+3bzxz/+0fj5+RkvLy8TFhZmXnvttVzbzMzMNBUrVjS+vr5ul3sXRH7mf+bMGTNkyBATHBxsypQpY2rXrm0mTZrkdkm/Mb9ePt+/f/9c+8i5fH7Dhg15jmHlypUmKirK+Pr6Gi8vL1OzZk3Tq1cvs3HjRqsmr8vnFy5caBo1amS8vLxM9erVzRtvvGHdEuDK36nU1FQTHR1tKlSoYCRZl9Jf69YIn376qbn33nuN0+k0lSpVMj169DCHDx92q7nWsb56nJ9//rlp3769CQgIMJ6enuauu+4yzz33nDly5Eiez8W15DyHeS1X/94DeXEYc9XnygBwh8vKylJwcLA6duyoGTNmFPdwANzGOEcIQImzYMECHT9+3O0EbADIC58IAbe5s2fP6uzZs9etqVKlSr4uWS7p1q1bp61bt+r111+Xv7+/240kJenixYs6derUdbfh6+t73UvdcWukpqZet9/b2zvf588B18PJ0sBtbvLkyTe879D+/fuv+7en7GLatGn6xz/+oSZNmrj90dcca9euVdu2ba+7jZkzZ6pXr15FM0DkW9WqVa/bHxMTk+cxBgqKT4SA29yPP/7o9qcJ8tKiRYtCvy9RSXT69Glt2rTpujX169e/4Zswit7y5cuv2x8cHHzNP1kCFARBCAAA2BYnSwMAANviHKHryM7O1i+//KIKFSr8pr+4DQAAbh1jjM6cOaPg4OBcf+PwagSh6/jll18UEhJS3MMAAAA34aefflK1atWuW0MQuo6cP4Pw008/ycfHp5hHAwAA8sPlcikkJMTtzxldC0HoOnK+DvPx8SEIAQBwh8nPaS2cLA0AAGyLIAQAAGyLIAQAAGyLIAQAAGyrwEFo9erV6tixo4KDg+VwOLRgwQK3fofDkecyadIkq6Z69eq5+idMmOC2na1bt6ply5by8vJSSEiIJk6cmGss8+fPV506deTl5aWGDRtqyZIlbv3GGCUkJKhq1ary9vZWZGSk9uzZU9ApAwCAEqrAQSgjI0ONGzfW1KlT8+w/cuSI2/LJJ5/I4XCoc+fObnVjx451qxs4cKDV53K51L59e4WGhmrTpk2aNGmSRo8erY8++siqWbt2rbp166bY2Fht2bJFnTp1UqdOnbR9+3arZuLEiXr33Xc1ffp0rVu3TuXKlVNUVJQuXLhQ0GkDAICSyPwGksyXX3553ZrHHnvMPPTQQ25toaGh5u23377mOh988IGpWLGiyczMtNqGDx9uwsLCrMd/+tOfTHR0tNt64eHh5rnnnjPGGJOdnW2CgoLMpEmTrP60tDTjdDrNP//5zxtNzRhjTHp6upFk0tPT81UPAACKX0Hev4v0HKGjR49q8eLFio2NzdU3YcIEVa5cWffee68mTZqkrKwsqy85OVmtWrWSp6en1RYVFaXdu3fr9OnTVk1kZKTbNqOiopScnCxJ2r9/v1JTU91qfH19FR4ebtVcLTMzUy6Xy20BAAAlV5HeUHH27NmqUKGCHn/8cbf2F198UU2bNlWlSpW0du1axcfH68iRI3rrrbckSampqapRo4bbOoGBgVZfxYoVlZqaarVdWZOammrVXbleXjVXGz9+vMaMGXOTswUAAHeaIg1Cn3zyiXr06CEvLy+39ri4OOvnRo0aydPTU88995zGjx8vp9NZlEO6rvj4eLex5dyiGwAAlExF9tXYf/7zH+3evVvPPvvsDWvDw8OVlZWlAwcOSJKCgoJ09OhRt5qcx0FBQdetubL/yvXyqrma0+m0/pwGf1YDAICSr8iC0IwZM9SsWTM1btz4hrUpKSkqVaqUAgICJEkRERFavXq1Ll26ZNUkJSUpLCxMFStWtGpWrFjhtp2kpCRFRERIkmrUqKGgoCC3GpfLpXXr1lk1AADA3gr81djZs2e1d+9e6/H+/fuVkpKiSpUq6a677pL0a+CYP3++3nzzzVzrJycna926dWrbtq0qVKig5ORkDRkyRE899ZQVcrp3764xY8YoNjZWw4cP1/bt2zVlyhS9/fbb1nYGDRqk1q1b680331R0dLTmzZunjRs3WpfYOxwODR48WOPGjVPt2rVVo0YNvfbaawoODlanTp0KOm0AAFASFfSStJUrVxpJuZaYmBir5sMPPzTe3t4mLS0t1/qbNm0y4eHhxtfX13h5eZm6deuav/zlL+bChQtudd9//71p0aKFcTqd5ne/+52ZMGFCrm199tln5p577jGenp6mfv36ZvHixW792dnZ5rXXXjOBgYHG6XSadu3amd27d+d7rlw+DwDAnacg798OY4wpxhx2W3O5XPL19VV6ejrnCwEl0NtJ/yvuIRTYkP+7p7iHANz2CvL+XaRXjQHA7eyBQx/duOi2M7m4BwCUKPzRVQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsFDkKrV69Wx44dFRwcLIfDoQULFrj19+rVSw6Hw23p0KGDW82pU6fUo0cP+fj4yM/PT7GxsTp79qxbzdatW9WyZUt5eXkpJCREEydOzDWW+fPnq06dOvLy8lLDhg21ZMkSt35jjBISElS1alV5e3srMjJSe/bsKeiUAQBACVXgIJSRkaHGjRtr6tSp16zp0KGDjhw5Yi3//Oc/3fp79OihHTt2KCkpSYsWLdLq1avVt29fq9/lcql9+/YKDQ3Vpk2bNGnSJI0ePVofffSRVbN27Vp169ZNsbGx2rJlizp16qROnTpp+/btVs3EiRP17rvvavr06Vq3bp3KlSunqKgoXbhwoaDTBgAAJZDDGGNuemWHQ19++aU6depktfXq1UtpaWm5PinKsXPnTtWrV08bNmzQfffdJ0lKTEzUI488osOHDys4OFjTpk3Tq6++qtTUVHl6ekqSRowYoQULFmjXrl2SpC5duigjI0OLFi2ytv3AAw+oSZMmmj59uowxCg4O1ksvvaShQ4dKktLT0xUYGKhZs2apa9euN5yfy+WSr6+v0tPT5ePjczNPEYDbWPKMocU9hAKLiJ1c3EMAbnsFef8uknOEVq1apYCAAIWFhalfv346efKk1ZecnCw/Pz8rBElSZGSkSpUqpXXr1lk1rVq1skKQJEVFRWn37t06ffq0VRMZGem236ioKCUnJ0uS9u/fr9TUVLcaX19fhYeHWzVXy8zMlMvlclsAAEDJVehBqEOHDvrb3/6mFStW6I033tC3336rhx9+WJcvX5YkpaamKiAgwG2d0qVLq1KlSkpNTbVqAgMD3WpyHt+o5sr+K9fLq+Zq48ePl6+vr7WEhIQUeP4AAODOUbqwN3jlV04NGzZUo0aNVLNmTa1atUrt2rUr7N0Vqvj4eMXFxVmPXS4XYQgAgBKsyC+fv/vuu+Xv76+9e/dKkoKCgnTs2DG3mqysLJ06dUpBQUFWzdGjR91qch7fqObK/ivXy6vmak6nUz4+Pm4LAAAouYo8CB0+fFgnT55U1apVJUkRERFKS0vTpk2brJpvvvlG2dnZCg8Pt2pWr16tS5cuWTVJSUkKCwtTxYoVrZoVK1a47SspKUkRERGSpBo1aigoKMitxuVyad26dVYNAACwtwIHobNnzyolJUUpKSmSfj0pOSUlRYcOHdLZs2c1bNgwfffddzpw4IBWrFihxx57TLVq1VJUVJQkqW7duurQoYP69Omj9evXa82aNRowYIC6du2q4OBgSVL37t3l6emp2NhY7dixQ59++qmmTJni9rXVoEGDlJiYqDfffFO7du3S6NGjtXHjRg0YMEDSr1e0DR48WOPGjdPChQu1bds29ezZU8HBwW5XuQEAAPsq8DlCGzduVNu2ba3HOeEkJiZG06ZN09atWzV79mylpaUpODhY7du31+uvvy6n02mtM2fOHA0YMEDt2rVTqVKl1LlzZ7377rtWv6+vr77++mv1799fzZo1k7+/vxISEtzuNfTggw9q7ty5GjlypF555RXVrl1bCxYsUIMGDayal19+WRkZGerbt6/S0tLUokULJSYmysvLq6DTBgAAJdBvuo9QScd9hICSjfsIASVTsd9HCAAA4E5AEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZV4CC0evVqdezYUcHBwXI4HFqwYIHVd+nSJQ0fPlwNGzZUuXLlFBwcrJ49e+qXX35x20b16tXlcDjclgkTJrjVbN26VS1btpSXl5dCQkI0ceLEXGOZP3++6tSpIy8vLzVs2FBLlixx6zfGKCEhQVWrVpW3t7ciIyO1Z8+egk4ZAACUUAUOQhkZGWrcuLGmTp2aq+/cuXPavHmzXnvtNW3evFlffPGFdu/erT/84Q+5aseOHasjR45Yy8CBA60+l8ul9u3bKzQ0VJs2bdKkSZM0evRoffTRR1bN2rVr1a1bN8XGxmrLli3q1KmTOnXqpO3bt1s1EydO1Lvvvqvp06dr3bp1KleunKKionThwoWCThsAAJRADmOMuemVHQ59+eWX6tSp0zVrNmzYoObNm+vgwYO66667JP36idDgwYM1ePDgPNeZNm2aXn31VaWmpsrT01OSNGLECC1YsEC7du2SJHXp0kUZGRlatGiRtd4DDzygJk2aaPr06TLGKDg4WC+99JKGDh0qSUpPT1dgYKBmzZqlrl273nB+LpdLvr6+Sk9Pl4+PT36eEgB3kOQZQ4t7CAUWETu5uIcA3PYK8v5d5OcIpaeny+FwyM/Pz619woQJqly5su69915NmjRJWVlZVl9ycrJatWplhSBJioqK0u7du3X69GmrJjIy0m2bUVFRSk5OliTt379fqampbjW+vr4KDw+3aq6WmZkpl8vltgAAgJKrdFFu/MKFCxo+fLi6devmlshefPFFNW3aVJUqVdLatWsVHx+vI0eO6K233pIkpaamqkaNGm7bCgwMtPoqVqyo1NRUq+3KmtTUVKvuyvXyqrna+PHjNWbMmN8wYwAAcCcpsiB06dIl/elPf5IxRtOmTXPri4uLs35u1KiRPD099dxzz2n8+PFyOp1FNaQbio+Pdxuby+VSSEhIsY0HAAAUrSL5aiwnBB08eFBJSUk3/H4uPDxcWVlZOnDggCQpKChIR48edavJeRwUFHTdmiv7r1wvr5qrOZ1O+fj4uC0AAKDkKvQglBOC9uzZo+XLl6ty5co3XCclJUWlSpVSQECAJCkiIkKrV6/WpUuXrJqkpCSFhYWpYsWKVs2KFSvctpOUlKSIiAhJUo0aNRQUFORW43K5tG7dOqsGAADYW4G/Gjt79qz27t1rPd6/f79SUlJUqVIlVa1aVU888YQ2b96sRYsW6fLly9b5OJUqVZKnp6eSk5O1bt06tW3bVhUqVFBycrKGDBmip556ygo53bt315gxYxQbG6vhw4dr+/btmjJlit5++21rv4MGDVLr1q315ptvKjo6WvPmzdPGjRutS+wdDocGDx6scePGqXbt2qpRo4Zee+01BQcHX/cqNwAAYB8FDkIbN25U27Ztrcc559TExMRo9OjRWrhwoSSpSZMmbuutXLlSbdq0kdPp1Lx58zR69GhlZmaqRo0aGjJkiNu5Ob6+vvr666/Vv39/NWvWTP7+/kpISFDfvn2tmgcffFBz587VyJEj9corr6h27dpasGCBGjRoYNW8/PLLysjIUN++fZWWlqYWLVooMTFRXl5eBZ02AAAogX7TfYRKOu4jBJRs3EcIKJluq/sIAQAA3K4IQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYKHIRWr16tjh07Kjg4WA6HQwsWLHDrN8YoISFBVatWlbe3tyIjI7Vnzx63mlOnTqlHjx7y8fGRn5+fYmNjdfbsWbearVu3qmXLlvLy8lJISIgmTpyYayzz589XnTp15OXlpYYNG2rJkiUFHgsAALCvAgehjIwMNW7cWFOnTs2zf+LEiXr33Xc1ffp0rVu3TuXKlVNUVJQuXLhg1fTo0UM7duxQUlKSFi1apNWrV6tv375Wv8vlUvv27RUaGqpNmzZp0qRJGj16tD766COrZu3aterWrZtiY2O1ZcsWderUSZ06ddL27dsLNBYAAGBfDmOMuemVHQ59+eWX6tSpk6RfP4EJDg7WSy+9pKFDh0qS0tPTFRgYqFmzZqlr167auXOn6tWrpw0bNui+++6TJCUmJuqRRx7R4cOHFRwcrGnTpunVV19VamqqPD09JUkjRozQggULtGvXLklSly5dlJGRoUWLFlnjeeCBB9SkSRNNnz49X2O5EZfLJV9fX6Wnp8vHx+dmnyYAt6nkGUOLewgFFhE7ubiHANz2CvL+XajnCO3fv1+pqamKjIy02nx9fRUeHq7k5GRJUnJysvz8/KwQJEmRkZEqVaqU1q1bZ9W0atXKCkGSFBUVpd27d+v06dNWzZX7yanJ2U9+xnK1zMxMuVwutwUAAJRchRqEUlNTJUmBgYFu7YGBgVZfamqqAgIC3PpLly6tSpUqudXktY0r93Gtmiv7bzSWq40fP16+vr7WEhISko9ZAwCAOxVXjV0hPj5e6enp1vLTTz8V95AAAEARKtQgFBQUJEk6evSoW/vRo0etvqCgIB07dsytPysrS6dOnXKryWsbV+7jWjVX9t9oLFdzOp3y8fFxWwAAQMlVqEGoRo0aCgoK0ooVK6w2l8uldevWKSIiQpIUERGhtLQ0bdq0yar55ptvlJ2drfDwcKtm9erVunTpklWTlJSksLAwVaxY0aq5cj85NTn7yc9YAACAvRU4CJ09e1YpKSlKSUmR9OtJySkpKTp06JAcDocGDx6scePGaeHChdq2bZt69uyp4OBg68qyunXrqkOHDurTp4/Wr1+vNWvWaMCAAeratauCg4MlSd27d5enp6diY2O1Y8cOffrpp5oyZYri4uKscQwaNEiJiYl68803tWvXLo0ePVobN27UgAEDJClfYwEAAPZWuqArbNy4UW3btrUe54STmJgYzZo1Sy+//LIyMjLUt29fpaWlqUWLFkpMTJSXl5e1zpw5czRgwAC1a9dOpUqVUufOnfXuu+9a/b6+vvr666/Vv39/NWvWTP7+/kpISHC719CDDz6ouXPnauTIkXrllVdUu3ZtLViwQA0aNLBq8jMWAABgX7/pPkIlHfcRAko27iMElEzFdh8hAACAOwlBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2FahB6Hq1avL4XDkWvr37y9JatOmTa6+559/3m0bhw4dUnR0tMqWLauAgAANGzZMWVlZbjWrVq1S06ZN5XQ6VatWLc2aNSvXWKZOnarq1avLy8tL4eHhWr9+fWFPFwAA3MEKPQht2LBBR44csZakpCRJ0pNPPmnV9OnTx61m4sSJVt/ly5cVHR2tixcvau3atZo9e7ZmzZqlhIQEq2b//v2Kjo5W27ZtlZKSosGDB+vZZ5/VsmXLrJpPP/1UcXFxGjVqlDZv3qzGjRsrKipKx44dK+wpAwCAO5TDGGOKcgeDBw/WokWLtGfPHjkcDrVp00ZNmjTRO++8k2f90qVL9eijj+qXX35RYGCgJGn69OkaPny4jh8/Lk9PTw0fPlyLFy/W9u3brfW6du2qtLQ0JSYmSpLCw8N1//336/3335ckZWdnKyQkRAMHDtSIESPyNXaXyyVfX1+lp6fLx8fnNzwLAG5HyTOGFvcQCiwidnJxDwG47RXk/btIzxG6ePGi/vGPf+iZZ56Rw+Gw2ufMmSN/f381aNBA8fHxOnfunNWXnJyshg0bWiFIkqKiouRyubRjxw6rJjIy0m1fUVFRSk5Otva7adMmt5pSpUopMjLSqslLZmamXC6X2wIAAEqu0kW58QULFigtLU29evWy2rp3767Q0FAFBwdr69atGj58uHbv3q0vvvhCkpSamuoWgiRZj1NTU69b43K5dP78eZ0+fVqXL1/Os2bXrl3XHO/48eM1ZsyYm54vAAC4sxRpEJoxY4YefvhhBQcHW219+/a1fm7YsKGqVq2qdu3aad++fapZs2ZRDueG4uPjFRcXZz12uVwKCQkpxhEBAICiVGRB6ODBg1q+fLn1Sc+1hIeHS5L27t2rmjVrKigoKNfVXUePHpUkBQUFWf/NabuyxsfHR97e3vLw8JCHh0eeNTnbyIvT6ZTT6czfBAEAwB2vyM4RmjlzpgICAhQdHX3dupSUFElS1apVJUkRERHatm2b29VdSUlJ8vHxUb169ayaFStWuG0nKSlJERERkiRPT081a9bMrSY7O1srVqywagAAAIokCGVnZ2vmzJmKiYlR6dL/70Onffv26fXXX9emTZt04MABLVy4UD179lSrVq3UqFEjSVL79u1Vr149Pf300/r++++1bNkyjRw5Uv3797c+rXn++ef1448/6uWXX9auXbv0wQcf6LPPPtOQIUOsfcXFxenjjz/W7NmztXPnTvXr108ZGRnq3bt3UUwZAADcgYrkq7Hly5fr0KFDeuaZZ9zaPT09tXz5cr3zzjvKyMhQSEiIOnfurJEjR1o1Hh4eWrRokfr166eIiAiVK1dOMTExGjt2rFVTo0YNLV68WEOGDNGUKVNUrVo1/fWvf1VUVJRV06VLFx0/flwJCQlKTU1VkyZNlJiYmOsEagAAYF9Ffh+hOxn3EQJKNu4jBJRMt819hAAAAG5nBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbhR6ERo8eLYfD4bbUqVPH6r9w4YL69++vypUrq3z58urcubOOHj3qto1Dhw4pOjpaZcuWVUBAgIYNG6asrCy3mlWrVqlp06ZyOp2qVauWZs2alWssU6dOVfXq1eXl5aXw8HCtX7++sKcLAADuYEXyiVD9+vV15MgRa/nvf/9r9Q0ZMkT//ve/NX/+fH377bf65Zdf9Pjjj1v9ly9fVnR0tC5evKi1a9dq9uzZmjVrlhISEqya/fv3Kzo6Wm3btlVKSooGDx6sZ599VsuWLbNqPv30U8XFxWnUqFHavHmzGjdurKioKB07dqwopgwAAO5ADmOMKcwNjh49WgsWLFBKSkquvvT0dFWpUkVz587VE088IUnatWuX6tatq+TkZD3wwANaunSpHn30Uf3yyy8KDAyUJE2fPl3Dhw/X8ePH5enpqeHDh2vx4sXavn27te2uXbsqLS1NiYmJkqTw8HDdf//9ev/99yVJ2dnZCgkJ0cCBAzVixIh8zcXlcsnX11fp6eny8fH5LU8LgNtQ8oyhxT2EAouInVzcQwBuewV5/y6ST4T27Nmj4OBg3X333erRo4cOHTokSdq0aZMuXbqkyMhIq7ZOnTq66667lJycLElKTk5Ww4YNrRAkSVFRUXK5XNqxY4dVc+U2cmpytnHx4kVt2rTJraZUqVKKjIy0avKSmZkpl8vltgAAgJKr0INQeHi4Zs2apcTERE2bNk379+9Xy5YtdebMGaWmpsrT01N+fn5u6wQGBio1NVWSlJqa6haCcvpz+q5X43K5dP78eZ04cUKXL1/OsyZnG3kZP368fH19rSUkJOSmngMAAHBnKF3YG3z44Yetnxs1aqTw8HCFhobqs88+k7e3d2HvrlDFx8crLi7OeuxyuQhDAACUYEV++byfn5/uuece7d27V0FBQbp48aLS0tLcao4ePaqgoCBJUlBQUK6ryHIe36jGx8dH3t7e8vf3l4eHR541OdvIi9PplI+Pj9sCAABKriIPQmfPntW+fftUtWpVNWvWTGXKlNGKFSus/t27d+vQoUOKiIiQJEVERGjbtm1uV3clJSXJx8dH9erVs2qu3EZOTc42PD091axZM7ea7OxsrVixwqoBAAAo9CA0dOhQffvttzpw4IDWrl2rP/7xj/Lw8FC3bt3k6+ur2NhYxcXFaeXKldq0aZN69+6tiIgIPfDAA5Kk9u3bq169enr66af1/fffa9myZRo5cqT69+8vp9MpSXr++ef1448/6uWXX9auXbv0wQcf6LPPPtOQIUOsccTFxenjjz/W7NmztXPnTvXr108ZGRnq3bt3YU8ZAADcoQr9HKHDhw+rW7duOnnypKpUqaIWLVrou+++U5UqVSRJb7/9tkqVKqXOnTsrMzNTUVFR+uCDD6z1PTw8tGjRIvXr108REREqV66cYmJiNHbsWKumRo0aWrx4sYYMGaIpU6aoWrVq+utf/6qoqCirpkuXLjp+/LgSEhKUmpqqJk2aKDExMdcJ1AAAwL4K/T5CJQn3EQJKNu4jBJRMxX4fIQAAgDsBQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANhW6eIeAAAAKBzJM4YW9xAKLCJ2crHun0+EAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRV6EBo/frzuv/9+VahQQQEBAerUqZN2797tVtOmTRs5HA635fnnn3erOXTokKKjo1W2bFkFBARo2LBhysrKcqtZtWqVmjZtKqfTqVq1amnWrFm5xjN16lRVr15dXl5eCg8P1/r16wt7ygAA4A5V6EHo22+/Vf/+/fXdd98pKSlJly5dUvv27ZWRkeFW16dPHx05csRaJk6caPVdvnxZ0dHRunjxotauXavZs2dr1qxZSkhIsGr279+v6OhotW3bVikpKRo8eLCeffZZLVu2zKr59NNPFRcXp1GjRmnz5s1q3LixoqKidOzYscKeNgAAuAM5jDGmKHdw/PhxBQQE6Ntvv1WrVq0k/fqJUJMmTfTOO+/kuc7SpUv16KOP6pdfflFgYKAkafr06Ro+fLiOHz8uT09PDR8+XIsXL9b27dut9bp27aq0tDQlJiZKksLDw3X//ffr/ffflyRlZ2crJCREAwcO1IgRI244dpfLJV9fX6Wnp8vHx+e3PA15Wzm+8LdZ1NrGF/cIgEKTPGNocQ+hwCJiJxf3EHAb43f6VwV5/y7yc4TS09MlSZUqVXJrnzNnjvz9/dWgQQPFx8fr3LlzVl9ycrIaNmxohSBJioqKksvl0o4dO6yayMhIt21GRUUpOTlZknTx4kVt2rTJraZUqVKKjIy0aq6WmZkpl8vltgAAgJKrdFFuPDs7W4MHD9bvf/97NWjQwGrv3r27QkNDFRwcrK1bt2r48OHavXu3vvjiC0lSamqqWwiSZD1OTU29bo3L5dL58+d1+vRpXb58Oc+aXbt25Tne8ePHa8yYMb9t0gWQ/OPJW7avwhLRtrhHAABA4SnSINS/f39t375d//3vf93a+/bta/3csGFDVa1aVe3atdO+fftUs2bNohzSdcXHxysuLs567HK5FBISUmzjAQAARavIgtCAAQO0aNEirV69WtWqVbtubXh4uCRp7969qlmzpoKCgnJd3XX06FFJUlBQkPXfnLYra3x8fOTt7S0PDw95eHjkWZOzjas5nU45nc78TxIAANzRCv0cIWOMBgwYoC+//FLffPONatSoccN1UlJSJElVq1aVJEVERGjbtm1uV3clJSXJx8dH9erVs2pWrFjhtp2kpCRFRERIkjw9PdWsWTO3muzsbK1YscKqAQAA9lbonwj1799fc+fO1VdffaUKFSpY5/T4+vrK29tb+/bt09y5c/XII4+ocuXK2rp1q4YMGaJWrVqpUaNGkqT27durXr16evrppzVx4kSlpqZq5MiR6t+/v/WJzfPPP6/3339fL7/8sp555hl98803+uyzz7R48WJrLHFxcYqJidF9992n5s2b65133lFGRoZ69+5d2NMGAAB3oEIPQtOmTZP06yXyV5o5c6Z69eolT09PLV++3AolISEh6ty5s0aOHGnVenh4aNGiRerXr58iIiJUrlw5xcTEaOzYsVZNjRo1tHjxYg0ZMkRTpkxRtWrV9Ne//lVRUVFWTZcuXXT8+HElJCQoNTVVTZo0UWJiYq4TqAEAgD0VehC60W2JQkJC9O23395wO6GhoVqyZMl1a9q0aaMtW7Zct2bAgAEaMGDADfcHAADsh781BgAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbKt0cQ8AQMnwdtL/insIBfZAcQ8AQLEjCAG3oTsyVBz6qLiHABSqO/J1WNwDuAMRhAAARe6ODBWEe1sgCAG3If4BxrXciYFC4ncaty+CEADcQQgUQOEiCKHEuxP/D5rv+QHg1iAIocTj/6ABANfCfYQAAIBtEYQAAIBt8dUYCoTzbQAAJQlBCAXC+TYAgJKEr8YAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBt2SIITZ06VdWrV5eXl5fCw8O1fv364h4SAAC4DZT4IPTpp58qLi5Oo0aN0ubNm9W4cWNFRUXp2LFjxT00AABQzEp8EHrrrbfUp08f9e7dW/Xq1dP06dNVtmxZffLJJ8U9NAAAUMxK9F+fv3jxojZt2qT4+HirrVSpUoqMjFRycnKu+szMTGVmZlqP09PTJUkul6tIxpdxPvPGRQAAlGBF8R6bs01jzA1rS3QQOnHihC5fvqzAwEC39sDAQO3atStX/fjx4zVmzJhc7SEhIUU2RgAAbG3g+0W26TNnzsjX1/e6NSU6CBVUfHy84uLirMfZ2dk6deqUKleuLIfDUaj7crlcCgkJ0U8//SQfH59C3fbtoKTPTyr5c2R+d76SPkfmd+crqjkaY3TmzBkFBwffsLZEByF/f395eHjo6NGjbu1Hjx5VUFBQrnqn0ymn0+nW5ufnV5RDlI+PT4n9BZdK/vykkj9H5nfnK+lzZH53vqKY440+CcpRok+W9vT0VLNmzbRixQqrLTs7WytWrFBEREQxjgwAANwOSvQnQpIUFxenmJgY3XfffWrevLneeecdZWRkqHfv3sU9NAAAUMxKfBDq0qWLjh8/roSEBKWmpqpJkyZKTEzMdQL1reZ0OjVq1KhcX8WVFCV9flLJnyPzu/OV9Dkyvzvf7TBHh8nPtWUAAAAlUIk+RwgAAOB6CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEJF5M9//rMefPBBlS1bNt93pzbGKCEhQVWrVpW3t7ciIyO1Z88et5pTp06pR48e8vHxkZ+fn2JjY3X27NkimMGNFXQsBw4ckMPhyHOZP3++VZdX/7x5827FlNzczHPdpk2bXGN//vnn3WoOHTqk6OholS1bVgEBARo2bJiysrKKcip5Kuj8Tp06pYEDByosLEze3t6666679OKLL1p/nDhHcR6/qVOnqnr16vLy8lJ4eLjWr19/3fr58+erTp068vLyUsOGDbVkyRK3/vy8Jm+lgszv448/VsuWLVWxYkVVrFhRkZGRuep79eqV61h16NChqKdxXQWZ46xZs3KN38vLy63mTj6Gef174nA4FB0dbdXcTsdw9erV6tixo4KDg+VwOLRgwYIbrrNq1So1bdpUTqdTtWrV0qxZs3LVFPR1XWAGRSIhIcG89dZbJi4uzvj6+uZrnQkTJhhfX1+zYMEC8/3335s//OEPpkaNGub8+fNWTYcOHUzjxo3Nd999Z/7zn/+YWrVqmW7duhXRLK6voGPJysoyR44ccVvGjBljypcvb86cOWPVSTIzZ850q7vyObhVbua5bt26tenTp4/b2NPT063+rKws06BBAxMZGWm2bNlilixZYvz9/U18fHxRTyeXgs5v27Zt5vHHHzcLFy40e/fuNStWrDC1a9c2nTt3dqsrruM3b9484+npaT755BOzY8cO06dPH+Pn52eOHj2aZ/2aNWuMh4eHmThxovnhhx/MyJEjTZkyZcy2bdusmvy8Jm+Vgs6ve/fuZurUqWbLli1m586dplevXsbX19ccPnzYqomJiTEdOnRwO1anTp26VVPKpaBznDlzpvHx8XEbf2pqqlvNnXwMT5486Ta37du3Gw8PDzNz5kyr5nY6hkuWLDGvvvqq+eKLL4wk8+WXX163/scffzRly5Y1cXFx5ocffjDvvfee8fDwMImJiVZNQZ+zm0EQKmIzZ87MVxDKzs42QUFBZtKkSVZbWlqacTqd5p///KcxxpgffvjBSDIbNmywapYuXWocDof5+eefC33s11NYY2nSpIl55pln3Nry8wIqajc7v9atW5tBgwZds3/JkiWmVKlSbv9YT5s2zfj4+JjMzMxCGXt+FNbx++yzz4ynp6e5dOmS1VZcx6958+amf//+1uPLly+b4OBgM378+Dzr//SnP5no6Gi3tvDwcPPcc88ZY/L3mryVCjq/q2VlZZkKFSqY2bNnW20xMTHmscceK+yh3rSCzvFG/76WtGP49ttvmwoVKpizZ89abbfbMcyRn38HXn75ZVO/fn23ti5dupioqCjr8W99zvKDr8ZuE/v371dqaqoiIyOtNl9fX4WHhys5OVmSlJycLD8/P913331WTWRkpEqVKqV169bd0vEWxlg2bdqklJQUxcbG5urr37+//P391bx5c33yyScyt/i+n79lfnPmzJG/v78aNGig+Ph4nTt3zm27DRs2dLuzeVRUlFwul3bs2FH4E7mGwvpdSk9Pl4+Pj0qXdr9J/a0+fhcvXtSmTZvcXj+lSpVSZGSk9fq5WnJyslu99OuxyKnPz2vyVrmZ+V3t3LlzunTpkipVquTWvmrVKgUEBCgsLEz9+vXTyZMnC3Xs+XWzczx79qxCQ0MVEhKixx57zO11VNKO4YwZM9S1a1eVK1fOrf12OYYFdaPXYGE8Z/lR4v/Exp0iNTVVknL96Y/AwECrLzU1VQEBAW79pUuXVqVKlayaW6UwxjJjxgzVrVtXDz74oFv72LFj9dBDD6ls2bL6+uuv9cILL+js2bN68cUXC238N3Kz8+vevbtCQ0MVHBysrVu3avjw4dq9e7e++OILa7t5HeOcvlulMI7fiRMn9Prrr6tv375u7cVx/E6cOKHLly/n+dzu2rUrz3WudSyufL3ltF2r5la5mfldbfjw4QoODnZ7U+nQoYMef/xx1ahRQ/v27dMrr7yihx9+WMnJyfLw8CjUOdzIzcwxLCxMn3zyiRo1aqT09HRNnjxZDz74oHbs2KFq1aqVqGO4fv16bd++XTNmzHBrv52OYUFd6zXocrl0/vx5nT59+jf/3ucHQagARowYoTfeeOO6NTt37lSdOnVu0YgKX37n+FudP39ec+fO1WuvvZar78q2e++9VxkZGZo0aVKhvJEW9fyuDAUNGzZU1apV1a5dO+3bt081a9a86e3m1606fi6XS9HR0apXr55Gjx7t1leUxw83Z8KECZo3b55WrVrldjJx165drZ8bNmyoRo0aqWbNmlq1apXatWtXHEMtkIiICEVERFiPH3zwQdWtW1cffvihXn/99WIcWeGbMWOGGjZsqObNm7u13+nH8HZAECqAl156Sb169bpuzd13331T2w4KCpIkHT16VFWrVrXajx49qiZNmlg1x44dc1svKytLp06dstb/rfI7x986ls8//1znzp1Tz549b1gbHh6u119/XZmZmb/5D/PdqvnlCA8PlyTt3btXNWvWVFBQUK4rHo4ePSpJhXIMb8X8zpw5ow4dOqhChQr68ssvVaZMmevWF+bxuxZ/f395eHhYz2WOo0ePXnM+QUFB163Pz2vyVrmZ+eWYPHmyJkyYoOXLl6tRo0bXrb377rvl7++vvXv33vI30d8yxxxlypTRvffeq71790oqOccwIyND8+bN09ixY2+4n+I8hgV1rdegj4+PvL295eHh8Zt/J/Kl0M42Qp4KerL05MmTrbb09PQ8T5beuHGjVbNs2bJiPVn6ZsfSunXrXFcbXcu4ceNMxYoVb3qsN6Ownuv//ve/RpL5/vvvjTH/72TpK694+PDDD42Pj4+5cOFC4U3gBm52funp6eaBBx4wrVu3NhkZGfna1606fs2bNzcDBgywHl++fNn87ne/u+7J0o8++qhbW0RERK6Tpa/3mryVCjo/Y4x54403jI+Pj0lOTs7XPn766SfjcDjMV1999ZvHezNuZo5XysrKMmFhYWbIkCHGmJJxDI359X3E6XSaEydO3HAfxX0McyifJ0s3aNDAra1bt265Tpb+Lb8T+RproW0Jbg4ePGi2bNliXR6+ZcsWs2XLFrfLxMPCwswXX3xhPZ4wYYLx8/MzX331ldm6dat57LHH8rx8/t577zXr1q0z//3vf03t2rWL9fL5643l8OHDJiwszKxbt85tvT179hiHw2GWLl2aa5sLFy40H3/8sdm2bZvZs2eP+eCDD0zZsmVNQkJCkc/nagWd3969e83YsWPNxo0bzf79+81XX31l7r77btOqVStrnZzL59u3b29SUlJMYmKiqVKlSrFdPl+Q+aWnp5vw8HDTsGFDs3fvXrfLdbOysowxxXv85s2bZ5xOp5k1a5b54YcfTN++fY2fn591hd7TTz9tRowYYdWvWbPGlC5d2kyePNns3LnTjBo1Ks/L52/0mrxVCjq/CRMmGE9PT/P555+7Haucf4POnDljhg4dapKTk83+/fvN8uXLTdOmTU3t2rVvaSj/LXMcM2aMWbZsmdm3b5/ZtGmT6dq1q/Hy8jI7duywau7kY5ijRYsWpkuXLrnab7djeObMGeu9TpJ56623zJYtW8zBgweNMcaMGDHCPP3001Z9zuXzw4YNMzt37jRTp07N8/L56z1nhYEgVERiYmKMpFzLypUrrRr9//dbyZGdnW1ee+01ExgYaJxOp2nXrp3ZvXu323ZPnjxpunXrZsqXL298fHxM79693cLVrXSjsezfvz/XnI0xJj4+3oSEhJjLly/n2ubSpUtNkyZNTPny5U25cuVM48aNzfTp0/OsLWoFnd+hQ4dMq1atTKVKlYzT6TS1atUyw4YNc7uPkDHGHDhwwDz88MPG29vb+Pv7m5deesnt8vNbpaDzW7lyZZ6/05LM/v37jTHFf/zee+89c9dddxlPT0/TvHlz891331l9rVu3NjExMW71n332mbnnnnuMp6enqV+/vlm8eLFbf35ek7dSQeYXGhqa57EaNWqUMcaYc+fOmfbt25sqVaqYMmXKmNDQUNOnT59CfYO5GQWZ4+DBg63awMBA88gjj5jNmze7be9OPobGGLNr1y4jyXz99de5tnW7HcNr/RuRM6eYmBjTunXrXOs0adLEeHp6mrvvvtvtPTHH9Z6zwuAw5hZflwwAAHCb4D5CAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtv4/wRcYN6+SoaAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS1FJREFUeJzt3X18DPfeP/7XJuwmIrtB7i9BhEYRCUFE3VauLE21Wu0RtIKgCCVxE2k1bs8VRW+0NNoeRM/hUG2l6iZEipzWNggpcZPjJqiycZssQW4/vz/6y3yNRJIlEcm8no/HPI6dec/s+7OT7b7O7MysSgghQERERKRAFjXdABEREVFNYRAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiqsXmzp0LlUpVpdvcu3cvVCoV9u7dW6XbJXoWMQgR1aA7d+5gzpw56N+/Pxo3bgyVSoW4uLiabosU4osvvqjVf293797FihUrEBgYCBcXF9ja2qJjx46IjY1FUVFRTbdHtQSDEFENun79OubPn4+TJ0/C29u7ptshhXlUEOrVqxfu3buHXr16Pf2mzHDu3DlMnjwZQghERERg6dKlcHd3x8SJEzF69Oiabo9qiXo13QCRkrm4uODKlStwdnbGoUOH0KVLl5pu6anJzc2FjY1NTbdRI4qLi5Gfnw8rK6tSy56F18XCwqLM3p41zs7OOHbsGNq1ayfNe+eddzB69GisWbMGH3zwAVq1alWDHVJtwCNCROUoOf/iv//9L9566y3odDo4ODjggw8+gBACf/zxB1599VVotVo4Ozvjo48+kq3/+eefo127dmjQoAEaNWqEzp07Y/369dJyjUYDZ2fnKun1woULmDhxIjw9PWFtbY0mTZrgzTffxPnz50vVZmdnIzw8HC1atIBGo0HTpk0xYsQIXL9+Xaq5f/8+5s6di+eeew5WVlZwcXHB66+/jrNnzwJ49Hkk58+fL/UV38iRI9GwYUOcPXsWL730EmxtbTF8+HAAwH/+8x+8+eabaNasGTQaDdzc3BAeHo579+6V6vvUqVP429/+BgcHB1hbW8PT0xPvv/8+AGDPnj1QqVTYvHlzqfXWr18PlUoFg8FQ6dezovEDf4WWadOmwc3NDRqNBp6enli6dCmEELJtqVQqTJo0CevWrUO7du2g0WiQkJCAuLg4qFQq7Nu3DxMnToSjoyOaNm0qrbdjxw707NkTNjY2sLW1RVBQEI4fP15h72vWrMGLL74IR0dHaDQatG3bFrGxsbKaFi1a4Pjx49i3bx9UKhVUKhX69OkD4NH7dtOmTfD19YW1tTXs7e3x1ltv4c8//5TVlOzrP//8E4MGDULDhg3h4OCA6dOnl/q6asOGDfD19YWtrS20Wi28vLywbNmyCsdXwt7eXhaCSrz22msAgJMnT1Z6W6RcPCJEVAlDhgzB888/j0WLFmHbtm1YuHAhGjdujC+//BIvvvgiPvzwQ6xbtw7Tp09Hly5d0KtXL3z99dd499138cYbb2DKlCm4f/8+jh49ipSUFAwbNqzKezx48CD279+P4OBgNG3aFOfPn0dsbCz69OmDEydOoEGDBgD+Oi+pZ8+eOHnyJEaPHo1OnTrh+vXr2LJlCy5dugR7e3sUFRXh5ZdfRlJSEoKDgzFlyhTcvn0biYmJSE9Ph4eHh9n9FRYWQq/Xo0ePHli6dKnUz6ZNm3D37l1MmDABTZo0wYEDB/D555/j0qVL2LRpk7T+0aNH0bNnT9SvXx/jxo1DixYtcPbsWfz000/4+9//jj59+sDNzQ3r1q2TPghLrFu3Dh4eHvD3969Ur5UZvxACr7zyCvbs2YPQ0FD4+Phg586dmDFjBv7880988sknsm3+/PPP+PbbbzFp0iTY29ujRYsWSEtLAwBMnDgRDg4OiI6ORm5uLgDgn//8J0JCQqDX6/Hhhx/i7t27iI2NRY8ePXDkyBG0aNHikf3HxsaiXbt2eOWVV1CvXj389NNPmDhxIoqLixEWFgYA+PTTTzF58mQ0bNhQCpNOTk6P3GZcXBxGjRqFLl26ICYmBllZWVi2bBl+/fVXHDlyBHZ2drLXT6/Xw8/PD0uXLsXu3bvx0UcfwcPDAxMmTAAAJCYmYujQoejXrx8+/PBDAH8Fl19//RVTpkyp1H56FKPRCOCvoERUIUFEjzRnzhwBQIwbN06aV1hYKJo2bSpUKpVYtGiRNP/WrVvC2tpahISECCGEePXVV0W7du0q/VwHDx4UAMSaNWseq9e7d++WmmcwGAQA8c0330jzoqOjBQDxww8/lKovLi4WQgixevVqAUB8/PHHj6zZs2ePACD27NkjW56ZmVlqHCEhIQKAmDVrVqX6jomJESqVSly4cEGa16tXL2Frayub92A/QggRFRUlNBqNyM7OluZdvXpV1KtXT8yZM6fU8zxKZcYfHx8vAIiFCxfKlr/xxhtCpVKJM2fOSPMACAsLC3H8+HFZ7Zo1awQA0aNHD1FYWCjNv337trCzsxNjx46V1RuNRqHT6WTzS/5GH1TWa6rX60XLli1l89q1ayd69+5dqvbhfZufny8cHR1F+/btxb1796S6rVu3CgAiOjpamleyr+fPny/bZseOHYWvr6/0eMqUKUKr1crGXRXy8vJE27Zthbu7uygoKKjSbVPdxK/GiCphzJgx0r8tLS3RuXNnCCEQGhoqzbezs4OnpyfOnTsnPb506RIOHjz4VHq0traW/l1QUIAbN26gVatWsLOzw+HDh6Vl33//Pby9vUsdNQEgXYb9/fffw97eHpMnT35kzeMoORrwqL5zc3Nx/fp1dO/eHUIIHDlyBABw7do1JCcnY/To0WjWrNkj+xkxYgTy8vLw3XffSfM2btyIwsJCvPXWW5XuszLj3759OywtLfHuu+/Klk+bNg1CCOzYsUM2v3fv3mjbtm2Zzzd27FhYWlpKjxMTE5GdnY2hQ4fi+vXr0mRpaQk/Pz/s2bOn3P4ffE1zcnJw/fp19O7dG+fOnUNOTk75gy/DoUOHcPXqVUycOFF27lBQUBDatGmDbdu2lVpn/Pjxssc9e/aU3hvAX++P3NxcJCYmmt1PeSZNmoQTJ05g+fLlqFePX3pQxRiEiCrh4Q9fnU4HKyurUofedTodbt26BQCIjIxEw4YN0bVrV7Ru3RphYWH49ddfq63He/fuITo6Wjpfxd7eHg4ODsjOzpZ9+J09exbt27cvd1tnz56Fp6dnlX6Q1KtXT3b+S4mLFy9i5MiRaNy4sXQ+Se/evQFA6rvkA7Sivtu0aYMuXbpg3bp10rx169ahW7duZp00W5nxX7hwAa6urrC1tZXNf/7556XlD3J3d3/kth5edvr0aQDAiy++CAcHB9m0a9cuXL16tdz+f/31VwQEBMDGxgZ2dnZwcHDAe++9BwCPFYRKxuLp6VlqWZs2bUqN1crKCg4ODrJ5jRo1kt4bwF9fBz733HMYMGAAmjZtitGjRyMhIcHs3h60ZMkSfP3111iwYAFeeumlJ9oWKQfjMlElPPj/1subB0A6Ufb5559HRkYGtm7dioSEBHz//ff44osvEB0djXnz5lV5j5MnT8aaNWswdepU+Pv7Q6fTQaVSITg4GMXFxVX+fI86MvSo+7doNBpYWFiUqv3f//1f3Lx5E5GRkWjTpg1sbGzw559/YuTIkY/V94gRIzBlyhRcunQJeXl5+O2337B8+XKzt1PVHjxKU9GyknH/85//LPNk+vIC2tmzZ9GvXz+0adMGH3/8Mdzc3KBWq7F9+3Z88skn1fK38LBHvTce5OjoiLS0NOzcuRM7duzAjh07sGbNGowYMQJr1641+znj4uIQGRmJ8ePHY/bs2Y/TNikUgxBRNbKxscGQIUMwZMgQ5Ofn4/XXX8ff//53REVFVfnlyd999x1CQkJkV67dv38f2dnZsjoPDw+kp6eXuy0PDw+kpKSgoKAA9evXL7OmUaNGAFBq+w8fHSjPsWPH8N///hdr167FiBEjpPkPf13SsmVLAKiwbwAIDg5GREQE/v3vf+PevXuoX78+hgwZUumegMqNv3nz5ti9ezdu374tOyp06tQpafnjKjkZ3dHREQEBAWat+9NPPyEvLw9btmyRHcks6+u0yn7NWTKWjIwMvPjii7JlGRkZjz1WtVqNgQMHYuDAgSguLsbEiRPx5Zdfmn3Z+48//ogxY8bg9ddfx4oVKx6rF1IufjVGVE1u3Lghe6xWq9G2bVsIIVBQUFDlz2dpaVnqsu3PP/+81BGawYMH4/fffy/zMvOS9QcPHozr16+XeSSlpKZ58+awtLREcnKybPkXX3xhVs8PbrPk3w9fQu3g4IBevXph9erVuHjxYpn9lLC3t8eAAQPwr3/9C+vWrUP//v3NvnqoMuN/6aWXUFRUVKrmk08+gUqlwoABA8x6zgfp9XpotVr83//9X5l/K9euXXvkumW9pjk5OVizZk2pWhsbm1JBtiydO3eGo6MjVq5ciby8PGn+jh07cPLkSQQFBVW4jYc9/P6wsLBAhw4dAED2HBVJTk5GcHAwevXqhXXr1pU66khUER4RIqomgYGBcHZ2xgsvvAAnJyecPHkSy5cvR1BQkOwIwvLly5GdnY3Lly8D+Ov/0V+6dAnAX1936XS6Sj3fyy+/jH/+85/Q6XRo27YtDAYDdu/ejSZNmsjqZsyYge+++w5vvvkmRo8eDV9fX9y8eRNbtmzBypUr4e3tjREjRuCbb75BREQEDhw4gJ49eyI3Nxe7d+/GxIkT8eqrr0Kn0+HNN9/E559/DpVKBQ8PD2zdurXC81ce1KZNG3h4eGD69On4888/odVq8f3338vOJSnx2WefoUePHujUqRPGjRsHd3d3nD9/Htu2bZMuQy8xYsQIvPHGGwCABQsWVLqfB9evaPwDBw5E37598f777+P8+fPw9vbGrl278OOPP2Lq1KmPdYuBElqtFrGxsXj77bfRqVMnBAcHw8HBARcvXsS2bdvwwgsvPPLrvsDAQOlIyzvvvIM7d+7g66+/hqOjI65cuSKr9fX1RWxsLBYuXIhWrVrB0dGx1BEfAKhfvz4+/PBDjBo1Cr1798bQoUOly+dbtGiB8PBws8c4ZswY3Lx5Ey+++CKaNm2KCxcu4PPPP4ePj490nlVFLly4gFdeeQUqlQpvvPGG7HYLANChQwcpXBE9Uo1cq0ZUS5Rcmnzt2jXZ/JCQEGFjY1Oqvnfv3tIl819++aXo1auXaNKkidBoNMLDw0PMmDFD5OTkyNZp3ry5AFDmlJmZWeleb926JUaNGiXs7e1Fw4YNhV6vF6dOnRLNmzeXLukvcePGDTFp0iTxP//zP0KtVoumTZuKkJAQcf36danm7t274v333xfu7u6ifv36wtnZWbzxxhvi7NmzUs21a9fE4MGDRYMGDUSjRo3EO++8I9LT08u8fL6s10sIIU6cOCECAgJEw4YNhb29vRg7dqz4/fffy7yVQHp6unjttdeEnZ2dsLKyEp6enuKDDz4otc28vDzRqFEjodPpZJd7m6My4799+7YIDw8Xrq6uon79+qJ169ZiyZIlskv6hfjr8vmwsLBSz1Fy+fzBgwfL7GHPnj1Cr9cLnU4nrKyshIeHhxg5cqQ4dOiQVFPW5fNbtmwRHTp0EFZWVqJFixbiww8/lG4J8ODflNFoFEFBQcLW1lYAkC6lf9StETZu3Cg6duwoNBqNaNy4sRg+fLi4dOmSrOZR+/rhPr/77jsRGBgoHB0dhVqtFs2aNRPvvPOOuHLlSpmvxaNen0e9dwCYdcsEUi6VEA8dVyYiquUKCwvh6uqKgQMHYtWqVTXdDhE9w/hlKhHVOfHx8bh27ZrsBGwiorLwiBDRM+7OnTu4c+dOuTUODg6VumS5rktJScHRo0exYMEC2Nvby24kCQD5+fm4efNmudvQ6XTlXupOT0fJz2Q8irW1daXPnyMqD0+WJnrGLV26tML7DmVmZpb721NKERsbi3/961/w8fGR/ehrif3796Nv377lbmPNmjUYOXJk9TRIlebi4lLu8pCQkDL3MZG5eESI6Bl37tw52U8TlKVHjx5Vfl+iuujWrVtITU0tt6Zdu3YVfghT9du9e3e5y11dXR/5kyVE5mAQIiIiIsXiydJERESkWDxHqBzFxcW4fPkybG1tn+gXt4mIiOjpEULg9u3bcHV1rfBu4wxC5bh8+TLc3Nxqug0iIiJ6DH/88QeaNm1abg2DUDlKfgbhjz/+gFarreFuiIiIqDJMJhPc3NxkP2f0KAxC5Sj5Okyr1TIIERER1TKVOa3FrJOlY2Ji0KVLF9ja2sLR0RGDBg1CRkaGrOb+/fsICwtDkyZN0LBhQwwePBhZWVmymosXLyIoKAgNGjSAo6MjZsyYgcLCQlnN3r170alTJ2g0GrRq1arM+0WsWLECLVq0gJWVFfz8/HDgwAGzeyEiIiLlMisI7du3D2FhYfjtt9+QmJiIgoICBAYGIjc3V6oJDw/HTz/9hE2bNmHfvn24fPkyXn/9dWl5UVERgoKCkJ+fj/3792Pt2rWIi4tDdHS0VJOZmYmgoCD07dsXaWlpmDp1KsaMGYOdO3dKNRs3bkRERATmzJmDw4cPw9vbG3q9XvbL1xX1QkRERAr3JL/YevXqVQFA7Nu3TwghRHZ2tqhfv77YtGmTVHPy5EkBQBgMBiGEENu3bxcWFhbCaDRKNbGxsUKr1Yq8vDwhhBAzZ86UfsG7xJAhQ4Rer5ced+3aVfZrzkVFRcLV1VXExMRUupeK5OTkCAClfi2ciIiInl3mfH4/0X2EcnJyAACNGzcGAKSmpqKgoAABAQFSTZs2bdCsWTMYDAYAgMFggJeXF5ycnKQavV4Pk8mE48ePSzUPbqOkpmQb+fn5SE1NldVYWFggICBAqqlMLw/Ly8uDyWSSTURERFR3PXYQKi4uxtSpU/HCCy+gffv2AP76kTy1Wg07OztZrZOTk/QDekajURaCSpaXLCuvxmQy4d69e7h+/TqKiorKrHlwGxX18rCYmBjodDpp4qXzREREddtjB6GwsDCkp6djw4YNVdlPjYqKikJOTo40/fHHHzXdEhEREVWjx7p8ftKkSdi6dSuSk5NlNypydnZGfn4+srOzZUdisrKy4OzsLNU8fHVXyZVcD9Y8fHVXVlYWtFotrK2tYWlpCUtLyzJrHtxGRb08TKPRQKPRmPFKEBERUW1m1hEhIQQmTZqEzZs34+eff4a7u7tsua+vL+rXr4+kpCRpXkZGBi5evAh/f38AgL+/P44dOya7uisxMRFarVb6JWF/f3/ZNkpqSrahVqvh6+srqykuLkZSUpJUU5leiIiISOHMOQt7woQJQqfTib1794orV65I0927d6Wa8ePHi2bNmomff/5ZHDp0SPj7+wt/f39peWFhoWjfvr0IDAwUaWlpIiEhQTg4OIioqCip5ty5c6JBgwZixowZ4uTJk2LFihXC0tJSJCQkSDUbNmwQGo1GxMXFiRMnTohx48YJOzs72dVoFfVSEV41RkREVPuY8/ltVhACUOa0Zs0aqebevXti4sSJolGjRqJBgwbitddeE1euXJFt5/z582LAgAHC2tpa2Nvbi2nTpomCggJZzZ49e4SPj49Qq9WiZcuWsuco8fnnn4tmzZoJtVotunbtKn777TfZ8sr0Uh4GISIiotrHnM9vlRBC1NTRqGedyWSCTqdDTk4Of2KDiIioljDn8/uJ7iNEREREVJsxCBEREZFiMQgRERGRYj3WfYSIiOqCTxL/W9MtmC38f5+r6RaI6hQeESIiIiLF4hEhIlKsbhe/qukWHsPSmm6AqE7hESEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLLODUHJyMgYOHAhXV1eoVCrEx8fLlqtUqjKnJUuWSDUtWrQotXzRokWy7Rw9ehQ9e/aElZUV3NzcsHjx4lK9bNq0CW3atIGVlRW8vLywfft22XIhBKKjo+Hi4gJra2sEBATg9OnT5g6ZiIiI6iizg1Bubi68vb2xYsWKMpdfuXJFNq1evRoqlQqDBw+W1c2fP19WN3nyZGmZyWRCYGAgmjdvjtTUVCxZsgRz587FV199JdXs378fQ4cORWhoKI4cOYJBgwZh0KBBSE9Pl2oWL16Mzz77DCtXrkRKSgpsbGyg1+tx//59c4dNREREdVA9c1cYMGAABgwY8Mjlzs7Ossc//vgj+vbti5YtW8rm29ralqotsW7dOuTn52P16tVQq9Vo164d0tLS8PHHH2PcuHEAgGXLlqF///6YMWMGAGDBggVITEzE8uXLsXLlSggh8Omnn2L27Nl49dVXAQDffPMNnJycEB8fj+DgYHOHTkRERHVMtZ4jlJWVhW3btiE0NLTUskWLFqFJkybo2LEjlixZgsLCQmmZwWBAr169oFarpXl6vR4ZGRm4deuWVBMQECDbpl6vh8FgAABkZmbCaDTKanQ6Hfz8/KSah+Xl5cFkMskmIiIiqrvMPiJkjrVr18LW1havv/66bP67776LTp06oXHjxti/fz+ioqJw5coVfPzxxwAAo9EId3d32TpOTk7SskaNGsFoNErzHqwxGo1S3YPrlVXzsJiYGMybN+8xR0tERES1TbUGodWrV2P48OGwsrKSzY+IiJD+3aFDB6jVarzzzjuIiYmBRqOpzpbKFRUVJevNZDLBzc2txvohIiKi6lVtX4395z//QUZGBsaMGVNhrZ+fHwoLC3H+/HkAf51nlJWVJaspeVxyXtGjah5c/uB6ZdU8TKPRQKvVyiYiIiKqu6otCK1atQq+vr7w9vausDYtLQ0WFhZwdHQEAPj7+yM5ORkFBQVSTWJiIjw9PdGoUSOpJikpSbadxMRE+Pv7AwDc3d3h7OwsqzGZTEhJSZFqiIiISNnM/mrszp07OHPmjPQ4MzMTaWlpaNy4MZo1awbgr8CxadMmfPTRR6XWNxgMSElJQd++fWFrawuDwYDw8HC89dZbUsgZNmwY5s2bh9DQUERGRiI9PR3Lli3DJ598Im1nypQp6N27Nz766CMEBQVhw4YNOHTokHSJvUqlwtSpU7Fw4UK0bt0a7u7u+OCDD+Dq6opBgwaZO2wiIiKqg8wOQocOHULfvn2lxyXn1ISEhCAuLg4AsGHDBgghMHTo0FLrazQabNiwAXPnzkVeXh7c3d0RHh4uOzdHp9Nh165dCAsLg6+vL+zt7REdHS1dOg8A3bt3x/r16zF79my89957aN26NeLj49G+fXupZubMmcjNzcW4ceOQnZ2NHj16ICEhodQ5S0RERKRMKiGEqOkmnlUmkwk6nQ45OTk8X4ioDjKsml7TLZjNP3RpTbdA9Mwz5/ObvzVGREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREimV2EEpOTsbAgQPh6uoKlUqF+Ph42fKRI0dCpVLJpv79+8tqbt68ieHDh0Or1cLOzg6hoaG4c+eOrObo0aPo2bMnrKys4ObmhsWLF5fqZdOmTWjTpg2srKzg5eWF7du3y5YLIRAdHQ0XFxdYW1sjICAAp0+fNnfIREREVEeZHYRyc3Ph7e2NFStWPLKmf//+uHLlijT9+9//li0fPnw4jh8/jsTERGzduhXJyckYN26ctNxkMiEwMBDNmzdHamoqlixZgrlz5+Krr76Savbv34+hQ4ciNDQUR44cwaBBgzBo0CCkp6dLNYsXL8Znn32GlStXIiUlBTY2NtDr9bh//765wyYiIqI6SCWEEI+9skqFzZs3Y9CgQdK8kSNHIjs7u9SRohInT55E27ZtcfDgQXTu3BkAkJCQgJdeegmXLl2Cq6srYmNj8f7778NoNEKtVgMAZs2ahfj4eJw6dQoAMGTIEOTm5mLr1q3Strt16wYfHx+sXLkSQgi4urpi2rRpmD59OgAgJycHTk5OiIuLQ3BwcIXjM5lM0Ol0yMnJgVarfZyXiIieYYZV02u6BbP5hy6t6RaInnnmfH5XyzlCe/fuhaOjIzw9PTFhwgTcuHFDWmYwGGBnZyeFIAAICAiAhYUFUlJSpJpevXpJIQgA9Ho9MjIycOvWLakmICBA9rx6vR4GgwEAkJmZCaPRKKvR6XTw8/OTah6Wl5cHk8kkm4iIiKjuqvIg1L9/f3zzzTdISkrChx9+iH379mHAgAEoKioCABiNRjg6OsrWqVevHho3bgyj0SjVODk5yWpKHldU8+DyB9crq+ZhMTEx0Ol00uTm5mb2+ImIiKj2qFfVG3zwKycvLy906NABHh4e2Lt3L/r161fVT1eloqKiEBERIT02mUwMQ0RERHVYtV8+37JlS9jb2+PMmTMAAGdnZ1y9elVWU1hYiJs3b8LZ2VmqycrKktWUPK6o5sHlD65XVs3DNBoNtFqtbCIiIqK6q9qD0KVLl3Djxg24uLgAAPz9/ZGdnY3U1FSp5ueff0ZxcTH8/PykmuTkZBQUFEg1iYmJ8PT0RKNGjaSapKQk2XMlJibC398fAODu7g5nZ2dZjclkQkpKilRDREREymZ2ELpz5w7S0tKQlpYG4K+TktPS0nDx4kXcuXMHM2bMwG+//Ybz588jKSkJr776Klq1agW9Xg8AeP7559G/f3+MHTsWBw4cwK+//opJkyYhODgYrq6uAIBhw4ZBrVYjNDQUx48fx8aNG7Fs2TLZ11ZTpkxBQkICPvroI5w6dQpz587FoUOHMGnSJAB/XdE2depULFy4EFu2bMGxY8cwYsQIuLq6yq5yIyIiIuUy+xyhQ4cOoW/fvtLjknASEhKC2NhYHD16FGvXrkV2djZcXV0RGBiIBQsWQKPRSOusW7cOkyZNQr9+/WBhYYHBgwfjs88+k5brdDrs2rULYWFh8PX1hb29PaKjo2X3GurevTvWr1+P2bNn47333kPr1q0RHx+P9u3bSzUzZ85Ebm4uxo0bh+zsbPTo0QMJCQmwsrIyd9hERERUBz3RfYTqOt5HiKhu432EiOqmGr+PEBEREVFtwCBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREimV2EEpOTsbAgQPh6uoKlUqF+Ph4aVlBQQEiIyPh5eUFGxsbuLq6YsSIEbh8+bJsGy1atIBKpZJNixYtktUcPXoUPXv2hJWVFdzc3LB48eJSvWzatAlt2rSBlZUVvLy8sH37dtlyIQSio6Ph4uICa2trBAQE4PTp0+YOmYiIiOoos4NQbm4uvL29sWLFilLL7t69i8OHD+ODDz7A4cOH8cMPPyAjIwOvvPJKqdr58+fjypUr0jR58mRpmclkQmBgIJo3b47U1FQsWbIEc+fOxVdffSXV7N+/H0OHDkVoaCiOHDmCQYMGYdCgQUhPT5dqFi9ejM8++wwrV65ESkoKbGxsoNfrcf/+fXOHTURERHWQSgghHntllQqbN2/GoEGDHllz8OBBdO3aFRcuXECzZs0A/HVEaOrUqZg6dWqZ68TGxuL999+H0WiEWq0GAMyaNQvx8fE4deoUAGDIkCHIzc3F1q1bpfW6desGHx8frFy5EkIIuLq6Ytq0aZg+fToAICcnB05OToiLi0NwcHCF4zOZTNDpdMjJyYFWq63MS0JEtYhh1fSabsFs/qFLa7oFomeeOZ/f1X6OUE5ODlQqFezs7GTzFy1ahCZNmqBjx45YsmQJCgsLpWUGgwG9evWSQhAA6PV6ZGRk4NatW1JNQECAbJt6vR4GgwEAkJmZCaPRKKvR6XTw8/OTah6Wl5cHk8kkm4iIiKjuqledG79//z4iIyMxdOhQWSJ799130alTJzRu3Bj79+9HVFQUrly5go8//hgAYDQa4e7uLtuWk5OTtKxRo0YwGo3SvAdrjEajVPfgemXVPCwmJgbz5s17ghETERFRbVJtQaigoAB/+9vfIIRAbGysbFlERIT07w4dOkCtVuOdd95BTEwMNBpNdbVUoaioKFlvJpMJbm5uNdYPERERVa9q+WqsJARduHABiYmJFX4/5+fnh8LCQpw/fx4A4OzsjKysLFlNyWNnZ+dyax5c/uB6ZdU8TKPRQKvVyiYiIiKqu6o8CJWEoNOnT2P37t1o0qRJheukpaXBwsICjo6OAAB/f38kJyejoKBAqklMTISnpycaNWok1SQlJcm2k5iYCH9/fwCAu7s7nJ2dZTUmkwkpKSlSDRERESmb2V+N3blzB2fOnJEeZ2ZmIi0tDY0bN4aLiwveeOMNHD58GFu3bkVRUZF0Pk7jxo2hVqthMBiQkpKCvn37wtbWFgaDAeHh4XjrrbekkDNs2DDMmzcPoaGhiIyMRHp6OpYtW4ZPPvlEet4pU6agd+/e+OijjxAUFIQNGzbg0KFD0iX2KpUKU6dOxcKFC9G6dWu4u7vjgw8+gKura7lXuREREZFymB2EDh06hL59+0qPS86pCQkJwdy5c7FlyxYAgI+Pj2y9PXv2oE+fPtBoNNiwYQPmzp2LvLw8uLu7Izw8XHZujk6nw65duxAWFgZfX1/Y29sjOjoa48aNk2q6d++O9evXY/bs2XjvvffQunVrxMfHo3379lLNzJkzkZubi3HjxiE7Oxs9evRAQkICrKyszB02ERER1UFPdB+huo73ESKq23gfIaK66Zm6jxARERHRs4pBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFMvsIJScnIyBAwfC1dUVKpUK8fHxsuVCCERHR8PFxQXW1tYICAjA6dOnZTU3b97E8OHDodVqYWdnh9DQUNy5c0dWc/ToUfTs2RNWVlZwc3PD4sWLS/WyadMmtGnTBlZWVvDy8sL27dvN7oWIiIiUy+wglJubC29vb6xYsaLM5YsXL8Znn32GlStXIiUlBTY2NtDr9bh//75UM3z4cBw/fhyJiYnYunUrkpOTMW7cOGm5yWRCYGAgmjdvjtTUVCxZsgRz587FV199JdXs378fQ4cORWhoKI4cOYJBgwZh0KBBSE9PN6sXIiIiUi6VEEI89soqFTZv3oxBgwYB+OsIjKurK6ZNm4bp06cDAHJycuDk5IS4uDgEBwfj5MmTaNu2LQ4ePIjOnTsDABISEvDSSy/h0qVLcHV1RWxsLN5//30YjUao1WoAwKxZsxAfH49Tp04BAIYMGYLc3Fxs3bpV6qdbt27w8fHBypUrK9VLRUwmE3Q6HXJycqDVah/3ZSKiZ5Rh1fSabsFs/qFLa7oFomeeOZ/fVXqOUGZmJoxGIwICAqR5Op0Ofn5+MBgMAACDwQA7OzspBAFAQEAALCwskJKSItX06tVLCkEAoNfrkZGRgVu3bkk1Dz5PSU3J81Sml4fl5eXBZDLJJiIiIqq7qjQIGY1GAICTk5NsvpOTk7TMaDTC0dFRtrxevXpo3LixrKasbTz4HI+qeXB5Rb08LCYmBjqdTprc3NwqMWoiIiKqrXjV2AOioqKQk5MjTX/88UdNt0RERETVqEqDkLOzMwAgKytLNj8rK0ta5uzsjKtXr8qWFxYW4ubNm7Kasrbx4HM8qubB5RX18jCNRgOtViubiIiIqO6q0iDk7u4OZ2dnJCUlSfNMJhNSUlLg7+8PAPD390d2djZSU1Olmp9//hnFxcXw8/OTapKTk1FQUCDVJCYmwtPTE40aNZJqHnyekpqS56lML0RERKRsZgehO3fuIC0tDWlpaQD+Oik5LS0NFy9ehEqlwtSpU7Fw4UJs2bIFx44dw4gRI+Dq6ipdWfb888+jf//+GDt2LA4cOIBff/0VkyZNQnBwMFxdXQEAw4YNg1qtRmhoKI4fP46NGzdi2bJliIiIkPqYMmUKEhIS8NFHH+HUqVOYO3cuDh06hEmTJgFApXohIiIiZatn7gqHDh1C3759pccl4SQkJARxcXGYOXMmcnNzMW7cOGRnZ6NHjx5ISEiAlZWVtM66deswadIk9OvXDxYWFhg8eDA+++wzablOp8OuXbsQFhYGX19f2NvbIzo6Wnavoe7du2P9+vWYPXs23nvvPbRu3Rrx8fFo3769VFOZXoiIiEi5nug+QnUd7yNEVLfxPkJEdVON3UeIiIiIqDZhECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsWq8iDUokULqFSqUlNYWBgAoE+fPqWWjR8/XraNixcvIigoCA0aNICjoyNmzJiBwsJCWc3evXvRqVMnaDQatGrVCnFxcaV6WbFiBVq0aAErKyv4+fnhwIEDVT1cIiIiqsWqPAgdPHgQV65ckabExEQAwJtvvinVjB07VlazePFiaVlRURGCgoKQn5+P/fv3Y+3atYiLi0N0dLRUk5mZiaCgIPTt2xdpaWmYOnUqxowZg507d0o1GzduREREBObMmYPDhw/D29sber0eV69ereohExERUS2lEkKI6nyCqVOnYuvWrTh9+jRUKhX69OkDHx8ffPrpp2XW79ixAy+//DIuX74MJycnAMDKlSsRGRmJa9euQa1WIzIyEtu2bUN6erq0XnBwMLKzs5GQkAAA8PPzQ5cuXbB8+XIAQHFxMdzc3DB58mTMmjWrUr2bTCbodDrk5ORAq9U+watARM8iw6rpNd2C2fxDl9Z0C0TPPHM+v6v1HKH8/Hz861//wujRo6FSqaT569atg729Pdq3b4+oqCjcvXtXWmYwGODl5SWFIADQ6/UwmUw4fvy4VBMQECB7Lr1eD4PBID1vamqqrMbCwgIBAQFSTVny8vJgMplkExEREdVd9apz4/Hx8cjOzsbIkSOlecOGDUPz5s3h6uqKo0ePIjIyEhkZGfjhhx8AAEajURaCAEiPjUZjuTUmkwn37t3DrVu3UFRUVGbNqVOnHtlvTEwM5s2b99jjJSIiotqlWoPQqlWrMGDAALi6ukrzxo0bJ/3by8sLLi4u6NevH86ePQsPD4/qbKdCUVFRiIiIkB6bTCa4ubnVYEdERERUnaotCF24cAG7d++WjvQ8ip+fHwDgzJkz8PDwgLOzc6mru7KysgAAzs7O0v+WzHuwRqvVwtraGpaWlrC0tCyzpmQbZdFoNNBoNJUbIBEREdV61XaO0Jo1a+Do6IigoKBy69LS0gAALi4uAAB/f38cO3ZMdnVXYmIitFot2rZtK9UkJSXJtpOYmAh/f38AgFqthq+vr6ymuLgYSUlJUg0RERFRtQSh4uJirFmzBiEhIahX7/8ddDp79iwWLFiA1NRUnD9/Hlu2bMGIESPQq1cvdOjQAQAQGBiItm3b4u2338bvv/+OnTt3Yvbs2QgLC5OO1owfPx7nzp3DzJkzcerUKXzxxRf49ttvER4eLj1XREQEvv76a6xduxYnT57EhAkTkJubi1GjRlXHkImIiKgWqpavxnbv3o2LFy9i9OjRsvlqtRq7d+/Gp59+itzcXLi5uWHw4MGYPXu2VGNpaYmtW7diwoQJ8Pf3h42NDUJCQjB//nypxt3dHdu2bUN4eDiWLVuGpk2b4h//+Af0er1UM2TIEFy7dg3R0dEwGo3w8fFBQkJCqROoiYiISLmq/T5CtRnvI0RUt/E+QkR10zNzHyEiIiKiZxmDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESlWlQehuXPnQqVSyaY2bdpIy+/fv4+wsDA0adIEDRs2xODBg5GVlSXbxsWLFxEUFIQGDRrA0dERM2bMQGFhoaxm79696NSpEzQaDVq1aoW4uLhSvaxYsQItWrSAlZUV/Pz8cODAgaoeLhEREdVi1XJEqF27drhy5Yo0/fLLL9Ky8PBw/PTTT9i0aRP27duHy5cv4/XXX5eWFxUVISgoCPn5+di/fz/Wrl2LuLg4REdHSzWZmZkICgpC3759kZaWhqlTp2LMmDHYuXOnVLNx40ZERERgzpw5OHz4MLy9vaHX63H16tXqGDIRERHVQiohhKjKDc6dOxfx8fFIS0srtSwnJwcODg5Yv3493njjDQDAqVOn8Pzzz8NgMKBbt27YsWMHXn75ZVy+fBlOTk4AgJUrVyIyMhLXrl2DWq1GZGQktm3bhvT0dGnbwcHByM7ORkJCAgDAz88PXbp0wfLlywEAxcXFcHNzw+TJkzFr1qxKjcVkMkGn0yEnJwdarfZJXhYiegYZVk2v6RbM5h+6tKZbIHrmmfP5XS1HhE6fPg1XV1e0bNkSw4cPx8WLFwEAqampKCgoQEBAgFTbpk0bNGvWDAaDAQBgMBjg5eUlhSAA0Ov1MJlMOH78uFTz4DZKakq2kZ+fj9TUVFmNhYUFAgICpJqy5OXlwWQyySYiIiKqu6o8CPn5+SEuLg4JCQmIjY1FZmYmevbsidu3b8NoNEKtVsPOzk62jpOTE4xGIwDAaDTKQlDJ8pJl5dWYTCbcu3cP169fR1FRUZk1JdsoS0xMDHQ6nTS5ubk91mtAREREtUO9qt7ggAEDpH936NABfn5+aN68Ob799ltYW1tX9dNVqaioKEREREiPTSYTwxAREVEdVu2Xz9vZ2eG5557DmTNn4OzsjPz8fGRnZ8tqsrKy4OzsDABwdnYudRVZyeOKarRaLaytrWFvbw9LS8sya0q2URaNRgOtViubiIiIqO6q9iB0584dnD17Fi4uLvD19UX9+vWRlJQkLc/IyMDFixfh7+8PAPD398exY8dkV3clJiZCq9Wibdu2Us2D2yipKdmGWq2Gr6+vrKa4uBhJSUlSDREREVGVB6Hp06dj3759OH/+PPbv34/XXnsNlpaWGDp0KHQ6HUJDQxEREYE9e/YgNTUVo0aNgr+/P7p16wYACAwMRNu2bfH222/j999/x86dOzF79myEhYVBo9EAAMaPH49z585h5syZOHXqFL744gt8++23CA8Pl/qIiIjA119/jbVr1+LkyZOYMGECcnNzMWrUqKoeMhEREdVSVX6O0KVLlzB06FDcuHEDDg4O6NGjB3777Tc4ODgAAD755BNYWFhg8ODByMvLg16vxxdffCGtb2lpia1bt2LChAnw9/eHjY0NQkJCMH/+fKnG3d0d27ZtQ3h4OJYtW4amTZviH//4B/R6vVQzZMgQXLt2DdHR0TAajfDx8UFCQkKpE6iJiIhIuar8PkJ1Ce8jRFS38T5CRHVTjd9HiIiIiKg2YBAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixapX0w0QERFRFdkTU9MdmK9vVI0+PYMQERFRHWE4d6OmWzCbf9+afX5+NUZERESKxSBEREREisUgRERERIpV5UEoJiYGXbp0ga2tLRwdHTFo0CBkZGTIavr06QOVSiWbxo8fL6u5ePEigoKC0KBBAzg6OmLGjBkoLCyU1ezduxedOnWCRqNBq1atEBcXV6qfFStWoEWLFrCysoKfnx8OHDhQ1UMmIiKiWqrKg9C+ffsQFhaG3377DYmJiSgoKEBgYCByc3NldWPHjsWVK1ekafHixdKyoqIiBAUFIT8/H/v378fatWsRFxeH6OhoqSYzMxNBQUHo27cv0tLSMHXqVIwZMwY7d+6UajZu3IiIiAjMmTMHhw8fhre3N/R6Pa5evVrVwyYiIqJaSCWEENX5BNeuXYOjoyP27duHXr16AfjriJCPjw8+/fTTMtfZsWMHXn75ZVy+fBlOTk4AgJUrVyIyMhLXrl2DWq1GZGQktm3bhvT0dGm94OBgZGdnIyEhAQDg5+eHLl26YPny5QCA4uJiuLm5YfLkyZg1a1aFvZtMJuh0OuTk5ECr1T7Jy0BEzyDDquk13YLZ/EOX1nQL9Azj3/RfzPn8rvZzhHJycgAAjRs3ls1ft24d7O3t0b59e0RFReHu3bvSMoPBAC8vLykEAYBer4fJZMLx48elmoCAANk29Xo9DAYDACA/Px+pqamyGgsLCwQEBEg1D8vLy4PJZJJNREREVHdV632EiouLMXXqVLzwwgto3769NH/YsGFo3rw5XF1dcfToUURGRiIjIwM//PADAMBoNMpCEADpsdFoLLfGZDLh3r17uHXrFoqKisqsOXXqVJn9xsTEYN68eU82aCIiIqo1qjUIhYWFIT09Hb/88ots/rhx46R/e3l5wcXFBf369cPZs2fh4eFRnS2VKyoqChEREdJjk8kENze3GuuHiIiIqle1BaFJkyZh69atSE5ORtOmTcut9fPzAwCcOXMGHh4ecHZ2LnV1V1ZWFgDA2dlZ+t+SeQ/WaLVaWFtbw9LSEpaWlmXWlGzjYRqNBhqNpvKDJCIiolqtys8REkJg0qRJ2Lx5M37++We4u7tXuE5aWhoAwMXFBQDg7++PY8eOya7uSkxMhFarRdu2baWapKQk2XYSExPh7+8PAFCr1fD19ZXVFBcXIykpSaohIiIiZavyI0JhYWFYv349fvzxR9ja2krn9Oh0OlhbW+Ps2bNYv349XnrpJTRp0gRHjx5FeHg4evXqhQ4dOgAAAgMD0bZtW7z99ttYvHgxjEYjZs+ejbCwMOmIzfjx47F8+XLMnDkTo0ePxs8//4xvv/0W27Ztk3qJiIhASEgIOnfujK5du+LTTz9Fbm4uRo0aVdXDJiIiolqoyoNQbGwsgL8ukX/QmjVrMHLkSKjVauzevVsKJW5ubhg8eDBmz54t1VpaWmLr1q2YMGEC/P39YWNjg5CQEMyfP1+qcXd3x7Zt2xAeHo5ly5ahadOm+Mc//gG9Xi/VDBkyBNeuXUN0dDSMRiN8fHyQkJBQ6gRqIiIiUqZqv49QbVbt9xHaE1P126xufaNqugOiKsN7rlBdw7/pv5jz+V2tV41R+QznbtR0C2bz71vTHRAREVUd/ugqERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVa9mm6AiEr7JPG/Nd2CInSr6QbomVYb34f8mzYfgxDRM6jbxa9qugWiKmVYNb2mWzAbQ4UyMAhRncf/V0d1SW38ewb4N03PLgYhqvN4dIXqEv49E1UtnixNREREisUjQmSW2nhYnofkiYjoURiEyCw8LE9ERHUJvxojIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixVJEEFqxYgVatGgBKysr+Pn54cCBAzXdEhERET0D6nwQ2rhxIyIiIjBnzhwcPnwY3t7e0Ov1uHr1ak23RkRERDWszgehjz/+GGPHjsWoUaPQtm1brFy5Eg0aNMDq1atrujUiIiKqYXX6Jzby8/ORmpqKqKgoaZ6FhQUCAgJgMBhK1efl5SEvL096nJOTAwAwmUzV0l/uvbyKi4iIiOqw6viMLdmmEKLC2jodhK5fv46ioiI4OTnJ5js5OeHUqVOl6mNiYjBv3rxS893c3KqtRyIiIkWbvLzaNn379m3odLpya+p0EDJXVFQUIiIipMfFxcW4efMmmjRpApVKVaXPZTKZ4Obmhj/++ANarbZKt/0sqOvjA+r+GDm+2q+uj5Hjq/2qa4xCCNy+fRuurq4V1tbpIGRvbw9LS0tkZWXJ5mdlZcHZ2blUvUajgUajkc2zs7Orzhah1Wrr7B84UPfHB9T9MXJ8tV9dHyPHV/tVxxgrOhJUok6fLK1Wq+Hr64ukpCRpXnFxMZKSkuDv71+DnREREdGzoE4fEQKAiIgIhISEoHPnzujatSs+/fRT5ObmYtSoUTXdGhEREdWwOh+EhgwZgmvXriE6OhpGoxE+Pj5ISEgodQL106bRaDBnzpxSX8XVFXV9fEDdHyPHV/vV9TFyfLXfszBGlajMtWVEREREdVCdPkeIiIiIqDwMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDELV5O9//zu6d++OBg0aVPru1EIIREdHw8XFBdbW1ggICMDp06dlNTdv3sTw4cOh1WphZ2eH0NBQ3LlzpxpGUDFzezl//jxUKlWZ06ZNm6S6spZv2LDhaQxJ5nFe6z59+pTqffz48bKaixcvIigoCA0aNICjoyNmzJiBwsLC6hxKmcwd382bNzF58mR4enrC2toazZo1w7vvviv9OHGJmtx/K1asQIsWLWBlZQU/Pz8cOHCg3PpNmzahTZs2sLKygpeXF7Zv3y5bXpn35NNkzvi+/vpr9OzZE40aNUKjRo0QEBBQqn7kyJGl9lX//v2rexjlMmeMcXFxpfq3srKS1dTmfVjWf09UKhWCgoKkmmdpHyYnJ2PgwIFwdXWFSqVCfHx8hevs3bsXnTp1gkajQatWrRAXF1eqxtz3tdkEVYvo6Gjx8ccfi4iICKHT6Sq1zqJFi4ROpxPx8fHi999/F6+88opwd3cX9+7dk2r69+8vvL29xW+//Sb+85//iFatWomhQ4dW0yjKZ24vhYWF4sqVK7Jp3rx5omHDhuL27dtSHQCxZs0aWd2Dr8HT8jivde/evcXYsWNlvefk5EjLCwsLRfv27UVAQIA4cuSI2L59u7C3txdRUVHVPZxSzB3fsWPHxOuvvy62bNkizpw5I5KSkkTr1q3F4MGDZXU1tf82bNgg1Gq1WL16tTh+/LgYO3assLOzE1lZWWXW//rrr8LS0lIsXrxYnDhxQsyePVvUr19fHDt2TKqpzHvyaTF3fMOGDRMrVqwQR44cESdPnhQjR44UOp1OXLp0SaoJCQkR/fv3l+2rmzdvPq0hlWLuGNesWSO0Wq2sf6PRKKupzfvwxo0bsrGlp6cLS0tLsWbNGqnmWdqH27dvF++//7744YcfBACxefPmcuvPnTsnGjRoICIiIsSJEyfE559/LiwtLUVCQoJUY+5r9jgYhKrZmjVrKhWEiouLhbOzs1iyZIk0Lzs7W2g0GvHvf/9bCCHEiRMnBABx8OBBqWbHjh1CpVKJP//8s8p7L09V9eLj4yNGjx4tm1eZN1B1e9zx9e7dW0yZMuWRy7dv3y4sLCxk/7GOjY0VWq1W5OXlVUnvlVFV++/bb78VarVaFBQUSPNqav917dpVhIWFSY+LioqEq6uriImJKbP+b3/7mwgKCpLN8/PzE++8844QonLvyafJ3PE9rLCwUNja2oq1a9dK80JCQsSrr75a1a0+NnPHWNF/X+vaPvzkk0+Era2tuHPnjjTvWduHJSrz34GZM2eKdu3ayeYNGTJE6PV66fGTvmaVwa/GnhGZmZkwGo0ICAiQ5ul0Ovj5+cFgMAAADAYD7Ozs0LlzZ6kmICAAFhYWSElJear9VkUvqampSEtLQ2hoaKllYWFhsLe3R9euXbF69WqIp3zfzycZ37p162Bvb4/27dsjKioKd+/elW3Xy8tLdmdzvV4Pk8mE48ePV/1AHqGq/pZycnKg1WpRr578JvVPe//l5+cjNTVV9v6xsLBAQECA9P55mMFgkNUDf+2LkvrKvCeflscZ38Pu3r2LgoICNG7cWDZ/7969cHR0hKenJyZMmIAbN25Uae+V9bhjvHPnDpo3bw43Nze8+uqrsvdRXduHq1atQnBwMGxsbGTzn5V9aK6K3oNV8ZpVRp3/iY3awmg0AkCpn/5wcnKSlhmNRjg6OsqW16tXD40bN5Zqnpaq6GXVqlV4/vnn0b17d9n8+fPn48UXX0SDBg2wa9cuTJw4EXfu3MG7775bZf1X5HHHN2zYMDRv3hyurq44evQoIiMjkZGRgR9++EHabln7uGTZ01IV++/69etYsGABxo0bJ5tfE/vv+vXrKCoqKvO1PXXqVJnrPGpfPPh+K5n3qJqn5XHG97DIyEi4urrKPlT69++P119/He7u7jh79izee+89DBgwAAaDAZaWllU6hoo8zhg9PT2xevVqdOjQATk5OVi6dCm6d++O48ePo2nTpnVqHx44cADp6elYtWqVbP6ztA/N9aj3oMlkwr1793Dr1q0n/ruvDAYhM8yaNQsffvhhuTUnT55EmzZtnlJHVa+yY3xS9+7dw/r16/HBBx+UWvbgvI4dOyI3NxdLliypkg/S6h7fg6HAy8sLLi4u6NevH86ePQsPD4/H3m5lPa39ZzKZEBQUhLZt22Lu3LmyZdW5/+jxLFq0CBs2bMDevXtlJxMHBwdL//by8kKHDh3g4eGBvXv3ol+/fjXRqln8/f3h7+8vPe7evTuef/55fPnll1iwYEENdlb1Vq1aBS8vL3Tt2lU2v7bvw2cBg5AZpk2bhpEjR5Zb07Jly8fatrOzMwAgKysLLi4u0vysrCz4+PhINVevXpWtV1hYiJs3b0rrP6nKjvFJe/nuu+9w9+5djBgxosJaPz8/LFiwAHl5eU/8w3xPa3wl/Pz8AABnzpyBh4cHnJ2dS13xkJWVBQBVsg+fxvhu376N/v37w9bWFps3b0b9+vXLra/K/fco9vb2sLS0lF7LEllZWY8cj7Ozc7n1lXlPPi2PM74SS5cuxaJFi7B792506NCh3NqWLVvC3t4eZ86ceeofok8yxhL169dHx44dcebMGQB1Zx/m5uZiw4YNmD9/foXPU5P70FyPeg9qtVpYW1vD0tLyif8mKqXKzjaiMpl7svTSpUuleTk5OWWeLH3o0CGpZufOnTV6svTj9tK7d+9SVxs9ysKFC0WjRo0eu9fHUVWv9S+//CIAiN9//10I8f9Oln7wiocvv/xSaLVacf/+/aobQAUed3w5OTmiW7duonfv3iI3N7dSz/W09l/Xrl3FpEmTpMdFRUXif/7nf8o9Wfrll1+WzfP39y91snR578mnydzxCSHEhx9+KLRarTAYDJV6jj/++EOoVCrx448/PnG/j+NxxvigwsJC4enpKcLDw4UQdWMfCvHX54hGoxHXr1+v8Dlqeh+WQCVPlm7fvr1s3tChQ0udLP0kfxOV6rXKtkQyFy5cEEeOHJEuDz9y5Ig4cuSI7DJxT09P8cMPP0iPFy1aJOzs7MSPP/4ojh49Kl599dUyL5/v2LGjSElJEb/88oto3bp1jV4+X14vly5dEp6eniIlJUW23unTp4VKpRI7duwotc0tW7aIr7/+Whw7dkycPn1afPHFF6JBgwYiOjq62sfzMHPHd+bMGTF//nxx6NAhkZmZKX788UfRsmVL0atXL2mdksvnAwMDRVpamkhISBAODg41dvm8OePLyckRfn5+wsvLS5w5c0Z2uW5hYaEQomb334YNG4RGoxFxcXHixIkTYty4ccLOzk66Qu/tt98Ws2bNkup//fVXUa9ePbF06VJx8uRJMWfOnDIvn6/oPfm0mDu+RYsWCbVaLb777jvZvir5b9Dt27fF9OnThcFgEJmZmWL37t2iU6dOonXr1k81lD/JGOfNmyd27twpzp49K1JTU0VwcLCwsrISx48fl2pq8z4s0aNHDzFkyJBS85+1fXj79m3psw6A+Pjjj8WRI0fEhQsXhBBCzJo1S7z99ttSfcnl8zNmzBAnT54UK1asKPPy+fJes6rAIFRNQkJCBIBS0549e6Qa/P/3WylRXFwsPvjgA+Hk5CQ0Go3o16+fyMjIkG33xo0bYujQoaJhw4ZCq9WKUaNGycLV01RRL5mZmaXGLIQQUVFRws3NTRQVFZXa5o4dO4SPj49o2LChsLGxEd7e3mLlypVl1lY3c8d38eJF0atXL9G4cWOh0WhEq1atxIwZM2T3ERJCiPPnz4sBAwYIa2trYW9vL6ZNmya7/PxpMXd8e/bsKfNvGoDIzMwUQtT8/vv8889Fs2bNhFqtFl27dhW//fabtKx3794iJCREVv/tt9+K5557TqjVatGuXTuxbds22fLKvCefJnPG17x58zL31Zw5c4QQQty9e1cEBgYKBwcHUb9+fdG8eXMxduzYKv2AeRzmjHHq1KlSrZOTk3jppZfE4cOHZdurzftQCCFOnTolAIhdu3aV2taztg8f9d+IkjGFhISI3r17l1rHx8dHqNVq0bJlS9lnYonyXrOqoBLiKV+XTERERPSM4H2EiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEix/j8//rLx1ddpugAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOsxJREFUeJzt3XlclXX+///nAWVxOaCxyYi7gVtamojjUslHLGpyskbMSTTTSi2VNLUFzZoxy2paXJqmtJnRyWwxc6HMXCYjTdJcUkdNMytwBRQVRd7fP/px/TyCCISivB/32+3cbp739TrXeb3PxeE8vc51XbiMMUYAAAAW8qroBgAAACoKQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCACuYBMmTJDL5SrXda5YsUIul0srVqwo1/UClyOCEFCBjh07pvHjx6tHjx6qXbu2XC6XZs2aVdFtwRLTpk274n/e/vrXv6pDhw4KDg6Wn5+fmjZtqhEjRujAgQMV3RquEFUqugHAZgcPHtTEiRNVr149tW7dmv+B45KaNm2agoKC1L9/f4/xLl266MSJE/Lx8amYxkohLS1Nbdq0UUJCgmrWrKmtW7fqjTfe0KJFi7RhwwZVr169olvEZY4gBFSgOnXq6JdfflFYWJjWrVun66+/vqJbumRycnKs/ZDKz8/XqVOn5OfnV2jZ5fC6eHl5Fdnb5ej9998vNBYTE6M777xTH3/8sRISEiqgK1xJ+GoMKEbB8Rf/+9//9Oc//1kBAQEKDg7Wk08+KWOMfvzxR91+++1yu90KCwvTCy+84PH4V199VS1atFC1atVUq1YttWvXTnPmzHGW+/r6KiwsrFx6/eGHHzRkyBBFRkbK399fV111le666y7t2bOnUG1mZqZGjhypBg0ayNfXV3Xr1lW/fv108OBBp+bkyZOaMGGCrr76avn5+alOnTq64447tGvXLknnP45kz549hb7i69+/v2rUqKFdu3bplltuUc2aNdW3b19J0n//+1/dddddqlevnnx9fRUREaGRI0fqxIkThfretm2b/vSnPyk4OFj+/v6KjIzU448/Lklavny5XC6XPvzww0KPmzNnjlwul1JTU0v8el5o/tKvoeWRRx5RRESEfH19FRkZqSlTpsgY47Eul8ulYcOGafbs2WrRooV8fX2VkpKiWbNmyeVyaeXKlRoyZIhCQkJUt25d53FLlixR586dVb16ddWsWVPx8fHasmXLBXufOXOmbrrpJoWEhMjX11fNmzfX9OnTPWoaNGigLVu2aOXKlXK5XHK5XLrhhhsknX/bzps3T23btpW/v7+CgoL05z//WT/99JNHTcG2/umnn9SzZ0/VqFFDwcHBGjVqlM6cOeNR+84776ht27aqWbOm3G63WrVqpZdffvmC87uQBg0aSPr15xy4EPYIASXQu3dvNWvWTM8++6wWLVqkZ555RrVr19brr7+um266SZMnT9bs2bM1atQoXX/99erSpYveeOMNPfzww7rzzjs1fPhwnTx5Uhs3btSaNWt09913l3uPX3/9tb788kslJCSobt262rNnj6ZPn64bbrhB3333napVqybp1+OSOnfurK1bt+ree+/Vddddp4MHD2rBggXat2+fgoKCdObMGd16661atmyZEhISNHz4cB09elRLly7V5s2b1bhx41L3l5eXp7i4OHXq1ElTpkxx+pk3b56OHz+uBx98UFdddZXWrl2rV199Vfv27dO8efOcx2/cuFGdO3dW1apVNXjwYDVo0EC7du3Sxx9/rL/85S+64YYbFBERodmzZ+uPf/yjx3PPnj1bjRs3VkxMTIl6Lcn8jTH6wx/+oOXLl2vgwIFq06aNPvnkE40ePVo//fSTXnrpJY91fv7553r33Xc1bNgwBQUFqUGDBtqwYYMkaciQIQoODlZycrJycnIkSf/617+UmJiouLg4TZ48WcePH9f06dPVqVMnrV+/3vmwL8r06dPVokUL/eEPf1CVKlX08ccfa8iQIcrPz9fQoUMlSX/729/00EMPqUaNGk6YDA0NPe86Z82apQEDBuj666/XpEmTlJGRoZdfflmrV6/W+vXrFRgY6PH6xcXFKTo6WlOmTNFnn32mF154QY0bN9aDDz4oSVq6dKn69Omjbt26afLkyZKkrVu3avXq1Ro+fHiJtlMBY4wOHTqkvLw87dixQ2PHjpW3t7cT7IBiGQDnNX78eCPJDB482BnLy8szdevWNS6Xyzz77LPO+JEjR4y/v79JTEw0xhhz++23mxYtWpT4ub7++msjycycObNMvR4/frzQWGpqqpFk/vnPfzpjycnJRpL54IMPCtXn5+cbY4x56623jCTz4osvnrdm+fLlRpJZvny5x/Ldu3cXmkdiYqKRZMaOHVuividNmmRcLpf54YcfnLEuXbqYmjVreoyd3Y8xxowbN874+vqazMxMZ2z//v2mSpUqZvz48YWe53xKMv/58+cbSeaZZ57xWH7nnXcal8tldu7c6YxJMl5eXmbLli0etTNnzjSSTKdOnUxeXp4zfvToURMYGGgGDRrkUZ+enm4CAgI8xgt+Rs9W1GsaFxdnGjVq5DHWokUL07Vr10K1527bU6dOmZCQENOyZUtz4sQJp27hwoVGkklOTnbGCrb1xIkTPdZ57bXXmrZt2zr3hw8fbtxut8e8y+qXX34xkpxb3bp1zdy5c3/zemEHvhoDSuC+++5z/u3t7a127drJGKOBAwc644GBgYqMjNT333/v3N+3b5++/vrrS9Kjv7+/8+/Tp0/r0KFDatKkiQIDA/XNN984y95//321bt260F4TSc5p2O+//76CgoL00EMPnbemLAr2Bpyv75ycHB08eFAdO3aUMUbr16+XJB04cECrVq3Svffeq3r16p23n379+ik3N1fvvfeeMzZ37lzl5eXpz3/+c4n7LMn8Fy9eLG9vbz388MMeyx955BEZY7RkyRKP8a5du6p58+ZFPt+gQYPk7e3t3F+6dKkyMzPVp08fHTx40Ll5e3srOjpay5cvL7b/s1/TrKwsHTx4UF27dtX333+vrKys4idfhHXr1mn//v0aMmSIx7FD8fHxioqK0qJFiwo95oEHHvC437lzZ+e9If36/sjJydHSpUtL3c+5ateuraVLl+rjjz/WxIkTFRQUpGPHjv3m9cIOBCGgBM798A0ICJCfn5+CgoIKjR85ckSSNGbMGNWoUUPt27dX06ZNNXToUK1evfqi9XjixAklJyc7x6sEBQUpODhYmZmZHh9+u3btUsuWLYtd165duxQZGakqVcrv2/MqVap4HP9SYO/everfv79q167tHE/StWtXSXL6LvgAvVDfUVFRuv766zV79mxnbPbs2erQoYOaNGlS4l5LMv8ffvhB4eHhqlmzpsd4s2bNnOVna9iw4XnXde6yHTt2SJJuuukmBQcHe9w+/fRT7d+/v9j+V69erdjYWFWvXl2BgYEKDg7WY489JkllCkIFc4mMjCy0LCoqqtBc/fz8FBwc7DFWq1Yt570h/fp14NVXX62bb75ZdevW1b333quUlJRS9yZJPj4+io2N1a233qonn3xSU6dO1cCBA7Vw4cIyrQ924RghoATO/t96cWOSnANlmzVrpu3bt2vhwoVKSUnR+++/r2nTpik5OVlPPfVUuff40EMPaebMmRoxYoRiYmIUEBAgl8ulhIQE5efnl/vznW/P0LkHxBbw9fWVl5dXodr/+7//0+HDhzVmzBhFRUWpevXq+umnn9S/f/8y9d2vXz8NHz5c+/btU25urr766iu99tprpV5PeTt7L82FlhXM+1//+leRB9MXF9B27dqlbt26KSoqSi+++KIiIiLk4+OjxYsX66WXXrooPwvnOt9742whISHasGGDPvnkEy1ZskRLlizRzJkz1a9fP7399tu/6fk7duyoOnXqaPbs2br11lt/07pQ+RGEgIuoevXq6t27t3r37q1Tp07pjjvu0F/+8heNGzeu3E9Pfu+995SYmOhx5trJkycLnTnTuHFjbd68udh1NW7cWGvWrNHp06dVtWrVImtq1aolqfCZOefuHSjOpk2b9L///U9vv/22+vXr54yf+3VJo0aNJOmCfUtSQkKCkpKS9J///EcnTpxQ1apV1bt37xL3JJVs/vXr19dnn32mo0ePeuwV2rZtm7O8rAoORg8JCVFsbGypHvvxxx8rNzdXCxYs8NiTWdTXaSX9mrNgLtu3b9dNN93ksWz79u1lnquPj49uu+023XbbbcrPz9eQIUP0+uuv68knnyzVHryinDx5skx7v2AfvhoDLpJDhw553Pfx8VHz5s1ljNHp06fL/fm8vb0Lnbb96quvFtpD06tXL3377bdFnmZe8PhevXrp4MGDRe5JKaipX7++vL29tWrVKo/l06ZNK1XPZ6+z4N/nnkIdHBysLl266K233tLevXuL7KdAUFCQbr75Zv373//W7Nmz1aNHj0JfYV5ISeZ/yy236MyZM4VqXnrpJblcLt18882les6zxcXFye12669//WuRPyvFXTW5qNc0KytLM2fOLFRbvXr1Ep1i3q5dO4WEhGjGjBnKzc11xpcsWaKtW7cqPj7+gus417nvDy8vL11zzTWS5PEcxcnJydHx48cLjb///vs6cuSI2rVrV+q+YB/2CAEXSffu3RUWFqbf//73Cg0N1datW/Xaa68pPj7eYw/Ca6+9pszMTP3888+Sfv0f/b59+yT9+nVXQEBAiZ7v1ltv1b/+9S8FBASoefPmSk1N1WeffaarrrrKo2706NF67733dNddd+nee+9V27ZtdfjwYS1YsEAzZsxQ69at1a9fP/3zn/9UUlKS1q5dq86dOysnJ0efffaZhgwZottvv10BAQG666679Oqrr8rlcqlx48ZauHDhBY9fOVtUVJQaN26sUaNG6aeffpLb7XY+xM71yiuvqFOnTrruuus0ePBgNWzYUHv27HGuIHy2fv366c4775QkPf300yXu5+zHX2j+t912m2688UY9/vjj2rNnj1q3bq1PP/1UH330kUaMGFGmSwwUcLvdmj59uu655x5dd911SkhIUHBwsPbu3atFixbp97///Xm/7uvevbuzp+X+++/XsWPH9MYbbygkJES//PKLR23btm01ffp0PfPMM2rSpIlCQkIK7fGRpKpVq2ry5MkaMGCAunbtqj59+jinzzdo0EAjR44s9Rzvu+8+HT58WDfddJPq1q2rH374Qa+++qratGnjHGd1ITt27FBsbKx69+6tqKgoeXl5ad26dfr3v/+tBg0alPo0fFiqQs5VA64QBacmHzhwwGM8MTHRVK9evVB9165dnVPmX3/9ddOlSxdz1VVXGV9fX9O4cWMzevRok5WV5fGY+vXre5z6e/Zt9+7dJe71yJEjZsCAASYoKMjUqFHDxMXFmW3btpn69es7p/QXOHTokBk2bJj53e9+Z3x8fEzdunVNYmKiOXjwoFNz/Phx8/jjj5uGDRuaqlWrmrCwMHPnnXeaXbt2OTUHDhwwvXr1MtWqVTO1atUy999/v9m8eXORp88X9XoZY8x3331nYmNjTY0aNUxQUJAZNGiQ+fbbb4u8lMDmzZvNH//4RxMYGGj8/PxMZGSkefLJJwutMzc319SqVcsEBAR4nO5dGiWZ/9GjR83IkSNNeHi4qVq1qmnatKl5/vnnPU7pN+bX0+eHDh1a6DkKTp//+uuvi+xh+fLlJi4uzgQEBBg/Pz/TuHFj079/f7Nu3TqnpqjT5xcsWGCuueYa4+fnZxo0aGAmT57sXBLg7J+p9PR0Ex8fb2rWrGkkOafSn+/SCHPnzjXXXnut8fX1NbVr1zZ9+/Y1+/bt86g537Y+t8/33nvPdO/e3YSEhBgfHx9Tr149c//995tffvmlyNeiKAcOHDCDBw82UVFRpnr16sbHx8c0bdrUjBgxotB7FjgflzHn7FcGgCtcXl6ewsPDddttt+nNN9+s6HYAXMY4RghApTN//nwdOHDA4wBsACgKe4SAy9yxY8cueHG44ODgEp2yXNmtWbNGGzdu1NNPP62goCCPC0lK0qlTp3T48OFi1xEQEFDsqe64NNLT04td7u/vX+Lj54DicLA0cJmbMmXKBa87tHv37mL/9pQtpk+frn//+99q06aNxx99LfDll1/qxhtvLHYdM2fOVP/+/S9OgyixOnXqFLs8MTGxyG0MlBZ7hIDL3Pfff+/xpwmK0qlTp3K/LlFldOTIEaWlpRVb06JFiwt+COPi++yzz4pdHh4eft4/WQKUBkEIAABYi4OlAQCAtThGqBj5+fn6+eefVbNmzd/0F7cBAMClY4zR0aNHFR4eXuhvHJ6LIFSMn3/+WRERERXdBgAAKIMff/xRdevWLbaGIFSMgj+D8OOPP8rtdldwNwAAoCSys7MVERHh8eeMzocgVIyCr8PcbjdBCACAK0xJDmvhYGkAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAa1Wp6AYAoKK8tPR/Fd1CqY38v6srugWgUmGPEAAAsBZBCAAAWIuvxgBYq8Pev1d0C2UwpaIbACoV9ggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1ShWEJk2apOuvv141a9ZUSEiIevbsqe3bt3vUnDx5UkOHDtVVV12lGjVqqFevXsrIyPCo2bt3r+Lj41WtWjWFhIRo9OjRysvL86hZsWKFrrvuOvn6+qpJkyaaNWtWoX6mTp2qBg0ayM/PT9HR0Vq7dm2pewEAAPYqVRBauXKlhg4dqq+++kpLly7V6dOn1b17d+Xk5Dg1I0eO1Mcff6x58+Zp5cqV+vnnn3XHHXc4y8+cOaP4+HidOnVKX375pd5++23NmjVLycnJTs3u3bsVHx+vG2+8URs2bNCIESN033336ZNPPnFq5s6dq6SkJI0fP17ffPONWrdurbi4OO3fv7/EvQAAALu5jDGmrA8+cOCAQkJCtHLlSnXp0kVZWVkKDg7WnDlzdOedd0qStm3bpmbNmik1NVUdOnTQkiVLdOutt+rnn39WaGioJGnGjBkaM2aMDhw4IB8fH40ZM0aLFi3S5s2bnedKSEhQZmamUlJSJEnR0dG6/vrr9dprr0mS8vPzFRERoYceekhjx44tUS/nys3NVW5urnM/OztbERERysrKktvtLuvLBOAylfrmqIpuodRiBk6p6BaAy152drYCAgJK9Pn9m44RysrKkiTVrl1bkpSWlqbTp08rNjbWqYmKilK9evWUmpoqSUpNTVWrVq2cECRJcXFxys7O1pYtW5yas9dRUFOwjlOnTiktLc2jxsvLS7GxsU5NSXo516RJkxQQEODcIiIiyvbCAACAK0KZg1B+fr5GjBih3//+92rZsqUkKT09XT4+PgoMDPSoDQ0NVXp6ulNzdggqWF6wrLia7OxsnThxQgcPHtSZM2eKrDl7HRfq5Vzjxo1TVlaWc/vxxx9L+GoAAIArUZWyPnDo0KHavHmzvvjii/Lsp0L5+vrK19e3otsAAACXSJn2CA0bNkwLFy7U8uXLVbduXWc8LCxMp06dUmZmpkd9RkaGwsLCnJpzz9wquH+hGrfbLX9/fwUFBcnb27vImrPXcaFeAACA3UoVhIwxGjZsmD788EN9/vnnatiwocfytm3bqmrVqlq2bJkztn37du3du1cxMTGSpJiYGG3atMnj7K6lS5fK7XarefPmTs3Z6yioKViHj4+P2rZt61GTn5+vZcuWOTUl6QUAANitVF+NDR06VHPmzNFHH32kmjVrOsfaBAQEyN/fXwEBARo4cKCSkpJUu3Ztud1uPfTQQ4qJiXHO0urevbuaN2+ue+65R88995zS09P1xBNPaOjQoc7XUg888IBee+01Pfroo7r33nv1+eef691339WiRYucXpKSkpSYmKh27dqpffv2+tvf/qacnBwNGDDA6elCvQAAALuVKghNnz5dknTDDTd4jM+cOVP9+/eXJL300kvy8vJSr169lJubq7i4OE2bNs2p9fb21sKFC/Xggw8qJiZG1atXV2JioiZOnOjUNGzYUIsWLdLIkSP18ssvq27duvrHP/6huLg4p6Z37946cOCAkpOTlZ6erjZt2iglJcXjAOoL9QIAAOz2m64jVNmV5joEAK48XEcIqJwu2XWEAAAArmQEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFir1EFo1apVuu222xQeHi6Xy6X58+d7LO/fv79cLpfHrUePHh41hw8fVt++feV2uxUYGKiBAwfq2LFjHjUbN25U586d5efnp4iICD333HOFepk3b56ioqLk5+enVq1aafHixR7LjTFKTk5WnTp15O/vr9jYWO3YsaO0UwYAAJVUqYNQTk6OWrduralTp563pkePHvrll1+c23/+8x+P5X379tWWLVu0dOlSLVy4UKtWrdLgwYOd5dnZ2erevbvq16+vtLQ0Pf/885owYYL+/ve/OzVffvml+vTpo4EDB2r9+vXq2bOnevbsqc2bNzs1zz33nF555RXNmDFDa9asUfXq1RUXF6eTJ0+WdtoAAKASchljTJkf7HLpww8/VM+ePZ2x/v37KzMzs9CeogJbt25V8+bN9fXXX6tdu3aSpJSUFN1yyy3at2+fwsPDNX36dD3++ONKT0+Xj4+PJGns2LGaP3++tm3bJknq3bu3cnJytHDhQmfdHTp0UJs2bTRjxgwZYxQeHq5HHnlEo0aNkiRlZWUpNDRUs2bNUkJCwgXnl52drYCAAGVlZcntdpflJQJwGUt9c1RFt1BqMQOnVHQLwGWvNJ/fF+UYoRUrVigkJESRkZF68MEHdejQIWdZamqqAgMDnRAkSbGxsfLy8tKaNWucmi5dujghSJLi4uK0fft2HTlyxKmJjY31eN64uDilpqZKknbv3q309HSPmoCAAEVHRzs158rNzVV2drbHDQAAVF7lHoR69Oihf/7zn1q2bJkmT56slStX6uabb9aZM2ckSenp6QoJCfF4TJUqVVS7dm2lp6c7NaGhoR41BfcvVHP28rMfV1TNuSZNmqSAgADnFhERUer5AwCAK0eV8l7h2V85tWrVStdcc40aN26sFStWqFu3buX9dOVq3LhxSkpKcu5nZ2cThgAAqMQu+unzjRo1UlBQkHbu3ClJCgsL0/79+z1q8vLydPjwYYWFhTk1GRkZHjUF9y9Uc/bysx9XVM25fH195Xa7PW4AAKDyuuhBaN++fTp06JDq1KkjSYqJiVFmZqbS0tKcms8//1z5+fmKjo52alatWqXTp087NUuXLlVkZKRq1arl1CxbtszjuZYuXaqYmBhJUsOGDRUWFuZRk52drTVr1jg1AADAbqUOQseOHdOGDRu0YcMGSb8elLxhwwbt3btXx44d0+jRo/XVV19pz549WrZsmW6//XY1adJEcXFxkqRmzZqpR48eGjRokNauXavVq1dr2LBhSkhIUHh4uCTp7rvvlo+PjwYOHKgtW7Zo7ty5evnllz2+tho+fLhSUlL0wgsvaNu2bZowYYLWrVunYcOGSfr1jLYRI0bomWee0YIFC7Rp0yb169dP4eHhHme5AQAAe5X6GKF169bpxhtvdO4XhJPExERNnz5dGzdu1Ntvv63MzEyFh4ere/fuevrpp+Xr6+s8Zvbs2Ro2bJi6desmLy8v9erVS6+88oqzPCAgQJ9++qmGDh2qtm3bKigoSMnJyR7XGurYsaPmzJmjJ554Qo899piaNm2q+fPnq2XLlk7No48+qpycHA0ePFiZmZnq1KmTUlJS5OfnV9ppAwCASug3XUeosuM6QkDlxnWEgMqpwq8jBAAAcCUgCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGCtUgehVatW6bbbblN4eLhcLpfmz5/vsdwYo+TkZNWpU0f+/v6KjY3Vjh07PGoOHz6svn37yu12KzAwUAMHDtSxY8c8ajZu3KjOnTvLz89PEREReu655wr1Mm/ePEVFRcnPz0+tWrXS4sWLS90LAACwV6mDUE5Ojlq3bq2pU6cWufy5557TK6+8ohkzZmjNmjWqXr264uLidPLkSaemb9++2rJli5YuXaqFCxdq1apVGjx4sLM8Oztb3bt3V/369ZWWlqbnn39eEyZM0N///nen5ssvv1SfPn00cOBArV+/Xj179lTPnj21efPmUvUCAADs5TLGmDI/2OXShx9+qJ49e0r6dQ9MeHi4HnnkEY0aNUqSlJWVpdDQUM2aNUsJCQnaunWrmjdvrq+//lrt2rWTJKWkpOiWW27Rvn37FB4erunTp+vxxx9Xenq6fHx8JEljx47V/PnztW3bNklS7969lZOTo4ULFzr9dOjQQW3atNGMGTNK1MuFZGdnKyAgQFlZWXK73WV9mQBcplLfHFXRLZRazMApFd0CcNkrzed3uR4jtHv3bqWnpys2NtYZCwgIUHR0tFJTUyVJqampCgwMdEKQJMXGxsrLy0tr1qxxarp06eKEIEmKi4vT9u3bdeTIEafm7OcpqCl4npL0cq7c3FxlZ2d73AAAQOVVrkEoPT1dkhQaGuoxHhoa6ixLT09XSEiIx/IqVaqodu3aHjVFrePs5zhfzdnLL9TLuSZNmqSAgADnFhERUYJZAwCAKxVnjZ1l3LhxysrKcm4//vhjRbcEAAAuonINQmFhYZKkjIwMj/GMjAxnWVhYmPbv3++xPC8vT4cPH/aoKWodZz/H+WrOXn6hXs7l6+srt9vtcQMAAJVXuQahhg0bKiwsTMuWLXPGsrOztWbNGsXExEiSYmJilJmZqbS0NKfm888/V35+vqKjo52aVatW6fTp007N0qVLFRkZqVq1ajk1Zz9PQU3B85SkFwAAYLdSB6Fjx45pw4YN2rBhg6RfD0resGGD9u7dK5fLpREjRuiZZ57RggULtGnTJvXr10/h4eHOmWXNmjVTjx49NGjQIK1du1arV6/WsGHDlJCQoPDwcEnS3XffLR8fHw0cOFBbtmzR3Llz9fLLLyspKcnpY/jw4UpJSdELL7ygbdu2acKECVq3bp2GDRsmSSXqBQAA2K1KaR+wbt063Xjjjc79gnCSmJioWbNm6dFHH1VOTo4GDx6szMxMderUSSkpKfLz83MeM3v2bA0bNkzdunWTl5eXevXqpVdeecVZHhAQoE8//VRDhw5V27ZtFRQUpOTkZI9rDXXs2FFz5szRE088occee0xNmzbV/Pnz1bJlS6emJL0AAAB7/abrCFV2XEcIqNy4jhBQOVXYdYQAAACuJAQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArFXuQWjChAlyuVwet6ioKGf5yZMnNXToUF111VWqUaOGevXqpYyMDI917N27V/Hx8apWrZpCQkI0evRo5eXledSsWLFC1113nXx9fdWkSRPNmjWrUC9Tp05VgwYN5Ofnp+joaK1du7a8pwsAAK5gF2WPUIsWLfTLL784ty+++MJZNnLkSH388ceaN2+eVq5cqZ9//ll33HGHs/zMmTOKj4/XqVOn9OWXX+rtt9/WrFmzlJyc7NTs3r1b8fHxuvHGG7VhwwaNGDFC9913nz755BOnZu7cuUpKStL48eP1zTffqHXr1oqLi9P+/fsvxpQBAMAVyGWMMeW5wgkTJmj+/PnasGFDoWVZWVkKDg7WnDlzdOedd0qStm3bpmbNmik1NVUdOnTQkiVLdOutt+rnn39WaGioJGnGjBkaM2aMDhw4IB8fH40ZM0aLFi3S5s2bnXUnJCQoMzNTKSkpkqTo6Ghdf/31eu211yRJ+fn5ioiI0EMPPaSxY8eWaC7Z2dkKCAhQVlaW3G73b3lZAFyGUt8cVdEtlFrMwCkV3QJw2SvN5/dF2SO0Y8cOhYeHq1GjRurbt6/27t0rSUpLS9Pp06cVGxvr1EZFRalevXpKTU2VJKWmpqpVq1ZOCJKkuLg4ZWdna8uWLU7N2esoqClYx6lTp5SWluZR4+XlpdjYWKemKLm5ucrOzva4AQCAyqvcg1B0dLRmzZqllJQUTZ8+Xbt371bnzp119OhRpaeny8fHR4GBgR6PCQ0NVXp6uiQpPT3dIwQVLC9YVlxNdna2Tpw4oYMHD+rMmTNF1hSsoyiTJk1SQECAc4uIiCjTawAAAK4MVcp7hTfffLPz72uuuUbR0dGqX7++3n33Xfn7+5f305WrcePGKSkpybmfnZ1NGAIAoBK76KfPBwYG6uqrr9bOnTsVFhamU6dOKTMz06MmIyNDYWFhkqSwsLBCZ5EV3L9Qjdvtlr+/v4KCguTt7V1kTcE6iuLr6yu32+1xAwAAlddFD0LHjh3Trl27VKdOHbVt21ZVq1bVsmXLnOXbt2/X3r17FRMTI0mKiYnRpk2bPM7uWrp0qdxut5o3b+7UnL2OgpqCdfj4+Kht27YeNfn5+Vq2bJlTAwAAUO5BaNSoUVq5cqX27NmjL7/8Un/84x/l7e2tPn36KCAgQAMHDlRSUpKWL1+utLQ0DRgwQDExMerQoYMkqXv37mrevLnuueceffvtt/rkk0/0xBNPaOjQofL19ZUkPfDAA/r+++/16KOPatu2bZo2bZreffddjRw50ukjKSlJb7zxht5++21t3bpVDz74oHJycjRgwIDynjIAALhClfsxQvv27VOfPn106NAhBQcHq1OnTvrqq68UHBwsSXrppZfk5eWlXr16KTc3V3FxcZo2bZrzeG9vby1cuFAPPvigYmJiVL16dSUmJmrixIlOTcOGDbVo0SKNHDlSL7/8surWrat//OMfiouLc2p69+6tAwcOKDk5Wenp6WrTpo1SUlIKHUANAADsVe7XEapMuI4QULlxHSGgcqrw6wgBAABcCQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFirSkU3AAAAykfqm6MquoVSixk4pUKfnz1CAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1uKBiBeLCVwAAVCz2CAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLf7oKnAZemnp/yq6hVIb+X9XV3QLAFBqBCHgMtRh798ruoUymFLRDeAylvrmqIpuASgSQQiV3pW4d6VDRTdQBnzQXRpX4s+zdGX+TMMOBCFUelfm3hWgaPw8A+WLIIRS4X/9AIDKhLPGAACAtQhCAADAWgQhAABgLYIQAACwlhVBaOrUqWrQoIH8/PwUHR2ttWvXVnRLAADgMlDpg9DcuXOVlJSk8ePH65tvvlHr1q0VFxen/fv3V3RrAACgglX6IPTiiy9q0KBBGjBggJo3b64ZM2aoWrVqeuuttyq6NQAAUMEq9XWETp06pbS0NI0bN84Z8/LyUmxsrFJTUwvV5+bmKjc317mflZUlScrOzr4o/eWcyL1wEQAAldjF+IwtWKcx5oK1lToIHTx4UGfOnFFoaKjHeGhoqLZt21aoftKkSXrqqacKjUdERFy0HgEAsNpDr120VR89elQBAQHF1lTqIFRa48aNU1JSknM/Pz9fhw8f1lVXXSWXy1Wuz5Wdna2IiAj9+OOPcrvd5bruy0Fln59U+efI/K58lX2OzO/Kd7HmaIzR0aNHFR4efsHaSh2EgoKC5O3trYyMDI/xjIwMhYWFFar39fWVr6+vx1hgYODFbFFut7vS/oBLlX9+UuWfI/O78lX2OTK/K9/FmOOF9gQVqNQHS/v4+Kht27ZatmyZM5afn69ly5YpJiamAjsDAACXg0q9R0iSkpKSlJiYqHbt2ql9+/b629/+ppycHA0YMKCiWwMAABWs0geh3r1768CBA0pOTlZ6erratGmjlJSUQgdQX2q+vr4aP358oa/iKovKPj+p8s+R+V35Kvscmd+V73KYo8uU5NwyAACASqhSHyMEAABQHIIQAACwFkEIAABYiyAEAACsRRACAADWIghdJH/5y1/UsWNHVatWrcRXpzbGKDk5WXXq1JG/v79iY2O1Y8cOj5rDhw+rb9++crvdCgwM1MCBA3Xs2LGLMIMLK20ve/bskcvlKvI2b948p66o5e+8886lmJKHsrzWN9xwQ6HeH3jgAY+avXv3Kj4+XtWqVVNISIhGjx6tvLy8izmVIpV2focPH9ZDDz2kyMhI+fv7q169enr44YedP05coCK339SpU9WgQQP5+fkpOjpaa9euLbZ+3rx5ioqKkp+fn1q1aqXFixd7LC/Je/JSKs383njjDXXu3Fm1atVSrVq1FBsbW6i+f//+hbZVjx49LvY0ilWaOc6aNatQ/35+fh41V/I2LOr3icvlUnx8vFNzOW3DVatW6bbbblN4eLhcLpfmz59/wcesWLFC1113nXx9fdWkSRPNmjWrUE1p39elZnBRJCcnmxdffNEkJSWZgICAEj3m2WefNQEBAWb+/Pnm22+/NX/4wx9Mw4YNzYkTJ5yaHj16mNatW5uvvvrK/Pe//zVNmjQxffr0uUizKF5pe8nLyzO//PKLx+2pp54yNWrUMEePHnXqJJmZM2d61J39GlwqZXmtu3btagYNGuTRe1ZWlrM8Ly/PtGzZ0sTGxpr169ebxYsXm6CgIDNu3LiLPZ1CSju/TZs2mTvuuMMsWLDA7Ny50yxbtsw0bdrU9OrVy6OuorbfO++8Y3x8fMxbb71ltmzZYgYNGmQCAwNNRkZGkfWrV6823t7e5rnnnjPfffedeeKJJ0zVqlXNpk2bnJqSvCcvldLO7+677zZTp04169evN1u3bjX9+/c3AQEBZt++fU5NYmKi6dGjh8e2Onz48KWaUiGlnePMmTON2+326D89Pd2j5krehocOHfKY2+bNm423t7eZOXOmU3M5bcPFixebxx9/3HzwwQdGkvnwww+Lrf/+++9NtWrVTFJSkvnuu+/Mq6++ary9vU1KSopTU9rXrCwIQhfZzJkzSxSE8vPzTVhYmHn++eedsczMTOPr62v+85//GGOM+e6774wk8/XXXzs1S5YsMS6Xy/z000/l3ntxyquXNm3amHvvvddjrCRvoIutrPPr2rWrGT58+HmXL1682Hh5eXn8sp4+fbpxu90mNze3XHovifLafu+++67x8fExp0+fdsYqavu1b9/eDB061Ll/5swZEx4ebiZNmlRk/Z/+9CcTHx/vMRYdHW3uv/9+Y0zJ3pOXUmnnd668vDxTs2ZN8/bbbztjiYmJ5vbbby/vVsustHO80O/XyrYNX3rpJVOzZk1z7NgxZ+xy24YFSvJ74NFHHzUtWrTwGOvdu7eJi4tz7v/W16wk+GrsMrF7926lp6crNjbWGQsICFB0dLRSU1MlSampqQoMDFS7du2cmtjYWHl5eWnNmjWXtN/y6CUtLU0bNmzQwIEDCy0bOnSogoKC1L59e7311lsyl/i6n79lfrNnz1ZQUJBatmypcePG6fjx4x7rbdWqlceVzePi4pSdna0tW7aU/0TOo7x+lrKysuR2u1WliudF6i/19jt16pTS0tI83j9eXl6KjY113j/nSk1N9aiXft0WBfUleU9eKmWZ37mOHz+u06dPq3bt2h7jK1asUEhIiCIjI/Xggw/q0KFD5dp7SZV1jseOHVP9+vUVERGh22+/3eN9VNm24ZtvvqmEhARVr17dY/xy2YaldaH3YHm8ZiVR6f/ExpUiPT1dkgr96Y/Q0FBnWXp6ukJCQjyWV6lSRbVr13ZqLpXy6OXNN99Us2bN1LFjR4/xiRMn6qabblK1atX06aefasiQITp27Jgefvjhcuv/Qso6v7vvvlv169dXeHi4Nm7cqDFjxmj79u364IMPnPUWtY0Lll0q5bH9Dh48qKefflqDBw/2GK+I7Xfw4EGdOXOmyNd227ZtRT7mfNvi7Pdbwdj5ai6VsszvXGPGjFF4eLjHh0qPHj10xx13qGHDhtq1a5cee+wx3XzzzUpNTZW3t3e5zuFCyjLHyMhIvfXWW7rmmmuUlZWlKVOmqGPHjtqyZYvq1q1bqbbh2rVrtXnzZr355pse45fTNiyt870Hs7OzdeLECR05cuQ3/9yXBEGoFMaOHavJkycXW7N161ZFRUVdoo7KX0nn+FudOHFCc+bM0ZNPPllo2dlj1157rXJycvT888+XywfpxZ7f2aGgVatWqlOnjrp166Zdu3apcePGZV5vSV2q7Zedna34+Hg1b95cEyZM8Fh2MbcfyubZZ5/VO++8oxUrVngcTJyQkOD8u1WrVrrmmmvUuHFjrVixQt26dauIVkslJiZGMTExzv2OHTuqWbNmev311/X0009XYGfl780331SrVq3Uvn17j/ErfRteDghCpfDII4+of//+xdY0atSoTOsOCwuTJGVkZKhOnTrOeEZGhtq0aePU7N+/3+NxeXl5Onz4sPP436qkc/ytvbz33ns6fvy4+vXrd8Ha6OhoPf3008rNzf3Nf5jvUs2vQHR0tCRp586daty4scLCwgqd8ZCRkSFJ5bINL8X8jh49qh49eqhmzZr68MMPVbVq1WLry3P7nU9QUJC8vb2d17JARkbGeecTFhZWbH1J3pOXSlnmV2DKlCl69tln9dlnn+maa64ptrZRo0YKCgrSzp07L/mH6G+ZY4GqVavq2muv1c6dOyVVnm2Yk5Ojd955RxMnTrzg81TkNiyt870H3W63/P395e3t/Zt/Jkqk3I42QpFKe7D0lClTnLGsrKwiD5Zet26dU/PJJ59U6MHSZe2la9euhc42Op9nnnnG1KpVq8y9lkV5vdZffPGFkWS+/fZbY8z/f7D02Wc8vP7668btdpuTJ0+W3wQuoKzzy8rKMh06dDBdu3Y1OTk5JXquS7X92rdvb4YNG+bcP3PmjPnd735X7MHSt956q8dYTExMoYOli3tPXkqlnZ8xxkyePNm43W6Tmppaouf48ccfjcvlMh999NFv7rcsyjLHs+Xl5ZnIyEgzcuRIY0zl2IbG/Po54uvraw4ePHjB56jobVhAJTxYumXLlh5jffr0KXSw9G/5mShRr+W2Jnj44YcfzPr1653Tw9evX2/Wr1/vcZp4ZGSk+eCDD5z7zz77rAkMDDQfffSR2bhxo7n99tuLPH3+2muvNWvWrDFffPGFadq0aYWePl9cL/v27TORkZFmzZo1Ho/bsWOHcblcZsmSJYXWuWDBAvPGG2+YTZs2mR07dphp06aZatWqmeTk5Is+n3OVdn47d+40EydONOvWrTO7d+82H330kWnUqJHp0qWL85iC0+e7d+9uNmzYYFJSUkxwcHCFnT5fmvllZWWZ6Oho06pVK7Nz506P03Xz8vKMMRW7/d555x3j6+trZs2aZb777jszePBgExgY6Jyhd88995ixY8c69atXrzZVqlQxU6ZMMVu3bjXjx48v8vT5C70nL5XSzu/ZZ581Pj4+5r333vPYVgW/g44ePWpGjRplUlNTze7du81nn31mrrvuOtO0adNLGsp/yxyfeuop88knn5hdu3aZtLQ0k5CQYPz8/MyWLVucmit5Gxbo1KmT6d27d6Hxy20bHj161Pmsk2RefPFFs379evPDDz8YY4wZO3asueeee5z6gtPnR48ebbZu3WqmTp1a5Onzxb1m5YEgdJEkJiYaSYVuy5cvd2r0/11vpUB+fr558sknTWhoqPH19TXdunUz27dv91jvoUOHTJ8+fUyNGjWM2+02AwYM8AhXl9KFetm9e3ehORtjzLhx40xERIQ5c+ZMoXUuWbLEtGnTxtSoUcNUr17dtG7d2syYMaPI2outtPPbu3ev6dKli6ldu7bx9fU1TZo0MaNHj/a4jpAxxuzZs8fcfPPNxt/f3wQFBZlHHnnE4/TzS6W081u+fHmRP9OSzO7du40xFb/9Xn31VVOvXj3j4+Nj2rdvb7766itnWdeuXU1iYqJH/bvvvmuuvvpq4+PjY1q0aGEWLVrksbwk78lLqTTzq1+/fpHbavz48cYYY44fP266d+9ugoODTdWqVU39+vXNoEGDyvUDpixKM8cRI0Y4taGhoeaWW24x33zzjcf6ruRtaIwx27ZtM5LMp59+Wmhdl9s2PN/viII5JSYmmq5duxZ6TJs2bYyPj49p1KiRx2digeJes/LgMuYSn5cMAABwmeA6QgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACw1v8DfqVTl70gtQkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ95JREFUeJzt3XtcVXW+//E3oGxQ3KCiIIl385KokyViXnJk3BpNmTapeQrvJwctJfNSjreah43dtLw1U6lzZjyZTVqpaYa3U6ImSV5x1DQ1A02Fragg8P390Y81bkEFQknW6/l47MeDvdZnrfX5ruVmv917rYWXMcYIAADAhrzLugEAAICyQhACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACYFsbNmyQl5eXNmzYUKrr9fLy0pQpU0p1nQBuDoIQAJTAqlWrbvuws3jxYs2cObOs27DMmzdPf/jDH1SnTh15eXlpwIABhdYlJCRo0KBBuvPOO1WpUiU1aNBAQ4YM0Y8//nhrG0a5UKGsGwCA29GqVas0Z86cQsPQxYsXVaHCr//X6+LFi7V7926NGjWqrFuRJP3lL3/RuXPn1LZt2+uGmnHjxunMmTP6wx/+oMaNG+u7777T7NmztWLFCiUnJys0NPQWdo3b3a//lQqggMzMTFWuXLms2ygzFy5cUKVKlQpMz8nJUV5ennx9fcugq//w8/Mr0+3frjZu3Gh9GhQQEHDNutdff10dOnSQt/d/vtTo3r27OnfurNmzZ+ull166Fe2inOCrMaCIpkyZIi8vL6WkpOixxx6T0+lU9erV9cwzz+jSpUsetf/4xz/Upk0b+fv7q1q1aurbt6+OHTvmUfN///d/1tcADodD4eHhGj16tC5evOhRN2DAAAUEBOjQoUN64IEHVKVKFfXv31+SdODAAfXu3VuhoaHy8/NT7dq11bdvX2VkZFjL5+Tk6MUXX1TDhg3lcDhUr149Pf/888rKyvLYTr169fTggw/qyy+/VNu2beXn56cGDRro73//e4n21z/+8Q+1bdtWlSpVUtWqVdWpUyd9/vnnHjVz587VXXfdJYfDobCwMMXFxSk9Pd2j5v7771eLFi2UlJSkTp06qVKlSnr++ed15MgReXl56dVXX9XMmTOt8e3du1eSlJKSokcffVTVqlWTn5+f7rnnHn3yySc37Lsox2XAgAGaM2eOpJ/PB8p/5CvsHKEdO3aoR48ecjqdCggIUNeuXbVlyxaPmoULF8rLy0tfffWV4uPjVaNGDVWuXFmPPPKITp065VG7fft2uVwuBQcHy9/fX/Xr19egQYNuOL4r9+vKlSv1/fffW/3Xq1fPmn/y5EkNHjxYISEh8vPzU6tWrbRo0SKPdVx5DN544w3VrVtX/v7+6ty5s3bv3l3kXvLVrVvXYz9eS6dOnTxCUP60atWqad++fcXeLuyNT4SAYnrsscdUr149TZ8+XVu2bNGbb76ps2fPWoHhz3/+s/70pz/pscce05AhQ3Tq1Cm99dZb6tSpk3bs2KGgoCBJ0tKlS3XhwgUNHz5c1atX17Zt2/TWW2/p+PHjWrp0qcc2c3Jy5HK51KFDB7366quqVKmSsrOz5XK5lJWVpZEjRyo0NFQ//PCDVqxYofT0dAUGBkqShgwZokWLFunRRx/Vs88+q61bt2r69Onat2+fli1b5rGdgwcP6tFHH9XgwYMVGxur9957TwMGDFCbNm101113FXkfTZ06VVOmTFH79u01bdo0+fr6auvWrVq3bp26desm6edgOXXqVEVHR2v48OHav3+/5s2bp6+//lpfffWVKlasaK3v9OnT6tGjh/r27av/+q//UkhIiDVvwYIFunTpkoYNGyaHw6Fq1appz549uu+++3THHXdo/Pjxqly5sj744AP17NlT//rXv/TII49cs/eiHJf//u//1okTJ7R27Vr9z//8zw33x549e9SxY0c5nU6NHTtWFStW1Ntvv637779fGzduVGRkpEf9yJEjVbVqVU2ePFlHjhzRzJkzNWLECC1ZskTSzyGlW7duqlGjhsaPH6+goCAdOXJEH330UZGP0QsvvKCMjAwdP35cb7zxhiRZn8JcvHhR999/vw4ePKgRI0aofv36Wrp0qQYMGKD09HQ988wzHuv6+9//rnPnzikuLk6XLl3SrFmz9Nvf/la7du3yOFY30/nz53X+/HkFBwffku2hHDEAimTy5MlGknnooYc8pv/xj380ksy3335rjhw5Ynx8fMyf//xnj5pdu3aZChUqeEy/cOFCgW1Mnz7deHl5me+//96aFhsbaySZ8ePHe9Tu2LHDSDJLly69Zs/JyclGkhkyZIjH9DFjxhhJZt26dda0unXrGklm06ZN1rSTJ08ah8Nhnn322Wtu42oHDhww3t7e5pFHHjG5ubke8/Ly8qz1+vr6mm7dunnUzJ4920gy7733njWtc+fORpKZP3++x7oOHz5sJBmn02lOnjzpMa9r164mIiLCXLp0yWPb7du3N40bN7amrV+/3kgy69evt6YV9bjExcWZa/0KlWQmT55sPe/Zs6fx9fU1hw4dsqadOHHCVKlSxXTq1MmatmDBAiPJREdHW/vKGGNGjx5tfHx8THp6ujHGmGXLlhlJ5uuvvy50+0UVExNj6tatW2D6zJkzjSTzj3/8w5qWnZ1toqKiTEBAgHG73caY/xwDf39/c/z4cat269atRpIZPXp0iXurXLmyiY2NLXL9iy++aCSZhISEEm8T9sRXY0AxxcXFeTwfOXKkpJ9Pnv3oo4+Ul5enxx57TD/99JP1CA0NVePGjbV+/XprOX9/f+vnzMxM/fTTT2rfvr2MMdqxY0eB7Q4fPtzjef4nPmvWrNGFCxcK7XXVqlWSpPj4eI/pzz77rCRp5cqVHtObN2+ujh07Ws9r1KihJk2a6Lvvvit0/YVZvny58vLyNGnSpAJfX+R/7fHFF18oOztbo0aN8qgZOnSonE5ngb4cDocGDhxY6PZ69+6tGjVqWM/PnDmjdevW6bHHHtO5c+esY3D69Gm5XC4dOHBAP/zwwzX7L+5xuZHc3Fx9/vnn6tmzpxo0aGBNr1Wrlh5//HF9+eWXcrvdHssMGzbM4yuijh07Kjc3V99//70kWZ8qrlixQpcvXy52TzeyatUqhYaGql+/fta0ihUr6umnn9b58+e1ceNGj/qePXvqjjvusJ63bdtWkZGR1r+/m23Tpk2aOnWqHnvsMf32t7+9JdtE+UEQAoqpcePGHs8bNmwob29vHTlyRAcOHJAxRo0bN1aNGjU8Hvv27dPJkyet5Y4ePaoBAwaoWrVqCggIUI0aNdS5c2dJ8jjHR5IqVKig2rVre0yrX7++4uPj9c477yg4OFgul0tz5szxWPb777+Xt7e3GjVq5LFsaGiogoKCrDfWfHXq1Ckw3qpVq+rs2bNF3j+HDh2St7e3mjdvfs2a/O02adLEY7qvr68aNGhQoK877rjjmidA169f3+P5wYMHZYzRn/70pwLHYPLkyZLkcRyuVpzjUhSnTp3ShQsXCoxVkpo1a6a8vLwC549dfRyqVq0qSdZx6Ny5s3r37q2pU6cqODhYDz/8sBYsWFDgvK+S+v7779W4ceMCQbZZs2bW/Ctd/ZqQpDvvvFNHjhwplX6uJyUlRY888ohatGihd95556ZvD+UP5wgBv9CV/3PPy8uTl5eXPvvsM/n4+BSozT8HIzc3V7/73e905swZjRs3Tk2bNlXlypX1ww8/aMCAAcrLy/NYzuFwFHhTkqTXXntNAwYM0Mcff6zPP/9cTz/9tHXu0pXBqSgnoEoqtGdJMsYUafmb5cpPaW40L3/fjRkzRi6Xq9Blrg6G+Yp7XG6WGx0HLy8vffjhh9qyZYs+/fRTrVmzRoMGDdJrr72mLVu2XPeKq/Lk2LFj6tatmwIDA7Vq1SpVqVKlrFvCbYggBBTTgQMHPD6FOHjwoPLy8lSvXj35+PjIGKP69evrzjvvvOY6du3apX//+99atGiRnnzySWv62rVri91PRESEIiIiNHHiRG3evFn33Xef5s+fr5deekl169ZVXl6eDhw4YP1vXpLS0tKUnp6uunXrFnt7N9KwYUPl5eVp7969at26daE1+dvdv3+/x9dF2dnZOnz4sKKjo0u8/fz1VaxYsdjrKc5xKWq4rFGjhipVqqT9+/cXmJeSkiJvb2+Fh4cXq8987dq1U7t27fTnP/9ZixcvVv/+/fX+++9ryJAhRVr+WmOoW7eudu7cqby8PI8AnpKSYs2/0oEDBwqs49///rfHVWil7fTp0+rWrZuysrKUkJCgWrVq3bRtoXzjqzGgmPIvm8731ltvSZJ69OihXr16ycfHR1OnTi3wKYoxRqdPn5b0n//xX1ljjNGsWbOK3Ifb7VZOTo7HtIiICHl7e1tfkTzwwAOSVODuwa+//rokKSYmpsjbK6qePXvK29tb06ZNK/AJSv54o6Oj5evrqzfffNNjH7z77rvKyMj4RX3VrFlT999/v95+++1Cb8p39WXoVyrOccm/j9PVl/sXts5u3brp448/9viqKC0tTYsXL1aHDh3kdDqvu46rnT17tsC/r/zQWZyvxypXrlzo130PPPCAUlNTravUpJ+vXHzrrbcUEBBgfVWYb/ny5R7nXW3btk1bt25Vjx49itxLcWRmZuqBBx7QDz/8oFWrVhX61RxQVHwiBBTT4cOH9dBDD6l79+5KTEzUP/7xDz3++ONq1aqVJOmll17ShAkTdOTIEfXs2VNVqlTR4cOHtWzZMg0bNkxjxoxR06ZN1bBhQ40ZM0Y//PCDnE6n/vWvfxXrXJx169ZpxIgR+sMf/qA777xTOTk5+p//+R/5+Piod+/ekqRWrVopNjZWf/3rX5Wenq7OnTtr27ZtWrRokXr27KkuXbqU+v5p1KiRXnjhBb344ovq2LGjevXqJYfDoa+//lphYWGaPn26atSooQkTJmjq1Knq3r27HnroIe3fv19z587Vvffeq//6r//6RT3MmTNHHTp0UEREhIYOHaoGDRooLS1NiYmJOn78uL799ttClyvOcWnTpo0k6emnn5bL5ZKPj4/69u1b6HpfeuklrV27Vh06dNAf//hHVahQQW+//baysrI0Y8aMYo9v0aJFmjt3rh555BE1bNhQ586d09/+9jc5nU4r/BZFmzZttGTJEsXHx+vee+9VQECAfv/732vYsGF6++23NWDAACUlJalevXr68MMP9dVXX2nmzJkFvoJq1KiROnTooOHDhysrK0szZ85U9erVNXbs2GKN69NPP7WOzeXLl7Vz507r5ogPPfSQWrZsKUnq37+/tm3bpkGDBmnfvn0e9w4KCAhQz549i7Vd2Nytv1ANuD3lXz6/d+9e8+ijj5oqVaqYqlWrmhEjRpiLFy961P7rX/8yHTp0MJUrVzaVK1c2TZs2NXFxcWb//v1Wzd69e010dLQJCAgwwcHBZujQoebbb781ksyCBQusutjYWFO5cuUC/Xz33Xdm0KBBpmHDhsbPz89Uq1bNdOnSxXzxxRcedZcvXzZTp0419evXNxUrVjTh4eFmwoQJHpeWG/Pz5fMxMTEFttO5c2fTuXPnYu+v9957z/zmN78xDofDVK1a1XTu3NmsXbvWo2b27NmmadOmpmLFiiYkJMQMHz7cnD17tsD277rrrgLrz790+5VXXil0+4cOHTJPPvmkCQ0NNRUrVjR33HGHefDBB82HH35o1RR2+XxRj0tOTo4ZOXKkqVGjhvHy8vK4lF5XXT5vjDHffPONcblcJiAgwFSqVMl06dLFbN682aMm//L5qy+Lv7rPb775xvTr18/UqVPHOBwOU7NmTfPggw+a7du3F7ovruX8+fPm8ccfN0FBQUaSx6X0aWlpZuDAgSY4ONj4+vqaiIgIj/Eb43kMXnvtNRMeHm4cDofp2LGj+fbbb4vVizH/uVVEYY8rt51/q4fCHoXdDgC4Hi9jyvgsSOA2kX8DwFOnTnHTNkA/31m6fv36euWVVzRmzJiybgcoEc4RAgAAtsU5QgCKLDU19brz/f39rRs9ouycOXNG2dnZ15zv4+PjcRPKmyk7O1tnzpy5bk1gYOB1b5EA3EwEIQBFdqNLlGNjY7Vw4cJb0wyuqVevXgXu/nylunXr3pKbHUrS5s2bb3hS/oIFCzRgwIBb0g9wNc4RAlBkX3zxxXXnh4WFXfeO0rg1kpKSrnsFor+/v+67775b0svZs2eVlJR03Zq77rqL+wChzBCEAACAbXGyNAAAsC3OEbqOvLw8nThxQlWqVCny7fQBAEDZMsbo3LlzCgsLK/TvNF6JIHQdJ06cKPHfAAIAAGXr2LFjHn+AujAEoevIv438sWPHiv23gAAAQNlwu90KDw8v8OdgCkMQuo78r8OcTidBCACA20xRTmvhZGkAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbxQpC8+bNU8uWLa0/OREVFaXPPvvMmn/p0iXFxcWpevXqCggIUO/evZWWluaxjqNHjyomJkaVKlVSzZo19dxzzyknJ8ejZsOGDbr77rvlcDjUqFEjLVy4sEAvc+bMUb169eTn56fIyEht27bNY35RegEAAPZWrCBUu3Ztvfzyy0pKStL27dv129/+Vg8//LD27NkjSRo9erQ+/fRTLV26VBs3btSJEyfUq1cva/nc3FzFxMQoOztbmzdv1qJFi7Rw4UJNmjTJqjl8+LBiYmLUpUsXJScna9SoURoyZIjWrFlj1SxZskTx8fGaPHmyvvnmG7Vq1Uoul0snT560am7UCwAAgMwvVLVqVfPOO++Y9PR0U7FiRbN06VJr3r59+4wkk5iYaIwxZtWqVcbb29ukpqZaNfPmzTNOp9NkZWUZY4wZO3asueuuuzy20adPH+Nyuaznbdu2NXFxcdbz3NxcExYWZqZPn26MMUXqpSgyMjKMJJORkVHkZQAAQNkqzvt3ic8Rys3N1fvvv6/MzExFRUUpKSlJly9fVnR0tFXTtGlT1alTR4mJiZKkxMRERUREKCQkxKpxuVxyu93Wp0qJiYke68ivyV9Hdna2kpKSPGq8vb0VHR1t1RSll8JkZWXJ7XZ7PAAAQPlVobgL7Nq1S1FRUbp06ZICAgK0bNkyNW/eXMnJyfL19VVQUJBHfUhIiFJTUyVJqampHiEof37+vOvVuN1uXbx4UWfPnlVubm6hNSkpKdY6btRLYaZPn66pU6cWbUcAuKY31v67rFsoltG/u7OsWwBQRor9iVCTJk2UnJysrVu3avjw4YqNjdXevXtvRm+33IQJE5SRkWE9jh07VtYtAQCAm6jYnwj5+vqqUaNGkqQ2bdro66+/1qxZs9SnTx9lZ2crPT3d45OYtLQ0hYaGSpJCQ0MLXN2VfyXXlTVXX92VlpYmp9Mpf39/+fj4yMfHp9CaK9dxo14K43A45HA4irE3AADA7ewX30coLy9PWVlZatOmjSpWrKiEhARr3v79+3X06FFFRUVJkqKiorRr1y6Pq7vWrl0rp9Op5s2bWzVXriO/Jn8dvr6+atOmjUdNXl6eEhISrJqi9AIAAFCsT4QmTJigHj16qE6dOjp37pwWL16sDRs2aM2aNQoMDNTgwYMVHx+vatWqyel0auTIkYqKilK7du0kSd26dVPz5s31xBNPaMaMGUpNTdXEiRMVFxdnfRLz1FNPafbs2Ro7dqwGDRqkdevW6YMPPtDKlSutPuLj4xUbG6t77rlHbdu21cyZM5WZmamBAwdKUpF6AVDK1k+3fmx39HQZNlJ0W+oMK+sWAJSxYgWhkydP6sknn9SPP/6owMBAtWzZUmvWrNHvfvc7SdIbb7whb29v9e7dW1lZWXK5XJo7d661vI+Pj1asWKHhw4crKipKlStXVmxsrKZNm2bV1K9fXytXrtTo0aM1a9Ys1a5dW++8845cLpdV06dPH506dUqTJk1SamqqWrdurdWrV3ucQH2jXgAAALyMMaasm/i1crvdCgwMVEZGhpxOZ1m3A/y6XfGJUOJ3t9cnQlw1BpQvxXn/5m+NAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2ypWEJo+fbruvfdeValSRTVr1lTPnj21f/9+j5r7779fXl5eHo+nnnrKo+bo0aOKiYlRpUqVVLNmTT333HPKycnxqNmwYYPuvvtuORwONWrUSAsXLizQz5w5c1SvXj35+fkpMjJS27Zt85h/6dIlxcXFqXr16goICFDv3r2VlpZWnCEDAIByrFhBaOPGjYqLi9OWLVu0du1aXb58Wd26dVNmZqZH3dChQ/Xjjz9ajxkzZljzcnNzFRMTo+zsbG3evFmLFi3SwoULNWnSJKvm8OHDiomJUZcuXZScnKxRo0ZpyJAhWrNmjVWzZMkSxcfHa/Lkyfrmm2/UqlUruVwunTx50qoZPXq0Pv30Uy1dulQbN27UiRMn1KtXr2LvJAAAUD55GWNMSRc+deqUatasqY0bN6pTp06Sfv5EqHXr1po5c2ahy3z22Wd68MEHdeLECYWEhEiS5s+fr3HjxunUqVPy9fXVuHHjtHLlSu3evdtarm/fvkpPT9fq1aslSZGRkbr33ns1e/ZsSVJeXp7Cw8M1cuRIjR8/XhkZGapRo4YWL16sRx99VJKUkpKiZs2aKTExUe3atSvQW1ZWlrKysqznbrdb4eHhysjIkNPpLOluAuxh/XTrx8TvTpdhI0W3pc4wSdLo391Zxp0AKE1ut1uBgYFFev/+RecIZWRkSJKqVavmMf2f//yngoOD1aJFC02YMEEXLlyw5iUmJioiIsIKQZLkcrnkdru1Z88eqyY6OtpjnS6XS4mJiZKk7OxsJSUledR4e3srOjraqklKStLly5c9apo2bao6depYNVebPn26AgMDrUd4eHix9wkAALh9VCjpgnl5eRo1apTuu+8+tWjRwpr++OOPq27dugoLC9POnTs1btw47d+/Xx999JEkKTU11SMESbKep6amXrfG7Xbr4sWLOnv2rHJzcwutSUlJsdbh6+uroKCgAjX527nahAkTFB8fbz3P/0QIAACUTyUOQnFxcdq9e7e+/PJLj+nDhg2zfo6IiFCtWrXUtWtXHTp0SA0bNix5p7eAw+GQw+Eo6zYAAMAtUqKvxkaMGKEVK1Zo/fr1ql279nVrIyMjJUkHDx6UJIWGhha4civ/eWho6HVrnE6n/P39FRwcLB8fn0JrrlxHdna20tPTr1kDAADsrVhByBijESNGaNmyZVq3bp3q169/w2WSk5MlSbVq1ZIkRUVFadeuXR5Xd61du1ZOp1PNmze3ahISEjzWs3btWkVFRUmSfH191aZNG4+avLw8JSQkWDVt2rRRxYoVPWr279+vo0ePWjUAAMDeivXVWFxcnBYvXqyPP/5YVapUsc61CQwMlL+/vw4dOqTFixfrgQceUPXq1bVz506NHj1anTp1UsuWLSVJ3bp1U/PmzfXEE09oxowZSk1N1cSJExUXF2d9LfXUU09p9uzZGjt2rAYNGqR169bpgw8+0MqVK61e4uPjFRsbq3vuuUdt27bVzJkzlZmZqYEDB1o9DR48WPHx8apWrZqcTqdGjhypqKioQq8YAwAA9lOsIDRv3jxJP18if6UFCxZowIAB8vX11RdffGGFkvDwcPXu3VsTJ060an18fLRixQoNHz5cUVFRqly5smJjYzVt2jSrpn79+lq5cqVGjx6tWbNmqXbt2nrnnXfkcrmsmj59+ujUqVOaNGmSUlNT1bp1a61evdrjBOo33nhD3t7e6t27t7KysuRyuTR37txi7SAAAFB+/aL7CJV3xbkPAWB73EcIwK/ELbuPEAAAwO2MIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyrWEFo+vTpuvfee1WlShXVrFlTPXv21P79+z1qLl26pLi4OFWvXl0BAQHq3bu30tLSPGqOHj2qmJgYVapUSTVr1tRzzz2nnJwcj5oNGzbo7rvvlsPhUKNGjbRw4cIC/cyZM0f16tWTn5+fIiMjtW3btmL3AgAA7KtYQWjjxo2Ki4vTli1btHbtWl2+fFndunVTZmamVTN69Gh9+umnWrp0qTZu3KgTJ06oV69e1vzc3FzFxMQoOztbmzdv1qJFi7Rw4UJNmjTJqjl8+LBiYmLUpUsXJScna9SoURoyZIjWrFlj1SxZskTx8fGaPHmyvvnmG7Vq1Uoul0snT54sci8AAMDevIwxpqQLnzp1SjVr1tTGjRvVqVMnZWRkqEaNGlq8eLEeffRRSVJKSoqaNWumxMREtWvXTp999pkefPBBnThxQiEhIZKk+fPna9y4cTp16pR8fX01btw4rVy5Urt377a21bdvX6Wnp2v16tWSpMjISN17772aPXu2JCkvL0/h4eEaOXKkxo8fX6RebsTtdiswMFAZGRlyOp0l3U2APayfbv2Y+N3pMmyk6LbUGSZJGv27O8u4EwClqTjv37/oHKGMjAxJUrVq1SRJSUlJunz5sqKjo62apk2bqk6dOkpMTJQkJSYmKiIiwgpBkuRyueR2u7Vnzx6r5sp15NfkryM7O1tJSUkeNd7e3oqOjrZqitLL1bKysuR2uz0eAACg/CpxEMrLy9OoUaN03333qUWLFpKk1NRU+fr6KigoyKM2JCREqampVs2VISh/fv6869W43W5dvHhRP/30k3JzcwutuXIdN+rlatOnT1dgYKD1CA8PL+LeAAAAt6MSB6G4uDjt3r1b77//fmn2U6YmTJigjIwM63Hs2LGybgkAANxEFUqy0IgRI7RixQpt2rRJtWvXtqaHhoYqOztb6enpHp/EpKWlKTQ01Kq5+uqu/Cu5rqy5+uqutLQ0OZ1O+fv7y8fHRz4+PoXWXLmOG/VyNYfDIYfDUYw9AQAAbmfF+kTIGKMRI0Zo2bJlWrdunerXr+8xv02bNqpYsaISEhKsafv379fRo0cVFRUlSYqKitKuXbs8ru5au3atnE6nmjdvbtVcuY78mvx1+Pr6qk2bNh41eXl5SkhIsGqK0gsAALC3Yn0iFBcXp8WLF+vjjz9WlSpVrHNtAgMD5e/vr8DAQA0ePFjx8fGqVq2anE6nRo4cqaioKOsqrW7duql58+Z64oknNGPGDKWmpmrixImKi4uzPo156qmnNHv2bI0dO1aDBg3SunXr9MEHH2jlypVWL/Hx8YqNjdU999yjtm3baubMmcrMzNTAgQOtnm7UCwAAsLdiBaF58+ZJku6//36P6QsWLNCAAQMkSW+88Ya8vb3Vu3dvZWVlyeVyae7cuVatj4+PVqxYoeHDhysqKkqVK1dWbGyspk2bZtXUr19fK1eu1OjRozVr1izVrl1b77zzjlwul1XTp08fnTp1SpMmTVJqaqpat26t1atXe5xAfaNeAACAvf2i+wiVd9xHCCgG7iME4Ffilt1HCAAA4HZGEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZV7CC0adMm/f73v1dYWJi8vLy0fPlyj/kDBgyQl5eXx6N79+4eNWfOnFH//v3ldDoVFBSkwYMH6/z58x41O3fuVMeOHeXn56fw8HDNmDGjQC9Lly5V06ZN5efnp4iICK1atcpjvjFGkyZNUq1ateTv76/o6GgdOHCguEMGAADlVLGDUGZmplq1aqU5c+Zcs6Z79+768ccfrcf//u//eszv37+/9uzZo7Vr12rFihXatGmThg0bZs13u93q1q2b6tatq6SkJL3yyiuaMmWK/vrXv1o1mzdvVr9+/TR48GDt2LFDPXv2VM+ePbV7926rZsaMGXrzzTc1f/58bd26VZUrV5bL5dKlS5eKO2wAAFAOeRljTIkX9vLSsmXL1LNnT2vagAEDlJ6eXuCTonz79u1T8+bN9fXXX+uee+6RJK1evVoPPPCAjh8/rrCwMM2bN08vvPCCUlNT5evrK0kaP368li9frpSUFElSnz59lJmZqRUrVljrbteunVq3bq358+fLGKOwsDA9++yzGjNmjCQpIyNDISEhWrhwofr27XvD8bndbgUGBiojI0NOp7Mkuwiwj/XTrR8Tvztdho0U3ZY6P/8HbPTv7izjTgCUpuK8f9+Uc4Q2bNigmjVrqkmTJho+fLhOn/7PL8XExEQFBQVZIUiSoqOj5e3tra1bt1o1nTp1skKQJLlcLu3fv19nz561aqKjoz2263K5lJiYKEk6fPiwUlNTPWoCAwMVGRlp1VwtKytLbrfb4wEAAMqvUg9C3bt319///nclJCToL3/5izZu3KgePXooNzdXkpSamqqaNWt6LFOhQgVVq1ZNqampVk1ISIhHTf7zG9VcOf/K5Qqrudr06dMVGBhoPcLDw4s9fgAAcPuoUNorvPIrp4iICLVs2VINGzbUhg0b1LVr19LeXKmaMGGC4uPjredut5swBABAOXbTL59v0KCBgoODdfDgQUlSaGioTp486VGTk5OjM2fOKDQ01KpJS0vzqMl/fqOaK+dfuVxhNVdzOBxyOp0eDwAAUH7d9CB0/PhxnT59WrVq1ZIkRUVFKT09XUlJSVbNunXrlJeXp8jISKtm06ZNunz5slWzdu1aNWnSRFWrVrVqEhISPLa1du1aRUVFSZLq16+v0NBQjxq3262tW7daNQAAwN6KHYTOnz+v5ORkJScnS/r5pOTk5GQdPXpU58+f13PPPactW7boyJEjSkhI0MMPP6xGjRrJ5XJJkpo1a6bu3btr6NCh2rZtm7766iuNGDFCffv2VVhYmCTp8ccfl6+vrwYPHqw9e/ZoyZIlmjVrlsfXVs8884xWr16t1157TSkpKZoyZYq2b9+uESNGSPr5irZRo0bppZde0ieffKJdu3bpySefVFhYmMdVbgAAwL6KfY7Q9u3b1aVLF+t5fjiJjY3VvHnztHPnTi1atEjp6ekKCwtTt27d9OKLL8rhcFjL/POf/9SIESPUtWtXeXt7q3fv3nrzzTet+YGBgfr8888VFxenNm3aKDg4WJMmTfK411D79u21ePFiTZw4Uc8//7waN26s5cuXq0WLFlbN2LFjlZmZqWHDhik9PV0dOnTQ6tWr5efnV9xhAwCAcugX3UeovOM+QkAxcB8hAL8SZX4fIQAAgNsBQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANhWsYPQpk2b9Pvf/15hYWHy8vLS8uXLPeYbYzRp0iTVqlVL/v7+io6O1oEDBzxqzpw5o/79+8vpdCooKEiDBw/W+fPnPWp27typjh07ys/PT+Hh4ZoxY0aBXpYuXaqmTZvKz89PERERWrVqVbF7AQAA9lXsIJSZmalWrVppzpw5hc6fMWOG3nzzTc2fP19bt25V5cqV5XK5dOnSJaumf//+2rNnj9auXasVK1Zo06ZNGjZsmDXf7XarW7duqlu3rpKSkvTKK69oypQp+utf/2rVbN68Wf369dPgwYO1Y8cO9ezZUz179tTu3buL1QsAALAvL2OMKfHCXl5atmyZevbsKennT2DCwsL07LPPasyYMZKkjIwMhYSEaOHCherbt6/27dun5s2b6+uvv9Y999wjSVq9erUeeOABHT9+XGFhYZo3b55eeOEFpaamytfXV5I0fvx4LV++XCkpKZKkPn36KDMzUytWrLD6adeunVq3bq358+cXqZcbcbvdCgwMVEZGhpxOZ0l3E2AP66dbPyZ+d7oMGym6LXV+/g/Y6N/dWcadAChNxXn/LtVzhA4fPqzU1FRFR0db0wIDAxUZGanExERJUmJiooKCgqwQJEnR0dHy9vbW1q1brZpOnTpZIUiSXC6X9u/fr7Nnz1o1V24nvyZ/O0Xp5WpZWVlyu90eDwAAUH6VahBKTU2VJIWEhHhMDwkJsealpqaqZs2aHvMrVKigatWqedQUto4rt3Gtmivn36iXq02fPl2BgYHWIzw8vAijBgAAtyuuGrvChAkTlJGRYT2OHTtW1i0BAICbqFSDUGhoqCQpLS3NY3paWpo1LzQ0VCdPnvSYn5OTozNnznjUFLaOK7dxrZor59+ol6s5HA45nU6PBwAAKL9KNQjVr19foaGhSkhIsKa53W5t3bpVUVFRkqSoqCilp6crKSnJqlm3bp3y8vIUGRlp1WzatEmXL1+2atauXasmTZqoatWqVs2V28mvyd9OUXoBAAD2VuwgdP78eSUnJys5OVnSzyclJycn6+jRo/Ly8tKoUaP00ksv6ZNPPtGuXbv05JNPKiwszLqyrFmzZurevbuGDh2qbdu26auvvtKIESPUt29fhYWFSZIef/xx+fr6avDgwdqzZ4+WLFmiWbNmKT4+3urjmWee0erVq/Xaa68pJSVFU6ZM0fbt2zVixAhJKlIvAADA3ioUd4Ht27erS5cu1vP8cBIbG6uFCxdq7NixyszM1LBhw5Senq4OHTpo9erV8vPzs5b55z//qREjRqhr167y9vZW79699eabb1rzAwMD9fnnnysuLk5t2rRRcHCwJk2a5HGvofbt22vx4sWaOHGinn/+eTVu3FjLly9XixYtrJqi9AIAAOzrF91HqLzjPkJAMXAfIQC/EmV2HyEAAIDbCUEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYVqkHoSlTpsjLy8vj0bRpU2v+pUuXFBcXp+rVqysgIEC9e/dWWlqaxzqOHj2qmJgYVapUSTVr1tRzzz2nnJwcj5oNGzbo7rvvlsPhUKNGjbRw4cICvcyZM0f16tWTn5+fIiMjtW3bttIeLgAAuI3dlE+E7rrrLv3444/W48svv7TmjR49Wp9++qmWLl2qjRs36sSJE+rVq5c1Pzc3VzExMcrOztbmzZu1aNEiLVy4UJMmTbJqDh8+rJiYGHXp0kXJyckaNWqUhgwZojVr1lg1S5YsUXx8vCZPnqxvvvlGrVq1ksvl0smTJ2/GkAEAwG3IyxhjSnOFU6ZM0fLly5WcnFxgXkZGhmrUqKHFixfr0UcflSSlpKSoWbNmSkxMVLt27fTZZ5/pwQcf1IkTJxQSEiJJmj9/vsaNG6dTp07J19dX48aN08qVK7V7925r3X379lV6erpWr14tSYqMjNS9996r2bNnS5Ly8vIUHh6ukSNHavz48UUai9vtVmBgoDIyMuR0On/JbgHKv/XTrR8Tvztdho0U3ZY6wyRJo393Zxl3AqA0Fef9+6Z8InTgwAGFhYWpQYMG6t+/v44ePSpJSkpK0uXLlxUdHW3VNm3aVHXq1FFiYqIkKTExUREREVYIkiSXyyW32609e/ZYNVeuI78mfx3Z2dlKSkryqPH29lZ0dLRVU5isrCy53W6PBwAAKL9KPQhFRkZq4cKFWr16tebNm6fDhw+rY8eOOnfunFJTU+Xr66ugoCCPZUJCQpSamipJSk1N9QhB+fPz512vxu126+LFi/rpp5+Um5tbaE3+Ogozffp0BQYGWo/w8PAS7QMAAHB7qFDaK+zRo4f1c8uWLRUZGam6devqgw8+kL+/f2lvrlRNmDBB8fHx1nO3200YAgCgHLvpl88HBQXpzjvv1MGDBxUaGqrs7Gylp6d71KSlpSk0NFSSFBoaWuAqsvznN6pxOp3y9/dXcHCwfHx8Cq3JX0dhHA6HnE6nxwMAAJRfNz0InT9/XocOHVKtWrXUpk0bVaxYUQkJCdb8/fv36+jRo4qKipIkRUVFadeuXR5Xd61du1ZOp1PNmze3aq5cR35N/jp8fX3Vpk0bj5q8vDwlJCRYNQAAAKUehMaMGaONGzfqyJEj2rx5sx555BH5+PioX79+CgwM1ODBgxUfH6/169crKSlJAwcOVFRUlNq1aydJ6tatm5o3b64nnnhC3377rdasWaOJEycqLi5ODodDkvTUU0/pu+++09ixY5WSkqK5c+fqgw8+0OjRo60+4uPj9be//U2LFi3Svn37NHz4cGVmZmrgwIGlPWQAAHCbKvVzhI4fP65+/frp9OnTqlGjhjp06KAtW7aoRo0akqQ33nhD3t7e6t27t7KysuRyuTR37lxreR8fH61YsULDhw9XVFSUKleurNjYWE2bNs2qqV+/vlauXKnRo0dr1qxZql27tt555x25XC6rpk+fPjp16pQmTZqk1NRUtW7dWqtXry5wAjUAALCvUr+PUHnCfYSAYuA+QgB+Jcr8PkIAAAC3A4IQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwrQpl3QAAACgdb6z9d1m3UGyjf3dnmW6fIAQAQDnR7uhfy7qFEni1TLfOV2MAAMC2CEIAAMC2CEIAAMC2bBGE5syZo3r16snPz0+RkZHatm1bWbcEAAB+Bcp9EFqyZIni4+M1efJkffPNN2rVqpVcLpdOnjxZ1q0BAIAyVu6D0Ouvv66hQ4dq4MCBat68uebPn69KlSrpvffeK+vWAABAGSvXl89nZ2crKSlJEyZMsKZ5e3srOjpaiYmJBeqzsrKUlZVlPc/IyJAkud3um98scLvLvPSfHy9mXafw1+NS5nlJvMZviU2vaduRM2XdBX6FbsbrL3+dxpgb1pbrIPTTTz8pNzdXISEhHtNDQkKUkpJSoH769OmaOnVqgenh4eE3rUcAZWm2JOn5Mu4CsLWRs2/aqs+dO6fAwMDr1pTrIFRcEyZMUHx8vPU8Ly9PZ86cUfXq1eXl5VWidbrdboWHh+vYsWNyOp2l1eqvCmMsHxhj+WGHcTLG8uFmjdEYo3PnziksLOyGteU6CAUHB8vHx0dpaWke09PS0hQaGlqg3uFwyOFweEwLCgoqlV6cTme5/YecjzGWD4yx/LDDOBlj+XAzxnijT4LyleuTpX19fdWmTRslJCRY0/Ly8pSQkKCoqKgy7AwAAPwalOtPhCQpPj5esbGxuueee9S2bVvNnDlTmZmZGjhwYFm3BgAAyli5D0J9+vTRqVOnNGnSJKWmpqp169ZavXp1gROobxaHw6HJkycX+MqtPGGM5QNjLD/sME7GWD78GsboZYpybRkAAEA5VK7PEQIAALgeghAAALAtghAAALAtghAAALAtghAAALAtgtAv9Oc//1nt27dXpUqVinwXamOMJk2apFq1asnf31/R0dE6cOCAR82ZM2fUv39/OZ1OBQUFafDgwTp//vxNGEHRFLefI0eOyMvLq9DH0qVLrbrC5r///vu3YkgFlGSf33///QX6f+qppzxqjh49qpiYGFWqVEk1a9bUc889p5ycnJs5lGsq7hjPnDmjkSNHqkmTJvL391edOnX09NNPW3+QOF9ZHsc5c+aoXr168vPzU2RkpLZt23bd+qVLl6pp06by8/NTRESEVq1a5TG/KK/PW604Y/zb3/6mjh07qmrVqqpataqio6ML1A8YMKDA8erevfvNHsZ1FWeMCxcuLNC/n5+fR83tfhwL+93i5eWlmJgYq+bXdhw3bdqk3//+9woLC5OXl5eWL19+w2U2bNigu+++Ww6HQ40aNdLChQsL1BT3NV5sBr/IpEmTzOuvv27i4+NNYGBgkZZ5+eWXTWBgoFm+fLn59ttvzUMPPWTq169vLl68aNV0797dtGrVymzZssX83//9n2nUqJHp16/fTRrFjRW3n5ycHPPjjz96PKZOnWoCAgLMuXPnrDpJZsGCBR51V+6HW6kk+7xz585m6NChHv1nZGRY83NyckyLFi1MdHS02bFjh1m1apUJDg42EyZMuNnDKVRxx7hr1y7Tq1cv88knn5iDBw+ahIQE07hxY9O7d2+PurI6ju+//77x9fU17733ntmzZ48ZOnSoCQoKMmlpaYXWf/XVV8bHx8fMmDHD7N2710ycONFUrFjR7Nq1y6opyuvzViruGB9//HEzZ84cs2PHDrNv3z4zYMAAExgYaI4fP27VxMbGmu7du3scrzNnztyqIRVQ3DEuWLDAOJ1Oj/5TU1M9am7343j69GmP8e3evdv4+PiYBQsWWDW/tuO4atUq88ILL5iPPvrISDLLli27bv13331nKlWqZOLj483evXvNW2+9ZXx8fMzq1autmuLut5IgCJWSBQsWFCkI5eXlmdDQUPPKK69Y09LT043D4TD/+7//a4wxZu/evUaS+frrr62azz77zHh5eZkffvih1Hu/kdLqp3Xr1mbQoEEe04ryYrkVSjrGzp07m2eeeeaa81etWmW8vb09fknPmzfPOJ1Ok5WVVSq9F1VpHccPPvjA+Pr6msuXL1vTyuo4tm3b1sTFxVnPc3NzTVhYmJk+fXqh9Y899piJiYnxmBYZGWn++7//2xhTtNfnrVbcMV4tJyfHVKlSxSxatMiaFhsbax5++OHSbrXEijvGG/2+LY/H8Y033jBVqlQx58+ft6b92o7jlYryO2Hs2LHmrrvu8pjWp08f43K5rOe/dL8VBV+N3WKHDx9WamqqoqOjrWmBgYGKjIxUYmKiJCkxMVFBQUG65557rJro6Gh5e3tr69att7zn0ugnKSlJycnJGjx4cIF5cXFxCg4OVtu2bfXee+/JlME9Pn/JGP/5z38qODhYLVq00IQJE3ThwgWP9UZERHjcydzlcsntdmvPnj2lP5DrKK1/VxkZGXI6napQwfPG9Lf6OGZnZyspKcnjteTt7a3o6GjrtXS1xMREj3rp5+ORX1+U1+etVJIxXu3ChQu6fPmyqlWr5jF9w4YNqlmzppo0aaLhw4fr9OnTpdp7UZV0jOfPn1fdunUVHh6uhx9+2OP1VB6P47vvvqu+ffuqcuXKHtN/LcexJG70eiyN/VYU5f5PbPzapKamSlKBP/EREhJizUtNTVXNmjU95leoUEHVqlWzam6l0ujn3XffVbNmzdS+fXuP6dOmTdNvf/tbVapUSZ9//rn++Mc/6vz583r66adLrf+iKOkYH3/8cdWtW1dhYWHauXOnxo0bp/379+ujjz6y1lvYsc6fdyuVxnH86aef9OKLL2rYsGEe08viOP7000/Kzc0tdP+mpKQUusy1jseVr738adequZVKMsarjRs3TmFhYR5vJt27d1evXr1Uv359HTp0SM8//7x69OihxMRE+fj4lOoYbqQkY2zSpInee+89tWzZUhkZGXr11VfVvn177dmzR7Vr1y53x3Hbtm3avXu33n33XY/pv6bjWBLXej263W5dvHhRZ8+e/cX//ouCIFSI8ePH6y9/+ct1a/bt26emTZveoo5ujqKO85e6ePGiFi9erD/96U8F5l057Te/+Y0yMzP1yiuvlNob6M0e45WBICIiQrVq1VLXrl116NAhNWzYsMTrLY5bdRzdbrdiYmLUvHlzTZkyxWPezT6OKJmXX35Z77//vjZs2OBxMnHfvn2tnyMiItSyZUs1bNhQGzZsUNeuXcui1WKJiopSVFSU9bx9+/Zq1qyZ3n77bb344otl2NnN8e677yoiIkJt27b1mH67H8dfC4JQIZ599lkNGDDgujUNGjQo0bpDQ0MlSWlpaapVq5Y1PS0tTa1bt7ZqTp486bFcTk6Ozpw5Yy1fGoo6zl/az4cffqgLFy7oySefvGFtZGSkXnzxRWVlZZXKH+G7VWPMFxkZKUk6ePCgGjZsqNDQ0AJXOKSlpUlSqR3LWzHGc+fOqXv37qpSpYqWLVumihUrXre+tI9jYYKDg+Xj42Ptz3xpaWnXHE9oaOh164vy+ryVSjLGfK+++qpefvllffHFF2rZsuV1axs0aKDg4GAdPHjwlr+B/pIx5qtYsaJ+85vf6ODBg5LK13HMzMzU+++/r2nTpt1wO2V5HEviWq9Hp9Mpf39/+fj4/OJ/G0VSamcb2VxxT5Z+9dVXrWkZGRmFniy9fft2q2bNmjVlfrJ0Sfvp3LlzgauMruWll14yVatWLXGvJVVa+/zLL780ksy3335rjPnPydJXXuHw9ttvG6fTaS5dulR6AyiCko4xIyPDtGvXznTu3NlkZmYWaVu36ji2bdvWjBgxwnqem5tr7rjjjuueLP3ggw96TIuKiipwsvT1Xp+3WnHHaIwxf/nLX4zT6TSJiYlF2saxY8eMl5eX+fjjj39xvyVRkjFeKScnxzRp0sSMHj3aGFN+jqMxP7+3OBwO89NPP91wG2V9HK+kIp4s3aJFC49p/fr1K3Cy9C/5t1GkXkttTTb1/fffmx07dliXhu/YscPs2LHD4xLxJk2amI8++sh6/vLLL5ugoCDz8ccfm507d5qHH3640Mvnf/Ob35itW7eaL7/80jRu3LjML5+/Xj/Hjx83TZo0MVu3bvVY7sCBA8bLy8t89tlnBdb5ySefmL/97W9m165d5sCBA2bu3LmmUqVKZtKkSTd9PIUp7hgPHjxopk2bZrZv324OHz5sPv74Y9OgQQPTqVMna5n8y+e7detmkpOTzerVq02NGjXK9PL54owxIyPDREZGmoiICHPw4EGPy3RzcnKMMWV7HN9//33jcDjMwoULzd69e82wYcNMUFCQdZXeE088YcaPH2/Vf/XVV6ZChQrm1VdfNfv27TOTJ08u9PL5G70+b6XijvHll182vr6+5sMPP/Q4Xvm/k86dO2fGjBljEhMTzeHDh80XX3xh7r77btO4ceNbHs5LOsapU6eaNWvWmEOHDpmkpCTTt29f4+fnZ/bs2WPV3O7HMV+HDh1Mnz59Ckz/NR7Hc+fOWe+Bkszrr79uduzYYb7//ntjjDHjx483TzzxhFWff/n8c889Z/bt22fmzJlT6OXz19tvpYEg9AvFxsYaSQUe69evt2r0/++xki8vL8/86U9/MiEhIcbhcJiuXbua/fv3e6z39OnTpl+/fiYgIMA4nU4zcOBAj3B1q92on8OHDxcYtzHGTJgwwYSHh5vc3NwC6/zss89M69atTUBAgKlcubJp1aqVmT9/fqG1t0Jxx3j06FHTqVMnU61aNeNwOEyjRo3Mc88953EfIWOMOXLkiOnRo4fx9/c3wcHB5tlnn/W49PxWKu4Y169fX+i/b0nm8OHDxpiyP45vvfWWqVOnjvH19TVt27Y1W7ZsseZ17tzZxMbGetR/8MEH5s477zS+vr7mrrvuMitXrvSYX5TX561WnDHWrVu30OM1efJkY4wxFy5cMN26dTM1atQwFStWNHXr1jVDhw4t1TeWkijOGEeNGmXVhoSEmAceeMB88803Huu73Y+jMcakpKQYSebzzz8vsK5f43G81u+L/HHFxsaazp07F1imdevWxtfX1zRo0MDjvTLf9fZbafAypgyuVQYAAPgV4D5CAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtv4f8QP8iuUbp8AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAATSxJREFUeJzt3XtYVOXePvB7OA0nZxARxilEPKSSJKWJmIfc8jImHVDaibILlXTnBlPxSCkespdCzXPSwcR3lz/NdlKpoYQpO0VU1FQU0sLzHjSRGUHl+Pz+6GW9LkEFGkRY9+e65rqa5/mutZ5n1oxzt2athUoIIUBERESkQFaNPQAiIiKixsIgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBERM3Orl27oFKpsGvXLouuV6VSYe7cuRZdJxE1LgYhIqLbbNu2rcmHnfXr12Pp0qWNPQzJ6tWr8de//hVt27aFSqXCqFGjaqxLS0vDmDFj8Nhjj8HR0RHt27fH66+/jv/85z913uZ//vMfzJw5EwMHDkSLFi0aJBhT88AgRER0m23btmHevHk19t28eROzZs16wCOqu4ctCL3//vvYuXMnHn/8cdjY2Ny1bsaMGdi1axeGDh2K5cuXIywsDF9++SWefPJJGI3GOm0zNzcX77//Pi5evAhfX98/OwVqxu7+jiSiB664uBhOTk6NPYxGc+PGDTg6OlZrLy8vR2VlJezs7BphVP/H3t6+UbffVO3evVs6GuTs7HzXug8++AB9+/aFldX//T/64MGDMWDAAKxcuRILFiyo9TZ79OiBq1evwtXVFV999RX++te//qk5UPPFI0KkeHPnzoVKpUJOTg5eeeUVaDQatGrVChMnTsStW7dktZ9//jl69OgBBwcHuLq6IiwsDOfPn5fV/Pvf/5Z+BlCr1fD09MTkyZNx8+ZNWd2oUaPg7OyMX3/9FUOGDEGLFi0QHh4OADh16hRCQ0Oh0+lgb2+PRx99FGFhYTCZTNLy5eXleOedd9ChQweo1Wq0a9cOb731FkpKSmTbadeuHZ5//nn89NNP6NWrF+zt7dG+fXv8z//8T71er88//xy9evWCo6MjWrZsif79+2PHjh2ymg8//BCPP/441Go19Ho9oqKiUFhYKKt59tln0a1bN2RlZaF///5wdHTEW2+9hTNnzkClUmHRokVYunSpNL8TJ04AAHJycvDyyy/D1dUV9vb26NmzJ7799tv7jrs2+2XUqFFYtWoVgD/OB6p6VKnpHKHDhw/jueeeg0ajgbOzMwYNGoR9+/bJapKSkqBSqbBnzx7ExMSgdevWcHJywtChQ3HlyhVZ7cGDB2EwGODm5gYHBwd4e3tjzJgx953f7a/r1q1bcfbsWWn87dq1k/ovX76MyMhIeHh4wN7eHt27d8e6detk67h9HyxZsgReXl5wcHDAgAEDcPz48VqPpYqXl5fsdbyb/v37y0JQVZurqytOnjxZp222aNECrq6udVqGlIlHhIj+1yuvvIJ27dohPj4e+/btw/Lly3Ht2jUpMLz77ruYPXs2XnnlFbz++uu4cuUKVqxYgf79++Pw4cNwcXEBAGzatAk3btzA+PHj0apVK+zfvx8rVqzAhQsXsGnTJtk2y8vLYTAY0LdvXyxatAiOjo4oLS2FwWBASUkJJkyYAJ1Oh4sXL2LLli0oLCyEVqsFALz++utYt24dXn75ZUyZMgWZmZmIj4/HyZMnsXnzZtl2Tp8+jZdffhmRkZGIiIjAZ599hlGjRqFHjx54/PHHa/0azZs3D3PnzkWfPn0wf/582NnZITMzEzt37kRQUBCAP4LlvHnzEBgYiPHjxyM3NxerV6/GgQMHsGfPHtja2krru3r1Kp577jmEhYXhb3/7Gzw8PKS+tWvX4tatWxg3bhzUajVcXV2RnZ2NZ555Bo888ghmzpwJJycnfPnllwgJCcG//vUvDB069K5jr81++fvf/45Lly4hNTUV//znP+/7emRnZ6Nfv37QaDSYPn06bG1t8dFHH+HZZ5/F7t274e/vL6ufMGECWrZsiTlz5uDMmTNYunQpoqOjsXHjRgB/hJSgoCC0bt0aM2fOhIuLC86cOYOvv/661vvo7bffhslkwoULF7BkyRIAkI7C3Lx5E88++yxOnz6N6OhoeHt7Y9OmTRg1ahQKCwsxceJE2br+53/+B9evX0dUVBRu3bqFZcuW4S9/+QuOHTsm21cNqaioCEVFRXBzc3sg2yMFEkQKN2fOHAFAvPjii7L2f/zjHwKA+Pnnn8WZM2eEtbW1ePfdd2U1x44dEzY2NrL2GzduVNtGfHy8UKlU4uzZs1JbRESEACBmzpwpqz18+LAAIDZt2nTXMR85ckQAEK+//rqsferUqQKA2Llzp9Tm5eUlAIj09HSp7fLly0KtVospU6bcdRt3OnXqlLCyshJDhw4VFRUVsr7KykppvXZ2diIoKEhWs3LlSgFAfPbZZ1LbgAEDBACRmJgoW1deXp4AIDQajbh8+bKsb9CgQcLX11fcunVLtu0+ffqITp06SW0//vijACB+/PFHqa22+yUqKkrc7Z9GAGLOnDnS85CQEGFnZyd+/fVXqe3SpUuiRYsWon///lLb2rVrBQARGBgovVZCCDF58mRhbW0tCgsLhRBCbN68WQAQBw4cqHH7tRUcHCy8vLyqtS9dulQAEJ9//rnUVlpaKgICAoSzs7Mwm81CiP/bBw4ODuLChQtSbWZmpgAgJk+eXO+xOTk5iYiIiFrXv/POOwKASEtLq/c2N23aVO39QFSFP40R/a+oqCjZ8wkTJgD44+TZr7/+GpWVlXjllVfw+++/Sw+dTodOnTrhxx9/lJZzcHCQ/ru4uBi///47+vTpAyEEDh8+XG2748ePlz2vOuKzfft23Lhxo8axbtu2DQAQExMja58yZQoAYOvWrbJ2Hx8f9OvXT3reunVrdO7cGb/99luN669JcnIyKisrERcXV+3ni6qfPX744QeUlpZi0qRJspqxY8dCo9FUG5darcbo0aNr3F5oaChat24tPS8oKMDOnTvxyiuv4Pr169I+uHr1KgwGA06dOoWLFy/edfx13S/3U1FRgR07diAkJATt27eX2tu0aYORI0fip59+gtlsli0zbtw42U9E/fr1Q0VFBc6ePQsA0lHFLVu2oKysrM5jup9t27ZBp9NhxIgRUputrS3efPNNFBUVYffu3bL6kJAQPPLII9LzXr16wd/fX3r/NbT09HTMmzcPr7zyCv7yl788kG2S8jAIEf2vTp06yZ536NABVlZWOHPmDE6dOgUhBDp16oTWrVvLHidPnsTly5el5c6dO4dRo0bB1dUVzs7OaN26NQYMGAAAsnN8AMDGxgaPPvqorM3b2xsxMTH49NNP4ebmBoPBgFWrVsmWPXv2LKysrNCxY0fZsjqdDi4uLtIXa5W2bdtWm2/Lli1x7dq1Wr8+v/76K6ysrODj43PXmqrtdu7cWdZuZ2eH9u3bVxvXI488ctcToL29vWXPT58+DSEEZs+eXW0fzJkzBwBk++FOddkvtXHlyhXcuHGj2lwBoGvXrqisrKx2/tid+6Fly5YAIO2HAQMGIDQ0FPPmzYObmxteeuklrF27ttp5X/V19uxZdOrUqVqQ7dq1q9R/uzs/EwDw2GOP4cyZMxYZz73k5ORg6NCh6NatGz799NMG3x4pF88RIrqL2//PvbKyEiqVCt9//z2sra2r1Vadg1FRUYH/+q//QkFBAWbMmIEuXbrAyckJFy9exKhRo1BZWSlbTq1WV/tSAoDFixdj1KhR+Oabb7Bjxw68+eab0rlLtwen2pyACqDGMQOAEKJWyzeU24/S3K+v6rWbOnUqDAZDjcvcGQyr1HW/NJT77QeVSoWvvvoK+/btw3fffYft27djzJgxWLx4Mfbt23fPK66ak/PnzyMoKAharRbbtm1DixYtGntI1IwxCBH9r1OnTsmOQpw+fRqVlZVo164drK2tIYSAt7c3Hnvssbuu49ixY/jll1+wbt06vPbaa1J7ampqncfj6+sLX19fzJo1C3v37sUzzzyDxMRELFiwAF5eXqisrMSpU6ek/5sHgPz8fBQWFsLLy6vO27ufDh06oLKyEidOnICfn1+NNVXbzc3Nlf1cVFpairy8PAQGBtZ7+1Xrs7W1rfN66rJfahsuW7duDUdHR+Tm5lbry8nJgZWVFTw9Pes0ziq9e/dG79698e6772L9+vUIDw/Hhg0b8Prrr9dq+bvNwcvLC0ePHkVlZaUsgOfk5Ej9tzt16lS1dfzyyy+yq9As7erVqwgKCkJJSQnS0tLQpk2bBtsWEcCfxogkVZdNV1mxYgUA4LnnnsOwYcNgbW2NefPmVTuKIoTA1atXAfzf//HfXiOEwLJly2o9DrPZjPLyclmbr68vrKyspJ9IhgwZAgDVbpr3wQcfAACCg4Nrvb3aCgkJgZWVFebPn1/tCErVfAMDA2FnZ4fly5fLXoM1a9bAZDL9qXG5u7vj2WefxUcffVTjnYbvvAz9dnXZL1X3cbrzcv+a1hkUFIRvvvlG9lNRfn4+1q9fj759+0Kj0dxzHXe6du1atfdXVeisy89jTk5ONf7cN2TIEBiNRukqNeCPKxdXrFgBZ2dn6afCKsnJybLzrvbv34/MzEw899xztR5LXRQXF2PIkCG4ePEitm3bVuNPc0SWxiNCRP8rLy8PL774IgYPHoyMjAx8/vnnGDlyJLp37w4AWLBgAWJjY3HmzBmEhISgRYsWyMvLw+bNmzFu3DhMnToVXbp0QYcOHTB16lRcvHgRGo0G//rXv+p0Ls7OnTsRHR2Nv/71r3jsscdQXl6Of/7zn7C2tkZoaCgAoHv37oiIiMDHH3+MwsJCDBgwAPv378e6desQEhKCgQMHWvz16dixI95++22888476NevH4YNGwa1Wo0DBw5Ar9cjPj4erVu3RmxsLObNm4fBgwfjxRdfRG5uLj788EM8/fTT+Nvf/vanxrBq1Sr07dsXvr6+GDt2LNq3b4/8/HxkZGTgwoUL+Pnnn2tcri77pUePHgCAN998EwaDAdbW1ggLC6txvQsWLEBqair69u2Lf/zjH7CxscFHH32EkpISJCQk1Hl+69atw4cffoihQ4eiQ4cOuH79Oj755BNoNBop/NZGjx49sHHjRsTExODpp5+Gs7MzXnjhBYwbNw4fffQRRo0ahaysLLRr1w5fffUV9uzZg6VLl1b7Capjx47o27cvxo8fj5KSEixduhStWrXC9OnT6zSv7777Tto3ZWVlOHr0qHRzxBdffBFPPPEEACA8PBz79+/HmDFjcPLkSdm9g5ydnRESElKn7VZtIzs7GwDwz3/+Ez/99BMANIk7hNMD8uAvVCN6uFRdPn/ixAnx8ssvixYtWoiWLVuK6OhocfPmTVntv/71L9G3b1/h5OQknJycRJcuXURUVJTIzc2Vak6cOCECAwOFs7OzcHNzE2PHjhU///yzACDWrl0r1UVERAgnJ6dq4/ntt9/EmDFjRIcOHYS9vb1wdXUVAwcOFD/88IOsrqysTMybN094e3sLW1tb4enpKWJjY2WXlgvxx+XzwcHB1bYzYMAAMWDAgDq/Xp999pl48sknhVqtFi1bthQDBgwQqampspqVK1eKLl26CFtbW+Hh4SHGjx8vrl27Vm37jz/+eLX1V126vXDhwhq3/+uvv4rXXntN6HQ6YWtrKx555BHx/PPPi6+++kqqqeny+drul/LycjFhwgTRunVroVKpZJfS447L54UQ4tChQ8JgMAhnZ2fh6OgoBg4cKPbu3Surqbp8/s7L4u8c56FDh8SIESNE27ZthVqtFu7u7uL5558XBw8erPG1uJuioiIxcuRI4eLiIgDILqXPz88Xo0ePFm5ubsLOzk74+vrK5i+EfB8sXrxYeHp6CrVaLfr16yd+/vnnOo1FiP+7VURNj9u3XXWrh5oeNd0O4H7uti5+9dHtVEI08tmSRI2s6gaAV65c4U3biPDHnaW9vb2xcOFCTJ06tbGHQ9SgeI4QERERKRbPESKi+/5lbwcHB+lGj9R4CgoKUFpaetd+a2tr2U0oG1JpaSkKCgruWaPVau95i4T6MJlM1f5u3510Op1Ft0nNG4MQEd33EuWIiAgkJSU9mMHQXQ0bNqza3Z9v5+Xl9UBudggAe/fuve9J+WvXrsWoUaMsut2JEydW+yOxd+IZH1QXPEeIiPDDDz/cs1+v19/zjtL0YGRlZd3zCkQHBwc888wzD2Qs165dQ1ZW1j1rHn/8cYvfB+jEiRO4dOnSPWv+zP2qSHkYhIiIiEixeLI0ERERKRbPEbqHyspKXLp0CS1atKj1bfeJiIiocQkhcP36dej1+hr/nuPtGITu4dKlS/X+W0FERETUuM6fPy/7Q9U1YRC6h6rbzZ8/f77OfzOIiIiIGofZbIanp2e1PxtTEwahe6j6OUyj0TAIERERNTG1Oa2FJ0sTERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWLZNPYAiIgazY/xjT2C+hkY29gjIGo2eESIiIiIFItBiIiIiBSLQYiIiIgUi+cIEZFiZfx2tbGHUC8BAxt7BETNB48IERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWLVOQilp6fjhRdegF6vh0qlQnJycrWakydP4sUXX4RWq4WTkxOefvppnDt3Tuq/desWoqKi0KpVKzg7OyM0NBT5+fmydZw7dw7BwcFwdHSEu7s7pk2bhvLyclnNrl278NRTT0GtVqNjx45ISkqqNpZVq1ahXbt2sLe3h7+/P/bv31/XKRMREVEzVecgVFxcjO7du2PVqlU19v/666/o27cvunTpgl27duHo0aOYPXs27O3tpZrJkyfju+++w6ZNm7B7925cunQJw4YNk/orKioQHByM0tJS7N27F+vWrUNSUhLi4uKkmry8PAQHB2PgwIE4cuQIJk2ahNdffx3bt2+XajZu3IiYmBjMmTMHhw4dQvfu3WEwGHD58uW6TpuIiIiaIZUQQtR7YZUKmzdvRkhIiNQWFhYGW1tb/POf/6xxGZPJhNatW2P9+vV4+eWXAQA5OTno2rUrMjIy0Lt3b3z//fd4/vnncenSJXh4eAAAEhMTMWPGDFy5cgV2dnaYMWMGtm7diuPHj8u2XVhYiJSUFACAv78/nn76aaxcuRIAUFlZCU9PT0yYMAEzZ8687/zMZjO0Wi1MJhM0Gk29XiMienhlrJna2EOol4DIRY09BKKHWl2+vy16jlBlZSW2bt2Kxx57DAaDAe7u7vD395f9fJaVlYWysjIEBgZKbV26dEHbtm2RkZEBAMjIyICvr68UggDAYDDAbDYjOztbqrl9HVU1VesoLS1FVlaWrMbKygqBgYFSzZ1KSkpgNptlDyIiImq+LBqELl++jKKiIrz33nsYPHgwduzYgaFDh2LYsGHYvXs3AMBoNMLOzg4uLi6yZT08PGA0GqWa20NQVX9V371qzGYzbt68id9//x0VFRU11lSt407x8fHQarXSw9PTs34vBBERETUJFj8iBAAvvfQSJk+eDD8/P8ycORPPP/88EhMTLbmpBhEbGwuTySQ9zp8/39hDIiIiogZk0SDk5uYGGxsb+Pj4yNq7du0qXTWm0+lQWlqKwsJCWU1+fj50Op1Uc+dVZFXP71ej0Wjg4OAANzc3WFtb11hTtY47qdVqaDQa2YOIiIiaL4sGITs7Ozz99NPIzc2Vtf/yyy/w8vICAPTo0QO2trZIS0uT+nNzc3Hu3DkEBAQAAAICAnDs2DHZ1V2pqanQaDRSyAoICJCto6qmah12dnbo0aOHrKayshJpaWlSDRERESmbTV0XKCoqwunTp6XneXl5OHLkCFxdXdG2bVtMmzYNw4cPR//+/TFw4ECkpKTgu+++w65duwAAWq0WkZGRiImJgaurKzQaDSZMmICAgAD07t0bABAUFAQfHx+8+uqrSEhIgNFoxKxZsxAVFQW1Wg0AeOONN7By5UpMnz4dY8aMwc6dO/Hll19i69at0thiYmIQERGBnj17olevXli6dCmKi4sxevToP/OaERERUTNR5yB08OBBDBw4UHoeExMDAIiIiEBSUhKGDh2KxMRExMfH480330Tnzp3xr3/9C3379pWWWbJkCaysrBAaGoqSkhIYDAZ8+OGHUr+1tTW2bNmC8ePHIyAgAE5OToiIiMD8+fOlGm9vb2zduhWTJ0/GsmXL8Oijj+LTTz+FwWCQaoYPH44rV64gLi4ORqMRfn5+SElJqXYCNRERESnTn7qPUHPH+wgRNW+8jxBR89Ro9xEiIiIiakoYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIseochNLT0/HCCy9Ar9dDpVIhOTn5rrVvvPEGVCoVli5dKmsvKChAeHg4NBoNXFxcEBkZiaKiIlnN0aNH0a9fP9jb28PT0xMJCQnV1r9p0yZ06dIF9vb28PX1xbZt22T9QgjExcWhTZs2cHBwQGBgIE6dOlXXKRMREVEzVecgVFxcjO7du2PVqlX3rNu8eTP27dsHvV5frS88PBzZ2dlITU3Fli1bkJ6ejnHjxkn9ZrMZQUFB8PLyQlZWFhYuXIi5c+fi448/lmr27t2LESNGIDIyEocPH0ZISAhCQkJw/PhxqSYhIQHLly9HYmIiMjMz4eTkBIPBgFu3btV12kRERNQMqYQQot4Lq1TYvHkzQkJCZO0XL16Ev78/tm/fjuDgYEyaNAmTJk0CAJw8eRI+Pj44cOAAevbsCQBISUnBkCFDcOHCBej1eqxevRpvv/02jEYj7OzsAAAzZ85EcnIycnJyAADDhw9HcXExtmzZIm23d+/e8PPzQ2JiIoQQ0Ov1mDJlCqZOnQoAMJlM8PDwQFJSEsLCwu47P7PZDK1WC5PJBI1GU9+XiYgeUhlrpjb2EOolIHJRYw+B6KFWl+9vi58jVFlZiVdffRXTpk3D448/Xq0/IyMDLi4uUggCgMDAQFhZWSEzM1Oq6d+/vxSCAMBgMCA3NxfXrl2TagIDA2XrNhgMyMjIAADk5eXBaDTKarRaLfz9/aWaO5WUlMBsNsseRERE1HxZPAi9//77sLGxwZtvvlljv9FohLu7u6zNxsYGrq6uMBqNUo2Hh4espur5/Wpu7799uZpq7hQfHw+tVis9PD097ztfIiIiarosGoSysrKwbNkyJCUlQaVSWXLVD0RsbCxMJpP0OH/+fGMPiYiIiBqQRYPQv//9b1y+fBlt27aFjY0NbGxscPbsWUyZMgXt2rUDAOh0Oly+fFm2XHl5OQoKCqDT6aSa/Px8WU3V8/vV3N5/+3I11dxJrVZDo9HIHkRERNR8WTQIvfrqqzh69CiOHDkiPfR6PaZNm4bt27cDAAICAlBYWIisrCxpuZ07d6KyshL+/v5STXp6OsrKyqSa1NRUdO7cGS1btpRq0tLSZNtPTU1FQEAAAMDb2xs6nU5WYzabkZmZKdUQERGRstnUdYGioiKcPn1aep6Xl4cjR47A1dUVbdu2RatWrWT1tra20Ol06Ny5MwCga9euGDx4MMaOHYvExESUlZUhOjoaYWFh0qX2I0eOxLx58xAZGYkZM2bg+PHjWLZsGZYsWSKtd+LEiRgwYAAWL16M4OBgbNiwAQcPHpQusVepVJg0aRIWLFiATp06wdvbG7Nnz4Zer692lRsREREpU52D0MGDBzFw4EDpeUxMDAAgIiICSUlJtVrHF198gejoaAwaNAhWVlYIDQ3F8uXLpX6tVosdO3YgKioKPXr0gJubG+Li4mT3GurTpw/Wr1+PWbNm4a233kKnTp2QnJyMbt26STXTp09HcXExxo0bh8LCQvTt2xcpKSmwt7ev67SJiIioGfpT9xFq7ngfIaLmjfcRImqeGvU+QkRERERNBYMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESlWnYNQeno6XnjhBej1eqhUKiQnJ0t9ZWVlmDFjBnx9feHk5AS9Xo/XXnsNly5dkq2joKAA4eHh0Gg0cHFxQWRkJIqKimQ1R48eRb9+/WBvbw9PT08kJCRUG8umTZvQpUsX2Nvbw9fXF9u2bZP1CyEQFxeHNm3awMHBAYGBgTh16lRdp0xERETNVJ2DUHFxMbp3745Vq1ZV67tx4wYOHTqE2bNn49ChQ/j666+Rm5uLF198UVYXHh6O7OxspKamYsuWLUhPT8e4ceOkfrPZjKCgIHh5eSErKwsLFy7E3Llz8fHHH0s1e/fuxYgRIxAZGYnDhw8jJCQEISEhOH78uFSTkJCA5cuXIzExEZmZmXBycoLBYMCtW7fqOm0iIiJqhlRCCFHvhVUqbN68GSEhIXetOXDgAHr16oWzZ8+ibdu2OHnyJHx8fHDgwAH07NkTAJCSkoIhQ4bgwoUL0Ov1WL16Nd5++20YjUbY2dkBAGbOnInk5GTk5OQAAIYPH47i4mJs2bJF2lbv3r3h5+eHxMRECCGg1+sxZcoUTJ06FQBgMpng4eGBpKQkhIWF3Xd+ZrMZWq0WJpMJGo2mvi8TET2kMtZMbewh1EtA5KLGHgLRQ60u398Nfo6QyWSCSqWCi4sLACAjIwMuLi5SCAKAwMBAWFlZITMzU6rp37+/FIIAwGAwIDc3F9euXZNqAgMDZdsyGAzIyMgAAOTl5cFoNMpqtFot/P39pZo7lZSUwGw2yx5ERETUfDVoELp16xZmzJiBESNGSInMaDTC3d1dVmdjYwNXV1cYjUapxsPDQ1ZT9fx+Nbf3375cTTV3io+Ph1arlR6enp51njMRERE1HQ0WhMrKyvDKK69ACIHVq1c31GYsKjY2FiaTSXqcP3++sYdEREREDcimIVZaFYLOnj2LnTt3yn6f0+l0uHz5sqy+vLwcBQUF0Ol0Uk1+fr6spur5/Wpu769qa9OmjazGz8+vxnGr1Wqo1eq6TpeIiIiaKIsfEaoKQadOncIPP/yAVq1ayfoDAgJQWFiIrKwsqW3nzp2orKyEv7+/VJOeno6ysjKpJjU1FZ07d0bLli2lmrS0NNm6U1NTERAQAADw9vaGTqeT1ZjNZmRmZko1REREpGx1DkJFRUU4cuQIjhw5AuCPk5KPHDmCc+fOoaysDC+//DIOHjyIL774AhUVFTAajTAajSgtLQUAdO3aFYMHD8bYsWOxf/9+7NmzB9HR0QgLC4NerwcAjBw5EnZ2doiMjER2djY2btyIZcuWISYmRhrHxIkTkZKSgsWLFyMnJwdz587FwYMHER0dDeCPK9omTZqEBQsW4Ntvv8WxY8fw2muvQa/X3/MqNyIiIlKOOl8+v2vXLgwcOLBae0REBObOnQtvb+8al/vxxx/x7LPPAvjjhorR0dH47rvvYGVlhdDQUCxfvhzOzs5S/dGjRxEVFYUDBw7Azc0NEyZMwIwZM2Tr3LRpE2bNmoUzZ86gU6dOSEhIwJAhQ6R+IQTmzJmDjz/+GIWFhejbty8+/PBDPPbYY7WaKy+fJ2reePk8UfNUl+/vP3UfoeaOQYioeWMQImqeHqr7CBERERE9rBiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIseochNLT0/HCCy9Ar9dDpVIhOTlZ1i+EQFxcHNq0aQMHBwcEBgbi1KlTspqCggKEh4dDo9HAxcUFkZGRKCoqktUcPXoU/fr1g729PTw9PZGQkFBtLJs2bUKXLl1gb28PX19fbNu2rc5jISIiIuWqcxAqLi5G9+7dsWrVqhr7ExISsHz5ciQmJiIzMxNOTk4wGAy4deuWVBMeHo7s7GykpqZiy5YtSE9Px7hx46R+s9mMoKAgeHl5ISsrCwsXLsTcuXPx8ccfSzV79+7FiBEjEBkZicOHDyMkJAQhISE4fvx4ncZCREREyqUSQoh6L6xSYfPmzQgJCQHwxxEYvV6PKVOmYOrUqQAAk8kEDw8PJCUlISwsDCdPnoSPjw8OHDiAnj17AgBSUlIwZMgQXLhwAXq9HqtXr8bbb78No9EIOzs7AMDMmTORnJyMnJwcAMDw4cNRXFyMLVu2SOPp3bs3/Pz8kJiYWKux3I/ZbIZWq4XJZIJGo6nvy0RED6mMNVMbewj1EhC5qLGHQPRQq8v3t0XPEcrLy4PRaERgYKDUptVq4e/vj4yMDABARkYGXFxcpBAEAIGBgbCyskJmZqZU079/fykEAYDBYEBubi6uXbsm1dy+naqaqu3UZix3Kikpgdlslj2IiIio+bJoEDIajQAADw8PWbuHh4fUZzQa4e7uLuu3sbGBq6urrKamddy+jbvV3N5/v7HcKT4+HlqtVnp4enrWYtZERETUVPGqsdvExsbCZDJJj/Pnzzf2kIiIiKgBWTQI6XQ6AEB+fr6sPT8/X+rT6XS4fPmyrL+8vBwFBQWymprWcfs27lZze//9xnIntVoNjUYjexAREVHzZdEg5O3tDZ1Oh7S0NKnNbDYjMzMTAQEBAICAgAAUFhYiKytLqtm5cycqKyvh7+8v1aSnp6OsrEyqSU1NRefOndGyZUup5vbtVNVUbac2YyEiIiJlq3MQKioqwpEjR3DkyBEAf5yUfOTIEZw7dw4qlQqTJk3CggUL8O233+LYsWN47bXXoNfrpSvLunbtisGDB2Ps2LHYv38/9uzZg+joaISFhUGv1wMARo4cCTs7O0RGRiI7OxsbN27EsmXLEBMTI41j4sSJSElJweLFi5GTk4O5c+fi4MGDiI6OBoBajYWIiIiUzaauCxw8eBADBw6UnleFk4iICCQlJWH69OkoLi7GuHHjUFhYiL59+yIlJQX29vbSMl988QWio6MxaNAgWFlZITQ0FMuXL5f6tVotduzYgaioKPTo0QNubm6Ii4uT3WuoT58+WL9+PWbNmoW33noLnTp1QnJyMrp16ybV1GYsREREpFx/6j5CzR3vI0TUvPE+QkTNU6PdR4iIiIioKWEQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFqvNfnyciIqKH05LUXxp7CHU2+b8ea9Tt84gQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFi+fJyIiaiZ6n/u4sYdQD4sades8IkRERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKZfEgVFFRgdmzZ8Pb2xsODg7o0KED3nnnHQghpBohBOLi4tCmTRs4ODggMDAQp06dkq2noKAA4eHh0Gg0cHFxQWRkJIqKimQ1R48eRb9+/WBvbw9PT08kJCRUG8+mTZvQpUsX2Nvbw9fXF9u2bbP0lImIiKiJsngQev/997F69WqsXLkSJ0+exPvvv4+EhASsWLFCqklISMDy5cuRmJiIzMxMODk5wWAw4NatW1JNeHg4srOzkZqaii1btiA9PR3jxo2T+s1mM4KCguDl5YWsrCwsXLgQc+fOxccf/9/fWdm7dy9GjBiByMhIHD58GCEhIQgJCcHx48ctPW0iIiJqglTi9kM1FvD888/Dw8MDa9askdpCQ0Ph4OCAzz//HEII6PV6TJkyBVOnTgUAmEwmeHh4ICkpCWFhYTh58iR8fHxw4MAB9OzZEwCQkpKCIUOG4MKFC9Dr9Vi9ejXefvttGI1G2NnZAQBmzpyJ5ORk5OTkAACGDx+O4uJibNmyRRpL79694efnh8TExPvOxWw2Q6vVwmQyQaPRWOw1IqKHQ8aaqY09hHoJiGzcP1JJD6+m+J5uiPdzXb6/LX5EqE+fPkhLS8Mvv/wCAPj555/x008/4bnnngMA5OXlwWg0IjAwUFpGq9XC398fGRkZAICMjAy4uLhIIQgAAgMDYWVlhczMTKmmf//+UggCAIPBgNzcXFy7dk2quX07VTVV27lTSUkJzGaz7EFERETNl42lVzhz5kyYzWZ06dIF1tbWqKiowLvvvovw8HAAgNFoBAB4eHjIlvPw8JD6jEYj3N3d5QO1sYGrq6usxtvbu9o6qvpatmwJo9F4z+3cKT4+HvPmzavPtImIiKgJsvgRoS+//BJffPEF1q9fj0OHDmHdunVYtGgR1q1bZ+lNWVxsbCxMJpP0OH/+fGMPiYiIiBqQxY8ITZs2DTNnzkRYWBgAwNfXF2fPnkV8fDwiIiKg0+kAAPn5+WjTpo20XH5+Pvz8/AAAOp0Oly9flq23vLwcBQUF0vI6nQ75+fmymqrn96up6r+TWq2GWq2uz7SJiIioCbL4EaEbN27Aykq+Wmtra1RWVgIAvL29odPpkJaWJvWbzWZkZmYiICAAABAQEIDCwkJkZWVJNTt37kRlZSX8/f2lmvT0dJSVlUk1qamp6Ny5M1q2bCnV3L6dqpqq7RAREZGyWTwIvfDCC3j33XexdetWnDlzBps3b8YHH3yAoUOHAgBUKhUmTZqEBQsW4Ntvv8WxY8fw2muvQa/XIyQkBADQtWtXDB48GGPHjsX+/fuxZ88eREdHIywsDHq9HgAwcuRI2NnZITIyEtnZ2di4cSOWLVuGmJgYaSwTJ05ESkoKFi9ejJycHMydOxcHDx5EdHS0padNRERETZDFfxpbsWIFZs+ejX/84x+4fPky9Ho9/v73vyMuLk6qmT59OoqLizFu3DgUFhaib9++SElJgb29vVTzxRdfIDo6GoMGDYKVlRVCQ0OxfPlyqV+r1WLHjh2IiopCjx494Obmhri4ONm9hvr06YP169dj1qxZeOutt9CpUyckJyejW7dulp42ERERNUEWv49Qc8L7CBE1b03xnisA7yNEd9cU39PN7j5CRERERE0FgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVaDBKGLFy/ib3/7G1q1agUHBwf4+vri4MGDUr8QAnFxcWjTpg0cHBwQGBiIU6dOydZRUFCA8PBwaDQauLi4IDIyEkVFRbKao0ePol+/frC3t4enpycSEhKqjWXTpk3o0qUL7O3t4evri23btjXElImIiKgJsngQunbtGp555hnY2tri+++/x4kTJ7B48WK0bNlSqklISMDy5cuRmJiIzMxMODk5wWAw4NatW1JNeHg4srOzkZqaii1btiA9PR3jxo2T+s1mM4KCguDl5YWsrCwsXLgQc+fOxccffyzV7N27FyNGjEBkZCQOHz6MkJAQhISE4Pjx45aeNhERETVBKiGEsOQKZ86ciT179uDf//53jf1CCOj1ekyZMgVTp04FAJhMJnh4eCApKQlhYWE4efIkfHx8cODAAfTs2RMAkJKSgiFDhuDChQvQ6/VYvXo13n77bRiNRtjZ2UnbTk5ORk5ODgBg+PDhKC4uxpYtW6Tt9+7dG35+fkhMTLzvXMxmM7RaLUwmEzQazZ96XYjo4ZOxZmpjD6FeAiIXNfYQ6CHVFN/TDfF+rsv3t8WPCH377bfo2bMn/vrXv8Ld3R1PPvkkPvnkE6k/Ly8PRqMRgYGBUptWq4W/vz8yMjIAABkZGXBxcZFCEAAEBgbCysoKmZmZUk3//v2lEAQABoMBubm5uHbtmlRz+3aqaqq2c6eSkhKYzWbZg4iIiJoviweh3377DatXr0anTp2wfft2jB8/Hm+++SbWrVsHADAajQAADw8P2XIeHh5Sn9FohLu7u6zfxsYGrq6uspqa1nH7Nu5WU9V/p/j4eGi1Wunh6elZ5/kTERFR02HxIFRZWYmnnnoK//3f/40nn3wS48aNw9ixY2v1U1Rji42Nhclkkh7nz59v7CERERFRA7J4EGrTpg18fHxkbV27dsW5c+cAADqdDgCQn58vq8nPz5f6dDodLl++LOsvLy9HQUGBrKamddy+jbvVVPXfSa1WQ6PRyB5ERETUfFk8CD3zzDPIzc2Vtf3yyy/w8vICAHh7e0On0yEtLU3qN5vNyMzMREBAAAAgICAAhYWFyMrKkmp27tyJyspK+Pv7SzXp6ekoKyuTalJTU9G5c2fpCrWAgADZdqpqqrZDREREymbxIDR58mTs27cP//3f/43Tp09j/fr1+PjjjxEVFQUAUKlUmDRpEhYsWIBvv/0Wx44dw2uvvQa9Xo+QkBAAfxxBGjx4MMaOHYv9+/djz549iI6ORlhYGPR6PQBg5MiRsLOzQ2RkJLKzs7Fx40YsW7YMMTEx0lgmTpyIlJQULF68GDk5OZg7dy4OHjyI6OhoS0+biIiImiAbS6/w6aefxubNmxEbG4v58+fD29sbS5cuRXh4uFQzffp0FBcXY9y4cSgsLETfvn2RkpICe3t7qeaLL75AdHQ0Bg0aBCsrK4SGhmL58uVSv1arxY4dOxAVFYUePXrAzc0NcXFxsnsN9enTB+vXr8esWbPw1ltvoVOnTkhOTka3bt0sPW0iIiJqgix+H6HmhPcRImremuI9VwDeR4jurim+p5vdfYSIiIiImgoGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUqwGD0LvvfceVCoVJk2aJLXdunULUVFRaNWqFZydnREaGor8/HzZcufOnUNwcDAcHR3h7u6OadOmoby8XFaza9cuPPXUU1Cr1ejYsSOSkpKqbX/VqlVo164d7O3t4e/vj/379zfENImIiKgJatAgdODAAXz00Ud44oknZO2TJ0/Gd999h02bNmH37t24dOkShg0bJvVXVFQgODgYpaWl2Lt3L9atW4ekpCTExcVJNXl5eQgODsbAgQNx5MgRTJo0Ca+//jq2b98u1WzcuBExMTGYM2cODh06hO7du8NgMODy5csNOW0iIiJqIhosCBUVFSE8PByffPIJWrZsKbWbTCasWbMGH3zwAf7yl7+gR48eWLt2Lfbu3Yt9+/YBAHbs2IETJ07g888/h5+fH5577jm88847WLVqFUpLSwEAiYmJ8Pb2xuLFi9G1a1dER0fj5ZdfxpIlS6RtffDBBxg7dixGjx4NHx8fJCYmwtHREZ999llDTZuIiIiakAYLQlFRUQgODkZgYKCsPSsrC2VlZbL2Ll26oG3btsjIyAAAZGRkwNfXFx4eHlKNwWCA2WxGdna2VHPnug0Gg7SO0tJSZGVlyWqsrKwQGBgo1dyppKQEZrNZ9iAiIqLmy6YhVrphwwYcOnQIBw4cqNZnNBphZ2cHFxcXWbuHhweMRqNUc3sIquqv6rtXjdlsxs2bN3Ht2jVUVFTUWJOTk1PjuOPj4zFv3rzaT5SIiIiaNIsfETp//jwmTpyIL774Avb29pZefYOKjY2FyWSSHufPn2/sIREREVEDsngQysrKwuXLl/HUU0/BxsYGNjY22L17N5YvXw4bGxt4eHigtLQUhYWFsuXy8/Oh0+kAADqdrtpVZFXP71ej0Wjg4OAANzc3WFtb11hTtY47qdVqaDQa2YOIiIiaL4sHoUGDBuHYsWM4cuSI9OjZsyfCw8Ol/7a1tUVaWpq0TG5uLs6dO4eAgAAAQEBAAI4dOya7uis1NRUajQY+Pj5Sze3rqKqpWoednR169Oghq6msrERaWppUQ0RERMpm8XOEWrRogW7dusnanJyc0KpVK6k9MjISMTExcHV1hUajwYQJExAQEIDevXsDAIKCguDj44NXX30VCQkJMBqNmDVrFqKioqBWqwEAb7zxBlauXInp06djzJgx2LlzJ7788kts3bpV2m5MTAwiIiLQs2dP9OrVC0uXLkVxcTFGjx5t6WkTERFRE9QgJ0vfz5IlS2BlZYXQ0FCUlJTAYDDgww8/lPqtra2xZcsWjB8/HgEBAXByckJERATmz58v1Xh7e2Pr1q2YPHkyli1bhkcffRSffvopDAaDVDN8+HBcuXIFcXFxMBqN8PPzQ0pKSrUTqImIiEiZVEII0diDeFiZzWZotVqYTCaeL0TUDGWsmdrYQ6iXgMhFjT0Eekg1xfd0Q7yf6/L9zb81RkRERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREimXxIBQfH4+nn34aLVq0gLu7O0JCQpCbmyuruXXrFqKiotCqVSs4OzsjNDQU+fn5sppz584hODgYjo6OcHd3x7Rp01BeXi6r2bVrF5566imo1Wp07NgRSUlJ1cazatUqtGvXDvb29vD398f+/fstPWUiIiJqoiwehHbv3o2oqCjs27cPqampKCsrQ1BQEIqLi6WayZMn47vvvsOmTZuwe/duXLp0CcOGDZP6KyoqEBwcjNLSUuzduxfr1q1DUlIS4uLipJq8vDwEBwdj4MCBOHLkCCZNmoTXX38d27dvl2o2btyImJgYzJkzB4cOHUL37t1hMBhw+fJlS0+biIiImiCVEEI05AauXLkCd3d37N69G/3794fJZELr1q2xfv16vPzyywCAnJwcdO3aFRkZGejduze+//57PP/887h06RI8PDwAAImJiZgxYwauXLkCOzs7zJgxA1u3bsXx48elbYWFhaGwsBApKSkAAH9/fzz99NNYuXIlAKCyshKenp6YMGECZs6ced+xm81maLVamEwmaDQaS780RNTIMtZMbewh1EtA5KLGHgI9pJrie7oh3s91+f5u8HOETCYTAMDV1RUAkJWVhbKyMgQGBko1Xbp0Qdu2bZGRkQEAyMjIgK+vrxSCAMBgMMBsNiM7O1uquX0dVTVV6ygtLUVWVpasxsrKCoGBgVLNnUpKSmA2m2UPIiIiar4aNAhVVlZi0qRJeOaZZ9CtWzcAgNFohJ2dHVxcXGS1Hh4eMBqNUs3tIaiqv6rvXjVmsxk3b97E77//joqKihprqtZxp/j4eGi1Wunh6elZv4kTERFRk9CgQSgqKgrHjx/Hhg0bGnIzFhMbGwuTySQ9zp8/39hDIiIiogZk01Arjo6OxpYtW5Ceno5HH31UatfpdCgtLUVhYaHsqFB+fj50Op1Uc+fVXVVXld1ec+eVZvn5+dBoNHBwcIC1tTWsra1rrKlax53UajXUanX9JkxERERNjsWPCAkhEB0djc2bN2Pnzp3w9vaW9ffo0QO2trZIS0uT2nJzc3Hu3DkEBAQAAAICAnDs2DHZ1V2pqanQaDTw8fGRam5fR1VN1Trs7OzQo0cPWU1lZSXS0tKkGiIiIlI2ix8RioqKwvr16/HNN9+gRYsW0vk4Wq0WDg4O0Gq1iIyMRExMDFxdXaHRaDBhwgQEBASgd+/eAICgoCD4+Pjg1VdfRUJCAoxGI2bNmoWoqCjpiM0bb7yBlStXYvr06RgzZgx27tyJL7/8Elu3bpXGEhMTg4iICPTs2RO9evXC0qVLUVxcjNGjR1t62kRERNQEWTwIrV69GgDw7LPPytrXrl2LUaNGAQCWLFkCKysrhIaGoqSkBAaDAR9++KFUa21tjS1btmD8+PEICAiAk5MTIiIiMH/+fKnG29sbW7duxeTJk7Fs2TI8+uij+PTTT2EwGKSa4cOH48qVK4iLi4PRaISfnx9SUlKqnUBNREREytTg9xFqyngfIaLmrSnecwXgfYTo7prie7rZ30eIiIiI6GHVYFeNERERNWVLUn9p7CHUWe/GHkATxCNCREREpFg8IkRERFSD3uc+buwh0APAI0JERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFi8oSIRETU4/rkKelgxCBERUYPjXZrpYcWfxoiIiEixGISIiIhIsRiEiIiISLF4jlBj+jG+sUdQdwNjG3sEREREFsMg1Igyfrva2EOos4CBjT0CIiIiy+FPY0RERKRYDEJERESkWPxpjIioiclYM7Wxh0DUbPCIEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFq8aIyKL4JVMRNQU8YgQERERKRaPCBE9hHh0hYjowVBEEFq1ahUWLlwIo9GI7t27Y8WKFejVq1djD4seEIYKIiK6m2YfhDZu3IiYmBgkJibC398fS5cuhcFgQG5uLtzd3Rt7eE0OQwURETUnzf4coQ8++ABjx47F6NGj4ePjg8TERDg6OuKzzz5r7KERERFRI2vWR4RKS0uRlZWF2NhYqc3KygqBgYHIyMioVl9SUoKSkhLpuclkAgCYzeYGGV/xzZL7FxERETVjDfEdW7VOIcR9a5t1EPr9999RUVEBDw8PWbuHhwdycnKq1cfHx2PevHnV2j09PRtsjERERIo2YWWDrfr69evQarX3rGnWQaiuYmNjERMTIz2vrKxEQUEBWrVqBZVKZdFtmc1meHp64vz589BoNBZd98Oguc8PaP5z5PyavuY+x+Y+P6D5z7Gh5ieEwPXr16HX6+9b26yDkJubG6ytrZGfny9rz8/Ph06nq1avVquhVqtlbS4uLg05RGg0mmb55q7S3OcHNP85cn5NX3OfY3OfH9D859gQ87vfkaAqzfpkaTs7O/To0QNpaWlSW2VlJdLS0hAQENCIIyMiIqKHQbM+IgQAMTExiIiIQM+ePdGrVy8sXboUxcXFGD16dGMPjYiIiBpZsw9Cw4cPx5UrVxAXFwej0Qg/Pz+kpKRUO4H6QVOr1ZgzZ061n+Kai+Y+P6D5z5Hza/qa+xyb+/yA5j/Hh2F+KlGba8uIiIiImqFmfY4QERER0b0wCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQg1kHfffRd9+vSBo6Njre9OLYRAXFwc2rRpAwcHBwQGBuLUqVOymoKCAoSHh0Oj0cDFxQWRkZEoKipqgBncX13HcubMGahUqhofmzZtkupq6t+wYcODmJJMfV7rZ599ttrY33jjDVnNuXPnEBwcDEdHR7i7u2PatGkoLy9vyKnUqK7zKygowIQJE9C5c2c4ODigbdu2ePPNN6U/TlylMfffqlWr0K5dO9jb28Pf3x/79++/Z/2mTZvQpUsX2Nvbw9fXF9u2bZP11+Yz+SDVZX6ffPIJ+vXrh5YtW6Jly5YIDAysVj9q1Khq+2rw4MENPY17qssck5KSqo3f3t5eVtOU92FN/56oVCoEBwdLNQ/TPkxPT8cLL7wAvV4PlUqF5OTk+y6za9cuPPXUU1Cr1ejYsSOSkpKq1dT1c11nghpEXFyc+OCDD0RMTIzQarW1Wua9994TWq1WJCcni59//lm8+OKLwtvbW9y8eVOqGTx4sOjevbvYt2+f+Pe//y06duwoRowY0UCzuLe6jqW8vFz85z//kT3mzZsnnJ2dxfXr16U6AGLt2rWyuttfgwelPq/1gAEDxNixY2VjN5lMUn95ebno1q2bCAwMFIcPHxbbtm0Tbm5uIjY2tqGnU01d53fs2DExbNgw8e2334rTp0+LtLQ00alTJxEaGiqra6z9t2HDBmFnZyc+++wzkZ2dLcaOHStcXFxEfn5+jfV79uwR1tbWIiEhQZw4cULMmjVL2NraimPHjkk1tflMPih1nd/IkSPFqlWrxOHDh8XJkyfFqFGjhFarFRcuXJBqIiIixODBg2X7qqCg4EFNqZq6znHt2rVCo9HIxm80GmU1TXkfXr16VTa348ePC2tra7F27Vqp5mHah9u2bRNvv/22+PrrrwUAsXnz5nvW//bbb8LR0VHExMSIEydOiBUrVghra2uRkpIi1dT1NasPBqEGtnbt2loFocrKSqHT6cTChQultsLCQqFWq8X/+3//TwghxIkTJwQAceDAAanm+++/FyqVSly8eNHiY78XS43Fz89PjBkzRtZWmw9QQ6vv/AYMGCAmTpx41/5t27YJKysr2T/Wq1evFhqNRpSUlFhk7LVhqf335ZdfCjs7O1FWVia1Ndb+69Wrl4iKipKeV1RUCL1eL+Lj42usf+WVV0RwcLCszd/fX/z9738XQtTuM/kg1XV+dyovLxctWrQQ69atk9oiIiLESy+9ZOmh1ltd53i/f1+b2z5csmSJaNGihSgqKpLaHrZ9WKU2/w5Mnz5dPP7447K24cOHC4PBID3/s69ZbfCnsYdEXl4ejEYjAgMDpTatVgt/f39kZGQAADIyMuDi4oKePXtKNYGBgbCyskJmZuYDHa8lxpKVlYUjR44gMjKyWl9UVBTc3NzQq1cvfPbZZxAP+L6ff2Z+X3zxBdzc3NCtWzfExsbixo0bsvX6+vrK7mxuMBhgNpuRnZ1t+YnchaXeSyaTCRqNBjY28pvUP+j9V1paiqysLNnnx8rKCoGBgdLn504ZGRmyeuCPfVFVX5vP5INSn/nd6caNGygrK4Orq6usfdeuXXB3d0fnzp0xfvx4XL161aJjr636zrGoqAheXl7w9PTESy+9JPscNbd9uGbNGoSFhcHJyUnW/rDsw7q632fQEq9ZbTT7P7HRVBiNRgCo9qc/PDw8pD6j0Qh3d3dZv42NDVxdXaWaB8USY1mzZg26du2KPn36yNrnz5+Pv/zlL3B0dMSOHTvwj3/8A0VFRXjzzTctNv77qe/8Ro4cCS8vL+j1ehw9ehQzZsxAbm4uvv76a2m9Ne3jqr4HxRL77/fff8c777yDcePGydobY//9/vvvqKioqPG1zcnJqXGZu+2L2z9vVW13q3lQ6jO/O82YMQN6vV72pTJ48GAMGzYM3t7e+PXXX/HWW2/hueeeQ0ZGBqytrS06h/upzxw7d+6Mzz77DE888QRMJhMWLVqEPn36IDs7G48++miz2of79+/H8ePHsWbNGln7w7QP6+pun0Gz2YybN2/i2rVrf/p9XxsMQnUwc+ZMvP/++/esOXnyJLp06fKARmR5tZ3jn3Xz5k2sX78es2fPrtZ3e9uTTz6J4uJiLFy40CJfpA09v9tDga+vL9q0aYNBgwbh119/RYcOHeq93tp6UPvPbDYjODgYPj4+mDt3rqyvIfcf1c97772HDRs2YNeuXbKTicPCwqT/9vX1xRNPPIEOHTpg165dGDRoUGMMtU4CAgIQEBAgPe/Tpw+6du2Kjz76CO+8804jjszy1qxZA19fX/Tq1UvW3tT34cOAQagOpkyZglGjRt2zpn379vVat06nAwDk5+ejTZs2Unt+fj78/PykmsuXL8uWKy8vR0FBgbT8n1XbOf7ZsXz11Ve4ceMGXnvttfvW+vv745133kFJScmf/sN8D2p+Vfz9/QEAp0+fRocOHaDT6apd8ZCfnw8AFtmHD2J+169fx+DBg9GiRQts3rwZtra296y35P67Gzc3N1hbW0uvZZX8/Py7zken092zvjafyQelPvOrsmjRIrz33nv44Ycf8MQTT9yztn379nBzc8Pp06cf+Jfon5ljFVtbWzz55JM4ffo0gOazD4uLi7FhwwbMnz//vttpzH1YV3f7DGo0Gjg4OMDa2vpPvydqxWJnG1GN6nqy9KJFi6Q2k8lU48nSBw8elGq2b9/eqCdL13csAwYMqHa10d0sWLBAtGzZst5jrQ9LvdY//fSTACB+/vlnIcT/nSx9+xUPH330kdBoNOLWrVuWm8B91Hd+JpNJ9O7dWwwYMEAUFxfXalsPav/16tVLREdHS88rKirEI488cs+TpZ9//nlZW0BAQLWTpe/1mXyQ6jo/IYR4//33hUajERkZGbXaxvnz54VKpRLffPPNnx5vfdRnjrcrLy8XnTt3FpMnTxZCNI99KMQf3yNqtVr8/vvv991GY+/DKqjlydLdunWTtY0YMaLaydJ/5j1Rq7FabE0kc/bsWXH48GHp8vDDhw+Lw4cPyy4T79y5s/j666+l5++9955wcXER33zzjTh69Kh46aWXarx8/sknnxSZmZnip59+Ep06dWrUy+fvNZYLFy6Izp07i8zMTNlyp06dEiqVSnz//ffV1vntt9+KTz75RBw7dkycOnVKfPjhh8LR0VHExcU1+HzuVNf5nT59WsyfP18cPHhQ5OXliW+++Ua0b99e9O/fX1qm6vL5oKAgceTIEZGSkiJat27daJfP12V+JpNJ+Pv7C19fX3H69GnZ5brl5eVCiMbdfxs2bBBqtVokJSWJEydOiHHjxgkXFxfpCr1XX31VzJw5U6rfs2ePsLGxEYsWLRInT54Uc+bMqfHy+ft9Jh+Uus7vvffeE3Z2duKrr76S7auqf4OuX78upk6dKjIyMkReXp744YcfxFNPPSU6der0QEP5n5njvHnzxPbt28Wvv/4qsrKyRFhYmLC3txfZ2dlSTVPeh1X69u0rhg8fXq39YduH169fl77rAIgPPvhAHD58WJw9e1YIIcTMmTPFq6++KtVXXT4/bdo0cfLkSbFq1aoaL5+/12tmCQxCDSQiIkIAqPb48ccfpRr87/1WqlRWVorZs2cLDw8PoVarxaBBg0Rubq5svVevXhUjRowQzs7OQqPRiNGjR8vC1YN0v7Hk5eVVm7MQQsTGxgpPT09RUVFRbZ3ff/+98PPzE87OzsLJyUl0795dJCYm1ljb0Oo6v3Pnzon+/fsLV1dXoVarRceOHcW0adNk9xESQogzZ86I5557Tjg4OAg3NzcxZcoU2eXnD0pd5/fjjz/W+J4GIPLy8oQQjb//VqxYIdq2bSvs7OxEr169xL59+6S+AQMGiIiICFn9l19+KR577DFhZ2cnHn/8cbF161ZZf20+kw9SXebn5eVV476aM2eOEEKIGzduiKCgING6dWtha2srvLy8xNixYy36BVMfdZnjpEmTpFoPDw8xZMgQcejQIdn6mvI+FEKInJwcAUDs2LGj2roetn14t38jquYUEREhBgwYUG0ZPz8/YWdnJ9q3by/7Tqxyr9fMElRCPODrkomIiIgeEryPEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREp1v8Hbr+cwt594pMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARWtJREFUeJzt3XtYFnX+//EXoNyAeIMKgiSezSNqWSLmIVdWLNoybVNzC8vDNxctJY/Veqouy05aeait1N3Wr4c2rdRQ09QtUZMkz66apmbgEVBUEPj8/ujHfL0FldtQlHk+ruu+Lu+Z98y8PzPc3C/ve2bwMMYYAQAA2JBnaTcAAABQWghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAG5pq1evloeHh1avXl2i6/Xw8NC4ceNKdJ0Abj4EIQC2tXTp0ls+7MyZM0eTJ08u7TYs06dP15///GfVqFFDHh4e6tOnT5F1K1eu1FNPPaXbb79dfn5+qlOnjvr166dff/3V7W3++uuvGjVqlDp27KiKFSteNRivW7dObdu2lZ+fn0JDQ/XMM8/ozJkzbm8XZQNBCIBtLV26VOPHjy9y3rlz5/Tiiy/e4I7cd7MFoddee02rVq1SkyZNVK5cucvWjRw5UqtXr9bDDz+sd955Rz179tT8+fN1xx13KDU11a1t7t69W6+99pp++eUXRUREXLE2JSVFnTp10tmzZ/XWW2+pX79++uCDD/TnP//ZrW2i7Lj8TymA6yorK0sVKlQo7TZKzdmzZ+Xn51doem5urvLz8+Xt7V0KXf0fHx+fUt3+rWrNmjXWp0H+/v6XrXvrrbfUtm1beXr+3//Hu3Tpog4dOui9997Tyy+/XOxttmzZUidOnFDlypX16aefXjHUPP/886pUqZJWr14tp9MpSapVq5b69++v5cuXq3PnzsXeLsoGPhGCrYwbN04eHh7atWuXHn30UTmdTlWpUkXPPvuszp8/71L7ySefqGXLlvL19VXlypXVs2dPHTp0yKXmP//5j/U1gMPhUHh4uIYOHapz58651PXp00f+/v7at2+f7r//flWsWFG9e/eWJO3Zs0fdu3dXaGiofHx8VL16dfXs2VMZGRnW8rm5uXrppZdUt25dORwO1apVS88//7yys7NdtlOrVi098MAD+vbbb9WqVSv5+PioTp06+sc//nFN++uTTz5Rq1at5Ofnp0qVKql9+/Zavny5S820adPUpEkTORwOhYWFKT4+Xunp6S419957r5o2bark5GS1b99efn5+ev7553XgwAF5eHjojTfe0OTJk63x7dixQ5K0a9cuPfLII6pcubJ8fHx011136Ysvvrhq38U5Ln369NHUqVMl/XY+UMGjQFHnCG3evFn33XefnE6n/P391alTJ61fv96lZtasWfLw8NB3332nhIQEBQcHq0KFCnr44Yd17Ngxl9pNmzYpJiZGQUFB8vX1Ve3atfXUU09ddXwX79clS5bo559/tvqvVauWNf/o0aPq27evQkJC5OPjo+bNm2v27Nku67j4GLz99tuqWbOmfH191aFDB23btq3YvRSoWbOmy368nPbt27uEoIJplStX1s6dO93aZsWKFVW5cuWr1mVmZmrFihX6y1/+YoUgSXriiSfk7++v+fPnu7VdlA18IgRbevTRR1WrVi1NnDhR69ev1zvvvKNTp05ZgeGVV17R3/72Nz366KPq16+fjh07pnfffVft27fX5s2bFRgYKElasGCBzp49q4EDB6pKlSrauHGj3n33XR0+fFgLFixw2WZubq5iYmLUtm1bvfHGG/Lz81NOTo5iYmKUnZ2twYMHKzQ0VL/88osWL16s9PR0BQQESJL69eun2bNn65FHHtFzzz2nDRs2aOLEidq5c6cWLlzosp29e/fqkUceUd++fRUXF6ePP/5Yffr0UcuWLdWkSZNi76Px48dr3LhxatOmjSZMmCBvb29t2LBBq1atsv7XPG7cOI0fP17R0dEaOHCgdu/erenTp+v777/Xd999p/Lly1vrO3HihO677z717NlTf/nLXxQSEmLNmzlzps6fP68BAwbI4XCocuXK2r59u+655x7ddtttGjVqlCpUqKD58+era9eu+ve//62HH374sr0X57j8z//8j44cOaIVK1bon//851X3x/bt29WuXTs5nU6NGDFC5cuX1/vvv697771Xa9asUWRkpEv94MGDValSJY0dO1YHDhzQ5MmTNWjQIM2bN0/SbyGlc+fOCg4O1qhRoxQYGKgDBw7os88+K/YxeuGFF5SRkaHDhw/r7bffliTrU5hz587p3nvv1d69ezVo0CDVrl1bCxYsUJ8+fZSenq5nn33WZV3/+Mc/dPr0acXHx+v8+fOaMmWK/vCHP2jr1q0ux+p6OnPmjM6cOaOgoKDrsv6tW7cqNzdXd911l8t0b29vtWjRQps3b74u28VNzgA2MnbsWCPJPPjggy7T//rXvxpJ5scffzQHDhwwXl5e5pVXXnGp2bp1qylXrpzL9LNnzxbaxsSJE42Hh4f5+eefrWlxcXFGkhk1apRL7ebNm40ks2DBgsv2nJKSYiSZfv36uUwfNmyYkWRWrVplTatZs6aRZNauXWtNO3r0qHE4HOa555677DYutWfPHuPp6Wkefvhhk5eX5zIvPz/fWq+3t7fp3LmzS817771nJJmPP/7YmtahQwcjycyYMcNlXfv37zeSjNPpNEePHnWZ16lTJxMREWHOnz/vsu02bdqY+vXrW9O++eYbI8l888031rTiHpf4+HhzuV+DkszYsWOt5127djXe3t5m37591rQjR46YihUrmvbt21vTZs6caSSZ6Ohoa18ZY8zQoUONl5eXSU9PN8YYs3DhQiPJfP/990Vuv7hiY2NNzZo1C02fPHmykWQ++eQTa1pOTo6Jiooy/v7+JjMz0xjzf8fA19fXHD582KrdsGGDkWSGDh16zb1VqFDBxMXFFbv+pZdeMpLMypUrr3mbCxYsKPTzcOm8i18fBf785z+b0NDQa94ubl18NQZbio+Pd3k+ePBgSb+dPPvZZ58pPz9fjz76qI4fP249QkNDVb9+fX3zzTfWcr6+vta/s7KydPz4cbVp00bGmCL/dzlw4ECX5wWf+Cxbtkxnz54tstelS5dKkhISElymP/fcc5KkJUuWuExv3Lix2rVrZz0PDg5WgwYN9NNPPxW5/qIsWrRI+fn5GjNmTKGvLwq+9vj666+Vk5OjIUOGuNT0799fTqezUF8Oh0NPPvlkkdvr3r27goODrecnT57UqlWr9Oijj+r06dPWMThx4oRiYmK0Z88e/fLLL5ft393jcjV5eXlavny5unbtqjp16ljTq1Wrpscee0zffvutMjMzXZYZMGCAy1dE7dq1U15enn7++WdJsj5VXLx4sS5cuOB2T1ezdOlShYaGqlevXta08uXLW1dIrVmzxqW+a9euuu2226znrVq1UmRkpPXzd72tXbtW48eP16OPPqo//OEP12UbBV+NOhyOQvN8fHwKfaUNeyAIwZbq16/v8rxu3bry9PTUgQMHtGfPHhljVL9+fQUHB7s8du7cqaNHj1rLHTx4UH369FHlypXl7++v4OBgdejQQZJczvGRpHLlyql69eou02rXrq2EhAR9+OGHCgoKUkxMjKZOneqy7M8//yxPT0/Vq1fPZdnQ0FAFBgZab6wFatSoUWi8lSpV0qlTp4q9f/bt2ydPT081btz4sjUF223QoIHLdG9vb9WpU6dQX7fddttlT4CuXbu2y/O9e/fKGKO//e1vhY7B2LFjJcnlOFzKneNSHMeOHdPZs2cLjVWSGjVqpPz8/ELnj116HCpVqiRJ1nHo0KGDunfvrvHjxysoKEgPPfSQZs6cWei8r2v1888/q379+oWCbKNGjaz5F7v0NSFJt99+uw4cOFAi/VzJrl279PDDD6tp06b68MMPr9t2CgJyUfv4/PnzLgEa9sE5QoDk8j/3/Px8eXh46KuvvpKXl1eh2oJzMPLy8vTHP/5RJ0+e1MiRI9WwYUNVqFBBv/zyi/r06aP8/HyX5RwOR6E3JUl688031adPH33++edavny5nnnmGevcpYuDU3FOQJVUZM+SZIwp1vLXy5XeZC6dV7Dvhg0bppiYmCKXuTQYFnD3uFwvVzsOHh4e+vTTT7V+/Xp9+eWXWrZsmZ566im9+eabWr9+/RWvuCpLDh06pM6dOysgIEBLly5VxYoVr9u2qlWrJklF3qvo119/VVhY2HXbNm5eBCHY0p49e1w+hdi7d6/y8/NVq1YteXl5yRij2rVr6/bbb7/sOrZu3ar//ve/mj17tp544glr+ooVK9zuJyIiQhEREXrxxRe1bt063XPPPZoxY4Zefvll1axZU/n5+dqzZ4/1v3lJSktLU3p6umrWrOn29q6mbt26ys/P144dO9SiRYsiawq2u3v3bpevi3JycrR//35FR0df8/YL1le+fHm31+POcSluuAwODpafn592795daN6uXbvk6emp8PBwt/os0Lp1a7Vu3VqvvPKK5syZo969e2vu3Lnq169fsZa/3Bhq1qypLVu2KD8/3yWA79q1y5p/sT179hRax3//+1+Xq9BK2okTJ9S5c2dlZ2dr5cqVVlC5Xpo2bapy5cpp06ZNevTRR63pOTk5SklJcZkG++CrMdhSwWXTBd59911J0n333adu3brJy8tL48ePL/QpijFGJ06ckPR//+O/uMYYoylTphS7j8zMTOXm5rpMi4iIkKenp/Xx/f333y9JhW6a99Zbb0mSYmNji7294uratas8PT01YcKEQp+gFIw3Ojpa3t7eeuedd1z2wUcffaSMjIzf1VfVqlV177336v333y/yf++XXoZ+MXeOS8F9nC693L+odXbu3Fmff/65y1dFaWlpmjNnjtq2betyOXZxnDp1qtDPV0HodOfrsQoVKhT5dd/999+v1NRU6yo16bcrF9999135+/tbXxUWWLRokct5Vxs3btSGDRt03333FbsXd2RlZen+++/XL7/8oqVLlxb51VxJCwgIUHR0tD755BOdPn3amv7Pf/5TZ86c4aaKNsUnQrCl/fv368EHH1SXLl2UlJSkTz75RI899piaN28uSXr55Zc1evRoHThwQF27dlXFihW1f/9+LVy4UAMGDNCwYcPUsGFD1a1bV8OGDdMvv/wip9Opf//7326di7Nq1SoNGjRIf/7zn3X77bcrNzdX//znP+Xl5aXu3btLkpo3b664uDh98MEHSk9PV4cOHbRx40bNnj1bXbt2VceOHUt8/9SrV08vvPCCXnrpJbVr107dunWTw+HQ999/r7CwME2cOFHBwcEaPXq0xo8fry5duujBBx/U7t27NW3aNN199936y1/+8rt6mDp1qtq2bauIiAj1799fderUUVpampKSknT48GH9+OOPRS7nznFp2bKlJOmZZ55RTEyMvLy81LNnzyLX+/LLL2vFihVq27at/vrXv6pcuXJ6//33lZ2drUmTJrk9vtmzZ2vatGl6+OGHVbduXZ0+fVp///vf5XQ6rfBbHC1bttS8efOUkJCgu+++W/7+/vrTn/6kAQMG6P3331efPn2UnJysWrVq6dNPP9V3332nyZMnF/oKql69emrbtq0GDhyo7OxsTZ48WVWqVNGIESPcGteXX35pHZsLFy5oy5Yt1s0RH3zwQTVr1kyS1Lt3b23cuFFPPfWUdu7c6XLvIH9/f3Xt2tWt7RZsY/v27ZJ+CzfffvutJLncIfyVV15RmzZt1KFDBw0YMECHDx/Wm2++qc6dO6tLly5ubRNlxI2/UA0oPQWXz+/YscM88sgjpmLFiqZSpUpm0KBB5ty5cy61//73v03btm1NhQoVTIUKFUzDhg1NfHy82b17t1WzY8cOEx0dbfz9/U1QUJDp37+/+fHHH40kM3PmTKsuLi7OVKhQoVA/P/30k3nqqadM3bp1jY+Pj6lcubLp2LGj+frrr13qLly4YMaPH29q165typcvb8LDw83o0aNdLi035rfL52NjYwttp0OHDqZDhw5u76+PP/7Y3HHHHcbhcJhKlSqZDh06mBUrVrjUvPfee6Zhw4amfPnyJiQkxAwcONCcOnWq0PabNGlSaP0Fl26//vrrRW5/37595oknnjChoaGmfPny5rbbbjMPPPCA+fTTT62aoi6fL+5xyc3NNYMHDzbBwcHGw8PD5VJ6XXL5vDHG/PDDDyYmJsb4+/sbPz8/07FjR7Nu3TqXmoLL5y+9LP7SPn/44QfTq1cvU6NGDeNwOEzVqlXNAw88YDZt2lTkvricM2fOmMcee8wEBgYaSS6X0qelpZknn3zSBAUFGW9vbxMREeEyfmNcj8Gbb75pwsPDjcPhMO3atTM//vijW70Y83+3iijqcfG2C271UNSjqNsBXM3l1lXU29x//vMf06ZNG+Pj42OCg4NNfHy8dTsB2I+HMaV8BiVwAxXcAPDYsWPX7aZtwK3kwIEDql27tl5//XUNGzastNsBbjjOEQIAALbFOUKAzVztL3v7+vpaN3pE6Tl58qRycnIuO9/Ly8vlJpTXU05Ojk6ePHnFmoCAgBK/D09GRsZVb3IYGhpaotuE/RCEAJu52iXKcXFxmjVr1o1pBpfVrVu3Qnd/vljNmjVvyM0OJWndunVXPSl/5syZ6tOnT4lu99lnny30R2Ivxdkd+L04Rwiwma+//vqK88PCwq54R2ncGMnJyVe8AtHX11f33HPPDenl1KlTSk5OvmJNkyZNSvw+QDt27NCRI0euWPN77lcFSAQhAABgY5wsDQAAbItzhK4gPz9fR44cUcWKFYt9K34AAFC6jDE6ffq0wsLCivwbjxcjCF3BkSNHrvnvBwEAgNJ16NAhlz9eXRSC0BUU3IL+0KFDbv8dIQAAUDoyMzMVHh5e6E/JFIUgdAUFX4c5nU6CEAAAt5jinNbCydIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23ApC06dPV7NmzayrqKKiovTVV19Z88+fP6/4+HhVqVJF/v7+6t69u9LS0lzWcfDgQcXGxsrPz09Vq1bV8OHDlZub61KzevVq3XnnnXI4HKpXr16RfwBy6tSpqlWrlnx8fBQZGamNGze6zC9OLwAAwN7cCkLVq1fXq6++quTkZG3atEl/+MMf9NBDD2n79u2SpKFDh+rLL7/UggULtGbNGh05ckTdunWzls/Ly1NsbKxycnK0bt06zZ49W7NmzdKYMWOsmv379ys2NlYdO3ZUSkqKhgwZon79+mnZsmVWzbx585SQkKCxY8fqhx9+UPPmzRUTE6OjR49aNVfrBQAAQOZ3qlSpkvnwww9Nenq6KV++vFmwYIE1b+fOnUaSSUpKMsYYs3TpUuPp6WlSU1OtmunTpxun02mys7ONMcaMGDHCNGnSxGUbPXr0MDExMdbzVq1amfj4eOt5Xl6eCQsLMxMnTjTGmGL1UhwZGRlGksnIyCj2MgAAoHS58/59zecI5eXlae7cucrKylJUVJSSk5N14cIFRUdHWzUNGzZUjRo1lJSUJElKSkpSRESEQkJCrJqYmBhlZmZanyolJSW5rKOgpmAdOTk5Sk5Odqnx9PRUdHS0VVOcXoqSnZ2tzMxMlwcAACi73A5CW7dulb+/vxwOh55++mktXLhQjRs3Vmpqqry9vRUYGOhSHxISotTUVElSamqqSwgqmF8w70o1mZmZOnfunI4fP668vLwiay5ex9V6KcrEiRMVEBBgPfg7YwAAlG1uB6EGDRooJSVFGzZs0MCBAxUXF6cdO3Zcj95uuNGjRysjI8N6HDp0qLRbAgAA15Hbf2vM29tb9erVkyS1bNlS33//vaZMmaIePXooJydH6enpLp/EpKWlKTQ0VJIUGhpa6Oqugiu5Lq659OqutLQ0OZ1O+fr6ysvLS15eXkXWXLyOq/VSFIfDIYfD4cbeAAAAt7LffR+h/Px8ZWdnq2XLlipfvrxWrlxpzdu9e7cOHjyoqKgoSVJUVJS2bt3qcnXXihUr5HQ61bhxY6vm4nUU1BSsw9vbWy1btnSpyc/P18qVK62a4vQCAADg1lVjo0aNMmvWrDH79+83W7ZsMaNGjTIeHh5m+fLlxhhjnn76aVOjRg2zatUqs2nTJhMVFWWioqKs5XNzc03Tpk1N586dTUpKiklMTDTBwcFm9OjRVs1PP/1k/Pz8zPDhw83OnTvN1KlTjZeXl0lMTLRq5s6daxwOh5k1a5bZsWOHGTBggAkMDHS5Gu1qvRQHV40BAHDrcef9262vxo4ePaonnnhCv/76qwICAtSsWTMtW7ZMf/zjHyVJb7/9tjw9PdW9e3dlZ2crJiZG06ZNs5b38vLS4sWLNXDgQEVFRalChQqKi4vThAkTrJratWtryZIlGjp0qKZMmaLq1avrww8/VExMjFXTo0cPHTt2TGPGjFFqaqpatGihxMRElxOor9YLAOibiaXdgfs6ji7tDoAyxcMYY0q7iZtVZmamAgIClJGRIafTWdrtAChpBCGgTHLn/dvtk6UBoKxI+ulEabfgtqiOpd0BULbwR1cBAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtuRWEJk6cqLvvvlsVK1ZU1apV1bVrV+3evdul5t5775WHh4fL4+mnn3apOXjwoGJjY+Xn56eqVatq+PDhys3NdalZvXq17rzzTjkcDtWrV0+zZs0q1M/UqVNVq1Yt+fj4KDIyUhs3bnSZf/78ecXHx6tKlSry9/dX9+7dlZaW5s6QAQBAGeZWEFqzZo3i4+O1fv16rVixQhcuXFDnzp2VlZXlUte/f3/9+uuv1mPSpEnWvLy8PMXGxionJ0fr1q3T7NmzNWvWLI0ZM8aq2b9/v2JjY9WxY0elpKRoyJAh6tevn5YtW2bVzJs3TwkJCRo7dqx++OEHNW/eXDExMTp69KhVM3ToUH355ZdasGCB1qxZoyNHjqhbt25u7yQAAFA2eRhjzLUufOzYMVWtWlVr1qxR+/btJf32iVCLFi00efLkIpf56quv9MADD+jIkSMKCQmRJM2YMUMjR47UsWPH5O3trZEjR2rJkiXatm2btVzPnj2Vnp6uxMRESVJkZKTuvvtuvffee5Kk/Px8hYeHa/DgwRo1apQyMjIUHBysOXPm6JFHHpEk7dq1S40aNVJSUpJat2591fFlZmYqICBAGRkZcjqd17qbANykkj4aVtotuC2q7xul3QJw03Pn/ft3nSOUkZEhSapcubLL9H/9618KCgpS06ZNNXr0aJ09e9aal5SUpIiICCsESVJMTIwyMzO1fft2qyY6OtplnTExMUpKSpIk5eTkKDk52aXG09NT0dHRVk1ycrIuXLjgUtOwYUPVqFHDqrlUdna2MjMzXR4AAKDsKnetC+bn52vIkCG655571LRpU2v6Y489ppo1ayosLExbtmzRyJEjtXv3bn322WeSpNTUVJcQJMl6npqaesWazMxMnTt3TqdOnVJeXl6RNbt27bLW4e3trcDAwEI1Bdu51MSJEzV+/Hg39wQAALhVXXMQio+P17Zt2/Ttt9+6TB8wYID174iICFWrVk2dOnXSvn37VLdu3Wvv9AYYPXq0EhISrOeZmZkKDw8vxY4AAMD1dE1fjQ0aNEiLFy/WN998o+rVq1+xNjIyUpK0d+9eSVJoaGihK7cKnoeGhl6xxul0ytfXV0FBQfLy8iqy5uJ15OTkKD09/bI1l3I4HHI6nS4PAABQdrkVhIwxGjRokBYuXKhVq1apdu3aV10mJSVFklStWjVJUlRUlLZu3epyddeKFSvkdDrVuHFjq2blypUu61mxYoWioqIkSd7e3mrZsqVLTX5+vlauXGnVtGzZUuXLl3ep2b17tw4ePGjVAAAAe3Prq7H4+HjNmTNHn3/+uSpWrGidaxMQECBfX1/t27dPc+bM0f33368qVapoy5YtGjp0qNq3b69mzZpJkjp37qzGjRvr8ccf16RJk5SamqoXX3xR8fHxcjgckqSnn35a7733nkaMGKGnnnpKq1at0vz587VkyRKrl4SEBMXFxemuu+5Sq1atNHnyZGVlZenJJ5+0eurbt68SEhJUuXJlOZ1ODR48WFFRUcW6YgwAAJR9bgWh6dOnS/rtEvmLzZw5U3369JG3t7e+/vprK5SEh4ere/fuevHFF61aLy8vLV68WAMHDlRUVJQqVKiguLg4TZgwwaqpXbu2lixZoqFDh2rKlCmqXr26PvzwQ8XExFg1PXr00LFjxzRmzBilpqaqRYsWSkxMdDmB+u2335anp6e6d++u7OxsxcTEaNq0aW7tIAAAUHb9rvsIlXXcRwgo27iPEFA23bD7CAEAANzKCEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23ApCEydO1N13362KFSuqatWq6tq1q3bv3u1Sc/78ecXHx6tKlSry9/dX9+7dlZaW5lJz8OBBxcbGys/PT1WrVtXw4cOVm5vrUrN69WrdeeedcjgcqlevnmbNmlWon6lTp6pWrVry8fFRZGSkNm7c6HYvAADAvtwKQmvWrFF8fLzWr1+vFStW6MKFC+rcubOysrKsmqFDh+rLL7/UggULtGbNGh05ckTdunWz5ufl5Sk2NlY5OTlat26dZs+erVmzZmnMmDFWzf79+xUbG6uOHTsqJSVFQ4YMUb9+/bRs2TKrZt68eUpISNDYsWP1ww8/qHnz5oqJidHRo0eL3QsAALA3D2OMudaFjx07pqpVq2rNmjVq3769MjIyFBwcrDlz5uiRRx6RJO3atUuNGjVSUlKSWrdura+++koPPPCAjhw5opCQEEnSjBkzNHLkSB07dkze3t4aOXKklixZom3btlnb6tmzp9LT05WYmChJioyM1N1336333ntPkpSfn6/w8HANHjxYo0aNKlYvV5OZmamAgABlZGTI6XRe624CcJNK+mhYabfgtqi+b5R2C8BNz5337991jlBGRoYkqXLlypKk5ORkXbhwQdHR0VZNw4YNVaNGDSUlJUmSkpKSFBERYYUgSYqJiVFmZqa2b99u1Vy8joKagnXk5OQoOTnZpcbT01PR0dFWTXF6uVR2drYyMzNdHgAAoOy65iCUn5+vIUOG6J577lHTpk0lSampqfL29lZgYKBLbUhIiFJTU62ai0NQwfyCeVeqyczM1Llz53T8+HHl5eUVWXPxOq7Wy6UmTpyogIAA6xEeHl7MvQEAAG5F1xyE4uPjtW3bNs2dO7ck+ylVo0ePVkZGhvU4dOhQabcEAACuo3LXstCgQYO0ePFirV27VtWrV7emh4aGKicnR+np6S6fxKSlpSk0NNSqufTqroIruS6uufTqrrS0NDmdTvn6+srLy0teXl5F1ly8jqv1cimHwyGHw+HGngAAALcytz4RMsZo0KBBWrhwoVatWqXatWu7zG/ZsqXKly+vlStXWtN2796tgwcPKioqSpIUFRWlrVu3ulzdtWLFCjmdTjVu3NiquXgdBTUF6/D29lbLli1davLz87Vy5Uqrpji9AAAAe3PrE6H4+HjNmTNHn3/+uSpWrGidaxMQECBfX18FBASob9++SkhIUOXKleV0OjV48GBFRUVZV2l17txZjRs31uOPP65JkyYpNTVVL774ouLj461PY55++mm99957GjFihJ566imtWrVK8+fP15IlS6xeEhISFBcXp7vuukutWrXS5MmTlZWVpSeffNLq6Wq9AAAAe3MrCE2fPl2SdO+997pMnzlzpvr06SNJevvtt+Xp6anu3bsrOztbMTExmjZtmlXr5eWlxYsXa+DAgYqKilKFChUUFxenCRMmWDW1a9fWkiVLNHToUE2ZMkXVq1fXhx9+qJiYGKumR48eOnbsmMaMGaPU1FS1aNFCiYmJLidQX60XAABgb7/rPkJlHfcRAso27iMElE037D5CAAAAtzKCEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC23g9DatWv1pz/9SWFhYfLw8NCiRYtc5vfp00ceHh4ujy5durjUnDx5Ur1795bT6VRgYKD69u2rM2fOuNRs2bJF7dq1k4+Pj8LDwzVp0qRCvSxYsEANGzaUj4+PIiIitHTpUpf5xhiNGTNG1apVk6+vr6Kjo7Vnzx53hwwAAMoot4NQVlaWmjdvrqlTp162pkuXLvr111+tx//+7/+6zO/du7e2b9+uFStWaPHixVq7dq0GDBhgzc/MzFTnzp1Vs2ZNJScn6/XXX9e4ceP0wQcfWDXr1q1Tr1691LdvX23evFldu3ZV165dtW3bNqtm0qRJeueddzRjxgxt2LBBFSpUUExMjM6fP+/usAEAQBnkYYwx17ywh4cWLlyorl27WtP69Omj9PT0Qp8UFdi5c6caN26s77//XnfddZckKTExUffff78OHz6ssLAwTZ8+XS+88IJSU1Pl7e0tSRo1apQWLVqkXbt2SZJ69OihrKwsLV682Fp369at1aJFC82YMUPGGIWFhem5557TsGHDJEkZGRkKCQnRrFmz1LNnz0K9ZWdnKzs723qemZmp8PBwZWRkyOl0XutuAnCTSvpoWGm34Laovm+UdgvATS8zM1MBAQHFev++LucIrV69WlWrVlWDBg00cOBAnThxwpqXlJSkwMBAKwRJUnR0tDw9PbVhwwarpn379lYIkqSYmBjt3r1bp06dsmqio6NdthsTE6OkpCRJ0v79+5WamupSExAQoMjISKvmUhMnTlRAQID1CA8P/517AgAA3MxKPAh16dJF//jHP7Ry5Uq99tprWrNmje677z7l5eVJklJTU1W1alWXZcqVK6fKlSsrNTXVqgkJCXGpKXh+tZqL51+8XFE1lxo9erQyMjKsx6FDh9wePwAAuHWUK+kVXvyVU0REhJo1a6a6detq9erV6tSpU0lvrkQ5HA45HI7SbgMAANwg1/3y+Tp16igoKEh79+6VJIWGhuro0aMuNbm5uTp58qRCQ0OtmrS0NJeagudXq7l4/sXLFVUDAADs7boHocOHD+vEiROqVq2aJCkqKkrp6elKTk62alatWqX8/HxFRkZaNWvXrtWFCxesmhUrVqhBgwaqVKmSVbNy5UqXba1YsUJRUVGSpNq1ays0NNSlJjMzUxs2bLBqAACAvbkdhM6cOaOUlBSlpKRI+u2k5JSUFB08eFBnzpzR8OHDtX79eh04cEArV67UQw89pHr16ikmJkaS1KhRI3Xp0kX9+/fXxo0b9d1332nQoEHq2bOnwsLCJEmPPfaYvL291bdvX23fvl3z5s3TlClTlJCQYPXx7LPPKjExUW+++aZ27dqlcePGadOmTRo0aJCk365oGzJkiF5++WV98cUX2rp1q5544gmFhYW5XOUGAADsy+1zhDZt2qSOHTtazwvCSVxcnKZPn64tW7Zo9uzZSk9PV1hYmDp37qyXXnrJ5dybf/3rXxo0aJA6deokT09Pde/eXe+88441PyAgQMuXL1d8fLxatmypoKAgjRkzxuVeQ23atNGcOXP04osv6vnnn1f9+vW1aNEiNW3a1KoZMWKEsrKyNGDAAKWnp6tt27ZKTEyUj4+Pu8MGAABl0O+6j1BZ5859CADceriPEFA2lfp9hAAAAG4FBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbbgehtWvX6k9/+pPCwsLk4eGhRYsWucw3xmjMmDGqVq2afH19FR0drT179rjUnDx5Ur1795bT6VRgYKD69u2rM2fOuNRs2bJF7dq1k4+Pj8LDwzVp0qRCvSxYsEANGzaUj4+PIiIitHTpUrd7AQAA9uV2EMrKylLz5s01derUIudPmjRJ77zzjmbMmKENGzaoQoUKiomJ0fnz562a3r17a/v27VqxYoUWL16stWvXasCAAdb8zMxMde7cWTVr1lRycrJef/11jRs3Th988IFVs27dOvXq1Ut9+/bV5s2b1bVrV3Xt2lXbtm1zqxcAAGBfHsYYc80Le3ho4cKF6tq1q6TfPoEJCwvTc889p2HDhkmSMjIyFBISolmzZqlnz57auXOnGjdurO+//1533XWXJCkxMVH333+/Dh8+rLCwME2fPl0vvPCCUlNT5e3tLUkaNWqUFi1apF27dkmSevTooaysLC1evNjqp3Xr1mrRooVmzJhRrF6uJjMzUwEBAcrIyJDT6bzW3QTgJpX00bDSbsFtUX3fKO0WgJueO+/fJXqO0P79+5Wamqro6GhrWkBAgCIjI5WUlCRJSkpKUmBgoBWCJCk6Olqenp7asGGDVdO+fXsrBElSTEyMdu/erVOnTlk1F2+noKZgO8Xp5VLZ2dnKzMx0eQAAgLKrRINQamqqJCkkJMRlekhIiDUvNTVVVatWdZlfrlw5Va5c2aWmqHVcvI3L1Vw8/2q9XGrixIkKCAiwHuHh4cUYNQAAuFVx1dhFRo8erYyMDOtx6NCh0m4JAABcRyUahEJDQyVJaWlpLtPT0tKseaGhoTp69KjL/NzcXJ08edKlpqh1XLyNy9VcPP9qvVzK4XDI6XS6PAAAQNlVokGodu3aCg0N1cqVK61pmZmZ2rBhg6KioiRJUVFRSk9PV3JyslWzatUq5efnKzIy0qpZu3atLly4YNWsWLFCDRo0UKVKlayai7dTUFOwneL0AgAA7M3tIHTmzBmlpKQoJSVF0m8nJaekpOjgwYPy8PDQkCFD9PLLL+uLL77Q1q1b9cQTTygsLMy6sqxRo0bq0qWL+vfvr40bN+q7777ToEGD1LNnT4WFhUmSHnvsMXl7e6tv377avn275s2bpylTpighIcHq49lnn1ViYqLefPNN7dq1S+PGjdOmTZs0aNAgSSpWLwAAwN7KubvApk2b1LFjR+t5QTiJi4vTrFmzNGLECGVlZWnAgAFKT09X27ZtlZiYKB8fH2uZf/3rXxo0aJA6deokT09Pde/eXe+88441PyAgQMuXL1d8fLxatmypoKAgjRkzxuVeQ23atNGcOXP04osv6vnnn1f9+vW1aNEiNW3a1KopTi8AAMC+ftd9hMo67iMElG3cRwgom0rtPkIAAAC3EoIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwrRIPQuPGjZOHh4fLo2HDhtb88+fPKz4+XlWqVJG/v7+6d++utLQ0l3UcPHhQsbGx8vPzU9WqVTV8+HDl5ua61KxevVp33nmnHA6H6tWrp1mzZhXqZerUqapVq5Z8fHwUGRmpjRs3lvRwAQDALey6fCLUpEkT/frrr9bj22+/teYNHTpUX375pRYsWKA1a9boyJEj6tatmzU/Ly9PsbGxysnJ0bp16zR79mzNmjVLY8aMsWr279+v2NhYdezYUSkpKRoyZIj69eunZcuWWTXz5s1TQkKCxo4dqx9++EHNmzdXTEyMjh49ej2GDAAAbkEexhhTkiscN26cFi1apJSUlELzMjIyFBwcrDlz5uiRRx6RJO3atUuNGjVSUlKSWrdura+++koPPPCAjhw5opCQEEnSjBkzNHLkSB07dkze3t4aOXKklixZom3btlnr7tmzp9LT05WYmChJioyM1N1336333ntPkpSfn6/w8HANHjxYo0aNKtZYMjMzFRAQoIyMDDmdzt+zWwDchJI+GlbaLbgtqu8bpd0CcNNz5/37unwitGfPHoWFhalOnTrq3bu3Dh48KElKTk7WhQsXFB0dbdU2bNhQNWrUUFJSkiQpKSlJERERVgiSpJiYGGVmZmr79u1WzcXrKKgpWEdOTo6Sk5Ndajw9PRUdHW3VFCU7O1uZmZkuDwAAUHaVeBCKjIzUrFmzlJiYqOnTp2v//v1q166dTp8+rdTUVHl7eyswMNBlmZCQEKWmpkqSUlNTXUJQwfyCeVeqyczM1Llz53T8+HHl5eUVWVOwjqJMnDhRAQEB1iM8PPya9gEAALg1lCvpFd53333Wv5s1a6bIyEjVrFlT8+fPl6+vb0lvrkSNHj1aCQkJ1vPMzEzCEAAAZdh1v3w+MDBQt99+u/bu3avQ0FDl5OQoPT3dpSYtLU2hoaGSpNDQ0EJXkRU8v1qN0+mUr6+vgoKC5OXlVWRNwTqK4nA45HQ6XR4AAKDsuu5B6MyZM9q3b5+qVaumli1bqnz58lq5cqU1f/fu3Tp48KCioqIkSVFRUdq6davL1V0rVqyQ0+lU48aNrZqL11FQU7AOb29vtWzZ0qUmPz9fK1eutGoAAABKPAgNGzZMa9as0YEDB7Ru3To9/PDD8vLyUq9evRQQEKC+ffsqISFB33zzjZKTk/Xkk08qKipKrVu3liR17txZjRs31uOPP64ff/xRy5Yt04svvqj4+Hg5HA5J0tNPP62ffvpJI0aM0K5duzRt2jTNnz9fQ4cOtfpISEjQ3//+d82ePVs7d+7UwIEDlZWVpSeffLKkhwwAAG5RJX6O0OHDh9WrVy+dOHFCwcHBatu2rdavX6/g4GBJ0ttvvy1PT091795d2dnZiomJ0bRp06zlvby8tHjxYg0cOFBRUVGqUKGC4uLiNGHCBKumdu3aWrJkiYYOHaopU6aoevXq+vDDDxUTE2PV9OjRQ8eOHdOYMWOUmpqqFi1aKDExsdAJ1AAAwL5K/D5CZQn3EQLKNu4jBJRNpX4fIQAAgFsBQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANhWudJuAAAAlIy3V/y3tFtw29A/3l6q2+cTIQAAYFsEIQAAYFt8NQYAQBnR+uAHpd3CNXijVLduiyA0depUvf7660pNTVXz5s317rvvqlWrVqXdFt/lAgBQysp8EJo3b54SEhI0Y8YMRUZGavLkyYqJidHu3btVtWrVUu2N5A4AQOkq80HorbfeUv/+/fXkk09KkmbMmKElS5bo448/1qhRo0q5OwDAzepW/NS+dWk3cAsq00EoJydHycnJGj16tDXN09NT0dHRSkpKKlSfnZ2t7Oxs63lGRoYkKTMz87r0l3Uu++pFN5nrtS/gauqqvaXdgi3cfQu+Bicu+qG0W7CNuw/PLO0W3JZV2g1cg+vxvlKwTmPMVWvLdBA6fvy48vLyFBIS4jI9JCREu3btKlQ/ceJEjR8/vtD08PDw69bjLWfwe6XdAWBzvAZRxlzH95XTp08rICDgijVlOgi5a/To0UpISLCe5+fn6+TJk6pSpYo8PDxKdFuZmZkKDw/XoUOH5HQ6S3TdN4OyPj6p7I+R8d36yvoYGd+t73qN0Rij06dPKyws7Kq1ZToIBQUFycvLS2lpaS7T09LSFBoaWqje4XDI4XC4TAsMDLyeLcrpdJbZH3Cp7I9PKvtjZHy3vrI+RsZ367seY7zaJ0EFyvQNFb29vdWyZUutXLnSmpafn6+VK1cqKiqqFDsDAAA3gzL9iZAkJSQkKC4uTnfddZdatWqlyZMnKysry7qKDAAA2FeZD0I9evTQsWPHNGbMGKWmpqpFixZKTEwsdAL1jeZwODR27NhCX8WVFWV9fFLZHyPju/WV9TEyvlvfzTBGD1Oca8sAAADKoDJ9jhAAAMCVEIQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYSuk1deeUVt2rSRn59fse9ObYzRmDFjVK1aNfn6+io6Olp79uxxqTl58qR69+4tp9OpwMBA9e3bV2fOnLkOI7g6d3s5cOCAPDw8inwsWLDAqitq/ty5c2/EkFxcy76+9957C/X+9NNPu9QcPHhQsbGx8vPzU9WqVTV8+HDl5uZez6EUyd3xnTx5UoMHD1aDBg3k6+urGjVq6JlnnrH+OHGB0jx+U6dOVa1ateTj46PIyEht3LjxivULFixQw4YN5ePjo4iICC1dutRlfnFekzeSO+P7+9//rnbt2qlSpUqqVKmSoqOjC9X36dOn0LHq0qXL9R7GFbkzxlmzZhXq38fHx6XmVj6GRf0+8fDwUGxsrFVzMx3DtWvX6k9/+pPCwsLk4eGhRYsWXXWZ1atX684775TD4VC9evU0a9asQjXuvq7dZnBdjBkzxrz11lsmISHBBAQEFGuZV1991QQEBJhFixaZH3/80Tz44IOmdu3a5ty5c1ZNly5dTPPmzc369evNf/7zH1OvXj3Tq1ev6zSKK3O3l9zcXPPrr7+6PMaPH2/8/f3N6dOnrTpJZubMmS51F++DG+Va9nWHDh1M//79XXrPyMiw5ufm5pqmTZua6Ohos3nzZrN06VITFBRkRo8efb2HU4i749u6davp1q2b+eKLL8zevXvNypUrTf369U337t1d6krr+M2dO9d4e3ubjz/+2Gzfvt3079/fBAYGmrS0tCLrv/vuO+Pl5WUmTZpkduzYYV588UVTvnx5s3XrVqumOK/JG8Xd8T322GNm6tSpZvPmzWbnzp2mT58+JiAgwBw+fNiqiYuLM126dHE5VidPnrxRQyrE3THOnDnTOJ1Ol/5TU1Ndam7lY3jixAmXsW3bts14eXmZmTNnWjU30zFcunSpeeGFF8xnn31mJJmFCxdesf6nn34yfn5+JiEhwezYscO8++67xsvLyyQmJlo17u6za0EQus5mzpxZrCCUn59vQkNDzeuvv25NS09PNw6Hw/zv//6vMcaYHTt2GEnm+++/t2q++uor4+HhYX755ZcS7/1KSqqXFi1amKeeesplWnFeQNfbtY6vQ4cO5tlnn73s/KVLlxpPT0+XX9bTp083TqfTZGdnl0jvxVFSx2/+/PnG29vbXLhwwZpWWsevVatWJj4+3nqel5dnwsLCzMSJE4usf/TRR01sbKzLtMjISPM///M/xpjivSZvJHfHd6nc3FxTsWJFM3v2bGtaXFyceeihh0q61Wvm7hiv9vu1rB3Dt99+21SsWNGcOXPGmnazHcMCxfk9MGLECNOkSROXaT169DAxMTHW89+7z4qDr8ZuEvv371dqaqqio6OtaQEBAYqMjFRSUpIkKSkpSYGBgbrrrrusmujoaHl6emrDhg03tN+S6CU5OVkpKSnq27dvoXnx8fEKCgpSq1at9PHHH8vc4Pt+/p7x/etf/1JQUJCaNm2q0aNH6+zZsy7rjYiIcLmzeUxMjDIzM7V9+/aSH8hllNTPUkZGhpxOp8qVc71J/Y0+fjk5OUpOTnZ5/Xh6eio6Otp6/VwqKSnJpV767VgU1BfnNXmjXMv4LnX27FlduHBBlStXdpm+evVqVa1aVQ0aNNDAgQN14sSJEu29uK51jGfOnFHNmjUVHh6uhx56yOV1VNaO4UcffaSePXuqQoUKLtNvlmPorqu9BktinxVHmf8TG7eK1NRUSSr0pz9CQkKseampqapatarL/HLlyqly5cpWzY1SEr189NFHatSokdq0aeMyfcKECfrDH/4gPz8/LV++XH/961915swZPfPMMyXW/9Vc6/gee+wx1axZU2FhYdqyZYtGjhyp3bt367PPPrPWW9QxLph3o5TE8Tt+/LheeuklDRgwwGV6aRy/48ePKy8vr8h9u2vXriKXudyxuPj1VjDtcjU3yrWM71IjR45UWFiYy5tKly5d1K1bN9WuXVv79u3T888/r/vuu09JSUny8vIq0TFczbWMsUGDBvr444/VrFkzZWRk6I033lCbNm20fft2Va9evUwdw40bN2rbtm366KOPXKbfTMfQXZd7DWZmZurcuXM6derU7/65Lw6CkBtGjRql11577Yo1O3fuVMOGDW9QRyWvuGP8vc6dO6c5c+bob3/7W6F5F0+74447lJWVpddff71E3kiv9/guDgURERGqVq2aOnXqpH379qlu3brXvN7iulHHLzMzU7GxsWrcuLHGjRvnMu96Hj9cm1dffVVz587V6tWrXU4m7tmzp/XviIgINWvWTHXr1tXq1avVqVOn0mjVLVFRUYqKirKet2nTRo0aNdL777+vl156qRQ7K3kfffSRIiIi1KpVK5fpt/oxvBkQhNzw3HPPqU+fPlesqVOnzjWtOzQ0VJKUlpamatWqWdPT0tLUokULq+bo0aMuy+Xm5urkyZPW8r9Xccf4e3v59NNPdfbsWT3xxBNXrY2MjNRLL72k7Ozs3/2H+W7U+ApERkZKkvbu3au6desqNDS00BUPaWlpklQix/BGjO/06dPq0qWLKlasqIULF6p8+fJXrC/J43c5QUFB8vLysvZlgbS0tMuOJzQ09Ir1xXlN3ijXMr4Cb7zxhl599VV9/fXXatas2RVr69Spo6CgIO3du/eGv4n+njEWKF++vO644w7t3btXUtk5hllZWZo7d64mTJhw1e2U5jF01+Veg06nU76+vvLy8vrdPxPFUmJnG6FI7p4s/cYbb1jTMjIyijxZetOmTVbNsmXLSvVk6WvtpUOHDoWuNrqcl19+2VSqVOmae70WJbWvv/32WyPJ/Pjjj8aY/ztZ+uIrHt5//33jdDrN+fPnS24AV3Gt48vIyDCtW7c2HTp0MFlZWcXa1o06fq1atTKDBg2ynufl5ZnbbrvtiidLP/DAAy7ToqKiCp0sfaXX5I3k7viMMea1114zTqfTJCUlFWsbhw4dMh4eHubzzz//3f1ei2sZ48Vyc3NNgwYNzNChQ40xZeMYGvPb+4jD4TDHjx+/6jZK+xgWUDFPlm7atKnLtF69ehU6Wfr3/EwUq9cSWxNc/Pzzz2bz5s3W5eGbN282mzdvdrlMvEGDBuazzz6znr/66qsmMDDQfP7552bLli3moYceKvLy+TvuuMNs2LDBfPvtt6Z+/fqlevn8lXo5fPiwadCggdmwYYPLcnv27DEeHh7mq6++KrTOL774wvz97383W7duNXv27DHTpk0zfn5+ZsyYMdd9PJdyd3x79+41EyZMMJs2bTL79+83n3/+ualTp45p3769tUzB5fOdO3c2KSkpJjEx0QQHB5fa5fPujC8jI8NERkaaiIgIs3fvXpfLdXNzc40xpXv85s6daxwOh5k1a5bZsWOHGTBggAkMDLSu0Hv88cfNqFGjrPrvvvvOlCtXzrzxxhtm586dZuzYsUVePn+11+SN4u74Xn31VePt7W0+/fRTl2NV8Dvo9OnTZtiwYSYpKcns37/ffP311+bOO+809evXv6Gh/PeMcfz48WbZsmVm3759Jjk52fTs2dP4+PiY7du3WzW38jEs0LZtW9OjR49C02+2Y3j69GnrvU6Seeutt8zmzZvNzz//bIwxZtSoUebxxx+36gsunx8+fLjZuXOnmTp1apGXz19pn5UEgtB1EhcXZyQVenzzzTdWjf7//VYK5Ofnm7/97W8mJCTEOBwO06lTJ7N7926X9Z44ccL06tXL+Pv7G6fTaZ588kmXcHUjXa2X/fv3FxqzMcaMHj3ahIeHm7y8vELr/Oqrr0yLFi2Mv7+/qVChgmnevLmZMWNGkbXXm7vjO3jwoGnfvr2pXLmycTgcpl69emb48OEu9xEyxpgDBw6Y++67z/j6+pqgoCDz3HPPuVx+fqO4O75vvvmmyJ9pSWb//v3GmNI/fu+++66pUaOG8fb2Nq1atTLr16+35nXo0MHExcW51M+fP9/cfvvtxtvb2zRp0sQsWbLEZX5xXpM3kjvjq1mzZpHHauzYscYYY86ePWs6d+5sgoODTfny5U3NmjVN//79S/QN5lq4M8YhQ4ZYtSEhIeb+++83P/zwg8v6buVjaIwxu3btMpLM8uXLC63rZjuGl/sdUTCmuLg406FDh0LLtGjRwnh7e5s6deq4vCcWuNI+Kwkextzg65IBAABuEtxHCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2Nb/A73fzo/LAx4UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARJNJREFUeJzt3Xl4Tffe//9XErITYiciJFIxqzFotSJqqCNHaDooPUXdbcx3ndCSqqF1TO35anWiNfV0wBncRU9pi1KN4m4FlVJzDkpRTYxJCBJJPr8/+su6bQmyCSHr+biufV32Wu+11vuzVnb2y95rrXgYY4wAAABsyLOkGwAAACgpBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAAGBbBCEAd7Q1a9bIw8NDa9asKdb1enh4aMKECcW6TgC3H4IQANtavnz5HR925s+fr6lTp5Z0G5ZZs2bpT3/6k6pXry4PDw/16dOn0LqEhAT169dPd999t8qVK6fatWtrwIAB+u2339ze5m+//abRo0erQ4cOqlChwlWD8ddff63+/furSZMm8vLyUs2aNd3eHkoXghAA21q+fLkmTpxY6Lzz589r7Nixt7gj991uQej111/X6tWr1bhxY5UpU+aKdaNGjdKaNWv0+OOP691331XPnj21cOFC3XPPPUpJSXFrm8nJyXr99df166+/Kjw8/Kq18+fP1/z58+Xv76/Q0FC3toPS6co/pQBuqszMTJUvX76k2ygx586dU7ly5QpMz8nJUV5enry9vUugq//j4+NTotu/U61du9b6NMjPz++KdW+//bbatGkjT8//+/94586d1b59e02fPl2vvvpqkbfZokULnTx5UoGBgfr000/1pz/96Yq1/+///T998MEHKlu2rB5++GHt2LGjyNtB6cQnQrCVCRMmyMPDQ3v27NGTTz4pp9OpSpUq6fnnn9eFCxdcav/5z3+qRYsW8vX1VWBgoHr27KnDhw+71Pzv//6v9TWAw+FQWFiYhg8frvPnz7vU9enTR35+ftq/f78eeughVahQQb1795Yk7d27V927d1dISIh8fHxUrVo19ezZU+np6dbyOTk5euWVV1SnTh05HA7VrFlTL730krKysly2U7NmTT388MP67rvv1LJlS/n4+Kh27dr6+9//fl3765///KdatmypcuXKqWLFimrXrp2+/vprl5qZM2eqcePGcjgcCg0NVVxcnNLS0lxqHnzwQTVp0kRJSUlq166dypUrp5deekkHDx6Uh4eH3nzzTU2dOtUa365duyRJe/bs0RNPPKHAwED5+Pjovvvu0xdffHHNvotyXPr06aMZM2ZI+v18oPxHvsLOEdqyZYu6dOkip9MpPz8/dezYURs2bHCpmTt3rjw8PPT9998rPj5elStXVvny5fX444/r+PHjLrWbN29WdHS0goKC5Ovrq1q1aqlfv37XHN+l+3XZsmX65ZdfrP4v/arn2LFj6t+/v4KDg+Xj46NmzZpp3rx5Luu49Bi88847qlGjhnx9fdW+ffvrCgk1atRw2Y9X0q5dO5cQlD8tMDBQu3fvdmubFSpUUGBgYJFqQ0NDVbZsWbfWj9KNT4RgS08++aRq1qypyZMna8OGDXr33Xd1+vRpKzD89a9/1V/+8hc9+eSTGjBggI4fP6733ntP7dq105YtWxQQECBJWrRokc6dO6fBgwerUqVK2rRpk9577z0dOXJEixYtctlmTk6OoqOj1aZNG7355psqV66csrOzFR0draysLA0dOlQhISH69ddftXTpUqWlpcnf31+SNGDAAM2bN09PPPGEXnjhBW3cuFGTJ0/W7t27tXjxYpft7Nu3T0888YT69++v2NhYffzxx+rTp49atGihxo0bF3kfTZw4URMmTFDr1q01adIkeXt7a+PGjVq9erU6deok6fdgOXHiREVFRWnw4MFKTk7WrFmz9MMPP+j77793ecM5efKkunTpop49e+q//uu/FBwcbM2bM2eOLly4oEGDBsnhcCgwMFA7d+7UAw88oLvuukujR49W+fLltXDhQnXt2lX//ve/9fjjj1+x96Icl//+7//W0aNHtWrVKv3jH/+45v7YuXOn2rZtK6fTqZEjR6ps2bJ6//339eCDD2rt2rWKiIhwqR86dKgqVqyo8ePH6+DBg5o6daqGDBmiBQsWSPo9pHTq1EmVK1fW6NGjFRAQoIMHD+qzzz4r8jF6+eWXlZ6eriNHjuidd96RJOtTmPPnz+vBBx/Uvn37NGTIENWqVUuLFi1Snz59lJaWpueff95lXX//+9915swZxcXF6cKFC5o2bZr+8Ic/aPv27S7H6mY6e/aszp49q6CgoFuyPUCSZAAbGT9+vJFkHn30UZfpf/7zn40k89NPP5mDBw8aLy8v89e//tWlZvv27aZMmTIu08+dO1dgG5MnTzYeHh7ml19+sabFxsYaSWb06NEutVu2bDGSzKJFi67Y89atW40kM2DAAJfpI0aMMJLM6tWrrWk1atQwksy6deusaceOHTMOh8O88MILV9zG5fbu3Ws8PT3N448/bnJzc13m5eXlWev19vY2nTp1cqmZPn26kWQ+/vhja1r79u2NJDN79myXdR04cMBIMk6n0xw7dsxlXseOHU14eLi5cOGCy7Zbt25t6tWrZ0379ttvjSTz7bffWtOKelzi4uLMlX4NSjLjx4+3nnft2tV4e3ub/fv3W9OOHj1qKlSoYNq1a2dNmzNnjpFkoqKirH1ljDHDhw83Xl5eJi0tzRhjzOLFi40k88MPPxS6/aKKiYkxNWrUKDB96tSpRpL55z//aU3Lzs42kZGRxs/Pz2RkZBhj/u8Y+Pr6miNHjli1GzduNJLM8OHDr7u38uXLm9jY2CLXv/LKK0aSSUhIuO5tLlq0qMDPw5Vcad/BXvhqDLYUFxfn8nzo0KGSfj959rPPPlNeXp6efPJJnThxwnqEhISoXr16+vbbb63lfH19rX9nZmbqxIkTat26tYwx2rJlS4HtDh482OV5/ic+K1eu1Llz5wrtdfny5ZKk+Ph4l+kvvPCCJGnZsmUu0xs1aqS2bdtazytXrqz69evr559/LnT9hVmyZIny8vI0bty4Al9f5H/t8c033yg7O1vDhg1zqRk4cKCcTmeBvhwOh/r27Vvo9rp3767KlStbz0+dOqXVq1frySef1JkzZ6xjcPLkSUVHR2vv3r369ddfr9i/u8flWnJzc/X111+ra9euql27tjW9atWqeuqpp/Tdd98pIyPDZZlBgwa5fEXUtm1b5ebm6pdffpEk61PFpUuX6uLFi273dC3Lly9XSEiIevXqZU0rW7asnnvuOZ09e1Zr1651qe/atavuuusu63nLli0VERFh/fzdbOvWrdPEiRP15JNP6g9/+MMt2SYgcY4QbKpevXouz+vUqSNPT08dPHhQe/fulTFG9erVU+XKlV0eu3fv1rFjx6zlDh06pD59+igwMFB+fn6qXLmy2rdvL0ku5/hIUpkyZVStWjWXabVq1VJ8fLw+/PBDBQUFKTo6WjNmzHBZ9pdffpGnp6fq1q3rsmxISIgCAgKsN9Z81atXLzDeihUr6vTp00XeP/v375enp6caNWp0xZr87davX99lure3t2rXrl2gr7vuuuuKJ0DXqlXL5fm+fftkjNFf/vKXAsdg/PjxkuRyHC7nznEpiuPHj+vcuXMFxipJDRs2VF5eXoHzxy4/DhUrVpQk6zi0b99e3bt318SJExUUFKTHHntMc+bMKXDe1/X65ZdfVK9evQJBtmHDhtb8S13+mpCku+++WwcPHiyWfq5mz549evzxx9WkSRN9+OGHN317wKU4RwiQXP7nnpeXJw8PD3311Vfy8vIqUJt/DkZubq7++Mc/6tSpUxo1apQaNGig8uXL69dff1WfPn2Ul5fnspzD4SjwpiRJb731lvr06aPPP/9cX3/9tZ577jnr3KVLg1NRTkCVVGjPkmSMKdLyN8uln9Jca17+vhsxYoSio6MLXebyYJjP3eNys1zrOHh4eOjTTz/Vhg0b9OWXX2rlypXq16+f3nrrLW3YsOGqV1yVJocPH1anTp3k7++v5cuXq0KFCiXdEmyGIARb2rt3r8unEPv27VNeXp5q1qwpLy8vGWNUq1Yt3X333Vdcx/bt2/Wf//xH8+bN0zPPPGNNX7Vqldv9hIeHKzw8XGPHjtX69ev1wAMPaPbs2Xr11VdVo0YN5eXlae/evdb/5iUpNTVVaWlpqlGjhtvbu5Y6deooLy9Pu3btUvPmzQutyd9ucnKyy9dF2dnZOnDggKKioq57+/nrK1u2rNvrcee4FDVcVq5cWeXKlVNycnKBeXv27JGnp6fCwsLc6jNfq1at1KpVK/31r3/V/Pnz1bt3b33yyScaMGBAkZa/0hhq1Kihbdu2KS8vzyWA79mzx5p/qb179xZYx3/+85+besPBkydPqlOnTsrKylJCQoKqVq1607YFXAlfjcGW8i+bzvfee+9Jkrp06aJu3brJy8tLEydOLPApijFGJ0+elPR//+O/tMYYo2nTphW5j4yMDOXk5LhMCw8Pl6enp/UVyUMPPSRJBW6a9/bbb0uSYmJiiry9ouratas8PT01adKkAp+g5I83KipK3t7eevfdd132wUcffaT09PQb6qtKlSp68MEH9f777xd6p+HLL0O/lDvHJf8+Tpdf7l/YOjt16qTPP//c5aui1NRUzZ8/X23atJHT6bzqOi53+vTpAj9f+aHTna/HypcvX+jXfQ899JBSUlKsq9Sk369cfO+99+Tn52d9VZhvyZIlLuddbdq0SRs3blSXLl2K3Is7MjMz9dBDD+nXX3/V8uXLC/1qDrgV+EQItnTgwAE9+uij6ty5sxITE/XPf/5TTz31lJo1ayZJevXVVzVmzBgdPHhQXbt2VYUKFXTgwAEtXrxYgwYN0ogRI9SgQQPVqVNHI0aM0K+//iqn06l///vfbp2Ls3r1ag0ZMkR/+tOfdPfddysnJ0f/+Mc/5OXlpe7du0uSmjVrptjYWP3tb39TWlqa2rdvr02bNmnevHnq2rWrOnToUOz7p27dunr55Zf1yiuvqG3bturWrZscDod++OEHhYaGavLkyapcubLGjBmjiRMnqnPnznr00UeVnJysmTNn6v7779d//dd/3VAPM2bMUJs2bRQeHq6BAweqdu3aSk1NVWJioo4cOaKffvqp0OXcOS4tWrSQJD333HOKjo6Wl5eXevbsWeh6X331Va1atUpt2rTRn//8Z5UpU0bvv/++srKyNGXKFLfHN2/ePM2cOVOPP/646tSpozNnzuiDDz6Q0+m0wm9RtGjRQgsWLFB8fLzuv/9++fn56ZFHHtGgQYP0/vvvq0+fPkpKSlLNmjX16aef6vvvv9fUqVMLfAVVt25dtWnTRoMHD1ZWVpamTp2qSpUqaeTIkW6N68svv7SOzcWLF7Vt2zbr5oiPPvqomjZtKknq3bu3Nm3apH79+mn37t0u9w7y8/NT165d3dpu/jZ27twpSfrHP/6h7777TpJc7hC+bds2615U+/btU3p6urVss2bN9Mgjj7i1XZQCt/5CNaDk5F8+v2vXLvPEE0+YChUqmIoVK5ohQ4aY8+fPu9T++9//Nm3atDHly5c35cuXNw0aNDBxcXEmOTnZqtm1a5eJiooyfn5+JigoyAwcOND89NNPRpKZM2eOVRcbG2vKly9foJ+ff/7Z9OvXz9SpU8f4+PiYwMBA06FDB/PNN9+41F28eNFMnDjR1KpVy5QtW9aEhYWZMWPGuFxabszvl8/HxMQU2E779u1N+/bt3d5fH3/8sbnnnnuMw+EwFStWNO3btzerVq1yqZk+fbpp0KCBKVu2rAkODjaDBw82p0+fLrD9xo0bF1h//qXbb7zxRqHb379/v3nmmWdMSEiIKVu2rLnrrrvMww8/bD799FOrprDL54t6XHJycszQoUNN5cqVjYeHh8ul9Lrs8nljjPnxxx9NdHS08fPzM+XKlTMdOnQw69evd6nJv3z+8sviL+/zxx9/NL169TLVq1c3DofDVKlSxTz88MNm8+bNhe6LKzl79qx56qmnTEBAgJHkcjl4amqq6du3rwkKCjLe3t4mPDzcZfzGuB6Dt956y4SFhRmHw2Hatm1rfvrpJ7d6Meb/bhVR2OPSbeff6qGwx/Vc0n6ldV3+Npd/fAp7uHOpP0oPD2NK+AxK4BbKvwHg8ePHuWkboN/vLF2rVi298cYbGjFiREm3A9xynCMEAABsi3OEAJu51l/29vX1tW70iJJz6tQpZWdnX3G+l5eXy00ob6bs7GydOnXqqjX+/v5XvUXC9UhPTy/wd/suFxISUqzbhP0QhACbudYlyrGxsZo7d+6taQZX1K1btwJ3f75UjRo1bsnNDiVp/fr11zwpf86cOerTp0+xbvf5558v8EdiL8fZHbhRnCME2Mw333xz1fmhoaFXvaM0bo2kpKSrXoHo6+urBx544Jb0cvr0aSUlJV21pnHjxsV+H6Bdu3bp6NGjV625kftVARJBCAAA2BgnSwMAANviHKGryMvL09GjR1WhQoUi34ofAACULGOMzpw5o9DQ0EL/xuOlCEJXcfTo0ev++0EAAKBkHT582OWPVxeGIHQV+begP3z4sNt/RwgAAJSMjIwMhYWFFfhTMoUhCF1F/tdhTqeTIAQAwB2mKKe1cLI0AACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLbeC0KxZs9S0aVPrTsuRkZH66quvrPkXLlxQXFycKlWqJD8/P3Xv3l2pqaku6zh06JBiYmJUrlw5ValSRS+++KJycnJcatasWaN7771XDodDdevW1dy5cwv0MmPGDNWsWVM+Pj6KiIjQpk2bXOYXpRcAAGBvbgWhatWq6bXXXlNSUpI2b96sP/zhD3rssce0c+dOSdLw4cP15ZdfatGiRVq7dq2OHj2qbt26Wcvn5uYqJiZG2dnZWr9+vebNm6e5c+dq3LhxVs2BAwcUExOjDh06aOvWrRo2bJgGDBiglStXWjULFixQfHy8xo8frx9//FHNmjVTdHS0jh07ZtVcqxcAAACZG1SxYkXz4YcfmrS0NFO2bFmzaNEia97u3buNJJOYmGiMMWb58uXG09PTpKSkWDWzZs0yTqfTZGVlGWOMGTlypGncuLHLNnr06GGio6Ot5y1btjRxcXHW89zcXBMaGmomT55sjDFF6qUo0tPTjSSTnp5e5GUAAEDJcuf9+7rPEcrNzdUnn3yizMxMRUZGKikpSRcvXlRUVJRV06BBA1WvXl2JiYmSpMTERIWHhys4ONiqiY6OVkZGhvWpUmJioss68mvy15Gdna2kpCSXGk9PT0VFRVk1RemlMFlZWcrIyHB5AACA0svtILR9+3b5+fnJ4XDo2Wef1eLFi9WoUSOlpKTI29tbAQEBLvXBwcFKSUmRJKWkpLiEoPz5+fOuVpORkaHz58/rxIkTys3NLbTm0nVcq5fCTJ48Wf7+/tYjLCysaDsFAADckcq4u0D9+vW1detWpaen69NPP1VsbKzWrl17M3q75caMGaP4+HjreUZGBmEIKM2+nVzSHbivw5iS7gAoVdwOQt7e3qpbt64kqUWLFvrhhx80bdo09ejRQ9nZ2UpLS3P5JCY1NVUhISGSpJCQkAJXd+VfyXVpzeVXd6WmpsrpdMrX11deXl7y8vIqtObSdVyrl8I4HA45HA439gaAO1nizydLugW3RXYo6Q6A0uWG7yOUl5enrKwstWjRQmXLllVCQoI1Lzk5WYcOHVJkZKQkKTIyUtu3b3e5umvVqlVyOp1q1KiRVXPpOvJr8tfh7e2tFi1auNTk5eUpISHBqilKLwAAAG59IjRmzBh16dJF1atX15kzZzR//nytWbNGK1eulL+/v/r376/4+HgFBgbK6XRq6NChioyMVKtWrSRJnTp1UqNGjfT0009rypQpSklJ0dixYxUXF2d9EvPss89q+vTpGjlypPr166fVq1dr4cKFWrZsmdVHfHy8YmNjdd9996lly5aaOnWqMjMz1bdvX0kqUi8AAABuBaFjx47pmWee0W+//SZ/f381bdpUK1eu1B//+EdJ0jvvvCNPT091795dWVlZio6O1syZM63lvby8tHTpUg0ePFiRkZEqX768YmNjNWnSJKumVq1aWrZsmYYPH65p06apWrVq+vDDDxUdHW3V9OjRQ8ePH9e4ceOUkpKi5s2ba8WKFS4nUF+rFwAAAA9jjCnpJm5XGRkZ8vf3V3p6upxOZ0m3A6CYJX40oqRbcFtk/zdLugXgtufO+zd/awwAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANiWW0Fo8uTJuv/++1WhQgVVqVJFXbt2VXJyskvNgw8+KA8PD5fHs88+61Jz6NAhxcTEqFy5cqpSpYpefPFF5eTkuNSsWbNG9957rxwOh+rWrau5c+cW6GfGjBmqWbOmfHx8FBERoU2bNrnMv3DhguLi4lSpUiX5+fmpe/fuSk1NdWfIAACgFHMrCK1du1ZxcXHasGGDVq1apYsXL6pTp07KzMx0qRs4cKB+++036zFlyhRrXm5urmJiYpSdna3169dr3rx5mjt3rsaNG2fVHDhwQDExMerQoYO2bt2qYcOGacCAAVq5cqVVs2DBAsXHx2v8+PH68ccf1axZM0VHR+vYsWNWzfDhw/Xll19q0aJFWrt2rY4ePapu3bq5vZMAAEDp5GGMMde78PHjx1WlShWtXbtW7dq1k/T7J0LNmzfX1KlTC13mq6++0sMPP6yjR48qODhYkjR79myNGjVKx48fl7e3t0aNGqVly5Zpx44d1nI9e/ZUWlqaVqxYIUmKiIjQ/fffr+nTp0uS8vLyFBYWpqFDh2r06NFKT09X5cqVNX/+fD3xxBOSpD179qhhw4ZKTExUq1atrjm+jIwM+fv7Kz09XU6n83p3E4DbVOJHI0q6BbdF9n+zpFsAbnvuvH/f0DlC6enpkqTAwECX6f/6178UFBSkJk2aaMyYMTp37pw1LzExUeHh4VYIkqTo6GhlZGRo586dVk1UVJTLOqOjo5WYmChJys7OVlJSkkuNp6enoqKirJqkpCRdvHjRpaZBgwaqXr26VXO5rKwsZWRkuDwAAEDpVeZ6F8zLy9OwYcP0wAMPqEmTJtb0p556SjVq1FBoaKi2bdumUaNGKTk5WZ999pkkKSUlxSUESbKep6SkXLUmIyND58+f1+nTp5Wbm1tozZ49e6x1eHt7KyAgoEBN/nYuN3nyZE2cONHNPQEAAO5U1x2E4uLitGPHDn333Xcu0wcNGmT9Ozw8XFWrVlXHjh21f/9+1alT5/o7vQXGjBmj+Ph463lGRobCwsJKsCMAAHAzXddXY0OGDNHSpUv17bffqlq1aletjYiIkCTt27dPkhQSElLgyq385yEhIVetcTqd8vX1VVBQkLy8vAqtuXQd2dnZSktLu2LN5RwOh5xOp8sDAACUXm4FIWOMhgwZosWLF2v16tWqVavWNZfZunWrJKlq1aqSpMjISG3fvt3l6q5Vq1bJ6XSqUaNGVk1CQoLLelatWqXIyEhJkre3t1q0aOFSk5eXp4SEBKumRYsWKlu2rEtNcnKyDh06ZNUAAAB7c+ursbi4OM2fP1+ff/65KlSoYJ1r4+/vL19fX+3fv1/z58/XQw89pEqVKmnbtm0aPny42rVrp6ZNm0qSOnXqpEaNGunpp5/WlClTlJKSorFjxyouLk4Oh0OS9Oyzz2r69OkaOXKk+vXrp9WrV2vhwoVatmyZ1Ut8fLxiY2N13333qWXLlpo6daoyMzPVt29fq6f+/fsrPj5egYGBcjqdGjp0qCIjI4t0xRgAACj93ApCs2bNkvT7JfKXmjNnjvr06SNvb2998803VigJCwtT9+7dNXbsWKvWy8tLS5cu1eDBgxUZGany5csrNjZWkyZNsmpq1aqlZcuWafjw4Zo2bZqqVaumDz/8UNHR0VZNjx49dPz4cY0bN04pKSlq3ry5VqxY4XIC9TvvvCNPT091795dWVlZio6O1syZM93aQQAAoPS6ofsIlXbcRwgo3biPEFA63bL7CAEAANzJCEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23ApCkydP1v33368KFSqoSpUq6tq1q5KTk11qLly4oLi4OFWqVEl+fn7q3r27UlNTXWoOHTqkmJgYlStXTlWqVNGLL76onJwcl5o1a9bo3nvvlcPhUN26dTV37twC/cyYMUM1a9aUj4+PIiIitGnTJrd7AQAA9uVWEFq7dq3i4uK0YcMGrVq1ShcvXlSnTp2UmZlp1QwfPlxffvmlFi1apLVr1+ro0aPq1q2bNT83N1cxMTHKzs7W+vXrNW/ePM2dO1fjxo2zag4cOKCYmBh16NBBW7du1bBhwzRgwACtXLnSqlmwYIHi4+M1fvx4/fjjj2rWrJmio6N17NixIvcCAADszcMYY6534ePHj6tKlSpau3at2rVrp/T0dFWuXFnz58/XE088IUnas2ePGjZsqMTERLVq1UpfffWVHn74YR09elTBwcGSpNmzZ2vUqFE6fvy4vL29NWrUKC1btkw7duywttWzZ0+lpaVpxYoVkqSIiAjdf//9mj59uiQpLy9PYWFhGjp0qEaPHl2kXq4lIyND/v7+Sk9Pl9PpvN7dBOA2lfjRiJJuwW2R/d8s6RaA25477983dI5Qenq6JCkwMFCSlJSUpIsXLyoqKsqqadCggapXr67ExERJUmJiosLDw60QJEnR0dHKyMjQzp07rZpL15Ffk7+O7OxsJSUludR4enoqKirKqilKL5fLyspSRkaGywMAAJRe1x2E8vLyNGzYMD3wwANq0qSJJCklJUXe3t4KCAhwqQ0ODlZKSopVc2kIyp+fP+9qNRkZGTp//rxOnDih3NzcQmsuXce1ernc5MmT5e/vbz3CwsKKuDcAAMCd6LqDUFxcnHbs2KFPPvmkOPspUWPGjFF6err1OHz4cEm3BAAAbqIy17PQkCFDtHTpUq1bt07VqlWzpoeEhCg7O1tpaWkun8SkpqYqJCTEqrn86q78K7kurbn86q7U1FQ5nU75+vrKy8tLXl5ehdZcuo5r9XI5h8Mhh8Phxp4AAAB3Mrc+ETLGaMiQIVq8eLFWr16tWrVqucxv0aKFypYtq4SEBGtacnKyDh06pMjISElSZGSktm/f7nJ116pVq+R0OtWoUSOr5tJ15Nfkr8Pb21stWrRwqcnLy1NCQoJVU5ReAACAvbn1iVBcXJzmz5+vzz//XBUqVLDOtfH395evr6/8/f3Vv39/xcfHKzAwUE6nU0OHDlVkZKR1lVanTp3UqFEjPf3005oyZYpSUlI0duxYxcXFWZ/GPPvss5o+fbpGjhypfv36afXq1Vq4cKGWLVtm9RIfH6/Y2Fjdd999atmypaZOnarMzEz17dvX6ulavQAAAHtzKwjNmjVLkvTggw+6TJ8zZ4769OkjSXrnnXfk6emp7t27KysrS9HR0Zo5c6ZV6+XlpaVLl2rw4MGKjIxU+fLlFRsbq0mTJlk1tWrV0rJlyzR8+HBNmzZN1apV04cffqjo6GirpkePHjp+/LjGjRunlJQUNW/eXCtWrHA5gfpavQAAAHu7ofsIlXbcRwgo3biPEFA63bL7CAEAANzJCEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23A5C69at0yOPPKLQ0FB5eHhoyZIlLvP79OkjDw8Pl0fnzp1dak6dOqXevXvL6XQqICBA/fv319mzZ11qtm3bprZt28rHx0dhYWGaMmVKgV4WLVqkBg0ayMfHR+Hh4Vq+fLnLfGOMxo0bp6pVq8rX11dRUVHau3evu0MGAACllNtBKDMzU82aNdOMGTOuWNO5c2f99ttv1uN//ud/XOb37t1bO3fu1KpVq7R06VKtW7dOgwYNsuZnZGSoU6dOqlGjhpKSkvTGG29owoQJ+tvf/mbVrF+/Xr169VL//v21ZcsWde3aVV27dtWOHTusmilTpujdd9/V7NmztXHjRpUvX17R0dG6cOGCu8MGAAClkIcxxlz3wh4eWrx4sbp27WpN69Onj9LS0gp8UpRv9+7datSokX744Qfdd999kqQVK1booYce0pEjRxQaGqpZs2bp5ZdfVkpKiry9vSVJo0eP1pIlS7Rnzx5JUo8ePZSZmamlS5da627VqpWaN2+u2bNnyxij0NBQvfDCCxoxYoQkKT09XcHBwZo7d6569uxZoLesrCxlZWVZzzMyMhQWFqb09HQ5nc7r3U0AblOJH40o6RbcFtn/zZJuAbjtZWRkyN/fv0jv3zflHKE1a9aoSpUqql+/vgYPHqyTJ09a8xITExUQEGCFIEmKioqSp6enNm7caNW0a9fOCkGSFB0dreTkZJ0+fdqqiYqKctludHS0EhMTJUkHDhxQSkqKS42/v78iIiKsmstNnjxZ/v7+1iMsLOwG9wQAALidFXsQ6ty5s/7+978rISFBr7/+utauXasuXbooNzdXkpSSkqIqVaq4LFOmTBkFBgYqJSXFqgkODnapyX9+rZpL51+6XGE1lxszZozS09Otx+HDh90ePwAAuHOUKe4VXvqVU3h4uJo2bao6depozZo16tixY3Fvrlg5HA45HI6SbgMAANwiN/3y+dq1aysoKEj79u2TJIWEhOjYsWMuNTk5OTp16pRCQkKsmtTUVJea/OfXqrl0/qXLFVYDAADs7aYHoSNHjujkyZOqWrWqJCkyMlJpaWlKSkqyalavXq28vDxFRERYNevWrdPFixetmlWrVql+/fqqWLGiVZOQkOCyrVWrVikyMlKSVKtWLYWEhLjUZGRkaOPGjVYNAACwN7eD0NmzZ7V161Zt3bpV0u8nJW/dulWHDh3S2bNn9eKLL2rDhg06ePCgEhIS9Nhjj6lu3bqKjo6WJDVs2FCdO3fWwIEDtWnTJn3//fcaMmSIevbsqdDQUEnSU089JW9vb/Xv3187d+7UggULNG3aNMXHx1t9PP/881qxYoXeeust7dmzRxMmTNDmzZs1ZMgQSb9f0TZs2DC9+uqr+uKLL7R9+3Y988wzCg0NdbnKDQAA2Jfb5wht3rxZHTp0sJ7nh5PY2FjNmjVL27Zt07x585SWlqbQ0FB16tRJr7zyisu5N//61780ZMgQdezYUZ6enurevbveffdda76/v7++/vprxcXFqUWLFgoKCtK4ceNc7jXUunVrzZ8/X2PHjtVLL72kevXqacmSJWrSpIlVM3LkSGVmZmrQoEFKS0tTmzZttGLFCvn4+Lg7bAAAUArd0H2ESjt37kMA4M7DfYSA0qnE7yMEAABwJyAIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA23I7CK1bt06PPPKIQkND5eHhoSVLlrjMN8Zo3Lhxqlq1qnx9fRUVFaW9e/e61Jw6dUq9e/eW0+lUQECA+vfvr7Nnz7rUbNu2TW3btpWPj4/CwsI0ZcqUAr0sWrRIDRo0kI+Pj8LDw7V8+XK3ewEAAPbldhDKzMxUs2bNNGPGjELnT5kyRe+++65mz56tjRs3qnz58oqOjtaFCxesmt69e2vnzp1atWqVli5dqnXr1mnQoEHW/IyMDHXq1Ek1atRQUlKS3njjDU2YMEF/+9vfrJr169erV69e6t+/v7Zs2aKuXbuqa9eu2rFjh1u9AAAA+/IwxpjrXtjDQ4sXL1bXrl0l/f4JTGhoqF544QWNGDFCkpSenq7g4GDNnTtXPXv21O7du9WoUSP98MMPuu+++yRJK1as0EMPPaQjR44oNDRUs2bN0ssvv6yUlBR5e3tLkkaPHq0lS5Zoz549kqQePXooMzNTS5cutfpp1aqVmjdvrtmzZxepl8tlZWUpKyvLep6RkaGwsDClp6fL6XRe724CcJtK/GhESbfgtsj+b5Z0C8BtLyMjQ/7+/kV6/y7Wc4QOHDiglJQURUVFWdP8/f0VERGhxMRESVJiYqICAgKsECRJUVFR8vT01MaNG62adu3aWSFIkqKjo5WcnKzTp09bNZduJ78mfztF6eVykydPlr+/v/UICwu7kd0BAABuc8UahFJSUiRJwcHBLtODg4OteSkpKapSpYrL/DJlyigwMNClprB1XLqNK9VcOv9avVxuzJgxSk9Ptx6HDx8uwqgBAMCdqkxJN3A7cTgccjgcJd0GAAC4RYr1E6GQkBBJUmpqqsv01NRUa15ISIiOHTvmMj8nJ0enTp1yqSlsHZdu40o1l86/Vi8AAMDeijUI1apVSyEhIUpISLCmZWRkaOPGjYqMjJQkRUZGKi0tTUlJSVbN6tWrlZeXp4iICKtm3bp1unjxolWzatUq1a9fXxUrVrRqLt1Ofk3+dorSCwAAsDe3g9DZs2e1detWbd26VdLvJyVv3bpVhw4dkoeHh4YNG6ZXX31VX3zxhbZv365nnnlGoaGh1pVlDRs2VOfOnTVw4EBt2rRJ33//vYYMGaKePXsqNDRUkvTUU0/J29tb/fv3186dO7VgwQJNmzZN8fHxVh/PP/+8VqxYobfeekt79uzRhAkTtHnzZg0ZMkSSitQLAACwN7fPEdq8ebM6dOhgPc8PJ7GxsZo7d65GjhypzMxMDRo0SGlpaWrTpo1WrFghHx8fa5l//etfGjJkiDp27ChPT091795d7777rjXf399fX3/9teLi4tSiRQsFBQVp3LhxLvcaat26tebPn6+xY8fqpZdeUr169bRkyRI1adLEqilKLwAAwL5u6D5CpZ079yEAcOfhPkJA6VRi9xECAAC4kxCEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRV7EJowYYI8PDxcHg0aNLDmX7hwQXFxcapUqZL8/PzUvXt3paamuqzj0KFDiomJUbly5VSlShW9+OKLysnJcalZs2aN7r33XjkcDtWtW1dz584t0MuMGTNUs2ZN+fj4KCIiQps2bSru4QIAgDvYTflEqHHjxvrtt9+sx3fffWfNGz58uL788kstWrRIa9eu1dGjR9WtWzdrfm5urmJiYpSdna3169dr3rx5mjt3rsaNG2fVHDhwQDExMerQoYO2bt2qYcOGacCAAVq5cqVVs2DBAsXHx2v8+PH68ccf1axZM0VHR+vYsWM3Y8gAAOAO5GGMMcW5wgkTJmjJkiXaunVrgXnp6emqXLmy5s+fryeeeEKStGfPHjVs2FCJiYlq1aqVvvrqKz388MM6evSogoODJUmzZ8/WqFGjdPz4cXl7e2vUqFFatmyZduzYYa27Z8+eSktL04oVKyRJERERuv/++zV9+nRJUl5ensLCwjR06FCNHj26SGPJyMiQv7+/0tPT5XQ6b2S3ALgNJX40oqRbcFtk/zdLugXgtufO+/dN+URo7969Cg0NVe3atdW7d28dOnRIkpSUlKSLFy8qKirKqm3QoIGqV6+uxMRESVJiYqLCw8OtECRJ0dHRysjI0M6dO62aS9eRX5O/juzsbCUlJbnUeHp6KioqyqopTFZWljIyMlweAACg9Cr2IBQREaG5c+dqxYoVmjVrlg4cOKC2bdvqzJkzSklJkbe3twICAlyWCQ4OVkpKiiQpJSXFJQTlz8+fd7WajIwMnT9/XidOnFBubm6hNfnrKMzkyZPl7+9vPcLCwq5rHwAAgDtDmeJeYZcuXax/N23aVBEREapRo4YWLlwoX1/f4t5csRozZozi4+Ot5xkZGYQhAABKsZt++XxAQIDuvvtu7du3TyEhIcrOzlZaWppLTWpqqkJCQiRJISEhBa4iy39+rRqn0ylfX18FBQXJy8ur0Jr8dRTG4XDI6XS6PAAAQOl104PQ2bNntX//flWtWlUtWrRQ2bJllZCQYM1PTk7WoUOHFBkZKUmKjIzU9u3bXa7uWrVqlZxOpxo1amTVXLqO/Jr8dXh7e6tFixYuNXl5eUpISLBqAAAAij0IjRgxQmvXrtXBgwe1fv16Pf744/Ly8lKvXr3k7++v/v37Kz4+Xt9++62SkpLUt29fRUZGqlWrVpKkTp06qVGjRnr66af1008/aeXKlRo7dqzi4uLkcDgkSc8++6x+/vlnjRw5Unv27NHMmTO1cOFCDR8+3OojPj5eH3zwgebNm6fdu3dr8ODByszMVN++fYt7yAAA4A5V7OcIHTlyRL169dLJkydVuXJltWnTRhs2bFDlypUlSe+88448PT3VvXt3ZWVlKTo6WjNnzrSW9/Ly0tKlSzV48GBFRkaqfPnyio2N1aRJk6yaWrVqadmyZRo+fLimTZumatWq6cMPP1R0dLRV06NHDx0/flzjxo1TSkqKmjdvrhUrVhQ4gRoAANhXsd9HqDThPkJA6cZ9hIDSqcTvIwQAAHAnIAgBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbKlPSDQAAgOLxzqr/lHQLbhv+x7tLdPt8IgQAAGzLFkFoxowZqlmzpnx8fBQREaFNmzaVdEsAAOA2UOq/GluwYIHi4+M1e/ZsRUREaOrUqYqOjlZycrKqVKlSor3xESYAoDi1OvS3km7hOrxZolsv9UHo7bff1sCBA9W3b19J0uzZs7Vs2TJ9/PHHGj16dIn2xg8sAAAlq1QHoezsbCUlJWnMmDHWNE9PT0VFRSkxMbFAfVZWlrKysqzn6enpkqSMjIyb0l/m+axrF91mbta+AEoCr8FbZ8bqfSXdgi3cz8+0yzqNMdesLdVB6MSJE8rNzVVwcLDL9ODgYO3Zs6dA/eTJkzVx4sQC08PCwm5aj3ecodNLugPA3ngNorS5iT/TZ86ckb+//1VrSnUQcteYMWMUHx9vPc/Ly9OpU6dUqVIleXh4FOu2MjIyFBYWpsOHD8vpdBbrum8HpX18UukfI+O785X2MTK+O9/NGqMxRmfOnFFoaOg1a0t1EAoKCpKXl5dSU1NdpqempiokJKRAvcPhkMPhcJkWEBBwM1uU0+kstT/gUukfn1T6x8j47nylfYyM7853M8Z4rU+C8pXqy+e9vb3VokULJSQkWNPy8vKUkJCgyMjIEuwMAADcDkr1J0KSFB8fr9jYWN13331q2bKlpk6dqszMTOsqMgAAYF+lPgj16NFDx48f17hx45SSkqLmzZtrxYoVBU6gvtUcDofGjx9f4Ku40qK0j08q/WNkfHe+0j5Gxnfnux3G6GGKcm0ZAABAKVSqzxECAAC4GoIQAACwLYIQAACwLYIQAACwLYIQAACwLYLQTfLXv/5VrVu3Vrly5Yp8d2pjjMaNG6eqVavK19dXUVFR2rt3r0vNqVOn1Lt3bzmdTgUEBKh///46e/bsTRjBtbnby8GDB+Xh4VHoY9GiRVZdYfM/+eSTWzEkF9ezrx988MECvT/77LMuNYcOHVJMTIzKlSunKlWq6MUXX1ROTs7NHEqh3B3fqVOnNHToUNWvX1++vr6qXr26nnvuOeuPE+cryeM3Y8YM1axZUz4+PoqIiNCmTZuuWr9o0SI1aNBAPj4+Cg8P1/Lly13mF+U1eSu5M74PPvhAbdu2VcWKFVWxYkVFRUUVqO/Tp0+BY9W5c+ebPYyrcmeMc+fOLdC/j4+PS82dfAwL+33i4eGhmJgYq+Z2Oobr1q3TI488otDQUHl4eGjJkiXXXGbNmjW699575XA4VLduXc2dO7dAjbuva7cZ3BTjxo0zb7/9tomPjzf+/v5FWua1114z/v7+ZsmSJeann34yjz76qKlVq5Y5f/68VdO5c2fTrFkzs2HDBvO///u/pm7duqZXr143aRRX524vOTk55rfffnN5TJw40fj5+ZkzZ85YdZLMnDlzXOou3Qe3yvXs6/bt25uBAwe69J6enm7Nz8nJMU2aNDFRUVFmy5YtZvny5SYoKMiMGTPmZg+nAHfHt337dtOtWzfzxRdfmH379pmEhARTr1490717d5e6kjp+n3zyifH29jYff/yx2blzpxk4cKAJCAgwqamphdZ///33xsvLy0yZMsXs2rXLjB071pQtW9Zs377dqinKa/JWcXd8Tz31lJkxY4bZsmWL2b17t+nTp4/x9/c3R44csWpiY2NN586dXY7VqVOnbtWQCnB3jHPmzDFOp9Ol/5SUFJeaO/kYnjx50mVsO3bsMF5eXmbOnDlWze10DJcvX25efvll89lnnxlJZvHixVet//nnn025cuVMfHy82bVrl3nvvfeMl5eXWbFihVXj7j67HgShm2zOnDlFCkJ5eXkmJCTEvPHGG9a0tLQ043A4zP/8z/8YY4zZtWuXkWR++OEHq+arr74yHh4e5tdffy323q+muHpp3ry56devn8u0oryAbrbrHV/79u3N888/f8X5y5cvN56eni6/rGfNmmWcTqfJysoqlt6LoriO38KFC423t7e5ePGiNa2kjl/Lli1NXFyc9Tw3N9eEhoaayZMnF1r/5JNPmpiYGJdpERER5r//+7+NMUV7Td5K7o7vcjk5OaZChQpm3rx51rTY2Fjz2GOPFXer183dMV7r92tpO4bvvPOOqVChgjl79qw17XY7hvmK8ntg5MiRpnHjxi7TevToYaKjo63nN7rPioKvxm4TBw4cUEpKiqKioqxp/v7+ioiIUGJioiQpMTFRAQEBuu+++6yaqKgoeXp6auPGjbe03+LoJSkpSVu3blX//v0LzIuLi1NQUJBatmypjz/+WOYW3/fzRsb3r3/9S0FBQWrSpInGjBmjc+fOuaw3PDzc5c7m0dHRysjI0M6dO4t/IFdQXD9L6enpcjqdKlPG9Sb1t/r4ZWdnKykpyeX14+npqaioKOv1c7nExESXeun3Y5FfX5TX5K1yPeO73Llz53Tx4kUFBga6TF+zZo2qVKmi+vXra/DgwTp58mSx9l5U1zvGs2fPqkaNGgoLC9Njjz3m8joqbcfwo48+Us+ePVW+fHmX6bfLMXTXtV6DxbHPiqLU/4mNO0VKSookFfjTH8HBwda8lJQUValSxWV+mTJlFBgYaNXcKsXRy0cffaSGDRuqdevWLtMnTZqkP/zhDypXrpy+/vpr/fnPf9bZs2f13HPPFVv/13K943vqqadUo0YNhYaGatu2bRo1apSSk5P12WefWest7Bjnz7tViuP4nThxQq+88ooGDRrkMr0kjt+JEyeUm5tb6L7ds2dPoctc6Vhc+nrLn3almlvlesZ3uVGjRik0NNTlTaVz587q1q2batWqpf379+ull15Sly5dlJiYKC8vr2Idw7Vczxjr16+vjz/+WE2bNlV6errefPNNtW7dWjt37lS1atVK1THctGmTduzYoY8++shl+u10DN11pddgRkaGzp8/r9OnT9/wz31REITcMHr0aL3++utXrdm9e7caNGhwizoqfkUd4406f/685s+fr7/85S8F5l067Z577lFmZqbeeOONYnkjvdnjuzQUhIeHq2rVqurYsaP279+vOnXqXPd6i+pWHb+MjAzFxMSoUaNGmjBhgsu8m3n8cH1ee+01ffLJJ1qzZo3LycQ9e/a0/h0eHq6mTZuqTp06WrNmjTp27FgSrbolMjJSkZGR1vPWrVurYcOGev/99/XKK6+UYGfF76OPPlJ4eLhatmzpMv1OP4a3A4KQG1544QX16dPnqjW1a9e+rnWHhIRIklJTU1W1alVrempqqpo3b27VHDt2zGW5nJwcnTp1ylr+RhV1jDfay6effqpz587pmWeeuWZtRESEXnnlFWVlZd3wH+a7VePLFxERIUnat2+f6tSpo5CQkAJXPKSmpkpSsRzDWzG+M2fOqHPnzqpQoYIWL16ssmXLXrW+OI/flQQFBcnLy8val/lSU1OvOJ6QkJCr1hflNXmrXM/48r355pt67bXX9M0336hp06ZXra1du7aCgoK0b9++W/4meiNjzFe2bFndc8892rdvn6TScwwzMzP1ySefaNKkSdfcTkkeQ3dd6TXodDrl6+srLy+vG/6ZKJJiO9sIhXL3ZOk333zTmpaenl7oydKbN2+2alauXFmiJ0tfby/t27cvcLXRlbz66qumYsWK193r9Siuff3dd98ZSeann34yxvzfydKXXvHw/vvvG6fTaS5cuFB8A7iG6x1fenq6adWqlWnfvr3JzMws0rZu1fFr2bKlGTJkiPU8NzfX3HXXXVc9Wfrhhx92mRYZGVngZOmrvSZvJXfHZ4wxr7/+unE6nSYxMbFI2zh8+LDx8PAwn3/++Q33ez2uZ4yXysnJMfXr1zfDhw83xpSOY2jM7+8jDofDnDhx4prbKOljmE9FPFm6SZMmLtN69epV4GTpG/mZKFKvxbYmuPjll1/Mli1brMvDt2zZYrZs2eJymXj9+vXNZ599Zj1/7bXXTEBAgPn888/Ntm3bzGOPPVbo5fP33HOP2bhxo/nuu+9MvXr1SvTy+av1cuTIEVO/fn2zceNGl+X27t1rPDw8zFdffVVgnV988YX54IMPzPbt283evXvNzJkzTbly5cy4ceNu+ngu5+749u3bZyZNmmQ2b95sDhw4YD7//HNTu3Zt065dO2uZ/MvnO3XqZLZu3WpWrFhhKleuXGKXz7szvvT0dBMREWHCw8PNvn37XC7XzcnJMcaU7PH75JNPjMPhMHPnzjW7du0ygwYNMgEBAdYVek8//bQZPXq0Vf/999+bMmXKmDfffNPs3r3bjB8/vtDL56/1mrxV3B3fa6+9Zry9vc2nn37qcqzyfwedOXPGjBgxwiQmJpoDBw6Yb775xtx7772mXr16tzSU38gYJ06caFauXGn2799vkpKSTM+ePY2Pj4/ZuXOnVXMnH8N8bdq0MT169Cgw/XY7hmfOnLHe6ySZt99+22zZssX88ssvxhhjRo8ebZ5++mmrPv/y+RdffNHs3r3bzJgxo9DL56+2z4oDQegmiY2NNZIKPL799lurRv///Vby5eXlmb/85S8mODjYOBwO07FjR5OcnOyy3pMnT5pevXoZPz8/43Q6Td++fV3C1a10rV4OHDhQYMzGGDNmzBgTFhZmcnNzC6zzq6++Ms2bNzd+fn6mfPnyplmzZmb27NmF1t5s7o7v0KFDpl27diYwMNA4HA5Tt25d8+KLL7rcR8gYYw4ePGi6dOlifH19TVBQkHnhhRdcLj+/Vdwd37ffflvoz7Qkc+DAAWNMyR+/9957z1SvXt14e3ubli1bmg0bNljz2rdvb2JjY13qFy5caO6++27j7e1tGjdubJYtW+YyvyivyVvJnfHVqFGj0GM1fvx4Y4wx586dM506dTKVK1c2ZcuWNTVq1DADBw4s1jeY6+HOGIcNG2bVBgcHm4ceesj8+OOPLuu7k4+hMcbs2bPHSDJff/11gXXdbsfwSr8j8scUGxtr2rdvX2CZ5s2bG29vb1O7dm2X98R8V9tnxcHDmFt8XTIAAMBtgvsIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2/r/ALhu7HgF5oltAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARRpJREFUeJzt3Xl4Tnf+//FXErJY7kSERCqIpZYKWq2IWmpkhKbTKqaobxv71ISWVC2t2tq5tGhLa+t0ETNT36JT2lqiSvFtBZVSu0Epqok1CUEiyef3R38545YgNyHkPB/XdV+X+5z3Oef9OSd37pf7PufEzRhjBAAAYEPuxd0AAABAcSEIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAbirrVmzRm5ublqzZk2RrtfNzU3jxo0r0nUCuPMQhADY1rJly+76sDNv3jxNnTq1uNuwzJo1S3/+859VrVo1ubm5qVevXgXWrVq1Sn369NG9996rMmXKqGbNmurXr59+++03l7f522+/aeTIkWrbtq3Kly9/1WB8/vx5zZgxQ+3bt1eVKlVUvnx53X///Zo1a5ZycnJc3i5KBoIQANtatmyZxo8fX+C8CxcuaPTo0be5I9fdaUHozTff1OrVq3XfffepVKlSV60bMWKE1qxZoyeffFLvvvuuunfvrgULFuj+++9XcnKyS9vcu3ev3nzzTf36668KCwu7at3PP/+swYMHyxijuLg4TZkyRaGhofrrX/+qPn36uLRNlBxX/ykFcEtlZGSobNmyxd1GsTl//rzKlCmTb3p2drZyc3Pl6elZDF39l7e3d7Fu/261du1a69OgcuXKXbXu7bffVsuWLeXu/t//j3fo0EFt2rTR9OnT9frrrxd6m02bNtWpU6fk7++vzz77TH/+858LrAsKCtL27dt13333WdP+8pe/qE+fPpozZ45effVV1a5du9DbRcnAJ0KwlXHjxsnNzU179uzRU089JYfDoYoVK+qFF17QxYsXnWr/9a9/qWnTpvLx8ZG/v7+6d++uI0eOONX83//9n/U1gJeXl0JCQjR06FBduHDBqa5Xr14qV66cDhw4oEcffVTly5dXz549JUn79u1Tly5dFBQUJG9vb1WtWlXdu3dXWlqatXx2drZee+011apVS15eXqpRo4ZefvllZWZmOm2nRo0aeuyxx/Tdd9+pWbNm8vb2Vs2aNfWPf/zjhvbXv/71LzVr1kxlypRRhQoV1Lp1a3399ddONTNnztR9990nLy8vBQcHKzY2VqmpqU41jzzyiBo2bKikpCS1bt1aZcqU0csvv6xDhw7Jzc1NU6ZM0dSpU63x7dq1S5K0Z88ede3aVf7+/vL29taDDz6oL7/88rp9F+a49OrVSzNmzJD0+/lAeY88BZ0jtGXLFnXs2FEOh0PlypVTu3bttGHDBqea+Ph4ubm56fvvv1dcXJwqVaqksmXL6sknn9SJEyecajdv3qyoqCgFBATIx8dHoaGhLn0y8cgjj2jp0qX65ZdfrP5r1KhhzT9+/Lj69u2rwMBAeXt7q3Hjxpo7d67TOi4/Bu+8846qV68uHx8ftWnTRjt27Ch0L3mqV6/utB+vpnXr1k4hKG+av7+/du/e7dI2y5cvL39//+vWBQQEOIWgPE8++aQkubxdlAx8IgRbeuqpp1SjRg1NnDhRGzZs0LvvvqszZ85YgeFvf/ubXn31VT311FPq16+fTpw4offee0+tW7fWli1b5OfnJ0lauHChzp8/r4EDB6pixYratGmT3nvvPR09elQLFy502mZ2draioqLUsmVLTZkyRWXKlFFWVpaioqKUmZmpwYMHKygoSL/++quWLFmi1NRU+fr6SpL69eunuXPnqmvXrnrxxRe1ceNGTZw4Ubt379aiRYuctrN//3517dpVffv2VUxMjD7++GP16tVLTZs2LfBN4GrGjx+vcePGqUWLFpowYYI8PT21ceNGrV69Wu3bt5f0e7AcP368IiMjNXDgQO3du1ezZs3SDz/8oO+//16lS5e21nfq1Cl17NhR3bt31//8z/8oMDDQmjdnzhxdvHhRAwYMkJeXl/z9/bVz5049/PDDuueeezRy5EiVLVtWCxYsUKdOnfTvf//bevMqSGGOy1/+8hcdO3ZMK1eu1D//+c/r7o+dO3eqVatWcjgcGj58uEqXLq33339fjzzyiNauXavw8HCn+sGDB6tChQoaO3asDh06pKlTp2rQoEGaP3++pN9DSvv27VWpUiWNHDlSfn5+OnTokD7//PNCH6NXXnlFaWlpOnr0qN555x1Jsj6FuXDhgh555BHt379fgwYNUmhoqBYuXKhevXopNTVVL7zwgtO6/vGPf+js2bOKjY3VxYsXNW3aNP3hD3/Q9u3bnY7VrXTu3DmdO3dOAQEBt2V7efK+irvd28UdwgA2MnbsWCPJPP74407T//rXvxpJ5qeffjKHDh0yHh4e5m9/+5tTzfbt202pUqWcpp8/fz7fNiZOnGjc3NzML7/8Yk2LiYkxkszIkSOdards2WIkmYULF161561btxpJpl+/fk7Thw0bZiSZ1atXW9OqV69uJJl169ZZ044fP268vLzMiy++eNVtXGnfvn3G3d3dPPnkkyYnJ8dpXm5urrVeT09P0759e6ea6dOnG0nm448/tqa1adPGSDKzZ892WtfBgweNJONwOMzx48ed5rVr186EhYWZixcvOm27RYsWpk6dOta0b7/91kgy3377rTWtsMclNjbWXO3XoCQzduxY63mnTp2Mp6enOXDggDXt2LFjpnz58qZ169bWtDlz5hhJJjIy0tpXxhgzdOhQ4+HhYVJTU40xxixatMhIMj/88EOB2y+s6OhoU7169XzTp06daiSZf/3rX9a0rKwsExERYcqVK2fS09ONMf89Bj4+Pubo0aNW7caNG40kM3To0BvurWzZsiYmJqbQ9a+99pqRZFatWnXD21y4cGG+n4dryczMNA0aNDChoaHm0qVLN7xd3L34agy2FBsb6/R88ODBkn4/efbzzz9Xbm6unnrqKZ08edJ6BAUFqU6dOvr222+t5Xx8fKx/Z2Rk6OTJk2rRooWMMdqyZUu+7Q4cONDped4nPitWrND58+cL7HXZsmWSpLi4OKfpL774oiRp6dKlTtMbNGigVq1aWc8rVaqkunXr6ueffy5w/QVZvHixcnNzNWbMmHxfX+R97fHNN98oKytLQ4YMcarp37+/HA5Hvr68vLzUu3fvArfXpUsXVapUyXp++vRprV69Wk899ZTOnj1rHYNTp04pKipK+/bt06+//nrV/l09LteTk5Ojr7/+Wp06dVLNmjWt6VWqVNHTTz+t7777Tunp6U7LDBgwwOkrolatWiknJ0e//PKLJFmfKi5ZskSXLl1yuafrWbZsmYKCgtSjRw9rWunSpfX888/r3LlzWrt2rVN9p06ddM8991jPmzVrpvDwcOvn71Zbt26dxo8fr6eeekp/+MMfbss2JWnQoEHatWuXpk+ffs2Tu1FyEYRgS3Xq1HF6XqtWLbm7u+vQoUPat2+fjDGqU6eOKlWq5PTYvXu3jh8/bi13+PBh9erVS/7+/ipXrpwqVaqkNm3aSJLTOT6SVKpUKVWtWtVpWmhoqOLi4vThhx8qICBAUVFRmjFjhtOyv/zyi9zd3fOdxBkUFCQ/Pz/rjTVPtWrV8o23QoUKOnPmTKH3z4EDB+Tu7q4GDRpctSZvu3Xr1nWa7unpqZo1a+br65577rnqCdChoaFOz/fv3y9jjF599dV8x2Ds2LGS5HQcruTKcSmMEydO6Pz58/nGKkn169dXbm5uvvPHrjwOFSpUkCTrOLRp00ZdunTR+PHjFRAQoCeeeEJz5szJd97Xjfrll19Up06dfEG2fv361vzLXfmakKR7771Xhw4dKpJ+rmXPnj168skn1bBhQ3344Ye3fHt5Jk+erA8++ECvvfaaHn300du2XdxZiL+A5PQ/99zcXLm5uWn58uXy8PDIV5t3DkZOTo7++Mc/6vTp0xoxYoTq1aunsmXL6tdff1WvXr2Um5vrtJyXl1e+NyVJeuutt9SrVy998cUX+vrrr/X8889b5y5dHpwKcwKqpAJ7liRjTKGWv1Uu/5TmevPy9t2wYcMUFRVV4DJXu7rH1eNyq1zvOLi5uemzzz7Thg0b9NVXX2nFihXq06eP3nrrLW3YsOGaV1yVJEeOHFH79u3l6+urZcuWqXz58rdlu/Hx8RoxYoSee+65u+I2Cbh1CEKwpX379jl9CrF//37l5uaqRo0a8vDwkDFGoaGhuvfee6+6ju3bt+s///mP5s6dq2effdaavnLlSpf7CQsLU1hYmEaPHq3169fr4Ycf1uzZs/X666+revXqys3N1b59+6z/zUtSSkqKUlNTVb16dZe3dz21atVSbm6udu3apSZNmhRYk7fdvXv3On1dlJWVpYMHDyoyMvKGt5+3vtKlS7u8HleOS2HDZaVKlVSmTBnt3bs337w9e/bI3d1dISEhLvWZp3nz5mrevLn+9re/ad68eerZs6c+/fRT9evXr1DLX20M1atX17Zt25Sbm+sUwPfs2WPNv9y+ffvyreM///mP01VoRe3UqVNq3769MjMztWrVKlWpUuWWbetyX3zxhfr166fOnTtbVw7CvvhqDLZ05S+/9957T5LUsWNHde7cWR4eHho/fny+T1GMMTp16pSk//6P//IaY4ymTZtW6D7S09OVnZ3tNC0sLEzu7u7WVyR5H9lfedO8t99+W5IUHR1d6O0VVqdOneTu7q4JEybk+wQlb7yRkZHy9PTUu+++67QPPvroI6Wlpd1UX5UrV9Yjjzyi999/v8A7DV95GfrlXDkuefdxuvJy/4LW2b59e33xxRdOXxWlpKRo3rx5atmypRwOxzXXcaUzZ87k+/nKC52ufD1WtmzZAr/ue/TRR5WcnGxdpSb9fuXie++9p3LlyllfFeZZvHix03lXmzZt0saNG9WxY8dC9+KKjIwMPfroo/r111+1bNmyAr+auxXWrVun7t27q3Xr1vrkk08K/JQW9sInQrClgwcP6vHHH1eHDh2UmJiof/3rX3r66afVuHFjSdLrr7+uUaNG6dChQ+rUqZPKly+vgwcPatGiRRowYICGDRumevXqqVatWho2bJh+/fVXORwO/fvf/3bpXJzVq1dr0KBB+vOf/6x7771X2dnZ+uc//ykPDw916dJFktS4cWPFxMTo73//u1JTU9WmTRtt2rRJc+fOVadOndS2bdsi3z+1a9fWK6+8otdee02tWrVS586d5eXlpR9++EHBwcGaOHGiKlWqpFGjRmn8+PHq0KGDHn/8ce3du1czZ87UQw89pP/5n/+5qR5mzJihli1bKiwsTP3791fNmjWVkpKixMREHT16VD/99FOBy7lyXJo2bSpJev755xUVFSUPDw917969wPW+/vrrWrlypVq2bKm//vWvKlWqlN5//31lZmZq0qRJLo9v7ty5mjlzpp588knVqlVLZ8+e1QcffCCHw+HS+SpNmzbV/PnzFRcXp4ceekjlypXTn/70Jw0YMEDvv/++evXqpaSkJNWoUUOfffaZvv/+e02dOjXfV1C1a9dWy5YtNXDgQGVmZmrq1KmqWLGihg8f7tK4vvrqK+vYXLp0Sdu2bbNujvj444+rUaNGkqSePXtq06ZN6tOnj3bv3u10D59y5cqpU6dOLm03bxs7d+6UJP3zn//Ud999J0nWV1+//PKLHn/8cbm5ualr1675bnHRqFEjqz/YyO2/UA0oPnmXz+/atct07drVlC9f3lSoUMEMGjTIXLhwwan23//+t2nZsqUpW7asKVu2rKlXr56JjY01e/futWp27dplIiMjTbly5UxAQIDp37+/+emnn4wkM2fOHKsuJibGlC1bNl8/P//8s+nTp4+pVauW8fb2Nv7+/qZt27bmm2++caq7dOmSGT9+vAkNDTWlS5c2ISEhZtSoUU6Xlhvz++Xz0dHR+bbTpk0b06ZNG5f318cff2zuv/9+4+XlZSpUqGDatGljVq5c6VQzffp0U69ePVO6dGkTGBhoBg4caM6cOZNv+/fdd1++9edduj158uQCt3/gwAHz7LPPmqCgIFO6dGlzzz33mMcee8x89tlnVk1Bl88X9rhkZ2ebwYMHm0qVKhk3NzenS+l1xeXzxhjz448/mqioKFOuXDlTpkwZ07ZtW7N+/XqnmrzL56+8LP7KPn/88UfTo0cPU61aNePl5WUqV65sHnvsMbN58+YC98XVnDt3zjz99NPGz8/PSHK6lD4lJcX07t3bBAQEGE9PTxMWFuY0fmOcj8Fbb71lQkJCjJeXl2nVqpX56aefXOrFmP/eKqKgx+XbzrvVQ0GPgm4HcD1XW9flxzTvGFztceXxhj24GVPMZ1ACt1HeDQBPnDjBzdMA/X5n6dDQUE2ePFnDhg0r7naA244vRwEAgG1xjhBgM9f7y94+Pj7WjR5RfE6fPq2srKyrzvfw8HC6CeWtlJWVpdOnT1+zxtfX95q3SLgRaWlp+f5u35WCgoKKdJuwH4IQYDPXu0Q5JiZG8fHxt6cZXFXnzp3z3f35ctWrV78tNzuUpPXr11/3pPw5c+aoV69eRbrdF154Id8fib0SZ3fgZnGOEGAz33zzzTXnBwcHX/OO0rg9kpKSrnkFoo+Pjx5++OHb0suZM2eUlJR0zZr77ruvyO8DtGvXLh07duyaNTdzvypAIggBAAAb42RpAABgW5wjdA25ubk6duyYypcvX+hb8QMAgOJljNHZs2cVHBx83buHE4Su4dixYzf894MAAEDxOnLkiNMfry4IQega8m5Bf+TIEZf/jhAAACge6enpCgkJyfenZApCELqGvK/DHA4HQQgAgLtMYU5r4WRpAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWy4FoVmzZqlRo0bWHyGNiIjQ8uXLrfkXL15UbGysKlasqHLlyqlLly5KSUlxWsfhw4cVHR2tMmXKqHLlynrppZeUnZ3tVLNmzRo98MAD8vLyUu3atRUfH5+vlxkzZqhGjRry9vZWeHi4Nm3a5DS/ML0AAAB7cykIVa1aVW+88YaSkpK0efNm/eEPf9ATTzyhnTt3SpKGDh2qr776SgsXLtTatWt17Ngxde7c2Vo+JydH0dHRysrK0vr16zV37lzFx8drzJgxVs3BgwcVHR2ttm3bauvWrRoyZIj69eunFStWWDXz589XXFycxo4dqx9//FGNGzdWVFSUjh8/btVcrxcAAAA3Y4y5mRX4+/tr8uTJ6tq1qypVqqR58+apa9eukqQ9e/aofv36SkxMVPPmzbV8+XI99thjOnbsmAIDAyVJs2fP1ogRI3TixAl5enpqxIgRWrp0qXbs2GFto3v37kpNTVVCQoIkKTw8XA899JCmT58uScrNzVVISIgGDx6skSNHKi0t7bq9FCQzM1OZmZnW8/T0dIWEhCgtLU0Oh+NmdhOAO1DiR8OKuwWXRfSdUtwtAHe89PR0+fr6Fur9+4bPEcrJydGnn36qjIwMRUREKCkpSZcuXVJkZKRVU69ePVWrVk2JiYmSpMTERIWFhVkhSJKioqKUnp5ufaqUmJjotI68mrx1ZGVlKSkpyanG3d1dkZGRVk1heinIxIkT5evraz1CQkJudPcAAIC7gMtBaPv27SpXrpy8vLz03HPPadGiRWrQoIGSk5Pl6ekpPz8/p/rAwEAlJydLkpKTk51CUN78vHnXqklPT9eFCxd08uRJ5eTkFFhz+Tqu10tBRo0apbS0NOtx5MiRwu0UAABwVyrl6gJ169bV1q1blZaWps8++0wxMTFau3btrejttvPy8pKXl1dxtwEAAG4Tl4OQp6enateuLUlq2rSpfvjhB02bNk3dunVTVlaWUlNTnT6JSUlJUVBQkCQpKCgo39VdeVdyXV5z5dVdKSkpcjgc8vHxkYeHhzw8PAqsuXwd1+sFAADgpu8jlJubq8zMTDVt2lSlS5fWqlWrrHl79+7V4cOHFRERIUmKiIjQ9u3bna7uWrlypRwOhxo0aGDVXL6OvJq8dXh6eqpp06ZONbm5uVq1apVVU5heAAAAXPpEaNSoUerYsaOqVaums2fPat68eVqzZo1WrFghX19f9e3bV3FxcfL395fD4dDgwYMVERFhXaXVvn17NWjQQM8884wmTZqk5ORkjR49WrGxsdZXUs8995ymT5+u4cOHq0+fPlq9erUWLFigpUuXWn3ExcUpJiZGDz74oJo1a6apU6cqIyNDvXv3lqRC9QIAAOBSEDp+/LieffZZ/fbbb/L19VWjRo20YsUK/fGPf5QkvfPOO3J3d1eXLl2UmZmpqKgozZw501rew8NDS5Ys0cCBAxUREaGyZcsqJiZGEyZMsGpCQ0O1dOlSDR06VNOmTVPVqlX14YcfKioqyqrp1q2bTpw4oTFjxig5OVlNmjRRQkKC0wnU1+sFAADgpu8jVJK5ch8CAHcf7iMElEy35T5CAAAAdzuCEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2XgtDEiRP10EMPqXz58qpcubI6deqkvXv3OtU88sgjcnNzc3o899xzTjWHDx9WdHS0ypQpo8qVK+ull15Sdna2U82aNWv0wAMPyMvLS7Vr11Z8fHy+fmbMmKEaNWrI29tb4eHh2rRpk9P8ixcvKjY2VhUrVlS5cuXUpUsXpaSkuDJkAABQgrkUhNauXavY2Fht2LBBK1eu1KVLl9S+fXtlZGQ41fXv31+//fab9Zg0aZI1LycnR9HR0crKytL69es1d+5cxcfHa8yYMVbNwYMHFR0drbZt22rr1q0aMmSI+vXrpxUrVlg18+fPV1xcnMaOHasff/xRjRs3VlRUlI4fP27VDB06VF999ZUWLlyotWvX6tixY+rcubPLOwkAAJRMbsYYc6MLnzhxQpUrV9batWvVunVrSb9/ItSkSRNNnTq1wGWWL1+uxx57TMeOHVNgYKAkafbs2RoxYoROnDghT09PjRgxQkuXLtWOHTus5bp3767U1FQlJCRIksLDw/XQQw9p+vTpkqTc3FyFhIRo8ODBGjlypNLS0lSpUiXNmzdPXbt2lSTt2bNH9evXV2Jiopo3b37d8aWnp8vX11dpaWlyOBw3upsA3KESPxpW3C24LKLvlOJuAbjjufL+fVPnCKWlpUmS/P39naZ/8sknCggIUMOGDTVq1CidP3/empeYmKiwsDArBElSVFSU0tPTtXPnTqsmMjLSaZ1RUVFKTEyUJGVlZSkpKcmpxt3dXZGRkVZNUlKSLl265FRTr149VatWzaq5UmZmptLT050eAACg5Cp1owvm5uZqyJAhevjhh9WwYUNr+tNPP63q1asrODhY27Zt04gRI7R37159/vnnkqTk5GSnECTJep6cnHzNmvT0dF24cEFnzpxRTk5OgTV79uyx1uHp6Sk/P798NXnbudLEiRM1fvx4F/cEAAC4W91wEIqNjdWOHTv03XffOU0fMGCA9e+wsDBVqVJF7dq104EDB1SrVq0b7/Q2GDVqlOLi4qzn6enpCgkJKcaOAADArXRDX40NGjRIS5Ys0bfffquqVateszY8PFyStH//fklSUFBQviu38p4HBQVds8bhcMjHx0cBAQHy8PAosObydWRlZSk1NfWqNVfy8vKSw+FwegAAgJLLpSBkjNGgQYO0aNEirV69WqGhodddZuvWrZKkKlWqSJIiIiK0fft2p6u7Vq5cKYfDoQYNGlg1q1atclrPypUrFRERIUny9PRU06ZNnWpyc3O1atUqq6Zp06YqXbq0U83evXt1+PBhqwYAANibS1+NxcbGat68efriiy9Uvnx561wbX19f+fj46MCBA5o3b54effRRVaxYUdu2bdPQoUPVunVrNWrUSJLUvn17NWjQQM8884wmTZqk5ORkjR49WrGxsfLy8pIkPffcc5o+fbqGDx+uPn36aPXq1VqwYIGWLl1q9RIXF6eYmBg9+OCDatasmaZOnaqMjAz17t3b6qlv376Ki4uTv7+/HA6HBg8erIiIiEJdMQYAAEo+l4LQrFmzJP1+ifzl5syZo169esnT01PffPONFUpCQkLUpUsXjR492qr18PDQkiVLNHDgQEVERKhs2bKKiYnRhAkTrJrQ0FAtXbpUQ4cO1bRp01S1alV9+OGHioqKsmq6deumEydOaMyYMUpOTlaTJk2UkJDgdAL1O++8I3d3d3Xp0kWZmZmKiorSzJkzXdpBAACg5Lqp+wiVdNxHCCjZuI8QUDLdtvsIAQAA3M0IQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLZcCkITJ07UQw89pPLly6ty5crq1KmT9u7d61Rz8eJFxcbGqmLFiipXrpy6dOmilJQUp5rDhw8rOjpaZcqUUeXKlfXSSy8pOzvbqWbNmjV64IEH5OXlpdq1ays+Pj5fPzNmzFCNGjXk7e2t8PBwbdq0yeVeAACAfbkUhNauXavY2Fht2LBBK1eu1KVLl9S+fXtlZGRYNUOHDtVXX32lhQsXau3atTp27Jg6d+5szc/JyVF0dLSysrK0fv16zZ07V/Hx8RozZoxVc/DgQUVHR6tt27baunWrhgwZon79+mnFihVWzfz58xUXF6exY8fqxx9/VOPGjRUVFaXjx48XuhcAAGBvbsYYc6MLnzhxQpUrV9batWvVunVrpaWlqVKlSpo3b566du0qSdqzZ4/q16+vxMRENW/eXMuXL9djjz2mY8eOKTAwUJI0e/ZsjRgxQidOnJCnp6dGjBihpUuXaseOHda2unfvrtTUVCUkJEiSwsPD9dBDD2n69OmSpNzcXIWEhGjw4MEaOXJkoXq5UmZmpjIzM63n6enpCgkJUVpamhwOx43uJgB3qMSPhhV3Cy6L6DuluFsA7njp6eny9fUt1Pv3TZ0jlJaWJkny9/eXJCUlJenSpUuKjIy0aurVq6dq1aopMTFRkpSYmKiwsDArBElSVFSU0tPTtXPnTqvm8nXk1eStIysrS0lJSU417u7uioyMtGoK08uVJk6cKF9fX+sREhJyYzsGAADcFW44COXm5mrIkCF6+OGH1bBhQ0lScnKyPD095efn51QbGBio5ORkq+byEJQ3P2/etWrS09N14cIFnTx5Ujk5OQXWXL6O6/VypVGjRiktLc16HDlypJB7AwAA3I1K3eiCsbGx2rFjh7777rui7KdYeXl5ycvLq7jbAAAAt8kNfSI0aNAgLVmyRN9++62qVq1qTQ8KClJWVpZSU1Od6lNSUhQUFGTVXHnlVt7z69U4HA75+PgoICBAHh4eBdZcvo7r9QIAAOzNpSBkjNGgQYO0aNEirV69WqGhoU7zmzZtqtKlS2vVqlXWtL179+rw4cOKiIiQJEVERGj79u1OV3etXLlSDodDDRo0sGouX0deTd46PD091bRpU6ea3NxcrVq1yqopTC8AAMDeXPpqLDY2VvPmzdMXX3yh8uXLW+fa+Pr6ysfHR76+vurbt6/i4uLk7+8vh8OhwYMHKyIiwrpKq3379mrQoIGeeeYZTZo0ScnJyRo9erRiY2Otr6Wee+45TZ8+XcOHD1efPn20evVqLViwQEuXLrV6iYuLU0xMjB588EE1a9ZMU6dOVUZGhnr37m31dL1eAACAvbkUhGbNmiVJeuSRR5ymz5kzR7169ZIkvfPOO3J3d1eXLl2UmZmpqKgozZw506r18PDQkiVLNHDgQEVERKhs2bKKiYnRhAkTrJrQ0FAtXbpUQ4cO1bRp01S1alV9+OGHioqKsmq6deumEydOaMyYMUpOTlaTJk2UkJDgdAL19XoBAAD2dlP3ESrpXLkPAYC7D/cRAkqm23YfIQAAgLsZQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANiWy0Fo3bp1+tOf/qTg4GC5ublp8eLFTvN79eolNzc3p0eHDh2cak6fPq2ePXvK4XDIz89Pffv21blz55xqtm3bplatWsnb21shISGaNGlSvl4WLlyoevXqydvbW2FhYVq2bJnTfGOMxowZoypVqsjHx0eRkZHat2+fq0MGAAAllMtBKCMjQ40bN9aMGTOuWtOhQwf99ttv1uN///d/neb37NlTO3fu1MqVK7VkyRKtW7dOAwYMsOanp6erffv2ql69upKSkjR58mSNGzdOf//7362a9evXq0ePHurbt6+2bNmiTp06qVOnTtqxY4dVM2nSJL377ruaPXu2Nm7cqLJlyyoqKkoXL150ddgAAKAEcjPGmBte2M1NixYtUqdOnaxpvXr1Umpqar5PivLs3r1bDRo00A8//KAHH3xQkpSQkKBHH31UR48eVXBwsGbNmqVXXnlFycnJ8vT0lCSNHDlSixcv1p49eyRJ3bp1U0ZGhpYsWWKtu3nz5mrSpIlmz54tY4yCg4P14osvatiwYZKktLQ0BQYGKj4+Xt27d7/u+NLT0+Xr66u0tDQ5HI4b2UUA7mCJHw0r7hZcFtF3SnG3ANzxXHn/viXnCK1Zs0aVK1dW3bp1NXDgQJ06dcqal5iYKD8/PysESVJkZKTc3d21ceNGq6Z169ZWCJKkqKgo7d27V2fOnLFqIiMjnbYbFRWlxMRESdLBgweVnJzsVOPr66vw8HCr5kqZmZlKT093egAAgJKryINQhw4d9I9//EOrVq3Sm2++qbVr16pjx47KycmRJCUnJ6ty5cpOy5QqVUr+/v5KTk62agIDA51q8p5fr+by+ZcvV1DNlSZOnChfX1/rERIS4vL4AQDA3aNUUa/w8q+cwsLC1KhRI9WqVUtr1qxRu3btinpzRWrUqFGKi4uznqenpxOGAAAowW755fM1a9ZUQECA9u/fL0kKCgrS8ePHnWqys7N1+vRpBQUFWTUpKSlONXnPr1dz+fzLlyuo5kpeXl5yOBxODwAAUHLd8iB09OhRnTp1SlWqVJEkRUREKDU1VUlJSVbN6tWrlZubq/DwcKtm3bp1unTpklWzcuVK1a1bVxUqVLBqVq1a5bStlStXKiIiQpIUGhqqoKAgp5r09HRt3LjRqgEAAPbmchA6d+6ctm7dqq1bt0r6/aTkrVu36vDhwzp37pxeeuklbdiwQYcOHdKqVav0xBNPqHbt2oqKipIk1a9fXx06dFD//v21adMmff/99xo0aJC6d++u4OBgSdLTTz8tT09P9e3bVzt37tT8+fM1bdo0p6+tXnjhBSUkJOitt97Snj17NG7cOG3evFmDBg2S9PsVbUOGDNHrr7+uL7/8Utu3b9ezzz6r4OBgp6vcAACAfbl8jtDmzZvVtm1b63leOImJidGsWbO0bds2zZ07V6mpqQoODlb79u312muvycvLy1rmk08+0aBBg9SuXTu5u7urS5cuevfdd635vr6++vrrrxUbG6umTZsqICBAY8aMcbrXUIsWLTRv3jyNHj1aL7/8surUqaPFixerYcOGVs3w4cOVkZGhAQMGKDU1VS1btlRCQoK8vb1dHTYAACiBbuo+QiUd9xECSjbuIwSUTMV+HyEAAIC7AUEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYlstBaN26dfrTn/6k4OBgubm5afHixU7zjTEaM2aMqlSpIh8fH0VGRmrfvn1ONadPn1bPnj3lcDjk5+envn376ty5c04127ZtU6tWreTt7a2QkBBNmjQpXy8LFy5UvXr15O3trbCwMC1btszlXgAAgH25HIQyMjLUuHFjzZgxo8D5kyZN0rvvvqvZs2dr48aNKlu2rKKionTx4kWrpmfPntq5c6dWrlypJUuWaN26dRowYIA1Pz09Xe3bt1f16tWVlJSkyZMna9y4cfr73/9u1axfv149evRQ3759tWXLFnXq1EmdOnXSjh07XOoFAADYl5sxxtzwwm5uWrRokTp16iTp909ggoOD9eKLL2rYsGGSpLS0NAUGBio+Pl7du3fX7t271aBBA/3www968MEHJUkJCQl69NFHdfToUQUHB2vWrFl65ZVXlJycLE9PT0nSyJEjtXjxYu3Zs0eS1K1bN2VkZGjJkiVWP82bN1eTJk00e/bsQvVyPenp6fL19VVaWpocDseN7iYAd6jEj4YVdwsui+g7pbhbAO54rrx/F+k5QgcPHlRycrIiIyOtab6+vgoPD1diYqIkKTExUX5+flYIkqTIyEi5u7tr48aNVk3r1q2tECRJUVFR2rt3r86cOWPVXL6dvJq87RSmlytlZmYqPT3d6QEAAEquIg1CycnJkqTAwECn6YGBgda85ORkVa5c2Wl+qVKl5O/v71RT0Dou38bVai6ff71erjRx4kT5+vpaj5CQkEKMGgAA3K24auwyo0aNUlpamvU4cuRIcbcEAABuoSINQkFBQZKklJQUp+kpKSnWvKCgIB0/ftxpfnZ2tk6fPu1UU9A6Lt/G1Woun3+9Xq7k5eUlh8Ph9AAAACVXkQah0NBQBQUFadWqVda09PR0bdy4UREREZKkiIgIpaamKikpyapZvXq1cnNzFR4ebtWsW7dOly5dsmpWrlypunXrqkKFClbN5dvJq8nbTmF6AQAA9uZyEDp37py2bt2qrVu3Svr9pOStW7fq8OHDcnNz05AhQ/T666/ryy+/1Pbt2/Xss88qODjYurKsfv366tChg/r3769Nmzbp+++/16BBg9S9e3cFBwdLkp5++ml5enqqb9++2rlzp+bPn69p06YpLi7O6uOFF15QQkKC3nrrLe3Zs0fjxo3T5s2bNWjQIEkqVC8AAMDeSrm6wObNm9W2bVvreV44iYmJUXx8vIYPH66MjAwNGDBAqampatmypRISEuTt7W0t88knn2jQoEFq166d3N3d1aVLF7377rvWfF9fX3399deKjY1V06ZNFRAQoDFjxjjda6hFixaaN2+eRo8erZdffll16tTR4sWL1bBhQ6umML0AAAD7uqn7CJV03EcIKNm4jxBQMhXbfYQAAADuJgQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgW0UehMaNGyc3NzenR7169az5Fy9eVGxsrCpWrKhy5cqpS5cuSklJcVrH4cOHFR0drTJlyqhy5cp66aWXlJ2d7VSzZs0aPfDAA/Ly8lLt2rUVHx+fr5cZM2aoRo0a8vb2Vnh4uDZt2lTUwwUAAHexW/KJ0H333afffvvNenz33XfWvKFDh+qrr77SwoULtXbtWh07dkydO3e25ufk5Cg6OlpZWVlav3695s6dq/j4eI0ZM8aqOXjwoKKjo9W2bVtt3bpVQ4YMUb9+/bRixQqrZv78+YqLi9PYsWP1448/qnHjxoqKitLx48dvxZABAMBdyM0YY4pyhePGjdPixYu1devWfPPS0tJUqVIlzZs3T127dpUk7dmzR/Xr11diYqKaN2+u5cuX67HHHtOxY8cUGBgoSZo9e7ZGjBihEydOyNPTUyNGjNDSpUu1Y8cOa93du3dXamqqEhISJEnh4eF66KGHNH36dElSbm6uQkJCNHjwYI0cObJQY0lPT5evr6/S0tLkcDhuZrcAuAMlfjSsuFtwWUTfKcXdAnDHc+X9+5Z8IrRv3z4FBwerZs2a6tmzpw4fPixJSkpK0qVLlxQZGWnV1qtXT9WqVVNiYqIkKTExUWFhYVYIkqSoqCilp6dr586dVs3l68iryVtHVlaWkpKSnGrc3d0VGRlp1RQkMzNT6enpTg8AAFByFXkQCg8PV3x8vBISEjRr1iwdPHhQrVq10tmzZ5WcnCxPT0/5+fk5LRMYGKjk5GRJUnJyslMIypufN+9aNenp6bpw4YJOnjypnJycAmvy1lGQiRMnytfX13qEhITc0D4AAAB3h1JFvcKOHTta/27UqJHCw8NVvXp1LViwQD4+PkW9uSI1atQoxcXFWc/T09MJQwAAlGC3/PJ5Pz8/3Xvvvdq/f7+CgoKUlZWl1NRUp5qUlBQFBQVJkoKCgvJdRZb3/Ho1DodDPj4+CggIkIeHR4E1eesoiJeXlxwOh9MDAACUXLc8CJ07d04HDhxQlSpV1LRpU5UuXVqrVq2y5u/du1eHDx9WRESEJCkiIkLbt293urpr5cqVcjgcatCggVVz+TryavLW4enpqaZNmzrV5ObmatWqVVYNAABAkQehYcOGae3atTp06JDWr1+vJ598Uh4eHurRo4d8fX3Vt29fxcXF6dtvv1VSUpJ69+6tiIgINW/eXJLUvn17NWjQQM8884x++uknrVixQqNHj1ZsbKy8vLwkSc8995x+/vlnDR8+XHv27NHMmTO1YMECDR061OojLi5OH3zwgebOnavdu3dr4MCBysjIUO/evYt6yAAA4C5V5OcIHT16VD169NCpU6dUqVIltWzZUhs2bFClSpUkSe+8847c3d3VpUsXZWZmKioqSjNnzrSW9/Dw0JIlSzRw4EBFRESobNmyiomJ0YQJE6ya0NBQLV26VEOHDtW0adNUtWpVffjhh4qKirJqunXrphMnTmjMmDFKTk5WkyZNlJCQkO8EagAAYF9Ffh+hkoT7CAElG/cRAkqmYr+PEAAAwN2AIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyLIAQAAGyrVHE3cDvMmDFDkydPVnJysho3bqz33ntPzZo1K+62AAAoUu+s/E9xt+CyoX+8t1i3X+I/EZo/f77i4uI0duxY/fjjj2rcuLGioqJ0/Pjx4m4NAAAUsxL/idDbb7+t/v37q3fv3pKk2bNna+nSpfr44481cuTIYu0t8aNhxbr9GxHRd0pxtwAAuIrmh/9e3C3cgOJ9XynRQSgrK0tJSUkaNWqUNc3d3V2RkZFKTEzMV5+ZmanMzEzreVpamiQpPT39lvSXcSHz+kV3mFu1L4DiwGsQ1zJj9f7ibsFlD/Ez7bROY8x1a0t0EDp58qRycnIUGBjoND0wMFB79uzJVz9x4kSNHz8+3/SQkJBb1uNdZ/D04u4AsDdegyhpbuHP9NmzZ+Xr63vNmhIdhFw1atQoxcXFWc9zc3N1+vRpVaxYUW5ubkW6rfT0dIWEhOjIkSNyOBxFuu47QUkfn1Tyx8j47n4lfYyM7+53q8ZojNHZs2cVHBx83doSHYQCAgLk4eGhlJQUp+kpKSkKCgrKV+/l5SUvLy+naX5+freyRTkcjhL7Ay6V/PFJJX+MjO/uV9LHyPjufrdijNf7JChPib5qzNPTU02bNtWqVausabm5uVq1apUiIiKKsTMAAHAnKNGfCElSXFycYmJi9OCDD6pZs2aaOnWqMjIyrKvIAACAfZX4INStWzedOHFCY8aMUXJyspo0aaKEhIR8J1Dfbl5eXho7dmy+r+JKipI+Pqnkj5Hx3f1K+hgZ393vThijmynMtWUAAAAlUIk+RwgAAOBaCEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEK3yN/+9je1aNFCZcqUKfTdqY0xGjNmjKpUqSIfHx9FRkZq3759TjWnT59Wz5495XA45Ofnp759++rcuXO3YATX52ovhw4dkpubW4GPhQsXWnUFzf/0009vx5Cc3Mi+fuSRR/L1/txzzznVHD58WNHR0SpTpowqV66sl156SdnZ2bdyKAVydXynT5/W4MGDVbduXfn4+KhatWp6/vnnrT9OnKc4j9+MGTNUo0YNeXt7Kzw8XJs2bbpm/cKFC1WvXj15e3srLCxMy5Ytc5pfmNfk7eTK+D744AO1atVKFSpUUIUKFRQZGZmvvlevXvmOVYcOHW71MK7JlTHGx8fn69/b29up5m4+hgX9PnFzc1N0dLRVcycdw3Xr1ulPf/qTgoOD5ebmpsWLF193mTVr1uiBBx6Ql5eXateurfj4+Hw1rr6uXWZwS4wZM8a8/fbbJi4uzvj6+hZqmTfeeMP4+vqaxYsXm59++sk8/vjjJjQ01Fy4cMGq6dChg2ncuLHZsGGD+b//+z9Tu3Zt06NHj1s0imtztZfs7Gzz22+/OT3Gjx9vypUrZ86ePWvVSTJz5sxxqrt8H9wuN7Kv27RpY/r37+/Ue1pamjU/OzvbNGzY0ERGRpotW7aYZcuWmYCAADNq1KhbPZx8XB3f9u3bTefOnc2XX35p9u/fb1atWmXq1KljunTp4lRXXMfv008/NZ6enubjjz82O3fuNP379zd+fn4mJSWlwPrvv//eeHh4mEmTJpldu3aZ0aNHm9KlS5vt27dbNYV5Td4uro7v6aefNjNmzDBbtmwxu3fvNr169TK+vr7m6NGjVk1MTIzp0KGD07E6ffr07RpSPq6Occ6cOcbhcDj1n5yc7FRzNx/DU6dOOY1tx44dxsPDw8yZM8equZOO4bJly8wrr7xiPv/8cyPJLFq06Jr1P//8sylTpoyJi4szu3btMu+9957x8PAwCQkJVo2r++xGEIRusTlz5hQqCOXm5pqgoCAzefJka1pqaqrx8vIy//u//2uMMWbXrl1Gkvnhhx+smuXLlxs3Nzfz66+/Fnnv11JUvTRp0sT06dPHaVphXkC32o2Or02bNuaFF1646vxly5YZd3d3p1/Ws2bNMg6Hw2RmZhZJ74VRVMdvwYIFxtPT01y6dMmaVlzHr1mzZiY2NtZ6npOTY4KDg83EiRMLrH/qqadMdHS007Tw8HDzl7/8xRhTuNfk7eTq+K6UnZ1typcvb+bOnWtNi4mJMU888URRt3rDXB3j9X6/lrRj+M4775jy5cubc+fOWdPutGOYpzC/B4YPH27uu+8+p2ndunUzUVFR1vOb3WeFwVdjd4iDBw8qOTlZkZGR1jRfX1+Fh4crMTFRkpSYmCg/Pz89+OCDVk1kZKTc3d21cePG29pvUfSSlJSkrVu3qm/fvvnmxcbGKiAgQM2aNdPHH38sc5vv+3kz4/vkk08UEBCghg0batSoUTp//rzTesPCwpzubB4VFaX09HTt3Lmz6AdyFUX1s5SWliaHw6FSpZxvUn+7j19WVpaSkpKcXj/u7u6KjIy0Xj9XSkxMdKqXfj8WefWFeU3eLjcyviudP39ely5dkr+/v9P0NWvWqHLlyqpbt64GDhyoU6dOFWnvhXWjYzx37pyqV6+ukJAQPfHEE06vo5J2DD/66CN1795dZcuWdZp+pxxDV13vNVgU+6wwSvyf2LhbJCcnS1K+P/0RGBhozUtOTlblypWd5pcqVUr+/v5Wze1SFL189NFHql+/vlq0aOE0fcKECfrDH/6gMmXK6Ouvv9Zf//pXnTt3Ts8//3yR9X89Nzq+p59+WtWrV1dwcLC2bdumESNGaO/evfr888+t9RZ0jPPm3S5FcfxOnjyp1157TQMGDHCaXhzH7+TJk8rJySlw3+7Zs6fAZa52LC5/veVNu1rN7XIj47vSiBEjFBwc7PSm0qFDB3Xu3FmhoaE6cOCAXn75ZXXs2FGJiYny8PAo0jFcz42MsW7duvr444/VqFEjpaWlacqUKWrRooV27typqlWrlqhjuGnTJu3YsUMfffSR0/Q76Ri66mqvwfT0dF24cEFnzpy56Z/7wiAIuWDkyJF68803r1mze/du1atX7zZ1VPQKO8abdeHCBc2bN0+vvvpqvnmXT7v//vuVkZGhyZMnF8kb6a0e3+WhICwsTFWqVFG7du104MAB1apV64bXW1i36/ilp6crOjpaDRo00Lhx45zm3crjhxvzxhtv6NNPP9WaNWucTibu3r279e+wsDA1atRItWrV0po1a9SuXbviaNUlERERioiIsJ63aNFC9evX1/vvv6/XXnutGDsreh999JHCwsLUrFkzp+l3+zG8ExCEXPDiiy+qV69e16ypWbPmDa07KChIkpSSkqIqVapY01NSUtSkSROr5vjx407LZWdn6/Tp09byN6uwY7zZXj777DOdP39ezz777HVrw8PD9dprrykzM/Om/zDf7RpfnvDwcEnS/v37VatWLQUFBeW74iElJUWSiuQY3o7xnT17Vh06dFD58uW1aNEilS5d+pr1RXn8riYgIEAeHh7WvsyTkpJy1fEEBQVds74wr8nb5UbGl2fKlCl644039M0336hRo0bXrK1Zs6YCAgK0f//+2/4mejNjzFO6dGndf//92r9/v6SScwwzMjL06aefasKECdfdTnEeQ1dd7TXocDjk4+MjDw+Pm/6ZKJQiO9sIBXL1ZOkpU6ZY09LS0go8WXrz5s1WzYoVK4r1ZOkb7aVNmzb5rja6mtdff91UqFDhhnu9EUW1r7/77jsjyfz000/GmP+eLH35FQ/vv/++cTgc5uLFi0U3gOu40fGlpaWZ5s2bmzZt2piMjIxCbet2Hb9mzZqZQYMGWc9zcnLMPffcc82TpR977DGnaREREflOlr7Wa/J2cnV8xhjz5ptvGofDYRITEwu1jSNHjhg3NzfzxRdf3HS/N+JGxni57OxsU7duXTN06FBjTMk4hsb8/j7i5eVlTp48ed1tFPcxzKNCnizdsGFDp2k9evTId7L0zfxMFKrXIlsTnPzyyy9my5Yt1uXhW7ZsMVu2bHG6TLxu3brm888/t56/8cYbxs/Pz3zxxRdm27Zt5oknnijw8vn777/fbNy40Xz33XemTp06xXr5/LV6OXr0qKlbt67ZuHGj03L79u0zbm5uZvny5fnW+eWXX5oPPvjAbN++3ezbt8/MnDnTlClTxowZM+aWj+dKro5v//79ZsKECWbz5s3m4MGD5osvvjA1a9Y0rVu3tpbJu3y+ffv2ZuvWrSYhIcFUqlSp2C6fd2V8aWlpJjw83ISFhZn9+/c7Xa6bnZ1tjCne4/fpp58aLy8vEx8fb3bt2mUGDBhg/Pz8rCv0nnnmGTNy5Eir/vvvvzelSpUyU6ZMMbt37zZjx44t8PL5670mbxdXx/fGG28YT09P89lnnzkdq7zfQWfPnjXDhg0ziYmJ5uDBg+abb74xDzzwgKlTp85tDeU3M8bx48ebFStWmAMHDpikpCTTvXt34+3tbXbu3GnV3M3HME/Lli1Nt27d8k2/047h2bNnrfc6Sebtt982W7ZsMb/88osxxpiRI0eaZ555xqrPu3z+pZdeMrt37zYzZswo8PL5a+2zokAQukViYmKMpHyPb7/91qrR/7/fSp7c3Fzz6quvmsDAQOPl5WXatWtn9u7d67TeU6dOmR49ephy5coZh8Nhevfu7RSubqfr9XLw4MF8YzbGmFGjRpmQkBCTk5OTb53Lly83TZo0MeXKlTNly5Y1jRs3NrNnzy6w9lZzdXyHDx82rVu3Nv7+/sbLy8vUrl3bvPTSS073ETLGmEOHDpmOHTsaHx8fExAQYF588UWny89vF1fH9+233xb4My3JHDx40BhT/MfvvffeM9WqVTOenp6mWbNmZsOGDda8Nm3amJiYGKf6BQsWmHvvvdd4enqa++67zyxdutRpfmFek7eTK+OrXr16gcdq7Nixxhhjzp8/b9q3b28qVapkSpcubapXr2769+9fpG8wN8KVMQ4ZMsSqDQwMNI8++qj58ccfndZ3Nx9DY4zZs2ePkWS+/vrrfOu6047h1X5H5I0pJibGtGnTJt8yTZo0MZ6enqZmzZpO74l5rrXPioKbMbf5umQAAIA7BPcRAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtvX/AA5BmMaLsjqVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR8NJREFUeJzt3XtcVHX+P/DXgM5wkQERYaAQUckrSlkiroomy6h0oSyvJShKuWAKXilDUfvhetci6aJiW341W6VWDUW8bYmoKN5hwVAzHTQVRlBB4PP7o+WsR1AZAxHO6/l4nEfO57zP53w+cxh4NXPOGZUQQoCIiIhIgczqegBEREREdYVBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiBqc3bt3Q6VSYffu3TXar0qlwqxZs2q0TyKqWwxCRER32bp1a70PO2vXrsXSpUvrehiSFStW4M0330SLFi2gUqkQHBxcZV1KSgpGjx6NZ555BlZWVmjVqhXGjBmDS5cumbzPmuyLGjYVv2uMiBqa3bt3o2/fvti1axf69Olj0rbh4eGIi4tDVb8ab9++jUaNGqFRo0Y1NNLa8dJLL+HEiRM4e/ZsXQ8FANCyZUvcuHED3bp1w44dOzBixAgkJCRUqnv++edx7do1vPnmm/Dw8MAvv/yCTz75BFZWVsjIyIBOp6v2PmuyL2rYnuxXM5HCFBUVwdrauq6HUWdu3rwJKyurSu2lpaUoLy+HWq2ug1H9j4WFRZ3uv77as2eP9G5QkyZN7lu3ePFi9OzZE2Zm//uwon///vD19cUnn3yCuXPnVnufNdkXNWz8aIwUb9asWVCpVMjMzMTgwYOh1WrRrFkzTJgwAbdv35bVfv311+jatSssLS1hb2+PoUOH4tdff5XV/Pvf/5Y+BtBoNHB1dUVERARu3bolqwsODkaTJk1w5swZDBw4EDY2NhgxYgQAIDs7G4MGDYJOp4OFhQWefvppDB06FAUFBdL2paWlmDNnDlq3bg2NRoOWLVvi/fffR3FxsWw/LVu2xEsvvYSffvoJ3bp1g4WFBVq1aoWvvvrqkZ6vr7/+Gt26dYOVlRWaNm2K3r17Y/v27bKaTz/9FB07doRGo4GLiwvCwsKQn58vq+nTpw86deqE9PR09O7dG1ZWVnj//fdx9uxZqFQqLFy4EEuXLpXmd+rUKQBAZmYm3njjDdjb28PCwgLPP/88fvjhh4eOuzrHJTg4GHFxcQD+OB+oYqlQ1TlCR44cwYABA6DVatGkSRP069cP+/fvl9UkJCRApVLh559/RmRkJJo3bw5ra2u89tpruHLliqz20KFD0Ov1cHBwgKWlJdzd3TF69OiHzu/u53XLli04d+6cNP6WLVtK6y9fvoyQkBA4OTnBwsICXbp0wZo1a2R93H0MlixZAjc3N1haWsLX1xcnTpyo9lgquLm5yZ7H++ndu7csuFS02dvb4/Tp0ybtsyb7ooaN7wgR/dfgwYPRsmVLxMbGYv/+/Vi+fDmuX78uBYaPPvoIH374IQYPHowxY8bgypUr+Pjjj9G7d28cOXIEdnZ2AIANGzbg5s2bGDduHJo1a4YDBw7g448/xoULF7BhwwbZPktLS6HX69GzZ08sXLgQVlZWKCkpgV6vR3FxMcaPHw+dTofffvsNmzdvRn5+PmxtbQEAY8aMwZo1a/DGG29g0qRJSEtLQ2xsLE6fPo1NmzbJ9pOTk4M33ngDISEhCAoKwqpVqxAcHIyuXbuiY8eO1X6OYmJiMGvWLPTo0QOzZ8+GWq1GWloadu7cCX9/fwB/BMuYmBj4+flh3LhxyMrKwooVK3Dw4EH8/PPPaNy4sdTf1atXMWDAAAwdOhRvvfUWnJycpHWrV6/G7du3ERoaCo1GA3t7e5w8eRJ/+ctf8NRTT2H69OmwtrbGt99+i8DAQPzzn//Ea6+9dt+xV+e4vPPOO7h48SKSk5Pxj3/846HPx8mTJ9GrVy9otVpMnToVjRs3xmeffYY+ffpgz5498Pb2ltWPHz8eTZs2xcyZM3H27FksXboU4eHhWL9+PYA/Qoq/vz+aN2+O6dOnw87ODmfPnsXGjRurfYw++OADFBQU4MKFC1iyZAkASO/C3Lp1C3369EFOTg7Cw8Ph7u6ODRs2IDg4GPn5+ZgwYYKsr6+++go3btxAWFgYbt++jWXLluHFF1/E8ePHZceqNhUWFqKwsBAODg5PVF/UgAgihZs5c6YAIF555RVZ+9/+9jcBQBw9elScPXtWmJubi48++khWc/z4cdGoUSNZ+82bNyvtIzY2VqhUKnHu3DmpLSgoSAAQ06dPl9UeOXJEABAbNmy475gzMjIEADFmzBhZ++TJkwUAsXPnTqnNzc1NABB79+6V2i5fviw0Go2YNGnSffdxr+zsbGFmZiZee+01UVZWJltXXl4u9atWq4W/v7+s5pNPPhEAxKpVq6Q2X19fAUDEx8fL+srNzRUAhFarFZcvX5at69evn/D09BS3b9+W7btHjx7Cw8NDatu1a5cAIHbt2iW1Vfe4hIWFifv9agQgZs6cKT0ODAwUarVanDlzRmq7ePGisLGxEb1795baVq9eLQAIPz8/6bkSQoiIiAhhbm4u8vPzhRBCbNq0SQAQBw8erHL/1RUQECDc3NwqtS9dulQAEF9//bXUVlJSInx8fESTJk2E0WgUQvzvGFhaWooLFy5ItWlpaQKAiIiIeOSxWVtbi6CgoGrXz5kzRwAQKSkpj7zP2uiLGg5+NEb0X2FhYbLH48ePB/DHVUQbN25EeXk5Bg8ejN9//11adDodPDw8sGvXLmk7S0tL6d9FRUX4/fff0aNHDwghcOTIkUr7HTdunOxxxTs+27Ztw82bN6sc69atWwEAkZGRsvZJkyYBALZs2SJr79ChA3r16iU9bt68Odq2bYtffvmlyv6rkpiYiPLyckRHR1f6yKHiY48dO3agpKQEEydOlNWMHTsWWq220rg0Gg1GjRpV5f4GDRqE5s2bS4+vXbuGnTt3YvDgwbhx44Z0DK5evQq9Xo/s7Gz89ttv9x2/qcflYcrKyrB9+3YEBgaiVatWUruzszOGDx+On376CUajUbZNaGio7COiXr16oaysDOfOnQMA6V3FzZs3486dOyaP6WG2bt0KnU6HYcOGSW2NGzfGe++9h8LCQuzZs0dWHxgYiKeeekp63K1bN3h7e0s/f7Vt7969iImJweDBg/Hiiy8+MX1Rw8IgRPRfHh4essetW7eGmZkZzp49i+zsbAgh4OHhgebNm8uW06dP4/Lly9J258+fR3BwMOzt7dGkSRM0b94cvr6+ACA7xwcAGjVqhKefflrW5u7ujsjISHz55ZdwcHCAXq9HXFycbNtz587BzMwMbdq0kW2r0+lgZ2cn/WGt0KJFi0rzbdq0Ka5fv17t5+fMmTMwMzNDhw4d7ltTsd+2bdvK2tVqNVq1alVpXE899dR9T4B2d3eXPc7JyYEQAh9++GGlYzBz5kwAkB2He5lyXKrjypUruHnzZqW5AkD79u1RXl5e6fyxe49D06ZNAUA6Dr6+vhg0aBBiYmLg4OCAV199FatXr6503tejOnfuHDw8PCoF2fbt20vr73bvawIAnnnmmcdyNVpmZiZee+01dOrUCV9++eUT0xc1PDxHiOg+7v4/9/LycqhUKvz4448wNzevVFtxDkZZWRn++te/4tq1a5g2bRratWsHa2tr/PbbbwgODkZ5eblsO41GU+mPEgAsWrQIwcHB+P7777F9+3a899570rlLdwen6pyACqDKMQOo8hLxx+nud2ketq7iuZs8eTL0en2V29wbDCuYelxqy8OOg0qlwnfffYf9+/fjX//6F7Zt24bRo0dj0aJF2L9//wOvuGpIfv31V/j7+8PW1hZbt26FjY3NE9EXNUwMQkT/lZ2dLXsXIicnB+Xl5WjZsiXMzc0hhIC7uzueeeaZ+/Zx/Phx/Oc//8GaNWswcuRIqT05Odnk8Xh6esLT0xMzZszAvn378Je//AXx8fGYO3cu3NzcUF5ejuzsbOn/5gEgLy8P+fn5cHNzM3l/D9O6dWuUl5fj1KlT8PLyqrKmYr9ZWVmyj4tKSkqQm5sLPz+/R95/RX+NGzc2uR9Tjkt1w2Xz5s1hZWWFrKysSusyMzNhZmYGV1dXk8ZZoXv37ujevTs++ugjrF27FiNGjMC6deswZsyYam1/vzm4ubnh2LFjKC8vlwXwzMxMaf3dsrOzK/Xxn//8R3YVWk27evUq/P39UVxcjJSUFDg7Oz8RfVHDxY/GiP6r4rLpCh9//DEAYMCAAXj99ddhbm6OmJiYSu+iCCFw9epVAP/7P/67a4QQWLZsWbXHYTQaUVpaKmvz9PSEmZmZ9BHJwIEDAaDS3YMXL14MAAgICKj2/qorMDAQZmZmmD17dqV3UCrm6+fnB7VajeXLl8ueg5UrV6KgoOBPjcvR0RF9+vTBZ599VuXdge+9DP1uphyXivs43Xu5f1V9+vv74/vvv5d9VJSXl4e1a9eiZ8+e0Gq1D+zjXtevX6/081UROk35eMza2rrKj/sGDhwIg8EgXaUG/HHl4scff4wmTZpIHxVWSExMlJ13deDAAaSlpWHAgAHVHospioqKMHDgQPz222/YunVrlR/N1UVf1LDxHSGi/8rNzcUrr7yC/v37IzU1FV9//TWGDx+OLl26AADmzp2LqKgonD17FoGBgbCxsUFubi42bdqE0NBQTJ48Ge3atUPr1q0xefJk/Pbbb9BqtfjnP/9p0rk4O3fuRHh4ON58800888wzKC0txT/+8Q+Ym5tj0KBBAIAuXbogKCgIn3/+OfLz8+Hr64sDBw5gzZo1CAwMRN++fWv8+WnTpg0++OADzJkzB7169cLrr78OjUaDgwcPwsXFBbGxsWjevDmioqIQExOD/v3745VXXkFWVhY+/fRTvPDCC3jrrbf+1Bji4uLQs2dPeHp6YuzYsWjVqhXy8vKQmpqKCxcu4OjRo1VuZ8px6dq1KwDgvffeg16vh7m5OYYOHVplv3PnzkVycjJ69uyJv/3tb2jUqBE+++wzFBcXY/78+SbPb82aNfj000/x2muvoXXr1rhx4wa++OILaLVaKfxWR9euXbF+/XpERkbihRdeQJMmTfDyyy8jNDQUn332GYKDg5Geno6WLVviu+++w88//4ylS5dW+tioTZs26NmzJ8aNG4fi4mIsXboUzZo1w9SpU02a17/+9S/p2Ny5cwfHjh2Tbmj4yiuvoHPnzgCAESNG4MCBAxg9ejROnz4tu99PkyZNEBgYWO191mRf1MA9/gvViJ4sFZfPnzp1SrzxxhvCxsZGNG3aVISHh4tbt27Jav/5z3+Knj17Cmtra2FtbS3atWsnwsLCRFZWllRz6tQp4efnJ5o0aSIcHBzE2LFjxdGjRwUAsXr1aqkuKChIWFtbVxrPL7/8IkaPHi1at24tLCwshL29vejbt6/YsWOHrO7OnTsiJiZGuLu7i8aNGwtXV1cRFRUlu7RciD8unw8ICKi0H19fX+Hr62vy87Vq1Srx7LPPCo1GI5o2bSp8fX1FcnKyrOaTTz4R7dq1E40bNxZOTk5i3Lhx4vr165X237Fjx0r9V1y6vWDBgir3f+bMGTFy5Eih0+lE48aNxVNPPSVeeukl8d1330k1VV0+X93jUlpaKsaPHy+aN28uVCqV7FJ63HP5vBBCHD58WOj1etGkSRNhZWUl+vbtK/bt2yerqbh8/t7L4u8d5+HDh8WwYcNEixYthEajEY6OjuKll14Shw4dqvK5uJ/CwkIxfPhwYWdnJwDILqXPy8sTo0aNEg4ODkKtVgtPT0/Z/IWQH4NFixYJV1dXodFoRK9evcTRo0dNGosQ/7tVRFXL3fuuuNVDVUtVtwN4kJrsixo2ftcYKV7FDQCvXLnCG60R4Y87S7u7u2PBggWYPHlyXQ+HqFbxHCEiIiJSLJ4jREQwGAwPXG9paSnd6JHqzrVr11BSUnLf9ebm5rKbUNamkpISXLt27YE1tra2D7xFwqMoKCio9L199+I3y5MpGISI6KGXFQcFBSEhIeHxDIbu6/XXX6909+e7ubm5PZabHQLAvn37HnpS/urVqxEcHFyj+50wYUKlL4m9F8/4IFPwHCEiwo4dOx643sXF5YF3lKbHIz09/YFXIFpaWuIvf/nLYxnL9evXkZ6e/sCajh071vi9e06dOoWLFy8+sObP3K+KlIdBiIiIiBSLJ0sTERGRYvEcoQcoLy/HxYsXYWNjU+3b7hMREVHdEkLgxo0bcHFxqfL7HO/GIPQAFy9efOTvCiIiIqK69euvv8q+qLoqDEIPUHG7+V9//dXk7wwiIiKiumE0GuHq6lrpa2OqwiD0ABUfh2m1WgYhIiKieqY6p7XwZGkiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUqxGdT0AIqI6syu2rkdgur5RdT0CogaF7wgRERGRYjEIERERkWIxCBEREZFi8RwhIlKs1F+u1vUQTObTt65HQNSw8B0hIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiyTg9DevXvx8ssvw8XFBSqVComJibL1KpWqymXBggVSTcuWLSutnzdvnqyfY8eOoVevXrCwsICrqyvmz59faSwbNmxAu3btYGFhAU9PT2zdulW2XgiB6OhoODs7w9LSEn5+fsjOzjZ1ykRERNRAmRyEioqK0KVLF8TFxVW5/tKlS7Jl1apVUKlUGDRokKxu9uzZsrrx48dL64xGI/z9/eHm5ob09HQsWLAAs2bNwueffy7V7Nu3D8OGDUNISAiOHDmCwMBABAYG4sSJE1LN/PnzsXz5csTHxyMtLQ3W1tbQ6/W4ffu2qdMmIiKiBsjkO0sPGDAAAwYMuO96nU4ne/z999+jb9++aNWqlazdxsamUm2Fb775BiUlJVi1ahXUajU6duyIjIwMLF68GKGhoQCAZcuWoX///pgyZQoAYM6cOUhOTsYnn3yC+Ph4CCGwdOlSzJgxA6+++ioA4KuvvoKTkxMSExMxdOhQU6dOREREDUytniOUl5eHLVu2ICQkpNK6efPmoVmzZnj22WexYMEClJaWSutSU1PRu3dvqNVqqU2v1yMrKwvXr1+Xavz8/GR96vV6pKamAgByc3NhMBhkNba2tvD29pZq7lVcXAyj0ShbiIiIqOGq1e8aW7NmDWxsbPD666/L2t977z0899xzsLe3x759+xAVFYVLly5h8eLFAACDwQB3d3fZNk5OTtK6pk2bwmAwSG131xgMBqnu7u2qqrlXbGwsYmJiHnG2REREVN/UahBatWoVRowYAQsLC1l7ZGSk9O/OnTtDrVbjnXfeQWxsLDQaTW0O6YGioqJkYzMajXB1da2z8RAREVHtqrWPxv79738jKysLY8aMeWitt7c3SktLcfbsWQB/nGeUl5cnq6l4XHFe0f1q7l5/93ZV1dxLo9FAq9XKFiIiImq4ai0IrVy5El27dkWXLl0eWpuRkQEzMzM4OjoCAHx8fLB3717cuXNHqklOTkbbtm3RtGlTqSYlJUXWT3JyMnx8fAAA7u7u0Ol0shqj0Yi0tDSphoiIiJTN5I/GCgsLkZOTIz3Ozc1FRkYG7O3t0aJFCwB/BI4NGzZg0aJFlbZPTU1FWloa+vbtCxsbG6SmpiIiIgJvvfWWFHKGDx+OmJgYhISEYNq0aThx4gSWLVuGJUuWSP1MmDABvr6+WLRoEQICArBu3TocOnRIusRepVJh4sSJmDt3Ljw8PODu7o4PP/wQLi4uCAwMNHXaRERE1ACZHIQOHTqEvn37So8rzqkJCgpCQkICAGDdunUQQmDYsGGVttdoNFi3bh1mzZqF4uJiuLu7IyIiQnZujq2tLbZv346wsDB07doVDg4OiI6Oli6dB4AePXpg7dq1mDFjBt5//314eHggMTERnTp1kmqmTp2KoqIihIaGIj8/Hz179kRSUlKlc5aIiIhImVRCCFHXg3hSGY1G2NraoqCggOcLETVAqSsn1/UQTOYTsrCuh0D0xDPl7ze/a4yIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUy+QgtHfvXrz88stwcXGBSqVCYmKibH1wcDBUKpVs6d+/v6zm2rVrGDFiBLRaLezs7BASEoLCwkJZzbFjx9CrVy9YWFjA1dUV8+fPrzSWDRs2oF27drCwsICnpye2bt0qWy+EQHR0NJydnWFpaQk/Pz9kZ2ebOmUiIiJqoEwOQkVFRejSpQvi4uLuW9O/f39cunRJWv7v//5Ptn7EiBE4efIkkpOTsXnzZuzduxehoaHSeqPRCH9/f7i5uSE9PR0LFizArFmz8Pnnn0s1+/btw7BhwxASEoIjR44gMDAQgYGBOHHihFQzf/58LF++HPHx8UhLS4O1tTX0ej1u375t6rSJiIioAVIJIcQjb6xSYdOmTQgMDJTagoODkZ+fX+mdogqnT59Ghw4dcPDgQTz//PMAgKSkJAwcOBAXLlyAi4sLVqxYgQ8++AAGgwFqtRoAMH36dCQmJiIzMxMAMGTIEBQVFWHz5s1S3927d4eXlxfi4+MhhICLiwsmTZqEyZMnAwAKCgrg5OSEhIQEDB069KHzMxqNsLW1RUFBAbRa7aM8RUT0BEtdObmuh2Ayn5CFdT0EoieeKX+/a+Ucod27d8PR0RFt27bFuHHjcPXqVWldamoq7OzspBAEAH5+fjAzM0NaWppU07t3bykEAYBer0dWVhauX78u1fj5+cn2q9frkZqaCgDIzc2FwWCQ1dja2sLb21uquVdxcTGMRqNsISIiooarxoNQ//798dVXXyElJQV///vfsWfPHgwYMABlZWUAAIPBAEdHR9k2jRo1gr29PQwGg1Tj5OQkq6l4/LCau9ffvV1VNfeKjY2Fra2ttLi6upo8fyIiIqo/GtV0h3d/5OTp6YnOnTujdevW2L17N/r161fTu6tRUVFRiIyMlB4bjUaGISIiogas1i+fb9WqFRwcHJCTkwMA0Ol0uHz5sqymtLQU165dg06nk2ry8vJkNRWPH1Zz9/q7t6uq5l4ajQZarVa2EBERUcNV60HowoULuHr1KpydnQEAPj4+yM/PR3p6ulSzc+dOlJeXw9vbW6rZu3cv7ty5I9UkJyejbdu2aNq0qVSTkpIi21dycjJ8fHwAAO7u7tDpdLIao9GItLQ0qYaIiIiUzeQgVFhYiIyMDGRkZAD446TkjIwMnD9/HoWFhZgyZQr279+Ps2fPIiUlBa+++iratGkDvV4PAGjfvj369++PsWPH4sCBA/j5558RHh6OoUOHwsXFBQAwfPhwqNVqhISE4OTJk1i/fj2WLVsm+9hqwoQJSEpKwqJFi5CZmYlZs2bh0KFDCA8PB/DHFW0TJ07E3Llz8cMPP+D48eMYOXIkXFxcZFe5ERERkXKZfI7QoUOH0LdvX+lxRTgJCgrCihUrcOzYMaxZswb5+flwcXGBv78/5syZA41GI23zzTffIDw8HP369YOZmRkGDRqE5cuXS+ttbW2xfft2hIWFoWvXrnBwcEB0dLTsXkM9evTA2rVrMWPGDLz//vvw8PBAYmIiOnXqJNVMnToVRUVFCA0NRX5+Pnr27ImkpCRYWFiYOm0iIiJqgP7UfYQaOt5HiKhh432EiBqmOr+PEBEREVF9wCBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKZXIQ2rt3L15++WW4uLhApVIhMTFRWnfnzh1MmzYNnp6esLa2houLC0aOHImLFy/K+mjZsiVUKpVsmTdvnqzm2LFj6NWrFywsLODq6or58+dXGsuGDRvQrl07WFhYwNPTE1u3bpWtF0IgOjoazs7OsLS0hJ+fH7Kzs02dMhERETVQJgehoqIidOnSBXFxcZXW3bx5E4cPH8aHH36Iw4cPY+PGjcjKysIrr7xSqXb27Nm4dOmStIwfP15aZzQa4e/vDzc3N6Snp2PBggWYNWsWPv/8c6lm3759GDZsGEJCQnDkyBEEBgYiMDAQJ06ckGrmz5+P5cuXIz4+HmlpabC2toZer8ft27dNnTYRERE1QCohhHjkjVUqbNq0CYGBgfetOXjwILp164Zz586hRYsWAP54R2jixImYOHFildusWLECH3zwAQwGA9RqNQBg+vTpSExMRGZmJgBgyJAhKCoqwubNm6XtunfvDi8vL8THx0MIARcXF0yaNAmTJ08GABQUFMDJyQkJCQkYOnToQ+dnNBpha2uLgoICaLXa6jwlRFSPpK6cXNdDMJlPyMK6HgLRE8+Uv9+1fo5QQUEBVCoV7OzsZO3z5s1Ds2bN8Oyzz2LBggUoLS2V1qWmpqJ3795SCAIAvV6PrKwsXL9+Xarx8/OT9anX65GamgoAyM3NhcFgkNXY2trC29tbqrlXcXExjEajbCEiIqKGq1Ftdn779m1MmzYNw4YNkyWy9957D8899xzs7e2xb98+REVF4dKlS1i8eDEAwGAwwN3dXdaXk5OTtK5p06YwGAxS2901BoNBqrt7u6pq7hUbG4uYmJg/MWMiIiKqT2otCN25cweDBw+GEAIrVqyQrYuMjJT+3blzZ6jVarzzzjuIjY2FRqOprSE9VFRUlGxsRqMRrq6udTYeIiIiql218tFYRQg6d+4ckpOTH/r5nLe3N0pLS3H27FkAgE6nQ15enqym4rFOp3tgzd3r796uqpp7aTQaaLVa2UJEREQNV40HoYoQlJ2djR07dqBZs2YP3SYjIwNmZmZwdHQEAPj4+GDv3r24c+eOVJOcnIy2bduiadOmUk1KSoqsn+TkZPj4+AAA3N3dodPpZDVGoxFpaWlSDRERESmbyR+NFRYWIicnR3qcm5uLjIwM2Nvbw9nZGW+88QYOHz6MzZs3o6ysTDofx97eHmq1GqmpqUhLS0Pfvn1hY2OD1NRURERE4K233pJCzvDhwxETE4OQkBBMmzYNJ06cwLJly7BkyRJpvxMmTICvry8WLVqEgIAArFu3DocOHZIusVepVJg4cSLmzp0LDw8PuLu748MPP4SLi8sDr3IjIiIi5TA5CB06dAh9+/aVHlecUxMUFIRZs2bhhx9+AAB4eXnJttu1axf69OkDjUaDdevWYdasWSguLoa7uzsiIiJk5+bY2tpi+/btCAsLQ9euXeHg4IDo6GiEhoZKNT169MDatWsxY8YMvP/++/Dw8EBiYiI6deok1UydOhVFRUUIDQ1Ffn4+evbsiaSkJFhYWJg6bSIiImqA/tR9hBo63keIqGHjfYSIGqYn6j5CRERERE8qBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsk4PQ3r178fLLL8PFxQUqlQqJiYmy9UIIREdHw9nZGZaWlvDz80N2dras5tq1axgxYgS0Wi3s7OwQEhKCwsJCWc2xY8fQq1cvWFhYwNXVFfPnz680lg0bNqBdu3awsLCAp6cntm7davJYiIiISLlMDkJFRUXo0qUL4uLiqlw/f/58LF++HPHx8UhLS4O1tTX0ej1u374t1YwYMQInT55EcnIyNm/ejL179yI0NFRabzQa4e/vDzc3N6Snp2PBggWYNWsWPv/8c6lm3759GDZsGEJCQnDkyBEEBgYiMDAQJ06cMGksREREpFwqIYR45I1VKmzatAmBgYEA/ngHxsXFBZMmTcLkyZMBAAUFBXByckJCQgKGDh2K06dPo0OHDjh48CCef/55AEBSUhIGDhyICxcuwMXFBStWrMAHH3wAg8EAtVoNAJg+fToSExORmZkJABgyZAiKioqwefNmaTzdu3eHl5cX4uPjqzWWhzEajbC1tUVBQQG0Wu2jPk1E9IRKXTm5rodgMp+QhXU9BKInnil/v2v0HKHc3FwYDAb4+flJbba2tvD29kZqaioAIDU1FXZ2dlIIAgA/Pz+YmZkhLS1Nqundu7cUggBAr9cjKysL169fl2ru3k9FTcV+qjOWexUXF8NoNMoWIiIiarhqNAgZDAYAgJOTk6zdyclJWmcwGODo6Chb36hRI9jb28tqqurj7n3cr+bu9Q8by71iY2Nha2srLa6urtWYNREREdVXvGrsLlFRUSgoKJCWX3/9ta6HRERERLWoRoOQTqcDAOTl5cna8/LypHU6nQ6XL1+WrS8tLcW1a9dkNVX1cfc+7ldz9/qHjeVeGo0GWq1WthAREVHDVaNByN3dHTqdDikpKVKb0WhEWloafHx8AAA+Pj7Iz89Henq6VLNz506Ul5fD29tbqtm7dy/u3Lkj1SQnJ6Nt27Zo2rSpVHP3fipqKvZTnbEQERGRspkchAoLC5GRkYGMjAwAf5yUnJGRgfPnz0OlUmHixImYO3cufvjhBxw/fhwjR46Ei4uLdGVZ+/bt0b9/f4wdOxYHDhzAzz//jPDwcAwdOhQuLi4AgOHDh0OtViMkJAQnT57E+vXrsWzZMkRGRkrjmDBhApKSkrBo0SJkZmZi1qxZOHToEMLDwwGgWmMhIiIiZWtk6gaHDh1C3759pccV4SQoKAgJCQmYOnUqioqKEBoaivz8fPTs2RNJSUmwsLCQtvnmm28QHh6Ofv36wczMDIMGDcLy5cul9ba2tti+fTvCwsLQtWtXODg4IDo6WnavoR49emDt2rWYMWMG3n//fXh4eCAxMRGdOnWSaqozFiIiIlKuP3UfoYaO9xEiath4HyGihqnO7iNEREREVJ8wCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiNarrARAREVHNWJL8n7oegski/vpMne6f7wgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYtV4EGrZsiVUKlWlJSwsDADQp0+fSuveffddWR/nz59HQEAArKys4OjoiClTpqC0tFRWs3v3bjz33HPQaDRo06YNEhISKo0lLi4OLVu2hIWFBby9vXHgwIGani4RERHVYzV+1djBgwdRVlYmPT5x4gT++te/4s0335Taxo4di9mzZ0uPrayspH+XlZUhICAAOp0O+/btw6VLlzBy5Eg0btwY/+///T8AQG5uLgICAvDuu+/im2++QUpKCsaMGQNnZ2fo9XoAwPr16xEZGYn4+Hh4e3tj6dKl0Ov1yMrKgqOjY01Pm4iIqM51P/95XQ/hESys073X+DtCzZs3h06nk5bNmzejdevW8PX1lWqsrKxkNVqtVlq3fft2nDp1Cl9//TW8vLwwYMAAzJkzB3FxcSgpKQEAxMfHw93dHYsWLUL79u0RHh6ON954A0uWLJH6Wbx4McaOHYtRo0ahQ4cOiI+Ph5WVFVatWlXTUyYiIqJ6qlbPESopKcHXX3+N0aNHQ6VSSe3ffPMNHBwc0KlTJ0RFReHmzZvSutTUVHh6esLJyUlq0+v1MBqNOHnypFTj5+cn25der0dqaqq03/T0dFmNmZkZ/Pz8pJqqFBcXw2g0yhYiIiJquGr1hoqJiYnIz89HcHCw1DZ8+HC4ubnBxcUFx44dw7Rp05CVlYWNGzcCAAwGgywEAZAeGwyGB9YYjUbcunUL169fR1lZWZU1mZmZ9x1vbGwsYmJiHnm+REREVL/UahBauXIlBgwYABcXF6ktNDRU+renpyecnZ3Rr18/nDlzBq1bt67N4TxUVFQUIiMjpcdGoxGurq51OCIiIiKqTbUWhM6dO4cdO3ZI7/Tcj7e3NwAgJycHrVu3hk6nq3R1V15eHgBAp9NJ/61ou7tGq9XC0tIS5ubmMDc3r7Kmoo+qaDQaaDSa6k2QiIiI6r1aO0do9erVcHR0REBAwAPrMjIyAADOzs4AAB8fHxw/fhyXL1+WapKTk6HVatGhQwepJiUlRdZPcnIyfHx8AABqtRpdu3aV1ZSXlyMlJUWqISIiIqqVIFReXo7Vq1cjKCgIjRr9702nM2fOYM6cOUhPT8fZs2fxww8/YOTIkejduzc6d+4MAPD390eHDh3w9ttv4+jRo9i2bRtmzJiBsLAw6d2ad999F7/88gumTp2KzMxMfPrpp/j2228REREh7SsyMhJffPEF1qxZg9OnT2PcuHEoKirCqFGjamPKREREVA/VykdjO3bswPnz5zF69GhZu1qtxo4dO7B06VIUFRXB1dUVgwYNwowZM6Qac3NzbN68GePGjYOPjw+sra0RFBQku++Qu7s7tmzZgoiICCxbtgxPP/00vvzyS+keQgAwZMgQXLlyBdHR0TAYDPDy8kJSUlKlE6iJiIhIuVRCCFHXg3hSGY1G2NraoqCgQHavIyJqGFJXTq7rIZjMJ6Rubz5HTzb+TP/BlL/f/K4xIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUqwaD0KzZs2CSqWSLe3atZPW3759G2FhYWjWrBmaNGmCQYMGIS8vT9bH+fPnERAQACsrKzg6OmLKlCkoLS2V1ezevRvPPfccNBoN2rRpg4SEhEpjiYuLQ8uWLWFhYQFvb28cOHCgpqdLRERE9VitvCPUsWNHXLp0SVp++uknaV1ERAT+9a9/YcOGDdizZw8uXryI119/XVpfVlaGgIAAlJSUYN++fVizZg0SEhIQHR0t1eTm5iIgIAB9+/ZFRkYGJk6ciDFjxmDbtm1Szfr16xEZGYmZM2fi8OHD6NKlC/R6PS5fvlwbUyYiIqJ6qFaCUKNGjaDT6aTFwcEBAFBQUICVK1di8eLFePHFF9G1a1esXr0a+/btw/79+wEA27dvx6lTp/D111/Dy8sLAwYMwJw5cxAXF4eSkhIAQHx8PNzd3bFo0SK0b98e4eHheOONN7BkyRJpDIsXL8bYsWMxatQodOjQAfHx8bCyssKqVatqY8pERERUD9VKEMrOzoaLiwtatWqFESNG4Pz58wCA9PR03LlzB35+flJtu3bt0KJFC6SmpgIAUlNT4enpCScnJ6lGr9fDaDTi5MmTUs3dfVTUVPRRUlKC9PR0WY2ZmRn8/PykmqoUFxfDaDTKFiIiImq4ajwIeXt7IyEhAUlJSVixYgVyc3PRq1cv3LhxAwaDAWq1GnZ2drJtnJycYDAYAAAGg0EWgirWV6x7UI3RaMStW7fw+++/o6ysrMqaij6qEhsbC1tbW2lxdXV9pOeAiIiI6odGNd3hgAEDpH937twZ3t7ecHNzw7fffgtLS8ua3l2NioqKQmRkpPTYaDQyDBERETVgtX75vJ2dHZ555hnk5ORAp9OhpKQE+fn5spq8vDzodDoAgE6nq3QVWcXjh9VotVpYWlrCwcEB5ubmVdZU9FEVjUYDrVYrW4iIiKjhqvUgVFhYiDNnzsDZ2Rldu3ZF48aNkZKSIq3PysrC+fPn4ePjAwDw8fHB8ePHZVd3JScnQ6vVokOHDlLN3X1U1FT0oVar0bVrV1lNeXk5UlJSpBoiIiKiGg9CkydPxp49e3D27Fns27cPr732GszNzTFs2DDY2toiJCQEkZGR2LVrF9LT0zFq1Cj4+Pige/fuAAB/f3906NABb7/9No4ePYpt27ZhxowZCAsLg0ajAQC8++67+OWXXzB16lRkZmbi008/xbfffouIiAhpHJGRkfjiiy+wZs0anD59GuPGjUNRURFGjRpV01MmIiKieqrGzxG6cOEChg0bhqtXr6J58+bo2bMn9u/fj+bNmwMAlixZAjMzMwwaNAjFxcXQ6/X49NNPpe3Nzc2xefNmjBs3Dj4+PrC2tkZQUBBmz54t1bi7u2PLli2IiIjAsmXL8PTTT+PLL7+EXq+XaoYMGYIrV64gOjoaBoMBXl5eSEpKqnQCNRERESmXSggh6noQTyqj0QhbW1sUFBTwfCGiBih15eS6HoLJfEIW1vUQ6AnGn+k/mPL3m981RkRERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIpV40EoNjYWL7zwAmxsbODo6IjAwEBkZWXJavr06QOVSiVb3n33XVnN+fPnERAQACsrKzg6OmLKlCkoLS2V1ezevRvPPfccNBoN2rRpg4SEhErjiYuLQ8uWLWFhYQFvb28cOHCgpqdMRERE9VSNB6E9e/YgLCwM+/fvR3JyMu7cuQN/f38UFRXJ6saOHYtLly5Jy/z586V1ZWVlCAgIQElJCfbt24c1a9YgISEB0dHRUk1ubi4CAgLQt29fZGRkYOLEiRgzZgy2bdsm1axfvx6RkZGYOXMmDh8+jC5dukCv1+Py5cs1PW0iIiKqh1RCCFGbO7hy5QocHR2xZ88e9O7dG8Af7wh5eXlh6dKlVW7z448/4qWXXsLFixfh5OQEAIiPj8e0adNw5coVqNVqTJs2DVu2bMGJEyek7YYOHYr8/HwkJSUBALy9vfHCCy/gk08+AQCUl5fD1dUV48ePx/Tp0x86dqPRCFtbWxQUFECr1f6Zp4GInkCpKyfX9RBM5hOysK6HQE8w/kz/wZS/37V+jlBBQQEAwN7eXtb+zTffwMHBAZ06dUJUVBRu3rwprUtNTYWnp6cUggBAr9fDaDTi5MmTUo2fn5+sT71ej9TUVABASUkJ0tPTZTVmZmbw8/OTau5VXFwMo9EoW4iIiKjhalSbnZeXl2PixIn4y1/+gk6dOkntw4cPh5ubG1xcXHDs2DFMmzYNWVlZ2LhxIwDAYDDIQhAA6bHBYHhgjdFoxK1bt3D9+nWUlZVVWZOZmVnleGNjYxETE/PnJk1ERET1Rq0GobCwMJw4cQI//fSTrD00NFT6t6enJ5ydndGvXz+cOXMGrVu3rs0hPVBUVBQiIyOlx0ajEa6urnU2HiIiIqpdtRaEwsPDsXnzZuzduxdPP/30A2u9vb0BADk5OWjdujV0Ol2lq7vy8vIAADqdTvpvRdvdNVqtFpaWljA3N4e5uXmVNRV93Euj0UCj0VR/kkRERFSv1fg5QkIIhIeHY9OmTdi5cyfc3d0fuk1GRgYAwNnZGQDg4+OD48ePy67uSk5OhlarRYcOHaSalJQUWT/Jycnw8fEBAKjVanTt2lVWU15ejpSUFKmGiIiIlK3G3xEKCwvD2rVr8f3338PGxkY6p8fW1haWlpY4c+YM1q5di4EDB6JZs2Y4duwYIiIi0Lt3b3Tu3BkA4O/vjw4dOuDtt9/G/PnzYTAYMGPGDISFhUnv2Lz77rv45JNPMHXqVIwePRo7d+7Et99+iy1btkhjiYyMRFBQEJ5//nl069YNS5cuRVFREUaNGlXT0yYiIqJ6qMaD0IoVKwD8cYn83VavXo3g4GCo1Wrs2LFDCiWurq4YNGgQZsyYIdWam5tj8+bNGDduHHx8fGBtbY2goCDMnj1bqnF3d8eWLVsQERGBZcuW4emnn8aXX34JvV4v1QwZMgRXrlxBdHQ0DAYDvLy8kJSUVOkEaiIiIlKmWr+PUH3G+wgRNWy85wo1NPyZ/sMTdR8hIiIioicVgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKVaNf/s8ERFRQ7Ak+T91PQSTda/rAdRDfEeIiIiIFIvvCBEREVWh+/nP63oI9BjwHSEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUizeUJGIiGodv66CnlQMQkREVOt4l2Z6UjEI1aHUlZPreggm8wlZWNdDICIiqjE8R4iIiIgUi0GIiIiIFItBiIiIiBSL5wgREdUj9fHqK4BXYNGTi0GIiKge4dVXRDWLH40RERGRYjEIERERkWIxCBEREZFiMQgRERGRYvFkaSKqEfXxTulERAxCRE+g+niJNC+PJqL6SBFBKC4uDgsWLIDBYECXLl3w8ccfo1u3bnU9LKL74iXSRESPR4MPQuvXr0dkZCTi4+Ph7e2NpUuXQq/XIysrC46OjnU9vHqnXr5TwVBBRET30eCD0OLFizF27FiMGjUKABAfH48tW7Zg1apVmD59eh2Prv5hqCAiooakQQehkpISpKenIyoqSmozMzODn58fUlNTK9UXFxejuLhYelxQUAAAMBqNtTK+olvFDy8iIiJqwGrjb2xFn0KIh9Y26CD0+++/o6ysDE5OTrJ2JycnZGZmVqqPjY1FTExMpXZXV9daGyMREZGijf+k1rq+ceMGbG1tH1jToIOQqaKiohAZGSk9Li8vx7Vr19CsWTOoVKoa3ZfRaISrqyt+/fVXaLXaGu37SdDQ5wc0/DlyfvVfQ58j51f/1dYchRC4ceMGXFxcHlrboIOQg4MDzM3NkZeXJ2vPy8uDTqerVK/RaKDRaGRtdnZ2tTlEaLXaBvsDDjT8+QENf46cX/3X0OfI+dV/tTHHh70TVKFB31larVaja9euSElJkdrKy8uRkpICHx+fOhwZERERPQka9DtCABAZGYmgoCA8//zz6NatG5YuXYqioiLpKjIiIiJSrgYfhIYMGYIrV64gOjoaBoMBXl5eSEpKqnQC9eOm0Wgwc+bMSh/FNRQNfX5Aw58j51f/NfQ5cn7135MwR5WozrVlRERERA1Qgz5HiIiIiOhBGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEaslHH32EHj16wMrKqtp3pxZCIDo6Gs7OzrC0tISfnx+ys7NlNdeuXcOIESOg1WphZ2eHkJAQFBYW1sIMHs7UsZw9exYqlarKZcOGDVJdVevXrVv3OKYk8yjPdZ8+fSqN/d1335XVnD9/HgEBAbCysoKjoyOmTJmC0tLS2pxKlUyd37Vr1zB+/Hi0bdsWlpaWaNGiBd577z3py4kr1OXxi4uLQ8uWLWFhYQFvb28cOHDggfUbNmxAu3btYGFhAU9PT2zdulW2vjqvycfJlPl98cUX6NWrF5o2bYqmTZvCz8+vUn1wcHClY9W/f//ansYDmTLHhISESuO3sLCQ1dTnY1jV7xOVSoWAgACp5kk6hnv37sXLL78MFxcXqFQqJCYmPnSb3bt347nnnoNGo0GbNm2QkJBQqcbU17XJBNWK6OhosXjxYhEZGSlsbW2rtc28efOEra2tSExMFEePHhWvvPKKcHd3F7du3ZJq+vfvL7p06SL2798v/v3vf4s2bdqIYcOG1dIsHszUsZSWlopLly7JlpiYGNGkSRNx48YNqQ6AWL16tazu7ufgcXmU59rX11eMHTtWNvaCggJpfWlpqejUqZPw8/MTR44cEVu3bhUODg4iKiqqtqdTianzO378uHj99dfFDz/8IHJyckRKSorw8PAQgwYNktXV1fFbt26dUKvVYtWqVeLkyZNi7Nixws7OTuTl5VVZ//PPPwtzc3Mxf/58cerUKTFjxgzRuHFjcfz4cammOq/Jx8XU+Q0fPlzExcWJI0eOiNOnT4vg4GBha2srLly4INUEBQWJ/v37y47VtWvXHteUKjF1jqtXrxZarVY2foPBIKupz8fw6tWrsrmdOHFCmJubi9WrV0s1T9Ix3Lp1q/jggw/Exo0bBQCxadOmB9b/8ssvwsrKSkRGRopTp06Jjz/+WJibm4ukpCSpxtTn7FEwCNWy1atXVysIlZeXC51OJxYsWCC15efnC41GI/7v//5PCCHEqVOnBABx8OBBqebHH38UKpVK/PbbbzU+9gepqbF4eXmJ0aNHy9qq8wKqbY86P19fXzFhwoT7rt+6daswMzOT/bJesWKF0Gq1ori4uEbGXh01dfy+/fZboVarxZ07d6S2ujp+3bp1E2FhYdLjsrIy4eLiImJjY6usHzx4sAgICJC1eXt7i3feeUcIUb3X5ONk6vzuVVpaKmxsbMSaNWuktqCgIPHqq6/W9FAfmalzfNjv14Z2DJcsWSJsbGxEYWGh1PakHcMK1fk9MHXqVNGxY0dZ25AhQ4Rer5ce/9nnrDr40dgTIjc3FwaDAX5+flKbra0tvL29kZqaCgBITU2FnZ0dnn/+eanGz88PZmZmSEtLe6zjrYmxpKenIyMjAyEhIZXWhYWFwcHBAd26dcOqVasgHvN9P//M/L755hs4ODigU6dOiIqKws2bN2X9enp6yu5srtfrYTQacfLkyZqfyH3U1M9SQUEBtFotGjWS36T+cR+/kpISpKeny14/ZmZm8PPzk14/90pNTZXVA38ci4r66rwmH5dHmd+9bt68iTt37sDe3l7Wvnv3bjg6OqJt27YYN24crl69WqNjr65HnWNhYSHc3Nzg6uqKV199VfY6amjHcOXKlRg6dCisra1l7U/KMTTVw16DNfGcVUeD/4qN+sJgMABApa/+cHJyktYZDAY4OjrK1jdq1Aj29vZSzeNSE2NZuXIl2rdvjx49esjaZ8+ejRdffBFWVlbYvn07/va3v6GwsBDvvfdejY3/YR51fsOHD4ebmxtcXFxw7NgxTJs2DVlZWdi4caPUb1XHuGLd41ITx+/333/HnDlzEBoaKmuvi+P3+++/o6ysrMrnNjMzs8pt7ncs7n69VbTdr+ZxeZT53WvatGlwcXGR/VHp378/Xn/9dbi7u+PMmTN4//33MWDAAKSmpsLc3LxG5/AwjzLHtm3bYtWqVejcuTMKCgqwcOFC9OjRAydPnsTTTz/doI7hgQMHcOLECaxcuVLW/iQdQ1Pd7zVoNBpx69YtXL9+/U//3FcHg5AJpk+fjr///e8PrDl9+jTatWv3mEZU86o7xz/r1q1bWLt2LT788MNK6+5ue/bZZ1FUVIQFCxbUyB/S2p7f3aHA09MTzs7O6NevH86cOYPWrVs/cr/V9biOn9FoREBAADp06IBZs2bJ1tXm8aNHM2/ePKxbtw67d++WnUw8dOhQ6d+enp7o3LkzWrdujd27d6Nfv351MVST+Pj4wMfHR3rco0cPtG/fHp999hnmzJlThyOreStXroSnpye6desma6/vx/BJwCBkgkmTJiE4OPiBNa1atXqkvnU6HQAgLy8Pzs7OUnteXh68vLykmsuXL8u2Ky0txbVr16Tt/6zqzvHPjuW7777DzZs3MXLkyIfWent7Y86cOSguLv7TX8z3uOZXwdvbGwCQk5OD1q1bQ6fTVbriIS8vDwBq5Bg+jvnduHED/fv3h42NDTZt2oTGjRs/sL4mj9/9ODg4wNzcXHouK+Tl5d13Pjqd7oH11XlNPi6PMr8KCxcuxLx587Bjxw507tz5gbWtWrWCg4MDcnJyHvsf0T8zxwqNGzfGs88+i5ycHAAN5xgWFRVh3bp1mD179kP3U5fH0FT3ew1qtVpYWlrC3Nz8T/9MVEuNnW1EVTL1ZOmFCxdKbQUFBVWeLH3o0CGpZtu2bXV6svSjjsXX17fS1Ub3M3fuXNG0adNHHuujqKnn+qeffhIAxNGjR4UQ/ztZ+u4rHj777DOh1WrF7du3a24CD/Go8ysoKBDdu3cXvr6+oqioqFr7elzHr1u3biI8PFx6XFZWJp566qkHniz90ksvydp8fHwqnSz9oNfk42Tq/IQQ4u9//7vQarUiNTW1Wvv49ddfhUqlEt9///2fHu+jeJQ53q20tFS0bdtWRERECCEaxjEU4o+/IxqNRvz+++8P3UddH8MKqObJ0p06dZK1DRs2rNLJ0n/mZ6JaY62xnkjm3Llz4siRI9Ll4UeOHBFHjhyRXSbetm1bsXHjRunxvHnzhJ2dnfj+++/FsWPHxKuvvlrl5fPPPvusSEtLEz/99JPw8PCo08vnHzSWCxcuiLZt24q0tDTZdtnZ2UKlUokff/yxUp8//PCD+OKLL8Tx48dFdna2+PTTT4WVlZWIjo6u9fncy9T55eTkiNmzZ4tDhw6J3Nxc8f3334tWrVqJ3r17S9tUXD7v7+8vMjIyRFJSkmjevHmdXT5vyvwKCgqEt7e38PT0FDk5ObLLdUtLS4UQdXv81q1bJzQajUhISBCnTp0SoaGhws7OTrpC7+233xbTp0+X6n/++WfRqFEjsXDhQnH69Gkxc+bMKi+ff9hr8nExdX7z5s0TarVafPfdd7JjVfE76MaNG2Ly5MkiNTVV5Obmih07dojnnntOeHh4PNZQ/mfmGBMTI7Zt2ybOnDkj0tPTxdChQ4WFhYU4efKkVFOfj2GFnj17iiFDhlRqf9KO4Y0bN6S/dQDE4sWLxZEjR8S5c+eEEEJMnz5dvP3221J9xeXzU6ZMEadPnxZxcXFVXj7/oOesJjAI1ZKgoCABoNKya9cuqQb/vd9KhfLycvHhhx8KJycnodFoRL9+/URWVpas36tXr4phw4aJJk2aCK1WK0aNGiULV4/Tw8aSm5tbac5CCBEVFSVcXV1FWVlZpT5//PFH4eXlJZo0aSKsra1Fly5dRHx8fJW1tc3U+Z0/f1707t1b2NvbC41GI9q0aSOmTJkiu4+QEEKcPXtWDBgwQFhaWgoHBwcxadIk2eXnj4up89u1a1eVP9MARG5urhCi7o/fxx9/LFq0aCHUarXo1q2b2L9/v7TO19dXBAUFyeq//fZb8cwzzwi1Wi06duwotmzZIltfndfk42TK/Nzc3Ko8VjNnzhRCCHHz5k3h7+8vmjdvLho3bizc3NzE2LFja/QPzKMwZY4TJ06Uap2cnMTAgQPF4cOHZf3V52MohBCZmZkCgNi+fXulvp60Y3i/3xEVcwoKChK+vr6VtvHy8hJqtVq0atVK9jexwoOes5qgEuIxX5dMRERE9ITgfYSIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLH+P0P5PlGtdpYcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAATMJJREFUeJzt3XtYFPX+B/D3gu5ykV1EhJVExEteUYoSMRVNDqvRhbK8VqCo6UFLyBtleO3BvGuidFGxU/40S7HUUMTUk66YKN7hoKFmuniFVVQQ+P7+6DCHEVRWQZR5v55nntyZz8x8vjss+253ZlAJIQSIiIiIFMiquhsgIiIiqi4MQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCRFTjbN++HSqVCtu3b6/U7apUKkyePLlSt0lE1YtBiIiolE2bNj3xYWflypWYP39+dbchWbJkCd566y00atQIKpUKoaGh5dYlJydj8ODBePrpp2FnZ4cmTZpgyJAhOH/+vMX73LlzJ1599VW4u7vDxsYGer0ePXv2xK5dux5yNFTT1KruBoiIHiebNm1CbGxsuWHo5s2bqFXr8f+1uXLlShw5cgSjR4+u7lYAAJ999hmuXbuGDh063DPUjB8/HleuXMFbb72F5s2b448//sCiRYuwYcMGpKWlQa/XV3if//nPf2BlZYXhw4dDr9fj6tWr+Pbbb9G1a1ds3LgRPXv2rIyhUQ3w+L+iiRQkLy8P9vb21d1Gtblx4wbs7OzKzC8sLERxcTHUanU1dPU/NjY21br/J9WOHTukT4Pq1Klz17q5c+eic+fOsLL635cVPXv2hL+/PxYtWoTp06dXeJ9DhgzBkCFDZPP++c9/okmTJpg/fz6DEEn41Rgp3uTJk6FSqZCeno4+ffpAq9WiXr16+OCDD3Dr1i1Z7bfffgsfHx/Y2trCyckJ/fr1w59//imr+fe//y19DaDRaODu7o6IiAjcvHlTVhcaGoo6derg5MmTeOmll+Dg4ICBAwcCADIzM9G7d2/o9XrY2NigYcOG6NevH3Jzc6X1CwsLMW3aNDRt2hQajQaNGzfGRx99hPz8fNl+GjdujJdffhm//fYbOnToABsbGzRp0gTffPPNAz1f3377LTp06AA7OzvUrVsXXbt2xZYtW2Q1ixcvRps2baDRaODm5obw8HDk5OTIarp164a2bdsiNTUVXbt2hZ2dHT766COcOnUKKpUKs2fPxvz586XxHTt2DACQnp6ON998E05OTrCxscFzzz2Hn3766b59V+S4hIaGIjY2FsDf5wOVTCXKO0fowIED6NWrF7RaLerUqYMePXpgz549spr4+HioVCrs2rULkZGRqF+/Puzt7fH666/j4sWLstp9+/bBYDDA2dkZtra28PT0xODBg+87vtLP68aNG3H69Gmp/8aNG0vLL1y4gLCwMLi6usLGxgbt27fHihUrZNsofQzmzZsHDw8P2Nrawt/fH0eOHKlwLyU8PDxkz+PddO3aVRaCSuY5OTnh+PHjFu/3TnZ2dqhfv36Zn0VSNn4iRPRfffr0QePGjRETE4M9e/Zg4cKFuHr1qhQYPv30U3zyySfo06cPhgwZgosXL+Lzzz9H165dceDAATg6OgIA1qxZgxs3bmDEiBGoV68e9u7di88//xxnz57FmjVrZPssLCyEwWBA586dMXv2bNjZ2aGgoAAGgwH5+fkYNWoU9Ho9/vrrL2zYsAE5OTnQ6XQA/v4/3hUrVuDNN9/Ehx9+iJSUFMTExOD48eNYt26dbD8nTpzAm2++ibCwMISEhGDZsmUIDQ2Fj48P2rRpU+HnaMqUKZg8eTI6deqEqVOnQq1WIyUlBdu2bUNgYCCAv4PllClTEBAQgBEjRiAjIwNLlizB77//jl27dqF27drS9i5fvoxevXqhX79+ePvtt+Hq6iotW758OW7duoVhw4ZBo9HAyckJR48exQsvvICnnnoKEyZMgL29Pb7//nsEBwfjxx9/xOuvv37X3ityXN577z2cO3cOSUlJ+Ne//nXf5+Po0aPo0qULtFotxo0bh9q1a+OLL75At27dsGPHDvj6+srqR40ahbp162LSpEk4deoU5s+fj5EjR2L16tUA/g4pgYGBqF+/PiZMmABHR0ecOnUKa9eurfAx+vjjj5Gbm4uzZ89i3rx5ACB9CnPz5k1069YNJ06cwMiRI+Hp6Yk1a9YgNDQUOTk5+OCDD2Tb+uabb3Dt2jWEh4fj1q1bWLBgAV588UUcPnxYdqyq0vXr13H9+nU4Ozs/0PpmsxkFBQW4dOkSvvnmGxw5cgQfffRRJXdJTzRBpHCTJk0SAMSrr74qm//Pf/5TABAHDx4Up06dEtbW1uLTTz+V1Rw+fFjUqlVLNv/GjRtl9hETEyNUKpU4ffq0NC8kJEQAEBMmTJDVHjhwQAAQa9asuWvPaWlpAoAYMmSIbP6YMWMEALFt2zZpnoeHhwAgdu7cKc27cOGC0Gg04sMPP7zrPu6UmZkprKysxOuvvy6Kiopky4qLi6XtqtVqERgYKKtZtGiRACCWLVsmzfP39xcARFxcnGxbWVlZAoDQarXiwoULsmU9evQQXl5e4tatW7J9d+rUSTRv3lya9+uvvwoA4tdff5XmVfS4hIeHi7v9agQgJk2aJD0ODg4WarVanDx5Upp37tw54eDgILp27SrNW758uQAgAgICpOdKCCEiIiKEtbW1yMnJEUIIsW7dOgFA/P777+Xuv6KCgoKEh4dHmfnz588XAMS3334rzSsoKBB+fn6iTp06wmw2CyH+dwxsbW3F2bNnpdqUlBQBQERERDxwb/b29iIkJKTC9dOmTRMARHJy8gPtz2AwCAACgFCr1eK9994TN2/efKBtUc3Er8aI/is8PFz2eNSoUQD+Pnl27dq1KC4uRp8+fXDp0iVp0uv1aN68OX799VdpPVtbW+nfeXl5uHTpEjp16gQhBA4cOFBmvyNGjJA9LvnEZ/Pmzbhx40a5vW7atAkAEBkZKZv/4YcfAgA2btwom9+6dWt06dJFely/fn20aNECf/zxR7nbL09CQgKKi4sRHR1d5uuLkq89tm7dioKCAowePVpWM3ToUGi12jJ9aTQaDBo0qNz99e7dG/Xr15ceX7lyBdu2bUOfPn1w7do16RhcvnwZBoMBmZmZ+Ouvv+7av6XH5X6KioqwZcsWBAcHo0mTJtL8Bg0aYMCAAfjtt99gNptl6wwbNkz2FVGXLl1QVFSE06dPA4D0qeKGDRtw+/Zti3u6n02bNkGv16N///7SvNq1a+P999/H9evXsWPHDll9cHAwnnrqKelxhw4d4OvrK/38VbWdO3diypQp6NOnD1588cUH2saMGTOwZcsWLF26FB07dkRBQQEKCwsruVN6kjEIEf1X8+bNZY+bNm0KKysrnDp1CpmZmRBCoHnz5qhfv75sOn78OC5cuCCtd+bMGYSGhsLJyQl16tRB/fr14e/vDwCyc3wAoFatWmjYsKFsnqenJyIjI/H111/D2dkZBoMBsbGxsnVPnz4NKysrNGvWTLauXq+Ho6Oj9MZaolGjRmXGW7duXVy9erXCz8/JkydhZWWF1q1b37WmZL8tWrSQzVer1WjSpEmZvp566qm7ngDt6ekpe3zixAkIIfDJJ5+UOQaTJk0CANlxuJMlx6UiLl68iBs3bpQZKwC0atUKxcXFZc4fu/M41K1bFwCk4+Dv74/evXtjypQpcHZ2xmuvvYbly5eXOe/rQZ0+fRrNmzcvE2RbtWolLS/tztcEADz99NM4depUpfRzL+np6Xj99dfRtm1bfP311w+8HW9vb/zjH//A4MGDkZSUhL1799718n1SJp4jRHQXpf/Pvbi4GCqVCr/88gusra3L1Jacg1FUVIR//OMfuHLlCsaPH4+WLVvC3t4ef/31F0JDQ1FcXCxbT6PRlHlTAoA5c+YgNDQU69evx5YtW/D+++9L5y6VDk4VOQEVQLk9A4AQokLrV5XSn9Lcb1nJczdmzBgYDIZy17kzGJaw9LhUlfsdB5VKhR9++AF79uzBzz//jM2bN2Pw4MGYM2cO9uzZc88rrmqSP//8E4GBgdDpdNi0aRMcHBwqZbtqtRqvvvoqZsyYgZs3b97z54+Ug0GI6L8yMzNln0KcOHECxcXFaNy4MaytrSGEgKenJ55++um7buPw4cP4z3/+gxUrVuDdd9+V5iclJVncj5eXF7y8vDBx4kTs3r0bL7zwAuLi4jB9+nR4eHiguLgYmZmZ0v/NA0B2djZycnLg4eFh8f7up2nTpiguLsaxY8fg7e1dbk3JfjMyMmRfFxUUFCArKwsBAQEPvP+S7dWuXdvi7VhyXCoaLuvXrw87OztkZGSUWZaeng4rKyu4u7tb1GeJjh07omPHjvj000+xcuVKDBw4EKtWrSpzOfjd3G0MHh4eOHToEIqLi2UBPD09XVpeWmZmZplt/Oc//5FdhVbZLl++jMDAQOTn5yM5ORkNGjSo1O3fvHkTQghcu3aNQYgA8KsxIknJZdMlPv/8cwBAr1698MYbb8Da2hpTpkwp8ymKEAKXL18G8L//4y9dI4TAggULKtyH2Wwucw6Dl5cXrKyspK9IXnrpJQAoc/fguXPnAgCCgoIqvL+KCg4OhpWVFaZOnVrmE5SS8QYEBECtVmPhwoWy52Dp0qXIzc19qL5cXFzQrVs3fPHFF+XelO/Oy9BLs+S4lNzH6X6XWFtbWyMwMBDr16+XfVWUnZ2NlStXonPnztBqtffcxp2uXr1a5uerJHRa8vWYvb19uV/3vfTSSzCZTNJVasDfVy5+/vnnqFOnjvRVYYmEhATZeVd79+5FSkoKevXqVeFeLJGXl4eXXnoJf/31FzZt2lTuV3MVVd7XpDk5Ofjxxx/h7u4OFxeXh2mVahB+IkT0X1lZWXj11VfRs2dPGI1GfPvttxgwYADat28PAJg+fTqioqJw6tQpBAcHw8HBAVlZWVi3bh2GDRuGMWPGoGXLlmjatCnGjBmDv/76C1qtFj/++KNF5+Js27YNI0eOxFtvvYWnn34ahYWF+Ne//gVra2v07t0bANC+fXuEhITgyy+/RE5ODvz9/bF3716sWLECwcHB6N69e6U/P82aNcPHH3+MadOmoUuXLnjjjTeg0Wjw+++/w83NDTExMahfvz6ioqIwZcoU9OzZE6+++ioyMjKwePFiPP/883j77bcfqofY2Fh07twZXl5eGDp0KJo0aYLs7GwYjUacPXsWBw8eLHc9S46Lj48PAOD999+HwWCAtbU1+vXrV+52p0+fjqSkJHTu3Bn//Oc/UatWLXzxxRfIz8/HzJkzLR7fihUrsHjxYrz++uto2rQprl27hq+++gparVYKvxXh4+OD1atXIzIyEs8//zzq1KmDV155BcOGDcMXX3yB0NBQpKamonHjxvjhhx+wa9cuzJ8/v8xXUM2aNUPnzp0xYsQI5OfnY/78+ahXrx7GjRtn0bh+/vln6djcvn0bhw4dkm6O+Oqrr6Jdu3YAgIEDB2Lv3r0YPHgwjh8/Lrt3UJ06dRAcHFzhffbq1QsNGzaEr68vXFxccObMGSxfvhznzp2TBUEiXj5Pildy+fyxY8fEm2++KRwcHETdunXFyJEjy1xm++OPP4rOnTsLe3t7YW9vL1q2bCnCw8NFRkaGVHPs2DEREBAg6tSpI5ydncXQoUPFwYMHBQCxfPlyqS4kJETY29uX6eePP/4QgwcPFk2bNhU2NjbCyclJdO/eXWzdulVWd/v2bTFlyhTh6ekpateuLdzd3UVUVJTs0nIh/r58PigoqMx+/P39hb+/v8XP17Jly8QzzzwjNBqNqFu3rvD39xdJSUmymkWLFomWLVuK2rVrC1dXVzFixAhx9erVMvtv06ZNme2XXLo9a9ascvd/8uRJ8e677wq9Xi9q164tnnrqKfHyyy+LH374Qaop7/L5ih6XwsJCMWrUKFG/fn2hUqlkl9LjjsvnhRBi//79wmAwiDp16gg7OzvRvXt3sXv3bllNyeXzd14Wf2ef+/fvF/379xeNGjUSGo1GuLi4iJdfflns27ev3Ofibq5fvy4GDBggHB0dBQDZpfTZ2dli0KBBwtnZWajVauHl5SUbvxDyYzBnzhzh7u4uNBqN6NKlizh48KBFvQjxv1tFlDeV3nfJrR7Km8q7HcC9LFq0SHTu3Fk4OzuLWrVqifr164tXXnlFdhsJIiGEUAlRzWdLElWzkhsAXrx48YFv2kZUk5w6dQqenp6YNWsWxowZU93tEFUpniNEREREisVzhIgIJpPpnsttbW2lGz1S9bly5QoKCgruutza2lp2E8qqVFBQgCtXrtyzRqfTVfqVWbm5uWX+bt+dLPkr9UQMQkR030uUQ0JCEB8f/2iaobt64403ytz9uTQPD49HcrNDANi9e/d9T8pfvnx5pd+88IMPPijzR2LvxDM+yBI8R4iIsHXr1nsud3Nzu+cdpenRSE1NvecViLa2tnjhhRceSS9Xr15FamrqPWvatGlT6fcBOnbsGM6dO3fPmoe5XxUpD4MQERERKRZPliYiIiLF4jlC91BcXIxz587BwcGhwrfdJyIiouol/vtnVNzc3Mr9e46lMQjdw7lz5x74bwURERFR9frzzz9lf6i6PAxC91Byu/k///zT4r8ZRERERNXDbDbD3d29zJ+NKQ+D0D2UfB2m1WoZhIiIiJ4wFTmthSdLExERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFi1aruBoiIqs2vMdXdgeW6R1V3B0Q1Cj8RIiIiIsViECIiIiLFYhAiIiIixeI5QkSkWMY/Lld3Cxbz617dHRDVLPxEiIiIiBTLoiAUExOD559/Hg4ODnBxcUFwcDAyMjJkNbdu3UJ4eDjq1auHOnXqoHfv3sjOzpbVnDlzBkFBQbCzs4OLiwvGjh2LwsJCWc327dvx7LPPQqPRoFmzZoiPjy/TT2xsLBo3bgwbGxv4+vpi7969FvdCREREymVRENqxYwfCw8OxZ88eJCUl4fbt2wgMDEReXp5UExERgZ9//hlr1qzBjh07cO7cObzxxhvS8qKiIgQFBaGgoAC7d+/GihUrEB8fj+joaKkmKysLQUFB6N69O9LS0jB69GgMGTIEmzdvlmpWr16NyMhITJo0Cfv370f79u1hMBhw4cKFCvdCREREyqYSQogHXfnixYtwcXHBjh070LVrV+Tm5qJ+/fpYuXIl3nzzTQBAeno6WrVqBaPRiI4dO+KXX37Byy+/jHPnzsHV1RUAEBcXh/Hjx+PixYtQq9UYP348Nm7ciCNHjkj76tevH3JycpCYmAgA8PX1xfPPP49FixYBAIqLi+Hu7o5Ro0ZhwoQJFerlfsxmM3Q6HXJzc6HVah/0aSKix5Rx6ZjqbsFifmGzq7sFoseeJe/fD3WOUG5uLgDAyckJAJCamorbt28jICBAqmnZsiUaNWoEo9EIADAajfDy8pJCEAAYDAaYzWYcPXpUqim9jZKakm0UFBQgNTVVVmNlZYWAgACppiK93Ck/Px9ms1k2ERERUc31wEGouLgYo0ePxgsvvIC2bdsCAEwmE9RqNRwdHWW1rq6uMJlMUk3pEFSyvGTZvWrMZjNu3ryJS5cuoaioqNya0tu4Xy93iomJgU6nkyZ3d/cKPhtERET0JHrgIBQeHo4jR45g1apVldlPtYqKikJubq40/fnnn9XdEhEREVWhB7qP0MiRI7Fhwwbs3LkTDRs2lObr9XoUFBQgJydH9klMdnY29Hq9VHPn1V0lV3KVrrnz6q7s7GxotVrY2trC2toa1tbW5daU3sb9ermTRqOBRqOx4JkgIiKiJ5lFnwgJITBy5EisW7cO27Ztg6enp2y5j48PateujeTkZGleRkYGzpw5Az8/PwCAn58fDh8+LLu6KykpCVqtFq1bt5ZqSm+jpKZkG2q1Gj4+PrKa4uJiJCcnSzUV6YWIiIiUzaJPhMLDw7Fy5UqsX78eDg4O0rk2Op0Otra20Ol0CAsLQ2RkJJycnKDVajFq1Cj4+flJV2kFBgaidevWeOeddzBz5kyYTCZMnDgR4eHh0qcxw4cPx6JFizBu3DgMHjwY27Ztw/fff4+NGzdKvURGRiIkJATPPfccOnTogPnz5yMvLw+DBg2SerpfL0RERKRsFgWhJUuWAAC6desmm798+XKEhoYCAObNmwcrKyv07t0b+fn5MBgMWLx4sVRrbW2NDRs2YMSIEfDz84O9vT1CQkIwdepUqcbT0xMbN25EREQEFixYgIYNG+Lrr7+GwWCQavr27YuLFy8iOjoaJpMJ3t7eSExMlJ1Afb9eiIiISNke6j5CNR3vI0RUs/E+QkQ10yO7jxARERHRk4xBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBTL4iC0c+dOvPLKK3Bzc4NKpUJCQoJsuUqlKneaNWuWVNO4ceMyy2fMmCHbzqFDh9ClSxfY2NjA3d0dM2fOLNPLmjVr0LJlS9jY2MDLywubNm2SLRdCIDo6Gg0aNICtrS0CAgKQmZlp6ZCJiIiohrI4COXl5aF9+/aIjY0td/n58+dl07Jly6BSqdC7d29Z3dSpU2V1o0aNkpaZzWYEBgbCw8MDqampmDVrFiZPnowvv/xSqtm9ezf69++PsLAwHDhwAMHBwQgODsaRI0ekmpkzZ2LhwoWIi4tDSkoK7O3tYTAYcOvWLUuHTURERDVQLUtX6NWrF3r16nXX5Xq9XvZ4/fr16N69O5o0aSKb7+DgUKa2xHfffYeCggIsW7YMarUabdq0QVpaGubOnYthw4YBABYsWICePXti7NixAIBp06YhKSkJixYtQlxcHIQQmD9/PiZOnIjXXnsNAPDNN9/A1dUVCQkJ6Nevn6VDJyIiohqmSs8Rys7OxsaNGxEWFlZm2YwZM1CvXj0888wzmDVrFgoLC6VlRqMRXbt2hVqtluYZDAZkZGTg6tWrUk1AQIBsmwaDAUajEQCQlZUFk8kkq9HpdPD19ZVq7pSfnw+z2SybiIiIqOay+BMhS6xYsQIODg544403ZPPff/99PPvss3BycsLu3bsRFRWF8+fPY+7cuQAAk8kET09P2Tqurq7Ssrp168JkMknzSteYTCaprvR65dXcKSYmBlOmTHnA0RIREdGTpkqD0LJlyzBw4EDY2NjI5kdGRkr/bteuHdRqNd577z3ExMRAo9FUZUv3FBUVJevNbDbD3d292vohIiKiqlVlX439+9//RkZGBoYMGXLfWl9fXxQWFuLUqVMA/j7PKDs7W1ZT8rjkvKK71ZReXnq98mrupNFooNVqZRMRERHVXFUWhJYuXQofHx+0b9/+vrVpaWmwsrKCi4sLAMDPzw87d+7E7du3pZqkpCS0aNECdevWlWqSk5Nl20lKSoKfnx8AwNPTE3q9XlZjNpuRkpIi1RAREZGyWfzV2PXr13HixAnpcVZWFtLS0uDk5IRGjRoB+DtwrFmzBnPmzCmzvtFoREpKCrp37w4HBwcYjUZERETg7bfflkLOgAEDMGXKFISFhWH8+PE4cuQIFixYgHnz5knb+eCDD+Dv7485c+YgKCgIq1atwr59+6RL7FUqFUaPHo3p06ejefPm8PT0xCeffAI3NzcEBwdbOmwiIiKqgSwOQvv27UP37t2lxyXn1ISEhCA+Ph4AsGrVKggh0L9//zLrazQarFq1CpMnT0Z+fj48PT0REREhOzdHp9Nhy5YtCA8Ph4+PD5ydnREdHS1dOg8AnTp1wsqVKzFx4kR89NFHaN68ORISEtC2bVupZty4ccjLy8OwYcOQk5ODzp07IzExscw5S0RERKRMKiGEqO4mHldmsxk6nQ65ubk8X4ioBjIuHVPdLVjML2x2dbdA9Niz5P2bf2uMiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBTL4iC0c+dOvPLKK3Bzc4NKpUJCQoJseWhoKFQqlWzq2bOnrObKlSsYOHAgtFotHB0dERYWhuvXr8tqDh06hC5dusDGxgbu7u6YOXNmmV7WrFmDli1bwsbGBl5eXti0aZNsuRAC0dHRaNCgAWxtbREQEIDMzExLh0xEREQ1lMVBKC8vD+3bt0dsbOxda3r27Inz589L0//93//Jlg8cOBBHjx5FUlISNmzYgJ07d2LYsGHScrPZjMDAQHh4eCA1NRWzZs3C5MmT8eWXX0o1u3fvRv/+/REWFoYDBw4gODgYwcHBOHLkiFQzc+ZMLFy4EHFxcUhJSYG9vT0MBgNu3bpl6bCJiIioBlIJIcQDr6xSYd26dQgODpbmhYaGIicnp8wnRSWOHz+O1q1b4/fff8dzzz0HAEhMTMRLL72Es2fPws3NDUuWLMHHH38Mk8kEtVoNAJgwYQISEhKQnp4OAOjbty/y8vKwYcMGadsdO3aEt7c34uLiIISAm5sbPvzwQ4wZMwYAkJubC1dXV8THx6Nfv373HZ/ZbIZOp0Nubi60Wu2DPEVE9BgzLh1T3S1YzC9sdnW3QPTYs+T9u0rOEdq+fTtcXFzQokULjBgxApcvX5aWGY1GODo6SiEIAAICAmBlZYWUlBSppmvXrlIIAgCDwYCMjAxcvXpVqgkICJDt12AwwGg0AgCysrJgMplkNTqdDr6+vlLNnfLz82E2m2UTERER1VyVHoR69uyJb775BsnJyfjss8+wY8cO9OrVC0VFRQAAk8kEFxcX2Tq1atWCk5MTTCaTVOPq6iqrKXl8v5rSy0uvV17NnWJiYqDT6aTJ3d3d4vETERHRk6NWZW+w9FdOXl5eaNeuHZo2bYrt27ejR48elb27ShUVFYXIyEjpsdlsZhgiIiKqwar88vkmTZrA2dkZJ06cAADo9XpcuHBBVlNYWIgrV65Ar9dLNdnZ2bKaksf3qym9vPR65dXcSaPRQKvVyiYiIiKquao8CJ09exaXL19GgwYNAAB+fn7IyclBamqqVLNt2zYUFxfD19dXqtm5cydu374t1SQlJaFFixaoW7euVJOcnCzbV1JSEvz8/AAAnp6e0Ov1shqz2YyUlBSphoiIiJTN4iB0/fp1pKWlIS0tDcDfJyWnpaXhzJkzuH79OsaOHYs9e/bg1KlTSE5OxmuvvYZmzZrBYDAAAFq1aoWePXti6NCh2Lt3L3bt2oWRI0eiX79+cHNzAwAMGDAAarUaYWFhOHr0KFavXo0FCxbIvrb64IMPkJiYiDlz5iA9PR2TJ0/Gvn37MHLkSAB/X9E2evRoTJ8+HT/99BMOHz6Md999F25ubrKr3IiIiEi5LD5HaN++fejevbv0uCSchISEYMmSJTh06BBWrFiBnJwcuLm5ITAwENOmTYNGo5HW+e677zBy5Ej06NEDVlZW6N27NxYuXCgt1+l02LJlC8LDw+Hj4wNnZ2dER0fL7jXUqVMnrFy5EhMnTsRHH32E5s2bIyEhAW3btpVqxo0bh7y8PAwbNgw5OTno3LkzEhMTYWNjY+mwiYiIqAZ6qPsI1XS8jxBRzcb7CBHVTNV+HyEiIiKiJwGDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmWxUFo586deOWVV+Dm5gaVSoWEhARp2e3btzF+/Hh4eXnB3t4ebm5uePfdd3Hu3DnZNho3bgyVSiWbZsyYIas5dOgQunTpAhsbG7i7u2PmzJllelmzZg1atmwJGxsbeHl5YdOmTbLlQghER0ejQYMGsLW1RUBAADIzMy0dMhEREdVQFgehvLw8tG/fHrGxsWWW3bhxA/v378cnn3yC/fv3Y+3atcjIyMCrr75apnbq1Kk4f/68NI0aNUpaZjabERgYCA8PD6SmpmLWrFmYPHkyvvzyS6lm9+7d6N+/P8LCwnDgwAEEBwcjODgYR44ckWpmzpyJhQsXIi4uDikpKbC3t4fBYMCtW7csHTYRERHVQCohhHjglVUqrFu3DsHBwXet+f3339GhQwecPn0ajRo1AvD3J0KjR4/G6NGjy11nyZIl+Pjjj2EymaBWqwEAEyZMQEJCAtLT0wEAffv2RV5eHjZs2CCt17FjR3h7eyMuLg5CCLi5ueHDDz/EmDFjAAC5ublwdXVFfHw8+vXrd9/xmc1m6HQ65ObmQqvVVuQpIaIniHHpmOpuwWJ+YbOruwWix54l799Vfo5Qbm4uVCoVHB0dZfNnzJiBevXq4ZlnnsGsWbNQWFgoLTMajejatasUggDAYDAgIyMDV69elWoCAgJk2zQYDDAajQCArKwsmEwmWY1Op4Ovr69Uc6f8/HyYzWbZRERERDVXrarc+K1btzB+/Hj0799flsjef/99PPvss3BycsLu3bsRFRWF8+fPY+7cuQAAk8kET09P2bZcXV2lZXXr1oXJZJLmla4xmUxSXen1yqu5U0xMDKZMmfIQIyYiIqInSZUFodu3b6NPnz4QQmDJkiWyZZGRkdK/27VrB7Vajffeew8xMTHQaDRV1dJ9RUVFyXozm81wd3evtn6IiIioalXJV2MlIej06dNISkq67/dzvr6+KCwsxKlTpwAAer0e2dnZspqSx3q9/p41pZeXXq+8mjtpNBpotVrZRERERDVXpQehkhCUmZmJrVu3ol69evddJy0tDVZWVnBxcQEA+Pn5YefOnbh9+7ZUk5SUhBYtWqBu3bpSTXJysmw7SUlJ8PPzAwB4enpCr9fLasxmM1JSUqQaIiIiUjaLvxq7fv06Tpw4IT3OyspCWloanJyc0KBBA7z55pvYv38/NmzYgKKiIul8HCcnJ6jVahiNRqSkpKB79+5wcHCA0WhEREQE3n77bSnkDBgwAFOmTEFYWBjGjx+PI0eOYMGCBZg3b5603w8++AD+/v6YM2cOgoKCsGrVKuzbt0+6xF6lUmH06NGYPn06mjdvDk9PT3zyySdwc3O751VuREREpBwWB6F9+/ahe/fu0uOSc2pCQkIwefJk/PTTTwAAb29v2Xq//vorunXrBo1Gg1WrVmHy5MnIz8+Hp6cnIiIiZOfm6HQ6bNmyBeHh4fDx8YGzszOio6MxbNgwqaZTp05YuXIlJk6ciI8++gjNmzdHQkIC2rZtK9WMGzcOeXl5GDZsGHJyctC5c2ckJibCxsbG0mETERFRDfRQ9xGq6XgfIaKajfcRIqqZHqv7CBERERE9rhiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsRiEiIiISLEYhIiIiEixGISIiIhIsSwOQjt37sQrr7wCNzc3qFQqJCQkyJYLIRAdHY0GDRrA1tYWAQEByMzMlNVcuXIFAwcOhFarhaOjI8LCwnD9+nVZzaFDh9ClSxfY2NjA3d0dM2fOLNPLmjVr0LJlS9jY2MDLywubNm2yuBciIiJSLouDUF5eHtq3b4/Y2Nhyl8+cORMLFy5EXFwcUlJSYG9vD4PBgFu3bkk1AwcOxNGjR5GUlIQNGzZg586dGDZsmLTcbDYjMDAQHh4eSE1NxaxZszB58mR8+eWXUs3u3bvRv39/hIWF4cCBAwgODkZwcDCOHDliUS9ERESkXCohhHjglVUqrFu3DsHBwQD+/gTGzc0NH374IcaMGQMAyM3NhaurK+Lj49GvXz8cP34crVu3xu+//47nnnsOAJCYmIiXXnoJZ8+ehZubG5YsWYKPP/4YJpMJarUaADBhwgQkJCQgPT0dANC3b1/k5eVhw4YNUj8dO3aEt7c34uLiKtTL/ZjNZuh0OuTm5kKr1T7o00REjynj0jHV3YLF/MJmV3cLRI89S96/K/UcoaysLJhMJgQEBEjzdDodfH19YTQaAQBGoxGOjo5SCAKAgIAAWFlZISUlRarp2rWrFIIAwGAwICMjA1evXpVqSu+npKZkPxXp5U75+fkwm82yiYiIiGquSg1CJpMJAODq6iqb7+rqKi0zmUxwcXGRLa9VqxacnJxkNeVto/Q+7lZTevn9erlTTEwMdDqdNLm7u1dg1ERERPSk4lVjpURFRSE3N1ea/vzzz+puiYiIiKpQpQYhvV4PAMjOzpbNz87Olpbp9XpcuHBBtrywsBBXrlyR1ZS3jdL7uFtN6eX36+VOGo0GWq1WNhEREVHNValByNPTE3q9HsnJydI8s9mMlJQU+Pn5AQD8/PyQk5OD1NRUqWbbtm0oLi6Gr6+vVLNz507cvn1bqklKSkKLFi1Qt25dqab0fkpqSvZTkV6IiIhI2SwOQtevX0daWhrS0tIA/H1SclpaGs6cOQOVSoXRo0dj+vTp+Omnn3D48GG8++67cHNzk64sa9WqFXr27ImhQ4di79692LVrF0aOHIl+/frBzc0NADBgwACo1WqEhYXh6NGjWL16NRYsWIDIyEipjw8++ACJiYmYM2cO0tPTMXnyZOzbtw8jR44EgAr1QkRERMpWy9IV9u3bh+7du0uPS8JJSEgI4uPjMW7cOOTl5WHYsGHIyclB586dkZiYCBsbG2md7777DiNHjkSPHj1gZWWF3r17Y+HChdJynU6HLVu2IDw8HD4+PnB2dkZ0dLTsXkOdOnXCypUrMXHiRHz00Udo3rw5EhIS0LZtW6mmIr0QERGRcj3UfYRqOt5HiKhm432EiGqmaruPEBEREdGThEGIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFKvSg1Djxo2hUqnKTOHh4QCAbt26lVk2fPhw2TbOnDmDoKAg2NnZwcXFBWPHjkVhYaGsZvv27Xj22Weh0WjQrFkzxMfHl+klNjYWjRs3ho2NDXx9fbF3797KHi4RERE9wSo9CP3+++84f/68NCUlJQEA3nrrLalm6NChspqZM2dKy4qKihAUFISCggLs3r0bK1asQHx8PKKjo6WarKwsBAUFoXv37khLS8Po0aMxZMgQbN68WapZvXo1IiMjMWnSJOzfvx/t27eHwWDAhQsXKnvIRERE9IRSCSFEVe5g9OjR2LBhAzIzM6FSqdCtWzd4e3tj/vz55db/8ssvePnll3Hu3Dm4uroCAOLi4jB+/HhcvHgRarUa48ePx8aNG3HkyBFpvX79+iEnJweJiYkAAF9fXzz//PNYtGgRAKC4uBju7u4YNWoUJkyYUKHezWYzdDodcnNzodVqH+JZIKLHkXHpmOpuwWJ+YbOruwWix54l799Veo5QQUEBvv32WwwePBgqlUqa/91338HZ2Rlt27ZFVFQUbty4IS0zGo3w8vKSQhAAGAwGmM1mHD16VKoJCAiQ7ctgMMBoNEr7TU1NldVYWVkhICBAqilPfn4+zGazbCIiIqKaq1ZVbjwhIQE5OTkIDQ2V5g0YMAAeHh5wc3PDoUOHMH78eGRkZGDt2rUAAJPJJAtBAKTHJpPpnjVmsxk3b97E1atXUVRUVG5Nenr6XfuNiYnBlClTHni8RERE9GSp0iC0dOlS9OrVC25ubtK8YcOGSf/28vJCgwYN0KNHD5w8eRJNmzatynbuKyoqCpGRkdJjs9kMd3f3auyIiIiIqlKVBaHTp09j69at0ic9d+Pr6wsAOHHiBJo2bQq9Xl/m6q7s7GwAgF6vl/5bMq90jVarha2tLaytrWFtbV1uTck2yqPRaKDRaCo2QCIiInriVdk5QsuXL4eLiwuCgoLuWZeWlgYAaNCgAQDAz88Phw8fll3dlZSUBK1Wi9atW0s1ycnJsu0kJSXBz88PAKBWq+Hj4yOrKS4uRnJyslRDREREVCVBqLi4GMuXL0dISAhq1frfh04nT57EtGnTkJqailOnTuGnn37Cu+++i65du6Jdu3YAgMDAQLRu3RrvvPMODh48iM2bN2PixIkIDw+XPq0ZPnw4/vjjD4wbNw7p6elYvHgxvv/+e0REREj7ioyMxFdffYUVK1bg+PHjGDFiBPLy8jBo0KCqGDIRERE9garkq7GtW7fizJkzGDx4sGy+Wq3G1q1bMX/+fOTl5cHd3R29e/fGxIkTpRpra2ts2LABI0aMgJ+fH+zt7RESEoKpU6dKNZ6enti4cSMiIiKwYMECNGzYEF9//TUMBoNU07dvX1y8eBHR0dEwmUzw9vZGYmJimROoiYiISLmq/D5CTzLeR4ioZuN9hIhqpsfmPkJEREREjzMGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlKsWtXdABEREVWOeUn/qe4WLBbxj6erdf/8RIiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItXjREREdUQHc98Wd0tPIDZ1bp3fiJEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIpV6UFo8uTJUKlUsqlly5bS8lu3biE8PBz16tVDnTp10Lt3b2RnZ8u2cebMGQQFBcHOzg4uLi4YO3YsCgsLZTXbt2/Hs88+C41Gg2bNmiE+Pr5ML7GxsWjcuDFsbGzg6+uLvXv3VvZwiYiI6AlWJZ8ItWnTBufPn5em3377TVoWERGBn3/+GWvWrMGOHTtw7tw5vPHGG9LyoqIiBAUFoaCgALt378aKFSsQHx+P6OhoqSYrKwtBQUHo3r070tLSMHr0aAwZMgSbN2+WalavXo3IyEhMmjQJ+/fvR/v27WEwGHDhwoWqGDIRERE9gaokCNWqVQt6vV6anJ2dAQC5ublYunQp5s6dixdffBE+Pj5Yvnw5du/ejT179gAAtmzZgmPHjuHbb7+Ft7c3evXqhWnTpiE2NhYFBQUAgLi4OHh6emLOnDlo1aoVRo4ciTfffBPz5s2Tepg7dy6GDh2KQYMGoXXr1oiLi4OdnR2WLVtWFUMmIiKiJ1CVBKHMzEy4ubmhSZMmGDhwIM6cOQMASE1Nxe3btxEQECDVtmzZEo0aNYLRaAQAGI1GeHl5wdXVVaoxGAwwm804evSoVFN6GyU1JdsoKChAamqqrMbKygoBAQFSTXny8/NhNptlExEREdVclR6EfH19ER8fj8TERCxZsgRZWVno0qULrl27BpPJBLVaDUdHR9k6rq6uMJlMAACTySQLQSXLS5bdq8ZsNuPmzZu4dOkSioqKyq0p2UZ5YmJioNPppMnd3f2BngMiIiJ6MtSq7A326tVL+ne7du3g6+sLDw8PfP/997C1ta3s3VWqqKgoREZGSo/NZjPDEBERUQ1W5ZfPOzo64umnn8aJEyeg1+tRUFCAnJwcWU12djb0ej0AQK/Xl7mKrOTx/Wq0Wi1sbW3h7OwMa2vrcmtKtlEejUYDrVYrm4iIiKjmqvIgdP36dZw8eRINGjSAj48PateujeTkZGl5RkYGzpw5Az8/PwCAn58fDh8+LLu6KykpCVqtFq1bt5ZqSm+jpKZkG2q1Gj4+PrKa4uJiJCcnSzVERERElR6ExowZgx07duDUqVPYvXs3Xn/9dVhbW6N///7Q6XQICwtDZGQkfv31V6SmpmLQoEHw8/NDx44dAQCBgYFo3bo13nnnHRw8eBCbN2/GxIkTER4eDo1GAwAYPnw4/vjjD4wbNw7p6elYvHgxvv/+e0REREh9REZG4quvvsKKFStw/PhxjBgxAnl5eRg0aFBlD5mIiIieUJV+jtDZs2fRv39/XL58GfXr10fnzp2xZ88e1K9fHwAwb948WFlZoXfv3sjPz4fBYMDixYul9a2trbFhwwaMGDECfn5+sLe3R0hICKZOnSrVeHp6YuPGjYiIiMCCBQvQsGFDfP311zAYDFJN3759cfHiRURHR8NkMsHb2xuJiYllTqAmIiIi5VIJIUR1N/G4MpvN0Ol0yM3N5flCRDWQcemY6m7BYn5hs6u7BXqM8Wf6b5a8f/NvjREREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYlV6EIqJicHzzz8PBwcHuLi4IDg4GBkZGbKabt26QaVSyabhw4fLas6cOYOgoCDY2dnBxcUFY8eORWFhoaxm+/btePbZZ6HRaNCsWTPEx8eX6Sc2NhaNGzeGjY0NfH19sXfv3soeMhERET2hKj0I7dixA+Hh4dizZw+SkpJw+/ZtBAYGIi8vT1Y3dOhQnD9/XppmzpwpLSsqKkJQUBAKCgqwe/durFixAvHx8YiOjpZqsrKyEBQUhO7duyMtLQ2jR4/GkCFDsHnzZqlm9erViIyMxKRJk7B//360b98eBoMBFy5cqOxhExER0RNIJYQQVbmDixcvwsXFBTt27EDXrl0B/P2JkLe3N+bPn1/uOr/88gtefvllnDt3Dq6urgCAuLg4jB8/HhcvXoRarcb48eOxceNGHDlyRFqvX79+yMnJQWJiIgDA19cXzz//PBYtWgQAKC4uhru7O0aNGoUJEybct3ez2QydTofc3FxotdqHeRqI6DFkXDqmuluwmF/Y7OpugR5j/Jn+myXv31V+jlBubi4AwMnJSTb/u+++g7OzM9q2bYuoqCjcuHFDWmY0GuHl5SWFIAAwGAwwm804evSoVBMQECDbpsFggNFoBAAUFBQgNTVVVmNlZYWAgACp5k75+fkwm82yiYiIiGquWlW58eLiYowePRovvPAC2rZtK80fMGAAPDw84ObmhkOHDmH8+PHIyMjA2rVrAQAmk0kWggBIj00m0z1rzGYzbt68iatXr6KoqKjcmvT09HL7jYmJwZQpUx5u0ERERPTEqNIgFB4ejiNHjuC3336TzR82bJj0by8vLzRo0AA9evTAyZMn0bRp06ps6Z6ioqIQGRkpPTabzXB3d6+2foiIiKhqVVkQGjlyJDZs2ICdO3eiYcOG96z19fUFAJw4cQJNmzaFXq8vc3VXdnY2AECv10v/LZlXukar1cLW1hbW1tawtrYut6ZkG3fSaDTQaDQVHyQRERE90Sr9HCEhBEaOHIl169Zh27Zt8PT0vO86aWlpAIAGDRoAAPz8/HD48GHZ1V1JSUnQarVo3bq1VJOcnCzbTlJSEvz8/AAAarUaPj4+spri4mIkJydLNURERKRslf6JUHh4OFauXIn169fDwcFBOqdHp9PB1tYWJ0+exMqVK/HSSy+hXr16OHToECIiItC1a1e0a9cOABAYGIjWrVvjnXfewcyZM2EymTBx4kSEh4dLn9gMHz4cixYtwrhx4zB48GBs27YN33//PTZu3Cj1EhkZiZCQEDz33HPo0KED5s+fj7y8PAwaNKiyh01ERERPoEoPQkuWLAHw9yXypS1fvhyhoaFQq9XYunWrFErc3d3Ru3dvTJw4Uaq1trbGhg0bMGLECPj5+cHe3h4hISGYOnWqVOPp6YmNGzciIiICCxYsQMOGDfH111/DYDBINX379sXFixcRHR0Nk8kEb29vJCYmljmBmoiIiJSpyu8j9CTjfYSIajbec4VqGv5M/+2xuo8QERER0eOKQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUq1Z1N0BERPQ4mpf0n+puwWIdq7uBJxCDEBERUTk6nvmyulugR4BfjREREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYvGqsWpkXDqmuluwmF/Y7OpugYiIqNIwCBERUZV7Ev/Hj5SBX40RERGRYjEIERERkWIxCBEREZFi8RwhIqInCM+1Iapc/ESIiIiIFItBiIiIiBSLQYiIiIgUi+cIEVGl4LkrRPQkUkQQio2NxaxZs2AymdC+fXt8/vnn6NChQ3W3RXRXDBVERI9GjQ9Cq1evRmRkJOLi4uDr64v58+fDYDAgIyMDLi4u1d0ePQIMFUREdDcqIYSo7iaqkq+vL55//nksWrQIAFBcXAx3d3eMGjUKEyZMuOe6ZrMZOp0Oubm50Gq1ld4b36CJiEjpquJvWFry/l2jPxEqKChAamoqoqKipHlWVlYICAiA0WgsU5+fn4/8/HzpcW5uLoC/n9CqkHcz//5FRERENVhVvMeWbLMin/XU6CB06dIlFBUVwdXVVTbf1dUV6enpZepjYmIwZcqUMvPd3d2rrEciIiJFG7WoyjZ97do16HS6e9bU6CBkqaioKERGRkqPi4uLceXKFdSrVw8qlapS92U2m+Hu7o4///yzSr52q241fXxAzR8jx/fkq+lj5PiefFU1RiEErl27Bjc3t/vW1ugg5OzsDGtra2RnZ8vmZ2dnQ6/Xl6nXaDTQaDSyeY6OjlXZIrRabY39AQdq/viAmj9Gju/JV9PHyPE9+apijPf7JKhEjb6holqtho+PD5KTk6V5xcXFSE5Ohp+fXzV2RkRERI+DGv2JEABERkYiJCQEzz33HDp06ID58+cjLy8PgwYNqu7WiIiIqJrV+CDUt29fXLx4EdHR0TCZTPD29kZiYmKZE6gfNY1Gg0mTJpX5Kq6mqOnjA2r+GDm+J19NHyPH9+R7HMZY4+8jRERERHQ3NfocISIiIqJ7YRAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQqiKffvopOnXqBDs7uwrfnVoIgejoaDRo0AC2trYICAhAZmamrObKlSsYOHAgtFotHB0dERYWhuvXr1fBCO7P0l5OnToFlUpV7rRmzRqprrzlq1atehRDknmQ57pbt25leh8+fLis5syZMwgKCoKdnR1cXFwwduxYFBYWVuVQymXp+K5cuYJRo0ahRYsWsLW1RaNGjfD+++9Lf5y4RHUev9jYWDRu3Bg2Njbw9fXF3r1771m/Zs0atGzZEjY2NvDy8sKmTZtkyyvymnyULBnfV199hS5duqBu3bqoW7cuAgICytSHhoaWOVY9e/as6mHckyVjjI+PL9O/jY2NrOZJPobl/T5RqVQICgqSah6nY7hz50688sorcHNzg0qlQkJCwn3X2b59O5599lloNBo0a9YM8fHxZWosfV1bTFCViI6OFnPnzhWRkZFCp9NVaJ0ZM2YInU4nEhISxMGDB8Wrr74qPD09xc2bN6Wanj17ivbt24s9e/aIf//736JZs2aif//+VTSKe7O0l8LCQnH+/HnZNGXKFFGnTh1x7do1qQ6AWL58uayu9HPwqDzIc+3v7y+GDh0q6z03N1daXlhYKNq2bSsCAgLEgQMHxKZNm4Szs7OIioqq6uGUYen4Dh8+LN544w3x008/iRMnTojk5GTRvHlz0bt3b1lddR2/VatWCbVaLZYtWyaOHj0qhg4dKhwdHUV2dna59bt27RLW1tZi5syZ4tixY2LixImidu3a4vDhw1JNRV6Tj4ql4xswYICIjY0VBw4cEMePHxehoaFCp9OJs2fPSjUhISGiZ8+esmN15cqVRzWkMiwd4/Lly4VWq5X1bzKZZDVP8jG8fPmybGxHjhwR1tbWYvny5VLN43QMN23aJD7++GOxdu1aAUCsW7funvV//PGHsLOzE5GRkeLYsWPi888/F9bW1iIxMVGqsfQ5exAMQlVs+fLlFQpCxcXFQq/Xi1mzZknzcnJyhEajEf/3f/8nhBDi2LFjAoD4/fffpZpffvlFqFQq8ddff1V67/dSWb14e3uLwYMHy+ZV5AVU1R50fP7+/uKDDz646/JNmzYJKysr2S/rJUuWCK1WK/Lz8yul94qorOP3/fffC7VaLW7fvi3Nq67j16FDBxEeHi49LioqEm5ubiImJqbc+j59+oigoCDZPF9fX/Hee+8JISr2mnyULB3fnQoLC4WDg4NYsWKFNC8kJES89tprld3qA7N0jPf7/VrTjuG8efOEg4ODuH79ujTvcTuGJSrye2DcuHGiTZs2snl9+/YVBoNBevywz1lF8Kuxx0RWVhZMJhMCAgKkeTqdDr6+vjAajQAAo9EIR0dHPPfcc1JNQEAArKyskJKS8kj7rYxeUlNTkZaWhrCwsDLLwsPD4ezsjA4dOmDZsmUQj/i+nw8zvu+++w7Ozs5o27YtoqKicOPGDdl2vby8ZHc2NxgMMJvNOHr0aOUP5C4q62cpNzcXWq0WtWrJb1L/qI9fQUEBUlNTZa8fKysrBAQESK+fOxmNRlk98PexKKmvyGvyUXmQ8d3pxo0buH37NpycnGTzt2/fDhcXF7Ro0QIjRozA5cuXK7X3inrQMV6/fh0eHh5wd3fHa6+9Jnsd1bRjuHTpUvTr1w/29vay+Y/LMbTU/V6DlfGcVUSN/xMbTwqTyQQAZf70h6urq7TMZDLBxcVFtrxWrVpwcnKSah6Vyuhl6dKlaNWqFTp16iSbP3XqVLz44ouws7PDli1b8M9//hPXr1/H+++/X2n938+Djm/AgAHw8PCAm5sbDh06hPHjxyMjIwNr166VtlveMS5Z9qhUxvG7dOkSpk2bhmHDhsnmV8fxu3TpEoqKisp9btPT08td527HovTrrWTe3WoelQcZ353Gjx8PNzc32ZtKz5498cYbb8DT0xMnT57ERx99hF69esFoNMLa2rpSx3A/DzLGFi1aYNmyZWjXrh1yc3Mxe/ZsdOrUCUePHkXDhg1r1DHcu3cvjhw5gqVLl8rmP07H0FJ3ew2azWbcvHkTV69efeif+4pgELLAhAkT8Nlnn92z5vjx42jZsuUj6qjyVXSMD+vmzZtYuXIlPvnkkzLLSs975plnkJeXh1mzZlXKG2lVj690KPDy8kKDBg3Qo0cPnDx5Ek2bNn3g7VbUozp+ZrMZQUFBaN26NSZPnixbVpXHjx7MjBkzsGrVKmzfvl12MnG/fv2kf3t5eaFdu3Zo2rQptm/fjh49elRHqxbx8/ODn5+f9LhTp05o1aoVvvjiC0ybNq0aO6t8S5cuhZeXFzp06CCb/6Qfw8cBg5AFPvzwQ4SGht6zpkmTJg+0bb1eDwDIzs5GgwYNpPnZ2dnw9vaWai5cuCBbr7CwEFeuXJHWf1gVHePD9vLDDz/gxo0bePfdd+9b6+vri2nTpiE/P/+h/zDfoxpfCV9fXwDAiRMn0LRpU+j1+jJXPGRnZwNApRzDRzG+a9euoWfPnnBwcMC6detQu3bte9ZX5vG7G2dnZ1hbW0vPZYns7Oy7jkev19+zviKvyUflQcZXYvbs2ZgxYwa2bt2Kdu3a3bO2SZMmcHZ2xokTJx75m+jDjLFE7dq18cwzz+DEiRMAas4xzMvLw6pVqzB16tT77qc6j6Gl7vYa1Gq1sLW1hbW19UP/TFRIpZ1tROWy9GTp2bNnS/Nyc3PLPVl63759Us3mzZur9WTpB+3F39+/zNVGdzN9+nRRt27dB+71QVTWc/3bb78JAOLgwYNCiP+dLF36iocvvvhCaLVacevWrcobwH086Phyc3NFx44dhb+/v8jLy6vQvh7V8evQoYMYOXKk9LioqEg89dRT9zxZ+uWXX5bN8/PzK3Oy9L1ek4+SpeMTQojPPvtMaLVaYTQaK7SPP//8U6hUKrF+/fqH7vdBPMgYSyssLBQtWrQQERERQoiacQyF+Pt9RKPRiEuXLt13H9V9DEuggidLt23bVjavf//+ZU6WfpifiQr1WmlbIpnTp0+LAwcOSJeHHzhwQBw4cEB2mXiLFi3E2rVrpcczZswQjo6OYv369eLQoUPitddeK/fy+WeeeUakpKSI3377TTRv3rxaL5+/Vy9nz54VLVq0ECkpKbL1MjMzhUqlEr/88kuZbf7000/iq6++EocPHxaZmZli8eLFws7OTkRHR1f5eO5k6fhOnDghpk6dKvbt2yeysrLE+vXrRZMmTUTXrl2ldUounw8MDBRpaWkiMTFR1K9fv9oun7dkfLm5ucLX11d4eXmJEydOyC7XLSwsFEJU7/FbtWqV0Gg0Ij4+Xhw7dkwMGzZMODo6SlfovfPOO2LChAlS/a5du0StWrXE7NmzxfHjx8WkSZPKvXz+fq/JR8XS8c2YMUOo1Wrxww8/yI5Vye+ga9euiTFjxgij0SiysrLE1q1bxbPPPiuaN2/+SEP5w4xxypQpYvPmzeLkyZMiNTVV9OvXT9jY2IijR49KNU/yMSzRuXNn0bdv3zLzH7djeO3aNem9DoCYO3euOHDggDh9+rQQQogJEyaId955R6ovuXx+7Nix4vjx4yI2Nrbcy+fv9ZxVBgahKhISEiIAlJl+/fVXqQb/vd9KieLiYvHJJ58IV1dXodFoRI8ePURGRoZsu5cvXxb9+/cXderUEVqtVgwaNEgWrh6l+/WSlZVVZsxCCBEVFSXc3d1FUVFRmW3+8ssvwtvbW9SpU0fY29uL9u3bi7i4uHJrq5ql4ztz5ozo2rWrcHJyEhqNRjRr1kyMHTtWdh8hIYQ4deqU6NWrl7C1tRXOzs7iww8/lF1+/qhYOr5ff/213J9pACIrK0sIUf3H7/PPPxeNGjUSarVadOjQQezZs0da5u/vL0JCQmT133//vXj66aeFWq0Wbdq0ERs3bpQtr8hr8lGyZHweHh7lHqtJkyYJIYS4ceOGCAwMFPXr1xe1a9cWHh4eYujQoZX6BvMgLBnj6NGjpVpXV1fx0ksvif3798u29yQfQyGESE9PFwDEli1bymzrcTuGd/sdUTKmkJAQ4e/vX2Ydb29voVarRZMmTWTviSXu9ZxVBpUQj/i6ZCIiIqLHBO8jRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESK9f9E9ID3HvjbdwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO8xJREFUeJzt3XlcVXX+x/E3oFwQvKCBIIWISy5JWpaIqWTyE80W0qY0p6BMZxy0lCy1xa16WGllpWmrOtM4lU1aqVGG25SoSVpumJqmZuAKKCqKfH9/NJzxCioXUZTzej4e9/HwnvM553y/58vlvj0bHsYYIwAAABvyrOwGAAAAVBaCEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEAAAsC2CEIAqZ/HixfLw8NDixYsrdL0eHh4aPXp0ha4TQOUiCAHAKebPn3/Zh52ZM2dq4sSJld0My5QpU/SnP/1J9erVk4eHh5KSkkqtS0tL00MPPaSrr75aNWrUUIMGDfTwww/r999/P+829OvXTx4eHrrtttvOe12oWqpVdgMA4FIyf/58TZ48udQwdPToUVWrdun/2pw5c6bWrVunwYMHV3ZTJEkvvviiDh06pDZt2pw11AwbNkwHDhzQn/70JzVu3Fi//PKLJk2apLlz52rNmjUKDQ0t1/ZXrVql6dOny8fHp7xdQBV26X+iARvJz8+Xn59fZTej0hw5ckQ1atQoMb2wsFBFRUXy9vauhFb9D1+k5bNkyRLraJC/v/8Z61555RW1b99enp7/O1nRtWtXxcbGatKkSXruuefc3rYxRo888ogeeOABpaWllav9qNo4NQbbGz16tDw8PJSZmal77rlHTqdTV1xxhR599FEdO3bMpfaDDz5Q69at5evrq9q1a6tXr17auXOnS81//vMf6zSAw+FQeHi4hgwZoqNHj7rUJSUlyd/fX1u3btWtt96qmjVrqk+fPpKkzZs3q2fPngoNDZWPj4+uuuoq9erVS7m5udbyhYWFevbZZ9WwYUM5HA7Vr19fTz75pAoKCly2U79+fd1222369ttv1aZNG/n4+KhBgwb6+9//Xq799cEHH6hNmzaqUaOGatWqpY4dO+rrr792qXnzzTd1zTXXyOFwKCwsTMnJycrJyXGpufnmm9WiRQtlZGSoY8eOqlGjhp588klt375dHh4emjBhgiZOnGj1b8OGDZKkzMxM3X333apdu7Z8fHx0ww036PPPPz9nu8syLklJSZo8ebKkP64HKn4VK+0aodWrV6tbt25yOp3y9/dX586dtXz5cpea6dOny8PDQ999951SUlIUHBwsPz8/3XXXXdq7d69L7apVqxQfH6+goCD5+voqMjJSDz300Dn7d+p+nTdvnn799Ver/fXr17fm79mzR3379lVISIh8fHzUsmVLzZgxw2Udp47Bq6++qoiICPn6+io2Nlbr1q0rc1uKRUREuOzHM+nYsaNLCCqeVrt2bW3cuNHt7UrSP/7xD61bt07PP/98uZZH1ccRIeC/7rnnHtWvX1/jxo3T8uXL9frrr+vgwYNWYHj++ef1zDPP6J577tHDDz+svXv36o033lDHjh21evVqBQYGSpJmzZqlI0eOaMCAAbriiiu0cuVKvfHGG9q1a5dmzZrlss3CwkLFx8erffv2mjBhgmrUqKHjx48rPj5eBQUFGjRokEJDQ/Xbb79p7ty5ysnJUUBAgCTp4Ycf1owZM3T33Xfrscce04oVKzRu3Dht3LhRs2fPdtnOli1bdPfdd6tv375KTEzU+++/r6SkJLVu3VrXXHNNmffRmDFjNHr0aLVr105jx46Vt7e3VqxYoYULF6pLly6S/giWY8aMUVxcnAYMGKBNmzZpypQp+v777/Xdd9+pevXq1vr279+vbt26qVevXvrzn/+skJAQa960adN07Ngx9e/fXw6HQ7Vr19b69et100036corr9Tw4cPl5+enjz/+WAkJCfr3v/+tu+6664xtL8u4/OUvf9Hu3bu1YMEC/eMf/zjn/li/fr06dOggp9OpJ554QtWrV9dbb72lm2++WUuWLFF0dLRL/aBBg1SrVi2NGjVK27dv18SJEzVw4EB99NFHkv4IKV26dFFwcLCGDx+uwMBAbd++XZ9++mmZx+ipp55Sbm6udu3apVdffVWSrKMwR48e1c0336wtW7Zo4MCBioyM1KxZs5SUlKScnBw9+uijLuv6+9//rkOHDik5OVnHjh3Ta6+9pltuuUVr1651GasL6fDhwzp8+LCCgoLcXvbQoUMaNmyYnnzyyXKfVoMNGMDmRo0aZSSZO+64w2X63/72NyPJ/Pjjj2b79u3Gy8vLPP/88y41a9euNdWqVXOZfuTIkRLbGDdunPHw8DC//vqrNS0xMdFIMsOHD3epXb16tZFkZs2adcY2r1mzxkgyDz/8sMv0oUOHGklm4cKF1rSIiAgjySxdutSatmfPHuNwOMxjjz12xm2cbvPmzcbT09Pcdddd5uTJky7zioqKrPV6e3ubLl26uNRMmjTJSDLvv/++NS02NtZIMlOnTnVZ17Zt24wk43Q6zZ49e1zmde7c2URFRZljx465bLtdu3amcePG1rRFixYZSWbRokXWtLKOS3JysjnTr0ZJZtSoUdb7hIQE4+3tbbZu3WpN2717t6lZs6bp2LGjNW3atGlGkomLi7P2lTHGDBkyxHh5eZmcnBxjjDGzZ882ksz3339f6vbLqnv37iYiIqLE9IkTJxpJ5oMPPrCmHT9+3MTExBh/f3+Tl5dnjPnfGPj6+ppdu3ZZtStWrDCSzJAhQ8rdNj8/P5OYmFjm+meffdZIMmlpaW5va+jQoSYyMtL6eYmIiDDdu3d3ez2o2jg1BvxXcnKyy/tBgwZJ+uPi2U8//VRFRUW65557tG/fPusVGhqqxo0ba9GiRdZyvr6+1r/z8/O1b98+tWvXTsYYrV69usR2BwwY4PK++IjPV199pSNHjpTa1vnz50uSUlJSXKY/9thjkqR58+a5TG/evLk6dOhgvQ8ODlaTJk30yy+/lLr+0syZM0dFRUUaOXJkidMXxac9vvnmGx0/flyDBw92qenXr5+cTmeJdjkcDj344IOlbq9nz54KDg623h84cEALFy7UPffco0OHDlljsH//fsXHx2vz5s367bffzth+d8flXE6ePKmvv/5aCQkJatCggTW9bt26uu+++/Ttt98qLy/PZZn+/fu7nCLq0KGDTp48qV9//VWSrKOKc+fO1YkTJ9xu07nMnz9foaGh6t27tzWtevXqeuSRR3T48GEtWbLEpT4hIUFXXnml9b5NmzaKjo62fv4utKVLl2rMmDG65557dMstt7i17M8//6zXXntN48ePl8PhuEAtRFVAEAL+q3Hjxi7vGzZsKE9PT23fvl2bN2+WMUaNGzdWcHCwy2vjxo3as2ePtdyOHTuUlJSk2rVry9/fX8HBwYqNjZUkl2t8JKlatWq66qqrXKZFRkYqJSVF7777roKCghQfH6/Jkye7LPvrr7/K09NTjRo1clk2NDRUgYGB1hdrsXr16pXob61atXTw4MEy75+tW7fK09NTzZs3P2NN8XabNGniMt3b21sNGjQo0a4rr7zyjBdAR0ZGurzfsmWLjDF65plnSozBqFGjJMllHE7nzriUxd69e3XkyJESfZWkZs2aqaioqMT1Y6ePQ61atSTJGofY2Fj17NlTY8aMUVBQkO68805NmzatxHVf5fXrr7+qcePGJYJss2bNrPmnOv0zIUlXX321tm/fXiHtOZvMzEzdddddatGihd599123l3/00UfVrl079ezZ8wK0DlUJ1wgBZ3Dq/9yLiork4eGhL7/8Ul5eXiVqi6/BOHnypP7v//5PBw4c0LBhw9S0aVP5+fnpt99+U1JSkoqKilyWczgcJb6UJOnll19WUlKSPvvsM3399dd65JFHrGuXTg1OZbkAVVKpbZb+uKOmMp16lOZc84r33dChQxUfH1/qMqcHw2LujsuFcq5x8PDw0CeffKLly5friy++0FdffaWHHnpIL7/8spYvX37WO66qkp07d6pLly4KCAjQ/PnzVbNmTbeWX7hwoVJTU/Xpp5+6hLbCwkIdPXpU27dvV+3ateV0Oiu45bgcEYSA/9q8ebPLUYgtW7aoqKhI9evXl5eXl4wxioyM1NVXX33Gdaxdu1Y///yzZsyYoQceeMCavmDBArfbExUVpaioKD399NNatmyZbrrpJk2dOlXPPfecIiIiVFRUpM2bN1v/m5ek7Oxs5eTkKCIiwu3tnUvDhg1VVFSkDRs2qFWrVqXWFG9306ZNLqeLjh8/rm3btikuLq7c2y9eX/Xq1d1ejzvjUtZwGRwcrBo1amjTpk0l5mVmZsrT01Ph4eFutbNY27Zt1bZtWz3//POaOXOm+vTpow8//FAPP/xwmZY/Ux8iIiL0008/qaioyCWAZ2ZmWvNPtXnz5hLr+Pnnn13uQqto+/fvV5cuXVRQUKC0tDTVrVvX7XXs2LFDktSjR48S83777TdFRkbq1VdfvWSes4TKxakx4L+Kb5su9sYbb0iSunXrph49esjLy0tjxowpcRTFGKP9+/dL+t//+E+tMcbotddeK3M78vLyVFhY6DItKipKnp6e1imSW2+9VZJKPD34lVdekSR17969zNsrq4SEBHl6emrs2LEljqAU9zcuLk7e3t56/fXXXfbBe++9p9zc3PNqV506dXTzzTfrrbfeKvWhfKffhn4qd8al+DlOp9/uX9o6u3Tpos8++8zlqEN2drZmzpyp9u3bu33E4eDBgyV+vopDpzunx/z8/Eo93XfrrbcqKyvLuktN+uMoyRtvvCF/f3/rVGGxOXPmuFx3tXLlSq1YsULdunUrc1vckZ+fr1tvvVW//fab5s+fX+qpubK45ZZbNHv27BKv4OBg3XDDDZo9e7Zuv/32Cm49LlccEQL+a9u2bbrjjjvUtWtXpaen64MPPtB9992nli1bSpKee+45jRgxQtu3b1dCQoJq1qypbdu2afbs2erfv7+GDh2qpk2bqmHDhho6dKh+++03OZ1O/fvf/3brWpyFCxdq4MCB+tOf/qSrr75ahYWF+sc//iEvLy/reoeWLVsqMTFRb7/9tnJychQbG6uVK1dqxowZSkhIUKdOnSp8/zRq1EhPPfWUnn32WXXo0EE9evSQw+HQ999/r7CwMI0bN07BwcEaMWKExowZo65du+qOO+7Qpk2b9Oabb+rGG2/Un//85/Nqw+TJk9W+fXtFRUWpX79+atCggbKzs5Wenq5du3bpxx9/LHU5d8aldevWkqRHHnlE8fHx8vLyUq9evUpd73PPPacFCxaoffv2+tvf/qZq1arprbfeUkFBgV566SW3+zdjxgy9+eabuuuuu9SwYUMdOnRI77zzjpxOpxV+y6J169b66KOPlJKSohtvvFH+/v66/fbb1b9/f7311ltKSkpSRkaG6tevr08++UTfffedJk6cWOIUVKNGjdS+fXsNGDBABQUFmjhxoq644go98cQTbvXriy++sMbmxIkT+umnn6yHI95xxx269tprJUl9+vTRypUr9dBDD2njxo0uzw7y9/dXQkJCmbZXr169Uq+LGzx4sEJCQsq8HtjExb9RDbi0FN8+v2HDBnP33XebmjVrmlq1apmBAweao0ePutT++9//Nu3btzd+fn7Gz8/PNG3a1CQnJ5tNmzZZNRs2bDBxcXHG39/fBAUFmX79+pkff/zRSDLTpk2z6hITE42fn1+J9vzyyy/moYceMg0bNjQ+Pj6mdu3aplOnTuabb75xqTtx4oQZM2aMiYyMNNWrVzfh4eFmxIgRLreWG3PmW4ZjY2NNbGys2/vr/fffN9ddd51xOBymVq1aJjY21ixYsMClZtKkSaZp06amevXqJiQkxAwYMMAcPHiwxPavueaaEusvvnV7/PjxpW5/69at5oEHHjChoaGmevXq5sorrzS33Xab+eSTT6ya0m6fL+u4FBYWmkGDBpng4GDj4eHhciu9Trt93hhjfvjhBxMfH2/8/f1NjRo1TKdOncyyZctcaopvnz/9tvjT2/nDDz+Y3r17m3r16hmHw2Hq1KljbrvtNrNq1apS98WZHD582Nx3330mMDDQSHK5lT47O9s8+OCDJigoyHh7e5uoqCiX/hvjOgYvv/yyCQ8PNw6Hw3To0MH8+OOPbrXFmP89KqK016nbLn7UQ2mv0h4H4C5un0dpPIyp5KslgUpW/ADAvXv3luuhbUBVs337dkVGRmr8+PEaOnRoZTcHuKC4RggAANgW1wgBUFZW1lnn+/r6Wg96ROU5cOCAjh8/fsb5Xl5eLg+hvJCOHz+uAwcOnLUmICDgrI9IKI/c3NwSf7fvdPw5DbiDIATgnLcoJyYmavr06RenMTijHj16lHj686kiIiIuysMOJWnZsmXnvCh/2rRpSkpKqtDtPvrooyX+SOzpuOID7uAaIQD65ptvzjo/LCzsrE+UxsWRkZFx1jsQfX19ddNNN12Uthw8eFAZGRlnrbnmmmvK9Rygs9mwYYN279591przeV4V7IcgBAAAbIuLpQEAgG1xjdBZFBUVaffu3apZs2aZH7sPAAAqlzFGhw4dUlhYWKl/z/FUBKGz2L17d7n/VhAAAKhcO3fudPlD1aUhCJ1F8ePmd+7cyV8pBgDgMpGXl6fw8PASfzamNAShsyg+HeZ0OglCAABcZspyWQsXSwMAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANuqVtkNAIBKs2hcZbfAfZ1GVHYLgCqFI0IAAMC2CEIAAMC2CEIAAMC2uEYIgG2l/7K/spvgtphOld0CoGrhiBAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtt4LQuHHjdOONN6pmzZqqU6eOEhIStGnTJpeaY8eOKTk5WVdccYX8/f3Vs2dPZWdnu9Ts2LFD3bt3V40aNVSnTh09/vjjKiwsdKlZvHixrr/+ejkcDjVq1EjTp08v0Z7Jkyerfv368vHxUXR0tFauXOl2WwAAgH25FYSWLFmi5ORkLV++XAsWLNCJEyfUpUsX5efnWzVDhgzRF198oVmzZmnJkiXavXu3evToYc0/efKkunfvruPHj2vZsmWaMWOGpk+frpEjR1o127ZtU/fu3dWpUyetWbNGgwcP1sMPP6yvvvrKqvnoo4+UkpKiUaNG6YcfflDLli0VHx+vPXv2lLktAADA3jyMMaa8C+/du1d16tTRkiVL1LFjR+Xm5io4OFgzZ87U3XffLUnKzMxUs2bNlJ6errZt2+rLL7/Ubbfdpt27dyskJESSNHXqVA0bNkx79+6Vt7e3hg0bpnnz5mndunXWtnr16qWcnBylpqZKkqKjo3XjjTdq0qRJkqSioiKFh4dr0KBBGj58eJnacrqCggIVFBRY7/Py8hQeHq7c3Fw5nc7y7iYAl6j094ZWdhPcFtN3QmU3Abjk5eXlKSAgoEzf3+d1jVBubq4kqXbt2pKkjIwMnThxQnFxcVZN06ZNVa9ePaWnp0uS0tPTFRUVZYUgSYqPj1deXp7Wr19v1Zy6juKa4nUcP35cGRkZLjWenp6Ki4uzasrSltONGzdOAQEB1is8PLx8OwYAAFwWyh2EioqKNHjwYN10001q0aKFJCkrK0ve3t4KDAx0qQ0JCVFWVpZVc2oIKp5fPO9sNXl5eTp69Kj27dunkydPllpz6jrO1ZbTjRgxQrm5udZr586dZdwbAADgclStvAsmJydr3bp1+vbbbyuyPZXK4XDI4XBUdjMAAMBFUq4jQgMHDtTcuXO1aNEiXXXVVdb00NBQHT9+XDk5OS712dnZCg0NtWpOv3Or+P25apxOp3x9fRUUFCQvL69Sa05dx7naAgAA7M2tIGSM0cCBAzV79mwtXLhQkZGRLvNbt26t6tWrKy0tzZq2adMm7dixQzExMZKkmJgYrV271uXurgULFsjpdKp58+ZWzanrKK4pXoe3t7dat27tUlNUVKS0tDSrpixtAQAA9ubWqbHk5GTNnDlTn332mWrWrGldaxMQECBfX18FBASob9++SklJUe3ateV0OjVo0CDFxMRYd2l16dJFzZs31/3336+XXnpJWVlZevrpp5WcnGydlvrrX/+qSZMm6YknntBDDz2khQsX6uOPP9a8efOstqSkpCgxMVE33HCD2rRpo4kTJyo/P18PPvig1aZztQUAANibW0FoypQpkqSbb77ZZfq0adOUlJQkSXr11Vfl6empnj17qqCgQPHx8XrzzTetWi8vL82dO1cDBgxQTEyM/Pz8lJiYqLFjx1o1kZGRmjdvnoYMGaLXXntNV111ld59913Fx8dbNffee6/27t2rkSNHKisrS61atVJqaqrLBdTnagsAALC383qOUFXnznMIAFx+eI4QUDVdtOcIAQAAXM4IQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLbcDkJLly7V7bffrrCwMHl4eGjOnDku85OSkuTh4eHy6tq1q0vNgQMH1KdPHzmdTgUGBqpv3746fPiwS81PP/2kDh06yMfHR+Hh4XrppZdKtGXWrFlq2rSpfHx8FBUVpfnz57vMN8Zo5MiRqlu3rnx9fRUXF6fNmze722UAAFBFuR2E8vPz1bJlS02ePPmMNV27dtXvv/9uvf71r3+5zO/Tp4/Wr1+vBQsWaO7cuVq6dKn69+9vzc/Ly1OXLl0UERGhjIwMjR8/XqNHj9bbb79t1Sxbtky9e/dW3759tXr1aiUkJCghIUHr1q2zal566SW9/vrrmjp1qlasWCE/Pz/Fx8fr2LFj7nYbAABUQR7GGFPuhT08NHv2bCUkJFjTkpKSlJOTU+JIUbGNGzeqefPm+v7773XDDTdIklJTU3Xrrbdq165dCgsL05QpU/TUU08pKytL3t7ekqThw4drzpw5yszMlCTde++9ys/P19y5c611t23bVq1atdLUqVNljFFYWJgee+wxDR06VJKUm5urkJAQTZ8+Xb169Tpn//Ly8hQQEKDc3Fw5nc7y7CIAl7D094ZWdhPcFtN3QmU3AbjkufP9fUGuEVq8eLHq1KmjJk2aaMCAAdq/f781Lz09XYGBgVYIkqS4uDh5enpqxYoVVk3Hjh2tECRJ8fHx2rRpkw4ePGjVxMXFuWw3Pj5e6enpkqRt27YpKyvLpSYgIEDR0dFWzekKCgqUl5fn8gIAAFVXhQehrl276u9//7vS0tL04osvasmSJerWrZtOnjwpScrKylKdOnVclqlWrZpq166trKwsqyYkJMSlpvj9uWpOnX/qcqXVnG7cuHEKCAiwXuHh4W73HwAAXD6qVfQKTz3lFBUVpWuvvVYNGzbU4sWL1blz54reXIUaMWKEUlJSrPd5eXmEIQAAqrALfvt8gwYNFBQUpC1btkiSQkNDtWfPHpeawsJCHThwQKGhoVZNdna2S03x+3PVnDr/1OVKqzmdw+GQ0+l0eQEAgKrrggehXbt2af/+/apbt64kKSYmRjk5OcrIyLBqFi5cqKKiIkVHR1s1S5cu1YkTJ6yaBQsWqEmTJqpVq5ZVk5aW5rKtBQsWKCYmRpIUGRmp0NBQl5q8vDytWLHCqgEAAPbmdhA6fPiw1qxZozVr1kj646LkNWvWaMeOHTp8+LAef/xxLV++XNu3b1daWpruvPNONWrUSPHx8ZKkZs2aqWvXrurXr59Wrlyp7777TgMHDlSvXr0UFhYmSbrvvvvk7e2tvn37av369froo4/02muvuZy2evTRR5WamqqXX35ZmZmZGj16tFatWqWBAwdK+uOOtsGDB+u5557T559/rrVr1+qBBx5QWFiYy11uAADAvty+RmjVqlXq1KmT9b44nCQmJmrKlCn66aefNGPGDOXk5CgsLExdunTRs88+K4fDYS3zz3/+UwMHDlTnzp3l6empnj176vXXX7fmBwQE6Ouvv1ZycrJat26toKAgjRw50uVZQ+3atdPMmTP19NNP68knn1Tjxo01Z84ctWjRwqp54oknlJ+fr/79+ysnJ0ft27dXamqqfHx83O02AACogs7rOUJVHc8RAqo2niMEVE2V/hwhAACAywFBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2JbbQWjp0qW6/fbbFRYWJg8PD82ZM8dlvjFGI0eOVN26deXr66u4uDht3rzZpebAgQPq06ePnE6nAgMD1bdvXx0+fNil5qefflKHDh3k4+Oj8PBwvfTSSyXaMmvWLDVt2lQ+Pj6KiorS/Pnz3W4LAACwL7eDUH5+vlq2bKnJkyeXOv+ll17S66+/rqlTp2rFihXy8/NTfHy8jh07ZtX06dNH69ev14IFCzR37lwtXbpU/fv3t+bn5eWpS5cuioiIUEZGhsaPH6/Ro0fr7bfftmqWLVum3r17q2/fvlq9erUSEhKUkJCgdevWudUWAABgXx7GGFPuhT08NHv2bCUkJEj64whMWFiYHnvsMQ0dOlSSlJubq5CQEE2fPl29evXSxo0b1bx5c33//fe64YYbJEmpqam69dZbtWvXLoWFhWnKlCl66qmnlJWVJW9vb0nS8OHDNWfOHGVmZkqS7r33XuXn52vu3LlWe9q2batWrVpp6tSpZWrLueTl5SkgIEC5ublyOp3l3U0ALlHp7w2t7Ca4LabvhMpuAnDJc+f7u0KvEdq2bZuysrIUFxdnTQsICFB0dLTS09MlSenp6QoMDLRCkCTFxcXJ09NTK1assGo6duxohSBJio+P16ZNm3Tw4EGr5tTtFNcUb6csbTldQUGB8vLyXF4AAKDqqtAglJWVJUkKCQlxmR4SEmLNy8rKUp06dVzmV6tWTbVr13apKW0dp27jTDWnzj9XW043btw4BQQEWK/w8PAy9BoAAFyuuGvsFCNGjFBubq712rlzZ2U3CQAAXEAVGoRCQ0MlSdnZ2S7Ts7OzrXmhoaHas2ePy/zCwkIdOHDApaa0dZy6jTPVnDr/XG05ncPhkNPpdHkBAICqq0KDUGRkpEJDQ5WWlmZNy8vL04oVKxQTEyNJiomJUU5OjjIyMqyahQsXqqioSNHR0VbN0qVLdeLECatmwYIFatKkiWrVqmXVnLqd4pri7ZSlLQAAwN7cDkKHDx/WmjVrtGbNGkl/XJS8Zs0a7dixQx4eHho8eLCee+45ff7551q7dq0eeOABhYWFWXeWNWvWTF27dlW/fv20cuVKfffddxo4cKB69eqlsLAwSdJ9990nb29v9e3bV+vXr9dHH32k1157TSkpKVY7Hn30UaWmpurll19WZmamRo8erVWrVmngwIGSVKa2AAAAe6vm7gKrVq1Sp06drPfF4SQxMVHTp0/XE088ofz8fPXv3185OTlq3769UlNT5ePjYy3zz3/+UwMHDlTnzp3l6empnj176vXXX7fmBwQE6Ouvv1ZycrJat26toKAgjRw50uVZQ+3atdPMmTP19NNP68knn1Tjxo01Z84ctWjRwqopS1sAAIB9nddzhKo6niMEVG08RwiomirtOUIAAACXE4IQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwrQoPQqNHj5aHh4fLq2nTptb8Y8eOKTk5WVdccYX8/f3Vs2dPZWdnu6xjx44d6t69u2rUqKE6dero8ccfV2FhoUvN4sWLdf3118vhcKhRo0aaPn16ibZMnjxZ9evXl4+Pj6Kjo7Vy5cqK7i4AALiMXZAjQtdcc41+//136/Xtt99a84YMGaIvvvhCs2bN0pIlS7R792716NHDmn/y5El1795dx48f17JlyzRjxgxNnz5dI0eOtGq2bdum7t27q1OnTlqzZo0GDx6shx9+WF999ZVV89FHHyklJUWjRo3SDz/8oJYtWyo+Pl579uy5EF0GAACXIQ9jjKnIFY4ePVpz5szRmjVrSszLzc1VcHCwZs6cqbvvvluSlJmZqWbNmik9PV1t27bVl19+qdtuu027d+9WSEiIJGnq1KkaNmyY9u7dK29vbw0bNkzz5s3TunXrrHX36tVLOTk5Sk1NlSRFR0frxhtv1KRJkyRJRUVFCg8P16BBgzR8+PAy9SUvL08BAQHKzc2V0+k8n90C4BKU/t7Qym6C22L6TqjsJgCXPHe+vy/IEaHNmzcrLCxMDRo0UJ8+fbRjxw5JUkZGhk6cOKG4uDirtmnTpqpXr57S09MlSenp6YqKirJCkCTFx8crLy9P69evt2pOXUdxTfE6jh8/royMDJcaT09PxcXFWTWlKSgoUF5enssLAABUXRUehKKjozV9+nSlpqZqypQp2rZtmzp06KBDhw4pKytL3t7eCgwMdFkmJCREWVlZkqSsrCyXEFQ8v3je2Wry8vJ09OhR7du3TydPniy1pngdpRk3bpwCAgKsV3h4eLn2AQAAuDxUq+gVduvWzfr3tddeq+joaEVEROjjjz+Wr69vRW+uQo0YMUIpKSnW+7y8PMIQAOCy8eqCnyu7CW4b8n9XV+r2L/jt84GBgbr66qu1ZcsWhYaG6vjx48rJyXGpyc7OVmhoqCQpNDS0xF1kxe/PVeN0OuXr66ugoCB5eXmVWlO8jtI4HA45nU6XFwAAqLoueBA6fPiwtm7dqrp166p169aqXr260tLSrPmbNm3Sjh07FBMTI0mKiYnR2rVrXe7uWrBggZxOp5o3b27VnLqO4pridXh7e6t169YuNUVFRUpLS7NqAAAAKjwIDR06VEuWLNH27du1bNky3XXXXfLy8lLv3r0VEBCgvn37KiUlRYsWLVJGRoYefPBBxcTEqG3btpKkLl26qHnz5rr//vv1448/6quvvtLTTz+t5ORkORwOSdJf//pX/fLLL3riiSeUmZmpN998Ux9//LGGDBlitSMlJUXvvPOOZsyYoY0bN2rAgAHKz8/Xgw8+WNFdBgAAl6kKv0Zo165d6t27t/bv36/g4GC1b99ey5cvV3BwsCTp1Vdflaenp3r27KmCggLFx8frzTfftJb38vLS3LlzNWDAAMXExMjPz0+JiYkaO3asVRMZGal58+ZpyJAheu2113TVVVfp3XffVXx8vFVz7733au/evRo5cqSysrLUqlUrpaamlriAGgAA2FeFP0eoKuE5QkDVxnOEUNVwsfQf3Pn+rvAjQgAAoHK03fF2ZTehHCo33PNHVwEAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG1Vq+wGAABwKXp1wc+V3QS3ta3sBlyGOCIEAABsiyNCAACUou2Otyu7CbgIOCIEAABsiyNClSj9vaGV3QS3xfSdUNlNAACgwnBECAAA2BZHhAAAFxx3YOFSRRACAFxwXHiMSxWnxgAAgG1xRAgALiOX4ykmidNMuHQRhADgMsIpJqBicWoMAADYli2OCE2ePFnjx49XVlaWWrZsqTfeeENt2rSp7GYBVcrl+FwsAKjyQeijjz5SSkqKpk6dqujoaE2cOFHx8fHatGmT6tSpU9nNA0pFqACAi8PDGGMquxEXUnR0tG688UZNmjRJklRUVKTw8HANGjRIw4cPP+uyeXl5CggIUG5urpxOZ4W3jS87AIDdXYi/WODO93eVPiJ0/PhxZWRkaMSIEdY0T09PxcXFKT09vUR9QUGBCgoKrPe5ubmS/tihF0L+0YJzFwEAUIVdiO/Y4nWW5VhPlQ5C+/bt08mTJxUSEuIyPSQkRJmZmSXqx40bpzFjxpSYHh4efsHaCACArQ2adMFWfejQIQUEBJy1pkoHIXeNGDFCKSkp1vuioiIdOHBAV1xxhTw8PCp0W3l5eQoPD9fOnTsvyGm3ylbV+ydV/T7Sv8tfVe8j/bv8Xag+GmN06NAhhYWFnbO2SgehoKAgeXl5KTs722V6dna2QkNDS9Q7HA45HA6XaYGBgReyiXI6nVX2B1yq+v2Tqn4f6d/lr6r3kf5d/i5EH891JKhYlX6OkLe3t1q3bq20tDRrWlFRkdLS0hQTE1OJLQMAAJeCKn1ESJJSUlKUmJioG264QW3atNHEiROVn5+vBx98sLKbBgAAKlmVD0L33nuv9u7dq5EjRyorK0utWrVSampqiQuoLzaHw6FRo0aVOBVXVVT1/klVv4/07/JX1ftI/y5/l0Ifq/xzhAAAAM6kSl8jBAAAcDYEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEoQvk+eefV7t27VSjRo0yP53aGKORI0eqbt268vX1VVxcnDZv3uxSc+DAAfXp00dOp1OBgYHq27evDh8+fAF6cG7utmX79u3y8PAo9TVr1iyrrrT5H3744cXokovy7Oubb765RNv/+te/utTs2LFD3bt3V40aNVSnTh09/vjjKiwsvJBdKZW7/Ttw4IAGDRqkJk2ayNfXV/Xq1dMjjzxi/XHiYpU5fpMnT1b9+vXl4+Oj6OhorVy58qz1s2bNUtOmTeXj46OoqCjNnz/fZX5ZPpMXkzv9e+edd9ShQwfVqlVLtWrVUlxcXIn6pKSkEmPVtWvXC92Ns3Knj9OnTy/Rfh8fH5eay3kMS/t94uHhoe7du1s1l9IYLl26VLfffrvCwsLk4eGhOXPmnHOZxYsX6/rrr5fD4VCjRo00ffr0EjXufq7dZnBBjBw50rzyyismJSXFBAQElGmZF154wQQEBJg5c+aYH3/80dxxxx0mMjLSHD161Krp2rWradmypVm+fLn5z3/+Yxo1amR69+59gXpxdu62pbCw0Pz+++8urzFjxhh/f39z6NAhq06SmTZtmkvdqfvgYinPvo6NjTX9+vVzaXtubq41v7Cw0LRo0cLExcWZ1atXm/nz55ugoCAzYsSIC92dEtzt39q1a02PHj3M559/brZs2WLS0tJM48aNTc+ePV3qKmv8PvzwQ+Pt7W3ef/99s379etOvXz8TGBhosrOzS63/7rvvjJeXl3nppZfMhg0bzNNPP22qV69u1q5da9WU5TN5sbjbv/vuu89MnjzZrF692mzcuNEkJSWZgIAAs2vXLqsmMTHRdO3a1WWsDhw4cLG6VIK7fZw2bZpxOp0u7c/KynKpuZzHcP/+/S59W7dunfHy8jLTpk2zai6lMZw/f7556qmnzKeffmokmdmzZ5+1/pdffjE1atQwKSkpZsOGDeaNN94wXl5eJjU11apxd5+VB0HoAps2bVqZglBRUZEJDQ0148ePt6bl5OQYh8Nh/vWvfxljjNmwYYORZL7//nur5ssvvzQeHh7mt99+q/C2n01FtaVVq1bmoYcecplWlg/QhVbe/sXGxppHH330jPPnz59vPD09XX5ZT5kyxTidTlNQUFAhbS+Lihq/jz/+2Hh7e5sTJ05Y0ypr/Nq0aWOSk5Ot9ydPnjRhYWFm3Lhxpdbfc889pnv37i7ToqOjzV/+8hdjTNk+kxeTu/07XWFhoalZs6aZMWOGNS0xMdHceeedFd3UcnO3j+f6/VrVxvDVV181NWvWNIcPH7amXWpjWKwsvweeeOIJc80117hMu/fee018fLz1/nz3WVlwauwSsW3bNmVlZSkuLs6aFhAQoOjoaKWnp0uS0tPTFRgYqBtuuMGqiYuLk6enp1asWHFR21sRbcnIyNCaNWvUt2/fEvOSk5MVFBSkNm3a6P3335e5yM/9PJ/+/fOf/1RQUJBatGihESNG6MiRIy7rjYqKcnmyeXx8vPLy8rR+/fqK78gZVNTPUm5urpxOp6pVc31I/cUev+PHjysjI8Pl8+Pp6am4uDjr83O69PR0l3rpj7Eori/LZ/JiKU//TnfkyBGdOHFCtWvXdpm+ePFi1alTR02aNNGAAQO0f//+Cm17WZW3j4cPH1ZERITCw8N15513unyOqtoYvvfee+rVq5f8/Pxcpl8qY+iuc30GK2KflUWV/xMbl4usrCxJKvGnP0JCQqx5WVlZqlOnjsv8atWqqXbt2lbNxVIRbXnvvffUrFkztWvXzmX62LFjdcstt6hGjRr6+uuv9be//U2HDx/WI488UmHtP5fy9u++++5TRESEwsLC9NNPP2nYsGHatGmTPv30U2u9pY1x8byLpSLGb9++fXr22WfVv39/l+mVMX779u3TyZMnS923mZmZpS5zprE49fNWPO1MNRdLefp3umHDhiksLMzlS6Vr167q0aOHIiMjtXXrVj355JPq1q2b0tPT5eXlVaF9OJfy9LFJkyZ6//33de211yo3N1cTJkxQu3bttH79el111VVVagxXrlypdevW6b333nOZfimNobvO9BnMy8vT0aNHdfDgwfP+uS8LgpAbhg8frhdffPGsNRs3blTTpk0vUosqXln7eL6OHj2qmTNn6plnnikx79Rp1113nfLz8zV+/PgK+SK90P07NRRERUWpbt266ty5s7Zu3aqGDRuWe71ldbHGLy8vT927d1fz5s01evRol3kXcvxQPi+88II+/PBDLV682OVi4l69eln/joqK0rXXXquGDRtq8eLF6ty5c2U01S0xMTGKiYmx3rdr107NmjXTW2+9pWeffbYSW1bx3nvvPUVFRalNmzYu0y/3MbwUEITc8NhjjykpKemsNQ0aNCjXukNDQyVJ2dnZqlu3rjU9OztbrVq1smr27NnjslxhYaEOHDhgLX++ytrH823LJ598oiNHjuiBBx44Z210dLSeffZZFRQUnPcf5rtY/SsWHR0tSdqyZYsaNmyo0NDQEnc8ZGdnS1KFjOHF6N+hQ4fUtWtX1axZU7Nnz1b16tXPWl+R43cmQUFB8vLysvZlsezs7DP2JzQ09Kz1ZflMXizl6V+xCRMm6IUXXtA333yja6+99qy1DRo0UFBQkLZs2XLRv0TPp4/Fqlevruuuu05btmyRVHXGMD8/Xx9++KHGjh17zu1U5hi660yfQafTKV9fX3l5eZ33z0SZVNjVRiiVuxdLT5gwwZqWm5tb6sXSq1atsmq++uqrSr1YurxtiY2NLXG30Zk899xzplatWuVua3lU1L7+9ttvjSTz448/GmP+d7H0qXc8vPXWW8bpdJpjx45VXAfOobz9y83NNW3btjWxsbEmPz+/TNu6WOPXpk0bM3DgQOv9yZMnzZVXXnnWi6Vvu+02l2kxMTElLpY+22fyYnK3f8YY8+KLLxqn02nS09PLtI2dO3caDw8P89lnn513e8ujPH08VWFhoWnSpIkZMmSIMaZqjKExf3yPOBwOs2/fvnNuo7LHsJjKeLF0ixYtXKb17t27xMXS5/MzUaa2Vtia4OLXX381q1evtm4PX716tVm9erXLbeJNmjQxn376qfX+hRdeMIGBgeazzz4zP/30k7nzzjtLvX3+uuuuMytWrDDffvutady4caXePn+2tuzatcs0adLErFixwmW5zZs3Gw8PD/Pll1+WWOfnn39u3nnnHbN27VqzefNm8+abb5oaNWqYkSNHXvD+nM7d/m3ZssWMHTvWrFq1ymzbts189tlnpkGDBqZjx47WMsW3z3fp0sWsWbPGpKammuDg4Eq7fd6d/uXm5pro6GgTFRVltmzZ4nK7bmFhoTGmcsfvww8/NA6Hw0yfPt1s2LDB9O/f3wQGBlp36N1///1m+PDhVv13331nqlWrZiZMmGA2btxoRo0aVert8+f6TF4s7vbvhRdeMN7e3uaTTz5xGavi30GHDh0yQ4cONenp6Wbbtm3mm2++Mddff71p3LjxRQ3l59PHMWPGmK+++sps3brVZGRkmF69ehkfHx+zfv16q+ZyHsNi7du3N/fee2+J6ZfaGB46dMj6rpNkXnnlFbN69Wrz66+/GmOMGT58uLn//vut+uLb5x9//HGzceNGM3ny5FJvnz/bPqsIBKELJDEx0Ugq8Vq0aJFVo/8+b6VYUVGReeaZZ0xISIhxOBymc+fOZtOmTS7r3b9/v+ndu7fx9/c3TqfTPPjggy7h6mI6V1u2bdtWos/GGDNixAgTHh5uTp48WWKdX375pWnVqpXx9/c3fn5+pmXLlmbq1Kml1l5o7vZvx44dpmPHjqZ27drG4XCYRo0amccff9zlOULGGLN9+3bTrVs34+vra4KCgsxjjz3mcvv5xeJu/xYtWlTqz7Qks23bNmNM5Y/fG2+8YerVq2e8vb1NmzZtzPLly615sbGxJjEx0aX+448/NldffbXx9vY211xzjZk3b57L/LJ8Ji8md/oXERFR6liNGjXKGGPMkSNHTJcuXUxwcLCpXr26iYiIMP369avQL5jycKePgwcPtmpDQkLMrbfean744QeX9V3OY2iMMZmZmUaS+frrr0us61IbwzP9jijuU2JioomNjS2xTKtWrYy3t7dp0KCBy3disbPts4rgYcxFvi8ZAADgEsFzhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG39Pyf7tyZpYTKJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQGBJREFUeJzt3XlcVXX+x/E3oFxAvaChIIW45kpamoi55MhPNFtIG9cpKJfJ0FLU1BbXelhmZYtpU7nMlJPZpJWaZq5ToiZp7o6apmbgCigqCnx/fzSc8QoqF1GU83o+Hvfx6H7P55zz/d4v1/vu3HPO9TDGGAEAANiQZ3F3AAAAoLgQhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhACUOCtWrJCHh4dWrFhRpNv18PDQ6NGji3SbAIoXQQgALrBw4cKbPuzMmjVLkyZNKu5uWKZMmaI///nPqlKlijw8PBQXF5dv3dKlS/XEE0/o9ttvl5+fn6pXr67evXvr999/d3ufM2bMkIeHR76P5OTkqxwRSpJSxd0BALiRLFy4UJMnT843DJ05c0alSt34/2zOmjVLW7Zs0cCBA4u7K5KkV199VSdPnlTTpk0vG2qGDRum48eP689//rNq1aqlX375Re+++67mz5+vjRs3Kjg42O19jx07VtWqVXNpCwgIcHs7KLlu/Hc0YCMZGRkqU6ZMcXej2Jw+fVp+fn552rOyspSTkyNvb+9i6NX/+Pj4FOv+b1YrV660jgaVLVv2knVvvPGGWrRoIU/P/31Z0b59e7Vu3VrvvvuuXnrpJbf33aFDBzVp0qRQ/YY98NUYbG/06NHy8PDQjh071KVLFzmdTt1yyy165plndPbsWZfajz/+WI0bN5avr68qVKigbt266cCBAy41//73v62vARwOh0JDQzVo0CCdOXPGpS4uLk5ly5bVnj17dN9996lcuXLq2bOnJGnXrl3q3LmzgoOD5ePjo9tuu03dunVTWlqatX5WVpbGjRunGjVqyOFwqGrVqnruueeUmZnpsp+qVavq/vvv1/fff6+mTZvKx8dH1atX19///vdCvV4ff/yxmjZtKj8/P5UvX16tWrXSt99+61Lz3nvvqX79+nI4HAoJCVF8fLxSU1Ndau699141aNBASUlJatWqlfz8/PTcc89p37598vDw0MSJEzVp0iRrfNu2bZMk7dixQ4888ogqVKggHx8fNWnSRF999dUV+12QeYmLi9PkyZMlyeWrlFz5nSO0YcMGdejQQU6nU2XLllXbtm21Zs0al5rcr2l++OEHJSQkqGLFiipTpowefvhhHTlyxKV2/fr1io6OVmBgoHx9fVWtWjU98cQTVxzfha/rggUL9Ouvv1r9r1q1qrX88OHD6tWrl4KCguTj46OGDRtq5syZLtu4cA7efPNNhYWFydfXV61bt9aWLVsK3JdcYWFhLq/jpbRq1colBOW2VahQQdu3b3d7v7lOnjyp7OzsQq+Pko0jQsB/denSRVWrVtX48eO1Zs0avf322zpx4oQVGF5++WW9+OKL6tKli3r37q0jR47onXfeUatWrbRhwwbrcPucOXN0+vRp9evXT7fccovWrVund955RwcPHtScOXNc9pmVlaXo6Gi1aNFCEydOlJ+fn86dO6fo6GhlZmZqwIABCg4O1m+//ab58+crNTVV/v7+kqTevXtr5syZeuSRRzR48GCtXbtW48eP1/bt2zV37lyX/ezevVuPPPKIevXqpdjYWE2bNk1xcXFq3Lix6tevX+DXaMyYMRo9erSaN2+usWPHytvbW2vXrtWyZcvUrl07SX8EyzFjxigqKkr9+vXTzp07NWXKFP3444/64YcfVLp0aWt7x44dU4cOHdStWzf95S9/UVBQkLVs+vTpOnv2rPr27SuHw6EKFSpo69atuueee3Trrbdq+PDhKlOmjD777DPFxMToX//6lx5++OFL9r0g8/LXv/5Vhw4d0pIlS/SPf/zjiq/H1q1b1bJlSzmdTj377LMqXbq03n//fd17771auXKlIiIiXOoHDBig8uXLa9SoUdq3b58mTZqk/v37a/bs2ZL+CCnt2rVTxYoVNXz4cAUEBGjfvn364osvCjxHzz//vNLS0nTw4EG9+eabkmQdhTlz5ozuvfde7d69W/3791e1atU0Z84cxcXFKTU1Vc8884zLtv7+97/r5MmTio+P19mzZ/XWW2/pT3/6kzZv3uwyV9fSqVOndOrUKQUGBhZq/TZt2ujUqVPy9vZWdHS0Xn/9ddWqVauIe4mbmgFsbtSoUUaSefDBB13an3rqKSPJ/Pzzz2bfvn3Gy8vLvPzyyy41mzdvNqVKlXJpP336dJ59jB8/3nh4eJhff/3VaouNjTWSzPDhw11qN2zYYCSZOXPmXLLPGzduNJJM7969XdqHDBliJJlly5ZZbWFhYUaSWbVqldV2+PBh43A4zODBgy+5j4vt2rXLeHp6mocffthkZ2e7LMvJybG26+3tbdq1a+dS8+677xpJZtq0aVZb69atjSQzdepUl23t3bvXSDJOp9McPnzYZVnbtm1NeHi4OXv2rMu+mzdvbmrVqmW1LV++3Egyy5cvt9oKOi/x8fHmUv80SjKjRo2ynsfExBhvb2+zZ88eq+3QoUOmXLlyplWrVlbb9OnTjSQTFRVlvVbGGDNo0CDj5eVlUlNTjTHGzJ0710gyP/74Y777L6iOHTuasLCwPO2TJk0ykszHH39stZ07d85ERkaasmXLmvT0dGPM/+bA19fXHDx40Kpdu3atkWQGDRpU6L6VKVPGxMbGFrh+3LhxRpJZunSpW/uZPXu2iYuLMzNnzjRz5841L7zwgvHz8zOBgYFm//79bvYaJRlfjQH/FR8f7/J8wIABkv44efaLL75QTk6OunTpoqNHj1qP4OBg1apVS8uXL7fW8/X1tf47IyNDR48eVfPmzWWM0YYNG/Lst1+/fi7Pc4/4LF68WKdPn863rwsXLpQkJSQkuLQPHjxYkrRgwQKX9nr16qlly5bW84oVK6p27dr65Zdf8t1+fubNm6ecnByNHDkyz9cXuV97fPfddzp37pwGDhzoUtOnTx85nc48/XI4HHr88cfz3V/nzp1VsWJF6/nx48e1bNkydenSRSdPnrTm4NixY4qOjtauXbv022+/XbL/7s7LlWRnZ+vbb79VTEyMqlevbrVXrlxZPXr00Pfff6/09HSXdfr27evyFVHLli2VnZ2tX3/9VdL/TuKdP3++zp8/73afrmThwoUKDg5W9+7drbbSpUvr6aef1qlTp7Ry5UqX+piYGN16663W86ZNmyoiIsL6+7vWVq1apTFjxqhLly7605/+5Na6Xbp00fTp0/XYY48pJiZG48aN0+LFi3Xs2DG9/PLL16jHuBkRhID/uvhweY0aNeTp6al9+/Zp165dMsaoVq1aqlixostj+/btOnz4sLXe/v37FRcXpwoVKqhs2bKqWLGiWrduLUku5/hIUqlSpXTbbbe5tFWrVk0JCQn68MMPFRgYqOjoaE2ePNll3V9//VWenp6qWbOmy7rBwcEKCAiwPlhzValSJc94y5cvrxMnThT49dmzZ488PT1Vr169S9bk7rd27dou7d7e3qpevXqeft16662XPAH64it9du/eLWOMXnzxxTxzMGrUKElymYeLuTMvBXHkyBGdPn06z1glqW7dusrJyclz/tjF81C+fHlJsuahdevW6ty5s8aMGaPAwEA99NBDmj59ep7zvgrr119/Va1atfIE2bp161rLL5TfV0i333679u3bVyT9uZwdO3bo4YcfVoMGDfThhx8WyTZbtGihiIgIfffdd0WyPZQMnCMEXMKF/+eek5MjDw8PffPNN/Ly8spTm3sORnZ2tv7v//5Px48f17Bhw1SnTh2VKVNGv/32m+Li4pSTk+OynsPhyPOhJEmvv/664uLi9OWXX+rbb7/V008/bZ27dGFwKsgJqJLy7bMkGWMKtP61cuFRmisty33thgwZoujo6HzXuTgY5nJ3Xq6VK82Dh4eHPv/8c61Zs0Zff/21Fi9erCeeeEKvv/661qxZc9krrkqSAwcOqF27dvL399fChQtVrly5Itt2aGiodu7cWWTbw82PIAT8165du1yOQuzevVs5OTmqWrWqvLy8ZIxRtWrVdPvtt19yG5s3b9Z//vMfzZw5U4899pjVvmTJErf7Ex4ervDwcL3wwgtavXq17rnnHk2dOlUvvfSSwsLClJOTo127dln/Ny9JKSkpSk1NVVhYmNv7u5IaNWooJydH27ZtU6NGjfKtyd3vzp07Xb4uOnfunPbu3auoqKhC7z93e6VLl3Z7O+7MS0HDZcWKFeXn55fvh+qOHTvk6emp0NBQt/qZq1mzZmrWrJlefvllzZo1Sz179tSnn36q3r17F2j9S40hLCxMmzZtUk5OjksA37Fjh7X8Qrt27cqzjf/85z8uV6EVtWPHjqldu3bKzMzU0qVLVbly5SLd/i+//OLylSvAV2PAf+VeNp3rnXfekfTHfUg6deokLy8vjRkzJs9RFGOMjh07Jul//8d/YY0xRm+99VaB+5Genq6srCyXtvDwcHl6elpfkdx3332SlOfuwW+88YYkqWPHjgXeX0HFxMTI09NTY8eOzXMEJXe8UVFR8vb21ttvv+3yGnz00UdKS0u7qn5VqlRJ9957r95///18b8p38WXoF3JnXnLv43Tx5f75bbNdu3b68ssvXb4qSklJ0axZs9SiRQs5nc7LbuNiJ06cyPP3lRs63fl6rEyZMvl+3XffffcpOTnZukpN+uPKxXfeeUdly5a1virMNW/ePJfzrtatW6e1a9eqQ4cOBe6LOzIyMnTffffpt99+08KFC6/q6q78/h4WLlyopKQktW/f/mq6iRKGI0LAf+3du1cPPvig2rdvr8TERH388cfq0aOHGjZsKEl66aWXNGLECO3bt08xMTEqV66c9u7dq7lz56pv374aMmSI6tSpoxo1amjIkCH67bff5HQ69a9//cutc3GWLVum/v37689//rNuv/12ZWVl6R//+Ie8vLzUuXNnSVLDhg0VGxurv/3tb0pNTVXr1q21bt06zZw5UzExMWrTpk2Rvz41a9bU888/r3Hjxqlly5bq1KmTHA6HfvzxR4WEhGj8+PGqWLGiRowYoTFjxqh9+/Z68MEHtXPnTr333nu6++679Ze//OWq+jB58mS1aNFC4eHh6tOnj6pXr66UlBQlJibq4MGD+vnnn/Ndz515ady4sSTp6aefVnR0tLy8vNStW7d8t/vSSy9pyZIlatGihZ566imVKlVK77//vjIzMzVhwgS3xzdz5ky99957evjhh1WjRg2dPHlSH3zwgZxOpxV+C6Jx48aaPXu2EhISdPfdd6ts2bJ64IEH1LdvX73//vuKi4tTUlKSqlatqs8//1w//PCDJk2alOcrqJo1a6pFixbq16+fMjMzNWnSJN1yyy169tln3RrX119/bc3N+fPntWnTJuvmiA8++KDuuOMOSVLPnj21bt06PfHEE9q+fbvLvYPKli2rmJiYAu+zefPmuvPOO9WkSRP5+/vrp59+0rRp0xQaGqrnnnvOrf6jhLv+F6oBN5bcy+e3bdtmHnnkEVOuXDlTvnx5079/f3PmzBmX2n/961+mRYsWpkyZMqZMmTKmTp06Jj4+3uzcudOq2bZtm4mKijJly5Y1gYGBpk+fPubnn382ksz06dOtutjYWFOmTJk8/fnll1/ME088YWrUqGF8fHxMhQoVTJs2bcx3333nUnf+/HkzZswYU61aNVO6dGkTGhpqRowY4XJpuTF/XD7fsWPHPPtp3bq1ad26tduv17Rp08ydd95pHA6HKV++vGndurVZsmSJS827775r6tSpY0qXLm2CgoJMv379zIkTJ/Lsv379+nm2n3vp9muvvZbv/vfs2WMee+wxExwcbEqXLm1uvfVWc//995vPP//cqsnv8vmCzktWVpYZMGCAqVixovHw8HC5lF4XXT5vjDE//fSTiY6ONmXLljV+fn6mTZs2ZvXq1S41uZfPX3xZ/MX9/Omnn0z37t1NlSpVjMPhMJUqVTL333+/Wb9+fb6vxaWcOnXK9OjRwwQEBBhJLpfSp6SkmMcff9wEBgYab29vEx4e7jJ+Y1zn4PXXXzehoaHG4XCYli1bmp9//tmtvhjzv1tF5Pe4cN+5t3rI75Hf7QAu5/nnnzeNGjUy/v7+pnTp0qZKlSqmX79+Jjk52e3+o2TzMKaYz5YEilnuDQCPHDlS6Ju2ASXJvn37VK1aNb322msaMmRIcXcHuKY4RwgAANgW5wgBUHJy8mWX+/r6Wjd6RPE5fvy4zp07d8nlXl5e1+2KqHPnzun48eOXrfH397/sLRIKIy0tLc/v9l2sML9SD/siCAG44iXKsbGxmjFjxvXpDC6pU6dOee7+fKGwsLDrcrNDSVq9evUVT8qfPn264uLiinS/zzzzTJ4fib0YZ3zAHZwjBOCKd9oNCQm57B2lcX0kJSVd9gpEX19f3XPPPdelLydOnFBSUtJla+rXr1/k9wHatm2bDh06dNmaq7lfFeyHIAQAAGyLk6UBAIBtcY7QZeTk5OjQoUMqV65cgW+7DwAAipcxRidPnlRISEi+v+d4IYLQZRw6dKjQvxUEAACK14EDB1x+qDo/BKHLyL3d/IEDB9z+zSAAAFA80tPTFRoamudnY/JDELqM3K/DnE4nQQgAgJtMQU5r4WRpAABgW24FofHjx+vuu+9WuXLlVKlSJcXExGjnzp0uNffee688PDxcHk8++aRLzf79+9WxY0f5+fmpUqVKGjp0qLKyslxqVqxYobvuuksOh0M1a9bM92ZukydPVtWqVeXj46OIiAitW7fOZfnZs2cVHx+vW265RWXLllXnzp2VkpLizpABAEAJ5lYQWrlypeLj47VmzRotWbJE58+fV7t27ZSRkeFS16dPH/3+++/WY8KECday7OxsdezYUefOndPq1as1c+ZMzZgxQyNHjrRq9u7dq44dO6pNmzbauHGjBg4cqN69e2vx4sVWzezZs5WQkKBRo0bpp59+UsOGDRUdHa3Dhw9bNYMGDdLXX3+tOXPmaOXKlTp06JA6derk9osEAABKqKv56frDhw8bSWblypVWW+vWrc0zzzxzyXUWLlxoPD09TXJystU2ZcoU43Q6TWZmpjHGmGeffdbUr1/fZb2uXbua6Oho63nTpk1NfHy89Tw7O9uEhISY8ePHG2OMSU1NNaVLlzZz5syxarZv324kmcTExAKNLy0tzUgyaWlpBaoHAADFz53P76s6RygtLU2SVKFCBZf2Tz75RIGBgWrQoIFGjBih06dPW8sSExMVHh6uoKAgqy06Olrp6enaunWrVXPxLdKjo6OVmJgo6Y8f+0tKSnKp8fT0VFRUlFWTlJSk8+fPu9TUqVNHVapUsWoulpmZqfT0dJcHAAAouQp91VhOTo4GDhyoe+65Rw0aNLDae/ToobCwMIWEhGjTpk0aNmyYdu7cqS+++ELSH79yfWEIkmQ9z/0F7EvVpKen68yZMzpx4oSys7PzrdmxY4e1DW9vbwUEBOSpudQvbY8fP15jxoxx85UAAAA3q0IHofj4eG3ZskXff/+9S3vfvn2t/w4PD1flypXVtm1b7dmzRzVq1Ch8T6+DESNGKCEhwXqeex8CAABQMhXqq7H+/ftr/vz5Wr58+RXv2BgRESFJ2r17tyQpODg4z5Vbuc+Dg4MvW+N0OuXr66vAwEB5eXnlW3PhNs6dO6fU1NRL1lzM4XBY9wzi3kEAAJR8bgUhY4z69++vuXPnatmyZapWrdoV19m4caMkqXLlypKkyMhIbd682eXqriVLlsjpdKpevXpWzdKlS122s2TJEkVGRkqSvL291bhxY5eanJwcLV261Kpp3LixSpcu7VKzc+dO7d+/36oBAAA2585Z2P369TP+/v5mxYoV5vfff7cep0+fNsYYs3v3bjN27Fizfv16s3fvXvPll1+a6tWrm1atWlnbyMrKMg0aNDDt2rUzGzduNIsWLTIVK1Y0I0aMsGp++eUX4+fnZ4YOHWq2b99uJk+ebLy8vMyiRYusmk8//dQ4HA4zY8YMs23bNtO3b18TEBDgcjXak08+aapUqWKWLVtm1q9fbyIjI01kZGSBx8tVYwAA3Hzc+fx2KwhJyvcxffp0Y4wx+/fvN61atTIVKlQwDofD1KxZ0wwdOjRPR/bt22c6dOhgfH19TWBgoBk8eLA5f/68S83y5ctNo0aNjLe3t6levbq1jwu98847pkqVKsbb29s0bdrUrFmzxmX5mTNnzFNPPWXKly9v/Pz8zMMPP2x+//33Ao+XIAQAwM3Hnc9vD2OMKa6jUTe69PR0+fv7Ky0tjfOFAAC4Sbjz+c1vjQEAANsiCAEAANsq9H2EAOCmt3x8cffAfW1GFHcPgBKFI0IAAMC2CEIAAMC2CEIAAMC2OEcIgG0l/nKsuLvgtsg2xd0DoGThiBAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtt4LQ+PHjdffdd6tcuXKqVKmSYmJitHPnTpeas2fPKj4+XrfccovKli2rzp07KyUlxaVm//796tixo/z8/FSpUiUNHTpUWVlZLjUrVqzQXXfdJYfDoZo1a2rGjBl5+jN58mRVrVpVPj4+ioiI0Lp169zuCwAAsC+3gtDKlSsVHx+vNWvWaMmSJTp//rzatWunjIwMq2bQoEH6+uuvNWfOHK1cuVKHDh1Sp06drOXZ2dnq2LGjzp07p9WrV2vmzJmaMWOGRo4cadXs3btXHTt2VJs2bbRx40YNHDhQvXv31uLFi62a2bNnKyEhQaNGjdJPP/2khg0bKjo6WocPHy5wXwAAgL15GGNMYVc+cuSIKlWqpJUrV6pVq1ZKS0tTxYoVNWvWLD3yyCOSpB07dqhu3bpKTExUs2bN9M033+j+++/XoUOHFBQUJEmaOnWqhg0bpiNHjsjb21vDhg3TggULtGXLFmtf3bp1U2pqqhYtWiRJioiI0N133613331XkpSTk6PQ0FANGDBAw4cPL1BfLpaZmanMzEzreXp6ukJDQ5WWlian01nYlwnADSrxoyHF3QW3RfaaWNxdAG546enp8vf3L9Dn91WdI5SWliZJqlChgiQpKSlJ58+fV1RUlFVTp04dValSRYmJiZKkxMREhYeHWyFIkqKjo5Wenq6tW7daNRduI7cmdxvnzp1TUlKSS42np6eioqKsmoL05WLjx4+Xv7+/9QgNDS3cCwMAAG4KhQ5COTk5GjhwoO655x41aNBAkpScnCxvb28FBAS41AYFBSk5OdmquTAE5S7PXXa5mvT0dJ05c0ZHjx5VdnZ2vjUXbuNKfbnYiBEjlJaWZj0OHDhQwFcDAADcjEoVdsX4+Hht2bJF33//fVH2p1g5HA45HI7i7gYAALhOCnVEqH///po/f76WL1+u2267zWoPDg7WuXPnlJqa6lKfkpKi4OBgq+biK7dyn1+pxul0ytfXV4GBgfLy8sq35sJtXKkvAADA3twKQsYY9e/fX3PnztWyZctUrVo1l+WNGzdW6dKltXTpUqtt586d2r9/vyIjIyVJkZGR2rx5s8vVXUuWLJHT6VS9evWsmgu3kVuTuw1vb281btzYpSYnJ0dLly61agrSFwAAYG9ufTUWHx+vWbNm6csvv1S5cuWsc238/f3l6+srf39/9erVSwkJCapQoYKcTqcGDBigyMhI6yqtdu3aqV69enr00Uc1YcIEJScn64UXXlB8fLz1tdSTTz6pd999V88++6yeeOIJLVu2TJ999pkWLFhg9SUhIUGxsbFq0qSJmjZtqkmTJikjI0OPP/641acr9QUAANibW0FoypQpkqR7773XpX369OmKi4uTJL355pvy9PRU586dlZmZqejoaL333ntWrZeXl+bPn69+/fopMjJSZcqUUWxsrMaOHWvVVKtWTQsWLNCgQYP01ltv6bbbbtOHH36o6Ohoq6Zr1646cuSIRo4cqeTkZDVq1EiLFi1yOYH6Sn0BAAD2dlX3ESrp3LkPAYCbD/cRAkqm63YfIQAAgJsZQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANgWQQgAANiW20Fo1apVeuCBBxQSEiIPDw/NmzfPZXlcXJw8PDxcHu3bt3epOX78uHr27Cmn06mAgAD16tVLp06dcqnZtGmTWrZsKR8fH4WGhmrChAl5+jJnzhzVqVNHPj4+Cg8P18KFC12WG2M0cuRIVa5cWb6+voqKitKuXbvcHTIAACih3A5CGRkZatiwoSZPnnzJmvbt2+v333+3Hv/85z9dlvfs2VNbt27VkiVLNH/+fK1atUp9+/a1lqenp6tdu3YKCwtTUlKSXnvtNY0ePVp/+9vfrJrVq1ere/fu6tWrlzZs2KCYmBjFxMRoy5YtVs2ECRP09ttva+rUqVq7dq3KlCmj6OhonT171t1hAwCAEsjDGGMKvbKHh+bOnauYmBirLS4uTqmpqXmOFOXavn276tWrpx9//FFNmjSRJC1atEj33XefDh48qJCQEE2ZMkXPP/+8kpOT5e3tLUkaPny45s2bpx07dkiSunbtqoyMDM2fP9/adrNmzdSoUSNNnTpVxhiFhIRo8ODBGjJkiCQpLS1NQUFBmjFjhrp163bF8aWnp8vf319paWlyOp2FeYkA3MASPxpS3F1wW2SvicXdBeCG587n9zU5R2jFihWqVKmSateurX79+unYsWPWssTERAUEBFghSJKioqLk6emptWvXWjWtWrWyQpAkRUdHa+fOnTpx4oRVExUV5bLf6OhoJSYmSpL27t2r5ORklxp/f39FRERYNRfLzMxUenq6ywMAAJRcRR6E2rdvr7///e9aunSpXn31Va1cuVIdOnRQdna2JCk5OVmVKlVyWadUqVKqUKGCkpOTrZqgoCCXmtznV6q5cPmF6+VXc7Hx48fL39/feoSGhro9fgAAcPMoVdQbvPArp/DwcN1xxx2qUaOGVqxYobZt2xb17orUiBEjlJCQYD1PT08nDAEAUIJd88vnq1evrsDAQO3evVuSFBwcrMOHD7vUZGVl6fjx4woODrZqUlJSXGpyn1+p5sLlF66XX83FHA6HnE6nywMAAJRc1zwIHTx4UMeOHVPlypUlSZGRkUpNTVVSUpJVs2zZMuXk5CgiIsKqWbVqlc6fP2/VLFmyRLVr11b58uWtmqVLl7rsa8mSJYqMjJQkVatWTcHBwS416enpWrt2rVUDAADsze0gdOrUKW3cuFEbN26U9MdJyRs3btT+/ft16tQpDR06VGvWrNG+ffu0dOlSPfTQQ6pZs6aio6MlSXXr1lX79u3Vp08frVu3Tj/88IP69++vbt26KSQkRJLUo0cPeXt7q1evXtq6datmz56tt956y+Vrq2eeeUaLFi3S66+/rh07dmj06NFav369+vfvL+mPK9oGDhyol156SV999ZU2b96sxx57TCEhIS5XuQEAAPty+xyh9evXq02bNtbz3HASGxurKVOmaNOmTZo5c6ZSU1MVEhKidu3aady4cXI4HNY6n3zyifr376+2bdvK09NTnTt31ttvv20t9/f317fffqv4+Hg1btxYgYGBGjlypMu9hpo3b65Zs2bphRde0HPPPadatWpp3rx5atCggVXz7LPPKiMjQ3379lVqaqpatGihRYsWycfHx91hAwCAEuiq7iNU0nEfIaBk4z5CQMlU7PcRAgAAuBkQhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG25HYRWrVqlBx54QCEhIfLw8NC8efNclhtjNHLkSFWuXFm+vr6KiorSrl27XGqOHz+unj17yul0KiAgQL169dKpU6dcajZt2qSWLVvKx8dHoaGhmjBhQp6+zJkzR3Xq1JGPj4/Cw8O1cOFCt/sCAADsy+0glJGRoYYNG2ry5Mn5Lp8wYYLefvttTZ06VWvXrlWZMmUUHR2ts2fPWjU9e/bU1q1btWTJEs2fP1+rVq1S3759reXp6elq166dwsLClJSUpNdee02jR4/W3/72N6tm9erV6t69u3r16qUNGzYoJiZGMTEx2rJli1t9AQAA9uVhjDGFXtnDQ3PnzlVMTIykP47AhISEaPDgwRoyZIgkKS0tTUFBQZoxY4a6deum7du3q169evrxxx/VpEkTSdKiRYt033336eDBgwoJCdGUKVP0/PPPKzk5Wd7e3pKk4cOHa968edqxY4ckqWvXrsrIyND8+fOt/jRr1kyNGjXS1KlTC9SXK0lPT5e/v7/S0tLkdDoL+zIBuEElfjSkuLvgtsheE4u7C8ANz53P7yI9R2jv3r1KTk5WVFSU1ebv76+IiAglJiZKkhITExUQEGCFIEmKioqSp6en1q5da9W0atXKCkGSFB0drZ07d+rEiRNWzYX7ya3J3U9B+nKxzMxMpaenuzwAAEDJVaRBKDk5WZIUFBTk0h4UFGQtS05OVqVKlVyWlypVShUqVHCpyW8bF+7jUjUXLr9SXy42fvx4+fv7W4/Q0NACjBoAANysuGrsAiNGjFBaWpr1OHDgQHF3CQAAXENFGoSCg4MlSSkpKS7tKSkp1rLg4GAdPnzYZXlWVpaOHz/uUpPfNi7cx6VqLlx+pb5czOFwyOl0ujwAAEDJVaRBqFq1agoODtbSpUuttvT0dK1du1aRkZGSpMjISKWmpiopKcmqWbZsmXJychQREWHVrFq1SufPn7dqlixZotq1a6t8+fJWzYX7ya3J3U9B+gIAAOzN7SB06tQpbdy4URs3bpT0x0nJGzdu1P79++Xh4aGBAwfqpZde0ldffaXNmzfrscceU0hIiHVlWd26ddW+fXv16dNH69at0w8//KD+/furW7duCgkJkST16NFD3t7e6tWrl7Zu3arZs2frrbfeUkJCgtWPZ555RosWLdLrr7+uHTt2aPTo0Vq/fr369+8vSQXqCwAAsLdS7q6wfv16tWnTxnqeG05iY2M1Y8YMPfvss8rIyFDfvn2VmpqqFi1aaNGiRfLx8bHW+eSTT9S/f3+1bdtWnp6e6ty5s95++21rub+/v7799lvFx8ercePGCgwM1MiRI13uNdS8eXPNmjVLL7zwgp577jnVqlVL8+bNU4MGDayagvQFAADY11XdR6ik4z5CQMnGfYSAkqnY7iMEAABwMyEIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yryIDR69Gh5eHi4POrUqWMtP3v2rOLj43XLLbeobNmy6ty5s1JSUly2sX//fnXs2FF+fn6qVKmShg4dqqysLJeaFStW6K677pLD4VDNmjU1Y8aMPH2ZPHmyqlatKh8fH0VERGjdunVFPVwAAHATuyZHhOrXr6/ff//denz//ffWskGDBunrr7/WnDlztHLlSh06dEidOnWylmdnZ6tjx446d+6cVq9erZkzZ2rGjBkaOXKkVbN371517NhRbdq00caNGzVw4ED17t1bixcvtmpmz56thIQEjRo1Sj/99JMaNmyo6OhoHT58+FoMGQAA3IQ8jDGmKDc4evRozZs3Txs3bsyzLC0tTRUrVtSsWbP0yCOPSJJ27NihunXrKjExUc2aNdM333yj+++/X4cOHVJQUJAkaerUqRo2bJiOHDkib29vDRs2TAsWLNCWLVusbXfr1k2pqalatGiRJCkiIkJ333233n33XUlSTk6OQkNDNWDAAA0fPrxAY0lPT5e/v7/S0tLkdDqv5mUBcANK/GhIcXfBbZG9JhZ3F4Abnjuf39fkiNCuXbsUEhKi6tWrq2fPntq/f78kKSkpSefPn1dUVJRVW6dOHVWpUkWJiYmSpMTERIWHh1shSJKio6OVnp6urVu3WjUXbiO3Jncb586dU1JSkkuNp6enoqKirJr8ZGZmKj093eUBAABKriIPQhEREZoxY4YWLVqkKVOmaO/evWrZsqVOnjyp5ORkeXt7KyAgwGWdoKAgJScnS5KSk5NdQlDu8txll6tJT0/XmTNndPToUWVnZ+dbk7uN/IwfP17+/v7WIzQ0tFCvAQAAuDmUKuoNdujQwfrvO+64QxEREQoLC9Nnn30mX1/fot5dkRoxYoQSEhKs5+np6YQhAABKsGt++XxAQIBuv/127d69W8HBwTp37pxSU1NdalJSUhQcHCxJCg4OznMVWe7zK9U4nU75+voqMDBQXl5e+dbkbiM/DodDTqfT5QEAAEquax6ETp06pT179qhy5cpq3LixSpcuraVLl1rLd+7cqf379ysyMlKSFBkZqc2bN7tc3bVkyRI5nU7Vq1fPqrlwG7k1udvw9vZW48aNXWpycnK0dOlSqwYAAKDIg9CQIUO0cuVK7du3T6tXr9bDDz8sLy8vde/eXf7+/urVq5cSEhK0fPlyJSUl6fHHH1dkZKSaNWsmSWrXrp3q1aunRx99VD///LMWL16sF154QfHx8XI4HJKkJ598Ur/88oueffZZ7dixQ++9954+++wzDRo0yOpHQkKCPvjgA82cOVPbt29Xv379lJGRoccff7yohwwAAG5SRX6O0MGDB9W9e3cdO3ZMFStWVIsWLbRmzRpVrFhRkvTmm2/K09NTnTt3VmZmpqKjo/Xee+9Z63t5eWn+/Pnq16+fIiMjVaZMGcXGxmrs2LFWTbVq1bRgwQINGjRIb731lm677TZ9+OGHio6Otmq6du2qI0eOaOTIkUpOTlajRo20aNGiPCdQAwAA+yry+wiVJNxHCCjZuI8QUDIV+32EAAAAbgYEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFtF/ltjAACgeLy55D/F3QW3Dfq/24t1/xwRAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtsVVYwAAlBDN9v+tuLtQCBOLde8cEQIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZVqrg7AADAjejNJf8p7i64rVlxd+AmxBEhAABgWxwRKkY34/9tDPq/24u7CwBwXTTb/7fi7gKuA4JQMbo532QTi7sDAAAUGb4aAwAAtsURIQDANZf40ZDi7gKQL44IAQAA2+KIEADcRDiyAhQtWxwRmjx5sqpWrSofHx9FRERo3bp1xd0lAABwAyjxR4Rmz56thIQETZ06VREREZo0aZKio6O1c+dOVapUqbi7B5QYHKkAcDMq8UHojTfeUJ8+ffT4449LkqZOnaoFCxZo2rRpGj58eDH3DtcDH9AAgEsp0UHo3LlzSkpK0ogRI6w2T09PRUVFKTExMU99ZmamMjMzredpaWmSpPT09GvSv4wzmVcuusF89+6A4u4CAKAEuRafsbnbNMZcsbZEB6GjR48qOztbQUFBLu1BQUHasWNHnvrx48drzJgxedpDQ0OvWR8BALC1Ae9es02fPHlS/v7+l60p0UHIXSNGjFBCQoL1PCcnR8ePH9ctt9wiDw+PIt1Xenq6QkNDdeDAATmdziLd9o2gpI9PKvljZHw3v5I+RsZ387tWYzTG6OTJkwoJCblibYkOQoGBgfLy8lJKSopLe0pKioKDg/PUOxwOORwOl7aAgIBr2UU5nc4S+wculfzxSSV/jIzv5lfSx8j4bn7XYoxXOhKUq0RfPu/t7a3GjRtr6dKlVltOTo6WLl2qyMjIYuwZAAC4EZToI0KSlJCQoNjYWDVp0kRNmzbVpEmTlJGRYV1FBgAA7KvEB6GuXbvqyJEjGjlypJKTk9WoUSMtWrQozwnU15vD4dCoUaPyfBVXUpT08Uklf4yM7+ZX0sfI+G5+N8IYPUxBri0DAAAogUr0OUIAAACXQxACAAC2RRACAAC2RRACAAC2RRACAAC2RRC6Rl5++WU1b95cfn5+Bb47tTFGI0eOVOXKleXr66uoqCjt2rXLpeb48ePq2bOnnE6nAgIC1KtXL506deoajODK3O3Lvn375OHhke9jzpw5Vl1+yz/99NPrMSQXhXmt77333jx9f/LJJ11q9u/fr44dO8rPz0+VKlXS0KFDlZWVdS2Hki93x3f8+HENGDBAtWvXlq+vr6pUqaKnn37a+nHiXMU5f5MnT1bVqlXl4+OjiIgIrVu37rL1c+bMUZ06deTj46Pw8HAtXLjQZXlB3pPXkzvj++CDD9SyZUuVL19e5cuXV1RUVJ76uLi4PHPVvn37az2My3JnjDNmzMjTfx8fH5eam3kO8/v3xMPDQx07drRqbqQ5XLVqlR544AGFhITIw8ND8+bNu+I6K1as0F133SWHw6GaNWtqxowZeWrcfV+7zeCaGDlypHnjjTdMQkKC8ff3L9A6r7zyivH39zfz5s0zP//8s3nwwQdNtWrVzJkzZ6ya9u3bm4YNG5o1a9aYf//736ZmzZqme/fu12gUl+duX7Kysszvv//u8hgzZowpW7asOXnypFUnyUyfPt2l7sLX4HopzGvdunVr06dPH5e+p6WlWcuzsrJMgwYNTFRUlNmwYYNZuHChCQwMNCNGjLjWw8nD3fFt3rzZdOrUyXz11Vdm9+7dZunSpaZWrVqmc+fOLnXFNX+ffvqp8fb2NtOmTTNbt241ffr0MQEBASYlJSXf+h9++MF4eXmZCRMmmG3btpkXXnjBlC5d2mzevNmqKch78npxd3w9evQwkydPNhs2bDDbt283cXFxxt/f3xw8eNCqiY2NNe3bt3eZq+PHj1+vIeXh7hinT59unE6nS/+Tk5Ndam7mOTx27JjL2LZs2WK8vLzM9OnTrZobaQ4XLlxonn/+efPFF18YSWbu3LmXrf/ll1+Mn5+fSUhIMNu2bTPvvPOO8fLyMosWLbJq3H3NCoMgdI1Nnz69QEEoJyfHBAcHm9dee81qS01NNQ6Hw/zzn/80xhizbds2I8n8+OOPVs0333xjPDw8zG+//Vbkfb+coupLo0aNzBNPPOHSVpA30LVW2PG1bt3aPPPMM5dcvnDhQuPp6enyj/WUKVOM0+k0mZmZRdL3giiq+fvss8+Mt7e3OX/+vNVWXPPXtGlTEx8fbz3Pzs42ISEhZvz48fnWd+nSxXTs2NGlLSIiwvz1r381xhTsPXk9uTu+i2VlZZly5cqZmTNnWm2xsbHmoYceKuquFpq7Y7zSv68lbQ7ffPNNU65cOXPq1Cmr7Uabw1wF+Xfg2WefNfXr13dp69q1q4mOjraeX+1rVhB8NXaD2Lt3r5KTkxUVFWW1+fv7KyIiQomJiZKkxMREBQQEqEmTJlZNVFSUPD09tXbt2uva36LoS1JSkjZu3KhevXrlWRYfH6/AwEA1bdpU06ZNk7nO9/28mvF98sknCgwMVIMGDTRixAidPn3aZbvh4eEudzaPjo5Wenq6tm7dWvQDuYSi+ltKS0uT0+lUqVKuN6m/3vN37tw5JSUlubx/PD09FRUVZb1/LpaYmOhSL/0xF7n1BXlPXi+FGd/FTp8+rfPnz6tChQou7StWrFClSpVUu3Zt9evXT8eOHSvSvhdUYcd46tQphYWFKTQ0VA899JDL+6ikzeFHH32kbt26qUyZMi7tN8ocuutK78GieM0KosT/xMbNIjk5WZLy/PRHUFCQtSw5OVmVKlVyWV6qVClVqFDBqrleiqIvH330kerWravmzZu7tI8dO1Z/+tOf5Ofnp2+//VZPPfWUTp06paeffrrI+n8lhR1fjx49FBYWppCQEG3atEnDhg3Tzp079cUXX1jbzW+Oc5ddL0Uxf0ePHtW4cePUt29fl/bimL+jR48qOzs739d2x44d+a5zqbm48P2W23apmuulMOO72LBhwxQSEuLyodK+fXt16tRJ1apV0549e/Tcc8+pQ4cOSkxMlJeXV5GO4UoKM8batWtr2rRpuuOOO5SWlqaJEyeqefPm2rp1q2677bYSNYfr1q3Tli1b9NFHH7m030hz6K5LvQfT09N15swZnThx4qr/7guCIOSG4cOH69VXX71szfbt21WnTp3r1KOiV9AxXq0zZ85o1qxZevHFF/Msu7DtzjvvVEZGhl577bUi+SC91uO7MBSEh4ercuXKatu2rfbs2aMaNWoUersFdb3mLz09XR07dlS9evU0evRol2XXcv5QOK+88oo+/fRTrVixwuVk4m7duln/HR4erjvuuEM1atTQihUr1LZt2+LoqlsiIyMVGRlpPW/evLnq1q2r999/X+PGjSvGnhW9jz76SOHh4WratKlL+80+hzcCgpAbBg8erLi4uMvWVK9evVDbDg4OliSlpKSocuXKVntKSooaNWpk1Rw+fNhlvaysLB0/ftxa/2oVdIxX25fPP/9cp0+f1mOPPXbF2oiICI0bN06ZmZlX/cN812t8uSIiIiRJu3fvVo0aNRQcHJznioeUlBRJKpI5vB7jO3nypNq3b69y5cpp7ty5Kl269GXri3L+LiUwMFBeXl7Wa5krJSXlkuMJDg6+bH1B3pPXS2HGl2vixIl65ZVX9N133+mOO+64bG316tUVGBio3bt3X/cP0asZY67SpUvrzjvv1O7duyWVnDnMyMjQp59+qrFjx15xP8U5h+661HvQ6XTK19dXXl5eV/03USBFdrYR8uXuydITJ0602tLS0vI9WXr9+vVWzeLFi4v1ZOnC9qV169Z5rja6lJdeesmUL1++0H0tjKJ6rb///nsjyfz888/GmP+dLH3hFQ/vv/++cTqd5uzZs0U3gCso7PjS0tJMs2bNTOvWrU1GRkaB9nW95q9p06amf//+1vPs7Gxz6623XvZk6fvvv9+lLTIyMs/J0pd7T15P7o7PGGNeffVV43Q6TWJiYoH2ceDAAePh4WG+/PLLq+5vYRRmjBfKysoytWvXNoMGDTLGlIw5NOaPzxGHw2GOHj16xX0U9xzmUgFPlm7QoIFLW/fu3fOcLH01fxMF6muRbQkufv31V7Nhwwbr8vANGzaYDRs2uFwmXrt2bfPFF19Yz1955RUTEBBgvvzyS7Np0ybz0EMP5Xv5/J133mnWrl1rvv/+e1OrVq1ivXz+cn05ePCgqV27tlm7dq3Lert27TIeHh7mm2++ybPNr776ynzwwQdm8+bNZteuXea9994zfn5+ZuTIkdd8PBdzd3y7d+82Y8eONevXrzd79+41X375palevbpp1aqVtU7u5fPt2rUzGzduNIsWLTIVK1Ystsvn3RlfWlqaiYiIMOHh4Wb37t0ul+tmZWUZY4p3/j799FPjcDjMjBkzzLZt20zfvn1NQECAdYXeo48+aoYPH27V//DDD6ZUqVJm4sSJZvv27WbUqFH5Xj5/pffk9eLu+F555RXj7e1tPv/8c5e5yv036OTJk2bIkCEmMTHR7N2713z33XfmrrvuMrVq1bquofxqxjhmzBizePFis2fPHpOUlGS6detmfHx8zNatW62am3kOc7Vo0cJ07do1T/uNNocnT560PuskmTfeeMNs2LDB/Prrr8YYY4YPH24effRRqz738vmhQ4ea7du3m8mTJ+d7+fzlXrOiQBC6RmJjY42kPI/ly5dbNfrv/VZy5eTkmBdffNEEBQUZh8Nh2rZta3bu3Omy3WPHjpnu3bubsmXLGqfTaR5//HGXcHU9Xakve/fuzTNmY4wZMWKECQ0NNdnZ2Xm2+c0335hGjRqZsmXLmjJlypiGDRuaqVOn5lt7rbk7vv3795tWrVqZChUqGIfDYWrWrGmGDh3qch8hY4zZt2+f6dChg/H19TWBgYFm8ODBLpefXy/ujm/58uX5/k1LMnv37jXGFP/8vfPOO6ZKlSrG29vbNG3a1KxZs8Za1rp1axMbG+tS/9lnn5nbb7/deHt7m/r165sFCxa4LC/Ie/J6cmd8YWFh+c7VqFGjjDHGnD592rRr185UrFjRlC5d2oSFhZk+ffoU6QdMYbgzxoEDB1q1QUFB5r777jM//fSTy/Zu5jk0xpgdO3YYSebbb7/Ns60bbQ4v9W9E7phiY2NN69at86zTqFEj4+3tbapXr+7ymZjrcq9ZUfAw5jpflwwAAHCD4D5CAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtv4ftCMJfX2nVSkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQOdJREFUeJzt3XlYVnX+//EXoNzgcoOGgCS555KkZYmYSyYjLi2WTW5TkNs3By0l1zK36meZlZZb06LOlFPZpJWa5ZI6JWqS5gqjpqkZuAKKCgKf3x8NZ7wFlRtRlPN8XNd9Xd7nvM8578853Nwv7/ucg4cxxggAAMCGPEu6AQAAgJJCEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAJQ6qxatUoeHh5atWpVsa7Xw8ND48aNK9Z1AihZBCEAOM+SJUtu+LAzb948TZkypaTbsMycOVN//vOfdcstt8jDw0MxMTEF1q1YsUK9e/fWrbfeqnLlyqlWrVrq27evfv/99yJve/ny5brvvvvk5+enihUrqmnTpvrkk0+KvD6UPmVKugEAuJ4sWbJE06dPLzAMnTlzRmXKXP+/NufNm6dt27Zp8ODBJd2KJOnVV1/VyZMn1axZs0uGmhEjRuj48eP685//rLp16+qXX37RtGnTtGjRIm3evFnBwcFubXf27Nnq06eP/vSnP+n//b//Jy8vLyUlJenAgQNXOiSUItf/KxqwkYyMDJUvX76k2ygxp0+fVrly5fJNz87OVm5urry9vUugq//x8fEp0e3fqFavXm19GlShQoWL1r3xxhtq2bKlPD3/92VFhw4d1KZNG02bNk0vvfRSobe5b98+xcbGatCgQZo6deoV9Y/Sja/GYHvjxo2Th4eHEhMT9dhjj8npdOqmm27SM888o7Nnz7rUfvjhh2ratKl8fX1VuXJlde/ePd//Lv/9739bXwM4HA6FhoZqyJAhOnPmjEtdTEyMKlSooD179qhTp06qWLGievXqJUnatWuXunbtquDgYPn4+KhatWrq3r270tLSrOWzs7P14osvqnbt2nI4HKpRo4aee+45ZWZmumynRo0auv/++/X999+rWbNm8vHxUa1atfT3v/+9SPvrww8/VLNmzVSuXDlVqlRJrVu31rfffutSM2PGDN12221yOBwKCQlRbGysUlNTXWruvfdeNWrUSAkJCWrdurXKlSun5557Tvv27ZOHh4cmT56sKVOmWOPbsWOHJCkxMVGPPvqoKleuLB8fH91111368ssvL9t3YY5LTEyMpk+fLumP84HyHnkKOkdo06ZN6tixo5xOpypUqKB27dpp3bp1LjVz5syRh4eHfvjhB8XFxalKlSoqX768Hn74YR05csSlduPGjYqKilJAQIB8fX1Vs2ZN9e7d+7LjO3+/Ll68WL/++qvVf40aNaz5hw8fVp8+fRQUFCQfHx81btxYc+fOdVnH+cfgzTffVPXq1eXr66s2bdpo27Zthe4lT/Xq1V3248W0bt3aJQTlTatcubJ27tzp1jZnzZqlnJwcTZgwQZJ06tQpGWPcWgfsgU+EgP967LHHVKNGDU2cOFHr1q3TW2+9pRMnTliB4eWXX9YLL7ygxx57TH379tWRI0f09ttvq3Xr1tq0aZP8/f0lSfPnz9fp06c1YMAA3XTTTdqwYYPefvttHTx4UPPnz3fZZnZ2tqKiotSyZUtNnjxZ5cqVU1ZWlqKiopSZmalBgwYpODhYv/32mxYtWqTU1FT5+flJkvr27au5c+fq0Ucf1bPPPqv169dr4sSJ2rlzpxYsWOCynd27d+vRRx9Vnz59FB0drQ8++EAxMTFq2rSpbrvttkLvo/Hjx2vcuHFq0aKFJkyYIG9vb61fv14rV65U+/btJf0RLMePH6/IyEgNGDBASUlJmjlzpn788Uf98MMPKlu2rLW+Y8eOqWPHjurevbv+8pe/KCgoyJo3e/ZsnT17Vv3795fD4VDlypW1fft23XPPPbr55ps1cuRIlS9fXp9++qm6dOmif/3rX3r44Ycv2nthjsv//d//6dChQ1q2bJn+8Y9/XHZ/bN++Xa1atZLT6dTw4cNVtmxZvfPOO7r33nu1evVqhYeHu9QPGjRIlSpV0tixY7Vv3z5NmTJFAwcOtM5ZOXz4sNq3b68qVapo5MiR8vf31759+/T5558X+hg9//zzSktL08GDB/Xmm29KkvUpzJkzZ3Tvvfdq9+7dGjhwoGrWrKn58+crJiZGqampeuaZZ1zW9fe//10nT55UbGyszp49q6lTp+q+++7T1q1bXY7V1XTq1CmdOnVKAQEBbi23fPly1a9fX0uWLNGwYcP022+/qVKlSoqNjdX48ePzBS7YmAFsbuzYsUaSefDBB12m//WvfzWSzM8//2z27dtnvLy8zMsvv+xSs3XrVlOmTBmX6adPn863jYkTJxoPDw/z66+/WtOio6ONJDNy5EiX2k2bNhlJZv78+RftefPmzUaS6du3r8v0oUOHGklm5cqV1rTq1asbSWbNmjXWtMOHDxuHw2GeffbZi27jQrt27TKenp7m4YcfNjk5OS7zcnNzrfV6e3ub9u3bu9RMmzbNSDIffPCBNa1NmzZGkpk1a5bLuvbu3WskGafTaQ4fPuwyr127diYsLMycPXvWZdstWrQwdevWtaZ99913RpL57rvvrGmFPS6xsbHmYr8aJZmxY8daz7t06WK8vb3Nnj17rGmHDh0yFStWNK1bt7amzZ4920gykZGR1r4yxpghQ4YYLy8vk5qaaowxZsGCBUaS+fHHHwvcfmF17tzZVK9ePd/0KVOmGEnmww8/tKZlZWWZiIgIU6FCBZOenm6M+d8x8PX1NQcPHrRq169fbySZIUOGFLm38uXLm+jo6ELXv/jii0aSWbFihVvbcTqdplKlSsbhcJgXXnjBfPbZZ6Znz54FvuZgb0Ri4L9iY2Ndng8aNEjSHyfPfv7558rNzdVjjz2mo0ePWo/g4GDVrVtX3333nbWcr6+v9e+MjAwdPXpULVq0kDFGmzZtyrfdAQMGuDzP+8Tnm2++0enTpwvsdcmSJZKkuLg4l+nPPvusJGnx4sUu0xs2bKhWrVpZz6tUqaJ69erpl19+KXD9BVm4cKFyc3M1ZsyYfP+bzvvaY/ny5crKytLgwYNdavr16yen05mvL4fDoSeffLLA7XXt2lVVqlSxnh8/flwrV67UY489ppMnT1rH4NixY4qKitKuXbv022+/XbR/d4/L5eTk5Ojbb79Vly5dVKtWLWt61apV1bNnT33//fdKT093WaZ///4uXxG1atVKOTk5+vXXXyXJ+lRx0aJFOnfunNs9Xc6SJUsUHBysHj16WNPKli2rp59+WqdOndLq1atd6rt06aKbb77Zet6sWTOFh4dbP39X25o1azR+/Hg99thjuu+++9xa9tSpUzpx4oTGjx+vCRMmqGvXrvroo4/UoUMHTZ06VSdPnrxKXeNGQxAC/qtu3bouz2vXri1PT0/t27dPu3btkjFGdevWVZUqVVweO3fu1OHDh63l9u/fr5iYGFWuXFkVKlRQlSpV1KZNG0lyOcdHksqUKaNq1aq5TKtZs6bi4uL03nvvKSAgQFFRUZo+fbrLsr/++qs8PT1Vp04dl2WDg4Pl7+9vvbHmueWWW/KNt1KlSjpx4kSh98+ePXvk6emphg0bXrQmb7v16tVzme7t7a1atWrl6+vmm2++6AnQNWvWdHm+e/duGWP0wgsv5DsGY8eOlSSX43Ahd45LYRw5ckSnT5/ON1ZJatCggXJzc/OdP3bhcahUqZIkWcehTZs26tq1q8aPH6+AgAA99NBDmj17dr7zvorq119/Vd26dfMF2QYNGljzz3fha0KSbr31Vu3bt69Y+rmUxMREPfzww2rUqJHee+89t5fPC77nh76852fOnClS+EXpxDlCwEWc/z/33NxceXh46Ouvv5aXl1e+2rxzMHJycvSnP/1Jx48f14gRI1S/fn2VL19ev/32m2JiYpSbm+uynMPhKPBchddff10xMTH64osv9O233+rpp5+2zl06PzgV5gRUSQX2LKnETx49/1Oay83L23dDhw5VVFRUgctcGAzzuHtcrpbLHQcPDw999tlnWrdunb766it988036t27t15//XWtW7fukldclSYHDhxQ+/bt5efnpyVLlqhixYpuryMkJES7du3Kdy5TYGCgJLn1nwCUbgQh4L927drl8inE7t27lZubqxo1asjLy0vGGNWsWVO33nrrRdexdetW/ec//9HcuXP1xBNPWNOXLVvmdj9hYWEKCwvT6NGjtXbtWt1zzz2aNWuWXnrpJVWvXl25ubnatWuX9b95SUpJSVFqaqqqV6/u9vYup3bt2srNzdWOHTvUpEmTAmvytpuUlOTydVFWVpb27t2ryMjIIm8/b31ly5Z1ez3uHJfChssqVaqoXLlySkpKyjcvMTFRnp6eCg0NdavPPM2bN1fz5s318ssva968eerVq5c+/vhj9e3bt1DLX2wM1atX15YtW5Sbm+sSwBMTE63559u1a1e+dfznP/9xuQqtuB07dkzt27dXZmamVqxYoapVqxZpPU2bNrW+Lj3/Z/HQoUOS5PK1K+yNr8aA/8q7bDrP22+/LUnq2LGjHnnkEXl5eWn8+PH5PkUxxujYsWOS/vc//vNrjDFu3cckPT1d2dnZLtPCwsLk6elpfUXSqVMnScp39+A33nhDktS5c+dCb6+wunTpIk9PT02YMCHfJyh5442MjJS3t7feeustl33w/vvvKy0t7Yr6CgwM1L333qt33nmnwJvyXXgZ+vncOS5593G68HL/gtbZvn17ffHFFy5fFaWkpGjevHlq2bKlnE7nJddxoRMnTuT7+coLne58PVa+fPkCv+7r1KmTkpOTXe6snJ2drbffflsVKlSwvirMs3DhQpfzrjZs2KD169erY8eOhe7FHRkZGerUqZN+++03LVmypMCv5gqrW7dukv742cuTm5ur2bNnq3LlymratOkV94vSgU+EgP/au3evHnzwQXXo0EHx8fH68MMP1bNnTzVu3FiS9NJLL2nUqFHat2+funTpoooVK2rv3r1asGCB+vfvr6FDh6p+/fqqXbu2hg4dqt9++01Op1P/+te/3PoYfuXKlRo4cKD+/Oc/69Zbb1V2drb+8Y9/yMvLS127dpUkNW7cWNHR0frb3/6m1NRUtWnTRhs2bNDcuXPVpUsXtW3bttj3T506dfT888/rxRdfVKtWrfTII4/I4XDoxx9/VEhIiCZOnKgqVapo1KhRGj9+vDp06KAHH3xQSUlJmjFjhu6++2795S9/uaIepk+frpYtWyosLEz9+vVTrVq1lJKSovj4eB08eFA///xzgcu5c1zy3iCffvppRUVFycvLS927dy9wvS+99JKWLVumli1b6q9//avKlCmjd955R5mZmZo0aZLb45s7d65mzJihhx9+WLVr19bJkyf17rvvyul0WuG3MPL+jERcXJzuvvtuVahQQQ888ID69++vd955RzExMUpISFCNGjX02Wef6YcfftCUKVPyfQVVp04dtWzZUgMGDFBmZqamTJmim266ScOHD3drXF999ZV1bM6dO6ctW7ZYN0d88MEHdfvtt0uSevXqpQ0bNqh3797auXOny72DKlSooC5duhR6mw899JDatWuniRMn6ujRo2rcuLEWLlyo77//Xu+8844cDodbY0Apdu0vVAOuL3mXz+/YscM8+uijpmLFiqZSpUpm4MCB5syZMy61//rXv0zLli1N+fLlTfny5U39+vVNbGysSUpKsmp27NhhIiMjTYUKFUxAQIDp16+f+fnnn40kM3v2bKsuOjralC9fPl8/v/zyi+ndu7epXbu28fHxMZUrVzZt27Y1y5cvd6k7d+6cGT9+vKlZs6YpW7asCQ0NNaNGjXK5tNyYPy6f79y5c77ttGnTxrRp08bt/fXBBx+YO+64wzgcDlOpUiXTpk0bs2zZMpeaadOmmfr165uyZcuaoKAgM2DAAHPixIl827/tttvyrT/v0u3XXnutwO3v2bPHPPHEEyY4ONiULVvW3Hzzzeb+++83n332mVVT0OXzhT0u2dnZZtCgQaZKlSrGw8PD5VJ6XXD5vDHG/PTTTyYqKspUqFDBlCtXzrRt29asXbvWpSbv8vkLL4u/sM+ffvrJ9OjRw9xyyy3G4XCYwMBAc//995uNGzcWuC8u5tSpU6Znz57G39/fSHK5lD4lJcU8+eSTJiAgwHh7e5uwsDCX8Rvjegxef/11ExoaahwOh2nVqpX5+eef3erFmP/dKqKgx/nbzrvVQ0GPgm4HcDknT540zzzzjAkODrbGev6tAwBjjPEwhlttwt7ybgB45MgRt2/aBpRG+/btU82aNfXaa69p6NChJd0OcFVxjhAAALAtzhECoOTk5EvO9/X1tW70iJJz/PhxZWVlXXS+l5fXNbsaKisrS8ePH79kjZ+f3yVvkVAUaWlp+f5u34Xc/Sv1sDeCEIDLXqIcHR2tOXPmXJtmcFGPPPJIvrs/n6969erX5GaHkrR27drLnpQ/e/ZsxcTEFOt2n3nmmXx/JPZCnPEBd3COEAAtX778kvNDQkIueUdpXBsJCQmXvALR19dX99xzzzXp5cSJE0pISLhkzW233Vbk+wBdzI4dO6x7AV3MldyvCvZDEAIAALbFydIAAMC2OEfoEnJzc3Xo0CFVrFix0LfdBwAAJcsYo5MnTyokJKTAv+d4PoLQJRw6dKjIfysIAACUrAMHDrj8oeqCEIQuIe928wcOHHD7bwYBAICSkZ6ertDQ0Hx/NqYgBKFLyPs6zOl0EoQAALjBFOa0Fk6WBgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtlWmpBsAgBLz3cSS7sB9bUeVdAdAqcInQgAAwLYIQgAAwLYIQgAAwLY4RwiAbcX/cqykW3BbRNuS7gAoXfhECAAA2BZBCAAA2BZBCAAA2JZbQWjixIm6++67VbFiRQUGBqpLly5KSkpyqbn33nvl4eHh8njqqadcavbv36/OnTurXLlyCgwM1LBhw5Sdne1Ss2rVKt15551yOByqU6eO5syZk6+f6dOnq0aNGvLx8VF4eLg2bNjgMv/s2bOKjY3VTTfdpAoVKqhr165KSUlxZ8gAAKAUcysIrV69WrGxsVq3bp2WLVumc+fOqX379srIyHCp69evn37//XfrMWnSJGteTk6OOnfurKysLK1du1Zz587VnDlzNGbMGKtm79696ty5s9q2bavNmzdr8ODB6tu3r7755hur5pNPPlFcXJzGjh2rn376SY0bN1ZUVJQOHz5s1QwZMkRfffWV5s+fr9WrV+vQoUN65JFH3N5JAACgdPIwxpiiLnzkyBEFBgZq9erVat26taQ/PhFq0qSJpkyZUuAyX3/9te6//34dOnRIQUFBkqRZs2ZpxIgROnLkiLy9vTVixAgtXrxY27Zts5br3r27UlNTtXTpUklSeHi47r77bk2bNk2SlJubq9DQUA0aNEgjR45UWlqaqlSponnz5unRRx+VJCUmJqpBgwaKj49X8+bNLzu+9PR0+fn5KS0tTU6ns6i7CcB1Kv79oSXdgtsi+kwu6RaA6547799XdI5QWlqaJKly5cou0z/66CMFBASoUaNGGjVqlE6fPm3Ni4+PV1hYmBWCJCkqKkrp6enavn27VRMZGemyzqioKMXHx0uSsrKylJCQ4FLj6empyMhIqyYhIUHnzp1zqalfv75uueUWq+ZCmZmZSk9Pd3kAAIDSq8j3EcrNzdXgwYN1zz33qFGjRtb0nj17qnr16goJCdGWLVs0YsQIJSUl6fPPP5ckJScnu4QgSdbz5OTkS9akp6frzJkzOnHihHJycgqsSUxMtNbh7e0tf3//fDV527nQxIkTNX78eDf3BAAAuFEVOQjFxsZq27Zt+v77712m9+/f3/p3WFiYqlatqnbt2mnPnj2qXbt20Tu9BkaNGqW4uDjreXp6ukJDQ0uwIwAAcDUV6auxgQMHatGiRfruu+9UrVq1S9aGh4dLknbv3i1JCg4OznflVt7z4ODgS9Y4nU75+voqICBAXl5eBdacv46srCylpqZetOZCDodDTqfT5QEAAEovt4KQMUYDBw7UggULtHLlStWsWfOyy2zevFmSVLVqVUlSRESEtm7d6nJ117Jly+R0OtWwYUOrZsWKFS7rWbZsmSIiIiRJ3t7eatq0qUtNbm6uVqxYYdU0bdpUZcuWdalJSkrS/v37rRoAAGBvbn01Fhsbq3nz5umLL75QxYoVrXNt/Pz85Ovrqz179mjevHnq1KmTbrrpJm3ZskVDhgxR69atdfvtt0uS2rdvr4YNG+rxxx/XpEmTlJycrNGjRys2NlYOh0OS9NRTT2natGkaPny4evfurZUrV+rTTz/V4sWLrV7i4uIUHR2tu+66S82aNdOUKVOUkZGhJ5980uqpT58+iouLU+XKleV0OjVo0CBFREQU6ooxAABQ+rkVhGbOnCnpj0vkzzd79mzFxMTI29tby5cvt0JJaGiounbtqtGjR1u1Xl5eWrRokQYMGKCIiAiVL19e0dHRmjBhglVTs2ZNLV68WEOGDNHUqVNVrVo1vffee4qKirJqunXrpiNHjmjMmDFKTk5WkyZNtHTpUpcTqN988015enqqa9euyszMVFRUlGbMmOHWDgIAAKXXFd1HqLTjPkJA6cZ9hIDS6ZrdRwgAAOBGRhACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC25VYQmjhxou6++25VrFhRgYGB6tKli5KSklxqzp49q9jYWN10002qUKGCunbtqpSUFJea/fv3q3PnzipXrpwCAwM1bNgwZWdnu9SsWrVKd955pxwOh+rUqaM5c+bk62f69OmqUaOGfHx8FB4erg0bNrjdCwAAsC+3gtDq1asVGxurdevWadmyZTp37pzat2+vjIwMq2bIkCH66quvNH/+fK1evVqHDh3SI488Ys3PyclR586dlZWVpbVr12ru3LmaM2eOxowZY9Xs3btXnTt3Vtu2bbV582YNHjxYffv21TfffGPVfPLJJ4qLi9PYsWP1008/qXHjxoqKitLhw4cL3QsAALA3D2OMKerCR44cUWBgoFavXq3WrVsrLS1NVapU0bx58/Too49KkhITE9WgQQPFx8erefPm+vrrr3X//ffr0KFDCgoKkiTNmjVLI0aM0JEjR+Tt7a0RI0Zo8eLF2rZtm7Wt7t27KzU1VUuXLpUkhYeH6+6779a0adMkSbm5uQoNDdWgQYM0cuTIQvVyOenp6fLz81NaWpqcTmdRdxOA61T8+0NLugW3RfSZXNItANc9d96/r+gcobS0NElS5cqVJUkJCQk6d+6cIiMjrZr69evrlltuUXx8vCQpPj5eYWFhVgiSpKioKKWnp2v79u1WzfnryKvJW0dWVpYSEhJcajw9PRUZGWnVFKaXC2VmZio9Pd3lAQAASq8iB6Hc3FwNHjxY99xzjxo1aiRJSk5Olre3t/z9/V1qg4KClJycbNWcH4Ly5ufNu1RNenq6zpw5o6NHjyonJ6fAmvPXcbleLjRx4kT5+flZj9DQ0ELuDQAAcCMqchCKjY3Vtm3b9PHHHxdnPyVq1KhRSktLsx4HDhwo6ZYAAMBVVKYoCw0cOFCLFi3SmjVrVK1aNWt6cHCwsrKylJqa6vJJTEpKioKDg62aC6/uyruS6/yaC6/uSklJkdPplK+vr7y8vOTl5VVgzfnruFwvF3I4HHI4HG7sCQAAcCNz6xMhY4wGDhyoBQsWaOXKlapZs6bL/KZNm6ps2bJasWKFNS0pKUn79+9XRESEJCkiIkJbt251ubpr2bJlcjqdatiwoVVz/jryavLW4e3traZNm7rU5ObmasWKFVZNYXoBAAD25tYnQrGxsZo3b56++OILVaxY0TrXxs/PT76+vvLz81OfPn0UFxenypUry+l0atCgQYqIiLCu0mrfvr0aNmyoxx9/XJMmTVJycrJGjx6t2NhY69OYp556StOmTdPw4cPVu3dvrVy5Up9++qkWL15s9RIXF6fo6GjdddddatasmaZMmaKMjAw9+eSTVk+X6wUAANibW0Fo5syZkqR7773XZfrs2bMVExMjSXrzzTfl6emprl27KjMzU1FRUZoxY4ZV6+XlpUWLFmnAgAGKiIhQ+fLlFR0drQkTJlg1NWvW1OLFizVkyBBNnTpV1apV03vvvaeoqCirplu3bjpy5IjGjBmj5ORkNWnSREuXLnU5gfpyvQAAAHu7ovsIlXbcRwgo3biPEFA6XbP7CAEAANzICEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC23A5Ca9as0QMPPKCQkBB5eHho4cKFLvNjYmLk4eHh8ujQoYNLzfHjx9WrVy85nU75+/urT58+OnXqlEvNli1b1KpVK/n4+Cg0NFSTJk3K18v8+fNVv359+fj4KCwsTEuWLHGZb4zRmDFjVLVqVfn6+ioyMlK7du1yd8gAAKCUcjsIZWRkqHHjxpo+ffpFazp06KDff//devzzn/90md+rVy9t375dy5Yt06JFi7RmzRr179/fmp+enq727durevXqSkhI0GuvvaZx48bpb3/7m1Wzdu1a9ejRQ3369NGmTZvUpUsXdenSRdu2bbNqJk2apLfeekuzZs3S+vXrVb58eUVFRens2bPuDhsAAJRCHsYYU+SFPTy0YMECdenSxZoWExOj1NTUfJ8U5dm5c6caNmyoH3/8UXfddZckaenSperUqZMOHjyokJAQzZw5U88//7ySk5Pl7e0tSRo5cqQWLlyoxMRESVK3bt2UkZGhRYsWWetu3ry5mjRpolmzZskYo5CQED377LMaOnSoJCktLU1BQUGaM2eOunfvftnxpaeny8/PT2lpaXI6nUXZRQCuY/HvDy3pFtwW0WdySbcAXPfcef++KucIrVq1SoGBgapXr54GDBigY8eOWfPi4+Pl7+9vhSBJioyMlKenp9avX2/VtG7d2gpBkhQVFaWkpCSdOHHCqomMjHTZblRUlOLj4yVJe/fuVXJyskuNn5+fwsPDrZoLZWZmKj093eUBAABKr2IPQh06dNDf//53rVixQq+++qpWr16tjh07KicnR5KUnJyswMBAl2XKlCmjypUrKzk52aoJCgpyqcl7frma8+efv1xBNReaOHGi/Pz8rEdoaKjb4wcAADeOMsW9wvO/cgoLC9Ptt9+u2rVra9WqVWrXrl1xb65YjRo1SnFxcdbz9PR0whAAAKXYVb98vlatWgoICNDu3bslScHBwTp8+LBLTXZ2to4fP67g4GCrJiUlxaUm7/nlas6ff/5yBdVcyOFwyOl0ujwAAEDpddWD0MGDB3Xs2DFVrVpVkhQREaHU1FQlJCRYNStXrlRubq7Cw8OtmjVr1ujcuXNWzbJly1SvXj1VqlTJqlmxYoXLtpYtW6aIiAhJUs2aNRUcHOxSk56ervXr11s1AADA3twOQqdOndLmzZu1efNmSX+clLx582bt379fp06d0rBhw7Ru3Trt27dPK1as0EMPPaQ6deooKipKktSgQQN16NBB/fr104YNG/TDDz9o4MCB6t69u0JCQiRJPXv2lLe3t/r06aPt27frk08+0dSpU12+tnrmmWe0dOlSvf7660pMTNS4ceO0ceNGDRw4UNIfV7QNHjxYL730kr788ktt3bpVTzzxhEJCQlyucgMAAPbl9jlCGzduVNu2ba3neeEkOjpaM2fO1JYtWzR37lylpqYqJCRE7du314svviiHw2Et89FHH2ngwIFq166dPD091bVrV7311lvWfD8/P3377beKjY1V06ZNFRAQoDFjxrjca6hFixaaN2+eRo8ereeee05169bVwoUL1ahRI6tm+PDhysjIUP/+/ZWamqqWLVtq6dKl8vHxcXfYAACgFLqi+wiVdtxHCCjduI8QUDqV+H2EAAAAbgQEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFtuB6E1a9bogQceUEhIiDw8PLRw4UKX+cYYjRkzRlWrVpWvr68iIyO1a9cul5rjx4+rV69ecjqd8vf3V58+fXTq1CmXmi1btqhVq1by8fFRaGioJk2alK+X+fPnq379+vLx8VFYWJiWLFnidi8AAMC+3A5CGRkZaty4saZPn17g/EmTJumtt97SrFmztH79epUvX15RUVE6e/asVdOrVy9t375dy5Yt06JFi7RmzRr179/fmp+enq727durevXqSkhI0GuvvaZx48bpb3/7m1Wzdu1a9ejRQ3369NGmTZvUpUsXdenSRdu2bXOrFwAAYF8exhhT5IU9PLRgwQJ16dJF0h+fwISEhOjZZ5/V0KFDJUlpaWkKCgrSnDlz1L17d+3cuVMNGzbUjz/+qLvuukuStHTpUnXq1EkHDx5USEiIZs6cqeeff17Jycny9vaWJI0cOVILFy5UYmKiJKlbt27KyMjQokWLrH6aN2+uJk2aaNasWYXq5XLS09Pl5+entLQ0OZ3Oou4mANep+PeHlnQLbovoM7mkWwCue+68fxfrOUJ79+5VcnKyIiMjrWl+fn4KDw9XfHy8JCk+Pl7+/v5WCJKkyMhIeXp6av369VZN69atrRAkSVFRUUpKStKJEyesmvO3k1eTt53C9HKhzMxMpaenuzwAAEDpVaxBKDk5WZIUFBTkMj0oKMial5ycrMDAQJf5ZcqUUeXKlV1qClrH+du4WM358y/Xy4UmTpwoPz8/6xEaGlqIUQMAgBsVV42dZ9SoUUpLS7MeBw4cKOmWAADAVVSsQSg4OFiSlJKS4jI9JSXFmhccHKzDhw+7zM/Oztbx48ddagpax/nbuFjN+fMv18uFHA6HnE6nywMAAJRexRqEatasqeDgYK1YscKalp6ervXr1ysiIkKSFBERodTUVCUkJFg1K1euVG5ursLDw62aNWvW6Ny5c1bNsmXLVK9ePVWqVMmqOX87eTV52ylMLwAAwN7cDkKnTp3S5s2btXnzZkl/nJS8efNm7d+/Xx4eHho8eLBeeuklffnll9q6daueeOIJhYSEWFeWNWjQQB06dFC/fv20YcMG/fDDDxo4cKC6d++ukJAQSVLPnj3l7e2tPn36aPv27frkk080depUxcXFWX0888wzWrp0qV5//XUlJiZq3Lhx2rhxowYOHChJheoFAADYWxl3F9i4caPatm1rPc8LJ9HR0ZozZ46GDx+ujIwM9e/fX6mpqWrZsqWWLl0qHx8fa5mPPvpIAwcOVLt27eTp6amuXbvqrbfesub7+fnp22+/VWxsrJo2baqAgACNGTPG5V5DLVq00Lx58zR69Gg999xzqlu3rhYuXKhGjRpZNYXpBQAA2NcV3UeotOM+QkDpxn2EgNKpxO4jBAAAcCMhCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsq9iA0btw4eXh4uDzq169vzT979qxiY2N10003qUKFCuratatSUlJc1rF//3517txZ5cqVU2BgoIYNG6bs7GyXmlWrVunOO++Uw+FQnTp1NGfOnHy9TJ8+XTVq1JCPj4/Cw8O1YcOG4h4uAAC4gV2VT4Ruu+02/f7779bj+++/t+YNGTJEX331lebPn6/Vq1fr0KFDeuSRR6z5OTk56ty5s7KysrR27VrNnTtXc+bM0ZgxY6yavXv3qnPnzmrbtq02b96swYMHq2/fvvrmm2+smk8++URxcXEaO3asfvrpJzVu3FhRUVE6fPjw1RgyAAC4AXkYY0xxrnDcuHFauHChNm/enG9eWlqaqlSponnz5unRRx+VJCUmJqpBgwaKj49X8+bN9fXXX+v+++/XoUOHFBQUJEmaNWuWRowYoSNHjsjb21sjRozQ4sWLtW3bNmvd3bt3V2pqqpYuXSpJCg8P1913361p06ZJknJzcxUaGqpBgwZp5MiRhRpLenq6/Pz8lJaWJqfTeSW7BcB1KP79oSXdgtsi+kwu6RaA6547799X5ROhXbt2KSQkRLVq1VKvXr20f/9+SVJCQoLOnTunyMhIq7Z+/fq65ZZbFB8fL0mKj49XWFiYFYIkKSoqSunp6dq+fbtVc/468mry1pGVlaWEhASXGk9PT0VGRlo1BcnMzFR6errLAwAAlF7FHoTCw8M1Z84cLV26VDNnztTevXvVqlUrnTx5UsnJyfL29pa/v7/LMkFBQUpOTpYkJScnu4SgvPl58y5Vk56erjNnzujo0aPKyckpsCZvHQWZOHGi/Pz8rEdoaGiR9gEAALgxlCnuFXbs2NH69+23367w8HBVr15dn376qXx9fYt7c8Vq1KhRiouLs56np6cThgAAKMWu+uXz/v7+uvXWW7V7924FBwcrKytLqampLjUpKSkKDg6WJAUHB+e7iizv+eVqnE6nfH19FRAQIC8vrwJr8tZREIfDIafT6fIAAACl11UPQqdOndKePXtUtWpVNW3aVGXLltWKFSus+UlJSdq/f78iIiIkSREREdq6davL1V3Lli2T0+lUw4YNrZrz15FXk7cOb29vNW3a1KUmNzdXK1assGoAAACKPQgNHTpUq1ev1r59+7R27Vo9/PDD8vLyUo8ePeTn56c+ffooLi5O3333nRISEvTkk08qIiJCzZs3lyS1b99eDRs21OOPP66ff/5Z33zzjUaPHq3Y2Fg5HA5J0lNPPaVffvlFw4cPV2JiombMmKFPP/1UQ4YMsfqIi4vTu+++q7lz52rnzp0aMGCAMjIy9OSTTxb3kAEAwA2q2M8ROnjwoHr06KFjx46pSpUqatmypdatW6cqVapIkt588015enqqa9euyszMVFRUlGbMmGEt7+XlpUWLFmnAgAGKiIhQ+fLlFR0drQkTJlg1NWvW1OLFizVkyBBNnTpV1apV03vvvaeoqCirplu3bjpy5IjGjBmj5ORkNWnSREuXLs13AjUAALCvYr+PUGnCfYSA0o37CAGlU4nfRwgAAOBGQBACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2VaakGwAAAMXjzWX/KekW3DbkT7eW6Pb5RAgAANgWQQgAANgWQQgAANgWQQgAANgWJ0sDAFBKNN//t5JuoQgml+jW+UQIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYVpmSbgAAgOvRm8v+U9ItuK15STdwA+ITIQAAYFt8IlSC4t8fWtItuC2iz+SSbgEAronm+/9W0i3gGuATIQAAYFt8IgQAuOpuxE/AYQ+2CELTp0/Xa6+9puTkZDVu3Fhvv/22mjVrVtJtAYDbbsQTeCVO4sX1q9QHoU8++URxcXGaNWuWwsPDNWXKFEVFRSkpKUmBgYEl3R4AuIXzVoDiVeqD0BtvvKF+/frpySeflCTNmjVLixcv1gcffKCRI0eWcHdAwfgaAQCujVIdhLKyspSQkKBRo0ZZ0zw9PRUZGan4+Ph89ZmZmcrMzLSep6WlSZLS09OvSn8ZZzIvX3SdWT5tUEm3AAAoRa7Ge2zeOo0xl60t1UHo6NGjysnJUVBQkMv0oKAgJSYm5qufOHGixo8fn296aGjoVesRAABbGzTtqq365MmT8vPzu2RNqQ5C7ho1apTi4uKs57m5uTp+/LhuuukmeXh4FOu20tPTFRoaqgMHDsjpdBbruq8HpX18UukfI+O78ZX2MTK+G9/VGqMxRidPnlRISMhla0t1EAoICJCXl5dSUlJcpqekpCg4ODhfvcPhkMPhcJnm7+9/NVuU0+kstT/gUukfn1T6x8j4bnylfYyM78Z3NcZ4uU+C8pTqGyp6e3uradOmWrFihTUtNzdXK1asUERERAl2BgAArgel+hMhSYqLi1N0dLTuuusuNWvWTFOmTFFGRoZ1FRkAALCvUh+EunXrpiNHjmjMmDFKTk5WkyZNtHTp0nwnUF9rDodDY8eOzfdVXGlR2scnlf4xMr4bX2kfI+O78V0PY/Qwhbm2DAAAoBQq1ecIAQAAXApBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZB6Cp5+eWX1aJFC5UrV67Qd6c2xmjMmDGqWrWqfH19FRkZqV27drnUHD9+XL169ZLT6ZS/v7/69OmjU6dOXYURXJ67vezbt08eHh4FPubPn2/VFTT/448/vhZDclGUfX3vvffm6/2pp55yqdm/f786d+6scuXKKTAwUMOGDVN2dvbVHEqB3B3f8ePHNWjQINWrV0++vr665ZZb9PTTT1t/nDhPSR6/6dOnq0aNGvLx8VF4eLg2bNhwyfr58+erfv368vHxUVhYmJYsWeIyvzCvyWvJnfG9++67atWqlSpVqqRKlSopMjIyX31MTEy+Y9WhQ4erPYxLcmeMc+bMyde/j4+PS82NfAwL+n3i4eGhzp07WzXX0zFcs2aNHnjgAYWEhMjDw0MLFy687DKrVq3SnXfeKYfDoTp16mjOnDn5atx9XbvN4KoYM2aMeeONN0xcXJzx8/Mr1DKvvPKK8fPzMwsXLjQ///yzefDBB03NmjXNmTNnrJoOHTqYxo0bm3Xr1pl///vfpk6dOqZHjx5XaRSX5m4v2dnZ5vfff3d5jB8/3lSoUMGcPHnSqpNkZs+e7VJ3/j64Voqyr9u0aWP69evn0ntaWpo1Pzs72zRq1MhERkaaTZs2mSVLlpiAgAAzatSoqz2cfNwd39atW80jjzxivvzyS7N7926zYsUKU7duXdO1a1eXupI6fh9//LHx9vY2H3zwgdm+fbvp16+f8ff3NykpKQXW//DDD8bLy8tMmjTJ7Nixw4wePdqULVvWbN261aopzGvyWnF3fD179jTTp083mzZtMjt37jQxMTHGz8/PHDx40KqJjo42HTp0cDlWx48fv1ZDysfdMc6ePds4nU6X/pOTk11qbuRjeOzYMZexbdu2zXh5eZnZs2dbNdfTMVyyZIl5/vnnzeeff24kmQULFlyy/pdffjHlypUzcXFxZseOHebtt982Xl5eZunSpVaNu/usKAhCV9ns2bMLFYRyc3NNcHCwee2116xpqampxuFwmH/+85/GGGN27NhhJJkff/zRqvn666+Nh4eH+e2334q990sprl6aNGlievfu7TKtMC+gq62o42vTpo155plnLjp/yZIlxtPT0+WX9cyZM43T6TSZmZnF0nthFNfx+/TTT423t7c5d+6cNa2kjl+zZs1MbGys9TwnJ8eEhISYiRMnFlj/2GOPmc6dO7tMCw8PN//3f/9njCnca/Jacnd8F8rOzjYVK1Y0c+fOtaZFR0ebhx56qLhbLTJ3x3i536+l7Ri++eabpmLFiubUqVPWtOvtGOYpzO+B4cOHm9tuu81lWrdu3UxUVJT1/Er3WWHw1dh1Yu/evUpOTlZkZKQ1zc/PT+Hh4YqPj5ckxcfHy9/fX3fddZdVExkZKU9PT61fv/6a9lscvSQkJGjz5s3q06dPvnmxsbEKCAhQs2bN9MEHH8hc4/t+Xsn4PvroIwUEBKhRo0YaNWqUTp8+7bLesLAwlzubR0VFKT09Xdu3by/+gVxEcf0spaWlyel0qkwZ15vUX+vjl5WVpYSEBJfXj6enpyIjI63Xz4Xi4+Nd6qU/jkVefWFek9dKUcZ3odOnT+vcuXOqXLmyy/RVq1YpMDBQ9erV04ABA3Ts2LFi7b2wijrGU6dOqXr16goNDdVDDz3k8joqbcfw/fffV/fu3VW+fHmX6dfLMXTX5V6DxbHPCqPU/4mNG0VycrIk5fvTH0FBQda85ORkBQYGuswvU6aMKleubNVcK8XRy/vvv68GDRqoRYsWLtMnTJig++67T+XKldO3336rv/71rzp16pSefvrpYuv/coo6vp49e6p69eoKCQnRli1bNGLECCUlJenzzz+31lvQMc6bd60Ux/E7evSoXnzxRfXv399lekkcv6NHjyonJ6fAfZuYmFjgMhc7Fue/3vKmXazmWinK+C40YsQIhYSEuLypdOjQQY888ohq1qypPXv26LnnnlPHjh0VHx8vLy+vYh3D5RRljPXq1dMHH3yg22+/XWlpaZo8ebJatGih7du3q1q1aqXqGG7YsEHbtm3T+++/7zL9ejqG7rrYazA9PV1nzpzRiRMnrvjnvjAIQm4YOXKkXn311UvW7Ny5U/Xr179GHRW/wo7xSp05c0bz5s3TCy+8kG/e+dPuuOMOZWRk6LXXXiuWN9KrPb7zQ0FYWJiqVq2qdu3aac+ePapdu3aR11tY1+r4paenq3PnzmrYsKHGjRvnMu9qHj8UzSuvvKKPP/5Yq1atcjmZuHv37ta/w8LCdPvtt6t27dpatWqV2rVrVxKtuiUiIkIRERHW8xYtWqhBgwZ655139OKLL5ZgZ8Xv/fffV1hYmJo1a+Yy/UY/htcDgpAbnn32WcXExFyyplatWkVad3BwsCQpJSVFVatWtaanpKSoSZMmVs3hw4ddlsvOztbx48et5a9UYcd4pb189tlnOn36tJ544onL1oaHh+vFF19UZmbmFf9hvms1vjzh4eGSpN27d6t27doKDg7Od8VDSkqKJBXLMbwW4zt58qQ6dOigihUrasGCBSpbtuwl64vz+F1MQECAvLy8rH2ZJyUl5aLjCQ4OvmR9YV6T10pRxpdn8uTJeuWVV7R8+XLdfvvtl6ytVauWAgICtHv37mv+JnolY8xTtmxZ3XHHHdq9e7ek0nMMMzIy9PHHH2vChAmX3U5JHkN3Xew16HQ65evrKy8vryv+mSiUYjvbCAVy92TpyZMnW9PS0tIKPFl648aNVs0333xToidLF7WXNm3a5Lva6GJeeuklU6lSpSL3WhTFta+///57I8n8/PPPxpj/nSx9/hUP77zzjnE6nebs2bPFN4DLKOr40tLSTPPmzU2bNm1MRkZGobZ1rY5fs2bNzMCBA63nOTk55uabb77kydL333+/y7SIiIh8J0tf6jV5Lbk7PmOMefXVV43T6TTx8fGF2saBAweMh4eH+eKLL66436IoyhjPl52dberVq2eGDBlijCkdx9CYP95HHA6HOXr06GW3UdLHMI8KebJ0o0aNXKb16NEj38nSV/IzUahei21NcPHrr7+aTZs2WZeHb9q0yWzatMnlMvF69eqZzz//3Hr+yiuvGH9/f/PFF1+YLVu2mIceeqjAy+fvuOMOs379evP999+bunXrlujl85fq5eDBg6ZevXpm/fr1Lsvt2rXLeHh4mK+//jrfOr/88kvz7rvvmq1bt5pdu3aZGTNmmHLlypkxY8Zc9fFcyN3x7d6920yYMMFs3LjR7N2713zxxRemVq1apnXr1tYyeZfPt2/f3mzevNksXbrUVKlSpcQun3dnfGlpaSY8PNyEhYWZ3bt3u1yum52dbYwp2eP38ccfG4fDYebMmWN27Nhh+vfvb/z9/a0r9B5//HEzcuRIq/6HH34wZcqUMZMnTzY7d+40Y8eOLfDy+cu9Jq8Vd8f3yiuvGG9vb/PZZ5+5HKu830EnT540Q4cONfHx8Wbv3r1m+fLl5s477zR169a9pqH8SsY4fvx4880335g9e/aYhIQE0717d+Pj42O2b99u1dzIxzBPy5YtTbdu3fJNv96O4cmTJ633OknmjTfeMJs2bTK//vqrMcaYkSNHmscff9yqz7t8ftiwYWbnzp1m+vTpBV4+f6l9VhwIQldJdHS0kZTv8d1331k1+u/9VvLk5uaaF154wQQFBRmHw2HatWtnkpKSXNZ77Ngx06NHD1OhQgXjdDrNk08+6RKurqXL9bJ37958YzbGmFGjRpnQ0FCTk5OTb51ff/21adKkialQoYIpX768ady4sZk1a1aBtVebu+Pbv3+/ad26talcubJxOBymTp06ZtiwYS73ETLGmH379pmOHTsaX19fExAQYJ599lmXy8+vFXfH99133xX4My3J7N271xhT8sfv7bffNrfccovx9vY2zZo1M+vWrbPmtWnTxkRHR7vUf/rpp+bWW2813t7e5rbbbjOLFy92mV+Y1+S15M74qlevXuCxGjt2rDHGmNOnT5v27dubKlWqmLJly5rq1aubfv36FesbTFG4M8bBgwdbtUFBQaZTp07mp59+clnfjXwMjTEmMTHRSDLffvttvnVdb8fwYr8j8sYUHR1t2rRpk2+ZJk2aGG9vb1OrVi2X98Q8l9pnxcHDmGt8XTIAAMB1gvsIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2/r/mvi1lJS9WY0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQFFJREFUeJzt3XlcVXX+x/E3oCyCFzQ2ScI1lyQtS8RcRwYsWiib3KagTH85aCmZSzVu1cOyzUrTpkWdKaaySSs1jTB1StQizRVHTTMz0FRAUUHg+/uj4YxXULmKopzX8/G4j4f3ez7nnO/3fLnct/eec3AzxhgBAADYkHt1dwAAAKC6EIQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQA1DjLli2Tm5ubli1bVqXbdXNz04QJE6p0mwCqF0EIAE6yaNGiyz7spKamaurUqdXdDcuMGTP0pz/9SVdddZXc3NyUlJRUYV16eroeeOABXX311apTp46aNGmiBx98UL/++qvL++zevbvc3NwqfNSuXfs8R4SapFZ1dwAALiWLFi3S9OnTKwxDx44dU61al/6vzdTUVG3cuFHDhw+v7q5Ikp577jkdPnxYHTp0OGOoGT16tA4ePKg//elPat68uX788UdNmzZNCxYs0Lp16xQaGlrpfT7xxBN68MEHndoKCgr00EMPKTY29pzHgprn0n9FAzZSUFAgX1/f6u5GtTl69Kjq1KlTrr24uFilpaXy9PSshl79j7e3d7Xu/3K1fPly69MgPz+/09a99NJL6ty5s9zd//dlRa9evdStWzdNmzZNTz/9dKX3+cc//rFc27vvvitJGjBggAu9R03HV2OwvQkTJsjNzU1ZWVm655575HA4dMUVV+iRRx7R8ePHnWrfffddtW/fXj4+Pqpfv7769u2rn3/+2anm3//+t/U1gJeXl8LDwzVixAgdO3bMqS4pKUl+fn7asWOHbrnlFtWtW9f6Bb1t2zb17t1boaGh8vb2VsOGDdW3b1/l5eVZ6xcXF+upp55S06ZN5eXlpUaNGunxxx9XYWGh034aNWqkW2+9VV9//bU6dOggb29vNWnSRH//+9/P6Xi9++676tChg+rUqaN69eqpa9eu+uKLL5xqXn/9dV1zzTXy8vJSWFiYkpOTlZub61TTvXt3tWnTRpmZmeratavq1Kmjxx9/XLt27ZKbm5teeOEFTZ061Rrf5s2bJUlZWVm6++67Vb9+fXl7e+uGG27Qp59+etZ+V2ZekpKSNH36dEly+iqlTEXnCK1du1Y333yzHA6H/Pz81LNnT61atcqpZvbs2XJzc9M333yjlJQUBQUFydfXV3feeaf279/vVPvdd98pLi5OgYGB8vHxUePGjfXAAw+cdXwnH9eFCxfqp59+svrfqFEja/m+ffs0cOBAhYSEyNvbW23bttWcOXOctnHyHLz88suKiIiQj4+PunXrpo0bN1a6L2UiIiKcjuPpdO3a1SkElbXVr19fW7ZscXm/p0pNTZWvr6/uuOOO894Wag4+EQL+65577lGjRo00efJkrVq1Sq+++qoOHTpkBYZnnnlGf/3rX3XPPffowQcf1P79+/Xaa6+pa9euWrt2rQICAiRJc+fO1dGjRzVkyBBdccUVWrNmjV577TXt2bNHc+fOddpncXGx4uLi1LlzZ73wwguqU6eOioqKFBcXp8LCQg0bNkyhoaH65ZdftGDBAuXm5srf31+S9OCDD2rOnDm6++679eijj2r16tWaPHmytmzZonnz5jntZ/v27br77rs1cOBAJSYm6p133lFSUpLat2+va665ptLHaOLEiZowYYI6deqkSZMmydPTU6tXr9bSpUutrxsmTJigiRMnKiYmRkOGDNHWrVs1Y8YMffvtt/rmm2+czs84cOCAbr75ZvXt21d//vOfFRISYi2bNWuWjh8/rsGDB8vLy0v169fXpk2bdNNNN+nKK6/UmDFj5Ovrqw8//FAJCQn617/+pTvvvPO0fa/MvPzf//2f9u7dq7S0NP3jH/846/HYtGmTunTpIofDoVGjRql27dp644031L17dy1fvlxRUVFO9cOGDVO9evU0fvx47dq1S1OnTtXQoUP1wQcfSPo9pMTGxiooKEhjxoxRQECAdu3apY8//rjSc/TEE08oLy9Pe/bs0csvvyxJ1qcwx44dU/fu3bV9+3YNHTpUjRs31ty5c5WUlKTc3Fw98sgjTtv6+9//rsOHDys5OVnHjx/XK6+8oj/84Q/asGGD01xdSEeOHNGRI0cUGBh4XtvZv3+/0tLS1KdPH1t/6ooKGMDmxo8fbySZ22+/3an9L3/5i5FkfvjhB7Nr1y7j4eFhnnnmGaeaDRs2mFq1ajm1Hz16tNw+Jk+ebNzc3MxPP/1ktSUmJhpJZsyYMU61a9euNZLM3LlzT9vndevWGUnmwQcfdGofOXKkkWSWLl1qtUVERBhJZsWKFVbbvn37jJeXl3n00UdPu49Tbdu2zbi7u5s777zTlJSUOC0rLS21tuvp6WliY2OdaqZNm2YkmXfeecdq69atm5FkZs6c6bStnTt3GknG4XCYffv2OS3r2bOniYyMNMePH3fad6dOnUzz5s2ttq+++spIMl999ZXVVtl5SU5ONqf71SjJjB8/3nqekJBgPD09zY4dO6y2vXv3mrp165quXbtabbNmzTKSTExMjHWsjDFmxIgRxsPDw+Tm5hpjjJk3b56RZL799tsK919Z8fHxJiIiolz71KlTjSTz7rvvWm1FRUUmOjra+Pn5mfz8fGPM/+bAx8fH7Nmzx6pdvXq1kWRGjBhxzn3z9fU1iYmJla5/6qmnjCSTnp5+zvs0xpjXXnvNSDKLFi06r+2g5uGrMeC/kpOTnZ4PGzZM0u8nz3788ccqLS3VPffco99++816hIaGqnnz5vrqq6+s9Xx8fKx/FxQU6LffflOnTp1kjNHatWvL7XfIkCFOz8s+8VmyZImOHj1aYV8XLVokSUpJSXFqf/TRRyVJCxcudGpv3bq1unTpYj0PCgpSixYt9OOPP1a4/YrMnz9fpaWlGjduXLmvL8q+9vjyyy9VVFSk4cOHO9UMGjRIDoejXL+8vLx0//33V7i/3r17KygoyHp+8OBBLV26VPfcc48OHz5szcGBAwcUFxenbdu26Zdffjlt/12dl7MpKSnRF198oYSEBDVp0sRqb9Cggfr376+vv/5a+fn5TusMHjzY6SuiLl26qKSkRD/99JMkWZ8qLliwQCdOnHC5T2ezaNEihYaGql+/flZb7dq19fDDD+vIkSNavny5U31CQoKuvPJK63mHDh0UFRVl/fxdaCtWrNDEiRN1zz336A9/+MN5bSs1NVVBQUEVnjsEeyMIAf/VvHlzp+dNmzaVu7u7du3apW3btskYo+bNmysoKMjpsWXLFu3bt89ab/fu3UpKSlL9+vXl5+enoKAgdevWTZKczvGRpFq1aqlhw4ZObY0bN1ZKSoreeustBQYGKi4uTtOnT3da96effpK7u7uaNWvmtG5oaKgCAgKsN9YyV111Vbnx1qtXT4cOHar08dmxY4fc3d3VunXr09aU7bdFixZO7Z6enmrSpEm5fl155ZWnPQG6cePGTs+3b98uY4z++te/lpuD8ePHS5LTPJzKlXmpjP379+vo0aPlxipJrVq1Umlpabnzx06dh3r16kmSNQ/dunVT7969NXHiRAUGBuqOO+7QrFmzyp33da5++uknNW/evFyQbdWqlbX8ZKe+JiTp6quv1q5du6qkP2eSlZWlO++8U23atNFbb711Xtv68ccflZGRoT59+lwWV/3h4uInAjiNk//nXlpaKjc3N33++efy8PAoV1t2DkZJSYn++Mc/6uDBgxo9erRatmwpX19f/fLLL0pKSlJpaanTel5eXuXelCTpxRdfVFJSkj755BN98cUXevjhh61zl04OTpU5AVVShX2WJGNMpda/UE7+lOZsy8qO3ciRIxUXF1fhOqcGwzKuzsuFcrZ5cHNz00cffaRVq1bps88+05IlS/TAAw/oxRdf1KpVq854xVVN8vPPPys2Nlb+/v5atGiR6tate17bS01NlcTVYqgYQQj4r23btjl9CrF9+3aVlpaqUaNG8vDwkDFGjRs31tVXX33abWzYsEH/+c9/NGfOHN13331We1pamsv9iYyMVGRkpJ588kmtXLlSN910k2bOnKmnn35aERERKi0t1bZt26z/zUtSTk6OcnNzFRER4fL+zqZp06YqLS3V5s2b1a5duwpryva7detWp6+LioqKtHPnTsXExJzz/su2V7t2bZe348q8VDZcBgUFqU6dOtq6dWu5ZVlZWXJ3d1d4eLhL/SzTsWNHdezYUc8884xSU1M1YMAAvf/+++Xui3M6pxtDRESE1q9fr9LSUqcAnpWVZS0/2bZt28pt4z//+Y/TVWhV7cCBA4qNjVVhYaHS09PVoEGD895mamqqmjZtqo4dO1ZBD1HT8NUY8F9ll02Xee211yRJN998s+666y55eHho4sSJ5T5FMcbowIEDkv73P/6Ta4wxeuWVVyrdj/z8fBUXFzu1RUZGyt3d3fqK5JZbbpGkcncPfumllyRJ8fHxld5fZSUkJMjd3V2TJk0q9wlK2XhjYmLk6empV1991ekYvP3228rLyzuvfgUHB6t79+564403Krwp36mXoZ/MlXkpu6Lo1Mv9K9pmbGysPvnkE6evinJycpSamqrOnTvL4XCccRunOnToULmfr7LQ6crXY76+vhV+3XfLLbcoOzvbukpN+v3Kxddee01+fn7WV4Vl5s+f73Te1Zo1a7R69WrdfPPNle6LKwoKCnTLLbfol19+0aJFiyr8as5Va9eu1ZYtW9S/f/8q6CFqIj4RAv5r586duv3229WrVy9lZGTo3XffVf/+/dW2bVtJ0tNPP62xY8dq165dSkhIUN26dbVz507NmzdPgwcP1siRI9WyZUs1bdpUI0eO1C+//CKHw6F//etfLp2Ls3TpUg0dOlR/+tOfdPXVV6u4uFj/+Mc/5OHhod69e0uS2rZtq8TERP3tb39Tbm6uunXrpjVr1mjOnDlKSEhQjx49qvz4NGvWTE888YSeeuopdenSRXfddZe8vLz07bffKiwsTJMnT1ZQUJDGjh2riRMnqlevXrr99tu1detWvf7667rxxhv15z//+bz6MH36dHXu3FmRkZEaNGiQmjRpopycHGVkZGjPnj364YcfKlzPlXlp3769JOnhhx9WXFycPDw81Ldv3wq3+/TTTystLU2dO3fWX/7yF9WqVUtvvPGGCgsLNWXKFJfHN2fOHL3++uu688471bRpUx0+fFhvvvmmHA6HFX4ro3379vrggw+UkpKiG2+8UX5+frrttts0ePBgvfHGG0pKSlJmZqYaNWqkjz76SN98842mTp1a7iuoZs2aqXPnzhoyZIgKCws1depUXXHFFRo1apRL4/rss8+suTlx4oTWr19v3Rzx9ttv17XXXivp96+u1qxZowceeEBbtmxxuneQn5+fEhISXNqvJL333nvWtoEKXfwL1YBLS9nl85s3bzZ33323qVu3rqlXr54ZOnSoOXbsmFPtv/71L9O5c2fj6+trfH19TcuWLU1ycrLZunWrVbN582YTExNj/Pz8TGBgoBk0aJD54YcfjCQza9Ysqy4xMdH4+vqW68+PP/5oHnjgAdO0aVPj7e1t6tevb3r06GG+/PJLp7oTJ06YiRMnmsaNG5vatWub8PBwM3bsWKdLy435/fL5+Pj4cvvp1q2b6datm8vH65133jHXXXed8fLyMvXq1TPdunUzaWlpTjXTpk0zLVu2NLVr1zYhISFmyJAh5tChQ+X2f80115Tbftml288//3yF+9+xY4e57777TGhoqKldu7a58sorza233mo++ugjq6aiy+crOy/FxcVm2LBhJigoyLi5uTldSq9TLp83xpjvv//exMXFGT8/P1OnTh3To0cPs3LlSqeassvnT70s/tR+fv/996Zfv37mqquuMl5eXiY4ONjceuut5rvvvqvwWJzOkSNHTP/+/U1AQICR5HQpfU5Ojrn//vtNYGCg8fT0NJGRkU7jN8Z5Dl588UUTHh5uvLy8TJcuXcwPP/zgUl+M+d+tIip6nLzvsls9VPSo6HYAZ1NSUmKuvPJKc/3117u8LuzDzZhqPlsSqGZlNwDcv3//ed+0DagJdu3apcaNG+v555/XyJEjq7s7wAXFOUIAAMC2OEcIgLKzs8+43MfHx7rRI6rPwYMHVVRUdNrlHh4eTjehvJCKiop08ODBM9b4+/uf8RYJ5yIvL6/c3+07lSt/pR4gCAE46yXKiYmJmj179sXpDE7rrrvuKnf355NFRERclJsdStLKlSvPelL+rFmzlJSUVKX7feSRR8r9kdhTccYHXME5QgD05ZdfnnF5WFjYGe8ojYsjMzPzjFcg+vj46KabbroofTl06JAyMzPPWHPNNddUyX2ATrZ582bt3bv3jDXnc78q2A9BCAAA2BYnSwMAANviHKEzKC0t1d69e1W3bt1K33YfAABUL2OMDh8+rLCwsAr/nuPJCEJnsHfv3nP+W0EAAKB6/fzzz05/qLoiBKEzKLvd/M8//+zy3wwCAADVIz8/X+Hh4eX+bExFCEJnUPZ1mMPhIAgBAHCZqcxpLZwsDQAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbKtWdXcAAKrNV5Oruweu6zG2unsA1Ch8IgQAAGyLIAQAAGyLIAQAAGyLc4QA2FbGjwequwsui+5R3T0AahY+EQIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALblUhCaPHmybrzxRtWtW1fBwcFKSEjQ1q1bnWq6d+8uNzc3p8dDDz3kVLN7927Fx8erTp06Cg4O1mOPPabi4mKnmmXLlun666+Xl5eXmjVrptmzZ5frz/Tp09WoUSN5e3srKipKa9ascVp+/PhxJScn64orrpCfn5969+6tnJwcV4YMAABqMJeC0PLly5WcnKxVq1YpLS1NJ06cUGxsrAoKCpzqBg0apF9//dV6TJkyxVpWUlKi+Ph4FRUVaeXKlZozZ45mz56tcePGWTU7d+5UfHy8evTooXXr1mn48OF68MEHtWTJEqvmgw8+UEpKisaPH6/vv/9ebdu2VVxcnPbt22fVjBgxQp999pnmzp2r5cuXa+/evbrrrrtcPkgAAKBmcjPGmHNdef/+/QoODtby5cvVtWtXSb9/ItSuXTtNnTq1wnU+//xz3Xrrrdq7d69CQkIkSTNnztTo0aO1f/9+eXp6avTo0Vq4cKE2btxorde3b1/l5uZq8eLFkqSoqCjdeOONmjZtmiSptLRU4eHhGjZsmMaMGaO8vDwFBQUpNTVVd999tyQpKytLrVq1UkZGhjp27HjW8eXn58vf3195eXlyOBznepgAXKIy3h5Z3V1wWfTAF6q7C8Alz5X37/M6RygvL0+SVL9+faf29957T4GBgWrTpo3Gjh2ro0ePWssyMjIUGRlphSBJiouLU35+vjZt2mTVxMTEOG0zLi5OGRkZkqSioiJlZmY61bi7uysmJsaqyczM1IkTJ5xqWrZsqauuusqqOVVhYaHy8/OdHgAAoOaqda4rlpaWavjw4brpppvUpk0bq71///6KiIhQWFiY1q9fr9GjR2vr1q36+OOPJUnZ2dlOIUiS9Tw7O/uMNfn5+Tp27JgOHTqkkpKSCmuysrKsbXh6eiogIKBcTdl+TjV58mRNnDjRxSMBAAAuV+cchJKTk7Vx40Z9/fXXTu2DBw+2/h0ZGakGDRqoZ8+e2rFjh5o2bXruPb0Ixo4dq5SUFOt5fn6+wsPDq7FHAADgQjqnr8aGDh2qBQsW6KuvvlLDhg3PWBsVFSVJ2r59uyQpNDS03JVbZc9DQ0PPWONwOOTj46PAwEB5eHhUWHPyNoqKipSbm3vamlN5eXnJ4XA4PQAAQM3lUhAyxmjo0KGaN2+eli5dqsaNG591nXXr1kmSGjRoIEmKjo7Whg0bnK7uSktLk8PhUOvWra2a9PR0p+2kpaUpOjpakuTp6an27ds71ZSWlio9Pd2qad++vWrXru1Us3XrVu3evduqAQAA9ubSV2PJyclKTU3VJ598orp161rn2vj7+8vHx0c7duxQamqqbrnlFl1xxRVav369RowYoa5du+raa6+VJMXGxqp169a69957NWXKFGVnZ+vJJ59UcnKyvLy8JEkPPfSQpk2bplGjRumBBx7Q0qVL9eGHH2rhwoVWX1JSUpSYmKgbbrhBHTp00NSpU1VQUKD777/f6tPAgQOVkpKi+vXry+FwaNiwYYqOjq7UFWMAAKDmcykIzZgxQ9Lvl8ifbNasWUpKSpKnp6e+/PJLK5SEh4erd+/eevLJJ61aDw8PLViwQEOGDFF0dLR8fX2VmJioSZMmWTWNGzfWwoULNWLECL3yyitq2LCh3nrrLcXFxVk1ffr00f79+zVu3DhlZ2erXbt2Wrx4sdMJ1C+//LLc3d3Vu3dvFRYWKi4uTq+//rpLBwgAANRc53UfoZqO+wgBNRv3EQJqpot2HyEAAIDLGUEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYlktBaPLkybrxxhtVt25dBQcHKyEhQVu3bnWqOX78uJKTk3XFFVfIz89PvXv3Vk5OjlPN7t27FR8frzp16ig4OFiPPfaYiouLnWqWLVum66+/Xl5eXmrWrJlmz55drj/Tp09Xo0aN5O3traioKK1Zs8blvgAAAPtyKQgtX75cycnJWrVqldLS0nTixAnFxsaqoKDAqhkxYoQ+++wzzZ07V8uXL9fevXt11113WctLSkoUHx+voqIirVy5UnPmzNHs2bM1btw4q2bnzp2Kj49Xjx49tG7dOg0fPlwPPviglixZYtV88MEHSklJ0fjx4/X999+rbdu2iouL0759+yrdFwAAYG9uxhhzrivv379fwcHBWr58ubp27aq8vDwFBQUpNTVVd999tyQpKytLrVq1UkZGhjp27KjPP/9ct956q/bu3auQkBBJ0syZMzV69Gjt379fnp6eGj16tBYuXKiNGzda++rbt69yc3O1ePFiSVJUVJRuvPFGTZs2TZJUWlqq8PBwDRs2TGPGjKlUX84mPz9f/v7+ysvLk8PhONfDBOASlfH2yOrugsuiB75Q3V0ALnmuvH+f1zlCeXl5kqT69etLkjIzM3XixAnFxMRYNS1bttRVV12ljIwMSVJGRoYiIyOtECRJcXFxys/P16ZNm6yak7dRVlO2jaKiImVmZjrVuLu7KyYmxqqpTF9OVVhYqPz8fKcHAACouc45CJWWlmr48OG66aab1KZNG0lSdna2PD09FRAQ4FQbEhKi7Oxsq+bkEFS2vGzZmWry8/N17Ngx/fbbbyopKamw5uRtnK0vp5o8ebL8/f2tR3h4eCWPBgAAuBydcxBKTk7Wxo0b9f7771dlf6rV2LFjlZeXZz1+/vnn6u4SAAC4gGqdy0pDhw7VggULtGLFCjVs2NBqDw0NVVFRkXJzc50+icnJyVFoaKhVc+rVXWVXcp1cc+rVXTk5OXI4HPLx8ZGHh4c8PDwqrDl5G2fry6m8vLzk5eXlwpEAAACXM5c+ETLGaOjQoZo3b56WLl2qxo0bOy1v3769ateurfT0dKtt69at2r17t6KjoyVJ0dHR2rBhg9PVXWlpaXI4HGrdurVVc/I2ymrKtuHp6an27ds71ZSWlio9Pd2qqUxfAACAvbn0iVBycrJSU1P1ySefqG7duta5Nv7+/vLx8ZG/v78GDhyolJQU1a9fXw6HQ8OGDVN0dLR1lVZsbKxat26te++9V1OmTFF2draefPJJJScnW5/GPPTQQ5o2bZpGjRqlBx54QEuXLtWHH36ohQsXWn1JSUlRYmKibrjhBnXo0EFTp05VQUGB7r//fqtPZ+sLAACwN5eC0IwZMyRJ3bt3d2qfNWuWkpKSJEkvv/yy3N3d1bt3bxUWFiouLk6vv/66Vevh4aEFCxZoyJAhio6Olq+vrxITEzVp0iSrpnHjxlq4cKFGjBihV155RQ0bNtRbb72luLg4q6ZPnz7av3+/xo0bp+zsbLVr106LFy92OoH6bH0BAAD2dl73EarpuI8QULNxHyGgZrpo9xECAAC4nBGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbbkchFasWKHbbrtNYWFhcnNz0/z5852WJyUlyc3NzenRq1cvp5qDBw9qwIABcjgcCggI0MCBA3XkyBGnmvXr16tLly7y9vZWeHi4pkyZUq4vc+fOVcuWLeXt7a3IyEgtWrTIabkxRuPGjVODBg3k4+OjmJgYbdu2zdUhAwCAGsrlIFRQUKC2bdtq+vTpp63p1auXfv31V+vxz3/+02n5gAEDtGnTJqWlpWnBggVasWKFBg8ebC3Pz89XbGysIiIilJmZqeeff14TJkzQ3/72N6tm5cqV6tevnwYOHKi1a9cqISFBCQkJ2rhxo1UzZcoUvfrqq5o5c6ZWr14tX19fxcXF6fjx464OGwAA1EBuxhhzziu7uWnevHlKSEiw2pKSkpSbm1vuk6IyW7ZsUevWrfXtt9/qhhtukCQtXrxYt9xyi/bs2aOwsDDNmDFDTzzxhLKzs+Xp6SlJGjNmjObPn6+srCxJUp8+fVRQUKAFCxZY2+7YsaPatWunmTNnyhijsLAwPfrooxo5cqQkKS8vTyEhIZo9e7b69u171vHl5+fL399feXl5cjgc53KIAFzCMt4eWd1dcFn0wBequwvAJc+V9+8Lco7QsmXLFBwcrBYtWmjIkCE6cOCAtSwjI0MBAQFWCJKkmJgYubu7a/Xq1VZN165drRAkSXFxcdq6dasOHTpk1cTExDjtNy4uThkZGZKknTt3Kjs726nG399fUVFRVs2pCgsLlZ+f7/QAAAA1V5UHoV69eunvf/+70tPT9dxzz2n58uW6+eabVVJSIknKzs5WcHCw0zq1atVS/fr1lZ2dbdWEhIQ41ZQ9P1vNyctPXq+imlNNnjxZ/v7+1iM8PNzl8QMAgMtHrare4MlfOUVGRuraa69V06ZNtWzZMvXs2bOqd1elxo4dq5SUFOt5fn4+YQgAgBrsgl8+36RJEwUGBmr79u2SpNDQUO3bt8+ppri4WAcPHlRoaKhVk5OT41RT9vxsNScvP3m9impO5eXlJYfD4fQAAAA11wUPQnv27NGBAwfUoEEDSVJ0dLRyc3OVmZlp1SxdulSlpaWKioqyalasWKETJ05YNWlpaWrRooXq1atn1aSnpzvtKy0tTdHR0ZKkxo0bKzQ01KkmPz9fq1evtmoAAIC9uRyEjhw5onXr1mndunWSfj8ped26ddq9e7eOHDmixx57TKtWrdKuXbuUnp6uO+64Q82aNVNcXJwkqVWrVurVq5cGDRqkNWvW6JtvvtHQoUPVt29fhYWFSZL69+8vT09PDRw4UJs2bdIHH3ygV155xelrq0ceeUSLFy/Wiy++qKysLE2YMEHfffedhg4dKun3K9qGDx+up59+Wp9++qk2bNig++67T2FhYU5XuQEAAPty+Ryh7777Tj169LCel4WTxMREzZgxQ+vXr9ecOXOUm5ursLAwxcbG6qmnnpKXl5e1znvvvaehQ4eqZ8+ecnd3V+/evfXqq69ay/39/fXFF18oOTlZ7du3V2BgoMaNG+d0r6FOnTopNTVVTz75pB5//HE1b95c8+fPV5s2bayaUaNGqaCgQIMHD1Zubq46d+6sxYsXy9vb29VhAwCAGui87iNU03EfIaBm4z5CQM1U7fcRAgAAuBwQhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG25HIRWrFih2267TWFhYXJzc9P8+fOdlhtjNG7cODVo0EA+Pj6KiYnRtm3bnGoOHjyoAQMGyOFwKCAgQAMHDtSRI0ecatavX68uXbrI29tb4eHhmjJlSrm+zJ07Vy1btpS3t7ciIyO1aNEil/sCAADsy+UgVFBQoLZt22r69OkVLp8yZYpeffVVzZw5U6tXr5avr6/i4uJ0/Phxq2bAgAHatGmT0tLStGDBAq1YsUKDBw+2lufn5ys2NlYRERHKzMzU888/rwkTJuhvf/ubVbNy5Ur169dPAwcO1Nq1a5WQkKCEhARt3LjRpb4AAAD7cjPGmHNe2c1N8+bNU0JCgqTfP4EJCwvTo48+qpEjR0qS8vLyFBISotmzZ6tv377asmWLWrdurW+//VY33HCDJGnx4sW65ZZbtGfPHoWFhWnGjBl64oknlJ2dLU9PT0nSmDFjNH/+fGVlZUmS+vTpo4KCAi1YsMDqT8eOHdWuXTvNnDmzUn05m/z8fPn7+ysvL08Oh+NcDxOAS1TG2yOruwsuix74QnV3AbjkufL+XaXnCO3cuVPZ2dmKiYmx2vz9/RUVFaWMjAxJUkZGhgICAqwQJEkxMTFyd3fX6tWrrZquXbtaIUiS4uLitHXrVh06dMiqOXk/ZTVl+6lMX05VWFio/Px8pwcAAKi5qjQIZWdnS5JCQkKc2kNCQqxl2dnZCg4Odlpeq1Yt1a9f36mmom2cvI/T1Zy8/Gx9OdXkyZPl7+9vPcLDwysxagAAcLniqrGTjB07Vnl5edbj559/ru4uAQCAC6hKg1BoaKgkKScnx6k9JyfHWhYaGqp9+/Y5LS8uLtbBgwedairaxsn7OF3NycvP1pdTeXl5yeFwOD0AAEDNVaVBqHHjxgoNDVV6errVlp+fr9WrVys6OlqSFB0drdzcXGVmZlo1S5cuVWlpqaKioqyaFStW6MSJE1ZNWlqaWrRooXr16lk1J++nrKZsP5XpCwAAsDeXg9CRI0e0bt06rVu3TtLvJyWvW7dOu3fvlpubm4YPH66nn35an376qTZs2KD77rtPYWFh1pVlrVq1Uq9evTRo0CCtWbNG33zzjYYOHaq+ffsqLCxMktS/f395enpq4MCB2rRpkz744AO98sorSklJsfrxyCOPaPHixXrxxReVlZWlCRMm6LvvvtPQoUMlqVJ9AQAA9lbL1RW+++479ejRw3peFk4SExM1e/ZsjRo1SgUFBRo8eLByc3PVuXNnLV68WN7e3tY67733noYOHaqePXvK3d1dvXv31quvvmot9/f31xdffKHk5GS1b99egYGBGjdunNO9hjp16qTU1FQ9+eSTevzxx9W8eXPNnz9fbdq0sWoq0xcAAGBf53UfoZqO+wgBNRv3EQJqpmq7jxAAAMDlhCAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsq8qD0IQJE+Tm5ub0aNmypbX8+PHjSk5O1hVXXCE/Pz/17t1bOTk5TtvYvXu34uPjVadOHQUHB+uxxx5TcXGxU82yZct0/fXXy8vLS82aNdPs2bPL9WX69Olq1KiRvL29FRUVpTVr1lT1cAEAwGXsgnwidM011+jXX3+1Hl9//bW1bMSIEfrss880d+5cLV++XHv37tVdd91lLS8pKVF8fLyKioq0cuVKzZkzR7Nnz9a4ceOsmp07dyo+Pl49evTQunXrNHz4cD344INasmSJVfPBBx8oJSVF48eP1/fff6+2bdsqLi5O+/btuxBDBgAAlyE3Y4ypyg1OmDBB8+fP17p168oty8vLU1BQkFJTU3X33XdLkrKystSqVStlZGSoY8eO+vzzz3Xrrbdq7969CgkJkSTNnDlTo0eP1v79++Xp6anRo0dr4cKF2rhxo7Xtvn37Kjc3V4sXL5YkRUVF6cYbb9S0adMkSaWlpQoPD9ewYcM0ZsyYSo0lPz9f/v7+ysvLk8PhOJ/DAuASlPH2yOrugsuiB75Q3V0ALnmuvH9fkE+Etm3bprCwMDVp0kQDBgzQ7t27JUmZmZk6ceKEYmJirNqWLVvqqquuUkZGhiQpIyNDkZGRVgiSpLi4OOXn52vTpk1WzcnbKKsp20ZRUZEyMzOdatzd3RUTE2PVVKSwsFD5+flODwAAUHNVeRCKiorS7NmztXjxYs2YMUM7d+5Uly5ddPjwYWVnZ8vT01MBAQFO64SEhCg7O1uSlJ2d7RSCypaXLTtTTX5+vo4dO6bffvtNJSUlFdaUbaMikydPlr+/v/UIDw8/p2MAAAAuD7WqeoM333yz9e9rr71WUVFRioiI0IcffigfH5+q3l2VGjt2rFJSUqzn+fn5hCEAAGqwC375fEBAgK6++mpt375doaGhKioqUm5urlNNTk6OQkNDJUmhoaHlriIre362GofDIR8fHwUGBsrDw6PCmrJtVMTLy0sOh8PpAQAAaq4LHoSOHDmiHTt2qEGDBmrfvr1q166t9PR0a/nWrVu1e/duRUdHS5Kio6O1YcMGp6u70tLS5HA41Lp1a6vm5G2U1ZRtw9PTU+3bt3eqKS0tVXp6ulUDAABQ5UFo5MiRWr58uXbt2qWVK1fqzjvvlIeHh/r16yd/f38NHDhQKSkp+uqrr5SZman7779f0dHR6tixoyQpNjZWrVu31r333qsffvhBS5Ys0ZNPPqnk5GR5eXlJkh566CH9+OOPGjVqlLKysvT666/rww8/1IgRI6x+pKSk6M0339ScOXO0ZcsWDRkyRAUFBbr//vuresgAAOAyVeXnCO3Zs0f9+vXTgQMHFBQUpM6dO2vVqlUKCgqSJL388styd3dX7969VVhYqLi4OL3++uvW+h4eHlqwYIGGDBmi6Oho+fr6KjExUZMmTbJqGjdurIULF2rEiBF65ZVX1LBhQ7311luKi4uzavr06aP9+/dr3Lhxys7OVrt27bR48eJyJ1ADAAD7qvL7CNUk3EcIqNm4jxBQM1X7fYQAAAAuBwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgW7WquwMAAKBqvJz2n+rugstG/PHqat0/nwgBAADbIggBAADb4qsxAABqiI67/1bdXTgHL1Tr3vlECAAA2BZBCAAA2BZBCAAA2BZBCAAA2BYnS1cj7vcAAED1IghVI87uBwCgevHVGAAAsC2CEAAAsC2CEAAAsC1bnCM0ffp0Pf/888rOzlbbtm312muvqUOHDtXdLQDAJexyvKClY3V34DJU44PQBx98oJSUFM2cOVNRUVGaOnWq4uLitHXrVgUHB1d39wDAFi7HUAF7qPFB6KWXXtKgQYN0//33S5JmzpyphQsX6p133tGYMWOquXdAxTLeHlndXcAl6nL92eCTClyqanQQKioqUmZmpsaOHWu1ubu7KyYmRhkZGeXqCwsLVVhYaD3Py8uTJOXn51+Q/hUcKzx70SXmy2nDqrsLAIAa5EK8x5Zt0xhz1toaHYR+++03lZSUKCQkxKk9JCREWVlZ5eonT56siRMnlmsPDw+/YH0EAMDWhk27YJs+fPiw/P39z1hTo4OQq8aOHauUlBTreWlpqQ4ePKgrrrhCbm5uVbqv/Px8hYeH6+eff5bD4ajSbV8Kavr4pJo/RsZ3+avpY2R8l78LNUZjjA4fPqywsLCz1tboIBQYGCgPDw/l5OQ4tefk5Cg0NLRcvZeXl7y8vJzaAgICLmQX5XA4auwPuFTzxyfV/DEyvstfTR8j47v8XYgxnu2ToDI1+j5Cnp6eat++vdLT06220tJSpaenKzo6uhp7BgAALgU1+hMhSUpJSVFiYqJuuOEGdejQQVOnTlVBQYF1FRkAALCvGh+E+vTpo/3792vcuHHKzs5Wu3bttHjx4nInUF9sXl5eGj9+fLmv4mqKmj4+qeaPkfFd/mr6GBnf5e9SGKObqcy1ZQAAADVQjT5HCAAA4EwIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQhfIM888o06dOqlOnTqVvju1MUbjxo1TgwYN5OPjo5iYGG3bts2p5uDBgxowYIAcDocCAgI0cOBAHTly5AKM4Oxc7cuuXbvk5uZW4WPu3LlWXUXL33///YsxJCfncqy7d+9eru8PPfSQU83u3bsVHx+vOnXqKDg4WI899piKi4sv5FAq5Or4Dh48qGHDhqlFixby8fHRVVddpYcfftj648RlqnP+pk+frkaNGsnb21tRUVFas2bNGevnzp2rli1bytvbW5GRkVq0aJHT8sq8Ji8mV8b35ptvqkuXLqpXr57q1aunmJiYcvVJSUnl5qpXr14Xehhn5MoYZ8+eXa7/3t7eTjWX8xxW9PvEzc1N8fHxVs2lNIcrVqzQbbfdprCwMLm5uWn+/PlnXWfZsmW6/vrr5eXlpWbNmmn27Nnlalx9XbvM4IIYN26ceemll0xKSorx9/ev1DrPPvus8ff3N/Pnzzc//PCDuf32203jxo3NsWPHrJpevXqZtm3bmlWrVpl///vfplmzZqZfv34XaBRn5mpfiouLza+//ur0mDhxovHz8zOHDx+26iSZWbNmOdWdfAwulnM51t26dTODBg1y6nteXp61vLi42LRp08bExMSYtWvXmkWLFpnAwEAzduzYCz2cclwd34YNG8xdd91lPv30U7N9+3aTnp5umjdvbnr37u1UV13z9/777xtPT0/zzjvvmE2bNplBgwaZgIAAk5OTU2H9N998Yzw8PMyUKVPM5s2bzZNPPmlq165tNmzYYNVU5jV5sbg6vv79+5vp06ebtWvXmi1btpikpCTj7+9v9uzZY9UkJiaaXr16Oc3VwYMHL9aQynF1jLNmzTIOh8Op/9nZ2U41l/McHjhwwGlsGzduNB4eHmbWrFlWzaU0h4sWLTJPPPGE+fjjj40kM2/evDPW//jjj6ZOnTomJSXFbN682bz22mvGw8PDLF682Kpx9ZidC4LQBTZr1qxKBaHS0lITGhpqnn/+eastNzfXeHl5mX/+85/GGGM2b95sJJlvv/3Wqvn888+Nm5ub+eWXX6q872dSVX1p166deeCBB5zaKvMCutDOdXzdunUzjzzyyGmXL1q0yLi7uzv9sp4xY4ZxOBymsLCwSvpeGVU1fx9++KHx9PQ0J06csNqqa/46dOhgkpOTreclJSUmLCzMTJ48ucL6e+65x8THxzu1RUVFmf/7v/8zxlTuNXkxuTq+UxUXF5u6deuaOXPmWG2JiYnmjjvuqOqunjNXx3i23681bQ5ffvllU7duXXPkyBGr7VKbwzKV+T0watQoc8011zi19enTx8TFxVnPz/eYVQZfjV0idu7cqezsbMXExFht/v7+ioqKUkZGhiQpIyNDAQEBuuGGG6yamJgYubu7a/Xq1Re1v1XRl8zMTK1bt04DBw4styw5OVmBgYHq0KGD3nnnHZmLfN/P8xnfe++9p8DAQLVp00Zjx47V0aNHnbYbGRnpdGfzuLg45efna9OmTVU/kNOoqp+lvLw8ORwO1arlfJP6iz1/RUVFyszMdHr9uLu7KyYmxnr9nCojI8OpXvp9LsrqK/OavFjOZXynOnr0qE6cOKH69es7tS9btkzBwcFq0aKFhgwZogMHDlRp3yvrXMd45MgRRUREKDw8XHfccYfT66imzeHbb7+tvn37ytfX16n9UplDV53tNVgVx6wyavyf2LhcZGdnS1K5P/0REhJiLcvOzlZwcLDT8lq1aql+/fpWzcVSFX15++231apVK3Xq1MmpfdKkSfrDH/6gOnXq6IsvvtBf/vIXHTlyRA8//HCV9f9sznV8/fv3V0REhMLCwrR+/XqNHj1aW7du1ccff2xtt6I5Llt2sVTF/P3222966qmnNHjwYKf26pi/3377TSUlJRUe26ysrArXOd1cnPx6K2s7Xc3Fci7jO9Xo0aMVFhbm9KbSq1cv3XXXXWrcuLF27Nihxx9/XDfffLMyMjLk4eFRpWM4m3MZY4sWLfTOO+/o2muvVV5enl544QV16tRJmzZtUsOGDWvUHK5Zs0YbN27U22+/7dR+Kc2hq073GszPz9exY8d06NCh8/65rwyCkAvGjBmj55577ow1W7ZsUcuWLS9Sj6peZcd4vo4dO6bU1FT99a9/Lbfs5LbrrrtOBQUFev7556vkjfRCj+/kUBAZGakGDRqoZ8+e2rFjh5o2bXrO262sizV/+fn5io+PV+vWrTVhwgSnZRdy/nBunn32Wb3//vtatmyZ08nEffv2tf4dGRmpa6+9Vk2bNtWyZcvUs2fP6uiqS6KjoxUdHW0979Spk1q1aqU33nhDTz31VDX2rOq9/fbbioyMVIcOHZzaL/c5vBQQhFzw6KOPKikp6Yw1TZo0Oadth4aGSpJycnLUoEEDqz0nJ0ft2rWzavbt2+e0XnFxsQ4ePGitf74qO8bz7ctHH32ko0eP6r777jtrbVRUlJ566ikVFhae9x/mu1jjKxMVFSVJ2r59u5o2barQ0NByVzzk5ORIUpXM4cUY3+HDh9WrVy/VrVtX8+bNU+3atc9YX5XzdzqBgYHy8PCwjmWZnJyc044nNDT0jPWVeU1eLOcyvjIvvPCCnn32WX355Ze69tprz1jbpEkTBQYGavv27Rf9TfR8xlimdu3auu6667R9+3ZJNWcOCwoK9P7772vSpEln3U91zqGrTvcadDgc8vHxkYeHx3n/TFRKlZ1thAq5erL0Cy+8YLXl5eVVeLL0d999Z9UsWbKkWk+WPte+dOvWrdzVRqfz9NNPm3r16p1zX89FVR3rr7/+2kgyP/zwgzHmfydLn3zFwxtvvGEcDoc5fvx41Q3gLM51fHl5eaZjx46mW7dupqCgoFL7uljz16FDBzN06FDreUlJibnyyivPeLL0rbfe6tQWHR1d7mTpM70mLyZXx2eMMc8995xxOBwmIyOjUvv4+eefjZubm/nkk0/Ou7/n4lzGeLLi4mLTokULM2LECGNMzZhDY35/H/Hy8jK//fbbWfdR3XNYRpU8WbpNmzZObf369St3svT5/ExUqq9VtiU4+emnn8zatWuty8PXrl1r1q5d63SZeIsWLczHH39sPX/22WdNQECA+eSTT8z69evNHXfcUeHl89ddd51ZvXq1+frrr03z5s2r9fL5M/Vlz549pkWLFmb16tVO623bts24ubmZzz//vNw2P/30U/Pmm2+aDRs2mG3btpnXX3/d1KlTx4wbN+6Cj+dUro5v+/btZtKkSea7774zO3fuNJ988olp0qSJ6dq1q7VO2eXzsbGxZt26dWbx4sUmKCio2i6fd2V8eXl5JioqykRGRprt27c7Xa5bXFxsjKne+Xv//feNl5eXmT17ttm8ebMZPHiwCQgIsK7Qu/fee82YMWOs+m+++cbUqlXLvPDCC2bLli1m/PjxFV4+f7bX5MXi6vieffZZ4+npaT766COnuSr7HXT48GEzcuRIk5GRYXbu3Gm+/PJLc/3115vmzZtf1FB+PmOcOHGiWbJkidmxY4fJzMw0ffv2Nd7e3mbTpk1WzeU8h2U6d+5s+vTpU679UpvDw4cPW+91ksxLL71k1q5da3766SdjjDFjxowx9957r1Vfdvn8Y489ZrZs2WKmT59e4eXzZzpmVYEgdIEkJiYaSeUeX331lVWj/95vpUxpaan561//akJCQoyXl5fp2bOn2bp1q9N2Dxw4YPr162f8/PyMw+Ew999/v1O4upjO1pedO3eWG7MxxowdO9aEh4ebkpKSctv8/PPPTbt27Yyfn5/x9fU1bdu2NTNnzqyw9kJzdXy7d+82Xbt2NfXr1zdeXl6mWbNm5rHHHnO6j5AxxuzatcvcfPPNxsfHxwQGBppHH33U6fLzi8XV8X311VcV/kxLMjt37jTGVP/8vfbaa+aqq64ynp6epkOHDmbVqlXWsm7dupnExESn+g8//NBcffXVxtPT01xzzTVm4cKFTssr85q8mFwZX0RERIVzNX78eGOMMUePHjWxsbEmKCjI1K5d20RERJhBgwZV6RvMuXBljMOHD7dqQ0JCzC233GK+//57p+1dznNojDFZWVlGkvniiy/KbetSm8PT/Y4oG1NiYqLp1q1buXXatWtnPD09TZMmTZzeE8uc6ZhVBTdjLvJ1yQAAAJcI7iMEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABs6/8BtNSHcAsous4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQPxJREFUeJzt3XtYFnX+//EXoBwUb9AQkCQ85iFJyxIxFU1+oNnBsi3NLchTuWgpmYdqPVWXZVZWntoO6m5ZZptWahRh6rdETdI84qppagYeAUUFgc/vj5ZZb0HlNhRlno/ruq/Le+Y9M+/PDDf3y/ueGdyMMUYAAAA25F7RDQAAAFQUghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghCASmfZsmVyc3PTsmXLynW9bm5uGjduXLmuE0DFIggBwBmWLFly1YeduXPnasqUKRXdhmXGjBn6y1/+ouuuu05ubm6Kj48vtS4lJUV9+/bV9ddfr2rVqqlBgwbq37+/fv/994vablpamu68804FBwfL19dXN954o958800VFhb+idGgsqlS0Q0AwJVkyZIlmjZtWqlh6OTJk6pS5cr/tTl37lxt2rRJQ4cOrehWJEkvv/yyjh07pjZt2pw31IwcOVJHjhzRX/7yFzVu3Fi//PKLpk6dqkWLFmn9+vUKDg4u8zbT0tLUrl07NW7cWCNHjlS1atX01Vdf6cknn9TOnTv1xhtvlMfQUAlc+a9owEZyc3NVvXr1im6jwpw4cULVqlUrMb2goEBFRUXy9PSsgK7+x9vbu0K3f7Vavny59WmQr6/vOetee+01tW/fXu7u//uyomvXroqKitLUqVP1wgsvlHmbb7/9tiRpxYoVqlWrliTpscceU1RUlGbPnk0QgoWvxmB748aNk5ubm9LT0/XAAw/I4XDommuu0ZNPPqlTp0451X7wwQdq3bq1fHx8VKtWLfXq1Ut79+51qvm///s/62sALy8vhYaGatiwYTp58qRTXXx8vHx9fbVz507dcccdqlGjhvr06SNJ2r59u3r27Kng4GB5e3urbt266tWrl7Kzs63lCwoK9Pzzz6thw4by8vJSvXr19MwzzygvL89pO/Xq1dOdd96p77//Xm3atJG3t7caNGigf/7znxe1vz744AO1adNG1apVU82aNdWxY0d98803TjXTp0/XDTfcIC8vL4WEhCghIUFZWVlONZ06dVKLFi2Ulpamjh07qlq1anrmmWe0e/duubm5afLkyZoyZYo1vi1btkiS0tPTdf/996tWrVry9vbWLbfcoi+++OKCfZfluMTHx2vatGmS/jgfqPhRrLRzhNatW6du3brJ4XDI19dXXbp00apVq5xqZs+eLTc3N/3www9KTExU7dq1Vb16dd177706ePCgU+3atWsVGxurgIAA+fj4qH79+urbt+8Fx3fmfl28eLF+/fVXq/969epZ8w8cOKB+/fopKChI3t7eatmypebMmeO0jjOPweuvv66wsDD5+PgoKipKmzZtKnMvxcLCwpz247l07NjRKQQVT6tVq5a2bt3q0jZzcnLk7e0tf39/p+l16tSRj4+PS+tC5cYnQsB/PfDAA6pXr54mTpyoVatW6c0339TRo0etwPDiiy/q73//ux544AH1799fBw8e1FtvvaWOHTtq3bp11i/c+fPn68SJExo0aJCuueYarVmzRm+99Zb27dun+fPnO22zoKBAsbGxat++vSZPnqxq1aopPz9fsbGxysvL05AhQxQcHKzffvtNixYtUlZWlvz8/CRJ/fv315w5c3T//ffrqaee0urVqzVx4kRt3bpVCxYscNrOjh07dP/996tfv36Ki4vT+++/r/j4eLVu3Vo33HBDmffR+PHjNW7cOLVr104TJkyQp6enVq9eraVLlyomJkbSH8Fy/Pjxio6O1qBBg7Rt2zbNmDFDP/74o3744QdVrVrVWt/hw4fVrVs39erVS3/9618VFBRkzZs1a5ZOnTqlgQMHysvLS7Vq1dLmzZt122236dprr9WoUaNUvXp1ffLJJ+rRo4f+/e9/69577z1n72U5Lo899pj279+v5ORk/etf/7rg/ti8ebM6dOggh8OhESNGqGrVqnr77bfVqVMnLV++XBEREU71Q4YMUc2aNTV27Fjt3r1bU6ZM0eDBgzVv3jxJf4SUmJgY1a5dW6NGjZK/v792796tzz77rMzH6Nlnn1V2drb27dun119/XZKsT2FOnjypTp06aceOHRo8eLDq16+v+fPnKz4+XllZWXryySed1vXPf/5Tx44dU0JCgk6dOqU33nhDt99+uzZu3Oh0rC6l48eP6/jx4woICHBpuU6dOmnevHl67LHHlJiYaH019tlnn+mVV165RN3iqmQAmxs7dqyRZO6++26n6X/729+MJPPzzz+b3bt3Gw8PD/Piiy861WzcuNFUqVLFafqJEydKbGPixInGzc3N/Prrr9a0uLg4I8mMGjXKqXbdunVGkpk/f/45e16/fr2RZPr37+80ffjw4UaSWbp0qTUtLCzMSDIrVqywph04cMB4eXmZp5566pzbONv27duNu7u7uffee01hYaHTvKKiImu9np6eJiYmxqlm6tSpRpJ5//33rWlRUVFGkpk5c6bTunbt2mUkGYfDYQ4cOOA0r0uXLiY8PNycOnXKadvt2rUzjRs3tqZ99913RpL57rvvrGllPS4JCQnmXL8aJZmxY8daz3v06GE8PT3Nzp07rWn79+83NWrUMB07drSmzZo1y0gy0dHR1r4yxphhw4YZDw8Pk5WVZYwxZsGCBUaS+fHHH0vdfll1797dhIWFlZg+ZcoUI8l88MEH1rT8/HwTGRlpfH19TU5OjjHmf8fAx8fH7Nu3z6pdvXq1kWSGDRt20b1Vr17dxMXFlbn++eefN5JMSkqKS9spKCgwgwcPNlWrVjWSjCTj4eFhZsyY4WLHqOz4agz4r4SEBKfnQ4YMkfTHybOfffaZioqK9MADD+jQoUPWIzg4WI0bN9Z3331nLXfmx+65ubk6dOiQ2rVrJ2OM1q1bV2K7gwYNcnpe/InP119/rRMnTpTa65IlSyRJiYmJTtOfeuopSdLixYudpjdv3lwdOnSwnteuXVtNmjTRL7/8Uur6S7Nw4UIVFRVpzJgxJb6+KP7a49tvv1V+fr6GDh3qVDNgwAA5HI4SfXl5eenRRx8tdXs9e/ZU7dq1redHjhzR0qVL9cADD+jYsWPWMTh8+LBiY2O1fft2/fbbb+fs39XjciGFhYX65ptv1KNHDzVo0MCaXqdOHT300EP6/vvvlZOT47TMwIEDnb4i6tChgwoLC/Xrr79KkvWp4qJFi3T69GmXe7qQJUuWKDg4WL1797amVa1aVU888YSOHz+u5cuXO9X36NFD1157rfW8TZs2ioiIsH7+LrUVK1Zo/PjxeuCBB3T77be7tKyHh4caNmyo2NhYzZkzR/PmzdNdd92lIUOGaOHChZemYVyVCELAfzVu3NjpecOGDeXu7q7du3dr+/btMsaocePGql27ttNj69atOnDggLXcnj17FB8fr1q1asnX11e1a9dWVFSUJDmd4yNJVapUUd26dZ2m1a9fX4mJiXr33XcVEBCg2NhYTZs2zWnZX3/9Ve7u7mrUqJHTssHBwfL397feWItdd911JcZbs2ZNHT16tMz7Z+fOnXJ3d1fz5s3PWVO83SZNmjhN9/T0VIMGDUr0de21157zBOj69es7Pd+xY4eMMfr73/9e4hiMHTtWkpyOw9lcOS5lcfDgQZ04caLEWCWpWbNmKioqKnH+2NnHoWbNmpJkHYeoqCj17NlT48ePV0BAgO655x7NmjWrxHlfF+vXX39V48aNSwTZZs2aWfPPdPZrQpKuv/567d69u1z6OZ/09HTde++9atGihd59912Xl3/ppZf08ssv66OPPtIjjzyiBx54QAsWLFD79u2VkJCggoKCS9A1rkacIwScw5n/cy8qKpKbm5u++uoreXh4lKgtPgejsLBQ/+///T8dOXJEI0eOVNOmTVW9enX99ttvio+PV1FRkdNyXl5eJd6UJOnVV19VfHy8Pv/8c33zzTd64oknrHOXzgxOZTkBVVKpPUuSMaZMy18q5ztp9ex5xftu+PDhio2NLXWZs4NhMVePy6VyoePg5uamTz/9VKtWrdKXX36pr7/+Wn379tWrr76qVatWnfeKq8pk7969iomJkZ+fn5YsWaIaNWq4vI7p06fr9ttvL7HP7r77biUmJmr37t3n/HmBvRCEgP/avn2706cQO3bsUFFRkerVqycPDw8ZY1S/fn1df/3151zHxo0b9Z///Edz5szRI488Yk1PTk52uZ/w8HCFh4frueee08qVK3Xbbbdp5syZeuGFFxQWFqaioiJt377d+t+8JGVmZiorK0thYWEub+9CGjZsqKKiIm3ZskWtWrUqtaZ4u9u2bXP6uig/P1+7du1SdHT0RW+/eH1Vq1Z1eT2uHJeyhsvatWurWrVq2rZtW4l56enpcnd3V2hoqEt9Fmvbtq3atm2rF198UXPnzlWfPn308ccfq3///mVa/lxjCAsL04YNG1RUVOQUwNPT0635Z9q+fXuJdfznP/9xugqtvB0+fFgxMTHKy8tTSkqK6tSpc1HryczMLPXGicVfOfKJEIrx1RjwX8WXTRd76623JEndunXTfffdJw8PD40fP77EpyjGGB0+fFjS//7Hf2aNMcale5bk5OSU+CUdHh4ud3d36yuSO+64Q5JK3D34tddekyR17969zNsrqx49esjd3V0TJkwo8QlK8Xijo6Pl6empN99802kfvPfee8rOzv5TfQUGBqpTp056++23S70p39mXoZ/JleNSfB+nsy/3L22dMTEx+vzzz52+KsrMzNTcuXPVvn17ORyO867jbEePHi3x81UcOl35eqx69eqlft13xx13KCMjw7pKTfojELz11lvy9fW1viostnDhQqfzrtasWaPVq1erW7duZe7FFbm5ubrjjjv022+/acmSJaV+NVdW119/vZKTk63XpvTHJ4OffPKJatSooYYNG5ZHy6gE+EQI+K9du3bp7rvvVteuXZWamqoPPvhADz30kFq2bClJeuGFFzR69Gjt3r1bPXr0UI0aNbRr1y4tWLBAAwcO1PDhw9W0aVM1bNhQw4cP12+//SaHw6F///vfLp2Ls3TpUg0ePFh/+ctfdP3116ugoED/+te/5OHhoZ49e0qSWrZsqbi4OP3jH/9QVlaWoqKitGbNGs2ZM0c9evRQ586dy33/NGrUSM8++6yef/55dejQQffdd5+8vLz0448/KiQkRBMnTlTt2rU1evRojR8/Xl27dtXdd9+tbdu2afr06br11lv117/+9U/1MG3aNLVv317h4eEaMGCAGjRooMzMTKWmpmrfvn36+eefS13OlePSunVrSdITTzyh2NhYeXh4qFevXqWu94UXXlBycrLat2+vv/3tb6pSpYrefvtt5eXladKkSS6Pb86cOZo+fbruvfdeNWzYUMeOHdM777wjh8Nhhd+yaN26tebNm6fExETdeuut8vX11V133aWBAwfq7bffVnx8vNLS0lSvXj19+umn+uGHHzRlypQSX0E1atRI7du316BBg5SXl6cpU6bommuu0YgRI1wa15dffmkdm9OnT2vDhg3WzRHvvvtu3XjjjZKkPn36aM2aNerbt6+2bt3qdO8gX19f9ejRo8zbHDVqlP76178qIiJCAwcOlI+Pjz766COlpaXphRdecLqNA2zu8l+oBlxZii+f37Jli7n//vtNjRo1TM2aNc3gwYPNyZMnnWr//e9/m/bt25vq1aub6tWrm6ZNm5qEhASzbds2q2bLli0mOjra+Pr6moCAADNgwADz888/G0lm1qxZVl1cXJypXr16iX5++eUX07dvX9OwYUPj7e1tatWqZTp37my+/fZbp7rTp0+b8ePHm/r165uqVaua0NBQM3r0aKdLy4354/L57t27l9hOVFSUiYqKcnl/vf/+++amm24yXl5epmbNmiYqKsokJyc71UydOtU0bdrUVK1a1QQFBZlBgwaZo0ePltj+DTfcUGL9xZduv/LKK6Vuf+fOneaRRx4xwcHBpmrVqubaa681d955p/n000+tmtIuny/rcSkoKDBDhgwxtWvXNm5ubk6X0uusy+eNMeann34ysbGxxtfX11SrVs107tzZrFy50qmm+PL5sy+LP7vPn376yfTu3dtcd911xsvLywQGBpo777zTrF27ttR9cS7Hjx83Dz30kPH39zeSnC6lz8zMNI8++qgJCAgwnp6eJjw83Gn8xjgfg1dffdWEhoYaLy8v06FDB/Pzzz+71Isx/7tVRGmPM7ddfKuH0h6l3Q7gQpKSkkxUVJTTWM++XQPgZkwFny0JVLDiGwAePHjQ5Zu2AZXR7t27Vb9+fb3yyisaPnx4RbcDXFKcIwQAAGyLc4QAKCMj47zzfXx8rBs9ouIcOXJE+fn555zv4eHhdBPKSyk/P19Hjhw5b42fn1+5/12v7OzsEn+372yu/JV6gCAE4IKXKMfFxWn27NmXpxmc03333Vfi7s9nCgsLuyw3O5SklStXXvCk/FmzZik+Pr5ct/vkk0+W+COxZ+OMD7iCc4QA6Ntvvz3v/JCQkPPeURqXR1pa2nmvQPTx8dFtt912WXo5evSo0tLSzltzww03XPR9gM5ly5Yt2r9//3lr/sz9qmA/BCEAAGBbnCwNAABsi3OEzqOoqEj79+9XjRo1ynzbfQAAULGMMTp27JhCQkJK/XuOZyIIncf+/fsv+m8FAQCAirV3716nP1RdGoLQeRTfbn7v3r0u/80gAABQMXJychQaGlriz8aUhiB0HsVfhzkcDoIQAABXmbKc1sLJ0gAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLaqVHQDAFBhvptY0R24rvPoiu4AqFT4RAgAANgWQQgAANgWX40BsK3UXw5XdAsui+xc0R0AlQufCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANtyKQhNnDhRt956q2rUqKHAwED16NFD27Ztc6rp1KmT3NzcnB6PP/64U82ePXvUvXt3VatWTYGBgXr66adVUFDgVLNs2TLdfPPN8vLyUqNGjTR79uwS/UybNk316tWTt7e3IiIitGbNGqf5p06dUkJCgq655hr5+vqqZ8+eyszMdGXIAACgEnMpCC1fvlwJCQlatWqVkpOTdfr0acXExCg3N9epbsCAAfr999+tx6RJk6x5hYWF6t69u/Lz87Vy5UrNmTNHs2fP1pgxY6yaXbt2qXv37urcubPWr1+voUOHqn///vr666+tmnnz5ikxMVFjx47VTz/9pJYtWyo2NlYHDhywaoYNG6Yvv/xS8+fP1/Lly7V//37dd999Lu8kAABQObkZY8zFLnzw4EEFBgZq+fLl6tixo6Q/PhFq1aqVpkyZUuoyX331le68807t379fQUFBkqSZM2dq5MiROnjwoDw9PTVy5EgtXrxYmzZtspbr1auXsrKylJSUJEmKiIjQrbfeqqlTp0qSioqKFBoaqiFDhmjUqFHKzs5W7dq1NXfuXN1///2SpPT0dDVr1kypqalq27btBceXk5MjPz8/ZWdny+FwXOxuAnCFSn1veEW34LLIfpMrugXgiufK+/efOkcoOztbklSrVi2n6R9++KECAgLUokULjR49WidOnLDmpaamKjw83ApBkhQbG6ucnBxt3rzZqomOjnZaZ2xsrFJTUyVJ+fn5SktLc6pxd3dXdHS0VZOWlqbTp0871TRt2lTXXXedVXO2vLw85eTkOD0AAEDlVeViFywqKtLQoUN12223qUWLFtb0hx56SGFhYQoJCdGGDRs0cuRIbdu2TZ999pkkKSMjwykESbKeZ2RknLcmJydHJ0+e1NGjR1VYWFhqTXp6urUOT09P+fv7l6gp3s7ZJk6cqPHjx7u4JwAAwNXqooNQQkKCNm3apO+//95p+sCBA61/h4eHq06dOurSpYt27typhg0bXnynl8Ho0aOVmJhoPc/JyVFoaGgFdgQAAC6li/pqbPDgwVq0aJG+++471a1b97y1ERERkqQdO3ZIkoKDg0tcuVX8PDg4+Lw1DodDPj4+CggIkIeHR6k1Z64jPz9fWVlZ56w5m5eXlxwOh9MDAABUXi4FIWOMBg8erAULFmjp0qWqX7/+BZdZv369JKlOnTqSpMjISG3cuNHp6q7k5GQ5HA41b97cqklJSXFaT3JysiIjIyVJnp6eat26tVNNUVGRUlJSrJrWrVuratWqTjXbtm3Tnj17rBoAAGBvLn01lpCQoLlz5+rzzz9XjRo1rHNt/Pz85OPjo507d2ru3Lm64447dM0112jDhg0aNmyYOnbsqBtvvFGSFBMTo+bNm+vhhx/WpEmTlJGRoeeee04JCQny8vKSJD3++OOaOnWqRowYob59+2rp0qX65JNPtHjxYquXxMRExcXF6ZZbblGbNm00ZcoU5ebm6tFHH7V66tevnxITE1WrVi05HA4NGTJEkZGRZbpiDAAAVH4uBaEZM2ZI+uMS+TPNmjVL8fHx8vT01LfffmuFktDQUPXs2VPPPfecVevh4aFFixZp0KBBioyMVPXq1RUXF6cJEyZYNfXr19fixYs1bNgwvfHGG6pbt67effddxcbGWjUPPvigDh48qDFjxigjI0OtWrVSUlKS0wnUr7/+utzd3dWzZ0/l5eUpNjZW06dPd2kHAQCAyutP3UeosuM+QkDlxn2EgMrpst1HCAAA4GpGEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALblUhCaOHGibr31VtWoUUOBgYHq0aOHtm3b5lRz6tQpJSQk6JprrpGvr6969uypzMxMp5o9e/aoe/fuqlatmgIDA/X000+roKDAqWbZsmW6+eab5eXlpUaNGmn27Nkl+pk2bZrq1asnb29vRUREaM2aNS73AgAA7MulILR8+XIlJCRo1apVSk5O1unTpxUTE6Pc3FyrZtiwYfryyy81f/58LV++XPv379d9991nzS8sLFT37t2Vn5+vlStXas6cOZo9e7bGjBlj1ezatUvdu3dX586dtX79eg0dOlT9+/fX119/bdXMmzdPiYmJGjt2rH766Se1bNlSsbGxOnDgQJl7AQAA9uZmjDEXu/DBgwcVGBio5cuXq2PHjsrOzlbt2rU1d+5c3X///ZKk9PR0NWvWTKmpqWrbtq2++uor3Xnnndq/f7+CgoIkSTNnztTIkSN18OBBeXp6auTIkVq8eLE2bdpkbatXr17KyspSUlKSJCkiIkK33nqrpk6dKkkqKipSaGiohgwZolGjRpWplwvJycmRn5+fsrOz5XA4LnY3AbhCpb43vKJbcFlkv8kV3QJwxXPl/ftPnSOUnZ0tSapVq5YkKS0tTadPn1Z0dLRV07RpU1133XVKTU2VJKWmpio8PNwKQZIUGxurnJwcbd682ao5cx3FNcXryM/PV1pamlONu7u7oqOjrZqy9HK2vLw85eTkOD0AAEDlddFBqKioSEOHDtVtt92mFi1aSJIyMjLk6ekpf39/p9qgoCBlZGRYNWeGoOL5xfPOV5OTk6OTJ0/q0KFDKiwsLLXmzHVcqJezTZw4UX5+ftYjNDS0jHsDAABcjS46CCUkJGjTpk36+OOPy7OfCjV69GhlZ2dbj71791Z0SwAA4BKqcjELDR48WIsWLdKKFStUt25da3pwcLDy8/OVlZXl9ElMZmamgoODrZqzr+4qvpLrzJqzr+7KzMyUw+GQj4+PPDw85OHhUWrNmeu4UC9n8/LykpeXlwt7AgAAXM1c+kTIGKPBgwdrwYIFWrp0qerXr+80v3Xr1qpatapSUlKsadu2bdOePXsUGRkpSYqMjNTGjRudru5KTk6Ww+FQ8+bNrZoz11FcU7wOT09PtW7d2qmmqKhIKSkpVk1ZegEAAPbm0idCCQkJmjt3rj7//HPVqFHDOtfGz89PPj4+8vPzU79+/ZSYmKhatWrJ4XBoyJAhioyMtK7SiomJUfPmzfXwww9r0qRJysjI0HPPPaeEhATr05jHH39cU6dO1YgRI9S3b18tXbpUn3zyiRYvXmz1kpiYqLi4ON1yyy1q06aNpkyZotzcXD366KNWTxfqBQAA2JtLQWjGjBmSpE6dOjlNnzVrluLj4yVJr7/+utzd3dWzZ0/l5eUpNjZW06dPt2o9PDy0aNEiDRo0SJGRkapevbri4uI0YcIEq6Z+/fpavHixhg0bpjfeeEN169bVu+++q9jYWKvmwQcf1MGDBzVmzBhlZGSoVatWSkpKcjqB+kK9AAAAe/tT9xGq7LiPEFC5cR8hoHK6bPcRAgAAuJoRhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG25HIRWrFihu+66SyEhIXJzc9PChQud5sfHx8vNzc3p0bVrV6eaI0eOqE+fPnI4HPL391e/fv10/Phxp5oNGzaoQ4cO8vb2VmhoqCZNmlSil/nz56tp06by9vZWeHi4lixZ4jTfGKMxY8aoTp068vHxUXR0tLZv3+7qkAEAQCXlchDKzc1Vy5YtNW3atHPWdO3aVb///rv1+Oijj5zm9+nTR5s3b1ZycrIWLVqkFStWaODAgdb8nJwcxcTEKCwsTGlpaXrllVc0btw4/eMf/7BqVq5cqd69e6tfv35at26devTooR49emjTpk1WzaRJk/Tmm29q5syZWr16tapXr67Y2FidOnXK1WEDAIBKyM0YYy56YTc3LViwQD169LCmxcfHKysrq8QnRcW2bt2q5s2b68cff9Qtt9wiSUpKStIdd9yhffv2KSQkRDNmzNCzzz6rjIwMeXp6SpJGjRqlhQsXKj09XZL04IMPKjc3V4sWLbLW3bZtW7Vq1UozZ86UMUYhISF66qmnNHz4cElSdna2goKCNHv2bPXq1atEb3l5ecrLy7Oe5+TkKDQ0VNnZ2XI4HBe7mwBcoVLfG17RLbgsst/kim4BuOLl5OTIz8+vTO/fl+QcoWXLlikwMFBNmjTRoEGDdPjwYWteamqq/P39rRAkSdHR0XJ3d9fq1autmo4dO1ohSJJiY2O1bds2HT161KqJjo522m5sbKxSU1MlSbt27VJGRoZTjZ+fnyIiIqyas02cOFF+fn7WIzQ09E/uCQAAcCUr9yDUtWtX/fOf/1RKSopefvllLV++XN26dVNhYaEkKSMjQ4GBgU7LVKlSRbVq1VJGRoZVExQU5FRT/PxCNWfOP3O50mrONnr0aGVnZ1uPvXv3ujx+AABw9ahS3is88yun8PBw3XjjjWrYsKGWLVumLl26lPfmypWXl5e8vLwqug0AAHCZXPLL5xs0aKCAgADt2LFDkhQcHKwDBw441RQUFOjIkSMKDg62ajIzM51qip9fqObM+WcuV1oNAACwt0sehPbt26fDhw+rTp06kqTIyEhlZWUpLS3Nqlm6dKmKiooUERFh1axYsUKnT5+2apKTk9WkSRPVrFnTqklJSXHaVnJysiIjIyVJ9evXV3BwsFNNTk6OVq9ebdUAAAB7czkIHT9+XOvXr9f69esl/XFS8vr167Vnzx4dP35cTz/9tFatWqXdu3crJSVF99xzjxo1aqTY2FhJUrNmzdS1a1cNGDBAa9as0Q8//KDBgwerV69eCgkJkSQ99NBD8vT0VL9+/bR582bNmzdPb7zxhhITE60+nnzySSUlJenVV19Venq6xo0bp7Vr12rw4MGS/riibejQoXrhhRf0xRdfaOPGjXrkkUcUEhLidJUbAACwL5fPEVq7dq06d+5sPS8OJ3FxcZoxY4Y2bNigOXPmKCsrSyEhIYqJidHzzz/vdO7Nhx9+qMGDB6tLly5yd3dXz5499eabb1rz/fz89M033yghIUGtW7dWQECAxowZ43SvoXbt2mnu3Ll67rnn9Mwzz6hx48ZauHChWrRoYdWMGDFCubm5GjhwoLKystS+fXslJSXJ29vb1WEDAIBK6E/dR6iyc+U+BACuPtxHCKicKvw+QgAAAFcDghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtl4PQihUrdNdddykkJERubm5auHCh03xjjMaMGaM6derIx8dH0dHR2r59u1PNkSNH1KdPHzkcDvn7+6tfv346fvy4U82GDRvUoUMHeXt7KzQ0VJMmTSrRy/z589W0aVN5e3srPDxcS5YscbkXAABgXy4HodzcXLVs2VLTpk0rdf6kSZP05ptvaubMmVq9erWqV6+u2NhYnTp1yqrp06ePNm/erOTkZC1atEgrVqzQwIEDrfk5OTmKiYlRWFiY0tLS9Morr2jcuHH6xz/+YdWsXLlSvXv3Vr9+/bRu3Tr16NFDPXr00KZNm1zqBQAA2JebMcZc9MJublqwYIF69Ogh6Y9PYEJCQvTUU09p+PDhkqTs7GwFBQVp9uzZ6tWrl7Zu3armzZvrxx9/1C233CJJSkpK0h133KF9+/YpJCREM2bM0LPPPquMjAx5enpKkkaNGqWFCxcqPT1dkvTggw8qNzdXixYtsvpp27atWrVqpZkzZ5aplwvJycmRn5+fsrOz5XA4LnY3AbhCpb43vKJbcFlkv8kV3QJwxXPl/btczxHatWuXMjIyFB0dbU3z8/NTRESEUlNTJUmpqany9/e3QpAkRUdHy93dXatXr7ZqOnbsaIUgSYqNjdW2bdt09OhRq+bM7RTXFG+nLL2cLS8vTzk5OU4PAABQeZVrEMrIyJAkBQUFOU0PCgqy5mVkZCgwMNBpfpUqVVSrVi2nmtLWceY2zlVz5vwL9XK2iRMnys/Pz3qEhoaWYdQAAOBqxVVjZxg9erSys7Otx969eyu6JQAAcAmVaxAKDg6WJGVmZjpNz8zMtOYFBwfrwIEDTvMLCgp05MgRp5rS1nHmNs5Vc+b8C/VyNi8vLzkcDqcHAACovMo1CNWvX1/BwcFKSUmxpuXk5Gj16tWKjIyUJEVGRiorK0tpaWlWzdKlS1VUVKSIiAirZsWKFTp9+rRVk5ycrCZNmqhmzZpWzZnbKa4p3k5ZegEAAPbmchA6fvy41q9fr/Xr10v646Tk9evXa8+ePXJzc9PQoUP1wgsv6IsvvtDGjRv1yCOPKCQkxLqyrFmzZuratasGDBigNWvW6IcfftDgwYPVq1cvhYSESJIeeugheXp6ql+/ftq8ebPmzZunN954Q4mJiVYfTz75pJKSkvTqq68qPT1d48aN09q1azV48GBJKlMvAADA3qq4usDatWvVuXNn63lxOImLi9Ps2bM1YsQI5ebmauDAgcrKylL79u2VlJQkb29va5kPP/xQgwcPVpcuXeTu7q6ePXvqzTfftOb7+fnpm2++UUJCglq3bq2AgACNGTPG6V5D7dq109y5c/Xcc8/pmWeeUePGjbVw4UK1aNHCqilLLwAAwL7+1H2EKjvuIwRUbtxHCKicKuw+QgAAAFcTghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALCtcg9C48aNk5ubm9OjadOm1vxTp04pISFB11xzjXx9fdWzZ09lZmY6rWPPnj3q3r27qlWrpsDAQD399NMqKChwqlm2bJluvvlmeXl5qVGjRpo9e3aJXqZNm6Z69erJ29tbERERWrNmTXkPFwAAXMUuySdCN9xwg37//Xfr8f3331vzhg0bpi+//FLz58/X8uXLtX//ft13333W/MLCQnXv3l35+flauXKl5syZo9mzZ2vMmDFWza5du9S9e3d17txZ69ev19ChQ9W/f399/fXXVs28efOUmJiosWPH6qefflLLli0VGxurAwcOXIohAwCAq5CbMcaU5wrHjRunhQsXav369SXmZWdnq3bt2po7d67uv/9+SVJ6erqaNWum1NRUtW3bVl999ZXuvPNO7d+/X0FBQZKkmTNnauTIkTp48KA8PT01cuRILV68WJs2bbLW3atXL2VlZSkpKUmSFBERoVtvvVVTp06VJBUVFSk0NFRDhgzRqFGjyjSWnJwc+fn5KTs7Ww6H48/sFgBXoNT3hld0Cy6L7De5olsArniuvH9fkk+Etm/frpCQEDVo0EB9+vTRnj17JElpaWk6ffq0oqOjrdqmTZvquuuuU2pqqiQpNTVV4eHhVgiSpNjYWOXk5Gjz5s1WzZnrKK4pXkd+fr7S0tKcatzd3RUdHW3VlCYvL085OTlODwAAUHmVexCKiIjQ7NmzlZSUpBkzZmjXrl3q0KGDjh07poyMDHl6esrf399pmaCgIGVkZEiSMjIynEJQ8fzieeerycnJ0cmTJ3Xo0CEVFhaWWlO8jtJMnDhRfn5+1iM0NPSi9gEAALg6VCnvFXbr1s3694033qiIiAiFhYXpk08+kY+PT3lvrlyNHj1aiYmJ1vOcnBzCEAAAldglv3ze399f119/vXbs2KHg4GDl5+crKyvLqSYzM1PBwcGSpODg4BJXkRU/v1CNw+GQj4+PAgIC5OHhUWpN8TpK4+XlJYfD4fQAAACV1yUPQsePH9fOnTtVp04dtW7dWlWrVlVKSoo1f9u2bdqzZ48iIyMlSZGRkdq4caPT1V3JyclyOBxq3ry5VXPmOopritfh6emp1q1bO9UUFRUpJSXFqgEAACj3IDR8+HAtX75cu3fv1sqVK3XvvffKw8NDvXv3lp+fn/r166fExER99913SktL06OPPqrIyEi1bdtWkhQTE6PmzZvr4Ycf1s8//6yvv/5azz33nBISEuTl5SVJevzxx/XLL79oxIgRSk9P1/Tp0/XJJ59o2LBhVh+JiYl65513NGfOHG3dulWDBg1Sbm6uHn300fIeMgAAuEqV+zlC+/btU+/evXX48GHVrl1b7du316pVq1S7dm1J0uuvvy53d3f17NlTeXl5io2N1fTp063lPTw8tGjRIg0aNEiRkZGqXr264uLiNGHCBKumfv36Wrx4sYYNG6Y33nhDdevW1bvvvqvY2Fir5sEHH9TBgwc1ZswYZWRkqFWrVkpKSipxAjUAALCvcr+PUGXCfYSAyo37CAGVU4XfRwgAAOBqQBACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2VaWiGwAAAOXj9eT/VHQLLhv2/66v0O3ziRAAALAtghAAALAtvhoDAKCSaLvnHxXdwkWYXKFb5xMhAABgWwQhAABgW3w1VoE4ux8AgIpFEKpAfJcLAEDF4qsxAABgW7YIQtOmTVO9evXk7e2tiIgIrVmzpqJbAgAAV4BK/9XYvHnzlJiYqJkzZyoiIkJTpkxRbGystm3bpsDAwIpuDwBwhboaz+NsW9ENXIUqfRB67bXXNGDAAD366KOSpJkzZ2rx4sV6//33NWrUqAruDgDs4aoMFVfleZxwVaUOQvn5+UpLS9Po0aOtae7u7oqOjlZqamqJ+ry8POXl5VnPs7OzJUk5OTmXpL/ck3kXLrrCfDt1SEW3ANja1foaDK/oBi5CbkU3YBOX4j22eJ3GmAvWVuogdOjQIRUWFiooKMhpelBQkNLT00vUT5w4UePHjy8xPTQ09JL1CACArQ2ZeslWfezYMfn5+Z23plIHIVeNHj1aiYmJ1vOioiIdOXJE11xzjdzc3Mp1Wzk5OQoNDdXevXvlcDjKdd1Xgso+Pqnyj5HxXf0q+xgZ39XvUo3RGKNjx44pJCTkgrWVOggFBATIw8NDmZmZTtMzMzMVHBxcot7Ly0teXl5O0/z9/S9li3I4HJX2B1yq/OOTKv8YGd/Vr7KPkfFd/S7FGC/0SVCxSn35vKenp1q3bq2UlBRrWlFRkVJSUhQZGVmBnQEAgCtBpf5ESJISExMVFxenW265RW3atNGUKVOUm5trXUUGAADsq9IHoQcffFAHDx7UmDFjlJGRoVatWikpKanECdSXm5eXl8aOHVviq7jKorKPT6r8Y2R8V7/KPkbGd/W7EsboZspybRkAAEAlVKnPEQIAADgfghAAALAtghAAALAtghAAALAtghAAALAtgtAl8uKLL6pdu3aqVq1ame9ObYzRmDFjVKdOHfn4+Cg6Olrbt293qjly5Ij69Okjh8Mhf39/9evXT8ePH78EI7gwV3vZvXu33NzcSn3Mnz/fqitt/scff3w5huTkYvZ1p06dSvT++OOPO9Xs2bNH3bt3V7Vq1RQYGKinn35aBQUFl3IopXJ1fEeOHNGQIUPUpEkT+fj46LrrrtMTTzxh/XHiYhV5/KZNm6Z69erJ29tbERERWrNmzXnr58+fr6ZNm8rb21vh4eFasmSJ0/yyvCYvJ1fG984776hDhw6qWbOmatasqejo6BL18fHxJY5V165dL/UwzsuVMc6ePbtE/97e3k41V/MxLO33iZubm7p3727VXEnHcMWKFbrrrrsUEhIiNzc3LVy48ILLLFu2TDfffLO8vLzUqFEjzZ49u0SNq69rlxlcEmPGjDGvvfaaSUxMNH5+fmVa5qWXXjJ+fn5m4cKF5ueffzZ33323qV+/vjl58qRV07VrV9OyZUuzatUq83//93+mUaNGpnfv3pdoFOfnai8FBQXm999/d3qMHz/e+Pr6mmPHjll1ksysWbOc6s7cB5fLxezrqKgoM2DAAKfes7OzrfkFBQWmRYsWJjo62qxbt84sWbLEBAQEmNGjR1/q4ZTg6vg2btxo7rvvPvPFF1+YHTt2mJSUFNO4cWPTs2dPp7qKOn4ff/yx8fT0NO+//77ZvHmzGTBggPH39zeZmZml1v/www/Gw8PDTJo0yWzZssU899xzpmrVqmbjxo1WTVlek5eLq+N76KGHzLRp08y6devM1q1bTXx8vPHz8zP79u2zauLi4kzXrl2djtWRI0cu15BKcHWMs2bNMg6Hw6n/jIwMp5qr+RgePnzYaWybNm0yHh4eZtasWVbNlXQMlyxZYp599lnz2WefGUlmwYIF563/5ZdfTLVq1UxiYqLZsmWLeeutt4yHh4dJSkqyalzdZxeDIHSJzZo1q0xBqKioyAQHB5tXXnnFmpaVlWW8vLzMRx99ZIwxZsuWLUaS+fHHH62ar776yri5uZnffvut3Hs/n/LqpVWrVqZv375O08ryArrULnZ8UVFR5sknnzzn/CVLlhh3d3enX9YzZswwDofD5OXllUvvZVFex++TTz4xnp6e5vTp09a0ijp+bdq0MQkJCdbzwsJCExISYiZOnFhq/QMPPGC6d+/uNC0iIsI89thjxpiyvSYvJ1fHd7aCggJTo0YNM2fOHGtaXFycueeee8q71Yvm6hgv9Pu1sh3D119/3dSoUcMcP37cmnalHcNiZfk9MGLECHPDDTc4TXvwwQdNbGys9fzP7rOy4KuxK8SuXbuUkZGh6Ohoa5qfn58iIiKUmpoqSUpNTZW/v79uueUWqyY6Olru7u5avXr1Ze23PHpJS0vT+vXr1a9fvxLzEhISFBAQoDZt2uj999+Xucz3/fwz4/vwww8VEBCgFi1aaPTo0Tpx4oTTesPDw53ubB4bG6ucnBxt3ry5/AdyDuX1s5SdnS2Hw6EqVZxvUn+5j19+fr7S0tKcXj/u7u6Kjo62Xj9nS01NdaqX/jgWxfVleU1eLhczvrOdOHFCp0+fVq1atZymL1u2TIGBgWrSpIkGDRqkw4cPl2vvZXWxYzx+/LjCwsIUGhqqe+65x+l1VNmO4XvvvadevXqpevXqTtOvlGPoqgu9Bstjn5VFpf8TG1eLjIwMSSrxpz+CgoKseRkZGQoMDHSaX6VKFdWqVcuquVzKo5f33ntPzZo1U7t27ZymT5gwQbfffruqVaumb775Rn/72990/PhxPfHEE+XW/4Vc7PgeeughhYWFKSQkRBs2bNDIkSO1bds2ffbZZ9Z6SzvGxfMul/I4focOHdLzzz+vgQMHOk2viON36NAhFRYWlrpv09PTS13mXMfizNdb8bRz1VwuFzO+s40cOVIhISFObypdu3bVfffdp/r162vnzp165pln1K1bN6WmpsrDw6Ncx3AhFzPGJk2a6P3339eNN96o7OxsTZ48We3atdPmzZtVt27dSnUM16xZo02bNum9995zmn4lHUNXnes1mJOTo5MnT+ro0aN/+ue+LAhCLhg1apRefvnl89Zs3bpVTZs2vUwdlb+yjvHPOnnypObOnau///3vJeadOe2mm25Sbm6uXnnllXJ5I73U4zszFISHh6tOnTrq0qWLdu7cqYYNG170esvqch2/nJwcde/eXc2bN9e4ceOc5l3K44eL89JLL+njjz/WsmXLnE4m7tWrl/Xv8PBw3XjjjWrYsKGWLVumLl26VESrLomMjFRkZKT1vF27dmrWrJnefvttPf/88xXYWfl77733FB4erjZt2jhNv9qP4ZWAIOSCp556SvHx8eetadCgwUWtOzg4WJKUmZmpOnXqWNMzMzPVqlUrq+bAgQNOyxUUFOjIkSPW8n9WWcf4Z3v59NNPdeLECT3yyCMXrI2IiNDzzz+vvLy8P/2H+S7X+IpFRERIknbs2KGGDRsqODi4xBUPmZmZklQux/ByjO/YsWPq2rWratSooQULFqhq1arnrS/P43cuAQEB8vDwsPZlsczMzHOOJzg4+Lz1ZXlNXi4XM75ikydP1ksvvaRvv/1WN95443lrGzRooICAAO3YseOyv4n+mTEWq1q1qm666Sbt2LFDUuU5hrm5ufr44481YcKEC26nIo+hq871GnQ4HPLx8ZGHh8ef/pkok3I72wilcvVk6cmTJ1vTsrOzSz1Zeu3atVbN119/XaEnS19sL1FRUSWuNjqXF154wdSsWfOie70Y5bWvv//+eyPJ/Pzzz8aY/50sfeYVD2+//bZxOBzm1KlT5TeAC7jY8WVnZ5u2bduaqKgok5ubW6ZtXa7j16ZNGzN48GDreWFhobn22mvPe7L0nXfe6TQtMjKyxMnS53tNXk6ujs8YY15++WXjcDhMampqmbaxd+9e4+bmZj7//PM/3e/FuJgxnqmgoMA0adLEDBs2zBhTOY6hMX+8j3h5eZlDhw5dcBsVfQyLqYwnS7do0cJpWu/evUucLP1nfibK1Gu5rQlOfv31V7Nu3Trr8vB169aZdevWOV0m3qRJE/PZZ59Zz1966SXj7+9vPv/8c7NhwwZzzz33lHr5/E033WRWr15tvv/+e9O4ceMKvXz+fL3s27fPNGnSxKxevdppue3btxs3Nzfz1VdflVjnF198Yd555x2zceNGs337djN9+nRTrVo1M2bMmEs+nrO5Or4dO3aYCRMmmLVr15pdu3aZzz//3DRo0MB07NjRWqb48vmYmBizfv16k5SUZGrXrl1hl8+7Mr7s7GwTERFhwsPDzY4dO5wu1y0oKDDGVOzx+/jjj42Xl5eZPXu22bJlixk4cKDx9/e3rtB7+OGHzahRo6z6H374wVSpUsVMnjzZbN261YwdO7bUy+cv9Jq8XFwd30svvWQ8PT3Np59+6nSsin8HHTt2zAwfPtykpqaaXbt2mW+//dbcfPPNpnHjxpc1lP+ZMY4fP958/fXXZufOnSYtLc306tXLeHt7m82bN1s1V/MxLNa+fXvz4IMPlph+pR3DY8eOWe91ksxrr71m1q1bZ3799VdjjDGjRo0yDz/8sFVffPn8008/bbZu3WqmTZtW6uXz59tn5YEgdInExcUZSSUe3333nVWj/95vpVhRUZH5+9//boKCgoyXl5fp0qWL2bZtm9N6Dx8+bHr37m18fX2Nw+Ewjz76qFO4upwu1MuuXbtKjNkYY0aPHm1CQ0NNYWFhiXV+9dVXplWrVsbX19dUr17dtGzZ0sycObPU2kvN1fHt2bPHdOzY0dSqVct4eXmZRo0amaefftrpPkLGGLN7927TrVs34+PjYwICAsxTTz3ldPn55eLq+L777rtSf6YlmV27dhljKv74vfXWW+a6664znp6epk2bNmbVqlXWvKioKBMXF+dU/8knn5jrr7/eeHp6mhtuuMEsXrzYaX5ZXpOXkyvjCwsLK/VYjR071hhjzIkTJ0xMTIypXbu2qVq1qgkLCzMDBgwo1zeYi+HKGIcOHWrVBgUFmTvuuMP89NNPTuu7mo+hMcakp6cbSeabb74psa4r7Rie63dE8Zji4uJMVFRUiWVatWplPD09TYMGDZzeE4udb5+VBzdjLvN1yQAAAFcI7iMEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABs6/8Dq22yc82a3NQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARR9JREFUeJzt3X1YVHX+//EXoAwgDqgoSOK9eZOkmyVi3uTKTzS6MW3zbgvzbnPRUvK2Wu+qy9astDRtt1L327qWbVqpaYZ33xI1SfPeVdPUDLyFUVQQ+Pz+aDlfR1AZRVHO83Fdc13OOe9zzvtzjuO8nDnnjJcxxggAAMCGvEu6AQAAgJJCEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAJQ6qxatUpeXl5atWpVsa7Xy8tL48aNK9Z1AihZBCEAuMiSJUtu+7Azd+5cTZkypaTbsMyYMUN/+MMfVL16dXl5eal3796F1iUlJalPnz668847FRAQoNq1a6tfv3769ddfr2m7y5cvV6tWrRQQEKAKFSro8ccf14EDB659ICiVypR0AwBwK1myZImmT59eaBg6d+6cypS59f/ZnDt3rrZt26YhQ4aUdCuSpL/+9a86ffq0mjdvfsVQM3LkSJ08eVJ/+MMfVK9ePf3000+aNm2aFi1apM2bNyssLKzI21y0aJEeffRR3XPPPXrttdfkcrk0depUtWrVSps2bVLlypWLY2goBW79VzRgI5mZmSpXrlxJt1Fizp49q4CAgALTc3JylJeXJ19f3xLo6v/4+fmV6PZvV6tXr7Y+DQoMDLxs3ZtvvqlWrVrJ2/v/vqzo2LGj2rZtq2nTpumVV14p8jZHjhyp2rVr67vvvrP+3jz88MNWMHrjjTeufUAoVfhqDLY3btw4eXl5adeuXXriiSfkdDpVqVIlPffcczp//rxb7UcffaRmzZrJ399fFStWVPfu3XXo0CG3mv/93/+1vgZwOByKiIjQ0KFDde7cObe63r17KzAwUPv27dODDz6o8uXLq1evXpKkPXv2qGvXrgoLC5Ofn5+qVaum7t27KyMjw1o+JydHL7/8surUqSOHw6GaNWvqhRdeUFZWltt2atasqYceekjffvutmjdvLj8/P9WuXVv/+Mc/rml/ffTRR2revLn1dUObNm309ddfu9W8++67uuuuu+RwOBQeHq6EhASlp6e71TzwwANq3LixUlJS1KZNGwUEBOiFF17QgQMH5OXlpcmTJ2vKlCnW+Hbs2CFJ2rVrlx5//HFVrFhRfn5+uvfee/XFF19cte+iHJfevXtr+vTpkn47Hyj/ka+wc4Q2bdqkTp06yel0KjAwUO3bt9e6devcambPni0vLy999913SkxMVOXKlVWuXDk99thjOnbsmFvtxo0bFRsbq5CQEPn7+6tWrVrq06fPVcd38X5dvHixfv75Z6v/mjVrWvOPHj2qvn37KjQ0VH5+fmrSpInmzJnjto6Lj8Fbb72lGjVqyN/fX23bttW2bduK3Eu+GjVquO3Hy2nTpo1bCMqfVrFiRe3cubPI2zt58qR27Nihxx57zC08N2nSRA0bNtS8efOK3jxKPT4RAv7riSeeUM2aNTVx4kStW7dOb7/9tk6dOmUFhldffVV/+ctf9MQTT6hfv346duyY3nnnHbVp00abNm1ScHCwJGn+/Pk6e/asBg4cqEqVKmnDhg165513dPjwYc2fP99tmzk5OYqNjVWrVq00efJkBQQEKDs7W7GxscrKytLgwYMVFhamX375RYsWLVJ6erqCgoIkSf369dOcOXP0+OOP6/nnn9f69es1ceJE7dy5UwsWLHDbzt69e/X444+rb9++io+P14cffqjevXurWbNmuuuuu4q8j8aPH69x48apZcuWmjBhgnx9fbV+/XqtWLFCHTp0kPRbsBw/frxiYmI0cOBA7d69WzNmzND333+v7777TmXLlrXWd+LECXXq1Endu3fXH//4R4WGhlrzZs2apfPnz2vAgAFyOByqWLGitm/frvvvv1933HGHRo0apXLlyumTTz5R586d9e9//1uPPfbYZXsvynH505/+pCNHjmj58uX6n//5n6vuj+3bt6t169ZyOp0aMWKEypYtq/fee08PPPCAVq9eraioKLf6wYMHq0KFCho7dqwOHDigKVOmaNCgQfr4448l/RZSOnTooMqVK2vUqFEKDg7WgQMH9NlnnxX5GL344ovKyMjQ4cOH9dZbb0mS9SnMuXPn9MADD2jv3r0aNGiQatWqpfnz56t3795KT0/Xc88957auf/zjHzp9+rQSEhJ0/vx5TZ06Vb///e+1detWt2N1I505c0ZnzpxRSEhIkZfJ/8+Av79/gXkBAQHavn27UlNTPfqqDaWYAWxu7NixRpJ55JFH3Kb/+c9/NpLMjz/+aA4cOGB8fHzMq6++6lazdetWU6ZMGbfpZ8+eLbCNiRMnGi8vL/Pzzz9b0+Lj440kM2rUKLfaTZs2GUlm/vz5l+158+bNRpLp16+f2/Rhw4YZSWbFihXWtBo1ahhJZs2aNda0o0ePGofDYZ5//vnLbuNSe/bsMd7e3uaxxx4zubm5bvPy8vKs9fr6+poOHTq41UybNs1IMh9++KE1rW3btkaSmTlzptu69u/fbyQZp9Npjh496javffv2JjIy0pw/f95t2y1btjT16tWzpq1cudJIMitXrrSmFfW4JCQkmMv90yjJjB071nreuXNn4+vra/bt22dNO3LkiClfvrxp06aNNW3WrFlGkomJibH2lTHGDB061Pj4+Jj09HRjjDELFiwwksz3339f6PaLKi4uztSoUaPA9ClTphhJ5qOPPrKmZWdnm+joaBMYGGhcLpcx5v+Ogb+/vzl8+LBVu379eiPJDB069Jp7K1eunImPjy9y/csvv2wkmaSkpCIvk5uba4KDg0379u3dph8/ftyUK1fOSDIbN24s8vpQuvHVGPBfCQkJbs8HDx4s6beTZz/77DPl5eXpiSee0PHjx61HWFiY6tWrp5UrV1rLXfy/0MzMTB0/flwtW7aUMUabNm0qsN2BAwe6Pc//xGfZsmU6e/Zsob0uWbJEkpSYmOg2/fnnn5ckLV682G16o0aN1Lp1a+t55cqVVb9+ff3000+Frr8wCxcuVF5ensaMGVPg64v8rz2++eYbZWdna8iQIW41/fv3l9PpLNCXw+HQ008/Xej2unbt6nZC68mTJ7VixQo98cQTOn36tHUMTpw4odjYWO3Zs0e//PLLZfv39LhcTW5urr7++mt17txZtWvXtqZXrVpVPXv21LfffiuXy+W2zIABA9y+ImrdurVyc3P1888/S5L1qeKiRYt04cIFj3u6miVLligsLEw9evSwppUtW1bPPvuszpw5o9WrV7vVd+7cWXfccYf1vHnz5oqKirL+/t1oa9as0fjx4/XEE0/o97//fZGX8/b21p/+9CclJSVp9OjR2rNnj1JSUvTEE08oOztbkgp8VQ37IggB/1WvXj2353Xq1JG3t7cOHDigPXv2yBijevXqqXLlym6PnTt36ujRo9ZyBw8eVO/evVWxYkUFBgaqcuXKatu2rSS5neMjSWXKlFG1atXcptWqVUuJiYl6//33FRISotjYWE2fPt1t2Z9//lne3t6qW7eu27JhYWEKDg623ljzVa9evcB4K1SooFOnThV5/+zbt0/e3t5q1KjRZWvyt1u/fn236b6+vqpdu3aBvu64447LngBdq1Ytt+d79+6VMUZ/+ctfChyDsWPHSpLbcbiUJ8elKI4dO6azZ88WGKskNWzYUHl5eQXOH7v0OFSoUEGSrOPQtm1bde3aVePHj1dISIgeffRRzZo1q8B5X9fq559/Vr169QoE2YYNG1rzL3bpa0KS7rzzzptyCfquXbv02GOPqXHjxnr//fc9Xn7ChAnq27evJk2apDvvvFP33nuvypQpo759+0rSFU/ahr1wjhBwGRf/zz0vL09eXl766quv5OPjU6A2/x/V3Nxc/b//9/908uRJjRw5Ug0aNFC5cuX0yy+/qHfv3srLy3NbzuFwFHhTkqQ33nhDvXv31ueff66vv/5azz77rHXu0sXBqSgnoEoqtGdJMsYUafkbpbBzOC43L3/fDRs2TLGxsYUuc2kwzOfpcblRrnYcvLy89Omnn2rdunX68ssvtWzZMvXp00dvvPGG1q1bZ5s370OHDqlDhw4KCgrSkiVLVL58eY/X4evrq/fff1+vvvqq/vOf/yg0NFR33nmnevbsWeh/ImBfBCHgv/bs2eP2KcTevXuVl5enmjVrysfHR8YY1apVS3feeedl17F161b95z//0Zw5c/TUU09Z05cvX+5xP5GRkYqMjNRLL72ktWvX6v7779fMmTP1yiuvqEaNGsrLy9OePXus/81LUlpamtLT01WjRg2Pt3c1derUUV5ennbs2KGmTZsWWpO/3d27d7t9XZSdna39+/crJibmmrefv76yZct6vB5PjktRw2XlypUVEBCg3bt3F5i3a9cueXt7KyIiwqM+87Vo0UItWrTQq6++qrlz56pXr16aN2+e+vXrV6TlLzeGGjVqaMuWLcrLy3ML4Lt27bLmX2zPnj0F1vGf//zH7Sq04nbixAl16NBBWVlZSkpKUtWqVa9rfaGhodaJ3bm5uVq1apWioqJsEypxdXw1BvxX/mXT+d555x1JUqdOndSlSxf5+Pho/PjxBT5FMcboxIkTkv7vf/wX1xhjNHXq1CL34XK5lJOT4zYtMjJS3t7e1lckDz74oCQVuHvwm2++KUmKi4sr8vaKqnPnzvL29taECRMKfIKSP96YmBj5+vrq7bffdtsHH3zwgTIyMq6rrypVquiBBx7Qe++9V+hN+S69DP1inhyX/Ps4XXq5f2Hr7NChgz7//HO3r4rS0tI0d+5ctWrVSk6n84rruNSpU6cK/P3KD52efD1Wrly5Qr/ue/DBB5WammpdpSb9duXiO++8o8DAQOurwnwLFy50O+9qw4YNWr9+vTp16lTkXjyRmZmpBx98UL/88ouWLFlS6Fdz12Py5Mn69ddfrXPpAIlPhADL/v379cgjj6hjx45KTk7WRx99pJ49e6pJkyaSpFdeeUWjR4/WgQMH1LlzZ5UvX1779+/XggULNGDAAA0bNkwNGjRQnTp1NGzYMP3yyy9yOp3697//7dG5OCtWrNCgQYP0hz/8QXfeeadycnL0P//zP/Lx8VHXrl0l/XY/lPj4eP3tb39Tenq62rZtqw0bNmjOnDnq3Lmz2rVrV+z7p27dunrxxRf18ssvq3Xr1urSpYscDoe+//57hYeHa+LEiapcubJGjx6t8ePHq2PHjnrkkUe0e/duvfvuu7rvvvv0xz/+8bp6mD59ulq1aqXIyEj1799ftWvXVlpampKTk3X48GH9+OOPhS7nyXFp1qyZJOnZZ59VbGysfHx81L1790LX+8orr1g/4/DnP/9ZZcqU0XvvvaesrCxNmjTJ4/HNmTNH7777rh577DHVqVNHp0+f1t///nc5nU4r/BZFs2bN9PHHHysxMVH33XefAgMD9fDDD2vAgAF677331Lt3b6WkpKhmzZr69NNP9d1332nKlCkFvoKqW7euWrVqpYEDByorK0tTpkxRpUqVNGLECI/G9eWXX1rH5sKFC9qyZYt1c8RHHnlEd999tySpV69e2rBhg/r06aOdO3e63TsoMDBQnTt3LvI2P/roI/373/9WmzZtFBgYqG+++UaffPKJ+vXrZ72OAElcPg/kXz6/Y8cO8/jjj5vy5cubChUqmEGDBplz58651f773/82rVq1MuXKlTPlypUzDRo0MAkJCWb37t1WzY4dO0xMTIwJDAw0ISEhpn///ubHH380ksysWbOsuvj4eFOuXLkC/fz000+mT58+pk6dOsbPz89UrFjRtGvXznzzzTdudRcuXDDjx483tWrVMmXLljURERFm9OjRbpeWG/Pb5fNxcXEFttO2bVvTtm1bj/fXhx9+aH73u98Zh8NhKlSoYNq2bWuWL1/uVjNt2jTToEEDU7ZsWRMaGmoGDhxoTp06VWD7d911V4H151+6/frrrxe6/X379pmnnnrKhIWFmbJly5o77rjDPPTQQ+bTTz+1agq7fL6oxyUnJ8cMHjzYVK5c2Xh5ebldSq9LLp83xpgffvjBxMbGmsDAQBMQEGDatWtn1q5d61aTf/n8pZfFX9rnDz/8YHr06GGqV69uHA6HqVKlinnooYc8vtT7zJkzpmfPniY4ONhIcruUPi0tzTz99NMmJCTE+Pr6msjISLfxG+N+DN544w0TERFhHA6Had26tfnxxx896sWY/7tVRGGPi7edf6uHwh6F3Q7gStavX2/atGljKlSoYPz8/EyTJk3MzJkz3W5fABhjjJcxJXy2JFDC8m8AeOzYMY9u2gaUVgcOHFCtWrX0+uuva9iwYSXdDnBDcY4QAACwLc4RAqDU1NQrzvf397du9IiSc/LkSeuGgIXx8fG5ab+qnp2drZMnT16xJigo6Iq3SLgWGRkZV70ZIj+dAU8QhABc9RLl+Ph4zZ49++Y0g8vq0qVLgbs/X6xGjRo35WaHkrR27dqrnpQ/a9Ys9e7du1i3+9xzzxX4kdhLccYHPME5QgD0zTffXHF+eHj4Fe8ojZsjJSXlilcg+vv76/77778pvZw6dUopKSlXrLnrrruu+z5Al9qxY4eOHDlyxZrruV8V7IcgBAAAbIuTpQEAgG1xjtAV5OXl6ciRIypfvnyRb7sPAABKljFGp0+fVnh4eKG/53gxgtAVHDly5Jp/KwgAAJSsQ4cOuf1QdWEIQleQf7v5Q4cOefybQQAAoGS4XC5FREQU+NmYwhCEriD/6zCn00kQAgDgNlOU01o8Oll6xowZuvvuu61gEB0dra+++sqaf/78eSUkJKhSpUoKDAxU165dlZaW5raOgwcPKi4uTgEBAapSpYqGDx9e4Je2V61apXvuuUcOh0N169Yt9P4l06dPV82aNeXn56eoqCht2LDBbX5RegEAAPbmURCqVq2aXnvtNaWkpGjjxo36/e9/r0cffVTbt2+XJA0dOlRffvml5s+fr9WrV+vIkSPq0qWLtXxubq7i4uKUnZ2ttWvXas6cOZo9e7bGjBlj1ezfv19xcXFq166dNm/erCFDhqhfv35atmyZVZP/q8pjx47VDz/8oCZNmig2NlZHjx61aq7WCwAAwHX/+nyFChXM+++/b9LT003ZsmXN/PnzrXk7d+40kkxycrIxxpglS5YYb29vk5qaatXMmDHDOJ1Ok5WVZYwxZsSIEQV+kbpbt24mNjbWet68eXOTkJBgPc/NzTXh4eFm4sSJxhhTpF6KIiMjw0gyGRkZRV4GAACULE/ev6/5PkK5ubmaN2+eMjMzFR0drZSUFF24cMHtjp4NGjRQ9erVlZycLElKTk5WZGSkQkNDrZrY2Fi5XC7rU6Xk5OQCdwWNjY211pGdna2UlBS3Gm9vb8XExFg1RemlMFlZWXK5XG4PAABQenkchLZu3arAwEA5HA4988wzWrBggRo1aqTU1FT5+voqODjYrT40NNT6QcfU1FS3EJQ/P3/elWpcLpfOnTun48ePKzc3t9Cai9dxtV4KM3HiRAUFBVkPLp0HAKB08zgI1a9fX5s3b9b69es1cOBAxcfHa8eOHTeit5tu9OjRysjIsB6HDh0q6ZYAAMAN5PHl876+vqpbt64kqVmzZvr+++81depUdevWTdnZ2UpPT3f7JCYtLU1hYWGSpLCwsAJXd+VfyXVxzaVXd6WlpcnpdMrf318+Pj7y8fEptObidVytl8I4HA45HA4P9gYAALidXfdvjeXl5SkrK0vNmjVT2bJllZSUZM3bvXu3Dh48qOjoaElSdHS0tm7d6nZ11/Lly+V0Oq1fto6OjnZbR35N/jp8fX3VrFkzt5q8vDwlJSVZNUXpBQAAwKOrxkaNGmVWr15t9u/fb7Zs2WJGjRplvLy8zNdff22MMeaZZ54x1atXNytWrDAbN2400dHRJjo62lo+JyfHNG7c2HTo0MFs3rzZLF261FSuXNmMHj3aqvnpp59MQECAGT58uNm5c6eZPn268fHxMUuXLrVq5s2bZxwOh5k9e7bZsWOHGTBggAkODna7Gu1qvRQFV40BAHD78eT926Mg1KdPH1OjRg3j6+trKleubNq3b2+FIGOMOXfunPnzn/9sKlSoYAICAsxjjz1mfv31V7d1HDhwwHTq1Mn4+/ubkJAQ8/zzz5sLFy641axcudI0bdrU+Pr6mtq1a5tZs2YV6OWdd94x1atXN76+vqZ58+Zm3bp1bvOL0svVEIQAALj9ePL+7WWMMSX7mdSty+VyKSgoSBkZGfzEBgAAtwlP3r+v+xwhAACA2xVBCAAA2BZBCAAA2JbH9xECgFJj5cSS7sBz7UaXdAdAqcInQgAAwLb4RAiAbSX/dKKkW/BYdLuS7gAoXfhECAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2JZHQWjixIm67777VL58eVWpUkWdO3fW7t273WoeeOABeXl5uT2eeeYZt5qDBw8qLi5OAQEBqlKlioYPH66cnBy3mlWrVumee+6Rw+FQ3bp1NXv27AL9TJ8+XTVr1pSfn5+ioqK0YcMGt/nnz59XQkKCKlWqpMDAQHXt2lVpaWmeDBkAAJRiHgWh1atXKyEhQevWrdPy5ct14cIFdejQQZmZmW51/fv316+//mo9Jk2aZM3Lzc1VXFycsrOztXbtWs2ZM0ezZ8/WmDFjrJr9+/crLi5O7dq10+bNmzVkyBD169dPy5Yts2o+/vhjJSYmauzYsfrhhx/UpEkTxcbG6ujRo1bN0KFD9eWXX2r+/PlavXq1jhw5oi5duni8kwAAQOnkZYwx17rwsWPHVKVKFa1evVpt2rSR9NsnQk2bNtWUKVMKXearr77SQw89pCNHjig0NFSSNHPmTI0cOVLHjh2Tr6+vRo4cqcWLF2vbtm3Wct27d1d6erqWLl0qSYqKitJ9992nadOmSZLy8vIUERGhwYMHa9SoUcrIyFDlypU1d+5cPf7445KkXbt2qWHDhkpOTlaLFi2uOj6Xy6WgoCBlZGTI6XRe624CcItK/mBYSbfgsei+k0u6BeCW58n793WdI5SRkSFJqlixotv0f/7znwoJCVHjxo01evRonT171pqXnJysyMhIKwRJUmxsrFwul7Zv327VxMTEuK0zNjZWycnJkqTs7GylpKS41Xh7eysmJsaqSUlJ0YULF9xqGjRooOrVq1s1l8rKypLL5XJ7AACA0qvMtS6Yl5enIUOG6P7771fjxo2t6T179lSNGjUUHh6uLVu2aOTIkdq9e7c+++wzSVJqaqpbCJJkPU9NTb1ijcvl0rlz53Tq1Cnl5uYWWrNr1y5rHb6+vgoODi5Qk7+dS02cOFHjx4/3cE8AAIDb1TUHoYSEBG3btk3ffvut2/QBAwZYf46MjFTVqlXVvn177du3T3Xq1Ln2Tm+C0aNHKzEx0XrucrkUERFRgh0BAIAb6Zq+Ghs0aJAWLVqklStXqlq1alesjYqKkiTt3btXkhQWFlbgyq3852FhYVescTqd8vf3V0hIiHx8fAqtuXgd2dnZSk9Pv2zNpRwOh5xOp9sDAACUXh4FIWOMBg0apAULFmjFihWqVavWVZfZvHmzJKlq1aqSpOjoaG3dutXt6q7ly5fL6XSqUaNGVk1SUpLbepYvX67o6GhJkq+vr5o1a+ZWk5eXp6SkJKumWbNmKlu2rFvN7t27dfDgQasGAADYm0dfjSUkJGju3Ln6/PPPVb58eetcm6CgIPn7+2vfvn2aO3euHnzwQVWqVElbtmzR0KFD1aZNG919992SpA4dOqhRo0Z68sknNWnSJKWmpuqll15SQkKCHA6HJOmZZ57RtGnTNGLECPXp00crVqzQJ598osWLF1u9JCYmKj4+Xvfee6+aN2+uKVOmKDMzU08//bTVU9++fZWYmKiKFSvK6XRq8ODBio6OLtIVYwAAoPTzKAjNmDFD0m+XyF9s1qxZ6t27t3x9ffXNN99YoSQiIkJdu3bVSy+9ZNX6+Pho0aJFGjhwoKKjo1WuXDnFx8drwoQJVk2tWrW0ePFiDR06VFOnTlW1atX0/vvvKzY21qrp1q2bjh07pjFjxig1NVVNmzbV0qVL3U6gfuutt+Tt7a2uXbsqKytLsbGxevfddz3aQQAAoPS6rvsIlXbcRwgo3biPEFA63bT7CAEAANzOCEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2PApCEydO1H333afy5curSpUq6ty5s3bv3u1Wc/78eSUkJKhSpUoKDAxU165dlZaW5lZz8OBBxcXFKSAgQFWqVNHw4cOVk5PjVrNq1Srdc889cjgcqlu3rmbPnl2gn+nTp6tmzZry8/NTVFSUNmzY4HEvAADAvjwKQqtXr1ZCQoLWrVun5cuX68KFC+rQoYMyMzOtmqFDh+rLL7/U/PnztXr1ah05ckRdunSx5ufm5iouLk7Z2dlau3at5syZo9mzZ2vMmDFWzf79+xUXF6d27dpp8+bNGjJkiPr166dly5ZZNR9//LESExM1duxY/fDDD2rSpIliY2N19OjRIvcCAADszcsYY6514WPHjqlKlSpavXq12rRpo4yMDFWuXFlz587V448/LknatWuXGjZsqOTkZLVo0UJfffWVHnroIR05ckShoaGSpJkzZ2rkyJE6duyYfH19NXLkSC1evFjbtm2zttW9e3elp6dr6dKlkqSoqCjdd999mjZtmiQpLy9PERERGjx4sEaNGlWkXi6VlZWlrKws67nL5VJERIQyMjLkdDqvdTcBuEUlfzCspFvwWHTfySXdAnDLc7lcCgoKKtL793WdI5SRkSFJqlixoiQpJSVFFy5cUExMjFXToEEDVa9eXcnJyZKk5ORkRUZGWiFIkmJjY+VyubR9+3ar5uJ15NfkryM7O1spKSluNd7e3oqJibFqitLLpSZOnKigoCDrERERcW07BgAA3BauOQjl5eVpyJAhuv/++9W4cWNJUmpqqnx9fRUcHOxWGxoaqtTUVKvm4hCUPz9/3pVqXC6Xzp07p+PHjys3N7fQmovXcbVeLjV69GhlZGRYj0OHDhVxbwAAgNtRmWtdMCEhQdu2bdO3335bnP2UKIfDIYfDUdJtAACAm+SaPhEaNGiQFi1apJUrV6patWrW9LCwMGVnZys9Pd2tPi0tTWFhYVbNpVdu5T+/Wo3T6ZS/v79CQkLk4+NTaM3F67haLwAAwN48CkLGGA0aNEgLFizQihUrVKtWLbf5zZo1U9myZZWUlGRN2717tw4ePKjo6GhJUnR0tLZu3ep2ddfy5cvldDrVqFEjq+bideTX5K/D19dXzZo1c6vJy8tTUlKSVVOUXgAAgL159NVYQkKC5s6dq88//1zly5e3zrUJCgqSv7+/goKC1LdvXyUmJqpixYpyOp0aPHiwoqOjrau0OnTooEaNGunJJ5/UpEmTlJqaqpdeekkJCQnW11LPPPOMpk2bphEjRqhPnz5asWKFPvnkEy1evNjqJTExUfHx8br33nvVvHlzTZkyRZmZmXr66aetnq7WCwAAsDePgtCMGTMkSQ888IDb9FmzZql3796SpLfeekve3t7q2rWrsrKyFBsbq3fffdeq9fHx0aJFizRw4EBFR0erXLlyio+P14QJE6yaWrVqafHixRo6dKimTp2qatWq6f3331dsbKxV061bNx07dkxjxoxRamqqmjZtqqVLl7qdQH21XgAAgL1d132ESjtP7kMA4PbDfYSA0umm3UcIAADgdkYQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtuVxEFqzZo0efvhhhYeHy8vLSwsXLnSb37t3b3l5ebk9Onbs6FZz8uRJ9erVS06nU8HBwerbt6/OnDnjVrNlyxa1bt1afn5+ioiI0KRJkwr0Mn/+fDVo0EB+fn6KjIzUkiVL3OYbYzRmzBhVrVpV/v7+iomJ0Z49ezwdMgAAKKU8DkKZmZlq0qSJpk+fftmajh076tdff7Ue//rXv9zm9+rVS9u3b9fy5cu1aNEirVmzRgMGDLDmu1wudejQQTVq1FBKSopef/11jRs3Tn/729+smrVr16pHjx7q27evNm3apM6dO6tz587atm2bVTNp0iS9/fbbmjlzptavX69y5copNjZW58+f93TYAACgFPIyxphrXtjLSwsWLFDnzp2tab1791Z6enqBT4ry7dy5U40aNdL333+ve++9V5K0dOlSPfjggzp8+LDCw8M1Y8YMvfjii0pNTZWvr68kadSoUVq4cKF27dolSerWrZsyMzO1aNEia90tWrRQ06ZNNXPmTBljFB4erueff17Dhg2TJGVkZCg0NFSzZ89W9+7drzo+l8uloKAgZWRkyOl0XssuAnALS/5gWEm34LHovpNLugXglufJ+/cNOUdo1apVqlKliurXr6+BAwfqxIkT1rzk5GQFBwdbIUiSYmJi5O3trfXr11s1bdq0sUKQJMXGxmr37t06deqUVRMTE+O23djYWCUnJ0uS9u/fr9TUVLeaoKAgRUVFWTWXysrKksvlcnsAAIDSq9iDUMeOHfWPf/xDSUlJ+utf/6rVq1erU6dOys3NlSSlpqaqSpUqbsuUKVNGFStWVGpqqlUTGhrqVpP//Go1F8+/eLnCai41ceJEBQUFWY+IiAiPxw8AAG4fZYp7hRd/5RQZGam7775bderU0apVq9S+ffvi3lyxGj16tBITE63nLpeLMAQAQCl2wy+fr127tkJCQrR3715JUlhYmI4ePepWk5OTo5MnTyosLMyqSUtLc6vJf361movnX7xcYTWXcjgccjqdbg8AAFB63fAgdPjwYZ04cUJVq1aVJEVHRys9PV0pKSlWzYoVK5SXl6eoqCirZs2aNbpw4YJVs3z5ctWvX18VKlSwapKSkty2tXz5ckVHR0uSatWqpbCwMLcal8ul9evXWzUAAMDePA5CZ86c0ebNm7V582ZJv52UvHnzZh08eFBnzpzR8OHDtW7dOh04cEBJSUl69NFHVbduXcXGxkqSGjZsqI4dO6p///7asGGDvvvuOw0aNEjdu3dXeHi4JKlnz57y9fVV3759tX37dn388ceaOnWq29dWzz33nJYuXao33nhDu3bt0rhx47Rx40YNGjRI0m9XtA0ZMkSvvPKKvvjiC23dulVPPfWUwsPD3a5yAwAA9uXxOUIbN25Uu3btrOf54SQ+Pl4zZszQli1bNGfOHKWnpys8PFwdOnTQyy+/LIfDYS3zz3/+U4MGDVL79u3l7e2trl276u2337bmBwUF6euvv1ZCQoKaNWumkJAQjRkzxu1eQy1bttTcuXP10ksv6YUXXlC9evW0cOFCNW7c2KoZMWKEMjMzNWDAAKWnp6tVq1ZaunSp/Pz8PB02AAAoha7rPkKlHfcRAko37iMElE4lfh8hAACA2wFBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2JbHQWjNmjV6+OGHFR4eLi8vLy1cuNBtvjFGY8aMUdWqVeXv76+YmBjt2bPHrebkyZPq1auXnE6ngoOD1bdvX505c8atZsuWLWrdurX8/PwUERGhSZMmFehl/vz5atCggfz8/BQZGaklS5Z43AsAALAvj4NQZmammjRpounTpxc6f9KkSXr77bc1c+ZMrV+/XuXKlVNsbKzOnz9v1fTq1Uvbt2/X8uXLtWjRIq1Zs0YDBgyw5rtcLnXo0EE1atRQSkqKXn/9dY0bN05/+9vfrJq1a9eqR48e6tu3rzZt2qTOnTurc+fO2rZtm0e9AAAA+/IyxphrXtjLSwsWLFDnzp0l/fYJTHh4uJ5//nkNGzZMkpSRkaHQ0FDNnj1b3bt3186dO9WoUSN9//33uvfeeyVJS5cu1YMPPqjDhw8rPDxcM2bM0IsvvqjU1FT5+vpKkkaNGqWFCxdq165dkqRu3bopMzNTixYtsvpp0aKFmjZtqpkzZxapl0tlZWUpKyvLeu5yuRQREaGMjAw5nc5r3U0AblHJHwwr6RY8Ft13ckm3ANzyXC6XgoKCivT+XaznCO3fv1+pqamKiYmxpgUFBSkqKkrJycmSpOTkZAUHB1shSJJiYmLk7e2t9evXWzVt2rSxQpAkxcbGavfu3Tp16pRVc/F28mvyt1OUXi41ceJEBQUFWY+IiIjr2R0AAOAWV6xBKDU1VZIUGhrqNj00NNSal5qaqipVqrjNL1OmjCpWrOhWU9g6Lt7G5Wounn+1Xi41evRoZWRkWI9Dhw4VYdQAAOB2VaakG7iVOBwOORyOkm4DAADcJMX6iVBYWJgkKS0tzW16WlqaNS8sLExHjx51m5+Tk6OTJ0+61RS2jou3cbmai+dfrRcAAGBvxRqEatWqpbCwMCUlJVnTXC6X1q9fr+joaElSdHS00tPTlZKSYtWsWLFCeXl5ioqKsmrWrFmjCxcuWDXLly9X/fr1VaFCBavm4u3k1+Rvpyi9AAAAe/M4CJ05c0abN2/W5s2bJf12UvLmzZt18OBBeXl5aciQIXrllVf0xRdfaOvWrXrqqacUHh5uXVnWsGFDdezYUf3799eGDRv03XffadCgQerevbvCw8MlST179pSvr6/69u2r7du36+OPP9bUqVOVmJho9fHcc89p6dKleuONN7Rr1y6NGzdOGzdu1KBBgySpSL0AAAB78/gcoY0bN6pdu3bW8/xwEh8fr9mzZ2vEiBHKzMzUgAEDlJ6erlatWmnp0qXy8/OzlvnnP/+pQYMGqX379vL29lbXrl319ttvW/ODgoL09ddfKyEhQc2aNVNISIjGjBnjdq+hli1bau7cuXrppZf0wgsvqF69elq4cKEaN25s1RSlFwAAYF/XdR+h0s6T+xAAuP1wHyGgdCqx+wgBAADcTghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtoo9CI0bN05eXl5ujwYNGljzz58/r4SEBFWqVEmBgYHq2rWr0tLS3NZx8OBBxcXFKSAgQFWqVNHw4cOVk5PjVrNq1Srdc889cjgcqlu3rmbPnl2gl+nTp6tmzZry8/NTVFSUNmzYUNzDBQAAt7Eb8onQXXfdpV9//dV6fPvtt9a8oUOH6ssvv9T8+fO1evVqHTlyRF26dLHm5+bmKi4uTtnZ2Vq7dq3mzJmj2bNna8yYMVbN/v37FRcXp3bt2mnz5s0aMmSI+vXrp2XLllk1H3/8sRITEzV27Fj98MMPatKkiWJjY3X06NEbMWQAAHAb8jLGmOJc4bhx47Rw4UJt3ry5wLyMjAxVrlxZc+fO1eOPPy5J2rVrlxo2bKjk5GS1aNFCX331lR566CEdOXJEoaGhkqSZM2dq5MiROnbsmHx9fTVy5EgtXrxY27Zts9bdvXt3paena+nSpZKkqKgo3XfffZo2bZokKS8vTxERERo8eLBGjRpVpLG4XC4FBQUpIyNDTqfzenYLgFtQ8gfDSroFj0X3nVzSLQC3PE/ev2/IJ0J79uxReHi4ateurV69eungwYOSpJSUFF24cEExMTFWbYMGDVS9enUlJydLkpKTkxUZGWmFIEmKjY2Vy+XS9u3brZqL15Ffk7+O7OxspaSkuNV4e3srJibGqilMVlaWXC6X2wMAAJRexR6EoqKiNHv2bC1dulQzZszQ/v371bp1a50+fVqpqany9fVVcHCw2zKhoaFKTU2VJKWmprqFoPz5+fOuVONyuXTu3DkdP35cubm5hdbkr6MwEydOVFBQkPWIiIi4pn0AAABuD2WKe4WdOnWy/nz33XcrKipKNWrU0CeffCJ/f//i3lyxGj16tBITE63nLpeLMAQAQCl2wy+fDw4O1p133qm9e/cqLCxM2dnZSk9Pd6tJS0tTWFiYJCksLKzAVWT5z69W43Q65e/vr5CQEPn4+BRak7+OwjgcDjmdTrcHAAAovW54EDpz5oz27dunqlWrqlmzZipbtqySkpKs+bt379bBgwcVHR0tSYqOjtbWrVvdru5avny5nE6nGjVqZNVcvI78mvx1+Pr6qlmzZm41eXl5SkpKsmoAAACKPQgNGzZMq1ev1oEDB7R27Vo99thj8vHxUY8ePRQUFKS+ffsqMTFRK1euVEpKip5++mlFR0erRYsWkqQOHTqoUaNGevLJJ/Xjjz9q2bJleumll5SQkCCHwyFJeuaZZ/TTTz9pxIgR2rVrl95991198sknGjp0qNVHYmKi/v73v2vOnDnauXOnBg4cqMzMTD399NPFPWQAAHCbKvZzhA4fPqwePXroxIkTqly5slq1aqV169apcuXKkqS33npL3t7e6tq1q7KyshQbG6t3333XWt7Hx0eLFi3SwIEDFR0drXLlyik+Pl4TJkywamrVqqXFixdr6NChmjp1qqpVq6b3339fsbGxVk23bt107NgxjRkzRqmpqWratKmWLl1a4ARqAABgX8V+H6HShPsIAaUb9xECSqcSv48QAADA7YAgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbKtMSTcAAACKx1vL/1PSLXhs6P+7s0S3zydCAADAtghCAADAtvhqDACAUqLFwb+VdAvXYHKJbp1PhAAAgG3xiVAJ4qQ2AABKli2C0PTp0/X6668rNTVVTZo00TvvvKPmzZuXdFt8hAkAQAkr9V+Nffzxx0pMTNTYsWP1ww8/qEmTJoqNjdXRo0dLujUAAFDCSv0nQm+++ab69++vp59+WpI0c+ZMLV68WB9++KFGjRpVwt0BAG5Vt+PpCy1KuoHbUKkOQtnZ2UpJSdHo0aOtad7e3oqJiVFycnKB+qysLGVlZVnPMzIyJEkul+uG9Jd5LuvqRbeYG7UvbqTpK/aWdAseu+/wrJJuAbeob6YNLukWbCOypBu4Bpkl3cA1uBHvK/nrNMZctbZUB6Hjx48rNzdXoaGhbtNDQ0O1a9euAvUTJ07U+PHjC0yPiIi4YT3edgZPK+kOAAClyQ18Xzl9+rSCgoKuWFOqg5CnRo8ercTEROt5Xl6eTp48qUqVKsnLy6tYt+VyuRQREaFDhw7J6XQW67pvBaV9fFLpHyPju/2V9jEyvtvfjRqjMUanT59WeHj4VWtLdRAKCQmRj4+P0tLS3KanpaUpLCysQL3D4ZDD4XCbFhwcfCNblNPpLLV/waXSPz6p9I+R8d3+SvsYGd/t70aM8WqfBOUr1VeN+fr6qlmzZkpKSrKm5eXlKSkpSdHR0SXYGQAAuBWU6k+EJCkxMVHx8fG699571bx5c02ZMkWZmZnWVWQAAMC+Sn0Q6tatm44dO6YxY8YoNTVVTZs21dKlSwucQH2zORwOjR07tsBXcaVFaR+fVPrHyPhuf6V9jIzv9ncrjNHLFOXaMgAAgFKoVJ8jBAAAcCUEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEoRvk1VdfVcuWLRUQEFDku1MbYzRmzBhVrVpV/v7+iomJ0Z49e9xqTp48qV69esnpdCo4OFh9+/bVmTNnbsAIrs7TXg4cOCAvL69CH/Pnz7fqCps/b968mzEkN9eyrx944IECvT/zzDNuNQcPHlRcXJwCAgJUpUoVDR8+XDk5OTdyKIXydHwnT57U4MGDVb9+ffn7+6t69ep69tlnrR8nzleSx2/69OmqWbOm/Pz8FBUVpQ0bNlyxfv78+WrQoIH8/PwUGRmpJUuWuM0vymvyZvJkfH//+9/VunVrVahQQRUqVFBMTEyB+t69exc4Vh07drzRw7giT8Y4e/bsAv37+fm51dzOx7Cwf0+8vLwUFxdn1dxKx3DNmjV6+OGHFR4eLi8vLy1cuPCqy6xatUr33HOPHA6H6tatq9mzZxeo8fR17TGDG2LMmDHmzTffNImJiSYoKKhIy7z22msmKCjILFy40Pz444/mkUceMbVq1TLnzp2zajp27GiaNGli1q1bZ/73f//X1K1b1/To0eMGjeLKPO0lJyfH/Prrr26P8ePHm8DAQHP69GmrTpKZNWuWW93F++BmuZZ93bZtW9O/f3+33jMyMqz5OTk5pnHjxiYmJsZs2rTJLFmyxISEhJjRo0ff6OEU4On4tm7darp06WK++OILs3fvXpOUlGTq1atnunbt6lZXUsdv3rx5xtfX13z44Ydm+/btpn///iY4ONikpaUVWv/dd98ZHx8fM2nSJLNjxw7z0ksvmbJly5qtW7daNUV5Td4sno6vZ8+eZvr06WbTpk1m586dpnfv3iYoKMgcPnzYqomPjzcdO3Z0O1YnT568WUMqwNMxzpo1yzidTrf+U1NT3Wpu52N44sQJt7Ft27bN+Pj4mFmzZlk1t9IxXLJkiXnxxRfNZ599ZiSZBQsWXLH+p59+MgEBASYxMdHs2LHDvPPOO8bHx8csXbrUqvF0n10LgtANNmvWrCIFoby8PBMWFmZef/11a1p6erpxOBzmX//6lzHGmB07dhhJ5vvvv7dqvvrqK+Pl5WV++eWXYu/9Soqrl6ZNm5o+ffq4TSvKC+hGu9bxtW3b1jz33HOXnb9kyRLj7e3t9o/1jBkzjNPpNFlZWcXSe1EU1/H75JNPjK+vr7lw4YI1raSOX/PmzU1CQoL1PDc314SHh5uJEycWWv/EE0+YuLg4t2lRUVHmT3/6kzGmaK/Jm8nT8V0qJyfHlC9f3syZM8eaFh8fbx599NHibvWaeTrGq/37WtqO4VtvvWXKly9vzpw5Y0271Y5hvqL8OzBixAhz1113uU3r1q2biY2NtZ5f7z4rCr4au0Xs379fqampiomJsaYFBQUpKipKycnJkqTk5GQFBwfr3nvvtWpiYmLk7e2t9evX39R+i6OXlJQUbd68WX379i0wLyEhQSEhIWrevLk+/PBDmZt838/rGd8///lPhYSEqHHjxho9erTOnj3rtt7IyEi3O5vHxsbK5XJp+/btxT+Qyyiuv0sZGRlyOp0qU8b9JvU3+/hlZ2crJSXF7fXj7e2tmJgY6/VzqeTkZLd66bdjkV9flNfkzXIt47vU2bNndeHCBVWsWNFt+qpVq1SlShXVr19fAwcO1IkTJ4q196K61jGeOXNGNWrUUEREhB599FG311FpO4YffPCBunfvrnLlyrlNv1WOoaeu9hosjn1WFKX+JzZuF6mpqZJU4Kc/QkNDrXmpqamqUqWK2/wyZcqoYsWKVs3NUhy9fPDBB2rYsKFatmzpNn3ChAn6/e9/r4CAAH399df685//rDNnzujZZ58ttv6v5lrH17NnT9WoUUPh4eHasmWLRo4cqd27d+uzzz6z1lvYMc6fd7MUx/E7fvy4Xn75ZQ0YMMBtekkcv+PHjys3N7fQfbtr165Cl7ncsbj49ZY/7XI1N8u1jO9SI0eOVHh4uNubSseOHdWlSxfVqlVL+/bt0wsvvKBOnTopOTlZPj4+xTqGq7mWMdavX18ffvih7r77bmVkZGjy5Mlq2bKltm/frmrVqpWqY7hhwwZt27ZNH3zwgdv0W+kYeupyr0GXy6Vz587p1KlT1/33vigIQh4YNWqU/vrXv16xZufOnWrQoMFN6qj4FXWM1+vcuXOaO3eu/vKXvxSYd/G03/3ud8rMzNTrr79eLG+kN3p8F4eCyMhIVa1aVe3bt9e+fftUp06da15vUd2s4+dyuRQXF6dGjRpp3LhxbvNu5PHDtXnttdc0b948rVq1yu1k4u7du1t/joyM1N133606depo1apVat++fUm06pHo6GhFR0dbz1u2bKmGDRvqvffe08svv1yCnRW/Dz74QJGRkWrevLnb9Nv9GN4KCEIeeP7559W7d+8r1tSuXfua1h0WFiZJSktLU9WqVa3paWlpatq0qVVz9OhRt+VycnJ08uRJa/nrVdQxXm8vn376qc6ePaunnnrqqrVRUVF6+eWXlZWVdd0/zHezxpcvKipKkrR3717VqVNHYWFhBa54SEtLk6RiOYY3Y3ynT59Wx44dVb58eS1YsEBly5a9Yn1xHr/LCQkJkY+Pj7Uv86WlpV12PGFhYVesL8pr8ma5lvHlmzx5sl577TV98803uvvuu69YW7t2bYWEhGjv3r03/U30esaYr2zZsvrd736nvXv3Sio9xzAzM1Pz5s3ThAkTrrqdkjyGnrrca9DpdMrf318+Pj7X/XeiSIrtbCMUytOTpSdPnmxNy8jIKPRk6Y0bN1o1y5YtK9GTpa+1l7Zt2xa42uhyXnnlFVOhQoVr7vVaFNe+/vbbb40k8+OPPxpj/u9k6YuveHjvvfeM0+k058+fL74BXMW1ji8jI8O0aNHCtG3b1mRmZhZpWzfr+DVv3twMGjTIep6bm2vuuOOOK54s/dBDD7lNi46OLnCy9JVekzeTp+Mzxpi//vWvxul0muTk5CJt49ChQ8bLy8t8/vnn193vtbiWMV4sJyfH1K9f3wwdOtQYUzqOoTG/vY84HA5z/Pjxq26jpI9hPhXxZOnGjRu7TevRo0eBk6Wv5+9EkXottjXBzc8//2w2bdpkXR6+adMms2nTJrfLxOvXr28+++wz6/lrr71mgoODzeeff262bNliHn300UIvn//d735n1q9fb7799ltTr169Er18/kq9HD582NSvX9+sX7/ebbk9e/YYLy8v89VXXxVY5xdffGH+/ve/m61bt5o9e/aYd9991wQEBJgxY8bc8PFcytPx7d2710yYMMFs3LjR7N+/33z++eemdu3apk2bNtYy+ZfPd+jQwWzevNksXbrUVK5cucQun/dkfBkZGSYqKspERkaavXv3ul2um5OTY4wp2eM3b94843A4zOzZs82OHTvMgAEDTHBwsHWF3pNPPmlGjRpl1X/33XemTJkyZvLkyWbnzp1m7NixhV4+f7XX5M3i6fhee+014+vraz799FO3Y5X/b9Dp06fNsGHDTHJystm/f7/55ptvzD333GPq1at3U0P59Yxx/PjxZtmyZWbfvn0mJSXFdO/e3fj5+Znt27dbNbfzMczXqlUr061btwLTb7VjePr0aeu9TpJ58803zaZNm8zPP/9sjDFm1KhR5sknn7Tq8y+fHz58uNm5c6eZPn16oZfPX2mfFQeC0A0SHx9vJBV4rFy50qrRf++3ki8vL8/85S9/MaGhocbhcJj27dub3bt3u633xIkTpkePHiYwMNA4nU7z9NNPu4Wrm+lqvezfv7/AmI0xZvTo0SYiIsLk5uYWWOdXX31lmjZtagIDA025cuVMkyZNzMyZMwutvdE8Hd/BgwdNmzZtTMWKFY3D4TB169Y1w4cPd7uPkDHGHDhwwHTq1Mn4+/ubkJAQ8/zzz7tdfn6zeDq+lStXFvp3WpLZv3+/Mabkj98777xjqlevbnx9fU3z5s3NunXrrHlt27Y18fHxbvWffPKJufPOO42vr6+56667zOLFi93mF+U1eTN5Mr4aNWoUeqzGjh1rjDHm7NmzpkOHDqZy5cqmbNmypkaNGqZ///7F+gZzLTwZ45AhQ6za0NBQ8+CDD5offvjBbX238zE0xphdu3YZSebrr78usK5b7Rhe7t+I/DHFx8ebtm3bFlimadOmxtfX19SuXdvtPTHflfZZcfAy5iZflwwAAHCL4D5CAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtv4/x+1E9GB8M6AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAASttJREFUeJzt3X9cjff/P/DHKc7pB6ek35Mk5mcYm2SIaR2WTRubsAkNowzNkFny4/3N248N83tDtvH2Y8P28SPye5sjpPyudyzMOPlZhxDV6/vHPl2fLqU6lNT1uN9u58Z5Xc/rul6v6zqn8+g613WlEkIIEBERESmQWUV3gIiIiKiiMAgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEp2MCBA1GjRo2K7oZJ0tPT0bt3b9SuXRsqlQpz586t6C7Rc7Jv3z6oVCrs27evTJerUqkQFRVVpsukyoNBiIieq3v37iEqKuqpP8zGjBmDHTt2ICIiAj/88AO6detWth2spBYtWoSYmJiK7sYLa9u2bQw7VKRqFd0BIlKWe/fuYcqUKQCAzp07mzz/nj170LNnT4wdO7aMe1a5LVq0CPb29hg4cGBFd+WFtG3bNixcuLDIMHT//n1Uq8aPQ6XiESGqsvLy8vDgwYOK7oZMVlZWua9DCIH79++X+3oqyrVr12Bra1ti3fPY1lQ69+7dK7I9JycHDx8+fM69KczCwoJBSMEYhOiFFxUVBZVKheTkZHzwwQfQarWoXbs2Ro0aJQs6KpUKYWFhWL16NZo1awaNRoPY2FgAwN9//43BgwfDyckJGo0GzZo1w4oVKwqt68GDB4iKisLLL78MCwsLuLi44L333sP58+cBPPkchQsXLkClUsm+msg//+b8+fN46623ULNmTfTv3x8AkJqail69esHZ2RkWFhaoU6cOgoKCkJmZKc2fk5ODadOmwdPTExqNBvXq1cPEiRORnZ0tW3e9evXQo0cP7NixA6+++iosLS2xdOlSk7bxn3/+CZ1OB2tra7i6umLq1KkQQshq8vLyMHfuXDRr1gwWFhZwcnLCsGHDcPv2bVnd0aNHodPpYG9vD0tLS3h4eGDw4MHSdnJwcAAATJkyBSqVqtTnZ8TExEClUkEIgYULF0rzFpy2f/9+jBgxAo6OjqhTpw4A4OLFixgxYgQaNWoES0tL1K5dG++//z4uXLhQaB0nTpyAr68vLC0tUadOHUyfPh0rV66ESqWS1edv83379knb3MvLS3pdbNy4EV5eXrCwsECbNm2QmJhYaF3Jycno3bs37OzsYGFhgVdffRW//vprkWP+448/EB4eDgcHB1hbW+Pdd9/F9evXZf05ffo09u/fL20XU4+2/fjjj2jbti2srKxQq1YtdOrUCTt37pTVLFq0SHpvubq6IjQ0FBkZGbKazp07o3nz5khISECnTp1gZWWFiRMnSu+R2bNnY+7cudLr+syZM6XeHkX57bff8P7776Nu3brQaDRwc3PDmDFjZL8MDBw4EAsXLgQAafvkv3by2x5/DSYmJqJ79+7QarWoUaMGunbtikOHDslqSrt/6MXGCEyVxgcffIB69eohOjoahw4dwvz583H79m18//33Us2ePXuwfv16hIWFwd7eHvXq1UN6ejratWsnBSUHBwds374dISEhMBqNGD16NAAgNzcXPXr0wO7duxEUFIRRo0bhzp07iIuLw6lTp+Dp6Wlyn3NycqDT6dChQwfMnj0bVlZWePjwIXQ6HbKzszFy5Eg4Ozvj77//xpYtW5CRkQEbGxsAwMcff4xVq1ahd+/e+OyzzxAfH4/o6GicPXsWmzZtkq0nJSUFffv2xbBhwzBkyBA0atSo1H3Mzc1Ft27d0K5dO8ycOROxsbGYPHkycnJyMHXqVKlu2LBhiImJwaBBg/Dpp58iLS0NCxYsQGJiIv744w9Ur14d165dg7+/PxwcHDBhwgTY2triwoUL2LhxIwDAwcEBixcvxvDhw/Huu+/ivffeAwC0aNGixH526tQJP/zwAz766CO8+eabGDBgQKGaESNGwMHBAZGRkdIRoSNHjuDgwYMICgpCnTp1cOHCBSxevBidO3fGmTNnYGVlBeCfsNylSxeoVCpERETA2toa3333HTQaTZH9OXfuHPr164dhw4bhww8/xOzZs/H2229jyZIlmDhxIkaMGAEAiI6OxgcffICUlBSYmf3zu+fp06fx+uuv46WXXsKECRNgbW2N9evXIzAwED///DPeffdd2bpGjhyJWrVqYfLkybhw4QLmzp2LsLAwrFu3DgAwd+5cjBw5EjVq1MAXX3wBAHBycipxm+abMmUKoqKi0L59e0ydOhVqtRrx8fHYs2cP/P39AfzzC8mUKVPg5+eH4cOHIyUlBYsXL8aRI0ek/Z/v5s2b6N69O4KCgvDhhx/K+rJy5Uo8ePAAQ4cOhUajgZ2dncnbo6ANGzbg3r17GD58OGrXro3Dhw/jm2++weXLl7FhwwYA/7x2r1y5gri4OPzwww8lbo/Tp0+jY8eO0Gq1GDduHKpXr46lS5eic+fO2L9/P7y9vWX1Je0fesEJohfc5MmTBQDxzjvvyNpHjBghAIjjx48LIYQAIMzMzMTp06dldSEhIcLFxUXcuHFD1h4UFCRsbGzEvXv3hBBCrFixQgAQX331VaE+5OXlCSGE2Lt3rwAg9u7dK5uelpYmAIiVK1dKbcHBwQKAmDBhgqw2MTFRABAbNmx44piTkpIEAPHxxx/L2seOHSsAiD179kht7u7uAoCIjY194vKeJL+PI0eOlNry8vJEQECAUKvV4vr160IIIX777TcBQKxevVo2f2xsrKx906ZNAoA4cuTIE9d5/fp1AUBMnjzZ5P4K8c9+Dg0NlbWtXLlSABAdOnQQOTk5smn5+7cgvV4vAIjvv/9eahs5cqRQqVQiMTFRart586aws7MTAERaWprUnr/NDx48KLXt2LFDABCWlpbi4sWLUvvSpUsLvWa6du0qvLy8xIMHD6S2vLw80b59e9GwYcNC4/Lz85Neg0IIMWbMGGFubi4yMjKktmbNmglfX98itljxUlNThZmZmXj33XdFbm6ubFr+Oq9duybUarXw9/eX1SxYsEAAECtWrJDafH19BQCxZMkS2bLy3yNarVZcu3ZNNq2026Oo919R+zc6OlqoVCrZfggNDRVP+sh7/PUYGBgo1Gq1OH/+vNR25coVUbNmTdGpUyepzZT9Qy8ufjVGlUZoaKjs+ciRIwH8cxJkPl9fXzRt2lR6LoTAzz//jLfffhtCCNy4cUN66HQ6ZGZm4tixYwCAn3/+Gfb29tJyCyp4GN1Uw4cPlz3PP+KzY8eOJ547kT+m8PBwWftnn30GANi6daus3cPDAzqd7qn7GBYWJv0//8jZw4cPsWvXLgD//NZtY2ODN998U7YN27Rpgxo1amDv3r0AIJ27s2XLFjx69Oip+/O0hgwZAnNzc1mbpaWl9P9Hjx7h5s2baNCgAWxtbaV9DwCxsbHw8fFBq1atpDY7Ozvp68zHNW3aFD4+PtLz/KMEb7zxBurWrVuo/c8//wQA3Lp1C3v27MEHH3yAO3fuSNvy5s2b0Ol0SE1Nxd9//y1b19ChQ2WvwY4dOyI3NxcXL14s1XYpzubNm5GXl4fIyEjpiFW+/HXu2rULDx8+xOjRo2U1Q4YMgVarLfR61Gg0GDRoUJHr69Wrl/T1KPB026Oggvs3KysLN27cQPv27SGEKPIryZLk5uZi586dCAwMRP369aV2FxcX9OvXD7///juMRqNsnvLcP1T+GISo0mjYsKHsuaenJ8zMzGTnbnh4eMhqrl+/joyMDCxbtgwODg6yR/4P6mvXrgEAzp8/j0aNGpXpSZPVqlWTzlUp2Mfw8HB89913sLe3h06nw8KFC2XnB128eBFmZmZo0KCBbF5nZ2fY2toW+gH7+LhNYWZmJvuBDwAvv/wyAEjbNjU1FZmZmXB0dCy0He/evSttQ19fX/Tq1QtTpkyBvb09evbsiZUrVxY6r6m8FLUd7t+/j8jISLi5uUGj0cDe3h4ODg7IyMgotM0f394AimwDIAs7wP8FXDc3tyLb88+lOnfuHIQQ+PLLLwtty8mTJwP4v9fkk9ZVq1Yt2TKfxfnz52FmZib7BeJx+a+3x79yVavVqF+/fqHX40svvQS1Wl3ksh7fR0+zPQq6dOkSBg4cCDs7O9SoUQMODg7w9fUFANn+La3r16/j3r17RX693KRJE+Tl5eGvv/6StZfn/qHyx3OEqNIq6ihNwd8OgX9O8AWADz/8EMHBwUUupzTnpxS3TuCf3yKLotFoCv2WDQBz5szBwIED8csvv2Dnzp349NNPpXOfCgan0h6JenzcZS0vLw+Ojo5YvXp1kdPzf8NXqVT46aefcOjQIfzP//wPduzYgcGDB2POnDk4dOhQud+8sajtMHLkSKxcuRKjR4+Gj48PbGxsoFKpEBQUJL0+nsbjR55Kahf/e/J5/jrHjh37xKN4j4evkpb5oinu9fik96gp2yNfbm4u3nzzTdy6dQvjx49H48aNYW1tjb///hsDBw58pv1risq2f0iOQYgqjdTUVNlvk+fOnUNeXh7q1av3xHkcHBxQs2ZN5Obmws/Pr9jle3p6Ij4+Ho8ePZKd+FlQ/m96j18p8zSHwL28vODl5YVJkybh4MGDeP3117FkyRJMnz4d7u7uyMvLQ2pqKpo0aSLNk56ejoyMDLi7u5u8vifJy8vDn3/+KR0FAoD//ve/ACBtW09PT+zatQuvv/56qUJXu3bt0K5dO/zrX//CmjVr0L9/f6xduxYff/zxM33N+DR++uknBAcHY86cOVLbgwcPCu1Dd3d3nDt3rtD8RbU9i/yjb9WrVy/xNWmKp92unp6eyMvLw5kzZ2RfCxaU/3pLSUmRHT18+PAh0tLSnmkcz7I9Tp48if/+979YtWqV7OT5uLi4QrWl3T4ODg6wsrJCSkpKoWnJyckwMzMrdNSPKjd+NUaVRv7lr/m++eYbAED37t2fOI+5uTl69eqFn3/+GadOnSo0veAlrr169cKNGzewYMGCQnX5v9m5u7vD3NwcBw4ckE1ftGhRqcdhNBqRk5Mja/Py8oKZmZn0FdJbb70FAIX+fMRXX30FAAgICCj1+kqj4JiFEFiwYAGqV6+Orl27Avjnir3c3FxMmzat0Lw5OTlSqLh9+3ah34LzP1zzx5Z/ldbjQaS8mJubF+rTN998U+gonk6ng16vR1JSktR269atJx4Fe1qOjo7o3Lkzli5diqtXrxaa/rSXXVtbWz/VNg0MDISZmRmmTp1a6AhK/nbz8/ODWq3G/PnzZdty+fLlyMzMfKbX47Nsj/wjMQX7JITAvHnzCtVaW1sDKPl1Z25uDn9/f/zyyy+yr93T09OxZs0adOjQAVqttthlUOXCI0JUaaSlpeGdd95Bt27doNfr8eOPP6Jfv35o2bJlsfPNmDEDe/fuhbe3N4YMGYKmTZvi1q1bOHbsGHbt2oVbt24BAAYMGIDvv/8e4eHhOHz4MDp27IisrCzs2rULI0aMQM+ePWFjY4P3338f33zzDVQqFTw9PbFly5Ziz2F43J49exAWFob3338fL7/8MnJycvDDDz9IoQ0AWrZsieDgYCxbtgwZGRnw9fXF4cOHsWrVKgQGBqJLly5PvyEfY2FhgdjYWAQHB8Pb2xvbt2/H1q1bMXHiROkrL19fXwwbNgzR0dFISkqCv78/qlevjtTUVGzYsAHz5s1D7969sWrVKixatAjvvvsuPD09cefOHXz77bfQarVSuLO0tETTpk2xbt06vPzyy7Czs0Pz5s3RvHnzMhtTQT169MAPP/wAGxsbNG3aFHq9Hrt27ULt2rVldePGjcOPP/6IN998EyNHjpQun69bty5u3bpVpkeyFi5ciA4dOsDLywtDhgxB/fr1kZ6eDr1ej8uXL+P48eMmL7NNmzZYvHgxpk+fjgYNGsDR0RFvvPFGifM1aNAAX3zxBaZNm4aOHTvivffeg0ajwZEjR+Dq6oro6Gg4ODggIiICU6ZMQbdu3fDOO+8gJSUFixYtwmuvvYYPP/zwaTaD5Gm3R+PGjeHp6YmxY8fi77//hlarxc8//1zkuTlt2rQBAHz66afQ6XQwNzdHUFBQkcudPn064uLi0KFDB4wYMQLVqlXD0qVLkZ2djZkzZz7TWOkF9PwvVCMyTf7l82fOnBG9e/cWNWvWFLVq1RJhYWHi/v37Uh2KuKw6X3p6uggNDRVubm6ievXqwtnZWXTt2lUsW7ZMVnfv3j3xxRdfCA8PD6mud+/esstor1+/Lnr16iWsrKxErVq1xLBhw8SpU6eKvHze2tq6UF/+/PNPMXjwYOHp6SksLCyEnZ2d6NKli9i1a5es7tGjR2LKlClSX9zc3ERERITsEmMh/rmUOyAgoNTbs6D8Pp4/f174+/sLKysr4eTkJCZPnlzoUmohhFi2bJlo06aNsLS0FDVr1hReXl5i3Lhx4sqVK0IIIY4dOyb69u0r6tatKzQajXB0dBQ9evQQR48elS3n4MGDok2bNkKtVpt8KX1R+zn/MuaiLtu/ffu2GDRokLC3txc1atQQOp1OJCcnC3d3dxEcHCyrTUxMFB07dhQajUbUqVNHREdHi/nz5wsAwmAwSHVP2uZF9S3/svFZs2bJ2s+fPy8GDBggnJ2dRfXq1cVLL70kevToIX766acSx1XUZeQGg0EEBASImjVrCgAmX0q/YsUK8corrwiNRiNq1aolfH19RVxcnKxmwYIFonHjxqJ69erCyclJDB8+XNy+fVtW4+vrK5o1a1Zo+U/aDqZsj6LGfebMGeHn5ydq1Kgh7O3txZAhQ8Tx48cLvR9zcnLEyJEjhYODg1CpVLJL6Yt6DR47dkzodDpRo0YNYWVlJbp06SK7XYIQpu0fenGphODZXPRiy7+R2/Xr12Fvb1/R3SGFGT16NJYuXYq7d+8+8aRYIqq8eI4QEdH/evxvtN28eRM//PADOnTowBBEVEXxHCGiKigzM7PEP7zq7Oz8nHpTsocPH0rnaj2JjY1Nud8mwMfHB507d0aTJk2Qnp6O5cuXw2g04ssvvyzX9ZYXg8FQ7HRLS0vpPkdESsUgRFQFjRo1CqtWrSq25kX6VvzgwYMlngC+cuVKDBw4sFz78dZbb+Gnn37CsmXLoFKp0Lp1ayxfvhydOnUq1/WWFxcXl2KnBwcHy/5QMJES8RwhoirozJkzuHLlSrE1ZXkPm2d1+/ZtJCQkFFvTrFmzEj/YSS7/T6Q8iaura7F3lCZSAgYhIiIiUiyeLE1ERESKxXOEipGXl4crV66gZs2az/3PAhAREdHTEULgzp07cHV1LfLvPRbEIFSMK1eu8G/KEBERVVJ//fWX7A9ZF4VBqBg1a9YE8M+G5N+WISIiqhyMRiPc3Nykz/HiMAgVI//rMK1WyyBERERUyZTmtBaeLE1ERESKxSBEREREisUgRERERIrFIERERESKZXIQOnDgAN5++224urpCpVJh8+bNsukqlarIx6xZs6SaevXqFZo+Y8YM2XJOnDiBjh07wsLCAm5ubpg5c2ahvmzYsAGNGzeGhYUFvLy8sG3bNtl0IQQiIyPh4uICS0tL+Pn5ITU11dQhExERURVlchDKyspCy5YtsXDhwiKnX716VfZYsWIFVCoVevXqJaubOnWqrG7kyJHSNKPRCH9/f7i7uyMhIQGzZs1CVFQUli1bJtUcPHgQffv2RUhICBITExEYGIjAwECcOnVKqpk5cybmz5+PJUuWID4+HtbW1tDpdHjw4IGpwyYiIqKqSDwDAGLTpk3F1vTs2VO88cYbsjZ3d3fx9ddfP3GeRYsWiVq1aons7Gypbfz48aJRo0bS8w8++EAEBATI5vP29hbDhg0TQgiRl5cnnJ2dxaxZs6TpGRkZQqPRiP/85z8lDU0IIURmZqYAIDIzM0tVT0RERBXPlM/vcj1HKD09HVu3bkVISEihaTNmzEDt2rXxyiuvYNasWcjJyZGm6fV6dOrUCWq1WmrT6XRISUnB7du3pZrH/3q2TqeDXq8HAKSlpcFgMMhqbGxs4O3tLdU8Ljs7G0ajUfYgIiKiqqtcb6i4atUq1KxZE++9956s/dNPP0Xr1q1hZ2eHgwcPIiIiAlevXsVXX30FADAYDPDw8JDN4+TkJE2rVasWDAaD1FawxmAwSHUF5yuq5nHR0dGYMmXKU46WiIiIKptyDUIrVqxA//79YWFhIWsPDw+X/t+iRQuo1WoMGzYM0dHR0Gg05dmlYkVERMj6ln+LbiIiIqqayu2rsd9++w0pKSn4+OOPS6z19vZGTk4OLly4AABwdnZGenq6rCb/ubOzc7E1BacXnK+omsdpNBrpz2nwz2oQERFVfeUWhJYvX442bdqgZcuWJdYmJSXBzMwMjo6OAAAfHx8cOHAAjx49kmri4uLQqFEj1KpVS6rZvXu3bDlxcXHw8fEBAHh4eMDZ2VlWYzQaER8fL9UQERGRspn81djdu3dx7tw56XlaWhqSkpJgZ2eHunXrAvgncGzYsAFz5swpNL9er0d8fDy6dOmCmjVrQq/XY8yYMfjwww+lkNOvXz9MmTIFISEhGD9+PE6dOoV58+bh66+/lpYzatQo+Pr6Ys6cOQgICMDatWtx9OhR6RJ7lUqF0aNHY/r06WjYsCE8PDzw5ZdfwtXVFYGBgaYOm4iIiKoiUy9J27t3rwBQ6BEcHCzVLF26VFhaWoqMjIxC8yckJAhvb29hY2MjLCwsRJMmTcT/+3//Tzx48EBWd/z4cdGhQweh0WjESy+9JGbMmFFoWevXrxcvv/yyUKvVolmzZmLr1q2y6Xl5eeLLL78UTk5OQqPRiK5du4qUlJRSj5WXzxMREVU+pnx+q4QQogJz2AvNaDTCxsYGmZmZPF+IqAr6Ou6/Fd0Fk4158+WK7gLRC8+Uz+9yvWqMiOhF1u7SspKLXjizK7oDRFUK/+gqERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREplslB6MCBA3j77bfh6uoKlUqFzZs3y6YPHDgQKpVK9ujWrZus5tatW+jfvz+0Wi1sbW0REhKCu3fvympOnDiBjh07wsLCAm5ubpg5c2ahvmzYsAGNGzeGhYUFvLy8sG3bNtl0IQQiIyPh4uICS0tL+Pn5ITU11dQhExERURVlchDKyspCy5YtsXDhwifWdOvWDVevXpUe//nPf2TT+/fvj9OnTyMuLg5btmzBgQMHMHToUGm60WiEv78/3N3dkZCQgFmzZiEqKgrLli2Tag4ePIi+ffsiJCQEiYmJCAwMRGBgIE6dOiXVzJw5E/Pnz8eSJUsQHx8Pa2tr6HQ6PHjwwNRhExERURWkEkKIp55ZpcKmTZsQGBgotQ0cOBAZGRmFjhTlO3v2LJo2bYojR47g1VdfBQDExsbirbfewuXLl+Hq6orFixfjiy++gMFggFqtBgBMmDABmzdvRnJyMgCgT58+yMrKwpYtW6Rlt2vXDq1atcKSJUsghICrqys+++wzjB07FgCQmZkJJycnxMTEICgoqMTxGY1G2NjYIDMzE1qt9mk2ERG9wPTLx1Z0F0zmEzK7ortA9MIz5fO7XM4R2rdvHxwdHdGoUSMMHz4cN2/elKbp9XrY2tpKIQgA/Pz8YGZmhvj4eKmmU6dOUggCAJ1Oh5SUFNy+fVuq8fPzk61Xp9NBr9cDANLS0mAwGGQ1NjY28Pb2lmoel52dDaPRKHsQERFR1VXmQahbt274/vvvsXv3bvz73//G/v370b17d+Tm5gIADAYDHB0dZfNUq1YNdnZ2MBgMUo2Tk5OsJv95STUFpxecr6iax0VHR8PGxkZ6uLm5mTx+IiIiqjyqlfUCC37l5OXlhRYtWsDT0xP79u1D165dy3p1ZSoiIgLh4eHSc6PRyDBERERUhZX75fP169eHvb09zp07BwBwdnbGtWvXZDU5OTm4desWnJ2dpZr09HRZTf7zkmoKTi84X1E1j9NoNNBqtbIHERERVV3lHoQuX76MmzdvwsXFBQDg4+ODjIwMJCQkSDV79uxBXl4evL29pZoDBw7g0aNHUk1cXBwaNWqEWrVqSTW7d++WrSsuLg4+Pj4AAA8PDzg7O8tqjEYj4uPjpRoiIiJSNpOD0N27d5GUlISkpCQA/5yUnJSUhEuXLuHu3bv4/PPPcejQIVy4cAG7d+9Gz5490aBBA+h0OgBAkyZN0K1bNwwZMgSHDx/GH3/8gbCwMAQFBcHV1RUA0K9fP6jVaoSEhOD06dNYt24d5s2bJ/vaatSoUYiNjcWcOXOQnJyMqKgoHD16FGFhYQD+uaJt9OjRmD59On799VecPHkSAwYMgKurq+wqNyIiIlIuk88ROnr0KLp06SI9zw8nwcHBWLx4MU6cOIFVq1YhIyMDrq6u8Pf3x7Rp06DRaKR5Vq9ejbCwMHTt2hVmZmbo1asX5s+fL023sbHBzp07ERoaijZt2sDe3h6RkZGyew21b98ea9aswaRJkzBx4kQ0bNgQmzdvRvPmzaWacePGISsrC0OHDkVGRgY6dOiA2NhYWFhYmDpsIiIiqoKe6T5CVR3vI0RUtfE+QkRVU4XfR4iIiIioMmAQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixWIQIiIiIsViECIiIiLFYhAiIiIixTI5CB04cABvv/02XF1doVKpsHnzZmnao0ePMH78eHh5ecHa2hqurq4YMGAArly5IltGvXr1oFKpZI8ZM2bIak6cOIGOHTvCwsICbm5umDlzZqG+bNiwAY0bN4aFhQW8vLywbds22XQhBCIjI+Hi4gJLS0v4+fkhNTXV1CETERFRFWVyEMrKykLLli2xcOHCQtPu3buHY8eO4csvv8SxY8ewceNGpKSk4J133ilUO3XqVFy9elV6jBw5UppmNBrh7+8Pd3d3JCQkYNasWYiKisKyZcukmoMHD6Jv374ICQlBYmIiAgMDERgYiFOnTkk1M2fOxPz587FkyRLEx8fD2toaOp0ODx48MHXYREREVAWphBDiqWdWqbBp0yYEBgY+sebIkSNo27YtLl68iLp16wL454jQ6NGjMXr06CLnWbx4Mb744gsYDAao1WoAwIQJE7B582YkJycDAPr06YOsrCxs2bJFmq9du3Zo1aoVlixZAiEEXF1d8dlnn2Hs2LEAgMzMTDg5OSEmJgZBQUEljs9oNMLGxgaZmZnQarWl2SREVInol4+t6C6YzCdkdkV3geiFZ8rnd7mfI5SZmQmVSgVbW1tZ+4wZM1C7dm288sormDVrFnJycqRper0enTp1kkIQAOh0OqSkpOD27dtSjZ+fn2yZOp0Oer0eAJCWlgaDwSCrsbGxgbe3t1TzuOzsbBiNRtmDiIiIqq5q5bnwBw8eYPz48ejbt68skX366ado3bo17OzscPDgQURERODq1av46quvAAAGgwEeHh6yZTk5OUnTatWqBYPBILUVrDEYDFJdwfmKqnlcdHQ0pkyZ8gwjJiIiosqk3ILQo0eP8MEHH0AIgcWLF8umhYeHS/9v0aIF1Go1hg0bhujoaGg0mvLqUokiIiJkfTMajXBzc6uw/hAREVH5KpevxvJD0MWLFxEXF1fi93Pe3t7IycnBhQsXAADOzs5IT0+X1eQ/d3Z2Lram4PSC8xVV8ziNRgOtVit7EBERUdVV5kEoPwSlpqZi165dqF27donzJCUlwczMDI6OjgAAHx8fHDhwAI8ePZJq4uLi0KhRI9SqVUuq2b17t2w5cXFx8PHxAQB4eHjA2dlZVmM0GhEfHy/VEBERkbKZ/NXY3bt3ce7cOel5WloakpKSYGdnBxcXF/Tu3RvHjh3Dli1bkJubK52PY2dnB7VaDb1ej/j4eHTp0gU1a9aEXq/HmDFj8OGHH0ohp1+/fpgyZQpCQkIwfvx4nDp1CvPmzcPXX38trXfUqFHw9fXFnDlzEBAQgLVr1+Lo0aPSJfYqlQqjR4/G9OnT0bBhQ3h4eODLL7+Eq6trsVe5ERERkXKYHISOHj2KLl26SM/zz6kJDg5GVFQUfv31VwBAq1atZPPt3bsXnTt3hkajwdq1axEVFYXs7Gx4eHhgzJgxsnNzbGxssHPnToSGhqJNmzawt7dHZGQkhg4dKtW0b98ea9aswaRJkzBx4kQ0bNgQmzdvRvPmzaWacePGISsrC0OHDkVGRgY6dOiA2NhYWFhYmDpsIiIiqoKe6T5CVR3vI0RUtfE+QkRV0wt1HyEiIiKiFxWDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESkWgxAREREpFoMQERERKRaDEBERESmWyUHowIEDePvtt+Hq6gqVSoXNmzfLpgshEBkZCRcXF1haWsLPzw+pqamymlu3bqF///7QarWwtbVFSEgI7t69K6s5ceIEOnbsCAsLC7i5uWHmzJmF+rJhwwY0btwYFhYW8PLywrZt20zuCxERESmXyUEoKysLLVu2xMKFC4ucPnPmTMyfPx9LlixBfHw8rK2todPp8ODBA6mmf//+OH36NOLi4rBlyxYcOHAAQ4cOlaYbjUb4+/vD3d0dCQkJmDVrFqKiorBs2TKp5uDBg+jbty9CQkKQmJiIwMBABAYG4tSpUyb1hYiIiJRLJYQQTz2zSoVNmzYhMDAQwD9HYFxdXfHZZ59h7NixAIDMzEw4OTkhJiYGQUFBOHv2LJo2bYojR47g1VdfBQDExsbirbfewuXLl+Hq6orFixfjiy++gMFggFqtBgBMmDABmzdvRnJyMgCgT58+yMrKwpYtW6T+tGvXDq1atcKSJUtK1ZeSGI1G2NjYIDMzE1qt9mk3ExG9oPTLx1Z0F0zmEzK7ortA9MIz5fO7TM8RSktLg8FggJ+fn9RmY2MDb29v6PV6AIBer4etra0UggDAz88PZmZmiI+Pl2o6deokhSAA0Ol0SElJwe3bt6WaguvJr8lfT2n68rjs7GwYjUbZg4iIiKquMg1CBoMBAODk5CRrd3JykqYZDAY4OjrKplerVg12dnaymqKWUXAdT6opOL2kvjwuOjoaNjY20sPNza0UoyYiIqLKileNFRAREYHMzEzp8ddff1V0l4iIiKgclWkQcnZ2BgCkp6fL2tPT06Vpzs7OuHbtmmx6Tk4Obt26JaspahkF1/GkmoLTS+rL4zQaDbRarexBREREVVeZBiEPDw84Oztj9+7dUpvRaER8fDx8fHwAAD4+PsjIyEBCQoJUs2fPHuTl5cHb21uqOXDgAB49eiTVxMXFoVGjRqhVq5ZUU3A9+TX56ylNX4iIiEjZTA5Cd+/eRVJSEpKSkgD8c1JyUlISLl26BJVKhdGjR2P69On49ddfcfLkSQwYMACurq7SlWVNmjRBt27dMGTIEBw+fBh//PEHwsLCEBQUBFdXVwBAv379oFarERISgtOnT2PdunWYN28ewsPDpX6MGjUKsbGxmDNnDpKTkxEVFYWjR48iLCwMAErVFyIiIlK2aqbOcPToUXTp0kV6nh9OgoODERMTg3HjxiErKwtDhw5FRkYGOnTogNjYWFhYWEjzrF69GmFhYejatSvMzMzQq1cvzJ8/X5puY2ODnTt3IjQ0FG3atIG9vT0iIyNl9xpq37491qxZg0mTJmHixIlo2LAhNm/ejObNm0s1pekLERERKdcz3UeoquN9hIiqNt5HiKhqqrD7CBERERFVJgxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWAxCREREpFgMQkRERKRYDEJERESkWGUehOrVqweVSlXoERoaCgDo3LlzoWmffPKJbBmXLl1CQEAArKys4OjoiM8//xw5OTmymn379qF169bQaDRo0KABYmJiCvVl4cKFqFevHiwsLODt7Y3Dhw+X9XCJiIioEivzIHTkyBFcvXpVesTFxQEA3n//falmyJAhspqZM2dK03JzcxEQEICHDx/i4MGDWLVqFWJiYhAZGSnVpKWlISAgAF26dEFSUhJGjx6Njz/+GDt27JBq1q1bh/DwcEyePBnHjh1Dy5YtodPpcO3atbIeMhEREVVSKiGEKM8VjB49Glu2bEFqaipUKhU6d+6MVq1aYe7cuUXWb9++HT169MCVK1fg5OQEAFiyZAnGjx+P69evQ61WY/z48di6dStOnTolzRcUFISMjAzExsYCALy9vfHaa69hwYIFAIC8vDy4ublh5MiRmDBhQqn6bjQaYWNjg8zMTGi12mfYCkT0ItIvH1vRXTCZT8jsiu4C0QvPlM/vcj1H6OHDh/jxxx8xePBgqFQqqX316tWwt7dH8+bNERERgXv37knT9Ho9vLy8pBAEADqdDkajEadPn5Zq/Pz8ZOvS6XTQ6/XSehMSEmQ1ZmZm8PPzk2qKkp2dDaPRKHsQERFR1VWtPBe+efNmZGRkYODAgVJbv3794O7uDldXV5w4cQLjx49HSkoKNm7cCAAwGAyyEARAem4wGIqtMRqNuH//Pm7fvo3c3Nwia5KTk5/Y3+joaEyZMuWpx0tERESVS7kGoeXLl6N79+5wdXWV2oYOHSr938vLCy4uLujatSvOnz8PT0/P8uxOiSIiIhAeHi49NxqNcHNzq8AeERERUXkqtyB08eJF7Nq1SzrS8yTe3t4AgHPnzsHT0xPOzs6Fru5KT08HADg7O0v/5rcVrNFqtbC0tIS5uTnMzc2LrMlfRlE0Gg00Gk3pBkhERESVXrmdI7Ry5Uo4OjoiICCg2LqkpCQAgIuLCwDAx8cHJ0+elF3dFRcXB61Wi6ZNm0o1u3fvli0nLi4OPj4+AAC1Wo02bdrIavLy8rB7926phoiIiKhcglBeXh5WrlyJ4OBgVKv2fwedzp8/j2nTpiEhIQEXLlzAr7/+igEDBqBTp05o0aIFAMDf3x9NmzbFRx99hOPHj2PHjh2YNGkSQkNDpaM1n3zyCf7880+MGzcOycnJWLRoEdavX48xY8ZI6woPD8e3336LVatW4ezZsxg+fDiysrIwaNCg8hgyERERVULl8tXYrl27cOnSJQwePFjWrlarsWvXLsydOxdZWVlwc3NDr169MGnSJKnG3NwcW7ZswfDhw+Hj4wNra2sEBwdj6tSpUo2Hhwe2bt2KMWPGYN68eahTpw6+++476HQ6qaZPnz64fv06IiMjYTAY0KpVK8TGxhY6gZqIiIiUq9zvI1SZ8T5CRFUb7yNEVDW9MPcRIiIiInqRMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFilXkQioqKgkqlkj0aN24sTX/w4AFCQ0NRu3Zt1KhRA7169UJ6erpsGZcuXUJAQACsrKzg6OiIzz//HDk5ObKaffv2oXXr1tBoNGjQoAFiYmIK9WXhwoWoV68eLCws4O3tjcOHD5f1cImIiKgSK5cjQs2aNcPVq1elx++//y5NGzNmDP7nf/4HGzZswP79+3HlyhW899570vTc3FwEBATg4cOHOHjwIFatWoWYmBhERkZKNWlpaQgICECXLl2QlJSE0aNH4+OPP8aOHTukmnXr1iE8PByTJ0/GsWPH0LJlS+h0Oly7dq08hkxERESVkEoIIcpygVFRUdi8eTOSkpIKTcvMzISDgwPWrFmD3r17AwCSk5PRpEkT6PV6tGvXDtu3b0ePHj1w5coVODk5AQCWLFmC8ePH4/r161Cr1Rg/fjy2bt2KU6dOScsOCgpCRkYGYmNjAQDe3t547bXXsGDBAgBAXl4e3NzcMHLkSEyYMKFUYzEajbCxsUFmZia0Wu2zbBYiegHpl4+t6C6YzCdkdkV3geiFZ8rnd7kcEUpNTYWrqyvq16+P/v3749KlSwCAhIQEPHr0CH5+flJt48aNUbduXej1egCAXq+Hl5eXFIIAQKfTwWg04vTp01JNwWXk1+Qv4+HDh0hISJDVmJmZwc/PT6opSnZ2NoxGo+xBREREVVeZByFvb2/ExMQgNjYWixcvRlpaGjp27Ig7d+7AYDBArVbD1tZWNo+TkxMMBgMAwGAwyEJQ/vT8acXVGI1G3L9/Hzdu3EBubm6RNfnLKEp0dDRsbGykh5ub21NtAyIiIqocqpX1Art37y79v0WLFvD29oa7uzvWr18PS0vLsl5dmYqIiEB4eLj03Gg0MgwRERFVYeV++bytrS1efvllnDt3Ds7Oznj48CEyMjJkNenp6XB2dgYAODs7F7qKLP95STVarRaWlpawt7eHubl5kTX5yyiKRqOBVquVPYiIiKjqKvcgdPfuXZw/fx4uLi5o06YNqlevjt27d0vTU1JScOnSJfj4+AAAfHx8cPLkSdnVXXFxcdBqtWjatKlUU3AZ+TX5y1Cr1WjTpo2sJi8vD7t375ZqiIiIiMo8CI0dOxb79+/HhQsXcPDgQbz77rswNzdH3759YWNjg5CQEISHh2Pv3r1ISEjAoEGD4OPjg3bt2gEA/P390bRpU3z00Uc4fvw4duzYgUmTJiE0NBQajQYA8Mknn+DPP//EuHHjkJycjEWLFmH9+vUYM2aM1I/w8HB8++23WLVqFc6ePYvhw4cjKysLgwYNKushExERUSVV5ucIXb58GX379sXNmzfh4OCADh064NChQ3BwcAAAfP311zAzM0OvXr2QnZ0NnU6HRYsWSfObm5tjy5YtGD58OHx8fGBtbY3g4GBMnTpVqvHw8MDWrVsxZswYzJs3D3Xq1MF3330HnU4n1fTp0wfXr19HZGQkDAYDWrVqhdjY2EInUBMREZFylfl9hKoS3keIqGrjfYSIqqYKv48QERERUWXAIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKVa2iO0BERERlQ798bEV3wWQ+IbMrdP08IkRERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKxSBEREREisUgRERERIrFIERERESKVeZBKDo6Gq+99hpq1qwJR0dHBAYGIiUlRVbTuXNnqFQq2eOTTz6R1Vy6dAkBAQGwsrKCo6MjPv/8c+Tk5Mhq9u3bh9atW0Oj0aBBgwaIiYkp1J+FCxeiXr16sLCwgLe3Nw4fPlzWQyYiIqJKqsyD0P79+xEaGopDhw4hLi4Ojx49gr+/P7KysmR1Q4YMwdWrV6XHzJkzpWm5ubkICAjAw4cPcfDgQaxatQoxMTGIjIyUatLS0hAQEIAuXbogKSkJo0ePxscff4wdO3ZINevWrUN4eDgmT56MY8eOoWXLltDpdLh27VpZD5uIiIgqIZUQQpTnCq5fvw5HR0fs378fnTp1AvDPEaFWrVph7ty5Rc6zfft29OjRA1euXIGTkxMAYMmSJRg/fjyuX78OtVqN8ePHY+vWrTh16pQ0X1BQEDIyMhAbGwsA8Pb2xmuvvYYFCxYAAPLy8uDm5oaRI0diwoQJJfbdaDTCxsYGmZmZ0Gq1z7IZirY3uuyXWd66RFR0D4jKjH752Irugsl8QmZXdBfoBcbX9D9M+fwu93OEMjMzAQB2dnay9tWrV8Pe3h7NmzdHREQE7t27J03T6/Xw8vKSQhAA6HQ6GI1GnD59Wqrx8/OTLVOn00Gv1wMAHj58iISEBFmNmZkZ/Pz8pJrHZWdnw2g0yh5ERERUdVUrz4Xn5eVh9OjReP3119G8eXOpvV+/fnB3d4erqytOnDiB8ePHIyUlBRs3bgQAGAwGWQgCID03GAzF1hiNRty/fx+3b99Gbm5ukTXJyclF9jc6OhpTpkx5tkGbQP/nzee2rrLi06Wie0BERFR2yjUIhYaG4tSpU/j9999l7UOHDpX+7+XlBRcXF3Tt2hXnz5+Hp6dneXapWBEREQgPD5eeG41GuLm5VVh/iIiIqHyVWxAKCwvDli1bcODAAdSpU6fYWm9vbwDAuXPn4OnpCWdn50JXd6WnpwMAnJ2dpX/z2wrWaLVaWFpawtzcHObm5kXW5C/jcRqNBhqNpvSDJCIiokqtzM8REkIgLCwMmzZtwp49e+Dh4VHiPElJSQAAFxcXAICPjw9Onjwpu7orLi4OWq0WTZs2lWp2794tW05cXBx8fHwAAGq1Gm3atJHV5OXlYffu3VINERERKVuZHxEKDQ3FmjVr8Msvv6BmzZrSOT02NjawtLTE+fPnsWbNGrz11luoXbs2Tpw4gTFjxqBTp05o0aIFAMDf3x9NmzbFRx99hJkzZ8JgMGDSpEkIDQ2Vjth88sknWLBgAcaNG4fBgwdjz549WL9+PbZu3Sr1JTw8HMHBwXj11VfRtm1bzJ07F1lZWRg0aFBZD5uIiIgqoTIPQosXLwbwzyXyBa1cuRIDBw6EWq3Grl27pFDi5uaGXr16YdKkSVKtubk5tmzZguHDh8PHxwfW1tYIDg7G1KlTpRoPDw9s3boVY8aMwbx581CnTh1899130Ol0Uk2fPn1w/fp1REZGwmAwoFWrVoiNjS10AjUREREpU5kHoZJuS+Tm5ob9+/eXuBx3d3ds27at2JrOnTsjMTGx2JqwsDCEhYWVuD4iIiJSHv6tMSIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGISIiIlKsahXdASKqGr6O+29Fd8Fk7Sq6A0RU4RiEiF5AlTJUXFpW0V0gKlOV8n1Y0R2ohBiEiIio3FXKUMFwrwgMQkQvIP4ApiepjIEC4GuaXlwMQkRElQgDBVHZYhCiKq8y/gbN7/mJiJ4PBiGq8vgbNBERPQnvI0RERESKxSBEREREisWvxsgkPN+GiIiqEgYhMgnPtyEioqqEX40RERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYjEIERERkWIxCBEREZFiMQgRERGRYikiCC1cuBD16tWDhYUFvL29cfjw4YruEhEREb0AqnwQWrduHcLDwzF58mQcO3YMLVu2hE6nw7Vr1yq6a0RERFTBqnwQ+uqrrzBkyBAMGjQITZs2xZIlS2BlZYUVK1ZUdNeIiIioglXpvz7/8OFDJCQkICIiQmozMzODn58f9Hp9ofrs7GxkZ2dLzzMzMwEARqOxXPqXdT+75CIiIqIqrDw+Y/OXKYQosbZKB6EbN24gNzcXTk5OsnYnJyckJycXqo+OjsaUKVMKtbu5uZVbH4mIiBRt5IJyW/SdO3dgY2NTbE2VDkKmioiIQHh4uPQ8Ly8Pt27dQu3ataFSqcp0XUajEW5ubvjrr7+g1WrLdNkvgqo+PqDqj5Hjq/yq+hg5vsqvvMYohMCdO3fg6upaYm2VDkL29vYwNzdHenq6rD09PR3Ozs6F6jUaDTQajazN1ta2PLsIrVZbZV/gQNUfH1D1x8jxVX5VfYwcX+VXHmMs6UhQvip9srRarUabNm2we/duqS0vLw+7d++Gj49PBfaMiIiIXgRV+ogQAISHhyM4OBivvvoq2rZti7lz5yIrKwuDBg2q6K4RERFRBavyQahPnz64fv06IiMjYTAY0KpVK8TGxhY6gfp502g0mDx5cqGv4qqKqj4+oOqPkeOr/Kr6GDm+yu9FGKNKlObaMiIiIqIqqEqfI0RERERUHAYhIiIiUiwGISIiIlIsBiEiIiJSLAYhIiIiUiwGoXLyr3/9C+3bt4eVlVWp704thEBkZCRcXFxgaWkJPz8/pKamympu3bqF/v37Q6vVwtbWFiEhIbh79245jKBkpvblwoULUKlURT42bNgg1RU1fe3atc9jSDJPs607d+5cqO+ffPKJrObSpUsICAiAlZUVHB0d8fnnnyMnJ6c8h1IkU8d369YtjBw5Eo0aNYKlpSXq1q2LTz/9VPrjxPkqcv8tXLgQ9erVg4WFBby9vXH48OFi6zds2IDGjRvDwsICXl5e2LZtm2x6ad6Tz5Mp4/v222/RsWNH1KpVC7Vq1YKfn1+h+oEDBxbaV926dSvvYRTLlDHGxMQU6r+FhYWspjLvw6J+nqhUKgQEBEg1L9I+PHDgAN5++224urpCpVJh8+bNJc6zb98+tG7dGhqNBg0aNEBMTEyhGlPf1yYTVC4iIyPFV199JcLDw4WNjU2p5pkxY4awsbERmzdvFsePHxfvvPOO8PDwEPfv35dqunXrJlq2bCkOHTokfvvtN9GgQQPRt2/fchpF8UztS05Ojrh69arsMWXKFFGjRg1x584dqQ6AWLlypayu4DZ4Xp5mW/v6+oohQ4bI+p6ZmSlNz8nJEc2bNxd+fn4iMTFRbNu2Tdjb24uIiIjyHk4hpo7v5MmT4r333hO//vqrOHfunNi9e7do2LCh6NWrl6yuovbf2rVrhVqtFitWrBCnT58WQ4YMEba2tiI9Pb3I+j/++EOYm5uLmTNnijNnzohJkyaJ6tWri5MnT0o1pXlPPi+mjq9fv35i4cKFIjExUZw9e1YMHDhQ2NjYiMuXL0s1wcHBolu3brJ9devWrec1pEJMHePKlSuFVquV9d9gMMhqKvM+vHnzpmxsp06dEubm5mLlypVSzYu0D7dt2ya++OILsXHjRgFAbNq0qdj6P//8U1hZWYnw8HBx5swZ8c033whzc3MRGxsr1Zi6zZ4Gg1A5W7lyZamCUF5ennB2dhazZs2S2jIyMoRGoxH/+c9/hBBCnDlzRgAQR44ckWq2b98uVCqV+Pvvv8u878Upq760atVKDB48WNZWmjdQeXva8fn6+opRo0Y9cfq2bduEmZmZ7If14sWLhVarFdnZ2WXS99Ioq/23fv16oVarxaNHj6S2itp/bdu2FaGhodLz3Nxc4erqKqKjo4us/+CDD0RAQICszdvbWwwbNkwIUbr35PNk6vgel5OTI2rWrClWrVoltQUHB4uePXuWdVefmqljLOnna1Xbh19//bWoWbOmuHv3rtT2ou3DfKX5OTBu3DjRrFkzWVufPn2ETqeTnj/rNisNfjX2gkhLS4PBYICfn5/UZmNjA29vb+j1egCAXq+Hra0tXn31VanGz88PZmZmiI+Pf679LYu+JCQkICkpCSEhIYWmhYaGwt7eHm3btsWKFSsgnvN9P59lfKtXr4a9vT2aN2+OiIgI3Lt3T7ZcLy8v2Z3NdTodjEYjTp8+XfYDeYKyei1lZmZCq9WiWjX5Teqf9/57+PAhEhISZO8fMzMz+Pn5Se+fx+n1elk98M++yK8vzXvyeXma8T3u3r17ePToEezs7GTt+/btg6OjIxo1aoThw4fj5s2bZdr30nraMd69exfu7u5wc3NDz549Ze+jqrYPly9fjqCgIFhbW8vaX5R9aKqS3oNlsc1Ko8r/iY3KwmAwAEChP/3h5OQkTTMYDHB0dJRNr1atGuzs7KSa56Us+rJ8+XI0adIE7du3l7VPnToVb7zxBqysrLBz506MGDECd+/exaefflpm/S/J046vX79+cHd3h6urK06cOIHx48cjJSUFGzdulJZb1D7On/a8lMX+u3HjBqZNm4ahQ4fK2iti/924cQO5ublFbtvk5OQi53nSvij4fstve1LN8/I043vc+PHj4erqKvtQ6datG9577z14eHjg/PnzmDhxIrp37w69Xg9zc/MyHUNJnmaMjRo1wooVK9CiRQtkZmZi9uzZaN++PU6fPo06depUqX14+PBhnDp1CsuXL5e1v0j70FRPeg8ajUbcv38ft2/ffubXfWkwCJlgwoQJ+Pe//11szdmzZ9G4cePn1KOyV9oxPqv79+9jzZo1+PLLLwtNK9j2yiuvICsrC7NmzSqTD9LyHl/BUODl5QUXFxd07doV58+fh6en51Mvt7Se1/4zGo0ICAhA06ZNERUVJZtWnvuPns6MGTOwdu1a7Nu3T3YycVBQkPR/Ly8vtGjRAp6enti3bx+6du1aEV01iY+PD3x8fKTn7du3R5MmTbB06VJMmzatAntW9pYvXw4vLy+0bdtW1l7Z9+GLgEHIBJ999hkGDhxYbE39+vWfatnOzs4AgPT0dLi4uEjt6enpaNWqlVRz7do12Xw5OTm4deuWNP+zKu0Yn7UvP/30E+7du4cBAwaUWOvt7Y1p06YhOzv7mf8w3/MaXz5vb28AwLlz5+Dp6QlnZ+dCVzykp6cDQJnsw+cxvjt37qBbt26oWbMmNm3ahOrVqxdbX5b770ns7e1hbm4ubct86enpTxyPs7NzsfWleU8+L08zvnyzZ8/GjBkzsGvXLrRo0aLY2vr168Pe3h7nzp177h+izzLGfNWrV8crr7yCc+fOAag6+zArKwtr167F1KlTS1xPRe5DUz3pPajVamFpaQlzc/Nnfk2USpmdbURFMvVk6dmzZ0ttmZmZRZ4sffToUalmx44dFXqy9NP2xdfXt9DVRk8yffp0UatWrafu69Moq239+++/CwDi+PHjQoj/O1m64BUPS5cuFVqtVjx48KDsBlCCpx1fZmamaNeunfD19RVZWVmlWtfz2n9t27YVYWFh0vPc3Fzx0ksvFXuydI8ePWRtPj4+hU6WLu49+TyZOj4hhPj3v/8ttFqt0Ov1pVrHX3/9JVQqlfjll1+eub9P42nGWFBOTo5o1KiRGDNmjBCiauxDIf75HNFoNOLGjRslrqOi92E+lPJk6ebNm8va+vbtW+hk6Wd5TZSqr2W2JJK5ePGiSExMlC4PT0xMFImJibLLxBs1aiQ2btwoPZ8xY4awtbUVv/zyizhx4oTo2bNnkZfPv/LKKyI+Pl78/vvvomHDhhV6+Xxxfbl8+bJo1KiRiI+Pl82XmpoqVCqV2L59e6Fl/vrrr+Lbb78VJ0+eFKmpqWLRokXCyspKREZGlvt4Hmfq+M6dOyemTp0qjh49KtLS0sQvv/wi6tevLzp16iTNk3/5vL+/v0hKShKxsbHCwcGhwi6fN2V8mZmZwtvbW3h5eYlz587JLtfNyckRQlTs/lu7dq3QaDQiJiZGnDlzRgwdOlTY2tpKV+h99NFHYsKECVL9H3/8IapVqyZmz54tzp49KyZPnlzk5fMlvSefF1PHN2PGDKFWq8VPP/0k21f5P4Pu3Lkjxo4dK/R6vUhLSxO7du0SrVu3Fg0bNnyuofxZxjhlyhSxY8cOcf78eZGQkCCCgoKEhYWFOH36tFRTmfdhvg4dOog+ffoUan/R9uGdO3ekzzoA4quvvhKJiYni4sWLQgghJkyYID766COpPv/y+c8//1ycPXtWLFy4sMjL54vbZmWBQaicBAcHCwCFHnv37pVq8L/3W8mXl5cnvvzyS+Hk5CQ0Go3o2rWrSElJkS335s2bom/fvqJGjRpCq9WKQYMGycLV81RSX9LS0gqNWQghIiIihJubm8jNzS20zO3bt4tWrVqJGjVqCGtra9GyZUuxZMmSImvLm6nju3TpkujUqZOws7MTGo1GNGjQQHz++eey+wgJIcSFCxdE9+7dhaWlpbC3txefffaZ7PLz58XU8e3du7fI1zQAkZaWJoSo+P33zTffiLp16wq1Wi3atm0rDh06JE3z9fUVwcHBsvr169eLl19+WajVatGsWTOxdetW2fTSvCefJ1PG5+7uXuS+mjx5shBCiHv37gl/f3/h4OAgqlevLtzd3cWQIUPK9APmaZgyxtGjR0u1Tk5O4q233hLHjh2TLa8y70MhhEhOThYAxM6dOwst60Xbh0/6GZE/puDgYOHr61tonlatWgm1Wi3q168v+0zMV9w2KwsqIZ7zdclERERELwjeR4iIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFItBiIiIiBSLQYiIiIgUi0GIiIiIFOv/A8fPBVqtezj9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM4FJREFUeJzt3XtUVXXex/EPoHDQBK+AJCGZqXhNLcIyKxmPRRllF8uKlLQLlErZaJnabSzznuYlx0uTrsqnpWNqGGHKM0poKJOaOmamTgbaKOckKV7Yzx8t9uMRVHDAI/7er7X2Wp69v3vv7/75Kz5u9jnHx7IsSwAAAAby9XYDAAAA3kIQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACgCo0evRo+fj46Ndff/V2KwDKQBACAADGIggBAABjEYQAlKm4uFjHjh3zdhseCgsLq/wclmXp6NGjVX6eylQdewYuFQQh4DJX8ozK9u3b9eCDDyooKEgNGjTQoEGDPIKOj4+PUlJStGDBArVu3VoBAQFKS0uTJP3888/q37+/QkNDFRAQoNatW2vOnDmlznXs2DGNHj1a1157rRwOhxo3bqz77rtPu3btkiStXr1aPj4+Wr16tcd+P/30k3x8fDRv3jx73RNPPKErrrhCu3bt0p133qk6deqob9++kqSdO3eqd+/eCgsLk8PhUJMmTdSnTx+5XC57/5MnT+qNN95Qs2bNFBAQoKZNm+rll19WUVGRx7mbNm2qu+66SytXrlTnzp0VGBiomTNnlnt8S8a1UaNGCgwMVIsWLfTKK6+UqisoKNATTzyhunXrKjg4WP369dPvv//uUTN37lzdfvvtCgkJUUBAgKKjozV9+vRSxzpXz3v27FGvXr1Uu3ZthYSEaMiQIVq5cmWZ456dna2ePXsqODhYtWrVUrdu3bR27dpyXztwOajh7QYAXBwPPvigmjZtqjFjxuibb77RlClTdPjwYX344Yd2zapVq/Tpp58qJSVFDRs2VNOmTZWfn68bb7zRDkqNGjXSF198oaSkJLndbg0ePFiSdOrUKd11113KyMhQnz59NGjQIP32229KT0/Xli1b1KxZswr3fPLkSTmdTt18880aN26catWqpePHj8vpdKqoqEjPPfecwsLC9PPPP2vZsmUqKChQcHCwJOnJJ5/U/Pnzdf/99+uFF15Qdna2xowZo23btmnx4sUe59mxY4cefvhhPfXUUxowYIBatGhRrv6+++47de3aVTVr1tTAgQPVtGlT7dq1S59//rneeuutUuMfFRWlMWPGaOPGjZo9e7ZCQkL0zjvv2DXTp09X69at1atXL9WoUUOff/65nn32WRUXFys5Ofm8PRcWFur222/XL7/8okGDBiksLEwLFy7U119/Xar3VatW6Y477lCnTp00atQo+fr62kHsf//3f3XDDTeUawyAas8CcFkbNWqUJcnq1auXx/pnn33WkmT985//tCzLsiRZvr6+1tatWz3qkpKSrMaNG1u//vqrx/o+ffpYwcHB1u+//25ZlmXNmTPHkmRNmDChVA/FxcWWZVnW119/bUmyvv76a4/tu3fvtiRZc+fOtdclJiZakqxhw4Z51G7atMmSZC1atOis15ybm2tJsp588kmP9S+++KIlyVq1apW9LjIy0pJkpaWlnfV4Z3PLLbdYderUsfbs2eOxvuR6Lev/x79///4eNffee6/VoEEDj3UlY3k6p9NpXX311R7rztbz+PHjLUnWkiVL7HVHjx61WrZs6THuxcXFVvPmzS2n0+nR6++//25FRUVZf/rTn8px9cDlgV+NAYY4847Cc889J0lasWKFva5bt26Kjo62X1uWpc8++0x33323LMvSr7/+ai9Op1Mul0sbN26UJH322Wdq2LChfdzT+fj4XHDfzzzzjMfrkjs+K1euLPWrpRIl15Samuqx/oUXXpAkLV++3GN9VFSUnE5nhfo6ePCgMjMz1b9/f1111VUe28q63qefftrjddeuXfWf//xHbrfbXhcYGGj/2eVy6ddff1W3bt30448/evza72w9p6Wl6corr1SvXr3sdQ6HQwMGDPCoy83N1c6dO/XII4/oP//5j/13WlhYqO7duyszM1PFxcXlHAmgeuNXY4Ahmjdv7vG6WbNm8vX11U8//WSvi4qK8qg5ePCgCgoKNGvWLM2aNavM4x44cECStGvXLrVo0UI1alTe/1Zq1KihJk2aeKyLiopSamqqJkyYoAULFqhr167q1auXHn30UTsk7dmzR76+vrrmmms89g0LC1PdunW1Z8+eUsesqB9//FGS1KZNm3LVnxmW6tWrJ0k6fPiwgoKCJElr167VqFGjlJWVVSrkuVwu+/rO1vOePXvUrFmzUkHszHHYuXOnJCkxMfGs/bpcLrtH4HJGEAIMVdZdi9PvSEiy7wo8+uijZ/2h2a5du//qnNIfzxeVJSAgQL6+pW9cjx8/Xk888YT+/ve/68svv9Tzzz9vP/t0enAq752oM6+7Kvj5+ZW53rIsSX8Eye7du6tly5aaMGGCIiIi5O/vrxUrVmjixIml7tD8Nz2XHOvdd99Vhw4dyqy54oorLvj4QHVCEAIMsXPnTo+7CD/88IOKi4vVtGnTs+7TqFEj1alTR6dOnVJcXNw5j9+sWTNlZ2frxIkTqlmzZpk1JXcYCgoKPNafeYemPNq2bau2bdtqxIgRWrdunW666SbNmDFDb775piIjI1VcXKydO3eqVatW9j75+fkqKChQZGRkhc93pquvvlqStGXLlv/6WJL0+eefq6ioSEuXLvW4e1TWg85nExkZqe+//16WZXmEwB9++MGjruTB9aCgoPP+vQKXO54RAgwxbdo0j9fvvfeeJOmOO+446z5+fn7q3bu3PvvsszJ/4B88eND+c+/evfXrr79q6tSppepK7npERkbKz89PmZmZHtvff//9cl+H2+3WyZMnPda1bdtWvr6+9lvj77zzTknSpEmTPOomTJggSYqPjy/3+c6mUaNGuuWWWzRnzhzt3bvXY1vJ9VZEyR2j0/d1uVyaO3duuY/hdDr1888/a+nSpfa6Y8eO6YMPPvCo69Spk5o1a6Zx48bpyJEjpY5z+t8rcLnjjhBgiN27d6tXr17q2bOnsrKy9NFHH+mRRx5R+/btz7nf22+/ra+//loxMTEaMGCAoqOjdejQIW3cuFFfffWVDh06JEl6/PHH9eGHHyo1NVXr169X165dVVhYqK+++krPPvus7rnnHgUHB+uBBx7Qe++9Jx8fHzVr1kzLli2znzMqj1WrViklJUUPPPCArr32Wp08eVJ/+9vf7NAmSe3bt1diYqJmzZqlgoICdevWTevXr9f8+fOVkJCg22677cIH8jRTpkzRzTffrI4dO2rgwIGKiorSTz/9pOXLlys3N7dCx+rRo4f8/f11991366mnntKRI0f0wQcfKCQkRL/88ku5jvHUU09p6tSpevjhhzVo0CA1btxYCxYskMPhkPT/vyr09fXV7Nmzdccdd6h169bq16+frrzySv3888/6+uuvFRQUpM8//7xC/QPVlhffsQbgIih5+/b3339v3X///VadOnWsevXqWSkpKdbRo0ftOklWcnJymcfIz8+3kpOTrYiICKtmzZpWWFiY1b17d2vWrFkedb///rv1yiuvWFFRUXbd/fffb+3atcuuOXjwoNW7d2+rVq1aVr169aynnnrK2rJlS5lvn69du3apXn788Uerf//+VrNmzSyHw2HVr1/fuu2226yvvvrKo+7EiRPWa6+9ZvcSERFhDR8+3Dp27JhHXWRkpBUfH1/u8TzTli1brHvvvdeqW7eu5XA4rBYtWlivvvqqvb1k/A8ePOix39y5cy1J1u7du+11S5cutdq1a2c5HA6radOm1jvvvGN/LMHpdefq+ccff7Ti4+OtwMBAq1GjRtYLL7xgffbZZ5Yk65tvvvGo3bRpk3XfffdZDRo0sAICAqzIyEjrwQcftDIyMi54PIDqxseyLuAeLoBqY/To0Xrttdd08OBBNWzY0NvtwAsmTZqkIUOG6N///reuvPJKb7cDXFJ4RggALiNnfufYsWPHNHPmTDVv3pwQBJSBZ4QA4Awul+u8X2IaFhZ2kbqpmPvuu09XXXWVOnToIJfLpY8++kjbt2/XggULvN0acEkiCAHAGQYNGqT58+efs+ZSfarA6XRq9uzZWrBggU6dOqXo6Gh9/PHHeuihh7zdGnBJ4hkhADjD999/r/3795+zhs/fAS4PBCEAAGAsHpYGAADG4hmhcyguLtb+/ftVp06d/+rbswEAwMVjWZZ+++03hYeHl/l9hacjCJ3D/v37FRER4e02AADABdi3b5/HFzGXhSB0DnXq1JH0x0AGBQV5uRsAAFAebrdbERER9s/xcyEInUPJr8OCgoIIQgAAVDPleayFh6UBAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjFXD2w0AAMpvYvq/vN3CBRnyp2u93QJQJu4IAQAAYxGEAACAsQhCAADAWDwjBADVyI17Z3m7hQs0ztsNAGXijhAAADAWd4SAS1B1fGcQ7woCUB1xRwgAABiLIAQAAIxFEAIAAMYiCAEAAGPxsDRwCaqeb5Hm7dEAqh/uCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFaFg1BmZqbuvvtuhYeHy8fHR0uWLPHYblmWRo4cqcaNGyswMFBxcXHauXOnR82hQ4fUt29fBQUFqW7dukpKStKRI0c8ar777jt17dpVDodDERERGjt2bKleFi1apJYtW8rhcKht27ZasWJFhXsBAADmqnAQKiwsVPv27TVt2rQyt48dO1ZTpkzRjBkzlJ2drdq1a8vpdOrYsWN2Td++fbV161alp6dr2bJlyszM1MCBA+3tbrdbPXr0UGRkpHJycvTuu+9q9OjRmjXr/99SvG7dOj388MNKSkrSpk2blJCQoISEBG3ZsqVCvQAAAHP5WJZlXfDOPj5avHixEhISJP1xByY8PFwvvPCCXnzxRUmSy+VSaGio5s2bpz59+mjbtm2Kjo7Whg0b1LlzZ0lSWlqa7rzzTv373/9WeHi4pk+frldeeUV5eXny9/eXJA0bNkxLlizR9u3bJUkPPfSQCgsLtWzZMrufG2+8UR06dNCMGTPK1cv5uN1uBQcHy+VyKSgo6EKHCaiwrL++6O0WKiw2ic8Ruhiq49yQmB+4uCry87tSnxHavXu38vLyFBcXZ68LDg5WTEyMsrKyJElZWVmqW7euHYIkKS4uTr6+vsrOzrZrbrnlFjsESZLT6dSOHTt0+PBhu+b085TUlJynPL2cqaioSG6322MBAACXr0oNQnl5eZKk0NBQj/WhoaH2try8PIWEhHhsr1GjhurXr+9RU9YxTj/H2WpO336+Xs40ZswYBQcH20tEREQ5rhoAAFRXvGvsNMOHD5fL5bKXffv2ebslAABQhSo1CIWFhUmS8vPzPdbn5+fb28LCwnTgwAGP7SdPntShQ4c8aso6xunnOFvN6dvP18uZAgICFBQU5LEAAIDLV6UGoaioKIWFhSkjI8Ne53a7lZ2drdjYWElSbGysCgoKlJOTY9esWrVKxcXFiomJsWsyMzN14sQJuyY9PV0tWrRQvXr17JrTz1NSU3Ke8vQCAADMVuEgdOTIEeXm5io3N1fSHw8l5+bmau/evfLx8dHgwYP15ptvaunSpdq8ebMef/xxhYeH2+8sa9WqlXr27KkBAwZo/fr1Wrt2rVJSUtSnTx+Fh4dLkh555BH5+/srKSlJW7du1SeffKLJkycrNTXV7mPQoEFKS0vT+PHjtX37do0ePVrffvutUlJSJKlcvQAAALPVqOgO3377rW677Tb7dUk4SUxM1Lx58/TSSy+psLBQAwcOVEFBgW6++WalpaXJ4XDY+yxYsEApKSnq3r27fH191bt3b02ZMsXeHhwcrC+//FLJycnq1KmTGjZsqJEjR3p81lCXLl20cOFCjRgxQi+//LKaN2+uJUuWqE2bNnZNeXoBAADm+q8+R+hyx+cIwVuq42fF8DkxF0d1nBsS8wMXl9c+RwgAAKA6IQgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxani7AQAAUDkmpv/L2y1U2JA/XevV83NHCAAAGIs7QgAAXCZu3DvL2y1cgHFePTt3hAAAgLEqPQidOnVKr776qqKiohQYGKhmzZrpjTfekGVZdo1lWRo5cqQaN26swMBAxcXFaefOnR7HOXTokPr27augoCDVrVtXSUlJOnLkiEfNd999p65du8rhcCgiIkJjx44t1c+iRYvUsmVLORwOtW3bVitWrKjsSwYAANVUpQehd955R9OnT9fUqVO1bds2vfPOOxo7dqzee+89u2bs2LGaMmWKZsyYoezsbNWuXVtOp1PHjh2za/r27autW7cqPT1dy5YtU2ZmpgYOHGhvd7vd6tGjhyIjI5WTk6N3331Xo0eP1qxZ/39bcN26dXr44YeVlJSkTZs2KSEhQQkJCdqyZUtlXzYAAKiGKj0IrVu3Tvfcc4/i4+PVtGlT3X///erRo4fWr18v6Y+7QZMmTdKIESN0zz33qF27dvrwww+1f/9+LVmyRJK0bds2paWlafbs2YqJidHNN9+s9957Tx9//LH2798vSVqwYIGOHz+uOXPmqHXr1urTp4+ef/55TZgwwe5l8uTJ6tmzp4YOHapWrVrpjTfeUMeOHTV16tTKvmwAAFANVXoQ6tKlizIyMvSvf/3xFr5//vOf+sc//qE77rhDkrR7927l5eUpLi7O3ic4OFgxMTHKysqSJGVlZalu3brq3LmzXRMXFydfX19lZ2fbNbfccov8/f3tGqfTqR07dujw4cN2zennKakpOc+ZioqK5Ha7PRYAAHD5qvR3jQ0bNkxut1stW7aUn5+fTp06pbfeekt9+/aVJOXl5UmSQkNDPfYLDQ21t+Xl5SkkJMSz0Ro1VL9+fY+aqKioUsco2VavXj3l5eWd8zxnGjNmjF577bULuWwAAFANVfodoU8//VQLFizQwoULtXHjRs2fP1/jxo3T/PnzK/tUlW748OFyuVz2sm/fPm+3BAAAqlCl3xEaOnSohg0bpj59+kiS2rZtqz179mjMmDFKTExUWFiYJCk/P1+NGze298vPz1eHDh0kSWFhYTpw4IDHcU+ePKlDhw7Z+4eFhSk/P9+jpuT1+WpKtp8pICBAAQEBF3LZAACgGqr0O0K///67fH09D+vn56fi4mJJUlRUlMLCwpSRkWFvd7vdys7OVmxsrCQpNjZWBQUFysnJsWtWrVql4uJixcTE2DWZmZk6ceKEXZOenq4WLVqoXr16ds3p5ympKTkPAAAwW6UHobvvvltvvfWWli9frp9++kmLFy/WhAkTdO+990qSfHx8NHjwYL355ptaunSpNm/erMcff1zh4eFKSEiQJLVq1Uo9e/bUgAEDtH79eq1du1YpKSnq06ePwsPDJUmPPPKI/P39lZSUpK1bt+qTTz7R5MmTlZqaavcyaNAgpaWlafz48dq+fbtGjx6tb7/9VikpKZV92QAAoBqq9F+Nvffee3r11Vf17LPP6sCBAwoPD9dTTz2lkSNH2jUvvfSSCgsLNXDgQBUUFOjmm29WWlqaHA6HXbNgwQKlpKSoe/fu8vX1Ve/evTVlyhR7e3BwsL788kslJyerU6dOatiwoUaOHOnxWUNdunTRwoULNWLECL388stq3ry5lixZojZt2lT2ZQMAgGrIxzr9I5/hwe12Kzg4WC6XS0FBQd5uBwbJ+uuL3m6hwmKTvPt9QaaojnNDYn5cLNVxflTF3KjIz2++awwAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFaVBKGff/5Zjz76qBo0aKDAwEC1bdtW3377rb3dsiyNHDlSjRs3VmBgoOLi4rRz506PYxw6dEh9+/ZVUFCQ6tatq6SkJB05csSj5rvvvlPXrl3lcDgUERGhsWPHlupl0aJFatmypRwOh9q2basVK1ZUxSUDAIBqqNKD0OHDh3XTTTepZs2a+uKLL/T9999r/Pjxqlevnl0zduxYTZkyRTNmzFB2drZq164tp9OpY8eO2TV9+/bV1q1blZ6ermXLlikzM1MDBw60t7vdbvXo0UORkZHKycnRu+++q9GjR2vWrFl2zbp16/Twww8rKSlJmzZtUkJCghISErRly5bKvmwAAFAN1ajsA77zzjuKiIjQ3Llz7XVRUVH2ny3L0qRJkzRixAjdc889kqQPP/xQoaGhWrJkifr06aNt27YpLS1NGzZsUOfOnSVJ7733nu68806NGzdO4eHhWrBggY4fP645c+bI399frVu3Vm5uriZMmGAHpsmTJ6tnz54aOnSoJOmNN95Qenq6pk6dqhkzZpTqvaioSEVFRfZrt9td2cMDAAAuIZV+R2jp0qXq3LmzHnjgAYWEhOi6667TBx98YG/fvXu38vLyFBcXZ68LDg5WTEyMsrKyJElZWVmqW7euHYIkKS4uTr6+vsrOzrZrbrnlFvn7+9s1TqdTO3bs0OHDh+2a089TUlNynjONGTNGwcHB9hIREfFfjgYAALiUVXoQ+vHHHzV9+nQ1b95cK1eu1DPPPKPnn39e8+fPlyTl5eVJkkJDQz32Cw0Ntbfl5eUpJCTEY3uNGjVUv359j5qyjnH6Oc5WU7L9TMOHD5fL5bKXffv2Vfj6AQBA9VHpvxorLi5W586d9Ze//EWSdN1112nLli2aMWOGEhMTK/t0lSogIEABAQHebgMAAFwklX5HqHHjxoqOjvZY16pVK+3du1eSFBYWJknKz8/3qMnPz7e3hYWF6cCBAx7bT548qUOHDnnUlHWM089xtpqS7QAAwGyVHoRuuukm7dixw2Pdv/71L0VGRkr648HpsLAwZWRk2Nvdbreys7MVGxsrSYqNjVVBQYFycnLsmlWrVqm4uFgxMTF2TWZmpk6cOGHXpKenq0WLFvY71GJjYz3OU1JTch4AAGC2Sg9CQ4YM0TfffKO//OUv+uGHH7Rw4ULNmjVLycnJkiQfHx8NHjxYb775ppYuXarNmzfr8ccfV3h4uBISEiT9cQepZ8+eGjBggNavX6+1a9cqJSVFffr0UXh4uCTpkUcekb+/v5KSkrR161Z98sknmjx5slJTU+1eBg0apLS0NI0fP17bt2/X6NGj9e233yolJaWyLxsAAFRDlf6M0PXXX6/Fixdr+PDhev311xUVFaVJkyapb9++ds1LL72kwsJCDRw4UAUFBbr55puVlpYmh8Nh1yxYsEApKSnq3r27fH191bt3b02ZMsXeHhwcrC+//FLJycnq1KmTGjZsqJEjR3p81lCXLl20cOFCjRgxQi+//LKaN2+uJUuWqE2bNpV92QAAoBrysSzL8nYTlyq3263g4GC5XC4FBQV5ux0YJOuvL3q7hQqLTRrn7RaMUB3nhsT8uFiq4/yoirlRkZ/ffNcYAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYVR6E3n77bfn4+Gjw4MH2umPHjik5OVkNGjTQFVdcod69eys/P99jv7179yo+Pl61atVSSEiIhg4dqpMnT3rUrF69Wh07dlRAQICuueYazZs3r9T5p02bpqZNm8rhcCgmJkbr16+vissEAADVUJUGoQ0bNmjmzJlq166dx/ohQ4bo888/16JFi7RmzRrt379f9913n7391KlTio+P1/Hjx7Vu3TrNnz9f8+bN08iRI+2a3bt3Kz4+Xrfddptyc3M1ePBgPfnkk1q5cqVd88knnyg1NVWjRo3Sxo0b1b59ezmdTh04cKAqLxsAAFQTVRaEjhw5or59++qDDz5QvXr17PUul0t//etfNWHCBN1+++3q1KmT5s6dq3Xr1umbb76RJH355Zf6/vvv9dFHH6lDhw6644479MYbb2jatGk6fvy4JGnGjBmKiorS+PHj1apVK6WkpOj+++/XxIkT7XNNmDBBAwYMUL9+/RQdHa0ZM2aoVq1amjNnTlVdNgAAqEaqLAglJycrPj5ecXFxHutzcnJ04sQJj/UtW7bUVVddpaysLElSVlaW2rZtq9DQULvG6XTK7XZr69atds2Zx3Y6nfYxjh8/rpycHI8aX19fxcXF2TVnKioqktvt9lgAAMDlq0ZVHPTjjz/Wxo0btWHDhlLb8vLy5O/vr7p163qsDw0NVV5enl1zeggq2V6y7Vw1brdbR48e1eHDh3Xq1Kkya7Zv315m32PGjNFrr71W/gsFAADVWqXfEdq3b58GDRqkBQsWyOFwVPbhq9Tw4cPlcrnsZd++fd5uCQAAVKFKD0I5OTk6cOCAOnbsqBo1aqhGjRpas2aNpkyZoho1aig0NFTHjx9XQUGBx375+fkKCwuTJIWFhZV6F1nJ6/PVBAUFKTAwUA0bNpSfn1+ZNSXHOFNAQICCgoI8FgAAcPmq9CDUvXt3bd68Wbm5ufbSuXNn9e3b1/5zzZo1lZGRYe+zY8cO7d27V7GxsZKk2NhYbd682ePdXenp6QoKClJ0dLRdc/oxSmpKjuHv769OnTp51BQXFysjI8OuAQAAZqv0Z4Tq1KmjNm3aeKyrXbu2GjRoYK9PSkpSamqq6tevr6CgID333HOKjY3VjTfeKEnq0aOHoqOj9dhjj2ns2LHKy8vTiBEjlJycrICAAEnS008/ralTp+qll15S//79tWrVKn366adavny5fd7U1FQlJiaqc+fOuuGGGzRp0iQVFhaqX79+lX3ZAACgGqqSh6XPZ+LEifL19VXv3r1VVFQkp9Op999/397u5+enZcuW6ZlnnlFsbKxq166txMREvf7663ZNVFSUli9friFDhmjy5Mlq0qSJZs+eLafTadc89NBDOnjwoEaOHKm8vDx16NBBaWlppR6gBgAAZvKxLMvydhOXKrfbreDgYLlcLp4XwkWV9dcXvd1ChcUmjfN2C0aojnNDYn5cLNVxflTF3KjIz2++awwAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYKxKD0JjxozR9ddfrzp16igkJEQJCQnasWOHR82xY8eUnJysBg0a6IorrlDv3r2Vn5/vUbN3717Fx8erVq1aCgkJ0dChQ3Xy5EmPmtWrV6tjx44KCAjQNddco3nz5pXqZ9q0aWratKkcDodiYmK0fv36yr5kAABQTVV6EFqzZo2Sk5P1zTffKD09XSdOnFCPHj1UWFho1wwZMkSff/65Fi1apDVr1mj//v2677777O2nTp1SfHy8jh8/rnXr1mn+/PmaN2+eRo4cadfs3r1b8fHxuu2225Sbm6vBgwfrySef1MqVK+2aTz75RKmpqRo1apQ2btyo9u3by+l06sCBA5V92QAAoBrysSzLqsoTHDx4UCEhIVqzZo1uueUWuVwuNWrUSAsXLtT9998vSdq+fbtatWqlrKws3Xjjjfriiy901113af/+/QoNDZUkzZgxQ3/+85918OBB+fv7689//rOWL1+uLVu22Ofq06ePCgoKlJaWJkmKiYnR9ddfr6lTp0qSiouLFRERoeeee07Dhg07b+9ut1vBwcFyuVwKCgqq7KEBzirrry96u4UKi00a5+0WjFAd54bE/LhYquP8qIq5UZGf31X+jJDL5ZIk1a9fX5KUk5OjEydOKC4uzq5p2bKlrrrqKmVlZUmSsrKy1LZtWzsESZLT6ZTb7dbWrVvtmtOPUVJTcozjx48rJyfHo8bX11dxcXF2zZmKiorkdrs9FgAAcPmq0iBUXFyswYMH66abblKbNm0kSXl5efL391fdunU9akNDQ5WXl2fXnB6CSraXbDtXjdvt1tGjR/Xrr7/q1KlTZdaUHONMY8aMUXBwsL1ERERc2IUDAIBqoUqDUHJysrZs2aKPP/64Kk9TaYYPHy6Xy2Uv+/bt83ZLAACgCtWoqgOnpKRo2bJlyszMVJMmTez1YWFhOn78uAoKCjzuCuXn5yssLMyuOfPdXSXvKju95sx3muXn5ysoKEiBgYHy8/OTn59fmTUlxzhTQECAAgICLuyCAQBAtVPpd4Qsy1JKSooWL16sVatWKSoqymN7p06dVLNmTWVkZNjrduzYob179yo2NlaSFBsbq82bN3u8uys9PV1BQUGKjo62a04/RklNyTH8/f3VqVMnj5ri4mJlZGTYNQAAwGyVfkcoOTlZCxcu1N///nfVqVPHfh4nODhYgYGBCg4OVlJSklJTU1W/fn0FBQXpueeeU2xsrG688UZJUo8ePRQdHa3HHntMY8eOVV5enkaMGKHk5GT7js3TTz+tqVOn6qWXXlL//v21atUqffrpp1q+fLndS2pqqhITE9W5c2fdcMMNmjRpkgoLC9WvX7/KvmwAAFANVXoQmj59uiTp1ltv9Vg/d+5cPfHEE5KkiRMnytfXV71791ZRUZGcTqfef/99u9bPz0/Lli3TM888o9jYWNWuXVuJiYl6/fXX7ZqoqCgtX75cQ4YM0eTJk9WkSRPNnj1bTqfTrnnooYd08OBBjRw5Unl5eerQoYPS0tJKPUANAADMVOlBqDwfS+RwODRt2jRNmzbtrDWRkZFasWLFOY9z6623atOmTeesSUlJUUpKynl7AgAA5uG7xgAAgLEIQgAAwFgEIQAAYCyCEAAAMFaVfaAizo8vxwMAwLu4IwQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYyIghNmzZNTZs2lcPhUExMjNavX+/tlgAAwCXgsg9Cn3zyiVJTUzVq1Cht3LhR7du3l9Pp1IEDB7zdGgAA8LLLPghNmDBBAwYMUL9+/RQdHa0ZM2aoVq1amjNnjrdbAwAAXlbD2w1UpePHjysnJ0fDhw+31/n6+iouLk5ZWVml6ouKilRUVGS/drlckiS3210l/RUeLTp/0SWmqsYCnpgbOJvqODck5sfFUh3nR1XMjZJjWpZ1/mLrMvbzzz9bkqx169Z5rB86dKh1ww03lKofNWqUJYmFhYWFhYXlMlj27dt33qxwWd8Rqqjhw4crNTXVfl1cXKxDhw6pQYMG8vHxqdRzud1uRUREaN++fQoKCqrUY19uGKvyY6zKj7EqP8aqYhiv8quqsbIsS7/99pvCw8PPW3tZB6GGDRvKz89P+fn5Huvz8/MVFhZWqj4gIEABAQEe6+rWrVuVLSooKIj/UMqJsSo/xqr8GKvyY6wqhvEqv6oYq+Dg4HLVXdYPS/v7+6tTp07KyMiw1xUXFysjI0OxsbFe7AwAAFwKLus7QpKUmpqqxMREde7cWTfccIMmTZqkwsJC9evXz9utAQAAL7vsg9BDDz2kgwcPauTIkcrLy1OHDh2Ulpam0NBQr/YVEBCgUaNGlfpVHEpjrMqPsSo/xqr8GKuKYbzK71IYKx/LKs97ywAAAC4/l/UzQgAAAOdCEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEoSqQmZmpu+++W+Hh4fLx8dGSJUvOu8/q1avVsWNHBQQE6JprrtG8efOqvM9LRUXHa/Xq1fLx8Sm15OXlXZyGvWTMmDG6/vrrVadOHYWEhCghIUE7duw4736LFi1Sy5Yt5XA41LZtW61YseIidOtdFzJW8+bNKzWnHA7HRerYu6ZPn6527drZn+4bGxurL7744pz7mDivpIqPlcnz6kxvv/22fHx8NHjw4HPWXey5RRCqAoWFhWrfvr2mTZtWrvrdu3crPj5et912m3JzczV48GA9+eSTWrlyZRV3emmo6HiV2LFjh3755Rd7CQkJqaIOLw1r1qxRcnKyvvnmG6Wnp+vEiRPq0aOHCgsLz7rPunXr9PDDDyspKUmbNm1SQkKCEhIStGXLlovY+cV3IWMl/fEx/6fPqT179lykjr2rSZMmevvtt5WTk6Nvv/1Wt99+u+655x5t3bq1zHpT55VU8bGSzJ1Xp9uwYYNmzpypdu3anbPOK3Orcr7nHWcjyVq8ePE5a1566SWrdevWHuseeughy+l0VmFnl6byjNfXX39tSbIOHz58UXq6VB04cMCSZK1Zs+asNQ8++KAVHx/vsS4mJsZ66qmnqrq9S0p5xmru3LlWcHDwxWvqElevXj1r9uzZZW5jXnk611gxryzrt99+s5o3b26lp6db3bp1swYNGnTWWm/MLe4IXQKysrIUFxfnsc7pdCorK8tLHVUPHTp0UOPGjfWnP/1Ja9eu9XY7F53L5ZIk1a9f/6w1zK0/lGesJOnIkSOKjIxURETEef+Vf7k6deqUPv74YxUWFp71OxmZV38oz1hJzKvk5GTFx8eXmjNl8cbcuuy/YqM6yMvLK/WVH6GhoXK73Tp69KgCAwO91NmlqXHjxpoxY4Y6d+6soqIizZ49W7feequys7PVsWNHb7d3URQXF2vw4MG66aab1KZNm7PWnW1uXe7PU52uvGPVokULzZkzR+3atZPL5dK4cePUpUsXbd26VU2aNLmIHXvH5s2bFRsbq2PHjumKK67Q4sWLFR0dXWat6fOqImNl+rz6+OOPtXHjRm3YsKFc9d6YWwQhVDstWrRQixYt7NddunTRrl27NHHiRP3tb3/zYmcXT3JysrZs2aJ//OMf3m7lklfesYqNjfX4V32XLl3UqlUrzZw5U2+88UZVt+l1LVq0UG5urlwul/7nf/5HiYmJWrNmzVl/wJusImNl8rzat2+fBg0apPT09Ev6AXGC0CUgLCxM+fn5Huvy8/MVFBTE3aByuuGGG4wJBSkpKVq2bJkyMzPP+y/Ks82tsLCwqmzxklGRsTpTzZo1dd111+mHH36oou4uLf7+/rrmmmskSZ06ddKGDRs0efJkzZw5s1St6fOqImN1JpPmVU5Ojg4cOOBxp/7UqVPKzMzU1KlTVVRUJD8/P499vDG3eEboEhAbG6uMjAyPdenp6ef8nTM85ebmqnHjxt5uo0pZlqWUlBQtXrxYq1atUlRU1Hn3MXVuXchYnenUqVPavHnzZT+vzqa4uFhFRUVlbjN1Xp3NucbqTCbNq+7du2vz5s3Kzc21l86dO6tv377Kzc0tFYIkL82tKnsM22C//fabtWnTJmvTpk2WJGvChAnWpk2brD179liWZVnDhg2zHnvsMbv+xx9/tGrVqmUNHTrU2rZtmzVt2jTLz8/PSktL89YlXFQVHa+JEydaS5YssXbu3Glt3rzZGjRokOXr62t99dVX3rqEi+KZZ56xgoODrdWrV1u//PKLvfz+++92zWOPPWYNGzbMfr127VqrRo0a1rhx46xt27ZZo0aNsmrWrGlt3rzZG5dw0VzIWL322mvWypUrrV27dlk5OTlWnz59LIfDYW3dutUbl3BRDRs2zFqzZo21e/du67vvvrOGDRtm+fj4WF9++aVlWcyr01V0rEyeV2U5811jl8LcIghVgZK3d5+5JCYmWpZlWYmJiVa3bt1K7dOhQwfL39/fuvrqq625c+de9L69paLj9c4771jNmjWzHA6HVb9+fevWW2+1Vq1a5Z3mL6KyxkiSx1zp1q2bPW4lPv30U+vaa6+1/P39rdatW1vLly+/uI17wYWM1eDBg62rrrrK8vf3t0JDQ60777zT2rhx48Vv3gv69+9vRUZGWv7+/lajRo2s7t272z/YLYt5dbqKjpXJ86osZwahS2Fu+ViWZVXd/SYAAIBLF88IAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBY/wfR0MsWuMjL6AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANgNJREFUeJzt3Xl8FPX9x/F3EsjBsQlnlpQAKSAQuWrAZOuJpCwaD0qooKgRA1SaUEhEMGo5rC0+8OAoCEWr0J9QkVqoQgmm4fq1BNBgKoekiGhQ3IBCshBJAmR+f/jI/FgTlXAt+fJ6Ph7zeGTn+9mZz8yw5u3szCTAsixLAAAAhgn0dwMAAAAXAyEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAfsDUqVMVEBDg7zZ+0IYNGxQQEKC//vWv/m4FuCwQcgCgnlm6dKlmzZrl7zaAyx4hBwDqGUIOcHYIOcAVrqqqSuXl5f5uw0dZWdlFX4dlWTpx4sRFXw8A/yHkAIaovm5kz549uvvuu+VwONSiRQuNGzfOJ8QEBAQoPT1dS5Ys0dVXX62QkBBlZ2dLkj7//HM99NBDioyMVEhIiK6++mq98sorNdZVXl6uqVOn6qqrrlJoaKjatGmjwYMHa9++fZL+/9qQDRs2+Lzvk08+UUBAgBYtWmTPe/DBB9WkSRPt27dPt912m5o2barhw4dLkvbu3avk5GQ5nU6Fhoaqbdu2GjZsmEpLS+33nzp1Sr/97W/VsWNHhYSEqEOHDnr88cdVUVHhs+4OHTro9ttv19q1a9WnTx+FhYXpj3/843nt89dee01xcXEKCwtT8+bNNWzYMB04cMCn5uabb1b37t21e/du9evXT40aNdKPfvQjzZgxo8byPv30U915551q3LixWrdurYyMDK1du9ZnX958881avXq1Pv30UwUEBCggIEAdOnTwWU5VVZV+97vfqW3btgoNDVX//v310Ucfnde2AvVRA383AODCuvvuu9WhQwdNnz5dW7Zs0Zw5c3T06FH9+c9/tmvWrVunN954Q+np6WrZsqU6dOig4uJiJSQk2CGoVatWWrNmjVJTU+X1ejV+/HhJ0unTp3X77bcrNzdXw4YN07hx43Ts2DHl5ORo586d6tixY517PnXqlNxut66//no999xzatSokSorK+V2u1VRUaGxY8fK6XTq888/16pVq1RSUqLw8HBJ0siRI7V48WINGTJEjzzyiLZu3arp06frww8/1IoVK3zWU1hYqHvuuUe//OUvNWrUKHXp0uWc9/Pvfvc7/eY3v9Hdd9+tkSNH6vDhw/rDH/6gG2+8Ue+//74iIiLs2qNHj2rgwIEaPHiw7r77bv31r3/VpEmT1KNHD916662Svjl7dcstt+iLL77QuHHj5HQ6tXTpUq1fv95nvU888YRKS0v12WefaebMmZKkJk2a+NQ888wzCgwM1IQJE1RaWqoZM2Zo+PDh2rp16zlvL1AvWQCMMGXKFEuSdeedd/rM/9WvfmVJsv7zn/9YlmVZkqzAwEBr165dPnWpqalWmzZtrC+//NJn/rBhw6zw8HDr66+/tizLsl555RVLkvXCCy/U6KGqqsqyLMtav369Jclav369z/j+/fstSdarr75qz0tJSbEkWY899phP7fvvv29JspYvX/6d21xQUGBJskaOHOkzf8KECZYka926dfa89u3bW5Ks7Ozs71zed6net9U++eQTKygoyPrd737nU7djxw6rQYMGPvNvuukmS5L15z//2Z5XUVFhOZ1OKzk52Z73/PPPW5KslStX2vNOnDhhde3atca+TEpKstq3b1+jz+r93q1bN6uiosKeP3v2bEuStWPHjjpvO1Cf8XUVYJi0tDSf12PHjpUk/eMf/7Dn3XTTTYqNjbVfW5alN998U3fccYcsy9KXX35pT263W6Wlpdq+fbsk6c0331TLli3t5Z7pfG6zHjNmjM/r6jM1a9eu1ddff13re6q3KTMz02f+I488IklavXq1z/yYmBi53e5z7rHa3/72N1VVVenuu+/22VdOp1OdO3eucfalSZMmuu++++zXwcHBuvbaa/Xxxx/b87Kzs/WjH/1Id955pz0vNDRUo0aNqnN/I0aMUHBwsP36hhtukCSf9QFXAr6uAgzTuXNnn9cdO3ZUYGCgPvnkE3teTEyMT83hw4dVUlKihQsXauHChbUu99ChQ5Kkffv2qUuXLmrQ4ML956NBgwZq27atz7yYmBhlZmbqhRde0JIlS3TDDTfozjvv1H333WcHoE8//VSBgYHq1KmTz3udTqciIiL06aef1ljmhbB3715ZllVjX1dr2LChz+u2bdvWCIDNmjXTBx98YL/+9NNP1bFjxxp13962s9GuXbsa65K++doMuJIQcgDD1XZ2JSwszOd1VVWVJOm+++5TSkpKrcvp2bPnea1T+uZ6ntqEhIQoMLDmieXnn39eDz74oP7+97/rnXfe0a9//Wv7WqMzQ9HZnkH69nafq6qqKgUEBGjNmjUKCgqqMf7ta2Rqq5G+OYN2MVzq9QGXK0IOYJi9e/f6nLH46KOPVFVVVeMOnDO1atVKTZs21enTp5WYmPi9y+/YsaO2bt2qkydP1jhjUa36zEFJSYnP/G+fWTkbPXr0UI8ePfTkk09q8+bNuu6667RgwQI9/fTTat++vaqqqrR3715169bNfk9xcbFKSkrUvn37Oq/vbHTs2FGWZSkmJkZXXXXVBVlm+/bttXv3blmW5RPaarsrqj48fRm4HHBNDmCYefPm+bz+wx/+IEn2XTy1CQoKUnJyst58803t3Lmzxvjhw4ftn5OTk/Xll19q7ty5NeqqzxS0b99eQUFB2rRpk8/4iy++eNbb4fV6derUKZ95PXr0UGBgoH17+G233SZJNR6M98ILL0iSkpKSznp9dTF48GAFBQVp2rRpNc6OWJalr776qs7LdLvd+vzzz/XWW2/Z88rLy/XSSy/VqG3cuLHPbfQAaseZHMAw+/fv15133qmBAwcqLy9Pr732mu6991716tXre9/3zDPPaP369YqPj9eoUaMUGxurI0eOaPv27frnP/+pI0eOSJIeeOAB/fnPf1ZmZqa2bdumG264QWVlZfrnP/+pX/3qV7rrrrsUHh6uX/ziF/rDH/6ggIAAdezYUatWrbKv6zkb69atU3p6un7xi1/oqquu0qlTp/Q///M/diCTpF69eiklJUULFy5USUmJbrrpJm3btk2LFy/WoEGD1K9fv3Pfkd+jY8eOevrpp5WVlaVPPvlEgwYNUtOmTbV//36tWLFCo0eP1oQJE+q0zF/+8peaO3eu7rnnHo0bN05t2rTRkiVLFBoaKsn37E1cXJyWLVumzMxM9e3bV02aNNEdd9xxQbcRMIK/busCcGFV3+a8e/dua8iQIVbTpk2tZs2aWenp6daJEyfsOklWWlparcsoLi620tLSrOjoaKthw4aW0+m0+vfvby1cuNCn7uuvv7aeeOIJKyYmxq4bMmSItW/fPrvm8OHDVnJystWoUSOrWbNm1i9/+Utr586dtd5C3rhx4xq9fPzxx9ZDDz1kdezY0QoNDbWaN29u9evXz/rnP//pU3fy5Elr2rRpdi/R0dFWVlaWVV5e7lPXvn17Kykp6az355m+fQt5tTfffNO6/vrrrcaNG1uNGze2unbtaqWlpVmFhYV2zU033WRdffXVNd6bkpJS4zbwjz/+2EpKSrLCwsKsVq1aWY888oj15ptvWpKsLVu22HXHjx+37r33XisiIsKSZC+n+hbyb992X9ut+8CVIMCyuBINMMHUqVM1bdo0HT58WC1btvR3O7hAZs2apYyMDH322Wf60Y9+5O92gHqFa3IA4DLx7b+lVV5erj/+8Y/q3LkzAQc4B1yTA+CKVVpa+oN/pNPpdF6ibr65oLldu3bq3bu3SktL9dprr2nPnj1asmTJJesBMAkhB8AVa9y4cVq8ePH31lzKb/TdbrdefvllLVmyRKdPn1ZsbKxef/11DR069JL1AJiEa3IAXLF2796tgwcPfm/NDz03CMDli5ADAACMxIXHAADASFf0NTlVVVU6ePCgmjZtymPSAQCoJyzL0rFjxxQVFVXr372rdkWHnIMHDyo6OtrfbQAAgHNw4MABnz/W+21XdMhp2rSppG92ksPh8HM3AADgbHi9XkVHR9u/x7/LFR1yqr+icjgchBwAAOqZH7rUhAuPAQCAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIzUwN8NAFeamTn/9XcL5yTjZ1f5uwUAqBPO5AAAACMRcgAAgJH4ugq4xBKKFvq7hXP0nL8bAIA64UwOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYqc4h5/PPP9d9992nFi1aKCwsTD169NB7771nj1uWpcmTJ6tNmzYKCwtTYmKi9u7d67OMI0eOaPjw4XI4HIqIiFBqaqqOHz/uU/PBBx/ohhtuUGhoqKKjozVjxowavSxfvlxdu3ZVaGioevTooX/84x913RwAAGCoOoWco0eP6rrrrlPDhg21Zs0a7d69W88//7yaNWtm18yYMUNz5szRggULtHXrVjVu3Fhut1vl5eV2zfDhw7Vr1y7l5ORo1apV2rRpk0aPHm2Pe71eDRgwQO3bt1d+fr6effZZTZ06VQsXLrRrNm/erHvuuUepqal6//33NWjQIA0aNEg7d+48n/0BAAAMEWBZlnW2xY899pj+/e9/63//939rHbcsS1FRUXrkkUc0YcIESVJpaakiIyO1aNEiDRs2TB9++KFiY2P17rvvqk+fPpKk7Oxs3Xbbbfrss88UFRWl+fPn64knnpDH41FwcLC97pUrV2rPnj2SpKFDh6qsrEyrVq2y15+QkKDevXtrwYIFZ7U9Xq9X4eHhKi0tlcPhONvdAJyXvD9N8HcL58SV+py/WwAASWf/+7tOZ3Leeust9enTR7/4xS/UunVr/eQnP9FLL71kj+/fv18ej0eJiYn2vPDwcMXHxysvL0+SlJeXp4iICDvgSFJiYqICAwO1detWu+bGG2+0A44kud1uFRYW6ujRo3bNmeuprqleT20qKirk9Xp9JgAAYKY6hZyPP/5Y8+fPV+fOnbV27VqNGTNGv/71r7V48WJJksfjkSRFRkb6vC8yMtIe83g8at26tc94gwYN1Lx5c5+a2pZx5jq+q6Z6vDbTp09XeHi4PUVHR9dl8wEAQD1Sp5BTVVWla665Rr///e/1k5/8RKNHj9aoUaPO+ushf8vKylJpaak9HThwwN8tAQCAi6ROIadNmzaKjY31mdetWzcVFRVJkpxOpySpuLjYp6a4uNgeczqdOnTokM/4qVOndOTIEZ+a2pZx5jq+q6Z6vDYhISFyOBw+EwAAMFOdQs51112nwsJCn3n//e9/1b59e0lSTEyMnE6ncnNz7XGv16utW7fK5XJJklwul0pKSpSfn2/XrFu3TlVVVYqPj7drNm3apJMnT9o1OTk56tKli30nl8vl8llPdU31egAAwJWtTiEnIyNDW7Zs0e9//3t99NFHWrp0qRYuXKi0tDRJUkBAgMaPH6+nn35ab731lnbs2KEHHnhAUVFRGjRokKRvzvwMHDhQo0aN0rZt2/Tvf/9b6enpGjZsmKKioiRJ9957r4KDg5Wamqpdu3Zp2bJlmj17tjIzM+1exo0bp+zsbD3//PPas2ePpk6dqvfee0/p6ekXaNcAAID6rEFdivv27asVK1YoKytLTz31lGJiYjRr1iwNHz7crpk4caLKyso0evRolZSU6Prrr1d2drZCQ0PtmiVLlig9PV39+/dXYGCgkpOTNWfOHHs8PDxc77zzjtLS0hQXF6eWLVtq8uTJPs/S+elPf6qlS5fqySef1OOPP67OnTtr5cqV6t69+/nsDwAAYIg6PSfHNDwnB/7Ac3IA4PxclOfkAAAA1BeEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGCkOoWcqVOnKiAgwGfq2rWrPV5eXq60tDS1aNFCTZo0UXJysoqLi32WUVRUpKSkJDVq1EitW7fWo48+qlOnTvnUbNiwQddcc41CQkLUqVMnLVq0qEYv8+bNU4cOHRQaGqr4+Hht27atLpsCAAAMV+czOVdffbW++OILe/rXv/5lj2VkZOjtt9/W8uXLtXHjRh08eFCDBw+2x0+fPq2kpCRVVlZq8+bNWrx4sRYtWqTJkyfbNfv371dSUpL69eungoICjR8/XiNHjtTatWvtmmXLlikzM1NTpkzR9u3b1atXL7ndbh06dOhc9wMAADBMgGVZ1tkWT506VStXrlRBQUGNsdLSUrVq1UpLly7VkCFDJEl79uxRt27dlJeXp4SEBK1Zs0a33367Dh48qMjISEnSggULNGnSJB0+fFjBwcGaNGmSVq9erZ07d9rLHjZsmEpKSpSdnS1Jio+PV9++fTV37lxJUlVVlaKjozV27Fg99thjZ73xXq9X4eHhKi0tlcPhOOv3Aecj708T/N3COXGlPufvFgBA0tn//q7zmZy9e/cqKipKP/7xjzV8+HAVFRVJkvLz83Xy5EklJibatV27dlW7du2Ul5cnScrLy1OPHj3sgCNJbrdbXq9Xu3btsmvOXEZ1TfUyKisrlZ+f71MTGBioxMREu+a7VFRUyOv1+kwAAMBMdQo58fHxWrRokbKzszV//nzt379fN9xwg44dOyaPx6Pg4GBFRET4vCcyMlIej0eS5PF4fAJO9Xj12PfVeL1enThxQl9++aVOnz5da031Mr7L9OnTFR4ebk/R0dF12XwAAFCPNKhL8a233mr/3LNnT8XHx6t9+/Z64403FBYWdsGbu9CysrKUmZlpv/Z6vQQdAAAMdV63kEdEROiqq67SRx99JKfTqcrKSpWUlPjUFBcXy+l0SpKcTmeNu62qX/9QjcPhUFhYmFq2bKmgoKBaa6qX8V1CQkLkcDh8JgAAYKbzCjnHjx/Xvn371KZNG8XFxalhw4bKzc21xwsLC1VUVCSXyyVJcrlc2rFjh89dUDk5OXI4HIqNjbVrzlxGdU31MoKDgxUXF+dTU1VVpdzcXLsGAACgTiFnwoQJ2rhxoz755BNt3rxZP//5zxUUFKR77rlH4eHhSk1NVWZmptavX6/8/HyNGDFCLpdLCQkJkqQBAwYoNjZW999/v/7zn/9o7dq1evLJJ5WWlqaQkBBJ0sMPP6yPP/5YEydO1J49e/Tiiy/qjTfeUEZGht1HZmamXnrpJS1evFgffvihxowZo7KyMo0YMeIC7hoAAFCf1emanM8++0z33HOPvvrqK7Vq1UrXX3+9tmzZolatWkmSZs6cqcDAQCUnJ6uiokJut1svvvii/f6goCCtWrVKY8aMkcvlUuPGjZWSkqKnnnrKromJidHq1auVkZGh2bNnq23btnr55ZfldrvtmqFDh+rw4cOaPHmyPB6Pevfurezs7BoXIwMAgCtXnZ6TYxqekwN/4Dk5AHB+LtpzcgAAAOoDQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEa+LsBU83M+a+/W6izjJ9d5e8WAAC4YDiTAwAAjETIAQAARuLrqoskoWihv1s4B8/5uwEAAC4YzuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIx0XiHnmWeeUUBAgMaPH2/PKy8vV1pamlq0aKEmTZooOTlZxcXFPu8rKipSUlKSGjVqpNatW+vRRx/VqVOnfGo2bNiga665RiEhIerUqZMWLVpUY/3z5s1Thw4dFBoaqvj4eG3btu18NgcAABjknEPOu+++qz/+8Y/q2bOnz/yMjAy9/fbbWr58uTZu3KiDBw9q8ODB9vjp06eVlJSkyspKbd68WYsXL9aiRYs0efJku2b//v1KSkpSv379VFBQoPHjx2vkyJFau3atXbNs2TJlZmZqypQp2r59u3r16iW3261Dhw6d6yYBAACDnFPIOX78uIYPH66XXnpJzZo1s+eXlpbqT3/6k1544QXdcsstiouL06uvvqrNmzdry5YtkqR33nlHu3fv1muvvabevXvr1ltv1W9/+1vNmzdPlZWVkqQFCxYoJiZGzz//vLp166b09HQNGTJEM2fOtNf1wgsvaNSoURoxYoRiY2O1YMECNWrUSK+88sr57A8AAGCIcwo5aWlpSkpKUmJios/8/Px8nTx50md+165d1a5dO+Xl5UmS8vLy1KNHD0VGRto1brdbXq9Xu3btsmu+vWy3220vo7KyUvn5+T41gYGBSkxMtGtqU1FRIa/X6zMBAAAz1flvV73++uvavn273n333RpjHo9HwcHBioiI8JkfGRkpj8dj15wZcKrHq8e+r8br9erEiRM6evSoTp8+XWvNnj17vrP36dOna9q0aWe3oQAAoF6r05mcAwcOaNy4cVqyZIlCQ0MvVk8XTVZWlkpLS+3pwIED/m4JAABcJHUKOfn5+Tp06JCuueYaNWjQQA0aNNDGjRs1Z84cNWjQQJGRkaqsrFRJSYnP+4qLi+V0OiVJTqezxt1W1a9/qMbhcCgsLEwtW7ZUUFBQrTXVy6hNSEiIHA6HzwQAAMxUp5DTv39/7dixQwUFBfbUp08fDR8+3P65YcOGys3Ntd9TWFiooqIiuVwuSZLL5dKOHTt87oLKycmRw+FQbGysXXPmMqprqpcRHBysuLg4n5qqqirl5ubaNQAA4MpWp2tymjZtqu7du/vMa9y4sVq0aGHPT01NVWZmppo3by6Hw6GxY8fK5XIpISFBkjRgwADFxsbq/vvv14wZM+TxePTkk08qLS1NISEhkqSHH35Yc+fO1cSJE/XQQw9p3bp1euONN7R69Wp7vZmZmUpJSVGfPn107bXXatasWSorK9OIESPOa4cAAAAz1PnC4x8yc+ZMBQYGKjk5WRUVFXK73XrxxRft8aCgIK1atUpjxoyRy+VS48aNlZKSoqeeesquiYmJ0erVq5WRkaHZs2erbdu2evnll+V2u+2aoUOH6vDhw5o8ebI8Ho969+6t7OzsGhcjAwCAK1OAZVmWv5vwF6/Xq/DwcJWWll7w63Py/jThgi7vUnClPufvFq4I9fHfhsS/DwCXj7P9/c3frgIAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMNIFf04OADPNzPmvv1uos4yfXeXvFgD4ESEHwFlJKFro7xbOAc/2Aa5kfF0FAACMRMgBAABGIuQAAAAjcU0O6rX6eDFsgr8bAIArBCEH9Vr9vBgWAHAp8HUVAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASA383QAA4P/l/WmCv1uoM1fqc/5uAagVZ3IAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABipTiFn/vz56tmzpxwOhxwOh1wul9asWWOPl5eXKy0tTS1atFCTJk2UnJys4uJin2UUFRUpKSlJjRo1UuvWrfXoo4/q1KlTPjUbNmzQNddco5CQEHXq1EmLFi2q0cu8efPUoUMHhYaGKj4+Xtu2bavLpgAAAMPVKeS0bdtWzzzzjPLz8/Xee+/plltu0V133aVdu3ZJkjIyMvT2229r+fLl2rhxow4ePKjBgwfb7z99+rSSkpJUWVmpzZs3a/HixVq0aJEmT55s1+zfv19JSUnq16+fCgoKNH78eI0cOVJr1661a5YtW6bMzExNmTJF27dvV69eveR2u3Xo0KHz3R8AAMAQAZZlWeezgObNm+vZZ5/VkCFD1KpVKy1dulRDhgyRJO3Zs0fdunVTXl6eEhIStGbNGt1+++06ePCgIiMjJUkLFizQpEmTdPjwYQUHB2vSpElavXq1du7caa9j2LBhKikpUXZ2tiQpPj5effv21dy5cyVJVVVVio6O1tixY/XYY4+dde9er1fh4eEqLS2Vw+E4n91QA8+6uDTq437GpcO/6UujPu5n1G9n+/v7nK/JOX36tF5//XWVlZXJ5XIpPz9fJ0+eVGJiol3TtWtXtWvXTnl5eZKkvLw89ejRww44kuR2u+X1eu2zQXl5eT7LqK6pXkZlZaXy8/N9agIDA5WYmGjXfJeKigp5vV6fCQAAmKnOTzzesWOHXC6XysvL1aRJE61YsUKxsbEqKChQcHCwIiIifOojIyPl8XgkSR6PxyfgVI9Xj31fjdfr1YkTJ3T06FGdPn261po9e/Z8b+/Tp0/XtGnT6rrJV4yZOf/1dwt1luDvBgAAl606n8np0qWLCgoKtHXrVo0ZM0YpKSnavXv3xejtgsvKylJpaak9HThwwN8tAQCAi6TOZ3KCg4PVqVMnSVJcXJzeffddzZ49W0OHDlVlZaVKSkp8zuYUFxfL6XRKkpxOZ427oKrvvjqz5tt3ZBUXF8vhcCgsLExBQUEKCgqqtaZ6Gd8lJCREISEhdd1kAABQD533c3KqqqpUUVGhuLg4NWzYULm5ufZYYWGhioqK5HK5JEkul0s7duzwuQsqJydHDodDsbGxds2Zy6iuqV5GcHCw4uLifGqqqqqUm5tr1wAAANTpTE5WVpZuvfVWtWvXTseOHdPSpUu1YcMGrV27VuHh4UpNTVVmZqaaN28uh8OhsWPHyuVyKSHhmysnBgwYoNjYWN1///2aMWOGPB6PnnzySaWlpdlnWB5++GHNnTtXEydO1EMPPaR169bpjTfe0OrVq+0+MjMzlZKSoj59+ujaa6/VrFmzVFZWphEjRlzAXXPlSSha6O8WAAC4YOoUcg4dOqQHHnhAX3zxhcLDw9WzZ0+tXbtWP/vZzyRJM2fOVGBgoJKTk1VRUSG3260XX3zRfn9QUJBWrVqlMWPGyOVyqXHjxkpJSdFTTz1l18TExGj16tXKyMjQ7Nmz1bZtW7388styu912zdChQ3X48GFNnjxZHo9HvXv3VnZ2do2LkQEAwJXrvJ+TU5/xnBzAbPXx+S318b8d9XE/o3676M/JAQAAuJwRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYqYG/GwCAi2Vmzn/93UKdJfi7AcAghBwAxkooWujvFgD4EV9XAQAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkeoUcqZPn66+ffuqadOmat26tQYNGqTCwkKfmvLycqWlpalFixZq0qSJkpOTVVxc7FNTVFSkpKQkNWrUSK1bt9ajjz6qU6dO+dRs2LBB11xzjUJCQtSpUyctWrSoRj/z5s1Thw4dFBoaqvj4eG3btq0umwMAAAxWp5CzceNGpaWlacuWLcrJydHJkyc1YMAAlZWV2TUZGRl6++23tXz5cm3cuFEHDx7U4MGD7fHTp08rKSlJlZWV2rx5sxYvXqxFixZp8uTJds3+/fuVlJSkfv36qaCgQOPHj9fIkSO1du1au2bZsmXKzMzUlClTtH37dvXq1Utut1uHDh06n/0BAAAMEWBZlnWubz58+LBat26tjRs36sYbb1RpaalatWqlpUuXasiQIZKkPXv2qFu3bsrLy1NCQoLWrFmj22+/XQcPHlRkZKQkacGCBZo0aZIOHz6s4OBgTZo0SatXr9bOnTvtdQ0bNkwlJSXKzs6WJMXHx6tv376aO3euJKmqqkrR0dEaO3asHnvssbPq3+v1Kjw8XKWlpXI4HOe6G2qV96cJF3R5AHC5cqU+5+8WcIU529/f53VNTmlpqSSpefPmkqT8/HydPHlSiYmJdk3Xrl3Vrl075eXlSZLy8vLUo0cPO+BIktvtltfr1a5du+yaM5dRXVO9jMrKSuXn5/vUBAYGKjEx0a6pTUVFhbxer88EAADMdM4hp6qqSuPHj9d1112n7t27S5I8Ho+Cg4MVERHhUxsZGSmPx2PXnBlwqserx76vxuv16sSJE/ryyy91+vTpWmuql1Gb6dOnKzw83J6io6PrvuEAAKBeOOeQk5aWpp07d+r111+/kP1cVFlZWSotLbWnAwcO+LslAABwkTQ4lzelp6dr1apV2rRpk9q2bWvPdzqdqqysVElJic/ZnOLiYjmdTrvm23dBVd99dWbNt+/IKi4ulsPhUFhYmIKCghQUFFRrTfUyahMSEqKQkJC6bzAAAKh36nQmx7Ispaena8WKFVq3bp1iYmJ8xuPi4tSwYUPl5uba8woLC1VUVCSXyyVJcrlc2rFjh89dUDk5OXI4HIqNjbVrzlxGdU31MoKDgxUXF+dTU1VVpdzcXLsGAABc2ep0JictLU1Lly7V3//+dzVt2tS+/iU8PFxhYWEKDw9XamqqMjMz1bx5czkcDo0dO1Yul0sJCQmSpAEDBig2Nlb333+/ZsyYIY/HoyeffFJpaWn2WZaHH35Yc+fO1cSJE/XQQw9p3bp1euONN7R69Wq7l8zMTKWkpKhPnz669tprNWvWLJWVlWnEiBEXat8AAIB6rE4hZ/78+ZKkm2++2Wf+q6++qgcffFCSNHPmTAUGBio5OVkVFRVyu9168cUX7dqgoCCtWrVKY8aMkcvlUuPGjZWSkqKnnnrKromJidHq1auVkZGh2bNnq23btnr55ZfldrvtmqFDh+rw4cOaPHmyPB6Pevfurezs7BoXIwMAgCvTeT0np77jOTkAcP54Tg4utUvynBwAAIDLFSEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABipTn+7CgCAb5uZ819/t1BnGT+7yt8t4BLgTA4AADASZ3IAAOcloWihv1s4B/xR0SsBZ3IAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYqYG/GwAA4FKbmfNff7dQZxk/u8rfLdQ7nMkBAABG4kwOAOCKk1C00N8tnIPn/N1AvcOZHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARqpzyNm0aZPuuOMORUVFKSAgQCtXrvQZtyxLkydPVps2bRQWFqbExETt3bvXp+bIkSMaPny4HA6HIiIilJqaquPHj/vUfPDBB7rhhhsUGhqq6OhozZgxo0Yvy5cvV9euXRUaGqoePXroH//4R103BwAAGKrOIaesrEy9evXSvHnzah2fMWOG5syZowULFmjr1q1q3Lix3G63ysvL7Zrhw4dr165dysnJ0apVq7Rp0yaNHj3aHvd6vRowYIDat2+v/Px8Pfvss5o6daoWLvz/W/42b96se+65R6mpqXr//fc1aNAgDRo0SDt37qzrJgEAAAMFWJZlnfObAwK0YsUKDRo0SNI3Z3GioqL0yCOPaMKECZKk0tJSRUZGatGiRRo2bJg+/PBDxcbG6t1331WfPn0kSdnZ2brtttv02WefKSoqSvPnz9cTTzwhj8ej4OBgSdJjjz2mlStXas+ePZKkoUOHqqysTKtWrbL7SUhIUO/evbVgwYKz6t/r9So8PFylpaVyOBznuhtqlfenCRd0eQCAK5srlefkVDvb398X9Jqc/fv3y+PxKDEx0Z4XHh6u+Ph45eXlSZLy8vIUERFhBxxJSkxMVGBgoLZu3WrX3HjjjXbAkSS3263CwkIdPXrUrjlzPdU11eupTUVFhbxer88EAADMdEFDjsfjkSRFRkb6zI+MjLTHPB6PWrdu7TPeoEEDNW/e3KemtmWcuY7vqqker8306dMVHh5uT9HR0XXdRAAAUE9cUXdXZWVlqbS01J4OHDjg75YAAMBFckFDjtPplCQVFxf7zC8uLrbHnE6nDh065DN+6tQpHTlyxKemtmWcuY7vqqker01ISIgcDofPBAAAzHRB/0BnTEyMnE6ncnNz1bt3b0nfXBy0detWjRkzRpLkcrlUUlKi/Px8xcXFSZLWrVunqqoqxcfH2zVPPPGETp48qYYNG0qScnJy1KVLFzVr1syuyc3N1fjx4+315+TkyOVyXchNAgDgslAfb2jx98XSdT6Tc/z4cRUUFKigoEDSNxcbFxQUqKioSAEBARo/fryefvppvfXWW9qxY4ceeOABRUVF2XdgdevWTQMHDtSoUaO0bds2/fvf/1Z6erqGDRumqKgoSdK9996r4OBgpaamateuXVq2bJlmz56tzMxMu49x48YpOztbzz//vPbs2aOpU6fqvffeU3p6+vnvFQAAUO/V+UzOe++9p379+tmvq4NHSkqKFi1apIkTJ6qsrEyjR49WSUmJrr/+emVnZys0NNR+z5IlS5Senq7+/fsrMDBQycnJmjNnjj0eHh6ud955R2lpaYqLi1PLli01efJkn2fp/PSnP9XSpUv15JNP6vHHH1fnzp21cuVKde/e/Zx2BAAAMMt5PSenvuM5OQAAXDwX6+sqvzwnBwAA4HJByAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGqvchZ968eerQoYNCQ0MVHx+vbdu2+bslAABwGajXIWfZsmXKzMzUlClTtH37dvXq1Utut1uHDh3yd2sAAMDP6nXIeeGFFzRq1CiNGDFCsbGxWrBggRo1aqRXXnnF360BAAA/a+DvBs5VZWWl8vPzlZWVZc8LDAxUYmKi8vLyan1PRUWFKioq7NelpaWSJK/Xe8H7KztR8cNFAAAY7GL8fj1zuZZlfW9dvQ05X375pU6fPq3IyEif+ZGRkdqzZ0+t75k+fbqmTZtWY350dPRF6REAgCva2LkXdfHHjh1TeHj4d47X25BzLrKyspSZmWm/rqqq0pEjR9SiRQsFBAT4sbP6y+v1Kjo6WgcOHJDD4fB3O1csjsPlgeNweeA4XB4u5nGwLEvHjh1TVFTU99bV25DTsmVLBQUFqbi42Gd+cXGxnE5nre8JCQlRSEiIz7yIiIiL1eIVxeFw8B+TywDH4fLAcbg8cBwuDxfrOHzfGZxq9fbC4+DgYMXFxSk3N9eeV1VVpdzcXLlcLj92BgAALgf19kyOJGVmZiolJUV9+vTRtddeq1mzZqmsrEwjRozwd2sAAMDP6nXIGTp0qA4fPqzJkyfL4/God+/eys7OrnExMi6ekJAQTZkypcbXgLi0OA6XB47D5YHjcHm4HI5DgPVD918BAADUQ/X2mhwAAIDvQ8gBAABGIuQAAAAjEXIAAICRCDkAAMBIhByclU2bNumOO+5QVFSUAgICtHLlSp9xy7I0efJktWnTRmFhYUpMTNTevXv906zBfug4PPjggwoICPCZBg4c6J9mDTV9+nT17dtXTZs2VevWrTVo0CAVFhb61JSXlystLU0tWrRQkyZNlJycXOPp7Dg/Z3Mcbr755hqfh4cffthPHZtp/vz56tmzp/1UY5fLpTVr1tjj/v4sEHJwVsrKytSrVy/Nmzev1vEZM2Zozpw5WrBggbZu3arGjRvL7XarvLz8Endqth86DpI0cOBAffHFF/b0l7/85RJ2aL6NGzcqLS1NW7ZsUU5Ojk6ePKkBAwaorKzMrsnIyNDbb7+t5cuXa+PGjTp48KAGDx7sx67NczbHQZJGjRrl83mYMWOGnzo2U9u2bfXMM88oPz9f7733nm655Rbddddd2rVrl6TL4LNgAXUkyVqxYoX9uqqqynI6ndazzz5rzyspKbFCQkKsv/zlL37o8Mrw7eNgWZaVkpJi3XXXXX7p50p16NAhS5K1ceNGy7K++bffsGFDa/ny5XbNhx9+aEmy8vLy/NWm8b59HCzLsm666SZr3Lhx/mvqCtWsWTPr5Zdfviw+C5zJwXnbv3+/PB6PEhMT7Xnh4eGKj49XXl6eHzu7Mm3YsEGtW7dWly5dNGbMGH311Vf+bslopaWlkqTmzZtLkvLz83Xy5Emfz0PXrl3Vrl07Pg8X0bePQ7UlS5aoZcuW6t69u7KysvT111/7o70rwunTp/X666+rrKxMLpfrsvgs1Os/64DLg8fjkaQaf04jMjLSHsOlMXDgQA0ePFgxMTHat2+fHn/8cd16663Ky8tTUFCQv9szTlVVlcaPH6/rrrtO3bt3l/TN5yE4OFgRERE+tXweLp7ajoMk3XvvvWrfvr2ioqL0wQcfaNKkSSosLNTf/vY3P3Zrnh07dsjlcqm8vFxNmjTRihUrFBsbq4KCAr9/Fgg5gEGGDRtm/9yjRw/17NlTHTt21IYNG9S/f38/dmamtLQ07dy5U//617/83coV7buOw+jRo+2fe/TooTZt2qh///7at2+fOnbseKnbNFaXLl1UUFCg0tJS/fWvf1VKSoo2btzo77YkceExLgCn0ylJNa6YLy4utsfgHz/+8Y/VsmVLffTRR/5uxTjp6elatWqV1q9fr7Zt29rznU6nKisrVVJS4lPP5+Hi+K7jUJv4+HhJ4vNwgQUHB6tTp06Ki4vT9OnT1atXL82ePfuy+CwQcnDeYmJi5HQ6lZuba8/zer3aunWrXC6XHzvDZ599pq+++kpt2rTxdyvGsCxL6enpWrFihdatW6eYmBif8bi4ODVs2NDn81BYWKiioiI+DxfQDx2H2hQUFEgSn4eLrKqqShUVFZfFZ4Gvq3BWjh8/7vN/P/v371dBQYGaN2+udu3aafz48Xr66afVuXNnxcTE6De/+Y2ioqI0aNAg/zVtoO87Ds2bN9e0adOUnJwsp9Opffv2aeLEierUqZPcbrcfuzZLWlqali5dqr///e9q2rSpfW1BeHi4wsLCFB4ertTUVGVmZqp58+ZyOBwaO3asXC6XEhIS/Ny9OX7oOOzbt09Lly7VbbfdphYtWuiDDz5QRkaGbrzxRvXs2dPP3ZsjKytLt956q9q1a6djx45p6dKl2rBhg9auXXt5fBYuyT1cqPfWr19vSaoxpaSkWJb1zW3kv/nNb6zIyEgrJCTE6t+/v1VYWOjfpg30fcfh66+/tgYMGGC1atXKatiwodW+fXtr1KhRlsfj8XfbRqlt/0uyXn31VbvmxIkT1q9+9SurWbNmVqNGjayf//zn1hdffOG/pg30Q8ehqKjIuvHGG63mzZtbISEhVqdOnaxHH33UKi0t9W/jhnnooYes9u3bW8HBwVarVq2s/v37W++884497u/PQoBlWdaliVMAAACXDtfkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBI/we9R9wo1Rn1igAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPyBJREFUeJzt3XtcVVX+//E3Fzng5UBeAElU0ryQqKkFp9vUSJ4MKyeb1BxDxfpp6CiUKZNftJpGx27aeMuvTdikpU5pkyRGmDqNpIaRl9LMLCw9QCkcJQWF/fujL3s8iSUIIdvX8/HYj+Gs9dnrrL0ex+HdPntvvAzDMAQAAGAx3vU9AQAAgLpAyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAFQIxUVFTp58mR9T8NDSUlJnb+HYRg6ceJEnb8PgAtHyAEucdOnT5eXl5f27Nmje++9V3a7XS1atNCECRM8QoyXl5fGjRunpUuX6qqrrpLNZlNGRoYk6dtvv9WoUaMUEhIim82mq666Sn//+9/Peq+TJ09q+vTp6tSpk/z9/dW6dWvdfffd2r9/vyRpw4YN8vLy0oYNGzz2++qrr+Tl5aW0tDSzbcSIEWratKn279+v22+/Xc2aNdOwYcMkSfv27dOgQYMUGhoqf39/tWnTRkOGDFFxcbG5/+nTp/Xkk0+qQ4cOstlsat++vf70pz+ptLTU473bt2+vAQMGaN26derTp48CAgL04osvntfaVs4xLy9PAwYMUNOmTXX55Zdr3rx5kqSdO3fqt7/9rZo0aaJ27dpp2bJlHvt7eXmdc/vqq6/Oaw7Apcy3vicA4OJw7733qn379poxY4Y+/PBDvfDCCzp69KheeeUVs2b9+vVasWKFxo0bp5YtW6p9+/bKz89XTEyMGYJatWqltWvXKiEhQW63WxMnTpQklZeXa8CAAcrKytKQIUM0YcIEHTt2TJmZmdq1a5c6dOhQ7TmfPn1aTqdTN9xwg5555hk1btxYZWVlcjqdKi0t1fjx4xUaGqpvv/1Wa9asUVFRkQIDAyVJo0eP1pIlS3TPPffo4Ycf1pYtWzRjxgx99tlnWrVqlcf77N27V0OHDtX/+3//Tw888IA6d+583nMsLy9X//79ddNNN2nWrFlaunSpxo0bpyZNmuixxx7TsGHDdPfdd2vhwoW6//775XA4FBERIUn6xz/+cdZ4U6dOVUFBgZo2bVrt9QIuOQaAS9q0adMMScadd97p0f7QQw8ZkoxPPvnEMAzDkGR4e3sbu3fv9qhLSEgwWrdubXz33Xce7UOGDDECAwONH374wTAMw/j73/9uSDKee+65s+ZQUVFhGIZhvP/++4Yk4/333/foP3DggCHJePnll822+Ph4Q5IxZcoUj9qPP/7YkGSsXLnynMecm5trSDJGjx7t0f7II48Ykoz169ebbe3atTMkGRkZGecc71wq5/iXv/zFbDt69KgREBBgeHl5Ga+//rrZvmfPHkOSMW3atHOON2vWLEOS8corr1R7LsCliK+rAEiSEhMTPV6PHz9ekvTOO++Ybb/5zW8UGRlpvjYMQ2+88YbuuOMOGYah7777ztycTqeKi4u1fft2SdIbb7yhli1bmuOeycvLq8bzHjt2rMfryjM169at0w8//FDlPpXHlJyc7NH+8MMPS5LS09M92iMiIuR0Oms8x9GjR5s/BwUFqXPnzmrSpInuvfdes71z584KCgrSl19+WeUY77//vlJSUjR+/HgNHz68xnMBLiWEHACSpCuvvNLjdYcOHeTt7e1x7Ufl1yiVCgsLVVRUpEWLFqlVq1Ye28iRIyVJBQUFkqT9+/erc+fO8vWtvW/JfX191aZNG4+2iIgIJScna/HixWrZsqWcTqfmzZvncT3O119/LW9vb3Xs2NFj39DQUAUFBenrr78+a8ya8vf3V6tWrTzaAgMD1aZNm7PCXWBgoI4ePXrWGN98840GDx6s66+/Xs8991yN5wJcargmB0CVqjq7EhAQ4PG6oqJCkvSHP/xB8fHxVY7TvXv3C3pP6cfrWqpis9nk7X32f6s9++yzGjFihN566y29++67+uMf/2hea3RmKDrfM0g/Pe7q8PHxqVa7YRger8vKynTPPffIZrNpxYoVtRoSAavjXwsAST/ekXTmGYsvvvhCFRUVat++/Tn3adWqlZo1a6by8nLFxsb+7PgdOnTQli1bdOrUKTVq1KjKmssuu0ySVFRU5NH+0zMr5yMqKkpRUVGaOnWqNm/erOuvv14LFy7Un//8Z7Vr104VFRXat2+funbtau6Tn5+voqIitWvXrtrvV1f++Mc/Kjc3V5s2bVJISEh9TwdoUPi6CoAkmbc1V/rb3/4mSerfv/859/Hx8dGgQYP0xhtvaNeuXWf1FxYWmj8PGjRI3333nebOnXtWXeXZi3bt2snHx0ebNm3y6J8/f/55H4fb7dbp06c92qKiouTt7W3eHn777bdLkmbPnu1RV/lVUFxc3Hm/X116+eWX9eKLL2revHm69tpr63s6QIPDmRwAkqQDBw7ozjvv1G233abs7Gy9+uqruu+++9SjR4+f3W/mzJl6//33FR0drQceeECRkZE6cuSItm/frvfee09HjhyRJN1///165ZVXlJycrK1bt+rGG29USUmJ3nvvPT300EO66667FBgYqN///vf629/+Ji8vL3Xo0EFr1qwxr+s5H+vXr9e4ceP0+9//Xp06ddLp06f1j3/8wwxkktSjRw/Fx8dr0aJFKioq0m9+8xtt3bpVS5Ys0cCBA3XLLbfUfCFryXfffaeHHnpIkZGRstlsevXVVz36f/e736lJkyb1NDugYSDkAJAkLV++XKmpqZoyZYp8fX01btw4Pf3007+4X0hIiLZu3aonnnhCb775pubPn68WLVroqquu0l//+lezzsfHR++8846eeuopLVu2TG+88YZatGihG264QVFRUWbd3/72N506dUoLFy6UzWbTvffeq6efflrdunU7r+Po0aOHnE6n3n77bX377bdq3LixevToobVr1yomJsasW7x4sa644gqlpaVp1apVCg0NVUpKiqZNm1aNVas7x48f18mTJ/Xpp59WeTfVgQMHCDnAL/AyfnqVG4BLyvTp0/X444+rsLBQLVu2rO/pAECt4ZocAABgSXxdBQDVVFxc/It/pDM0NPRXmg2AcyHkAEA1TZgwQUuWLPnZGq4EAOof1+QAQDV9+umnOnTo0M/W/NJzgwDUPUIOAACwJC48BgAAlnRJX5NTUVGhQ4cOqVmzZhf0V5ABAMCvxzAMHTt2TGFhYVX+/bpKl3TIOXTokMLDw+t7GgAAoAYOHjzo8Ud3f+qSDjnNmjWT9OMi2e32ep4NAAA4H263W+Hh4ebv8XO5pENO5VdUdrudkAMAQAPzS5eacOExAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJN/6ngAuHs9nfl7fU6i2pFs71fcUAAAXKc7kAAAASyLkAAAASyLkAAAASyLkAAAAS+LCY5hi8hbV9xRq4Jn6ngAA4CJ1QWdyZs6cKS8vL02cONFsO3nypBITE9WiRQs1bdpUgwYNUn5+vsd+eXl5iouLU+PGjRUcHKxJkybp9OnTHjUbNmxQr169ZLPZ1LFjR6WlpZ31/vPmzVP79u3l7++v6Ohobd269UIOBwAAWEiNQ862bdv04osvqnv37h7tSUlJevvtt7Vy5Upt3LhRhw4d0t133232l5eXKy4uTmVlZdq8ebOWLFmitLQ0paammjUHDhxQXFycbrnlFuXm5mrixIkaPXq01q1bZ9YsX75cycnJmjZtmrZv364ePXrI6XSqoKCgpocEAAAsxMswDKO6Ox0/fly9evXS/Pnz9ec//1k9e/bU7NmzVVxcrFatWmnZsmW65557JEl79uxR165dlZ2drZiYGK1du1YDBgzQoUOHFBISIklauHChJk+erMLCQvn5+Wny5MlKT0/Xrl27zPccMmSIioqKlJGRIUmKjo7WNddco7lz50qSKioqFB4ervHjx2vKlCnndRxut1uBgYEqLi6W3W6v7jJYTvZLj9T3FKrNkcDXVQBwqTnf3981OpOTmJiouLg4xcbGerTn5OTo1KlTHu1dunRR27ZtlZ2dLUnKzs5WVFSUGXAkyel0yu12a/fu3WbNT8d2Op3mGGVlZcrJyfGo8fb2VmxsrFlTldLSUrndbo8NAABYU7UvPH799de1fft2bdu27aw+l8slPz8/BQUFebSHhITI5XKZNWcGnMr+yr6fq3G73Tpx4oSOHj2q8vLyKmv27NlzzrnPmDFDjz/++PkdKAAAaNCqdSbn4MGDmjBhgpYuXSp/f/+6mlOdSUlJUXFxsbkdPHiwvqcEAADqSLVCTk5OjgoKCtSrVy/5+vrK19dXGzdu1AsvvCBfX1+FhISorKxMRUVFHvvl5+crNDRUkhQaGnrW3VaVr3+pxm63KyAgQC1btpSPj0+VNZVjVMVms8lut3tsAADAmqoVcvr27audO3cqNzfX3Pr06aNhw4aZPzdq1EhZWVnmPnv37lVeXp4cDockyeFwaOfOnR53QWVmZsputysyMtKsOXOMyprKMfz8/NS7d2+PmoqKCmVlZZk1AADg0lata3KaNWumbt26ebQ1adJELVq0MNsTEhKUnJys5s2by263a/z48XI4HIqJiZEk9evXT5GRkRo+fLhmzZoll8ulqVOnKjExUTabTZI0ZswYzZ07V48++qhGjRql9evXa8WKFUpPTzffNzk5WfHx8erTp4+uvfZazZ49WyUlJRo5cuQFLQgAALCGWn/i8fPPPy9vb28NGjRIpaWlcjqdmj9/vtnv4+OjNWvWaOzYsXI4HGrSpIni4+P1xBNPmDURERFKT09XUlKS5syZozZt2mjx4sVyOp1mzeDBg1VYWKjU1FS5XC717NlTGRkZZ12MDAAALk01ek6OVfCcHE88JwcA0BDU6XNyAAAALnaEHAAAYEmEHAAAYEm1fuExfvR85uf1PYVqi6nvCdRAQ1znpFs71fcUAOCSwJkcAABgSYQcAABgSYQcAABgSVyTU0di8hbV9xQuCQ1znXm2DwD8GjiTAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALMm3vicAXGqez/y8vqdQI0m3dqrvKQBAtXAmBwAAWBIhBwAAWFK1Qs6CBQvUvXt32e122e12ORwOrV271uy/+eab5eXl5bGNGTPGY4y8vDzFxcWpcePGCg4O1qRJk3T69GmPmg0bNqhXr16y2Wzq2LGj0tLSzprLvHnz1L59e/n7+ys6Olpbt26tzqEAAACLq9Y1OW3atNHMmTN15ZVXyjAMLVmyRHfddZc+/vhjXXXVVZKkBx54QE888YS5T+PGjc2fy8vLFRcXp9DQUG3evFmHDx/W/fffr0aNGukvf/mLJOnAgQOKi4vTmDFjtHTpUmVlZWn06NFq3bq1nE6nJGn58uVKTk7WwoULFR0drdmzZ8vpdGrv3r0KDg6+4EUB6lJM3qL6nkINPVPfEwCAavEyDMO4kAGaN2+up59+WgkJCbr55pvVs2dPzZ49u8ratWvXasCAATp06JBCQkIkSQsXLtTkyZNVWFgoPz8/TZ48Wenp6dq1a5e535AhQ1RUVKSMjAxJUnR0tK655hrNnTtXklRRUaHw8HCNHz9eU6ZMOe+5u91uBQYGqri4WHa7vYYrULXslx6p1fGA+uZIIOQAuDic7+/vGl+TU15ertdff10lJSVyOBxm+9KlS9WyZUt169ZNKSkp+uGHH8y+7OxsRUVFmQFHkpxOp9xut3bv3m3WxMbGeryX0+lUdna2JKmsrEw5OTkeNd7e3oqNjTVrzqW0tFRut9tjAwAA1lTtW8h37twph8OhkydPqmnTplq1apUiIyMlSffdd5/atWunsLAw7dixQ5MnT9bevXv15ptvSpJcLpdHwJFkvna5XD9b43a7deLECR09elTl5eVV1uzZs+dn5z5jxgw9/vjj1T1kAADQAFU75HTu3Fm5ubkqLi7WP//5T8XHx2vjxo2KjIzUgw8+aNZFRUWpdevW6tu3r/bv368OHTrU6sRrIiUlRcnJyeZrt9ut8PDwepwRAACoK9UOOX5+furYsaMkqXfv3tq2bZvmzJmjF1988aza6OhoSdIXX3yhDh06KDQ09Ky7oPLz8yVJoaGh5v9Wtp1ZY7fbFRAQIB8fH/n4+FRZUznGudhsNtlstmocLQAAaKgu+Dk5FRUVKi0trbIvNzdXktS6dWtJksPh0M6dO1VQUGDWZGZmym63m195ORwOZWVleYyTmZlpXvfj5+en3r17e9RUVFQoKyvL49ogAABwaavWmZyUlBT1799fbdu21bFjx7Rs2TJt2LBB69at0/79+7Vs2TLdfvvtatGihXbs2KGkpCTddNNN6t69uySpX79+ioyM1PDhwzVr1iy5XC5NnTpViYmJ5hmWMWPGaO7cuXr00Uc1atQorV+/XitWrFB6ero5j+TkZMXHx6tPnz669tprNXv2bJWUlGjkyJG1uDQAAKAhq1bIKSgo0P3336/Dhw8rMDBQ3bt317p163Trrbfq4MGDeu+998zAER4erkGDBmnq1Knm/j4+PlqzZo3Gjh0rh8OhJk2aKD4+3uO5OhEREUpPT1dSUpLmzJmjNm3aaPHixeYzciRp8ODBKiwsVGpqqlwul3r27KmMjIyzLkYGAACXrgt+Tk5DxnNygPPHc3IAXCzq/Dk5AAAAFzNCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKRq/YFOAJeu5zM/r+8pVFvSrZ3qewoA6hFncgAAgCVxJgfAeYnJW1TfU6gB/nI6cCnjTA4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALCkaoWcBQsWqHv37rLb7bLb7XI4HFq7dq3Zf/LkSSUmJqpFixZq2rSpBg0apPz8fI8x8vLyFBcXp8aNGys4OFiTJk3S6dOnPWo2bNigXr16yWazqWPHjkpLSztrLvPmzVP79u3l7++v6Ohobd26tTqHAgAALK5aIadNmzaaOXOmcnJy9NFHH+m3v/2t7rrrLu3evVuSlJSUpLffflsrV67Uxo0bdejQId19993m/uXl5YqLi1NZWZk2b96sJUuWKC0tTampqWbNgQMHFBcXp1tuuUW5ubmaOHGiRo8erXXr1pk1y5cvV3JysqZNm6bt27erR48ecjqdKigouND1AAAAFuFlGIZxIQM0b95cTz/9tO655x61atVKy5Yt0z333CNJ2rNnj7p27ars7GzFxMRo7dq1GjBggA4dOqSQkBBJ0sKFCzV58mQVFhbKz89PkydPVnp6unbt2mW+x5AhQ1RUVKSMjAxJUnR0tK655hrNnTtXklRRUaHw8HCNHz9eU6ZMOe+5u91uBQYGqri4WHa7/UKW4SzZLz1Sq+MBqD5HwjP1PQUAdeB8f3/X+Jqc8vJyvf766yopKZHD4VBOTo5OnTql2NhYs6ZLly5q27atsrOzJUnZ2dmKiooyA44kOZ1Oud1u82xQdna2xxiVNZVjlJWVKScnx6PG29tbsbGxZg0AAIBvdXfYuXOnHA6HTp48qaZNm2rVqlWKjIxUbm6u/Pz8FBQU5FEfEhIil8slSXK5XB4Bp7K/su/natxut06cOKGjR4+qvLy8ypo9e/b87NxLS0tVWlpqvna73ed/4AAanOczP6/vKVRb0q2d6nsKgGVU+0xO586dlZubqy1btmjs2LGKj4/Xp59+Whdzq3UzZsxQYGCguYWHh9f3lAAAQB2pdsjx8/NTx44d1bt3b82YMUM9evTQnDlzFBoaqrKyMhUVFXnU5+fnKzQ0VJIUGhp61t1Wla9/qcZutysgIEAtW7aUj49PlTWVY5xLSkqKiouLze3gwYPVPXwAANBAVPvrqp+qqKhQaWmpevfurUaNGikrK0uDBg2SJO3du1d5eXlyOBySJIfDoaeeekoFBQUKDg6WJGVmZsputysyMtKseeeddzzeIzMz0xzDz89PvXv3VlZWlgYOHGjOISsrS+PGjfvZudpsNtlstgs9ZAANREzeovqeQg1wsTRQW6oVclJSUtS/f3+1bdtWx44d07Jly7RhwwatW7dOgYGBSkhIUHJyspo3by673a7x48fL4XAoJiZGktSvXz9FRkZq+PDhmjVrllwul6ZOnarExEQzfIwZM0Zz587Vo48+qlGjRmn9+vVasWKF0tPTzXkkJycrPj5effr00bXXXqvZs2erpKREI0eOrMWlAQAADVm1Qk5BQYHuv/9+HT58WIGBgerevbvWrVunW2+9VZL0/PPPy9vbW4MGDVJpaamcTqfmz59v7u/j46M1a9Zo7NixcjgcatKkieLj4/XEE0+YNREREUpPT1dSUpLmzJmjNm3aaPHixXI6nWbN4MGDVVhYqNTUVLlcLvXs2VMZGRlnXYwMAAAuXRf8nJyGjOfkALjY8Gwf4JfV+XNyAAAALmaEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEm+9T0BAMB/PZ/5eX1PodqSbu1U31MAqkTIAYCLSEzeovqeQg08U98TAKrE11UAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSqhVyZsyYoWuuuUbNmjVTcHCwBg4cqL1793rU3HzzzfLy8vLYxowZ41GTl5enuLg4NW7cWMHBwZo0aZJOnz7tUbNhwwb16tVLNptNHTt2VFpa2lnzmTdvntq3by9/f39FR0dr69at1TkcAABgYdUKORs3blRiYqI+/PBDZWZm6tSpU+rXr59KSko86h544AEdPnzY3GbNmmX2lZeXKy4uTmVlZdq8ebOWLFmitLQ0paammjUHDhxQXFycbrnlFuXm5mrixIkaPXq01q1bZ9YsX75cycnJmjZtmrZv364ePXrI6XSqoKCgpmsBAAAsxMswDKOmOxcWFio4OFgbN27UTTfdJOnHMzk9e/bU7Nmzq9xn7dq1GjBggA4dOqSQkBBJ0sKFCzV58mQVFhbKz89PkydPVnp6unbt2mXuN2TIEBUVFSkjI0OSFB0drWuuuUZz586VJFVUVCg8PFzjx4/XlClTzmv+brdbgYGBKi4ult1ur+kyVCn7pUdqdTwAuFg5Ep6p7yngEnO+v78v6Jqc4uJiSVLz5s092pcuXaqWLVuqW7duSklJ0Q8//GD2ZWdnKyoqygw4kuR0OuV2u7V7926zJjY21mNMp9Op7OxsSVJZWZlycnI8ary9vRUbG2vWVKW0tFRut9tjAwAA1uRb0x0rKio0ceJEXX/99erWrZvZft9996ldu3YKCwvTjh07NHnyZO3du1dvvvmmJMnlcnkEHEnma5fL9bM1brdbJ06c0NGjR1VeXl5lzZ49e8455xkzZujxxx+v6SEDAIAGpMYhJzExUbt27dIHH3zg0f7ggw+aP0dFRal169bq27ev9u/frw4dOtR8prUgJSVFycnJ5mu3263w8PB6nBEAAKgrNQo548aN05o1a7Rp0ya1adPmZ2ujo6MlSV988YU6dOig0NDQs+6Cys/PlySFhoaa/1vZdmaN3W5XQECAfHx85OPjU2VN5RhVsdlsstls53eQAACgQavWNTmGYWjcuHFatWqV1q9fr4iIiF/cJzc3V5LUunVrSZLD4dDOnTs97oLKzMyU3W5XZGSkWZOVleUxTmZmphwOhyTJz89PvXv39qipqKhQVlaWWQMAAC5t1TqTk5iYqGXLlumtt95Ss2bNzGtoAgMDFRAQoP3792vZsmW6/fbb1aJFC+3YsUNJSUm66aab1L17d0lSv379FBkZqeHDh2vWrFlyuVyaOnWqEhMTzbMsY8aM0dy5c/Xoo49q1KhRWr9+vVasWKH09HRzLsnJyYqPj1efPn107bXXavbs2SopKdHIkSNra20AAEADVq2Qs2DBAkk/3iZ+ppdfflkjRoyQn5+f3nvvPTNwhIeHa9CgQZo6dapZ6+PjozVr1mjs2LFyOBxq0qSJ4uPj9cQTT5g1ERERSk9PV1JSkubMmaM2bdpo8eLFcjqdZs3gwYNVWFio1NRUuVwu9ezZUxkZGWddjAwAAC5NF/ScnIaO5+QAwIXjOTn4tf0qz8kBAAC4WNX4FnIAACTp+czP63sK1ZZ0a6f6ngJ+BYQcAMAFiclbVN9TqAG+YrsU8HUVAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJN/6ngAAAL+25zM/r+8pVFvSrZ3qewoNDiEHAHDJiclbVN9TqIFn6nsCDQ5fVwEAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEuqVsiZMWOGrrnmGjVr1kzBwcEaOHCg9u7d61Fz8uRJJSYmqkWLFmratKkGDRqk/Px8j5q8vDzFxcWpcePGCg4O1qRJk3T69GmPmg0bNqhXr16y2Wzq2LGj0tLSzprPvHnz1L59e/n7+ys6Olpbt26tzuEAAAALq1bI2bhxoxITE/Xhhx8qMzNTp06dUr9+/VRSUmLWJCUl6e2339bKlSu1ceNGHTp0SHfffbfZX15erri4OJWVlWnz5s1asmSJ0tLSlJqaatYcOHBAcXFxuuWWW5Sbm6uJEydq9OjRWrdunVmzfPlyJScna9q0adq+fbt69Oghp9OpgoKCC1kPAABgEV6GYRg13bmwsFDBwcHauHGjbrrpJhUXF6tVq1ZatmyZ7rnnHknSnj171LVrV2VnZysmJkZr167VgAEDdOjQIYWEhEiSFi5cqMmTJ6uwsFB+fn6aPHmy0tPTtWvXLvO9hgwZoqKiImVkZEiSoqOjdc0112ju3LmSpIqKCoWHh2v8+PGaMmXKec3f7XYrMDBQxcXFstvtNV2GKmW/9EitjgcAuLQ5EnhOTqXz/f19QdfkFBcXS5KaN28uScrJydGpU6cUGxtr1nTp0kVt27ZVdna2JCk7O1tRUVFmwJEkp9Mpt9ut3bt3mzVnjlFZUzlGWVmZcnJyPGq8vb0VGxtr1lSltLRUbrfbYwMAANZU45BTUVGhiRMn6vrrr1e3bt0kSS6XS35+fgoKCvKoDQkJkcvlMmvODDiV/ZV9P1fjdrt14sQJfffddyovL6+ypnKMqsyYMUOBgYHmFh4eXv0DBwAADUKNQ05iYqJ27dql119/vTbnU6dSUlJUXFxsbgcPHqzvKQEAgDpSo79dNW7cOK1Zs0abNm1SmzZtzPbQ0FCVlZWpqKjI42xOfn6+QkNDzZqf3gVVeffVmTU/vSMrPz9fdrtdAQEB8vHxkY+PT5U1lWNUxWazyWazVf+AAQBAg1OtMzmGYWjcuHFatWqV1q9fr4iICI/+3r17q1GjRsrKyjLb9u7dq7y8PDkcDkmSw+HQzp07Pe6CyszMlN1uV2RkpFlz5hiVNZVj+Pn5qXfv3h41FRUVysrKMmsAAMClrVpnchITE7Vs2TK99dZbatasmXn9S2BgoAICAhQYGKiEhAQlJyerefPmstvtGj9+vBwOh2JiYiRJ/fr1U2RkpIYPH65Zs2bJ5XJp6tSpSkxMNM+yjBkzRnPnztWjjz6qUaNGaf369VqxYoXS09PNuSQnJys+Pl59+vTRtddeq9mzZ6ukpEQjR46srbUBAAANWLVCzoIFCyRJN998s0f7yy+/rBEjRkiSnn/+eXl7e2vQoEEqLS2V0+nU/PnzzVofHx+tWbNGY8eOlcPhUJMmTRQfH68nnnjCrImIiFB6erqSkpI0Z84ctWnTRosXL5bT6TRrBg8erMLCQqWmpsrlcqlnz57KyMg462JkAABwabqg5+Q0dDwnBwDQUHzY9sH6nkK1Jd3aqU7G/VWekwMAAHCxIuQAAABLIuQAAABLqtFzcgAAwK8rJm9RfU+hBur3721xJgcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhStUPOpk2bdMcddygsLExeXl5avXq1R/+IESPk5eXlsd12220eNUeOHNGwYcNkt9sVFBSkhIQEHT9+3KNmx44duvHGG+Xv76/w8HDNmjXrrLmsXLlSXbp0kb+/v6KiovTOO+9U93AAAIBFVTvklJSUqEePHpo3b945a2677TYdPnzY3F577TWP/mHDhmn37t3KzMzUmjVrtGnTJj344INmv9vtVr9+/dSuXTvl5OTo6aef1vTp07Vo0SKzZvPmzRo6dKgSEhL08ccfa+DAgRo4cKB27dpV3UMCAAAW5GUYhlHjnb28tGrVKg0cONBsGzFihIqKis46w1Pps88+U2RkpLZt26Y+ffpIkjIyMnT77bfrm2++UVhYmBYsWKDHHntMLpdLfn5+kqQpU6Zo9erV2rNnjyRp8ODBKikp0Zo1a8yxY2Ji1LNnTy1cuPC85u92uxUYGKji4mLZ7fYarMC5Zb/0SK2OBwBAQ+NIeKZOxj3f3991ck3Ohg0bFBwcrM6dO2vs2LH6/vvvzb7s7GwFBQWZAUeSYmNj5e3trS1btpg1N910kxlwJMnpdGrv3r06evSoWRMbG+vxvk6nU9nZ2eecV2lpqdxut8cGAACsqdZDzm233aZXXnlFWVlZ+utf/6qNGzeqf//+Ki8vlyS5XC4FBwd77OPr66vmzZvL5XKZNSEhIR41la9/qaayvyozZsxQYGCguYWHh1/YwQIAgIuWb20POGTIEPPnqKgode/eXR06dNCGDRvUt2/f2n67aklJSVFycrL52u12E3QAALCoOr+F/IorrlDLli31xRdfSJJCQ0NVUFDgUXP69GkdOXJEoaGhZk1+fr5HTeXrX6qp7K+KzWaT3W732AAAgDXVecj55ptv9P3336t169aSJIfDoaKiIuXk5Jg169evV0VFhaKjo82aTZs26dSpU2ZNZmamOnfurMsuu8ysycrK8nivzMxMORyOuj4kAADQAFQ75Bw/fly5ubnKzc2VJB04cEC5ubnKy8vT8ePHNWnSJH344Yf66quvlJWVpbvuuksdO3aU0+mUJHXt2lW33XabHnjgAW3dulX/+c9/NG7cOA0ZMkRhYWGSpPvuu09+fn5KSEjQ7t27tXz5cs2ZM8fjq6YJEyYoIyNDzz77rPbs2aPp06fro48+0rhx42phWQAAQENX7ZDz0Ucf6eqrr9bVV18tSUpOTtbVV1+t1NRU+fj4aMeOHbrzzjvVqVMnJSQkqHfv3vr3v/8tm81mjrF06VJ16dJFffv21e23364bbrjB4xk4gYGBevfdd3XgwAH17t1bDz/8sFJTUz2epXPddddp2bJlWrRokXr06KF//vOfWr16tbp163Yh6wEAACzigp6T09DxnBwAAOqOJZ+TAwAAUN8IOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJKqHXI2bdqkO+64Q2FhYfLy8tLq1as9+g3DUGpqqlq3bq2AgADFxsZq3759HjVHjhzRsGHDZLfbFRQUpISEBB0/ftyjZseOHbrxxhvl7++v8PBwzZo166y5rFy5Ul26dJG/v7+ioqL0zjvvVPdwAACARVU75JSUlKhHjx6aN29elf2zZs3SCy+8oIULF2rLli1q0qSJnE6nTp48adYMGzZMu3fvVmZmptasWaNNmzbpwQcfNPvdbrf69eundu3aKScnR08//bSmT5+uRYsWmTWbN2/W0KFDlZCQoI8//lgDBw7UwIEDtWvXruoeEgAAsCAvwzCMGu/s5aVVq1Zp4MCBkn48ixMWFqaHH35YjzzyiCSpuLhYISEhSktL05AhQ/TZZ58pMjJS27ZtU58+fSRJGRkZuv322/XNN98oLCxMCxYs0GOPPSaXyyU/Pz9J0pQpU7R69Wrt2bNHkjR48GCVlJRozZo15nxiYmLUs2dPLVy48Lzm73a7FRgYqOLiYtnt9pouQ5WyX3qkVscDAKChcSQ8Uyfjnu/v71q9JufAgQNyuVyKjY012wIDAxUdHa3s7GxJUnZ2toKCgsyAI0mxsbHy9vbWli1bzJqbbrrJDDiS5HQ6tXfvXh09etSsOfN9Kmsq36cqpaWlcrvdHhsAALCmWg05LpdLkhQSEuLRHhISYva5XC4FBwd79Pv6+qp58+YeNVWNceZ7nKumsr8qM2bMUGBgoLmFh4dX9xABAEADcUndXZWSkqLi4mJzO3jwYH1PCQAA1JFaDTmhoaGSpPz8fI/2/Px8sy80NFQFBQUe/adPn9aRI0c8aqoa48z3OFdNZX9VbDab7Ha7xwYAAKypVkNORESEQkNDlZWVZba53W5t2bJFDodDkuRwOFRUVKScnByzZv369aqoqFB0dLRZs2nTJp06dcqsyczMVOfOnXXZZZeZNWe+T2VN5fsAAIBLW7VDzvHjx5Wbm6vc3FxJP15snJubq7y8PHl5eWnixIn685//rH/961/auXOn7r//foWFhZl3YHXt2lW33XabHnjgAW3dulX/+c9/NG7cOA0ZMkRhYWGSpPvuu09+fn5KSEjQ7t27tXz5cs2ZM0fJycnmPCZMmKCMjAw9++yz2rNnj6ZPn66PPvpI48aNu/BVAQAADZ5vdXf46KOPdMstt5ivK4NHfHy80tLS9Oijj6qkpEQPPvigioqKdMMNNygjI0P+/v7mPkuXLtW4cePUt29feXt7a9CgQXrhhRfM/sDAQL377rtKTExU79691bJlS6Wmpno8S+e6667TsmXLNHXqVP3pT3/SlVdeqdWrV6tbt241WggAAGAtF/ScnIaO5+QAAFB3LPWcHAAAgIsFIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSrYec6dOny8vLy2Pr0qWL2X/y5EklJiaqRYsWatq0qQYNGqT8/HyPMfLy8hQXF6fGjRsrODhYkyZN0unTpz1qNmzYoF69eslms6ljx45KS0ur7UMBAAANWJ2cybnqqqt0+PBhc/vggw/MvqSkJL399ttauXKlNm7cqEOHDunuu+82+8vLyxUXF6eysjJt3rxZS5YsUVpamlJTU82aAwcOKC4uTrfccotyc3M1ceJEjR49WuvWrauLwwEAAA2Qb50M6uur0NDQs9qLi4v10ksvadmyZfrtb38rSXr55ZfVtWtXffjhh4qJidG7776rTz/9VO+9955CQkLUs2dPPfnkk5o8ebKmT58uPz8/LVy4UBEREXr22WclSV27dtUHH3yg559/Xk6nsy4OCQAANDB1ciZn3759CgsL0xVXXKFhw4YpLy9PkpSTk6NTp04pNjbWrO3SpYvatm2r7OxsSVJ2draioqIUEhJi1jidTrndbu3evdusOXOMyprKMc6ltLRUbrfbYwMAANZU6yEnOjpaaWlpysjI0IIFC3TgwAHdeOONOnbsmFwul/z8/BQUFOSxT0hIiFwulyTJ5XJ5BJzK/sq+n6txu906ceLEOec2Y8YMBQYGmlt4ePiFHi4AALhI1frXVf379zd/7t69u6Kjo9WuXTutWLFCAQEBtf121ZKSkqLk5GTztdvtJugAAGBRdX4LeVBQkDp16qQvvvhCoaGhKisrU1FRkUdNfn6+eQ1PaGjoWXdbVb7+pRq73f6zQcpms8lut3tsAADAmuo85Bw/flz79+9X69at1bt3bzVq1EhZWVlm/969e5WXlyeHwyFJcjgc2rlzpwoKCsyazMxM2e12RUZGmjVnjlFZUzkGAABArYecRx55RBs3btRXX32lzZs363e/+518fHw0dOhQBQYGKiEhQcnJyXr//feVk5OjkSNHyuFwKCYmRpLUr18/RUZGavjw4frkk0+0bt06TZ06VYmJibLZbJKkMWPG6Msvv9Sjjz6qPXv2aP78+VqxYoWSkpJq+3AAAEADVevX5HzzzTcaOnSovv/+e7Vq1Uo33HCDPvzwQ7Vq1UqS9Pzzz8vb21uDBg1SaWmpnE6n5s+fb+7v4+OjNWvWaOzYsXI4HGrSpIni4+P1xBNPmDURERFKT09XUlKS5syZozZt2mjx4sXcPg4AAExehmEY9T2J+uJ2uxUYGKji4uJavz4n+6VHanU8AAAaGkfCM3Uy7vn+/uZvVwEAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEtq8CFn3rx5at++vfz9/RUdHa2tW7fW95QAAMBFoEGHnOXLlys5OVnTpk3T9u3b1aNHDzmdThUUFNT31AAAQD1r0CHnueee0wMPPKCRI0cqMjJSCxcuVOPGjfX3v/+9vqcGAADqmW99T6CmysrKlJOTo5SUFLPN29tbsbGxys7OrnKf0tJSlZaWmq+Li4slSW63u9bnV3Ki9JeLAACwsLr4/XrmuIZh/Gxdgw053333ncrLyxUSEuLRHhISoj179lS5z4wZM/T444+f1R4eHl4ncwQA4JI2fm6dDn/s2DEFBgaes7/BhpyaSElJUXJysvm6oqJCR44cUYsWLeTl5VVn7+t2uxUeHq6DBw/KbrfX2fs0dKzT+WGdzg/rdH5Yp/PDOp2fX2udDMPQsWPHFBYW9rN1DTbktGzZUj4+PsrPz/doz8/PV2hoaJX72Gw22Ww2j7agoKC6muJZ7HY7/zjOA+t0flin88M6nR/W6fywTufn11innzuDU6nBXnjs5+en3r17Kysry2yrqKhQVlaWHA5HPc4MAABcDBrsmRxJSk5OVnx8vPr06aNrr71Ws2fPVklJiUaOHFnfUwMAAPWsQYecwYMHq7CwUKmpqXK5XOrZs6cyMjLOuhi5vtlsNk2bNu2sr8rgiXU6P6zT+WGdzg/rdH5Yp/Nzsa2Tl/FL918BAAA0QA32mhwAAICfQ8gBAACWRMgBAACWRMgBAACWRMipJTNnzpSXl5cmTpxotp08eVKJiYlq0aKFmjZtqkGDBp318MK8vDzFxcWpcePGCg4O1qRJk3T69OlfefZ1Z/r06fLy8vLYunTpYvazRv/17bff6g9/+INatGihgIAARUVF6aOPPjL7DcNQamqqWrdurYCAAMXGxmrfvn0eYxw5ckTDhg2T3W5XUFCQEhISdPz48V/7UOpM+/btz/o8eXl5KTExURKfp0rl5eX6n//5H0VERCggIEAdOnTQk08+6fF3fvg8/fgnASZOnKh27dopICBA1113nbZt22b2X6prtGnTJt1xxx0KCwuTl5eXVq9e7dFfW+uyY8cO3XjjjfL391d4eLhmzZpV+wdj4IJt3brVaN++vdG9e3djwoQJZvuYMWOM8PBwIysry/joo4+MmJgY47rrrjP7T58+bXTr1s2IjY01Pv74Y+Odd94xWrZsaaSkpNTDUdSNadOmGVdddZVx+PBhcyssLDT7WaMfHTlyxGjXrp0xYsQIY8uWLcaXX35prFu3zvjiiy/MmpkzZxqBgYHG6tWrjU8++cS48847jYiICOPEiRNmzW233Wb06NHD+PDDD41///vfRseOHY2hQ4fWxyHViYKCAo/PUmZmpiHJeP/99w3D4PNU6amnnjJatGhhrFmzxjhw4ICxcuVKo2nTpsacOXPMGj5PhnHvvfcakZGRxsaNG419+/YZ06ZNM+x2u/HNN98YhnHprtE777xjPPbYY8abb75pSDJWrVrl0V8b61JcXGyEhIQYw4YNM3bt2mW89tprRkBAgPHiiy/W6rEQci7QsWPHjCuvvNLIzMw0fvOb35ghp6ioyGjUqJGxcuVKs/azzz4zJBnZ2dmGYfz4QfL29jZcLpdZs2DBAsNutxulpaW/6nHUlWnTphk9evSoso81+q/JkycbN9xwwzn7KyoqjNDQUOPpp58224qKigybzWa89tprhmEYxqeffmpIMrZt22bWrF271vDy8jK+/fbbupt8PZowYYLRoUMHo6Kigs/TGeLi4oxRo0Z5tN19993GsGHDDMPg82QYhvHDDz8YPj4+xpo1azzae/XqZTz22GOs0f/5aciprXWZP3++cdlll3n8u5s8ebLRuXPnWp0/X1ddoMTERMXFxSk2NtajPScnR6dOnfJo79Kli9q2bavs7GxJUnZ2tqKiojweXuh0OuV2u7V79+5f5wB+Bfv27VNYWJiuuOIKDRs2THl5eZJYozP961//Up8+ffT73/9ewcHBuvrqq/W///u/Zv+BAwfkcrk81iowMFDR0dEeaxUUFKQ+ffqYNbGxsfL29taWLVt+vYP5lZSVlenVV1/VqFGj5OXlxefpDNddd52ysrL0+eefS5I++eQTffDBB+rfv78kPk+SdPr0aZWXl8vf39+jPSAgQB988AFrdA61tS7Z2dm66aab5OfnZ9Y4nU7t3btXR48erbX5NugnHte3119/Xdu3b/f4DreSy+WSn5/fWX8ANCQkRC6Xy6z56dOZK19X1jR00dHRSktLU+fOnXX48GE9/vjjuvHGG7Vr1y7W6AxffvmlFixYoOTkZP3pT3/Stm3b9Mc//lF+fn6Kj483j7WqtThzrYKDgz36fX191bx5c0utVaXVq1erqKhII0aMkMS/uTNNmTJFbrdbXbp0kY+Pj8rLy/XUU09p2LBhksTnSVKzZs3kcDj05JNPqmvXrgoJCdFrr72m7OxsdezYkTU6h9paF5fLpYiIiLPGqOy77LLLamW+hJwaOnjwoCZMmKDMzMyz/ksA/1X5X46S1L17d0VHR6tdu3ZasWKFAgIC6nFmF5eKigr16dNHf/nLXyRJV199tXbt2qWFCxcqPj6+nmd3cXrppZfUv39/hYWF1fdULjorVqzQ0qVLtWzZMl111VXKzc3VxIkTFRYWxufpDP/4xz80atQoXX755fLx8VGvXr00dOhQ5eTk1PfUUEv4uqqGcnJyVFBQoF69esnX11e+vr7auHGjXnjhBfn6+iokJERlZWUqKiry2C8/P1+hoaGSpNDQ0LPu/Kh8XVljNUFBQerUqZO++OILhYaGskb/p3Xr1oqMjPRo69q1q/nVXuWxVrUWZ65VQUGBR//p06d15MgRS62VJH399dd67733NHr0aLONz9N/TZo0SVOmTNGQIUMUFRWl4cOHKykpSTNmzJDE56lShw4dtHHjRh0/flwHDx7U1q1bderUKV1xxRWs0TnU1rr8Wv8WCTk11LdvX+3cuVO5ubnm1qdPHw0bNsz8uVGjRsrKyjL32bt3r/Ly8uRwOCRJDodDO3fu9PgwZGZmym63n/ULzyqOHz+u/fv3q3Xr1urduzdr9H+uv/567d2716Pt888/V7t27SRJERERCg0N9Vgrt9utLVu2eKxVUVGRx3+Frl+/XhUVFYqOjv4VjuLX8/LLLys4OFhxcXFmG5+n//rhhx/k7e35f+8+Pj6qqKiQxOfpp5o0aaLWrVvr6NGjWrdune666y7W6Bxqa10cDoc2bdqkU6dOmTWZmZnq3LlzrX1VJYlbyGvTmXdXGcaPt7O2bdvWWL9+vfHRRx8ZDofDcDgcZn/l7az9+vUzcnNzjYyMDKNVq1aWup314YcfNjZs2GAcOHDA+M9//mPExsYaLVu2NAoKCgzDYI0qbd261fD19TWeeuopY9++fcbSpUuNxo0bG6+++qpZM3PmTCMoKMh46623jB07dhh33XVXlbdtXn311caWLVuMDz74wLjyyisb/O2sP1VeXm60bdvWmDx58ll9fJ5+FB8fb1x++eXmLeRvvvmm0bJlS+PRRx81a/g8GUZGRoaxdu1a48svvzTeffddo0ePHkZ0dLRRVlZmGMalu0bHjh0zPv74Y+Pjjz82JBnPPfec8fHHHxtff/21YRi1sy5FRUVGSEiIMXz4cGPXrl3G66+/bjRu3JhbyC9mPw05J06cMB566CHjsssuMxo3bmz87ne/Mw4fPuyxz1dffWX079/fCAgIMFq2bGk8/PDDxqlTp37lmdedwYMHG61btzb8/PyMyy+/3Bg8eLDHs19Yo/96++23jW7duhk2m83o0qWLsWjRIo/+iooK43/+53+MkJAQw2azGX379jX27t3rUfP9998bQ4cONZo2bWrY7XZj5MiRxrFjx37Nw6hz69atMySddeyGweepktvtNiZMmGC0bdvW8Pf3N6644grjscce87hdl8+TYSxfvty44oorDD8/PyM0NNRITEw0ioqKzP5LdY3ef/99Q9JZW3x8vGEYtbcun3zyiXHDDTcYNpvNuPzyy42ZM2fW+rF4GcYZj8AEAACwCK7JAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlvT/Ad8n3aP/5T8FAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO4BJREFUeJzt3X1YFXX+//EXoBwQORAqICuZqamk6TdMPJmWSR6LblxtRW0NDXNtwU3ZSi1X1C3dr91pebdtrbhtFtqNbWqY4d2WpIVSasJaadoaiCkcRQWF+f3Rl/l5BJVjKMo8H9c11+WZec9n3udzVF7OmRm9DMMwBAAAYEHedd0AAABAXSEIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAXVk+PDhuuaaa2p1zLS0NHl5eWnPnj21Oq4n1q1bJy8vL61bt67Oeqgte/bskZeXl9LS0mpU7+XlpSlTplzUngDULoIQcAWaPn26li1bVtdt1Lr9+/drypQpysnJqetWzmrlypWXZdg5duyYpkyZctkF0I8//li33367goKCFBgYqOjoaKWnp3s0Rl5ensaNG6ebb75Zfn5+dR72Ub8QhIAr0NmC0LBhw3T8+HG1bNny0jf1f3r16qXjx4+rV69eHu+7f/9+TZ069bIJQi1bttTx48c1bNgwc93KlSs1derUauuPHz+uSZMmXar23Bw7dkxTp069rILQwoUL1bdvXzVs2FDTp0/Xs88+q169emnfvn0ejZOVlaWXXnpJR44cUYcOHS5St7CqBnXdAFCflJSUKCAgoM6O7+PjIx8fnzo7viR5e3vLz8+vTnuoLV5eXh69l/ryvmvDnj17lJSUpDFjxmj27Nm/aKx7771XRUVFCgwM1HPPPXfZBGXUD5wRAi7QlClT5OXlpa+//lpDhw7VVVddpVtuuUWS9M9//lPR0dHy9/dXSEiIBg8eXKN/BT/33HO6+eab1aRJE/n7+ys6Olpvv/22W42Xl5dKSkq0aNEieXl5ycvLS8OHD5dU9Rqhu+++W9dee221x3I4HOratavbugvt+3TVXSN02223qWPHjvr666/Vu3dvNWrUSL/61a80c+ZMt/1uuukmSdKIESPM93b69TmbNm1Sv379FBQUpEaNGunWW2/Vp59+6nb8ys/lm2++0fDhwxUcHKygoCCNGDFCx44dc6tdvXq1brnlFgUHB6tx48Zq166dnnzySXP7mdcIDR8+XHPnzpUksz8vLy+zvrprhP773//qoYceUlhYmGw2m66//nr9/e9/rzJvL7/8sq6//no1atRIV111lbp27arFixeff8L/r89mzZpJkqZOnWr2dXova9asUc+ePRUQEKDg4GDdd9992rlzZ7Vzl5ubq0GDBslut6tJkyZ69NFHdeLEiRr1UmnBggUqLy/XtGnTJElHjx6VYRgejVEpJCREgYGBF7QvcD4EIeAX+s1vfqNjx45p+vTpevjhh/XMM8/owQcfVNu2bfXCCy9o7NixyszMVK9evVRUVHTOsWbPnq3/+Z//0bRp0zR9+nQ1aNBAv/nNb7RixQqz5vXXX5fNZlPPnj31+uuv6/XXX9fvfve7aseLj4/X7t279fnnn7ut//777/XZZ59p8ODB5rpf0ndNHD58WP369VPnzp31/PPPq3379ho/frw+/PBDSVKHDh3MH5qjRo0y31vlV2xr1qxRr1695HK5lJqaqunTp6uoqEi33367Nm/eXOV4gwYN0pEjRzRjxgwNGjRIaWlpbl9p7dixQ3fffbdKS0s1bdo0Pf/887r33nurBKvT/e53v9Mdd9whSWZ/r7/++lnrCwoK1L17d3388cdKTk7W7Nmz1aZNGyUmJmrWrFlm3d/+9jf94Q9/UFRUlGbNmqWpU6eqS5cu2rRpU43mtlmzZpo/f74k6de//rXZ14ABAyT9fJ2O0+nUgQMHNGXKFKWkpGjjxo3q0aNHtdfaDBo0SCdOnNCMGTN011136aWXXtKoUaNq1Euljz/+WO3bt9fKlSvVokULBQYGqkmTJvrTn/6kiooKj8YCLioDwAVJTU01JBlDhgwx1+3Zs8fw8fExnnnmGbfabdu2GQ0aNHBbn5CQYLRs2dKt7tixY26vy8rKjI4dOxq333672/qAgAAjISGhSk8LFy40JBm7d+82DMMwiouLDZvNZvzxj390q5s5c6bh5eVlfP/99x73fT5r1641JBlr16411916662GJOMf//iHua60tNQIDw83Bg4caK77/PPPDUnGwoUL3casqKgw2rZtazidTqOiosJcf+zYMaNVq1bGHXfcYa6r/FweeughtzF+/etfG02aNDFfv/jii4Yko7Cw8KzvZffu3VX6SUpKMs72V6ckIzU11XydmJhoNG/e3Dh48KBb3eDBg42goCDz877vvvuM66+//qx91ERhYWGV41fq0qWLERoaavz000/mui+//NLw9vY2HnzwQXNd5dzde++9bvv//ve/NyQZX375ZY37sdvtxlVXXWXYbDbjT3/6k/H2228bQ4cONSQZEyZM8PwN/p9nn33W7fc48EtxRgj4hUaPHm3++t1331VFRYUGDRqkgwcPmkt4eLjatm2rtWvXnnMsf39/89eHDx9WcXGxevbsqS1btlxQb3a7XXfeeaeWLFni9rVEenq6unfvrquvvrpW+q6Jxo0b67e//a352tfXV926ddN333133n1zcnK0a9cuDR06VD/99JPZX0lJifr06aMNGzZUOctw+uciST179tRPP/0kl8slSQoODpYkvf/++xflDIVhGHrnnXd0zz33yDAMt3l1Op0qLi42P9fg4GD98MMPVc7c1YYff/xROTk5Gj58uEJCQsz1N9xwg+644w6tXLmyyj5JSUlur8eMGSNJ1daezdGjR3X48GFNnTpV06ZN08CBA/XGG2+oX79+mj17to4cOXKB7wioXQQh4Bdq1aqV+etdu3bJMAy1bdtWzZo1c1t27typAwcOnHOs5cuXq3v37vLz81NISIj5lUdxcfEF9xcfH699+/YpKytLkvTtt98qOztb8fHxtdZ3TbRo0cLtehpJuuqqq3T48OHz7rtr1y5JUkJCQpX+Xn31VZWWllaZo8qQd/qxJJnHi4+PV48ePTRy5EiFhYVp8ODBWrJkSa2FosLCQhUVFemVV16p0vOIESMkyZzX8ePHq3HjxurWrZvatm2rpKSkc35F54nvv/9ektSuXbsq2zp06GAGytO1bdvW7XXr1q3l7e3t0S3rlaF+yJAhbuuHDBmi48ePa+vWrTUeC7iYuGsM+IVOP4tTUVEhLy8vffjhh9XevdW4ceOzjvPvf/9b9957r3r16qV58+apefPmatiwoRYuXFjji2arc88996hRo0ZasmSJbr75Zi1ZskTe3t76zW9+Uyt919TZ7mYzanABbWU4efbZZ9WlS5dqa87s8XzH8/f314YNG7R27VqtWLFCGRkZSk9P1+23366PPvroF999V9nzb3/7WyUkJFRbc8MNN0j6OZDk5eVp+fLlysjI0DvvvKN58+Zp8uTJZ71V/1I6M8DWREREhHbt2qWwsDC39aGhoZJUowAMXAoEIaAWtW7dWoZhqFWrVrruuus82vedd96Rn5+fVq1aJZvNZq5fuHBhlVpPfjAFBATo7rvv1tKlS/XCCy8oPT1dPXv2VERERK30XZvO9r5at24t6eev+mJjY2vteN7e3urTp4/69OmjF154QdOnT9dTTz2ltWvXnvU4NZ37Zs2aKTAwUOXl5TXqOSAgQPHx8YqPj1dZWZkGDBigZ555RhMnTqzRbfln66vymVJ5eXlVtuXm5qpp06ZVHvmwa9cutzOd33zzjSoqKjx6Enp0dLR27dql//73v253Lu7fv1+SzLvcgLrGV2NALRowYIB8fHw0derUKmc6DMPQTz/9dNZ9fXx85OXlpfLycnPdnj17qn1wYkBAgEd3csXHx2v//v169dVX9eWXX7p9LfZL+65NlT+Qz3xv0dHRat26tZ577jkdPXq0yn6FhYUeH+vQoUNV1lWebSotLfW4xzP5+Pho4MCBeuedd7R9+/Yq20/v+cz59fX1VVRUlAzD0MmTJ895nEqNGjWqtq/mzZurS5cuWrRokdu27du366OPPtJdd91VZazKRwRUevnllyVJd955Z416kWT+HnvttdfMdRUVFVq4cKFCQkIUHR1d47GAi4kzQkAtat26tZ5++mlNnDhRe/bsUf/+/RUYGKjdu3frvffe06hRo/TYY49Vu29cXJxeeOEF9evXT0OHDtWBAwc0d+5ctWnTRl999ZVbbXR0tD7++GO98MILioiIUKtWrRQTE3PWvu666y4FBgbqscceM39A11bftal169YKDg7WggULFBgYqICAAMXExKhVq1Z69dVXdeedd+r666/XiBEj9Ktf/Ur//e9/tXbtWtntdn3wwQceHWvatGnasGGD4uLi1LJlSx04cEDz5s1TixYtzOdBVafyB/gf/vAHOZ1O+fj4uD2G4HR/+ctftHbtWsXExOjhhx9WVFSUDh06pC1btujjjz82w1jfvn0VHh6uHj16KCwsTDt37tScOXMUFxdX4+fn+Pv7KyoqSunp6bruuusUEhKijh07qmPHjnr22Wd15513yuFwKDExUcePH9fLL7+soKCgav+7kN27d+vee+9Vv379lJWVpX/+858aOnSoOnfuXKNeJOm+++5Tnz59NGPGDB08eFCdO3fWsmXL9Mknn+ivf/2r21nP8ykuLjbDWOW1U3PmzFFwcLCCg4OVnJxc47GAKuriVjWgPqi81bi626/feecd45ZbbjECAgKMgIAAo3379kZSUpKRl5dn1lR3+/xrr71mtG3b1rDZbEb79u2NhQsXmsc5XW5urtGrVy/D39/fkGTeSn/m7fOne+CBBwxJRmxs7FnfU036Pp+z3T5f3e3h1c3B+++/b0RFRRkNGjSocuv61q1bjQEDBhhNmjQxbDab0bJlS2PQoEFGZmamWXO2z+XMucnMzDTuu+8+IyIiwvD19TUiIiKMIUOGGP/5z3/Mfaq7ff7UqVPGmDFjjGbNmhleXl5un42quX29oKDASEpKMiIjI42GDRsa4eHhRp8+fYxXXnnFrPnrX/9q9OrVy3xfrVu3Nh5//HGjuLj4bNNcrY0bNxrR0dGGr69vlV4+/vhjo0ePHoa/v79ht9uNe+65x/j666/d9q+cu6+//tq4//77jcDAQOOqq64ykpOTjePHj3vUi2EYxpEjR4xHH33UCA8PN3x9fY1OnToZ//znPz0ep/JzqG458/cP4Ckvw7jAR30CAOqVKVOmaOrUqSosLFTTpk3ruh3gkuAaIQAAYFlcIwSgRo4fP37e5xmFhITI19f3EnVkDeXl5ee9GLxx48a18oiDmiguLtbx48fPWRMeHl6jsQ4dOqSysrKzbvfx8eHuMlx0BCEANZKenm4+CPBs1q5dq9tuu+3SNGQR+/btc7uVvTqpqanVXvR8MTz66KNatGjROWtqesXFgAEDtH79+rNub9mypUcPcQQuBNcIAaiRH3/8UTt27DhnTXR0tPkEZ9SOEydO6JNPPjlnzbXXXuv2rJ6L6euvvzafBXQ2NX3WU3Z29jkfrOjv768ePXp41B/gKYIQAACwLC6WBgAAlsU1QudQUVGh/fv3KzAw8IL+rx0AAHDpGYahI0eOKCIiQt7e5z7nQxA6h/379ysyMrKu2wAAABdg3759atGixTlrCELnUPlo+3379slut9dxNwAAoCZcLpciIyNr9F/UEITOofLrMLvdThACAOAKU5PLWrhYGgAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWFaDum4AAOrKi6v/U9cteGzcHdfVdQtAvcIZIQAAYFkEIQAAYFkEIQAAYFlcIwTAsrrvfaWuW7gAz9V1A0C9whkhAABgWQQhAABgWQQhAABgWR4Fofnz5+uGG26Q3W6X3W6Xw+HQhx9+aG4/ceKEkpKS1KRJEzVu3FgDBw5UQUGB2xh79+5VXFycGjVqpNDQUD3++OM6deqUW826det04403ymazqU2bNkpLS6vSy9y5c3XNNdfIz89PMTEx2rx5s9v2mvQCAACszaMg1KJFC/3lL39Rdna2vvjiC91+++267777tGPHDknSuHHj9MEHH2jp0qVav3699u/frwEDBpj7l5eXKy4uTmVlZdq4caMWLVqktLQ0TZ482azZvXu34uLi1Lt3b+Xk5Gjs2LEaOXKkVq1aZdakp6crJSVFqamp2rJlizp37iyn06kDBw6YNefrBQAAwMswDOOXDBASEqJnn31W999/v5o1a6bFixfr/vvvlyTl5uaqQ4cOysrKUvfu3fXhhx/q7rvv1v79+xUWFiZJWrBggcaPH6/CwkL5+vpq/PjxWrFihbZv324eY/DgwSoqKlJGRoYkKSYmRjfddJPmzJkjSaqoqFBkZKTGjBmjCRMmqLi4+Ly9VKe0tFSlpaXma5fLpcjISBUXF8tut/+SaQJwGcp67bG6bsFjjkTuGgPOx+VyKSgoqEY/vy/4GqHy8nK99dZbKikpkcPhUHZ2tk6ePKnY2Fizpn379rr66quVlZUlScrKylKnTp3MECRJTqdTLpfLPKuUlZXlNkZlTeUYZWVlys7Odqvx9vZWbGysWVOTXqozY8YMBQUFmUtkZOSFTg8AALgCeByEtm3bpsaNG8tms2n06NF67733FBUVpfz8fPn6+io4ONitPiwsTPn5+ZKk/Px8txBUub1y27lqXC6Xjh8/roMHD6q8vLzamtPHOF8v1Zk4caKKi4vNZd++fTWbFAAAcEXy+IGK7dq1U05OjoqLi/X2228rISFB69evvxi9XXI2m002m62u2wAAAJeIx0HI19dXbdq0kSRFR0fr888/1+zZsxUfH6+ysjIVFRW5nYkpKChQeHi4JCk8PLzK3V2Vd3KdXnPm3V0FBQWy2+3y9/eXj4+PfHx8qq05fYzz9QIAAPCLnyNUUVGh0tJSRUdHq2HDhsrMzDS35eXlae/evXI4HJIkh8Ohbdu2ud3dtXr1atntdkVFRZk1p49RWVM5hq+vr6Kjo91qKioqlJmZadbUpBcAAACPzghNnDhRd955p66++modOXJEixcv1rp167Rq1SoFBQUpMTFRKSkpCgkJkd1u15gxY+RwOMy7tPr27auoqCgNGzZMM2fOVH5+viZNmqSkpCTzK6nRo0drzpw5euKJJ/TQQw9pzZo1WrJkiVasWGH2kZKSooSEBHXt2lXdunXTrFmzVFJSohEjRkhSjXoBAADwKAgdOHBADz74oH788UcFBQXphhtu0KpVq3THHXdIkl588UV5e3tr4MCBKi0tldPp1Lx588z9fXx8tHz5cj3yyCNyOBwKCAhQQkKCpk2bZta0atVKK1as0Lhx4zR79my1aNFCr776qpxOp1kTHx+vwsJCTZ48Wfn5+erSpYsyMjLcLqA+Xy8AAAC/+DlC9ZknzyEAcOXhOUJA/XRJniMEAABwpSMIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy/IoCM2YMUM33XSTAgMDFRoaqv79+ysvL8+t5rbbbpOXl5fbMnr0aLeavXv3Ki4uTo0aNVJoaKgef/xxnTp1yq1m3bp1uvHGG2Wz2dSmTRulpaVV6Wfu3Lm65ppr5Ofnp5iYGG3evNlt+4kTJ5SUlKQmTZqocePGGjhwoAoKCjx5ywAAoB7zKAitX79eSUlJ+uyzz7R69WqdPHlSffv2VUlJiVvdww8/rB9//NFcZs6caW4rLy9XXFycysrKtHHjRi1atEhpaWmaPHmyWbN7927FxcWpd+/eysnJ0dixYzVy5EitWrXKrElPT1dKSopSU1O1ZcsWde7cWU6nUwcOHDBrxo0bpw8++EBLly7V+vXrtX//fg0YMMDjSQIAAPWTl2EYxoXuXFhYqNDQUK1fv169evWS9PMZoS5dumjWrFnV7vPhhx/q7rvv1v79+xUWFiZJWrBggcaPH6/CwkL5+vpq/PjxWrFihbZv327uN3jwYBUVFSkjI0OSFBMTo5tuuklz5syRJFVUVCgyMlJjxozRhAkTVFxcrGbNmmnx4sW6//77JUm5ubnq0KGDsrKy1L179/O+P5fLpaCgIBUXF8tut1/oNAG4TGW99lhdt+AxR+Jzdd0CcNnz5Of3L7pGqLi4WJIUEhLitv6NN95Q06ZN1bFjR02cOFHHjh0zt2VlZalTp05mCJIkp9Mpl8ulHTt2mDWxsbFuYzqdTmVlZUmSysrKlJ2d7Vbj7e2t2NhYsyY7O1snT550q2nfvr2uvvpqs+ZMpaWlcrlcbgsAAKi/GlzojhUVFRo7dqx69Oihjh07muuHDh2qli1bKiIiQl999ZXGjx+vvLw8vfvuu5Kk/Px8txAkyXydn59/zhqXy6Xjx4/r8OHDKi8vr7YmNzfXHMPX11fBwcFVaiqPc6YZM2Zo6tSpHs4EAAC4Ul1wEEpKStL27dv1ySefuK0fNWqU+etOnTqpefPm6tOnj7799lu1bt36wju9BCZOnKiUlBTztcvlUmRkZB12BAAALqYL+mosOTlZy5cv19q1a9WiRYtz1sbExEiSvvnmG0lSeHh4lTu3Kl+Hh4efs8Zut8vf319NmzaVj49PtTWnj1FWVqaioqKz1pzJZrPJbre7LQAAoP7yKAgZhqHk5GS99957WrNmjVq1anXefXJyciRJzZs3lyQ5HA5t27bN7e6u1atXy263KyoqyqzJzMx0G2f16tVyOBySJF9fX0VHR7vVVFRUKDMz06yJjo5Ww4YN3Wry8vK0d+9eswYAAFibR1+NJSUlafHixXr//fcVGBhoXmsTFBQkf39/ffvtt1q8eLHuuusuNWnSRF999ZXGjRunXr166YYbbpAk9e3bV1FRURo2bJhmzpyp/Px8TZo0SUlJSbLZbJKk0aNHa86cOXriiSf00EMPac2aNVqyZIlWrFhh9pKSkqKEhAR17dpV3bp106xZs1RSUqIRI0aYPSUmJiolJUUhISGy2+0aM2aMHA5Hje4YAwAA9Z9HQWj+/PmSfr5F/nQLFy7U8OHD5evrq48//tgMJZGRkRo4cKAmTZpk1vr4+Gj58uV65JFH5HA4FBAQoISEBE2bNs2sadWqlVasWKFx48Zp9uzZatGihV599VU5nU6zJj4+XoWFhZo8ebLy8/PVpUsXZWRkuF1A/eKLL8rb21sDBw5UaWmpnE6n5s2b59EEAQCA+usXPUeovuM5QkD9xnOEgPrpkj1HCAAA4EpGEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJblURCaMWOGbrrpJgUGBio0NFT9+/dXXl6eW82JEyeUlJSkJk2aqHHjxho4cKAKCgrcavbu3au4uDg1atRIoaGhevzxx3Xq1Cm3mnXr1unGG2+UzWZTmzZtlJaWVqWfuXPn6pprrpGfn59iYmK0efNmj3sBAADW5VEQWr9+vZKSkvTZZ59p9erVOnnypPr27auSkhKzZty4cfrggw+0dOlSrV+/Xvv379eAAQPM7eXl5YqLi1NZWZk2btyoRYsWKS0tTZMnTzZrdu/erbi4OPXu3Vs5OTkaO3asRo4cqVWrVpk16enpSklJUWpqqrZs2aLOnTvL6XTqwIEDNe4FAABYm5dhGMaF7lxYWKjQ0FCtX79evXr1UnFxsZo1a6bFixfr/vvvlyTl5uaqQ4cOysrKUvfu3fXhhx/q7rvv1v79+xUWFiZJWrBggcaPH6/CwkL5+vpq/PjxWrFihbZv324ea/DgwSoqKlJGRoYkKSYmRjfddJPmzJkjSaqoqFBkZKTGjBmjCRMm1KiX83G5XAoKClJxcbHsdvuFThOAy1TWa4/VdQsecyQ+V9ctAJc9T35+/6JrhIqLiyVJISEhkqTs7GydPHlSsbGxZk379u119dVXKysrS5KUlZWlTp06mSFIkpxOp1wul3bs2GHWnD5GZU3lGGVlZcrOznar8fb2VmxsrFlTk17OVFpaKpfL5bYAAID664KDUEVFhcaOHasePXqoY8eOkqT8/Hz5+voqODjYrTYsLEz5+flmzekhqHJ75bZz1bhcLh0/flwHDx5UeXl5tTWnj3G+Xs40Y8YMBQUFmUtkZGQNZwMAAFyJLjgIJSUlafv27Xrrrbdqs586NXHiRBUXF5vLvn376rolAABwETW4kJ2Sk5O1fPlybdiwQS1atDDXh4eHq6ysTEVFRW5nYgoKChQeHm7WnHl3V+WdXKfXnHl3V0FBgex2u/z9/eXj4yMfH59qa04f43y9nMlms8lms3kwEwAA4Erm0RkhwzCUnJys9957T2vWrFGrVq3ctkdHR6thw4bKzMw01+Xl5Wnv3r1yOBySJIfDoW3btrnd3bV69WrZ7XZFRUWZNaePUVlTOYavr6+io6PdaioqKpSZmWnW1KQXAABgbR6dEUpKStLixYv1/vvvKzAw0LzWJigoSP7+/goKClJiYqJSUlIUEhIiu92uMWPGyOFwmHdp9e3bV1FRURo2bJhmzpyp/Px8TZo0SUlJSebZmNGjR2vOnDl64okn9NBDD2nNmjVasmSJVqxYYfaSkpKihIQEde3aVd26ddOsWbNUUlKiESNGmD2drxcAAGBtHgWh+fPnS5Juu+02t/ULFy7U8OHDJUkvvviivL29NXDgQJWWlsrpdGrevHlmrY+Pj5YvX65HHnlEDodDAQEBSkhI0LRp08yaVq1aacWKFRo3bpxmz56tFi1a6NVXX5XT6TRr4uPjVVhYqMmTJys/P19dunRRRkaG2wXU5+sFAABY2y96jlB9x3OEgPqN5wgB9dMle44QAADAlYwgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALMvjILRhwwbdc889ioiIkJeXl5YtW+a2ffjw4fLy8nJb+vXr51Zz6NAhPfDAA7Lb7QoODlZiYqKOHj3qVvPVV1+pZ8+e8vPzU2RkpGbOnFmll6VLl6p9+/by8/NTp06dtHLlSrfthmFo8uTJat68ufz9/RUbG6tdu3Z5+pYBAEA95XEQKikpUefOnTV37tyz1vTr108//vijubz55ptu2x944AHt2LFDq1ev1vLly7VhwwaNGjXK3O5yudS3b1+1bNlS2dnZevbZZzVlyhS98sorZs3GjRs1ZMgQJSYmauvWrerfv7/69++v7du3mzUzZ87USy+9pAULFmjTpk0KCAiQ0+nUiRMnPH3bAACgHvIyDMO44J29vPTee++pf//+5rrhw4erqKioypmiSjt37lRUVJQ+//xzde3aVZKUkZGhu+66Sz/88IMiIiI0f/58PfXUU8rPz5evr68kacKECVq2bJlyc3MlSfHx8SopKdHy5cvNsbt3764uXbpowYIFMgxDERER+uMf/6jHHntMklRcXKywsDClpaVp8ODB531/LpdLQUFBKi4ult1uv5ApAnAZy3rtsbpuwWOOxOfqugXgsufJz++Lco3QunXrFBoaqnbt2umRRx7RTz/9ZG7LyspScHCwGYIkKTY2Vt7e3tq0aZNZ06tXLzMESZLT6VReXp4OHz5s1sTGxrod1+l0KisrS5K0e/du5efnu9UEBQUpJibGrDlTaWmpXC6X2wIAAOqvWg9C/fr10z/+8Q9lZmbqf//3f7V+/XrdeeedKi8vlyTl5+crNDTUbZ8GDRooJCRE+fn5Zk1YWJhbTeXr89Wcvv30/aqrOdOMGTMUFBRkLpGRkR6/fwAAcOVoUNsDnv6VU6dOnXTDDTeodevWWrdunfr06VPbh6tVEydOVEpKivna5XIRhgAAqMcu+u3z1157rZo2bapvvvlGkhQeHq4DBw641Zw6dUqHDh1SeHi4WVNQUOBWU/n6fDWnbz99v+pqzmSz2WS3290WAABQf130IPTDDz/op59+UvPmzSVJDodDRUVFys7ONmvWrFmjiooKxcTEmDUbNmzQyZMnzZrVq1erXbt2uuqqq8yazMxMt2OtXr1aDodDktSqVSuFh4e71bhcLm3atMmsAQAA1uZxEDp69KhycnKUk5Mj6eeLknNycrR3714dPXpUjz/+uD777DPt2bNHmZmZuu+++9SmTRs5nU5JUocOHdSvXz89/PDD2rx5sz799FMlJydr8ODBioiIkCQNHTpUvr6+SkxM1I4dO5Senq7Zs2e7fW316KOPKiMjQ88//7xyc3M1ZcoUffHFF0pOTpb08x1tY8eO1dNPP61//etf2rZtmx588EFFRES43eUGAACsy+NrhL744gv17t3bfF0ZThISEjR//nx99dVXWrRokYqKihQREaG+ffvqz3/+s2w2m7nPG2+8oeTkZPXp00fe3t4aOHCgXnrpJXN7UFCQPvroIyUlJSk6OlpNmzbV5MmT3Z41dPPNN2vx4sWaNGmSnnzySbVt21bLli1Tx44dzZonnnhCJSUlGjVqlIqKinTLLbcoIyNDfn5+nr5tAABQD/2i5wjVdzxHCKjfeI4QUD/V+XOEAAAArgQEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkeB6ENGzbonnvuUUREhLy8vLRs2TK37YZhaPLkyWrevLn8/f0VGxurXbt2udUcOnRIDzzwgOx2u4KDg5WYmKijR4+61Xz11Vfq2bOn/Pz8FBkZqZkzZ1bpZenSpWrfvr38/PzUqVMnrVy50uNeAACAdXkchEpKStS5c2fNnTu32u0zZ87USy+9pAULFmjTpk0KCAiQ0+nUiRMnzJoHHnhAO3bs0OrVq7V8+XJt2LBBo0aNMre7XC717dtXLVu2VHZ2tp599llNmTJFr7zyilmzceNGDRkyRImJidq6dav69++v/v37a/v27R71AgAArMvLMAzjgnf28tJ7772n/v37S/r5DExERIT++Mc/6rHHHpMkFRcXKywsTGlpaRo8eLB27typqKgoff755+rataskKSMjQ3fddZd++OEHRUREaP78+XrqqaeUn58vX19fSdKECRO0bNky5ebmSpLi4+NVUlKi5cuXm/10795dXbp00YIFC2rUy/m4XC4FBQWpuLhYdrv9QqcJwGUq67XH6roFjzkSn6vrFoDLnic/v2v1GqHdu3crPz9fsbGx5rqgoCDFxMQoKytLkpSVlaXg4GAzBElSbGysvL29tWnTJrOmV69eZgiSJKfTqby8PB0+fNisOf04lTWVx6lJL2cqLS2Vy+VyWwAAQP1Vq0EoPz9fkhQWFua2PiwszNyWn5+v0NBQt+0NGjRQSEiIW011Y5x+jLPVnL79fL2cacaMGQoKCjKXyMjIGrxrAABwpeKusdNMnDhRxcXF5rJv3766bgkAAFxEtRqEwsPDJUkFBQVu6wsKCsxt4eHhOnDggNv2U6dO6dChQ2411Y1x+jHOVnP69vP1ciabzSa73e62AACA+qtWg1CrVq0UHh6uzMxMc53L5dKmTZvkcDgkSQ6HQ0VFRcrOzjZr1qxZo4qKCsXExJg1GzZs0MmTJ82a1atXq127drrqqqvMmtOPU1lTeZya9AIAAKzN4yB09OhR5eTkKCcnR9LPFyXn5ORo79698vLy0tixY/X000/rX//6l7Zt26YHH3xQERER5p1lHTp0UL9+/fTwww9r8+bN+vTTT5WcnKzBgwcrIiJCkjR06FD5+voqMTFRO3bsUHp6umbPnq2UlBSzj0cffVQZGRl6/vnnlZubqylTpuiLL75QcnKyJNWoFwAAYG0NPN3hiy++UO/evc3XleEkISFBaWlpeuKJJ1RSUqJRo0apqKhIt9xyizIyMuTn52fu88Ybbyg5OVl9+vSRt7e3Bg4cqJdeesncHhQUpI8++khJSUmKjo5W06ZNNXnyZLdnDd18881avHixJk2apCeffFJt27bVsmXL1LFjR7OmJr0AAADr+kXPEarveI4QUL/xHCGgfqqz5wgBAABcSQhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsmo9CE2ZMkVeXl5uS/v27c3tJ06cUFJSkpo0aaLGjRtr4MCBKigocBtj7969iouLU6NGjRQaGqrHH39cp06dcqtZt26dbrzxRtlsNrVp00ZpaWlVepk7d66uueYa+fn5KSYmRps3b67ttwsAAK5gF+WM0PXXX68ff/zRXD755BNz27hx4/TBBx9o6dKlWr9+vfbv368BAwaY28vLyxUXF6eysjJt3LhRixYtUlpamiZPnmzW7N69W3Fxcerdu7dycnI0duxYjRw5UqtWrTJr0tPTlZKSotTUVG3ZskWdO3eW0+nUgQMHLsZbBgAAVyAvwzCM2hxwypQpWrZsmXJycqpsKy4uVrNmzbR48WLdf//9kqTc3Fx16NBBWVlZ6t69uz788EPdfffd2r9/v8LCwiRJCxYs0Pjx41VYWChfX1+NHz9eK1as0Pbt282xBw8erKKiImVkZEiSYmJidNNNN2nOnDmSpIqKCkVGRmrMmDGaMGFCtb2XlpaqtLTUfO1yuRQZGani4mLZ7fZamR8Al4+s1x6r6xY85kh8rq5bAC57LpdLQUFBNfr5fVHOCO3atUsRERG69tpr9cADD2jv3r2SpOzsbJ08eVKxsbFmbfv27XX11VcrKytLkpSVlaVOnTqZIUiSnE6nXC6XduzYYdacPkZlTeUYZWVlys7Odqvx9vZWbGysWVOdGTNmKCgoyFwiIyN/4UwAAIDLWa0HoZiYGKWlpSkjI0Pz58/X7t271bNnTx05ckT5+fny9fVVcHCw2z5hYWHKz8+XJOXn57uFoMrtldvOVeNyuXT8+HEdPHhQ5eXl1dZUjlGdiRMnqri42Fz27dt3QXMAAACuDA1qe8A777zT/PUNN9ygmJgYtWzZUkuWLJG/v39tH65W2Ww22Wy2um4DAABcIhf99vng4GBdd911+uabbxQeHq6ysjIVFRW51RQUFCg8PFySFB4eXuUussrX56ux2+3y9/dX06ZN5ePjU21N5RgAAAAXPQgdPXpU3377rZo3b67o6Gg1bNhQmZmZ5va8vDzt3btXDodDkuRwOLRt2za3u7tWr14tu92uqKgos+b0MSprKsfw9fVVdHS0W01FRYUyMzPNGgAAgFoPQo899pjWr1+vPXv2aOPGjfr1r38tHx8fDRkyREFBQUpMTFRKSorWrl2r7OxsjRgxQg6HQ927d5ck9e3bV1FRURo2bJi+/PJLrVq1SpMmTVJSUpL5tdXo0aP13Xff6YknnlBubq7mzZunJUuWaNy4cWYfKSkp+tvf/qZFixZp586deuSRR1RSUqIRI0bU9lsGAABXqFq/RuiHH37QkCFD9NNPP6lZs2a65ZZb9Nlnn6lZs2aSpBdffFHe3t4aOHCgSktL5XQ6NW/ePHN/Hx8fLV++XI888ogcDocCAgKUkJCgadOmmTWtWrXSihUrNG7cOM2ePVstWrTQq6++KqfTadbEx8ersLBQkydPVn5+vrp06aKMjIwqF1ADAADrqvXnCNUnnjyHAMCVh+cIAfVTnT9HCAAA4EpAEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZliSA0d+5cXXPNNfLz81NMTIw2b95c1y0BAIDLQL0PQunp6UpJSVFqaqq2bNmizp07y+l06sCBA3XdGgAAqGP1Pgi98MILevjhhzVixAhFRUVpwYIFatSokf7+97/XdWsAAKCONajrBi6msrIyZWdna+LEieY6b29vxcbGKisrq0p9aWmpSktLzdfFxcWSJJfLdfGbBXDJlRwvPX/RZYa/j4Dzq/xzYhjGeWvrdRA6ePCgysvLFRYW5rY+LCxMubm5VepnzJihqVOnVlkfGRl50XoEAI+MmVPXHQBXjCNHjigoKOicNfU6CHlq4sSJSklJMV9XVFTo0KFDatKkiby8vOqws8uDy+VSZGSk9u3bJ7vdXtft1FvM86XBPF86zPWlwTz/f4Zh6MiRI4qIiDhvbb0OQk2bNpWPj48KCgrc1hcUFCg8PLxKvc1mk81mc1sXHBx8MVu8Itntdsv/IbsUmOdLg3m+dJjrS4N5/tn5zgRVqtcXS/v6+io6OlqZmZnmuoqKCmVmZsrhcNRhZwAA4HJQr88ISVJKSooSEhLUtWtXdevWTbNmzVJJSYlGjBhR160BAIA6Vu+DUHx8vAoLCzV58mTl5+erS5cuysjIqHIBNc7PZrMpNTW1yteHqF3M86XBPF86zPWlwTxfGC+jJveWAQAA1EP1+hohAACAcyEIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIwc3cuXN1zTXXyM/PTzExMdq8efM564uKipSUlKTmzZvLZrPpuuuu08qVKy9Rt1cuT+d51qxZateunfz9/RUZGalx48bpxIkTl6jbK9OGDRt0zz33KCIiQl5eXlq2bNl591m3bp1uvPFG2Ww2tWnTRmlpaRe9zyudp/P87rvv6o477lCzZs1kt9vlcDi0atWqS9PsFexCfj9X+vTTT9WgQQN16dLlovV3JSMIwZSenq6UlBSlpqZqy5Yt6ty5s5xOpw4cOFBtfVlZme644w7t2bNHb7/9tvLy8vS3v/1Nv/rVry5x51cWT+d58eLFmjBhglJTU7Vz50699tprSk9P15NPPnmJO7+ylJSUqHPnzpo7d26N6nfv3q24uDj17t1bOTk5Gjt2rEaOHMkP6fPwdJ43bNigO+64QytXrlR2drZ69+6te+65R1u3br3InV7ZPJ3nSkVFRXrwwQfVp0+fi9RZPWAA/6dbt25GUlKS+bq8vNyIiIgwZsyYUW39/PnzjWuvvdYoKyu7VC3WC57Oc1JSknH77be7rUtJSTF69OhxUfusTyQZ77333jlrnnjiCeP66693WxcfH284nc6L2Fn9UpN5rk5UVJQxderU2m+onvJknuPj441JkyYZqampRufOnS9qX1cqzghB0s9nd7KzsxUbG2uu8/b2VmxsrLKysqrd51//+pccDoeSkpIUFhamjh07avr06SovL79UbV9xLmSeb775ZmVnZ5tfn3333XdauXKl7rrrrkvSs1VkZWW5fS6S5HQ6z/q5oHZUVFToyJEjCgkJqetW6p2FCxfqu+++U2pqal23clmr9//FBmrm4MGDKi8vr/Jfj4SFhSk3N7fafb777jutWbNGDzzwgFauXKlvvvlGv//973Xy5En+4J3Fhczz0KFDdfDgQd1yyy0yDEOnTp3S6NGj+WqsluXn51f7ubhcLh0/flz+/v511Fn99txzz+no0aMaNGhQXbdSr+zatUsTJkzQv//9bzVowI/6c+GMEC5YRUWFQkND9corryg6Olrx8fF66qmntGDBgrpurV5Zt26dpk+frnnz5mnLli169913tWLFCv35z3+u69aAX2Tx4sWaOnWqlixZotDQ0Lpup94oLy/X0KFDNXXqVF133XV13c5lj5gISVLTpk3l4+OjgoICt/UFBQUKDw+vdp/mzZurYcOG8vHxMdd16NBB+fn5Kisrk6+v70Xt+Up0IfP8pz/9ScOGDdPIkSMlSZ06dVJJSYlGjRqlp556St7e/HumNoSHh1f7udjtds4GXQRvvfWWRo4cqaVLl1b5ShK/zJEjR/TFF19o69atSk5OlvTzP1wNw1CDBg300Ucf6fbbb6/jLi8f/A0KSZKvr6+io6OVmZlprquoqFBmZqYcDke1+/To0UPffPONKioqzHX/+c9/1Lx5c0LQWVzIPB87dqxK2KkMnwb/Z3KtcTgcbp+LJK1evfqsnwsu3JtvvqkRI0bozTffVFxcXF23U+/Y7XZt27ZNOTk55jJ69Gi1a9dOOTk5iomJqesWLy91fLE2LiNvvfWWYbPZjLS0NOPrr782Ro0aZQQHBxv5+fmGYRjGsGHDjAkTJpj1e/fuNQIDA43k5GQjLy/PWL58uREaGmo8/fTTdfUWrgieznNqaqoRGBhovPnmm8Z3331nfPTRR0br1q2NQYMG1dVbuCIcOXLE2Lp1q7F161ZDkvHCCy8YW7duNb7//nvDMAxjwoQJxrBhw8z67777zmjUqJHx+OOPGzt37jTmzp1r+Pj4GBkZGXX1Fq4Ins7zG2+8YTRo0MCYO3eu8eOPP5pLUVFRXb2FK4Kn83wm7ho7O4IQ3Lz88svG1Vdfbfj6+hrdunUzPvvsM3PbrbfeaiQkJLjVb9y40YiJiTFsNptx7bXXGs8884xx6tSpS9z1lceTeT558qQxZcoUo3Xr1oafn58RGRlp/P73vzcOHz586Ru/gqxdu9aQVGWpnNuEhATj1ltvrbJPly5dDF9fX+Paa681Fi5ceMn7vtJ4Os+33nrrOetRvQv5/Xw6gtDZeRkG59YBAIA1cY0QAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwrP8HwpMLTTjc0oIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ4NJREFUeJzt3Xl4VPXd//9XEphJWCZhS0JKQBYFIlsJEEYERSKDxIWCNYg3BgxSbOAWomyVsrWKN25Q2WqxhLZwCy7QWwLBELYqUTQYZRHqEgoWJgSFDARIIDnfP/rL+TEmYCYkxByej+s6V5lz3ucz7/MJOK+eOefEzzAMQwAAABbjX9MNAAAAVAdCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDlANRo0apZtuuqlKx0xJSZGfn58OHz5cpeP6Yvv27fLz89P27dtrrIeqcvjwYfn5+SklJaVC9X5+fpo9e3a19gSgahFygJ+Y5557TuvXr6/pNqrcsWPHNHv2bGVnZ9d0K1e0cePGn2SQOXfunGbPnv2TC5dbtmzRXXfdpeDgYDVs2FDR0dFas2aNT2O88847io+PV5s2bVSvXj21b99eTz31lE6fPl09TeOG4sfvrgKq3qhRo7R9+/ZKnXVp0KCBHnzwwTJnGIqLi3Xx4kXZ7Xb5+flVTaM+KikpUVFRkWw2m/z9ffv/SJ988ol69uypFStWaNSoUdXToA8Mw1BhYaHq1q2rgIAASdL48eO1ePFilfefxQsXLqhOnTqqU6fO9W5VJ0+eVLNmzTRr1qyfTAhbsWKFEhMTdffdd+v+++9XQECADh06pJ/97Gd6+umnKzxO06ZNFRERoSFDhqhly5bau3evli1bpjZt2mjPnj0KCgqqxqOA1V3/f61ALVVQUKD69evX2PsHBASYH8Y1xd/fX4GBgTXaQ1Xx8/Pz6VisctxV4fDhw0pKStKECRO0cOHCaxrrrbfe0p133um1Ljo6WgkJCVq1apXGjBlzTePjxsbXVUA5Zs+eLT8/Px04cEAjRoxQo0aNdPvtt0uS/va3vyk6OlpBQUFq3Lixhg8frqNHj/7omC+++KJuu+02NWnSREFBQYqOjtZbb73lVePn56eCggKtXLlSfn5+8vPzM896/PCanHvvvVdt2rQp972cTqd69Ojhta6yfV+uvGty7rzzTnXq1EkHDhxQ//79Va9ePf3sZz/T/Pnzvfbr2bOnJGn06NHmsV1+tuqjjz7SoEGDFBwcrHr16umOO+7QBx984PX+pT+Xr776SqNGjVJISIiCg4M1evRonTt3zqs2PT1dt99+u0JCQtSgQQO1b99ev/nNb8ztP7wmZ9SoUVq8eLEkmf1dfsasvGty/v3vf+uxxx5TWFiY7Ha7br31Vv35z38uM2+vvvqqbr31VtWrV0+NGjVSjx49tHr16h+f8P+vz2bNmkmS5syZY/Z1eS9bt25V3759Vb9+fYWEhOiBBx7QF198Ue7cHTx4UA899JAcDoeaNGmiJ598UhcuXKhQL6WWLVum4uJizZ07V5J09uzZcs9+VcQPA44k/eIXv5CkMscA+IqQA1zFL3/5S507d07PPfecHn/8cT377LN69NFHdfPNN+vll1/WxIkTlZGRoX79+v3oNQQLFy7Uz3/+c82dO1fPPfec6tSpo1/+8pdKTU01a/7617/Kbrerb9+++utf/6q//vWv+tWvflXuePHx8crJydHHH3/stf5f//qXPvzwQw0fPtxcdy19V8SpU6c0aNAgde3aVS+99JI6dOigqVOnatOmTZKkjh07mh+IY8eONY+tX79+kv7zId2vXz95PB7NmjVLzz33nE6fPq277rpLu3fvLvN+Dz30kM6cOaN58+bpoYceUkpKiubMmWNu379/v+69914VFhZq7ty5eumll3T//feXCU2X+9WvfqW7775bksz+/vrXv16xPjc3V71799aWLVs0fvx4LVy4UO3atVNiYqIWLFhg1v3pT3/Sf//3fysqKkoLFizQnDlz1K1bN3300UcVmttmzZpp6dKlkv7z4V/a19ChQyX957oYl8ulEydOaPbs2UpOTtauXbvUp0+fcr8ufeihh3ThwgXNmzdPgwcP1h/+8AeNHTu2Qr2U2rJlizp06KCNGzeqRYsWatiwoZo0aaLf/va3Kikp8Wms8rjdbkn/+SoLuCYGgDJmzZplSDIefvhhc93hw4eNgIAA49lnn/Wq3bt3r1GnTh2v9QkJCUarVq286s6dO+f1uqioyOjUqZNx1113ea2vX7++kZCQUKanFStWGJKMnJwcwzAMIz8/37Db7cZTTz3lVTd//nzDz8/P+Ne//uVz3z9m27ZthiRj27Zt5ro77rjDkGT85S9/MdcVFhYa4eHhxrBhw8x1H3/8sSHJWLFihdeYJSUlxs0332y4XC6jpKTEXH/u3DmjdevWxt13322uK/25PPbYY15j/OIXvzCaNGlivn7llVcMSUZeXt4VjyUnJ6dMP0lJScaV/rMoyZg1a5b5OjEx0WjevLlx8uRJr7rhw4cbwcHB5s/7gQceMG699dYr9lEReXl5Zd6/VLdu3YzQ0FDju+++M9d99tlnhr+/v/Hoo4+a60rn7v777/fa/9e//rUhyfjss88q3I/D4TAaNWpk2O1247e//a3x1ltvGSNGjDAkGdOmTfP9AH8gMTHRCAgIMP75z39e81i4sXEmB7iKcePGmX9+5513VFJSooceekgnT540l/DwcN18883atm3bVce6/ALKU6dOKT8/X3379tWePXsq1ZvD4dA999yjtWvXen1VsGbNGvXu3VstW7askr4rokGDBvqv//ov87XNZlOvXr30zTff/Oi+2dnZ+vLLLzVixAh99913Zn8FBQUaMGCAdu7cWebswOU/F0nq27evvvvuO3k8HklSSEiIJOnvf/97lZxZ+CHDMPT222/rvvvuk2EYXvPqcrmUn59v/lxDQkL07bffljnjVhWOHz+u7OxsjRo1So0bNzbXd+nSRXfffbc2btxYZp+kpCSv1xMmTJCkcmuv5OzZszp16pTmzJmjuXPnatiwYVq1apUGDRqkhQsX6syZM5U8Imn16tV6/fXX9dRTT+nmm2+u9DiAxNdVwFW1bt3a/POXX34pwzB08803q1mzZl7LF198oRMnTlx1rA0bNqh3794KDAxU48aNza8h8vPzK91ffHy8jh49qszMTEnS119/raysLMXHx1dZ3xXRokWLMnd8NWrUSKdOnfrRfb/88ktJUkJCQpn+li9frsLCwjJzVBrgLn8vSeb7xcfHq0+fPhozZozCwsI0fPhwrV27tsoCT15enk6fPq3XXnutTM+jR4+WJHNep06dqgYNGqhXr166+eablZSUdNWvzXzxr3/9S5LUvn37Mts6duxohsXL/TA4tG3bVv7+/j7dCVga2B9++GGv9Q8//LDOnz+vTz/9tMJjXe4f//iHEhMT5XK59Oyzz1ZqDOBy3F0FXMXlZ19KSkrk5+enTZs2lXuXU4MGDa44zj/+8Q/df//96tevn5YsWaLmzZurbt26WrFiRYUvQC3Pfffdp3r16mnt2rW67bbbtHbtWvn7++uXv/xllfRdUVe668uowMWopcHjhRdeULdu3cqt+WGPP/Z+QUFB2rlzp7Zt26bU1FSlpaVpzZo1uuuuu/Tee+9d811qpT3/13/9lxISEsqt6dKli6T/hI1Dhw5pw4YNSktL09tvv60lS5Zo5syZXtcR1ZTKPI4gIiJCX375pcLCwrzWh4aGSlKFwu0PffbZZ7r//vvVqVMnvfXWWzVyqz6sh79FQAW1bdtWhmGodevWuuWWW3za9+2331ZgYKA2b94su91url+xYkWZWl8+dOrXr697771Xb775pl5++WWtWbNGffv2VURERJX0XZWudFxt27aV9J+v32JjY6vs/fz9/TVgwAANGDBAL7/8sp577jk988wz2rZt2xXfp6Jz36xZMzVs2FDFxcUV6rl+/fqKj49XfHy8ioqKNHToUD377LOaPn16hW5Nv1JfrVq1kiQdOnSozLaDBw+qadOmZR578OWXX3qdofzqq69UUlLi0xO6o6Oj9eWXX+rf//631x1+x44dkyTzbrCK+vrrrzVo0CCFhoZq48aNVRK8AYmvq4AKGzp0qAICAjRnzpwyZygMw9B33313xX0DAgLk5+en4uJic93hw4fLfbJx/fr1fbrjKT4+XseOHdPy5cv12WefeX1Vda19V6XSD9sfHlt0dLTatm2rF198UWfPni2zX15ens/v9f3335dZV3qWqLCw0OcefyggIEDDhg3T22+/rX379pXZfnnPP5xfm82mqKgoGYahixcvXvV9StWrV6/cvpo3b65u3bpp5cqVXtv27dun9957T4MHDy4zVult8qVeffVVSdI999xToV4kmX/HXn/9dXNdSUmJVqxYocaNGys6OrrCY7ndbg0cOFD+/v7avHmzzwEJuBrO5AAV1LZtW/3+97/X9OnTdfjwYQ0ZMkQNGzZUTk6O1q1bp7Fjx17xSa9xcXF6+eWXNWjQII0YMUInTpzQ4sWL1a5dO33++edetdHR0dqyZYtefvllRUREqHXr1oqJibliX4MHD1bDhg319NNPmx++VdV3VWrbtq1CQkK0bNkyNWzYUPXr11dMTIxat26t5cuX65577tGtt96q0aNH62c/+5n+/e9/a9u2bXI4HHr33Xd9eq+5c+dq586diouLU6tWrXTixAktWbJELVq0MJ93VJ7SD+f//u//lsvlUkBAgNet+Jd7/vnntW3bNsXExOjxxx9XVFSUvv/+e+3Zs0dbtmwxg9bAgQMVHh6uPn36KCwsTF988YUWLVqkuLg4NWzYsELHExQUpKioKK1Zs0a33HKLGjdurE6dOqlTp0564YUXdM8998jpdCoxMVHnz5/Xq6++quDg4HKfjpyTk6P7779fgwYNUmZmpv72t79pxIgR6tq1a4V6kaQHHnhAAwYM0Lx583Ty5El17dpV69ev1/vvv68//vGPXmcrf8ygQYP0zTffaMqUKXr//ff1/vvvm9vCwsLM2/qBSqmJW7qAn7rS223LuwX57bffNm6//Xajfv36Rv369Y0OHToYSUlJxqFDh8ya8m4hf/31142bb77ZsNvtRocOHYwVK1aY73O5gwcPGv369TOCgoIMSebt5D+8hfxyjzzyiCHJiI2NveIxVaTvH3OlW8jLu0W6vDn4+9//bkRFRRl16tQpc/v2p59+agwdOtRo0qSJYbfbjVatWhkPPfSQkZGRYdZc6efyw7nJyMgwHnjgASMiIsKw2WxGRESE8fDDD3vdklzeLeSXLl0yJkyYYDRr1szw8/Pz+tmonFu4c3NzjaSkJCMyMtKoW7euER4ebgwYMMB47bXXzJo//vGPRr9+/czjatu2rTF58mQjPz//StNcrl27dhnR0dGGzWYr08uWLVuMPn36GEFBQYbD4TDuu+8+48CBA177l87dgQMHjAcffNBo2LCh0ahRI2P8+PHG+fPnferFMAzjzJkzxpNPPmmEh4cbNpvN6Ny5s/G3v/3N53EkXXG54447fB4PuBy/uwoAbgCzZ8/WnDlzlJeXx0P2cMPgmhwAAGBJXJMDQOfPn//R5/U0btxYNpvtOnV0YyguLv7RC6sbNGhw3e42ys/P1/nz569aEx4eXqGxvv/+exUVFV1xe0BAABcZo9oRcgBozZo15kPsrmTbtm3l/jJFVN7Ro0e9bucuz6xZs8q9gLg6PPnkk1q5cuVVayp6hcPQoUO1Y8eOK25v1aqVTw8gBCqDa3IA6Pjx49q/f/9Va6Kjo80nC6NqXLhwwetuovK0adPmir9tvqodOHDAfNbNlVT0WUZZWVlXfShgUFCQ+vTp41N/gK8IOQAAwJK48BgAAFjSDX1NTklJiY4dO6aGDRtW6ve3AACA688wDJ05c0YRERHy97/y+ZobOuQcO3ZMkZGRNd0GAACohKNHj6pFixZX3H5Dh5zSR6ofPXpUDoejhrsBAAAV4fF4FBkZ+aO/GuWGDjmlX1E5HA5CDgAAtcyPXWrChccAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCS6tR0A5a1bV5Nd+C7/tNrugMAAKoMZ3IAAIAlEXIAAIAlEXIAAIAlcU1ONcn85ruabsFnzv413QEAAFWHMzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSrinkPP/88/Lz89PEiRPNdRcuXFBSUpKaNGmiBg0aaNiwYcrNzfXa78iRI4qLi1O9evUUGhqqyZMn69KlS14127dvV/fu3WW329WuXTulpKSUef/FixfrpptuUmBgoGJiYrR79+5rORwAAGAhlQ45H3/8sf74xz+qS5cuXusnTZqkd999V2+++aZ27NihY8eOaejQoeb24uJixcXFqaioSLt27dLKlSuVkpKimTNnmjU5OTmKi4tT//79lZ2drYkTJ2rMmDHavHmzWbNmzRolJydr1qxZ2rNnj7p27SqXy6UTJ05U9pAAAICF+BmGYfi609mzZ9W9e3ctWbJEv//979WtWzctWLBA+fn5atasmVavXq0HH3xQknTw4EF17NhRmZmZ6t27tzZt2qR7771Xx44dU1hYmCRp2bJlmjp1qvLy8mSz2TR16lSlpqZq37595nsOHz5cp0+fVlpamiQpJiZGPXv21KJFiyRJJSUlioyM1IQJEzRt2rQKHYfH41FwcLDy8/PlcDh8nYarynz96Sod73pwJr5Y0y0AAPCjKvr5XakzOUlJSYqLi1NsbKzX+qysLF28eNFrfYcOHdSyZUtlZmZKkjIzM9W5c2cz4EiSy+WSx+PR/v37zZofju1yucwxioqKlJWV5VXj7++v2NhYs6Y8hYWF8ng8XgsAALCmOr7u8MYbb2jPnj36+OOPy2xzu92y2WwKCQnxWh8WFia3223WXB5wSreXbrtajcfj0fnz53Xq1CkVFxeXW3Pw4MEr9j5v3jzNmTOnYgcKAABqNZ/O5Bw9elRPPvmkVq1apcDAwOrqqdpMnz5d+fn55nL06NGabgkAAFQTn0JOVlaWTpw4oe7du6tOnTqqU6eOduzYoT/84Q+qU6eOwsLCVFRUpNOnT3vtl5ubq/DwcElSeHh4mbutSl//WI3D4VBQUJCaNm2qgICAcmtKxyiP3W6Xw+HwWgAAgDX5FHIGDBigvXv3Kjs721x69OihRx55xPxz3bp1lZGRYe5z6NAhHTlyRE6nU5LkdDq1d+9er7ug0tPT5XA4FBUVZdZcPkZpTekYNptN0dHRXjUlJSXKyMgwawAAwI3Np2tyGjZsqE6dOnmtq1+/vpo0aWKuT0xMVHJysho3biyHw6EJEybI6XSqd+/ekqSBAwcqKipKI0eO1Pz58+V2uzVjxgwlJSXJbrdLksaNG6dFixZpypQpeuyxx7R161atXbtWqamp5vsmJycrISFBPXr0UK9evbRgwQIVFBRo9OjR1zQhAADAGny+8PjHvPLKK/L399ewYcNUWFgol8ulJUuWmNsDAgK0YcMGPfHEE3I6napfv74SEhI0d+5cs6Z169ZKTU3VpEmTtHDhQrVo0ULLly+Xy+Uya+Lj45WXl6eZM2fK7XarW7duSktLK3MxMgAAuDFV6jk5VsFzcrzxnBwAQG1Qrc/JAQAA+Kkj5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEvyKeQsXbpUXbp0kcPhkMPhkNPp1KZNm8ztd955p/z8/LyWcePGeY1x5MgRxcXFqV69egoNDdXkyZN16dIlr5rt27ere/fustvtateunVJSUsr0snjxYt10000KDAxUTEyMdu/e7cuhAAAAi/Mp5LRo0ULPP/+8srKy9Mknn+iuu+7SAw88oP3795s1jz/+uI4fP24u8+fPN7cVFxcrLi5ORUVF2rVrl1auXKmUlBTNnDnTrMnJyVFcXJz69++v7OxsTZw4UWPGjNHmzZvNmjVr1ig5OVmzZs3Snj171LVrV7lcLp04ceJa5gIAAFiIn2EYxrUM0LhxY73wwgtKTEzUnXfeqW7dumnBggXl1m7atEn33nuvjh07prCwMEnSsmXLNHXqVOXl5clms2nq1KlKTU3Vvn37zP2GDx+u06dPKy0tTZIUExOjnj17atGiRZKkkpISRUZGasKECZo2bVqFe/d4PAoODlZ+fr4cDkclZ6B8ma8/XaXjXQ/OxBdrugUAAH5URT+/K31NTnFxsd544w0VFBTI6XSa61etWqWmTZuqU6dOmj59us6dO2duy8zMVOfOnc2AI0kul0sej8c8G5SZmanY2Fiv93K5XMrMzJQkFRUVKSsry6vG399fsbGxZs2VFBYWyuPxeC0AAMCa6vi6w969e+V0OnXhwgU1aNBA69atU1RUlCRpxIgRatWqlSIiIvT5559r6tSpOnTokN555x1Jktvt9go4kszXbrf7qjUej0fnz5/XqVOnVFxcXG7NwYMHr9r7vHnzNGfOHF8PGQAA1EI+h5z27dsrOztb+fn5euutt5SQkKAdO3YoKipKY8eONes6d+6s5s2ba8CAAfr666/Vtm3bKm28MqZPn67k5GTztcfjUWRkZA12BAAAqovPIcdms6ldu3aSpOjoaH388cdauHCh/vjHP5apjYmJkSR99dVXatu2rcLDw8vcBZWbmytJCg8PN/+3dN3lNQ6HQ0FBQQoICFBAQEC5NaVjXIndbpfdbvfhaAEAQG11zc/JKSkpUWFhYbnbsrOzJUnNmzeXJDmdTu3du9frLqj09HQ5HA7zKy+n06mMjAyvcdLT083rfmw2m6Kjo71qSkpKlJGR4XVtEAAAuLH5dCZn+vTpuueee9SyZUudOXNGq1ev1vbt27V582Z9/fXXWr16tQYPHqwmTZro888/16RJk9SvXz916dJFkjRw4EBFRUVp5MiRmj9/vtxut2bMmKGkpCTzDMu4ceO0aNEiTZkyRY899pi2bt2qtWvXKjU11ewjOTlZCQkJ6tGjh3r16qUFCxaooKBAo0ePrsKpAQAAtZlPIefEiRN69NFHdfz4cQUHB6tLly7avHmz7r77bh09elRbtmwxA0dkZKSGDRumGTNmmPsHBARow4YNeuKJJ+R0OlW/fn0lJCRo7ty5Zk3r1q2VmpqqSZMmaeHChWrRooWWL18ul8tl1sTHxysvL08zZ86U2+1Wt27dlJaWVuZiZAAAcOO65ufk1GY8J8cbz8kBANQG1f6cHAAAgJ8yQg4AALAkQg4AALAkQg4AALAkQg4AALAkn594DAAArr9X0v9Z0y34bNLdt9To+3MmBwAAWBIhBwAAWBIhBwAAWBLX5AAAbji18foW+I4zOQAAwJIIOQAAwJIIOQAAwJK4JgcAcE24vgU/VYQcAABqgd5HXqvpFirhxRp9d76uAgAAlkTIAQAAlkTIAQAAlkTIAQAAlsSFxwDwE8KdStdH7byIF77iTA4AALAkzuQAwE8IZxiAqsOZHAAAYEmEHAAAYEl8XQXAsmrjRby9a7oBwEI4kwMAACyJkAMAACyJkAMAACyJa3IAWBa3YwM3Ns7kAAAAS/Ip5CxdulRdunSRw+GQw+GQ0+nUpk2bzO0XLlxQUlKSmjRpogYNGmjYsGHKzc31GuPIkSOKi4tTvXr1FBoaqsmTJ+vSpUteNdu3b1f37t1lt9vVrl07paSklOll8eLFuummmxQYGKiYmBjt3r3bl0MBAAAW51PIadGihZ5//nllZWXpk08+0V133aUHHnhA+/fvlyRNmjRJ7777rt58803t2LFDx44d09ChQ839i4uLFRcXp6KiIu3atUsrV65USkqKZs6cadbk5OQoLi5O/fv3V3Z2tiZOnKgxY8Zo8+bNZs2aNWuUnJysWbNmac+ePeratatcLpdOnDhxrfMBAAAsws8wDONaBmjcuLFeeOEFPfjgg2rWrJlWr16tBx98UJJ08OBBdezYUZmZmerdu7c2bdqke++9V8eOHVNYWJgkadmyZZo6dary8vJks9k0depUpaamat++feZ7DB8+XKdPn1ZaWpokKSYmRj179tSiRYskSSUlJYqMjNSECRM0bdq0Cvfu8XgUHBys/Px8ORyOa5mGMjJff7pKx7senIkv1nQLQJWqjf8OASuprs+Vin5+V/qanOLiYr3xxhsqKCiQ0+lUVlaWLl68qNjYWLOmQ4cOatmypTIzMyVJmZmZ6ty5sxlwJMnlcsnj8ZhngzIzM73GKK0pHaOoqEhZWVleNf7+/oqNjTVrrqSwsFAej8drAQAA1uRzyNm7d68aNGggu92ucePGad26dYqKipLb7ZbNZlNISIhXfVhYmNxutyTJ7XZ7BZzS7aXbrlbj8Xh0/vx5nTx5UsXFxeXWlI5xJfPmzVNwcLC5REZG+nr4AACglvA55LRv317Z2dn66KOP9MQTTyghIUEHDhyojt6q3PTp05Wfn28uR48eremWAABANfH5OTk2m03t2rWTJEVHR+vjjz/WwoULFR8fr6KiIp0+fdrrbE5ubq7Cw8MlSeHh4WXugiq9++rymh/ekZWbmyuHw6GgoCAFBAQoICCg3JrSMa7EbrfLbrf7esgAJGnbvJruAAB8cs0PAywpKVFhYaGio6NVt25dZWRkaNiwYZKkQ4cO6ciRI3I6nZIkp9OpZ599VidOnFBoaKgkKT09XQ6HQ1FRUWbNxo0bvd4jPT3dHMNmsyk6OloZGRkaMmSI2UNGRobGjx9/rYcD4Aoyv/muplsAAJ/4FHKmT5+ue+65Ry1bttSZM2e0evVqbd++XZs3b1ZwcLASExOVnJysxo0by+FwaMKECXI6nerd+z+/V3fgwIGKiorSyJEjNX/+fLndbs2YMUNJSUnmGZZx48Zp0aJFmjJlih577DFt3bpVa9euVWpqqtlHcnKyEhIS1KNHD/Xq1UsLFixQQUGBRo8eXYVTAwAAajOfQs6JEyf06KOP6vjx4woODlaXLl20efNm3X333ZKkV155Rf7+/ho2bJgKCwvlcrm0ZMkSc/+AgABt2LBBTzzxhJxOp+rXr6+EhATNnTvXrGndurVSU1M1adIkLVy4UC1atNDy5cvlcrnMmvj4eOXl5WnmzJlyu93q1q2b0tLSylyMDAAAblzX/Jyc2ozn5HjjOTm4mtr4dxpAzaq1z8kBAAD4KSPkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS7rmJx4D8M0r6f+s6RYqpXdNNwAAPuJMDgAAsCRCDgAAsCS+rgKus95HXqvpFgDghsCZHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEl1aroB4Fpkvv50TbcAAPiJ4kwOAACwJJ9Czrx589SzZ081bNhQoaGhGjJkiA4dOuRVc+edd8rPz89rGTdunFfNkSNHFBcXp3r16ik0NFSTJ0/WpUuXvGq2b9+u7t27y263q127dkpJSSnTz+LFi3XTTTcpMDBQMTEx2r17ty+HAwAALMynkLNjxw4lJSXpww8/VHp6ui5evKiBAweqoKDAq+7xxx/X8ePHzWX+/PnmtuLiYsXFxamoqEi7du3SypUrlZKSopkzZ5o1OTk5iouLU//+/ZWdna2JEydqzJgx2rx5s1mzZs0aJScna9asWdqzZ4+6du0ql8ulEydOVHYuAACAhfgZhmFUdue8vDyFhoZqx44d6tevn6T/nMnp1q2bFixYUO4+mzZt0r333qtjx44pLCxMkrRs2TJNnTpVeXl5stlsmjp1qlJTU7Vv3z5zv+HDh+v06dNKS0uTJMXExKhnz55atGiRJKmkpESRkZGaMGGCpk2bVqH+PR6PgoODlZ+fL4fDUdlpKFdtvFbEmfhiTbfgs9o4zwBwo6iuz5WKfn5f0zU5+fn5kqTGjRt7rV+1apWaNm2qTp06afr06Tp37py5LTMzU507dzYDjiS5XC55PB7t37/frImNjfUa0+VyKTMzU5JUVFSkrKwsrxp/f3/FxsaaNeUpLCyUx+PxWgAAgDVV+u6qkpISTZw4UX369FGnTp3M9SNGjFCrVq0UERGhzz//XFOnTtWhQ4f0zjvvSJLcbrdXwJFkvna73Vet8Xg8On/+vE6dOqXi4uJyaw4ePHjFnufNm6c5c+ZU9pABAEAtUumQk5SUpH379un999/3Wj927Fjzz507d1bz5s01YMAAff3112rbtm3lO60C06dPV3Jysvna4/EoMjKyBjsCAADVpVIhZ/z48dqwYYN27typFi1aXLU2JiZGkvTVV1+pbdu2Cg8PL3MXVG5uriQpPDzc/N/SdZfXOBwOBQUFKSAgQAEBAeXWlI5RHrvdLrvdXrGDBAAAtZpP1+QYhqHx48dr3bp12rp1q1q3bv2j+2RnZ0uSmjdvLklyOp3au3ev111Q6enpcjgcioqKMmsyMjK8xklPT5fT6ZQk2Ww2RUdHe9WUlJQoIyPDrAEAADc2n87kJCUlafXq1fr73/+uhg0bmtfQBAcHKygoSF9//bVWr16twYMHq0mTJvr88881adIk9evXT126dJEkDRw4UFFRURo5cqTmz58vt9utGTNmKCkpyTzLMm7cOC1atEhTpkzRY489pq1bt2rt2rVKTU01e0lOTlZCQoJ69OihXr16acGCBSooKNDo0aOram4AAEAt5lPIWbp0qaT/3CZ+uRUrVmjUqFGy2WzasmWLGTgiIyM1bNgwzZgxw6wNCAjQhg0b9MQTT8jpdKp+/fpKSEjQ3LlzzZrWrVsrNTVVkyZN0sKFC9WiRQstX75cLpfLrImPj1deXp5mzpwpt9utbt26KS0trczFyAAA4MZ0Tc/Jqe14To43npMDAKhKtfo5OQAAAD9VhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJdWq6AfyEbJtX0x0AAFBlOJMDAAAsiTM5MGV+811NtwAAQJXhTA4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkn0LOvHnz1LNnTzVs2FChoaEaMmSIDh065FVz4cIFJSUlqUmTJmrQoIGGDRum3Nxcr5ojR44oLi5O9erVU2hoqCZPnqxLly551Wzfvl3du3eX3W5Xu3btlJKSUqafxYsX66abblJgYKBiYmK0e/duXw4HAABYmE8hZ8eOHUpKStKHH36o9PR0Xbx4UQMHDlRBQYFZM2nSJL377rt68803tWPHDh07dkxDhw41txcXFysuLk5FRUXatWuXVq5cqZSUFM2cOdOsycnJUVxcnPr376/s7GxNnDhRY8aM0ebNm82aNWvWKDk5WbNmzdKePXvUtWtXuVwunThx4lrmAwAAWISfYRhGZXfOy8tTaGioduzYoX79+ik/P1/NmjXT6tWr9eCDD0qSDh48qI4dOyozM1O9e/fWpk2bdO+99+rYsWMKCwuTJC1btkxTp05VXl6ebDabpk6dqtTUVO3bt898r+HDh+v06dNKS0uTJMXExKhnz55atGiRJKmkpESRkZGaMGGCpk2bVqH+PR6PgoODlZ+fL4fDUdlpKFfm609X6XgAANQ2zsQXq2Xcin5+X9M1Ofn5+ZKkxo0bS5KysrJ08eJFxcbGmjUdOnRQy5YtlZmZKUnKzMxU586dzYAjSS6XSx6PR/v37zdrLh+jtKZ0jKKiImVlZXnV+Pv7KzY21qwpT2FhoTwej9cCAACsqdIhp6SkRBMnTlSfPn3UqVMnSZLb7ZbNZlNISIhXbVhYmNxut1lzecAp3V667Wo1Ho9H58+f18mTJ1VcXFxuTekY5Zk3b56Cg4PNJTIy0vcDBwAAtUKlQ05SUpL27dunN954oyr7qVbTp09Xfn6+uRw9erSmWwIAANWkTmV2Gj9+vDZs2KCdO3eqRYsW5vrw8HAVFRXp9OnTXmdzcnNzFR4ebtb88C6o0ruvLq/54R1Zubm5cjgcCgoKUkBAgAICAsqtKR2jPHa7XXa73fcDBgAAtY5PZ3IMw9D48eO1bt06bd26Va1bt/baHh0drbp16yojI8Ncd+jQIR05ckROp1OS5HQ6tXfvXq+7oNLT0+VwOBQVFWXWXD5GaU3pGDabTdHR0V41JSUlysjIMGsAAMCNzaczOUlJSVq9erX+/ve/q2HDhub1L8HBwQoKClJwcLASExOVnJysxo0by+FwaMKECXI6nerdu7ckaeDAgYqKitLIkSM1f/58ud1uzZgxQ0lJSeZZlnHjxmnRokWaMmWKHnvsMW3dulVr165Vamqq2UtycrISEhLUo0cP9erVSwsWLFBBQYFGjx5dVXMDAABqMZ9CztKlSyVJd955p9f6FStWaNSoUZKkV155Rf7+/ho2bJgKCwvlcrm0ZMkSszYgIEAbNmzQE088IafTqfr16yshIUFz5841a1q3bq3U1FRNmjRJCxcuVIsWLbR8+XK5XC6zJj4+Xnl5eZo5c6bcbre6deumtLS0MhcjAwCAG9M1PSentuM5OQAAVJ9a/ZwcAACAnypCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCSfQ87OnTt13333KSIiQn5+flq/fr3X9lGjRsnPz89rGTRokFfN999/r0ceeUQOh0MhISFKTEzU2bNnvWo+//xz9e3bV4GBgYqMjNT8+fPL9PLmm2+qQ4cOCgwMVOfOnbVx40ZfDwcAAFiUzyGnoKBAXbt21eLFi69YM2jQIB0/ftxc/vd//9dr+yOPPKL9+/crPT1dGzZs0M6dOzV27Fhzu8fj0cCBA9WqVStlZWXphRde0OzZs/Xaa6+ZNbt27dLDDz+sxMREffrppxoyZIiGDBmiffv2+XpIAADAgvwMwzAqvbOfn9atW6chQ4aY60aNGqXTp0+XOcNT6osvvlBUVJQ+/vhj9ejRQ5KUlpamwYMH69tvv1VERISWLl2qZ555Rm63WzabTZI0bdo0rV+/XgcPHpQkxcfHq6CgQBs2bDDH7t27t7p166Zly5ZVqH+Px6Pg4GDl5+fL4XBUYgauLPP1p6t0PAAAahtn4ovVMm5FP7+r5Zqc7du3KzQ0VO3bt9cTTzyh7777ztyWmZmpkJAQM+BIUmxsrPz9/fXRRx+ZNf369TMDjiS5XC4dOnRIp06dMmtiY2O93tflcikzM/OKfRUWFsrj8XgtAADAmqo85AwaNEh/+ctflJGRof/5n//Rjh07dM8996i4uFiS5Ha7FRoa6rVPnTp11LhxY7ndbrMmLCzMq6b09Y/VlG4vz7x58xQcHGwukZGR13awAADgJ6tOVQ84fPhw88+dO3dWly5d1LZtW23fvl0DBgyo6rfzyfTp05WcnGy+9ng8BB0AACyq2m8hb9OmjZo2baqvvvpKkhQeHq4TJ0541Vy6dEnff/+9wsPDzZrc3FyvmtLXP1ZTur08drtdDofDawEAANZU7SHn22+/1XfffafmzZtLkpxOp06fPq2srCyzZuvWrSopKVFMTIxZs3PnTl28eNGsSU9PV/v27dWoUSOzJiMjw+u90tPT5XQ6q/uQAABALeBzyDl79qyys7OVnZ0tScrJyVF2draOHDmis2fPavLkyfrwww91+PBhZWRk6IEHHlC7du3kcrkkSR07dtSgQYP0+OOPa/fu3frggw80fvx4DR8+XBEREZKkESNGyGazKTExUfv379eaNWu0cOFCr6+annzySaWlpemll17SwYMHNXv2bH3yyScaP358FUwLAACo7XwOOZ988ol+/vOf6+c//7kkKTk5WT//+c81c+ZMBQQE6PPPP9f999+vW265RYmJiYqOjtY//vEP2e12c4xVq1apQ4cOGjBggAYPHqzbb7/d6xk4wcHBeu+995STk6Po6Gg99dRTmjlzptezdG677TatXr1ar732mrp27aq33npL69evV6dOna5lPgAAgEVc03NyajuekwMAQPWx5HNyAAAAahohBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWJLPIWfnzp267777FBERIT8/P61fv95ru2EYmjlzppo3b66goCDFxsbqyy+/9Kr5/vvv9cgjj8jhcCgkJESJiYk6e/asV83nn3+uvn37KjAwUJGRkZo/f36ZXt5880116NBBgYGB6ty5szZu3Ojr4QAAAIvyOeQUFBSoa9euWrx4cbnb58+frz/84Q9atmyZPvroI9WvX18ul0sXLlwwax555BHt379f6enp2rBhg3bu3KmxY8ea2z0ejwYOHKhWrVopKytLL7zwgmbPnq3XXnvNrNm1a5cefvhhJSYm6tNPP9WQIUM0ZMgQ7du3z9dDAgAAFuRnGIZR6Z39/LRu3ToNGTJE0n/O4kREROipp57S008/LUnKz89XWFiYUlJSNHz4cH3xxReKiorSxx9/rB49ekiS0tLSNHjwYH377beKiIjQ0qVL9cwzz8jtdstms0mSpk2bpvXr1+vgwYOSpPj4eBUUFGjDhg1mP71791a3bt20bNmyCvXv8XgUHBys/Px8ORyOyk5DuTJff7pKxwMAoLZxJr5YLeNW9PO7Sq/JycnJkdvtVmxsrLkuODhYMTExyszMlCRlZmYqJCTEDDiSFBsbK39/f3300UdmTb9+/cyAI0kul0uHDh3SqVOnzJrL36e0pvR9ylNYWCiPx+O1AAAAa6rSkON2uyVJYWFhXuvDwsLMbW63W6GhoV7b69Spo8aNG3vVlDfG5e9xpZrS7eWZN2+egoODzSUyMtLXQwQAALXEDXV31fTp05Wfn28uR48eremWAABANanSkBMeHi5Jys3N9Vqfm5trbgsPD9eJEye8tl+6dEnff/+9V015Y1z+HleqKd1eHrvdLofD4bUAAABrqtKQ07p1a4WHhysjI8Nc5/F49NFHH8npdEqSnE6nTp8+raysLLNm69atKikpUUxMjFmzc+dOXbx40axJT09X+/bt1ahRI7Pm8vcprSl9HwAAcGPzOeScPXtW2dnZys7OlvSfi42zs7N15MgR+fn5aeLEifr973+v//u//9PevXv16KOPKiIiwrwDq2PHjho0aJAef/xx7d69Wx988IHGjx+v4cOHKyIiQpI0YsQI2Ww2JSYmav/+/VqzZo0WLlyo5ORks48nn3xSaWlpeumll3Tw4EHNnj1bn3zyicaPH3/tswIAAGq9Or7u8Mknn6h///7m69LgkZCQoJSUFE2ZMkUFBQUaO3asTp8+rdtvv11paWkKDAw091m1apXGjx+vAQMGyN/fX8OGDdMf/vAHc3twcLDee+89JSUlKTo6Wk2bNtXMmTO9nqVz2223afXq1ZoxY4Z+85vf6Oabb9b69evVqVOnSk0EAACwlmt6Tk5tx3NyAACoPpZ6Tg4AAMBPBSEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUpWHnNmzZ8vPz89r6dChg7n9woULSkpKUpMmTdSgQQMNGzZMubm5XmMcOXJEcXFxqlevnkJDQzV58mRdunTJq2b79u3q3r277Ha72rVrp5SUlKo+FAAAUItVy5mcW2+9VcePHzeX999/39w2adIkvfvuu3rzzTe1Y8cOHTt2TEOHDjW3FxcXKy4uTkVFRdq1a5dWrlyplJQUzZw506zJyclRXFyc+vfvr+zsbE2cOFFjxozR5s2bq+NwAABALVSnWgatU0fh4eFl1ufn5+v111/X6tWrddddd0mSVqxYoY4dO+rDDz9U79699d577+nAgQPasmWLwsLC1K1bN/3ud7/T1KlTNXv2bNlsNi1btkytW7fWSy+9JEnq2LGj3n//fb3yyityuVzVcUgAAKCWqZYzOV9++aUiIiLUpk0bPfLIIzpy5IgkKSsrSxcvXlRsbKxZ26FDB7Vs2VKZmZmSpMzMTHXu3FlhYWFmjcvlksfj0f79+82ay8corSkd40oKCwvl8Xi8FgAAYE1VHnJiYmKUkpKitLQ0LV26VDk5Oerbt6/OnDkjt9stm82mkJAQr33CwsLkdrslSW632yvglG4v3Xa1Go/Ho/Pnz1+xt3nz5ik4ONhcIiMjr/VwAQDAT1SVf111zz33mH/u0qWLYmJi1KpVK61du1ZBQUFV/XY+mT59upKTk83XHo+HoAMAgEVV+y3kISEhuuWWW/TVV18pPDxcRUVFOn36tFdNbm6ueQ1PeHh4mbutSl//WI3D4bhqkLLb7XI4HF4LAACwpmoPOWfPntXXX3+t5s2bKzo6WnXr1lVGRoa5/dChQzpy5IicTqckyel0au/evTpx4oRZk56eLofDoaioKLPm8jFKa0rHAAAAqPKQ8/TTT2vHjh06fPiwdu3apV/84hcKCAjQww8/rODgYCUmJio5OVnbtm1TVlaWRo8eLafTqd69e0uSBg4cqKioKI0cOVKfffaZNm/erBkzZigpKUl2u12SNG7cOH3zzTeaMmWKDh48qCVLlmjt2rWaNGlSVR8OAACopar8mpxvv/1WDz/8sL777js1a9ZMt99+uz788EM1a9ZMkvTKK6/I399fw4YNU2FhoVwul5YsWWLuHxAQoA0bNuiJJ56Q0+lU/fr1lZCQoLlz55o1rVu3VmpqqiZNmqSFCxeqRYsWWr58ObePAwAAk59hGEZNN1FTPB6PgoODlZ+fX+XX52S+/nSVjgcAQG3jTHyxWsat6Oc3v7sKAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUq0POYsXL9ZNN92kwMBAxcTEaPfu3TXdEgAA+Amo1SFnzZo1Sk5O1qxZs7Rnzx517dpVLpdLJ06cqOnWAABADavVIefll1/W448/rtGjRysqKkrLli1TvXr19Oc//7mmWwMAADWsTk03UFlFRUXKysrS9OnTzXX+/v6KjY1VZmZmufsUFhaqsLDQfJ2fny9J8ng8Vd5fwfnCHy8CAMDCquPz9fJxDcO4al2tDTknT55UcXGxwsLCvNaHhYXp4MGD5e4zb948zZkzp8z6yMjIaukRAIAb2oRF1Tr8mTNnFBwcfMXttTbkVMb06dOVnJxsvi4pKdH333+vJk2ayM/Pr8rex+PxKDIyUkePHpXD4aiyceGNeb5+mOvrg3m+Ppjn66M659kwDJ05c0YRERFXrau1Iadp06YKCAhQbm6u1/rc3FyFh4eXu4/dbpfdbvdaFxISUl0tyuFw8A/oOmCerx/m+vpgnq8P5vn6qK55vtoZnFK19sJjm82m6OhoZWRkmOtKSkqUkZEhp9NZg50BAICfglp7JkeSkpOTlZCQoB49eqhXr15asGCBCgoKNHr06JpuDQAA1LBaHXLi4+OVl5enmTNnyu12q1u3bkpLSytzMfL1ZrfbNWvWrDJfjaFqMc/XD3N9fTDP1wfzfH38FObZz/ix+68AAABqoVp7TQ4AAMDVEHIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIqafHixbrpppsUGBiomJgY7d69+6r1b775pjp06KDAwEB17txZGzduvE6d1m6+zPOf/vQn9e3bV40aNVKjRo0UGxv7oz8X/Ievf59LvfHGG/Lz89OQIUOqt0EL8XWuT58+raSkJDVv3lx2u1233HIL//2oAF/necGCBWrfvr2CgoIUGRmpSZMm6cKFC9ep29pp586duu+++xQRESE/Pz+tX7/+R/fZvn27unfvLrvdrnbt2iklJaV6mzTgszfeeMOw2WzGn//8Z2P//v3G448/boSEhBi5ubnl1n/wwQdGQECAMX/+fOPAgQPGjBkzjLp16xp79+69zp3XLr7O84gRI4zFixcbn376qfHFF18Yo0aNMoKDg41vv/32Ondeu/g6z6VycnKMn/3sZ0bfvn2NBx544Po0W8v5OteFhYVGjx49jMGDBxvvv/++kZOTY2zfvt3Izs6+zp3XLr7O86pVqwy73W6sWrXKyMnJMTZv3mw0b97cmDRp0nXuvHbZuHGj8cwzzxjvvPOOIclYt27dVeu/+eYbo169ekZycrJx4MAB49VXXzUCAgKMtLS0auuRkFMJvXr1MpKSkszXxcXFRkREhDFv3rxy6x966CEjLi7Oa11MTIzxq1/9qlr7rO18necfunTpktGwYUNj5cqV1dWiJVRmni9dumTcdtttxvLly42EhARCTgX5OtdLly412rRpYxQVFV2vFi3B13lOSkoy7rrrLq91ycnJRp8+faq1TyupSMiZMmWKceutt3qti4+PN1wuV7X1xddVPioqKlJWVpZiY2PNdf7+/oqNjVVmZma5+2RmZnrVS5LL5bpiPSo3zz907tw5Xbx4UY0bN66uNmu9ys7z3LlzFRoaqsTExOvRpiVUZq7/7//+T06nU0lJSQoLC1OnTp303HPPqbi4+Hq1XetUZp5vu+02ZWVlmV9pffPNN9q4caMGDx58XXq+UdTEZ2Gt/rUONeHkyZMqLi4u86sjwsLCdPDgwXL3cbvd5da73e5q67O2q8w8/9DUqVMVERFR5h8V/n+Vmef3339fr7/+urKzs69Dh9ZRmbn+5ptvtHXrVj3yyCPauHGjvvrqK/3617/WxYsXNWvWrOvRdq1TmXkeMWKETp48qdtvv12GYejSpUsaN26cfvOb31yPlm8YV/os9Hg8On/+vIKCgqr8PTmTA0t6/vnn9cYbb2jdunUKDAys6XYs48yZMxo5cqT+9Kc/qWnTpjXdjuWVlJQoNDRUr732mqKjoxUfH69nnnlGy5Ytq+nWLGX79u167rnntGTJEu3Zs0fvvPOOUlNT9bvf/a6mW8M14kyOj5o2baqAgADl5uZ6rc/NzVV4eHi5+4SHh/tUj8rNc6kXX3xRzz//vLZs2aIuXbpUZ5u1nq/z/PXXX+vw4cO67777zHUlJSWSpDp16ujQoUNq27Zt9TZdS1Xm73Tz5s1Vt25dBQQEmOs6duwot9utoqIi2Wy2au25NqrMPP/2t7/VyJEjNWbMGElS586dVVBQoLFjx+qZZ56Rvz/nA6rClT4LHQ5HtZzFkTiT4zObzabo6GhlZGSY60pKSpSRkSGn01nuPk6n06tektLT069Yj8rNsyTNnz9fv/vd75SWlqYePXpcj1ZrNV/nuUOHDtq7d6+ys7PN5f7771f//v2VnZ2tyMjI69l+rVKZv9N9+vTRV199ZQZJSfrnP/+p5s2bE3CuoDLzfO7cuTJBpjRYGvwO6ypTI5+F1XZJs4W98cYbht1uN1JSUowDBw4YY8eONUJCQgy3220YhmGMHDnSmDZtmln/wQcfGHXq1DFefPFF44svvjBmzZrFLeQV4Os8P//884bNZjPeeust4/jx4+Zy5syZmjqEWsHXef4h7q6qOF/n+siRI0bDhg2N8ePHG4cOHTI2bNhghIaGGr///e9r6hBqBV/nedasWUbDhg2N//3f/zW++eYb47333jPatm1rPPTQQzV1CLXCmTNnjE8//dT49NNPDUnGyy+/bHz66afGv/71L8MwDGPatGnGyJEjzfrSW8gnT55sfPHFF8bixYu5hfyn6tVXXzVatmxp2Gw2o1evXsaHH35obrvjjjuMhIQEr/q1a9cat9xyi2Gz2Yxbb73VSE1Nvc4d106+zHOrVq0MSWWWWbNmXf/Gaxlf/z5fjpDjG1/neteuXUZMTIxht9uNNm3aGM8++6xx6dKl69x17ePLPF+8eNGYPXu20bZtWyMwMNCIjIw0fv3rXxunTp26/o3XItu2bSv3v7mlc5uQkGDccccdZfbp1q2bYbPZjDZt2hgrVqyo1h79DINzcQAAwHq4JgcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFjS/wMFbonBVsyAUQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANT5JREFUeJzt3X98z/X+//H7ftgPs19+bLMsSQpRajIjOmWZ6IdDmTiFFnUaJ3Yq9MNwQkcSyY+jH/gUn+h0OB20mkVOWdRQfqcTUdoQNs2PsT0/f5zvXl/vNuw9s3d7ul0vl/fl4v16PV6v1+P1nLzvPd+v12texhgjAAAAy3h7ugEAAICLgZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkANcBP3799cVV1xRqfucO3euvLy8tHv37krdrztWrVolLy8vrVq1ymM9VJbdu3fLy8tLc+fOLVe9l5eXRo8efVF7AlC5CDnAb8z48eO1ZMkST7dR6fbt26fRo0dr48aNnm7lrJYvX/6bDDLHjh3T6NGjf3PhcsWKFbrtttsUGhqq4OBgxcbGauHChW7tY/HixUpMTFR0dLT8/f3VoEED3Xvvvdq8efNF6hqXEi9+dxVQ+fr3769Vq1ZVaNalVq1auvfee0vNMBQVFenUqVPy9/eXl5dX5TTqpuLiYhUWFsrPz0/e3u79P9KXX36pm266SXPmzFH//v0vToNuMMbo5MmTqlGjhnx8fCRJgwcP1vTp01XWP4snTpyQr6+vfH19q7pVHTx4UPXq1VNaWtpvJoTNmTNHycnJuv3223X33XfLx8dHO3bs0GWXXaYnnnii3PsZO3astm7dqhtuuEF169ZVTk6O3nzzTf3000/KysrS9ddffxHPArar+v9agWqqoKBAQUFBHju+j4+P82HsKd7e3goICPBoD5XFy8vLrXOx5bwrw+7du5WSkqIhQ4Zo6tSpF7SvUaNGlVr28MMPq0GDBpo5c6ZmzZp1QfvHpY2vq4AyjB49Wl5eXtq6dav69Omj8PBw3XzzzZKkt99+W7GxsQoMDFTt2rXVu3dv7d2797z7nDRpktq1a6c6deooMDBQsbGx+vvf/+5S4+XlpYKCAs2bN09eXl7y8vJyZj1+fU3OnXfeqSuvvLLMY8XHx6t169Yuyyra95nKuibnd7/7nVq0aKGtW7fq1ltvVc2aNXXZZZdp4sSJLtvddNNNkqQBAwY453bmbNXatWvVpUsXhYaGqmbNmrrlllv02WefuRy/5Ofy7bffqn///goLC1NoaKgGDBigY8eOudRmZGTo5ptvVlhYmGrVqqVrrrlGTz/9tLP+19fk9O/fX9OnT5ckp78zZ8zKuibnxx9/1EMPPaTIyEj5+/vr2muv1Ztvvllq3KZNm6Zrr71WNWvWVHh4uFq3bq0FCxacf8D/X5/16tWTJI0ZM8bp68xePv74Y3Xo0EFBQUEKCwvTPffco23btpU5dtu3b1evXr0UEhKiOnXq6PHHH9eJEyfK1UuJWbNmqaioSGPHjpUk/fLLL2XOflVURESEatasqSNHjlTaPnFpIuQA53Dffffp2LFjGj9+vAYOHKhx48bpwQcfVJMmTTR58mQNHTpUmZmZ6tix43n/QZ46dapuuOEGjR07VuPHj5evr6/uu+8+LVu2zKl566235O/vrw4dOuitt97SW2+9pUceeaTM/SUlJWnXrl364osvXJZ///33+vzzz9W7d29n2YX0XR6HDx9Wly5ddP311+ull15S06ZNNXz4cH3wwQeSpGbNmjkfiIMGDXLOrWPHjpL++yHdsWNH5efnKy0tTePHj9eRI0d02223ad26daWO16tXLx09elQTJkxQr169NHfuXI0ZM8ZZv2XLFt155506efKkxo4dq5deekl33313qdB0pkceeUS33367JDn9vfXWW2etz83NVdu2bbVixQoNHjxYU6dO1VVXXaXk5GRNmTLFqXvttdf0pz/9Sc2bN9eUKVM0ZswYtWrVSmvXri3X2NarV08zZ86UJP3+9793+urRo4ek/14Xk5iYqP3792v06NFKTU3VmjVr1L59+zK/Lu3Vq5dOnDihCRMmqGvXrnrllVc0aNCgcvVSYsWKFWratKmWL1+uBg0aKDg4WHXq1NFzzz2n4uJit/ZV4siRIzpw4IA2bdqkhx9+WPn5+erUqVOF9gU4DIBS0tLSjCRz//33O8t2795tfHx8zLhx41xqN23aZHx9fV2W9+vXzzRs2NCl7tixYy7vCwsLTYsWLcxtt93msjwoKMj069evVE9z5swxksyuXbuMMcbk5eUZf39/8+c//9mlbuLEicbLy8t8//33bvd9PitXrjSSzMqVK51lt9xyi5Fk/ud//sdZdvLkSRMVFWV69uzpLPviiy+MJDNnzhyXfRYXF5smTZqYxMREU1xc7Cw/duyYadSokbn99tudZSU/l4ceeshlH7///e9NnTp1nPcvv/yykWQOHDhw1nPZtWtXqX5SUlLM2f5ZlGTS0tKc98nJyaZ+/frm4MGDLnW9e/c2oaGhzs/7nnvuMddee+1Z+yiPAwcOlDp+iVatWpmIiAjz888/O8u++uor4+3tbR588EFnWcnY3X333S7bP/bYY0aS+eqrr8rdT0hIiAkPDzf+/v7mueeeM3//+99Nnz59jCQzYsQI90/QGHPNNdcYSUaSqVWrlnn22WdNUVFRhfYFlGAmBziHRx991PnzP/7xDxUXF6tXr146ePCg84qKilKTJk20cuXKc+4rMDDQ+fPhw4eVl5enDh06aP369RXqLSQkRHfccYcWLVrk8lXBwoUL1bZtW11++eWV0nd51KpVS3/4wx+c935+fmrTpo2+++678267ceNG7dy5U3369NHPP//s9FdQUKBOnTpp9erVpWYHzvy5SFKHDh30888/Kz8/X5IUFhYmSfrnP/9Z4ZmFczHG6L333tNdd90lY4zLuCYmJiovL8/5uYaFhemHH34oNeNWGX766Sdt3LhR/fv3V+3atZ3l1113nW6//XYtX7681DYpKSku74cMGSJJZdaezS+//KLDhw9rzJgxGjt2rHr27Kn58+erS5cumjp1qo4ePer2ucyZM0fp6emaMWOGmjVrpuPHj6uoqMjt/QBn4sJj4BwaNWrk/Hnnzp0yxqhJkyZl1taoUeOc+1q6dKmef/55bdy4USdPnnSWX8idUklJSVqyZImysrLUrl07/ec//1F2drbL1yUX2nd5NGjQoNR5hIeH6+uvvz7vtjt37pQk9evX76w1eXl5Cg8Pd96XBLgzjyX9NzyGhIQoKSlJr7/+uh5++GGNGDFCnTp1Uo8ePXTvvfe6fVdYWQ4cOKAjR45o9uzZmj17dpk1+/fvlyQNHz5cK1asUJs2bXTVVVepc+fO6tOnj9q3b3/BfXz//feSpGuuuabUumbNmunDDz8sdcH8r/8eNG7cWN7e3m7dCRgYGKiCggLdf//9Lsvvv/9+paena8OGDc5XkeUVHx/v/Ll3795q1qyZpP9eywZUFCEHOIczZ1+Ki4vl5eWlDz74oMy7nGrVqnXW/fz73//W3XffrY4dO2rGjBmqX7++atSooTlz5pT7AtSy3HXXXapZs6YWLVqkdu3aadGiRfL29tZ9991XKX2X19nu+jLluBi1ZKblxRdfVKtWrcqs+XWP5zteYGCgVq9erZUrV2rZsmVKT0/XwoULddttt+mjjz664LvUSnr+wx/+cNZwdt1110n6b9jYsWOHli5dqvT0dL333nuaMWOGRo0a5XIdkadUJGRHR0dr586dioyMdFkeEREh6b9h80KEh4frtttu0/z58wk5uCCEHKCcGjduLGOMGjVqpKuvvtqtbd977z0FBAToww8/lL+/v7N8zpw5pWrd+dAJCgrSnXfeqXfffVeTJ0/WwoUL1aFDB0VHR1dK35XpbOfVuHFjSf/9+i0hIaHSjuft7a1OnTqpU6dOmjx5ssaPH69nnnlGK1euPOtxyjv29erVU3BwsIqKisrVc1BQkJKSkpSUlKTCwkL16NFD48aN08iRI8t1a/rZ+mrYsKEkaceOHaXWbd++XXXr1i312IOdO3e6zFB+++23Ki4udusJ3bGxsdq5c6d+/PFHlzv89u3bJ0nO3WAX4vjx48rLy7vg/eDSxjU5QDn16NFDPj4+GjNmTKkZCmOMfv7557Nu6+PjIy8vL5drDHbv3l3mk42DgoLcuuMpKSlJ+/bt0+uvv66vvvpKSUlJldZ3ZSr5sP31ucXGxqpx48aaNGmSfvnll1LbHThwwO1jHTp0qNSyklmiM78qLG+Pv+bj46OePXvqvffeK/PJvGf2/Ovx9fPzU/PmzWWM0alTp855nBI1a9Yss6/69eurVatWmjdvnsu6zZs366OPPlLXrl1L7avkNvkS06ZNkyTdcccd5epFkvN37I033nCWFRcXa86cOapdu7ZiY2PLva+Sr/XOtHv3bmVmZpZ6DALgLmZygHJq3Lixnn/+eY0cOVK7d+9W9+7dFRwcrF27dmnx4sUaNGjQWZ/02q1bN02ePFldunRRnz59tH//fk2fPl1XXXVVqetWYmNjtWLFCk2ePFnR0dFq1KiR4uLiztpX165dFRwcrCeeeML58K2svitT48aNFRYWplmzZik4OFhBQUGKi4tTo0aN9Prrr+uOO+7QtddeqwEDBuiyyy7Tjz/+qJUrVyokJET/+te/3DrW2LFjtXr1anXr1k0NGzbU/v37NWPGDDVo0MB53lFZSj6c//SnPykxMVE+Pj4ut+Kf6YUXXtDKlSsVFxengQMHqnnz5jp06JDWr1+vFStWOEGrc+fOioqKUvv27RUZGalt27bp1VdfVbdu3RQcHFyu8wkMDFTz5s21cOFCXX311apdu7ZatGihFi1a6MUXX9Qdd9yh+Ph4JScn6/jx45o2bZpCQ0PLfDryrl27dPfdd6tLly7KysrS22+/rT59+rj1ZOF77rlHnTp10oQJE3Tw4EFdf/31WrJkiT799FP97W9/c5mtPJ+WLVuqU6dOatWqlcLDw7Vz50698cYbOnXqlF544YVy7wcokydu6QJ+60puty3rFuT33nvP3HzzzSYoKMgEBQWZpk2bmpSUFLNjxw6npqxbyN944w3TpEkT4+/vb5o2bWrmzJnjHOdM27dvNx07djSBgYFGknM7+a9vIT9T3759jSSTkJBw1nMqT9/nc7ZbyMu6RbqsMfjnP/9pmjdvbnx9fUvdvr1hwwbTo0cPU6dOHePv728aNmxoevXqZTIzM52as/1cfj02mZmZ5p577jHR0dHGz8/PREdHm/vvv9988803zjZl3UJ++vRpM2TIEFOvXj3j5eXl8rNRGbdw5+bmmpSUFBMTE2Nq1KhhoqKiTKdOnczs2bOdmr/97W+mY8eOznk1btzYPPnkkyYvL+9sw1ymNWvWmNjYWOPn51eqlxUrVpj27dubwMBAExISYu666y6zdetWl+1Lxm7r1q3m3nvvNcHBwSY8PNwMHjzYHD9+3K1ejDHm6NGj5vHHHzdRUVHGz8/PtGzZ0rz99ttu7yctLc20bt3ahIeHG19fXxMdHW169+5tvv76a7f3Bfwav7sKAC4Bo0eP1pgxY3TgwAHVrVvX0+0AVYJrcgAAgJW4JgdAue5kqV27tvz8/Kqoo0tDUVHReS+srlWrVqXc5l8eeXl5On78+DlroqKiyrWvQ4cOqbCw8KzrfXx8KuUuLOBcCDkAtHDhQg0YMOCcNStXrtTvfve7qmnoErF3716X27nLkpaWVuYFxBfD448/rnnz5p2zprxXOPTo0UOffPLJWdc3bNjQrQcQAhXBNTkA9NNPP2nLli3nrImNjXV56jAu3IkTJ/Tpp5+es+bKK68862+br2xbt251nnVzNuV9llF2dvY5HwoYGBhYKU99Bs6FkAMAAKzEhccAAMBKl/Q1OcXFxdq3b5+Cg4Mv6JckAgCAqmOM0dGjRxUdHX3OX7p7SYecffv2KSYmxtNtAACACti7d68aNGhw1vWXdMgpeaT63r17FRIS4uFuAABAeeTn5ysmJua8vxrlkg45JV9RhYSEEHIAAKhmznepCRceAwAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFjJ19MNWGvlBE934L5bR3q6AwAAKg0zOQAAwEqEHAAAYCVCDgAAsBIhBwAAWIkLjy+SrO9+9nQLbou/1dMdAABQeZjJAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsJJbIaeoqEjPPfecGjVqpMDAQDVu3Fh/+ctfZIxxaowxGjVqlOrXr6/AwEAlJCRo586dLvs5dOiQ+vbtq5CQEIWFhSk5OVm//PKLS83XX3+tDh06KCAgQDExMZo4cWKpft599101bdpUAQEBatmypZYvX+7O6QAAAIu5FXL++te/aubMmXr11Ve1bds2/fWvf9XEiRM1bdo0p2bixIl65ZVXNGvWLK1du1ZBQUFKTEzUiRMnnJq+fftqy5YtysjI0NKlS7V69WoNGjTIWZ+fn6/OnTurYcOGys7O1osvvqjRo0dr9uzZTs2aNWt0//33Kzk5WRs2bFD37t3VvXt3bd68+ULGAwAAWMLLnDkNcx533nmnIiMj9cYbbzjLevbsqcDAQL399tsyxig6Olp//vOf9cQTT0iS8vLyFBkZqblz56p3797atm2bmjdvri+++EKtW7eWJKWnp6tr16764YcfFB0drZkzZ+qZZ55RTk6O/Pz8JEkjRozQkiVLtH37dklSUlKSCgoKtHTpUqeXtm3bqlWrVpo1a1a5zic/P1+hoaHKy8tTSEhIeYehXLLeeKJS91cV4pMneboFAADOq7yf327N5LRr106ZmZn65ptvJElfffWVPv30U91xxx2SpF27diknJ0cJCQnONqGhoYqLi1NWVpYkKSsrS2FhYU7AkaSEhAR5e3tr7dq1Tk3Hjh2dgCNJiYmJ2rFjhw4fPuzUnHmckpqS45Tl5MmTys/Pd3kBAAA7+bpTPGLECOXn56tp06by8fFRUVGRxo0bp759+0qScnJyJEmRkZEu20VGRjrrcnJyFBER4dqEr69q167tUtOoUaNS+yhZFx4erpycnHMepywTJkzQmDFj3DllAABQTbk1k7No0SLNnz9fCxYs0Pr16zVv3jxNmjRJ8+bNu1j9VaqRI0cqLy/Pee3du9fTLQEAgIvErZmcJ598UiNGjFDv3r0lSS1bttT333+vCRMmqF+/foqKipIk5ebmqn79+s52ubm5atWqlSQpKipK+/fvd9nv6dOndejQIWf7qKgo5ebmutSUvD9fTcn6svj7+8vf39+dUwYAANWUWzM5x44dk7e36yY+Pj4qLi6WJDVq1EhRUVHKzMx01ufn52vt2rWKj4+XJMXHx+vIkSPKzs52aj7++GMVFxcrLi7OqVm9erVOnTrl1GRkZOiaa65ReHi4U3PmcUpqSo4DAAAubW6FnLvuukvjxo3TsmXLtHv3bi1evFiTJ0/W73//e0mSl5eXhg4dqueff17vv/++Nm3apAcffFDR0dHq3r27JKlZs2bq0qWLBg4cqHXr1umzzz7T4MGD1bt3b0VHR0uS+vTpIz8/PyUnJ2vLli1auHChpk6dqtTUVKeXxx9/XOnp6XrppZe0fft2jR49Wl9++aUGDx5cSUMDAACqM7e+rpo2bZqee+45PfbYY9q/f7+io6P1yCOPaNSoUU7NU089pYKCAg0aNEhHjhzRzTffrPT0dAUEBDg18+fP1+DBg9WpUyd5e3urZ8+eeuWVV5z1oaGh+uijj5SSkqLY2FjVrVtXo0aNcnmWTrt27bRgwQI9++yzevrpp9WkSRMtWbJELVq0uJDxAAAAlnDrOTm24Tk5rnhODgCgOrgoz8kBAACoLgg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFZyO+T8+OOP+sMf/qA6deooMDBQLVu21JdffumsN8Zo1KhRql+/vgIDA5WQkKCdO3e67OPQoUPq27evQkJCFBYWpuTkZP3yyy8uNV9//bU6dOiggIAAxcTEaOLEiaV6effdd9W0aVMFBASoZcuWWr58ubunAwAALOVWyDl8+LDat2+vGjVq6IMPPtDWrVv10ksvKTw83KmZOHGiXnnlFc2aNUtr165VUFCQEhMTdeLECaemb9++2rJlizIyMrR06VKtXr1agwYNctbn5+erc+fOatiwobKzs/Xiiy9q9OjRmj17tlOzZs0a3X///UpOTtaGDRvUvXt3de/eXZs3b76Q8QAAAJbwMsaY8haPGDFCn332mf7973+Xud4Yo+joaP35z3/WE088IUnKy8tTZGSk5s6dq969e2vbtm1q3ry5vvjiC7Vu3VqSlJ6erq5du+qHH35QdHS0Zs6cqWeeeUY5OTny8/Nzjr1kyRJt375dkpSUlKSCggItXbrUOX7btm3VqlUrzZo1q1znk5+fr9DQUOXl5SkkJKS8w1AuWW88Uan7qwrxyZM83QIAAOdV3s9vt2Zy3n//fbVu3Vr33XefIiIidMMNN+i1115z1u/atUs5OTlKSEhwloWGhiouLk5ZWVmSpKysLIWFhTkBR5ISEhLk7e2ttWvXOjUdO3Z0Ao4kJSYmaseOHTp8+LBTc+ZxSmpKjlOWkydPKj8/3+UFAADs5FbI+e677zRz5kw1adJEH374of74xz/qT3/6k+bNmydJysnJkSRFRka6bBcZGemsy8nJUUREhMt6X19f1a5d26WmrH2ceYyz1ZSsL8uECRMUGhrqvGJiYtw5fQAAUI24FXKKi4t14403avz48brhhhs0aNAgDRw4sNxfD3nayJEjlZeX57z27t3r6ZYAAMBF4lbIqV+/vpo3b+6yrFmzZtqzZ48kKSoqSpKUm5vrUpObm+usi4qK0v79+13Wnz59WocOHXKpKWsfZx7jbDUl68vi7++vkJAQlxcAALCTWyGnffv22rFjh8uyb775Rg0bNpQkNWrUSFFRUcrMzHTW5+fna+3atYqPj5ckxcfH68iRI8rOznZqPv74YxUXFysuLs6pWb16tU6dOuXUZGRk6JprrnHu5IqPj3c5TklNyXEAAMClza2QM2zYMH3++ecaP368vv32Wy1YsECzZ89WSkqKJMnLy0tDhw7V888/r/fff1+bNm3Sgw8+qOjoaHXv3l3Sf2d+unTpooEDB2rdunX67LPPNHjwYPXu3VvR0dGSpD59+sjPz0/JycnasmWLFi5cqKlTpyo1NdXp5fHHH1d6erpeeuklbd++XaNHj9aXX36pwYMHV9LQAACA6szXneKbbrpJixcv1siRIzV27Fg1atRIU6ZMUd++fZ2ap556SgUFBRo0aJCOHDmim2++Wenp6QoICHBq5s+fr8GDB6tTp07y9vZWz5499corrzjrQ0ND9dFHHyklJUWxsbGqW7euRo0a5fIsnXbt2mnBggV69tln9fTTT6tJkyZasmSJWrRocSHjAQAALOHWc3Jsw3NyXPGcHABAdXBRnpMDAABQXRByAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKx0QSHnhRdekJeXl4YOHeosO3HihFJSUlSnTh3VqlVLPXv2VG5urst2e/bsUbdu3VSzZk1FREToySef1OnTp11qVq1apRtvvFH+/v666qqrNHfu3FLHnz59uq644goFBAQoLi5O69atu5DTAQAAFqlwyPniiy/0t7/9Tdddd53L8mHDhulf//qX3n33XX3yySfat2+fevTo4awvKipSt27dVFhYqDVr1mjevHmaO3euRo0a5dTs2rVL3bp106233qqNGzdq6NChevjhh/Xhhx86NQsXLlRqaqrS0tK0fv16XX/99UpMTNT+/fsrekoAAMAiXsYY4+5Gv/zyi2688UbNmDFDzz//vFq1aqUpU6YoLy9P9erV04IFC3TvvfdKkrZv365mzZopKytLbdu21QcffKA777xT+/btU2RkpCRp1qxZGj58uA4cOCA/Pz8NHz5cy5Yt0+bNm51j9u7dW0eOHFF6erokKS4uTjfddJNeffVVSVJxcbFiYmI0ZMgQjRgxolznkZ+fr9DQUOXl5SkkJMTdYTinrDeeqNT9VYX45EmebgEAgPMq7+d3hWZyUlJS1K1bNyUkJLgsz87O1qlTp1yWN23aVJdffrmysrIkSVlZWWrZsqUTcCQpMTFR+fn52rJli1Pz630nJiY6+ygsLFR2drZLjbe3txISEpyaspw8eVL5+fkuLwAAYCdfdzd45513tH79en3xxRel1uXk5MjPz09hYWEuyyMjI5WTk+PUnBlwStaXrDtXTX5+vo4fP67Dhw+rqKiozJrt27eftfcJEyZozJgx5TvRS9DLGd94ugW3Dbv9ak+3AAD4jXIr5Ozdu1ePP/64MjIyFBAQcLF6umhGjhyp1NRU531+fr5iYmI82NFvS9s9sz3dQgXwFRsAoGxufV2VnZ2t/fv368Ybb5Svr698fX31ySef6JVXXpGvr68iIyNVWFioI0eOuGyXm5urqKgoSVJUVFSpu61K3p+vJiQkRIGBgapbt658fHzKrCnZR1n8/f0VEhLi8gIAAHZyK+R06tRJmzZt0saNG51X69at1bdvX+fPNWrUUGZmprPNjh07tGfPHsXHx0uS4uPjtWnTJpe7oDIyMhQSEqLmzZs7NWfuo6SmZB9+fn6KjY11qSkuLlZmZqZTAwAALm1ufV0VHBysFi1auCwLCgpSnTp1nOXJyclKTU1V7dq1FRISoiFDhig+Pl5t27aVJHXu3FnNmzfXAw88oIkTJyonJ0fPPvusUlJS5O/vL0l69NFH9eqrr+qpp57SQw89pI8//liLFi3SsmXLnOOmpqaqX79+at26tdq0aaMpU6aooKBAAwYMuKABAQAAdnD7wuPzefnll+Xt7a2ePXvq5MmTSkxM1IwZM5z1Pj4+Wrp0qf74xz8qPj5eQUFB6tevn8aOHevUNGrUSMuWLdOwYcM0depUNWjQQK+//roSExOdmqSkJB04cECjRo1STk6OWrVqpfT09FIXI8Nu3KoPADibCj0nxxY8JweeQMgBgAtzUZ+TAwAA8FtHyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK1X6L+gEcG4vZ3zj6RYqZNjtV3u6BQBwCyEHqGJt98z2dAtu+/zyQZ5uAQDcxtdVAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFby9XQDAKqHlzO+8XQLbht2+9WebgGABzGTAwAArETIAQAAViLkAAAAK3FNDoDzartntqdbcNvnlw/ydAsAPIyZHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVfD3dAABcLC9nfOPpFtw27ParPd0CYA1mcgAAgJUIOQAAwEp8XQXASm33zPZ0CxU0ydMNANZgJgcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK7kVciZMmKCbbrpJwcHBioiIUPfu3bVjxw6XmhMnTiglJUV16tRRrVq11LNnT+Xm5rrU7NmzR926dVPNmjUVERGhJ598UqdPn3apWbVqlW688Ub5+/vrqquu0ty5c0v1M336dF1xxRUKCAhQXFyc1q1b587pAAAAi7kVcj755BOlpKTo888/V0ZGhk6dOqXOnTuroKDAqRk2bJj+9a9/6d1339Unn3yiffv2qUePHs76oqIidevWTYWFhVqzZo3mzZunuXPnatSoUU7Nrl271K1bN916663auHGjhg4dqocfflgffvihU7Nw4UKlpqYqLS1N69ev1/XXX6/ExETt37//QsYDAABYwssYYyq68YEDBxQREaFPPvlEHTt2VF5enurVq6cFCxbo3nvvlSRt375dzZo1U1ZWltq2basPPvhAd955p/bt26fIyEhJ0qxZszR8+HAdOHBAfn5+Gj58uJYtW6bNmzc7x+rdu7eOHDmi9PR0SVJcXJxuuukmvfrqq5Kk4uJixcTEaMiQIRoxYkS5+s/Pz1doaKjy8vIUEhJS0WEoU9YbT1Tq/gBcGuKTJ3m6BeA3r7yf3xd0TU5eXp4kqXbt2pKk7OxsnTp1SgkJCU5N06ZNdfnllysrK0uSlJWVpZYtWzoBR5ISExOVn5+vLVu2ODVn7qOkpmQfhYWFys7Odqnx9vZWQkKCU1OWkydPKj8/3+UFAADs5FvRDYuLizV06FC1b99eLVq0kCTl5OTIz89PYWFhLrWRkZHKyclxas4MOCXrS9adqyY/P1/Hjx/X4cOHVVRUVGbN9u3bz9rzhAkTNGbMGPdPFgCqyMsZ33i6BbcNu/1qT7cAlKnCMzkpKSnavHmz3nnnncrs56IaOXKk8vLynNfevXs93RIAALhIKjSTM3jwYC1dulSrV69WgwYNnOVRUVEqLCzUkSNHXGZzcnNzFRUV5dT8+i6okruvzqz59R1Zubm5CgkJUWBgoHx8fOTj41NmTck+yuLv7y9/f3/3TxgAAFQ7boUcY4yGDBmixYsXa9WqVWrUqJHL+tjYWNWoUUOZmZnq2bOnJGnHjh3as2eP4uPjJUnx8fEaN26c9u/fr4iICElSRkaGQkJC1Lx5c6dm+fLlLvvOyMhw9uHn56fY2FhlZmaqe/fukv779VlmZqYGDx7s5hAAwG9H2z2zPd1CBXCxNH6b3Ao5KSkpWrBggf75z38qODjYuYYmNDRUgYGBCg0NVXJyslJTU1W7dm2FhIRoyJAhio+PV9u2bSVJnTt3VvPmzfXAAw9o4sSJysnJ0bPPPquUlBRnluXRRx/Vq6++qqeeekoPPfSQPv74Yy1atEjLli1zeklNTVW/fv3UunVrtWnTRlOmTFFBQYEGDBhQWWMDAACqMbdCzsyZMyVJv/vd71yWz5kzR/3795ckvfzyy/L29lbPnj118uRJJSYmasaMGU6tj4+Pli5dqj/+8Y+Kj49XUFCQ+vXrp7Fjxzo1jRo10rJlyzRs2DBNnTpVDRo00Ouvv67ExESnJikpSQcOHNCoUaOUk5OjVq1aKT09vdTFyAAA4NJ0Qc/Jqe54Tg4AXDie7YOqViXPyQEAAPitIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsJKvpxsAAFRvL2d84+kW3Dbs9qs93QKqADM5AADASoQcAABgJb6uAgBckLZ7Znu6hQqY5OkGUAWYyQEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABW8vV0AwAAVLWXM77xdAtuG3b71Z5uodphJgcAAFiJmRwAwCWn7Z7Znm6hAiZ5uoFqh5kcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWMnX0w0AAIDzy3rjCU+34Lb45EkePT4zOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArFTtQ8706dN1xRVXKCAgQHFxcVq3bp2nWwIAAL8B1TrkLFy4UKmpqUpLS9P69et1/fXXKzExUfv37/d0awAAwMOqdciZPHmyBg4cqAEDBqh58+aaNWuWatasqTfffNPTrQEAAA+rtg8DLCwsVHZ2tkaOHOks8/b2VkJCgrKyssrc5uTJkzp58qTzPi8vT5KUn59f6f0VHD95/iIAACx2MT5fz9yvMeacddU25Bw8eFBFRUWKjIx0WR4ZGant27eXuc2ECRM0ZsyYUstjYmIuSo8AAFzShrx6UXd/9OhRhYaGnnV9tQ05FTFy5EilpqY674uLi3Xo0CHVqVNHXl5elXac/Px8xcTEaO/evQoJCam0/cIV41x1GOuqwThXDca56lyssTbG6OjRo4qOjj5nXbUNOXXr1pWPj49yc3Ndlufm5ioqKqrMbfz9/eXv7++yLCws7GK1qJCQEP4DqgKMc9VhrKsG41w1GOeqczHG+lwzOCWq7YXHfn5+io2NVWZmprOsuLhYmZmZio+P92BnAADgt6DazuRIUmpqqvr166fWrVurTZs2mjJligoKCjRgwABPtwYAADysWoecpKQkHThwQKNGjVJOTo5atWql9PT0UhcjVzV/f3+lpaWV+moMlYtxrjqMddVgnKsG41x1PD3WXuZ8918BAABUQ9X2mhwAAIBzIeQAAAArEXIAAICVCDkAAMBKhBwAAGAlQk4FTZ8+XVdccYUCAgIUFxendevWnbP+3XffVdOmTRUQEKCWLVtq+fLlVdRp9ebOOL/22mvq0KGDwsPDFR4eroSEhPP+XPD/uft3usQ777wjLy8vde/e/eI2aAl3x/nIkSNKSUlR/fr15e/vr6uvvpp/P8rB3XGeMmWKrrnmGgUGBiomJkbDhg3TiRMnqqjb6mn16tW66667FB0dLS8vLy1ZsuS826xatUo33nij/P39ddVVV2nu3LkXt0kDt73zzjvGz8/PvPnmm2bLli1m4MCBJiwszOTm5pZZ/9lnnxkfHx8zceJEs3XrVvPss8+aGjVqmE2bNlVx59WLu+Pcp08fM336dLNhwwazbds2079/fxMaGmp++OGHKu68+nF3rEvs2rXLXHbZZaZDhw7mnnvuqZpmqzF3x/nkyZOmdevWpmvXrubTTz81u3btMqtWrTIbN26s4s6rF3fHef78+cbf39/Mnz/f7Nq1y3z44Yemfv36ZtiwYVXcefWyfPly88wzz5h//OMfRpJZvHjxOeu/++47U7NmTZOammq2bt1qpk2bZnx8fEx6evpF65GQUwFt2rQxKSkpzvuioiITHR1tJkyYUGZ9r169TLdu3VyWxcXFmUceeeSi9lnduTvOv3b69GkTHBxs5s2bd7FatEZFxvr06dOmXbt25vXXXzf9+vUj5JSDu+M8c+ZMc+WVV5rCwsKqatEK7o5zSkqKue2221yWpaammvbt21/UPm1SnpDz1FNPmWuvvdZlWVJSkklMTLxoffF1lZsKCwuVnZ2thIQEZ5m3t7cSEhKUlZVV5jZZWVku9ZKUmJh41npUbJx/7dixYzp16pRq1659sdq0QkXHeuzYsYqIiFBycnJVtFntVWSc33//fcXHxyslJUWRkZFq0aKFxo8fr6Kioqpqu9qpyDi3a9dO2dnZzlda3333nZYvX66uXbtWSc+XCk98FlbrX+vgCQcPHlRRUVGpXx0RGRmp7du3l7lNTk5OmfU5OTkXrc/qriLj/GvDhw9XdHR0qf+o4KoiY/3pp5/qjTfe0MaNG6ugQztUZJy/++47ffzxx+rbt6+WL1+ub7/9Vo899phOnTqltLS0qmi72qnIOPfp00cHDx7UzTffLGOMTp8+rUcffVRPP/10VbR8yTjbZ2F+fr6OHz+uwMDASj8mMzmw0gsvvKB33nlHixcvVkBAgKfbscrRo0f1wAMP6LXXXlPdunU93Y7ViouLFRERodmzZys2NlZJSUl65plnNGvWLE+3ZpVVq1Zp/PjxmjFjhtavX69//OMfWrZsmf7yl794ujVcIGZy3FS3bl35+PgoNzfXZXlubq6ioqLK3CYqKsqtelRsnEtMmjRJL7zwglasWKHrrrvuYrZpBXfH+j//+Y92796tu+66y1lWXFwsSfL19dWOHTvUuHHji9t0NVSRv9P169dXjRo15OPj4yxr1qyZcnJyVFhYKD8/v4vac3VUkXF+7rnn9MADD+jhhx+WJLVs2VIFBQUaNGiQnnnmGXl7Mx9QGc72WRgSEnJRZnEkZnLc5ufnp9jYWGVmZjrLiouLlZmZqfj4+DK3iY+Pd6mXpIyMjLPWo2LjLEkTJ07UX/7yF6Wnp6t169ZV0Wq15+5YN23aVJs2bdLGjRud1913361bb71VGzduVExMTFW2X21U5O90+/bt9e233zohUpK++eYb1a9fn4BzFhUZ52PHjpUKMiXB0vA7rCuNRz4LL9olzRZ75513jL+/v5k7d67ZunWrGTRokAkLCzM5OTnGGGMeeOABM2LECKf+s88+M76+vmbSpElm27ZtJi0tjVvIy8HdcX7hhReMn5+f+fvf/25++ukn53X06FFPnUK14e5Y/xp3V5WPu+O8Z88eExwcbAYPHmx27Nhhli5daiIiIszzzz/vqVOoFtwd57S0NBMcHGz+93//13z33Xfmo48+Mo0bNza9evXy1ClUC0ePHjUbNmwwGzZsMJLM5MmTzYYNG8z3339vjDFmxIgR5oEHHnDqS24hf/LJJ822bdvM9OnTuYX8t2ratGnm8ssvN35+fqZNmzbm888/d9bdcsstpl+/fi71ixYtMldffbXx8/Mz1157rVm2bFkVd1w9uTPODRs2NJJKvdLS0qq+8WrI3b/TZyLklJ+747xmzRoTFxdn/P39zZVXXmnGjRtnTp8+XcVdVz/ujPOpU6fM6NGjTePGjU1AQICJiYkxjz32mDl8+HDVN16NrFy5ssx/c0vGtl+/fuaWW24ptU2rVq2Mn5+fufLKK82cOXMuao9exjAXBwAA7MM1OQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACw0v8BuhluVh/77qwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQaZJREFUeJzt3X9cV/X9///7C5AfkoA/EnwtNHKmkk43nIi/+iGJaRbLJqgzckxWg1LRUtMQXWlhWmoms5q6pZ/Mla6pIwktViIpyvIXZkvTci+0FFBURDnfP/blvH0JKtgLCc/term8Lhdf5zzO8zzOE/N177zOOdgMwzAEAABgQW713QAAAEB9IQgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggB9eTRRx/Vrbfe6tIxly5dKpvNpoMHD7p03Nr46KOPZLPZ9NFHH9VbD65y8OBB2Ww2LV26tEb1NptNqampddoTANciCAEN0MyZM7VmzZr6bsPljhw5otTUVOXn59d3K5e1fv36H2XYOX36tFJTU390AfTDDz/UPffcI39/fzVp0kRhYWFauXLlDxrz3nvvlc1mU1JSkou6hJV51HcDAGpv5syZevjhhxUdHe20fOTIkYqNjZWXl1f9NCapb9++OnPmjDw9PWu97ZEjRzR9+nTdeuut6tq1q+ubq6U2bdrozJkzatSokbls/fr1WrhwYbVh6MyZM/LwqJ9/Vk+fPq3p06dLku6666566eFSS5YsUXx8vO69917NnDlT7u7u2rdvnw4fPnzNY7733nvKyclxYZewOoIQ4EKlpaXy9fWtt/27u7vL3d293vYvSW5ubvL29q7XHlzFZrPV6lhulON2hYMHDyoxMVFPPPGE5s2b55Ixz549q/Hjx2vixIlKSUlxyZgAX40B1yg1NVU2m0179uzR8OHD1bRpU/Xu3VuS9NZbbyksLEw+Pj5q1qyZYmNja/R/wS+99JJ69uyp5s2by8fHR2FhYfrb3/7mVGOz2VRaWqply5bJZrPJZrPp0UcflVT1GqH7779ft912W7X7ioiIULdu3ZyWXWvfF6vuGqG77rpLnTp10p49e3T33XercePG+slPfqK0tDSn7X75y19KkkaNGmUe28XX5+Tm5mrAgAHy9/dX48aNdeedd+rTTz912n/lz+XLL7/Uo48+qoCAAPn7+2vUqFE6ffq0U21mZqZ69+6tgIAA3XTTTWrfvr2eeeYZc/2l1wg9+uijWrhwoSSZ/dlsNrO+umuEvv32W/32t79VYGCgvLy8dMcdd+jPf/5zlXlbsGCB7rjjDjVu3FhNmzZVt27dtGLFiqtP+P/f58033yxJmj59utnXxb1s3LhRffr0ka+vrwICAvTggw9q79691c5dQUGBhg4dKj8/PzVv3lxjxozR2bNna9RLpfT0dF24cEEzZsyQJJ06dUqGYdRqjEulpaWpoqJCEyZM+EHjABcjCAE/0K9//WudPn1aM2fO1OjRo/X888/rkUceUbt27TR37lyNHTtWWVlZ6tu3r4qKiq441rx58/Tzn/9cM2bM0MyZM+Xh4aFf//rXWrdunVnz17/+VV5eXurTp4/++te/6q9//at+//vfVzteTEyMDhw4oK1btzot//rrr7VlyxbFxsaay35I3zVx4sQJDRgwQF26dNGcOXPUoUMHTZw4Uf/85z8lSR07djQ/NBMSEsxj69u3r6T/fZD37dtXJSUlmjZtmmbOnKmioiLdc889+uyzz6rsb+jQoTp58qRmzZqloUOHaunSpeZXR5K0e/du3X///SorK9OMGTM0Z84cPfDAA1WC1cV+//vf695775Uks7+//vWvl60vLCxUjx499OGHHyopKUnz5s3TT3/6U8XHx+uVV14x615//XU9+eSTCg0N1SuvvKLp06era9euys3NrdHc3nzzzVq0aJEk6Ve/+pXZ10MPPSTpf9fpREVF6ejRo0pNTVVycrI2b96sXr16VXth/dChQ3X27FnNmjVLAwcO1Pz585WQkFCjXip9+OGH6tChg9avX69bbrlFTZo0UfPmzfXss8+qoqKiVmNJ0qFDh/TCCy/oxRdflI+PT623By7LAHBNpk2bZkgyhg0bZi47ePCg4e7ubjz//PNOtTt37jQ8PDyclsfFxRlt2rRxqjt9+rTT+3PnzhmdOnUy7rnnHqflvr6+RlxcXJWelixZYkgyDhw4YBiGYRQXFxteXl7G+PHjnerS0tIMm81mfP3117Xu+2o2bdpkSDI2bdpkLrvzzjsNScZf/vIXc1lZWZkRFBRkDBkyxFy2detWQ5KxZMkSpzErKiqMdu3aGVFRUUZFRYW5/PTp00ZISIhx7733mssqfy6//e1vncb41a9+ZTRv3tx8//LLLxuSjGPHjl32WA4cOFCln8TERONy/3RKMqZNm2a+j4+PN1q1amV89913TnWxsbGGv7+/+fN+8MEHjTvuuOOyfdTEsWPHquy/UteuXY2WLVsa33//vbns3//+t+Hm5mY88sgj5rLKuXvggQectv/DH/5gSDL+/e9/17gfPz8/o2nTpoaXl5fx7LPPGn/729+M4cOHG5KMSZMm1fr4Hn74YaNnz57me0lGYmJirccBLsUZIeAHeuyxx8w/v/fee6qoqNDQoUP13Xffma+goCC1a9dOmzZtuuJYF/+f7okTJ1RcXKw+ffpo+/bt19Sbn5+f7rvvPr3zzjtOX0usXLlSPXr0UOvWrV3Sd03cdNNN+s1vfmO+9/T0VPfu3fXVV19dddv8/Hzt379fw4cP1/fff2/2V1paqn79+ik7O7vKWYaLfy6S1KdPH33//fcqKSmRJAUEBEiS/v73v1/TGYqrMQxD7777rgYPHizDMJzmNSoqSsXFxebPNSAgQN98802VM3eu8N///lf5+fl69NFH1axZM3P5z372M917771av359lW0SExOd3j/xxBOSVG3t5Zw6dUonTpzQ9OnTNWPGDA0ZMkTLly/XgAEDNG/ePJ08ebLGY23atEnvvvuu01k0wFUIQsAPFBISYv55//79MgxD7dq108033+z02rt3r44ePXrFsdauXasePXrI29tbzZo1M7/yKC4uvub+YmJidPjwYfNOm//85z/Ky8tTTEyMy/quiVtuucXpehpJatq0qU6cOHHVbffv3y9JiouLq9LfG2+8obKysipzVBnyLt6XJHN/MTEx6tWrl373u98pMDBQsbGxeuedd1wWio4dO6aioiItXry4Ss+jRo2SJHNeJ06cqJtuukndu3dXu3btlJiYeMWv6Grj66+/liS1b9++yrqOHTuagfJi7dq1c3rftm1bubm51er5VJWhftiwYU7Lhw0bpjNnzmjHjh01Guf8+fN68sknNXLkSPMaMsCVuGsM+IEuPotTUVEhm82mf/7zn9XevXXTTTdddpx//etfeuCBB9S3b1+99tpratWqlRo1aqQlS5bU+KLZ6gwePFiNGzfWO++8o549e+qdd96Rm5ubfv3rX7uk75q63N1sRg0uoK0MJ7Nnz77sbfWX9ni1/fn4+Cg7O1ubNm3SunXrlJGRoZUrV+qee+7Rhg0bfvDdd5U9/+Y3v1FcXFy1NT/72c8k/S+Q7Nu3T2vXrlVGRobeffddvfbaa0pJSXG6rqm+XBpga8Jut2v//v0KDAx0Wt6yZUtJqlEAlqS//OUv2rdvn/70pz9VCWInT57UwYMH1bJlSzVu3LjWPQISQQhwqbZt28owDIWEhOj222+v1bbvvvuuvL299cEHHzg9B2jJkiVVamvzweTr66v7779fq1at0ty5c7Vy5Ur16dNHdrvdJX270uWOq23btpL+91VfZGSky/bn5uamfv36qV+/fpo7d65mzpypKVOmaNOmTZfdT03n/uabb1aTJk104cKFGvXs6+urmJgYxcTE6Ny5c3rooYf0/PPPa/LkyTW6Lf9yfbVp00aStG/fvirrCgoK1KJFiyqPfNi/f7/Tmc4vv/xSFRUVtXoSelhYmPbv369vv/3W6c7FI0eOSJJ5l9vVHDp0SOXl5erVq1eVdX/5y1/0l7/8RatXr67yTC2gpvhqDHChhx56SO7u7po+fXqVMx2GYej777+/7Lbu7u6y2Wy6cOGCuezgwYPVPkHa19e3VndyxcTE6MiRI3rjjTf073//2+lrsR/atytVfiBfemxhYWFq27atXnrpJZ06darKdseOHav1vo4fP15lWeXZprKyslr3eCl3d3cNGTJE7777rnbt2lVl/cU9Xzq/np6eCg0NlWEYKi8vv+J+KlWeEbm0r1atWqlr165atmyZ07pdu3Zpw4YNGjhwYJWxKh8RUGnBggWSpPvuu69GvUgy/469+eab5rKKigotWbJEzZo1U1hYWI3GiY2N1erVq6u8JGngwIFavXq1wsPDa9wXcCnOCAEu1LZtWz333HOaPHmyDh48qOjoaDVp0kQHDhzQ6tWrlZCQcNlnoAwaNEhz587VgAEDNHz4cB09elQLFy7UT3/6U33++edOtWFhYfrwww81d+5c2e12hYSEXPHDYODAgWrSpIkmTJhgfkC7qm9Xatu2rQICApSenq4mTZrI19dX4eHhCgkJ0RtvvKH77rtPd9xxh0aNGqWf/OQn+vbbb7Vp0yb5+fnpH//4R632NWPGDGVnZ2vQoEFq06aNjh49qtdee0233HKL+Tyo6lR+gD/55JOKioqSu7u702MILvbCCy9o06ZNCg8P1+jRoxUaGqrjx49r+/bt+vDDD80w1r9/fwUFBalXr14KDAzU3r179eqrr2rQoEFq0qRJjY7Hx8dHoaGhWrlypW6//XY1a9ZMnTp1UqdOnTR79mzdd999ioiIUHx8vM6cOaMFCxbI39+/2idkHzhwQA888IAGDBignJwcvfXWWxo+fLi6dOlSo14k6cEHH1S/fv00a9Ysfffdd+rSpYvWrFmjTz75RH/6059q/PTzDh06qEOHDtWuCwkJ4UwQfrj6uFUNuBFU3mpc3e3X7777rtG7d2/D19fX8PX1NTp06GAkJiYa+/btM2uqu33+zTffNNq1a2d4eXkZHTp0MJYsWWLu52IFBQVG3759DR8fH0OSeSv9pbfPX2zEiBGGJCMyMvKyx1STvq/mcrfPV3d7eHVz8Pe//90IDQ01PDw8qty6vmPHDuOhhx4ymjdvbnh5eRlt2rQxhg4damRlZZk1l/u5XDo3WVlZxoMPPmjY7XbD09PTsNvtxrBhw4wvvvjC3Ka62+fPnz9vPPHEE8bNN99s2Gw2p5+Nqrl9vbCw0EhMTDSCg4ONRo0aGUFBQUa/fv2MxYsXmzV/+tOfjL59+5rH1bZtW+Opp54yiouLLzfN1dq8ebMRFhZmeHp6Vunlww8/NHr16mX4+PgYfn5+xuDBg409e/Y4bV85d3v27DEefvhho0mTJkbTpk2NpKQk48yZM7XqxTAM4+TJk8aYMWOMoKAgw9PT0+jcubPx1ltv1Xqc6ojb5+EiNsP4gY/6BADcEFJTUzV9+nQdO3ZMLVq0qO92gOuCa4QAAIBlcY0QgBo5c+bMVZ9n1KxZs2v6rfO4vAsXLlz1YvCbbrrJJY84qIni4mKdOXPmijVBQUE1Guv48eM6d+7cZde7u7vX+O4y4FoRhADUyMqVK80HAV7Opk2bdNddd12fhizi8OHDTreyV2fatGnVXvRcF8aMGaNly5ZdsaamV1w89NBD+vjjjy+7vk2bNrV6iCNwLbhGCECN/Pe//9Xu3buvWBMWFmY+wRmucfbsWX3yySdXrLntttucntVTl/bs2WM+C+hyavqsp7y8vCs+WNHHx6fa5wcBrkQQAgAAlsXF0gAAwLK4RugKKioqdOTIETVp0uSaftcOAAC4/gzD0MmTJ2W32+XmduVzPgShKzhy5IiCg4Pruw0AAHANDh8+rFtuueWKNQShK6h8tP3hw4fl5+dXz90AAICaKCkpUXBwcI1+RQ1B6Aoqvw7z8/MjCAEA0MDU5LIWLpYGAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACW5VHfDVjapln13UHt3D25vjsAAMClOCMEAAAsizNC9Sjnq+/ru4Va2XL+C4279/b6bgMAAJfhjBAAALAsghAAALAsghAAALAsghAAALCsWgeh7OxsDR48WHa7XTabTWvWrLls7WOPPSabzaZXXnnFafnx48c1YsQI+fn5KSAgQPHx8Tp16pRTzeeff64+ffrI29tbwcHBSktLqzL+qlWr1KFDB3l7e6tz585av36903rDMJSSkqJWrVrJx8dHkZGR2r9/f20PGQAA3KBqHYRKS0vVpUsXLVy48Ip1q1ev1pYtW2S326usGzFihHbv3q3MzEytXbtW2dnZSkhIMNeXlJSof//+atOmjfLy8jR79mylpqZq8eLFZs3mzZs1bNgwxcfHa8eOHYqOjlZ0dLR27dpl1qSlpWn+/PlKT09Xbm6ufH19FRUVpbNnz9b2sAEAwA3IZhiGcc0b22xavXq1oqOjnZZ/++23Cg8P1wcffKBBgwZp7NixGjt2rCRp7969Cg0N1datW9WtWzdJUkZGhgYOHKhvvvlGdrtdixYt0pQpU+RwOOTp6SlJmjRpktasWaOCggJJUkxMjEpLS7V27Vpzvz169FDXrl2Vnp4uwzBkt9s1fvx4TZgwQZJUXFyswMBALV26VLGxsVWOp6ysTGVlZeb7kpISBQcHq7i4WH5+ftc6TZeV8+YEl49Zl7a0TuD2eQDAj15JSYn8/f1r9Pnt8muEKioqNHLkSD311FO64447qqzPyclRQECAGYIkKTIyUm5ubsrNzTVr+vbta4YgSYqKitK+fft04sQJsyYyMtJp7KioKOXk5EiSDhw4IIfD4VTj7++v8PBws+ZSs2bNkr+/v/kKDg6+xlkAAAANgcuD0IsvvigPDw89+eST1a53OBxq2bKl0zIPDw81a9ZMDofDrAkMDHSqqXx/tZqL11+8XXU1l5o8ebKKi4vN1+HDh696vAAAoOFy6ZOl8/LyNG/ePG3fvl02m82VQ18XXl5e8vLyqu82AADAdeLSM0L/+te/dPToUbVu3VoeHh7y8PDQ119/rfHjx+vWW2+VJAUFBeno0aNO250/f17Hjx9XUFCQWVNYWOhUU/n+ajUXr794u+pqAACAtbk0CI0cOVKff/658vPzzZfdbtdTTz2lDz74QJIUERGhoqIi5eXlmdtt3LhRFRUVCg8PN2uys7NVXl5u1mRmZqp9+/Zq2rSpWZOVleW0/8zMTEVEREiSQkJCFBQU5FRTUlKi3NxcswYAAFhbrb8aO3XqlL788kvz/YEDB5Sfn69mzZqpdevWat68uVN9o0aNFBQUpPbt20uSOnbsqAEDBmj06NFKT09XeXm5kpKSFBsba95qP3z4cE2fPl3x8fGaOHGidu3apXnz5unll182xx0zZozuvPNOzZkzR4MGDdLbb7+tbdu2mbfY22w2jR07Vs8995zatWunkJAQPfvss7Lb7VXucgMAANZU6yC0bds23X333eb75ORkSVJcXJyWLl1aozGWL1+upKQk9evXT25ubhoyZIjmz59vrvf399eGDRuUmJiosLAwtWjRQikpKU7PGurZs6dWrFihqVOn6plnnlG7du20Zs0aderUyax5+umnVVpaqoSEBBUVFal3797KyMiQt7d3bQ8bAADcgH7Qc4RudLV5DsG14DlCAAC4Xr0+RwgAAKChIAgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLqnUQys7O1uDBg2W322Wz2bRmzRpzXXl5uSZOnKjOnTvL19dXdrtdjzzyiI4cOeI0xvHjxzVixAj5+fkpICBA8fHxOnXqlFPN559/rj59+sjb21vBwcFKS0ur0suqVavUoUMHeXt7q3Pnzlq/fr3TesMwlJKSolatWsnHx0eRkZHav39/bQ8ZAADcoGodhEpLS9WlSxctXLiwyrrTp09r+/btevbZZ7V9+3a999572rdvnx544AGnuhEjRmj37t3KzMzU2rVrlZ2drYSEBHN9SUmJ+vfvrzZt2igvL0+zZ89WamqqFi9ebNZs3rxZw4YNU3x8vHbs2KHo6GhFR0dr165dZk1aWprmz5+v9PR05ebmytfXV1FRUTp79mxtDxsAANyAbIZhGNe8sc2m1atXKzo6+rI1W7duVffu3fX111+rdevW2rt3r0JDQ7V161Z169ZNkpSRkaGBAwfqm2++kd1u16JFizRlyhQ5HA55enpKkiZNmqQ1a9aooKBAkhQTE6PS0lKtXbvW3FePHj3UtWtXpaenyzAM2e12jR8/XhMmTJAkFRcXKzAwUEuXLlVsbOxVj6+kpET+/v4qLi6Wn5/ftU7TZeW8OcHlY9alLa0TNO7e2+u7DQAArqg2n991fo1QcXGxbDabAgICJEk5OTkKCAgwQ5AkRUZGys3NTbm5uWZN3759zRAkSVFRUdq3b59OnDhh1kRGRjrtKyoqSjk5OZKkAwcOyOFwONX4+/srPDzcrLlUWVmZSkpKnF4AAODGVadB6OzZs5o4caKGDRtmJjKHw6GWLVs61Xl4eKhZs2ZyOBxmTWBgoFNN5fur1Vy8/uLtqqu51KxZs+Tv72++goODa33MAACg4aizIFReXq6hQ4fKMAwtWrSornbjUpMnT1ZxcbH5Onz4cH23BAAA6pBHXQxaGYK+/vprbdy40en7uaCgIB09etSp/vz58zp+/LiCgoLMmsLCQqeayvdXq7l4feWyVq1aOdV07dq12r69vLzk5eVV28MFAAANlMvPCFWGoP379+vDDz9U8+bNndZHRESoqKhIeXl55rKNGzeqoqJC4eHhZk12drbKy8vNmszMTLVv315NmzY1a7KyspzGzszMVEREhCQpJCREQUFBTjUlJSXKzc01awAAgLXVOgidOnVK+fn5ys/Pl/S/i5Lz8/N16NAhlZeX6+GHH9a2bdu0fPlyXbhwQQ6HQw6HQ+fOnZMkdezYUQMGDNDo0aP12Wef6dNPP1VSUpJiY2Nlt9slScOHD5enp6fi4+O1e/durVy5UvPmzVNycrLZx5gxY5SRkaE5c+aooKBAqamp2rZtm5KSkiT97462sWPH6rnnntP777+vnTt36pFHHpHdbr/iXW4AAMA6av3V2LZt23T33Xeb7yvDSVxcnFJTU/X+++9LUpWvnzZt2qS77rpLkrR8+XIlJSWpX79+cnNz05AhQzR//nyz1t/fXxs2bFBiYqLCwsLUokULpaSkOD1rqGfPnlqxYoWmTp2qZ555Ru3atdOaNWvUqVMns+bpp59WaWmpEhISVFRUpN69eysjI0Pe3t61PWwAAHAD+kHPEbrR8RwhZzxHCADQEPyoniMEAADwY0UQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAllXrIJSdna3BgwfLbrfLZrNpzZo1TusNw1BKSopatWolHx8fRUZGav/+/U41x48f14gRI+Tn56eAgADFx8fr1KlTTjWff/65+vTpI29vbwUHBystLa1KL6tWrVKHDh3k7e2tzp07a/369bXuBQAAWFetg1Bpaam6dOmihQsXVrs+LS1N8+fPV3p6unJzc+Xr66uoqCidPXvWrBkxYoR2796tzMxMrV27VtnZ2UpISDDXl5SUqH///mrTpo3y8vI0e/ZspaamavHixWbN5s2bNWzYMMXHx2vHjh2Kjo5WdHS0du3aVateAACAddkMwzCueWObTatXr1Z0dLSk/52BsdvtGj9+vCZMmCBJKi4uVmBgoJYuXarY2Fjt3btXoaGh2rp1q7p16yZJysjI0MCBA/XNN9/Ibrdr0aJFmjJlihwOhzw9PSVJkyZN0po1a1RQUCBJiomJUWlpqdauXWv206NHD3Xt2lXp6ek16uVqSkpK5O/vr+LiYvn5+V3rNF1WzpsTXD5mXdrSOkHj7r29vtsAAOCKavP57dJrhA4cOCCHw6HIyEhzmb+/v8LDw5WTkyNJysnJUUBAgBmCJCkyMlJubm7Kzc01a/r27WuGIEmKiorSvn37dOLECbPm4v1U1lTupya9XKqsrEwlJSVOLwAAcONyaRByOBySpMDAQKflgYGB5jqHw6GWLVs6rffw8FCzZs2caqob4+J9XK7m4vVX6+VSs2bNkr+/v/kKDg6uwVEDAICGirvGLjJ58mQVFxebr8OHD9d3SwAAoA65NAgFBQVJkgoLC52WFxYWmuuCgoJ09OhRp/Xnz5/X8ePHnWqqG+PifVyu5uL1V+vlUl5eXvLz83N6AQCAG5dLg1BISIiCgoKUlZVlLispKVFubq4iIiIkSRERESoqKlJeXp5Zs3HjRlVUVCg8PNysyc7OVnl5uVmTmZmp9u3bq2nTpmbNxfuprKncT016AQAA1lbrIHTq1Cnl5+crPz9f0v8uSs7Pz9ehQ4dks9k0duxYPffcc3r//fe1c+dOPfLII7Lb7eadZR07dtSAAQM0evRoffbZZ/r000+VlJSk2NhY2e12SdLw4cPl6emp+Ph47d69WytXrtS8efOUnJxs9jFmzBhlZGRozpw5KigoUGpqqrZt26akpCRJqlEvAADA2jxqu8G2bdt09913m+8rw0lcXJyWLl2qp59+WqWlpUpISFBRUZF69+6tjIwMeXt7m9ssX75cSUlJ6tevn9zc3DRkyBDNnz/fXO/v768NGzYoMTFRYWFhatGihVJSUpyeNdSzZ0+tWLFCU6dO1TPPPKN27dppzZo16tSpk1lTk14AAIB1/aDnCN3oeI6QM54jBABoCOrtOUIAAAANCUEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYlsuD0IULF/Tss88qJCREPj4+atu2rf74xz/KMAyzxjAMpaSkqFWrVvLx8VFkZKT279/vNM7x48c1YsQI+fn5KSAgQPHx8Tp16pRTzeeff64+ffrI29tbwcHBSktLq9LPqlWr1KFDB3l7e6tz585av369qw8ZAAA0UC4PQi+++KIWLVqkV199VXv37tWLL76otLQ0LViwwKxJS0vT/PnzlZ6ertzcXPn6+ioqKkpnz541a0aMGKHdu3crMzNTa9euVXZ2thISEsz1JSUl6t+/v9q0aaO8vDzNnj1bqampWrx4sVmzefNmDRs2TPHx8dqxY4eio6MVHR2tXbt2ufqwAQBAA2QzLj5V4wL333+/AgMD9eabb5rLhgwZIh8fH7311lsyDEN2u13jx4/XhAkTJEnFxcUKDAzU0qVLFRsbq7179yo0NFRbt25Vt27dJEkZGRkaOHCgvvnmG9ntdi1atEhTpkyRw+GQp6enJGnSpElas2aNCgoKJEkxMTEqLS3V2rVrzV569Oihrl27Kj09/arHUlJSIn9/fxUXF8vPz89lc1Qp580JLh+zLm1pnaBx995e320AAHBFtfn8dvkZoZ49eyorK0tffPGFJOnf//63PvnkE913332SpAMHDsjhcCgyMtLcxt/fX+Hh4crJyZEk5eTkKCAgwAxBkhQZGSk3Nzfl5uaaNX379jVDkCRFRUVp3759OnHihFlz8X4qayr3c6mysjKVlJQ4vQAAwI3Lw9UDTpo0SSUlJerQoYPc3d114cIFPf/88xoxYoQkyeFwSJICAwOdtgsMDDTXORwOtWzZ0rlRDw81a9bMqSYkJKTKGJXrmjZtKofDccX9XGrWrFmaPn36tRw2AABogFx+Ruidd97R8uXLtWLFCm3fvl3Lli3TSy+9pGXLlrl6Vy43efJkFRcXm6/Dhw/Xd0sAAKAOufyM0FNPPaVJkyYpNjZWktS5c2d9/fXXmjVrluLi4hQUFCRJKiwsVKtWrcztCgsL1bVrV0lSUFCQjh496jTu+fPndfz4cXP7oKAgFRYWOtVUvr9aTeX6S3l5ecnLy+taDhsAADRALj8jdPr0abm5OQ/r7u6uiooKSVJISIiCgoKUlZVlri8pKVFubq4iIiIkSRERESoqKlJeXp5Zs3HjRlVUVCg8PNysyc7OVnl5uVmTmZmp9u3bq2nTpmbNxfuprKncDwAAsDaXB6HBgwfr+eef17p163Tw4EGtXr1ac+fO1a9+9StJks1m09ixY/Xcc8/p/fff186dO/XII4/IbrcrOjpaktSxY0cNGDBAo0eP1meffaZPP/1USUlJio2Nld1ulyQNHz5cnp6eio+P1+7du7Vy5UrNmzdPycnJZi9jxoxRRkaG5syZo4KCAqWmpmrbtm1KSkpy9WEDAIAGyOVfjS1YsEDPPvus/vCHP+jo0aOy2+36/e9/r5SUFLPm6aefVmlpqRISElRUVKTevXsrIyND3t7eZs3y5cuVlJSkfv36yc3NTUOGDNH8+fPN9f7+/tqwYYMSExMVFhamFi1aKCUlxelZQz179tSKFSs0depUPfPMM2rXrp3WrFmjTp06ufqwAQBAA+Ty5wjdSHiOkDOeIwQAaAjq9TlCAAAADQVBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWFadBKFvv/1Wv/nNb9S8eXP5+Pioc+fO2rZtm7neMAylpKSoVatW8vHxUWRkpPbv3+80xvHjxzVixAj5+fkpICBA8fHxOnXqlFPN559/rj59+sjb21vBwcFKS0ur0suqVavUoUMHeXt7q3Pnzlq/fn1dHDIAAGiAXB6ETpw4oV69eqlRo0b65z//qT179mjOnDlq2rSpWZOWlqb58+crPT1dubm58vX1VVRUlM6ePWvWjBgxQrt371ZmZqbWrl2r7OxsJSQkmOtLSkrUv39/tWnTRnl5eZo9e7ZSU1O1ePFis2bz5s0aNmyY4uPjtWPHDkVHRys6Olq7du1y9WEDAIAGyGYYhuHKASdNmqRPP/1U//rXv6pdbxiG7Ha7xo8frwkTJkiSiouLFRgYqKVLlyo2NlZ79+5VaGiotm7dqm7dukmSMjIyNHDgQH3zzTey2+1atGiRpkyZIofDIU9PT3Pfa9asUUFBgSQpJiZGpaWlWrt2rbn/Hj16qGvXrkpPT7/qsZSUlMjf31/FxcXy8/P7QfNSnZw3J7h8zLq0pXWCxt17e323AQDAFdXm89vlZ4Tef/99devWTb/+9a/VsmVL/fznP9frr79urj9w4IAcDociIyPNZf7+/goPD1dOTo4kKScnRwEBAWYIkqTIyEi5ubkpNzfXrOnbt68ZgiQpKipK+/bt04kTJ8yai/dTWVO5n0uVlZWppKTE6QUAAG5cLg9CX331lRYtWqR27drpgw8+0OOPP64nn3xSy5YtkyQ5HA5JUmBgoNN2gYGB5jqHw6GWLVs6rffw8FCzZs2caqob4+J9XK6mcv2lZs2aJX9/f/MVHBxc6+MHAAANh8uDUEVFhX7xi19o5syZ+vnPf66EhASNHj26Rl9F1bfJkyeruLjYfB0+fLi+WwIAAHXI5UGoVatWCg0NdVrWsWNHHTp0SJIUFBQkSSosLHSqKSwsNNcFBQXp6NGjTuvPnz+v48ePO9VUN8bF+7hcTeX6S3l5ecnPz8/pBQAAblwuD0K9evXSvn37nJZ98cUXatOmjSQpJCREQUFBysrKMteXlJQoNzdXERERkqSIiAgVFRUpLy/PrNm4caMqKioUHh5u1mRnZ6u8vNysyczMVPv27c071CIiIpz2U1lTuR8AAGBtLg9C48aN05YtWzRz5kx9+eWXWrFihRYvXqzExERJks1m09ixY/Xcc8/p/fff186dO/XII4/IbrcrOjpa0v/OIA0YMECjR4/WZ599pk8//VRJSUmKjY2V3W6XJA0fPlyenp6Kj4/X7t27tXLlSs2bN0/JyclmL2PGjFFGRobmzJmjgoICpaamatu2bUpKSnL1YQMAgAbIw9UD/vKXv9Tq1as1efJkzZgxQyEhIXrllVc0YsQIs+bpp59WaWmpEhISVFRUpN69eysjI0Pe3t5mzfLly5WUlKR+/frJzc1NQ4YM0fz58831/v7+2rBhgxITExUWFqYWLVooJSXF6VlDPXv21IoVKzR16lQ988wzateundasWaNOnTq5+rABAEAD5PLnCN1IeI6QM54jBABoCOr1OUIAAAANBUEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYlkd9N4CG5eXML+q7hVobd+/t9d0CAOBHiiCEGutxaHF9t1BrW1on1HcLAIAfMb4aAwAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAllXnQeiFF16QzWbT2LFjzWVnz55VYmKimjdvrptuuklDhgxRYWGh03aHDh3SoEGD1LhxY7Vs2VJPPfWUzp8/71Tz0Ucf6Re/+IW8vLz005/+VEuXLq2y/4ULF+rWW2+Vt7e3wsPD9dlnn9XFYQIAgAaoToPQ1q1b9ac//Uk/+9nPnJaPGzdO//jHP7Rq1Sp9/PHHOnLkiB566CFz/YULFzRo0CCdO3dOmzdv1rJly7R06VKlpKSYNQcOHNCgQYN09913Kz8/X2PHjtXvfvc7ffDBB2bNypUrlZycrGnTpmn79u3q0qWLoqKidPTo0bo8bAAA0EDUWRA6deqURowYoddff11NmzY1lxcXF+vNN9/U3Llzdc899ygsLExLlizR5s2btWXLFknShg0btGfPHr311lvq2rWr7rvvPv3xj3/UwoULde7cOUlSenq6QkJCNGfOHHXs2FFJSUl6+OGH9fLLL5v7mjt3rkaPHq1Ro0YpNDRU6enpaty4sf785z/X1WEDAIAGpM6CUGJiogYNGqTIyEin5Xl5eSovL3da3qFDB7Vu3Vo5OTmSpJycHHXu3FmBgYFmTVRUlEpKSrR7926z5tKxo6KizDHOnTunvLw8pxo3NzdFRkaaNZcqKytTSUmJ0wsAANy4POpi0Lffflvbt2/X1q1bq6xzOBzy9PRUQECA0/LAwEA5HA6z5uIQVLm+ct2VakpKSnTmzBmdOHFCFy5cqLamoKCg2r5nzZql6dOn1/xAAQBAg+byM0KHDx/WmDFjtHz5cnl7e7t6+Do1efJkFRcXm6/Dhw/Xd0sAAKAOufyMUF5eno4ePapf/OIX5rILFy4oOztbr776qj744AOdO3dORUVFTmeFCgsLFRQUJEkKCgqqcndX5V1lF9dceqdZYWGh/Pz85OPjI3d3d7m7u1dbUznGpby8vOTl5XVtB44frZczv6jvFmpt3L2313cLAGAJLj8j1K9fP+3cuVP5+fnmq1u3bhoxYoT550aNGikrK8vcZt++fTp06JAiIiIkSREREdq5c6fT3V2ZmZny8/NTaGioWXPxGJU1lWN4enoqLCzMqaaiokJZWVlmDQAAsDaXnxFq0qSJOnXq5LTM19dXzZs3N5fHx8crOTlZzZo1k5+fn5544glFRESoR48ekqT+/fsrNDRUI0eOVFpamhwOh6ZOnarExETzjM1jjz2mV199VU8//bR++9vfauPGjXrnnXe0bt06c7/JycmKi4tTt27d1L17d73yyisqLS3VqFGjXH3Y+JHqcWhxfbdQK1taJ9R3CwBgKXVysfTVvPzyy3Jzc9OQIUNUVlamqKgovfbaa+Z6d3d3rV27Vo8//rgiIiLk6+uruLg4zZgxw6wJCQnRunXrNG7cOM2bN0+33HKL3njjDUVFRZk1MTExOnbsmFJSUuRwONS1a1dlZGRUuYAaAABYk80wDKO+m/ixKikpkb+/v4qLi+Xn5+fy8XPenODyMdGwVZ4R4hohALh2tfn85neNAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy/Ko7wYAVPVy5hf13UKtjbv39vpuAQBqjTNCAADAsghCAADAsvhqDPgR6XFocX23UGtbWifUdwsAcM04IwQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzLw9UDzpo1S++9954KCgrk4+Ojnj176sUXX1T79u3NmrNnz2r8+PF6++23VVZWpqioKL322msKDAw0aw4dOqTHH39cmzZt0k033aS4uDjNmjVLHh7/1/JHH32k5ORk7d69W8HBwZo6daoeffRRp34WLlyo2bNny+FwqEuXLlqwYIG6d+/u6sMGLO/lzC/qu4VaG3fv7fXdAoB65vIzQh9//LESExO1ZcsWZWZmqry8XP3791dpaalZM27cOP3jH//QqlWr9PHHH+vIkSN66KGHzPUXLlzQoEGDdO7cOW3evFnLli3T0qVLlZKSYtYcOHBAgwYN0t133638/HyNHTtWv/vd7/TBBx+YNStXrlRycrKmTZum7du3q0uXLoqKitLRo0ddfdgAAKABshmGYdTlDo4dO6aWLVvq448/Vt++fVVcXKybb75ZK1as0MMPPyxJKigoUMeOHZWTk6MePXron//8p+6//34dOXLEPEuUnp6uiRMn6tixY/L09NTEiRO1bt067dq1y9xXbGysioqKlJGRIUkKDw/XL3/5S7366quSpIqKCgUHB+uJJ57QpEmTqvRaVlamsrIy831JSYmCg4NVXFwsPz8/l89NzpsTXD4mcL1taZ1Q3y1cM84IATemkpIS+fv71+jz2+VfjV2quLhYktSsWTNJUl5ensrLyxUZGWnWdOjQQa1btzaDUE5Ojjp37uz0VVlUVJQef/xx7d69Wz//+c+Vk5PjNEZlzdixYyVJ586dU15eniZPnmyud3NzU2RkpHJycqrtddasWZo+fbpLjhuwih6HFtd3C7XSkIMbANer04ulKyoqNHbsWPXq1UudOnWSJDkcDnl6eiogIMCpNjAwUA6Hw6y5OARVrq9cd6WakpISnTlzRt99950uXLhQbU3lGJeaPHmyiouLzdfhw4ev7cABAECDUKdnhBITE7Vr1y598skndbkbl/Hy8pKXl1d9twEAAK6TOjsjlJSUpLVr12rTpk265ZZbzOVBQUE6d+6cioqKnOoLCwsVFBRk1hQWFlZZX7nuSjV+fn7y8fFRixYt5O7uXm1N5RgAAMDaXB6EDMNQUlKSVq9erY0bNyokJMRpfVhYmBo1aqSsrCxz2b59+3To0CFFRERIkiIiIrRz506nu7syMzPl5+en0NBQs+biMSprKsfw9PRUWFiYU01FRYWysrLMGgAAYG0u/2osMTFRK1as0N///nc1adLEvB7H399fPj4+8vf3V3x8vJKTk9WsWTP5+fnpiSeeUEREhHr06CFJ6t+/v0JDQzVy5EilpaXJ4XBo6tSpSkxMNL+6euyxx/Tqq6/q6aef1m9/+1tt3LhR77zzjtatW2f2kpycrLi4OHXr1k3du3fXK6+8otLSUo0aNcrVhw0AABoglwehRYsWSZLuuusup+VLliwxH3b48ssvy83NTUOGDHF6oGIld3d3rV27Vo8//rgiIiLk6+uruLg4zZgxw6wJCQnRunXrNG7cOM2bN0+33HKL3njjDUVFRZk1MTExOnbsmFJSUuRwONS1a1dlZGRUuYAaAABYU50/R6ghq81zCK4FzxECrr+Lb5/nOULAjak2n9/8rjEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZdf7b5wHgx+rlzC/qu4Va45Z/wLU4IwQAACyLM0IALKXHocX13UKtXfwQSACuxRkhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWfyuMQBoQF7O/KK+W7gm4+69vb5bAKpFEAKAH7mG9oti+SWxaEj4agwAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWT5YGALhUdU/CznmzHhqpheqehs2vBbEGzggBAADLIggBAADLIggBAADLIggBAADLIggBAADLssRdYwsXLtTs2bPlcDjUpUsXLViwQN27d6/vtgAAPxIN7U636u5yk7jT7Vrc8GeEVq5cqeTkZE2bNk3bt29Xly5dFBUVpaNHj9Z3awAAoJ7d8EFo7ty5Gj16tEaNGqXQ0FClp6ercePG+vOf/1zfrQEAgHp2Q381du7cOeXl5Wny5MnmMjc3N0VGRionJ6dKfVlZmcrKysz3xcXFkqSSkpI66a/0TNnViwAAuMTZ0lPVLq+rz6uGpnIeDMO4au0NHYS+++47XbhwQYGBgU7LAwMDVVBQUKV+1qxZmj59epXlwcHBddYjAAC192q1S5+5zl382J08eVL+/v5XrLmhg1BtTZ48WcnJyeb7iooKHT9+XM2bN5fNZnPpvkpKShQcHKzDhw/Lz8/PpWPj/zDP1w9zfX0wz9cH83z91MVcG4ahkydPym63X7X2hg5CLVq0kLu7uwoLC52WFxYWKigoqEq9l5eXvLy8nJYFBATUZYvy8/PjP7LrgHm+fpjr64N5vj6Y5+vH1XN9tTNBlW7oi6U9PT0VFhamrKwsc1lFRYWysrIUERFRj50BAIAfgxv6jJAkJScnKy4uTt26dVP37t31yiuvqLS0VKNGjarv1gAAQD274YNQTEyMjh07ppSUFDkcDnXt2lUZGRlVLqC+3ry8vDRt2rQqX8XBtZjn64e5vj6Y5+uDeb5+6nuubUZN7i0DAAC4Ad3Q1wgBAABcCUEIAABYFkEIAABYFkEIAABYFkEIAABYFkGoDi1cuFC33nqrvL29FR4ers8+++yK9atWrVKHDh3k7e2tzp07a/369dep04atNvP8+uuvq0+fPmratKmaNm2qyMjIq/5c8D+1/ftc6e2335bNZlN0dHTdNngDqe1cFxUVKTExUa1atZKXl5duv/12/v2ogdrO8yuvvKL27dvLx8dHwcHBGjdunM6ePXudum2YsrOzNXjwYNntdtlsNq1Zs+aq23z00Uf6xS9+IS8vL/30pz/V0qVL67ZJA3Xi7bffNjw9PY0///nPxu7du43Ro0cbAQEBRmFhYbX1n376qeHu7m6kpaUZe/bsMaZOnWo0atTI2Llz53XuvGGp7TwPHz7cWLhwobFjxw5j7969xqOPPmr4+/sb33zzzXXuvGGp7TxXOnDggPGTn/zE6NOnj/Hggw9en2YbuNrOdVlZmdGtWzdj4MCBxieffGIcOHDA+Oijj4z8/Pzr3HnDUtt5Xr58ueHl5WUsX77cOHDggPHBBx8YrVq1MsaNG3edO29Y1q9fb0yZMsV47733DEnG6tWrr1j/1VdfGY0bNzaSk5ONPXv2GAsWLDDc3d2NjIyMOuuRIFRHunfvbiQmJprvL1y4YNjtdmPWrFnV1g8dOtQYNGiQ07Lw8HDj97//fZ322dDVdp4vdf78eaNJkybGsmXL6qrFG8K1zPP58+eNnj17Gm+88YYRFxdHEKqh2s71okWLjNtuu804d+7c9WrxhlDbeU5MTDTuuecep2XJyclGr1696rTPG0lNgtDTTz9t3HHHHU7LYmJijKioqDrri6/G6sC5c+eUl5enyMhIc5mbm5siIyOVk5NT7TY5OTlO9ZIUFRV12Xpc2zxf6vTp0yovL1ezZs3qqs0G71rnecaMGWrZsqXi4+OvR5s3hGuZ6/fff18RERFKTExUYGCgOnXqpJkzZ+rChQvXq+0G51rmuWfPnsrLyzO/Pvvqq6+0fv16DRw48Lr0bBX18Vl4w/+Kjfrw3Xff6cKFC1V+jUdgYKAKCgqq3cbhcFRb73A46qzPhu5a5vlSEydOlN1ur/IfHv7PtczzJ598ojfffFP5+fnXocMbx7XM9VdffaWNGzdqxIgRWr9+vb788kv94Q9/UHl5uaZNm3Y92m5wrmWehw8fru+++069e/eWYRg6f/68HnvsMT3zzDPXo2XLuNxnYUlJic6cOSMfHx+X75MzQrCsF154QW+//bZWr14tb2/v+m7nhnHy5EmNHDlSr7/+ulq0aFHf7dzwKioq1LJlSy1evFhhYWGKiYnRlClTlJ6eXt+t3VA++ugjzZw5U6+99pq2b9+u9957T+vWrdMf//jH+m4NPxBnhOpAixYt5O7ursLCQqflhYWFCgoKqnaboKCgWtXj2ua50ksvvaQXXnhBH374oX72s5/VZZsNXm3n+T//+Y8OHjyowYMHm8sqKiokSR4eHtq3b5/atm1bt003UNfyd7pVq1Zq1KiR3N3dzWUdO3aUw+HQuXPn5OnpWac9N0TXMs/PPvusRo4cqd/97neSpM6dO6u0tFQJCQmaMmWK3Nw4r+AKl/ss9PPzq5OzQRJnhOqEp6enwsLClJWVZS6rqKhQVlaWIiIiqt0mIiLCqV6SMjMzL1uPa5tnSUpLS9Mf//hHZWRkqFu3btej1QattvPcoUMH7dy5U/n5+ebrgQce0N133638/HwFBwdfz/YblGv5O92rVy99+eWXZtiUpC+++EKtWrUiBF3Gtczz6dOnq4SdyvBp8LvLXaZePgvr7DJsi3v77bcNLy8vY+nSpcaePXuMhIQEIyAgwHA4HIZhGMbIkSONSZMmmfWffvqp4eHhYbz00kvG3r17jWnTpnH7fA3Udp5feOEFw9PT0/jb3/5m/Pe//zVfJ0+erK9DaBBqO8+X4q6xmqvtXB86dMho0qSJkZSUZOzbt89Yu3at0bJlS+O5556rr0NoEGo7z9OmTTOaNGli/L//9/+Mr776ytiwYYPRtm1bY+jQofV1CA3CyZMnjR07dhg7duwwJBlz5841duzYYXz99deGYRjGpEmTjJEjR5r1lbfPP/XUU8bevXuNhQsXcvt8Q7ZgwQKjdevWhqenp9G9e3djy5Yt5ro777zTiIuLc6p/5513jNtvv93w9PQ07rjjDmPdunXXueOGqTbz3KZNG0NSlde0adOuf+MNTG3/Pl+MIFQ7tZ3rzZs3G+Hh4YaXl5dx2223Gc8//7xx/vz569x1w1ObeS4vLzdSU1ONtm3bGt7e3kZwcLDxhz/8wThx4sT1b7wB2bRpU7X/5lbObVxcnHHnnXdW2aZr166Gp6encdtttxlLliyp0x5thsE5PQAAYE1cIwQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzr/wNnIgmaISOC/AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGzCAYAAADOnwhmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQTxJREFUeJzt3XtcFnX+///nBcYFEuCR00aKhzTPRYXkoUwSzSw3SzxUaJTVYqmsqZQpWqlfTdPKw3YSt3Q9dKBWjUTS3JKsUDJPrCZmrV5oplyKigrz+6Mf8/ESVCCQYB73221ucc285j2vGdTr2Vwzc9kMwzAEAABgYW5V3QAAAEBVIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABVWTIkCFq3LhxhY6ZlJQkm82mffv2Vei4ZbF+/XrZbDatX7++ynqoKPv27ZPNZlNSUlKp6m02mxITEyu1JwCVg0AEVENTpkxRcnJyVbdR4Q4cOKDExERlZmZWdSsXtXr16j9l6Dl58qQSExP/dEF07dq1uuOOO+Tn5ycfHx+FhYVp2bJlZRojMTFRNput2OTp6VlJXcOKalV1AwDKbsqUKbr//vvVt29fl/kPPfSQBgwYILvdXjWNSeratatOnTolDw+PMq974MABTZo0SY0bN1aHDh0qvrkyatSokU6dOqWrrrrKnLd69WrNnTu3xFB06tQp1apVNf+snjx5UpMmTZIk3X777VXSw4UWLlyo2NhY3XnnnZoyZYrc3d2VlZWln3/+uVzjzZ8/X1dffbX52t3dvaJaBQhEQEXKy8uTt7d3lW3f3d29yt8k3Nzcasz/uZf1LERN2e+KsG/fPsXFxempp57SnDlzKmTM+++/Xw0aNKiQsYAL8ZEZUE5Fp/F37NihQYMGqW7duurcubMk6b333lNYWJi8vLxUr149DRgwoFT/V/zyyy/r1ltvVf369eXl5aWwsDC9//77LjU2m015eXlatGiR+dHBkCFDJBW/hujuu+9WkyZNStxWRESEbrrpJpd55e37fCVdQ3T77berTZs22rFjh7p166batWvrL3/5i6ZPn+6y3s033yxJGjp0qLlv51+/s2nTJvXs2VN+fn6qXbu2brvtNn311Vcu2y/6vezZs0dDhgxRnTp15Ofnp6FDh+rkyZMutampqercubPq1Kmjq6++Wi1atNCzzz5rLr/wGqIhQ4Zo7ty5kuTy0U2Rkq4h+t///qdHHnlEAQEBstvtat26td55551ix+21115T69atVbt2bdWtW1c33XSTlixZcvkD/v/32bBhQ0nSpEmTzL7O7+Xzzz9Xly5d5O3trTp16ujee+/Vzp07Szx2u3btUv/+/eXr66v69etrxIgROn36dKl6KbJgwQIVFBRo8uTJkqQTJ07IMIwyjXEhwzDkdDr/8DhASQhEwB/0wAMP6OTJk5oyZYoee+wxvfTSS3r44YfVvHlzzZo1SyNHjlRaWpq6du2qY8eOXXKsOXPm6IYbbtDkyZM1ZcoU1apVSw888IBWrVpl1rz77ruy2+3q0qWL3n33Xb377rt6/PHHSxwvOjpa2dnZ+vbbb13m//TTT/r66681YMAAc94f6bs0jh49qp49e6p9+/aaOXOmWrZsqbFjx+rTTz+VJF1//fXmm+ewYcPMfevatauk39/Qu3btKqfTqYkTJ2rKlCk6duyY7rjjDn3zzTfFtte/f38dP35cU6dOVf/+/ZWUlGR+pCRJ27dv19133638/HxNnjxZM2fO1D333FMsYJ3v8ccf15133ilJZn/vvvvuRetzcnLUsWNHrV27VsOHD9ecOXPUrFkzxcbGavbs2Wbdm2++qaefflqtWrXS7NmzNWnSJHXo0EGbNm0q1bFt2LCh5s+fL0n661//avZ13333Sfr9Op6oqCgdOnRIiYmJio+P18aNG9WpU6cSL8Dv37+/Tp8+ralTp+quu+7Sq6++qmHDhpWqlyJr165Vy5YttXr1al1zzTXy8fFR/fr19fzzz6uwsLBMYxVp0qSJeS3Sgw8+qJycnHKNA5TIAFAuEydONCQZAwcONOft27fPcHd3N1566SWX2h9++MGoVauWy/yYmBijUaNGLnUnT550eX3mzBmjTZs2xh133OEy39vb24iJiSnW08KFCw1JRnZ2tmEYhpGbm2vY7Xbj73//u0vd9OnTDZvNZvz0009l7vty1q1bZ0gy1q1bZ8677bbbDEnGP//5T3Nefn6+ERgYaPTr18+c9+233xqSjIULF7qMWVhYaDRv3tyIiooyCgsLzfknT540QkNDjTvvvNOcV/R7eeSRR1zG+Otf/2rUr1/ffP3KK68YkozDhw9fdF+ys7OL9RMXF2dc7J9OScbEiRPN17GxsUZQUJDx66+/utQNGDDA8PPzM3/f9957r9G6deuL9lEahw8fLrb9Ih06dDD8/f2NI0eOmPO+//57w83NzXj44YfNeUXH7p577nFZ/29/+5shyfj+++9L3Y+vr69Rt25dw263G88//7zx/vvvG4MGDTIkGePGjSvTvs2ePdsYPny4sXjxYuP99983RowYYdSqVcto3ry5kZubW6axgIvhDBHwBz3xxBPmzx9++KEKCwvVv39//frrr+YUGBio5s2ba926dZccy8vLy/z56NGjys3NVZcuXbR58+Zy9ebr66tevXpp+fLlLh8zLFu2TB07dtS1115bIX2XxtVXX60HH3zQfO3h4aFbbrlFe/fuvey6mZmZ2r17twYNGqQjR46Y/eXl5al79+7asGFDsbMO5/9eJKlLly46cuSInE6nJKlOnTqSpI8//rjcZywuxTAMffDBB+rTp48Mw3A5rlFRUcrNzTV/r3Xq1NEvv/xS7ExeRTh48KAyMzM1ZMgQ1atXz5zfrl073XnnnVq9enWxdeLi4lxeP/XUU5JUYu3FnDhxQkePHtWkSZM0efJk9evXT4sXL1bPnj01Z84cHT9+vNRjjRgxQq+99poGDRqkfv36afbs2Vq0aJF2796tefPmlXoc4FIIRMAfFBoaav68e/duGYah5s2bq2HDhi7Tzp07dejQoUuOtXLlSnXs2FGenp6qV6+e+VFIbm5uufuLjo7Wzz//rPT0dEnSjz/+qIyMDEVHR1dY36VxzTXXuFxvI0l169bV0aNHL7vu7t27JUkxMTHF+nvrrbeUn59f7BgVhb3ztyXJ3F50dLQ6deqkRx99VAEBARowYICWL19eYeHo8OHDOnbsmN54441iPQ8dOlSSzOM6duxYXX311brlllvUvHlzxcXFXfKju7L46aefJEktWrQotuz66683g+X5mjdv7vK6adOmcnNzK9PzrYrC/cCBA13mDxw4UKdOndKWLVtKPVZJBg0apMDAQK1du/YPjQMU4S4z4A86/6xOYWGhbDabPv300xLv9jr/luEL/ec//9E999yjrl27at68eQoKCtJVV12lhQsXlvri2pL06dNHtWvX1vLly3Xrrbdq+fLlcnNz0wMPPFAhfZfWxe5+M0pxgWxRSJkxY8ZFb8e/sMfLbc/Ly0sbNmzQunXrtGrVKqWkpGjZsmW64447tGbNmj98t15Rzw8++KBiYmJKrGnXrp2k34NJVlaWVq5cqZSUFH3wwQeaN2+eJkyY4HLdU1W5MMiWRnBwsHbv3q2AgACX+f7+/pJUqiB8OSEhIfrtt9/+8DiARCACKlTTpk1lGIZCQ0N13XXXlWndDz74QJ6envrss89cniO0cOHCYrVleYPy9vbW3XffrRUrVmjWrFlatmyZunTpouDg4ArpuyJdbL+aNm0q6fePACMjIytse25uburevbu6d++uWbNmacqUKXruuee0bt26i26ntMe+YcOG8vHxUUFBQal69vb2VnR0tKKjo3XmzBndd999eumll5SQkFCq2/kv1lejRo0kSVlZWcWW7dq1Sw0aNCj2qIjdu3e7nPncs2ePCgsLy/Rk9bCwMO3evVv/+9//XO50PHDggCSZd8WVl2EY2rdvn2644YY/NA5QhI/MgAp03333yd3dXZMmTSp25sMwDB05cuSi67q7u8tms6mgoMCct2/fvhKfSO3t7V2mO7+io6N14MABvfXWW/r+++9dPi77o31XpKI35gv3LSwsTE2bNtXLL7+sEydOFFvv8OHDZd5WSWcWis4+5efnl7nHC7m7u6tfv3764IMPtG3btmLLz+/5wuPr4eGhVq1ayTAMnT179pLbKVK7du0S+woKClKHDh20aNEil2Xbtm3TmjVrdNdddxUbq+jRAkVee+01SVKvXr1K1Ysk88/Y22+/bc4rLCzUwoULVa9ePYWFhZV6rJJ+v/Pnz9fhw4fVs2fPUo8DXApniIAK1LRpU7344otKSEjQvn371LdvX/n4+Cg7O1sfffSRhg0bptGjR5e4bu/evTVr1iz17NlTgwYN0qFDhzR37lw1a9ZMW7dudakNCwvT2rVrNWvWLAUHBys0NFTh4eEX7euuu+6Sj4+PRo8ebb5RV1TfFalp06aqU6eOFixYIB8fH3l7eys8PFyhoaF666231KtXL7Vu3VpDhw7VX/7yF/3vf//TunXr5Ovrq3//+99l2tbkyZO1YcMG9e7dW40aNdKhQ4c0b948XXPNNebzpEpS9Eb+9NNPKyoqSu7u7i6PLzjftGnTtG7dOoWHh+uxxx5Tq1at9Ntvv2nz5s1au3atGcp69OihwMBAderUSQEBAdq5c6def/119e7dWz4+PqXaHy8vL7Vq1UrLli3Tddddp3r16qlNmzZq06aNZsyYoV69eikiIkKxsbE6deqUXnvtNfn5+ZX4xO3s7Gzdc8896tmzp9LT0/Xee+9p0KBBat++fal6kaR7771X3bt319SpU/Xrr7+qffv2Sk5O1pdffql//OMfZXqaeqNGjRQdHa22bdvK09NTX375pZYuXaoOHTpc9JETQJlVwZ1tQI1QdItySbdtf/DBB0bnzp0Nb29vw9vb22jZsqURFxdnZGVlmTUl3Xb/9ttvG82bNzfsdrvRsmVLY+HCheZ2zrdr1y6ja9euhpeXlyHJvAX/wtvuzzd48GBDkhEZGXnRfSpN35dzsdvuS7qtvKRj8PHHHxutWrUyatWqVeyW9y1bthj33XefUb9+fcNutxuNGjUy+vfvb6SlpZk1F/u9XHhs0tLSjHvvvdcIDg42PDw8jODgYGPgwIHGf//7X3Odkm67P3funPHUU08ZDRs2NGw2m8vvRiXc9p6Tk2PExcUZISEhxlVXXWUEBgYa3bt3N9544w2z5h//+IfRtWtXc7+aNm1qPPPMM2W+pXzjxo1GWFiY4eHhUayXtWvXGp06dTK8vLwMX19fo0+fPsaOHTtc1i86djt27DDuv/9+w8fHx6hbt64xfPhw49SpU2XqxTAM4/jx48aIESOMwMBAw8PDw2jbtq3x3nvvlXmcRx991GjVqpXh4+NjXHXVVUazZs2MsWPHGk6ns8xjARdjMwwe+QkA+P1J1ZMmTdLhw4f5igxYDtcQAQAAy+MaIgClcurUqcs+D6levXrl+pZ7XFxBQcFlLxq/+uqrK+TRCKWRm5urU6dOXbImMDCwVGP99ttvOnPmzEWXu7u7/+G70YDSIhABKJVly5aZDxS8mHXr1un222+/Mg1ZxM8//+xyC3xJJk6cWOLF0ZVhxIgRWrRo0SVrSnslxn333acvvvjiossbNWpUpodBAn8E1xABKJWDBw9q+/btl6wJCwsznwiNinH69Gl9+eWXl6xp0qSJy7N+KtOOHTvMZwldTGmfFZWRkXHJBzR6eXmpU6dOZeoPKC8CEQAAsDwuqgYAAJbHNUSXUFhYqAMHDsjHx6dc3+UDAACuPMMwdPz4cQUHB8vNrXTnfghEl3DgwAGFhIRUdRsAAKAcfv75Z11zzTWlqiUQXULRI/N//vln+fr6VnE3AACgNJxOp0JCQkr91TcSgeiSij4m8/X1JRABAFDNlOVyFy6qBgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAllerqhuwtHVTq7qDsuuWUNUdAABQ4ThDBAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI9ABAAALI/nEFWh9L1HqrqFMoloUr+qWwAAoFJwhggAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFhemQPRhg0b1KdPHwUHB8tmsyk5Odlluc1mK3GaMWOGWdO4ceNiy6dNm+YyztatW9WlSxd5enoqJCRE06dPL9bLihUr1LJlS3l6eqpt27ZavXq1y3LDMDRhwgQFBQXJy8tLkZGR2r17d1l3GQAA1HBlDkR5eXlq37695s6dW+LygwcPukzvvPOObDab+vXr51I3efJkl7qnnnrKXOZ0OtWjRw81atRIGRkZmjFjhhITE/XGG2+YNRs3btTAgQMVGxurLVu2qG/fvurbt6+2bdtm1kyfPl2vvvqqFixYoE2bNsnb21tRUVE6ffp0WXcbAADUYGV+UnWvXr3Uq1eviy4PDAx0ef3xxx+rW7duatKkict8Hx+fYrVFFi9erDNnzuidd96Rh4eHWrdurczMTM2aNUvDhg2TJM2ZM0c9e/bUM888I0l64YUXlJqaqtdff10LFiyQYRiaPXu2xo8fr3vvvVeS9M9//lMBAQFKTk7WgAEDyrrrAACghqrUa4hycnK0atUqxcbGFls2bdo01a9fXzfccINmzJihc+fOmcvS09PVtWtXeXh4mPOioqKUlZWlo0ePmjWRkZEuY0ZFRSk9PV2SlJ2dLYfD4VLj5+en8PBws+ZC+fn5cjqdLhMAAKj5KvW7zBYtWiQfHx/dd999LvOffvpp3XjjjapXr542btyohIQEHTx4ULNmzZIkORwOhYaGuqwTEBBgLqtbt64cDoc57/wah8Nh1p2/Xkk1F5o6daomTZpUzr0FAADVVaUGonfeeUeDBw+Wp6eny/z4+Hjz53bt2snDw0OPP/64pk6dKrvdXpktXVJCQoJLb06nUyEhIVXWDwAAuDIq7SOz//znP8rKytKjjz562drw8HCdO3dO+/btk/T7dUg5OTkuNUWvi647uljN+cvPX6+kmgvZ7Xb5+vq6TAAAoOartED09ttvKywsTO3bt79sbWZmptzc3OTv7y9JioiI0IYNG3T27FmzJjU1VS1atFDdunXNmrS0NJdxUlNTFRERIUkKDQ1VYGCgS43T6dSmTZvMGgAAAKkcH5mdOHFCe/bsMV9nZ2crMzNT9erV07XXXivp9+CxYsUKzZw5s9j66enp2rRpk7p16yYfHx+lp6dr1KhRevDBB82wM2jQIE2aNEmxsbEaO3astm3bpjlz5uiVV14xxxkxYoRuu+02zZw5U71799bSpUv13Xffmbfm22w2jRw5Ui+++KKaN2+u0NBQPf/88woODlbfvn3LutsAAKAGK3Mg+u6779StWzfzddE1NzExMUpKSpIkLV26VIZhaODAgcXWt9vtWrp0qRITE5Wfn6/Q0FCNGjXK5dodPz8/rVmzRnFxcQoLC1ODBg00YcIE85Z7Sbr11lu1ZMkSjR8/Xs8++6yaN2+u5ORktWnTxqwZM2aM8vLyNGzYMB07dkydO3dWSkpKsWuaAACAtdkMwzCquok/K6fTKT8/P+Xm5lbK9UTpb4+u8DErU0ST+lK3hKpuAwCASyrP+zffZQYAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyvzIFow4YN6tOnj4KDg2Wz2ZScnOyyfMiQIbLZbC5Tz549XWp+++03DR48WL6+vqpTp45iY2N14sQJl5qtW7eqS5cu8vT0VEhIiKZPn16slxUrVqhly5by9PRU27ZttXr1apflhmFowoQJCgoKkpeXlyIjI7V79+6y7jIAAKjhyhyI8vLy1L59e82dO/eiNT179tTBgwfN6V//+pfL8sGDB2v79u1KTU3VypUrtWHDBg0bNsxc7nQ61aNHDzVq1EgZGRmaMWOGEhMT9cYbb5g1Gzdu1MCBAxUbG6stW7aob9++6tu3r7Zt22bWTJ8+Xa+++qoWLFigTZs2ydvbW1FRUTp9+nRZdxsAANRgNsMwjHKvbLPpo48+Ut++fc15Q4YM0bFjx4qdOSqyc+dOtWrVSt9++61uuukmSVJKSoruuusu/fLLLwoODtb8+fP13HPPyeFwyMPDQ5I0btw4JScna9euXZKk6Oho5eXlaeXKlebYHTt2VIcOHbRgwQIZhqHg4GD9/e9/1+jRoyVJubm5CggIUFJSkgYMGHDZ/XM6nfLz81Nubq58fX3Lc4guKf3t0RU+ZmWKaFJf6pZQ1W0AAHBJ5Xn/rpRriNavXy9/f3+1aNFCTz75pI4cOWIuS09PV506dcwwJEmRkZFyc3PTpk2bzJquXbuaYUiSoqKilJWVpaNHj5o1kZGRLtuNiopSenq6JCk7O1sOh8Olxs/PT+Hh4WbNhfLz8+V0Ol0mAABQ81V4IOrZs6f++c9/Ki0tTf/v//0/ffHFF+rVq5cKCgokSQ6HQ/7+/i7r1KpVS/Xq1ZPD4TBrAgICXGqKXl+u5vzl569XUs2Fpk6dKj8/P3MKCQkp8/4DAIDqp1ZFD3j+R1Ft27ZVu3bt1LRpU61fv17du3ev6M1VqISEBMXHx5uvnU4noQgAAAuo9NvumzRpogYNGmjPnj2SpMDAQB06dMil5ty5c/rtt98UGBho1uTk5LjUFL2+XM35y89fr6SaC9ntdvn6+rpMAACg5qv0QPTLL7/oyJEjCgoKkiRFRETo2LFjysjIMGs+//xzFRYWKjw83KzZsGGDzp49a9akpqaqRYsWqlu3rlmTlpbmsq3U1FRFRERIkkJDQxUYGOhS43Q6tWnTJrMGAABAKkcgOnHihDIzM5WZmSnp94uXMzMztX//fp04cULPPPOMvv76a+3bt09paWm699571axZM0VFRUmSrr/+evXs2VOPPfaYvvnmG3311VcaPny4BgwYoODgYEnSoEGD5OHhodjYWG3fvl3Lli3TnDlzXD7OGjFihFJSUjRz5kzt2rVLiYmJ+u677zR8+HBJv98BN3LkSL344ov65JNP9MMPP+jhhx9WcHCwy11xAAAAZb6G6LvvvlO3bt3M10UhJSYmRvPnz9fWrVu1aNEiHTt2TMHBwerRo4deeOEF2e12c53Fixdr+PDh6t69u9zc3NSvXz+9+uqr5nI/Pz+tWbNGcXFxCgsLU4MGDTRhwgSXZxXdeuutWrJkicaPH69nn31WzZs3V3Jystq0aWPWjBkzRnl5eRo2bJiOHTumzp07KyUlRZ6enmXdbQAAUIP9oecQ1XQ8h8gVzyECAFQHf5rnEAEAAFQnBCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5ZQ5EGzZsUJ8+fRQcHCybzabk5GRz2dmzZzV27Fi1bdtW3t7eCg4O1sMPP6wDBw64jNG4cWPZbDaXadq0aS41W7duVZcuXeTp6amQkBBNnz69WC8rVqxQy5Yt5enpqbZt22r16tUuyw3D0IQJExQUFCQvLy9FRkZq9+7dZd1lAABQw5U5EOXl5al9+/aaO3dusWUnT57U5s2b9fzzz2vz5s368MMPlZWVpXvuuadY7eTJk3Xw4EFzeuqpp8xlTqdTPXr0UKNGjZSRkaEZM2YoMTFRb7zxhlmzceNGDRw4ULGxsdqyZYv69u2rvn37atu2bWbN9OnT9eqrr2rBggXatGmTvL29FRUVpdOnT5d1twEAQA1mMwzDKPfKNps++ugj9e3b96I13377rW655Rb99NNPuvbaayX9foZo5MiRGjlyZInrzJ8/X88995wcDoc8PDwkSePGjVNycrJ27dolSYqOjlZeXp5WrlxprtexY0d16NBBCxYskGEYCg4O1t///neNHj1akpSbm6uAgAAlJSVpwIABl90/p9MpPz8/5ebmytfXtzSHpEzS3x5d4WNWpogm9aVuCVXdBgAAl1Se9+9Kv4YoNzdXNptNderUcZk/bdo01a9fXzfccINmzJihc+fOmcvS09PVtWtXMwxJUlRUlLKysnT06FGzJjIy0mXMqKgopaenS5Kys7PlcDhcavz8/BQeHm7WXCg/P19Op9NlAgAANV+tyhz89OnTGjt2rAYOHOiS0J5++mndeOONqlevnjZu3KiEhAQdPHhQs2bNkiQ5HA6Fhoa6jBUQEGAuq1u3rhwOhznv/BqHw2HWnb9eSTUXmjp1qiZNmvQH9hgAAFRHlRaIzp49q/79+8swDM2fP99lWXx8vPlzu3bt5OHhoccff1xTp06V3W6vrJYuKyEhwaU3p9OpkJCQKusHAABcGZXykVlRGPrpp5+Umpp62c/vwsPDde7cOe3bt0+SFBgYqJycHJeaoteBgYGXrDl/+fnrlVRzIbvdLl9fX5cJAADUfBUeiIrC0O7du7V27VrVr1//sutkZmbKzc1N/v7+kqSIiAht2LBBZ8+eNWtSU1PVokUL1a1b16xJS0tzGSc1NVURERGSpNDQUAUGBrrUOJ1Obdq0yawBAACQyvGR2YkTJ7Rnzx7zdXZ2tjIzM1WvXj0FBQXp/vvv1+bNm7Vy5UoVFBSY1+vUq1dPHh4eSk9P16ZNm9StWzf5+PgoPT1do0aN0oMPPmiGnUGDBmnSpEmKjY3V2LFjtW3bNs2ZM0evvPKKud0RI0botttu08yZM9W7d28tXbpU3333nXlrvs1m08iRI/Xiiy+qefPmCg0N1fPPP6/g4OBL3hUHAACsp8yB6LvvvlO3bt3M10XX3MTExCgxMVGffPKJJKlDhw4u661bt06333677Ha7li5dqsTEROXn5ys0NFSjRo1yuXbHz89Pa9asUVxcnMLCwtSgQQNNmDBBw4YNM2tuvfVWLVmyROPHj9ezzz6r5s2bKzk5WW3atDFrxowZo7y8PA0bNkzHjh1T586dlZKSIk9Pz7LuNgAAqMH+0HOIajqeQ+SK5xABAKqDP+VziAAAAP7sCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyyhyINmzYoD59+ig4OFg2m03Jyckuyw3D0IQJExQUFCQvLy9FRkZq9+7dLjW//fabBg8eLF9fX9WpU0exsbE6ceKES83WrVvVpUsXeXp6KiQkRNOnTy/Wy4oVK9SyZUt5enqqbdu2Wr16dZl7AQAAKHMgysvLU/v27TV37twSl0+fPl2vvvqqFixYoE2bNsnb21tRUVE6ffq0WTN48GBt375dqampWrlypTZs2KBhw4aZy51Op3r06KFGjRopIyNDM2bMUGJiot544w2zZuPGjRo4cKBiY2O1ZcsW9e3bV3379tW2bdvK1AsAAIDNMAyj3CvbbProo4/Ut29fSb+fkQkODtbf//53jR49WpKUm5urgIAAJSUlacCAAdq5c6datWqlb7/9VjfddJMkKSUlRXfddZd++eUXBQcHa/78+XruuefkcDjk4eEhSRo3bpySk5O1a9cuSVJ0dLTy8vK0cuVKs5+OHTuqQ4cOWrBgQal6uRyn0yk/Pz/l5ubK19e3vIfpotLfHl3hY1amiCb1pW4JVd0GAACXVJ737wq9hig7O1sOh0ORkZHmPD8/P4WHhys9PV2SlJ6erjp16phhSJIiIyPl5uamTZs2mTVdu3Y1w5AkRUVFKSsrS0ePHjVrzt9OUU3RdkrTy4Xy8/PldDpdJgAAUPNVaCByOBySpICAAJf5AQEB5jKHwyF/f3+X5bVq1VK9evVcakoa4/xtXKzm/OWX6+VCU6dOlZ+fnzmFhISUYq8BAEB1x11m50lISFBubq45/fzzz1XdEgAAuAIqNBAFBgZKknJyclzm5+TkmMsCAwN16NAhl+Xnzp3Tb7/95lJT0hjnb+NiNecvv1wvF7Lb7fL19XWZAABAzVehgSg0NFSBgYFKS0sz5zmdTm3atEkRERGSpIiICB07dkwZGRlmzeeff67CwkKFh4ebNRs2bNDZs2fNmtTUVLVo0UJ169Y1a87fTlFN0XZK0wsAAIBUjkB04sQJZWZmKjMzU9LvFy9nZmZq//79stlsGjlypF588UV98skn+uGHH/Twww8rODjYvBPt+uuvV8+ePfXYY4/pm2++0VdffaXhw4drwIABCg4OliQNGjRIHh4eio2N1fbt27Vs2TLNmTNH8fHxZh8jRoxQSkqKZs6cqV27dikxMVHfffedhg8fLkml6gUAAECSapV1he+++07dunUzXxeFlJiYGCUlJWnMmDHKy8vTsGHDdOzYMXXu3FkpKSny9PQ011m8eLGGDx+u7t27y83NTf369dOrr75qLvfz89OaNWsUFxensLAwNWjQQBMmTHB5VtGtt96qJUuWaPz48Xr22WfVvHlzJScnq02bNmZNaXoBAAD4Q88hqul4DpErnkMEAKgOqvw5RAAAANURgQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFhehQeixo0by2azFZvi4uIkSbfffnuxZU888YTLGPv371fv3r1Vu3Zt+fv765lnntG5c+dcatavX68bb7xRdrtdzZo1U1JSUrFe5s6dq8aNG8vT01Ph4eH65ptvKnp3AQBADVDhgejbb7/VwYMHzSk1NVWS9MADD5g1jz32mEvN9OnTzWUFBQXq3bu3zpw5o40bN2rRokVKSkrShAkTzJrs7Gz17t1b3bp1U2ZmpkaOHKlHH31Un332mVmzbNkyxcfHa+LEidq8ebPat2+vqKgoHTp0qKJ3GQAAVHMVHogaNmyowMBAc1q5cqWaNm2q2267zaypXbu2S42vr6+5bM2aNdqxY4fee+89dejQQb169dILL7yguXPn6syZM5KkBQsWKDQ0VDNnztT111+v4cOH6/7779crr7xijjNr1iw99thjGjp0qFq1aqUFCxaodu3aeueddyp6lwEAQDVXqdcQnTlzRu+9954eeeQR2Ww2c/7ixYvVoEEDtWnTRgkJCTp58qS5LD09XW3btlVAQIA5LyoqSk6nU9u3bzdrIiMjXbYVFRWl9PR0c7sZGRkuNW5uboqMjDRrSpKfny+n0+kyAQCAmq9WZQ6enJysY8eOaciQIea8QYMGqVGjRgoODtbWrVs1duxYZWVl6cMPP5QkORwOlzAkyXztcDguWeN0OnXq1CkdPXpUBQUFJdbs2rXrov1OnTpVkyZNKvf+AgCA6qlSA9Hbb7+tXr16KTg42Jw3bNgw8+e2bdsqKChI3bt3148//qimTZtWZjuXlZCQoPj4ePO10+lUSEhIFXYEAACuhEoLRD/99JPWrl1rnvm5mPDwcEnSnj171LRpUwUGBha7GywnJ0eSFBgYaP63aN75Nb6+vvLy8pK7u7vc3d1LrCkaoyR2u112u710OwgAAGqMSruGaOHChfL391fv3r0vWZeZmSlJCgoKkiRFRETohx9+cLkbLDU1Vb6+vmrVqpVZk5aW5jJOamqqIiIiJEkeHh4KCwtzqSksLFRaWppZAwAAUKRSAlFhYaEWLlyomJgY1ar1fyehfvzxR73wwgvKyMjQvn379Mknn+jhhx9W165d1a5dO0lSjx491KpVKz300EP6/vvv9dlnn2n8+PGKi4szz9488cQT2rt3r8aMGaNdu3Zp3rx5Wr58uUaNGmVuKz4+Xm+++aYWLVqknTt36sknn1ReXp6GDh1aGbsMAACqsUr5yGzt2rXav3+/HnnkEZf5Hh4eWrt2rWbPnq28vDyFhISoX79+Gj9+vFnj7u6ulStX6sknn1RERIS8vb0VExOjyZMnmzWhoaFatWqVRo0apTlz5uiaa67RW2+9paioKLMmOjpahw8f1oQJE+RwONShQwelpKQUu9AaAADAZhiGUdVN/Fk5nU75+fkpNzfX5VlJFSX97dEVPmZlimhSX+qWUNVtAABwSeV5/+a7zAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOVVeCBKTEyUzWZzmVq2bGkuP336tOLi4lS/fn1dffXV6tevn3JyclzG2L9/v3r37q3atWvL399fzzzzjM6dO+dSs379et14442y2+1q1qyZkpKSivUyd+5cNW7cWJ6engoPD9c333xT0bsLAABqgEo5Q9S6dWsdPHjQnL788ktz2ahRo/Tvf/9bK1as0BdffKEDBw7ovvvuM5cXFBSod+/eOnPmjDZu3KhFixYpKSlJEyZMMGuys7PVu3dvdevWTZmZmRo5cqQeffRRffbZZ2bNsmXLFB8fr4kTJ2rz5s1q3769oqKidOjQocrYZQAAUI3ZDMMwKnLAxMREJScnKzMzs9iy3NxcNWzYUEuWLNH9998vSdq1a5euv/56paenq2PHjvr00091991368CBAwoICJAkLViwQGPHjtXhw4fl4eGhsWPHatWqVdq2bZs59oABA3Ts2DGlpKRIksLDw3XzzTfr9ddflyQVFhYqJCRETz31lMaNG1eqfXE6nfLz81Nubq58fX3/yGEpUfrboyt8zMoU0aS+1C2hqtsAAOCSyvP+XSlniHbv3q3g4GA1adJEgwcP1v79+yVJGRkZOnv2rCIjI83ali1b6tprr1V6erokKT09XW3btjXDkCRFRUXJ6XRq+/btZs35YxTVFI1x5swZZWRkuNS4ubkpMjLSrClJfn6+nE6nywQAAGq+Cg9E4eHhSkpKUkpKiubPn6/s7Gx16dJFx48fl8PhkIeHh+rUqeOyTkBAgBwOhyTJ4XC4hKGi5UXLLlXjdDp16tQp/frrryooKCixpmiMkkydOlV+fn7mFBISUq5jAAAAqpdaFT1gr169zJ/btWun8PBwNWrUSMuXL5eXl1dFb65CJSQkKD4+3nztdDoJRQAAWECl33Zfp04dXXfdddqzZ48CAwN15swZHTt2zKUmJydHgYGBkqTAwMBid50Vvb5cja+vr7y8vNSgQQO5u7uXWFM0Rknsdrt8fX1dJgAAUPNVeiA6ceKEfvzxRwUFBSksLExXXXWV0tLSzOVZWVnav3+/IiIiJEkRERH64YcfXO4GS01Nla+vr1q1amXWnD9GUU3RGB4eHgoLC3OpKSwsVFpamlkDAABQpMID0ejRo/XFF19o37592rhxo/7617/K3d1dAwcOlJ+fn2JjYxUfH69169YpIyNDQ4cOVUREhDp27ChJ6tGjh1q1aqWHHnpI33//vT777DONHz9ecXFxstvtkqQnnnhCe/fu1ZgxY7Rr1y7NmzdPy5cv16hRo8w+4uPj9eabb2rRokXauXOnnnzySeXl5Wno0KEVvcsAAKCaq/BriH755RcNHDhQR44cUcOGDdW5c2d9/fXXatiwoSTplVdekZubm/r166f8/HxFRUVp3rx55vru7u5auXKlnnzySUVERMjb21sxMTGaPHmyWRMaGqpVq1Zp1KhRmjNnjq655hq99dZbioqKMmuio6N1+PBhTZgwQQ6HQx06dFBKSkqxC60BAAAq/DlENQnPIXLFc4gAANVBed6/K/wMEWqu9L1HpL3VI8RFNKn/fy8IcQCAy+DLXQEAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOXVquoGgMqQvveI+fPX5/5bhZ2Uzqg7r6vqFgDA0jhDBAAALI8zRKjxOu5/o6pbuLx19V1fd0uomj4AwKI4QwQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyvwgPR1KlTdfPNN8vHx0f+/v7q27evsrKyXGpuv/122Ww2l+mJJ55wqdm/f7969+6t2rVry9/fX88884zOnTvnUrN+/XrdeOONstvtatasmZKSkor1M3fuXDVu3Fienp4KDw/XN998U9G7DAAAqrkKD0RffPGF4uLi9PXXXys1NVVnz55Vjx49lJeX51L32GOP6eDBg+Y0ffp0c1lBQYF69+6tM2fOaOPGjVq0aJGSkpI0YcIEsyY7O1u9e/dWt27dlJmZqZEjR+rRRx/VZ599ZtYsW7ZM8fHxmjhxojZv3qz27dsrKipKhw4dqujdBgAA1ZjNMAyjMjdw+PBh+fv764svvlDXrl0l/X6GqEOHDpo9e3aJ63z66ae6++67deDAAQUEBEiSFixYoLFjx+rw4cPy8PDQ2LFjtWrVKm3bts1cb8CAATp27JhSUlIkSeHh4br55pv1+uuvS5IKCwsVEhKip556SuPGjbts706nU35+fsrNzZWvr+8fOQwlSn97dIWPieopoglf3QEAFaU879+Vfg1Rbm6uJKlevXou8xcvXqwGDRqoTZs2SkhI0MmTJ81l6enpatu2rRmGJCkqKkpOp1Pbt283ayIjI13GjIqKUnp6uiTpzJkzysjIcKlxc3NTZGSkWXOh/Px8OZ1OlwkAANR8lfrlroWFhRo5cqQ6deqkNm3amPMHDRqkRo0aKTg4WFu3btXYsWOVlZWlDz/8UJLkcDhcwpAk87XD4bhkjdPp1KlTp3T06FEVFBSUWLNr164S+506daomTZr0x3YaAABUO5UaiOLi4rRt2zZ9+eWXLvOHDRtm/ty2bVsFBQWpe/fu+vHHH9W0adPKbOmSEhISFB8fb752Op0KCQmpsn4AAMCVUWmBaPjw4Vq5cqU2bNiga6655pK14eHhkqQ9e/aoadOmCgwMLHY3WE5OjiQpMDDQ/G/RvPNrfH195eXlJXd3d7m7u5dYUzTGhex2u+x2e+l3EgAA1AgVfg2RYRgaPny4PvroI33++ecKDQ297DqZmZmSpKCgIElSRESEfvjhB5e7wVJTU+Xr66tWrVqZNWlpaS7jpKamKiIiQpLk4eGhsLAwl5rCwkKlpaWZNQAAAFIlnCGKi4vTkiVL9PHHH8vHx8e85sfPz09eXl768ccftWTJEt11112qX7++tm7dqlGjRqlr165q166dJKlHjx5q1aqVHnroIU2fPl0Oh0Pjx49XXFyceQbniSee0Ouvv64xY8bokUce0eeff67ly5dr1apVZi/x8fGKiYnRTTfdpFtuuUWzZ89WXl6ehg4dWtG7DQAAqrEKD0Tz58+X9Put9edbuHChhgwZIg8PD61du9YMJyEhIerXr5/Gjx9v1rq7u2vlypV68sknFRERIW9vb8XExGjy5MlmTWhoqFatWqVRo0Zpzpw5uuaaa/TWW28pKirKrImOjtbhw4c1YcIEORwOdejQQSkpKcUutAYAANZW6c8hqs54DhGqytfXDrt8URUaded1Vd0CAFzUn/I5RAAAAH92BCIAAGB5lfocIgDl03H/G1XdwqWtq198Hl83AqAa4wwRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPL7cFUCZpe89Umze1+f+WwWdlM6oO6+r6hYA/MlxhggAAFgeZ4gAVIiO+9+o6hYubl39kud3S7iyfQD40+IMEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwezAigxivpq0akP+fXjfA1I0DV4AwRAACwPM4QAbCsP+XXjVzsa0aK8HUjQKXgDBEAALA8AhEAALA8AhEAALA8AhEAALA8LqoGgD+Riz0ioMif7VEBPCYANQWBCACqkT/dnXGXuyuuCHfH4U+Oj8wAAIDlWSIQzZ07V40bN5anp6fCw8P1zTffVHVLAADgT6TGf2S2bNkyxcfHa8GCBQoPD9fs2bMVFRWlrKws+fv7V3V7AFCtXe6apyJ/lmufuOYJF2MzDMOo6iYqU3h4uG6++Wa9/vrrkqTCwkKFhIToqaee0rhx4y65rtPplJ+fn3Jzc+Xr61vhvaW/PbrCxwQAXFxEk1Je8yRx3VM1Vp737xp9hujMmTPKyMhQQsL//aF2c3NTZGSk0tPTi9Xn5+crPz/ffJ2bmyvp9wNbGfJO5V++CABQYdZuP1Dq2m9zN1diJ6UTd0ezqm6hWip63y7LOZ8aHYh+/fVXFRQUKCAgwGV+QECAdu3aVax+6tSpmjRpUrH5ISEhldYjAODP6vWqbkDPVnUD1dzx48fl5+dXqtoaHYjKKiEhQfHx8ebrwsJC/fbbb6pfv75sNluFbsvpdCokJEQ///xzpXwch+I45lcex/zK4nhfeRzzK680x9wwDB0/flzBwcGlHrdGB6IGDRrI3d1dOTk5LvNzcnIUGBhYrN5ut8tut7vMq1OnTmW2KF9fX/4SXWEc8yuPY35lcbyvPI75lXe5Y17aM0NFavRt9x4eHgoLC1NaWpo5r7CwUGlpaYqIiKjCzgAAwJ9JjT5DJEnx8fGKiYnRTTfdpFtuuUWzZ89WXl6ehg4dWtWtAQCAP4kaH4iio6N1+PBhTZgwQQ6HQx06dFBKSkqxC62vNLvdrokTJxb7iA6Vh2N+5XHMryyO95XHMb/yKuuY1/jnEAEAAFxOjb6GCAAAoDQIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRJVo7ty5aty4sTw9PRUeHq5vvvnmkvUrVqxQy5Yt5enpqbZt22r16tVXqNOaoyzH/M0331SXLl1Ut25d1a1bV5GRkZf9HaG4sv45L7J06VLZbDb17du3chusYcp6vI8dO6a4uDgFBQXJbrfruuuu49+WMirrMZ89e7ZatGghLy8vhYSEaNSoUTp9+vQV6rb627Bhg/r06aPg4GDZbDYlJydfdp3169frxhtvlN1uV7NmzZSUlFT2DRuoFEuXLjU8PDyMd955x9i+fbvx2GOPGXXq1DFycnJKrP/qq68Md3d3Y/r06caOHTuM8ePHG1dddZXxww8/XOHOq6+yHvNBgwYZc+fONbZs2WLs3LnTGDJkiOHn52f88ssvV7jz6qusx7xIdna28Ze//MXo0qWLce+9916ZZmuAsh7v/Px846abbjLuuusu48svvzSys7ON9evXG5mZmVe48+qrrMd88eLFht1uNxYvXmxkZ2cbn332mREUFGSMGjXqCndefa1evdp47rnnjA8//NCQZHz00UeXrN+7d69Ru3ZtIz4+3tixY4fx2muvGe7u7kZKSkqZtksgqiS33HKLERcXZ74uKCgwgoODjalTp5ZY379/f6N3794u88LDw43HH3+8UvusScp6zC907tw5w8fHx1i0aFFltVjjlOeYnzt3zrj11luNt956y4iJiSEQlUFZj/f8+fONJk2aGGfOnLlSLdY4ZT3mcXFxxh133OEyLz4+3ujUqVOl9llTlSYQjRkzxmjdurXLvOjoaCMqKqpM2+Ijs0pw5swZZWRkKDIy0pzn5uamyMhIpaenl7hOenq6S70kRUVFXbQerspzzC908uRJnT17VvXq1ausNmuU8h7zyZMny9/fX7GxsVeizRqjPMf7k08+UUREhOLi4hQQEKA2bdpoypQpKigouFJtV2vlOea33nqrMjIyzI/V9u7dq9WrV+uuu+66Ij1bUUW9f9b4r+6oCr/++qsKCgqKfT1IQECAdu3aVeI6DoejxHqHw1FpfdYk5TnmFxo7dqyCg4OL/cVCycpzzL/88ku9/fbbyszMvAId1izlOd579+7V559/rsGDB2v16tXas2eP/va3v+ns2bOaOHHilWi7WivPMR80aJB+/fVXde7cWYZh6Ny5c3riiSf07LPPXomWLeli759Op1OnTp2Sl5dXqcbhDBEgadq0aVq6dKk++ugjeXp6VnU7NdLx48f10EMP6c0331SDBg2quh1LKCwslL+/v9544w2FhYUpOjpazz33nBYsWFDVrdVY69ev15QpUzRv3jxt3rxZH374oVatWqUXXnihqlvDZXCGqBI0aNBA7u7uysnJcZmfk5OjwMDAEtcJDAwsUz1cleeYF3n55Zc1bdo0rV27Vu3atavMNmuUsh7zH3/8Ufv27VOfPn3MeYWFhZKkWrVqKSsrS02bNq3cpqux8vwZDwoK0lVXXSV3d3dz3vXXXy+Hw6EzZ87Iw8OjUnuu7spzzJ9//nk99NBDevTRRyVJbdu2VV5enoYNG6bnnntObm6ch6hoF3v/9PX1LfXZIYkzRJXCw8NDYWFhSktLM+cVFhYqLS1NERERJa4TERHhUi9JqampF62Hq/Icc0maPn26XnjhBaWkpOimm266Eq3WGGU95i1bttQPP/ygzMxMc7rnnnvUrVs3ZWZmKiQk5Eq2X+2U5894p06dtGfPHjN4StJ///tfBQUFEYZKoTzH/OTJk8VCT1EgNfgu9UpRYe+fZbveG6W1dOlSw263G0lJScaOHTuMYcOGGXXq1DEcDodhGIbx0EMPGePGjTPrv/rqK6NWrVrGyy+/bOzcudOYOHEit92XUVmP+bRp0wwPDw/j/fffNw4ePGhOx48fr6pdqHbKeswvxF1mZVPW471//37Dx8fHGD58uJGVlWWsXLnS8Pf3N1588cWq2oVqp6zHfOLEiYaPj4/xr3/9y9i7d6+xZs0ao2nTpkb//v2raheqnePHjxtbtmwxtmzZYkgyZs2aZWzZssX46aefDMMwjHHjxhkPPfSQWV902/0zzzxj7Ny505g7dy633f/ZvPbaa8a1115reHh4GLfccovx9ddfm8tuu+02IyYmxqV++fLlxnXXXWd4eHgYrVu3NlatWnWFO67+ynLMGzVqZEgqNk2cOPHKN16NlfXP+fkIRGVX1uO9ceNGIzw83LDb7UaTJk2Ml156yTh37twV7rp6K8sxP3v2rJGYmGg0bdrU8PT0NEJCQoy//e1vxtGjR69849XUunXrSvy3ueg4x8TEGLfddluxdTp06GB4eHgYTZo0MRYuXFjm7doMg3N4AADA2riGCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWN7/Byz9prSd4VnyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM+dJREFUeJzt3XtYVWXe//EPoBxCDqICMpKpaUqaPlEheZhMEtMOjpZ4mELHshp0SsZSq1F0ShubmnQ8TdmjTmOTOk3OjBqleHpK1KIoNTWbNHUMPAKKCgr3749+rGELKBtBkvv9uq51Xe61vute373vlE9rr7XwMMYYAQAAWMizthsAAACoLQQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCGglgwbNkzXXXddtY65cOFCeXh4aN++fdU6rjvWr18vDw8PrV+/vtZ6qC779u2Th4eHFi5cWKl6Dw8PpaSk1GhPAKoXQQi4Ck2dOlXLly+v7Taq3aFDh5SSkqLMzMzabqVCq1at+lGGndOnTyslJeVHF0DXrFmjO++8U0FBQQoICFB0dLSWLFlSpbGWLFmi2NhY+fv7Kzg4WLfffrvWrl1bzR3DNvVquwEA7ps6daoeeOAB9evXz2X9Qw89pEGDBsnHx6d2GpPUvXt3nTlzRt7e3m7ve+jQIU2ePFnXXXedOnXqVP3Nual58+Y6c+aM6tev76xbtWqVZs+eXW4YOnPmjOrVq51/Vk+fPq3JkydLku64445a6eFCCxYs0IgRI3TXXXdp6tSp8vLy0u7du3XgwAG3x0pJSdGUKVP0wAMPaNiwYTp37py2b9+u//znPzXQOWxCEAKqUX5+vvz9/Wvt+F5eXvLy8qq140uSp6enfH19a7WH6uLh4eHWe6kr77s67Nu3T0lJSRo9erRmzJhxWWNt3rxZU6ZM0SuvvKIxY8ZUU4fA/2cAVMmkSZOMJLNjxw4zePBgExwcbDp16mSMMeatt94yN998s/H19TUNGzY0CQkJZv/+/S77JyYmmubNm7use/nll01sbKwJCQkxvr6+5uabbzbLli1zqZFUZklMTDTGGLNgwQIjyezdu9cYY0zfvn1NixYtyu2/c+fOJjo62mVdZfq+lHXr1hlJZt26dc66n/70p+bGG280O3bsMHfccYfx8/MzERER5ne/+12Z/S5cFixY4NRs3rzZxMfHm8DAQOPn52e6d+9uPvroI5fjl8zLnj17TGJiogkKCjKBgYFm2LBhJj8/36X2ww8/NF26dDFBQUHG39/ftGnTxkyYMMHZvnfvXpceEhMTy+2xhCQzadIkl2McPHjQDB8+3ISGhhpvb28TFRVl3nzzzTKf28yZM01UVJTx8/MzwcHBJjo62ixevLhSn3lJnxcupXtJS0szXbt2Nddcc40JCgoy9913n/nqq6/K/ex27txpHnzwQRMQEGBCQkLMr371K3PmzJlK9VJi3Lhxxtvb2+Tk5BhjjDl58qQpLi52a4wSCQkJpmnTpqaoqMgUFxebkydPVmkcoDxcIwRcpgcffFCnT5/W1KlT9eijj+rFF1/Uww8/rNatW+vVV1/VU089pbS0NHXv3l05OTkXHWvGjBn6n//5H02ZMkVTp05VvXr19OCDD2rlypVOzVtvvSUfHx9169ZNb731lt566y099thj5Y6XkJCgvXv36pNPPnFZ/91332nz5s0aNGiQs+5y+q6MEydOqHfv3urYsaNeeeUVtW3bVuPGjdP7778vSWrXrp2mTJkiSRo5cqTz3rp37y5JWrt2rbp37668vDxNmjRJU6dOVU5Oju68805t3bq1zPEGDhyokydPatq0aRo4cKAWLlzofHUkSTt27NA999yjgoIC52zDfffdp48//rjC9/DYY4/prrvukiSnv7feeqvC+uzsbHXu3Flr1qzRqFGjNGPGDF1//fUaMWKEXnvtNafujTfe0K9+9StFRUXptdde0+TJk9WpUydt2bKlUp9tkyZNNHfuXEnSz372M6ev/v37S/rhOp34+HgdPnxYKSkpSk5O1qZNm9SlS5dyL6wfOHCgzp49q2nTpqlPnz6aOXOmRo4cWaleSqxZs0Zt27bVqlWr1KxZMwUEBKhRo0b6zW9+o+LiYrfGSktL06233qqZM2eqSZMmCggIUNOmTTVr1iy3xgHKVdtJDLhalfzf8+DBg511+/btM15eXubFF190qd22bZupV6+ey/ryzgidPn3a5XVhYaFp3769ufPOO13W+/v7O2eBSrvwjFBubq7x8fExv/71r13qpk+fbjw8PMx3333ndt+XUtEZIUnmz3/+s7OuoKDAhIeHmwEDBjjrPvnkkzJngYwxpri42LRu3drEx8e7nFU4ffq0adGihbnrrrucdSXz8otf/MJljJ/97GemUaNGzus//OEPRpI5cuRIhe/lwjNCxhiTlJRkKvqnUxechRkxYoRp2rSpOXr0qEvdoEGDTFBQkDPf999/v7nxxhsr7KMyjhw5Uu4ZKWOM6dSpkwkNDTXHjh1z1n3xxRfG09PTPPzww866ks/uvvvuc9n/l7/8pZFkvvjii0r3ExgYaBo2bGh8fHzMb37zG/O3v/3NDBkyxEgy48ePr/Q4x48fN5JMo0aNTIMGDczLL79slixZYnr37m0kmXnz5lV6LKA8nBECLtPjjz/u/Pnvf/+7iouLNXDgQB09etRZwsPD1bp1a61bt+6iY/n5+Tl/PnHihHJzc9WtWzd99tlnVeotMDBQd999t5YuXSpjjLN+yZIl6ty5s6699tpq6bsyGjRooJ///OfOa29vb91222369ttvL7lvZmam9uzZoyFDhujYsWNOf/n5+erZs6c2btxY5ixD6XmRpG7duunYsWPKy8uTJAUHB0uS/vGPf7h9hqIyjDF69913de+998oY4/K5xsfHKzc315nX4OBgHTx4sMyZu+rw/fffKzMzU8OGDVNISIiz/qabbtJdd92lVatWldknKSnJ5fXo0aMlqdzaipw6dUonTpzQ5MmTNWXKFA0YMECLFy9W7969NWPGDJ08ebLS40jSsWPHNH/+fI0dO1YDBw7UypUrFRUVpRdeeKHSPQHlIQgBl6lFixbOn/fs2SNjjFq3bq0mTZq4LDt37tThw4cvOtaKFSvUuXNn+fr6KiQkxPnKIzc3t8r9JSQk6MCBA0pPT5ck/fvf/1ZGRoYSEhKqre/KaNasmTw8PFzWNWzYUCdOnLjkvnv27JEkJSYmlulv/vz5KigoKPMZlYS80seS5BwvISFBXbp00SOPPKKwsDANGjRIS5curbZQdOTIEeXk5Oj1118v0/Pw4cMlyflcx40bpwYNGui2225T69atlZSUdNGv6Nzx3XffSZJuuOGGMtvatWvnBMrSWrdu7fK6VatW8vT0dOv5VCWhfvDgwS7rBw8erDNnzujzzz93a5z69evrgQcecNZ7enoqISFBBw8e1P79+yvdF3Ah7hoDLlPpszjFxcXy8PDQ+++/X+7dWw0aNKhwnP/7v//Tfffdp+7du2vOnDlq2rSp6tevrwULFujtt9+ucn/33nuvrrnmGi1dulS33367li5dKk9PTz344IPV0ndlVXQ3W+kzVRUpCScvv/xyhbfVX9jjpY7n5+enjRs3at26dVq5cqVSU1O1ZMkS3Xnnnfrwww8v++67kp5//vOfKzExsdyam266SdIPgWT37t1asWKFUlNT9e6772rOnDmaOHGiy3VNteXCAFsZERER2rNnj8LCwlzWh4aGSlKlArAkhYSEyNfXV8HBwWXmpPRYFwZfoLIIQkA1atWqlYwxatGihdq0aePWvu+++658fX31wQcfuDwHaMGCBWVq3fnB5O/vr3vuuUfLli3Tq6++qiVLlqhbt26KiIiolr6rU0Xvq1WrVpJ++KovLi6u2o7n6empnj17qmfPnnr11Vc1depUPffcc1q3bl2Fx6nsZ19yUW9RUVGlevb391dCQoISEhJUWFio/v3768UXX9SECRMqdVt+RX01b95ckrR79+4y23bt2qXGjRuXeeTDnj17XM50fvPNNyouLnbrSejR0dHas2eP/vOf/6hly5bO+kOHDkn64fOpDE9PT3Xq1EmffPKJCgsLXZ5P5e5YQHn4agyoRv3795eXl5cmT55c5kyHMUbHjh2rcF8vLy95eHioqKjIWbdv375ynyDt7+/v1p1cCQkJOnTokObPn68vvvjC5Wuxy+27OpX8QL7wvUVHR6tVq1b6/e9/71wzUtqRI0fcPtbx48fLrCs521RQUOB2jxfy8vLSgAED9O6772r79u1ltpfu+cLP19vbW1FRUTLG6Ny5cxc9Tolrrrmm3L6aNm2qTp06adGiRS7btm/frg8//FB9+vQpM9bs2bNdXv/xj3+UJN19992V6kWS89/Ym2++6awrLi7WggULFBISoujoaLfGKioq0qJFi5x1Z8+e1eLFixUVFeUS6gF3cUYIqEatWrXSCy+8oAkTJmjfvn3q16+fAgICtHfvXr333nsaOXKkxo4dW+6+ffv21auvvqrevXtryJAhOnz4sGbPnq3rr79eX375pUttdHS01qxZo1dffVURERFq0aKFYmJiKuyrT58+CggI0NixY50f0NXVd3Vq1aqVgoODNW/ePAUEBMjf318xMTFq0aKF5s+fr7vvvls33nijhg8frp/85Cf6z3/+o3Xr1ikwMFD/+te/3DrWlClTtHHjRvXt21fNmzfX4cOHNWfOHDVr1kxdu3atcL+SH+C/+tWvFB8fLy8vL5fHEJT20ksvad26dYqJidGjjz6qqKgoHT9+XJ999pnWrFnjhLFevXopPDxcXbp0UVhYmHbu3KlZs2apb9++CggIqNT78fPzU1RUlJYsWaI2bdooJCRE7du3V/v27fXyyy/r7rvvVmxsrEaMGKEzZ87oj3/8o4KCgsp9QvbevXt13333qXfv3kpPT9df/vIXDRkyRB07dqxUL5J0//33q2fPnpo2bZqOHj2qjh07avny5froo4/0pz/9ya2nnz/22GOaP3++kpKS9PXXX+vaa6/VW2+9pe+++87teQfKqI1b1YC6oORW4/Juv3733XdN165djb+/v/H39zdt27Y1SUlJZvfu3U5NebfPv/nmm6Z169bGx8fHtG3b1ixYsMA5Tmm7du0y3bt3N35+fhd9oGJpQ4cONZJMXFxche+pMn1fysUeqHih8j6Df/zjHyYqKsrUq1evzK3rn3/+uenfv79p1KiR8fHxMc2bNzcDBw40aWlpTk1F83LhZ5OWlmbuv/9+ExERYby9vU1ERIQZPHiw+frrr519yrt9/vz582b06NGmSZMmxsPD45IPVMzOzjZJSUkmMjLS1K9f34SHh5uePXua119/3an505/+ZLp37+68r1atWpmnn37a5ObmVvQxl2vTpk0mOjraeHt7l+llzZo1pkuXLsbPz88EBgaae++9t8IHKn711VfmgQceMAEBAaZhw4Zm1KhRbj9Q0ZgfHqL45JNPmvDwcOPt7W06dOhg/vKXv7g9jjE/fI6JiYkmJCTE+Pj4mJiYGJOamlqlsYDSPIypxJWKAIA6LyUlRZMnT9aRI0fUuHHj2m4HuCK4RggAAFiLa4QAVMqZM2cu+TyjkJCQKv3WeVSsqKjokheDN2jQoFoecVAZubm5OnPmzEVrwsPDKzXW8ePHVVhYWOF2Ly8v7ghDjSMIAaiUJUuWOA8CrMi6det0xx13XJmGLHHgwAGXW9nLM2nSpHIveq4JTz75pMvdW+Wp7BUX/fv314YNGyrc3rx5c7ce4ghUBdcIAaiU77//Xjt27LhoTXR0tPMEZ1SPs2fP6qOPPrpoTcuWLV2e1VOTvvrqK+f5PRWp7LOeMjIyLvpgRT8/P3Xp0sWt/gB3EYQAAIC1uFgaAABYi2uELqK4uFiHDh1SQEBAlX7XDgAAuPKMMTp58qQiIiLk6Xnxcz4EoYs4dOiQIiMja7sNAABQBQcOHFCzZs0uWkMQuoiSR9sfOHBAgYGBtdwNAACojLy8PEVGRlbqV9QQhC6i5OuwwMBAghAAAFeZylzWwsXSAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANaqV9sNWG3dtNruwH09JtR2BwAAVBvOCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAa/Fk6VqU/u2x2m6hUmJbNqrtFgAAqBGcEQIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtdwKQtOmTdOtt96qgIAAhYaGql+/ftq9e7dLzdmzZ5WUlKRGjRqpQYMGGjBggLKzs11q9u/fr759++qaa65RaGionn76aZ0/f96lZv369br55pvl4+Oj66+/XgsXLizTz+zZs3XdddfJ19dXMTEx2rp1q9u9AAAAe7kVhDZs2KCkpCRt3rxZq1ev1rlz59SrVy/l5+c7NWPGjNG//vUvLVu2TBs2bNChQ4fUv39/Z3tRUZH69u2rwsJCbdq0SYsWLdLChQs1ceJEp2bv3r3q27evevTooczMTD311FN65JFH9MEHHzg1S5YsUXJysiZNmqTPPvtMHTt2VHx8vA4fPlzpXgAAgN08jDGmqjsfOXJEoaGh2rBhg7p3767c3Fw1adJEb7/9th544AFJ0q5du9SuXTulp6erc+fOev/993XPPffo0KFDCgsLkyTNmzdP48aN05EjR+Tt7a1x48Zp5cqV2r59u3OsQYMGKScnR6mpqZKkmJgY3XrrrZo1a5Ykqbi4WJGRkRo9erTGjx9fqV4uJS8vT0FBQcrNzVVgYGBVP6YKpb85ttrHrAkuv32+x4TaawQAgEpw5+f3ZV0jlJubK0kKCQmRJGVkZOjcuXOKi4tzatq2batrr71W6enpkqT09HR16NDBCUGSFB8fr7y8PO3YscOpKT1GSU3JGIWFhcrIyHCp8fT0VFxcnFNTmV4uVFBQoLy8PJcFAADUXVUOQsXFxXrqqafUpUsXtW/fXpKUlZUlb29vBQcHu9SGhYUpKyvLqSkdgkq2l2y7WE1eXp7OnDmjo0ePqqioqNya0mNcqpcLTZs2TUFBQc4SGRlZyU8DAABcjaochJKSkrR9+3a988471dlPrZowYYJyc3Od5cCBA7XdEgAAqEH1qrLTqFGjtGLFCm3cuFHNmjVz1oeHh6uwsFA5OTkuZ2Kys7MVHh7u1Fx4d1fJnVylay68uys7O1uBgYHy8/OTl5eXvLy8yq0pPcalermQj4+PfHx83PgkAADA1cytM0LGGI0aNUrvvfee1q5dqxYtWrhsj46OVv369ZWWluas2717t/bv36/Y2FhJUmxsrLZt2+Zyd9fq1asVGBioqKgop6b0GCU1JWN4e3srOjrapaa4uFhpaWlOTWV6AQAAdnPrjFBSUpLefvtt/eMf/1BAQIBzrU1QUJD8/PwUFBSkESNGKDk5WSEhIQoMDNTo0aMVGxvr3KXVq1cvRUVF6aGHHtL06dOVlZWl559/XklJSc7ZmMcff1yzZs3SM888o1/84hdau3atli5dqpUrVzq9JCcnKzExUbfccotuu+02vfbaa8rPz9fw4cOdni7VCwAAsJtbQWju3LmSpDvuuMNl/YIFCzRs2DBJ0h/+8Ad5enpqwIABKigoUHx8vObMmePUenl5acWKFXriiScUGxsrf39/JSYmasqUKU5NixYttHLlSo0ZM0YzZsxQs2bNNH/+fMXHxzs1CQkJOnLkiCZOnKisrCx16tRJqampLhdQX6oXAABgt8t6jlBdx3OEfsBzhAAAV5Mr9hwhAACAqxlBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFpuB6GNGzfq3nvvVUREhDw8PLR8+XKX7cOGDZOHh4fL0rt3b5ea48ePa+jQoQoMDFRwcLBGjBihU6dOudR8+eWX6tatm3x9fRUZGanp06eX6WXZsmVq27atfH191aFDB61atcpluzFGEydOVNOmTeXn56e4uDjt2bPH3bcMAADqKLeDUH5+vjp27KjZs2dXWNO7d299//33zvLXv/7VZfvQoUO1Y8cOrV69WitWrNDGjRs1cuRIZ3teXp569eql5s2bKyMjQy+//LJSUlL0+uuvOzWbNm3S4MGDNWLECH3++efq16+f+vXrp+3btzs106dP18yZMzVv3jxt2bJF/v7+io+P19mzZ9192wAAoA7yMMaYKu/s4aH33ntP/fr1c9YNGzZMOTk5Zc4Uldi5c6eioqL0ySef6JZbbpEkpaamqk+fPjp48KAiIiI0d+5cPffcc8rKypK3t7ckafz48Vq+fLl27dolSUpISFB+fr5WrFjhjN25c2d16tRJ8+bNkzFGERER+vWvf62xY8dKknJzcxUWFqaFCxdq0KBBl3x/eXl5CgoKUm5urgIDA6vyEV1U+ptjq33MmhDbstF/X/SYUHuNAABQCe78/K6Ra4TWr1+v0NBQ3XDDDXriiSd07NgxZ1t6erqCg4OdECRJcXFx8vT01JYtW5ya7t27OyFIkuLj47V7926dOHHCqYmLi3M5bnx8vNLT0yVJe/fuVVZWlktNUFCQYmJinJoLFRQUKC8vz2UBAAB1V7UHod69e+vPf/6z0tLS9Lvf/U4bNmzQ3XffraKiIklSVlaWQkNDXfapV6+eQkJClJWV5dSEhYW51JS8vlRN6e2l9yuv5kLTpk1TUFCQs0RGRrr9/gEAwNWjXnUPWPorpw4dOuimm25Sq1attH79evXs2bO6D1etJkyYoOTkZOd1Xl4eYQgAgDqsxm+fb9mypRo3bqxvvvlGkhQeHq7Dhw+71Jw/f17Hjx9XeHi4U5Odne1SU/L6UjWlt5fer7yaC/n4+CgwMNBlAQAAdVeNB6GDBw/q2LFjatq0qSQpNjZWOTk5ysjIcGrWrl2r4uJixcTEODUbN27UuXPnnJrVq1frhhtuUMOGDZ2atLQ0l2OtXr1asbGxkqQWLVooPDzcpSYvL09btmxxagAAgN3cDkKnTp1SZmamMjMzJf1wUXJmZqb279+vU6dO6emnn9bmzZu1b98+paWl6f7779f111+v+Ph4SVK7du3Uu3dvPfroo9q6das+/vhjjRo1SoMGDVJERIQkaciQIfL29taIESO0Y8cOLVmyRDNmzHD52urJJ59UamqqXnnlFe3atUspKSn69NNPNWrUKEk/3NH21FNP6YUXXtA///lPbdu2TQ8//LAiIiJc7nIDAAD2cvsaoU8//VQ9evRwXpeEk8TERM2dO1dffvmlFi1apJycHEVERKhXr1767W9/Kx8fH2efxYsXa9SoUerZs6c8PT01YMAAzZw509keFBSkDz/8UElJSYqOjlbjxo01ceJEl2cN3X777Xr77bf1/PPP69lnn1Xr1q21fPlytW/f3ql55plnlJ+fr5EjRyonJ0ddu3ZVamqqfH193X3bAACgDrqs5wjVdTxH6Ac8RwgAcDWp9ecIAQAAXA0IQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKzldhDauHGj7r33XkVERMjDw0PLly932W6M0cSJE9W0aVP5+fkpLi5Oe/bscak5fvy4hg4dqsDAQAUHB2vEiBE6deqUS82XX36pbt26ydfXV5GRkZo+fXqZXpYtW6a2bdvK19dXHTp00KpVq9zuBQAA2MvtIJSfn6+OHTtq9uzZ5W6fPn26Zs6cqXnz5mnLli3y9/dXfHy8zp4969QMHTpUO3bs0OrVq7VixQpt3LhRI0eOdLbn5eWpV69eat68uTIyMvTyyy8rJSVFr7/+ulOzadMmDR48WCNGjNDnn3+ufv36qV+/ftq+fbtbvQAAAHt5GGNMlXf28NB7772nfv36SfrhDExERIR+/etfa+zYsZKk3NxchYWFaeHChRo0aJB27typqKgoffLJJ7rlllskSampqerTp48OHjyoiIgIzZ07V88995yysrLk7e0tSRo/fryWL1+uXbt2SZISEhKUn5+vFStWOP107txZnTp10rx58yrVy6Xk5eUpKChIubm5CgwMrOrHVKH0N8dW+5g1IbZlo/++6DGh9hoBAKAS3Pn5Xa3XCO3du1dZWVmKi4tz1gUFBSkmJkbp6emSpPT0dAUHBzshSJLi4uLk6empLVu2ODXdu3d3QpAkxcfHa/fu3Tpx4oRTU/o4JTUlx6lMLxcqKChQXl6eywIAAOquag1CWVlZkqSwsDCX9WFhYc62rKwshYaGumyvV6+eQkJCXGrKG6P0MSqqKb39Ur1caNq0aQoKCnKWyMjISrxrAABwteKusVImTJig3NxcZzlw4EBttwQAAGpQtQah8PBwSVJ2drbL+uzsbGdbeHi4Dh8+7LL9/PnzOn78uEtNeWOUPkZFNaW3X6qXC/n4+CgwMNBlAQAAdVe1BqEWLVooPDxcaWlpzrq8vDxt2bJFsbGxkqTY2Fjl5OQoIyPDqVm7dq2Ki4sVExPj1GzcuFHnzp1zalavXq0bbrhBDRs2dGpKH6ekpuQ4lekFAADYze0gdOrUKWVmZiozM1PSDxclZ2Zmav/+/fLw8NBTTz2lF154Qf/85z+1bds2Pfzww4qIiHDuLGvXrp169+6tRx99VFu3btXHH3+sUaNGadCgQYqIiJAkDRkyRN7e3hoxYoR27NihJUuWaMaMGUpOTnb6ePLJJ5WamqpXXnlFu3btUkpKij799FONGjVKkirVCwAAsFs9d3f49NNP1aNHD+d1SThJTEzUwoUL9cwzzyg/P18jR45UTk6OunbtqtTUVPn6+jr7LF68WKNGjVLPnj3l6empAQMGaObMmc72oKAgffjhh0pKSlJ0dLQaN26siRMnujxr6Pbbb9fbb7+t559/Xs8++6xat26t5cuXq3379k5NZXoBAAD2uqznCNV1PEfoBzxHCABwNam15wgBAABcTQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1qr2IJSSkiIPDw+XpW3bts72s2fPKikpSY0aNVKDBg00YMAAZWdnu4yxf/9+9e3bV9dcc41CQ0P19NNP6/z58y4169ev18033ywfHx9df/31WrhwYZleZs+ereuuu06+vr6KiYnR1q1bq/vtAgCAq1iNnBG68cYb9f333zvLRx995GwbM2aM/vWvf2nZsmXasGGDDh06pP79+zvbi4qK1LdvXxUWFmrTpk1atGiRFi5cqIkTJzo1e/fuVd++fdWjRw9lZmbqqaee0iOPPKIPPvjAqVmyZImSk5M1adIkffbZZ+rYsaPi4+N1+PDhmnjLAADgKuRhjDHVOWBKSoqWL1+uzMzMMttyc3PVpEkTvf3223rggQckSbt27VK7du2Unp6uzp076/3339c999yjQ4cOKSwsTJI0b948jRs3TkeOHJG3t7fGjRunlStXavv27c7YgwYNUk5OjlJTUyVJMTExuvXWWzVr1ixJUnFxsSIjIzV69GiNHz++Uu8lLy9PQUFBys3NVWBg4OV8LOVKf3NstY9ZE2JbNvrvix4Taq8RAAAqwZ2f3zVyRmjPnj2KiIhQy5YtNXToUO3fv1+SlJGRoXPnzikuLs6pbdu2ra699lqlp6dLktLT09WhQwcnBElSfHy88vLytGPHDqem9BglNSVjFBYWKiMjw6XG09NTcXFxTk15CgoKlJeX57IAAIC6q9qDUExMjBYuXKjU1FTNnTtXe/fuVbdu3XTy5EllZWXJ29tbwcHBLvuEhYUpKytLkpSVleUSgkq2l2y7WE1eXp7OnDmjo0ePqqioqNyakjHKM23aNAUFBTlLZGRklT4DAABwdahX3QPefffdzp9vuukmxcTEqHnz5lq6dKn8/Pyq+3DVasKECUpOTnZe5+XlEYYAAKjDavz2+eDgYLVp00bffPONwsPDVVhYqJycHJea7OxshYeHS5LCw8PL3EVW8vpSNYGBgfLz81Pjxo3l5eVVbk3JGOXx8fFRYGCgywIAAOquGg9Cp06d0r///W81bdpU0dHRql+/vtLS0pztu3fv1v79+xUbGytJio2N1bZt21zu7lq9erUCAwMVFRXl1JQeo6SmZAxvb29FR0e71BQXFystLc2pAQAAqPYgNHbsWG3YsEH79u3Tpk2b9LOf/UxeXl4aPHiwgoKCNGLECCUnJ2vdunXKyMjQ8OHDFRsbq86dO0uSevXqpaioKD300EP64osv9MEHH+j5559XUlKSfHx8JEmPP/64vv32Wz3zzDPatWuX5syZo6VLl2rMmDFOH8nJyXrjjTe0aNEi7dy5U0888YTy8/M1fPjw6n7LAADgKlXt1wgdPHhQgwcP1rFjx9SkSRN17dpVmzdvVpMmTSRJf/jDH+Tp6akBAwaooKBA8fHxmjNnjrO/l5eXVqxYoSeeeEKxsbHy9/dXYmKipkyZ4tS0aNFCK1eu1JgxYzRjxgw1a9ZM8+fPV3x8vFOTkJCgI0eOaOLEicrKylKnTp2Umppa5gJqAABgr2p/jlBdwnOEfsBzhAAAV5Naf44QAADA1YAgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgrWp/oCLqnvRvjzl/3nz+61rs5OLG3NWmtlsAAFxlCEJwS+f9r9d2CxVb16j89TwEEgBQAb4aAwAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWKtebTcAVJf0b4+Vu37z+a+vcCcVG3NXm9puAQBQCmeEAACAtQhCAADAWnw1hjqv8/7Xa7uF/1rXqHJ1PSbUbB8AAEmcEQIAABYjCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWvzSVeAKSv/2WKXqNp//uoY7ubgxd7Wp1eMDwJXCGSEAAGAtghAAALAWQQgAAFiLa4SAH6HO+1+v3QbWNXJ/nx4Tqr8PAKhhnBECAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiL5wgBKKOyvxOttNr4/Wj8TjQAl4szQgAAwFoEIQAAYC2+GgNQLWrl14JU5VeBlMavBQGsxxkhAABgLYIQAACwFl+NAbhqVeXuttKu1J1u3N0G/HhxRggAAFiLIAQAAKzFV2MArHXF7nS73LvbSuNON6BaWXFGaPbs2bruuuvk6+urmJgYbd26tbZbAgAAPwJ1/ozQkiVLlJycrHnz5ikmJkavvfaa4uPjtXv3boWGhtZ2ewAscLkXdZdWkxd4c1E3bORhjDG13URNiomJ0a233qpZs2ZJkoqLixUZGanRo0dr/PjxF903Ly9PQUFBys3NVWBgYLX3lv7m2GofEwCqKrZlNX6FdyG+0sMV5M7P7zp9RqiwsFAZGRmaMOG/fwE9PT0VFxen9PT0MvUFBQUqKChwXufm5kr64QOtCflnCi5dBABXyJodh2ps7E9yP6u2sZLuvL7axkLdVPJzuzLneup0EDp69KiKiooUFhbmsj4sLEy7du0qUz9t2jRNnjy5zPrIyMga6xEA7DCr2kZ6ttpGQl138uRJBQUFXbSmTgchd02YMEHJycnO6+LiYh0/flyNGjWSh4dHtR4rLy9PkZGROnDgQI187YbKYR5+HJiHHwfm4ceBebh8xhidPHlSERERl6yt00GocePG8vLyUnZ2tsv67OxshYeHl6n38fGRj4+Py7rg4OCabFGBgYH8h/4jwDz8ODAPPw7Mw48D83B5LnUmqESdvn3e29tb0dHRSktLc9YVFxcrLS1NsbGxtdgZAAD4MajTZ4QkKTk5WYmJibrlllt022236bXXXlN+fr6GDx9e260BAIBaVueDUEJCgo4cOaKJEycqKytLnTp1UmpqapkLqK80Hx8fTZo0qcxXcbiymIcfB+bhx4F5+HFgHq6sOv8cIQAAgIrU6WuEAAAALoYgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCNWj27Nm67rrr5Ovrq5iYGG3duvWi9cuWLVPbtm3l6+urDh06aNWqVVeo07rNnXl444031K1bNzVs2FANGzZUXFzcJecNlePu34cS77zzjjw8PNSvX7+abdAS7s5DTk6OkpKS1LRpU/n4+KhNmzb823SZ3J2D1157TTfccIP8/PwUGRmpMWPG6OzZs1eoWwsY1Ih33nnHeHt7m//93/81O3bsMI8++qgJDg422dnZ5dZ//PHHxsvLy0yfPt189dVX5vnnnzf169c327Ztu8Kd1y3uzsOQIUPM7Nmzzeeff2527txphg0bZoKCgszBgwevcOd1i7vzUGLv3r3mJz/5ienWrZu5//77r0yzdZi781BQUGBuueUW06dPH/PRRx+ZvXv3mvXr15vMzMwr3Hnd4e4cLF682Pj4+JjFixebvXv3mg8++MA0bdrUjBkz5gp3XncRhGrIbbfdZpKSkpzXRUVFJiIiwkybNq3c+oEDB5q+ffu6rIuJiTGPPfZYjfZZ17k7Dxc6f/68CQgIMIsWLaqpFq1QlXk4f/68uf322838+fNNYmIiQagauDsPc+fONS1btjSFhYVXqsU6z905SEpKMnfeeafLuuTkZNOlS5ca7dMmfDVWAwoLC5WRkaG4uDhnnaenp+Li4pSenl7uPunp6S71khQfH19hPS6tKvNwodOnT+vcuXMKCQmpqTbrvKrOw5QpUxQaGqoRI0ZciTbrvKrMwz//+U/FxsYqKSlJYWFhat++vaZOnaqioqIr1XadUpU5uP3225WRkeF8ffbtt99q1apV6tOnzxXp2QZ1/lds1IajR4+qqKiozK/xCAsL065du8rdJysrq9z6rKysGuuzrqvKPFxo3LhxioiIKBNSUXlVmYePPvpIb775pjIzM69Ah3aoyjx8++23Wrt2rYYOHapVq1bpm2++0S9/+UudO3dOkyZNuhJt1ylVmYMhQ4bo6NGj6tq1q4wxOn/+vB5//HE9++yzV6JlK3BGCKjASy+9pHfeeUfvvfeefH19a7sda5w8eVIPPfSQ3njjDTVu3Li227FacXGxQkND9frrrys6OloJCQl67rnnNG/evNpuzRrr16/X1KlTNWfOHH322Wf6+9//rpUrV+q3v/1tbbdWZ3BGqAY0btxYXl5eys7OdlmfnZ2t8PDwcvcJDw93qx6XVpV5KPH73/9eL730ktasWaObbrqpJtus89ydh3//+9/at2+f7r33XmddcXGxJKlevXravXu3WrVqVbNN10FV+fvQtGlT1a9fX15eXs66du3aKSsrS4WFhfL29q7RnuuaqszBb37zGz300EN65JFHJEkdOnRQfn6+Ro4cqeeee06enpzPuFx8gjXA29tb0dHRSktLc9YVFxcrLS1NsbGx5e4TGxvrUi9Jq1evrrAel1aVeZCk6dOn67e//a1SU1N1yy23XIlW6zR356Ft27batm2bMjMzneW+++5Tjx49lJmZqcjIyCvZfp1Rlb8PXbp00TfffOMEUUn6+uuv1bRpU0JQFVRlDk6fPl0m7JQEU8PvTK8etX21dl31zjvvGB8fH7Nw4ULz1VdfmZEjR5rg4GCTlZVljDHmoYceMuPHj3fqP/74Y1OvXj3z+9//3uzcudNMmjSJ2+ergbvz8NJLLxlvb2/zt7/9zXz//ffOcvLkydp6C3WCu/NwIe4aqx7uzsP+/ftNQECAGTVqlNm9e7dZsWKFCQ0NNS+88EJtvYWrnrtzMGnSJBMQEGD++te/mm+//dZ8+OGHplWrVmbgwIG19RbqHIJQDfrjH/9orr32WuPt7W1uu+02s3nzZmfbT3/6U5OYmOhSv3TpUtOmTRvj7e1tbrzxRrNy5cor3HHd5M48NG/e3Egqs0yaNOnKN17HuPv3oTSCUPVxdx42bdpkYmJijI+Pj2nZsqV58cUXzfnz569w13WLO3Nw7tw5k5KSYlq1amV8fX1NZGSk+eUvf2lOnDhx5RuvozyM4dwaAACwE9cIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBa/w/5lIoPVaNUbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQCJJREFUeJzt3XtcVXW+//E3oHuD6AZvgBRe0kpJ08KEbVljMTKFzphWWh4j00xDT8qY6WRq1mTHLmrlZbqM+DiTx0uTnlLDCNNOiZcwJvNCFzVsdKOVsI0MFL6/P3qwfu5AZaNCLF/Px2M/xr2+n7XWZ30l93vWXmsRYIwxAgAAsJnAum4AAADgQiDkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAFW477771LZt2/O6zfT0dAUEBGj//v3ndbv1zf79+xUQEKD09HRr2fTp0xUQEFB3Tf1KVT1eiHV+ywICAjR9+vRq1bZt21b33XffBe0HqAlCDnCePf3001q1alVdt3FRmD9/vi1CxU8//aTp06drw4YNdd3KaW3atEnTp09XYWFhXbdSyXvvvafhw4erc+fOCgoKOu//BwX1FyEHOM9OF3KGDh2q48ePq02bNrXf1G/clClTdPz4cb/X+y2FnDZt2uj48eMaOnSo3+v+9NNPeuKJJ35TIef48eOaMmWK9X7Tpk164oknqgw5eXl5evXVV2uxO19LlizRkiVLFBYWpujo6DrrA789hBxcNIqLi+t0/0FBQQoODv5NfS3jD2NMjYJIdTRo0EDBwcEXZNu1JSAgQMHBwQoKCqrrVs6L4OBgNWjQoFq1TqdTDRs2vMAdnd7TTz8tr9erjz/+WF27dq2zPvDbQ8iBLVVc47Fr1y7dc889atq0qW644QZJ0j/+8Q/FxcUpJCREzZo10+DBg3XgwIGzbvO5555Tz5491bx5c4WEhCguLk5vvvmmT01AQICKi4u1ePFiBQQEKCAgwLpW4dfX5PTt21eXXXZZlftyu93q3r27z7Ka9n2qih4+/PBDPfjgg2revLlcLpfuvfdeHT161Ke2bdu26tu3r9atW6fu3bsrJCREf/vb3yRJhYWFGjdunGJiYuR0OtWhQwf913/9l8rLy322UVhYqPvuu09hYWEKDw9XSkpKlWcCTndNzj/+8Q/16NFDjRo1UtOmTXXjjTfqvffes/rbuXOnNm7caM317373O599n88ez6aqa3Luu+8+NW7cWP/+97/Vv39/NW7cWC1bttSECRNUVlZmrdeyZUtJ0hNPPGEdy6nXw+zZs0d33HGHmjVrpuDgYHXv3l1vv/22z/4r/m4//vhjpaWlqWXLlgoNDdXtt9+uI0eO+NR+8sknSkpKUosWLRQSEqJ27drp/vvv96k5tYfp06frkUcekSS1a9fO6rHiZ7mqa3KqO/9Lly5VXFycmjRpIpfLpS5dumju3LnVnndJio6OrtOQhd+u6sV0oJ668847dfnll+vpp5+WMUZ//etf9fjjj+uuu+7SiBEjdOTIEb300ku68cYb9emnnyo8PPy025o7d67++Mc/asiQISotLdXSpUt15513avXq1UpOTpYk/fd//7dGjBihHj16aOTIkZKk9u3bV7m9QYMG6d5779W2bdt03XXXWcu/+eYbbd68Wc8++6y17Fz6rsqYMWMUHh6u6dOnKy8vTwsWLNA333yjDRs2+ISNvLw83X333XrwwQf1wAMP6Morr9RPP/2km266Sf/+97/14IMPqnXr1tq0aZMmT56sQ4cOac6cOZJ+OfPzpz/9SR999JFGjRqlTp06aeXKlUpJSalWj0888YSmT5+unj17asaMGXI4HNqyZYvWr1+vPn36aM6cORo7dqwaN26sxx57TJIUGRkpSbXWY3WUlZUpKSlJ8fHxeu655/T+++/r+eefV/v27TV69Gi1bNlSCxYs0OjRo3X77bdrwIABkqSrr75akrRz505df/31uuSSSzRp0iSFhoZq+fLl6t+/v/75z3/q9ttv99nf2LFj1bRpU02bNk379+/XnDlzNGbMGC1btkySdPjwYfXp00ctW7bUpEmTFB4erv379+utt9467TEMGDBAX3zxhf7nf/5Hs2fPVosWLSTJCme/Vt35z8zM1N13361bbrlF//Vf/yVJ2r17tz7++GM9/PDDNZ90oIIBbGjatGlGkrn77rutZfv37zdBQUHmr3/9q0/tjh07TIMGDXyWp6SkmDZt2vjU/fTTTz7vS0tLTefOnc3NN9/sszw0NNSkpKRU6mnRokVGktm3b58xxpiioiLjdDrNn//8Z5+6WbNmmYCAAPPNN9/43ffZVPQQFxdnSktLffYpyfzv//6vtaxNmzZGksnIyPDZxpNPPmlCQ0PNF1984bN80qRJJigoyOTn5xtjjFm1apWRZGbNmmXVnDx50vTq1ctIMosWLbKWV/x9Vfjyyy9NYGCguf32201ZWZnPfsrLy60/X3XVVeamm26qdJwXosez2bdvX6V1UlJSjCQzY8YMn9prrrnGxMXFWe+PHDliJJlp06ZV2u4tt9xiunTpYn7++WdrWXl5uenZs6e5/PLLrWUVf7eJiYk+czR+/HgTFBRkCgsLjTHGrFy50kgy27ZtO+Px/LqfZ5991ufn91Rt2rTx+Zmv7vw//PDDxuVymZMnT56xF38kJydX+m8XFy++roKtjRo1yvrzW2+9pfLyct1111367rvvrFdUVJQuv/xyffDBB2fcVkhIiPXno0ePqqioSL169dL27dtr1JvL5dKtt96q5cuXyxhjLV+2bJkSEhLUunXr89J3VUaOHOlzen/06NFq0KCB1q5d61PXrl07JSUl+SxbsWKFevXqpaZNm/r0k5iYqLKyMn344YeSpLVr16pBgwYaPXq0tW5QUJDGjh171v5WrVql8vJyTZ06VYGBvv9MVeeaptro0R+n/hxKUq9evbR3796zrvfDDz9o/fr1uuuuu3Ts2DHrOL7//nslJSXpyy+/1L///W+fdUaOHOkzR7169VJZWZm++eYbSbLO+q1evVonTpw4xyOrWnXnPzw8XMXFxcrMzLwgfQB8XQVba9eunfXnL7/8UsYYXX755VXWnu07/dWrV+upp55Sbm6uSkpKrOXnciHxoEGDtGrVKmVnZ6tnz576+uuvlZOTY53OPx99V+XX22rcuLFatWpV6Rk+p87fqf189tlnp/2q4vDhw5J++dqtVatWaty4sc/4lVdeedb+vv76awUGBio2NvastVWpjR6rKzg4uFIfTZs2rXQNVFW++uorGWP0+OOP6/HHH6+y5vDhw7rkkkus9xXh+NR9SbL2d9NNN2ngwIF64oknNHv2bP3ud79T//79dc8998jpdPp1bKdT3fl/6KGHtHz5ct1666265JJL1KdPH9111136wx/+cF76AAg5sLVTz76Ul5crICBA7777bpV3wPz6g+5U//d//6c//vGPuvHGGzV//ny1atVKDRs21KJFi7RkyZIa99evXz81atRIy5cvV8+ePbV8+XIFBgbqzjvvPC99n6tT5+/Ufn7/+99r4sSJVa5zxRVXXLB+quu31OO53G1VcZHuhAkTKp1Rq9ChQ4dq7a/ibGFAQIDefPNNbd68We+8847WrVun+++/X88//7w2b958Xn6eqjv/ERERys3N1bp16/Tuu+/q3Xff1aJFi3Tvvfdq8eLF59wHQMjBRaN9+/Yyxqhdu3Z+f8j985//VHBwsNatW+fz/3YXLVpUqdafMzuhoaHq27evVqxYoRdeeEHLli1Tr169fJ71cS59n86XX36p3r17W+9//PFHHTp0SLfddttZ123fvr1+/PFHJSYmnrGuTZs2ysrK0o8//ujzwZmXl1etfZSXl2vXrl3q1q3baetON9e10eP5dLrjqLj7rmHDhmc9Fn8lJCQoISFBf/3rX7VkyRINGTJES5cu1YgRI/zqsSrVnX9Jcjgc6tevn/r166fy8nI99NBD+tvf/qbHH3+8UoAD/MU1ObhoDBgwQEFBQXriiSd8roGRfvl/ud9///1p1w0KClJAQIB126/0y62/VT30LzQ01K9bkAcNGqSDBw/qtdde07/+9S8NGjTovPV9Oq+88orP9RgLFizQyZMndeutt5513bvuukvZ2dlat25dpbHCwkKdPHlSknTbbbfp5MmTWrBggTVeVlaml1566az76N+/vwIDAzVjxoxKtxyfOgenm+va6PF8atSokdXbqSIiIvS73/1Of/vb33To0KFK6/361vDqOHr0aKWfo4ogeerXsL8WGhpaZY9Vqe78//pnNzAw0Lqr7Ey9ANXFmRxcNNq3b6+nnnpKkydP1v79+9W/f381adJE+/bt08qVKzVy5EhNmDChynWTk5P1wgsv6A9/+IPuueceHT58WPPmzVOHDh302Wef+dTGxcXp/fff1wsvvKDo6Gi1a9dO8fHxp+3rtttuU5MmTTRhwgQFBQVp4MCB563v0yktLdUtt9yiu+66S3l5eZo/f75uuOEG/fGPfzzruo888ojefvtt9e3bV/fdd5/i4uJUXFysHTt26M0339T+/fvVokUL9evXT9dff70mTZqk/fv3KzY2Vm+99ZaKiorOuo8OHTroscce05NPPqlevXppwIABcjqd2rZtm6KjozVz5kxJv8z1ggUL9NRTT6lDhw6KiIjQzTffXCs9nk8hISGKjY3VsmXLdMUVV6hZs2bq3LmzOnfurHnz5umGG25Qly5d9MADD+iyyy5TQUGBsrOz9e233+pf//qXX/tavHix5s+fr9tvv13t27fXsWPH9Oqrr8rlcp3xTF5cXJwk6bHHHtPgwYPVsGFD9evXzwo/p6ru/I8YMUI//PCDbr75Zl166aX65ptv9NJLL6lbt27q1KlTtY/ps88+s54b9NVXX6moqEhPPfWUJKlr167q16+fP1MEO6mTe7qAC6ziluQjR45UGvvnP/9pbrjhBhMaGmpCQ0NNx44dTWpqqsnLy7NqqrqF/PXXXzeXX365cTqdpmPHjmbRokWVbn02xpg9e/aYG2+80YSEhBhJ1q21v76F/FRDhgyxbv89ner0fTYVPWzcuNGMHDnSNG3a1DRu3NgMGTLEfP/99z61bdq0McnJyVVu59ixY2by5MmmQ4cOxuFwmBYtWpiePXua5557zufW9O+//94MHTrUuFwuExYWZoYOHWo+/fTTs95CXuHvf/+7ueaaa4zT6TRNmzY1N910k8nMzLTGPR6PSU5ONk2aNDGSfG4nP989ns3pbiEPDQ2tVFvV8W7atMnExcUZh8NR6fbtr7/+2tx7770mKirKNGzY0FxyySWmb9++5s0337RqKv5uf31r+AcffGAkmQ8++MAYY8z27dvN3XffbVq3bm2cTqeJiIgwffv2NZ988onPer/uwZhfbg2/5JJLTGBgoM/P8q9vITemevP/5ptvmj59+piIiAjjcDhM69atzYMPPmgOHTp0ummuUsWxV/Wq6nEOuHgEGPOr85YAbCs9PV3Dhg3Ttm3bKj1RGQDshmtyAACALXFNDmADx48fP+t1JM2aNaulbuyltLRUP/zwwxlrwsLCqrzdHufG4/GccTwkJERhYWG11A3qI0IOYAPLli3TsGHDzlhTkycjQ9q0aZPP7fZVWbRoUaVfUIlz16pVqzOOp6Sk+PxCVODXuCYHsIFDhw5p586dZ6yJi4uznn6L6jt69KhycnLOWHPVVVed9QMZ/nv//ffPOB4dHV3jp2Lj4kDIAQAAtsSFxwAAwJYu6mtyysvLdfDgQTVp0uScfskiAACoPcYYHTt2TNHR0QoMPP35mos65Bw8eFAxMTF13QYAAKiBAwcO6NJLLz3t+EUdcpo0aSLpl0lyuVx13A0AAKgOr9ermJgY63P8tPx5PHKbNm2qfGz2Qw89ZIwx5vjx4+ahhx4yzZo1M6GhoWbAgAHG4/H4bOObb74xt912mwkJCTEtW7Y0EyZMMCdOnPCp+eCDD8w111xjHA6Had++fZWPVn/55ZdNmzZtjNPpND169DBbtmzx51CMMcYUFRUZSaaoqMjvdQEAQN2o7ue3Xxceb9u2TYcOHbJemZmZkqQ777xTkjR+/Hi98847WrFihTZu3KiDBw9qwIAB1vplZWVKTk5WaWmpNm3apMWLFys9PV1Tp061avbt26fk5GT17t1bubm5GjdunEaMGOHz22yXLVumtLQ0TZs2Tdu3b1fXrl2VlJSkw4cP+3M4AADAzs4lST388MOmffv2pry83BQWFpqGDRuaFStWWOO7d+82kkx2drYxxpi1a9eawMBAn7M7CxYsMC6Xy5SUlBhjjJk4caK56qqrfPYzaNAgk5SUZL3v0aOHSU1Ntd6XlZWZ6OhoM3PmTL/650wOAAD1zwU5k3Oq0tJS/eMf/9D999+vgIAA5eTk6MSJE0pMTLRqOnbsqNatWys7O1uSlJ2drS5duigyMtKqSUpKktfrtR5klp2d7bONipqKbZSWlionJ8enJjAwUImJiVbN6ZSUlMjr9fq8AACAPdU45KxatUqFhYXWo8w9Ho8cDofCw8N96iIjI63fP+LxeHwCTsV4xdiZarxer44fP67vvvtOZWVlVdac7feczJw5U2FhYdaLO6sAALCvGoec119/Xbfeequio6PPZz8X1OTJk1VUVGS9Dhw4UNctAQCAC6RGt5B/8803ev/99/XWW29Zy6KiolRaWqrCwkKfszkFBQWKioqyarZu3eqzrYKCAmus4n8rlp1a43K5FBISoqCgIAUFBVVZU7GN03E6nXI6nf4dLAAAqJdqdCZn0aJFioiIUHJysrUsLi5ODRs2VFZWlrUsLy9P+fn5crvdkiS3260dO3b43AWVmZkpl8tl/ZI1t9vts42KmoptOBwOxcXF+dSUl5crKyvLqgEAAPD77qqysjLTunVr8+ijj1YaGzVqlGndurVZv369+eSTT4zb7TZut9saP3nypOncubPp06ePyc3NNRkZGaZly5Zm8uTJVs3evXtNo0aNzCOPPGJ2795t5s2bZ4KCgkxGRoZVs3TpUuN0Ok16errZtWuXGTlypAkPD6/0TJ6z4e4qAADqn+p+fvsdctatW2ckmby8vEpjFQ8DbNq0qWnUqJG5/fbbzaFDh3xq9u/fb2699VYTEhJiWrRoYf785z9X+TDAbt26GYfDYS677LIqHwb40ksvmdatWxuHw2F69OhhNm/e7O+hEHIAAKiHqvv5HWCMMXV6KqkOeb1ehYWFqaioiF/rAABAPVHdz+8a310FAADwW0bIAQAAtkTIAQAAtkTIAQAAtlSjhwGiGj6YWdcd+K/35LruAACA84YzOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJZ4GOAFkr33+7puwW/u3nXdAQAA5w9ncgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC35HXL+/e9/6z/+4z/UvHlzhYSEqEuXLvrkk0+scWOMpk6dqlatWikkJESJiYn68ssvfbbxww8/aMiQIXK5XAoPD9fw4cP1448/+tR89tln6tWrl4KDgxUTE6NZs2ZV6mXFihXq2LGjgoOD1aVLF61du9bfwwEAADblV8g5evSorr/+ejVs2FDvvvuudu3apeeff15Nmza1ambNmqUXX3xRCxcu1JYtWxQaGqqkpCT9/PPPVs2QIUO0c+dOZWZmavXq1frwww81cuRIa9zr9apPnz5q06aNcnJy9Oyzz2r69Ol65ZVXrJpNmzbp7rvv1vDhw/Xpp5+qf//+6t+/vz7//PNzmQ8AAGATAcYYU93iSZMm6eOPP9b//d//VTlujFF0dLT+/Oc/a8KECZKkoqIiRUZGKj09XYMHD9bu3bsVGxurbdu2qXv37pKkjIwM3Xbbbfr2228VHR2tBQsW6LHHHpPH45HD4bD2vWrVKu3Zs0eSNGjQIBUXF2v16tXW/hMSEtStWzctXLiwWsfj9XoVFhamoqIiuVyu6k5DtWS/PuG8bq82uIc/V9ctAABwVtX9/PbrTM7bb7+t7t27684771RERISuueYavfrqq9b4vn375PF4lJiYaC0LCwtTfHy8srOzJUnZ2dkKDw+3Ao4kJSYmKjAwUFu2bLFqbrzxRivgSFJSUpLy8vJ09OhRq+bU/VTUVOynKiUlJfJ6vT4vAABgT36FnL1792rBggW6/PLLtW7dOo0ePVr/+Z//qcWLF0uSPB6PJCkyMtJnvcjISGvM4/EoIiLCZ7xBgwZq1qyZT01V2zh1H6erqRivysyZMxUWFma9YmJi/Dl8AABQj/gVcsrLy3Xttdfq6aef1jXXXKORI0fqgQceqPbXQ3Vt8uTJKioqsl4HDhyo65YAAMAF4lfIadWqlWJjY32WderUSfn5+ZKkqKgoSVJBQYFPTUFBgTUWFRWlw4cP+4yfPHlSP/zwg09NVds4dR+nq6kYr4rT6ZTL5fJ5AQAAe/Ir5Fx//fXKy8vzWfbFF1+oTZs2kqR27dopKipKWVlZ1rjX69WWLVvkdrslSW63W4WFhcrJybFq1q9fr/LycsXHx1s1H374oU6cOGHVZGZm6sorr7Tu5HK73T77qaip2A8AALi4+RVyxo8fr82bN+vpp5/WV199pSVLluiVV15RamqqJCkgIEDjxo3TU089pbfffls7duzQvffeq+joaPXv31/SL2d+/vCHP+iBBx7Q1q1b9fHHH2vMmDEaPHiwoqOjJUn33HOPHA6Hhg8frp07d2rZsmWaO3eu0tLSrF4efvhhZWRk6Pnnn9eePXs0ffp0ffLJJxozZsx5mhoAAFCfNfCn+LrrrtPKlSs1efJkzZgxQ+3atdOcOXM0ZMgQq2bixIkqLi7WyJEjVVhYqBtuuEEZGRkKDg62at544w2NGTNGt9xyiwIDAzVw4EC9+OKL1nhYWJjee+89paamKi4uTi1atNDUqVN9nqXTs2dPLVmyRFOmTNFf/vIXXX755Vq1apU6d+58LvMBAABswq/n5NgNz8nxxXNyAAD1wQV5Tg4AAEB9QcgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC25FfImT59ugICAnxeHTt2tMZ//vlnpaamqnnz5mrcuLEGDhyogoICn23k5+crOTlZjRo1UkREhB555BGdPHnSp2bDhg269tpr5XQ61aFDB6Wnp1fqZd68eWrbtq2Cg4MVHx+vrVu3+nMoAADA5vw+k3PVVVfp0KFD1uujjz6yxsaPH6933nlHK1as0MaNG3Xw4EENGDDAGi8rK1NycrJKS0u1adMmLV68WOnp6Zo6dapVs2/fPiUnJ6t3797Kzc3VuHHjNGLECK1bt86qWbZsmdLS0jRt2jRt375dXbt2VVJSkg4fPlzTeQAAADYTYIwx1S2ePn26Vq1apdzc3EpjRUVFatmypZYsWaI77rhDkrRnzx516tRJ2dnZSkhI0Lvvvqu+ffvq4MGDioyMlCQtXLhQjz76qI4cOSKHw6FHH31Ua9as0eeff25te/DgwSosLFRGRoYkKT4+Xtddd51efvllSVJ5ebliYmI0duxYTZo0qdoH7/V6FRYWpqKiIrlcrmqvVx3Zr084r9urDe7hz9V1CwAAnFV1P7/9PpPz5ZdfKjo6WpdddpmGDBmi/Px8SVJOTo5OnDihxMREq7Zjx45q3bq1srOzJUnZ2dnq0qWLFXAkKSkpSV6vVzt37rRqTt1GRU3FNkpLS5WTk+NTExgYqMTERKvmdEpKSuT1en1eAADAnvwKOfHx8UpPT1dGRoYWLFigffv2qVevXjp27Jg8Ho8cDofCw8N91omMjJTH45EkeTwen4BTMV4xdqYar9er48eP67vvvlNZWVmVNRXbOJ2ZM2cqLCzMesXExPhz+AAAoB5p4E/xrbfeav356quvVnx8vNq0aaPly5crJCTkvDd3vk2ePFlpaWnWe6/XS9ABAMCmzukW8vDwcF1xxRX66quvFBUVpdLSUhUWFvrUFBQUKCoqSpIUFRVV6W6rivdnq3G5XAoJCVGLFi0UFBRUZU3FNk7H6XTK5XL5vAAAgD2dU8j58ccf9fXXX6tVq1aKi4tTw4YNlZWVZY3n5eUpPz9fbrdbkuR2u7Vjxw6fu6AyMzPlcrkUGxtr1Zy6jYqaim04HA7FxcX51JSXlysrK8uqAQAA8CvkTJgwQRs3btT+/fu1adMm3X777QoKCtLdd9+tsLAwDR8+XGlpafrggw+Uk5OjYcOGye12KyEhQZLUp08fxcbGaujQofrXv/6ldevWacqUKUpNTZXT6ZQkjRo1Snv37tXEiRO1Z88ezZ8/X8uXL9f48eOtPtLS0vTqq69q8eLF2r17t0aPHq3i4mINGzbsPE4NAACoz/y6Jufbb7/V3Xffre+//14tW7bUDTfcoM2bN6tly5aSpNmzZyswMFADBw5USUmJkpKSNH/+fGv9oKAgrV69WqNHj5bb7VZoaKhSUlI0Y8YMq6Zdu3Zas2aNxo8fr7lz5+rSSy/Va6+9pqSkJKtm0KBBOnLkiKZOnSqPx6Nu3bopIyOj0sXIAADg4uXXc3Lshufk+OI5OQDw2zU784u6bsFv439/xQXZ7gV7Tg4AAEB9QMgBAAC25Nc1OQAAoG4k5L9S1y3UQN1eBsGZHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEsN6roBAABq2+zML+q6Bb8l1HUD9RBncgAAgC0RcgAAgC0RcgAAgC0RcgAAgC1x4TEA4KKTkP9KXbeAWsCZHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEvnFHKeeeYZBQQEaNy4cdayn3/+WampqWrevLkaN26sgQMHqqCgwGe9/Px8JScnq1GjRoqIiNAjjzyikydP+tRs2LBB1157rZxOpzp06KD09PRK+583b57atm2r4OBgxcfHa+vWredyOAAAwEZqHHK2bdumv/3tb7r66qt9lo8fP17vvPOOVqxYoY0bN+rgwYMaMGCANV5WVqbk5GSVlpZq06ZNWrx4sdLT0zV16lSrZt++fUpOTlbv3r2Vm5urcePGacSIEVq3bp1Vs2zZMqWlpWnatGnavn27unbtqqSkJB0+fLimhwQAAGykRiHnxx9/1JAhQ/Tqq6+qadOm1vKioiK9/vrreuGFF3TzzTcrLi5OixYt0qZNm7R582ZJ0nvvvaddu3bpH//4h7p166Zbb71VTz75pObNm6fS0lJJ0sKFC9WuXTs9//zz6tSpk8aMGaM77rhDs2fPtvb1wgsv6IEHHtCwYcMUGxurhQsXqlGjRvr73/9+LvMBAABsokFNVkpNTVVycrISExP11FNPWctzcnJ04sQJJSYmWss6duyo1q1bKzs7WwkJCcrOzlaXLl0UGRlp1SQlJWn06NHauXOnrrnmGmVnZ/tso6Km4mux0tJS5eTkaPLkydZ4YGCgEhMTlZ2dfdq+S0pKVFJSYr33er01OXwAwClmZ35R1y34LaGuG0Ct8DvkLF26VNu3b9e2bdsqjXk8HjkcDoWHh/ssj4yMlMfjsWpODTgV4xVjZ6rxer06fvy4jh49qrKysipr9uzZc9reZ86cqSeeeKJ6BwoAAOo1v76uOnDggB5++GG98cYbCg4OvlA9XTCTJ09WUVGR9Tpw4EBdtwQAAC4Qv0JOTk6ODh8+rGuvvVYNGjRQgwYNtHHjRr344otq0KCBIiMjVVpaqsLCQp/1CgoKFBUVJUmKioqqdLdVxfuz1bhcLoWEhKhFixYKCgqqsqZiG1VxOp1yuVw+LwAAYE9+hZxbbrlFO3bsUG5urvXq3r27hgwZYv25YcOGysrKstbJy8tTfn6+3G63JMntdmvHjh0+d0FlZmbK5XIpNjbWqjl1GxU1FdtwOByKi4vzqSkvL1dWVpZVAwAALm5+XZPTpEkTde7c2WdZaGiomjdvbi0fPny40tLS1KxZM7lcLo0dO1Zut1sJCb9c5tWnTx/FxsZq6NChmjVrljwej6ZMmaLU1FQ5nU5J0qhRo/Tyyy9r4sSJuv/++7V+/XotX75ca9assfablpamlJQUde/eXT169NCcOXNUXFysYcOGndOEAAD8k5D/Sl23AFSpRndXncns2bMVGBiogQMHqqSkRElJSZo/f741HhQUpNWrV2v06NFyu90KDQ1VSkqKZsyYYdW0a9dOa9as0fjx4zV37lxdeumleu2115SUlGTVDBo0SEeOHNHUqVPl8XjUrVs3ZWRkVLoYGQAAXJwCjDGmrpuoK16vV2FhYSoqKjrv1+dkvz7hvG6vNriHP1fXLQCoh+rjv3eoHRfqc6W6n9/87ioAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLDeq6AQDA/zc784u6bsFvCXXdAHAanMkBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2xC3kAPAbkpD/Sl23ANgGZ3IAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAt+RVyFixYoKuvvloul0sul0tut1vvvvuuNf7zzz8rNTVVzZs3V+PGjTVw4EAVFBT4bCM/P1/Jyclq1KiRIiIi9Mgjj+jkyZM+NRs2bNC1114rp9OpDh06KD09vVIv8+bNU9u2bRUcHKz4+Hht3brVn0MBAAA251fIufTSS/XMM88oJydHn3zyiW6++Wb96U9/0s6dOyVJ48eP1zvvvKMVK1Zo48aNOnjwoAYMGGCtX1ZWpuTkZJWWlmrTpk1avHix0tPTNXXqVKtm3759Sk5OVu/evZWbm6tx48ZpxIgRWrdunVWzbNkypaWladq0adq+fbu6du2qpKQkHT58+FznAwAA2ESAMcacywaaNWumZ599VnfccYdatmypJUuW6I477pAk7dmzR506dVJ2drYSEhL07rvvqm/fvjp48KAiIyMlSQsXLtSjjz6qI0eOyOFw6NFHH9WaNWv0+eefW/sYPHiwCgsLlZGRIUmKj4/Xddddp5dfflmSVF5erpiYGI0dO1aTJk2qdu9er1dhYWEqKiqSy+U6l2moJPv1Ced1e7XBPfy5um4BuOjVx387gNO5UJ8r1f38rvE1OWVlZVq6dKmKi4vldruVk5OjEydOKDEx0arp2LGjWrdurezsbElSdna2unTpYgUcSUpKSpLX67XOBmVnZ/tso6KmYhulpaXKycnxqQkMDFRiYqJVczolJSXyer0+LwAAYE9+h5wdO3aocePGcjqdGjVqlFauXKnY2Fh5PB45HA6Fh4f71EdGRsrj8UiSPB6PT8CpGK8YO1ON1+vV8ePH9d1336msrKzKmoptnM7MmTMVFhZmvWJiYvw9fAAAUE/4HXKuvPJK5ebmasuWLRo9erRSUlK0a9euC9HbeTd58mQVFRVZrwMHDtR1SwAA4AJp4O8KDodDHTp0kCTFxcVp27Ztmjt3rgYNGqTS0lIVFhb6nM0pKChQVFSUJCkqKqrSXVAVd1+dWvPrO7IKCgrkcrkUEhKioKAgBQUFVVlTsY3TcTqdcjqd/h4yAACoh875OTnl5eUqKSlRXFycGjZsqKysLGssLy9P+fn5crvdkiS3260dO3b43AWVmZkpl8ul2NhYq+bUbVTUVGzD4XAoLi7Op6a8vFxZWVlWDQAAgF9nciZPnqxbb71VrVu31rFjx7RkyRJt2LBB69atU1hYmIYPH660tDQ1a9ZMLpdLY8eOldvtVkJCgiSpT58+io2N1dChQzVr1ix5PB5NmTJFqamp1hmWUaNG6eWXX9bEiRN1//33a/369Vq+fLnWrFlj9ZGWlqaUlBR1795dPXr00Jw5c1RcXKxhw4adx6kBAAD1mV8h5/Dhw7r33nt16NAhhYWF6eqrr9a6dev0+9//XpI0e/ZsBQYGauDAgSopKVFSUpLmz59vrR8UFKTVq1dr9OjRcrvdCg0NVUpKimbMmGHVtGvXTmvWrNH48eM1d+5cXXrppXrttdeUlJRk1QwaNEhHjhzR1KlT5fF41K1bN2VkZFS6GBkAAFy8zvk5OfUZz8nxxXNygLpXH//tAE6n3j4nBwAA4LeMkAMAAGyJkAMAAGyJkAMAAGzJ74cBAkB9wUW8wMWNMzkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWGtR1AwDqh9mZX9R1C35LqOsGANQpzuQAAABbIuQAAABb4usqANWSkP9KXbcAAH7x60zOzJkzdd1116lJkyaKiIhQ//79lZeX51Pz888/KzU1Vc2bN1fjxo01cOBAFRQU+NTk5+crOTlZjRo1UkREhB555BGdPHnSp2bDhg269tpr5XQ61aFDB6Wnp1fqZ968eWrbtq2Cg4MVHx+vrVu3+nM4AADAxvwKORs3blRqaqo2b96szMxMnThxQn369FFxcbFVM378eL3zzjtasWKFNm7cqIMHD2rAgAHWeFlZmZKTk1VaWqpNmzZp8eLFSk9P19SpU62affv2KTk5Wb1791Zubq7GjRunESNGaN26dVbNsmXLlJaWpmnTpmn79u3q2rWrkpKSdPjw4XOZDwAAYBMBxhhT05WPHDmiiIgIbdy4UTfeeKOKiorUsmVLLVmyRHfccYckac+ePerUqZOys7OVkJCgd999V3379tXBgwcVGRkpSVq4cKEeffRRHTlyRA6HQ48++qjWrFmjzz//3NrX4MGDVVhYqIyMDElSfHy8rrvuOr388suSpPLycsXExGjs2LGaNGlSlf2WlJSopKTEeu/1ehUTE6OioiK5XK6aTkOVsl+fcF63Vxvcw5+r6xbwG1Yff6YB1K0L9bni9XoVFhZ21s/vc7rwuKioSJLUrFkzSVJOTo5OnDihxMREq6Zjx45q3bq1srOzJUnZ2dnq0qWLFXAkKSkpSV6vVzt37rRqTt1GRU3FNkpLS5WTk+NTExgYqMTERKumKjNnzlRYWJj1iomJOZfDBwAAv2E1Djnl5eUaN26crr/+enXu3FmS5PF45HA4FB4e7lMbGRkpj8dj1ZwacCrGK8bOVOP1enX8+HF99913Kisrq7KmYhtVmTx5soqKiqzXgQMH/D9wAABQL9T47qrU1FR9/vnn+uijj85nPxeU0+mU0+ms6zYAAEAtqNGZnDFjxmj16tX64IMPdOmll1rLo6KiVFpaqsLCQp/6goICRUVFWTW/vtuq4v3Zalwul0JCQtSiRQsFBQVVWVOxDQAAcHHzK+QYYzRmzBitXLlS69evV7t27XzG4+Li1LBhQ2VlZVnL8vLylJ+fL7fbLUlyu93asWOHz11QmZmZcrlcio2NtWpO3UZFTcU2HA6H4uLifGrKy8uVlZVl1QAAgIubX19XpaamasmSJfrf//1fNWnSxLr+JSwsTCEhIQoLC9Pw4cOVlpamZs2ayeVyaezYsXK73UpI+OW3yPTp00exsbEaOnSoZs2aJY/HoylTpig1NdX6KmnUqFF6+eWXNXHiRN1///1av369li9frjVr1li9pKWlKSUlRd27d1ePHj00Z84cFRcXa9iwYedrbgAAQD3mV8hZsGCBJOl3v/udz/JFixbpvvvukyTNnj1bgYGBGjhwoEpKSpSUlKT58+dbtUFBQVq9erVGjx4tt9ut0NBQpaSkaMaMGVZNu3bttGbNGo0fP15z587VpZdeqtdee01JSUlWzaBBg3TkyBFNnTpVHo9H3bp1U0ZGRqWLkQEAwMXpnJ6TU99V9z77mqiPzxThOTk4k/r4Mw2gbtXr5+QAAAD8VhFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALTWo6waAi83szC/quoUaSajrBgDAT5zJAQAAtsSZHKCWJeS/UtctAMBFgTM5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlvwOOR9++KH69eun6OhoBQQEaNWqVT7jxhhNnTpVrVq1UkhIiBITE/Xll1/61Pzwww8aMmSIXC6XwsPDNXz4cP34448+NZ999pl69eql4OBgxcTEaNasWZV6WbFihTp27Kjg4GB16dJFa9eu9fdwAACATfkdcoqLi9W1a1fNmzevyvFZs2bpxRdf1MKFC7VlyxaFhoYqKSlJP//8s1UzZMgQ7dy5U5mZmVq9erU+/PBDjRw50hr3er3q06eP2rRpo5ycHD377LOaPn26XnnlFatm06ZNuvvuuzV8+HB9+umn6t+/v/r376/PP//c30MCAAA2FGCMMTVeOSBAK1euVP/+/SX9chYnOjpaf/7znzVhwgRJUlFRkSIjI5Wenq7Bgwdr9+7dio2N1bZt29S9e3dJUkZGhm677TZ9++23io6O1oIFC/TYY4/J4/HI4XBIkiZNmqRVq1Zpz549kqRBgwapuLhYq1evtvpJSEhQt27dtHDhwir7LSkpUUlJifXe6/UqJiZGRUVFcrlcNZ2GKmW/PuG8bq82uIc/V9ctXBTq488GANTEhfpc8Xq9CgsLO+vn93m9Jmffvn3yeDxKTEy0loWFhSk+Pl7Z2dmSpOzsbIWHh1sBR5ISExMVGBioLVu2WDU33nijFXAkKSkpSXl5eTp69KhVc+p+Kmoq9lOVmTNnKiwszHrFxMSc+0EDAIDfpPMacjwejyQpMjLSZ3lkZKQ15vF4FBER4TPeoEEDNWvWzKemqm2cuo/T1VSMV2Xy5MkqKiqyXgcOHPD3EAEAQD3RoK4bqE1Op1NOp7Ou2wAAALXgvJ7JiYqKkiQVFBT4LC8oKLDGoqKidPjwYZ/xkydP6ocffvCpqWobp+7jdDUV4wAA4OJ2XkNOu3btFBUVpaysLGuZ1+vVli1b5Ha7JUlut1uFhYXKycmxatavX6/y8nLFx8dbNR9++KFOnDhh1WRmZurKK69U06ZNrZpT91NRU7EfAABwcfM75Pz444/Kzc1Vbm6upF8uNs7NzVV+fr4CAgI0btw4PfXUU3r77be1Y8cO3XvvvYqOjrbuwOrUqZP+8Ic/6IEHHtDWrVv18ccfa8yYMRo8eLCio6MlSffcc48cDoeGDx+unTt3atmyZZo7d67S0tKsPh5++GFlZGTo+eef1549ezR9+nR98sknGjNmzLnPCgAAqPf8vibnk08+Ue/eva33FcEjJSVF6enpmjhxooqLizVy5EgVFhbqhhtuUEZGhoKDg6113njjDY0ZM0a33HKLAgMDNXDgQL344ovWeFhYmN577z2lpqYqLi5OLVq00NSpU32epdOzZ08tWbJEU6ZM0V/+8hddfvnlWrVqlTp37lyjiQAAAPZyTs/Jqe+qe599TdTHZ6HwnJzaUR9/NgCgJmz1nBwAAIDfCkIOAACwpYvqOTmwH776AQCcDmdyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALTWo6wbw2zE784u6bsFvCXXdAADgN4uQA0tC/it13QIAAOcNX1cBAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbqvchZ968eWrbtq2Cg4MVHx+vrVu31nVLAADgN6Beh5xly5YpLS1N06ZN0/bt29W1a1clJSXp8OHDdd0aAACoY/U65Lzwwgt64IEHNGzYMMXGxmrhwoVq1KiR/v73v9d1awAAoI7V24cBlpaWKicnR5MnT7aWBQYGKjExUdnZ2VWuU1JSopKSEut9UVGRJMnr9Z73/oqPl5y9CAAAG7sQn6+nbtcYc8a6ehtyvvvuO5WVlSkyMtJneWRkpPbs2VPlOjNnztQTTzxRaXlMTMwF6REAgIva2Jcv6OaPHTumsLCw047X25BTE5MnT1ZaWpr1vry8XD/88IOaN2+ugICA87Yfr9ermJgYHThwQC6X67xtF76Y59rDXNcO5rl2MM+140LOszFGx44dU3R09Bnr6m3IadGihYKCglRQUOCzvKCgQFFRUVWu43Q65XQ6fZaFh4dfqBblcrn4D6gWMM+1h7muHcxz7WCea8eFmuczncGpUG8vPHY4HIqLi1NWVpa1rLy8XFlZWXK73XXYGQAA+C2ot2dyJCktLU0pKSnq3r27evTooTlz5qi4uFjDhg2r69YAAEAdq9chZ9CgQTpy5IimTp0qj8ejbt26KSMjo9LFyLXN6XRq2rRplb4aw/nFPNce5rp2MM+1g3muHb+FeQ4wZ7v/CgAAoB6qt9fkAAAAnAkhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhp4bmzZuntm3bKjg4WPHx8dq6desZ61esWKGOHTsqODhYXbp00dq1a2up0/rNn3l+9dVX1atXLzVt2lRNmzZVYmLiWf9e8At/f54rLF26VAEBAerfv/+FbdBG/J3rwsJCpaamqlWrVnI6nbriiiv496Ma/J3nOXPm6Morr1RISIhiYmI0fvx4/fzzz7XUbf304Ycfql+/foqOjlZAQIBWrVp11nU2bNiga6+9Vk6nUx06dFB6evqFbdLAb0uXLjUOh8P8/e9/Nzt37jQPPPCACQ8PNwUFBVXWf/zxxyYoKMjMmjXL7Nq1y0yZMsU0bNjQ7Nixo5Y7r1/8ned77rnHzJs3z3z66adm9+7d5r777jNhYWHm22+/reXO6xd/57nCvn37zCWXXGJ69epl/vSnP9VOs/Wcv3NdUlJiunfvbm677Tbz0UcfmX379pkNGzaY3NzcWu68fvF3nt944w3jdDrNG2+8Yfbt22fWrVtnWrVqZcaPH1/Lndcva9euNY899ph56623jCSzcuXKM9bv3bvXNGrUyKSlpZldu3aZl156yQQFBZmMjIwL1iMhpwZ69OhhUlNTrfdlZWUmOjrazJw5s8r6u+66yyQnJ/ssi4+PNw8++OAF7bO+83eef+3kyZOmSZMmZvHixReqRVuoyTyfPHnS9OzZ07z22msmJSWFkFNN/s71ggULzGWXXWZKS0trq0Vb8HeeU1NTzc033+yzLC0tzVx//fUXtE87qU7ImThxornqqqt8lg0aNMgkJSVdsL74uspPpaWlysnJUWJiorUsMDBQiYmJys7OrnKd7Oxsn3pJSkpKOm09ajbPv/bTTz/pxIkTatas2YVqs96r6TzPmDFDERERGj58eG20aQs1meu3335bbrdbqampioyMVOfOnfX000+rrKysttqud2oyzz179lROTo71ldbevXu1du1a3XbbbbXS88WiLj4L6/WvdagL3333ncrKyir96ojIyEjt2bOnynU8Hk+V9R6P54L1Wd/VZJ5/7dFHH1V0dHSl/6jw/9Vknj/66CO9/vrrys3NrYUO7aMmc713716tX79eQ4YM0dq1a/XVV1/poYce0okTJzRt2rTaaLveqck833PPPfruu+90ww03yBijkydPatSoUfrLX/5SGy1fNE73Wej1enX8+HGFhISc931yJge29Mwzz2jp0qVauXKlgoOD67od2zh27JiGDh2qV199VS1atKjrdmyvvLxcEREReuWVVxQXF6dBgwbpscce08KFC+u6NVvZsGGDnn76ac2fP1/bt2/XW2+9pTVr1ujJJ5+s69ZwjjiT46cWLVooKChIBQUFPssLCgoUFRVV5TpRUVF+1aNm81zhueee0zPPPKP3339fV1999YVss97zd56//vpr7d+/X/369bOWlZeXS5IaNGigvLw8tW/f/sI2XU/V5Ge6VatWatiwoYKCgqxlnTp1ksfjUWlpqRwOxwXtuT6qyTw//vjjGjp0qEaMGCFJ6tKli4qLizVy5Eg99thjCgzkfMD5cLrPQpfLdUHO4kicyfGbw+FQXFycsrKyrGXl5eXKysqS2+2uch232+1TL0mZmZmnrUfN5lmSZs2apSeffFIZGRnq3r17bbRar/k7zx07dtSOHTuUm5trvf74xz+qd+/eys3NVUxMTG22X6/U5Gf6+uuv11dffWUFSUn64osv1KpVKwLOadRknn/66adKQaYiWBp+h/V5UyefhRfskmYbW7p0qXE6nSY9Pd3s2rXLjBw50oSHhxuPx2OMMWbo0KFm0qRJVv3HH39sGjRoYJ577jmze/duM23aNG4hrwZ/5/mZZ54xDofDvPnmm+bQoUPW69ixY3V1CPWCv/P8a9xdVX3+znV+fr5p0qSJGTNmjMnLyzOrV682ERER5qmnnqqrQ6gX/J3nadOmmSZNmpj/+Z//MXv37jXvvfeead++vbnrrrvq6hDqhWPHjplPP/3UfPrpp0aSeeGFF8ynn35qvvnmG2OMMZMmTTJDhw616ituIX/kkUfM7t27zbx587iF/LfqpZdeMq1btzYOh8P06NHDbN682Rq76aabTEpKik/98uXLzRVXXGEcDoe56qqrzJo1a2q54/rJn3lu06aNkVTpNW3atNpvvJ7x9+f5VIQc//g715s2bTLx8fHG6XSayy67zPz1r381J0+erOWu6x9/5vnEiRNm+vTppn379iY4ONjExMSYhx56yBw9erT2G69HPvjggyr/za2Y25SUFHPTTTdVWqdbt27G4XCYyy67zCxatOiC9hhgDOfiAACA/XBNDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKX/B/IRWsPeBbjnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPx9JREFUeJzt3XlYF/X+//8HiyyhgEtshURqqWlZmIipbSTlUpTl+lEqkjLom5qVHjc008LMLZc0065THpdOmpmhpJUnxQ31qKhkHdfqjZYCSgoK8/uji/n5FlTAN6DM/XZd7+vyPa/nzDxfA8rDec8MToZhGAIAALAg56puAAAAoKoQhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhIArePbZZ3XLLbc4dJvz58+Xk5OTDh486NDtXm8OHjwoJycnzZ8/31yWmJgoJyenqmvqIiX1WBHrXMucnJyUmJhYqtpbbrlFzz77bIX2AzgSQQioQOPGjdOyZcuqug1LmDFjRrUIHn/99ZcSExP1/fffV3Url7RhwwYlJiYqKyurqlspZvXq1YqNjVWzZs3k4uJy2f/EFBYWKikpSaGhofLw8NCdd96pf/3rX5XXLK4JBCGgAl0qCPXp00dnzpxRSEhI5Td1jRs+fLjOnDlT5vWupSAUEhKiM2fOqE+fPmVe96+//tLo0aOvqSB05swZDR8+3Hy/YcMGjR49usQglJGRoTlz5lRid/YWLFigBQsWyMfHR0FBQZetHTZsmN5880098sgjmjZtmurXr69evXpp4cKFldQtrgUEIVhSbm5ule7fxcVFHh4e19RHQGVhGEa5wkppuLq6ysPDo0K2XVmcnJzk4eEhFxeXqm7FITw8POTq6lqqWnd3d9WoUaOCO7q0cePGKScnR+vXr9ddd911ybpff/1VEydOVHx8vGbPnq1+/frpq6++Urt27fT666+roKCgErtGVSIIodoruuZkz5496tWrl2rXrq22bdtKkj799FOFhYXJ09NTderUUY8ePXTkyJErbvO9995TmzZtVLduXXl6eiosLEyff/65XY2Tk5Nyc3P1ySefyMnJSU5OTua1ExdfI9S5c2fdeuutJe4rIiJCLVu2tFtW3r4vVNTDunXr9OKLL6pu3bry9vZW3759dfLkSbvaW265RZ07d9aqVavUsmVLeXp66sMPP5QkZWVlacCAAQoODpa7u7saNmyod999V4WFhXbbyMrK0rPPPisfHx/5+voqJiamxDMKl7pG6NNPP1WrVq10ww03qHbt2mrfvr1Wr15t9peenq4ffvjBPNYPPPCA3b4d2eOVlHSN0LPPPquaNWvq119/VXR0tGrWrKkbb7xRgwcPNn/oHjx4UDfeeKMkafTo0eZcLrw+Z9++fXr66adVp04deXh4qGXLllq+fLnd/ou+tuvXr9egQYN04403ysvLS08++aSOHz9uV7t161ZFRUWpXr168vT0VGhoqJ5//nm7mgt7SExM1Ouvvy5JCg0NNXss+l4u6Rqh0h7/hQsXKiwsTLVq1ZK3t7eaN2+uKVOmlPq4S1JQUFCpgtiXX36pc+fO6eWXX7abZ//+/XX06FGlpqaWab+4fpUu4gPVwDPPPKNGjRpp3LhxMgxDb7/9tkaMGKFu3brphRde0PHjxzVt2jS1b99e27dvl6+v7yW3NWXKFD3++OPq3bu38vPztXDhQj3zzDNasWKFOnXqJEn65z//qRdeeEGtWrVSXFycJKlBgwYlbq979+7q27evtmzZonvvvddcfujQIW3cuFETJkwwl11N3yVJSEiQr6+vEhMTlZGRoZkzZ+rQoUP6/vvv7QJJRkaGevbsqRdffFH9+vXT7bffrr/++kv333+/fv31V7344ouqX7++NmzYoKFDh+r333/X5MmTJf19BumJJ57Qjz/+qJdeeklNmjTR0qVLFRMTU6oeR48ercTERLVp00ZjxoyRm5ubNm3apLVr16pDhw6aPHmyXnnlFdWsWVPDhg2TJPn7+0tSpfVYGgUFBYqKilJ4eLjee+89ffvtt5o4caIaNGig/v3768Ybb9TMmTPVv39/Pfnkk3rqqackSXfeeackKT09Xffdd59uuukmDRkyRF5eXlq8eLGio6P173//W08++aTd/l555RXVrl1bo0aN0sGDBzV58mQlJCRo0aJFkqRjx46pQ4cOuvHGGzVkyBD5+vrq4MGD+uKLLy45h6eeeko//fST/vWvf2nSpEmqV6+eJJkB7mKlPf4pKSnq2bOnHn74Yb377ruSpL1792r9+vV69dVXy3/QL2H79u3y8vJSkyZN7Ja3atXKHC/6DxOqOQOo5kaNGmVIMnr27GkuO3jwoOHi4mK8/fbbdrW7du0yXF1d7ZbHxMQYISEhdnV//fWX3fv8/HyjWbNmxkMPPWS33MvLy4iJiSnW07x58wxJxoEDBwzDMIzs7GzD3d3deO211+zqkpKSDCcnJ+PQoUNl7vtKinoICwsz8vPz7fYpyfjyyy/NZSEhIYYkIzk52W4bb731luHl5WX89NNPdsuHDBliuLi4GIcPHzYMwzCWLVtmSDKSkpLMmvPnzxvt2rUzJBnz5s0zlxd9vYrs37/fcHZ2Np588kmjoKDAbj+FhYXmn++44w7j/vvvLzbPiujxSg4cOFBsnZiYGEOSMWbMGLvau+++2wgLCzPfHz9+3JBkjBo1qth2H374YaN58+bG2bNnzWWFhYVGmzZtjEaNGpnLir62kZGRdsdo4MCBhouLi5GVlWUYhmEsXbrUkGRs2bLlsvO5uJ8JEybYff9eKCQkxO57vrTH/9VXXzW8vb2N8+fPX7aXsujUqVOxv7sXjt16663Flufm5hqSjCFDhjisD1zb+GgMlvHSSy+Zf/7iiy9UWFiobt266Y8//jBfAQEBatSokb777rvLbsvT09P888mTJ5Wdna127dpp27Zt5erN29tbjz32mBYvXizDMMzlixYtUuvWrVW/fn2H9F2SuLg4u48S+vfvL1dXV61cudKuLjQ0VFFRUXbLlixZonbt2ql27dp2/URGRqqgoEDr1q2TJK1cuVKurq7q37+/ua6Li4teeeWVK/a3bNkyFRYWauTIkXJ2tv8nqzTXWFVGj2Vx4fehJLVr107/+9//rrjeiRMntHbtWnXr1k2nTp0y5/Hnn38qKipK+/fv16+//mq3TlxcnN0xateunQoKCnTo0CFJMs8erlixQufOnbvKmZWstMff19dXubm5SklJqZA+LnbmzBm5u7sXW150fVpFXQOHaw8fjcEyQkNDzT/v379fhmGoUaNGJdZe6RqDFStWaOzYsdqxY4fy8vLM5Vdz8XP37t21bNkypaamqk2bNvrll1+UlpZmfnTgiL5LcvG2atasqcDAwGLPOLrw+F3Yz86dOy/5scixY8ck/f0RX2BgoGrWrGk3fvvtt1+xv19++UXOzs5q2rTpFWtLUhk9lpaHh0exPmrXrl3smqyS/PzzzzIMQyNGjNCIESNKrDl27Jhuuukm831RgL5wX5LM/d1///3q2rWrRo8erUmTJumBBx5QdHS0evXqVWJIKI/SHv+XX35Zixcv1mOPPaabbrpJHTp0ULdu3fToo486pI+LeXp62v3dLXL27FlzHNZAEIJlXPgPW2FhoZycnPTNN9+UeGfPxT8ML/Sf//xHjz/+uNq3b68ZM2YoMDBQNWrU0Lx587RgwYJy99elSxfdcMMNWrx4sdq0aaPFixfL2dlZzzzzjEP6vlol/WAoLCzUI488ojfeeKPEdW677bYK66e0rqUer+YusqILiwcPHlzszFyRhg0blmp/RWcdnZyc9Pnnn2vjxo366quvtGrVKj3//POaOHGiNm7c6JDvp9Iefz8/P+3YsUOrVq3SN998o2+++Ubz5s1T37599cknn1x1HxcLDAzUd999J8Mw7P4D8/vvv0vSFW+9R/VBEIIlNWjQQIZhKDQ0tMw/CP/973/Lw8NDq1atsvtf87x584rVluUMkZeXlzp37qwlS5bo/fff16JFi9SuXTu7f5Cvpu9L2b9/vx588EHz/enTp/X777+rY8eOV1y3QYMGOn36tCIjIy9bFxISojVr1uj06dN2P1wzMjJKtY/CwkLt2bNHLVq0uGTdpY51ZfToSJeaR9FdhTVq1LjiXMqqdevWat26td5++20tWLBAvXv31sKFC/XCCy+UqceSlPb4S5Kbm5u6dOmiLl26qLCwUC+//LI+/PBDjRgxoljIu1otWrTQRx99pL1799qdbdy0aZM5DmvgGiFY0lNPPSUXFxeNHj3a7poc6e//Lf/555+XXNfFxUVOTk52zxk5ePBgiQ9O9PLyKtPt1927d9dvv/2mjz76SP/973/VvXt3h/V9KbNnz7a7PmTmzJk6f/68HnvssSuu261bN6WmpmrVqlXFxrKysnT+/HlJUseOHXX+/HnNnDnTHC8oKNC0adOuuI/o6Gg5OztrzJgxxW63vvAYXOpYV0aPjnTDDTeYvV3Iz89PDzzwgD788EPzrMWFLr4tvjROnjxZ7PuoKACU9LFRES8vrxJ7LElpj//F37vOzs7m3XKX66W8nnjiCdWoUUMzZswwlxmGoVmzZummm25SmzZtHL5PXJs4IwRLatCggcaOHauhQ4fq4MGDio6OVq1atXTgwAEtXbpUcXFxGjx4cInrdurUSe+//74effRR9erVS8eOHdP06dPVsGFD7dy50642LCxM3377rd5//30FBQUpNDRU4eHhl+yrY8eOqlWrlgYPHiwXFxd17drVYX1fSn5+vh5++GF169ZNGRkZmjFjhtq2bavHH3/8iuu+/vrrWr58uTp37qxnn31WYWFhys3N1a5du/T555/r4MGDqlevnrp06aL77rtPQ4YM0cGDB9W0aVN98cUXys7OvuI+GjZsqGHDhumtt95Su3bt9NRTT8nd3V1btmxRUFCQxo8fL+nvYz1z5kyNHTtWDRs2lJ+fnx566KFK6dGRPD091bRpUy1atEi33Xab6tSpo2bNmqlZs2aaPn262rZtq+bNm6tfv3669dZblZmZqdTUVB09elT//e9/y7SvTz75RDNmzNCTTz6pBg0a6NSpU5ozZ468vb0ve0YwLCxM0t9PZu7Ro4dq1KihLl26mAHpQqU9/i+88IJOnDihhx56SDfffLMOHTqkadOmqUWLFsVucb+cnTt3ms9V+vnnn5Wdna2xY8dKku666y516dJFknTzzTdrwIABmjBhgs6dO6d7771Xy5Yt03/+8x999tln1eZhmCiFKrhTDahURbdjHz9+vNjYv//9b6Nt27aGl5eX4eXlZTRu3NiIj483MjIyzJqSbp+fO3eu0ahRI8Pd3d1o3LixMW/evGK3fRuGYezbt89o37694enpaUgybyu++Pb5C/Xu3du89flSStP3lRT18MMPPxhxcXFG7dq1jZo1axq9e/c2/vzzT7vakJAQo1OnTiVu59SpU8bQoUONhg0bGm5ubka9evWMNm3aGO+9957dbfl//vmn0adPH8Pb29vw8fEx+vTpY2zfvv2Kt88X+fjjj427777bcHd3N2rXrm3cf//9RkpKijlus9mMTp06GbVq1TIk2d1K7+ger+RSt897eXkVqy1pvhs2bDDCwsIMNze3Yreu//LLL0bfvn2NgIAAo0aNGsZNN91kdO7c2fj888/NmqKv7cW3xX/33XeGJOO7774zDMMwtm3bZvTs2dOoX7++4e7ubvj5+RmdO3c2tm7darfexT0Yxt+3xd90002Gs7Oz3ffyxbfPG0bpjv/nn39udOjQwfDz8zPc3NyM+vXrGy+++KLx+++/X+owl6ho7iW9Lu6roKDAGDdunBESEmK4ubkZd9xxh/Hpp5+WaX+4/jkZxkXnRQFYwvz58/Xcc89py5YtxZ5cDQBWwTVCAADAsrhGCKhmzpw5c8XrWurUqVNJ3VQv+fn5OnHixGVrfHx8eAZNBbDZbJcd9/T0lI+PTyV1g+qEIARUM4sWLdJzzz132ZryPIEa0oYNG+weNVCSefPmFfulo7h6gYGBlx2PiYmx+yW3QGlxjRBQzfz+++9KT0+/bE1YWJj5lGGU3smTJ5WWlnbZmjvuuOOKP7RRdt9+++1lx4OCgsr99HFYG0EIAABYFhdLAwAAy+IaocsoLCzUb7/9plq1al3VL9MEAACVxzAMnTp1SkFBQXJ2vvw5H4LQZfz2228KDg6u6jYAAEA5HDlyRDfffPNlawhCl1GrVi1Jfx9Ib2/vKu4GAACURk5OjoKDg82f45dDELqMoo/DvL29CUIAAFxnSnNZCxdLAwAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy3Kt6gasbFLKT1XdQpkNfOS2qm4BAACHIQhVodaHZ1d1C+XwXlU3AACAw/DRGAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsKwyB6F169apS5cuCgoKkpOTk5YtW2aOnTt3Tm+++aaaN28uLy8vBQUFqW/fvvrtt9/stnHixAn17t1b3t7e8vX1VWxsrE6fPm1Xs3PnTrVr104eHh4KDg5WUlJSsV6WLFmixo0by8PDQ82bN9fKlSvtxg3D0MiRIxUYGChPT09FRkZq//79ZZ0yAACopsochHJzc3XXXXdp+vTpxcb++usvbdu2TSNGjNC2bdv0xRdfKCMjQ48//rhdXe/evZWenq6UlBStWLFC69atU1xcnDmek5OjDh06KCQkRGlpaZowYYISExM1e/Zss2bDhg3q2bOnYmNjtX37dkVHRys6Olq7d+82a5KSkjR16lTNmjVLmzZtkpeXl6KionT27NmyThsAAFRDToZhGOVe2clJS5cuVXR09CVrtmzZolatWunQoUOqX7++9u7dq6ZNm2rLli1q2bKlJCk5OVkdO3bU0aNHFRQUpJkzZ2rYsGGy2Wxyc3OTJA0ZMkTLli3Tvn37JEndu3dXbm6uVqxYYe6rdevWatGihWbNmiXDMBQUFKTXXntNgwcPliRlZ2fL399f8+fPV48ePYr1mpeXp7y8PPN9Tk6OgoODlZ2dLW9v7/IepktKnTvY4dusaBGx71V1CwAAXFZOTo58fHxK9fO7wq8Rys7OlpOTk3x9fSVJqamp8vX1NUOQJEVGRsrZ2VmbNm0ya9q3b2+GIEmKiopSRkaGTp48adZERkba7SsqKkqpqamSpAMHDshms9nV+Pj4KDw83Ky52Pjx4+Xj42O+goODr/4AAACAa1aFBqGzZ8/qzTffVM+ePc1EZrPZ5OfnZ1fn6uqqOnXqyGazmTX+/v52NUXvr1Rz4fiF65VUc7GhQ4cqOzvbfB05cqTMcwYAANcP14ra8Llz59StWzcZhqGZM2dW1G4cyt3dXe7u7lXdBgAAqCQVckaoKAQdOnRIKSkpdp/PBQQE6NixY3b158+f14kTJxQQEGDWZGZm2tUUvb9SzYXjF65XUg0AALA2hwehohC0f/9+ffvtt6pbt67deEREhLKyspSWlmYuW7t2rQoLCxUeHm7WrFu3TufOnTNrUlJSdPvtt6t27dpmzZo1a+y2nZKSooiICElSaGioAgIC7GpycnK0adMmswYAAFhbmYPQ6dOntWPHDu3YsUPS3xcl79ixQ4cPH9a5c+f09NNPa+vWrfrss89UUFAgm80mm82m/Px8SVKTJk306KOPql+/ftq8ebPWr1+vhIQE9ejRQ0FBQZKkXr16yc3NTbGxsUpPT9eiRYs0ZcoUDRo0yOzj1VdfVXJysiZOnKh9+/YpMTFRW7duVUJCgqS/72gbMGCAxo4dq+XLl2vXrl3q27evgoKCLnuXGwAAsI4y3z7//fff68EHHyy2PCYmRomJiQoNDS1xve+++04PPPCApL8fqJiQkKCvvvpKzs7O6tq1q6ZOnaqaNWua9Tt37lR8fLy2bNmievXq6ZVXXtGbb75pt80lS5Zo+PDhOnjwoBo1aqSkpCR17NjRHDcMQ6NGjdLs2bOVlZWltm3basaMGbrttttKNdey3H5XHtw+DwCA45Xl5/dVPUeouiMIFUcQAgBc666p5wgBAABcqwhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAssochNatW6cuXbooKChITk5OWrZsmd24YRgaOXKkAgMD5enpqcjISO3fv9+u5sSJE+rdu7e8vb3l6+ur2NhYnT592q5m586dateunTw8PBQcHKykpKRivSxZskSNGzeWh4eHmjdvrpUrV5a5FwAAYF1lDkK5ubm66667NH369BLHk5KSNHXqVM2aNUubNm2Sl5eXoqKidPbsWbOmd+/eSk9PV0pKilasWKF169YpLi7OHM/JyVGHDh0UEhKitLQ0TZgwQYmJiZo9e7ZZs2HDBvXs2VOxsbHavn27oqOjFR0drd27d5epFwAAYF1OhmEY5V7ZyUlLly5VdHS0pL/PwAQFBem1117T4MGDJUnZ2dny9/fX/Pnz1aNHD+3du1dNmzbVli1b1LJlS0lScnKyOnbsqKNHjyooKEgzZ87UsGHDZLPZ5ObmJkkaMmSIli1bpn379kmSunfvrtzcXK1YscLsp3Xr1mrRooVmzZpVql6uJCcnRz4+PsrOzpa3t3d5D9Mlpc4d7PBtVrSI2PequgUAAC6rLD+/HXqN0IEDB2Sz2RQZGWku8/HxUXh4uFJTUyVJqamp8vX1NUOQJEVGRsrZ2VmbNm0ya9q3b2+GIEmKiopSRkaGTp48adZcuJ+imqL9lKaXi+Xl5SknJ8fuBQAAqi+HBiGbzSZJ8vf3t1vu7+9vjtlsNvn5+dmNu7q6qk6dOnY1JW3jwn1cqubC8Sv1crHx48fLx8fHfAUHB5di1gAA4HrFXWMXGDp0qLKzs83XkSNHqrolAABQgRwahAICAiRJmZmZdsszMzPNsYCAAB07dsxu/Pz58zpx4oRdTUnbuHAfl6q5cPxKvVzM3d1d3t7edi8AAFB9OTQIhYaGKiAgQGvWrDGX5eTkaNOmTYqIiJAkRUREKCsrS2lpaWbN2rVrVVhYqPDwcLNm3bp1OnfunFmTkpKi22+/XbVr1zZrLtxPUU3RfkrTCwAAsLYyB6HTp09rx44d2rFjh6S/L0resWOHDh8+LCcnJw0YMEBjx47V8uXLtWvXLvXt21dBQUHmnWVNmjTRo48+qn79+mnz5s1av369EhIS1KNHDwUFBUmSevXqJTc3N8XGxio9PV2LFi3SlClTNGjQILOPV199VcnJyZo4caL27dunxMREbd26VQkJCZJUql4AAIC1uZZ1ha1bt+rBBx803xeFk5iYGM2fP19vvPGGcnNzFRcXp6ysLLVt21bJycny8PAw1/nss8+UkJCghx9+WM7OzurataumTp1qjvv4+Gj16tWKj49XWFiY6tWrp5EjR9o9a6hNmzZasGCBhg8frn/84x9q1KiRli1bpmbNmpk1pekFAABY11U9R6i64zlCxfEcIQDAta7KniMEAABwPSEIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy3Kt6gZwfZmU8lNVt1BmAx+5rapbAABcozgjBAAALIsgBAAALIsgBAAALItrhFAmrQ/PruoWyuG9qm4AAHCN4owQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIcHoYKCAo0YMUKhoaHy9PRUgwYN9NZbb8kwDLPGMAyNHDlSgYGB8vT0VGRkpPbv32+3nRMnTqh3797y9vaWr6+vYmNjdfr0abuanTt3ql27dvLw8FBwcLCSkpKK9bNkyRI1btxYHh4eat68uVauXOnoKQMAgOuUw4PQu+++q5kzZ+qDDz7Q3r179e677yopKUnTpk0za5KSkjR16lTNmjVLmzZtkpeXl6KionT27Fmzpnfv3kpPT1dKSopWrFihdevWKS4uzhzPyclRhw4dFBISorS0NE2YMEGJiYmaPfv/f87Nhg0b1LNnT8XGxmr79u2Kjo5WdHS0du/e7ehpAwCA65CTceGpGgfo3Lmz/P39NXfuXHNZ165d5enpqU8//VSGYSgoKEivvfaaBg8eLEnKzs6Wv7+/5s+frx49emjv3r1q2rSptmzZopYtW0qSkpOT1bFjRx09elRBQUGaOXOmhg0bJpvNJjc3N0nSkCFDtGzZMu3bt0+S1L17d+Xm5mrFihVmL61bt1aLFi00a9asYr3n5eUpLy/PfJ+Tk6Pg4GBlZ2fL29vbkYdJkpQ6d7DDt4niImJ5oCIAWElOTo58fHxK9fPb4WeE2rRpozVr1uinn/7+LeX//e9/9eOPP+qxxx6TJB04cEA2m02RkZHmOj4+PgoPD1dqaqokKTU1Vb6+vmYIkqTIyEg5Oztr06ZNZk379u3NECRJUVFRysjI0MmTJ82aC/dTVFO0n4uNHz9ePj4+5is4OPhqDwcAALiGOfxXbAwZMkQ5OTlq3LixXFxcVFBQoLffflu9e/eWJNlsNkmSv7+/3Xr+/v7mmM1mk5+fn32jrq6qU6eOXU1oaGixbRSN1a5dWzab7bL7udjQoUM1aNAg833RGSEAAFA9OTwILV68WJ999pkWLFigO+64Qzt27NCAAQMUFBSkmJgYR+/Oodzd3eXu7l7VbQAAgEri8CD0+uuva8iQIerRo4ckqXnz5jp06JDGjx+vmJgYBQQESJIyMzMVGBhorpeZmakWLVpIkgICAnTs2DG77Z4/f14nTpww1w8ICFBmZqZdTdH7K9UUjQMAAGtz+DVCf/31l5yd7Tfr4uKiwsJCSVJoaKgCAgK0Zs0aczwnJ0ebNm1SRESEJCkiIkJZWVlKS0sza9auXavCwkKFh4ebNevWrdO5c+fMmpSUFN1+++2qXbu2WXPhfopqivYDAACszeFBqEuXLnr77bf19ddf6+DBg1q6dKnef/99Pfnkk5IkJycnDRgwQGPHjtXy5cu1a9cu9e3bV0FBQYqOjpYkNWnSRI8++qj69eunzZs3a/369UpISFCPHj0UFBQkSerVq5fc3NwUGxur9PR0LVq0SFOmTLG7xufVV19VcnKyJk6cqH379ikxMVFbt25VQkKCo6cNAACuQw7/aGzatGkaMWKEXn75ZR07dkxBQUF68cUXNXLkSLPmjTfeUG5uruLi4pSVlaW2bdsqOTlZHh4eZs1nn32mhIQEPfzww3J2dlbXrl01depUc9zHx0erV69WfHy8wsLCVK9ePY0cOdLuWUNt2rTRggULNHz4cP3jH/9Qo0aNtGzZMjVr1szR0wYAANchhz9HqDopy3MIyoPnCFUOniMEANZSpc8RAgAAuF4QhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGVVSBD69ddf9X//93+qW7euPD091bx5c23dutUcNwxDI0eOVGBgoDw9PRUZGan9+/fbbePEiRPq3bu3vL295evrq9jYWJ0+fdquZufOnWrXrp08PDwUHByspKSkYr0sWbJEjRs3loeHh5o3b66VK1dWxJQBAMB1yOFB6OTJk7rvvvtUo0YNffPNN9qzZ48mTpyo2rVrmzVJSUmaOnWqZs2apU2bNsnLy0tRUVE6e/asWdO7d2+lp6crJSVFK1as0Lp16xQXF2eO5+TkqEOHDgoJCVFaWpomTJigxMREzZ4926zZsGGDevbsqdjYWG3fvl3R0dGKjo7W7t27HT1tAABwHXIyDMNw5AaHDBmi9evX6z//+U+J44ZhKCgoSK+99poGDx4sScrOzpa/v7/mz5+vHj16aO/evWratKm2bNmili1bSpKSk5PVsWNHHT16VEFBQZo5c6aGDRsmm80mNzc3c9/Lli3Tvn37JEndu3dXbm6uVqxYYe6/devWatGihWbNmnXFueTk5MjHx0fZ2dny9va+quNSktS5gx2+TRQXEfteVbcAAKhEZfn57fAzQsuXL1fLli31zDPPyM/PT3fffbfmzJljjh84cEA2m02RkZHmMh8fH4WHhys1NVWSlJqaKl9fXzMESVJkZKScnZ21adMms6Z9+/ZmCJKkqKgoZWRk6OTJk2bNhfspqinaz8Xy8vKUk5Nj9wIAANWXw4PQ//73P82cOVONGjXSqlWr1L9/f/2///f/9Mknn0iSbDabJMnf399uPX9/f3PMZrPJz8/PbtzV1VV16tSxqylpGxfu41I1ReMXGz9+vHx8fMxXcHBwmecPAACuHw4PQoWFhbrnnns0btw43X333YqLi1O/fv1K9VFUVRs6dKiys7PN15EjR6q6JQAAUIEcHoQCAwPVtGlTu2VNmjTR4cOHJUkBAQGSpMzMTLuazMxMcywgIEDHjh2zGz9//rxOnDhhV1PSNi7cx6VqisYv5u7uLm9vb7sXAACovhwehO677z5lZGTYLfvpp58UEhIiSQoNDVVAQIDWrFljjufk5GjTpk2KiIiQJEVERCgrK0tpaWlmzdq1a1VYWKjw8HCzZt26dTp37pxZk5KSottvv928Qy0iIsJuP0U1RfsBAADW5vAgNHDgQG3cuFHjxo3Tzz//rAULFmj27NmKj4+XJDk5OWnAgAEaO3asli9frl27dqlv374KCgpSdHS0pL/PID366KPq16+fNm/erPXr1yshIUE9evRQUFCQJKlXr15yc3NTbGys0tPTtWjRIk2ZMkWDBg0ye3n11VeVnJysiRMnat++fUpMTNTWrVuVkJDg6GkDAIDrkKujN3jvvfdq6dKlGjp0qMaMGaPQ0FBNnjxZvXv3NmveeOMN5ebmKi4uTllZWWrbtq2Sk5Pl4eFh1nz22WdKSEjQww8/LGdnZ3Xt2lVTp041x318fLR69WrFx8crLCxM9erV08iRI+2eNdSmTRstWLBAw4cP1z/+8Q81atRIy5YtU7NmzRw9bQAAcB1y+HOEqhOeI1Q98BwhALCWKn2OEAAAwPWCIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzLtaobACrapJSfqrqFMhv4yG1V3QIAWAJBCNVe68Ozq7qFMtlYP66qWwAAy+CjMQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkVHoTeeecdOTk5acCAAeays2fPKj4+XnXr1lXNmjXVtWtXZWZm2q13+PBhderUSTfccIP8/Pz0+uuv6/z583Y133//ve655x65u7urYcOGmj9/frH9T58+Xbfccos8PDwUHh6uzZs3V8Q0AQDAdahCg9CWLVv04Ycf6s4777RbPnDgQH311VdasmSJfvjhB/3222966qmnzPGCggJ16tRJ+fn52rBhgz755BPNnz9fI0eONGsOHDigTp066cEHH9SOHTs0YMAAvfDCC1q1apVZs2jRIg0aNEijRo3Stm3bdNdddykqKkrHjh2ryGkDAIDrRIUFodOnT6t3796aM2eOateubS7Pzs7W3Llz9f777+uhhx5SWFiY5s2bpw0bNmjjxo2SpNWrV2vPnj369NNP1aJFCz322GN66623NH36dOXn50uSZs2apdDQUE2cOFFNmjRRQkKCnn76aU2aNMnc1/vvv69+/frpueeeU9OmTTVr1izdcMMN+vjjjytq2gAA4DpSYUEoPj5enTp1UmRkpN3ytLQ0nTt3zm5548aNVb9+faWmpkqSUlNT1bx5c/n7+5s1UVFRysnJUXp6ullz8bajoqLMbeTn5ystLc2uxtnZWZGRkWbNxfLy8pSTk2P3AgAA1ZdrRWx04cKF2rZtm7Zs2VJszGazyc3NTb6+vnbL/f39ZbPZzJoLQ1DReNHY5WpycnJ05swZnTx5UgUFBSXW7Nu3r8S+x48fr9GjR5d+ogAA4Lrm8DNCR44c0auvvqrPPvtMHh4ejt58hRo6dKiys7PN15EjR6q6JQAAUIEcHoTS0tJ07Ngx3XPPPXJ1dZWrq6t++OEHTZ06Va6urvL391d+fr6ysrLs1svMzFRAQIAkKSAgoNhdZEXvr1Tj7e0tT09P1atXTy4uLiXWFG3jYu7u7vL29rZ7AQCA6svhQejhhx/Wrl27tGPHDvPVsmVL9e7d2/xzjRo1tGbNGnOdjIwMHT58WBEREZKkiIgI7dq1y+7urpSUFHl7e6tp06ZmzYXbKKop2oabm5vCwsLsagoLC7VmzRqzBgAAWJvDrxGqVauWmjVrZrfMy8tLdevWNZfHxsZq0KBBqlOnjry9vfXKK68oIiJCrVu3liR16NBBTZs2VZ8+fZSUlCSbzabhw4crPj5e7u7ukqSXXnpJH3zwgd544w09//zzWrt2rRYvXqyvv/7a3O+gQYMUExOjli1bqlWrVpo8ebJyc3P13HPPOXraAADgOlQhF0tfyaRJk+Ts7KyuXbsqLy9PUVFRmjFjhjnu4uKiFStWqH///oqIiJCXl5diYmI0ZswYsyY0NFRff/21Bg4cqClTpujmm2/WRx99pKioKLOme/fuOn78uEaOHCmbzaYWLVooOTm52AXUAADAmpwMwzCquolrVU5Ojnx8fJSdnV0h1wulzh3s8G3i+rexfpwGPnJbVbcBANetsvz85neNAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy3Kt6gYAFDcp5aeqbqHMBj5yW1W3AABlxhkhAABgWZwRAq4xrQ/PruoWymxj/biqbgEAyoUzQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIcHoTGjx+ve++9V7Vq1ZKfn5+io6OVkZFhV3P27FnFx8erbt26qlmzprp27arMzEy7msOHD6tTp0664YYb5Ofnp9dff13nz5+3q/n+++91zz33yN3dXQ0bNtT8+fOL9TN9+nTdcsst8vDwUHh4uDZv3uzoKQMAgOuUw4PQDz/8oPj4eG3cuFEpKSk6d+6cOnTooNzcXLNm4MCB+uqrr7RkyRL98MMP+u233/TUU0+Z4wUFBerUqZPy8/O1YcMGffLJJ5o/f75Gjhxp1hw4cECdOnXSgw8+qB07dmjAgAF64YUXtGrVKrNm0aJFGjRokEaNGqVt27bprrvuUlRUlI4dO+boaQMAgOuQk2EYRkXu4Pjx4/Lz89MPP/yg9u3bKzs7WzfeeKMWLFigp59+WpK0b98+NWnSRKmpqWrdurW++eYbde7cWb/99pv8/f0lSbNmzdKbb76p48ePy83NTW+++aa+/vpr7d6929xXjx49lJWVpeTkZElSeHi47r33Xn3wwQeSpMLCQgUHB+uVV17RkCFDrth7Tk6OfHx8lJ2dLW9vb0cfGqXOHezwbQJVYWP9OA185LaqbgMAJJXt53eFXyOUnZ0tSapTp44kKS0tTefOnVNkZKRZ07hxY9WvX1+pqamSpNTUVDVv3twMQZIUFRWlnJwcpaenmzUXbqOopmgb+fn5SktLs6txdnZWZGSkWXOxvLw85eTk2L0AAED1VaFBqLCwUAMGDNB9992nZs2aSZJsNpvc3Nzk6+trV+vv7y+bzWbWXBiCisaLxi5Xk5OTozNnzuiPP/5QQUFBiTVF27jY+PHj5ePjY76Cg4PLN3EAAHBdqNAgFB8fr927d2vhwoUVuRuHGTp0qLKzs83XkSNHqrolAABQgVwrasMJCQlasWKF1q1bp5tvvtlcHhAQoPz8fGVlZdmdFcrMzFRAQIBZc/HdXUV3lV1Yc/GdZpmZmfL29panp6dcXFzk4uJSYk3RNi7m7u4ud3f38k0YAABcdxx+RsgwDCUkJGjp0qVau3atQkND7cbDwsJUo0YNrVmzxlyWkZGhw4cPKyIiQpIUERGhXbt22d3dlZKSIm9vbzVt2tSsuXAbRTVF23Bzc1NYWJhdTWFhodasWWPWAAAAa3P4GaH4+HgtWLBAX375pWrVqmVej+Pj4yNPT0/5+PgoNjZWgwYNUp06deTt7a1XXnlFERERat26tSSpQ4cOatq0qfr06aOkpCTZbDYNHz5c8fHx5hmbl156SR988IHeeOMNPf/881q7dq0WL16sr7/+2uxl0KBBiomJUcuWLdWqVStNnjxZubm5eu655xw9bQAAcB1yeBCaOXOmJOmBBx6wWz5v3jw9++yzkqRJkybJ2dlZXbt2VV5enqKiojRjxgyz1sXFRStWrFD//v0VEREhLy8vxcTEaMyYMWZNaGiovv76aw0cOFBTpkzRzTffrI8++khRUVFmTffu3XX8+HGNHDlSNptNLVq0UHJycrELqAEAgDVV+HOErmc8RwgoHZ4jBOBack09RwgAAOBaRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACW5VrVDQCoHial/FTVLZTZwEduq+oWAFQxghCAq9b68OyqbqHMNtaPq+oWAFwD+GgMAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYlmtVNwAAVaH14dlKnVvVXZTNxvpxGvjIbVXdBlCtcEYIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYliVun58+fbomTJggm82mu+66S9OmTVOrVq2qui0AKLNJKT9VdQvlwm3/uFZV+yC0aNEiDRo0SLNmzVJ4eLgmT56sqKgoZWRkyM/Pr6rbA4BSa314dlW3UGYb68dVdQvAZVX7j8bef/999evXT88995yaNm2qWbNm6YYbbtDHH39c1a0BAIAqVq3PCOXn5ystLU1Dhw41lzk7OysyMlKpqanF6vPy8pSXl2e+z87OliTl5ORUSH+5Z/KuXAQA17HmGdMkSd9mVHEjpbTl5ufMP8c/1LAKO8HVKPq5bRjGFWurdRD6448/VFBQIH9/f7vl/v7+2rdvX7H68ePHa/To0cWWBwcHV1iPAIBryQfmn/5RhV3AMU6dOiUfH5/L1lTrIFRWQ4cO1aBBg8z3hYWFOnHihOrWrSsnJyeH7isnJ0fBwcE6cuSIvL29Hbrtaw1zrZ6sNFfJWvNlrtWTleZqGIZOnTqloKCgK9ZW6yBUr149ubi4KDMz0255ZmamAgICitW7u7vL3d3dbpmvr29Ftihvb+9q/w1ZhLlWT1aaq2St+TLX6skqc73SmaAi1fpiaTc3N4WFhWnNmjXmssLCQq1Zs0YRERFV2BkAALgWVOszQpI0aNAgxcTEqGXLlmrVqpUmT56s3NxcPffcc1deGQAAVGvVPgh1795dx48f18iRI2Wz2dSiRQslJycXu4C6srm7u2vUqFHFPoqrjphr9WSluUrWmi9zrZ6sNNeycDJKc28ZAABANVStrxECAAC4HIIQAACwLIIQAACwLIIQAACwLIIQAACwLIJQBZo+fbpuueUWeXh4KDw8XJs3b75s/ZIlS9S4cWN5eHioefPmWrlyZSV1evXKMtf09HR17dpVt9xyi5ycnDR58uTKa9QByjLXOXPmqF27dqpdu7Zq166tyMjIK34fXEvKMtcvvvhCLVu2lK+vr7y8vNSiRQv985//rMRur15Z/84WWbhwoZycnBQdHV2xDTpQWeY6f/58OTk52b08PDwqsdurU9ava1ZWluLj4xUYGCh3d3fddttt182/x2WZ6wMPPFDs6+rk5KROnTpVYsfXAAMVYuHChYabm5vx8ccfG+np6Ua/fv0MX19fIzMzs8T69evXGy4uLkZSUpKxZ88eY/jw4UaNGjWMXbt2VXLnZVfWuW7evNkYPHiw8a9//csICAgwJk2aVLkNX4WyzrVXr17G9OnTje3btxt79+41nn32WcPHx8c4evRoJXdedmWd63fffWd88cUXxp49e4yff/7ZmDx5suHi4mIkJydXcuflU9b5Fjlw4IBx0003Ge3atTOeeOKJymn2KpV1rvPmzTO8vb2N33//3XzZbLZK7rp8yjrXvLw8o2XLlkbHjh2NH3/80Thw4IDx/fffGzt27KjkzsuurHP9888/7b6mu3fvNlxcXIx58+ZVbuNVjCBUQVq1amXEx8eb7wsKCoygoCBj/PjxJdZ369bN6NSpk92y8PBw48UXX6zQPh2hrHO9UEhIyHUVhK5mroZhGOfPnzdq1aplfPLJJxXVosNc7VwNwzDuvvtuY/jw4RXRnsOVZ77nz5832rRpY3z00UdGTEzMdROEyjrXefPmGT4+PpXUnWOVda4zZ840br31ViM/P7+yWnSYq/07O2nSJKNWrVrG6dOnK6rFaxIfjVWA/Px8paWlKTIy0lzm7OysyMhIpaamlrhOamqqXb0kRUVFXbL+WlGeuV6vHDHXv/76S+fOnVOdOnUqqk2HuNq5GoahNWvWKCMjQ+3bt6/IVh2ivPMdM2aM/Pz8FBsbWxltOkR553r69GmFhIQoODhYTzzxhNLT0yuj3atSnrkuX75cERERio+Pl7+/v5o1a6Zx48apoKCgstouF0f8+zR37lz16NFDXl5eFdXmNYkgVAH++OMPFRQUFPs1Hv7+/rLZbCWuY7PZylR/rSjPXK9Xjpjrm2++qaCgoGKh91pT3rlmZ2erZs2acnNzU6dOnTRt2jQ98sgjFd3uVSvPfH/88UfNnTtXc+bMqYwWHaY8c7399tv18ccf68svv9Snn36qwsJCtWnTRkePHq2MlsutPHP93//+p88//1wFBQVauXKlRowYoYkTJ2rs2LGV0XK5Xe2/T5s3b9bu3bv1wgsvVFSL16xq/7vGgGvFO++8o4ULF+r777+/ri40LYtatWppx44dOn36tNasWaNBgwbp1ltv1QMPPFDVrTnUqVOn1KdPH82ZM0f16tWr6nYqXEREhCIiIsz3bdq0UZMmTfThhx/qrbfeqsLOHK+wsFB+fn6aPXu2XFxcFBYWpl9//VUTJkzQqFGjqrq9CjN37lw1b95crVq1qupWKh1BqALUq1dPLi4uyszMtFuemZmpgICAEtcJCAgoU/21ojxzvV5dzVzfe+89vfPOO/r222915513VmSbDlHeuTo7O6thw4aSpBYtWmjv3r0aP378NR+EyjrfX375RQcPHlSXLl3MZYWFhZIkV1dXZWRkqEGDBhXbdDk54u9sjRo1dPfdd+vnn3+uiBYdpjxzDQwMVI0aNeTi4mIua9KkiWw2m/Lz8+Xm5lahPZfX1Xxdc3NztXDhQo0ZM6YiW7xm8dFYBXBzc1NYWJjWrFljLissLNSaNWvs/ld1oYiICLt6SUpJSblk/bWiPHO9XpV3rklJSXrrrbeUnJysli1bVkarV81RX9fCwkLl5eVVRIsOVdb5Nm7cWLt27dKOHTvM1+OPP64HH3xQO3bsUHBwcGW2XyaO+NoWFBRo165dCgwMrKg2HaI8c73vvvv0888/m8FWkn766ScFBgZesyFIurqv65IlS5SXl6f/+7//q+g2r01VfbV2dbVw4ULD3d3dmD9/vrFnzx4jLi7O8PX1NW857dOnjzFkyBCzfv369Yarq6vx3nvvGXv37jVGjRp1Xd0+X5a55uXlGdu3bze2b99uBAYGGoMHDza2b99u7N+/v6qmUGplnes777xjuLm5GZ9//rndbaqnTp2qqimUWlnnOm7cOGP16tXGL7/8YuzZs8d47733DFdXV2POnDlVNYUyKet8L3Y93TVW1rmOHj3aWLVqlfHLL78YaWlpRo8ePQwPDw8jPT29qqZQamWd6+HDh41atWoZCQkJRkZGhrFixQrDz8/PGDt2bFVNodTK+z3ctm1bo3v37pXd7jWDIFSBpk2bZtSvX99wc3MzWrVqZWzcuNEcu//++42YmBi7+sWLFxu33Xab4ebmZtxxxx3G119/Xckdl19Z5nrgwAFDUrHX/fffX/mNl0NZ5hoSElLiXEeNGlX5jZdDWeY6bNgwo2HDhoaHh4dRu3ZtIyIiwli4cGEVdF1+Zf07e6HrKQgZRtnmOmDAALPW39/f6Nixo7Ft27Yq6Lp8yvp13bBhgxEeHm64u7sbt956q/H2228b58+fr+Suy6esc923b58hyVi9enUld3rtcDIMw6iik1EAAABVimuEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZf1/to2RlC+Vq+AAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQplJREFUeJzt3XtYFnX+//EXBzmEAh4CpBApzUO6WZiIqeXKSuuhpdz1xKq1pNVC38wstTyWZWGWWqbZtuq15Xpo03XVMMKKXcUTyqqkZOWpw41uCiglKnx+f3QxP29FBb1vUOb5uK77Wu+Z98y8P5/ulZdzzwwexhgjAAAAG/Ks6QYAAABqCkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIuIQHH3xQTZs2dek+FyxYIA8PD+3fv9+l+73W7N+/Xx4eHlqwYIG1bNKkSfLw8Ki5ps5RUY/u2OZq5uHhoUmTJlWqtmnTpnrwwQfd2g/gSgQhwI1eeuklrVixoqbbsIW33nqrVgSPn376SZMmTdJnn31W061c0IYNGzRp0iQVFBTUdCvn+fjjj5WUlKQ2bdrIy8vrov+IefHFF3XfffcpNDS0SmEPtQtBCHCjCwWhwYMH6+eff1ZkZGT1N3WVGzdunH7++ecqb3c1BaHIyEj9/PPPGjx4cJW3/emnnzR58uSrKgj9/PPPGjdunPV+w4YNmjx5coVBKC8vT++88041duds0aJFWrRokYKCghQeHn7R2nHjxmnLli26/fbbq6k7XI0IQrCl4uLiGj2+l5eX/Pz8rqqvgKrCGHNZYaUyvL295efn55Z9VxcPDw/5+fnJy8urpltxCT8/P3l7e1eq1tfXV3Xq1HFzRxf20ksvqaioSOvXr9dtt9120dp9+/bphx9+0HvvvVdN3eFqRBBCrVd+zckXX3yhQYMGqX79+urcubMk6b333lN0dLT8/f3VoEEDDRgwQIcOHbrkPl999VV16tRJDRs2lL+/v6Kjo/XBBx841Xh4eKi4uFgLFy6Uh4eHPDw8rGsnzr1GqHfv3rrpppsqPFZsbKzat2/vtOxy+z5beQ+ZmZl65JFH1LBhQwUGBmrIkCE6duyYU23Tpk3Vu3dvrV27Vu3bt5e/v7/efvttSVJBQYFGjBihiIgI+fr6qlmzZnrllVdUVlbmtI+CggI9+OCDCgoKUnBwsIYOHVrhGYULXSP03nvvqUOHDrruuutUv359de3aVR9//LHVX25urj7//HNrru+55x6nY7uyx0up6BqhBx98UHXr1tV3332nhIQE1a1bV9dff71GjRql0tJSa7vrr79ekjR58mRrLGd/ZbNnzx79/ve/V4MGDeTn56f27dtr5cqVTscv/2+7fv16jRw5Utdff70CAgJ0//3368iRI061W7duVXx8vBo1aiR/f39FRUXpT3/6k1PN2T1MmjRJTz/9tCQpKirK6rH8s1zRNUKVnf/FixcrOjpa9erVU2BgoNq2bauZM2dWet4lKTw8vNJBzNXX/uHaVLmID9QCf/jDH9S8eXO99NJLMsboxRdf1Pjx49WvXz89/PDDOnLkiN544w117dpV27dvV3Bw8AX3NXPmTN13331KTEzUqVOntHjxYv3hD3/QqlWr1KtXL0nS3/72Nz388MPq0KGDhg8fLkm6+eabK9xf//79NWTIEG3ZskV33nmntfzAgQPauHGjpk2bZi27kr4rkpKSouDgYE2aNEl5eXmaM2eODhw4oM8++8wpkOTl5WngwIF65JFHNGzYMLVo0UI//fST7r77bn333Xd65JFH1KRJE23YsEFjx47VDz/8oBkzZkj65QzS7373O/3nP//Ro48+qlatWmn58uUaOnRopXqcPHmyJk2apE6dOun555+Xj4+PNm3apHXr1qlHjx6aMWOGHn/8cdWtW1fPPfecJCk0NFSSqq3HyigtLVV8fLxiYmL06quv6pNPPtH06dN1880367HHHtP111+vOXPm6LHHHtP999+vBx54QJL0q1/9SpKUm5uru+66SzfccIPGjBmjgIAALV26VAkJCfrHP/6h+++/3+l4jz/+uOrXr6+JEydq//79mjFjhlJSUrRkyRJJ0uHDh9WjRw9df/31GjNmjIKDg7V//359+OGHFxzDAw88oC+//FJ///vf9frrr6tRo0aSZAW4c1V2/tPT0zVw4EB1795dr7zyiiRp9+7dWr9+vZ544onLn3TgUgxQy02cONFIMgMHDrSW7d+/33h5eZkXX3zRqXbnzp3G29vbafnQoUNNZGSkU91PP/3k9P7UqVOmTZs25te//rXT8oCAADN06NDzepo/f76RZPbt22eMMaawsND4+vqap556yqkuNTXVeHh4mAMHDlS570sp7yE6OtqcOnXK6ZiSzD//+U9rWWRkpJFk0tLSnPbxwgsvmICAAPPll186LR8zZozx8vIyBw8eNMYYs2LFCiPJpKamWjVnzpwxXbp0MZLM/PnzreXl/73K7d2713h6epr777/flJaWOh2nrKzM+vOtt95q7r777vPG6Y4eL2Xfvn3nbTN06FAjyTz//PNOtbfffruJjo623h85csRIMhMnTjxvv927dzdt27Y1J0+etJaVlZWZTp06mebNm1vLyv/bxsXFOc3Rk08+aby8vExBQYExxpjly5cbSWbLli0XHc+5/UybNs3p83u2yMhIp898Zef/iSeeMIGBgebMmTMX7aUqevXqdd7/dytysTlH7cdXY7CNRx991Przhx9+qLKyMvXr10//+9//rFdYWJiaN2+uTz/99KL78vf3t/587NgxFRYWqkuXLtq2bdtl9RYYGKjf/va3Wrp0qYwx1vIlS5aoY8eOatKkiUv6rsjw4cOdvkp47LHH5O3trTVr1jjVRUVFKT4+3mnZsmXL1KVLF9WvX9+pn7i4OJWWliozM1OStGbNGnl7e+uxxx6ztvXy8tLjjz9+yf5WrFihsrIyTZgwQZ6ezn9lVeYaq+rosSrO/hxKUpcuXfTNN99ccrujR49q3bp16tevn44fP26N48cff1R8fLz27t2r7777zmmb4cOHO81Rly5dVFpaqgMHDkiSdfZw1apVOn369BWOrGKVnf/g4GAVFxcrPT3dLX0AF8JXY7CNqKgo68979+6VMUbNmzevsPZS1xisWrVKU6ZMUU5OjkpKSqzlV3Lxc//+/bVixQplZWWpU6dO+vrrr5WdnW19deCKvity7r7q1q2rxo0bn/eMo7Pn7+x+duzYccGvRQ4fPizpl6/4GjdurLp16zqtb9GixSX7+/rrr+Xp6anWrVtfsrYi1dFjZfn5+Z3XR/369c+7JqsiX331lYwxGj9+vMaPH19hzeHDh3XDDTdY78sD9NnHkmQd7+6771bfvn01efJkvf7667rnnnuUkJCgQYMGydfXt0pju5DKzv+f//xnLV26VL/97W91ww03qEePHurXr5/uvfdel/QBXAhBCLZx9lmcsrIyeXh46KOPPqrwzp5zfxie7d///rfuu+8+de3aVW+99ZYaN26sOnXqaP78+Vq0aNFl99enTx9dd911Wrp0qTp16qSlS5fK09NTf/jDH1zS95U6e/7O7uc3v/mNnnnmmQq3ueWWW9zWT2VdTT1eyV1k5RcWjxo16rwzc+WaNWtWqeOVn3X08PDQBx98oI0bN+pf//qX1q5dqz/96U+aPn26Nm7c6JLPU2XnPyQkRDk5OVq7dq0++ugjffTRR5o/f76GDBmihQsXXnEfwIUQhGBLN998s4wxioqKqvIPwn/84x/y8/PT2rVrnf7VPH/+/PNqq3KGKCAgQL1799ayZcv02muvacmSJerSpYvTs1CupO8L2bt3r7p162a9P3HihH744Qf17NnzktvefPPNOnHihOLi4i5aFxkZqYyMDJ04ccLph2teXl6ljlFWVqYvvvhC7dq1u2Ddhea6Onp0pQuNo/yuwjp16lxyLFXVsWNHdezYUS+++KIWLVqkxMRELV68WA8//HCVeqxIZedfknx8fNSnTx/16dNHZWVl+vOf/6y3335b48ePPy/kAa7CNUKwpQceeEBeXl6aPHmy0zU50i//Wv7xxx8vuK2Xl5c8PDysW56lX257rujBiQEBAVW6/bp///76/vvv9Ze//EX//e9/1b9/f5f1fSHz5s1zuj5kzpw5OnPmjH77299ectt+/fopKytLa9euPW9dQUGBzpw5I0nq2bOnzpw5ozlz5ljrS0tL9cYbb1zyGAkJCfL09NTzzz9/3u3WZ8/Bhea6Onp0peuuu87q7WwhISG655579Pbbb+uHH344b7tzb4uvjGPHjp33OSoPm2d/5XuugICACnusSGXn/9zPrqenp3W33MV6Aa4UZ4RgSzfffLOmTJmisWPHav/+/UpISFC9evW0b98+LV++XMOHD9eoUaMq3LZXr1567bXXdO+992rQoEE6fPiwZs+erWbNmmnHjh1OtdHR0frkk0/02muvKTw8XFFRUYqJiblgXz179lS9evU0atQoeXl5qW/fvi7r+0JOnTql7t27q1+/fsrLy9Nbb72lzp0767777rvktk8//bRWrlyp3r1768EHH1R0dLSKi4u1c+dOffDBB9q/f78aNWqkPn366K677tKYMWO0f/9+tW7dWh9++KEKCwsveYxmzZrpueee0wsvvKAuXbrogQcekK+vr7Zs2aLw8HBNnTpV0i9zPWfOHE2ZMkXNmjVTSEiIfv3rX1dLj67k7++v1q1ba8mSJbrlllvUoEEDtWnTRm3atNHs2bPVuXNntW3bVsOGDdNNN92k/Px8ZWVl6dtvv9V///vfKh1r4cKFeuutt3T//ffr5ptv1vHjx/XOO+8oMDDwomcEo6OjJUnPPfecBgwYoDp16qhPnz5WQDpbZef/4Ycf1tGjR/XrX/9aN954ow4cOKA33nhD7dq1U6tWrSo9ph07dljPVfrqq69UWFioKVOmSJJuu+029enTx6r929/+pgMHDuinn36SJGVmZlq1gwcP5snvdlEj96oB1aj8duwjR46ct+4f//iH6dy5swkICDABAQGmZcuWJjk52eTl5Vk1Fd0+/+6775rmzZsbX19f07JlSzN//vzzbvs2xpg9e/aYrl27Gn9/fyPJuq343Nvnz5aYmGjd+nwhlen7Usp7+Pzzz83w4cNN/fr1Td26dU1iYqL58ccfnWojIyNNr169KtzP8ePHzdixY02zZs2Mj4+PadSokenUqZN59dVXnW7L//HHH83gwYNNYGCgCQoKMoMHDzbbt2+/5O3z5f7617+a22+/3fj6+pr69eubu+++26Snp1vrHQ6H6dWrl6lXr56R5HQrvat7vJQL3T4fEBBwXm1F492wYYOJjo42Pj4+593W/fXXX5shQ4aYsLAwU6dOHXPDDTeY3r17mw8++MCqKf9ve+5t8Z9++qmRZD799FNjjDHbtm0zAwcONE2aNDG+vr4mJCTE9O7d22zdutVpu3N7MOaX2+JvuOEG4+np6fRZPvf2eWMqN/8ffPCB6dGjhwkJCTE+Pj6mSZMm5pFHHjE//PDDhaa5QuVjr+h1bl933333BWvL5wi1n4cx55wXBWALCxYs0EMPPaQtW7ac9+RqALALrhECAAC2xTVCQC3z888/X/K6lgYNGlRTN7XLqVOndPTo0YvWBAUFVfioAVwZh8Nx0fX+/v4KCgqqpm5QmxCEgFpmyZIleuihhy5aczlPoIa0YcMGp0cNVGT+/Pnn/dJRXLnGjRtfdP3QoUOdfsktUFlcIwTUMj/88INyc3MvWhMdHW09ZRiVd+zYMWVnZ1+05tZbb73kD21U3SeffHLR9eHh4Zf99HHYG0EIAADYFhdLAwAA2+IaoYsoKyvT999/r3r16l3RL9MEAADVxxij48ePKzw8XJ6eFz/nQxC6iO+//14RERE13QYAALgMhw4d0o033njRGoLQRdSrV0/SLxMZGBhYw90AAIDKKCoqUkREhPVz/GIIQhdR/nVYYGAgQQgAgGtMZS5r4WJpAABgWwQhAABgWwQhAABgWwQhAABgW1UOQpmZmerTp4/Cw8Pl4eGhFStWXLD20UcflYeHh2bMmOG0/OjRo0pMTFRgYKCCg4OVlJSkEydOONXs2LFDXbp0kZ+fnyIiIpSamnre/pctW6aWLVvKz89Pbdu21Zo1a5zWG2M0YcIENW7cWP7+/oqLi9PevXurOmQAAFBLVTkIFRcX67bbbtPs2bMvWrd8+XJt3LhR4eHh561LTExUbm6u0tPTtWrVKmVmZmr48OHW+qKiIvXo0UORkZHKzs7WtGnTNGnSJM2bN8+q2bBhgwYOHKikpCRt375dCQkJSkhI0K5du6ya1NRUzZo1S3PnztWmTZsUEBCg+Ph4nTx5sqrDBgAAtZG5ApLM8uXLz1v+7bffmhtuuMHs2rXLREZGmtdff91a98UXXxhJZsuWLdayjz76yHh4eJjvvvvOGGPMW2+9ZerXr29KSkqsmtGjR5sWLVpY7/v162d69erldNyYmBjzyCOPGGOMKSsrM2FhYWbatGnW+oKCAuPr62v+/ve/V2p8hYWFRpIpLCysVD0AAKh5Vfn57fJrhMrKyjR48GA9/fTTuvXWW89bn5WVpeDgYLVv395aFhcXJ09PT23atMmq6dq1q3x8fKya+Ph45eXl6dixY1ZNXFyc077j4+OVlZUlSdq3b58cDodTTVBQkGJiYqyac5WUlKioqMjpBQAAai+XB6FXXnlF3t7e+r//+78K1zscDoWEhDgt8/b2VoMGDeRwOKya0NBQp5ry95eqOXv92dtVVHOuqVOnKigoyHrx6zUAAKjdXBqEsrOzNXPmTC1YsOCa/CWlY8eOVWFhofU6dOhQTbcEAADcyKVB6N///rcOHz6sJk2ayNvbW97e3jpw4ICeeuopNW3aVJIUFhamw4cPO2135swZHT16VGFhYVZNfn6+U035+0vVnL3+7O0qqjmXr6+v9es0+LUaAADUfi4NQoMHD9aOHTuUk5NjvcLDw/X0009r7dq1kqTY2FgVFBQoOzvb2m7dunUqKytTTEyMVZOZmanTp09bNenp6WrRooXq169v1WRkZDgdPz09XbGxsZKkqKgohYWFOdUUFRVp06ZNVg0AALC3Kv/S1RMnTuirr76y3u/bt085OTlq0KCBmjRpooYNGzrV16lTR2FhYWrRooUkqVWrVrr33ns1bNgwzZ07V6dPn1ZKSooGDBhg3Wo/aNAgTZ48WUlJSRo9erR27dqlmTNn6vXXX7f2+8QTT+juu+/W9OnT1atXLy1evFhbt261brH38PDQiBEjNGXKFDVv3lxRUVEaP368wsPDlZCQUOWJAgAAtVBVb0n79NNPjaTzXkOHDq2w/tzb540x5scffzQDBw40devWNYGBgeahhx4yx48fd6r573//azp37mx8fX3NDTfcYF5++eXz9r106VJzyy23GB8fH3Prrbea1atXO60vKysz48ePN6GhocbX19d0797d5OXlVXqs3D4PAMC1pyo/vz2MMaYGc9hVraioSEFBQSosLHTP9UKfTnX9Pt2t29ia7gAAgIuqys9vftcYAACwLYIQAACwLYIQAACwLYIQAACwrSrfPg/Xyfrmx5puoUpib2p46SIAAK4hnBECAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2RRACAAC2VeUglJmZqT59+ig8PFweHh5asWKFte706dMaPXq02rZtq4CAAIWHh2vIkCH6/vvvnfZx9OhRJSYmKjAwUMHBwUpKStKJEyecanbs2KEuXbrIz89PERERSk1NPa+XZcuWqWXLlvLz81Pbtm21Zs0ap/XGGE2YMEGNGzeWv7+/4uLitHfv3qoOGQAA1FJVDkLFxcW67bbbNHv27PPW/fTTT9q2bZvGjx+vbdu26cMPP1ReXp7uu+8+p7rExETl5uYqPT1dq1atUmZmpoYPH26tLyoqUo8ePRQZGans7GxNmzZNkyZN0rx586yaDRs2aODAgUpKStL27duVkJCghIQE7dq1y6pJTU3VrFmzNHfuXG3atEkBAQGKj4/XyZMnqzpsAABQC3kYY8xlb+zhoeXLlyshIeGCNVu2bFGHDh104MABNWnSRLt371br1q21ZcsWtW/fXpKUlpamnj176ttvv1V4eLjmzJmj5557Tg6HQz4+PpKkMWPGaMWKFdqzZ48kqX///iouLtaqVausY3Xs2FHt2rXT3LlzZYxReHi4nnrqKY0aNUqSVFhYqNDQUC1YsEADBgw4r9eSkhKVlJRY74uKihQREaHCwkIFBgZe7jRdUNa7o1y+T3eKvamh1G1sTbcBAMBFFRUVKSgoqFI/v91+jVBhYaE8PDwUHBwsScrKylJwcLAVgiQpLi5Onp6e2rRpk1XTtWtXKwRJUnx8vPLy8nTs2DGrJi4uzulY8fHxysrKkiTt27dPDofDqSYoKEgxMTFWzbmmTp2qoKAg6xUREXHlEwAAAK5abg1CJ0+e1OjRozVw4EArkTkcDoWEhDjVeXt7q0GDBnI4HFZNaGioU035+0vVnL3+7O0qqjnX2LFjVVhYaL0OHTpU5TEDAIBrh7e7dnz69Gn169dPxhjNmTPHXYdxKV9fX/n6+tZ0GwAAoJq45YxQeQg6cOCA0tPTnb6fCwsL0+HDh53qz5w5o6NHjyosLMyqyc/Pd6opf3+pmrPXn71dRTUAAMDeXB6EykPQ3r179cknn6hhw4ZO62NjY1VQUKDs7Gxr2bp161RWVqaYmBirJjMzU6dPn7Zq0tPT1aJFC9WvX9+qycjIcNp3enq6YmNjJUlRUVEKCwtzqikqKtKmTZusGgAAYG9VDkInTpxQTk6OcnJyJP1yUXJOTo4OHjyo06dP6/e//722bt2q999/X6WlpXI4HHI4HDp16pQkqVWrVrr33ns1bNgwbd68WevXr1dKSooGDBig8PBwSdKgQYPk4+OjpKQk5ebmasmSJZo5c6ZGjhxp9fHEE08oLS1N06dP1549ezRp0iRt3bpVKSkpkn65o23EiBGaMmWKVq5cqZ07d2rIkCEKDw+/6F1uAADAPqp8jdDWrVvVrVs36315OBk6dKgmTZqklStXSpLatWvntN2nn36qe+65R5L0/vvvKyUlRd27d5enp6f69u2rWbNmWbVBQUH6+OOPlZycrOjoaDVq1EgTJkxwetZQp06dtGjRIo0bN07PPvusmjdvrhUrVqhNmzZWzTPPPKPi4mINHz5cBQUF6ty5s9LS0uTn51fVYQMAgFroip4jVNtV5TkEl4PnCAEA4HpX1XOEAAAArlYEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFtVDkKZmZnq06ePwsPD5eHhoRUrVjitN8ZowoQJaty4sfz9/RUXF6e9e/c61Rw9elSJiYkKDAxUcHCwkpKSdOLECaeaHTt2qEuXLvLz81NERIRSU1PP62XZsmVq2bKl/Pz81LZtW61Zs6bKvQAAAPuqchAqLi7WbbfdptmzZ1e4PjU1VbNmzdLcuXO1adMmBQQEKD4+XidPnrRqEhMTlZubq/T0dK1atUqZmZkaPny4tb6oqEg9evRQZGSksrOzNW3aNE2aNEnz5s2zajZs2KCBAwcqKSlJ27dvV0JCghISErRr164q9QIAAOzLwxhjLntjDw8tX75cCQkJkn45AxMeHq6nnnpKo0aNkiQVFhYqNDRUCxYs0IABA7R79261bt1aW7ZsUfv27SVJaWlp6tmzp7799luFh4drzpw5eu655+RwOOTj4yNJGjNmjFasWKE9e/ZIkvr376/i4mKtWrXK6qdjx45q166d5s6dW6leLqWoqEhBQUEqLCxUYGDg5U7TBWW9O8rl+3Sn2JsaSt3G1nQbAABcVFV+frv0GqF9+/bJ4XAoLi7OWhYUFKSYmBhlZWVJkrKyshQcHGyFIEmKi4uTp6enNm3aZNV07drVCkGSFB8fr7y8PB07dsyqOfs45TXlx6lML+cqKSlRUVGR0wsAANReLg1CDodDkhQaGuq0PDQ01FrncDgUEhLitN7b21sNGjRwqqloH2cf40I1Z6+/VC/nmjp1qoKCgqxXREREJUYNAACuVdw1dpaxY8eqsLDQeh06dKimWwIAAG7k0iAUFhYmScrPz3danp+fb60LCwvT4cOHndafOXNGR48edaqpaB9nH+NCNWevv1Qv5/L19VVgYKDTCwAA1F4uDUJRUVEKCwtTRkaGtayoqEibNm1SbGysJCk2NlYFBQXKzs62atatW6eysjLFxMRYNZmZmTp9+rRVk56erhYtWqh+/fpWzdnHKa8pP05legEAAPZW5SB04sQJ5eTkKCcnR9IvFyXn5OTo4MGD8vDw0IgRIzRlyhStXLlSO3fu1JAhQxQeHm7dWdaqVSvde++9GjZsmDZv3qz169crJSVFAwYMUHh4uCRp0KBB8vHxUVJSknJzc7VkyRLNnDlTI0eOtPp44oknlJaWpunTp2vPnj2aNGmStm7dqpSUFEmqVC8AAMDevKu6wdatW9WtWzfrfXk4GTp0qBYsWKBnnnlGxcXFGj58uAoKCtS5c2elpaXJz8/P2ub9999XSkqKunfvLk9PT/Xt21ezZs2y1gcFBenjjz9WcnKyoqOj1ahRI02YMMHpWUOdOnXSokWLNG7cOD377LNq3ry5VqxYoTZt2lg1lekFAADY1xU9R6i24zlCzniOEADgWlBjzxECAAC4lhCEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbRGEAACAbXnXdAO4dmR986M2nvmyptuokid/c0tNtwAAuIoRhFAlHQ/Oq+kWqubThlK3sTXdBQDgKsVXYwAAwLYIQgAAwLYIQgAAwLYIQgAAwLZcHoRKS0s1fvx4RUVFyd/fXzfffLNeeOEFGWOsGmOMJkyYoMaNG8vf319xcXHau3ev036OHj2qxMREBQYGKjg4WElJSTpx4oRTzY4dO9SlSxf5+fkpIiJCqamp5/WzbNkytWzZUn5+fmrbtq3WrFnj6iEDAIBrlMuD0CuvvKI5c+bozTff1O7du/XKK68oNTVVb7zxhlWTmpqqWbNmae7cudq0aZMCAgIUHx+vkydPWjWJiYnKzc1Venq6Vq1apczMTA0fPtxaX1RUpB49eigyMlLZ2dmaNm2aJk2apHnz/v9dTRs2bNDAgQOVlJSk7du3KyEhQQkJCdq1a5erhw0AAK5BHubsUzUu0Lt3b4WGhurdd9+1lvXt21f+/v567733ZIxReHi4nnrqKY0aNUqSVFhYqNDQUC1YsEADBgzQ7t271bp1a23ZskXt27eXJKWlpalnz5769ttvFR4erjlz5ui5556Tw+GQj4+PJGnMmDFasWKF9uzZI0nq37+/iouLtWrVKquXjh07ql27dpo7d+4lx1JUVKSgoCAVFhYqMDDQZXNULuvdUS7fJ5zF3sTt8wBgN1X5+e3yM0KdOnVSRkaGvvzylwfv/fe//9V//vMf/fa3v5Uk7du3Tw6HQ3FxcdY2QUFBiomJUVZWliQpKytLwcHBVgiSpLi4OHl6emrTpk1WTdeuXa0QJEnx8fHKy8vTsWPHrJqzj1NeU36cc5WUlKioqMjpBQAAai+XP1BxzJgxKioqUsuWLeXl5aXS0lK9+OKLSkxMlCQ5HA5JUmhoqNN2oaGh1jqHw6GQkBDnRr291aBBA6eaqKio8/ZRvq5+/fpyOBwXPc65pk6dqsmTJ1/OsAEAwDXI5WeEli5dqvfff1+LFi3Stm3btHDhQr366qtauHChqw/lcmPHjlVhYaH1OnToUE23BAAA3MjlZ4SefvppjRkzRgMGDJAktW3bVgcOHNDUqVM1dOhQhYWFSZLy8/PVuHFja7v8/Hy1a9dOkhQWFqbDhw877ffMmTM6evSotX1YWJjy8/OdasrfX6qmfP25fH195evreznDBgAA1yCXnxH66aef5OnpvFsvLy+VlZVJkqKiohQWFqaMjAxrfVFRkTZt2qTY2FhJUmxsrAoKCpSdnW3VrFu3TmVlZYqJibFqMjMzdfr0aasmPT1dLVq0UP369a2as49TXlN+HAAAYG8uD0J9+vTRiy++qNWrV2v//v1avny5XnvtNd1///2SJA8PD40YMUJTpkzRypUrtXPnTg0ZMkTh4eFKSEiQJLVq1Ur33nuvhg0bps2bN2v9+vVKSUnRgAEDFB4eLkkaNGiQfHx8lJSUpNzcXC1ZskQzZ87UyJEjrV6eeOIJpaWlafr06dqzZ48mTZqkrVu3KiUlxdXDBgAA1yCXfzX2xhtvaPz48frzn/+sw4cPKzw8XI888ogmTJhg1TzzzDMqLi7W8OHDVVBQoM6dOystLU1+fn5Wzfvvv6+UlBR1795dnp6e6tu3r2bNmmWtDwoK0scff6zk5GRFR0erUaNGmjBhgtOzhjp16qRFixZp3LhxevbZZ9W8eXOtWLFCbdq0cfWwAQDANcjlzxGqTXiO0LWP5wgBgP3U6HOEAAAArhUEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFtuCULfffed/vjHP6phw4by9/dX27ZttXXrVmu9MUYTJkxQ48aN5e/vr7i4OO3du9dpH0ePHlViYqICAwMVHByspKQknThxwqlmx44d6tKli/z8/BQREaHU1NTzelm2bJlatmwpPz8/tW3bVmvWrHHHkAEAwDXI5UHo2LFjuuuuu1SnTh199NFH+uKLLzR9+nTVr1/fqklNTdWsWbM0d+5cbdq0SQEBAYqPj9fJkyetmsTEROXm5io9PV2rVq1SZmamhg8fbq0vKipSjx49FBkZqezsbE2bNk2TJk3SvHnzrJoNGzZo4MCBSkpK0vbt25WQkKCEhATt2rXL1cMGAADXIA9jjHHlDseMGaP169fr3//+d4XrjTEKDw/XU089pVGjRkmSCgsLFRoaqgULFmjAgAHavXu3WrdurS1btqh9+/aSpLS0NPXs2VPffvutwsPDNWfOHD333HNyOBzy8fGxjr1ixQrt2bNHktS/f38VFxdr1apV1vE7duyodu3aae7cuZccS1FRkYKCglRYWKjAwMArmpeKZL07yuX7hLPYmxpK3cbWdBsAgGpUlZ/fLj8jtHLlSrVv315/+MMfFBISottvv13vvPOOtX7fvn1yOByKi4uzlgUFBSkmJkZZWVmSpKysLAUHB1shSJLi4uLk6empTZs2WTVdu3a1QpAkxcfHKy8vT8eOHbNqzj5OeU35cc5VUlKioqIipxcAAKi9XB6EvvnmG82ZM0fNmzfX2rVr9dhjj+n//u//tHDhQkmSw+GQJIWGhjptFxoaaq1zOBwKCQlxWu/t7a0GDRo41VS0j7OPcaGa8vXnmjp1qoKCgqxXRERElccPAACuHS4PQmVlZbrjjjv00ksv6fbbb9fw4cM1bNiwSn0VVdPGjh2rwsJC63Xo0KGabgkAALiRy4NQ48aN1bp1a6dlrVq10sGDByVJYWFhkqT8/Hynmvz8fGtdWFiYDh8+7LT+zJkzOnr0qFNNRfs4+xgXqilffy5fX18FBgY6vQAAQO3l8iB01113KS8vz2nZl19+qcjISElSVFSUwsLClJGRYa0vKirSpk2bFBsbK0mKjY1VQUGBsrOzrZp169aprKxMMTExVk1mZqZOnz5t1aSnp6tFixbWHWqxsbFOxymvKT8OAACwN5cHoSeffFIbN27USy+9pK+++kqLFi3SvHnzlJycLEny8PDQiBEjNGXKFK1cuVI7d+7UkCFDFB4eroSEBEm/nEG69957NWzYMG3evFnr169XSkqKBgwYoPDwcEnSoEGD5OPjo6SkJOXm5mrJkiWaOXOmRo4cafXyxBNPKC0tTdOnT9eePXs0adIkbd26VSkpKa4eNgAAuAZ5u3qHd955p5YvX66xY8fq+eefV1RUlGbMmKHExESr5plnnlFxcbGGDx+ugoICde7cWWlpafLz87Nq3n//faWkpKh79+7y9PRU3759NWvWLGt9UFCQPv74YyUnJys6OlqNGjXShAkTnJ411KlTJy1atEjjxo3Ts88+q+bNm2vFihVq06aNq4cNAACuQS5/jlBtwnOErn08RwgA7KdGnyMEAABwrSAIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2/Ku6QYAd8r65kdtPPNlTbdRaU/+5paabgEAbIUzQgAAwLYIQgAAwLYIQgAAwLa4Rgi1XseD82q6hcr7tOEv/9ttbM32AQA2wRkhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgW24PQi+//LI8PDw0YsQIa9nJkyeVnJyshg0bqm7duurbt6/y8/Odtjt48KB69eql6667TiEhIXr66ad15swZp5rPPvtMd9xxh3x9fdWsWTMtWLDgvOPPnj1bTZs2lZ+fn2JiYrR582Z3DBMAAFyD3BqEtmzZorffflu/+tWvnJY/+eST+te//qVly5bp888/1/fff68HHnjAWl9aWqpevXrp1KlT2rBhgxYuXKgFCxZowoQJVs2+ffvUq1cvdevWTTk5ORoxYoQefvhhrV271qpZsmSJRo4cqYkTJ2rbtm267bbbFB8fr8OHD7tz2AAA4BrhYYwx7tjxiRMndMcdd+itt97SlClT1K5dO82YMUOFhYW6/vrrtWjRIv3+97+XJO3Zs0etWrVSVlaWOnbsqI8++ki9e/fW999/r9DQUEnS3LlzNXr0aB05ckQ+Pj4aPXq0Vq9erV27dlnHHDBggAoKCpSWliZJiomJ0Z133qk333xTklRWVqaIiAg9/vjjGjNmzCXHUFRUpKCgIBUWFiowMNDVU6Ssd0e5fJ+4tsXe1PCXP3QbW7ONAMA1rCo/v912Rig5OVm9evVSXFyc0/Ls7GydPn3aaXnLli3VpEkTZWVlSZKysrLUtm1bKwRJUnx8vIqKipSbm2vVnLvv+Ph4ax+nTp1Sdna2U42np6fi4uKsmnOVlJSoqKjI6QUAAGovb3fsdPHixdq2bZu2bNly3jqHwyEfHx8FBwc7LQ8NDZXD4bBqzg5B5evL112spqioSD///LOOHTum0tLSCmv27NlTYd9Tp07V5MmTKz9QAABwTXP5GaFDhw7piSee0Pvvvy8/Pz9X796txo4dq8LCQut16NChmm4JAAC4kcuDUHZ2tg4fPqw77rhD3t7e8vb21ueff65Zs2bJ29tboaGhOnXqlAoKCpy2y8/PV1hYmCQpLCzsvLvIyt9fqiYwMFD+/v5q1KiRvLy8Kqwp38e5fH19FRgY6PQCAAC1l8uDUPfu3bVz507l5ORYr/bt2ysxMdH6c506dZSRkWFtk5eXp4MHDyo2NlaSFBsbq507dzrd3ZWenq7AwEC1bt3aqjl7H+U15fvw8fFRdHS0U01ZWZkyMjKsGgAAYG8uv0aoXr16atOmjdOygIAANWzY0FqelJSkkSNHqkGDBgoMDNTjjz+u2NhYdezYUZLUo0cPtW7dWoMHD1ZqaqocDofGjRun5ORk+fr6SpIeffRRvfnmm3rmmWf0pz/9SevWrdPSpUu1evVq67gjR47U0KFD1b59e3Xo0EEzZsxQcXGxHnroIVcPGwAAXIPccrH0pbz++uvy9PRU3759VVJSovj4eL311lvWei8vL61atUqPPfaYYmNjFRAQoKFDh+r555+3aqKiorR69Wo9+eSTmjlzpm688Ub95S9/UXx8vFXTv39/HTlyRBMmTJDD4VC7du2UlpZ23gXUAADAntz2HKHagOcIobrxHCEAuHJXxXOEAAAArnYEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFveNd0AgP8v65sfJUkbz3xZw51UzpO/uaWmWwCAK8IZIQAAYFucEQKuQh0PzqvpFirn04b//8/dxtZcHwBwmTgjBAAAbIsgBAAAbIsgBAAAbMvlQWjq1Km68847Va9ePYWEhCghIUF5eXlONSdPnlRycrIaNmyounXrqm/fvsrPz3eqOXjwoHr16qXrrrtOISEhevrpp3XmzBmnms8++0x33HGHfH191axZMy1YsOC8fmbPnq2mTZvKz89PMTEx2rx5s6uHDAAArlEuD0Kff/65kpOTtXHjRqWnp+v06dPq0aOHiouLrZonn3xS//rXv7Rs2TJ9/vnn+v777/XAAw9Y60tLS9WrVy+dOnVKGzZs0MKFC7VgwQJNmDDBqtm3b5969eqlbt26KScnRyNGjNDDDz+stWvXWjVLlizRyJEjNXHiRG3btk233Xab4uPjdfjwYVcPGwAAXIM8jDHGnQc4cuSIQkJC9Pnnn6tr164qLCzU9ddfr0WLFun3v/+9JGnPnj1q1aqVsrKy1LFjR3300Ufq3bu3vv/+e4WGhkqS5s6dq9GjR+vIkSPy8fHR6NGjtXr1au3atcs61oABA1RQUKC0tDRJUkxMjO688069+eabkqSysjJFRETo8ccf15gxYy7Ze1FRkYKCglRYWKjAwEBXT42y3h3l8n0C1Sn2Ju4aA3D1qcrPb7dfI1RYWChJatCggSQpOztbp0+fVlxcnFXTsmVLNWnSRFlZWZKkrKwstW3b1gpBkhQfH6+ioiLl5uZaNWfvo7ymfB+nTp1Sdna2U42np6fi4uKsmnOVlJSoqKjI6QUAAGovtwahsrIyjRgxQnfddZfatGkjSXI4HPLx8VFwcLBTbWhoqBwOh1VzdggqX1++7mI1RUVF+vnnn/W///1PpaWlFdaU7+NcU6dOVVBQkPWKiIi4vIEDAIBrgluDUHJysnbt2qXFixe78zAuM3bsWBUWFlqvQ4cO1XRLAADAjdz2ZOmUlBStWrVKmZmZuvHGG63lYWFhOnXqlAoKCpzOCuXn5yssLMyqOffurvK7ys6uOfdOs/z8fAUGBsrf319eXl7y8vKqsKZ8H+fy9fWVr6/v5Q0YAABcc1x+RsgYo5SUFC1fvlzr1q1TVFSU0/ro6GjVqVNHGRkZ1rK8vDwdPHhQsbGxkqTY2Fjt3LnT6e6u9PR0BQYGqnXr1lbN2fsorynfh4+Pj6Kjo51qysrKlJGRYdUAAAB7c/kZoeTkZC1atEj//Oc/Va9ePet6nKCgIPn7+ysoKEhJSUkaOXKkGjRooMDAQD3++OOKjY1Vx44dJUk9evRQ69atNXjwYKWmpsrhcGjcuHFKTk62ztg8+uijevPNN/XMM8/oT3/6k9atW6elS5dq9erVVi8jR47U0KFD1b59e3Xo0EEzZsxQcXGxHnroIVcPGwAAXINcHoTmzJkjSbrnnnucls+fP18PPvigJOn111+Xp6en+vbtq5KSEsXHx+utt96yar28vLRq1So99thjio2NVUBAgIYOHarnn3/eqomKitLq1av15JNPaubMmbrxxhv1l7/8RfHx8VZN//79deTIEU2YMEEOh0Pt2rVTWlraeRdQAwAAe3L7c4SuZTxHCLg4niME4Gp0VT1HCAAA4GpFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALZFEAIAALblXdMNALh2ZX3zo/XnjWe+rMFOKufJ39xS0y0AuMpwRggAANgWQQgAANgWX40BcImOB+fVdAuX9mlD5/fdxtZMHwCuGpwRAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtsVvnwdgG1nf/Oj0fuOZL2uok8p78je31HQLQK1GEAJgWx0PzqvpFi7t04bO77uNrZk+gFqKr8YAAIBtEYQAAIBtEYQAAIBtEYQAAIBt2SIIzZ49W02bNpWfn59iYmK0efPmmm4JAABcBWr9XWNLlizRyJEjNXfuXMXExGjGjBmKj49XXl6eQkJCaro9ALioc2/51zejaqaRSoq9qWHFK7jbDVepWn9G6LXXXtOwYcP00EMPqXXr1po7d66uu+46/fWvf63p1gAAQA2r1WeETp06pezsbI0d+///JeLp6am4uDhlZWWdV19SUqKSkhLrfWFhoSSpqKjILf0V/1xy6SIAuIZ8kvt9hcu3FG6r5k4qJ/nXzWq6BbhB+c9tY8wla2t1EPrf//6n0tJShYaGOi0PDQ3Vnj17zqufOnWqJk+efN7yiIgIt/UIAPbwZk03UKFna7oBuNXx48cVFBR00ZpaHYSqauzYsRo5cqT1vqysTEePHlXDhg3l4eHh0mMVFRUpIiJChw4dUmBgoEv3fS2w+/gl5sDu45eYA7uPX2IO3DV+Y4yOHz+u8PDwS9bW6iDUqFEjeXl5KT8/32l5fn6+wsLCzqv39fWVr6+v07Lg4GB3tqjAwEBbfvjL2X38EnNg9/FLzIHdxy8xB+4Y/6XOBJWr1RdL+/j4KDo6WhkZGdaysrIyZWRkKDY2tgY7AwAAV4NafUZIkkaOHKmhQ4eqffv26tChg2bMmKHi4mI99NBDNd0aAACoYbU+CPXv319HjhzRhAkT5HA41K5dO6WlpZ13AXV18/X11cSJE8/7Ks4u7D5+iTmw+/gl5sDu45eYg6th/B6mMveWAQAA1EK1+hohAACAiyEIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIudHs2bPVtGlT+fn5KSYmRps3b75o/bJly9SyZUv5+fmpbdu2WrNmTTV16h5VGX9ubq769u2rpk2bysPDQzNmzKi+Rt2oKnPwzjvvqEuXLqpfv77q16+vuLi4S35mrnZVGf+HH36o9u3bKzg4WAEBAWrXrp3+9re/VWO37lHVvwfKLV68WB4eHkpISHBvg25WlfEvWLBAHh4eTi8/P79q7NY9qvoZKCgoUHJysho3bixfX1/dcsst1/TPg6qM/5577jnvM+Dh4aFevXq5r0EDt1i8eLHx8fExf/3rX01ubq4ZNmyYCQ4ONvn5+RXWr1+/3nh5eZnU1FTzxRdfmHHjxpk6deqYnTt3VnPnrlHV8W/evNmMGjXK/P3vfzdhYWHm9ddfr96G3aCqczBo0CAze/Zss337drN7927z4IMPmqCgIPPtt99Wc+euUdXxf/rpp+bDDz80X3zxhfnqq6/MjBkzjJeXl0lLS6vmzl2nqnNQbt++feaGG24wXbp0Mb/73e+qp1k3qOr458+fbwIDA80PP/xgvRwORzV37VpVnYOSkhLTvn1707NnT/Of//zH7Nu3z3z22WcmJyenmjt3jaqO/8cff3T6779r1y7j5eVl5s+f77YeCUJu0qFDB5OcnGy9Ly0tNeHh4Wbq1KkV1vfr18/06tXLaVlMTIx55JFH3Nqnu1R1/GeLjIysFUHoSubAGGPOnDlj6tWrZxYuXOiuFt3qSsdvjDG33367GTdunDvaqxaXMwdnzpwxnTp1Mn/5y1/M0KFDr+kgVNXxz58/3wQFBVVTd9WjqnMwZ84cc9NNN5lTp05VV4tudaV/D7z++uumXr165sSJE+5q0fDVmBucOnVK2dnZiouLs5Z5enoqLi5OWVlZFW6TlZXlVC9J8fHxF6y/ml3O+GsbV8zBTz/9pNOnT6tBgwbuatNtrnT8xhhlZGQoLy9PXbt2dWerbnO5c/D8888rJCRESUlJ1dGm21zu+E+cOKHIyEhFRETod7/7nXJzc6ujXbe4nDlYuXKlYmNjlZycrNDQULVp00YvvfSSSktLq6ttl3HF34PvvvuuBgwYoICAAHe1yTVC7vC///1PpaWl5/0aj9DQUDkcjgq3cTgcVaq/ml3O+GsbV8zB6NGjFR4efl5AvhZc7vgLCwtVt25d+fj4qFevXnrjjTf0m9/8xt3tusXlzMF//vMfvfvuu3rnnXeqo0W3upzxt2jRQn/961/1z3/+U++9957KysrUqVMnffvtt9XRsstdzhx88803+uCDD1RaWqo1a9Zo/Pjxmj59uqZMmVIdLbvUlf49uHnzZu3atUsPP/ywu1qUZIPfNQZci15++WUtXrxYn332Wa24WLSy6tWrp5ycHJ04cUIZGRkaOXKkbrrpJt1zzz013ZrbHT9+XIMHD9Y777yjRo0a1XQ7NSI2NlaxsbHW+06dOqlVq1Z6++239cILL9RgZ9WnrKxMISEhmjdvnry8vBQdHa3vvvtO06ZN08SJE2u6vWr17rvvqm3bturQoYNbj0MQcoNGjRrJy8tL+fn5Tsvz8/MVFhZW4TZhYWFVqr+aXc74a5srmYNXX31VL7/8sj755BP96le/cmebbnO54/f09FSzZs0kSe3atdPu3bs1derUazIIVXUOvv76a+3fv199+vSxlpWVlUmSvL29lZeXp5tvvtm9TbuQK/4eqFOnjm6//XZ99dVX7mjR7S5nDho3bqw6derIy8vLWtaqVSs5HA6dOnVKPj4+bu3Zla7kM1BcXKzFixfr+eefd2eLkvhqzC18fHwUHR2tjIwMa1lZWZkyMjKc/rVzttjYWKd6SUpPT79g/dXscsZf21zuHKSmpuqFF15QWlqa2rdvXx2tuoWrPgNlZWUqKSlxR4tuV9U5aNmypXbu3KmcnBzrdd9996lbt27KyclRREREdbZ/xVzxGSgtLdXOnTvVuHFjd7XpVpczB3fddZe++uorKwRL0pdffqnGjRtfUyFIurLPwLJly1RSUqI//vGP7m6T2+fdZfHixcbX19csWLDAfPHFF2b48OEmODjYuhV08ODBZsyYMVb9+vXrjbe3t3n11VfN7t27zcSJE6/52+erMv6SkhKzfft2s337dtO4cWMzatQos337drN3796aGsIVq+ocvPzyy8bHx8d88MEHTrePHj9+vKaGcEWqOv6XXnrJfPzxx+brr782X3zxhXn11VeNt7e3eeedd2pqCFesqnNwrmv9rrGqjn/y5Mlm7dq15uuvvzbZ2dlmwIABxs/Pz+Tm5tbUEK5YVefg4MGDpl69eiYlJcXk5eWZVatWmZCQEDNlypSaGsIVudz/D3Tu3Nn079+/WnokCLnRG2+8YZo0aWJ8fHxMhw4dzMaNG611d999txk6dKhT/dKlS80tt9xifHx8zK233mpWr15dzR27VlXGv2/fPiPpvNfdd99d/Y27UFXmIDIyssI5mDhxYvU37iJVGf9zzz1nmjVrZvz8/Ez9+vVNbGysWbx4cQ107VpV/XvgbNd6EDKmauMfMWKEVRsaGmp69uxptm3bVgNdu1ZVPwMbNmwwMTExxtfX19x0003mxRdfNGfOnKnmrl2nquPfs2ePkWQ+/vjjaunPwxhj3H/eCQAA4OrDNUIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2/h8IRECVszHLOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQKVJREFUeJzt3XtUVXX+//EXoBwQPeANkEIlrZS0LEw8ljUWI1NYY1pp+TUyzTT0mzJeJ1OzJhu7qJWX6TLi+k5+vTTplBpGmPotMQ1jxrzQRU0bPWglHCMFgc/vj1nsn0dQOYgQ2+djrbOWZ+/3/uz3/kieV/vsvfEzxhgBAADYjH9dNwAAAHAxEHIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXKASjz88MNq27ZtjY6ZlpYmPz8/7d+/v0bHrW/2798vPz8/paWlWcumT58uPz+/umvqDJX1eDG2+TXz8/PT9OnTq1Tbtm1bPfzwwxe1H6A6CDlADXvuuee0atWqum7jkjB//nxbhIpffvlF06dP14YNG+q6lbPavHmzpk+frvz8/Lpuxcsvv/yiefPmqXfv3mrVqpWaNGmi66+/XgsWLFBpaWldt4c6RsgBatjZQs7gwYN14sQJtWnTpvab+pWbMmWKTpw44fN2v6aQ06ZNG504cUKDBw/2edtffvlFTz/99K8q5Jw4cUJTpkyx3m/evFlPP/10pSEnNzdXb7zxRi129//t3btXo0ePljFGqampevHFFxUTE6PHH39cjzzySJ30hF+PBnXdAFBbCgsLFRISUmf7DwgIUEBAQJ3t/0IZY3Ty5EkFBwfX+NgNGjRQgwb1+58jPz8/BQUF1XUbNcaXY3E4HBexk3OLjIzUjh07dM0111jLHnvsMT3yyCNatGiRnnrqKbVv377O+kPd4kwObKn8Go9du3bpwQcfVNOmTXXzzTdLkv72t78pLi5OwcHBatasmQYOHKiDBw+ed8wXX3xRPXr0UPPmzRUcHKy4uDi98847XjV+fn4qLCzU4sWL5efnJz8/P+tahTOvyenTp4+uuOKKSvflcrnUtWtXr2XV7ft05T1s2rRJjz32mJo3by6n06mHHnpIx44d86pt27at+vTpo3Xr1qlr164KDg7WX/7yF0lSfn6+xowZo+joaDkcDrVv315//vOfVVZW5jVGfn6+Hn74YYWGhiosLEzJycmVngk42zU5f/vb39StWzc1atRITZs21S233KIPP/zQ6m/nzp3auHGjNde/+c1vvPZdkz2eT2XX5Dz88MNq3Lix/v3vf6tv375q3LixWrZsqXHjxllfpezfv18tW7aUJD399NPWsZx+PcyePXt07733qlmzZgoKClLXrl313nvvee2//O/2008/VWpqqlq2bKmQkBDdc889Onr0qFft559/rsTERLVo0ULBwcGKiYmpcNbj9B6mT5+u8ePHS5JiYmKsHst/liu7Jqeq87906VLFxcWpSZMmcjqd6ty5s+bOnVvleW/RooVXwCl3zz33SJJ2795d5bFgP/X7f52A87jvvvt05ZVX6rnnnpMxRn/605/01FNP6f7779ewYcN09OhRvfrqq7rlllv0xRdfKCws7KxjzZ07V3fffbcGDRqk4uJiLV26VPfdd59Wr16tpKQkSdL//M//aNiwYerWrZuGDx8uSWrXrl2l4w0YMEAPPfSQtm3bphtvvNFa/t1332nLli164YUXrGUX0ndlRo0apbCwME2fPl25ublasGCBvvvuO23YsMErbOTm5uqBBx7QY489pkcffVRXX321fvnlF916663697//rccee0ytW7fW5s2bNXnyZB0+fFhz5syR9J8zP7///e/1ySefaMSIEerYsaNWrlyp5OTkKvX49NNPa/r06erRo4dmzJihwMBAffbZZ1q/fr169+6tOXPmaPTo0WrcuLGefPJJSVJERIQk1VqPVVFaWqrExETFx8frxRdf1EcffaSXXnpJ7dq108iRI9WyZUstWLBAI0eO1D333KN+/fpJkq699lpJ0s6dO3XTTTfpsssu06RJkxQSEqLly5erb9+++vvf/259mJcbPXq0mjZtqmnTpmn//v2aM2eORo0apWXLlkmSjhw5ot69e6tly5aaNGmSwsLCtH//fr377rtnPYZ+/frpq6++0v/+7/9q9uzZatGihSRZ4exMVZ3/jIwMPfDAA7r99tv15z//WdJ/Qsmnn36qJ554ovqTLsntdkuS1SsuUQawoWnTphlJ5oEHHrCW7d+/3wQEBJg//elPXrU7duwwDRo08FqenJxs2rRp41X3yy+/eL0vLi42nTp1MrfddpvX8pCQEJOcnFyhp0WLFhlJZt++fcYYYwoKCozD4TB/+MMfvOpmzZpl/Pz8zHfffedz3+dT3kNcXJwpLi722qck849//MNa1qZNGyPJpKene43xzDPPmJCQEPPVV195LZ80aZIJCAgwBw4cMMYYs2rVKiPJzJo1y6opKSkxPXv2NJLMokWLrOXlf1/lvv76a+Pv72/uueceU1pa6rWfsrIy68/XXHONufXWWysc58Xo8Xz27dtXYZvk5GQjycyYMcOr9vrrrzdxcXHW+6NHjxpJZtq0aRXGvf32203nzp3NyZMnrWVlZWWmR48e5sorr7SWlf/dJiQkeM3R2LFjTUBAgMnPzzfGGLNy5UojyWzbtu2cx3NmPy+88ILXz+/p2rRp4/UzX9X5f+KJJ4zT6TQlJSXn7MVXRUVFJjY21sTExJhTp07V6NioX/i6CrY2YsQI68/vvvuuysrKdP/99+uHH36wXpGRkbryyiv18ccfn3Os069FOXbsmAoKCtSzZ09t3769Wr05nU7dcccdWr58uYwx1vJly5ape/fuat26dY30XZnhw4erYcOG1vuRI0eqQYMGWrt2rVddTEyMEhMTvZatWLFCPXv2VNOmTb36SUhIUGlpqTZt2iRJWrt2rRo0aKCRI0da2wYEBGj06NHn7W/VqlUqKyvT1KlT5e/v/c9UVW41r40efXH6z6Ek9ezZU3v37j3vdj/99JPWr1+v+++/X8ePH7eO48cff1RiYqK+/vpr/fvf//baZvjw4V5z1LNnT5WWluq7776TJOus3+rVq3Xq1KkLPLLKVXX+w8LCVFhYqIyMjBrd/6hRo7Rr1y699tpr9f5aL1wY/vZhazExMdafv/76axljdOWVV1Zae/qHfmVWr16tZ599Vjk5OSoqKrKWX8jzXQYMGKBVq1YpKytLPXr00Lfffqvs7GzrdH5N9F2ZM8dq3LixWrVqVeEZPqfP3+n9/Otf/zrrVxVHjhyR9J+v3Vq1aqXGjRt7rb/66qvP29+3334rf39/xcbGnre2MrXRY1UFBQVV6KNp06YVroGqzDfffCNjjJ566ik99dRTldYcOXJEl112mfW+PByfvi9J1v5uvfVW9e/fX08//bRmz56t3/zmN+rbt68efPDBGruAuKrz//jjj2v58uW64447dNlll6l37966//779bvf/a7a+37hhRf0xhtv6JlnntGdd95Z7XFgD4Qc2NrpZ1/Kysrk5+enDz74oNK7nM78oDvd//3f/+nuu+/WLbfcovnz56tVq1Zq2LChFi1apCVLllS7v7vuukuNGjXS8uXL1aNHDy1fvlz+/v667777aqTvC1XZnVRlZWX67W9/qwkTJlS6zVVXXXXR+qmqX1OPF3JHXflFuuPGjatwRq3cmXcOnW1/5WcL/fz89M4772jLli16//33tW7dOj3yyCN66aWXtGXLlhr5earq/IeHhysnJ0fr1q3TBx98oA8++ECLFi3SQw89pMWLF/u837S0NE2cOFEjRozwuv0dly5CDi4Z7dq1kzFGMTExPn/I/f3vf1dQUJDWrVvn9X+7ixYtqlDry5mdkJAQ9enTRytWrNDLL7+sZcuWqWfPnoqKiqqRvs/m66+/Vq9evaz3P//8sw4fPlyl//Nt166dfv75ZyUkJJyzrk2bNsrMzNTPP//s9cGZm5tbpX2UlZVp165d6tKly1nrzjbXtdFjTTrbcZTffdewYcPzHouvunfvru7du+tPf/qTlixZokGDBmnp0qUaNmyYTz1WpqrzL0mBgYG66667dNddd6msrEyPP/64/vKXv/h86/c//vEPDRs2TP369dO8efOqvB3sjWtycMno16+fAgIC9PTTT3tdAyP95/9yf/zxx7NuGxAQID8/P68nqO7fv7/Sh/6FhIT4dAvygAEDdOjQIb355pv65z//qQEDBtRY32fz+uuve12PsWDBApWUlOiOO+4477b333+/srKytG7dugrr8vPzVVJSIkm68847VVJSogULFljrS0tL9eqrr553H3379pW/v79mzJhR4Zbj0+fgbHNdGz3WpEaNGlm9nS48PFy/+c1v9Je//EWHDx+usN2Zt4ZXxbFjxyr8HJUHydO/hj1T+TOmqvKzXdX5P/Nn19/f37qr7Fy9nGnTpk0aOHCgbrnlFr399tsVruPCpYszObhktGvXTs8++6wmT56s/fv3q2/fvmrSpIn27dunlStXavjw4Ro3blyl2yYlJenll1/W7373Oz344IM6cuSI5s2bp/bt2+tf//qXV21cXJw++ugjvfzyy4qKilJMTIzi4+PP2tedd96pJk2aaNy4cQoICFD//v1rrO+zKS4u1u233677779fubm5mj9/vm6++Wbdfffd5912/Pjxeu+999SnTx89/PDDiouLU2FhoXbs2KF33nlH+/fvV4sWLXTXXXfppptu0qRJk7R//37Fxsbq3XffVUFBwXn30b59ez355JN65pln1LNnT/Xr108Oh0Pbtm1TVFSUZs6cKek/c71gwQI9++yzat++vcLDw3XbbbfVSo81KTg4WLGxsVq2bJmuuuoqNWvWTJ06dVKnTp00b9483XzzzercubMeffRRXXHFFcrLy1NWVpa+//57/fOf//RpX4sXL9b8+fN1zz33qF27djp+/LjeeOMNOZ3Oc57Ji4uLkyQ9+eSTGjhwoBo2bKi77rqr0gdsVnX+hw0bpp9++km33XabLr/8cn333Xd69dVX1aVLF3Xs2LFKx/Pdd9/p7rvvlp+fn+69916tWLHCa/21115rBSdcgurkni7gIiu/Jfno0aMV1v397383N998swkJCTEhISGmQ4cOJiUlxeTm5lo1ld1C/tZbb5krr7zSOBwO06FDB7No0aIKtz4bY8yePXvMLbfcYoKDg40k69baM28hP92gQYOs23/Ppip9n095Dxs3bjTDhw83TZs2NY0bNzaDBg0yP/74o1dtmzZtTFJSUqXjHD9+3EyePNm0b9/eBAYGmhYtWpgePXqYF1980evW9B9//NEMHjzYOJ1OExoaagYPHmy++OKL895CXu6vf/2ruf76643D4TBNmzY1t956q8nIyLDWu91uk5SUZJo0aWIked1OXtM9ns/ZbiEPCQmpUFvZ8W7evNnExcWZwMDACrdvf/vtt+ahhx4ykZGRpmHDhuayyy4zffr0Me+8845VU/53e+at4R9//LGRZD7++GNjjDHbt283DzzwgGndurVxOBwmPDzc9OnTx3z++ede253ZgzH/uTX8sssuM/7+/l4/y2feQm5M1eb/nXfeMb179zbh4eEmMDDQtG7d2jz22GPm8OHDZ5vmCsqP72yvym7Lx6XDz5gzzlsCsK20tDQNGTJE27Ztq/BEZQCwG764BAAAtsQ1OYANnDhx4rzXkTRr1qyWurGX4uJi/fTTT+esCQ0NvSi/uPRSV/6rGc4mODhYoaGhtdQN6iNCDmADy5Yt05AhQ85ZU50nI0PavHmz1+32lVm0aFGFX1CJC9eqVatzrk9OTvb6hajAmbgmB7CBw4cPa+fOneesiYuLs55+i6o7duyYsrOzz1lzzTXXnPcDGb776KOPzrk+Kiqq2k/FxqWBkAMAAGyJC48BAIAtXdLX5JSVlenQoUNq0qTJBf2SRQAAUHuMMTp+/LiioqLO+YTrSzrkHDp0SNHR0XXdBgAAqIaDBw/q8ssvP+v6SzrkNGnSRNJ/JsnpdNZxNwAAoCo8Ho+io6Otz/GzuaRDTvlXVE6nk5ADAEA9c75LTbjwGAAA2BIhBwAA2JJPIadt27by8/Or8EpJSZEknTx5UikpKWrevLkaN26s/v37Ky8vz2uMAwcOKCkpSY0aNVJ4eLjGjx+vkpISr5oNGzbohhtukMPhUPv27St9ouW8efPUtm1bBQUFKT4+Xlu3bvXx0AEAgJ35FHK2bdumw4cPW6+MjAxJ0n333SdJGjt2rN5//32tWLFCGzdu1KFDh9SvXz9r+9LSUiUlJam4uFibN2/W4sWLlZaWpqlTp1o1+/btU1JSknr16qWcnByNGTNGw4YN07p166yaZcuWKTU1VdOmTdP27dt13XXXKTExUUeOHLmgyQAAADZiLsATTzxh2rVrZ8rKykx+fr5p2LChWbFihbV+9+7dRpLJysoyxhizdu1a4+/vb9xut1WzYMEC43Q6TVFRkTHGmAkTJphrrrnGaz8DBgwwiYmJ1vtu3bqZlJQU631paamJiooyM2fO9Kn/goICI8kUFBT4tB0AAKg7Vf38rvY1OcXFxfrb3/6mRx55RH5+fsrOztapU6eUkJBg1XTo0EGtW7dWVlaWJCkrK0udO3dWRESEVZOYmCiPx2P93p2srCyvMcpryscoLi5Wdna2V42/v78SEhKsmrMpKiqSx+PxegEAAHuqdshZtWqV8vPzrd+863a7FRgYqLCwMK+6iIgIud1uq+b0gFO+vnzduWo8Ho9OnDihH374QaWlpZXWlI9xNjNnzlRoaKj14kGAAADYV7VDzltvvaU77rhDUVFRNdnPRTV58mQVFBRYr4MHD9Z1SwAA4CKp1sMAv/vuO3300Ud69913rWWRkZEqLi5Wfn6+19mcvLw8RUZGWjVn3gVVfvfV6TVn3pGVl5cnp9Op4OBgBQQEKCAgoNKa8jHOxuFwyOFw+HawAACgXqrWmZxFixYpPDxcSUlJ1rK4uDg1bNhQmZmZ1rLc3FwdOHBALpdLkuRyubRjxw6vu6AyMjLkdDoVGxtr1Zw+RnlN+RiBgYGKi4vzqikrK1NmZqZVAwAA4PPdVaWlpaZ169Zm4sSJFdaNGDHCtG7d2qxfv958/vnnxuVyGZfLZa0vKSkxnTp1Mr179zY5OTkmPT3dtGzZ0kyePNmq2bt3r2nUqJEZP3682b17t5k3b54JCAgw6enpVs3SpUuNw+EwaWlpZteuXWb48OEmLCzM666tquDuKgAA6p+qfn77HHLWrVtnJJnc3NwK606cOGEef/xx07RpU9OoUSNzzz33mMOHD3vV7N+/39xxxx0mODjYtGjRwvzhD38wp06d8qr5+OOPTZcuXUxgYKC54oorzKJFiyrs69VXXzWtW7c2gYGBplu3bmbLli2+HgohBwCAeqiqn99+xhhTp6eS6pDH41FoaKgKCgr4BZ0AANQTVf385ndXAQAAW6rW3VWogo9n1nUHvus1ua47AACgxnAmBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIPA7xIsvb+WNct+MzVq647AACg5nAmBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2JLPIeff//63/uu//kvNmzdXcHCwOnfurM8//9xab4zR1KlT1apVKwUHByshIUFff/211xg//fSTBg0aJKfTqbCwMA0dOlQ///yzV82//vUv9ezZU0FBQYqOjtasWbMq9LJixQp16NBBQUFB6ty5s9auXevr4QAAAJvyKeQcO3ZMN910kxo2bKgPPvhAu3bt0ksvvaSmTZtaNbNmzdIrr7yihQsX6rPPPlNISIgSExN18uRJq2bQoEHauXOnMjIytHr1am3atEnDhw+31ns8HvXu3Vtt2rRRdna2XnjhBU2fPl2vv/66VbN582Y98MADGjp0qL744gv17dtXffv21Zdffnkh8wEAAGzCzxhjqlo8adIkffrpp/q///u/StcbYxQVFaU//OEPGjdunCSpoKBAERERSktL08CBA7V7927FxsZq27Zt6tq1qyQpPT1dd955p77//ntFRUVpwYIFevLJJ+V2uxUYGGjte9WqVdqzZ48kacCAASosLNTq1aut/Xfv3l1dunTRwoULq3Q8Ho9HoaGhKigokNPprOo0VEnWW+NqdLza4Br6Yl23AADAeVX189unMznvvfeeunbtqvvuu0/h4eG6/vrr9cYbb1jr9+3bJ7fbrYSEBGtZaGio4uPjlZWVJUnKyspSWFiYFXAkKSEhQf7+/vrss8+smltuucUKOJKUmJio3NxcHTt2zKo5fT/lNeX7qUxRUZE8Ho/XCwAA2JNPIWfv3r1asGCBrrzySq1bt04jR47Uf//3f2vx4sWSJLfbLUmKiIjw2i4iIsJa53a7FR4e7rW+QYMGatasmVdNZWOcvo+z1ZSvr8zMmTMVGhpqvaKjo305fAAAUI/4FHLKysp0ww036LnnntP111+v4cOH69FHH63y10N1bfLkySooKLBeBw8erOuWAADAReJTyGnVqpViY2O9lnXs2FEHDhyQJEVGRkqS8vLyvGry8vKsdZGRkTpy5IjX+pKSEv30009eNZWNcfo+zlZTvr4yDodDTqfT6wUAAOzJp5Bz0003KTc312vZV199pTZt2kiSYmJiFBkZqczMTGu9x+PRZ599JpfLJUlyuVzKz89Xdna2VbN+/XqVlZUpPj7eqtm0aZNOnTpl1WRkZOjqq6+27uRyuVxe+ymvKd8PAAC4tPkUcsaOHastW7boueee0zfffKMlS5bo9ddfV0pKiiTJz89PY8aM0bPPPqv33ntPO3bs0EMPPaSoqCj17dtX0n/O/Pzud7/To48+qq1bt+rTTz/VqFGjNHDgQEVFRUmSHnzwQQUGBmro0KHauXOnli1bprlz5yo1NdXq5YknnlB6erpeeukl7dmzR9OnT9fnn3+uUaNG1dDUAACA+qyBL8U33nijVq5cqcmTJ2vGjBmKiYnRnDlzNGjQIKtmwoQJKiws1PDhw5Wfn6+bb75Z6enpCgoKsmrefvttjRo1Srfffrv8/f3Vv39/vfLKK9b60NBQffjhh0pJSVFcXJxatGihqVOnej1Lp0ePHlqyZImmTJmiP/7xj7ryyiu1atUqderU6ULmAwAA2IRPz8mxG56T443n5AAA6oOL8pwcAACA+oKQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbMmnkDN9+nT5+fl5vTp06GCtP3nypFJSUtS8eXM1btxY/fv3V15entcYBw4cUFJSkho1aqTw8HCNHz9eJSUlXjUbNmzQDTfcIIfDofbt2ystLa1CL/PmzVPbtm0VFBSk+Ph4bd261ZdDAQAANufzmZxrrrlGhw8ftl6ffPKJtW7s2LF6//33tWLFCm3cuFGHDh1Sv379rPWlpaVKSkpScXGxNm/erMWLFystLU1Tp061avbt26ekpCT16tVLOTk5GjNmjIYNG6Z169ZZNcuWLVNqaqqmTZum7du367rrrlNiYqKOHDlS3XkAAAA242eMMVUtnj59ulatWqWcnJwK6woKCtSyZUstWbJE9957ryRpz5496tixo7KystS9e3d98MEH6tOnjw4dOqSIiAhJ0sKFCzVx4kQdPXpUgYGBmjhxotasWaMvv/zSGnvgwIHKz89Xenq6JCk+Pl433nijXnvtNUlSWVmZoqOjNXr0aE2aNKnKB+/xeBQaGqqCggI5nc4qb1cVWW+Nq9HxaoNr6It13QIAAOdV1c9vn8/kfP3114qKitIVV1yhQYMG6cCBA5Kk7OxsnTp1SgkJCVZthw4d1Lp1a2VlZUmSsrKy1LlzZyvgSFJiYqI8Ho927txp1Zw+RnlN+RjFxcXKzs72qvH391dCQoJVczZFRUXyeDxeLwAAYE8+hZz4+HilpaUpPT1dCxYs0L59+9SzZ08dP35cbrdbgYGBCgsL89omIiJCbrdbkuR2u70CTvn68nXnqvF4PDpx4oR++OEHlZaWVlpTPsbZzJw5U6GhodYrOjral8MHAAD1SANfiu+44w7rz9dee63i4+PVpk0bLV++XMHBwTXeXE2bPHmyUlNTrfcej4egAwCATV3QLeRhYWG66qqr9M033ygyMlLFxcXKz8/3qsnLy1NkZKQkKTIyssLdVuXvz1fjdDoVHBysFi1aKCAgoNKa8jHOxuFwyOl0er0AAIA9XVDI+fnnn/Xtt9+qVatWiouLU8OGDZWZmWmtz83N1YEDB+RyuSRJLpdLO3bs8LoLKiMjQ06nU7GxsVbN6WOU15SPERgYqLi4OK+asrIyZWZmWjUAAAA+hZxx48Zp48aN2r9/vzZv3qx77rlHAQEBeuCBBxQaGqqhQ4cqNTVVH3/8sbKzszVkyBC5XC51795dktS7d2/FxsZq8ODB+uc//6l169ZpypQpSklJkcPhkCSNGDFCe/fu1YQJE7Rnzx7Nnz9fy5cv19ixY60+UlNT9cYbb2jx4sXavXu3Ro4cqcLCQg0ZMqQGpwYAANRnPl2T8/333+uBBx7Qjz/+qJYtW+rmm2/Wli1b1LJlS0nS7Nmz5e/vr/79+6uoqEiJiYmaP3++tX1AQIBWr16tkSNHyuVyKSQkRMnJyZoxY4ZVExMTozVr1mjs2LGaO3euLr/8cr355ptKTEy0agYMGKCjR49q6tSpcrvd6tKli9LT0ytcjAwAAC5dPj0nx254To43npMDAKgPLtpzcgAAAOoDQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClBnXdAABcDLMzvqrrFqpl7G+vqusWANvgTA4AALAlQg4AALClCwo5zz//vPz8/DRmzBhr2cmTJ5WSkqLmzZurcePG6t+/v/Ly8ry2O3DggJKSktSoUSOFh4dr/PjxKikp8arZsGGDbrjhBjkcDrVv315paWkV9j9v3jy1bdtWQUFBio+P19atWy/kcAAAgI1UO+Rs27ZNf/nLX3Tttdd6LR87dqzef/99rVixQhs3btShQ4fUr18/a31paamSkpJUXFyszZs3a/HixUpLS9PUqVOtmn379ikpKUm9evVSTk6OxowZo2HDhmndunVWzbJly5Samqpp06Zp+/btuu6665SYmKgjR45U95AAAICNVCvk/Pzzzxo0aJDeeOMNNW3a1FpeUFCgt956Sy+//LJuu+02xcXFadGiRdq8ebO2bNkiSfrwww+1a9cu/e1vf1OXLl10xx136JlnntG8efNUXFwsSVq4cKFiYmL00ksvqWPHjho1apTuvfdezZ4929rXyy+/rEcffVRDhgxRbGysFi5cqEaNGumvf/3rhcwHAACwiWqFnJSUFCUlJSkhIcFreXZ2tk6dOuW1vEOHDmrdurWysrIkSVlZWercubMiIiKsmsTERHk8Hu3cudOqOXPsxMREa4zi4mJlZ2d71fj7+yshIcGqqUxRUZE8Ho/XCwAA2JPPt5AvXbpU27dv17Zt2yqsc7vdCgwMVFhYmNfyiIgIud1uq+b0gFO+vnzduWo8Ho9OnDihY8eOqbS0tNKaPXv2nLX3mTNn6umnn67agQIAgHrNp5Bz8OBBPfHEE8rIyFBQUNDF6umimTx5slJTU633Ho9H0dHRddgRgIup+4HX67qFanixrhsAbMOnr6uys7N15MgR3XDDDWrQoIEaNGigjRs36pVXXlGDBg0UERGh4uJi5efne22Xl5enyMhISVJkZGSFu63K35+vxul0Kjg4WC1atFBAQEClNeVjVMbhcMjpdHq9AACAPfkUcm6//Xbt2LFDOTk51qtr164aNGiQ9eeGDRsqMzPT2iY3N1cHDhyQy+WSJLlcLu3YscPrLqiMjAw5nU7FxsZaNaePUV5TPkZgYKDi4uK8asrKypSZmWnVAACAS5tPX1c1adJEnTp18loWEhKi5s2bW8uHDh2q1NRUNWvWTE6nU6NHj5bL5VL37t0lSb1791ZsbKwGDx6sWbNmye12a8qUKUpJSZHD4ZAkjRgxQq+99pomTJigRx55ROvXr9fy5cu1Zs0aa7+pqalKTk5W165d1a1bN82ZM0eFhYUaMmTIBU0IAACwhxr/3VWzZ8+Wv7+/+vfvr6KiIiUmJmr+/PnW+oCAAK1evVojR46Uy+VSSEiIkpOTNWPGDKsmJiZGa9as0dixYzV37lxdfvnlevPNN5WYmGjVDBgwQEePHtXUqVPldrvVpUsXpaenV7gYGQAAXJr8jDGmrpuoKx6PR6GhoSooKKjx63Oy3hpXo+PVBtdQLniEfczO+KpeXni8pfXwum7BZ/xSUdS2qn5+87urAACALRFyAACALRFyAACALdX4hccA7Gd2xld13cIloz5eR8QDDPFrxZkcAABgS5zJAVAl9fMMA4BLGWdyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALTWo6wYAAPXb7Iyv6roFn4397VV13QJqAWdyAACALRFyAACALRFyAACALRFyAACALXHhMQDggnQ/8Hpdt1ANL9Z1A6gFhBygltXHO1EAoD7i6yoAAGBLhBwAAGBLfF0F1LL6ef0CANQ/nMkBAAC25FPIWbBgga699lo5nU45nU65XC598MEH1vqTJ08qJSVFzZs3V+PGjdW/f3/l5eV5jXHgwAElJSWpUaNGCg8P1/jx41VSUuJVs2HDBt1www1yOBxq37690tLSKvQyb948tW3bVkFBQYqPj9fWrVt9ORQAAGBzPoWcyy+/XM8//7yys7P1+eef67bbbtPvf/977dy5U5I0duxYvf/++1qxYoU2btyoQ4cOqV+/ftb2paWlSkpKUnFxsTZv3qzFixcrLS1NU6dOtWr27dunpKQk9erVSzk5ORozZoyGDRumdevWWTXLli1Tamqqpk2bpu3bt+u6665TYmKijhw5cqHzAQAAbMLPGGMuZIBmzZrphRde0L333quWLVtqyZIluvfeeyVJe/bsUceOHZWVlaXu3bvrgw8+UJ8+fXTo0CFFRERIkhYuXKiJEyfq6NGjCgwM1MSJE7VmzRp9+eWX1j4GDhyo/Px8paenS5Li4+N144036rXXXpMklZWVKTo6WqNHj9akSZOq3LvH41FoaKgKCgrkdDovZBoqyHprXI2OVxtcQ3luRG2ojz8bgN3w7139VtXP72pfk1NaWqqlS5eqsLBQLpdL2dnZOnXqlBISEqyaDh06qHXr1srKypIkZWVlqXPnzlbAkaTExER5PB7rbFBWVpbXGOU15WMUFxcrOzvbq8bf318JCQlWzdkUFRXJ4/F4vQAAgD35HHJ27Nihxo0by+FwaMSIEVq5cqViY2PldrsVGBiosLAwr/qIiAi53W5Jktvt9go45evL152rxuPx6MSJE/rhhx9UWlpaaU35GGczc+ZMhYaGWq/o6GhfDx8AANQTPoecq6++Wjk5Ofrss880cuRIJScna9euXRejtxo3efJkFRQUWK+DBw/WdUsAAOAi8fk5OYGBgWrfvr0kKS4uTtu2bdPcuXM1YMAAFRcXKz8/3+tsTl5eniIjIyVJkZGRFe6CKr/76vSaM+/IysvLk9PpVHBwsAICAhQQEFBpTfkYZ+NwOORwOHw9ZAAAUA9d8HNyysrKVFRUpLi4ODVs2FCZmZnWutzcXB04cEAul0uS5HK5tGPHDq+7oDIyMuR0OhUbG2vVnD5GeU35GIGBgYqLi/OqKSsrU2ZmplUDAADg05mcyZMn64477lDr1q11/PhxLVmyRBs2bNC6desUGhqqoUOHKjU1Vc2aNZPT6dTo0aPlcrnUvXt3SVLv3r0VGxurwYMHa9asWXK73ZoyZYpSUlKsMywjRozQa6+9pgkTJuiRRx7R+vXrtXz5cq1Zs8bqIzU1VcnJyeratau6deumOXPmqLCwUEOGDKnBqQEAAPWZTyHnyJEjeuihh3T48GGFhobq2muv1bp16/Tb3/5WkjR79mz5+/urf//+KioqUmJioubPn29tHxAQoNWrV2vkyJFyuVwKCQlRcnKyZsyYYdXExMRozZo1Gjt2rObOnavLL79cb775phITE62aAQMG6OjRo5o6darcbre6dOmi9PT0ChcjAwCAS9cFPyenPuM5Od54bkTtqI8/G4Dd8O9d/XbRn5MDAADwa0bIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAttSgrhsALsjHM+u6AwDArxQhB/Va1t4f67oFAMCvFCEHAHDJmZ3xVV234LOxv72qrluod7gmBwAA2BIhBwAA2BJfVwEALjndD7xe1y1Uw4t13UC9w5kcAABgS4QcAABgSz6FnJkzZ+rGG29UkyZNFB4err59+yo3N9er5uTJk0pJSVHz5s3VuHFj9e/fX3l5eV41Bw4cUFJSkho1aqTw8HCNHz9eJSUlXjUbNmzQDTfcIIfDofbt2ystLa1CP/PmzVPbtm0VFBSk+Ph4bd261ZfDAQAANuZTyNm4caNSUlK0ZcsWZWRk6NSpU+rdu7cKCwutmrFjx+r999/XihUrtHHjRh06dEj9+vWz1peWliopKUnFxcXavHmzFi9erLS0NE2dOtWq2bdvn5KSktSrVy/l5ORozJgxGjZsmNatW2fVLFu2TKmpqZo2bZq2b9+u6667TomJiTpy5MiFzAcAALAJP2OMqe7GR48eVXh4uDZu3KhbbrlFBQUFatmypZYsWaJ7771XkrRnzx517NhRWVlZ6t69uz744AP16dNHhw4dUkREhCRp4cKFmjhxoo4eParAwEBNnDhRa9as0Zdffmnta+DAgcrPz1d6erokKT4+XjfeeKNee+01SVJZWZmio6M1evRoTZo0qdJ+i4qKVFRUZL33eDyKjo5WQUGBnE5ndaehUllvjavR8WqDa2j9u6itPs4zAFRHffw3+mLxeDwKDQ097+f3BV2TU1BQIElq1qyZJCk7O1unTp1SQkKCVdOhQwe1bt1aWVlZkqSsrCx17tzZCjiSlJiYKI/Ho507d1o1p49RXlM+RnFxsbKzs71q/P39lZCQYNVUZubMmQoNDbVe0dHRF3L4AADgV6zaIaesrExjxozRTTfdpE6dOkmS3G63AgMDFRYW5lUbEREht9tt1ZwecMrXl687V43H49GJEyf0ww8/qLS0tNKa8jEqM3nyZBUUFFivgwcP+n7gAACgXqj2c3JSUlL05Zdf6pNPPqnJfi4qh8Mhh8NR120AAIBaUK0zOaNGjdLq1av18ccf6/LLL7eWR0ZGqri4WPn5+V71eXl5ioyMtGrOvNuq/P35apxOp4KDg9WiRQsFBARUWlM+BgAAuLT5FHKMMRo1apRWrlyp9evXKyYmxmt9XFycGjZsqMzMTGtZbm6uDhw4IJfLJUlyuVzasWOH111QGRkZcjqdio2NtWpOH6O8pnyMwMBAxcXFedWUlZUpMzPTqgEAAJc2n76uSklJ0ZIlS/SPf/xDTZo0sa5/CQ0NVXBwsEJDQzV06FClpqaqWbNmcjqdGj16tFwul7p37y5J6t27t2JjYzV48GDNmjVLbrdbU6ZMUUpKivVV0ogRI/Taa69pwoQJeuSRR7R+/XotX75ca9assXpJTU1VcnKyunbtqm7dumnOnDkqLCzUkCFDampuAABAPeZTyFmwYIEk6Te/+Y3X8kWLFunhhx+WJM2ePVv+/v7q37+/ioqKlJiYqPnz51u1AQEBWr16tUaOHCmXy6WQkBAlJydrxowZVk1MTIzWrFmjsWPHau7cubr88sv15ptvKjEx0aoZMGCAjh49qqlTp8rtdqtLly5KT0+vcDEyAAC4NF3Qc3Lqu6reZ18d9fH5LfXxGQz1cZ4BoDrq47/RF0utPCcHAADg14qQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbMnnkLNp0ybdddddioqKkp+fn1atWuW13hijqVOnqlWrVgoODlZCQoK+/vprr5qffvpJgwYNktPpVFhYmIYOHaqff/7Zq+Zf//qXevbsqaCgIEVHR2vWrFkVelmxYoU6dOigoKAgde7cWWvXrvX1cAAAgE35HHIKCwt13XXXad68eZWunzVrll555RUtXLhQn332mUJCQpSYmKiTJ09aNYMGDdLOnTuVkZGh1atXa9OmTRo+fLi13uPxqHfv3mrTpo2ys7P1wgsvaPr06Xr99detms2bN+uBBx7Q0KFD9cUXX6hv377q27evvvzyS18PCQAA2JCfMcZUe2M/P61cuVJ9+/aV9J+zOFFRUfrDH/6gcePGSZIKCgoUERGhtLQ0DRw4ULt371ZsbKy2bdumrl27SpLS09N155136vvvv1dUVJQWLFigJ598Um63W4GBgZKkSZMmadWqVdqzZ48kacCAASosLNTq1autfrp3764uXbpo4cKFVerf4/EoNDRUBQUFcjqd1Z2GSmW9Na5Gx6sNrqEv1nULPquP8wwA1VEf/42+WKr6+V2j1+Ts27dPbrdbCQkJ1rLQ0FDFx8crKytLkpSVlaWwsDAr4EhSQkKC/P399dlnn1k1t9xyixVwJCkxMVG5ubk6duyYVXP6fspryvdTmaKiInk8Hq8XAACwpxoNOW63W5IUERHhtTwiIsJa53a7FR4e7rW+QYMGatasmVdNZWOcvo+z1ZSvr8zMmTMVGhpqvaKjo309RAAAUE9cUndXTZ48WQUFBdbr4MGDdd0SAAC4SGo05ERGRkqS8vLyvJbn5eVZ6yIjI3XkyBGv9SUlJfrpp5+8aiob4/R9nK2mfH1lHA6HnE6n1wsAANhTjYacmJgYRUZGKjMz01rm8Xj02WefyeVySZJcLpfy8/OVnZ1t1axfv15lZWWKj4+3ajZt2qRTp05ZNRkZGbr66qvVtGlTq+b0/ZTXlO8HAABc2nwOOT///LNycnKUk5Mj6T8XG+fk5OjAgQPy8/PTmDFj9Oyzz+q9997Tjh079NBDDykqKsq6A6tjx4763e9+p0cffVRbt27Vp59+qlGjRmngwIGKioqSJD344IMKDAzU0KFDtXPnTi1btkxz585Vamqq1ccTTzyh9PR0vfTSS9qzZ4+mT5+uzz//XKNGjbrwWQEAAPVeA183+Pzzz9WrVy/rfXnwSE5OVlpamiZMmKDCwkINHz5c+fn5uvnmm5Wenq6goCBrm7ffflujRo3S7bffLn9/f/Xv31+vvPKKtT40NFQffvihUlJSFBcXpxYtWmjq1Klez9Lp0aOHlixZoilTpuiPf/yjrrzySq1atUqdOnWq1kQAAAB7uaDn5NR3PCfHW318BkN9nGcAqI76+G/0xVInz8kBAAD4tfD56yrYF2dFAAB2wpkcAABgS5zJAQCgHpid8VVdt+Czsb+9qk73z5kcAABgS5zJAQCgHuh+4PW6bqEa6vaOMM7kAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAW6r3IWfevHlq27atgoKCFB8fr61bt9Z1SwAA4FegXoecZcuWKTU1VdOmTdP27dt13XXXKTExUUeOHKnr1gAAQB2r1yHn5Zdf1qOPPqohQ4YoNjZWCxcuVKNGjfTXv/61rlsDAAB1rEFdN1BdxcXFys7O1uTJk61l/v7+SkhIUFZWVqXbFBUVqaioyHpfUFAgSfJ4PDXeX+GJovMXAQBgYxfj8/X0cY0x56yrtyHnhx9+UGlpqSIiIryWR0REaM+ePZVuM3PmTD399NMVlkdHR1+UHgEAuKSNfu2iDn/8+HGFhoaedX29DTnVMXnyZKWmplrvy8rK9NNPP6l58+by8/Orsf14PB5FR0fr4MGDcjqdNTYuvDHPtYe5rh3Mc+1gnmvHxZxnY4yOHz+uqKioc9bV25DTokULBQQEKC8vz2t5Xl6eIiMjK93G4XDI4XB4LQsLC7tYLcrpdPIfUC1gnmsPc107mOfawTzXjos1z+c6g1Ou3l54HBgYqLi4OGVmZlrLysrKlJmZKZfLVYedAQCAX4N6eyZHklJTU5WcnKyuXbuqW7dumjNnjgoLCzVkyJC6bg0AANSxeh1yBgwYoKNHj2rq1Klyu93q0qWL0tPTK1yMXNscDoemTZtW4asx1CzmufYw17WDea4dzHPt+DXMs5853/1XAAAA9VC9vSYHAADgXAg5AADAlgg5AADAlgg5AADAlgg5AADAlgg51TRv3jy1bdtWQUFBio+P19atW89Zv2LFCnXo0EFBQUHq3Lmz1q5dW0ud1m++zPMbb7yhnj17qmnTpmratKkSEhLO+/eC/8/Xn+lyS5culZ+fn/r27XtxG7QJX+c5Pz9fKSkpatWqlRwOh6666ir+/agCX+d5zpw5uvrqqxUcHKzo6GiNHTtWJ0+erKVu66dNmzbprrvuUlRUlPz8/LRq1arzbrNhwwbdcMMNcjgcat++vdLS0i5ukwY+W7p0qQkMDDR//etfzc6dO82jjz5qwsLCTF5eXqX1n376qQkICDCzZs0yu3btMlOmTDENGzY0O3bsqOXO6xdf5/nBBx808+bNM1988YXZvXu3efjhh01oaKj5/vvva7nz+sfXuS63b98+c9lll5mePXua3//+97XTbD3m6zwXFRWZrl27mjvvvNN88sknZt++fWbDhg0mJyenljuvX3yd57fffts4HA7z9ttvm3379pl169aZVq1ambFjx9Zy5/XL2rVrzZNPPmneffddI8msXLnynPV79+41jRo1MqmpqWbXrl3m1VdfNQEBASY9Pf2i9UjIqYZu3bqZlJQU631paamJiooyM2fOrLT+/vvvN0lJSV7L4uPjzWOPPXZR+6zvfJ3nM5WUlJgmTZqYxYsXX6wWbaM6c11SUmJ69Ohh3nzzTZOcnEzIqQJf53nBggXmiiuuMMXFxbXVoi34Os8pKSnmtttu81qWmppqbrrppovap51UJeRMmDDBXHPNNV7LBgwYYBITEy9aX3xd5aPi4mJlZ2crISHBWubv76+EhARlZWVVuk1WVpZXvSQlJiaetR7Vm+cz/fLLLzp16pSaNWt2sdq0herO9YwZMxQeHq6hQ4fWRpv1XnXm+b333pPL5VJKSooiIiLUqVMnPffccyotLa2ttuud6sxzjx49lJ2dbX2ltXfvXq1du1Z33nlnrfR8qaiLz8J6/Wsd6sIPP/yg0tLSCr86IiIiQnv27Kl0G7fbXWm92+2+aH3Wd9WZ5zNNnDhRUVFRFf6jgrfqzPUnn3yit956Szk5ObXQoT1UZ5737t2r9evXa9CgQVq7dq2++eYbPf744zp16pSmTZtWG23XO9WZ5wcffFA//PCDbr75ZhljVFJSohEjRuiPf/xjbbR8yTjbZ6HH49GJEycUHBxc4/vkTA5s6fnnn9fSpUu1cuVKBQUF1XU7tnL8+HENHjxYb7zxhlq0aFHX7dhaWVmZwsPD9frrrysuLk4DBgzQk08+qYULF9Z1a7ayYcMGPffcc5o/f762b9+ud999V2vWrNEzzzxT163hAnEmx0ctWrRQQECA8vLyvJbn5eUpMjKy0m0iIyN9qkf15rnciy++qOeff14fffSRrr322ovZpi34Otfffvut9u/fr7vuustaVlZWJklq0KCBcnNz1a5du4vbdD1UnZ/pVq1aqWHDhgoICLCWdezYUW63W8XFxQoMDLyoPddH1Znnp556SoMHD9awYcMkSZ07d1ZhYaGGDx+uJ598Uv7+nA+oCWf7LHQ6nRflLI7EmRyfBQYGKi4uTpmZmdaysrIyZWZmyuVyVbqNy+XyqpekjIyMs9ajevMsSbNmzdIzzzyj9PR0de3atTZarfd8nesOHTpox44dysnJsV533323evXqpZycHEVHR9dm+/VGdX6mb7rpJn3zzTdWiJSkr776Sq1atSLgnEV15vmXX36pEGTKg6Xhd1jXmDr5LLxolzTb2NKlS43D4TBpaWlm165dZvjw4SYsLMy43W5jjDGDBw82kyZNsuo//fRT06BBA/Piiy+a3bt3m2nTpnELeRX4Os/PP/+8CQwMNO+88445fPiw9Tp+/HhdHUK94etcn4m7q6rG13k+cOCAadKkiRk1apTJzc01q1evNuHh4ebZZ5+tq0OoF3yd52nTppkmTZqY//3f/zV79+41H374oWnXrp25//776+oQ6oXjx4+bL774wnzxxRdGknn55ZfNF198Yb777jtjjDGTJk0ygwcPturLbyEfP3682b17t5k3bx63kP9avfrqq6Z169YmMDDQdOvWzWzZssVad+utt5rk5GSv+uXLl5urrrrKBAYGmmuuucasWbOmljuun3yZ5zZt2hhJFV7Tpk2r/cbrIV9/pk9HyKk6X+d58+bNJj4+3jgcDnPFFVeYP/3pT6akpKSWu65/fJnnU6dOmenTp5t27dqZoKAgEx0dbR5//HFz7Nix2m+8Hvn4448r/Te3fG6Tk5PNrbfeWmGbLl26mMDAQHPFFVeYRYsWXdQe/YzhXBwAALAfrskBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC29P8AM2kYHLCJLGsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQRJJREFUeJzt3XtUVPX+//EXoDMgOuANkMRLaillWZgwlpXFkQrrmJpafg1NMw39JRzzcjI1u9ixi1p56Squb3m8VHpSEyNM/ZaYhnEyS7LUsKODVsIoKQjs3x8t9nEClUGE2D4fa81azt7v/dnv/ZGal3v23vgYhmEIAADAYnxruwEAAIALgZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADVGDo0KFq06ZNtY6ZkpIiHx8f7d+/v1rHrWv2798vHx8fpaSkmMumT58uHx+f2mvqDyrq8UJs82fm4+Oj6dOnV6q2TZs2Gjp06AXtB6gKQg5QzZ555hmtWrWqttu4KMyfP98SoeK3337T9OnTtXHjxtpu5Yy2bNmi6dOnKy8vr7ZbKeeZZ55RTEyMmjdvLn9/f3Xo0EHjxo3TkSNHars11LJ6td0AYDXPPPOM+vfvrz59+ngsHzJkiAYNGiS73V47jf2JTZkyRZMmTfJ6u/nz56tZs2Z/irMIrVu31okTJ1S/fn2vt/3tt9/0xBNPSJJuvvnmau6sak6cOKF69f77EbFlyxY98cQTGjp0qIKDgz1qs7Oz5etbe/9mzszMVJcuXTRo0CA1atRI3377rV5//XWtXbtWWVlZCgwMrLXeULsIObhoFBQU1Or/7Pz8/OTn51dr+z9fhmHo5MmTCggIqPax69Wr5/GBWhf5+PjI39+/ttuoNt4cS20H9/fee6/cMqfTqf79+2v16tUaNGhQLXSFPwO+roIllV3j8c033+i+++5T48aNdcMNN0iS3n77bUVFRSkgIEBNmjTRoEGDdODAgXOO+fzzz6t79+5q2rSpAgICFBUVpXfffdejxsfHRwUFBVq8eLF8fHzk4+NjnmX44zU5vXv31qWXXlrhvpxOp7p27eqxrKp9n66sh82bN+uhhx5S06ZN5XA4dP/99+vo0aMetW3atFHv3r21fv16de3aVQEBAXr11VclSXl5eRo3bpwiIiJkt9vVvn17/eMf/1BpaanHGHl5eRo6dKiCgoIUHByshISECr/uONM1OW+//ba6deumBg0aqHHjxrrxxhv10Ucfmf3t2rVLmzZtMuf69LMg1d3juVR0Tc7QoUPVsGFD/ec//1GfPn3UsGFDNW/eXOPHj1dJSYm5XfPmzSVJTzzxhHksp18Ps3v3bvXv319NmjSRv7+/unbtqg8++MBj/2V/t5999pmSk5PVvHlzBQYG6u677y73tc0XX3yhuLg4NWvWTAEBAWrbtq0eeOABj5rTe5g+fboeffRRSVLbtm3NHst+liu6Jqey87906VJFRUWpUaNGcjgc6ty5s+bOnVvpeT+Tsmvq/oxfr6Hm1O1/OgHncM8996hDhw565plnZBiGnn76aT3++OMaMGCARowYoSNHjujll1/WjTfeqC+//LLcafjTzZ07V3fddZcGDx6soqIiLV26VPfcc4/WrFmj+Ph4SdL//u//asSIEerWrZtGjhwpSWrXrl2F4w0cOFD333+/tm/fruuuu85c/uOPP2rr1q167rnnzGXn03dFxowZo+DgYE2fPl3Z2dlasGCBfvzxR23cuNEjbGRnZ+vee+/VQw89pAcffFCXX365fvvtN9100036z3/+o4ceekitWrXSli1bNHnyZB06dEhz5syR9PuZn7/+9a/69NNPNWrUKHXq1EkrV65UQkJCpXp84oknNH36dHXv3l0zZsyQzWbT559/rg0bNqhXr16aM2eOxo4dq4YNG+qxxx6TJIWGhkpSjfVYGSUlJYqLi1N0dLSef/55ffzxx3rhhRfUrl07jR49Ws2bN9eCBQs0evRo3X333erbt68k6aqrrpIk7dq1S9dff70uueQSTZo0SYGBgVq+fLn69Omj9957T3fffbfH/saOHavGjRtr2rRp2r9/v+bMmaMxY8Zo2bJlkqTDhw+rV69eat68uSZNmqTg4GDt379f77///hmPoW/fvvruu+/0z3/+U7Nnz1azZs0kyQxnf1TZ+U9LS9O9996rW2+9Vf/4xz8kSd9++60+++wzPfLII17Ns2EY+uWXX1RcXKw9e/Zo0qRJ8vPz+9N8/YdaYgAWNG3aNEOSce+995rL9u/fb/j5+RlPP/20R+3OnTuNevXqeSxPSEgwWrdu7VH322+/ebwvKioyrrzySuOWW27xWB4YGGgkJCSU62nRokWGJGPfvn2GYRhGfn6+Ybfbjb/97W8edbNmzTJ8fHyMH3/80eu+z6Wsh6ioKKOoqMhjn5KMf/3rX+ay1q1bG5KM1NRUjzGefPJJIzAw0Pjuu+88lk+aNMnw8/MzcnJyDMMwjFWrVhmSjFmzZpk1xcXFRo8ePQxJxqJFi8zlZX9fZfbs2WP4+voad999t1FSUuKxn9LSUvPPV1xxhXHTTTeVO84L0eO57Nu3r9w2CQkJhiRjxowZHrXXXHONERUVZb4/cuSIIcmYNm1auXFvvfVWo3PnzsbJkyfNZaWlpUb37t2NDh06mMvK/m5jY2M95igpKcnw8/Mz8vLyDMMwjJUrVxqSjO3bt5/1eP7Yz3PPPefx83u61q1be/zMV3b+H3nkEcPhcBjFxcVn7aUyDh06ZEgyXy1btjSWLVt23uOibuPrKljaqFGjzD+///77Ki0t1YABA/Tzzz+br7CwMHXo0EGffPLJWcc6/VqUo0ePKj8/Xz169NCOHTuq1JvD4dDtt9+u5cuXyzAMc/myZcsUExOjVq1aVUvfFRk5cqTHBbKjR49WvXr19OGHH3rUtW3bVnFxcR7LVqxYoR49eqhx48Ye/cTGxqqkpESbN2+WJH344YeqV6+eRo8ebW7r5+ensWPHnrO/VatWqbS0VFOnTi13QWtlbjWviR69cfrPoST16NFDe/fuPed2v/76qzZs2KABAwbo2LFj5nH88ssviouL0549e/Sf//zHY5uRI0d6zFGPHj1UUlKiH3/8UZLMs35r1qzRqVOnzvPIKlbZ+Q8ODlZBQYHS0tLOe59NmjRRWlqaVq9erRkzZqhZs2Y6fvz4eY+Luo2vq2Bpbdu2Nf+8Z88eGYahDh06VFh7rrti1qxZo6eeekpZWVkqLCw0l5/P810GDhyoVatWKSMjQ927d9cPP/ygzMxM83R+dfRdkT+O1bBhQ7Vo0aLcM3xOn7/T+/nqq6/O+FXF4cOHJf3+tVuLFi3UsGFDj/WXX375Ofv74Ycf5Ovrq8jIyHPWVqQmeqwsf3//cn00bty43DVQFfn+++9lGIYef/xxPf744xXWHD58WJdccon5viwcn74vSeb+brrpJvXr109PPPGEZs+erZtvvll9+vTRfffdV20XEFd2/h9++GEtX75ct99+uy655BL16tVLAwYM0G233eb1Pm02m2JjYyX9fr3brbfequuvv14hISHq3bt31Q8GdRohB5Z2+tmX0tJS+fj4aN26dRXe5fTHD7rT/d///Z/uuusu3XjjjZo/f75atGih+vXra9GiRVqyZEmV+7vzzjvVoEEDLV++XN27d9fy5cvl6+ure+65p1r6Pl8V3UlVWlqqv/zlL5owYUKF21x22WUXrJ/K+jP1eD531JVdpDt+/PhyZ9TKtG/fvlL7Kztb6OPjo3fffVdbt27V6tWrtX79ej3wwAN64YUXtHXr1mr5ears/IeEhCgrK0vr16/XunXrtG7dOi1atEj333+/Fi9efF49dO/eXS1atNA777xDyLmIEXJw0WjXrp0Mw1Dbtm29/pB777335O/vr/Xr13v8a3fRokXlar05sxMYGKjevXtrxYoVevHFF7Vs2TL16NFD4eHh1dL3mezZs0c9e/Y03x8/flyHDh3SHXfccc5t27Vrp+PHj5v/aj6T1q1bKz09XcePH/f44MzOzq7UPkpLS/XNN9+oS5cuZ6w701zXRI/V6UzHUXb3Xf369c95LN6KiYlRTEyMnn76aS1ZskSDBw/W0qVLNWLECK96rEhl51/6/QzMnXfeqTvvvFOlpaV6+OGH9eqrr+rxxx8vF+C8dfLkSeXn55/XGKjbuCYHF42+ffvKz89PTzzxhMc1MNJ/78w4Ez8/P/n4+Ji3/Uq/3/pb0ZONAwMDvbptdeDAgTp48KDeeOMN/fvf/9bAgQOrre8zee211zyux1iwYIGKi4t1++23n3PbAQMGKCMjQ+vXry+3Li8vT8XFxZKkO+64Q8XFxVqwYIG5vqSkRC+//PI599GnTx/5+vpqxowZ5W45Pn0OzjTXNdFjdWrQoIHZ2+lCQkJ0880369VXX9WhQ4fKbVeVJ/oePXq03M9RWZA8/WvYPyp7xlRlfrYrO/9//Nn19fU17yo7Wy+nKygo0G+//VZu+XvvvaejR4+WexQDLi6cycFFo127dnrqqac0efJk7d+/X3369FGjRo20b98+rVy5UiNHjtT48eMr3DY+Pl4vvviibrvtNt133306fPiw5s2bp/bt2+urr77yqI2KitLHH3+sF198UeHh4Wrbtq2io6PP2Ncdd9yhRo0aafz48fLz81O/fv2qre8zKSoq0q233qoBAwYoOztb8+fP1w033KC77rrrnNs++uij+uCDD9S7d28NHTpUUVFRKigo0M6dO/Xuu+9q//79atasme68805df/31mjRpkvbv36/IyEi9//77lfqXdfv27fXYY4/pySefVI8ePdS3b1/Z7XZt375d4eHhmjlzpqTf53rBggV66qmn1L59e4WEhOiWW26pkR6rU0BAgCIjI7Vs2TJddtllatKkia688kpdeeWVmjdvnm644QZ17txZDz74oC699FLl5uYqIyNDP/30k/797397ta/Fixdr/vz5uvvuu9WuXTsdO3ZMr7/+uhwOx1nP5EVFRUmSHnvsMQ0aNEj169fXnXfeWeEDNis7/yNGjNCvv/6qW265RS1bttSPP/6ol19+WV26dFGnTp0qdTx79uxRbGysBg4cqI4dO8rX11dffPGF3n77bbVp08brW9FhMbVyTxdwgZXdknzkyJFy69577z3jhhtuMAIDA43AwECjY8eORmJiopGdnW3WVHQL+Ztvvml06NDBsNvtRseOHY1FixaVu/XZMAxj9+7dxo033mgEBAQYksxba/94C/npBg8ebN7+eyaV6ftcynrYtGmTMXLkSKNx48ZGw4YNjcGDBxu//PKLR23r1q2N+Pj4Csc5duyYMXnyZKN9+/aGzWYzmjVrZnTv3t14/vnnPW5N/+WXX4whQ4YYDofDCAoKMoYMGWJ8+eWX57yFvMxbb71lXHPNNYbdbjcaN25s3HTTTUZaWpq53uVyGfHx8UajRo0MSR63k1d3j+dyplvIAwMDy9VWdLxbtmwxoqKiDJvNVu727R9++MG4//77jbCwMKN+/frGJZdcYvTu3dt49913zZqyv9s/3hr+ySefGJKMTz75xDAMw9ixY4dx7733Gq1atTLsdrsREhJi9O7d2/jiiy88tvtjD4bx+63hl1xyieHr6+vxs/zHW8gNo3Lz/+677xq9evUyQkJCDJvNZrRq1cp46KGHjEOHDp1pmss5cuSIMXLkSKNjx45GYGCgYbPZjA4dOhjjxo2r8L9/XFx8DOMP5y0BWFZKSoqGDRum7du3cxofgOVxTQ4AALAkrskBLODEiRPnvI6kSZMmNdSNtRQVFenXX389a01QUNAF+cWlFzuXy3XW9QEBAQoKCqqhblAXEXIAC1i2bJmGDRt21pqqPBkZ0pYtWzxut6/IokWLyv2CSpy/Fi1anHV9QkKCxy9EBf6Ia3IACzh06JB27dp11pqoqCjz6beovKNHjyozM/OsNVdcccU5P5DhvY8//vis68PDw6v8VGxcHAg5AADAkrjwGAAAWNJFfU1OaWmpDh48qEaNGp3XL1kEAAA1xzAMHTt2TOHh4fL1PfP5mos65Bw8eFARERG13QYAAKiCAwcOqGXLlmdcf1GHnEaNGkn6fZIcDkctdwMAACrD7XYrIiLC/Bw/k4s65JR9ReVwOAg5AADUMee61IQLjwEAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCV5FXLatGkjHx+fcq/ExERJ0smTJ5WYmKimTZuqYcOG6tevn3Jzcz3GyMnJUXx8vBo0aKCQkBA9+uijKi4u9qjZuHGjrr32WtntdrVv314pKSnlepk3b57atGkjf39/RUdHa9u2bV4eOgAAsDKvQs727dt16NAh85WWliZJuueeeyRJSUlJWr16tVasWKFNmzbp4MGD6tu3r7l9SUmJ4uPjVVRUpC1btmjx4sVKSUnR1KlTzZp9+/YpPj5ePXv2VFZWlsaNG6cRI0Zo/fr1Zs2yZcuUnJysadOmaceOHbr66qsVFxenw4cPn9dkAAAA6/AxDMOo6sbjxo3TmjVrtGfPHrndbjVv3lxLlixR//79JUm7d+9Wp06dlJGRoZiYGK1bt069e/fWwYMHFRoaKklauHChJk6cqCNHjshms2nixIlau3atvv76a3M/gwYNUl5enlJTUyVJ0dHRuu666/TKK69IkkpLSxUREaGxY8dq0qRJZ+y3sLBQhYWF5nu3262IiAjl5+fL4XBUdRoq9snM6h2vJvScXNsdAABwTm63W0FBQef8/K7yNTlFRUV6++239cADD8jHx0eZmZk6deqUYmNjzZqOHTuqVatWysjIkCRlZGSoc+fOZsCRpLi4OLndbu3atcusOX2MspqyMYqKipSZmelR4+vrq9jYWLPmTGbOnKmgoCDzFRERUdXDBwAAf3JVDjmrVq1SXl6ehg4dKklyuVyy2WwKDg72qAsNDZXL5TJrTg84ZevL1p2txu1268SJE/r5559VUlJSYU3ZGGcyefJk5efnm68DBw54dcwAAKDuqFfVDd98803dfvvtCg8Pr85+Lii73S673V7bbQAAgBpQpTM5P/74oz7++GONGDHCXBYWFqaioiLl5eV51Obm5iosLMys+ePdVmXvz1XjcDgUEBCgZs2ayc/Pr8KasjEAAACqFHIWLVqkkJAQxcfHm8uioqJUv359paenm8uys7OVk5Mjp9MpSXI6ndq5c6fHXVBpaWlyOByKjIw0a04fo6ymbAybzaaoqCiPmtLSUqWnp5s1AAAAXn9dVVpaqkWLFikhIUH16v1386CgIA0fPlzJyclq0qSJHA6Hxo4dK6fTqZiYGElSr169FBkZqSFDhmjWrFlyuVyaMmWKEhMTza+RRo0apVdeeUUTJkzQAw88oA0bNmj58uVau3atua/k5GQlJCSoa9eu6tatm+bMmaOCggINGzbsfOcDAABYhNch5+OPP1ZOTo4eeOCBcutmz54tX19f9evXT4WFhYqLi9P8+fPN9X5+flqzZo1Gjx4tp9OpwMBAJSQkaMaMGWZN27ZttXbtWiUlJWnu3Llq2bKl3njjDcXFxZk1AwcO1JEjRzR16lS5XC516dJFqamp5S5GBgAAF6/zek5OXVfZ++yrIuPN8dU6Xk1wDn++tlsAAOCcLvhzcgAAAP7MCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSvA45//nPf/Q///M/atq0qQICAtS5c2d98cUX5nrDMDR16lS1aNFCAQEBio2N1Z49ezzG+PXXXzV48GA5HA4FBwdr+PDhOn78uEfNV199pR49esjf318RERGaNWtWuV5WrFihjh07yt/fX507d9aHH37o7eEAAACL8irkHD16VNdff73q16+vdevW6ZtvvtELL7ygxo0bmzWzZs3SSy+9pIULF+rzzz9XYGCg4uLidPLkSbNm8ODB2rVrl9LS0rRmzRpt3rxZI0eONNe73W716tVLrVu3VmZmpp577jlNnz5dr732mlmzZcsW3XvvvRo+fLi+/PJL9enTR3369NHXX399PvMBAAAswscwDKOyxZMmTdJnn32m//u//6twvWEYCg8P19/+9jeNHz9ekpSfn6/Q0FClpKRo0KBB+vbbbxUZGant27era9eukqTU1FTdcccd+umnnxQeHq4FCxbosccek8vlks1mM/e9atUq7d69W5I0cOBAFRQUaM2aNeb+Y2Ji1KVLFy1cuLDC/goLC1VYWGi+d7vdioiIUH5+vhwOR2WnoVIy3hxfrePVBOfw52u7BQAAzsntdisoKOicn99encn54IMP1LVrV91zzz0KCQnRNddco9dff91cv2/fPrlcLsXGxprLgoKCFB0drYyMDElSRkaGgoODzYAjSbGxsfL19dXnn39u1tx4441mwJGkuLg4ZWdn6+jRo2bN6fspqynbT0VmzpypoKAg8xUREeHN4QMAgDrEq5Czd+9eLViwQB06dND69es1evRo/b//9/+0ePFiSZLL5ZIkhYaGemwXGhpqrnO5XAoJCfFYX69ePTVp0sSjpqIxTt/HmWrK1ldk8uTJys/PN18HDhzw5vABAEAdUs+b4tLSUnXt2lXPPPOMJOmaa67R119/rYULFyohIeGCNFid7Ha77HZ7bbcBAABqgFdnclq0aKHIyEiPZZ06dVJOTo4kKSwsTJKUm5vrUZObm2uuCwsL0+HDhz3WFxcX69dff/WoqWiM0/dxppqy9QAA4OLmVci5/vrrlZ2d7bHsu+++U+vWrSVJbdu2VVhYmNLT0831brdbn3/+uZxOpyTJ6XQqLy9PmZmZZs2GDRtUWlqq6Ohos2bz5s06deqUWZOWlqbLL7/cvJPL6XR67Kespmw/AADg4uZVyElKStLWrVv1zDPP6Pvvv9eSJUv02muvKTExUZLk4+OjcePG6amnntIHH3ygnTt36v7771d4eLj69Okj6fczP7fddpsefPBBbdu2TZ999pnGjBmjQYMGKTw8XJJ03333yWazafjw4dq1a5eWLVumuXPnKjk52ezlkUceUWpqql544QXt3r1b06dP1xdffKExY8ZU09QAAIC6zKtrcq677jqtXLlSkydP1owZM9S2bVvNmTNHgwcPNmsmTJiggoICjRw5Unl5ebrhhhuUmpoqf39/s+add97RmDFjdOutt8rX11f9+vXTSy+9ZK4PCgrSRx99pMTEREVFRalZs2aaOnWqx7N0unfvriVLlmjKlCn6+9//rg4dOmjVqlW68sorz2c+AACARXj1nByrqex99lXBc3IAALgwLshzcgAAAOoKQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkr0LO9OnT5ePj4/Hq2LGjuf7kyZNKTExU06ZN1bBhQ/Xr10+5ubkeY+Tk5Cg+Pl4NGjRQSEiIHn30URUXF3vUbNy4Uddee63sdrvat2+vlJSUcr3MmzdPbdq0kb+/v6Kjo7Vt2zZvDgUAAFic12dyrrjiCh06dMh8ffrpp+a6pKQkrV69WitWrNCmTZt08OBB9e3b11xfUlKi+Ph4FRUVacuWLVq8eLFSUlI0depUs2bfvn2Kj49Xz549lZWVpXHjxmnEiBFav369WbNs2TIlJydr2rRp2rFjh66++mrFxcXp8OHDVZ0HAABgMT6GYRiVLZ4+fbpWrVqlrKyscuvy8/PVvHlzLVmyRP3795ck7d69W506dVJGRoZiYmK0bt069e7dWwcPHlRoaKgkaeHChZo4caKOHDkim82miRMnau3atfr666/NsQcNGqS8vDylpqZKkqKjo3XdddfplVdekSSVlpYqIiJCY8eO1aRJkyp98G63W0FBQcrPz5fD4aj0dpWR8eb4ah2vJjiHP1/bLQAAcE6V/fz2+kzOnj17FB4erksvvVSDBw9WTk6OJCkzM1OnTp1SbGysWduxY0e1atVKGRkZkqSMjAx17tzZDDiSFBcXJ7fbrV27dpk1p49RVlM2RlFRkTIzMz1qfH19FRsba9acSWFhodxut8cLAABYk1chJzo6WikpKUpNTdWCBQu0b98+9ejRQ8eOHZPL5ZLNZlNwcLDHNqGhoXK5XJIkl8vlEXDK1petO1uN2+3WiRMn9PPPP6ukpKTCmrIxzmTmzJkKCgoyXxEREd4cPgAAqEPqeVN8++23m3++6qqrFB0drdatW2v58uUKCAio9uaq2+TJk5WcnGy+d7vdBB0AACzqvG4hDw4O1mWXXabvv/9eYWFhKioqUl5enkdNbm6uwsLCJElhYWHl7rYqe3+uGofDoYCAADVr1kx+fn4V1pSNcSZ2u10Oh8PjBQAArOm8Qs7x48f1ww8/qEWLFoqKilL9+vWVnp5urs/OzlZOTo6cTqckyel0aufOnR53QaWlpcnhcCgyMtKsOX2MspqyMWw2m6KiojxqSktLlZ6ebtYAAAB4FXLGjx+vTZs2af/+/dqyZYvuvvtu+fn56d5771VQUJCGDx+u5ORkffLJJ8rMzNSwYcPkdDoVExMjSerVq5ciIyM1ZMgQ/fvf/9b69es1ZcoUJSYmym63S5JGjRqlvXv3asKECdq9e7fmz5+v5cuXKykpyewjOTlZr7/+uhYvXqxvv/1Wo0ePVkFBgYYNG1aNUwMAAOoyr67J+emnn3Tvvffql19+UfPmzXXDDTdo69atat68uSRp9uzZ8vX1Vb9+/VRYWKi4uDjNnz/f3N7Pz09r1qzR6NGj5XQ6FRgYqISEBM2YMcOsadu2rdauXaukpCTNnTtXLVu21BtvvKG4uDizZuDAgTpy5IimTp0ql8ulLl26KDU1tdzFyAAA4OLl1XNyrIbn5HjiOTkAgLrggj0nBwAAoC4g5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEuqV9sNAPjzm532XW234LWkv1xW2y0AqGWcyQEAAJZEyAEAAJZEyAEAAJbENTkAKiUm57XabsE7nzSVek6u7S4A1CJCDlDD6uJFvABQF/F1FQAAsCRCDgAAsCRCDgAAsCRCDgAAsCQuPAZqWJ27SwkA6ijO5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEs6r5Dz7LPPysfHR+PGjTOXnTx5UomJiWratKkaNmyofv36KTc312O7nJwcxcfHq0GDBgoJCdGjjz6q4uJij5qNGzfq2muvld1uV/v27ZWSklJu//PmzVObNm3k7++v6Ohobdu27XwOBwAAWEiVQ8727dv16quv6qqrrvJYnpSUpNWrV2vFihXatGmTDh48qL59+5rrS0pKFB8fr6KiIm3ZskWLFy9WSkqKpk6datbs27dP8fHx6tmzp7KysjRu3DiNGDFC69evN2uWLVum5ORkTZs2TTt27NDVV1+tuLg4HT58uKqHBAAALKRKIef48eMaPHiwXn/9dTVu3Nhcnp+frzfffFMvvviibrnlFkVFRWnRokXasmWLtm7dKkn66KOP9M033+jtt99Wly5ddPvtt+vJJ5/UvHnzVFRUJElauHCh2rZtqxdeeEGdOnXSmDFj1L9/f82ePdvc14svvqgHH3xQw4YNU2RkpBYuXKgGDRrorbfeOp/5AAAAFlGlkJOYmKj4+HjFxsZ6LM/MzNSpU6c8lnfs2FGtWrVSRkaGJCkjI0OdO3dWaGioWRMXFye3261du3aZNX8cOy4uzhyjqKhImZmZHjW+vr6KjY01aypSWFgot9vt8QIAANZUz9sNli5dqh07dmj79u3l1rlcLtlsNgUHB3ssDw0NlcvlMmtODzhl68vWna3G7XbrxIkTOnr0qEpKSiqs2b179xl7nzlzpp544onKHSiAOi1j7y/aWvxdbbfhlaS/XFbbLQCW4tWZnAMHDuiRRx7RO++8I39//wvV0wUzefJk5efnm68DBw7UdksAAOAC8SrkZGZm6vDhw7r22mtVr1491atXT5s2bdJLL72kevXqKTQ0VEVFRcrLy/PYLjc3V2FhYZKksLCwcndblb0/V43D4VBAQICaNWsmPz+/CmvKxqiI3W6Xw+HweAEAAGvyKuTceuut2rlzp7KyssxX165dNXjwYPPP9evXV3p6urlNdna2cnJy5HQ6JUlOp1M7d+70uAsqLS1NDodDkZGRZs3pY5TVlI1hs9kUFRXlUVNaWqr09HSzBgAAXNy8uianUaNGuvLKKz2WBQYGqmnTpuby4cOHKzk5WU2aNJHD4dDYsWPldDoVExMjSerVq5ciIyM1ZMgQzZo1Sy6XS1OmTFFiYqLsdrskadSoUXrllVc0YcIEPfDAA9qwYYOWL1+utWvXmvtNTk5WQkKCunbtqm7dumnOnDkqKCjQsGHDzmtCAACANXh94fG5zJ49W76+vurXr58KCwsVFxen+fPnm+v9/Py0Zs0ajR49Wk6nU4GBgUpISNCMGTPMmrZt22rt2rVKSkrS3Llz1bJlS73xxhuKi4szawYOHKgjR45o6tSpcrlc6tKli1JTU8tdjAwAAC5OPoZhGLXdRG1xu90KCgpSfn5+tV+fk/Hm+GodryY4hz9f2y1cFOriz0ZdtbXVyNpuwSvcXQVUTmU/v6v9TA4A/FnE5LxW2y1455OmUs/Jtd0FYBn8gk4AAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJPPEYddsnM2u7AwDAnxRncgAAgCVxJgd1WsbeX2q7BQDAnxRncgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCV5FXIWLFigq666Sg6HQw6HQ06nU+vWrTPXnzx5UomJiWratKkaNmyofv36KTc312OMnJwcxcfHq0GDBgoJCdGjjz6q4uJij5qNGzfq2muvld1uV/v27ZWSklKul3nz5qlNmzby9/dXdHS0tm3b5s2hAAAAi/Mq5LRs2VLPPvusMjMz9cUXX+iWW27RX//6V+3atUuSlJSUpNWrV2vFihXatGmTDh48qL59+5rbl5SUKD4+XkVFRdqyZYsWL16slJQUTZ061azZt2+f4uPj1bNnT2VlZWncuHEaMWKE1q9fb9YsW7ZMycnJmjZtmnbs2KGrr75acXFxOnz48PnOBwAAsAgfwzCM8xmgSZMmeu6559S/f381b95cS5YsUf/+/SVJu3fvVqdOnZSRkaGYmBitW7dOvXv31sGDBxUaGipJWrhwoSZOnKgjR47IZrNp4sSJWrt2rb7++mtzH4MGDVJeXp5SU1MlSdHR0bruuuv0yiuvSJJKS0sVERGhsWPHatKkSZXu3e12KygoSPn5+XI4HOczDeVkvDm+WserCc7hz9d2C16ri/MMnInz0qZSz8m13Qbwp1fZz+8qX5NTUlKipUuXqqCgQE6nU5mZmTp16pRiY2PNmo4dO6pVq1bKyMiQJGVkZKhz585mwJGkuLg4ud1u82xQRkaGxxhlNWVjFBUVKTMz06PG19dXsbGxZs2ZFBYWyu12e7wAAIA1eR1ydu7cqYYNG8put2vUqFFauXKlIiMj5XK5ZLPZFBwc7FEfGhoql8slSXK5XB4Bp2x92bqz1bjdbp04cUI///yzSkpKKqwpG+NMZs6cqaCgIPMVERHh7eEDAIA6op63G1x++eXKyspSfn6+3n33XSUkJGjTpk0XordqN3nyZCUnJ5vv3W43QQfAn0bG3l+0tfi72m7DK0l/uay2WwDOyOuQY7PZ1L59e0lSVFSUtm/frrlz52rgwIEqKipSXl6ex9mc3NxchYWFSZLCwsLK3QVVdvfV6TV/vCMrNzdXDodDAQEB8vPzk5+fX4U1ZWOcid1ul91u9/aQAQBAHXTez8kpLS1VYWGhoqKiVL9+faWnp5vrsrOzlZOTI6fTKUlyOp3auXOnx11QaWlpcjgcioyMNGtOH6OspmwMm82mqKgoj5rS0lKlp6ebNQAAAF6dyZk8ebJuv/12tWrVSseOHdOSJUu0ceNGrV+/XkFBQRo+fLiSk5PVpEkTORwOjR07Vk6nUzExMZKkXr16KTIyUkOGDNGsWbPkcrk0ZcoUJSYmmmdYRo0apVdeeUUTJkzQAw88oA0bNmj58uVau3at2UdycrISEhLUtWtXdevWTXPmzFFBQYGGDRtWjVMDAADqMq9CzuHDh3X//ffr0KFDCgoK0lVXXaX169frL3/5iyRp9uzZ8vX1Vb9+/VRYWKi4uDjNnz/f3N7Pz09r1qzR6NGj5XQ6FRgYqISEBM2YMcOsadu2rdauXaukpCTNnTtXLVu21BtvvKG4uDizZuDAgTpy5IimTp0ql8ulLl26KDU1tdzFyABQ18TkvFbbLXjnE257x5/XeT8npy7jOTmeeE4OAG/xbB/Uhgv+nBwAAIA/M0IOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJK9CzsyZM3XdddepUaNGCgkJUZ8+fZSdne1Rc/LkSSUmJqpp06Zq2LCh+vXrp9zcXI+anJwcxcfHq0GDBgoJCdGjjz6q4uJij5qNGzfq2muvld1uV/v27ZWSklKun3nz5qlNmzby9/dXdHS0tm3b5s3hAAAAC/Mq5GzatEmJiYnaunWr0tLSdOrUKfXq1UsFBQVmTVJSklavXq0VK1Zo06ZNOnjwoPr27WuuLykpUXx8vIqKirRlyxYtXrxYKSkpmjp1qlmzb98+xcfHq2fPnsrKytK4ceM0YsQIrV+/3qxZtmyZkpOTNW3aNO3YsUNXX3214uLidPjw4fOZDwAAYBE+hmEYVd34yJEjCgkJ0aZNm3TjjTcqPz9fzZs315IlS9S/f39J0u7du9WpUydlZGQoJiZG69atU+/evXXw4EGFhoZKkhYuXKiJEyfqyJEjstlsmjhxotauXauvv/7a3NegQYOUl5en1NRUSVJ0dLSuu+46vfLKK5Kk0tJSRUREaOzYsZo0aVKl+ne73QoKClJ+fr4cDkdVp6FCGW+Or9bxaoJz+PO13YLX6uI8A1bivLSp1HNybbeBi0xlP7/P65qc/Px8SVKTJk0kSZmZmTp16pRiY2PNmo4dO6pVq1bKyMiQJGVkZKhz585mwJGkuLg4ud1u7dq1y6w5fYyymrIxioqKlJmZ6VHj6+ur2NhYs6YihYWFcrvdHi8AAGBNVQ45paWlGjdunK6//npdeeWVkiSXyyWbzabg4GCP2tDQULlcLrPm9IBTtr5s3dlq3G63Tpw4oZ9//lklJSUV1pSNUZGZM2cqKCjIfEVERHh/4AAAoE6ocshJTEzU119/raVLl1ZnPxfU5MmTlZ+fb74OHDhQ2y0BAIALpF5VNhozZozWrFmjzZs3q2XLlubysLAwFRUVKS8vz+NsTm5ursLCwsyaP94FVXb31ek1f7wjKzc3Vw6HQwEBAfLz85Ofn1+FNWVjVMRut8tut3t/wAAAoM7x6kyOYRgaM2aMVq5cqQ0bNqht27Ye66OiolS/fn2lp6eby7Kzs5WTkyOn0ylJcjqd2rlzp8ddUGlpaXI4HIqMjDRrTh+jrKZsDJvNpqioKI+a0tJSpaenmzUAAODi5tWZnMTERC1ZskT/+te/1KhRI/P6l6CgIAUEBCgoKEjDhw9XcnKymjRpIofDobFjx8rpdComJkaS1KtXL0VGRmrIkCGaNWuWXC6XpkyZosTERPMsy6hRo/TKK69owoQJeuCBB7RhwwYtX75ca9euNXtJTk5WQkKCunbtqm7dumnOnDkqKCjQsGHDqmtuAABAHeZVyFmwYIEk6eabb/ZYvmjRIg0dOlSSNHv2bPn6+qpfv34qLCxUXFyc5s+fb9b6+flpzZo1Gj16tJxOpwIDA5WQkKAZM2aYNW3bttXatWuVlJSkuXPnqmXLlnrjjTcUFxdn1gwcOFBHjhzR1KlT5XK51KVLF6Wmppa7GBkAAFyczus5OXUdz8kBgPPDc3JQG2rkOTkAAAB/VoQcAABgSYQcAABgSYQcAABgSVV6GCAAAJKUsfcXbS3+rrbb8ErSXy6r7RZQQziTAwAALImQAwAALImvqwAA5yUm57XabsE7n/Bsn4sFZ3IAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAleR1yNm/erDvvvFPh4eHy8fHRqlWrPNYbhqGpU6eqRYsWCggIUGxsrPbs2eNR8+uvv2rw4MFyOBwKDg7W8OHDdfz4cY+ar776Sj169JC/v78iIiI0a9ascr2sWLFCHTt2lL+/vzp37qwPP/zQ28MBAAAW5XXIKSgo0NVXX6158+ZVuH7WrFl66aWXtHDhQn3++ecKDAxUXFycTp48adYMHjxYu3btUlpamtasWaPNmzdr5MiR5nq3261evXqpdevWyszM1HPPPafp06frtddeM2u2bNmie++9V8OHD9eXX36pPn36qE+fPvr666+9PSQAAGBBPoZhGFXe2MdHK1euVJ8+fST9fhYnPDxcf/vb3zR+/HhJUn5+vkJDQ5WSkqJBgwbp22+/VWRkpLZv366uXbtKklJTU3XHHXfop59+Unh4uBYsWKDHHntMLpdLNptNkjRp0iStWrVKu3fvliQNHDhQBQUFWrNmjdlPTEyMunTpooULF1aqf7fbraCgIOXn58vhcFR1GiqU8eb4ah0PAFA9nJc2lXpOru02cB4q+/ldrdfk7Nu3Ty6XS7GxseayoKAgRUdHKyMjQ5KUkZGh4OBgM+BIUmxsrHx9ffX555+bNTfeeKMZcCQpLi5O2dnZOnr0qFlz+n7Kasr2U5HCwkK53W6PFwAAsKZqDTkul0uSFBoa6rE8NDTUXOdyuRQSEuKxvl69emrSpIlHTUVjnL6PM9WUra/IzJkzFRQUZL4iIiK8PUQAAFBHXFR3V02ePFn5+fnm68CBA7XdEgAAuECqNeSEhYVJknJzcz2W5+bmmuvCwsJ0+PBhj/XFxcX69ddfPWoqGuP0fZyppmx9Rex2uxwOh8cLAABYU7WGnLZt2yosLEzp6enmMrfbrc8//1xOp1OS5HQ6lZeXp8zMTLNmw4YNKi0tVXR0tFmzefNmnTp1yqxJS0vT5ZdfrsaNG5s1p++nrKZsPwAA4OLmdcg5fvy4srKylJWVJen3i42zsrKUk5MjHx8fjRs3Tk899ZQ++OAD7dy5U/fff7/Cw8PNO7A6deqk2267TQ8++KC2bdumzz77TGPGjNGgQYMUHh4uSbrvvvtks9k0fPhw7dq1S8uWLdPcuXOVnJxs9vHII48oNTVVL7zwgnbv3q3p06friy++0JgxY85/VgAAQJ1Xz9sNvvjiC/Xs2dN8XxY8EhISlJKSogkTJqigoEAjR45UXl6ebrjhBqWmpsrf39/c5p133tGYMWN06623ytfXV/369dNLL71krg8KCtJHH32kxMRERUVFqVmzZpo6darHs3S6d++uJUuWaMqUKfr73/+uDh06aNWqVbryyiurNBEAAMBazus5OXUdz8kBgIsPz8mp+2rlOTkAAAB/FoQcAABgSYQcAABgSYQcAABgSYQcAABgSV7fQg4AQF2WsfcXbS3+rrbb8ErSXy6r7RbqJM7kAAAAS+JMDgDgohOT81ptt+CdT3i2T1VwJgcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSvdpuAAAAnF3G3l+kveNruw2vOC9tKvWcXKs9cCYHAABYUp0POfPmzVObNm3k7++v6Ohobdu2rbZbAgAAfwJ1OuQsW7ZMycnJmjZtmnbs2KGrr75acXFxOnz4cG23BgAAalmdDjkvvviiHnzwQQ0bNkyRkZFauHChGjRooLfeequ2WwMAALWszl54XFRUpMzMTE2e/N+Lmnx9fRUbG6uMjIwKtyksLFRhYaH5Pj8/X5Lkdrurvb+CE4XnLgIAwKLcBSelC/D5Kv33c9swjLPW1dmQ8/PPP6ukpEShoaEey0NDQ7V79+4Kt5k5c6aeeOKJcssjIiIuSI8AAFzcZlzQ0Y8dO6agoKAzrq+zIacqJk+erOTkZPN9aWmpfv31VzVt2lQ+Pj7Vth+3262IiAgdOHBADoej2sZFecx1zWGuawbzXHOY65pT3XNtGIaOHTum8PDws9bV2ZDTrFkz+fn5KTc312N5bm6uwsLCKtzGbrfLbrd7LAsODr5QLcrhcPAfTg1hrmsOc10zmOeaw1zXnOqc67OdwSlTZy88ttlsioqKUnp6urmstLRU6enpcjqdtdgZAAD4M6izZ3IkKTk5WQkJCeratau6deumOXPmqKCgQMOGDavt1gAAQC2r0yFn4MCBOnLkiKZOnSqXy6UuXbooNTW13MXINc1ut2vatGnlvhpD9WOuaw5zXTOY55rDXNec2pprH+Nc918BAADUQXX2mhwAAICzIeQAAABLIuQAAABLIuQAAABLIuQAAABLIuRU0bx589SmTRv5+/srOjpa27ZtO2v9ihUr1LFjR/n7+6tz58768MMPa6jTus+buX799dfVo0cPNW7cWI0bN1ZsbOw5/27wO29/psssXbpUPj4+6tOnz4Vt0EK8neu8vDwlJiaqRYsWstvtuuyyy/h/SCV5O9dz5szR5ZdfroCAAEVERCgpKUknT56soW7rps2bN+vOO+9UeHi4fHx8tGrVqnNus3HjRl177bWy2+1q3769UlJSLkxzBry2dOlSw2azGW+99Zaxa9cu48EHHzSCg4ON3NzcCus/++wzw8/Pz5g1a5bxzTffGFOmTDHq169v7Ny5s4Y7r3u8nev77rvPmDdvnvHll18a3377rTF06FAjKCjI+Omnn2q487rF23kus2/fPuOSSy4xevToYfz1r3+tmWbrOG/nurCw0Ojatatxxx13GJ9++qmxb98+Y+PGjUZWVlYNd173eDvX77zzjmG324133nnH2Ldvn7F+/XqjRYsWRlJSUg13Xrd8+OGHxmOPPWa8//77hiRj5cqVZ63fu3ev0aBBAyM5Odn45ptvjJdfftnw8/MzUlNTq703Qk4VdOvWzUhMTDTfl5SUGOHh4cbMmTMrrB8wYIARHx/vsSw6Otp46KGHLmifVuDtXP9RcXGx0ahRI2Px4sUXqkVLqMo8FxcXG927dzfeeOMNIyEhgZBTSd7O9YIFC4xLL73UKCoqqqkWLcPbuU5MTDRuueUWj2XJycnG9ddff0H7tJLKhJwJEyYYV1xxhceygQMHGnFxcdXeD19XeamoqEiZmZmKjY01l/n6+io2NlYZGRkVbpORkeFRL0lxcXFnrMfvqjLXf/Tbb7/p1KlTatKkyYVqs86r6jzPmDFDISEhGj58eE20aQlVmesPPvhATqdTiYmJCg0N1ZVXXqlnnnlGJSUlNdV2nVSVue7evbsyMzPNr7T27t2rDz/8UHfccUeN9HyxqMnPxDr9ax1qw88//6ySkpJyvzoiNDRUu3fvrnAbl8tVYb3L5bpgfVpBVeb6jyZOnKjw8PBy/0Hhv6oyz59++qnefPNNZWVl1UCH1lGVud67d682bNigwYMH68MPP9T333+vhx9+WKdOndK0adNqou06qSpzfd999+nnn3/WDTfcIMMwVFxcrFGjRunvf/97TbR80TjTZ6Lb7daJEycUEBBQbfviTA4s69lnn9XSpUu1cuVK+fv713Y7lnHs2DENGTJEr7/+upo1a1bb7VheaWmpQkJC9NprrykqKkoDBw7UY489poULF9Z2a5azceNGPfPMM5o/f7527Nih999/X2vXrtWTTz5Z262hijiT46VmzZrJz89Pubm5Hstzc3MVFhZW4TZhYWFe1eN3VZnrMs8//7yeffZZffzxx7rqqqsuZJt1nrfz/MMPP2j//v268847zWWlpaWSpHr16ik7O1vt2rW7sE3XUVX5mW7RooXq168vPz8/c1mnTp3kcrlUVFQkm812QXuuq6oy148//riGDBmiESNGSJI6d+6sgoICjRw5Uo899ph8fTkvUB3O9JnocDiq9SyOxJkcr9lsNkVFRSk9Pd1cVlpaqvT0dDmdzgq3cTqdHvWSlJaWdsZ6/K4qcy1Js2bN0pNPPqnU1FR17dq1Jlqt07yd544dO2rnzp3KysoyX3fddZd69uyprKwsRURE1GT7dUpVfqavv/56ff/992aQlKTvvvtOLVq0IOCcRVXm+rfffisXZMrCpcHvsq42NfqZWO2XMl8Eli5datjtdiMlJcX45ptvjJEjRxrBwcGGy+UyDMMwhgwZYkyaNMms/+yzz4x69eoZzz//vPHtt98a06ZN4xbySvJ2rp999lnDZrMZ7777rnHo0CHzdezYsdo6hDrB23n+I+6uqjxv5zonJ8do1KiRMWbMGCM7O9tYs2aNERISYjz11FO1dQh1hrdzPW3aNKNRo0bGP//5T2Pv3r3GRx99ZLRr184YMGBAbR1CnXDs2DHjyy+/NL788ktDkvHiiy8aX375pfHjjz8ahmEYkyZNMoYMGWLWl91C/uijjxrffvutMW/ePG4h/7N5+eWXjVatWhk2m83o1q2bsXXrVnPdTTfdZCQkJHjUL1++3LjssssMm81mXHHFFcbatWtruOO6y5u5bt26tSGp3GvatGk133gd4+3P9OkIOd7xdq63bNliREdHG3a73bj00kuNp59+2iguLq7hrusmb+b61KlTxvTp04127doZ/v7+RkREhPHwww8bR48erfnG65BPPvmkwv/vls1tQkKCcdNNN5XbpkuXLobNZjMuvfRSY9GiRRekNx/D4BwcAACwHq7JAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlvT/AWd2sAo9dihRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQJ9JREFUeJzt3XtYFfXe//8XB1kgusATIIlKWillmZi4LCuLpELbpuUhbyPzkIZ+E7aZ7gzNDratPFQeOorXXW4P7XSXGkaYehd4CHVnHuikYelCrWAZKSjM748u5ucSVBYixPh8XNdcl8y85zPv+UiuV8PM4GUYhiEAAACL8a7tBgAAAC4GQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg5QgYceekitW7eu1jFTU1Pl5eWl/fv3V+u4dc3+/fvl5eWl1NRUc93UqVPl5eVVe02doaIeL8Y+f2VeXl6aOnVqpWpbt26thx566KL2A1QFIQeoZs8//7xWrlxZ221cEubNm2eJUPHHH39o6tSpWr9+fW23claZmZmaOnWq8vPza7uVc8rPz1dISIi8vLz0/vvv13Y7qGWEHKCanS3kDBkyRMePH1erVq1qvqm/uMmTJ+v48eMe7/dXCjmtWrXS8ePHNWTIEI/3/eOPP/T000//pULO8ePHNXnyZPPrzMxMPf300xWGnJycHL355ps12N3ZpaSk6I8//qjtNvAXQcjBJaOwsLBWj+/j4yN/f/+/1I9lPGEYRpWCSGX4+vrK39//ooxdU7y8vOTv7y8fH5/abqVa+Pv7y9fXt1K1NptN9erVu8gdnd/XX3+t+fPn64knnqjtVvAXQciBJZXd47F792498MADatSokW666SZJ0rvvvqvo6GgFBASocePGGjhwoA4cOHDeMV966SV169ZNTZo0UUBAgKKjo8tdDvfy8lJhYaEWLVokLy8veXl5mfcqnHlPTq9evXT55ZdXeCyHw6HOnTu7ratq36cr62Hjxo165JFH1KRJE9ntdj344IP67bff3Gpbt26tXr16ae3atercubMCAgL0+uuvS/rzRwLjxo1TRESEbDab2rZtq3/+858qLS11GyM/P18PPfSQgoKCFBwcrISEhAqvBJztnpx3331XXbp0Uf369dWoUSPdfPPN+uSTT8z+du3apQ0bNphzfeutt7oduzp7PJ+K7sl56KGH1KBBA/3888/q06ePGjRooGbNmmn8+PEqKSkx92vWrJkk6emnnzbP5fT7Yfbu3av77rtPjRs3lr+/vzp37qwPP/zQ7fhlf7dffPGFkpOT1axZMwUGBuree+/VkSNH3Gq//PJLxcXFqWnTpgoICFBkZKQefvhht5rTe5g6daoef/xxSVJkZKTZY9n3ckX35FR2/pcsWaLo6Gg1bNhQdrtdHTp00Jw5cyo976d77LHHdO+996p79+5V2h/WU7mYDtRR999/v6644go9//zzMgxDzz33nJ566in1799fw4cP15EjR/Tqq6/q5ptv1vbt2xUcHHzWsebMmaN77rlHgwcPVnFxsZYsWaL7779fq1atUnx8vCTpf//3fzV8+HB16dJFI0eOlCS1adOmwvEGDBigBx98UFu3btUNN9xgrv/xxx+1adMmvfjii+a6C+m7ImPGjFFwcLCmTp2qnJwczZ8/Xz/++KPWr1/vFjZycnI0aNAgPfLIIxoxYoSuuuoq/fHHH7rlllv0888/65FHHlHLli2VmZmpSZMm6dChQ5o9e7akP6/8/O1vf9Pnn3+uUaNGqX379lqxYoUSEhIq1ePTTz+tqVOnqlu3bpo2bZr8/Py0efNmrVu3Tj179tTs2bM1duxYNWjQQE8++aQkKTQ0VJJqrMfKKCkpUVxcnGJiYvTSSy/p008/1csvv6w2bdpo9OjRatasmebPn6/Ro0fr3nvvVd++fSVJ1157rSRp165duvHGG3XZZZdp4sSJCgwM1LJly9SnTx/9+9//1r333ut2vLFjx6pRo0aaMmWK9u/fr9mzZ2vMmDFaunSpJOnw4cPq2bOnmjVrpokTJyo4OFj79+/XBx98cNZz6Nu3r7755hv961//0qxZs9S0aVNJMsPZmSo7/+np6Ro0aJBuv/12/fOf/5Qk7dmzR1988YUee+wxj+Z5+fLlyszM1J49ey75m/txGgOwoClTphiSjEGDBpnr9u/fb/j4+BjPPfecW+3OnTsNX19ft/UJCQlGq1at3Or++OMPt6+Li4uNa665xrjtttvc1gcGBhoJCQnlelq4cKEhydi3b59hGIZRUFBg2Gw24+9//7tb3YwZMwwvLy/jxx9/9Ljv8ynrITo62iguLnY7piTjP//5j7muVatWhiQjLS3NbYxnnnnGCAwMNL755hu39RMnTjR8fHyM3NxcwzAMY+XKlYYkY8aMGWbNqVOnjO7duxuSjIULF5rry/6+ynz77beGt7e3ce+99xolJSVuxyktLTX/fPXVVxu33HJLufO8GD2ez759+8rtk5CQYEgypk2b5lZ7/fXXG9HR0ebXR44cMSQZU6ZMKTfu7bffbnTo0ME4ceKEua60tNTo1q2bccUVV5jryv5uY2Nj3eYoKSnJ8PHxMfLz8w3DMIwVK1YYkoytW7ee83zO7OfFF190+/49XatWrdy+5ys7/4899phht9uNU6dOnbOX8/njjz+Mli1bGpMmTTIMwzA+++wzQ5KxfPnyCxoXdR8/roKljRo1yvzzBx98oNLSUvXv319Hjx41l7CwMF1xxRX67LPPzjlWQECA+efffvtNBQUF6t69u7Zt21al3ux2u+666y4tW7ZMhmGY65cuXaquXbuqZcuW1dJ3RUaOHOl2D8Xo0aPl6+urNWvWuNVFRkYqLi7Obd3y5cvVvXt3NWrUyK2f2NhYlZSUaOPGjZKkNWvWyNfXV6NHjzb39fHx0dixY8/b38qVK1VaWqqUlBR5e7v/M1WZe5pqokdPnP59KEndu3fXDz/8cN79fv31V61bt079+/fXsWPHzPP45ZdfFBcXp2+//VY///yz2z4jR450m6Pu3burpKREP/74oySZV/1WrVqlkydPXuCZVayy8x8cHKzCwkKlp6df0PFeeOEFnTx5Uv/4xz+qo31YCD+ugqVFRkaaf/72229lGIauuOKKCmvPd+PkqlWr9Oyzz2rHjh0qKioy11/IjcQDBgzQypUrlZWVpW7duun7779Xdna2eTm/OvquyJljNWjQQM2bNy93mf/0+Tu9n6+++uqsP6o4fPiwpD9/7Na8eXM1aNDAbftVV1113v6+//57eXt7Kyoq6ry1FamJHivL39+/XB+NGjUqdw9URb777jsZhqGnnnpKTz31VIU1hw8f1mWXXWZ+XRaOTz+WJPN4t9xyi/r166enn35as2bN0q233qo+ffrogQcekM1m8+jczqay8//oo49q2bJluuuuu3TZZZepZ8+e6t+/v+68885KH2v//v168cUXNXfu3HJ/jwAhB5Z2+tWX0tJSeXl56eOPP67wCZhz/QP5f//3f7rnnnt08803a968eWrevLnq1aunhQsXavHixVXur3fv3qpfv76WLVumbt26admyZfL29tb9999fLX1fqNPn7/R+7rjjDk2YMKHCfa688sqL1k9l/ZV6vJCnrcpu0h0/fny5K2pl2rZtW6njlV0tLHt/zKZNm/TRRx9p7dq1evjhh/Xyyy9r06ZN1fL9VNn5DwkJ0Y4dO7R27Vp9/PHH+vjjj7Vw4UI9+OCDWrRoUaWOlZKSossuu0y33nqrGdKdTqck6ciRI9q/f79atmxZ7oogLg2EHFwy2rRpI8MwFBkZ6fGH3L///W/5+/tr7dq1bv+3u3DhwnK1nlzZCQwMVK9evbR8+XLNnDlTS5cuVffu3RUeHl4tfZ/Nt99+qx49ephf//777zp06JDuvvvu8+7bpk0b/f7774qNjT1nXatWrZSRkaHff//d7YMzJyenUscoLS3V7t271bFjx7PWnW2ua6LH6nS28yh7+q5evXrnPRdPde3aVV27dtVzzz2nxYsXa/DgwVqyZImGDx/uUY8Vqez8S5Kfn5969+6t3r17q7S0VI8++qhef/11PfXUU+UCXEVyc3P13XffVfik4qOPPirpz6tYnt6cD2sg2uKS0bdvX/n4+Ojpp592uwdG+vP/cn/55Zez7uvj4yMvLy/zsV/pz8vkFb30LzAw0KNHkAcMGKCDBw/qrbfe0n//+18NGDCg2vo+mzfeeMPtfoz58+fr1KlTuuuuu867b//+/ZWVlaW1a9eW25afn69Tp05Jku6++26dOnVK8+fPN7eXlJTo1VdfPe8x+vTpI29vb02bNq3cI8enz8HZ5romeqxO9evXN3s7XUhIiG699Va9/vrrOnToULn9znw0vDJ+++23ct9HZUHy9B/DnikwMLDCHitS2fk/83vX29vbfKrsXL2c7tlnn9WKFSvclmeeeUaSNGHCBK1YscLsHZceruTgktGmTRs9++yzmjRpkvbv368+ffqoYcOG2rdvn1asWKGRI0dq/PjxFe4bHx+vmTNn6s4779QDDzygw4cPa+7cuWrbtq2++uort9ro6Gh9+umnmjlzpsLDwxUZGamYmJiz9nX33XerYcOGGj9+vHx8fNSvX79q6/tsiouLdfvtt6t///7KycnRvHnzdNNNN+mee+45776PP/64PvzwQ/Xq1UsPPfSQoqOjVVhYqJ07d+r999/X/v371bRpU/Xu3Vs33nijJk6cqP379ysqKkoffPCBCgoKznuMtm3b6sknn9Qzzzyj7t27q2/fvrLZbNq6davCw8M1ffp0SX/O9fz58/Xss8+qbdu2CgkJ0W233VYjPVangIAARUVFaenSpbryyivVuHFjXXPNNbrmmms0d+5c3XTTTerQoYNGjBihyy+/XHl5ecrKytJPP/2k//73vx4da9GiRZo3b57uvfdetWnTRseOHdObb74pu91+zit50dHRkqQnn3xSAwcOVL169dS7d+8KA0Rl53/48OH69ddfddttt6lFixb68ccf9eqrr6pjx45q3759pc6n7P1Xpyu7anPDDTeoT58+lRoHFlUrz3QBF1nZI8lHjhwpt+3f//63cdNNNxmBgYFGYGCg0a5dOyMxMdHIyckxayp6hPztt982rrjiCsNmsxnt2rUzFi5cWO7RZ8MwjL179xo333yzERAQYEgyH6098xHy0w0ePNh8/PdsKtP3+ZT1sGHDBmPkyJFGo0aNjAYNGhiDBw82fvnlF7faVq1aGfHx8RWOc+zYMWPSpElG27ZtDT8/P6Np06ZGt27djJdeesnt0fRffvnFGDJkiGG3242goCBjyJAhxvbt28/7CHmZd955x7j++usNm81mNGrUyLjllluM9PR0c7vT6TTi4+ONhg0bGpLcHiev7h7P52yPkAcGBparreh8MzMzjejoaMPPz6/c49vff/+98eCDDxphYWFGvXr1jMsuu8zo1auX8f7775s1ZX+3Zz4aXvY49WeffWYYhmFs27bNGDRokNGyZUvDZrMZISEhRq9evYwvv/zSbb8zezCMPx8Nv+yyywxvb2+37+UzHyE3jMrN//vvv2/07NnTCAkJMfz8/IyWLVsajzzyiHHo0KGzTXOl8Ag5yngZxhnXLQFYVmpqqoYOHaqtW7eWe6MyAFgN9+QAAABL4p4cwAKOHz9+3vtIGjduXEPdWEtxcbF+/fXXc9YEBQVV+Lg9LkzZo+BnExAQoKCgoBrqBnURIQewgKVLl2ro0KHnrKnKm5EhZWZmuj1uX5GFCxeW+wWVuHDNmzc/5/aEhAS3X4gKnIl7cgALOHTokHbt2nXOmujoaPPtt6i83377TdnZ2eesufrqq8/7gQzPffrpp+fcHh4eXuW3YuPSQMgBAACWxI3HAADAki7pe3JKS0t18OBBNWzY8IJ+ySIAAKg5hmHo2LFjCg8PP+fvJbukQ87BgwcVERFR220AAIAqOHDggFq0aHHW7Zd0yGnYsKGkPyfJbrfXcjcAAKAyXC6XIiIizM/xs7mkQ07Zj6jsdjshBwCAOuZ8t5pw4zEAALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAk39puwLI+m17bHXiux6Ta7gAAgGrDlRwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJvCfnIsn64ZfabsFjjh613QEAANWHKzkAAMCSCDkAAMCSPAo5rVu3lpeXV7klMTFRknTixAklJiaqSZMmatCggfr166e8vDy3MXJzcxUfH6/69esrJCREjz/+uE6dOuVWs379enXq1Ek2m01t27ZVampquV7mzp2r1q1by9/fXzExMdqyZYuHpw4AAKzMo5CzdetWHTp0yFzS09MlSffff78kKSkpSR999JGWL1+uDRs26ODBg+rbt6+5f0lJieLj41VcXKzMzEwtWrRIqampSklJMWv27dun+Ph49ejRQzt27NC4ceM0fPhwrV271qxZunSpkpOTNWXKFG3btk3XXXed4uLidPjw4QuaDAAAYB1ehmEYVd153LhxWrVqlb799lu5XC41a9ZMixcv1n333SdJ2rt3r9q3b6+srCx17dpVH3/8sXr16qWDBw8qNDRUkrRgwQI98cQTOnLkiPz8/PTEE09o9erV+vrrr83jDBw4UPn5+UpLS5MkxcTE6IYbbtBrr70mSSotLVVERITGjh2riRMnVrp/l8uloKAgFRQUyG63V3UaKpT19vhqHa8mOIa9VNstAABwXpX9/K7yPTnFxcV699139fDDD8vLy0vZ2dk6efKkYmNjzZp27dqpZcuWysrKkiRlZWWpQ4cOZsCRpLi4OLlcLu3atcusOX2MspqyMYqLi5Wdne1W4+3trdjYWLPmbIqKiuRyudwWAABgTVUOOStXrlR+fr4eeughSZLT6ZSfn5+Cg4Pd6kJDQ+V0Os2a0wNO2faybeeqcblcOn78uI4ePaqSkpIKa8rGOJvp06crKCjIXCIiIjw6ZwAAUHdUOeS8/fbbuuuuuxQeHl6d/VxUkyZNUkFBgbkcOHCgtlsCAAAXSZVeBvjjjz/q008/1QcffGCuCwsLU3FxsfLz892u5uTl5SksLMysOfMpqLKnr06vOfOJrLy8PNntdgUEBMjHx0c+Pj4V1pSNcTY2m002m82zkwUAAHVSla7kLFy4UCEhIYqPjzfXRUdHq169esrIyDDX5eTkKDc3Vw6HQ5LkcDi0c+dOt6eg0tPTZbfbFRUVZdacPkZZTdkYfn5+io6OdqspLS1VRkaGWQMAAODxlZzS0lItXLhQCQkJ8vX9/3cPCgrSsGHDlJycrMaNG8tut2vs2LFyOBzq2rWrJKlnz56KiorSkCFDNGPGDDmdTk2ePFmJiYnmFZZRo0bptdde04QJE/Twww9r3bp1WrZsmVavXm0eKzk5WQkJCercubO6dOmi2bNnq7CwUEOHDr3Q+QAAABbhccj59NNPlZubq4cffrjctlmzZsnb21v9+vVTUVGR4uLiNG/ePHO7j4+PVq1apdGjR8vhcCgwMFAJCQmaNm2aWRMZGanVq1crKSlJc+bMUYsWLfTWW28pLi7OrBkwYICOHDmilJQUOZ1OdezYUWlpaeVuRgYAAJeuC3pPTl3He3Lc8Z4cAEBdcNHfkwMAAPBXRsgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACW5HHI+fnnn/U///M/atKkiQICAtShQwd9+eWX5nbDMJSSkqLmzZsrICBAsbGx+vbbb93G+PXXXzV48GDZ7XYFBwdr2LBh+v33391qvvrqK3Xv3l3+/v6KiIjQjBkzyvWyfPlytWvXTv7+/urQoYPWrFnj6ekAAACL8ijk/Pbbb7rxxhtVr149ffzxx9q9e7defvllNWrUyKyZMWOGXnnlFS1YsECbN29WYGCg4uLidOLECbNm8ODB2rVrl9LT07Vq1Spt3LhRI0eONLe7XC717NlTrVq1UnZ2tl588UVNnTpVb7zxhlmTmZmpQYMGadiwYdq+fbv69OmjPn366Ouvv76Q+QAAABbhZRiGUdniiRMn6osvvtD//d//VbjdMAyFh4fr73//u8aPHy9JKigoUGhoqFJTUzVw4EDt2bNHUVFR2rp1qzp37ixJSktL0913362ffvpJ4eHhmj9/vp588kk5nU75+fmZx165cqX27t0rSRowYIAKCwu1atUq8/hdu3ZVx44dtWDBgkqdj8vlUlBQkAoKCmS32ys7DZWS9fb4ah2vJjiGvVTbLQAAcF6V/fz26ErOhx9+qM6dO+v+++9XSEiIrr/+er355pvm9n379snpdCo2NtZcFxQUpJiYGGVlZUmSsrKyFBwcbAYcSYqNjZW3t7c2b95s1tx8881mwJGkuLg45eTk6LfffjNrTj9OWU3ZcSpSVFQkl8vltgAAAGvyKOT88MMPmj9/vq644gqtXbtWo0eP1v/7f/9PixYtkiQ5nU5JUmhoqNt+oaGh5jan06mQkBC37b6+vmrcuLFbTUVjnH6Ms9WUba/I9OnTFRQUZC4RERGenD4AAKhDPAo5paWl6tSpk55//nldf/31GjlypEaMGFHpHw/VtkmTJqmgoMBcDhw4UNstAQCAi8SjkNO8eXNFRUW5rWvfvr1yc3MlSWFhYZKkvLw8t5q8vDxzW1hYmA4fPuy2/dSpU/r111/daioa4/RjnK2mbHtFbDab7Ha72wIAAKzJo5Bz4403Kicnx23dN998o1atWkmSIiMjFRYWpoyMDHO7y+XS5s2b5XA4JEkOh0P5+fnKzs42a9atW6fS0lLFxMSYNRs3btTJkyfNmvT0dF111VXmk1wOh8PtOGU1ZccBAACXNo9CTlJSkjZt2qTnn39e3333nRYvXqw33nhDiYmJkiQvLy+NGzdOzz77rD788EPt3LlTDz74oMLDw9WnTx9Jf175ufPOOzVixAht2bJFX3zxhcaMGaOBAwcqPDxckvTAAw/Iz89Pw4YN065du7R06VLNmTNHycnJZi+PPfaY0tLS9PLLL2vv3r2aOnWqvvzyS40ZM6aapgYAANRlvp4U33DDDVqxYoUmTZqkadOmKTIyUrNnz9bgwYPNmgkTJqiwsFAjR45Ufn6+brrpJqWlpcnf39+see+99zRmzBjdfvvt8vb2Vr9+/fTKK6+Y24OCgvTJJ58oMTFR0dHRatq0qVJSUtzepdOtWzctXrxYkydP1j/+8Q9dccUVWrlypa655poLmQ8AAGARHr0nx2p4T4473pMDAKgLLsp7cgAAAOoKQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAk39puALjUzEr/prZbqJKkO66s7RYAwCNcyQEAAJbkUciZOnWqvLy83JZ27dqZ20+cOKHExEQ1adJEDRo0UL9+/ZSXl+c2Rm5uruLj41W/fn2FhITo8ccf16lTp9xq1q9fr06dOslms6lt27ZKTU0t18vcuXPVunVr+fv7KyYmRlu2bPHkVAAAgMV5fCXn6quv1qFDh8zl888/N7clJSXpo48+0vLly7VhwwYdPHhQffv2NbeXlJQoPj5excXFyszM1KJFi5SamqqUlBSzZt++fYqPj1ePHj20Y8cOjRs3TsOHD9fatWvNmqVLlyo5OVlTpkzRtm3bdN111ykuLk6HDx+u6jwAAACL8Tjk+Pr6KiwszFyaNm0qSSooKNDbb7+tmTNn6rbbblN0dLQWLlyozMxMbdq0SZL0ySefaPfu3Xr33XfVsWNH3XXXXXrmmWc0d+5cFRcXS5IWLFigyMhIvfzyy2rfvr3GjBmj++67T7NmzTJ7mDlzpkaMGKGhQ4cqKipKCxYsUP369fXOO+9Ux5wAAAAL8DjkfPvttwoPD9fll1+uwYMHKzc3V5KUnZ2tkydPKjY21qxt166dWrZsqaysLElSVlaWOnTooNDQULMmLi5OLpdLu3btMmtOH6OspmyM4uJiZWdnu9V4e3srNjbWrDmboqIiuVwutwUAAFiTRyEnJiZGqampSktL0/z587Vv3z51795dx44dk9PplJ+fn4KDg932CQ0NldPplCQ5nU63gFO2vWzbuWpcLpeOHz+uo0ePqqSkpMKasjHOZvr06QoKCjKXiIgIT04fAADUIR49Qn7XXXeZf7722msVExOjVq1aadmyZQoICKj25qrbpEmTlJycbH7tcrkIOqhxXXPfqO0WPLap5cjabgEAPHZBj5AHBwfryiuv1HfffaewsDAVFxcrPz/frSYvL09hYWGSpLCwsHJPW5V9fb4au92ugIAANW3aVD4+PhXWlI1xNjabTXa73W0BAADWdEEh5/fff9f333+v5s2bKzo6WvXq1VNGRoa5PScnR7m5uXI4HJIkh8OhnTt3uj0FlZ6eLrvdrqioKLPm9DHKasrG8PPzU3R0tFtNaWmpMjIyzBoAAACPQs748eO1YcMG7d+/X5mZmbr33nvl4+OjQYMGKSgoSMOGDVNycrI+++wzZWdna+jQoXI4HOrataskqWfPnoqKitKQIUP03//+V2vXrtXkyZOVmJgom80mSRo1apR++OEHTZgwQXv37tW8efO0bNkyJSUlmX0kJyfrzTff1KJFi7Rnzx6NHj1ahYWFGjp0aDVODQAAqMs8uifnp59+0qBBg/TLL7+oWbNmuummm7Rp0yY1a9ZMkjRr1ix5e3urX79+KioqUlxcnObNm2fu7+Pjo1WrVmn06NFyOBwKDAxUQkKCpk2bZtZERkZq9erVSkpK0pw5c9SiRQu99dZbiouLM2sGDBigI0eOKCUlRU6nUx07dlRaWlq5m5EBAMCly8swDKO2m6gtLpdLQUFBKigoqPb7c7LeHl+t49UEx7CXaruFS0Jd/N7Y1HIkv7sKwF9GZT+/+QWdqNPq4i+77FrbDQDAJYKQgzqtLj6ODQCoGfwWcgAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEm+td0AgLphVvo3td2Cx5LuuLK2WwBQi7iSAwAALImQAwAALImQAwAALIl7cgCcV9fcN2q7BY9tajmytlsAUMu4kgMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACzpgkLOCy+8IC8vL40bN85cd+LECSUmJqpJkyZq0KCB+vXrp7y8PLf9cnNzFR8fr/r16yskJESPP/64Tp065Vazfv16derUSTabTW3btlVqamq548+dO1etW7eWv7+/YmJitGXLlgs5HQAAYCFVDjlbt27V66+/rmuvvdZtfVJSkj766CMtX75cGzZs0MGDB9W3b19ze0lJieLj41VcXKzMzEwtWrRIqampSklJMWv27dun+Ph49ejRQzt27NC4ceM0fPhwrV271qxZunSpkpOTNWXKFG3btk3XXXed4uLidPjw4aqeEgAAsJAqhZzff/9dgwcP1ptvvqlGjRqZ6wsKCvT2229r5syZuu222xQdHa2FCxcqMzNTmzZtkiR98skn2r17t95991117NhRd911l5555hnNnTtXxcXFkqQFCxYoMjJSL7/8stq3b68xY8bovvvu06xZs8xjzZw5UyNGjNDQoUMVFRWlBQsWqH79+nrnnXfO2ndRUZFcLpfbAgAArKlKIScxMVHx8fGKjY11W5+dna2TJ0+6rW/Xrp1atmyprKwsSVJWVpY6dOig0NBQsyYuLk4ul0u7du0ya84cOy4uzhyjuLhY2dnZbjXe3t6KjY01ayoyffp0BQUFmUtERERVTh8AANQBHoecJUuWaNu2bZo+fXq5bU6nU35+fgoODnZbHxoaKqfTadacHnDKtpdtO1eNy+XS8ePHdfToUZWUlFRYUzZGRSZNmqSCggJzOXDgQOVOGgAA1Dm+nhQfOHBAjz32mNLT0+Xv73+xerpobDabbDZbbbcBAABqgEdXcrKzs3X48GF16tRJvr6+8vX11YYNG/TKK6/I19dXoaGhKi4uVn5+vtt+eXl5CgsLkySFhYWVe9qq7Ovz1djtdgUEBKhp06by8fGpsKZsDAAAcGnzKOTcfvvt2rlzp3bs2GEunTt31uDBg80/16tXTxkZGeY+OTk5ys3NlcPhkCQ5HA7t3LnT7Smo9PR02e12RUVFmTWnj1FWUzaGn5+foqOj3WpKS0uVkZFh1gAAgEubRz+uatiwoa655hq3dYGBgWrSpIm5ftiwYUpOTlbjxo1lt9s1duxYORwOde3aVZLUs2dPRUVFaciQIZoxY4acTqcmT56sxMRE80dJo0aN0muvvaYJEybo4Ycf1rp167Rs2TKtXr3aPG5ycrISEhLUuXNndenSRbNnz1ZhYaGGDh16QRMCAACswaOQUxmzZs2St7e3+vXrp6KiIsXFxWnevHnmdh8fH61atUqjR4+Ww+FQYGCgEhISNG3aNLMmMjJSq1evVlJSkubMmaMWLVrorbfeUlxcnFkzYMAAHTlyRCkpKXI6nerYsaPS0tLK3YwMAAAuTV6GYRi13URtcblcCgoKUkFBgex2e7WOnfX2+GodryY4hr1U2y14rC7OM2rGppYjlXTHlbXdBoCLoLKf3/zuKgAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEm+td0AAFwss9K/qe0WPJZ0x5W13QJgGVzJAQAAlkTIAQAAlkTIAQAAlkTIAQAAlsSNxwAsqWvuG7Xdgsc2tRxZ2y0AlsKVHAAAYElcyYEp6+3xtd0CAADVhis5AADAkjwKOfPnz9e1114ru90uu90uh8Ohjz/+2Nx+4sQJJSYmqkmTJmrQoIH69eunvLw8tzFyc3MVHx+v+vXrKyQkRI8//rhOnTrlVrN+/Xp16tRJNptNbdu2VWpqarle5s6dq9atW8vf318xMTHasmWLJ6cCAAAszqOQ06JFC73wwgvKzs7Wl19+qdtuu01/+9vftGvXLklSUlKSPvroIy1fvlwbNmzQwYMH1bdvX3P/kpISxcfHq7i4WJmZmVq0aJFSU1OVkpJi1uzbt0/x8fHq0aOHduzYoXHjxmn48OFau3atWbN06VIlJydrypQp2rZtm6677jrFxcXp8OHDFzofAADAIrwMwzAuZIDGjRvrxRdf1H333admzZpp8eLFuu+++yRJe/fuVfv27ZWVlaWuXbvq448/Vq9evXTw4EGFhoZKkhYsWKAnnnhCR44ckZ+fn5544gmtXr1aX3/9tXmMgQMHKj8/X2lpaZKkmJgY3XDDDXrttdckSaWlpYqIiNDYsWM1ceLESvfucrkUFBSkgoIC2e32C5mGcri/BYCnNrUcya91ACqhsp/fVb4np6SkREuWLFFhYaEcDoeys7N18uRJxcbGmjXt2rVTy5YtlZWVJUnKyspShw4dzIAjSXFxcXK5XObVoKysLLcxymrKxiguLlZ2drZbjbe3t2JjY82asykqKpLL5XJbAACANXkccnbu3KkGDRrIZrNp1KhRWrFihaKiouR0OuXn56fg4GC3+tDQUDmdTkmS0+l0Czhl28u2navG5XLp+PHjOnr0qEpKSiqsKRvjbKZPn66goCBziYiI8PT0AQBAHeFxyLnqqqu0Y8cObd68WaNHj1ZCQoJ27959MXqrdpMmTVJBQYG5HDhwoLZbAgAAF4nH78nx8/NT27ZtJUnR0dHaunWr5syZowEDBqi4uFj5+fluV3Py8vIUFhYmSQoLCyv3FFTZ01en15z5RFZeXp7sdrsCAgLk4+MjHx+fCmvKxjgbm80mm83m6SkDAIA66ILfk1NaWqqioiJFR0erXr16ysjIMLfl5OQoNzdXDodDkuRwOLRz5063p6DS09Nlt9sVFRVl1pw+RllN2Rh+fn6Kjo52qyktLVVGRoZZAwAA4NGVnEmTJumuu+5Sy5YtdezYMS1evFjr16/X2rVrFRQUpGHDhik5OVmNGzeW3W7X2LFj5XA41LVrV0lSz549FRUVpSFDhmjGjBlyOp2aPHmyEhMTzSsso0aN0muvvaYJEybo4Ycf1rp167Rs2TKtXr3a7CM5OVkJCQnq3LmzunTpotmzZ6uwsFBDhw6txqkBAAB1mUch5/Dhw3rwwQd16NAhBQUF6dprr9XatWt1xx13SJJmzZolb29v9evXT0VFRYqLi9O8efPM/X18fLRq1SqNHj1aDodDgYGBSkhI0LRp08yayMhIrV69WklJSZozZ45atGiht956S3FxcWbNgAEDdOTIEaWkpMjpdKpjx45KS0srdzMyAAC4dF3we3LqMt6TA+CvhPfkAJVz0d+TAwAA8FdGyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJbkUciZPn26brjhBjVs2FAhISHq06ePcnJy3GpOnDihxMRENWnSRA0aNFC/fv2Ul5fnVpObm6v4+HjVr19fISEhevzxx3Xq1Cm3mvXr16tTp06y2Wxq27atUlNTy/Uzd+5ctW7dWv7+/oqJidGWLVs8OR0AAGBhHoWcDRs2KDExUZs2bVJ6erpOnjypnj17qrCw0KxJSkrSRx99pOXLl2vDhg06ePCg+vbta24vKSlRfHy8iouLlZmZqUWLFik1NVUpKSlmzb59+xQfH68ePXpox44dGjdunIYPH661a9eaNUuXLlVycrKmTJmibdu26brrrlNcXJwOHz58IfMBAAAswsswDKOqOx85ckQhISHasGGDbr75ZhUUFKhZs2ZavHix7rvvPknS3r171b59e2VlZalr1676+OOP1atXLx08eFChoaGSpAULFuiJJ57QkSNH5OfnpyeeeEKrV6/W119/bR5r4MCBys/PV1pamiQpJiZGN9xwg1577TVJUmlpqSIiIjR27FhNnDixUv27XC4FBQWpoKBAdru9qtNQoay3x1freACsb1PLkUq648rabgP4y6vs5/cF3ZNTUFAgSWrcuLEkKTs7WydPnlRsbKxZ065dO7Vs2VJZWVmSpKysLHXo0MEMOJIUFxcnl8ulXbt2mTWnj1FWUzZGcXGxsrOz3Wq8vb0VGxtr1lSkqKhILpfLbQEAANZU5ZBTWlqqcePG6cYbb9Q111wjSXI6nfLz81NwcLBbbWhoqJxOp1lzesAp21627Vw1LpdLx48f19GjR1VSUlJhTdkYFZk+fbqCgoLMJSIiwvMTBwAAdUKVQ05iYqK+/vprLVmypDr7uagmTZqkgoICczlw4EBttwQAAC4S36rsNGbMGK1atUobN25UixYtzPVhYWEqLi5Wfn6+29WcvLw8hYWFmTVnPgVV9vTV6TVnPpGVl5cnu92ugIAA+fj4yMfHp8KasjEqYrPZZLPZPD9hAABQ53h0JccwDI0ZM0YrVqzQunXrFBkZ6bY9Ojpa9erVU0ZGhrkuJydHubm5cjgckiSHw6GdO3e6PQWVnp4uu92uqKgos+b0Mcpqysbw8/NTdHS0W01paakyMjLMGgAAcGnz6EpOYmKiFi9erP/85z9q2LChef9LUFCQAgICFBQUpGHDhik5OVmNGzeW3W7X2LFj5XA41LVrV0lSz549FRUVpSFDhmjGjBlyOp2aPHmyEhMTzasso0aN0muvvaYJEybo4Ycf1rp167Rs2TKtXr3a7CU5OVkJCQnq3LmzunTpotmzZ6uwsFBDhw6trrkBgBo3K/2b2m7BYzwRhr8qj0LO/PnzJUm33nqr2/qFCxfqoYcekiTNmjVL3t7e6tevn4qKihQXF6d58+aZtT4+Plq1apVGjx4th8OhwMBAJSQkaNq0aWZNZGSkVq9eraSkJM2ZM0ctWrTQW2+9pbi4OLNmwIABOnLkiFJSUuR0OtWxY0elpaWVuxkZAABcmi7oPTl1He/JAfBXsqnlyNpuoUq4koOaVtnP7yrdeAwAqH5dc9+o7RY8VleDGS4N/IJOAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSR6HnI0bN6p3794KDw+Xl5eXVq5c6bbdMAylpKSoefPmCggIUGxsrL799lu3ml9//VWDBw+W3W5XcHCwhg0bpt9//92t5quvvlL37t3l7++viIgIzZgxo1wvy5cvV7t27eTv768OHTpozZo1np4OAACwKI9DTmFhoa677jrNnTu3wu0zZszQK6+8ogULFmjz5s0KDAxUXFycTpw4YdYMHjxYu3btUnp6ulatWqWNGzdq5MiR5naXy6WePXuqVatWys7O1osvvqipU6fqjTfeMGsyMzM1aNAgDRs2TNu3b1efPn3Up08fff31156eEgAAsCAvwzCMKu/s5aUVK1aoT58+kv68ihMeHq6///3vGj9+vCSpoKBAoaGhSk1N1cCBA7Vnzx5FRUVp69at6ty5syQpLS1Nd999t3766SeFh4dr/vz5evLJJ+V0OuXn5ydJmjhxolauXKm9e/dKkgYMGKDCwkKtWrXK7Kdr167q2LGjFixYUKn+XS6XgoKCVFBQILvdXtVpqFDW2+OrdTwA+Cva1HKkku64srbbwCWmsp/f1XpPzr59++R0OhUbG2uuCwoKUkxMjLKysiRJWVlZCg4ONgOOJMXGxsrb21ubN282a26++WYz4EhSXFyccnJy9Ntvv5k1px+nrKbsOBUpKiqSy+VyWwAAgDVVa8hxOp2SpNDQULf1oaGh5jan06mQkBC37b6+vmrcuLFbTUVjnH6Ms9WUba/I9OnTFRQUZC4RERGeniIAAKgjLqmnqyZNmqSCggJzOXDgQG23BAAALpJqDTlhYWGSpLy8PLf1eXl55rawsDAdPnzYbfupU6f066+/utVUNMbpxzhbTdn2ithsNtntdrcFAABYU7WGnMjISIWFhSkjI8Nc53K5tHnzZjkcDkmSw+FQfn6+srOzzZp169aptLRUMTExZs3GjRt18uRJsyY9PV1XXXWVGjVqZNacfpyymrLjAACAS5vHIef333/Xjh07tGPHDkl/3my8Y8cO5ebmysvLS+PGjdOzzz6rDz/8UDt37tSDDz6o8PBw8wms9u3b684779SIESO0ZcsWffHFFxozZowGDhyo8PBwSdIDDzwgPz8/DRs2TLt27dLSpUs1Z84cJScnm3089thjSktL08svv6y9e/dq6tSp+vLLLzVmzJgLnxUAAFDn+Xq6w5dffqkePXqYX5cFj4SEBKWmpmrChAkqLCzUyJEjlZ+fr5tuuklpaWny9/c393nvvfc0ZswY3X777fL29la/fv30yiuvmNuDgoL0ySefKDExUdHR0WratKlSUlLc3qXTrVs3LV68WJMnT9Y//vEPXXHFFVq5cqWuueaaKk0EAACwlgt6T05dx3tyAODC8J4c1IbKfn57fCUHAIDTzUr/prZb8BjB7NJwST1CDgAALh1cyQEAVFnX3DfOX/SX9FJtN4AawJUcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSb613QAAADUt6+3xtd2CxxzDXqrtFuocruQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLqvMhZ+7cuWrdurX8/f0VExOjLVu21HZLAADgL6BOh5ylS5cqOTlZU6ZM0bZt23TdddcpLi5Ohw8fru3WAABALavTIWfmzJkaMWKEhg4dqqioKC1YsED169fXO++8U9utAQCAWlZnf61DcXGxsrOzNWnSJHOdt7e3YmNjlZWVVeE+RUVFKioqMr8uKCiQJLlcrmrvr/B40fmLAACopE9fG1vbLXisy4PPXZRxyz63DcM4Z12dDTlHjx5VSUmJQkND3daHhoZq7969Fe4zffp0Pf300+XWR0REXJQeAQC4pI197aIOf+zYMQUFBZ11e50NOVUxadIkJScnm1+Xlpbq119/VZMmTeTl5VVtx3G5XIqIiNCBAwdkt9urbVycHXNes5jvmsV81zzmvGZ5Ot+GYejYsWMKDw8/Z12dDTlNmzaVj4+P8vLy3Nbn5eUpLCyswn1sNptsNpvbuuDg4IvVoux2O/9x1DDmvGYx3zWL+a55zHnN8mS+z3UFp0ydvfHYz89P0dHRysjIMNeVlpYqIyNDDoejFjsDAAB/BXX2So4kJScnKyEhQZ07d1aXLl00e/ZsFRYWaujQobXdGgAAqGV1OuQMGDBAR44cUUpKipxOpzp27Ki0tLRyNyPXNJvNpilTppT70RguHua8ZjHfNYv5rnnMec26WPPtZZzv+SsAAIA6qM7ekwMAAHAuhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhJwqmjt3rlq3bi1/f3/FxMRoy5Yt56xfvny52rVrJ39/f3Xo0EFr1qypoU6tw5M5f/PNN9W9e3c1atRIjRo1Umxs7Hn/juDO0+/xMkuWLJGXl5f69OlzcRu0GE/nOz8/X4mJiWrevLlsNpuuvPJK/l3xkKdzPnv2bF111VUKCAhQRESEkpKSdOLEiRrqtm7buHGjevfurfDwcHl5eWnlypXn3Wf9+vXq1KmTbDab2rZtq9TUVM8PbMBjS5YsMfz8/Ix33nnH2LVrlzFixAgjODjYyMvLq7D+iy++MHx8fIwZM2YYu3fvNiZPnmzUq1fP2LlzZw13Xnd5OucPPPCAMXfuXGP79u3Gnj17jIceesgICgoyfvrppxruvG7ydL7L7Nu3z7jsssuM7t27G3/7299qplkL8HS+i4qKjM6dOxt333238fnnnxv79u0z1q9fb+zYsaOGO6+7PJ3z9957z7DZbMZ7771n7Nu3z1i7dq3RvHlzIykpqYY7r5vWrFljPPnkk8YHH3xgSDJWrFhxzvoffvjBqF+/vpGcnGzs3r3bePXVVw0fHx8jLS3No+MScqqgS5cuRmJiovl1SUmJER4ebkyfPr3C+v79+xvx8fFu62JiYoxHHnnkovZpJZ7O+ZlOnTplNGzY0Fi0aNHFatFSqjLfp06dMrp162a89dZbRkJCAiHHA57O9/z5843LL7/cKC4urqkWLcfTOU9MTDRuu+02t3XJycnGjTfeeFH7tKLKhJwJEyYYV199tdu6AQMGGHFxcR4dix9Xeai4uFjZ2dmKjY0113l7eys2NlZZWVkV7pOVleVWL0lxcXFnrYe7qsz5mf744w+dPHlSjRs3vlhtWkZV53vatGkKCQnRsGHDaqJNy6jKfH/44YdyOBxKTExUaGiorrnmGj3//PMqKSmpqbbrtKrMebdu3ZSdnW3+SOuHH37QmjVrdPfdd9dIz5ea6vrcrNO/1qE2HD16VCUlJeV+dURoaKj27t1b4T5Op7PCeqfTedH6tJKqzPmZnnjiCYWHh5f7jwblVWW+P//8c7399tvasWNHDXRoLVWZ7x9++EHr1q3T4MGDtWbNGn333Xd69NFHdfLkSU2ZMqUm2q7TqjLnDzzwgI4ePaqbbrpJhmHo1KlTGjVqlP7xj3/URMuXnLN9brpcLh0/flwBAQGVGocrObC8F154QUuWLNGKFSvk7+9f2+1YzrFjxzRkyBC9+eabatq0aW23c0koLS1VSEiI3njjDUVHR2vAgAF68skntWDBgtpuzbLWr1+v559/XvPmzdO2bdv0wQcfaPXq1XrmmWdquzWcA1dyPNS0aVP5+PgoLy/PbX1eXp7CwsIq3CcsLMyjerirypyXeemll/TCCy/o008/1bXXXnsx27QMT+f7+++/1/79+9W7d29zXWlpqSTJ19dXOTk5atOmzcVtug6ryvd38+bNVa9ePfn4+Jjr2rdvL6fTqeLiYvn5+V3Unuu6qsz5U089pSFDhmj48OGSpA4dOqiwsFAjR47Uk08+KW9vrhlUp7N9btrt9kpfxZG4kuMxPz8/RUdHKyMjw1xXWlqqjIwMORyOCvdxOBxu9ZKUnp5+1nq4q8qcS9KMGTP0zDPPKC0tTZ07d66JVi3B0/lu166ddu7cqR07dpjLPffcox49emjHjh2KiIioyfbrnKp8f99444367rvvzDApSd98842aN29OwKmEqsz5H3/8US7IlIVMg99zXe2q7XPTs3uiYRh/Pnpos9mM1NRUY/fu3cbIkSON4OBgw+l0GoZhGEOGDDEmTpxo1n/xxReGr6+v8dJLLxl79uwxpkyZwiPkHvJ0zl944QXDz8/PeP/9941Dhw6Zy7Fjx2rrFOoUT+f7TDxd5RlP5zs3N9do2LChMWbMGCMnJ8dYtWqVERISYjz77LO1dQp1jqdzPmXKFKNhw4bGv/71L+OHH34wPvnkE6NNmzZG//79a+sU6pRjx44Z27dvN7Zv325IMmbOnGls377d+PHHHw3DMIyJEycaQ4YMMevLHiF//PHHjT179hhz587lEfKa9OqrrxotW7Y0/Pz8jC5duhibNm0yt91yyy1GQkKCW/2yZcuMK6+80vDz8zOuvvpqY/Xq1TXccd3nyZy3atXKkFRumTJlSs03Xkd5+j1+OkKO5zyd78zMTCMmJsaw2WzG5Zdfbjz33HPGqVOnarjrus2TOT958qQxdepUo02bNoa/v78RERFhPProo8Zvv/1W843XQZ999lmF/yaXzXFCQoJxyy23lNunY8eOhp+fn3H55ZcbCxcu9Pi4XobBdTYAAGA93JMDAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAs6f8DHrmxKuNfJ3EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARJ1JREFUeJzt3XtcFnX+//8nB7lA9AJPgCQqqaWUZWLCZVlrsVJhrWl5yI/hOV30m7KmspmnDrZ20jYPnVb9fMr10JZbmphh2pZohllmSQc1Lb3QUriMFATevz/6MesVqFyeiPFxv92u28LMa2ZeM0N7PZ1r3nP5GWOMAAAAbMa/uhsAAAA4Hwg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5QCUGDBig5s2bn9N1LliwQH5+ftq9e/c5XW9Ns3v3bvn5+WnBggXWtClTpsjPz6/6mvqNyno8H8v8nvn5+WnKlClVqm3evLkGDBhwXvsBzgQhBzjHHnvsMS1fvry627gozJkzxxah4pdfftGUKVO0bt266m7lpDZs2KApU6YoPz+/ulup4A9/+IP8/PwqvG655Zbqbg3VLLC6GwDs5rHHHtNdd92l7t27e03v37+/+vTpI4fDUT2N/Y5NnDhREyZM8Hm5OXPmqGHDhr+LqwjNmjXT0aNHVatWLZ+X/eWXXzR16lRJv75h/x4cPXpUgYH/fYvYsGGDpk6dqgEDBig8PNyrNjc3V/7+1ftv5iZNmmj69Ole06Kjo6upG/xeEHJw0SgsLFRoaGi1bT8gIEABAQHVtv2zZYzRsWPHFBIScs7XHRgY6PWGWhP5+fkpODi4uts4Z3zZl99DcA8LC9P//M//VHcb+J3h4yrYUvk9Hl988YXuuece1atXT9dff70k6ZVXXlF8fLxCQkJUv3599enTR3v37j3tOp988kl16tRJDRo0UEhIiOLj4/Xaa6951fj5+amwsFALFy60LpmXX2X47T053bp106WXXlrptlwulzp06OA17Uz7PlF5D++//77uu+8+NWjQQE6nU/fee68OHz7sVdu8eXN169ZNq1evVocOHRQSEqLnn39ekpSfn6/Ro0crJiZGDodDLVu21N/+9jeVlZV5rSM/P18DBgxQWFiYwsPDlZqaWunHHSe7J+eVV15Rx44dVbt2bdWrV0833HCD3nnnHau/7du3a/369daxPvEqyLnu8XQquydnwIABqlOnjn744Qd1795dderUUaNGjTR27FiVlpZayzVq1EiSNHXqVGtfTrwfZseOHbrrrrtUv359BQcHq0OHDnrzzTe9tl9+bj/88EOlp6erUaNGCg0N1Z133qmDBw961X788cdKTk5Ww4YNFRISotjYWA0aNMir5sQepkyZogceeECSFBsba/VY/rdc2T05VT3+ixcvVnx8vOrWrSun06m2bdtq1qxZVT7uJyopKdHPP/98RsvCnmr2P52A07j77rvVqlUrPfbYYzLG6NFHH9VDDz2kXr16aciQITp48KD+/ve/64YbbtAnn3xS4TL8iWbNmqU77rhD/fr1U3FxsRYvXqy7775bK1asUEpKiiTp//7v/zRkyBB17NhRw4YNkyS1aNGi0vX17t1b9957rzZv3qxrr73Wmv7dd99p48aNeuKJJ6xpZ9N3ZUaOHKnw8HBNmTJFubm5mjt3rr777jutW7fOK2zk5uaqb9++uu+++zR06FBdfvnl+uWXX3TjjTfqhx9+0H333aemTZtqw4YNysjI0P79+zVz5kxJv175+dOf/qQPPvhAw4cPV5s2bfTGG28oNTW1Sj1OnTpVU6ZMUadOnTRt2jQFBQVp06ZNWrt2rbp27aqZM2dq1KhRqlOnjh588EFJUmRkpCRdsB6rorS0VMnJyUpISNCTTz6pd999V0899ZRatGihESNGqFGjRpo7d65GjBihO++8Uz169JAkXXXVVZKk7du367rrrtMll1yiCRMmKDQ0VEuXLlX37t31r3/9S3feeafX9kaNGqV69epp8uTJ2r17t2bOnKmRI0dqyZIlkqQDBw6oa9euatSokSZMmKDw8HDt3r1br7/++kn3oUePHvrqq6/0z3/+U88884waNmwoSVY4+62qHv81a9aob9++uvnmm/W3v/1NkvTll1/qww8/1P333+/Tcf7qq68UGhqq4uJiRUZGaujQoZo0adIZfXwIGzGADU2ePNlIMn379rWm7d692wQEBJhHH33Uq3bbtm0mMDDQa3pqaqpp1qyZV90vv/zi9XtxcbG58sorzU033eQ1PTQ01KSmplboaf78+UaS2bVrlzHGmIKCAuNwOMxf/vIXr7oZM2YYPz8/89133/nc9+mU9xAfH2+Ki4u9tinJ/Pvf/7amNWvWzEgymZmZXut4+OGHTWhoqPnqq6+8pk+YMMEEBASYPXv2GGOMWb58uZFkZsyYYdWUlJSYzp07G0lm/vz51vTy81Xu66+/Nv7+/ubOO+80paWlXtspKyuzfr7iiivMjTfeWGE/z0ePp7Nr164Ky6SmphpJZtq0aV6111xzjYmPj7d+P3jwoJFkJk+eXGG9N998s2nbtq05duyYNa2srMx06tTJtGrVyppWfm6TkpK8jtGYMWNMQECAyc/PN8YY88YbbxhJZvPmzafcn9/288QTT3j9/Z6oWbNmXn/zVT3+999/v3E6naakpOSUvZzOoEGDzJQpU8y//vUv87//+7/mjjvuMJJMr169zmq9qPn4uAq2Nnz4cOvn119/XWVlZerVq5d+/PFH6xUVFaVWrVrpvffeO+W6TrwX5fDhwyooKFDnzp21ZcuWM+rN6XTq1ltv1dKlS2WMsaYvWbJEiYmJatq06TnpuzLDhg3z+hfuiBEjFBgYqLfffturLjY2VsnJyV7Tli1bps6dO6tevXpe/SQlJam0tFTvv/++JOntt99WYGCgRowYYS0bEBCgUaNGnba/5cuXq6ysTJMmTapwQ2tVhppfiB59ceLfoSR17txZO3fuPO1yhw4d0tq1a9WrVy8dOXLE2o+ffvpJycnJ+vrrr/XDDz94LTNs2DCvY9S5c2eVlpbqu+++kyTrqt+KFSt0/Pjxs9yzylX1+IeHh6uwsFBr1qw5q+29/PLLmjx5snr06KH+/fvr3//+t4YOHaqlS5dq48aN52KXUEPxcRVsLTY21vr566+/ljFGrVq1qrT2dJe1V6xYoUceeURbt25VUVGRNf1snu/Su3dvLV++XNnZ2erUqZO+/fZb5eTkWJfzz0XflfntuurUqaPGjRtXeIbPicfvxH4+++yzk35UceDAAUm/fuzWuHFj1alTx2v+5Zdfftr+vv32W/n7+ysuLu60tZW5ED1WVXBwcIU+6tWrV+EeqMp88803MsbooYce0kMPPVRpzYEDB3TJJZdYv5eH4xO3Jcna3o033qiePXtq6tSpeuaZZ/SHP/xB3bt31z333HPObiCu6vH/85//rKVLl+rWW2/VJZdcoq5du6pXr17nZOj3X/7yF7344ot69913lZiYeNbrQ81EyIGtnXj1paysTH5+flq1alWlo5x++0Z3ov/85z+64447dMMNN2jOnDlq3LixatWqpfnz52vRokVn3N/tt9+u2rVra+nSperUqZOWLl0qf39/3X333eek77NV2UiqsrIy/fGPf9S4ceMqXeayyy47b/1U1e+px7MZUVd+k+7YsWMrXFEr17Jlyyptr/xqoZ+fn1577TVt3LhRb731llavXq1Bgwbpqaee0saNG8/J31NVj39ERIS2bt2q1atXa9WqVVq1apXmz5+ve++9VwsXLjyrHmJiYiT9ejUMFy9CDi4aLVq0kDFGsbGxPr/J/etf/1JwcLBWr17t9a/d+fPnV6j15cpOaGiounXrpmXLlunpp5/WkiVL1LlzZ6/ne5xN3yfz9ddfq0uXLtbvP//8s/bv36/bbrvttMu2aNFCP//8s5KSkk5Z16xZM2VlZennn3/2euPMzc2t0jbKysr0xRdfqF27dietO9mxvhA9nksn24/y0Xe1atU67b74KjExUYmJiXr00Ue1aNEi9evXT4sXL9aQIUN86rEyVT3+khQUFKTbb79dt99+u8rKyvTnP/9Zzz//vB566KEKAc4X5R8HnuxqEi4O3JODi0aPHj0UEBCgqVOnet0DI/36r9yffvrppMsGBATIz8/PGvYr/Tr0t7InG4eGhvo0BLl3797at2+fXnrpJX366afq3bv3Oev7ZF544QWv+zHmzp2rkpIS3XrrraddtlevXsrOztbq1asrzMvPz1dJSYkk6bbbblNJSYnmzp1rzS8tLdXf//73026je/fu8vf317Rp0yoMOT7xGJzsWF+IHs+l2rVrW72dKCIiQn/4wx/0/PPPa//+/RWW++3Q8Ko4fPhwhb+j8iB54sewv1X+jKmq/G1X9fj/9m/X39/fGlV2ql5O5PF4KtQaY/TII49I0kmvgOHiwJUcXDRatGihRx55RBkZGdq9e7e6d++uunXrateuXXrjjTc0bNgwjR07ttJlU1JS9PTTT+uWW27RPffcowMHDmj27Nlq2bKlPvvsM6/a+Ph4vfvuu3r66acVHR2t2NhYJSQknLSv2267TXXr1tXYsWMVEBCgnj17nrO+T6a4uFg333yzevXqpdzcXM2ZM0fXX3+97rjjjtMu+8ADD+jNN99Ut27dNGDAAMXHx6uwsFDbtm3Ta6+9pt27d6thw4a6/fbbdd1112nChAnavXu34uLi9Prrr6ugoOC022jZsqUefPBBPfzww+rcubN69Oghh8OhzZs3Kzo62nqybXx8vObOnatHHnlELVu2VEREhG666aYL0uO5FBISori4OC1ZskSXXXaZ6tevryuvvFJXXnmlZs+ereuvv15t27bV0KFDdemllyovL0/Z2dn6/vvv9emnn/q0rYULF2rOnDm688471aJFCx05ckQvvviinE7nKa/kxcfHS5IefPBB9enTR7Vq1dLtt99e6QM2q3r8hwwZokOHDummm25SkyZN9N133+nvf/+72rVrpzZt2lRpf7Zs2aK+ffuqb9++atmypY4ePao33nhDH374oYYNG6b27dv7dHxgM9UxpAs438qHJB88eLDCvH/961/m+uuvN6GhoSY0NNS0bt3apKWlmdzcXKumsiHkL7/8smnVqpVxOBymdevWZv78+RWGPhtjzI4dO8wNN9xgQkJCjCRraO1vh5CfqF+/ftbw35OpSt+nU97D+vXrzbBhw0y9evVMnTp1TL9+/cxPP/3kVdusWTOTkpJS6XqOHDliMjIyTMuWLU1QUJBp2LCh6dSpk3nyySe9hqb/9NNPpn///sbpdJqwsDDTv39/88knn5x2CHm5f/zjH+aaa64xDofD1KtXz9x4441mzZo11ny3221SUlJM3bp1jSSv4eTnusfTOdkQ8tDQ0Aq1le3vhg0bTHx8vAkKCqowfPvbb7819957r4mKijK1atUyl1xyienWrZt57bXXrJryc/vboeHvvfeekWTee+89Y4wxW7ZsMX379jVNmzY1DofDREREmG7dupmPP/7Ya7nf9mDMr0PDL7nkEuPv7+/1t/zbIeTGVO34v/baa6Zr164mIiLCBAUFmaZNm5r77rvP7N+//2SHuYKdO3eau+++2zRv3twEBweb2rVrm/j4eDNv3jyvofS4OPkZ85vrlgBsa8GCBRo4cKA2b95c4YnKAGA33JMDAABsiXtyABs4evToae8jqV+//gXqxl6Ki4tPOww5LCzsvHxx6cXO7Xafcn5ISIjCwsIuUDeoiQg5gA0sWbJEAwcOPGXNmTwZGdKGDRu8httXZv78+RW+oBJnr3Hjxqecn5qa6vWFqMBvcU8OYAP79+/X9u3bT1kTHx9vPf0WVXf48GHl5OScsuaKK6447RsyfPfuu++ecn50dPQZPxUbFwdCDgAAsCVuPAYAALZ0Ud+TU1ZWpn379qlu3bpn9SWLAADgwjHG6MiRI4qOjpa//8mv11zUIWffvn3Wl7gBAICaZe/evWrSpMlJ5/sUckpLSzVlyhS98sorcrvdio6O1oABAzRx4kTrSogxRpMnT9aLL76o/Px8XXfddZo7d65atWplrefQoUMaNWqU3nrrLfn7+6tnz56aNWuW1xfkffbZZ0pLS9PmzZvVqFEjjRo1qsI32i5btkwPPfSQdu/erVatWulvf/tblb5gsFzdunUl/XqQnE6nL4cCAABUE4/Ho5iYGOt9/KR8eTzyo48+aho0aGBWrFhhdu3aZZYtW2bq1KljZs2aZdU8/vjjJiwszCxfvtx8+umn5o477jCxsbHm6NGjVs0tt9xirr76arNx40bzn//8x7Rs2dL07dvXml9QUGAiIyNNv379zOeff27++c9/mpCQEPP8889bNR9++KEJCAgwM2bMMF988YWZOHGiqVWrltm2bVuV96egoMBIMgUFBb4cBgAAUI2q+v7tU8hJSUkxgwYN8prWo0cP069fP2OMMWVlZSYqKso88cQT1vz8/HzjcDjMP//5T2OMMV988UWF71dZtWqV8fPzMz/88IMxxpg5c+aYevXqmaKiIqtm/Pjx5vLLL7d+79WrV4Xv1UlISDD33XdflfeHkAMAQM1T1fdvn0ZXderUSVlZWfrqq68kSZ9++qk++OAD3XrrrZKkXbt2ye12KykpyVomLCxMCQkJys7OliRlZ2crPDzc63tzkpKS5O/vr02bNlk1N9xwg4KCgqya5ORk5ebm6vDhw1bNidsprynfTmWKiork8Xi8XgAAwJ58uidnwoQJ8ng8at26tQICAlRaWqpHH31U/fr1k/TfR3BHRkZ6LRcZGWnNc7vdioiI8G4iMFD169f3qomNja2wjvJ59erVk9vtPuV2KjN9+nRNnTrVl10GAAA1lE9XcpYuXapXX31VixYt0pYtW7Rw4UI9+eSTWrhw4fnq75zKyMhQQUGB9dq7d291twQAAM4Tn67kPPDAA5owYYL69OkjSWrbtq2+++47TZ8+XampqYqKipIk5eXleT3iPC8vT+3atZMkRUVF6cCBA17rLSkp0aFDh6zlo6KilJeX51VT/vvpasrnV8bhcMjhcPiyywAAoIby6UrOL7/8UuGhOwEBASorK5MkxcbGKioqSllZWdZ8j8ejTZs2yeVySZJcLpfy8/O9vgtm7dq1KisrU0JCglXz/vvv6/jx41bNmjVrdPnll1vfveNyuby2U15Tvh0AAHCR8+Vu5tTUVHPJJZdYQ8hff/1107BhQzNu3Dir5vHHHzfh4eHm3//+t/nss8/Mn/70p0qHkF9zzTVm06ZN5oMPPjCtWrXyGkKen59vIiMjTf/+/c3nn39uFi9ebGrXrl1hCHlgYKB58sknzZdffmkmT57MEHIAAC4C52UIucfjMffff79p2rSpCQ4ONpdeeql58MEHvYZ6l5WVmYceeshERkYah8Nhbr75ZpObm+u1np9++sn07dvX1KlTxzidTjNw4EBz5MgRr5pPP/3UXH/99cbhcJhLLrnEPP744xX6Wbp0qbnssstMUFCQueKKK8zKlSt92R1CDgAANVBV378v6m8h93g8CgsLU0FBAU88BgCghqjq+zffQg4AAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGzJpycewwfvTa/uDnzXJaO6OwAA4JzhSg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlnpNznmTv/Km6W/CZq0t1dwAAwLnDlRwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLPoWc5s2by8/Pr8IrLS1NknTs2DGlpaWpQYMGqlOnjnr27Km8vDyvdezZs0cpKSmqXbu2IiIi9MADD6ikpMSrZt26dWrfvr0cDodatmypBQsWVOhl9uzZat68uYKDg5WQkKCPPvrIx10HAAB25lPI2bx5s/bv32+91qxZI0m6++67JUljxozRW2+9pWXLlmn9+vXat2+fevToYS1fWlqqlJQUFRcXa8OGDVq4cKEWLFigSZMmWTW7du1SSkqKunTpoq1bt2r06NEaMmSIVq9ebdUsWbJE6enpmjx5srZs2aKrr75aycnJOnDgwFkdDAAAYB9+xhhzpguPHj1aK1as0Ndffy2Px6NGjRpp0aJFuuuuuyRJO3bsUJs2bZSdna3ExEStWrVK3bp10759+xQZGSlJmjdvnsaPH6+DBw8qKChI48eP18qVK/X5559b2+nTp4/y8/OVmZkpSUpISNC1116r5557TpJUVlammJgYjRo1ShMmTKhy/x6PR2FhYSooKJDT6TzTw1Cp7JfHntP1XQiuwU9WdwsAAJxWVd+/z/ienOLiYr3yyisaNGiQ/Pz8lJOTo+PHjyspKcmqad26tZo2bars7GxJUnZ2ttq2bWsFHElKTk6Wx+PR9u3brZoT11FeU76O4uJi5eTkeNX4+/srKSnJqjmZoqIieTwerxcAALCnMw45y5cvV35+vgYMGCBJcrvdCgoKUnh4uFddZGSk3G63VXNiwCmfXz7vVDUej0dHjx7Vjz/+qNLS0kprytdxMtOnT1dYWJj1iomJ8WmfAQBAzXHGIefll1/Wrbfequjo6HPZz3mVkZGhgoIC67V3797qbgkAAJwngWey0Hfffad3331Xr7/+ujUtKipKxcXFys/P97qak5eXp6ioKKvmt6OgykdfnVjz2xFZeXl5cjqdCgkJUUBAgAICAiqtKV/HyTgcDjkcDt92FgAA1EhndCVn/vz5ioiIUEpKijUtPj5etWrVUlZWljUtNzdXe/bskcvlkiS5XC5t27bNaxTUmjVr5HQ6FRcXZ9WcuI7ymvJ1BAUFKT4+3qumrKxMWVlZVg0AAIDPV3LKyso0f/58paamKjDwv4uHhYVp8ODBSk9PV/369eV0OjVq1Ci5XC4lJiZKkrp27aq4uDj1799fM2bMkNvt1sSJE5WWlmZdYRk+fLiee+45jRs3ToMGDdLatWu1dOlSrVy50tpWenq6UlNT1aFDB3Xs2FEzZ85UYWGhBg4ceLbHAwAA2ITPIefdd9/Vnj17NGjQoArznnnmGfn7+6tnz54qKipScnKy5syZY80PCAjQihUrNGLECLlcLoWGhio1NVXTpk2zamJjY7Vy5UqNGTNGs2bNUpMmTfTSSy8pOTnZqundu7cOHjyoSZMmye12q127dsrMzKxwMzIAALh4ndVzcmo6npPjjefkAABqgvP+nBwAAIDfM0IOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJZ9Dzg8//KD/+Z//UYMGDRQSEqK2bdvq448/tuYbYzRp0iQ1btxYISEhSkpK0tdff+21jkOHDqlfv35yOp0KDw/X4MGD9fPPP3vVfPbZZ+rcubOCg4MVExOjGTNmVOhl2bJlat26tYKDg9W2bVu9/fbbvu4OAACwKZ9CzuHDh3XdddepVq1aWrVqlb744gs99dRTqlevnlUzY8YMPfvss5o3b542bdqk0NBQJScn69ixY1ZNv379tH37dq1Zs0YrVqzQ+++/r2HDhlnzPR6PunbtqmbNmiknJ0dPPPGEpkyZohdeeMGq2bBhg/r27avBgwfrk08+Uffu3dW9e3d9/vnnZ3M8AACATfgZY0xViydMmKAPP/xQ//nPfyqdb4xRdHS0/vKXv2js2LGSpIKCAkVGRmrBggXq06ePvvzyS8XFxWnz5s3q0KGDJCkzM1O33Xabvv/+e0VHR2vu3Ll68MEH5Xa7FRQUZG17+fLl2rFjhySpd+/eKiws1IoVK6ztJyYmql27dpo3b16V9sfj8SgsLEwFBQVyOp1VPQxVkv3y2HO6vgvBNfjJ6m4BAIDTqur7t09Xct5880116NBBd999tyIiInTNNdfoxRdftObv2rVLbrdbSUlJ1rSwsDAlJCQoOztbkpSdna3w8HAr4EhSUlKS/P39tWnTJqvmhhtusAKOJCUnJys3N1eHDx+2ak7cTnlN+XYqU1RUJI/H4/UCAAD25FPI2blzp+bOnatWrVpp9erVGjFihP7f//t/WrhwoSTJ7XZLkiIjI72Wi4yMtOa53W5FRER4zQ8MDFT9+vW9aipbx4nbOFlN+fzKTJ8+XWFhYdYrJibGl90HAAA1iE8hp6ysTO3bt9djjz2ma665RsOGDdPQoUOr/PFQdcvIyFBBQYH12rt3b3W3BAAAzhOfQk7jxo0VFxfnNa1Nmzbas2ePJCkqKkqSlJeX51WTl5dnzYuKitKBAwe85peUlOjQoUNeNZWt48RtnKymfH5lHA6HnE6n1wsAANiTTyHnuuuuU25urte0r776Ss2aNZMkxcbGKioqSllZWdZ8j8ejTZs2yeVySZJcLpfy8/OVk5Nj1axdu1ZlZWVKSEiwat5//30dP37cqlmzZo0uv/xyaySXy+Xy2k55Tfl2AADAxc2nkDNmzBht3LhRjz32mL755hstWrRIL7zwgtLS0iRJfn5+Gj16tB555BG9+eab2rZtm+69915FR0ere/fukn698nPLLbdo6NCh+uijj/Thhx9q5MiR6tOnj6KjoyVJ99xzj4KCgjR48GBt375dS5Ys0axZs5Senm71cv/99yszM1NPPfWUduzYoSlTpujjjz/WyJEjz9GhAQAANVmgL8XXXnut3njjDWVkZGjatGmKjY3VzJkz1a9fP6tm3LhxKiws1LBhw5Sfn6/rr79emZmZCg4OtmpeffVVjRw5UjfffLP8/f3Vs2dPPfvss9b8sLAwvfPOO0pLS1N8fLwaNmyoSZMmeT1Lp1OnTlq0aJEmTpyov/71r2rVqpWWL1+uK6+88myOBwAAsAmfnpNjNzwnxxvPyQEA1ATn5Tk5AAAANQUhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2JJPX+sA/N48s+ar6m7BJ2P+eFl1twAAFw1CDmq0xD0vVHcLvnmvgdQlo7q7AICLAh9XAQAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWwqs7gaAi0n2zp+0seSr6m7DJ2P+eFl1twAAZ4QrOQAAwJYIOQAAwJYIOQAAwJZ8CjlTpkyRn5+f16t169bW/GPHjiktLU0NGjRQnTp11LNnT+Xl5XmtY8+ePUpJSVHt2rUVERGhBx54QCUlJV4169atU/v27eVwONSyZUstWLCgQi+zZ89W8+bNFRwcrISEBH300Ue+7AoAALA5n6/kXHHFFdq/f7/1+uCDD6x5Y8aM0VtvvaVly5Zp/fr12rdvn3r06GHNLy0tVUpKioqLi7VhwwYtXLhQCxYs0KRJk6yaXbt2KSUlRV26dNHWrVs1evRoDRkyRKtXr7ZqlixZovT0dE2ePFlbtmzR1VdfreTkZB04cOBMjwMAALAZn0NOYGCgoqKirFfDhg0lSQUFBXr55Zf19NNP66abblJ8fLzmz5+vDRs2aOPGjZKkd955R1988YVeeeUVtWvXTrfeeqsefvhhzZ49W8XFxZKkefPmKTY2Vk899ZTatGmjkSNH6q677tIzzzxj9fD0009r6NChGjhwoOLi4jRv3jzVrl1b//jHP07Ze1FRkTwej9cLAADYk89DyL/++mtFR0crODhYLpdL06dPV9OmTZWTk6Pjx48rKSnJqm3durWaNm2q7OxsJSYmKjs7W23btlVkZKRVk5ycrBEjRmj79u265pprlJ2d7bWO8prRo0dLkoqLi5WTk6OMjAxrvr+/v5KSkpSdnX3K3qdPn66pU6f6usvAOZW454XqbsE37zX49X+7ZJy6DgB+Z3y6kpOQkKAFCxYoMzNTc+fO1a5du9S5c2cdOXJEbrdbQUFBCg8P91omMjJSbrdbkuR2u70CTvn88nmnqvF4PDp69Kh+/PFHlZaWVlpTvo6TycjIUEFBgfXau3evL7sPAABqEJ+u5Nx6663Wz1dddZUSEhLUrFkzLV26VCEhIee8uXPN4XDI4XBUdxsAAOACOKsh5OHh4brsssv0zTffKCoqSsXFxcrPz/eqycvLU1RUlCQpKiqqwmir8t9PV+N0OhUSEqKGDRsqICCg0prydQAAAJxVyPn555/17bffqnHjxoqPj1etWrWUlZVlzc/NzdWePXvkcrkkSS6XS9u2bfMaBbVmzRo5nU7FxcVZNSeuo7ymfB1BQUGKj4/3qikrK1NWVpZVAwAA4FPIGTt2rNavX6/du3drw4YNuvPOOxUQEKC+ffsqLCxMgwcPVnp6ut577z3l5ORo4MCBcrlcSkxMlCR17dpVcXFx6t+/vz799FOtXr1aEydOVFpamvUx0vDhw7Vz506NGzdOO3bs0Jw5c7R06VKNGTPG6iM9PV0vvviiFi5cqC+//FIjRoxQYWGhBg4ceA4PDQAAqMl8uifn+++/V9++ffXTTz+pUaNGuv7667Vx40Y1atRIkvTMM8/I399fPXv2VFFRkZKTkzVnzhxr+YCAAK1YsUIjRoyQy+VSaGioUlNTNW3aNKsmNjZWK1eu1JgxYzRr1iw1adJEL730kpKTk62a3r176+DBg5o0aZLcbrfatWunzMzMCjcjAwCAi5efMcZUdxPVxePxKCwsTAUFBXI6ned03dkvjz2n67sQXIOfrO4WfFYTj3NN47qUIeQAfl+q+v7Nd1cBAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbCqzuBvA78t706u4AAIBzhis5AADAlgg5AADAlgg5AADAlrgnB5bsnT9VdwsAAJwzXMkBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2dFYh5/HHH5efn59Gjx5tTTt27JjS0tLUoEED1alTRz179lReXp7Xcnv27FFKSopq166tiIgIPfDAAyopKfGqWbdundq3by+Hw6GWLVtqwYIFFbY/e/ZsNW/eXMHBwUpISNBHH310NrsDAABs5IxDzubNm/X888/rqquu8po+ZswYvfXWW1q2bJnWr1+vffv2qUePHtb80tJSpaSkqLi4WBs2bNDChQu1YMECTZo0yarZtWuXUlJS1KVLF23dulWjR4/WkCFDtHr1aqtmyZIlSk9P1+TJk7VlyxZdffXVSk5O1oEDB850lwAAgI34GWOMrwv9/PPPat++vebMmaNHHnlE7dq108yZM1VQUKBGjRpp0aJFuuuuuyRJO3bsUJs2bZSdna3ExEStWrVK3bp10759+xQZGSlJmjdvnsaPH6+DBw8qKChI48eP18qVK/X5559b2+zTp4/y8/OVmZkpSUpISNC1116r5557TpJUVlammJgYjRo1ShMmTKjSfng8HoWFhamgoEBOp9PXw3BK2S+PPafrA6qL69IGv/7QJaN6GwGA/19V37/P6EpOWlqaUlJSlJSU5DU9JydHx48f95reunVrNW3aVNnZ2ZKk7OxstW3b1go4kpScnCyPx6Pt27dbNb9dd3JysrWO4uJi5eTkeNX4+/srKSnJqqlMUVGRPB6P1wsAANiTz1/rsHjxYm3ZskWbN2+uMM/tdisoKEjh4eFe0yMjI+V2u62aEwNO+fzyeaeq8Xg8Onr0qA4fPqzS0tJKa3bs2HHS3qdPn66pU6dWbUcBAECN5tOVnL179+r+++/Xq6++quDg4PPV03mTkZGhgoIC67V3797qbgkAAJwnPoWcnJwcHThwQO3bt1dgYKACAwO1fv16PfvsswoMDFRkZKSKi4uVn5/vtVxeXp6ioqIkSVFRURVGW5X/froap9OpkJAQNWzYUAEBAZXWlK+jMg6HQ06n0+sFAADsyaeQc/PNN2vbtm3aunWr9erQoYP69etn/VyrVi1lZWVZy+Tm5mrPnj1yuVySJJfLpW3btnmNglqzZo2cTqfi4uKsmhPXUV5Tvo6goCDFx8d71ZSVlSkrK8uqAQAAFzef7smpW7eurrzySq9poaGhatCggTV98ODBSk9PV/369eV0OjVq1Ci5XC4lJiZKkrp27aq4uDj1799fM2bMkNvt1sSJE5WWliaHwyFJGj58uJ577jmNGzdOgwYN0tq1a7V06VKtXLnS2m56erpSU1PVoUMHdezYUTNnzlRhYaEGDhx4VgcEgLfsnT9JkjaWfFXNnVTdmD9eVt0tAPgd8PnG49N55pln5O/vr549e6qoqEjJycmaM2eONT8gIEArVqzQiBEj5HK5FBoaqtTUVE2bNs2qiY2N1cqVKzVmzBjNmjVLTZo00UsvvaTk5GSrpnfv3jp48KAmTZokt9utdu3aKTMzs8LNyAAA4OJ0Rs/JsQuekwNU3camw6q7hSrjSg5gb+f1OTkAAAC/d4QcAABgS+f8nhwA9pS454XqbqHq3uOrKABwJQcAANgUIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANiSTyFn7ty5uuqqq+R0OuV0OuVyubRq1Spr/rFjx5SWlqYGDRqoTp066tmzp/Ly8rzWsWfPHqWkpKh27dqKiIjQAw88oJKSEq+adevWqX379nI4HGrZsqUWLFhQoZfZs2erefPmCg4OVkJCgj766CNfdgUAANicTyGnSZMmevzxx5WTk6OPP/5YN910k/70pz9p+/btkqQxY8borbfe0rJly7R+/Xrt27dPPXr0sJYvLS1VSkqKiouLtWHDBi1cuFALFizQpEmTrJpdu3YpJSVFXbp00datWzV69GgNGTJEq1evtmqWLFmi9PR0TZ48WVu2bNHVV1+t5ORkHThw4GyPBwAAsAk/Y4w5mxXUr19fTzzxhO666y41atRIixYt0l133SVJ2rFjh9q0aaPs7GwlJiZq1apV6tatm/bt26fIyEhJ0rx58zR+/HgdPHhQQUFBGj9+vFauXKnPP//c2kafPn2Un5+vzMxMSVJCQoKuvfZaPffcc5KksrIyxcTEaNSoUZowYUKVe/d4PAoLC1NBQYGcTufZHIYKsl8ee07XB6DqXJc2+PWHLhnV2wiA86Kq799nfE9OaWmpFi9erMLCQrlcLuXk5Oj48eNKSkqyalq3bq2mTZsqOztbkpSdna22bdtaAUeSkpOT5fF4rKtB2dnZXusorylfR3FxsXJycrxq/P39lZSUZNWcTFFRkTwej9cLAADYk88hZ9u2bapTp44cDoeGDx+uN954Q3FxcXK73QoKClJ4eLhXfWRkpNxutyTJ7XZ7BZzy+eXzTlXj8Xh09OhR/fjjjyotLa20pnwdJzN9+nSFhYVZr5iYGF93HwAA1BA+h5zLL79cW7du1aZNmzRixAilpqbqiy++OB+9nXMZGRkqKCiwXnv37q3ulgAAwHkS6OsCQUFBatmypSQpPj5emzdv1qxZs9S7d28VFxcrPz/f62pOXl6eoqKiJElRUVEVRkGVj746sea3I7Ly8vLkdDoVEhKigIAABQQEVFpTvo6TcTgccjgcvu4yAACogc76OTllZWUqKipSfHy8atWqpaysLGtebm6u9uzZI5fLJUlyuVzatm2b1yioNWvWyOl0Ki4uzqo5cR3lNeXrCAoKUnx8vFdNWVmZsrKyrBoAAACfruRkZGTo1ltvVdOmTXXkyBEtWrRI69at0+rVqxUWFqbBgwcrPT1d9evXl9Pp1KhRo+RyuZSYmChJ6tq1q+Li4tS/f3/NmDFDbrdbEydOVFpamnWFZfjw4Xruuec0btw4DRo0SGvXrtXSpUu1cuVKq4/09HSlpqaqQ4cO6tixo2bOnKnCwkINHDjwHB4aAABQk/kUcg4cOKB7771X+/fvV1hYmK666iqtXr1af/zjHyVJzzzzjPz9/dWzZ08VFRUpOTlZc+bMsZYPCAjQihUrNGLECLlcLoWGhio1NVXTpk2zamJjY7Vy5UqNGTNGs2bNUpMmTfTSSy8pOTnZqundu7cOHjyoSZMmye12q127dsrMzKxwMzIAALh4nfVzcmoynpMD2BPPyQHs7bw/JwcAAOD3jJADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsKbC6GwCAcy1750+SpI0lX1VzJ1U35o+XVXcLgO1wJQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSo6sA2Fbinhequ4Wqe6/Br//bJaN6+wBshCs5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlnwKOdOnT9e1116runXrKiIiQt27d1dubq5XzbFjx5SWlqYGDRqoTp066tmzp/Ly8rxq9uzZo5SUFNWuXVsRERF64IEHVFJS4lWzbt06tW/fXg6HQy1bttSCBQsq9DN79mw1b95cwcHBSkhI0EcffeTL7gAAABvzKeSsX79eaWlp2rhxo9asWaPjx4+ra9euKiwstGrGjBmjt956S8uWLdP69eu1b98+9ejRw5pfWlqqlJQUFRcXa8OGDVq4cKEWLFigSZMmWTW7du1SSkqKunTpoq1bt2r06NEaMmSIVq9ebdUsWbJE6enpmjx5srZs2aKrr75aycnJOnDgwNkcDwAAYBN+xhhzpgsfPHhQERERWr9+vW644QYVFBSoUaNGWrRoke666y5J0o4dO9SmTRtlZ2crMTFRq1atUrdu3bRv3z5FRkZKkubNm6fx48fr4MGDCgoK0vjx47Vy5Up9/vnn1rb69Omj/Px8ZWZmSpISEhJ07bXX6rnnnpMklZWVKSYmRqNGjdKECROq1L/H41FYWJgKCgrkdDrP9DBUKvvlsed0fQDszXVpg19/6JJRvY0ANUBV37/P6p6cgoICSVL9+vUlSTk5OTp+/LiSkpKsmtatW6tp06bKzs6WJGVnZ6tt27ZWwJGk5ORkeTwebd++3ao5cR3lNeXrKC4uVk5OjleNv7+/kpKSrJrKFBUVyePxeL0AAIA9nXHIKSsr0+jRo3XdddfpyiuvlCS53W4FBQUpPDzcqzYyMlJut9uqOTHglM8vn3eqGo/Ho6NHj+rHH39UaWlppTXl66jM9OnTFRYWZr1iYmJ833EAAFAjnHHISUtL0+eff67Fixefy37Oq4yMDBUUFFivvXv3VndLAADgPAk8k4VGjhypFStW6P3331eTJk2s6VFRUSouLlZ+fr7X1Zy8vDxFRUVZNb8dBVU++urEmt+OyMrLy5PT6VRISIgCAgIUEBBQaU35OirjcDjkcDh832EAAFDj+HQlxxijkSNH6o033tDatWsVGxvrNT8+Pl61atVSVlaWNS03N1d79uyRy+WSJLlcLm3bts1rFNSaNWvkdDoVFxdn1Zy4jvKa8nUEBQUpPj7eq6asrExZWVlWDQAAuLj5dCUnLS1NixYt0r///W/VrVvXuv8lLCxMISEhCgsL0+DBg5Wenq769evL6XRq1KhRcrlcSkxMlCR17dpVcXFx6t+/v2bMmCG3262JEycqLS3NusoyfPhwPffccxo3bpwGDRqktWvXaunSpVq5cqXVS3p6ulJTU9WhQwd17NhRM2fOVGFhoQYOHHiujg0AAKjBfAo5c+fOlST94Q9/8Jo+f/58DRgwQJL0zDPPyN/fXz179lRRUZGSk5M1Z84cqzYgIEArVqzQiBEj5HK5FBoaqtTUVE2bNs2qiY2N1cqVKzVmzBjNmjVLTZo00UsvvaTk5GSrpnfv3jp48KAmTZokt9utdu3aKTMzs8LNyAAA4OJ0Vs/Jqel4Tg6A3wuekwNU3QV5Tg4AAMDvFSEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYUmB1NwAAkLJ3/iRJ2ljyVTV3UnVj/nhZdbcAnBJXcgAAgC0RcgAAgC0RcgAAgC1xTw4A/I4k7nmhuluouvca/Pq/XTKqtw/gJLiSAwAAbImQAwAAbImQAwAAbImQAwAAbMnnkPP+++/r9ttvV3R0tPz8/LR8+XKv+cYYTZo0SY0bN1ZISIiSkpL09ddfe9UcOnRI/fr1k9PpVHh4uAYPHqyff/7Zq+azzz5T586dFRwcrJiYGM2YMaNCL8uWLVPr1q0VHBystm3b6u233/Z1dwAAgE35HHIKCwt19dVXa/bs2ZXOnzFjhp599lnNmzdPmzZtUmhoqJKTk3Xs2DGrpl+/ftq+fbvWrFmjFStW6P3339ewYcOs+R6PR127dlWzZs2Uk5OjJ554QlOmTNELL/x31MGGDRvUt29fDR48WJ988om6d++u7t276/PPP/d1lwAAgA35GWPMGS/s56c33nhD3bt3l/TrVZzo6Gj95S9/0dixYyVJBQUFioyM1IIFC9SnTx99+eWXiouL0+bNm9WhQwdJUmZmpm677TZ9//33io6O1ty5c/Xggw/K7XYrKChIkjRhwgQtX75cO3bskCT17t1bhYWFWrFihdVPYmKi2rVrp3nz5lWpf4/Ho7CwMBUUFMjpdJ7pYahU9stjz+n6AOD3xnUpQ8hRPar6/n1O78nZtWuX3G63kpKSrGlhYWFKSEhQdna2JCk7O1vh4eFWwJGkpKQk+fv7a9OmTVbNDTfcYAUcSUpOTlZubq4OHz5s1Zy4nfKa8u1UpqioSB6Px+sFAADs6ZyGHLfbLUmKjIz0mh4ZGWnNc7vdioiI8JofGBio+vXre9VUto4Tt3GymvL5lZk+fbrCwsKsV0xMjK+7CAAAaoiLanRVRkaGCgoKrNfevXuruyUAAHCenNOQExUVJUnKy8vzmp6Xl2fNi4qK0oEDB7zml5SU6NChQ141la3jxG2crKZ8fmUcDoecTqfXCwAA2NM5DTmxsbGKiopSVlaWNc3j8WjTpk1yuVySJJfLpfz8fOXk5Fg1a9euVVlZmRISEqya999/X8ePH7dq1qxZo8svv1z16tWzak7cTnlN+XYAAMDFzeeQ8/PPP2vr1q3aunWrpF9vNt66dav27NkjPz8/jR49Wo888ojefPNNbdu2Tffee6+io6OtEVht2rTRLbfcoqFDh+qjjz7Shx9+qJEjR6pPnz6Kjo6WJN1zzz0KCgrS4MGDtX37di1ZskSzZs1Senq61cf999+vzMxMPfXUU9qxY4emTJmijz/+WCNHjjz7owIAAGo8n7+F/OOPP1aXLl2s38uDR2pqqhYsWKBx48apsLBQw4YNU35+vq6//nplZmYqODjYWubVV1/VyJEjdfPNN8vf3189e/bUs88+a80PCwvTO++8o7S0NMXHx6thw4aaNGmS17N0OnXqpEWLFmnixIn661//qlatWmn58uW68sorz+hAAAAAezmr5+TUdDwnBwDOHM/JQXWplufkAAAA/F4QcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0FVncDAICaKXvnT5KkjSVfVXMnVTPmj5dVdwu4wLiSAwAAbImQAwAAbImPqwAAZyVxzwvV3ULVvNfgvz93yai+PnDBcCUHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEt9CDgC4KGTv/Mn6eWPJV9XYSdWN+eNl1d1CjUbIAQBcdBL3vFDdLVTNew3++3OXjOrro4aq8R9XzZ49W82bN1dwcLASEhL00UcfVXdLAADgd6BGh5wlS5YoPT1dkydP1pYtW3T11VcrOTlZBw4cqO7WAABANavRIefpp5/W0KFDNXDgQMXFxWnevHmqXbu2/vGPf1R3awAAoJrV2HtyiouLlZOTo4yM/35G6e/vr6SkJGVnZ1e6TFFRkYqKiqzfCwoKJEkej+ec91d4tOj0RQAAnMK72/dZP28u2FKNnVRd2k0tz/s2yt+3jTGnrKuxIefHH39UaWmpIiMjvaZHRkZqx44dlS4zffp0TZ06tcL0mJiY89IjAADnznPV3UCV/PUCbuvIkSMKCws76fwaG3LOREZGhtLT063fy8rKdOjQITVo0EB+fn7nbDsej0cxMTHau3evnE7nOVsvqo5zUP04B9WL41/9OAfnjzFGR44cUXR09CnramzIadiwoQICApSXl+c1PS8vT1FRUZUu43A45HA4vKaFh4efrxbldDr5w65mnIPqxzmoXhz/6sc5OD9OdQWnXI298TgoKEjx8fHKysqyppWVlSkrK0sul6saOwMAAL8HNfZKjiSlp6crNTVVHTp0UMeOHTVz5kwVFhZq4MCB1d0aAACoZjU65PTu3VsHDx7UpEmT5Ha71a5dO2VmZla4GflCczgcmjx5coWPxnDhcA6qH+egenH8qx/noPr5mdONvwIAAKiBauw9OQAAAKdCyAEAALZEyAEAALZEyAEAALZEyAEAALZEyDlDs2fPVvPmzRUcHKyEhAR99NFHp6xftmyZWrdureDgYLVt21Zvv/32BerUvnw5By+++KI6d+6sevXqqV69ekpKSjrtOcPp+frfQbnFixfLz89P3bt3P78N2pyvxz8/P19paWlq3LixHA6HLrvsMv6/6Cz5eg5mzpypyy+/XCEhIYqJidGYMWN07NixC9TtRcjAZ4sXLzZBQUHmH//4h9m+fbsZOnSoCQ8PN3l5eZXWf/jhhyYgIMDMmDHDfPHFF2bixImmVq1aZtu2bRe4c/vw9Rzcc889Zvbs2eaTTz4xX375pRkwYIAJCwsz33///QXu3D58PQfldu3aZS655BLTuXNn86c//enCNGtDvh7/oqIi06FDB3PbbbeZDz74wOzatcusW7fObN269QJ3bh++noNXX33VOBwO8+qrr5pdu3aZ1atXm8aNG5sxY8Zc4M4vHoScM9CxY0eTlpZm/V5aWmqio6PN9OnTK63v1auXSUlJ8ZqWkJBg7rvvvvPap535eg5+q6SkxNStW9csXLjwfLVoe2dyDkpKSkynTp3MSy+9ZFJTUwk5Z8HX4z937lxz6aWXmuLi4gvVou35eg7S0tLMTTfd5DUtPT3dXHfddee1z4sZH1f5qLi4WDk5OUpKSrKm+fv7KykpSdnZ2ZUuk52d7VUvScnJySetx6mdyTn4rV9++UXHjx9X/fr1z1ebtnam52DatGmKiIjQ4MGDL0SbtnUmx//NN9+Uy+VSWlqaIiMjdeWVV+qxxx5TaWnphWrbVs7kHHTq1Ek5OTnWR1o7d+7U22+/rdtuu+2C9HwxqtFf61AdfvzxR5WWllb46ojIyEjt2LGj0mXcbnel9W63+7z1aWdncg5+a/z48YqOjq4QPlE1Z3IOPvjgA7388svaunXrBejQ3s7k+O/cuVNr165Vv3799Pbbb+ubb77Rn//8Zx0/flyTJ0++EG3bypmcg3vuuUc//vijrr/+ehljVFJSouHDh+uvf/3rhWj5osSVHFx0Hn/8cS1evFhvvPGGgoODq7udi8KRI0fUv39/vfjii2rYsGF1t3NRKisrU0REhF544QXFx8erd+/eevDBBzVv3rzqbu2isW7dOj322GOaM2eOtmzZotdff10rV67Uww8/XN2t2RZXcnzUsGFDBQQEKC8vz2t6Xl6eoqKiKl0mKirKp3qc2pmcg3JPPvmkHn/8cb377ru66qqrzmebtubrOfj222+1e/du3X777da0srIySVJgYKByc3PVokWL89u0jZzJfwONGzdWrVq1FBAQYE1r06aN3G63iouLFRQUdF57tpszOQcPPfSQ+vfvryFDhkiS2rZtq8LCQg0bNkwPPvig/P257nCucUR9FBQUpPj4eGVlZVnTysrKlJWVJZfLVekyLpfLq16S1qxZc9J6nNqZnANJmjFjhh5++GFlZmaqQ4cOF6JV2/L1HLRu3Vrbtm3T1q1brdcdd9yhLl26aOvWrYqJibmQ7dd4Z/LfwHXXXadvvvnGCpeS9NVXX6lx48YEnDNwJufgl19+qRBkykOn4buyz4/qvvO5Jlq8eLFxOBxmwYIF5osvvjDDhg0z4eHhxu12G2OM6d+/v5kwYYJV/+GHH5rAwEDz5JNPmi+//NJMnjyZIeRnyddz8Pjjj5ugoCDz2muvmf3791uvI0eOVNcu1Hi+noPfYnTV2fH1+O/Zs8fUrVvXjBw50uTm5poVK1aYiIgI88gjj1TXLtR4vp6DyZMnm7p165p//vOfZufOneadd94xLVq0ML169aquXbA9Qs4Z+vvf/26aNm1qgoKCTMeOHc3GjRuteTfeeKNJTU31ql+6dKm57LLLTFBQkLniiivMypUrL3DH9uPLOWjWrJmRVOE1efLkC9+4jfj638GJCDlnz9fjv2HDBpOQkGAcDoe59NJLzaOPPmpKSkoucNf24ss5OH78uJkyZYpp0aKFCQ4ONjExMebPf/6zOXz48IVv/CLhZwzXyAAAgP1wTw4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALCl/w9So3tx6XZG2AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARTdJREFUeJzt3X1cFXX+//8noFyEHvAKkEQltZTVckOFY1prkZTYrmml5tfQNNPQT0rmRRleVNpabVpebRcr3j6bHy/a9FOaGGHqp8CLMEtNyErDVg9aCkcpQTjz+6Mfs57A5CCKjI/77XZuy5l5zXteM0N7ns6ZGbwMwzAEAABgMd613QAAAMClQMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBKjFs2DC1bt26RsdMTU2Vl5eXDh06VKPj1jWHDh2Sl5eXUlNTzWkzZsyQl5dX7TX1G5X1eCmWuZJ5eXlpxowZVapt3bq1hg0bdkn7AaqDkAPUsNmzZ2vt2rW13cZVYdGiRZYIFT///LNmzJihzZs313Yr55WZmakZM2aooKCgtlupVElJiWbPnq327dvL399foaGhSkhI0A8//FDbraEW1avtBgCrmT17tu677z7169fPbfrQoUM1aNAg+fn51U5jV7Bp06ZpypQpHi+3aNEiNW3a9Io4i9CqVSv98ssvql+/vsfL/vzzz5o5c6Yk6U9/+lMNd1Y9v/zyi+rV+89HRGZmpmbOnKlhw4YpODjYrTY3N1fe3rX3b+azZ88qISFBmZmZeuSRR3TjjTfq5MmT2r59uwoLC9WiRYta6w21i5CDq0ZRUZECAwNrbf0+Pj7y8fGptfVfLMMwdObMGQUEBNT42PXq1XP7QK2LvLy85O/vX9tt1BhPtqW2g/srr7yiLVu26JNPPlG3bt1qtRdcWfi6CpZUfo3HV199pQcffFCNGjVSjx49JEn//Oc/FR0drYCAADVu3FiDBg3S4cOHLzjmSy+9pO7du6tJkyYKCAhQdHS03nnnHbcaLy8vFRUVadmyZfLy8pKXl5d5luG31+T07dtX1113XaXrstvt6tKli9u06vZ9rvIetm7dqkcffVRNmjSRzWbTQw89pJMnT7rVtm7dWn379tXGjRvVpUsXBQQE6O9//7skqaCgQOPHj1dERIT8/PzUtm1b/fWvf5XL5XIbo6CgQMOGDVNQUJCCg4OVmJhY6dcd57sm55///Ke6deuma665Ro0aNdKtt96qDz/80Oxv37592rJli7mvzz0LUtM9Xkhl1+QMGzZMDRo00L///W/169dPDRo0ULNmzTRx4kSVlZWZyzVr1kySNHPmTHNbzr0eJicnR/fdd58aN24sf39/denSRe+9957b+suP7aeffqrk5GQ1a9ZMgYGBuvfee3X8+HG32s8++0zx8fFq2rSpAgICFBkZqYcfftit5tweZsyYoSeffFKSFBkZafZY/rtc2TU5Vd3/K1asUHR0tBo2bCibzaZOnTpp/vz5Vd7vLpdL8+fP17333qtu3bqptLRUP//8c5WXh7XV7X86ARdw//33q127dpo9e7YMw9Dzzz+vZ555Rg888IBGjhyp48eP67XXXtOtt96qzz//vMJp+HPNnz9ff/7znzVkyBCVlJRoxYoVuv/++7Vu3TolJCRIkv77v/9bI0eOVLdu3TRq1ChJUps2bSodb+DAgXrooYe0c+dOde3a1Zz+/fffa9u2bXrxxRfNaRfTd2XGjh2r4OBgzZgxQ7m5uVq8eLG+//57bd682S1s5ObmavDgwXr00Uf1yCOP6IYbbtDPP/+s2267Tf/+97/16KOPqmXLlsrMzNTUqVN19OhRzZs3T9KvZ37+8pe/6JNPPtHo0aPVoUMHrVmzRomJiVXqcebMmZoxY4a6d++uWbNmydfXV9u3b9emTZvUu3dvzZs3T+PGjVODBg309NNPS5JCQ0Ml6bL1WBVlZWWKj49XTEyMXnrpJX300Ud6+eWX1aZNG40ZM0bNmjXT4sWLNWbMGN17773q37+/JOnGG2+UJO3bt0+33HKLrr32Wk2ZMkWBgYFatWqV+vXrp3/961+699573dY3btw4NWrUSNOnT9ehQ4c0b948jR07VitXrpQkHTt2TL1791azZs00ZcoUBQcH69ChQ3r33XfPuw39+/fX119/rf/5n//RK6+8oqZNm0qSGc5+q6r7Pz09XYMHD9Ydd9yhv/71r5Kk/fv369NPP9Xjjz9epf371Vdf6ciRI7rxxhs1atQoLVu2TCUlJWZY6tWrV5XGgUUZgAVNnz7dkGQMHjzYnHbo0CHDx8fHeP75591q9+zZY9SrV89temJiotGqVSu3up9//tntfUlJidGxY0fj9ttvd5seGBhoJCYmVuhp6dKlhiTj4MGDhmEYRmFhoeHn52c88cQTbnVz5841vLy8jO+//97jvi+kvIfo6GijpKTEbZ2SjP/93/81p7Vq1cqQZKSlpbmN8eyzzxqBgYHG119/7TZ9ypQpho+Pj5GXl2cYhmGsXbvWkGTMnTvXrCktLTV69uxpSDKWLl1qTi8/XuUOHDhgeHt7G/fee69RVlbmth6Xy2X+/Ic//MG47bbbKmznpejxQg4ePFhhmcTEREOSMWvWLLfaP/7xj0Z0dLT5/vjx44YkY/r06RXGveOOO4xOnToZZ86cMae5XC6je/fuRrt27cxp5cc2Li7ObR9NmDDB8PHxMQoKCgzDMIw1a9YYkoydO3f+7vb8tp8XX3zR7ff3XK1atXL7na/q/n/88ccNm81mlJaW/m4vv+fdd981JBlNmjQx2rVrZyxdutRYunSp0a5dO8PX19f44osvqj026j6+roKljR492vz53Xfflcvl0gMPPKAff/zRfIWFhaldu3b6+OOPf3esc69FOXnypAoLC9WzZ0/t2rWrWr3ZbDbdfffdWrVqlQzDMKevXLlSsbGxatmyZY30XZlRo0a5XSA7ZswY1atXTx988IFbXWRkpOLj492mrV69Wj179lSjRo3c+omLi1NZWZm2bt0qSfrggw9Ur149jRkzxlzWx8dH48aNu2B/a9eulcvlUkpKSoULWqtyq/nl6NET5/4eSlLPnj313XffXXC5EydOaNOmTXrggQd06tQpczt++uknxcfH68CBA/r3v//ttsyoUaPc9lHPnj1VVlam77//XpLMs37r1q3T2bNnL3LLKlfV/R8cHKyioiKlp6dXe12nT5+WJJ06dUoZGRkaNmyYhg0bpo8++kiGYWju3Lk1sk2om/i6CpYWGRlp/nzgwAEZhqF27dpVWnuhu2LWrVun5557Trt371ZxcbE5/WKe7zJw4ECtXbtWWVlZ6t69u7799ltlZ2ebp/Nrou/K/HasBg0aqHnz5hWe4XPu/ju3ny+//PK8X1UcO3ZM0q9fuzVv3lwNGjRwm3/DDTdcsL9vv/1W3t7eioqKumBtZS5Hj1Xl7+9foY9GjRpVuAaqMt98840Mw9AzzzyjZ555ptKaY8eO6dprrzXfl4fjc9clyVzfbbfdpgEDBmjmzJl65ZVX9Kc//Un9+vXTgw8+WGMXEFd1/z/22GNatWqV7r77bl177bXq3bu3HnjgAd11111VXlf5Pz5uueUWRUREmNNbtmypHj16KDMz8yK2BHUdIQeWdu7ZF5fLJS8vL23YsKHSu5x++0F3rv/7v//Tn//8Z916661atGiRmjdvrvr162vp0qVavnx5tfu75557dM0112jVqlXq3r27Vq1aJW9vb91///010vfFquxOKpfLpTvvvFOTJk2qdJnrr7/+kvVTVVdSjxdzR135RboTJ06scEatXNu2bau0vvKzhV5eXnrnnXe0bds2vf/++9q4caMefvhhvfzyy9q2bVuN/D5Vdf+HhIRo9+7d2rhxozZs2KANGzZo6dKleuihh7Rs2bIqrSs8PFzSf67HOldISIg+//zzam4FrICQg6tGmzZtZBiGIiMjPf6Q+9e//iV/f39t3LjR7V+7S5curVDryZmdwMBA9e3bV6tXr9bf/vY3rVy5Uj179jT/j/ti+z6fAwcOuF2Qefr0aR09elR9+vS54LJt2rTR6dOnFRcX97t1rVq1UkZGhk6fPu32wZmbm1uldbhcLn311Vfq3LnzeevOt68vR4816XzbUX73Xf369S+4LZ6KjY1VbGysnn/+eS1fvlxDhgzRihUrNHLkSI96rExV978k+fr66p577tE999wjl8ulxx57TH//+9/1zDPPVAhwlenUqZPq169f4Ws7STpy5Mh5zybh6sA1Obhq9O/fXz4+Ppo5c6bbNTDSr//K/emnn867rI+Pj7y8vMzbfqVfb/2t7MnGgYGBHt2CPHDgQB05ckRvvvmmvvjiCw0cOLDG+j6f119/3e16jMWLF6u0tFR33333BZd94IEHlJWVpY0bN1aYV1BQoNLSUklSnz59VFpaqsWLF5vzy8rK9Nprr11wHf369ZO3t7dmzZpV4Zbjc/fB+fb15eixJl1zzTVmb+cKCQnRn/70J/3973/X0aNHKyz321vDq+LkyZMVfo/Kg+S5X8P+Vvkzpqryu13V/f/b311vb2/zrrLf6+VcDRs2VJ8+fZSZmamcnBxz+v79+5WZmak777yzSuPAmjiTg6tGmzZt9Nxzz2nq1Kk6dOiQ+vXrp4YNG+rgwYNas2aNRo0apYkTJ1a6bEJCgv72t7/prrvu0oMPPqhjx45p4cKFatu2rb788ku32ujoaH300Uf629/+pvDwcEVGRiomJua8ffXp00cNGzbUxIkT5ePjowEDBtRY3+dTUlKiO+64Qw888IByc3O1aNEi9ejRQ3/+858vuOyTTz6p9957T3379tWwYcMUHR2toqIi7dmzR++8844OHTqkpk2b6p577tEtt9yiKVOm6NChQ4qKitK7776rwsLCC66jbdu2evrpp/Xss8+qZ8+e6t+/v/z8/LRz506Fh4drzpw5kn7d14sXL9Zzzz2ntm3bKiQkRLfffvtl6bEmBQQEKCoqSitXrtT111+vxo0bq2PHjurYsaMWLlyoHj16qFOnTnrkkUd03XXXKT8/X1lZWfrhhx/0xRdfeLSuZcuWadGiRbr33nvVpk0bnTp1Sm+88YZsNtvvnsmLjo6WJD399NMaNGiQ6tevr3vuuafSB2xWdf+PHDlSJ06c0O23364WLVro+++/12uvvabOnTurQ4cOVd6m2bNnKyMjQ7fffrv+67/+S5L06quvqnHjxnrqqac82j+wmNq4pQu41MpvST5+/HiFef/617+MHj16GIGBgUZgYKDRvn17IykpycjNzTVrKruF/K233jLatWtn+Pn5Ge3btzeWLl1a4dZnwzCMnJwc49ZbbzUCAgIMSeattb+9hfxcQ4YMMW//PZ+q9H0h5T1s2bLFGDVqlNGoUSOjQYMGxpAhQ4yffvrJrbZVq1ZGQkJCpeOcOnXKmDp1qtG2bVvD19fXaNq0qdG9e3fjpZdecrs1/aeffjKGDh1q2Gw2IygoyBg6dKjx+eefX/AW8nL/+Mc/jD/+8Y+Gn5+f0ahRI+O2224z0tPTzfkOh8NISEgwGjZsaEhyu528pnu8kPPdQh4YGFihtrLtzczMNKKjow1fX98Kt29/++23xkMPPWSEhYUZ9evXN6699lqjb9++xjvvvGPWlB/b394a/vHHHxuSjI8//tgwDMPYtWuXMXjwYKNly5aGn5+fERISYvTt29f47LPP3Jb7bQ+G8eut4ddee63h7e3t9rv821vIDaNq+/+dd94xevfubYSEhBi+vr5Gy5YtjUcffdQ4evTo+XbzeWVnZxtxcXFGYGCg0bBhQ+Mvf/lLhVvYcfXxMozfnLcEYFmpqakaPny4du7cWeGJygBgNVyTAwAALIlrcgAL+OWXXy54HUnjxo0vUzfWUlJSohMnTvxuTVBQ0CX5w6VXO4fD8bvzAwICFBQUdJm6QV1EyAEsYOXKlRo+fPjv1lTnyciQMjMzL/j3j5YuXVrhD1Ti4jVv3vx35ycmJrr9QVTgt7gmB7CAo0ePat++fb9bEx0dbT79FlV38uRJZWdn/27NH/7whwt+IMNzH3300e/ODw8Pr/ZTsXF1IOQAAABL4sJjAABgSVf1NTkul0tHjhxRw4YNL+qPLAIAgMvHMAydOnVK4eHh8vY+//maqzrkHDlyxO2v1gIAgLrj8OHDatGixXnnX9Uhp2HDhpJ+3Uk2m62WuwEAAFXhdDoVERFhfo6fz1Udcsq/orLZbIQcAADqmAtdasKFxwAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJLq1XYDlvXxnNruwHO9ptZ2BwAA1BjO5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEviFvJLJOu7n2q7BY/Ze9V2BwAA1BzO5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEvyKOSUlZXpmWeeUWRkpAICAtSmTRs9++yzMgzDrDEMQykpKWrevLkCAgIUFxenAwcOuI1z4sQJDRkyRDabTcHBwRoxYoROnz7tVvPll1+qZ8+e8vf3V0REhObOnVuhn9WrV6t9+/by9/dXp06d9MEHH3iyOQAAwMI8Cjl//etftXjxYi1YsED79+/XX//6V82dO1evvfaaWTN37ly9+uqrWrJkibZv367AwEDFx8frzJkzZs2QIUO0b98+paena926ddq6datGjRplznc6nerdu7datWql7Oxsvfjii5oxY4Zef/11syYzM1ODBw/WiBEj9Pnnn6tfv37q16+f9u7dezH7AwAAWISXce5pmAvo27evQkND9dZbb5nTBgwYoICAAP3zn/+UYRgKDw/XE088oYkTJ0qSCgsLFRoaqtTUVA0aNEj79+9XVFSUdu7cqS5dukiS0tLS1KdPH/3www8KDw/X4sWL9fTTT8vhcMjX11eSNGXKFK1du1Y5OTmSpIEDB6qoqEjr1q0ze4mNjVXnzp21ZMmSKm2P0+lUUFCQCgsLZbPZqrobqiTrrYk1Ot7lYB/xUm23AADABVX189ujMzndu3dXRkaGvv76a0nSF198oU8++UR33323JOngwYNyOByKi4szlwkKClJMTIyysrIkSVlZWQoODjYDjiTFxcXJ29tb27dvN2tuvfVWM+BIUnx8vHJzc3Xy5Emz5tz1lNeUr6cyxcXFcjqdbi8AAGBNHv3tqilTpsjpdKp9+/by8fFRWVmZnn/+eQ0ZMkSS5HA4JEmhoaFuy4WGhprzHA6HQkJC3JuoV0+NGzd2q4mMjKwwRvm8Ro0ayeFw/O56KjNnzhzNnDnTk00GAAB1lEdnclatWqW3335by5cv165du7Rs2TK99NJLWrZs2aXqr0ZNnTpVhYWF5uvw4cO13RIAALhEPDqT8+STT2rKlCkaNGiQJKlTp076/vvvNWfOHCUmJiosLEySlJ+fr+bNm5vL5efnq3PnzpKksLAwHTt2zG3c0tJSnThxwlw+LCxM+fn5bjXl7y9UUz6/Mn5+fvLz8/NkkwEAQB3l0Zmcn3/+Wd7e7ov4+PjI5XJJkiIjIxUWFqaMjAxzvtPp1Pbt22W32yVJdrtdBQUFys7ONms2bdokl8ulmJgYs2br1q06e/asWZOenq4bbrhBjRo1MmvOXU95Tfl6AADA1c2jkHPPPffo+eef1/r163Xo0CGtWbNGf/vb33TvvfdKkry8vDR+/Hg999xzeu+997Rnzx499NBDCg8PV79+/SRJHTp00F133aVHHnlEO3bs0KeffqqxY8dq0KBBCg8PlyQ9+OCD8vX11YgRI7Rv3z6tXLlS8+fPV3JystnL448/rrS0NL388svKycnRjBkz9Nlnn2ns2LE1tGsAAEBd5tHXVa+99pqeeeYZPfbYYzp27JjCw8P16KOPKiUlxayZNGmSioqKNGrUKBUUFKhHjx5KS0uTv7+/WfP2229r7NixuuOOO+Tt7a0BAwbo1VdfNecHBQXpww8/VFJSkqKjo9W0aVOlpKS4PUune/fuWr58uaZNm6annnpK7dq109q1a9WxY8eL2R8AAMAiPHpOjtXwnBx3PCcHAFAXXJLn5AAAANQVhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJHoWc1q1by8vLq8IrKSlJknTmzBklJSWpSZMmatCggQYMGKD8/Hy3MfLy8pSQkKBrrrlGISEhevLJJ1VaWupWs3nzZt18883y8/NT27ZtlZqaWqGXhQsXqnXr1vL391dMTIx27Njh4aYDAAAr8yjk7Ny5U0ePHjVf6enpkqT7779fkjRhwgS9//77Wr16tbZs2aIjR46of//+5vJlZWVKSEhQSUmJMjMztWzZMqWmpiolJcWsOXjwoBISEtSrVy/t3r1b48eP18iRI7Vx40azZuXKlUpOTtb06dO1a9cu3XTTTYqPj9exY8cuamcAAADr8DIMw6juwuPHj9e6det04MABOZ1ONWvWTMuXL9d9990nScrJyVGHDh2UlZWl2NhYbdiwQX379tWRI0cUGhoqSVqyZIkmT56s48ePy9fXV5MnT9b69eu1d+9ecz2DBg1SQUGB0tLSJEkxMTHq2rWrFixYIElyuVyKiIjQuHHjNGXKlCr373Q6FRQUpMLCQtlsturuhkplvTWxRse7HOwjXqrtFgAAuKCqfn5X+5qckpIS/fOf/9TDDz8sLy8vZWdn6+zZs4qLizNr2rdvr5YtWyorK0uSlJWVpU6dOpkBR5Li4+PldDq1b98+s+bcMcpryscoKSlRdna2W423t7fi4uLMmvMpLi6W0+l0ewEAAGuqdshZu3atCgoKNGzYMEmSw+GQr6+vgoOD3epCQ0PlcDjMmnMDTvn88nm/V+N0OvXLL7/oxx9/VFlZWaU15WOcz5w5cxQUFGS+IiIiPNpmAABQd1Q75Lz11lu6++67FR4eXpP9XFJTp05VYWGh+Tp8+HBttwQAAC6RetVZ6Pvvv9dHH32kd99915wWFhamkpISFRQUuJ3Nyc/PV1hYmFnz27ugyu++Orfmt3dk5efny2azKSAgQD4+PvLx8am0pnyM8/Hz85Ofn59nGwsAAOqkap3JWbp0qUJCQpSQkGBOi46OVv369ZWRkWFOy83NVV5enux2uyTJbrdrz549bndBpaeny2azKSoqyqw5d4zymvIxfH19FR0d7VbjcrmUkZFh1gAAAHh8Jsflcmnp0qVKTExUvXr/WTwoKEgjRoxQcnKyGjduLJvNpnHjxslutys2NlaS1Lt3b0VFRWno0KGaO3euHA6Hpk2bpqSkJPMMy+jRo7VgwQJNmjRJDz/8sDZt2qRVq1Zp/fr15rqSk5OVmJioLl26qFu3bpo3b56Kioo0fPjwi90fAADAIjwOOR999JHy8vL08MMPV5j3yiuvyNvbWwMGDFBxcbHi4+O1aNEic76Pj4/WrVunMWPGyG63KzAwUImJiZo1a5ZZExkZqfXr12vChAmaP3++WrRooTfffFPx8fFmzcCBA3X8+HGlpKTI4XCoc+fOSktLq3AxMgAAuHpd1HNy6jqek+OO5+QAAOqCS/6cHAAAgCsZIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSvdpuAKiuV9K/ru0WPDbhzutruwUAuGoQclCnxea9XtsteObjJlKvqbXdBQBcFfi6CgAAWBIhBwAAWBIhBwAAWJLHIeff//63/t//+39q0qSJAgIC1KlTJ3322WfmfMMwlJKSoubNmysgIEBxcXE6cOCA2xgnTpzQkCFDZLPZFBwcrBEjRuj06dNuNV9++aV69uwpf39/RUREaO7cuRV6Wb16tdq3by9/f3916tRJH3zwgaebAwAALMqjkHPy5Endcsstql+/vjZs2KCvvvpKL7/8sho1amTWzJ07V6+++qqWLFmi7du3KzAwUPHx8Tpz5oxZM2TIEO3bt0/p6elat26dtm7dqlGjRpnznU6nevfurVatWik7O1svvviiZsyYoddf/89FppmZmRo8eLBGjBihzz//XP369VO/fv20d+/ei9kfAADAIrwMwzCqWjxlyhR9+umn+r//+79K5xuGofDwcD3xxBOaOHGiJKmwsFChoaFKTU3VoEGDtH//fkVFRWnnzp3q0qWLJCktLU19+vTRDz/8oPDwcC1evFhPP/20HA6HfH19zXWvXbtWOTk5kqSBAweqqKhI69atM9cfGxurzp07a8mSJVXaHqfTqaCgIBUWFspms1V1N1RJ1lsTa3S8y8E+4qXabsEjr6R/XefurrJfx91VAHCxqvr57dGZnPfee09dunTR/fffr5CQEP3xj3/UG2+8Yc4/ePCgHA6H4uLizGlBQUGKiYlRVlaWJCkrK0vBwcFmwJGkuLg4eXt7a/v27WbNrbfeagYcSYqPj1dubq5Onjxp1py7nvKa8vVUpri4WE6n0+0FAACsyaOQ891332nx4sVq166dNm7cqDFjxui//uu/tGzZMkmSw+GQJIWGhrotFxoaas5zOBwKCQlxm1+vXj01btzYraayMc5dx/lqyudXZs6cOQoKCjJfERERnmw+AACoQzwKOS6XSzfffLNmz56tP/7xjxo1apQeeeSRKn89VNumTp2qwsJC83X48OHabgkAAFwiHoWc5s2bKyoqym1ahw4dlJeXJ0kKCwuTJOXn57vV5Ofnm/PCwsJ07Ngxt/mlpaU6ceKEW01lY5y7jvPVlM+vjJ+fn2w2m9sLAABYk0ch55ZbblFubq7btK+//lqtWrWSJEVGRiosLEwZGRnmfKfTqe3bt8tut0uS7Ha7CgoKlJ2dbdZs2rRJLpdLMTExZs3WrVt19uxZsyY9PV033HCDeSeX3W53W095Tfl6AADA1c2jkDNhwgRt27ZNs2fP1jfffKPly5fr9ddfV1JSkiTJy8tL48eP13PPPaf33ntPe/bs0UMPPaTw8HD169dP0q9nfu666y498sgj2rFjhz799FONHTtWgwYNUnh4uCTpwQcflK+vr0aMGKF9+/Zp5cqVmj9/vpKTk81eHn/8caWlpenll19WTk6OZsyYoc8++0xjx46toV0DAADqMo/+QGfXrl21Zs0aTZ06VbNmzVJkZKTmzZunIUOGmDWTJk1SUVGRRo0apYKCAvXo0UNpaWny9/c3a95++22NHTtWd9xxh7y9vTVgwAC9+uqr5vygoCB9+OGHSkpKUnR0tJo2baqUlBS3Z+l0795dy5cv17Rp0/TUU0+pXbt2Wrt2rTp27Hgx+wMAAFiER8/JsRqek+OO5+RcejwnBwAu3iV5Tg4AAEBdQcgBAACWRMgBAACWRMgBAACWRMgBAACW5NEt5LC4j+fUdgceic37qbZbAABcwTiTAwAALImQAwAALImQAwAALIlrcmDK+o5rXAAA1sGZHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEkehZwZM2bIy8vL7dW+fXtz/pkzZ5SUlKQmTZqoQYMGGjBggPLz893GyMvLU0JCgq655hqFhIToySefVGlpqVvN5s2bdfPNN8vPz09t27ZVampqhV4WLlyo1q1by9/fXzExMdqxY4cnmwIAACzO4zM5f/jDH3T06FHz9cknn5jzJkyYoPfff1+rV6/Wli1bdOTIEfXv39+cX1ZWpoSEBJWUlCgzM1PLli1TamqqUlJSzJqDBw8qISFBvXr10u7duzV+/HiNHDlSGzduNGtWrlyp5ORkTZ8+Xbt27dJNN92k+Ph4HTt2rLr7AQAAWIyXYRhGVYtnzJihtWvXavfu3RXmFRYWqlmzZlq+fLnuu+8+SVJOTo46dOigrKwsxcbGasOGDerbt6+OHDmi0NBQSdKSJUs0efJkHT9+XL6+vpo8ebLWr1+vvXv3mmMPGjRIBQUFSktLkyTFxMSoa9euWrBggSTJ5XIpIiJC48aN05QpU6q88U6nU0FBQSosLJTNZqvyclWR9dbEGh0P1mC/ronUa2pttwEAdVpVP789PpNz4MABhYeH67rrrtOQIUOUl5cnScrOztbZs2cVFxdn1rZv314tW7ZUVlaWJCkrK0udOnUyA44kxcfHy+l0at++fWbNuWOU15SPUVJSouzsbLcab29vxcXFmTXnU1xcLKfT6fYCAADW5FHIiYmJUWpqqtLS0rR48WIdPHhQPXv21KlTp+RwOOTr66vg4GC3ZUJDQ+VwOCRJDofDLeCUzy+f93s1TqdTv/zyi3788UeVlZVVWlM+xvnMmTNHQUFB5isiIsKTzQcAAHVIPU+K7777bvPnG2+8UTExMWrVqpVWrVqlgICAGm+upk2dOlXJycnme6fTSdABAMCiLuoW8uDgYF1//fX65ptvFBYWppKSEhUUFLjV5OfnKywsTJIUFhZW4W6r8vcXqrHZbAoICFDTpk3l4+NTaU35GOfj5+cnm83m9gIAANZ0USHn9OnT+vbbb9W8eXNFR0erfv36ysjIMOfn5uYqLy9PdrtdkmS327Vnzx63u6DS09Nls9kUFRVl1pw7RnlN+Ri+vr6Kjo52q3G5XMrIyDBrAAAAPAo5EydO1JYtW3To0CFlZmbq3nvvlY+PjwYPHqygoCCNGDFCycnJ+vjjj5Wdna3hw4fLbrcrNjZWktS7d29FRUVp6NCh+uKLL7Rx40ZNmzZNSUlJ8vPzkySNHj1a3333nSZNmqScnBwtWrRIq1at0oQJE8w+kpOT9cYbb2jZsmXav3+/xowZo6KiIg0fPrwGdw0AAKjLPLom54cfftDgwYP1008/qVmzZurRo4e2bdumZs2aSZJeeeUVeXt7a8CAASouLlZ8fLwWLVpkLu/j46N169ZpzJgxstvtCgwMVGJiombNmmXWREZGav369ZowYYLmz5+vFi1a6M0331R8fLxZM3DgQB0/flwpKSlyOBzq3Lmz0tLSKlyMDAAArl4ePSfHanhODmrDtpajarsFj0y48/rabgEA3Fyy5+QAAADUBYQcAABgSYQcAABgSYQcAABgSR7dXQXg4sXmvV7bLXjm4ya//i9/WBRAHcOZHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEkXFXJeeOEFeXl5afz48ea0M2fOKCkpSU2aNFGDBg00YMAA5efnuy2Xl5enhIQEXXPNNQoJCdGTTz6p0tJSt5rNmzfr5ptvlp+fn9q2bavU1NQK61+4cKFat24tf39/xcTEaMeOHRezOQAAwEKqHXJ27typv//977rxxhvdpk+YMEHvv/++Vq9erS1btujIkSPq37+/Ob+srEwJCQkqKSlRZmamli1bptTUVKWkpJg1Bw8eVEJCgnr16qXdu3dr/PjxGjlypDZu3GjWrFy5UsnJyZo+fbp27dqlm266SfHx8Tp27Fh1NwkAAFiIl2EYhqcLnT59WjfffLMWLVqk5557Tp07d9a8efNUWFioZs2aafny5brvvvskSTk5OerQoYOysrIUGxurDRs2qG/fvjpy5IhCQ0MlSUuWLNHkyZN1/Phx+fr6avLkyVq/fr327t1rrnPQoEEqKChQWlqaJCkmJkZdu3bVggULJEkul0sREREaN26cpkyZUqXtcDqdCgoKUmFhoWw2m6e74XdlvTWxRscDaov9uia//tBrau02AgD/v6p+flfrTE5SUpISEhIUFxfnNj07O1tnz551m96+fXu1bNlSWVlZkqSsrCx16tTJDDiSFB8fL6fTqX379pk1vx07Pj7eHKOkpETZ2dluNd7e3oqLizNrKlNcXCyn0+n2AgAA1lTP0wVWrFihXbt2aefOnRXmORwO+fr6Kjg42G16aGioHA6HWXNuwCmfXz7v92qcTqd++eUXnTx5UmVlZZXW5OTknLf3OXPmaObMmVXbUAAAUKd5dCbn8OHDevzxx/X222/L39//UvV0yUydOlWFhYXm6/Dhw7XdEgAAuEQ8CjnZ2dk6duyYbr75ZtWrV0/16tXTli1b9Oqrr6pevXoKDQ1VSUmJCgoK3JbLz89XWFiYJCksLKzC3Vbl7y9UY7PZFBAQoKZNm8rHx6fSmvIxKuPn5yebzeb2AgAA1uRRyLnjjju0Z88e7d6923x16dJFQ4YMMX+uX7++MjIyzGVyc3OVl5cnu90uSbLb7dqzZ4/bXVDp6emy2WyKiooya84do7ymfAxfX19FR0e71bhcLmVkZJg1AADg6ubRNTkNGzZUx44d3aYFBgaqSZMm5vQRI0YoOTlZjRs3ls1m07hx42S32xUbGytJ6t27t6KiojR06FDNnTtXDodD06ZNU1JSkvz8/CRJo0eP1oIFCzRp0iQ9/PDD2rRpk1atWqX169eb601OTlZiYqK6dOmibt26ad68eSoqKtLw4cMvaocAAABr8PjC4wt55ZVX5O3trQEDBqi4uFjx8fFatGiROd/Hx0fr1q3TmDFjZLfbFRgYqMTERM2aNcusiYyM1Pr16zVhwgTNnz9fLVq00Jtvvqn4+HizZuDAgTp+/LhSUlLkcDjUuXNnpaWlVbgYGQAAXJ2q9Zwcq+A5OcCF8ZwcAFeaS/qcHAAAgCsdIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSvdpuAMCVLeu7nyRJ20q/ruVOqmbCndfXdgsArhCcyQEAAJZEyAEAAJZEyAEAAJZEyAEAAJbkUchZvHixbrzxRtlsNtlsNtntdm3YsMGcf+bMGSUlJalJkyZq0KCBBgwYoPz8fLcx8vLylJCQoGuuuUYhISF68sknVVpa6lazefNm3XzzzfLz81Pbtm2VmppaoZeFCxeqdevW8vf3V0xMjHbs2OHJpgAAAIvzKOS0aNFCL7zwgrKzs/XZZ5/p9ttv11/+8hft27dPkjRhwgS9//77Wr16tbZs2aIjR46of//+5vJlZWVKSEhQSUmJMjMztWzZMqWmpiolJcWsOXjwoBISEtSrVy/t3r1b48eP18iRI7Vx40azZuXKlUpOTtb06dO1a9cu3XTTTYqPj9exY8cudn8AAACL8DIMw7iYARo3bqwXX3xR9913n5o1a6bly5frvvvukyTl5OSoQ4cOysrKUmxsrDZs2KC+ffvqyJEjCg0NlSQtWbJEkydP1vHjx+Xr66vJkydr/fr12rt3r7mOQYMGqaCgQGlpaZKkmJgYde3aVQsWLJAkuVwuRUREaNy4cZoyZcp5ey0uLlZxcbH53ul0KiIiQoWFhbLZbBezGyrIemtijY4HoGrs1zX5z5teU2uvEQCXjNPpVFBQ0AU/v6t9TU5ZWZlWrFihoqIi2e12ZWdn6+zZs4qLizNr2rdvr5YtWyorK0uSlJWVpU6dOpkBR5Li4+PldDrNs0FZWVluY5TXlI9RUlKi7Oxstxpvb2/FxcWZNeczZ84cBQUFma+IiIjqbj4AALjCeRxy9uzZowYNGsjPz0+jR4/WmjVrFBUVJYfDIV9fXwUHB7vVh4aGyuFwSJIcDodbwCmfXz7v92qcTqd++eUX/fjjjyorK6u0pnyM85k6daoKCwvN1+HDhz3dfAAAUEd4/MTjG264Qbt371ZhYaHeeecdJSYmasuWLZeitxrn5+cnPz+/2m4DAABcBh6HHF9fX7Vt21aSFB0drZ07d2r+/PkaOHCgSkpKVFBQ4HY2Jz8/X2FhYZKksLCwCndBld99dW7Nb+/Iys/Pl81mU0BAgHx8fOTj41NpTfkYAAAAF/2cHJfLpeLiYkVHR6t+/frKyMgw5+Xm5iovL092u12SZLfbtWfPHre7oNLT02Wz2RQVFWXWnDtGeU35GL6+voqOjnarcblcysjIMGsAAAA8OpMzdepU3X333WrZsqVOnTql5cuXa/Pmzdq4caOCgoI0YsQIJScnq3HjxrLZbBo3bpzsdrtiY2MlSb1791ZUVJSGDh2quXPnyuFwaNq0aUpKSjK/Rho9erQWLFigSZMm6eGHH9amTZu0atUqrV+/3uwjOTlZiYmJ6tKli7p166Z58+apqKhIw4cPr8FdAwAA6jKPQs6xY8f00EMP6ejRowoKCtKNN96ojRs36s4775QkvfLKK/L29taAAQNUXFys+Ph4LVq0yFzex8dH69at05gxY2S32xUYGKjExETNmjXLrImMjNT69es1YcIEzZ8/Xy1atNCbb76p+Ph4s2bgwIE6fvy4UlJS5HA41LlzZ6WlpVW4GBkAAFy9Lvo5OXVZVe+zrw6ekwPUDp6TA1jfJX9ODgAAwJWMkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACzJo5AzZ84cde3aVQ0bNlRISIj69eun3Nxct5ozZ84oKSlJTZo0UYMGDTRgwADl5+e71eTl5SkhIUHXXHONQkJC9OSTT6q0tNStZvPmzbr55pvl5+entm3bKjU1tUI/CxcuVOvWreXv76+YmBjt2LHDk80BAAAW5lHI2bJli5KSkrRt2zalp6fr7Nmz6t27t4qKisyaCRMm6P3339fq1au1ZcsWHTlyRP379zfnl5WVKSEhQSUlJcrMzNSyZcuUmpqqlJQUs+bgwYNKSEhQr169tHv3bo0fP14jR47Uxo0bzZqVK1cqOTlZ06dP165du3TTTTcpPj5ex44du5j9AQAALMLLMAyjugsfP35cISEh2rJli2699VYVFhaqWbNmWr58ue677z5JUk5Ojjp06KCsrCzFxsZqw4YN6tu3r44cOaLQ0FBJ0pIlSzR58mQdP35cvr6+mjx5stavX6+9e/ea6xo0aJAKCgqUlpYmSYqJiVHXrl21YMECSZLL5VJERITGjRunKVOmVKl/p9OpoKAgFRYWymazVXc3VCrrrYk1Oh6AqrFf1+Q/b3pNrb1GAFwyVf38vqhrcgoLCyVJjRs3liRlZ2fr7NmziouLM2vat2+vli1bKisrS5KUlZWlTp06mQFHkuLj4+V0OrVv3z6z5twxymvKxygpKVF2drZbjbe3t+Li4syayhQXF8vpdLq9AACANVU75LhcLo0fP1633HKLOnbsKElyOBzy9fVVcHCwW21oaKgcDodZc27AKZ9fPu/3apxOp3755Rf9+OOPKisrq7SmfIzKzJkzR0FBQeYrIiLC8w0HAAB1QrVDTlJSkvbu3asVK1bUZD+X1NSpU1VYWGi+Dh8+XNstAQCAS6RedRYaO3as1q1bp61bt6pFixbm9LCwMJWUlKigoMDtbE5+fr7CwsLMmt/eBVV+99W5Nb+9Iys/P182m00BAQHy8fGRj49PpTXlY1TGz89Pfn5+nm8wAACoczw6k2MYhsaOHas1a9Zo06ZNioyMdJsfHR2t+vXrKyMjw5yWm5urvLw82e12SZLdbteePXvc7oJKT0+XzWZTVFSUWXPuGOU15WP4+voqOjrarcblcikjI8OsAQAAVzePzuQkJSVp+fLl+t///V81bNjQvP4lKChIAQEBCgoK0ogRI5ScnKzGjRvLZrNp3Lhxstvtio2NlST17t1bUVFRGjp0qObOnSuHw6Fp06YpKSnJPMsyevRoLViwQJMmTdLDDz+sTZs2adWqVVq/fr3ZS3JyshITE9WlSxd169ZN8+bNU1FRkYYPH15T+wYAANRhHoWcxYsXS5L+9Kc/uU1funSphg0bJkl65ZVX5O3trQEDBqi4uFjx8fFatGiRWevj46N169ZpzJgxstvtCgwMVGJiombNmmXWREZGav369ZowYYLmz5+vFi1a6M0331R8fLxZM3DgQB0/flwpKSlyOBzq3Lmz0tLSKlyMDAAArk4X9Zycuo7n5ADWw3NyAOu7LM/JAQAAuFIRcgAAgCURcgAAgCVV6zk5AHClyvruJ/PnbaVf12InVTfhzutruwXAkjiTAwAALImQAwAALImQAwAALImQAwAALImQAwAALIm7qwBYVmze67XdQtV8zFOagUuBMzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSPA45W7du1T333KPw8HB5eXlp7dq1bvMNw1BKSoqaN2+ugIAAxcXF6cCBA241J06c0JAhQ2Sz2RQcHKwRI0bo9OnTbjVffvmlevbsKX9/f0VERGju3LkVelm9erXat28vf39/derUSR988IGnmwMAACzK45BTVFSkm266SQsXLqx0/ty5c/Xqq69qyZIl2r59uwIDAxUfH68zZ86YNUOGDNG+ffuUnp6udevWaevWrRo1apQ53+l0qnfv3mrVqpWys7P14osvasaMGXr99dfNmszMTA0ePFgjRozQ559/rn79+qlfv37au3evp5sEAAAsyMswDKPaC3t5ac2aNerXr5+kX8/ihIeH64knntDEiRMlSYWFhQoNDVVqaqoGDRqk/fv3KyoqSjt37lSXLl0kSWlpaerTp49++OEHhYeHa/HixXr66aflcDjk6+srSZoyZYrWrl2rnJwcSdLAgQNVVFSkdevWmf3Exsaqc+fOWrJkSZX6dzqdCgoKUmFhoWw2W3V3Q6Wy3ppYo+MBsC77dU3+86bX1NprBKgjqvr5XaPX5Bw8eFAOh0NxcXHmtKCgIMXExCgrK0uSlJWVpeDgYDPgSFJcXJy8vb21fft2s+bWW281A44kxcfHKzc3VydPnjRrzl1PeU35eipTXFwsp9Pp9gIAANZUoyHH4XBIkkJDQ92mh4aGmvMcDodCQkLc5terV0+NGzd2q6lsjHPXcb6a8vmVmTNnjoKCgsxXRESEp5sIAADqiKvq7qqpU6eqsLDQfB0+fLi2WwIAAJdIjYacsLAwSVJ+fr7b9Pz8fHNeWFiYjh075ja/tLRUJ06ccKupbIxz13G+mvL5lfHz85PNZnN7AQAAa6rRkBMZGamwsDBlZGSY05xOp7Zv3y673S5JstvtKigoUHZ2tlmzadMmuVwuxcTEmDVbt27V2bNnzZr09HTdcMMNatSokVlz7nrKa8rXAwAArm4eh5zTp09r9+7d2r17t6RfLzbevXu38vLy5OXlpfHjx+u5557Te++9pz179uihhx5SeHi4eQdWhw4ddNddd+mRRx7Rjh079Omnn2rs2LEaNGiQwsPDJUkPPvigfH19NWLECO3bt08rV67U/PnzlZycbPbx+OOPKy0tTS+//LJycnI0Y8YMffbZZxo7duzF7xUAAFDn1fN0gc8++0y9evUy35cHj8TERKWmpmrSpEkqKirSqFGjVFBQoB49eigtLU3+/v7mMm+//bbGjh2rO+64Q97e3howYIBeffVVc35QUJA+/PBDJSUlKTo6Wk2bNlVKSorbs3S6d++u5cuXa9q0aXrqqafUrl07rV27Vh07dqzWjgAAANZyUc/Jqet4Tg6AKwHPyQE8UyvPyQEAALhSEHIAAIAlEXIAAIAleXzhMQCgZmV995P587bSr2uxk6qZcOf1td0CUCWcyQEAAJZEyAEAAJbE11UAcAWJzXu9tlu4sI+buL/ntndcoTiTAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALKlebTcAAKhbsr77ye39ttKva6mTqptw5/W13QJqASEHAHBRYvNer+0WLuzjJu7ve02tnT5wWfF1FQAAsCRCDgAAsCRCDgAAsCRCDgAAsKQ6H3IWLlyo1q1by9/fXzExMdqxY0dttwQAAK4AdTrkrFy5UsnJyZo+fbp27dqlm266SfHx8Tp27FhttwYAAGqZl2EYRm03UV0xMTHq2rWrFixYIElyuVyKiIjQuHHjNGXKlAsu73Q6FRQUpMLCQtlsthrtLeutiTU6HgCg5mxrOaq2W7ggnu1zflX9/K6zz8kpKSlRdna2pk79z7MOvL29FRcXp6ysrEqXKS4uVnFxsfm+sLBQ0q87q6YV/VJ84SIAQK3olPtabbdwQc7ixu4Tbn2idhq5ApV/bl/oPE2dDTk//vijysrKFBoa6jY9NDRUOTk5lS4zZ84czZw5s8L0iIiIS9IjAAA1Z1ZtN3DFOXXqlIKCgs47v86GnOqYOnWqkpOTzfcul0snTpxQkyZN5OXlVWPrcTqdioiI0OHDh2v8azB4hmNx5eBYXDk4FlcOjkX1GIahU6dOKTw8/Hfr6mzIadq0qXx8fJSfn+82PT8/X2FhYZUu4+fnJz8/P7dpwcHBl6pF2Ww2fmmvEByLKwfH4srBsbhycCw893tncMrV2burfH19FR0drYyMDHOay+VSRkaG7HZ7LXYGAACuBHX2TI4kJScnKzExUV26dFG3bt00b948FRUVafjw4bXdGgAAqGV1OuQMHDhQx48fV0pKihwOhzp37qy0tLQKFyNfbn5+fpo+fXqFr8Zw+XEsrhwciysHx+LKwbG4tOr0c3IAAADOp85ekwMAAPB7CDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDnVtHDhQrVu3Vr+/v6KiYnRjh07frd+9erVat++vfz9/dWpUyd98MEHl6lT6/PkWLzxxhvq2bOnGjVqpEaNGikuLu6Cxw5V5+l/F+VWrFghLy8v9evX79I2eBXx9FgUFBQoKSlJzZs3l5+fn66//nr+f6qGeHos5s2bpxtuuEEBAQGKiIjQhAkTdObMmcvUrcUY8NiKFSsMX19f4x//+Iexb98+45FHHjGCg4ON/Pz8Sus//fRTw8fHx5g7d67x1VdfGdOmTTPq169v7Nmz5zJ3bj2eHosHH3zQWLhwofH5558b+/fvN4YNG2YEBQUZP/zww2Xu3Ho8PRblDh48aFx77bVGz549jb/85S+Xp1mL8/RYFBcXG126dDH69OljfPLJJ8bBgweNzZs3G7t3777MnVuPp8fi7bffNvz8/Iy3337bOHjwoLFx40ajefPmxoQJEy5z59ZAyKmGbt26GUlJSeb7srIyIzw83JgzZ06l9Q888ICRkJDgNi0mJsZ49NFHL2mfVwNPj8VvlZaWGg0bNjSWLVt2qVq8alTnWJSWlhrdu3c33nzzTSMxMZGQU0M8PRaLFy82rrvuOqOkpORytXjV8PRYJCUlGbfffrvbtOTkZOOWW265pH1aFV9XeaikpETZ2dmKi4szp3l7eysuLk5ZWVmVLpOVleVWL0nx8fHnrUfVVOdY/NbPP/+ss2fPqnHjxpeqzatCdY/FrFmzFBISohEjRlyONq8K1TkW7733nux2u5KSkhQaGqqOHTtq9uzZKisru1xtW1J1jkX37t2VnZ1tfqX13Xff6YMPPlCfPn0uS89WU6f/rENt+PHHH1VWVlbhT0eEhoYqJyen0mUcDkel9Q6H45L1eTWozrH4rcmTJys8PLxCCIVnqnMsPvnkE7311lvavXv3Zejw6lGdY/Hdd99p06ZNGjJkiD744AN98803euyxx3T27FlNnz79crRtSdU5Fg8++KB+/PFH9ejRQ4ZhqLS0VKNHj9ZTTz11OVq2HM7k4Kr1wgsvaMWKFVqzZo38/f1ru52ryqlTpzR06FC98cYbatq0aW23c9VzuVwKCQnR66+/rujoaA0cOFBPP/20lixZUtutXXU2b96s2bNna9GiRdq1a5feffddrV+/Xs8++2xtt1YncSbHQ02bNpWPj4/y8/Pdpufn5yssLKzSZcLCwjyqR9VU51iUe+mll/TCCy/oo48+0o033ngp27wqeHosvv32Wx06dEj33HOPOc3lckmS6tWrp9zcXLVp0+bSNm1R1fnvonnz5qpfv758fHzMaR06dJDD4VBJSYl8fX0vac9WVZ1j8cwzz2jo0KEaOXKkJKlTp04qKirSqFGj9PTTT8vbm3MTnmBvecjX11fR0dHKyMgwp7lcLmVkZMhut1e6jN1ud6uXpPT09PPWo2qqcywkae7cuXr22WeVlpamLl26XI5WLc/TY9G+fXvt2bNHu3fvNl9//vOf1atXL+3evVsRERGXs31Lqc5/F7fccou++eYbM2hK0tdff63mzZsTcC5CdY7Fzz//XCHIlIdPg7+n7bnavvK5LlqxYoXh5+dnpKamGl999ZUxatQoIzg42HA4HIZhGMbQoUONKVOmmPWffvqpUa9ePeOll14y9u/fb0yfPp1byGuIp8fihRdeMHx9fY133nnHOHr0qPk6depUbW2CZXh6LH6Lu6tqjqfHIi8vz2jYsKExduxYIzc311i3bp0REhJiPPfcc7W1CZbh6bGYPn260bBhQ+N//ud/jO+++8748MMPjTZt2hgPPPBAbW1CnUbIqabXXnvNaNmypeHr62t069bN2LZtmznvtttuMxITE93qV61aZVx//fWGr6+v8Yc//MFYv379Ze7Yujw5Fq1atTIkVXhNnz798jduQZ7+d3EuQk7N8vRYZGZmGjExMYafn59x3XXXGc8//7xRWlp6mbu2Jk+OxdmzZ40ZM2YYbdq0Mfz9/Y2IiAjjscceM06ePHn5G7cAL8Pg/BcAALAerskBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACW9P8Bjdb/QA15LqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN/5JREFUeJzt3XlYVnX+//EXiyyhLC6AFBmpuaSThYmY2sZIpTak5TqG5lKG/UqykinXLMs2y1zaRr1mdFyadBoXzNR0UrQiLbPESk0rbzQVMCoQ+Pz+mC9nvAUV7EaUz/NxXfc1cM77nPM+5+Dcrz73Oef2MsYYAQAAWMi7uhsAAACoLgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCHgLAwcOFCXXXaZR9c5Z84ceXl5ae/evR5d74Vm79698vLy0pw5c5xp48ePl5eXV/U1dZLyeqyKZc5nXl5eGj9+fIVqL7vsMg0cOLBK+wHOFkEIOMeefvppLV26tLrbsMKMGTNqRPD45ZdfNH78eH3wwQfV3copbdq0SePHj1dOTk51t+KmNICe6jV06NDqbhHVzLe6GwBs8/TTT+vOO+9UUlKS2/QBAwaoT58+8vf3r57GzmNPPPGERo8eXenlZsyYofr1658XoxGNGjXSr7/+qlq1alV62V9++UUTJkyQJN1www0e7uzs/Prrr/L1/d9byKZNmzRhwgQNHDhQoaGhbrVZWVny9q6e/+5u0KCB/va3v5WZnp6ernnz5qlLly7V0BXOJwQh4P/k5+crKCio2rbv4+MjHx+fatv+72WM0W+//abAwECPr9vX19ftTfdC5OXlpYCAgOpuw2Mqsy/VGe6DgoL05z//ucz0OXPmKDg4WN27d6+GrnA+4aMxWKn0mpMvv/xS/fr1U1hYmDp27ChJ+vvf/67Y2FgFBgaqbt266tOnj/bv33/GdT7//PPq0KGD6tWrp8DAQMXGxurtt992q/Hy8lJ+fr7mzp3rDM2XjlacfI1Qt27ddPnll5e7rfj4eLVt29Zt2tn2faLSHjZs2KB7771X9erVU3BwsO6++24dPXrUrfayyy5Tt27dtGrVKrVt21aBgYF67bXXJEk5OTl66KGHFB0dLX9/fzVp0kTPPvusSkpK3NaRk5OjgQMHKiQkRKGhoUpOTi73o5VTXSP097//Xe3atdNFF12ksLAwde7cWe+9957T344dO7R+/XrnWJ84muLpHs+kvGuEBg4cqNq1a+uHH35QUlKSateurQYNGmjUqFEqLi52lmvQoIEkacKECc6+nHh9zs6dO3XnnXeqbt26CggIUNu2bfXuu++6bb/03G7cuFGpqalq0KCBgoKCdMcdd+jQoUNutZ988okSExNVv359BQYGKiYmRvfcc49bzYk9jB8/Xo888ogkKSYmxumx9G+5vGuEKnr8FyxYoNjYWNWpU0fBwcFq3bq1Xn755Qof9/IcOHBA69atU48ePWpUOMXZubD/Ewv4ne666y41bdpUTz/9tIwxeuqppzRmzBj16tVLQ4YM0aFDhzRt2jR17txZW7duLTPkf6KXX35Zt99+u/r376/CwkItWLBAd911l5YtW6auXbtKkv72t79pyJAhateunYYNGyZJaty4cbnr6927t+6++259/PHHuvbaa53p3333nTZv3qznnnvOmfZ7+i7PiBEjFBoaqvHjxysrK0szZ87Ud999pw8++MAtkGRlZalv37669957NXToUDVr1ky//PKLrr/+ev3www+69957demll2rTpk1KS0vTgQMHNHXqVEn/HUH605/+pA8//FD33XefWrRooSVLlig5OblCPU6YMEHjx49Xhw4dNHHiRPn5+WnLli1au3atunTpoqlTp+qBBx5Q7dq19fjjj0uSIiIiJOmc9VgRxcXFSkxMVFxcnJ5//nm9//77euGFF9S4cWMNHz5cDRo00MyZMzV8+HDdcccd6tGjhyTpD3/4gyRpx44duu6663TxxRdr9OjRCgoK0qJFi5SUlKR//vOfuuOOO9y298ADDygsLEzjxo3T3r17NXXqVI0YMUILFy6UJB08eFBdunRRgwYNNHr0aIWGhmrv3r165513TrkPPXr00K5du/SPf/xDL730kurXry9JToA7WUWP/+rVq9W3b1/dfPPNevbZZyVJX331lTZu3KgHH3zwrI/5ggULVFJSov79+5/1OlCDGMBC48aNM5JM3759nWl79+41Pj4+5qmnnnKr3b59u/H19XWbnpycbBo1auRW98svv7j9XlhYaFq1amVuuukmt+lBQUEmOTm5TE+zZ882ksyePXuMMcbk5uYaf39/8/DDD7vVTZkyxXh5eZnvvvuu0n2fSWkPsbGxprCw0G2bksy//vUvZ1qjRo2MJJOenu62jieffNIEBQWZXbt2uU0fPXq08fHxMfv27TPGGLN06VIjyUyZMsWpKSoqMp06dTKSzOzZs53ppeer1Ndff228vb3NHXfcYYqLi922U1JS4vx85ZVXmuuvv77MflZFj2eyZ8+eMsskJycbSWbixIlutVdffbWJjY11fj906JCRZMaNG1dmvTfffLNp3bq1+e2335xpJSUlpkOHDqZp06bOtNJzm5CQ4HaMRo4caXx8fExOTo4xxpglS5YYSebjjz8+7f6c3M9zzz3n9vd7okaNGrn9zVf0+D/44IMmODjYFBUVnbaXyoqNjTUNGzYs87cDO/HRGKx23333OT+/8847KikpUa9evfTTTz85r8jISDVt2lTr1q077bpOvDbm6NGjys3NVadOnfTpp5+eVW/BwcG69dZbtWjRIhljnOkLFy5U+/btdemll3qk7/IMGzbM7aLe4cOHy9fXVytWrHCri4mJUWJiotu0xYsXq1OnTgoLC3PrJyEhQcXFxdqwYYMkacWKFfL19dXw4cOdZX18fPTAAw+csb+lS5eqpKREY8eOLXMRbkVusz8XPVbGiX+HktSpUyft3r37jMsdOXJEa9euVa9evXTs2DFnPw4fPqzExER9/fXX+uGHH9yWGTZsmNsx6tSpk4qLi/Xdd99JkjN6uGzZMh0/fvx37ln5Knr8Q0NDlZ+fr9WrV3ts27t27VJmZqb69OlTbRdw4/zCR2OwWkxMjPPz119/LWOMmjZtWm7tme72WbZsmSZNmqRt27apoKDAmf57nn/Tu3dvLV26VBkZGerQoYO+/fZbZWZmOh8deKLv8py8rtq1a6thw4ZlnnF04vE7sZ/PP//8lB+LHDx4UNJ/P+Jr2LChateu7Ta/WbNmZ+zv22+/lbe3t1q2bHnG2vKcix4rKiAgoEwfYWFhZa7JKs8333wjY4zGjBmjMWPGlFtz8OBBXXzxxc7vpQH6xG1JcrZ3/fXXq2fPnpowYYJeeukl3XDDDUpKSlK/fv08dtFzRY///fffr0WLFunWW2/VxRdfrC5duqhXr1665ZZbznrb8+bNkyQ+FoODIASrnTiKU1JSIi8vL61cubLcu7dOfjM80X/+8x/dfvvt6ty5s2bMmKGGDRuqVq1amj17tubPn3/W/XXv3l0XXXSRFi1apA4dOmjRokXy9vbWXXfd5ZG+f6/y7hArKSnRH//4Rz366KPlLnPFFVdUWT8VdT71+HvuFCy9sHjUqFFlRuZKNWnSpELbKx119PLy0ttvv63Nmzfr3//+t1atWqV77rlHL7zwgjZv3uyRv6eKHv/w8HBt27ZNq1at0sqVK7Vy5UrNnj1bd999t+bOnXtW254/f76aNWum2NjYs+4fNQtBCPg/jRs3ljFGMTExlX4j/Oc//6mAgACtWrXK7b+aZ8+eXaa2MiNEQUFB6tatmxYvXqwXX3xRCxcuVKdOnRQVFeWRvk/l66+/1o033uj8/vPPP+vAgQO67bbbzrhs48aN9fPPPyshIeG0dY0aNdKaNWv0888/u725ZmVlVWgbJSUl+vLLL9WmTZtT1p3qWJ+LHj3pVPtReldhrVq1zrgvldW+fXu1b99eTz31lObPn6/+/ftrwYIFGjJkSKV6LE9Fj78k+fn5qXv37urevbtKSkp0//3367XXXtOYMWPKhLwz2bJli7755htNnDixUsuhZuMDUuD/9OjRQz4+PpowYYLbNTnSf/9r+fDhw6dc1sfHR15eXs4tz9J/b3su7wnSQUFBlbr9unfv3vrxxx/15ptv6rPPPlPv3r091vepvP76627Xh8ycOVNFRUW69dZbz7hsr169lJGRoVWrVpWZl5OTo6KiIknSbbfdpqKiIs2cOdOZX1xcrGnTpp1xG0lJSfL29tbEiRPL3G594jE41bE+Fz160kUXXeT0dqLw8HDdcMMNeu2113TgwIEyy518W3xFHD16tMzfUWnYPPEj35OVPoOrIn/bFT3+J//tent7O3fLna6XUykdne3Xr1+ll0XNxYgQ8H8aN26sSZMmKS0tTXv37lVSUpLq1KmjPXv2aMmSJRo2bJhGjRpV7rJdu3bViy++qFtuuUX9+vXTwYMHNX36dDVp0kSff/65W21sbKzef/99vfjii4qKilJMTIzi4uJO2ddtt92mOnXqaNSoUfLx8VHPnj091vepFBYW6uabb1avXr2UlZWlGTNmqGPHjrr99tvPuOwjjzyid999V926ddPAgQMVGxur/Px8bd++XW+//bb27t2r+vXrq3v37rruuus0evRo7d27Vy1bttQ777yj3NzcM26jSZMmevzxx/Xkk0+qU6dO6tGjh/z9/fXxxx8rKipKkydPlvTfYz1z5kxNmjRJTZo0UXh4uG666aZz0qMnBQYGqmXLllq4cKGuuOIK1a1bV61atVKrVq00ffp0dezYUa1bt9bQoUN1+eWXKzs7WxkZGfr+++/12WefVWpbc+fO1YwZM3THHXeocePGOnbsmN544w0FBwefdkSw9KOmxx9/XH369FGtWrXUvXv3ch9SWtHjP2TIEB05ckQ33XSTLrnkEn333XeaNm2a2rRpoxYtWlRqv4qLi50bDU71yApYqlruVQOqWent2IcOHSoz75///Kfp2LGjCQoKMkFBQaZ58+YmJSXFZGVlOTXl3T7/1ltvmaZNmxp/f3/TvHlzM3v27DK3fRtjzM6dO03nzp1NYGCgkeTcVnzy7fMn6t+/v3Pr86lUpO8zKe1h/fr1ZtiwYSYsLMzUrl3b9O/f3xw+fNittlGjRqZr167lrufYsWMmLS3NNGnSxPj5+Zn69eubDh06mOeff97ttvzDhw+bAQMGmODgYBMSEmIGDBhgtm7desbb50v99a9/NVdffbXx9/c3YWFh5vrrrzerV6925rtcLtO1a1dTp04dI8ntVnpP93gmp7p9PigoqExtefu7adMmExsba/z8/Mrcuv7tt9+au+++20RGRppatWqZiy++2HTr1s28/fbbTk3puT35tvh169YZSWbdunXGGGM+/fRT07dvX3PppZcaf39/Ex4ebrp162Y++eQTt+VO7sGY/94Wf/HFFxtvb2+3v+WTb583pmLH/+233zZdunQx4eHhxs/Pz1x66aXm3nvvNQcOHDjVYT6l9PR0I8m88sorlV4WNZuXMSeNgQKw1pw5czRo0CB9/PHHZZ5cDQA1EdcIAQAAa3GNEGCBX3/99YzXtdStW/ccdVOzFBYW6siRI6etCQkJqZIvo7Wdy+U67fzAwECFhISco25woSIIARZYuHChBg0adNqas3kCNaRNmza5PWqgPLNnzy7zpaP4/Ro2bHja+cnJyW5fcguUh2uEAAscOHBAO3bsOG1NbGys85RhVNzRo0eVmZl52porr7zyjG/aqLz333//tPOjoqLO+unjsAdBCAAAWKvSF0tv2LBB3bt3V1RUlLy8vMo8MM4Yo7Fjx6phw4YKDAxUQkKCvv76a7eaI0eOqH///goODlZoaKgGDx6sn3/+2a3m888/V6dOnRQQEKDo6GhNmTKlTC+LFy9W8+bNFRAQoNatW5f5QsiK9AIAAOxV6WuE8vPzddVVV+mee+5Rjx49ysyfMmWKXnnlFc2dO1cxMTEaM2aMEhMT9eWXXyogIEDSf7/s7sCBA1q9erWOHz+uQYMGadiwYc5TP/Py8tSlSxclJCRo1qxZ2r59u+655x6FhoZq2LBhkv77uXzfvn01efJkdevWTfPnz1dSUpI+/fRTtWrVqsK9nE5JSYl+/PFH1alT53d9cSYAADh3jDE6duyYoqKi5O19hjGf3/MQIklmyZIlzu8lJSUmMjLSPPfcc860nJwc4+/vb/7xj38YY4z58ssvyzzUa+XKlcbLy8v88MMPxhhjZsyYYcLCwkxBQYFT89hjj5lmzZo5v/fq1avMw9zi4uLMvffeW+FezmT//v1GEi9evHjx4sXrAnzt37//jO/1Hr1rbM+ePXK5XG5fpBcSEqK4uDhlZGSoT58+ysjIUGhoqNvD2hISEuTt7a0tW7bojjvuUEZGhjp37iw/Pz+nJjExUc8++6yOHj2qsLAwZWRkKDU11W37iYmJzkd1FenlZAUFBW7fX2P+7/Kp/fv3Kzg4+PcdHAAAcE7k5eUpOjpaderUOWOtR4NQ6TMdIiIi3KZHREQ481wul8LDw92b8PVV3bp13WpiYmLKrKN0XlhYmFwu1xm3c6ZeTjZ58mRNmDChzPTg4GCCEAAAF5iKXNbCk6VPkJaWptzcXOe1f//+6m4JAABUIY8GocjISElSdna22/Ts7GxnXmRkpA4ePOg2v6ioSEeOHHGrKW8dJ27jVDUnzj9TLyfz9/d3Rn8YBQIAoObzaBCKiYlRZGSk1qxZ40zLy8vTli1bFB8fL0mKj49XTk6O2wPI1q5dq5KSEsXFxTk1GzZs0PHjx52a1atXq1mzZs4D3+Lj4922U1pTup2K9AIAACxXodunTnDs2DGzdetWs3XrViPJvPjii2br1q3mu+++M8YY88wzz5jQ0FDzr3/9y3z++efmT3/6k4mJiTG//vqrs45bbrnFXH311WbLli3mww8/NE2bNjV9+/Z15ufk5JiIiAgzYMAA88UXX5gFCxaYiy66yLz22mtOzcaNG42vr695/vnnzVdffWXGjRtnatWqZbZv3+7UVKSX08nNzTWSTG5ubmUPEwAAqCaVef+udBBat25dubeoJScnG2P+e9v6mDFjTEREhPH39zc333yzycrKclvH4cOHTd++fU3t2rVNcHCwGTRokDl27JhbzWeffWY6duxo/P39zcUXX2yeeeaZMr0sWrTIXHHFFcbPz89ceeWVZvny5W7zK9LL6RCEAAC48FTm/Zuv2DiNvLw8hYSEKDc3l+uFAAC4QFTm/Zu7xgAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAa/lWdwNWWze5ujuovBvTqrsDAAA8hhEhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1eI5QNcrYfbi6W6iU+MvrVXcLAAB4FCNCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1vJ4ECouLtaYMWMUExOjwMBANW7cWE8++aSMMU6NMUZjx45Vw4YNFRgYqISEBH399ddu6zly5Ij69++v4OBghYaGavDgwfr555/daj7//HN16tRJAQEBio6O1pQpU8r0s3jxYjVv3lwBAQFq3bq1VqxY4eldBgAAFyiPB6Fnn31WM2fO1KuvvqqvvvpKzz77rKZMmaJp06Y5NVOmTNErr7yiWbNmacuWLQoKClJiYqJ+++03p6Z///7asWOHVq9erWXLlmnDhg0aNmyYMz8vL09dunRRo0aNlJmZqeeee07jx4/X66+/7tRs2rRJffv21eDBg7V161YlJSUpKSlJX3zxhad3GwAAXIC8zIlDNR7QrVs3RURE6K233nKm9ezZU4GBgfr73/8uY4yioqL08MMPa9SoUZKk3NxcRUREaM6cOerTp4+++uortWzZUh9//LHatm0rSUpPT9dtt92m77//XlFRUZo5c6Yef/xxuVwu+fn5SZJGjx6tpUuXaufOnZKk3r17Kz8/X8uWLXN6ad++vdq0aaNZs2aV6b2goEAFBQXO73l5eYqOjlZubq6Cg4M9eZgkSRlvjfL4OqtS/OX1pBvTqrsNAABOKy8vTyEhIRV6//b4iFCHDh20Zs0a7dq1S5L02Wef6cMPP9Stt94qSdqzZ49cLpcSEhKcZUJCQhQXF6eMjAxJUkZGhkJDQ50QJEkJCQny9vbWli1bnJrOnTs7IUiSEhMTlZWVpaNHjzo1J26ntKZ0OyebPHmyQkJCnFd0dPTvPRwAAOA85uvpFY4ePVp5eXlq3ry5fHx8VFxcrKeeekr9+/eXJLlcLklSRESE23IRERHOPJfLpfDwcPdGfX1Vt25dt5qYmJgy6yidFxYWJpfLddrtnCwtLU2pqanO76UjQgAAoGbyeBBatGiR5s2bp/nz5+vKK6/Utm3b9NBDDykqKkrJycme3pxH+fv7y9/fv7rbAAAA54jHg9Ajjzyi0aNHq0+fPpKk1q1b67vvvtPkyZOVnJysyMhISVJ2drYaNmzoLJedna02bdpIkiIjI3Xw4EG39RYVFenIkSPO8pGRkcrOznarKf39TDWl8wEAgN08fo3QL7/8Im9v99X6+PiopKREkhQTE6PIyEitWbPGmZ+Xl6ctW7YoPj5ekhQfH6+cnBxlZmY6NWvXrlVJSYni4uKcmg0bNuj48eNOzerVq9WsWTOFhYU5NSdup7SmdDsAAMBuHg9C3bt311NPPaXly5dr7969WrJkiV588UXdcccdkiQvLy899NBDmjRpkt59911t375dd999t6KiopSUlCRJatGihW655RYNHTpUH330kTZu3KgRI0aoT58+ioqKkiT169dPfn5+Gjx4sHbs2KGFCxfq5ZdfdrvG58EHH1R6erpeeOEF7dy5U+PHj9cnn3yiESNGeHq3AQDABcjjH41NmzZNY8aM0f3336+DBw8qKipK9957r8aOHevUPProo8rPz9ewYcOUk5Ojjh07Kj09XQEBAU7NvHnzNGLECN18883y9vZWz5499corrzjzQ0JC9N577yklJUWxsbGqX7++xo4d6/asoQ4dOmj+/Pl64okn9Je//EVNmzbV0qVL1apVK0/vNgAAuAB5/DlCNUllnkNwNniOEAAAnletzxECAAC4UBCEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLd/qbgAXmHWTq7uDyrsxrbo7AACcpxgRAgAA1iIIAQAAaxGEAACAtQhCAADAWlwsjQrL2H24uluotPjL61V3CwCA8xgjQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALCWb3U3AFSljN2HtbloV3W3UWEj/3hFdbcAAFZhRAgAAFiLIAQAAKzFR2Oo8drve726W6i4dfX++783plVvHwBgCUaEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYq0qC0A8//KA///nPqlevngIDA9W6dWt98sknznxjjMaOHauGDRsqMDBQCQkJ+vrrr93WceTIEfXv31/BwcEKDQ3V4MGD9fPPP7vVfP755+rUqZMCAgIUHR2tKVOmlOll8eLFat68uQICAtS6dWutWLGiKnYZAABcgDwehI4eParrrrtOtWrV0sqVK/Xll1/qhRdeUFhYmFMzZcoUvfLKK5o1a5a2bNmioKAgJSYm6rfffnNq+vfvrx07dmj16tVatmyZNmzYoGHDhjnz8/Ly1KVLFzVq1EiZmZl67rnnNH78eL3++v9uld60aZP69u2rwYMHa+vWrUpKSlJSUpK++OILT+82AAC4AHkZY4wnVzh69Ght3LhR//nPf8qdb4xRVFSUHn74YY0aNUqSlJubq4iICM2ZM0d9+vTRV199pZYtW+rjjz9W27ZtJUnp6em67bbb9P333ysqKkozZ87U448/LpfLJT8/P2fbS5cu1c6dOyVJvXv3Vn5+vpYtW+Zsv3379mrTpo1mzZp1xn3Jy8tTSEiIcnNzFRwc/LuOS3ky3hrl8XXiwhZ/Oc8RAoDfqzLv3x4fEXr33XfVtm1b3XXXXQoPD9fVV1+tN954w5m/Z88euVwuJSQkONNCQkIUFxenjIwMSVJGRoZCQ0OdECRJCQkJ8vb21pYtW5yazp07OyFIkhITE5WVlaWjR486NSdup7SmdDsnKygoUF5entsLAADUXB4PQrt379bMmTPVtGlTrVq1SsOHD9f/+3//T3PnzpUkuVwuSVJERITbchEREc48l8ul8PBwt/m+vr6qW7euW0156zhxG6eqKZ1/ssmTJyskJMR5RUdHV3r/AQDAhcPjQaikpETXXHONnn76aV199dUaNmyYhg4dWqGPoqpbWlqacnNzndf+/furuyUAAFCFPB6EGjZsqJYtW7pNa9Gihfbt2ydJioyMlCRlZ2e71WRnZzvzIiMjdfDgQbf5RUVFOnLkiFtNees4cRunqimdfzJ/f38FBwe7vQAAQM3l8SB03XXXKSsry23arl271KhRI0lSTEyMIiMjtWbNGmd+Xl6etmzZovj4eElSfHy8cnJylJmZ6dSsXbtWJSUliouLc2o2bNig48ePOzWrV69Ws2bNnDvU4uPj3bZTWlO6HQAAYDePB6GRI0dq8+bNevrpp/XNN99o/vz5ev3115WSkiJJ8vLy0kMPPaRJkybp3Xff1fbt23X33XcrKipKSUlJkv47gnTLLbdo6NCh+uijj7Rx40aNGDFCffr0UVRUlCSpX79+8vPz0+DBg7Vjxw4tXLhQL7/8slJTU51eHnzwQaWnp+uFF17Qzp07NX78eH3yyScaMWKEp3cbAABcgHw9vcJrr71WS5YsUVpamiZOnKiYmBhNnTpV/fv3d2oeffRR5efna9iwYcrJyVHHjh2Vnp6ugIAAp2bevHkaMWKEbr75Znl7e6tnz5565ZVXnPkhISF67733lJKSotjYWNWvX19jx451e9ZQhw4dNH/+fD3xxBP6y1/+oqZNm2rp0qVq1aqVp3cbAABcgDz+HKGahOcI4VzjOUIA8PtV63OEAAAALhQEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtXyruwEA/5Ox+7AkaXPRrmrupGJG/vGK6m4BAH4XRoQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxV5bfPP/PMM0pLS9ODDz6oqVOnSpJ+++03Pfzww1qwYIEKCgqUmJioGTNmKCIiwllu3759Gj58uNatW6fatWsrOTlZkydPlq/v/1r+4IMPlJqaqh07dig6OlpPPPGEBg4c6Lb96dOn67nnnpPL5dJVV12ladOmqV27dlW928Dv0n7f69XdQsWsq/e/n29Mq74+AOAsVemI0Mcff6zXXntNf/jDH9ymjxw5Uv/+97+1ePFirV+/Xj/++KN69OjhzC8uLlbXrl1VWFioTZs2ae7cuZozZ47Gjh3r1OzZs0ddu3bVjTfeqG3btumhhx7SkCFDtGrVKqdm4cKFSk1N1bhx4/Tpp5/qqquuUmJiog4ePFiVuw0AAC4QXsYYUxUr/vnnn3XNNddoxowZmjRpktq0aaOpU6cqNzdXDRo00Pz583XnnXdKknbu3KkWLVooIyND7du318qVK9WtWzf9+OOPzijRrFmz9Nhjj+nQoUPy8/PTY489puXLl+uLL75wttmnTx/l5OQoPT1dkhQXF6drr71Wr776qiSppKRE0dHReuCBBzR69OgyPRcUFKigoMD5PS8vT9HR0crNzVVwcLDHj1HGW6M8vk7gXIq/nBEhAOefvLw8hYSEVOj9u8pGhFJSUtS1a1clJCS4Tc/MzNTx48fdpjdv3lyXXnqpMjIyJEkZGRlq3bq120dliYmJysvL044dO5yak9edmJjorKOwsFCZmZluNd7e3kpISHBqTjZ58mSFhIQ4r+jo6N9xBAAAwPmuSoLQggUL9Omnn2ry5Mll5rlcLvn5+Sk0NNRtekREhFwul1NzYggqnV8673Q1eXl5+vXXX/XTTz+puLi43JrSdZwsLS1Nubm5zmv//v0V32kAAHDB8fjF0vv379eDDz6o1atXKyAgwNOrr1L+/v7y9/ev7jYAAMA54vERoczMTB08eFDXXHONfH195evrq/Xr1+uVV16Rr6+vIiIiVFhYqJycHLflsrOzFRkZKUmKjIxUdnZ2mfml805XExwcrMDAQNWvX18+Pj7l1pSuAwAA2M3jQejmm2/W9u3btW3bNufVtm1b9e/f3/m5Vq1aWrNmjbNMVlaW9u3bp/j4eElSfHy8tm/f7nZ31+rVqxUcHKyWLVs6NSeuo7SmdB1+fn6KjY11qykpKdGaNWucGgAAYDePfzRWp04dtWrVym1aUFCQ6tWr50wfPHiwUlNTVbduXQUHB+uBBx5QfHy82rdvL0nq0qWLWrZsqQEDBmjKlClyuVx64oknlJKS4nx0dd999+nVV1/Vo48+qnvuuUdr167VokWLtHz5cme7qampSk5OVtu2bdWuXTtNnTpV+fn5GjRokKd3GwAAXICq/IGK5XnppZfk7e2tnj17uj1QsZSPj4+WLVum4cOHKz4+XkFBQUpOTtbEiROdmpiYGC1fvlwjR47Uyy+/rEsuuURvvvmmEhMTnZrevXvr0KFDGjt2rFwul9q0aaP09PQyF1ADAAA7VdlzhGqCyjyH4GzwHCFc6HiOEIDz0XnxHCEAAIDzHUEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACs5VvdDQC4cGXsPuz8vLloVzV2UnEj/3hFdbcA4DzCiBAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLW4fR6AR7Tf93p1t1Ax6+r97+cb06qvDwDnBUaEAACAtQhCAADAWgQhAABgLY8HocmTJ+vaa69VnTp1FB4erqSkJGVlZbnV/Pbbb0pJSVG9evVUu3Zt9ezZU9nZ2W41+/btU9euXXXRRRcpPDxcjzzyiIqKitxqPvjgA11zzTXy9/dXkyZNNGfOnDL9TJ8+XZdddpkCAgIUFxenjz76yNO7DAAALlAeD0Lr169XSkqKNm/erNWrV+v48ePq0qWL8vPznZqRI0fq3//+txYvXqz169frxx9/VI8ePZz5xcXF6tq1qwoLC7Vp0ybNnTtXc+bM0dixY52aPXv2qGvXrrrxxhu1bds2PfTQQxoyZIhWrVrl1CxcuFCpqakaN26cPv30U1111VVKTEzUwYMHPb3bAADgAuRljDFVuYFDhw4pPDxc69evV+fOnZWbm6sGDRpo/vz5uvPOOyVJO3fuVIsWLZSRkaH27dtr5cqV6tatm3788UdFRERIkmbNmqXHHntMhw4dkp+fnx577DEtX75cX3zxhbOtPn36KCcnR+np6ZKkuLg4XXvttXr11VclSSUlJYqOjtYDDzyg0aNHn7H3vLw8hYSEKDc3V8HBwZ4+NMp4a5TH1wng9OIv564xoKarzPt3lV8jlJubK0mqW7euJCkzM1PHjx9XQkKCU9O8eXNdeumlysjIkCRlZGSodevWTgiSpMTEROXl5WnHjh1OzYnrKK0pXUdhYaEyMzPdary9vZWQkODUnKygoEB5eXluLwAAUHNVaRAqKSnRQw89pOuuu06tWrWSJLlcLvn5+Sk0NNStNiIiQi6Xy6k5MQSVzi+dd7qavLw8/frrr/rpp59UXFxcbk3pOk42efJkhYSEOK/o6Oiz23EAAHBBqNIglJKSoi+++EILFiyoys14TFpamnJzc53X/v37q7slAABQharsydIjRozQsmXLtGHDBl1yySXO9MjISBUWFionJ8dtVCg7O1uRkZFOzcl3d5XeVXZizcl3mmVnZys4OFiBgYHy8fGRj49PuTWl6ziZv7+//P39z26HAQDABcfjI0LGGI0YMUJLlizR2rVrFRMT4zY/NjZWtWrV0po1a5xpWVlZ2rdvn+Lj4yVJ8fHx2r59u9vdXatXr1ZwcLBatmzp1Jy4jtKa0nX4+fkpNjbWraakpERr1qxxagAAgN08PiKUkpKi+fPn61//+pfq1KnjXI8TEhKiwMBAhYSEaPDgwUpNTVXdunUVHBysBx54QPHx8Wrfvr0kqUuXLmrZsqUGDBigKVOmyOVy6YknnlBKSoozYnPffffp1Vdf1aOPPqp77rlHa9eu1aJFi7R8+XKnl9TUVCUnJ6tt27Zq166dpk6dqvz8fA0aNMjTuw0AAC5AHg9CM2fOlCTdcMMNbtNnz56tgQMHSpJeeukleXt7q2fPniooKFBiYqJmzJjh1Pr4+GjZsmUaPny44uPjFRQUpOTkZE2cONGpiYmJ0fLlyzVy5Ei9/PLLuuSSS/Tmm28qMTHRqendu7cOHTqksWPHyuVyqU2bNkpPTy9zATUAALBTlT9H6ELGc4SAmofnCAE133n1HCEAAIDzFUEIAABYiyAEAACsRRACAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwlm91NwAA51LG7sPOz5uLdlVjJxUz8o9XVHcLQI3GiBAAALAWQQgAAFiLIAQAAKxFEAIAANbiYmkA1mq/7/XqbuHM1tVz//3GtOrpA6ihGBECAADWIggBAABrEYQAAIC1CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIAQAAKxFEAIAANYiCAEAAGsRhAAAgLUIQgAAwFoEIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWr7V3QAA4NQydh92+31z0a5q6qRiRv7xiupuAagURoQAAIC1CEIAAMBafDQGABeQ9vter+4WTm9dvfKn35h2bvsAKogRIQAAYC2CEAAAsBZBCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtax4jtD06dP13HPPyeVy6aqrrtK0adPUrl276m4LAGqck78SpNT5+tUgfCUIanwQWrhwoVJTUzVr1izFxcVp6tSpSkxMVFZWlsLDw6u7PQCwwnn7IMhTPQBS4iGQlqjxH429+OKLGjp0qAYNGqSWLVtq1qxZuuiii/TXv/61ulsDAADVrEaPCBUWFiozM1Npaf9L9d7e3kpISFBGRkaZ+oKCAhUUFDi/5+bmSpLy8vKqpL/8XwvOXAQAqDJ5+b+dZmbV/H8/ql7p+7Yx5oy1NToI/fTTTyouLlZERITb9IiICO3cubNM/eTJkzVhwoQy06Ojo6usRwDA+WpidTeA3+nYsWMKCQk5bU2NDkKVlZaWptTUVOf3kpISHTlyRPXq1ZOXl5dHt5WXl6fo6Gjt379fwcHBHl03Ko/zcX7hfJxfOB/nF87HmRljdOzYMUVFRZ2xtkYHofr168vHx0fZ2dlu07OzsxUZGVmm3t/fX/7+/m7TQkNDq7JFBQcH84d8HuF8nF84H+cXzsf5hfNxemcaCSpVoy+W9vPzU2xsrNasWeNMKykp0Zo1axQfH1+NnQEAgPNBjR4RkqTU1FQlJyerbdu2ateunaZOnar8/HwNGjSoulsDAADVrMYHod69e+vQoUMaO3asXC6X2rRpo/T09DIXUJ9r/v7+GjduXJmP4lA9OB/nF87H+YXzcX7hfHiWl6nIvWUAAAA1UI2+RggAAOB0CEIAAMBaBCEAAGAtghAAALAWQQgAAFiLIFSFpk+frssuu0wBAQGKi4vTRx99dNr6xYsXq3nz5goICFDr1q21YsWKc9SpHSpzPt544w116tRJYWFhCgsLU0JCwhnPHyqnsv8+Si1YsEBeXl5KSkqq2gYtU9nzkZOTo5SUFDVs2FD+/v664oor+P8sD6rs+Zg6daqaNWumwMBARUdHa+TIkfrtt9N8oSz+x6BKLFiwwPj5+Zm//vWvZseOHWbo0KEmNDTUZGdnl1u/ceNG4+PjY6ZMmWK+/PJL88QTT5hatWqZ7du3n+POa6bKno9+/fqZ6dOnm61bt5qvvvrKDBw40ISEhJjvv//+HHdeM1X2fJTas2ePufjii02nTp3Mn/70p3PTrAUqez4KCgpM27ZtzW233WY+/PBDs2fPHvPBBx+Ybdu2nePOa6bKno958+YZf39/M2/ePLNnzx6zatUq07BhQzNy5Mhz3PmFiSBURdq1a2dSUlKc34uLi01UVJSZPHlyufW9evUyXbt2dZsWFxdn7r333irt0xaVPR8nKyoqMnXq1DFz586tqhatcjbno6ioyHTo0MG8+eabJjk5mSDkQZU9HzNnzjSXX365KSwsPFctWqWy5yMlJcXcdNNNbtNSU1PNddddV6V91hR8NFYFCgsLlZmZqYSEBGeat7e3EhISlJGRUe4yGRkZbvWSlJiYeMp6VNzZnI+T/fLLLzp+/Ljq1q1bVW1a42zPx8SJExUeHq7BgwefizatcTbn491331V8fLxSUlIUERGhVq1a6emnn1ZxcfG5arvGOpvz0aFDB2VmZjofn+3evVsrVqzQbbfddk56vtDV+K/YqA4//fSTiouLy3yNR0REhHbu3FnuMi6Xq9x6l8tVZX3a4mzOx8kee+wxRUVFlQmrqLyzOR8ffvih3nrrLW3btu0cdGiXszkfu3fv1tq1a9W/f3+tWLFC33zzje6//34dP35c48aNOxdt11hncz769eunn376SR07dpQxRkVFRbrvvvv0l7/85Vy0fMFjRAg4g2eeeUYLFizQkiVLFBAQUN3tWOfYsWMaMGCA3njjDdWvX7+624GkkpIShYeH6/XXX1dsbKx69+6txx9/XLNmzaru1qz0wQcf6Omnn9aMGTP06aef6p133tHy5cv15JNPVndrFwRGhKpA/fr15ePjo+zsbLfp2dnZioyMLHeZyMjIStWj4s7mfJR6/vnn9cwzz+j999/XH/7wh6ps0xqVPR/ffvut9u7dq+7duzvTSkpKJEm+vr7KyspS48aNq7bpGuxs/n00bNhQtWrVko+PjzOtRYsWcrlcKiwslJ+fX5X2XJOdzfkYM2aMBgwYoCFDhkiSWrdurfz8fA0bNkyPP/64vL0Z8zgdjk4V8PPzU2xsrNasWeNMKykp0Zo1axQfH1/uMvHx8W71krR69epT1qPizuZ8SNKUKVP05JNPKj09XW3btj0XrVqhsuejefPm2r59u7Zt2+a8br/9dt14443atm2boqOjz2X7Nc7Z/Pu47rrr9M033ziBVJJ27dqlhg0bEoJ+p7M5H7/88kuZsFMaUg3fq35m1X21dk21YMEC4+/vb+bMmWO+/PJLM2zYMBMaGmpcLpcxxpgBAwaY0aNHO/UbN240vr6+5vnnnzdfffWVGTduHLfPe1Blz8czzzxj/Pz8zNtvv20OHDjgvI4dO1Zdu1CjVPZ8nIy7xjyrsudj3759pk6dOmbEiBEmKyvLLFu2zISHh5tJkyZV1y7UKJU9H+PGjTN16tQx//jHP8zu3bvNe++9Zxo3bmx69epVXbtwQSEIVaFp06aZSy+91Pj5+Zl27dqZzZs3O/Ouv/56k5yc7Fa/aNEic8UVVxg/Pz9z5ZVXmuXLl5/jjmu2ypyPRo0aGUllXuPGjTv3jddQlf33cSKCkOdV9nxs2rTJxMXFGX9/f3P55Zebp556yhQVFZ3jrmuuypyP48ePm/Hjx5vGjRubgIAAEx0dbe6//35z9OjRc9/4BcjLGMbNAACAnbhGCAAAWIsgBAAArEUQAgAA1iIIAQAAaxGEAACAtQhCAADAWgQhAABgLYIQAACwFkEIAABYiyAEAACsRRACAADW+v9U6kzBA6iPWwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOOlJREFUeJzt3XtYFnX+//EXoBxCOXgApNDwUGq6WZiIqWWyUh5a0lKTr5GpdEB/KVlpnk2zrEwzD51WvXZ1PbTpumoYYeWmeMLczBKtNC290VJA0URgfn/0Zb7eggp2A+Ln+biu+7q8P/OemffMoPfLuWcGN8uyLAEAABjIvbIbAAAAqCwEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQh4Ao8+uijuvHGG126zAULFsjNzU0HDhxw6XKrmgMHDsjNzU0LFiywxyZMmCA3N7fKa+oCJfVYHvNczdzc3DRhwoRS1d5444169NFHy7Uf4EoRhIAK9tJLL2nlypWV3YYR5syZc00Ej9OnT2vChAn67LPPKruVi9q0aZMmTJigrKysym6lmMLCQs2bN0+tWrVSjRo1FBwcrPvuu0+bNm2q7NZwFSAIARXsYkGof//+OnPmjBo0aFDxTV3lxowZozNnzpR5vqspCDVo0EBnzpxR//79yzzv6dOnNXHixKsqCJ05c0Zjxoyx32/atEkTJ04sMQhlZGTo3XffrcDunD377LN68skn1bJlS02fPl3PPPOM9u7dq7vuuktbt26ttL5wdahW2Q0AV4vc3Fz5+vpW2vo9PDzk4eFRaev/oyzL0m+//SYfHx+XL7tatWqqVq1q/3Pl5uYmb2/vym7DZcqyLV5eXuXYyaXl5+dr7ty5evDBB/W3v/3NHn/ooYfUsGFDLVq0SG3atKm0/lD5OCMEIxVdc/LNN9+oX79+CgwMVPv27SVJf//73xURESEfHx/VqlVLffv21aFDhy67zNdee03t2rVT7dq15ePjo4iICH3wwQdONW5ubsrNzdXChQvl5uYmNzc3+9qJC68R6t69uxo2bFjiuqKiotS6dWunsSvt+3xFPWzYsEGPP/64ateuLT8/Pz3yyCM6ceKEU+2NN96o7t27a926dWrdurV8fHz09ttvS5KysrI0bNgwhYWFycvLS40bN9Yrr7yiwsJCp2VkZWXp0Ucflb+/vwICAhQfH1/iGYWLXSP097//XW3atNF1112nwMBAdezYUR9//LHd3+7du/X555/b+/ruu+92Wrcre7yckq4RevTRR1WjRg39/PPPio2NVY0aNVS3bl2NGDFCBQUF9nx169aVJE2cONHelvOvz9mzZ48efPBB1apVS97e3mrdurVWrVrltP6iY7tx40YlJSWpbt268vX11QMPPKBjx4451W7fvl0xMTGqU6eOfHx8FB4erscee8yp5vweJkyYoGeffVaSFB4ebvdY9LNc0jVCpd3/S5YsUUREhGrWrCk/Pz+1bNlSM2fOLPV+P3funM6cOaPg4GCn8aCgILm7u5dLcEfVUrX/iwX8QQ899JCaNGmil156SZZlacqUKRo7dqx69+6tQYMG6dixY5o1a5Y6duyoL7/8UgEBARdd1syZM3X//fcrLi5OeXl5WrJkiR566CGtXr1a3bp1kyT97W9/06BBg9SmTRslJCRIkho1alTi8vr06aNHHnlE27Zt0x133GGP//jjj9q8ebNeffVVe+yP9F2SIUOGKCAgQBMmTFBGRobmzp2rH3/8UZ999plTIMnIyNDDDz+sxx9/XIMHD9bNN9+s06dP66677tLPP/+sxx9/XPXr19emTZs0atQoHTlyRDNmzJD0+xmkv/zlL/riiy/0xBNPqFmzZlqxYoXi4+NL1ePEiRM1YcIEtWvXTpMmTZKnp6e2bNmi9evXq0uXLpoxY4aGDh2qGjVqaPTo0ZJkfxhWVI+lUVBQoJiYGEVGRuq1117TJ598otdff12NGjXSk08+qbp162ru3Ll68skn9cADD6hnz56SpD/96U+SpN27d+vOO+/U9ddfr5EjR8rX11fLli1TbGys/vnPf+qBBx5wWt/QoUMVGBio8ePH68CBA5oxY4aGDBmipUuXSpKOHj2qLl26qG7duho5cqQCAgJ04MABffjhhxfdhp49e2rv3r36xz/+oTfeeEN16tSRJDvAXai0+z8lJUUPP/ywOnfurFdeeUWS9O2332rjxo16+umnS7V/fXx8FBkZqQULFigqKkodOnRQVlaWXnzxRQUGBtp/D2EwCzDQ+PHjLUnWww8/bI8dOHDA8vDwsKZMmeJUu2vXLqtatWpO4/Hx8VaDBg2c6k6fPu30Pi8vz2rRooV1zz33OI37+vpa8fHxxXqaP3++Jcnav3+/ZVmWlZ2dbXl5eVnPPPOMU920adMsNzc368cffyxz35dT1ENERISVl5fntE5J1r/+9S97rEGDBpYkKzk52WkZL774ouXr62vt3bvXaXzkyJGWh4eHdfDgQcuyLGvlypWWJGvatGl2TX5+vtWhQwdLkjV//nx7vOh4Fdm3b5/l7u5uPfDAA1ZBQYHTegoLC+0/33LLLdZdd91VbDvLo8fL2b9/f7F54uPjLUnWpEmTnGpvu+02KyIiwn5/7NgxS5I1fvz4Ysvt3Lmz1bJlS+u3336zxwoLC6127dpZTZo0sceKjm10dLTTPho+fLjl4eFhZWVlWZZlWStWrLAkWdu2bbvk9lzYz6uvvur083u+Bg0aOP3Ml3b/P/3005afn5+Vn59/yV4uZ9++fdbtt99uSbJfDRs2tPbs2fOHlotrA1+NwWhPPPGE/ecPP/xQhYWF6t27t3755Rf7FRISoiZNmujTTz+95LLOP8V+4sQJZWdnq0OHDtqxY8cV9ebn56f77rtPy5Ytk2VZ9vjSpUvVtm1b1a9f3yV9lyQhIUHVq1e33z/55JOqVq2a1q5d61QXHh6umJgYp7Hly5erQ4cOCgwMdOonOjpaBQUF2rBhgyRp7dq1qlatmp588kl7Xg8PDw0dOvSy/a1cuVKFhYUaN26c3N2d/xkrzW32FdFjWZz/cyhJHTp00A8//HDZ+Y4fP67169erd+/eOnnypL0dv/76q2JiYrRv3z79/PPPTvMkJCQ47aMOHTqooKBAP/74oyTZZw9Xr16tc+fO/cEtK1lp939AQIByc3OVkpLyh9ZXs2ZN3XLLLUpMTNSHH36oOXPmKD8/X7Gxsfrll19csUmowvhqDEYLDw+3/7xv3z5ZlqUmTZqUWHt+MCjJ6tWrNXnyZO3cuVNnz561x//I82/69OmjlStXKi0tTe3atdP333+v9PR0+6sDV/RdkguXVaNGDdWrV6/YM47O33/n9/PVV19d9GuRo0ePSvr9K7569eqpRo0aTtNvvvnmy/b3/fffy93dXc2bN79sbUkqosfS8vb2LtZHYGBgsWuySvLdd9/JsiyNHTtWY8eOLbHm6NGjuv766+33RQH6/HVJstd31113qVevXpo4caLeeOMN3X333YqNjVW/fv1cdtFzaff/U089pWXLlum+++7T9ddfry5duqh379669957S72u/Px8RUdH6+6779asWbPs8ejoaN1yyy169dVX7a/dYCaCEIx2/lmcwsJCubm56aOPPirx7q0LPwzP95///Ef333+/OnbsqDlz5qhevXqqXr265s+fr8WLF19xfz169NB1112nZcuWqV27dlq2bJnc3d310EMPuaTvP6qkC00LCwv15z//Wc8991yJ89x0003l1k9pXU09/pE7BYsuLB4xYkSxM3NFGjduXKr1FZ11dHNz0wcffKDNmzfr3//+t9atW6fHHntMr7/+ujZv3uySn6fS7v+goCDt3LlT69at00cffaSPPvpI8+fP1yOPPKKFCxeWal0bNmzQ119/renTpzuNN2nSRM2aNdPGjRv/2MagyiMIAf+rUaNGsixL4eHhZf4g/Oc//ylvb2+tW7fO6X/N8+fPL1ZbljNEvr6+6t69u5YvX67p06dr6dKl6tChg0JDQ13S98Xs27dPnTp1st+fOnVKR44cUdeuXS87b6NGjXTq1ClFR0dfsq5BgwZKTU3VqVOnnD5cMzIySrWOwsJCffPNN2rVqtVF6y62ryuiR1e62HYU3VVYvXr1y25LWbVt21Zt27bVlClTtHjxYsXFxWnJkiUaNGhQmXosSWn3vyR5enqqR48e6tGjhwoLC/XUU0/p7bff1tixY4uFvJJkZmZKkn0X3vnOnTun/Pz8UveNaxPXCAH/q2fPnvLw8NDEiROdrsmRfv/f8q+//nrReT08POTm5ub0j+2BAwdKfHCir69vmW6/7tOnjw4fPqz33ntP//3vf9WnTx+X9X0x77zzjtP1IXPnzlV+fr7uu+++y87bu3dvpaWlad26dcWmZWVl2R88Xbt2tZ/xUqSgoMDp64uLiY2Nlbu7uyZNmlTsduvz98HF9nVF9OhK1113nd3b+YKCgnT33Xfr7bff1pEjR4rNd+Ft8aVx4sSJYj9HRWHz/K98L1T0DK7S/GyXdv9f+LPr7u5u3y13qV7OV/SfgyVLljiN79ixQxkZGbrttttKtRxcuzgjBPyvRo0aafLkyRo1apQOHDig2NhY1axZU/v379eKFSuUkJCgESNGlDhvt27dNH36dN17773q16+fjh49qtmzZ6tx48b66quvnGojIiL0ySefaPr06QoNDVV4eLgiIyMv2lfXrl1Vs2ZNjRgxQh4eHurVq5fL+r6YvLw8de7cWb1791ZGRobmzJmj9u3b6/7777/svM8++6xWrVql7t2769FHH1VERIRyc3O1a9cuffDBBzpw4IDq1KmjHj166M4779TIkSN14MABNW/eXB9++KGys7Mvu47GjRtr9OjRevHFF9WhQwf17NlTXl5e2rZtm0JDQzV16lRJv+/ruXPnavLkyWrcuLGCgoJ0zz33VEiPruTj46PmzZtr6dKluummm1SrVi21aNFCLVq00OzZs9W+fXu1bNlSgwcPVsOGDZWZmam0tDT99NNP+u9//1umdS1cuFBz5szRAw88oEaNGunkyZN699135efnd8kzghEREZKk0aNHq2/fvqpevbp69OhR4kNKS7v/Bw0apOPHj+uee+7RDTfcoB9//FGzZs1Sq1at1KxZs1JtT0REhP785z9r4cKFysnJUZcuXXTkyBHNmjVLPj4+GjZsWJn2D65BlXKvGlDJim7HPnbsWLFp//znP6327dtbvr6+lq+vr9W0aVMrMTHRysjIsGtKun3+/ffft5o0aWJ5eXlZTZs2tebPn1/stm/Lsqw9e/ZYHTt2tHx8fCxJ9m3FF94+f764uDj71ueLKU3fl1PUw+eff24lJCRYgYGBVo0aNay4uDjr119/dapt0KCB1a1btxKXc/LkSWvUqFFW48aNLU9PT6tOnTpWu3btrNdee83ptvxff/3V6t+/v+Xn52f5+/tb/fv3t7788svL3j5f5K9//at12223WV5eXlZgYKB11113WSkpKfZ0h8NhdevWzapZs6YlyelWelf3eDkXu33e19e3WG1J27tp0yYrIiLC8vT0LHbr+vfff2898sgjVkhIiFW9enXr+uuvt7p372598MEHdk3Rsb3wtvhPP/3UkmR9+umnlmVZ1o4dO6yHH37Yql+/vuXl5WUFBQVZ3bt3t7Zv3+4034U9WNbvt8Vff/31lru7u9PP8oW3z1tW6fb/Bx98YHXp0sUKCgqyPD09rfr161uPP/64deTIkYvt5hKdPn3amjRpktW8eXPLx8fH8vf3t7p37259+eWXZVoOrk1ulnXBOVAAxlqwYIEGDBigbdu2FXtyNQBci7hGCAAAGItrhAADnDlz5rLXtdSqVauCurm25OXl6fjx45es8ff353dalQOHw3HJ6T4+PvL396+gblBVEYQAAyxdulQDBgy4ZM2VPIEa0qZNm5weNVCS+fPnF/ulo/jj6tWrd8np8fHxTr/kFigJ1wgBBjhy5Ih27959yZqIiAj7KcMovRMnTig9Pf2SNbfccstlP7RRdp988sklp4eGhl7x08dhDoIQAAAwFhdLAwAAY3GN0CUUFhbq8OHDqlmz5h/6xZkAAKDiWJalkydPKjQ0VO7ulz7nQxC6hMOHDyssLKyy2wAAAFfg0KFDuuGGGy5ZQxC6hJo1a0r6fUf6+flVcjcAAKA0cnJyFBYWZn+OXwpB6BKKvg7z8/MjCAEAUMWU5rIWLpYGAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFa1ym7AaJ9OrewOyq7TqMruAAAAl+GMEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrDIHoQ0bNqhHjx4KDQ2Vm5ubVq5c6TTdsiyNGzdO9erVk4+Pj6Kjo7Vv3z6nmuPHjysuLk5+fn4KCAjQwIEDderUKaear776Sh06dJC3t7fCwsI0bdq0Yr0sX75cTZs2lbe3t1q2bKm1a9eWuRcAAGCuMj9ZOjc3V7feeqsee+wx9ezZs9j0adOm6c0339TChQsVHh6usWPHKiYmRt988428vb0lSXFxcTpy5IhSUlJ07tw5DRgwQAkJCVq8eLEkKScnR126dFF0dLTmzZunXbt26bHHHlNAQIASEhIkSZs2bdLDDz+sqVOnqnv37lq8eLFiY2O1Y8cOtWjRotS9VKa0H36t7BZKLaph7cpuAQAAl3OzLMu64pnd3LRixQrFxsZK+v0MTGhoqJ555hmNGDFCkpSdna3g4GAtWLBAffv21bfffqvmzZtr27Ztat26tSQpOTlZXbt21U8//aTQ0FDNnTtXo0ePlsPhkKenpyRp5MiRWrlypfbs2SNJ6tOnj3Jzc7V69Wq7n7Zt26pVq1aaN29eqXq5nJycHPn7+ys7O1t+fn5XupsuKu39ES5fZnmxgxC/YgMAcJUry+e3S68R2r9/vxwOh6Kjo+0xf39/RUZGKi0tTZKUlpamgIAAOwRJUnR0tNzd3bVlyxa7pmPHjnYIkqSYmBhlZGToxIkTds356ymqKVpPaXq50NmzZ5WTk+P0AgAA1y6XBiGHwyFJCg4OdhoPDg62pzkcDgUFBTlNr1atmmrVquVUU9Iyzl/HxWrOn365Xi40depU+fv726+wsLBSbDUAAKiquGvsPKNGjVJ2drb9OnToUGW3BAAAypFLg1BISIgkKTMz02k8MzPTnhYSEqKjR486Tc/Pz9fx48edakpaxvnruFjN+dMv18uFvLy85Ofn5/QCAADXLpcGofDwcIWEhCg1NdUey8nJ0ZYtWxQVFSVJioqKUlZWltLT0+2a9evXq7CwUJGRkXbNhg0bdO7cObsmJSVFN998swIDA+2a89dTVFO0ntL0AgAAzFbmIHTq1Cnt3LlTO3fulPT7Rck7d+7UwYMH5ebmpmHDhmny5MlatWqVdu3apUceeUShoaH2nWXNmjXTvffeq8GDB2vr1q3auHGjhgwZor59+yo0NFSS1K9fP3l6emrgwIHavXu3li5dqpkzZyopKcnu4+mnn1ZycrJef/117dmzRxMmTND27ds1ZMgQSSpVLwAAwGxlfo7Q9u3b1alTJ/t9UTiJj4/XggUL9Nxzzyk3N1cJCQnKyspS+/btlZyc7PTcnkWLFmnIkCHq3Lmz3N3d1atXL7355pv2dH9/f3388cdKTExURESE6tSpo3HjxtnPEJKkdu3aafHixRozZoxeeOEFNWnSRCtXrrSfISSpVL0AAABz/aHnCF3reI7Q/+E5QgCAqqLSniMEAABQlRCEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjuTwIFRQUaOzYsQoPD5ePj48aNWqkF198UZZl2TWWZWncuHGqV6+efHx8FB0drX379jkt5/jx44qLi5Ofn58CAgI0cOBAnTp1yqnmq6++UocOHeTt7a2wsDBNmzatWD/Lly9X06ZN5e3trZYtW2rt2rWu3mQAAFBFuTwIvfLKK5o7d67eeustffvtt3rllVc0bdo0zZo1y66ZNm2a3nzzTc2bN09btmyRr6+vYmJi9Ntvv9k1cXFx2r17t1JSUrR69Wpt2LBBCQkJ9vScnBx16dJFDRo0UHp6ul599VVNmDBB77zzjl2zadMmPfzwwxo4cKC+/PJLxcbGKjY2Vl9//bWrNxsAAFRBbtb5p2pcoHv37goODtb7779vj/Xq1Us+Pj76+9//LsuyFBoaqmeeeUYjRoyQJGVnZys4OFgLFixQ37599e2336p58+batm2bWrduLUlKTk5W165d9dNPPyk0NFRz587V6NGj5XA45OnpKUkaOXKkVq5cqT179kiS+vTpo9zcXK1evdrupW3btmrVqpXmzZt32W3JycmRv7+/srOz5efn57J9VCTt/REuX2Z5iWpY+/c/dBpVuY0AAHAZZfn8dvkZoXbt2ik1NVV79+6VJP33v//VF198ofvuu0+StH//fjkcDkVHR9vz+Pv7KzIyUmlpaZKktLQ0BQQE2CFIkqKjo+Xu7q4tW7bYNR07drRDkCTFxMQoIyNDJ06csGvOX09RTdF6LnT27Fnl5OQ4vQAAwLWrmqsXOHLkSOXk5Khp06by8PBQQUGBpkyZori4OEmSw+GQJAUHBzvNFxwcbE9zOBwKCgpybrRaNdWqVcupJjw8vNgyiqYFBgbK4XBccj0Xmjp1qiZOnHglmw0AAKogl58RWrZsmRYtWqTFixdrx44dWrhwoV577TUtXLjQ1atyuVGjRik7O9t+HTp0qLJbAgAA5cjlZ4SeffZZjRw5Un379pUktWzZUj/++KOmTp2q+Ph4hYSESJIyMzNVr149e77MzEy1atVKkhQSEqKjR486LTc/P1/Hjx+35w8JCVFmZqZTTdH7y9UUTb+Ql5eXvLy8rmSzAQBAFeTyM0KnT5+Wu7vzYj08PFRYWChJCg8PV0hIiFJTU+3pOTk52rJli6KioiRJUVFRysrKUnp6ul2zfv16FRYWKjIy0q7ZsGGDzp07Z9ekpKTo5ptvVmBgoF1z/nqKaorWAwAAzObyINSjRw9NmTJFa9as0YEDB7RixQpNnz5dDzzwgCTJzc1Nw4YN0+TJk7Vq1Srt2rVLjzzyiEJDQxUbGytJatasme69914NHjxYW7du1caNGzVkyBD17dtXoaGhkqR+/frJ09NTAwcO1O7du7V06VLNnDlTSUlJdi9PP/20kpOT9frrr2vPnj2aMGGCtm/friFDhrh6swEAQBXk8q/GZs2apbFjx+qpp57S0aNHFRoaqscff1zjxo2za5577jnl5uYqISFBWVlZat++vZKTk+Xt7W3XLFq0SEOGDFHnzp3l7u6uXr166c0337Sn+/v76+OPP1ZiYqIiIiJUp04djRs3zulZQ+3atdPixYs1ZswYvfDCC2rSpIlWrlypFi1auHqzAQBAFeTy5whdS3iO0P/hOUIAgKqiUp8jBAAAUFUQhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWC7/pau4xn06tbI7KDt+PxoA4CI4IwQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsHKqJU0n74tbJbKJOohrUruwUAQBXAGSEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjFUuQejnn3/W//zP/6h27dry8fFRy5YttX37dnu6ZVkaN26c6tWrJx8fH0VHR2vfvn1Oyzh+/Lji4uLk5+engIAADRw4UKdOnXKq+eqrr9ShQwd5e3srLCxM06ZNK9bL8uXL1bRpU3l7e6tly5Zau3ZteWwyAACoglwehE6cOKE777xT1atX10cffaRvvvlGr7/+ugIDA+2aadOm6c0339S8efO0ZcsW+fr6KiYmRr/99ptdExcXp927dyslJUWrV6/Whg0blJCQYE/PyclRly5d1KBBA6Wnp+vVV1/VhAkT9M4779g1mzZt0sMPP6yBAwfqyy+/VGxsrGJjY/X111+7erMBAEAV5GZZluXKBY4cOVIbN27Uf/7znxKnW5al0NBQPfPMMxoxYoQkKTs7W8HBwVqwYIH69u2rb7/9Vs2bN9e2bdvUunVrSVJycrK6du2qn376SaGhoZo7d65Gjx4th8MhT09Pe90rV67Unj17JEl9+vRRbm6uVq9eba+/bdu2atWqlebNm3fZbcnJyZG/v7+ys7Pl5+f3h/ZLSdLeH+HyZaK4zfUTLl9UiYb/+abKbgEArill+fx2+RmhVatWqXXr1nrooYcUFBSk2267Te+++649ff/+/XI4HIqOjrbH/P39FRkZqbS0NElSWlqaAgIC7BAkSdHR0XJ3d9eWLVvsmo4dO9ohSJJiYmKUkZGhEydO2DXnr6eopmg9Fzp79qxycnKcXgAA4NpVzdUL/OGHHzR37lwlJSXphRde0LZt2/T//t//k6enp+Lj4+VwOCRJwcHBTvMFBwfb0xwOh4KCgpwbrVZNtWrVcqoJDw8vtoyiaYGBgXI4HJdcz4WmTp2qiRMnXuGW42rV9uA7ly+qTJ/WLj7WaVTF9wEABnL5GaHCwkLdfvvteumll3TbbbcpISFBgwcPLtVXUZVt1KhRys7Otl+HDh2q7JYAAEA5cnkQqlevnpo3b+401qxZMx08eFCSFBISIknKzMx0qsnMzLSnhYSE6OjRo07T8/Pzdfz4caeakpZx/jouVlM0/UJeXl7y8/NzegEAgGuXy4PQnXfeqYyMDKexvXv3qkGDBpKk8PBwhYSEKDU11Z6ek5OjLVu2KCoqSpIUFRWlrKwspaen2zXr169XYWGhIiMj7ZoNGzbo3Llzdk1KSopuvvlm+w61qKgop/UU1RStBwAAmM3lQWj48OHavHmzXnrpJX333XdavHix3nnnHSUmJkqS3NzcNGzYME2ePFmrVq3Srl279Mgjjyg0NFSxsbGSfj+DdO+992rw4MHaunWrNm7cqCFDhqhv374KDQ2VJPXr10+enp4aOHCgdu/eraVLl2rmzJlKSkqye3n66aeVnJys119/XXv27NGECRO0fft2DRkyxNWbDQAAqiCXXyx9xx13aMWKFRo1apQmTZqk8PBwzZgxQ3FxcXbNc889p9zcXCUkJCgrK0vt27dXcnKyvL297ZpFixZpyJAh6ty5s9zd3dWrVy+9+eab9nR/f399/PHHSkxMVEREhOrUqaNx48Y5PWuoXbt2Wrx4scaMGaMXXnhBTZo00cqVK9WiRQtXbzYAAKiCXP4coWsJzxFCRYhqyF1jAOBKlfocIQAAgKqCIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGKvcg9DLL78sNzc3DRs2zB777bfflJiYqNq1a6tGjRrq1auXMjMzneY7ePCgunXrpuuuu05BQUF69tlnlZ+f71Tz2Wef6fbbb5eXl5caN26sBQsWFFv/7NmzdeONN8rb21uRkZHaunVreWwmAACogso1CG3btk1vv/22/vSnPzmNDx8+XP/+97+1fPlyff755zp8+LB69uxpTy8oKFC3bt2Ul5enTZs2aeHChVqwYIHGjRtn1+zfv1/dunVTp06dtHPnTg0bNkyDBg3SunXr7JqlS5cqKSlJ48eP144dO3TrrbcqJiZGR48eLc/NBgAAVYSbZVlWeSz41KlTuv322zVnzhxNnjxZrVq10owZM5Sdna26detq8eLFevDBByVJe/bsUbNmzZSWlqa2bdvqo48+Uvfu3XX48GEFBwdLkubNm6fnn39ex44dk6enp55//nmtWbNGX3/9tb3Ovn37KisrS8nJyZKkyMhI3XHHHXrrrbckSYWFhQoLC9PQoUM1cuTIy25DTk6O/P39lZ2dLT8/P1fvIqW9P8Lly0TVE9WwdvHBTqMqvhEAuEaU5fO73M4IJSYmqlu3boqOjnYaT09P17lz55zGmzZtqvr16ystLU2SlJaWppYtW9ohSJJiYmKUk5Oj3bt32zUXLjsmJsZeRl5entLT051q3N3dFR0dbddc6OzZs8rJyXF6AQCAa1e18ljokiVLtGPHDm3btq3YNIfDIU9PTwUEBDiNBwcHy+Fw2DXnh6Ci6UXTLlWTk5OjM2fO6MSJEyooKCixZs+ePSX2PXXqVE2cOLH0GwoAAKo0l58ROnTokJ5++mktWrRI3t7erl58uRo1apSys7Pt16FDhyq7JQAAUI5cfkYoPT1dR48e1e23326PFRQUaMOGDXrrrbe0bt065eXlKSsry+msUGZmpkJCQiRJISEhxe7uKrqr7PyaC+80y8zMlJ+fn3x8fOTh4SEPD48Sa4qWcSEvLy95eXld2YYDVyjth1+LjW3O31sJnZTO8D/fVNktAIDLuPyMUOfOnbVr1y7t3LnTfrVu3VpxcXH2n6tXr67U1FR7noyMDB08eFBRUVGSpKioKO3atcvp7q6UlBT5+fmpefPmds35yyiqKVqGp6enIiIinGoKCwuVmppq1wAAALO5/IxQzZo11aJFC6cxX19f1a5d2x4fOHCgkpKSVKtWLfn5+Wno0KGKiopS27ZtJUldunRR8+bN1b9/f02bNk0Oh0NjxoxRYmKifcbmiSee0FtvvaXnnntOjz32mNavX69ly5ZpzZo19nqTkpIUHx+v1q1bq02bNpoxY4Zyc3M1YMAAV282AACogsrlYunLeeONN+Tu7q5evXrp7NmziomJ0Zw5c+zpHh4eWr16tZ588klFRUXJ19dX8fHxmjRpkl0THh6uNWvWaPjw4Zo5c6ZuuOEGvffee4qJibFr+vTpo2PHjmncuHFyOBxq1aqVkpOTi11ADQAAzFRuzxG6FvAcIVSWzfUTKruFi+IaIQBXu6viOUIAAABXO4IQAAAwFkEIAAAYq1IulgZwaW0PvlPZLVzcpyX8bjSJ348GoErijBAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMaqVtkNAKha0n74tcTxzfl7K7iTyxv+55squwUAVzmXnxGaOnWq7rjjDtWsWVNBQUGKjY1VRkaGU81vv/2mxMRE1a5dWzVq1FCvXr2UmZnpVHPw4EF169ZN1113nYKCgvTss88qPz/fqeazzz7T7bffLi8vLzVu3FgLFiwo1s/s2bN14403ytvbW5GRkdq6daurNxkAAFRRLg9Cn3/+uRITE7V582alpKTo3Llz6tKli3Jzc+2a4cOH69///reWL1+uzz//XIcPH1bPnj3t6QUFBerWrZvy8vK0adMmLVy4UAsWLNC4cePsmv3796tbt27q1KmTdu7cqWHDhmnQoEFat26dXbN06VIlJSVp/Pjx2rFjh2699VbFxMTo6NGjrt5sAABQBblZlmWV5wqOHTumoKAgff755+rYsaOys7NVt25dLV68WA8++KAkac+ePWrWrJnS0tLUtm1bffTRR+revbsOHz6s4OBgSdK8efP0/PPP69ixY/L09NTzzz+vNWvW6Ouvv7bX1bdvX2VlZSk5OVmSFBkZqTvuuENvvfWWJKmwsFBhYWEaOnSoRo4cWazXs2fP6uzZs/b7nJwchYWFKTs7W35+fi7fN2nvj3D5MoHKsrl+QmW3UAxfjQFmysnJkb+/f6k+v8v9Yuns7GxJUq1atSRJ6enpOnfunKKjo+2apk2bqn79+kpLS5MkpaWlqWXLlnYIkqSYmBjl5ORo9+7dds35yyiqKVpGXl6e0tPTnWrc3d0VHR1t11xo6tSp8vf3t19hYWF/dPMBAMBVrFyDUGFhoYYNG6Y777xTLVq0kCQ5HA55enoqICDAqTY4OFgOh8OuOT8EFU0vmnapmpycHJ05c0a//PKLCgoKSqwpWsaFRo0apezsbPt16NChK9twAABQJZTrXWOJiYn6+uuv9cUXX5TnalzGy8tLXl5eld0GAACoIOV2RmjIkCFavXq1Pv30U91www32eEhIiPLy8pSVleVUn5mZqZCQELvmwrvIit5frsbPz08+Pj6qU6eOPDw8SqwpWgYAADCby88IWZaloUOHasWKFfrss88UHh7uND0iIkLVq1dXamqqevXqJUnKyMjQwYMHFRUVJUmKiorSlClTdPToUQUFBUmSUlJS5Ofnp+bNm9s1a9eudVp2SkqKvQxPT09FREQoNTVVsbGxkn7/qi41NVVDhgxx9WYDxmt78J3KbqG4T2tfenqnURXTB4CrlsuDUGJiohYvXqx//etfqlmzpn09jr+/v3x8fOTv76+BAwcqKSlJtWrVkp+fn4YOHaqoqCi1bdtWktSlSxc1b95c/fv317Rp0+RwODRmzBglJibaX1098cQTeuutt/Tcc8/pscce0/r167Vs2TKtWbPG7iUpKUnx8fFq3bq12rRpoxkzZig3N1cDBgxw9WYDAIAqyOVBaO7cuZKku+++22l8/vz5evTRRyVJb7zxhtzd3dWrVy+dPXtWMTExmjNnjl3r4eGh1atX68knn1RUVJR8fX0VHx+vSZMm2TXh4eFas2aNhg8frpkzZ+qGG27Qe++9p5iYGLumT58+OnbsmMaNGyeHw6FWrVopOTm52AXUAADATOX+HKGqrCzPIbgSPEcIKF9RDflqDDDRVfUcIQAAgKsVQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADBWtcpuAADKS9oPv15y+ub8vRXUSekM//NNld0CYBzOCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIvb5wEYq+3Bdyq7BWef1r58TadR5d8HYBDOCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYq1plNwAA+F3aD79etmZz/t4K6OTyhv/5pspuAXAJzggBAABjEYQAAICx+GoMAKqQtgffqewWfvdp7bLVdxpVPn0AfxBnhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGMuIu8Zmz56tV199VQ6HQ7feeqtmzZqlNm3aVHZbAFBllebhj+er7AdB8gBIXMw1H4SWLl2qpKQkzZs3T5GRkZoxY4ZiYmKUkZGhoKCgym4PAIxQ6bf9l/V2f4lb/g1xzX81Nn36dA0ePFgDBgxQ8+bNNW/ePF133XX661//WtmtAQCASnZNnxHKy8tTenq6Ro36v1Tv7u6u6OhopaWlFas/e/aszp49a7/Pzs6WJOXk5JRLf7lnzl6+CADwh32y+3CZ59mWvaMcOrm8xHsaV8p6ryVFn9uWZV229poOQr/88osKCgoUHBzsNB4cHKw9e/YUq586daomTpxYbDwsLKzcegQAXK3eqpS1vlApa702nTx5Uv7+/pesuaaDUFmNGjVKSUlJ9vvCwkIdP35ctWvXlpubm0vXlZOTo7CwMB06dEh+fn4uXTbKD8etauK4VU0ct6rpajhulmXp5MmTCg0NvWztNR2E6tSpIw8PD2VmZjqNZ2ZmKiQkpFi9l5eXvLy8nMYCAgLKs0X5+fnxF7wK4rhVTRy3qonjVjVV9nG73JmgItf0xdKenp6KiIhQamqqPVZYWKjU1FRFRUVVYmcAAOBqcE2fEZKkpKQkxcfHq3Xr1mrTpo1mzJih3NxcDRgwoLJbAwAAleyaD0J9+vTRsWPHNG7cODkcDrVq1UrJycnFLqCuaF5eXho/fnyxr+JwdeO4VU0ct6qJ41Y1VbXj5maV5t4yAACAa9A1fY0QAADApRCEAACAsQhCAADAWAQhAABgLIIQAAAwFkGoHM2ePVs33nijvL29FRkZqa1bt16yfvny5WratKm8vb3VsmVLrV27toI6xfnKctzeffdddejQQYGBgQoMDFR0dPRljzPKR1n/vhVZsmSJ3NzcFBsbW74NopiyHrOsrCwlJiaqXr168vLy0k033cS/k5WgrMdtxowZuvnmm+Xj46OwsDANHz5cv/32WwV1WwoWysWSJUssT09P669//au1e/dua/DgwVZAQICVmZlZYv3GjRstDw8Pa9q0adY333xjjRkzxqpevbq1a9euCu7cbGU9bv369bNmz55tffnll9a3335rPfroo5a/v7/1008/VXDnZivrcSuyf/9+6/rrr7c6dOhg/eUvf6mYZmFZVtmP2dmzZ63WrVtbXbt2tb744gtr//791meffWbt3Lmzgjs3W1mP26JFiywvLy9r0aJF1v79+61169ZZ9erVs4YPH17BnV8cQaictGnTxkpMTLTfFxQUWKGhodbUqVNLrO/du7fVrVs3p7HIyEjr8ccfL9c+4aysx+1C+fn5Vs2aNa2FCxeWV4sowZUct/z8fKtdu3bWe++9Z8XHxxOEKlhZj9ncuXOthg0bWnl5eRXVIkpQ1uOWmJho3XPPPU5jSUlJ1p133lmufZYFX42Vg7y8PKWnpys6Otoec3d3V3R0tNLS0kqcJy0tzalekmJiYi5aD9e7kuN2odOnT+vcuXOqVatWebWJC1zpcZs0aZKCgoI0cODAimgT57mSY7Zq1SpFRUUpMTFRwcHBatGihV566SUVFBRUVNvGu5Lj1q5dO6Wnp9tfn/3www9au3atunbtWiE9l8Y1/ys2KsMvv/yigoKCYr/GIzg4WHv27ClxHofDUWK9w+Eotz7h7EqO24Wef/55hYaGFgu1KD9Xcty++OILvf/++9q5c2cFdIgLXckx++GHH7R+/XrFxcVp7dq1+u677/TUU0/p3LlzGj9+fEW0bbwrOW79+vXTL7/8ovbt28uyLOXn5+uJJ57QCy+8UBEtlwpnhAAXefnll7VkyRKtWLFC3t7eld0OLuLkyZPq37+/3n33XdWpU6ey20EpFRYWKigoSO+8844iIiLUp08fjR49WvPmzavs1nAJn332mV566SXNmTNHO3bs0Icffqg1a9boxRdfrOzWbJwRKgd16tSRh4eHMjMzncYzMzMVEhJS4jwhISFlqofrXclxK/Laa6/p5Zdf1ieffKI//elP5dkmLlDW4/b999/rwIED6tGjhz1WWFgoSapWrZoyMjLUqFGj8m3acFfyd61evXqqXr26PDw87LFmzZrJ4XAoLy9Pnp6e5dozruy4jR07Vv3799egQYMkSS1btlRubq4SEhI0evRoubtX/vmYyu/gGuTp6amIiAilpqbaY4WFhUpNTVVUVFSJ80RFRTnVS1JKSspF6+F6V3LcJGnatGl68cUXlZycrNatW1dEqzhPWY9b06ZNtWvXLu3cudN+3X///erUqZN27typsLCwimzfSFfyd+3OO+/Ud999Z4dWSdq7d6/q1atHCKogV3LcTp8+XSzsFIVZ62r5ne+VfbX2tWrJkiWWl5eXtWDBAuubb76xEhISrICAAMvhcFiWZVn9+/e3Ro4caddv3LjRqlatmvXaa69Z3377rTV+/Hhun68EZT1uL7/8suXp6Wl98MEH1pEjR+zXyZMnK2sTjFTW43Yh7hqreGU9ZgcPHrRq1qxpDRkyxMrIyLBWr15tBQUFWZMnT66sTTBSWY/b+PHjrZo1a1r/+Mc/rB9++MH6+OOPrUaNGlm9e/eurE0ohiBUjmbNmmXVr1/f8vT0tNq0aWNt3rzZnnbXXXdZ8fHxTvXLli2zbrrpJsvT09O65ZZbrDVr1lRwx7Cssh23Bg0aWJKKvcaPH1/xjRuurH/fzkcQqhxlPWabNm2yIiMjLS8vL6thw4bWlClTrPz8/AruGmU5bufOnbMmTJhgNWrUyPL29rbCwsKsp556yjpx4kTFN34RbpZ1tZybAgAAqFhcIwQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAY/1/XXPlePA0JswAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP/5JREFUeJzt3X18j/X////7TuyksRO0zQotFKL0nszkpJNlhXor5fQtSdbJ5hNSkXMpJUIlOhEu78hJxbvQtKgUczaUkyyVs05eo9jGYpvt+fuj746flw17zWubOW7Xy+W4XLyO43Ecx+N5vMbujtdxHC8PY4wRAACADXlWdAMAAAAVhSAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAElMJDDz2kq666yq3bnDNnjjw8PLRv3z63brey2bdvnzw8PDRnzhxr3pgxY+Th4VFxTZ2huB7LYp2LmYeHh8aMGVOi2quuukoPPfRQmfYDlBZBCChnL774opYuXVrRbdjCm2++eUkEj7///ltjxozRV199VdGtnNW6des0ZswYZWRkVHQrReTl5Wns2LG6+uqr5evrq6uvvlrjx4/XqVOnKro1XAQIQkA5O1sQ6t27t06cOKG6deuWf1MXuREjRujEiRMur3cxBaG6devqxIkT6t27t8vr/v333xo7duxFFYROnDihESNGWK/XrVunsWPHFhuE0tLS9M4775Rjd87+85//aOzYsbrttts0bdo0tW3bViNHjtQTTzxRYT3h4uFd0Q0AF4vs7GwFBARU2P69vLzk5eVVYfu/UMYYnTx5Uv7+/m7ftre3t7y9K/c/Vx4eHvLz86voNtzGlbH4+vqWYSfntmnTJi1atEgjR47UuHHjJEmPPfaYatasqVdffVWJiYm6/vrrK6w/VDzOCMGWCq852bVrl3r27KmQkBC1bt1akvT+++8rKipK/v7+ql69urp3766DBw+ed5uTJk1Sq1atVKNGDfn7+ysqKkoffvihU42Hh4eys7M1d+5ceXh4yMPDw7p24sxrhDp16qSrr7662H3FxMSoefPmTvNK2/fpCntYs2aNHn30UdWoUUOBgYF68MEHdfToUafaq666Sp06ddLKlSvVvHlz+fv766233pIkZWRkaODAgapdu7Z8fX1Vv359vfzyyyooKHDaRkZGhh566CEFBQUpODhYffr0KfaMwtmuEXr//ffVokULXXbZZQoJCVHbtm31+eefW/3t3LlTX3/9tXWsb7nlFqd9u7PH8ynuGqGHHnpIVatW1W+//abOnTuratWquvzyyzVkyBDl5+db611++eWSpLFjx1pjOf36nN27d+v+++9X9erV5efnp+bNm+uTTz5x2n/he7t27VoNHjxYl19+uQICAnTvvffq8OHDTrWbN29WXFycatasKX9/f0VGRurhhx92qjm9hzFjxujpp5+WJEVGRlo9Fv4sF3eNUEmP/4IFCxQVFaVq1aopMDBQTZs21bRp00p83L/55htJUvfu3Z3md+/eXcYYLVy4sMTbwqWpcv8XC7hADzzwgBo0aKAXX3xRxhi98MILGjlypLp27apHHnlEhw8f1uuvv662bdtq69atCg4OPuu2pk2bpnvuuUe9evVSbm6uFixYoAceeEDLli1Tx44dJUn//e9/9cgjj6hFixaKj4+XJNWrV6/Y7XXr1k0PPvigNm3apJtuusmav3//fq1fv16vvPKKNe9C+i5OYmKigoODNWbMGKWlpWnGjBnav3+/vvrqK6dAkpaWph49eujRRx9V//79de211+rvv/9Wu3bt9Ntvv+nRRx9VnTp1tG7dOg0bNkx//PGHpk6dKumfM0j//ve/9e233+qxxx5To0aNtGTJEvXp06dEPY4dO1ZjxoxRq1atNG7cOPn4+GjDhg1avXq12rdvr6lTp2rAgAGqWrWqhg8fLkkKCwuTpHLrsSTy8/MVFxen6OhoTZo0SV988YUmT56sevXq6fHHH9fll1+uGTNm6PHHH9e9996r++67T5Kssxg7d+7UzTffrCuuuEJDhw5VQECAFi1apM6dO+ujjz7Svffe67S/AQMGKCQkRKNHj9a+ffs0depUJSYmWoHg0KFDat++vS6//HINHTpUwcHB2rdvnz7++OOzjuG+++7Tjz/+qA8++EBTpkxRzZo1JckKcGcq6fFPTk5Wjx49dPvtt+vll1+WJP3www9au3atnnzyyRId35ycHEkqcqbysssukySlpqaWaDu4hBnAhkaPHm0kmR49eljz9u3bZ7y8vMwLL7zgVLt9+3bj7e3tNL9Pnz6mbt26TnV///230+vc3FzTpEkTc9tttznNDwgIMH369CnS0+zZs40ks3fvXmOMMZmZmcbX19c89dRTTnUTJ040Hh4eZv/+/S73fT6FPURFRZnc3FynfUoy//vf/6x5devWNZJMUlKS0zaef/55ExAQYH788Uen+UOHDjVeXl7mwIEDxhhjli5daiSZiRMnWjWnTp0ybdq0MZLM7NmzrfmF71ehPXv2GE9PT3Pvvfea/Px8p/0UFBRYf77uuutMu3btioyzLHo8n7179xZZp0+fPkaSGTdunFPtjTfeaKKioqzXhw8fNpLM6NGji2z39ttvN02bNjUnT5605hUUFJhWrVqZBg0aWPMK39vY2FinYzRo0CDj5eVlMjIyjDHGLFmyxEgymzZtOud4zuznlVdecfr5PV3dunWdfuZLevyffPJJExgYaE6dOnXOXs7lo48+MpLMf//7X6f5M2fONJJMkyZNSr1tXBr4aAy29thjj1l//vjjj1VQUKCuXbvqzz//tKbw8HA1aNBAX3755Tm3dfr/OI8eParMzEy1adNGW7ZsKVVvgYGBuuuuu7Ro0SIZY6z5CxcuVMuWLVWnTh239F2c+Ph4ValSxXr9+OOPy9vbWytWrHCqi4yMVFxcnNO8xYsXq02bNgoJCXHqJzY2Vvn5+VqzZo0kacWKFfL29tbjjz9urevl5aUBAwact7+lS5eqoKBAo0aNkqen8z9jJbnNvjx6dMXpP4eS1KZNG/3yyy/nXe/IkSNavXq1unbtqmPHjlnj+OuvvxQXF6c9e/bot99+c1onPj7e6Ri1adNG+fn52r9/vyRZZw+XLVumvLy8CxxZ8Up6/IODg5Wdna3k5ORS76tDhw6qW7euhgwZoo8//lj79+/XokWLNHz4cHl7e5fqInxcWvhoDLYWGRlp/XnPnj0yxqhBgwbF1p4eDIqzbNkyjR8/Xtu2bbNOx0sl+8V8Nt26ddPSpUuVkpKiVq1a6eeff1Zqaqr10YE7+i7OmduqWrWqatWqVeQZR6cfv9P7+f7778/6scihQ4ck/fMRX61atVS1alWn5ddee+15+/v555/l6empxo0bn7e2OOXRY0n5+fkV6SMkJKTINVnF+emnn2SM0ciRIzVy5Mhiaw4dOqQrrrjCel0YoE/flyRrf+3atVOXLl00duxYTZkyRbfccos6d+6snj17uu2i55Ie/yeeeEKLFi3SXXfdpSuuuELt27dX165ddeedd5Z4X35+flq+fLm6du2qLl26SPrn4u2JEyfqhRdeKPLewn4IQrC108/iFBQUyMPDQ5999lmxd2+d6x/Mb775Rvfcc4/atm2rN998U7Vq1VKVKlU0e/ZszZ8/v9T93X333brsssu0aNEitWrVSosWLZKnp6ceeOABt/R9oYq7Q6ygoEB33HGHnnnmmWLXueaaa8qsn5K6mHq8kDsFCy8sHjJkSJEzc4Xq169fov0VnnX08PDQhx9+qPXr1+vTTz/VypUr9fDDD2vy5Mlav369W36eSnr8Q0NDtW3bNq1cuVKfffaZPvvsM82ePVsPPvig5s6dW+L9XXfdddqxY4d27dqlo0ePqnHjxvL399egQYPUrl27Cx4PKjeCEPD/1KtXT8YYRUZGuvyL8KOPPpKfn59Wrlzp9L/m2bNnF6l15QxRQECAOnXqpMWLF+vVV1/VwoUL1aZNG0VERLil77PZs2ePbr31Vuv18ePH9ccff6hDhw7nXbdevXo6fvy4YmNjz1lXt25drVq1SsePH3f65ZqWllaifRQUFGjXrl1q1qzZWevOdqzLo0d3Ots4Cu8qrFKlynnH4qqWLVuqZcuWeuGFFzR//nz16tVLCxYs0COPPOJSj8Up6fGXJB8fH9199926++67VVBQoCeeeEJvvfWWRo4cWSTknYuHh4euu+466/WKFStUUFDg9uOGyodrhID/57777pOXl5fGjh3rdE2O9M//lv/666+zruvl5SUPDw/rlmfpn9uei3twYkBAgEu3X3fr1k2///673n33XX333Xfq1q2b2/o+m7ffftvp+pAZM2bo1KlTuuuuu867bteuXZWSkqKVK1cWWZaRkWE9zbdDhw46deqUZsyYYS3Pz8/X66+/ft59dO7cWZ6enho3blyR261PPwZnO9bl0aM7Fd7hdOZYQkNDdcstt+itt97SH3/8UWS9M2+LL4mjR48W+TkqDJunf+R7psJncJXkZ7ukx//Mn11PT0/rbrlz9XI+J06c0MiRI1WrVi316NGj1NvBpYEzQsD/U69ePY0fP17Dhg3Tvn371LlzZ1WrVk179+7VkiVLFB8fryFDhhS7bseOHfXqq6/qzjvvVM+ePXXo0CFNnz5d9evX1/fff+9UGxUVpS+++EKvvvqqIiIiFBkZqejo6LP21aFDB1WrVk1DhgyRl5eXdZ2DO/o+m9zcXN1+++3q2rWr0tLS9Oabb6p169a65557zrvu008/rU8++USdOnXSQw89pKioKGVnZ2v79u368MMPtW/fPtWsWVN33323br75Zg0dOlT79u1T48aN9fHHHyszM/O8+6hfv76GDx+u559/Xm3atNF9990nX19fbdq0SREREZowYYKkf471jBkzNH78eNWvX1+hoaG67bbbyqVHd/L391fjxo21cOFCXXPNNapevbqaNGmiJk2aaPr06WrdurWaNm2q/v376+qrr1Z6erpSUlL066+/6rvvvnNpX3PnztWbb76pe++9V/Xq1dOxY8f0zjvvKDAw8JxnBKOioiRJw4cPV/fu3VWlShXdfffdxT6ktKTH/5FHHtGRI0d022236corr9T+/fv1+uuvq1mzZmrUqFGJx9S1a1dFRESocePGysrK0nvvvadffvlFy5cvV7Vq1Vw6PrgEVci9akAFK7wd+/Dhw0WWffTRR6Z169YmICDABAQEmIYNG5qEhASTlpZm1RR3+/ysWbNMgwYNjK+vr2nYsKGZPXt2kdu+jTFm9+7dpm3btsbf399Ism4rPvP2+dP16tXLuvX5bErS9/kU9vD111+b+Ph4ExISYqpWrWp69epl/vrrL6faunXrmo4dOxa7nWPHjplhw4aZ+vXrGx8fH1OzZk3TqlUrM2nSJKfb8v/66y/Tu3dvExgYaIKCgkzv3r3N1q1bz3v7fKH33nvP3HjjjcbX19eEhISYdu3ameTkZGu5w+EwHTt2NNWqVTOSnG6ld3eP53O22+cDAgKK1BY33nXr1pmoqCjj4+NT5Nb1n3/+2Tz44IMmPDzcVKlSxVxxxRWmU6dO5sMPP7RqCt/bM2+L//LLL40k8+WXXxpjjNmyZYvp0aOHqVOnjvH19TWhoaGmU6dOZvPmzU7rndmDMf/cFn/FFVcYT09Pp5/lM2+fN6Zkx//DDz807du3N6GhocbHx8fUqVPHPProo+aPP/4422Eu1ssvv2waNmxo/Pz8TEhIiLnnnnvM1q1bXdoGLl0expxxDhSAbc2ZM0d9+/bVpk2bijy5GgAuRVwjBAAAbItrhAAbOHHixHmva6levXo5dXNpyc3N1ZEjR85ZExQUVCZfRmt3DofjnMv9/f0VFBRUTt2gsiIIATawcOFC9e3b95w1pXkCNaR169Y5PWqgOLNnzy7ypaO4cLVq1Trn8j59+jh9yS1QHK4RAmzgjz/+0M6dO89ZExUVZT1lGCV39OjR835x53XXXXfeX9pw3RdffHHO5YV3igHnQhACAAC2xcXSAADAtly+RmjNmjV65ZVXlJqaqj/++ENLlixR586dJUl5eXkaMWKEVqxYoV9++UVBQUGKjY3VSy+95PSVAEeOHNGAAQP06aefytPTU126dNG0adOcHmH//fffKyEhQZs2bdLll1+uAQMGFPlemsWLF2vkyJHat2+fGjRooJdfftnpgV/GGI0ePVrvvPOOMjIydPPNN2vGjBln/XLKMxUUFOj3339XtWrVLuiLMwEAQPkxxujYsWOKiIiQp+d5zvm4+uChFStWmOHDh5uPP/7YSDJLliyxlmVkZJjY2FizcOFCs3v3bpOSkmJatGhhoqKinLZx5513mhtuuMGsX7/efPPNN6Z+/fqmR48e1vLMzEwTFhZmevXqZXbs2GE++OAD4+/vb9566y2rZu3atcbLy8tMnDjR7Nq1y4wYMcJUqVLFbN++3ap56aWXTFBQkFm6dKn57rvvzD333GMiIyPNiRMnSjTWgwcPGklMTExMTExMlXA6ePDgeX/XX9A1Qh4eHk5nhIqzadMmtWjRQvv371edOnX0ww8/qHHjxk4PbEtKSlKHDh3066+/KiIiQjNmzNDw4cPlcDjk4+MjSRo6dKiWLl2q3bt3S/rn+5eys7O1bNkya18tW7ZUs2bNNHPmTBljFBERoaeeesr6eoHMzEyFhYVpzpw56t69e5Fec3JynL6/JjMzU3Xq1NHBgwcVGBhY2sMEAADKUVZWlmrXrq2MjIzzPkKhzG+fz8zMlIeHh4KDgyVJKSkpCg4OdnpqbWxsrDw9PbVhwwbde++9SklJUdu2ba0QJElxcXF6+eWXdfToUYWEhCglJUWDBw922ldcXJz1JZd79+6Vw+Fw+mbhoKAgRUdHKyUlpdggNGHCBI0dO7bI/MDAQIIQAACVTEkuaynTi6VPnjypZ599Vj169LCChMPhUGhoqFOdt7e3qlevbj0cy+FwKCwszKmm8PX5ak5ffvp6xdWcadiwYcrMzLSmgwcPujxmAABQeZTZGaG8vDx17dpVxhjNmDGjrHbjVr6+vvL19a3oNgAAQDkpkzNChSFo//79Sk5OdvpYKTw8XIcOHXKqP3XqlI4cOaLw8HCrJj093amm8PX5ak5ffvp6xdUAAAB7c3sQKgxBe/bs0RdffKEaNWo4LY+JiVFGRobTk1hXr16tgoICRUdHWzVr1qxRXl6eVZOcnKxrr73WevJtTEyMVq1a5bTt5ORkxcTESJIiIyMVHh7uVJOVlaUNGzZYNQAAwN5cDkLHjx/Xtm3btG3bNkn/XJS8bds2HThwQHl5ebr//vu1efNmzZs3T/n5+XI4HHI4HMrNzZUkNWrUSHfeeaf69++vjRs3au3atUpMTFT37t2tZw317NlTPj4+6tevn3bu3KmFCxdq2rRpThdHP/nkk0pKStLkyZO1e/dujRkzRps3b1ZiYqKkfy6QGjhwoMaPH69PPvlE27dv14MPPqiIiIhz3uUGAABspEQP1DnNl19+Wey9+n369DF79+496738X375pbWNv/76y/To0cNUrVrVBAYGmr59+5pjx4457ee7774zrVu3Nr6+vuaKK64wL730UpFeFi1aZK655hrj4+NjrrvuOrN8+XKn5QUFBWbkyJEmLCzM+Pr6mttvv92kpaWVeKyZmZlGksnMzHTtIAEAgArjyu9vvmvsHLKyshQUFKTMzExunwcAoJJw5fc33zUGAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsiyAEAABsq8y+dBXnNyX5x4puwWWD7rimolsAAMBtOCMEAABsiyAEAABsiyAEAABsi2uEKlDLA29XdAsuWV8nvqJbAADArTgjBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbMvlILRmzRrdfffdioiIkIeHh5YuXeq03BijUaNGqVatWvL391dsbKz27NnjVHPkyBH16tVLgYGBCg4OVr9+/XT8+HGnmu+//15t2rSRn5+fateurYkTJxbpZfHixWrYsKH8/PzUtGlTrVixwuVeAACAfbkchLKzs3XDDTdo+vTpxS6fOHGiXnvtNc2cOVMbNmxQQECA4uLidPLkSaumV69e2rlzp5KTk7Vs2TKtWbNG8fHx1vKsrCy1b99edevWVWpqql555RWNGTNGb7/9tlWzbt069ejRQ/369dPWrVvVuXNnde7cWTt27HCpFwAAYF8exhhT6pU9PLRkyRJ17txZ0j9nYCIiIvTUU09pyJAhkqTMzEyFhYVpzpw56t69u3744Qc1btxYmzZtUvPmzSVJSUlJ6tChg3799VdFRERoxowZGj58uBwOh3x8fCRJQ4cO1dKlS7V7925JUrdu3ZSdna1ly5ZZ/bRs2VLNmjXTzJkzS9TL+WRlZSkoKEiZmZkKDAws7WE6q5RZQ9y+zbK0vk68Bt1xTUW3AQDAObny+9ut1wjt3btXDodDsbGx1rygoCBFR0crJSVFkpSSkqLg4GArBElSbGysPD09tWHDBqumbdu2VgiSpLi4OKWlpeno0aNWzen7Kawp3E9JejlTTk6OsrKynCYAAHDpcmsQcjgckqSwsDCn+WFhYdYyh8Oh0NBQp+Xe3t6qXr26U01x2zh9H2erOX35+Xo504QJExQUFGRNtWvXLsGoAQBAZcVdY6cZNmyYMjMzrengwYMV3RIAAChDbg1C4eHhkqT09HSn+enp6day8PBwHTp0yGn5qVOndOTIEaea4rZx+j7OVnP68vP1ciZfX18FBgY6TQAA4NLl1iAUGRmp8PBwrVq1ypqXlZWlDRs2KCYmRpIUExOjjIwMpaamWjWrV69WQUGBoqOjrZo1a9YoLy/PqklOTta1116rkJAQq+b0/RTWFO6nJL0AAAB7czkIHT9+XNu2bdO2bdsk/XNR8rZt23TgwAF5eHho4MCBGj9+vD755BNt375dDz74oCIiIqw7yxo1aqQ777xT/fv318aNG7V27VolJiaqe/fuioiIkCT17NlTPj4+6tevn3bu3KmFCxdq2rRpGjx4sNXHk08+qaSkJE2ePFm7d+/WmDFjtHnzZiUmJkpSiXoBAAD25u3qCps3b9att95qvS4MJ3369NGcOXP0zDPPKDs7W/Hx8crIyFDr1q2VlJQkPz8/a5158+YpMTFRt99+uzw9PdWlSxe99tpr1vKgoCB9/vnnSkhIUFRUlGrWrKlRo0Y5PWuoVatWmj9/vkaMGKHnnntODRo00NKlS9WkSROrpiS9AAAA+7qg5whd6niOkDOeIwQAqAwq7DlCAAAAlQlBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2BZBCAAA2Jbbg1B+fr5GjhypyMhI+fv7q169enr++edljLFqjDEaNWqUatWqJX9/f8XGxmrPnj1O2zly5Ih69eqlwMBABQcHq1+/fjp+/LhTzffff682bdrIz89PtWvX1sSJE4v0s3jxYjVs2FB+fn5q2rSpVqxY4e4hAwCASsrb3Rt8+eWXNWPGDM2dO1fXXXedNm/erL59+yooKEj/93//J0maOHGiXnvtNc2dO1eRkZEaOXKk4uLitGvXLvn5+UmSevXqpT/++EPJycnKy8tT3759FR8fr/nz50uSsrKy1L59e8XGxmrmzJnavn27Hn74YQUHBys+Pl6StG7dOvXo0UMTJkxQp06dNH/+fHXu3FlbtmxRkyZN3D10W5iS/GNFt+CyQXdcU9EtAAAuUh7m9FM1btCpUyeFhYVp1qxZ1rwuXbrI399f77//vowxioiI0FNPPaUhQ4ZIkjIzMxUWFqY5c+aoe/fu+uGHH9S4cWNt2rRJzZs3lyQlJSWpQ4cO+vXXXxUREaEZM2Zo+PDhcjgc8vHxkSQNHTpUS5cu1e7duyVJ3bp1U3Z2tpYtW2b10rJlSzVr1kwzZ84871iysrIUFBSkzMxMBQYGuu0YFUqZNcTt2yxL6+vEV3QLpUIQAgB7ceX3t9s/GmvVqpVWrVqlH3/858zBd999p2+//VZ33XWXJGnv3r1yOByKjY211gkKClJ0dLRSUlIkSSkpKQoODrZCkCTFxsbK09NTGzZssGratm1rhSBJiouLU1pamo4ePWrVnL6fwprC/ZwpJydHWVlZThMAALh0uf2jsaFDhyorK0sNGzaUl5eX8vPz9cILL6hXr16SJIfDIUkKCwtzWi8sLMxa5nA4FBoa6tyot7eqV6/uVBMZGVlkG4XLQkJC5HA4zrmfM02YMEFjx44tzbABAEAl5PYzQosWLdK8efM0f/58bdmyRXPnztWkSZM0d+5cd+/K7YYNG6bMzExrOnjwYEW3BAAAypDbzwg9/fTTGjp0qLp37y5Jatq0qfbv368JEyaoT58+Cg8PlySlp6erVq1a1nrp6elq1qyZJCk8PFyHDh1y2u6pU6d05MgRa/3w8HClp6c71RS+Pl9N4fIz+fr6ytfXtzTDBgAAlZDbzwj9/fff8vR03qyXl5cKCgokSZGRkQoPD9eqVaus5VlZWdqwYYNiYmIkSTExMcrIyFBqaqpVs3r1ahUUFCg6OtqqWbNmjfLy8qya5ORkXXvttQoJCbFqTt9PYU3hfgAAgL25/YzQ3XffrRdeeEF16tTRddddp61bt+rVV1/Vww8/LEny8PDQwIEDNX78eDVo0MC6fT4iIkKdO3eWJDVq1Eh33nmn+vfvr5kzZyovL0+JiYnq3r27IiIiJEk9e/bU2LFj1a9fPz377LPasWOHpk2bpilTpli9PPnkk2rXrp0mT56sjh07asGCBdq8ebPefvttdw/bFloeqFzHrbLe5QYAKD9uD0Kvv/66Ro4cqSeeeEKHDh1SRESEHn30UY0aNcqqeeaZZ5Sdna34+HhlZGSodevWSkpKsp4hJEnz5s1TYmKibr/9dnl6eqpLly567bXXrOVBQUH6/PPPlZCQoKioKNWsWVOjRo2yniEk/XMH2/z58zVixAg999xzatCggZYuXcozhAAAgKQyeI7QpYTnCFVuhWeEeI4QANhLhT5HCAAAoLIgCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsqkyD022+/6T//+Y9q1Kghf39/NW3aVJs3b7aWG2M0atQo1apVS/7+/oqNjdWePXuctnHkyBH16tVLgYGBCg4OVr9+/XT8+HGnmu+//15t2rSRn5+fateurYkTJxbpZfHixWrYsKH8/PzUtGlTrVixoiyGDAAAKiG3B6GjR4/q5ptvVpUqVfTZZ59p165dmjx5skJCQqyaiRMn6rXXXtPMmTO1YcMGBQQEKC4uTidPnrRqevXqpZ07dyo5OVnLli3TmjVrFB8fby3PyspS+/btVbduXaWmpuqVV17RmDFj9Pbbb1s169atU48ePdSvXz9t3bpVnTt3VufOnbVjxw53DxsAAFRCHsYY484NDh06VGvXrtU333xT7HJjjCIiIvTUU09pyJAhkqTMzEyFhYVpzpw56t69u3744Qc1btxYmzZtUvPmzSVJSUlJ6tChg3799VdFRERoxowZGj58uBwOh3x8fKx9L126VLt375YkdevWTdnZ2Vq2bJm1/5YtW6pZs2aaOXPmeceSlZWloKAgZWZmKjAw8IKOS3FSZg1x+zbx/1tf55/gPOiOayq4EwBAeXLl97fbzwh98sknat68uR544AGFhobqxhtv1DvvvGMt37t3rxwOh2JjY615QUFBio6OVkpKiiQpJSVFwcHBVgiSpNjYWHl6emrDhg1WTdu2ba0QJElxcXFKS0vT0aNHrZrT91NYU7ifM+Xk5CgrK8tpAgAAly63B6FffvlFM2bMUIMGDbRy5Uo9/vjj+r//+z/NnTtXkuRwOCRJYWFhTuuFhYVZyxwOh0JDQ52We3t7q3r16k41xW3j9H2craZw+ZkmTJigoKAga6pdu7bL4wcAAJWH24NQQUGB/vWvf+nFF1/UjTfeqPj4ePXv379EH0VVtGHDhikzM9OaDh48WNEtAQCAMuT2IFSrVi01btzYaV6jRo104MABSVJ4eLgkKT093akmPT3dWhYeHq5Dhw45LT916pSOHDniVFPcNk7fx9lqCpefydfXV4GBgU4TAAC4dLk9CN18881KS0tzmvfjjz+qbt26kqTIyEiFh4dr1apV1vKsrCxt2LBBMTExkqSYmBhlZGQoNTXVqlm9erUKCgoUHR1t1axZs0Z5eXlWTXJysq699lrrDrWYmBin/RTWFO4HAADYm9uD0KBBg7R+/Xq9+OKL+umnnzR//ny9/fbbSkhIkCR5eHho4MCBGj9+vD755BNt375dDz74oCIiItS5c2dJ/5xBuvPOO9W/f39t3LhRa9euVWJiorp3766IiAhJUs+ePeXj46N+/fpp586dWrhwoaZNm6bBgwdbvTz55JNKSkrS5MmTtXv3bo0ZM0abN29WYmKiu4cNAAAqIW93b/Cmm27SkiVLNGzYMI0bN06RkZGaOnWqevXqZdU888wzys7OVnx8vDIyMtS6dWslJSXJz8/Pqpk3b54SExN1++23y9PTU126dNFrr71mLQ8KCtLnn3+uhIQERUVFqWbNmho1apTTs4ZatWql+fPna8SIEXruuefUoEEDLV26VE2aNHH3sAEAQCXk9ucIXUp4jlDlxnOEAMCeKvQ5QgAAAJUFQQgAANiW268RAi42U5J/rOgWXMbHeQBQPjgjBAAAbIszQrhktTzwdkW34JLCi7sBAOWHM0IAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2CEIAAMC2yjwIvfTSS/Lw8NDAgQOteSdPnlRCQoJq1KihqlWrqkuXLkpPT3da78CBA+rYsaMuu+wyhYaG6umnn9apU6ecar766iv961//kq+vr+rXr685c+YU2f/06dN11VVXyc/PT9HR0dq4cWNZDBMAAFRCZRqENm3apLfeekvXX3+90/xBgwbp008/1eLFi/X111/r999/13333Wctz8/PV8eOHZWbm6t169Zp7ty5mjNnjkaNGmXV7N27Vx07dtStt96qbdu2aeDAgXrkkUe0cuVKq2bhwoUaPHiwRo8erS1btuiGG25QXFycDh06VJbDBgAAlUSZBaHjx4+rV69eeueddxQSEmLNz8zM1KxZs/Tqq6/qtttuU1RUlGbPnq1169Zp/fr1kqTPP/9cu3bt0vvvv69mzZrprrvu0vPPP6/p06crNzdXkjRz5kxFRkZq8uTJatSokRITE3X//fdrypQp1r5effVV9e/fX3379lXjxo01c+ZMXXbZZXrvvffKatgAAKASKbMglJCQoI4dOyo2NtZpfmpqqvLy8pzmN2zYUHXq1FFKSookKSUlRU2bNlVYWJhVExcXp6ysLO3cudOqOXPbcXFx1jZyc3OVmprqVOPp6anY2Fir5kw5OTnKyspymgAAwKXLuyw2umDBAm3ZskWbNm0qsszhcMjHx0fBwcFO88PCwuRwOKya00NQ4fLCZeeqycrK0okTJ3T06FHl5+cXW7N79+5i+54wYYLGjh1b8oECAIBKze1nhA4ePKgnn3xS8+bNk5+fn7s3X6aGDRumzMxMazp48GBFtwQAAMqQ24NQamqqDh06pH/961/y9vaWt7e3vv76a7322mvy9vZWWFiYcnNzlZGR4bReenq6wsPDJUnh4eFF7iIrfH2+msDAQPn7+6tmzZry8vIqtqZwG2fy9fVVYGCg0wQAAC5dbg9Ct99+u7Zv365t27ZZU/PmzdWrVy/rz1WqVNGqVausddLS0nTgwAHFxMRIkmJiYrR9+3anu7uSk5MVGBioxo0bWzWnb6OwpnAbPj4+ioqKcqopKCjQqlWrrBoAAGBvbr9GqFq1amrSpInTvICAANWoUcOa369fPw0ePFjVq1dXYGCgBgwYoJiYGLVs2VKS1L59ezVu3Fi9e/fWxIkT5XA4NGLECCUkJMjX11eS9Nhjj+mNN97QM888o4cfflirV6/WokWLtHz5cmu/gwcPVp8+fdS8eXO1aNFCU6dOVXZ2tvr27evuYQMAgEqoTC6WPp8pU6bI09NTXbp0UU5OjuLi4vTmm29ay728vLRs2TI9/vjjiomJUUBAgPr06aNx48ZZNZGRkVq+fLkGDRqkadOm6corr9S7776ruLg4q6Zbt246fPiwRo0aJYfDoWbNmikpKanIBdQAAMCePIwxpqKbuFhlZWUpKChImZmZZXK9UMqsIW7fJiqv9XXirT8PuuOaCuwEACo3V35/811jAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtrwrugEA/2h54G3rzymzKrCRElpfJ97p9aA7rqmgTgCg9DgjBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbMvtQWjChAm66aabVK1aNYWGhqpz585KS0tzqjl58qQSEhJUo0YNVa1aVV26dFF6erpTzYEDB9SxY0dddtllCg0N1dNPP61Tp0451Xz11Vf617/+JV9fX9WvX19z5swp0s/06dN11VVXyc/PT9HR0dq4caO7hwwAACoptwehr7/+WgkJCVq/fr2Sk5OVl5en9u3bKzs726oZNGiQPv30Uy1evFhff/21fv/9d913333W8vz8fHXs2FG5ublat26d5s6dqzlz5mjUqFFWzd69e9WxY0fdeuut2rZtmwYOHKhHHnlEK1eutGoWLlyowYMHa/To0dqyZYtuuOEGxcXF6dChQ+4eNgAAqIQ8jDGmLHdw+PBhhYaG6uuvv1bbtm2VmZmpyy+/XPPnz9f9998vSdq9e7caNWqklJQUtWzZUp999pk6deqk33//XWFhYZKkmTNn6tlnn9Xhw4fl4+OjZ599VsuXL9eOHTusfXXv3l0ZGRlKSkqSJEVHR+umm27SG2+8IUkqKChQ7dq1NWDAAA0dOvS8vWdlZSkoKEiZmZkKDAx096FRyqwhbt8mUF7W14l3ej3ojmsqqBMAcObK7+8yv0YoMzNTklS9enVJUmpqqvLy8hQbG2vVNGzYUHXq1FFKSookKSUlRU2bNrVCkCTFxcUpKytLO3futGpO30ZhTeE2cnNzlZqa6lTj6emp2NhYq+ZMOTk5ysrKcpoAAMClq0yDUEFBgQYOHKibb75ZTZo0kSQ5HA75+PgoODjYqTYsLEwOh8OqOT0EFS4vXHaumqysLJ04cUJ//vmn8vPzi60p3MaZJkyYoKCgIGuqXbt26QYOAAAqhTINQgkJCdqxY4cWLFhQlrtxm2HDhikzM9OaDh48WNEtAQCAMuRdVhtOTEzUsmXLtGbNGl155ZXW/PDwcOXm5iojI8PprFB6errCw8OtmjPv7iq8q+z0mjPvNEtPT1dgYKD8/f3l5eUlLy+vYmsKt3EmX19f+fr6lm7AAACg0nH7GSFjjBITE7VkyRKtXr1akZGRTsujoqJUpUoVrVq1ypqXlpamAwcOKCYmRpIUExOj7du3O93dlZycrMDAQDVu3NiqOX0bhTWF2/Dx8VFUVJRTTUFBgVatWmXVAAAAe3P7GaGEhATNnz9f//vf/1StWjXrepygoCD5+/srKChI/fr10+DBg1W9enUFBgZqwIABiomJUcuWLSVJ7du3V+PGjdW7d29NnDhRDodDI0aMUEJCgnXG5rHHHtMbb7yhZ555Rg8//LBWr16tRYsWafny5VYvgwcPVp8+fdS8eXO1aNFCU6dOVXZ2tvr27evuYQMAgErI7UFoxowZkqRbbrnFaf7s2bP10EMPSZKmTJkiT09PdenSRTk5OYqLi9Obb75p1Xp5eWnZsmV6/PHHFRMTo4CAAPXp00fjxo2zaiIjI7V8+XINGjRI06ZN05VXXql3331XcXFxVk23bt10+PBhjRo1Sg6HQ82aNVNSUlKRC6gBAIA9lflzhCozniMEnB3PEQJwsbqoniMEAABwsSIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yIIAQAA2yqzr9gAcGlreeBt5xlf1qiYRkrq1mEV3QGAixBnhAAAgG1xRgiAW6T88ldFt3BO60/9WGQeD4EEwBkhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgWwQhAABgW94V3QAAVJQpyT9WdAsuG3THNRXdAnBJIQgBsIWWB96u6BZcsr5OfEW3ANgCH40BAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADbIggBAADb4rvGAOAidLbvRkuZVc6NlND5vhuNL4vFxYozQgAAwLYIQgAAwLZsEYSmT5+uq666Sn5+foqOjtbGjRsruiUAAHARuOSD0MKFCzV48GCNHj1aW7Zs0Q033KC4uDgdOnSoolsDAAAVzMMYYyq6ibIUHR2tm266SW+88YYkqaCgQLVr19aAAQM0dOjQc66blZWloKAgZWZmKjAw0O29pcwa4vZtAgDO73wXd0tc4F2ZufL7+5K+ayw3N1epqakaNmyYNc/T01OxsbFKSUkpUp+Tk6OcnBzrdWZmpqR/DmhZyD6Rc/4iAIDbncw+ft6asvq3H2Wv8L0rybmeSzoI/fnnn8rPz1dYWJjT/LCwMO3evbtI/YQJEzR27Ngi82vXrl1mPQIAKsIb5614rhy6QNk6duyYgoKCzllzSQchVw0bNkyDBw+2XhcUFOjIkSOqUaOGPDw83LqvrKws1a5dWwcPHiyTj90uBnYYo8Q4LyV2GKNkj3HaYYySPcZZmjEaY3Ts2DFFRESct/aSDkI1a9aUl5eX0tPTneanp6crPDy8SL2vr698fX2d5gUHB5dliwoMDLxkf3gL2WGMEuO8lNhhjJI9xmmHMUr2GKerYzzfmaBCl/RdYz4+PoqKitKqVauseQUFBVq1apViYmIqsDMAAHAxuKTPCEnS4MGD1adPHzVv3lwtWrTQ1KlTlZ2drb59+1Z0awAAoIJd8kGoW7duOnz4sEaNGiWHw6FmzZopKSmpyAXU5c3X11ejR48u8lHcpcQOY5QY56XEDmOU7DFOO4xRssc4y3qMl/xzhAAAAM7mkr5GCAAA4FwIQgAAwLYIQgAAwLYIQgAAwLYIQgAAwLYIQmVo+vTpuuqqq+Tn56fo6Ght3LjxnPWLFy9Ww4YN5efnp6ZNm2rFihXl1GnpuTLGnTt3qkuXLrrqqqvk4eGhqVOnll+jF8iVcb7zzjtq06aNQkJCFBISotjY2PO+9xcDV8b48ccfq3nz5goODlZAQICaNWum//73v+XYbem5+vey0IIFC+Th4aHOnTuXbYNu4so458yZIw8PD6fJz8+vHLstHVffy4yMDCUkJKhWrVry9fXVNddcc8n9O3vLLbcUeS89PDzUsWPHcuzYda6+l1OnTtW1114rf39/1a5dW4MGDdLJkydLt3ODMrFgwQLj4+Nj3nvvPbNz507Tv39/ExwcbNLT04utX7t2rfHy8jITJ040u3btMiNGjDBVqlQx27dvL+fOS87VMW7cuNEMGTLEfPDBByY8PNxMmTKlfBsuJVfH2bNnTzN9+nSzdetW88MPP5iHHnrIBAUFmV9//bWcOy85V8f45Zdfmo8//tjs2rXL/PTTT2bq1KnGy8vLJCUllXPnrnF1nIX27t1rrrjiCtOmTRvz73//u3yavQCujnP27NkmMDDQ/PHHH9bkcDjKuWvXuDrGnJwc07x5c9OhQwfz7bffmr1795qvvvrKbNu2rZw7d42r4/zrr7+c3scdO3YYLy8vM3v27PJt3AWujnHevHnG19fXzJs3z+zdu9esXLnS1KpVywwaNKhU+ycIlZEWLVqYhIQE63V+fr6JiIgwEyZMKLa+a9eupmPHjk7zoqOjzaOPPlqmfV4IV8d4urp161aaIHQh4zTGmFOnTplq1aqZuXPnllWLF+xCx2iMMTfeeKMZMWJEWbTnNqUZ56lTp0yrVq3Mu+++a/r06VMpgpCr45w9e7YJCgoqp+7cw9Uxzpgxw1x99dUmNze3vFp0iwv9uzllyhRTrVo1c/z48bJq8YK5OsaEhARz2223Oc0bPHiwufnmm0u1fz4aKwO5ublKTU1VbGysNc/T01OxsbFKSUkpdp2UlBSnekmKi4s7a31FK80YKyN3jPPvv/9WXl6eqlevXlZtXpALHaMxRqtWrVJaWpratm1blq1ekNKOc9y4cQoNDVW/fv3Ko80LVtpxHj9+XHXr1lXt2rX173//Wzt37iyPdkulNGP85JNPFBMTo4SEBIWFhalJkyZ68cUXlZ+fX15tu8wd//7MmjVL3bt3V0BAQFm1eUFKM8ZWrVopNTXV+vjsl19+0YoVK9ShQ4dS9XDJf8VGRfjzzz+Vn59f5Gs8wsLCtHv37mLXcTgcxdY7HI4y6/NClGaMlZE7xvnss88qIiKiSNC9WJR2jJmZmbriiiuUk5MjLy8vvfnmm7rjjjvKut1SK804v/32W82aNUvbtm0rhw7dozTjvPbaa/Xee+/p+uuvV2ZmpiZNmqRWrVpp586duvLKK8ujbZeUZoy//PKLVq9erV69emnFihX66aef9MQTTygvL0+jR48uj7ZddqH//mzcuFE7duzQrFmzyqrFC1aaMfbs2VN//vmnWrduLWOMTp06pccee0zPPfdcqXogCAFl6KWXXtKCBQv01VdfVYqLT11RrVo1bdu2TcePH9eqVas0ePBgXX311brlllsqujW3OHbsmHr37q133nlHNWvWrOh2ylRMTIxiYmKs161atVKjRo301ltv6fnnn6/AztynoKBAoaGhevvtt+Xl5aWoqCj99ttveuWVVy7aIHShZs2apaZNm6pFixYV3YpbffXVV3rxxRf15ptvKjo6Wj/99JOefPJJPf/88xo5cqTL2yMIlYGaNWvKy8tL6enpTvPT09MVHh5e7Drh4eEu1Ve00oyxMrqQcU6aNEkvvfSSvvjiC11//fVl2eYFKe0YPT09Vb9+fUlSs2bN9MMPP2jChAkXbRBydZw///yz9u3bp7vvvtuaV1BQIEny9vZWWlqa6tWrV7ZNl4I7/m5WqVJFN954o3766aeyaPGClWaMtWrVUpUqVeTl5WXNa9SokRwOh3Jzc+Xj41OmPZfGhbyX2dnZWrBggcaNG1eWLV6w0oxx5MiR6t27tx555BFJUtOmTZWdna34+HgNHz5cnp6uXfXDNUJlwMfHR1FRUVq1apU1r6CgQKtWrXL6X9fpYmJinOolKTk5+az1Fa00Y6yMSjvOiRMn6vnnn1dSUpKaN29eHq2Wmrvey4KCAuXk5JRFi27h6jgbNmyo7du3a9u2bdZ0zz336NZbb9W2bdtUu3bt8my/xNzxfubn52v79u2qVatWWbV5QUozxptvvlk//fSTFWYl6ccff1StWrUuyhAkXdh7uXjxYuXk5Og///lPWbd5QUozxr///rtI2CkMuKY03yNfqkuscV4LFiwwvr6+Zs6cOWbXrl0mPj7eBAcHW7ek9u7d2wwdOtSqX7t2rfH29jaTJk0yP/zwgxk9enSluH3elTHm5OSYrVu3mq1bt5patWqZIUOGmK1bt5o9e/ZU1BBKxNVxvvTSS8bHx8d8+OGHTrexHjt2rKKGcF6ujvHFF180n3/+ufn555/Nrl27zKRJk4y3t7d55513KmoIJeLqOM9UWe4ac3WcY8eONStXrjQ///yzSU1NNd27dzd+fn5m586dFTWE83J1jAcOHDDVqlUziYmJJi0tzSxbtsyEhoaa8ePHV9QQSqS0P7OtW7c23bp1K+92S8XVMY4ePdpUq1bNfPDBB+aXX34xn3/+ualXr57p2rVrqfZPECpDr7/+uqlTp47x8fExLVq0MOvXr7eWtWvXzvTp08epftGiReaaa64xPj4+5rrrrjPLly8v545d58oY9+7dayQVmdq1a1f+jbvIlXHWrVu32HGOHj26/Bt3gStjHD58uKlfv77x8/MzISEhJiYmxixYsKACunadq38vT1dZgpAxro1z4MCBVm1YWJjp0KGD2bJlSwV07RpX38t169aZ6Oho4+vra66++mrzwgsvmFOnTpVz165zdZy7d+82ksznn39ezp2WnitjzMvLM2PGjDH16tUzfn5+pnbt2uaJJ54wR48eLdW+PYwpzXkkAACAyo9rhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG0RhAAAgG39f+IV6AN3lHF+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPcVJREFUeJzt3Xt0TXf+//FXEnJxOUlDLlJxV6SCERWZoi6pQ8NUMRVtNRQdhJZUi46G9muqpS1aSjv9jWiH79CbtlQ04rZaKRXNuLQMBtFy4tbkkJKQ7N8fXdlfR4JERch+PtY6azl7v/dnv8/n5PCyz947boZhGAIAALAg94puAAAAoKIQhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhIAbaMOGDXJzc9OGDRvKvO2hQ4fk5uampKSkG95XWWVlZWnAgAGqVauW3NzcNGfOnIpuCbeQadOmyc3N7YaO+Xs+O8DvQRACUMz48eO1Zs0aTZ48WR988IF69uxZ0S3dEt5+++1bIqjezirDHH711VcaNmyYWrZsKQ8PDzVo0KCiW8Lv4MbvGgNunMLCQuXn58vT01Pu7mX7f4ZhGMrLy1PVqlXl4eFRTh2WTnBwsKKjo/XPf/6zQvu41bRs2VK1a9e2/FGLadOm6cUXX9T1/PNxpTn8PZ+dm23IkCFatmyZ2rZtq8zMTHl4eOjQoUMV3Rau06390wZcRW5ubkW3UIy7u7u8vb2v6y9yNzc3eXt7V3gIkqTjx4/Lz8/vmnW34nuAkhUWFur8+fMlrrsV3sff89m52V5++WU5nU598803at26dUW3g9/p1v+JA/R/5yT88MMPeuSRR3THHXeoY8eOkqR//vOfioiIkI+Pj/z9/RUbG6sjR464bN+lSxe1bNlSO3bs0H333adq1aqpSZMm+uijjyRJGzduVGRkpHx8fNSsWTOtXbvWZfvDhw9r9OjRatasmXx8fFSrVi39+c9/Lva/wJLOcyja9w8//KCuXbuqWrVquvPOOzVz5kyXbUs6R2jIkCGqUaOGfv75Z/Xt21c1atRQQECAJkyYoIKCApftT506pcGDB8tms8nPz09xcXH697//XabzjpKSkuTm5ibDMDR//ny5ubmZ54IUrdu4caNGjx6twMBA1a1bt0zzI8l8D3x8fFS3bl1Nnz5dixYtkpubm0t9gwYN1Lt3b23YsEHt2rWTj4+PwsPDzbn95JNPFB4eLm9vb0VEROj7778vtq89e/ZowIAB8vf3l7e3t9q1a6fPP/+8xNf8zTffKCEhQQEBAapevboeeughnThxwqWf3bt3a+PGjea8dOnSRZJ04cIFvfjii2ratKm8vb1Vq1YtdezYUSkpKaWa9yLnz5/XtGnTdNddd8nb21t16tRRv379dODAAbMmNzdXzzzzjEJDQ+Xl5aVmzZrptddeK3Z0xs3NTWPGjNGSJUt09913y8vLS8nJyVd9HyVp9erV6tSpk6pXr66aNWsqJiZGu3fvvmbvixYtUrdu3RQYGCgvLy+FhYVpwYIFLjVXm8MrnSP04Ycfmp/v2rVr67HHHtPPP//sUlOWz8m//vUvRUREqGbNmrLZbAoPD9fcuXOv+fouFRISoqpVq5ZpG9y6qlR0A0BZ/PnPf1bTpk318ssvyzAM/e1vf9MLL7yghx9+WMOHD9eJEyf01ltvqXPnzvr+++9djmr88ssv6t27t2JjY/XnP/9ZCxYsUGxsrJYsWaJx48Zp5MiReuSRRzRr1iwNGDBAR44cUc2aNSVJ3333nTZv3qzY2FjVrVtXhw4d0oIFC9SlSxf98MMPqlat2lX7/uWXX9SzZ0/169dPDz/8sD766CNNnDhR4eHh6tWr11W3LSgokN1uV2RkpF577TWtXbtWr7/+uho3bqxRo0ZJ+u1/+3369NHWrVs1atQoNW/eXJ999pni4uLKNL+dO3fWBx98oMGDB+v+++/X448/Xqxm9OjRCggIUGJionkkobTz8/PPP6tr165yc3PT5MmTVb16db333nvy8vIqsZ/9+/frkUce0V/+8hc99thjeu2119SnTx8tXLhQzz//vEaPHi1JmjFjhh5++GHt3bvXPKKwe/du3Xvvvbrzzjs1adIkVa9eXcuXL1ffvn318ccf66GHHnLZ19ixY3XHHXdo6tSpOnTokObMmaMxY8Zo2bJlkqQ5c+Zo7NixqlGjhv76179KkoKCgiT9FtRnzJih4cOHq3379nI6ndq2bZu2b9+u+++/v1RzX1BQoN69eys1NVWxsbF6+umndebMGaWkpGjXrl1q3LixDMPQn/70J61fv17Dhg1TmzZttGbNGj377LP6+eefNXv2bJcx161bp+XLl2vMmDGqXbu2GjRooIyMjCu+jx988IHi4uJkt9v16quv6tdff9WCBQvUsWNHff/991c9F2bBggW6++679ac//UlVqlTRF198odGjR6uwsFDx8fHXnMOSJCUlaejQobrnnns0Y8YMZWVlae7cufrmm2+Kfb5L8zlJSUnRoEGD1L17d7366quSpB9//FHffPONnn766VK9T6iEDOA2MHXqVEOSMWjQIHPZoUOHDA8PD+Nvf/ubS+3OnTuNKlWquCy/7777DEnG0qVLzWV79uwxJBnu7u7Gt99+ay5fs2aNIclYtGiRuezXX38t1lNaWpohyXj//ffNZevXrzckGevXry+270vr8vLyjODgYKN///7msoMHDxbbb1xcnCHJeOmll1z2/Yc//MGIiIgwn3/88ceGJGPOnDnmsoKCAqNbt27FxiwNSUZ8fLzLskWLFhmSjI4dOxoXL150WVfa+Rk7dqzh5uZmfP/99+ayU6dOGf7+/oYk4+DBg+by+vXrG5KMzZs3m8uK3hsfHx/j8OHD5vJ33nmn2Lx3797dCA8PN86fP28uKywsNP74xz8aTZs2Lfa6oqOjjcLCQnP5+PHjDQ8PDyM7O9tcdvfddxv33XdfsdfaunVrIyYmptjysvjHP/5hSDLeeOONYuuK+lqxYoUhyZg+fbrL+gEDBhhubm7G/v37zWVFP9u7d+92qb3S+3jmzBnDz8/PGDFihEu9w+EwfH19XZYXfR4vVdLPgN1uNxo1auSy7EpzePlnJz8/3wgMDDRatmxpnDt3zqxbuXKlIclITEw0l5X2c/L0008bNput2M/v7xETE2PUr1//ho2Hm4+vxnBbGTlypPnnTz75RIWFhXr44Yd18uRJ8xEcHKymTZtq/fr1LtvWqFFDsbGx5vNmzZrJz89PLVq0UGRkpLm86M///e9/zWU+Pj7mny9cuKBTp06pSZMm8vPz0/bt26/Zd40aNfTYY4+Zzz09PdW+fXuXfZT2dUtSp06dXLZNTk5W1apVNWLECHOZu7u7+T/xG2nEiBHFzmMq7fwkJycrKipKbdq0MZf5+/vr0UcfLXFfYWFhioqKMp8XvTfdunVTvXr1ii0vmpPTp09r3bp1evjhh3XmzBnzZ+PUqVOy2+3at29fsa9XnnzySZdLwjt16qSCggIdPnz4mnPi5+en3bt3a9++fdesvZKPP/5YtWvX1tixY4utK+rryy+/lIeHh5566imX9c8884wMw9Dq1atdlt93330KCwsrcX+Xv48pKSnKzs7WoEGDXD5PHh4eioyMLPZ5utylPwM5OTk6efKk7rvvPv33v/9VTk7O1V98CbZt26bjx49r9OjR8vb2NpfHxMSoefPmWrVqVbFtrvU58fPzU25ubpm/skTlxldjuK00bNjQ/PO+fftkGIaaNm1aYu3l3+HXrVu32L1PfH19FRoaWmyZ9NvXWUXOnTunGTNmaNGiRfr5559dzscozV/yJe37jjvu0I4dO665rbe3twICAopte2l/hw8fVp06dYp9RdekSZNrjl9Wl74HRUo7P4cPH3YJNtfq89KwI/3fe3Ot92z//v0yDEMvvPCCXnjhhRLHPn78uO68884r7uuOO+5wGfNqXnrpJT344IO666671LJlS/Xs2VODBw9Wq1atrrltkQMHDqhZs2aqUuXKfy0fPnxYISEh5le2RVq0aGGuv1RJ79WV1hWFuG7dupVYb7PZrty8pG+++UZTp05VWlqafv31V5d1OTk55ntUWkWvpVmzZsXWNW/eXF9//bXLstJ8TkaPHq3ly5erV69euvPOO9WjRw89/PDD3B7C4ghCuK1c+r/OwsJCubm5afXq1SVeaVWjRg2X51e6GutKyy/9x3zs2LFatGiRxo0bp6ioKPn6+srNzU2xsbEqLCy8Zt+l2UdZt60ol74HRX7v/FzJ9b5nRfucMGGC7HZ7ibWXh6/f8x517txZBw4c0GeffaavvvpK7733nmbPnq2FCxdq+PDh19y+vJT0Xl1pXdGcffDBBwoODi5Wf7WAduDAAXXv3l3NmzfXG2+8odDQUHl6eurLL7/U7Nmzf9fPQGmV5nMSGBiojIwMrVmzRqtXr9bq1au1aNEiPf7441q8eHG594hbE0EIt62ik0cbNmyou+66q1z39dFHHykuLk6vv/66uez8+fPKzs4u1/2WVv369bV+/Xr9+uuvLkeF9u/ff1P2X9r5qV+/fok93eg+GzVqJOm3o4LR0dE3bNyr3U3Z399fQ4cO1dChQ3X27Fl17txZ06ZNK3UQaty4sbZs2aILFy5c8Yqk+vXra+3atTpz5ozLUaE9e/aY669X48aNJf0WFso6Z1988YXy8vL0+eefuxxZK+nrtNLekbrotezdu7fYUaq9e/de92v19PRUnz591KdPHxUWFmr06NF655139MILL5TLEVTc+jhHCLetfv36ycPDo8QbuxmGoVOnTt2wfXl4eBTbx1tvvVXs0tyKYrfbdeHCBf397383lxUWFmr+/Pk3Zf+lnR+73a60tDTzyiXpt/N5lixZckP7CQwMVJcuXfTOO+/o2LFjxdZfell8WVSvXr3E8Hv5z1qNGjXUpEkT5eXllXrs/v376+TJk5o3b16xdUVz+8ADD6igoKBYzezZs+Xm5nbNKxCvxm63y2az6eWXX9aFCxeKrb/anBUdjbn8K9FFixYVq73SHF6uXbt2CgwM1MKFC13mcfXq1frxxx8VExNzzTEud/n75O7ubn59WZb3CpULR4Rw22rcuLGmT5+uyZMn69ChQ+rbt69q1qypgwcP6tNPP9WTTz6pCRMm3JB99e7dWx988IF8fX0VFhamtLQ0rV27VrVq1boh4/9effv2Vfv27fXMM89o//79at68uT7//HOdPn1aUun/F369Sjs/zz33nP75z3/q/vvv19ixY83L5+vVq6fTp0/f0D7nz5+vjh07Kjw8XCNGjFCjRo2UlZWltLQ0/fTTT/r3v/9d5jEjIiK0YMECTZ8+XU2aNFFgYKC6deumsLAwdenSRREREfL399e2bdv00UcfacyYMaUe+/HHH9f777+vhIQEbd26VZ06dVJubq7Wrl2r0aNH68EHH1SfPn3UtWtX/fWvf9WhQ4fUunVrffXVV/rss880btw486jO9bDZbFqwYIEGDx6stm3bKjY2VgEBAcrMzNSqVat07733lhjSJKlHjx7mkZa//OUvOnv2rP7+978rMDCwWBC90hxermrVqnr11Vc1dOhQ3XfffRo0aJB5+XyDBg00fvz4Mr/G4cOH6/Tp0+rWrZvq1q2rw4cP66233lKbNm3M86xKY8eOHeb9qPbv36+cnBxNnz5dktS6dWv16dOnzL2h4hCEcFubNGmS7rrrLs2ePVsvvviipN9OpO3Ro4f+9Kc/3bD9zJ07Vx4eHlqyZInOnz+ve++9V2vXrr3i+Sc3m4eHh1atWqWnn35aixcvlru7ux566CFNnTpV9957r8tVN+WhtPMTGhqq9evX66mnntLLL7+sgIAAxcfHq3r16nrqqaduaJ9hYWHatm2bXnzxRSUlJenUqVMKDAzUH/7wByUmJl7XmImJiTp8+LBmzpypM2fO6L777lO3bt301FNP6fPPP9dXX32lvLw81a9fX9OnT9ezzz5b6rE9PDz05Zdf6m9/+5uWLl2qjz/+2LwxY3h4uKTfjmB8/vnnSkxM1LJly7Ro0SI1aNBAs2bN0jPPPHNdr+lSjzzyiEJCQvTKK69o1qxZysvL05133qlOnTpp6NChV9yuWbNm+uijjzRlyhRNmDBBwcHBGjVqlAICAvTEE0+41F5pDksyZMgQVatWTa+88oomTpxo3ujy1VdfLdWdzy/32GOP6d1339Xbb7+t7OxsBQcHa+DAgZo2bVqZ7mi9ffv2YifhFz2Pi4sjCN1m+F1jQCW2YsUKPfTQQ/r666917733VnQ7VzRu3Di98847Onv27C13cjiAyo1zhIBK4ty5cy7PCwoK9NZbb8lms6lt27YV1FVxl/d56tQpffDBB+rYsSMhCMBNx1djQCUxduxYnTt3TlFRUcrLy9Mnn3yizZs36+WXX5aPj4/y8/PNc4auxNfX96qXXN8IUVFR6tKli1q0aKGsrCz9v//3/+R0Oq94v5/b3a0y77g2h8Nx1fU+Pj5lvh8SbgM3+1bWAMrHkiVLjLZt2xo2m83w9PQ0wsLCjLfeestcX/QrDK72KOuv4rgekydPNpo2bWr4+PgY1apVMzp27GikpKSU+34ryq0y77i2a71PcXFxFd0iygHnCAEW8csvvyg9Pf2qNXfffbfq1KlzkzqyBub99rF27dqrrg8JCbniryzB7YsgBAAALIuTpQEAgGVxsvRVFBYW6ujRo6pZs2a535AOAADcGIZh6MyZMwoJCbnmPaIIQldx9OjRYr/lGgAA3B6OHDmiunXrXrWGIHQVRb/U8MiRI7LZbBXcDQAAKA2n06nQ0FCXX058JQShqyj6OsxmsxGEAAC4zZTmtBZOlgYAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZVpaIbAMrb7JT/VHQLZTb+/rsqugUAsASOCAEAAMsqUxBasGCBWrVqJZvNJpvNpqioKK1evdpcf/78ecXHx6tWrVqqUaOG+vfvr6ysLJcxMjMzFRMTo2rVqikwMFDPPvusLl686FKzYcMGtW3bVl5eXmrSpImSkpKK9TJ//nw1aNBA3t7eioyM1NatW13Wl6YXAABgbWUKQnXr1tUrr7yi9PR0bdu2Td26ddODDz6o3bt3S5LGjx+vL774Qh9++KE2btyoo0ePql+/fub2BQUFiomJUX5+vjZv3qzFixcrKSlJiYmJZs3BgwcVExOjrl27KiMjQ+PGjdPw4cO1Zs0as2bZsmVKSEjQ1KlTtX37drVu3Vp2u13Hjx83a67VCwAAgJthGMbvGcDf31+zZs3SgAEDFBAQoKVLl2rAgAGSpD179qhFixZKS0tThw4dtHr1avXu3VtHjx5VUFCQJGnhwoWaOHGiTpw4IU9PT02cOFGrVq3Srl27zH3ExsYqOztbycnJkqTIyEjdc889mjdvniSpsLBQoaGhGjt2rCZNmqScnJxr9lIaTqdTvr6+ysnJkc1m+z3ThApUnucIdch8t1zGjRr2WrmMCwBWUJZ/v6/7HKGCggL961//Um5urqKiopSenq4LFy4oOjrarGnevLnq1auntLQ0SVJaWprCw8PNECRJdrtdTqfTPKqUlpbmMkZRTdEY+fn5Sk9Pd6lxd3dXdHS0WVOaXkqSl5cnp9Pp8gAAAJVXmYPQzp07VaNGDXl5eWnkyJH69NNPFRYWJofDIU9PT/n5+bnUBwUFyeFwSJIcDodLCCpaX7TuajVOp1Pnzp3TyZMnVVBQUGLNpWNcq5eSzJgxQ76+vuYjNDS0dJMCAABuS2UOQs2aNVNGRoa2bNmiUaNGKS4uTj/88EN59HbTTZ48WTk5OebjyJEjFd0SAAAoR2W+j5Cnp6eaNGkiSYqIiNB3332nuXPnauDAgcrPz1d2drbLkZisrCwFBwdLkoKDg4td3VV0JdelNZdf3ZWVlSWbzSYfHx95eHjIw8OjxJpLx7hWLyXx8vKSl5dXGWYDAADczn73fYQKCwuVl5eniIgIVa1aVampqea6vXv3KjMzU1FRUZKkqKgo7dy50+XqrpSUFNlsNoWFhZk1l45RVFM0hqenpyIiIlxqCgsLlZqaataUphcAAIAyHRGaPHmyevXqpXr16unMmTNaunSpNmzYoDVr1sjX11fDhg1TQkKC/P39ZbPZNHbsWEVFRZlXafXo0UNhYWEaPHiwZs6cKYfDoSlTpig+Pt48EjNy5EjNmzdPzz33nJ544gmtW7dOy5cv16pVq8w+EhISFBcXp3bt2ql9+/aaM2eOcnNzNXToUEkqVS8AAABlCkLHjx/X448/rmPHjsnX11etWrXSmjVrdP/990uSZs+eLXd3d/Xv3195eXmy2+16++23ze09PDy0cuVKjRo1SlFRUapevbri4uL00ksvmTUNGzbUqlWrNH78eM2dO1d169bVe++9J7vdbtYMHDhQJ06cUGJiohwOh9q0aaPk5GSXE6iv1QsAAMDvvo9QZcZ9hCoH7iMEANZyU+4jBAAAcLsjCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsqUxCaMWOG7rnnHtWsWVOBgYHq27ev9u7d61LTpUsXubm5uTxGjhzpUpOZmamYmBhVq1ZNgYGBevbZZ3Xx4kWXmg0bNqht27by8vJSkyZNlJSUVKyf+fPnq0GDBvL29lZkZKS2bt3qsv78+fOKj49XrVq1VKNGDfXv319ZWVlleckAAKASK1MQ2rhxo+Lj4/Xtt98qJSVFFy5cUI8ePZSbm+tSN2LECB07dsx8zJw501xXUFCgmJgY5efna/PmzVq8eLGSkpKUmJho1hw8eFAxMTHq2rWrMjIyNG7cOA0fPlxr1qwxa5YtW6aEhARNnTpV27dvV+vWrWW323X8+HGzZvz48friiy/04YcfauPGjTp69Kj69etX5kkCAACVk5thGMb1bnzixAkFBgZq48aN6ty5s6Tfjgi1adNGc+bMKXGb1atXq3fv3jp69KiCgoIkSQsXLtTEiRN14sQJeXp6auLEiVq1apV27dplbhcbG6vs7GwlJydLkiIjI3XPPfdo3rx5kqTCwkKFhoZq7NixmjRpknJychQQEKClS5dqwIABkqQ9e/aoRYsWSktLU4cOHYr1lpeXp7y8PPO50+lUaGiocnJyZLPZrneaUMFmp/yn3MbukPluuYwbNey1chkXAKzA6XTK19e3VP9+/65zhHJyciRJ/v7+LsuXLFmi2rVrq2XLlpo8ebJ+/fVXc11aWprCw8PNECRJdrtdTqdTu3fvNmuio6NdxrTb7UpLS5Mk5efnKz093aXG3d1d0dHRZk16erouXLjgUtO8eXPVq1fPrLncjBkz5Ovraz5CQ0PLPCcAAOD2UeV6NywsLNS4ceN07733qmXLlubyRx55RPXr11dISIh27NihiRMnau/evfrkk08kSQ6HwyUESTKfOxyOq9Y4nU6dO3dOv/zyiwoKCkqs2bNnjzmGp6en/Pz8itUU7edykydPVkJCgvm86IgQAAConK47CMXHx2vXrl36+uuvXZY/+eST5p/Dw8NVp04dde/eXQcOHFDjxo2vv9ObwMvLS15eXhXdBgAAuEmu66uxMWPGaOXKlVq/fr3q1q171drIyEhJ0v79+yVJwcHBxa7cKnoeHBx81RqbzSYfHx/Vrl1bHh4eJdZcOkZ+fr6ys7OvWAMAAKytTEHIMAyNGTNGn376qdatW6eGDRtec5uMjAxJUp06dSRJUVFR2rlzp8vVXSkpKbLZbAoLCzNrUlNTXcZJSUlRVFSUJMnT01MREREuNYWFhUpNTTVrIiIiVLVqVZeavXv3KjMz06wBAADWVqavxuLj47V06VJ99tlnqlmzpnmuja+vr3x8fHTgwAEtXbpUDzzwgGrVqqUdO3Zo/Pjx6ty5s1q1aiVJ6tGjh8LCwjR48GDNnDlTDodDU6ZMUXx8vPm11MiRIzVv3jw999xzeuKJJ7Ru3TotX75cq1atMntJSEhQXFyc2rVrp/bt22vOnDnKzc3V0KFDzZ6GDRumhIQE+fv7y2azaezYsYqKiirxijEAAGA9ZQpCCxYskPTbJfKXWrRokYYMGSJPT0+tXbvWDCWhoaHq37+/pkyZYtZ6eHho5cqVGjVqlKKiolS9enXFxcXppZdeMmsaNmyoVatWafz48Zo7d67q1q2r9957T3a73awZOHCgTpw4ocTERDkcDrVp00bJyckuJ1DPnj1b7u7u6t+/v/Ly8mS32/X222+XaYIAAEDl9bvuI1TZleU+BLh1cR8hALCWm3YfIQAAgNsZQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFhWmYLQjBkzdM8996hmzZoKDAxU3759tXfvXpea8+fPKz4+XrVq1VKNGjXUv39/ZWVludRkZmYqJiZG1apVU2BgoJ599lldvHjRpWbDhg1q27atvLy81KRJEyUlJRXrZ/78+WrQoIG8vb0VGRmprVu3lrkXAABgXWUKQhs3blR8fLy+/fZbpaSk6MKFC+rRo4dyc3PNmvHjx+uLL77Qhx9+qI0bN+ro0aPq16+fub6goEAxMTHKz8/X5s2btXjxYiUlJSkxMdGsOXjwoGJiYtS1a1dlZGRo3LhxGj58uNasWWPWLFu2TAkJCZo6daq2b9+u1q1by2636/jx46XuBQAAWJubYRjG9W584sQJBQYGauPGjercubNycnIUEBCgpUuXasCAAZKkPXv2qEWLFkpLS1OHDh20evVq9e7dW0ePHlVQUJAkaeHChZo4caJOnDghT09PTZw4UatWrdKuXbvMfcXGxio7O1vJycmSpMjISN1zzz2aN2+eJKmwsFChoaEaO3asJk2aVKpersXpdMrX11c5OTmy2WzXO02oYLNT/lNuY3fIfLdcxo0a9lq5jAsAVlCWf79/1zlCOTk5kiR/f39JUnp6ui5cuKDo6Gizpnnz5qpXr57S0tIkSWlpaQoPDzdDkCTZ7XY5nU7t3r3brLl0jKKaojHy8/OVnp7uUuPu7q7o6GizpjS9XC4vL09Op9PlAQAAKq/rDkKFhYUaN26c7r33XrVs2VKS5HA45OnpKT8/P5faoKAgORwOs+bSEFS0vmjd1WqcTqfOnTunkydPqqCgoMSaS8e4Vi+XmzFjhnx9fc1HaGhoKWcDAADcjq47CMXHx2vXrl3617/+dSP7qVCTJ09WTk6O+Thy5EhFtwQAAMpRlevZaMyYMVq5cqU2bdqkunXrmsuDg4OVn5+v7OxslyMxWVlZCg4ONmsuv7qr6EquS2suv7orKytLNptNPj4+8vDwkIeHR4k1l45xrV4u5+XlJS8vrzLMBAAAuJ2V6YiQYRgaM2aMPv30U61bt04NGzZ0WR8REaGqVasqNTXVXLZ3715lZmYqKipKkhQVFaWdO3e6XN2VkpIim82msLAws+bSMYpqisbw9PRURESES01hYaFSU1PNmtL0AgAArK1MR4Ti4+O1dOlSffbZZ6pZs6Z5ro2vr698fHzk6+urYcOGKSEhQf7+/rLZbBo7dqyioqLMq7R69OihsLAwDR48WDNnzpTD4dCUKVMUHx9vHo0ZOXKk5s2bp+eee05PPPGE1q1bp+XLl2vVqlVmLwkJCYqLi1O7du3Uvn17zZkzR7m5uRo6dKjZ07V6AQAA1lamILRgwQJJUpcuXVyWL1q0SEOGDJEkzZ49W+7u7urfv7/y8vJkt9v19ttvm7UeHh5auXKlRo0apaioKFWvXl1xcXF66aWXzJqGDRtq1apVGj9+vObOnau6devqvffek91uN2sGDhyoEydOKDExUQ6HQ23atFFycrLLCdTX6gUAAFjb77qPUGXHfYQqB+4jBADWctPuIwQAAHA7IwgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLKnMQ2rRpk/r06aOQkBC5ublpxYoVLuuHDBkiNzc3l0fPnj1dak6fPq1HH31UNptNfn5+GjZsmM6ePetSs2PHDnXq1Ene3t4KDQ3VzJkzi/Xy4Ycfqnnz5vL29lZ4eLi+/PJLl/WGYSgxMVF16tSRj4+PoqOjtW/fvrK+ZAAAUEmVOQjl5uaqdevWmj9//hVrevbsqWPHjpmP//3f/3VZ/+ijj2r37t1KSUnRypUrtWnTJj355JPmeqfTqR49eqh+/fpKT0/XrFmzNG3aNL377rtmzebNmzVo0CANGzZM33//vfr27au+fftq165dZs3MmTP15ptvauHChdqyZYuqV68uu92u8+fPl/VlAwCASsjNMAzjujd2c9Onn36qvn37msuGDBmi7OzsYkeKivz4448KCwvTd999p3bt2kmSkpOT9cADD+inn35SSEiIFixYoL/+9a9yOBzy9PSUJE2aNEkrVqzQnj17JEkDBw5Ubm6uVq5caY7doUMHtWnTRgsXLpRhGAoJCdEzzzyjCRMmSJJycnIUFBSkpKQkxcbGXvP1OZ1O+fr6KicnRzab7XqmCLeA2Sn/KbexO2S+e+2i6xA17LVyGRcArKAs/36XyzlCGzZsUGBgoJo1a6ZRo0bp1KlT5rq0tDT5+fmZIUiSoqOj5e7uri1btpg1nTt3NkOQJNntdu3du1e//PKLWRMdHe2yX7vdrrS0NEnSwYMH5XA4XGp8fX0VGRlp1lwuLy9PTqfT5QEAACqvGx6Eevbsqffff1+pqal69dVXtXHjRvXq1UsFBQWSJIfDocDAQJdtqlSpIn9/fzkcDrMmKCjIpabo+bVqLl1/6XYl1VxuxowZ8vX1NR+hoaFlfv0AAOD2UeVGD3jpV07h4eFq1aqVGjdurA0bNqh79+43enc31OTJk5WQkGA+dzqdhCEAACqxcr98vlGjRqpdu7b2798vSQoODtbx48ddai5evKjTp08rODjYrMnKynKpKXp+rZpL11+6XUk1l/Py8pLNZnN5AACAyqvcg9BPP/2kU6dOqU6dOpKkqKgoZWdnKz093axZt26dCgsLFRkZadZs2rRJFy5cMGtSUlLUrFkz3XHHHWZNamqqy75SUlIUFRUlSWrYsKGCg4NdapxOp7Zs2WLWAAAAaytzEDp79qwyMjKUkZEh6beTkjMyMpSZmamzZ8/q2Wef1bfffqtDhw4pNTVVDz74oJo0aSK73S5JatGihXr27KkRI0Zo69at+uabbzRmzBjFxsYqJCREkvTII4/I09NTw4YN0+7du7Vs2TLNnTvX5Wurp59+WsnJyXr99de1Z88eTZs2Tdu2bdOYMWMk/XZF27hx4zR9+nR9/vnn2rlzpx5//HGFhIS4XOUGAACsq8znCG3btk1du3Y1nxeFk7i4OC1YsEA7duzQ4sWLlZ2drZCQEPXo0UP/8z//Iy8vL3ObJUuWaMyYMerevbvc3d3Vv39/vfnmm+Z6X19fffXVV4qPj1dERIRq166txMREl3sN/fGPf9TSpUs1ZcoUPf/882ratKlWrFihli1bmjXPPfeccnNz9eSTTyo7O1sdO3ZUcnKyvL29y/qyAQBAJfS77iNU2XEfocqB+wgBgLVU+H2EAAAAbgcEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFllDkKbNm1Snz59FBISIjc3N61YscJlvWEYSkxMVJ06deTj46Po6Gjt27fPpeb06dN69NFHZbPZ5Ofnp2HDhuns2bMuNTt27FCnTp3k7e2t0NBQzZw5s1gvH374oZo3by5vb2+Fh4fryy+/LHMvAADAusochHJzc9W6dWvNnz+/xPUzZ87Um2++qYULF2rLli2qXr267Ha7zp8/b9Y8+uij2r17t1JSUrRy5Upt2rRJTz75pLne6XSqR48eql+/vtLT0zVr1ixNmzZN7777rlmzefNmDRo0SMOGDdP333+vvn37qm/fvtq1a1eZegEAANblZhiGcd0bu7np008/Vd++fSX9dgQmJCREzzzzjCZMmCBJysnJUVBQkJKSkhQbG6sff/xRYWFh+u6779SuXTtJUnJysh544AH99NNPCgkJ0YIFC/TXv/5VDodDnp6ekqRJkyZpxYoV2rNnjyRp4MCBys3N1cqVK81+OnTooDZt2mjhwoWl6uVanE6nfH19lZOTI5vNdr3ThAo2O+U/5TZ2h8x3r110HaKGvVYu4wKAFZTl3+8beo7QwYMH5XA4FB0dbS7z9fVVZGSk0tLSJElpaWny8/MzQ5AkRUdHy93dXVu2bDFrOnfubIYgSbLb7dq7d69++eUXs+bS/RTVFO2nNL1cLi8vT06n0+UBAAAqrxsahBwOhyQpKCjIZXlQUJC5zuFwKDAw0GV9lSpV5O/v71JT0hiX7uNKNZeuv1Yvl5sxY4Z8fX3NR2hoaCleNQAAuF1x1dglJk+erJycHPNx5MiRim4JAACUoxsahIKDgyVJWVlZLsuzsrLMdcHBwTp+/LjL+osXL+r06dMuNSWNcek+rlRz6fpr9XI5Ly8v2Ww2lwcAAKi8bmgQatiwoYKDg5Wammouczqd2rJli6KioiRJUVFRys7OVnp6ulmzbt06FRYWKjIy0qzZtGmTLly4YNakpKSoWbNmuuOOO8yaS/dTVFO0n9L0AgAArK3MQejs2bPKyMhQRkaGpN9OSs7IyFBmZqbc3Nw0btw4TZ8+XZ9//rl27typxx9/XCEhIeaVZS1atFDPnj01YsQIbd26Vd98843GjBmj2NhYhYSESJIeeeQReXp6atiwYdq9e7eWLVumuXPnKiEhwezj6aefVnJysl5//XXt2bNH06ZN07Zt2zRmzBhJKlUvAADA2qqUdYNt27apa9eu5vOicBIXF6ekpCQ999xzys3N1ZNPPqns7Gx17NhRycnJ8vb2NrdZsmSJxowZo+7du8vd3V39+/fXm2++aa739fXVV199pfj4eEVERKh27dpKTEx0udfQH//4Ry1dulRTpkzR888/r6ZNm2rFihVq2bKlWVOaXgAAgHX9rvsIVXbcR6hy4D5CAGAtFXYfIQAAgNsJQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFjWDQ9C06ZNk5ubm8ujefPm5vrz588rPj5etWrVUo0aNdS/f39lZWW5jJGZmamYmBhVq1ZNgYGBevbZZ3Xx4kWXmg0bNqht27by8vJSkyZNlJSUVKyX+fPnq0GDBvL29lZkZKS2bt16o18uAAC4jZXLEaG7775bx44dMx9ff/21uW78+PH64osv9OGHH2rjxo06evSo+vXrZ64vKChQTEyM8vPztXnzZi1evFhJSUlKTEw0aw4ePKiYmBh17dpVGRkZGjdunIYPH641a9aYNcuWLVNCQoKmTp2q7du3q3Xr1rLb7Tp+/Hh5vGQAAHAbcjMMw7iRA06bNk0rVqxQRkZGsXU5OTkKCAjQ0qVLNWDAAEnSnj171KJFC6WlpalDhw5avXq1evfuraNHjyooKEiStHDhQk2cOFEnTpyQp6enJk6cqFWrVmnXrl3m2LGxscrOzlZycrIkKTIyUvfcc4/mzZsnSSosLFRoaKjGjh2rSZMmldh7Xl6e8vLyzOdOp1OhoaHKycmRzWa7IfODm292yn/KbewOme+Wy7hRw14rl3EBwAqcTqd8fX1L9e93uRwR2rdvn0JCQtSoUSM9+uijyszMlCSlp6frwoULio6ONmubN2+uevXqKS0tTZKUlpam8PBwMwRJkt1ul9Pp1O7du82aS8coqikaIz8/X+np6S417u7uio6ONmtKMmPGDPn6+pqP0NDQ3zkTAADgVnbDg1BkZKSSkpKUnJysBQsW6ODBg+rUqZPOnDkjh8MhT09P+fn5uWwTFBQkh8MhSXI4HC4hqGh90bqr1TidTp07d04nT55UQUFBiTVFY5Rk8uTJysnJMR9Hjhy5rjkAAAC3hyo3esBevXqZf27VqpUiIyNVv359LV++XD4+Pjd6dzeUl5eXvLy8KroNAABwk5T75fN+fn666667tH//fgUHBys/P1/Z2dkuNVlZWQoODpYkBQcHF7uKrOj5tWpsNpt8fHxUu3ZteXh4lFhTNAYAAEC5B6GzZ8/qwIEDqlOnjiIiIlS1alWlpqaa6/fu3avMzExFRUVJkqKiorRz506Xq7tSUlJks9kUFhZm1lw6RlFN0Rienp6KiIhwqSksLFRqaqpZAwAAcMOD0IQJE7Rx40YdOnRImzdv1kMPPSQPDw8NGjRIvr6+GjZsmBISErR+/Xqlp6dr6NChioqKUocOHSRJPXr0UFhYmAYPHqx///vfWrNmjaZMmaL4+Hjza6uRI0fqv//9r5577jnt2bNHb7/9tpYvX67x48ebfSQkJOjvf/+7Fi9erB9//FGjRo1Sbm6uhg4deqNfMgAAuE3d8HOEfvrpJw0aNEinTp1SQECAOnbsqG+//VYBAQGSpNmzZ8vd3V39+/dXXl6e7Ha73n77bXN7Dw8PrVy5UqNGjVJUVJSqV6+uuLg4vfTSS2ZNw4YNtWrVKo0fP15z585V3bp19d5778lut5s1AwcO1IkTJ5SYmCiHw6E2bdooOTm52AnUAADAum74fYQqk7LchwC3Lu4jBADWUuH3EQIAALgdEIQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlVanoBm6G+fPna9asWXI4HGrdurXeeusttW/fvqLbAq5odsp/KrqFMht//10V3QIAlFmlD0LLli1TQkKCFi5cqMjISM2ZM0d2u1179+5VYGBgRbcHlKhD5rvlMu639Z4sl3EB4HZV6YPQG2+8oREjRmjo0KGSpIULF2rVqlX6xz/+oUmTJlVwd7hZyitYAABub5U6COXn5ys9PV2TJ082l7m7uys6OlppaWnF6vPy8pSXl2c+z8nJkSQ5nc7ybxbl5nzuWeWey7t2oQWczz1bbmPzOQFwqyj6+8gwjGvWVuogdPLkSRUUFCgoKMhleVBQkPbs2VOsfsaMGXrxxReLLQ8NDS23HoGba165jfx8uY0MANfnzJkz8vX1vWpNpQ5CZTV58mQlJCSYzwsLC3X69GnVqlVLbm5uFdjZ9XE6nQoNDdWRI0dks9kquh1LYe4rDnNfcZj7isPcuzIMQ2fOnFFISMg1ayt1EKpdu7Y8PDyUlZXlsjwrK0vBwcHF6r28vOTl5eWyzM/PrzxbvClsNhsfjArC3Fcc5r7iMPcVh7n/P9c6ElSkUt9HyNPTUxEREUpNTTWXFRYWKjU1VVFRURXYGQAAuBVU6iNCkpSQkKC4uDi1a9dO7du315w5c5Sbm2teRQYAAKyr0gehgQMH6sSJE0pMTJTD4VCbNm2UnJxc7ATqysjLy0tTp04t9nUfyh9zX3GY+4rD3Fcc5v76uRmlubYMAACgEqrU5wgBAABcDUEIAABYFkEIAABYFkEIAABYFkEIAABYFkHIIho0aCA3NzeXxyuvvFLRbVVK8+fPV4MGDeTt7a3IyEht3bq1oluq9KZNm1bs57t58+YV3ValtWnTJvXp00chISFyc3PTihUrXNYbhqHExETVqVNHPj4+io6O1r59+yqm2UrmWnM/ZMiQYp+Fnj17VkyztwmCkIW89NJLOnbsmPkYO3ZsRbdU6SxbtkwJCQmaOnWqtm/frtatW8tut+v48eMV3Vqld/fdd7v8fH/99dcV3VKllZubq9atW2v+/Pklrp85c6befPNNLVy4UFu2bFH16tVlt9t1/vz5m9xp5XOtuZeknj17unwW/vd///cmdnj7qfQ3VMT/qVmzZom/Yw03zhtvvKERI0aYdy5fuHChVq1apX/84x+aNGlSBXdXuVWpUoWf75ukV69e6tWrV4nrDMPQnDlzNGXKFD344IOSpPfff19BQUFasWKFYmNjb2arlc7V5r6Il5cXn4Uy4IiQhbzyyiuqVauW/vCHP2jWrFm6ePFiRbdUqeTn5ys9PV3R0dHmMnd3d0VHRystLa0CO7OGffv2KSQkRI0aNdKjjz6qzMzMim7Jkg4ePCiHw+HyOfD19VVkZCSfg5tkw4YNCgwMVLNmzTRq1CidOnWqolu6pXFEyCKeeuoptW3bVv7+/tq8ebMmT56sY8eO6Y033qjo1iqNkydPqqCgoNivbwkKCtKePXsqqCtriIyMVFJSkpo1a6Zjx47pxRdfVKdOnbRr1y7VrFmzotuzFIfDIUklfg6K1qH89OzZU/369VPDhg114MABPf/88+rVq5fS0tLk4eFR0e3dkghCt7FJkybp1VdfvWrNjz/+qObNmyshIcFc1qpVK3l6euovf/mLZsyYwe+mwW3v0q8KWrVqpcjISNWvX1/Lly/XsGHDKrAz4Oa69KvH8PBwtWrVSo0bN9aGDRvUvXv3Cuzs1kUQuo0988wzGjJkyFVrGjVqVOLyyMhIXbx4UYcOHVKzZs3KoTvrqV27tjw8PJSVleWyPCsri+/rbzI/Pz/ddddd2r9/f0W3YjlFP+tZWVmqU6eOuTwrK0tt2rSpoK6sq1GjRqpdu7b2799PELoCgtBtLCAgQAEBAde1bUZGhtzd3RUYGHiDu7IuT09PRUREKDU1VX379pUkFRYWKjU1VWPGjKnY5izm7NmzOnDggAYPHlzRrVhOw4YNFRwcrNTUVDP4OJ1ObdmyRaNGjarY5izop59+0qlTp1xCKVwRhCwgLS1NW7ZsUdeuXVWzZk2lpaVp/Pjxeuyxx3THHXdUdHuVSkJCguLi4tSuXTu1b99ec+bMUW5urnkVGcrHhAkT1KdPH9WvX19Hjx7V1KlT5eHhoUGDBlV0a5XS2bNnXY62HTx4UBkZGfL391e9evU0btw4TZ8+XU2bNlXDhg31wgsvKCQkxPwPAq7f1ebe399fL774ovr376/g4GAdOHBAzz33nJo0aSK73V6BXd/iDFR66enpRmRkpOHr62t4e3sbLVq0MF5++WXj/PnzFd1apfTWW28Z9erVMzw9PY327dsb3377bUW3VOkNHDjQqFOnjuHp6WnceeedxsCBA439+/dXdFuV1vr16w1JxR5xcXGGYRhGYWGh8cILLxhBQUGGl5eX0b17d2Pv3r0V23QlcbW5//XXX40ePXoYAQEBRtWqVY369esbI0aMMBwOR0W3fUtzMwzDqKgQBgAAUJG4jxAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCs/w8kqrSYMYGKMwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARZVJREFUeJzt3Xl8Tmce//93ErJY7sQWkYpdEYKi0rR2GdGmi9Kp0NFQyyC0pNaphmpntGqKaZVOFzEdpujUUkvU7ttKqZTa/TC2VhNbkxAEyfX9o7+cr1tCFiHkvJ6Px/14uK/rc865rnNy536773NOXIwxRgAAADbkWtQDAAAAKCoEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIaAQbdiwQS4uLtqwYUO+lz169KhcXFwUGxtb6OPKr6SkJD333HOqUKGCXFxcNG3atKIeEu4hEyZMkIuLS6Gu83ZeO8DtIAgByGb48OFatWqVxo4dq88//1ydO3cu6iHdEz788MN7Iqjez+73fXjx4kXNmDFDnTp1UpUqVVS2bFk99NBDmjlzpjIyMop6eCgAF/7WGFB4MjMzdeXKFbm7u8vVNX//zzDGKD09XSVLlpSbm9sdGmHe+Pn5KTQ0VP/+97+LdBz3mkaNGqlixYq2/9RiwoQJeuONN1SQt4+b7cPbee3cTbt371bjxo3VsWNHderUSQ6HQ6tWrdKiRYv04osvas6cOUU9RORTiaIeAFBQaWlpKl26dFEPw4mrq6s8PT0LtKyLi0uBly1sp06dko+PT6519+IxQM6ygkZOP2P3wnG8ndfO3eTn56ddu3apYcOGVtuf//xnvfTSS5o9e7Zef/111alTpwhHiPy6d2M3cJ2scxL27t2rnj17qly5cmrVqpUk6d///reaN28uLy8vlS9fXhERETpx4oTT8u3atVOjRo20c+dOtW3bVqVKlVKdOnX05ZdfSpI2btyo4OBgeXl5qV69elqzZo3T8seOHdPgwYNVr149eXl5qUKFCvrjH/+oo0ePOtXldJ5D1rb37t2r9u3bq1SpUnrggQc0efJkp2VzOkeod+/eKlOmjH755Rd16dJFZcqUUaVKlTRixIhsH8OfPXtWvXr1ksPhkI+PjyIjI/XTTz/l67yj2NhYubi4yBijGTNmyMXFxToXJKtv48aNGjx4sHx9fVW1atV87R9J1jHw8vJS1apV9dZbb2n27NlycXFxqq9Ro4aefPJJbdiwQS1atJCXl5eCgoKsffvVV18pKChInp6eat68ubZv355tW/v379dzzz2n8uXLy9PTUy1atNDSpUtznPN3332n6OhoVapUSaVLl9azzz6r06dPO41nz5492rhxo7Vf2rVrJ0m6evWq3njjDdWtW1eenp6qUKGCWrVqpdWrV+dpv2e5fPmyJkyYoAcffFCenp6qUqWKunbtqsOHD1s1aWlpevXVVxUQECAPDw/Vq1dPU6ZMyfbpjIuLi4YMGaK5c+eqYcOG8vDwUFxc3C2PoyStXLlSrVu3VunSpVW2bFmFh4drz549uY599uzZ6tChg3x9feXh4aHAwEDNnDnTqeZW+/Bm5wgtXLjQen1XrFhRf/rTn/TLL7841eTndfLFF1+oefPmKlu2rBwOh4KCgjR9+vRc55elYsWKTiEoy7PPPitJ2rdvX57XhXsDnwjhvvLHP/5RdevW1d/+9jcZY/TXv/5Vr7/+up5//nn169dPp0+f1vvvv682bdpo+/btTp9q/Pbbb3ryyScVERGhP/7xj5o5c6YiIiI0d+5cDRs2TAMHDlTPnj317rvv6rnnntOJEydUtmxZSdIPP/ygzZs3KyIiQlWrVtXRo0c1c+ZMtWvXTnv37lWpUqVuOe7ffvtNnTt3VteuXfX888/ryy+/1OjRoxUUFKTHH3/8lstmZGQoLCxMwcHBmjJlitasWaO///3vql27tgYNGiTp9//tP/XUU9q6dasGDRqk+vXra8mSJYqMjMzX/m3Tpo0+//xz9erVS3/4wx/04osvZqsZPHiwKlWqpJiYGKWlpeVr//zyyy9q3769XFxcNHbsWJUuXVqffPKJPDw8chzPoUOH1LNnT/35z3/Wn/70J02ZMkVPPfWUZs2apb/85S8aPHiwJGnSpEl6/vnndeDAAetrlT179uixxx7TAw88oDFjxqh06dJasGCBunTpov/+97/WG1eWoUOHqly5cho/fryOHj2qadOmaciQIZo/f74kadq0aRo6dKjKlCmj1157TZJUuXJlSb8H9UmTJqlfv35q2bKlUlNTtW3bNv3444/6wx/+kKd9n5GRoSeffFJr165VRESEXnnlFZ0/f16rV6/W7t27Vbt2bRlj9PTTT2v9+vXq27evmjZtqlWrVmnkyJH65ZdfNHXqVKd1rlu3TgsWLNCQIUNUsWJF1ahRQzt27Ljpcfz8888VGRmpsLAwvfPOO7p48aJmzpypVq1aafv27apRo8ZNxz9z5kw1bNhQTz/9tEqUKKGvv/5agwcPVmZmpqKionLdhzmJjY1Vnz599PDDD2vSpElKSkrS9OnT9d1332V7fefldbJ69Wr16NFDHTt21DvvvCPp9+Dy3Xff6ZVXXsnTcbqZxMRESb8HJdxnDHAfGD9+vJFkevToYbUdPXrUuLm5mb/+9a9Otbt27TIlSpRwam/btq2RZObNm2e17d+/30gyrq6u5vvvv7faV61aZSSZ2bNnW20XL17MNqb4+HgjyfzrX/+y2tavX28kmfXr12fb9vV16enpxs/Pz3Tr1s1qO3LkSLbtRkZGGklm4sSJTtt+6KGHTPPmza3n//3vf40kM23aNKstIyPDdOjQIds680KSiYqKcmqbPXu2kWRatWplrl275tSX1/0zdOhQ4+LiYrZv3261nT171pQvX95IMkeOHLHaq1evbiSZzZs3W21Zx8bLy8scO3bMav/oo4+y7feOHTuaoKAgc/nyZastMzPTPProo6Zu3brZ5hUaGmoyMzOt9uHDhxs3NzeTnJxstTVs2NC0bds221ybNGliwsPDs7Xnx2effWYkmffeey9bX9a4Fi9ebCSZt956y6n/ueeeMy4uLubQoUNWW9bP9p49e5xqb3Ycz58/b3x8fEz//v2d6hMTE423t7dTe9br8Xo5/QyEhYWZWrVqObXdbB/e+Nq5cuWK8fX1NY0aNTKXLl2y6pYtW2YkmZiYGKstr6+TV155xTgcjmw/v7crPT3dBAYGmpo1a5qrV68W6rpx5/HVGO4rAwcOtP791VdfKTMzU88//7zOnDljPfz8/FS3bl2tX7/eadkyZcooIiLCel6vXj35+PioQYMGCg4Ottqz/v2///3PavPy8rL+ffXqVZ09e1Z16tSRj4+Pfvzxx1zHXaZMGf3pT3+ynru7u6tly5ZO28jrvCWpdevWTsvGxcWpZMmS6t+/v9Xm6upq/U+8MPXv3z/bydx53T9xcXEKCQlR06ZNrbby5cvrhRdeyHFbgYGBCgkJsZ5nHZsOHTqoWrVq2dqz9sm5c+e0bt06Pf/88zp//rz1s3H27FmFhYXp4MGD2b5eGTBggNMl4a1bt1ZGRoaOHTuW6z7x8fHRnj17dPDgwVxrb+a///2vKlasqKFDh2bryxrXihUr5Obmppdfftmp/9VXX5UxRitXrnRqb9u2rQIDA3Pc3o3HcfXq1UpOTlaPHj2cXk9ubm4KDg7O9nq60fU/AykpKTpz5ozatm2r//3vf0pJSbn15HOwbds2nTp1SoMHD3Y6dyg8PFz169fX8uXLsy2T2+vEx8dHaWlp+f7KMjdDhgzR3r179cEHH6hECb5oud9wxHBfqVmzpvXvgwcPyhijunXr5lhbsmRJp+dVq1bNdu8Tb29vBQQEZGuTfv86K8ulS5c0adIkzZ49W7/88ovT+Rh5+SWf07bLlSunnTt35rqsp6enKlWqlG3Z68d37NgxValSJdtXdHfipM3rj0GWvO6fY8eOOQWb3MZ5fdiR/t+xye2YHTp0SMYYvf7663r99ddzXPepU6f0wAMP3HRb5cqVc1rnrUycOFHPPPOMHnzwQTVq1EidO3dWr1691Lhx41yXzXL48GHVq1fvlm+kx44dk7+/v/WVbZYGDRpY/dfL6VjdrC8rxHXo0CHHeofDcfPBS/ruu+80fvx4xcfH6+LFi059KSkp1jHKq6y51KtXL1tf/fr19e233zq15eV1MnjwYC1YsECPP/64HnjgAXXq1EnPP//8bd0e4t1339XHH3+sN998U0888USB14OiQxDCfeX6/3VmZmbKxcVFK1euzPFy8zJlyjg9v9kl6Tdrv/7NfOjQoZo9e7aGDRumkJAQeXt7y8XFRREREcrMzMx13HnZRn6XLSrXH4Mst7t/bqagxyxrmyNGjFBYWFiOtTeGr9s5Rm3atNHhw4e1ZMkSffPNN/rkk080depUzZo1S/369ct1+Tslp2N1s76sffb555/Lz88vW/2tAtrhw4fVsWNH1a9fX++9954CAgLk7u6uFStWaOrUqbf1M5BXeXmd+Pr6aseOHVq1apVWrlyplStXavbs2QW+7D02NlajR4/WwIEDNW7cuIIMG/cAghDuW1knj9asWVMPPvjgHd3Wl19+qcjISP3973+32i5fvqzk5OQ7ut28ql69utavX6+LFy86fSp06NChu7L9vO6f6tWr5zimwh5nrVq1JP3+qWBoaGihrfdWd1MuX768+vTpoz59+ujChQtq06aNJkyYkOcgVLt2bW3ZskVXr17N9mlmlurVq2vNmjU6f/6806dC+/fvt/oLqnbt2pJ+Dwv53Wdff/210tPTtXTpUqdP1nL6Oi2vd6TOmsuBAweyfUp14MCBAs/V3d1dTz31lJ566illZmZq8ODB+uijj/J92fuSJUvUr18/de3aVTNmzCjQWHBv4Bwh3Le6du0qNze3HG/sZozR2bNnC21bbm5u2bbx/vvv3zN3kg0LC9PVq1f18ccfW22ZmZl37Rd0XvdPWFiY4uPjrSuXpN/P55k7d26hjsfX11ft2rXTRx99pF9//TVb//WXxedH6dKlcwy/N/6slSlTRnXq1FF6enqe192tWzedOXNGH3zwQba+rH37xBNPKCMjI1vN1KlT5eLikusViLcSFhYmh8Ohv/3tb7p69Wq2/lvts6xPY278SnT27NnZam+2D2/UokUL+fr6atasWU77ceXKldq3b5/Cw8NzXceNbjxOrq6u1teX+TlWmzZtUkREhNq0aaO5c+fe0zeARO74RAj3rdq1a+utt97S2LFjdfToUXXp0kVly5bVkSNHtGjRIg0YMEAjRowolG09+eST+vzzz+Xt7a3AwEDFx8drzZo1qlChQqGs/3Z16dJFLVu21KuvvqpDhw6pfv36Wrp0qc6dOycp7/8LL6i87p9Ro0bp3//+t/7whz9o6NCh1uXz1apV07lz5wp1nDNmzFCrVq0UFBSk/v37q1atWkpKSlJ8fLx+/vln/fTTT/leZ/PmzTVz5ky99dZbqlOnjnx9fdWhQwcFBgaqXbt2at68ucqXL69t27bpyy+/1JAhQ/K87hdffFH/+te/FB0dra1bt6p169ZKS0vTmjVrNHjwYD3zzDN66qmn1L59e7322ms6evSomjRpom+++UZLlizRsGHDrE91CsLhcGjmzJnq1auXmjVrpoiICFWqVEnHjx/X8uXL9dhjj+UY0iSpU6dO1ictf/7zn3XhwgV9/PHH8vX1zRZEb7YPb1SyZEm988476tOnj9q2basePXpYl8/XqFFDw4cPz/cc+/Xrp3PnzqlDhw6qWrWqjh07pvfff19Nmza1zrPKzbFjx/T000/LxcVFzz33nBYuXOjU37hx43ydG4aiRxDCfW3MmDF68MEHNXXqVL3xxhuSfj+RtlOnTnr66acLbTvTp0+Xm5ub5s6dq8uXL+uxxx7TmjVrbnr+yd3m5uam5cuX65VXXtGcOXPk6uqqZ599VuPHj9djjz12x+/Ym9f9ExAQoPXr1+vll1/W3/72N1WqVElRUVEqXbq0Xn755UIdZ2BgoLZt26Y33nhDsbGxOnv2rHx9ffXQQw8pJiamQOuMiYnRsWPHNHnyZJ0/f15t27ZVhw4d9PLLL2vp0qX65ptvlJ6erurVq+utt97SyJEj87xuNzc3rVixQn/96181b948/fe//7VuzBgUFCTp908wli5dqpiYGM2fP1+zZ89WjRo19O677+rVV18t0Jyu17NnT/n7++vtt9/Wu+++q/T0dD3wwANq3bq1+vTpc9Pl6tWrpy+//FLjxo3TiBEj5Ofnp0GDBqlSpUp66aWXnGpvtg9z0rt3b5UqVUpvv/22Ro8ebd3o8p133snTnc9v9Kc//Un//Oc/9eGHHyo5OVl+fn7q3r27JkyYkOdPdY4cOWJdAJDTVZnjx48nCN1n+FtjQDG2ePFiPfvss/r222/12GOPFfVwbmrYsGH66KOPdOHChXvu5HAAxRtfbALFxKVLl5yeZ2Rk6P3335fD4VCzZs2KaFTZ3TjOs2fP6vPPP1erVq0IQQDuOr4aA4qJoUOH6tKlSwoJCVF6erq++uorbd68WX/729/k5eWlK1euWOcM3Yy3t/ctL7kuDCEhIWrXrp0aNGigpKQkffrpp0pNTb3p/X7ud/fKfkfusv5Mxs14eXnl+35IuA/c7VtZA7gz5s6da5o1a2YcDodxd3c3gYGB5v3337f6s/6Ewa0e+f1THAUxduxYU7duXePl5WVKlSplWrVqZVavXn3Ht1tU7pX9jtzldpwiIyOLeoi4AzhHCLCJ3377TQkJCbesadiwoapUqXKXRmQP7Pf7x5o1a27Z7+/vf9M/WYL7F0EIAADYFidLAwAA2+Jk6VvIzMzUyZMnVbZs2Tt+QzoAAFA4jDE6f/68/P39c71HFEHoFk6ePJntr1wDAID7w4kTJ1S1atVb1hCEbiHrjxqeOHFCDoejiEcDAADyIjU1VQEBAU5/nPhmCEK3kPV1mMPhIAgBAHCfyctpLZwsDQAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbIsgBAAAbCtfQWjmzJlq3Lix9be3QkJCtHLlSqv/8uXLioqKUoUKFVSmTBl169ZNSUlJTus4fvy4wsPDVapUKfn6+mrkyJG6du2aU82GDRvUrFkzeXh4qE6dOoqNjc02lhkzZqhGjRry9PRUcHCwtm7d6tSfl7EAAAB7y1cQqlq1qt5++20lJCRo27Zt6tChg5555hnt2bNHkjR8+HB9/fXXWrhwoTZu3KiTJ0+qa9eu1vIZGRkKDw/XlStXtHnzZs2ZM0exsbGKiYmxao4cOaLw8HC1b99eO3bs0LBhw9SvXz+tWrXKqpk/f76io6M1fvx4/fjjj2rSpInCwsJ06tQpqya3sQAAAMjcpnLlyplPPvnEJCcnm5IlS5qFCxdaffv27TOSTHx8vDHGmBUrVhhXV1eTmJho1cycOdM4HA6Tnp5ujDFm1KhRpmHDhk7b6N69uwkLC7Oet2zZ0kRFRVnPMzIyjL+/v5k0aZIxxuRpLHmRkpJiJJmUlJQ8LwMAAIpWft6/SxQ0QGVkZGjhwoVKS0tTSEiIEhISdPXqVYWGhlo19evXV7Vq1RQfH69HHnlE8fHxCgoKUuXKla2asLAwDRo0SHv27NFDDz2k+Ph4p3Vk1QwbNkySdOXKFSUkJGjs2LFWv6urq0JDQxUfHy9JeRpLTtLT05Wenm49T01NLejuAXAfiP90RFEPId9C+k4p6iEAxUq+T5betWuXypQpIw8PDw0cOFCLFi1SYGCgEhMT5e7uLh8fH6f6ypUrKzExUZKUmJjoFIKy+rP6blWTmpqqS5cu6cyZM8rIyMix5vp15DaWnEyaNEne3t7WIyAgIG87BQAA3JfyHYTq1aunHTt2aMuWLRo0aJAiIyO1d+/eOzG2u27s2LFKSUmxHidOnCjqIQEAgDso31+Nubu7q06dOpKk5s2b64cfftD06dPVvXt3XblyRcnJyU6fxCQlJcnPz0+S5Ofnl+3qrqwrua6vufHqrqSkJDkcDnl5ecnNzU1ubm451ly/jtzGkhMPDw95eHjkY28AAID72W3fRygzM1Pp6elq3ry5SpYsqbVr11p9Bw4c0PHjxxUSEiJJCgkJ0a5du5yu7lq9erUcDocCAwOtmuvXkVWTtQ53d3c1b97cqSYzM1Nr1661avIyFgAAgHx9IjR27Fg9/vjjqlatms6fP6958+Zpw4YNWrVqlby9vdW3b19FR0erfPnycjgcGjp0qEJCQqyTkzt16qTAwED16tVLkydPVmJiosaNG6eoqCjrk5iBAwfqgw8+0KhRo/TSSy9p3bp1WrBggZYvX26NIzo6WpGRkWrRooVatmypadOmKS0tTX369JGkPI0FAAAgX0Ho1KlTevHFF/Xrr7/K29tbjRs31qpVq/SHP/xBkjR16lS5urqqW7duSk9PV1hYmD788ENreTc3Ny1btkyDBg1SSEiISpcurcjISE2cONGqqVmzppYvX67hw4dr+vTpqlq1qj755BOFhYVZNd27d9fp06cVExOjxMRENW3aVHFxcU4nUOc2FgAAABdjjCnqQdyrUlNT5e3trZSUFDkcjqIeDoBCxuXzQPGUn/dv/tYYAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwLYIQAACwrXwFoUmTJunhhx9W2bJl5evrqy5duujAgQNONe3atZOLi4vTY+DAgU41x48fV3h4uEqVKiVfX1+NHDlS165dc6rZsGGDmjVrJg8PD9WpU0exsbHZxjNjxgzVqFFDnp6eCg4O1tatW536L1++rKioKFWoUEFlypRRt27dlJSUlJ8pAwCAYixfQWjjxo2KiorS999/r9WrV+vq1avq1KmT0tLSnOr69++vX3/91XpMnjzZ6svIyFB4eLiuXLmizZs3a86cOYqNjVVMTIxVc+TIEYWHh6t9+/basWOHhg0bpn79+mnVqlVWzfz58xUdHa3x48frxx9/VJMmTRQWFqZTp05ZNcOHD9fXX3+thQsXauPGjTp58qS6du2a750EAACKJxdjjCnowqdPn5avr682btyoNm3aSPr9E6GmTZtq2rRpOS6zcuVKPfnkkzp58qQqV64sSZo1a5ZGjx6t06dPy93dXaNHj9by5cu1e/dua7mIiAglJycrLi5OkhQcHKyHH35YH3zwgSQpMzNTAQEBGjp0qMaMGaOUlBRVqlRJ8+bN03PPPSdJ2r9/vxo0aKD4+Hg98sgj2caWnp6u9PR063lqaqoCAgKUkpIih8NR0N0E4B4V/+mIoh5CvoX0nVLUQwDueampqfL29s7T+/dtnSOUkpIiSSpfvrxT+9y5c1WxYkU1atRIY8eO1cWLF62++Ph4BQUFWSFIksLCwpSamqo9e/ZYNaGhoU7rDAsLU3x8vCTpypUrSkhIcKpxdXVVaGioVZOQkKCrV6861dSvX1/VqlWzam40adIkeXt7W4+AgIB87xMAAHD/KFHQBTMzMzVs2DA99thjatSokdXes2dPVa9eXf7+/tq5c6dGjx6tAwcO6KuvvpIkJSYmOoUgSdbzxMTEW9akpqbq0qVL+u2335SRkZFjzf79+611uLu7y8fHJ1tN1nZuNHbsWEVHR1vPsz4RAgAAxVOBg1BUVJR2796tb7/91ql9wIAB1r+DgoJUpUoVdezYUYcPH1bt2rULPtK7wMPDQx4eHkU9DAAAcJcU6KuxIUOGaNmyZVq/fr2qVq16y9rg4GBJ0qFDhyRJfn5+2a7cynru5+d3yxqHwyEvLy9VrFhRbm5uOdZcv44rV64oOTn5pjUAAMDe8hWEjDEaMmSIFi1apHXr1qlmzZq5LrNjxw5JUpUqVSRJISEh2rVrl9PVXatXr5bD4VBgYKBVs3btWqf1rF69WiEhIZIkd3d3NW/e3KkmMzNTa9eutWqaN2+ukiVLOtUcOHBAx48ft2oAAIC95eursaioKM2bN09LlixR2bJlrXNtvL295eXlpcOHD2vevHl64oknVKFCBe3cuVPDhw9XmzZt1LhxY0lSp06dFBgYqF69emny5MlKTEzUuHHjFBUVZX0tNXDgQH3wwQcaNWqUXnrpJa1bt04LFizQ8uXLrbFER0crMjJSLVq0UMuWLTVt2jSlpaWpT58+1pj69u2r6OholS9fXg6HQ0OHDlVISEiOV4wBAAD7yVcQmjlzpqTfL5G/3uzZs9W7d2+5u7trzZo1VigJCAhQt27dNG7cOKvWzc1Ny5Yt06BBgxQSEqLSpUsrMjJSEydOtGpq1qyp5cuXa/jw4Zo+fbqqVq2qTz75RGFhYVZN9+7ddfr0acXExCgxMVFNmzZVXFyc0wnUU6dOlaurq7p166b09HSFhYXpww8/zNcOAgAAxddt3UeouMvPfQgA3H+4jxBQPN21+wgBAADczwhCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtghCAADAtvIVhCZNmqSHH35YZcuWla+vr7p06aIDBw441Vy+fFlRUVGqUKGCypQpo27duikpKcmp5vjx4woPD1epUqXk6+urkSNH6tq1a041GzZsULNmzeTh4aE6deooNjY223hmzJihGjVqyNPTU8HBwdq6dWu+xwIAAOwrX0Fo48aNioqK0vfff6/Vq1fr6tWr6tSpk9LS0qya4cOH6+uvv9bChQu1ceNGnTx5Ul27drX6MzIyFB4eritXrmjz5s2aM2eOYmNjFRMTY9UcOXJE4eHhat++vXbs2KFhw4apX79+WrVqlVUzf/58RUdHa/z48frxxx/VpEkThYWF6dSpU3keCwAAsDcXY4wp6MKnT5+Wr6+vNm7cqDZt2iglJUWVKlXSvHnz9Nxzz0mS9u/frwYNGig+Pl6PPPKIVq5cqSeffFInT55U5cqVJUmzZs3S6NGjdfr0abm7u2v06NFavny5du/ebW0rIiJCycnJiouLkyQFBwfr4Ycf1gcffCBJyszMVEBAgIYOHaoxY8bkaSy5SU1Nlbe3t1JSUuRwOAq6mwDco+I/HVHUQ8i3kL5TinoIwD0vP+/ft3WOUEpKiiSpfPnykqSEhARdvXpVoaGhVk39+vVVrVo1xcfHS5Li4+MVFBRkhSBJCgsLU2pqqvbs2WPVXL+OrJqsdVy5ckUJCQlONa6urgoNDbVq8jKWG6Wnpys1NdXpAQAAiq8CB6HMzEwNGzZMjz32mBo1aiRJSkxMlLu7u3x8fJxqK1eurMTERKvm+hCU1Z/Vd6ua1NRUXbp0SWfOnFFGRkaONdevI7ex3GjSpEny9va2HgEBAXncGwAA4H5U4CAUFRWl3bt364svvijM8RSpsWPHKiUlxXqcOHGiqIcEAADuoBIFWWjIkCFatmyZNm3apKpVq1rtfn5+unLlipKTk50+iUlKSpKfn59Vc+PVXVlXcl1fc+PVXUlJSXI4HPLy8pKbm5vc3NxyrLl+HbmN5UYeHh7y8PDIx54AAAD3s3x9ImSM0ZAhQ7Ro0SKtW7dONWvWdOpv3ry5SpYsqbVr11ptBw4c0PHjxxUSEiJJCgkJ0a5du5yu7lq9erUcDocCAwOtmuvXkVWTtQ53d3c1b97cqSYzM1Nr1661avIyFgAAYG/5+kQoKipK8+bN05IlS1S2bFnrXBtvb295eXnJ29tbffv2VXR0tMqXLy+Hw6GhQ4cqJCTEukqrU6dOCgwMVK9evTR58mQlJiZq3LhxioqKsj6NGThwoD744AONGjVKL730ktatW6cFCxZo+fLl1liio6MVGRmpFi1aqGXLlpo2bZrS0tLUp08fa0y5jQUAANhbvoLQzJkzJUnt2rVzap89e7Z69+4tSZo6dapcXV3VrVs3paenKywsTB9++KFV6+bmpmXLlmnQoEEKCQlR6dKlFRkZqYkTJ1o1NWvW1PLlyzV8+HBNnz5dVatW1SeffKKwsDCrpnv37jp9+rRiYmKUmJiopk2bKi4uzukE6tzGAgAA7O227iNU3HEfIaB44z5CQPF01+4jBAAAcD8jCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANsiCAEAANvKdxDatGmTnnrqKfn7+8vFxUWLFy926u/du7dcXFycHp07d3aqOXfunF544QU5HA75+Piob9++unDhglPNzp071bp1a3l6eiogIECTJ0/ONpaFCxeqfv368vT0VFBQkFasWOHUb4xRTEyMqlSpIi8vL4WGhurgwYP5nTIAACim8h2E0tLS1KRJE82YMeOmNZ07d9avv/5qPf7zn/849b/wwgvas2ePVq9erWXLlmnTpk0aMGCA1Z+amqpOnTqpevXqSkhI0LvvvqsJEybon//8p1WzefNm9ejRQ3379tX27dvVpUsXdenSRbt377ZqJk+erH/84x+aNWuWtmzZotKlSyssLEyXL1/O77QBAEAx5GKMMQVe2MVFixYtUpcuXay23r17Kzk5OdsnRVn27dunwMBA/fDDD2rRooUkKS4uTk888YR+/vln+fv7a+bMmXrttdeUmJgod3d3SdKYMWO0ePFi7d+/X5LUvXt3paWladmyZda6H3nkETVt2lSzZs2SMUb+/v569dVXNWLECElSSkqKKleurNjYWEVEROQ6v9TUVHl7eyslJUUOh6MguwjAPSz+0xFFPYR8C+k7paiHANzz8vP+fUfOEdqwYYN8fX1Vr149DRo0SGfPnrX64uPj5ePjY4UgSQoNDZWrq6u2bNli1bRp08YKQZIUFhamAwcO6LfffrNqQkNDnbYbFham+Ph4SdKRI0eUmJjoVOPt7a3g4GCr5kbp6elKTU11egAAgOKr0INQ586d9a9//Utr167VO++8o40bN+rxxx9XRkaGJCkxMVG+vr5Oy5QoUULly5dXYmKiVVO5cmWnmqznudVc33/9cjnV3GjSpEny9va2HgEBAfmePwAAuH+UKOwVXv+VU1BQkBo3bqzatWtrw4YN6tixY2FvrlCNHTtW0dHR1vPU1FTCEAAAxdgdv3y+Vq1aqlixog4dOiRJ8vPz06lTp5xqrl27pnPnzsnPz8+qSUpKcqrJep5bzfX91y+XU82NPDw85HA4nB4AAKD4uuNB6Oeff9bZs2dVpUoVSVJISIiSk5OVkJBg1axbt06ZmZkKDg62ajZt2qSrV69aNatXr1a9evVUrlw5q2bt2rVO21q9erVCQkIkSTVr1pSfn59TTWpqqrZs2WLVAAAAe8t3ELpw4YJ27NihHTt2SPr9pOQdO3bo+PHjunDhgkaOHKnvv/9eR48e1dq1a/XMM8+oTp06CgsLkyQ1aNBAnTt3Vv/+/bV161Z99913GjJkiCIiIuTv7y9J6tmzp9zd3dW3b1/t2bNH8+fP1/Tp052+tnrllVcUFxenv//979q/f78mTJigbdu2aciQIZJ+v6Jt2LBheuutt7R06VLt2rVLL774ovz9/Z2ucgMAAPaV73OEtm3bpvbt21vPs8JJZGSkZs6cqZ07d2rOnDlKTk6Wv7+/OnXqpDfffFMeHh7WMnPnztWQIUPUsWNHubq6qlu3bvrHP/5h9Xt7e+ubb75RVFSUmjdvrooVKyomJsbpXkOPPvqo5s2bp3Hjxukvf/mL6tatq8WLF6tRo0ZWzahRo5SWlqYBAwYoOTlZrVq1UlxcnDw9PfM7bQAAUAzd1n2EijvuIwQUb9xHCCieivw+QgAAAPcDghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALAtghAAALCtfAehTZs26amnnpK/v79cXFy0ePFip35jjGJiYlSlShV5eXkpNDRUBw8edKo5d+6cXnjhBTkcDvn4+Khv3766cOGCU83OnTvVunVreXp6KiAgQJMnT842loULF6p+/fry9PRUUFCQVqxYke+xAAAA+8p3EEpLS1OTJk00Y8aMHPsnT56sf/zjH5o1a5a2bNmi0qVLKywsTJcvX7ZqXnjhBe3Zs0erV6/WsmXLtGnTJg0YMMDqT01NVadOnVS9enUlJCTo3Xff1YQJE/TPf/7Tqtm8ebN69Oihvn37avv27erSpYu6dOmi3bt352ssAADAvlyMMabAC7u4aNGiRerSpYuk3z+B8ff316uvvqoRI0ZIklJSUlS5cmXFxsYqIiJC+/btU2BgoH744Qe1aNFCkhQXF6cnnnhCP//8s/z9/TVz5ky99tprSkxMlLu7uyRpzJgxWrx4sfbv3y9J6t69u9LS0rRs2TJrPI888oiaNm2qWbNm5WksuUlNTZW3t7dSUlLkcDgKupsA3KPiPx1R1EPIt5C+U4p6CMA9Lz/v34V6jtCRI0eUmJio0NBQq83b21vBwcGKj4+XJMXHx8vHx8cKQZIUGhoqV1dXbdmyxapp06aNFYIkKSwsTAcOHNBvv/1m1Vy/nayarO3kZSw3Sk9PV2pqqtMDAAAUX4UahBITEyVJlStXdmqvXLmy1ZeYmChfX1+n/hIlSqh8+fJONTmt4/pt3Kzm+v7cxnKjSZMmydvb23oEBATkYdYAAOB+xVVj1xk7dqxSUlKsx4kTJ4p6SAAA4A4q1CDk5+cnSUpKSnJqT0pKsvr8/Px06tQpp/5r167p3LlzTjU5reP6bdys5vr+3MZyIw8PDzkcDqcHAAAovgo1CNWsWVN+fn5au3at1ZaamqotW7YoJCREkhQSEqLk5GQlJCRYNevWrVNmZqaCg4Otmk2bNunq1atWzerVq1WvXj2VK1fOqrl+O1k1WdvJy1gAAIC95TsIXbhwQTt27NCOHTsk/X5S8o4dO3T8+HG5uLho2LBheuutt7R06VLt2rVLL774ovz9/a0ryxo0aKDOnTurf//+2rp1q7777jsNGTJEERER8vf3lyT17NlT7u7u6tu3r/bs2aP58+dr+vTpio6OtsbxyiuvKC4uTn//+9+1f/9+TZgwQdu2bdOQIUMkKU9jAQAA9lYivwts27ZN7du3t55nhZPIyEjFxsZq1KhRSktL04ABA5ScnKxWrVopLi5Onp6e1jJz587VkCFD1LFjR7m6uqpbt276xz/+YfV7e3vrm2++UVRUlJo3b66KFSsqJibG6V5Djz76qObNm6dx48bpL3/5i+rWravFixerUaNGVk1exgIAAOzrtu4jVNxxHyGgeOM+QkDxVGT3EQIAALifEIQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtEYQAAIBtFXoQmjBhglxcXJwe9evXt/ovX76sqKgoVahQQWXKlFG3bt2UlJTktI7jx48rPDxcpUqVkq+vr0aOHKlr16451WzYsEHNmjWTh4eH6tSpo9jY2GxjmTFjhmrUqCFPT08FBwdr69athT1dAABwH7sjnwg1bNhQv/76q/X49ttvrb7hw4fr66+/1sKFC7Vx40adPHlSXbt2tfozMjIUHh6uK1euaPPmzZozZ45iY2MVExNj1Rw5ckTh4eFq3769duzYoWHDhqlfv35atWqVVTN//nxFR0dr/Pjx+vHHH9WkSROFhYXp1KlTd2LKAADgPuRijDGFucIJEyZo8eLF2rFjR7a+lJQUVapUSfPmzdNzzz0nSdq/f78aNGig+Ph4PfLII1q5cqWefPJJnTx5UpUrV5YkzZo1S6NHj9bp06fl7u6u0aNHa/ny5dq9e7e17oiICCUnJysuLk6SFBwcrIcfflgffPCBJCkzM1MBAQEaOnSoxowZk6e5pKamytvbWykpKXI4HLezWwDcg+I/HVHUQ8i3kL5TinoIwD0vP+/fd+QToYMHD8rf31+1atXSCy+8oOPHj0uSEhISdPXqVYWGhlq19evXV7Vq1RQfHy9Jio+PV1BQkBWCJCksLEypqanas2ePVXP9OrJqstZx5coVJSQkONW4uroqNDTUqslJenq6UlNTnR4AAKD4KvQgFBwcrNjYWMXFxWnmzJk6cuSIWrdurfPnzysxMVHu7u7y8fFxWqZy5cpKTEyUJCUmJjqFoKz+rL5b1aSmpurSpUs6c+aMMjIycqzJWkdOJk2aJG9vb+sREBBQoH0AAADuDyUKe4WPP/649e/GjRsrODhY1atX14IFC+Tl5VXYmytUY8eOVXR0tPU8NTWVMAQAQDF2xy+f9/Hx0YMPPqhDhw7Jz89PV65cUXJyslNNUlKS/Pz8JEl+fn7ZriLLep5bjcPhkJeXlypWrCg3N7cca7LWkRMPDw85HA6nBwAAKL7ueBC6cOGCDh8+rCpVqqh58+YqWbKk1q5da/UfOHBAx48fV0hIiCQpJCREu3btcrq6a/Xq1XI4HAoMDLRqrl9HVk3WOtzd3dW8eXOnmszMTK1du9aqAQAAKPQgNGLECG3cuFFHjx7V5s2b9eyzz8rNzU09evSQt7e3+vbtq+joaK1fv14JCQnq06ePQkJC9Mgjj0iSOnXqpMDAQPXq1Us//fSTVq1apXHjxikqKkoeHh6SpIEDB+p///ufRo0apf379+vDDz/UggULNHz4cGsc0dHR+vjjjzVnzhzt27dPgwYNUlpamvr06VPYUwYAAPepQj9H6Oeff1aPHj109uxZVapUSa1atdL333+vSpUqSZKmTp0qV1dXdevWTenp6QoLC9OHH35oLe/m5qZly5Zp0KBBCgkJUenSpRUZGamJEydaNTVr1tTy5cs1fPhwTZ8+XVWrVtUnn3yisLAwq6Z79+46ffq0YmJilJiYqKZNmyouLi7bCdQAAMC+Cv0+QsUJ9xECijfuIwQUT0V+HyEAAID7AUEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYFkEIAADYli2C0IwZM1SjRg15enoqODhYW7duLeohAQCAe0CJoh7AnTZ//nxFR0dr1qxZCg4O1rRp0xQWFqYDBw7I19e3qIcHAEChmbr6/yvqIeTb8D88WKTbL/ZB6L333lP//v3Vp08fSdKsWbO0fPlyffbZZxozZkyRji3+0xFFuv2CCOk7paiHAAC4iUeO/7Ooh1AARfu+UqyD0JUrV5SQkKCxY8daba6urgoNDVV8fHy2+vT0dKWnp1vPU1JSJEmpqal3ZHxpl9JzL7rH3Kl9gfvfjHWHinoI+fbwffganLT4x6IeAu5h9+PP9J14X8lapzEm19piHYTOnDmjjIwMVa5c2am9cuXK2r9/f7b6SZMm6Y033sjWHhAQcMfGeN8Z+kFRjwCwOV6DKGbu4PvK+fPn5e3tfcuaYh2E8mvs2LGKjo62nmdmZurcuXOqUKGCXFxcCnVbqampCggI0IkTJ+RwOAp13feC4j4/qfjPkfnd/4r7HJnf/e9OzdEYo/Pnz8vf3z/X2mIdhCpWrCg3NzclJSU5tSclJcnPzy9bvYeHhzw8PJzafHx87uQQ5XA4iu0PuFT85ycV/zkyv/tfcZ8j87v/3Yk55vZJUJZiffm8u7u7mjdvrrVr11ptmZmZWrt2rUJCQopwZAAA4F5QrD8RkqTo6GhFRkaqRYsWatmypaZNm6a0tDTrKjIAAGBfxT4Ide/eXadPn1ZMTIwSExPVtGlTxcXFZTuB+m7z8PDQ+PHjs30VV1wU9/lJxX+OzO/+V9znyPzuf/fCHF1MXq4tAwAAKIaK9TlCAAAAt0IQAgAAtkUQAgAAtkUQAgAAtkUQAgAAtkUQukP++te/6tFHH1WpUqXyfHdqY4xiYmJUpUoVeXl5KTQ0VAcPHnSqOXfunF544QU5HA75+Piob9++unDhwh2YQe7yO5ajR4/KxcUlx8fChQutupz6v/jii7sxJScF2dft2rXLNvaBAwc61Rw/flzh4eEqVaqUfH19NXLkSF27du1OTiVH+Z3fuXPnNHToUNWrV09eXl6qVq2aXn75ZeuPE2cpyuM3Y8YM1ahRQ56engoODtbWrVtvWb9w4ULVr19fnp6eCgoK0ooVK5z68/KavJvyM7+PP/5YrVu3Vrly5VSuXDmFhoZmq+/du3e2Y9W5c+c7PY1bys8cY2Njs43f09PTqeZ+PoY5/T5xcXFReHi4VXMvHcNNmzbpqaeekr+/v1xcXLR48eJcl9mwYYOaNWsmDw8P1alTR7Gxsdlq8vu6zjeDOyImJsa89957Jjo62nh7e+dpmbffftt4e3ubxYsXm59++sk8/fTTpmbNmubSpUtWTefOnU2TJk3M999/b/7P//k/pk6dOqZHjx53aBa3lt+xXLt2zfz6669OjzfeeMOUKVPGnD9/3qqTZGbPnu1Ud/0+uFsKsq/btm1r+vfv7zT2lJQUq//atWumUaNGJjQ01Gzfvt2sWLHCVKxY0YwdO/ZOTyeb/M5v165dpmvXrmbp0qXm0KFDZu3ataZu3bqmW7duTnVFdfy++OIL4+7ubj777DOzZ88e079/f+Pj42OSkpJyrP/uu++Mm5ubmTx5stm7d68ZN26cKVmypNm1a5dVk5fX5N2S3/n17NnTzJgxw2zfvt3s27fP9O7d23h7e5uff/7ZqomMjDSdO3d2Olbnzp27W1PKJr9znD17tnE4HE7jT0xMdKq5n4/h2bNnnea2e/du4+bmZmbPnm3V3EvHcMWKFea1114zX331lZFkFi1adMv6//3vf6ZUqVImOjra7N2717z//vvGzc3NxMXFWTX53WcFQRC6w2bPnp2nIJSZmWn8/PzMu+++a7UlJycbDw8P85///McYY8zevXuNJPPDDz9YNStXrjQuLi7ml19+KfSx30phjaVp06bmpZdecmrLywvoTivo/Nq2bWteeeWVm/avWLHCuLq6Ov2ynjlzpnE4HCY9Pb1Qxp4XhXX8FixYYNzd3c3Vq1ettqI6fi1btjRRUVHW84yMDOPv728mTZqUY/3zzz9vwsPDndqCg4PNn//8Z2NM3l6Td1N+53eja9eumbJly5o5c+ZYbZGRkeaZZ54p7KEWWH7nmNvv1+J2DKdOnWrKli1rLly4YLXda8cwS15+D4waNco0bNjQqa179+4mLCzMen67+ywv+GrsHnHkyBElJiYqNDTUavP29lZwcLDi4+MlSfHx8fLx8VGLFi2smtDQULm6umrLli13dbyFMZaEhATt2LFDffv2zdYXFRWlihUrqmXLlvrss89k7vJ9P29nfnPnzlXFihXVqFEjjR07VhcvXnRab1BQkNOdzcPCwpSamqo9e/YU/kRuorB+llJSUuRwOFSihPNN6u/28bty5YoSEhKcXj+urq4KDQ21Xj83io+Pd6qXfj8WWfV5eU3eLQWZ340uXryoq1evqnz58k7tGzZskK+vr+rVq6dBgwbp7NmzhTr2vCroHC9cuKDq1asrICBAzzzzjNPrqLgdw08//VQREREqXbq0U/u9cgzzK7fXYGHss7wo9n9i436RmJgoSdn+9EflypWtvsTERPn6+jr1lyhRQuXLl7dq7pbCGMunn36qBg0a6NFHH3Vqnzhxojp06KBSpUrpm2++0eDBg3XhwgW9/PLLhTb+3BR0fj179lT16tXl7++vnTt3avTo0Tpw4IC++uora705HeOsvrulMI7fmTNn9Oabb2rAgAFO7UVx/M6cOaOMjIwc9+3+/ftzXOZmx+L611tW281q7paCzO9Go0ePlr+/v9ObSufOndW1a1fVrFlThw8f1l/+8hc9/vjjio+Pl5ubW6HOITcFmWO9evX02WefqXHjxkpJSdGUKVP06KOPas+ePapatWqxOoZbt27V7t279emnnzq130vHML9u9hpMTU3VpUuX9Ntvv932z31eEITyYcyYMXrnnXduWbNv3z7Vr1//Lo2o8OV1jrfr0qVLmjdvnl5//fVsfde3PfTQQ0pLS9O7775bKG+kd3p+14eCoKAgValSRR07dtThw4dVu3btAq83r+7W8UtNTVV4eLgCAwM1YcIEp747efxQMG+//ba++OILbdiwwelk4oiICOvfQUFBaty4sWrXrq0NGzaoY8eORTHUfAkJCVFISIj1/NFHH1WDBg300Ucf6c033yzCkRW+Tz/9VEFBQWrZsqVT+/1+DO8FBKF8ePXVV9W7d+9b1tSqVatA6/bz85MkJSUlqUqVKlZ7UlKSmjZtatWcOnXKablr167p3Llz1vK3K69zvN2xfPnll7p48aJefPHFXGuDg4P15ptvKj09/bb/MN/dml+W4OBgSdKhQ4dUu3Zt+fn5ZbviISkpSZIK5RjejfmdP39enTt3VtmyZbVo0SKVLFnylvWFefxupmLFinJzc7P2ZZakpKSbzsfPz++W9Xl5Td4tBZlflilTpujtt9/WmjVr1Lhx41vW1qpVSxUrVtShQ4fu+pvo7cwxS8mSJfXQQw/p0KFDkorPMUxLS9MXX3yhiRMn5rqdojyG+XWz16DD4ZCXl5fc3Nxu+2ciTwrtbCPkKL8nS0+ZMsVqS0lJyfFk6W3btlk1q1atKtKTpQs6lrZt22a72uhm3nrrLVOuXLkCj7UgCmtff/vtt0aS+emnn4wx/+9k6euvePjoo4+Mw+Ewly9fLrwJ5KKg80tJSTGPPPKIadu2rUlLS8vTtu7W8WvZsqUZMmSI9TwjI8M88MADtzxZ+sknn3RqCwkJyXay9K1ek3dTfudnjDHvvPOOcTgcJj4+Pk/bOHHihHFxcTFLliy57fEWREHmeL1r166ZevXqmeHDhxtjiscxNOb39xEPDw9z5syZXLdR1Mcwi/J4snSjRo2c2nr06JHtZOnb+ZnI01gLbU1wcuzYMbN9+3br8vDt27eb7du3O10mXq9ePfPVV19Zz99++23j4+NjlixZYnbu3GmeeeaZHC+ff+ihh8yWLVvMt99+a+rWrVukl8/faiw///yzqVevntmyZYvTcgcPHjQuLi5m5cqV2da5dOlS8/HHH5tdu3aZgwcPmg8//NCUKlXKxMTE3PH53Ci/8zt06JCZOHGi2bZtmzly5IhZsmSJqVWrlmnTpo21TNbl8506dTI7duwwcXFxplKlSkV2+Xx+5peSkmKCg4NNUFCQOXTokNPluteuXTPGFO3x++KLL4yHh4eJjY01e/fuNQMGDDA+Pj7WFXq9evUyY8aMseq/++47U6JECTNlyhSzb98+M378+Bwvn8/tNXm35Hd+b7/9tnF3dzdffvml07HK+h10/vx5M2LECBMfH2+OHDli1qxZY5o1a2bq1q17V0P57czxjTfeMKtWrTKHDx82CQkJJiIiwnh6epo9e/ZYNffzMczSqlUr071792zt99oxPH/+vPVeJ8m89957Zvv27ebYsWPGGGPGjBljevXqZdVnXT4/cuRIs2/fPjNjxowcL5+/1T4rDAShOyQyMtJIyvZYv369VaP//34rWTIzM83rr79uKleubDw8PEzHjh3NgQMHnNZ79uxZ06NHD1OmTBnjcDhMnz59nMLV3ZTbWI4cOZJtzsYYM3bsWBMQEGAyMjKyrXPlypWmadOmpkyZMqZ06dKmSZMmZtasWTnW3mn5nd/x48dNmzZtTPny5Y2Hh4epU6eOGTlypNN9hIwx5ujRo+bxxx83Xl5epmLFiubVV191uvz8bsnv/NavX5/jz7Qkc+TIEWNM0R+/999/31SrVs24u7ubli1bmu+//97qa9u2rYmMjHSqX7BggXnwwQeNu7u7adiwoVm+fLlTf15ek3dTfuZXvXr1HI/V+PHjjTHGXLx40XTq1MlUqlTJlCxZ0lSvXt3079+/UN9gCiI/cxw2bJhVW7lyZfPEE0+YH3/80Wl99/MxNMaY/fv3G0nmm2++ybaue+0Y3ux3RNacIiMjTdu2bbMt07RpU+Pu7m5q1arl9J6Y5Vb7rDC4GHOXr0sGAAC4R3AfIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFsEIQAAYFv/F9QiqILdXmsYAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAL6hJREFUeJzt3X9UVXW+//EXP+SH6IH8AURi2o8ZJU0TFU42M7cbeepSM43aqOM1NJvSQUuYFG0MzWaibGbUwh9j3RWue/X6496xSUm8hIk1khpKoeaP7+SERQd0DI6SgnL2949Z7PEklvjryMfnY62zluzPe+/zfp9V8FqbvTcBlmVZAgAAMEygvxsAAAC4HAg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAfvP2229r1qxZ/m4DgKEIOQD85u2339Zzzz3n7zYAGIqQA8Av6urq/N0CAMMRcgBcdrNmzVJAQID27Nmjn//857ruuuvUpUsXLViwQJIUEBBgv87Xe++9p4cfflhdu3ZVaGio4uPjlZGRoRMnTvjUjRkzRu3atdOnn34ql8uliIgIxcXFafbs2bIsy6fW6/Vq3rx5uu222xQWFqaYmBg98cQT+uqrr+yamTNnKjAwUEVFRT77Pv744woJCdFHH33U0o8HwGUS7O8GAFw7Hn74Yd1666164YUXdPToURUXF6uwsFD/+Z//2eJjrV69Wl9//bUmTJigjh07atu2bXr11Vf1+eefa/Xq1T61jY2Nuu+++5ScnKw5c+aooKBAM2fO1OnTpzV79my77oknnlBeXp7Gjh2rJ598UgcPHlRubq527typv/zlL2rTpo1mzJihtWvXaty4cSovL1f79u21YcMGvfbaa3r++efVp0+fi/6cAFwiFgBcZjNnzrQkWSNHjvTZnp6ebl3ot6Gvv/76rG05OTlWQECA9dlnn9nb0tLSLEnWpEmT7G1er9dKTU21QkJCrMOHD1uWZVnvvfeeJclatmyZzzELCgrO2l5eXm6FhIRYjz32mPXVV19ZN9xwg9W/f3/r1KlTFzQLgMuDX1cBuGLGjx9/yY4VHh5u/7uurk5HjhzRnXfeKcuytHPnzrPqJ06caP87ICBAEydOVENDg9555x1J/zgzFBkZqXvvvVdHjhyxX4mJiWrXrp3effdde/9evXrpueee0+uvvy6Xy6UjR45o6dKlCg7m5DhwNeH/SABXTPfu3S/ZsSoqKpSdna233nrL55oZSaqtrfX5OjAwUDfddJPPtu9973uSpL/97W+SpAMHDqi2tlbR0dHNvl91dbXP11OmTNGKFSu0bds2vfDCC0pISLiYcQBcBoQcAFfMmWdfLkZjY6PuvfdeHT16VFlZWerRo4ciIiL0xRdfaMyYMfJ6vS0+ptfrVXR0tJYtW9bseufOnX2+/vTTT3XgwAFJUnl5ecuHAHDZEXIA+E1L7qY6U3l5ufbv36+lS5fqkUcesbcXFhY2W+/1evXpp5/aZ28kaf/+/ZKkbt26SZJuvvlmvfPOOxo0aNB3hjGv16sxY8bI4XBo8uTJeuGFFzRs2DANGTLkguYBcHlwTQ4Av4mIiJAk1dTUtGi/oKAgSfK5BdyyLM2fP/+c++Tm5vrU5ubmqk2bNrrnnnskST/72c/U2Nio559//qx9T58+7dPjH/7wB23ZskVLlizR888/rzvvvFMTJkzQkSNHWjQHgMuLMzkA/CYxMVGS9OSTT8rlcikoKEgjRoz4zv169Oihm2++WU8//bS++OILORwO/e///u9Z1+Y0CQsLU0FBgdLS0pSUlKT169crPz9fzzzzjP1rqB/96Ed64oknlJOTo7KyMg0ePFht2rTRgQMHtHr1as2fP1/Dhg3TJ598omeffVZjxozRgw8+KEnKy8tT37599ctf/lKrVq26RJ8OgIvm35u7AFwLmm4hb7pdu8np06etSZMmWZ07d7YCAgJadDv5nj17rJSUFKtdu3ZWp06drF/84hfWRx99ZEmy3njjDbsuLS3NioiIsP76179agwcPttq2bWvFxMRYM2fOtBobG8867pIlS6zExEQrPDzcat++vdW7d29r6tSpVmVlpXX69GlrwIABVpcuXayamhqf/ebPn29JslauXNmyDwfAZRNgWd945CcAGGTMmDH6n//5Hx0/ftzfrQC4wrgmBwAAGIlrcgBcVY4ePaqGhoZzrgcFBZ11OzcANIeQA+CqMmTIEBUXF59z/cYbb7Qf4AcA34ZrcgBcVUpLS895l5T0jwcKDho06Ap2BKC1IuQAAAAjceExAAAw0jV9TY7X61VlZaXat29/wY+XBwAAV5ZlWTp27Jji4uIUGHju8zXXdMiprKxUfHy8v9sAAAAX4NChQ+rSpcs516/pkNO+fXtJ//iQHA6Hn7sBAADnw+PxKD4+3v45fi7XdMhp+hWVw+Eg5AAA0Mp816UmXHgMAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKRgfzcAAPinuYX7/d1Ci2Xc+z1/twA0izM5AADASIQcAABgJEIOAAAwEtfkAMBVJLliib9buAC/83cDQLM4kwMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQWhZxZs2YpICDA59WjRw97/eTJk0pPT1fHjh3Vrl07DR06VFVVVT7HqKioUGpqqtq2bavo6GhNmTJFp0+f9qnZtGmT+vXrp9DQUN1yyy3Ky8s7q5cFCxaoW7duCgsLU1JSkrZt29aSUQAAgOFafCbntttu05dffmm/3n//fXstIyNDa9eu1erVq1VcXKzKykoNGTLEXm9sbFRqaqoaGhq0ZcsWLV26VHl5ecrOzrZrDh48qNTUVN19990qKyvT5MmT9dhjj2nDhg12zcqVK5WZmamZM2dqx44d6tOnj1wul6qrqy/0cwAAAIYJsCzLOt/iWbNm6c0331RZWdlZa7W1tercubOWL1+uYcOGSZL27t2rnj17qqSkRMnJyVq/fr0eeOABVVZWKiYmRpK0ePFiZWVl6fDhwwoJCVFWVpby8/O1a9cu+9gjRoxQTU2NCgoKJElJSUkaMGCAcnNzJUler1fx8fGaNGmSpk2bdt7DezweRUZGqra2Vg6H47z3A4DLpeQ/nvZ3Cy3mHMfDAHFlne/P7xafyTlw4IDi4uJ00003adSoUaqoqJAklZaW6tSpU0pJSbFre/Tooa5du6qkpESSVFJSot69e9sBR5JcLpc8Ho92795t15x5jKaapmM0NDSotLTUpyYwMFApKSl2zbnU19fL4/H4vAAAgJlaFHKSkpKUl5engoICLVq0SAcPHtQPfvADHTt2TG63WyEhIYqKivLZJyYmRm63W5Lkdrt9Ak7TetPat9V4PB6dOHFCR44cUWNjY7M1Tcc4l5ycHEVGRtqv+Pj4lowPAABakRb97ar777/f/vftt9+upKQk3XjjjVq1apXCw8MveXOX2vTp05WZmWl/7fF4CDoAABjqom4hj4qK0ve+9z39v//3/xQbG6uGhgbV1NT41FRVVSk2NlaSFBsbe9bdVk1ff1eNw+FQeHi4OnXqpKCgoGZrmo5xLqGhoXI4HD4vAABgposKOcePH9df//pXXX/99UpMTFSbNm1UVFRkr+/bt08VFRVyOp2SJKfTqfLycp+7oAoLC+VwOJSQkGDXnHmMppqmY4SEhCgxMdGnxuv1qqioyK4BAABoUch5+umnVVxcrL/97W/asmWLfvrTnyooKEgjR45UZGSkxo0bp8zMTL377rsqLS3V2LFj5XQ6lZycLEkaPHiwEhISNHr0aH300UfasGGDZsyYofT0dIWGhkqSxo8fr08//VRTp07V3r17tXDhQq1atUoZGRl2H5mZmXrttde0dOlSffLJJ5owYYLq6uo0duzYS/jRAACA1qxF1+R8/vnnGjlypP7+97+rc+fOuuuuu/TBBx+oc+fOkqS5c+cqMDBQQ4cOVX19vVwulxYuXGjvHxQUpHXr1mnChAlyOp2KiIhQWlqaZs+ebdd0795d+fn5ysjI0Pz589WlSxe9/vrrcrlcds3w4cN1+PBhZWdny+12q2/fviooKDjrYmQA17a5hfv93UKLJfu7gQvAbe+4WrXoOTmm4Tk5gNlaZcipWOLvFq4JhJzW7bI9JwcAAKA1IOQAAAAjEXIAAICRWnThMQC0JlzfAlzbOJMDAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACPxt6sAANecuYX7/d1Ci2Xc+z1/t9DqcCYHAAAYiZADAACMRMgBAABGIuQAAAAjceExAOCak1yxxN8tXIDf+buBVoczOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMFKwvxsA0DrMLdzv7xZaLNnfDQDwK87kAAAAIxFyAACAkfh1FYDzklyxxN8tAECLcCYHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRLirkvPjiiwoICNDkyZPtbSdPnlR6ero6duyodu3aaejQoaqqqvLZr6KiQqmpqWrbtq2io6M1ZcoUnT592qdm06ZN6tevn0JDQ3XLLbcoLy/vrPdfsGCBunXrprCwMCUlJWnbtm0XMw4AADDIBYec7du3649//KNuv/12n+0ZGRlau3atVq9ereLiYlVWVmrIkCH2emNjo1JTU9XQ0KAtW7Zo6dKlysvLU3Z2tl1z8OBBpaam6u6771ZZWZkmT56sxx57TBs2bLBrVq5cqczMTM2cOVM7duxQnz595HK5VF1dfaEjAQAAgwRYlmW1dKfjx4+rX79+WrhwoX7zm9+ob9++mjdvnmpra9W5c2ctX75cw4YNkyTt3btXPXv2VElJiZKTk7V+/Xo98MADqqysVExMjCRp8eLFysrK0uHDhxUSEqKsrCzl5+dr165d9nuOGDFCNTU1KigokCQlJSVpwIABys3NlSR5vV7Fx8dr0qRJmjZt2nnN4fF4FBkZqdraWjkcjpZ+DMA1peQ/nvZ3C8A1zTnud/5u4apxvj+/L+hMTnp6ulJTU5WSkuKzvbS0VKdOnfLZ3qNHD3Xt2lUlJSWSpJKSEvXu3dsOOJLkcrnk8Xi0e/duu+abx3a5XPYxGhoaVFpa6lMTGBiolJQUu6Y59fX18ng8Pi8AAGCmFj/xeMWKFdqxY4e2b99+1prb7VZISIiioqJ8tsfExMjtdts1ZwacpvWmtW+r8Xg8OnHihL766is1NjY2W7N3795z9p6Tk6Pnnnvu/AYFAACtWovO5Bw6dEhPPfWUli1bprCwsMvV02Uzffp01dbW2q9Dhw75uyUAAHCZtCjklJaWqrq6Wv369VNwcLCCg4NVXFysV155RcHBwYqJiVFDQ4Nqamp89quqqlJsbKwkKTY29qy7rZq+/q4ah8Oh8PBwderUSUFBQc3WNB2jOaGhoXI4HD4vAABgphaFnHvuuUfl5eUqKyuzX/3799eoUaPsf7dp00ZFRUX2Pvv27VNFRYWcTqckyel0qry83OcuqMLCQjkcDiUkJNg1Zx6jqabpGCEhIUpMTPSp8Xq9KioqsmsAAMC1rUXX5LRv3169evXy2RYREaGOHTva28eNG6fMzEx16NBBDodDkyZNktPpVHJysiRp8ODBSkhI0OjRozVnzhy53W7NmDFD6enpCg0NlSSNHz9eubm5mjp1qh599FFt3LhRq1atUn5+vv2+mZmZSktLU//+/TVw4EDNmzdPdXV1Gjt27EV9IAAAwAwtvvD4u8ydO1eBgYEaOnSo6uvr5XK5tHDhQns9KChI69at04QJE+R0OhUREaG0tDTNnj3brunevbvy8/OVkZGh+fPnq0uXLnr99dflcrnsmuHDh+vw4cPKzs6W2+1W3759VVBQcNbFyAAA4Np0Qc/JMQXPyQHOH8/JAfyL5+T802V9Tg4AAMDVjpADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGCkYH83AFxr5hbu93cLFyTZ3w0AQAtxJgcAABiJkAMAAIzEr6sAP0iuWOLvFgDAeJzJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQWhZxFixbp9ttvl8PhkMPhkNPp1Pr16+31kydPKj09XR07dlS7du00dOhQVVVV+RyjoqJCqampatu2raKjozVlyhSdPn3ap2bTpk3q16+fQkNDdcsttygvL++sXhYsWKBu3bopLCxMSUlJ2rZtW0tGAQAAhmtRyOnSpYtefPFFlZaW6sMPP9S//uu/6ic/+Yl2794tScrIyNDatWu1evVqFRcXq7KyUkOGDLH3b2xsVGpqqhoaGrRlyxYtXbpUeXl5ys7OtmsOHjyo1NRU3X333SorK9PkyZP12GOPacOGDXbNypUrlZmZqZkzZ2rHjh3q06ePXC6XqqurL/bzAAAAhgiwLMu6mAN06NBBL7/8soYNG6bOnTtr+fLlGjZsmCRp79696tmzp0pKSpScnKz169frgQceUGVlpWJiYiRJixcvVlZWlg4fPqyQkBBlZWUpPz9fu3btst9jxIgRqqmpUUFBgSQpKSlJAwYMUG5uriTJ6/UqPj5ekyZN0rRp0867d4/Ho8jISNXW1srhcFzMxwCct7mF+5VcscTfbQBoZZzjfufvFq4a5/vz+4KvyWlsbNSKFStUV1cnp9Op0tJSnTp1SikpKXZNjx491LVrV5WUlEiSSkpK1Lt3bzvgSJLL5ZLH47HPBpWUlPgco6mm6RgNDQ0qLS31qQkMDFRKSopdcy719fXyeDw+LwAAYKYWh5zy8nK1a9dOoaGhGj9+vNasWaOEhAS53W6FhIQoKirKpz4mJkZut1uS5Ha7fQJO03rT2rfVeDwenThxQkeOHFFjY2OzNU3HOJecnBxFRkbar/j4+JaODwAAWokWh5zvf//7Kisr09atWzVhwgSlpaVpz549l6O3S2769Omqra21X4cOHfJ3SwAA4DIJbukOISEhuuWWWyRJiYmJ2r59u+bPn6/hw4eroaFBNTU1PmdzqqqqFBsbK0mKjY096y6opruvzqz55h1ZVVVVcjgcCg8PV1BQkIKCgpqtaTrGuYSGhio0NLSlIwMAgFboop+T4/V6VV9fr8TERLVp00ZFRUX22r59+1RRUSGn0ylJcjqdKi8v97kLqrCwUA6HQwkJCXbNmcdoqmk6RkhIiBITE31qvF6vioqK7BoAAIAWncmZPn267r//fnXt2lXHjh3T8uXLtWnTJm3YsEGRkZEaN26cMjMz1aFDBzkcDk2aNElOp1PJycmSpMGDByshIUGjR4/WnDlz5Ha7NWPGDKWnp9tnWMaPH6/c3FxNnTpVjz76qDZu3KhVq1YpPz/f7iMzM1NpaWnq37+/Bg4cqHnz5qmurk5jx469hB8NAABozVoUcqqrq/XII4/oyy+/VGRkpG6//XZt2LBB9957ryRp7ty5CgwM1NChQ1VfXy+Xy6WFCxfa+wcFBWndunWaMGGCnE6nIiIilJaWptmzZ9s13bt3V35+vjIyMjR//nx16dJFr7/+ulwul10zfPhwHT58WNnZ2XK73erbt68KCgrOuhgZAABcuy76OTmtGc/JgT/wnBwAF4Ln5PzTZX9ODgAAwNWMkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMFKL/0AncDWZW7jf3y0AAK5SnMkBAABGIuQAAAAjEXIAAICRuCYHrR5/7BIA0BzO5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBILQo5OTk5GjBggNq3b6/o6Gg99NBD2rdvn0/NyZMnlZ6ero4dO6pdu3YaOnSoqqqqfGoqKiqUmpqqtm3bKjo6WlOmTNHp06d9ajZt2qR+/fopNDRUt9xyi/Ly8s7qZ8GCBerWrZvCwsKUlJSkbdu2tWQcAABgsBaFnOLiYqWnp+uDDz5QYWGhTp06pcGDB6uurs6uycjI0Nq1a7V69WoVFxersrJSQ4YMsdcbGxuVmpqqhoYGbdmyRUuXLlVeXp6ys7PtmoMHDyo1NVV33323ysrKNHnyZD322GPasGGDXbNy5UplZmZq5syZ2rFjh/r06SOXy6Xq6uqL+TwAAIAhAizLsi5058OHDys6OlrFxcX64Q9/qNraWnXu3FnLly/XsGHDJEl79+5Vz549VVJSouTkZK1fv14PPPCAKisrFRMTI0lavHixsrKydPjwYYWEhCgrK0v5+fnatWuX/V4jRoxQTU2NCgoKJElJSUkaMGCAcnNzJUler1fx8fGaNGmSpk2bdl79ezweRUZGqra2Vg6H40I/BvjR3ML9Sq5Y4u82AOCyc477nb9buGqc78/vi7omp7a2VpLUoUMHSVJpaalOnTqllJQUu6ZHjx7q2rWrSkpKJEklJSXq3bu3HXAkyeVyyePxaPfu3XbNmcdoqmk6RkNDg0pLS31qAgMDlZKSYtc0p76+Xh6Px+cFAADMdMEhx+v1avLkyRo0aJB69eolSXK73QoJCVFUVJRPbUxMjNxut11zZsBpWm9a+7Yaj8ejEydO6MiRI2psbGy2pukYzcnJyVFkZKT9io+Pb/ngAACgVbjgkJOenq5du3ZpxYoVl7Kfy2r69Omqra21X4cOHfJ3SwAA4DIJvpCdJk6cqHXr1mnz5s3q0qWLvT02NlYNDQ2qqanxOZtTVVWl2NhYu+abd0E13X11Zs0378iqqqqSw+FQeHi4goKCFBQU1GxN0zGaExoaqtDQ0JYPDAAAWp0WncmxLEsTJ07UmjVrtHHjRnXv3t1nPTExUW3atFFRUZG9bd++faqoqJDT6ZQkOZ1OlZeX+9wFVVhYKIfDoYSEBLvmzGM01TQdIyQkRImJiT41Xq9XRUVFdg0AALi2tehMTnp6upYvX64///nPat++vX39S2RkpMLDwxUZGalx48YpMzNTHTp0kMPh0KRJk+R0OpWcnCxJGjx4sBISEjR69GjNmTNHbrdbM2bMUHp6un2WZfz48crNzdXUqVP16KOPauPGjVq1apXy8/PtXjIzM5WWlqb+/ftr4MCBmjdvnurq6jR27NhL9dkAAIBWrEUhZ9GiRZKkf/mXf/HZ/sYbb2jMmDGSpLlz5yowMFBDhw5VfX29XC6XFi5caNcGBQVp3bp1mjBhgpxOpyIiIpSWlqbZs2fbNd27d1d+fr4yMjI0f/58denSRa+//rpcLpddM3z4cB0+fFjZ2dlyu93q27evCgoKzroYGQAAXJsu6jk5rR3PyWn9eE4OgGsFz8n5pyvynBwAAICrFSEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADBSi0PO5s2b9eCDDyouLk4BAQF68803fdYty1J2drauv/56hYeHKyUlRQcOHPCpOXr0qEaNGiWHw6GoqCiNGzdOx48f96n5+OOP9YMf/EBhYWGKj4/XnDlzzupl9erV6tGjh8LCwtS7d2+9/fbbLR0HAAAYqsUhp66uTn369NGCBQuaXZ8zZ45eeeUVLV68WFu3blVERIRcLpdOnjxp14waNUq7d+9WYWGh1q1bp82bN+vxxx+31z0ejwYPHqwbb7xRpaWlevnllzVr1iwtWbLErtmyZYtGjhypcePGaefOnXrooYf00EMPadeuXS0dCQAAGCjAsizrgncOCNCaNWv00EMPSfrHWZy4uDj96le/0tNPPy1Jqq2tVUxMjPLy8jRixAh98sknSkhI0Pbt29W/f39JUkFBgf7t3/5Nn3/+ueLi4rRo0SL9+te/ltvtVkhIiCRp2rRpevPNN7V3715J0vDhw1VXV6d169bZ/SQnJ6tv375avHjxefXv8XgUGRmp2tpaORyOC/0Y4EdzC/cruWLJdxcCQCvnHPc7f7dw1Tjfn9+X9JqcgwcPyu12KyUlxd4WGRmppKQklZSUSJJKSkoUFRVlBxxJSklJUWBgoLZu3WrX/PCHP7QDjiS5XC7t27dPX331lV1z5vs01TS9T3Pq6+vl8Xh8XgAAwEyXNOS43W5JUkxMjM/2mJgYe83tdis6OtpnPTg4WB06dPCpae4YZ77HuWqa1puTk5OjyMhI+xUfH9/SEQEAQCtxTd1dNX36dNXW1tqvQ4cO+bslAABwmVzSkBMbGytJqqqq8tleVVVlr8XGxqq6utpn/fTp0zp69KhPTXPHOPM9zlXTtN6c0NBQORwOnxcAADDTJQ053bt3V2xsrIqKiuxtHo9HW7duldPplCQ5nU7V1NSotLTUrtm4caO8Xq+SkpLsms2bN+vUqVN2TWFhob7//e/ruuuus2vOfJ+mmqb3AQAA17YWh5zjx4+rrKxMZWVlkv5xsXFZWZkqKioUEBCgyZMn6ze/+Y3eeustlZeX65FHHlFcXJx9B1bPnj1133336Re/+IW2bdumv/zlL5o4caJGjBihuLg4SdLPf/5zhYSEaNy4cdq9e7dWrlyp+fPnKzMz0+7jqaeeUkFBgX7/+99r7969mjVrlj788ENNnDjx4j8VAADQ6gW3dIcPP/xQd999t/11U/BIS0tTXl6epk6dqrq6Oj3++OOqqanRXXfdpYKCAoWFhdn7LFu2TBMnTtQ999yjwMBADR06VK+88oq9HhkZqf/7v/9Tenq6EhMT1alTJ2VnZ/s8S+fOO+/U8uXLNWPGDD3zzDO69dZb9eabb6pXr14X9EEAAACzXNRzclo7npPT+vGcHADXCp6T809+eU4OAADA1YKQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGCnY3w3gKvNujr87aJHkir/7uwUAwFWKkAPb3ML9hAYAgDH4dRUAADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkYL93QAAAPhuJf/xtL9baDHnuN/59f05kwMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgpFYfchYsWKBu3bopLCxMSUlJ2rZtm79bAgAAV4FWHXJWrlypzMxMzZw5Uzt27FCfPn3kcrlUXV3t79YAAICfBViWZfm7iQuVlJSkAQMGKDc3V5Lk9XoVHx+vSZMmadq0ad+5v8fjUWRkpGpra+VwOC5pb3ML9yu5YsklPSYAAK2Jc9zvLstxz/fnd/BlefcroKGhQaWlpZo+fbq9LTAwUCkpKSopKWl2n/r6etXX19tf19bWSvrHh3Wpnaw7rroT9d9dCACAoS7Hz9czj/td52labcg5cuSIGhsbFRMT47M9JiZGe/fubXafnJwcPffcc2dtj4+Pvyw9AgBwTZuUe1kPf+zYMUVGRp5zvdWGnAsxffp0ZWZm2l97vV4dPXpUHTt2VEBAwCV7H4/Ho/j4eB06dOiS/xrsasS8ZrvW5pWuvZmZ12wmzmtZlo4dO6a4uLhvrWu1IadTp04KCgpSVVWVz/aqqirFxsY2u09oaKhCQ0N9tkVFRV2uFuVwOIz5D+p8MK/ZrrV5pWtvZuY1m2nzftsZnCat9u6qkJAQJSYmqqioyN7m9XpVVFQkp9Ppx84AAMDVoNWeyZGkzMxMpaWlqX///ho4cKDmzZunuro6jR071t+tAQAAP2vVIWf48OE6fPiwsrOz5Xa71bdvXxUUFJx1MfKVFhoaqpkzZ571qzFTMa/ZrrV5pWtvZuY127U275la9XNyAAAAzqXVXpMDAADwbQg5AADASIQcAABgJEIOAAAwEiHnMliwYIG6deumsLAwJSUladu2bf5u6aLl5ORowIABat++vaKjo/XQQw9p3759PjUnT55Uenq6OnbsqHbt2mno0KFnPayxtXrxxRcVEBCgyZMn29tMnPeLL77Qv//7v6tjx44KDw9X79699eGHH9rrlmUpOztb119/vcLDw5WSkqIDBw74seML19jYqGeffVbdu3dXeHi4br75Zj3//PM+fwunNc+7efNmPfjgg4qLi1NAQIDefPNNn/Xzme3o0aMaNWqUHA6HoqKiNG7cOB0/fvwKTnH+vm3eU6dOKSsrS71791ZERITi4uL0yCOPqLKy0ucYpsz7TePHj1dAQIDmzZvns701zXuhCDmX2MqVK5WZmamZM2dqx44d6tOnj1wul6qrq/3d2kUpLi5Wenq6PvjgAxUWFurUqVMaPHiw6urq7JqMjAytXbtWq1evVnFxsSorKzVkyBA/dn1pbN++XX/84x91++23+2w3bd6vvvpKgwYNUps2bbR+/Xrt2bNHv//973XdddfZNXPmzNErr7yixYsXa+vWrYqIiJDL5dLJkyf92PmFeemll7Ro0SLl5ubqk08+0UsvvaQ5c+bo1VdftWta87x1dXXq06ePFixY0Oz6+cw2atQo7d69W4WFhVq3bp02b96sxx9//EqN0CLfNu/XX3+tHTt26Nlnn9WOHTv0pz/9Sfv27dOPf/xjnzpT5j3TmjVr9MEHHzT75w9a07wXzMIlNXDgQCs9Pd3+urGx0YqLi7NycnL82NWlV11dbUmyiouLLcuyrJqaGqtNmzbW6tWr7ZpPPvnEkmSVlJT4q82LduzYMevWW2+1CgsLrR/96EfWU089ZVmWmfNmZWVZd9111znXvV6vFRsba7388sv2tpqaGis0NNT67//+7yvR4iWVmppqPfrooz7bhgwZYo0aNcqyLLPmlWStWbPG/vp8ZtuzZ48lydq+fbtds379eisgIMD64osvrljvF+Kb8zZn27ZtliTrs88+syzLzHk///xz64YbbrB27dpl3XjjjdbcuXPttdY8b0twJucSamhoUGlpqVJSUuxtgYGBSklJUUlJiR87u/Rqa2slSR06dJAklZaW6tSpUz6z9+jRQ127dm3Vs6enpys1NdVnLsnMed966y31799fDz/8sKKjo3XHHXfotddes9cPHjwot9vtM3NkZKSSkpJa5cx33nmnioqKtH//fknSRx99pPfff1/333+/JPPmPdP5zFZSUqKoqCj179/frklJSVFgYKC2bt16xXu+1GpraxUQEGD//ULT5vV6vRo9erSmTJmi22677ax10+Y9l1b9xOOrzZEjR9TY2HjWE5djYmK0d+9eP3V16Xm9Xk2ePFmDBg1Sr169JElut1shISFn/cHTmJgYud1uP3R58VasWKEdO3Zo+/btZ62ZOO+nn36qRYsWKTMzU88884y2b9+uJ598UiEhIUpLS7Pnau6/79Y487Rp0+TxeNSjRw8FBQWpsbFRv/3tbzVq1ChJMm7eM53PbG63W9HR0T7rwcHB6tChQ6uf/+TJk8rKytLIkSPtP1hp2rwvvfSSgoOD9eSTTza7btq850LIQYulp6dr165dev/99/3dymVz6NAhPfXUUyosLFRYWJi/27kivF6v+vfvrxdeeEGSdMcdd2jXrl1avHix0tLS/Nzdpbdq1SotW7ZMy5cv12233aaysjJNnjxZcXFxRs6Lfzh16pR+9rOfybIsLVq0yN/tXBalpaWaP3++duzYoYCAAH+341f8uuoS6tSpk4KCgs66w6aqqkqxsbF+6urSmjhxotatW6d3331XXbp0sbfHxsaqoaFBNTU1PvWtdfbS0lJVV1erX79+Cg4OVnBwsIqLi/XKK68oODhYMTExRs0rSddff70SEhJ8tvXs2VMVFRWSZM9lyn/fU6ZM0bRp0zRixAj17t1bo0ePVkZGhnJyciSZN++Zzme22NjYs26YOH36tI4ePdpq528KOJ999pkKCwvtsziSWfO+9957qq6uVteuXe3vX5999pl+9atfqVu3bpLMmvfbEHIuoZCQECUmJqqoqMje5vV6VVRUJKfT6cfOLp5lWZo4caLWrFmjjRs3qnv37j7riYmJatOmjc/s+/btU0VFRauc/Z577lF5ebnKysrsV//+/TVq1Cj73ybNK0mDBg0667EA+/fv14033ihJ6t69u2JjY31m9ng82rp1a6uc+euvv1ZgoO+3wKCgIHm9XknmzXum85nN6XSqpqZGpaWlds3GjRvl9XqVlJR0xXu+WE0B58CBA3rnnXfUsWNHn3WT5h09erQ+/vhjn+9fcXFxmjJlijZs2CDJrHm/lb+vfDbNihUrrNDQUCsvL8/as2eP9fjjj1tRUVGW2+32d2sXZcKECVZkZKS1adMm68svv7RfX3/9tV0zfvx4q2vXrtbGjRutDz/80HI6nZbT6fRj15fWmXdXWZZ5827bts0KDg62fvvb31oHDhywli1bZrVt29b6r//6L7vmxRdftKKioqw///nP1scff2z95Cc/sbp3726dOHHCj51fmLS0NOuGG26w1q1bZx08eND605/+ZHXq1MmaOnWqXdOa5z127Ji1c+dOa+fOnZYk6w9/+IO1c+dO+26i85ntvvvus+644w5r69at1vvvv2/deuut1siRI/010rf6tnkbGhqsH//4x1aXLl2ssrIyn+9h9fX19jFMmbc537y7yrJa17wXipBzGbz66qtW165drZCQEGvgwIHWBx984O+WLpqkZl9vvPGGXXPixAnrl7/8pXXddddZbdu2tX76059aX375pf+avsS+GXJMnHft2rVWr169rNDQUKtHjx7WkiVLfNa9Xq/17LPPWjExMVZoaKh1zz33WPv27fNTtxfH4/FYTz31lNW1a1crLCzMuummm6xf//rXPj/0WvO87777brP/z6alpVmWdX6z/f3vf7dGjhxptWvXznI4HNbYsWOtY8eO+WGa7/Zt8x48ePCc38Peffdd+ximzNuc5kJOa5r3QgVY1hmP9wQAADAE1+QAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKT/D5fii4L5VT9LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO0xJREFUeJzt3XtUVXX+//EXFzkQCXgFSUQyU1HSgkI0u4wkldmXyTKNSVJGq4ESqbxUol0tHCtNR7KZstXopE5pZkURmo5FqCilJmqTqen3oIack5QosH9/9GX/POGNOnjE/XysddZyfz7vs/d7bxRfa5+99/EyDMMQAACABXl7ugEAAABPIQgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBcKspU6bIy8vLZaxjx46655573LaNe+65Rx07dnTb+tzpu+++k5eXl+bNm2eOneiYVFdXa9y4cYqIiJC3t7eSk5MlSYcPH9af//xnhYWFycvLS5mZmWevecCCfD3dAABXH3zwgdauXaspU6Z4uhWP2rdvn+bOnavk5GT16tXL0+243WuvvaZp06YpMzNTV1xxhTp06CBJevbZZzVv3jxNmjRJnTp1Urdu3TzcKXB+8+K7xoBzS0ZGhmbPnq2m+k9zypQpeuKJJ1z6r6qqkre3t5o1a3bG61m/fr2uvPJKvf766/XOJh07dky1tbWy2WzuatttvvvuO0VFRbn0XV1drerqavn7+5t1Q4cO1Zo1a/T999+7vL93797y9fXVmjVrzmbbgGXx0RhwDqmsrPTYto8cOaLa2tpGWbfNZmtQCDqdZs2anZMh6GR8fX1dQpAk7d+/XyEhIfVqTzb+W9XW1urIkSNuWx9wviEIAR5Sd93I119/rbvuukstWrRQ+/btNXv2bEmSl5eX+TpT1113nXr06KHi4mL16dNHAQEBioqKUm5urkvdp59+Ki8vL7311lt6/PHHddFFF+mCCy6Q0+mUJBUVFenGG29UcHCwLrjgAl177bX67LPP6m1vzZo1uvLKK+Xv769OnTrplVdeOWFfJ7pGqKKiQmPHjlXHjh1ls9nUvn17DR8+XAcPHtSnn36qK6+8UpI0YsQI8zjUXXdzomuEKisr9dBDDykiIkI2m01dunTRX//613pn1ry8vJSRkaGlS5eqR48estls6t69u/Ly8s70MLvswz333KPg4GCFhIQoNTVVFRUV9eqOv0ao7hqilStXasuWLea+1f1Mdu7cqffff98c/+677yT9clZt8uTJuuSSS2Sz2RQREaFx48apqqrqhPs3f/58de/eXTabzdy3vXv3auTIkQoNDTX3+7XXXnN5f10fixYt0jPPPKP27dvL399f/fv31zfffFNv34qKinTzzTerRYsWCgwM1GWXXaYZM2a41JSWlur2229Xy5Yt5e/vr7i4OC1btqzBxxtoDFwjBHjYHXfcoc6dO+vZZ59VeXm5Vq1apfz8fL355pu/aX2HDh3SzTffrCFDhmjYsGFatGiR7r//fvn5+WnkyJEutU899ZT8/Pz08MMPq6qqSn5+flqxYoVuuukmxcbGavLkyfL29tbrr7+uP/zhD/rPf/6jq666SpK0adMmDRgwQG3atNGUKVNUXV2tyZMnKzQ09LQ9Hj58WP369dPWrVs1cuRIXXHFFTp48KCWLVum77//Xt26ddOTTz6p7OxsjR49Wv369ZMk9enT54TrMwxDt956q1auXKm0tDT16tVLH330kR555BHt3btXL774okv9mjVr9M477+gvf/mLmjdvrpkzZ2rw4MHavXu3WrVqdUbH2TAM/c///I/WrFmj++67T926ddOSJUuUmpp6yve1adNGb775pp555hkdPnxYU6dOlSR169ZNb775psaOHav27dvroYceMutra2t16623as2aNRo9erS6deumTZs26cUXX9T27du1dOlSl22sWLFCixYtUkZGhlq3bq2OHTuqrKxMvXv3NoNSmzZt9OGHHyotLU1Op7PeRdnPPfecvL299fDDD8vhcCgnJ0cpKSkqKioya/Lz83XLLbeoXbt2GjNmjMLCwrR161YtX75cY8aMkSRt2bJFffv21UUXXaQJEyYoMDBQixYtUnJyst5++2398Y9/PKPjDTQaA4BHTJ482ZBkDBs2zGU8PT3d+K3/NK+99lpDkjF9+nRzrKqqyujVq5fRtm1b4+jRo4ZhGMbKlSsNScbFF19s/PTTT2ZtbW2t0blzZyMpKcmora01x3/66ScjKirKuOGGG8yx5ORkw9/f39i1a5c59vXXXxs+Pj71+o+MjDRSU1PN5ezsbEOS8c4779Tbh7rtrlu3zpBkvP766/VqUlNTjcjISHN56dKlhiTj6aefdqm7/fbbDS8vL+Obb74xxyQZfn5+LmNffvmlIcl4+eWX623rZOq2mZOTY45VV1cb/fr1q9d33c/6eNdee63RvXv3euuNjIw0Bg4c6DL25ptvGt7e3sZ//vMfl/Hc3FxDkvHZZ5+57J+3t7exZcsWl9q0tDSjXbt2xsGDB13Ghw4dagQHB5t/D+r+bnTr1s2oqqoy62bMmGFIMjZt2mTua1RUlBEZGWkcOnTIZZ3H/93p37+/ERMTYxw5csRlvk+fPkbnzp3r7T9wtvHRGOBh9913n1vX5+vrq3vvvddc9vPz07333qv9+/eruLjYpTY1NVUBAQHmcklJiXbs2KG77rpLP/zwgw4ePKiDBw+qsrJS/fv31+rVq1VbW6uamhp99NFHSk5ONu92kn45q5GUlHTaHt9++2317NnzhGcDGvJRYJ0PPvhAPj4+evDBB13GH3roIRmGoQ8//NBlPDExUZ06dTKXL7vsMgUFBenbb79t0DZ9fX11//33m2M+Pj564IEHGtz/6SxevFjdunVT165dzZ/JwYMH9Yc//EGStHLlSpf6a6+9VtHR0eayYRh6++23NWjQIBmG4bKOpKQkORwObdiwwWUdI0aMkJ+fn7lcd1au7hht3LhRO3fuVGZmZr1rmup+huXl5VqxYoWGDBmiH3/80dzmDz/8oKSkJO3YsUN79+51z0ECfiM+GgM8LCoqyq3rCw8PV2BgoMvYpZdeKumX61N69+590m3v2LFDkk758Y7D4VBVVZV+/vlnde7cud58ly5d9MEHH5yyx//+978aPHjwqXekAXbt2qXw8HA1b97cZbzu1vNdu3a5jB8f3uq0aNFChw4datA227VrpwsvvNBlvEuXLme8jjO1Y8cObd26VW3atDnh/P79+12Wf/1zPXDggCoqKjR37lzNnTv3jNbx62PUokULSTKP0X//+19JUo8ePU7a9zfffCPDMDRp0iRNmjTppNu96KKLTroOoLERhAAPO/6MjKe3XXfX2LRp00767J4LL7yw3gW6TY2Pj88Jx41z9JEFtbW1iomJ0QsvvHDC+YiICJflk/1c//SnP5005F522WUuy+44RnXbffjhh096pvCSSy454/UBjYEgBJxjfstHQ8fbt2+fKisrXc4Kbd++XZJO+zTmuo+LgoKClJiYeNK6Nm3aKCAgwDyDdLxt27adtsdOnTpp8+bNp6xpyHGIjIzUJ598oh9//NHlrFBpaak5726RkZEqKCjQ4cOHXc4Kncn+N1SnTp305Zdfqn///r/p70ebNm3UvHlz1dTUnPLn2tCeJGnz5s0nXefFF18s6ZfHHbhru4C7cY0QcI6pCzAnug37TFRXV7vcxn706FG98soratOmjWJjY0/53tjYWHXq1El//etfdfjw4XrzBw4ckPTL2YKkpCQtXbpUu3fvNue3bt2qjz766LQ9Dh48WF9++aWWLFlSb67ujENDjsPNN9+smpoazZo1y2X8xRdflJeXl2666abTrqOhbr75ZlVXV2vOnDnmWE1NjV5++WW3b2vIkCHau3evXn311XpzP//882mfP+Xj46PBgwfr7bffPmEArfu5NsQVV1yhqKgovfTSS/V+RnU/w7Zt2+q6667TK6+8ov/93/91y3YBd+OMEHCOqQsrDz74oJKSkuTj46OhQ4ee8fvDw8P1/PPP67vvvtOll16qhQsXqqSkRHPnzj3tQw29vb3197//XTfddJO6d++uESNG6KKLLtLevXu1cuVKBQUF6b333pMkPfHEE8rLy1O/fv30l7/8RdXV1Xr55ZfVvXt3ffXVV6fcziOPPKJ///vfuuOOOzRy5EjFxsaqvLxcy5YtU25urnr27KlOnTopJCREubm5at68uQIDAxUfH3/Ca6oGDRqk66+/Xo899pi+++479ezZUx9//LHeffddZWZmulwY7S6DBg1S3759NWHCBH333XeKjo7WO++8I4fD4fZt3X333Vq0aJHuu+8+rVy5Un379lVNTY1KS0u1aNEiffTRR4qLizvlOp577jmtXLlS8fHxGjVqlKKjo1VeXq4NGzbok08+UXl5eYN68vb21pw5czRo0CD16tVLI0aMULt27VRaWqotW7aYgXj27Nm6+uqrFRMTo1GjRuniiy9WWVmZCgsL9f333+vLL7/8zccFcAvP3bAGWFvdLdUHDhxwGa+urjYeeOABo02bNoaXl1eDbqWvuyV7/fr1RkJCguHv729ERkYas2bNcqmru0V68eLFJ1zPxo0bjdtuu81o1aqVYbPZjMjISGPIkCFGQUGBS92qVauM2NhYw8/Pz7j44ouN3NzcE94q/uvb5w3DMH744QcjIyPDuOiiiww/Pz+jffv2Rmpqqsvt3e+++64RHR1t+Pr6utyS/uvb5w3DMH788Udj7NixRnh4uNGsWTOjc+fOxrRp01xu5TaMX24vT09Pr7fPJ+rxdH744Qfj7rvvNoKCgozg4GDj7rvvNjZu3Oj22+cNwzCOHj1qPP/880b37t0Nm81mtGjRwoiNjTWeeOIJw+FwnHb/DMMwysrKjPT0dCMiIsJo1qyZERYWZvTv39+YO3euWXOyvxs7d+484eMM1qxZY9xwww1G8+bNjcDAQOOyyy6r9xiC//73v8bw4cONsLAwo1mzZsZFF11k3HLLLca///3vE/YJnE181xhwHrnuuut08ODB015/AwD4BdcIAQAAy+IaIaAJKC8v19GjR0867+Pjc9JnzKBhampqTnsR74UXXljv+UEAmiaCENAE3HbbbVq1atVJ5yMjI80v58Tvs2fPntM+5HLy5MmaMmXK2WkIQKPiGiGgCSguLj7lU48DAgLUt2/fs9jR+evIkSNas2bNKWsuvvhi8xk5AJo2ghAAALAsLpYGAACWxTVCp1BbW6t9+/apefPmv/trDwAAwNlhGIZ+/PFHhYeHy9v71Od8CEKnsG/fvnpfZggAAJqGPXv2qH379qesIQidQt2XN+7Zs0dBQUEe7gYAAJwJp9OpiIgIly9hPhmC0CnUfRwWFBREEAIAoIk5k8tauFgaAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYVoOD0OrVqzVo0CCFh4fLy8tLS5cuNeeOHTum8ePHKyYmRoGBgQoPD9fw4cO1b98+l3WUl5crJSVFQUFBCgkJUVpamg4fPuxS89VXX6lfv37y9/dXRESEcnJy6vWyePFide3aVf7+/oqJidEHH3zgMm8YhrKzs9WuXTsFBAQoMTFRO3bsaOguAwCA81SDg1BlZaV69uyp2bNn15v76aeftGHDBk2aNEkbNmzQO++8o23btunWW291qUtJSdGWLVuUn5+v5cuXa/Xq1Ro9erQ573Q6NWDAAEVGRqq4uFjTpk3TlClTNHfuXLPm888/17Bhw5SWlqaNGzcqOTlZycnJ2rx5s1mTk5OjmTNnKjc3V0VFRQoMDFRSUpKOHDnS0N0GAADnI+N3kGQsWbLklDVr1641JBm7du0yDMMwvv76a0OSsW7dOrPmww8/NLy8vIy9e/cahmEYf/vb34wWLVoYVVVVZs348eONLl26mMtDhgwxBg4c6LKt+Ph449577zUMwzBqa2uNsLAwY9q0aeZ8RUWFYbPZjH/9619ntH8Oh8OQZDgcjjOqBwAAnteQ/799GztoORwOeXl5KSQkRJJUWFiokJAQxcXFmTWJiYny9vZWUVGR/vjHP6qwsFDXXHON/Pz8zJqkpCQ9//zzOnTokFq0aKHCwkJlZWW5bCspKcn8qG7nzp2y2+1KTEw054ODgxUfH6/CwkINHTq0Xq9VVVWqqqoyl51OpzsOAc6GlVM93cGZuX6ipzsAABynUS+WPnLkiMaPH69hw4YpKChIkmS329W2bVuXOl9fX7Vs2VJ2u92sCQ0NdampWz5dzfHzx7/vRDW/NnXqVAUHB5uviIiIBu8zAABoOhotCB07dkxDhgyRYRiaM2dOY23GrSZOnCiHw2G+9uzZ4+mWAABAI2qUj8bqQtCuXbu0YsUK82yQJIWFhWn//v0u9dXV1SovL1dYWJhZU1ZW5lJTt3y6muPn68batWvnUtOrV68T9m2z2WSz2Rq6uzjHFX77g6dbMH1Rvf2M6sbecGkjdwIAkBrhjFBdCNqxY4c++eQTtWrVymU+ISFBFRUVKi4uNsdWrFih2tpaxcfHmzWrV6/WsWPHzJr8/Hx16dJFLVq0MGsKCgpc1p2fn6+EhARJUlRUlMLCwlxqnE6nioqKzBoAAGBtDQ5Chw8fVklJiUpKSiT9clFySUmJdu/erWPHjun222/X+vXrNX/+fNXU1Mhut8tut+vo0aOSpG7duunGG2/UqFGjtHbtWn322WfKyMjQ0KFDFR4eLkm666675Ofnp7S0NG3ZskULFy7UjBkzXC6OHjNmjPLy8jR9+nSVlpZqypQpWr9+vTIyMiRJXl5eyszM1NNPP61ly5Zp06ZNGj58uMLDw5WcnPw7DxsAADgfNPijsfXr1+v66683l+vCSWpqqqZMmaJly5ZJUr2Pn1auXKnrrrtOkjR//nxlZGSof//+8vb21uDBgzVz5kyzNjg4WB9//LHS09MVGxur1q1bKzs72+VZQ3369NGCBQv0+OOP69FHH1Xnzp21dOlS9ejRw6wZN26cKisrNXr0aFVUVOjqq69WXl6e/P39G7rbAADgPORlGIbh6SbOVU6nU8HBwXI4HC7XOeEcdIrb58+pa4Q6jD59kbhGCAB+j4b8/813jQEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMtqlG+fx/nrxfwz+/b0s6337nPn6dEAgKaDM0IAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyGhyEVq9erUGDBik8PFxeXl5aunSpy7xhGMrOzla7du0UEBCgxMRE7dixw6WmvLxcKSkpCgoKUkhIiNLS0nT48GGXmq+++kr9+vWTv7+/IiIilJOTU6+XxYsXq2vXrvL391dMTIw++OCDBvcCAACsq8FBqLKyUj179tTs2bNPOJ+Tk6OZM2cqNzdXRUVFCgwMVFJSko4cOWLWpKSkaMuWLcrPz9fy5cu1evVqjR492px3Op0aMGCAIiMjVVxcrGnTpmnKlCmaO3euWfP5559r2LBhSktL08aNG5WcnKzk5GRt3ry5Qb0AAADr8jIMw/jNb/by0pIlS5ScnCzplzMw4eHheuihh/Twww9LkhwOh0JDQzVv3jwNHTpUW7duVXR0tNatW6e4uDhJUl5enm6++WZ9//33Cg8P15w5c/TYY4/JbrfLz89PkjRhwgQtXbpUpaWlkqQ777xTlZWVWr58udlP79691atXL+Xm5p5RL6fjdDoVHBwsh8OhoKCg33qYzisv5m/3dAsn1Hv33NMXnQO+6DD69EWSxt5waSN3AgDnr4b8/+3Wa4R27twpu92uxMREcyw4OFjx8fEqLCyUJBUWFiokJMQMQZKUmJgob29vFRUVmTXXXHONGYIkKSkpSdu2bdOhQ4fMmuO3U1dTt50z6eXXqqqq5HQ6XV4AAOD85dYgZLfbJUmhoaEu46Ghoeac3W5X27ZtXeZ9fX3VsmVLl5oTreP4bZys5vj50/Xya1OnTlVwcLD5ioiIOIO9BgAATRV3jR1n4sSJcjgc5mvPnj2ebgkAADQitwahsLAwSVJZWZnLeFlZmTkXFham/fv3u8xXV1ervLzcpeZE6zh+GyerOX7+dL38ms1mU1BQkMsLAACcv9wahKKiohQWFqaCggJzzOl0qqioSAkJCZKkhIQEVVRUqLi42KxZsWKFamtrFR8fb9asXr1ax44dM2vy8/PVpUsXtWjRwqw5fjt1NXXbOZNeAACAtTU4CB0+fFglJSUqKSmR9MtFySUlJdq9e7e8vLyUmZmpp59+WsuWLdOmTZs0fPhwhYeHm3eWdevWTTfeeKNGjRqltWvX6rPPPlNGRoaGDh2q8PBwSdJdd90lPz8/paWlacuWLVq4cKFmzJihrKwss48xY8YoLy9P06dPV2lpqaZMmaL169crIyNDks6oFwAAYG2+DX3D+vXrdf3115vLdeEkNTVV8+bN07hx41RZWanRo0eroqJCV199tfLy8uTv72++Z/78+crIyFD//v3l7e2twYMHa+bMmeZ8cHCwPv74Y6Wnpys2NlatW7dWdna2y7OG+vTpowULFujxxx/Xo48+qs6dO2vp0qXq0aOHWXMmvQAAAOv6Xc8ROt/xHKH6eI7Q78NzhACg8XnsOUIAAABNCUEIAABYVoOvEYIFrZxq/rH37h882AgAAO7FGSEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZbg9CNTU1mjRpkqKiohQQEKBOnTrpqaeekmEYZo1hGMrOzla7du0UEBCgxMRE7dixw2U95eXlSklJUVBQkEJCQpSWlqbDhw+71Hz11Vfq16+f/P39FRERoZycnHr9LF68WF27dpW/v79iYmL0wQcfuHuXAQBAE+X2IPT8889rzpw5mjVrlrZu3arnn39eOTk5evnll82anJwczZw5U7m5uSoqKlJgYKCSkpJ05MgRsyYlJUVbtmxRfn6+li9frtWrV2v06NHmvNPp1IABAxQZGani4mJNmzZNU6ZM0dy5c82azz//XMOGDVNaWpo2btyo5ORkJScna/Pmze7ebQAA0AR5GcefqnGDW265RaGhofrHP/5hjg0ePFgBAQH65z//KcMwFB4eroceekgPP/ywJMnhcCg0NFTz5s3T0KFDtXXrVkVHR2vdunWKi4uTJOXl5enmm2/W999/r/DwcM2ZM0ePPfaY7Ha7/Pz8JEkTJkzQ0qVLVVpaKkm68847VVlZqeXLl5u99O7dW7169VJubu5p98XpdCo4OFgOh0NBQUFuO0ZNzsqp5h8Lv/3Bg400fV90GH36Ikljb7i0kTsBgPNXQ/7/dvsZoT59+qigoEDbt2+XJH355Zdas2aNbrrpJknSzp07ZbfblZiYaL4nODhY8fHxKiwslCQVFhYqJCTEDEGSlJiYKG9vbxUVFZk111xzjRmCJCkpKUnbtm3ToUOHzJrjt1NXU7edX6uqqpLT6XR5AQCA85evu1c4YcIEOZ1Ode3aVT4+PqqpqdEzzzyjlJQUSZLdbpckhYaGurwvNDTUnLPb7Wrbtq1ro76+atmypUtNVFRUvXXUzbVo0UJ2u/2U2/m1qVOn6oknnvgtuw0AAJogt58RWrRokebPn68FCxZow4YNeuONN/TXv/5Vb7zxhrs35XYTJ06Uw+EwX3v27PF0SwAAoBG5/YzQI488ogkTJmjo0KGSpJiYGO3atUtTp05VamqqwsLCJEllZWVq166d+b6ysjL16tVLkhQWFqb9+/e7rLe6ulrl5eXm+8PCwlRWVuZSU7d8upq6+V+z2Wyy2Wy/ZbcBAEAT5PYzQj/99JO8vV1X6+Pjo9raWklSVFSUwsLCVFBQYM47nU4VFRUpISFBkpSQkKCKigoVFxebNStWrFBtba3i4+PNmtWrV+vYsWNmTX5+vrp06aIWLVqYNcdvp66mbjsAAMDa3B6EBg0apGeeeUbvv/++vvvuOy1ZskQvvPCC/vjHP0qSvLy8lJmZqaefflrLli3Tpk2bNHz4cIWHhys5OVmS1K1bN914440aNWqU1q5dq88++0wZGRkaOnSowsPDJUl33XWX/Pz8lJaWpi1btmjhwoWaMWOGsrKyzF7GjBmjvLw8TZ8+XaWlpZoyZYrWr1+vjIwMd+82AABogtz+0djLL7+sSZMm6S9/+Yv279+v8PBw3XvvvcrOzjZrxo0bp8rKSo0ePVoVFRW6+uqrlZeXJ39/f7Nm/vz5ysjIUP/+/eXt7a3Bgwdr5syZ5nxwcLA+/vhjpaenKzY2Vq1bt1Z2drbLs4b69OmjBQsW6PHHH9ejjz6qzp07a+nSperRo4e7dxsAADRBbn+O0PmE5wj9H54j5DY8RwgAGp9HnyMEAADQVBCEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZTVKENq7d6/+9Kc/qVWrVgoICFBMTIzWr19vzhuGoezsbLVr104BAQFKTEzUjh07XNZRXl6ulJQUBQUFKSQkRGlpaTp8+LBLzVdffaV+/frJ399fERERysnJqdfL4sWL1bVrV/n7+ysmJkYffPBBY+wyAABogtwehA4dOqS+ffuqWbNm+vDDD/X1119r+vTpatGihVmTk5OjmTNnKjc3V0VFRQoMDFRSUpKOHDli1qSkpGjLli3Kz8/X8uXLtXr1ao0ePdqcdzqdGjBggCIjI1VcXKxp06ZpypQpmjt3rlnz+eefa9iwYUpLS9PGjRuVnJys5ORkbd682d27DQAAmiAvwzAMd65wwoQJ+uyzz/Sf//znhPOGYSg8PFwPPfSQHn74YUmSw+FQaGio5s2bp6FDh2rr1q2Kjo7WunXrFBcXJ0nKy8vTzTffrO+//17h4eGaM2eOHnvsMdntdvn5+ZnbXrp0qUpLSyVJd955pyorK7V8+XJz+71791avXr2Um5tbr7eqqipVVVWZy06nUxEREXI4HAoKCnLPAWqKVk41/1j47Q8ebKTp+6LD6NMXSRp7w6WN3AkAnL+cTqeCg4PP6P9vt58RWrZsmeLi4nTHHXeobdu2uvzyy/Xqq6+a8zt37pTdbldiYqI5FhwcrPj4eBUWFkqSCgsLFRISYoYgSUpMTJS3t7eKiorMmmuuucYMQZKUlJSkbdu26dChQ2bN8dupq6nbzq9NnTpVwcHB5isiIuJ3Hg0AAHAuc3sQ+vbbbzVnzhx17txZH330ke6//349+OCDeuONNyRJdrtdkhQaGuryvtDQUHPObrerbdu2LvO+vr5q2bKlS82J1nH8Nk5WUzf/axMnTpTD4TBfe/bsafD+AwCApsPX3Susra1VXFycnn32WUnS5Zdfrs2bNys3N1epqanu3pxb2Ww22Ww2T7cBAADOErefEWrXrp2io6Ndxrp166bdu3dLksLCwiRJZWVlLjVlZWXmXFhYmPbv3+8yX11drfLycpeaE63j+G2crKZuHgAAWJvbg1Dfvn21bds2l7Ht27crMjJSkhQVFaWwsDAVFBSY806nU0VFRUpISJAkJSQkqKKiQsXFxWbNihUrVFtbq/j4eLNm9erVOnbsmFmTn5+vLl26mHeoJSQkuGynrqZuOwAAwNrcHoTGjh2rL774Qs8++6y++eYbLViwQHPnzlV6erokycvLS5mZmXr66ae1bNkybdq0ScOHD1d4eLiSk5Ml/XIG6cYbb9SoUaO0du1affbZZ8rIyNDQoUMVHh4uSbrrrrvk5+entLQ0bdmyRQsXLtSMGTOUlZVl9jJmzBjl5eVp+vTpKi0t1ZQpU7R+/XplZGS4e7cBAEAT5PZrhK688kotWbJEEydO1JNPPqmoqCi99NJLSklJMWvGjRunyspKjR49WhUVFbr66quVl5cnf39/s2b+/PnKyMhQ//795e3trcGDB2vmzJnmfHBwsD7++GOlp6crNjZWrVu3VnZ2tsuzhvr06aMFCxbo8ccf16OPPqrOnTtr6dKl6tGjh7t3GwAANEFuf47Q+aQhzyE4r/EcIbfhOUIA0Pg8+hwhAACApoIgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALMvX0w1Y2Yv52z3dwhnpvfsHT7cAAECj4IwQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLL50FTiLeu+ee2aFK1s1biOnc/1Ez24fAM4SzggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLavQg9Nxzz8nLy0uZmZnm2JEjR5Senq5WrVrpwgsv1ODBg1VWVubyvt27d2vgwIG64IIL1LZtWz3yyCOqrq52qfn00091xRVXyGaz6ZJLLtG8efPqbX/27Nnq2LGj/P39FR8fr7Vr1zbGbgIAgCaoUYPQunXr9Morr+iyyy5zGR87dqzee+89LV68WKtWrdK+fft02223mfM1NTUaOHCgjh49qs8//1xvvPGG5s2bp+zsbLNm586dGjhwoK6//nqVlJQoMzNTf/7zn/XRRx+ZNQsXLlRWVpYmT56sDRs2qGfPnkpKStL+/fsbc7cBAEAT0WhB6PDhw0pJSdGrr76qFi1amOMOh0P/+Mc/9MILL+gPf/iDYmNj9frrr+vzzz/XF198IUn6+OOP9fXXX+uf//ynevXqpZtuuklPPfWUZs+eraNHj0qScnNzFRUVpenTp6tbt27KyMjQ7bffrhdffNHc1gsvvKBRo0ZpxIgRio6OVm5uri644AK99tprjbXbAACgCWm0L11NT0/XwIEDlZiYqKefftocLy4u1rFjx5SYmGiOde3aVR06dFBhYaF69+6twsJCxcTEKDQ01KxJSkrS/fffry1btujyyy9XYWGhyzrqauo+gjt69KiKi4s1ceL///JIb29vJSYmqrCw8IQ9V1VVqaqqylx2Op2/6xiczhl/AScAAGgUjRKE3nrrLW3YsEHr1q2rN2e32+Xn56eQkBCX8dDQUNntdrPm+BBUN183d6oap9Opn3/+WYcOHVJNTc0Ja0pLS0/Y99SpU/XEE0+c+Y4CAIAmze0fje3Zs0djxozR/Pnz5e/v7+7VN6qJEyfK4XCYrz179ni6JQAA0IjcHoSKi4u1f/9+XXHFFfL19ZWvr69WrVqlmTNnytfXV6GhoTp69KgqKipc3ldWVqawsDBJUlhYWL27yOqWT1cTFBSkgIAAtW7dWj4+PiesqVvHr9lsNgUFBbm8AADA+cvtQah///7atGmTSkpKzFdcXJxSUlLMPzdr1kwFBQXme7Zt26bdu3crISFBkpSQkKBNmza53N2Vn5+voKAgRUdHmzXHr6Oupm4dfn5+io2Ndampra1VQUGBWQMAAKzN7dcINW/eXD169HAZCwwMVKtWrczxtLQ0ZWVlqWXLlgoKCtIDDzyghIQE9e7dW5I0YMAARUdH6+6771ZOTo7sdrsef/xxpaeny2azSZLuu+8+zZo1S+PGjdPIkSO1YsUKLVq0SO+//7653aysLKWmpiouLk5XXXWVXnrpJVVWVmrEiBHu3m0AANAENdpdY6fy4osvytvbW4MHD1ZVVZWSkpL0t7/9zZz38fHR8uXLdf/99yshIUGBgYFKTU3Vk08+adZERUXp/fff19ixYzVjxgy1b99ef//735WUlGTW3HnnnTpw4ICys7Nlt9vVq1cv5eXl1buAGgAAWJOXYRiGp5s4VzmdTgUHB8vhcDTK9UKF/3jY7evE+SHh4laebeD6iaevAYBzVEP+/+a7xgAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGX5eroBAPUVfvuDR7f/RfX2Br9n7A2XNkInANC4OCMEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsy+1BaOrUqbryyivVvHlztW3bVsnJydq2bZtLzZEjR5Senq5WrVrpwgsv1ODBg1VWVuZSs3v3bg0cOFAXXHCB2rZtq0ceeUTV1dUuNZ9++qmuuOIK2Ww2XXLJJZo3b169fmbPnq2OHTvK399f8fHxWrt2rbt3GQAANFFuD0KrVq1Senq6vvjiC+Xn5+vYsWMaMGCAKisrzZqxY8fqvffe0+LFi7Vq1Srt27dPt912mzlfU1OjgQMH6ujRo/r888/1xhtvaN68ecrOzjZrdu7cqYEDB+r6669XSUmJMjMz9ec//1kfffSRWbNw4UJlZWVp8uTJ2rBhg3r27KmkpCTt37/f3bsNAACaIC/DMIzG3MCBAwfUtm1brVq1Stdcc40cDofatGmjBQsW6Pbbb5cklZaWqlu3biosLFTv3r314Ycf6pZbbtG+ffsUGhoqScrNzdX48eN14MAB+fn5afz48Xr//fe1efNmc1tDhw5VRUWF8vLyJEnx8fG68sorNWvWLElSbW2tIiIi9MADD2jChAmn7d3pdCo4OFgOh0NBQUHuPjQq/MfDbl8n4A5fdBjd4PeMveHSRugEABquIf9/N/o1Qg6HQ5LUsmVLSVJxcbGOHTumxMREs6Zr167q0KGDCgsLJUmFhYWKiYkxQ5AkJSUlyel0asuWLWbN8euoq6lbx9GjR1VcXOxS4+3trcTERLPm16qqquR0Ol1eAADg/NWoQai2tlaZmZnq27evevToIUmy2+3y8/NTSEiIS21oaKjsdrtZc3wIqpuvmztVjdPp1M8//6yDBw+qpqbmhDV16/i1qVOnKjg42HxFRET8th0HAABNQqMGofT0dG3evFlvvfVWY27GbSZOnCiHw2G+9uzZ4+mWAABAI/JtrBVnZGRo+fLlWr16tdq3b2+Oh4WF6ejRo6qoqHA5K1RWVqawsDCz5td3d9XdVXZ8za/vNCsrK1NQUJACAgLk4+MjHx+fE9bUrePXbDabbDbbb9thAADQ5Lj9jJBhGMrIyNCSJUu0YsUKRUVFuczHxsaqWbNmKigoMMe2bdum3bt3KyEhQZKUkJCgTZs2udzdlZ+fr6CgIEVHR5s1x6+jrqZuHX5+foqNjXWpqa2tVUFBgVkDAACsze1nhNLT07VgwQK9++67at68uXk9TnBwsAICAhQcHKy0tDRlZWWpZcuWCgoK0gMPPKCEhAT17t1bkjRgwABFR0fr7rvvVk5Ojux2ux5//HGlp6ebZ2zuu+8+zZo1S+PGjdPIkSO1YsUKLVq0SO+//77ZS1ZWllJTUxUXF6errrpKL730kiorKzVixAh37zYAAGiC3B6E5syZI0m67rrrXMZff/113XPPPZKkF198Ud7e3ho8eLCqqqqUlJSkv/3tb2atj4+Pli9frvvvv18JCQkKDAxUamqqnnzySbMmKipK77//vsaOHasZM2aoffv2+vvf/66kpCSz5s4779SBAweUnZ0tu92uXr16KS8vr94F1AAAwJoa/TlCTRnPEYJV8RwhAE3ZOfUcIQAAgHMVQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFiWr6cbAHDu6b17bsPftLKV+xs5nesnnv1tAjivcEYIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYliWC0OzZs9WxY0f5+/srPj5ea9eu9XRLAADgHHDeP0do4cKFysrKUm5uruLj4/XSSy8pKSlJ27ZtU9u2bT3dHnDeKPz2h7O+zS+qt/+u94+94VI3dQKgqTrvzwi98MILGjVqlEaMGKHo6Gjl5ubqggsu0Guvvebp1gAAgIed12eEjh49quLiYk2c+P+fPuvt7a3ExEQVFhbWq6+qqlJVVZW57HA4JElOp7NR+qv8uer0RQBO6kjl4d/1/sb6tw3As+r+bRuGcdra8zoIHTx4UDU1NQoNDXUZDw0NVWlpab36qVOn6oknnqg3HhER0Wg9Avg9Zv2udz/qpi4AnJt+/PFHBQcHn7LmvA5CDTVx4kRlZWWZy7W1tSovL1erVq3k5eXl1m05nU5FRERoz549CgoKcuu6myKOR30ck/o4Jq44HvVxTFxZ9XgYhqEff/xR4eHhp609r4NQ69at5ePjo7KyMpfxsrIyhYWF1au32Wyy2WwuYyEhIY3ZooKCgiz1l/N0OB71cUzq45i44njUxzFxZcXjcbozQXXO64ul/fz8FBsbq4KCAnOstrZWBQUFSkhI8GBnAADgXHBenxGSpKysLKWmpiouLk5XXXWVXnrpJVVWVmrEiBGebg0AAHjYeR+E7rzzTh04cEDZ2dmy2+3q1auX8vLy6l1AfbbZbDZNnjy53kdxVsXxqI9jUh/HxBXHoz6OiSuOx+l5GWdybxkAAMB56Ly+RggAAOBUCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIeMHv2bHXs2FH+/v6Kj4/X2rVrPd2Sx0ydOlVXXnmlmjdvrrZt2yo5OVnbtm3zdFvnjOeee05eXl7KzMz0dCsetXfvXv3pT39Sq1atFBAQoJiYGK1fv97TbXlMTU2NJk2apKioKAUEBKhTp0566qmnzugLJs8Xq1ev1qBBgxQeHi4vLy8tXbrUZd4wDGVnZ6tdu3YKCAhQYmKiduzY4Zlmz4JTHY9jx45p/PjxiomJUWBgoMLDwzV8+HDt27fPcw2fQwhCZ9nChQuVlZWlyZMna8OGDerZs6eSkpK0f/9+T7fmEatWrVJ6erq++OIL5efn69ixYxowYIAqKys93ZrHrVu3Tq+88oouu+wyT7fiUYcOHVLfvn3VrFkzffjhh/r66681ffp0tWjRwtOteczzzz+vOXPmaNasWdq6dauef/555eTk6OWXX/Z0a2dNZWWlevbsqdmzZ59wPicnRzNnzlRubq6KiooUGBiopKQkHTly5Cx3enac6nj89NNP2rBhgyZNmqQNGzbonXfe0bZt23Trrbd6oNNzkIGz6qqrrjLS09PN5ZqaGiM8PNyYOnWqB7s6d+zfv9+QZKxatcrTrXjUjz/+aHTu3NnIz883rr32WmPMmDGebsljxo8fb1x99dWebuOcMnDgQGPkyJEuY7fddpuRkpLioY48S5KxZMkSc7m2ttYICwszpk2bZo5VVFQYNpvN+Ne//uWBDs+uXx+PE1m7dq0hydi1a9fZaeocxhmhs+jo0aMqLi5WYmKiOebt7a3ExEQVFhZ6sLNzh8PhkCS1bNnSw514Vnp6ugYOHOjyd8Wqli1bpri4ON1xxx1q27atLr/8cr366quebsuj+vTpo4KCAm3fvl2S9OWXX2rNmjW66aabPNzZuWHnzp2y2+0u/36Cg4MVHx/P79r/43A45OXl1ehfLN4UnPdfsXEuOXjwoGpqaup9vUdoaKhKS0s91NW5o7a2VpmZmerbt6969Ojh6XY85q233tKGDRu0bt06T7dyTvj22281Z84cZWVl6dFHH9W6dev04IMPys/PT6mpqZ5uzyMmTJggp9Oprl27ysfHRzU1NXrmmWeUkpLi6dbOCXa7XZJO+Lu2bs7Kjhw5ovHjx2vYsGGW+0b6EyEI4ZyRnp6uzZs3a82aNZ5uxWP27NmjMWPGKD8/X/7+/p5u55xQW1uruLg4Pfvss5Kkyy+/XJs3b1Zubq5lg9CiRYs0f/58LViwQN27d1dJSYkyMzMVHh5u2WOCM3Ps2DENGTJEhmFozpw5nm7nnMBHY2dR69at5ePjo7KyMpfxsrIyhYWFeairc0NGRoaWL1+ulStXqn379p5ux2OKi4u1f/9+XXHFFfL19ZWvr69WrVqlmTNnytfXVzU1NZ5u8axr166doqOjXca6deum3bt3e6gjz3vkkUc0YcIEDR06VDExMbr77rs1duxYTZ061dOtnRPqfp/yu9ZVXQjatWuX8vPzORv0fwhCZ5Gfn59iY2NVUFBgjtXW1qqgoEAJCQke7MxzDMNQRkaGlixZohUrVigqKsrTLXlU//79tWnTJpWUlJivuLg4paSkqKSkRD4+Pp5u8azr27dvvUcqbN++XZGRkR7qyPN++ukneXu7/vr28fFRbW2thzo6t0RFRSksLMzld63T6VRRUZFlf9fWhaAdO3bok08+UatWrTzd0jmDj8bOsqysLKWmpiouLk5XXXWVXnrpJVVWVmrEiBGebs0j0tPTtWDBAr377rtq3ry5+fl9cHCwAgICPNzd2de8efN610cFBgaqVatWlr1uauzYserTp4+effZZDRkyRGvXrtXcuXM1d+5cT7fmMYMGDdIzzzyjDh06qHv37tq4caNeeOEFjRw50tOtnTWHDx/WN998Yy7v3LlTJSUlatmypTp06KDMzEw9/fTT6ty5s6KiojRp0iSFh4crOTnZc003olMdj3bt2un222/Xhg0btHz5ctXU1Ji/a1u2bCk/Pz9PtX1u8PRta1b08ssvGx06dDD8/PyMq666yvjiiy883ZLHSDrh6/XXX/d0a+cMq98+bxiG8d577xk9evQwbDab0bVrV2Pu3LmebsmjnE6nMWbMGKNDhw6Gv7+/cfHFFxuPPfaYUVVV5enWzpqVK1ee8HdHamqqYRi/3EI/adIkIzQ01LDZbEb//v2Nbdu2ebbpRnSq47Fz586T/q5duXKlp1v3OC/DsNCjSAEAAI7DNUIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCy/h+hAVeSKtipZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO2xJREFUeJzt3X1YFXX+//HXAeVA6gHvuFtRqSw1b1glEROrjaQ0+1q2afEtNEorcFW6UbtRay2LatebvMlq0910NbvKddUowgxvCBVlvUksV1JbO2gpHCXldn5/9GV+HjEV9wDiPB/Xda6rM/Oez7znA3VezZkZbIZhGAIAALAgr/puAAAAoL4QhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhABUs2DBAtlsNn333Xf13cpFuemmm3TTTTdd8mNeSs48vu+++042m00LFiyot56AukAQAgBckNWrV2vKlCm1Nv5nn32mxMREdenSRd7e3mrfvn2t7QuoYuNvjQE4U0VFhcrKymS322Wz2eq7nRorLS2VJPn4+HhszKqzJWvXrvXYmJeSM4/PMAyVlJSocePG8vb2liQlJydr9uzZqq2PjeHDh2vp0qXq0aOHDhw4IG9v7wZ7VhINB2eEAFTj7e0tX1/fBhmCpF8CkCdDkBXZbDb5+vqaIaguvPzyy3K5XNqwYYO6d+9eZ/uFtRGEgFpw/PhxjR07Vu3bt5fdbldgYKBuvfVWbd261azJzs7WgAED1Lx5czVp0kTdunXTjBkzzPXbt2/X8OHDdeWVV8rX11fBwcF66KGH9NNPP7nta8qUKbLZbNq7d6+GDx+ugIAA+fv7a8SIEfr555/dam02m5KTk7V8+XJ16dJFdrtd1113ndLS0tzqznaNUPv27XXHHXdo/fr16tWrl3x9fXXllVfqr3/9a7Xj3759u2688Ub5+fmpTZs2mjp1qt57770aXXe0fft22Ww2rVixwlyWk5Mjm82mHj16uNXefvvtioqKMt+feb3L2rVrZbPZ9MEHH+ill15SmzZt5Ovrq1tuuUV79+6ttu/58+frqquukp+fn3r16qV169adtcfDhw8rMTFRQUFB8vX1Vffu3bVw4UK3mh49eujuu+92W9a1a1fZbDZt377dXLZ06VLZbDbt3r37/JPzf5YsWaKePXuqWbNmcjgc6tq1q9vvUNXPMTMzU6NGjVLLli3lcDj04IMP6tixY+cc+8xrhIYPH67Zs2dL+uX3qOp1ob1ciNDQUDVu3LhG2wD/rUb13QBwOXr00Uf14YcfKjk5WZ07d9ZPP/2k9evXa/fu3erRo4fS09N1xx13KCQkRGPGjFFwcLB2796tlStXasyYMZKk9PR07du3TyNGjFBwcLB27dql+fPna9euXfrqq6+qna259957FR4ermnTpmnr1q165513FBgYqFdffdWtbv369froo4/0+OOPq1mzZpo5c6aGDBmiAwcOqGXLluc8rr179+qee+5RYmKiEhIS9Je//EXDhw9Xz549dd1110mS/vOf/+jmm2+WzWbTxIkT1aRJE73zzjuy2+01msMuXbooICBAmZmZuvPOOyVJ69atk5eXl/71r3/J5XLJ4XCosrJSGzdu1MiRI8875iuvvCIvLy89+eSTKioqUmpqquLj45WdnW3WvPvuuxo1apT69OmjsWPHat++fbrzzjvVokULhYWFmXUnT57UTTfdpL179yo5OVnh4eFatmyZhg8frsLCQvPnGBMTo7///e/mdkePHtWuXbvk5eWldevWqVu3buaxtW7dWp06dbqg+UlPT9d9992nW265xfwZ7969Wxs2bDD3XSU5OVkBAQGaMmWK9uzZo7lz52r//v1mQLwQo0aN0qFDh5Senq6//e1vF90LcMkxAHicv7+/kZSUdNZ15eXlRnh4uNGuXTvj2LFjbusqKyvNf/7555+rbfv3v//dkGRkZmaayyZPnmxIMh566CG32rvuusto2bKl2zJJho+Pj7F3715z2b/+9S9DkjFr1ixz2XvvvWdIMvLz881l7dq1q7bvw4cPG3a73XjiiSfMZaNHjzZsNpuxbds2c9lPP/1ktGjRotqY5zNw4ECjV69e5vu7777buPvuuw1vb2/jk08+MQzDMLZu3WpIMv7xj3+YdTfeeKNx4403mu+/+OILQ5LRqVMno6SkxFw+Y8YMQ5KxY8cOwzAMo7S01AgMDDQiIiLc6ubPn29Ichtz+vTphiTj/fffN5eVlpYa0dHRRtOmTQ2Xy2UYhmEsW7bMkGR8/fXXhmEYxooVKwy73W7ceeedxtChQ81tu3XrZtx1110XPDdjxowxHA6HUV5e/qs1VT/Hnj17GqWlpeby1NTU885Zfn6+Icl47733zGVJSUnG2T42LqSXmho4cKDRrl07j40H/Bq+GgNqQUBAgLKzs3Xo0KFq67Zt26b8/HyNHTtWAQEBbutO/79zPz8/859PnTqlH3/8Ub1795Ykt6/Yqjz66KNu72NiYvTTTz/J5XK5LY+NjdVVV11lvu/WrZscDof27dt33uPq3LmzYmJizPetW7fWtdde67ZtWlqaoqOjFRERYS5r0aKF4uPjzzv+mWJiYrR161YVFxdL+uVs1oABAxQREWF+XbVu3TrZbDb17dv3vOONGDHC7dqhqmOp6n/Lli06fPiwHn30Ube64cOHy9/f322s1atXKzg4WPfdd5+5rHHjxvrDH/6gEydO6Msvv3TbR2Zmptnv9ddfr1tvvdU8hsLCQu3cudNtbs8nICBAxcXFSk9PP2/tyJEj3b5yeuyxx9SoUSOtXr36gvfnqV6ASw1BCKgFqamp2rlzp8LCwtSrVy9NmTLF/LD997//LemXr37O5ejRoxozZoyCgoLk5+en1q1bKzw8XJJUVFRUrb5t27Zu75s3by5J1a4FObOuqvZ814xc6Lb79+/X1VdfXa3ubMvOJyYmRuXl5crKytKePXt0+PBhxcTEqF+/fm5BqHPnzmrRokWN+z9zjvbv3y9J6tChg1td48aNdeWVV7ot279/vzp06CAvL/f/jFZ9tVU1VlBQkDp06ODWb9UxHDp0SPv27dOGDRtUWVlZoyD0+OOP65prrtHtt9+uNm3a6KGHHqp2rVeVM4+nadOmCgkJ8dgdWTXpBbjUEISAWnDvvfdq3759mjVrlkJDQ/Xaa6/puuuu0yeffFKjMd5++209+uij+uijj/TZZ5+ZHy6VlZXV6n/t7h7jjFudL7TubP6bbS9GZGSkfH19lZmZqXXr1ikwMFDXXHONYmJitGnTJpWUlJjB4kLUdf9V+vbtq3Xr1unkyZPKyclRTEyMeQ3UunXrtG7dOjVt2lS//e1vL3jMwMBA5ebmasWKFbrzzjv1xRdf6Pbbb1dCQkItHsml3wtQUwQhoJaEhITo8ccf1/Lly5Wfn6+WLVvqpZdeMr+W2rlz569ue+zYMWVkZGjChAl64YUXdNddd+nWW2+tdlbiUtSuXbuz3ol1tmXn4+PjY961dXrgiYmJUUlJiRYtWqSCggL169fvv+5b+qV3Sfr222/dlpeVlSk/P79a7bffflstlObl5bmNVdXvgQMHtGTJElVUVKhPnz7y8vIyA9K6devUp0+fGt+q7uPjo0GDBmnOnDn697//rVGjRumvf/1rtbk+83hOnDihH374ocYPLDzXhdUX2gtwqSEIAR5WUVFR7aurwMBAhYaGqqSkRD169FB4eLimT5+uwsJCt7qqMxNVH4hnnqmYPn16rfXtKXFxccrKylJubq657OjRo1q0aNFFjRcTE6Ps7Gx98cUXZhBq1aqVOnXqZN6hVJOvlM4lMjJSrVu31rx588yHMkq/3IZ+5s9qwIABcjqdWrp0qbmsvLxcs2bNUtOmTXXjjTe6HYMkvfrqq+rWrZt5vVFMTIwyMjK0ZcuWGh/DmY9R8PLyMu9AKykpcVs3f/58lZWVme/nzp2r8vJy3X777TXaZ5MmTSSp2lzUpBfgUsPt84CHHT9+XG3atNE999yj7t27q2nTpvr888+1efNmvfHGG/Ly8tLcuXM1aNAgRUREaMSIEQoJCVFeXp527dqlTz/9VA6HQ/369VNqaqrKysr0m9/8Rp999lm1sxKXoqefflrvv/++br31Vo0ePdq8fb5t27Y6evRojR/SGBMTo5deekkHDx50Cwv9+vXTW2+9pfbt26tNmzYe6b1x48aaOnWqRo0apd/97ncaOnSo8vPz9d5771U7Gzdy5Ei99dZbGj58uHJyctS+fXt9+OGH2rBhg6ZPn65mzZqZtVdffbWCg4O1Z88ejR492u0Yxo8fbx5nTTz88MM6evSofve736lNmzbav3+/Zs2apYiIiGq34JeWluqWW27Rvffeqz179mjOnDnq27ev+ViCC9WzZ09J0h/+8AfFxcXJ29tbw4YNq1Ev57J9+3bzuVF79+5VUVGRpk6dKknq3r27Bg0aVKN+gQtSn7esAZejkpIS46mnnjK6d+9uNGvWzGjSpInRvXt3Y86cOW5169evN2699Vazplu3bm63sH///ffGXXfdZQQEBBj+/v7G73//e+PQoUOGJGPy5MlmXdXt80eOHHEb/2y3wEs662397dq1MxISEs65bbt27YyBAwdW2/bM264NwzC2bdtmxMTEGHa73WjTpo0xbdo0Y+bMmYYkw+l0nmP2qnO5XIa3t7fRrFkzt9uz33//fUOS8cADD5y3p6rb55ctW+ZWd7ZbxA3DMObMmWOEh4cbdrvdiIyMNDIzM896nAUFBcaIESOMVq1aGT4+PkbXrl2rjVXl97//vSHJWLp0qbmstLTUuOKKKwwfHx/j5MmTFzYh/+fDDz80+vfvbwQGBho+Pj5G27ZtjVGjRhk//PCDWVP1c/zyyy+NkSNHGs2bNzeaNm1qxMfHGz/99JPbeBdy+3x5ebkxevRoo3Xr1obNZjNvpb+QXi5EVb9ne53++wl4En9rDECdGDt2rN566y2dOHGiTv9sg5UtWLBAI0aM0ObNmxUZGVnf7QCXJK4RAuBxJ0+edHv/008/6W9/+5v69u1LCAJwSeEaIQAeFx0drZtuukmdOnVSQUGB3n33XblcLj3//POSfrlr6cSJE+cco3Xr1pYMTRUVFTpy5Mg5a5o2baqmTZvWUUf/PafTec71fn5+1R5YCdQVghAAjxswYIA+/PBDzZ8/3/wjqe+++655m/vrr7+uF1544Zxj5Ofn1/j27svBwYMHzQdn/prJkydrypQpddOQB4SEhJxzfUJCgvnHXYG6xjVCAOrcvn37zvsnPfr27StfX9866ujScerUKa1fv/6cNVdeeWWDeKZUlc8///yc60NDQ9W5c+c66gZwRxACAACWxcXSAADAsrhG6BwqKyt16NAhNWvWrMYPgQMAAPXDMAwdP35coaGh1f4w8pkIQudw6NAhhYWF1XcbAADgIhw8ePC8T54nCJ1D1SPyDx48KIfDUc/dAACAC+FyuRQWFub2p25+DUHoHKq+DnM4HAQhAAAamAu5rIWLpQEAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGXVOAhlZmZq0KBBCg0Nlc1m0/Lly811ZWVlGj9+vLp27aomTZooNDRUDz74oA4dOuQ2xtGjRxUfHy+Hw6GAgAAlJibqxIkTbjXbt29XTEyMfH19FRYWptTU1Gq9LFu2TB07dpSvr6+6du2q1atXu603DEOTJk1SSEiI/Pz8FBsbq2+//bamhwwAAC5TjWq6QXFxsbp3766HHnpId999t9u6n3/+WVu3btXzzz+v7t2769ixYxozZozuvPNObdmyxayLj4/XDz/8oPT0dJWVlWnEiBEaOXKkFi9eLElyuVzq37+/YmNjNW/ePO3YsUMPPfSQAgICNHLkSEnSxo0bdd9992natGm64447tHjxYg0ePFhbt25Vly5dJEmpqamaOXOmFi5cqPDwcD3//POKi4vT119/LV9f34ueNAAALklfTKvvDmru5on1unubYRjGRW9ss+njjz/W4MGDf7Vm8+bN6tWrl/bv36+2bdtq9+7d6ty5szZv3qzIyEhJUlpamgYMGKDvv/9eoaGhmjt3rp599lk5nU75+PhIkiZMmKDly5crLy9PkjR06FAVFxdr5cqV5r569+6tiIgIzZs3T4ZhKDQ0VE888YSefPJJSVJRUZGCgoK0YMECDRs27LzH53K55O/vr6KiIjkcjoudJgAA6kTWu0/Wdws1Fp34usfHrMnnd61fI1RUVCSbzaaAgABJUlZWlgICAswQJEmxsbHy8vJSdna2WdOvXz8zBElSXFyc9uzZo2PHjpk1sbGxbvuKi4tTVlaWJCk/P19Op9Otxt/fX1FRUWbNmUpKSuRyudxeAADg8lWrQejUqVMaP3687rvvPjOROZ1OBQYGutU1atRILVq0kNPpNGuCgoLcaqren6/m9PWnb3e2mjNNmzZN/v7+5issLKzGxwwAABqOWgtCZWVluvfee2UYhubOnVtbu/GoiRMnqqioyHwdPHiwvlsCAAC1qMYXS1+IqhC0f/9+rVmzxu37ueDgYB0+fNitvry8XEePHlVwcLBZU1BQ4FZT9f58Naevr1oWEhLiVhMREXHWvu12u+x2e00PFwAANFAePyNUFYK+/fZbff7552rZsqXb+ujoaBUWFionJ8dctmbNGlVWVioqKsqsyczMVFlZmVmTnp6ua6+9Vs2bNzdrMjIy3MZOT09XdHS0JCk8PFzBwcFuNS6XS9nZ2WYNAACwthoHoRMnTig3N1e5ubmSfrkoOTc3VwcOHFBZWZnuuecebdmyRYsWLVJFRYWcTqecTqdKS0slSZ06ddJtt92mRx55RJs2bdKGDRuUnJysYcOGKTQ0VJJ0//33y8fHR4mJidq1a5eWLl2qGTNmKCUlxexjzJgxSktL0xtvvKG8vDxNmTJFW7ZsUXJysqRf7mgbO3aspk6dqhUrVmjHjh168MEHFRoaes673AAAgHXU+Pb5tWvX6uabb662PCEhQVOmTFF4ePhZt/viiy900003SfrlgYrJycn65z//KS8vLw0ZMkQzZ85U06ZNzfrt27crKSlJmzdvVqtWrTR69GiNHz/ebcxly5bpueee03fffacOHTooNTVVAwYMMNcbhqHJkydr/vz5KiwsVN++fTVnzhxdc801F3Ss3D4PAGhIuH3+FzX5/P6vniN0uSMIAQAaEoLQLy6p5wgBAABcqghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsmochDIzMzVo0CCFhobKZrNp+fLlbusNw9CkSZMUEhIiPz8/xcbG6ttvv3WrOXr0qOLj4+VwOBQQEKDExESdOHHCrWb79u2KiYmRr6+vwsLClJqaWq2XZcuWqWPHjvL19VXXrl21evXqGvcCAACsq8ZBqLi4WN27d9fs2bPPuj41NVUzZ87UvHnzlJ2drSZNmiguLk6nTp0ya+Lj47Vr1y6lp6dr5cqVyszM1MiRI831LpdL/fv3V7t27ZSTk6PXXntNU6ZM0fz5882ajRs36r777lNiYqK2bdumwYMHa/Dgwdq5c2eNegEAANZlMwzDuOiNbTZ9/PHHGjx4sKRfzsCEhobqiSee0JNPPilJKioqUlBQkBYsWKBhw4Zp9+7d6ty5szZv3qzIyEhJUlpamgYMGKDvv/9eoaGhmjt3rp599lk5nU75+PhIkiZMmKDly5crLy9PkjR06FAVFxdr5cqVZj+9e/dWRESE5s2bd0G9nI/L5ZK/v7+KiorkcDgudpoAAKgTWe8+Wd8t1Fh04useH7Mmn98evUYoPz9fTqdTsbGx5jJ/f39FRUUpKytLkpSVlaWAgAAzBElSbGysvLy8lJ2dbdb069fPDEGSFBcXpz179ujYsWNmzen7qaqp2s+F9HKmkpISuVwutxcAALh8eTQIOZ1OSVJQUJDb8qCgIHOd0+lUYGCg2/pGjRqpRYsWbjVnG+P0ffxazenrz9fLmaZNmyZ/f3/zFRYWdgFHDQAAGiruGjvNxIkTVVRUZL4OHjxY3y0BAIBa5NEgFBwcLEkqKChwW15QUGCuCw4O1uHDh93Wl5eX6+jRo241Zxvj9H38Ws3p68/Xy5nsdrscDofbCwAAXL48GoTCw8MVHBysjIwMc5nL5VJ2draio6MlSdHR0SosLFROTo5Zs2bNGlVWVioqKsqsyczMVFlZmVmTnp6ua6+9Vs2bNzdrTt9PVU3Vfi6kFwAAYG01DkInTpxQbm6ucnNzJf1yUXJubq4OHDggm82msWPHaurUqVqxYoV27NihBx98UKGhoeadZZ06ddJtt92mRx55RJs2bdKGDRuUnJysYcOGKTQ0VJJ0//33y8fHR4mJidq1a5eWLl2qGTNmKCUlxexjzJgxSktL0xtvvKG8vDxNmTJFW7ZsUXJysiRdUC8AAMDaGtV0gy1btujmm28231eFk4SEBC1YsEBPP/20iouLNXLkSBUWFqpv375KS0uTr6+vuc2iRYuUnJysW265RV5eXhoyZIhmzpxprvf399dnn32mpKQk9ezZU61atdKkSZPcnjXUp08fLV68WM8995yeeeYZdejQQcuXL1eXLl3MmgvpBQAAWNd/9Ryhyx3PEQIANCQ8R+gX9fYcIQAAgIaEIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzL40GooqJCzz//vMLDw+Xn56errrpKf/zjH2UYhlljGIYmTZqkkJAQ+fn5KTY2Vt9++63bOEePHlV8fLwcDocCAgKUmJioEydOuNVs375dMTEx8vX1VVhYmFJTU6v1s2zZMnXs2FG+vr7q2rWrVq9e7elDBgAADZTHg9Crr76quXPn6s0339Tu3bv16quvKjU1VbNmzTJrUlNTNXPmTM2bN0/Z2dlq0qSJ4uLidOrUKbMmPj5eu3btUnp6ulauXKnMzEyNHDnSXO9yudS/f3+1a9dOOTk5eu211zRlyhTNnz/frNm4caPuu+8+JSYmatu2bRo8eLAGDx6snTt3evqwAQBAA2QzTj9V4wF33HGHgoKC9O6775rLhgwZIj8/P73//vsyDEOhoaF64okn9OSTT0qSioqKFBQUpAULFmjYsGHavXu3OnfurM2bNysyMlKSlJaWpgEDBuj7779XaGio5s6dq2effVZOp1M+Pj6SpAkTJmj58uXKy8uTJA0dOlTFxcVauXKl2Uvv3r0VERGhefPmnfdYXC6X/P39VVRUJIfD4bE5AgCgNmS9+2R9t1Bj0Ymve3zMmnx+e/yMUJ8+fZSRkaFvvvlGkvSvf/1L69ev1+233y5Jys/Pl9PpVGxsrLmNv7+/oqKilJWVJUnKyspSQECAGYIkKTY2Vl5eXsrOzjZr+vXrZ4YgSYqLi9OePXt07Ngxs+b0/VTVVO3nTCUlJXK5XG4vAABw+Wrk6QEnTJggl8uljh07ytvbWxUVFXrppZcUHx8vSXI6nZKkoKAgt+2CgoLMdU6nU4GBge6NNmqkFi1auNWEh4dXG6NqXfPmzeV0Os+5nzNNmzZNL7zwwsUcNgAAaIA8fkbogw8+0KJFi7R48WJt3bpVCxcu1Ouvv66FCxd6elceN3HiRBUVFZmvgwcP1ndLAACgFnn8jNBTTz2lCRMmaNiwYZKkrl27av/+/Zo2bZoSEhIUHBwsSSooKFBISIi5XUFBgSIiIiRJwcHBOnz4sNu45eXlOnr0qLl9cHCwCgoK3Gqq3p+vpmr9mex2u+x2+8UcNgAAaIA8fkbo559/lpeX+7De3t6qrKyUJIWHhys4OFgZGRnmepfLpezsbEVHR0uSoqOjVVhYqJycHLNmzZo1qqysVFRUlFmTmZmpsrIysyY9PV3XXnutmjdvbtacvp+qmqr9AAAAa/N4EBo0aJBeeuklrVq1St99950+/vhj/elPf9Jdd90lSbLZbBo7dqymTp2qFStWaMeOHXrwwQcVGhqqwYMHS5I6deqk2267TY888og2bdqkDRs2KDk5WcOGDVNoaKgk6f7775ePj48SExO1a9cuLV26VDNmzFBKSorZy5gxY5SWlqY33nhDeXl5mjJlirZs2aLk5GRPHzYAAGiAPP7V2KxZs/T888/r8ccf1+HDhxUaGqpRo0Zp0qRJZs3TTz+t4uJijRw5UoWFherbt6/S0tLk6+tr1ixatEjJycm65ZZb5OXlpSFDhmjmzJnmen9/f3322WdKSkpSz5491apVK02aNMntWUN9+vTR4sWL9dxzz+mZZ55Rhw4dtHz5cnXp0sXThw0AABogjz9H6HLCc4QAAA0JzxH6Rb0+RwgAAKChIAgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLqpUg9J///Ef/+7//q5YtW8rPz09du3bVli1bzPWGYWjSpEkKCQmRn5+fYmNj9e2337qNcfToUcXHx8vhcCggIECJiYk6ceKEW8327dsVExMjX19fhYWFKTU1tVovy5YtU8eOHeXr66uuXbtq9erVtXHIAACgAfJ4EDp27JhuuOEGNW7cWJ988om+/vprvfHGG2revLlZk5qaqpkzZ2revHnKzs5WkyZNFBcXp1OnTpk18fHx2rVrl9LT07Vy5UplZmZq5MiR5nqXy6X+/furXbt2ysnJ0WuvvaYpU6Zo/vz5Zs3GjRt13333KTExUdu2bdPgwYM1ePBg7dy509OHDQAAGiCbYRiGJwecMGGCNmzYoHXr1p11vWEYCg0N1RNPPKEnn3xSklRUVKSgoCAtWLBAw4YN0+7du9W5c2dt3rxZkZGRkqS0tDQNGDBA33//vUJDQzV37lw9++yzcjqd8vHxMfe9fPly5eXlSZKGDh2q4uJirVy50tx/7969FRERoXnz5lXrraSkRCUlJeZ7l8ulsLAwFRUVyeFweGaCAACoJVnvPlnfLdRYdOLrHh/T5XLJ39//gj6/PX5GaMWKFYqMjNTvf/97BQYG6re//a3efvttc31+fr6cTqdiY2PNZf7+/oqKilJWVpYkKSsrSwEBAWYIkqTY2Fh5eXkpOzvbrOnXr58ZgiQpLi5Oe/bs0bFjx8ya0/dTVVO1nzNNmzZN/v7+5issLOy/nA0AAHAp83gQ2rdvn+bOnasOHTro008/1WOPPaY//OEPWrhwoSTJ6XRKkoKCgty2CwoKMtc5nU4FBga6rW/UqJFatGjhVnO2MU7fx6/VVK0/08SJE1VUVGS+Dh48WOPjBwAADUcjTw9YWVmpyMhIvfzyy5Kk3/72t9q5c6fmzZunhIQET+/Oo+x2u+x2e323AQAA6ojHzwiFhISoc+fObss6deqkAwcOSJKCg4MlSQUFBW41BQUF5rrg4GAdPnzYbX15ebmOHj3qVnO2MU7fx6/VVK0HAADW5vEgdMMNN2jPnj1uy7755hu1a9dOkhQeHq7g4GBlZGSY610ul7KzsxUdHS1Jio6OVmFhoXJycsyaNWvWqLKyUlFRUWZNZmamysrKzJr09HRde+215h1q0dHRbvupqqnaDwAAsDaPB6Fx48bpq6++0ssvv6y9e/dq8eLFmj9/vpKSkiRJNptNY8eO1dSpU7VixQrt2LFDDz74oEJDQzV48GBJv5xBuu222/TII49o06ZN2rBhg5KTkzVs2DCFhoZKku6//375+PgoMTFRu3bt0tKlSzVjxgylpKSYvYwZM0ZpaWl64403lJeXpylTpmjLli1KTk729GEDAIAGyOPXCF1//fX6+OOPNXHiRL344osKDw/X9OnTFR8fb9Y8/fTTKi4u1siRI1VYWKi+ffsqLS1Nvr6+Zs2iRYuUnJysW265RV5eXhoyZIhmzpxprvf399dnn32mpKQk9ezZU61atdKkSZPcnjXUp08fLV68WM8995yeeeYZdejQQcuXL1eXLl08fdgAAKAB8vhzhC4nNXkOAQAA9Y3nCP2iXp8jBAAA0FAQhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGXVehB65ZVXZLPZNHbsWHPZqVOnlJSUpJYtW6pp06YaMmSICgoK3LY7cOCABg4cqCuuuEKBgYF66qmnVF5e7lazdu1a9ejRQ3a7XVdffbUWLFhQbf+zZ89W+/bt5evrq6ioKG3atKk2DhMAADRAtRqENm/erLfeekvdunVzWz5u3Dj985//1LJly/Tll1/q0KFDuvvuu831FRUVGjhwoEpLS7Vx40YtXLhQCxYs0KRJk8ya/Px8DRw4UDfffLNyc3M1duxYPfzww/r000/NmqVLlyolJUWTJ0/W1q1b1b17d8XFxenw4cO1edgAAKCBsBmGYdTGwCdOnFCPHj00Z84cTZ06VREREZo+fbqKiorUunVrLV68WPfcc48kKS8vT506dVJWVpZ69+6tTz75RHfccYcOHTqkoKAgSdK8efM0fvx4HTlyRD4+Pho/frxWrVqlnTt3mvscNmyYCgsLlZaWJkmKiorS9ddfrzfffFOSVFlZqbCwMI0ePVoTJkw47zG4XC75+/urqKhIDofD01MEAIBHZb37ZH23UGPRia97fMyafH7X2hmhpKQkDRw4ULGxsW7Lc3JyVFZW5ra8Y8eOatu2rbKysiRJWVlZ6tq1qxmCJCkuLk4ul0u7du0ya84cOy4uzhyjtLRUOTk5bjVeXl6KjY01a85UUlIil8vl9gIAAJevRrUx6JIlS7R161Zt3ry52jqn0ykfHx8FBAS4LQ8KCpLT6TRrTg9BVeur1p2rxuVy6eTJkzp27JgqKirOWpOXl3fWvqdNm6YXXnjhwg8UAAA0aB4/I3Tw4EGNGTNGixYtkq+vr6eHr1UTJ05UUVGR+Tp48GB9twQAAGqRx4NQTk6ODh8+rB49eqhRo0Zq1KiRvvzyS82cOVONGjVSUFCQSktLVVhY6LZdQUGBgoODJUnBwcHV7iKren++GofDIT8/P7Vq1Ure3t5nraka40x2u10Oh8PtBQAALl8eD0K33HKLduzYodzcXPMVGRmp+Ph4858bN26sjIwMc5s9e/bowIEDio6OliRFR0drx44dbnd3paeny+FwqHPnzmbN6WNU1VSN4ePjo549e7rVVFZWKiMjw6wBAADW5vFrhJo1a6YuXbq4LWvSpIlatmxpLk9MTFRKSopatGghh8Oh0aNHKzo6Wr1795Yk9e/fX507d9YDDzyg1NRUOZ1OPffcc0pKSpLdbpckPfroo3rzzTf19NNP66GHHtKaNWv0wQcfaNWqVeZ+U1JSlJCQoMjISPXq1UvTp09XcXGxRowY4enDBgAADVCtXCx9Pn/+85/l5eWlIUOGqKSkRHFxcZozZ4653tvbWytXrtRjjz2m6OhoNWnSRAkJCXrxxRfNmvDwcK1atUrjxo3TjBkz1KZNG73zzjuKi4sza4YOHaojR45o0qRJcjqdioiIUFpaWrULqAEAgDXV2nOELgc8RwgA0JDwHKFfXBLPEQIAALjUEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlNarvBqzsz+nf1HcLNTbu1mvquwUAADyGIIQaIbwBAC4nfDUGAAAsizNC9aj3gfn13UKNfdV2ZH23AACAx3BGCAAAWBZnhFAjDfEslvR6fTcAALhEcUYIAABYFmeEcNnjTjcAwK8hCOGyx9d5AIBfw1djAADAsghCAADAsghCAADAsrhGCLgENcQLvBsiLkoHQBACLkEN8wLvhoiL0gGrIwgBsKyGeOaNs1iAZxGEAFhWwzzzxlkswJO4WBoAAFgWQQgAAFiWx4PQtGnTdP3116tZs2YKDAzU4MGDtWfPHreaU6dOKSkpSS1btlTTpk01ZMgQFRQUuNUcOHBAAwcO1BVXXKHAwEA99dRTKi8vd6tZu3atevToIbvdrquvvloLFiyo1s/s2bPVvn17+fr6KioqSps2bfL0IQMAgAbK40Hoyy+/VFJSkr766iulp6errKxM/fv3V3FxsVkzbtw4/fOf/9SyZcv05Zdf6tChQ7r77rvN9RUVFRo4cKBKS0u1ceNGLVy4UAsWLNCkSZPMmvz8fA0cOFA333yzcnNzNXbsWD388MP69NNPzZqlS5cqJSVFkydP1tatW9W9e3fFxcXp8OHDnj5sAADQANkMwzBqcwdHjhxRYGCgvvzyS/Xr109FRUVq3bq1Fi9erHvuuUeSlJeXp06dOikrK0u9e/fWJ598ojvuuEOHDh1SUFCQJGnevHkaP368jhw5Ih8fH40fP16rVq3Szp07zX0NGzZMhYWFSktLkyRFRUXp+uuv15tvvilJqqysVFhYmEaPHq0JEyact3eXyyV/f38VFRXJ4XB4emqU9e6THh8TwOUtOpGLpfHrGuLnSm38Ttfk87vWrxEqKiqSJLVo0UKSlJOTo7KyMsXGxpo1HTt2VNu2bZWVlSVJysrKUteuXc0QJElxcXFyuVzatWuXWXP6GFU1VWOUlpYqJyfHrcbLy0uxsbFmzZlKSkrkcrncXgAA4PJVq0GosrJSY8eO1Q033KAuXbpIkpxOp3x8fBQQEOBWGxQUJKfTadacHoKq1letO1eNy+XSyZMn9eOPP6qiouKsNVVjnGnatGny9/c3X2FhYRd34AAAoEGo1SCUlJSknTt3asmSJbW5G4+ZOHGiioqKzNfBgwfruyUAAFCLau2BisnJyVq5cqUyMzPVpk0bc3lwcLBKS0tVWFjodlaooKBAwcHBZs2Zd3dV3VV2es2Zd5oVFBTI4XDIz89P3t7e8vb2PmtN1RhnstvtstvtF3fAAACgwfH4GSHDMJScnKyPP/5Ya9asUXh4uNv6nj17qnHjxsrIyDCX7dmzRwcOHFB0dLQkKTo6Wjt27HC7uys9PV0Oh0OdO3c2a04fo6qmagwfHx/17NnTraayslIZGRlmDQAAsDaPnxFKSkrS4sWL9Y9//EPNmjUzr8fx9/eXn5+f/P39lZiYqJSUFLVo0UIOh0OjR49WdHS0evfuLUnq37+/OnfurAceeECpqalyOp167rnnlJSUZJ6xefTRR/Xmm2/q6aef1kMPPaQ1a9bogw8+0KpVq8xeUlJSlJCQoMjISPXq1UvTp09XcXGxRowY4enDBgAADZDHg9DcuXMlSTfddJPb8vfee0/Dhw+XJP35z3+Wl5eXhgwZopKSEsXFxWnOnDlmrbe3t1auXKnHHntM0dHRatKkiRISEvTiiy+aNeHh4Vq1apXGjRunGTNmqE2bNnrnnXcUFxdn1gwdOlRHjhzRpEmT5HQ6FRERobS0tGoXUAMAAGuq9ecINWQ8RwjApYbnCOFcGuLnymX/HCEAAIBLFUEIAABYFkEIAABYFkEIAABYVq09UBEA4HkN8WJYiYu8cenijBAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAs/sQGAKDWNcQ/DcKfBbEGzggBAADLIggBAADLIggBAADL4hohAADOoiFe14Sa44wQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLEsEodmzZ6t9+/by9fVVVFSUNm3aVN8tAQCAS8BlH4SWLl2qlJQUTZ48WVu3blX37t0VFxenw4cP13drAACgnl32QehPf/qTHnnkEY0YMUKdO3fWvHnzdMUVV+gvf/lLfbcGAADqWaP6bqA2lZaWKicnRxMnTjSXeXl5KTY2VllZWdXqS0pKVFJSYr4vKiqSJLlcrlrpr/hkyfmLAAC4jNXGZ2zVmIZhnLf2sg5CP/74oyoqKhQUFOS2PCgoSHl5edXqp02bphdeeKHa8rCwsFrrEQAASxv9Zq0Nffz4cfn7+5+z5rIOQjU1ceJEpaSkmO8rKyt19OhRtWzZUjabzaP7crlcCgsL08GDB+VwODw6Nv4/5rluMM91g3muO8x13aiteTYMQ8ePH1doaOh5ay/rINSqVSt5e3uroKDAbXlBQYGCg4Or1dvtdtntdrdlAQEBtdmiHA4H/5LVAea5bjDPdYN5rjvMdd2ojXk+35mgKpf1xdI+Pj7q2bOnMjIyzGWVlZXKyMhQdHR0PXYGAAAuBZf1GSFJSklJUUJCgiIjI9WrVy9Nnz5dxcXFGjFiRH23BgAA6tllH4SGDh2qI0eOaNKkSXI6nYqIiFBaWlq1C6jrmt1u1+TJk6t9FQfPYp7rBvNcN5jnusNc141LYZ5txoXcWwYAAHAZuqyvEQIAADgXghAAALAsghAAALAsghAAALAsghAAALAsglAtmj17ttq3by9fX19FRUVp06ZN56xftmyZOnbsKF9fX3Xt2lWrV6+uo04btprM89tvv62YmBg1b95czZs3V2xs7Hl/LvhFTX+fqyxZskQ2m02DBw+u3QYvEzWd58LCQiUlJSkkJER2u13XXHMN/+24ADWd5+nTp+vaa6+Vn5+fwsLCNG7cOJ06daqOum2YMjMzNWjQIIWGhspms2n58uXn3Wbt2rXq0aOH7Ha7rr76ai1YsKDW+5SBWrFkyRLDx8fH+Mtf/mLs2rXLeOSRR4yAgACjoKDgrPUbNmwwvL29jdTUVOPrr782nnvuOaNx48bGjh076rjzhqWm83z//fcbs2fPNrZt22bs3r3bGD58uOHv7298//33ddx5w1LTea6Sn59v/OY3vzFiYmKM//mf/6mbZhuwms5zSUmJERkZaQwYMMBYv369kZ+fb6xdu9bIzc2t484blprO86JFiwy73W4sWrTIyM/PNz799FMjJCTEGDduXB133rCsXr3aePbZZ42PPvrIkGR8/PHH56zft2+fccUVVxgpKSnG119/bcyaNcvw9vY20tLSarVPglAt6dWrl5GUlGS+r6ioMEJDQ41p06adtf7ee+81Bg4c6LYsKirKGDVqVK322dDVdJ7PVF5ebjRr1sxYuHBhbbV4WbiYeS4vLzf69OljvPPOO0ZCQgJB6ALUdJ7nzp1rXHnllUZpaWldtXhZqOk8JyUlGb/73e/clqWkpBg33HBDrfZ5ObmQIPT0008b1113nduyoUOHGnFxcbXYmWHw1VgtKC0tVU5OjmJjY81lXl5eio2NVVZW1lm3ycrKcquXpLi4uF+tx8XN85l+/vlnlZWVqUWLFrXVZoN3sfP84osvKjAwUImJiXXRZoN3MfO8YsUKRUdHKykpSUFBQerSpYtefvllVVRU1FXbDc7FzHOfPn2Uk5Njfn22b98+rV69WgMGDKiTnq2ivj4HL/s/sVEffvzxR1VUVFT7Mx5BQUHKy8s76zZOp/Os9U6ns9b6bOguZp7PNH78eIWGhlb7lw//38XM8/r16/Xuu+8qNze3Djq8PFzMPO/bt09r1qxRfHy8Vq9erb179+rxxx9XWVmZJk+eXBdtNzgXM8/333+/fvzxR/Xt21eGYai8vFyPPvqonnnmmbpo2TJ+7XPQ5XLp5MmT8vPzq5X9ckYIlvXKK69oyZIl+vjjj+Xr61vf7Vw2jh8/rgceeEBvv/22WrVqVd/tXNYqKysVGBio+fPnq2fPnho6dKieffZZzZs3r75bu6ysXbtWL7/8subMmaOtW7fqo48+0qpVq/THP/6xvluDB3BGqBa0atVK3t7eKigocFteUFCg4ODgs24THBxco3pc3DxXef311/XKK6/o888/V7du3WqzzQavpvP873//W999950GDRpkLqusrJQkNWrUSHv27NFVV11Vu003QBfz+xwSEqLGjRvL29vbXNapUyc5nU6VlpbKx8enVntuiC5mnp9//nk98MADevjhhyVJXbt2VXFxsUaOHKlnn31WXl6cU/CEX/scdDgctXY2SOKMUK3w8fFRz549lZGRYS6rrKxURkaGoqOjz7pNdHS0W70kpaen/2o9Lm6eJSk1NVV//OMflZaWpsjIyLpotUGr6Tx37NhRO3bsUG5urvm68847dfPNNys3N1dhYWF12X6DcTG/zzfccIP27t1rBk1J+uabbxQSEkII+hUXM88///xztbBTFT4N/m65x9Tb52CtXoptYUuWLDHsdruxYMEC4+uvvzZGjhxpBAQEGE6n0zAMw3jggQeMCRMmmPUbNmwwGjVqZLz++uvG7t27jcmTJ3P7/AWo6Ty/8sorho+Pj/Hhhx8aP/zwg/k6fvx4fR1Cg1DTeT4Td41dmJrO84EDB4xmzZoZycnJxp49e4yVK1cagYGBxtSpU+vrEBqEms7z5MmTjWbNmhl///vfjX379hmfffaZcdVVVxn33ntvfR1Cg3D8+HFj27ZtxrZt2wxJxp/+9Cdj27Ztxv79+w3DMIwJEyYYDzzwgFlfdfv8U089ZezevduYPXs2t883dLNmzTLatm1r+Pj4GL169TK++uorc92NN95oJCQkuNV/8MEHxjXXXGP4+PgY1113nbFq1ao67rhhqsk8t2vXzpBU7TV58uS6b7yBqenv8+kIQheupvO8ceNGIyoqyrDb7caVV15pvPTSS0Z5eXkdd93w1GSey8rKjClTphhXXXWV4evra4SFhRmPP/64cezYsbpvvAH54osvzvrf26q5TUhIMG688cZq20RERBg+Pj7GlVdeabz33nu13qfNMDivBwAArIlrhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGX9P82huTv+3nfkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOBhJREFUeJzt3Xl4VPXd///XJDCTCEwiS7YSNlEB2UqQECW4EImCWhQrKBcGRAFNqJCqQKWAW7Fob1HZilpiW1DES9ECRmMUAhJBAymLkFskAt6YgGAyECHr+f3hN+fHELbBLCSf5+O65rqYc97nM+/zCTIvzxaHZVmWAAAADORX1w0AAADUFYIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghCAKlJSUuRwOPTdd9/VdSsX5Prrr9f1119/0Y95MTl1/7777js5HA6lpKTUWU9AbSAIAQDOy+rVqzVz5swaGfvnn3/WvHnzNHDgQIWHh6tZs2b67W9/qwULFqi8vLxGPhOQJAe/awzAqcrLy1VaWiqXyyWHw1HX7fispKREkuR0OqttzMqjJWvWrKm2MS8mp+6fZVkqLi5W48aN5e/vL0lKSkrSvHnzVBNfG9u3b1f37t01YMAADRw4UG63Wx999JHee+893XfffXrjjTeq/TMBSWpU1w0AuPj4+/vbX371UXUGIFM5HA4FBATU2ueFhYVp27Ztuuqqq+xl48aN0/3336/Fixfrz3/+szp27Fhr/cAcnBoDasDRo0c1ceJEtWvXTi6XSyEhIbrpppu0efNmu2bjxo0aNGiQLr30UjVp0kTdu3fXSy+9ZK/funWrRo0apQ4dOiggIEBhYWG6//77dfjwYa/PmjlzphwOh3bv3q1Ro0YpODhYQUFBGj16tH7++WevWofDoaSkJK1YsUJdu3aVy+XSVVddpdTUVK+6010j1K5dO916661av369+vTpo4CAAHXo0EH//Oc/q+z/1q1bdd111ykwMFCtW7fWM888o8WLF/t03dHWrVvlcDj0wQcf2MuysrLkcDjUq1cvr9pbbrlF0dHR9vtTr3dZs2aNHA6H3n77bT377LNq3bq1AgICNGDAAO3evbvKZy9atEiXXXaZAgMD1adPH61bt+60PR48eFBjxoxRaGioAgIC1KNHjypHLnr16qU777zTa1m3bt3kcDi0detWe9myZcvkcDi0c+fOc0/O//PWW28pKipKzZo1k9vtVrdu3bz+DlX+HDMyMjRu3Di1aNFCbrdb9913n3766aezjn3qNUKjRo3SvHnzJP3y96jydb69nEvLli29QlClO+64Q5J8mhfAFxwRAmrA+PHj9c477ygpKUldunTR4cOHtX79eu3cuVO9evVSWlqabr31VoWHh+uRRx5RWFiYdu7cqZUrV+qRRx6RJKWlpWnPnj0aPXq0wsLCtGPHDi1atEg7duzQF198UeWU1d1336327dtr1qxZ2rx5s1577TWFhITor3/9q1fd+vXr9e677+rhhx9Ws2bN9PLLL2vo0KHat2+fWrRocdb92r17t+666y6NGTNGCQkJ+sc//qFRo0YpKirK/hL7v//7P91www1yOByaOnWqmjRpotdee00ul8unOezatauCg4OVkZGh22+/XZK0bt06+fn56b///a88Ho/cbrcqKiq0YcMGjR079pxjPvfcc/Lz89Ojjz6qwsJCzZ49WyNGjNDGjRvtmtdff13jxo3TNddco4kTJ2rPnj26/fbb1bx5c0VGRtp1x48f1/XXX6/du3crKSlJ7du31/LlyzVq1CgVFBTYP8fY2Fi9+eab9nZHjhzRjh075Ofnp3Xr1ql79+72vrVq1UqdO3c+r/lJS0vTPffcowEDBtg/4507d+rzzz+3P7tSUlKSgoODNXPmTOXk5GjBggXau3evHRDPx7hx43TgwAGlpaXpX//61wX34qu8vDxJvwQloEZYAKpdUFCQlZiYeNp1ZWVlVvv27a22bdtaP/30k9e6iooK+88///xzlW3ffPNNS5KVkZFhL5sxY4Ylybr//vu9au+44w6rRYsWXsskWU6n09q9e7e97L///a8lyXrllVfsZYsXL7YkWbm5ufaytm3bVvnsgwcPWi6Xy/rjH/9oL5swYYLlcDisLVu22MsOHz5sNW/evMqY5zJ48GCrT58+9vs777zTuvPOOy1/f3/rww8/tCzLsjZv3mxJst5//3277rrrrrOuu+46+/1nn31mSbI6d+5sFRcX28tfeuklS5K1bds2y7Isq6SkxAoJCbF69uzpVbdo0SJLkteYc+bMsSRZ//73v+1lJSUlVkxMjNW0aVPL4/FYlmVZy5cvtyRZX3/9tWVZlvXBBx9YLpfLuv32261hw4bZ23bv3t264447zntuHnnkEcvtdltlZWVnrKn8OUZFRVklJSX28tmzZ59zznJzcy1J1uLFi+1liYmJ1um+Ns6nlwtRXFxsdenSxWrfvr1VWlparWMDlTg1BtSA4OBgbdy4UQcOHKiybsuWLcrNzdXEiRMVHBzste7k/zsPDAy0/3zixAn9+OOP6tu3ryR5nWKrNH78eK/3sbGxOnz4sDwej9fyuLg4XXbZZfb77t27y+12a8+ePefcry5duig2NtZ+36pVK1155ZVe26ampiomJkY9e/a0lzVv3lwjRow45/inio2N1ebNm1VUVCTpl6NZgwYNUs+ePe3TVevWrZPD4VC/fv3OOd7o0aO9rh+q3JfK/r/66isdPHhQ48eP96obNWqUgoKCvMZavXq1wsLCdM8999jLGjdurD/84Q86duyY1q5d6/UZGRkZdr9XX321brrpJnsfCgoKtH37dq+5PZfg4GAVFRUpLS3tnLVjx45V48aN7fcPPfSQGjVqpNWrV5/351VXL75ISkrS119/rblz56pRI05goGYQhIAaMHv2bG3fvl2RkZHq06ePZs6caX/Zfvvtt5J+OfVzNkeOHNEjjzyi0NBQBQYGqlWrVmrfvr0kqbCwsEp9mzZtvN5feumlklTlWpBT6yprz3XNyPluu3fv3tNe1HohF7rGxsaqrKxMmZmZysnJ0cGDBxUbG6v+/ft7BaEuXbqoefPmPvd/6hzt3btXknT55Zd71TVu3FgdOnTwWrZ3715dfvnl8vPz/me08tRW5VihoaG6/PLLvfqt3IcDBw5oz549+vzzz1VRUeFTEHr44Yd1xRVX6JZbblHr1q11//33V7nWq9Kp+9O0aVOFh4dX23OifOnlfD3//PN69dVX9fTTT2vQoEHV0idwOgQhoAbcfffd2rNnj1555RVFRETo+eef11VXXaUPP/zQpzFeffVVjR8/Xu+++64+/vhj+8uloqKiSv2Z7vKyTrnV+XzrTufXbHshevfurYCAAGVkZGjdunUKCQnRFVdcodjYWG3atEnFxcV2sDgftd1/pX79+mndunU6fvy4srKyFBsba18DtW7dOq1bt05NmzbVb3/72/MeMyQkRNnZ2frggw90++2367PPPtMtt9yihISEGtyT2uklJSVFkydP1vjx4zVt2rRq7hbwRhACakh4eLgefvhhrVixQrm5uWrRooWeffZZ+7TU9u3bz7jtTz/9pPT0dE2ZMkVPPvmk7rjjDt10001VjkpcjNq2bXvaO7FOt+xcnE6nfdfWyYEnNjZWxcXFWrJkifLz89W/f/9f3bf0S++S9M0333gtLy0tVW5ubpXab775pkoo3bVrl9dYlf3u27dPb731lsrLy3XNNdfIz8/PDkjr1q3TNddc4/MjC5xOp2677TbNnz9f3377rcaNG6d//vOfVeb61P05duyYfvjhB7Vr186nzzvbhdXn28u5vP/++3rggQd055132nepATWJIARUs/Ly8iqnrkJCQhQREaHi4mL16tVL7du315w5c1RQUOBVV3lkovIL8dQjFXPmzKmxvqtLfHy8MjMzlZ2dbS87cuSIlixZckHjxcbGauPGjfrss8/sINSyZUt17tzZvkPJl1NKZ9O7d2+1atVKCxcutB/KKP1yhOLUn9WgQYOUl5enZcuW2cvKysr0yiuvqGnTprruuuu89kGS/vrXv6p79+729UaxsbFKT0/XV1995fM+nPoYBT8/P/sOtOLiYq91ixYtUmlpqf1+wYIFKisr0y233OLTZzZp0kSSqsyFL72cTUZGhoYPH67+/ftryZIlVU47AjWBq8+Aanb06FG1bt1ad911l3r06KGmTZvqk08+0Zdffqm//e1v8vPz04IFC3TbbbepZ8+eGj16tMLDw7Vr1y7t2LFDH330kdxut/r376/Zs2ertLRUv/nNb/Txxx9XOSpxMXr88cf173//WzfddJMmTJhg3z7fpk0bHTlyxOcnVcfGxurZZ5/V/v37vcJC//799fe//13t2rVT69atq6X3xo0b65lnntG4ceN04403atiwYcrNzdXixYurHI0bO3as/v73v2vUqFHKyspSu3bt9M477+jzzz/XnDlz1KxZM7u2Y8eOCgsLU05OjiZMmOC1D5MnT7b30xcPPPCAjhw5ohtvvFGtW7fW3r179corr6hnz55VbsEvKSnRgAEDdPfddysnJ0fz589Xv3797McSnK+oqChJ0h/+8AfFx8fL399fw4cP96mXM9m7d69uv/12ORwO3XXXXVq+fLnX+u7du9vhCqhWdXnLGtAQFRcXW4899pjVo0cPq1mzZlaTJk2sHj16WPPnz/eqW79+vXXTTTfZNd27d/e6hf3777+37rjjDis4ONgKCgqyfv/731sHDhywJFkzZsyw6ypvnz906JDX+Ke7BV7SaW/rb9u2rZWQkHDWbdu2bWsNHjy4yran3nZtWZa1ZcsWKzY21nK5XFbr1q2tWbNmWS+//LIlycrLyzvL7FXl8Xgsf39/q1mzZl63Z//73/+2JFkjR448Z0+Vt88vX77cq+50t4hblmXNnz/fat++veVyuazevXtbGRkZp93P/Px8a/To0VbLli0tp9NpdevWrcpYlX7/+99bkqxly5bZy0pKSqxLLrnEcjqd1vHjx89vQv6fd955xxo4cKAVEhJiOZ1Oq02bNta4ceOsH374wa6p/DmuXbvWGjt2rHXppZdaTZs2tUaMGGEdPnzYa7zzuX2+rKzMmjBhgtWqVSvL4XDYt9KfTy/nUvkzOtPr5L/zQHXid40BqBUTJ07U3//+dx07dqxe//qO+iQlJUWjR4/Wl19+qd69e9d1O8BFiROwAKrd8ePHvd4fPnxY//rXv9SvXz9CEICLCtcIAah2MTExuv7669W5c2fl5+fr9ddfl8fj0Z///GdJv9y1dOzYsbOO0apVKyNDU3l5uQ4dOnTWmqZNm6pp06a11NGvV/lrMs4kMDCwygMrgdpCEAJQ7QYNGqR33nlHixYtsn9J6uuvv27f5v7CCy/oySefPOsYubm5Pt/e3RDs37/ffnDmmcyYMUMzZ86snYaqQXh4+FnXJyQk2L/cFahtXCMEoNbt2bPnnL/So1+/fgoICKilji4eJ06c0Pr1689a06FDh3rxTKlKn3zyyVnXR0REqEuXLrXUDeCNIAQAAIzFxdIAAMBYXCN0FhUVFTpw4ICaNWvm80PgAABA3bAsS0ePHlVERMQ5n1BOEDqLAwcOKDIysq7bAAAAF2D//v3nfPI8QegsKh+Rv3//frnd7jruBgAAnA+Px6PIyEivX3VzJgShs6g8HeZ2uwlCAADUM+dzWQsXSwMAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYq1FdN2CyF9P+t65b8Nmkm66o6xYAAKg2BKE61Hfforpu4QK8UNcNAABQbTg1BgAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACM5VMQmjVrlq6++mo1a9ZMISEhGjJkiHJycrxqrr/+ejkcDq/X+PHjvWr27dunwYMH65JLLlFISIgee+wxlZWVedWsWbNGvXr1ksvlUseOHZWSklKln3nz5qldu3YKCAhQdHS0Nm3a5LX+xIkTSkxMVIsWLdS0aVMNHTpU+fn5vuwyAABowHwKQmvXrlViYqK++OILpaWlqbS0VAMHDlRRUZFX3YMPPqgffvjBfs2ePdteV15ersGDB6ukpEQbNmzQG2+8oZSUFE2fPt2uyc3N1eDBg3XDDTcoOztbEydO1AMPPKCPPvrIrlm2bJmSk5M1Y8YMbd68WT169FB8fLwOHjxo10yaNEn/+c9/tHz5cq1du1YHDhzQnXfe6fMkAQCAhslhWZZ1oRsfOnRIISEhWrt2rfr37y/plyNCPXv21Jw5c067zYcffqhbb71VBw4cUGhoqCRp4cKFmjx5sg4dOiSn06nJkydr1apV2r59u73d8OHDVVBQoNTUVElSdHS0rr76as2dO1eSVFFRocjISE2YMEFTpkxRYWGhWrVqpaVLl+quu+6SJO3atUudO3dWZmam+vbte87983g8CgoKUmFhodxu94VO0xllvv5otY9Z02LG8LvGAAAXN1++v3/VNUKFhYWSpObNm3stX7JkiVq2bKmuXbtq6tSp+vnnn+11mZmZ6tatmx2CJCk+Pl4ej0c7duywa+Li4rzGjI+PV2ZmpiSppKREWVlZXjV+fn6Ki4uza7KyslRaWupV06lTJ7Vp08auOVVxcbE8Ho/XCwAANFwX/NvnKyoqNHHiRF177bXq2rWrvfzee+9V27ZtFRERoa1bt2ry5MnKycnRu+++K0nKy8vzCkGS7Pd5eXlnrfF4PDp+/Lh++uknlZeXn7Zm165d9hhOp1PBwcFVaio/51SzZs3Sk08+6eNMAACA+uqCg1BiYqK2b9+u9evXey0fO3as/edu3bopPDxcAwYM0LfffqvLLrvswjutBVOnTlVycrL93uPxKDIysg47AgAANemCTo0lJSVp5cqV+uyzz9S6deuz1kZHR0uSdu/eLUkKCwurcudW5fuwsLCz1rjdbgUGBqply5by9/c/bc3JY5SUlKigoOCMNadyuVxyu91eLwAA0HD5FIQsy1JSUpLee+89ffrpp2rfvv05t8nOzpYkhYeHS5JiYmK0bds2r7u70tLS5Ha71aVLF7smPT3da5y0tDTFxMRIkpxOp6KiorxqKioqlJ6ebtdERUWpcePGXjU5OTnat2+fXQMAAMzm06mxxMRELV26VO+//76aNWtmX2sTFBSkwMBAffvtt1q6dKkGDRqkFi1aaOvWrZo0aZL69++v7t27S5IGDhyoLl26aOTIkZo9e7by8vI0bdo0JSYmyuVySZLGjx+vuXPn6vHHH9f999+vTz/9VG+//bZWrVpl95KcnKyEhAT17t1bffr00Zw5c1RUVKTRo0fbPY0ZM0bJyclq3ry53G63JkyYoJiYmPO6YwwAADR8PgWhBQsWSPrlFvmTLV68WKNGjZLT6dQnn3xih5LIyEgNHTpU06ZNs2v9/f21cuVKPfTQQ4qJiVGTJk2UkJCgp556yq5p3769Vq1apUmTJumll15S69at9dprryk+Pt6uGTZsmA4dOqTp06crLy9PPXv2VGpqqtcF1C+++KL8/Pw0dOhQFRcXKz4+XvPnz/dpggAAQMP1q54j1NDxHKGqeI4QAOBiV2vPEQIAAKjPCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLF8CkKzZs3S1VdfrWbNmikkJERDhgxRTk6OV82JEyeUmJioFi1aqGnTpho6dKjy8/O9avbt26fBgwfrkksuUUhIiB577DGVlZV51axZs0a9evWSy+VSx44dlZKSUqWfefPmqV27dgoICFB0dLQ2bdrkcy8AAMBcPgWhtWvXKjExUV988YXS0tJUWlqqgQMHqqioyK6ZNGmS/vOf/2j58uVau3atDhw4oDvvvNNeX15ersGDB6ukpEQbNmzQG2+8oZSUFE2fPt2uyc3N1eDBg3XDDTcoOztbEydO1AMPPKCPPvrIrlm2bJmSk5M1Y8YMbd68WT169FB8fLwOHjx43r0AAACzOSzLsi5040OHDikkJERr165V//79VVhYqFatWmnp0qW66667JEm7du1S586dlZmZqb59++rDDz/UrbfeqgMHDig0NFSStHDhQk2ePFmHDh2S0+nU5MmTtWrVKm3fvt3+rOHDh6ugoECpqamSpOjoaF199dWaO3euJKmiokKRkZGaMGGCpkyZcl69nIvH41FQUJAKCwvldrsvdJrOKPP1R6t9zJoWM+aFum4BAICz8uX7+1ddI1RYWChJat68uSQpKytLpaWliouLs2s6deqkNm3aKDMzU5KUmZmpbt262SFIkuLj4+XxeLRjxw675uQxKmsqxygpKVFWVpZXjZ+fn+Li4uya8+nlVMXFxfJ4PF4vAADQcF1wEKqoqNDEiRN17bXXqmvXrpKkvLw8OZ1OBQcHe9WGhoYqLy/Prjk5BFWur1x3thqPx6Pjx4/rxx9/VHl5+WlrTh7jXL2catasWQoKCrJfkZGR5zkbAACgPrrgIJSYmKjt27frrbfeqs5+6tTUqVNVWFhov/bv31/XLQEAgBrU6EI2SkpK0sqVK5WRkaHWrVvby8PCwlRSUqKCggKvIzH5+fkKCwuza069u6vyTq6Ta069uys/P19ut1uBgYHy9/eXv7//aWtOHuNcvZzK5XLJ5XL5MBMAAKA+8+mIkGVZSkpK0nvvvadPP/1U7du391ofFRWlxo0bKz093V6Wk5Ojffv2KSYmRpIUExOjbdu2ed3dlZaWJrfbrS5dutg1J49RWVM5htPpVFRUlFdNRUWF0tPT7Zrz6QUAAJjNpyNCiYmJWrp0qd5//301a9bMvtYmKChIgYGBCgoK0pgxY5ScnKzmzZvL7XZrwoQJiomJse/SGjhwoLp06aKRI0dq9uzZysvL07Rp05SYmGgfjRk/frzmzp2rxx9/XPfff78+/fRTvf3221q1apXdS3JyshISEtS7d2/16dNHc+bMUVFRkUaPHm33dK5eAACA2XwKQgsWLJAkXX/99V7LFy9erFGjRkmSXnzxRfn5+Wno0KEqLi5WfHy85s+fb9f6+/tr5cqVeuihhxQTE6MmTZooISFBTz31lF3Tvn17rVq1SpMmTdJLL72k1q1b67XXXlN8fLxdM2zYMB06dEjTp09XXl6eevbsqdTUVK8LqM/VCwAAMNuveo5QQ8dzhKriOUIAgItdrT1HCAAAoD4jCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjOVzEMrIyNBtt92miIgIORwOrVixwmv9qFGj5HA4vF4333yzV82RI0c0YsQIud1uBQcHa8yYMTp27JhXzdatWxUbG6uAgABFRkZq9uzZVXpZvny5OnXqpICAAHXr1k2rV6/2Wm9ZlqZPn67w8HAFBgYqLi5O33zzja+7DAAAGiifg1BRUZF69OihefPmnbHm5ptv1g8//GC/3nzzTa/1I0aM0I4dO5SWlqaVK1cqIyNDY8eOtdd7PB4NHDhQbdu2VVZWlp5//nnNnDlTixYtsms2bNige+65R2PGjNGWLVs0ZMgQDRkyRNu3b7drZs+erZdfflkLFy7Uxo0b1aRJE8XHx+vEiRO+7jYAAGiAHJZlWRe8scOh9957T0OGDLGXjRo1SgUFBVWOFFXauXOnunTpoi+//FK9e/eWJKWmpmrQoEH6/vvvFRERoQULFuiJJ55QXl6enE6nJGnKlClasWKFdu3aJUkaNmyYioqKtHLlSnvsvn37qmfPnlq4cKEsy1JERIT++Mc/6tFHH5UkFRYWKjQ0VCkpKRo+fPg598/j8SgoKEiFhYVyu90XMkVnlfn6o9U+Zk2LGfNCXbcAAMBZ+fL9XSPXCK1Zs0YhISG68sor9dBDD+nw4cP2uszMTAUHB9shSJLi4uLk5+enjRs32jX9+/e3Q5AkxcfHKycnRz/99JNdExcX5/W58fHxyszMlCTl5uYqLy/PqyYoKEjR0dF2zamKi4vl8Xi8XgAAoOGq9iB0880365///KfS09P117/+VWvXrtUtt9yi8vJySVJeXp5CQkK8tmnUqJGaN2+uvLw8uyY0NNSrpvL9uWpOXn/ydqerOdWsWbMUFBRkvyIjI33efwAAUH80qu4BTz7l1K1bN3Xv3l2XXXaZ1qxZowEDBlT3x1WrqVOnKjk52X7v8XgIQwAANGA1fvt8hw4d1LJlS+3evVuSFBYWpoMHD3rVlJWV6ciRIwoLC7Nr8vPzvWoq35+r5uT1J293uppTuVwuud1urxcAAGi4ajwIff/99zp8+LDCw8MlSTExMSooKFBWVpZd8+mnn6qiokLR0dF2TUZGhkpLS+2atLQ0XXnllbr00kvtmvT0dK/PSktLU0xMjCSpffv2CgsL86rxeDzauHGjXQMAAMzmcxA6duyYsrOzlZ2dLemXi5Kzs7O1b98+HTt2TI899pi++OILfffdd0pPT9fvfvc7dezYUfHx8ZKkzp076+abb9aDDz6oTZs26fPPP1dSUpKGDx+uiIgISdK9994rp9OpMWPGaMeOHVq2bJleeuklr9NWjzzyiFJTU/W3v/1Nu3bt0syZM/XVV18pKSlJ0i93tE2cOFHPPPOMPvjgA23btk333XefIiIivO5yAwAA5vL5GqGvvvpKN9xwg/2+MpwkJCRowYIF2rp1q9544w0VFBQoIiJCAwcO1NNPPy2Xy2Vvs2TJEiUlJWnAgAHy8/PT0KFD9fLLL9vrg4KC9PHHHysxMVFRUVFq2bKlpk+f7vWsoWuuuUZLly7VtGnT9Kc//UmXX365VqxYoa5du9o1jz/+uIqKijR27FgVFBSoX79+Sk1NVUBAgK+7DQAAGqBf9Ryhho7nCFXFc4QAABe7On+OEAAAQH1AEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjOVzEMrIyNBtt92miIgIORwOrVixwmu9ZVmaPn26wsPDFRgYqLi4OH3zzTdeNUeOHNGIESPkdrsVHBysMWPG6NixY141W7duVWxsrAICAhQZGanZs2dX6WX58uXq1KmTAgIC1K1bN61evdrnXgAAgLl8DkJFRUXq0aOH5s2bd9r1s2fP1ssvv6yFCxdq48aNatKkieLj43XixAm7ZsSIEdqxY4fS0tK0cuVKZWRkaOzYsfZ6j8ejgQMHqm3btsrKytLzzz+vmTNnatGiRXbNhg0bdM8992jMmDHasmWLhgwZoiFDhmj79u0+9QIAAMzlsCzLuuCNHQ699957GjJkiKRfjsBEREToj3/8ox599FFJUmFhoUJDQ5WSkqLhw4dr586d6tKli7788kv17t1bkpSamqpBgwbp+++/V0REhBYsWKAnnnhCeXl5cjqdkqQpU6ZoxYoV2rVrlyRp2LBhKioq0sqVK+1++vbtq549e2rhwoXn1cupiouLVVxcbL/3eDyKjIxUYWGh3G73hU7TGWW+/mi1j1nTYsa8UNctAABwVh6PR0FBQef1/V2t1wjl5uYqLy9PcXFx9rKgoCBFR0crMzNTkpSZmang4GA7BElSXFyc/Pz8tHHjRrumf//+dgiSpPj4eOXk5Oinn36ya07+nMqays85n15ONWvWLAUFBdmvyMjIXzMdAADgIletQSgvL0+SFBoa6rU8NDTUXpeXl6eQkBCv9Y0aNVLz5s29ak43xsmfcaaak9efq5dTTZ06VYWFhfZr//7957HXAACgvmpU1w1cTFwul1wuV123AQAAakm1HhEKCwuTJOXn53stz8/Pt9eFhYXp4MGDXuvLysp05MgRr5rTjXHyZ5yp5uT15+oFAACYrVqDUPv27RUWFqb09HR7mcfj0caNGxUTEyNJiomJUUFBgbKysuyaTz/9VBUVFYqOjrZrMjIyVFpaatekpaXpyiuv1KWXXmrXnPw5lTWVn3M+vQAAALP5HISOHTum7OxsZWdnS/rlouTs7Gzt27dPDodDEydO1DPPPKMPPvhA27Zt03333aeIiAj7zrLOnTvr5ptv1oMPPqhNmzbp888/V1JSkoYPH66IiAhJ0r333iun06kxY8Zox44dWrZsmV566SUlJyfbfTzyyCNKTU3V3/72N+3atUszZ87UV199paSkJEk6r14AAIDZfL5G6KuvvtINN9xgv68MJwkJCUpJSdHjjz+uoqIijR07VgUFBerXr59SU1MVEBBgb7NkyRIlJSVpwIAB8vPz09ChQ/Xyyy/b64OCgvTxxx8rMTFRUVFRatmypaZPn+71rKFrrrlGS5cu1bRp0/SnP/1Jl19+uVasWKGuXbvaNefTCwAAMNeveo5QQ+fLcwguBM8RAgCg+tXZc4QAAADqE4IQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBY1R6EZs6cKYfD4fXq1KmTvf7EiRNKTExUixYt1LRpUw0dOlT5+fleY+zbt0+DBw/WJZdcopCQED322GMqKyvzqlmzZo169eoll8uljh07KiUlpUov8+bNU7t27RQQEKDo6Ght2rSpuncXAADUYzVyROiqq67SDz/8YL/Wr19vr5s0aZL+85//aPny5Vq7dq0OHDigO++8015fXl6uwYMHq6SkRBs2bNAbb7yhlJQUTZ8+3a7Jzc3V4MGDdcMNNyg7O1sTJ07UAw88oI8++siuWbZsmZKTkzVjxgxt3rxZPXr0UHx8vA4ePFgTuwwAAOohh2VZVnUOOHPmTK1YsULZ2dlV1hUWFqpVq1ZaunSp7rrrLknSrl271LlzZ2VmZqpv37768MMPdeutt+rAgQMKDQ2VJC1cuFCTJ0/WoUOH5HQ6NXnyZK1atUrbt2+3xx4+fLgKCgqUmpoqSYqOjtbVV1+tuXPnSpIqKioUGRmpCRMmaMqUKee1Lx6PR0FBQSosLJTb7f4103Jama8/Wu1j1rSYMS/UdQsAAJyVL9/fNXJE6JtvvlFERIQ6dOigESNGaN++fZKkrKwslZaWKi4uzq7t1KmT2rRpo8zMTElSZmamunXrZocgSYqPj5fH49GOHTvsmpPHqKypHKOkpERZWVleNX5+foqLi7NrTqe4uFgej8frBQAAGq5qD0LR0dFKSUlRamqqFixYoNzcXMXGxuro0aPKy8uT0+lUcHCw1zahoaHKy8uTJOXl5XmFoMr1levOVuPxeHT8+HH9+OOPKi8vP21N5RinM2vWLAUFBdmvyMjIC5oDAABQPzSq7gFvueUW+8/du3dXdHS02rZtq7fffluBgYHV/XHVaurUqUpOTrbfezwewhAAAA1Yjd8+HxwcrCuuuEK7d+9WWFiYSkpKVFBQ4FWTn5+vsLAwSVJYWFiVu8gq35+rxu12KzAwUC1btpS/v/9payrHOB2XyyW32+31AgAADVeNB6Fjx47p22+/VXh4uKKiotS4cWOlp6fb63NycrRv3z7FxMRIkmJiYrRt2zavu7vS0tLkdrvVpUsXu+bkMSprKsdwOp2KioryqqmoqFB6erpdAwAAUO1B6NFHH9XatWv13XffacOGDbrjjjvk7++ve+65R0FBQRozZoySk5P12WefKSsrS6NHj1ZMTIz69u0rSRo4cKC6dOmikSNH6r///a8++ugjTZs2TYmJiXK5XJKk8ePHa8+ePXr88ce1a9cuzZ8/X2+//bYmTZpk95GcnKxXX31Vb7zxhnbu3KmHHnpIRUVFGj16dHXvMgAAqKeq/Rqh77//Xvfcc48OHz6sVq1aqV+/fvriiy/UqlUrSdKLL74oPz8/DR06VMXFxYqPj9f8+fPt7f39/bVy5Uo99NBDiomJUZMmTZSQkKCnnnrKrmnfvr1WrVqlSZMm6aWXXlLr1q312muvKT4+3q4ZNmyYDh06pOnTpysvL089e/ZUampqlQuoAQCAuar9OUINCc8RqornCAEALnZ1/hwhAACA+oAgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABirUV03ANS0F9P+t65b8Nmkm66o6xYAwAgEITR4ffctqusWLsALdd0AABiBU2MAAMBYHBGCTzJff7SuWwAAoNpwRAgAABiLI0LARYgLvAGgdnBECAAAGIsjQsBFiDvdAKB2cEQIAAAYiyAEAACMRRACAADGIggBAABjcbE0gGrBLf8A6iOCEIBqwZ1uAOojTo0BAABjGRGE5s2bp3bt2ikgIEDR0dHatGlTXbcEAAAuAg3+1NiyZcuUnJyshQsXKjo6WnPmzFF8fLxycnIUEhJS1+0BqEP18ZcIx4zhdB5QnRyWZVl13URNio6O1tVXX625c+dKkioqKhQZGakJEyZoypQpZ93W4/EoKChIhYWFcrvd1d5bffxHGAB89UWbsVyYjlrly/d3gz4iVFJSoqysLE2dOtVe5ufnp7i4OGVmZlapLy4uVnFxsf2+sLBQ0i8TWhOKjhefuwgA6rluOa/ok5y67gIXoy9bj1bijR2rfdzK7+3zOdbToIPQjz/+qPLycoWGhnotDw0N1a5du6rUz5o1S08++WSV5ZGRkTXWIwAA5pqrP9Xg6EePHlVQUNBZaxp0EPLV1KlTlZycbL+vqKjQkSNH1KJFCzkcjmr9LI/Ho8jISO3fv79GTrvhF8xz7WGuawfzXDuY59pRU/NsWZaOHj2qiIiIc9Y26CDUsmVL+fv7Kz8/32t5fn6+wsLCqtS7XC65XC6vZcHBwTXZotxuN/+R1QLmufYw17WDea4dzHPtqIl5PteRoEoN+vZ5p9OpqKgopaen28sqKiqUnp6umJiYOuwMAABcDBr0ESFJSk5OVkJCgnr37q0+ffpozpw5Kioq0ujRo+u6NQAAUMcafBAaNmyYDh06pOnTpysvL089e/ZUampqlQuoa5vL5dKMGTOqnIpD9WKeaw9zXTuY59rBPNeOi2GeG/xzhAAAAM6kQV8jBAAAcDYEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQqkHz5s1Tu3btFBAQoOjoaG3atOms9cuXL1enTp0UEBCgbt26afXq1bXUaf3myzy/+uqrio2N1aWXXqpLL71UcXFx5/y54Be+/n2u9NZbb8nhcGjIkCE122AD4utcFxQUKDExUeHh4XK5XLriiiv49+M8+DrPc+bM0ZVXXqnAwEBFRkZq0qRJOnHiRC11Wz9lZGTotttuU0REhBwOh1asWHHObdasWaNevXrJ5XKpY8eOSklJqdkmLdSIt956y3I6ndY//vEPa8eOHdaDDz5oBQcHW/n5+aet//zzzy1/f39r9uzZ1tdff21NmzbNaty4sbVt27Za7rx+8XWe7733XmvevHnWli1brJ07d1qjRo2ygoKCrO+//76WO69ffJ3nSrm5udZvfvMbKzY21vrd735XO83Wc77OdXFxsdW7d29r0KBB1vr1663c3FxrzZo1VnZ2di13Xr/4Os9LliyxXC6XtWTJEis3N9f66KOPrPDwcGvSpEm13Hn9snr1auuJJ56w3n33XUuS9d577521fs+ePdYll1xiJScnW19//bX1yiuvWP7+/lZqamqN9UgQqiF9+vSxEhMT7ffl5eVWRESENWvWrNPW33333dbgwYO9lkVHR1vjxo2r0T7rO1/n+VRlZWVWs2bNrDfeeKOmWmwQLmSey8rKrGuuucZ67bXXrISEBILQefJ1rhcsWGB16NDBKikpqa0WGwRf5zkxMdG68cYbvZYlJydb1157bY322ZCcTxB6/PHHrauuuspr2bBhw6z4+Pga64tTYzWgpKREWVlZiouLs5f5+fkpLi5OmZmZp90mMzPTq16S4uPjz1iPC5vnU/38888qLS1V8+bNa6rNeu9C5/mpp55SSEiIxowZUxttNggXMtcffPCBYmJilJiYqNDQUHXt2lV/+ctfVF5eXltt1zsXMs/XXHONsrKy7NNne/bs0erVqzVo0KBa6dkUdfFd2OB/xUZd+PHHH1VeXl7l13iEhoZq165dp90mLy/vtPV5eXk11md9dyHzfKrJkycrIiKiyn94+P9dyDyvX79er7/+urKzs2uhw4bjQuZ6z549+vTTTzVixAitXr1au3fv1sMPP6zS0lLNmDGjNtqudy5knu+99179+OOP6tevnyzLUllZmcaPH68//elPtdGyMc70XejxeHT8+HEFBgZW+2dyRAjGeu655/TWW2/pvffeU0BAQF2302AcPXpUI0eO1KuvvqqWLVvWdTsNXkVFhUJCQrRo0SJFRUVp2LBheuKJJ7Rw4cK6bq1BWbNmjf7yl79o/vz52rx5s959912tWrVKTz/9dF23hl+JI0I1oGXLlvL391d+fr7X8vz8fIWFhZ12m7CwMJ/qcWHzXOmFF17Qc889p08++UTdu3evyTbrPV/n+dtvv9V3332n2267zV5WUVEhSWrUqJFycnJ02WWX1WzT9dSF/J0ODw9X48aN5e/vby/r3Lmz8vLyVFJSIqfTWaM910cXMs9//vOfNXLkSD3wwAOSpG7duqmoqEhjx47VE088IT8/jitUhzN9F7rd7ho5GiRxRKhGOJ1ORUVFKT093V5WUVGh9PR0xcTEnHabmJgYr3pJSktLO2M9LmyeJWn27Nl6+umnlZqaqt69e9dGq/War/PcqVMnbdu2TdnZ2fbr9ttv1w033KDs7GxFRkbWZvv1yoX8nb722mu1e/duO2xK0v/+7/8qPDycEHQGFzLPP//8c5WwUxk+LX53ebWpk+/CGrsM23BvvfWW5XK5rJSUFOvrr7+2xo4dawUHB1t5eXmWZVnWyJEjrSlTptj1n3/+udWoUSPrhRdesHbu3GnNmDGD2+fPg6/z/Nxzz1lOp9N65513rB9++MF+HT16tK52oV7wdZ5PxV1j58/Xud63b5/VrFkzKykpycrJybFWrlxphYSEWM8880xd7UK94Os8z5gxw2rWrJn15ptvWnv27LE+/vhj67LLLrPuvvvuutqFeuHo0aPWli1brC1btliSrP/5n/+xtmzZYu3du9eyLMuaMmWKNXLkSLu+8vb5xx57zNq5c6c1b948bp+vz1555RWrTZs2ltPptPr06WN98cUX9rrrrrvOSkhI8Kp/++23rSuuuMJyOp3WVVddZa1ataqWO66ffJnntm3bWpKqvGbMmFH7jdczvv59PhlByDe+zvWGDRus6Ohoy+VyWR06dLCeffZZq6ysrJa7rn98mefS0lJr5syZ1mWXXWYFBARYkZGR1sMPP2z99NNPtd94PfLZZ5+d9t/cyrlNSEiwrrvuuirb9OzZ03I6nVaHDh2sxYsX12iPDsvimB4AADAT1wgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFj/H62AbRORxeUWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAODhJREFUeJzt3XtYVXXe///XBt0bUoE8cBrJc6l5ukVFTCxHktJqLJu0vBw0Si1wUqZSp0adpsbGae7s4GGsRpopy+wup9QowrOSJsp4SLk1Ke3WjabCVlIQWL8/+rJ+bvEAxCH8PB/Xta/LtdZ7ffZ7fTD3q7XXWjgsy7IEAABgIJ+6bgAAAKCuEIQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhACUk5KSIofDoW+++aauW6mSW265RbfccsvPfsyfkwuP75tvvpHD4VBKSkqd9QTUBoIQAKBCVq5cqZkzZ9bY+H/+85/Vt29ftWjRQn5+furQoYMmTZqkY8eO1dh7Ag5+1xiAC5WUlOjcuXNyuVxyOBx13U6lFRUVSZKcTme1jVl2tmTNmjXVNubPyYXHZ1mWCgsL1bBhQ/n6+kqSkpKSNHfuXNXUx8bw4cPVokULdezYUU2aNNGePXv02muvKTg4WFlZWWrUqFGNvC/M1qCuGwDw8+Pr62t/+NVH1RmATOVwOOTn51er7/k///M/5dZFR0fr3nvv1ccff6yRI0fWaj8wA1+NATXg1KlTmjRpklq3bi2Xy6Xg4GDdeuut2rZtm12zefNmDRkyRNdee60aNWqkbt266aWXXrK379ixQ2PGjFHbtm3l5+en0NBQPfjggzp+/LjXe82cOVMOh0P79+/XmDFjFBQUpMDAQI0dO1Y//PCDV63D4VBSUpKWLVumLl26yOVy6cYbb1RqaqpX3cWuEWrdurXuuOMObdiwQX369JGfn5/atm2rf/7zn+WOf8eOHbr55pvl7++vli1b6tlnn9WiRYsqdd3Rjh075HA49NFHH9nrMjMz5XA41LNnT6/a22+/XVFRUfbyhde7rFmzRg6HQ++9956ee+45tWzZUn5+fho0aJD2799f7r0XLlyodu3ayd/fX3369NH69esv2uPRo0eVkJCgkJAQ+fn5qXv37nrzzTe9anr27Kl77rnHa13Xrl3lcDi0Y8cOe92SJUvkcDi0Z8+eK0/O//Puu+8qMjJSTZo0UUBAgLp27er1d6js57hu3TqNHz9ezZo1U0BAgH7zm9/o5MmTlx37wmuExowZo7lz50r68e9R2auivVRV69atJUl5eXk/eSzgYjgjBNSACRMm6P3331dSUpI6d+6s48ePa8OGDdqzZ4969uyptLQ03XHHHQoLC9Njjz2m0NBQ7dmzR8uXL9djjz0mSUpLS9OBAwc0duxYhYaGavfu3Vq4cKF2796tL774otxXVvfdd5/atGmjWbNmadu2bXr99dcVHBysv/zlL151GzZs0AcffKBHH31UTZo00csvv6zhw4fr4MGDatas2WWPa//+/br33nuVkJCg+Ph4/eMf/9CYMWMUGRmpG2+8UZL0f//3fxo4cKAcDoemTZumRo0a6fXXX5fL5arUHHbp0kVBQUFat26d7rrrLknS+vXr5ePjo//85z/yeDwKCAhQaWmpNm3apHHjxl1xzOeff14+Pj56/PHHlZ+fr9mzZ2vUqFHavHmzXfPGG29o/Pjx6tevnyZNmqQDBw7orrvuUtOmTRUREWHXnTlzRrfccov279+vpKQktWnTRkuXLtWYMWOUl5dn/xxjYmL0zjvv2PudOHFCu3fvlo+Pj9avX69u3brZx9aiRQt16tSpQvOTlpam+++/X4MGDbJ/xnv27NHGjRvt9y6TlJSkoKAgzZw5U9nZ2Zo/f76+/fZbOyBWxPjx43X48GGlpaXpX//6V5V7uRLLsnT8+HEVFxdr3759mjp1qnx9fa/qC9VRxywA1S4wMNBKTEy86Lbi4mKrTZs2VqtWrayTJ096bSstLbX//MMPP5Tb95133rEkWevWrbPXzZgxw5JkPfjgg161d999t9WsWTOvdZIsp9Np7d+/3173n//8x5JkvfLKK/a6RYsWWZKsnJwce12rVq3KvffRo0ctl8tl/e53v7PXTZw40XI4HNb27dvtdcePH7eaNm1abswrGTp0qNWnTx97+Z577rHuuecey9fX1/rkk08sy7Ksbdu2WZKsf//733bdzTffbN1888328urVqy1JVqdOnazCwkJ7/UsvvWRJsnbu3GlZlmUVFRVZwcHBVo8ePbzqFi5caEnyGnPOnDmWJOutt96y1xUVFVnR0dFW48aNLY/HY1mWZS1dutSSZH311VeWZVnWRx99ZLlcLuuuu+6yRowYYe/brVs36+67767w3Dz22GNWQECAVVxcfMmasp9jZGSkVVRUZK+fPXv2FecsJyfHkmQtWrTIXpeYmGhd7GOjIr1U1JEjRyxJ9qtly5bWkiVLfvK4wKXw1RhQA4KCgrR582YdPny43Lbt27crJydHkyZNUlBQkNe28//v3N/f3/7z2bNn9f3336tv376S5PUVW5kJEyZ4LcfExOj48ePyeDxe62NjY9WuXTt7uVu3bgoICNCBAweueFydO3dWTEyMvdyiRQvdcMMNXvumpqYqOjpaPXr0sNc1bdpUo0aNuuL4F4qJidG2bdtUUFAg6cezWUOGDFGPHj3sr6vWr18vh8Oh/v37X3G8sWPHel0/VHYsZf1v3bpVR48e1YQJE7zqxowZo8DAQK+xVq5cqdDQUN1///32uoYNG+q3v/2tTp8+rbVr13q9x7p16+x+e/furVtvvdU+hry8PO3atctrbq8kKChIBQUFSktLu2LtuHHj1LBhQ3v5kUceUYMGDbRy5coKv1919XIlTZs2VVpamj7++GM988wzat68uU6fPl0NXQIXRxACasDs2bO1a9cuRUREqE+fPpo5c6b9Yfv1119L+vGrn8s5ceKEHnvsMYWEhMjf318tWrRQmzZtJEn5+fnl6q+77jqv5WuvvVaSyl0LcmFdWe2Vrhmp6L7ffvut2rdvX67uYuuuJCYmRsXFxcrIyFB2draOHj2qmJgYDRgwwCsIde7cWU2bNq10/xfO0bfffitJ6tChg1ddw4YN1bZtW6913377rTp06CAfH+9/Rsu+2iobKyQkRB06dPDqt+wYDh8+rAMHDmjjxo0qLS2tVBB69NFHdf311+v2229Xy5Yt9eCDD5a71qvMhcfTuHFjhYWFVdtzoirTy5U4nU7Fxsbqjjvu0B/+8AfNnTtXCQkJWr58ebX0ClyIIATUgPvuu08HDhzQK6+8ovDwcP31r3/VjTfeqE8++aRSY7z22muaMGGCPvjgA3322Wf2h0tpaWm5+kvd5WVdcKtzResu5qfsWxW9evWSn5+f1q1bp/Xr1ys4OFjXX3+9YmJitGXLFhUWFtrBoiJqu/8y/fv31/r163XmzBllZmYqJibGvgZq/fr1Wr9+vRo3bqz/+q//qvCYZbeUf/TRR7rrrru0evVq3X777YqPj6/BI6n9Xvr166ewsDC9/fbb1dApUB5BCKghYWFhevTRR7Vs2TLl5OSoWbNmeu655+yvpXbt2nXJfU+ePKn09HRNnTpVf/zjH3X33Xfr1ltvLXdW4ueoVatWF70T62LrrsTpdNp3bZ0feGJiYlRYWKi3335bubm5GjBgwE/uW/qxd0nat2+f1/pz584pJyenXO2+ffvKhdK9e/d6jVXW78GDB/Xuu++qpKRE/fr1k4+Pjx2Q1q9fr379+lX6kQVOp1N33nmn5s2bp6+//lrjx4/XP//5z3JzfeHxnD59WkeOHLHvyKqoy11YXdFequLs2bMXPQsKVAeCEFDNSkpKyv2jHRwcrPDwcBUWFqpnz55q06aN5syZU+6W4LIzE2UfiBeeqZgzZ06N9V1d4uLilJGRoaysLHvdiRMnqvx/9DExMdq8ebNWr15tB6HmzZurU6dO9h1KlflK6XJ69eqlFi1aaMGCBfZDGaUfb0O/8Gc1ZMgQud1uLVmyxF5XXFysV155RY0bN9bNN9/sdQyS9Je//EXdunWzrzeKiYlRenq6tm7dWuljuPAxCj4+PvYdaIWFhV7bFi5cqHPnztnL8+fPV3FxsW6//fZKvWfZAw0vnIvK9HIpBQUF5R73IP34bKGTJ0+qV69eleoVqChunweq2alTp9SyZUvde++96t69uxo3bqzPP/9cX375pf72t7/Jx8dH8+fP15133qkePXpo7NixCgsL0969e7V79259+umnCggI0IABAzR79mydO3dOv/jFL/TZZ5+VOyvxc/Tkk0/qrbfe0q233qqJEyfat89fd911OnHiRKWfVB0TE6PnnntOhw4d8goLAwYM0N///ne1bt1aLVu2rJbeGzZsqGeffVbjx4/XL3/5S40YMUI5OTlatGhRubNx48aN09///neNGTNGmZmZat26td5//31t3LhRc+bMUZMmTeza9u3bKzQ0VNnZ2Zo4caLXMUyZMsU+zsp46KGHdOLECf3yl79Uy5Yt9e233+qVV15Rjx49yt2CX1RUpEGDBum+++5Tdna25s2bp/79+9uPJaioyMhISdJvf/tbxcXFydfXVyNHjqxUL5eyb98+xcbGasSIEerYsaN8fHy0detWvfXWW2rdunWlb8MHKqwub1kDrkaFhYXWE088YXXv3t1q0qSJ1ahRI6t79+7WvHnzvOo2bNhg3XrrrXZNt27dvG5h/+6776y7777bCgoKsgIDA61f//rX1uHDhy1J1owZM+y6stvnjx075jX+xW6Bl3TR2/pbtWplxcfHX3bfVq1aWUOHDi2374W3XVuWZW3fvt2KiYmxXC6X1bJlS2vWrFnWyy+/bEmy3G73ZWavPI/HY/n6+lpNmjTxuj37rbfesiRZo0ePvmJPZbfPL1261KvuYreIW5ZlzZs3z2rTpo3lcrmsXr16WevWrbvocebm5lpjx461mjdvbjmdTqtr167lxirz61//2pLkdSt4UVGRdc0111hOp9M6c+ZMxSbk/3n//fetwYMHW8HBwZbT6bSuu+46a/z48daRI0fsmrKf49q1a61x48ZZ1157rdW4cWNr1KhR1vHjx73Gq8jt88XFxdbEiROtFi1aWA6Hw76VviK9XMmxY8escePGWR07drQaNWpkOZ1Oq0OHDtakSZPK/d0GqhO/awxArZg0aZL+/ve/6/Tp0/X613fUJykpKRo7dqy+/PJLvloCLoFrhABUuzNnzngtHz9+XP/617/Uv39/QhCAnxWuEQJQ7aKjo3XLLbeoU6dOys3N1RtvvCGPx6M//OEPkn68a+lKD8lr0aKFkaGppKREx44du2xN48aN1bhx41rq6Kdzu92X3e7v71/ugZVAbSEIAah2Q4YM0fvvv6+FCxfavyT1jTfesG9zf+GFF/THP/7xsmPk5ORU+vbuq8GhQ4fsB2deyowZMzRz5szaaagahIWFXXZ7fHy8/ctdgdrGNUIAat2BAweu+Cs9+vfvLz8/v1rq6Ofj7Nmz2rBhw2Vr2rZtWy+eKVXm888/v+z28PBwde7cuZa6AbwRhAAAgLG4WBoAABiLa4Quo7S0VIcPH1aTJk0q/RA4AABQNyzL0qlTpxQeHl7uFyNfiCB0GYcPH1ZERERdtwEAAKrg0KFDV3zyPEHoMsoekX/o0CEFBATUcTcAAKAiPB6PIiIivH7VzaUQhC6j7OuwgIAAghAAAPVMRS5r4WJpAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGM1qOsGTPZi2v/WdQuVNvnW6+u6BQAAqg1BqA71PbiwrluoghfqugEAAKoNX40BAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYKxKBaFZs2apd+/eatKkiYKDgzVs2DBlZ2d71dxyyy1yOBxerwkTJnjVHDx4UEOHDtU111yj4OBgPfHEEyouLvaqWbNmjXr27CmXy6X27dsrJSWlXD9z585V69at5efnp6ioKG3ZssVr+9mzZ5WYmKhmzZqpcePGGj58uHJzcytzyAAA4CpWqSC0du1aJSYm6osvvlBaWprOnTunwYMHq6CgwKvu4Ycf1pEjR+zX7Nmz7W0lJSUaOnSoioqKtGnTJr355ptKSUnR9OnT7ZqcnBwNHTpUAwcOVFZWliZNmqSHHnpIn376qV2zZMkSJScna8aMGdq2bZu6d++uuLg4HT161K6ZPHmyPv74Yy1dulRr167V4cOHdc8991R6kgAAwNXJYVmWVdWdjx07puDgYK1du1YDBgyQ9OMZoR49emjOnDkX3eeTTz7RHXfcocOHDyskJESStGDBAk2ZMkXHjh2T0+nUlClTtGLFCu3atcveb+TIkcrLy1NqaqokKSoqSr1799arr74qSSotLVVERIQmTpyoqVOnKj8/Xy1atNDixYt17733SpL27t2rTp06KSMjQ3379i3XW2FhoQoLC+1lj8ejiIgI5efnKyAgoKrTdEkZbzxe7WPWtOiEF+q6BQAALsvj8SgwMLBCn98/6Rqh/Px8SVLTpk291r/99ttq3ry5unTpomnTpumHH36wt2VkZKhr1652CJKkuLg4eTwe7d69266JjY31GjMuLk4ZGRmSpKKiImVmZnrV+Pj4KDY21q7JzMzUuXPnvGo6duyo6667zq650KxZsxQYGGi/IiIiKj0nAACg/mhQ1R1LS0s1adIk3XTTTerSpYu9/oEHHlCrVq0UHh6uHTt2aMqUKcrOztYHH3wgSXK73V4hSJK97Ha7L1vj8Xh05swZnTx5UiUlJRet2bt3rz2G0+lUUFBQuZqy97nQtGnTlJycbC+XnRECAABXpyoHocTERO3atUsbNmzwWj9u3Dj7z127dlVYWJgGDRqkr7/+Wu3atat6p7XA5XLJ5XLVdRsAAKCWVOmrsaSkJC1fvlyrV69Wy5YtL1sbFRUlSdq/f78kKTQ0tNydW2XLoaGhl60JCAiQv7+/mjdvLl9f34vWnD9GUVGR8vLyLlkDAADMVqkgZFmWkpKS9OGHH2rVqlVq06bNFffJysqSJIWFhUmSoqOjtXPnTq+7u9LS0hQQEKDOnTvbNenp6V7jpKWlKTo6WpLkdDoVGRnpVVNaWqr09HS7JjIyUg0bNvSqyc7O1sGDB+0aAABgtkp9NZaYmKjFixfr3//+t5o0aWJfaxMYGCh/f399/fXXWrx4sYYMGaJmzZppx44dmjx5sgYMGKBu3bpJkgYPHqzOnTtr9OjRmj17ttxut55++mklJibaX0tNmDBBr776qp588kk9+OCDWrVqld577z2tWLHC7iU5OVnx8fHq1auX+vTpozlz5qigoEBjx461e0pISFBycrKaNm2qgIAATZw4UdHR0Re9YwwAAJinUkFo/vz5kn68Rf58ixYt0pgxY+R0OvX555/boSQiIkLDhw/X008/bdf6+vpq+fLleuSRRxQdHa1GjRopPj5ezzzzjF3Tpk0brVixQpMnT9ZLL72kli1b6vXXX1dcXJxdM2LECB07dkzTp0+X2+1Wjx49lJqa6nUB9YsvvigfHx8NHz5chYWFiouL07x58yo1QQAA4Or1k54jdLWrzHMIqoLnCAEAUP1q7TlCAAAA9RlBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrEoFoVmzZql3795q0qSJgoODNWzYMGVnZ3vVnD17VomJiWrWrJkaN26s4cOHKzc316vm4MGDGjp0qK655hoFBwfriSeeUHFxsVfNmjVr1LNnT7lcLrVv314pKSnl+pk7d65at24tPz8/RUVFacuWLZXuBQAAmKtSQWjt2rVKTEzUF198obS0NJ07d06DBw9WQUGBXTN58mR9/PHHWrp0qdauXavDhw/rnnvusbeXlJRo6NChKioq0qZNm/Tmm28qJSVF06dPt2tycnI0dOhQDRw4UFlZWZo0aZIeeughffrpp3bNkiVLlJycrBkzZmjbtm3q3r274uLidPTo0Qr3AgAAzOawLMuq6s7Hjh1TcHCw1q5dqwEDBig/P18tWrTQ4sWLde+990qS9u7dq06dOikjI0N9+/bVJ598ojvuuEOHDx9WSEiIJGnBggWaMmWKjh07JqfTqSlTpmjFihXatWuX/V4jR45UXl6eUlNTJUlRUVHq3bu3Xn31VUlSaWmpIiIiNHHiRE2dOrVCvVyosLBQhYWF9rLH41FERITy8/MVEBBQ1Wm6pIw3Hq/2MWtadMILdd0CAACX5fF4FBgYWKHP7590jVB+fr4kqWnTppKkzMxMnTt3TrGxsXZNx44ddd111ykjI0OSlJGRoa5du9ohSJLi4uLk8Xi0e/duu+b8McpqysYoKipSZmamV42Pj49iY2Ptmor0cqFZs2YpMDDQfkVERFRtYgAAQL1Q5SBUWlqqSZMm6aabblKXLl0kSW63W06nU0FBQV61ISEhcrvdds35Iahse9m2y9V4PB6dOXNG33//vUpKSi5ac/4YV+rlQtOmTVN+fr79OnToUAVnAwAA1EcNqrpjYmKidu3apQ0bNlRnP3XK5XLJ5XLVdRsAAKCWVOmMUFJSkpYvX67Vq1erZcuW9vrQ0FAVFRUpLy/Pqz43N1ehoaF2zYV3bpUtX6kmICBA/v7+at68uXx9fS9ac/4YV+oFAACYrVJByLIsJSUl6cMPP9SqVavUpk0br+2RkZFq2LCh0tPT7XXZ2dk6ePCgoqOjJUnR0dHauXOn191daWlpCggIUOfOne2a88coqykbw+l0KjIy0qumtLRU6enpdk1FegEAAGar1FdjiYmJWrx4sf7973+rSZMm9rU2gYGB8vf3V2BgoBISEpScnKymTZsqICBAEydOVHR0tH2X1uDBg9W5c2eNHj1as2fPltvt1tNPP63ExET7a6kJEybo1Vdf1ZNPPqkHH3xQq1at0nvvvacVK1bYvSQnJys+Pl69evVSnz59NGfOHBUUFGjs2LF2T1fqBQAAmK1SQWj+/PmSpFtuucVr/aJFizRmzBhJ0osvvigfHx8NHz5chYWFiouL07x58+xaX19fLV++XI888oiio6PVqFEjxcfH65lnnrFr2rRpoxUrVmjy5Ml66aWX1LJlS73++uuKi4uza0aMGKFjx45p+vTpcrvd6tGjh1JTU70uoL5SLwAAwGw/6TlCV7vKPIegKniOEAAA1a/WniMEAABQnxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGqnQQWrdune68806Fh4fL4XBo2bJlXtvHjBkjh8Ph9brtttu8ak6cOKFRo0YpICBAQUFBSkhI0OnTp71qduzYoZiYGPn5+SkiIkKzZ88u18vSpUvVsWNH+fn5qWvXrlq5cqXXdsuyNH36dIWFhcnf31+xsbHat29fZQ8ZAABcpSodhAoKCtS9e3fNnTv3kjW33Xabjhw5Yr/eeecdr+2jRo3S7t27lZaWpuXLl2vdunUaN26cvd3j8Wjw4MFq1aqVMjMz9de//lUzZ87UwoUL7ZpNmzbp/vvvV0JCgrZv365hw4Zp2LBh2rVrl10ze/Zsvfzyy1qwYIE2b96sRo0aKS4uTmfPnq3sYQMAgKuQw7Isq8o7Oxz68MMPNWzYMHvdmDFjlJeXV+5MUZk9e/aoc+fO+vLLL9WrVy9JUmpqqoYMGaLvvvtO4eHhmj9/vp566im53W45nU5J0tSpU7Vs2TLt3btXkjRixAgVFBRo+fLl9th9+/ZVjx49tGDBAlmWpfDwcP3ud7/T448/LknKz89XSEiIUlJSNHLkyHK9FRYWqrCw0F72eDyKiIhQfn6+AgICqjpNl5TxxuPVPmZNi054oa5bAADgsjwejwIDAyv0+V0j1witWbNGwcHBuuGGG/TII4/o+PHj9raMjAwFBQXZIUiSYmNj5ePjo82bN9s1AwYMsEOQJMXFxSk7O1snT560a2JjY73eNy4uThkZGZKknJwcud1ur5rAwEBFRUXZNReaNWuWAgMD7VdERMRPnAkAAPBzVu1B6LbbbtM///lPpaen6y9/+YvWrl2r22+/XSUlJZIkt9ut4OBgr30aNGigpk2byu122zUhISFeNWXLV6o5f/v5+12s5kLTpk1Tfn6+/Tp06FCljx8AANQfDap7wPO/curatau6deumdu3aac2aNRo0aFB1v121crlccrlcdd0GAACoJTV++3zbtm3VvHlz7d+/X5IUGhqqo0ePetUUFxfrxIkTCg0NtWtyc3O9asqWr1Rz/vbz97tYDQAAMFuNB6HvvvtOx48fV1hYmCQpOjpaeXl5yszMtGtWrVql0tJSRUVF2TXr1q3TuXPn7Jq0tDTdcMMNuvbaa+2a9PR0r/dKS0tTdHS0JKlNmzYKDQ31qvF4PNq8ebNdAwAAzFbpIHT69GllZWUpKytL0o8XJWdlZengwYM6ffq0nnjiCX3xxRf65ptvlJ6erl/96ldq37694uLiJEmdOnXSbbfdpocfflhbtmzRxo0blZSUpJEjRyo8PFyS9MADD8jpdCohIUG7d+/WkiVL9NJLLyk5Odnu47HHHlNqaqr+9re/ae/evZo5c6a2bt2qpKQkST/e0TZp0iQ9++yz+uijj7Rz50795je/UXh4uNddbgAAwFyVvkZo69atGjhwoL1cFk7i4+M1f/587dixQ2+++aby8vIUHh6uwYMH609/+pPXtTdvv/22kpKSNGjQIPn4+Gj48OF6+eWX7e2BgYH67LPPlJiYqMjISDVv3lzTp0/3etZQv379tHjxYj399NP6/e9/rw4dOmjZsmXq0qWLXfPkk0+qoKBA48aNU15envr376/U1FT5+flV9rABAMBV6Cc9R+hqV5nnEFQFzxECAKD61flzhAAAAOoDghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFiVDkLr1q3TnXfeqfDwcDkcDi1btsxru2VZmj59usLCwuTv76/Y2Fjt27fPq+bEiRMaNWqUAgICFBQUpISEBJ0+fdqrZseOHYqJiZGfn58iIiI0e/bscr0sXbpUHTt2lJ+fn7p27aqVK1dWuhcAAGCuSgehgoICde/eXXPnzr3o9tmzZ+vll1/WggULtHnzZjVq1EhxcXE6e/asXTNq1Cjt3r1baWlpWr58udatW6dx48bZ2z0ejwYPHqxWrVopMzNTf/3rXzVz5kwtXLjQrtm0aZPuv/9+JSQkaPv27Ro2bJiGDRumXbt2VaoXAABgLodlWVaVd3Y49OGHH2rYsGGSfjwDEx4ert/97nd6/PHHJUn5+fkKCQlRSkqKRo4cqT179qhz58768ssv1atXL0lSamqqhgwZou+++07h4eGaP3++nnrqKbndbjmdTknS1KlTtWzZMu3du1eSNGLECBUUFGj58uV2P3379lWPHj20YMGCCvVyocLCQhUWFtrLHo9HERERys/PV0BAQFWn6ZIy3ni82sesadEJL9R1CwAAXJbH41FgYGCFPr+r9RqhnJwcud1uxcbG2usCAwMVFRWljIwMSVJGRoaCgoLsECRJsbGx8vHx0ebNm+2aAQMG2CFIkuLi4pSdna2TJ0/aNee/T1lN2ftUpJcLzZo1S4GBgfYrIiLip0wHAAD4mavWIOR2uyVJISEhXutDQkLsbW63W8HBwV7bGzRooKZNm3rVXGyM89/jUjXnb79SLxeaNm2a8vPz7dehQ4cqcNQAAKC+alDXDfycuFwuuVyuum4DAADUkmo9IxQaGipJys3N9Vqfm5trbwsNDdXRo0e9thcXF+vEiRNeNRcb4/z3uFTN+duv1AsAADBbtQahNm3aKDQ0VOnp6fY6j8ejzZs3Kzo6WpIUHR2tvLw8ZWZm2jWrVq1SaWmpoqKi7Jp169bp3Llzdk1aWppuuOEGXXvttXbN+e9TVlP2PhXpBQAAmK3SQej06dPKyspSVlaWpB8vSs7KytLBgwflcDg0adIkPfvss/roo4+0c+dO/eY3v1F4eLh9Z1mnTp1022236eGHH9aWLVu0ceNGJSUlaeTIkQoPD5ckPfDAA3I6nUpISNDu3bu1ZMkSvfTSS0pOTrb7eOyxx5Samqq//e1v2rt3r2bOnKmtW7cqKSlJkirUCwAAMFulrxHaunWrBg4caC+XhZP4+HilpKToySefVEFBgcaNG6e8vDz1799fqamp8vPzs/d5++23lZSUpEGDBsnHx0fDhw/Xyy+/bG8PDAzUZ599psTEREVGRqp58+aaPn2617OG+vXrp8WLF+vpp5/W73//e3Xo0EHLli1Tly5d7JqK9AIAAMz1k54jdLWrzHMIqoLnCAEAUP3q7DlCAAAA9QlBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWNUehGbOnCmHw+H16tixo7397NmzSkxMVLNmzdS4cWMNHz5cubm5XmMcPHhQQ4cO1TXXXKPg4GA98cQTKi4u9qpZs2aNevbsKZfLpfbt2yslJaVcL3PnzlXr1q3l5+enqKgobdmypboPFwAA1GM1ckboxhtv1JEjR+zXhg0b7G2TJ0/Wxx9/rKVLl2rt2rU6fPiw7rnnHnt7SUmJhg4dqqKiIm3atElvvvmmUlJSNH36dLsmJydHQ4cO1cCBA5WVlaVJkybpoYce0qeffmrXLFmyRMnJyZoxY4a2bdum7t27Ky4uTkePHq2JQwYAAPWQw7IsqzoHnDlzppYtW6asrKxy2/Lz89WiRQstXrxY9957ryRp79696tSpkzIyMtS3b1998sknuuOOO3T48GGFhIRIkhYsWKApU6bo2LFjcjqdmjJlilasWKFdu3bZY48cOVJ5eXlKTU2VJEVFRal379569dVXJUmlpaWKiIjQxIkTNXXq1Aodi8fjUWBgoPLz8xUQEPBTpuWiMt54vNrHrGnRCS/UdQsAAFxWZT6/a+SM0L59+xQeHq62bdtq1KhROnjwoCQpMzNT586dU2xsrF3bsWNHXXfddcrIyJAkZWRkqGvXrnYIkqS4uDh5PB7t3r3brjl/jLKasjGKioqUmZnpVePj46PY2Fi75mIKCwvl8Xi8XgAA4OpV7UEoKipKKSkpSk1N1fz585WTk6OYmBidOnVKbrdbTqdTQUFBXvuEhITI7XZLktxut1cIKttetu1yNR6PR2fOnNH333+vkpKSi9aUjXExs2bNUmBgoP2KiIio0hwAAID6oUF1D3j77bfbf+7WrZuioqLUqlUrvffee/L396/ut6tW06ZNU3Jysr3s8XgIQwAAXMVq/Pb5oKAgXX/99dq/f79CQ0NVVFSkvLw8r5rc3FyFhoZKkkJDQ8vdRVa2fKWagIAA+fv7q3nz5vL19b1oTdkYF+NyuRQQEOD1AgAAV68aD0KnT5/W119/rbCwMEVGRqphw4ZKT0+3t2dnZ+vgwYOKjo6WJEVHR2vnzp1ed3elpaUpICBAnTt3tmvOH6OspmwMp9OpyMhIr5rS0lKlp6fbNQAAANUehB5//HGtXbtW33zzjTZt2qS7775bvr6+uv/++xUYGKiEhAQlJydr9erVyszM1NixYxUdHa2+fftKkgYPHqzOnTtr9OjR+s9//qNPP/1UTz/9tBITE+VyuSRJEyZM0IEDB/Tkk09q7969mjdvnt577z1NnjzZ7iM5OVmvvfaa3nzzTe3Zs0ePPPKICgoKNHbs2Oo+ZAAAUE9V+zVC3333ne6//34dP35cLVq0UP/+/fXFF1+oRYsWkqQXX3xRPj4+Gj58uAoLCxUXF6d58+bZ+/v6+mr58uV65JFHFB0drUaNGik+Pl7PPPOMXdOmTRutWLFCkydP1ksvvaSWLVvq9ddfV1xcnF0zYsQIHTt2TNOnT5fb7VaPHj2Umppa7gJqAABgrmp/jtDVhOcIlcdzhAAAP3d1/hwhAACA+oAgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMZqUNcNADXtxbT/resWKm3yrdfXdQsAYASCEK56fQ8urOsWquCFum4AAIxAEEKl1MezK33ruoEqqI/zzFksAPURQQiVUj/PrtQ/9XOeOYsFoP7hYmkAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGNx+zyAapHxxuN13UKlRSdwyz9gOs4IAQAAYxGEAACAsYwIQnPnzlXr1q3l5+enqKgobdmypa5bAgAAPwNX/TVCS5YsUXJyshYsWKCoqCjNmTNHcXFxys7OVnBwcF23B6AO8TvdADgsy7LquomaFBUVpd69e+vVV1+VJJWWlioiIkITJ07U1KlTL7uvx+NRYGCg8vPzFRAQUO291ceLSwGgKrgwHbWpMp/fV/UZoaKiImVmZmratGn2Oh8fH8XGxiojI6NcfWFhoQoLC+3l/Px8ST9OaE0oOFN45SIAuAp8/urEum4BP1N9fvNctY9Z9rldkXM9V3UQ+v7771VSUqKQkBCv9SEhIdq7d2+5+lmzZumPf/xjufURERE11iMAAEab+GqNDX3q1CkFBgZetuaqDkKVNW3aNCUnJ9vLpaWlOnHihJo1ayaHw1Gt7+XxeBQREaFDhw7VyNdu+BHzXDuY59rDXNcO5rl21NQ8W5alU6dOKTw8/Iq1V3UQat68uXx9fZWbm+u1Pjc3V6GhoeXqXS6XXC6X17qgoKCabFEBAQH8R1YLmOfawTzXHua6djDPtaMm5vlKZ4LKXNW3zzudTkVGRio9Pd1eV1paqvT0dEVHR9dhZwAA4Ofgqj4jJEnJycmKj49Xr1691KdPH82ZM0cFBQUaO3ZsXbcGAADq2FUfhEaMGKFjx45p+vTpcrvd6tGjh1JTU8tdQF3bXC6XZsyYUe6rOFQv5rl2MM+1h7muHcxz7fg5zPNV/xwhAACAS7mqrxECAAC4HIIQAAAwFkEIAAAYiyAEAACMRRACAADGIgjVoLlz56p169by8/NTVFSUtmzZctn6pUuXqmPHjvLz81PXrl21cuXKWuq0fqvMPL/22muKiYnRtddeq2uvvVaxsbFX/LngR5X9+1zm3XfflcPh0LBhw2q2watEZec5Ly9PiYmJCgsLk8vl0vXXX8+/HRVU2bmeM2eObrjhBvn7+ysiIkKTJ0/W2bNna6nb+mndunW68847FR4eLofDoWXLll1xnzVr1qhnz55yuVxq3769UlJSarZJCzXi3XfftZxOp/WPf/zD2r17t/Xwww9bQUFBVm5u7kXrN27caPn6+lqzZ8+2vvrqK+vpp5+2GjZsaO3cubOWO69fKjvPDzzwgDV37lxr+/bt1p49e6wxY8ZYgYGB1nfffVfLndcvlZ3nMjk5OdYvfvELKyYmxvrVr35VO83WY5Wd58LCQqtXr17WkCFDrA0bNlg5OTnWmjVrrKysrFruvP6p7Fy//fbblsvlst5++20rJyfH+vTTT62wsDBr8uTJtdx5/bJy5Urrqaeesj744ANLkvXhhx9etv7AgQPWNddcYyUnJ1tfffWV9corr1i+vr5WampqjfVIEKohffr0sRITE+3lkpISKzw83Jo1a9ZF6++77z5r6NChXuuioqKs8ePH12if9V1l5/lCxcXFVpMmTaw333yzplq8KlRlnouLi61+/fpZr7/+uhUfH08QqoDKzvP8+fOttm3bWkVFRbXV4lWjsnOdmJho/fKXv/Ral5ycbN1000012ufVpCJB6Mknn7RuvPFGr3UjRoyw4uLiaqwvvhqrAUVFRcrMzFRsbKy9zsfHR7GxscrIyLjoPhkZGV71khQXF3fJelRtni/0ww8/6Ny5c2ratGlNtVnvVXWen3nmGQUHByshIaE22qz3qjLPH330kaKjo5WYmKiQkBB16dJFf/7zn1VSUlJbbddLVZnrfv36KTMz0/767MCBA1q5cqWGDBlSKz2boi4+C6/6X7FRF77//nuVlJSU+zUeISEh2rt370X3cbvdF613u9011md9V5V5vtCUKVMUHh5e7j88/P+qMs8bNmzQG2+8oaysrFro8OpQlXk+cOCAVq1apVGjRmnlypXav3+/Hn30UZ07d04zZsyojbbrparM9QMPPKDvv/9e/fv3l2VZKi4u1oQJE/T73/++Nlo2xqU+Cz0ej86cOSN/f/9qf0/OCMFYzz//vN599119+OGH8vPzq+t2rhqnTp3S6NGj9dprr6l58+Z13c5VrbS0VMHBwVq4cKEiIyM1YsQIPfXUU1qwYEFdt3bVWbNmjf785z9r3rx52rZtmz744AOtWLFCf/rTn+q6NfxEnBGqAc2bN5evr69yc3O91ufm5io0NPSi+4SGhlaqHlWb5zIvvPCCnn/+eX3++efq1q1bTbZZ71V2nr/++mt98803uvPOO+11paWlkqQGDRooOztb7dq1q9mm66Gq/H0OCwtTw4YN5evra6/r1KmT3G63ioqK5HQ6a7Tn+qoqc/2HP/xBo0eP1kMPPSRJ6tq1qwoKCjRu3Dg99dRT8vHhvEJ1uNRnYUBAQI2cDZI4I1QjnE6nIiMjlZ6ebq8rLS1Venq6oqOjL7pPdHS0V70kpaWlXbIeVZtnSZo9e7b+9Kc/KTU1Vb169aqNVuu1ys5zx44dtXPnTmVlZdmvu+66SwMHDlRWVpYiIiJqs/16oyp/n2+66Sbt37/fDpqS9L//+78KCwsjBF1GVeb6hx9+KBd2ygKoxe8urzZ18llYY5dhG+7dd9+1XC6XlZKSYn311VfWuHHjrKCgIMvtdluWZVmjR4+2pk6datdv3LjRatCggfXCCy9Ye/bssWbMmMHt8xVQ2Xl+/vnnLafTab3//vvWkSNH7NepU6fq6hDqhcrO84W4a6xiKjvPBw8etJo0aWIlJSVZ2dnZ1vLly63g4GDr2WefratDqDcqO9czZsywmjRpYr3zzjvWgQMHrM8++8xq166ddd9999XVIdQLp06dsrZv325t377dkmT993//t7V9+3br22+/tSzLsqZOnWqNHj3ari+7ff6JJ56w9uzZY82dO5fb5+uzV155xbruuussp9Np9enTx/riiy/sbTfffLMVHx/vVf/ee+9Z119/veV0Oq0bb7zRWrFiRS13XD9VZp5btWplSSr3mjFjRu03Xs9U9u/z+QhCFVfZed60aZMVFRVluVwuq23bttZzzz1nFRcX13LX9VNl5vrcuXPWzJkzrXbt2ll+fn5WRESE9eijj1onT56s/cbrkdWrV1/039yyuY2Pj7duvvnmcvv06NHDcjqdVtu2ba1FixbVaI8Oy+KcHgAAMBPXCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWP8fms9hr4ZnSdwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN5lJREFUeJzt3XtYVXXe///XBuWQCuSB04iKWql5ukVFTMwmktJsTLvS8nbQLDPBUak8lKN2GhurO83jWI04M1pmV1qjRhF5TNJCGQ8pdyam3QaaCltJOcj6/dGP9XWLp00cgs/zcV37utyf9V5rvdcHc79ae62Fw7IsSwAAAAbyqO4GAAAAqgtBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIQBlJSUlyOBw6fPhwdbdSLn369FGfPn1+89v8Lbn0+A4fPiyHw6GkpKRq6wmoCgQhAMB1Wb9+vWbOnFkl+8rNzVVgYKAcDofef//9KtknzEQQAlDG8OHDde7cOTVv3ry6WymXTz/9VJ9++ml1t1GjNW/eXOfOndPw4cPtsfXr1+u5556rkv1Pnz5dP//8c5XsC2YjCAEow9PTUz4+PnI4HNXdSrl4eXnJy8urutuo0RwOh3x8fOTp6Vnl+967d68WLVqkyZMnV/m+YR6CEFAJzpw5owkTJqhFixby9vZWYGCg7rrrLu3cudOu2b59u/r166cbb7xR9erVU8eOHTV37lx7+e7duzVixAi1bNlSPj4+Cg4O1iOPPKKTJ0+67GvmzJlyOBw6ePCgRowYoYCAAPn7+2vkyJFl/o/a4XAoISFBa9asUfv27eXt7a1bb71VycnJLnWXu0aoRYsWuvfee7V161Z1795dPj4+atmypf7xj3+UOf7du3fr9ttvl6+vr5o2baoXX3xRS5cudeu6o927d8vhcOijjz6yx9LT0+VwONSlSxeX2nvuuUeRkZH2+0uvd9m4caMcDofee+89vfTSS2ratKl8fHx055136uDBg2X2vWTJErVq1Uq+vr7q3r27tmzZctkejx8/rlGjRikoKEg+Pj7q1KmTli1b5lLTpUsXDRo0yGWsQ4cOcjgc2r17tz22cuVKORwO7d+//9qT8/979913FRERoQYNGsjPz08dOnRw+TtU+nPcvHmzHn/8cTVq1Eh+fn764x//qNOnT19125deIzRixAgtWLBA0i9/j0pf19uLO8aPH6/7779f0dHR5VofcEed6m4AqI3GjBmj999/XwkJCWrXrp1OnjyprVu3av/+/erSpYtSUlJ07733KiQkROPHj1dwcLD279+vtWvXavz48ZKklJQUHTp0SCNHjlRwcLD27dunJUuWaN++ffryyy/LnK158MEHFR4erlmzZmnnzp166623FBgYqL/+9a8udVu3btUHH3ygsWPHqkGDBnrjjTc0ePBgHTlyRI0aNbrqcR08eFAPPPCARo0apbi4OP3973/XiBEjFBERoVtvvVWS9H//93+644475HA4NHXqVNWrV09vvfWWvL293ZrD9u3bKyAgQJs3b9Z9990nSdqyZYs8PDz0n//8R06nU35+fiopKdG2bds0evToa27z5ZdfloeHh5566inl5eVp9uzZGjZsmLZv327XvP3223r88cfVs2dPTZgwQYcOHdJ9992nhg0bKiwszK47d+6c+vTpo4MHDyohIUHh4eFatWqVRowYodzcXPvnGB0drXfeecde79SpU9q3b588PDy0ZcsWdezY0T62Jk2aqG3bttc1PykpKXrooYd055132j/j/fv364svvrD3XSohIUEBAQGaOXOmMjMztWjRIn3//fd2QLwejz/+uI4dO6aUlBT985//LHcv17Jq1Spt27ZN+/fvr7EX66OGsQBUOH9/fys+Pv6yy4qLi63w8HCrefPm1unTp12WlZSU2H/++eefy6z7zjvvWJKszZs322MzZsywJFmPPPKIS+39999vNWrUyGVMkuXl5WUdPHjQHvvPf/5jSbLmzZtnjy1dutSSZGVlZdljzZs3L7Pv48ePW97e3taTTz5pj40bN85yOBzWrl277LGTJ09aDRs2LLPNa+nfv7/VvXt3+/2gQYOsQYMGWZ6entbHH39sWZZl7dy505Jkffjhh3bd7bffbt1+++32+w0bNliSrLZt21oFBQX2+Ny5cy1J1p49eyzLsqzCwkIrMDDQ6ty5s0vdkiVLLEku25wzZ44lyfrXv/5ljxUWFlpRUVFW/fr1LafTaVmWZa1atcqSZH3zzTeWZVnWRx99ZHl7e1v33XefNWTIEHvdjh07Wvfff/91z8348eMtPz8/q7i4+Io1pT/HiIgIq7Cw0B6fPXv2NecsKyvLkmQtXbrUHouPj7cu97FxPb1cj59//tlq1qyZNXXqVMuy/t/PbdWqVb9qu8DV8NUYUAkCAgK0fft2HTt2rMyyXbt2KSsrSxMmTFBAQIDLsov/79zX19f+8/nz5/XTTz+pR48ekuTyFVupMWPGuLyPjo7WyZMn5XQ6XcZjYmLUqlUr+33Hjh3l5+enQ4cOXfO42rVr5/J1RZMmTXTLLbe4rJucnKyoqCh17tzZHmvYsKGGDRt2ze1fKjo6Wjt37lR+fr6kX85m9evXT507d7a/rtqyZYscDod69ep1ze2NHDnS5dqh0mMp7f/rr7/W8ePHNWbMGJe6ESNGyN/f32Vb69evV3BwsB566CF7rG7duvrTn/6ks2fPatOmTS772Lx5s91vt27ddNddd9nHkJubq71797r1VVBAQIDy8/OVkpJyzdrRo0erbt269vsnnnhCderU0fr16697fxXVy9W8/PLLKioq0jPPPFMhfQHXgyAEVILZs2dr7969CgsLU/fu3TVz5kz7w/a7776T9MtXP1dz6tQpjR8/XkFBQfL19VWTJk0UHh4uScrLyytT36xZM5f3N954oySVuRbk0rrS2mtdM3K9637//fdq3bp1mbrLjV1LdHS0iouLlZaWpszMTB0/flzR0dHq3bu3SxBq166dGjZs6Hb/l87R999/L0m66aabXOrq1q2rli1buox9//33uummm+Th4frPaOlXW6XbCgoK0k033eTSb+kxHDt2TIcOHdIXX3yhkpISt4LQ2LFjdfPNN+uee+5R06ZN9cgjj5S51qvUpcdTv359hYSEVNhXT+70ciWHDx/WK6+8opdeekn169evkL6A60EQAirBgw8+qEOHDmnevHkKDQ3VK6+8oltvvVUff/yxW9t48803NWbMGH3wwQf69NNP7Q+XkpKSMvVXurvHsqxy1V3Or1m3PLp27SofHx9t3rxZW7ZsUWBgoG6++WZFR0drx44dKigosIPF9ajq/kv16tVLW7Zs0blz55Senq7o6Gj7GqgtW7Zoy5Ytql+/vv7rv/7rurcZGBiojIwMffTRR7rvvvu0YcMG3XPPPYqLi6vEI6m8XqZPn67f/e536tOnjw4fPqzDhw8rOztbknTixAkdPnz4sn/vgV+LIARUkpCQEI0dO1Zr1qxRVlaWGjVqpJdeesn+Wmrv3r1XXPf06dNKTU3VlClT9Nxzz+n+++/XXXfdVeasxG9R8+bNL3sn1uXGrsXLy8u+a+viwBMdHa2CggItX75cOTk56t2796/uW5L93KRvv/3WZbyoqEhZWVllar/99tsyH84HDhxw2VZpv0eOHNG7776rCxcuqGfPnvLw8LAD0pYtW9SzZ0+3b1X38vLSgAEDtHDhQn333Xd6/PHH9Y9//KPMXF96PGfPntWPP/6oFi1auLW/q11Yfb29XMmRI0d08OBBtWzZUuHh4QoPD7e/dhw7dqzCw8PLfM0LVASCEFDBLly4UOarq8DAQIWGhqqgoEBdunRReHi45syZo9zcXJe60jMTpR+Il56pmDNnTqX1XVFiY2OVlpamjIwMe+zUqVNavnx5ubYXHR2t7du3a8OGDXYQaty4sdq2bWvfoVRRt1l37dpVTZo00eLFi1VYWGiPJyUllflZ9evXT9nZ2Vq5cqU9VlxcrHnz5ql+/fq6/fbbXY5Bkv7617+qY8eO9vVG0dHRSk1N1ddff+32MVz6GAUPDw/7DrSCggKXZUuWLFFRUZH9ftGiRSouLtY999zj1j7r1asnSWXmwp1eruTFF1/U6tWrXV4vvPCCJGnSpElavXq1vX+gInH7PFDBzpw5o6ZNm+qBBx5Qp06dVL9+fX322Wf66quv9Nprr8nDw0OLFi3SgAED1LlzZ40cOVIhISE6cOCA9u3bp08++UR+fn7q3bu3Zs+eraKiIv3ud7/Tp59+WuasxG/RpEmT9K9//Ut33XWXxo0bZ98+36xZM506dcrthzRGR0frpZde0tGjR13CQu/evfW3v/1NLVq0UNOmTSuk97p16+rFF1/U448/rt///vcaMmSIsrKytHTp0jJn40aPHq2//e1vGjFihNLT09WiRQu9//77+uKLLzRnzhw1aNDArm3durWCg4OVmZmpcePGuRxD6UMD3Q1Cjz76qE6dOqXf//73atq0qb7//nvNmzdPnTt3LnMLfmFhoe688049+OCDyszM1MKFC9WrVy/7sQTXKyIiQpL0pz/9SbGxsfL09NTQoUPd6uVKLnexe+nNBN26ddPAgQPd6hW4XpwRAirYDTfcoLFjxyojI0MzZszQxIkT7Q+fxMRESb+cNdmwYYNuvvlmvfbaa0pMTFRqaqoGDBhgb2fFihWKjY3VggULNHXqVNWtW9eta4yqS1hYmDZs2KC2bdvqL3/5i+bMmaO4uDg98sgjkiQfHx+3tlf6lVGDBg3UqVMne/zir8kq0ujRo7Vw4UIdO3ZMTz/9tLZs2aKPPvrI5RlC0i939W3cuFHDhg3TsmXL9OSTT+rUqVNaunTpZZ+dU9rnxR/4ERERuuGGG+Tl5eXyQMjr8d///d/y8fHRwoULNXbsWC1btkxDhgzRxx9/XOYC7vnz56tt27aaPn26kpKS9NBDD+nDDz90O5QOGjRI48aNU3JysoYPH25/deVOL8BvjcOq7KsEAUDShAkT9Le//U1nz56tll/bYKKkpCSNHDlSX331lbp27Vrd7QC/SUR1ABXu3LlzLu9Pnjypf/7zn+rVqxchCMBvCtcIAahwUVFR6tOnj9q2baucnBy9/fbbcjqd+vOf/yzpl7uWzp49e9VtNGnSxMjQdOHCBZ04ceKqNfXr169Rz9opvQ3+Snx9fcs8sBKoKgQhABWuX79+ev/997VkyRL7l6S+/fbb9m3ur776qp577rmrbiMrK8vt27trg6NHj9oPzrySGTNmaObMmVXTUAUICQm56vK4uDj7l7sCVY1rhABUuUOHDl3zV3r06tXL7Qura4Pz589r69atV61p2bJljXimVKnPPvvsqstDQ0PVrl27KuoGcEUQAgAAxuJiaQAAYCyuEbqKkpISHTt2TA0aNHD7eRsAAKB6WJalM2fOKDQ09JrPsiIIXcWxY8fKPEQNAADUDEePHr3mk+cJQldR+oj8o0ePys/Pr5q7AQAA18PpdCosLMzlV91cCUHoKkq/DvPz8yMIAQBQw1zPZS1cLA0AAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrDrV3YDJXk/53+puwW0T77q5ulsAAKDCcEYIAAAYizNC1ajHkSXV3UI5vFrdDQAAUGE4IwQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYy60gNGvWLHXr1k0NGjRQYGCgBg4cqMzMTJeaPn36yOFwuLzGjBnjUnPkyBH1799fN9xwgwIDA/X000+ruLjYpWbjxo3q0qWLvL291bp1ayUlJZXpZ8GCBWrRooV8fHwUGRmpHTt2uCw/f/684uPj1ahRI9WvX1+DBw9WTk6OO4cMAABqMbeC0KZNmxQfH68vv/xSKSkpKioqUt++fZWfn+9S99hjj+nHH3+0X7Nnz7aXXbhwQf3791dhYaG2bdumZcuWKSkpSdOnT7drsrKy1L9/f91xxx3KyMjQhAkT9Oijj+qTTz6xa1auXKnExETNmDFDO3fuVKdOnRQbG6vjx4/bNRMnTtS///1vrVq1Sps2bdKxY8c0aNAgtycJAADUTg7LsqzyrnzixAkFBgZq06ZN6t27t6Rfzgh17txZc+bMuew6H3/8se69914dO3ZMQUFBkqTFixdr8uTJOnHihLy8vDR58mStW7dOe/futdcbOnSocnNzlZycLEmKjIxUt27dNH/+fElSSUmJwsLCNG7cOE2ZMkV5eXlq0qSJVqxYoQceeECSdODAAbVt21ZpaWnq0aPHNY/P6XTK399feXl58vPzK+80XVHa209V+DYrW9SoV6u7BQAArsqdz+9fdY1QXl6eJKlhw4Yu48uXL1fjxo3Vvn17TZ06VT///LO9LC0tTR06dLBDkCTFxsbK6XRq3759dk1MTIzLNmNjY5WWliZJKiwsVHp6ukuNh4eHYmJi7Jr09HQVFRW51LRp00bNmjWzay5VUFAgp9Pp8gIAALVXnfKuWFJSogkTJui2225T+/bt7fGHH35YzZs3V2hoqHbv3q3JkycrMzNTH3zwgSQpOzvbJQRJst9nZ2dftcbpdOrcuXM6ffq0Lly4cNmaAwcO2Nvw8vJSQEBAmZrS/Vxq1qxZeu6559ycCQAAUFOVOwjFx8dr79692rp1q8v46NGj7T936NBBISEhuvPOO/Xdd9+pVatW5e+0CkydOlWJiYn2e6fTqbCwsGrsCAAAVKZyfTWWkJCgtWvXasOGDWratOlVayMjIyVJBw8elCQFBweXuXOr9H1wcPBVa/z8/OTr66vGjRvL09PzsjUXb6OwsFC5ublXrLmUt7e3/Pz8XF4AAKD2cisIWZalhIQErV69Wp9//rnCw8OvuU5GRoYkKSQkRJIUFRWlPXv2uNzdlZKSIj8/P7Vr186uSU1NddlOSkqKoqKiJEleXl6KiIhwqSkpKVFqaqpdExERobp167rUZGZm6siRI3YNAAAwm1tfjcXHx2vFihX68MMP1aBBA/taG39/f/n6+uq7777TihUr1K9fPzVq1Ei7d+/WxIkT1bt3b3Xs2FGS1LdvX7Vr107Dhw/X7NmzlZ2drWnTpik+Pl7e3t6SpDFjxmj+/PmaNGmSHnnkEX3++ed67733tG7dOruXxMRExcXFqWvXrurevbvmzJmj/Px8jRw50u5p1KhRSkxMVMOGDeXn56dx48YpKirquu4YAwAAtZ9bQWjRokWSfrlF/mJLly7ViBEj5OXlpc8++8wOJWFhYRo8eLCmTZtm13p6emrt2rV64oknFBUVpXr16ikuLk7PP/+8XRMeHq5169Zp4sSJmjt3rpo2baq33npLsbGxds2QIUN04sQJTZ8+XdnZ2ercubOSk5NdLqB+/fXX5eHhocGDB6ugoECxsbFauHChWxMEAABqr1/1HKHajucIlcVzhAAAv3VV9hwhAACAmowgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLLeC0KxZs9StWzc1aNBAgYGBGjhwoDIzM11qzp8/r/j4eDVq1Ej169fX4MGDlZOT41Jz5MgR9e/fXzfccIMCAwP19NNPq7i42KVm48aN6tKli7y9vdW6dWslJSWV6WfBggVq0aKFfHx8FBkZqR07drjdCwAAMJdbQWjTpk2Kj4/Xl19+qZSUFBUVFalv377Kz8+3ayZOnKh///vfWrVqlTZt2qRjx45p0KBB9vILFy6of//+Kiws1LZt27Rs2TIlJSVp+vTpdk1WVpb69++vO+64QxkZGZowYYIeffRRffLJJ3bNypUrlZiYqBkzZmjnzp3q1KmTYmNjdfz48evuBQAAmM1hWZZV3pVPnDihwMBAbdq0Sb1791ZeXp6aNGmiFStW6IEHHpAkHThwQG3btlVaWpp69Oihjz/+WPfee6+OHTumoKAgSdLixYs1efJknThxQl5eXpo8ebLWrVunvXv32vsaOnSocnNzlZycLEmKjIxUt27dNH/+fElSSUmJwsLCNG7cOE2ZMuW6erkWp9Mpf39/5eXlyc/Pr7zTdEVpbz9V4dusbFGjXq3uFgAAuCp3Pr9/1TVCeXl5kqSGDRtKktLT01VUVKSYmBi7pk2bNmrWrJnS0tIkSWlpaerQoYMdgiQpNjZWTqdT+/bts2su3kZpTek2CgsLlZ6e7lLj4eGhmJgYu+Z6erlUQUGBnE6nywsAANRe5Q5CJSUlmjBhgm677Ta1b99ekpSdnS0vLy8FBAS41AYFBSk7O9uuuTgElS4vXXa1GqfTqXPnzumnn37ShQsXLltz8Tau1culZs2aJX9/f/sVFhZ2nbMBAABqonIHofj4eO3du1fvvvtuRfZTraZOnaq8vDz7dfTo0epuCQAAVKI65VkpISFBa9eu1ebNm9W0aVN7PDg4WIWFhcrNzXU5E5OTk6Pg4GC75tK7u0rv5Lq45tK7u3JycuTn5ydfX195enrK09PzsjUXb+NavVzK29tb3t7ebswEAACoydw6I2RZlhISErR69Wp9/vnnCg8Pd1keERGhunXrKjU11R7LzMzUkSNHFBUVJUmKiorSnj17XO7uSklJkZ+fn9q1a2fXXLyN0prSbXh5eSkiIsKlpqSkRKmpqXbN9fQCAADM5tYZofj4eK1YsUIffvihGjRoYF9r4+/vL19fX/n7+2vUqFFKTExUw4YN5efnp3HjxikqKsq+S6tv375q166dhg8frtmzZys7O1vTpk1TfHy8fTZmzJgxmj9/viZNmqRHHnlEn3/+ud577z2tW7fO7iUxMVFxcXHq2rWrunfvrjlz5ig/P18jR460e7pWLwAAwGxuBaFFixZJkvr06eMyvnTpUo0YMUKS9Prrr8vDw0ODBw9WQUGBYmNjtXDhQrvW09NTa9eu1RNPPKGoqCjVq1dPcXFxev755+2a8PBwrVu3ThMnTtTcuXPVtGlTvfXWW4qNjbVrhgwZohMnTmj69OnKzs5W586dlZyc7HIB9bV6AQAAZvtVzxGq7XiOUFk8RwgA8FtXZc8RAgAAqMkIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxnI7CG3evFkDBgxQaGioHA6H1qxZ47J8xIgRcjgcLq+7777bpebUqVMaNmyY/Pz8FBAQoFGjRuns2bMuNbt371Z0dLR8fHwUFham2bNnl+ll1apVatOmjXx8fNShQwetX7/eZbllWZo+fbpCQkLk6+urmJgYffvtt+4eMgAAqKXcDkL5+fnq1KmTFixYcMWau+++Wz/++KP9euedd1yWDxs2TPv27VNKSorWrl2rzZs3a/To0fZyp9Opvn37qnnz5kpPT9crr7yimTNnasmSJXbNtm3b9NBDD2nUqFHatWuXBg4cqIEDB2rv3r12zezZs/XGG29o8eLF2r59u+rVq6fY2FidP3/e3cMGAAC1kMOyLKvcKzscWr16tQYOHGiPjRgxQrm5uWXOFJXav3+/2rVrp6+++kpdu3aVJCUnJ6tfv3764YcfFBoaqkWLFunZZ59Vdna2vLy8JElTpkzRmjVrdODAAUnSkCFDlJ+fr7Vr19rb7tGjhzp37qzFixfLsiyFhobqySef1FNPPSVJysvLU1BQkJKSkjR06NBrHp/T6ZS/v7/y8vLk5+dXnim6qrS3n6rwbVa2qFGvVncLAABclTuf35VyjdDGjRsVGBioW265RU888YROnjxpL0tLS1NAQIAdgiQpJiZGHh4e2r59u13Tu3dvOwRJUmxsrDIzM3X69Gm7JiYmxmW/sbGxSktLkyRlZWUpOzvbpcbf31+RkZF2zaUKCgrkdDpdXgAAoPaq8CB099136x//+IdSU1P117/+VZs2bdI999yjCxcuSJKys7MVGBjosk6dOnXUsGFDZWdn2zVBQUEuNaXvr1Vz8fKL17tczaVmzZolf39/+xUWFub28QMAgJqjTkVv8OKvnDp06KCOHTuqVatW2rhxo+68886K3l2Fmjp1qhITE+33TqeTMAQAQC1W6bfPt2zZUo0bN9bBgwclScHBwTp+/LhLTXFxsU6dOqXg4GC7Jicnx6Wm9P21ai5efvF6l6u5lLe3t/z8/FxeAACg9qr0IPTDDz/o5MmTCgkJkSRFRUUpNzdX6enpds3nn3+ukpISRUZG2jWbN29WUVGRXZOSkqJbbrlFN954o12Tmprqsq+UlBRFRUVJksLDwxUcHOxS43Q6tX37drsGAACYze0gdPbsWWVkZCgjI0PSLxclZ2Rk6MiRIzp79qyefvppffnllzp8+LBSU1P1hz/8Qa1bt1ZsbKwkqW3btrr77rv12GOPaceOHfriiy+UkJCgoUOHKjQ0VJL08MMPy8vLS6NGjdK+ffu0cuVKzZ071+Vrq/Hjxys5OVmvvfaaDhw4oJkzZ+rrr79WQkKCpF/uaJswYYJefPFFffTRR9qzZ4/++Mc/KjQ01OUuNwAAYC63rxH6+uuvdccdd9jvS8NJXFycFi1apN27d2vZsmXKzc1VaGio+vbtqxdeeEHe3t72OsuXL1dCQoLuvPNOeXh4aPDgwXrjjTfs5f7+/vr0008VHx+viIgINW7cWNOnT3d51lDPnj21YsUKTZs2Tc8884xuuukmrVmzRu3bt7drJk2apPz8fI0ePVq5ubnq1auXkpOT5ePj4+5hAwCAWuhXPUeotuM5QmXxHCEAwG9dtT9HCAAAoCYgCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGMvtILR582YNGDBAoaGhcjgcWrNmjctyy7I0ffp0hYSEyNfXVzExMfr2229dak6dOqVhw4bJz89PAQEBGjVqlM6ePetSs3v3bkVHR8vHx0dhYWGaPXt2mV5WrVqlNm3ayMfHRx06dND69evd7gUAAJjL7SCUn5+vTp06acGCBZddPnv2bL3xxhtavHixtm/frnr16ik2Nlbnz5+3a4YNG6Z9+/YpJSVFa9eu1ebNmzV69Gh7udPpVN++fdW8eXOlp6frlVde0cyZM7VkyRK7Ztu2bXrooYc0atQo7dq1SwMHDtTAgQO1d+9et3oBAADmcliWZZV7ZYdDq1ev1sCBAyX9cgYmNDRUTz75pJ566ilJUl5enoKCgpSUlKShQ4dq//79ateunb766it17dpVkpScnKx+/frphx9+UGhoqBYtWqRnn31W2dnZ8vLykiRNmTJFa9as0YEDByRJQ4YMUX5+vtauXWv306NHD3Xu3FmLFy++rl4uVVBQoIKCAvu90+lUWFiY8vLy5OfnV95puqK0t5+q8G1WtqhRr1Z3CwAAXJXT6ZS/v/91fX5X6DVCWVlZys7OVkxMjD3m7++vyMhIpaWlSZLS0tIUEBBghyBJiomJkYeHh7Zv327X9O7d2w5BkhQbG6vMzEydPn3arrl4P6U1pfu5nl4uNWvWLPn7+9uvsLCwXzMdAADgN65Cg1B2drYkKSgoyGU8KCjIXpadna3AwECX5XXq1FHDhg1dai63jYv3caWai5dfq5dLTZ06VXl5efbr6NGj13HUAACgpqpT3Q38lnh7e8vb27u62wAAAFWkQs8IBQcHS5JycnJcxnNycuxlwcHBOn78uMvy4uJinTp1yqXmctu4eB9Xqrl4+bV6AQAAZqvQIBQeHq7g4GClpqbaY06nU9u3b1dUVJQkKSoqSrm5uUpPT7drPv/8c5WUlCgyMtKu2bx5s4qKiuyalJQU3XLLLbrxxhvtmov3U1pTup/r6QUAAJjN7SB09uxZZWRkKCMjQ9IvFyVnZGToyJEjcjgcmjBhgl588UV99NFH2rNnj/74xz8qNDTUvrOsbdu2uvvuu/XYY49px44d+uKLL5SQkKChQ4cqNDRUkvTwww/Ly8tLo0aN0r59+7Ry5UrNnTtXiYmJdh/jx49XcnKyXnvtNR04cEAzZ87U119/rYSEBEm6rl4AAIDZ3L5G6Ouvv9Ydd9xhvy8NJ3FxcUpKStKkSZOUn5+v0aNHKzc3V7169VJycrJ8fHzsdZYvX66EhATdeeed8vDw0ODBg/XGG2/Yy/39/fXpp58qPj5eERERaty4saZPn+7yrKGePXtqxYoVmjZtmp555hnddNNNWrNmjdq3b2/XXE8vAADAXL/qOUK1nTvPISgPniMEAEDFq7bnCAEAANQkBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGNVeBCaOXOmHA6Hy6tNmzb28vPnzys+Pl6NGjVS/fr1NXjwYOXk5Lhs48iRI+rfv79uuOEGBQYG6umnn1ZxcbFLzcaNG9WlSxd5e3urdevWSkpKKtPLggUL1KJFC/n4+CgyMlI7duyo6MMFAAA1WKWcEbr11lv1448/2q+tW7fayyZOnKh///vfWrVqlTZt2qRjx45p0KBB9vILFy6of//+Kiws1LZt27Rs2TIlJSVp+vTpdk1WVpb69++vO+64QxkZGZowYYIeffRRffLJJ3bNypUrlZiYqBkzZmjnzp3q1KmTYmNjdfz48co4ZAAAUAM5LMuyKnKDM2fO1Jo1a5SRkVFmWV5enpo0aaIVK1bogQcekCQdOHBAbdu2VVpamnr06KGPP/5Y9957r44dO6agoCBJ0uLFizV58mSdOHFCXl5emjx5statW6e9e/fa2x46dKhyc3OVnJwsSYqMjFS3bt00f/58SVJJSYnCwsI0btw4TZky5bK9FxQUqKCgwH7vdDoVFhamvLw8+fn5Vcj8XCzt7acqfJuVLWrUq9XdAgAAV+V0OuXv739dn9+Vckbo22+/VWhoqFq2bKlhw4bpyJEjkqT09HQVFRUpJibGrm3Tpo2aNWumtLQ0SVJaWpo6dOhghyBJio2NldPp1L59++yai7dRWlO6jcLCQqWnp7vUeHh4KCYmxq65nFmzZsnf399+hYWF/cqZAAAAv2UVHoQiIyOVlJSk5ORkLVq0SFlZWYqOjtaZM2eUnZ0tLy8vBQQEuKwTFBSk7OxsSVJ2drZLCCpdXrrsajVOp1Pnzp3TTz/9pAsXLly2pnQblzN16lTl5eXZr6NHj5ZrDgAAQM1Qp6I3eM8999h/7tixoyIjI9W8eXO999578vX1rejdVShvb295e3tXdxsAAKCKVPrt8wEBAbr55pt18OBBBQcHq7CwULm5uS41OTk5Cg4OliQFBweXuYus9P21avz8/OTr66vGjRvL09PzsjWl2wAAAKj0IHT27Fl99913CgkJUUREhOrWravU1FR7eWZmpo4cOaKoqChJUlRUlPbs2eNyd1dKSor8/PzUrl07u+bibZTWlG7Dy8tLERERLjUlJSVKTU21awAAACo8CD311FPatGmTDh8+rG3btun++++Xp6enHnroIfn7+2vUqFFKTEzUhg0blJ6erpEjRyoqKko9evSQJPXt21ft2rXT8OHD9Z///EeffPKJpk2bpvj4ePtrqzFjxujQoUOaNGmSDhw4oIULF+q9997TxIkT7T4SExP15ptvatmyZdq/f7+eeOIJ5efna+TIkRV9yAAAoIaq8GuEfvjhBz300EM6efKkmjRpol69eunLL79UkyZNJEmvv/66PDw8NHjwYBUUFCg2NlYLFy601/f09NTatWv1xBNPKCoqSvXq1VNcXJyef/55uyY8PFzr1q3TxIkTNXfuXDVt2lRvvfWWYmNj7ZohQ4boxIkTmj59urKzs9W5c2clJyeXuYAaAACYq8KfI1SbuPMcgvLgOUIAAFS8an+OEAAAQE1AEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYq051N4Ca5fWU/63uFtw28a6bq7sFAMBvFEEIbulxZEl1t1AOr1Z3AwCA3yiCEGo9zmIBAK6EIIRaj7NYAIAr4WJpAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADG4q4x4Dco7e2nqrsFt0WN4k43ADUPZ4QAAICxCEIAAMBYBCEAAGAsghAAADCWERdLL1iwQK+88oqys7PVqVMnzZs3T927d6/utoBahQu8AdREtf6M0MqVK5WYmKgZM2Zo586d6tSpk2JjY3X8+PHqbg0AAFQzh2VZVnU3UZkiIyPVrVs3zZ8/X5JUUlKisLAwjRs3TlOmTLnquk6nU/7+/srLy5Ofn1+F91YT/w8aQPXiLBZwbe58ftfqr8YKCwuVnp6uqVOn2mMeHh6KiYlRWlpamfqCggIVFBTY7/Py8iT9MqGVIf9cwbWLAOAin80fV90tABXmq6YjFf/71hW+3dLP7es511Org9BPP/2kCxcuKCgoyGU8KChIBw4cKFM/a9YsPffcc2XGw8LCKq1HAADMNV/PVOLWz5w5I39//6vW1Oog5K6pU6cqMTHRfl9SUqJTp06pUaNGcjgcFbovp9OpsLAwHT16tFK+dsMvmOeqwTxXHea6ajDPVaOy5tmyLJ05c0ahoaHXrK3VQahx48by9PRUTk6Oy3hOTo6Cg4PL1Ht7e8vb29tlLCAgoDJblJ+fH/+RVQHmuWowz1WHua4azHPVqIx5vtaZoFK1+q4xLy8vRUREKDU11R4rKSlRamqqoqKiqrEzAADwW1CrzwhJUmJiouLi4tS1a1d1795dc+bMUX5+vkaOHFndrQEAgGpW64PQkCFDdOLECU2fPl3Z2dnq3LmzkpOTy1xAXdW8vb01Y8aMMl/FoWIxz1WDea46zHXVYJ6rxm9hnmv9c4QAAACupFZfIwQAAHA1BCEAAGAsghAAADAWQQgAABiLIAQAAIxFEKpECxYsUIsWLeTj46PIyEjt2LHjqvWrVq1SmzZt5OPjow4dOmj9+vVV1GnN5s48v/nmm4qOjtaNN96oG2+8UTExMdf8ueAX7v59LvXuu+/K4XBo4MCBldtgLeHuPOfm5io+Pl4hISHy9vbWzTffzL8d18nduZ4zZ45uueUW+fr6KiwsTBMnTtT58+erqNuaafPmzRowYIBCQ0PlcDi0Zs2aa66zceNGdenSRd7e3mrdurWSkpIqt0kLleLdd9+1vLy8rL///e/Wvn37rMcee8wKCAiwcnJyLlv/xRdfWJ6entbs2bOtb775xpo2bZpVt25da8+ePVXcec3i7jw//PDD1oIFC6xdu3ZZ+/fvt0aMGGH5+/tbP/zwQxV3XrO4O8+lsrKyrN/97ndWdHS09Yc//KFqmq3B3J3ngoICq2vXrla/fv2srVu3WllZWdbGjRutjIyMKu685nF3rpcvX255e3tby5cvt7KysqxPPvnECgkJsSZOnFjFndcs69evt5599lnrgw8+sCRZq1evvmr9oUOHrBtuuMFKTEy0vvnmG2vevHmWp6enlZycXGk9EoQqSffu3a34+Hj7/YULF6zQ0FBr1qxZl61/8MEHrf79+7uMRUZGWo8//nil9lnTuTvPlyouLrYaNGhgLVu2rLJarBXKM8/FxcVWz549rbfeesuKi4sjCF0Hd+d50aJFVsuWLa3CwsKqarHWcHeu4+Pjrd///vcuY4mJidZtt91WqX3WJtcThCZNmmTdeuutLmNDhgyxYmNjK60vvhqrBIWFhUpPT1dMTIw95uHhoZiYGKWlpV12nbS0NJd6SYqNjb1iPco3z5f6+eefVVRUpIYNG1ZWmzVeeef5+eefV2BgoEaNGlUVbdZ45Znnjz76SFFRUYqPj1dQUJDat2+vv/zlL7pw4UJVtV0jlWeue/bsqfT0dPvrs0OHDmn9+vXq169flfRsiur4LKz1v2KjOvz000+6cOFCmV/jERQUpAMHDlx2nezs7MvWZ2dnV1qfNV155vlSkydPVmhoaJn/8PD/lGeet27dqrffflsZGRlV0GHtUJ55PnTokD7//HMNGzZM69ev18GDBzV27FgVFRVpxowZVdF2jVSeuX744Yf1008/qVevXrIsS8XFxRozZoyeeeaZqmjZGFf6LHQ6nTp37px8fX0rfJ+cEYKxXn75Zb377rtavXq1fHx8qrudWuPMmTMaPny43nzzTTVu3Li626nVSkpKFBgYqCVLligiIkJDhgzRs88+q8WLF1d3a7XOxo0b9Ze//EULFy7Uzp079cEHH2jdunV64YUXqrs1/EqcEaoEjRs3lqenp3JyclzGc3JyFBwcfNl1goOD3apH+ea51KuvvqqXX35Zn332mTp27FiZbdZ47s7zd999p8OHD2vAgAH2WElJiSSpTp06yszMVKtWrSq36RqoPH+fQ0JCVLduXXl6etpjbdu2VXZ2tgoLC+Xl5VWpPddU5ZnrP//5zxo+fLgeffRRSVKHDh2Un5+v0aNH69lnn5WHB+cVKsKVPgv9/Pwq5WyQxBmhSuHl5aWIiAilpqbaYyUlJUpNTVVUVNRl14mKinKpl6SUlJQr1qN88yxJs2fP1gsvvKDk5GR17dq1Klqt0dyd5zZt2mjPnj3KyMiwX/fdd5/uuOMOZWRkKCwsrCrbrzHK8/f5tttu08GDB+2gKUn/+7//q5CQEELQVZRnrn/++ecyYac0gFr87vIKUy2fhZV2Gbbh3n33Xcvb29tKSkqyvvnmG2v06NFWQECAlZ2dbVmWZQ0fPtyaMmWKXf/FF19YderUsV599VVr//791owZM7h9/jq4O88vv/yy5eXlZb3//vvWjz/+aL/OnDlTXYdQI7g7z5firrHr4+48HzlyxGrQoIGVkJBgZWZmWmvXrrUCAwOtF198sboOocZwd65nzJhhNWjQwHrnnXesQ4cOWZ9++qnVqlUr68EHH6yuQ6gRzpw5Y+3atcvatWuXJcn6n//5H2vXrl3W999/b1mWZU2ZMsUaPny4XV96+/zTTz9t7d+/31qwYAG3z9dk8+bNs5o1a2Z5eXlZ3bt3t7788kt72e23327FxcW51L/33nvWzTffbHl5eVm33nqrtW7duiruuGZyZ56bN29uSSrzmjFjRtU3XsO4+/f5YgSh6+fuPG/bts2KjIy0vL29rZYtW1ovvfSSVVxcXMVd10zuzHVRUZE1c+ZMq1WrVpaPj48VFhZmjR071jp9+nTVN16DbNiw4bL/5pbObVxcnHX77beXWadz586Wl5eX1bJlS2vp0qWV2qPDsjinBwAAzMQ1QgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAw1v8HoPayl9/i1aoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQE1JREFUeJzt3X1YFXX+//HXAeQmFfCOm/MVlcq8SZNVEjGxWklKqy9lpcYaGmk34Gpmqd0otZZFtamlkuVGu+lq9kvXVSNJK0wJFWW9SS1XUlv3YIVwkpQbmd8f/ZifR0zFDiDO83Fd57o6M+/5zHs+WufVnJk5NsMwDAEAAFiQR0M3AAAA0FAIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgBqyMjIkM1m07ffftvQrVyQG264QTfccMNFP+bF5PTj+/bbb2Wz2ZSRkdFgPQH1gSAEADgvq1evVmpqap2Nf8MNN8hms9V43XzzzXW2T8CroRsAcPEZMWKEhg0bJh8fn4Zu5YKsWbOmoVto9Nq3b6/jx4+rSZMm5rLVq1drzpw5dRqG2rZtqxkzZrgss9vtdbY/gCAEoAZPT095eno2dBsXzNvbu6FbaPRsNpt8fX3rfb8BAQH6wx/+UO/7hXXx1RhQB3766SeNHz9eHTp0kI+Pj4KCgnTTTTdp69atZk1ubq4GDRqkFi1aqGnTprrmmms0a9Ysc/327ds1cuRIXX755fL19VVISIjuv/9+/fjjjy77Sk1Nlc1m0759+zRy5EgFBgYqICBAo0aN0s8//+xSa7PZlJKSouXLl6tbt27y8fHR1VdfrczMTJe6M10j1KFDB91666364osv1Lt3b/n6+uryyy/XX//61xrHv337dl1//fXy8/NT27ZtNX36dL3zzju1uu5o+/btstlsWrFihbksLy9PNptNPXv2dKm95ZZbFBUVZb4//XqXzz77TDabTe+//76ef/55tW3bVr6+vhowYID27dtXY9/z58/XFVdcIT8/P/Xu3Vvr168/Y49HjhxRUlKSgoOD5evrqx49eujdd991qenZs6fuvPNOl2Xdu3eXzWbT9u3bzWVLliyRzWbT7t27zz05/8/ixYvVq1cvNW/eXP7+/urevbvL36HqP8fs7Gw9+OCDatWqlfz9/XXffffp6NGjZx379GuERo4cqTlz5kiSy9dW59tLbVRWVurYsWMXtC1QW5wRAurAQw89pA8++EApKSnq2rWrfvzxR33xxRfavXu3evbsqaysLN16660KDQ3VuHHjFBISot27d2vlypUaN26cJCkrK0v79+/XqFGjFBISol27dmn+/PnatWuXvvzyS5cPIUm65557FB4erhkzZmjr1q16++23FRQUpJdeesml7osvvtCHH36oRx55RM2bN9fs2bM1ZMgQHTx4UK1atTrrce3bt0933XWXkpKSlJiYqL/85S8aOXKkevXqpauvvlqS9J///Ec33nijbDabpkyZoqZNm+rtt9+u9dds3bp1U2BgoLKzs3X77bdLktavXy8PDw/961//ktPplL+/v6qqqrRx40aNGTPmnGO++OKL8vDw0MSJE1VSUqK0tDQlJCQoNzfXrFmwYIEefPBB9e3bV+PHj9f+/ft1++23q2XLlgoLCzPrjh8/rhtuuEH79u1TSkqKwsPDtXTpUo0cOVLFxcXmn2NMTIz+/ve/m9sVFRVp165d8vDw0Pr163XNNdeYx9amTRt16dLlvOYnKytLw4cP14ABA8w/4927d2vDhg3mvqulpKQoMDBQqamp2rt3r+bNm6cDBw6YAfF8PPjggzp8+LCysrL0t7/97YJ7OZevv/5aTZs2VXl5uYKDgzV69GhNnTrV5Ss6wK0MAG4XEBBgJCcnn3FdZWWlER4ebrRv3944evSoy7qqqirzn3/++eca2/797383JBnZ2dnmsmnTphmSjPvvv9+l9o477jBatWrlskyS4e3tbezbt89c9q9//cuQZLz++uvmsnfeeceQZBQUFJjL2rdvX2PfR44cMXx8fIzHHnvMXDZ27FjDZrMZ27ZtM5f9+OOPRsuWLWuMeS6DBw82evfubb6/8847jTvvvNPw9PQ0PvroI8MwDGPr1q2GJOMf//iHWXf99dcb119/vfn+008/NSQZXbp0McrKyszls2bNMiQZO3bsMAzDMMrLy42goCAjIiLCpW7+/PmGJJcxZ86caUgy3nvvPXNZeXm5ER0dbTRr1sxwOp2GYRjG0qVLDUnGV199ZRiGYaxYscLw8fExbr/9dmPo0KHmttdcc41xxx13nPfcjBs3zvD39zcqKyt/tab6z7FXr15GeXm5uTwtLe2cc1ZQUGBIMt555x1zWXJysnGmj43z6eV83H///UZqaqrxf/7P/zH++te/Grfffrshybjnnnt+07jA2fDVGFAHAgMDlZubq8OHD9dYt23bNhUUFGj8+PEKDAx0WXfq/537+fmZ/3zixAn98MMP6tOnjyS5fMVW7aGHHnJ5HxMTox9//FFOp9NleWxsrK644grz/TXXXCN/f3/t37//nMfVtWtXxcTEmO/btGmjTp06uWybmZmp6OhoRUREmMtatmyphISEc45/upiYGG3dulWlpaWSfjmbNWjQIEVERJhfV61fv142m039+vU753ijRo1yuX6o+liq+9+yZYuOHDmihx56yKVu5MiRCggIcBlr9erVCgkJ0fDhw81lTZo00R//+EcdO3ZMn3/+ucs+srOzzX6vvfZa3XTTTeYxFBcXa+fOnS5zey6BgYEqLS1VVlbWOWvHjBnjckbl4YcflpeXl1avXn3e+3NXL2ezYMECTZs2TXfeeadGjBihf/zjHxo9erTef/99ffnll27pFTgdQQioA2lpadq5c6fCwsLUu3dvpaammh+2//73vyX98tXP2RQVFWncuHEKDg6Wn5+f2rRpo/DwcElSSUlJjfp27dq5vG/RooUk1bgW5PS66tpzXTNyvtseOHBAV155ZY26My07l5iYGFVWVionJ0d79+7VkSNHFBMTo/79+7sEoa5du6ply5a17v/0OTpw4IAkqWPHji51TZo00eWXX+6y7MCBA+rYsaM8PFz/M1r91Vb1WMHBwerYsaNLv9XHcPjwYe3fv18bNmxQVVVVrYLQI488oquuukq33HKL2rZtq/vvv7/GtV7VTj+eZs2aKTQ01G3PiapNL7X12GOPSZI++eQTt4wHnI4gBNSBe+65R/v379frr78uu92ul19+WVdffbU++uijWo3x1ltv6aGHHtKHH36oNWvWmB8uVVVVNep/7S4vwzAuqO5Mfsu2FyIyMlK+vr7Kzs7W+vXrFRQUpKuuukoxMTHatGmTysrKzGBxPuq7/2r9+vXT+vXrdfz4ceXl5SkmJsa8Bmr9+vVav369mjVrpt/97nfnPWZQUJDy8/O1YsUK3X777fr00091yy23KDExsQ6PpP57qb4uq6io6DePBZwJQQioI6GhoXrkkUe0fPlyFRQUqFWrVnr++efNr6V27tz5q9sePXpUa9eu1eTJk/Xss8/qjjvu0E033VTjrMTFqH379me8E+tMy87F29vbvGvr1MATExOjsrIyLVy4UIWFherfv/9v7lv6pXdJ+uabb1yWV1RUqKCgoEbtN998UyOU7tmzx2Ws6n4PHjyoxYsX6+TJk+rbt688PDzMgLR+/Xr17du31o8s8Pb21m233aa5c+fq3//+tx588EH99a9/rTHXpx/PsWPH9N///lcdOnSo1f7OdmH1+fZSW9VnUtu0afObxgF+DUEIcLOTJ0/W+OoqKChIdrtdZWVl6tmzp8LDwzVz5kwVFxe71FWfmaj+QDz9TMXMmTPrrG93iYuLU05OjvLz881lRUVFWrhw4QWNFxMTo9zcXH366admEGrdurW6dOli3qFUm6+UziYyMlJt2rRRenq6ysvLzeUZGRk1/qwGDRokh8OhJUuWmMsqKyv1+uuvq1mzZrr++utdjkGSXnrpJV1zzTXm9UYxMTFau3attmzZUutjOP0xCh4eHuYdaGVlZS7r5s+fr4qKCvP9vHnzVFlZqVtuuaVW+2zatKkk1ZiL2vTya5xOZ41awzA0ffp0Sb/8vQLqArfPA272008/qW3btrrrrrvUo0cPNWvWTJ988ok2b96sV199VR4eHpo3b55uu+02RUREaNSoUQoNDdWePXu0a9cuffzxx/L391f//v2VlpamiooK/c///I/WrFlT46zExeiJJ57Qe++9p5tuukljx441b59v166dioqKzvt27WoxMTF6/vnndejQIZew0L9/f7355pvq0KGD2rZt65bemzRpounTp+vBBx/U73//ew0dOlQFBQV65513apyNGzNmjN58802NHDlSeXl56tChgz744ANt2LBBM2fOVPPmzc3aK6+8UiEhIdq7d6/Gjh3rcgyTJk0yj7M2HnjgARUVFen3v/+92rZtqwMHDuj1119XREREjVvwy8vLNWDAAN1zzz3au3ev5s6dq379+pmPJThfvXr1kiT98Y9/VFxcnDw9PTVs2LBa9fJrtm7dquHDh2v48OG68sordfz4cS1btkwbNmzQmDFjajw7CnCbBrxjDbgklZWVGY8//rjRo0cPo3nz5kbTpk2NHj16GHPnznWp++KLL4ybbrrJrLnmmmtcbmH/7rvvjDvuuMMIDAw0AgICjLvvvts4fPiwIcmYNm2aWVd9+/z333/vMv6ZboGXdMbb+tu3b28kJiaeddv27dsbgwcPrrHt6bddG4ZhbNu2zYiJiTF8fHyMtm3bGjNmzDBmz55tSDIcDsdZZq8mp9NpeHp6Gs2bN3e5Pfu9994zJBkjRow4Z0/Vt88vXbrUpe5Mt4gbhmHMnTvXCA8PN3x8fIzIyEgjOzv7jMdZWFhojBo1ymjdurXh7e1tdO/evcZY1e6++25DkrFkyRJzWXl5uXHZZZcZ3t7exvHjx89vQv6fDz74wBg4cKARFBRkeHt7G+3atTMefPBB47///a9ZU/3n+PnnnxtjxowxWrRoYTRr1sxISEgwfvzxR5fxzuf2+crKSmPs2LFGmzZtDJvNZt5Kfz69nMv+/fuNu+++2+jQoYPh6+trXHbZZUavXr2M9PR0l8dKAO5mM4w6vkoQACSNHz9eb775po4dO9aof76jMcnIyNCoUaO0efNmRUZGNnQ7wEWJa4QAuN3x48dd3v/444/629/+pn79+hGCAFxUuEYIgNtFR0frhhtuUJcuXVRYWKgFCxbI6XTqmWeekfTLXUvn+i2pNm3aWDI0nTx5Ut9///1Za5o1a6ZmzZrVU0e/ncPhOOt6Pz+/Gg+sBOoLQQiA2w0aNEgffPCB5s+fb/5I6oIFC8zb3F955RU9++yzZx2joKCg1rd3XwoOHTpkPjjz10ybNk2pqan105AbhIaGnnV9YmKi+eOuQH3jGiEA9W7//v3n/EmPfv36ydfXt546unicOHFCX3zxxVlrLr/88kbxTKlq53oqtN1uV9euXeupG8AVQQgAAFgWF0sDAADL4hqhs6iqqtLhw4fVvHnzWj8EDgAANAzDMPTTTz/JbrfX+GHk0xGEzuLw4cPmD/4BAIDG5dChQ+d88jxB6CyqH5F/6NAh+fv7N3A3AADgfDidToWFhbn81M2vIQidRfXXYf7+/gQhAAAamfO5rIWLpQEAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGV5NXQDVvZa1tcN3UKtPXrTVQ3dAgAAbsMZIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFncNdaA+hyc39AtXIBXGroBAADchjNCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsmodhLKzs3XbbbfJbrfLZrNp+fLlv1r70EMPyWazaebMmS7Li4qKlJCQIH9/fwUGBiopKUnHjh1zqdm+fbtiYmLk6+ursLAwpaWl1Rh/6dKl6ty5s3x9fdW9e3etXr3aZb1hGJo6dapCQ0Pl5+en2NhYffPNN7U9ZAAAcImqdRAqLS1Vjx49NGfOnLPWLVu2TF9++aXsdnuNdQkJCdq1a5eysrK0cuVKZWdna8yYMeZ6p9OpgQMHqn379srLy9PLL7+s1NRUzZ8/36zZuHGjhg8frqSkJG3btk3x8fGKj4/Xzp07zZq0tDTNnj1b6enpys3NVdOmTRUXF6cTJ07U9rABAMAlyGYYhnHBG9tsWrZsmeLj412W/+c//1FUVJQ+/vhjDR48WOPHj9f48eMlSbt371bXrl21efNmRUZGSpIyMzM1aNAgfffdd7Lb7Zo3b56eeuopORwOeXt7S5ImT56s5cuXa8+ePZKkoUOHqrS0VCtXrjT326dPH0VERCg9PV2GYchut+uxxx7TxIkTJUklJSUKDg5WRkaGhg0bds7jczqdCggIUElJifz9/S90mn5VzoKJbh+zrkUnvdLQLQAAcFa1+fx2+zVCVVVVGjFihB5//HFdffXVNdbn5OQoMDDQDEGSFBsbKw8PD+Xm5po1/fv3N0OQJMXFxWnv3r06evSoWRMbG+sydlxcnHJyciRJBQUFcjgcLjUBAQGKiooya05XVlYmp9Pp8gIAAJcutwehl156SV5eXvrjH/94xvUOh0NBQUEuy7y8vNSyZUs5HA6zJjg42KWm+v25ak5df+p2Z6o53YwZMxQQEGC+wsLCznm8AACg8XJrEMrLy9OsWbOUkZEhm83mzqHrxZQpU1RSUmK+Dh061NAtAQCAOuTWILR+/XodOXJE7dq1k5eXl7y8vHTgwAE99thj6tChgyQpJCRER44ccdmusrJSRUVFCgkJMWsKCwtdaqrfn6vm1PWnbnemmtP5+PjI39/f5QUAAC5dbg1CI0aM0Pbt25Wfn2++7Ha7Hn/8cX388ceSpOjoaBUXFysvL8/cbt26daqqqlJUVJRZk52drYqKCrMmKytLnTp1UosWLcyatWvXuuw/KytL0dHRkqTw8HCFhIS41DidTuXm5po1AADA2rxqu8GxY8e0b98+831BQYHy8/PVsmVLtWvXTq1atXKpb9KkiUJCQtSpUydJUpcuXXTzzTdr9OjRSk9PV0VFhVJSUjRs2DDzVvt7771Xzz77rJKSkjRp0iTt3LlTs2bN0muvvWaOO27cOF1//fV69dVXNXjwYC1evFhbtmwxb7G32WwaP368pk+fro4dOyo8PFzPPPOM7HZ7jbvcAACANdU6CG3ZskU33nij+X7ChAmSpMTERGVkZJzXGAsXLlRKSooGDBggDw8PDRkyRLNnzzbXBwQEaM2aNUpOTlavXr3UunVrTZ061eVZQ3379tWiRYv09NNP68knn1THjh21fPlydevWzax54oknVFpaqjFjxqi4uFj9+vVTZmamfH19a3vYAADgEvSbniN0qeM5QjXxHCEAwMWuQZ8jBAAA0FgQhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGXVOghlZ2frtttuk91ul81m0/Lly811FRUVmjRpkrp3766mTZvKbrfrvvvu0+HDh13GKCoqUkJCgvz9/RUYGKikpCQdO3bMpWb79u2KiYmRr6+vwsLClJaWVqOXpUuXqnPnzvL19VX37t21evVql/WGYWjq1KkKDQ2Vn5+fYmNj9c0339T2kAEAwCWq1kGotLRUPXr00Jw5c2qs+/nnn7V161Y988wz2rp1qz788EPt3btXt99+u0tdQkKCdu3apaysLK1cuVLZ2dkaM2aMud7pdGrgwIFq37698vLy9PLLLys1NVXz5883azZu3Kjhw4crKSlJ27ZtU3x8vOLj47Vz506zJi0tTbNnz1Z6erpyc3PVtGlTxcXF6cSJE7U9bAAAcAmyGYZhXPDGNpuWLVum+Pj4X63ZvHmzevfurQMHDqhdu3bavXu3unbtqs2bNysyMlKSlJmZqUGDBum7776T3W7XvHnz9NRTT8nhcMjb21uSNHnyZC1fvlx79uyRJA0dOlSlpaVauXKlua8+ffooIiJC6enpMgxDdrtdjz32mCZOnChJKikpUXBwsDIyMjRs2LBzHp/T6VRAQIBKSkrk7+9/odP0q3IWTHT7mHUtOumVhm4BAICzqs3nd51fI1RSUiKbzabAwEBJUk5OjgIDA80QJEmxsbHy8PBQbm6uWdO/f38zBElSXFyc9u7dq6NHj5o1sbGxLvuKi4tTTk6OJKmgoEAOh8OlJiAgQFFRUWbN6crKyuR0Ol1eAADg0lWnQejEiROaNGmShg8fbiYyh8OhoKAglzovLy+1bNlSDofDrAkODnapqX5/rppT15+63ZlqTjdjxgwFBASYr7CwsFofMwAAaDzqLAhVVFTonnvukWEYmjdvXl3txq2mTJmikpIS83Xo0KGGbgkAANQhr7oYtDoEHThwQOvWrXP5fi4kJERHjhxxqa+srFRRUZFCQkLMmsLCQpea6vfnqjl1ffWy0NBQl5qIiIgz9u3j4yMfH5/aHi4AAGik3H5GqDoEffPNN/rkk0/UqlUrl/XR0dEqLi5WXl6euWzdunWqqqpSVFSUWZOdna2KigqzJisrS506dVKLFi3MmrVr17qMnZWVpejoaElSeHi4QkJCXGqcTqdyc3PNGgAAYG21DkLHjh1Tfn6+8vPzJf1yUXJ+fr4OHjyoiooK3XXXXdqyZYsWLlyokydPyuFwyOFwqLy8XJLUpUsX3XzzzRo9erQ2bdqkDRs2KCUlRcOGDZPdbpck3XvvvfL29lZSUpJ27dqlJUuWaNasWZowYYLZx7hx45SZmalXX31Ve/bsUWpqqrZs2aKUlBRJv9zRNn78eE2fPl0rVqzQjh07dN9998lut5/1LjcAAGAdtb59/rPPPtONN95YY3liYqJSU1MVHh5+xu0+/fRT3XDDDZJ+eaBiSkqK/vnPf8rDw0NDhgzR7Nmz1axZM7N++/btSk5O1ubNm9W6dWuNHTtWkyZNchlz6dKlevrpp/Xtt9+qY8eOSktL06BBg8z1hmFo2rRpmj9/voqLi9WvXz/NnTtXV1111XkdK7fP18Tt8wCAi11tPr9/03OELnUEoZoIQgCAi91F9RwhAACAixVBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWFatg1B2drZuu+022e122Ww2LV++3GW9YRiaOnWqQkND5efnp9jYWH3zzTcuNUVFRUpISJC/v78CAwOVlJSkY8eOudRs375dMTEx8vX1VVhYmNLS0mr0snTpUnXu3Fm+vr7q3r27Vq9eXeteAACAddU6CJWWlqpHjx6aM2fOGdenpaVp9uzZSk9PV25urpo2baq4uDidOHHCrElISNCuXbuUlZWllStXKjs7W2PGjDHXO51ODRw4UO3bt1deXp5efvllpaamav78+WbNxo0bNXz4cCUlJWnbtm2Kj49XfHy8du7cWateAACAddkMwzAueGObTcuWLVN8fLykX87A2O12PfbYY5o4caIkqaSkRMHBwcrIyNCwYcO0e/dude3aVZs3b1ZkZKQkKTMzU4MGDdJ3330nu92uefPm6amnnpLD4ZC3t7ckafLkyVq+fLn27NkjSRo6dKhKS0u1cuVKs58+ffooIiJC6enp59XLuTidTgUEBKikpET+/v4XOk2/KmfBRLePWdeik15p6BYAADir2nx+u/UaoYKCAjkcDsXGxprLAgICFBUVpZycHElSTk6OAgMDzRAkSbGxsfLw8FBubq5Z079/fzMESVJcXJz27t2ro0ePmjWn7qe6pno/59PL6crKyuR0Ol1eAADg0uXWIORwOCRJwcHBLsuDg4PNdQ6HQ0FBQS7rvby81LJlS5eaM41x6j5+rebU9efq5XQzZsxQQECA+QoLCzuPowYAAI0Vd42dYsqUKSopKTFfhw4dauiWAABAHXJrEAoJCZEkFRYWuiwvLCw014WEhOjIkSMu6ysrK1VUVORSc6YxTt3Hr9Wcuv5cvZzOx8dH/v7+Li8AAHDpcmsQCg8PV0hIiNauXWsuczqdys3NVXR0tCQpOjpaxcXFysvLM2vWrVunqqoqRUVFmTXZ2dmqqKgwa7KystSpUye1aNHCrDl1P9U11fs5n14AAIC11ToIHTt2TPn5+crPz5f0y0XJ+fn5OnjwoGw2m8aPH6/p06drxYoV2rFjh+677z7Z7XbzzrIuXbro5ptv1ujRo7Vp0yZt2LBBKSkpGjZsmOx2uyTp3nvvlbe3t5KSkrRr1y4tWbJEs2bN0oQJE8w+xo0bp8zMTL366qvas2ePUlNTtWXLFqWkpEjSefUCAACszau2G2zZskU33nij+b46nCQmJiojI0NPPPGESktLNWbMGBUXF6tfv37KzMyUr6+vuc3ChQuVkpKiAQMGyMPDQ0OGDNHs2bPN9QEBAVqzZo2Sk5PVq1cvtW7dWlOnTnV51lDfvn21aNEiPf3003ryySfVsWNHLV++XN26dTNrzqcXAABgXb/pOUKXOp4jVBPPEQIAXOwa7DlCAAAAjQlBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWJbbg9DJkyf1zDPPKDw8XH5+frriiiv0pz/9SYZhmDWGYWjq1KkKDQ2Vn5+fYmNj9c0337iMU1RUpISEBPn7+yswMFBJSUk6duyYS8327dsVExMjX19fhYWFKS0trUY/S5cuVefOneXr66vu3btr9erV7j5kAADQSLk9CL300kuaN2+e3njjDe3evVsvvfSS0tLS9Prrr5s1aWlpmj17ttLT05Wbm6umTZsqLi5OJ06cMGsSEhK0a9cuZWVlaeXKlcrOztaYMWPM9U6nUwMHDlT79u2Vl5enl19+WampqZo/f75Zs3HjRg0fPlxJSUnatm2b4uPjFR8fr507d7r7sAEAQCNkM049VeMGt956q4KDg7VgwQJz2ZAhQ+Tn56f33ntPhmHIbrfrscce08SJEyVJJSUlCg4OVkZGhoYNG6bdu3era9eu2rx5syIjIyVJmZmZGjRokL777jvZ7XbNmzdPTz31lBwOh7y9vSVJkydP1vLly7Vnzx5J0tChQ1VaWqqVK1eavfTp00cRERFKT08/57E4nU4FBASopKRE/v7+bpujajkLJrp9zLoWnfRKQ7cAAMBZ1ebz2+1nhPr27au1a9fq66+/liT961//0hdffKFbbrlFklRQUCCHw6HY2Fhzm4CAAEVFRSknJ0eSlJOTo8DAQDMESVJsbKw8PDyUm5tr1vTv398MQZIUFxenvXv36ujRo2bNqfuprqnez+nKysrkdDpdXgAA4NLl5e4BJ0+eLKfTqc6dO8vT01MnT57U888/r4SEBEmSw+GQJAUHB7tsFxwcbK5zOBwKCgpybdTLSy1btnSpCQ8PrzFG9boWLVrI4XCcdT+nmzFjhp599tkLOWwAANAIuf2M0Pvvv6+FCxdq0aJF2rp1q95991298sorevfdd929K7ebMmWKSkpKzNehQ4cauiUAAFCH3H5G6PHHH9fkyZM1bNgwSVL37t114MABzZgxQ4mJiQoJCZEkFRYWKjQ01NyusLBQERERkqSQkBAdOXLEZdzKykoVFRWZ24eEhKiwsNClpvr9uWqq15/Ox8dHPj4+F3LYAACgEXL7GaGff/5ZHh6uw3p6eqqqqkqSFB4erpCQEK1du9Zc73Q6lZubq+joaElSdHS0iouLlZeXZ9asW7dOVVVVioqKMmuys7NVUVFh1mRlZalTp05q0aKFWXPqfqprqvcDAACsze1B6LbbbtPzzz+vVatW6dtvv9WyZcv05z//WXfccYckyWazafz48Zo+fbpWrFihHTt26L777pPdbld8fLwkqUuXLrr55ps1evRobdq0SRs2bFBKSoqGDRsmu90uSbr33nvl7e2tpKQk7dq1S0uWLNGsWbM0YcIEs5dx48YpMzNTr776qvbs2aPU1FRt2bJFKSkp7j5sAADQCLn9q7HXX39dzzzzjB555BEdOXJEdrtdDz74oKZOnWrWPPHEEyotLdWYMWNUXFysfv36KTMzU76+vmbNwoULlZKSogEDBsjDw0NDhgzR7NmzzfUBAQFas2aNkpOT1atXL7Vu3VpTp051edZQ3759tWjRIj399NN68skn1bFjRy1fvlzdunVz92EDAIBGyO3PEbqU8ByhmniOEADgYtegzxECAABoLAhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsuokCP3nP//RH/7wB7Vq1Up+fn7q3r27tmzZYq43DENTp05VaGio/Pz8FBsbq2+++cZljKKiIiUkJMjf31+BgYFKSkrSsWPHXGq2b9+umJgY+fr6KiwsTGlpaTV6Wbp0qTp37ixfX191795dq1evrotDBgAAjZDbg9DRo0d13XXXqUmTJvroo4/01Vdf6dVXX1WLFi3MmrS0NM2ePVvp6enKzc1V06ZNFRcXpxMnTpg1CQkJ2rVrl7KysrRy5UplZ2drzJgx5nqn06mBAweqffv2ysvL08svv6zU1FTNnz/frNm4caOGDx+upKQkbdu2TfHx8YqPj9fOnTvdfdgAAKARshmGYbhzwMmTJ2vDhg1av379GdcbhiG73a7HHntMEydOlCSVlJQoODhYGRkZGjZsmHbv3q2uXbtq8+bNioyMlCRlZmZq0KBB+u6772S32zVv3jw99dRTcjgc8vb2Nve9fPly7dmzR5I0dOhQlZaWauXKleb++/Tpo4iICKWnp9foraysTGVlZeZ7p9OpsLAwlZSUyN/f3z0TdIqcBRPdPmZdi056paFbAADgrJxOpwICAs7r89vtZ4RWrFihyMhI3X333QoKCtLvfvc7vfXWW+b6goICORwOxcbGmssCAgIUFRWlnJwcSVJOTo4CAwPNECRJsbGx8vDwUG5urlnTv39/MwRJUlxcnPbu3aujR4+aNafup7qmej+nmzFjhgICAsxXWFjYb5wNAABwMXN7ENq/f7/mzZunjh076uOPP9bDDz+sP/7xj3r33XclSQ6HQ5IUHBzssl1wcLC5zuFwKCgoyGW9l5eXWrZs6VJzpjFO3cev1VSvP92UKVNUUlJivg4dOlTr4wcAAI2Hl7sHrKqqUmRkpF544QVJ0u9+9zvt3LlT6enpSkxMdPfu3MrHx0c+Pj4N3QYAAKgnbj8jFBoaqq5du7os69Kliw4ePChJCgkJkSQVFha61BQWFprrQkJCdOTIEZf1lZWVKioqcqk50xin7uPXaqrXAwAAa3N7ELruuuu0d+9el2Vff/212rdvL0kKDw9XSEiI1q5da653Op3Kzc1VdHS0JCk6OlrFxcXKy8sza9atW6eqqipFRUWZNdnZ2aqoqDBrsrKy1KlTJ/MOtejoaJf9VNdU7wcAAFib24PQo48+qi+//FIvvPCC9u3bp0WLFmn+/PlKTk6WJNlsNo0fP17Tp0/XihUrtGPHDt13332y2+2Kj4+X9MsZpJtvvlmjR4/Wpk2btGHDBqWkpGjYsGGy2+2SpHvvvVfe3t5KSkrSrl27tGTJEs2aNUsTJkwwexk3bpwyMzP16quvas+ePUpNTdWWLVuUkpLi7sMGAACNkNuvEbr22mu1bNkyTZkyRc8995zCw8M1c+ZMJSQkmDVPPPGESktLNWbMGBUXF6tfv37KzMyUr6+vWbNw4UKlpKRowIAB8vDw0JAhQzR79mxzfUBAgNasWaPk5GT16tVLrVu31tSpU12eNdS3b18tWrRITz/9tJ588kl17NhRy5cvV7du3dx92AAAoBFy+3OELiW1eQ7BheA5QgAAuF+DPkcIAACgsSAIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy6rzIPTiiy/KZrNp/Pjx5rITJ04oOTlZrVq1UrNmzTRkyBAVFha6bHfw4EENHjxYl112mYKCgvT444+rsrLSpeazzz5Tz5495ePjoyuvvFIZGRk19j9nzhx16NBBvr6+ioqK0qZNm+riMAEAQCNUp0Fo8+bNevPNN3XNNde4LH/00Uf1z3/+U0uXLtXnn3+uw4cP68477zTXnzx5UoMHD1Z5ebk2btyod999VxkZGZo6dapZU1BQoMGDB+vGG29Ufn6+xo8frwceeEAff/yxWbNkyRJNmDBB06ZN09atW9WjRw/FxcXpyJEjdXnYAACgkbAZhmHUxcDHjh1Tz549NXfuXE2fPl0RERGaOXOmSkpK1KZNGy1atEh33XWXJGnPnj3q0qWLcnJy1KdPH3300Ue69dZbdfjwYQUHB0uS0tPTNWnSJH3//ffy9vbWpEmTtGrVKu3cudPc57Bhw1RcXKzMzExJUlRUlK699lq98cYbkqSqqiqFhYVp7Nixmjx5co2ey8rKVFZWZr53Op0KCwtTSUmJ/P393T5HOQsmun3Muhad9EpDtwAAwFk5nU4FBASc1+d3nZ0RSk5O1uDBgxUbG+uyPC8vTxUVFS7LO3furHbt2iknJ0eSlJOTo+7du5shSJLi4uLkdDq1a9cus+b0sePi4swxysvLlZeX51Lj4eGh2NhYs+Z0M2bMUEBAgPkKCwv7DTMAAAAudnUShBYvXqytW7dqxowZNdY5HA55e3srMDDQZXlwcLAcDodZc2oIql5fve5sNU6nU8ePH9cPP/ygkydPnrGmeozTTZkyRSUlJebr0KFD53/QAACg0fFy94CHDh3SuHHjlJWVJV9fX3cPX6d8fHzk4+PT0G0AAIB64vYzQnl5eTpy5Ih69uwpLy8veXl56fPPP9fs2bPl5eWl4OBglZeXq7i42GW7wsJChYSESJJCQkJq3EVW/f5cNf7+/vLz81Pr1q3l6el5xprqMQAAgLW5PQgNGDBAO3bsUH5+vvmKjIxUQkKC+c9NmjTR2rVrzW327t2rgwcPKjo6WpIUHR2tHTt2uNzdlZWVJX9/f3Xt2tWsOXWM6prqMby9vdWrVy+XmqqqKq1du9asAQAA1ub2r8aaN2+ubt26uSxr2rSpWrVqZS5PSkrShAkT1LJlS/n7+2vs2LGKjo5Wnz59JEkDBw5U165dNWLECKWlpcnhcOjpp59WcnKy+dXVQw89pDfeeENPPPGE7r//fq1bt07vv/++Vq1aZe53woQJSkxMVGRkpHr37q2ZM2eqtLRUo0aNcvdhAwCARsjtQeh8vPbaa/Lw8NCQIUNUVlamuLg4zZ0711zv6emplStX6uGHH1Z0dLSaNm2qxMREPffcc2ZNeHi4Vq1apUcffVSzZs1S27Zt9fbbbysuLs6sGTp0qL7//ntNnTpVDodDERERyszMrHEBNQAAsKY6e47QpaA2zyG4EDxHCAAA97soniMEAABwsSMIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy2qQX59H4/Va1tcN3UKtPXrTVQ3dAgDgIsUZIQAAYFmcEUKt9Dk4v6FbuACvNHQDAICLFGeEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZfETG7jk5SyY2NAt1Fp0Ej8LAgD1gTNCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsrh9HrgIccs/ANQPghAAtyC8AWiM+GoMAABYltuD0IwZM3TttdeqefPmCgoKUnx8vPbu3etSc+LECSUnJ6tVq1Zq1qyZhgwZosLCQpeagwcPavDgwbrssssUFBSkxx9/XJWVlS41n332mXr27CkfHx9deeWVysjIqNHPnDlz1KFDB/n6+ioqKkqbNm1y9yEDAIBGyu1B6PPPP1dycrK+/PJLZWVlqaKiQgMHDlRpaalZ8+ijj+qf//ynli5dqs8//1yHDx/WnXfeaa4/efKkBg8erPLycm3cuFHvvvuuMjIyNHXqVLOmoKBAgwcP1o033qj8/HyNHz9eDzzwgD7++GOzZsmSJZowYYKmTZumrVu3qkePHoqLi9ORI0fcfdgAAKARshmGYdTlDr7//nsFBQXp888/V//+/VVSUqI2bdpo0aJFuuuuuyRJe/bsUZcuXZSTk6M+ffroo48+0q233qrDhw8rODhYkpSenq5Jkybp+++/l7e3tyZNmqRVq1Zp586d5r6GDRum4uJiZWZmSpKioqJ07bXX6o033pAkVVVVKSwsTGPHjtXkyZPP2bvT6VRAQIBKSkrk7+/v7qlplNdUAJcSrhECLk21+fyu82uESkpKJEktW7aUJOXl5amiokKxsbFmTefOndWuXTvl5ORIknJyctS9e3czBElSXFycnE6ndu3aZdacOkZ1TfUY5eXlysvLc6nx8PBQbGysWXO6srIyOZ1OlxcAALh01WkQqqqq0vjx43XdddepW7dukiSHwyFvb28FBga61AYHB8vhcJg1p4ag6vXV685W43Q6dfz4cf3www86efLkGWuqxzjdjBkzFBAQYL7CwsIu7MABAECjUKdBKDk5WTt37tTixYvrcjduM2XKFJWUlJivQ4cONXRLAACgDtXZc4RSUlK0cuVKZWdnq23btubykJAQlZeXq7i42OWsUGFhoUJCQsya0+/uqr6r7NSa0+80KywslL+/v/z8/OTp6SlPT88z1lSPcTofHx/5+Phc2AEDAIBGx+1nhAzDUEpKipYtW6Z169YpPDzcZX2vXr3UpEkTrV271ly2d+9eHTx4UNHR0ZKk6Oho7dixw+XurqysLPn7+6tr165mzaljVNdUj+Ht7a1evXq51FRVVWnt2rVmDQAAsDa3nxFKTk7WokWL9I9//EPNmzc3r8cJCAiQn5+fAgIClJSUpAkTJqhly5by9/fX2LFjFR0drT59+kiSBg4cqK5du2rEiBFKS0uTw+HQ008/reTkZPOMzUMPPaQ33nhDTzzxhO6//36tW7dO77//vlatWmX2MmHCBCUmJioyMlK9e/fWzJkzVVpaqlGjRrn7sAE0Qq9lfd3QLdTaozdd1dAtAJcUtwehefPmSZJuuOEGl+XvvPOORo4cKUl67bXX5OHhoSFDhqisrExxcXGaO3euWevp6amVK1fq4YcfVnR0tJo2barExEQ999xzZk14eLhWrVqlRx99VLNmzVLbtm319ttvKy4uzqwZOnSovv/+e02dOlUOh0MRERHKzMyscQE1AGvqc3B+Q7dwAbjlH3CnOn+OUGPGc4QAXGx49hFwbhfVc4QAAAAuVgQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWW7/0VUAQB36dEZDd3BhbpzS0B0AZ0QQAoBGJGf/jw3dwgWJvrGhOwDOjK/GAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZXHXGACg7jXG2/655d8SCEIAgDrXGG/755Z/a+CrMQAAYFmcEQIA4AxyFkxs6BYsITrplQbdP2eEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZVkiCM2ZM0cdOnSQr6+voqKitGnTpoZuCQAAXAQu+SC0ZMkSTZgwQdOmTdPWrVvVo0cPxcXF6ciRIw3dGgAAaGCXfBD685//rNGjR2vUqFHq2rWr0tPTddlll+kvf/lLQ7cGAAAamFdDN1CXysvLlZeXpylTppjLPDw8FBsbq5ycnBr1ZWVlKisrM9+XlJRIkpxOZ530V3q87NxFAABcwuriM7Z6TMMwzll7SQehH374QSdPnlRwcLDL8uDgYO3Zs6dG/YwZM/Tss8/WWB4WFlZnPQIAYGlj36izoX/66ScFBAScteaSDkK1NWXKFE2YMMF8X1VVpaKiIrVq1Uo2m82t+3I6nQoLC9OhQ4fk7+/v1rHx/zHP9YN5rh/Mc/1hrutHXc2zYRj66aefZLfbz1l7SQeh1q1by9PTU4WFhS7LCwsLFRISUqPex8dHPj4+LssCAwPrskX5+/vzL1k9YJ7rB/NcP5jn+sNc14+6mOdznQmqdklfLO3t7a1evXpp7dq15rKqqiqtXbtW0dHRDdgZAAC4GFzSZ4QkacKECUpMTFRkZKR69+6tmTNnqrS0VKNGjWro1gAAQAO75IPQ0KFD9f3332vq1KlyOByKiIhQZmZmjQuo65uPj4+mTZtW46s4uBfzXD+Y5/rBPNcf5rp+XAzzbDPO594yAACAS9AlfY0QAADA2RCEAACAZRGEAACAZRGEAACAZRGEAACAZRGE6tCcOXPUoUMH+fr6KioqSps2bTpr/dKlS9W5c2f5+vqqe/fuWr16dT112rjVZp7feustxcTEqEWLFmrRooViY2PP+eeCX9T273O1xYsXy2azKT4+vm4bvETUdp6Li4uVnJys0NBQ+fj46KqrruK/HeeptnM9c+ZMderUSX5+fgoLC9Ojjz6qEydO1FO3jU92drZuu+022e122Ww2LV++/JzbfPbZZ+rZs6d8fHx05ZVXKiMjo877lIE6sXjxYsPb29v4y1/+YuzatcsYPXq0ERgYaBQWFp6xfsOGDYanp6eRlpZmfPXVV8bTTz9tNGnSxNixY0c9d9641Hae7733XmPOnDnGtm3bjN27dxsjR440AgICjO+++66eO29cajvP1QoKCoz/+Z//MWJiYoz//d//rZ9mG7HaznNZWZkRGRlpDBo0yPjiiy+MgoIC47PPPjPy8/PrufPGp7ZzvXDhQsPHx8dYuHChUVBQYHz88cdGaGio8eijj9Zz543H6tWrjaeeesr48MMPDUnGsmXLzlq/f/9+47LLLjMmTJhgfPXVV8brr79ueHp6GpmZmXXaJ0GojvTu3dtITk423588edKw2+3GjBkzzlh/zz33GIMHD3ZZFhUVZTz44IN12mdjV9t5Pl1lZaXRvHlz4913362rFi8JFzLPlZWVRt++fY23337bSExMJAidh9rO87x584zLL7/cKC8vr68WLxm1nevk5GTj97//vcuyCRMmGNddd12d9nmpOJ8g9MQTTxhXX321y7KhQ4cacXFxddiZYfDVWB0oLy9XXl6eYmNjzWUeHh6KjY1VTk7OGbfJyclxqZekuLi4X63Hhc3z6X7++WdVVFSoZcuWddVmo3eh8/zcc88pKChISUlJ9dFmo3ch87xixQpFR0crOTlZwcHB6tatm1544QWdPHmyvtpulC5krvv27au8vDzz67P9+/dr9erVGjRoUL30bAUN9Tl4yf/ERkP44YcfdPLkyRo/4xEcHKw9e/accRuHw3HGeofDUWd9NnYXMs+nmzRpkux2e41/+fD/Xcg8f/HFF1qwYIHy8/ProcNLw4XM8/79+7Vu3TolJCRo9erV2rdvnx555BFVVFRo2rRp9dF2o3Qhc33vvffqhx9+UL9+/WQYhiorK/XQQw/pySefrI+WLeHXPgedTqeOHz8uPz+/OtkvZ4RgWS+++KIWL16sZcuWydfXt6HbuWT89NNPGjFihN566y21bt26odu5pFVVVSkoKEjz589Xr169NHToUD311FNKT09v6NYuOZ999pleeOEFzZ07V1u3btWHH36oVatW6U9/+lNDt4bfiDNCdaB169by9PRUYWGhy/LCwkKFhISccZuQkJBa1ePC5rnaK6+8ohdffFGffPKJrrnmmrpss9Gr7Tz/+9//1rfffqvbbrvNXFZVVSVJ8vLy0t69e3XFFVfUbdON0IX8fQ4NDVWTJk3k6elpLuvSpYscDofKy8vl7e1dpz03Vhcy188884xGjBihBx54QJLUvXt3lZaWasyYMXrqqafk4cF5hd/q1z4H/f396+xskMQZoTrh7e2tXr16ae3ateayqqoqrV27VtHR0WfcJjo62qVekrKysn61Hhc2z5KUlpamP/3pT8rMzFRkZGR9tNqo1XaeO3furB07dig/P9983X777brxxhuVn5+vsLCw+my/0biQv8/XXXed9u3bZwZNSfr6668VGhpKCDqLC5nrn3/+uUbYqQ6gBr9d7hYN9jlYp5diW9jixYsNHx8fIyMjw/jqq6+MMWPGGIGBgYbD4TAMwzBGjBhhTJ482azfsGGD4eXlZbzyyivG7t27jWnTpnH7/Hmo7Ty/+OKLhre3t/HBBx8Y//3vf83XTz/91FCH0CjUdp5Px11j56e283zw4EGjefPmRkpKirF3715j5cqVRlBQkDF9+vSGOoRGo7ZzPW3aNKN58+bG3//+d2P//v3GmjVrjCuuuMK45557GuoQLno//fSTsW3bNmPbtm2GJOPPf/6zsW3bNuPAgQOGYRjG5MmTjREjRpj11bfPP/7448bu3buNOXPmcPt8Y/f6668b7dq1M7y9vY3evXsbX375pbnu+uuvNxITE13q33//feOqq64yvL29jauvvtpYtWpVPXfcONVmntu3b29IqvGaNm1a/TfeyNT27/OpCELnr7bzvHHjRiMqKsrw8fExLr/8cuP55583Kisr67nrxqk2c11RUWGkpqYaV1xxheHr62uEhYUZjzzyiHH06NH6b7yR+PTTT8/439vqeU1MTDSuv/76GttEREQY3t7exuWXX2688847dd6nzTA4pwcAAKyJa4QAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBl/V8QpIYE27WYSQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQxhJREFUeJzt3X1cFXXe//H3QeWACCgiIIlKZpl5l6iImebKiubVXpSZd5WiabpQIZVKGaLV0uplpmVyWZt4XWWaW7otJolmsZuoeZc3pXmbpYKWylEsUJjfH/2YyyOoYOBB5vV8POaRZ+YzM5/5op03c2bm2AzDMAQAAGBBbq5uAAAAwFUIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgCumxEjRqhevXqubsPl7rnnHt1zzz2ubqNKHDp0SDabTWlpaZW63ebNm2vEiBGVuk1AIggBN4yzZ89qypQp6tu3r/z8/K74ZvPWW2+pZ8+eCgwMlN1uV2hoqGJiYnTo0KHr2vO1OnfunJKTk/X555+7rId169YpOTlZp0+fdlkPVsOYwxUIQsAN4qefftK0adP07bffqn379les3bp1q0JDQzVhwgTNmzdPDz/8sFauXKnOnTvr6NGj16nja3fu3DlNnTrV5UFo6tSpvClfR1ca8z179uitt966/k2hxqvt6gYAlE/jxo117NgxBQUFadOmTercufNla998881S86Kjo9WpUyf9z//8jyZNmlSVrV53+fn58vLycnUbN7TLjWFxcbEKCwvl4eHhgq7+j91ud+n+UXNxRgg11pkzZxQfH6/mzZvLbrcrICBAf/zjH7VlyxZJl7/m4NLrNz7//HPZbDZ98MEHmjp1qm666SZ5e3vrwQcfVF5engoKChQfH6+AgADVq1dPMTExKigoqHC/u3fv1kMPPaRGjRrJ09NTt912m55//nlzud1uV1BQUIW3W6J58+aSVOEzHJs2bVJUVJT8/f3l6emp0NBQjRw50lxeMj6Xnr250rUiBw4cUFRUlLy8vBQcHKxp06bJMAxzvUaNGkmSpk6dKpvNJpvNpuTkZEn/d53R/v37de+998rb21vDhg2TJP3rX//SwIED1bRpU9ntdoWEhGj8+PH65ZdfSvVwpfFOTk7Ws88+K0kKDQ01e7j4o8V3331XYWFh8vT0lJ+fnwYPHqwffvih1H7mz5+vFi1ayNPTU126dNG//vWv8g18GVauXKmePXvK29tbPj4+6ty5sxYtWuRUs3TpUrMvf39/Pfzwwzpy5IhTzZXG0GazKS4uTu+9957uuOMO2e12ZWRkSJKOHDmikSNHmh+53nHHHXrnnXeu2vf27ds1YsQI3XzzzfLw8FBQUJBGjhypn3/+2ay52piX9e/1wIEDGjhwoPz8/FS3bl117dpVK1ascKq5+N/vyy+/rCZNmsjDw0O9e/fWvn37nGr37t2rAQMGKCgoSB4eHmrSpIkGDx6svLy8qx4jblycEUKNNXbsWP39739XXFycWrdurZ9//ln//ve/9e2336pjx44V3l5KSoo8PT01adIk7du3T6+//rrq1KkjNzc3nTp1SsnJyVq/fr3S0tIUGhqqpKSkcm97+/btuvvuu1WnTh2NGTNGzZs31/79+/XPf/5TL7/8coV7LfHzzz+rqKhIhw8f1rRp0yRJvXv3Lvf6x48fV58+fdSoUSNNmjRJ9evX16FDh/TRRx9dc09FRUXq27evunbtqunTpysjI0NTpkzRhQsXNG3aNDVq1Ejz5s3TuHHjdP/99+uBBx6QJLVr187cxoULFxQVFaXu3bvrv/7rv1S3bl1Jv4WAc+fOady4cWrYsKE2btyo119/XT/++KOWLl1qrn+18X7ggQf03Xff6f3339esWbPk7+8vSWZAe/nll/XCCy/ooYce0mOPPaYTJ07o9ddfV48ePbR161bVr19fkvS3v/1Njz/+uLp166b4+HgdOHBAf/rTn+Tn56eQkJAKjVtaWppGjhypO+64Q4mJiapfv762bt2qjIwMDR061KyJiYlR586dlZKSotzcXM2ePVtffvmlU19XGkNJ+uyzz/TBBx8oLi5O/v7+at68uXJzc9W1a1czKDVq1EgrV67UqFGj5HA4FB8ff9neMzMzdeDAAcXExCgoKEi7du3S/PnztWvXLq1fv142m+2qY36p3NxcdevWTefOndOTTz6phg0bauHChfrTn/6kv//977r//vud6l955RW5ubnpmWeeUV5enqZPn65hw4Zpw4YNkqTCwkJFRUWpoKBATzzxhIKCgnTkyBGlp6fr9OnT8vX1rdDPCzcQA6ihfH19jdjY2Msub9asmTF8+PBS83v27Gn07NnTfL127VpDktGmTRujsLDQnD9kyBDDZrMZ/fr1c1o/IiLCaNasWYV67dGjh+Ht7W18//33TvOLi4vLrP/qq68MScaCBQuuuF273W5IMiQZDRs2NObMmVOhvpYtW2ZIMr766qvL1pSMz9q1a53mHzx4sFSPw4cPNyQZTzzxhDmvuLjY6N+/v+Hu7m6cOHHCMAzDOHHihCHJmDJlSqn9lWxj0qRJpZadO3eu1LyUlBTDZrM5jW15xnvGjBmGJOPgwYNONYcOHTJq1aplvPzyy07zd+zYYdSuXducX1hYaAQEBBgdOnQwCgoKzLr58+cbkpz+jl3N6dOnDW9vbyM8PNz45Zdfyuy5ZH9t2rRxqklPTzckGUlJSea8K42hJMPNzc3YtWuX0/xRo0YZjRs3Nn766Sen+YMHDzZ8fX3NsS/r517Wz+X99983JBlZWVnmvMuNuWGU/vcaHx9vSDL+9a9/mfPOnDljhIaGGs2bNzeKiooMw/i/v5+33367089h9uzZhiRjx44dhmEYxtatWw1JxtKlS0vtGzUbH42hxqpfv742bNhQaRcHP/roo6pTp475Ojw8XIZhOH1MVDL/hx9+0IULF8q13RMnTigrK0sjR45U06ZNnZbZbLbf1fPKlSv1ySefaObMmWratKny8/MrtH7JGYT09HSdP3/+d/Vysbi4OPPPJWcYCgsLtXr16nJvY9y4caXmeXp6mn/Oz8/XTz/9pG7duskwDG3dulXS7x/vjz76SMXFxXrooYf0008/mVNQUJBatmyptWvXSvrtI8Xjx49r7Nixcnd3N9cfMWJEhc8uZGZm6syZM5o0aVKpa3VKei7Z35///Genmv79+6tVq1alPjKSyh5DSerZs6dat25tvjYMQx9++KHuu+8+GYbhdNxRUVHKy8szP3Iuy8U/l19//VU//fSTunbtKklXXO9KPvnkE3Xp0kXdu3c359WrV09jxozRoUOH9M033zjVx8TEOP0c7r77bkm/fbwmyfyZfPrppzp37tw19YQbE0EINdb06dO1c+dOhYSEqEuXLkpOTjb/p3ctLn3TLPkf56Ufcfj6+qq4uLjc1xWU9NSmTZtr7u1yevXqpX79+ikhIUFLly7V1KlT9cYbb5R7/Z49e2rAgAGaOnWq/P399Z//+Z9asGDBNV0DVcLNzU0333yz07xbb71Vksp9e3/t2rXVpEmTUvMPHz6sESNGyM/PT/Xq1VOjRo3Us2dPSTJ/Hr93vPfu3SvDMNSyZUs1atTIafr22291/PhxSdL3338vSWrZsqXT+nXq1Cl1/Fezf//+q/Zcsr/bbrut1LJWrVqZy0tcbgyl367RudiJEyd0+vRpzZ8/v9Qxx8TESJJ53GU5efKknnrqKQUGBsrT01ONGjUy93Gt1998//33ZR7r7bffbi6/2KX/fhs0aCBJOnXqlKTfjjkhIUFvv/22/P39FRUVpblz53J9kAVwjRBqrIceekh33323li1bplWrVmnGjBn661//qo8++kj9+vW77G//RUVFqlWrVqn5Zc270nzj/1/8W120aNFCd955p9577z2nMzJXYrPZ9Pe//13r16/XP//5T3366acaOXKkZs6cqfXr16tevXpXHMeqYrfb5ebm/HtcUVGR/vjHP+rkyZOaOHGiWrVqJS8vLx05ckQjRoxQcXFxpey7uLhYNptNK1euLPNnf6M8MLKsMSxx8RkcSebYPfzwwxo+fHiZ61x8DdelHnroIa1bt07PPvusOnTooHr16qm4uFh9+/attJ/L1ZTn3+nMmTM1YsQI/eMf/9CqVav05JNPKiUlRevXr79saMSNjyCEGq1x48b685//rD//+c86fvy4OnbsqJdffln9+vVTgwYNyryD6vvvv6/wb+y/R8m+du7cWeX7+uWXX67pbE7Xrl3VtWtXvfzyy1q0aJGGDRumxYsX67HHHjN/s750LC/9jbxEcXGxDhw4YJ4FkqTvvvtO0v/d2XYtHwnu2LFD3333nRYuXKhHH33UnJ+ZmelUV97xvlwPLVq0kGEYCg0NdTqGSzVr1kzSb2eQ/vCHP5jzz58/r4MHD171WVCX7rOk51tuueWK+9uzZ4/T/krmlSy/Fo0aNZK3t7eKiooUGRlZoXVPnTqlNWvWaOrUqU43EOzdu7dUbUV+7s2aNdOePXtKzd+9e7e5/Fq0bdtWbdu21eTJk7Vu3TrdddddSk1N1UsvvXRN20P1x0djqJGKiopKndIOCAhQcHCwGQRatGih9evXq7Cw0KxJT08v8xboqtSoUSP16NFD77zzjg4fPuy07FrOKl24cME83X+xjRs3aseOHerUqVO5t3Xq1KlSPXTo0EGSzHFs1qyZatWqpaysLKe6sp5lVOLij+cMw9Abb7yhOnXqmHe0ldzBVJFb/Ut+47+4X8MwNHv2bKe68o53yTN1Lu3hgQceUK1atTR16tRSY2MYhnlLeKdOndSoUSOlpqY6/R1LS0ur8CMM+vTpI29vb6WkpOjXX38ts+dOnTopICBAqampTmF35cqV+vbbb9W/f/8K7fNitWrV0oABA/Thhx+WGSBPnDhxxXUv7rPEa6+9Vqr2cmNelnvvvVcbN25Udna2OS8/P1/z589X8+bNna5xKg+Hw1Hqur62bdvKzc3td30UjOqPM0Kokc6cOaMmTZrowQcfVPv27VWvXj2tXr1aX331lWbOnClJeuyxx/T3v/9dffv21UMPPaT9+/fr3XffNX/7vp7mzJmj7t27q2PHjhozZoxCQ0N16NAhrVixQtu2bTPr3njjDZ0+fdq8APyf//ynfvzxR0nSE088IV9fX509e1YhISEaNGiQ7rjjDnl5eWnHjh1asGCBfH199cILL5S7r4ULF+rNN9/U/fffrxYtWujMmTN666235OPjo3vvvVfSb9dEDRw4UK+//rpsNptatGih9PT0y14z4uHhoYyMDA0fPlzh4eFauXKlVqxYoeeee868VdrT01OtW7fWkiVLdOutt8rPz09t2rS54jUyrVq1UosWLfTMM8/oyJEj8vHx0YcfflhmKCzPeIeFhUmSnn/+eQ0ePFh16tTRfffdpxYtWuill15SYmKiDh06pOjoaHl7e+vgwYNatmyZxowZo2eeeUZ16tTRSy+9pMcff1x/+MMfNGjQIB08eFALFiyo8BlHHx8fzZo1S4899pg6d+6soUOHqkGDBvr666917tw5LVy4UHXq1NFf//pXxcTEqGfPnhoyZIh5+3zz5s01fvz4Cu3zUq+88orWrl2r8PBwjR49Wq1bt9bJkye1ZcsWrV69WidPnrxs7z169ND06dN1/vx53XTTTVq1apUOHjxYqvZyY17Wgx4nTZqk999/X/369dOTTz4pPz8/LVy4UAcPHtSHH3542Y/9Luezzz5TXFycBg4cqFtvvVUXLlzQ//7v/5ohEDXY9b5NDbgeCgoKjGeffdZo37694e3tbXh5eRnt27c33nzzTae6mTNnGjfddJNht9uNu+66y9i0adNlb5+/9LbaBQsWlHlr+ZQpUwxJ5q3g5bVz507j/vvvN+rXr294eHgYt912m/HCCy841TRr1sy8Hf7SqeSW44KCAuOpp54y2rVrZ/j4+Bh16tQxmjVrZowaNarM25KvZMuWLcaQIUOMpk2bGna73QgICDD+4z/+w9i0aZNT3YkTJ4wBAwYYdevWNRo0aGA8/vjjxs6dO8u8fd7Ly8vYv3+/0adPH6Nu3bpGYGCgMWXKFPN25xLr1q0zwsLCDHd3d6db6Uu2UZZvvvnGiIyMNOrVq2f4+/sbo0ePNr7++usyHzVQnvF+8cUXjZtuuslwc3MrdVv3hx9+aHTv3t3w8vIyvLy8jFatWhmxsbHGnj17nLbx5ptvGqGhoYbdbjc6depkZGVllfo7Vl4ff/yx0a1bN8PT09Pw8fExunTpYrz//vtONUuWLDHuvPNOw263G35+fsawYcOMH3/80anmSmMo6bKPncjNzTViY2ONkJAQo06dOkZQUJDRu3dvY/78+WZNWbfP//jjj+ZY+/r6GgMHDjSOHj1a5iMSLjfmZT3uYv/+/caDDz5o/gy7dOlipKenO9Vc7t/vpX0eOHDAGDlypNGiRQvDw8PD8PPzM3r16mWsXr26zLFAzWEzjGp2RScAAMB1wjVCAADAsrhGCKhCeXl5ZX7P1cV+z/eH/R4nTpy44i3u7u7u8vPzu44dWRM/B8C1+GgMqEIjRozQwoULr1jjqn+CzZs3v+wt7tJvD1O89ItUUfn4OQCuRRACqtA333xz1a/4qOhzWSrLl19+ecWzVQ0aNDDv4kHV4ecAuBZBCAAAWBYXSwMAAMviYukrKC4u1tGjR+Xt7f27vwUcAABcH4Zh6MyZMwoODr7qwzUJQldw9OjRUt8sDgAAbgw//PDDVb8wlyB0Bd7e3pJ+G0gfHx8XdwMAAMrD4XAoJCTEfB+/EoLQFZR8HObj40MQAgDgBlOey1q4WBoAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFhWbVc3AAAuszbF1R1UXK9EV3cA1CicEQIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZV4SCUlZWl++67T8HBwbLZbFq+fLnTcpvNVuY0Y8YMs6Z58+allr/yyitO29m+fbvuvvtueXh4KCQkRNOnTy/Vy9KlS9WqVSt5eHiobdu2+uSTT5yWG4ahpKQkNW7cWJ6enoqMjNTevXsresgAAKCGqnAQys/PV/v27TV37twylx87dsxpeuedd2Sz2TRgwACnumnTpjnVPfHEE+Yyh8OhPn36qFmzZtq8ebNmzJih5ORkzZ8/36xZt26dhgwZolGjRmnr1q2Kjo5WdHS0du7cadZMnz5dc+bMUWpqqjZs2CAvLy9FRUXp119/rehhAwCAGshmGIZxzSvbbFq2bJmio6MvWxMdHa0zZ85ozZo15rzmzZsrPj5e8fHxZa4zb948Pf/888rJyZG7u7skadKkSVq+fLl2794tSRo0aJDy8/OVnp5urte1a1d16NBBqampMgxDwcHBevrpp/XMM89IkvLy8hQYGKi0tDQNHjz4qsfncDjk6+urvLw8+fj4XLUewA1mbYqrO6i4Xomu7gCo9iry/l2l1wjl5uZqxYoVGjVqVKllr7zyiho2bKg777xTM2bM0IULF8xl2dnZ6tGjhxmCJCkqKkp79uzRqVOnzJrIyEinbUZFRSk7O1uSdPDgQeXk5DjV+Pr6Kjw83Ky5VEFBgRwOh9MEAABqrtpVufGFCxfK29tbDzzwgNP8J598Uh07dpSfn5/WrVunxMREHTt2TK+++qokKScnR6GhoU7rBAYGmssaNGignJwcc97FNTk5OWbdxeuVVXOplJQUTZ069RqPFgAA3GiqNAi98847GjZsmDw8PJzmJyQkmH9u166d3N3d9fjjjyslJUV2u70qW7qixMREp94cDodCQkJc1g8AAKhaVfbR2L/+9S/t2bNHjz322FVrw8PDdeHCBR06dEiSFBQUpNzcXKeaktdBQUFXrLl4+cXrlVVzKbvdLh8fH6cJAADUXFUWhP72t78pLCxM7du3v2rttm3b5ObmpoCAAElSRESEsrKydP78ebMmMzNTt912mxo0aGDWXHwBdklNRESEJCk0NFRBQUFONQ6HQxs2bDBrAACAtVX4o7GzZ89q37595uuDBw9q27Zt8vPzU9OmTSX9FjiWLl2qmTNnllo/OztbGzZsUK9eveTt7a3s7GyNHz9eDz/8sBlyhg4dqqlTp2rUqFGaOHGidu7cqdmzZ2vWrFnmdp566in17NlTM2fOVP/+/bV48WJt2rTJvMXeZrMpPj5eL730klq2bKnQ0FC98MILCg4OvuJdbgAAwDoqHIQ2bdqkXr16ma9LrqkZPny40tLSJEmLFy+WYRgaMmRIqfXtdrsWL16s5ORkFRQUKDQ0VOPHj3e6NsfX11erVq1SbGyswsLC5O/vr6SkJI0ZM8as6datmxYtWqTJkyfrueeeU8uWLbV8+XK1adPGrJkwYYLy8/M1ZswYnT59Wt27d1dGRkapa5YAAIA1/a7nCNV0PEcIqOF4jhBQI1Wb5wgBAABUZwQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWRUOQllZWbrvvvsUHBwsm82m5cuXOy0fMWKEbDab09S3b1+nmpMnT2rYsGHy8fFR/fr1NWrUKJ09e9apZvv27br77rvl4eGhkJAQTZ8+vVQvS5cuVatWreTh4aG2bdvqk08+cVpuGIaSkpLUuHFjeXp6KjIyUnv37q3oIQMAgBqqwkEoPz9f7du319y5cy9b07dvXx07dsyc3n//faflw4YN065du5SZman09HRlZWVpzJgx5nKHw6E+ffqoWbNm2rx5s2bMmKHk5GTNnz/frFm3bp2GDBmiUaNGaevWrYqOjlZ0dLR27txp1kyfPl1z5sxRamqqNmzYIC8vL0VFRenXX3+t6GEDAIAayGYYhnHNK9tsWrZsmaKjo815I0aM0OnTp0udKSrx7bffqnXr1vrqq6/UqVMnSVJGRobuvfde/fjjjwoODta8efP0/PPPKycnR+7u7pKkSZMmafny5dq9e7ckadCgQcrPz1d6erq57a5du6pDhw5KTU2VYRgKDg7W008/rWeeeUaSlJeXp8DAQKWlpWnw4MFXPT6HwyFfX1/l5eXJx8fnWoYIQHW2NsXVHVRcr0RXdwBUexV5/66Sa4Q+//xzBQQE6LbbbtO4ceP0888/m8uys7NVv359MwRJUmRkpNzc3LRhwwazpkePHmYIkqSoqCjt2bNHp06dMmsiIyOd9hsVFaXs7GxJ0sGDB5WTk+NU4+vrq/DwcLPmUgUFBXI4HE4TAACouSo9CPXt21f/8z//ozVr1uivf/2rvvjiC/Xr109FRUWSpJycHAUEBDitU7t2bfn5+SknJ8esCQwMdKopeX21mouXX7xeWTWXSklJka+vrzmFhIRU+PgBAMCNo3Zlb/Dij5zatm2rdu3aqUWLFvr888/Vu3fvyt5dpUpMTFRCQoL52uFwEIYAAKjBqvz2+Ztvvln+/v7at2+fJCkoKEjHjx93qrlw4YJOnjypoKAgsyY3N9eppuT11WouXn7xemXVXMput8vHx8dpAgAANVeVB6Eff/xRP//8sxo3bixJioiI0OnTp7V582az5rPPPlNxcbHCw8PNmqysLJ0/f96syczM1G233aYGDRqYNWvWrHHaV2ZmpiIiIiRJoaGhCgoKcqpxOBzasGGDWQMAAKytwkHo7Nmz2rZtm7Zt2ybpt4uSt23bpsOHD+vs2bN69tlntX79eh06dEhr1qzRf/7nf+qWW25RVFSUJOn2229X3759NXr0aG3cuFFffvml4uLiNHjwYAUHB0uShg4dKnd3d40aNUq7du3SkiVLNHv2bKePrZ566illZGRo5syZ2r17t5KTk7Vp0ybFxcVJ+u2Otvj4eL300kv6+OOPtWPHDj366KMKDg52ussNAABYV4WvEdq0aZN69eplvi4JJ8OHD9e8efO0fft2LVy4UKdPn1ZwcLD69OmjF198UXa73VznvffeU1xcnHr37i03NzcNGDBAc+bMMZf7+vpq1apVio2NVVhYmPz9/ZWUlOT0rKFu3bpp0aJFmjx5sp577jm1bNlSy5cvV5s2bcyaCRMmKD8/X2PGjNHp06fVvXt3ZWRkyMPDo6KHDQAAaqDf9Ryhmo7nCAE1HM8RAmoklz9HCAAA4EZAEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZV4a/YAICqNCvzu+u2r66Hf77mdSNubliJnQBwFc4IAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy6pwEMrKytJ9992n4OBg2Ww2LV++3Fx2/vx5TZw4UW3btpWXl5eCg4P16KOP6ujRo07baN68uWw2m9P0yiuvONVs375dd999tzw8PBQSEqLp06eX6mXp0qVq1aqVPDw81LZtW33yySdOyw3DUFJSkho3bixPT09FRkZq7969FT1kAABQQ1U4COXn56t9+/aaO3duqWXnzp3Tli1b9MILL2jLli366KOPtGfPHv3pT38qVTtt2jQdO3bMnJ544glzmcPhUJ8+fdSsWTNt3rxZM2bMUHJysubPn2/WrFu3TkOGDNGoUaO0detWRUdHKzo6Wjt37jRrpk+frjlz5ig1NVUbNmyQl5eXoqKi9Ouvv1b0sAEAQA1kMwzDuOaVbTYtW7ZM0dHRl6356quv1KVLF33//fdq2rSppN/OCMXHxys+Pr7MdebNm6fnn39eOTk5cnd3lyRNmjRJy5cv1+7duyVJgwYNUn5+vtLT0831unbtqg4dOig1NVWGYSg4OFhPP/20nnnmGUlSXl6eAgMDlZaWpsGDB5fab0FBgQoKCszXDodDISEhysvLk4+PT4XGBsC1mZX53XXbV9fD869edBkRNzesxE4qoFeia/YL3EAcDod8fX3L9f5d5dcI5eXlyWazqX79+k7zX3nlFTVs2FB33nmnZsyYoQsXLpjLsrOz1aNHDzMESVJUVJT27NmjU6dOmTWRkZFO24yKilJ2drYk6eDBg8rJyXGq8fX1VXh4uFlzqZSUFPn6+ppTSEjI7zp2AABQvVVpEPr11181ceJEDRkyxCmRPfnkk1q8eLHWrl2rxx9/XH/5y180YcIEc3lOTo4CAwOdtlXyOicn54o1Fy+/eL2yai6VmJiovLw8c/rhhx+u5bABAMANonZVbfj8+fN66KGHZBiG5s2b57QsISHB/HO7du3k7u6uxx9/XCkpKbLb7VXV0lXZ7XaX7h8AAFxfVXJGqCQEff/998rMzLzq53Ph4eG6cOGCDh06JEkKCgpSbm6uU03J66CgoCvWXLz84vXKqgEAANZW6UGoJATt3btXq1evVsOGV7+gcNu2bXJzc1NAQIAkKSIiQllZWTp//rxZk5mZqdtuu00NGjQwa9asWeO0nczMTEVEREiSQkNDFRQU5FTjcDi0YcMGswYAAFhbhT8aO3v2rPbt22e+PnjwoLZt2yY/Pz81btxYDz74oLZs2aL09HQVFRWZ1+P4+fnJ3d1d2dnZ2rBhg3r16iVvb29lZ2dr/Pjxevjhh82QM3ToUE2dOlWjRo3SxIkTtXPnTs2ePVuzZs0y9/vUU0+pZ8+emjlzpvr376/Fixdr06ZN5i32NptN8fHxeumll9SyZUuFhobqhRdeUHBw8BXvcgMAANZR4SC0adMm9erVy3xdcr3P8OHDlZycrI8//liS1KFDB6f11q5dq3vuuUd2u12LFy9WcnKyCgoKFBoaqvHjxztdN+Tr66tVq1YpNjZWYWFh8vf3V1JSksaMGWPWdOvWTYsWLdLkyZP13HPPqWXLllq+fLnatGlj1kyYMEH5+fkaM2aMTp8+re7duysjI0MeHh4VPWwAAFAD/a7nCNV0FXkOAYDKwXOEroLnCAFXVa2eIwQAAFBdEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlVTgIZWVl6b777lNwcLBsNpuWL1/utNwwDCUlJalx48by9PRUZGSk9u7d61Rz8uRJDRs2TD4+Pqpfv75GjRqls2fPOtVs375dd999tzw8PBQSEqLp06eX6mXp0qVq1aqVPDw81LZtW33yyScV7gUAAFhXhYNQfn6+2rdvr7lz55a5fPr06ZozZ45SU1O1YcMGeXl5KSoqSr/++qtZM2zYMO3atUuZmZlKT09XVlaWxowZYy53OBzq06ePmjVrps2bN2vGjBlKTk7W/PnzzZp169ZpyJAhGjVqlLZu3aro6GhFR0dr586dFeoFAABYl80wDOOaV7bZtGzZMkVHR0v67QxMcHCwnn76aT3zzDOSpLy8PAUGBiotLU2DBw/Wt99+q9atW+urr75Sp06dJEkZGRm699579eOPPyo4OFjz5s3T888/r5ycHLm7u0uSJk2apOXLl2v37t2SpEGDBik/P1/p6elmP127dlWHDh2Umpparl6uxuFwyNfXV3l5efLx8bnWYQJQAbMyv7tu++p6eP7Viy4j4uaGldhJBfRKdM1+gRtIRd6/K/UaoYMHDyonJ0eRkZHmPF9fX4WHhys7O1uSlJ2drfr165shSJIiIyPl5uamDRs2mDU9evQwQ5AkRUVFac+ePTp16pRZc/F+SmpK9lOeXi5VUFAgh8PhNAEAgJqrUoNQTk6OJCkwMNBpfmBgoLksJydHAQEBTstr164tPz8/p5qytnHxPi5Xc/Hyq/VyqZSUFPn6+ppTSEhIOY4aAADcqLhr7CKJiYnKy8szpx9++MHVLQEAgCpUqUEoKChIkpSbm+s0Pzc311wWFBSk48ePOy2/cOGCTp486VRT1jYu3sflai5efrVeLmW32+Xj4+M0AQCAmqtSg1BoaKiCgoK0Zs0ac57D4dCGDRsUEREhSYqIiNDp06e1efNms+azzz5TcXGxwsPDzZqsrCydP3/erMnMzNRtt92mBg0amDUX76ekpmQ/5ekFAABYW4WD0NmzZ7Vt2zZt27ZN0m8XJW/btk2HDx+WzWZTfHy8XnrpJX388cfasWOHHn30UQUHB5t3lt1+++3q27evRo8erY0bN+rLL79UXFycBg8erODgYEnS0KFD5e7urlGjRmnXrl1asmSJZs+erYSEBLOPp556ShkZGZo5c6Z2796t5ORkbdq0SXFxcZJUrl4AAIC11a7oCps2bVKvXr3M1yXhZPjw4UpLS9OECROUn5+vMWPG6PTp0+revbsyMjLk4eFhrvPee+8pLi5OvXv3lpubmwYMGKA5c+aYy319fbVq1SrFxsYqLCxM/v7+SkpKcnrWULdu3bRo0SJNnjxZzz33nFq2bKnly5erTZs2Zk15egEAANb1u54jVNPxHCHg+uM5QlfBc4SAq3LZc4QAAABuJAQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWZUehJo3by6bzVZqio2NlSTdc889pZaNHTvWaRuHDx9W//79VbduXQUEBOjZZ5/VhQsXnGo+//xzdezYUXa7XbfccovS0tJK9TJ37lw1b95cHh4eCg8P18aNGyv7cAEAwA2s0oPQV199pWPHjplTZmamJGngwIFmzejRo51qpk+fbi4rKipS//79VVhYqHXr1mnhwoVKS0tTUlKSWXPw4EH1799fvXr10rZt2xQfH6/HHntMn376qVmzZMkSJSQkaMqUKdqyZYvat2+vqKgoHT9+vLIPGQAA3KAqPQg1atRIQUFB5pSenq4WLVqoZ8+eZk3dunWdanx8fMxlq1at0jfffKN3331XHTp0UL9+/fTiiy9q7ty5KiwslCSlpqYqNDRUM2fO1O233664uDg9+OCDmjVrlrmdV199VaNHj1ZMTIxat26t1NRU1a1bV++8805lHzIAALhBVek1QoWFhXr33Xc1cuRI2Ww2c/57770nf39/tWnTRomJiTp37py5LDs7W23btlVgYKA5LyoqSg6HQ7t27TJrIiMjnfYVFRWl7Oxsc7+bN292qnFzc1NkZKRZU5aCggI5HA6nCQAA1Fy1q3Ljy5cv1+nTpzVixAhz3tChQ9WsWTMFBwdr+/btmjhxovbs2aOPPvpIkpSTk+MUgiSZr3Nycq5Y43A49Msvv+jUqVMqKioqs2b37t2X7TclJUVTp0695uMFAAA3lioNQn/729/Ur18/BQcHm/PGjBlj/rlt27Zq3Lixevfurf3796tFixZV2c5VJSYmKiEhwXztcDgUEhLiwo4AAEBVqrIg9P3332v16tXmmZ7LCQ8PlyTt27dPLVq0UFBQUKm7u3JzcyVJQUFB5n9L5l1c4+PjI09PT9WqVUu1atUqs6ZkG2Wx2+2y2+3lO0AAAHDDq7JrhBYsWKCAgAD179//inXbtm2TJDVu3FiSFBERoR07djjd3ZWZmSkfHx+1bt3arFmzZo3TdjIzMxURESFJcnd3V1hYmFNNcXGx1qxZY9YAAABUSRAqLi7WggULNHz4cNWu/X8nnfbv368XX3xRmzdv1qFDh/Txxx/r0UcfVY8ePdSuXTtJUp8+fdS6dWs98sgj+vrrr/Xpp59q8uTJio2NNc/WjB07VgcOHNCECRO0e/duvfnmm/rggw80fvx4c18JCQl66623tHDhQn377bcaN26c8vPzFRMTUxWHDAAAbkBV8tHY6tWrdfjwYY0cOdJpvru7u1avXq3XXntN+fn5CgkJ0YABAzR58mSzplatWkpPT9e4ceMUEREhLy8vDR8+XNOmTTNrQkNDtWLFCo0fP16zZ89WkyZN9PbbbysqKsqsGTRokE6cOKGkpCTl5OSoQ4cOysjIKHUBNQAAsC6bYRiGq5uorhwOh3x9fZWXl+f0rCMAVWdW5nfXbV9dD8+/bvuqLOubjrl60UXG//HWKuoEqL4q8v7Nd40BAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLqu3qBgAA5df18PyKrbC2YdU0UlG9El3dAVAmzggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADL4ktXAaAGyz7ws6tbkCStv/DdFZeP/+Ot16kTwBlnhAAAgGURhAAAgGVVehBKTk6WzWZzmlq1amUu//XXXxUbG6uGDRuqXr16GjBggHJzc522cfjwYfXv319169ZVQECAnn32WV24cMGp5vPPP1fHjh1lt9t1yy23KC0trVQvc+fOVfPmzeXh4aHw8HBt3Lixsg8XAADcwKrkjNAdd9yhY8eOmdO///1vc9n48eP1z3/+U0uXLtUXX3yho0eP6oEHHjCXFxUVqX///iosLNS6deu0cOFCpaWlKSkpyaw5ePCg+vfvr169emnbtm2Kj4/XY489pk8//dSsWbJkiRISEjRlyhRt2bJF7du3V1RUlI4fP14VhwwAAG5AVRKEateuraCgIHPy9/eXJOXl5elvf/ubXn31Vf3hD39QWFiYFixYoHXr1mn9+vWSpFWrVumbb77Ru+++qw4dOqhfv3568cUXNXfuXBUWFkqSUlNTFRoaqpkzZ+r2229XXFycHnzwQc2aNcvs4dVXX9Xo0aMVExOj1q1bKzU1VXXr1tU777xTFYcMAABuQFUShPbu3avg4GDdfPPNGjZsmA4fPixJ2rx5s86fP6/IyEiztlWrVmratKmys7MlSdnZ2Wrbtq0CAwPNmqioKDkcDu3atcusuXgbJTUl2ygsLNTmzZudatzc3BQZGWnWlKWgoEAOh8NpAgAANVelB6Hw8HClpaUpIyND8+bN08GDB3X33XfrzJkzysnJkbu7u+rXr++0TmBgoHJyciRJOTk5TiGoZHnJsivVOBwO/fLLL/rpp59UVFRUZk3JNsqSkpIiX19fcwoJCbmmMQAAADeGSn+OUL9+/cw/t2vXTuHh4WrWrJk++OADeXp6VvbuKlViYqISEhLM1w6HgzAEAEANVuW3z9evX1+33nqr9u3bp6CgIBUWFur06dNONbm5uQoKCpIkBQUFlbqLrOT11Wp8fHzk6ekpf39/1apVq8yakm2UxW63y8fHx2kCAAA1V5UHobNnz2r//v1q3LixwsLCVKdOHa1Zs8ZcvmfPHh0+fFgRERGSpIiICO3YscPp7q7MzEz5+PiodevWZs3F2yipKdmGu7u7wsLCnGqKi4u1Zs0aswYAAKDSg9AzzzyjL774QocOHdK6det0//33q1atWhoyZIh8fX01atQoJSQkaO3atdq8ebNiYmIUERGhrl27SpL69Omj1q1b65FHHtHXX3+tTz/9VJMnT1ZsbKzsdrskaezYsTpw4IAmTJig3bt3680339QHH3yg8ePHm30kJCTorbfe0sKFC/Xtt99q3Lhxys/PV0xMTGUfMgAAuEFV+jVCP/74o4YMGaKff/5ZjRo1Uvfu3bV+/Xo1atRIkjRr1iy5ublpwIABKigoUFRUlN58801z/Vq1aik9PV3jxo1TRESEvLy8NHz4cE2bNs2sCQ0N1YoVKzR+/HjNnj1bTZo00dtvv62oqCizZtCgQTpx4oSSkpKUk5OjDh06KCMjo9QF1AAAwLpshmEYrm6iunI4HPL19VVeXh7XCwHXyazMK385Z2Xqenj+dduX1a1vOuaKy/nSVVSmirx/811jAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsio9CKWkpKhz587y9vZWQECAoqOjtWfPHqeae+65RzabzWkaO3asU83hw4fVv39/1a1bVwEBAXr22Wd14cIFp5rPP/9cHTt2lN1u1y233KK0tLRS/cydO1fNmzeXh4eHwsPDtXHjxso+ZAAAcIOq9CD0xRdfKDY2VuvXr1dmZqbOnz+vPn36KD8/36lu9OjROnbsmDlNnz7dXFZUVKT+/fursLBQ69at08KFC5WWlqakpCSz5uDBg+rfv7969eqlbdu2KT4+Xo899pg+/fRTs2bJkiVKSEjQlClTtGXLFrVv315RUVE6fvx4ZR82AAC4AdkMwzCqcgcnTpxQQECAvvjiC/Xo0UPSb2eEOnTooNdee63MdVauXKn/+I//0NGjRxUYGChJSk1N1cSJE3XixAm5u7tr4sSJWrFihXbu3GmuN3jwYJ0+fVoZGRmSpPDwcHXu3FlvvPGGJKm4uFghISF64oknNGnSpKv27nA45Ovrq7y8PPn4+PyeYQBQTrMyv7tu++p6eP5125fVrW865orLx//x1uvUCaygIu/fVX6NUF5eniTJz8/Paf57770nf39/tWnTRomJiTp37py5LDs7W23btjVDkCRFRUXJ4XBo165dZk1kZKTTNqOiopSdnS1JKiws1ObNm51q3NzcFBkZadZcqqCgQA6Hw2kCAAA1V+2q3HhxcbHi4+N11113qU2bNub8oUOHqlmzZgoODtb27ds1ceJE7dmzRx999JEkKScnxykESTJf5+TkXLHG4XDol19+0alTp1RUVFRmze7du8vsNyUlRVOnTv19Bw0AAG4YVRqEYmNjtXPnTv373/92mj9mzP+dIm3btq0aN26s3r17a//+/WrRokVVtnRFiYmJSkhIMF87HA6FhIS4rB8AAFC1qiwIxcXFKT09XVlZWWrSpMkVa8PDwyVJ+/btU4sWLRQUFFTq7q7c3FxJUlBQkPnfknkX1/j4+MjT01O1atVSrVq1yqwp2cal7Ha77HZ7+Q8SwP9Zm1Ipm+l6+OdK2Q6ql6tej7W24fVppCJ6Jbq6A1wHlX6NkGEYiouL07Jly/TZZ58pNDT0quts27ZNktS4cWNJUkREhHbs2OF0d1dmZqZ8fHzUunVrs2bNmjVO28nMzFRERIQkyd3dXWFhYU41xcXFWrNmjVkDAACsrdLPCMXGxmrRokX6xz/+IW9vb/OaHl9fX3l6emr//v1atGiR7r33XjVs2FDbt2/X+PHj1aNHD7Vr106S1KdPH7Vu3VqPPPKIpk+frpycHE2ePFmxsbHmGZuxY8fqjTfe0IQJEzRy5Eh99tln+uCDD7RixQqzl4SEBA0fPlydOnVSly5d9Nprryk/P18xMTGVfdgAAOAGVOlBaN68eZJ+u0X+YgsWLNCIESPk7u6u1atXm6EkJCREAwYM0OTJk83aWrVqKT09XePGjVNERIS8vLw0fPhwTZs2zawJDQ3VihUrNH78eM2ePVtNmjTR22+/raioKLNm0KBBOnHihJKSkpSTk6MOHTooIyOj1AXUAADAmqr8OUI3Mp4jBFRAJV0jlH2Aa4SsKOJmrhFC5anI+3eV3jUGAEB5VMcAvP5C6Yd78uDHmocvXQUAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZV29UNALg+ZmV+V6Xb73r45yrdPgBUBc4IAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy+IrNgAAKKeq/qqayjT+j7e6uoUbAkEIAIAydD0839UtVNj6pmNc3cINhyAEVEdrUyp9k3wpKgCUxjVCAADAsghCAADAsghCAADAsghCAADAsixxsfTcuXM1Y8YM5eTkqH379nr99dfVpUsXV7eFGqCqbqXlwmYAuD5q/BmhJUuWKCEhQVOmTNGWLVvUvn17RUVF6fjx465uDQAAuFiNPyP06quvavTo0YqJiZEkpaamasWKFXrnnXc0adIkF3cHAEDVuFEe/ujqBz/W6CBUWFiozZs3KzEx0Zzn5uamyMhIZWdnl6ovKChQQUGB+TovL0+S5HA4qr5ZOJn72b5K21bnHxdU2rYu1baKtptfRdsFULO13fO6q1uoMEf4y5W/zf//vm0YxlVra3QQ+umnn1RUVKTAwECn+YGBgdq9e3ep+pSUFE2dOrXU/JCQkCrrEQAAS3vijSrb9JkzZ+Tr63vFmhodhCoqMTFRCQkJ5uvi4mKdPHlSDRs2lM1mq9R9ORwOhYSE6IcffpCPj0+lbrumYazKj7EqP8aq/BirimG8yq+qxsowDJ05c0bBwcFXra3RQcjf31+1atVSbm6u0/zc3FwFBQWVqrfb7bLb7U7z6tevX5UtysfHh38o5cRYlR9jVX6MVfkxVhXDeJVfVYzV1c4ElajRd425u7srLCxMa9asMecVFxdrzZo1ioiIcGFnAACgOqjRZ4QkKSEhQcOHD1enTp3UpUsXvfbaa8rPzzfvIgMAANZV44PQoEGDdOLECSUlJSknJ0cdOnRQRkZGqQuorze73a4pU6aU+igOpTFW5cdYlR9jVX6MVcUwXuVXHcbKZpTn3jIAAIAaqEZfIwQAAHAlBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBKFqYsWKFQoPD5enp6caNGig6OhoV7dUrRUUFKhDhw6y2Wzatm2bq9updg4dOqRRo0YpNDRUnp6eatGihaZMmaLCwkJXt1ZtzJ07V82bN5eHh4fCw8O1ceNGV7dU7aSkpKhz587y9vZWQECAoqOjtWfPHle3dUN45ZVXZLPZFB8f7+pWqqUjR47o4YcfVsOGDeXp6am2bdtq06ZNLumFIFQNfPjhh3rkkUcUExOjr7/+Wl9++aWGDh3q6raqtQkTJpTrO2Ssavfu3SouLtZ///d/a9euXZo1a5ZSU1P13HPPubq1amHJkiVKSEjQlClTtGXLFrVv315RUVE6fvy4q1urVr744gvFxsZq/fr1yszM1Pnz59WnTx/l5+e7urVq7auvvtJ///d/q127dq5upVo6deqU7rrrLtWpU0crV67UN998o5kzZ6pBgwauaciAS50/f9646aabjLffftvVrdwwPvnkE6NVq1bGrl27DEnG1q1bXd3SDWH69OlGaGioq9uoFrp06WLExsaar4uKiozg4GAjJSXFhV1Vf8ePHzckGV988YWrW6m2zpw5Y7Rs2dLIzMw0evbsaTz11FOubqnamThxotG9e3dXt2HijJCLbdmyRUeOHJGbm5vuvPNONW7cWP369dPOnTtd3Vq1lJubq9GjR+t///d/VbduXVe3c0PJy8uTn5+fq9twucLCQm3evFmRkZHmPDc3N0VGRio7O9uFnVV/eXl5ksTfoyuIjY1V//79nf5+wdnHH3+sTp06aeDAgQoICNCdd96pt956y2X9EIRc7MCBA5Kk5ORkTZ48Wenp6WrQoIHuuecenTx50sXdVS+GYWjEiBEaO3asOnXq5Op2bij79u3T66+/rscff9zVrbjcTz/9pKKiolJfsxMYGKicnBwXdVX9FRcXKz4+XnfddZfatGnj6naqpcWLF2vLli1KSUlxdSvV2oEDBzRv3jy1bNlSn376qcaNG6cnn3xSCxcudEk/BKEqMmnSJNlstitOJddxSNLzzz+vAQMGKCwsTAsWLJDNZtPSpUtdfBTXR3nH6vXXX9eZM2eUmJjo6pZdprxjdbEjR46ob9++GjhwoEaPHu2iznGji42N1c6dO7V48WJXt1It/fDDD3rqqaf03nvvycPDw9XtVGvFxcXq2LGj/vKXv+jOO+/UmDFjNHr0aKWmprqknxr/pauu8vTTT2vEiBFXrLn55pt17NgxSVLr1q3N+Xa7XTfffLMOHz5clS1WG+Udq88++0zZ2dmlvpyvU6dOGjZsmMt+m7ieyjtWJY4ePapevXqpW7dumj9/fhV3d2Pw9/dXrVq1lJub6zQ/NzdXQUFBLuqqeouLi1N6erqysrLUpEkTV7dTLW3evFnHjx9Xx44dzXlFRUXKysrSG2+8oYKCAtWqVcuFHVYfjRs3dnrPk6Tbb79dH374oUv6IQhVkUaNGqlRo0ZXrQsLC5PdbteePXvUvXt3SdL58+d16NAhNWvWrKrbrBbKO1Zz5szRSy+9ZL4+evSooqKitGTJEoWHh1dli9VGecdK+u1MUK9evcyzjG5unACWJHd3d4WFhWnNmjXmYyqKi4u1Zs0axcXFuba5asYwDD3xxBNatmyZPv/8c4WGhrq6pWqrd+/e2rFjh9O8mJgYtWrVShMnTiQEXeSuu+4q9RiG7777zmXveQQhF/Px8dHYsWM1ZcoUhYSEqFmzZpoxY4YkaeDAgS7urnpp2rSp0+t69epJklq0aMFvqZc4cuSI7rnnHjVr1kz/9V//pRMnTpjLOOshJSQkaPjw4erUqZO6dOmi1157Tfn5+YqJiXF1a9VKbGysFi1apH/84x/y9vY2r6Hy9fWVp6eni7urXry9vUtdO+Xl5aWGDRtyTdUlxo8fr27duukvf/mLHnroIW3cuFHz58932VlrglA1MGPGDNWuXVuPPPKIfvnlF4WHh+uzzz5z3TMVcMPLzMzUvn37tG/fvlIh0TAMF3VVfQwaNEgnTpxQUlKScnJy1KFDB2VkZJS6gNrq5s2bJ0m65557nOYvWLDgqh/RApfTuXNnLVu2TImJiZo2bZpCQ0P12muvadiwYS7px2bwf0UAAGBRXDQAAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAs6/8BhS/Ol8S9SjgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPxJJREFUeJzt3XtYFnX+//EXoBxUTh4ASVIyU0nTBEU8pStJZrVsWpqkZqSVUCqWSRqiHdjVTNNMsoP23fSXWZsZGkpquiqiYuYp7JymX8BSwSgBYX5/dDFfb/EACt7gPB/XdV+792feM/OeYYiXc8/M7WAYhiEAAAALcrR3AwAAAPZCEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAJgatGihR566KEqXeZDDz2kFi1aVOkyAaCqEIQAXLGjR48qMTFRu3fvtncrQLXYvn27xowZo+DgYNWtW1cODg72bglVhCAE4IodPXpU06ZNO28QevPNN3Xw4MGr3xRQhVavXq233npLDg4OuuGGG+zdDqoQQQio5QoKCi447Y8//riKnZxf3bp15eLiYu82UMOdPn1apaWl9m7jgh5//HHl5eVp586duv322+3dDqoQQQi10qlTpzRu3Di1aNFCLi4u8vHx0e23365du3ZJuvC1Lr1791bv3r3N91988YUcHBz0wQcfaNq0abruuuvk7u6uQYMGKS8vT4WFhRo3bpx8fHzUoEEDjRw5UoWFhZXuNysrS/fff7+aNGkiNzc3tW7dWpMnT7ap+fLLL9W/f395eHioQYMG6tu3r7Zt22ZTs3jxYjk4OGjjxo0aM2aMfHx81KxZM3Pb2rVrp8zMTPXq1Uv16tXTs88+K0kqLCzU1KlTdeONN8rFxUUBAQGaOHHiJbfl+PHjeuqpp9S+fXs1aNBAHh4e6t+/v7766iubfdi5c2dJ0siRI+Xg4CAHBwctXrxY0vmvESooKNCECRMUEBAgFxcXtW7dWi+//LIMw7Cpc3BwUGxsrFasWKF27drJxcVFN998s1JTU23qLnU8VETZvt28ebOefPJJNWnSRF5eXnr00UdVVFSkkydPavjw4fL29pa3t7cmTpxYrt+XX35Z3bp1U6NGjeTm5qbg4GB9+OGH5daVlpamHj16yMvLSw0aNFDr1q3Nn1WZefPm6eabb1a9evXk7e2tkJAQLV26tMLbU5l+JOm9995Tly5dzPX16tVLa9eutan57LPPdNttt8nd3V0eHh7q3LmzTU+V/b17//33NWXKFF133XWqV6+e8vPzK3TMlTl9+rQSExN10003ydXVVU2bNtW9996r77//XoZhqEWLFvr73/9+3vk8PT316KOPVnBPSr6+vnJzc6twPWqPOvZuALgcjz32mD788EPFxsYqKChIv/32mzZv3qyvv/5anTp1qvTykpKS5ObmpkmTJum7777TvHnzVLduXTk6OurEiRNKTEzUtm3btHjxYgUGBiohIaHCy96zZ4969uypunXravTo0WrRooW+//57ffrpp3rxxRclSfv371fPnj3l4eGhiRMnqm7dunrjjTfUu3dvbdy4UaGhoTbLHDNmjJo0aaKEhASbM0K//fab+vfvryFDhujBBx+Ur6+vSktLdc8992jz5s0aPXq02rZtq71792r27Nn65ptvtGLFigv2/sMPP2jFihW67777FBgYqJycHL3xxhu67bbbdODAAfn7+6tt27aaPn26EhISNHr0aPXs2VOS1K1bt/Mu0zAM3XPPPdqwYYOio6PVsWNHrVmzRk8//bSOHDmi2bNn29Rv3rxZ//nPfzRmzBi5u7tr7ty5GjhwoA4dOqRGjRpJqtrj4YknnpCfn5+mTZumbdu2aeHChfLy8tLWrVt1/fXX66WXXtLq1as1c+ZMtWvXTsOHDzfnffXVV3XPPfcoKipKRUVFev/993XfffcpJSVFAwYMkPTXz/quu+7SLbfcounTp8vFxUXfffedtmzZYi7nzTff1JNPPqlBgwZp7NixOn36tPbs2aOMjAwNHTq0wttSkX4kadq0aUpMTFS3bt00ffp0OTs7KyMjQ+vXr1e/fv0k/RUUH374Yd18882Kj4+Xl5eXvvzyS6Wmplaqp7M9//zzcnZ21lNPPaXCwkI5OzvrwIEDlzzmJKmkpER33XWX1q1bpyFDhmjs2LE6deqU0tLStG/fPrVs2VIPPvigZsyYoePHj6thw4bmej/99FPl5+frwQcfvKy+cY0xgFrI09PTiImJueD05s2bGyNGjCg3fttttxm33Xab+X7Dhg2GJKNdu3ZGUVGROf7AAw8YDg4ORv/+/W3mDwsLM5o3b16pXnv16mW4u7sbP//8s814aWmp+f8jIyMNZ2dn4/vvvzfHjh49ari7uxu9evUyxxYtWmRIMnr06GGcOXOm3LZJMpKTk23G//3vfxuOjo7Gf//7X5vx5ORkQ5KxZcsWc+zc/Xb69GmjpKTEZr4ff/zRcHFxMaZPn26O7dixw5BkLFq0qNz2jxgxwmafrVixwpBkvPDCCzZ1gwYNMhwcHIzvvvvOHJNkODs724x99dVXhiRj3rx55tiljoeKKNu3ERERNj+bsLAww8HBwXjsscfMsTNnzhjNmjWzOZYMwzD++OMPm/dFRUVGu3btjL/97W/m2OzZsw1JxrFjxy7Yy9///nfj5ptvvqLtqWg/3377reHo6Gj84x//KPezLtsPJ0+eNNzd3Y3Q0FDjzz//PG+NYVT+9+6GG24o12NFj7l33nnHkGS88sor5dZX1tPBgwcNScaCBQtspt9zzz1GixYtbHqvjJiYGIM/n9cOPhpDreTl5aWMjAwdPXq0SpY3fPhw1a1b13wfGhoqwzD08MMP29SFhobq8OHDOnPmTIWWe+zYMW3atEkPP/ywrr/+eptpZXedlJSUaO3atYqMjLS5CLNp06YaOnSoNm/erPz8fJt5R40aJScnp3Lrc3Fx0ciRI23Gli9frrZt26pNmzb69ddfzdff/vY3SdKGDRsu2L+Li4scHR3NPn/77Tfzo5zKfOx0ttWrV8vJyUlPPvmkzfiECRNkGIY+++wzm/Hw8HC1bNnSfH/LLbfIw8NDP/zwgzlWlcdDdHS0zR1BZcdCdHS0Oebk5KSQkBCbHiTZfHRy4sQJ5eXlqWfPnjb7ysvLS5L0ySefXPCaGC8vL/3yyy/asWPHFW1LRfpZsWKFSktLlZCQYP6sy5Tth7S0NJ06dUqTJk2Sq6vreWsux4gRI8p93FTRY+6jjz5S48aN9cQTT5RbbllPN910k0JDQ7VkyRJz2vHjx/XZZ58pKiqKO78giWuEUEvNmDFD+/btU0BAgLp06aLExMRyf5Qq49yQ4unpKUkKCAgoN15aWqq8vLwKLbesp3bt2l2w5tixY/rjjz/UunXrctPatm2r0tJSHT582GY8MDDwvMu67rrr5OzsbDP27bffav/+/WrSpInN66abbpIk5ebmXrC30tJSzZ49W61atZKLi4saN26sJk2aaM+ePRXeB+f6+eef5e/vL3d3d5vxtm3bmtPPdu7PRpK8vb114sQJ831VHg+VORbO7kGSUlJS1LVrV7m6uqphw4Zq0qSJFixYYLOvBg8erO7du+uRRx6Rr6+vhgwZog8++MAmFD3zzDNq0KCBunTpolatWikmJsbmo7OKqkg/33//vRwdHRUUFHTB5Xz//feSLn4cX47zHccVPea+//57tW7dWnXqXPwKj+HDh2vLli3mcbV8+XIVFxdr2LBhVbotqL0IQqiV7r//fv3www+aN2+e/P39NXPmTN18883m2YQL/UuvpKTkvOPnO7tysXHjnItkr7YLXbR5vvHS0lK1b99eaWlp532NGTPmgut56aWXFBcXp169eum9997TmjVrlJaWpptvvvmq3eFTkZ/BpY6Hqljf+cbP7uG///2v7rnnHrm6uur111/X6tWrlZaWpqFDh9rUubm5adOmTfr88881bNgw7dmzR4MHD9btt99uHp9t27bVwYMH9f7776tHjx766KOP1KNHD02dOrXC21HRfqpSZX/vzne8VvUxN2TIENWtW9c8K/Tee+8pJCTkvP/wgDVxsTRqraZNm2rMmDEaM2aMcnNz1alTJ7344ovq37+/vL29dfLkyXLz/Pzzz1f1GSBl69q3b98Fa5o0aaJ69eqd91k7WVlZcnR0LHc2ojJatmypr776Sn379q30RwEffvih+vTpo7fffttm/OTJk2rcuLH5vjLLbd68uT7//HOdOnXK5qxQVlaWOf1yXOx4uBo++ugjubq6as2aNTaPC1i0aFG5WkdHR/Xt21d9+/bVK6+8opdeekmTJ0/Whg0bFB4eLkmqX7++Bg8erMGDB6uoqEj33nuvXnzxRcXHx5f7eOpK+mnZsqVKS0t14MABdezY8bzLKvtoct++fbrxxhsvuM6q+L2r6DHXsmVLZWRkqLi42OZj7XM1bNhQAwYM0JIlSxQVFaUtW7Zozpw5FeoF1sAZIdQ6JSUl5T6W8fHxkb+/v3k7eMuWLbVt2zYVFRWZNSkpKeU+YqpuTZo0Ua9evfTOO+/o0KFDNtPK/lXu5OSkfv366ZNPPtFPP/1kTs/JydHSpUvVo0cPeXh4XHYP999/v44cOaI333yz3LQ///zzos8hcnJyKnf2YPny5Tpy5IjNWP369SXpvH8Ez3XnnXeqpKREr732ms347Nmz5eDgUOngUpHj4WpwcnKSg4ODzdmPn376qdxdecePHy83b1kAKev3t99+s5nu7OysoKAgGYah4uLiKu0nMjJSjo6Omj59erkzLmU/+379+snd3V1JSUk6ffr0eWukqvm9q+gxN3DgQP3666/ljqNze5KkYcOG6cCBA3r66afl5OSkIUOGVLgfXPs4I4Ra59SpU2rWrJkGDRqkDh06qEGDBvr888+1Y8cOzZo1S5L0yCOP6MMPP9Qdd9yh+++/X99//73ee+89m4tur5a5c+eqR48e6tSpk0aPHq3AwED99NNPWrVqlfkk5hdeeMF8tsyYMWNUp04dvfHGGyosLNSMGTOuaP3Dhg3TBx98oMcee0wbNmxQ9+7dVVJSoqysLH3wwQdas2aNQkJCzjvvXXfdpenTp2vkyJHq1q2b9u7dqyVLlpT7133Lli3l5eWl5ORkubu7q379+goNDT3vNSB33323+vTpo8mTJ+unn35Shw4dtHbtWn3yyScaN25cpX9GFTkeroYBAwbolVde0R133KGhQ4cqNzdX8+fP14033qg9e/aYddOnT9emTZs0YMAANW/eXLm5uXr99dfVrFkz9ejRQ9JfwcPPz0/du3eXr6+vvv76a7322msaMGBAuWurrrSfG2+8UZMnT9bzzz+vnj176t5775WLi4t27Nghf39/JSUlycPDQ7Nnz9Yjjzyizp07a+jQofL29tZXX32lP/74Q++++66kqvm9q+gxN3z4cP3P//yP4uLitH37dvXs2VMFBQX6/PPPNWbMGJvnBw0YMECNGjXS8uXL1b9/f/n4+FS4nzI///yz/v3vf0uSdu7cKemv31vpr7OYXHNUi9nhTjXgihQWFhpPP/200aFDB8Pd3d2oX7++0aFDB+P111+3qZs1a5Zx3XXXGS4uLkb37t2NnTt3XvA23uXLl9vMW3Yr9Y4dO2zGp06deslbn89n3759xj/+8Q/Dy8vLcHV1NVq3bm0899xzNjW7du0yIiIijAYNGhj16tUz+vTpY2zdurVCfRnGX7coX+iW66KiIuNf//qXcfPNNxsuLi6Gt7e3ERwcbEybNs3Iy8sz6853+/yECROMpk2bGm5ubkb37t2N9PT0cvvRMAzjk08+MYKCgow6derY3Ep/7u3zhmEYp06dMsaPH2/4+/sbdevWNVq1amXMnDmz3O3Mks57W/zZfVb0eLiUyv7MR4wYYdSvX99m7O233zZatWpluLi4GG3atDEWLVpkzl9m3bp1xt///nfD39/fcHZ2Nvz9/Y0HHnjA+Oabb8yaN954w+jVq5fRqFEjw8XFxWjZsqXx9NNP2/ysKqIi/ZR55513jFtvvdU8Pm677TYjLS3NpmblypVGt27dDDc3N8PDw8Po0qWL8f/+3/+zqbmS3zvDqNwx98cffxiTJ082AgMDjbp16xp+fn7GoEGDbB5DUWbMmDGGJGPp0qWV2IP/p6zn873O7Qu1i4Nh2PmqTwAAqtn48eP19ttvKzs7W/Xq1bN3O6hBuEYIAHBNO336tN577z0NHDiQEIRyuEYIuEx5eXn6888/L1rj5+d3lbrBhfz555+XfOZRw4YNyz1/qaYqKSnRsWPHLlrToEEDNWjQ4Cp1VHPl5ubq888/14cffqjffvtNY8eOLVdz7NixC97eL/11ofrZX8+Baw9BCLhMY8eONS8SvRA+eba/ZcuWlXva9rk2bNhg86WgNdnhw4cv+EDNMlOnTlViYuLVaagGO3DggKKiouTj46O5c+ee9/EAnTt3LvcQz7Pddttt+uKLL6qvSdgd1wgBl+nAgQOX/EqHsmfCwH7+93//V/v3779oTXBwsLy9va9SR1fm9OnT2rx580Vrbrjhhqv6vKzabMuWLRc9s+vt7a3g4OCr2BGuNoIQAACwLC6WBgAAlsU1QhdRWlqqo0ePyt3dnW8pBgCgljAMQ6dOnZK/v78cHS9+zocgdBFHjx69ou94AgAA9nP48GE1a9bsojUEoYsoe5T94cOHr+i7ngAAwNWTn5+vgICACn0lDUHoIso+DvPw8CAIAQBQy1TkshYulgYAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZVx94NAIAkaUOSvTuouD7x9u4AQBXhjBAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsOvZuAMC1YXbaN1c0f9dDv1VRJxUXdkOjq75OADVLpc8Ibdq0SXfffbf8/f3l4OCgFStWmNOKi4v1zDPPqH379qpfv778/f01fPhwHT161GYZx48fV1RUlDw8POTl5aXo6Gj9/vvvNjV79uxRz5495erqqoCAAM2YMaNcL8uXL1ebNm3k6uqq9u3ba/Xq1TbTDcNQQkKCmjZtKjc3N4WHh+vbb7+t7CYDAIBrVKWDUEFBgTp06KD58+eXm/bHH39o165deu6557Rr1y795z//0cGDB3XPPffY1EVFRWn//v1KS0tTSkqKNm3apNGjR5vT8/Pz1a9fPzVv3lyZmZmaOXOmEhMTtXDhQrNm69ateuCBBxQdHa0vv/xSkZGRioyM1L59+8yaGTNmaO7cuUpOTlZGRobq16+viIgInT59urKbDQAArkEOhmEYlz2zg4M+/vhjRUZGXrBmx44d6tKli37++Wddf/31+vrrrxUUFKQdO3YoJCREkpSamqo777xTv/zyi/z9/bVgwQJNnjxZ2dnZcnZ2liRNmjRJK1asUFZWliRp8ODBKigoUEpKirmurl27qmPHjkpOTpZhGPL399eECRP01FNPSZLy8vLk6+urxYsXa8iQIZfcvvz8fHl6eiovL08eHh6Xu5sAS7jyj8YWXrqoil32R2N94qu2EQBVqjJ/v6v9Yum8vDw5ODjIy8tLkpSeni4vLy8zBElSeHi4HB0dlZGRYdb06tXLDEGSFBERoYMHD+rEiRNmTXh4uM26IiIilJ6eLkn68ccflZ2dbVPj6emp0NBQs+ZchYWFys/Pt3kBAIBrV7UGodOnT+uZZ57RAw88YCay7Oxs+fj42NTVqVNHDRs2VHZ2tlnj6+trU1P2/lI1Z08/e77z1ZwrKSlJnp6e5isgIKDS2wwAAGqPagtCxcXFuv/++2UYhhYsWFBdq6lS8fHxysvLM1+HDx+2d0sAAKAaVcvt82Uh6Oeff9b69ettPp/z8/NTbm6uTf2ZM2d0/Phx+fn5mTU5OTk2NWXvL1Vz9vSysaZNm9rUdOzY8bx9u7i4yMXFpbKbCwAAaqkqPyNUFoK+/fZbff7552rUyPZixLCwMJ08eVKZmZnm2Pr161VaWqrQ0FCzZtOmTSouLjZr0tLS1Lp1a3l7e5s169ats1l2WlqawsLCJEmBgYHy8/OzqcnPz1dGRoZZAwAArK3SQej333/X7t27tXv3bkl/XZS8e/duHTp0SMXFxRo0aJB27typJUuWqKSkRNnZ2crOzlZRUZEkqW3btrrjjjs0atQobd++XVu2bFFsbKyGDBkif39/SdLQoUPl7Oys6Oho7d+/X8uWLdOrr76quLg4s4+xY8cqNTVVs2bNUlZWlhITE7Vz507FxsZK+uuOtnHjxumFF17QypUrtXfvXg0fPlz+/v4XvcsNAABYR6U/Gtu5c6f69Oljvi8LJyNGjFBiYqJWrlwpSeU+ftqwYYN69+4tSVqyZIliY2PVt29fOTo6auDAgZo7d65Z6+npqbVr1yomJkbBwcFq3LixEhISbJ411K1bNy1dulRTpkzRs88+q1atWmnFihVq166dWTNx4kQVFBRo9OjROnnypHr06KHU1FS5urpWdrMBAMA16IqeI3St4zlCQMXxHCEANUWNeo4QAABATUUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAllXpILRp0ybdfffd8vf3l4ODg1asWGEz3TAMJSQkqGnTpnJzc1N4eLi+/fZbm5rjx48rKipKHh4e8vLyUnR0tH7//Xebmj179qhnz55ydXVVQECAZsyYUa6X5cuXq02bNnJ1dVX79u21evXqSvcCAACsq9JBqKCgQB06dND8+fPPO33GjBmaO3eukpOTlZGRofr16ysiIkKnT582a6KiorR//36lpaUpJSVFmzZt0ujRo83p+fn56tevn5o3b67MzEzNnDlTiYmJWrhwoVmzdetWPfDAA4qOjtaXX36pyMhIRUZGat++fZXqBQAAWJeDYRjGZc/s4KCPP/5YkZGRkv46A+Pv768JEyboqaeekiTl5eXJ19dXixcv1pAhQ/T1118rKChIO3bsUEhIiCQpNTVVd955p3755Rf5+/trwYIFmjx5srKzs+Xs7CxJmjRpklasWKGsrCxJ0uDBg1VQUKCUlBSzn65du6pjx45KTk6uUC+Xkp+fL09PT+Xl5cnDw+NydxNgCbPTvrmi+bseWnjpoioWdkOjy5uxT3zVNgKgSlXm73eVXiP0448/Kjs7W+Hh4eaYp6enQkNDlZ6eLklKT0+Xl5eXGYIkKTw8XI6OjsrIyDBrevXqZYYgSYqIiNDBgwd14sQJs+bs9ZTVlK2nIr2cq7CwUPn5+TYvAABw7arSIJSdnS1J8vX1tRn39fU1p2VnZ8vHx8dmep06ddSwYUObmvMt4+x1XKjm7OmX6uVcSUlJ8vT0NF8BAQEV2GoAAFBbcdfYWeLj45WXl2e+Dh8+bO+WAABANarSIOTn5ydJysnJsRnPyckxp/n5+Sk3N9dm+pkzZ3T8+HGbmvMt4+x1XKjm7OmX6uVcLi4u8vDwsHkBAIBrV5UGocDAQPn5+WndunXmWH5+vjIyMhQWFiZJCgsL08mTJ5WZmWnWrF+/XqWlpQoNDTVrNm3apOLiYrMmLS1NrVu3lre3t1lz9nrKasrWU5FeAACAtVU6CP3+++/avXu3du/eLemvi5J3796tQ4cOycHBQePGjdMLL7yglStXau/evRo+fLj8/f3NO8vatm2rO+64Q6NGjdL27du1ZcsWxcbGasiQIfL395ckDR06VM7OzoqOjtb+/fu1bNkyvfrqq4qLizP7GDt2rFJTUzVr1ixlZWUpMTFRO3fuVGxsrCRVqBcAAGBtdSo7w86dO9WnTx/zfVk4GTFihBYvXqyJEyeqoKBAo0eP1smTJ9WjRw+lpqbK1dXVnGfJkiWKjY1V37595ejoqIEDB2ru3LnmdE9PT61du1YxMTEKDg5W48aNlZCQYPOsoW7dumnp0qWaMmWKnn32WbVq1UorVqxQu3btzJqK9AIAAKzrip4jdK3jOUJAxfEcIQA1hd2eIwQAAFCbEIQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlVXkQKikp0XPPPafAwEC5ubmpZcuWev7552UYhlljGIYSEhLUtGlTubm5KTw8XN9++63Nco4fP66oqCh5eHjIy8tL0dHR+v33321q9uzZo549e8rV1VUBAQGaMWNGuX6WL1+uNm3ayNXVVe3bt9fq1aurepMBAEAtVeVB6F//+pcWLFig1157TV9//bX+9a9/acaMGZo3b55ZM2PGDM2dO1fJycnKyMhQ/fr1FRERodOnT5s1UVFR2r9/v9LS0pSSkqJNmzZp9OjR5vT8/Hz169dPzZs3V2ZmpmbOnKnExEQtXLjQrNm6daseeOABRUdH68svv1RkZKQiIyO1b9++qt5sAABQCzkYZ5+qqQJ33XWXfH199fbbb5tjAwcOlJubm9577z0ZhiF/f39NmDBBTz31lCQpLy9Pvr6+Wrx4sYYMGaKvv/5aQUFB2rFjh0JCQiRJqampuvPOO/XLL7/I399fCxYs0OTJk5WdnS1nZ2dJ0qRJk7RixQplZWVJkgYPHqyCggKlpKSYvXTt2lUdO3ZUcnLyJbclPz9fnp6eysvLk4eHR5XtI+BaNDvtmyuav+uhhZcuqmJhNzS6vBn7xFdtIwCqVGX+flf5GaFu3bpp3bp1+uabv/6j+NVXX2nz5s3q37+/JOnHH39Udna2wsPDzXk8PT0VGhqq9PR0SVJ6erq8vLzMECRJ4eHhcnR0VEZGhlnTq1cvMwRJUkREhA4ePKgTJ06YNWevp6ymbD3nKiwsVH5+vs0LAABcu+pU9QInTZqk/Px8tWnTRk5OTiopKdGLL76oqKgoSVJ2drYkydfX12Y+X19fc1p2drZ8fHxsG61TRw0bNrSpCQwMLLeMsmne3t7Kzs6+6HrOlZSUpGnTpl3OZgMAgFqoys8IffDBB1qyZImWLl2qXbt26d1339XLL7+sd999t6pXVeXi4+OVl5dnvg4fPmzvlgAAQDWq8jNCTz/9tCZNmqQhQ4ZIktq3b6+ff/5ZSUlJGjFihPz8/CRJOTk5atq0qTlfTk6OOnbsKEny8/NTbm6uzXLPnDmj48ePm/P7+fkpJyfHpqbs/aVqyqafy8XFRS4uLpez2QAAoBaq8jNCf/zxhxwdbRfr5OSk0tJSSVJgYKD8/Py0bt06c3p+fr4yMjIUFhYmSQoLC9PJkyeVmZlp1qxfv16lpaUKDQ01azZt2qTi4mKzJi0tTa1bt5a3t7dZc/Z6ymrK1gMAAKytyoPQ3XffrRdffFGrVq3STz/9pI8//livvPKK/vGPf0iSHBwcNG7cOL3wwgtauXKl9u7dq+HDh8vf31+RkZGSpLZt2+qOO+7QqFGjtH37dm3ZskWxsbEaMmSI/P39JUlDhw6Vs7OzoqOjtX//fi1btkyvvvqq4uLizF7Gjh2r1NRUzZo1S1lZWUpMTNTOnTsVGxtb1ZsNAABqoSr/aGzevHl67rnnNGbMGOXm5srf31+PPvqoEhISzJqJEyeqoKBAo0eP1smTJ9WjRw+lpqbK1dXVrFmyZIliY2PVt29fOTo6auDAgZo7d6453dPTU2vXrlVMTIyCg4PVuHFjJSQk2DxrqFu3blq6dKmmTJmiZ599Vq1atdKKFSvUrl27qt5sAABQC1X5c4SuJTxHCKg4niMEoKaw63OEAAAAaguCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsCyCEAAAsKw69m4AAFBxs9O+sXcLl2X87TfZuwXgvDgjBAAALIsgBAAALIuPxgCgsjYk2W3VXQ/9VuHabdePrsZOgGsDZ4QAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBl8RwhAJaV/kPFn8lTG3U9tNDeLfyfDY0uPr1P/NXpAzgHZ4QAAIBlEYQAAIBlEYQAAIBlVUsQOnLkiB588EE1atRIbm5uat++vXbu3GlONwxDCQkJatq0qdzc3BQeHq5vv/3WZhnHjx9XVFSUPDw85OXlpejoaP3+++82NXv27FHPnj3l6uqqgIAAzZgxo1wvy5cvV5s2beTq6qr27dtr9erV1bHJAACgFqryIHTixAl1795ddevW1WeffaYDBw5o1qxZ8vb2NmtmzJihuXPnKjk5WRkZGapfv74iIiJ0+vRpsyYqKkr79+9XWlqaUlJStGnTJo0e/X9fIJifn69+/fqpefPmyszM1MyZM5WYmKiFC//v4sCtW7fqgQceUHR0tL788ktFRkYqMjJS+/btq+rNBgAAtZCDYRhGVS5w0qRJ2rJli/773/+ed7phGPL399eECRP01FNPSZLy8vLk6+urxYsXa8iQIfr6668VFBSkHTt2KCQkRJKUmpqqO++8U7/88ov8/f21YMECTZ48WdnZ2XJ2djbXvWLFCmVlZUmSBg8erIKCAqWkpJjr79q1qzp27Kjk5ORLbkt+fr48PT2Vl5cnDw+PK9ovwLVudto3VzR/jbrDCVUu7AbuGsPVU5m/31V+RmjlypUKCQnRfffdJx8fH91666168803zek//vijsrOzFR4ebo55enoqNDRU6enpkqT09HR5eXmZIUiSwsPD5ejoqIyMDLOmV69eZgiSpIiICB08eFAnTpwwa85eT1lN2XrOVVhYqPz8fJsXAAC4dlV5EPrhhx+0YMECtWrVSmvWrNHjjz+uJ598Uu+++64kKTs7W5Lk6+trM5+vr685LTs7Wz4+PjbT69Spo4YNG9rUnG8ZZ6/jQjVl08+VlJQkT09P8xUQEFDp7QcAALVHlQeh0tJSderUSS+99JJuvfVWjR49WqNGjarQR1H2Fh8fr7y8PPN1+PBhe7cEAACqUZUHoaZNmyooKMhmrG3btjp06JAkyc/PT5KUk5NjU5OTk2NO8/PzU25urs30M2fO6Pjx4zY151vG2eu4UE3Z9HO5uLjIw8PD5gUAAK5dVR6EunfvroMHD9qMffPNN2revLkkKTAwUH5+flq3bp05PT8/XxkZGQoLC5MkhYWF6eTJk8rMzDRr1q9fr9LSUoWGhpo1mzZtUnFxsVmTlpam1q1bm3eohYWF2aynrKZsPQAAwNqqPAiNHz9e27Zt00svvaTvvvtOS5cu1cKFCxUTEyNJcnBw0Lhx4/TCCy9o5cqV2rt3r4YPHy5/f39FRkZK+usM0h133KFRo0Zp+/bt2rJli2JjYzVkyBD5+/tLkoYOHSpnZ2dFR0dr//79WrZsmV599VXFxcWZvYwdO1apqamaNWuWsrKylJiYqJ07dyo2NraqNxsAANRCVf6lq507d9bHH3+s+Ph4TZ8+XYGBgZozZ46ioqLMmokTJ6qgoECjR4/WyZMn1aNHD6WmpsrV1dWsWbJkiWJjY9W3b185Ojpq4MCBmjt3rjnd09NTa9euVUxMjIKDg9W4cWMlJCTYPGuoW7duWrp0qaZMmaJnn31WrVq10ooVK9SuXbuq3mwAAFALVflzhK4lPEcIqDieI4SL4TlCuJrs+hwhAACA2oIgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALKvag9A///lPOTg4aNy4cebY6dOnFRMTo0aNGqlBgwYaOHCgcnJybOY7dOiQBgwYoHr16snHx0dPP/20zpw5Y1PzxRdfqFOnTnJxcdGNN96oxYsXl1v//Pnz1aJFC7m6uio0NFTbt2+vjs0EAAC1ULUGoR07duiNN97QLbfcYjM+fvx4ffrpp1q+fLk2btyoo0eP6t577zWnl5SUaMCAASoqKtLWrVv17rvvavHixUpISDBrfvzxRw0YMEB9+vTR7t27NW7cOD3yyCNas2aNWbNs2TLFxcVp6tSp2rVrlzp06KCIiAjl5uZW52YDAIBaotqC0O+//66oqCi9+eab8vb2Nsfz8vL09ttv65VXXtHf/vY3BQcHa9GiRdq6dau2bdsmSVq7dq0OHDig9957Tx07dlT//v31/PPPa/78+SoqKpIkJScnKzAwULNmzVLbtm0VGxurQYMGafbs2ea6XnnlFY0aNUojR45UUFCQkpOTVa9ePb3zzjvVtdkAAKAWqbYgFBMTowEDBig8PNxmPDMzU8XFxTbjbdq00fXXX6/09HRJUnp6utq3by9fX1+zJiIiQvn5+dq/f79Zc+6yIyIizGUUFRUpMzPTpsbR0VHh4eFmzbkKCwuVn59v8wIAANeuOtWx0Pfff1+7du3Sjh07yk3Lzs6Ws7OzvLy8bMZ9fX2VnZ1t1pwdgsqml027WE1+fr7+/PNPnThxQiUlJeetycrKOm/fSUlJmjZtWsU3FAAA1GpVfkbo8OHDGjt2rJYsWSJXV9eqXny1io+PV15envk6fPiwvVsCAADVqMqDUGZmpnJzc9WpUyfVqVNHderU0caNGzV37lzVqVNHvr6+Kioq0smTJ23my8nJkZ+fnyTJz8+v3F1kZe8vVePh4SE3Nzc1btxYTk5O560pW8a5XFxc5OHhYfMCAADXrioPQn379tXevXu1e/du8xUSEqKoqCjz/9etW1fr1q0z5zl48KAOHTqksLAwSVJYWJj27t1rc3dXWlqaPDw8FBQUZNacvYyymrJlODs7Kzg42KamtLRU69atM2sAAIC1Vfk1Qu7u7mrXrp3NWP369dWoUSNzPDo6WnFxcWrYsKE8PDz0xBNPKCwsTF27dpUk9evXT0FBQRo2bJhmzJih7OxsTZkyRTExMXJxcZEkPfbYY3rttdc0ceJEPfzww1q/fr0++OADrVq1ylxvXFycRowYoZCQEHXp0kVz5sxRQUGBRo4cWdWbDQAAaqFquVj6UmbPni1HR0cNHDhQhYWFioiI0Ouvv25Od3JyUkpKih5//HGFhYWpfv36GjFihKZPn27WBAYGatWqVRo/frxeffVVNWvWTG+99ZYiIiLMmsGDB+vYsWNKSEhQdna2OnbsqNTU1HIXUAMAAGtyMAzDsHcTNVV+fr48PT2Vl5fH9ULAJcxO++aK5u96aGEVdYKaKOyGRhcv6BN/dRqBJVTm7zffNQYAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzLLs8RAgBYS/oPv110+rYzV/b4heow/vab7N0CrgLOCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMviu8YAAHbX9dBCe7dQ3oZG5cf6xF/9PlCtOCMEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq8qDUFJSkjp37ix3d3f5+PgoMjJSBw8etKk5ffq0YmJi1KhRIzVo0EADBw5UTk6OTc2hQ4c0YMAA1atXTz4+Pnr66ad15swZm5ovvvhCnTp1kouLi2688UYtXry4XD/z589XixYt5OrqqtDQUG3fvr2qNxkAANRSVR6ENm7cqJiYGG3btk1paWkqLi5Wv379VFBQYNaMHz9en376qZYvX66NGzfq6NGjuvfee83pJSUlGjBggIqKirR161a9++67Wrx4sRISEsyaH3/8UQMGDFCfPn20e/dujRs3To888ojWrFlj1ixbtkxxcXGaOnWqdu3apQ4dOigiIkK5ublVvdkAAKAWcjAMw6jOFRw7dkw+Pj7auHGjevXqpby8PDVp0kRLly7VoEGDJElZWVlq27at0tPT1bVrV3322We66667dPToUfn6+kqSkpOT9cwzz+jYsWNydnbWM888o1WrVmnfvn3muoYMGaKTJ08qNTVVkhQaGqrOnTvrtddekySVlpYqICBATzzxhCZNmlSu18LCQhUWFprv8/PzFRAQoLy8PHl4eFTbPgKuBbPTvrmi+bseWlhFnQBVI+yGRuUH+8Rf/UZQafn5+fL09KzQ3+9qv0YoLy9PktSwYUNJUmZmpoqLixUeHm7WtGnTRtdff73S09MlSenp6Wrfvr0ZgiQpIiJC+fn52r9/v1lz9jLKasqWUVRUpMzMTJsaR0dHhYeHmzXnSkpKkqenp/kKCAi40s0HAAA1WLUGodLSUo0bN07du3dXu3btJEnZ2dlydnaWl5eXTa2vr6+ys7PNmrNDUNn0smkXq8nPz9eff/6pX3/9VSUlJeetKVvGueLj45WXl2e+Dh8+fHkbDgAAaoU61bnwmJgY7du3T5s3b67O1VQZFxcXubi42LsNAABwlVTbGaHY2FilpKRow4YNatasmTnu5+enoqIinTx50qY+JydHfn5+Zs25d5GVvb9UjYeHh9zc3NS4cWM5OTmdt6ZsGQAAwNqqPAgZhqHY2Fh9/PHHWr9+vQIDA22mBwcHq27dulq3bp05dvDgQR06dEhhYWGSpLCwMO3du9fm7q60tDR5eHgoKCjIrDl7GWU1ZctwdnZWcHCwTU1paanWrVtn1gAAAGur8o/GYmJitHTpUn3yySdyd3c3r8fx9PSUm5ubPD09FR0drbi4ODVs2FAeHh564oknFBYWpq5du0qS+vXrp6CgIA0bNkwzZsxQdna2pkyZopiYGPOjq8cee0yvvfaaJk6cqIcffljr16/XBx98oFWrVpm9xMXFacSIEQoJCVGXLl00Z84cFRQUaOTIkVW92QAAoBaq8iC0YMECSVLv3r1txhctWqSHHnpIkjR79mw5Ojpq4MCBKiwsVEREhF5//XWz1snJSSkpKXr88ccVFham+vXra8SIEZo+fbpZExgYqFWrVmn8+PF69dVX1axZM7311luKiIgwawYPHqxjx44pISFB2dnZ6tixo1JTU8tdQA0AAKyp2p8jVJtV5jkEgNXxHCFca3iOUO1Vo54jBAAAUFMRhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGVV67fPAwBQW6X/8Fu5sW1nruzBodVt/O032buFWoczQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLL4ig0AACqo66GF9m7h4jY0+ut/+8Tbt49ahDNCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsvjSVQAArhHpP/wmSdp25hs7d1Jx42+/ya7r54wQAACwLM4IAde6DUlXZTVdD/12VdYDAFWJM0IAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyuGsMqIFmp1XdM0C4mwsALowgBADANabroYX2bqESXrbr2vloDAAAWJYlgtD8+fPVokULubq6KjQ0VNu3b7d3SwAAoAa45j8aW7ZsmeLi4pScnKzQ0FDNmTNHEREROnjwoHx8fOzdHmqzanxiM9f1AMDVcc2fEXrllVc0atQojRw5UkFBQUpOTla9evX0zjvv2Ls1AABgZ9f0GaGioiJlZmYqPj7eHHN0dFR4eLjS09PL1RcWFqqwsNB8n5eXJ0nKz8+v/mZRbeav/65altv5l6PVslwAsJLq+BtbtkzDMC5Ze00HoV9//VUlJSXy9fW1Gff19VVWVla5+qSkJE2bNq3ceEBAQLX1CACApT3xWrUt+tSpU/L09LxozTUdhCorPj5ecXFx5vvS0lIdP35cjRo1koODwwXny8/PV0BAgA4fPiwPD4+r0Wqtxz6rPPbZ5WG/VR77rPLYZ5enuvabYRg6deqU/P39L1l7TQehxo0by8nJSTk5OTbjOTk58vPzK1fv4uIiFxcXmzEvL68Kr8/Dw4NfgEpin1Ue++zysN8qj31Weeyzy1Md++1SZ4LKXNMXSzs7Oys4OFjr1q0zx0pLS7Vu3TqFhYXZsTMAAFATXNNnhCQpLi5OI0aMUEhIiLp06aI5c+aooKBAI0eOtHdrAADAzq75IDR48GAdO3ZMCQkJys7OVseOHZWamlruAuor4eLioqlTp5b7WA0Xxj6rPPbZ5WG/VR77rPLYZ5enJuw3B6Mi95YBAABcg67pa4QAAAAuhiAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyBUDVatWqXQ0FC5ubnJ29tbkZGR9m6pVigsLFTHjh3l4OCg3bt327udGu2nn35SdHS0AgMD5ebmppYtW2rq1KkqKiqyd2s1yvz589WiRQu5uroqNDRU27dvt3dLNVpSUpI6d+4sd3d3+fj4KDIyUgcPHrR3W7XKP//5Tzk4OGjcuHH2bqVGO3LkiB588EE1atRIbm5uat++vXbu3GmXXghCVeyjjz7SsGHDNHLkSH311VfasmWLhg4dau+2aoWJEydW6HthIGVlZam0tFRvvPGG9u/fr9mzZys5OVnPPvusvVurMZYtW6a4uDhNnTpVu3btUocOHRQREaHc3Fx7t1Zjbdy4UTExMdq2bZvS0tJUXFysfv36qaCgwN6t1Qo7duzQG2+8oVtuucXerdRoJ06cUPfu3VW3bl199tlnOnDggGbNmiVvb2/7NGSgyhQXFxvXXXed8dZbb9m7lVpn9erVRps2bYz9+/cbkowvv/zS3i3VOjNmzDACAwPt3UaN0aVLFyMmJsZ8X1JSYvj7+xtJSUl27Kp2yc3NNSQZGzdutHcrNd6pU6eMVq1aGWlpacZtt91mjB071t4t1VjPPPOM0aNHD3u3YeKMUBXatWuXjhw5IkdHR916661q2rSp+vfvr3379tm7tRotJydHo0aN0r///W/Vq1fP3u3UWnl5eWrYsKG926gRioqKlJmZqfDwcHPM0dFR4eHhSk9Pt2NntUteXp4kcVxVQExMjAYMGGBzzOH8Vq5cqZCQEN13333y8fHRrbfeqjfffNNu/RCEqtAPP/wgSUpMTNSUKVOUkpIib29v9e7dW8ePH7dzdzWTYRh66KGH9NhjjykkJMTe7dRa3333nebNm6dHH33U3q3UCL/++qtKSkrKfZWOr6+vsrOz7dRV7VJaWqpx48ape/fuateunb3bqdHef/997dq1S0lJSfZupVb44YcftGDBArVq1Upr1qzR448/rieffFLvvvuuXfohCFXApEmT5ODgcNFX2TUbkjR58mQNHDhQwcHBWrRokRwcHLR8+XI7b8XVVdF9Nm/ePJ06dUrx8fH2brlGqOh+O9uRI0d0xx136L777tOoUaPs1DmuNTExMdq3b5/ef/99e7dSox0+fFhjx47VkiVL5Orqau92aoXS0lJ16tRJL730km699VaNHj1ao0aNUnJysl36uea/dLUqTJgwQQ899NBFa2644Qb97//+ryQpKCjIHHdxcdENN9ygQ4cOVWeLNU5F99n69euVnp5e7gv3QkJCFBUVZbd/IdhLRfdbmaNHj6pPnz7q1q2bFi5cWM3d1R6NGzeWk5OTcnJybMZzcnLk5+dnp65qj9jYWKWkpGjTpk1q1qyZvdup0TIzM5Wbm6tOnTqZYyUlJdq0aZNee+01FRYWysnJyY4d1jxNmza1+TspSW3bttVHH31kl34IQhXQpEkTNWnS5JJ1wcHBcnFx0cGDB9WjRw9JUnFxsX766Sc1b968utusUSq6z+bOnasXXnjBfH/06FFFRERo2bJlCg0Nrc4Wa6SK7jfprzNBffr0Mc88OjpygreMs7OzgoODtW7dOvPxFaWlpVq3bp1iY2Pt21wNZhiGnnjiCX388cf64osvFBgYaO+Wary+fftq7969NmMjR45UmzZt9MwzzxCCzqN79+7lHsvwzTff2O3vJEGoCnl4eOixxx7T1KlTFRAQoObNm2vmzJmSpPvuu8/O3dVM119/vc37Bg0aSJJatmzJv0Qv4siRI+rdu7eaN2+ul19+WceOHTOnccbjL3FxcRoxYoRCQkLUpUsXzZkzRwUFBRo5cqS9W6uxYmJitHTpUn3yySdyd3c3r6fy9PSUm5ubnburmdzd3ctdQ1W/fn01atSIa6suYPz48erWrZteeukl3X///dq+fbsWLlxot7PaBKEqNnPmTNWpU0fDhg3Tn3/+qdDQUK1fv95+z0fANSktLU3fffedvvvuu3KB0TAMO3VVswwePFjHjh1TQkKCsrOz1bFjR6Wmppa7gBr/Z8GCBZKk3r1724wvWrTokh/ZAhXVuXNnffzxx4qPj9f06dMVGBioOXPmKCoqyi79OBj8VxMAAFgUFxUAAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADL+v9VJcpN0idODQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR99JREFUeJzt3XtYVXX+9/8XoBw8bPAEuEdUxsxDOpqiiMccSSqqoaw0Kc1IpoRSMU3T0JyKGcs8pEk2TXR/0zuzvlKhoYQmkyIqZh5SO1la3hssha2UoLB+f3Sxfm7xAAohrufjuvZ1tT+f917rvRbbeLH2Wmu7GYZhCAAAwILca7sBAACA2kIQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAmBq27atHnrooWpd5kMPPaS2bdtW6zIBoLoQhABcsSNHjmjWrFnauXNnbbcCVLuysjKlpKTozjvvVFBQkBo2bKguXbroueee06lTp2q7PVwhghCAK3bkyBE9++yz5w1Cr7/+ug4cOPDHNwVUk19//VVjxozR0aNH9eijj2r+/Pnq3bu3Zs6cqVtvvVV8ZWfdVq+2GwBwZYqKitSwYcPzzv36669q0KDBH9yRq/r169fq+lE3nDp1Sp6ennJ3v/r+Pvf09NSmTZvUt29fc2zs2LFq27atZs6cqczMTIWHh9dih7gSV987DqiEEydOaMKECWrbtq28vLzk7++vm2++WTt27JB04XNdbrrpJt10003m808//VRubm5699139eyzz+pPf/qTGjdurHvuuUeFhYUqLi7WhAkT5O/vr0aNGmnMmDEqLi6ucr/79+/XfffdpxYtWsjHx0cdOnTQ9OnTXWo+//xz3XrrrbLZbGrUqJGGDBmiLVu2uNSkpKTIzc1NGzdu1Lhx4+Tv769WrVqZ29alSxfl5uZq4MCBatCggZ5++mlJUnFxsWbOnKnrrrtOXl5eCgoK0pQpUy65LceOHdOTTz6prl27qlGjRrLZbLr11lv1xRdfuOzDXr16SZLGjBkjNzc3ubm5KSUlRdL5zxEqKirSpEmTFBQUJC8vL3Xo0EEvvfRShb+s3dzcFB8fr9TUVHXp0kVeXl664YYblJ6e7lJ3qfdDZZTv288++0xPPPGEWrRoIT8/P/39739XSUmJCgoKNGrUKDVp0kRNmjTRlClTKvT70ksvqW/fvmrWrJl8fHzUs2dPvffeexXWlZGRof79+8vPz0+NGjVShw4dzJ9VuVdeeUU33HCDGjRooCZNmigkJETLly+v9PZUpR9Jevvtt9W7d29zfQMHDtS6detcaj7++GMNGjRIjRs3ls1mU69evVx6quq/u3feeUczZszQn/70JzVo0EBOp7NS77lyp06d0qxZs3T99dfL29tbLVu21N13361vv/1WhmGobdu2+tvf/nbe1/n6+urvf/97pfajp6enSwgqd9ddd0mS9u3bV6nl4OrEESHUSY8++qjee+89xcfHq3Pnzvrll1/02Wefad++ferRo0eVl5eUlCQfHx9NnTpV33zzjV555RXVr19f7u7uOn78uGbNmqUtW7YoJSVFwcHBSkxMrPSyd+3apQEDBqh+/fqKjY1V27Zt9e233+qjjz7S888/L0nau3evBgwYIJvNpilTpqh+/fp67bXXdNNNN2njxo0KDQ11Wea4cePUokULJSYmqqioyBz/5ZdfdOutt2rEiBF64IEHFBAQoLKyMt1555367LPPFBsbq06dOmn37t2aN2+evvrqK6Wmpl6w9++++06pqam69957FRwcrLy8PL322msaNGiQvvzyS9ntdnXq1EmzZ89WYmKiYmNjNWDAAEk67y8OSTIMQ3feeac2bNigmJgYde/eXWvXrtXkyZP1008/ad68eS71n332mf73f/9X48aNU+PGjbVw4UINGzZMhw4dUrNmzSRV7/vh8ccfV2BgoJ599llt2bJFS5culZ+fnzZv3qzWrVvrhRde0Jo1a/Tiiy+qS5cuGjVqlPnaBQsW6M4771R0dLRKSkr0zjvv6N5771VaWpoiIyMl/f6zvv322/WXv/xFs2fPlpeXl7755htt2rTJXM7rr7+uJ554Qvfcc4/Gjx+vU6dOadeuXcrJydHIkSMrvS2V6UeSnn32Wc2aNUt9+/bV7Nmz5enpqZycHK1fv15Dhw6V9HtQfPjhh3XDDTdo2rRp8vPz0+eff6709PQq9XS2f/zjH/L09NSTTz6p4uJieXp66ssvv7zke06SSktLdfvttyszM1MjRozQ+PHjdeLECWVkZGjPnj1q166dHnjgAc2ZM0fHjh1T06ZNzfV+9NFHcjqdeuCBBy6r73IOh0OS1Lx58ytaDmqZAdRBvr6+Rlxc3AXn27RpY4wePbrC+KBBg4xBgwaZzzds2GBIMrp06WKUlJSY4/fff7/h5uZm3HrrrS6vDwsLM9q0aVOlXgcOHGg0btzY+OGHH1zGy8rKzP+OiooyPD09jW+//dYcO3LkiNG4cWNj4MCB5tibb75pSDL69+9vnDlzpsK2STKSk5Ndxv/nf/7HcHd3N/773/+6jCcnJxuSjE2bNplj5+63U6dOGaWlpS6vO3jwoOHl5WXMnj3bHNu2bZshyXjzzTcrbP/o0aNd9llqaqohyXjuuedc6u655x7Dzc3N+Oabb8wxSYanp6fL2BdffGFIMl555RVz7FLvh8oo37cREREuP5uwsDDDzc3NePTRR82xM2fOGK1atXJ5LxmGYfz6668uz0tKSowuXboYf/3rX82xefPmGZKMo0ePXrCXv/3tb8YNN9xwRdtT2X6+/vprw93d3bjrrrsq/KzL90NBQYHRuHFjIzQ01Pjtt9/OW2MYVf939+c//7lCj5V9z/3nP/8xJBkvv/xyhfWV93TgwAFDkrFkyRKX+TvvvNNo27atS++XIzw83LDZbMbx48evaDmoXXw0hjrJz89POTk5OnLkSLUsb9SoUS7nsoSGhsowDD388MMudaGhoTp8+LDOnDlTqeUePXpUWVlZevjhh9W6dWuXOTc3N0m//2W7bt06RUVF6c9//rM537JlS40cOVKfffaZnE6ny2vHjh0rDw+PCuvz8vLSmDFjXMZWrlypTp06qWPHjvr555/Nx1//+ldJ0oYNGy7Yv5eXl3nORmlpqX755Rfzo5yqfOx0tjVr1sjDw0NPPPGEy/ikSZNkGIY+/vhjl/Hw8HC1a9fOfP6Xv/xFNptN3333nTlWne+HmJgY82cj/f/vhZiYGHPMw8NDISEhLj1Iko+Pj/nfx48fV2FhoQYMGOCyr/z8/CRJH3zwgcrKys7bg5+fn3788Udt27btiralMv2kpqaqrKxMiYmJFc7PKd8PGRkZOnHihKZOnSpvb+/z1lyO0aNHu/QoVf499/7776t58+Z6/PHHKyy3vKfrr79eoaGhWrZsmTl37Ngxffzxx4qOjr6i3l944QV98skn+uc//2n+TFE3EYRQJ82ZM0d79uxRUFCQevfurVmzZlX4pVQV54YUX19fSVJQUFCF8bKyMhUWFlZqueU9denS5YI1R48e1a+//qoOHTpUmOvUqZPKysp0+PBhl/Hg4ODzLutPf/qTPD09Xca+/vpr7d27Vy1atHB5XH/99ZKk/Pz8C/ZWVlamefPmqX379vLy8lLz5s3VokUL7dq1q9L74Fw//PCD7Ha7Gjdu7DLeqVMnc/5s5/5sJKlJkyY6fvy4+bw63w9VeS+c3YMkpaWlqU+fPvL29lbTpk3VokULLVmyxGVfDR8+XP369dMjjzyigIAAjRgxQu+++65LKHrqqafUqFEj9e7dW+3bt1dcXJzLR2eVVZl+vv32W7m7u6tz584XXM63334r6eLv48txvvdxZd9z3377rTp06KB69S5+hseoUaO0adMm8321cuVKnT59Wg8++OBl971ixQrNmDFDMTExeuyxxy57Obg6EIRQJ91333367rvv9Morr8hut+vFF1/UDTfcYB5NuNBfeqWlpecdP9/RlYuNG7V8uey5f0VfbLysrExdu3ZVRkbGeR/jxo274HpeeOEFJSQkaODAgXr77be1du1aZWRk6IYbbrjg0YzqVpmfwaXeD9WxvvONn93Df//7X915553y9vbWq6++qjVr1igjI0MjR450qfPx8VFWVpY++eQTPfjgg9q1a5eGDx+um2++2Xx/durUSQcOHNA777yj/v376/3331f//v01c+bMSm9HZfupTlX9d3e+92t1v+dGjBih+vXrm0eF3n77bYWEhJz3D4/KyMjI0KhRoxQZGank5OTLWgauLpwsjTqrZcuWGjdunMaNG6f8/Hz16NFDzz//vG699VY1adJEBQUFFV7zww8/uHz8VNPK17Vnz54L1rRo0UINGjQ477129u/fL3d39wpHI6qiXbt2+uKLLzRkyJAqfxTw3nvvafDgwXrjjTdcxgsKClxOEK3Kctu0aaNPPvlEJ06ccDkqtH//fnP+clzs/fBHeP/99+Xt7a21a9fKy8vLHH/zzTcr1Lq7u2vIkCEaMmSIXn75Zb3wwguaPn26NmzYYF6G3bBhQw0fPlzDhw9XSUmJ7r77bj3//POaNm1ahY+nrqSfdu3aqaysTF9++aW6d+9+3mWVfzS5Z88eXXfddRdcZ3X8u6vse65du3bKycnR6dOnL3qLhqZNmyoyMlLLli1TdHS0Nm3apPnz51eql3Pl5OTorrvuUkhIiN59991LHo1C3cARIdQ5paWlFT6W8ff3l91uNy8Hb9eunbZs2aKSkhKzJi0trcJHTDWtRYsWGjhwoP7zn//o0KFDLnPlf5V7eHho6NCh+uCDD/T999+b83l5eVq+fLn69+8vm8122T3cd999+umnn/T6669XmPvtt99crjo7l4eHR4WjBytXrtRPP/3kMlZ+H6Pz/RI812233abS0lItWrTIZXzevHlyc3OrcnCpzPvhj+Dh4SE3NzeXox/ff/99havyjh07VuG15QGkvN9ffvnFZd7T01OdO3eWYRg6ffp0tfYTFRUld3d3zZ49u8IRl/Kf/dChQ9W4cWMlJSVVuJPy2e+P6vh3V9n33LBhw/Tzzz9XeB+d25MkPfjgg/ryyy81efJkeXh4aMSIEZXup9y+ffsUGRmptm3bKi0t7YJHZVH3EGdR55w4cUKtWrXSPffco27duqlRo0b65JNPtG3bNs2dO1eS9Mgjj+i9997TLbfcovvuu0/ffvut3n77bZeTbv8oCxcuVP/+/dWjRw/FxsYqODhY33//vVavXm3eifm5554z7y0zbtw41atXT6+99pqKi4s1Z86cK1r/gw8+qHfffVePPvqoNmzYoH79+qm0tFT79+/Xu+++q7Vr1yokJOS8r7399ts1e/ZsjRkzRn379tXu3bu1bNmyCn/dt2vXTn5+fkpOTlbjxo3VsGFDhYaGnvcckDvuuEODBw/W9OnT9f3336tbt25at26dPvjgA02YMKHKP6PKvB/+CJGRkXr55Zd1yy23aOTIkcrPz9fixYt13XXXadeuXWbd7NmzlZWVpcjISLVp00b5+fl69dVX1apVK/Xv31/S78EjMDBQ/fr1U0BAgPbt26dFixYpMjKywrlVV9rPddddp+nTp+sf//iHBgwYoLvvvlteXl7atm2b7Ha7kpKSZLPZNG/ePD3yyCPq1auXRo4cqSZNmuiLL77Qr7/+qrfeektS9fy7q+x7btSoUfo//+f/KCEhQVu3btWAAQNUVFSkTz75ROPGjXO5f1BkZKSaNWumlStX6tZbb5W/v3+l+5F+f49FRETo+PHjmjx5slavXu0y365dO4WFhVVpmbiK1MKVasAVKS4uNiZPnmx069bNaNy4sdGwYUOjW7duxquvvupSN3fuXONPf/qT4eXlZfTr18/Yvn37BS/jXblypctryy+l3rZtm8v4zJkzL3np8/ns2bPHuOuuuww/Pz/D29vb6NChg/HMM8+41OzYscOIiIgwGjVqZDRo0MAYPHiwsXnz5kr1ZRi/X6J8oUuuS0pKjH/961/GDTfcYHh5eRlNmjQxevbsaTz77LNGYWGhWXe+y+cnTZpktGzZ0vDx8TH69etnZGdnV9iPhmEYH3zwgdG5c2ejXr16LpfSn3v5vGEYxokTJ4yJEycadrvdqF+/vtG+fXvjxRdfrHA5s6TzXhZ/dp+VfT9cSlV/5qNHjzYaNmzoMvbGG28Y7du3N7y8vIyOHTsab775pvn6cpmZmcbf/vY3w263G56enobdbjfuv/9+46uvvjJrXnvtNWPgwIFGs2bNDC8vL6Ndu3bG5MmTXX5WlVGZfsr95z//MW688Ubz/TFo0CAjIyPDpebDDz80+vbta/j4+Bg2m83o3bu38X//7/91qbmSf3eGUbX33K+//mpMnz7dCA4ONurXr28EBgYa99xzj8ttKMqNGzfOkGQsX768CnvwdwcPHjQkXfBxvlsGoO5wMwy+JAUAcG2bOHGi3njjDTkcjlr/2hlcXThHCABwTTt16pTefvttDRs2jBCECjhHCLhMhYWF+u233y5aExgY+Ad1gwv57bffLnnPo6ZNm1a4/9LVqrS0VEePHr1oTaNGjdSoUaM/qKOrV35+vj755BO99957+uWXXzR+/PgKNUePHr3g5f3S7yeqn/31HLj2EISAyzR+/HjzJNEL4ZPn2rdixYoKd9s+14YNG1y+FPRqdvjw4QveULPczJkzNWvWrD+moavYl19+qejoaPn7+2vhwoXnvT1Ar169KtzE82yDBg3Sp59+WnNNotZxjhBwmb788stLfqVD+T1hUHv+3//7f9q7d+9Fa3r27KkmTZr8QR1dmVOnTumzzz67aM2f//znP/R+WXXZpk2bLnpkt0mTJurZs+cf2BH+aAQhAABgWZwsDQAALItzhC6irKxMR44cUePGja/oW4oBAMAfxzAMnThxQna7Xe7uFz/mQxC6iCNHjlzRdzwBAIDac/jwYbVq1eqiNQShiyi/lf3hw4ev6LueAADAH8fpdCooKKhSX0lDELqI8o/DbDYbQQgAgDqmMqe1cLI0AACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwrCoHoaysLN1xxx2y2+1yc3NTampqhZp9+/bpzjvvlK+vrxo2bKhevXrp0KFD5vypU6cUFxenZs2aqVGjRho2bJjy8vJclnHo0CFFRkaqQYMG8vf31+TJk3XmzBmXmk8//VQ9evSQl5eXrrvuOqWkpFToZfHixWrbtq28vb0VGhqqrVu3VnWTAQDANarKQaioqEjdunXT4sWLzzv/7bffqn///urYsaM+/fRT7dq1S88884y8vb3NmokTJ+qjjz7SypUrtXHjRh05ckR33323OV9aWqrIyEiVlJRo8+bNeuutt5SSkqLExESz5uDBg4qMjNTgwYO1c+dOTZgwQY888ojWrl1r1qxYsUIJCQmaOXOmduzYoW7duikiIkL5+flV3WwAAHAtMq6AJGPVqlUuY8OHDzceeOCBC76moKDAqF+/vrFy5UpzbN++fYYkIzs72zAMw1izZo3h7u5uOBwOs2bJkiWGzWYziouLDcMwjClTphg33HBDhXVHRESYz3v37m3ExcWZz0tLSw273W4kJSVVavsKCwsNSUZhYWGl6gEAQO2ryu/vaj1HqKysTKtXr9b111+viIgI+fv7KzQ01OXjs9zcXJ0+fVrh4eHmWMeOHdW6dWtlZ2dLkrKzs9W1a1cFBASYNREREXI6ndq7d69Zc/YyymvKl1FSUqLc3FyXGnd3d4WHh5s15youLpbT6XR5AACAa1e1BqH8/HydPHlS//znP3XLLbdo3bp1uuuuu3T33Xdr48aNkiSHwyFPT0/5+fm5vDYgIEAOh8OsOTsElc+Xz12sxul06rffftPPP/+s0tLS89aUL+NcSUlJ8vX1NR9BQUGXtyMAAECdUK86F1ZWViZJ+tvf/qaJEydKkrp3767NmzcrOTlZgwYNqs7VVbtp06YpISHBfO50OglDQA2Zl/FVbbdQaRNvvr62WwBQQ6r1iFDz5s1Vr149de7c2WW8U6dO5lVjgYGBKikpUUFBgUtNXl6eAgMDzZpzryIrf36pGpvNJh8fHzVv3lweHh7nrSlfxrm8vLxks9lcHgAA4NpVrUHI09NTvXr10oEDB1zGv/rqK7Vp00aS1LNnT9WvX1+ZmZnm/IEDB3To0CGFhYVJksLCwrR7926Xq7syMjJks9nMkBUWFuayjPKa8mV4enqqZ8+eLjVlZWXKzMw0awAAgLVV+aOxkydP6ptvvjGfHzx4UDt37lTTpk3VunVrTZ48WcOHD9fAgQM1ePBgpaen66OPPtKnn34qSfL19VVMTIwSEhLUtGlT2Ww2Pf744woLC1OfPn0kSUOHDlXnzp314IMPas6cOXI4HJoxY4bi4uLk5eUlSXr00Ue1aNEiTZkyRQ8//LDWr1+vd999V6tXrzZ7S0hI0OjRoxUSEqLevXtr/vz5Kioq0pgxY65knwEAgGtElYPQ9u3bNXjwYPN5+Tk1o0ePVkpKiu666y4lJycrKSlJTzzxhDp06KD3339f/fv3N18zb948ubu7a9iwYSouLlZERIReffVVc97Dw0NpaWl67LHHFBYWpoYNG2r06NGaPXu2WRMcHKzVq1dr4sSJWrBggVq1aqV///vfioiIMGuGDx+uo0ePKjExUQ6HQ927d1d6enqFE6gBAIA1uRmGYdR2E1crp9MpX19fFRYWcr4QUM04WRpATanK72++awwAAFhWtV4+D8DCNiRVqbzPoV9qqJHK29I6trZbAFDLOCIEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq8pBKCsrS3fccYfsdrvc3NyUmpp6wdpHH31Ubm5umj9/vsv4sWPHFB0dLZvNJj8/P8XExOjkyZMuNbt27dKAAQPk7e2toKAgzZkzp8LyV65cqY4dO8rb21tdu3bVmjVrXOYNw1BiYqJatmwpHx8fhYeH6+uvv67qJgMAgGtUlYNQUVGRunXrpsWLF1+0btWqVdqyZYvsdnuFuejoaO3du1cZGRlKS0tTVlaWYmNjzXmn06mhQ4eqTZs2ys3N1YsvvqhZs2Zp6dKlZs3mzZt1//33KyYmRp9//rmioqIUFRWlPXv2mDVz5szRwoULlZycrJycHDVs2FARERE6depUVTcbAABcg9wMwzAu+8Vublq1apWioqJcxn/66SeFhoZq7dq1ioyM1IQJEzRhwgRJ0r59+9S5c2dt27ZNISEhkqT09HTddttt+vHHH2W327VkyRJNnz5dDodDnp6ekqSpU6cqNTVV+/fvlyQNHz5cRUVFSktLM9fbp08fde/eXcnJyTIMQ3a7XZMmTdKTTz4pSSosLFRAQIBSUlI0YsSIS26f0+mUr6+vCgsLZbPZLnc3AdawIalK5dnf/VJDjVTeltaxly6SNPHm62u4EwDVqSq/v6v9HKGysjI9+OCDmjx5sm644YYK89nZ2fLz8zNDkCSFh4fL3d1dOTk5Zs3AgQPNECRJEREROnDggI4fP27WhIeHuyw7IiJC2dnZkqSDBw/K4XC41Pj6+io0NNSsOVdxcbGcTqfLAwAAXLuqPQj961//Ur169fTEE0+cd97hcMjf399lrF69emratKkcDodZExAQ4FJT/vxSNWfPn/2689WcKykpSb6+vuYjKCjoktsLAADqrmoNQrm5uVqwYIFSUlLk5uZWnYv+Q0ybNk2FhYXm4/Dhw7XdEgAAqEHVGoT++9//Kj8/X61bt1a9evVUr149/fDDD5o0aZLatm0rSQoMDFR+fr7L686cOaNjx44pMDDQrMnLy3OpKX9+qZqz589+3flqzuXl5SWbzebyAAAA165qDUIPPvigdu3apZ07d5oPu92uyZMna+3atZKksLAwFRQUKDc313zd+vXrVVZWptDQULMmKytLp0+fNmsyMjLUoUMHNWnSxKzJzMx0WX9GRobCwsIkScHBwQoMDHSpcTqdysnJMWsAAIC11avqC06ePKlvvvnGfH7w4EHt3LlTTZs2VevWrdWsWTOX+vr16yswMFAdOnSQJHXq1Em33HKLxo4dq+TkZJ0+fVrx8fEaMWKEean9yJEj9eyzzyomJkZPPfWU9uzZowULFmjevHnmcsePH69BgwZp7ty5ioyM1DvvvKPt27ebl9i7ublpwoQJeu6559S+fXsFBwfrmWeekd1ur3CVGwAAsKYqB6Ht27dr8ODB5vOEhARJ0ujRo5WSklKpZSxbtkzx8fEaMmSI3N3dNWzYMC1cuNCc9/X11bp16xQXF6eePXuqefPmSkxMdLnXUN++fbV8+XLNmDFDTz/9tNq3b6/U1FR16dLFrJkyZYqKiooUGxurgoIC9e/fX+np6fL29q7qZgMAgGvQFd1H6FrHfYSAKuA+QgCuErV6HyEAAIC6giAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq8pBKCsrS3fccYfsdrvc3NyUmppqzp0+fVpPPfWUunbtqoYNG8put2vUqFE6cuSIyzKOHTum6Oho2Ww2+fn5KSYmRidPnnSp2bVrlwYMGCBvb28FBQVpzpw5FXpZuXKlOnbsKG9vb3Xt2lVr1qxxmTcMQ4mJiWrZsqV8fHwUHh6ur7/+uqqbDAAArlFVDkJFRUXq1q2bFi9eXGHu119/1Y4dO/TMM89ox44d+t///V8dOHBAd955p0tddHS09u7dq4yMDKWlpSkrK0uxsbHmvNPp1NChQ9WmTRvl5ubqxRdf1KxZs7R06VKzZvPmzbr//vsVExOjzz//XFFRUYqKitKePXvMmjlz5mjhwoVKTk5WTk6OGjZsqIiICJ06daqqmw0AAK5BboZhGJf9Yjc3rVq1SlFRURes2bZtm3r37q0ffvhBrVu31r59+9S5c2dt27ZNISEhkqT09HTddttt+vHHH2W327VkyRJNnz5dDodDnp6ekqSpU6cqNTVV+/fvlyQNHz5cRUVFSktLM9fVp08fde/eXcnJyTIMQ3a7XZMmTdKTTz4pSSosLFRAQIBSUlI0YsSIS26f0+mUr6+vCgsLZbPZLnc3AdawIalK5dnf/VJDjVTeltaxly6SNPHm62u4EwDVqSq/v2v8HKHCwkK5ubnJz89PkpSdnS0/Pz8zBElSeHi43N3dlZOTY9YMHDjQDEGSFBERoQMHDuj48eNmTXh4uMu6IiIilJ2dLUk6ePCgHA6HS42vr69CQ0PNmnMVFxfL6XS6PAAAwLWrRoPQqVOn9NRTT+n+++83E5nD4ZC/v79LXb169dS0aVM5HA6zJiAgwKWm/Pmlas6eP/t156s5V1JSknx9fc1HUFBQlbcZAADUHTUWhE6fPq377rtPhmFoyZIlNbWaajVt2jQVFhaaj8OHD9d2SwAAoAbVq4mFloegH374QevXr3f5fC4wMFD5+fku9WfOnNGxY8cUGBho1uTl5bnUlD+/VM3Z8+VjLVu2dKnp3r37efv28vKSl5dXVTcXAADUUdV+RKg8BH399df65JNP1KxZM5f5sLAwFRQUKDc31xxbv369ysrKFBoaatZkZWXp9OnTZk1GRoY6dOigJk2amDWZmZkuy87IyFBYWJgkKTg4WIGBgS41TqdTOTk5Zg0AALC2KgehkydPaufOndq5c6ek309K3rlzpw4dOqTTp0/rnnvu0fbt27Vs2TKVlpbK4XDI4XCopKREktSpUyfdcsstGjt2rLZu3apNmzYpPj5eI0aMkN1ulySNHDlSnp6eiomJ0d69e7VixQotWLBACQkJZh/jx49Xenq65s6dq/3792vWrFnavn274uPjJf1+RduECRP03HPP6cMPP9Tu3bs1atQo2e32i17lBgAArKPKH41t375dgwcPNp+Xh5PRo0dr1qxZ+vDDDyWpwsdPGzZs0E033SRJWrZsmeLj4zVkyBC5u7tr2LBhWrhwoVnr6+urdevWKS4uTj179lTz5s2VmJjocq+hvn37avny5ZoxY4aefvpptW/fXqmpqerSpYtZM2XKFBUVFSk2NlYFBQXq37+/0tPT5e3tXdXNBgAA16Aruo/QtY77CAFVwH2EAFwlrqr7CAEAAFytCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyqhyEsrKydMcdd8hut8vNzU2pqaku84ZhKDExUS1btpSPj4/Cw8P19ddfu9QcO3ZM0dHRstls8vPzU0xMjE6ePOlSs2vXLg0YMEDe3t4KCgrSnDlzKvSycuVKdezYUd7e3uratavWrFlT5V4AAIB1VTkIFRUVqVu3blq8ePF55+fMmaOFCxcqOTlZOTk5atiwoSIiInTq1CmzJjo6Wnv37lVGRobS0tKUlZWl2NhYc97pdGro0KFq06aNcnNz9eKLL2rWrFlaunSpWbN582bdf//9iomJ0eeff66oqChFRUVpz549VeoFAABYl5thGMZlv9jNTatWrVJUVJSk34/A2O12TZo0SU8++aQkqbCwUAEBAUpJSdGIESO0b98+de7cWdu2bVNISIgkKT09Xbfddpt+/PFH2e12LVmyRNOnT5fD4ZCnp6ckaerUqUpNTdX+/fslScOHD1dRUZHS0tLMfvr06aPu3bsrOTm5Ur2cq7i4WMXFxeZzp9OpoKAgFRYWymazXe5uAqxhQ1KVyrO/+6WGGqm8La1jL10kaeLN19dwJwCqk9PplK+vb6V+f1frOUIHDx6Uw+FQeHi4Oebr66vQ0FBlZ2dLkrKzs+Xn52eGIEkKDw+Xu7u7cnJyzJqBAweaIUiSIiIidODAAR0/ftysOXs95TXl66lML+dKSkqSr6+v+QgKCrqS3QEAAK5y1RqEHA6HJCkgIMBlPCAgwJxzOBzy9/d3ma9Xr56aNm3qUnO+ZZy9jgvVnD1/qV7ONW3aNBUWFpqPw4cPV2KrAQBAXVWvthu4mnh5ecnLy6u22wAAAH+Qaj0iFBgYKEnKy8tzGc/LyzPnAgMDlZ+f7zJ/5swZHTt2zKXmfMs4ex0Xqjl7/lK9AAAAa6vWIBQcHKzAwEBlZmaaY06nUzk5OQoLC5MkhYWFqaCgQLm5uWbN+vXrVVZWptDQULMmKytLp0+fNmsyMjLUoUMHNWnSxKw5ez3lNeXrqUwvAADA2qochE6ePKmdO3dq586dkn4/KXnnzp06dOiQ3NzcNGHCBD333HP68MMPtXv3bo0aNUp2u928sqxTp0665ZZbNHbsWG3dulWbNm1SfHy8RowYIbvdLkkaOXKkPD09FRMTo71792rFihVasGCBEhISzD7Gjx+v9PR0zZ07V/v379esWbO0fft2xcfHS1KlegEAANZW5XOEtm/frsGDB5vPy8PJ6NGjlZKSoilTpqioqEixsbEqKChQ//79lZ6eLm9vb/M1y5YtU3x8vIYMGSJ3d3cNGzZMCxcuNOd9fX21bt06xcXFqWfPnmrevLkSExNd7jXUt29fLV++XDNmzNDTTz+t9u3bKzU1VV26dDFrKtMLAACwriu6j9C1rir3IQAsj/sIAbhK1Np9hAAAAOoSghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsag9CpaWleuaZZxQcHCwfHx+1a9dO//jHP2QYhlljGIYSExPVsmVL+fj4KDw8XF9//bXLco4dO6bo6GjZbDb5+fkpJiZGJ0+edKnZtWuXBgwYIG9vbwUFBWnOnDkV+lm5cqU6duwob29vde3aVWvWrKnuTQYAAHVUtQehf/3rX1qyZIkWLVqkffv26V//+pfmzJmjV155xayZM2eOFi5cqOTkZOXk5Khhw4aKiIjQqVOnzJro6Gjt3btXGRkZSktLU1ZWlmJjY815p9OpoUOHqk2bNsrNzdWLL76oWbNmaenSpWbN5s2bdf/99ysmJkaff/65oqKiFBUVpT179lT3ZgMAgDrIzTj7UE01uP322xUQEKA33njDHBs2bJh8fHz09ttvyzAM2e12TZo0SU8++aQkqbCwUAEBAUpJSdGIESO0b98+de7cWdu2bVNISIgkKT09Xbfddpt+/PFH2e12LVmyRNOnT5fD4ZCnp6ckaerUqUpNTdX+/fslScOHD1dRUZHS0tLMXvr06aPu3bsrOTn5ktvidDrl6+urwsJC2Wy2attHwDVpQ1KVyrO/+6WGGqm8La1jL10kaeLN19dwJwCqU1V+f1f7EaG+ffsqMzNTX331lSTpiy++0GeffaZbb71VknTw4EE5HA6Fh4ebr/H19VVoaKiys7MlSdnZ2fLz8zNDkCSFh4fL3d1dOTk5Zs3AgQPNECRJEREROnDggI4fP27WnL2e8pry9ZyruLhYTqfT5QEAAK5d9ap7gVOnTpXT6VTHjh3l4eGh0tJSPf/884qOjpYkORwOSVJAQIDL6wICAsw5h8Mhf39/10br1VPTpk1daoKDgysso3yuSZMmcjgcF13PuZKSkvTss89ezmYDAIA6qNqPCL377rtatmyZli9frh07duitt97SSy+9pLfeequ6V1Xtpk2bpsLCQvNx+PDh2m4JAADUoGo/IjR58mRNnTpVI0aMkCR17dpVP/zwg5KSkjR69GgFBgZKkvLy8tSyZUvzdXl5eerevbskKTAwUPn5+S7LPXPmjI4dO2a+PjAwUHl5eS415c8vVVM+fy4vLy95eXldzmYDAIA6qNqPCP36669yd3ddrIeHh8rKyiRJwcHBCgwMVGZmpjnvdDqVk5OjsLAwSVJYWJgKCgqUm5tr1qxfv15lZWUKDQ01a7KysnT69GmzJiMjQx06dFCTJk3MmrPXU15Tvh4AAGBt1R6E7rjjDj3//PNavXq1vv/+e61atUovv/yy7rrrLkmSm5ubJkyYoOeee04ffvihdu/erVGjRslutysqKkqS1KlTJ91yyy0aO3astm7dqk2bNik+Pl4jRoyQ3W6XJI0cOVKenp6KiYnR3r17tWLFCi1YsEAJCQlmL+PHj1d6errmzp2r/fv3a9asWdq+fbvi4+Ore7MBAEAdVO0fjb3yyit65plnNG7cOOXn58tut+vvf/+7EhMTzZopU6aoqKhIsbGxKigoUP/+/ZWeni5vb2+zZtmyZYqPj9eQIUPk7u6uYcOGaeHChea8r6+v1q1bp7i4OPXs2VPNmzdXYmKiy72G+vbtq+XLl2vGjBl6+umn1b59e6WmpqpLly7VvdkAAKAOqvb7CF1LuI8QUAXcRwjAVaJW7yMEAABQVxCEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZRGEAACAZdWr7QYAoLb0ObS0coUbmtVsI1U1eFptdwBcMzgiBAAALIsjQgBwCdnf/VLbLbjYcuarC85NvPn6P7AToO7jiBAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsGglCP/30kx544AE1a9ZMPj4+6tq1q7Zv327OG4ahxMREtWzZUj4+PgoPD9fXX3/tsoxjx44pOjpaNptNfn5+iomJ0cmTJ11qdu3apQEDBsjb21tBQUGaM2dOhV5Wrlypjh07ytvbW127dtWaNWtqYpMBAEAdVO1B6Pjx4+rXr5/q16+vjz/+WF9++aXmzp2rJk2amDVz5szRwoULlZycrJycHDVs2FARERE6deqUWRMdHa29e/cqIyNDaWlpysrKUmxsrDnvdDo1dOhQtWnTRrm5uXrxxRc1a9YsLV261KzZvHmz7r//fsXExOjzzz9XVFSUoqKitGfPnurebAAAUAe5GYZhVOcCp06dqk2bNum///3veecNw5DdbtekSZP05JNPSpIKCwsVEBCglJQUjRgxQvv27VPnzp21bds2hYSESJLS09N122236ccff5TdbteSJUs0ffp0ORwOeXp6mutOTU3V/v37JUnDhw9XUVGR0tLSzPX36dNH3bt3V3Jy8iW3xel0ytfXV4WFhbLZbFe0X4Br3oakKpVnf/dLDTVy7dvSOvaCcxNvvv4P7AS4OlXl93e1HxH68MMPFRISonvvvVf+/v668cYb9frrr5vzBw8elMPhUHh4uDnm6+ur0NBQZWdnS5Kys7Pl5+dnhiBJCg8Pl7u7u3JycsyagQMHmiFIkiIiInTgwAEdP37crDl7PeU15es5V3FxsZxOp8sDAABcu6o9CH333XdasmSJ2rdvr7Vr1+qxxx7TE088obfeekuS5HA4JEkBAQEurwsICDDnHA6H/P39Xebr1aunpk2butScbxlnr+NCNeXz50pKSpKvr6/5CAoKqvL2AwCAuqPag1BZWZl69OihF154QTfeeKNiY2M1duzYSn0UVdumTZumwsJC83H48OHabgkAANSgag9CLVu2VOfOnV3GOnXqpEOHDkmSAgMDJUl5eXkuNXl5eeZcYGCg8vPzXebPnDmjY8eOudScbxlnr+NCNeXz5/Ly8pLNZnN5AACAa1e1B6F+/frpwIEDLmNfffWV2rRpI0kKDg5WYGCgMjMzzXmn06mcnByFhYVJksLCwlRQUKDc3FyzZv369SorK1NoaKhZk5WVpdOnT5s1GRkZ6tChg3mFWlhYmMt6ymvK1wMAAKyt2oPQxIkTtWXLFr3wwgv65ptvtHz5ci1dulRxcXGSJDc3N02YMEHPPfecPvzwQ+3evVujRo2S3W5XVFSUpN+PIN1yyy0aO3astm7dqk2bNik+Pl4jRoyQ3W6XJI0cOVKenp6KiYnR3r17tWLFCi1YsEAJCQlmL+PHj1d6errmzp2r/fv3a9asWdq+fbvi4+Ore7MBAEAdVK+6F9irVy+tWrVK06ZN0+zZsxUcHKz58+crOjrarJkyZYqKiooUGxurgoIC9e/fX+np6fL29jZrli1bpvj4eA0ZMkTu7u4aNmyYFi5caM77+vpq3bp1iouLU8+ePdW8eXMlJia63Guob9++Wr58uWbMmKGnn35a7du3V2pqqrp06VLdmw0AAOqgar+P0LWE+wgBVcB9hP4w3EcIuLhavY8QAABAXUEQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAllWvthsAAFRNn0NLLzy5odkf10hVDJ5W2x0A58URIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFlcPg8A15Ds736p7RbOa8uZryqMTbz5+lroBHDFESEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZNR6E/vnPf8rNzU0TJkwwx06dOqW4uDg1a9ZMjRo10rBhw5SXl+fyukOHDikyMlINGjSQv7+/Jk+erDNnzrjUfPrpp+rRo4e8vLx03XXXKSUlpcL6Fy9erLZt28rb21uhoaHaunVrTWwmAACog2o0CG3btk2vvfaa/vKXv7iMT5w4UR999JFWrlypjRs36siRI7r77rvN+dLSUkVGRqqkpESbN2/WW2+9pZSUFCUmJpo1Bw8eVGRkpAYPHqydO3dqwoQJeuSRR7R27VqzZsWKFUpISNDMmTO1Y8cOdevWTREREcrPz6/JzQYAAHVEjQWhkydPKjo6Wq+//rqaNGlijhcWFuqNN97Qyy+/rL/+9a/q2bOn3nzzTW3evFlbtmyRJK1bt05ffvml3n77bXXv3l233nqr/vGPf2jx4sUqKSmRJCUnJys4OFhz585Vp06dFB8fr3vuuUfz5s0z1/Xyyy9r7NixGjNmjDp37qzk5GQ1aNBA//nPf2pqswEAQB1SY0EoLi5OkZGRCg8PdxnPzc3V6dOnXcY7duyo1q1bKzs7W5KUnZ2trl27KiAgwKyJiIiQ0+nU3r17zZpzlx0REWEuo6SkRLm5uS417u7uCg8PN2vOVVxcLKfT6fIAAADXrhr59vl33nlHO3bs0LZt2yrMORwOeXp6ys/Pz2U8ICBADofDrDk7BJXPl89drMbpdOq3337T8ePHVVpaet6a/fv3n7fvpKQkPfvss5XfUAAAUKdV+xGhw4cPa/z48Vq2bJm8vb2re/E1atq0aSosLDQfhw8fru2WAABADar2IJSbm6v8/Hz16NFD9erVU7169bRx40YtXLhQ9erVU0BAgEpKSlRQUODyury8PAUGBkqSAgMDK1xFVv78UjU2m00+Pj5q3ry5PDw8zltTvoxzeXl5yWazuTwAAMC1q9qD0JAhQ7R7927t3LnTfISEhCg6Otr87/r16yszM9N8zYEDB3To0CGFhYVJksLCwrR7926Xq7syMjJks9nUuXNns+bsZZTXlC/D09NTPXv2dKkpKytTZmamWQMAAKyt2s8Raty4sbp06eIy1rBhQzVr1swcj4mJUUJCgpo2bSqbzabHH39cYWFh6tOnjyRp6NCh6ty5sx588EHNmTNHDodDM2bMUFxcnLy8vCRJjz76qBYtWqQpU6bo4Ycf1vr16/Xuu+9q9erV5noTEhI0evRohYSEqHfv3po/f76Kioo0ZsyY6t5sAABQB9XIydKXMm/ePLm7u2vYsGEqLi5WRESEXn31VXPew8NDaWlpeuyxxxQWFqaGDRtq9OjRmj17tlkTHBys1atXa+LEiVqwYIFatWqlf//734qIiDBrhg8frqNHjyoxMVEOh0Pdu3dXenp6hROoAQCANbkZhmHUdhNXK6fTKV9fXxUWFnK+EHApG5KqVJ793S811AiuRltax1YYm3jz9bXQCaygKr+/+a4xAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWdUehJKSktSrVy81btxY/v7+ioqK0oEDB1xqTp06pbi4ODVr1kyNGjXSsGHDlJeX51Jz6NAhRUZGqkGDBvL399fkyZN15swZl5pPP/1UPXr0kJeXl6677jqlpKRU6Gfx4sVq27atvL29FRoaqq1bt1b3JgMAgDqq2oPQxo0bFRcXpy1btigjI0OnT5/W0KFDVVRUZNZMnDhRH330kVauXKmNGzfqyJEjuvvuu8350tJSRUZGqqSkRJs3b9Zbb72llJQUJSYmmjUHDx5UZGSkBg8erJ07d2rChAl65JFHtHbtWrNmxYoVSkhI0MyZM7Vjxw5169ZNERERys/Pr+7NBgAAdZCbYRhGTa7g6NGj8vf318aNGzVw4EAVFhaqRYsWWr58ue655x5J0v79+9WpUydlZ2erT58++vjjj3X77bfryJEjCggIkCQlJyfrqaee0tGjR+Xp6amnnnpKq1ev1p49e8x1jRgxQgUFBUpPT5ckhYaGqlevXlq0aJEkqaysTEFBQXr88cc1derUS/budDrl6+urwsJC2Wy26t41wLVlQ1KVyrO/+6WGGsHVaEvr2ApjE2++vhY6gRVU5fd3vZpuprCwUJLUtGlTSVJubq5Onz6t8PBws6Zjx45q3bq1GYSys7PVtWtXMwRJUkREhB577DHt3btXN954o7Kzs12WUV4zYcIESVJJSYlyc3M1bdo0c97d3V3h4eHKzs4+b6/FxcUqLi42nzudzivbeACAJKnPoaUVBzc0++MbqYrB0y5dgzqvRk+WLisr04QJE9SvXz916dJFkuRwOOTp6Sk/Pz+X2oCAADkcDrPm7BBUPl8+d7Eap9Op3377TT///LNKS0vPW1O+jHMlJSXJ19fXfAQFBV3ehgMAgDqhRoNQXFyc9uzZo3feeacmV1Ntpk2bpsLCQvNx+PDh2m4JAADUoBr7aCw+Pl5paWnKyspSq1atzPHAwECVlJSooKDA5ahQXl6eAgMDzZpzr+4qv6rs7JpzrzTLy8uTzWaTj4+PPDw85OHhcd6a8mWcy8vLS15eXpe3wQCAKrnazxPbcuYrl+ec03RtqvYjQoZhKD4+XqtWrdL69esVHBzsMt+zZ0/Vr19fmZmZ5tiBAwd06NAhhYWFSZLCwsK0e/dul6u7MjIyZLPZ1LlzZ7Pm7GWU15Qvw9PTUz179nSpKSsrU2ZmplkDAACsrdqPCMXFxWn58uX64IMP1LhxY/N8HF9fX/n4+MjX11cxMTFKSEhQ06ZNZbPZ9PjjjyssLEx9+vSRJA0dOlSdO3fWgw8+qDlz5sjhcGjGjBmKi4szj9g8+uijWrRokaZMmaKHH35Y69ev17vvvqvVq1ebvSQkJGj06NEKCQlR7969NX/+fBUVFWnMmDHVvdkAAKAOqvYgtGTJEknSTTfd5DL+5ptv6qGHHpIkzZs3T+7u7ho2bJiKi4sVERGhV1991az18PBQWlqaHnvsMYWFhalhw4YaPXq0Zs+ebdYEBwdr9erVmjhxohYsWKBWrVrp3//+tyIiIsya4cOH6+jRo0pMTJTD4VD37t2Vnp5e4QRqAABgTTV+H6G6jPsIAVXAfYRwjTn33kecI1R3VOX3N981BgAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALKtebTcAAEBdMC/jq9puodIm3nx9bbdQZ3BECAAAWBZHhAAAOI8+h5bWdgtVtqV1bG23UOdwRAgAAFgWQQgAAFgWH40B14jaPpGzz6FfanX9AHA5CEIAAFxjavsPo6qo7Svc+GgMAABYFkeEgKvRhqQqv4SPpgCg6jgiBAAALMsSQWjx4sVq27atvL29FRoaqq1bt9Z2SwAA4CpwzQehFStWKCEhQTNnztSOHTvUrVs3RUREKD8/v7ZbAwAAtczNMAyjtpuoSaGhoerVq5cWLVokSSorK1NQUJAef/xxTZ069aKvdTqd8vX1VWFhoWw22x/RLvC7yzhHKPs7zhECUPeExbxU7cusyu/va/pk6ZKSEuXm5mratGnmmLu7u8LDw5WdnV2hvri4WMXFxebzwsJCSb/vUNRhWXMv+6Vbvz9WjY0AAM5VE79jy5dZmWM913QQ+vnnn1VaWqqAgACX8YCAAO3fv79CfVJSkp599tkK40FBQTXWIwAAlvb4ohpb9IkTJ+Tr63vRmms6CFXVtGnTlJCQYD4vKyvTsWPH1KxZM7m5udViZ1c3p9OpoKAgHT58mI8QLwP778qw/64M++/KsP+uTE3tP8MwdOLECdnt9kvWXtNBqHnz5vLw8FBeXp7LeF5engIDAyvUe3l5ycvLy2XMz8+vJlu8pthsNv5HcAXYf1eG/Xdl2H9Xhv13ZWpi/13qSFC5a/qqMU9PT/Xs2VOZmZnmWFlZmTIzMxUWFlaLnQEAgKvBNX1ESJISEhI0evRohYSEqHfv3po/f76Kioo0ZsyY2m4NAADUsms+CA0fPlxHjx5VYmKiHA6HunfvrvT09AonUOPyeXl5aebMmRU+VkTlsP+uDPvvyrD/rgz778pcDfvvmr+PEAAAwIVc0+cIAQAAXAxBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCDWmuLhY3bt3l5ubm3bu3Fnb7dQJ33//vWJiYhQcHCwfHx+1a9dOM2fOVElJSW23dtVavHix2rZtK29vb4WGhmrr1q213VKdkJSUpF69eqlx48by9/dXVFSUDhw4UNtt1Un//Oc/5ebmpgkTJtR2K3XGTz/9pAceeEDNmjWTj4+Punbtqu3bt9dKLwQh1JgpU6ZU6nte8P/bv3+/ysrK9Nprr2nv3r2aN2+ekpOT9fTTT9d2a1elFStWKCEhQTNnztSOHTvUrVs3RUREKD8/v7Zbu+pt3LhRcXFx2rJlizIyMnT69GkNHTpURUVFtd1anbJt2za99tpr+stf/lLbrdQZx48fV79+/VS/fn19/PHH+vLLLzV37lw1adKkdhoygBqwZs0ao2PHjsbevXsNScbnn39e2y3VWXPmzDGCg4Nru42rUu/evY24uDjzeWlpqWG3242kpKRa7Kpuys/PNyQZGzdurO1W6owTJ04Y7du3NzIyMoxBgwYZ48ePr+2W6oSnnnrK6N+/f223YeKIEKpdXl6exo4dq//5n/9RgwYNarudOq+wsFBNmzat7TauOiUlJcrNzVV4eLg55u7urvDwcGVnZ9diZ3VTYWGhJPFeq4K4uDhFRka6vAdxaR9++KFCQkJ07733yt/fXzfeeKNef/31WuuHIIRqZRiGHnroIT366KMKCQmp7XbqvG+++UavvPKK/v73v9d2K1edn3/+WaWlpRW+LicgIEAOh6OWuqqbysrKNGHCBPXr109dunSp7XbqhHfeeUc7duxQUlJSbbdS53z33XdasmSJ2rdvr7Vr1+qxxx7TE088obfeeqtW+iEIoVKmTp0qNze3iz7279+vV155RSdOnNC0adNqu+WrSmX339l++ukn3XLLLbr33ns1duzYWuocVhAXF6c9e/bonXfeqe1W6oTDhw9r/PjxWrZsmby9vWu7nTqnrKxMPXr00AsvvKAbb7xRsbGxGjt2rJKTk2uln2v+S1dRPSZNmqSHHnroojV//vOftX79emVnZ1f4Ar2QkBBFR0fXWuKvbZXdf+WOHDmiwYMHq2/fvlq6dGkNd1c3NW/eXB4eHsrLy3MZz8vLU2BgYC11VffEx8crLS1NWVlZatWqVW23Uyfk5uYqPz9fPXr0MMdKS0uVlZWlRYsWqbi4WB4eHrXY4dWtZcuW6ty5s8tYp06d9P7779dKPwQhVEqLFi3UokWLS9YtXLhQzz33nPn8yJEjioiI0IoVKxQaGlqTLV7VKrv/pN+PBA0ePFg9e/bUm2++KXd3Dtyej6enp3r27KnMzExFRUVJ+v0vzczMTMXHx9duc3WAYRh6/PHHtWrVKn366acKDg6u7ZbqjCFDhmj37t0uY2PGjFHHjh311FNPEYIuoV+/fhVu1fDVV1+pTZs2tdIPQQjVqnXr1i7PGzVqJElq164df21Wwk8//aSbbrpJbdq00UsvvaSjR4+acxzlqCghIUGjR49WSEiIevfurfnz56uoqEhjxoyp7dauenFxcVq+fLk++OADNW7c2DyvytfXVz4+PrXc3dWtcePGFc6latiwoZo1a8Y5VpUwceJE9e3bVy+88ILuu+8+bd26VUuXLq21o98EIeAqkpGRoW+++UbffPNNheBoGEYtdXX1Gj58uI4eParExEQ5HA51795d6enpFU6gRkVLliyRJN10000u42+++eYlP8YFrkSvXr20atUqTZs2TbNnz1ZwcLDmz5+v6OjoWunHzeD/rgAAwKI4+QAAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFjW/wev7gVPlyGa2gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARvFJREFUeJzt3XlcFfX+x/H3AeWACrgCckUlNfclN8LdnyQaLdys3Co100wshXKhDJe60U+vuaRpdUu9v/Tn0r1RVw1D3K6Je+RSetM0Kz1oLhylBIX5/dGD+XkEFRJEmNfz8TiPPDOf+c5nhjHezpmZYzMMwxAAAIAFuZV0AwAAACWFIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIATAVLduXQ0ePLhIxxw8eLDq1q1bpGMCQFEhCAG4ZSdOnNDkyZOVmppa0q0AxeL9999X165d5e/vL7vdruDgYA0ZMkTHjh0r6dZwi8qVdAMASr8TJ05oypQpqlu3rlq1auUy7/3331dOTk7JNAYUka+++krBwcF66KGHVKVKFR09elTvv/++Vq1apa+//lqBgYEl3SL+IIIQUMplZGSoYsWK+c779ddfVaFChdvckavy5cuX6PpROly6dEkeHh5yc7szP6h455138kyLjIxU27Zt9fe//10TJkwoga5QFO7MIw64iQsXLmjMmDGqW7eu7Ha7/Pz8dN9992nPnj2Srn+tS7du3dStWzfz/caNG2Wz2bRixQpNmTJFf/rTn+Tt7a1HH31U6enpyszM1JgxY+Tn56dKlSppyJAhyszMLHS/Bw8e1OOPP64aNWrIy8tLDRs21CuvvOJS89VXX6l3797y8fFRpUqV1KNHD23bts2lZtGiRbLZbNq0aZNGjhwpPz8/1apVy9y2Zs2aaffu3erSpYsqVKigl19+WZKUmZmpSZMmqX79+rLb7QoKCtK4ceNuui1nz57VSy+9pObNm6tSpUry8fFR79699fXXX7vsw3bt2kmShgwZIpvNJpvNpkWLFknK/xqhjIwMvfjiiwoKCpLdblfDhg3117/+VYZhuNTZbDaNGjVKCQkJatasmex2u5o2barExESXupsdDwWRu2+3bNmiF154QTVq1FDlypX17LPPKisrS+fPn9dTTz2lKlWqqEqVKho3blyefv/617+qQ4cOqlatmry8vNSmTRt9/PHHedaVlJSkTp06qXLlyqpUqZIaNmxo/qxyvf3222ratKkqVKigKlWqqG3btlq6dGmBt6cw/UjSRx99pPbt25vr69Kli7744guXms8//1xdu3aVt7e3fHx81K5dO5eeCvv3btmyZZo4caL+9Kc/qUKFCnI6nQU65nJdunRJkydP1t133y1PT0/VrFlTjzzyiI4cOSLDMFS3bl09/PDD+S7n6+urZ599toB7Mn+5x/X58+dvaRyULM4IoVQaMWKEPv74Y40aNUpNmjTRmTNntGXLFn377bdq3bp1oceLj4+Xl5eXJkyYoMOHD+vtt99W+fLl5ebmpnPnzmny5Mnatm2bFi1apODgYMXFxRV47L1796pz584qX768hg8frrp16+rIkSP617/+pb/85S+SpAMHDqhz587y8fHRuHHjVL58eb377rvq1q2bNm3apJCQEJcxR44cqRo1aiguLk4ZGRnm9DNnzqh3797q16+fnnjiCfn7+ysnJ0cPPfSQtmzZouHDh6tx48bat2+fZs6cqf/85z9KSEi4bu/ff/+9EhIS9Nhjjyk4OFhpaWl699131bVrV33zzTcKDAxU48aNNXXqVMXFxWn48OHq3LmzJKlDhw75jmkYhh566CFt2LBBQ4cOVatWrbR27VqNHTtWP//8s2bOnOlSv2XLFv3zn//UyJEj5e3trTlz5qhPnz46fvy4qlWrJqloj4fnn39eAQEBmjJlirZt26b33ntPlStX1tatW1W7dm298cYbWrNmjaZPn65mzZrpqaeeMpedPXu2HnroIQ0cOFBZWVlatmyZHnvsMa1atUoRERGSfv9ZP/DAA2rRooWmTp0qu92uw4cP68svvzTHef/99/XCCy/o0Ucf1ejRo3Xp0iXt3btX27dv14ABAwq8LQXpR5KmTJmiyZMnq0OHDpo6dao8PDy0fft2rV+/Xj179pT0e1B8+umn1bRpU8XGxqpy5cr66quvlJiYWKiervbaa6/Jw8NDL730kjIzM+Xh4aFvvvnmpsecJGVnZ+uBBx5QcnKy+vXrp9GjR+vChQtKSkrS/v37Va9ePT3xxBOaNm2azp49q6pVq5rr/de//iWn06knnnii0D2fOXNG2dnZOn78uKZOnSpJ6tGjxx/aftwhDKAU8vX1NaKioq47v06dOsagQYPyTO/atavRtWtX8/2GDRsMSUazZs2MrKwsc3r//v0Nm81m9O7d22X50NBQo06dOoXqtUuXLoa3t7fxww8/uEzPyckx/xwZGWl4eHgYR44cMaedOHHC8Pb2Nrp06WJOW7hwoSHJ6NSpk3HlypU82ybJWLBggcv0//mf/zHc3NyMf//73y7TFyxYYEgyvvzyS3Patfvt0qVLRnZ2tstyR48eNex2uzF16lRz2s6dOw1JxsKFC/Ns/6BBg1z2WUJCgiHJeP31113qHn30UcNmsxmHDx82p0kyPDw8XKZ9/fXXhiTj7bffNqfd7HgoiNx9Gx4e7vKzCQ0NNWw2mzFixAhz2pUrV4xatWq5HEuGYRi//vqry/usrCyjWbNmxn/913+Z02bOnGlIMk6fPn3dXh5++GGjadOmt7Q9Be3nu+++M9zc3Iw///nPeX7Wufvh/Pnzhre3txESEmL89ttv+dYYRuH/3t111115eizoMffhhx8akoy33norz/pyezp06JAhyZg/f77L/IceesioW7euS+8FZbfbDUmGJKNatWrGnDlzCj0G7ix8NIZSqXLlytq+fbtOnDhRJOM99dRTLteyhISEyDAMPf300y51ISEh+vHHH3XlypUCjXv69Glt3rxZTz/9tGrXru0yz2azSfr9X7ZffPGFIiMjddddd5nza9asqQEDBmjLli1yOp0uyw4bNkzu7u551me32zVkyBCXaStXrlTjxo3VqFEj/fLLL+brv/7rvyRJGzZsuG7/drvdvGYjOztbZ86cMT/KKczHTldbs2aN3N3d9cILL7hMf/HFF2UYhj7//HOX6WFhYapXr575vkWLFvLx8dH3339vTivK42Ho0KHmz0b6/2Nh6NCh5jR3d3e1bdvWpQdJ8vLyMv987tw5paenq3Pnzi77qnLlypKkTz/99LoXkVeuXFk//fSTdu7ceUvbUpB+EhISlJOTo7i4uDzX5+Tuh6SkJF24cEETJkyQp6dnvjV/xKBBg1x6lAp+zP3jH/9Q9erV9fzzz+cZN7enu+++WyEhIVqyZIk57+zZs/r88881cODAP9T7559/rjVr1mjGjBmqXbu2yxlZlE4EIZRK06ZN0/79+xUUFKT27dtr8uTJeX4pFca1IcXX11eSFBQUlGd6Tk6O0tPTCzRubk/NmjW7bs3p06f166+/qmHDhnnmNW7cWDk5Ofrxxx9dpgcHB+c71p/+9Cd5eHi4TPvuu+904MAB1ahRw+V19913S5JOnTp13d5ycnI0c+ZMNWjQQHa7XdWrV1eNGjW0d+/eAu+Da/3www8KDAyUt7e3y/TGjRub86927c9GkqpUqaJz586Z74vyeCjMsXB1D5K0atUq3XvvvfL09FTVqlVVo0YNzZ8/32Vf9e3bVx07dtQzzzwjf39/9evXTytWrHAJRePHj1elSpXUvn17NWjQQFFRUS4fnRVUQfo5cuSI3Nzc1KRJk+uOc+TIEUk3Po7/iPyO44Iec0eOHFHDhg1VrtyNr/B46qmn9OWXX5rH1cqVK3X58mU9+eSTf6jn7t27q3fv3oqJidHKlSs1ZcoUzZ079w+NhTsDQQil0uOPP67vv/9eb7/9tgIDAzV9+nQ1bdrUPJtwvX/pZWdn5zs9v7MrN5puXHOR7O127b+ibzQ9JydHzZs3V1JSUr6vkSNHXnc9b7zxhmJiYtSlSxd99NFHWrt2rZKSktS0adPbdkt8QX4GNzseimJ9+U2/uod///vfeuihh+Tp6al33nlHa9asUVJSkgYMGOBS5+Xlpc2bN2vdunV68skntXfvXvXt21f33XefeXw2btxYhw4d0rJly9SpUyf94x//UKdOnTRp0qQCb0dB+ylKhf17l9/xWtTHXL9+/VS+fHnzrNBHH32ktm3b5vsPj8KqV6+e7rnnHpczTih9uFgapVbNmjU1cuRIjRw5UqdOnVLr1q31l7/8Rb1791aVKlXyvZPjhx9+cPn4qbjlrmv//v3XralRo4YqVKigQ4cO5Zl38OBBubm55TkbURj16tXT119/rR49ehT6o4CPP/5Y3bt31wcffOAy/fz586pevbr5vjDj1qlTR+vWrdOFCxdczgodPHjQnP9H3Oh4uB3+8Y9/yNPTU2vXrpXdbjenL1y4ME+tm5ubevTooR49euitt97SG2+8oVdeeUUbNmxQWFiYJKlixYrq27ev+vbtq6ysLD3yyCP6y1/+otjY2DwfT91KP/Xq1VNOTo6++eabPM+AurpG+v04rl+//nXXWRR/7wp6zNWrV0/bt2/X5cuXb/iIhqpVqyoiIkJLlizRwIED9eWXX2rWrFkF6qUgfvvttz90JynuHJwRQqmTnZ2d52MZPz8/BQYGmv9DqlevnrZt26asrCyzZtWqVXk+YipuNWrUUJcuXfThhx/q+PHjLvNy/1Xu7u6unj176tNPP3V5Sm1aWpqWLl2qTp06ycfH5w/38Pjjj+vnn3/W+++/n2feb7/9dsNrHNzd3fOcPVi5cqV+/vlnl2m5zzEqyG3E999/v7Kzs/N8nDBz5kzZbLZCB5eCHA+3g7u7u2w2m8vZj2PHjuW5K+/s2bN5ls0NILn9njlzxmW+h4eHmjRpIsMwdPny5SLtJzIyUm5ubpo6dWqeMy65P/uePXvK29tb8fHxunTpUr41UtH8vSvoMdenTx/98ssv+X4sde3yTz75pL755huNHTtW7u7u6tevX4H7kaQrV67k+RhUknbs2KF9+/apbdu2hRoPdxbOCKHUuXDhgmrVqqVHH31ULVu2VKVKlbRu3Trt3LlTM2bMkCQ988wz+vjjj9WrVy89/vjjOnLkiD766COXi25vlzlz5qhTp05q3bq1hg8fruDgYB07dkyrV682v5Li9ddfN58tM3LkSJUrV07vvvuuMjMzNW3atFta/5NPPqkVK1ZoxIgR2rBhgzp27Kjs7GwdPHhQK1as0Nq1a6/7P/IHHnhAU6dO1ZAhQ9ShQwft27dPS5YsyfOv+3r16qly5cpasGCBvL29VbFiRYWEhOR7DciDDz6o7t2765VXXtGxY8fUsmVLffHFF/r00081ZsyYQv+MCnI83A4RERF666231KtXLw0YMECnTp3SvHnzVL9+fe3du9esmzp1qjZv3qyIiAjVqVNHp06d0jvvvKNatWqpU6dOkn4PHgEBAerYsaP8/f317bffau7cuYqIiMhzbdWt9lO/fn298soreu2119S5c2c98sgjstvt2rlzpwIDAxUfHy8fHx/NnDlTzzzzjNq1a6cBAwaoSpUq+vrrr/Xrr79q8eLFkorm711Bj7mnnnpKf//73xUTE6MdO3aoc+fOysjI0Lp16zRy5EiX5wdFRESoWrVqWrlypXr37i0/P78C9yNJFy9eVFBQkPr27aumTZuqYsWK2rdvnxYuXChfX1+9+uqrhRoPd5gSuFMNuCWZmZnG2LFjjZYtWxre3t5GxYoVjZYtWxrvvPOOS92MGTOMP/3pT4bdbjc6duxo7Nq167q38a5cudJl2dxbqXfu3OkyfdKkSTe99Tk/+/fvN/785z8blStXNjw9PY2GDRsar776qkvNnj17jPDwcKNSpUpGhQoVjO7duxtbt24tUF+G8fstyte75TorK8v47//+b6Np06aG3W43qlSpYrRp08aYMmWKkZ6ebtbld/v8iy++aNSsWdPw8vIyOnbsaKSkpOTZj4ZhGJ9++qnRpEkTo1y5ci630l97+7xhGMaFCxeM6OhoIzAw0ChfvrzRoEEDY/r06XluZ5aU723xV/dZ0OPhZgr7Mx80aJBRsWJFl2kffPCB0aBBA8NutxuNGjUyFi5caC6fKzk52Xj44YeNwMBAw8PDwwgMDDT69+9v/Oc//zFr3n33XaNLly5GtWrVDLvdbtSrV88YO3asy8+qIArST64PP/zQuOeee8zjo2vXrkZSUpJLzWeffWZ06NDB8PLyMnx8fIz27dsb//u//+tScyt/7wyjcMfcr7/+arzyyitGcHCwUb58eSMgIMB49NFHXR5DkWvkyJGGJGPp0qWF2IO/y8zMNEaPHm20aNHC8PHxMcqXL2/UqVPHGDp0qHH06NFCj4c7i80wSviqTwAAill0dLQ++OADORyOEv/aGdxZuEYIAFCmXbp0SR999JH69OlDCEIeXCME/EHp6en67bffblgTEBBwm7rB9fz22283feZR1apV8zx/6U6VnZ2t06dP37CmUqVKqlSp0m3q6M516tQprVu3Th9//LHOnDmj0aNH56k5ffr0dW/vl36/UP3qr+dA2UMQAv6g0aNHmxeJXg+fPJe85cuX53na9rU2bNjg8qWgd7Iff/zxug/UzDVp0iRNnjz59jR0B/vmm280cOBA+fn5ac6cOfk+HqBdu3Z5HuJ5ta5du2rjxo3F1yRKHNcIAX/QN998c9OvdMh9JgxKzsmTJ3XgwIEb1rRp00ZVqlS5TR3dmkuXLmnLli03rLnrrrtu6/OySrMvv/zyhmd2q1SpojZt2tzGjnC7EYQAAIBlcbE0AACwLK4RuoGcnBydOHFC3t7et/QNywAA4PYxDEMXLlxQYGCg3NxufM6HIHQDJ06cuKXveAIAACXnxx9/VK1atW5YQxC6gdxH2f/444+39F1PAADg9nE6nQoKCirQV9IQhG4g9+MwHx8fghAAAKVMQS5r4WJpAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWYUKQvHx8WrXrp28vb3l5+enyMhIHTp0yKXm0qVLioqKUrVq1VSpUiX16dNHaWlpLjXHjx9XRESEKlSoID8/P40dO1ZXrlxxqdm4caNat24tu92u+vXra9GiRXn6mTdvnurWrStPT0+FhIRox44dhe4FAABYV6GC0KZNmxQVFaVt27YpKSlJly9fVs+ePZWRkWHWREdH61//+pdWrlypTZs26cSJE3rkkUfM+dnZ2YqIiFBWVpa2bt2qxYsXa9GiRYqLizNrjh49qoiICHXv3l2pqakaM2aMnnnmGa1du9asWb58uWJiYjRp0iTt2bNHLVu2VHh4uE6dOlXgXgAAgMUZt+DUqVOGJGPTpk2GYRjG+fPnjfLlyxsrV640a7799ltDkpGSkmIYhmGsWbPGcHNzMxwOh1kzf/58w8fHx8jMzDQMwzDGjRtnNG3a1GVdffv2NcLDw8337du3N6Kiosz32dnZRmBgoBEfH1/gXm4mPT3dkGSkp6cXqB4AAJS8wvz+vqVrhNLT0yVJVatWlSTt3r1bly9fVlhYmFnTqFEj1a5dWykpKZKklJQUNW/eXP7+/mZNeHi4nE6nDhw4YNZcPUZuTe4YWVlZ2r17t0uNm5ubwsLCzJqC9HKtzMxMOZ1OlxcAACi7/nAQysnJ0ZgxY9SxY0c1a9ZMkuRwOOTh4aHKlSu71Pr7+8vhcJg1V4eg3Pm5825U43Q69dtvv+mXX35RdnZ2vjVXj3GzXq4VHx8vX19f8xUUFFTAvQEAAEqjcn90waioKO3fv19btmwpyn5KVGxsrGJiYsz3TqeTMAQU0Myk/5R0C4UWfd/dJd0CgBL2h4LQqFGjtGrVKm3evFm1atUypwcEBCgrK0vnz593OROTlpamgIAAs+bau7ty7+S6uubau7vS0tLk4+MjLy8vubu7y93dPd+aq8e4WS/XstvtstvthdgTAACgNCvUR2OGYWjUqFH65JNPtH79egUHB7vMb9OmjcqXL6/k5GRz2qFDh3T8+HGFhoZKkkJDQ7Vv3z6Xu7uSkpLk4+OjJk2amDVXj5FbkzuGh4eH2rRp41KTk5Oj5ORks6YgvQAAAGsr1BmhqKgoLV26VJ9++qm8vb3Na218fX3l5eUlX19fDR06VDExMapatap8fHz0/PPPKzQ0VPfee68kqWfPnmrSpImefPJJTZs2TQ6HQxMnTlRUVJR5NmbEiBGaO3euxo0bp6efflrr16/XihUrtHr1arOXmJgYDRo0SG3btlX79u01a9YsZWRkaMiQIWZPN+sFAABYW6GC0Pz58yVJ3bp1c5m+cOFCDR48WJI0c+ZMubm5qU+fPsrMzFR4eLjeeecds9bd3V2rVq3Sc889p9DQUFWsWFGDBg3S1KlTzZrg4GCtXr1a0dHRmj17tmrVqqW//e1vCg8PN2v69u2r06dPKy4uTg6HQ61atVJiYqLLBdQ36wUAAFibzTAMo6SbuFM5nU75+voqPT1dPj4+Jd0OcEfjYmkAd4rC/P7mu8YAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBllSvpBgDcRhvii23oe4+fKbKxttUeXmRjAcCNcEYIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYVqGD0ObNm/Xggw8qMDBQNptNCQkJLvNtNlu+r+nTp5s1devWzTP/zTffdBln79696ty5szw9PRUUFKRp06bl6WXlypVq1KiRPD091bx5c61Zs8ZlvmEYiouLU82aNeXl5aWwsDB99913hd1kAABQRhU6CGVkZKhly5aaN29evvNPnjzp8vrwww9ls9nUp08fl7qpU6e61D3//PPmPKfTqZ49e6pOnTravXu3pk+frsmTJ+u9994za7Zu3ar+/ftr6NCh+uqrrxQZGanIyEjt37/frJk2bZrmzJmjBQsWaPv27apYsaLCw8N16dKlwm42AAAog8oVdoHevXurd+/e150fEBDg8v7TTz9V9+7dddddd7lM9/b2zlOba8mSJcrKytKHH34oDw8PNW3aVKmpqXrrrbc0fPhwSdLs2bPVq1cvjR07VpL02muvKSkpSXPnztWCBQtkGIZmzZqliRMn6uGHH5Yk/f3vf5e/v78SEhLUr1+/wm46AAAoY4r1GqG0tDStXr1aQ4cOzTPvzTffVLVq1XTPPfdo+vTpunLlijkvJSVFXbp0kYeHhzktPDxchw4d0rlz58yasLAwlzHDw8OVkpIiSTp69KgcDodLja+vr0JCQsyaa2VmZsrpdLq8AABA2VXoM0KFsXjxYnl7e+uRRx5xmf7CCy+odevWqlq1qrZu3arY2FidPHlSb731liTJ4XAoODjYZRl/f39zXpUqVeRwOMxpV9c4HA6z7url8qu5Vnx8vKZMmfIHtxYAAJQ2xRqEPvzwQw0cOFCenp4u02NiYsw/t2jRQh4eHnr22WcVHx8vu91enC3dUGxsrEtvTqdTQUFBJdYPAAAoXsX20di///1vHTp0SM8888xNa0NCQnTlyhUdO3ZM0u/XGaWlpbnU5L7Pva7oejVXz796ufxqrmW32+Xj4+PyAgAAZVexBaEPPvhAbdq0UcuWLW9am5qaKjc3N/n5+UmSQkNDtXnzZl2+fNmsSUpKUsOGDVWlShWzJjk52WWcpKQkhYaGSpKCg4MVEBDgUuN0OrV9+3azBgAAWFuhPxq7ePGiDh8+bL4/evSoUlNTVbVqVdWuXVvS74Fj5cqVmjFjRp7lU1JStH37dnXv3l3e3t5KSUlRdHS0nnjiCTPkDBgwQFOmTNHQoUM1fvx47d+/X7Nnz9bMmTPNcUaPHq2uXbtqxowZioiI0LJly7Rr1y7zFnubzaYxY8bo9ddfV4MGDRQcHKxXX31VgYGBioyMLOxmAwCAMqjQQWjXrl3q3r27+T73mppBgwZp0aJFkqRly5bJMAz1798/z/J2u13Lli3T5MmTlZmZqeDgYEVHR7tcm+Pr66svvvhCUVFRatOmjapXr664uDjz1nlJ6tChg5YuXaqJEyfq5ZdfVoMGDZSQkKBmzZqZNePGjVNGRoaGDx+u8+fPq1OnTkpMTMxzzRIAALAmm2EYRkk3cadyOp3y9fVVeno61wuhbNgQX2xDp3x/psjG2lZ7+M2LikD0fXfflvUAuL0K8/ub7xoDAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWRRACAACWVeggtHnzZj344IMKDAyUzWZTQkKCy/zBgwfLZrO5vHr16uVSc/bsWQ0cOFA+Pj6qXLmyhg4dqosXL7rU7N27V507d5anp6eCgoI0bdq0PL2sXLlSjRo1kqenp5o3b641a9a4zDcMQ3FxcapZs6a8vLwUFham7777rrCbDAAAyqhCB6GMjAy1bNlS8+bNu25Nr169dPLkSfP1v//7vy7zBw4cqAMHDigpKUmrVq3S5s2bNXz4cHO+0+lUz549VadOHe3evVvTp0/X5MmT9d5775k1W7duVf/+/TV06FB99dVXioyMVGRkpPbv32/WTJs2TXPmzNGCBQu0fft2VaxYUeHh4bp06VJhNxsAAJRBNsMwjD+8sM2mTz75RJGRkea0wYMH6/z583nOFOX69ttv1aRJE+3cuVNt27aVJCUmJur+++/XTz/9pMDAQM2fP1+vvPKKHA6HPDw8JEkTJkxQQkKCDh48KEnq27evMjIytGrVKnPse++9V61atdKCBQtkGIYCAwP14osv6qWXXpIkpaeny9/fX4sWLVK/fv1uun1Op1O+vr5KT0+Xj4/PH9lFwJ1lQ3yxDZ3y/ZkiG2tb7eE3LyoC0ffdfVvWA+D2Kszv72K5Rmjjxo3y8/NTw4YN9dxzz+nMmf//H2RKSooqV65shiBJCgsLk5ubm7Zv327WdOnSxQxBkhQeHq5Dhw7p3LlzZk1YWJjLesPDw5WSkiJJOnr0qBwOh0uNr6+vQkJCzJprZWZmyul0urwAAEDZVeRBqFevXvr73/+u5ORk/fd//7c2bdqk3r17Kzs7W5LkcDjk5+fnsky5cuVUtWpVORwOs8bf39+lJvf9zWqunn/1cvnVXCs+Pl6+vr7mKygoqNDbDwAASo9yRT3g1R85NW/eXC1atFC9evW0ceNG9ejRo6hXV6RiY2MVExNjvnc6nYQhAADKsGK/ff6uu+5S9erVdfjwYUlSQECATp065VJz5coVnT17VgEBAWZNWlqaS03u+5vVXD3/6uXyq7mW3W6Xj4+PywsAAJRdxR6EfvrpJ505c0Y1a9aUJIWGhur8+fPavXu3WbN+/Xrl5OQoJCTErNm8ebMuX75s1iQlJalhw4aqUqWKWZOcnOyyrqSkJIWGhkqSgoODFRAQ4FLjdDq1fft2swYAAFhboYPQxYsXlZqaqtTUVEm/X5Scmpqq48eP6+LFixo7dqy2bdumY8eOKTk5WQ8//LDq16+v8PBwSVLjxo3Vq1cvDRs2TDt27NCXX36pUaNGqV+/fgoMDJQkDRgwQB4eHho6dKgOHDig5cuXa/bs2S4fW40ePVqJiYmaMWOGDh48qMmTJ2vXrl0aNWqUpN/vaBszZoxef/11ffbZZ9q3b5+eeuopBQYGutzlBgAArKvQ1wjt2rVL3bt3N9/nhpNBgwZp/vz52rt3rxYvXqzz588rMDBQPXv21GuvvSa73W4us2TJEo0aNUo9evSQm5ub+vTpozlz5pjzfX199cUXXygqKkpt2rRR9erVFRcX5/KsoQ4dOmjp0qWaOHGiXn75ZTVo0EAJCQlq1qyZWTNu3DhlZGRo+PDhOn/+vDp16qTExER5enoWdrMBAEAZdEvPESrreI4QyhyeI+SC5wgBZVOJP0cIAACgNCAIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyp0ENq8ebMefPBBBQYGymazKSEhwZx3+fJljR8/Xs2bN1fFihUVGBiop556SidOnHAZo27durLZbC6vN99806Vm79696ty5szw9PRUUFKRp06bl6WXlypVq1KiRPD091bx5c61Zs8ZlvmEYiouLU82aNeXl5aWwsDB99913hd1kAABQRhU6CGVkZKhly5aaN29ennm//vqr9uzZo1dffVV79uzRP//5Tx06dEgPPfRQntqpU6fq5MmT5uv555835zmdTvXs2VN16tTR7t27NX36dE2ePFnvvfeeWbN161b1799fQ4cO1VdffaXIyEhFRkZq//79Zs20adM0Z84cLViwQNu3b1fFihUVHh6uS5cuFXazAQBAGWQzDMP4wwvbbPrkk08UGRl53ZqdO3eqffv2+uGHH1S7dm1Jv58RGjNmjMaMGZPvMvPnz9crr7wih8MhDw8PSdKECROUkJCggwcPSpL69u2rjIwMrVq1ylzu3nvvVatWrbRgwQIZhqHAwEC9+OKLeumllyRJ6enp8vf316JFi9SvX7+bbp/T6ZSvr6/S09Pl4+NTkF0C3Nk2xBfb0CnfnymysbbVHl5kY91I9H1335b1ALi9CvP7u9ivEUpPT5fNZlPlypVdpr/55puqVq2a7rnnHk2fPl1Xrlwx56WkpKhLly5mCJKk8PBwHTp0SOfOnTNrwsLCXMYMDw9XSkqKJOno0aNyOBwuNb6+vgoJCTFrrpWZmSmn0+nyAgAAZVe54hz80qVLGj9+vPr37++SyF544QW1bt1aVatW1datWxUbG6uTJ0/qrbfekiQ5HA4FBwe7jOXv72/Oq1KlihwOhznt6hqHw2HWXb1cfjXXio+P15QpU25hiwEAQGlSbEHo8uXLevzxx2UYhubPn+8yLyYmxvxzixYt5OHhoWeffVbx8fGy2+3F1dJNxcbGuvTmdDoVFBRUYv0AAIDiVSwfjeWGoB9++EFJSUk3/XwuJCREV65c0bFjxyRJAQEBSktLc6nJfR8QEHDDmqvnX71cfjXXstvt8vHxcXkBAICyq8iDUG4I+u6777Ru3TpVq1btpsukpqbKzc1Nfn5+kqTQ0FBt3rxZly9fNmuSkpLUsGFDValSxaxJTk52GScpKUmhoaGSpODgYAUEBLjUOJ1Obd++3awBAADWVuiPxi5evKjDhw+b748eParU1FRVrVpVNWvW1KOPPqo9e/Zo1apVys7ONq/HqVq1qjw8PJSSkqLt27ere/fu8vb2VkpKiqKjo/XEE0+YIWfAgAGaMmWKhg4dqvHjx2v//v2aPXu2Zs6caa539OjR6tq1q2bMmKGIiAgtW7ZMu3btMm+xt9lsGjNmjF5//XU1aNBAwcHBevXVVxUYGHjDu9wAAIB1FDoI7dq1S927dzff515TM2jQIE2ePFmfffaZJKlVq1Yuy23YsEHdunWT3W7XsmXLNHnyZGVmZio4OFjR0dEu1+b4+vrqiy++UFRUlNq0aaPq1asrLi5Ow4f//y21HTp00NKlSzVx4kS9/PLLatCggRISEtSsWTOzZty4ccrIyNDw4cN1/vx5derUSYmJifL09CzsZgMAgDLolp4jVNbxHCGUOTxHyAXPEQLKpjvqOUIAAAB3KoIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwLIIQAACwrEIHoc2bN+vBBx9UYGCgbDabEhISXOYbhqG4uDjVrFlTXl5eCgsL03fffedSc/bsWQ0cOFA+Pj6qXLmyhg4dqosXL7rU7N27V507d5anp6eCgoI0bdq0PL2sXLlSjRo1kqenp5o3b641a9YUuhcAAGBdhQ5CGRkZatmypebNm5fv/GnTpmnOnDlasGCBtm/frooVKyo8PFyXLl0yawYOHKgDBw4oKSlJq1at0ubNmzV8+HBzvtPpVM+ePVWnTh3t3r1b06dP1+TJk/Xee++ZNVu3blX//v01dOhQffXVV4qMjFRkZKT2799fqF4AAIB12QzDMP7wwjabPvnkE0VGRkr6/QxMYGCgXnzxRb300kuSpPT0dPn7+2vRokXq16+fvv32WzVp0kQ7d+5U27ZtJUmJiYm6//779dNPPykwMFDz58/XK6+8IofDIQ8PD0nShAkTlJCQoIMHD0qS+vbtq4yMDK1atcrs595771WrVq20YMGCAvVyrczMTGVmZprvnU6ngoKClJ6eLh8fnz+6m4A7x4b4Yhs65fszRTbWttrDb15UBKLvu/u2rAfA7eV0OuXr61ug399Feo3Q0aNH5XA4FBYWZk7z9fVVSEiIUlJSJEkpKSmqXLmyGYIkKSwsTG5ubtq+fbtZ06VLFzMESVJ4eLgOHTqkc+fOmTVXrye3Jnc9BenlWvHx8fL19TVfQUFBt7I7AADAHa5Ig5DD4ZAk+fv7u0z39/c35zkcDvn5+bnML1eunKpWrepSk98YV6/jejVXz79ZL9eKjY1Venq6+frxxx8LsNUAAKC0KlfSDdxJ7Ha77HZ7SbcBAABukyI9IxQQECBJSktLc5melpZmzgsICNCpU6dc5l+5ckVnz551qclvjKvXcb2aq+ffrBcAAGBtRRqEgoODFRAQoOTkZHOa0+nU9u3bFRoaKkkKDQ3V+fPntXv3brNm/fr1ysnJUUhIiFmzefNmXb582axJSkpSw4YNVaVKFbPm6vXk1uSupyC9AAAAayt0ELp48aJSU1OVmpoq6feLklNTU3X8+HHZbDaNGTNGr7/+uj777DPt27dPTz31lAIDA807yxo3bqxevXpp2LBh2rFjh7788kuNGjVK/fr1U2BgoCRpwIAB8vDw0NChQ3XgwAEtX75cs2fPVkxMjNnH6NGjlZiYqBkzZujgwYOaPHmydu3apVGjRklSgXoBAADWVuhrhHbt2qXu3bub73PDyaBBg7Ro0SKNGzdOGRkZGj58uM6fP69OnTopMTFRnp6e5jJLlizRqFGj1KNHD7m5ualPnz6aM2eOOd/X11dffPGFoqKi1KZNG1WvXl1xcXEuzxrq0KGDli5dqokTJ+rll19WgwYNlJCQoGbNmpk1BekFAABY1y09R6isK8xzCIBSgecIueA5QkDZVGLPEQIAAChNCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyijwI1a1bVzabLc8rKipKktStW7c880aMGOEyxvHjxxUREaEKFSrIz89PY8eO1ZUrV1xqNm7cqNatW8tut6t+/fpatGhRnl7mzZununXrytPTUyEhIdqxY0dRby4AACjFijwI7dy5UydPnjRfSUlJkqTHHnvMrBk2bJhLzbRp08x52dnZioiIUFZWlrZu3arFixdr0aJFiouLM2uOHj2qiIgIde/eXampqRozZoyeeeYZrV271qxZvny5YmJiNGnSJO3Zs0ctW7ZUeHi4Tp06VdSbDAAASqkiD0I1atRQQECA+Vq1apXq1aunrl27mjUVKlRwqfHx8THnffHFF/rmm2/00UcfqVWrVurdu7dee+01zZs3T1lZWZKkBQsWKDg4WDNmzFDjxo01atQoPfroo5o5c6Y5zltvvaVhw4ZpyJAhatKkiRYsWKAKFSroww8/LOpNBgAApVSxXiOUlZWljz76SE8//bRsNps5fcmSJapevbqaNWum2NhY/frrr+a8lJQUNW/eXP7+/ua08PBwOZ1OHThwwKwJCwtzWVd4eLhSUlLM9e7evdulxs3NTWFhYWZNfjIzM+V0Ol1eAACg7CpXnIMnJCTo/PnzGjx4sDltwIABqlOnjgIDA7V3716NHz9ehw4d0j//+U9JksPhcAlBksz3DofjhjVOp1O//fabzp07p+zs7HxrDh48eN1+4+PjNWXKlD+8vQAAoHQp1iD0wQcfqHfv3goMDDSnDR8+3Pxz8+bNVbNmTfXo0UNHjhxRvXr1irOdm4qNjVVMTIz53ul0KigoqAQ7AgAAxanYgtAPP/ygdevWmWd6rickJESSdPjwYdWrV08BAQF57u5KS0uTJAUEBJj/zZ12dY2Pj4+8vLzk7u4ud3f3fGtyx8iP3W6X3W4v2AYCAIBSr9iuEVq4cKH8/PwUERFxw7rU1FRJUs2aNSVJoaGh2rdvn8vdXUlJSfLx8VGTJk3MmuTkZJdxkpKSFBoaKkny8PBQmzZtXGpycnKUnJxs1gAAABTLGaGcnBwtXLhQgwYNUrly/7+KI0eOaOnSpbr//vtVrVo17d27V9HR0erSpYtatGghSerZs6eaNGmiJ598UtOmTZPD4dDEiRMVFRVlnq0ZMWKE5s6dq3Hjxunpp5/W+vXrtWLFCq1evdpcV0xMjAYNGqS2bduqffv2mjVrljIyMjRkyJDi2GQAReje4+/dnhVtqHZry3ePLZo+AJSYYglC69at0/Hjx/X000+7TPfw8NC6devMUBIUFKQ+ffpo4sSJZo27u7tWrVql5557TqGhoapYsaIGDRqkqVOnmjXBwcFavXq1oqOjNXv2bNWqVUt/+9vfFB4ebtb07dtXp0+fVlxcnBwOh1q1aqXExMQ8F1ADAADrshmGYZR0E3cqp9MpX19fpaenuzzrCCi1NsQX29Ap358ptrGLS+hdnBECyqLC/P7mu8YAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlFetXbADAnexW73TbduU/RdRJwUXfd/dtXydQlnFGCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWFaRB6HJkyfLZrO5vBo1amTOv3TpkqKiolStWjVVqlRJffr0UVpamssYx48fV0REhCpUqCA/Pz+NHTtWV65ccanZuHGjWrduLbvdrvr162vRokV5epk3b57q1q0rT09PhYSEaMeOHUW9uQAAoBQrljNCTZs21cmTJ83Xli1bzHnR0dH617/+pZUrV2rTpk06ceKEHnnkEXN+dna2IiIilJWVpa1bt2rx4sVatGiR4uLizJqjR48qIiJC3bt3V2pqqsaMGaNnnnlGa9euNWuWL1+umJgYTZo0SXv27FHLli0VHh6uU6dOFccmAwCAUshmGIZRlANOnjxZCQkJSk1NzTMvPT1dNWrU0NKlS/Xoo49Kkg4ePKjGjRsrJSVF9957rz7//HM98MADOnHihPz9/SVJCxYs0Pjx43X69Gl5eHho/PjxWr16tfbv32+O3a9fP50/f16JiYmSpJCQELVr105z586VJOXk5CgoKEjPP/+8JkyYUKBtcTqd8vX1VXp6unx8fG5ltwB3hg3xxTZ0yvdnim3sO9W22sNv+zqj77v7tq8TKG0K8/u7WM4IfffddwoMDNRdd92lgQMH6vjx45Kk3bt36/LlywoLCzNrGzVqpNq1ayslJUWSlJKSoubNm5shSJLCw8PldDp14MABs+bqMXJrcsfIysrS7t27XWrc3NwUFhZm1uQnMzNTTqfT5QUAAMquIg9CISEhWrRokRITEzV//nwdPXpUnTt31oULF+RwOOTh4aHKlSu7LOPv7y+HwyFJcjgcLiEod37uvBvVOJ1O/fbbb/rll1+UnZ2db03uGPmJj4+Xr6+v+QoKCvpD+wAAAJQO5Yp6wN69e5t/btGihUJCQlSnTh2tWLFCXl5eRb26IhUbG6uYmBjzvdPpJAwBAFCGFfvt85UrV9bdd9+tw4cPKyAgQFlZWTp//rxLTVpamgICAiRJAQEBee4iy31/sxofHx95eXmpevXqcnd3z7cmd4z82O12+fj4uLwAAEDZVexB6OLFizpy5Ihq1qypNm3aqHz58kpOTjbnHzp0SMePH1doaKgkKTQ0VPv27XO5uyspKUk+Pj5q0qSJWXP1GLk1uWN4eHioTZs2LjU5OTlKTk42awAAAIo8CL300kvatGmTjh07pq1bt+rPf/6z3N3d1b9/f/n6+mro0KGKiYnRhg0btHv3bg0ZMkShoaG69957JUk9e/ZUkyZN9OSTT+rrr7/W2rVrNXHiREVFRclut0uSRowYoe+//17jxo3TwYMH9c4772jFihWKjo42+4iJidH777+vxYsX69tvv9Vzzz2njIwMDRkypKg3GQAAlFJFfo3QTz/9pP79++vMmTOqUaOGOnXqpG3btqlGjRqSpJkzZ8rNzU19+vRRZmamwsPD9c4775jLu7u7a9WqVXruuecUGhqqihUratCgQZo6dapZExwcrNWrVys6OlqzZ89WrVq19Le//U3h4eFmTd++fXX69GnFxcXJ4XCoVatWSkxMzHMBNQAAsK4if45QWcJzhFDm8ByhIsVzhIA7U4k/RwgAAKA0IAgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLKlfSDQBAaXXv8fdu/0o3VCtcfffY4ukDKCM4IwQAACyLIAQAACyLIAQAACyLIAQAACyryINQfHy82rVrJ29vb/n5+SkyMlKHDh1yqenWrZtsNpvLa8SIES41x48fV0REhCpUqCA/Pz+NHTtWV65ccanZuHGjWrduLbvdrvr162vRokV5+pk3b57q1q0rT09PhYSEaMeOHUW9yQAAoJQq8iC0adMmRUVFadu2bUpKStLly5fVs2dPZWRkuNQNGzZMJ0+eNF/Tpk0z52VnZysiIkJZWVnaunWrFi9erEWLFikuLs6sOXr0qCIiItS9e3elpqZqzJgxeuaZZ7R27VqzZvny5YqJidGkSZO0Z88etWzZUuHh4Tp16lRRbzYAACiFbIZhGMW5gtOnT8vPz0+bNm1Sly5dJP1+RqhVq1aaNWtWvst8/vnneuCBB3TixAn5+/tLkhYsWKDx48fr9OnT8vDw0Pjx47V69Wrt37/fXK5fv346f/68EhMTJUkhISFq166d5s6dK0nKyclRUFCQnn/+eU2YMOGmvTudTvn6+io9PV0+Pj63shuAO8OG+GIbOuX7M8U2Nv5f6F3cPg/cTGF+fxf7NULp6emSpKpVq7pMX7JkiapXr65mzZopNjZWv/76qzkvJSVFzZs3N0OQJIWHh8vpdOrAgQNmTVhYmMuY4eHhSklJkSRlZWVp9+7dLjVubm4KCwsza66VmZkpp9Pp8gIAAGVXsT5QMScnR2PGjFHHjh3VrFkzc/qAAQNUp04dBQYGau/evRo/frwOHTqkf/7zn5Ikh8PhEoIkme8dDscNa5xOp3777TedO3dO2dnZ+dYcPHgw337j4+M1ZcqUW9toAChGhT3ztu3Kf4qpk8KJvu/ukm4ByFexBqGoqCjt379fW7ZscZk+fPhw88/NmzdXzZo11aNHDx05ckT16tUrzpZuKDY2VjExMeZ7p9OpoKCgEusHAAAUr2ILQqNGjdKqVau0efNm1apV64a1ISEhkqTDhw+rXr16CggIyHN3V1pamiQpICDA/G/utKtrfHx85OXlJXd3d7m7u+dbkzvGtex2u+x2e8E3EgAAlGpFfo2QYRgaNWqUPvnkE61fv17BwcE3XSY1NVWSVLNmTUlSaGio9u3b53J3V1JSknx8fNSkSROzJjk52WWcpKQkhYaGSpI8PDzUpk0bl5qcnBwlJyebNQAAwNqK/IxQVFSUli5dqk8//VTe3t7mNT2+vr7y8vLSkSNHtHTpUt1///2qVq2a9u7dq+joaHXp0kUtWrSQJPXs2VNNmjTRk08+qWnTpsnhcGjixImKiooyz9iMGDFCc+fO1bhx4/T0009r/fr1WrFihVavXm32EhMTo0GDBqlt27Zq3769Zs2apYyMDA0ZMqSoNxsAAJRCRR6E5s+fL+n3W+SvtnDhQg0ePFgeHh5at26dGUqCgoLUp08fTZw40ax1d3fXqlWr9Nxzzyk0NFQVK1bUoEGDNHXqVLMmODhYq1evVnR0tGbPnq1atWrpb3/7m8LDw82avn376vTp04qLi5PD4VCrVq2UmJiY5wJqAABgTcX+HKHSjOcIoczhOUKWs6328JsX3QbcNYbb6Y56jhAAAMCdiiAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq1xJNwAAKD73Hn+vpFv43YZqN57fPfb29AFcgzNCAADAsghCAADAsghCAADAsghCAADAsrhYGgBQ7FK+P3PD+duu/Oc2dVJw0ffdXdIt4DbgjBAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsbp8H7kAzk4rnVuJ7j9/4FmYAsBqCEACgxN0xXw57tfy+KJYvhy1zCEIAAOQjv4dA3okPfrwaD4EsPEsEoXnz5mn69OlyOBxq2bKl3n77bbVv376k2wIAoEgV18fqxamkw1uZv1h6+fLliomJ0aRJk7Rnzx61bNlS4eHhOnXqVEm3BgAASliZPyP01ltvadiwYRoyZIgkacGCBVq9erU+/PBDTZgwoYS7Q5mxIb5Ih+OiZgC4Pcp0EMrKytLu3bsVG/v/F7e5ubkpLCxMKSkpeeozMzOVmZlpvk9PT5ckOZ3O4m8WxWbe+sPFvo52P50o9nUAKHnND71d0i0UyM5aQ0q6hQIrjt+xuWMahnHT2jIdhH755RdlZ2fL39/fZbq/v78OHjyYpz4+Pl5TpkzJMz0oKKjYegQAoOjNLekGCuzlYhz7woUL8vX1vWFNmQ5ChRUbG6uYmBjzfU5Ojs6ePatq1arJZrOVYGfX53Q6FRQUpB9//FE+Pj4l3U6Zwr4tHuzX4sO+LR7s1+JTXPvWMAxduHBBgYGBN60t00GoevXqcnd3V1pamsv0tLQ0BQQE5Km32+2y2+0u0ypXrlycLRYZHx8f/oIWE/Zt8WC/Fh/2bfFgvxaf4ti3NzsTlKtM3zXm4eGhNm3aKDk52ZyWk5Oj5ORkhYaGlmBnAADgTlCmzwhJUkxMjAYNGqS2bduqffv2mjVrljIyMsy7yAAAgHWV+SDUt29fnT59WnFxcXI4HGrVqpUSExPzXEBdWtntdk2aNCnPR3q4dezb4sF+LT7s2+LBfi0+d8K+tRkFubcMAACgDCrT1wgBAADcCEEIAABYFkEIAABYFkEIAABYFkEIAABYFkGoDMrMzFSrVq1ks9mUmppa0u2UeseOHdPQoUMVHBwsLy8v1atXT5MmTVJWVlZJt1YqzZs3T3Xr1pWnp6dCQkK0Y8eOkm6pVIuPj1e7du3k7e0tPz8/RUZG6tChQyXdVpn05ptvymazacyYMSXdSqn3888/64knnlC1atXk5eWl5s2ba9euXSXSC0GoDBo3blyBvl8FBXPw4EHl5OTo3Xff1YEDBzRz5kwtWLBAL79cnF8VWDYtX75cMTExmjRpkvbs2aOWLVsqPDxcp06dKunWSq1NmzYpKipK27ZtU1JSki5fvqyePXsqIyOjpFsrU3bu3Kl3331XLVq0KOlWSr1z586pY8eOKl++vD7//HN98803mjFjhqpUqVIyDRkoU9asWWM0atTIOHDggCHJ+Oqrr0q6pTJp2rRpRnBwcEm3Ueq0b9/eiIqKMt9nZ2cbgYGBRnx8fAl2VbacOnXKkGRs2rSppFspMy5cuGA0aNDASEpKMrp27WqMHj26pFsq1caPH2906tSppNswcUaoDElLS9OwYcP0P//zP6pQoUJJt1Ompaenq2rVqiXdRqmSlZWl3bt3KywszJzm5uamsLAwpaSklGBnZUt6erokcXwWoaioKEVERLgcu/jjPvvsM7Vt21aPPfaY/Pz8dM899+j9998vsX4IQmWEYRgaPHiwRowYobZt25Z0O2Xa4cOH9fbbb+vZZ58t6VZKlV9++UXZ2dl5vt7G399fDoejhLoqW3JycjRmzBh17NhRzZo1K+l2yoRly5Zpz549io+PL+lWyozvv/9e8+fPV4MGDbR27Vo999xzeuGFF7R48eIS6YcgdIebMGGCbDbbDV8HDx7U22+/rQsXLig2NrakWy41Crpvr/bzzz+rV69eeuyxxzRs2LAS6hzIX1RUlPbv369ly5aVdCtlwo8//qjRo0dryZIl8vT0LOl2yoycnBy1bt1ab7zxhu655x4NHz5cw4YN04IFC0qknzL/paul3YsvvqjBgwffsOauu+7S+vXrlZKSkueL69q2bauBAweWWNK+kxV03+Y6ceKEunfvrg4dOui9994r5u7KnurVq8vd3V1paWku09PS0hQQEFBCXZUdo0aN0qpVq7R582bVqlWrpNspE3bv3q1Tp06pdevW5rTs7Gxt3rxZc+fOVWZmptzd3Uuww9KpZs2aatKkicu0xo0b6x//+EeJ9EMQusPVqFFDNWrUuGndnDlz9Prrr5vvT5w4ofDwcC1fvlwhISHF2WKpVdB9K/1+Jqh79+5q06aNFi5cKDc3TqYWloeHh9q0aaPk5GRFRkZK+v1fhsnJyRo1alTJNleKGYah559/Xp988ok2btyo4ODgkm6pzOjRo4f27dvnMm3IkCFq1KiRxo8fTwj6gzp27JjnEQ//+c9/VKdOnRLphyBURtSuXdvlfaVKlSRJ9erV41+Ht+jnn39Wt27dVKdOHf31r3/V6dOnzXmcySicmJgYDRo0SG3btlX79u01a9YsZWRkaMiQISXdWqkVFRWlpUuX6tNPP5W3t7d5vZWvr6+8vLxKuLvSzdvbO8+1VhUrVlS1atW4BusWREdHq0OHDnrjjTf0+OOPa8eOHXrvvfdK7Ew7QQi4iaSkJB0+fFiHDx/OEyoNwyihrkqnvn376vTp04qLi5PD4VCrVq2UmJiY5wJqFNz8+fMlSd26dXOZvnDhwpt+9AuUhHbt2umTTz5RbGyspk6dquDgYM2aNUsDBw4skX5sBv8nBwAAFsWFDgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLL+D0Z0mKQQ0S+pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGzCAYAAADQVjjVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOf9JREFUeJzt3X1YVHX+//HXoAJKAt7EzXxDozJv0jQxEUtbkyS1G8o2NbbUSLcWWm9qS7tBu9ko20ot09yt9Lvprrq7WatFkaJUIiropqRkxaplg6bCJCoinN8f/ThfR/ig2Cg3Ph/XNdfVfM77nPP+cBjn1ZkzB4dlWZYAAABQhU9dNwAAAFBfEZQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlADUmWnTpsnhcPyidX/88Ucvd3X6Vq9eLYfDodWrV9dZDwDOLoISgEbvueee07Jly+q6DQANEEEJQJ154okndOTIkbO+H4ISgDPVtK4bAHD+atq0qZo25Z8hAPUXZ5QAGH3xxRdyOBx6//337bGcnBw5HA717NnTo3bw4MGKjo62n3/44Yfq16+fAgIC1LJlSw0dOlR5eXke61R3jdKRI0f0+9//Xm3btlXLli11yy236Pvvv5fD4dC0adOq9FhUVKTRo0crODhYQUFBGjNmjA4fPmwvdzgcKikp0YIFC+RwOORwODR69Gh7+ffff697771XoaGh8vPz0xVXXKG33nqryn6+++47xcfHKyAgQCEhIZo4caJKS0tP6+d4ogMHDujhhx9Wt27ddMEFFygwMFCDBw/Wf/7zH4+6+fPny+Fw6L///a/HuOm6qOzsbA0ZMkStWrVSQECArrzySs2cObPW/QHwxP/KATDq2rWrgoODlZmZqVtuuUWS9Omnn8rHx0f/+c9/5Ha7FRgYqIqKCq1du1bjxo2TJP31r3/VqFGjFBcXpxdeeEGHDx/WnDlzdO2112rTpk26+OKLjfscPXq0lixZorvvvlt9+vTRmjVrNHToUGP9nXfeqcjISKWmpio3N1d/+ctfFBISohdeeMHu5b777lPv3r3t/i699FJJUmFhofr06SOHw6Hk5GRdeOGF+vDDD5WYmCi3260JEyZI+jm8DRw4ULt27dLvf/97OZ1O/fWvf9WqVatq/TP99ttvtWzZMv36179WZGSkCgsL9cYbb+i6667Tl19+KafTWettpqen66abblJ4eLjGjx+vsLAwbdu2TcuXL9f48eNrvT0AJ7AAoAZDhw61evfubT+//fbbrdtvv91q0qSJ9eGHH1qWZVm5ubmWJOu9996zfvrpJys4ONgaO3asx3ZcLpcVFBTkMT516lTrxH+GcnJyLEnWhAkTPNYdPXq0JcmaOnVqlXXvvfdej9rbbrvNatOmjcdYQECANWrUqCpzS0xMtMLDw60ff/zRY3zEiBFWUFCQdfjwYcuyLGvGjBmWJGvJkiV2TUlJiXXZZZdZkqyMjIwq2zY5evSoVV5e7jFWUFBg+fn5WU8//bQ99vbbb1uSrIKCAo/ajIwMj30eP37cioyMtNq3b28dPHjQo7aiouK0+wJQPT56A1Cjfv36KTc3VyUlJZKkzz77TEOGDFGPHj306aefSvr5LJPD4dC1116r9PR0FRUVaeTIkfrxxx/tR5MmTRQdHa2MjAzjvtLS0iRJv/vd7zzGH3zwQeM6999/f5V+9+/fL7fbXeO8LMvSP//5T918882yLMuj17i4OBUXFys3N1eS9MEHHyg8PFx33HGHvX6LFi3sM1S14efnJx+fn//pLS8v1/79+3XBBReoY8eO9v5qY9OmTSooKNCECRMUHBzssexMb70A4P/w0RuAGvXr10/Hjx9XVlaWIiIitHfvXvXr1095eXkeQalLly5q3bq1duzYIUm6/vrrq91eYGCgcV87d+6Uj4+PIiMjPcYvu+wy4zrt2rXzeN6qVStJ0sGDB2vc1759+1RUVKR58+Zp3rx51dbs3bvX7uuyyy6rEjw6duxo3L5JRUWFZs6cqddff10FBQUqLy+3l7Vp06bW2/vmm28k/fwxKQDvIygBqFGvXr3k7++vzMxMtWvXTiEhIbr88svVr18/vf766yotLdWnn36q2267TdLPQUD6+dqgsLCwKtvz9rfcmjRpUu24ZVk1rlfZ529+8xuNGjWq2porr7zylzVXjeeee05PPvmk7r33Xj3zzDNq3bq1fHx8NGHCBLsnyXw26MRgBeDsIygBqJGvr6969+6tTz/9VO3atVO/fv0k/XymqbS0VAsXLlRhYaH69+8v6f8ulA4JCVFsbGyt9tW+fXtVVFSooKBAHTp0sMe//vrrXzSH6kLHhRdeqJYtW6q8vPyUfbZv315bt26VZVke28rPz691L//4xz80YMAAvfnmmx7jRUVFatu2rf288sxYUVGRR93OnTs9nlf+vLdu3VrrnzeAU+MaJQCn1K9fP2VnZysjI8MOSm3btlXnzp3tb5dVjsfFxSkwMFDPPfecysrKqmxr3759xv3ExcVJkl5//XWP8VdfffUX9R8QEFAlcDRp0kTDhg3TP//5T23durXGPocMGaI9e/boH//4hz12+PBh40d2NWnSpEmVs11Lly7V999/7zFWGYAyMzPtsfLy8ir77NmzpyIjIzVjxowqczzVWTUAp8YZJQCn1K9fP/3xj3/U7t277UAkSf3799cbb7yhiy++WBdddJGkn69BmjNnju6++2717NlTI0aM0IUXXqhdu3ZpxYoVuuaaa/Taa69Vu5+oqCgNGzZMM2bM0P79++3bA3z11VeSzvzi5KioKH3yySd6+eWX5XQ6FRkZqejoaD3//PPKyMhQdHS0xo4dqy5duujAgQPKzc3VJ598ogMHDkiSxo4dq9dee0333HOPcnJyFB4err/+9a9q0aJFrXu56aab9PTTT2vMmDHq27evtmzZooULF+qSSy7xqLviiivUp08fTZkyRQcOHFDr1q3197//XcePH/eo8/Hx0Zw5c3TzzTerR48eGjNmjMLDw7V9+3bl5eXpo48+OqOfGYD/ry6/cgegYXC73VaTJk2sli1bWsePH7fH33nnHUuSdffdd1dZJyMjw4qLi7OCgoIsf39/69JLL7VGjx5tbdy40a45+fYAlvXz1+6TkpKs1q1bWxdccIEVHx9v5efnW5Ks559/vsq6+/bt81i/uq/Vb9++3erfv7/VvHlzS5LHrQIKCwutpKQkKyIiwmrWrJkVFhZmDRw40Jo3b57Hdnfu3GndcsstVosWLay2bdta48ePt9LS0s7o9gAPPfSQFR4ebjVv3ty65pprrKysLOu6666zrrvuOo/ab775xoqNjbX8/Pys0NBQ67HHHrPS09Or3ednn31m3XDDDVbLli2tgIAA68orr7ReffXV0+4LQPUclsW5WQD12+bNm3XVVVfpnXfeUUJCQl23A+A8wjVKAOqV6v5I7owZM+Tj42NfMA4A5wrXKAGoV6ZPn66cnBwNGDBATZs21YcffqgPP/xQ48aNU0RERF23Z3TkyBEVFxfXWNO6dWv5+vqeo44AeAMfvQGoV9LT0/XUU0/pyy+/1KFDh9SuXTvdfffdevzxx71+DyZvmj9/vsaMGVNjTUZGhn71q1+dm4YAeAVBCQC84IcfflBeXl6NNVFRUfb9kQA0DAQlAAAAAy7mBgAAMKi/H/jXAxUVFdqzZ49atmzJX+EGAKCBsCxLP/30k5xOp3x8ftk5IYJSDfbs2VOvv2UDAADMdu/ebf/VgDNFUKpBy5YtJf38gw4MDKzjbgAAwOlwu92KiIiw38d/CYJSDSo/bgsMDCQoAQDQwHjjshku5gYAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAQdO6buC8lpFa1x3U3oApdd0BAADnDGeUAAAADAhKAAAABgQlAAAAA4ISAACAARdz10NZ3+6v6xaM1h3/qsrYxBsur4NOAAA4+zijBAAAYEBQAgAAMKh1UMrMzNTNN98sp9Mph8OhZcuW2cvKysr06KOPqlu3bgoICJDT6dQ999yjPXv2eGzjwIEDSkhIUGBgoIKDg5WYmKhDhw551HzxxRfq16+f/P39FRERoenTp1fpZenSperUqZP8/f3VrVs3ffDBBx7LLctSSkqKwsPD1bx5c8XGxmrHjh21nTIAADhP1ToolZSUqHv37po9e3aVZYcPH1Zubq6efPJJ5ebm6l//+pfy8/N1yy23eNQlJCQoLy9P6enpWr58uTIzMzVu3Dh7udvt1qBBg9S+fXvl5OToxRdf1LRp0zRv3jy7Zu3atRo5cqQSExO1adMmxcfHKz4+Xlu3brVrpk+frlmzZmnu3LnKzs5WQECA4uLidPTo0dpOGwAAnIcclmVZZ7yyw6F3331X8fHxxpoNGzaod+/e2rlzp9q1a6dt27apS5cu2rBhg3r16iVJSktL05AhQ/Tdd9/J6XRqzpw5evzxx+VyueTr6ytJmjx5spYtW6bt27dLkoYPH66SkhItX77c3lefPn3Uo0cPzZ07V5Zlyel06qGHHtLDDz8sSSouLlZoaKjmz5+vESNGVOm1tLRUpaWl9nO3262IiAgVFxcrMDDwTH9MZoY7c9fri7nbjasyxsXcAID6xO12KygoyCvv32f9GqXi4mI5HA4FBwdLkrKyshQcHGyHJEmKjY2Vj4+PsrOz7Zr+/fvbIUmS4uLilJ+fr4MHD9o1sbGxHvuKi4tTVlaWJKmgoEAul8ujJigoSNHR0XbNyVJTUxUUFGQ/IiIifvkPAAAANFhnNSgdPXpUjz76qEaOHGknOpfLpZCQEI+6pk2bqnXr1nK5XHZNaGioR03l81PVnLj8xPWqqznZlClTVFxcbD92795d6zkDAIDG46zdR6msrEx33nmnLMvSnDlzztZuvMrPz09+fn513QYAAKgnzsoZpcqQtHPnTqWnp3t8PhgWFqa9e/d61B8/flwHDhxQWFiYXVNYWOhRU/n8VDUnLj9xvepqAAAAauL1oFQZknbs2KFPPvlEbdq08VgeExOjoqIi5eTk2GOrVq1SRUWFoqOj7ZrMzEyVlZXZNenp6erYsaNatWpl16xcudJj2+np6YqJiZEkRUZGKiwszKPG7XYrOzvbrgEAAKhJrYPSoUOHtHnzZm3evFnSzxdNb968Wbt27VJZWZnuuOMObdy4UQsXLlR5eblcLpdcLpeOHTsmSercubNuvPFGjR07VuvXr9fnn3+u5ORkjRgxQk6nU5J01113ydfXV4mJicrLy9PixYs1c+ZMTZo0ye5j/PjxSktL00svvaTt27dr2rRp2rhxo5KTkyX9/I28CRMm6Nlnn9X777+vLVu26J577pHT6azxW3oAAACVan2N0saNGzVgwAD7eWV4GTVqlKZNm6b3339fktSjRw+P9TIyMvSrX/1KkrRw4UIlJydr4MCB8vHx0bBhwzRr1iy7NigoSB9//LGSkpIUFRWltm3bKiUlxeNeS3379tWiRYv0xBNP6LHHHlOHDh20bNkyde3a1a555JFHVFJSonHjxqmoqEjXXnut0tLS5O/vX9tpAwCA89Avuo9SY+fN+zBUi/soAQDgdQ3qPkoAAAANFUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGNQ6KGVmZurmm2+W0+mUw+HQsmXLPJZblqWUlBSFh4erefPmio2N1Y4dOzxqDhw4oISEBAUGBio4OFiJiYk6dOiQR80XX3yhfv36yd/fXxEREZo+fXqVXpYuXapOnTrJ399f3bp10wcffFDrXgAAAExqHZRKSkrUvXt3zZ49u9rl06dP16xZszR37lxlZ2crICBAcXFxOnr0qF2TkJCgvLw8paena/ny5crMzNS4cePs5W63W4MGDVL79u2Vk5OjF198UdOmTdO8efPsmrVr12rkyJFKTEzUpk2bFB8fr/j4eG3durVWvQAAAJg4LMuyznhlh0Pvvvuu4uPjJf18BsfpdOqhhx7Sww8/LEkqLi5WaGio5s+frxEjRmjbtm3q0qWLNmzYoF69ekmS0tLSNGTIEH333XdyOp2aM2eOHn/8cblcLvn6+kqSJk+erGXLlmn79u2SpOHDh6ukpETLly+3++nTp4969OihuXPnnlYvp+J2uxUUFKTi4mIFBgae6Y/JLCO12uGsb/d7f19esq7duCpjE2+4vA46AQCget58//bqNUoFBQVyuVyKjY21x4KCghQdHa2srCxJUlZWloKDg+2QJEmxsbHy8fFRdna2XdO/f387JElSXFyc8vPzdfDgQbvmxP1U1lTu53R6OVlpaancbrfHAwAAnL+8GpRcLpckKTQ01GM8NDTUXuZyuRQSEuKxvGnTpmrdurVHTXXbOHEfppoTl5+ql5OlpqYqKCjIfkRERJzGrAEAQGPFt95OMGXKFBUXF9uP3bt313VLAACgDnk1KIWFhUmSCgsLPcYLCwvtZWFhYdq7d6/H8uPHj+vAgQMeNdVt48R9mGpOXH6qXk7m5+enwMBAjwcAADh/eTUoRUZGKiwsTCtXrrTH3G63srOzFRMTI0mKiYlRUVGRcnJy7JpVq1apoqJC0dHRdk1mZqbKysrsmvT0dHXs2FGtWrWya07cT2VN5X5OpxcAAICa1DooHTp0SJs3b9bmzZsl/XzR9ObNm7Vr1y45HA5NmDBBzz77rN5//31t2bJF99xzj5xOp/3NuM6dO+vGG2/U2LFjtX79en3++edKTk7WiBEj5HQ6JUl33XWXfH19lZiYqLy8PC1evFgzZ87UpEmT7D7Gjx+vtLQ0vfTSS9q+fbumTZumjRs3Kjk5WZJOqxcAAICaNK3tChs3btSAAQPs55XhZdSoUZo/f74eeeQRlZSUaNy4cSoqKtK1116rtLQ0+fv72+ssXLhQycnJGjhwoHx8fDRs2DDNmjXLXh4UFKSPP/5YSUlJioqKUtu2bZWSkuJxr6W+fftq0aJFeuKJJ/TYY4+pQ4cOWrZsmbp27WrXnE4vAAAAJr/oPkqNHfdRqor7KAEA6rt6ex8lAACAxoSgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAZeD0rl5eV68sknFRkZqebNm+vSSy/VM888I8uy7BrLspSSkqLw8HA1b95csbGx2rFjh8d2Dhw4oISEBAUGBio4OFiJiYk6dOiQR80XX3yhfv36yd/fXxEREZo+fXqVfpYuXapOnTrJ399f3bp10wcffODtKQMAgEbK60HphRde0Jw5c/Taa69p27ZteuGFFzR9+nS9+uqrds306dM1a9YszZ07V9nZ2QoICFBcXJyOHj1q1yQkJCgvL0/p6elavny5MjMzNW7cOHu52+3WoEGD1L59e+Xk5OjFF1/UtGnTNG/ePLtm7dq1GjlypBITE7Vp0ybFx8crPj5eW7du9fa0AQBAI+SwTjzV4wU33XSTQkND9eabb9pjw4YNU/PmzfXOO+/Isiw5nU499NBDevjhhyVJxcXFCg0N1fz58zVixAht27ZNXbp00YYNG9SrVy9JUlpamoYMGaLvvvtOTqdTc+bM0eOPPy6XyyVfX19J0uTJk7Vs2TJt375dkjR8+HCVlJRo+fLldi99+vRRjx49NHfu3FPOxe12KygoSMXFxQoMDPTaz8iWkVrtcNa3+72/Ly9Z125clbGJN1xeB50AAFA9b75/e/2MUt++fbVy5Up99dVXkqT//Oc/+uyzzzR48GBJUkFBgVwul2JjY+11goKCFB0draysLElSVlaWgoOD7ZAkSbGxsfLx8VF2drZd079/fzskSVJcXJzy8/N18OBBu+bE/VTWVO7nZKWlpXK73R4PAABw/mrq7Q1OnjxZbrdbnTp1UpMmTVReXq4//vGPSkhIkCS5XC5JUmhoqMd6oaGh9jKXy6WQkBDPRps2VevWrT1qIiMjq2yjclmrVq3kcrlq3M/JUlNT9dRTT53JtAEAQCPk9TNKS5Ys0cKFC7Vo0SLl5uZqwYIF+tOf/qQFCxZ4e1deN2XKFBUXF9uP3bt313VLAACgDnn9jNIf/vAHTZ48WSNGjJAkdevWTTt37lRqaqpGjRqlsLAwSVJhYaHCw8Pt9QoLC9WjRw9JUlhYmPbu3eux3ePHj+vAgQP2+mFhYSosLPSoqXx+qprK5Sfz8/OTn5/fmUwbAAA0Ql4/o3T48GH5+HhutkmTJqqoqJAkRUZGKiwsTCtXrrSXu91uZWdnKyYmRpIUExOjoqIi5eTk2DWrVq1SRUWFoqOj7ZrMzEyVlZXZNenp6erYsaNatWpl15y4n8qayv0AAADUxOtB6eabb9Yf//hHrVixQv/973/17rvv6uWXX9Ztt90mSXI4HJowYYKeffZZvf/++9qyZYvuueceOZ1OxcfHS5I6d+6sG2+8UWPHjtX69ev1+eefKzk5WSNGjJDT6ZQk3XXXXfL19VViYqLy8vK0ePFizZw5U5MmTbJ7GT9+vNLS0vTSSy9p+/btmjZtmjZu3Kjk5GRvTxsAADRCXv/o7dVXX9WTTz6p3/3ud9q7d6+cTqd++9vfKiUlxa555JFHVFJSonHjxqmoqEjXXnut0tLS5O/vb9csXLhQycnJGjhwoHx8fDRs2DDNmjXLXh4UFKSPP/5YSUlJioqKUtu2bZWSkuJxr6W+fftq0aJFeuKJJ/TYY4+pQ4cOWrZsmbp27ertaQMAgEbI6/dRaky4j1JV3EcJAFDf1ev7KAEAADQWBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAACDpnXdAACgFjJS67qDMzNgSl13AJwRzigBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIAB33oDgAbilfSv1GfX/rpu47TEXNKmrlsAvIIzSgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgcFaC0vfff6/f/OY3atOmjZo3b65u3bpp48aN9nLLspSSkqLw8HA1b95csbGx2rFjh8c2Dhw4oISEBAUGBio4OFiJiYk6dOiQR80XX3yhfv36yd/fXxEREZo+fXqVXpYuXapOnTrJ399f3bp10wcffHA2pgwAABohrwelgwcP6pprrlGzZs304Ycf6ssvv9RLL72kVq1a2TXTp0/XrFmzNHfuXGVnZysgIEBxcXE6evSoXZOQkKC8vDylp6dr+fLlyszM1Lhx4+zlbrdbgwYNUvv27ZWTk6MXX3xR06ZN07x58+yatWvXauTIkUpMTNSmTZsUHx+v+Ph4bd261dvTBgAAjZDDsizLmxucPHmyPv/8c3366afVLrcsS06nUw899JAefvhhSVJxcbFCQ0M1f/58jRgxQtu2bVOXLl20YcMG9erVS5KUlpamIUOG6LvvvpPT6dScOXP0+OOPy+VyydfX1973smXLtH37dknS8OHDVVJSouXLl9v779Onj3r06KG5c+eeci5ut1tBQUEqLi5WYGDgL/q5VCsjtdrhrG/3e39fXrKu3bgqYxNvuLwOOgHOP6+kf6U+u+adurAeiLmkjefAgCl10wjOS958//b6GaX3339fvXr10q9//WuFhIToqquu0p///Gd7eUFBgVwul2JjY+2xoKAgRUdHKysrS5KUlZWl4OBgOyRJUmxsrHx8fJSdnW3X9O/f3w5JkhQXF6f8/HwdPHjQrjlxP5U1lfs5WWlpqdxut8cDAACcv7welL799lvNmTNHHTp00EcffaQHHnhAv//977VgwQJJksvlkiSFhoZ6rBcaGmovc7lcCgkJ8VjetGlTtW7d2qOmum2cuA9TTeXyk6WmpiooKMh+RERE1Hr+AACg8fB6UKqoqFDPnj313HPP6aqrrtK4ceM0duzY0/qoq65NmTJFxcXF9mP37t113RIAAKhDXg9K4eHh6tKli8dY586dtWvXLklSWFiYJKmwsNCjprCw0F4WFhamvXv3eiw/fvy4Dhw44FFT3TZO3IeppnL5yfz8/BQYGOjxAAAA5y+vB6VrrrlG+fn5HmNfffWV2rdvL0mKjIxUWFiYVq5caS93u93Kzs5WTEyMJCkmJkZFRUXKycmxa1atWqWKigpFR0fbNZmZmSorK7Nr0tPT1bFjR/sbdjExMR77qayp3A8AAEBNvB6UJk6cqHXr1um5557T119/rUWLFmnevHlKSkqSJDkcDk2YMEHPPvus3n//fW3ZskX33HOPnE6n4uPjJf18BurGG2/U2LFjtX79en3++edKTk7WiBEj5HQ6JUl33XWXfH19lZiYqLy8PC1evFgzZ87UpEmT7F7Gjx+vtLQ0vfTSS9q+fbumTZumjRs3Kjk52dvTBgAAjVBTb2/w6quv1rvvvqspU6bo6aefVmRkpGbMmKGEhAS75pFHHlFJSYnGjRunoqIiXXvttUpLS5O/v79ds3DhQiUnJ2vgwIHy8fHRsGHDNGvWLHt5UFCQPv74YyUlJSkqKkpt27ZVSkqKx72W+vbtq0WLFumJJ57QY489pg4dOmjZsmXq2rWrt6cNAAAaIa/fR6kx4T5KVXEfJaDucB8l4PTU6/soAQAANBYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMmtZ1AwCAxifr2/0ez9cd/6qOOjk9E2+4vK5bQD3FGSUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAQdO6bgAA0Pj12TWvrluoWUabqmMDppz7PlDvcEYJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBw1oPS888/L4fDoQkTJthjR48eVVJSktq0aaMLLrhAw4YNU2Fhocd6u3bt0tChQ9WiRQuFhIToD3/4g44fP+5Rs3r1avXs2VN+fn667LLLNH/+/Cr7nz17ti6++GL5+/srOjpa69evPxvTBAAAjdBZDUobNmzQG2+8oSuvvNJjfOLEifr3v/+tpUuXas2aNdqzZ49uv/12e3l5ebmGDh2qY8eOae3atVqwYIHmz5+vlJQUu6agoEBDhw7VgAEDtHnzZk2YMEH33XefPvroI7tm8eLFmjRpkqZOnarc3Fx1795dcXFx2rt379mcNgAAaCTOWlA6dOiQEhIS9Oc//1mtWrWyx4uLi/Xmm2/q5Zdf1vXXX6+oqCi9/fbbWrt2rdatWydJ+vjjj/Xll1/qnXfeUY8ePTR48GA988wzmj17to4dOyZJmjt3riIjI/XSSy+pc+fOSk5O1h133KFXXnnF3tfLL7+ssWPHasyYMerSpYvmzp2rFi1a6K233jpb0wYAAI3IWQtKSUlJGjp0qGJjYz3Gc3JyVFZW5jHeqVMntWvXTllZWZKkrKwsdevWTaGhoXZNXFyc3G638vLy7JqTtx0XF2dv49ixY8rJyfGo8fHxUWxsrF1zstLSUrndbo8HAAA4fzU9Gxv9+9//rtzcXG3YsKHKMpfLJV9fXwUHB3uMh4aGyuVy2TUnhqTK5ZXLaqpxu906cuSIDh48qPLy8mprtm/fXm3fqampeuqpp05/ogAAoFHz+hml3bt3a/z48Vq4cKH8/f29vfmzasqUKSouLrYfu3fvruuWAABAHfJ6UMrJydHevXvVs2dPNW3aVE2bNtWaNWs0a9YsNW3aVKGhoTp27JiKioo81issLFRYWJgkKSwsrMq34Cqfn6omMDBQzZs3V9u2bdWkSZNqayq3cTI/Pz8FBgZ6PAAAwPnL60Fp4MCB2rJlizZv3mw/evXqpYSEBPu/mzVrppUrV9rr5Ofna9euXYqJiZEkxcTEaMuWLR7fTktPT1dgYKC6dOli15y4jcqaym34+voqKirKo6aiokIrV660awAAAGri9WuUWrZsqa5du3qMBQQEqE2bNvZ4YmKiJk2apNatWyswMFAPPvigYmJi1KdPH0nSoEGD1KVLF919992aPn26XC6XnnjiCSUlJcnPz0+SdP/99+u1117TI488onvvvVerVq3SkiVLtGLFCnu/kyZN0qhRo9SrVy/17t1bM2bMUElJicaMGePtaQMAgEborFzMfSqvvPKKfHx8NGzYMJWWliouLk6vv/66vbxJkyZavny5HnjgAcXExCggIECjRo3S008/bddERkZqxYoVmjhxombOnKmLLrpIf/nLXxQXF2fXDB8+XPv27VNKSopcLpd69OihtLS0Khd4AwAAVMdhWZZV103UV263W0FBQSouLj471ytlpFY7nPXtfu/vy0vWtRtXZWziDZfXQSfA+eeV9K/UZ9e8um6jUYq5pE3VwQFTzn0j8Apvvn/zt94AAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADCokxtOAkC9YLiXWX3VZ1f9vcca0FhxRgkAAMCAoAQAAGBAUAIAADDgGiUA5636/HcVAdQPnFECAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMmtZ1AwAaiYzUuu4AALyOoATAa7K+3V/XLQCAV/HRGwAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGHg9KKWmpurqq69Wy5YtFRISovj4eOXn53vUHD16VElJSWrTpo0uuOACDRs2TIWFhR41u3bt0tChQ9WiRQuFhIToD3/4g44fP+5Rs3r1avXs2VN+fn667LLLNH/+/Cr9zJ49WxdffLH8/f0VHR2t9evXe3vKAACgkfJ6UFqzZo2SkpK0bt06paenq6ysTIMGDVJJSYldM3HiRP373//W0qVLtWbNGu3Zs0e33367vby8vFxDhw7VsWPHtHbtWi1YsEDz589XSkqKXVNQUKChQ4dqwIAB2rx5syZMmKD77rtPH330kV2zePFiTZo0SVOnTlVubq66d++uuLg47d2719vTBgAAjZDDsizrbO5g3759CgkJ0Zo1a9S/f38VFxfrwgsv1KJFi3THHXdIkrZv367OnTsrKytLffr00YcffqibbrpJe/bsUWhoqCRp7ty5evTRR7Vv3z75+vrq0Ucf1YoVK7R161Z7XyNGjFBRUZHS0tIkSdHR0br66qv12muvSZIqKioUERGhBx98UJMnT67Sa2lpqUpLS+3nbrdbERERKi4uVmBgoPd/OIYb9NXne9GsazeuytjEGy6vg05Q72Sk1uvfXaAmMZe0qTo4YMq5bwRe4Xa7FRQU5JX377N+jVJxcbEkqXXr1pKknJwclZWVKTY21q7p1KmT2rVrp6ysLElSVlaWunXrZockSYqLi5Pb7VZeXp5dc+I2Kmsqt3Hs2DHl5OR41Pj4+Cg2NtauOVlqaqqCgoLsR0RExC+dPgAAaMDOalCqqKjQhAkTdM0116hr166SJJfLJV9fXwUHB3vUhoaGyuVy2TUnhqTK5ZXLaqpxu906cuSIfvzxR5WXl1dbU7mNk02ZMkXFxcX2Y/fu3Wc2cQAA0Cic1T9hkpSUpK1bt+qzzz47m7vxGj8/P/n5+dV1GwAAoJ44a2eUkpOTtXz5cmVkZOiiiy6yx8PCwnTs2DEVFRV51BcWFiosLMyuOflbcJXPT1UTGBio5s2bq23btmrSpEm1NZXbAAAAqInXg5JlWUpOTta7776rVatWKTIy0mN5VFSUmjVrppUrV9pj+fn52rVrl2JiYiRJMTEx2rJli8e309LT0xUYGKguXbrYNSduo7Kmchu+vr6KioryqKmoqNDKlSvtGgAAgJp4/aO3pKQkLVq0SO+9955atmxpXw8UFBSk5s2bKygoSImJiZo0aZJat26twMBAPfjgg4qJiVGfPn0kSYMGDVKXLl109913a/r06XK5XHriiSeUlJRkfzR2//3367XXXtMjjzyie++9V6tWrdKSJUu0YsUKu5dJkyZp1KhR6tWrl3r37q0ZM2aopKREY8aM8fa0AQBAI+T1oDRnzhxJ0q9+9SuP8bffflujR4+WJL3yyivy8fHRsGHDVFpaqri4OL3++ut2bZMmTbR8+XI98MADiomJUUBAgEaNGqWnn37aromMjNSKFSs0ceJEzZw5UxdddJH+8pe/KC4uzq4ZPny49u3bp5SUFLlcLvXo0UNpaWlVLvAGAACozlm/j1JD5s37MFSL+yihMeE+SmjAuI9S49Kg7qMEAADQUBGUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAMCEoAAAAGBCUAAAADghIAAIABQQkAAMCAoAQAAGBAUAIAADAgKAEAABgQlAAAAAwISgAAAAYEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwaFrXDQAweyX9q7pu4bT12bW/rlsAzljWt1V/f9cdr7+vv4k3XF7XLZw3CEpAfZSRKonwAQB1jY/eAAAADAhKAAAABgQlAAAAA4ISAACAARdzAwBQjT675tV1C2YZbaofHzDl3PZxHuCMEgAAgAFBCQAAwICgBAAAYEBQAgAAMCAoAQAAGBCUAAAADM6LoDR79mxdfPHF8vf3V3R0tNavX1/XLQEAgAag0QelxYsXa9KkSZo6dapyc3PVvXt3xcXFae/evXXdGgAAqOcafVB6+eWXNXbsWI0ZM0ZdunTR3Llz1aJFC7311lt13RoAAKjnGvWduY8dO6acnBxNmfJ/dyr18fFRbGyssrKyqtSXlpaqtLTUfl5cXCxJcrvdZ6fBkqPVDx8prXa8PjhacqjK2Fn7+XhL5kseT9f/90AdNQIA3uE2vH+ovv97fI5Uvi9ZlvWLt9Wog9KPP/6o8vJyhYaGeoyHhoZq+/btVepTU1P11FNPVRmPiIg4az02PK9VGXmsDroAAFTn6bpuoF756aefFBQU9Iu20aiDUm1NmTJFkyZNsp9XVFTowIEDatOmjRwORx12ZuZ2uxUREaHdu3crMDCwrtvxOubXsDG/ho35NWzn8/wsy9JPP/0kp9P5i/fTqINS27Zt1aRJExUWFnqMFxYWKiwsrEq9n5+f/Pz8PMaCg4PPZoteExgY2ChfCJWYX8PG/Bo25tewna/z+6Vnkio16ou5fX19FRUVpZUrV9pjFRUVWrlypWJiYuqwMwAA0BA06jNKkjRp0iSNGjVKvXr1Uu/evTVjxgyVlJRozJgxdd0aAACo5xp9UBo+fLj27dunlJQUuVwu9ejRQ2lpaVUu8G6o/Pz8NHXq1CofGTYWzK9hY34NG/Nr2Jifdzgsb3x3DgAAoBFq1NcoAQAA/BIEJQAAAAOCEgAAgAFBCQAAwICgBAAAYEBQqudmz56tiy++WP7+/oqOjtb69etrrF+6dKk6deokf39/devWTR988ME56rT2UlNTdfXVV6tly5YKCQlRfHy88vPza1xn/vz5cjgcHg9/f/9z1HHtTJs2rUqvnTp1qnGdhnT8Lr744irzczgcSkpKqra+vh+7zMxM3XzzzXI6nXI4HFq2bJnHcsuylJKSovDwcDVv3lyxsbHasWPHKbdb29fw2VLT/MrKyvToo4+qW7duCggIkNPp1D333KM9e/bUuM0z+R0/W051/EaPHl2l1xtvvPGU220Ix09Sta9Fh8OhF1980bjN+nT8Tuf94OjRo0pKSlKbNm10wQUXaNiwYVX+8sbJzvR1eyKCUj22ePFiTZo0SVOnTlVubq66d++uuLg47d27t9r6tWvXauTIkUpMTNSmTZsUHx+v+Ph4bd269Rx3fnrWrFmjpKQkrVu3Tunp6SorK9OgQYNUUlJS43qBgYH64Ycf7MfOnTvPUce1d8UVV3j0+tlnnxlrG9rx27Bhg8fc0tPTJUm//vWvjevU52NXUlKi7t27a/bs2dUunz59umbNmqW5c+cqOztbAQEBiouL09Gjhr/irtq/hs+mmuZ3+PBh5ebm6sknn1Rubq7+9a9/KT8/X7fccsspt1ub3/Gz6VTHT5JuvPFGj17/9re/1bjNhnL8JHnM64cfftBbb70lh8OhYcOG1bjd+nL8Tuf9YOLEifr3v/+tpUuXas2aNdqzZ49uv/32Grd7Jq/bKizUW71797aSkpLs5+Xl5ZbT6bRSU1Orrb/zzjutoUOHeoxFR0dbv/3tb89qn96yd+9eS5K1Zs0aY83bb79tBQUFnbumfoGpU6da3bt3P+36hn78xo8fb1166aVWRUVFtcsb0rGTZL377rv284qKCissLMx68cUX7bGioiLLz8/P+tvf/mbcTm1fw+fKyfOrzvr16y1J1s6dO401tf0dP1eqm9+oUaOsW2+9tVbbacjH79Zbb7Wuv/76Gmvq6/GzrKrvB0VFRVazZs2spUuX2jXbtm2zJFlZWVnVbuNMX7cn44xSPXXs2DHl5OQoNjbWHvPx8VFsbKyysrKqXScrK8ujXpLi4uKM9fVNcXGxJKl169Y11h06dEjt27dXRESEbr31VuXl5Z2L9s7Ijh075HQ6dckllyghIUG7du0y1jbk43fs2DG98847uvfee+VwOIx1DenYnaigoEAul8vj+AQFBSk6Otp4fM7kNVyfFBcXy+FwnPIPg9fmd7yurV69WiEhIerYsaMeeOAB7d+/31jbkI9fYWGhVqxYocTExFPW1tfjd/L7QU5OjsrKyjyOR6dOndSuXTvj8TiT1211CEr11I8//qjy8vIqf2olNDRULper2nVcLlet6uuTiooKTZgwQddcc426du1qrOvYsaPeeustvffee3rnnXdUUVGhvn376rvvvjuH3Z6e6OhozZ8/X2lpaZozZ44KCgrUr18//fTTT9XWN+Tjt2zZMhUVFWn06NHGmoZ07E5WeQxqc3zO5DVcXxw9elSPPvqoRo4cWeNfna/t73hduvHGG/W///u/WrlypV544QWtWbNGgwcPVnl5ebX1Dfn4LViwQC1btjzlx1L19fhV937gcrnk6+tbJbif6j2xsuZ016lOo/9bb2gYkpKStHXr1lN+Ph4TE6OYmBj7ed++fdW5c2e98cYbeuaZZ852m7UyePBg+7+vvPJKRUdHq3379lqyZMlp/Z9eQ/Lmm29q8ODBcjqdxpqGdOzOZ2VlZbrzzjtlWZbmzJlTY21D+h0fMWKE/d/dunXTlVdeqUsvvVSrV6/WwIED67Az73vrrbeUkJBwyi9L1Nfjd7rvB+cKZ5TqqbZt26pJkyZVrugvLCxUWFhYteuEhYXVqr6+SE5O1vLly5WRkaGLLrqoVus2a9ZMV111lb7++uuz1J33BAcH6/LLLzf22lCP386dO/XJJ5/ovvvuq9V6DenYVR6D2hyfM3kN17XKkLRz506lp6fXeDapOqf6Ha9PLrnkErVt29bYa0M8fpL06aefKj8/v9avR6l+HD/T+0FYWJiOHTumoqIij/pTvSdW1pzuOtUhKNVTvr6+ioqK0sqVK+2xiooKrVy50uP/yk8UExPjUS9J6enpxvq6ZlmWkpOT9e6772rVqlWKjIys9TbKy8u1ZcsWhYeHn4UOvevQoUP65ptvjL02tONX6e2331ZISIiGDh1aq/Ua0rGLjIxUWFiYx/Fxu93Kzs42Hp8zeQ3XpcqQtGPHDn3yySdq06ZNrbdxqt/x+uS7777T/v37jb02tONX6c0331RUVJS6d+9e63Xr8vid6v0gKipKzZo18zge+fn52rVrl/F4nMnr1tQc6qm///3vlp+fnzV//nzryy+/tMaNG2cFBwdbLpfLsizLuvvuu63Jkyfb9Z9//rnVtGlT609/+pO1bds2a+rUqVazZs2sLVu21NUUavTAAw9YQUFB1urVq60ffvjBfhw+fNiuOXmOTz31lPXRRx9Z33zzjZWTk2ONGDHC8vf3t/Ly8upiCjV66KGHrNWrV1sFBQXW559/bsXGxlpt27a19u7da1lWwz9+lvXzt4DatWtnPfroo1WWNbRj99NPP1mbNm2yNm3aZEmyXn75ZWvTpk32t76ef/55Kzg42HrvvfesL774wrr11lutyMhI68iRI/Y2rr/+euvVV1+1n5/qNVxf5nfs2DHrlltusS666CJr8+bNHq/H0tJS4/xO9TteX+b3008/WQ8//LCVlZVlFRQUWJ988onVs2dPq0OHDtbRo0eN82sox69ScXGx1aJFC2vOnDnVbqM+H7/TeT+4//77rXbt2lmrVq2yNm7caMXExFgxMTEe2+nYsaP1r3/9y35+Oq/bUyEo1XOvvvqq1a5dO8vX19fq3bu3tW7dOnvZddddZ40aNcqjfsmSJdbll19u+fr6WldccYW1YsWKc9zx6ZNU7ePtt9+2a06e44QJE+yfR2hoqDVkyBArNzf33Dd/GoYPH26Fh4dbvr6+1v/8z/9Yw4cPt77++mt7eUM/fpZlWR999JElycrPz6+yrKEdu4yMjGp/HyvnUFFRYT355JNWaGio5efnZw0cOLDKvNu3b29NnTrVY6ym1/C5VNP8CgoKjK/HjIwMexsnz+9Uv+PnUk3zO3z4sDVo0CDrwgsvtJo1a2a1b9/eGjt2bJXA01CPX6U33njDat68uVVUVFTtNurz8Tud94MjR45Yv/vd76xWrVpZLVq0sG677Tbrhx9+qLKdE9c5ndftqTj+/4YBAABwEq5RAgAAMCAoAQAAGBCUAAAADAhKAAAABgQlAAAAA4ISAACAAUEJAADAgKAEAABgQFACAAAwICgBAAAYEJQAAAAM/h9dsrelA42bbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM7RJREFUeJzt3X1YFXX+//HXAeVG5YCI3G2oeJNKmW6YiIplsqLRjWmtmima1VZYKd1slotmN5Z9Uyvv1q3UTdtV68ptLUki00rExMy0NHMtbA28WzhKAQrz+6OL+XkEFbzpCJ/n47rmujqfec/Me8aj59WcmTkOy7IsAQAAGMjL0w0AAAB4CkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQi4yEyePFkOh+Oclj148OB57qrmPv74YzkcDn388cce6wEAaoogBBjq2Wef1YoVKzzdBnBGGzdu1H333afY2Fg1bNjwrP9HAagOQQi4yEycOFG//PLLBd8OQQh1xfvvv69XX31VDodDrVu39nQ7qGcIQsBFpkGDBvLz8/N0GzBISUmJKioqPN3GKd17770qKirSpk2b9Ic//MHT7aCeIQgBtbR161Y5HA69++679lhubq4cDoeuvPJKt9oBAwYoLi7Ofr1q1SolJCSocePGCggIUHJysrZv3+62THXXCP3yyy964IEHFBISooCAAN14443673//K4fDocmTJ1fpsbCwUKNGjVJQUJACAwM1evRo/fzzz/Z8h8Oh4uJiLVq0SA6HQw6HQ6NGjbLn//e//9Udd9yhsLAw+fr66rLLLtPrr79eZTs//vijBg4cqMaNGys0NFTjx49XaWlpjY7jiRYuXCiHw6FPP/1UDzzwgJo3b66goCD96U9/UllZmQoLCzVy5Eg1bdpUTZs21aOPPirLstzW8X//93/q0aOHmjVrJn9/f8XGxuqtt96qsq3MzEz16tVLQUFBatKkidq3b6/HH3/creaVV17RZZddpkaNGqlp06bq2rWr3nzzzVrtU037kaTFixerW7du9vZ69+6t1atXu9WsWrVKV199tQICAuR0OnXVVVe59dSqVSu3P8NK11xzja655hr7deU1XP/85z81ceJE/e53v1OjRo3kcrl0+PBhPfzww+rUqZOaNGkip9OpAQMG6Msvv6yy3pKSEk2ePFmXXnqp/Pz8FBERoUGDBmn37t2yLEutWrXSTTfdVO1ygYGB+tOf/lTDIymFhYXJ39+/xvVAbTTwdANAXXP55ZcrKChI69at04033ihJ+uSTT+Tl5aUvv/xSLpdLTqdTFRUVWr9+ve6++25J0htvvKGUlBQlJSXp+eef188//6y5c+eqV69e+uKLL9SqVatTbnPUqFFatmyZRowYoe7du2vt2rVKTk4+Zf0f//hHRUdHa+rUqdq8ebNeffVVhYaG6vnnn7d7ufPOO9WtWze7vzZt2kiSCgoK1L17dzkcDo0dO1bNmzfXqlWrNGbMGLlcLo0bN07Sr+Gsb9++ysvL0wMPPKDIyEi98cYb+uijj8762N5///0KDw/Xk08+qQ0bNmj+/PkKCgrS+vXr1aJFCz377LN6//339cILL+jyyy/XyJEj7WVfeukl3XjjjRo+fLjKysr0z3/+U7feeqtWrlxpH6vt27fr+uuv1xVXXKEpU6bI19dX3333nT777DN7PX/729/0wAMP6JZbbtGDDz6okpISbd26VTk5ObrttttqvC816UeSnnzySU2ePFk9evTQlClT5OPjo5ycHH300Ufq16+fpF+D4h133KHLLrtMEyZMUFBQkL744gtlZGTUqqcTPfXUU/Lx8dHDDz+s0tJS+fj46Ouvv9aKFSt06623Kjo6WgUFBfrrX/+qq6++Wl9//bUiIyMlSeXl5br++uuVlZWloUOH6sEHH9SRI0eUmZmpbdu2qU2bNrr99ts1bdo0HT58WMHBwfZ2//3vf8vlcun2228/q76B884CUGvJyclWt27d7NeDBg2yBg0aZHl7e1urVq2yLMuyNm/ebEmy/vWvf1lHjhyxgoKCrLvuusttPfn5+VZgYKDb+KRJk6wT/2rm5uZakqxx48a5LTtq1ChLkjVp0qQqy95xxx1utTfffLPVrFkzt7HGjRtbKSkpVfZtzJgxVkREhHXw4EG38aFDh1qBgYHWzz//bFmWZc2cOdOSZC1btsyuKS4uttq2bWtJstasWVNl3aeyYMECS5KVlJRkVVRU2OPx8fGWw+Gw7rnnHnvs+PHj1iWXXGJdffXVbuuo7KtSWVmZdfnll1vXXnutPTZjxgxLknXgwIFT9nLTTTdZl112WY17P5Wa9LNr1y7Ly8vLuvnmm63y8nK3+srjUFhYaAUEBFhxcXHWL7/8Um2NZVlWy5Ytq/3zvPrqq92O1Zo1ayxJVuvWrav0WFJSUqWPPXv2WL6+vtaUKVPssddff92SZE2fPr3K9ip72rlzpyXJmjt3rtv8G2+80WrVqpVb77WRmppq8dGF84mvxoCzkJCQoM2bN6u4uFiS9Omnn+q6665Tly5d9Mknn0j69SyRw+FQr169lJmZqcLCQg0bNkwHDx60J29vb8XFxWnNmjWn3FZGRoYk6b777nMbv//++0+5zD333FOl30OHDsnlcp12vyzL0ttvv60bbrhBlmW59ZqUlKSioiJt3rxZ0q8XsEZEROiWW26xl2/UqJF9hulsjBkzxu1rwbi4OFmWpTFjxthj3t7e6tq1q/7zn/+4LXviVyf/+9//VFRUZP85VQoKCpIk/etf/zrlNTFBQUH68ccf9fnnn5/1ftS0nxUrVqiiokLp6eny8nL/57jyOGRmZurIkSN67LHHqlw7di53T6WkpFT5usnX19fuo7y8XIcOHbK/Pjyx77ffflshISHVvgcre7r00ksVFxenJUuW2PMOHz6sVatWafjw4dz5hYsGQQg4CwkJCTp+/Liys7O1c+dO7d+/XwkJCerdu7dbEIqJiVFwcLB27dolSbr22mvVvHlzt2n16tXav3//Kbf1ww8/yMvLS9HR0W7jbdu2PeUyLVq0cHvdtGlTSb9+IJ/OgQMHVFhYqPnz51fpc/To0ZJk9/rDDz+obdu2VT7Q2rdvf9ptnM7JfQcGBkqSoqKiqoyfvC8rV65U9+7d5efnp+DgYDVv3lxz585VUVGRXTNkyBD17NlTd955p8LCwjR06FAtW7bMLRT9+c9/VpMmTdStWze1a9dOqampbl+d1VRN+tm9e7e8vLwUExNzyvXs3r1b0q9fyZ5PJ7+fJKmiokIzZsxQu3bt5Ovrq5CQEDVv3lxbt26t0nf79u3VoMHpr64YOXKkPvvsM/3www+SpOXLl+vYsWMaMWLEed0X4FxwjRBwFrp27So/Pz+tW7dOLVq0UGhoqC699FIlJCRozpw5Ki0t1SeffKKbb75ZkuwP2jfeeEPh4eFV1nemD5Ta8vb2rnbcOukC45NV9nn77bcrJSWl2porrrji3Jo7jVP1Xd34ifvyySef6MYbb1Tv3r01Z84cRUREqGHDhlqwYIHbBcX+/v5at26d1qxZo/fee08ZGRlaunSprr32Wq1evVre3t7q2LGjdu7cqZUrVyojI0Nvv/225syZo/T0dD355JM12o+a9nM+neoMS3l5ebXHr7qLj5999ln95S9/0R133KGnnnpKwcHB8vLy0rhx487qrrKhQ4dq/PjxWrJkiR5//HEtXrxYXbt2PaewDJxvBCHgLPj4+Khbt2765JNP1KJFCyUkJEj69UxRaWmplixZooKCAvXu3VvS/78QOTQ0VImJibXaVsuWLVVRUaE9e/aoXbt29vh33313TvtQ3Qdn8+bNFRAQoPLy8jP22bJlS23btk2WZbmta+fOnefU19l4++235efnpw8++EC+vr72+IIFC6rUenl5qW/fvurbt6+mT5+uZ599Vk888YTWrFlj73Pjxo01ZMgQDRkyRGVlZRo0aJCeeeYZTZgwoUaPNqhpP23atFFFRYW+/vprdenSpdp1Vb53tm3bdtqzgE2bNlVhYWGV8R9++KHGz95566231KdPH7322mtu44WFhQoJCXHrKScnR8eOHVPDhg1Pub7g4GAlJydryZIlGj58uD777DPNnDmzRr0AvxW+GgPOUkJCgnJycrRmzRo7CIWEhKhjx4723VmV40lJSXI6nXr22Wd17NixKus6cODAKbeTlJQkSZozZ47b+CuvvHJO/Tdu3LjKB6e3t7cGDx6st99+W9u2bTttn9ddd5327dvndkv4zz//rPnz559TX2fD29tbDodD5eXl9tj3339f5YGRhw8frrJsZQCpvO3/0KFDbvN9fHwUExMjy7Kq/bM7l34GDhwoLy8vTZkypcoZl8ozXv369VNAQICmTp2qkpKSamukX8PJhg0bVFZWZo+tXLlSe/furVHPlX2ffNZw+fLl+u9//+s2NnjwYB08eFCzZs2qso6Tlx8xYoS+/vprPfLII/L29tbQoUNr3A/wW+CMEHCWEhIS9Mwzz2jv3r124JGk3r17669//atatWqlSy65RJLkdDo1d+5cjRgxQldeeaWGDh2q5s2bKy8vT++995569uxZ7YeKJMXGxmrw4MGaOXOmDh06ZN8+/+2330o6+wtmY2Nj9eGHH2r69OmKjIxUdHS04uLi9Nxzz2nNmjWKi4vTXXfdpZiYGB0+fFibN2/Whx9+aIeJu+66S7NmzdLIkSOVm5uriIgIvfHGG2rUqNFZ9XMukpOTNX36dPXv31+33Xab9u/fr9mzZ6tt27baunWrXTdlyhStW7dOycnJatmypfbv3685c+bokksuUa9evST9GjzCw8PVs2dPhYWF6ZtvvtGsWbOUnJysgICA89pP27Zt9cQTT+ipp55SQkKCBg0aJF9fX33++eeKjIzU1KlT5XQ6NWPGDN1555266qqrdNttt6lp06b68ssv9fPPP2vRokWSpDvvvFNvvfWW+vfvrz/+8Y/avXu3Fi9ebJ9Rqonrr79eU6ZM0ejRo9WjRw999dVXWrJkSZUzSiNHjtTf//53paWlaePGjUpISFBxcbE+/PBD3XfffW7PD0pOTlazZs20fPlyDRgwQKGhoTXup9IPP/ygN954Q5K0adMmSdLTTz8t6dczk1xzhHPiobvVgDrP5XJZ3t7eVkBAgHX8+HF7fPHixZYka8SIEVWWWbNmjZWUlGQFBgZafn5+Vps2baxRo0ZZmzZtsmtOvn3esn69LT01NdUKDg62mjRpYg0cONC+Pfm5556rsuzJt4dX3p6+Z88ee2zHjh1W7969LX9/f0uS263XBQUFVmpqqhUVFWU1bNjQCg8Pt/r27WvNnz/fbb0//PCDdeONN1qNGjWyQkJCrAcffNDKyMg469vnP//8c7fxU+1PSkqK1bhxY7ex1157zWrXrp3l6+trdejQwVqwYEGVY5mVlWXddNNNVmRkpOXj42NFRkZaw4YNs7799lu75q9//avVu3dvq1mzZpavr6/Vpk0b65FHHrGKiopqvD817afS66+/bv3+97+3fH19raZNm1pXX321lZmZ6Vbz7rvvWj169LD8/f0tp9NpdevWzfrHP/7hVvPiiy9av/vd7yxfX1+rZ8+e1qZNm055+/zy5cur9FFSUmI99NBDVkREhOXv72/17NnTys7OrrIOy/r18QBPPPGEFR0dbb9HbrnlFmv37t1V1nvfffdZkqw333yzFkfw/6vsubrp5L6A2nJY1hmungRwUdqyZYt+//vfa/HixRo+fLin2wFOafz48XrttdeUn5/vkTOGwOlwjRBQB1T3I6wzZ86Ul5eXfUE2cDEqKSnR4sWLNXjwYEIQLkpcIwTUAdOmTVNubq769OmjBg0aaNWqVVq1apXuvvvuKs/YuZj88ssvbs+fqU5wcLB8fHx+o47OTXl5+WkvbJekJk2aqEmTJr9RRxev/fv368MPP9Rbb72lQ4cO6cEHH6xSc+DAAbcLyk/m4+Pj9vMcwAXh6e/mAJzZ6tWrrZ49e1pNmza1GjZsaLVp08aaPHmydezYMU+3dlqV1/6cbqrNtUSetmfPnjPuz4k/eWKyyut6QkNDrVdeeaXampYtW572WHL9D34LXCME4IL56aeftH379tPWxMbG2k++vtiVlJTo008/PW1N69ata/zcHtN99tln1X7tW6lp06aKjY39DTuCiQhCAADAWFwsDQAAjMXF0qdRUVGhffv2KSAggF9KBgCgjrAsS0eOHFFkZKS8vE5/zocgdBr79u27qO/IAQAAp7Z37177Cf+nQhA6jcrH6e/du1dOp9PD3QAAgJpwuVyKioqq0c/iEIROo/LrMKfTSRACAKCOqcllLVwsDQAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCsBp5uAAA8Zs1UT3dQe30meLoDoF7hjBAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwVq2C0NSpU3XVVVcpICBAoaGhGjhwoHbu3OlWU1JSotTUVDVr1kxNmjTR4MGDVVBQ4FaTl5en5ORkNWrUSKGhoXrkkUd0/Phxt5qPP/5YV155pXx9fdW2bVstXLiwSj+zZ89Wq1at5Ofnp7i4OG3cuLHWvQAAAHPVKgitXbtWqamp2rBhgzIzM3Xs2DH169dPxcXFds348eP173//W8uXL9fatWu1b98+DRo0yJ5fXl6u5ORklZWVaf369Vq0aJEWLlyo9PR0u2bPnj1KTk5Wnz59tGXLFo0bN0533nmnPvjgA7tm6dKlSktL06RJk7R582Z17txZSUlJ2r9/f417AQAAZnNYlmWd7cIHDhxQaGio1q5dq969e6uoqEjNmzfXm2++qVtuuUWStGPHDnXs2FHZ2dnq3r27Vq1apeuvv1779u1TWFiYJGnevHn685//rAMHDsjHx0d//vOf9d5772nbtm32toYOHarCwkJlZGRIkuLi4nTVVVdp1qxZkqSKigpFRUXp/vvv12OPPVajXs7E5XIpMDBQRUVFcjqdZ3uYAFys1kz1dAe112eCpzsALnq1+fw+p2uEioqKJEnBwcGSpNzcXB07dkyJiYl2TYcOHdSiRQtlZ2dLkrKzs9WpUyc7BElSUlKSXC6Xtm/fbtecuI7Kmsp1lJWVKTc3163Gy8tLiYmJdk1NejlZaWmpXC6X2wQAAOqvsw5CFRUVGjdunHr27KnLL79ckpSfny8fHx8FBQW51YaFhSk/P9+uOTEEVc6vnHe6GpfLpV9++UUHDx5UeXl5tTUnruNMvZxs6tSpCgwMtKeoqKgaHg0AAFAXnXUQSk1N1bZt2/TPf/7zfPbjURMmTFBRUZE97d2719MtAQCAC6jB2Sw0duxYrVy5UuvWrdMll1xij4eHh6usrEyFhYVuZ2IKCgoUHh5u15x8d1flnVwn1px8d1dBQYGcTqf8/f3l7e0tb2/vamtOXMeZejmZr6+vfH19a3EkAABAXVarM0KWZWns2LF655139NFHHyk6OtptfmxsrBo2bKisrCx7bOfOncrLy1N8fLwkKT4+Xl999ZXb3V2ZmZlyOp2KiYmxa05cR2VN5Tp8fHwUGxvrVlNRUaGsrCy7pia9AAAAs9XqjFBqaqrefPNN/etf/1JAQIB9rU1gYKD8/f0VGBioMWPGKC0tTcHBwXI6nbr//vsVHx9v36XVr18/xcTEaMSIEZo2bZry8/M1ceJEpaam2mdj7rnnHs2aNUuPPvqo7rjjDn300UdatmyZ3nvvPbuXtLQ0paSkqGvXrurWrZtmzpyp4uJijR492u7pTL0AAACz1SoIzZ07V5J0zTXXuI0vWLBAo0aNkiTNmDFDXl5eGjx4sEpLS5WUlKQ5c+bYtd7e3lq5cqXuvfdexcfHq3HjxkpJSdGUKVPsmujoaL333nsaP368XnrpJV1yySV69dVXlZSUZNcMGTJEBw4cUHp6uvLz89WlSxdlZGS4XUB9pl4AAIDZzuk5QvUdzxEC6jmeIwTUS7/Zc4QAAADqMoIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxmrg6QYA1A8zMr/1dAu11j3vkOJbN/N0GwA8iDNCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGKvWQWjdunW64YYbFBkZKYfDoRUrVrjNHzVqlBwOh9vUv39/t5rDhw9r+PDhcjqdCgoK0pgxY3T06FG3mq1btyohIUF+fn6KiorStGnTqvSyfPlydejQQX5+furUqZPef/99t/mWZSk9PV0RERHy9/dXYmKidu3aVdtdBgAA9VStg1BxcbE6d+6s2bNnn7Kmf//++umnn+zpH//4h9v84cOHa/v27crMzNTKlSu1bt063X333fZ8l8ulfv36qWXLlsrNzdULL7ygyZMna/78+XbN+vXrNWzYMI0ZM0ZffPGFBg4cqIEDB2rbtm12zbRp0/Tyyy9r3rx5ysnJUePGjZWUlKSSkpLa7jYAAKiHHJZlWWe9sMOhd955RwMHDrTHRo0apcLCwipniip98803iomJ0eeff66uXbtKkjIyMnTdddfpxx9/VGRkpObOnasnnnhC+fn58vHxkSQ99thjWrFihXbs2CFJGjJkiIqLi7Vy5Up73d27d1eXLl00b948WZalyMhIPfTQQ3r44YclSUVFRQoLC9PChQs1dOjQM+6fy+VSYGCgioqK5HQ6z+YQAcaYkfmtp1uote558xXfupmn26idPhM83QFw0avN5/cFuUbo448/VmhoqNq3b697771Xhw4dsudlZ2crKCjIDkGSlJiYKC8vL+Xk5Ng1vXv3tkOQJCUlJWnnzp363//+Z9ckJia6bTcpKUnZ2dmSpD179ig/P9+tJjAwUHFxcXbNyUpLS+VyudwmAABQf533INS/f3/9/e9/V1ZWlp5//nmtXbtWAwYMUHl5uSQpPz9foaGhbss0aNBAwcHBys/Pt2vCwsLcaipfn6nmxPknLlddzcmmTp2qwMBAe4qKiqr1/gMAgLqjwfle4YlfOXXq1ElXXHGF2rRpo48//lh9+/Y935s7ryZMmKC0tDT7tcvlIgwBAFCPXfDb51u3bq2QkBB99913kqTw8HDt37/freb48eM6fPiwwsPD7ZqCggK3msrXZ6o5cf6Jy1VXczJfX185nU63CQAA1F8XPAj9+OOPOnTokCIiIiRJ8fHxKiwsVG5url3z0UcfqaKiQnFxcXbNunXrdOzYMbsmMzNT7du3V9OmTe2arKwst21lZmYqPj5ekhQdHa3w8HC3GpfLpZycHLsGAACYrdZB6OjRo9qyZYu2bNki6deLkrds2aK8vDwdPXpUjzzyiDZs2KDvv/9eWVlZuummm9S2bVslJSVJkjp27Kj+/fvrrrvu0saNG/XZZ59p7NixGjp0qCIjIyVJt912m3x8fDRmzBht375dS5cu1UsvveT2tdWDDz6ojIwMvfjii9qxY4cmT56sTZs2aezYsZJ+vaNt3Lhxevrpp/Xuu+/qq6++0siRIxUZGel2lxsAADBXra8R2rRpk/r06WO/rgwnKSkpmjt3rrZu3apFixapsLBQkZGR6tevn5566in5+vrayyxZskRjx45V37595eXlpcGDB+vll1+25wcGBmr16tVKTU1VbGysQkJClJ6e7vasoR49eujNN9/UxIkT9fjjj6tdu3ZasWKFLr/8crvm0UcfVXFxse6++24VFhaqV69eysjIkJ+fX213GwAA1EPn9Byh+o7nCAE1x3OEfiM8Rwg4I48/RwgAAKAuIAgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxqp1EFq3bp1uuOEGRUZGyuFwaMWKFW7zLctSenq6IiIi5O/vr8TERO3atcut5vDhwxo+fLicTqeCgoI0ZswYHT161K1m69atSkhIkJ+fn6KiojRt2rQqvSxfvlwdOnSQn5+fOnXqpPfff7/WvQAAAHPVOggVFxerc+fOmj17drXzp02bppdfflnz5s1TTk6OGjdurKSkJJWUlNg1w4cP1/bt25WZmamVK1dq3bp1uvvuu+35LpdL/fr1U8uWLZWbm6sXXnhBkydP1vz58+2a9evXa9iwYRozZoy++OILDRw4UAMHDtS2bdtq1QsAADCXw7Is66wXdjj0zjvvaODAgZJ+PQMTGRmphx56SA8//LAkqaioSGFhYVq4cKGGDh2qb775RjExMfr888/VtWtXSVJGRoauu+46/fjjj4qMjNTcuXP1xBNPKD8/Xz4+PpKkxx57TCtWrNCOHTskSUOGDFFxcbFWrlxp99O9e3d16dJF8+bNq1EvZ+JyuRQYGKiioiI5nc6zPUyAEWZkfuvpFmqte958xbdu5uk2aqfPBE93AFz0avP5fV6vEdqzZ4/y8/OVmJhojwUGBiouLk7Z2dmSpOzsbAUFBdkhSJISExPl5eWlnJwcu6Z37952CJKkpKQk7dy5U//73//smhO3U1lTuZ2a9HKy0tJSuVwutwkAANRf5zUI5efnS5LCwsLcxsPCwux5+fn5Cg0NdZvfoEEDBQcHu9VUt44Tt3GqmhPnn6mXk02dOlWBgYH2FBUVVYO9BgAAdRV3jZ1gwoQJKioqsqe9e/d6uiUAAHABndcgFB4eLkkqKChwGy8oKLDnhYeHa//+/W7zjx8/rsOHD7vVVLeOE7dxqpoT55+pl5P5+vrK6XS6TQAAoP46r0EoOjpa4eHhysrKssdcLpdycnIUHx8vSYqPj1dhYaFyc3Ptmo8++kgVFRWKi4uza9atW6djx47ZNZmZmWrfvr2aNm1q15y4ncqayu3UpBcAAGC2Wgeho0ePasuWLdqyZYukXy9K3rJli/Ly8uRwODRu3Dg9/fTTevfdd/XVV19p5MiRioyMtO8s69ixo/r376+77rpLGzdu1GeffaaxY8dq6NChioyMlCTddttt8vHx0ZgxY7R9+3YtXbpUL730ktLS0uw+HnzwQWVkZOjFF1/Ujh07NHnyZG3atEljx46VpBr1AgAAzNagtgts2rRJffr0sV9XhpOUlBQtXLhQjz76qIqLi3X33XersLBQvXr1UkZGhvz8/OxllixZorFjx6pv377y8vLS4MGD9fLLL9vzAwMDtXr1aqWmpio2NlYhISFKT093e9ZQjx499Oabb2rixIl6/PHH1a5dO61YsUKXX365XVOTXgAAgLnO6TlC9R3PEQJqjucI/UZ4jhBwRh57jhAAAEBdQhACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYDTzdAAB4UvZ/Dnm6hVrZcPxbjf/DpZ5uA6g3OCMEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLHOexCaPHmyHA6H29ShQwd7fklJiVJTU9WsWTM1adJEgwcPVkFBgds68vLylJycrEaNGik0NFSPPPKIjh8/7lbz8ccf68orr5Svr6/atm2rhQsXVull9uzZatWqlfz8/BQXF6eNGzee790FAAB12AU5I3TZZZfpp59+sqdPP/3Unjd+/Hj9+9//1vLly7V27Vrt27dPgwYNsueXl5crOTlZZWVlWr9+vRYtWqSFCxcqPT3drtmzZ4+Sk5PVp08fbdmyRePGjdOdd96pDz74wK5ZunSp0tLSNGnSJG3evFmdO3dWUlKS9u/ffyF2GQAA1EEXJAg1aNBA4eHh9hQSEiJJKioq0muvvabp06fr2muvVWxsrBYsWKD169drw4YNkqTVq1fr66+/1uLFi9WlSxcNGDBATz31lGbPnq2ysjJJ0rx58xQdHa0XX3xRHTt21NixY3XLLbdoxowZdg/Tp0/XXXfdpdGjRysmJkbz5s1To0aN9Prrr1+IXQYAAHXQBQlCu3btUmRkpFq3bq3hw4crLy9PkpSbm6tjx44pMTHRru3QoYNatGih7OxsSVJ2drY6deqksLAwuyYpKUkul0vbt2+3a05cR2VN5TrKysqUm5vrVuPl5aXExES7pjqlpaVyuVxuEwAAqL/OexCKi4vTwoULlZGRoblz52rPnj1KSEjQkSNHlJ+fLx8fHwUFBbktExYWpvz8fElSfn6+WwiqnF8573Q1LpdLv/zyiw4ePKjy8vJqayrXUZ2pU6cqMDDQnqKios7qGAAAgLqhwfle4YABA+z/vuKKKxQXF6eWLVtq2bJl8vf3P9+bO68mTJigtLQ0+7XL5SIMAQBQj13w2+eDgoJ06aWX6rvvvlN4eLjKyspUWFjoVlNQUKDw8HBJUnh4eJW7yCpfn6nG6XTK399fISEh8vb2rramch3V8fX1ldPpdJsAAED9dcGD0NGjR7V7925FREQoNjZWDRs2VFZWlj1/586dysvLU3x8vCQpPj5eX331ldvdXZmZmXI6nYqJibFrTlxHZU3lOnx8fBQbG+tWU1FRoaysLLsGAADgvAehhx9+WGvXrtX333+v9evX6+abb5a3t7eGDRumwMBAjRkzRmlpaVqzZo1yc3M1evRoxcfHq3v37pKkfv36KSYmRiNGjNCXX36pDz74QBMnTlRqaqp8fX0lSffcc4/+85//6NFHH9WOHTs0Z84cLVu2TOPHj7f7SEtL09/+9jctWrRI33zzje69914VFxdr9OjR53uXAQBAHXXerxH68ccfNWzYMB06dEjNmzdXr169tGHDBjVv3lySNGPGDHl5eWnw4MEqLS1VUlKS5syZYy/v7e2tlStX6t5771V8fLwaN26slJQUTZkyxa6Jjo7We++9p/Hjx+ull17SJZdcoldffVVJSUl2zZAhQ3TgwAGlp6crPz9fXbp0UUZGRpULqAEAgLkclmVZnm7iYuVyuRQYGKiioiKuFwLOYEbmt55uoda65833dAu1tqHF3Rr/h0s93QZwUavN5ze/NQYAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsRp4ugEAQM11z5uv7Nc83UXtxY/5P0+3AFSLM0IAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFg8WRoAcMFlv/awp1uoNZ6GbQbOCAEAAGMRhAAAgLH4agwAgGrMyPzW0y3U2vg/XOrpFuocghAAANXonjff0y2cBa5rqi2+GgMAAMbijBCA86Ju/t8zANNxRggAABiLM0IAANQTPK+p9jgjBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGMiIIzZ49W61atZKfn5/i4uK0ceNGT7cEAAAuAvX+t8aWLl2qtLQ0zZs3T3FxcZo5c6aSkpK0c+dOhYaGero9oFp18feCAKAucliWZXm6iQspLi5OV111lWbNmiVJqqioUFRUlO6//3499thjp13W5XIpMDBQRUVFcjqdv0W7uAAIFQBw8boQP7pam8/ven1GqKysTLm5uZowYYI95uXlpcTERGVnZ1epLy0tVWlpqf26qKhI0q8H9ELY+PcnLsh6AQCoKy7EZ2zlOmtyrqdeB6GDBw+qvLxcYWFhbuNhYWHasWNHlfqpU6fqySefrDIeFRV1wXoEAMBo98+6YKs+cuSIAgMDT1tTr4NQbU2YMEFpaWn264qKCh0+fFjNmjWTw+HwYGd1g8vlUlRUlPbu3ctXiecRx/XC4LheOBzbC4PjWnOWZenIkSOKjIw8Y229DkIhISHy9vZWQUGB23hBQYHCw8Or1Pv6+srX19dtLCgo6EK2WC85nU7+kl4AHNcLg+N64XBsLwyOa82c6UxQpXp9+7yPj49iY2OVlZVlj1VUVCgrK0vx8fEe7AwAAFwM6vUZIUlKS0tTSkqKunbtqm7dumnmzJkqLi7W6NGjPd0aAADwsHofhIYMGaIDBw4oPT1d+fn56tKlizIyMqpcQI1z5+vrq0mTJlX5ehHnhuN6YXBcLxyO7YXBcb0w6v1zhAAAAE6lXl8jBAAAcDoEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQwnnxzDPPqEePHmrUqNEpn8adl5en5ORkNWrUSKGhoXrkkUd0/Pjx37bROq5Vq1ZyOBxu03PPPefptuqk2bNnq1WrVvLz81NcXJw2btzo6ZbqtMmTJ1d5b3bo0MHTbdVJ69at0w033KDIyEg5HA6tWLHCbb5lWUpPT1dERIT8/f2VmJioXbt2eabZeoAghPOirKxMt956q+69995q55eXlys5OVllZWVav369Fi1apIULFyo9Pf037rTumzJlin766Sd7uv/++z3dUp2zdOlSpaWladKkSdq8ebM6d+6spKQk7d+/39Ot1WmXXXaZ23vz008/9XRLdVJxcbE6d+6s2bNnVzt/2rRpevnllzVv3jzl5OSocePGSkpKUklJyW/caT1hAefRggULrMDAwCrj77//vuXl5WXl5+fbY3PnzrWcTqdVWlr6G3ZYt7Vs2dKaMWOGp9uo87p162alpqbar8vLy63IyEhr6tSpHuyqbps0aZLVuXNnT7dR70iy3nnnHft1RUWFFR4ebr3wwgv2WGFhoeXr62v94x//8ECHdR9nhPCbyM7OVqdOndye6J2UlCSXy6Xt27d7sLO657nnnlOzZs30+9//Xi+88AJfL9ZSWVmZcnNzlZiYaI95eXkpMTFR2dnZHuys7tu1a5ciIyPVunVrDR8+XHl5eZ5uqd7Zs2eP8vPz3d6/gYGBiouL4/17lur9T2zg4pCfn1/lZ00qX+fn53uipTrpgQce0JVXXqng4GCtX79eEyZM0E8//aTp06d7urU64+DBgyovL6/2/bhjxw4PdVX3xcXFaeHChWrfvr1++uknPfnkk0pISNC2bdsUEBDg6fbqjcp/L6t7//Jv6dnhjBBO6bHHHqty8ePJEx8c5642xzktLU3XXHONrrjiCt1zzz168cUX9corr6i0tNTDewHTDRgwQLfeequuuOIKJSUl6f3331dhYaGWLVvm6daA0+KMEE7poYce0qhRo05b07p16xqtKzw8vMpdOQUFBfY8k53LcY6Li9Px48f1/fffq3379hegu/onJCRE3t7e9vuvUkFBgfHvxfMpKChIl156qb777jtPt1KvVL5HCwoKFBERYY8XFBSoS5cuHuqqbiMI4ZSaN2+u5s2bn5d1xcfH65lnntH+/fsVGhoqScrMzJTT6VRMTMx52UZddS7HecuWLfLy8rKPKc7Mx8dHsbGxysrK0sCBAyVJFRUVysrK0tixYz3bXD1y9OhR7d69WyNGjPB0K/VKdHS0wsPDlZWVZQcfl8ulnJycU961i9MjCOG8yMvL0+HDh5WXl6fy8nJt2bJFktS2bVs1adJE/fr1U0xMjEaMGKFp06YpPz9fEydOVGpqqnx9fT3bfB2RnZ2tnJwc9enTRwEBAcrOztb48eN1++23q2nTpp5ur05JS0tTSkqKunbtqm7dumnmzJkqLi7W6NGjPd1anfXwww/rhhtuUMuWLbVv3z5NmjRJ3t7eGjZsmKdbq3OOHj3qdiZtz5492rJli4KDg9WiRQuNGzdOTz/9tNq1a6fo6Gj95S9/UWRkpB3sUUuevm0N9UNKSoolqcq0Zs0au+b777+3BgwYYPn7+1shISHWQw89ZB07dsxzTdcxubm5VlxcnBUYGGj5+flZHTt2tJ599lmrpKTE063VSa+88orVokULy8fHx+rWrZu1YcMGT7dUpw0ZMsSKiIiwfHx8rN/97nfWkCFDrO+++87TbdVJa9asqfbf05SUFMuyfr2F/i9/+YsVFhZm+fr6Wn379rV27tzp2abrMIdlWZanQhgAAIAncdcYAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIz1/wB8TV9runN3KQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARO9JREFUeJzt3XtcFnX+///nBXVdIAqIyGlDxUOaeSpNxNRy5euV0cG01lOKhrq6aCl5ogwPHXR1My1N191Sd9NN3Ta3jwcKSbOSKDEyTV11PdTmhZbClZigML8/ujE/L8EDKiHM4367zS2veb/mfb1mpK5nc80MNsMwDAEAAFiQV2U3AAAAUFkIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQsANZurUqbLZbNe07Q8//HCdu7pymzdvls1m0+bNmyutBwC4UgQhwKJeeuklrVmzprLbAC6puLhYS5cu1UMPPaTIyEj5+fmpRYsWeuGFF3TmzJnKbg/VAEEIuMFMnjxZP//8c4W/D0EIVcHp06c1ZMgQHT9+XCNGjNDcuXPVvn17TZkyRT169BC/LhPX6qbKbgCAp5tuukk33cS/mvj1nDlzRna7XV5eN97/G9vtdn366afq2LGjuW7YsGFq0KCBpkyZovT0dMXGxlZih6jqbryfeuAGt2PHDtlsNr333nvmuqysLNlsNt15550etT169FB0dLT5esOGDercubP8/PxUq1YtxcXFadeuXR7blHWN0M8//6wnn3xSwcHBqlWrlh566CH973//k81m09SpU0v1mJubq8GDByswMFABAQEaMmSITp8+bY7bbDbl5+dr2bJlstlsstlsGjx4sDn+v//9T0888YRCQ0PlcDh0++2368033yz1Pt9995169uwpPz8/hYSEaOzYsSooKLii43i+pUuXymaz6ZNPPtGTTz6punXrKjAwUL///e9VWFio3NxcDRo0SLVr11bt2rU1YcKEUmcC/vSnP6ljx46qU6eOfH191bZtW/3zn/8s9V5paWnq1KmTAgMDVbNmTTVt2lTPPPOMR81rr72m22+/XTVq1FDt2rXVrl07rVixolz7dKX9SNJbb72l9u3bm+/XpUsXffDBBx41GzZs0D333KNatWrJ399fd911l0dPDRo08Pg7LHHvvffq3nvvNV+XXMP19ttva/LkyfrNb36jGjVqyO1268SJExo3bpxatmypmjVryt/fXz169NBXX31Vat4zZ85o6tSpuvXWW+Xj46Pw8HD16tVLBw4ckGEYatCggR5++OEytwsICNDvf//7KzqOdrvdIwSVeOSRRyRJu3fvvqJ5gIvhfzuBcmrRooUCAwO1ZcsWPfTQQ5Kkjz/+WF5eXvrqq6/kdrvl7++v4uJibd26VcOHD5ck/f3vf1d8fLycTqf++Mc/6vTp01q4cKE6deqkL7/8Ug0aNLjoew4ePFirVq3SwIED1aFDB3300UeKi4u7aP3vfvc7RUVFacaMGdq+fbv++te/KiQkRH/84x/NXoYOHar27dub/TVq1EiSlJOTow4dOshms2nUqFGqW7euNmzYoISEBLndbo0ZM0bSL+GsW7duOnLkiJ588klFRETo73//uz788MOrPrajR49WWFiYpk2bps8++0yLFy9WYGCgtm7dqnr16umll17S+vXrNXv2bLVo0UKDBg0yt503b54eeughDRgwQIWFhXr77bf12GOPae3ateax2rVrlx544AG1atVK06dPl8Ph0P79+/Xpp5+a8/zlL3/Rk08+qUcffVRPPfWUzpw5ox07digzM1P9+/e/4n25kn4kadq0aZo6dao6duyo6dOny263KzMzUx9++KG6d+8u6Zeg+MQTT+j2229XcnKyAgMD9eWXXyo1NbVcPZ3v+eefl91u17hx41RQUCC73a5vvvlGa9as0WOPPaaoqCjl5OToz3/+s+655x598803ioiIkCQVFRXpgQceUHp6uvr27aunnnpKP/30k9LS0rRz5041atRIjz/+uGbNmqUTJ04oKCjIfN//+7//k9vt1uOPP35VfZdwuVySpODg4GuaB5ABoNzi4uKM9u3bm6979epl9OrVy/D29jY2bNhgGIZhbN++3ZBk/Pvf/zZ++uknIzAw0Bg2bJjHPC6XywgICPBYP2XKFOP8fzWzsrIMScaYMWM8th08eLAhyZgyZUqpbZ944gmP2kceecSoU6eOxzo/Pz8jPj6+1L4lJCQY4eHhxg8//OCxvm/fvkZAQIBx+vRpwzAMY+7cuYYkY9WqVWZNfn6+0bhxY0OSsWnTplJzX8ySJUsMSYbT6TSKi4vN9TExMYbNZjNGjBhhrjt37pxxyy23GPfcc4/HHCV9lSgsLDRatGhh/Pa3vzXXvfLKK4Yk4/jx4xft5eGHHzZuv/32K+79Yq6kn3379hleXl7GI488YhQVFXnUlxyH3Nxco1atWkZ0dLTx888/l1ljGIZRv379Mv8+77nnHo9jtWnTJkOS0bBhw1I9njlzplQfBw8eNBwOhzF9+nRz3ZtvvmlIMubMmVPq/Up62rt3ryHJWLhwocf4Qw89ZDRo0MCj96sRGxtr+Pv7GydPnrymeQC+GgOuQufOnbV9+3bl5+dLkj755BPdf//9atOmjT7++GNJv5wlstls6tSpk9LS0pSbm6t+/frphx9+MBdvb29FR0dr06ZNF32v1NRUSdIf/vAHj/WjR4++6DYjRowo1e+PP/4ot9t9yf0yDEPvvPOOHnzwQRmG4dGr0+lUXl6etm/fLklav369wsPD9eijj5rb16hRwzzDdDUSEhI8vhaMjo6WYRhKSEgw13l7e6tdu3b673//67Gtr6+v+eeTJ08qLy/P/HsqERgYKEn697//reLi4jJ7CAwM1HfffacvvvjiqvfjSvtZs2aNiouLlZKSUur6nJLjkJaWpp9++kmTJk2Sj49PmTVXIz4+3qNHSXI4HGYfRUVF+vHHH82vD8/v+5133lFwcHCZP4MlPd16662Kjo7W8uXLzbETJ05ow4YNGjBgwDX1/tJLL2njxo2aOXOm+XcKXC2CEHAVOnfurHPnzikjI0N79+7VsWPH1LlzZ3Xp0sUjCDVv3lxBQUHat2+fJOm3v/2t6tat67F88MEHOnbs2EXf6/Dhw/Ly8lJUVJTH+saNG190m3r16nm8rl27tqRfPpAv5fjx48rNzdXixYtL9TlkyBBJMns9fPiwGjduXOoDrWnTppd8j0u5sO+AgABJUmRkZKn1F+7L2rVr1aFDB/n4+CgoKEh169bVwoULlZeXZ9b06dNHd999t4YOHarQ0FD17dtXq1at8ghFEydOVM2aNdW+fXs1adJEiYmJHl+dXakr6efAgQPy8vJS8+bNLzrPgQMHJP3ylez1dOHPk/TLreqvvPKKmjRpIofDoeDgYNWtW1c7duwo1XfTpk0ve1H/oEGD9Omnn+rw4cOSpNWrV+vs2bMaOHDgVfe9cuVKTZ48WQkJCRo5cuRVzwOU4Boh4Cq0a9dOPj4+2rJli+rVq6eQkBDdeuut6ty5s15//XUVFBTo448/Ni/oLPmg/fvf/66wsLBS813vu8S8vb3LXG9c5lbjkj4ff/xxxcfHl1nTqlWra2vuEi7Wd1nrz9+Xjz/+WA899JC6dOmi119/XeHh4br55pu1ZMkSjwuKfX19tWXLFm3atEnr1q1TamqqVq5cqd/+9rf64IMP5O3trdtuu0179+7V2rVrlZqaqnfeeUevv/66UlJSNG3atCvajyvt53q62BmWoqKiMo/fhWeDpF/OtDz33HN64okn9PzzzysoKEheXl4aM2bMRc+gXUrfvn01duxYLV++XM8884zeeusttWvX7qrDclpamgYNGqS4uDgtWrToquYALkQQAq6C3W5X+/bt9fHHH6tevXrq3LmzpF/OFBUUFGj58uXKyclRly5dJP3/FyKHhISU+1bf+vXrq7i4WAcPHlSTJk3M9fv377+mfSjrg7Nu3bqqVauWioqKLttn/fr1tXPnThmG4THX3r17r6mvq/HOO+/Ix8dH77//vhwOh7l+yZIlpWq9vLzUrVs3devWTXPmzNFLL72kZ599Vps2bTL32c/PT3369FGfPn1UWFioXr166cUXX1RycnKpr6eupZ9GjRqpuLhY33zzjdq0aVPmXCU/Ozt37rzkWcDatWsrNze31PrDhw+rYcOGl+1Zkv75z3+qa9eueuONNzzW5+bmelyU3KhRI2VmZurs2bO6+eabLzpfUFCQ4uLitHz5cg0YMECffvqp5s6de0W9XCgzM1OPPPKI2rVrp1WrVvGICVw3fDUGXKXOnTsrMzNTmzZtMoNQcHCwbrvtNvPurJL1TqdT/v7+eumll3T27NlScx0/fvyi7+N0OiVJr7/+usf611577Zr69/PzK/XB6e3trd69e+udd97Rzp07L9nn/fffr++//97jlvDTp09r8eLF19TX1fD29pbNZlNRUZG57tChQ6UeGHnixIlS25YEkJLb/n/88UePcbvdrubNm8swjDL/7q6ln549e8rLy0vTp08vdcal5IxX9+7dVatWLc2YMaPUk5TPPyvWqFEjffbZZyosLDTXrV27Vt9+++0V9VzS94VnDVevXq3//e9/Hut69+6tH374QfPnzy81x4XbDxw4UN98843Gjx8vb29v9e3b94r7KbF7927FxcWpQYMGWrt2bZlns4CrRaQGrlLnzp314osv6ttvvzUDjyR16dJFf/7zn9WgQQPdcsstkiR/f38tXLhQAwcO1J133qm+ffuqbt26OnLkiNatW6e77767zA8VSWrbtq169+6tuXPn6scffzRvn//Pf/4j6eovmG3btq02btyoOXPmKCIiQlFRUYqOjtbMmTO1adMmRUdHa9iwYWrevLlOnDih7du3a+PGjWaYGDZsmObPn69BgwYpKytL4eHh+vvf/64aNWpcVT/XIi4uTnPmzNF9992n/v3769ixY1qwYIEaN26sHTt2mHXTp0/Xli1bFBcXp/r16+vYsWN6/fXXdcstt6hTp06SfgkeYWFhuvvuuxUaGqrdu3dr/vz5iouLU61ata5rP40bN9azzz6r559/Xp07d1avXr3kcDj0xRdfKCIiQjNmzJC/v79eeeUVDR06VHfddZf69++v2rVr66uvvtLp06e1bNkySdLQoUP1z3/+U/fdd59+97vf6cCBA3rrrbfMM0pX4oEHHtD06dM1ZMgQdezYUV9//bWWL19e6ozSoEGD9Le//U1JSUn6/PPP1blzZ+Xn52vjxo36wx/+4PH8oLi4ONWpU0erV69Wjx49FBIScsX9SNJPP/0kp9OpkydPavz48Vq3bp3HeKNGjRQTE1OuOQEPlXS3GlDlud1uw9vb26hVq5Zx7tw5c/1bb71lSDIGDhxYaptNmzYZTqfTCAgIMHx8fIxGjRoZgwcPNrZt22bWXHj7vGH8clt6YmKiERQUZNSsWdPo2bOneXvyzJkzS2174e3hJbenHzx40Fy3Z88eo0uXLoavr68hyePW65ycHCMxMdGIjIw0br75ZiMsLMzo1q2bsXjxYo95Dx8+bDz00ENGjRo1jODgYOOpp54yUlNTr/r2+S+++MJj/cX2Jz4+3vDz8/NY98YbbxhNmjQxHA6H0axZM2PJkiWljmV6errx8MMPGxEREYbdbjciIiKMfv36Gf/5z3/Mmj//+c9Gly5djDp16hgOh8No1KiRMX78eCMvL++K9+dK+ynx5ptvGnfccYfhcDiM2rVrG/fcc4+RlpbmUfPee+8ZHTt2NHx9fQ1/f3+jffv2xj/+8Q+Pmpdfftn4zW9+YzgcDuPuu+82tm3bdtHb51evXl2qjzNnzhhPP/20ER4ebvj6+hp33323kZGRUWoOw/jl8QDPPvusERUVZf6MPProo8aBAwdKzfuHP/zBkGSsWLGiHEfwFwcPHjQkXXQp65EBQHnYDINf1AJURdnZ2brjjjv01ltvacCAAZXdDnBRY8eO1RtvvCGXy1UpZwyBS+EaIaAKKOuXsM6dO1deXl7mBdnAjejMmTN666231Lt3b0IQbkhcIwRUAbNmzVJWVpa6du2qm266SRs2bNCGDRs0fPjwUs/YuZH8/PPPHs+fKUtQUJDsdvuv1NG1KSoquuSF7ZJUs2ZN1axZ81fq6MZ17Ngxbdy4Uf/85z/1448/6qmnnipVc/z4cY8Lyi9kt9s9fj0HUCEq+7s5AJf3wQcfGHfffbdRu3Zt4+abbzYaNWpkTJ061Th79mxlt3ZJJdf+XGopz7VEle1y16vogl95YmUl1yKFhIQYr732Wpk19evXv+SxvPC6JKAicI0QgApz9OhR7dq165I1bdu2NZ98faM7c+aMPvnkk0vWNGzY8Iqf22N1n376aZlf+5aoXbu22rZt+yt2BCsiCAEAAMviYmkAAGBZXCx9CcXFxfr+++9Vq1ata/pNyQAA4NdjGIZ++uknRUREyMvrMud8ynNB0UsvvWS0a9fOqFmzplG3bl3j4YcfNvbs2eNR8/PPPxt/+MMfjKCgIMPPz8/o1auX4XK5PGoOHz5s3H///Yavr69Rt25dY9y4caUu+ty0aZNxxx13GHa73WjUqJGxZMmSUv3Mnz/fqF+/vuFwOIz27dsbmZmZ5e7lUr799tvLXhjJwsLCwsLCcmMu33777WU/68t1Ruijjz5SYmKi7rrrLp07d07PPPOMunfvrm+++UZ+fn6Sfnlw1rp167R69WoFBARo1KhR6tWrlz799FNJv9x+GhcXp7CwMG3dulVHjx7VoEGDdPPNN+ull16SJB08eFBxcXEaMWKEli9frvT0dA0dOlTh4eHm711auXKlkpKStGjRIkVHR2vu3LlyOp3au3ev+Qj3y/VyOSWP0//222/l7+9fnkMFAAAqidvtVmRk5JX9WpwrPj1ShmPHjhmSjI8++sgwDMPIzc01br75Zo9Ht+/evduQZGRkZBiGYRjr1683vLy8PM7MLFy40PD39zcKCgoMwzCMCRMmGLfffrvHe/Xp08dwOp3m6/bt2xuJiYnm66KiIiMiIsKYMWPGFfdyoTNnzhh5eXnmUnJGqLyP1gcAAJUnLy/vij+/r+li6ZIHpZU88CorK0tnz55VbGysWdOsWTPVq1dPGRkZkqSMjAy1bNlSoaGhZo3T6ZTb7TZvs83IyPCYo6SmZI7CwkJlZWV51Hh5eSk2NtasuZJeLjRjxgwFBASYy438oDoAAHDtrjoIFRcXa8yYMbr77rvVokULSZLL5ZLdbldgYKBHbWhoqFwul1lzfggqGS8Zu1SN2+3Wzz//rB9++EFFRUVl1pw/x+V6uVBycrLy8vLM5dtvv73CowEAAKqiq75rLDExUTt37rzsw8WqEofDIYfDUdltAACAX8lVnREaNWqU1q5dq02bNumWW24x14eFhamwsFC5ubke9Tk5OQoLCzNrcnJySo2XjF2qxt/fX76+vgoODpa3t3eZNefPcbleAACAtZUrCBmGoVGjRundd9/Vhx9+qKioKI/xtm3b6uabb1Z6erq5bu/evTpy5IhiYmIkSTExMfr666917NgxsyYtLU3+/v5q3ry5WXP+HCU1JXPY7Xa1bdvWo6a4uFjp6elmzZX0AgAALK48V2GPHDnSCAgIMDZv3mwcPXrUXE6fPm3WjBgxwqhXr57x4YcfGtu2bTNiYmKMmJgYc/zcuXNGixYtjO7duxvZ2dlGamqqUbduXSM5Odms+e9//2vUqFHDGD9+vLF7925jwYIFhre3t5GammrWvP3224bD4TCWLl1qfPPNN8bw4cONwMBAj7vRLtfL5ZTnqnMAAHBjKM/nd7mCkC7ywKLzH3ZY8hDD2rVrGzVq1DAeeeQR4+jRox7zHDp0yOjRo4fh6+trBAcHG08//XSZD1Rs06aNYbfbjYYNG5b5QMXXXnvNqFevnmG324327dsbn332mcf4lfRyKQQhAACqnvJ8fvNLVy/B7XYrICBAeXl5PFARAIAqojyf3/zSVQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFkEIQAAYFlX/bvGAMDDphmV3UH5dU2u7A4AVDLOCAEAAMsiCAEAAMviqzEA10XGf3+s7BbKLaZrZXcAoLJxRggAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFgWQQgAAFhWuYPQli1b9OCDDyoiIkI2m01r1qzxGLfZbGUus2fPNmsaNGhQanzmzJke8+zYsUOdO3eWj4+PIiMjNWvWrFK9rF69Ws2aNZOPj49atmyp9evXe4wbhqGUlBSFh4fL19dXsbGx2rdvX3l3GQAAVFPlDkL5+flq3bq1FixYUOb40aNHPZY333xTNptNvXv39qibPn26R93o0aPNMbfbre7du6t+/frKysrS7NmzNXXqVC1evNis2bp1q/r166eEhAR9+eWX6tmzp3r27KmdO3eaNbNmzdKrr76qRYsWKTMzU35+fnI6nTpz5kx5dxsAAFRDN5V3gx49eqhHjx4XHQ8LC/N4/e9//1tdu3ZVw4YNPdbXqlWrVG2J5cuXq7CwUG+++absdrtuv/12ZWdna86cORo+fLgkad68ebrvvvs0fvx4SdLzzz+vtLQ0zZ8/X4sWLZJhGJo7d64mT56shx9+WJL0t7/9TaGhoVqzZo369u1b3l0HAADVTIVeI5STk6N169YpISGh1NjMmTNVp04d3XHHHZo9e7bOnTtnjmVkZKhLly6y2+3mOqfTqb179+rkyZNmTWxsrMecTqdTGRkZkqSDBw/K5XJ51AQEBCg6OtqsuVBBQYHcbrfHAgAAqq9ynxEqj2XLlqlWrVrq1auXx/onn3xSd955p4KCgrR161YlJyfr6NGjmjNnjiTJ5XIpKirKY5vQ0FBzrHbt2nK5XOa682tcLpdZd/52ZdVcaMaMGZo2bdpV7i0AAKhqKjQIvfnmmxowYIB8fHw81iclJZl/btWqlex2u37/+99rxowZcjgcFdnSJSUnJ3v05na7FRkZWWn9AACAilVhX419/PHH2rt3r4YOHXrZ2ujoaJ07d06HDh2S9Mt1Rjk5OR41Ja9Lriu6WM354+dvV1bNhRwOh/z9/T0WAABQfVVYEHrjjTfUtm1btW7d+rK12dnZ8vLyUkhIiCQpJiZGW7Zs0dmzZ82atLQ0NW3aVLVr1zZr0tPTPeZJS0tTTEyMJCkqKkphYWEeNW63W5mZmWYNAACwtnJ/NXbq1Cnt37/ffH3w4EFlZ2crKChI9erVk/RL4Fi9erVefvnlUttnZGQoMzNTXbt2Va1atZSRkaGxY8fq8ccfN0NO//79NW3aNCUkJGjixInauXOn5s2bp1deecWc56mnntI999yjl19+WXFxcXr77be1bds28xZ7m82mMWPG6IUXXlCTJk0UFRWl5557ThEREerZs2d5dxsAAFRD5Q5C27ZtU9euXc3XJdfUxMfHa+nSpZKkt99+W4ZhqF+/fqW2dzgcevvttzV16lQVFBQoKipKY8eO9bg2JyAgQB988IESExPVtm1bBQcHKyUlxbx1XpI6duyoFStWaPLkyXrmmWfUpEkTrVmzRi1atDBrJkyYoPz8fA0fPly5ubnq1KmTUlNTS12zBAAArMlmGIZR2U3cqNxutwICApSXl8f1QsBlZLwxrrJbKLeYhD9VdgsAKkB5Pr/5XWMAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyyh2EtmzZogcffFARERGy2Wxas2aNx/jgwYNls9k8lvvuu8+j5sSJExowYID8/f0VGBiohIQEnTp1yqNmx44d6ty5s3x8fBQZGalZs2aV6mX16tVq1qyZfHx81LJlS61fv95j3DAMpaSkKDw8XL6+voqNjdW+ffvKu8sAAKCaKncQys/PV+vWrbVgwYKL1tx33306evSoufzjH//wGB8wYIB27dqltLQ0rV27Vlu2bNHw4cPNcbfbre7du6t+/frKysrS7NmzNXXqVC1evNis2bp1q/r166eEhAR9+eWX6tmzp3r27KmdO3eaNbNmzdKrr76qRYsWKTMzU35+fnI6nTpz5kx5dxsAAFRDNsMwjKve2GbTu+++q549e5rrBg8erNzc3FJnikrs3r1bzZs31xdffKF27dpJklJTU3X//ffru+++U0REhBYuXKhnn31WLpdLdrtdkjRp0iStWbNGe/bskST16dNH+fn5Wrt2rTl3hw4d1KZNGy1atEiGYSgiIkJPP/20xo0bJ0nKy8tTaGioli5dqr59+152/9xutwICApSXlyd/f/+rOUSAZWS8Ma6yWyi3mIQ/VXYLACpAeT6/K+Qaoc2bNyskJERNmzbVyJEj9eOPP5pjGRkZCgwMNEOQJMXGxsrLy0uZmZlmTZcuXcwQJElOp1N79+7VyZMnzZrY2FiP93U6ncrIyJAkHTx4UC6Xy6MmICBA0dHRZs2FCgoK5Ha7PRYAAFB9XfcgdN999+lvf/ub0tPT9cc//lEfffSRevTooaKiIkmSy+VSSEiIxzY33XSTgoKC5HK5zJrQ0FCPmpLXl6s5f/z87cqqudCMGTMUEBBgLpGRkeXefwAAUHXcdL0nPP8rp5YtW6pVq1Zq1KiRNm/erG7dul3vt7uukpOTlZSUZL52u92EIQAAqrEKv32+YcOGCg4O1v79+yVJYWFhOnbsmEfNuXPndOLECYWFhZk1OTk5HjUlry9Xc/74+duVVXMhh8Mhf39/jwUAAFRfFR6EvvvuO/34448KDw+XJMXExCg3N1dZWVlmzYcffqji4mJFR0ebNVu2bNHZs2fNmrS0NDVt2lS1a9c2a9LT0z3eKy0tTTExMZKkqKgohYWFedS43W5lZmaaNQAAwNrKHYROnTql7OxsZWdnS/rlouTs7GwdOXJEp06d0vjx4/XZZ5/p0KFDSk9P18MPP6zGjRvL6XRKkm677Tbdd999GjZsmD7//HN9+umnGjVqlPr27auIiAhJUv/+/WW325WQkKBdu3Zp5cqVmjdvnsfXVk899ZRSU1P18ssva8+ePZo6daq2bdumUaNGSfrljrYxY8bohRde0Hvvvaevv/5agwYNUkREhMddbgAAwLrKfY3Qtm3b1LVrV/N1STiJj4/XwoULtWPHDi1btky5ubmKiIhQ9+7d9fzzz8vhcJjbLF++XKNGjVK3bt3k5eWl3r1769VXXzXHAwIC9MEHHygxMVFt27ZVcHCwUlJSPJ411LFjR61YsUKTJ0/WM888oyZNmmjNmjVq0aKFWTNhwgTl5+dr+PDhys3NVadOnZSamiofH5/y7jYAAKiGruk5QtUdzxECrhzPEQJwo6j05wgBAABUBQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhAABgWeUOQlu2bNGDDz6oiIgI2Ww2rVmzxhw7e/asJk6cqJYtW8rPz08REREaNGiQvv/+e485GjRoIJvN5rHMnDnTo2bHjh3q3LmzfHx8FBkZqVmzZpXqZfXq1WrWrJl8fHzUsmVLrV+/3mPcMAylpKQoPDxcvr6+io2N1b59+8q7ywAAoJoqdxDKz89X69attWDBglJjp0+f1vbt2/Xcc89p+/bt+te//qW9e/fqoYceKlU7ffp0HT161FxGjx5tjrndbnXv3l3169dXVlaWZs+eralTp2rx4sVmzdatW9WvXz8lJCToyy+/VM+ePdWzZ0/t3LnTrJk1a5ZeffVVLVq0SJmZmfLz85PT6dSZM2fKu9sAAKAashmGYVz1xjab3n33XfXs2fOiNV988YXat2+vw4cPq169epJ+OSM0ZswYjRkzpsxtFi5cqGeffVYul0t2u12SNGnSJK1Zs0Z79uyRJPXp00f5+flau3atuV2HDh3Upk0bLVq0SIZhKCIiQk8//bTGjRsnScrLy1NoaKiWLl2qvn37Xnb/3G63AgIClJeXJ39//ys5JIBlZbwxrrJbKLeYhD9VdgsAKkB5Pr8r/BqhvLw82Ww2BQYGeqyfOXOm6tSpozvuuEOzZ8/WuXPnzLGMjAx16dLFDEGS5HQ6tXfvXp08edKsiY2N9ZjT6XQqIyNDknTw4EG5XC6PmoCAAEVHR5s1FyooKJDb7fZYAABA9XVTRU5+5swZTZw4Uf369fNIZE8++aTuvPNOBQUFaevWrUpOTtbRo0c1Z84cSZLL5VJUVJTHXKGhoeZY7dq15XK5zHXn17hcLrPu/O3KqrnQjBkzNG3atGvYYwAAUJVUWBA6e/asfve738kwDC1cuNBjLCkpyfxzq1atZLfb9fvf/14zZsyQw+GoqJYuKzk52aM3t9utyMjISusHAABUrAr5aqwkBB0+fFhpaWmX/X4uOjpa586d06FDhyRJYWFhysnJ8agpeR0WFnbJmvPHz9+urJoLORwO+fv7eywAAKD6uu5BqCQE7du3Txs3blSdOnUuu012dra8vLwUEhIiSYqJidGWLVt09uxZsyYtLU1NmzZV7dq1zZr09HSPedLS0hQTEyNJioqKUlhYmEeN2+1WZmamWQMAAKyt3F+NnTp1Svv37zdfHzx4UNnZ2QoKClJ4eLgeffRRbd++XWvXrlVRUZF5PU5QUJDsdrsyMjKUmZmprl27qlatWsrIyNDYsWP1+OOPmyGnf//+mjZtmhISEjRx4kTt3LlT8+bN0yuvvGK+71NPPaV77rlHL7/8suLi4vT2229r27Zt5i32NptNY8aM0QsvvKAmTZooKipKzz33nCIiIi55lxsAALCOcgehbdu2qWvXrubrkmtq4uPjNXXqVL333nuSpDZt2nhst2nTJt17771yOBx6++23NXXqVBUUFCgqKkpjx471uDYnICBAH3zwgRITE9W2bVsFBwcrJSVFw4cPN2s6duyoFStWaPLkyXrmmWfUpEkTrVmzRi1atDBrJkyYoPz8fA0fPly5ubnq1KmTUlNT5ePjU97dBgAA1dA1PUeouuM5QsCV4zlCAG4UN9RzhAAAAG5UBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZBCEAAGBZ5Q5CW7Zs0YMPPqiIiAjZbDatWbPGY9wwDKWkpCg8PFy+vr6KjY3Vvn37PGpOnDihAQMGyN/fX4GBgUpISNCpU6c8anbs2KHOnTvLx8dHkZGRmjVrVqleVq9erWbNmsnHx0ctW7bU+vXry90LAACwrnIHofz8fLVu3VoLFiwoc3zWrFl69dVXtWjRImVmZsrPz09Op1NnzpwxawYMGKBdu3YpLS1Na9eu1ZYtWzR8+HBz3O12q3v37qpfv76ysrI0e/ZsTZ06VYsXLzZrtm7dqn79+ikhIUFffvmlevbsqZ49e2rnzp3l6gUAAFiXzTAM46o3ttn07rvvqmfPnpJ+OQMTERGhp59+WuPGjZMk5eXlKTQ0VEuXLlXfvn21e/duNW/eXF988YXatWsnSUpNTdX999+v7777ThEREVq4cKGeffZZuVwu2e12SdKkSZO0Zs0a7dmzR5LUp08f5efna+3atWY/HTp0UJs2bbRo0aIr6uVy3G63AgIClJeXJ39//6s9TIAlZLwxrrJbKLeYhD9VdgsAKkB5Pr+v6zVCBw8elMvlUmxsrLkuICBA0dHRysjIkCRlZGQoMDDQDEGSFBsbKy8vL2VmZpo1Xbp0MUOQJDmdTu3du1cnT540a85/n5Kakve5kl4uVFBQILfb7bEAAIDq67oGIZfLJUkKDQ31WB8aGmqOuVwuhYSEeIzfdNNNCgoK8qgpa47z3+NiNeePX66XC82YMUMBAQHmEhkZeQV7DQAAqiruGjtPcnKy8vLyzOXbb7+t7JYAAEAFuq5BKCwsTJKUk5PjsT4nJ8ccCwsL07FjxzzGz507pxMnTnjUlDXH+e9xsZrzxy/Xy4UcDof8/f09FgAAUH1d1yAUFRWlsLAwpaenm+vcbrcyMzMVExMjSYqJiVFubq6ysrLMmg8//FDFxcWKjo42a7Zs2aKzZ8+aNWlpaWratKlq165t1pz/PiU1Je9zJb0AAABrK3cQOnXqlLKzs5WdnS3pl4uSs7OzdeTIEdlsNo0ZM0YvvPCC3nvvPX399dcaNGiQIiIizDvLbrvtNt13330aNmyYPv/8c3366acaNWqU+vbtq4iICElS//79ZbfblZCQoF27dmnlypWaN2+ekpKSzD6eeuoppaam6uWXX9aePXs0depUbdu2TaNGjZKkK+oFAABY203l3WDbtm3q2rWr+boknMTHx2vp0qWaMGGC8vPzNXz4cOXm5qpTp05KTU2Vj4+Puc3y5cs1atQodevWTV5eXurdu7deffVVczwgIEAffPCBEhMT1bZtWwUHByslJcXjWUMdO3bUihUrNHnyZD3zzDNq0qSJ1qxZoxYtWpg1V9ILAACwrmt6jlB1x3OEgCvHc4QA3Cgq7TlCAAAAVQlBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWNZ1D0INGjSQzWYrtSQmJkqS7r333lJjI0aM8JjjyJEjiouLU40aNRQSEqLx48fr3LlzHjWbN2/WnXfeKYfDocaNG2vp0qWlelmwYIEaNGggHx8fRUdH6/PPP7/euwsAAKqw6x6EvvjiCx09etRc0tLSJEmPPfaYWTNs2DCPmlmzZpljRUVFiouLU2FhobZu3aply5Zp6dKlSklJMWsOHjyouLg4de3aVdnZ2RozZoyGDh2q999/36xZuXKlkpKSNGXKFG3fvl2tW7eW0+nUsWPHrvcuAwCAKspmGIZRkW8wZswYrV27Vvv27ZPNZtO9996rNm3aaO7cuWXWb9iwQQ888IC+//57hYaGSpIWLVqkiRMn6vjx47Lb7Zo4caLWrVunnTt3mtv17dtXubm5Sk1NlSRFR0frrrvu0vz58yVJxcXFioyM1OjRozVp0qQr6t3tdisgIEB5eXny9/e/hqMAVH8Zb4yr7BbKLSbhT5XdAoAKUJ7P7wq9RqiwsFBvvfWWnnjiCdlsNnP98uXLFRwcrBYtWig5OVmnT582xzIyMtSyZUszBEmS0+mU2+3Wrl27zJrY2FiP93I6ncrIyDDfNysry6PGy8tLsbGxZk1ZCgoK5Ha7PRYAAFB93VSRk69Zs0a5ubkaPHiwua5///6qX7++IiIitGPHDk2cOFF79+7Vv/71L0mSy+XyCEGSzNcul+uSNW63Wz///LNOnjypoqKiMmv27Nlz0X5nzJihadOmXfX+AgCAqqVCg9Abb7yhHj16KCIiwlw3fPhw888tW7ZUeHi4unXrpgMHDqhRo0YV2c5lJScnKykpyXztdrsVGRlZiR0BAICKVGFB6PDhw9q4caN5pudioqOjJUn79+9Xo0aNFBYWVururpycHElSWFiY+c+SdefX+Pv7y9fXV97e3vL29i6zpmSOsjgcDjkcjivbQQAAUOVV2DVCS5YsUUhIiOLi4i5Zl52dLUkKDw+XJMXExOjrr7/2uLsrLS1N/v7+at68uVmTnp7uMU9aWppiYmIkSXa7XW3btvWoKS4uVnp6ulkDAABQIUGouLhYS5YsUXx8vG666f8/6XTgwAE9//zzysrK0qFDh/Tee+9p0KBB6tKli1q1aiVJ6t69u5o3b66BAwfqq6++0vvvv6/JkycrMTHRPFszYsQI/fe//9WECRO0Z88evf7661q1apXGjh1rvldSUpL+8pe/aNmyZdq9e7dGjhyp/Px8DRkypCJ2GQAAVEEV8tXYxo0bdeTIET3xxBMe6+12uzZu3Ki5c+cqPz9fkZGR6t27tyZPnmzWeHt7a+3atRo5cqRiYmLk5+en+Ph4TZ8+3ayJiorSunXrNHbsWM2bN0+33HKL/vrXv8rpdJo1ffr00fHjx5WSkiKXy6U2bdooNTW11AXUAADAuir8OUJVGc8RAq4czxECcKO4YZ4jBAAAcCMjCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMu6qbIbAIDK8krafyq7hXIb+/9urewWgGqFM0IAAMCyCEIAAMCyCEIAAMCyCEIAAMCyCEIAAMCyuGsMgGV1OLK4slu4Cn+q7AaAaoUzQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLKuexCaOnWqbDabx9KsWTNz/MyZM0pMTFSdOnVUs2ZN9e7dWzk5OR5zHDlyRHFxcapRo4ZCQkI0fvx4nTt3zqNm8+bNuvPOO+VwONS4cWMtXbq0VC8LFixQgwYN5OPjo+joaH3++efXe3cBAEAVViFnhG6//XYdPXrUXD755BNzbOzYsfq///s/rV69Wh999JG+//579erVyxwvKipSXFycCgsLtXXrVi1btkxLly5VSkqKWXPw4EHFxcWpa9euys7O1pgxYzR06FC9//77Zs3KlSuVlJSkKVOmaPv27WrdurWcTqeOHTtWEbsMAACqIJthGMb1nHDq1Klas2aNsrOzS43l5eWpbt26WrFihR599FFJ0p49e3TbbbcpIyNDHTp00IYNG/TAAw/o+++/V2hoqCRp0aJFmjhxoo4fPy673a6JEydq3bp12rlzpzl33759lZubq9TUVElSdHS07rrrLs2fP1+SVFxcrMjISI0ePVqTJk26on1xu90KCAhQXl6e/P39r+WwANVexhvjKrsFS4hJ4DlCwOWU5/O7Qs4I7du3TxEREWrYsKEGDBigI0eOSJKysrJ09uxZxcbGmrXNmjVTvXr1lJGRIUnKyMhQy5YtzRAkSU6nU263W7t27TJrzp+jpKZkjsLCQmVlZXnUeHl5KTY21qwpS0FBgdxut8cCAACqr+sehKKjo7V06VKlpqZq4cKFOnjwoDp37qyffvpJLpdLdrtdgYGBHtuEhobK5XJJklwul0cIKhkvGbtUjdvt1s8//6wffvhBRUVFZdaUzFGWGTNmKCAgwFwiIyOv6hgAAICq4br/io0ePXqYf27VqpWio6NVv359rVq1Sr6+vtf77a6r5ORkJSUlma/dbjdhCACAaqzCb58PDAzUrbfeqv379yssLEyFhYXKzc31qMnJyVFYWJgkKSwsrNRdZCWvL1fj7+8vX19fBQcHy9vbu8yakjnK4nA45O/v77EAAIDqq8KD0KlTp3TgwAGFh4erbdu2uvnmm5Wenm6O7927V0eOHFFMTIwkKSYmRl9//bXH3V1paWny9/dX8+bNzZrz5yipKZnDbrerbdu2HjXFxcVKT083awAAAK57EBo3bpw++ugjHTp0SFu3btUjjzwib29v9evXTwEBAUpISFBSUpI2bdqkrKwsDRkyRDExMerQoYMkqXv37mrevLkGDhyor776Su+//74mT56sxMREORwOSdKIESP03//+VxMmTNCePXv0+uuva9WqVRo7dqzZR1JSkv7yl79o2bJl2r17t0aOHKn8/HwNGTLkeu8yAACooq77NULfffed+vXrpx9//FF169ZVp06d9Nlnn6lu3bqSpFdeeUVeXl7q3bu3CgoK5HQ69frrr5vbe3t7a+3atRo5cqRiYmLk5+en+Ph4TZ8+3ayJiorSunXrNHbsWM2bN0+33HKL/vrXv8rpdJo1ffr00fHjx5WSkiKXy6U2bdooNTW11AXUAADAuq77c4SqE54jBFw5niP06+A5QsDlVfpzhAAAAKoCghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCs6x6EZsyYobvuuku1atVSSEiIevbsqb1793rU3HvvvbLZbB7LiBEjPGqOHDmiuLg41ahRQyEhIRo/frzOnTvnUbN582bdeeedcjgcaty4sZYuXVqqnwULFqhBgwby8fFRdHS0Pv/88+u9ywAAoIq67kHoo48+UmJioj777DOlpaXp7Nmz6t69u/Lz8z3qhg0bpqNHj5rLrFmzzLGioiLFxcWpsLBQW7du1bJly7R06VKlpKSYNQcPHlRcXJy6du2q7OxsjRkzRkOHDtX7779v1qxcuVJJSUmaMmWKtm/frtatW8vpdOrYsWPXe7cBAEAVZDMMw6jINzh+/LhCQkL00UcfqUuXLpJ+OSPUpk0bzZ07t8xtNmzYoAceeEDff/+9QkNDJUmLFi3SxIkTdfz4cdntdk2cOFHr1q3Tzp07ze369u2r3NxcpaamSpKio6N11113af78+ZKk4uJiRUZGavTo0Zo0adJle3e73QoICFBeXp78/f2v5TAA1V7GG+MquwVLiEn4U2W3ANzwyvP5XeHXCOXl5UmSgoKCPNYvX75cwcHBatGihZKTk3X69GlzLCMjQy1btjRDkCQ5nU653W7t2rXLrImNjfWY0+l0KiMjQ5JUWFiorKwsjxovLy/FxsaaNRcqKCiQ2+32WAAAQPV1U0VOXlxcrDFjxujuu+9WixYtzPX9+/dX/fr1FRERoR07dmjixInau3ev/vWvf0mSXC6XRwiSZL52uVyXrHG73fr555918uRJFRUVlVmzZ8+eMvudMWOGpk2bdm07DQAAqowKDUKJiYnauXOnPvnkE4/1w4cPN//csmVLhYeHq1u3bjpw4IAaNWpUkS1dUnJyspKSkszXbrdbkZGRldYPAACoWBUWhEaNGqW1a9dqy5YtuuWWWy5ZGx0dLUnav3+/GjVqpLCwsFJ3d+Xk5EiSwsLCzH+WrDu/xt/fX76+vvL29pa3t3eZNSVzXMjhcMjhcFz5TgIAgCrtugchwzA0evRovfvuu9q8ebOioqIuu012drYkKTw8XJIUExOjF198UceOHVNISIgkKS0tTf7+/mrevLlZs379eo950tLSFBMTI0my2+1q27at0tPT1bNnT0m/fFWXnp6uUaNGXY9dBYBf3Stp/6nsFq7K2P93a2W3AJTpugehxMRErVixQv/+979Vq1Yt85qegIAA+fr66sCBA1qxYoXuv/9+1alTRzt27NDYsWPVpUsXtWrVSpLUvXt3NW/eXAMHDtSsWbPkcrk0efJkJSYmmmdsRowYofnz52vChAl64okn9OGHH2rVqlVat26d2UtSUpLi4+PVrl07tW/fXnPnzlV+fr6GDBlyvXcbAH4VHY4sruwWyu2zesMvXwRUkusehBYuXCjpl1vkz7dkyRINHjxYdrtdGzduNENJZGSkevfurcmTJ5u13t7eWrt2rUaOHKmYmBj5+fkpPj5e06dPN2uioqK0bt06jR07VvPmzdMtt9yiv/71r3I6nWZNnz59dPz4caWkpMjlcqlNmzZKTU0tdQE1AACwpgp/jlBVxnOEgCvHc4RwMZ/VG85XY/hV3VDPEQIAALhREYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBl3VTZDQAAqrcORxYr443K7qJ8Pqs3XGP/362V3QZ+BZwRAgAAlkUQAgAAlkUQAgAAlkUQAgAAlkUQAgAAlsVdYwAAlOGVtP9Udgvlxp1u5UcQAgDgAh2OLK7sFsrts3rDK7uFKomvxgAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGVx1xgAANUAv9z26nBGCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWJYlniO0YMECzZ49Wy6XS61bt9Zrr72m9u3bV3ZbwEVlvDGuslsAAEuo9meEVq5cqaSkJE2ZMkXbt29X69at5XQ6dezYscpuDQAAVLJqf0Zozpw5GjZsmIYMGSJJWrRokdatW6c333xTkyZNquTuqh7OVAAAqpNqHYQKCwuVlZWl5ORkc52Xl5diY2OVkZFRqr6goEAFBQXm67y8PEmS2+2ukP4+/9uzFTIvAABVwZn8UxXyGVsyp2EYl62t1kHohx9+UFFRkUJDQz3Wh4aGas+ePaXqZ8yYoWnTppVaHxkZWWE9AgBgXfP1TAXO/tNPPykgIOCSNdU6CJVXcnKykpKSzNfFxcU6ceKE6tSpI5vNVomdVQ1ut1uRkZH69ttv5e/vX9ntVBsc14rBca0YHNeKwXEtH8Mw9NNPPykiIuKytdU6CAUHB8vb21s5OTke63NychQWFlaq3uFwyOFweKwLDAysyBarJX9/f/5FrQAc14rBca0YHNeKwXG9cpc7E1SiWt81Zrfb1bZtW6Wnp5vriouLlZ6erpiYmErsDAAA3Aiq9RkhSUpKSlJ8fLzatWun9u3ba+7cucrPzzfvIgMAANZV7YNQnz59dPz4caWkpMjlcqlNmzZKTU0tdQE1rp3D4dCUKVNKfb2Ia8NxrRgc14rBca0YHNeKYzOu5N4yAACAaqhaXyMEAABwKQQhAABgWQQhAABgWQQhAABgWQQhAABgWQQhXBcvvviiOnbsqBo1alz0adxHjhxRXFycatSooZCQEI0fP17nzp37dRut4ho0aCCbzeaxzJw5s7LbqpIWLFigBg0ayMfHR9HR0fr8888ru6UqberUqaV+Nps1a1bZbVU5W7Zs0YMPPqiIiAjZbDatWbPGY9wwDKWkpCg8PFy+vr6KjY3Vvn37KqfZaoIghOuisLBQjz32mEaOHFnmeFFRkeLi4lRYWKitW7dq2bJlWrp0qVJSUn7lTqu+6dOn6+jRo+YyevToym6pylm5cqWSkpI0ZcoUbd++Xa1bt5bT6dSxY8cqu7Uq7fbbb/f42fzkk08qu6UqJz8/X61bt9aCBQvKHJ81a5ZeffVVLVq0SJmZmfLz85PT6dSZM2d+5U6rEQO4jpYsWWIEBASUWr9+/XrDy8vLcLlc5rqFCxca/v7+RkFBwa/YYdVWv35945VXXqnsNqq89u3bG4mJiebroqIiIyIiwpgxY0YldlW1TZkyxWjdunVlt1GtSDLeffdd83VxcbERFhZmzJ4921yXm5trOBwO4x//+EcldFg9cEYIv4qMjAy1bNnS44neTqdTbrdbu3btqsTOqp6ZM2eqTp06uuOOOzR79my+XiynwsJCZWVlKTY21lzn5eWl2NhYZWRkVGJnVd++ffsUERGhhg0basCAATpy5Ehlt1StHDx4UC6Xy+NnNyAgQNHR0fzsXoNq/ys2cGNwuVylfq1JyWuXy1UZLVVJTz75pO68804FBQVp69atSk5O1tGjRzVnzpzKbq3K+OGHH1RUVFTmz+OePXsqqauqLzo6WkuXLlXTpk119OhRTZs2TZ07d9bOnTtVq1atym6vWij5b2VZP7v8d/TqcUYIFzVp0qRSFz9euPDBce3Kc5yTkpJ07733qlWrVhoxYoRefvllvfbaayooKKjkvYDV9ejRQ4899phatWolp9Op9evXKzc3V6tWrars1oBL4owQLurpp5/W4MGDL1nTsGHDK5orLCys1F05OTk55piVXctxjo6O1rlz53To0CE1bdq0ArqrfoKDg+Xt7W3+/JXIycmx/M/i9RQYGKhbb71V+/fvr+xWqo2Sn8+cnByFh4eb63NyctSmTZtK6qrqIwjhourWrau6detel7liYmL04osv6tixYwoJCZEkpaWlyd/fX82bN78u71FVXctxzs7OlpeXl3lMcXl2u11t27ZVenq6evbsKUkqLi5Wenq6Ro0aVbnNVSOnTp3SgQMHNHDgwMpupdqIiopSWFiY0tPTzeDjdruVmZl50Tt2cXkEIVwXR44c0YkTJ3TkyBEVFRUpOztbktS4cWPVrFlT3bt3V/PmzTVw4EDNmjVLLpdLkydPVmJiohwOR+U2X0VkZGQoMzNTXbt2Va1atZSRkaGxY8fq8ccfV+3atSu7vSolKSlJ8fHxateundq3b6+5c+cqPz9fQ4YMqezWqqxx48bpwQcfVP369fX9999rypQp8vb2Vr9+/Sq7tSrl1KlTHmfRDh48qOzsbAUFBalevXoaM2aMXnjhBTVp0kRRUVF67rnnFBERYYZ6XIXKvm0N1UN8fLwhqdSyadMms+bQoUNGjx49DF9fXyM4ONh4+umnjbNnz1Ze01VMVlaWER0dbQQEBBg+Pj7GbbfdZrz00kvGmTNnKru1Kum1114z6tWrZ9jtdqN9+/bGZ599VtktVWl9+vQxwsPDDbvdbvzmN78x+vTpY+zfv7+y26pyNm3aVOZ/S+Pj4w3D+OUW+ueee84IDQ01HA6H0a1bN2Pv3r2V23QVZzMMw6isEAYAAFCZuGsMAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABY1v8Hltin08X6cHYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANDtJREFUeJzt3XtYFnX+//EXoNygct94AmRDRS3PaWEiKpYrX9Ho4GqtpzxFubVYKllpuWpuZWtb2cHDuh20zK2sK2s9UESmlYiFkYfSNdfC1sBTcCsJKMzvDy/m5y2ooNIdfJ6P65rr6p55z2feM956v5p7Zm4fy7IsAQAAGMjX2w0AAAB4C0EIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQj4jZk1a5Z8fHwuat1Dhw5d4q4q75NPPpGPj48++eQTr/UAAJVFEAIM9fjjj2vlypXebgM4r3/+85+69tprFRoaKofDocjISI0bN07ff/+9t1tDLUAQAn5jpk+fruPHj1f7dghCqCm++uorRUZG6oEHHtDChQt12223ae3atbrmmmu0f/9+b7eHGq6OtxsA4KlOnTqqU4e/mvj1FBYWyt/fX76+v83/N16wYEG5eYMGDVK3bt306quvaurUqV7oCrXFb/NdD/yGbd26VT4+Pnr//ffteZmZmfLx8dHVV1/tUTtw4EBFR0fbr9euXavY2FjVr19fQUFBSkhI0I4dOzzWqegaoePHj+vee+9VkyZNFBQUpJtuukn/+9//5OPjo1mzZpXrMS8vT2PHjlVwcLBcLpfGjRunX375xV7u4+OjgoICLV26VD4+PvLx8dHYsWPt5f/73/90++23219FdOzYUS+//HK57fz4448aNGiQ6tevr5CQEE2ePFlFRUWVOo6nW7JkiXx8fPTZZ5/p3nvvVdOmTRUcHKw//elPKi4uVl5enkaPHq2GDRuqYcOGeuCBB2RZlscYf//739WzZ081btxYgYGBioqK0ttvv11uW6mpqerdu7eCg4PVoEEDtW3bVg899JBHzfPPP6+OHTuqXr16atiwobp166bly5dXaZ8q248kLVu2TN27d7e316dPH3344YceNWvXrtW1116roKAgOZ1OXXPNNR49tWzZ0uPPsMx1112n6667zn5ddg3XG2+8oenTp+t3v/ud6tWrJ7fbrSNHjmjKlCnq3LmzGjRoIKfTqYEDB+rrr78uN25hYaFmzZqlK664QgEBAWrWrJkGDx6sPXv2yLIstWzZUjfffHOF67lcLv3pT3+q5JGsWMuWLSWdeq8DF4P/7QSqqFOnTgoODtaGDRt00003SZI+/fRT+fr66uuvv5bb7ZbT6VRpaak2btyo8ePHS5Jee+01jRkzRvHx8frb3/6mX375RQsXLlTv3r311Vdf2f+wV2Ts2LF66623NGrUKPXo0UPr169XQkLCWev/+Mc/KjIyUnPmzNGWLVv04osvKiQkRH/729/sXu644w51797d7q9169aSpNzcXPXo0UM+Pj6aMGGCmjZtqrVr1yoxMVFut1uTJk2SdCqc9evXT9nZ2br33nsVHh6u1157TR9//PEFH9t77rlHYWFheuSRR7Rp0yYtXrxYwcHB2rhxo5o3b67HH39ca9as0ZNPPqlOnTpp9OjR9rrPPvusbrrpJo0cOVLFxcV64403dOutt2rVqlX2sdqxY4duuOEGXXnllZo9e7YcDoe+++47ff755/Y4//znP3Xvvffqlltu0cSJE1VYWKitW7cqIyNDI0aMqPS+VKYfSXrkkUc0a9Ys9ezZU7Nnz5a/v78yMjL08ccfq3///pJOBcXbb79dHTt21LRp0xQcHKyvvvpKKSkpVerpdH/961/l7++vKVOmqKioSP7+/vrmm2+0cuVK3XrrrYqMjFRubq7+8Y9/6Nprr9U333yj8PBwSVJJSYluuOEGpaWladiwYZo4caKOHj2q1NRUbd++Xa1bt9Ztt92muXPn6siRI2rUqJG93X//+99yu9267bbbqtzz4cOHVVJSouzsbM2ePVuS1K9fvwvaf8BmAaiyhIQEq3v37vbrwYMHW4MHD7b8/PystWvXWpZlWVu2bLEkWe+995519OhRKzg42Lrzzjs9xsnJybFcLpfH/JkzZ1qn/9XMzMy0JFmTJk3yWHfs2LGWJGvmzJnl1r399ts9av/whz9YjRs39phXv359a8yYMeX2LTEx0WrWrJl16NAhj/nDhg2zXC6X9csvv1iWZVnz5s2zJFlvvfWWXVNQUGC1adPGkmStW7eu3Nhn88orr1iSrPj4eKu0tNSeHxMTY/n4+Fh33XWXPe/kyZPWZZddZl177bUeY5T1Vaa4uNjq1KmT9fvf/96e98wzz1iSrIMHD561l5tvvtnq2LFjpXs/m8r0s3v3bsvX19f6wx/+YJWUlHjUlx2HvLw8KygoyIqOjraOHz9eYY1lWVaLFi0q/PO89tprPY7VunXrLElWq1atyvVYWFhYro+9e/daDofDmj17tj3v5ZdftiRZTz/9dLntlfW0a9cuS5K1cOFCj+U33XST1bJlS4/eK8vhcFiSLElW48aNreeee67KYwBn4qsx4ALExsZqy5YtKigokCR99tlnuv7669W1a1d9+umnkk6dJfLx8VHv3r2VmpqqvLw8DR8+XIcOHbInPz8/RUdHa926dWfdVkpKiiTpz3/+s8f8e+6556zr3HXXXeX6PXz4sNxu9zn3y7IsvfPOO7rxxhtlWZZHr/Hx8crPz9eWLVskSWvWrFGzZs10yy232OvXq1fPPsN0IRITEz2+FoyOjpZlWUpMTLTn+fn5qVu3bvrvf//rsW5gYKD93z///LPy8/PtP6cywcHBkqT33ntPpaWlFfYQHBysH3/8UV988cUF70dl+1m5cqVKS0s1Y8aMctfnlB2H1NRUHT16VFOnTlVAQECFNRdizJgxHj1KksPhsPsoKSnR4cOH7a8PT+/7nXfeUZMmTSp8D5b1dMUVVyg6Olqvv/66vezIkSNau3atRo4ceUG9r127VmvWrNFTTz2l5s2b23//gIvBV2PABYiNjdXJkyeVnp6uiIgIHThwQLGxsdqxY4dHEOrQoYMaNWqk3bt3S5J+//vfVzie0+k867Z++OEH+fr6KjIy0mN+mzZtzrpO8+bNPV43bNhQ0qkP5HNt6+DBg8rLy9PixYu1ePHiCmsOHDhg99WmTZtyH2ht27Y96/jnc2bfLpdLkhQREVFu/s8//+wxb9WqVXr00UeVlZXlcZ3S6f0NHTpUL774ou644w5NnTpV/fr10+DBg3XLLbfYAeDBBx/URx99pO7du6tNmzbq37+/RowYoV69elVpXyrTz549e+Tr66sOHTqcdZw9e/ZIOvWV7KV05vtJkkpLS/Xss89qwYIF2rt3r0pKSuxljRs39uipbdu2572of/To0ZowYYJ++OEHtWjRQitWrNCJEyc0atSoC+q5b9++kk5de3fzzTerU6dOatCggSZMmHBB4wESF0sDF6Rbt24KCAjQhg0b9OmnnyokJERXXHGFYmNjtXnzZhUVFenTTz9VbGysJNlnH1577TWlpqaWm957771L2p+fn1+F860zLjA+U1mft912W4V9pqamVjkQVMXZ+q5o/un78umnn+qmm25SQECAFixYoDVr1ig1NVUjRozwqAsMDNSGDRv00UcfadSoUdq6dauGDh2q//u//7M/9Nu3b69du3bpjTfeUO/evfXOO++od+/emjlzZqX3o7L9XEpnO8Nyepg53Zlng6RTj1RITk5Wnz59tGzZMn3wwQdKTU1Vx44dz3oG7VyGDRumunXr2meFli1bpm7dul1UWC7TunVrXXXVVR5nnIALwRkh4AL4+/ure/fu+vTTT9W8eXM78MTGxqqoqEivv/66cnNz1adPH0n//0LkkJAQxcXFVWlbLVq0UGlpqfbu3avLL7/cnv/dd99d1D5U9MHZtGlTBQUFqaSk5Lx9tmjRQtu3b5dlWR5j7dq166L6uhDvvPOOAgIC9MEHH8jhcNjzX3nllXK1vr6+6tevn/r166enn35ajz/+uB5++GGtW7fO3uf69etr6NChGjp0qIqLizV48GA99thjmjZtWrmvpy6mn9atW6u0tFTffPONunbtWuFYZe+d7du3n/MsYMOGDSu8g+qHH35Qq1atztuzJL399tvq27evXnrpJY/5eXl5atKkiUdPGRkZOnHihOrWrXvW8Ro1aqSEhAS9/vrrGjlypD7//HPNmzevUr1UxvHjxy/oLkXgdJwRAi5QbGysMjIytG7dOjsINWnSRO3bt7fvziqbHx8fL6fTqccff1wnTpwoN9bBgwfPup34+HhJ5Z+l8vzzz19U//Xr1y/3wenn56chQ4bonXfe0fbt28/Z5/XXX6/9+/d73BL+yy+/nPUrterk5+cnHx8fj7Mf33//fbkHRh45cqTcumUBpOwD9fDhwx7L/f391aFDB1mWVeGf3cX0M2jQIPn6+mr27NnlzriUnTnq37+/goKCNGfOHBUWFlZYI50KJ5s2bVJxcbE9b9WqVdq3b1+lei7r+8wzVitWrND//vc/j3lDhgzRoUOH9MILL5Qb48z1R40apW+++Ub333+//Pz8NGzYsEr3I0knT54s9zWoJG3evFnbtm1Tt27dqjQecCbOCAEXKDY2Vo899pj27dtnBx5J6tOnj/7xj3+oZcuWuuyyyySdugZo4cKFGjVqlK6++moNGzZMTZs2VXZ2tlavXq1evXpV+KEiSVFRURoyZIjmzZunw4cP27fP/+c//5F04RfMRkVF6aOPPtLTTz+t8PBwRUZGKjo6Wk888YTWrVun6Oho3XnnnerQoYOOHDmiLVu26KOPPrLDxJ133qkXXnhBo0ePVmZmppo1a6bXXntN9erVu6B+LkZCQoKefvppDRgwQCNGjNCBAwc0f/58tWnTRlu3brXrZs+erQ0bNighIUEtWrTQgQMHtGDBAl122WXq3bu3pFPBIywsTL169VJoaKi+/fZbvfDCC0pISFBQUNAl7adNmzZ6+OGH9de//lWxsbEaPHiwHA6HvvjiC4WHh2vOnDlyOp165plndMcdd+iaa67RiBEj1LBhQ3399df65ZdftHTpUknSHXfcobffflsDBgzQH//4R+3Zs0fLli2zzyhVxg033KDZs2dr3Lhx6tmzp7Zt26bXX3+93Bml0aNH69VXX1VycrI2b96s2NhYFRQU6KOPPtKf//xnj+cHJSQkqHHjxlqxYoUGDhyokJCQSvcjSceOHVNERISGDh2qjh07qn79+tq2bZteeeUVuVwu/eUvf6nSeEA5XrlXDagF3G635efnZwUFBVknT5605y9btsySZI0aNarcOuvWrbPi4+Mtl8tlBQQEWK1bt7bGjh1rffnll3bNmbfPW9ap29KTkpKsRo0aWQ0aNLAGDRpk3578xBNPlFv3zNvDy25P37t3rz1v586dVp8+fazAwEBLkset17m5uVZSUpIVERFh1a1b1woLC7P69etnLV682GPcH374wbrpppusevXqWU2aNLEmTpxopaSkXPDt81988YXH/LPtz5gxY6z69et7zHvppZesyy+/3HI4HFa7du2sV155pdyxTEtLs26++WYrPDzc8vf3t8LDw63hw4db//nPf+yaf/zjH1afPn2sxo0bWw6Hw2rdurV1//33W/n5+ZXen8r2U+bll1+2rrrqKsvhcFgNGza0rr32Wis1NdWj5v3337d69uxpBQYGWk6n0+revbv1r3/9y6Pmqaeesn73u99ZDofD6tWrl/Xll1+e9fb5FStWlOujsLDQuu+++6xmzZpZgYGBVq9evaz09PRyY1jWqccDPPzww1ZkZKT9HrnlllusPXv2lBv3z3/+syXJWr58eRWO4ClFRUXWxIkTrSuvvNJyOp1W3bp1rRYtWliJiYke72fgQvlYVjVduQegWmVlZemqq67SsmXLNHLkSG+3A5zV5MmT9dJLLyknJ8crZwyBc+EaIaAGqOhHWOfNmydfX1/7gmzgt6iwsFDLli3TkCFDCEH4TeIaIaAGmDt3rjIzM9W3b1/VqVNHa9eu1dq1azV+/Phyz9j5LTl+/Ljy8/PPWdOoUSP5+/v/Sh1dnJKSknNe2C5JDRo0UIMGDX6ljn67Dhw4oI8++khvv/22Dh8+rIkTJ5arOXjw4Flv75dOXah++s9zANXC29/NATi/Dz/80OrVq5fVsGFDq27dulbr1q2tWbNmWSdOnPB2a+dUdu3PuaaqXEvkbXv37j3v/pz+kycmK7sWKSQkxHr++ecrrGnRosU5j+WZ1yUB1YFrhABUm59++kk7duw4Z01UVJT95OvfusLCQn322WfnrGnVqlWln9tjus8//7zCr33LNGzYUFFRUb9iRzARQQgAABiLi6UBAICxuFj6HEpLS7V//34FBQVd1K88AwCAX49lWTp69KjCw8PtH1Q+G4LQOezfv/83fUcOAAA4u3379tlP+D8bgtA5lD1Of9++fXI6nV7uBgAAVIbb7VZERESlfhaHIHQOZV+HOZ1OghAAADVMZS5r4WJpAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGPV8XYDAGqJdXO83UHV9Z3m7Q4AeBlnhAAAgLE4IwTgkkj/72Fvt1BlMX293QEAb+OMEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYVQpCc+bM0TXXXKOgoCCFhIRo0KBB2rVrl0dNYWGhkpKS1LhxYzVo0EBDhgxRbm6uR012drYSEhJUr149hYSE6P7779fJkyc9aj755BNdffXVcjgcatOmjZYsWVKun/nz56tly5YKCAhQdHS0Nm/eXOVeAACAuaoUhNavX6+kpCRt2rRJqampOnHihPr376+CggK7ZvLkyfr3v/+tFStWaP369dq/f78GDx5sLy8pKVFCQoKKi4u1ceNGLV26VEuWLNGMGTPsmr179yohIUF9+/ZVVlaWJk2apDvuuEMffPCBXfPmm28qOTlZM2fO1JYtW9SlSxfFx8frwIEDle4FAACYzceyLOtCVz548KBCQkK0fv169enTR/n5+WratKmWL1+uW265RZK0c+dOtW/fXunp6erRo4fWrl2rG264Qfv371doaKgkadGiRXrwwQd18OBB+fv768EHH9Tq1au1fft2e1vDhg1TXl6eUlJSJEnR0dG65ppr9MILL0iSSktLFRERoXvuuUdTp06tVC/n43a75XK5lJ+fL6fTeaGHCTBC+ktTvN1ClcUk/t3bLQCoBlX5/L6oa4Ty8/MlSY0aNZIkZWZm6sSJE4qLi7Nr2rVrp+bNmys9PV2SlJ6ers6dO9shSJLi4+Pldru1Y8cOu+b0McpqysYoLi5WZmamR42vr6/i4uLsmsr0cqaioiK53W6PCQAA1F4XHIRKS0s1adIk9erVS506dZIk5eTkyN/fX8HBwR61oaGhysnJsWtOD0Fly8uWnavG7Xbr+PHjOnTokEpKSiqsOX2M8/Vypjlz5sjlctlTREREJY8GAACoiS44CCUlJWn79u164403LmU/XjVt2jTl5+fb0759+7zdEgAAqEZ1LmSlCRMmaNWqVdqwYYMuu+wye35YWJiKi4uVl5fncSYmNzdXYWFhds2Zd3eV3cl1es2Zd3fl5ubK6XQqMDBQfn5+8vPzq7Dm9DHO18uZHA6HHA5HFY4EAACoyap0RsiyLE2YMEHvvvuuPv74Y0VGRnosj4qKUt26dZWWlmbP27Vrl7KzsxUTEyNJiomJ0bZt2zzu7kpNTZXT6VSHDh3smtPHKKspG8Pf319RUVEeNaWlpUpLS7NrKtMLAAAwW5XOCCUlJWn58uV67733FBQUZF9r43K5FBgYKJfLpcTERCUnJ6tRo0ZyOp265557FBMTY9+l1b9/f3Xo0EGjRo3S3LlzlZOTo+nTpyspKck+G3PXXXfphRde0AMPPKDbb79dH3/8sd566y2tXr3a7iU5OVljxoxRt27d1L17d82bN08FBQUaN26c3dP5egEAAGarUhBauHChJOm6667zmP/KK69o7NixkqRnnnlGvr6+GjJkiIqKihQfH68FCxbYtX5+flq1apXuvvtuxcTEqH79+hozZoxmz55t10RGRmr16tWaPHmynn32WV122WV68cUXFR8fb9cMHTpUBw8e1IwZM5STk6OuXbsqJSXF4wLq8/UCAADMdlHPEarteI4QUHk8RwjAb8Wv9hwhAACAmowgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxV5SC0YcMG3XjjjQoPD5ePj49WrlzpsXzs2LHy8fHxmAYMGOBRc+TIEY0cOVJOp1PBwcFKTEzUsWPHPGq2bt2q2NhYBQQEKCIiQnPnzi3Xy4oVK9SuXTsFBASoc+fOWrNmjcdyy7I0Y8YMNWvWTIGBgYqLi9Pu3burussAAKCWqnIQKigoUJcuXTR//vyz1gwYMEA//fSTPf3rX//yWD5y5Ejt2LFDqampWrVqlTZs2KDx48fby91ut/r3768WLVooMzNTTz75pGbNmqXFixfbNRs3btTw4cOVmJior776SoMGDdKgQYO0fft2u2bu3Ll67rnntGjRImVkZKh+/fqKj49XYWFhVXcbAADUQj6WZVkXvLKPj959910NGjTInjd27Fjl5eWVO1NU5ttvv1WHDh30xRdfqFu3bpKklJQUXX/99frxxx8VHh6uhQsX6uGHH1ZOTo78/f0lSVOnTtXKlSu1c+dOSdLQoUNVUFCgVatW2WP36NFDXbt21aJFi2RZlsLDw3XfffdpypQpkqT8/HyFhoZqyZIlGjZs2Hn3z+12y+VyKT8/X06n80IOEWCM9JemeLuFKotJ/Lu3WwBQDary+V0t1wh98sknCgkJUdu2bXX33Xfr8OHD9rL09HQFBwfbIUiS4uLi5Ovrq4yMDLumT58+dgiSpPj4eO3atUs///yzXRMXF+ex3fj4eKWnp0uS9u7dq5ycHI8al8ul6Ohou+ZMRUVFcrvdHhMAAKi9LnkQGjBggF599VWlpaXpb3/7m9avX6+BAweqpKREkpSTk6OQkBCPderUqaNGjRopJyfHrgkNDfWoKXt9vprTl5++XkU1Z5ozZ45cLpc9RUREVHn/AQBAzVHnUg94+ldOnTt31pVXXqnWrVvrk08+Ub9+/S715i6padOmKTk52X7tdrsJQwAA1GLVfvt8q1at1KRJE3333XeSpLCwMB04cMCj5uTJkzpy5IjCwsLsmtzcXI+astfnqzl9+enrVVRzJofDIafT6TEBAIDaq9qD0I8//qjDhw+rWbNmkqSYmBjl5eUpMzPTrvn4449VWlqq6Ohou2bDhg06ceKEXZOamqq2bduqYcOGdk1aWprHtlJTUxUTEyNJioyMVFhYmEeN2+1WRkaGXQMAAMxW5SB07NgxZWVlKSsrS9Kpi5KzsrKUnZ2tY8eO6f7779emTZv0/fffKy0tTTfffLPatGmj+Ph4SVL79u01YMAA3Xnnndq8ebM+//xzTZgwQcOGDVN4eLgkacSIEfL391diYqJ27NihN998U88++6zH11YTJ05USkqKnnrqKe3cuVOzZs3Sl19+qQkTJkg6dUfbpEmT9Oijj+r999/Xtm3bNHr0aIWHh3vc5QYAAMxV5WuEvvzyS/Xt29d+XRZOxowZo4ULF2rr1q1aunSp8vLyFB4erv79++uvf/2rHA6Hvc7rr7+uCRMmqF+/fvL19dWQIUP03HPP2ctdLpc+/PBDJSUlKSoqSk2aNNGMGTM8njXUs2dPLV++XNOnT9dDDz2kyy+/XCtXrlSnTp3smgceeEAFBQUaP3688vLy1Lt3b6WkpCggIKCquw0AAGqhi3qOUG3Hc4SAyuM5QgB+K7z+HCEAAICagCAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGKvKQWjDhg268cYbFR4eLh8fH61cudJjuWVZmjFjhpo1a6bAwEDFxcVp9+7dHjVHjhzRyJEj5XQ6FRwcrMTERB07dsyjZuvWrYqNjVVAQIAiIiI0d+7ccr2sWLFC7dq1U0BAgDp37qw1a9ZUuRcAAGCuKgehgoICdenSRfPnz69w+dy5c/Xcc89p0aJFysjIUP369RUfH6/CwkK7ZuTIkdqxY4dSU1O1atUqbdiwQePHj7eXu91u9e/fXy1atFBmZqaefPJJzZo1S4sXL7ZrNm7cqOHDhysxMVFfffWVBg0apEGDBmn79u1V6gUAAJjLx7Is64JX9vHRu+++q0GDBkk6dQYmPDxc9913n6ZMmSJJys/PV2hoqJYsWaJhw4bp22+/VYcOHfTFF1+oW7dukqSUlBRdf/31+vHHHxUeHq6FCxfq4YcfVk5Ojvz9/SVJU6dO1cqVK7Vz505J0tChQ1VQUKBVq1bZ/fTo0UNdu3bVokWLKtXL+bjdbrlcLuXn58vpdF7oYQKMkP7SFG+3UGUxiX/3dgsAqkFVPr8v6TVCe/fuVU5OjuLi4ux5LpdL0dHRSk9PlySlp6crODjYDkGSFBcXJ19fX2VkZNg1ffr0sUOQJMXHx2vXrl36+eef7ZrTt1NWU7adyvRypqKiIrndbo8JAADUXpc0COXk5EiSQkNDPeaHhobay3JychQSEuKxvE6dOmrUqJFHTUVjnL6Ns9Wcvvx8vZxpzpw5crlc9hQREVGJvQYAADUVd42dZtq0acrPz7enffv2ebslAABQjS5pEAoLC5Mk5ebmeszPzc21l4WFhenAgQMey0+ePKkjR4541FQ0xunbOFvN6cvP18uZHA6HnE6nxwQAAGqvSxqEIiMjFRYWprS0NHue2+1WRkaGYmJiJEkxMTHKy8tTZmamXfPxxx+rtLRU0dHRds2GDRt04sQJuyY1NVVt27ZVw4YN7ZrTt1NWU7adyvQCAADMVuUgdOzYMWVlZSkrK0vSqYuSs7KylJ2dLR8fH02aNEmPPvqo3n//fW3btk2jR49WeHi4fWdZ+/btNWDAAN15553avHmzPv/8c02YMEHDhg1TeHi4JGnEiBHy9/dXYmKiduzYoTfffFPPPvuskpOT7T4mTpyolJQUPfXUU9q5c6dmzZqlL7/8UhMmTJCkSvUCAADMVqeqK3z55Zfq27ev/bosnIwZM0ZLlizRAw88oIKCAo0fP155eXnq3bu3UlJSFBAQYK/z+uuva8KECerXr598fX01ZMgQPffcc/Zyl8ulDz/8UElJSYqKilKTJk00Y8YMj2cN9ezZU8uXL9f06dP10EMP6fLLL9fKlSvVqVMnu6YyvQAAAHNd1HOEajueIwRUHs8RAvBb4bXnCAEAANQkBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgrEsehGbNmiUfHx+PqV27dvbywsJCJSUlqXHjxmrQoIGGDBmi3NxcjzGys7OVkJCgevXqKSQkRPfff79OnjzpUfPJJ5/o6quvlsPhUJs2bbRkyZJyvcyfP18tW7ZUQECAoqOjtXnz5ku9uwAAoAarljNCHTt21E8//WRPn332mb1s8uTJ+ve//60VK1Zo/fr12r9/vwYPHmwvLykpUUJCgoqLi7Vx40YtXbpUS5Ys0YwZM+yavXv3KiEhQX379lVWVpYmTZqkO+64Qx988IFd8+abbyo5OVkzZ87Uli1b1KVLF8XHx+vAgQPVscsAAKAG8rEsy7qUA86aNUsrV65UVlZWuWX5+flq2rSpli9frltuuUWStHPnTrVv317p6enq0aOH1q5dqxtuuEH79+9XaGioJGnRokV68MEHdfDgQfn7++vBBx/U6tWrtX37dnvsYcOGKS8vTykpKZKk6OhoXXPNNXrhhRckSaWlpYqIiNA999yjqVOnVmpf3G63XC6X8vPz5XQ6L+awALVe+ktTvN1ClcUk/t3bLQCoBlX5/K6WM0K7d+9WeHi4WrVqpZEjRyo7O1uSlJmZqRMnTiguLs6ubdeunZo3b6709HRJUnp6ujp37myHIEmKj4+X2+3Wjh077JrTxyirKRujuLhYmZmZHjW+vr6Ki4uzaypSVFQkt9vtMQEAgNrrkgeh6OhoLVmyRCkpKVq4cKH27t2r2NhYHT16VDk5OfL391dwcLDHOqGhocrJyZEk5eTkeISgsuVly85V43a7dfz4cR06dEglJSUV1pSNUZE5c+bI5XLZU0RExAUdAwAAUDPUudQDDhw40P7vK6+8UtHR0WrRooXeeustBQYGXurNXVLTpk1TcnKy/drtdhOGAACoxar99vng4GBdccUV+u677xQWFqbi4mLl5eV51OTm5iosLEySFBYWVu4usrLX56txOp0KDAxUkyZN5OfnV2FN2RgVcTgccjqdHhMAAKi9qj0IHTt2THv27FGzZs0UFRWlunXrKi0tzV6+a9cuZWdnKyYmRpIUExOjbdu2edzdlZqaKqfTqQ4dOtg1p49RVlM2hr+/v6KiojxqSktLlZaWZtcAAABc8iA0ZcoUrV+/Xt9//702btyoP/zhD/Lz89Pw4cPlcrmUmJio5ORkrVu3TpmZmRo3bpxiYmLUo0cPSVL//v3VoUMHjRo1Sl9//bU++OADTZ8+XUlJSXI4HJKku+66S//973/1wAMPaOfOnVqwYIHeeustTZ482e4jOTlZ//znP7V06VJ9++23uvvuu1VQUKBx48Zd6l0GAAA11CW/RujHH3/U8OHDdfjwYTVt2lS9e/fWpk2b1LRpU0nSM888I19fXw0ZMkRFRUWKj4/XggUL7PX9/Py0atUq3X333YqJiVH9+vU1ZswYzZ49266JjIzU6tWrNXnyZD377LO67LLL9OKLLyo+Pt6uGTp0qA4ePKgZM2YoJydHXbt2VUpKSrkLqAEAgLku+XOEahOeIwRUHs8RAvBb4fXnCAEAANQEBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGOuS//o8ANQUz6T+x9stVNnk/7vC2y0AtQpnhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBYXSwMwVo/sxd5u4QL83dsNALUKZ4QAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCsOt5uAABQeekvTfF2C1W2qfl4Tf6/K7zdBlAhzggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMbigYoAgGr3TOp/vN1ClfEQSDMQhAAA1apH9mJvt1Blm5qP93YL+JXw1RgAADAWQQgAABiLIAQAAIzFNUIAAJyhR/Zipb/k7S6qZlPz8VzgfQE4IwQAAIxFEAIAAMbiqzEAAGoJntdUdQQhAABqAZ7XdGH4agwAABjLiDNC8+fP15NPPqmcnBx16dJFzz//vLp37+7ttoCzSn9pirdbAAAj1PozQm+++aaSk5M1c+ZMbdmyRV26dFF8fLwOHDjg7dYAAICX1fozQk8//bTuvPNOjRs3TpK0aNEirV69Wi+//LKmTp3q5e5qnpp4IV5N/N4cAPDrqNVBqLi4WJmZmZo2bZo9z9fXV3FxcUpPTy9XX1RUpKKiIvt1fn6+JMntdldLf5tffbhaxq1Onb3dwAUo8HYDAIAKFRYcq5bP2LIxLcs6b22tDkKHDh1SSUmJQkNDPeaHhoZq586d5ernzJmjRx55pNz8iIiIausRAABzvaCHqnH0o0ePyuVynbOmVgehqpo2bZqSk5Pt16WlpTpy5IgaN24sHx8fL3ZWM7jdbkVERGjfvn1yOp3ebqfW4LhWD45r9eC4Vh+ObeVZlqWjR48qPDz8vLW1Ogg1adJEfn5+ys3N9Zifm5ursLCwcvUOh0MOh8NjXnBwcHW2WCs5nU7+klYDjmv14LhWD45r9eHYVs75zgSVqdV3jfn7+ysqKkppaWn2vNLSUqWlpSkmJsaLnQEAgN+CWn1GSJKSk5M1ZswYdevWTd27d9e8efNUUFBg30UGAADMVeuD0NChQ3Xw4EHNmDFDOTk56tq1q1JSUspdQI2L53A4NHPmzHJfL+LicFyrB8e1enBcqw/Htnr4WJW5twwAAKAWqtXXCAEAAJwLQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhHBJPPbYY+rZs6fq1at31qdxZ2dnKyEhQfXq1VNISIjuv/9+nTx58tdttIZr2bKlfHx8PKYnnnjC223VSPPnz1fLli0VEBCg6Ohobd682dst1WizZs0q995s166dt9uqcTZs2KAbb7xR4eHh8vHx0cqVKz2WW5alGTNmqFmzZgoMDFRcXJx2797tnWZrCYIQLoni4mLdeuutuvvuuytcXlJSooSEBBUXF2vjxo1aunSplixZohkzZvzKndZ8s2fP1k8//WRP99xzj7dbqnHefPNNJScna+bMmdqyZYu6dOmi+Ph4HThwwNut1WgdO3b0eG9+9tln3m6pxikoKFCXLl00f/78CpfPnTtXzz33nBYtWqSMjAzVr19f8fHxKiws/JU7rUUs4BJ65ZVXLJfLVW7+mjVrLF9fXysnJ8eet3DhQsvpdFpFRUW/Yoc1W4sWLaxnnnnG223UeN27d7eSkpLs1yUlJVZ4eLg1Z84cL3ZVs82cOdPq0qWLt9uoVSRZ7777rv26tLTUCgsLs5588kl7Xl5enuVwOKx//etfXuiwduCMEH4V6enp6ty5s8cTvePj4+V2u7Vjxw4vdlbzPPHEE2rcuLGuuuoqPfnkk3y9WEXFxcXKzMxUXFycPc/X11dxcXFKT0/3Ymc13+7duxUeHq5WrVpp5MiRys7O9nZLtcrevXuVk5Pj8d51uVyKjo7mvXsRav1PbOC3IScnp9zPmpS9zsnJ8UZLNdK9996rq6++Wo0aNdLGjRs1bdo0/fTTT3r66ae93VqNcejQIZWUlFT4fty5c6eXuqr5oqOjtWTJErVt21Y//fSTHnnkEcXGxmr79u0KCgrydnu1Qtm/lRW9d/l39MJxRghnNXXq1HIXP5458cFx8apynJOTk3Xdddfpyiuv1F133aWnnnpKzz//vIqKiry8FzDdwIEDdeutt+rKK69UfHy81qxZo7y8PL311lvebg04J84I4azuu+8+jR079pw1rVq1qtRYYWFh5e7Kyc3NtZeZ7GKOc3R0tE6ePKnvv/9ebdu2rYbuap8mTZrIz8/Pfv+Vyc3NNf69eCkFBwfriiuu0HfffeftVmqNsvdnbm6umjVrZs/Pzc1V165dvdRVzUcQwlk1bdpUTZs2vSRjxcTE6LHHHtOBAwcUEhIiSUpNTZXT6VSHDh0uyTZqqos5zllZWfL19bWPKc7P399fUVFRSktL06BBgyRJpaWlSktL04QJE7zbXC1y7Ngx7dmzR6NGjfJ2K7VGZGSkwsLClJaWZgcft9utjIyMs96xi/MjCOGSyM7O1pEjR5Sdna2SkhJlZWVJktq0aaMGDRqof//+6tChg0aNGqW5c+cqJydH06dPV1JSkhwOh3ebryHS09OVkZGhvn37KigoSOnp6Zo8ebJuu+02NWzY0Nvt1SjJyckaM2aMunXrpu7du2vevHkqKCjQuHHjvN1ajTVlyhTdeOONatGihfbv36+ZM2fKz89Pw4cP93ZrNcqxY8c8zqLt3btXWVlZatSokZo3b65Jkybp0Ucf1eWXX67IyEj95S9/UXh4uB3qcQG8fdsaaocxY8ZYkspN69ats2u+//57a+DAgVZgYKDVpEkT67777rNOnDjhvaZrmMzMTCs6OtpyuVxWQECA1b59e+vxxx+3CgsLvd1ajfT8889bzZs3t/z9/a3u3btbmzZt8nZLNdrQoUOtZs2aWf7+/tbvfvc7a+jQodZ3333n7bZqnHXr1lX4b+mYMWMsyzp1C/1f/vIXKzQ01HI4HFa/fv2sXbt2ebfpGs7HsizLWyEMAADAm7hrDAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADG+n8M7Lq3cF5/kAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOOpJREFUeJzt3XtYVWXe//EPYGxQ2SAipxEPaamo6YSJZFqO/NwVHUxr1MzQqJ4atJQ0tRw0m7Kxg1aeajrolM6o9WSlSRGaVqIWRqalU45FjW08BTspQGH9/vBiPW5BBQ+zg/v9uq51Xe57fdda370k96e177XwsyzLEgAAgIH8fd0AAACArxCEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYSA35hp06bJz8/vjLbdv3//We6q9j744AP5+fnpgw8+8FkPAFBbBCHAUI8++qhWrFjh6zaAOjl8+LDi4+Pl5+enJ554wtftoAEgCAG/MVOmTNGvv/56zo9DEEJ99Oyzz6qgoMDXbaABIQgBvzGNGjVSUFCQr9uAQUpLS1VZWenrNk5p7969mj59uiZOnOjrVtCAEISAOtq6dav8/Pz01ltv2WN5eXny8/PTxRdf7FV71VVXKTEx0X69evVq9enTR02aNFFISIhSUlK0fft2r21qmiP066+/6p577lFERIRCQkJ03XXX6T//+Y/8/Pw0bdq0aj0WFRVp5MiRCgsLU2hoqEaNGqVffvnFXu/n56eSkhItWrRIfn5+8vPz08iRI+31//nPf3TbbbcpKipKDodDnTt31ksvvVTtOD/88IMGDhyoJk2aKDIyUuPGjVNZWVmtzuOxFi5cKD8/P3300Ue655571KJFC4WFhel//ud/VF5erqKiIt16661q1qyZmjVrpvvvv1+WZXnt44knntCll16q5s2bKzg4WAkJCXrttdeqHSs7O1uXXXaZwsLC1LRpU3Xo0EEPPPCAV82zzz6rzp07q3HjxmrWrJl69OihJUuW1Ok91bYfSXr11VfVs2dP+3h9+/bVe++951WzevVqXX755QoJCZHT6dQll1zi1VObNm28/g6rXHHFFbriiivs11VzuP75z39qypQp+t3vfqfGjRvL4/Ho4MGDGj9+vLp27aqmTZvK6XTqqquu0ueff15tv6WlpZo2bZouvPBCBQUFKSYmRoMGDdKuXbtkWZbatGmj66+/vsbtQkND9T//8z+1PJP/Z9KkSerQoYNuueWWOm8LnEgjXzcA1DddunRRWFiY1q9fr+uuu06S9OGHH8rf31+ff/65PB6PnE6nKisrtWHDBt15552SpFdeeUWpqalyuVz661//ql9++UXz58/XZZddps8++0xt2rQ54TFHjhypZcuWacSIEerVq5fWrVunlJSUE9b/8Y9/VNu2bTVjxgxt2bJFL7zwgiIjI/XXv/7V7uX2229Xz5497f7atWsnSSosLFSvXr3k5+en0aNHq0WLFlq9erXS0tLk8Xg0duxYSUfDWf/+/VVQUKB77rlHsbGxeuWVV7RmzZrTPrdjxoxRdHS0HnroIW3cuFHPP/+8wsLCtGHDBrVq1UqPPvqo3nnnHT3++OPq0qWLbr31Vnvbp59+Wtddd52GDx+u8vJy/fOf/9RNN92klStX2udq+/btuuaaa3TRRRdp+vTpcjgc+uabb/Txxx/b+/nb3/6me+65RzfeeKPuvfdelZaWauvWrdq0aZNuvvnmWr+X2vQjSQ899JCmTZumSy+9VNOnT1dgYKA2bdqkNWvWaMCAAZKOBsXbbrtNnTt31uTJkxUWFqbPPvtMWVlZderpWA8//LACAwM1fvx4lZWVKTAwUF9++aVWrFihm266SW3btlVhYaGee+45XX755fryyy8VGxsrSaqoqNA111yjnJwcDR06VPfee69+/vlnZWdna9u2bWrXrp1uueUWzZw5UwcPHlR4eLh93Lffflsej6fOYWbz5s1atGiRPvroo9O+mQCokQWgzlJSUqyePXvarwcNGmQNGjTICggIsFavXm1ZlmVt2bLFkmS9+eab1s8//2yFhYVZd9xxh9d+3G63FRoa6jU+depU69j/NPPy8ixJ1tixY722HTlypCXJmjp1arVtb7vtNq/aG264wWrevLnXWJMmTazU1NRq7y0tLc2KiYmx9u/f7zU+dOhQKzQ01Prll18sy7Ks2bNnW5KsZcuW2TUlJSVW+/btLUnW2rVrq+37RF5++WVLkuVyuazKykp7PCkpyfLz87Puuusue+zIkSNWy5Ytrcsvv9xrH1V9VSkvL7e6dOli/eEPf7DHZs2aZUmy9u3bd8Jerr/+eqtz58617v1EatPP119/bfn7+1s33HCDVVFR4VVfdR6KioqskJAQKzEx0fr1119rrLEsy2rdunWNf5+XX36517lau3atJck6//zzq/VYWlparY/du3dbDofDmj59uj320ksvWZKsp556qtrxqnrauXOnJcmaP3++1/rrrrvOatOmjVfvp1JZWWn17NnTGjZsmN2TJOvxxx+v9T6AE+GrMeA09OnTR1u2bFFJSYkk6aOPPtLVV1+t7t2768MPP5R09CqRn5+fLrvsMmVnZ6uoqEjDhg3T/v377SUgIECJiYlau3btCY+VlZUlSfrTn/7kNT5mzJgTbnPXXXdV6/fAgQPyeDwnfV+WZen111/XtddeK8uyvHp1uVwqLi7Wli1bJEnvvPOOYmJidOONN9rbN27c2L7CdDrS0tK8/m8/MTFRlmUpLS3NHgsICFCPHj3073//22vb4OBg+88//fSTiouL7b+nKmFhYZKkN99884RzYsLCwvTDDz/ok08+Oe33Udt+VqxYocrKSmVmZsrf3/uf46rzkJ2drZ9//lmTJk2qNnfsTK6MpKamevUoSQ6Hw+6joqJCBw4csL8+PLbv119/XRERETX+DFb1dOGFFyoxMVGLFy+21x08eFCrV6/W8OHD69T7woUL9cUXX9hXNIGziSAEnIY+ffroyJEjys3N1c6dO7V371716dNHffv29QpC8fHxCg8P19dffy1J+sMf/qAWLVp4Le+995727t17wmN999138vf3V9u2bb3G27dvf8JtWrVq5fW6WbNmko5+IJ/Mvn37VFRUpOeff75an6NGjZIku9fvvvtO7du3r/aB1qFDh5Me42SO7zs0NFSSFBcXV238+PeycuVK9erVS0FBQQoPD1eLFi00f/58FRcX2zVDhgxR7969dfvttysqKkpDhw7VsmXLvELRxIkT1bRpU/Xs2VMXXHCB0tPTvb46q63a9LNr1y75+/srPj7+hPvZtWuXpKNfyZ5Nx/88SVJlZaVmzZqlCy64QA6HQxEREWrRooW2bt1are8OHTqoUaOTz6649dZb9fHHH+u7776TJC1fvlyHDx/WiBEjat2nx+PR5MmTNWHChGo/B8DZwBwh4DT06NFDQUFBWr9+vVq1aqXIyEhdeOGF6tOnj+bNm6eysjJ9+OGHuuGGGyTJ/qB95ZVXFB0dXW1/p/pAqauAgIAax63jJhgfr6rPW265RampqTXWXHTRRWfW3EmcqO+axo99Lx9++KGuu+469e3bV/PmzVNMTIzOO+88vfzyy14TioODg7V+/XqtXbtWq1atUlZWlpYuXao//OEPeu+99xQQEKBOnTpp586dWrlypbKysvT6669r3rx5yszM1EMPPVSr91Hbfs6mE11hqaioqPH8HX81SDr6SIU///nPuu222/Twww8rPDxc/v7+Gjt27GndVTZ06FCNGzdOixcv1gMPPKBXX31VPXr0qFNYfuKJJ1ReXq4hQ4bo22+/lXR0kr50NNh/++23io2NVWBgYJ37AySCEHBaAgMD1bNnT3344Ydq1aqV+vTpI+nolaKysjItXrxYhYWF6tu3r6T/m4gcGRmp5OTkOh2rdevWqqys1O7du3XBBRfY4998880ZvYeaPjhbtGihkJAQVVRUnLLP1q1ba9u2bbIsy2tfO3fuPKO+Tsfrr7+uoKAgvfvuu3I4HPb4yy+/XK3W399f/fv3V//+/fXUU0/p0Ucf1YMPPqi1a9fa77lJkyYaMmSIhgwZovLycg0aNEiPPPKIJk+eXKtHG9S2n3bt2qmyslJffvmlunfvXuO+qn52tm3bdtKrgM2aNVNRUVG18e+++07nn3/+KXuWpNdee039+vXTiy++6DVeVFSkiIgIr542bdqkw4cP67zzzjvh/sLDw5WSkqLFixdr+PDh+vjjjzV79uxa9VKloKBAP/30kzp37lxt3aOPPqpHH31Un3322QnPH3AqfDUGnKY+ffpo06ZNWrt2rR2EIiIi1KlTJ3suQ9W4y+WS0+nUo48+qsOHD1fb1759+054HJfLJUmaN2+e1/izzz57Rv03adKk2gdnQECABg8erNdff13btm07aZ9XX3219uzZ43VL+C+//KLnn3/+jPo6HQEBAfLz81NFRYU99u2331Z7YOTBgwerbVv1AVp12/+BAwe81gcGBio+Pl6WZdX4d3cm/QwcOFD+/v6aPn16tSsuVVe8BgwYoJCQEM2YMUOlpaU11khHw8nGjRtVXl5uj61cuVLff/99rXqu6vv4q4bLly/Xf/7zH6+xwYMHa//+/ZozZ061fRy//YgRI/Tll19qwoQJCggI0NChQ2vdjyTdc889euONN7yW5557TtLRuynfeOONGr/mA2qLK0LAaerTp48eeeQRff/993bgkaS+ffvqueeeU5s2bdSyZUtJktPp1Pz58zVixAhdfPHFGjp0qFq0aKGCggKtWrVKvXv3rvFDRZISEhI0ePBgzZ49WwcOHLBvn//Xv/4l6fQnzCYkJOj999/XU089pdjYWLVt21aJiYl67LHHtHbtWiUmJuqOO+5QfHy8Dh48qC1btuj999+3w8Qdd9yhOXPm6NZbb1VeXp5iYmL0yiuvqHHjxqfVz5lISUnRU089pSuvvFI333yz9u7dq7lz56p9+/baunWrXTd9+nStX79eKSkpat26tfbu3at58+apZcuWuuyyyyQdDR7R0dHq3bu3oqKi9NVXX2nOnDlKSUlRSEjIWe2nffv2evDBB/Xwww+rT58+GjRokBwOhz755BPFxsZqxowZcjqdmjVrlm6//XZdcskluvnmm9WsWTN9/vnn+uWXX7Ro0SJJ0u23367XXntNV155pf74xz9q165devXVV+0rSrVxzTXXaPr06Ro1apQuvfRSffHFF1q8eHG1K0q33nqr/v73vysjI0ObN29Wnz59VFJSovfff19/+tOfvJ4flJKSoubNm2v58uW66qqrFBkZWet+JOniiy+u9nyuqq/IOnfurIEDB9Zpf0A1PrpbDaj3PB6PFRAQYIWEhFhHjhyxx1999VVLkjVixIhq26xdu9ZyuVxWaGioFRQUZLVr184aOXKk9emnn9o1x98+b1lHb0tPT0+3wsPDraZNm1oDBw60b09+7LHHqm17/O3hVben79692x7bsWOH1bdvXys4ONiS5HXrdWFhoZWenm7FxcVZ5513nhUdHW3179/fev755732+91331nXXXed1bhxYysiIsK69957raysrNO+ff6TTz7xGj/R+0lNTbWaNGniNfbiiy9aF1xwgeVwOKyOHTtaL7/8crVzmZOTY11//fVWbGysFRgYaMXGxlrDhg2z/vWvf9k1zz33nNW3b1+refPmlsPhsNq1a2dNmDDBKi4urvX7qW0/VV566SXr97//veVwOKxmzZpZl19+uZWdne1V89Zbb1mXXnqpFRwcbDmdTqtnz57WP/7xD6+aJ5980vrd735nORwOq3fv3tann356wtvnly9fXq2P0tJS67777rNiYmKs4OBgq3fv3lZubm61fVjW0ccDPPjgg1bbtm3tn5Ebb7zR2rVrV7X9/ulPf7IkWUuWLKnDGTwxbp/H2eRnWaeYPQngNyk/P1+///3v9eqrr2r48OG+bgc4oXHjxunFF1+U2+32yRVD4GSYIwTUAzX9EtbZs2fL39/fnpAN/BaVlpbq1Vdf1eDBgwlB+E1ijhBQD8ycOVN5eXnq16+fGjVqpNWrV2v16tW68847f9PPVvn111+9nj9Tk/Dw8Hpz63NFRcVJJ7ZLUtOmTdW0adP/Uke/XXv37tX777+v1157TQcOHNC9995brWbfvn1eE8qPFxgY6PXrOYBzwtffzQE4tffee8/q3bu31axZM+u8886z2rVrZ02bNs06fPiwr1s7qaq5Pydb6jKXyNeq5qacbDn2V56YrGouUmRkpPXss8/WWNO6deuTnsvj5yUB5wJzhACcMz/++KO2b99+0pqEhAT7yde/daWlpfroo49OWnP++efX+rk9pvv4449r/Nq3SrNmzZSQkPBf7AgmIggBAABjMVkaAAAYi8nSJ1FZWak9e/YoJCTkjH7LMwAA+O+xLEs///yzYmNj5e9/8ms+BKGT2LNnz2/6jhwAAHBi33//vf2E/xMhCJ1E1eP0v//+ezmdTh93AwAAasPj8SguLq5WvxaHIHQSVV+HOZ1OghAAAPVMbaa1MFkaAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFiNfN0AgAZi7Qxfd1B3/Sb7ugMAPsYVIQAAYCyCEAAAMBZfjQE4K3L/fcDXLdRZUj9fdwDA17giBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGCsOgWhGTNm6JJLLlFISIgiIyM1cOBA7dy506vmiiuukJ+fn9dy1113edUUFBQoJSVFjRs3VmRkpCZMmKAjR4541XzwwQe6+OKL5XA41L59ey1cuLBaP3PnzlWbNm0UFBSkxMREbd682Wt9aWmp0tPT1bx5czVt2lSDBw9WYWFhXd4yAABowOoUhNatW6f09HRt3LhR2dnZOnz4sAYMGKCSkhKvujvuuEM//vijvcycOdNeV1FRoZSUFJWXl2vDhg1atGiRFi5cqMzMTLtm9+7dSklJUb9+/ZSfn6+xY8fq9ttv17vvvmvXLF26VBkZGZo6daq2bNmibt26yeVyae/evXbNuHHj9Pbbb2v58uVat26d9uzZo0GDBtX5JAEAgIbJz7Is63Q33rdvnyIjI7Vu3Tr17dtX0tErQt27d9fs2bNr3Gb16tW65pprtGfPHkVFRUmSFixYoIkTJ2rfvn0KDAzUxIkTtWrVKm3bts3ebujQoSoqKlJWVpYkKTExUZdcconmzJkjSaqsrFRcXJzGjBmjSZMmqbi4WC1atNCSJUt04403SpJ27NihTp06KTc3V7169Trl+/N4PAoNDVVxcbGcTufpnibACLkvjvd1C3WWlPaEr1sAcA7U5fP7jOYIFRcXS5LCw8O9xhcvXqyIiAh16dJFkydP1i+//GKvy83NVdeuXe0QJEkul0sej0fbt2+3a5KTk7326XK5lJubK0kqLy9XXl6eV42/v7+Sk5Ptmry8PB0+fNirpmPHjmrVqpVdc7yysjJ5PB6vBQAANFyNTnfDyspKjR07Vr1791aXLl3s8ZtvvlmtW7dWbGystm7dqokTJ2rnzp363//9X0mS2+32CkGS7Ndut/ukNR6PR7/++qt++uknVVRU1FizY8cOex+BgYEKCwurVlN1nOPNmDFDDz30UB3PBAAAqK9OOwilp6dr27Zt+uijj7zG77zzTvvPXbt2VUxMjPr3769du3apXbt2p9/pf8HkyZOVkZFhv/Z4PIqLi/NhRwAA4Fw6ra/GRo8erZUrV2rt2rVq2bLlSWsTExMlSd98840kKTo6utqdW1Wvo6OjT1rjdDoVHBysiIgIBQQE1Fhz7D7Ky8tVVFR0wprjORwOOZ1OrwUAADRcdQpClmVp9OjReuONN7RmzRq1bdv2lNvk5+dLkmJiYiRJSUlJ+uKLL7zu7srOzpbT6VR8fLxdk5OT47Wf7OxsJSUlSZICAwOVkJDgVVNZWamcnBy7JiEhQeedd55Xzc6dO1VQUGDXAAAAs9Xpq7H09HQtWbJEb775pkJCQuy5NqGhoQoODtauXbu0ZMkSXX311WrevLm2bt2qcePGqW/fvrroooskSQMGDFB8fLxGjBihmTNnyu12a8qUKUpPT5fD4ZAk3XXXXZozZ47uv/9+3XbbbVqzZo2WLVumVatW2b1kZGQoNTVVPXr0UM+ePTV79myVlJRo1KhRdk9paWnKyMhQeHi4nE6nxowZo6SkpFrdMQYAABq+OgWh+fPnSzp6i/yxXn75ZY0cOVKBgYF6//337VASFxenwYMHa8qUKXZtQECAVq5cqbvvvltJSUlq0qSJUlNTNX36dLumbdu2WrVqlcaNG6enn35aLVu21AsvvCCXy2XXDBkyRPv27VNmZqbcbre6d++urKwsrwnUs2bNkr+/vwYPHqyysjK5XC7NmzevTicIAAA0XGf0HKGGjucIAbXHc4QA/Fb8154jBAAAUJ8RhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjFWnIDRjxgxdcsklCgkJUWRkpAYOHKidO3d61ZSWlio9PV3NmzdX06ZNNXjwYBUWFnrVFBQUKCUlRY0bN1ZkZKQmTJigI0eOeNV88MEHuvjii+VwONS+fXstXLiwWj9z585VmzZtFBQUpMTERG3evLnOvQAAAHPVKQitW7dO6enp2rhxo7Kzs3X48GENGDBAJSUlds24ceP09ttva/ny5Vq3bp327NmjQYMG2esrKiqUkpKi8vJybdiwQYsWLdLChQuVmZlp1+zevVspKSnq16+f8vPzNXbsWN1+++1699137ZqlS5cqIyNDU6dO1ZYtW9StWze5XC7t3bu31r0AAACz+VmWZZ3uxvv27VNkZKTWrVunvn37qri4WC1atNCSJUt04403SpJ27NihTp06KTc3V7169dLq1at1zTXXaM+ePYqKipIkLViwQBMnTtS+ffsUGBioiRMnatWqVdq2bZt9rKFDh6qoqEhZWVmSpMTERF1yySWaM2eOJKmyslJxcXEaM2aMJk2aVKteTsXj8Sg0NFTFxcVyOp2ne5oAI+S+ON7XLdRZUtoTvm4BwDlQl8/vM5ojVFxcLEkKDw+XJOXl5enw4cNKTk62azp27KhWrVopNzdXkpSbm6uuXbvaIUiSXC6XPB6Ptm/fbtccu4+qmqp9lJeXKy8vz6vG399fycnJdk1tejleWVmZPB6P1wIAABqu0w5ClZWVGjt2rHr37q0uXbpIktxutwIDAxUWFuZVGxUVJbfbbdccG4Kq1letO1mNx+PRr7/+qv3796uioqLGmmP3capejjdjxgyFhobaS1xcXC3PBgAAqI9OOwilp6dr27Zt+uc//3k2+/GpyZMnq7i42F6+//57X7cEAADOoUans9Ho0aO1cuVKrV+/Xi1btrTHo6OjVV5erqKiIq8rMYWFhYqOjrZrjr+7q+pOrmNrjr+7q7CwUE6nU8HBwQoICFBAQECNNcfu41S9HM/hcMjhcNThTAAAgPqsTleELMvS6NGj9cYbb2jNmjVq27at1/qEhASdd955ysnJscd27typgoICJSUlSZKSkpL0xRdfeN3dlZ2dLafTqfj4eLvm2H1U1VTtIzAwUAkJCV41lZWVysnJsWtq0wsAADBbna4Ipaena8mSJXrzzTcVEhJiz7UJDQ1VcHCwQkNDlZaWpoyMDIWHh8vpdGrMmDFKSkqy79IaMGCA4uPjNWLECM2cOVNut1tTpkxRenq6fTXmrrvu0pw5c3T//ffrtttu05o1a7Rs2TKtWrXK7iUjI0Opqanq0aOHevbsqdmzZ6ukpESjRo2yezpVLwAAwGx1CkLz58+XJF1xxRVe4y+//LJGjhwpSZo1a5b8/f01ePBglZWVyeVyad68eXZtQECAVq5cqbvvvltJSUlq0qSJUlNTNX36dLumbdu2WrVqlcaNG6enn35aLVu21AsvvCCXy2XXDBkyRPv27VNmZqbcbre6d++urKwsrwnUp+oFAACY7YyeI9TQ8RwhoPZ4jhCA34r/2nOEAAAA6jOCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAseochNavX69rr71WsbGx8vPz04oVK7zWjxw5Un5+fl7LlVde6VVz8OBBDR8+XE6nU2FhYUpLS9OhQ4e8arZu3ao+ffooKChIcXFxmjlzZrVeli9fro4dOyooKEhdu3bVO++847XesixlZmYqJiZGwcHBSk5O1tdff13XtwwAABqoOgehkpISdevWTXPnzj1hzZVXXqkff/zRXv7xj394rR8+fLi2b9+u7OxsrVy5UuvXr9edd95pr/d4PBowYIBat26tvLw8Pf7445o2bZqef/55u2bDhg0aNmyY0tLS9Nlnn2ngwIEaOHCgtm3bZtfMnDlTzzzzjBYsWKBNmzapSZMmcrlcKi0trevbBgAADZCfZVnWaW/s56c33nhDAwcOtMdGjhypoqKialeKqnz11VeKj4/XJ598oh49ekiSsrKydPXVV+uHH35QbGys5s+frwcffFBut1uBgYGSpEmTJmnFihXasWOHJGnIkCEqKSnRypUr7X336tVL3bt314IFC2RZlmJjY3Xfffdp/PjxkqTi4mJFRUVp4cKFGjp06Cnfn8fjUWhoqIqLi+V0Ok/nFAHGyH1xvK9bqLOktCd83QKAc6Aun9/nZI7QBx98oMjISHXo0EF33323Dhw4YK/Lzc1VWFiYHYIkKTk5Wf7+/tq0aZNd07dvXzsESZLL5dLOnTv1008/2TXJyclex3W5XMrNzZUk7d69W26326smNDRUiYmJds3xysrK5PF4vBYAANBwnfUgdOWVV+rvf/+7cnJy9Ne//lXr1q3TVVddpYqKCkmS2+1WZGSk1zaNGjVSeHi43G63XRMVFeVVU/X6VDXHrj92u5pqjjdjxgyFhobaS1xcXJ3fPwAAqD8ane0dHvuVU9euXXXRRRepXbt2+uCDD9S/f/+zfbizavLkycrIyLBfezwewhAAAA3YOb99/vzzz1dERIS++eYbSVJ0dLT27t3rVXPkyBEdPHhQ0dHRdk1hYaFXTdXrU9Ucu/7Y7WqqOZ7D4ZDT6fRaAABAw3XOg9APP/ygAwcOKCYmRpKUlJSkoqIi5eXl2TVr1qxRZWWlEhMT7Zr169fr8OHDdk12drY6dOigZs2a2TU5OTlex8rOzlZSUpIkqW3btoqOjvaq8Xg82rRpk10DAADMVucgdOjQIeXn5ys/P1/S0UnJ+fn5Kigo0KFDhzRhwgRt3LhR3377rXJycnT99derffv2crlckqROnTrpyiuv1B133KHNmzfr448/1ujRozV06FDFxsZKkm6++WYFBgYqLS1N27dv19KlS/X00097fW117733KisrS08++aR27NihadOm6dNPP9Xo0aMlHb2jbezYsfrLX/6it956S1988YVuvfVWxcbGet3lBgAAzFXnOUKffvqp+vXrZ7+uCiepqamaP3++tm7dqkWLFqmoqEixsbEaMGCAHn74YTkcDnubxYsXa/To0erfv7/8/f01ePBgPfPMM/b60NBQvffee0pPT1dCQoIiIiKUmZnp9ayhSy+9VEuWLNGUKVP0wAMP6IILLtCKFSvUpUsXu+b+++9XSUmJ7rzzThUVFemyyy5TVlaWgoKC6vq2AQBAA3RGzxFq6HiOEFB7PEcIwG+Fz58jBAAAUB8QhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjFXnILR+/Xpde+21io2NlZ+fn1asWOG13rIsZWZmKiYmRsHBwUpOTtbXX3/tVXPw4EENHz5cTqdTYWFhSktL06FDh7xqtm7dqj59+igoKEhxcXGaOXNmtV6WL1+ujh07KigoSF27dtU777xT514AAIC56hyESkpK1K1bN82dO7fG9TNnztQzzzyjBQsWaNOmTWrSpIlcLpdKS0vtmuHDh2v79u3Kzs7WypUrtX79et155532eo/HowEDBqh169bKy8vT448/rmnTpun555+3azZs2KBhw4YpLS1Nn332mQYOHKiBAwdq27ZtdeoFAACYy8+yLOu0N/bz0xtvvKGBAwdKOnoFJjY2Vvfdd5/Gjx8vSSouLlZUVJQWLlyooUOH6quvvlJ8fLw++eQT9ejRQ5KUlZWlq6++Wj/88INiY2M1f/58Pfjgg3K73QoMDJQkTZo0SStWrNCOHTskSUOGDFFJSYlWrlxp99OrVy91795dCxYsqFUvp+LxeBQaGqri4mI5nc7TPU2AEXJfHO/rFuosKe0JX7cA4Byoy+f3WZ0jtHv3brndbiUnJ9tjoaGhSkxMVG5uriQpNzdXYWFhdgiSpOTkZPn7+2vTpk12Td++fe0QJEkul0s7d+7UTz/9ZNcce5yqmqrj1KaX45WVlcnj8XgtAACg4TqrQcjtdkuSoqKivMajoqLsdW63W5GRkV7rGzVqpPDwcK+amvZx7DFOVHPs+lP1crwZM2YoNDTUXuLi4mrxrgEAQH3FXWPHmDx5soqLi+3l+++/93VLAADgHDqrQSg6OlqSVFhY6DVeWFhor4uOjtbevXu91h85ckQHDx70qqlpH8ce40Q1x64/VS/HczgccjqdXgsAAGi4zmoQatu2raKjo5WTk2OPeTwebdq0SUlJSZKkpKQkFRUVKS8vz65Zs2aNKisrlZiYaNesX79ehw8ftmuys7PVoUMHNWvWzK459jhVNVXHqU0vAADAbHUOQocOHVJ+fr7y8/MlHZ2UnJ+fr4KCAvn5+Wns2LH6y1/+orfeektffPGFbr31VsXGxtp3lnXq1ElXXnml7rjjDm3evFkff/yxRo8eraFDhyo2NlaSdPPNNyswMFBpaWnavn27li5dqqeffloZGRl2H/fee6+ysrL05JNPaseOHZo2bZo+/fRTjR49WpJq1QsAADBbo7pu8Omnn6pfv37266pwkpqaqoULF+r+++9XSUmJ7rzzThUVFemyyy5TVlaWgoKC7G0WL16s0aNHq3///vL399fgwYP1zDPP2OtDQ0P13nvvKT09XQkJCYqIiFBmZqbXs4YuvfRSLVmyRFOmTNEDDzygCy64QCtWrFCXLl3smtr0AgAAzHVGzxFq6HiOEFB7PEcIwG+Fz54jBAAAUJ8QhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjHXWg9C0adPk5+fntXTs2NFeX1paqvT0dDVv3lxNmzbV4MGDVVhY6LWPgoICpaSkqHHjxoqMjNSECRN05MgRr5oPPvhAF198sRwOh9q3b6+FCxdW62Xu3Llq06aNgoKClJiYqM2bN5/ttwsAAOqxc3JFqHPnzvrxxx/t5aOPPrLXjRs3Tm+//baWL1+udevWac+ePRo0aJC9vqKiQikpKSovL9eGDRu0aNEiLVy4UJmZmXbN7t27lZKSon79+ik/P19jx47V7bffrnfffdeuWbp0qTIyMjR16lRt2bJF3bp1k8vl0t69e8/FWwYAAPWQn2VZ1tnc4bRp07RixQrl5+dXW1dcXKwWLVpoyZIluvHGGyVJO3bsUKdOnZSbm6tevXpp9erVuuaaa7Rnzx5FRUVJkhYsWKCJEydq3759CgwM1MSJE7Vq1Spt27bN3vfQoUNVVFSkrKwsSVJiYqIuueQSzZkzR5JUWVmpuLg4jRkzRpMmTarVe/F4PAoNDVVxcbGcTueZnBagwct9cbyvW6izpLQnfN0CgHOgLp/f5+SK0Ndff63Y2Fidf/75Gj58uAoKCiRJeXl5Onz4sJKTk+3ajh07qlWrVsrNzZUk5ebmqmvXrnYIkiSXyyWPx6Pt27fbNcfuo6qmah/l5eXKy8vzqvH391dycrJdU5OysjJ5PB6vBQAANFxnPQglJiZq4cKFysrK0vz587V792716dNHP//8s9xutwIDAxUWFua1TVRUlNxutyTJ7XZ7haCq9VXrTlbj8Xj066+/av/+/aqoqKixpmofNZkxY4ZCQ0PtJS4u7rTOAQAAqB8ane0dXnXVVfafL7roIiUmJqp169ZatmyZgoODz/bhzqrJkycrIyPDfu3xeAhDAAA0YOf89vmwsDBdeOGF+uabbxQdHa3y8nIVFRV51RQWFio6OlqSFB0dXe0usqrXp6pxOp0KDg5WRESEAgICaqyp2kdNHA6HnE6n1wIAABqucx6EDh06pF27dikmJkYJCQk677zzlJOTY6/fuXOnCgoKlJSUJElKSkrSF1984XV3V3Z2tpxOp+Lj4+2aY/dRVVO1j8DAQCUkJHjVVFZWKicnx64BAAA460Fo/PjxWrdunb799ltt2LBBN9xwgwICAjRs2DCFhoYqLS1NGRkZWrt2rfLy8jRq1CglJSWpV69ekqQBAwYoPj5eI0aM0Oeff653331XU6ZMUXp6uhwOhyTprrvu0r///W/df//92rFjh+bNm6dly5Zp3Lhxdh8ZGRn629/+pkWLFumrr77S3XffrZKSEo0aNepsv2UAAFBPnfU5Qj/88IOGDRumAwcOqEWLFrrsssu0ceNGtWjRQpI0a9Ys+fv7a/DgwSorK5PL5dK8efPs7QMCArRy5UrdfffdSkpKUpMmTZSamqrp06fbNW3bttWqVas0btw4Pf3002rZsqVeeOEFuVwuu2bIkCHat2+fMjMz5Xa71b17d2VlZVWbQA0AAMx11p8j1JDwHCGg9niOEIDfCp8/RwgAAKA+IAgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIzVyNcNAICvzMr+l69bqLNx/+9CX7cANChcEQIAAMYiCAEAAGMRhAAAgLEIQgAAwFhMlgZgrF4Fz/u6hdPwhK8bABoUrggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGPxZGkAqEdmZf/L1y3U2bj/d6GvWwBOiCtCAADAWFwRAoB6pF7+frS1zaV+k33dBVAjrggBAABjEYQAAICx+GoMAHBO5f77gDYeqV+TvJngbQ6CEADgnKt3c5uY12QMvhoDAADGMuKK0Ny5c/X444/L7XarW7duevbZZ9WzZ09ftwUA+I3K/fcB6d/jfd1GnSWlPeHrFuqdBh+Eli5dqoyMDC1YsECJiYmaPXu2XC6Xdu7cqcjISF+3B9SoPj40r5evGwCg3BcJb3XV4IPQU089pTvuuEOjRo2SJC1YsECrVq3SSy+9pEmTJvm4O6Bm9W4+BQDUUw06CJWXlysvL0+TJ//fhDd/f38lJycrNze3Wn1ZWZnKysrs18XFxZIkj8dzTvrb/PcHz8l+AQCoL87FZ2zVPi3LOmVtgw5C+/fvV0VFhaKiorzGo6KitGPHjmr1M2bM0EMPPVRtPC4u7pz1CACA0cbMOWe7/vnnnxUaGnrSmgYdhOpq8uTJysjIsF9XVlbq4MGDat68ufz8/HzY2W+fx+NRXFycvv/+ezmdTl+306Bwbs8Nzuu5w7k9NzivtWdZln7++WfFxsaesrZBB6GIiAgFBASosLDQa7ywsFDR0dHV6h0OhxwOh9dYWFjYuWyxwXE6nfwHeo5wbs8Nzuu5w7k9NzivtXOqK0FVGvRzhAIDA5WQkKCcnBx7rLKyUjk5OUpKSvJhZwAA4LegQV8RkqSMjAylpqaqR48e6tmzp2bPnq2SkhL7LjIAAGCuBh+EhgwZon379ikzM1Nut1vdu3dXVlZWtQnUODMOh0NTp06t9tUizhzn9tzgvJ47nNtzg/N6bvhZtbm3DAAAoAFq0HOEAAAAToYgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCOGOPPPKILr30UjVu3PiET+IuKChQSkqKGjdurMjISE2YMEFHjhz57zbaALRp00Z+fn5ey2OPPebrtuqluXPnqk2bNgoKClJiYqI2b97s65bqtWnTplX72ezYsaOv26qX1q9fr2uvvVaxsbHy8/PTihUrvNZblqXMzEzFxMQoODhYycnJ+vrrr33TbANAEMIZKy8v10033aS77767xvUVFRVKSUlReXm5NmzYoEWLFmnhwoXKzMz8L3faMEyfPl0//vijvYwZM8bXLdU7S5cuVUZGhqZOnaotW7aoW7ducrlc2rt3r69bq9c6d+7s9bP50Ucf+bqleqmkpETdunXT3Llza1w/c+ZMPfPMM1qwYIE2bdqkJk2ayOVyqbS09L/caQNhAWfJyy+/bIWGhlYbf+eddyx/f3/L7XbbY/Pnz7ecTqdVVlb2X+yw/mvdurU1a9YsX7dR7/Xs2dNKT0+3X1dUVFixsbHWjBkzfNhV/TZ16lSrW7duvm6jwZFkvfHGG/bryspKKzo62nr88cftsaKiIsvhcFj/+Mc/fNBh/ccVIZxzubm56tq1q9fTvF0ulzwej7Zv3+7Dzuqnxx57TM2bN9fvf/97Pf7443zFWEfl5eXKy8tTcnKyPebv76/k5GTl5ub6sLP67+uvv1ZsbKzOP/98DR8+XAUFBb5uqcHZvXu33G63189vaGioEhMT+fk9TQ3+V2zA99xud7VfaVL12u12+6Kleuuee+7RxRdfrPDwcG3YsEGTJ0/Wjz/+qKeeesrXrdUb+/fvV0VFRY0/kzt27PBRV/VfYmKiFi5cqA4dOujHH3/UQw89pD59+mjbtm0KCQnxdXsNRtW/mTX9/PLv6enhihBqNGnSpGoTH49f+NA4O+pyrjMyMnTFFVfooosu0l133aUnn3xSzz77rMrKynz8LmC6q666SjfddJMuuugiuVwuvfPOOyoqKtKyZct83RpwUlwRQo3uu+8+jRw58qQ1559/fq32FR0dXe2OnMLCQnud6c7kXCcmJurIkSP69ttv1aFDh3PQXcMTERGhgIAA+2ewSmFhIT+PZ1FYWJguvPBCffPNN75upUGp+hktLCxUTEyMPV5YWKju3bv7qKv6jSCEGrVo0UItWrQ4K/tKSkrSI488or179yoyMlKSlJ2dLafTqfj4+LNyjPrsTM51fn6+/P397fOKUwsMDFRCQoJycnI0cOBASVJlZaVycnI0evRo3zbXgBw6dEi7du3SiBEjfN1Kg9K2bVtFR0crJyfHDj4ej0ebNm064Z27ODmCEM5YQUGBDh48qIKCAlVUVCg/P1+S1L59ezVt2lQDBgxQfHy8RowYoZkzZ8rtdmvKlClKT0+Xw+HwbfP1SG5urjZt2qR+/fopJCREubm5GjdunG655RY1a9bM1+3VKxkZGUpNTVWPHj3Us2dPzZ49WyUlJRo1apSvW6u3xo8fr2uvvVatW7fWnj17NHXqVAUEBGjYsGG+bq3eOXTokNeVtN27dys/P1/h4eFq1aqVxo4dq7/85S+64IIL1LZtW/35z39WbGysHexRR76+bQ31X2pqqiWp2rJ27Vq75ttvv7WuuuoqKzg42IqIiLDuu+8+6/Dhw75ruh7Ky8uzEhMTrdDQUCsoKMjq1KmT9eijj1qlpaW+bq1eevbZZ61WrVpZgYGBVs+ePa2NGzf6uqV6bciQIVZMTIwVGBho/e53v7OGDBliffPNN75uq15au3Ztjf+mpqamWpZ19Bb6P//5z1ZUVJTlcDis/v37Wzt37vRt0/WYn2VZlq9CGAAAgC9x1xgAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjPX/AfLcrhRwwJzWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPTtJREFUeJzt3X1cFXX+//8noOeAFwdUrmTF61LxslCRTMvk59HowrRWzQxNcy20lDS1XDTbsmwrK6+2rRW3tNT6ZOUFRXhViZoYeVG65VrY6sGr4CgKKMzvD2/M1yOo4EUE87jfbnO7dWZe857XjEfPszkzc7wMwzAEAABgQd4V3QAAAEBFIQgBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBAADLIggBfzDTpk2Tl5fXFa175MiRq9xV2a1bt05eXl5at25dhfUAAGVFEAIs6vnnn9fy5csrug3gkoYOHSovL68SU8uWLSu6NVQB1Sq6AQCepkyZokmTJl3z7Tz//PO699571bdv32u+LeBK2e12vfXWWx7z/P39K6gbVCUEIeAPplq1aqpWjb+a+P3k5eXJZrPJ2/uP+yVBtWrV9MADD1R0G6iC/rjveuAPavv27fLy8tInn3xizktPT5eXl5duvPFGj9o+ffooKirKfL169Wp169ZNNWvWVO3atRUbG6tdu3Z5rFPaNUKnTp3SY489psDAQNWuXVt33XWX/ve//8nLy0vTpk0r0WN2draGDh2qgIAA+fv7a9iwYTp58qS53MvLS7m5uVq4cKH5NcPQoUPN5f/73//00EMPKSQkRHa7Xa1bt9a//vWvEtv59ddf1bdvX9WsWVPBwcEaN26c8vPzy3Qcz5WUlCQvLy999dVXeuyxxxQUFKSAgAD95S9/UUFBgbKzs/Xggw+qTp06qlOnjp588kkZhuExxt///nfddNNNqlevnvz8/BQZGakPPvigxLZSUlJ08803KyAgQLVq1VKLFi301FNPedS88cYbat26tWrUqKE6deqoY8eOWrx4cbn2qaz9SNK7776rzp07m9vr3r27Pv/8c4+a1atX65ZbblHt2rXlcDjUqVMnj54aN27s8WdY7NZbb9Wtt95qvi6+huv999/XlClT9Kc//Uk1atSQ2+3WsWPHNH78eLVt21a1atWSw+FQnz599N1335UYNy8vT9OmTdP1118vX19f1a9fX/369dPevXtlGIYaN26su+++u9T1/P399Ze//KWMR/L/KSwslNvtLvd6wMXwv51AObVp00YBAQHasGGD7rrrLknSl19+KW9vb3333Xdyu91yOBwqKirSxo0bNXLkSEnSO++8o7i4ODmdTr344os6efKk5s2bp5tvvlnffvutGjdufMFtDh06VEuXLtWQIUPUpUsXrV+/XrGxsRes//Of/6wmTZpoxowZ2rZtm9566y0FBwfrxRdfNHsZMWKEOnfubPbXrFkzSVJWVpa6dOkiLy8vjR49WkFBQVq9erWGDx8ut9utsWPHSjobznr27KnMzEw99thjCgsL0zvvvKM1a9Zc9rEdM2aMQkND9cwzz2jTpk168803FRAQoI0bN6phw4Z6/vnntWrVKr300ktq06aNHnzwQXPd1157TXfddZcGDx6sgoICvf/++7rvvvu0YsUK81jt2rVLd9xxh9q1a6fp06fLbrfrp59+0tdff22O889//lOPPfaY7r33Xj3++OPKy8vT9u3btXnzZt1///1l3pey9CNJzzzzjKZNm6abbrpJ06dPl81m0+bNm7VmzRr16tVL0tmg+NBDD6l169aaPHmyAgIC9O233yo5OblcPZ3r2Weflc1m0/jx45Wfny+bzabvv/9ey5cv13333acmTZooKytL//jHP3TLLbfo+++/V1hYmKSzgeSOO+5QamqqBg4cqMcff1zHjx9XSkqKdu7cqWbNmumBBx7QzJkzdezYMdWtW9fc7qeffiq3213uszsnT56Uw+HQyZMnVadOHQ0aNEgvvviiatWqdVn7D5gMAOUWGxtrdO7c2Xzdr18/o1+/foaPj4+xevVqwzAMY9u2bYYk4+OPPzaOHz9uBAQEGA8//LDHOC6Xy/D39/eYP3XqVOPcv5rp6emGJGPs2LEe6w4dOtSQZEydOrXEug899JBH7T333GPUq1fPY17NmjWNuLi4Evs2fPhwo379+saRI0c85g8cONDw9/c3Tp48aRiGYcyaNcuQZCxdutSsyc3NNZo3b25IMtauXVti7AtZsGCBIclwOp1GUVGROT86Otrw8vIyRo0aZc47c+aM0aBBA+OWW27xGKO4r2IFBQVGmzZtjNtuu82c9+qrrxqSjMOHD1+wl7vvvtto3bp1mXu/kLL08+OPPxre3t7GPffcYxQWFnrUFx+H7Oxso3bt2kZUVJRx6tSpUmsMwzAaNWpU6p/nLbfc4nGs1q5da0gymjZtWqLHvLy8En3s27fPsNvtxvTp0815//rXvwxJxiuvvFJie8U97dmzx5BkzJs3z2P5XXfdZTRu3Nij90uZNGmSMXHiRGPJkiXGe++9Z8TFxRmSjK5duxqnT58u8zhAafhqDLgM3bp107Zt25SbmytJ+uqrr3T77berQ4cO+vLLLyWdPUvk5eWlm2++WSkpKcrOztagQYN05MgRc/Lx8VFUVJTWrl17wW0lJydLkh599FGP+WPGjLngOqNGjSrR79GjRy/5tYJhGPrwww915513yjAMj16dTqdycnK0bds2SdKqVatUv3593Xvvveb6NWrUMM8wXY7hw4d7fC0YFRUlwzA0fPhwc56Pj486duyo//73vx7r+vn5mf/922+/KScnx/xzKhYQECBJ+vjjj1VUVFRqDwEBAfr111/1zTffXPZ+lLWf5cuXq6ioSImJiSWuzyk+DikpKTp+/LgmTZokX1/fUmsuR1xcnEeP0tkLkov7KCws1NGjR82vD8/t+8MPP1RgYGCp78Hinq6//npFRUVp0aJF5rJjx45p9erVGjx4cLl6nzFjhl544QX9+c9/1sCBA5WUlKTnnntOX3/99QW/bgTKiiAEXIZu3brpzJkzSktL0549e3To0CF169ZN3bt39whCERERqlu3rn788UdJ0m233aagoCCP6fPPP9ehQ4cuuK1ffvlF3t7eatKkicf85s2bX3Cdhg0beryuU6eOpLMfyBdz+PBhZWdn68033yzR57BhwyTJ7PWXX35R8+bNS3ygtWjR4qLbuJjz+y6+Kyg8PLzE/PP3ZcWKFerSpYt8fX1Vt25dBQUFad68ecrJyTFrBgwYoK5du2rEiBEKCQnRwIEDtXTpUo9QNHHiRNWqVUudO3fWddddp/j4eI+vzsqqLP3s3btX3t7eioiIuOA4e/fulXT2K9mr6fz3kyQVFRXp1Vdf1XXXXSe73a7AwEAFBQVp+/btJfpu0aLFJS/qf/DBB/X111/rl19+kSQtW7ZMp0+f1pAhQ664/3Hjxsnb21tffPHFFY8Fa+MaIeAydOzYUb6+vtqwYYMaNmyo4OBgXX/99erWrZvmzp2r/Px8ffnll7rnnnskyfygfeeddxQaGlpivKt9l5iPj0+p843zLjA+X3GfDzzwgOLi4kqtadeu3ZU1dxEX6ru0+efuy5dffqm77rpL3bt319y5c1W/fn1Vr15dCxYs8Lig2M/PTxs2bNDatWu1cuVKJScna8mSJbrtttv0+eefy8fHR61atdKePXu0YsUKJScn68MPP9TcuXOVmJioZ555pkz7UdZ+rqYLnWEpLCws9fidfzZIOvtIhb/+9a966KGH9Oyzz6pu3bry9vbW2LFjL3gG7WIGDhyocePGadGiRXrqqaf07rvvqmPHjlcUls/tv169ejp27NgVjwVrIwgBl8Fms6lz58768ssv1bBhQ3Xr1k3S2TNF+fn5WrRokbKystS9e3dJ/+9C5ODgYMXExJRrW40aNVJRUZH27dun6667zpz/008/XdE+lPbBGRQUpNq1a6uwsPCSfTZq1Eg7d+6UYRgeY+3Zs+eK+rocH374oXx9ffXZZ5/Jbreb8xcsWFCi1tvbWz179lTPnj31yiuv6Pnnn9fTTz+ttWvXmvtcs2ZNDRgwQAMGDFBBQYH69eun5557TpMnTy7x9dSV9NOsWTMVFRXp+++/V4cOHUodq/i9s3PnzoueBaxTp46ys7NLzP/ll1/UtGnTS/YsSR988IF69Oiht99+22N+dna2AgMDPXravHmzTp8+rerVq19wvLp16yo2NlaLFi3S4MGD9fXXX2vWrFll6uVSjh8/riNHjigoKOiqjAfr4qsx4DJ169ZNmzdv1tq1a80gFBgYqFatWpl3ZxXPdzqdcjgcev7553X69OkSYx0+fPiC23E6nZKkuXPnesx/4403rqj/mjVrlvjg9PHxUf/+/fXhhx9q586dF+3z9ttv14EDBzyu0Th58qTefPPNK+rrcvj4+MjLy0uFhYXmvJ9//rnEk7NLO3tQHECKb/s/evSox3KbzaaIiAgZhlHqn92V9NO3b195e3tr+vTpJc64FJ/x6tWrl2rXrq0ZM2YoLy+v1BrpbDjZtGmTCgoKzHkrVqzQ/v37y9Rzcd/nnzVctmyZ/ve//3nM69+/v44cOaLZs2eXGOP89YcMGaLvv/9eEyZMkI+PjwYOHFjmfqSzt9sfP368xPxnn31WhmGod+/e5RoPOB9nhIDL1K1bNz333HPav3+/GXgkqXv37vrHP/6hxo0bq0GDBpIkh8OhefPmaciQIbrxxhs1cOBABQUFKTMzUytXrlTXrl1L/VCRpMjISPXv31+zZs3S0aNHzdvn//Of/0i6/AtmIyMj9cUXX+iVV15RWFiYmjRpoqioKL3wwgtau3atoqKi9PDDDysiIkLHjh3Ttm3b9MUXX5hh4uGHH9bs2bP14IMPKj09XfXr19c777yjGjVqXFY/VyI2NlavvPKKevfurfvvv1+HDh3SnDlz1Lx5c23fvt2smz59ujZs2KDY2Fg1atRIhw4d0ty5c9WgQQPdfPPNks4Gj9DQUHXt2lUhISH64YcfNHv2bMXGxqp27dpXtZ/mzZvr6aef1rPPPqtu3bqpX79+stvt+uabbxQWFqYZM2bI4XDo1Vdf1YgRI9SpUyfdf//9qlOnjr777judPHlSCxculCSNGDFCH3zwgXr37q0///nP2rt3r959913zjFJZ3HHHHZo+fbqGDRumm266STt27NCiRYtKnFF68MEH9e9//1sJCQnasmWLunXrptzcXH3xxRd69NFHPZ4fFBsbq3r16mnZsmXq06ePgoODy9yPJLlcLt1www0aNGiQ+ZMan332mVatWqXevXuX+qwioFwq5mY1oPJzu92Gj4+PUbt2bePMmTPm/HfffdeQZAwZMqTEOmvXrjWcTqfh7+9v+Pr6Gs2aNTOGDh1qbN261aw5//Z5wzh7W3p8fLxRt25do1atWkbfvn3N25NfeOGFEuuef3t48e3p+/btM+ft3r3b6N69u+Hn52dI8rj1Oisry4iPjzfCw8ON6tWrG6GhoUbPnj2NN99802PcX375xbjrrruMGjVqGIGBgcbjjz9uJCcnX/bt8998843H/AvtT1xcnFGzZk2PeW+//bZx3XXXGXa73WjZsqWxYMGCEscyNTXVuPvuu42wsDDDZrMZYWFhxqBBg4z//Oc/Zs0//vEPo3v37ka9evUMu91uNGvWzJgwYYKRk5NT5v0paz/F/vWvfxk33HCDYbfbjTp16hi33HKLkZKS4lHzySefGDfddJPh5+dnOBwOo3PnzsZ7773nUfPyyy8bf/rTnwy73W507drV2Lp16wVvn1+2bFmJPvLy8ownnnjCqF+/vuHn52d07drVSEtLKzGGYZx9PMDTTz9tNGnSxHyP3HvvvcbevXtLjPvoo48akozFixeX4wie9dtvvxkPPPCA0bx5c6NGjRqG3W43WrdubTz//PNGQUFBuccDzudlGJe4ehLAH1JGRoZuuOEGvfvuuxo8eHBFtwNc0Lhx4/T222/L5XJVyBlD4GK4RgioBE6dOlVi3qxZs+Tt7W1ekA38EeXl5endd99V//79CUH4Q+IaIaASmDlzptLT09WjRw9Vq1ZNq1ev1urVqzVy5MgSz9j5Izl16pTH82dKU7duXdlstt+poytTWFh40QvbJalWrVr87IPOPm/qiy++0AcffKCjR4/q8ccfL1Fz+PBhjwvKz2ez2Tx+ngO4Jir6uzkAl/b5558bXbt2NerUqWNUr17daNasmTFt2rQ//M8LFF/7c7GpPNcSVbR9+/Zdcn/O/ckTKyu+Fik4ONh44403Sq1p1KjRRY/l+dclAdcC1wgBuGYOHjyoXbt2XbQmMjLSfPL1H11eXp6++uqri9Y0bdq0zM/tsbqvv/661K99i9WpU0eRkZG/Y0ewIoIQAACwLC6WBgAAlsXF0hdRVFSkAwcOqHbt2lf0K88AAOD3YxiGjh8/rrCwMHl7X/ycD0HoIg4cOPCHviMHAABc2P79+80n/F8IQegiih+nv3//fjkcjgruBgAAlIXb7VZ4eHiZfhaHIHQRxV+HORwOghAAAJVMWS5r4WJpAABgWeUKQvPmzVO7du3MMyTR0dFavXq1uTwvL0/x8fGqV6+eatWqpf79+ysrK8tjjMzMTMXGxqpGjRoKDg7WhAkTdObMGY+adevW6cYbb5Tdblfz5s2VlJRUopc5c+aocePG8vX1VVRUlLZs2eKxvCy9AAAAaytXEGrQoIFeeOEFpaena+vWrbrtttt09913mw9MGzdunD799FMtW7ZM69ev14EDB9SvXz9z/cLCQsXGxqqgoEAbN27UwoULlZSUpMTERLNm3759io2NVY8ePZSRkaGxY8dqxIgR+uyzz8yaJUuWKCEhQVOnTtW2bdvUvn17OZ1OHTp0yKy5VC8AAABX/BMbderUMd566y0jOzvbqF69urFs2TJz2Q8//GBIMtLS0gzDMIxVq1YZ3t7ehsvlMmvmzZtnOBwOIz8/3zAMw3jyySeN1q1be2xjwIABhtPpNF937tzZiI+PN18XFhYaYWFhxowZMwzDMMrUS1nk5OQYkoycnJwyrwMAACpWeT6/L/saocLCQr3//vvKzc1VdHS00tPTdfr0acXExJg1LVu2VMOGDZWWliZJSktLU9u2bRUSEmLWOJ1Oud1u86xSWlqaxxjFNcVjFBQUKD093aPG29tbMTExZk1ZeilNfn6+3G63xwQAAKqucgehHTt2qFatWrLb7Ro1apQ++ugjRUREyOVyyWazKSAgwKM+JCRELpdLkuRyuTxCUPHy4mUXq3G73Tp16pSOHDmiwsLCUmvOHeNSvZRmxowZ8vf3NyeeIQQAQNVW7iDUokULZWRkaPPmzXrkkUcUFxen77///lr09rubPHmycnJyzGn//v0V3RIAALiGyv0cIZvNpubNm0s6+6vR33zzjV577TUNGDBABQUFys7O9jgTk5WVpdDQUElSaGhoibu7iu/kOrfm/Lu7srKy5HA45OfnJx8fH/n4+JRac+4Yl+qlNHa7XXa7vRxHAwAAVGZX/ByhoqIi5efnKzIyUtWrV1dqaqq5bM+ePcrMzFR0dLQkKTo6Wjt27PC4uyslJUUOh0MRERFmzbljFNcUj2Gz2RQZGelRU1RUpNTUVLOmLL0AAACU666xSZMmGevXrzf27dtnbN++3Zg0aZLh5eVlfP7554ZhGMaoUaOMhg0bGmvWrDG2bt1qREdHG9HR0eb6Z86cMdq0aWP06tXLyMjIMJKTk42goCBj8uTJZs1///tfo0aNGsaECROMH374wZgzZ47h4+NjJCcnmzXvv/++YbfbjaSkJOP77783Ro4caQQEBHjcjXapXsqCu8YAAKh8yvP5Xa4g9NBDDxmNGjUybDabERQUZPTs2dMMQYZhGKdOnTIeffRRo06dOkaNGjWMe+65xzh48KDHGD///LPRp08fw8/PzwgMDDSeeOIJ4/Tp0x41a9euNTp06GDYbDajadOmxoIFC0r08sYbbxgNGzY0bDab0blzZ2PTpk0ey8vSy6UQhAAAqHzK8/ntZRiGUbHnpP643G63/P39lZOTw2+NAQBQSZTn85vfGgMAAJZFEAIAAJZV7tvnAaBUa2dUdAfl12NyRXcAoIJxRggAAFgWZ4QAXBVp/z1a0S2UW3SPiu4AQEXjjBAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCscgWhGTNmqFOnTqpdu7aCg4PVt29f7dmzx6Pm1ltvlZeXl8c0atQoj5rMzEzFxsaqRo0aCg4O1oQJE3TmzBmPmnXr1unGG2+U3W5X8+bNlZSUVKKfOXPmqHHjxvL19VVUVJS2bNnisTwvL0/x8fGqV6+eatWqpf79+ysrK6s8uwwAAKqwcgWh9evXKz4+Xps2bVJKSopOnz6tXr16KTc316Pu4Ycf1sGDB81p5syZ5rLCwkLFxsaqoKBAGzdu1MKFC5WUlKTExESzZt++fYqNjVWPHj2UkZGhsWPHasSIEfrss8/MmiVLlighIUFTp07Vtm3b1L59ezmdTh06dMisGTdunD799FMtW7ZM69ev14EDB9SvX79yHyQAAFA1eRmGYVzuyocPH1ZwcLDWr1+v7t27Szp7RqhDhw6aNWtWqeusXr1ad9xxhw4cOKCQkBBJ0vz58zVx4kQdPnxYNptNEydO1MqVK7Vz505zvYEDByo7O1vJycmSpKioKHXq1EmzZ8+WJBUVFSk8PFxjxozRpEmTlJOTo6CgIC1evFj33nuvJGn37t1q1aqV0tLS1KVLl0vun9vtlr+/v3JycuRwOC73MAGWkPb2+Ipuodyih/+9olsAcA2U5/P7iq4RysnJkSTVrVvXY/6iRYsUGBioNm3aaPLkyTp58qS5LC0tTW3btjVDkCQ5nU653W7t2rXLrImJifEY0+l0Ki0tTZJUUFCg9PR0jxpvb2/FxMSYNenp6Tp9+rRHTcuWLdWwYUOz5nz5+flyu90eEwAAqLqqXe6KRUVFGjt2rLp27ao2bdqY8++//341atRIYWFh2r59uyZOnKg9e/bo//7v/yRJLpfLIwRJMl+7XK6L1rjdbp06dUq//fabCgsLS63ZvXu3OYbNZlNAQECJmuLtnG/GjBl65plnynkkAABAZXXZQSg+Pl47d+7UV1995TF/5MiR5n+3bdtW9evXV8+ePbV37141a9bs8jv9HUyePFkJCQnma7fbrfDw8ArsCAAAXEuX9dXY6NGjtWLFCq1du1YNGjS4aG1UVJQk6aeffpIkhYaGlrhzq/h1aGjoRWscDof8/PwUGBgoHx+fUmvOHaOgoEDZ2dkXrDmf3W6Xw+HwmAAAQNVVriBkGIZGjx6tjz76SGvWrFGTJk0uuU5GRoYkqX79+pKk6Oho7dixw+PurpSUFDkcDkVERJg1qampHuOkpKQoOjpakmSz2RQZGelRU1RUpNTUVLMmMjJS1atX96jZs2ePMjMzzRoAAGBt5fpqLD4+XosXL9bHH3+s2rVrm9fa+Pv7y8/PT3v37tXixYt1++23q169etq+fbvGjRun7t27q127dpKkXr16KSIiQkOGDNHMmTPlcrk0ZcoUxcfHy263S5JGjRql2bNn68knn9RDDz2kNWvWaOnSpVq5cqXZS0JCguLi4tSxY0d17txZs2bNUm5uroYNG2b2NHz4cCUkJKhu3bpyOBwaM2aMoqOjy3THGAAAqPrKFYTmzZsn6ewt8udasGCBhg4dKpvNpi+++MIMJeHh4erfv7+mTJli1vr4+GjFihV65JFHFB0drZo1ayouLk7Tp083a5o0aaKVK1dq3Lhxeu2119SgQQO99dZbcjqdZs2AAQN0+PBhJSYmyuVyqUOHDkpOTva4gPrVV1+Vt7e3+vfvr/z8fDmdTs2dO7dcBwgAAFRdV/QcoaqO5wgBZcdzhAD8UfxuzxECAACozAhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAssoVhGbMmKFOnTqpdu3aCg4OVt++fbVnzx6Pmry8PMXHx6tevXqqVauW+vfvr6ysLI+azMxMxcbGqkaNGgoODtaECRN05swZj5p169bpxhtvlN1uV/PmzZWUlFSinzlz5qhx48by9fVVVFSUtmzZUu5eAACAdZUrCK1fv17x8fHatGmTUlJSdPr0afXq1Uu5ublmzbhx4/Tpp59q2bJlWr9+vQ4cOKB+/fqZywsLCxUbG6uCggJt3LhRCxcuVFJSkhITE82affv2KTY2Vj169FBGRobGjh2rESNG6LPPPjNrlixZooSEBE2dOlXbtm1T+/bt5XQ6dejQoTL3AgAArM3LMAzjclc+fPiwgoODtX79enXv3l05OTkKCgrS4sWLde+990qSdu/erVatWiktLU1dunTR6tWrdccdd+jAgQMKCQmRJM2fP18TJ07U4cOHZbPZNHHiRK1cuVI7d+40tzVw4EBlZ2crOTlZkhQVFaVOnTpp9uzZkqSioiKFh4drzJgxmjRpUpl6uRS32y1/f3/l5OTI4XBc7mECLCHt7fEV3UK5RQ//e0W3AOAaKM/n9xVdI5STkyNJqlu3riQpPT1dp0+fVkxMjFnTsmVLNWzYUGlpaZKktLQ0tW3b1gxBkuR0OuV2u7Vr1y6z5twximuKxygoKFB6erpHjbe3t2JiYsyasvRyvvz8fLndbo8JAABUXZcdhIqKijR27Fh17dpVbdq0kSS5XC7ZbDYFBAR41IaEhMjlcpk154ag4uXFyy5W43a7derUKR05ckSFhYWl1pw7xqV6Od+MGTPk7+9vTuHh4WU8GgAAoDK67CAUHx+vnTt36v3337+a/VSoyZMnKycnx5z2799f0S0BAIBrqNrlrDR69GitWLFCGzZsUIMGDcz5oaGhKigoUHZ2tseZmKysLIWGhpo159/dVXwn17k159/dlZWVJYfDIT8/P/n4+MjHx6fUmnPHuFQv57Pb7bLb7eU4EgAAoDIr1xkhwzA0evRoffTRR1qzZo2aNGnisTwyMlLVq1dXamqqOW/Pnj3KzMxUdHS0JCk6Olo7duzwuLsrJSVFDodDERERZs25YxTXFI9hs9kUGRnpUVNUVKTU1FSzpiy9AAAAayvXGaH4+HgtXrxYH3/8sWrXrm1ea+Pv7y8/Pz/5+/tr+PDhSkhIUN26deVwODRmzBhFR0ebd2n16tVLERERGjJkiGbOnCmXy6UpU6YoPj7ePBszatQozZ49W08++aQeeughrVmzRkuXLtXKlSvNXhISEhQXF6eOHTuqc+fOmjVrlnJzczVs2DCzp0v1AgAArK1cQWjevHmSpFtvvdVj/oIFCzR06FBJ0quvvipvb2/1799f+fn5cjqdmjt3rlnr4+OjFStW6JFHHlF0dLRq1qypuLg4TZ8+3axp0qSJVq5cqXHjxum1115TgwYN9NZbb8npdJo1AwYM0OHDh5WYmCiXy6UOHTooOTnZ4wLqS/UCAACs7YqeI1TV8RwhoOx4jhCAP4rf7TlCAAAAlRlBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWBZBCAAAWFa5g9CGDRt05513KiwsTF5eXlq+fLnH8qFDh8rLy8tj6t27t0fNsWPHNHjwYDkcDgUEBGj48OE6ceKER8327dvVrVs3+fr6Kjw8XDNnzizRy7Jly9SyZUv5+vqqbdu2WrVqlcdywzCUmJio+vXry8/PTzExMfrxxx/Lu8sAAKCKKncQys3NVfv27TVnzpwL1vTu3VsHDx40p/fee89j+eDBg7Vr1y6lpKRoxYoV2rBhg0aOHGkud7vd6tWrlxo1aqT09HS99NJLmjZtmt58802zZuPGjRo0aJCGDx+ub7/9Vn379lXfvn21c+dOs2bmzJl6/fXXNX/+fG3evFk1a9aU0+lUXl5eeXcbAABUQV6GYRiXvbKXlz766CP17dvXnDd06FBlZ2eXOFNU7IcfflBERIS++eYbdezYUZKUnJys22+/Xb/++qvCwsI0b948Pf3003K5XLLZbJKkSZMmafny5dq9e7ckacCAAcrNzdWKFSvMsbt06aIOHTpo/vz5MgxDYWFheuKJJzR+/HhJUk5OjkJCQpSUlKSBAweW6C0/P1/5+fnma7fbrfDwcOXk5MjhcFzuYQIsIe3t8RXdQrlFD/97RbcA4Bpwu93y9/cv0+f3NblGaN26dQoODlaLFi30yCOP6OjRo+aytLQ0BQQEmCFIkmJiYuTt7a3NmzebNd27dzdDkCQ5nU7t2bNHv/32m1kTExPjsV2n06m0tDRJ0r59++RyuTxq/P39FRUVZdacb8aMGfL39zen8PDwKzwSAADgj+yqB6HevXvr3//+t1JTU/Xiiy9q/fr16tOnjwoLCyVJLpdLwcHBHutUq1ZNdevWlcvlMmtCQkI8aopfX6rm3OXnrldazfkmT56snJwcc9q/f3+59x8AAFQe1a72gOd+5dS2bVu1a9dOzZo107p169SzZ8+rvbmrym63y263V3QbAADgd3LNb59v2rSpAgMD9dNPP0mSQkNDdejQIY+aM2fO6NixYwoNDTVrsrKyPGqKX1+q5tzl565XWg0AALC2ax6Efv31Vx09elT169eXJEVHRys7O1vp6elmzZo1a1RUVKSoqCizZsOGDTp9+rRZk5KSohYtWqhOnTpmTWpqqse2UlJSFB0dLUlq0qSJQkNDPWrcbrc2b95s1gAAAGsrdxA6ceKEMjIylJGRIensRckZGRnKzMzUiRMnNGHCBG3atEk///yzUlNTdffdd6t58+ZyOp2SpFatWql37956+OGHtWXLFn399dcaPXq0Bg4cqLCwMEnS/fffL5vNpuHDh2vXrl1asmSJXnvtNSUkJJh9PP7440pOTtbLL7+s3bt3a9q0adq6datGjx4t6ewdbWPHjtXf/vY3ffLJJ9qxY4cefPBBhYWFedzlBgAArKvc1wht3bpVPXr0MF8Xh5O4uDjNmzdP27dv18KFC5Wdna2wsDD16tVLzz77rMe1N4sWLdLo0aPVs2dPeXt7q3///nr99dfN5f7+/vr8888VHx+vyMhIBQYGKjEx0eNZQzfddJMWL16sKVOm6KmnntJ1112n5cuXq02bNmbNk08+qdzcXI0cOVLZ2dm6+eablZycLF9f3/LuNgAAqIKu6DlCVV15nkMAWB3PEQLwR1HhzxECAACoDAhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAssodhDZs2KA777xTYWFh8vLy0vLlyz2WG4ahxMRE1a9fX35+foqJidGPP/7oUXPs2DENHjxYDodDAQEBGj58uE6cOOFRs337dnXr1k2+vr4KDw/XzJkzS/SybNkytWzZUr6+vmrbtq1WrVpV7l4AAIB1lTsI5ebmqn379pozZ06py2fOnKnXX39d8+fP1+bNm1WzZk05nU7l5eWZNYMHD9auXbuUkpKiFStWaMOGDRo5cqS53O12q1evXmrUqJHS09P10ksvadq0aXrzzTfNmo0bN2rQoEEaPny4vv32W/Xt21d9+/bVzp07y9ULAACwLi/DMIzLXtnLSx999JH69u0r6ewZmLCwMD3xxBMaP368JCknJ0chISFKSkrSwIED9cMPPygiIkLffPONOnbsKElKTk7W7bffrl9//VVhYWGaN2+enn76ablcLtlsNknSpEmTtHz5cu3evVuSNGDAAOXm5mrFihVmP126dFGHDh00f/78MvVyKW63W/7+/srJyZHD4bjcwwRYQtrb4yu6hXKLHv73im4BwDVQns/vq3qN0L59++RyuRQTE2PO8/f3V1RUlNLS0iRJaWlpCggIMEOQJMXExMjb21ubN282a7p3726GIElyOp3as2ePfvvtN7Pm3O0U1xRvpyy9nC8/P19ut9tjAgAAVddVDUIul0uSFBIS4jE/JCTEXOZyuRQcHOyxvFq1aqpbt65HTWljnLuNC9Wcu/xSvZxvxowZ8vf3N6fw8PAy7DUAAKisuGvsHJMnT1ZOTo457d+/v6JbAgAA19BVDUKhoaGSpKysLI/5WVlZ5rLQ0FAdOnTIY/mZM2d07Ngxj5rSxjh3GxeqOXf5pXo5n91ul8Ph8JgAAEDVdVWDUJMmTRQaGqrU1FRzntvt1ubNmxUdHS1Jio6OVnZ2ttLT082aNWvWqKioSFFRUWbNhg0bdPr0abMmJSVFLVq0UJ06dcyac7dTXFO8nbL0AgAArK3cQejEiRPKyMhQRkaGpLMXJWdkZCgzM1NeXl4aO3as/va3v+mTTz7Rjh079OCDDyosLMy8s6xVq1bq3bu3Hn74YW3ZskVff/21Ro8erYEDByosLEySdP/998tms2n48OHatWuXlixZotdee00JCQlmH48//riSk5P18ssva/fu3Zo2bZq2bt2q0aNHS1KZegEAANZWrbwrbN26VT169DBfF4eTuLg4JSUl6cknn1Rubq5Gjhyp7Oxs3XzzzUpOTpavr6+5zqJFizR69Gj17NlT3t7e6t+/v15//XVzub+/vz7//HPFx8crMjJSgYGBSkxM9HjW0E033aTFixdrypQpeuqpp3Tddddp+fLlatOmjVlTll4AAIB1XdFzhKo6niMElB3PEQLwR1FhzxECAACoTAhCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsq56EJo2bZq8vLw8ppYtW5rL8/LyFB8fr3r16qlWrVrq37+/srKyPMbIzMxUbGysatSooeDgYE2YMEFnzpzxqFm3bp1uvPFG2e12NW/eXElJSSV6mTNnjho3bixfX19FRUVpy5YtV3t3AQBAJXZNzgi1bt1aBw8eNKevvvrKXDZu3Dh9+umnWrZsmdavX68DBw6oX79+5vLCwkLFxsaqoKBAGzdu1MKFC5WUlKTExESzZt++fYqNjVWPHj2UkZGhsWPHasSIEfrss8/MmiVLlighIUFTp07Vtm3b1L59ezmdTh06dOha7DIAAKiEvAzDMK7mgNOmTdPy5cuVkZFRYllOTo6CgoK0ePFi3XvvvZKk3bt3q1WrVkpLS1OXLl20evVq3XHHHTpw4IBCQkIkSfPnz9fEiRN1+PBh2Ww2TZw4UStXrtTOnTvNsQcOHKjs7GwlJydLkqKiotSpUyfNnj1bklRUVKTw8HCNGTNGkyZNKtO+uN1u+fv7KycnRw6H40oOC1Dlpb09vqJbKLfo4X+v6BYAXAPl+fy+JmeEfvzxR4WFhalp06YaPHiwMjMzJUnp6ek6ffq0YmJizNqWLVuqYcOGSktLkySlpaWpbdu2ZgiSJKfTKbfbrV27dpk1545RXFM8RkFBgdLT0z1qvL29FRMTY9aUJj8/X26322MCAABV11UPQlFRUUpKSlJycrLmzZunffv2qVu3bjp+/LhcLpdsNpsCAgI81gkJCZHL5ZIkuVwujxBUvLx42cVq3G63Tp06pSNHjqiwsLDUmuIxSjNjxgz5+/ubU3h4+GUdAwAAUDlUu9oD9unTx/zvdu3aKSoqSo0aNdLSpUvl5+d3tTd3VU2ePFkJCQnma7fbTRgCAKAKu+a3zwcEBOj666/XTz/9pNDQUBUUFCg7O9ujJisrS6GhoZKk0NDQEneRFb++VI3D4ZCfn58CAwPl4+NTak3xGKWx2+1yOBweEwAAqLqueRA6ceKE9u7dq/r16ysyMlLVq1dXamqquXzPnj3KzMxUdHS0JCk6Olo7duzwuLsrJSVFDodDERERZs25YxTXFI9hs9kUGRnpUVNUVKTU1FSzBgAA4KoHofHjx2v9+vX6+eeftXHjRt1zzz3y8fHRoEGD5O/vr+HDhyshIUFr165Venq6hg0bpujoaHXp0kWS1KtXL0VERGjIkCH67rvv9Nlnn2nKlCmKj4+X3W6XJI0aNUr//e9/9eSTT2r37t2aO3euli5dqnHjxpl9JCQk6J///KcWLlyoH374QY888ohyc3M1bNiwq73LAACgkrrq1wj9+uuvGjRokI4ePaqgoCDdfPPN2rRpk4KCgiRJr776qry9vdW/f3/l5+fL6XRq7ty55vo+Pj5asWKFHnnkEUVHR6tmzZqKi4vT9OnTzZomTZpo5cqVGjdunF577TU1aNBAb731lpxOp1kzYMAAHT58WImJiXK5XOrQoYOSk5NLXEANAACs66o/R6gq4TlCQNnxHCEAfxQV/hwhAACAyoAgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALIsgBAAALKtaRTcAABXl1ZT/VHQL5Tbu/7u+olsAqhTOCAEAAMsiCAEAAMsiCAEAAMviGiEAltUl882KbuEy/L2iGwCqFM4IAQAAyyIIAQAAy7LEV2Nz5szRSy+9JJfLpfbt2+uNN95Q586dK7otACi3ynjLv8Rt//jjqvJBaMmSJUpISND8+fMVFRWlWbNmyel0as+ePQoODq7o9gCgXCrjdU2bGo6s6BaAC/IyDMOo6CaupaioKHXq1EmzZ8+WJBUVFSk8PFxjxozRpEmTLrqu2+2Wv7+/cnJy5HA4fo92gUor7e3xFd0CcNVsajiSs1iVWHk+v6v0GaGCggKlp6dr8uTJ5jxvb2/FxMQoLS2tRH1+fr7y8/PN1zk5OZLOHlDg97Tl309XdAuApbXd84a+2FPRXVR93zQYpvjbml/1cYs/t8tyrqdKB6EjR46osLBQISEhHvNDQkK0e/fuEvUzZszQM888U2J+eHj4NesRAADrmq2nruHox48fl7+//0VrqnQQKq/JkycrISHBfF1UVKRjx46pXr168vLyqsDO/vjcbrfCw8O1f/9+vka8yji21wbH9drguF47HNuyMwxDx48fV1hY2CVrq3QQCgwMlI+Pj7KysjzmZ2VlKTQ0tES93W6X3W73mBcQEHAtW6xyHA4Hf0GvEY7ttcFxvTY4rtcOx7ZsLnUmqFiVfo6QzWZTZGSkUlNTzXlFRUVKTU1VdHR0BXYGAAD+CKr0GSFJSkhIUFxcnDp27KjOnTtr1qxZys3N1bBhwyq6NQAAUMGqfBAaMGCADh8+rMTERLlcLnXo0EHJycklLqDGlbHb7Zo6dWqJrxZx5Ti21wbH9drguF47HNtro8o/RwgAAOBCqvQ1QgAAABdDEAIAAJZFEAIAAJZFEAIAAJZFEAIAAJZFEMIVe+6553TTTTepRo0aF3wSd2ZmpmJjY1WjRg0FBwdrwoQJOnPmzO/baBXQuHFjeXl5eUwvvPBCRbdV6cyZM0eNGzeWr6+voqKitGXLlopuqdKbNm1aifdmy5YtK7qtSmnDhg268847FRYWJi8vLy1fvtxjuWEYSkxMVP369eXn56eYmBj9+OOPFdNsFUAQwhUrKCjQfffdp0ceeaTU5YWFhYqNjVVBQYE2btyohQsXKikpSYmJib9zp1XD9OnTdfDgQXMaM2ZMRbdUqSxZskQJCQmaOnWqtm3bpvbt28vpdOrQoUMV3Vql17p1a4/35ldffVXRLVVKubm5at++vebMmVPq8pkzZ+r111/X/PnztXnzZtWsWVNOp1N5eXm/c6dVhAFcJQsWLDD8/f1LzF+1apXh7e1tuFwuc968efMMh8Nh5Ofn/44dVn6NGjUyXn311Ypuo1Lr3LmzER8fb74uLCw0wsLCjBkzZlRgV5Xf1KlTjfbt21d0G1WOJOOjjz4yXxcVFRmhoaHGSy+9ZM7Lzs427Ha78d5771VAh5UfZ4RwzaWlpalt27YeT/N2Op1yu93atWtXBXZWOb3wwguqV6+ebrjhBr300kt8xVgOBQUFSk9PV0xMjDnP29tbMTExSktLq8DOqoYff/xRYWFhatq0qQYPHqzMzMyKbqnK2bdvn1wul8d72N/fX1FRUbyHL1OV/4kNVDyXy1XiJ02KX7tcropoqdJ67LHHdOONN6pu3brauHGjJk+erIMHD+qVV16p6NYqhSNHjqiwsLDU9+Pu3bsrqKuqISoqSklJSWrRooUOHjyoZ555Rt26ddPOnTtVu3btim6vyij+N7O09zD/nl4ezgihVJMmTSpx4eP5Ex8cV0d5jnVCQoJuvfVWtWvXTqNGjdLLL7+sN954Q/n5+RW8F7C6Pn366L777lO7du3kdDq1atUqZWdna+nSpRXdGnBRnBFCqZ544gkNHTr0ojVNmzYt01ihoaEl7srJysoyl1ndlRzrqKgonTlzRj///LNatGhxDbqrWgIDA+Xj42O+/4plZWXxXrzKAgICdP311+unn36q6FaqlOL3aVZWlurXr2/Oz8rKUocOHSqoq8qNIIRSBQUFKSgo6KqMFR0dreeee06HDh1ScHCwJCklJUUOh0MRERFXZRuV2ZUc64yMDHl7e5vHFRdns9kUGRmp1NRU9e3bV5JUVFSk1NRUjR49umKbq2JOnDihvXv3asiQIRXdSpXSpEkThYaGKjU11Qw+brdbmzdvvuCdu7g4ghCuWGZmpo4dO6bMzEwVFhYqIyNDktS8eXPVqlVLvXr1UkREhIYMGaKZM2fK5XJpypQpio+Pl91ur9jmK5G0tDRt3rxZPXr0UO3atZWWlqZx48bpgQceUJ06dSq6vUojISFBcXFx6tixozp37qxZs2YpNzdXw4YNq+jWKrXx48frzjvvVKNGjXTgwAFNnTpVPj4+GjRoUEW3VumcOHHC40zavn37lJGRobp166phw4YaO3as/va3v+m6665TkyZN9Ne//lVhYWFmuEc5VfRta6j84uLiDEklprVr15o1P//8s9GnTx/Dz8/PCAwMNJ544gnj9OnTFdd0JZSenm5ERUUZ/v7+hq+vr9GqVSvj+eefN/Ly8iq6tUrnjTfeMBo2bGjYbDajc+fOxqZNmyq6pUpvwIABRv369Q2bzWb86U9/MgYMGGD89NNPFd1WpbR27dpS/02Ni4szDOPsLfR//etfjZCQEMNutxs9e/Y09uzZU7FNV2JehmEYFRXCAAAAKhJ3jQEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMsiCAEAAMv6/wEoxibaawsHRwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGzCAYAAADDgXghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPd5JREFUeJzt3X1YFXX+//EXkBzw5hxEBWRFJTWVvNtQkUzLZD0Z3ZjYapniXa6GllCmlotmN7b2LbW827bddEs3tTYrTYrwrhK1MPKmdMssbPXg3cJRClCY3x9dzM8jqOBNJ5jn47rmqjPzns95z4idV3NmPvgYhmEIAADAgny93QAAAIC3EIQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYQAAIBlEYSA35jp06fLx8fnkvY9evToZe6q8jZs2CAfHx9t2LDBaz0AQGURhACLeuaZZ7Rq1SpvtwFUSmlpqRYuXKhOnTopMDBQDRo00M0336wvv/zS262hmiMIAb8xU6dO1c8//3zF34cghOpkxIgRevDBBxUdHa2XXnpJqampatq0qQ4fPuzt1lDNXeXtBgB4uuqqq3TVVfzVxK+nsLBQ/v7+8vX9bf6/8YoVK7RkyRL9+9//1l133eXtdlDD/DZ/6oHfsB07dsjHx0fvvvuuuS4rK0s+Pj667rrrPGr79u2rmJgY8/XatWvVo0cP1alTR/Xq1VN8fLx2797tsU9F9wj9/PPPevDBB9WwYUPVq1dPd9xxh/773//Kx8dH06dPL9djXl6ehg0bpqCgIDkcDg0fPlw//fSTud3Hx0cFBQVasmSJfHx85OPjo2HDhpnb//vf/2rEiBEKDQ2VzWbTtddeq3/84x/l3ufHH39Uv379VKdOHYWEhCg5OVlFRUWVOo9nWrx4sXx8fPTJJ5/owQcfVKNGjRQUFKQ//elPKi4uVl5enoYOHar69eurfv36evTRR2UYhscY//d//6frr79eDRo0UGBgoKKjo/Xmm2+We6/09HTdcMMNCgoKUt26ddW6dWs99thjHjUvvfSSrr32WtWuXVv169dX586dtWzZsiodU2X7kaTXX39dXbt2Nd+vZ8+e+vDDDz1q1q5dqxtvvFH16tWT3W5Xly5dPHpq3ry5x59hmZtuukk33XST+brsHq433nhDU6dO1e9+9zvVrl1bbrdbx48f1yOPPKL27durbt26stvt6tu3b4VfPxUWFmr69Om65pprFBAQoMaNG6t///7at2+fDMNQ8+bNdeedd1a4n8Ph0J/+9KdKnknphRdeUNeuXXXXXXeptLRUBQUFld4XuBD+txOoonbt2ikoKEibNm3SHXfcIUn6+OOP5evrqy+//FJut1t2u12lpaXavHmzRo8eLUl67bXXlJiYKKfTqb/85S/66aeftHDhQt1www364osv1Lx583O+57Bhw7RixQoNGTJE3bp108aNGxUfH3/O+j/+8Y+KjIzUzJkztX37dr3yyisKCQnRX/7yF7OXUaNGqWvXrmZ/LVq0kCTl5uaqW7du8vHx0bhx49SoUSOtXbtWI0eOlNvt1oQJEyT9Es569+6tnJwcPfjggwoPD9drr72mdevWXfS5HT9+vMLCwvTEE09oy5YtevnllxUUFKTNmzeradOmeuaZZ/T+++/rueeeU7t27TR06FBz37lz5+qOO+7Q4MGDVVxcrDfeeEN33323Vq9ebZ6r3bt367bbblOHDh00Y8YM2Ww2ffvtt/r000/Ncf72t7/pwQcf1IABA/TQQw+psLBQO3bs0NatW3XvvfdW+lgq048kPfHEE5o+fbquv/56zZgxQ/7+/tq6davWrVunPn36SPolKI4YMULXXnutpkyZoqCgIH3xxRdKS0urUk9nevLJJ+Xv769HHnlERUVF8vf311dffaVVq1bp7rvvVmRkpHJzc/XXv/5VN954o7766iuFh4dLkkpKSnTbbbcpIyNDgwYN0kMPPaQTJ04oPT1du3btUosWLXTfffdp1qxZOn78uIKDg833fe+99+R2u3XfffdVqk+3261t27bpgQce0GOPPaaXXnpJJ0+eVGRkpJ599ln98Y9/vKjjB0wGgCqLj483unbtar7u37+/0b9/f8PPz89Yu3atYRiGsX37dkOS8c477xgnTpwwgoKCjPvvv99jHJfLZTgcDo/106ZNM878q5mVlWVIMiZMmOCx77BhwwxJxrRp08rtO2LECI/au+66y2jQoIHHujp16hiJiYnljm3kyJFG48aNjaNHj3qsHzRokOFwOIyffvrJMAzDmDNnjiHJWLFihVlTUFBgtGzZ0pBkrF+/vtzY5/Lqq68akgyn02mUlpaa62NjYw0fHx9jzJgx5rrTp08bTZo0MW688UaPMcr6KlNcXGy0a9fOuPnmm811s2fPNiQZR44cOWcvd955p3HttddWuvdzqUw/33zzjeHr62vcddddRklJiUd92XnIy8sz6tWrZ8TExBg///xzhTWGYRjNmjWr8M/zxhtv9DhX69evNyQZV199dbkeCwsLy/Wxf/9+w2azGTNmzDDX/eMf/zAkGS+88EK59yvrae/evYYkY+HChR7b77jjDqN58+YevZ9P2d+jBg0aGKGhocaCBQuMpUuXGl27djV8fHzMv2/AxeKrMeAi9OjRQ9u3bzcv0X/yySe69dZb1alTJ3388ceSfrlK5OPjoxtuuEHp6enKy8vTPffco6NHj5qLn5+fYmJitH79+nO+V1pamiTpgQce8Fg/fvz4c+4zZsyYcv0eO3ZMbrf7vMdlGIbeeust3X777TIMw6NXp9Op/Px8bd++XZL0/vvvq3HjxhowYIC5f+3atc0rTBdj5MiRHl8LxsTEyDAMjRw50lzn5+enzp0767vvvvPYNzAw0Pz3//3vf8rPzzf/nMoEBQVJkt555x2VlpZW2ENQUJB+/PFHffbZZxd9HJXtZ9WqVSotLVVqamq5+3PKzkN6erpOnDihyZMnKyAgoMKai5GYmOjRoyTZbDazj5KSEh07dsz8+vDMvt966y01bNiwwp/Bsp6uueYaxcTEaOnSpea248ePa+3atRo8eHClez958qQk6dixY3rnnXc0duxY3XvvvcrIyFCDBg301FNPVe3AgbMQhICL0KNHD50+fVqZmZnau3evDh8+rB49eqhnz54eQSgqKkrBwcH65ptvJEk333yzGjVq5LF8+OGH533y5YcffpCvr68iIyM91rds2fKc+zRt2tTjdf369SX98oF8PkeOHFFeXp5efvnlcn0OHz5cksxef/jhB7Vs2bLcB1rr1q3P+x7nc3bfDodDkhQREVFu/dnHsnr1anXr1k0BAQEKDg5Wo0aNtHDhQuXn55s1AwcOVPfu3TVq1CiFhoZq0KBBWrFihUcomjRpkurWrauuXbuqVatWSkpK8vjqrLIq08++ffvk6+urqKioc46zb98+Sb98JXs5nf3zJP3yiPrs2bPVqlUr2Ww2NWzYUI0aNdKOHTvK9d26desL3tQ/dOhQffrpp/rhhx8kSStXrtSpU6c0ZMiQSvdZFtYiIyM97rerW7eubr/9dm3btk2nT5+u9HjA2bhHCLgInTt3VkBAgDZt2qSmTZsqJCRE11xzjXr06KEFCxaoqKhIH3/8sfmES9kH7WuvvaawsLBy413up8T8/PwqXG+cdYPx2cr6vO+++5SYmFhhTYcOHS6tufM4V98VrT/zWD7++GPdcccd6tmzpxYsWKDGjRurVq1aevXVVz1uKA4MDNSmTZu0fv16rVmzRmlpaVq+fLluvvlmffjhh/Lz81Pbtm21d+9erV69WmlpaXrrrbe0YMECpaam6oknnqjUcVS2n8vpXFdYSkpKKjx/Z18Nkn6ZUuHPf/6zRowYoSeffFLBwcHy9fXVhAkTznkF7XwGDRqk5ORkLV26VI899phef/11de7cuUphuey+pNDQ0HLbQkJCdOrUKRUUFJihGagqghBwEfz9/dW1a1d9/PHHatq0qXr06CHplytFRUVFWrp0qXJzc9WzZ09J//9G5JCQEMXFxVXpvZo1a6bS0lLt379frVq1Mtd/++23l3QMFX1wNmrUSPXq1VNJSckF+2zWrJl27dolwzA8xtq7d+8l9XUx3nrrLQUEBOiDDz6QzWYz17/66qvlan19fdW7d2/17t1bL7zwgp555hk9/vjjWr9+vXnMderU0cCBAzVw4EAVFxerf//+evrppzVlypRyX09dSj8tWrRQaWmpvvrqK3Xq1KnCscp+dnbt2nXeq4D169dXXl5eufU//PCDrr766gv2LElvvvmmevXqpb///e8e6/Py8tSwYUOPnrZu3apTp06pVq1a5xwvODhY8fHxWrp0qQYPHqxPP/1Uc+bMqVQvZcLDwxUWFqb//ve/5bYdPHhQAQEBqlevXpXGBM7EV2PARerRo4e2bt2q9evXm0GoYcOGatu2rfl0Vtl6p9Mpu92uZ555RqdOnSo31pEjR875Pk6nU5K0YMECj/UvvfTSJfVfp06dch+cfn5+SkhI0FtvvaVdu3adt89bb71VBw8e9Hgk/KefftLLL798SX1dDD8/P/n4+KikpMRc9/3335ebMPL48ePl9i0LIGWP/R87dsxju7+/v6KiomQYRoV/dpfST79+/eTr66sZM2aUu+JSdsWrT58+qlevnmbOnKnCwsIKa6RfwsmWLVtUXFxsrlu9erUOHDhQqZ7L+j77quHKlSvLhZCEhAQdPXpU8+bNKzfG2fsPGTJEX331lSZOnCg/Pz8NGjSo0v2UGThwoA4cOKD09HRz3dGjR/XOO+/o5ptv/s3Of4TqgStCwEXq0aOHnn76aR04cMAMPJLUs2dP/fWvf1Xz5s3VpEkTSZLdbtfChQs1ZMgQXXfddRo0aJAaNWqknJwcrVmzRt27d6/wQ0WSoqOjlZCQoDlz5ujYsWPm4/P/+c9/JF38DbPR0dH66KOP9MILLyg8PNy8B+PZZ5/V+vXrFRMTo/vvv19RUVE6fvy4tm/fro8++sgME/fff7/mzZunoUOHKisrS40bN9Zrr72m2rVrX1Q/lyI+Pl4vvPCCbrnlFt177706fPiw5s+fr5YtW2rHjh1m3YwZM7Rp0ybFx8erWbNmOnz4sBYsWKAmTZrohhtukPRL8AgLC1P37t0VGhqqr7/+WvPmzVN8fHylrzxUtp+WLVvq8ccf15NPPqkePXqof//+stls+uyzzxQeHq6ZM2fKbrdr9uzZGjVqlLp06aJ7771X9evX15dffqmffvpJS5YskSSNGjVKb775pm655Rb98Y9/1L59+/T666+bV5Qq47bbbtOMGTM0fPhwXX/99dq5c6eWLl1a7orS0KFD9c9//lMpKSnatm2bevTooYKCAn300Ud64IEHPOYPio+PV4MGDbRy5Ur17dtXISEhle6nzJQpU7RixQolJCQoJSVFDodDixYt0qlTp/TMM89UeTzAg5eeVgOqPbfbbfj5+Rn16tUzTp8+ba5//fXXDUnGkCFDyu2zfv16w+l0Gg6HwwgICDBatGhhDBs2zPj888/NmrMfnzeMXx5LT0pKMoKDg426desa/fr1Mx9PfvbZZ8vte/bj4WWPp+/fv99ct2fPHqNnz55GYGCgIcnj0evc3FwjKSnJiIiIMGrVqmWEhYUZvXv3Nl5++WWPcX/44QfjjjvuMGrXrm00bNjQeOihh4y0tLSLfnz+s88+81h/ruNJTEw06tSp47Hu73//u9GqVSvDZrMZbdq0MV599dVy5zIjI8O48847jfDwcMPf398IDw837rnnHuM///mPWfPXv/7V6Nmzp9GgQQPDZrMZLVq0MCZOnGjk5+dX+ngq20+Zf/zjH8bvf/97w2azGfXr1zduvPFGIz093aPm3XffNa6//nojMDDQsNvtRteuXY1//etfHjXPP/+88bvf/c6w2WxG9+7djc8///ycj8+vXLmyXB+FhYXGww8/bDRu3NgIDAw0unfvbmRmZpYbwzB+mR7g8ccfNyIjI82fkQEDBhj79u0rN+4DDzxgSDKWLVtWhTPoad++fcZdd91l2O12IzAw0Lj55puNbdu2XfR4QBkfw7jA3ZMAfpOys7P1+9//Xq+//roGDx7s7XaAc0pOTtbf//53uVwur1wxBM6HL1aBaqCiX8I6Z84c+fr6mjdkA79FhYWFev3115WQkEAIwm8S9wgB1cCsWbOUlZWlXr166aqrrtLatWu1du1ajR49utwcO78lP//8s8f8MxUJDg6Wv7//r9TRpSkpKTnvje3SL/Pb1K1b91fq6Lfr8OHD+uijj/Tmm2/q2LFjeuihh8rVHDlyxOOG8rP5+/t7/HoO4Irw9ndzAC7sww8/NLp3727Ur1/fqFWrltGiRQtj+vTpxqlTp7zd2nmV3ftzvqUq9xJ52/79+y94PGf+yhMrK7sXKSQkxHjppZcqrGnWrNl5z+XZ9yUBVwL3CAG4Yg4dOqTdu3eftyY6Otqc+fq3rrCwUJ988sl5a66++upKz9tjdZ9++mmFX/uWqV+/vqKjo3/FjmBFBCEAAGBZ3CwNAAAsi5ulz6O0tFQHDx5UvXr1Lum3PAMAgF+PYRg6ceKEwsPDLzjzOEHoPA4ePPibfiIHAACc24EDB8wZ/s+FIHQeZdPpHzhwQHa73cvdAACAynC73YqIiKjUr8UhCJ1H2ddhdrudIAQAQDVTmdtauFkaAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABYFkEIAABY1lXebgAAvGF2+n+83UKVJf/hGm+3ANQ4XBECAACWVaUgtHDhQnXo0EF2u112u12xsbFau3atub2wsFBJSUlq0KCB6tatq4SEBOXm5nqMkZOTo/j4eNWuXVshISGaOHGiTp8+7VGzYcMGXXfddbLZbGrZsqUWL15crpf58+erefPmCggIUExMjLZt2+axvTK9AAAAa6vSV2NNmjTRs88+q1atWskwDC1ZskR33nmnvvjiC1177bVKTk7WmjVrtHLlSjkcDo0bN079+/fXp59+KkkqKSlRfHy8wsLCtHnzZh06dEhDhw5VrVq19Mwzz0iS9u/fr/j4eI0ZM0ZLly5VRkaGRo0apcaNG8vpdEqSli9frpSUFC1atEgxMTGaM2eOnE6n9u7dq5CQEEm6YC8AroD1M73dQaV1yzkmSdrSdLSXOwHgTT6GYRiXMkBwcLCee+45DRgwQI0aNdKyZcs0YMAASdKePXvUtm1bZWZmqlu3blq7dq1uu+02HTx4UKGhoZKkRYsWadKkSTpy5Ij8/f01adIkrVmzRrt27TLfY9CgQcrLy1NaWpokKSYmRl26dNG8efMkSaWlpYqIiND48eM1efJk5efnX7CXynC73XI4HMrPz5fdbr+U0wRYQzUKQpnfVb8gxD1CQOVU5fP7ou8RKikp0RtvvKGCggLFxsYqKytLp06dUlxcnFnTpk0bNW3aVJmZmZKkzMxMtW/f3gxBkuR0OuV2u7V7926z5swxymrKxiguLlZWVpZHja+vr+Li4syayvRSkaKiIrndbo8FAADUXFUOQjt37lTdunVls9k0ZswYvf3224qKipLL5ZK/v7+CgoI86kNDQ+VyuSRJLpfLIwSVbS/bdr4at9utn3/+WUePHlVJSUmFNWeOcaFeKjJz5kw5HA5ziYiIqNxJAQAA1VKVg1Dr1q2VnZ2trVu3auzYsUpMTNRXX311JXr71U2ZMkX5+fnmcuDAAW+3BAAArqAqzyPk7++vli1bSpKio6P12Wefae7cuRo4cKCKi4uVl5fncSUmNzdXYWFhkqSwsLByT3eVPcl1Zs3ZT3fl5ubKbrcrMDBQfn5+8vPzq7DmzDEu1EtFbDabbDZbFc4GAACozi55HqHS0lIVFRUpOjpatWrVUkZGhrlt7969ysnJUWxsrCQpNjZWO3fu1OHDh82a9PR02e12RUVFmTVnjlFWUzaGv7+/oqOjPWpKS0uVkZFh1lSmFwAAgCpdEZoyZYr69u2rpk2b6sSJE1q2bJk2bNigDz74QA6HQyNHjlRKSoqCg4Nlt9s1fvx4xcbGmk9p9enTR1FRURoyZIhmzZoll8ulqVOnKikpybwSM2bMGM2bN0+PPvqoRowYoXXr1mnFihVas2aN2UdKSooSExPVuXNnde3aVXPmzFFBQYGGDx8uSZXqBQAAoEpB6PDhwxo6dKgOHTokh8OhDh066IMPPtAf/vAHSdLs2bPl6+urhIQEFRUVyel0asGCBeb+fn5+Wr16tcaOHavY2FjVqVNHiYmJmjFjhlkTGRmpNWvWKDk5WXPnzlWTJk30yiuvmHMISdLAgQN15MgRpaamyuVyqVOnTkpLS/O4gfpCvQAAAFzyPEI1GfMIAVXEPEJXFPMIAZXzq8wjBAAAUN0RhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGURhAAAgGVVKQjNnDlTXbp0Ub169RQSEqJ+/fpp7969HjU33XSTfHx8PJYxY8Z41OTk5Cg+Pl61a9dWSEiIJk6cqNOnT3vUbNiwQdddd51sNptatmypxYsXl+tn/vz5at68uQICAhQTE6Nt27Z5bC8sLFRSUpIaNGigunXrKiEhQbm5uVU5ZAAAUINVKQht3LhRSUlJ2rJli9LT03Xq1Cn16dNHBQUFHnX333+/Dh06ZC6zZs0yt5WUlCg+Pl7FxcXavHmzlixZosWLFys1NdWs2b9/v+Lj49WrVy9lZ2drwoQJGjVqlD744AOzZvny5UpJSdG0adO0fft2dezYUU6nU4cPHzZrkpOT9d5772nlypXauHGjDh48qP79+1f5JAEAgJrJxzAM42J3PnLkiEJCQrRx40b17NlT0i9XhDp16qQ5c+ZUuM/atWt122236eDBgwoNDZUkLVq0SJMmTdKRI0fk7++vSZMmac2aNdq1a5e536BBg5SXl6e0tDRJUkxMjLp06aJ58+ZJkkpLSxUREaHx48dr8uTJys/PV6NGjbRs2TINGDBAkrRnzx61bdtWmZmZ6tat2wWPz+12y+FwKD8/X3a7/WJPE2Ad62d6u4NKy/zumCRpS9PRXu6k8pL/cI23WwCqhap8fl/SPUL5+fmSpODgYI/1S5cuVcOGDdWuXTtNmTJFP/30k7ktMzNT7du3N0OQJDmdTrndbu3evdusiYuL8xjT6XQqMzNTklRcXKysrCyPGl9fX8XFxZk1WVlZOnXqlEdNmzZt1LRpU7PmbEVFRXK73R4LAACoua662B1LS0s1YcIEde/eXe3atTPX33vvvWrWrJnCw8O1Y8cOTZo0SXv37tW///1vSZLL5fIIQZLM1y6X67w1brdbP//8s/73v/+ppKSkwpo9e/aYY/j7+ysoKKhcTdn7nG3mzJl64oknqngmAABAdXXRQSgpKUm7du3SJ5984rF+9Oj/f5m5ffv2aty4sXr37q19+/apRYsWF9/pr2DKlClKSUkxX7vdbkVERHixIwAAcCVd1Fdj48aN0+rVq7V+/Xo1adLkvLUxMTGSpG+//VaSFBYWVu7JrbLXYWFh562x2+0KDAxUw4YN5efnV2HNmWMUFxcrLy/vnDVns9lsstvtHgsAAKi5qhSEDMPQuHHj9Pbbb2vdunWKjIy84D7Z2dmSpMaNG0uSYmNjtXPnTo+nu9LT02W32xUVFWXWZGRkeIyTnp6u2NhYSZK/v7+io6M9akpLS5WRkWHWREdHq1atWh41e/fuVU5OjlkDAACsrUpfjSUlJWnZsmV65513VK9ePfNeG4fDocDAQO3bt0/Lli3TrbfeqgYNGmjHjh1KTk5Wz5491aFDB0lSnz59FBUVpSFDhmjWrFlyuVyaOnWqkpKSZLPZJEljxozRvHnz9Oijj2rEiBFat26dVqxYoTVr1pi9pKSkKDExUZ07d1bXrl01Z84cFRQUaPjw4WZPI0eOVEpKioKDg2W32zV+/HjFxsZW6okxAABQ81UpCC1cuFDSL4/In+nVV1/VsGHD5O/vr48++sgMJREREUpISNDUqVPNWj8/P61evVpjx45VbGys6tSpo8TERM2YMcOsiYyM1Jo1a5ScnKy5c+eqSZMmeuWVV+R0Os2agQMH6siRI0pNTZXL5VKnTp2UlpbmcQP17Nmz5evrq4SEBBUVFcnpdGrBggVVOkEAAKDmuqR5hGo65hECqoh5hK4o5hECKudXm0cIAACgOiMIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyIIAQAAy6pSEJo5c6a6dOmievXqKSQkRP369dPevXs9agoLC5WUlKQGDRqobt26SkhIUG5urkdNTk6O4uPjVbt2bYWEhGjixIk6ffq0R82GDRt03XXXyWazqWXLllq8eHG5fubPn6/mzZsrICBAMTEx2rZtW5V7AQAA1lWlILRx40YlJSVpy5YtSk9P16lTp9SnTx8VFBSYNcnJyXrvvfe0cuVKbdy4UQcPHlT//v3N7SUlJYqPj1dxcbE2b96sJUuWaPHixUpNTTVr9u/fr/j4ePXq1UvZ2dmaMGGCRo0apQ8++MCsWb58uVJSUjRt2jRt375dHTt2lNPp1OHDhyvdCwAAsDYfwzCMi935yJEjCgkJ0caNG9WzZ0/l5+erUaNGWrZsmQYMGCBJ2rNnj9q2bavMzEx169ZNa9eu1W233aaDBw8qNDRUkrRo0SJNmjRJR44ckb+/vyZNmqQ1a9Zo165d5nsNGjRIeXl5SktLkyTFxMSoS5cumjdvniSptLRUERERGj9+vCZPnlypXi7E7XbL4XAoPz9fdrv9Yk8TYB3rZ3q7g0rL/O6YJGlL09Fe7qTykv9wjbdbAKqFqnx+X9I9Qvn5+ZKk4OBgSVJWVpZOnTqluLg4s6ZNmzZq2rSpMjMzJUmZmZlq3769GYIkyel0yu12a/fu3WbNmWOU1ZSNUVxcrKysLI8aX19fxcXFmTWV6eVsRUVFcrvdHgsAAKi5LjoIlZaWasKECerevbvatWsnSXK5XPL391dQUJBHbWhoqFwul1lzZggq21627Xw1brdbP//8s44ePaqSkpIKa84c40K9nG3mzJlyOBzmEhERUcmzAQAAqqOLDkJJSUnatWuX3njjjcvZj1dNmTJF+fn55nLgwAFvtwQAAK6gqy5mp3Hjxmn16tXatGmTmjRpYq4PCwtTcXGx8vLyPK7E5ObmKiwszKw5++musie5zqw5++mu3Nxc2e12BQYGys/PT35+fhXWnDnGhXo5m81mk81mq8KZAAAA1VmVrggZhqFx48bp7bff1rp16xQZGemxPTo6WrVq1VJGRoa5bu/evcrJyVFsbKwkKTY2Vjt37vR4uis9PV12u11RUVFmzZljlNWUjeHv76/o6GiPmtLSUmVkZJg1lekFAABYW5WuCCUlJWnZsmV65513VK9ePfNeG4fDocDAQDkcDo0cOVIpKSkKDg6W3W7X+PHjFRsbaz6l1adPH0VFRWnIkCGaNWuWXC6Xpk6dqqSkJPNqzJgxYzRv3jw9+uijGjFihNatW6cVK1ZozZo1Zi8pKSlKTExU586d1bVrV82ZM0cFBQUaPny42dOFegEAANZWpSC0cOFCSdJNN93ksf7VV1/VsGHDJEmzZ8+Wr6+vEhISVFRUJKfTqQULFpi1fn5+Wr16tcaOHavY2FjVqVNHiYmJmjFjhlkTGRmpNWvWKDk5WXPnzlWTJk30yiuvyOl0mjUDBw7UkSNHlJqaKpfLpU6dOiktLc3jBuoL9QIAAKztkuYRqumYRwioIuYRuqKYRwionF9tHiEAAIDqjCAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsiyAEAAAsq8pBaNOmTbr99tsVHh4uHx8frVq1ymP7sGHD5OPj47HccsstHjXHjx/X4MGDZbfbFRQUpJEjR+rkyZMeNTt27FCPHj0UEBCgiIgIzZo1q1wvK1euVJs2bRQQEKD27dvr/fff99huGIZSU1PVuHFjBQYGKi4uTt98801VDxkAANRQVQ5CBQUF6tixo+bPn3/OmltuuUWHDh0yl3/9618e2wcPHqzdu3crPT1dq1ev1qZNmzR69Ghzu9vtVp8+fdSsWTNlZWXpueee0/Tp0/Xyyy+bNZs3b9Y999yjkSNH6osvvlC/fv3Ur18/7dq1y6yZNWuWXnzxRS1atEhbt25VnTp15HQ6VVhYWNXDBgAANZCPYRjGRe/s46O3335b/fr1M9cNGzZMeXl55a4Ulfn6668VFRWlzz77TJ07d5YkpaWl6dZbb9WPP/6o8PBwLVy4UI8//rhcLpf8/f0lSZMnT9aqVau0Z88eSdLAgQNVUFCg1atXm2N369ZNnTp10qJFi2QYhsLDw/Xwww/rkUcekSTl5+crNDRUixcv1qBBgy54fG63Ww6HQ/n5+bLb7RdzigBrWT/T2x1UWuZ3xyRJW5qOvkDlb0fyH67xdgtAtVCVz+8rco/Qhg0bFBISotatW2vs2LE6duyYuS0zM1NBQUFmCJKkuLg4+fr6auvWrWZNz549zRAkSU6nU3v37tX//vc/syYuLs7jfZ1OpzIzMyVJ+/fvl8vl8qhxOByKiYkxa85WVFQkt9vtsQAAgJrrsgehW265Rf/85z+VkZGhv/zlL9q4caP69u2rkpISSZLL5VJISIjHPldddZWCg4PlcrnMmtDQUI+astcXqjlz+5n7VVRztpkzZ8rhcJhLRERElY8fAABUH1dd7gHP/Mqpffv26tChg1q0aKENGzaod+/el/vtLqspU6YoJSXFfO12uwlDAADUYFf88fmrr75aDRs21LfffitJCgsL0+HDhz1qTp8+rePHjyssLMysyc3N9agpe32hmjO3n7lfRTVns9lsstvtHgsAAKi5rngQ+vHHH3Xs2DE1btxYkhQbG6u8vDxlZWWZNevWrVNpaaliYmLMmk2bNunUqVNmTXp6ulq3bq369eubNRkZGR7vlZ6ertjYWElSZGSkwsLCPGrcbre2bt1q1gAAAGurchA6efKksrOzlZ2dLemXm5Kzs7OVk5OjkydPauLEidqyZYu+//57ZWRk6M4771TLli3ldDolSW3bttUtt9yi+++/X9u2bdOnn36qcePGadCgQQoPD5ck3XvvvfL399fIkSO1e/duLV++XHPnzvX42uqhhx5SWlqann/+ee3Zs0fTp0/X559/rnHjxkn65Ym2CRMm6KmnntK7776rnTt3aujQoQoPD/d4yg0AAFhXle8R+vzzz9WrVy/zdVk4SUxM1MKFC7Vjxw4tWbJEeXl5Cg8PV58+ffTkk0/KZrOZ+yxdulTjxo1T79695evrq4SEBL344ovmdofDoQ8//FBJSUmKjo5Ww4YNlZqa6jHX0PXXX69ly5Zp6tSpeuyxx9SqVSutWrVK7dq1M2seffRRFRQUaPTo0crLy9MNN9ygtLQ0BQQEVPWwAQBADXRJ8wjVdMwjBFQR8whdUcwjBFSO1+cRAgAAqA4IQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLIIQgAAwLKqHIQ2bdqk22+/XeHh4fLx8dGqVas8thuGodTUVDVu3FiBgYGKi4vTN99841Fz/PhxDR48WHa7XUFBQRo5cqROnjzpUbNjxw716NFDAQEBioiI0KxZs8r1snLlSrVp00YBAQFq37693n///Sr3AgAArKvKQaigoEAdO3bU/PnzK9w+a9Ysvfjii1q0aJG2bt2qOnXqyOl0qrCw0KwZPHiwdu/erfT0dK1evVqbNm3S6NGjze1ut1t9+vRRs2bNlJWVpeeee07Tp0/Xyy+/bNZs3rxZ99xzj0aOHKkvvvhC/fr1U79+/bRr164q9QIAAKzLxzAM46J39vHR22+/rX79+kn65QpMeHi4Hn74YT3yyCOSpPz8fIWGhmrx4sUaNGiQvv76a0VFRemzzz5T586dJUlpaWm69dZb9eOPPyo8PFwLFy7U448/LpfLJX9/f0nS5MmTtWrVKu3Zs0eSNHDgQBUUFGj16tVmP926dVOnTp20aNGiSvVyIW63Ww6HQ/n5+bLb7Rd7mgDrWD/T2x1UWuZ3xyRJW5qOvkDlb0fyH67xdgtAtVCVz+/Leo/Q/v375XK5FBcXZ65zOByKiYlRZmamJCkzM1NBQUFmCJKkuLg4+fr6auvWrWZNz549zRAkSU6nU3v37tX//vc/s+bM9ymrKXufyvRytqKiIrndbo8FAADUXJc1CLlcLklSaGiox/rQ0FBzm8vlUkhIiMf2q666SsHBwR41FY1x5nucq+bM7Rfq5WwzZ86Uw+Ewl4iIiEocNQAAqK54auwMU6ZMUX5+vrkcOHDA2y0BAIAr6LIGobCwMElSbm6ux/rc3FxzW1hYmA4fPuyx/fTp0zp+/LhHTUVjnPke56o5c/uFejmbzWaT3W73WAAAQM11WYNQZGSkwsLClJGRYa5zu93aunWrYmNjJUmxsbHKy8tTVlaWWbNu3TqVlpYqJibGrNm0aZNOnTpl1qSnp6t169aqX7++WXPm+5TVlL1PZXoBAADWVuUgdPLkSWVnZys7O1vSLzclZ2dnKycnRz4+PpowYYKeeuopvfvuu9q5c6eGDh2q8PBw88mytm3b6pZbbtH999+vbdu26dNPP9W4ceM0aNAghYeHS5Luvfde+fv7a+TIkdq9e7eWL1+uuXPnKiUlxezjoYceUlpamp5//nnt2bNH06dP1+eff65x48ZJUqV6AQAA1nZVVXf4/PPP1atXL/N1WThJTEzU4sWL9eijj6qgoECjR49WXl6ebrjhBqWlpSkgIMDcZ+nSpRo3bpx69+4tX19fJSQk6MUXXzS3OxwOffjhh0pKSlJ0dLQaNmyo1NRUj7mGrr/+ei1btkxTp07VY489platWmnVqlVq166dWVOZXgAAgHVd0jxCNR3zCAFVxDxCVxTzCAGV47V5hAAAAKoTghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALAsghAAALCsyx6Epk+fLh8fH4+lTZs25vbCwkIlJSWpQYMGqlu3rhISEpSbm+sxRk5OjuLj41W7dm2FhIRo4sSJOn36tEfNhg0bdN1118lms6lly5ZavHhxuV7mz5+v5s2bKyAgQDExMdq2bdvlPlwAAFCNXZErQtdee60OHTpkLp988om5LTk5We+9955WrlypjRs36uDBg+rfv7+5vaSkRPHx8SouLtbmzZu1ZMkSLV68WKmpqWbN/v37FR8fr169eik7O1sTJkzQqFGj9MEHH5g1y5cvV0pKiqZNm6bt27erY8eOcjqdOnz48JU4ZAAAUA35GIZhXM4Bp0+frlWrVik7O7vctvz8fDVq1EjLli3TgAEDJEl79uxR27ZtlZmZqW7dumnt2rW67bbbdPDgQYWGhkqSFi1apEmTJunIkSPy9/fXpEmTtGbNGu3atcsce9CgQcrLy1NaWpokKSYmRl26dNG8efMkSaWlpYqIiND48eM1efLkSh2L2+2Ww+FQfn6+7Hb7pZwWwBrWz/R2B5WW+d0xSdKWpqO93EnlJf/hGm+3AFQLVfn8viJXhL755huFh4fr6quv1uDBg5WTkyNJysrK0qlTpxQXF2fWtmnTRk2bNlVmZqYkKTMzU+3btzdDkCQ5nU653W7t3r3brDlzjLKasjGKi4uVlZXlUePr66u4uDizpiJFRUVyu90eCwAAqLkuexCKiYnR4sWLlZaWpoULF2r//v3q0aOHTpw4IZfLJX9/fwUFBXnsExoaKpfLJUlyuVweIahse9m289W43W79/PPPOnr0qEpKSiqsKRujIjNnzpTD4TCXiIiIizoHAACgerjqcg/Yt29f8987dOigmJgYNWvWTCtWrFBgYODlfrvLasqUKUpJSTFfu91uwhAAADXYFX98PigoSNdcc42+/fZbhYWFqbi4WHl5eR41ubm5CgsLkySFhYWVe4qs7PWFaux2uwIDA9WwYUP5+flVWFM2RkVsNpvsdrvHAgAAaq4rHoROnjypffv2qXHjxoqOjlatWrWUkZFhbt+7d69ycnIUGxsrSYqNjdXOnTs9nu5KT0+X3W5XVFSUWXPmGGU1ZWP4+/srOjrao6a0tFQZGRlmDQAAwGUPQo888og2btyo77//Xps3b9Zdd90lPz8/3XPPPXI4HBo5cqRSUlK0fv16ZWVlafjw4YqNjVW3bt0kSX369FFUVJSGDBmiL7/8Uh988IGmTp2qpKQk2Ww2SdKYMWP03Xff6dFHH9WePXu0YMECrVixQsnJyWYfKSkp+tvf/qYlS5bo66+/1tixY1VQUKDhw4df7kMGAADV1GW/R+jHH3/UPffco2PHjqlRo0a64YYbtGXLFjVq1EiSNHv2bPn6+iohIUFFRUVyOp1asGCBub+fn59Wr16tsWPHKjY2VnXq1FFiYqJmzJhh1kRGRmrNmjVKTk7W3Llz1aRJE73yyityOp1mzcCBA3XkyBGlpqbK5XKpU6dOSktLK3cDNQAAsK7LPo9QTcI8QkAVMY/QFcU8QkDleH0eIQAAgOqAIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACyLIAQAACzLEkFo/vz5at68uQICAhQTE6Nt27Z5uyUAAPAbUOOD0PLly5WSkqJp06Zp+/bt6tixo5xOpw4fPuzt1gAAgJf5GIZheLuJKykmJkZdunTRvHnzJEmlpaWKiIjQ+PHjNXny5PPu63a75XA4lJ+fL7vd/mu0C1Rv62d6u4NKy/zumCRpS9PRXu6kZkv+wzXebgEWVJXP76t+pZ68ori4WFlZWZoyZYq5ztfXV3FxccrMzCxXX1RUpKKiIvN1fn6+pF9OKIDzm7/uW3X58aC326iy9ntf8nYLNdpHe3/552dNhnu3kSpIurmlt1vAJSr73K7MtZ4aHYSOHj2qkpIShYaGeqwPDQ3Vnj17ytXPnDlTTzzxRLn1ERERV6xHALCGed5uoNIe83YDuGxOnDghh8Nx3poaHYSqasqUKUpJSTFfl5aW6vjx42rQoIF8fHy82Fn14Ha7FRERoQMHDvBV4mXEeb0yOK9XBuf1yuC8Vo1hGDpx4oTCw8MvWFujg1DDhg3l5+en3Nxcj/W5ubkKCwsrV2+z2WSz2TzWBQUFXckWayS73c5f1CuA83plcF6vDM7rlcF5rbwLXQkqU6OfGvP391d0dLQyMjLMdaWlpcrIyFBsbKwXOwMAAL8FNfqKkCSlpKQoMTFRnTt3VteuXTVnzhwVFBRo+PDqc+MeAAC4Mmp8EBo4cKCOHDmi1NRUuVwuderUSWlpaeVuoMals9lsmjZtWrmvF3FpOK9XBuf1yuC8Xhmc1yunxs8jBAAAcC41+h4hAACA8yEIAQAAyyIIAQAAyyIIAQAAyyIIAQAAyyII4ZI9/fTTuv7661W7du1zzsSdk5Oj+Ph41a5dWyEhIZo4caJOnz796zZaAzRv3lw+Pj4ey7PPPuvttqqd+fPnq3nz5goICFBMTIy2bdvm7ZaqvenTp5f72WzTpo2326p2Nm3apNtvv13h4eHy8fHRqlWrPLYbhqHU1FQ1btxYgYGBiouL0zfffOOdZmsIghAuWXFxse6++26NHTu2wu0lJSWKj49XcXGxNm/erCVLlmjx4sVKTU39lTutGWbMmKFDhw6Zy/jx473dUrWyfPlypaSkaNq0adq+fbs6duwop9Opw4cPe7u1au/aa6/1+Nn85JNPvN1StVNQUKCOHTtq/vz5FW6fNWuWXnzxRS1atEhbt25VnTp15HQ6VVhY+Ct3WoMYwGXy6quvGg6Ho9z6999/3/D19TVcLpe5buHChYbdbjeKiop+xQ6rv2bNmhmzZ8/2dhvVWteuXY2kpCTzdUlJiREeHm7MnDnTi11Vf9OmTTM6duzo7TZqFEnG22+/bb4uLS01wsLCjOeee85cl5eXZ9hsNuNf//qXFzqsGbgihCsuMzNT7du395jN2+l0yu12a/fu3V7srHp69tln1aBBA/3+97/Xc889x1eMVVBcXKysrCzFxcWZ63x9fRUXF6fMzEwvdlYzfPPNNwoPD9fVV1+twYMHKycnx9st1Sj79++Xy+Xy+Pl1OByKiYnh5/cS1PhfsQHvc7lc5X6lSdlrl8vljZaqrQcffFDXXXedgoODtXnzZk2ZMkWHDh3SCy+84O3WqoWjR4+qpKSkwp/HPXv2eKmrmiEmJkaLFy9W69atdejQIT3xxBPq0aOHdu3apXr16nm7vRqh7L+XFf388t/Si8cVIVRo8uTJ5W58PHvhg+PyqMq5TklJ0U033aQOHTpozJgxev755/XSSy+pqKjIy0cBq+vbt6/uvvtudejQQU6nU++//77y8vK0YsUKb7cGnBdXhFChhx9+WMOGDTtvzdVXX12pscLCwso9lZObm2tus7pLOdcxMTE6ffq0vv/+e7Vu3foKdFezNGzYUH5+fubPX5nc3Fx+Fi+zoKAgXXPNNfr222+93UqNUfYzmpubq8aNG5vrc3Nz1alTJy91Vf0RhFChRo0aqVGjRpdlrNjYWD399NM6fPiwQkJCJEnp6emy2+2Kioq6LO9RnV3Kuc7Ozpavr695XnF+/v7+io6OVkZGhvr16ydJKi0tVUZGhsaNG+fd5mqYkydPat++fRoyZIi3W6kxIiMjFRYWpoyMDDP4uN1ubd269ZxP7eLCCEK4ZDk5OTp+/LhycnJUUlKi7OxsSVLLli1Vt25d9enTR1FRURoyZIhmzZoll8ulqVOnKikpSTabzbvNVyOZmZnaunWrevXqpXr16ikzM1PJycm67777VL9+fW+3V22kpKQoMTFRnTt3VteuXTVnzhwVFBRo+PDh3m6tWnvkkUd0++23q1mzZjp48KCmTZsmPz8/3XPPPd5urVo5efKkx1W0/fv3Kzs7W8HBwWratKkmTJigp556Sq1atVJkZKT+/Oc/Kzw83Az2uAjefmwN1V9iYqIhqdyyfv16s+b77783+vbtawQGBhoNGzY0Hn74YePUqVPea7oaysrKMmJiYgyHw2EEBAQYbdu2NZ555hmjsLDQ261VOy+99JLRtGlTw9/f3+jatauxZcsWb7dU7Q0cONBo3Lix4e/vb/zud78zBg4caHz77bfebqvaWb9+fYX/PU1MTDQM45dH6P/85z8boaGhhs1mM3r37m3s3bvXu01Xcz6GYRjeCmEAAADexFNjAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsghCAADAsv4f8ijfqDfTmi0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for c in features.columns:\n", + " if pd.api.types.is_numeric_dtype(features[c]):\n", + " plt.hist(df_targets[c], alpha=0.5)\n", + " plt.hist(df_decoys[c], alpha=0.5)\n", + " plt.title(c)\n", + "\n", + " plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mumdia", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook_helpers/visualize_pin.ipynb b/notebook_helpers/visualize_pin.ipynb index cc004fa..57721d9 100644 --- a/notebook_helpers/visualize_pin.ipynb +++ b/notebook_helpers/visualize_pin.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -30,23 +30,18 @@ "outputs": [], "source": [ "df = pd.read_csv(\n", - " \"/home/robbe/MuMDIA/results/ecoli_debug_fragments/outfile.pin\", sep=\"\\t\"\n", + " \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/outfile.pin\", sep=\"\\t\"\n", + ")\n", + "\n", + "df_working = pd.read_csv(\n", + " \"/home/robbe/MuMDIA/results/ecoli_debug_fragments_fixed/outfilebeforenonsquaring.pin\",\n", + " sep=\"\\t\",\n", ")" ] }, { "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "df_targets = df[df[\"Label\"] == 1.0]\n", - "df_decoys = df[df[\"Label\"] == -1.0]" - ] - }, - { - "cell_type": "code", - "execution_count": 29, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -614,94 +609,68 @@ "type": "float" } ], - "ref": "8c17b3a8-7df3-494c-90fb-86941fe29690", + "ref": "e0ae95dd-2d0c-466d-b550-9cab2926f4e6", "rows": [ [ "0", - "248142.0", - "part_5918.431320190428_6763.921508789061.mzml", - "VVGDHMGMLATVM[Oxidation]NGLAM[Oxidation]RDALHR", + "152761.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GASHEFESRAVVTDYSIDSVGSLR", "1.0", - "sp|P0A7E9|PYRH_ECOLI|73|97", - "2638.9287", - "2626.2598", - "1.0", - "3.0", + "rev_sp|P0A6W0|GLSA2_ECOLI|143|167", + "2574.1423", + "2581.2405", + "-1.0", + "4.0", "24.0", "0.0", - "10.194981", - "5.0", - "1.0079219", + "10.805943", + "4.0", + "0.0", "0.999", - "7.0", - "2.0", + "6.0", "1.0", - "3.183649", - "0.39117905", - "0.8161304", - "0.0784651", - "4432.061", - "35.159424", + "2.0", + "2.0941632", + "0.3221582", + "0.7752365", + "0.025237428", + "3143.5386", + "27.194157", "0.0", "0.0", - "227669.34375", - "9.079235", - "1.0", - "0.17919394", + "0.0", + "10.805943", + "4.0", + "0.0", "0.999", - "5.0", - "2.0", + "6.0", "1.0", - "2.8832738", - "735373.25", - "-3.037235", - "0.36175948", - "0.8161304", - "107.31714", - "96.84596", - "10.471176", - "0.07703643", - "4432.061", - "30.500381", - "0.0", + "2.0", + "2.0941632", + "184485.58", + "-2.97661", + "0.3221582", + "0.7752365", + "84.23652", + "87.666916", + "3.430397", + "0.025237428", + "3143.5386", + "27.194157", "0.0", "0.0", - "152844.640625", - "0.3740692", - "0.8161304", "0.0", "0.0", - "185365.3333333333", + "0.3221582", + "0.7752365", "0.0", "0.0", - "1668288.0", - "248142|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=168912", - "0.2574366606144738", - "0.3387864920218188", - "0.5828359862438536", - "0.807472859073189", - "0.8823518166829675", - "0.3017655448918759", "0.0", "0.0", "0.0", "0.0", - "0.0036430787735534", - "0.0315742841482816", - "0.0595054895230098", - "0.1112107421624619", - "0.1629159948019139", - "4.0", - "4.0", - "5.0", - "5.0", - "4.0", - "0.8823518166829675", - "0.8823518166829675", - "0.5828359862438536", - "0.5828359862438536", - "0.2574366606144739", - "0.2574366606144738", + "152761|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=132541", "0.0", "0.0", "0.0", @@ -712,84 +681,40 @@ "0.0", "0.0", "0.0", + "0.1940865591484224", + "0.1940865591484224", + "0.1940865591484224", + "0.1940865591484224", + "0.1940865591484224", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", "0.0", "0.0", "0.0", "0.0", - "0.9983586556743352", - "9.366816520690918", - "12.102662086486816", - "0.1629159948019139", - "0.0595054895230098", - "0.0036430787735534", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "0.0" - ], - [ - "3", - "15384.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "TVIGFGSPNKAGK", - "1.0", - "sp|P33570|TKT2_ECOLI|243|256", - "1270.3066", - "1274.6982", - "1.0", - "3.0", - "13.0", "0.0", - "4.7334194", - "2.0", "0.0", - "0.999", - "7.0", - "2.0", - "3.0", - "7.763512", - "0.1556648", - "0.5484607", - "0.09391739", - "4241.312", - "30.98107", - "55474.00390625", "0.0", - "67869.640625", - "4.28573", - "1.0", "0.0", - "0.999", - "6.0", - "1.0", - "1.0", - "7.330577", - "52485.105", - "-4.093339", - "0.08335777", - "0.34379962", - "47.56378", - "60.329502", - "5.8806496", - "0.043263935", - "3451.1538", - "27.675964", "0.0", "0.0", "0.0", "0.0", - "0.11951129", - "0.44613016", - "27737.001953125", "0.0", - "33934.8203125", - "110948.0078125", "0.0", - "135739.28125", - "15384|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=74751", + "0.1764044809422042", + "6.366805553436279", + "11.098459243774414", + "0.1940865591484224", "0.0", "0.0", "0.0", @@ -798,22 +723,90 @@ "0.0", "0.0", "0.0", + "0.0" + ], + [ + "1", + "92850.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "VAEARTM[Oxidation]SISQALEADGRVK", + "1.0", + "rev_sp|P24182|ACCC_ECOLI|170|190", + "2146.7048", + "2147.1003", + "-1.0", + "3.0", + "20.0", "0.0", + "8.79988", + "5.0", "0.0", - "-0.1225090230992203", - "-0.1225090230992203", - "-0.1225090230992203", - "-0.1225090230992203", - "-0.1225090230992203", - "2.0", - "2.0", - "2.0", + "0.999", + "6.0", + "4.0", "2.0", + "10.529283", + "0.38908607", + "0.7471856", + "0.14598921", + "5392.7627", + "29.417896", + "0.0", + "0.0", + "733889.0625", + "0.6945418", + "1.0", + "0.0", + "0.999", + "5.0", "2.0", + "1.0", + "2.8032005", + "89417.09", + "-3.0966647", + "0.16543113", + "0.6001139", + "63.95012", + "68.139984", + "0.5975189", + "0.004395946", + "184.22252", + "25.814732", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3004853", + "0.7104177", + "0.0", + "0.0", + "183472.265625", + "0.0", + "0.0", + "733889.0625", + "92850|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=100571", + "0.9982366264520374", + "0.9982366264520376", + "0.9982366264520376", + "0.9982366264520376", + "0.9982366264520376", + "-1.0", "0.0", "0.0", "0.0", "0.0", + "0.2728478923540203", + "0.2741012937110925", + "0.2753546950681648", + "0.276608096425237", + "0.2778614977823092", + "6.0", + "6.0", + "6.0", + "6.0", + "8.0", + "0.9982366264520376", + "0.9982366264520374", "0.0", "0.0", "0.0", @@ -831,10 +824,12 @@ "0.0", "0.0", "0.0", - "5.57225227355957", - "10.180330276489258", - "-0.1225090230992203", "0.0", + "0.0424456512954376", + "9.74358081817627", + "12.83500862121582", + "0.2778614977823092", + "0.2728478923540203", "0.0", "0.0", "0.0", @@ -845,65 +840,65 @@ "0.0" ], [ - "6", - "245040.0", - "part_5918.431320190428_6763.921508789061.mzml", - "EPGPPGLSHQLM[Oxidation]SGM[Oxidation]PGAPLLPEGPR", - "1.0", - "sp|TAU_HUMAN||137|163", - "2638.1716", - "2653.299", - "1.0", - "4.0", - "26.0", + "2", + "33953.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "NFGPGGM[Oxidation]SPGGSSR", + "1.0", + "rev_sp|P64429|YPFJ_ECOLI|16|30", + "1330.334", + "1322.5673", + "-1.0", + "3.0", + "14.0", "0.0", - "4.1247215", + "4.396814", "5.0", "0.0", "0.999", - "5.0", - "2.0", + "6.0", "2.0", - "1.7286209", - "0.31155935", - "0.78328496", - "0.011448948", - "5717.67", - "24.782452", - "0.0", - "0.0", + "1.0", + "1.0627284", + "0.20299968", + "0.6019137", + "0.016478343", + "6609.1855", + "27.500692", + "356985.21875", "0.0", - "4.1247215", + "321770.28125", + "4.396814", "5.0", "0.0", "0.999", - "5.0", - "2.0", + "6.0", "2.0", - "1.7286209", - "33159.605", - "-2.478622", - "0.31155935", - "0.78328496", - "106.96097", - "105.40477", - "1.5561981", - "0.011448948", - "5717.67", - "24.782452", - "0.0", - "0.0", - "0.0", - "0.0", - "0.31155935", - "0.78328496", - "0.0", - "0.0", + "1.0", + "1.0627284", + "95477.74", + "-3.1861746", + "0.20299968", + "0.6019137", + "49.847237", + "47.607418", + "2.2398186", + "0.016478343", + "6609.1855", + "27.500692", "0.0", + "356985.21875", "0.0", + "321770.28125", + "0.20299968", + "0.6019137", + "356985.21875", "0.0", + "321770.28125", + "356985.21875", "0.0", - "245040|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=168349", + "321770.28125", + "33953|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=78349", "0.0", "0.0", "0.0", @@ -914,16 +909,16 @@ "0.0", "0.0", "0.0", - "0.142911409332623", - "0.142911409332623", - "0.142911409332623", - "0.142911409332623", - "0.142911409332623", - "6.0", - "6.0", - "6.0", - "6.0", - "6.0", + "0.233884212532217", + "0.233884212532217", + "0.233884212532217", + "0.233884212532217", + "0.233884212532217", + "9.0", + "9.0", + "9.0", + "9.0", + "9.0", "0.0", "0.0", "0.0", @@ -944,10 +939,10 @@ "0.0", "0.0", "0.0", - "-0.4779733201799403", - "5.138903617858887", - "7.21052074432373", - "0.142911409332623", + "-0.0045239434110712", + "4.017247676849365", + "5.2199883460998535", + "0.233884212532217", "0.0", "0.0", "0.0", @@ -959,179 +954,65 @@ "0.0" ], [ - "8", - "13506.0", - "part_1690.9803771972647_2536.470565795897.mzml", - "AINATLSK", - "1.0", - "sp|P46837|YHGF_ECOLI|89|97", - "814.85657", - "816.4705", + "3", + "67992.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "ATVRSNLRAHIGDIR", "1.0", - "2.0", - "8.0", - "0.0", - "4.5396867", - "5.0", + "rev_sp|P76083|PAAH_ECOLI|43|58", + "1693.7422", + "1677.9385", + "-1.0", + "4.0", + "15.0", "0.0", - "0.999", - "7.0", - "2.0", - "3.0", - "2.8003078", - "0.24433072", - "0.37470886", - "0.0103295585", - "9014.09", - "28.600826", - "752133.3125", - "292454.0", - "449050.09375", - "1.2835693", + "5.837286", "3.0", "0.0", "0.999", "5.0", - "1.0", - "1.0", - "1.0154666", - "38319.406", - "-4.059514", - "0.09947931", - "0.37470886", - "41.928577", - "40.81588", - "1.1126976", - "0.008186115", - "748.13605", - "25.192627", - "0.0", - "164797.125", - "45365.71484375", - "0.0", - "0.1616757", - "0.37470886", - "455773.046875", - "168139.56171875", - "137381.2765625", - "11394326.171875", - "4203489.04296875", - "3434531.9140625", - "13506|part_1690.9803771972647_2536.470565795897.mzml|controllerType=0 controllerNumber=1 scan=65874", - "0.0018549701845251", - "0.0018549701845251", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999992", - "0.0", - "0.0", - "0.0", - "0.0", - "-0.0214522512381801", - "-0.2232309781433831", - "-0.2232309781433831", - "-0.2232309781433831", - "-0.2232309781433831", "3.0", "2.0", - "2.0", - "2.0", - "2.0", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.9999999999999996", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", + "0.41857234", + "0.41182476", + "0.8201158", + "0.1328256", + "9374.382", + "24.761675", "0.0", "0.0", "0.0", - "0.0", - "0.0", - "0.0", - "4.350908756256104", - "4.990771293640137", - "-0.0214522512381801", - "-0.2232309781433831", - "-0.2232309781433831", - "-0.2232309781433831", - "-0.2232309781433831", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0" - ], - [ - "9", - "78185.0", - "part_3381.96075439453_4227.450942993162.mzml", - "VVPGYAHRCVCLDNLSGAR", - "1.0", - "sp|P25748|GALS_ECOLI|146|165", - "2029.895", - "2028.9987", - "1.0", - "4.0", - "19.0", - "0.0", - "7.58262", - "9.0", + "5.837286", + "3.0", "0.0", "0.999", - "6.0", + "5.0", "3.0", "2.0", - "1.439756", - "0.40567186", - "0.78326726", - "0.092911184", - "7475.334", - "27.66969", - "712662.5625", + "0.41857234", + "32186.53", + "-2.5862765", + "0.41182476", + "0.8201158", + "66.98641", + "48.932095", + "18.054317", + "0.1328256", + "9374.382", + "24.761675", "0.0", "0.0", - "4.562194", - "4.0", - "0.0", - "0.999", - "5.0", - "1.0", - "1.0", - "0.5304615", - "24336.947", - "-3.1116004", - "0.30511752", - "0.76031756", - "65.488365", - "68.83073", - "0.6252289", - "0.0045998082", - "441.67816", - "24.598574", "0.0", "0.0", + "0.41182476", + "0.8201158", "0.0", "0.0", - "0.3697943", - "0.76949745", - "177809.446875", "0.0", "0.0", - "4445236.171875", "0.0", "0.0", - "78185|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=102993", + "67992|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=105354", "0.0", "0.0", "0.0", @@ -1142,16 +1023,16 @@ "0.0", "0.0", "0.0", - "-0.0458223654600047", - "-0.0458223654600047", - "-0.0458223654600047", - "-0.0458223654600047", - "-0.0458223654600047", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", + "0.3416117461789473", + "0.3416117461789473", + "0.3416117461789473", + "0.3416117461789473", + "0.3416117461789473", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -1172,10 +1053,10 @@ "0.0", "0.0", "0.0", - "-1.0", - "5.644822120666504", - "10.247090339660645", - "-0.0458223654600047", + "0.1729939806699886", + "3.2140238285064697", + "4.449400424957275", + "0.3416117461789473", "0.0", "0.0", "0.0", @@ -1187,88 +1068,87 @@ "0.0" ], [ - "11", - "1885.0", - "part_1690.9803771972647_2536.470565795897.mzml", - "KGEASVTIDK", - "1.0", - "sp|P45470|YHBO_ECOLI|46|56", - "1046.962", - "1046.5607", - "1.0", - "2.0", - "10.0", + "4", + "96967.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "VVQEKQHEQPDIDKALLR", + "1.0", + "rev_sp|P32053|INTA_ECOLI|79|97", + "2146.7048", + "2145.154", + "-1.0", + "3.0", + "18.0", "0.0", - "2.7018483", - "1.0", + "10.566856", + "2.0", "0.0", "0.999", - "7.0", + "5.0", + "3.0", "1.0", - "2.0", - "13.982279", - "0.008666837", - "0.028412523", - "0.015365394", - "575.3665", - "29.248222", - "230314.4375", - "136082.59375", + "35.381702", + "0.36667347", + "0.7406571", + "0.08975436", + "722.6618", + "29.450777", + "0.0", "0.0", - "2.7018483", + "0.0", + "6.460015", "1.0", "0.0", "0.999", - "7.0", + "5.0", + "3.0", "1.0", - "2.0", - "13.982279", - "51986.832", - "-4.4121695", - "0.008666837", - "0.028412523", - "30.620695", - "32.709236", - "2.088541", - "0.015365394", - "575.3665", - "29.248222", - "0.0", - "230314.4375", - "136082.59375", - "0.0", - "0.008666837", - "0.028412523", - "230314.4375", - "136082.59375", - "0.0", - "230314.4375", - "136082.59375", + "12.720574", + "125239.69", + "-2.7485878", + "0.2970572", + "0.7406571", + "68.512825", + "56.603615", + "11.90921", + "0.08761605", + "255.16182", + "25.485699", "0.0", - "1885|part_1690.9803771972647_2536.470565795897.mzml|controllerType=0 controllerNumber=1 scan=48063", "0.0", "0.0", "0.0", + "0.33186534", + "0.7406571", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "96967|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=107762", + "0.968731687506034", + "0.968731687506034", + "0.968731687506034", + "0.968731687506034", + "0.9687316875060342", + "-1.0", "0.0", - "-0.2011093055983487", - "-0.2011093055983487", - "-0.2011093055983487", - "-0.2011093055983487", - "-0.2011093055983487", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", "0.0", "0.0", "0.0", + "0.2381190354328064", + "0.22445085174982", + "0.2107826680668336", + "0.1971144843838472", + "0.1834463007008608", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.9687316875060342", + "0.968731687506034", "0.0", "0.0", "0.0", @@ -1286,11 +1166,12 @@ "0.0", "0.0", "0.0", - "1.0", - "4.649024963378906", - "7.592132091522217", - "-0.2011093055983487", "0.0", + "0.1417437219977701", + "6.883527755737305", + "9.474823951721191", + "0.2381190354328064", + "0.1834463007008608", "0.0", "0.0", "0.0", @@ -1301,95 +1182,92 @@ "0.0" ], [ - "12", - "199248.0", - "part_5072.941131591795_5918.431320190428.mzml", - "VAGLTRM[Oxidation]MAQNIVAWRDENGQFQNR", - "1.0", - "sp|P46837|YHGF_ECOLI|508|533", - "2926.3025", - "2920.4185", - "1.0", - "4.0", - "25.0", - "0.0", - "4.741852", - "6.0", - "0.0", - "0.999", - "7.0", + "5", + "130391.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GLDEVLKDEVISAK", + "1.0", + "rev_sp|DHE3_BOVIN||76|90", + "1510.4158", + "1514.8192", + "-1.0", "3.0", - "2.0", - "4.228885", - "0.40317476", - "0.6740286", - "0.0068993755", - "2355.5771", - "29.178509", - "0.0", - "962747.3125", + "14.0", "0.0", - "3.88729", - "2.0", + "1.9277748", + "5.0", "0.0", "0.999", "5.0", - "2.0", + "4.0", "1.0", - "1.569427", - "16169.461", - "-3.8659334", - "0.21202026", - "0.6740286", - "92.88677", - "93.82457", - "0.6464615", - "0.0047560167", - "2012.7635", - "24.168104", + "2.372819", + "0.378411", + "0.8174412", + "0.09273584", + "3575.647", + "27.03331", + "1369624.25", + "1090607.625", + "1786028.375", + "1.9277748", + "5.0", "0.0", + "0.999", + "5.0", + "4.0", + "1.0", + "2.372819", + "394280.47", + "-2.441089", + "0.378411", + "0.8174412", + "81.55667", + "94.16179", + "12.605118", + "0.09273584", + "3575.647", + "27.03331", "0.0", + "1369624.25", + "1090607.625", + "1786028.375", + "0.378411", + "0.8174412", + "1369624.25", + "1090607.625", + "1786028.375", + "1369624.25", + "1090607.625", + "1786028.375", + "130391|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=128316", "0.0", "0.0", - "0.3123334", - "0.6740286", "0.0", - "418998.046875", "0.0", "0.0", - "6703968.75", "0.0", - "199248|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=146171", - "0.9650635092923022", - "0.9668698499860644", - "0.9777738927992652", - "0.9808282228314807", - "0.999196953891868", - "0.0085622960473903", "0.0", "0.0", "0.0", "0.0", - "0.1394040337949371", - "0.1702944009729351", - "0.1586068258134441", - "0.1589667611274669", - "0.2259996597260063", - "7.0", - "7.0", - "7.0", - "7.0", - "6.0", - "0.999196953891868", - "0.9991969538918676", - "0.9808282228314807", - "0.9808282228314807", - "0.980617360916512", - "0.980617360916512", - "0.9749304246820184", - "0.9749304246820182", - "0.9668698499860644", - "0.9668698499860644", + "0.0333342178087325", + "0.0333342178087325", + "0.0333342178087325", + "0.0333342178087325", + "0.0333342178087325", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", "0.0", "0.0", "0.0", @@ -1400,13 +1278,16 @@ "0.0", "0.0", "0.0", - "0.0609608870627386", - "14.192861557006836", - "16.87909507751465", - "0.2259996597260063", - "0.1805911900322678", - "0.1394040337949371", - "0.1366224615946204", + "0.0", + "0.0", + "0.0", + "-0.1606723807918223", + "6.672171115875244", + "11.017183303833008", + "0.0333342178087325", + "0.0", + "0.0", + "0.0", "0.0", "0.0", "0.0", @@ -1415,85 +1296,85 @@ "0.0" ], [ - "16", - "22101.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "LTGLERM[Oxidation]GPK", + "6", + "23520.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "QRTM[Oxidation]EVLR", "1.0", - "sp|P15042|DNLJ_ECOLI|481|491", - "1110.9911", - "1116.5961", + "sp|P29018|CYDD_ECOLI|236|244", + "1038.9584", + "1047.5494", "1.0", "2.0", - "10.0", - "0.0", - "2.0457163", - "3.0", + "8.0", "0.0", + "4.822646", + "4.0", + "1.0161484", "0.999", "5.0", + "2.0", "1.0", - "1.0", - "4.36744", - "0.14867067", - "0.5136843", - "0.012913253", - "5032.3335", - "25.008392", - "0.0", - "0.0", - "0.0", - "2.0457163", - "3.0", + "2.1778286", + "0.33560398", + "0.7497177", + "0.12235445", + "7269.627", + "24.98777", + "297958.78125", "0.0", + "305455.28125", + "4.822646", + "4.0", + "1.0161484", "0.999", "5.0", + "2.0", "1.0", - "1.0", - "4.36744", - "59341.703", - "-2.6279182", - "0.14867067", - "0.5136843", - "42.86484", - "44.620075", - "1.7552338", - "0.012913253", - "5032.3335", - "25.008392", - "0.0", + "2.1778286", + "26240.213", + "-2.584405", + "0.33560398", + "0.7497177", + "52.039253", + "35.408226", + "16.631027", + "0.12235445", + "7269.627", + "24.98777", "0.0", + "297958.78125", "0.0", + "305455.28125", + "0.33560398", + "0.7497177", + "297958.78125", "0.0", - "0.14867067", - "0.5136843", + "305455.28125", + "297958.78125", "0.0", + "305455.28125", + "23520|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=81802", "0.0", "0.0", "0.0", "0.0", "0.0", - "22101|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=67347", "0.0", "0.0", "0.0", "0.0", "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "-0.205068479400011", - "-0.205068479400011", - "-0.205068479400011", - "-0.205068479400011", - "-0.205068479400011", - "6.0", - "6.0", - "6.0", - "6.0", - "6.0", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -1514,10 +1395,10 @@ "0.0", "0.0", "0.0", - "0.9969962385358708", - "5.961617946624756", - "10.05322265625", - "-0.205068479400011", + "0.9667567493307392", + "2.2117435932159424", + "3.405139923095703", + "0.7554337984232143", "0.0", "0.0", "0.0", @@ -1529,65 +1410,65 @@ "0.0" ], [ - "18", - "248358.0", - "part_5918.431320190428_6763.921508789061.mzml", - "VFKELAANM[Oxidation]VQAFTVR", - "1.0", - "sp|P0AGL5|RATA_ECOLI|134|150", - "1846.5686", - "1838.9711", - "1.0", - "3.0", + "7", + "217874.0", + "part_5321.289825439448_6385.547790527337.mzml", + "GAVAM[Oxidation]GVTM[Oxidation]HLGYFVS", + "1.0", + "rev_sp|P18777|DMSC_ECOLI|271|287", + "1679.2494", + "1670.7794", + "-1.0", + "2.0", "16.0", "0.0", - "4.445764", - "1.0", - "0.0", - "0.999", - "5.0", - "1.0", + "4.8928494", "3.0", - "7.533952", - "0.1299337", - "0.5406047", - "0.08512278", - "4122.888", - "25.328259", - "0.0", + "26.082064", + "0.999", + "6.0", + "2.0", + "2.0", + "3.726579", + "0.064617485", + "0.34927696", + "0.11304123", + "4458.981", + "26.91193", "0.0", "0.0", - "4.445764", - "1.0", "0.0", + "4.585161", + "2.0", + "1.2177732", "0.999", - "5.0", + "6.0", + "2.0", "1.0", - "3.0", - "7.533952", - "48304.496", - "-2.6451683", - "0.1299337", - "0.5406047", - "108.75402", - "97.18371", - "11.5703125", - "0.08512278", - "4122.888", - "25.328259", + "2.8830888", + "51676.28", + "-3.0848095", + "0.05087732", + "0.2661718", + "89.74051", + "100.98194", + "11.241432", + "0.0827032", + "4458.981", + "26.082064", "0.0", "0.0", "0.0", "0.0", - "0.1299337", - "0.5406047", + "0.0577474", + "0.3077244", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "248358|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=171174", + "217874|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=141212", "0.0", "0.0", "0.0", @@ -1598,16 +1479,16 @@ "0.0", "0.0", "0.0", - "0.732821167580546", - "0.732821167580546", - "0.732821167580546", - "0.732821167580546", - "0.732821167580546", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "0.3885968852683485", + "0.3885968852683485", + "0.3885968852683485", + "0.3885968852683485", + "0.3885968852683485", + "9.0", + "9.0", + "9.0", + "9.0", + "9.0", "0.0", "0.0", "0.0", @@ -1628,10 +1509,10 @@ "0.0", "0.0", "0.0", - "0.4905839033460683", - "3.1998417377471924", - "5.438206672668457", - "0.732821167580546", + "0.3555212120854057", + "5.821088790893555", + "8.656489372253418", + "0.3885968852683485", "0.0", "0.0", "0.0", @@ -1643,65 +1524,65 @@ "0.0" ], [ - "19", - "83881.0", - "part_3381.96075439453_4227.450942993162.mzml", - "GTKEYGGFWR", - "1.0", - "sp|P62517|OPGH_ECOLI|592|602", - "1191.0275", - "1199.5724", + "8", + "183188.0", + "part_5321.289825439448_6385.547790527337.mzml", + "EPGFADPLYDRLAHAK", "1.0", - "2.0", - "10.0", + "rev_sp|P0ABF6|CDD_ECOLI|152|168", + "1805.7932", + "1798.9001", + "-1.0", + "4.0", + "16.0", "0.0", - "4.71833", + "3.7752948", "3.0", - "1.4297172", + "0.0", "0.999", - "6.0", - "2.0", + "5.0", + "4.0", "1.0", - "2.0056615", - "0.2129828", - "0.6478989", - "0.05000056", - "6306.7085", - "27.213648", + "3.83576", + "0.4169472", + "0.85292166", + "0.0047000553", + "3268.714", + "26.322653", "0.0", "0.0", "0.0", - "4.71833", + "3.7752948", "3.0", - "1.4297172", + "0.0", "0.999", - "6.0", - "2.0", + "5.0", + "4.0", "1.0", - "2.0056615", - "68061.555", - "-3.2359312", - "0.2129828", - "0.6478989", - "70.153244", - "63.35692", - "6.7963257", - "0.05000056", - "6306.7085", - "27.213648", + "3.83576", + "138869.36", + "-2.567091", + "0.4169472", + "0.85292166", + "90.145004", + "90.78386", + "0.638855", + "0.0047000553", + "3268.714", + "26.322653", "0.0", "0.0", "0.0", "0.0", - "0.2129828", - "0.6478989", + "0.4169472", + "0.85292166", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "83881|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=110348", + "183188|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=141851", "0.0", "0.0", "0.0", @@ -1712,16 +1593,16 @@ "0.0", "0.0", "0.0", - "0.1722861350771677", - "0.1722861350771677", - "0.1722861350771677", - "0.1722861350771677", - "0.1722861350771677", - "8.0", - "8.0", - "8.0", - "8.0", - "8.0", + "0.2778047312291711", + "0.2778047312291711", + "0.2778047312291711", + "0.2778047312291711", + "0.2778047312291711", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -1742,10 +1623,10 @@ "0.0", "0.0", "0.0", - "0.0889042209436791", - "3.6715316772460938", - "5.121567249298096", - "0.1722861350771677", + "0.0674483073509006", + "5.5520124435424805", + "9.06102180480957", + "0.2778047312291711", "0.0", "0.0", "0.0", @@ -1757,179 +1638,65 @@ "0.0" ], [ - "23", - "110892.0", - "part_4227.450942993162_5072.941131591795.mzml", - "ADVLPLDSNHVNTEEAR", - "1.0", - "sp|P21889|SYD_ECOLI|104|121", - "1882.585", - "1878.9071", - "1.0", - "3.0", - "17.0", - "0.0", - "4.514571", - "7.0", - "0.0", - "0.999", - "17.0", - "3.0", - "11.0", - "31.59898", - "0.24652113", - "0.0013333149", - "0.04878435", - "4978.54", - "56.39301", - "8050498.0", - "7817189.0", - "213083.28125", - "1.2749599", - "1.0", - "0.0", - "0.999", - "7.0", - "2.0", - "1.0", - "1.4046701", - "67676.16", - "-12.828133", - "0.00012981956", - "0.0013333149", - "70.93507", - "68.04122", - "2.8938446", - "0.021290012", - "1422.4249", - "29.50985", - "0.0", - "0.0", - "0.0", - "0.0", - "0.039134614", - "0.0013333149", - "2591972.646875", - "2614192.1421875", - "17499.32578125", - "1295986323.4375", - "1307096071.09375", - "8749662.890625", - "110892|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=111577", - "5.94528257948e-05", - "0.241470550348109", - "0.7276087723769848", - "0.9758837064793134", - "0.9999999999999998", - "0.0326740686284722", - "0.0", - "0.0", - "0.0", - "0.0", - "0.1887501733541925", - "-0.0859566784835878", - "0.2150752337854058", - "-0.0716140743475822", - "-0.0939983635344226", - "3.0", - "3.0", - "2.0", - "3.0", - "2.0", - "0.9999999999999998", - "0.9999999999999998", - "0.9999999999999998", - "0.9999999999999998", - "0.999767746335646", - "0.999767746335646", - "0.9989360760510608", - "0.9989360760510608", - "0.9977831421281848", - "0.9977831421281848", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "1.0", - "5.088918209075928", - "5.335041999816895", - "0.2150752337854058", - "0.2150752337854058", - "0.1887501733541925", - "0.0905591201572626", - "0.0787582218739915", - "0.0298236631145603", - "0.0019380114431123", - "-0.0477563137818386", - "-0.0719682692018915", - "-0.0791255443121513" - ], - [ - "27", - "271843.0", - "part_6763.921508789061_7609.4116973876935.mzml", - "LDTLYPGMMLKFGGHAMAAGLSLEEDK", - "1.0", - "sp|P21893|RECJ_ECOLI|414|441", - "2910.2952", - "2894.4014", + "9", + "141718.0", + "part_4257.031860351558_5321.289825439448.mzml", + "RGGGASIDVYQPAVDQSFK", "1.0", + "rev_sp|P19317|NARW_ECOLI|212|231", + "1981.8732", + "1993.9857", + "-1.0", "4.0", - "27.0", + "19.0", "0.0", - "9.931161", - "3.0", + "3.1915648", + "9.0", "0.0", "0.999", "5.0", - "2.0", - "3.0", - "6.9387197", - "0.24108118", - "0.78702754", - "0.047531538", - "5476.186", - "24.383945", + "1.0", + "1.0", + "1.2571595", + "0.34833762", + "0.5825045", + "0.016965576", + "6093.048", + "26.267439", + "138453.703125", "0.0", "0.0", - "71706.703125", - "9.931161", - "3.0", + "3.1915648", + "9.0", "0.0", "0.999", "5.0", - "2.0", - "3.0", - "6.9387197", - "45839.832", - "-2.5241804", - "0.24108118", - "0.78702754", - "116.43497", - "122.89569", - "6.460724", - "0.047531538", - "5476.186", - "24.383945", + "1.0", + "1.0", + "1.2571595", + "159260.31", + "-2.345448", + "0.34833762", + "0.5825045", + "76.0207", + "78.326744", + "2.3060455", + "0.016965576", + "6093.048", + "26.267439", "0.0", + "138453.703125", "0.0", "0.0", - "71706.703125", - "0.24108118", - "0.78702754", + "0.34833762", + "0.5825045", + "138453.703125", "0.0", "0.0", - "71706.703125", + "138453.703125", "0.0", "0.0", - "71706.703125", - "271843|part_6763.921508789061_7609.4116973876935.mzml|controllerType=0 controllerNumber=1 scan=183276", + "141718|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=119593", "0.0", "0.0", "0.0", @@ -1940,16 +1707,16 @@ "0.0", "0.0", "0.0", - "-0.0022255470060108", - "-0.0022255470060108", - "-0.0022255470060108", - "-0.0022255470060108", - "-0.0022255470060108", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "0.1580092121465736", + "0.1580092121465736", + "0.1580092121465736", + "0.1580092121465736", + "0.1580092121465736", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", "0.0", "0.0", "0.0", @@ -1970,10 +1737,10 @@ "0.0", "0.0", "0.0", - "-0.988319434517576", - "11.378979682922363", - "21.7058048248291", - "-0.0022255470060108", + "-0.1609331305502525", + "7.976129055023193", + "12.99163818359375", + "0.1580092121465736", "0.0", "0.0", "0.0", @@ -1985,88 +1752,87 @@ "0.0" ], [ - "30", - "121439.0", - "part_4227.450942993162_5072.941131591795.mzml", - "LLGRFDRVTAFK", - "1.0", - "sp|P75683|YAGG_ECOLI|284|296", - "1415.1294", - "1421.8142", - "1.0", - "2.0", - "12.0", + "10", + "181988.0", + "part_5321.289825439448_6385.547790527337.mzml", + "DYAEGKVEFEVEALCEATR", + "1.0", + "rev_sp|P13458|SBCC_ECOLI|74|93", + "2146.7048", + "2157.9888", + "-1.0", + "3.0", + "19.0", "0.0", - "6.376048", - "6.0", + "4.7383676", + "3.0", "0.0", "0.999", - "6.0", + "5.0", + "3.0", "1.0", - "2.0", - "1.2668073", - "0.08567686", - "0.40690592", - "0.021616012", - "4003.9258", - "28.786732", - "472186.53125", - "0.0", - "1728641.5", - "6.376048", - "6.0", + "6.3242435", + "0.37228757", + "0.8120284", + "0.10016188", + "5242.62", + "27.035936", "0.0", - "0.999", - "6.0", - "1.0", - "2.0", - "1.2668073", - "144494.72", - "-2.786515", - "0.08567686", - "0.40690592", - "80.164986", - "77.22683", - "2.9381561", - "0.021616012", - "4003.9258", - "28.786732", "0.0", - "472186.53125", "0.0", - "1728641.5", - "0.08567686", - "0.40690592", - "472186.53125", + "2.1366928", + "3.0", "0.0", - "1728641.5", - "472186.53125", + "0.999", + "5.0", + "3.0", + "1.0", + "4.402313", + "103170.29", + "-2.5009556", + "0.35393792", + "0.8120284", + "88.90466", + "102.519165", + "13.517479", + "0.09944808", + "5242.62", + "27.014929", "0.0", - "1728641.5", - "121439|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=126123", "0.0", "0.0", "0.0", + "0.36311275", + "0.8120284", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "181988|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=139895", + "0.8983027945089797", + "0.8983027945089797", + "0.8983027945089797", + "0.8983027945089797", + "0.8983027945089797", + "-1.0", "0.0", - "-0.0850402777445184", - "-0.0850402777445184", - "-0.0850402777445184", - "-0.0850402777445184", - "-0.0850402777445184", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", "0.0", "0.0", "0.0", + "0.23979175582756", + "0.2392263352402305", + "0.2386609146529009", + "0.2380954940655713", + "0.2375300734782417", + "5.0", + "5.0", + "5.0", + "5.0", + "5.0", + "0.8983027945089797", + "0.8983027945089797", "0.0", "0.0", "0.0", @@ -2084,11 +1850,12 @@ "0.0", "0.0", "0.0", - "-1.0", - "6.624348163604736", - "12.321269989013672", - "-0.0850402777445184", "0.0", + "0.6387321539839782", + "4.781508445739746", + "6.408189296722412", + "0.23979175582756", + "0.2375300734782417", "0.0", "0.0", "0.0", @@ -2099,97 +1866,95 @@ "0.0" ], [ - "31", - "249715.0", - "part_5918.431320190428_6763.921508789061.mzml", - "KAKMRPGDVLGALTGDIGLDGADIGK", + "11", + "285502.0", + "part_7449.805755615226_8514.063720703116.mzml", + "TLFTVSAGGQPAYSQDFAPLPADIR", "1.0", - "sp|P21693|DBPA_ECOLI|391|417", - "2558.135", - "2567.3743", + "sp|P77581|ASTC_ECOLI|141|166", + "2638.1716", + "2621.3123", "1.0", "4.0", - "26.0", - "0.0", - "4.370032", - "3.0", + "25.0", "0.0", + "3.9591477", + "1.0", + "24.73595", "0.999", "5.0", "1.0", - "4.0", - "3.7530317", - "0.26346114", - "0.68367416", - "0.046579022", - "3997.5007", - "25.868452", - "0.0", + "2.0", + "3.7164536", + "0.16158165", + "0.005581803", + "0.0051012686", + "6030.649", + "25.41591", "0.0", "0.0", - "0.7092458", - "3.0", "0.0", + "0.618294", + "1.0", + "0.5666895", "0.999", "5.0", "1.0", "2.0", - "2.572944", - "22575.867", - "-2.5650077", - "0.2096927", - "0.68367416", - "103.6081", - "109.939354", - "5.55497", - "0.040867906", - "3997.5007", - "24.359447", - "0.0", - "0.0", - "0.0", - "0.0", - "0.23657691", - "0.68367416", + "2.610265", + "27453.066", + "-2.8216617", + "0.14300151", + "0.005581803", + "125.51219", + "125.11013", + "0.40206146", + "0.0029579657", + "6030.649", + "24.053574", "0.0", "0.0", "0.0", "0.0", - "0.0", - "0.0", - "249715|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=163067", - "0.0796743851653512", - "0.0796743851653512", - "0.0796743851653512", - "0.0796743851653512", - "0.0796743851653512", - "0.9999999999999996", - "0.0", - "0.0", - "0.0", - "0.0", - "0.2378296431396517", - "0.2459434695263722", - "0.2540572959130928", - "0.2621711222998133", - "0.2702849486865338", - "5.0", - "5.0", - "5.0", - "5.0", - "5.0", - "0.0796743851653512", - "0.0796743851653512", + "0.15261048", + "0.005581803", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "285502|part_7449.805755615226_8514.063720703116.mzml|controllerType=0 controllerNumber=1 scan=197574", + "0.9051679794349488", + "0.9255928712095144", + "0.9319788292206388", + "0.958737027928529", + "0.990631181584674", + "-0.8909122489275533", "0.0", "0.0", "0.0", "0.0", + "0.8999250557711711", + "0.8668623089312884", + "0.8734776924185351", + "0.8970645778201675", + "0.9149163367234412", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.990631181584674", + "0.990631181584674", + "0.9587370279285292", + "0.958737027928529", + "0.9377029221132764", + "0.9377029221132762", + "0.9262547363280016", + "0.9262547363280016", + "0.9255928712095144", + "0.925592871209514", "0.0", "0.0", "0.0", @@ -2198,13 +1963,15 @@ "0.0", "0.0", "0.0", - "-0.7261029593980536", - "9.650562286376951", - "13.0469970703125", - "0.2702849486865338", - "0.2378296431396517", "0.0", "0.0", + "0.0455117357442563", + "3.0623550415039062", + "3.547491312026977", + "0.9149163367234412", + "0.8999250557711711", + "0.8911139915190762", + "0.855841393317994", "0.0", "0.0", "0.0", @@ -2213,91 +1980,90 @@ "0.0" ], [ - "33", - "86457.0", - "part_3381.96075439453_4227.450942993162.mzml", - "ISNPKIEENVGDFR", - "1.0", - "sp|P77293|GTRB_ECOLI|143|157", - "1606.4595", - "1616.8158", + "12", + "75904.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "FGGIDSFR", "1.0", - "3.0", - "14.0", + "rev_sp|P30177|YBIB_ECOLI|213|221", + "902.8966", + "897.43445", + "-1.0", + "2.0", + "8.0", "0.0", - "6.2498193", - "4.0", + "2.642306", + "5.0", "0.0", "0.999", - "5.0", - "4.0", + "6.0", + "1.0", "3.0", - "5.601812", - "0.3876272", - "0.55829656", - "0.122698635", - "7050.723", - "25.547653", + "17.92824", + "0.24876978", + "0.15924327", + "0.09622097", + "4956.0825", + "31.415138", + "7465682.0", + "3508045.75", "0.0", - "341641.28125", - "0.0", - "4.2052736", - "3.0", + "1.2033528", + "2.0", "0.0", "0.999", "5.0", "1.0", "1.0", - "1.4191039", - "34532.91", - "-2.6299655", - "0.16075379", - "0.55829656", - "57.867798", - "74.54561", - "12.164665", - "0.08949543", - "399.4351", - "24.474264", + "1.4253098", + "91161.02", + "-3.202783", + "0.029361337", + "0.15924327", + "64.51061", + "77.58945", + "8.758034", + "0.064432845", + "1715.4156", + "26.854143", "0.0", + "163621.3125", "0.0", "0.0", + "0.15135235", + "0.15924327", + "4591702.104166667", + "2315858.6666666665", "0.0", - "0.27678192", - "0.55829656", + "13775106.3125", + "6947576.0", "0.0", - "85410.3203125", + "75904|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=101455", + "0.9972138717770404", + "0.9972138717770406", + "0.9972138717770406", + "0.9972138717770408", + "0.9972138717770408", + "-1.0", "0.0", "0.0", - "1366565.125", "0.0", - "86457|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=90985", - "0.8500718708306243", - "0.8665412023528818", - "0.9159491969196544", - "0.967779651269768", - "0.9850564693864724", - "0.8954697491195011", "0.0", + "0.8210813664834833", + "0.8212407950487619", + "0.8214002236140404", + "0.8215596521793189", + "0.8217190807445975", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.9972138717770408", + "0.9972138717770404", "0.0", "0.0", "0.0", - "-0.1028287443489532", - "-0.0255162492885494", - "0.0517962457718543", - "-0.0017247052139584", - "-0.0552456561997712", - "2.0", - "2.0", - "4.0", - "4.0", - "3.0", - "0.9850564693864724", - "0.9850564693864724", - "0.9159491969196544", - "0.9159491969196542", - "0.8500718708306243", - "0.8500718708306243", "0.0", "0.0", "0.0", @@ -2312,12 +2078,13 @@ "0.0", "0.0", "0.0", - "-1.0", - "4.0399603843688965", - "4.888646602630615", - "0.0517962457718543", - "-0.0552456561997712", - "-0.1028287443489532", + "0.0", + "0.9849784359478642", + "2.023975372314453", + "2.4865615367889404", + "0.8217190807445975", + "0.8210813664834833", + "0.0", "0.0", "0.0", "0.0", @@ -2327,68 +2094,87 @@ "0.0" ], [ - "34", - "207427.0", - "part_5072.941131591795_5918.431320190428.mzml", - "TGVNFGAGMTGGFAYVLDESGDFRKR", + "13", + "11947.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "STRSIGLTEAGR", "1.0", - "sp|P09831|GLTB_ECOLI|1380|1406", - "2750.2224", - "2751.3071", + "sp|P67662|AAER_ECOLI|51|63", + "1234.2903", + "1246.6628", "1.0", - "4.0", - "26.0", + "3.0", + "12.0", "0.0", - "1.9602817", + "2.8620002", "2.0", - "0.0", + "0.27390906", "0.999", "7.0", - "4.0", - "1.0", - "4.5014496", - "0.34689057", - "0.7894852", - "0.069205254", - "394.3328", - "30.476059", - "0.0", + "2.0", + "3.0", + "6.7626624", + "0.09895363", + "0.24962433", + "0.065371804", + "9161.488", + "31.310156", "0.0", "0.0", - "1.9602817", + "95338.0390625", + "1.9001437", "2.0", - "0.0", + "0.19569208", "0.999", "7.0", - "4.0", "1.0", - "4.5014496", - "254907.12", - "-3.586841", - "0.34689057", - "0.7894852", - "94.77632", - "104.183044", - "9.406723", - "0.069205254", - "394.3328", - "30.476059", - "0.0", - "0.0", + "3.0", + "5.1133623", + "85714.64", + "-4.210421", + "0.05156608", + "0.24962433", + "37.02647", + "45.912132", + "8.691555", + "0.06394376", + "9161.488", + "29.20403", "0.0", "0.0", - "0.34689057", - "0.7894852", "0.0", + "92017.5234375", + "0.07525985", + "0.24962433", "0.0", "0.0", + "93677.78125", "0.0", "0.0", + "187355.5625", + "11947|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=58148", + "0.3127687021535408", + "0.3127687021535409", + "0.3127687021535409", + "0.3127687021535409", + "0.3127687021535409", + "-1.0", "0.0", - "207427|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=149149", "0.0", "0.0", "0.0", + "0.4568282810239495", + "0.4383655944056002", + "0.419902907787251", + "0.4014402211689016", + "0.3829775345505524", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.3127687021535409", + "0.3127687021535408", "0.0", "0.0", "0.0", @@ -2396,16 +2182,6 @@ "0.0", "0.0", "0.0", - "-0.05871723215634", - "-0.05871723215634", - "-0.05871723215634", - "-0.05871723215634", - "-0.05871723215634", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", "0.0", "0.0", "0.0", @@ -2417,6 +2193,11 @@ "0.0", "0.0", "0.0", + "0.564523335537644", + "4.070645332336426", + "5.263789176940918", + "0.4568282810239495", + "0.3829775345505524", "0.0", "0.0", "0.0", @@ -2424,114 +2205,88 @@ "0.0", "0.0", "0.0", + "0.0" + ], + [ + "14", + "204229.0", + "part_5321.289825439448_6385.547790527337.mzml", + "CVLIFM[Oxidation]AEGNPRIAK", + "1.0", + "sp|Q46911|YGCU_ECOLI|280|295", + "1679.2494", + "1676.8743", + "1.0", + "2.0", + "15.0", "0.0", + "9.360578", + "2.0", "0.0", - "-0.5376531649043513", - "9.049220085144045", - "17.059001922607422", - "-0.05871723215634", + "0.999", + "5.0", + "2.0", + "1.0", + "2.4568202", + "0.22560073", + "0.7039341", + "0.0007736322", + "1415.396", + "24.888275", "0.0", "0.0", "0.0", + "9.360578", + "2.0", "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.4568202", + "53189.14", + "-2.4673588", + "0.22560073", + "0.7039341", + "91.48733", + "91.38217", + "0.105155945", + "0.0007736322", + "1415.396", + "24.888275", "0.0", "0.0", "0.0", "0.0", - "0.0" - ], - [ - "35", - "220515.0", - "part_5918.431320190428_6763.921508789061.mzml", - "TGVILGHEGIGVVAEVGPGVTSLKPGDR", - "1.0", - "sp|P39451|ADHP_ECOLI|51|79", - "2702.2004", - "2713.4758", - "1.0", - "4.0", - "28.0", + "0.22560073", + "0.7039341", "0.0", - "6.8226013", - "6.0", "0.0", - "0.999", - "17.0", - "4.0", - "6.0", - "20.236183", - "0.3501519", - "0.0013357961", - "0.08838199", - "4535.3584", - "51.107258", - "544252.5625", - "866253.125", "0.0", - "2.9374022", - "1.0", "0.0", - "0.999", - "5.0", - "1.0", - "1.0", - "1.1395812", - "14488.374", - "-14.133641", - "0.00011120996", - "0.0013357961", - "99.19407", - "99.12385", - "0.07022095", - "0.00051661546", - "1373.1553", - "23.958641", "0.0", "0.0", + "204229|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=143966", "0.0", "0.0", - "0.113783486", - "0.0013357961", - "178589.56953125", - "320356.3828125", "0.0", - "85722993.375", - "153771063.75", "0.0", - "220515|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=156110", - "1.028140129553042e-06", - "0.0010462766692531", - "0.2010317751481522", - "0.7201158391441188", - "1.0", - "0.0064420268856332", "0.0", "0.0", "0.0", "0.0", - "0.165557883316007", - "0.1048833698934765", - "0.0303589248025947", - "0.1298767553415987", - "0.1005414059102303", - "3.0", - "5.0", - "2.0", - "4.0", - "4.0", - "1.0", - "1.0", - "0.98980912356569", - "0.9898091235656896", - "0.9887054118352534", - "0.9887054118352532", - "0.9878130752143548", - "0.9878130752143548", - "0.9859605398706984", - "0.9859605398706984", "0.0", "0.0", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", "0.0", "0.0", "0.0", @@ -2540,112 +2295,22 @@ "0.0", "0.0", "0.0", - "0.2684685408557192", - "9.448067665100098", - "9.79803466796875", - "0.2186559151075225", - "0.2008689716320319", - "0.165557883316007", - "0.1428697628044075", - "0.1317942589810008", - "0.1311175374311758", - "0.1279023835975793", - "0.1261544090728675", - "0.1074091568432097", - "0.1005414059102303" - ], - [ - "36", - "76665.0", - "part_3381.96075439453_4227.450942993162.mzml", - "GYNGLAEVGK", - "1.0", - "sp|P0AEX9|MALE_ECOLI|41|51", - "998.9402", - "1006.50836", - "1.0", - "2.0", - "10.0", "0.0", - "4.7633276", - "3.0", - "10.724482", - "0.999", - "12.0", - "4.0", - "8.0", - "35.09726", - "0.10007044", - "0.0017548319", - "0.0630064", - "7547.6147", - "46.716553", - "62637856.0", - "33839500.0", - "518487.28125", - "0.5360646", - "1.0", "0.0", - "0.999", - "6.0", - "1.0", - "2.0", - "1.8686523", - "80685.73", - "-8.373048", - "0.00020024029", - "0.0017548319", - "58.107918", - "56.244564", - "1.8633537", - "0.013708691", - "432.5763", - "28.14706", "0.0", "0.0", "0.0", "0.0", - "0.013545526", - "0.0017548319", - "21978913.91810345", - "12193445.625", - "49224.20905172414", - "18484266605.125", - "10254687770.625", - "41397559.8125", - "76665|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=91363", - "7.5059247863567986e-06", - "0.151824433380516", - "0.4839519889455784", - "0.8222493490606134", - "1.0", - "0.0001425277791672", "0.0", "0.0", "0.0", "0.0", - "-0.2306351560572112", - "0.0559715332050225", - "0.1554841170042873", - "0.0875123112403276", - "0.1772141581729064", - "4.0", - "2.0", - "5.0", - "6.0", - "6.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", - "1.0", "0.0", "0.0", + "-0.2838186685881903", + "9.581235885620115", + "15.731224060058594", + "-0.1561832565459499", "0.0", "0.0", "0.0", @@ -2654,80 +2319,68 @@ "0.0", "0.0", "0.0", - "-0.2085931442903617", - "5.75669527053833", - "5.880125522613525", - "0.5893604655720529", - "0.5197240236853148", - "0.4019542112482926", - "0.4019542112482926", - "0.3792166947282133", - "0.3338801600238909", - "0.1772141581729064", - "0.1772141581729064", - "0.1302649865696235", - "-0.0126140752904266" + "0.0" ], [ - "37", - "36070.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "M[Oxidation]VRQAQSSKPEIGQLADK", + "15", + "251054.0", + "part_6385.547790527337_7449.805755615227.mzml", + "ADIQKLLTSLPAHHFQIVLEITER", "1.0", - "sp|Q59385|COPA_ECOLI|417|435", - "1997.8804", - "2001.0315", + "sp|P76446|PDEN_ECOLI|367|391", + "2782.9941", + "2771.533", "1.0", - "4.0", - "18.0", + "3.0", + "24.0", "0.0", - "3.166185", - "6.0", + "7.321646", + "4.0", "0.0", "0.999", "5.0", - "0.0", - "4.0", - "0.9039659", - "0.19700791", - "0.60823625", - "0.059919056", - "1073.9093", - "24.592775", + "2.0", + "2.0", + "3.4354742", + "0.22954912", + "0.6831453", + "0.067024454", + "4126.789", + "24.120636", "0.0", "0.0", "0.0", - "3.166185", - "6.0", + "7.321646", + "4.0", "0.0", "0.999", "5.0", - "0.0", - "4.0", - "0.9039659", - "44841.105", - "-2.497453", - "0.19700791", - "0.60823625", - "45.6758", - "53.820297", - "8.144497", - "0.059919056", - "1073.9093", - "24.592775", + "2.0", + "2.0", + "3.4354742", + "36961.43", + "-2.3926244", + "0.22954912", + "0.6831453", + "113.63396", + "122.744255", + "9.110298", + "0.067024454", + "4126.789", + "24.120636", "0.0", "0.0", "0.0", "0.0", - "0.19700791", - "0.60823625", + "0.22954912", + "0.6831453", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "36070|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=71777", + "251054|part_6385.547790527337_7449.805755615227.mzml|controllerType=0 controllerNumber=1 scan=178864", "0.0", "0.0", "0.0", @@ -2738,16 +2391,16 @@ "0.0", "0.0", "0.0", - "0.211554865685865", - "0.211554865685865", - "0.211554865685865", - "0.211554865685865", - "0.211554865685865", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -2768,10 +2421,10 @@ "0.0", "0.0", "0.0", - "1.0", - "6.811820030212402", - "13.09833526611328", - "0.211554865685865", + "-0.4094288383646628", + "15.66102409362793", + "28.41988754272461", + "0.20728950638246", "0.0", "0.0", "0.0", @@ -2783,65 +2436,179 @@ "0.0" ], [ - "41", - "247202.0", - "part_5918.431320190428_6763.921508789061.mzml", - "APELM[Oxidation]IDGEM[Oxidation]HGDAALVEAIR", + "16", + "93693.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "SAGGAFANINRPVSGPTHEK", "1.0", - "sp|P76558|MAO2_ECOLI|658|679", - "2286.0115", - "2269.0718", + "sp|Q46845|YGHU_ECOLI|16|36", + "2014.645", + "2009.0078", "1.0", - "4.0", - "21.0", + "3.0", + "20.0", + "0.0", + "4.664632", + "5.0", "0.0", - "3.1873362", - "7.0", - "26.797764", "0.999", - "7.0", - "3.0", + "18.0", + "6.0", + "5.0", + "22.965616", + "0.31361607", + "0.03589086", + "0.061405614", + "3676.0364", + "55.81527", + "1947785.375", + "2648281.5", + "161824.3125", + "0.8943784", + "1.0", + "0.0", + "0.999", + "5.0", "2.0", - "5.062065", - "0.3535259", - "0.48234004", - "0.027214643", - "6998.712", - "27.47355", + "0.0", + "0.6617282", + "72343.336", + "-14.998201", + "0.0064655175", + "0.03589086", + "54.28342", + "62.62998", + "1.5108147", + "0.011115062", + "2303.883", + "18.438213", + "0.0", + "0.0", + "0.0", + "0.0", + "0.10576877", + "0.03589086", + "788413.8564453125", + "928057.2467447916", + "6742.6796875", + "18921932.5546875", + "22273373.921875", + "161824.3125", + "93693|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=85340", + "5.748650394038419e-06", + "0.0159293182134143", + "0.3469285736853298", + "0.7072246584894327", + "0.9970829697535114", + "-0.6835654746893005", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6271450796400465", + "0.3231787102394361", + "0.2319865353070588", + "0.5042616472289165", + "0.2755900644740843", + "11.0", + "8.0", + "9.0", + "11.0", + "6.0", + "0.9970829697535114", + "0.9970829697535112", + "0.9963006993937806", + "0.9963006993937804", + "0.995620372231419", + "0.9956203722314184", + "0.9954456626239964", + "0.9954456626239964", + "0.9954332626269023", + "0.995433262626902", + "0.0", "0.0", "0.0", "0.0", - "3.0151665", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0503769205452887", + "7.935176849365234", + "8.037552833557129", + "0.6271450796400465", + "0.5734918169524175", + "0.5131931736243014", + "0.5002945266133941", + "0.4350314775054156", + "0.4338146823501339", + "0.3553755947216243", + "0.3531348284641697", + "0.2935487777058922", + "0.2909818257572479" + ], + [ + "17", + "157816.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LWSAQASSEINLGK", "1.0", - "3.364596", + "sp|P0AC86|PHSG_ECOLI|232|246", + "1511.173", + "1502.7731", + "1.0", + "2.0", + "14.0", + "0.0", + "6.33891", + "2.0", + "24.328756", "0.999", "5.0", + "1.0", + "3.0", + "1.2167597", + "0.15988843", + "0.5923994", + "0.06442774", + "4909.852", + "24.328756", + "0.0", + "0.0", + "0.0", + "6.33891", "2.0", - "2.0", - "2.419442", - "25004.621", - "-4.3209386", - "0.10745077", - "0.48234004", - "102.09837", - "104.51759", - "2.41922", - "0.017798198", - "6998.712", - "26.797764", + "24.328756", + "0.999", + "5.0", + "1.0", + "3.0", + "1.2167597", + "50361.445", + "-2.4316764", + "0.15988843", + "0.5923994", + "74.924576", + "83.681915", + "8.7573395", + "0.06442774", + "4909.852", + "24.328756", "0.0", "0.0", "0.0", "0.0", - "0.23048833", - "0.48234004", + "0.15988843", + "0.5923994", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "247202|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=160687", + "157816|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=117866", "0.0", "0.0", "0.0", @@ -2852,16 +2619,16 @@ "0.0", "0.0", "0.0", - "0.0018967725578441", - "0.0018967725578441", - "0.0018967725578441", - "0.0018967725578441", - "0.0018967725578441", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", "0.0", "0.0", "0.0", @@ -2882,10 +2649,10 @@ "0.0", "0.0", "0.0", - "-0.6197439978916859", - "9.227724075317385", - "16.529157638549805", - "0.0018967725578441", + "0.006827678351725", + "5.298679351806641", + "9.366759300231934", + "-0.0311867352424763", "0.0", "0.0", "0.0", @@ -2897,65 +2664,92 @@ "0.0" ], [ - "42", - "258326.0", - "part_6763.921508789061_7609.4116973876935.mzml", - "MLPDDINLWYVRNKDGGM[Oxidation]VPFSAFATSR", + "18", + "48368.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "LASTWEGIR", "1.0", - "sp|P24177|ACRD_ECOLI|778|806", - "3230.4407", - "3215.5527", + "sp|P0A867|TALA_ECOLI|131|140", + "1038.9584", + "1031.54", "1.0", - "4.0", - "28.0", + "2.0", + "9.0", "0.0", - "2.7233381", - "6.0", - "25.86164", + "2.4121234", + "4.0", + "0.31020713", "0.999", - "5.0", + "7.0", "2.0", + "5.0", + "7.1508794", + "0.1574908", + "0.35076302", + "0.13178357", + "7380.7217", + "30.09131", + "750904.1875", + "380320.625", + "1267502.625", + "0.68476397", "1.0", - "1.3922762", - "0.3216992", - "0.9091348", - "0.007920482", - "4308.6455", - "25.86164", - "0.0", "0.0", - "0.0", - "2.7233381", - "6.0", - "25.86164", "0.999", - "5.0", - "2.0", + "6.0", + "1.0", + "1.0", + "1.8144103", + "36189.33", + "-3.92095", + "0.014932929", + "0.0823586", + "54.660133", + "72.572815", + "11.799568", + "0.08680941", + "1541.2891", + "26.392544", + "0.0", + "0.0", + "0.0", + "0.0", + "0.07565303", + "0.18972036", + "288586.04375", + "199541.703125", + "404493.696875", + "1442930.21875", + "997708.515625", + "2022468.484375", + "48368|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=85933", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "-1.0", "1.0", - "1.3922762", - "88580.55", - "-2.3249042", - "0.3216992", - "0.9091348", - "119.84211", - "118.76552", - "1.0765915", - "0.007920482", - "4308.6455", - "25.86164", - "0.0", - "0.0", "0.0", "0.0", - "0.3216992", - "0.9091348", "0.0", + "0.0610552466484414", + "0.0706098204779472", + "0.0801643943074529", + "0.0897189681369587", + "0.0992735419664644", + "10.0", + "10.0", + "10.0", + "10.0", + "9.0", + "0.0004504807954812", + "0.0004504807954812", "0.0", "0.0", "0.0", "0.0", "0.0", - "258326|part_6763.921508789061_7609.4116973876935.mzml|controllerType=0 controllerNumber=1 scan=188642", "0.0", "0.0", "0.0", @@ -2966,19 +2760,14 @@ "0.0", "0.0", "0.0", - "0.2794498321576921", - "0.2794498321576921", - "0.2794498321576921", - "0.2794498321576921", - "0.2794498321576921", - "8.0", - "8.0", - "8.0", - "8.0", - "8.0", "0.0", "0.0", "0.0", + "-0.1068700382987017", + "3.8287253379821777", + "3.9618453979492183", + "0.0992735419664644", + "0.0610552466484414", "0.0", "0.0", "0.0", @@ -2986,120 +2775,90 @@ "0.0", "0.0", "0.0", + "0.0" + ], + [ + "19", + "229909.0", + "part_5321.289825439448_6385.547790527337.mzml", + "ADGAVSGRLAGAIIEIK", + "1.0", + "rev_sp|P0A9S1|FUCO_ECOLI|219|236", + "1647.235", + "1639.9257", + "-1.0", + "2.0", + "17.0", "0.0", + "2.5511117", + "3.0", "0.0", + "0.999", + "5.0", + "4.0", "0.0", + "1.9669946", + "0.15507343", + "0.59992456", + "0.045022666", + "4447.1973", + "17.38909", "0.0", "0.0", "0.0", + "2.5511117", + "3.0", "0.0", + "0.999", + "5.0", + "4.0", "0.0", + "1.9669946", + "16872.21", + "-2.512194", + "0.15507343", + "0.59992456", + "101.002144", + "94.88244", + "6.119705", + "0.045022666", + "4447.1973", + "17.38909", "0.0", "0.0", - "-0.2804864228984247", - "5.947952747344971", - "9.009005546569824", - "0.2794498321576921", "0.0", "0.0", + "0.15507343", + "0.59992456", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "0.0" - ], - [ - "44", - "8414.0", - "part_1690.9803771972647_2536.470565795897.mzml", - "LEGNNPAGSVK", - "1.0", - "sp|P16703|CYSM_ECOLI|30|41", - "1078.9767", - "1084.5513", - "1.0", - "2.0", - "11.0", + "229909|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=158959", "0.0", - "4.231613", - "2.0", "0.0", - "0.999", - "11.0", - "2.0", - "6.0", - "16.425404", - "0.17129043", - "0.0056187995", - "0.0020003133", - "6083.57", - "38.27077", - "952530.125", - "576927.3125", "0.0", - "1.6786478", - "1.0", "0.0", - "0.999", - "5.0", - "1.0", - "1.0", - "3.6718228", - "38157.977", - "-8.162518", - "0.0006031363", - "0.0056187995", - "37.61834", - "37.890232", - "0.019382477", - "0.00014259687", - "1313.6018", - "24.26086", "0.0", - "327346.40625", - "229583.78125", "0.0", - "0.046230625", - "0.0056187995", - "613713.9921875", - "386942.412109375", "0.0", - "39277695.5", - "24764314.375", "0.0", - "8414|part_1690.9803771972647_2536.470565795897.mzml|controllerType=0 controllerNumber=1 scan=59082", - "0.8828839980797444", - "0.9491434626709384", - "0.9727203634151814", - "0.984344375331356", - "0.9998835247894764", - "0.0124527708923489", "0.0", "0.0", + "0.4242019343471919", + "0.4242019343471919", + "0.4242019343471919", + "0.4242019343471919", + "0.4242019343471919", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", "0.0", "0.0", - "-0.1526734378055944", - "-0.1598285824376242", - "-0.1491589092063679", - "-0.1602080990110682", - "-0.1509044310391719", - "5.0", - "4.0", - "5.0", - "4.0", - "5.0", - "0.9998835247894764", - "0.9998835247894764", - "0.9983597502502862", - "0.9983597502502862", - "0.9980185455836932", - "0.998018545583693", - "0.9973318557003829", - "0.9973318557003829", - "0.9934868428426288", - "0.9934868428426288", "0.0", "0.0", "0.0", @@ -3110,103 +2869,110 @@ "0.0", "0.0", "0.0", - "0.9907490940319188", - "5.127541542053223", - "5.603973865509033", - "-0.1479475552324641", - "-0.1503702631802716", - "-0.1509044310391719", - "-0.1526734378055944", - "-0.1587564057948903", - "-0.1589638901910638", - "-0.1624226591773054", - "-0.164563178659602", "0.0", - "0.0" - ], - [ - "45", - "151354.0", - "part_4227.450942993162_5072.941131591795.mzml", - "STTKTASVTPSSAVPKSSWPPVGQR", - "1.0", - "sp|Q46798|YGER_ECOLI|99|124", - "2558.135", - "2555.334", - "1.0", - "4.0", - "25.0", "0.0", - "6.3604417", - "6.0", "0.0", - "0.999", - "5.0", - "1.0", - "1.0", - "0.71477574", - "0.39831564", - "0.8270691", - "0.1467908", - "1095.5481", - "26.495703", "0.0", "0.0", "0.0", - "6.3604417", - "6.0", "0.0", - "0.999", - "5.0", - "1.0", - "1.0", - "0.71477574", - "380742.8", - "-2.4112573", - "0.39831564", - "0.8270691", - "84.47889", - "64.52635", - "19.952538", - "0.1467908", - "1095.5481", - "26.495703", "0.0", + "0.8740874615149041", + "6.888163566589356", + "12.919393539428713", + "0.4242019343471919", "0.0", "0.0", "0.0", - "0.39831564", - "0.8270691", "0.0", "0.0", "0.0", "0.0", "0.0", + "0.0" + ], + [ + "20", + "7816.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "KEAKDHGEGGNLVGSALQGR", + "1.0", + "sp|P0A7E3|PYRE_ECOLI|99|119", + "2013.8877", + "2022.0243", + "1.0", + "4.0", + "20.0", "0.0", - "151354|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=132923", + "3.3530765", + "3.0", "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "15.399476", + "0.3410791", + "0.5613428", + "0.10750229", + "4379.1006", + "32.22772", "0.0", + "190464.484375", + "6557002.0", + "1.540391", + "1.0", "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "4.1314244", + "101108.67", + "-3.971963", + "0.11093484", + "0.4459703", + "36.110878", + "50.723125", + "5.240814", + "0.038556665", + "3390.5308", + "26.58992", "0.0", "0.0", "0.0", "0.0", + "0.2457615", + "0.53826827", "0.0", + "78696.0359375", + "2165642.9765625", "0.0", + "786960.359375", + "21656429.765625", + "7816|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=56706", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "-1.0", "0.0", - "0.0995670406555136", - "0.0995670406555136", - "0.0995670406555136", - "0.0995670406555136", - "0.0995670406555136", - "5.0", - "5.0", - "5.0", - "5.0", - "5.0", "0.0", "0.0", "0.0", + "0.0532104900695284", + "0.0550105593831948", + "0.0568106286968612", + "0.0586106980105276", + "0.060410767324194", + "9.0", + "9.0", + "9.0", + "9.0", + "10.0", + "0.9778831608493486", + "0.9778831608493486", "0.0", "0.0", "0.0", @@ -3224,11 +2990,12 @@ "0.0", "0.0", "0.0", - "-0.2195582641164006", - "5.878575325012207", - "10.16303253173828", - "0.0995670406555136", "0.0", + "-0.1366638502674765", + "3.63826060295105", + "4.2001824378967285", + "0.060410767324194", + "0.0532104900695284", "0.0", "0.0", "0.0", @@ -3239,65 +3006,65 @@ "0.0" ], [ - "48", - "277424.0", - "part_7609.4116973876935_8454.901885986326.mzml", - "VPDELPAVNFLREENVFVMTTSR", - "1.0", - "sp|P07623|METAS_ECOLI|4|27", - "2674.945", - "2662.3423", - "1.0", - "3.0", - "23.0", - "0.0", - "5.8160496", + "21", + "33060.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "RGAVNDPTYADDHRLK", + "1.0", + "rev_sp|Q46861|YGIQ_ECOLI|119|135", + "1821.8004", + "1826.9023", + "-1.0", "4.0", - "0.15045828", + "16.0", + "0.0", + "1.7782177", + "7.0", + "0.0", "0.999", "5.0", - "1.0", - "2.0", - "0.7818067", - "0.18636188", - "0.56308734", - "0.032283414", - "4347.382", - "24.65246", "0.0", + "3.0", + "5.625123", + "0.10830711", + "0.4221106", + "0.06737198", + "2245.9773", + "25.632349", "0.0", "0.0", - "5.8160496", - "4.0", - "0.15045828", + "0.0", + "1.7782177", + "7.0", + "0.0", "0.999", "5.0", - "1.0", - "2.0", - "0.7818067", - "33041.285", - "-2.322024", - "0.18636188", - "0.56308734", - "131.36153", - "126.973404", - "4.3881226", - "0.032283414", - "4347.382", - "24.65246", + "0.0", + "3.0", + "5.625123", + "137818.61", + "-2.441457", + "0.10830711", + "0.4221106", + "53.102108", + "43.944572", + "9.157536", + "0.06737198", + "2245.9773", + "25.632349", "0.0", "0.0", "0.0", "0.0", - "0.18636188", - "0.56308734", + "0.10830711", + "0.4221106", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "277424|part_7609.4116973876935_8454.901885986326.mzml|controllerType=0 controllerNumber=1 scan=206784", + "33060|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=83477", "0.0", "0.0", "0.0", @@ -3308,11 +3075,11 @@ "0.0", "0.0", "0.0", - "0.3502354990154851", - "0.3502354990154851", - "0.3502354990154851", - "0.3502354990154851", - "0.3502354990154851", + "-0.050767455174581", + "-0.050767455174581", + "-0.050767455174581", + "-0.050767455174581", + "-0.050767455174581", "6.0", "6.0", "6.0", @@ -3338,10 +3105,10 @@ "0.0", "0.0", "0.0", - "0.6091796938295075", - "10.81940746307373", - "20.68083953857422", - "0.3502354990154851", + "0.6856737652377453", + "4.447271347045898", + "7.872802734375", + "-0.050767455174581", "0.0", "0.0", "0.0", @@ -3353,91 +3120,90 @@ "0.0" ], [ - "49", - "41084.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "ISQELITNVHKSGPR", - "1.0", - "sp|P75990|BLUF_ECOLI|326|341", - "1677.7349", - "1677.9161", - "1.0", + "22", + "170809.0", + "part_4257.031860351558_5321.289825439448.mzml", + "DEAIAKQLDHVVSVMDRK", + "1.0", + "rev_sp|P38054|CUSA_ECOLI|829|847", + "2062.6667", + "2053.0627", + "-1.0", + "3.0", + "18.0", + "0.0", + "7.3662186", "4.0", - "15.0", "0.0", - "3.474174", - "3.0", - "0.8796374", "0.999", - "6.0", - "2.0", - "3.0", - "8.549711", - "0.3368799", - "0.68144673", - "0.05770469", - "9091.129", - "31.130924", + "5.0", + "1.0", + "1.0", + "1.4175546", + "0.3046726", + "0.76096547", + "0.04365917", + "4180.4263", + "25.198938", "0.0", "0.0", "0.0", - "2.0434248", - "2.0", + "7.3662186", + "4.0", "0.0", "0.999", "5.0", "1.0", - "2.0", - "2.0837388", - "36790.91", - "-3.226686", - "0.2521571", - "0.68144673", - "52.37151", - "60.21502", - "4.883278", - "0.03592627", - "489.81845", - "24.968815", + "1.0", + "1.4175546", + "34043.473", + "-2.4389591", + "0.3046726", + "0.76096547", + "78.85283", + "84.7872", + "5.934372", + "0.04365917", + "4180.4263", + "25.198938", "0.0", "0.0", "0.0", "0.0", - "0.2899696", - "0.68144673", + "0.3046726", + "0.76096547", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "41084|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=82325", - "0.0001248071187743", - "0.0018686750525601", - "0.0071002788539174", - "0.1840905247390968", - "0.2430872733674899", - "0.0058269152884428", + "170809|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124055", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0945283914168616", + "0.0945283914168616", + "0.0945283914168616", + "0.0945283914168616", + "0.0945283914168616", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", "0.0", "0.0", "0.0", "0.0", - "0.0721891789250002", - "0.3141063101385611", - "0.5560234413521221", - "0.27187649634689", - "-0.012270448658342", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", - "0.2430872733674899", - "0.2430872733674899", - "0.0071002788539174", - "0.0071002788539174", - "0.0001248071187743", - "0.0001248071187743", "0.0", "0.0", "0.0", @@ -3452,12 +3218,13 @@ "0.0", "0.0", "0.0", - "-0.722380619679585", - "4.875051975250244", - "6.021340847015381", - "0.5560234413521221", - "0.0721891789250002", - "-0.012270448658342", + "0.0", + "0.7820781855082477", + "6.573702335357666", + "10.215269088745115", + "0.0945283914168616", + "0.0", + "0.0", "0.0", "0.0", "0.0", @@ -3467,66 +3234,65 @@ "0.0" ], [ - "50", - "149029.0", - "part_4227.450942993162_5072.941131591795.mzml", - "KTHNQGVFDVYSPDMLR", + "23", + "177785.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TSIAWTRIFPK", "1.0", - "sp|P42632|TDCE_ECOLI|146|163", - "2014.645", - "2005.968", + "sp|Q46829|BGLA_ECOLI|89|100", + "1318.3284", + "1318.7397", "1.0", "3.0", - "17.0", + "11.0", "0.0", - "5.697093", - "3.0", + "0.27163425", + "2.0", "0.0", "0.999", "5.0", - "2.0", "1.0", - "3.847526", - "0.34838012", - "0.79376054", - "0.07541912", - "4814.16", - "24.975563", - "298979.59375", - "374915.46875", + "2.0", + "14.164303", + "0.24549083", + "0.7041309", + "0.053973682", + "311.9957", + "29.051332", "0.0", - "5.697093", - "3.0", + "0.0", + "208869.171875", + "0.27163425", + "2.0", "0.0", "0.999", "5.0", - "2.0", "1.0", - "3.847526", - "60007.15", - "-2.4429286", - "0.34838012", - "0.79376054", - "79.53122", - "89.78256", - "10.251343", - "0.07541912", - "4814.16", - "24.975563", + "2.0", + "14.164303", + "1266842.6", + "-2.574599", + "0.24549083", + "0.7041309", + "79.02608", + "86.36245", + "7.3363724", + "0.053973682", + "311.9957", + "29.051332", "0.0", - "298979.59375", - "374915.46875", "0.0", - "0.34838012", - "0.79376054", - "298979.59375", - "374915.46875", "0.0", - "298979.59375", - "374915.46875", + "208869.171875", + "0.24549083", + "0.7041309", "0.0", - "149029|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=125124", "0.0", + "208869.171875", + "0.0", + "0.0", + "208869.171875", + "177785|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124329", "0.0", "0.0", "0.0", @@ -3536,16 +3302,17 @@ "0.0", "0.0", "0.0", - "0.2888723725562043", - "0.2888723725562043", - "0.2888723725562043", - "0.2888723725562043", - "0.2888723725562043", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "0.0", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -3566,10 +3333,10 @@ "0.0", "0.0", "0.0", - "0.8459397396232807", - "6.644550800323486", - "11.767738342285156", - "0.2888723725562043", + "0.8676853712632717", + "3.0883049964904785", + "5.445067882537842", + "0.6584260087567085", "0.0", "0.0", "0.0", @@ -3581,65 +3348,65 @@ "0.0" ], [ - "51", - "237908.0", - "part_5918.431320190428_6763.921508789061.mzml", - "LLAVLLNNAGKVLTQR", + "24", + "122624.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AEYVVILAGDHIYKQDYSR", "1.0", - "sp|P21866|KDPE_ECOLI|158|174", - "1726.5142", - "1722.0515", + "sp|P0A6V1|GLGC_ECOLI|132|151", + "2230.7432", + "2239.1274", "1.0", "3.0", - "16.0", + "19.0", "0.0", - "3.7002864", - "5.0", + "2.1238773", + "4.0", "0.0", "0.999", "5.0", - "2.0", + "3.0", "1.0", - "3.4197457", - "0.17053819", - "0.6205372", - "0.042647548", - "3169.0896", - "24.948374", + "1.0803207", + "0.391743", + "0.82884425", + "0.08892223", + "3301.7825", + "25.323765", "0.0", "0.0", "0.0", - "3.7002864", - "5.0", + "2.1238773", + "4.0", "0.0", "0.999", "5.0", - "2.0", + "3.0", "1.0", - "3.4197457", - "46612.79", - "-2.5218203", - "0.17053819", - "0.6205372", - "105.156204", - "99.35934", - "5.7968674", - "0.042647548", - "3169.0896", - "24.948374", + "1.0803207", + "106216.164", + "-2.336702", + "0.391743", + "0.82884425", + "82.060356", + "94.14711", + "12.086754", + "0.08892223", + "3301.7825", + "25.323765", "0.0", "0.0", "0.0", "0.0", - "0.17053819", - "0.6205372", + "0.391743", + "0.82884425", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "237908|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=165507", + "122624|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129111", "0.0", "0.0", "0.0", @@ -3650,16 +3417,16 @@ "0.0", "0.0", "0.0", - "0.227864922251077", - "0.227864922251077", - "0.227864922251077", - "0.227864922251077", - "0.227864922251077", - "6.0", - "6.0", - "6.0", - "6.0", - "6.0", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -3680,10 +3447,10 @@ "0.0", "0.0", "0.0", - "0.4463173673767287", - "7.329229354858398", - "13.267335891723633", - "0.227864922251077", + "-0.2348528444012632", + "5.183135032653809", + "7.693346977233887", + "0.4319024617232978", "0.0", "0.0", "0.0", @@ -3695,89 +3462,179 @@ "0.0" ], [ - "53", - "9621.0", - "part_1690.9803771972647_2536.470565795897.mzml", - "QALEDSVK", + "25", + "231510.0", + "part_5321.289825439448_6385.547790527337.mzml", + "GLLEEDAFIER", "1.0", - "sp|P22106|ASNB_ECOLI|213|221", - "886.8893", - "888.45526", + "sp|P0AES6|GYRB_ECOLI|698|709", + "1287.0712", + "1290.6455", "1.0", "2.0", - "8.0", + "11.0", "0.0", - "3.823148", - "6.0", + "6.270882", + "3.0", + "0.0", + "0.999", + "13.0", + "3.0", + "9.0", + "24.349955", + "0.0052191513", + "0.0010586072", + "0.01035521", + "4200.427", + "44.336926", + "3959757.0", + "2330834.5", + "0.0", + "1.0757456", + "1.0", "0.0", "0.999", "7.0", "2.0", + "4.0", + "4.16987", + "41205.992", + "-9.846194", + "9.100009e-05", + "0.0010586072", + "99.57998", + "98.755066", + "0.824913", + "0.0060688844", + "1994.0054", + "28.731152", + "0.0", + "176697.59375", + "146799.875", + "0.0", + "0.000664132", + "0.0010586072", + "1914080.307692308", + "1186463.2884615385", + "0.0", + "24883044.0", + "15424022.75", + "0.0", + "231510|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=156718", + "0.3356253483606851", + "0.626960440479478", + "0.9091821970581768", + "0.974146074845666", + "0.9958121597238304", + "-0.8937843199448986", + "-0.0833333333333333", + "0.6716871596225247", + "0.0", + "0.0", + "0.9398820980045384", + "0.919266838180414", + "0.8683267847753137", + "0.9529727628887918", + "0.9022067650144044", + "14.0", + "14.0", + "10.0", + "13.0", + "10.0", + "0.9958121597238304", + "0.9958121597238302", + "0.994369132142708", + "0.994369132142708", + "0.9933443743487164", + "0.993344374348716", + "0.9931699253738582", + "0.993169925373858", + "0.9918813192308248", + "0.9918813192308246", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.8999056954441649", + "1.398106813430786", + "1.4080055952072144", + "0.975482313418766", + "0.9639714921811154", + "0.9546100470808137", + "0.9529727628887918", + "0.9504998553140668", + "0.9488389288081138", + "0.9400973641206776", + "0.9398820980045384", + "0.937124756358362", + "0.919266838180414" + ], + [ + "26", + "136051.0", + "part_4257.031860351558_5321.289825439448.mzml", + "QILSMVDDAAARAERLHQGEAGELR", + "1.0", + "sp|P77559|YNFL_ECOLI|71|96", + "2750.2224", + "2735.377", + "1.0", + "4.0", + "25.0", + "0.0", + "7.580179", "3.0", - "2.7989836", - "0.22477491", - "0.14438118", - "0.020855121", - "8340.322", - "31.213415", - "1420261.5", - "48988112.0", "0.0", - "1.6608466", + "0.999", + "5.0", + "1.0", "2.0", + "2.3099697", + "0.3510844", + "0.8092784", + "0.06846159", + "5777.2764", + "25.274868", + "0.0", + "0.0", + "0.0", + "6.8953724", + "3.0", "0.0", "0.999", "5.0", "1.0", "1.0", - "1.8473502", - "464880.5", - "-4.048184", - "0.033523668", - "0.14438118", - "40.2321", - "37.542892", - "2.689209", - "0.019784508", - "1764.141", - "27.216436", + "1.8211807", + "26625.19", + "-2.5669336", + "0.35007116", + "0.7970183", + "75.646645", + "84.952286", + "4.628319", + "0.034050535", + "791.8735", + "24.314678", "0.0", - "574031.875", - "13516808.0", "0.0", - "0.12914929", - "0.14438118", - "997146.6875", - "31252460.0", "0.0", - "3988586.75", - "125009840.0", "0.0", - "9621|part_1690.9803771972647_2536.470565795897.mzml|controllerType=0 controllerNumber=1 scan=63201", - "0.7264227013855734", - "0.7264227013855734", - "0.7264227013855735", - "0.7264227013855736", - "0.7264227013855736", - "1.0", + "0.35057777", + "0.8031484", "0.0", "0.0", "0.0", "0.0", - "0.0241985313928751", - "-0.0054640203015936", - "-0.0351265719960625", - "-0.0647891236905313", - "-0.0944516753850001", - "5.0", - "5.0", - "5.0", - "5.0", - "5.0", - "0.7264227013855736", - "0.7264227013855734", "0.0", "0.0", + "136051|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=119005", "0.0", "0.0", "0.0", @@ -3788,17 +3645,22 @@ "0.0", "0.0", "0.0", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "-0.4701419575689595", - "4.300354957580566", - "5.536318302154541", - "0.0241985313928751", - "-0.0944516753850001", "0.0", "0.0", "0.0", @@ -3806,69 +3668,17 @@ "0.0", "0.0", "0.0", - "0.0" - ], - [ - "55", - "201824.0", - "part_5072.941131591795_5918.431320190428.mzml", - "VAVDIRLINCDLPASDNGSGM[Oxidation]PVSK", - "1.0", - "sp|P37909|YBGD_ECOLI|71|96", - "2574.1423", - "2586.278", - "1.0", - "4.0", - "25.0", - "0.0", - "1.1200798", - "6.0", - "0.0", - "0.999", - "5.0", - "2.0", - "3.0", - "2.2024405", - "0.3564362", - "0.7952824", - "0.01597113", - "5093.2466", - "27.156324", "0.0", - "2097415.0", - "611290.3125", - "1.1200798", - "6.0", "0.0", - "0.999", - "5.0", - "2.0", - "3.0", - "2.2024405", - "370194.78", - "-2.2563915", - "0.3564362", - "0.7952824", - "95.30638", - "97.47726", - "2.1708755", - "0.01597113", - "5093.2466", - "27.156324", "0.0", "0.0", - "2097415.0", - "611290.3125", - "0.3564362", - "0.7952824", "0.0", - "2097415.0", - "611290.3125", "0.0", - "2097415.0", - "611290.3125", - "201824|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=149985", "0.0", + "0.6205423162277438", + "7.5862507820129395", + "13.82431411743164", + "0.6525830769218091", "0.0", "0.0", "0.0", @@ -3877,41 +3687,100 @@ "0.0", "0.0", "0.0", + "0.0" + ], + [ + "27", + "67797.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "TVTGRGHCTPCENCLVHEISERK", + "1.0", + "rev_sp|P0A9J0|RNG_ECOLI|392|415", + "2574.1423", + "2568.1995", + "-1.0", + "4.0", + "23.0", "0.0", - "0.0634125198614447", - "0.0634125198614447", - "0.0634125198614447", - "0.0634125198614447", - "0.0634125198614447", - "3.0", - "3.0", + "6.197583", "3.0", - "3.0", - "3.0", - "0.0", - "0.0", "0.0", + "0.999", + "6.0", + "3.0", + "2.0", + "39.950676", + "0.4251617", + "0.712187", + "0.07220568", + "4318.864", + "34.29346", + "221228.015625", "0.0", "0.0", + "0.30453986", + "2.0", "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "3.048449", + "32610.04", + "-3.2227502", + "0.26669276", + "0.712187", + "58.506916", + "59.17773", + "0.3314972", + "0.0024388244", + "1921.4923", + "24.539667", "0.0", "0.0", "0.0", "0.0", + "0.34637088", + "0.712187", + "46148.5109375", "0.0", "0.0", + "461485.109375", "0.0", "0.0", + "67797|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=91993", + "0.9525075588214736", + "0.9994447340631188", + "0.9999005007199367", + "0.9999886341349264", + "0.99999577299212", + "-0.9965730022621364", "0.0", "0.0", "0.0", "0.0", + "0.4146240809957702", + "0.415101292159571", + "0.4172048600637684", + "0.416242849759606", + "0.4852068174371431", + "7.0", + "8.0", + "6.0", + "7.0", + "6.0", + "0.99999577299212", + "0.9999957729921198", + "0.9999946636138944", + "0.9999946636138942", + "0.9999944670636954", + "0.9999944670636954", + "0.9999916993478272", + "0.9999916993478272", + "0.9999915880001178", + "0.9999915880001176", "0.0", "0.0", - "-1.0", - "7.544371128082275", - "14.202469825744627", - "0.0634125198614447", "0.0", "0.0", "0.0", @@ -3920,98 +3789,80 @@ "0.0", "0.0", "0.0", + "0.2770947590869084", + "5.073875427246094", + "5.416248321533203", + "0.4852068174371431", + "0.4267819763774239", + "0.4172048600637684", + "0.416242849759606", + "0.4158733829341343", + "0.415101292159571", + "0.4146240809957702", + "0.4142235697482113", + "0.4130523329814293", "0.0" ], [ - "56", - "73877.0", - "part_3381.96075439453_4227.450942993162.mzml", - "VFVTVAQEK", + "28", + "157110.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LAGFFVR", "1.0", - "sp|P0ACR7|YFER_ECOLI|9|18", - "1014.9475", - "1019.5652", + "sp|P30130|FIMD_ECOLI|22|29", + "806.8529", + "808.4596", "1.0", "2.0", - "9.0", - "0.0", - "3.3783033", - "5.0", + "7.0", "0.0", - "0.999", - "5.0", - "3.0", + "3.5563796", "1.0", - "3.0534809", - "0.26723117", - "0.7197777", - "0.008103717", - "5528.4", - "26.227896", - "0.0", - "0.0", - "386031.78125", - "3.3783033", - "5.0", "0.0", "0.999", - "5.0", + "6.0", + "2.0", "3.0", - "1.0", - "3.0534809", - "144923.34", - "-2.4154425", - "0.26723117", - "0.7197777", - "64.61452", - "63.51302", - "1.1014977", - "0.008103717", - "5528.4", - "26.227896", - "0.0", - "0.0", - "0.0", - "386031.78125", - "0.26723117", - "0.7197777", - "0.0", - "0.0", - "386031.78125", - "0.0", - "0.0", - "386031.78125", - "73877|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=101616", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", + "4.7249894", + "0.03319206", + "0.1997989", + "0.051892854", + "1989.3235", + "28.054283", "0.0", "0.0", "0.0", + "3.5563796", + "1.0", "0.0", - "0.5924171465586102", - "0.5924171465586102", - "0.5924171465586102", - "0.5924171465586102", - "0.5924171465586102", - "6.0", - "6.0", - "6.0", - "6.0", + "0.999", "6.0", + "2.0", + "3.0", + "4.7249894", + "97333.664", + "-3.4001343", + "0.03319206", + "0.1997989", + "79.557396", + "86.61093", + "7.0535355", + "0.051892854", + "1989.3235", + "28.054283", "0.0", "0.0", "0.0", "0.0", + "0.03319206", + "0.1997989", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "157110|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=125166", "0.0", "0.0", "0.0", @@ -4022,222 +3873,136 @@ "0.0", "0.0", "0.0", - "0.7783459932112795", - "2.6224734783172607", - "4.30215311050415", - "0.5924171465586102", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", - "0.0" - ], - [ - "57", - "76414.0", - "part_3381.96075439453_4227.450942993162.mzml", - "VYDPAEQSDGYR", - "1.0", - "sp|P76243|YEAO_ECOLI|7|19", - "1391.1185", - "1398.6052", - "1.0", - "2.0", - "12.0", "0.0", - "4.780645", - "2.0", "0.0", - "0.999", - "9.0", - "2.0", - "6.0", - "9.0952635", - "0.10734045", - "0.006917386", - "0.013382551", - "5367.338", - "32.76163", - "541423.25", - "434417.6875", "0.0", - "1.6337423", - "1.0", "0.0", - "0.999", - "5.0", "0.0", - "2.0", - "1.6068269", - "25952.219", - "-5.6055455", - "0.0012746972", - "0.006917386", - "57.782486", - "56.30362", - "1.4788666", - "0.0108800195", - "347.82285", - "17.839302", "0.0", - "191920.796875", "0.0", "0.0", - "0.035332732", - "0.006917386", - "375823.5182291667", - "198985.20572916663", "0.0", - "13529646.65625", - "7163467.40625", "0.0", - "76414|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=90852", - "0.0993761088499456", - "0.3619691098278932", - "0.632509048416342", - "0.7796449257998705", - "0.8947646703257363", - "0.0027721129494378", "0.0", "0.0", "0.0", "0.0", - "-0.1626492439048342", - "-0.1914173538347334", - "-0.1586170443737785", - "-0.1468371031493833", - "-0.1691761834791495", - "7.0", - "5.0", - "5.0", - "4.0", - "3.0", - "0.8947646703257363", - "0.8947646703257363", - "0.8585075218389157", - "0.8585075218389157", - "0.8194845067094148", - "0.8194845067094148", - "0.7892546291690848", - "0.7892546291690846", - "0.7508158156922283", - "0.7508158156922281", "0.0", "0.0", "0.0", "0.0", "0.0", + "0.9335644895719798", + "3.2228660583496094", + "5.267693519592285", + "0.1353955789987978", "0.0", "0.0", "0.0", "0.0", "0.0", - "-0.6454669639110536", - "4.768283367156982", - "5.173542499542236", - "-0.1385033506144508", - "-0.1453957279933763", - "-0.1626492439048342", - "-0.1691761834791495", - "-0.1718383607541807", - "-0.2067578957818524", "0.0", "0.0", "0.0", "0.0" ], [ - "61", - "131276.0", - "part_4227.450942993162_5072.941131591795.mzml", - "DGVGGNSSFATM[Oxidation]IDREPTQTSR", + "29", + "210291.0", + "part_5321.289825439448_6385.547790527337.mzml", + "YLVGHSDAMIGTAVCNARCWEQLR", "1.0", - "sp|P75974|COHE_ECOLI|16|38", - "2334.0332", - "2341.0603", + "sp|P06721|METC_ECOLI|210|234", + "2686.9507", + "2692.267", "1.0", - "4.0", - "22.0", + "3.0", + "24.0", "0.0", - "5.9389343", + "7.4291463", "6.0", "0.0", "0.999", "6.0", "3.0", "2.0", - "2.8353896", - "0.4391821", - "0.7689605", - "0.03641937", - "3436.1555", - "29.826149", - "475512.90625", + "1.9411244", + "0.42325065", + "0.80256176", + "0.021655358", + "2481.4277", + "28.443684", "0.0", "0.0", - "3.5091894", - "6.0", + "0.0", + "6.8722963", + "2.0", "0.0", "0.999", "5.0", "3.0", "1.0", - "2.0728595", - "268937.5", - "-2.7589624", - "0.386317", - "0.7689605", - "77.67741", - "82.62771", - "4.4622345", - "0.032828655", - "3006.1855", - "27.282774", - "0.0", + "1.3154922", + "32077.148", + "-2.7992935", + "0.3411748", + "0.80256176", + "103.14213", + "100.63814", + "2.5039902", + "0.018421853", + "1603.3007", + "25.108564", "0.0", "0.0", "0.0", - "0.41274956", - "0.7689605", - "237756.453125", "0.0", - "0.0", - "1426538.71875", - "0.0", - "0.0", - "131276|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=122205", - "0.4842733344540456", - "0.4842733344540456", - "0.4842733344540456", - "0.4842733344540456", - "0.4842733344540456", - "1.0", + "0.37230745", + "0.80256176", "0.0", "0.0", "0.0", "0.0", - "0.1637768614897294", - "0.1271442733722609", - "0.0905116852547924", - "0.0538790971373239", - "0.0172465090198554", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", - "0.4842733344540456", - "0.4842733344540456", "0.0", "0.0", + "210291|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=162334", + "0.3406615165737066", + "0.4108486695150803", + "0.621410128339201", + "0.6362211161767432", + "0.6411581121225906", + "-0.9945253316862755", "0.0", "0.0", "0.0", "0.0", + "0.1742823761642495", + "0.1447235075529693", + "0.1151646389416891", + "0.0768250857119871", + "0.0384855324822851", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.6411581121225906", + "0.6411581121225906", + "0.621410128339201", + "0.621410128339201", + "0.3406615165737068", + "0.3406615165737066", "0.0", "0.0", "0.0", @@ -4251,11 +4016,13 @@ "0.0", "0.0", "0.0", - "12.63564682006836", - "18.03577995300293", - "0.1637768614897294", - "0.0172465090198554", "0.0", + "0.3997198821837781", + "7.379419326782227", + "8.76906681060791", + "0.1742823761642495", + "0.1151646389416891", + "0.0384855324822851", "0.0", "0.0", "0.0", @@ -4265,89 +4032,88 @@ "0.0" ], [ - "63", - "220278.0", - "part_5918.431320190428_6763.921508789061.mzml", - "IDEVFIGSCMTNIGHFR", + "30", + "39943.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "TFIIGELHPDDRPK", "1.0", - "sp|P36683|ACNB_ECOLI|701|718", - "1930.6067", - "1937.913", + "sp|CYB5_HUMAN||76|90", + "1629.7131", + "1636.8573", "1.0", - "3.0", - "17.0", + "4.0", + "14.0", "0.0", - "4.1830287", + "0.5249128", "2.0", "0.0", "0.999", "6.0", - "5.0", "1.0", - "6.3663445", - "0.25458145", - "0.61873686", - "0.037156403", - "4297.137", - "28.585087", + "2.0", + "7.4111595", + "0.31865823", + "0.7145035", + "0.09717473", + "4374.1074", + "30.062466", + "0.0", "0.0", "0.0", - "99051.2578125", - "1.3460498", + "0.3512695", "2.0", "0.0", "0.999", "5.0", - "3.0", - "1.0", - "4.038414", - "43713.227", - "-3.3171551", - "0.16927944", - "0.61873686", - "98.897675", - "103.94816", - "4.904503", - "0.036082424", - "2422.0127", - "25.355358", "0.0", + "2.0", + "6.9581933", + "693236.9", + "-3.2771332", + "0.2689862", + "0.7145035", + "66.597084", + "79.80556", + "12.82032", + "0.09431908", + "4374.1074", + "28.08629", "0.0", "0.0", "0.0", - "0.21193045", - "0.61873686", "0.0", + "0.29382223", + "0.7145035", "0.0", - "49525.62890625", "0.0", "0.0", - "198102.515625", - "220278|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=155646", - "0.0006322106433954", - "0.0006322106433954", - "0.0006322106433954", - "0.0006322106433954", - "0.0006322106433954", - "0.9999999999999996", "0.0", "0.0", "0.0", + "39943|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=104740", + "0.9892535668711286", + "0.9892535668711288", + "0.9892535668711288", + "0.9892535668711288", + "0.9892535668711288", + "-1.0", + "0.0", "0.0", - "-0.1014051201437965", - "-0.0044433091129508", - "0.0925185019178947", - "0.1894803129487404", - "0.286442123979586", - "7.0", - "7.0", - "7.0", - "7.0", - "4.0", - "0.0006322106433954", - "0.0006322106433954", "0.0", "0.0", + "-0.0180595331184826", + "-0.0190714565026843", + "-0.020083379886886", + "-0.0210953032710877", + "-0.0221072266552894", + "6.0", + "6.0", + "6.0", + "6.0", + "5.0", + "0.9892535668711288", + "0.9892535668711286", + "0.0", "0.0", "0.0", "0.0", @@ -4364,11 +4130,12 @@ "0.0", "0.0", "0.0", - "-0.3703443729645553", - "5.989969253540039", - "8.308431625366211", - "0.286442123979586", - "-0.1014051201437965", + "0.0", + "-0.2012545964913474", + "2.995500326156616", + "3.879430294036865", + "-0.0180595331184826", + "-0.0221072266552894", "0.0", "0.0", "0.0", @@ -4379,67 +4146,179 @@ "0.0" ], [ - "66", - "175350.0", - "part_5072.941131591795_5918.431320190428.mzml", - "GPQLPAPNM[Oxidation]LM[Oxidation]MDRVVK", + "31", + "122029.0", + "part_4257.031860351558_5321.289825439448.mzml", + "ISELSEGQIDTLR", "1.0", - "sp|P0A6Q3|FABA_ECOLI|25|42", - "1930.6067", - "1927.968", + "sp|P0A7S9|RS13_ECOLI|44|57", + "1463.1512", + "1459.752", "1.0", - "3.0", - "17.0", + "2.0", + "13.0", + "0.0", + "8.640141", + "6.0", "0.0", - "10.082355", + "0.999", + "21.0", "9.0", + "11.0", + "53.00814", + "0.20615247", + "0.0010413406", + "0.040726855", + "3848.95", + "67.70814", + "29428814.0", + "19875272.0", + "1021189.4375", + "0.50753397", + "1.0", "0.0", "0.999", "5.0", + "2.0", "1.0", - "1.0", - "0.91945565", - "0.31002218", - "0.76465917", - "0.05460082", - "1887.2643", - "25.157068", + "1.2058405", + "28312.188", + "-17.641708", + "0.00010917031", + "0.0010413406", + "79.87546", + "80.45761", + "0.5821533", + "0.0042829015", + "1639.9891", + "24.335352", + "0.0", + "0.0", + "0.0", + "0.0", + "0.03078641", + "0.0010413406", + "4376840.936356708", + "4061964.298018293", + "60606.02896341463", + "179450478.390625", + "166540536.21875", + "2484847.1875", + "122029|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=125667", + "2.745095504216046e-07", + "0.1148613949359562", + "0.5721364925309571", + "0.90409163006167", + "0.9993168168180032", + "-0.6848471857464447", + "-0.1556236715583981", + "0.1539957969530274", + "0.5471747014645454", + "0.0", + "0.955535071481612", + "0.9616484301759546", + "0.9288304483248226", + "0.9069104367940908", + "-0.0326052214400996", + "23.0", + "18.0", + "8.0", + "11.0", + "7.0", + "0.9993168168180032", + "0.9993168168180032", + "0.9992986469740248", + "0.9992986469740248", + "0.9992574121739414", + "0.9992574121739414", + "0.9990233221308584", + "0.9990233221308584", + "0.9989876421597972", + "0.9989876421597972", "0.0", "0.0", "0.0", - "10.082355", - "9.0", "0.0", - "0.999", - "5.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9448358355519474", + "2.1283769607543945", + "2.1294877529144287", + "0.9723533019009984", + "0.9693509330264009", + "0.965775862170542", + "0.9655931703601556", + "0.9638025573573704", + "0.9628049594743118", + "0.9609303877821492", + "0.9593715700830592", + "0.9573289790596394", + "0.9568719152347652" + ], + [ + "32", + "112955.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TLCSKAENARLVVEIDNAK", "1.0", + "sp|K1H5_HUMAN||127|146", + "2062.6667", + "2073.0889", "1.0", - "0.91945565", - "45261.93", - "-2.2202146", - "0.31002218", - "0.76465917", - "86.18114", - "93.60275", - "7.4216156", - "0.05460082", - "1887.2643", - "25.157068", + "3.0", + "19.0", + "0.0", + "10.907735", + "3.0", + "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "9.409461", + "0.22172989", + "0.6774789", + "0.079055354", + "5040.007", + "28.952919", + "0.0", + "0.0", "0.0", + "10.907735", + "3.0", "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "9.409461", + "285745.25", + "-3.1518502", + "0.22172989", + "0.6774789", + "80.50322", + "69.75762", + "10.745598", + "0.079055354", + "5040.007", + "28.952919", "0.0", "0.0", - "0.31002218", - "0.76465917", "0.0", "0.0", + "0.22172989", + "0.6774789", "0.0", "0.0", "0.0", "0.0", - "175350|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=135602", "0.0", "0.0", + "112955|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=126656", "0.0", "0.0", "0.0", @@ -4448,16 +4327,18 @@ "0.0", "0.0", "0.0", - "-0.1076097539304565", - "-0.1076097539304565", - "-0.1076097539304565", - "-0.1076097539304565", - "-0.1076097539304565", - "6.0", - "6.0", - "6.0", - "6.0", - "6.0", + "0.0", + "0.0", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", "0.0", "0.0", "0.0", @@ -4478,10 +4359,10 @@ "0.0", "0.0", "0.0", - "-0.6351326070225767", - "9.226556777954102", - "15.573420524597168", - "-0.1076097539304565", + "-0.3362984532059553", + "5.537032127380371", + "8.524388313293457", + "0.143526153205937", "0.0", "0.0", "0.0", @@ -4493,85 +4374,199 @@ "0.0" ], [ - "67", - "121597.0", - "part_4227.450942993162_5072.941131591795.mzml", - "GDLIAAINKGCHTVAALK", + "33", + "9457.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "LPEAVER", "1.0", - "sp|P08201|NIRB_ECOLI|432|450", - "1805.7932", - "1793.9822", + "sp|P14900|MURD_ECOLI|46|53", + "814.85657", + "812.4392", "1.0", - "4.0", - "18.0", - "0.0", - "4.129426", - "3.0", - "0.0", - "0.999", - "5.0", - "3.0", "2.0", - "3.0602245", - "0.3849478", - "0.817844", - "0.0603542", - "7117.563", - "24.56342", + "7.0", "0.0", + "1.3785683", + "4.0", "0.0", + "0.999", + "6.0", + "1.0", + "4.0", + "10.772103", + "0.15608811", + "0.13701165", + "0.0112278825", + "8143.9775", + "28.855324", + "1057578.75", + "444102.65625", "0.0", - "4.129426", + "0.72140837", "3.0", "0.0", "0.999", "5.0", - "3.0", + "1.0", "2.0", - "3.0602245", - "44680.07", - "-2.5834649", - "0.3849478", - "0.817844", - "78.88133", - "87.08498", - "8.203644", - "0.0603542", - "7117.563", - "24.56342", - "0.0", - "0.0", - "0.0", - "0.0", - "0.3849478", - "0.817844", - "0.0", + "5.5927606", + "215688.17", + "-3.2070084", + "0.028362548", + "0.13701165", + "44.84406", + "43.463226", + "1.3808327", + "0.010158785", + "1738.9349", + "26.207117", + "0.0", + "882760.25", + "270820.40625", + "0.0", + "0.11183809", + "0.13701165", + "944957.234375", + "380932.125", + "0.0", + "3779828.9375", + "1523728.5", + "0.0", + "9457|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=70465", + "0.7345894082876098", + "0.7439185688276747", + "0.7829892185981385", + "0.790842175458083", + "0.981037306729222", + "-0.9723938646622632", + "0.9114257496040864", + "0.0", + "0.0", + "0.0", + "0.6907098261707837", + "0.6524065858363536", + "0.5009194669100215", + "0.4039785612223142", + "0.5293139606037586", + "8.0", + "8.0", + "8.0", + "6.0", + "8.0", + "0.981037306729222", + "0.9810373067292218", + "0.790842175458083", + "0.790842175458083", + "0.7853204050151591", + "0.7853204050151591", + "0.780658032181118", + "0.780658032181118", + "0.7439185688276747", + "0.7439185688276745", "0.0", "0.0", "0.0", "0.0", "0.0", - "121597|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=124101", "0.0", "0.0", "0.0", "0.0", "0.0", + "0.4455744221600669", + "2.5770065784454346", + "2.5935096740722656", + "0.6907098261707837", + "0.6396388390582102", + "0.5293139606037586", + "0.3622000947618328", "0.0", "0.0", "0.0", "0.0", "0.0", - "-0.1138657399368655", - "-0.1138657399368655", - "-0.1138657399368655", - "-0.1138657399368655", - "-0.1138657399368655", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "0.0" + ], + [ + "34", + "198802.0", + "part_5321.289825439448_6385.547790527337.mzml", + "QVPALGVKNNARDFVTYYA", + "1.0", + "rev_sp|PEPA_PIG||367|386", + "2134.6997", + "2125.0957", + "-1.0", + "3.0", + "19.0", + "0.0", + "8.861856", + "3.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "3.181421", + "0.36912403", + "0.8219836", + "0.017669719", + "4509.1387", + "25.149591", + "0.0", + "0.0", + "219400.75", + "8.861856", + "3.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "3.181421", + "77352.64", + "-2.4380496", + "0.36912403", + "0.8219836", + "103.51638", + "105.91814", + "2.4017563", + "0.017669719", + "4509.1387", + "25.149591", + "0.0", + "0.0", + "0.0", + "219400.75", + "0.36912403", + "0.8219836", + "0.0", + "0.0", + "219400.75", + "0.0", + "0.0", + "219400.75", + "198802|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=162923", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0748757682132519", + "0.0748757682132519", + "0.0748757682132519", + "0.0748757682132519", + "0.0748757682132519", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", "0.0", "0.0", "0.0", @@ -4592,10 +4587,10 @@ "0.0", "0.0", "0.0", - "-0.700880855642985", - "6.976280689239502", - "11.819072723388672", - "-0.1138657399368655", + "0.0282714986525308", + "4.235138416290283", + "6.977939605712891", + "0.0748757682132519", "0.0", "0.0", "0.0", @@ -4607,65 +4602,65 @@ "0.0" ], [ - "68", - "165079.0", - "part_5072.941131591795_5918.431320190428.mzml", - "LNLLADDSLADRVDEIR", + "35", + "248083.0", + "part_5321.289825439448_6385.547790527337.mzml", + "SVVIAAPADVSPLLR", "1.0", - "sp|P22523|MUKB_ECOLI|882|899", - "1918.6013", - "1927.001", + "sp|P52612|FLII_ECOLI|231|246", + "1503.1694", + "1506.877", "1.0", - "3.0", - "17.0", + "2.0", + "15.0", "0.0", - "7.8045144", + "6.9037623", "4.0", "0.0", "0.999", "5.0", + "3.0", "1.0", - "1.0", - "1.9787376", - "0.36602026", - "0.80030376", - "0.054489963", - "3845.6287", - "26.4006", + "1.6532007", + "0.18237886", + "0.6464154", + "0.03405525", + "1796.164", + "23.495623", "0.0", "0.0", "0.0", - "7.8045144", + "6.9037623", "4.0", "0.0", "0.999", "5.0", + "3.0", "1.0", - "1.0", - "1.9787376", - "217261.03", - "-2.342185", - "0.36602026", - "0.80030376", - "89.91712", - "97.32367", - "7.4065475", - "0.054489963", - "3845.6287", - "26.4006", + "1.6532007", + "10885.389", + "-2.4317892", + "0.18237886", + "0.6464154", + "99.73361", + "104.36257", + "4.6289597", + "0.03405525", + "1796.164", + "23.495623", "0.0", "0.0", "0.0", "0.0", - "0.36602026", - "0.80030376", + "0.18237886", + "0.6464154", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "165079|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=141492", + "248083|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=156961", "0.0", "0.0", "0.0", @@ -4676,16 +4671,16 @@ "0.0", "0.0", "0.0", - "-0.0909630957893744", - "-0.0909630957893744", - "-0.0909630957893744", - "-0.0909630957893744", - "-0.0909630957893744", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "9.0", + "9.0", + "9.0", + "9.0", + "9.0", "0.0", "0.0", "0.0", @@ -4706,10 +4701,10 @@ "0.0", "0.0", "0.0", - "1.0", - "5.300573825836182", - "8.813002586364746", - "-0.0909630957893744", + "-0.0882945982550413", + "5.952083587646484", + "8.60254955291748", + "0.0877017469966689", "0.0", "0.0", "0.0", @@ -4721,87 +4716,87 @@ "0.0" ], [ - "69", - "260219.0", - "part_6763.921508789061_7609.4116973876935.mzml", - "TDGVNLGGVRASNLTAVIPDYSK", + "36", + "32480.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "EGVVAVDDR", "1.0", - "sp|P46474|YHDP_ECOLI|596|619", - "2338.7925", - "2346.218", + "sp|P0AEC8|DCUS_ECOLI|232|241", + "958.922", + "958.4719", "1.0", - "3.0", - "23.0", + "2.0", + "9.0", "0.0", - "2.3678353", + "4.8657017", "7.0", - "0.0", + "0.8148736", "0.999", - "8.0", - "2.0", - "2.0", - "1.5158402", - "0.24960792", - "0.13326839", - "0.10256736", - "3599.007", - "33.382004", - "0.0", - "0.0", + "6.0", + "4.0", + "1.0", + "3.7271273", + "0.2004817", + "0.6087048", + "0.14892611", + "7743.096", + "28.456139", + "1630126.0", "0.0", - "2.3196735", - "3.0", + "59494.58984375", + "2.2239091", + "2.0", "0.0", "0.999", - "6.0", + "5.0", "2.0", "1.0", - "1.3942587", - "464044.62", - "-3.849548", - "0.022689076", - "0.13326839", - "122.218864", - "108.37447", - "13.844391", - "0.10185317", - "2741.0022", - "31.013851", - "0.0", + "2.0525029", + "38485.793", + "-3.340232", + "0.18942055", + "0.59275585", + "49.510006", + "50.096455", + "0.48937607", + "0.0036003392", + "469.46353", + "24.7977", "0.0", "0.0", "0.0", - "0.1361485", - "0.13326839", "0.0", + "0.19569486", + "0.5980722", + "543375.3333333334", "0.0", + "19831.529947916668", + "1630126.0", "0.0", - "0.0", - "0.0", - "0.0", - "260219|part_6763.921508789061_7609.4116973876935.mzml|controllerType=0 controllerNumber=1 scan=192387", - "0.7842985773389718", - "0.7842985773389718", - "0.7842985773389718", - "0.7842985773389718", - "0.7842985773389718", - "0.9999999999999996", + "59494.58984375", + "32480|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=77818", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "-1.0", "0.0", "0.0", "0.0", "0.0", - "-0.0437349041310684", - "-0.0462969767447981", - "-0.0488590493585278", - "-0.0514211219722575", - "-0.0539831945859872", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", - "0.7842985773389718", - "0.7842985773389718", + "-0.0228824181143598", + "-0.0182164597916278", + "-0.0135505014688958", + "-0.0088845431461638", + "-0.0042185848234318", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.9720810434559228", + "0.9720810434559228", "0.0", "0.0", "0.0", @@ -4820,11 +4815,11 @@ "0.0", "0.0", "0.0", - "0.0041407705197048", - "5.711597919464111", - "7.83363151550293", - "-0.0437349041310684", - "-0.0539831945859872", + "0.887796968939024", + "4.4763593673706055", + "5.899420261383057", + "-0.0042185848234318", + "-0.0228824181143598", "0.0", "0.0", "0.0", @@ -4835,88 +4830,87 @@ "0.0" ], [ - "70", - "86112.0", - "part_3381.96075439453_4227.450942993162.mzml", - "QITGSQTVSGTWK", - "1.0", - "sp|P0ADC6|LPTG_ECOLI|218|231", - "1402.3667", - "1391.7046", + "37", + "215025.0", + "part_5321.289825439448_6385.547790527337.mzml", + "TVNALEIELQAQHNLRDSLENTLTESEAR", + "2.0", + "sp|K1H1_HUMAN||277|306;sp|K1HA_HUMAN||277|306", + "3278.4626", + "3293.6482", "1.0", - "3.0", - "13.0", + "4.0", + "29.0", "0.0", - "5.180731", + "6.219235", "5.0", "0.0", "0.999", - "6.0", - "3.0", + "7.0", + "2.0", "1.0", - "1.2813928", - "0.29416755", - "0.718617", - "0.06088855", - "7631.952", - "28.660852", - "262350.21875", + "3.9431853", + "0.39700723", + "0.64141905", + "0.040704403", + "4621.2085", + "28.18651", + "241282.15625", "0.0", - "924329.9375", - "2.5921855", - "4.0", + "0.0", + "5.9631824", + "2.0", "0.0", "0.999", - "6.0", + "5.0", "2.0", "1.0", - "0.8679427", - "58573.0", - "-3.0771089", - "0.2665137", - "0.718617", - "61.405037", - "57.694504", - "3.7105331", - "0.027298389", - "6916.2363", - "27.02909", - "0.0", - "0.0", - "0.0", - "0.0", - "0.2803406", - "0.718617", - "131175.109375", - "0.0", - "462164.96875", - "524700.4375", - "0.0", - "1848659.875", - "86112|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=96561", - "0.0", + "1.6348354", + "34545.484", + "-4.0031734", + "0.17874396", + "0.64141905", + "89.49363", + "95.026375", + "3.686142", + "0.027118942", + "4315.214", + "24.647186", "0.0", "0.0", "0.0", "0.0", + "0.2878756", + "0.64141905", + "120641.078125", "0.0", "0.0", + "241282.15625", "0.0", "0.0", + "215025|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=140826", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "-1.0", "0.0", - "0.1749250811048316", - "0.1749250811048316", - "0.1749250811048316", - "0.1749250811048316", - "0.1749250811048316", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", "0.0", "0.0", "0.0", + "0.2323461735019996", + "0.2617027649843468", + "0.2910593564666941", + "0.3204159479490412", + "0.3497725394313885", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.1186113756512692", + "0.1186113756512692", "0.0", "0.0", "0.0", @@ -4934,11 +4928,12 @@ "0.0", "0.0", "0.0", - "1.0", - "4.387689590454102", - "7.886052131652832", - "0.1749250811048316", "0.0", + "-0.4919965634306641", + "8.244368553161621", + "10.506301879882812", + "0.3497725394313885", + "0.2323461735019996", "0.0", "0.0", "0.0", @@ -4949,91 +4944,85 @@ "0.0" ], [ - "71", - "61724.0", - "part_3381.96075439453_4227.450942993162.mzml", - "TYGGAARAFDQIDNAPEEKAR", - "2.0", - "sp|P0CE47|EFTU1_ECOLI|38|59;sp|P0CE48|EFTU2_ECOLI|38|59", - "2278.765", - "2279.093", + "38", + "9939.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "HSLRDDIPGAARAIR", + "1.0", + "sp|P23883|PUUC_ECOLI|114|129", + "1654.4813", + "1646.8964", "1.0", "3.0", - "21.0", + "15.0", + "0.0", + "1.6736827", + "4.0", "0.0", - "3.858701", - "3.0", - "24.213102", "0.999", "5.0", - "4.0", - "1.0", - "4.9224553", - "0.35370585", - "0.77864707", - "0.114481844", - "4983.7275", - "25.389864", + "2.0", + "2.0", + "1.3069619", + "0.19474629", + "0.589364", + "0.01890552", + "3988.402", + "24.53814", "0.0", "0.0", "0.0", - "2.7263484", - "1.0", + "1.6736827", + "4.0", "0.0", "0.999", "5.0", - "4.0", - "1.0", - "3.1474245", - "52432.51", - "-2.675625", - "0.33505994", - "0.77864707", - "59.049995", - "74.61094", - "15.512714", - "0.114127025", - "296.22528", - "24.213102", + "2.0", + "2.0", + "1.3069619", + "34858.945", + "-2.5227091", + "0.19474629", + "0.589364", + "46.019997", + "48.58973", + "2.5697327", + "0.01890552", + "3988.402", + "24.53814", "0.0", "0.0", "0.0", "0.0", - "0.34438288", - "0.77864707", + "0.19474629", + "0.589364", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "61724|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=92849", - "0.9955775672850632", - "0.9955775672850632", - "0.9955775672850632", - "0.9955775672850632", - "0.9955775672850632", + "9939|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=72319", + "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "-0.0747295971265415", - "-0.074681669758285", - "-0.0746337423900286", - "-0.0745858150217722", - "-0.0745378876535157", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", - "0.9955775672850632", - "0.9955775672850632", "0.0", "0.0", "0.0", "0.0", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", "0.0", "0.0", "0.0", @@ -5048,80 +5037,86 @@ "0.0", "0.0", "0.0", - "-1.0", - "7.217676162719727", - "10.130952835083008", - "-0.0745378876535157", - "-0.0747295971265415", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "0.4747323886735439", + "5.078237056732178", + "8.039066314697266", + "0.5932493045968158", "0.0", - "0.0" - ], - [ - "74", - "114645.0", - "part_4227.450942993162_5072.941131591795.mzml", - "AWIQYQGFK", - "1.0", - "sp|P26616|MAO1_ECOLI|59|68", - "1143.0057", - "1139.5764", - "1.0", - "2.0", - "9.0", "0.0", - "3.753491", - "7.0", "0.0", - "0.999", - "5.0", "0.0", - "3.0", - "2.0764217", - "0.014922589", - "0.090772115", - "0.051195275", - "3004.7737", - "18.614342", "0.0", "0.0", "0.0", - "3.753491", - "7.0", + "0.0", + "0.0" + ], + [ + "39", + "60194.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "KTVVGEEELAQMAR", + "1.0", + "rev_sp|P0ACM5|YEGW_ECOLI|65|79", + "1558.4375", + "1559.7976", + "-1.0", + "3.0", + "14.0", + "0.0", + "5.0422945", + "4.0", "0.0", "0.999", "5.0", + "2.0", + "2.0", + "4.076028", + "0.33661887", + "0.78765", + "0.022846032", + "7440.4023", + "26.734955", "0.0", - "3.0", - "2.0764217", - "44915.96", - "-2.4391932", - "0.014922589", - "0.090772115", - "82.38732", - "89.34604", - "6.9587173", - "0.051195275", - "3004.7737", - "18.614342", + "630017.875", "0.0", + "2.7541451", + "3.0", "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "3.4315407", + "141716.73", + "-2.561551", + "0.24346007", + "0.68597037", + "67.18755", + "69.08425", + "1.896698", + "0.013954005", + "228.74649", + "25.851288", "0.0", "0.0", - "0.014922589", - "0.090772115", "0.0", "0.0", + "0.29003948", + "0.7368102", "0.0", + "315008.9375", "0.0", "0.0", + "630017.875", "0.0", - "114645|part_4227.450942993162_5072.941131591795.mzml|controllerType=0 controllerNumber=1 scan=129625", + "60194|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=105672", "0.0", "0.0", "0.0", @@ -5132,16 +5127,16 @@ "0.0", "0.0", "0.0", - "-0.1667374498542322", - "-0.1667374498542322", - "-0.1667374498542322", - "-0.1667374498542322", - "-0.1667374498542322", - "5.0", - "5.0", - "5.0", - "5.0", - "5.0", + "0.4659132069673635", + "0.4659132069673635", + "0.4659132069673635", + "0.4659132069673635", + "0.4659132069673635", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -5162,10 +5157,10 @@ "0.0", "0.0", "0.0", - "-0.2189843686976385", - "4.422718048095703", - "7.481825828552246", - "-0.1667374498542322", + "0.6331848244996574", + "3.7734220027923584", + "5.901615142822266", + "0.4659132069673635", "0.0", "0.0", "0.0", @@ -5177,92 +5172,65 @@ "0.0" ], [ - "75", - "35661.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "GPGETQLETDRRLLR", + "40", + "26357.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "LGSHNDMTFGEGTSSR", "1.0", - "sp|P25519|HFLX_ECOLI|153|168", - "1750.5249", - "1739.9277", + "sp|P39180|AG43_ECOLI|923|939", + "1677.7349", + "1694.7318", "1.0", - "3.0", - "15.0", - "0.0", - "8.108417", - "3.0", + "4.0", + "16.0", "0.0", - "0.999", - "7.0", + "8.207473", "4.0", + "24.09396", + "0.999", + "6.0", "3.0", - "6.6661325", - "0.35895053", - "0.7938506", - "0.08002176", - "6645.089", - "32.076073", + "2.0", + "4.899028", + "0.2441044", + "0.5742633", + "0.08941808", + "9481.986", + "27.70132", "0.0", "0.0", "0.0", - "3.4678063", - "1.0", + "1.7930894", + "2.0", "0.0", "0.999", "5.0", - "2.0", + "3.0", "1.0", - "1.3376805", - "17487.979", - "-3.9784129", - "0.13451122", - "0.48061588", - "52.72329", - "52.917786", - "0.00046157837", - "3.3958315e-06", - "6072.088", - "24.213032", - "0.0", - "0.0", + "2.5977843", + "46359.918", + "-3.484535", + "0.18448275", + "0.5742633", + "42.94928", + "55.10343", + "8.219971", + "0.060474318", + "8.099181", + "24.09396", "0.0", "0.0", - "0.26558024", - "0.55892456", "0.0", "0.0", + "0.21429357", + "0.5742633", "0.0", "0.0", "0.0", "0.0", - "35661|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=82881", - "0.0013717421124828", - "0.0017391691189782", - "0.0028414501384646", - "0.3233568842595669", - "0.4301953622999345", - "0.1797015283194627", "0.0", "0.0", - "0.0", - "0.0", - "-0.015093469457993", - "-0.0374853396392015", - "-0.05987720982041", - "-0.0073921515848332", - "0.0450929066507435", - "3.0", - "3.0", - "2.0", - "2.0", - "2.0", - "0.4301953622999345", - "0.4301953622999343", - "0.0028414501384646", - "0.0028414501384646", - "0.0013717421124828", - "0.0013717421124828", - "0.0", + "26357|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=67482", "0.0", "0.0", "0.0", @@ -5273,84 +5241,40 @@ "0.0", "0.0", "0.0", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", - "-1.0", - "5.606984615325928", - "7.044638156890869", - "0.0450929066507435", - "-0.015093469457993", - "-0.05987720982041", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "0.0" - ], - [ - "78", - "176607.0", - "part_5072.941131591795_5918.431320190428.mzml", - "EITFSVPNDVASKFSISNGGK", - "1.0", - "sp|P76347|YEEJ_ECOLI|955|976", - "2194.7268", - "2196.106", - "1.0", - "3.0", - "21.0", "0.0", - "7.76147", - "7.0", "0.0", - "0.999", - "6.0", - "1.0", - "4.0", - "4.949703", - "0.20716277", - "0.6336544", - "0.11692488", - "5281.668", - "29.429153", "0.0", - "205875.9375", - "183331.75", - "3.0240335", - "3.0", "0.0", - "0.999", - "5.0", - "1.0", - "2.0", - "2.2221234", - "144663.58", - "-2.9388978", - "0.1813912", - "0.6336544", - "85.99341", - "101.88642", - "7.5914154", - "0.055850036", - "1085.4639", - "26.647259", "0.0", "0.0", "0.0", "0.0", - "0.19427699", - "0.6336544", "0.0", - "102937.96875", - "91665.875", "0.0", - "617627.8125", - "549995.25", - "176607|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=135307", "0.0", + "0.8914224609386383", + "4.601738929748535", + "8.48290729522705", + "0.3769490110272505", "0.0", "0.0", "0.0", @@ -5359,20 +5283,203 @@ "0.0", "0.0", "0.0", + "0.0" + ], + [ + "41", + "30647.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "VDSASEFK", + "1.0", + "sp|P00957|SYA_ECOLI|451|459", + "878.8856", + "881.4131", + "1.0", + "2.0", + "8.0", "0.0", - "-0.1073250494866445", - "-0.1073250494866445", - "-0.1073250494866445", - "-0.1073250494866445", - "-0.1073250494866445", - "5.0", - "5.0", - "5.0", - "5.0", + "3.8597157", "5.0", "0.0", + "0.999", + "8.0", + "2.0", + "6.0", + "12.47615", + "0.042404808", + "0.003751498", + "0.024253562", + "6193.733", + "34.620735", + "2968045.0", + "1289721.125", + "343625.96875", + "0.7741194", + "1.0", + "0.0", + "0.999", + "6.0", + "1.0", + "3.0", + "1.7010813", + "61501.24", + "-5.1006613", + "0.0005165289", + "0.003751498", + "38.629963", + "35.866943", + "2.7630196", + "0.020327533", + "1730.6694", + "27.367315", + "0.0", + "728181.6875", + "241664.140625", + "0.0", + "0.017650766", + "0.003751498", + "1854062.5260416667", + "816106.0846354166", + "165790.45703125", + "22248750.3125", + "9793273.015625", + "1989485.484375", + "30647|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=60676", + "0.1411692022589294", + "0.4359466489130041", + "0.6676413505963248", + "0.8855480663379337", + "0.9950728511938836", + "-0.6831288949401837", + "0.524746056574557", + "0.0", + "0.0", + "0.0", + "0.5301606884054385", + "0.8055809909875556", + "0.8656578082706889", + "0.678623106211655", + "0.8075758013690787", + "10.0", + "9.0", + "10.0", + "10.0", + "9.0", + "0.9950728511938836", + "0.9950728511938834", + "0.9908005112497292", + "0.9908005112497292", + "0.9864490857598333", + "0.986449085759833", + "0.9837904126374328", + "0.9837904126374326", + "0.958494924274348", + "0.9584949242743478", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3668923692060918", + "2.972084045410156", + "2.9820563793182373", + "0.9307035383591576", + "0.8903559928461758", + "0.8775854403712238", + "0.840959623695202", + "0.8075758013690787", + "0.7945707456719922", + "0.7249328690218036", + "0.6509677352113843", + "0.5895676428365512", + "0.5428247064984331" + ], + [ + "42", + "21332.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "AESVASPLR", + "1.0", + "rev_sp|P09546|PUTA_ECOLI|1230|1239", + "934.91113", + "928.4978", + "-1.0", + "2.0", + "9.0", + "0.0", + "6.8843346", + "2.0", + "0.0", + "0.999", + "7.0", + "4.0", + "2.0", + "2.1632693", + "0.07659898", + "0.33126062", + "0.10101266", + "6883.438", + "29.068213", + "0.0", + "0.0", + "96569.5234375", + "6.8843346", + "2.0", + "0.0", + "0.999", + "7.0", + "4.0", + "2.0", + "2.1632693", + "58480.402", + "-4.068817", + "0.07659898", + "0.33126062", + "45.38234", + "59.112484", + "13.7301445", + "0.10101266", + "6883.438", + "29.068213", + "0.0", + "0.0", + "0.0", + "96569.5234375", + "0.07659898", + "0.33126062", + "0.0", + "0.0", + "96569.5234375", "0.0", "0.0", + "96569.5234375", + "21332|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=71314", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.2009519658689013", + "-0.2009519658689013", + "-0.2009519658689013", + "-0.2009519658689013", + "-0.2009519658689013", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", "0.0", "0.0", "0.0", @@ -5390,10 +5497,12 @@ "0.0", "0.0", "0.0", - "-0.0064058187314821", - "8.714085578918457", - "15.58639907836914", - "-0.1073250494866445", + "0.0", + "0.0", + "-0.163509935534473", + "5.932215690612793", + "8.940744400024414", + "-0.2009519658689013", "0.0", "0.0", "0.0", @@ -5405,65 +5514,65 @@ "0.0" ], [ - "80", - "38649.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "SADAAGVHAVIVPKDRSAQLNATAK", - "1.0", - "sp|P63177|RLMB_ECOLI|114|139", - "2478.0989", - "2489.335", - "1.0", - "4.0", - "25.0", + "43", + "87231.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "SGAQQYEAICADGR", + "1.0", + "rev_sp|P06709|BIRA_ECOLI|102|116", + "1474.3994", + "1467.6412", + "-1.0", + "3.0", + "14.0", "0.0", - "1.5891321", - "1.0", + "2.7100494", + "2.0", "0.0", "0.999", - "8.0", - "3.0", + "6.0", "2.0", - "3.4968665", - "0.19981721", - "0.61256486", - "0.088834144", - "4119.095", - "32.634537", + "3.0", + "3.808141", + "0.13765213", + "0.5103506", + "0.004771985", + "5274.4907", + "27.285772", "0.0", "0.0", "0.0", - "1.5891321", - "1.0", + "2.7100494", + "2.0", "0.0", "0.999", - "8.0", - "3.0", + "6.0", "2.0", - "3.4968665", - "198233.64", - "-4.858734", - "0.19981721", - "0.61256486", - "49.28019", - "61.35497", - "12.0747795", - "0.088834144", - "4119.095", - "32.634537", + "3.0", + "3.808141", + "65305.008", + "-3.3470435", + "0.13765213", + "0.5103506", + "59.563084", + "60.211716", + "0.64863205", + "0.004771985", + "5274.4907", + "27.285772", "0.0", "0.0", "0.0", "0.0", - "0.19981721", - "0.61256486", + "0.13765213", + "0.5103506", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", - "38649|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=77454", + "87231|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=93657", "0.0", "0.0", "0.0", @@ -5474,16 +5583,16 @@ "0.0", "0.0", "0.0", - "0.1791824307463015", - "0.1791824307463015", - "0.1791824307463015", - "0.1791824307463015", - "0.1791824307463015", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", + "0.069040814647105", + "0.069040814647105", + "0.069040814647105", + "0.069040814647105", + "0.069040814647105", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -5504,10 +5613,10 @@ "0.0", "0.0", "0.0", - "1.0", - "8.840428352355957", - "16.887882232666016", - "0.1791824307463015", + "0.3376763012658617", + "3.950204849243164", + "5.778713703155518", + "0.069040814647105", "0.0", "0.0", "0.0", @@ -5519,65 +5628,66 @@ "0.0" ], [ - "82", - "194268.0", - "part_5072.941131591795_5918.431320190428.mzml", - "TKGIDGLTAQLKSISQQK", - "1.0", - "sp|P0ADV7|MLAC_ECOLI|186|204", - "1917.844", - "1915.0739", + "44", + "20815.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "EVGVGTAGGIETR", "1.0", - "4.0", - "18.0", + "rev_sp|P39834|YGIL_ECOLI|113|126", + "1234.2903", + "1244.6361", + "-1.0", + "3.0", + "13.0", "0.0", - "6.106083", + "4.372283", "5.0", "0.0", "0.999", "5.0", + "3.0", "1.0", - "2.0", - "3.980571", - "0.33913168", - "0.7836173", - "0.015771532", - "922.1456", - "26.569845", - "0.0", + "0.94533616", + "0.30926114", + "0.72985035", + "0.1045828", + "9160.231", + "23.99636", "0.0", + "654166.3125", "0.0", - "6.106083", + "4.372283", "5.0", "0.0", "0.999", "5.0", + "3.0", "1.0", - "2.0", - "3.980571", - "226892.69", - "-2.48001", - "0.33913168", - "0.7836173", - "87.382805", - "89.52655", - "2.1437454", - "0.015771532", - "922.1456", - "26.569845", - "0.0", - "0.0", + "0.94533616", + "26432.7", + "-2.5912566", + "0.30926114", + "0.72985035", + "47.51349", + "61.728905", + "14.215416", + "0.1045828", + "9160.231", + "23.99636", "0.0", "0.0", - "0.33913168", - "0.7836173", + "654166.3125", "0.0", + "0.30926114", + "0.72985035", "0.0", + "654166.3125", "0.0", "0.0", + "654166.3125", "0.0", + "20815|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=74673", "0.0", - "194268|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=137494", "0.0", "0.0", "0.0", @@ -5587,17 +5697,16 @@ "0.0", "0.0", "0.0", - "0.0", - "0.0737487866994461", - "0.0737487866994461", - "0.0737487866994461", - "0.0737487866994461", - "0.0737487866994461", - "4.0", - "4.0", - "4.0", - "4.0", - "4.0", + "0.2350721760916324", + "0.2350721760916324", + "0.2350721760916324", + "0.2350721760916324", + "0.2350721760916324", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", "0.0", "0.0", "0.0", @@ -5618,10 +5727,10 @@ "0.0", "0.0", "0.0", - "0.9975631297815258", - "6.683314323425293", - "12.03519058227539", - "0.0737487866994461", + "0.1058494759242403", + "4.819231986999512", + "7.798583030700684", + "0.2350721760916324", "0.0", "0.0", "0.0", @@ -5633,95 +5742,95 @@ "0.0" ], [ - "83", - "21478.0", - "part_2536.470565795897_3381.9607543945294.mzml", - "YADEVVR", + "45", + "160620.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GLDITITTTAK", "1.0", - "sp|P0AG55|RL6_ECOLI|163|170", - "846.8711", - "850.41846", + "sp|P62399|RL5_ECOLI|150|161", + "1126.9984", + "1132.6339", "1.0", "2.0", - "7.0", + "11.0", "0.0", - "5.0843368", - "6.0", + "4.026516", + "7.0", "0.0", "0.999", - "10.0", - "3.0", - "5.0", - "39.54875", - "0.10958342", - "0.0024953762", - "0.015959399", - "6399.4136", - "41.52705", - "25478282.0", - "10834001.0", - "135440.59375", - "0.5560266", + "13.0", + "4.0", + "9.0", + "36.867283", + "0.25997618", + "0.6514103", + "0.06841298", + "5878.654", + "47.806087", + "12348173.0", + "7064066.0", + "6379593.5", + "0.79964834", "1.0", "0.0", "0.999", "5.0", - "1.0", "2.0", - "3.9616733", - "155246.12", - "-6.8907576", - "0.00026028111", - "0.0024953762", - "42.90099", - "41.65727", - "1.243721", - "0.009150054", - "2995.965", - "27.78871", - "0.0", - "614012.3125", - "406561.0625", - "0.0", - "0.011333852", - "0.0024953762", - "10729147.86328125", - "5103160.0234375", - "40529.330078125", - "2746661853.0", - "1306408966.0", - "10375508.5", - "21478|part_2536.470565795897_3381.9607543945294.mzml|controllerType=0 controllerNumber=1 scan=67406", - "9.709689428270922e-07", - "0.058032862763175", - "0.2769996471513367", - "0.9177548046559793", - "0.99911423495302", - "0.0002188097875496", - "0.0", - "0.0", - "0.0", - "0.0", - "0.1866932068569255", - "0.3667839773120004", - "0.224689705428941", - "0.6352962087671504", - "0.2781864376048152", - "5.0", - "5.0", - "4.0", - "4.0", - "4.0", - "0.99911423495302", - "0.99911423495302", - "0.9960397192983884", - "0.9960397192983884", - "0.9914612312293426", - "0.9914612312293424", - "0.985131608664136", - "0.985131608664136", - "0.9810027273502322", - "0.9810027273502322", + "1.0", + "2.0837524", + "41460.105", + "-9.382425", + "0.00010917031", + "0.0010413406", + "81.1247", + "81.38907", + "0.02155304", + "0.00015856569", + "1204.2656", + "25.867928", + "0.0", + "0.0", + "0.0", + "0.0", + "0.03930444", + "0.06950123", + "4224256.458881579", + "2305131.9259868423", + "457714.65789473685", + "80260872.71875", + "43797506.59375", + "8696578.5", + "160620|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=127635", + "0.121459652507608", + "0.3748117704088688", + "0.8286331712567507", + "0.9410943674755792", + "0.9971838255082944", + "-0.7164321981422632", + "0.1068660047089721", + "0.8613958099023558", + "0.0", + "0.0", + "0.93433202166157", + "0.724492890042858", + "0.931254479644724", + "0.8890869824276486", + "0.9204328901940032", + "14.0", + "11.0", + "15.0", + "13.0", + "15.0", + "0.9971838255082944", + "0.9971838255082944", + "0.9968249489075768", + "0.9968249489075768", + "0.9943991098143647", + "0.9943991098143646", + "0.994319818309276", + "0.9943198183092758", + "0.993613231223938", + "0.9936132312239376", "0.0", "0.0", "0.0", @@ -5732,80 +5841,81 @@ "0.0", "0.0", "0.0", - "-0.0434090208199321", - "3.4132659435272217", - "3.505849599838257", - "0.7445904702792936", - "0.4462502399456599", - "0.3402952231007806", - "0.3074134242307207", - "0.2781864376048152", - "0.2739862382035289", - "0.2699254545104773", - "0.1866932068569255", - "0.1803275517507594", - "0.1794539563474047" + "0.9080921414511418", + "2.020193576812744", + "2.025226831436157", + "0.9409351494516024", + "0.9358287952638892", + "0.93433202166157", + "0.931254479644724", + "0.922673794350692", + "0.9209258901383006", + "0.9204328901940032", + "0.8910301609797785", + "0.8890869824276486", + "0.8886052287159995" ], [ - "85", - "83555.0", - "part_3381.96075439453_4227.450942993162.mzml", - "VASVFINR", + "46", + "4411.0", + "part_1064.2579650878895_2128.515930175779.mzml", + "NKDTPVEQGK", "1.0", - "sp|P28306|MLTG_ECOLI|227|235", - "910.9002", - "904.51306", + "sp|P0A7E1|PYRD_ECOLI|142|152", + "1110.9911", + "1114.5619", "1.0", "2.0", - "8.0", + "10.0", "0.0", - "2.4371753", - "3.0", + "2.3837795", + "1.0", "0.0", "0.999", - "6.0", + "5.0", "2.0", "1.0", - "3.9749975", - "0.14419562", - "0.5253132", - "0.031297613", - "7036.575", - "29.10319", - "0.0", + "3.998721", + "0.15881884", + "0.5627713", + "0.068357095", + "3208.9111", + "25.672306", + "93512.453125", "0.0", "0.0", - "2.4371753", - "3.0", + "2.3837795", + "1.0", "0.0", "0.999", - "6.0", + "5.0", "2.0", "1.0", - "3.9749975", - "164307.56", - "-3.2264802", - "0.14419562", - "0.5253132", - "70.1915", - "65.93737", - "4.2541275", - "0.031297613", - "7036.575", - "29.10319", - "0.0", - "0.0", + "3.998721", + "88877.516", + "-2.617387", + "0.15881884", + "0.5627713", + "34.314766", + "25.023329", + "9.291437", + "0.068357095", + "3208.9111", + "25.672306", "0.0", + "93512.453125", "0.0", - "0.14419562", - "0.5253132", "0.0", + "0.15881884", + "0.5627713", + "93512.453125", "0.0", "0.0", + "93512.453125", "0.0", "0.0", + "4411|part_1064.2579650878895_2128.515930175779.mzml|controllerType=0 controllerNumber=1 scan=53881", "0.0", - "83555|part_3381.96075439453_4227.450942993162.mzml|controllerType=0 controllerNumber=1 scan=110407", "0.0", "0.0", "0.0", @@ -5815,17 +5925,16 @@ "0.0", "0.0", "0.0", - "0.0", - "-0.2520860178442154", - "-0.2520860178442154", - "-0.2520860178442154", - "-0.2520860178442154", - "-0.2520860178442154", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", "0.0", "0.0", "0.0", @@ -5846,10 +5955,10 @@ "0.0", "0.0", "0.0", - "-1.0", - "4.87511682510376", - "8.472908020019531", - "-0.2520860178442154", + "0.672467930861916", + "6.034455299377441", + "10.068220138549805", + "-0.0807682988889901", "0.0", "0.0", "0.0", @@ -5861,68 +5970,65 @@ "0.0" ], [ - "88", - "211020.0", - "part_5072.941131591795_5918.431320190428.mzml", - "GNQLLPVSLVK", - "1.0", - "sp|P03023|LACI_ECOLI|314|325", - "1167.0166", - "1166.7023", - "1.0", - "2.0", - "11.0", + "47", + "131664.0", + "part_4257.031860351558_5321.289825439448.mzml", + "EGPLM[Oxidation]YTNTMRPM[Oxidation]PLHAYSK", + "1.0", + "rev_sp|P0AGG8|TLDD_ECOLI|352|372", + "2382.055", + "2368.1013", + "-1.0", + "4.0", + "20.0", "0.0", - "4.2085686", + "2.894392", "5.0", "0.0", "0.999", - "5.0", + "6.0", "3.0", "2.0", - "1.2305487", - "0.15621348", - "0.59530115", - "0.032898255", - "1128.7692", - "24.438232", - "193596.078125", + "1.0942134", + "0.3253575", + "0.77780706", + "0.015635755", + "6296.132", + "26.468332", "0.0", "0.0", - "4.2085686", + "0.0", + "2.894392", "5.0", "0.0", "0.999", - "5.0", + "6.0", "3.0", "2.0", - "1.2305487", - "32188.117", - "-2.4245872", - "0.15621348", - "0.59530115", - "98.35951", - "93.88782", - "4.471695", - "0.032898255", - "1128.7692", - "24.438232", + "1.0942134", + "24429.842", + "-3.0418775", + "0.3253575", + "0.77780706", + "82.29207", + "80.16678", + "2.12529", + "0.015635755", + "6296.132", + "26.468332", "0.0", - "193596.078125", "0.0", "0.0", - "0.15621348", - "0.59530115", - "193596.078125", "0.0", + "0.3253575", + "0.77780706", "0.0", - "193596.078125", "0.0", "0.0", - "211020|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=154797", "0.0", "0.0", "0.0", + "131664|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129475", "0.0", "0.0", "0.0", @@ -5930,19 +6036,21 @@ "0.0", "0.0", "0.0", - "-0.1251162222532912", - "-0.1251162222532912", - "-0.1251162222532912", - "-0.1251162222532912", - "-0.1251162222532912", - "2.0", - "2.0", - "2.0", - "2.0", - "2.0", "0.0", "0.0", "0.0", + "0.3645237619000883", + "0.3645237619000883", + "0.3645237619000883", + "0.3645237619000883", + "0.3645237619000883", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", "0.0", "0.0", "0.0", @@ -5961,9 +6069,10 @@ "0.0", "0.0", "0.0", - "4.017964839935303", - "7.0588555335998535", - "-0.1251162222532912", + "0.6781764138516363", + "6.198359966278076", + "11.311029434204102", + "0.3645237619000883", "0.0", "0.0", "0.0", @@ -5975,85 +6084,87 @@ "0.0" ], [ - "89", - "226717.0", - "part_5918.431320190428_6763.921508789061.mzml", - "QSRQMLGAGVIPVEM[Oxidation]TFLKPAP", + "48", + "5419.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "IPAGVGNGQRIRLK", "1.0", - "sp|P75884|GFCB_ECOLI|192|214", - "2374.8086", - "2385.255", + "sp|P36659|CBPA_ECOLI|163|177", + "1486.4049", + "1477.8842", "1.0", "3.0", - "22.0", + "14.0", "0.0", - "3.702482", - "3.0", + "8.021836", + "4.0", "0.0", "0.999", "5.0", - "2.0", - "2.0", - "4.011635", - "0.13005354", - "0.5409076", - "0.0050461497", - "4811.7227", - "23.067972", + "3.0", + "1.0", + "5.025356", + "0.2941758", + "0.66710716", + "0.055408914", + "6423.7183", + "25.706236", "0.0", "0.0", "0.0", - "3.702482", + "2.024987", "3.0", "0.0", "0.999", "5.0", "2.0", - "2.0", - "4.011635", - "16079.336", - "-2.6231174", - "0.13005354", - "0.5409076", - "100.99889", - "100.312996", - "0.6858978", - "0.0050461497", - "4811.7227", - "23.067972", - "0.0", - "0.0", - "0.0", - "0.0", - "0.13005354", - "0.5409076", - "0.0", - "0.0", + "1.0", + "3.3286414", + "55896.332", + "-2.665486", + "0.2514575", + "0.66710716", + "41.158157", + "48.689613", + "6.754566", + "0.049693335", + "5073.6934", + "25.635231", "0.0", "0.0", "0.0", "0.0", - "226717|part_5918.431320190428_6763.921508789061.mzml|controllerType=0 controllerNumber=1 scan=158955", + "0.27281666", + "0.66710716", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", + "5419|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=64661", + "0.8241605099513897", + "0.8241605099513898", + "0.8241605099513898", + "0.8241605099513898", + "0.8241605099513899", + "-1.0", "0.0", "0.0", "0.0", "0.0", - "0.0897424563879149", - "0.0897424563879149", - "0.0897424563879149", - "0.0897424563879149", - "0.0897424563879149", - "6.0", - "6.0", - "6.0", - "6.0", + "0.6744826444073867", + "0.6707469212401043", + "0.6670111980728219", + "0.6632754749055396", + "0.6595397517382573", + "7.0", + "7.0", + "7.0", + "7.0", "6.0", + "0.8241605099513899", + "0.8241605099513897", "0.0", "0.0", "0.0", @@ -6072,13 +6183,11 @@ "0.0", "0.0", "0.0", - "0.0", - "0.0", - "0.3712537197928376", - "8.189927101135254", - "13.466925621032717", - "0.0897424563879149", - "0.0", + "0.6141578606777409", + "7.264311790466309", + "9.702486038208008", + "0.6744826444073867", + "0.6595397517382573", "0.0", "0.0", "0.0", @@ -6089,199 +6198,95 @@ "0.0" ], [ - "90", - "212436.0", - "part_5072.941131591795_5918.431320190428.mzml", - "AAMTVAALCEKHNVELVAIGNGTASRETER", + "49", + "249514.0", + "part_5321.289825439448_6385.547790527337.mzml", + "EAIVLCGRPVSTHVLPPASPLDEPR", "1.0", - "sp|P46837|YHGF_ECOLI|366|396", - "3134.397", - "3140.5703", + "sp|P75682|YAGE_ECOLI|263|288", + "2654.1787", + "2652.4053", "1.0", "4.0", - "30.0", + "25.0", "0.0", - "4.7323275", - "1.0", + "8.547572", + "4.0", "0.0", "0.999", "5.0", - "2.0", - "2.0", - "3.6002266", - "0.36989558", - "0.80294925", - "0.046817686", - "1647.5505", - "24.619492", - "0.0", - "0.0", - "140903.71875", - "4.7323275", + "3.0", "1.0", - "0.0", - "0.999", - "5.0", - "2.0", - "2.0", - "3.6002266", - "30858.98", - "-2.589356", - "0.36989558", - "0.80294925", - "96.433334", - "90.06964", - "6.363693", - "0.046817686", - "1647.5505", - "24.619492", - "0.0", - "0.0", - "0.0", - "140903.71875", - "0.36989558", - "0.80294925", - "0.0", - "0.0", - "140903.71875", - "0.0", - "0.0", - "140903.71875", - "212436|part_5072.941131591795_5918.431320190428.mzml|controllerType=0 controllerNumber=1 scan=151762", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "-0.0605932063323625", - "-0.0605932063323625", - "-0.0605932063323625", - "-0.0605932063323625", - "-0.0605932063323625", - "3.0", - "3.0", - "3.0", - "3.0", - "3.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", + "2.9616358", + "0.42359", + "0.7856295", + "0.0931636", + "1046.3464", + "31.399834", "0.0", "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "1.0", - "14.942083358764648", - "28.530441284179688", - "-0.0605932063323625", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0" - ], - [ - "91", - "270313.0", - "part_6763.921508789061_7609.4116973876935.mzml", - "VEQALM[Oxidation]VTIAGIAAGM[Oxidation]R", - "1.0", - "sp|P00864|CAPP_ECOLI|863|880", - "1767.2894", - "1761.9117", - "1.0", + "784868.8125", + "8.221856", "2.0", - "17.0", - "0.0", - "4.1865687", - "3.0", - "0.0", - "0.999", - "6.0", - "4.0", - "0.0", - "1.9704974", - "0.12533534", - "0.53175944", - "0.0045222375", - "3047.5369", - "20.145658", - "0.0", - "0.0", - "0.0", - "4.1865687", - "3.0", "0.0", "0.999", - "6.0", - "4.0", - "0.0", - "1.9704974", - "47165.273", - "-3.045167", - "0.12533534", - "0.53175944", - "116.39896", - "115.78427", - "0.61468506", - "0.0045222375", - "3047.5369", - "20.145658", - "0.0", - "0.0", - "0.0", - "0.0", - "0.12533534", - "0.53175944", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", + "5.0", + "2.0", + "1.0", + "2.389653", + "1362693.1", + "-2.5565898", + "0.41778108", + "0.7856295", + "97.39491", + "85.02281", + "12.372101", + "0.09102153", + "290.2934", + "29.350292", "0.0", - "270313|part_6763.921508789061_7609.4116973876935.mzml|controllerType=0 controllerNumber=1 scan=183219", "0.0", "0.0", + "473827.90625", + "0.42102647", + "0.7856295", "0.0", "0.0", + "647489.6015625", "0.0", "0.0", + "2589958.40625", + "249514|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=153277", + "0.989457556090147", + "0.989787005225373", + "0.9967485015758726", + "0.9971773414334346", + "0.9984883111313476", + "-0.9508702293321732", "0.0", "0.0", "0.0", "0.0", - "0.2628726626790129", - "0.2628726626790129", - "0.2628726626790129", - "0.2628726626790129", - "0.2628726626790129", - "8.0", - "8.0", - "8.0", - "8.0", + "0.1799042406923086", + "0.1907081867573599", + "0.1880673894937396", + "0.1903939057060127", + "0.2160997921987444", + "7.0", + "7.0", + "7.0", "8.0", + "7.0", + "0.9984883111313476", + "0.9984883111313474", + "0.9971773414334348", + "0.9971773414334346", + "0.9971744312939044", + "0.9971744312939044", + "0.9963225718578406", + "0.9963225718578406", + "0.9897870052253732", + "0.9897870052253728", "0.0", "0.0", "0.0", @@ -6292,23 +6297,13 @@ "0.0", "0.0", "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.0", - "0.3918443505826343", - "8.646858215332031", - "15.41933250427246", - "0.2628726626790129", - "0.0", - "0.0", - "0.0", + "0.1873917101055393", + "5.434152603149414", + "6.334392070770264", + "0.2160997921987444", + "0.194309502112377", + "0.1818252768751022", + "0.1799042406923086", "0.0", "0.0", "0.0", @@ -6319,7 +6314,7 @@ ], "shape": { "columns": 111, - "rows": 47475 + "rows": 81127 } }, "text/html": [ @@ -6367,46 +6362,46 @@ " \n", " \n", " 0\n", - " 248142.0\n", - " part_5918.431320190428_6763.921508789061.mzml\n", - " VVGDHMGMLATVM[Oxidation]NGLAM[Oxidation]RDALHR\n", - " 1.0\n", - " sp|P0A7E9|PYRH_ECOLI|73|97\n", - " 2638.92870\n", - " 2626.2598\n", + " 152761.0\n", + " part_4257.031860351558_5321.289825439448.mzml\n", + " GASHEFESRAVVTDYSIDSVGSLR\n", " 1.0\n", - " 3.0\n", + " rev_sp|P0A6W0|GLSA2_ECOLI|143|167\n", + " 2574.14230\n", + " 2581.2405\n", + " -1.0\n", + " 4.0\n", " 24.0\n", " ...\n", - " 0.162916\n", - " 0.059505\n", - " 0.003643\n", - " 0.000000\n", + " 0.194087\n", " 0.000000\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 3\n", - " 15384.0\n", - " part_2536.470565795897_3381.9607543945294.mzml\n", - " TVIGFGSPNKAGK\n", - " 1.0\n", - " sp|P33570|TKT2_ECOLI|243|256\n", - " 1270.30660\n", - " 1274.6982\n", + " 1\n", + " 92850.0\n", + " part_3192.7738952636682_4257.031860351558.mzml\n", + " VAEARTM[Oxidation]SISQALEADGRVK\n", " 1.0\n", + " rev_sp|P24182|ACCC_ECOLI|170|190\n", + " 2146.70480\n", + " 2147.1003\n", + " -1.0\n", " 3.0\n", - " 13.0\n", + " 20.0\n", " ...\n", - " -0.122509\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.277861\n", + " 0.272848\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6414,47 +6409,47 @@ " 0.0\n", " \n", " \n", - " 6\n", - " 245040.0\n", - " part_5918.431320190428_6763.921508789061.mzml\n", - " EPGPPGLSHQLM[Oxidation]SGM[Oxidation]PGAPLLPEGPR\n", + " 2\n", + " 33953.0\n", + " part_2128.5159301757785_3192.7738952636682.mzml\n", + " NFGPGGM[Oxidation]SPGGSSR\n", " 1.0\n", - " sp|TAU_HUMAN||137|163\n", - " 2638.17160\n", - " 2653.2990\n", - " 1.0\n", - " 4.0\n", - " 26.0\n", + " rev_sp|P64429|YPFJ_ECOLI|16|30\n", + " 1330.33400\n", + " 1322.5673\n", + " -1.0\n", + " 3.0\n", + " 14.0\n", " ...\n", - " 0.142911\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.233884\n", " 0.000000\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 8\n", - " 13506.0\n", - " part_1690.9803771972647_2536.470565795897.mzml\n", - " AINATLSK\n", - " 1.0\n", - " sp|P46837|YHGF_ECOLI|89|97\n", - " 814.85657\n", - " 816.4705\n", + " 3\n", + " 67992.0\n", + " part_3192.7738952636682_4257.031860351558.mzml\n", + " ATVRSNLRAHIGDIR\n", " 1.0\n", - " 2.0\n", - " 8.0\n", + " rev_sp|P76083|PAAH_ECOLI|43|58\n", + " 1693.74220\n", + " 1677.9385\n", + " -1.0\n", + " 4.0\n", + " 15.0\n", " ...\n", - " -0.021452\n", - " -0.223231\n", - " -0.223231\n", - " -0.223231\n", - " -0.223231\n", + " 0.341612\n", + " 0.000000\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6462,23 +6457,23 @@ " 0.0\n", " \n", " \n", - " 9\n", - " 78185.0\n", - " part_3381.96075439453_4227.450942993162.mzml\n", - " VVPGYAHRCVCLDNLSGAR\n", - " 1.0\n", - " sp|P25748|GALS_ECOLI|146|165\n", - " 2029.89500\n", - " 2028.9987\n", + " 4\n", + " 96967.0\n", + " part_3192.7738952636682_4257.031860351558.mzml\n", + " VVQEKQHEQPDIDKALLR\n", " 1.0\n", - " 4.0\n", - " 19.0\n", + " rev_sp|P32053|INTA_ECOLI|79|97\n", + " 2146.70480\n", + " 2145.1540\n", + " -1.0\n", + " 3.0\n", + " 18.0\n", " ...\n", - " -0.045822\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.238119\n", + " 0.183446\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6510,47 +6505,47 @@ " ...\n", " \n", " \n", - " 82858\n", - " 95917.0\n", - " part_4227.450942993162_5072.941131591795.mzml\n", - " DLIVTIGK\n", + " 81122\n", + " 34906.0\n", + " part_2128.5159301757785_3192.7738952636682.mzml\n", + " YHLDDISMHR\n", " 1.0\n", - " sp|P76578|A2MG_ECOLI|133|141\n", - " 862.87840\n", - " 857.5222\n", + " sp|P18392|RSTB_ECOLI|84|94\n", + " 1287.07120\n", + " 1285.5873\n", " 1.0\n", " 2.0\n", - " 8.0\n", + " 10.0\n", " ...\n", - " -0.261364\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.576323\n", " 0.000000\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 82861\n", - " 122078.0\n", - " part_4227.450942993162_5072.941131591795.mzml\n", - " ANGTTVLVGM[Oxidation]PAGAK\n", - " 1.0\n", - " sp|ADH1_YEAST||261|276\n", - " 1407.12570\n", - " 1401.7285\n", + " 81123\n", + " 36090.0\n", + " part_2128.5159301757785_3192.7738952636682.mzml\n", + " AGGDSLTFNK\n", " 1.0\n", + " rev_sp|P76347|YEEJ_ECOLI|1485|1495\n", + " 1006.94385\n", + " 1008.4876\n", + " -1.0\n", " 2.0\n", - " 15.0\n", + " 10.0\n", " ...\n", - " 0.153661\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.258456\n", + " 0.226179\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6558,47 +6553,47 @@ " 0.0\n", " \n", " \n", - " 82862\n", - " 200789.0\n", - " part_5072.941131591795_5918.431320190428.mzml\n", - " AIDSVSHYLVLK\n", + " 81124\n", + " 284901.0\n", + " part_6385.547790527337_7449.805755615227.mzml\n", + " YPQCQRVDSKLIETWFNNLNWGPDK\n", " 1.0\n", - " sp|P0AFS5|TQSA_ECOLI|188|200\n", - " 1351.10020\n", - " 1343.7450\n", + " sp|Q46911|YGCU_ECOLI|307|332\n", + " 3054.36060\n", + " 3050.4710\n", " 1.0\n", - " 2.0\n", - " 12.0\n", + " 4.0\n", + " 25.0\n", " ...\n", - " -0.222575\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.575740\n", " 0.000000\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", - " 82863\n", - " 230577.0\n", - " part_5918.431320190428_6763.921508789061.mzml\n", - " LGILDDSQLERLM[Oxidation]PKAAESGVSRPVPQLK\n", + " 81125\n", + " 52608.0\n", + " part_3192.7738952636682_4257.031860351558.mzml\n", + " AKQSPNTM[Oxidation]SDM[Oxidation]AAFEK\n", " 1.0\n", - " sp|P0ABS5|DNAG_ECOLI|418|447\n", - " 3150.40430\n", - " 3162.7068\n", + " sp|P0ABJ1|CYOA_ECOLI|237|253\n", + " 1786.54130\n", + " 1786.7865\n", " 1.0\n", - " 4.0\n", - " 29.0\n", + " 3.0\n", + " 16.0\n", " ...\n", - " -0.024534\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.346999\n", + " 0.345073\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", @@ -6606,1234 +6601,7003 @@ " 0.0\n", " \n", " \n", - " 82865\n", - " 144249.0\n", - " part_4227.450942993162_5072.941131591795.mzml\n", - " WHLGVM[Oxidation]AGYANQHSNTQSNRVGYKSDGR\n", + " 81126\n", + " 111124.0\n", + " part_4257.031860351558_5321.289825439448.mzml\n", + " VPGNLVMWGQRFGAK\n", " 1.0\n", - " sp|P77286|YDEU_ECOLI|228|256\n", - " 3134.39700\n", - " 3148.4644\n", - " 1.0\n", - " 4.0\n", - " 28.0\n", + " rev_sp|P0A959|ALAA_ECOLI|243|258\n", + " 1666.48660\n", + " 1658.8716\n", + " -1.0\n", + " 3.0\n", + " 15.0\n", " ...\n", - " 0.014710\n", - " -0.000180\n", - " 0.000000\n", - " 0.000000\n", + " 0.247237\n", " 0.000000\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " \n", " \n", "\n", - "

47475 rows × 111 columns

\n", + "

81127 rows × 111 columns

\n", "" ], "text/plain": [ - " ScanNr filename \\\n", - "0 248142.0 part_5918.431320190428_6763.921508789061.mzml \n", - "3 15384.0 part_2536.470565795897_3381.9607543945294.mzml \n", - "6 245040.0 part_5918.431320190428_6763.921508789061.mzml \n", - "8 13506.0 part_1690.9803771972647_2536.470565795897.mzml \n", - "9 78185.0 part_3381.96075439453_4227.450942993162.mzml \n", - "... ... ... \n", - "82858 95917.0 part_4227.450942993162_5072.941131591795.mzml \n", - "82861 122078.0 part_4227.450942993162_5072.941131591795.mzml \n", - "82862 200789.0 part_5072.941131591795_5918.431320190428.mzml \n", - "82863 230577.0 part_5918.431320190428_6763.921508789061.mzml \n", - "82865 144249.0 part_4227.450942993162_5072.941131591795.mzml \n", + " ScanNr filename \\\n", + "0 152761.0 part_4257.031860351558_5321.289825439448.mzml \n", + "1 92850.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "2 33953.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "3 67992.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "4 96967.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "... ... ... \n", + "81122 34906.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "81123 36090.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "81124 284901.0 part_6385.547790527337_7449.805755615227.mzml \n", + "81125 52608.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "81126 111124.0 part_4257.031860351558_5321.289825439448.mzml \n", "\n", - " Peptide num_proteins \\\n", - "0 VVGDHMGMLATVM[Oxidation]NGLAM[Oxidation]RDALHR 1.0 \n", - "3 TVIGFGSPNKAGK 1.0 \n", - "6 EPGPPGLSHQLM[Oxidation]SGM[Oxidation]PGAPLLPEGPR 1.0 \n", - "8 AINATLSK 1.0 \n", - "9 VVPGYAHRCVCLDNLSGAR 1.0 \n", - "... ... ... \n", - "82858 DLIVTIGK 1.0 \n", - "82861 ANGTTVLVGM[Oxidation]PAGAK 1.0 \n", - "82862 AIDSVSHYLVLK 1.0 \n", - "82863 LGILDDSQLERLM[Oxidation]PKAAESGVSRPVPQLK 1.0 \n", - "82865 WHLGVM[Oxidation]AGYANQHSNTQSNRVGYKSDGR 1.0 \n", + " Peptide num_proteins \\\n", + "0 GASHEFESRAVVTDYSIDSVGSLR 1.0 \n", + "1 VAEARTM[Oxidation]SISQALEADGRVK 1.0 \n", + "2 NFGPGGM[Oxidation]SPGGSSR 1.0 \n", + "3 ATVRSNLRAHIGDIR 1.0 \n", + "4 VVQEKQHEQPDIDKALLR 1.0 \n", + "... ... ... \n", + "81122 YHLDDISMHR 1.0 \n", + "81123 AGGDSLTFNK 1.0 \n", + "81124 YPQCQRVDSKLIETWFNNLNWGPDK 1.0 \n", + "81125 AKQSPNTM[Oxidation]SDM[Oxidation]AAFEK 1.0 \n", + "81126 VPGNLVMWGQRFGAK 1.0 \n", "\n", - " Proteins ExpMass CalcMass Label charge \\\n", - "0 sp|P0A7E9|PYRH_ECOLI|73|97 2638.92870 2626.2598 1.0 3.0 \n", - "3 sp|P33570|TKT2_ECOLI|243|256 1270.30660 1274.6982 1.0 3.0 \n", - "6 sp|TAU_HUMAN||137|163 2638.17160 2653.2990 1.0 4.0 \n", - "8 sp|P46837|YHGF_ECOLI|89|97 814.85657 816.4705 1.0 2.0 \n", - "9 sp|P25748|GALS_ECOLI|146|165 2029.89500 2028.9987 1.0 4.0 \n", - "... ... ... ... ... ... \n", - "82858 sp|P76578|A2MG_ECOLI|133|141 862.87840 857.5222 1.0 2.0 \n", - "82861 sp|ADH1_YEAST||261|276 1407.12570 1401.7285 1.0 2.0 \n", - "82862 sp|P0AFS5|TQSA_ECOLI|188|200 1351.10020 1343.7450 1.0 2.0 \n", - "82863 sp|P0ABS5|DNAG_ECOLI|418|447 3150.40430 3162.7068 1.0 4.0 \n", - "82865 sp|P77286|YDEU_ECOLI|228|256 3134.39700 3148.4644 1.0 4.0 \n", + " Proteins ExpMass CalcMass Label \\\n", + "0 rev_sp|P0A6W0|GLSA2_ECOLI|143|167 2574.14230 2581.2405 -1.0 \n", + "1 rev_sp|P24182|ACCC_ECOLI|170|190 2146.70480 2147.1003 -1.0 \n", + "2 rev_sp|P64429|YPFJ_ECOLI|16|30 1330.33400 1322.5673 -1.0 \n", + "3 rev_sp|P76083|PAAH_ECOLI|43|58 1693.74220 1677.9385 -1.0 \n", + "4 rev_sp|P32053|INTA_ECOLI|79|97 2146.70480 2145.1540 -1.0 \n", + "... ... ... ... ... \n", + "81122 sp|P18392|RSTB_ECOLI|84|94 1287.07120 1285.5873 1.0 \n", + "81123 rev_sp|P76347|YEEJ_ECOLI|1485|1495 1006.94385 1008.4876 -1.0 \n", + "81124 sp|Q46911|YGCU_ECOLI|307|332 3054.36060 3050.4710 1.0 \n", + "81125 sp|P0ABJ1|CYOA_ECOLI|237|253 1786.54130 1786.7865 1.0 \n", + "81126 rev_sp|P0A959|ALAA_ECOLI|243|258 1666.48660 1658.8716 -1.0 \n", "\n", - " peptide_len ... top_correlation_individual_1 \\\n", - "0 24.0 ... 0.162916 \n", - "3 13.0 ... -0.122509 \n", - "6 26.0 ... 0.142911 \n", - "8 8.0 ... -0.021452 \n", - "9 19.0 ... -0.045822 \n", - "... ... ... ... \n", - "82858 8.0 ... -0.261364 \n", - "82861 15.0 ... 0.153661 \n", - "82862 12.0 ... -0.222575 \n", - "82863 29.0 ... -0.024534 \n", - "82865 28.0 ... 0.014710 \n", + " charge peptide_len ... top_correlation_individual_1 \\\n", + "0 4.0 24.0 ... 0.194087 \n", + "1 3.0 20.0 ... 0.277861 \n", + "2 3.0 14.0 ... 0.233884 \n", + "3 4.0 15.0 ... 0.341612 \n", + "4 3.0 18.0 ... 0.238119 \n", + "... ... ... ... ... \n", + "81122 2.0 10.0 ... 0.576323 \n", + "81123 2.0 10.0 ... 0.258456 \n", + "81124 4.0 25.0 ... 0.575740 \n", + "81125 3.0 16.0 ... 0.346999 \n", + "81126 3.0 15.0 ... 0.247237 \n", "\n", " top_correlation_individual_2 top_correlation_individual_3 \\\n", - "0 0.059505 0.003643 \n", - "3 0.000000 0.000000 \n", - "6 0.000000 0.000000 \n", - "8 -0.223231 -0.223231 \n", - "9 0.000000 0.000000 \n", + "0 0.000000 0.0 \n", + "1 0.272848 0.0 \n", + "2 0.000000 0.0 \n", + "3 0.000000 0.0 \n", + "4 0.183446 0.0 \n", "... ... ... \n", - "82858 0.000000 0.000000 \n", - "82861 0.000000 0.000000 \n", - "82862 0.000000 0.000000 \n", - "82863 0.000000 0.000000 \n", - "82865 -0.000180 0.000000 \n", + "81122 0.000000 0.0 \n", + "81123 0.226179 0.0 \n", + "81124 0.000000 0.0 \n", + "81125 0.345073 0.0 \n", + "81126 0.000000 0.0 \n", "\n", " top_correlation_individual_4 top_correlation_individual_5 \\\n", - "0 0.000000 0.000000 \n", - "3 0.000000 0.000000 \n", - "6 0.000000 0.000000 \n", - "8 -0.223231 -0.223231 \n", - "9 0.000000 0.000000 \n", + "0 0.0 0.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", + "3 0.0 0.0 \n", + "4 0.0 0.0 \n", "... ... ... \n", - "82858 0.000000 0.000000 \n", - "82861 0.000000 0.000000 \n", - "82862 0.000000 0.000000 \n", - "82863 0.000000 0.000000 \n", - "82865 0.000000 0.000000 \n", + "81122 0.0 0.0 \n", + "81123 0.0 0.0 \n", + "81124 0.0 0.0 \n", + "81125 0.0 0.0 \n", + "81126 0.0 0.0 \n", "\n", " top_correlation_individual_6 top_correlation_individual_7 \\\n", "0 0.0 0.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", "3 0.0 0.0 \n", - "6 0.0 0.0 \n", - "8 0.0 0.0 \n", - "9 0.0 0.0 \n", + "4 0.0 0.0 \n", "... ... ... \n", - "82858 0.0 0.0 \n", - "82861 0.0 0.0 \n", - "82862 0.0 0.0 \n", - "82863 0.0 0.0 \n", - "82865 0.0 0.0 \n", + "81122 0.0 0.0 \n", + "81123 0.0 0.0 \n", + "81124 0.0 0.0 \n", + "81125 0.0 0.0 \n", + "81126 0.0 0.0 \n", "\n", " top_correlation_individual_8 top_correlation_individual_9 \\\n", "0 0.0 0.0 \n", + "1 0.0 0.0 \n", + "2 0.0 0.0 \n", "3 0.0 0.0 \n", - "6 0.0 0.0 \n", - "8 0.0 0.0 \n", - "9 0.0 0.0 \n", + "4 0.0 0.0 \n", "... ... ... \n", - "82858 0.0 0.0 \n", - "82861 0.0 0.0 \n", - "82862 0.0 0.0 \n", - "82863 0.0 0.0 \n", - "82865 0.0 0.0 \n", + "81122 0.0 0.0 \n", + "81123 0.0 0.0 \n", + "81124 0.0 0.0 \n", + "81125 0.0 0.0 \n", + "81126 0.0 0.0 \n", "\n", " top_correlation_individual_10 \n", "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", "3 0.0 \n", - "6 0.0 \n", - "8 0.0 \n", - "9 0.0 \n", + "4 0.0 \n", "... ... \n", - "82858 0.0 \n", - "82861 0.0 \n", - "82862 0.0 \n", - "82863 0.0 \n", - "82865 0.0 \n", + "81122 0.0 \n", + "81123 0.0 \n", + "81124 0.0 \n", + "81125 0.0 \n", + "81126 0.0 \n", "\n", - "[47475 rows x 111 columns]" + "[81127 rows x 111 columns]" ] }, - "execution_count": 29, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df_targets" + "df" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALVtJREFUeJzt3Xl0VGWe//FPtqokQFUIkBTBgChIDGuLGqpbcCES6LgSz6hD08hhsKUDo6YbmbQ0KI4TD9quA9JnTiv2YtMyI9jSgCIIjhIWoyiL8gMaO3RDJQhkYUtC8vz+cFJaJEBClnqq8n6dU+ek7n3q1vc+Vbfup557byXCGGMEAABgkchgFwAAAHA2AgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBcAFbd++XXfddZf69Omj2NhY9erVSzfffLNeeumloNb11VdfKSIiQhEREfqf//mfBvMfe+wxRURE6Ouvvw5CdQBagoAC4Lw2btyoq6++Wp999pmmTp2q//zP/9S//Mu/KDIyUi+88EKwy/ObN2+e+NdiQPiIDnYBAOz25JNPyu12a+vWrUpISAiYV1paGpyizjJs2DBt27ZNy5Yt0/jx45v9+JMnTyo+Pr4NKgNwsRhBAXBe+/bt08CBAxuEE0lKSkoKuP/73/9e1157reLj49W1a1eNGjVK7777rn/+W2+9pezsbKWkpMjpdOryyy/XE088odra2oDl3HDDDRo0aJB27dqlG2+8UfHx8erVq5fmz5/faI333HOPrrjiiiaNotQvu6ioSKNGjVJ8fLx+8YtfNLE3ALQXAgqA8+rTp4+Kioq0Y8eO87Z7/PHHNXHiRMXExGjevHl6/PHHlZqaqnXr1vnbLF68WJ07d1ZeXp5eeOEFDR8+XHPmzNG//du/NVjesWPHNHbsWA0dOlS/+tWvlJaWplmzZmnVqlUN2kZFRWn27Nn67LPPtGzZsguu05EjRzRu3DgNGzZMzz//vG688cYm9ASAdmUA4DzeffddExUVZaKioozX6zWPPPKIeeedd0x1dbW/zZ49e0xkZKS58847TW1tbcDj6+rq/H+fPHmywfJ/8pOfmPj4eHP69Gn/tOuvv95IMr/97W/906qqqozH4zE5OTn+afv37zeSzNNPP23OnDlj+vfvb4YOHep/zrlz5xpJ5vDhww2WvWjRohb0CoC2xggKgPO6+eabVVhYqNtuu02fffaZ5s+fr6ysLPXq1Ut//vOfJUnLly9XXV2d5syZo8jIwI+ViIgI/99xcXH+vysrK/X1119r5MiROnnypL788suAx3Xu3Fk/+tGP/PcdDoeuvfZa/fWvf220zu+Ooixfvvy86+R0OjV58uQmrT+A4CCgALiga665Rm+++aaOHTumLVu2KD8/X5WVlbrrrru0a9cu7du3T5GRkUpPTz/vcnbu3Kk777xTbrdbLpdLPXr08IeQ8vLygLaXXHJJQLiRpK5du+rYsWPnXP6ECRPUr1+/C56L0qtXLzkcjgutNoAg4ioeAE3mcDh0zTXX6JprrtEVV1yhyZMna+nSpU16bFlZma6//nq5XC7NmzdPl19+uWJjY/XJJ59o1qxZqqurC2gfFRXV6HLOFzzqR1Huu+8+vfXWW+ds992RHAB2YgQFwEW5+uqrJUmHDh3S5Zdfrrq6Ou3ateuc7devX68jR45o8eLFevDBB3XLLbcoMzNTXbt2bdW6fvSjH6lfv356/PHH+V0UIIQRUACc1/vvv9/ojn7lypWSpAEDBuiOO+5QZGSk5s2b12AkpP6x9SMi311WdXW1Fi5c2Kr11o+ibNu2zX+ODIDQwyEeAOc1Y8YMnTx5UnfeeafS0tJUXV2tjRs36k9/+pMuvfRSTZ48WQkJCXr00Uf1xBNPaOTIkRo/frycTqe2bt2qlJQUFRQU6Pvf/766du2qSZMm6V//9V8VERGh3/3ud20yyjFhwgQ98cQT2rZtW6svG0D7YAQFwHk988wzuvHGG7Vy5Url5eUpLy9PW7Zs0U9/+lNt3rzZ/wNu8+bN0yuvvKJTp07p0Ucf1Zw5c/S3v/1No0ePliR169ZNK1asUM+ePTV79mw988wzuvnmm8/542stER0drdmzZ7f6cgG0nwjDQVoAAGAZRlAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKwTkj/UVldXp4MHD6pLly4N/pkYAACwkzFGlZWVSklJafCfz88WkgHl4MGDSk1NDXYZAADgIhw4cECXXHLJeduEZEDp0qWLpG9W0OVyBbkaAADQFBUVFUpNTfXvx88nJANK/WEdl8tFQAEAIMQ05fQMTpIFAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsE50sAsAAADBVbP6wwbTYsZeF4RKvsUICgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA60cEuIFTVrP4w4H7M2OuCVAkAAOGHERQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANbhKp5WcvZVPVL4XtnDFUwAgLbGCAoAALAOAQUAAFiHgAIAAKxDQAEAANbhJFkAgLU4Kb/jIqAA6NA60hV4QCjhEA8AALAOIygAgKBobPQKqEdA6cAY2gZCE9suOgICSiM4KQsAgODiHBQAAGCdZgWUxx57TBEREQG3tLQ0//zTp08rNzdX3bp1U+fOnZWTk6OSkpKAZRQXFys7O1vx8fFKSkrSzJkzdebMmdZZG4SdmtUfBtyAcMN7HGhcsw/xDBw4UO+99963C4j+dhEPP/yw/vKXv2jp0qVyu92aPn26xo8fr48++kiSVFtbq+zsbHk8Hm3cuFGHDh3Sj3/8Y8XExOg//uM/WmF1Qh/HlgEAuIiAEh0dLY/H02B6eXm5fvOb3+j111/XTTfdJEl69dVXdeWVV2rTpk0aMWKE3n33Xe3atUvvvfeekpOTNWzYMD3xxBOaNWuWHnvsMTkcjkafs6qqSlVVVf77FRUVzS0bQdaWwYtzhgAg/DT7HJQ9e/YoJSVFl112mSZMmKDi4mJJUlFRkWpqapSZmelvm5aWpt69e6uwsFCSVFhYqMGDBys5OdnfJisrSxUVFdq5c+c5n7OgoEBut9t/S01NbW7ZLXL2ECzDsAAAtK1mBZSMjAwtXrxYq1ev1ssvv6z9+/dr5MiRqqyslM/nk8PhUEJCQsBjkpOT5fP5JEk+ny8gnNTPr593Lvn5+SovL/ffDhw40JyyAQBAiGnWIZ5x48b5/x4yZIgyMjLUp08fvfHGG4qLi2v14uo5nU45nc42Wz6AjqOjjIByPhtCXYsuM05ISNAVV1yhvXv3yuPxqLq6WmVlZQFtSkpK/OeseDyeBlf11N9v7LwWAADQMbUooBw/flz79u1Tz549NXz4cMXExGjt2rX++bt371ZxcbG8Xq8kyev1avv27SotLfW3WbNmjVwul9LT01tSCpqA82gAAKGiWYd4fv7zn+vWW29Vnz59dPDgQc2dO1dRUVG699575Xa7NWXKFOXl5SkxMVEul0szZsyQ1+vViBEjJEljxoxRenq6Jk6cqPnz58vn82n27NnKzc3lEA4AAPBrVkD5+9//rnvvvVdHjhxRjx49dN1112nTpk3q0aOHJOm5555TZGSkcnJyVFVVpaysLC1cuND/+KioKK1YsULTpk2T1+tVp06dNGnSJM2bN6911woAAIS0ZgWUJUuWnHd+bGysFixYoAULFpyzTZ8+fbRy5crmPG1YC4dDLeGwDuGCEyMBhAv+WSAAABeJLwVth4CCDokPFYQbRjLDT0f/lWwCCgAgZPDlouMgoCBoOvq3g3DAa/gtdpxoCUbAGiKghKBw/SBkA0W4IcABF4+AAqBdhWvAbi30j934ItV+CChhqiNvRKHwAd+Ub9Z8+w4e2/q+rbbnUNhWWottrykujIACoEPtqACEBgIKEOYIHwBCEQEFQJvqyIcbgXNhu7gwAko7CoU3ZLgepw2Fvg8H9HP4CcURON6H4YGAAqBR4RpWWws7QaBtEVCADoidKwDbEVCA/8OIQfDY3vcEOrvx+oQnAgqAJgn2TsD2EIPzC/b7JxyE4vlALUFAwXnxoYJQQohBS/D+sQsBBQDaCYHfHm35WhB0WgcBBbAAOy4ACERAAQC0OkI3WoqAArRARztpDQDaCwElBPBNBEBr4LMk/ITzlyQCSpjgg6dj6sive0ded7SP1nqP8V69OJHBLgAAAOBsjKAA52Db0CnfwgB0JIygAAAA6xBQAACAdTjEA7QxDs0AQPMxggIAAKzDCAoAAGHMthP+m4oRFAAAYB1GUIBWxjknANByBJQ2xI6q9dGnHQOvMwAO8QAAAOsQUAAAgHUIKAAAwDqcgwI0A+dGAA23g1C4ZBWhhxEUAABgHUZQAADoYEJhNJiAAiBshcKHMIDGcYgHAABYhxEUAIAfo06wBSMoAADAOoygAABahFEXtAUCCgC0k6/KVjWYdmnCuCBUAtiPQzwAAMA6BBQAAGAdAgoAALAOAQUAAFiHk2RhDU4gBADUYwQFAABYhxEUAADCSLj8Lg0jKAAAwDotCihPPfWUIiIi9NBDD/mnnT59Wrm5uerWrZs6d+6snJwclZSUBDyuuLhY2dnZio+PV1JSkmbOnKkzZ860pBQAABBGLjqgbN26Vb/+9a81ZMiQgOkPP/yw3n77bS1dulQbNmzQwYMHNX78eP/82tpaZWdnq7q6Whs3btRrr72mxYsXa86cORe/FgAAIKxcVEA5fvy4JkyYoP/6r/9S165d/dPLy8v1m9/8Rs8++6xuuukmDR8+XK+++qo2btyoTZs2SZLeffdd7dq1S7///e81bNgwjRs3Tk888YQWLFig6urqRp+vqqpKFRUVATcAABC+Liqg5ObmKjs7W5mZmQHTi4qKVFNTEzA9LS1NvXv3VmFhoSSpsLBQgwcPVnJysr9NVlaWKioqtHPnzkafr6CgQG63239LTU29mLIBAECIaHZAWbJkiT755BMVFBQ0mOfz+eRwOJSQkBAwPTk5WT6fz9/mu+Gkfn79vMbk5+ervLzcfztw4EBzywYAACGkWZcZHzhwQA8++KDWrFmj2NjYtqqpAafTKafT2W7PBwAAgqtZIyhFRUUqLS3VVVddpejoaEVHR2vDhg168cUXFR0dreTkZFVXV6usrCzgcSUlJfJ4PJIkj8fT4Kqe+vv1bRD6vipbFXADAKA5mjWCMnr0aG3fvj1g2uTJk5WWlqZZs2YpNTVVMTExWrt2rXJyciRJu3fvVnFxsbxeryTJ6/XqySefVGlpqZKSkiRJa9askcvlUnp6emusE0IEwQUAmq6j/TuQZgWULl26aNCgQQHTOnXqpG7duvmnT5kyRXl5eUpMTJTL5dKMGTPk9Xo1YsQISdKYMWOUnp6uiRMnav78+fL5fJo9e7Zyc3M5jAMAACS1wU/dP/fcc4qMjFROTo6qqqqUlZWlhQsX+udHRUVpxYoVmjZtmrxerzp16qRJkyZp3rx5rV0KgFbU0b69AQiuFgeU9evXB9yPjY3VggULtGDBgnM+pk+fPlq5cmVLnxroUAgIADoS/lkgAABBxheQhggoAKzDhzUAAgqAkHB2aCGwAOGNgAIA6HAYpbPfRf83YwAAgLbCCAqsxrA+AHRMBBQgzDGUDYSmjv5r2wQUALgIjO6hJTp6+GgKAgpajA0NQFshCHZcBBQ0G4Gk5dryQ5fXp2NiR45ww1U8AADAOoygWIYTGgEAYAQFAABYiBGUION8AUiMnAHA2QgoHQgn0SHc8R4HwgcBBQAQMhht7DgIKE1g2wZhWz1NwaEsuzTl9WjKe6opIxa2jWrYVg9aXyh+RqIhAspF4kMONiD4AQhXBBQAraYjB6a2/NbOFyJ0RAQUoI115J022kZrvaeCfSjEtuBlWz0dHQEFABD2+KIQeggoHViwvz21J74ZIVSwI7VHR/qMtBEBBSGFDwwANuEzqe0QUAAAVmD0CN9FQEEADoUArbcdsMMFLh4BBSGPUIWWIEQAjW8H/XVdECr5FgEFsFRH2nF2pHUF0DQEFJxXKO442rJmRms6plDcDoBQR0ABWoAz+GEr3pv2IOBeHAIKcA58qACNYyQR7YGAEgLYUbYP+hnhrq3e44zWBOKzpHUQUAC0Kz68ATQFAQUAENIIveGJgNKG2GiA4GIbBEJXZLALAAAAOBsjKGGCb4roaHjPtw2u0Akt4XyCMgEFQKMIAACCiYACADgngiqChXNQAACAdRhBAQC0OUZi0FwElFbCxgcA3+IzES3FIR4AAGAdRlAAIIgYaQAaxwgKAACwDgEFAABYh0M86JDaclidIXsgfLF9tx9GUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4nyTaCk6AAAAguAgoAAGHk7C/ZlyaMC1IlLdOsQzwvv/yyhgwZIpfLJZfLJa/Xq1Wrvu2I06dPKzc3V926dVPnzp2Vk5OjkpKSgGUUFxcrOztb8fHxSkpK0syZM3XmzJnWWRsAABAWmhVQLrnkEj311FMqKirSxx9/rJtuukm33367du7cKUl6+OGH9fbbb2vp0qXasGGDDh48qPHjx/sfX1tbq+zsbFVXV2vjxo167bXXtHjxYs2ZM6d11woAAIS0CGOMackCEhMT9fTTT+uuu+5Sjx499Prrr+uuu+6SJH355Ze68sorVVhYqBEjRmjVqlW65ZZbdPDgQSUnJ0uSFi1apFmzZunw4cNyOByNPkdVVZWqqqr89ysqKpSamqry8nK5XK6WlN+oPUsebfVlAgAQDE05xNPYuZf973my1WupqKiQ2+1u0v77oq/iqa2t1ZIlS3TixAl5vV4VFRWppqZGmZmZ/jZpaWnq3bu3CgsLJUmFhYUaPHiwP5xIUlZWlioqKvyjMI0pKCiQ2+3231JTUy+2bAAAEAKaHVC2b9+uzp07y+l06oEHHtCyZcuUnp4un88nh8OhhISEgPbJycny+XySJJ/PFxBO6ufXzzuX/Px8lZeX+28HDhxobtkAACCENPsqngEDBmjbtm0qLy/Xf//3f2vSpEnasGFDW9Tm53Q65XQ62/Q5AAAIR40dvgmFK3uaHVAcDof69esnSRo+fLi2bt2qF154QXfffbeqq6tVVlYWMIpSUlIij8cjSfJ4PNqyZUvA8uqv8qlvAwAA0OJfkq2rq1NVVZWGDx+umJgYrV271j9v9+7dKi4ultfrlSR5vV5t375dpaWl/jZr1qyRy+VSenp6S0sBAABholkjKPn5+Ro3bpx69+6tyspKvf7661q/fr3eeecdud1uTZkyRXl5eUpMTJTL5dKMGTPk9Xo1YsQISdKYMWOUnp6uiRMnav78+fL5fJo9e7Zyc3M5hAMAAPyaFVBKS0v14x//WIcOHZLb7daQIUP0zjvv6Oabb5YkPffcc4qMjFROTo6qqqqUlZWlhQsX+h8fFRWlFStWaNq0afJ6verUqZMmTZqkefPmte5aAQCAkNbi30EJhuZcR30x+B0UAEA4O/sk2bD6HRQAAIC2QkABAADW4b8ZAwDQwTR2SMc2jKAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWaVZAKSgo0DXXXKMuXbooKSlJd9xxh3bv3h3Q5vTp08rNzVW3bt3UuXNn5eTkqKSkJKBNcXGxsrOzFR8fr6SkJM2cOVNnzpxp+doAAICw0KyAsmHDBuXm5mrTpk1as2aNampqNGbMGJ04ccLf5uGHH9bbb7+tpUuXasOGDTp48KDGjx/vn19bW6vs7GxVV1dr48aNeu2117R48WLNmTOn9dYKAACEtAhjjLnYBx8+fFhJSUnasGGDRo0apfLycvXo0UOvv/667rrrLknSl19+qSuvvFKFhYUaMWKEVq1apVtuuUUHDx5UcnKyJGnRokWaNWuWDh8+LIfDccHnraiokNvtVnl5uVwu18WWf057ljza6ssEACCU9L/nyVZfZnP23y06B6W8vFySlJiYKEkqKipSTU2NMjMz/W3S0tLUu3dvFRYWSpIKCws1ePBgfziRpKysLFVUVGjnzp2NPk9VVZUqKioCbgAAIHxddECpq6vTQw89pB/84AcaNGiQJMnn88nhcCghISGgbXJysnw+n7/Nd8NJ/fz6eY0pKCiQ2+3231JTUy+2bAAAEAIuOqDk5uZqx44dWrJkSWvW06j8/HyVl5f7bwcOHGjz5wQAAMETfTEPmj59ulasWKEPPvhAl1xyiX+6x+NRdXW1ysrKAkZRSkpK5PF4/G22bNkSsLz6q3zq25zN6XTK6XReTKkAACAENWsExRij6dOna9myZVq3bp369u0bMH/48OGKiYnR2rVr/dN2796t4uJieb1eSZLX69X27dtVWlrqb7NmzRq5XC6lp6e3ZF0AAECYaNYISm5url5//XW99dZb6tKli/+cEbfbrbi4OLndbk2ZMkV5eXlKTEyUy+XSjBkz5PV6NWLECEnSmDFjlJ6erokTJ2r+/Pny+XyaPXu2cnNzGSUBAACSmhlQXn75ZUnSDTfcEDD91Vdf1X333SdJeu655xQZGamcnBxVVVUpKytLCxcu9LeNiorSihUrNG3aNHm9XnXq1EmTJk3SvHnzWrYmAAAgbLTod1CChd9BAQCgbYX076AAAAC0BQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACs0+yA8sEHH+jWW29VSkqKIiIitHz58oD5xhjNmTNHPXv2VFxcnDIzM7Vnz56ANkePHtWECRPkcrmUkJCgKVOm6Pjx4y1aEQAAED6aHVBOnDihoUOHasGCBY3Onz9/vl588UUtWrRImzdvVqdOnZSVlaXTp0/720yYMEE7d+7UmjVrtGLFCn3wwQe6//77L34tAABAWIlu7gPGjRuncePGNTrPGKPnn39es2fP1u233y5J+u1vf6vk5GQtX75c99xzj7744gutXr1aW7du1dVXXy1Jeumll/TDH/5QzzzzjFJSUlqwOgAAIBy06jko+/fvl8/nU2Zmpn+a2+1WRkaGCgsLJUmFhYVKSEjwhxNJyszMVGRkpDZv3tzocquqqlRRURFwAwAA4atVA4rP55MkJScnB0xPTk72z/P5fEpKSgqYHx0drcTERH+bsxUUFMjtdvtvqamprVk2AACwTEhcxZOfn6/y8nL/7cCBA8EuCQAAtKFWDSgej0eSVFJSEjC9pKTEP8/j8ai0tDRg/pkzZ3T06FF/m7M5nU65XK6AGwAACF+tGlD69u0rj8ejtWvX+qdVVFRo8+bN8nq9kiSv16uysjIVFRX526xbt051dXXKyMhozXIAAECIavZVPMePH9fevXv99/fv369t27YpMTFRvXv31kMPPaR///d/V//+/dW3b1/98pe/VEpKiu644w5J0pVXXqmxY8dq6tSpWrRokWpqajR9+nTdc889XMEDAAAkXURA+fjjj3XjjTf67+fl5UmSJk2apMWLF+uRRx7RiRMndP/996usrEzXXXedVq9erdjYWP9j/vCHP2j69OkaPXq0IiMjlZOToxdffLEVVgcAAISDCGOMCXYRzVVRUSG3263y8vI2OR9lz5JHW32ZAACEkv73PNnqy2zO/jskruIBAAAdCwEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA60QHuwAATWAkZ2WUImoi9P86HdaR+FNyyam+dYmKVESwqwsbdTLaH3lUFRFVchn6FwgmAgpgubij0UoojtMnrn/otX6f6GjsKf88d12sbqu5UoNrPUGsMDxsj/LpzzFfqDzytH8a/QsED4d4AIvFHY1Wt73xKnL9Q88N/EhHnacC5pdHnNbvHJ9qe5QvSBWGh+1RPv3O8anKI04HTKd/geAhoAC2MlJCcZzqVKff9vvkm2lnH234v/t/jvlCdTLtWl64qJPRn2O++OYO/QtYg4ACWMpZGaXo6kjtTvj6m8M65zoVIkIqjzyt/ZFH27W+cLE/8ug3h3XoX8AqBBTAUlE132yexxynL9DyGxURVW1ZTthqar/Rv0D7IqAAlqqNqZMkda2ObVJ7l3G2ZTlhq6n9Rv8C7SuoAWXBggW69NJLFRsbq4yMDG3ZsiWY5QBWqepSqzOOOg0o667E03E65ykQ5purTfrWJbZrfeGib12i3HWx9C9gmaAFlD/96U/Ky8vT3Llz9cknn2jo0KHKyspSaWlpsEoC7BIhlfU+pUhF6sd7r/pm2tk70f+7f1vNlfxex0WKVIRuq7nymzv0L2CNoAWUZ599VlOnTtXkyZOVnp6uRYsWKT4+Xq+88kqwSgKscyrxjI70O6nhFb308M4fKLEqLmC+28RqYvX3+J2OFhpc69HE6u/JbQIPp9G/QPAE5YfaqqurVVRUpPz8fP+0yMhIZWZmqrCwsEH7qqoqVVV9e4JaeXm5JKmioqJN6jt+kpPhYI/jsVU63P+Euh2P18+KR2pvp691NO6UusipS+u6KlIROi7esy3VV101Q159FXlMlRFV6mLoX3RsbbGPrV+mMRe+bD8oAeXrr79WbW2tkpOTA6YnJyfryy+/bNC+oKBAjz/+eIPpqampbVYjAAAd2pRftdmiKysr5Xa7z9smJH7qPj8/X3l5ef77dXV1Onr0qLp166aIiNY9LlxRUaHU1FQdOHBALperVZfdUdCHLUP/tRx92HL0YcvRhw0ZY1RZWamUlJQLtg1KQOnevbuioqJUUlISML2kpEQeT8NjvU6nU05n4CV+CQkJbVmiXC4Xb6gWog9bhv5rOfqw5ejDlqMPA11o5KReUE6SdTgcGj58uNauXeufVldXp7Vr18rr9QajJAAAYJGgHeLJy8vTpEmTdPXVV+vaa6/V888/rxMnTmjy5MnBKgkAAFgiaAHl7rvv1uHDhzVnzhz5fD4NGzZMq1evbnDibHtzOp2aO3dug0NKaDr6sGXov5ajD1uOPmw5+rBlIkxTrvUBAABoR/wvHgAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgfMeCBQt06aWXKjY2VhkZGdqyZUuwS2oXjz32mCIiIgJuaWlp/vmnT59Wbm6uunXrps6dOysnJ6fBrwAXFxcrOztb8fHxSkpK0syZM3XmzJmANuvXr9dVV10lp9Opfv36afHixQ1qCZXX4IMPPtCtt96qlJQURUREaPny5QHzjTGaM2eOevbsqbi4OGVmZmrPnj0BbY4ePaoJEybI5XIpISFBU6ZM0fHjxwPafP755xo5cqRiY2OVmpqq+fPnN6hl6dKlSktLU2xsrAYPHqyVK1c2u5ZguFAf3nfffQ3el2PHjg1o05H7sKCgQNdcc426dOmipKQk3XHHHdq9e3dAG5u23abU0t6a0oc33HBDg/fhAw88ENCmI/dhmzIwxhizZMkS43A4zCuvvGJ27txppk6dahISEkxJSUmwS2tzc+fONQMHDjSHDh3y3w4fPuyf/8ADD5jU1FSzdu1a8/HHH5sRI0aY73//+/75Z86cMYMGDTKZmZnm008/NStXrjTdu3c3+fn5/jZ//etfTXx8vMnLyzO7du0yL730komKijKrV6/2twml12DlypXm0UcfNW+++aaRZJYtWxYw/6mnnjJut9ssX77cfPbZZ+a2224zffv2NadOnfK3GTt2rBk6dKjZtGmT+d///V/Tr18/c++99/rnl5eXm+TkZDNhwgSzY8cO88c//tHExcWZX//61/42H330kYmKijLz5883u3btMrNnzzYxMTFm+/btzaolGC7Uh5MmTTJjx44NeF8ePXo0oE1H7sOsrCzz6quvmh07dpht27aZH/7wh6Z3797m+PHj/jY2bbsXqiUYmtKH119/vZk6dWrA+7C8vNw/v6P3YVsioPyfa6+91uTm5vrv19bWmpSUFFNQUBDEqtrH3LlzzdChQxudV1ZWZmJiYszSpUv907744gsjyRQWFhpjvtnRREZGGp/P52/z8ssvG5fLZaqqqowxxjzyyCNm4MCBAcu+++67TVZWlv9+qL4GZ+9c6+rqjMfjMU8//bR/WllZmXE6neaPf/yjMcaYXbt2GUlm69at/jarVq0yERER5h//+IcxxpiFCxearl27+vvQGGNmzZplBgwY4L//T//0TyY7OzugnoyMDPOTn/ykybXY4FwB5fbbbz/nY+jDQKWlpUaS2bBhgzHGrm23KbXY4Ow+NOabgPLggw+e8zH0YdvhEI+k6upqFRUVKTMz0z8tMjJSmZmZKiwsDGJl7WfPnj1KSUnRZZddpgkTJqi4uFiSVFRUpJqamoC+SUtLU+/evf19U1hYqMGDBwf8CnBWVpYqKiq0c+dOf5vvLqO+Tf0ywuk12L9/v3w+X8C6uN1uZWRkBPRZQkKCrr76an+bzMxMRUZGavPmzf42o0aNksPh8LfJysrS7t27dezYMX+b8/VrU2qx2fr165WUlKQBAwZo2rRpOnLkiH8efRiovLxckpSYmCjJrm23KbXY4Ow+rPeHP/xB3bt316BBg5Sfn6+TJ0/659GHbSdoP3Vvk6+//lq1tbUNfmY/OTlZX375ZZCqaj8ZGRlavHixBgwYoEOHDunxxx/XyJEjtWPHDvl8Pjkcjgb/PTo5OVk+n0+S5PP5Gu27+nnna1NRUaFTp07p2LFjYfMa1K9zY+vy3f5ISkoKmB8dHa3ExMSANn379m2wjPp5Xbt2PWe/fncZF6rFVmPHjtX48ePVt29f7du3T7/4xS80btw4FRYWKioqij78jrq6Oj300EP6wQ9+oEGDBkmSVdtuU2oJtsb6UJL++Z//WX369FFKSoo+//xzzZo1S7t379abb74piT5sSwQUaNy4cf6/hwwZooyMDPXp00dvvPGG4uLiglgZOrJ77rnH//fgwYM1ZMgQXX755Vq/fr1Gjx4dxMrsk5ubqx07dujDDz8Mdikh61x9eP/99/v/Hjx4sHr27KnRo0dr3759uvzyy9u7zA6FQzySunfvrqioqAZnQ5eUlMjj8QSpquBJSEjQFVdcob1798rj8ai6ulplZWUBbb7bNx6Pp9G+q593vjYul0txcXFh9RrU13u+dfF4PCotLQ2Yf+bMGR09erRV+vW78y9US6i47LLL1L17d+3du1cSfVhv+vTpWrFihd5//31dcskl/uk2bbtNqSWYztWHjcnIyJCkgPchfdg2CCiSHA6Hhg8frrVr1/qn1dXVae3atfJ6vUGsLDiOHz+uffv2qWfPnho+fLhiYmIC+mb37t0qLi72943X69X27dsDdhZr1qyRy+VSenq6v813l1Hfpn4Z4fQa9O3bVx6PJ2BdKioqtHnz5oA+KysrU1FRkb/NunXrVFdX5/8A9Hq9+uCDD1RTU+Nvs2bNGg0YMEBdu3b1tzlfvzalllDx97//XUeOHFHPnj0l0YfGGE2fPl3Lli3TunXrGhzKsmnbbUotwXChPmzMtm3bJCngfdiR+7BNBfssXVssWbLEOJ1Os3jxYrNr1y5z//33m4SEhIAzs8PVz372M7N+/Xqzf/9+89FHH5nMzEzTvXt3U1paaoz55tK23r17m3Xr1pmPP/7YeL1e4/V6/Y+vv8xuzJgxZtu2bWb16tWmR48ejV5mN3PmTPPFF1+YBQsWNHqZXai8BpWVlebTTz81n376qZFknn32WfPpp5+av/3tb8aYby5LTUhIMG+99Zb5/PPPze23397oZcbf+973zObNm82HH35o+vfvH3CJbFlZmUlOTjYTJ040O3bsMEuWLDHx8fENLpGNjo42zzzzjPniiy/M3LlzG71E9kK1BMP5+rCystL8/Oc/N4WFhWb//v3mvffeM1dddZXp37+/OX36tH8ZHbkPp02bZtxut1m/fn3AJbAnT570t7Fp271QLcFwoT7cu3evmTdvnvn444/N/v37zVtvvWUuu+wyM2rUKP8yOnoftiUCyne89NJLpnfv3sbhcJhrr73WbNq0KdgltYu7777b9OzZ0zgcDtOrVy9z9913m7179/rnnzp1yvz0pz81Xbt2NfHx8ebOO+80hw4dCljGV199ZcaNG2fi4uJM9+7dzc9+9jNTU1MT0Ob99983w4YNMw6Hw1x22WXm1VdfbVBLqLwG77//vpHU4DZp0iRjzDeXpv7yl780ycnJxul0mtGjR5vdu3cHLOPIkSPm3nvvNZ07dzYul8tMnjzZVFZWBrT57LPPzHXXXWecTqfp1auXeeqppxrU8sYbb5grrrjCOBwOM3DgQPOXv/wlYH5TagmG8/XhyZMnzZgxY0yPHj1MTEyM6dOnj5k6dWqDsNqR+7CxvpMUsF3ZtO02pZb2dqE+LC4uNqNGjTKJiYnG6XSafv36mZkzZwb8DooxHbsP21KEMca033gNAADAhXEOCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACs8/8BOUrEmlJlmd0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKkRJREFUeJzt3Xl01PW9//FXFjKJwAwESEIOAaJQAUEQwhJxqZISbURRrOBFjCzlBwYuIbdsVQJ4VRCPZSmbyy3Ye6AsbaElKaFp2C4YWYLpBSoBf0Wh5U6CVzKDERJIvr8/+sv3ME1YAoFhPnk+zplznO/3M995z/cczPNMvjMJsizLEgAAgGGC/T0AAADArUDkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5ADALdS+fXu98sor/h4DaJCIHAC4gjVr1mjhwoX+HgPADQrib1cBQO2eeuopHT58WF9++eUNH6O8vFzBwcFq1KhR/Q0G4LrwTg6ABqOsrOy2P6fD4SBwAD8hcoAGbPbs2QoKCtIXX3yhV155Rc2aNZPL5dLIkSP13XffSZK+/PJLBQUFadWqVTUeHxQUpNmzZ9c43rFjx/TSSy/J5XKpVatWmjlzpizL0qlTp/TMM8/I6XQqJiZG7733Xp1nbt++vZ566in98Y9/VI8ePRQeHq4uXbrot7/9rc+6VatWKSgoSDt37tSrr76qqKgotWnTxt6/bNky3XfffXI4HIqNjVVaWppKS0vt/d///veVnZ2tr776SkFBQQoKClL79u3t/eXl5Zo1a5Y6dOggh8OhuLg4TZ06VeXl5TXmvfyanOq59uzZo4yMDLVq1UqNGzfWs88+qzNnzvg89sCBA0pOTlbLli0VERGh+Ph4jRo1qs7nDGioQv09AAD/e+GFFxQfH6+5c+fq4MGD+uijjxQVFaV33nnnho43dOhQde7cWfPmzVN2drbefPNNRUZG6v3339fjjz+ud955R6tXr9ZPfvIT9e7dW4888kidjn/8+HENHTpU48aNU2pqqlauXKkf/ehHysnJ0Q9+8AOfta+++qpatWqlzMxM+52c2bNna86cOUpKStL48eNVVFSk5cuXa//+/dqzZ48aNWqk1157TR6PR3/729+0YMECSVKTJk0kSVVVVXr66ae1e/dujR07Vp07d9ahQ4e0YMECHTt2TJs2bbrma5g4caKaN2+uWbNm6csvv9TChQs1YcIErVu3TpJUUlKigQMHqlWrVpo+fbqaNWumL7/8skbMAbgKC0CDNWvWLEuSNWrUKJ/tzz77rNWiRQvLsizrxIkTliRr5cqVNR4vyZo1a1aN440dO9bedunSJatNmzZWUFCQNW/ePHv72bNnrYiICCs1NbVOM7dr186SZP3mN7+xt3k8Hqt169bWAw88YG9buXKlJcl66KGHrEuXLtnbS0pKrLCwMGvgwIFWZWWlvX3JkiWWJOsXv/iFvS0lJcVq165djRn+8z//0woODrb+67/+y2f7ihUrLEnWnj17fOa9/DVWz5WUlGRVVVXZ2ydPnmyFhIRYpaWllmVZ1saNGy1J1v79++twdgBcjl9XAdC4ceN87j/88MP63//9X3m93hs63pgxY+z/DgkJUUJCgizL0ujRo+3tzZo107333qu//vWvdT5+bGysnn32Wfu+0+nUyy+/rM8++0xut9tn7Y9//GOFhITY9//0pz+poqJC6enpCg4O9lnndDqVnZ19zeffsGGDOnfurE6dOunrr7+2b48//rgkafv27dc8xtixYxUUFGTff/jhh1VZWamvvvpK0j/OjyRlZWXp4sWL1zwegJqIHABq27atz/3mzZtLks6ePVsvx3O5XAoPD1fLli1rbL+R5+jQoYNPIEjS9773PUmq8Umo+Ph4n/vVEXHvvff6bA8LC9Pdd99t77+a48eP68iRI2rVqpXPrXqGkpKSax7jWuf80Ucf1ZAhQzRnzhy1bNlSzzzzjFauXFnjmh8AV8Y1OQB83um4nGVZNWKiWmVlZZ2Od7XnuJUiIiLq/ZhVVVXq1q2bfvazn9W6Py4u7prHuNb5CAoK0q9//Wt9+umn2rx5s7Zu3apRo0bpvffe06effmpfHwTgyogcAFdV/Q7D5Z88knRd73jcKl988UWNADt27Jgk+XwCqjbt2rWTJBUVFenuu++2t1dUVOjEiRNKSkqyt10p8O655x79+c9/1oABA664pr7069dP/fr101tvvaU1a9Zo+PDhWrt2rc+vBAHUjl9XAbgqp9Opli1bateuXT7bly1b5qeJpNOnT2vjxo32fa/Xq1/+8pfq0aOHYmJirvrYpKQkhYWFafHixT7vIv3Hf/yHPB6PUlJS7G2NGzeWx+OpcYwXXnhBf//73/Xhhx/W2Hf+/Pl6+T6es2fP1niXq0ePHpLEr6yA68Q7OQCuacyYMZo3b57GjBmjhIQE7dq1y37nxB++973vafTo0dq/f7+io6P1i1/8QsXFxVq5cuU1H9uqVSvNmDFDc+bM0RNPPKGnn35aRUVFWrZsmXr37q2XXnrJXturVy+tW7dOGRkZ6t27t5o0aaJBgwZpxIgRWr9+vcaNG6ft27erf//+qqys1NGjR7V+/Xpt3bpVCQkJN/UaP/74Yy1btkzPPvus7rnnHp07d04ffvihnE6nfvjDH97UsYGGgsgBcE2ZmZk6c+aMfv3rX2v9+vV68skntWXLFkVFRfllno4dO+rnP/+5pkyZoqKiIsXHx2vdunVKTk6+rsfPnj1brVq10pIlSzR58mRFRkZq7Nixevvtt32+nfjVV19VYWGhVq5cqQULFqhdu3YaNGiQgoODtWnTJi1YsEC//OUvtXHjRt111126++67NWnSJPsC5Jvx6KOPat++fVq7dq2Ki4vlcrnUp08frV69usbF1ABqx9+uAhBQ2rdvr65duyorK8vfowC4w3FNDgAAMBK/rgJwRzhz5sxVP5YeFhamyMjI2zgRgEBH5AC4I/Tu3fuqH0t/9NFHtWPHjts3EICAxzU5AO4Ie/bs0fnz56+4v3nz5urVq9dtnAhAoCNyAACAkbjwGAAAGKlBX5NTVVWl06dPq2nTprf8q9kBAED9sCxL586dU2xsrIKDr/x+TYOOnNOnT1/XH9IDAAB3nlOnTqlNmzZX3N+gI6dp06aS/nGSnE6nn6cBAADXw+v1Ki4uzv45fiUNOnKqf0XldDqJHAAAAsy1LjXhwmMAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABgp1N8DmOpizu4a2xo98ZAfJgEAoGHinRwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRbipy5s2bp6CgIKWnp9vbLly4oLS0NLVo0UJNmjTRkCFDVFxc7PO4kydPKiUlRXfddZeioqI0ZcoUXbp0yWfNjh071LNnTzkcDnXo0EGrVq2q8fxLly5V+/btFR4err59+2rfvn0383IAAIBBbjhy9u/fr/fff1/333+/z/bJkydr8+bN2rBhg3bu3KnTp0/rueees/dXVlYqJSVFFRUV+uSTT/Txxx9r1apVyszMtNecOHFCKSkpeuyxx1RYWKj09HSNGTNGW7dutdesW7dOGRkZmjVrlg4ePKju3bsrOTlZJSUlN/qSAACASawbcO7cOatjx45Wbm6u9eijj1qTJk2yLMuySktLrUaNGlkbNmyw137++eeWJCs/P9+yLMv6wx/+YAUHB1tut9tes3z5csvpdFrl5eWWZVnW1KlTrfvuu8/nOYcOHWolJyfb9/v06WOlpaXZ9ysrK63Y2Fhr7ty51/06PB6PJcnyeDzX/+KvU8WW/6pxAwAAN+96f37f0Ds5aWlpSklJUVJSks/2goICXbx40Wd7p06d1LZtW+Xn50uS8vPz1a1bN0VHR9trkpOT5fV6deTIEXvNPx87OTnZPkZFRYUKCgp81gQHByspKcleU5vy8nJ5vV6fGwAAMFNoXR+wdu1aHTx4UPv376+xz+12KywsTM2aNfPZHh0dLbfbba+5PHCq91fvu9oar9er8+fP6+zZs6qsrKx1zdGjR684+9y5czVnzpzre6EAACCg1emdnFOnTmnSpElavXq1wsPDb9VMt8yMGTPk8Xjs26lTp/w9EgAAuEXqFDkFBQUqKSlRz549FRoaqtDQUO3cuVOLFy9WaGiooqOjVVFRodLSUp/HFRcXKyYmRpIUExNT49NW1fevtcbpdCoiIkItW7ZUSEhIrWuqj1Ebh8Mhp9PpcwMAAGaqU+QMGDBAhw4dUmFhoX1LSEjQ8OHD7f9u1KiR8vLy7McUFRXp5MmTSkxMlCQlJibq0KFDPp+Cys3NldPpVJcuXew1lx+jek31McLCwtSrVy+fNVVVVcrLy7PXAACAhq1O1+Q0bdpUXbt29dnWuHFjtWjRwt4+evRoZWRkKDIyUk6nUxMnTlRiYqL69esnSRo4cKC6dOmiESNGaP78+XK73Xr99deVlpYmh8MhSRo3bpyWLFmiqVOnatSoUdq2bZvWr1+v7Oxs+3kzMjKUmpqqhIQE9enTRwsXLlRZWZlGjhx5UycEAACYoc4XHl/LggULFBwcrCFDhqi8vFzJyclatmyZvT8kJERZWVkaP368EhMT1bhxY6WmpuqNN96w18THxys7O1uTJ0/WokWL1KZNG3300UdKTk621wwdOlRnzpxRZmam3G63evTooZycnBoXIwMAgIYpyLIsy99D+IvX65XL5ZLH46n363Mu5uyusa3REw/V63MAANAQXe/Pb/52FQAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMFOrvAUz1ZemWGts66iE/TAIAQMPEOzkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASHWKnOXLl+v++++X0+mU0+lUYmKitmzZYu+/cOGC0tLS1KJFCzVp0kRDhgxRcXGxzzFOnjyplJQU3XXXXYqKitKUKVN06dIlnzU7duxQz5495XA41KFDB61atarGLEuXLlX79u0VHh6uvn37at++fXV5KQAAwHB1ipw2bdpo3rx5Kigo0IEDB/T444/rmWee0ZEjRyRJkydP1ubNm7Vhwwbt3LlTp0+f1nPPPWc/vrKyUikpKaqoqNAnn3yijz/+WKtWrVJmZqa95sSJE0pJSdFjjz2mwsJCpaena8yYMdq6dau9Zt26dcrIyNCsWbN08OBBde/eXcnJySopKbnZ8wEAAAwRZFmWdTMHiIyM1Lvvvqvnn39erVq10po1a/T8889Lko4eParOnTsrPz9f/fr105YtW/TUU0/p9OnTio6OliStWLFC06ZN05kzZxQWFqZp06YpOztbhw8ftp9j2LBhKi0tVU5OjiSpb9++6t27t5YsWSJJqqqqUlxcnCZOnKjp06df9+xer1cul0sej0dOp/NmTkMNx9e+VmNbx2Fv1etzAADQEF3vz+8bviansrJSa9euVVlZmRITE1VQUKCLFy8qKSnJXtOpUye1bdtW+fn5kqT8/Hx169bNDhxJSk5Oltfrtd8Nys/P9zlG9ZrqY1RUVKigoMBnTXBwsJKSkuw1V1JeXi6v1+tzAwAAZqpz5Bw6dEhNmjSRw+HQuHHjtHHjRnXp0kVut1thYWFq1qyZz/ro6Gi53W5Jktvt9gmc6v3V+662xuv16vz58/r6669VWVlZ65rqY1zJ3Llz5XK57FtcXFxdXz4AAAgQdY6ce++9V4WFhdq7d6/Gjx+v1NRU/eUvf7kVs9W7GTNmyOPx2LdTp075eyQAAHCLhNb1AWFhYerQoYMkqVevXtq/f78WLVqkoUOHqqKiQqWlpT7v5hQXFysmJkaSFBMTU+NTUNWfvrp8zT9/Iqu4uFhOp1MREREKCQlRSEhIrWuqj3ElDodDDoejri8ZAAAEoJv+npyqqiqVl5erV69eatSokfLy8ux9RUVFOnnypBITEyVJiYmJOnTokM+noHJzc+V0OtWlSxd7zeXHqF5TfYywsDD16tXLZ01VVZXy8vLsNQAAAHV6J2fGjBl68skn1bZtW507d05r1qzRjh07tHXrVrlcLo0ePVoZGRmKjIyU0+nUxIkTlZiYqH79+kmSBg4cqC5dumjEiBGaP3++3G63Xn/9daWlpdnvsIwbN05LlizR1KlTNWrUKG3btk3r169Xdna2PUdGRoZSU1OVkJCgPn36aOHChSorK9PIkSPr8dQAAIBAVqfIKSkp0csvv6z/+Z//kcvl0v3336+tW7fqBz/4gSRpwYIFCg4O1pAhQ1ReXq7k5GQtW7bMfnxISIiysrI0fvx4JSYmqnHjxkpNTdUbb7xhr4mPj1d2drYmT56sRYsWqU2bNvroo4+UnJxsrxk6dKjOnDmjzMxMud1u9ejRQzk5OTUuRgYAAA3XTX9PTiDje3IAAAg8t/x7cgAAAO5kRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACPVKXLmzp2r3r17q2nTpoqKitLgwYNVVFTks+bChQtKS0tTixYt1KRJEw0ZMkTFxcU+a06ePKmUlBTdddddioqK0pQpU3Tp0iWfNTt27FDPnj3lcDjUoUMHrVq1qsY8S5cuVfv27RUeHq6+fftq3759dXk5AADAYHWKnJ07dyotLU2ffvqpcnNzdfHiRQ0cOFBlZWX2msmTJ2vz5s3asGGDdu7cqdOnT+u5556z91dWViolJUUVFRX65JNP9PHHH2vVqlXKzMy015w4cUIpKSl67LHHVFhYqPT0dI0ZM0Zbt26116xbt04ZGRmaNWuWDh48qO7duys5OVklJSU3cz4AAIAhgizLsm70wWfOnFFUVJR27typRx55RB6PR61atdKaNWv0/PPPS5KOHj2qzp07Kz8/X/369dOWLVv01FNP6fTp04qOjpYkrVixQtOmTdOZM2cUFhamadOmKTs7W4cPH7afa9iwYSotLVVOTo4kqW/fvurdu7eWLFkiSaqqqlJcXJwmTpyo6dOn1zpveXm5ysvL7fter1dxcXHyeDxyOp03ehpqdXztazW2dRz2Vr0+BwAADZHX65XL5brmz++buibH4/FIkiIjIyVJBQUFunjxopKSkuw1nTp1Utu2bZWfny9Jys/PV7du3ezAkaTk5GR5vV4dOXLEXnP5MarXVB+joqJCBQUFPmuCg4OVlJRkr6nN3Llz5XK57FtcXNzNvHwAAHAHu+HIqaqqUnp6uvr376+uXbtKktxut8LCwtSsWTOftdHR0XK73faaywOnen/1vqut8Xq9On/+vL7++mtVVlbWuqb6GLWZMWOGPB6PfTt16lTdXzgAAAgIoTf6wLS0NB0+fFi7d++uz3luKYfDIYfD4e8xAADAbXBD7+RMmDBBWVlZ2r59u9q0aWNvj4mJUUVFhUpLS33WFxcXKyYmxl7zz5+2qr5/rTVOp1MRERFq2bKlQkJCal1TfQwAANCw1SlyLMvShAkTtHHjRm3btk3x8fE++3v16qVGjRopLy/P3lZUVKSTJ08qMTFRkpSYmKhDhw75fAoqNzdXTqdTXbp0sddcfozqNdXHCAsLU69evXzWVFVVKS8vz14DAAAatjr9uiotLU1r1qzR7373OzVt2tS+/sXlcikiIkIul0ujR49WRkaGIiMj5XQ6NXHiRCUmJqpfv36SpIEDB6pLly4aMWKE5s+fL7fbrddff11paWn2r5LGjRunJUuWaOrUqRo1apS2bdum9evXKzs7254lIyNDqampSkhIUJ8+fbRw4UKVlZVp5MiR9XVuAABAAKtT5CxfvlyS9P3vf99n+8qVK/XKK69IkhYsWKDg4GANGTJE5eXlSk5O1rJly+y1ISEhysrK0vjx45WYmKjGjRsrNTVVb7zxhr0mPj5e2dnZmjx5shYtWqQ2bdroo48+UnJysr1m6NChOnPmjDIzM+V2u9WjRw/l5OTUuBgZAAA0TDf1PTmB7no/Z38j+J4cAABujdvyPTkAAAB3KiIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICR6hw5u3bt0qBBgxQbG6ugoCBt2rTJZ79lWcrMzFTr1q0VERGhpKQkHT9+3GfNN998o+HDh8vpdKpZs2YaPXq0vv32W581//3f/62HH35Y4eHhiouL0/z582vMsmHDBnXq1Enh4eHq1q2b/vCHP9T15QAAAEPVOXLKysrUvXt3LV26tNb98+fP1+LFi7VixQrt3btXjRs3VnJysi5cuGCvGT58uI4cOaLc3FxlZWVp165dGjt2rL3f6/Vq4MCBateunQoKCvTuu+9q9uzZ+uCDD+w1n3zyiV588UWNHj1an332mQYPHqzBgwfr8OHDdX1JAADAQEGWZVk3/OCgIG3cuFGDBw+W9I93cWJjY/Vv//Zv+slPfiJJ8ng8io6O1qpVqzRs2DB9/vnn6tKli/bv36+EhARJUk5Ojn74wx/qb3/7m2JjY7V8+XK99tprcrvdCgsLkyRNnz5dmzZt0tGjRyVJQ4cOVVlZmbKysux5+vXrpx49emjFihW1zlteXq7y8nL7vtfrVVxcnDwej5xO542ehlodX/tajW0dh71Vr88BAEBD5PV65XK5rvnzu16vyTlx4oTcbreSkpLsbS6XS3379lV+fr4kKT8/X82aNbMDR5KSkpIUHBysvXv32mseeeQRO3AkKTk5WUVFRTp79qy95vLnqV5T/Ty1mTt3rlwul32Li4u7+RcNAADuSPUaOW63W5IUHR3tsz06Otre53a7FRUV5bM/NDRUkZGRPmtqO8blz3GlNdX7azNjxgx5PB77durUqbq+RAAAECBC/T3A7eRwOORwOPw9BgAAuA3q9Z2cmJgYSVJxcbHP9uLiYntfTEyMSkpKfPZfunRJ33zzjc+a2o5x+XNcaU31fgAA0LDVa+TEx8crJiZGeXl59jav16u9e/cqMTFRkpSYmKjS0lIVFBTYa7Zt26aqqir17dvXXrNr1y5dvHjRXpObm6t7771XzZs3t9dc/jzVa6qfBwAANGx1jpxvv/1WhYWFKiwslPSPi40LCwt18uRJBQUFKT09XW+++aZ+//vf69ChQ3r55ZcVGxtrfwKrc+fOeuKJJ/TjH/9Y+/bt0549ezRhwgQNGzZMsbGxkqR/+Zd/UVhYmEaPHq0jR45o3bp1WrRokTIyMuw5Jk2apJycHL333ns6evSoZs+erQMHDmjChAk3f1YAAEDAq/M1OQcOHNBjjz1m368Oj9TUVK1atUpTp05VWVmZxo4dq9LSUj300EPKyclReHi4/ZjVq1drwoQJGjBggIKDgzVkyBAtXrzY3u9yufTHP/5RaWlp6tWrl1q2bKnMzEyf79J58MEHtWbNGr3++uv66U9/qo4dO2rTpk3q2rXrDZ0IAABglpv6npxAd72fs78RfE8OAAC3hl++JwcAAOBOQeQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjhfp7ANOUX7qgLQUf6UTl54q0ItQnpK1Cg2hJAABut4D/6bt06VK1b99e4eHh6tu3r/bt2+e3WVbumKUXs/vr4+JfaFfTL7XJ+bleu2urtl465reZAABoqAI6ctatW6eMjAzNmjVLBw8eVPfu3ZWcnKySkpLbPsvKHbP0e89mWbJ8tluS8pr+X0IHAIDbLMiyLOvay+5Mffv2Ve/evbVkyRJJUlVVleLi4jRx4kRNnz79mo/3er1yuVzyeDxyOp03PEf5pQt6Mbv/PwInqJYF/3/zr1I+kSM0/Iafp75dzNntc7/REw/5aRIAAK7f9f78DthrcioqKlRQUKAZM2bY24KDg5WUlKT8/PxaH1NeXq7y8nL7vsfjkfSPk3Uzsg68r4rzl6657je7fq6nEv7PTT1Xffq/pzf53L/He79/BgEAoA6qf25f632agI2cr7/+WpWVlYqOjvbZHh0draNHj9b6mLlz52rOnDk1tsfFxd2SGf9ZtqZKmnpbnuuGjH7P3xMAAHDdzp07J5fLdcX9ARs5N2LGjBnKyMiw71dVVembb75RixYtFBRU2++ZzOX1ehUXF6dTp07d1K/qGjrOY/3gPNYPzmP94DzWj1t5Hi3L0rlz5xQbG3vVdQEbOS1btlRISIiKi4t9thcXFysmJqbWxzgcDjkcDp9tzZo1u1UjBgSn08k/4nrAeawfnMf6wXmsH5zH+nGrzuPV3sGpFrCfrgoLC1OvXr2Ul5dnb6uqqlJeXp4SExP9OBkAALgTBOw7OZKUkZGh1NRUJSQkqE+fPlq4cKHKyso0cuRIf48GAAD8LKAjZ+jQoTpz5owyMzPldrvVo0cP5eTk1LgYGTU5HA7NmjWrxq/vUDecx/rBeawfnMf6wXmsH3fCeQzo78kBAAC4koC9JgcAAOBqiBwAAGAkIgcAABiJyAEAAEYicgAAgJGInAZm7ty56t27t5o2baqoqCgNHjxYRUVF/h4roM2bN09BQUFKT0/39ygB6e9//7teeukltWjRQhEREerWrZsOHDjg77ECSmVlpWbOnKn4+HhFRETonnvu0b//+79f848XNnS7du3SoEGDFBsbq6CgIG3atMlnv2VZyszMVOvWrRUREaGkpCQdP37cP8Pewa52Hi9evKhp06apW7duaty4sWJjY/Xyyy/r9OnTt2U2IqeB2blzp9LS0vTpp58qNzdXFy9e1MCBA1VWVubv0QLS/v379f777+v++/kL7jfi7Nmz6t+/vxo1aqQtW7boL3/5i9577z01b97c36MFlHfeeUfLly/XkiVL9Pnnn+udd97R/Pnz9fOf/9zfo93RysrK1L17dy1durTW/fPnz9fixYu1YsUK7d27V40bN1ZycrIuXLhwmye9s13tPH733Xc6ePCgZs6cqYMHD+q3v/2tioqK9PTTT9+e4Sw0aCUlJZYka+fOnf4eJeCcO3fO6tixo5Wbm2s9+uij1qRJk/w9UsCZNm2a9dBDD/l7jICXkpJijRo1ymfbc889Zw0fPtxPEwUeSdbGjRvt+1VVVVZMTIz17rvv2ttKS0sth8Nh/epXv/LDhIHhn89jbfbt22dJsr766qtbPg/v5DRwHo9HkhQZGennSQJPWlqaUlJSlJSU5O9RAtbvf/97JSQk6Ec/+pGioqL0wAMP6MMPP/T3WAHnwQcfVF5eno4dOyZJ+vOf/6zdu3frySef9PNkgevEiRNyu90+/75dLpf69u2r/Px8P04W+Dwej4KCgm7LH8gO6D/rgJtTVVWl9PR09e/fX127dvX3OAFl7dq1OnjwoPbv3+/vUQLaX//6Vy1fvlwZGRn66U9/qv379+tf//VfFRYWptTUVH+PFzCmT58ur9erTp06KSQkRJWVlXrrrbc0fPhwf48WsNxutyTV+DNB0dHR9j7U3YULFzRt2jS9+OKLt+UvvBM5DVhaWpoOHz6s3bt3+3uUgHLq1ClNmjRJubm5Cg8P9/c4Aa2qqkoJCQl6++23JUkPPPCADh8+rBUrVhA5dbB+/XqtXr1aa9as0X333afCwkKlp6crNjaW84g7xsWLF/XCCy/IsiwtX778tjwnv65qoCZMmKCsrCxt375dbdq08fc4AaWgoEAlJSXq2bOnQkNDFRoaqp07d2rx4sUKDQ1VZWWlv0cMGK1bt1aXLl18tnXu3FknT57000SBacqUKZo+fbqGDRumbt26acSIEZo8ebLmzp3r79ECVkxMjCSpuLjYZ3txcbG9D9evOnC++uor5ebm3pZ3cSQip8GxLEsTJkzQxo0btW3bNsXHx/t7pIAzYMAAHTp0SIWFhfYtISFBw4cPV2FhoUJCQvw9YsDo379/ja8wOHbsmNq1a+eniQLTd999p+Bg3/+dh4SEqKqqyk8TBb74+HjFxMQoLy/P3ub1erV3714lJib6cbLAUx04x48f15/+9Ce1aNHitj03v65qYNLS0rRmzRr97ne/U9OmTe3fLbtcLkVERPh5usDQtGnTGtcwNW7cWC1atODapjqaPHmyHnzwQb399tt64YUXtG/fPn3wwQf64IMP/D1aQBk0aJDeeusttW3bVvfdd58+++wz/exnP9OoUaP8Pdod7dtvv9UXX3xh3z9x4oQKCwsVGRmptm3bKj09XW+++aY6duyo+Ph4zZw5U7GxsRo8eLD/hr4DXe08tm7dWs8//7wOHjyorKwsVVZW2j93IiMjFRYWdmuHu+Wf38IdRVKtt5UrV/p7tIDGR8hv3ObNm62uXbtaDofD6tSpk/XBBx/4e6SA4/V6rUmTJllt27a1wsPDrbvvvtt67bXXrPLycn+Pdkfbvn17rf8/TE1NtSzrHx8jnzlzphUdHW05HA5rwIABVlFRkX+HvgNd7TyeOHHiij93tm/ffstnC7IsvhITAACYh2tyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGOn/AZDg2LsbPTxqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGzCAYAAADEw6Y0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMj1JREFUeJzt3XtYVWWix/EfyEW8AKLBhvJC6mia6XjJSLNp5IhEjU025cgpazxahlNmWdExSystaxzTTKtprJ7xUk1pHUuKNPVYREqa10iLwinBMQO8JCK85w8PyzaX1Nqbvdnv9/M8+3nYa7177Xe9LeTXe1kryBhjBAAAEOCCfV0BAACAhkDoAQAAViD0AAAAKxB6AACAFQg9AADACoQeAABgBUIPAACwAqEHAABYgdADAACsQOgBAABWIPQAOG0vvPCCgoKC6n199NFHXvneG2+8UUFBQYqMjNQPP/xQa/+uXbucOjzxxBNeqQOAxi/E1xUA0PhMmzZNiYmJtbZ36tTJa98ZEhKiI0eO6H/+53907bXXuu1btGiRmjZtqqNHj3rt+wE0foQeAGcsNTVVffv2bdDvDA8P14ABA7RkyZJaoWfx4sVKS0vTa6+91qB1AtC4MLwFwKMeeOABBQcHa9WqVW7bx44dq7CwMH366aeSpDVr1igoKEgvv/yy7rvvPrlcLjVv3ly/+93vtGfPnjqPPXLkSK1cuVIlJSXOtg0bNmjXrl0aOXJkrfIHDhzQXXfdpR49eqhFixaKjIxUamqqU4cfmzt3rrp3765mzZqpVatW6tu3rxYvXuzsP3jwoCZMmKAOHTooPDxcsbGx+o//+A998sknP6eZAPgAoQfAGSstLdX+/fvdXt99950kafLkyerVq5dGjx6tgwcPSpLeeecdPffcc5oyZYp69uzpdqxHHnlEb731lu655x7ddtttys7OVnJycp1zd66++moFBQXp9ddfd7YtXrxYXbt2Ve/evWuV//LLL7V8+XJdccUVmjVrliZNmqStW7fq0ksv1bfffuuUe+6553TbbbepW7dumj17tqZOnapevXopNzfXKXPLLbdo/vz5Gj58uJ5++mndddddioiI0M6dO39ZYwJoOAYATtPChQuNpDpf4eHhTrmtW7easLAw81//9V/m+++/N2effbbp27evqaiocMq8//77RpI5++yzTVlZmbP9lVdeMZLMk08+6WwbNWqUad68uTHGmGuuucYMHjzYGGNMZWWlcblcZurUqaagoMBIMo8//rjzuaNHj5rKykq3cygoKDDh4eFm2rRpzrZhw4aZ7t27/+S5R0VFmYyMjDNpLgB+hjk9AM7YvHnz9Ktf/cptW5MmTZyfzz//fE2dOlWZmZnasmWL9u/fr3fffVchIbX/ybnhhhvUsmVL5/0111yj+Ph4vf3227rttttqlR85cqT+8Ic/qKioSNu2bVNRUVGdQ1vSiXlA1SorK1VSUqIWLVqoS5cubsNS0dHR+te//qUNGzaoX79+dR4rOjpaubm5+vbbb5WQkFBPywDwZ4QeAGfswgsvPOVE5kmTJmnp0qX6+OOPNX36dHXr1q3Ocp07d3Z7HxQUpE6dOumrr76qs/zll1+uli1b6uWXX9bmzZvVr1+/estXVVXpySef1NNPP62CggJVVlY6+1q3bu38fM899+i9997ThRdeqE6dOmnIkCEaOXKkBgwY4JSZOXOmRo0apbZt26pPnz66/PLLdcMNN+jcc8/9yXYA4D+Y0wPAK7788kvt2rVLkrR161aPHTc8PFxXX321XnzxRS1btqzeXh5Jmj59uiZOnKhBgwbpH//4h9555x1lZ2ere/fuqqqqcsqdd955ys/P19KlSzVw4EC99tprGjhwoB544AGnzLXXXqsvv/xSc+fOVUJCgh5//HF1795dK1eu9Ni5AfAuQg8Aj6uqqtKNN96oyMhI3XfffVqyZInb5OMfqw5G1Ywx2r17tzp06FDv8UeOHKlNmzbp4MGDGjFiRL3l/vnPf+qyyy7T888/rxEjRmjIkCFKTk52W/1VrXnz5rruuuu0cOFCFRYWKi0tTY888ojbvX/i4+N16623avny5SooKFDr1q31yCOP/HRjAPAbhB4AHjdr1ix9+OGHevbZZ/XQQw/p4osv1rhx47R///5aZV966SVnlZd0Iqjs3btXqamp9R7/sssu00MPPaSnnnpKLper3nJNmjSRMcZt26uvvqpvvvnGbVv1yrNqYWFh6tatm4wxqqioUGVlpUpLS93KxMbGKiEhQeXl5fV+PwD/wpweAGds5cqV+uyzz2ptv/jii1VeXq77779fN954o6688kpJJx5f0atXL91666165ZVX3D4TExOjgQMH6qabblJxcbFmz56tTp06acyYMfV+f3BwsCZPnnzKel5xxRWaNm2abrrpJl188cXaunWrFi1aVGsezpAhQ+RyuTRgwADFxcVp586deuqpp5SWlqaWLVuqpKRE55xzjq655hr17NlTLVq00HvvvacNGzboL3/5y+k0GQB/4OPVYwAakZ9asi7J/O1vfzP9+vUz55xzjikpKXH77JNPPmkkmZdfftkYc3LJ+pIlS0xmZqaJjY01ERERJi0tzXz99ddun/3xkvX61Ldk/c477zTx8fEmIiLCDBgwwOTk5JhLL73UXHrppU65Z555xgwaNMi0bt3ahIeHm44dO5pJkyaZ0tJSY4wx5eXlZtKkSaZnz56mZcuWpnnz5qZnz57m6aef/iXNCaCBBRlTo+8XABrAmjVrdNlll+nVV1/VNddc4+vqALAAc3oAAIAVCD0AAMAKhB4AAGAF5vQAAAAr0NMDAACsQOgBAABWCNibE1ZVVenbb79Vy5YtFRQU5OvqAACA02CM0cGDB5WQkKDgYM/2zQRs6Pn222/Vtm1bX1cDAAD8DHv27NE555zj0WMGbOhp2bKlpBONFhkZ6ePaAACA01FWVqa2bds6f8c9KWBDT/WQVmRkJKEHAIBGxhtTU5jIDAAArEDoAQAAViD0AAAAKxB6AACAFQg9AADACoQeAABgBUIPAACwAqEHAABYgdADAACsQOgBAABWIPQAAAArEHoAAIAVCD0AAMAKhB4AAGCFEF9XALBVRdZ6t/ehQwf6qCYAYAd6egAAgBUIPQAAwAqEHgAAYAVCDwAAsAKhBwAAWOGMQ8+6det05ZVXKiEhQUFBQVq+fLnbfmOMpkyZovj4eEVERCg5OVm7du1yK3PgwAGlp6crMjJS0dHRGj16tA4dOuRWZsuWLbrkkkvUtGlTtW3bVjNnzjzzswNwxiqy1ru9ACBQnHHoOXz4sHr27Kl58+bVuX/mzJmaM2eOFixYoNzcXDVv3lwpKSk6evSoUyY9PV3bt29Xdna2VqxYoXXr1mns2LHO/rKyMg0ZMkTt27dXXl6eHn/8cT344IN69tlnf8YpAgAA/Iz79KSmpio1NbXOfcYYzZ49W5MnT9awYcMkSS+99JLi4uK0fPlyjRgxQjt37lRWVpY2bNigvn37SpLmzp2ryy+/XE888YQSEhK0aNEiHTt2TH//+98VFham7t27a/PmzZo1a5ZbOAIAADhdHp3TU1BQoKKiIiUnJzvboqKi1L9/f+Xk5EiScnJyFB0d7QQeSUpOTlZwcLByc3OdMoMGDVJYWJhTJiUlRfn5+fr+++/r/O7y8nKVlZW5vQAAAKp59I7MRUVFkqS4uDi37XFxcc6+oqIixcbGulciJEQxMTFuZRITE2sdo3pfq1atan33jBkzNHXqVM+cCOAD3KEZALwrYFZvZWZmqrS01Hnt2bPH11UCAAB+xKOhx+VySZKKi4vdthcXFzv7XC6X9u3b57b/+PHjOnDggFuZuo7x4++oKTw8XJGRkW4vAACAah4NPYmJiXK5XFq1apWzraysTLm5uUpKSpIkJSUlqaSkRHl5eU6Z1atXq6qqSv3793fKrFu3ThUVFU6Z7OxsdenSpc6hLQAAgFM549Bz6NAhbd68WZs3b5Z0YvLy5s2bVVhYqKCgIE2YMEEPP/yw3nzzTW3dulU33HCDEhISdNVVV0mSzjvvPA0dOlRjxozRxx9/rA8++EDjx4/XiBEjlJCQIEkaOXKkwsLCNHr0aG3fvl0vv/yynnzySU2cONFjJw4AAOxyxhOZN27cqMsuu8x5Xx1ERo0apRdeeEF33323Dh8+rLFjx6qkpEQDBw5UVlaWmjZt6nxm0aJFGj9+vAYPHqzg4GANHz5cc+bMcfZHRUXp3XffVUZGhvr06aM2bdpoypQpLFcHAAA/W5Axxvi6Et5QVlamqKgolZaWMr8HfulUdzv21eotVpEB8CVv/v326JJ1AA2LgAIApy9glqwDAAD8FEIPAACwAqEHAABYgdADAACsQOgBAABWIPQAAAArEHoAAIAVCD0AAMAKhB4AAGAFQg8AALACoQcAAFiBZ28BjcSpHlAKAPhp9PQAAAAr0NODgMJTxwEA9aGnBwAAWIHQAwAArEDoAQAAViD0AAAAKxB6AACAFQg9AADACoQeAABgBe7TA6BeX5WsVPDG7c77jn1v9mFtAOCXoacHAABYgdADAACsQOgBAABWIPQAAAArEHoAAIAVCD0AAMAKLFkHTqEia32tbaFDB/qgJr5RtbvQ+bli/4m2sOn8AQQOQg8atboCCQAAdWF4CwAAWIGeHljF9qEqALAZoQfWqxmECEEAEJgY3gIAAFYg9AAAACsQegAAgBUIPQAAwAqEHgAAYAVWbwGWYbUaAFvR0wMAAKxA6AEAAFYg9AAAACswpwfwAObJAID/o6cHAABYgdADAACsQOgBAABWIPQAAAArEHoAAIAVCD0AAMAKLFkHAljNpfQAYDN6egAAgBUIPQAAwAqEHgAAYAVCDwAAsAITmQE/xSRkAPAsQg9gOcIVAFt4fHirsrJS999/vxITExUREaGOHTvqoYcekjHGKWOM0ZQpUxQfH6+IiAglJydr165dbsc5cOCA0tPTFRkZqejoaI0ePVqHDh3ydHUBeEBF1nq3FwD4I4+Hnscee0zz58/XU089pZ07d+qxxx7TzJkzNXfuXKfMzJkzNWfOHC1YsEC5ublq3ry5UlJSdPToUadMenq6tm/fruzsbK1YsULr1q3T2LFjPV1dAABgCY8Pb3344YcaNmyY0tLSJEkdOnTQkiVL9PHHH0s60csze/ZsTZ48WcOGDZMkvfTSS4qLi9Py5cs1YsQI7dy5U1lZWdqwYYP69u0rSZo7d64uv/xyPfHEE0pISPB0tQGPqtnbETp0oI9qAgCo5vGenosvvlirVq3S559/Lkn69NNPtX79eqWmpkqSCgoKVFRUpOTkZOczUVFR6t+/v3JyciRJOTk5io6OdgKPJCUnJys4OFi5ubl1fm95ebnKysrcXgAAANU83tNz7733qqysTF27dlWTJk1UWVmpRx55ROnp6ZKkoqIiSVJcXJzb5+Li4px9RUVFio2Nda9oSIhiYmKcMjXNmDFDU6dO9fTpAACAAOHxnp5XXnlFixYt0uLFi/XJJ5/oxRdf1BNPPKEXX3zR01/lJjMzU6Wlpc5rz549Xv0+AADQuHi8p2fSpEm69957NWLECElSjx499PXXX2vGjBkaNWqUXC6XJKm4uFjx8fHO54qLi9WrVy9Jksvl0r59+9yOe/z4cR04cMD5fE3h4eEKDw/39OkAAIAA4fGeniNHjig42P2wTZo0UVVVlSQpMTFRLpdLq1atcvaXlZUpNzdXSUlJkqSkpCSVlJQoLy/PKbN69WpVVVWpf//+nq4yAACwgMd7eq688ko98sgjateunbp3765NmzZp1qxZ+tOf/iRJCgoK0oQJE/Twww+rc+fOSkxM1P3336+EhARdddVVkqTzzjtPQ4cO1ZgxY7RgwQJVVFRo/PjxGjFiBCu3AD/AvXgANEYeDz1z587V/fffr1tvvVX79u1TQkKCbr75Zk2ZMsUpc/fdd+vw4cMaO3asSkpKNHDgQGVlZalp06ZOmUWLFmn8+PEaPHiwgoODNXz4cM2ZM8fT1QUAAJbweOhp2bKlZs+erdmzZ9dbJigoSNOmTdO0adPqLRMTE6PFixd7unpAo/dVyUq39x2iU52f6YEBgPrxlHUAAGAFHjiKRoNeDADAL0HoASCp9rAZAAQaQg/gQz81P8cf1RWM/L3OAFCNOT0AAMAK9PQAaDR4ej2AX4LQA8DjTiecEGAANDRCD/wWq7UAAJ5E6AHgF+j5AeBtTGQGAABWIPQAAAArEHoAAIAVmNMD1OCtCdRfbHzG7X1VSaFXvgcAUDdCD+BHGtsdmgGgMSH0AJbiWVsAbMOcHgAAYAVCDwAAsAKhBwAAWIHQAwAArEDoAQAAViD0AAAAKxB6AACAFQg9AADACtycEGjk6rrJIHdyBoDaCD0AAlZdz1ELHTrQBzUB4A8IPUAAsvUZXt56WCyAwEDoQUDjjyAAoBoTmQEAgBUIPQAAwAqEHgAAYAXm9AA/A3OFAKDxoacHAABYgdADAACsQOgBAABWYE4PAK/ztzlQX2x8xu19x743+6gmABoSoQeAR/EsMAD+itADAL9QzZ4snu8F+CdCD9AAKrLWq6qk8Iw/V1evCQDg52EiMwAAsAKhBwAAWIHQAwAArEDoAQAAVmAiMwCrVe0uVMX+k6uvWHkFBC56egAAgBUIPQAAwAqEHgAAYAVCDwAAsAKhBwAAWIHVW7CaNx+OySMkAMC/0NMDAACsQE8PAJyhmk9VB9A4EHqAGmoOS3lquAsA4FsMbwEAACvQ0wPA6+g9A+APCD0IWN5cmQXv+2LjM7W2tVN3H9QEQKBgeAsAAFiB0AMAAKxA6AEAAFbwSuj55ptv9J//+Z9q3bq1IiIi1KNHD23cuNHZb4zRlClTFB8fr4iICCUnJ2vXrl1uxzhw4IDS09MVGRmp6OhojR49WocOHfJGddEAKrLW13oBANCQPB56vv/+ew0YMEChoaFauXKlduzYob/85S9q1aqVU2bmzJmaM2eOFixYoNzcXDVv3lwpKSk6evSoUyY9PV3bt29Xdna2VqxYoXXr1mns2LGeri4AALCEx1dvPfbYY2rbtq0WLlzobEtMTHR+NsZo9uzZmjx5soYNGyZJeumllxQXF6fly5drxIgR2rlzp7KysrRhwwb17dtXkjR37lxdfvnleuKJJ5SQkODpagMAgADn8dDz5ptvKiUlRX/4wx+0du1anX322br11ls1ZswYSVJBQYGKioqUnJzsfCYqKkr9+/dXTk6ORowYoZycHEVHRzuBR5KSk5MVHBys3Nxc/f73v6/1veXl5SovL3fel5WVefrU4Oe89YBPlr77j5r/LTproI9qAqAx8vjw1pdffqn58+erc+fOeueddzRu3DjddtttevHFFyVJRUVFkqS4uDi3z8XFxTn7ioqKFBsb67Y/JCREMTExTpmaZsyYoaioKOfVtm1bT58aAABoxDweeqqqqtS7d29Nnz5dv/71rzV27FiNGTNGCxYs8PRXucnMzFRpaanz2rNnj1e/DwAANC4eH96Kj49Xt27d3Ladd955eu211yRJLpdLklRcXKz4+HinTHFxsXr16uWU2bdvn9sxjh8/rgMHDjifryk8PFzh4eGeOg0goHhr6C8Q1VxZGDqUITQgUHg89AwYMED5+flu2z7//HO1b99e0olJzS6XS6tWrXJCTllZmXJzczVu3DhJUlJSkkpKSpSXl6c+ffpIklavXq2qqir179/f01XGKfBHAIGOeVuAHTweeu644w5dfPHFmj59uq699lp9/PHHevbZZ/Xss89KkoKCgjRhwgQ9/PDD6ty5sxITE3X//fcrISFBV111laQTPUNDhw51hsUqKio0fvx4jRgxgpVbAADgZ/F46OnXr5+WLVumzMxMTZs2TYmJiZo9e7bS09OdMnfffbcOHz6ssWPHqqSkRAMHDlRWVpaaNm3qlFm0aJHGjx+vwYMHKzg4WMOHD9ecOXM8XV340C/pQWK4BgBwprzylPUrrrhCV1xxRb37g4KCNG3aNE2bNq3eMjExMVq8eLE3qgcADY5hYsD3vBJ6AKAhNMTjTHhkChA4CD3wCP4vFmfidCYOV+0ubKjqALAEoQdnjP/zBQA0Rl55yjoAAIC/IfQAAAArEHoAAIAVCD0AAMAKTGQGfoaaq494ZIH/4L8NgPoQelCLr1ZnsSqscfLl3bG5MzeAM0HogVcQYNDY0WMEBB5Cj2XqCiPcSBAAYAMmMgMAACvQ0wMAPsCjW4CGR08PAACwAj09YNIx4CHVk5+DN253tnXse7OvqgOgBkIPAKtUZK1XVQlPcAdsROgB4Bf8/Z47ddWPZexA48KcHgAAYAV6egCgkWDFF/DLEHrgdxhGAAB4A8NbAADACoQeAABgBYa30Cj4+8oeAID/o6cHAABYgdADAACsQOgBAABWYE5PgOE+HgAA1I3QAwBe9MXGZyTJed7X6d5zigcBA55H6Alw/MMJAMAJzOkBAABWIPQAAAArMLwFAB5WtbvQ11UAUAd6egAAgBUIPQAAwAqEHgAAYAXm9MAqPLgUAOxFTw8AALACoQcAAFiB0AMAAKzAnB4A+JmYIwY0LvT0AAAAKxB6AACAFQg9AADACoQeAABgBUIPAACwAqu3AAQ0VlgBqEboAYAGVDOEdYhO9VFNAPswvAUAAKxATw8A+IGKrPW+rgIQ8OjpAQAAViD0AAAAKxB6AACAFZjTAwB+rq5l96z6As4cPT0AAMAK9PQAHsAN8OBJXE+AdxB6ACBA1Fz2Hjp0oI9qAvgnhrcAAIAVvB56Hn30UQUFBWnChAnOtqNHjyojI0OtW7dWixYtNHz4cBUXF7t9rrCwUGlpaWrWrJliY2M1adIkHT9+3NvVRT2+KllZ6wUAQGPi1eGtDRs26JlnntEFF1zgtv2OO+7QW2+9pVdffVVRUVEaP368rr76an3wwQeSpMrKSqWlpcnlcunDDz/U3r17dcMNNyg0NFTTp0/3ZpUBoNHgLs7AmfFaT8+hQ4eUnp6u5557Tq1atXK2l5aW6vnnn9esWbP029/+Vn369NHChQv14Ycf6qOPPpIkvfvuu9qxY4f+8Y9/qFevXkpNTdVDDz2kefPm6dixY96qMgA0WvTGAqfmtdCTkZGhtLQ0JScnu23Py8tTRUWF2/auXbuqXbt2ysnJkSTl5OSoR48eiouLc8qkpKSorKxM27dvr/P7ysvLVVZW5vYCAACo5pXhraVLl+qTTz7Rhg0bau0rKipSWFiYoqOj3bbHxcWpqKjIKfPjwFO9v3pfXWbMmKGpU6d6oPYAACAQebynZ8+ePbr99tu1aNEiNW3a1NOHr1dmZqZKS0ud1549exrsuwEAgP/zeOjJy8vTvn371Lt3b4WEhCgkJERr167VnDlzFBISori4OB07dkwlJSVunysuLpbL5ZIkuVyuWqu5qt9Xl6kpPDxckZGRbi8AAIBqHh/eGjx4sLZu3eq27aabblLXrl11zz33qG3btgoNDdWqVas0fPhwSVJ+fr4KCwuVlJQkSUpKStIjjzyiffv2KTY2VpKUnZ2tyMhIdevWzdNVBgCfYcIx0HA8Hnpatmyp888/321b8+bN1bp1a2f76NGjNXHiRMXExCgyMlJ//vOflZSUpIsuukiSNGTIEHXr1k3XX3+9Zs6cqaKiIk2ePFkZGRkKDw/3dJUBAIAFfPIYir/+9a8KDg7W8OHDVV5erpSUFD399NPO/iZNmmjFihUaN26ckpKS1Lx5c40aNUrTpk3zRXUBAEAAaJDQs2bNGrf3TZs21bx58zRv3rx6P9O+fXu9/fbbXq4ZAACwBc/eAgAAViD0AAAAKxB6AACAFXwykRmBoeZS2w7RqT6qCQAAp0boAYBGiPv7AGeO4S0AAGAFenrgc/wfKwCgIdDTAwAArEDoAQAAViD0AAAAKzCnBx5zOnNzWNYOAPAVQg8aFJOWAQC+QugBAJyRiqz1bu9Dhw70UU2AM0PoQZ3okQEav5rhRCKgwG5MZAYAAFYg9AAAACsQegAAgBUIPQAAwAqEHgAAYAVWbwGAxVh+DpsQegDAInUtYwdswfAWAACwAqEHAABYgdADAACsQOgBAABWIPQAAAArsHoLACxR14OEO0Sn/uLjsuwdjQU9PQAAwAqEHgAAYAVCDwAAsAJzegAAZ8Rbc4MAbyP0AAB+sR8HoeCN29Wx780+rA1QN0IPAFisZq9NZ7HyCoGL0BNgav4DRpczAAAnEHoCHGPvAACcQOixEL1BAAAbEXpQZ28QAACBhtADAPhJNR8zATRW3JwQAABYgZ4eAICDXh0EMnp6AACAFQg9AADACoQeAABgBeb0AAA8qmp3oSr2u88NCh3K4y3ge4QeAAhQjfEeXF9sfMbtPQ8uhScxvAUAAKxA6AEAAFZgeAsA0OBq3g+IOT9oCPT0AAAAKxB6AACAFRjeAgA46lrx1SE61Qc1ATyPnh4AAGAFQg8AALACw1sAAL9TtbtQktzu7MwKL/xShB4AgMfVnBsUvHE7d1eGzzG8BQAArEBPDwDA6+p6CCnQ0OjpAQAAVvB46JkxY4b69eunli1bKjY2VldddZXy8/Pdyhw9elQZGRlq3bq1WrRooeHDh6u4uNitTGFhodLS0tSsWTPFxsZq0qRJOn78uKerCwAALOHx4a21a9cqIyND/fr10/Hjx3XfffdpyJAh2rFjh5o3by5JuuOOO/TWW2/p1VdfVVRUlMaPH6+rr75aH3zwgSSpsrJSaWlpcrlc+vDDD7V3717dcMMNCg0N1fTp0z1dZQCAD/x4snPwxu0+rAls4fHQk5WV5fb+hRdeUGxsrPLy8jRo0CCVlpbq+eef1+LFi/Xb3/5WkrRw4UKdd955+uijj3TRRRfp3Xff1Y4dO/Tee+8pLi5OvXr10kMPPaR77rlHDz74oMLCwjxdbQAAEOC8PqentLRUkhQTEyNJysvLU0VFhZKTk50yXbt2Vbt27ZSTkyNJysnJUY8ePRQXF+eUSUlJUVlZmbZvr/v/BsrLy1VWVub2AgAAqObV0FNVVaUJEyZowIABOv/88yVJRUVFCgsLU3R0tFvZuLg4FRUVOWV+HHiq91fvq8uMGTMUFRXlvNq2bevhswEAAI2ZV0NPRkaGtm3bpqVLl3rzayRJmZmZKi0tdV579uzx+ncCAIDGw2v36Rk/frxWrFihdevW6ZxzznG2u1wuHTt2TCUlJW69PcXFxXK5XE6Zjz/+2O141au7qsvUFB4ervDwcA+fBQCgsajIqn0fIB5dgR/zeE+PMUbjx4/XsmXLtHr1aiUmJrrt79Onj0JDQ7Vq1SpnW35+vgoLC5WUlCRJSkpK0tatW7Vv3z6nTHZ2tiIjI9WtWzdPVxkAAFjA4z09GRkZWrx4sd544w21bNnSmYMTFRWliIgIRUVFafTo0Zo4caJiYmIUGRmpP//5z0pKStJFF10kSRoyZIi6deum66+/XjNnzlRRUZEmT56sjIwMenMAAMDP4vHQM3/+fEnSb37zG7ftCxcu1I033ihJ+utf/6rg4GANHz5c5eXlSklJ0dNPP+2UbdKkiVasWKFx48YpKSlJzZs316hRozRt2jRPVxcAcAo1Hx4KNFYeDz3GmFOWadq0qebNm6d58+bVW6Z9+/Z6++23PVk1AABgMZ69BQAArMBT1gEAPle1u9DXVYAFCD0AAL9V1/O5Ova92VfVQSNH6AEABKya9+7hvj12I/QAABqF6iGwiv0nggwBBmeKicwAAMAK9PQAABqEt+7388XGZyRJVSUnJ0N3iE71ynehcSP0AAAaper5Oj8OO9VqBixCECSGtwAAgCUIPQAAwAqEHgAAYAVCDwAAsAITmQEA1uBmhXajpwcAAFiB0AMAAKxA6AEAAFZgTg8AIODVdTdoblhoH3p6AACAFQg9AADACoQeAABgBUIPAACwAqEHAABYgdADAACsQOgBAABW4D49AIBGpa577gCng54eAABgBUIPAACwAqEHAABYgdADAACsQOgBAABWYPUWAMBaFVnr3d6HDh3oo5qgIdDTAwAArEDoAQAAViD0AAAAKzCnBwBgpZp3du4QneqjmqChEHr8CBPqAADwHkIPAAA/gf8hDRzM6QEAAFYg9AAAACswvAUAgE5MbA7euN1tW8e+N/uoNvAGQg8AAP+vaneh2/uK/evrKYnGiNDjx5g8BwD+hd6gxo05PQAAwAqEHgAAYAVCDwAAsAJzegAAqEfNR1VItSc7q28DVQa/GKHHR2pOUvb1cQAACHQMbwEAACvQ0wMAgAfV1QPPLUf8A6GngTAMBQCAbxF6GhGCEwD4H/5tbjwIPT5Sc0VAh+hUH9UEAPBL8O9540Ho8RN1LYusiV8kAGicvtj4jNt7Hl3hG4QeeJaRwg82UZOKYFWGVqm8ZaUU5OtKeddxVSkn5GvtDzqiNqaZko63VwgLIwH8CPf28Q+EHnhMxIEQRRdGKOTYyT/4x8OqVNLuB/0Qc9yHNfOet0I/07qQApkfBbsVoZ9p0PFEpVV09V3FAPg1HijtG4QeL/hi4zO1U70H+PO4ccSBELXe3azW9ibHgtR6dzN91+lIwAWft0I/09qQglrbjeRsJ/gA9jmd6QrwDfrg8csZKbowQpIUVGMsq/p9dGHEiTQQII6rSuuqA0/N4bv/f78upEDHVdWg9QIA1M+ve3rmzZunxx9/XEVFRerZs6fmzp2rCy+80NfVclNzcpqNwg82cRvSqilIQQo5FqTwg01UHlnZgDXznpyQr92GtGoJOpHxckK+1iXHExuqWgAaqbr+ljDZ2fP8NvS8/PLLmjhxohYsWKD+/ftr9uzZSklJUX5+vmJjY31dPfxIk4rT6zA8US4wQs/+oCMeLQfALrWGwErqKMRkZ4/z29Aza9YsjRkzRjfddJMkacGCBXrrrbf097//Xffee69P6/bjCWhVJZ6fu3O6/GXcuDL09IZwTrdcY9DG1J6/9EvKAQC8zy9Dz7Fjx5SXl6fMzExnW3BwsJKTk5WTk1PnZ8rLy1VeXu68Ly0tlSSVlZV5vH4Vhw87Px86Uv4TJe1wqIkUYoLV5FhQrTk9kmRkVBlm9F2TI1KAdHz0kEvLIrafmKZU1zCXObG5xw8uHRLXCIAzt+nvd/3k/qBzz9G5vf/UQLVpONV/t43x/ERQvww9+/fvV2VlpeLi4ty2x8XF6bPPPqvzMzNmzNDUqVNrbW/btq1X6gicjhXa4usqAAhod/i6Al5z8OBBRUVFefSYfhl6fo7MzExNnDjReV9VVaUDBw6odevWCgryzN3xysrK1LZtW+3Zs0eRkZEeOWZjRVucRFucRFucRFucRFu4oz1OqqstjDE6ePCgEhISPP59fhl62rRpoyZNmqi4uNhte3FxsVwuV52fCQ8PV3h4uNu26Ohor9QvMjLS+gu1Gm1xEm1xEm1xEm1xEm3hjvY4qWZbeLqHp5pf3qcnLCxMffr00apVq5xtVVVVWrVqlZKSknxYMwAA0Fj5ZU+PJE2cOFGjRo1S3759deGFF2r27Nk6fPiws5oLAADgTPht6Lnuuuv073//W1OmTFFRUZF69eqlrKysWpObG1J4eLgeeOCBWsNoNqItTqItTqItTqItTqIt3NEeJzV0WwQZb6wJAwAA8DN+OacHAADA0wg9AADACoQeAABgBUIPAACwAqEHAABYwfrQ8+CDDyooKMjt1bVrV2f/0aNHlZGRodatW6tFixYaPnx4rTtFFxYWKi0tTc2aNVNsbKwmTZqk48ePN/SpnLF169bpyiuvVEJCgoKCgrR8+XK3/cYYTZkyRfHx8YqIiFBycrJ27drlVubAgQNKT09XZGSkoqOjNXr0aB06dMitzJYtW3TJJZeoadOmatu2rWbOnOntUztjp2qLG2+8sdZ1MnToULcygdIWM2bMUL9+/dSyZUvFxsbqqquuUn5+vlsZT/1erFmzRr1791Z4eLg6deqkF154wdund0ZOpy1+85vf1Lo2brnlFrcygdAW8+fP1wUXXODcOTcpKUkrV6509ttyTUinbgtbrom6PProowoKCtKECROcbX51bRjLPfDAA6Z79+5m7969zuvf//63s/+WW24xbdu2NatWrTIbN240F110kbn44oud/cePHzfnn3++SU5ONps2bTJvv/22adOmjcnMzPTF6ZyRt99+2/z3f/+3ef31140ks2zZMrf9jz76qImKijLLly83n376qfnd735nEhMTzQ8//OCUGTp0qOnZs6f56KOPzP/+7/+aTp06mT/+8Y/O/tLSUhMXF2fS09PNtm3bzJIlS0xERIR55plnGuo0T8up2mLUqFFm6NChbtfJgQMH3MoESlukpKSYhQsXmm3btpnNmzebyy+/3LRr184cOnTIKeOJ34svv/zSNGvWzEycONHs2LHDzJ071zRp0sRkZWU16Pn+lNNpi0svvdSMGTPG7dooLS119gdKW7z55pvmrbfeMp9//rnJz8839913nwkNDTXbtm0zxthzTRhz6raw5Zqo6eOPPzYdOnQwF1xwgbn99tud7f50bRB6HnjA9OzZs859JSUlJjQ01Lz66qvOtp07dxpJJicnxxhz4o9lcHCwKSoqcsrMnz/fREZGmvLycq/W3ZNq/qGvqqoyLpfLPP744862kpISEx4ebpYsWWKMMWbHjh1GktmwYYNTZuXKlSYoKMh88803xhhjnn76adOqVSu3trjnnntMly5dvHxGP199oWfYsGH1fiZQ28IYY/bt22ckmbVr1xpjPPd7cffdd5vu3bu7fdd1111nUlJSvH1KP1vNtjDmxB+4H/8DX1OgtoUxxrRq1cr87W9/s/qaqFbdFsbYeU0cPHjQdO7c2WRnZ7udv79dG9YPb0nSrl27lJCQoHPPPVfp6ekqLCyUJOXl5amiokLJyclO2a5du6pdu3bKycmRJOXk5KhHjx5ud4pOSUlRWVmZtm/f3rAn4kEFBQUqKipyO/eoqCj179/f7dyjo6PVt29fp0xycrKCg4OVm5vrlBk0aJDCwsKcMikpKcrPz9f333/fQGfjGWvWrFFsbKy6dOmicePG6bvvvnP2BXJblJaWSpJiYmIkee73Iicnx+0Y1WWqj+GParZFtUWLFqlNmzY6//zzlZmZqSNHjjj7ArEtKisrtXTpUh0+fFhJSUlWXxM126KabddERkaG0tLSatXZ364Nv30MRUPp37+/XnjhBXXp0kV79+7V1KlTdckll2jbtm0qKipSWFhYrae1x8XFqaioSJJUVFRU69EY1e+ryzRG1XWv69x+fO6xsbFu+0NCQhQTE+NWJjExsdYxqve1atXKK/X3tKFDh+rqq69WYmKivvjiC913331KTU1VTk6OmjRpErBtUVVVpQkTJmjAgAE6//zzJcljvxf1lSkrK9MPP/ygiIgIb5zSz1ZXW0jSyJEj1b59eyUkJGjLli265557lJ+fr9dff11SYLXF1q1blZSUpKNHj6pFixZatmyZunXrps2bN1t3TdTXFpJd14QkLV26VJ988ok2bNhQa5+//XthfehJTU11fr7gggvUv39/tW/fXq+88opfXVTwrREjRjg/9+jRQxdccIE6duyoNWvWaPDgwT6smXdlZGRo27ZtWr9+va+r4nP1tcXYsWOdn3v06KH4+HgNHjxYX3zxhTp27NjQ1fSqLl26aPPmzSotLdU///lPjRo1SmvXrvV1tXyivrbo1q2bVdfEnj17dPvttys7O1tNmzb1dXVOieGtGqKjo/WrX/1Ku3fvlsvl0rFjx1RSUuJWpri4WC6XS5LkcrlqzUKvfl9dpjGqrntd5/bjc9+3b5/b/uPHj+vAgQMB3z7nnnuu2rRpo927d0sKzLYYP368VqxYoffff1/nnHOOs91Tvxf1lYmMjPS7/+Gory3q0r9/f0lyuzYCpS3CwsLUqVMn9enTRzNmzFDPnj315JNPWnlN1NcWdQnkayIvL0/79u1T7969FRISopCQEK1du1Zz5sxRSEiI4uLi/OraIPTUcOjQIX3xxReKj49Xnz59FBoaqlWrVjn78/PzVVhY6IzdJiUlaevWrW5/8LKzsxUZGel0dTZGiYmJcrlcbudeVlam3Nxct3MvKSlRXl6eU2b16tWqqqpyfsmTkpK0bt06VVRUOGWys7PVpUsXvxzOOV3/+te/9N133yk+Pl5SYLWFMUbjx4/XsmXLtHr16lpDcp76vUhKSnI7RnWZH8+L8LVTtUVdNm/eLElu10YgtEVdqqqqVF5ebtU1UZ/qtqhLIF8TgwcP1tatW7V582bn1bdvX6Wnpzs/+9W1ceZztAPLnXfeadasWWMKCgrMBx98YJKTk02bNm3Mvn37jDEnltq1a9fOrF692mzcuNEkJSWZpKQk5/PVS+2GDBliNm/ebLKyssxZZ53VKJasHzx40GzatMls2rTJSDKzZs0ymzZtMl9//bUx5sSS9ejoaPPGG2+YLVu2mGHDhtW5ZP3Xv/61yc3NNevXrzedO3d2W6ZdUlJi4uLizPXXX2+2bdtmli5dapo1a+Z3y7R/qi0OHjxo7rrrLpOTk2MKCgrMe++9Z3r37m06d+5sjh496hwjUNpi3LhxJioqyqxZs8Ztye2RI0ecMp74vahegjpp0iSzc+dOM2/ePL9bknuqtti9e7eZNm2a2bhxoykoKDBvvPGGOffcc82gQYOcYwRKW9x7771m7dq1pqCgwGzZssXce++9JigoyLz77rvGGHuuCWN+ui1suibqU3P1mj9dG9aHnuuuu87Ex8ebsLAwc/bZZ5vrrrvO7N6929n/ww8/mFtvvdW0atXKNGvWzPz+9783e/fudTvGV199ZVJTU01ERIRp06aNufPOO01FRUVDn8oZe//9942kWq9Ro0YZY04sW7///vtNXFycCQ8PN4MHDzb5+flux/juu+/MH//4R9OiRQsTGRlpbrrpJnPw4EG3Mp9++qkZOHCgCQ8PN2effbZ59NFHG+oUT9tPtcWRI0fMkCFDzFlnnWVCQ0NN+/btzZgxY9yWVxoTOG1RVztIMgsXLnTKeOr34v333ze9evUyYWFh5txzz3X7Dn9wqrYoLCw0gwYNMjExMSY8PNx06tTJTJo0ye2eLMYERlv86U9/Mu3btzdhYWHmrLPOMoMHD3YCjzH2XBPG/HRb2HRN1Kdm6PGnayPIGGPOrG8IAACg8WFODwAAsAKhBwAAWIHQAwAArEDoAQAAViD0AAAAKxB6AACAFQg9AADACoQeAABgBUIPAACwAqEHAABYgdADAACs8H8nWcre7DwQ1QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Columns in original dataframe:\n", + "['ScanNr', 'filename', 'Peptide', 'num_proteins', 'Proteins', 'ExpMass', 'CalcMass', 'Label', 'charge', 'peptide_len', 'missed_cleavages', 'fragment_ppm_max', 'rank_max', 'delta_next_max', 'delta_rt_model_max', 'matched_peaks_max', 'longest_b_max', 'longest_y_max', 'matched_intensity_pct_max', 'spectrum_q_max', 'peptide_q_max', 'rt_prediction_error_abs_relative_max', 'precursor_ppm_max', 'hyperscore_max', 'precursor_intensity_M_max', 'precursor_intensity_M+1_max', 'precursor_intensity_M-1_max', 'fragment_ppm_min', 'rank_min', 'delta_next_min', 'delta_rt_model_min', 'matched_peaks_min', 'longest_b_min', 'longest_y_min', 'matched_intensity_pct_min', 'fragment_intensity_min', 'poisson_min', 'spectrum_q_min', 'peptide_q_min', 'rt_min', 'rt_predictions_min', 'rt_prediction_error_abs_min', 'rt_prediction_error_abs_relative_min', 'precursor_ppm_min', 'hyperscore_min', 'delta_best_min', 'precursor_intensity_M_min', 'precursor_intensity_M+1_min', 'precursor_intensity_M-1_min', 'spectrum_q_mean', 'peptide_q_mean', 'precursor_intensity_M_mean', 'precursor_intensity_M+1_mean', 'precursor_intensity_M-1_mean', 'precursor_intensity_M_sum', 'precursor_intensity_M+1_sum', 'precursor_intensity_M-1_sum', 'SpecId', 'distribution_correlation_matrix_psm_ids_0', 'distribution_correlation_matrix_psm_ids_25', 'distribution_correlation_matrix_psm_ids_50', 'distribution_correlation_matrix_psm_ids_75', 'distribution_correlation_matrix_psm_ids_100', 'distribution_correlation_matrix_frag_ids_0', 'distribution_correlation_matrix_frag_ids_25', 'distribution_correlation_matrix_frag_ids_50', 'distribution_correlation_matrix_frag_ids_75', 'distribution_correlation_matrix_frag_ids_100', 'distribution_correlation_individual_0', 'distribution_correlation_individual_25', 'distribution_correlation_individual_50', 'distribution_correlation_individual_75', 'distribution_correlation_individual_100', 'distribution_correlation_individual_0_idx', 'distribution_correlation_individual_25_idx', 'distribution_correlation_individual_50_idx', 'distribution_correlation_individual_75_idx', 'distribution_correlation_individual_100_idx', 'top_correlation_matrix_psm_ids_1', 'top_correlation_matrix_psm_ids_2', 'top_correlation_matrix_psm_ids_3', 'top_correlation_matrix_psm_ids_4', 'top_correlation_matrix_psm_ids_5', 'top_correlation_matrix_psm_ids_6', 'top_correlation_matrix_psm_ids_7', 'top_correlation_matrix_psm_ids_8', 'top_correlation_matrix_psm_ids_9', 'top_correlation_matrix_psm_ids_10', 'top_correlation_matrix_frag_ids_1', 'top_correlation_matrix_frag_ids_2', 'top_correlation_matrix_frag_ids_3', 'top_correlation_matrix_frag_ids_4', 'top_correlation_matrix_frag_ids_5', 'top_correlation_matrix_frag_ids_6', 'top_correlation_matrix_frag_ids_7', 'top_correlation_matrix_frag_ids_8', 'top_correlation_matrix_frag_ids_9', 'top_correlation_matrix_frag_ids_10', 'top_correlation_cos_1', 'mse_avg_pred_intens_1', 'mse_avg_pred_intens_total_1', 'top_correlation_individual_1', 'top_correlation_individual_2', 'top_correlation_individual_3', 'top_correlation_individual_4', 'top_correlation_individual_5', 'top_correlation_individual_6', 'top_correlation_individual_7', 'top_correlation_individual_8', 'top_correlation_individual_9', 'top_correlation_individual_10']\n", + "\n", + "Columns in working dataframe:\n", + "['ScanNr', 'filename', 'Peptide', 'num_proteins', 'Proteins', 'ExpMass', 'CalcMass', 'Label', 'charge', 'peptide_len', 'missed_cleavages', 'fragment_ppm_max', 'rank_max', 'delta_next_max', 'delta_rt_model_max', 'matched_peaks_max', 'longest_b_max', 'longest_y_max', 'matched_intensity_pct_max', 'spectrum_q_max', 'peptide_q_max', 'rt_prediction_error_abs_relative_max', 'precursor_ppm_max', 'hyperscore_max', 'precursor_intensity_M_max', 'precursor_intensity_M+1_max', 'precursor_intensity_M-1_max', 'fragment_ppm_min', 'rank_min', 'delta_next_min', 'delta_rt_model_min', 'matched_peaks_min', 'longest_b_min', 'longest_y_min', 'matched_intensity_pct_min', 'fragment_intensity_min', 'poisson_min', 'spectrum_q_min', 'peptide_q_min', 'rt_min', 'rt_predictions_min', 'rt_prediction_error_abs_min', 'rt_prediction_error_abs_relative_min', 'precursor_ppm_min', 'hyperscore_min', 'delta_best_min', 'precursor_intensity_M_min', 'precursor_intensity_M+1_min', 'precursor_intensity_M-1_min', 'spectrum_q_mean', 'peptide_q_mean', 'precursor_intensity_M_mean', 'precursor_intensity_M+1_mean', 'precursor_intensity_M-1_mean', 'precursor_intensity_M_sum', 'precursor_intensity_M+1_sum', 'precursor_intensity_M-1_sum', 'SpecId', 'distribution_correlation_matrix_psm_ids_0', 'distribution_correlation_matrix_psm_ids_25', 'distribution_correlation_matrix_psm_ids_50', 'distribution_correlation_matrix_psm_ids_75', 'distribution_correlation_matrix_psm_ids_100', 'distribution_correlation_matrix_frag_ids_0', 'distribution_correlation_matrix_frag_ids_25', 'distribution_correlation_matrix_frag_ids_50', 'distribution_correlation_matrix_frag_ids_75', 'distribution_correlation_matrix_frag_ids_100', 'distribution_correlation_individual_0', 'distribution_correlation_individual_25', 'distribution_correlation_individual_50', 'distribution_correlation_individual_75', 'distribution_correlation_individual_100', 'distribution_correlation_individual_0_idx', 'distribution_correlation_individual_25_idx', 'distribution_correlation_individual_50_idx', 'distribution_correlation_individual_75_idx', 'distribution_correlation_individual_100_idx', 'top_correlation_matrix_psm_ids_1', 'top_correlation_matrix_psm_ids_2', 'top_correlation_matrix_psm_ids_3', 'top_correlation_matrix_psm_ids_4', 'top_correlation_matrix_psm_ids_5', 'top_correlation_matrix_psm_ids_6', 'top_correlation_matrix_psm_ids_7', 'top_correlation_matrix_psm_ids_8', 'top_correlation_matrix_psm_ids_9', 'top_correlation_matrix_psm_ids_10', 'top_correlation_matrix_frag_ids_1', 'top_correlation_matrix_frag_ids_2', 'top_correlation_matrix_frag_ids_3', 'top_correlation_matrix_frag_ids_4', 'top_correlation_matrix_frag_ids_5', 'top_correlation_matrix_frag_ids_6', 'top_correlation_matrix_frag_ids_7', 'top_correlation_matrix_frag_ids_8', 'top_correlation_matrix_frag_ids_9', 'top_correlation_matrix_frag_ids_10', 'top_correlation_cos_1', 'mse_avg_pred_intens_1', 'mse_avg_pred_intens_total_1', 'top_correlation_individual_1', 'top_correlation_individual_2', 'top_correlation_individual_3', 'top_correlation_individual_4', 'top_correlation_individual_5', 'top_correlation_individual_6', 'top_correlation_individual_7', 'top_correlation_individual_8', 'top_correlation_individual_9', 'top_correlation_individual_10']\n", + "\n", + "Columns in original but not in working dataframe:\n", + "set()\n", + "\n", + "Columns in working but not in original dataframe:\n", + "set()\n" + ] + } + ], + "source": [ + "# Show differencce in columns between the two dataframes\n", + "print(\"Columns in original dataframe:\")\n", + "print(df.columns.tolist())\n", + "print(\"\\nColumns in working dataframe:\")\n", + "print(df_working.columns.tolist())\n", + "\n", + "set1 = set(df.columns.tolist())\n", + "set2 = set(df_working.columns.tolist())\n", + "print(\"\\nColumns in original but not in working dataframe:\")\n", + "print(set1 - set2)\n", + "print(\"\\nColumns in working but not in original dataframe:\")\n", + "print(set2 - set1)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "df_targets = df[df[\"Label\"] == 1.0]\n", + "df_decoys = df[df[\"Label\"] == -1.0]\n", + "df_targets_working = df_working[df_working[\"Label\"] == 1.0]\n", + "df_decoys_working = df_working[df_working[\"Label\"] == -1.0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAGzCAYAAAA41o3+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALyRJREFUeJzt3Xt0VNWhx/Hf5DUJj0mAkJcGCEhBXqLgjQEFb0kJCIqVqmiuRbRgMVgQRUEFK62NUksVLuLjtoj3glypggrCMgXBUiIvQXloEAyGKklAzAskBLLvH9wMTB5CQpLJnvl+1pq1knP2nNlnc0J+2Y9zHMYYIwAAAIsFeLsCAAAAF4tAAwAArEegAQAA1iPQAAAA6xFoAACA9Qg0AADAegQaAABgPQINAACwHoEGAABYj0ADoN5df/31uv76671dDQB+hEADQJK0f/9+3XffferYsaNCQ0PlcrnUv39/vfDCC/rhhx8apQ4Oh0MOh0O/+tWvqt3/+OOPu8scOXKkUeoEwA4OnuUEYOXKlbr11lvldDr1y1/+Uj169NDJkye1YcMGvfXWW7r77rv1yiuvXPDxKnpn1q1bV6t6OBwOhYaGKjQ0VHl5eQoJCfHY37FjRx06dEgnTpzQ4cOHFRkZWavjA/Bd9NAAfi47O1ujRo1S+/bttWfPHr3wwgsaO3as0tLS9MYbb2jPnj3q3r17o9VnyJAhKioq0qpVqzy2b9y4UdnZ2Ro2bFij1QWAPQg0gJ+bNWuWSkpK9Je//EWxsbFV9l922WWaOHGiJGnBggX66U9/qqioKDmdTnXr1k3z58+/oM85ceKEfvvb3+onP/mJQkNDFRsbq1tuuUX79+/3KHfJJZdowIABWrx4scf2RYsWqWfPnurRo0eVY//jH//Qrbfeqnbt2snpdCo+Pl4PPvhglaGy3NxcjRkzRpdeeqmcTqdiY2M1YsQIHThwwF1m69atSklJUWRkpMLCwpSQkKB77rnngs4RgPcEebsCALzrvffeU8eOHdWvX7/zlp0/f766d++um266SUFBQXrvvfd0//33q7y8XGlpaTW+7/Tp0xo+fLjWrFmjUaNGaeLEiSouLlZGRoZ27dqlTp06eZS/8847NXHiRJWUlKhFixY6deqUli5dqsmTJ+vEiRNVjr906VIdP35c48ePV5s2bbR582bNnTtX//rXv7R06VJ3uZEjR2r37t164IEH1KFDB+Xn5ysjI0M5OTnu7wcPHqy2bdtq6tSpioiI0IEDB/T222/XokUBeIUB4LcKCwuNJDNixIgLKn/8+PEq21JSUkzHjh09tg0cONAMHDjQ/f1f//pXI8nMnj27yvvLy8vdX0syaWlp5ujRoyYkJMT893//tzHGmJUrVxqHw2EOHDhgnnzySSPJHD58+EfrlZ6ebhwOh/n666+NMcZ8//33RpL54x//WOP5LVu2zEgyW7ZsqbEMgKaJISfAjxUVFUmSWrZseUHlw8LC3F8XFhbqyJEjGjhwoL766isVFhbW+L633npLkZGReuCBB6rsczgcVba1atVKQ4YM0RtvvCFJWrx4sfr166f27duft17Hjh3TkSNH1K9fPxljtH37dneZkJAQrVu3Tt9//321x4mIiJAkrVixQmVlZTWeD4Cmh0AD+DGXyyVJKi4uvqDy//znP5WcnKzmzZsrIiJCbdu21WOPPSZJPxpo9u/fry5duigo6MJHue+88073cNDy5ct155131lg2JydHd999t1q3bq0WLVqobdu2GjhwoEe9nE6nnn32Wa1atUrR0dEaMGCAZs2apdzcXPdxBg4cqJEjR+qpp55SZGSkRowYoQULFqi0tPSC6w3AOwg0gB9zuVyKi4vTrl27zlt2//79GjRokI4cOaLZs2dr5cqVysjI0IMPPihJKi8vr9e63XTTTXI6nRo9erRKS0t12223VVvu9OnT+tnPfqaVK1fq0Ucf1fLly5WRkaHXXnutSr0mTZqkvXv3Kj09XaGhoZo+fbouv/xydy+Ow+HQ3/72N2VmZmrChAn65ptvdM8996hPnz4qKSmp1/MDUL8INICfGz58uPbv36/MzMwfLffee++ptLRU7777ru677z7dcMMNSk5O9hjuqUmnTp2UlZVVq2GcsLAw3XzzzVq3bp1+9rOf1XjPmZ07d2rv3r3605/+pEcffVQjRoxQcnKy4uLiaqzLQw89pA8++EC7du3SyZMn9ac//cmjzDXXXKOnn35aW7du1aJFi7R7924tWbLkgusOoPERaAA/98gjj6h58+b61a9+pby8vCr79+/frxdeeEGBgYGSJHPOvTgLCwu1YMGC837GyJEjdeTIEf3nf/5nlX3mR+7t+fDDD+vJJ5/U9OnTayxTXb2MMXrhhRc8yh0/frzKCqlOnTqpZcuW7iGl77//vkp9evfuLUkMOwFNHMu2AT/XqVMnLV68WLfffrsuv/xyjzsFb9y4UUuXLtXdd9+tyZMnKyQkRDfeeKPuu+8+lZSU6NVXX1VUVJQOHTr0o5/xy1/+Uq+//romT56szZs367rrrtOxY8f097//Xffff79GjBhR7fuuuOIKXXHFFT967K5du6pTp056+OGH9c0338jlcumtt96qMvF37969GjRokG677TZ169ZNQUFBWrZsmfLy8jRq1ChJ0sKFC/Xiiy/q5z//uTp16qTi4mK9+uqrcrlcuuGGG2rRqgAanTeXWAFoOvbu3WvGjh1rOnToYEJCQkzLli1N//79zdy5c82JEyeMMca8++67plevXiY0NNR06NDBPPvss+4l2dnZ2e5jVV62bcyZpdWPP/64SUhIMMHBwSYmJsb84he/MPv373eX0f8v2/4x1S3b3rNnj0lOTjYtWrQwkZGRZuzYsebTTz81ksyCBQuMMcYcOXLEpKWlma5du5rmzZub8PBwk5iYaN588033cT755BNzxx13mHbt2hmn02mioqLM8OHDzdatW+vYqgAaC89yAgAA1mMODQAAsB6BBgAAWI9AAwAArEegAQAA1iPQAAAA6xFoAACA9ay8sV55ebm+/fZbtWzZston9QIAgKbHGKPi4mLFxcUpIKB++1SsDDTffvut4uPjvV0NAABQBwcPHtSll15ar8e0MtC0bNlS0pkGcblcXq4NAAC4EEVFRYqPj3f/Hq9PVgaaimEml8tFoAEAwDINMV2EScEAAMB6BBoAAGA9Ag0AALAegQYAAFiPQAMAAKxHoAEAANYj0AAAAOsRaAAAgPUINAAAwHoEGgAAYD0CDQAAsB6BBgAAWI9AAwAArEegAQAA1gvydgUAX1W2eoPH98FDrvXKMQDAH9BDAwAArEegAQAA1mPICfAShpMAoP7QQwMAAKxHoAEAANZjyAnwcQxtAfAH9NAAAADrEWgAAID1CDQAAMB6BBoAAGA9Ag0AALAeq5yAJqLyaqTG+hxWPQHwBfTQAAAA69FDAzSSxuqBAQB/RA8NAACwHoEGAABYj0ADAACsR6ABAADWI9AAAADrEWgAAID1WLYNq3BTOABAdQg0QD2w+R4z1dWdoAjANgw5AQAA6xFoAACA9Qg0AADAegQaAABgPQINAACwHoEGAABYj0ADAACsR6ABAADW48Z68DvcbRgAfA+BBvAxNt+1GADqikCDJoOeEwBAXTGHBgAAWI8eGvg9eoYAwH700AAAAOsRaAAAgPUINAAAwHoEGgAAYD0mBaPJ4n4qAIALRaCB1VihBACQCDTwMdX16hByAMD3EWgAi9AjBQDVI9AAldDLAwD2YZUTAACwHj00AKpgaAuAbQg0gB84ULCqyrYOEUO9UBMAaBgMOQEAAOvVKtCcPn1a06dPV0JCgsLCwtSpUyf97ne/kzHGXcYYoxkzZig2NlZhYWFKTk7Wl19+6XGco0ePKjU1VS6XSxEREbr33ntVUlJSP2cEAAD8Tq2GnJ599lnNnz9fCxcuVPfu3bV161aNGTNG4eHh+s1vfiNJmjVrlubMmaOFCxcqISFB06dPV0pKivbs2aPQ0FBJUmpqqg4dOqSMjAyVlZVpzJgxGjdunBYvXlz/Zwi/xx2HAcD31SrQbNy4USNGjNCwYcMkSR06dNAbb7yhzZs3SzrTO/P888/riSee0IgRIyRJr7/+uqKjo7V8+XKNGjVKn3/+uVavXq0tW7aob9++kqS5c+fqhhtu0HPPPae4uLj6PD/ApxHWAOCMWg059evXT2vWrNHevXslSZ9++qk2bNigoUPPTC7Mzs5Wbm6ukpOT3e8JDw9XYmKiMjMzJUmZmZmKiIhwhxlJSk5OVkBAgDZt2lTt55aWlqqoqMjjBQAAUKFWPTRTp05VUVGRunbtqsDAQJ0+fVpPP/20UlNTJUm5ubmSpOjoaI/3RUdHu/fl5uYqKirKsxJBQWrdurW7TGXp6el66qmnalNVAADgR2rVQ/Pmm29q0aJFWrx4sT755BMtXLhQzz33nBYuXNhQ9ZMkTZs2TYWFhe7XwYMHG/TzAACAXWrVQzNlyhRNnTpVo0aNkiT17NlTX3/9tdLT0zV69GjFxMRIkvLy8hQbG+t+X15ennr37i1JiomJUX5+vsdxT506paNHj7rfX5nT6ZTT6axNVQGv4r4vANC4ahVojh8/roAAz06dwMBAlZeXS5ISEhIUExOjNWvWuANMUVGRNm3apPHjx0uSkpKSVFBQoG3btqlPnz6SpLVr16q8vFyJiYkXez6wCBNa7cGdgwE0dbUKNDfeeKOefvpptWvXTt27d9f27ds1e/Zs3XPPPZIkh8OhSZMm6fe//706d+7sXrYdFxenm2++WZJ0+eWXa8iQIRo7dqxeeukllZWVacKECRo1ahQrnAAAQJ3UKtDMnTtX06dP1/3336/8/HzFxcXpvvvu04wZM9xlHnnkER07dkzjxo1TQUGBrr32Wq1evdp9DxpJWrRokSZMmKBBgwYpICBAI0eO1Jw5c+rvrAALMCwFAPXHYc69za8lioqKFB4ersLCQrlcLm9XB3Vk05DT+YZYKp/LhYSVxgw09f1ZDDkBqIuG/P3Ns5wAAID1CDQAAMB6BBoAAGC9Wk0KBoCasLQbgDfRQwMAAKxHoAEAANYj0AAAAOsRaAAAgPUINAAAwHqscgIugE13NQYAf0QPDQAAsB6BBgAAWI9AAwAArEegAQAA1mNSMNCEHShYVWVbh4ih1n8WANQ3emgAAID16KEBmpDqekkAAOdHDw0AALAegQYAAFiPQAMAAKxHoAEAANYj0AAAAOuxygnwQQ29WoqHdQJoagg0gJ9iiTgAX8KQEwAAsB49NAAaROVhqeAh13qpJgD8AT00AADAegQaAABgPQINAACwHoEGAABYj0ADAACsR6ABAADWY9k20Ejq60Z2lY/TIWJovRwXAGxGDw0AALAegQYAAFiPQAMAAKxHoAEAANZjUjAAa1R+PpTEM6IAnEGgASxXX6unGlpdwkh17wGA6jDkBAAArEcPDYAaNfY9b+iRAVBXBBoAXkOAAVBfGHICAADWI9AAAADrEWgAAID1mEMD4IJVt0Sch2MCaArooQEAANYj0AAAAOsRaAAAgPWYQwPAapXvZcOznQD/RA8NAACwHoEGAABYj0ADAACsxxwaoB5Ud38WAEDjIdAA8HtMLAbsx5ATAACwHj00ABpc5SE5HpcAoL7RQwMAAKxHoAEAANZjyAl+gydFNx2N+W9RecKvVPtJv/VxDAANix4aAABgPXpoUC9Y9goA8CZ6aAAAgPXooQFwUXxxSXZ1c2YANG217qH55ptv9B//8R9q06aNwsLC1LNnT23dutW93xijGTNmKDY2VmFhYUpOTtaXX37pcYyjR48qNTVVLpdLERERuvfee1VSUnLxZwMAAPxSrXpovv/+e/Xv31///u//rlWrVqlt27b68ssv1apVK3eZWbNmac6cOVq4cKESEhI0ffp0paSkaM+ePQoNDZUkpaam6tChQ8rIyFBZWZnGjBmjcePGafHixfV7dvBZ3uwV4LlNAND01CrQPPvss4qPj9eCBQvc2xISEtxfG2P0/PPP64knntCIESMkSa+//rqio6O1fPlyjRo1Sp9//rlWr16tLVu2qG/fvpKkuXPn6oYbbtBzzz2nuLi4+jgvWMQXhywAAI2rVkNO7777rvr27atbb71VUVFRuvLKK/Xqq6+692dnZys3N1fJycnubeHh4UpMTFRmZqYkKTMzUxEREe4wI0nJyckKCAjQpk2bqv3c0tJSFRUVebwAAAAq1KqH5quvvtL8+fM1efJkPfbYY9qyZYt+85vfKCQkRKNHj1Zubq4kKTo62uN90dHR7n25ubmKioryrERQkFq3bu0uU1l6erqeeuqp2lQVgJ9iQi/gn2rVQ1NeXq6rrrpKf/jDH3TllVdq3LhxGjt2rF566aWGqp8kadq0aSosLHS/Dh482KCfBwAA7FKrHprY2Fh169bNY9vll1+ut956S5IUExMjScrLy1NsbKy7TF5ennr37u0uk5+f73GMU6dO6ejRo+73V+Z0OuV0OmtTVYDJuwDgR2rVQ9O/f39lZWV5bNu7d6/at28v6cwE4ZiYGK1Zs8a9v6ioSJs2bVJSUpIkKSkpSQUFBdq2bZu7zNq1a1VeXq7ExMQ6nwgaTtnqDVVeAAA0JbXqoXnwwQfVr18//eEPf9Btt92mzZs365VXXtErr7wiSXI4HJo0aZJ+//vfq3Pnzu5l23Fxcbr55pslnenRGTJkiHuoqqysTBMmTNCoUaNY4QTAjYeJAqiNWgWaq6++WsuWLdO0adM0c+ZMJSQk6Pnnn1dqaqq7zCOPPKJjx45p3LhxKigo0LXXXqvVq1e770EjSYsWLdKECRM0aNAgBQQEaOTIkZozZ079nRUA/L/qglFn8awxwNfU+tEHw4cP1/Dhw2vc73A4NHPmTM2cObPGMq1bt+YmeqgRf5mjoTFsCvgeHk4JAACsR6ABAADW42nbsML5lmCzRBsA/BuBBg2i8hyF4CFMwgQANBwCjZ+pbjIkYQOoioemAnYh0Pg4VnP8OH5p1b/GHP5jRRyACkwKBgAA1qOHBsx3AQBYj0ADAPWAPwwA7yLQoArm3QAAbEOgAc7BJFMAsBOBBnVCLw5sxuo2wPcQaAA0CdztGcDFYNk2AACwHoEGAABYj0ADAACsR6ABAADWY1Kwj2H1EQDAHxFoAPi9uqyw4o8HoGlhyAkAAFiPHho0Cv6ahe24izTQtNFDAwAArEcPDXAe3MEWAJo+Ag0AaxAuAdSEIScAAGA9Ag0AALAegQYAAFiPQAMAAKxHoAEAANZjlRMAeEnlG04GD7nWSzUB7EcPDQAAsB49NAB8CveqAfwTPTQAAMB69NBYpLoHPDLmDgAAgQYAGgR/gACNi0Bjuer+0wRgJ1Y9AXXHHBoAAGA9emgAoJ5Ut8KqQ8RQL9QE8D/00AAAAOsRaAAAgPUINAAAwHoEGgAAYD0CDQAAsB6BBgAAWI9AAwAArMd9aACgjmr7ZG/u7A00HHpoAACA9Qg0AADAegQaAABgPQINAACwHoEGAABYj0ADAACsR6ABAADWI9AAAADrcWM9AGhAlW++1yFiqJdqAvg2emgAAID1CDQAAMB6BBoAAGA9Ag0AALAek4IBoBFV94RuJgoDF49AAwBexkoo4OIRaNCoqvvrFACAi8UcGgAAYD16aACgiSpbvaHKtuAh13qhJkDTd1E9NM8884wcDocmTZrk3nbixAmlpaWpTZs2atGihUaOHKm8vDyP9+Xk5GjYsGFq1qyZoqKiNGXKFJ06depiqgIAAPxYnQPNli1b9PLLL6tXr14e2x988EG99957Wrp0qdavX69vv/1Wt9xyi3v/6dOnNWzYMJ08eVIbN27UwoUL9dprr2nGjBl1PwsAAODX6hRoSkpKlJqaqldffVWtWrVyby8sLNRf/vIXzZ49Wz/96U/Vp08fLViwQBs3btTHH38sSfrggw+0Z88e/c///I969+6toUOH6ne/+53mzZunkydPVvt5paWlKioq8ngBAABUqFOgSUtL07Bhw5ScnOyxfdu2bSorK/PY3rVrV7Vr106ZmZmSpMzMTPXs2VPR0dHuMikpKSoqKtLu3bur/bz09HSFh4e7X/Hx8XWpNhrYgYJVVV4AADSGWk8KXrJkiT755BNt2bKlyr7c3FyFhIQoIiLCY3t0dLRyc3PdZc4NMxX7K/ZVZ9q0aZo8ebL7+6KiIkJNA+O+GAAAm9Qq0Bw8eFATJ05URkaGQkNDG6pOVTidTjmdzkb7PAAAYJdaDTlt27ZN+fn5uuqqqxQUFKSgoCCtX79ec+bMUVBQkKKjo3Xy5EkVFBR4vC8vL08xMTGSpJiYmCqrniq+rygDAABQG7UKNIMGDdLOnTu1Y8cO96tv375KTU11fx0cHKw1a9a435OVlaWcnBwlJSVJkpKSkrRz507l5+e7y2RkZMjlcqlbt271dFoAAMCf1GrIqWXLlurRo4fHtubNm6tNmzbu7ffee68mT56s1q1by+Vy6YEHHlBSUpKuueYaSdLgwYPVrVs33XXXXZo1a5Zyc3P1xBNPKC0tjWElAABQJ/V+p+A///nPCggI0MiRI1VaWqqUlBS9+OKL7v2BgYFasWKFxo8fr6SkJDVv3lyjR4/WzJkz67sqAADAT1x0oFm3bp3H96GhoZo3b57mzZtX43vat2+v999//2I/GgAAQBLPcgIAq1R+vhPPdgLO4GnbAADAegQaAABgPYacAKCJ4U7dQO3RQwMAAKxHDw0uSHUPmuSvRgBAU0EPDQAAsB6BBgAAWI9AAwAArEegAQAA1iPQAAAA67HKCQ2qutVRAADUNwIN6oywAngfz3YCzmDICQAAWI8eGj/EbdUBAL6GHhoAAGA9Ag0AALAegQYAAFiPOTRgtRLgQyqvepJY+QT/QA8NAACwHoEGAABYj0ADAACsxxwaAEAV3IEYtqGHBgAAWI9AAwAArEegAQAA1iPQAAAA6zEp2Mdx0zzAP1T3s86DZ+FP6KEBAADWo4cGAJo4el+A8yPQAICP454y8AcEGgDAeRGK0NQRaADAzxBO4IuYFAwAAKxHDw0A4EdVnpTMhGQ0RfTQAAAA69FDAwA+6kJ7Vs6dU8PNOGEremgAAID1CDQAAMB6DDlZjK5hwH/x8w94oocGAABYj0ADAACsR6ABAADWI9AAAADrEWgAAID1CDQAAMB6BBoAAGA97kNjEe47AQBA9eihAQAA1iPQAAAA6xFoAACA9ZhDAwB+orp5eB0ihnqhJkD9o4cGAABYj0ADAACsR6ABAADWYw4NAPgx7m8FX0GgAQBctLLVG6psCx5yrRdqAn9FoAEA1Fp1AQbwJubQAAAA6xFoAACA9RhyAgDUuwMFqxSwdbfHtk597/NSbeAP6KEBAADWI9AAAADrMeQEAGgQ5ftyPDf09U494B9q1UOTnp6uq6++Wi1btlRUVJRuvvlmZWVleZQ5ceKE0tLS1KZNG7Vo0UIjR45UXl6eR5mcnBwNGzZMzZo1U1RUlKZMmaJTp05d/NkAAAC/VKtAs379eqWlpenjjz9WRkaGysrKNHjwYB07dsxd5sEHH9R7772npUuXav369fr22291yy23uPefPn1aw4YN08mTJ7Vx40YtXLhQr732mmbMmFF/ZwUAAPyKwxhj6vrmw4cPKyoqSuvXr9eAAQNUWFiotm3bavHixfrFL34hSfriiy90+eWXKzMzU9dcc41WrVql4cOH69tvv1V0dLQk6aWXXtKjjz6qw4cPKyQkpMrnlJaWqrS01P19UVGR4uPjVVhYKJfLVdfqW+fLJY97uwoAUK0OEUM9vq/ukQqdRz3dWNVBE1VUVKTw8PAG+f19UZOCCwsLJUmtW7eWJG3btk1lZWVKTk52l+natavatWunzMxMSVJmZqZ69uzpDjOSlJKSoqKiIu3e7bnEr0J6errCw8Pdr/j4+IupNgCgCShbvaHKq7bvASrUOdCUl5dr0qRJ6t+/v3r06CFJys3NVUhIiCIiIjzKRkdHKzc3113m3DBTsb9iX3WmTZumwsJC9+vgwYN1rTYAAPBBdV7llJaWpl27dmnDhoZPyE6nU06ns8E/BwDQcOhRQUOqU6CZMGGCVqxYoY8++kiXXnqpe3tMTIxOnjypgoICj16avLw8xcTEuMts3rzZ43gVq6AqyuAMfvgBALgwtRpyMsZowoQJWrZsmdauXauEhASP/X369FFwcLDWrFnj3paVlaWcnBwlJSVJkpKSkrRz507l5+e7y2RkZMjlcqlbt24Xcy4AAIscKFhV5QXUVa16aNLS0rR48WK98847atmypXvOS3h4uMLCwhQeHq57771XkydPVuvWreVyufTAAw8oKSlJ11xzjSRp8ODB6tatm+666y7NmjVLubm5euKJJ5SWlsawEgBYijACb6tVoJk/f74k6frrr/fYvmDBAt19992SpD//+c8KCAjQyJEjVVpaqpSUFL344ovusoGBgVqxYoXGjx+vpKQkNW/eXKNHj9bMmTMv7kwAAIDfqlWguZBb1oSGhmrevHmaN29ejWXat2+v999/vzYfDQAAUCMeTgkAAKxHoAEAANYj0AAAAOvV+cZ6AAA0NO7HhQtFDw0AALAePTQAgCajco9Mdfe3qfxkb0CihwYAAPgAemgAAI2CuwmjIdFDAwAArEegAQAA1mPICQBgFY+hqyWrqkwSDh5ybSPXCE0BPTQAAMB6BBoAAGA9Ag0AALAegQYAAFiPQAMAAKxHoAEAANZj2TYAwGqV70AcsHW3OvW9z0u1gbfQQwMAAKxHDw0AwKeU78tR2ZGzT+3mRnv+gUADAGgyeIAl6oohJwAAYD0CDQAAsB6BBgAAWI9AAwAArEegAQAA1iPQAAAA6xFoAACA9Qg0AADAegQaAABgPQINAACwHoEGAABYj0ADAACsR6ABAADW42nbAACfc+5TuwO27lanvvd5sTZoDAQaAIBPK9+Xo7IjG9zfBw+51ou1QUNhyAkAAFiPQAMAAKxHoAEAANZjDk0jKVu9weN7xnABoOng/2j70UMDAACsR6ABAADWI9AAAADrEWgAAID1mBQMAPB5le8cLIm7B/sYemgAAID16KEBAPil/Vtfdn9dXpCjDhFDvVgbXCx6aAAAgPXoofGSyjdxkriREwB4E/Ns7EagqSfVBRQAQNNTvi/H21VAA2DICQAAWI9AAwAArMeQEwAAlVQMS5UdOTOdgDmOTR+BBgCA8+Bp3E0fQ04AAMB69NA0IayUAgCgbgg0jeDcextIuqC7UVZ+DwCg6eBeYk0PgaaeEUQAAGh8BBovqC708AwRAGh6atPDzsRh7yLQ4MIYyVkcqMCyAJ0OLldpy9OSw9uValinVK7MoK91xHFckaaZkk61VxDz6AFUUpdpBah/BJqLVPG01vIC372VdtjRIEXkhCno5Nlf5qdCylXQ7gf90PqUF2vWcFYGf6GPgrJlzgltK4K/0IBTCRpW1tV7FQPgVbWZVkCPTeMi0NSCO7w0wHNAmurcm7CjQWqzr1mV7YEnHWqzr5m+u+y4z4WalcFfaH1QdpXtRnJvJ9QAQNNCoEHNjBSREyZJclQaX3LIISOjiJww/dCq2GeGn06pXB9VhJnK5+SQZKSPgrKVUvYThp8AXLADBavcT/CWeIp3Q/Dq/8jz5s1Thw4dFBoaqsTERG3evNmb1ali/9aXPV7+xlkcqKCTAVXCTAWHHAo6GSBncWAj16zhZAZ9fWaYqaaA5pCM40w5AEDT4bUemv/93//V5MmT9dJLLykxMVHPP/+8UlJSlJWVpaioKG9VS9LZcU9fnhdzIQLLLizvnil3umEr00iOOI7XazkA/qepTiHwdV4LNLNnz9bYsWM1ZswYSdJLL72klStX6q9//aumTp3qrWrhHKeDy+u1nA0iTdX5QhdTDgAqnDv/srqHXlYeCWBYqna8EmhOnjypbdu2adq0ae5tAQEBSk5OVmZmZpXypaWlKi0tdX9fWFgoSSoqKmqQ+pUdOyZJKjleep6Svq0kUAoyAQo86ah22MnI6HSI0XeBxyUf6bDoqRgtC9stI1U/7GTObO75Q4xK5N/XB4C623V8+Zkv/rrcY7uj46Xurxvqd5w3VZyTMabej+2VQHPkyBGdPn1a0dHRHtujo6P1xRdfVCmfnp6up556qsr2+Pj4Bqsj8GNW6DNvVwGAz3vQ2xVoMMXFxQoPD6/XY1qxymnatGmaPHmy+/vy8nIdPXpUbdq0kcNRP8trioqKFB8fr4MHD8rlctXLMW1FW5xFW5xFW5xFW5xFW5xFW3iqrj2MMSouLlZcXFy9f55XAk1kZKQCAwOVl5fnsT0vL08xMTFVyjudTjmdTo9tERERDVI3l8vFhfj/aIuzaIuzaIuzaIuzaIuzaAtPldujvntmKnhl2XZISIj69OmjNWvWuLeVl5drzZo1SkpK8kaVAACAxbw25DR58mSNHj1affv21b/927/p+eef17Fjx9yrngAAAC6U1wLN7bffrsOHD2vGjBnKzc1V7969tXr16ioThRuL0+nUk08+WWVoyx/RFmfRFmfRFmfRFmfRFmfRFp4auz0cpiHWTgEAADQiHkYDAACsR6ABAADWI9AAAADrEWgAAID1CDQAAMB6Ph1ofvvb38rhcHi8unbt6t5/4sQJpaWlqU2bNmrRooVGjhxZ5e7FOTk5GjZsmJo1a6aoqChNmTJFp06dauxTqbWPPvpIN954o+Li4uRwOLR8+XKP/cYYzZgxQ7GxsQoLC1NycrK+/PJLjzJHjx5VamqqXC6XIiIidO+996qkpMSjzGeffabrrrtOoaGhio+P16xZsxr61GrtfG1x9913V7lOhgwZ4lHGV9oiPT1dV199tVq2bKmoqCjdfPPNysrK8ihTXz8X69at01VXXSWn06nLLrtMr732WkOfXq1cSFtcf/31Va6NX//61x5lfKEt5s+fr169ernv6JqUlKRVq1a59/vLNSGdvy385ZqozjPPPCOHw6FJkya5tzWpa8P4sCeffNJ0797dHDp0yP06fPiwe/+vf/1rEx8fb9asWWO2bt1qrrnmGtOvXz/3/lOnTpkePXqY5ORks337dvP++++byMhIM23aNG+cTq28//775vHHHzdvv/22kWSWLVvmsf+ZZ54x4eHhZvny5ebTTz81N910k0lISDA//PCDu8yQIUPMFVdcYT7++GPzj3/8w1x22WXmjjvucO8vLCw00dHRJjU11ezatcu88cYbJiwszLz88suNdZoX5HxtMXr0aDNkyBCP6+To0aMeZXylLVJSUsyCBQvMrl27zI4dO8wNN9xg2rVrZ0pKStxl6uPn4quvvjLNmjUzkydPNnv27DFz5841gYGBZvXq1Y16vj/mQtpi4MCBZuzYsR7XRmFhoXu/r7TFu+++a1auXGn27t1rsrKyzGOPPWaCg4PNrl27jDH+c00Yc/628JdrorLNmzebDh06mF69epmJEye6tzela8PnA80VV1xR7b6CggITHBxsli5d6t72+eefG0kmMzPTGHPmF2FAQIDJzc11l5k/f75xuVymtLS0Qetenyr/Ei8vLzcxMTHmj3/8o3tbQUGBcTqd5o033jDGGLNnzx4jyWzZssVdZtWqVcbhcJhvvvnGGGPMiy++aFq1auXRFo8++qjp0qVLA59R3dUUaEaMGFHje3y1LYwxJj8/30gy69evN8bU38/FI488Yrp37+7xWbfffrtJSUlp6FOqs8ptYcyZX17n/uddma+2hTHGtGrVyvzXf/2XX18TFSrawhj/vCaKi4tN586dTUZGhsf5N7Vrw6eHnCTpyy+/VFxcnDp27KjU1FTl5ORIkrZt26aysjIlJye7y3bt2lXt2rVTZmamJCkzM1M9e/b0uHtxSkqKioqKtHv37sY9kXqUnZ2t3Nxcj3MPDw9XYmKix7lHRESob9++7jLJyckKCAjQpk2b3GUGDBigkJAQd5mUlBRlZWXp+++/b6SzqR/r1q1TVFSUunTpovHjx+u7775z7/PltigsLJQktW7dWlL9/VxkZmZ6HKOiTMUxmqLKbVFh0aJFioyMVI8ePTRt2jQdP37cvc8X2+L06dNasmSJjh07pqSkJL++Jiq3RQV/uybS0tI0bNiwKnVuateG1x590BgSExP12muvqUuXLjp06JCeeuopXXfdddq1a5dyc3MVEhJS5and0dHRys3NlSTl5uZWeRRDxfcVZWxUUffqzu3cc4+KivLYHxQUpNatW3uUSUhIqHKMin2tWrVqkPrXtyFDhuiWW25RQkKC9u/fr8cee0xDhw5VZmamAgMDfbYtysvLNWnSJPXv3189evSQpHr7uaipTFFRkX744QeFhYU1xCnVWXVtIUl33nmn2rdvr7i4OH322Wd69NFHlZWVpbfffluSb7XFzp07lZSUpBMnTqhFixZatmyZunXrph07dvjdNVFTW0j+dU1I0pIlS/TJJ59oy5YtVfY1tf8vfDrQDB061P11r169lJiYqPbt2+vNN99sUhcMvGvUqFHur3v27KlevXqpU6dOWrdunQYNGuTFmjWstLQ07dq1Sxs2bPB2VbyuprYYN26c++uePXsqNjZWgwYN0v79+9WpU6fGrmaD6tKli3bs2KHCwkL97W9/0+jRo7V+/XpvV8sramqLbt26+dU1cfDgQU2cOFEZGRkKDQ31dnXOy+eHnM4VERGhn/zkJ9q3b59iYmJ08uRJFRQUeJTJy8tTTEyMJCkmJqbKbO2K7yvK2Kii7tWd27nnnp+f77H/1KlTOnr0qM+3T8eOHRUZGal9+/ZJ8s22mDBhglasWKEPP/xQl156qXt7ff1c1FTG5XI1uT8mamqL6iQmJkqSx7XhK20REhKiyy67TH369FF6erquuOIKvfDCC355TdTUFtXx5Wti27Ztys/P11VXXaWgoCAFBQVp/fr1mjNnjoKCghQdHd2krg2/CjQlJSXav3+/YmNj1adPHwUHB2vNmjXu/VlZWcrJyXGPlSYlJWnnzp0ev8wyMjLkcrnc3Y82SkhIUExMjMe5FxUVadOmTR7nXlBQoG3btrnLrF27VuXl5e4f4KSkJH300UcqKytzl8nIyFCXLl2a5BDLhfrXv/6l7777TrGxsZJ8qy2MMZowYYKWLVumtWvXVhkmq6+fi6SkJI9jVJQ5dx6Ct52vLaqzY8cOSfK4NnyhLapTXl6u0tJSv7omalLRFtXx5Wti0KBB2rlzp3bs2OF+9e3bV6mpqe6vm9S1Ufv5zvZ46KGHzLp160x2drb55z//aZKTk01kZKTJz883xpxZbtauXTuzdu1as3XrVpOUlGSSkpLc769YbjZ48GCzY8cOs3r1atO2bVsrlm0XFxeb7du3m+3btxtJZvbs2Wb79u3m66+/NsacWbYdERFh3nnnHfPZZ5+ZESNGVLts+8orrzSbNm0yGzZsMJ07d/ZYqlxQUGCio6PNXXfdZXbt2mWWLFlimjVr1uSWKv9YWxQXF5uHH37YZGZmmuzsbPP3v//dXHXVVaZz587mxIkT7mP4SluMHz/ehIeHm3Xr1nksOz1+/Li7TH38XFQsw5wyZYr5/PPPzbx585rcstTztcW+ffvMzJkzzdatW012drZ55513TMeOHc2AAQPcx/CVtpg6dapZv369yc7ONp999pmZOnWqcTgc5oMPPjDG+M81YcyPt4U/XRM1qbzKqyldGz4daG6//XYTGxtrQkJCzCWXXGJuv/12s2/fPvf+H374wdx///2mVatWplmzZubnP/+5OXTokMcxDhw4YIYOHWrCwsJMZGSkeeihh0xZWVljn0qtffjhh0ZSldfo0aONMWeWbk+fPt1ER0cbp9NpBg0aZLKysjyO8d1335k77rjDtGjRwrhcLjNmzBhTXFzsUebTTz811157rXE6neaSSy4xzzzzTGOd4gX7sbY4fvy4GTx4sGnbtq0JDg427du3N2PHjvVYYmiM77RFde0gySxYsMBdpr5+Lj788EPTu3dvExISYjp27OjxGU3B+doiJyfHDBgwwLRu3do4nU5z2WWXmSlTpnjcc8QY32iLe+65x7Rv396EhISYtm3bmkGDBrnDjDH+c00Y8+Nt4U/XRE0qB5qmdG04jDGmdn06AAAATYtfzaEBAAC+iUADAACsR6ABAADWI9AAAADrEWgAAID1CDQAAMB6BBoAAGA9Ag0AALAegQYAAFiPQAMAAKxHoAEAANb7P5nwNKATdHwqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKRdJREFUeJzt3XtwVHWe9/FPEpIOtw73hMhdFCbIRZJNbGUEhwyNk2fKKLsiQ2FERGGCBWQGlC0No7tbUXQFVAS2GI27M6PAjldAKCYQGCUGCGSMEVhgUVDsRMB0BwYSSH7PHz45D20AEyRp8uP9quoq+5xvn/6dMz3kXZ1uCDPGGAEAAFgmPNQLAAAAaApEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4Aq3z++ecKCwvT888/f8WOmZ+fr7CwMOXn51+xYwJoekQOgKtCbm6uwsLCtHPnzlAvBYAliBwAAGAlIgcAAFiJyAHQIlRXVys7O1uJiYmKiYlR27Zt9dOf/lSbN2++6GMWLlyo3r17q3Xr1ho5cqQ+/fTTejN79+7VP/7jP6pTp06Kjo5WUlKS3nvvvaY8FQDNpFWoFwAADREIBLRixQpNmDBBU6dOVWVlpX7/+9/L6/Vq+/btGjZsWND8f/7nf6qyslKZmZk6c+aMFi9erJ/97GcqKSlRbGysJKm0tFS33XabrrvuOj3++ONq27atVq1apfT0dP35z3/W3XffHYIzBXClEDkAWoSOHTvq888/V1RUlLNt6tSpGjhwoF566SX9/ve/D5o/cOCA9u/fr+uuu06SNHbsWKWkpOjZZ5/VCy+8IEmaOXOmevXqpR07dsjlckmSfv3rX2vEiBF67LHHiByghePXVQBahIiICCdwamtrdeLECZ07d05JSUnatWtXvfn09HQncCQpOTlZKSkpWrdunSTpxIkT2rRpk+69915VVlbq2LFjOnbsmI4fPy6v16v9+/frq6++ap6TA9AkiBwALcbrr7+uIUOGKDo6Wp07d1bXrl21du1a+f3+erM33HBDvW033nijPv/8c0nfvdNjjNGTTz6prl27Bt3mz58vSSovL2/S8wHQtPh1FYAW4Q9/+IMeeOABpaena86cOerWrZsiIiKUk5OjgwcPNvp4tbW1kqTf/va38nq9F5zp37//j1ozgNAicgC0CP/93/+tfv366a233lJYWJizve5dl+/bv39/vW3/8z//oz59+kiS+vXrJ0mKjIxUamrqlV8wgJDj11UAWoSIiAhJkjHG2VZYWKiCgoILzr/zzjtBn6nZvn27CgsLdeedd0qSunXrplGjRmn58uX6+uuv6z3+m2++uZLLBxACvJMD4Kry6quvav369fW2jxo1Sm+99ZbuvvtupaWl6dChQ1q2bJkSEhJ08uTJevP9+/fXiBEjNH36dFVVVWnRokXq3Lmz5s6d68wsWbJEI0aM0ODBgzV16lT169dPZWVlKigo0Jdffqm//e1vTXquAJoWkQPgqrJ06dILbj98+LBOnjyp5cuXa8OGDUpISNAf/vAHrV69+oL/cOb999+v8PBwLVq0SOXl5UpOTtbLL7+s7t27OzMJCQnauXOnnnrqKeXm5ur48ePq1q2bbr75ZmVnZzfVKQJoJmHm/Pd+AQAALMFncgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgpWv678mpra3V0aNH1b59+6C/Jh4AAFy9jDGqrKxUfHy8wsMv/n7NNR05R48eVc+ePUO9DAAAcBmOHDmiHj16XHT/NR057du3l/TdRXK73SFeDQAAaIhAIKCePXs6P8cv5pqOnLpfUbndbiIHAIAW5oc+asIHjwEAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwCARji7/sNQLwENROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALDSj4qcZ555RmFhYZo1a5az7cyZM8rMzFTnzp3Vrl07jRs3TmVlZUGPO3z4sNLS0tSmTRt169ZNc+bM0blz54Jm8vPzNXz4cLlcLvXv31+5ubn1nn/JkiXq06ePoqOjlZKSou3bt/+Y0wEAABa57MjZsWOHli9friFDhgRtnz17tt5//32tXr1aW7Zs0dGjR3XPPfc4+2tqapSWlqbq6mpt27ZNr7/+unJzc5Wdne3MHDp0SGlpabrjjjtUXFysWbNm6aGHHtKGDRucmZUrVyorK0vz58/Xrl27NHToUHm9XpWXl1/uKQEAAJuYy1BZWWluuOEGs3HjRjNy5Egzc+ZMY4wxFRUVJjIy0qxevdqZ3bNnj5FkCgoKjDHGrFu3zoSHhxufz+fMLF261LjdblNVVWWMMWbu3Llm0KBBQc85fvx44/V6nfvJyckmMzPTuV9TU2Pi4+NNTk5Og8/D7/cbScbv9zf85AEA17TqD/4a6iVc8xr68/uy3snJzMxUWlqaUlNTg7YXFRXp7NmzQdsHDhyoXr16qaCgQJJUUFCgwYMHKzY21pnxer0KBAIqLS11Zr5/bK/X6xyjurpaRUVFQTPh4eFKTU11Zi6kqqpKgUAg6AYAAOzUqrEPePPNN7Vr1y7t2LGj3j6fz6eoqCh16NAhaHtsbKx8Pp8zc37g1O2v23epmUAgoNOnT+vbb79VTU3NBWf27t170bXn5OToqaeeatiJAgCAFq1R7+QcOXJEM2fO1B//+EdFR0c31ZqazLx58+T3+53bkSNHQr0kAADQRBoVOUVFRSovL9fw4cPVqlUrtWrVSlu2bNGLL76oVq1aKTY2VtXV1aqoqAh6XFlZmeLi4iRJcXFx9b5tVXf/h2bcbrdat26tLl26KCIi4oIzdce4EJfLJbfbHXQDAAB2alTkjB49WiUlJSouLnZuSUlJmjhxovPfkZGRysvLcx6zb98+HT58WB6PR5Lk8XhUUlIS9C2ojRs3yu12KyEhwZk5/xh1M3XHiIqKUmJiYtBMbW2t8vLynBkAAHBta9Rnctq3b6+bbropaFvbtm3VuXNnZ/uUKVOUlZWlTp06ye1269FHH5XH49Ett9wiSRozZowSEhI0adIkLViwQD6fT0888YQyMzPlcrkkSdOmTdPLL7+suXPn6sEHH9SmTZu0atUqrV271nnerKwsZWRkKCkpScnJyVq0aJFOnTqlyZMn/6gLAgAA7NDoDx7/kIULFyo8PFzjxo1TVVWVvF6vXnnlFWd/RESE1qxZo+nTp8vj8aht27bKyMjQ008/7cz07dtXa9eu1ezZs7V48WL16NFDK1askNfrdWbGjx+vb775RtnZ2fL5fBo2bJjWr19f78PIAADg2hRmjDGhXkSoBAIBxcTEyO/38/kcAECDnF3/oSLHjgj1Mq5pDf35zb9dBQAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOQu7gzuU6uHN5qJcBALAMkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKjYqcpUuXasiQIXK73XK73fJ4PPrggw+c/WfOnFFmZqY6d+6sdu3aady4cSorKws6xuHDh5WWlqY2bdqoW7dumjNnjs6dOxc0k5+fr+HDh8vlcql///7Kzc2tt5YlS5aoT58+io6OVkpKirZv396YUwEAAJZrVOT06NFDzzzzjIqKirRz50797Gc/01133aXS0lJJ0uzZs/X+++9r9erV2rJli44ePap77rnHeXxNTY3S0tJUXV2tbdu26fXXX1dubq6ys7OdmUOHDiktLU133HGHiouLNWvWLD300EPasGGDM7Ny5UplZWVp/vz52rVrl4YOHSqv16vy8vIfez0AAIAtzI/UsWNHs2LFClNRUWEiIyPN6tWrnX179uwxkkxBQYExxph169aZ8PBw4/P5nJmlS5cat9ttqqqqjDHGzJ071wwaNCjoOcaPH2+8Xq9zPzk52WRmZjr3a2pqTHx8vMnJyWnU2v1+v5Fk/H5/ox6HK+vAjmXmwI5loV4GADRI9Qd/DfUSrnkN/fl92Z/Jqamp0ZtvvqlTp07J4/GoqKhIZ8+eVWpqqjMzcOBA9erVSwUFBZKkgoICDR48WLGxsc6M1+tVIBBw3g0qKCgIOkbdTN0xqqurVVRUFDQTHh6u1NRUZ+ZiqqqqFAgEgm4AAMBOjY6ckpIStWvXTi6XS9OmTdPbb7+thIQE+Xw+RUVFqUOHDkHzsbGx8vl8kiSfzxcUOHX76/ZdaiYQCOj06dM6duyYampqLjhTd4yLycnJUUxMjHPr2bNnY08fAAC0EI2OnAEDBqi4uFiFhYWaPn26MjIy9NlnnzXF2q64efPmye/3O7cjR46EekkAAKCJtGrsA6KiotS/f39JUmJionbs2KHFixdr/Pjxqq6uVkVFRdC7OWVlZYqLi5MkxcXF1fsWVN23r86f+f43ssrKyuR2u9W6dWtFREQoIiLigjN1x7gYl8sll8vV2FMGAAAt0I/+e3Jqa2tVVVWlxMRERUZGKi8vz9m3b98+HT58WB6PR5Lk8XhUUlIS9C2ojRs3yu12KyEhwZk5/xh1M3XHiIqKUmJiYtBMbW2t8vLynBkAAIBGvZMzb9483XnnnerVq5cqKyv1pz/9Sfn5+dqwYYNiYmI0ZcoUZWVlqVOnTnK73Xr00Ufl8Xh0yy23SJLGjBmjhIQETZo0SQsWLJDP59MTTzyhzMxM5x2WadOm6eWXX9bcuXP14IMPatOmTVq1apXWrl3rrCMrK0sZGRlKSkpScnKyFi1apFOnTmny5MlX8NIAAICWrFGRU15ervvvv19ff/21YmJiNGTIEG3YsEE///nPJUkLFy5UeHi4xo0bp6qqKnm9Xr3yyivO4yMiIrRmzRpNnz5dHo9Hbdu2VUZGhp5++mlnpm/fvlq7dq1mz56txYsXq0ePHlqxYoW8Xq8zM378eH3zzTfKzs6Wz+fTsGHDtH79+nofRgYAANeuMGOMCfUiQiUQCCgmJkZ+v19utzvUy7lmHdy5XJJ0fdIjIV4JAPyws+s/VOTYEaFexjWtoT+/+berAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYqVGRk5OTo3/4h39Q+/bt1a1bN6Wnp2vfvn1BM2fOnFFmZqY6d+6sdu3aady4cSorKwuaOXz4sNLS0tSmTRt169ZNc+bM0blz54Jm8vPzNXz4cLlcLvXv31+5ubn11rNkyRL16dNH0dHRSklJ0fbt2xtzOgAAwGKNipwtW7YoMzNTH3/8sTZu3KizZ89qzJgxOnXqlDMze/Zsvf/++1q9erW2bNmio0eP6p577nH219TUKC0tTdXV1dq2bZtef/115ebmKjs725k5dOiQ0tLSdMcdd6i4uFizZs3SQw89pA0bNjgzK1euVFZWlubPn69du3Zp6NCh8nq9Ki8v/zHXAwAA2ML8COXl5UaS2bJlizHGmIqKChMZGWlWr17tzOzZs8dIMgUFBcYYY9atW2fCw8ONz+dzZpYuXWrcbrepqqoyxhgzd+5cM2jQoKDnGj9+vPF6vc795ORkk5mZ6dyvqakx8fHxJicnp8Hr9/v9RpLx+/2NOGtcaQd2LDMHdiwL9TIAoEGqP/hrqJdwzWvoz+8f9Zkcv98vSerUqZMkqaioSGfPnlVqaqozM3DgQPXq1UsFBQWSpIKCAg0ePFixsbHOjNfrVSAQUGlpqTNz/jHqZuqOUV1draKioqCZ8PBwpaamOjMXUlVVpUAgEHQDAAB2uuzIqa2t1axZs3TbbbfppptukiT5fD5FRUWpQ4cOQbOxsbHy+XzOzPmBU7e/bt+lZgKBgE6fPq1jx46ppqbmgjN1x7iQnJwcxcTEOLeePXs2/sQBAECLcNmRk5mZqU8//VRvvvnmlVxPk5o3b578fr9zO3LkSKiXBAAAmkiry3nQjBkztGbNGm3dulU9evRwtsfFxam6uloVFRVB7+aUlZUpLi7Omfn+t6Dqvn11/sz3v5FVVlYmt9ut1q1bKyIiQhERERecqTvGhbhcLrlcrsafMAAAaHEa9U6OMUYzZszQ22+/rU2bNqlv375B+xMTExUZGam8vDxn2759+3T48GF5PB5JksfjUUlJSdC3oDZu3Ci3262EhARn5vxj1M3UHSMqKkqJiYlBM7W1tcrLy3NmAADAta1R7+RkZmbqT3/6k9599121b9/e+fxLTEyMWrdurZiYGE2ZMkVZWVnq1KmT3G63Hn30UXk8Ht1yyy2SpDFjxighIUGTJk3SggUL5PP59MQTTygzM9N5l2XatGl6+eWXNXfuXD344IPatGmTVq1apbVr1zprycrKUkZGhpKSkpScnKxFixbp1KlTmjx58pW6NgAAoCVrzFe2JF3w9tprrzkzp0+fNr/+9a9Nx44dTZs2bczdd99tvv7666DjfP755+bOO+80rVu3Nl26dDG/+c1vzNmzZ4NmNm/ebIYNG2aioqJMv379gp6jzksvvWR69eploqKiTHJysvn4448bczp8hfwqwVfIAbQkfIU89Br68zvMGGNCl1ihFQgEFBMTI7/fL7fbHerlXLMO7lwuSbo+6ZEQrwQAftjZ9R8qcuyIUC/jmtbQn9/821UAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKzU6MjZunWrfvnLXyo+Pl5hYWF65513gvYbY5Sdna3u3burdevWSk1N1f79+4NmTpw4oYkTJ8rtdqtDhw6aMmWKTp48GTTzySef6Kc//amio6PVs2dPLViwoN5aVq9erYEDByo6OlqDBw/WunXrGns6AADAUo2OnFOnTmno0KFasmTJBfcvWLBAL774opYtW6bCwkK1bdtWXq9XZ86ccWYmTpyo0tJSbdy4UWvWrNHWrVv18MMPO/sDgYDGjBmj3r17q6ioSM8995x+97vf6T/+4z+cmW3btmnChAmaMmWKdu/erfT0dKWnp+vTTz9t7CkBAAAbmR9Bknn77bed+7W1tSYuLs4899xzzraKigrjcrnMG2+8YYwx5rPPPjOSzI4dO5yZDz74wISFhZmvvvrKGGPMK6+8Yjp27Giqqqqcmccee8wMGDDAuX/vvfeatLS0oPWkpKSYRx55pMHr9/v9RpLx+/0NfgyuvAM7lpkDO5aFehkA0CDVH/w11Eu45jX05/cV/UzOoUOH5PP5lJqa6myLiYlRSkqKCgoKJEkFBQXq0KGDkpKSnJnU1FSFh4ersLDQmbn99tsVFRXlzHi9Xu3bt0/ffvutM3P+89TN1D3PhVRVVSkQCATdAACAna5o5Ph8PklSbGxs0PbY2Fhnn8/nU7du3YL2t2rVSp06dQqaudAxzn+Oi83U7b+QnJwcxcTEOLeePXs29hQBAEALcU19u2revHny+/3O7ciRI6FeEgAAaCJXNHLi4uIkSWVlZUHby8rKnH1xcXEqLy8P2n/u3DmdOHEiaOZCxzj/OS42U7f/Qlwul9xud9ANAADY6YpGTt++fRUXF6e8vDxnWyAQUGFhoTwejyTJ4/GooqJCRUVFzsymTZtUW1urlJQUZ2br1q06e/asM7Nx40YNGDBAHTt2dGbOf566mbrnAQAA17ZGR87JkydVXFys4uJiSd992Li4uFiHDx9WWFiYZs2apX/913/Ve++9p5KSEt1///2Kj49Xenq6JOknP/mJxo4dq6lTp2r79u366KOPNGPGDN13332Kj4+XJP3qV79SVFSUpkyZotLSUq1cuVKLFy9WVlaWs46ZM2dq/fr1+vd//3ft3btXv/vd77Rz507NmDHjx18VAADQ8jX2a1ubN282kurdMjIyjDHffY38ySefNLGxscblcpnRo0ebffv2BR3j+PHjZsKECaZdu3bG7XabyZMnm8rKyqCZv/3tb2bEiBHG5XKZ6667zjzzzDP11rJq1Spz4403mqioKDNo0CCzdu3aRp0LXyG/OvAVcgAtCV8hD72G/vwOM8aYEDZWSAUCAcXExMjv9/P5nBA6uHO5JOn6pEdCvBIA+GFn13+oyLEjQr2Ma1pDf35fU9+uAgAA1w4iBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWKlVqBcAAEBLUHXujD4oWiGf/xPFFRbrzsSH5GoVHepl4RJa/Ds5S5YsUZ8+fRQdHa2UlBRt37491EsCAFjmtfz5mrD2Nr1e9qo2tN6p18te1YS1t+m1/PmhXhouoUVHzsqVK5WVlaX58+dr165dGjp0qLxer8rLy0O9NACAJV7Ln6/3/O/LyARtNzJ6z/8+oXMVa9GR88ILL2jq1KmaPHmyEhIStGzZMrVp00avvvpqqJcGALBA1bkzet+/5rs7Yd/b+f/ur/GvUdW5M826LjRMi/1MTnV1tYqKijRv3jxnW3h4uFJTU1VQUHDBx1RVVamqqsq57/f7JUmBQKBpF4tLqjx5WhL/OwC4+qzZuVzVp8/94Nyft76k/5P0SDOsCNL//3lhjLnkXIuNnGPHjqmmpkaxsbFB22NjY7V3794LPiYnJ0dPPfVUve09e/ZskjWisWaHegEAcFnWaq6kuaFexjWnsrJSMTExF93fYiPncsybN09ZWVnO/draWp04cUKdO3dWWNj334e8fIFAQD179tSRI0fkdruv2HFtxLVqOK5V43C9Go5r1XBcq4ZrymtljFFlZaXi4+MvOddiI6dLly6KiIhQWVlZ0PaysjLFxcVd8DEul0sulytoW4cOHZpqiXK73fyfoIG4Vg3HtWocrlfDca0ajmvVcE11rS71Dk6dFvvB46ioKCUmJiovL8/ZVltbq7y8PHk8nhCuDAAAXA1a7Ds5kpSVlaWMjAwlJSUpOTlZixYt0qlTpzR58uRQLw0AAIRYi46c8ePH65tvvlF2drZ8Pp+GDRum9evX1/swcnNzuVyaP39+vV+NoT6uVcNxrRqH69VwXKuG41o13NVwrcLMD33/CgAAoAVqsZ/JAQAAuBQiBwAAWInIAQAAViJyAACAlYgcAABgJSLnCvm3f/s33XrrrWrTpk2D/xblBx54QGFhYUG3sWPHNu1CrwKXc62MMcrOzlb37t3VunVrpaamav/+/U270KvAiRMnNHHiRLndbnXo0EFTpkzRyZMnL/mYUaNG1XtdTZs2rZlW3LyWLFmiPn36KDo6WikpKdq+ffsl51evXq2BAwcqOjpagwcP1rp165pppaHXmGuVm5tb7zUUHR3djKsNja1bt+qXv/yl4uPjFRYWpnfeeecHH5Ofn6/hw4fL5XKpf//+ys3NbfJ1Xi0ae73y8/Prva7CwsLk8/mabI1EzhVSXV2tf/qnf9L06dMb9bixY8fq66+/dm5vvPFGE63w6nE512rBggV68cUXtWzZMhUWFqpt27byer06c+ZME6409CZOnKjS0lJt3LhRa9as0datW/Xwww//4OOmTp0a9LpasGBBM6y2ea1cuVJZWVmaP3++du3apaFDh8rr9aq8vPyC89u2bdOECRM0ZcoU7d69W+np6UpPT9enn37azCtvfo29VtJ3fxX/+a+hL774ohlXHBqnTp3S0KFDtWTJkgbNHzp0SGlpabrjjjtUXFysWbNm6aGHHtKGDRuaeKVXh8Zerzr79u0Lem1169atiVYoyeCKeu2110xMTEyDZjMyMsxdd93VpOu5mjX0WtXW1pq4uDjz3HPPOdsqKiqMy+Uyb7zxRhOuMLQ+++wzI8ns2LHD2fbBBx+YsLAw89VXX130cSNHjjQzZ85shhWGVnJyssnMzHTu19TUmPj4eJOTk3PB+XvvvdekpaUFbUtJSTGPPPJIk67zatDYa9WYP8dsJcm8/fbbl5yZO3euGTRoUNC28ePHG6/X24Qruzo15Hpt3rzZSDLffvtts6zJGGN4JyfE8vPz1a1bNw0YMEDTp0/X8ePHQ72kq86hQ4fk8/mUmprqbIuJiVFKSooKCgpCuLKmVVBQoA4dOigpKcnZlpqaqvDwcBUWFl7ysX/84x/VpUsX3XTTTZo3b57+/ve/N/Vym1V1dbWKioqCXhPh4eFKTU296GuioKAgaF6SvF6v1a8h6fKulSSdPHlSvXv3Vs+ePXXXXXeptLS0OZbbolyrr6kfa9iwYerevbt+/vOf66OPPmrS52rR/6xDSzd27Fjdc8896tu3rw4ePKh//ud/1p133qmCggJFRESEenlXjbrf137/n+uIjY1t0t/lhprP56v3Nm6rVq3UqVOnS573r371K/Xu3Vvx8fH65JNP9Nhjj2nfvn166623mnrJzebYsWOqqam54Gti7969F3yMz+e75l5D0uVdqwEDBujVV1/VkCFD5Pf79fzzz+vWW29VaWmpevTo0RzLbhEu9poKBAI6ffq0WrduHaKVXZ26d++uZcuWKSkpSVVVVVqxYoVGjRqlwsJCDR8+vEmek8i5hMcff1zPPvvsJWf27NmjgQMHXtbx77vvPue/Bw8erCFDhuj6669Xfn6+Ro8efVnHDJWmvlY2aei1ulznf2Zn8ODB6t69u0aPHq2DBw/q+uuvv+zj4trh8Xjk8Xic+7feeqt+8pOfaPny5fqXf/mXEK4MLdmAAQM0YMAA5/6tt96qgwcPauHChfqv//qvJnlOIucSfvOb3+iBBx645Ey/fv2u2PP169dPXbp00YEDB1pc5DTltYqLi5MklZWVqXv37s72srIyDRs27LKOGUoNvVZxcXH1Phh67tw5nThxwrkmDZGSkiJJOnDggDWR06VLF0VERKisrCxoe1lZ2UWvTVxcXKPmbXE51+r7IiMjdfPNN+vAgQNNscQW62KvKbfbzbs4DZScnKwPP/ywyY5P5FxC165d1bVr12Z7vi+//FLHjx8P+kHeUjTlterbt6/i4uKUl5fnRE0gEFBhYWGjv812NWjotfJ4PKqoqFBRUZESExMlSZs2bVJtba0TLg1RXFwsSS3ydXUxUVFRSkxMVF5entLT0yVJtbW1ysvL04wZMy74GI/Ho7y8PM2aNcvZtnHjxqB3LGx0Odfq+2pqalRSUqJf/OIXTbjSlsfj8dT7awiuhdfUlVRcXNy0fzY120ecLffFF1+Y3bt3m6eeesq0a9fO7N692+zevdtUVlY6MwMGDDBvvfWWMcaYyspK89vf/tYUFBSYQ4cOmb/85S9m+PDh5oYbbjBnzpwJ1Wk0i8ZeK2OMeeaZZ0yHDh3Mu+++az755BNz1113mb59+5rTp0+H4hSazdixY83NN99sCgsLzYcffmhuuOEGM2HCBGf/l19+aQYMGGAKCwuNMcYcOHDAPP3002bnzp3m0KFD5t133zX9+vUzt99+e6hOocm8+eabxuVymdzcXPPZZ5+Zhx9+2HTo0MH4fD5jjDGTJk0yjz/+uDP/0UcfmVatWpnnn3/e7Nmzx8yfP99ERkaakpKSUJ1Cs2nstXrqqafMhg0bzMGDB01RUZG57777THR0tCktLQ3VKTSLyspK588jSeaFF14wu3fvNl988YUxxpjHH3/cTJo0yZn/3//9X9OmTRszZ84cs2fPHrNkyRITERFh1q9fH6pTaFaNvV4LFy4077zzjtm/f78pKSkxM2fONOHh4eYvf/lLk62RyLlCMjIyjKR6t82bNzszksxrr71mjDHm73//uxkzZozp2rWriYyMNL179zZTp051/tCxWWOvlTHffY38ySefNLGxscblcpnRo0ebffv2Nf/im9nx48fNhAkTTLt27Yzb7TaTJ08OisFDhw4FXbvDhw+b22+/3XTq1Mm4XC7Tv39/M2fOHOP3+0N0Bk3rpZdeMr169TJRUVEmOTnZfPzxx86+kSNHmoyMjKD5VatWmRtvvNFERUWZQYMGmbVr1zbzikOnMddq1qxZzmxsbKz5xS9+YXbt2hWCVTevuq84f/9Wd20yMjLMyJEj6z1m2LBhJioqyvTr1y/ozy3bNfZ6Pfvss+b666830dHRplOnTmbUqFFm06ZNTbrGMGOMabr3iQAAAEKDvycHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlf4vvGuszFgQQVUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMoZJREFUeJzt3XtUVXX+//HXAT2gJXgpbkVEWqKJ98kwryMDGssZmqbSNK1Iq4WNSmPKZIb5/aWjY+Z8x7S+lfSd7Js6k4ypgyKmZKCjKF4oXWmYXThYXjiKigr790df9rcTomJc5MPzsdZesT+f997nsz9rt87LffbZx2FZliUAAADDeNX3AAAAAGoDIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhB8A1JTU1VQ6HQ9u3b6/voQBo4Ag5AADASIQcAABgJEIOgEbp9OnT9T0EALWMkAOgzn3zzTdKSEhQSEiIfHx8FB4erqefflrnzp2za0pLS5WUlKQbb7xR1113ne677z599913Hvv55z//qbi4OHs/bdu21YwZM1RWVuZRN2DAAHXq1Em5ubnq16+fmjdvrj/+8Y+SpKNHj+qRRx6Rn5+fWrZsqdGjR2vXrl1yOBxKTU312M++ffv0u9/9Tq1bt5avr6969uyplStX1s4kAfjZmtT3AAA0Lt9++63uuusunThxQmPHjlVERIS++eYb/f3vf/e4uvLMM8+oVatWevHFF3Xo0CG9+uqrGjdunJYuXWrXpKam6vrrr1dSUpKuv/56bdiwQdOmTZPb7dacOXM8Xvfo0aMaMmSIhg0bppEjRyowMFDl5eUaOnSo/v3vf+vpp59WRESE/vnPf2r06NGVxp2fn6977rlHN910k6ZMmaLrrrtOy5YtU3x8vP7xj3/ovvvuq71JA3B1LACoQ6NGjbK8vLysbdu2VeorLy+3Fi9ebEmyoqOjrfLycrtv4sSJlre3t3XixAm77fTp05X28eSTT1rNmze3zp49a7f179/fkmQtWrTIo/Yf//iHJcl69dVX7baysjLrl7/8pSXJWrx4sd0+aNAgKzIy0mO/5eXlVu/eva3bb7+9epMAoE7wcRWAOlNeXq60tDQNHTpUPXv2rNTvcDjsv8eOHeux3rdvX5WVlenLL7+025o1a2b/ffLkSX3//ffq27evTp8+rX379nns28fHR4899phHW3p6upo2baoxY8bYbV5eXkpMTPSoO3bsmDZs2KAHH3zQfp3vv/9eR48eVWxsrD7//HN988031ZwNALWNj6sA1JnvvvtObrdbnTp1umztLbfc4rHeqlUrSdLx48fttvz8fE2dOlUbNmyQ2+32qC8uLvZYv+mmm+R0Oj3avvzySwUHB6t58+Ye7e3atfNYP3DggCzL0gsvvKAXXnjhouM9cuSIbrrppsseF4C6Q8gBcE3y9va+aLtlWZKkEydOqH///vLz89NLL72ktm3bytfXVzt27NDkyZNVXl7usd2Pr/pUV8W+/vCHPyg2NvaiNT8NRgDqHyEHQJ258cYb5efnp7179/7sfW3cuFFHjx7VBx98oH79+tntBQUFV7yPsLAwffTRRzp9+rTH1ZwDBw541N12222SpKZNmyo6OvpnjhxAXeGeHAB1xsvLS/Hx8frwww8v+rMNFVdprkTFlZ4fb3Pu3Dm99tprV7yP2NhYnT9/Xv/1X/9lt5WXl2vBggUedQEBARowYIBef/11FRYWVtrPT7/aDuDawJUcAHXq5Zdf1rp169S/f3+NHTtWHTp0UGFhoZYvX67Nmzdf8X569+6tVq1aafTo0fr9738vh8Ohv/3tb9UKSvHx8brrrrv07LPP6sCBA4qIiNDKlSt17NgxSZ43Qi9YsEB9+vRRZGSkxowZo9tuu01FRUXKycnR119/rV27dl35JACoE4QcAHXqpptu0tatW/XCCy9oyZIlcrvduummmzRkyJBKNwBfSps2bbRq1So9++yzmjp1qlq1aqWRI0dq0KBBVd4381Pe3t5avXq1xo8fr3feeUdeXl6677779OKLL+qee+6Rr6+vXduxY0dt375d06dPV2pqqo4ePaqAgAB169ZN06ZNq/Y8AKh9Dqs6/+wBgEYgLS1N9913nzZv3qx77rmnvocD4CoRcgA0amfOnPH45lVZWZliYmK0fft2uVyun/WtLAD1i4+rADRqzzzzjM6cOaOoqCiVlpbqgw8+UHZ2tl5++WUCDtDAcSUHQKP23nvvae7cuTpw4IDOnj2rdu3a6emnn9a4cePqe2gAfiZCDgAAMBLPyQEAAEYi5AAAACM16huPy8vL9e2336pFixYeD/0CAADXLsuydPLkSYWEhMjLq+rrNY065Hz77bcKDQ2t72EAAICr8NVXX+nmm2+usr9Rh5wWLVpI+mGS/Pz86nk0AADgSrjdboWGhtrv41Vp1CGn4iMqPz8/Qg4AAA3M5W414cZjAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBI1Q45WVlZGjp0qEJCQuRwOJSWlubR73A4LrrMmTPHrrn11lsr9c+aNctjP7t371bfvn3l6+ur0NBQzZ49u9JYli9froiICPn6+ioyMlJr1qyp7uEAAABDVTvklJSUqEuXLlqwYMFF+wsLCz2Wt99+Ww6HQ/fff79H3UsvveRR98wzz9h9brdbMTExCgsLU25urubMmaOUlBS98cYbdk12draGDx+uhIQE7dy5U/Hx8YqPj9fevXure0gAAMBADsuyrKve2OHQihUrFB8fX2VNfHy8Tp48qczMTLvt1ltv1YQJEzRhwoSLbrNw4UI9//zzcrlccjqdkqQpU6YoLS1N+/btkyQ99NBDKikp0apVq+zt7r77bnXt2lWLFi26ovG73W75+/uruLiYn3UAAKCBuNL371q9J6eoqEirV69WQkJCpb5Zs2apTZs26tatm+bMmaMLFy7YfTk5OerXr58dcCQpNjZW+/fv1/Hjx+2a6Ohoj33GxsYqJyenyvGUlpbK7XZ7LAAAwEy1+gOd77zzjlq0aKHf/va3Hu2///3v1b17d7Vu3VrZ2dlKTk5WYWGhXnnlFUmSy+VSeHi4xzaBgYF2X6tWreRyuey2H9e4XK4qxzNz5kxNnz69Jg4NAABc42o15Lz99tsaMWKEfH19PdqTkpLsvzt37iyn06knn3xSM2fOlI+PT62NJzk52eO1K36qHQAAmKfWQs7HH3+s/fv3a+nSpZet7dWrly5cuKBDhw6pffv2CgoKUlFRkUdNxXpQUJD934vVVPRfjI+PT62GKABoSM6nb/ZYbzq4Tz2NBKgdtXZPzltvvaUePXqoS5cul63Ny8uTl5eXAgICJElRUVHKysrS+fPn7ZqMjAy1b99erVq1smt+fDNzRU1UVFQNHgUAAGioqh1yTp06pby8POXl5UmSCgoKlJeXp8OHD9s1brdby5cv1xNPPFFp+5ycHL366qvatWuXvvjiCy1ZskQTJ07UyJEj7QDz8MMPy+l0KiEhQfn5+Vq6dKnmz5/v8VHT+PHjlZ6errlz52rfvn1KSUnR9u3bNW7cuOoeEgAAMJFVTR999JElqdIyevRou+b111+3mjVrZp04caLS9rm5uVavXr0sf39/y9fX1+rQoYP18ssvW2fPnvWo27Vrl9WnTx/Lx8fHuummm6xZs2ZV2teyZcusO+64w3I6ndadd95prV69ulrHUlxcbEmyiouLq7UdAJjg3L8+9liAhuJK379/1nNyGjqekwOgMeOeHDRU18RzcgAAAOoLIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQm9T0AAABghvPpmz3Wmw7uU08j+QFXcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARqp2yMnKytLQoUMVEhIih8OhtLQ0j/5HH31UDofDYxk8eLBHzbFjxzRixAj5+fmpZcuWSkhI0KlTpzxqdu/erb59+8rX11ehoaGaPXt2pbEsX75cERER8vX1VWRkpNasWVPdwwEAAIaqdsgpKSlRly5dtGDBgiprBg8erMLCQnv5n//5H4/+ESNGKD8/XxkZGVq1apWysrI0duxYu9/tdismJkZhYWHKzc3VnDlzlJKSojfeeMOuyc7O1vDhw5WQkKCdO3cqPj5e8fHx2rt3b3UPCQAAGMhhWZZ11Rs7HFqxYoXi4+PttkcffVQnTpyodIWnwmeffaaOHTtq27Zt6tmzpyQpPT1d9957r77++muFhIRo4cKFev755+VyueR0OiVJU6ZMUVpamvbt2ydJeuihh1RSUqJVq1bZ+7777rvVtWtXLVq06IrG73a75e/vr+LiYvn5+V3FDABAw3WtPZ0WDV9dnVNX+v5dK/fkbNy4UQEBAWrfvr2efvppHT161O7LyclRy5Yt7YAjSdHR0fLy8tLWrVvtmn79+tkBR5JiY2O1f/9+HT9+3K6Jjo72eN3Y2Fjl5ORUOa7S0lK53W6PBQAAmKnGQ87gwYP13//938rMzNSf/vQnbdq0SUOGDFFZWZkkyeVyKSAgwGObJk2aqHXr1nK5XHZNYGCgR03F+uVqKvovZubMmfL397eX0NDQn3ewAADgmlXjP9A5bNgw++/IyEh17txZbdu21caNGzVo0KCafrlqSU5OVlJSkr3udrsJOgAAGKrWv0J+22236YYbbtCBAwckSUFBQTpy5IhHzYULF3Ts2DEFBQXZNUVFRR41FeuXq6novxgfHx/5+fl5LAAAwEy1HnK+/vprHT16VMHBwZKkqKgonThxQrm5uXbNhg0bVF5erl69etk1WVlZOn/+vF2TkZGh9u3bq1WrVnZNZmamx2tlZGQoKiqqtg8JAAA0ANUOOadOnVJeXp7y8vIkSQUFBcrLy9Phw4d16tQpTZo0SVu2bNGhQ4eUmZmp3/zmN2rXrp1iY2MlSR06dNDgwYM1ZswY/fvf/9Ynn3yicePGadiwYQoJCZEkPfzww3I6nUpISFB+fr6WLl2q+fPne3zUNH78eKWnp2vu3Lnat2+fUlJStH37do0bN64GpgUAADR01Q4527dvV7du3dStWzdJUlJSkrp166Zp06bJ29tbu3fv1q9//WvdcccdSkhIUI8ePfTxxx/Lx8fH3seSJUsUERGhQYMG6d5771WfPn08noHj7++vdevWqaCgQD169NCzzz6radOmeTxLp3fv3nrvvff0xhtvqEuXLvr73/+utLQ0derU6efMBwAAMMTPek5OQ8dzcgA0ZjwnBzWtUTwnBwAAoL4RcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwUpP6HgCAK8MvRgNA9XAlBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJJ6TAwCN1KET//JYv108ewlmIeQAAIAaca0FZz6uAgAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxU7ZCTlZWloUOHKiQkRA6HQ2lpaXbf+fPnNXnyZEVGRuq6665TSEiIRo0apW+//dZjH7feeqscDofHMmvWLI+a3bt3q2/fvvL19VVoaKhmz55daSzLly9XRESEfH19FRkZqTVr1lT3cAAAgKGqHXJKSkrUpUsXLViwoFLf6dOntWPHDr3wwgvasWOHPvjgA+3fv1+//vWvK9W+9NJLKiwstJdnnnnG7nO73YqJiVFYWJhyc3M1Z84cpaSk6I033rBrsrOzNXz4cCUkJGjnzp2Kj49XfHy89u7dW91DAgAABmpS3Q2GDBmiIUOGXLTP399fGRkZHm1//etfddddd+nw4cO65ZZb7PYWLVooKCjoovtZsmSJzp07p7fffltOp1N33nmn8vLy9Morr2js2LGSpPnz52vw4MGaNGmSJGnGjBnKyMjQX//6Vy1atKi6hwUAAAxT6/fkFBcXy+FwqGXLlh7ts2bNUps2bdStWzfNmTNHFy5csPtycnLUr18/OZ1Ouy02Nlb79+/X8ePH7Zro6GiPfcbGxionJ6fKsZSWlsrtdnssAADATNW+klMdZ8+e1eTJkzV8+HD5+fnZ7b///e/VvXt3tW7dWtnZ2UpOTlZhYaFeeeUVSZLL5VJ4eLjHvgIDA+2+Vq1ayeVy2W0/rnG5XFWOZ+bMmZo+fXpNHR4AALiG1VrIOX/+vB588EFZlqWFCxd69CUlJdl/d+7cWU6nU08++aRmzpwpHx+f2hqSkpOTPV7b7XYrNDS01l4PAADUn1oJORUB58svv9SGDRs8ruJcTK9evXThwgUdOnRI7du3V1BQkIqKijxqKtYr7uOpqqaq+3wkycfHp1ZDFAAAuHbU+D05FQHn888/1/r169WmTZvLbpOXlycvLy8FBARIkqKiopSVlaXz58/bNRkZGWrfvr1atWpl12RmZnrsJyMjQ1FRUTV4NAAAoKGq9pWcU6dO6cCBA/Z6QUGB8vLy1Lp1awUHB+t3v/udduzYoVWrVqmsrMy+R6Z169ZyOp3KycnR1q1bNXDgQLVo0UI5OTmaOHGiRo4caQeYhx9+WNOnT1dCQoImT56svXv3av78+Zo3b579uuPHj1f//v01d+5cxcXF6f3339f27ds9vmYOAAAar2qHnO3bt2vgwIH2esU9LqNHj1ZKSopWrlwpSeratavHdh999JEGDBggHx8fvf/++0pJSVFpaanCw8M1ceJEj3tl/P39tW7dOiUmJqpHjx664YYbNG3aNPvr45LUu3dvvffee5o6dar++Mc/6vbbb1daWpo6depU3UMCAAAGqnbIGTBggCzLqrL/Un2S1L17d23ZsuWyr9O5c2d9/PHHl6x54IEH9MADD1x2XwAAoPHht6sAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI1U75GRlZWno0KEKCQmRw+FQWlqaR79lWZo2bZqCg4PVrFkzRUdH6/PPP/eoOXbsmEaMGCE/Pz+1bNlSCQkJOnXqlEfN7t271bdvX/n6+io0NFSzZ8+uNJbly5crIiJCvr6+ioyM1Jo1a6p7OAAAwFDVDjklJSXq0qWLFixYcNH+2bNn6y9/+YsWLVqkrVu36rrrrlNsbKzOnj1r14wYMUL5+fnKyMjQqlWrlJWVpbFjx9r9brdbMTExCgsLU25urubMmaOUlBS98cYbdk12draGDx+uhIQE7dy5U/Hx8YqPj9fevXure0gAAMBADsuyrKve2OHQihUrFB8fL+mHqzghISF69tln9Yc//EGSVFxcrMDAQKWmpmrYsGH67LPP1LFjR23btk09e/aUJKWnp+vee+/V119/rZCQEC1cuFDPP/+8XC6XnE6nJGnKlClKS0vTvn37JEkPPfSQSkpKtGrVKns8d999t7p27apFixZd0fjdbrf8/f1VXFwsPz+/q50GoE6cT9/ssd50cJ96GglM8fn7z3us3z7s/9XTSGCKujqnrvT9u0bvySkoKJDL5VJ0dLTd5u/vr169eiknJ0eSlJOTo5YtW9oBR5Kio6Pl5eWlrVu32jX9+vWzA44kxcbGav/+/Tp+/Lhd8+PXqaipeJ2LKS0tldvt9lgAAICZajTkuFwuSVJgYKBHe2BgoN3ncrkUEBDg0d+kSRO1bt3ao+Zi+/jxa1RVU9F/MTNnzpS/v7+9hIaGVvcQAQBAA9Govl2VnJys4uJie/nqq6/qe0gAAKCW1GjICQoKkiQVFRV5tBcVFdl9QUFBOnLkiEf/hQsXdOzYMY+ai+3jx69RVU1F/8X4+PjIz8/PYwEAAGaq0ZATHh6uoKAgZWZm2m1ut1tbt25VVFSUJCkqKkonTpxQbm6uXbNhwwaVl5erV69edk1WVpbOnz9v12RkZKh9+/Zq1aqVXfPj16moqXgdAADQuFU75Jw6dUp5eXnKy8uT9MPNxnl5eTp8+LAcDocmTJig//iP/9DKlSu1Z88ejRo1SiEhIfY3sDp06KDBgwdrzJgx+ve//61PPvlE48aN07BhwxQSEiJJevjhh+V0OpWQkKD8/HwtXbpU8+fPV1JSkj2O8ePHKz09XXPnztW+ffuUkpKi7du3a9y4cT9/VgAAQIPXpLobbN++XQMHDrTXK4LH6NGjlZqaqueee04lJSUaO3asTpw4oT59+ig9PV2+vr72NkuWLNG4ceM0aNAgeXl56f7779df/vIXu9/f31/r1q1TYmKievTooRtuuEHTpk3zeJZO79699d5772nq1Kn64x//qNtvv11paWnq1KnTVU0EAAAwy896Tk5Dx3Ny0JDwnBzUNJ6Tg5pm9HNyAAAArhWEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASE3qewAArsyhE//yWL9dfeppJADQMHAlBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASDUecm699VY5HI5KS2JioiRpwIABlfqeeuopj30cPnxYcXFxat68uQICAjRp0iRduHDBo2bjxo3q3r27fHx81K5dO6Wmptb0oQAAgAasxp+Ts23bNpWVldnre/fu1a9+9Ss98MADdtuYMWP00ksv2evNmze3/y4rK1NcXJyCgoKUnZ2twsJCjRo1Sk2bNtXLL78sSSooKFBcXJyeeuopLVmyRJmZmXriiScUHBys2NjYmj4kAADQANV4yLnxxhs91mfNmqW2bduqf//+dlvz5s0VFBR00e3XrVunTz/9VOvXr1dgYKC6du2qGTNmaPLkyUpJSZHT6dSiRYsUHh6uuXPnSpI6dOigzZs3a968eZcMOaWlpSotLbXX3W73zzlUAABwDavVe3LOnTund999V48//rgcDofdvmTJEt1www3q1KmTkpOTdfr0absvJydHkZGRCgwMtNtiY2PldruVn59v10RHR3u8VmxsrHJyci45npkzZ8rf399eQkNDa+IwAQDANahWf9YhLS1NJ06c0KOPPmq3PfzwwwoLC1NISIh2796tyZMna//+/frggw8kSS6XyyPgSLLXXS7XJWvcbrfOnDmjZs2aXXQ8ycnJSkpKstfdbjdBBwAAQ9VqyHnrrbc0ZMgQhYSE2G1jx461/46MjFRwcLAGDRqkgwcPqm3btrU5HPn4+MjHx6dWXwMAAFwbau3jqi+//FLr16/XE088ccm6Xr16SZIOHDggSQoKClJRUZFHTcV6xX08VdX4+flVeRUHAAA0LrUWchYvXqyAgADFxcVdsi4vL0+SFBwcLEmKiorSnj17dOTIEbsmIyNDfn5+6tixo12TmZnpsZ+MjAxFRUXV4BEAAICGrFZCTnl5uRYvXqzRo0erSZP/+0Ts4MGDmjFjhnJzc3Xo0CGtXLlSo0aNUr9+/dS5c2dJUkxMjDp27KhHHnlEu3bt0tq1azV16lQlJibaHzU99dRT+uKLL/Tcc89p3759eu2117Rs2TJNnDixNg4HAAA0QLUSctavX6/Dhw/r8ccf92h3Op1av369YmJiFBERoWeffVb333+/PvzwQ7vG29tbq1atkre3t6KiojRy5EiNGjXK47k64eHhWr16tTIyMtSlSxfNnTtXb775Js/IAQAAtlq58TgmJkaWZVVqDw0N1aZNmy67fVhYmNasWXPJmgEDBmjnzp1XPUYAAGA2frsKAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQaDzkpKSlyOBweS0REhN1/9uxZJSYmqk2bNrr++ut1//33q6ioyGMfhw8fVlxcnJo3b66AgABNmjRJFy5c8KjZuHGjunfvLh8fH7Vr106pqak1fSgAAKABq5UrOXfeeacKCwvtZfPmzXbfxIkT9eGHH2r58uXatGmTvv32W/32t7+1+8vKyhQXF6dz584pOztb77zzjlJTUzVt2jS7pqCgQHFxcRo4cKDy8vI0YcIEPfHEE1q7dm1tHA4AAGiAmtTKTps0UVBQUKX24uJivfXWW3rvvff0y1/+UpK0ePFidejQQVu2bNHdd9+tdevW6dNPP9X69esVGBiorl27asaMGZo8ebJSUlLkdDq1aNEihYeHa+7cuZKkDh06aPPmzZo3b55iY2Nr45AAAEADUytXcj7//HOFhITotttu04gRI3T48GFJUm5urs6fP6/o6Gi7NiIiQrfccotycnIkSTk5OYqMjFRgYKBdExsbK7fbrfz8fLvmx/uoqKnYR1VKS0vldrs9FgAAYKYaDzm9evVSamqq0tPTtXDhQhUUFKhv3746efKkXC6XnE6nWrZs6bFNYGCgXC6XJMnlcnkEnIr+ir5L1bjdbp05c6bKsc2cOVP+/v72Ehoa+nMPFwAAXKNq/OOqIUOG2H937txZvXr1UlhYmJYtW6ZmzZrV9MtVS3JyspKSkux1t9tN0AEAwFC1/hXyli1b6o477tCBAwcUFBSkc+fO6cSJEx41RUVF9j08QUFBlb5tVbF+uRo/P79LBikfHx/5+fl5LAAAwEy1HnJOnTqlgwcPKjg4WD169FDTpk2VmZlp9+/fv1+HDx9WVFSUJCkqKkp79uzRkSNH7JqMjAz5+fmpY8eOds2P91FRU7EPAACAGg85f/jDH7Rp0yYdOnRI2dnZuu++++Tt7a3hw4fL399fCQkJSkpK0kcffaTc3Fw99thjioqK0t133y1JiomJUceOHfXII49o165dWrt2raZOnarExET5+PhIkp566il98cUXeu6557Rv3z699tprWrZsmSZOnFjThwMAABqoGr8n5+uvv9bw4cN19OhR3XjjjerTp4+2bNmiG2+8UZI0b948eXl56f7771dpaaliY2P12muv2dt7e3tr1apVevrppxUVFaXrrrtOo0eP1ksvvWTXhIeHa/Xq1Zo4caLmz5+vm2++WW+++SZfHwcAALYaDznvv//+Jft9fX21YMECLViwoMqasLAwrVmz5pL7GTBggHbu3HlVYwQAAObjt6sAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI9V4yJk5c6Z+8YtfqEWLFgoICFB8fLz279/vUTNgwAA5HA6P5amnnvKoOXz4sOLi4tS8eXMFBARo0qRJunDhgkfNxo0b1b17d/n4+Khdu3ZKTU2t6cMBAAANVI2HnE2bNikxMVFbtmxRRkaGzp8/r5iYGJWUlHjUjRkzRoWFhfYye/Zsu6+srExxcXE6d+6csrOz9c477yg1NVXTpk2zawoKChQXF6eBAwcqLy9PEyZM0BNPPKG1a9fW9CEBAIAGqElN7zA9Pd1jPTU1VQEBAcrNzVW/fv3s9ubNmysoKOii+1i3bp0+/fRTrV+/XoGBgeratatmzJihyZMnKyUlRU6nU4sWLVJ4eLjmzp0rSerQoYM2b96sefPmKTY2tqYPCwAANDC1fk9OcXGxJKl169Ye7UuWLNENN9ygTp06KTk5WadPn7b7cnJyFBkZqcDAQLstNjZWbrdb+fn5dk10dLTHPmNjY5WTk1PlWEpLS+V2uz0WAABgphq/kvNj5eXlmjBhgu655x516tTJbn/44YcVFhamkJAQ7d69W5MnT9b+/fv1wQcfSJJcLpdHwJFkr7tcrkvWuN1unTlzRs2aNas0npkzZ2r69Ok1eowAAODaVKshJzExUXv37tXmzZs92seOHWv/HRkZqeDgYA0aNEgHDx5U27Zta208ycnJSkpKstfdbrdCQ0Nr7fUAAED9qbWPq8aNG6dVq1bpo48+0s0333zJ2l69ekmSDhw4IEkKCgpSUVGRR03FesV9PFXV+Pn5XfQqjiT5+PjIz8/PYwEAAGaq8ZBjWZbGjRunFStWaMOGDQoPD7/sNnl5eZKk4OBgSVJUVJT27NmjI0eO2DUZGRny8/NTx44d7ZrMzEyP/WRkZCgqKqqGjgQAADRkNR5yEhMT9e677+q9995TixYt5HK55HK5dObMGUnSwYMHNWPGDOXm5urQoUNauXKlRo0apX79+qlz586SpJiYGHXs2FGPPPKIdu3apbVr12rq1KlKTEyUj4+PJOmpp57SF198oeeee0779u3Ta6+9pmXLlmnixIk1fUgAAKABqvGQs3DhQhUXF2vAgAEKDg62l6VLl0qSnE6n1q9fr5iYGEVEROjZZ5/V/fffrw8//NDeh7e3t1atWiVvb29FRUVp5MiRGjVqlF566SW7Jjw8XKtXr1ZGRoa6dOmiuXPn6s033+Tr4wAAQFIt3HhsWdYl+0NDQ7Vp06bL7icsLExr1qy5ZM2AAQO0c+fOao0PAAA0Dvx2FQAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgpCb1PQBTnU/fXKmt6eA+9TASAAAaJ67kAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEt+uAhqAC2XndfjscZ2yzul6h1M3+7Ss7yHBEOWyVOB1TG5HqUq/364ObbrJ2+Fd38MCakSDDzkLFizQnDlz5HK51KVLF/3nf/6n7rrrrvoelg6d+FelttvFV8hRfZ/kvKu3v3ldx1qX2G2tS5vp8Zx3dU/UyHocGRq6Pd4urWz6mYq9zv7QkD1WbXwDlNBpkqJCBtXv4IAa0KA/rlq6dKmSkpL04osvaseOHerSpYtiY2N15MiR+h4aUCM+yXlXfz7yio41LfFoP+Y8oz8feUWf5LxbTyNDQ5fzbab+5typYsdZj/ajZ7/T7O3PKefbzHoaGVBzGnTIeeWVVzRmzBg99thj6tixoxYtWqTmzZvr7bffru+hAT/bhbLzevub139Ycfyk83/XF3/zui6Una/TcaHhK7PK9NbeOT+s/PTckiVJenvvn1VmldXpuICa1mA/rjp37pxyc3OVnJxst3l5eSk6Olo5OTkX3aa0tFSlpaX2enFxsSTJ7XbX+PhOnS6t1FYbrwNz7dmzVkUX3NKFqmtccmvrljRFRsbW3cDQ4H16dIdcxwovWVN4+lttO/SxOrbpXkejggl++t5XW+97Ffu1LOuSdQ025Hz//fcqKytTYGCgR3tgYKD27dt30W1mzpyp6dOnV2oPDQ2tlTFWkjC3bl4HjcpqPVjfQ4ChVmtgfQ8BDV0tv++dPHlS/v7+VfY32JBzNZKTk5WUlGSvl5eX69ixY2rTpo0cjkrXbK+a2+1WaGiovvrqK/n5+dXYfk3EXF055qp6mK8rx1xdOebqytXmXFmWpZMnTyokJOSSdQ025Nxwww3y9vZWUVGRR3tRUZGCgoIuuo2Pj498fHw82lq2bFlbQ5Sfnx//E1wh5urKMVfVw3xdOebqyjFXV6625upSV3AqNNgbj51Op3r06KHMzP/7BkB5ebkyMzMVFRVVjyMDAADXggZ7JUeSkpKSNHr0aPXs2VN33XWXXn31VZWUlOixxx6r76EBAIB61qBDzkMPPaTvvvtO06ZNk8vlUteuXZWenl7pZuS65uPjoxdffLHSR2OojLm6csxV9TBfV465unLM1ZW7FubKYV3u+1cAAAANUIO9JwcAAOBSCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkHMVsrKyNHToUIWEhMjhcCgtLe2y22zcuFHdu3eXj4+P2rVrp9TU1Fof57WgunO1ceNGORyOSovL5aqbAdejmTNn6he/+IVatGihgIAAxcfHa//+/Zfdbvny5YqIiJCvr68iIyO1Zs2aOhht/bqauUpNTa10Xvn6+tbRiOvPwoUL1blzZ/ups1FRUfrXv/51yW0a4zklVX+uGus5dTGzZs2Sw+HQhAkTLllX1+cWIecqlJSUqEuXLlqwYMEV1RcUFCguLk4DBw5UXl6eJkyYoCeeeEJr166t5ZHWv+rOVYX9+/ersLDQXgICAmpphNeOTZs2KTExUVu2bFFGRobOnz+vmJgYlZSUVLlNdna2hg8froSEBO3cuVPx8fGKj4/X3r1763Dkde9q5kr64fHyPz6vvvzyyzoacf25+eabNWvWLOXm5mr79u365S9/qd/85jfKz8+/aH1jPaek6s+V1DjPqZ/atm2bXn/9dXXu3PmSdfVybln4WSRZK1asuGTNc889Z915550ebQ899JAVGxtbiyO79lzJXH300UeWJOv48eN1MqZr2ZEjRyxJ1qZNm6qsefDBB624uDiPtl69ellPPvlkbQ/vmnIlc7V48WLL39+/7gZ1DWvVqpX15ptvXrSPc8rTpeaKc8qyTp48ad1+++1WRkaG1b9/f2v8+PFV1tbHucWVnDqQk5Oj6Ohoj7bY2Fjl5OTU04iufV27dlVwcLB+9atf6ZNPPqnv4dSL4uJiSVLr1q2rrOHc+sGVzJUknTp1SmFhYQoNDb3sv9BNVFZWpvfff18lJSVV/sYf59QPrmSuJM6pxMRExcXFVTpnLqY+zq0G/bMODYXL5ar0UxOBgYFyu906c+aMmjVrVk8ju/YEBwdr0aJF6tmzp0pLS/Xmm29qwIAB2rp1q7p3717fw6sz5eXlmjBhgu655x516tSpyrqqzq3GcA9ThSudq/bt2+vtt99W586dVVxcrD//+c/q3bu38vPzdfPNN9fhiOvenj17FBUVpbNnz+r666/XihUr1LFjx4vWNvZzqjpz1ZjPKUl6//33tWPHDm3btu2K6uvj3CLk4JrSvn17tW/f3l7v3bu3Dh48qHnz5ulvf/tbPY6sbiUmJmrv3r3avHlzfQ/lmnelcxUVFeXxL/LevXurQ4cOev311zVjxozaHma9at++vfLy8lRcXKy///3vGj16tDZt2lTlm3djVp25aszn1FdffaXx48crIyPjmr7ZmpBTB4KCglRUVOTRVlRUJD8/P67iXIG77rqrUb3Zjxs3TqtWrVJWVtZl/zVY1bkVFBRUm0O8ZlRnrn6qadOm6tatmw4cOFBLo7t2OJ1OtWvXTpLUo0cPbdu2TfPnz9frr79eqbaxn1PVmaufakznVG5uro4cOeJxhb2srExZWVn661//qtLSUnl7e3tsUx/nFvfk1IGoqChlZmZ6tGVkZFzyc178n7y8PAUHB9f3MGqdZVkaN26cVqxYoQ0bNig8PPyy2zTWc+tq5uqnysrKtGfPnkZxbv1UeXm5SktLL9rXWM+pqlxqrn6qMZ1TgwYN0p49e5SXl2cvPXv21IgRI5SXl1cp4Ej1dG7V2i3NBjt58qS1c+dOa+fOnZYk65VXXrF27txpffnll5ZlWdaUKVOsRx55xK7/4osvrObNm1uTJk2yPvvsM2vBggWWt7e3lZ6eXl+HUGeqO1fz5s2z0tLSrM8//9zas2ePNX78eMvLy8tav359fR1CnXn66actf39/a+PGjVZhYaG9nD592q555JFHrClTptjrn3zyidWkSRPrz3/+s/XZZ59ZL774otW0aVNrz5499XEIdeZq5mr69OnW2rVrrYMHD1q5ubnWsGHDLF9fXys/P78+DqHOTJkyxdq0aZNVUFBg7d6925oyZYrlcDisdevWWZbFOfVj1Z2rxnpOVeWn3666Fs4tQs5VqPia80+X0aNHW5ZlWaNHj7b69+9faZuuXbtaTqfTuu2226zFixfX+bjrQ3Xn6k9/+pPVtm1by9fX12rdurU1YMAAa8OGDfUz+Dp2sXmS5HGu9O/f3567CsuWLbPuuOMOy+l0Wnfeeae1evXquh14PbiauZowYYJ1yy23WE6n0woMDLTuvfdea8eOHXU/+Dr2+OOPW2FhYZbT6bRuvPFGa9CgQfabtmVxTv1YdeeqsZ5TVflpyLkWzi2HZVlW7V0nAgAAqB/ckwMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI/1/fVFeqWR1t9MAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMIhJREFUeJzt3XtUVXX+//EXIhxvXESFA4mIl1TyVtTgKTVLRlAzHW2Z5SiWaTrYGnVS47tKzZqvk90vpvVtilpJqU1aaaKoqZloxTfyUpEafrH0YKMBSgoo+/dHP/Z0FDUUOnzg+Vhrr8Xe+30+5713Z9Wrz9l7Hx/LsiwBAAAYpIG3GwAAAKgqAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDIBaZdy4cWrbtu1F6w4cOCAfHx+lpqbWSB9t27bVuHHjamRsAJePAAPgd3fo0CHNnTtX2dnZ3m4FgKEaersBAPXPoUOH9PDDD6tt27bq2bOnx77/+Z//UXl5uXcaA2AMAgyAWsXPz8/bLQAwAF8hAfXY3Llz5ePjo2+++UYjR45UYGCgWrRoob/+9a86deqUR+2bb76p2NhYNW7cWCEhIRo1apQOHjzoUdOvXz917dpVWVlZuv7669W4cWNFR0dr8eLFds2mTZt03XXXSZLuuusu+fj4eFzLUtk1MAUFBRo3bpyCgoIUHByspKQkFRQUVHpM33zzjW677TaFhISoUaNGuvbaa/X+++9f3on6VR9Tp05VZGSkHA6HOnTooMcee8xjxqji2pwnnnhCL7/8stq3by+Hw6HrrrtOn332WbX0AYAZGACSRo4cqbZt22r+/Pnavn27nnvuOf3000964403JEl///vf9dBDD2nkyJG655579OOPP+r5559X37599cUXXyg4ONge66efftKgQYM0cuRI3XHHHVq2bJkmT54sf39/3X333erSpYvmzZun2bNna+LEierTp48k6frrr6+0N8uyNHToUG3dulWTJk1Sly5dtGLFCiUlJZ1Tu2fPHt1www264oor9MADD6hp06ZatmyZhg0bpn/961/605/+dMnn6Oeff9aNN96oH374Qffee6/atGmjbdu2KSUlRYcPH9YzzzzjUZ+Wlqbjx4/r3nvvlY+PjxYsWKDhw4fru+++Y5YJqA4WgHprzpw5liTr1ltv9dj+l7/8xZJkffnll9aBAwcsX19f6+9//7tHza5du6yGDRt6bL/xxhstSdaTTz5pbyspKbF69uxphYaGWqWlpZZlWdZnn31mSbJee+21c3pKSkqyoqKi7PWVK1dakqwFCxbY206fPm316dPnnDH69+9vdevWzTp16pS9rby83Lr++uutjh07VuncREVFWUlJSfb6I488YjVt2tT69ttvPeoeeOABy9fX18rLy7Msy7Jyc3MtSVaLFi2sY8eO2XXvvfeeJcn64IMPqtQHgMrxFRIAJScne6zfd999kqQPP/xQ7777rsrLyzVy5Ej9+9//then06mOHTvqo48+8nhtw4YNde+999rr/v7+uvfee3XkyBFlZWVVubcPP/xQDRs21OTJk+1tvr6+do8Vjh07po0bN2rkyJE6fvy43efRo0eVkJCgvXv36ocffqjy+1dYvny5+vTpo+bNm3uch/j4eJ05c0ZbtmzxqL/99tvVvHlze71ipum777675B4A/AdfIQFQx44dPdbbt2+vBg0a6MCBA2rQoIEsyzqnpsLZX4dERESoadOmHtuuvPJKSb9cH9KrV68q9fZ///d/Cg8PV7NmzTy2d+rUyWN93759sixLDz30kB566KFKxzpy5IiuuOKKKr1/hb1792rnzp1q1arVecf+tTZt2nisV4SZn3766ZLeH4AnAgyAc/j4+Nh/l5eXy8fHR2vWrJGvr+85tWcHC2+puJD2/vvvV0JCQqU1HTp0uKzx//jHP2rmzJmV7q8IaRUqO1fSL9f0ALh8BBgA2rt3r6Kjo+31ffv2qby8XG3btpWvr68sy1J0dPQ5/5GuzKFDh1RcXOwxC/Ptt99Kkn130a8D0sVERUVpw4YNOnHihEdYysnJ8ahr166dpF9mhOLj43/z+L9V+/btdeLEiRoZG0DVcQ0MAC1cuNBj/fnnn5ckDRw4UMOHD5evr68efvjhc2YPLMvS0aNHPbadPn1aL730kr1eWlqql156Sa1atVJsbKwk2eHmfLdC/9qgQYN0+vRpLVq0yN525swZu8cKoaGh6tevn1566SUdPnz4nHF+/PHHi77XhYwcOVKZmZlau3btOfsKCgp0+vTpyxofQNUwAwNAubm5uvXWW5WYmKjMzEy9+eabuvPOO9WjRw9J0qOPPqqUlBQdOHBAw4YNU0BAgHJzc7VixQpNnDhR999/vz1WRESEHnvsMR04cEBXXnmlli5dquzsbL388sv29TLt27dXcHCwFi9erICAADVt2lRxcXEes0AVhgwZohtuuEEPPPCADhw4oJiYGL377rsqLCw8p3bhwoXq3bu3unXrpgkTJqhdu3bKz89XZmamvv/+e3355ZeXfI5mzJih999/X7fccovGjRun2NhYFRcXa9euXXrnnXd04MABtWzZ8pLHB1BF3rwFCoB3VdxG/dVXX1m33XabFRAQYDVv3tyaMmWKdfLkSY/af/3rX1bv3r2tpk2bWk2bNrU6d+5sJScnWzk5OXbNjTfeaF111VXW559/brlcLqtRo0ZWVFSU9cILL5zz3u+9954VExNjNWzY0ON26LNvo7Ysyzp69Kg1ZswYKzAw0AoKCrLGjBljffHFF5Xeir1//35r7NixltPptPz8/KwrrrjCuuWWW6x33nmnSufm7NuoLcuyjh8/bqWkpFgdOnSw/P39rZYtW1rXX3+99cQTT9i3iFfcRv3444+fM6Yka86cOVXqA0DlfCyLK8qA+mru3Ll6+OGH9eOPP1bL7EG/fv3073//W7t3766G7gDg/LgGBgAAGIdrYADUK263+4L7GzdurKCgoN+pGwCXigADoF4JDw+/4P6kpCT7hyUB1F5cAwOgXlm/fv0F90dERCgmJuZ36gbApSLAAAAA43ARLwAAME6dvQamvLxchw4dUkBAQJUeWw4AALzHsiwdP35cERERatDg/PMsdTbAHDp0SJGRkd5uAwAAXIKDBw+qdevW591fZwNMQECApF9OQGBgoJe7AQAAv0VRUZEiIyPt/46fT50NMBVfGwUGBhJgAAAwzMUu/+AiXgAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjNPR2AwCksvSt52zzS+zthU4AwAzMwAAAAONUKcAsWrRI3bt3V2BgoAIDA+VyubRmzRp7/6lTp5ScnKwWLVqoWbNmGjFihPLz8z3GyMvL0+DBg9WkSROFhoZqxowZOn36tEfNpk2bdM0118jhcKhDhw5KTU299CMEAAB1TpUCTOvWrfWPf/xDWVlZ+vzzz3XzzTdr6NCh2rNnjyRp2rRp+uCDD7R8+XJt3rxZhw4d0vDhw+3XnzlzRoMHD1Zpaam2bdum119/XampqZo9e7Zdk5ubq8GDB+umm25Sdna2pk6dqnvuuUdr166tpkMGAACm87Esy7qcAUJCQvT444/rtttuU6tWrZSWlqbbbrtNkvTNN9+oS5cuyszMVK9evbRmzRrdcsstOnTokMLCwiRJixcv1qxZs/Tjjz/K399fs2bN0urVq7V79277PUaNGqWCggKlp6f/5r6KiooUFBSkwsJCBQYGXs4hAjWOa2AA4Be/9b/fl3wNzJkzZ/T222+ruLhYLpdLWVlZKisrU3x8vF3TuXNntWnTRpmZmZKkzMxMdevWzQ4vkpSQkKCioiJ7FiczM9NjjIqaijHOp6SkREVFRR4LAACom6ocYHbt2qVmzZrJ4XBo0qRJWrFihWJiYuR2u+Xv76/g4GCP+rCwMLndbkmS2+32CC8V+yv2XaimqKhIJ0+ePG9f8+fPV1BQkL1ERkZW9dAAAIAhqhxgOnXqpOzsbO3YsUOTJ09WUlKSvvrqq5rorUpSUlJUWFhoLwcPHvR2SwAAoIZU+Tkw/v7+6tChgyQpNjZWn332mZ599lndfvvtKi0tVUFBgccsTH5+vpxOpyTJ6XTq008/9Riv4i6lX9ecfedSfn6+AgMD1bhx4/P25XA45HA4qno4AADAQJf9HJjy8nKVlJQoNjZWfn5+2rBhg70vJydHeXl5crlckiSXy6Vdu3bpyJEjdk1GRoYCAwMVExNj1/x6jIqaijEAAACqNAOTkpKigQMHqk2bNjp+/LjS0tK0adMmrV27VkFBQRo/frymT5+ukJAQBQYG6r777pPL5VKvXr0kSQMGDFBMTIzGjBmjBQsWyO1268EHH1RycrI9ezJp0iS98MILmjlzpu6++25t3LhRy5Yt0+rVq6v/6AEAgJGqFGCOHDmisWPH6vDhwwoKClL37t21du1a/fGPf5QkPf3002rQoIFGjBihkpISJSQk6MUXX7Rf7+vrq1WrVmny5MlyuVxq2rSpkpKSNG/ePLsmOjpaq1ev1rRp0/Tss8+qdevWeuWVV5SQkFBNhwzUXdyODaC+uOznwNRWPAcGJqmu4FFXxwFQf9T4c2AAAAC8hQADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABinyr9GDeA/eNIsAHgHMzAAAMA4zMCgXmLmBADMxgwMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGKehtxsAgEtRlr7VY90vsbeXOgHgDczAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMw3NgUKvxrA8AQGWYgQEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjFOlADN//nxdd911CggIUGhoqIYNG6acnByPmn79+snHx8djmTRpkkdNXl6eBg8erCZNmig0NFQzZszQ6dOnPWo2bdqka665Rg6HQx06dFBqauqlHSEAAKhzqhRgNm/erOTkZG3fvl0ZGRkqKyvTgAEDVFxc7FE3YcIEHT582F4WLFhg7ztz5owGDx6s0tJSbdu2Ta+//rpSU1M1e/ZsuyY3N1eDBw/WTTfdpOzsbE2dOlX33HOP1q5de5mHCwAA6oIq/ZRAenq6x3pqaqpCQ0OVlZWlvn372tubNGkip9NZ6Rjr1q3TV199pfXr1yssLEw9e/bUI488olmzZmnu3Lny9/fX4sWLFR0drSeffFKS1KVLF23dulVPP/20EhISKh23pKREJSUl9npRUVFVDg0AABjksq6BKSwslCSFhIR4bF+yZIlatmyprl27KiUlRT///LO9LzMzU926dVNYWJi9LSEhQUVFRdqzZ49dEx8f7zFmQkKCMjMzz9vL/PnzFRQUZC+RkZGXc2gAAKAWu+QfcywvL9fUqVN1ww03qGvXrvb2O++8U1FRUYqIiNDOnTs1a9Ys5eTk6N1335Ukud1uj/AiyV53u90XrCkqKtLJkyfVuHHjc/pJSUnR9OnT7fWioiJCDAAAddQlB5jk5GTt3r1bW7d6/lrwxIkT7b+7deum8PBw9e/fX/v371f79u0vvdOLcDgccjgcNTY+gLqJXzwHzHRJXyFNmTJFq1at0kcffaTWrVtfsDYuLk6StG/fPkmS0+lUfn6+R03FesV1M+erCQwMrHT2BQAA1C9VCjCWZWnKlClasWKFNm7cqOjo6Iu+Jjs7W5IUHh4uSXK5XNq1a5eOHDli12RkZCgwMFAxMTF2zYYNGzzGycjIkMvlqkq7AACgjqpSgElOTtabb76ptLQ0BQQEyO12y+126+TJk5Kk/fv365FHHlFWVpYOHDig999/X2PHjlXfvn3VvXt3SdKAAQMUExOjMWPG6Msvv9TatWv14IMPKjk52f4KaNKkSfruu+80c+ZMffPNN3rxxRe1bNkyTZs2rZoPHwAAmKhKAWbRokUqLCxUv379FB4ebi9Lly6VJPn7+2v9+vUaMGCAOnfurL/97W8aMWKEPvjgA3sMX19frVq1Sr6+vnK5XPrzn/+ssWPHat68eXZNdHS0Vq9erYyMDPXo0UNPPvmkXnnllfPeQg0AAOqXKl3Ea1nWBfdHRkZq8+bNFx0nKipKH3744QVr+vXrpy+++KIq7QEAgHqC30ICAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMap0pN4AdRuBwrWnLOto3p7oRMAqFnMwAAAAOMwAwMA1aAsfavHul8iM19ATWIGBgAAGIcAAwAAjEOAAQAAxiHAAAAA43ARL4Aaw23dAGoKMzAAAMA4BBgAAGAcvkICcA6++gFQ2zEDAwAAjEOAAQAAxiHAAAAA4xBgAACAcbiIF4CRzr7QmIuMgfqFAAPUAtz1AwBVw1dIAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4PIkXNaIsfavHul8iT5UFAFQfZmAAAIBxmIEBgFqE2Uvgt2EGBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwTpUCzPz583XdddcpICBAoaGhGjZsmHJycjxqTp06peTkZLVo0ULNmjXTiBEjlJ+f71GTl5enwYMHq0mTJgoNDdWMGTN0+vRpj5pNmzbpmmuukcPhUIcOHZSamnppRwgA9VBZ+tZzFqAuqVKA2bx5s5KTk7V9+3ZlZGSorKxMAwYMUHFxsV0zbdo0ffDBB1q+fLk2b96sQ4cOafjw4fb+M2fOaPDgwSotLdW2bdv0+uuvKzU1VbNnz7ZrcnNzNXjwYN10003Kzs7W1KlTdc8992jt2rXVcMgAAMB0VfopgfT0dI/11NRUhYaGKisrS3379lVhYaH++c9/Ki0tTTfffLMk6bXXXlOXLl20fft29erVS+vWrdNXX32l9evXKywsTD179tQjjzyiWbNmae7cufL399fixYsVHR2tJ598UpLUpUsXbd26VU8//bQSEhKq6dABAICpLusamMLCQklSSEiIJCkrK0tlZWWKj4+3azp37qw2bdooMzNTkpSZmalu3bopLCzMrklISFBRUZH27Nlj1/x6jIqaijEqU1JSoqKiIo8FAADUTZccYMrLyzV16lTdcMMN6tq1qyTJ7XbL399fwcHBHrVhYWFyu912za/DS8X+in0XqikqKtLJkycr7Wf+/PkKCgqyl8jIyEs9NAAAUMtdcoBJTk7W7t279fbbb1dnP5csJSVFhYWF9nLw4EFvtwQAAGpIla6BqTBlyhStWrVKW7ZsUevWre3tTqdTpaWlKigo8JiFyc/Pl9PptGs+/fRTj/Eq7lL6dc3Zdy7l5+crMDBQjRs3rrQnh8Mhh8NxKYcDAAAMU6UZGMuyNGXKFK1YsUIbN25UdHS0x/7Y2Fj5+flpw4YN9racnBzl5eXJ5XJJklwul3bt2qUjR47YNRkZGQoMDFRMTIxd8+sxKmoqxgAAAPVblWZgkpOTlZaWpvfee08BAQH2NStBQUFq3LixgoKCNH78eE2fPl0hISEKDAzUfffdJ5fLpV69ekmSBgwYoJiYGI0ZM0YLFiyQ2+3Wgw8+qOTkZHsGZdKkSXrhhRc0c+ZM3X333dq4caOWLVum1atXV/PhA5fnQMGac7Z1VG8vdAIA9UuVZmAWLVqkwsJC9evXT+Hh4faydOlSu+bpp5/WLbfcohEjRqhv375yOp1699137f2+vr5atWqVfH195XK59Oc//1ljx47VvHnz7Jro6GitXr1aGRkZ6tGjh5588km98sor3EINAAAkVXEGxrKsi9Y0atRICxcu1MKFC89bExUVpQ8//PCC4/Tr109ffPFFVdoDgCo7exaNGTTADPwWEgAAMA4BBgAAGIcAAwAAjHNJz4EBTMfdQwBgNmZgAACAcZiBgYey9K0e636JzEoAAGofZmAAAIBxmIEBgGrA82SA3xczMAAAwDgEGAAAYBy+QgKAWoSvooDfhhkYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxeA4MajWeiQEAqAwzMAAAwDjMwNQBZelbz9nml8hMBQCg7iLAAADOi/9BQm3FV0gAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwTkNvNwAAqH4HCtacs62jenuhE6BmMAMDAACMQ4ABAADGIcAAAADjEGAAAIBxuIgXAOAVZelbPdb9ErnIGL9dlWdgtmzZoiFDhigiIkI+Pj5auXKlx/5x48bJx8fHY0lMTPSoOXbsmEaPHq3AwEAFBwdr/PjxOnHihEfNzp071adPHzVq1EiRkZFasGBB1Y8OAHBZDhSsOWcBaoMqB5ji4mL16NFDCxcuPG9NYmKiDh8+bC9vvfWWx/7Ro0drz549ysjI0KpVq7RlyxZNnDjR3l9UVKQBAwYoKipKWVlZevzxxzV37ly9/PLLVW0XAADUQVX+CmngwIEaOHDgBWscDoecTmel+77++mulp6frs88+07XXXitJev755zVo0CA98cQTioiI0JIlS1RaWqpXX31V/v7+uuqqq5Sdna2nnnrKI+gAAID6qUYu4t20aZNCQ0PVqVMnTZ48WUePHrX3ZWZmKjg42A4vkhQfH68GDRpox44ddk3fvn3l7+9v1yQkJCgnJ0c//fRTpe9ZUlKioqIijwUAANRN1R5gEhMT9cYbb2jDhg167LHHtHnzZg0cOFBnzpyRJLndboWGhnq8pmHDhgoJCZHb7bZrwsLCPGoq1itqzjZ//nwFBQXZS2RkZHUfGgAAqCWq/S6kUaNG2X9369ZN3bt3V/v27bVp0yb179+/ut/OlpKSounTp9vrRUVFhBgAAOqoGn8OTLt27dSyZUvt27dPkuR0OnXkyBGPmtOnT+vYsWP2dTNOp1P5+fkeNRXr57u2xuFwKDAw0GMBAAB1U40HmO+//15Hjx5VeHi4JMnlcqmgoEBZWVl2zcaNG1VeXq64uDi7ZsuWLSorK7NrMjIy1KlTJzVv3rymWwYAALVclQPMiRMnlJ2drezsbElSbm6usrOzlZeXpxMnTmjGjBnavn27Dhw4oA0bNmjo0KHq0KGDEhISJEldunRRYmKiJkyYoE8//VSffPKJpkyZolGjRikiIkKSdOedd8rf31/jx4/Xnj17tHTpUj377LMeXxEBAID6q8oB5vPPP9fVV1+tq6++WpI0ffp0XX311Zo9e7Z8fX21c+dO3Xrrrbryyis1fvx4xcbG6uOPP5bD4bDHWLJkiTp37qz+/ftr0KBB6t27t8czXoKCgrRu3Trl5uYqNjZWf/vb3zR79mxuoQYAAJIu4SLefv36ybKs8+5fu3btRccICQlRWlraBWu6d++ujz/+uKrtAQCAeoAfcwQAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwTkNvNwAAwOUoS9/qse6X2NtLneD3RIBBjThQsMZjvaP4FwoAoPrwFRIAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDg8BwYA4BU8LwqXgxkYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiH30KCB36bBIBp+PdW/cQMDAAAMA4BBgAAGIcAAwAAjEOAAQAAxuEiXgAAJJWlb/VY90vkYuDajBkYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjVDnAbNmyRUOGDFFERIR8fHy0cuVKj/2WZWn27NkKDw9X48aNFR8fr71793rUHDt2TKNHj1ZgYKCCg4M1fvx4nThxwqNm586d6tOnjxo1aqTIyEgtWLCg6kcHAADqpCoHmOLiYvXo0UMLFy6sdP+CBQv03HPPafHixdqxY4eaNm2qhIQEnTp1yq4ZPXq09uzZo4yMDK1atUpbtmzRxIkT7f1FRUUaMGCAoqKilJWVpccff1xz587Vyy+/fAmHCAAA6poqP8hu4MCBGjhwYKX7LMvSM888owcffFBDhw6VJL3xxhsKCwvTypUrNWrUKH399ddKT0/XZ599pmuvvVaS9Pzzz2vQoEF64oknFBERoSVLlqi0tFSvvvqq/P39ddVVVyk7O1tPPfWUR9ABAAD1U7VeA5Obmyu32634+Hh7W1BQkOLi4pSZmSlJyszMVHBwsB1eJCk+Pl4NGjTQjh077Jq+ffvK39/frklISFBOTo5++umnSt+7pKRERUVFHgsAAKibqjXAuN1uSVJYWJjH9rCwMHuf2+1WaGiox/6GDRsqJCTEo6ayMX79HmebP3++goKC7CUyMvLyDwgAANRKdeYupJSUFBUWFtrLwYMHvd0SAACoIdUaYJxOpyQpPz/fY3t+fr69z+l06siRIx77T58+rWPHjnnUVDbGr9/jbA6HQ4GBgR4LAACom6o1wERHR8vpdGrDhg32tqKiIu3YsUMul0uS5HK5VFBQoKysLLtm48aNKi8vV1xcnF2zZcsWlZWV2TUZGRnq1KmTmjdvXp0tAwBQrcrSt3osqBlVDjAnTpxQdna2srOzJf1y4W52drby8vLk4+OjqVOn6tFHH9X777+vXbt2aezYsYqIiNCwYcMkSV26dFFiYqImTJigTz/9VJ988ommTJmiUaNGKSIiQpJ05513yt/fX+PHj9eePXu0dOlSPfvss5o+fXq1HTgAADBXlW+j/vzzz3XTTTfZ6xWhIikpSampqZo5c6aKi4s1ceJEFRQUqHfv3kpPT1ejRo3s1yxZskRTpkxR//791aBBA40YMULPPfecvT8oKEjr1q1TcnKyYmNj1bJlS82ePZtbqAEAgKRLCDD9+vWTZVnn3e/j46N58+Zp3rx5560JCQlRWlraBd+ne/fu+vjjj6vaHgAAqAfqzF1IAACg/qjyDAwAAHXRgYI1Husd1dtLneC3YAYGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxuAvJiyp7xLRfIle9AwBwMQSYOuDsW/8kbv8DANRtfIUEAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOPwW0gAANRCZ//gLz/264kZGAAAYBxmYAAAqEYHCtZ4rHcUMyc1gRkYAABgHAIMAAAwDgEGAAAYh2tgAACow+rq3UzMwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4/AkXgAAaiF+1frCmIEBAADGIcAAAADjEGAAAIBxuAYGAIA6rK5eS8MMDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcao9wMydO1c+Pj4eS+fOne39p06dUnJyslq0aKFmzZppxIgRys/P9xgjLy9PgwcPVpMmTRQaGqoZM2bo9OnT1d0qAAAwVI08B+aqq67S+vXr//MmDf/zNtOmTdPq1au1fPlyBQUFacqUKRo+fLg++eQTSdKZM2c0ePBgOZ1Obdu2TYcPH9bYsWPl5+en//7v/66JdgEAwEWUpW/1WPdL9O7zZGokwDRs2FBOp/Oc7YWFhfrnP/+ptLQ03XzzzZKk1157TV26dNH27dvVq1cvrVu3Tl999ZXWr1+vsLAw9ezZU4888ohmzZqluXPnyt/fv9L3LCkpUUlJib1eVFRUE4cGAABqgRq5Bmbv3r2KiIhQu3btNHr0aOXl5UmSsrKyVFZWpvj4eLu2c+fOatOmjTIzMyVJmZmZ6tatm8LCwuyahIQEFRUVac+ePed9z/nz5ysoKMheIiMja+LQAABALVDtASYuLk6pqalKT0/XokWLlJubqz59+uj48eNyu93y9/dXcHCwx2vCwsLkdrslSW632yO8VOyv2Hc+KSkpKiwstJeDBw9W74EBAIBao9q/Qho4cKD9d/fu3RUXF6eoqCgtW7ZMjRs3ru63szkcDjkcjhobHwAA1B41fht1cHCwrrzySu3bt09Op1OlpaUqKCjwqMnPz7evmXE6nefclVSxXtl1NQAAoP6p8QBz4sQJ7d+/X+Hh4YqNjZWfn582bNhg78/JyVFeXp5cLpckyeVyadeuXTpy5Ihdk5GRocDAQMXExNR0uwAAwADV/hXS/fffryFDhigqKkqHDh3SnDlz5OvrqzvuuENBQUEaP368pk+frpCQEAUGBuq+++6Ty+VSr169JEkDBgxQTEyMxowZowULFsjtduvBBx9UcnIyXxEBAOAlBwrWeKx3VB27jfr777/XHXfcoaNHj6pVq1bq3bu3tm/frlatWkmSnn76aTVo0EAjRoxQSUmJEhIS9OKLL9qv9/X11apVqzR58mS5XC41bdpUSUlJmjdvXnW3CgAADFXtAebtt9++4P5GjRpp4cKFWrhw4XlroqKi9OGHH1Z3awAAoI7gt5AAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABinRn6NGr/N2ffUS96/rx4AABMwAwMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgnIbebsBEZelbz9nml9jbC50AAFA/MQMDAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAME5DbzdgogMFa87Z1lG9vdAJAAD1EzMwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADj8BwYeLIkx3Ff+ZY10Bm/clnl5fJpQM6taadVrsyG/6d/+/ysllYTuU5HebslAKjVCDCwndn5rcK/DFDD0v8ElpJHXpLfn/rLt/uVXuysbnt9zzN6r/FaWT7/2bbK7xsN3ROmpKumeq0vAKjNavX/Wi9cuFBt27ZVo0aNFBcXp08//dTbLdVZZ3Z+q7LUlfIt9fHcUXhcZakrdWbnt95prI57fc8zWrn/DVlnbbckrdz/hl7f84wXugKA2q/WBpilS5dq+vTpmjNnjv73f/9XPXr0UEJCgo4cOeLt1uocq7xcZSs2SJJ85FNpTdnKDbLKy3/Ptuq80vJSvb//zV9Wzj7t/3/9/f1vqrS89HftCwBMUGsDzFNPPaUJEyborrvuUkxMjBYvXqwmTZro1Vdf9XZrdU75d99LhccvXFRw/Jc6VJu1uctVrguHwnKVa23u8t+pIwAwR628Bqa0tFRZWVlKSUmxtzVo0EDx8fHKzMys9DUlJSUqKSmx1wsLCyVJRUVF1d7fiZ9Lztl2Ke9TW8Y5c8itspJTF63zO+SWb2jwJfV0qf8cqmuci417qWNfzji5+ftU9vOZ31RX1Oq3jVkbjqsmxvktY3v7M1bbx7nUsfhnyDjVPc7FVIxrWWd/uX4Wqxb64YcfLEnWtm3bPLbPmDHD+sMf/lDpa+bMmWPpl0sHWFhYWFhYWAxfDh48eMGsUCtnYC5FSkqKpk+fbq+Xl5fr2LFjatGihXx8fFRUVKTIyEgdPHhQgYGBXuy0fuG8//44597BefcOzrt31OR5tyxLx48fV0RExAXramWAadmypXx9fZWfn++xPT8/X06ns9LXOBwOORwOj23BwcHn1AUGBvIh9wLO+++Pc+4dnHfv4Lx7R02d96CgoIvW1MqLeP39/RUbG6sNGzbY28rLy7Vhwwa5XC4vdgYAAGqDWjkDI0nTp09XUlKSrr32Wv3hD3/QM888o+LiYt11113ebg0AAHhZrQ0wt99+u3788UfNnj1bbrdbPXv2VHp6usLCwi5pPIfDoTlz5pzzNRNqFuf998c59w7Ou3dw3r2jNpx3H8u62H1KAAAAtUutvAYGAADgQggwAADAOAQYAABgHAIMAAAwDgEGAAAYp04HmLlz58rHx8dj6dy5s7fbqnO2bNmiIUOGKCIiQj4+Plq5cqXHfsuyNHv2bIWHh6tx48aKj4/X3r17vdNsHXKx8z5u3LhzPv+JiYneabYOmT9/vq677joFBAQoNDRUw4YNU05OjkfNqVOnlJycrBYtWqhZs2YaMWLEOU8WR9X8lvPer1+/cz7zkyZN8lLHdcOiRYvUvXt3+4m7LpdLa9assfd787NepwOMJF111VU6fPiwvWzdutXbLdU5xcXF6tGjhxYuXFjp/gULFui5557T4sWLtWPHDjVt2lQJCQk6deriv4CN87vYeZekxMREj8//W2+99Tt2WDdt3rxZycnJ2r59uzIyMlRWVqYBAwaouLjYrpk2bZo++OADLV++XJs3b9ahQ4c0fPhwL3Ztvt9y3iVpwoQJHp/5BQsWeKnjuqF169b6xz/+oaysLH3++ee6+eabNXToUO3Zs0eSlz/r1fLz0bXUnDlzrB49eni7jXpFkrVixQp7vby83HI6ndbjjz9ubysoKLAcDof11ltveaHDuuns825ZlpWUlGQNHTrUK/3UJ0eOHLEkWZs3b7Ys65fPt5+fn7V8+XK75uuvv7YkWZmZmd5qs845+7xblmXdeOON1l//+lfvNVVPNG/e3HrllVe8/lmv8zMwe/fuVUREhNq1a6fRo0crLy/P2y3VK7m5uXK73YqPj7e3BQUFKS4uTpmZmV7srH7YtGmTQkND1alTJ02ePFlHjx71dkt1TmFhoSQpJCREkpSVlaWysjKPz3znzp3Vpk0bPvPV6OzzXmHJkiVq2bKlunbtqpSUFP3888/eaK9OOnPmjN5++20VFxfL5XJ5/bNea39KoDrExcUpNTVVnTp10uHDh/Xwww+rT58+2r17twICArzdXr3gdrsl6ZyfgAgLC7P3oWYkJiZq+PDhio6O1v79+/Vf//VfGjhwoDIzM+Xr6+vt9uqE8vJyTZ06VTfccIO6du0q6ZfPvL+/v4KDgz1q+cxXn8rOuyTdeeedioqKUkREhHbu3KlZs2YpJydH7777rhe7Nd+uXbvkcrl06tQpNWvWTCtWrFBMTIyys7O9+lmv0wFm4MCB9t/du3dXXFycoqKitGzZMo0fP96LnQE1b9SoUfbf3bp1U/fu3dW+fXtt2rRJ/fv392JndUdycrJ2797NtXW/s/Od94kTJ9p/d+vWTeHh4erfv7/279+v9u3b/95t1hmdOnVSdna2CgsL9c477ygpKUmbN2/2dlt1/yLeXwsODtaVV16pffv2ebuVesPpdErSOVel5+fn2/vw+2jXrp1atmzJ57+aTJkyRatWrdJHH32k1q1b29udTqdKS0tVUFDgUc9nvnqc77xXJi4uTpL4zF8mf39/dejQQbGxsZo/f7569OihZ5991uuf9XoVYE6cOKH9+/crPDzc263UG9HR0XI6ndqwYYO9raioSDt27JDL5fJiZ/XP999/r6NHj/L5v0yWZWnKlClasWKFNm7cqOjoaI/9sbGx8vPz8/jM5+TkKC8vj8/8ZbjYea9Mdna2JPGZr2bl5eUqKSnx+me9Tn+FdP/992vIkCGKiorSoUOHNGfOHPn6+uqOO+7wdmt1yokTJzz+Dyc3N1fZ2dkKCQlRmzZtNHXqVD366KPq2LGjoqOj9dBDDykiIkLDhg3zXtN1wIXOe0hIiB5++GGNGDFCTqdT+/fv18yZM9WhQwclJCR4sWvzJScnKy0tTe+9954CAgLs7/qDgoLUuHFjBQUFafz48Zo+fbpCQkIUGBio++67Ty6XS7169fJy9+a62Hnfv3+/0tLSNGjQILVo0UI7d+7UtGnT1LdvX3Xv3t3L3ZsrJSVFAwcOVJs2bXT8+HGlpaVp06ZNWrt2rfc/6zV+n5MX3X777VZ4eLjl7+9vXXHFFdbtt99u7du3z9tt1TkfffSRJemcJSkpybKsX26lfuihh6ywsDDL4XBY/fv3t3JycrzbdB1wofP+888/WwMGDLBatWpl+fn5WVFRUdaECRMst9vt7baNV9k5l2S99tprds3Jkyetv/zlL1bz5s2tJk2aWH/605+sw4cPe6/pOuBi5z0vL8/q27evFRISYjkcDqtDhw7WjBkzrMLCQu82bri7777bioqKsvz9/a1WrVpZ/fv3t9atW2fv9+Zn3ceyLKvmYxIAAED1qVfXwAAAgLqBAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxvl/su4tNb+ApJMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALwFJREFUeJzt3XtYlXW+//8XB9cCDws8AZGYppXieChNpMYsJSjRdLKdOm4jD5MWOSqV6VSeci7UTjpp2tROvPbUVuy3dacmbvI4KalhttXSnNJ00oWauVBSEPj8/ujLPa5AE1ORj8/Hdd3XNetzv+/Pet8fTV5zr/teBBhjjAAAACwTWNUNAAAAXA6EHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQc4Bqzb98+BQQEKCMjo6pbKadJkyZ69NFHL/m8d999t+6+++5LPi+AqxshBwAAWCm4qhsAcGXdcMMNOnXqlGrUqFHVrQDAZUXIAa4xAQEBCgkJqeo2AOCy4+MqoBqaOHGiAgIC9NVXX+nf//3fFRYWpoYNG+qFF16QMUYHDhxQr1695PF4FBUVpVdeecU5tqJ7crxerwYNGqRGjRrJ7XbruuuuU69evbRv3z6n5tNPP1VSUpIaNGig0NBQNW3aVIMHD/brq7S0VDNmzFCrVq0UEhKiyMhIDRs2TD/88INfnTFGU6ZMUaNGjVSzZk3dc8892rlz50Wvx9/+9jd17NhRNWvWVN26dXXXXXfpf//3f897TGFhoSZMmKDmzZvL7XYrJiZGY8aMUWFhoV/dvHnz1LVrV0VERMjtdis2NlZz5szxq+nRo4duvPHGCt8nPj5eHTp0qNR80k9rOXHiREVHRztr9MUXX1R439Lx48c1atQoxcTEyO12q3nz5po2bZpKS0v96hYsWKD27durTp068ng8at26tWbOnHnedQKqM67kANVY37591bJlS02dOlXLly/XlClTVK9ePb355pvq2rWrpk2bpnfffVdPP/20br/9dt11110VztOnTx/t3LlTI0aMUJMmTXT48GFlZ2dr//79zuvExEQ1bNhQY8eOVXh4uPbt26f//u//9ptn2LBhysjI0KBBg/THP/5Re/fu1axZs/TZZ59pw4YNzkdk48eP15QpU9S9e3d1795dW7duVWJiooqKiiq9BpMmTdLEiRN1xx13aPLkyXK5XNq0aZNWr16txMTECo8pLS3VAw88oI8//liPPfaYWrZsqe3bt+u1117TV199pSVLlji1c+bMUatWrfTAAw8oODhYS5cu1RNPPKHS0lKlpqY6fw6PPPKItmzZottvv9059ttvv9Unn3yil156qVLzSdK4ceM0ffp09ezZU0lJSfr888+VlJSk06dP+53Ljz/+qC5duui7777TsGHD1LhxY23cuFHjxo3ToUOHNGPGDElSdna2+vfvr27dumnatGmSpC+//FIbNmzQyJEjK73uQLVgAFQ7EyZMMJLMY4895owVFxebRo0amYCAADN16lRn/IcffjChoaEmJSXFGGPM3r17jSQzb948Z78k89JLL53z/RYvXmwkmS1btpyz5u9//7uRZN59912/8aysLL/xw4cPG5fLZZKTk01paalT96c//clIcvq8EHv27DGBgYHmd7/7nSkpKfHbd/bcXbp0MV26dHFe/+d//qcJDAw0f//73/2OmTt3rpFkNmzY4Iz9+OOP5d43KSnJ3Hjjjc5rn89n3G63eeqpp/zqpk+fbgICAsy3335bqfm8Xq8JDg42vXv39qubOHFiuTV68cUXTa1atcxXX33lVzt27FgTFBRk9u/fb4wxZuTIkcbj8Zji4uJy7w/Yio+rgGps6NChzv8OCgpShw4dZIzRkCFDnPHw8HDdcsst+uabbyqcIzQ0VC6XS2vXri33sdLZc0jSsmXLdObMmQprFi1apLCwMN177706evSos7Vv3161a9fWmjVrJEkfffSRioqKNGLECAUEBDjHjxo1qjKnLklasmSJSktLNX78eAUG+v9zdvbcFfXasmVLtWjRwq/Xrl27SpLTq/TT+pTx+Xw6evSounTpom+++UY+n0+S5PF4dP/99yszM1PGGKd+4cKF6tSpkxo3blyp+VatWqXi4mI98cQTfn2PGDGiwnPp3Lmz6tat63cuCQkJKikp0fr16yX99GdYUFCg7Ozsc64LYBtCDlCNnf3DU5LCwsIUEhKiBg0alBs/V4Bxu92aNm2aVqxYocjISN11112aPn26vF6vU9OlSxf16dNHkyZNUoMGDdSrVy/NmzfP7/6VPXv2yOfzKSIiQg0bNvTbTp48qcOHD0v66SMcSbrpppv8+mjYsKHq1q1bqfP/+uuvFRgYqNjY2Eodt2fPHu3cubNcnzfffLMkOb1K0oYNG5SQkKBatWopPDxcDRs21J/+9CdJckKJ9NNHVgcOHFBOTo7TW25urvr27ev33hcyX9kaNW/e3O/YevXqlVujPXv2KCsrq9y5JCQk+J3LE088oZtvvln333+/GjVqpMGDBysrK6tS6wZUN9yTA1RjQUFBFzQmye8Kw8+NGjVKPXv21JIlS7Ry5Uq98MILSk9P1+rVq3XrrbcqICBA77//vj755BMtXbpUK1eu1ODBg/XKK6/ok08+Ue3atVVaWqqIiAi9++67Fb5Hw4YNL+4kL4PS0lK1bt1ar776aoX7Y2JiJP0UVLp166YWLVro1VdfVUxMjFwulz788EO99tprfjf29uzZUzVr1lRmZqbuuOMOZWZmKjAwUP/2b//m1FRmvsqcy7333qsxY8ZUuL8suEVERGjbtm1auXKlVqxYoRUrVmjevHl65JFHNH/+/Eq/L1AdEHIASJKaNWump556Sk899ZT27Nmjdu3a6ZVXXtHf/vY3p6ZTp07q1KmT/vznP+u9997TgAEDtGDBAg0dOlTNmjXTRx99pDvvvNPvI5mfu+GGGyT9dAXi7CeSjhw5cs6rTefrubS0VF988YXatWtXqeM+//xzdevW7bwfay1dulSFhYX64IMP/K6anf1xVplatWqpR48eWrRokV599VUtXLhQnTt3VnR0dKXnK1ujf/zjH2ratKkz/v3335dbo2bNmunkyZPOlZvzcblc6tmzp3r27KnS0lI98cQTevPNN/XCCy+Uu2oE2ICPq4Br3I8//ljuiZ1mzZqpTp06zsdRP/zwQ7krQWWhoqzm4YcfVklJiV588cVy71FcXKzjx49LkhISElSjRg29/vrrfnOWPQVUGb1791ZgYKAmT55c7irI+a5cPfzww/ruu+/01ltvldt36tQpFRQUSPrXVbGz5/L5fJo3b16F8/bt21cHDx7U22+/rc8//7zcR1UXOl+3bt0UHBxc7tHyWbNmVXguOTk5WrlyZbl9x48fV3FxsaSfAtLZAgMD1aZNG0kq99g8YAuu5ADXuK+++krdunXTww8/rNjYWAUHB2vx4sXKy8tTv379JEnz58/XG2+8od/97ndq1qyZTpw4obfeeksej0fdu3eX9NN9O8OGDVN6erq2bdumxMRE1ahRQ3v27NGiRYs0c+ZMPfTQQ2rYsKGefvpppaenq0ePHurevbs+++wzrVixoty9RL+kefPmeu655/Tiiy+qc+fOevDBB+V2u7VlyxZFR0crPT29wuMGDhyozMxMDR8+XGvWrNGdd96pkpIS7dq1S5mZmVq5cqU6dOigxMRE5+rHsGHDdPLkSb311luKiIjQoUOHys3bvXt31alTR08//bSCgoLUp08fv/0XOl9kZKRGjhypV155RQ888IDuu+8+ff75584anX316ZlnntEHH3ygHj166NFHH1X79u1VUFCg7du36/3339e+ffvUoEEDDR06VMeOHVPXrl3VqFEjffvtt3r99dfVrl07tWzZslLrDlQbVfdgF4CLVfYI+ZEjR/zGU1JSTK1atcrVd+nSxbRq1coYU/4R8qNHj5rU1FTTokULU6tWLRMWFmbi4uJMZmamc/zWrVtN//79TePGjY3b7TYRERGmR48e5tNPPy33Xn/9619N+/btTWhoqKlTp45p3bq1GTNmjDl48KBTU1JSYiZNmmSuu+46Exoaau6++26zY8cOc8MNN1TqEfIy77zzjrn11luN2+02devWNV26dDHZ2dl+53/2I+TGGFNUVGSmTZtmWrVq5RzXvn17M2nSJOPz+Zy6Dz74wLRp08aEhISYJk2amGnTppl33nnHSDJ79+4t18uAAQOMJJOQkFBhrxc6X3FxsXnhhRdMVFSUCQ0NNV27djVffvmlqV+/vhk+fLjfnCdOnDDjxo0zzZs3Ny6XyzRo0MDccccd5uWXXzZFRUXGGGPef/99k5iYaCIiIozL5TKNGzc2w4YNM4cOHarkagPVR4Ax57mmCwC4ahw/flx169bVlClT9Nxzz1V1O8BVj3tyAOAqdOrUqXJjZfct3X333Ve2GaCa4p4cAFels7+npyKhoaEKCwu7Qt1ceQsXLlRGRoa6d++u2rVr6+OPP9Z//dd/KTExUXfeeWdVtwdUC4QcAFel66677rz7U1JS/H7JqG3atGmj4OBgTZ8+Xfn5+c7NyFOmTKnq1oBqg3tyAFyVPvroo/Puj46OrvQ3HQO4thByAACAlbjxGAAAWOmavientLRUBw8eVJ06dc771e4AAODqYYzRiRMnFB0drcDAc1+vuaZDzsGDB51fxAcAAKqXAwcOqFGjRufcf02HnDp16kj6aZE8Hk8VdwMAAC5Efn6+YmJinJ/j53JNh5yyj6g8Hg8hBwCAauaXbjXhxmMAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKwVXdQMAcLmcyfrY73WN+35bRZ0AqApcyQEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJV+VciZOnWqAgICNGrUKGfs9OnTSk1NVf369VW7dm316dNHeXl5fsft379fycnJqlmzpiIiIvTMM8+ouLjYr2bt2rW67bbb5Ha71bx5c2VkZJR7/9mzZ6tJkyYKCQlRXFycNm/e/GtOBwAAWOSiQ86WLVv05ptvqk2bNn7jo0eP1tKlS7Vo0SKtW7dOBw8e1IMPPujsLykpUXJysoqKirRx40bNnz9fGRkZGj9+vFOzd+9eJScn65577tG2bds0atQoDR06VCtXrnRqFi5cqLS0NE2YMEFbt25V27ZtlZSUpMOHD1/sKQEAAJuYi3DixAlz0003mezsbNOlSxczcuRIY4wxx48fNzVq1DCLFi1yar/88ksjyeTk5BhjjPnwww9NYGCg8Xq9Ts2cOXOMx+MxhYWFxhhjxowZY1q1auX3nn379jVJSUnO644dO5rU1FTndUlJiYmOjjbp6ekXfB4+n89IMj6f78JPHkC1UbTi734bADtc6M/vi7qSk5qaquTkZCUkJPiN5+bm6syZM37jLVq0UOPGjZWTkyNJysnJUevWrRUZGenUJCUlKT8/Xzt37nRqfj53UlKSM0dRUZFyc3P9agIDA5WQkODUVKSwsFD5+fl+GwAAsFNwZQ9YsGCBtm7dqi1btpTb5/V65XK5FB4e7jceGRkpr9fr1JwdcMr2l+07X01+fr5OnTqlH374QSUlJRXW7Nq165y9p6ena9KkSRd2ogAAoFqr1JWcAwcOaOTIkXr33XcVEhJyuXq6bMaNGyefz+dsBw4cqOqWAADAZVKpkJObm6vDhw/rtttuU3BwsIKDg7Vu3Tr95S9/UXBwsCIjI1VUVKTjx4/7HZeXl6eoqChJUlRUVLmnrcpe/1KNx+NRaGioGjRooKCgoApryuaoiNvtlsfj8dsAAICdKhVyunXrpu3bt2vbtm3O1qFDBw0YMMD53zVq1NCqVaucY3bv3q39+/crPj5ekhQfH6/t27f7PQWVnZ0tj8ej2NhYp+bsOcpqyuZwuVxq3769X01paalWrVrl1AAAgGtbpe7JqVOnjn7zm9/4jdWqVUv169d3xocMGaK0tDTVq1dPHo9HI0aMUHx8vDp16iRJSkxMVGxsrAYOHKjp06fL6/Xq+eefV2pqqtxutyRp+PDhmjVrlsaMGaPBgwdr9erVyszM1PLly533TUtLU0pKijp06KCOHTtqxowZKigo0KBBg37VggAAADtU+sbjX/Laa68pMDBQffr0UWFhoZKSkvTGG284+4OCgrRs2TI9/vjjio+PV61atZSSkqLJkyc7NU2bNtXy5cs1evRozZw5U40aNdLbb7+tpKQkp6Zv3746cuSIxo8fL6/Xq3bt2ikrK6vczcgAAODaFGCMMVXdRFXJz89XWFiYfD4f9+cAFjqT9bHf6xr3/baKOgFwKV3oz29+dxUAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKwUXNUNAMDlsu/4Cr/XN+m3VdQJgKrAlRwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWKlSIWfOnDlq06aNPB6PPB6P4uPjtWLFCmf/6dOnlZqaqvr166t27drq06eP8vLy/ObYv3+/kpOTVbNmTUVEROiZZ55RcXGxX83atWt12223ye12q3nz5srIyCjXy+zZs9WkSROFhIQoLi5OmzdvrsypAAAAy1Uq5DRq1EhTp05Vbm6uPv30U3Xt2lW9evXSzp07JUmjR4/W0qVLtWjRIq1bt04HDx7Ugw8+6BxfUlKi5ORkFRUVaePGjZo/f74yMjI0fvx4p2bv3r1KTk7WPffco23btmnUqFEaOnSoVq5c6dQsXLhQaWlpmjBhgrZu3aq2bdsqKSlJhw8f/rXrAQAALBFgjDG/ZoJ69erppZde0kMPPaSGDRvqvffe00MPPSRJ2rVrl1q2bKmcnBx16tRJK1asUI8ePXTw4EFFRkZKkubOnatnn31WR44ckcvl0rPPPqvly5drx44dznv069dPx48fV1ZWliQpLi5Ot99+u2bNmiVJKi0tVUxMjEaMGKGxY8decO/5+fkKCwuTz+eTx+P5NcsA4Cq0Z8Fzfq9v6vfnKuoEwKV0oT+/L/qenJKSEi1YsEAFBQWKj49Xbm6uzpw5o4SEBKemRYsWaty4sXJyciRJOTk5at26tRNwJCkpKUn5+fnO1aCcnBy/OcpqyuYoKipSbm6uX01gYKASEhKcmnMpLCxUfn6+3wYAAOxU6ZCzfft21a5dW263W8OHD9fixYsVGxsrr9crl8ul8PBwv/rIyEh5vV5Jktfr9Qs4ZfvL9p2vJj8/X6dOndLRo0dVUlJSYU3ZHOeSnp6usLAwZ4uJians6QMAgGqi0iHnlltu0bZt27Rp0yY9/vjjSklJ0RdffHE5ervkxo0bJ5/P52wHDhyo6pYAAMBlElzZA1wul5o3by5Jat++vbZs2aKZM2eqb9++Kioq0vHjx/2u5uTl5SkqKkqSFBUVVe4pqLKnr86u+fkTWXl5efJ4PAoNDVVQUJCCgoIqrCmb41zcbrfcbndlTxkAAFRDv/p7ckpLS1VYWKj27durRo0aWrVqlbNv9+7d2r9/v+Lj4yVJ8fHx2r59u99TUNnZ2fJ4PIqNjXVqzp6jrKZsDpfLpfbt2/vVlJaWatWqVU4NAABApa7kjBs3Tvfff78aN26sEydO6L333tPatWu1cuVKhYWFaciQIUpLS1O9evXk8Xg0YsQIxcfHq1OnTpKkxMRExcbGauDAgZo+fbq8Xq+ef/55paamOldYhg8frlmzZmnMmDEaPHiwVq9erczMTC1fvtzpIy0tTSkpKerQoYM6duyoGTNmqKCgQIMGDbqESwMAAKqzSoWcw4cP65FHHtGhQ4cUFhamNm3aaOXKlbr33nslSa+99poCAwPVp08fFRYWKikpSW+88YZzfFBQkJYtW6bHH39c8fHxqlWrllJSUjR58mSnpmnTplq+fLlGjx6tmTNnqlGjRnr77beVlJTk1PTt21dHjhzR+PHj5fV61a5dO2VlZZW7GRkAAFy7fvX35FRnfE8OYDe+Jwew02X/nhwAAICrGSEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqVCjnp6em6/fbbVadOHUVERKh3797avXu3X83p06eVmpqq+vXrq3bt2urTp4/y8vL8avbv36/k5GTVrFlTEREReuaZZ1RcXOxXs3btWt12221yu91q3ry5MjIyyvUze/ZsNWnSRCEhIYqLi9PmzZsrczoAAMBilQo569atU2pqqj755BNlZ2frzJkzSkxMVEFBgVMzevRoLV26VIsWLdK6det08OBBPfjgg87+kpISJScnq6ioSBs3btT8+fOVkZGh8ePHOzV79+5VcnKy7rnnHm3btk2jRo3S0KFDtXLlSqdm4cKFSktL04QJE7R161a1bdtWSUlJOnz48K9ZDwAAYIkAY4y52IOPHDmiiIgIrVu3TnfddZd8Pp8aNmyo9957Tw899JAkadeuXWrZsqVycnLUqVMnrVixQj169NDBgwcVGRkpSZo7d66effZZHTlyRC6XS88++6yWL1+uHTt2OO/Vr18/HT9+XFlZWZKkuLg43X777Zo1a5YkqbS0VDExMRoxYoTGjh17Qf3n5+crLCxMPp9PHo/nYpcBwFVqz4Ln/F7f1O/PVdQJgEvpQn9+/6p7cnw+nySpXr16kqTc3FydOXNGCQkJTk2LFi3UuHFj5eTkSJJycnLUunVrJ+BIUlJSkvLz87Vz506n5uw5ymrK5igqKlJubq5fTWBgoBISEpyaihQWFio/P99vAwAAdrrokFNaWqpRo0bpzjvv1G9+8xtJktfrlcvlUnh4uF9tZGSkvF6vU3N2wCnbX7bvfDX5+fk6deqUjh49qpKSkgpryuaoSHp6usLCwpwtJiam8icOAACqhYsOOampqdqxY4cWLFhwKfu5rMaNGyefz+dsBw4cqOqWAADAZRJ8MQc9+eSTWrZsmdavX69GjRo541FRUSoqKtLx48f9rubk5eUpKirKqfn5U1BlT1+dXfPzJ7Ly8vLk8XgUGhqqoKAgBQUFVVhTNkdF3G633G535U8YAABUO5W6kmOM0ZNPPqnFixdr9erVatq0qd/+9u3bq0aNGlq1apUztnv3bu3fv1/x8fGSpPj4eG3fvt3vKajs7Gx5PB7FxsY6NWfPUVZTNofL5VL79u39akpLS7Vq1SqnBgAAXNsqdSUnNTVV7733nv7nf/5HderUce5/CQsLU2hoqMLCwjRkyBClpaWpXr168ng8GjFihOLj49WpUydJUmJiomJjYzVw4EBNnz5dXq9Xzz//vFJTU52rLMOHD9esWbM0ZswYDR48WKtXr1ZmZqaWL1/u9JKWlqaUlBR16NBBHTt21IwZM1RQUKBBgwZdqrUBAADVWKVCzpw5cyRJd999t9/4vHnz9Oijj0qSXnvtNQUGBqpPnz4qLCxUUlKS3njjDac2KChIy5Yt0+OPP674+HjVqlVLKSkpmjx5slPTtGlTLV++XKNHj9bMmTPVqFEjvf3220pKSnJq+vbtqyNHjmj8+PHyer1q166dsrKyyt2MDAAArk2/6ntyqju+JwewG9+TA9jpinxPDgAAwNWKkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpUqHnPXr16tnz56Kjo5WQECAlixZ4rffGKPx48fruuuuU2hoqBISErRnzx6/mmPHjmnAgAHyeDwKDw/XkCFDdPLkSb+a//u//1Pnzp0VEhKimJgYTZ8+vVwvixYtUosWLRQSEqLWrVvrww8/rOzpAAAAS1U65BQUFKht27aaPXt2hfunT5+uv/zlL5o7d642bdqkWrVqKSkpSadPn3ZqBgwYoJ07dyo7O1vLli3T+vXr9dhjjzn78/PzlZiYqBtuuEG5ubl66aWXNHHiRP31r391ajZu3Kj+/ftryJAh+uyzz9S7d2/17t1bO3bsqOwpAQAACwUYY8xFHxwQoMWLF6t3796SfrqKEx0draeeekpPP/20JMnn8ykyMlIZGRnq16+fvvzyS8XGxmrLli3q0KGDJCkrK0vdu3fXP//5T0VHR2vOnDl67rnn5PV65XK5JEljx47VkiVLtGvXLklS3759VVBQoGXLljn9dOrUSe3atdPcuXMvqP/8/HyFhYXJ5/PJ4/Fc7DIAuErtWfCc3+ub+v25ijoBcCld6M/vS3pPzt69e+X1epWQkOCMhYWFKS4uTjk5OZKknJwchYeHOwFHkhISEhQYGKhNmzY5NXfddZcTcCQpKSlJu3fv1g8//ODUnP0+ZTVl71ORwsJC5efn+20AAMBOlzTkeL1eSVJkZKTfeGRkpLPP6/UqIiLCb39wcLDq1avnV1PRHGe/x7lqyvZXJD09XWFhYc4WExNT2VMEAADVxDX1dNW4cePk8/mc7cCBA1XdEgAAuEwuaciJioqSJOXl5fmN5+XlOfuioqJ0+PBhv/3FxcU6duyYX01Fc5z9HueqKdtfEbfbLY/H47cBAAA7XdKQ07RpU0VFRWnVqlXOWH5+vjZt2qT4+HhJUnx8vI4fP67c3FynZvXq1SotLVVcXJxTs379ep05c8apyc7O1i233KK6des6NWe/T1lN2fsAAIBrW6VDzsmTJ7Vt2zZt27ZN0k83G2/btk379+9XQECARo0apSlTpuiDDz7Q9u3b9cgjjyg6Otp5Aqtly5a677779Ic//EGbN2/Whg0b9OSTT6pfv36Kjo6WJP3+97+Xy+XSkCFDtHPnTi1cuFAzZ85UWlqa08fIkSOVlZWlV155Rbt27dLEiRP16aef6sknn/z1qwIAAKo/U0lr1qwxksptKSkpxhhjSktLzQsvvGAiIyON2+023bp1M7t37/ab4/vvvzf9+/c3tWvXNh6PxwwaNMicOHHCr+bzzz83v/3tb43b7TbXX3+9mTp1arleMjMzzc0332xcLpdp1aqVWb58eaXOxefzGUnG5/NVbhEAVAtf/def/DYAdrjQn9+/6ntyqju+JwewG9+TA9ipSr4nBwAA4GpByAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpeCqbgAALrXC4tNakfu29pZ8qXomVB2DGis4gP9PB1xrqv1/9bNnz1aTJk0UEhKiuLg4bd68uapbAlCF5q2doP7L79T8vHe0vs4+LfF8qedqrtTK4q+qujUAV1i1DjkLFy5UWlqaJkyYoK1bt6pt27ZKSkrS4cOHq7o1AFVg3toJ+sC3VEbGb9xIWlXna81bO6FqGgNQJap1yHn11Vf1hz/8QYMGDVJsbKzmzp2rmjVr6p133qnq1gBcYYXFp7XUt+ynFwE/2/n/Xi/zLVNh8ekr2heAqlNt78kpKipSbm6uxo0b54wFBgYqISFBOTk5FR5TWFiowsJC57XP55Mk5efnX95mAVx2yz59U0Wnin+x7v9b/7p6dBh2BToCcLmU/dw2xpy3rtqGnKNHj6qkpESRkZF+45GRkdq1a1eFx6Snp2vSpEnlxmNiYi5LjwCuPss1RtKYqm4DwCVw4sQJhYWFnXN/tQ05F2PcuHFKS0tzXpeWlurYsWOqX7++AgJ+fn372pKfn6+YmBgdOHBAHo+nqtuxFut85bDWVwbrfGWwzv6MMTpx4oSio6PPW1dtQ06DBg0UFBSkvLw8v/G8vDxFRUVVeIzb7Zbb7fYbCw8Pv1wtVksej4f/gK4A1vnKYa2vDNb5ymCd/+V8V3DKVNsbj10ul9q3b69Vq1Y5Y6WlpVq1apXi4+OrsDMAAHA1qLZXciQpLS1NKSkp6tChgzp27KgZM2aooKBAgwYNqurWAABAFavWIadv3746cuSIxo8fL6/Xq3bt2ikrK6vczcj4ZW63WxMmTCj3cR4uLdb5ymGtrwzW+cpgnS9OgPml568AAACqoWp7Tw4AAMD5EHIAAICVCDkAAMBKhBwAAGAlQg4AALASIecaduzYMQ0YMEAej0fh4eEaMmSITp48eUHHGmN0//33KyAgQEuWLLm8jVZzlV3nY8eOacSIEbrlllsUGhqqxo0b649//KPzC2XxL7Nnz1aTJk0UEhKiuLg4bd68+bz1ixYtUosWLRQSEqLWrVvrww8/vEKdVm+VWee33npLnTt3Vt26dVW3bl0lJCT84p8LflLZv89lFixYoICAAPXu3fvyNlgNEXKuYQMGDNDOnTuVnZ2tZcuWaf369Xrssccu6NgZM2Zc87/v60JVdp0PHjyogwcP6uWXX9aOHTuUkZGhrKwsDRky5Ap2ffVbuHCh0tLSNGHCBG3dulVt27ZVUlKSDh8+XGH9xo0b1b9/fw0ZMkSfffaZevfurd69e2vHjh1XuPPqpbLrvHbtWvXv319r1qxRTk6OYmJilJiYqO++++4Kd169VHady+zbt09PP/20OnfufIU6rWYMrklffPGFkWS2bNnijK1YscIEBASY77777rzHfvbZZ+b66683hw4dMpLM4sWLL3O31devWeezZWZmGpfLZc6cOXM52qyWOnbsaFJTU53XJSUlJjo62qSnp1dY//DDD5vk5GS/sbi4ODNs2LDL2md1V9l1/rni4mJTp04dM3/+/MvVohUuZp2Li4vNHXfcYd5++22TkpJievXqdQU6rV64knONysnJUXh4uDp06OCMJSQkKDAwUJs2bTrncT/++KN+//vfa/bs2ef8Raj4l4td55/z+XzyeDwKDq7WX1J+yRQVFSk3N1cJCQnOWGBgoBISEpSTk1PhMTk5OX71kpSUlHTOelzcOv/cjz/+qDNnzqhevXqXq81q72LXefLkyYqIiOAq73nwL+Y1yuv1KiIiwm8sODhY9erVk9frPedxo0eP1h133KFevXpd7hatcLHrfLajR4/qxRdfvOCPEq8FR48eVUlJSblf4RIZGaldu3ZVeIzX662w/kL/HK5FF7POP/fss88qOjq6XMDEv1zMOn/88cf6j//4D23btu0KdFh9cSXHMmPHjlVAQMB5twv9x+nnPvjgA61evVozZsy4tE1XQ5dznc+Wn5+v5ORkxcbGauLEib++ceAKmjp1qhYsWKDFixcrJCSkqtuxxokTJzRw4EC99dZbatCgQVW3c1XjSo5lnnrqKT366KPnrbnxxhsVFRVV7oa24uJiHTt27JwfQ61evVpff/21wsPD/cb79Omjzp07a+3atb+i8+rlcq5zmRMnTui+++5TnTp1tHjxYtWoUePXtm2NBg0aKCgoSHl5eX7jeXl551zXqKioStXj4ta5zMsvv6ypU6fqo48+Ups2bS5nm9VeZdf566+/1r59+9SzZ09nrLS0VNJPV4p3796tZs2aXd6mq4uqvikIVaPshthPP/3UGVu5cuV5b4g9dOiQ2b59u98mycycOdN88803V6r1auVi1tkYY3w+n+nUqZPp0qWLKSgouBKtVjsdO3Y0Tz75pPO6pKTEXH/99ee98bhHjx5+Y/Hx8dx4/Asqu87GGDNt2jTj8XhMTk7OlWjRCpVZ51OnTpX7t7hXr16ma9euZvv27aawsPBKtn5VI+Rcw+677z5z6623mk2bNpmPP/7Y3HTTTaZ///7O/n/+85/mlltuMZs2bTrnHOLpql9U2XX2+XwmLi7OtG7d2vzjH/8whw4dcrbi4uKqOo2rzoIFC4zb7TYZGRnmiy++MI899pgJDw83Xq/XGGPMwIEDzdixY536DRs2mODgYPPyyy+bL7/80kyYMMHUqFHDbN++vapOoVqo7DpPnTrVuFwu8/777/v93T1x4kRVnUK1UNl1/jmerqoYIeca9v3335v+/fub2rVrG4/HYwYNGuT3D9HevXuNJLNmzZpzzkHI+WWVXec1a9YYSRVue/furZqTuEq9/vrrpnHjxsblcpmOHTuaTz75xNnXpUsXk5KS4lefmZlpbr75ZuNyuUyrVq3M8uXLr3DH1VNl1vmGG26o8O/uhAkTrnzj1Uxl/z6fjZBTsQBjjLnSH5EBAABcbjxdBQAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAAr/f/8kJkIj1wvogAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM3hJREFUeJzt3Xtc1VW+//H3BuQSchETcHsls0yxNC1CbbLkiGZNTmrHosLL0aaD5WUyL5M2WklSmWEm2jSWjU5lZ2rKyomDpacTec3GzLyUiUcHtFHYiiMgrN8f/djjBlSwDd/9hdfz8diPR3vttff+7C/GfrPW+n6XwxhjBAAAYCN+VhcAAABQVwQYAABgOwQYAABgOwQYAABgOwQYAABgOwQYAABgOwQYAABgOwQYAABgOwQYAABgOwQYwAKbN29Wnz59FBoaKofDoe3bt1tdEgDYSoDVBQBNTVlZmUaMGKHg4GA9//zzuuSSS9ShQwery7LUqVOnlJGRof79+6t///5WlwPABggwQAP77rvvdODAAb388sv6j//4D6vL8QmnTp3SnDlzJIkAA6BWmEICGtiRI0ckSZGRkeftV1xc3ADVAIA9EWCABjRq1CjddNNNkqQRI0bI4XCof//+GjVqlJo3b67vvvtOt956q8LCwpSSkiJJ+p//+R+NGDFC7du3V1BQkNq1a6fJkyfrn//8Z7XXX716tbp27arg4GDFx8frnXfe0ahRo9SxY0d3nx9++EEOh0PPPvusFi9erMsuu0yXXHKJBg4cqIMHD8oYoyeeeEJt27ZVSEiI7rjjDh07dqzae3300Ue68cYbFRoaqrCwMA0ZMkQ7d+6s9nmbN2+uQ4cOaejQoWrevLlatWqlRx55ROXl5e56WrVqJUmaM2eOHA6HHA6Hfve739XqmH766adyOBx68803NXPmTMXGxio0NFS//OUvdfDgQY++/fv3V3x8vLZu3ao+ffooJCREcXFxysrKqvE133rrLc2ZM0dt2rRRWFiYhg8frqKiIpWUlGjSpEmKjo5W8+bNNXr0aJWUlNSq3qrHJi8vT7fddpuaN2+uNm3aaPHixZKkHTt26JZbblFoaKg6dOigVatWeTz/2LFjeuSRR9S9e3c1b95c4eHhGjx4sL766iuPfqmpqQoODtauXbs82pOTk9WiRQsdPny4TnUDPsMAaDCff/65mTlzppFkHn74YfP666+bjz/+2KSmppqgoCDTqVMnk5qaarKyssyKFSuMMcY89NBD5tZbbzXz5s0zS5cuNWPHjjX+/v5m+PDhHq+9Zs0a43A4zNVXX20WLFhgZs2aZVq0aGHi4+NNhw4d3P32799vJJkePXqYrl27mgULFpjHHnvMBAYGmhtuuMHMnDnT9OnTx2RmZpqHH37YOBwOM3r0aI/3WrFihXE4HGbQoEFm0aJFZv78+aZjx44mMjLS7N+/390vNTXVBAcHm27dupkxY8aYJUuWmGHDhhlJ5qWXXjLGGHPy5EmzZMkSI8n86le/Mq+//rp5/fXXzVdffVWrY/rJJ58YSaZ79+7uzz59+nQTHBxsrrjiCnPq1Cl335tuusk4nU4THR1tJkyYYDIzM02/fv2MJPPKK69Ue80ePXqYxMREj2MxcuRIc88995jBgwebxYsXm/vuu89IMnPmzKlVvVWPTdeuXc2vf/1rs3jxYtOnTx8jySxfvtw4nU4zdepUs2jRItOtWzfj7+9vvv/+e/fzN2/ebDp16mSmT59uli5daubOnWvatGljIiIizKFDh9z9jh8/btq2bWuuu+46c+bMGWOMMVlZWUaSef311+tUM+BLCDBAA6v8cly9erW7LTU11Ugy06dPr9b/7C/gSunp6cbhcJgDBw6427p3727atm1rTpw44W779NNPjaQaA0yrVq1MYWGhu33GjBlGkrnmmmtMWVmZu/3uu+82gYGB5vTp08YYY06cOGEiIyPNuHHjPGrKz883ERERHu2Vn2vu3LkefXv27Gl69erlvn/06FEjyTz++OPVPuuFVB7PNm3aGJfL5W5/6623jCTzwgsvuNtuuukmI8k899xz7raSkhLTo0cPEx0dbUpLSz1eMz4+3t1WeSwcDocZPHiwRw2JiYkex7g2Ko/NvHnz3G3Hjx83ISEhxuFwmDfeeMPd/u2331Y7PqdPnzbl5eUer7l//34TFBRU7Xj/9a9/NZLMk08+ab7//nvTvHlzM3To0DrVC/gappAAH/Lggw9WawsJCXH/d3FxsX788Uf16dNHxhh9+eWXkqTDhw9rx44duv/++9W8eXN3/5tuukndu3ev8b1GjBihiIgI9/2EhARJ0r333quAgACP9tLSUh06dEiSlJ2drcLCQt1999368ccf3Td/f38lJCTok08+qfZev/71rz3u33jjjfr+++8veDzq4v7771dYWJj7/vDhw9W6dWt9+OGHHv0CAgL0wAMPuO8HBgbqgQce0JEjR7R169Zqr9msWTP3/YSEBBljNGbMGI9+CQkJOnjwoM6cOVPnus9eyB0ZGakrr7xSoaGhuuuuu9ztV155pSIjIz2OWVBQkPz8fvoVXl5ern/84x9q3ry5rrzySm3bts3jPQYOHKgHHnhAc+fO1Z133qng4GAtXbq0zrUCvoQAA/iIgIAAtW3btlp7Xl6eRo0apaioKPcaksp1NEVFRZKkAwcOSJIuv/zyas+vqU2S2rdv73G/Msy0a9euxvbjx49Lkvbu3StJuuWWW9SqVSuP28cff+xepFwpODjYvcalUosWLdyv5y2dO3f2uO9wOHT55Zfrhx9+8Gh3Op0KDQ31aLviiiskqVrfuhyjiooK98+jtmo6NhEREWrbtq0cDke19rOPWUVFhZ5//nl17txZQUFBuvTSS9WqVSv97W9/q7GOZ599VlFRUdq+fbsyMzMVHR1dp1oBX8Np1ICPOPsv6krl5eX6t3/7Nx07dkzTpk1Tly5dFBoaqkOHDmnUqFGqqKi46Pfz9/evU7sxRpLc7/n6668rNja2Wr+zR2/O93p2cLHHqCFef968eZo1a5bGjBmjJ554QlFRUfLz89OkSZNq/Hfx5ZdfusPljh07dPfdd9epVsDXEGAAH7Zjxw7t2bNHr732mu6//353e3Z2tke/ygvh7du3r9pr1NT2c3Tq1EmSFB0draSkJK+8ZtXRhotROTJUyRijffv26eqrr/ZoP3z4sIqLiz1GYfbs2SNJHmdr+bq3335bN998s1555RWP9sLCQl166aUebcXFxRo9erS6du2qPn36KCMjQ7/61a903XXXNWTJgFcxhQT4sMq/xM/+y9sYoxdeeMGjn9PpVHx8vFasWKGTJ0+629evX68dO3Z4tabk5GSFh4dr3rx5Kisrq/b40aNH6/yal1xyiaSfvnwv1ooVK3TixAn3/bffflt///vfNXjwYI9+Z86c8Vj/UVpaqqVLl6pVq1bq1avXRb9/Q/P396824rN69Wr3WqWzTZs2TXl5eXrttde0YMECdezYUampqXU+9RvwJYzAAD6sS5cu6tSpkx555BEdOnRI4eHh+q//+q8a14/MmzdPd9xxh/r27avRo0fr+PHjevHFFxUfH+8Ran6u8PBwLVmyRPfdd5+uvfZajRw5Uq1atVJeXp4++OAD9e3bVy+++GKdXjMkJERdu3bVm2++qSuuuEJRUVGKj49XfHx8rV8jKipK/fr10+jRo1VQUKCFCxfq8ssv17hx4zz6OZ1OzZ8/Xz/88IOuuOIKvfnmm9q+fbuWLVvmsWDX1912222aO3euRo8erT59+mjHjh1auXKlLrvsMo9+69at00svvaTHH39c1157rSRp+fLl6t+/v2bNmqWMjAwrygd+NkZgAB/WrFkzvf/+++rRo4fS09M1Z84cde7cWStWrKjW9/bbb9ef/vQnlZaWavr06frzn/+sV199VVdeeaWCg4O9Wtc999yjnJwctWnTRs8884wmTpyoN954Qz169NDo0aMv6jV///vfq02bNpo8ebLuvvtuvf3223V6/syZMzVkyBClp6frhRde0IABA5STk+Me3anUokULffjhh9qyZYumTp2qgwcP6sUXX6wWdHzdzJkz9Zvf/EZ//etfNXHiRG3btk0ffPCBxwLjEydOaMyYMerZs6d++9vfuttvvPFGTZw4Uc8995y++OILK8oHfjaHqeuqMwC20qNHD7Vq1araupnG4tNPP9XNN9+s1atXa/jw4eft279/f/3444/6+uuvG6g6APWFERigkSgrK6t2HZJPP/1UX331FRskAmh0WAMDNBKHDh1SUlKS7r33XjmdTn377bfKyspSbGxstQvJ2UFpaWmNezCd7ewL8fmKoqKiGvepOltNp58DqBsCDNBItGjRQr169dLvf/97HT16VKGhoRoyZIiefvpptWzZ0ury6uzzzz/XzTfffN4+y5cv97lTnydOnKjXXnvtvH2YuQd+PtbAAPBJx48fr3Zp/6q6deum1q1bN1BFtfPNN99ccIdnb10/B2jKCDAAAMB2WMQLAABsp9GugamoqNDhw4cVFhbmlcuUAwCA+meM0YkTJ+R0OqvtD3e2RhtgDh8+XG3HWAAAYA8HDx5U27Ztz/l4ow0wYWFhkn46AOHh4RZXAwAAasPlcqldu3bu7/FzabQBpnLaKDw8nAADAIDNXGj5B4t4AQCA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7QRYXQCAi1e29rNqbc0G9bOgEgBoWAQYwMsIFQBQ/5hCAgAAtsMIDGABRmkA4OdhBAYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOeyEBPqLq/kjsjQQA58YIDAAAsB1GYAAbqWkXawBoihiBAQAAtkOAAQAAtkOAAQAAtsMaGKCR4WwmAE0BAQZo5Gpa+EuoAWB3BBigAXD2EAB4F2tgAACA7RBgAACA7TCFBPgopp0A4NwIMEAdsCAWAHwDU0gAAMB2CDAAAMB26hxgNmzYoNtvv11Op1MOh0Pvvvuux+PGGM2ePVutW7dWSEiIkpKStHfvXo8+x44dU0pKisLDwxUZGamxY8fq5MmTHn3+9re/6cYbb1RwcLDatWunjIyMun86AADQKNU5wBQXF+uaa67R4sWLa3w8IyNDmZmZysrK0saNGxUaGqrk5GSdPn3a3SclJUU7d+5Udna21qxZow0bNmj8+PHux10ulwYOHKgOHTpo69ateuaZZ/S73/1Oy5Ytu4iPCAAAGps6L+IdPHiwBg8eXONjxhgtXLhQjz32mO644w5J0ooVKxQTE6N3331XI0eO1K5du7R27Vpt3rxZvXv3liQtWrRIt956q5599lk5nU6tXLlSpaWl+sMf/qDAwEB169ZN27dv14IFCzyCDgAAaJq8ugZm//79ys/PV1JSkrstIiJCCQkJys3NlSTl5uYqMjLSHV4kKSkpSX5+ftq4caO7zy9+8QsFBga6+yQnJ2v37t06fvx4je9dUlIil8vlcQN+rrK1n3ncAAC+waunUefn50uSYmJiPNpjYmLcj+Xn5ys6OtqziIAARUVFefSJi4ur9hqVj7Vo0aLae6enp2vOnDne+SBAHRBsAKDhNZqzkGbMmKGioiL37eDBg1aXBAAA6olXA0xsbKwkqaCgwKO9oKDA/VhsbKyOHDni8fiZM2d07Ngxjz41vcbZ71FVUFCQwsPDPW4AAKBx8mqAiYuLU2xsrHJyctxtLpdLGzduVGJioiQpMTFRhYWF2rp1q7vPunXrVFFRoYSEBHefDRs2qKyszN0nOztbV155ZY3TR8DFqLq+hakgALCPOq+BOXnypPbt2+e+v3//fm3fvl1RUVFq3769Jk2apCeffFKdO3dWXFycZs2aJafTqaFDh0qSrrrqKg0aNEjjxo1TVlaWysrKNGHCBI0cOVJOp1OSdM8992jOnDkaO3aspk2bpq+//lovvPCCnn/+ee98auAcCDEAYA91DjBbtmzRzTff7L4/ZcoUSVJqaqpeffVVPfrooyouLtb48eNVWFiofv36ae3atQoODnY/Z+XKlZowYYIGDBggPz8/DRs2TJmZme7HIyIi9PHHHystLU29evXSpZdeqtmzZ3MKNQAAkCQ5jDHG6iLqg8vlUkREhIqKilgPgxo15dEWNqAE4Ktq+/3NbtRAE1Q1vBFoANgNAQZNRlMecbmQ2hwbQg4AX0KAAVArNYUcQg0AqzSaC9kBAICmgwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABshwADAABsJ8DqAgDYV9nazzzuNxvUz6JKADQ1BBg0SlW/WAEAjQsBBkC9qSlIMkoDwBtYAwMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHRbxoFDjrCACaFkZgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7XAlXgANqupVk5sN6mdRJQDsjBEYAABgOwQYAABgOwQYAABgOwQYAABgOyzihe1UXQQKAGh6GIEBAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2wyJeAF7DAmsADYURGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDss4oXPY2EoAKAqr4/AlJeXa9asWYqLi1NISIg6deqkJ554QsYYdx9jjGbPnq3WrVsrJCRESUlJ2rt3r8frHDt2TCkpKQoPD1dkZKTGjh2rkydPertcAABgQ14PMPPnz9eSJUv04osvateuXZo/f74yMjK0aNEid5+MjAxlZmYqKytLGzduVGhoqJKTk3X69Gl3n5SUFO3cuVPZ2dlas2aNNmzYoPHjx3u7XAAAYEMOc/bQiBfcdtttiomJ0SuvvOJuGzZsmEJCQvTHP/5Rxhg5nU795je/0SOPPCJJKioqUkxMjF599VWNHDlSu3btUteuXbV582b17t1bkrR27Vrdeuut+r//+z85nc5q71tSUqKSkhL3fZfLpXbt2qmoqEjh4eHe/IhoYEwhNW7NBvWzugQAPsTlcikiIuKC399eH4Hp06ePcnJytGfPHknSV199pc8++0yDBw+WJO3fv1/5+flKSkpyPyciIkIJCQnKzc2VJOXm5ioyMtIdXiQpKSlJfn5+2rhxY43vm56eroiICPetXbt23v5oAADAR3h9Ee/06dPlcrnUpUsX+fv7q7y8XE899ZRSUlIkSfn5+ZKkmJgYj+fFxMS4H8vPz1d0dLRnoQEBioqKcvepasaMGZoyZYr7fuUIDAAAaHy8HmDeeustrVy5UqtWrVK3bt20fft2TZo0SU6nU6mpqd5+O7egoCAFBQXV2+sDAADf4fUAM3XqVE2fPl0jR46UJHXv3l0HDhxQenq6UlNTFRsbK0kqKChQ69at3c8rKChQjx49JEmxsbE6cuSIx+ueOXNGx44dcz8fAAA0XV5fA3Pq1Cn5+Xm+rL+/vyoqKiRJcXFxio2NVU5Ojvtxl8uljRs3KjExUZKUmJiowsJCbd261d1n3bp1qqioUEJCgrdLBgAANuP1EZjbb79dTz31lNq3b69u3brpyy+/1IIFCzRmzBhJksPh0KRJk/Tkk0+qc+fOiouL06xZs+R0OjV06FBJ0lVXXaVBgwZp3LhxysrKUllZmSZMmKCRI0fWeAYSAABoWrweYBYtWqRZs2bpP//zP3XkyBE5nU498MADmj17trvPo48+quLiYo0fP16FhYXq16+f1q5dq+DgYHeflStXasKECRowYID8/Pw0bNgwZWZmertcAABgQ16/DoyvqO155PAtXPOl6eE6MADOVtvvb/ZCAmCpmkIroQbAhRBggJ/hh8KPqrV1jBxsQSUA0LR4/SwkAACA+kaAAQAAtsMUEnAOTA/5DtbJAKiKAIMmoWoYudggUlOoqa/3AgCcGwEG+P9qE04AAL6BAIMmibACAPbGIl4AAGA7BBgAAGA7TCEBPoAzngCgbhiBAQAAtsMIDGATjNIAwL8QYGCp+th9mjOMAKDxYwoJAADYDgEGAADYDlNIgI9iKgwAzo0AA9QzFt8CgPcRYIBGzo6bS9bH4m4AjQsBBmhiGBEC0BiwiBcAANgOIzCwlcYyesACXQD4eRiBAQAAtsMIDGyP0QxINS/8bTaonwWVAGgIBBjUm6pfKHyZAAC8hQCDBsOpsQAAb2ENDAAAsB1GYOAzWMsCAKgtRmAAAIDtMAIDwJZYUwU0bYzAAAAA2yHAAAAA22EKCUCjxbWIgMaLAAM0IpzJBaCpYAoJAADYDiMwgI0x4gKgqSLAoEHU9EXbMXKwBZUAABoDAgy8gmtyAAAaEmtgAACA7TACA8uwfgMAcLEYgQEAALZDgAEAALZDgAEAALbDGhgATUZNZ8uxvQBgTwQYANVw3R4Avo4pJAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDucRg3gotTmVGtOxwZQX+plBObQoUO699571bJlS4WEhKh79+7asmWL+3FjjGbPnq3WrVsrJCRESUlJ2rt3r8drHDt2TCkpKQoPD1dkZKTGjh2rkydP1ke5QJP3Q+FHHjcA8HVeDzDHjx9X37591axZM3300Uf65ptv9Nxzz6lFixbuPhkZGcrMzFRWVpY2btyo0NBQJScn6/Tp0+4+KSkp2rlzp7Kzs7VmzRpt2LBB48eP93a5AADAhrw+hTR//ny1a9dOy5cvd7fFxcW5/9sYo4ULF+qxxx7THXfcIUlasWKFYmJi9O6772rkyJHatWuX1q5dq82bN6t3796SpEWLFunWW2/Vs88+K6fT6e2yAQCAjXh9BOa9995T7969NWLECEVHR6tnz556+eWX3Y/v379f+fn5SkpKcrdFREQoISFBubm5kqTc3FxFRka6w4skJSUlyc/PTxs3bqzxfUtKSuRyuTxuAACgcfL6CMz333+vJUuWaMqUKZo5c6Y2b96shx9+WIGBgUpNTVV+fr4kKSYmxuN5MTEx7sfy8/MVHR3tWWhAgKKiotx9qkpPT9ecOXO8/XFwkVhH0fjwMwXgS7w+AlNRUaFrr71W8+bNU8+ePTV+/HiNGzdOWVlZ3n4rDzNmzFBRUZH7dvDgwXp9PwAAYB2vB5jWrVura9euHm1XXXWV8vLyJEmxsbGSpIKCAo8+BQUF7sdiY2N15MgRj8fPnDmjY8eOuftUFRQUpPDwcI8bAABonLweYPr27avdu3d7tO3Zs0cdOnSQ9NOC3tjYWOXk5Lgfd7lc2rhxoxITEyVJiYmJKiws1NatW9191q1bp4qKCiUkJHi7ZAAAYDNeXwMzefJk9enTR/PmzdNdd92lTZs2admyZVq2bJkkyeFwaNKkSXryySfVuXNnxcXFadasWXI6nRo6dKikn0ZsBg0a5J56Kisr04QJEzRy5EjOQAIAAN4PMNddd53eeecdzZgxQ3PnzlVcXJwWLlyolJQUd59HH31UxcXFGj9+vAoLC9WvXz+tXbtWwcHB7j4rV67UhAkTNGDAAPn5+WnYsGHKzMz0drkAmriytZ953G82qJ9FlQCoC4cxxlhdRH1wuVyKiIhQUVER62EaQNUvAc5YaZoa61YChBqg4dT2+5vNHAEAgO2wmSMuStURFwAAGhIjMAAAwHYIMAAAwHYIMAAAwHZYAwPAa2pz9lnVPnY8KwmA9RiBAQAAtkOAAQAAtkOAAQAAtkOAAQAAtkOAAQAAtkOAAQAAtsNp1AAsVZtTrznVGkBVjMAAAADbYQQGAOqops1Mmw3qZ0ElQNPFCAwAALAdRmBQZ99tWaqKwjyrywAANGGMwAAAANthBAYXVHW+n9EXAIDVGIEBAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2w2nUAHxeTRs+NuQGjzVtHQDAWgQYnBdX3QUA+CICDAB4QdVRGjZ3BOoXa2AAAIDtMAIDwJaqrotpyDUxAKxHgAGAelDTwl+mlQDvIcAAaBSsPlMJQMMiwKCas/9y5AwkAIAvYhEvAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHbYSaOJq2nAOaCxq2h+pKvZLAuyJERgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7nIUEAGep6cwlzlQCfA8BBgAsUtNlDJoN6mdBJYD9EGAAoIFw3SXAe1gDAwAAbKfeA8zTTz8th8OhSZMmudtOnz6ttLQ0tWzZUs2bN9ewYcNUUFDg8by8vDwNGTJEl1xyiaKjozV16lSdOXOmvssFAAA2UK9TSJs3b9bSpUt19dVXe7RPnjxZH3zwgVavXq2IiAhNmDBBd955p/73f/9XklReXq4hQ4YoNjZWn3/+uf7+97/r/vvvV7NmzTRv3rz6LBlAE1Ob7QYA+J56G4E5efKkUlJS9PLLL6tFixbu9qKiIr3yyitasGCBbrnlFvXq1UvLly/X559/ri+++EKS9PHHH+ubb77RH//4R/Xo0UODBw/WE088ocWLF6u0tLS+SoZ++mV+9g0AAF9UbwEmLS1NQ4YMUVJSkkf71q1bVVZW5tHepUsXtW/fXrm5uZKk3Nxcde/eXTExMe4+ycnJcrlc2rlzZ43vV1JSIpfL5XEDALspW/uZxw1AzeplCumNN97Qtm3btHnz5mqP5efnKzAwUJGRkR7tMTExys/Pd/c5O7xUPl75WE3S09M1Z84cL1QPAAB8nddHYA4ePKiJEydq5cqVCg4O9vbLn9OMGTNUVFTkvh08eLDB3hsAADQsrweYrVu36siRI7r22msVEBCggIAArV+/XpmZmQoICFBMTIxKS0tVWFjo8byCggLFxsZKkmJjY6udlVR5v7JPVUFBQQoPD/e4AQCAxsnrAWbAgAHasWOHtm/f7r717t1bKSkp7v9u1qyZcnJy3M/ZvXu38vLylJiYKElKTEzUjh07dOTIEXef7OxshYeHq2vXrt4uGQAA2IzX18CEhYUpPj7eoy00NFQtW7Z0t48dO1ZTpkxRVFSUwsPD9dBDDykxMVE33HCDJGngwIHq2rWr7rvvPmVkZCg/P1+PPfaY0tLSFBQU5O2Sm6zvtixVRWGe1WUAAFBnlmwl8Pzzz8vPz0/Dhg1TSUmJkpOT9dJLL7kf9/f315o1a/Tggw8qMTFRoaGhSk1N1dy5c60oFwAA+BiHMcZYXUR9cLlcioiIUFFREethzuG7LUtVsY8RGOBCrNyNms0d0dTU9vubvZAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtWHIWEgDYSW02NrVyoS/QFDECAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIfTqAHARsrWflatjf2S0BQRYJqYs3/5VRSykSPg62oKLACYQgIAADZEgAEAALbDFBIAeEHV7QbYWgCoX4zAAAAA22EEpon4bstSSSzcBRpKTRtAVh2VqU0fADVjBAYAANgOAQYAANgOU0gAYHNVrxXDhe3QFBBgAKCB1LTmBcDFIcA0cpV/mbF4FwDQmLAGBgAA2A4BBgAA2A4BBgAA2A5rYACgkalpB2vOTEJjwwgMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHc5CAgCbqbolQcfIwRZVAliHERgAAGA7jMA0IjVd+wGAvdVmA8ia+jAqg8aOANNIsestgLNV/QOHC9vB7ggwAOBD+OMDqB3WwAAAANshwAAAANthCgkAmqDaLPpnnQx8GSMwAADAdggwAADAdggwAADAdggwAADAdggwAADAdjgLCQAaIbYXQGNHgAEA1KimU605tRq+gikkAABgOwQYAABgOwQYAABgO6yBsbHK+Wl2rwUANDUEGABoojhTCXbGFBIAALAdrweY9PR0XXfddQoLC1N0dLSGDh2q3bt3e/Q5ffq00tLS1LJlSzVv3lzDhg1TQUGBR5+8vDwNGTJEl1xyiaKjozV16lSdOXPG2+UCAAAb8nqAWb9+vdLS0vTFF18oOztbZWVlGjhwoIqLi919Jk+erPfff1+rV6/W+vXrdfjwYd15553ux8vLyzVkyBCVlpbq888/12uvvaZXX31Vs2fP9na5AADAhhzGGFOfb3D06FFFR0dr/fr1+sUvfqGioiK1atVKq1at0vDhwyVJ3377ra666irl5ubqhhtu0EcffaTbbrtNhw8fVkxMjCQpKytL06ZN09GjRxUYGHjB93W5XIqIiFBRUZHCw8Pr8yNahkW8AOqi6vqWi1kDw4XsUN9q+/1d74t4i4qKJElRUVGSpK1bt6qsrExJSUnuPl26dFH79u3dASY3N1fdu3d3hxdJSk5O1oMPPqidO3eqZ8+e1d6npKREJSUl7vsul6u+PpLlvtuyVJJUUZhncSUAmpqqV+cl0MAq9bqIt6KiQpMmTVLfvn0VHx8vScrPz1dgYKAiIyM9+sbExCg/P9/d5+zwUvl45WM1SU9PV0REhPvWrl07L38aAADgK+o1wKSlpenrr7/WG2+8UZ9vI0maMWOGioqK3LeDBw/W+3sCAABr1NsU0oQJE7RmzRpt2LBBbdu2dbfHxsaqtLRUhYWFHqMwBQUFio2NdffZtGmTx+tVnqVU2aeqoKAgBQUFeflTAEDTUnVdzIXWxLDhI6zi9REYY4wmTJigd955R+vWrVNcXJzH47169VKzZs2Uk5Pjbtu9e7fy8vKUmJgoSUpMTNSOHTt05MgRd5/s7GyFh4era9eu3i4ZAJqEHwo/8rgBdub1EZi0tDStWrVKf/nLXxQWFuZesxIREaGQkBBFRERo7NixmjJliqKiohQeHq6HHnpIiYmJuuGGGyRJAwcOVNeuXXXfffcpIyND+fn5euyxx5SWlsYoCwAA8H6AWbJkiSSpf//+Hu3Lly/XqFGjJEnPP/+8/Pz8NGzYMJWUlCg5OVkvvfSSu6+/v7/WrFmjBx98UImJiQoNDVVqaqrmzp3r7XIBAHVU12kmoD54PcDU5rIywcHBWrx4sRYvXnzOPh06dNCHH37ozdIAAEAjwWaOAICfpeqIjN+WnerU+wGLqkFTQYCxibNX+nMBOwANhcW+8FXsRg0AAGyHERgAgFdV7MtT2Y//GjXmujCoD4zAAAAA22EEBgDQ4NgUEj8XIzAAAMB2CDAAAMB2CDAAAMB2WAPj477bslQS134BYF817Vhdmz6si8H5MAIDAABshwADAABshykkAIDXeWPHak61xvkwAgMAAGyHERgf4160u49FuwAAnAsjMAAAwHYYgQEAWMIb62TQdBFgAAD1rmpYAX4uppAAAIDtEGAAAIDtMIUEAPBZZ089+W3ZqU69H7CwGvgSRmAAAIDtEGAAAIDtMIUEALCNyot9no1ppaaJAOMDzt7vo6KQK/ACQE3OdYXyvft+6/5vv8vbE2iaCKaQAACA7RBgAACA7TCFBABotM6eoq/UbFA/CyqBtxFgLOTeeZp1LwDAdgOoEwIMAKDRqNiXp7Ifq4+6oPFhDQwAALAdAgwAALAdppAAAI1KTWtpOkYOtqAS1CcCDACg0fMINW94Bhy/y9tL4oq+dkOAAQA0aZVX+D3f4l9OvfY9rIEBAAC2Q4ABAAC2Q4ABAAC2wxoYAABU/eyls89cYksC30OAAQCgBpyO7dsIMPWsptReiT2QAAC4OAQYAABqqer1ZM4ekWFKqWERYBoQO60CQNNSdRSekOM9BBgAALzgfEsG4H0EGAAAvOh8ZzPBewgwAABcJG8sDWCa6eJwITsAAGA7DmOMsbqI+uByuRQREaGioiKFh4c3+Pt/t2WppH9tEgYAQKW6Tis1pVGZ2n5/M4XkZZVDgVzjxUcYKeiEv/zL/FTerEIlYeWSw+qirFEho/1+x+RylCjcBCmuIkp+TfVgWIyfBaq60EXzmGaqjgCDRivkWIAi80IUUPqvmdIzgRUqbP9P/TPqjIWVNbwd/vl6r9kuFfmddrdFVATrl2VXqXt5rIWVNT38LCBxWQ1vIMCgUQo5FqCW+y6p1u5f6lDLfZfoH5efajIhZod/vl4P/LJae5HjtF4P/FL3lfbki7OB8LPAz1H1InqSmvSF9AgwaHyMFJkXIklyVBmWd8ghI6PIvBD9s8WJRj+dVCGj95rt+ulO1c/qkGSk95rtUrfyGKYw6hk/C9QVozTn59NnIS1evFgdO3ZUcHCwEhIStGnTJqtLOqfvtizVd1uW6ofCj/hHZ7GgE/4KKPWrFl4qOeRQQKmfgk74N3BlDW+/37GfpirO9X3okIr8Tmu/37EGrasp4meB+lD5nfND4Ufuk0eaCp8dgXnzzTc1ZcoUZWVlKSEhQQsXLlRycrJ2796t6Ohoq8uT5LmoikW7vsO/rHa5/Kd+5fVbjMVcjhKv9sPF42eB+laxL0979/3Wfd/v8vaSpE69H7CqpHrlswFmwYIFGjdunEaPHi1JysrK0gcffKA//OEPmj59usXVwZeVN6vwaj87CzdBXu2Hi8fPAg2t8jIeZ4eaqipDTtXn2GFtjU8GmNLSUm3dulUzZsxwt/n5+SkpKUm5ubk1PqekpEQlJf/6y6WoqEjST+eTe9v32/4gSTKH/8/rr42f76S/FGD85F/qqHEaycioPNDoH/6npFMWFNiAWilUIWcCfvqrvqapC/PTF2ar06E6Kf7yr0/8LOCT/ra3xmZXs+J/3fmvv0qS8oqyJUmOy9pKki67dky9lFT5vX2hy9T5ZID58ccfVV5erpiYGI/2mJgYffvttzU+Jz09XXPmzKnW3q5du3qpEWhM/qTNVpeA/4+fBXzDc7XoM7leKzhx4oQiIiLO+bhPBpiLMWPGDE2ZMsV9v6KiQseOHVPLli3lcPz8Ff0ul0vt2rXTwYMHLbmyry/j2Jwbx+bcODbnxrE5N47NuTWWY2OM0YkTJ+R0Os/bzycDzKWXXip/f38VFBR4tBcUFCg2tuZrJAQFBSkoyHPuODIy0uu1hYeH2/ofRn3i2Jwbx+bcODbnxrE5N47NuTWGY3O+kZdKPnkadWBgoHr16qWcnBx3W0VFhXJycpSYmGhhZQAAwBf45AiMJE2ZMkWpqanq3bu3rr/+ei1cuFDFxcXus5IAAEDT5bMB5t///d919OhRzZ49W/n5+erRo4fWrl1bbWFvQwkKCtLjjz9ebZoKHJvz4dicG8fm3Dg258axObemdmwc5kLnKQEAAPgYn1wDAwAAcD4EGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEmFpavHixOnbsqODgYCUkJGjTpk1Wl2S59PR0XXfddQoLC1N0dLSGDh2q3bt3W12Wz3n66aflcDg0adIkq0vxGYcOHdK9996rli1bKiQkRN27d9eWLVusLsty5eXlmjVrluLi4hQSEqJOnTrpiSeeuOCmdo3Rhg0bdPvtt8vpdMrhcOjdd9/1eNwYo9mzZ6t169YKCQlRUlKS9u6teWPCxuZ8x6asrEzTpk1T9+7dFRoaKqfTqfvvv1+HDx+2ruB6QoCphTfffFNTpkzR448/rm3btumaa65RcnKyjhw5YnVpllq/fr3S0tL0xRdfKDs7W2VlZRo4cKCKi4sv/OQmYvPmzVq6dKmuvvpqq0vxGcePH1ffvn3VrFkzffTRR/rmm2/03HPPqUWLFlaXZrn58+dryZIlevHFF7Vr1y7Nnz9fGRkZWrRokdWlNbji4mJdc801Wrx4cY2PZ2RkKDMzU1lZWdq4caNCQ0OVnJys06dPN3ClDe98x+bUqVPatm2bZs2apW3btunPf/6zdu/erV/+8pcWVFrPDC7o+uuvN2lpae775eXlxul0mvT0dAur8j1Hjhwxksz69eutLsUnnDhxwnTu3NlkZ2ebm266yUycONHqknzCtGnTTL9+/awuwycNGTLEjBkzxqPtzjvvNCkpKRZV5BskmXfeecd9v6KiwsTGxppnnnnG3VZYWGiCgoLMn/70JwsqtE7VY1OTTZs2GUnmwIEDDVNUA2EE5gJKS0u1detWJSUludv8/PyUlJSk3NxcCyvzPUVFRZKkqKgoiyvxDWlpaRoyZIjHvx1I7733nnr37q0RI0YoOjpaPXv21Msvv2x1WT6hT58+ysnJ0Z49eyRJX331lT777DMNHjzY4sp8y/79+5Wfn+/x/1ZERIQSEhL4vVyDoqIiORyOetng2Eo+u5WAr/jxxx9VXl5ebQuDmJgYffvttxZV5XsqKio0adIk9e3bV/Hx8VaXY7k33nhD27Zt0+bNm60uxed8//33WrJkiaZMmaKZM2dq8+bNevjhhxUYGKjU1FSry7PU9OnT5XK51KVLF/n7+6u8vFxPPfWUUlJSrC7Np+Tn50tSjb+XKx/DT06fPq1p06bp7rvvtv0O1VURYOAVaWlp+vrrr/XZZ59ZXYrlDh48qIkTJyo7O1vBwcFWl+NzKioq1Lt3b82bN0+S1LNnT3399dfKyspq8gHmrbfe0sqVK7Vq1Sp169ZN27dv16RJk+R0Opv8sUHdlZWV6a677pIxRkuWLLG6HK9jCukCLr30Uvn7+6ugoMCjvaCgQLGxsRZV5VsmTJigNWvW6JNPPlHbtm2tLsdyW7du1ZEjR3TttdcqICBAAQEBWr9+vTIzMxUQEKDy8nKrS7RU69at1bVrV4+2q666Snl5eRZV5DumTp2q6dOna+TIkerevbvuu+8+TZ48Wenp6VaX5lMqf/fye/ncKsPLgQMHlJ2d3ehGXyQCzAUFBgaqV69eysnJcbdVVFQoJydHiYmJFlZmPWOMJkyYoHfeeUfr1q1TXFyc1SX5hAEDBmjHjh3avn27+9a7d2+lpKRo+/bt8vf3t7pES/Xt27fa6fZ79uxRhw4dLKrId5w6dUp+fp6/lv39/VVRUWFRRb4pLi5OsbGxHr+XXS6XNm7c2OR/L0v/Ci979+7Vf//3f6tly5ZWl1QvmEKqhSlTpig1NVW9e/fW9ddfr4ULF6q4uFijR4+2ujRLpaWladWqVfrLX/6isLAw99xzRESEQkJCLK7OOmFhYdXWAYWGhqply5asD5I0efJk9enTR/PmzdNdd92lTZs2admyZVq2bJnVpVnu9ttv11NPPaX27durW7du+vLLL7VgwQKNGTPG6tIa3MmTJ7Vv3z73/f3792v79u2KiopS+/btNWnSJD355JPq3Lmz4uLiNGvWLDmdTg0dOtS6ohvI+Y5N69atNXz4cG3btk1r1qxReXm5+3dzVFSUAgMDrSrb+6w+DcouFi1aZNq3b28CAwPN9ddfb7744gurS7KcpBpvy5cvt7o0n8Np1J7ef/99Ex8fb4KCgkyXLl3MsmXLrC7JJ7hcLjNx4kTTvn17ExwcbC677DLz29/+1pSUlFhdWoP75JNPavz9kpqaaoz56VTqWbNmmZiYGBMUFGQGDBhgdu/ebW3RDeR8x2b//v3n/N38ySefWF26VzmMaYKXeAQAALbGGhgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7/w+uMkozy5C/hAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKwxJREFUeJzt3X9UVXW+//EXiBzIBISuHJjUmMmbP6JMLSXNfsgSC50sy6tSmZpOM1Cid5l5R0nNJDHNn6PZ5I++aWlrpZkmyqDpmIgGUaZe08nSVXNgbgjHH4kI+/tH1309opZ68HA+PB9r7bXcn/3e+7z3LuPV5+zNDrAsyxIAAIBhAn3dAAAAQG0g5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAPALAQEBSktL83UbAPwIIQcAABiJkAMAAIxEyAHgVSdOnPB1CwAgiZAD4CpMmDBBAQEB2rt3rwYOHKgmTZqoa9eu+vLLL/X000/rt7/9rUJCQuR0OjVkyBD9+OOPF9z/4MGDevrppxUREaHw8HANHjxYJ0+e/MXPnzx5sgIDAzVnzpxf3fNNN92kXr166ZNPPlHHjh0VGhqq+Ph4ffLJJ5KkDz74QPHx8QoJCVGHDh30+eefe+z/a87tp59+UqtWrdSqVSv99NNP9nhpaaliYmJ09913q6qq6lf3DODKEHIAXLXHH39cJ0+e1JQpUzRs2DDl5OTom2++0eDBgzVnzhz1799f7733nh566CFZllVj/379+unYsWPKzMxUv379tGTJEk2cOPGSnzlu3DhlZGTojTfe0HPPPXdZ/R48eFADBw5U7969lZmZqaNHj6p3795atmyZRo4cqSeeeEITJ07UP/7xD/Xr10/V1dX2vr/m3EJDQ7V06VIdPHhQf/7zn+19U1NTVV5eriVLlqhBgwaX1TOAK2ABwBV66aWXLEnWgAEDPMZPnjxZo/bdd9+1JFlbt26tsf+QIUM8ah955BErKirKY0ySlZqaalmWZf3nf/6nFRgYaC1ZsuSye27RooUlydq+fbs9tmHDBkuSFRoaan333Xf2+BtvvGFJsjZv3nzZ52ZZljV27FgrMDDQ2rp1q/X+++9bkqyZM2deds8ArgwzOQCu2rPPPuuxHhoaav/51KlT+p//+R917txZklRYWPiL+99zzz368ccf5Xa7PcYty1JaWppmzZqld955R4MGDbqiftu0aaOEhAR7vVOnTpKkBx54QM2bN68x/s0331zRuU2YMEFt27bVoEGD9Kc//Un33nuvnn/++SvqGcDlI+QAuGpxcXEe66WlpRoxYoSio6MVGhqqf/u3f7NrysvLa+x/brCQpCZNmkiSjh496jH+9ttva968eZozZ44GDBhwxf2e/3nh4eGSpGbNml1w/Nw+LufcgoODtWjRIh06dEjHjh3T4sWLFRAQcMV9A7g8Qb5uAID/O3d2Q/r5Hpvt27dr9OjRateuna6//npVV1erZ8+eHve3nHWx+1Os8+7f6dKli4qKijR37lz169dPkZGRV9TvxT7v1/Rxuee2YcMGST/P+hw4cKBGIARQewg5ALzq6NGjys3N1cSJE5WRkWGPHzhw4KqPffPNNysrK0v33XefevbsqdzcXDVu3Piqj/trXe65ffnll5o0aZIGDx6soqIiPfPMM9q9e7c9QwSgdvF1FQCvOjsbcv4szMyZM71y/Ntuu00ff/yx9u3bp969e3s8ol3bLufcKisr9fTTTys2NlazZs3SkiVLVFxcrJEjR16LVgGImRwAXhYWFqZu3bopKytLlZWV+s1vfqONGzfq0KFDXvuMzp0768MPP9RDDz2kxx57TKtXr1bDhg29dvyLuZxzmzx5soqKiuzZpttuu00ZGRkaN26cHnvsMT300EO13i9Q3zGTA8Drli9frqSkJM2bN09jx45Vw4YNtX79eq9+xgMPPKCVK1dq48aNevLJJy94P0xt+DXnVlhYqClTpigtLU3333+/Pf7iiy/qzjvv1LBhw1RWVnZN+gXqswDr/HlXAAAAAzCTAwAAjMQ9OQCM8K9//euS74MKDg6+4kfOAfgnvq4CYISbbrpJ33333UW333vvvfZLOAHUD5f9ddXWrVvVu3dvxcbGKiAgQKtXr/bYblmWMjIyFBMTo9DQUCUmJtb4HRKlpaVKSUlRWFiYIiIiNHToUB0/ftyj5ssvv9Q999yjkJAQNWvWTFlZWTV6ef/999WqVSuFhIQoPj5eH3/88eWeDgBDLFu2TDk5ORddpk+f7usWAVxjl/111YkTJ3T77bdryJAhevTRR2tsz8rK0uzZs7V06VLFxcVp/PjxSkpK0t69exUSEiJJSklJ0T//+U/l5OSosrJSgwcP1vDhw7V8+XJJktvtVo8ePZSYmKgFCxZo9+7dGjJkiCIiIjR8+HBJ0vbt2zVgwABlZmaqV69eWr58ufr06aPCwkLdeuutV3NNAPihLl26+LoFAHXN1bzdU5K1atUqe726utpyOp3WtGnT7LGysjLL4XBY7777rmVZlrV3715LkrVr1y67Zv369VZAQID1/fffW5ZlWX/5y1+sJk2aWBUVFXbNmDFjrFtuucVe79evn5WcnOzRT6dOnaw//OEPV3NKAADAEF698fjQoUNyuVxKTEy0x8LDw9WpUyfl5eWpf//+ysvLU0REhDp27GjXJCYmKjAwUPn5+XrkkUeUl5enbt26KTg42K5JSkrS1KlTdfToUTVp0kR5eXkaNWqUx+cnJSXV+PrsXBUVFaqoqLDXq6urVVpaqqioKF6aBwCAn7AsS8eOHVNsbKwCAy9+541XQ47L5ZIkRUdHe4xHR0fb21wul5o2berZRFCQIiMjPWrOf4nd2WO6XC41adJELpfrkp9zIZmZmZo4ceIVnBkAAKhrjhw5ohtvvPGi2+vVI+Rjx471mP0pLy9X8+bNdeTIEYWFhfmwMwAA8Gu53W41a9bsF1/Q69WQ43Q6JUnFxcWKiYmxx4uLi9WuXTu7pqSkxGO/M2fOqLS01N7f6XSquLjYo+bs+i/VnN1+IQ6HQw6Ho8Z4WFgYIQcAAD/zS7eaePU3HsfFxcnpdCo3N9cec7vdys/PV0JCgiQpISFBZWVlKigosGs2bdqk6upqderUya7ZunWrKisr7ZqcnBzdcsstatKkiV1z7uecrTn7OQAAoH677JBz/PhxFRUVqaioSNLPNxsXFRXp8OHDCggIUHp6uiZPnqw1a9Zo9+7deuqppxQbG6s+ffpIklq3bq2ePXtq2LBh2rlzpz799FOlpaWpf//+io2NlSQNHDhQwcHBGjp0qPbs2aMVK1Zo1qxZHl81jRgxQtnZ2Zo+fbr++7//WxMmTNBnn32mtLS0q78qAADA/13u41ibN2+2JNVYBg0aZFnWz4+Rjx8/3oqOjrYcDofVvXt3a//+/R7H+PHHH60BAwZY119/vRUWFmYNHjzYOnbsmEfNF198YXXt2tVyOBzWb37zG+vVV1+t0cvKlSutf//3f7eCg4Ottm3bWuvWrbuscykvL7ckWeXl5Zd3EQAAgM/82p/f9fq1Dm63W+Hh4SovL+eeHAAA/MSv/fnNW8gBAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEhBvm4AvlOZvc1jvWHPrj7qBAAA72MmBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYK8nUDwMVUZm+rMdawZ1cfdAIA8EfM5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARvJ6yKmqqtL48eMVFxen0NBQ/e53v9PLL78sy7LsGsuylJGRoZiYGIWGhioxMVEHDhzwOE5paalSUlIUFhamiIgIDR06VMePH/eo+fLLL3XPPfcoJCREzZo1U1ZWlrdPBwAA+Cmvh5ypU6dq/vz5mjt3rvbt26epU6cqKytLc+bMsWuysrI0e/ZsLViwQPn5+WrUqJGSkpJ06tQpuyYlJUV79uxRTk6O1q5dq61bt2r48OH2drfbrR49eqhFixYqKCjQtGnTNGHCBC1cuNDbpwQAAPxQkLcPuH37dj388MNKTk6WJN1000169913tXPnTkk/z+LMnDlT48aN08MPPyxJevvttxUdHa3Vq1erf//+2rdvn7Kzs7Vr1y517NhRkjRnzhw99NBDeu211xQbG6tly5bp9OnTWrRokYKDg9W2bVsVFRVpxowZHmEIAADUT16fybn77ruVm5urr7/+WpL0xRdfaNu2bXrwwQclSYcOHZLL5VJiYqK9T3h4uDp16qS8vDxJUl5eniIiIuyAI0mJiYkKDAxUfn6+XdOtWzcFBwfbNUlJSdq/f7+OHj16wd4qKirkdrs9FgAAYCavz+S8+OKLcrvdatWqlRo0aKCqqiq98sorSklJkSS5XC5JUnR0tMd+0dHR9jaXy6WmTZt6NhoUpMjISI+auLi4Gsc4u61JkyY1esvMzNTEiRO9cJYAAKCu8/pMzsqVK7Vs2TItX75chYWFWrp0qV577TUtXbrU2x912caOHavy8nJ7OXLkiK9bAgAAtcTrMzmjR4/Wiy++qP79+0uS4uPj9d133ykzM1ODBg2S0+mUJBUXFysmJsber7i4WO3atZMkOZ1OlZSUeBz3zJkzKi0ttfd3Op0qLi72qDm7frbmfA6HQw6H4+pPEgAA1Hlen8k5efKkAgM9D9ugQQNVV1dLkuLi4uR0OpWbm2tvd7vdys/PV0JCgiQpISFBZWVlKigosGs2bdqk6upqderUya7ZunWrKisr7ZqcnBzdcsstF/yqCgAA1C9eDzm9e/fWK6+8onXr1unbb7/VqlWrNGPGDD3yyCOSpICAAKWnp2vy5Mlas2aNdu/eraeeekqxsbHq06ePJKl169bq2bOnhg0bpp07d+rTTz9VWlqa+vfvr9jYWEnSwIEDFRwcrKFDh2rPnj1asWKFZs2apVGjRnn7lAAAgB/y+tdVc+bM0fjx4/WnP/1JJSUlio2N1R/+8AdlZGTYNS+88IJOnDih4cOHq6ysTF27dlV2drZCQkLsmmXLliktLU3du3dXYGCg+vbtq9mzZ9vbw8PDtXHjRqWmpqpDhw664YYblJGRwePjuKYqs7d5rDfs2dVHnQAAzhdgnfuriOsZt9ut8PBwlZeXKywszNftXHN1/Qf0+f1Jdb/HutYfAJjo1/785t1VAADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRgnzdAHzn27L1Hust1dVHnQAA4H3M5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEm8hR511/lvSJd6UDgD49ZjJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADBSkK8bAFB7KrO31Rhr2LOrDzoBgGuPmRwAAGCkWgk533//vZ544glFRUUpNDRU8fHx+uyzz+ztlmUpIyNDMTExCg0NVWJiog4cOOBxjNLSUqWkpCgsLEwREREaOnSojh8/7lHz5Zdf6p577lFISIiaNWumrKys2jgdAADgh7weco4ePaouXbqoYcOGWr9+vfbu3avp06erSZMmdk1WVpZmz56tBQsWKD8/X40aNVJSUpJOnTpl16SkpGjPnj3KycnR2rVrtXXrVg0fPtze7na71aNHD7Vo0UIFBQWaNm2aJkyYoIULF3r7lAAAgB/y+j05U6dOVbNmzbR48WJ7LC4uzv6zZVmaOXOmxo0bp4cffliS9Pbbbys6OlqrV69W//79tW/fPmVnZ2vXrl3q2LGjJGnOnDl66KGH9Nprryk2NlbLli3T6dOntWjRIgUHB6tt27YqKirSjBkzPMIQAACon7w+k7NmzRp17NhRjz/+uJo2bao77rhDb775pr390KFDcrlcSkxMtMfCw8PVqVMn5eXlSZLy8vIUERFhBxxJSkxMVGBgoPLz8+2abt26KTg42K5JSkrS/v37dfTo0Qv2VlFRIbfb7bEAAAAzeT3kfPPNN5o/f75atmypDRs26I9//KOef/55LV26VJLkcrkkSdHR0R77RUdH29tcLpeaNm3qsT0oKEiRkZEeNRc6xrmfcb7MzEyFh4fbS7Nmza7ybAEAQF3l9ZBTXV2t9u3ba8qUKbrjjjs0fPhwDRs2TAsWLPD2R122sWPHqry83F6OHDni65YAAEAt8XrIiYmJUZs2bTzGWrdurcOHD0uSnE6nJKm4uNijpri42N7mdDpVUlLisf3MmTMqLS31qLnQMc79jPM5HA6FhYV5LAAAwExeDzldunTR/v37Pca+/vprtWjRQtLPNyE7nU7l5uba291ut/Lz85WQkCBJSkhIUFlZmQoKCuyaTZs2qbq6Wp06dbJrtm7dqsrKSrsmJydHt9xyi8eTXAAAoH7yesgZOXKkduzYoSlTpujgwYNavny5Fi5cqNTUVElSQECA0tPTNXnyZK1Zs0a7d+/WU089pdjYWPXp00fSzzM/PXv21LBhw7Rz5059+umnSktLU//+/RUbGytJGjhwoIKDgzV06FDt2bNHK1as0KxZszRq1ChvnxIAAPBDXn+E/M4779SqVas0duxYTZo0SXFxcZo5c6ZSUlLsmhdeeEEnTpzQ8OHDVVZWpq5duyo7O1shISF2zbJly5SWlqbu3bsrMDBQffv21ezZs+3t4eHh2rhxo1JTU9WhQwfdcMMNysjI4PFxXFPflq33WG8pXpkAAHVFrby7qlevXurVq9dFtwcEBGjSpEmaNGnSRWsiIyO1fPnyS37Obbfdpr///e9X3CcAADAX764CAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKRaeQs5pMrsbTXGGvbs6oNOAACon5jJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIwX5ugEAtefbsvU1xlqqqw86AYBrj5kcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEhBvm4AQP1Wmb2txljDnl190AkA0zCTAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASLUecl599VUFBAQoPT3dHjt16pRSU1MVFRWl66+/Xn379lVxcbHHfocPH1ZycrKuu+46NW3aVKNHj9aZM2c8aj755BO1b99eDodDN998s5YsWVLbpwMAAPxErYacXbt26Y033tBtt93mMT5y5Eh99NFHev/997Vlyxb98MMPevTRR+3tVVVVSk5O1unTp7V9+3YtXbpUS5YsUUZGhl1z6NAhJScn6/7771dRUZHS09P1zDPPaMOGDbV5SgAAwE/UWsg5fvy4UlJS9Oabb6pJkyb2eHl5ud566y3NmDFDDzzwgDp06KDFixdr+/bt2rFjhyRp48aN2rt3r9555x21a9dODz74oF5++WXNmzdPp0+fliQtWLBAcXFxmj59ulq3bq20tDQ99thjev3112vrlAAAgB+ptZCTmpqq5ORkJSYmeowXFBSosrLSY7xVq1Zq3ry58vLyJEl5eXmKj49XdHS0XZOUlCS32609e/bYNecfOykpyT7GhVRUVMjtdnssAADATLXyG4/fe+89FRYWateuXTW2uVwuBQcHKyIiwmM8OjpaLpfLrjk34JzdfnbbpWrcbrd++uknhYaG1vjszMxMTZw48YrPCwAA+A+vz+QcOXJEI0aM0LJlyxQSEuLtw1+VsWPHqry83F6OHDni65YAAEAt8XrIKSgoUElJidq3b6+goCAFBQVpy5Ytmj17toKCghQdHa3Tp0+rrKzMY7/i4mI5nU5JktPprPG01dn1X6oJCwu74CyOJDkcDoWFhXksAADATF4POd27d9fu3btVVFRkLx07dlRKSor954YNGyo3N9feZ//+/Tp8+LASEhIkSQkJCdq9e7dKSkrsmpycHIWFhalNmzZ2zbnHOFtz9hgAAKB+8/o9OY0bN9att97qMdaoUSNFRUXZ40OHDtWoUaMUGRmpsLAwPffcc0pISFDnzp0lST169FCbNm305JNPKisrSy6XS+PGjVNqaqocDock6dlnn9XcuXP1wgsvaMiQIdq0aZNWrlypdevWefuUAACAH6qVG49/yeuvv67AwED17dtXFRUVSkpK0l/+8hd7e4MGDbR27Vr98Y9/VEJCgho1aqRBgwZp0qRJdk1cXJzWrVunkSNHatasWbrxxhv117/+VUlJSb44JQAAUMdck5DzySefeKyHhIRo3rx5mjdv3kX3adGihT7++ONLHve+++7T559/7o0WAQCAYXh3FQAAMJJPvq6qD74tW19jrKW6+qATAADqJ2ZyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJGCfN0AgPrt27L1NcZaqqsPOgFgGmZyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgpCBfNwAAdV1l9jaP9YY9u/qoEwCXg5kcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJG8HnIyMzN15513qnHjxmratKn69Omj/fv3e9ScOnVKqampioqK0vXXX6++ffuquLjYo+bw4cNKTk7Wddddp6ZNm2r06NE6c+aMR80nn3yi9u3by+Fw6Oabb9aSJUu8fToAAMBPeT3kbNmyRampqdqxY4dycnJUWVmpHj166MSJE3bNyJEj9dFHH+n999/Xli1b9MMPP+jRRx+1t1dVVSk5OVmnT5/W9u3btXTpUi1ZskQZGRl2zaFDh5ScnKz7779fRUVFSk9P1zPPPKMNGzZ4+5QA1HPflq33WAD4hyBvHzA7O9tjfcmSJWratKkKCgrUrVs3lZeX66233tLy5cv1wAMPSJIWL16s1q1ba8eOHercubM2btyovXv36m9/+5uio6PVrl07vfzyyxozZowmTJig4OBgLViwQHFxcZo+fbokqXXr1tq2bZtef/11JSUlXbC3iooKVVRU2Otut9vbpw8AAOqIWr8np7y8XJIUGRkpSSooKFBlZaUSExPtmlatWql58+bKy8uTJOXl5Sk+Pl7R0dF2TVJSktxut/bs2WPXnHuMszVnj3EhmZmZCg8Pt5dmzZp55yQBAECdU6shp7q6Wunp6erSpYtuvfVWSZLL5VJwcLAiIiI8aqOjo+VyueyacwPO2e1nt12qxu1266effrpgP2PHjlV5ebm9HDly5KrPEQAA1E1e/7rqXKmpqfrqq6+0bdu22vyYX83hcMjhcPi6DQAAcA3U2kxOWlqa1q5dq82bN+vGG2+0x51Op06fPq2ysjKP+uLiYjmdTrvm/Ketzq7/Uk1YWJhCQ0O9fToAAMDPeD3kWJaltLQ0rVq1Sps2bVJcXJzH9g4dOqhhw4bKzc21x/bv36/Dhw8rISFBkpSQkKDdu3erpKTErsnJyVFYWJjatGlj15x7jLM1Z48BAADqN69/XZWamqrly5frww8/VOPGje17aMLDwxUaGqrw8HANHTpUo0aNUmRkpMLCwvTcc88pISFBnTt3liT16NFDbdq00ZNPPqmsrCy5XC6NGzdOqamp9tdNzz77rObOnasXXnhBQ4YM0aZNm7Ry5UqtW7fO26cEAAD8kNdncubPn6/y8nLdd999iomJsZcVK1bYNa+//rp69eqlvn37qlu3bnI6nfrggw/s7Q0aNNDatWvVoEEDJSQk6IknntBTTz2lSZMm2TVxcXFat26dcnJydPvtt2v69On661//etHHxwEAQP3i9Zkcy7J+sSYkJETz5s3TvHnzLlrTokULffzxx5c8zn333afPP//8snsEAADm491VAADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJGCfN0AAODqVGZvqzHWsGdXH3QC1C3M5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjMTvyQEAP/dt2foaYy3F78kBmMkBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGCnI1w0AAMxXmb3NY71hz64+6gT1CTM5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMxNNVAIBa923Zeo/1luLpKtQ+ZnIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIzEI+QAgHrv/BeISrxE1ATM5AAAACMRcgAAgJH4ugoAUO+d/xuZJX4rswmYyQEAAEYi5AAAACMRcgAAgJEIOQAAwEjceIw6qcqq0j8Cf5Q7oEJhlkNx1ZEKVICv2/JwpqpSh08d1XHrtK4PCNaNjghftwTAYAfe+7PHesv+r/ioE//h9yFn3rx5mjZtmlwul26//XbNmTNHd911l6/bwlXI+yFXb301TT+GlNhj4dUh+n1la7X0YV/n+jTvHS36/g2VRp6wxyIrQjUk7x11SXjCh50BAM7y66+rVqxYoVGjRumll15SYWGhbr/9diUlJamkpOSXd0adlPdDrrI+e0E/nvL8Z1gecEr/L/hz5f2Q66PO/s+nee/otZIZKm14wmO8NPgnvVYyQ5/mveOjzgDAtyqzt3ksvubXIWfGjBkaNmyYBg8erDZt2mjBggW67rrrtGjRIl+3hitQZVXpra+mSbJqbvzfb6oWffWaqqyqa9rXuc5UVWrR92949GT73/XF37+hM1WV17QvAKgLvi1b77H4mt9+XXX69GkVFBRo7Nix9lhgYKASExOVl5d3wX0qKipUUVFhr5eXl0uS3G631/s7frKixlhtfM7VOL9HX/e398dCuUr/ecmaf/70g3Z9+3e1iWp/jbrytHv3BhWfcUtnLl7jklv5O1YrPj7p2jV2Ef7476FU93us6/1Jdb/Hut6fVPd7rGv9Sdeux7PHtawL/E/xuSw/9f3331uSrO3bt3uMjx492rrrrrsuuM9LL71k6edpAhYWFhYWFhY/X44cOXLJrOC3MzlXYuzYsRo1apS9Xl1drdLSUkVFRSkgoG49uVPb3G63mjVrpiNHjigsLMzX7fgtrqN3cB29g+voHVxH76jN62hZlo4dO6bY2NhL1vltyLnhhhvUoEEDFRcXe4wXFxfL6XRecB+HwyGHw+ExFhERUVst+oWwsDD+EnsB19E7uI7ewXX0Dq6jd9TWdQwPD//FGr+98Tg4OFgdOnRQbu7/PW1TXV2t3NxcJSQk+LAzAABQF/jtTI4kjRo1SoMGDVLHjh111113aebMmTpx4oQGDx7s69YAAICP+XXI+Y//+A/961//UkZGhlwul9q1a6fs7GxFR0f7urU6z+Fw6KWXXqrx9R0uD9fRO7iO3sF19A6uo3fUhesYYFm/9PwVAACA//Hbe3IAAAAuhZADAACMRMgBAABGIuQAAAAjEXIAAICRCDn1TGZmpu688041btxYTZs2VZ8+fbR//35ft+XXXn31VQUEBCg9Pd3Xrfil77//Xk888YSioqIUGhqq+Ph4ffbZZ75uy69UVVVp/PjxiouLU2hoqH73u9/p5Zdf/uWXF9ZzW7duVe/evRUbG6uAgACtXr3aY7tlWcrIyFBMTIxCQ0OVmJioAwcO+KbZOuxS17GyslJjxoxRfHy8GjVqpNjYWD311FP64YcfrklvhJx6ZsuWLUpNTdWOHTuUk5OjyspK9ejRQydOnPB1a35p165deuONN3Tbbbf5uhW/dPToUXXp0kUNGzbU+vXrtXfvXk2fPl1NmjTxdWt+ZerUqZo/f77mzp2rffv2aerUqcrKytKcOXN83VqdduLECd1+++2aN2/eBbdnZWVp9uzZWrBggfLz89WoUSMlJSXp1KlT17jTuu1S1/HkyZMqLCzU+PHjVVhYqA8++ED79+/X73//+2vTnDfeCA7/VVJSYkmytmzZ4utW/M6xY8esli1bWjk5Oda9995rjRgxwtct+Z0xY8ZYXbt29XUbfi85OdkaMmSIx9ijjz5qpaSk+Kgj/yPJWrVqlb1eXV1tOZ1Oa9q0afZYWVmZ5XA4rHfffdcHHfqH86/jhezcudOSZH333Xe13g8zOfVceXm5JCkyMtLHnfif1NRUJScnKzEx0det+K01a9aoY8eOevzxx9W0aVPdcccdevPNN33dlt+5++67lZubq6+//lqS9MUXX2jbtm168MEHfdyZ/zp06JBcLpfH3+/w8HB16tRJeXl5PuzM/5WXlysgIOCavCDbr1/rgKtTXV2t9PR0denSRbfeequv2/Er7733ngoLC7Vr1y5ft+LXvvnmG82fP1+jRo3Sf/3Xf2nXrl16/vnnFRwcrEGDBvm6Pb/x4osvyu12q1WrVmrQoIGqqqr0yiuvKCUlxdet+S2XyyVJNV4TFB0dbW/D5Tt16pTGjBmjAQMGXJM3vBNy6rHU1FR99dVX2rZtm69b8StHjhzRiBEjlJOTo5CQEF+349eqq6vVsWNHTZkyRZJ0xx136KuvvtKCBQsIOZdh5cqVWrZsmZYvX662bduqqKhI6enpio2N5TqizqisrFS/fv1kWZbmz59/TT6Tr6vqqbS0NK1du1abN2/WjTfe6Ot2/EpBQYFKSkrUvn17BQUFKSgoSFu2bNHs2bMVFBSkqqoqX7foN2JiYtSmTRuPsdatW+vw4cM+6sg/jR49Wi+++KL69++v+Ph4Pfnkkxo5cqQyMzN93ZrfcjqdkqTi4mKP8eLiYnsbfr2zAee7775TTk7ONZnFkQg59Y5lWUpLS9OqVau0adMmxcXF+bolv9O9e3ft3r1bRUVF9tKxY0elpKSoqKhIDRo08HWLfqNLly41foXB119/rRYtWvioI/908uRJBQZ6/ue8QYMGqq6u9lFH/i8uLk5Op1O5ubn2mNvtVn5+vhISEnzYmf85G3AOHDigv/3tb4qKirpmn83XVfVMamqqli9frg8//FCNGze2v1sODw9XaGioj7vzD40bN65xD1OjRo0UFRXFvU2XaeTIkbr77rs1ZcoU9evXTzt37tTChQu1cOFCX7fmV3r37q1XXnlFzZs3V9u2bfX5559rxowZGjJkiK9bq9OOHz+ugwcP2uuHDh1SUVGRIiMj1bx5c6Wnp2vy5Mlq2bKl4uLiNH78eMXGxqpPnz6+a7oOutR1jImJ0WOPPabCwkKtXbtWVVVV9s+dyMhIBQcH125ztf78FuoUSRdcFi9e7OvW/BqPkF+5jz76yLr11lsth8NhtWrVylq4cKGvW/I7brfbGjFihNW8eXMrJCTE+u1vf2v9+c9/tioqKnzdWp22efPmC/73cNCgQZZl/fwY+fjx463o6GjL4XBY3bt3t/bv3+/bpuugS13HQ4cOXfTnzubNm2u9twDL4ldiAgAA83BPDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACM9P8Bh9kAKVDavCkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALZpJREFUeJzt3XtUlXWi//EPd1Dcm/ACkngpLSNvBYp7tKuMu4ZaWTph0ykynZaFjsp00TPlpdOEY9NJHU3ruCZbU41mk5YyYhxMPI2khpGXlLEZTBvjYgqYKSj7+/ujH8+4A0u8kV/er7X2WvA83/3s7/MN4d3D3psAY4wRAACAZQKbewIAAADnA5EDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRA7RA06dPV0BAQJPv98ADD6hr167nfkIAcB4QOQDO2DfffKPp06dr3bp1zT2V8+KNN97Q7Nmzm3saAM4QkQPgjH3zzTeaMWMGkQPgR4nIAQAAViJyAMt98MEH6t+/v8LDw3X55ZfrpZdeanTca6+9psTEREVERCg6OlojR47Uvn37TnncPXv2qH379pKkGTNmKCAgQAEBAZo+fbokaevWrXrggQd02WWXKTw8XLGxsXrwwQf11VdfNWn+e/bsUUBAgH7/+9/r5Zdf1uWXX66wsDD1799fmzdvbjB+165dGjFihKKjoxUeHq6kpCS9++67zv7y8nK1b99eN954o4wxzvbPPvtMrVu3VlpamiTpxhtvVHZ2tj7//HPn3JryfKSuXbvqtttu07p165SUlKSIiAj17t3buer19ttvq3fv3goPD1diYqI+/vhjv/ufzvodPXpUPXv2VM+ePXX06FFn+8GDB9WxY0f95Cc/UV1d3WnPGbCOAWCtrVu3moiICNO5c2eTlZVl/uu//svExMSYPn36mJP/+T/zzDMmICDApKWlmRdffNHMmDHDtGvXznTt2tUcOnTIGZeenm66dOlijDHm66+/NgsWLDCSzJ133mn+9Kc/mT/96U/mk08+McYY8/vf/95cd9115umnnzYvv/yymTBhgomIiDADBgwwPp/vtM+hpKTESDLXXHON6d69u/nd735nZs2aZdq1a2c6depkamtrnbHbt283brfbJCQkmN/97ndm3rx55vrrrzcBAQHm7bffdsYtW7bMSDJz5swxxhhTV1dnBg0aZGJiYsyBAweMMca89957pl+/fqZdu3bOuS1fvvy0592lSxdz5ZVXmo4dO5rp06ebF154wVx66aUmMjLSvPbaa6Zz585m5syZZubMmcbtdpvu3buburo65/6nu34ffvihCQoKMpMmTXK2jRw50kRERJji4uLTni9gIyIHsNiwYcNMeHi4+fzzz51tn376qQkKCnIiZ8+ePSYoKMj89re/9bvvtm3bTHBwsN/2kyPHGGMqKiqMJDNt2rQGj/3NN9802PbnP//ZSDLr168/7XOoj5y2bduagwcPOtvfeecdI8msXLnS2TZkyBDTu3dvc+zYMWebz+czP/nJT0yPHj38jnvPPfeYVq1amb///e/mueeeM5LMihUr/Makpqb6nW9TdOnSxUgyGzZscLatWbPGSDIRERF+/01eeuklI8m8//77zramrN+UKVNMYGCgWb9+vRNws2fPPqN5Azbh11WAperq6rRmzRoNGzZMnTt3drZfddVV8nq9zudvv/22fD6f7r77bh04cMC5xcbGqkePHnr//ffP6PEjIiKcj48dO6YDBw5o4MCBkqQtW7Y0+XhpaWm65JJLnM+vu+46SdI///lPSd/+imbt2rW6++67dfjwYec8vvrqK3m9Xu3evVv/+te/nPvPmzdPbrdbI0aM0FNPPaX77rtPd9xxxxmd66kkJCTI4/E4nycnJ0uSbr75Zr//JvXb689Fatr6TZ8+XVdffbXS09P1yCOP6IYbbtCvfvWrc3ouwMWIyAEsVVFRoaNHj6pHjx4N9l155ZXOx7t375YxRj169FD79u39bjt37lR5efkZPf7Bgwc1YcIExcTEKCIiQu3bt1e3bt0kSVVVVU0+3slRIMkJnkOHDkn69jk1xhg99dRTDc5j2rRpkuR3LtHR0Zo7d662bt0qt9utuXPnntF5NmXObrdbkhQfH9/o9vpzkZq2fqGhofrjH/+okpISHT58WK+88soZvQ8SYJvg5p4AgObl8/kUEBCg1atXKygoqMH+yMjIMzru3XffrQ0bNuixxx5Tv379FBkZKZ/Pp1tuuUU+n6/Jx2tsbpKcJw/XH/PRRx/1u1J1su7du/t9vmbNGknfxsUXX3yhqKioJs/r+5xqzj90LlLT16/+XI4dO6bdu3c7QQS0ZEQOYKn27dsrIiJCu3fvbrCvuLjY+fjyyy+XMUbdunXTFVdc0aTHONXVgkOHDikvL08zZszQ1KlTne2NzeVcueyyyyRJISEhSklJ+cHxOTk5WrRokR5//HG9/vrrSk9P18aNGxUc/O9vi811NaSp67d161Y9/fTTGjVqlIqKijRmzBht27bNuUIEtFT8ugqwVFBQkLxer1asWKG9e/c623fu3On8X78k3XXXXQoKCtKMGTP8riRI315Z+L6XfLdq1UqSVFlZ2eCx6+9/svP5xnodOnTQjTfeqJdeeklffvllg/0VFRXOx5WVlRozZowGDBigZ599VosWLdKWLVv07LPP+t2ndevWZ/SrtbPVlPU7fvy4HnjgAcXFxWnOnDlavHixysrKNGnSpAsxVeBHjSs5gMVmzJihnJwcXXfddXrkkUd04sQJ/eEPf9DVV1+trVu3Svr2Ss4zzzyjKVOmaM+ePRo2bJjatGmjkpISLV++XA899JAeffTRRo8fERGhhIQELV26VFdccYWio6PVq1cv9erVS9dff71mzZql48eP69JLL9V7772nkpKS83q+8+fP1+DBg9W7d2/98pe/1GWXXaaysjIVFBToiy++0CeffCJJmjBhgr766iv97//+r4KCgnTLLbdozJgxeuaZZ3THHXeob9++kqTExEQtXbpUmZmZ6t+/vyIjI3X77bef13OQJJfLddrr98wzz6ioqEh5eXlq06aN+vTpo6lTp+rJJ5/UiBEj9LOf/ey8zxf40Wq213UBuCDy8/NNYmKiCQ0NNZdddplZuHChmTZtmvnuP/+//OUvZvDgwaZ169amdevWpmfPniYjI8PvvVa++xJyY4zZsGGDc3yd9HLyL774wtx5550mKirKuN1u8/Of/9zs37//lC85P5X6l5A/99xzDfY1dqx//OMf5v777zexsbEmJCTEXHrppea2224zb731ljHm3y89f/755/3uV11dbbp06WL69u3rvPfO119/bX7xi1+YqKgoI6lJLyfv0qWLSU1NbXTOGRkZP3iOp7N+hYWFJjg42IwfP97veCdOnDD9+/c3cXFxfu9zBLQ0AcZ853ooAACABXhODgAAsBLPyQHQLOrq6vyeDNyYyMjIM34J+/lSUVHxvX8PKjQ0VNHR0RdwRgBOhV9XAWgWe/bs+cH3cpk2bZrzBz9/LLp27arPP//8lPtvuOEG549wAmheXMkB0CxiY2OVm5v7vWPq3/vmx+T111/3+4vf33Xyn54A0Ly4kgMAAKzEE48BAICVWvSvq3w+n/bv3682bdrwx+wAALhIGGN0+PBhxcXFKTDw1NdrWnTk7N+/v8FfAwYAABeHffv2qVOnTqfc36Ijp02bNpK+XSSXy9XMswEAAKejurpa8fHxzs/xU2nRkVP/KyqXy0XkAABwkfmhp5rwxGMAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFgpuLknYKvjOR802BZyy+BmmAkAAC0TV3IAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICVzipyZs6cqYCAAE2cONHZduzYMWVkZKht27aKjIzU8OHDVVZW5ne/vXv3KjU1Va1atVKHDh302GOP6cSJE35j1q1bp2uvvVZhYWHq3r27Fi9e3ODx58+fr65duyo8PFzJycnatGnT2ZwOAACwyBlHzubNm/XSSy+pT58+ftsnTZqklStXatmyZcrPz9f+/ft11113Ofvr6uqUmpqq2tpabdiwQa+++qoWL16sqVOnOmNKSkqUmpqqm266SUVFRZo4caLGjBmjNWvWOGOWLl2qzMxMTZs2TVu2bFHfvn3l9XpVXl5+pqcEAABsYs7A4cOHTY8ePUxubq654YYbzIQJE4wxxlRWVpqQkBCzbNkyZ+zOnTuNJFNQUGCMMeavf/2rCQwMNKWlpc6YBQsWGJfLZWpqaowxxjz++OPm6quv9nvMtLQ04/V6nc8HDBhgMjIynM/r6upMXFycycrKOu3zqKqqMpJMVVXV6Z/8aapd/X8NbgAA4Oyd7s/vM7qSk5GRodTUVKWkpPhtLyws1PHjx/229+zZU507d1ZBQYEkqaCgQL1791ZMTIwzxuv1qrq6Wjt27HDGfPfYXq/XOUZtba0KCwv9xgQGBiolJcUZ05iamhpVV1f73QAAgJ2Cm3qHJUuWaMuWLdq8eXODfaWlpQoNDVVUVJTf9piYGJWWljpjTg6c+v31+75vTHV1tY4ePapDhw6prq6u0TG7du065dyzsrI0Y8aM0ztRAABwUWvSlZx9+/ZpwoQJev311xUeHn6+5nTeTJkyRVVVVc5t3759zT0lAABwnjQpcgoLC1VeXq5rr71WwcHBCg4OVn5+vubOnavg4GDFxMSotrZWlZWVfvcrKytTbGysJCk2NrbBq63qP/+hMS6XSxEREWrXrp2CgoIaHVN/jMaEhYXJ5XL53QAAgJ2aFDlDhgzRtm3bVFRU5NySkpJ07733Oh+HhIQoLy/PuU9xcbH27t0rj8cjSfJ4PNq2bZvfq6Byc3PlcrmUkJDgjDn5GPVj6o8RGhqqxMREvzE+n095eXnOGAAA0LI16Tk5bdq0Ua9evfy2tW7dWm3btnW2jx49WpmZmYqOjpbL5dL48ePl8Xg0cOBASdLQoUOVkJCg++67T7NmzVJpaamefPJJZWRkKCwsTJI0duxYzZs3T48//rgefPBBrV27Vm+++aays7Odx83MzFR6erqSkpI0YMAAzZ49W0eOHNGoUaPOakEAAIAdmvzE4x/ywgsvKDAwUMOHD1dNTY28Xq9efPFFZ39QUJBWrVqlhx9+WB6PR61bt1Z6erqefvppZ0y3bt2UnZ2tSZMmac6cOerUqZMWLVokr9frjElLS1NFRYWmTp2q0tJS9evXTzk5OQ2ejAwAAFqmAGOMae5JNJfq6mq53W5VVVWd8+fnHM/5oMG2kFsGn9PHAACgJTrdn9/87SoAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYic82RP5WrtqVzd3NMAAKDFInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICVmhQ5CxYsUJ8+feRyueRyueTxeLR69b//0vaxY8eUkZGhtm3bKjIyUsOHD1dZWZnfMfbu3avU1FS1atVKHTp00GOPPaYTJ074jVm3bp2uvfZahYWFqXv37lq8eHGDucyfP19du3ZVeHi4kpOTtWnTpqacCgAAsFyTIqdTp06aOXOmCgsL9dFHH+nmm2/WHXfcoR07dkiSJk2apJUrV2rZsmXKz8/X/v37dddddzn3r6urU2pqqmpra7Vhwwa9+uqrWrx4saZOneqMKSkpUWpqqm666SYVFRVp4sSJGjNmjNasWeOMWbp0qTIzMzVt2jRt2bJFffv2ldfrVXl5+dmuBwAAsESAMcaczQGio6P13HPPacSIEWrfvr3eeOMNjRgxQpK0a9cuXXXVVSooKNDAgQO1evVq3Xbbbdq/f79iYmIkSQsXLtQTTzyhiooKhYaG6oknnlB2dra2b9/uPMbIkSNVWVmpnJwcSVJycrL69++vefPmSZJ8Pp/i4+M1fvx4TZ48+ZRzrampUU1NjfN5dXW14uPjVVVVJZfLdTbL0MDuJb+RJHWNutXZFnLL4HP6GAAAtETV1dVyu90/+PP7jJ+TU1dXpyVLlujIkSPyeDwqLCzU8ePHlZKS4ozp2bOnOnfurIKCAklSQUGBevfu7QSOJHm9XlVXVztXgwoKCvyOUT+m/hi1tbUqLCz0GxMYGKiUlBRnzKlkZWXJ7XY7t/j4+DM9fQAA8CPX5MjZtm2bIiMjFRYWprFjx2r58uVKSEhQaWmpQkNDFRUV5Tc+JiZGpaWlkqTS0lK/wKnfX7/v+8ZUV1fr6NGjOnDggOrq6hodU3+MU5kyZYqqqqqc2759+5p6+gAA4CIR3NQ7XHnllSoqKlJVVZXeeustpaenKz8//3zM7ZwLCwtTWFhYc08DAABcAE2OnNDQUHXv3l2SlJiYqM2bN2vOnDlKS0tTbW2tKisr/a7mlJWVKTY2VpIUGxvb4FVQ9a++OnnMd1+RVVZWJpfLpYiICAUFBSkoKKjRMfXHAAAAOOv3yfH5fKqpqVFiYqJCQkKUl5fn7CsuLtbevXvl8XgkSR6PR9u2bfN7FVRubq5cLpcSEhKcMScfo35M/TFCQ0OVmJjoN8bn8ykvL88ZAwAA0KQrOVOmTNGtt96qzp076/Dhw3rjjTe0bt06rVmzRm63W6NHj1ZmZqaio6Plcrk0fvx4eTweDRw4UJI0dOhQJSQk6L777tOsWbNUWlqqJ598UhkZGc6vkcaOHat58+bp8ccf14MPPqi1a9fqzTffVHZ2tjOPzMxMpaenKykpSQMGDNDs2bN15MgRjRo16hwuDQAAuJg1KXLKy8t1//3368svv5Tb7VafPn20Zs0a/fSnP5UkvfDCCwoMDNTw4cNVU1Mjr9erF1980bl/UFCQVq1apYcfflgej0etW7dWenq6nn76aWdMt27dlJ2drUmTJmnOnDnq1KmTFi1aJK/X64xJS0tTRUWFpk6dqtLSUvXr1085OTkNnowMAABarrN+n5yL2em+zv5M8D45AACcH+f9fXIAAAB+zIgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWaFDlZWVnq37+/2rRpow4dOmjYsGEqLi72G3Ps2DFlZGSobdu2ioyM1PDhw1VWVuY3Zu/evUpNTVWrVq3UoUMHPfbYYzpx4oTfmHXr1unaa69VWFiYunfvrsWLFzeYz/z589W1a1eFh4crOTlZmzZtasrpAAAAizUpcvLz85WRkaEPP/xQubm5On78uIYOHaojR444YyZNmqSVK1dq2bJlys/P1/79+3XXXXc5++vq6pSamqra2lpt2LBBr776qhYvXqypU6c6Y0pKSpSamqqbbrpJRUVFmjhxosaMGaM1a9Y4Y5YuXarMzExNmzZNW7ZsUd++feX1elVeXn426wEAACwRYIwxZ3rniooKdejQQfn5+br++utVVVWl9u3b64033tCIESMkSbt27dJVV12lgoICDRw4UKtXr9Ztt92m/fv3KyYmRpK0cOFCPfHEE6qoqFBoaKieeOIJZWdna/v27c5jjRw5UpWVlcrJyZEkJScnq3///po3b54kyefzKT4+XuPHj9fkyZNPa/7V1dVyu92qqqqSy+U602Vo1O4lv5EkdY261dkWcsvgc/oYAAC0RKf78/usnpNTVVUlSYqOjpYkFRYW6vjx40pJSXHG9OzZU507d1ZBQYEkqaCgQL1793YCR5K8Xq+qq6u1Y8cOZ8zJx6gfU3+M2tpaFRYW+o0JDAxUSkqKM6YxNTU1qq6u9rsBAAA7nXHk+Hw+TZw4UYMGDVKvXr0kSaWlpQoNDVVUVJTf2JiYGJWWljpjTg6c+v31+75vTHV1tY4ePaoDBw6orq6u0TH1x2hMVlaW3G63c4uPj2/6iQMAgIvCGUdORkaGtm/friVLlpzL+ZxXU6ZMUVVVlXPbt29fc08JAACcJ8Fncqdx48Zp1apVWr9+vTp16uRsj42NVW1trSorK/2u5pSVlSk2NtYZ891XQdW/+urkMd99RVZZWZlcLpciIiIUFBSkoKCgRsfUH6MxYWFhCgsLa/oJAwCAi06TruQYYzRu3DgtX75ca9euVbdu3fz2JyYmKiQkRHl5ec624uJi7d27Vx6PR5Lk8Xi0bds2v1dB5ebmyuVyKSEhwRlz8jHqx9QfIzQ0VImJiX5jfD6f8vLynDEAAKBla9KVnIyMDL3xxht655131KZNG+f5L263WxEREXK73Ro9erQyMzMVHR0tl8ul8ePHy+PxaODAgZKkoUOHKiEhQffdd59mzZql0tJSPfnkk8rIyHCusowdO1bz5s3T448/rgcffFBr167Vm2++qezsbGcumZmZSk9PV1JSkgYMGKDZs2fryJEjGjVq1LlaGwAAcBFrUuQsWLBAknTjjTf6bX/llVf0wAMPSJJeeOEFBQYGavjw4aqpqZHX69WLL77ojA0KCtKqVav08MMPy+PxqHXr1kpPT9fTTz/tjOnWrZuys7M1adIkzZkzR506ddKiRYvk9XqdMWlpaaqoqNDUqVNVWlqqfv36KScnp8GTkQEAQMt0Vu+Tc7HjfXIAALj4XJD3yQEAAPixInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlZocOevXr9ftt9+uuLg4BQQEaMWKFX77jTGaOnWqOnbsqIiICKWkpGj37t1+Yw4ePKh7771XLpdLUVFRGj16tL7++mu/MVu3btV1112n8PBwxcfHa9asWQ3msmzZMvXs2VPh4eHq3bu3/vrXvzb1dAAAgKWaHDlHjhxR3759NX/+/Eb3z5o1S3PnztXChQu1ceNGtW7dWl6vV8eOHXPG3HvvvdqxY4dyc3O1atUqrV+/Xg899JCzv7q6WkOHDlWXLl1UWFio5557TtOnT9fLL7/sjNmwYYPuuecejR49Wh9//LGGDRumYcOGafv27U09JQAAYKEAY4w54zsHBGj58uUaNmyYpG+v4sTFxenXv/61Hn30UUlSVVWVYmJitHjxYo0cOVI7d+5UQkKCNm/erKSkJElSTk6Ofvazn+mLL75QXFycFixYoN/85jcqLS1VaGioJGny5MlasWKFdu3aJUlKS0vTkSNHtGrVKmc+AwcOVL9+/bRw4cLTmn91dbXcbreqqqrkcrnOdBkatXvJbyRJXaNudbaF3DL4nD4GAAAt0en+/D6nz8kpKSlRaWmpUlJSnG1ut1vJyckqKCiQJBUUFCgqKsoJHElKSUlRYGCgNm7c6Iy5/vrrncCRJK/Xq+LiYh06dMgZc/Lj1I+pf5zG1NTUqLq62u8GAADsdE4jp7S0VJIUExPjtz0mJsbZV1paqg4dOvjtDw4OVnR0tN+Yxo5x8mOcakz9/sZkZWXJ7XY7t/j4+KaeIgAAuEi0qFdXTZkyRVVVVc5t3759zT0lAABwnpzTyImNjZUklZWV+W0vKytz9sXGxqq8vNxv/4kTJ3Tw4EG/MY0d4+THONWY+v2NCQsLk8vl8rsBAAA7ndPI6datm2JjY5WXl+dsq66u1saNG+XxeCRJHo9HlZWVKiwsdMasXbtWPp9PycnJzpj169fr+PHjzpjc3FxdeeWVuuSSS5wxJz9O/Zj6xwEAAC1bkyPn66+/VlFRkYqKiiR9+2TjoqIi7d27VwEBAZo4caKeeeYZvfvuu9q2bZvuv/9+xcXFOa/Auuqqq3TLLbfol7/8pTZt2qS//e1vGjdunEaOHKm4uDhJ0i9+8QuFhoZq9OjR2rFjh5YuXao5c+YoMzPTmceECROUk5Oj559/Xrt27dL06dP10Ucfady4cWe/KgAA4OJnmuj99983khrc0tPTjTHG+Hw+89RTT5mYmBgTFhZmhgwZYoqLi/2O8dVXX5l77rnHREZGGpfLZUaNGmUOHz7sN+aTTz4xgwcPNmFhYebSSy81M2fObDCXN99801xxxRUmNDTUXH311SY7O7tJ51JVVWUkmaqqqqYtwmn4+5//0/z9z/9palf/n3MDAABn73R/fp/V++Rc7HifHAAALj7N8j45AAAAPxZEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArBTf3BGxTc+KYVhcuUkndTkWbCF1ad1whQSGSpOM5H/iNDbllcHNMEQCAFuGiv5Izf/58de3aVeHh4UpOTtamTZuabS6vrJume7IH6dWyP2p9mz1a4dqp/zjxqP5UtaTZ5gQAQEt1UV/JWbp0qTIzM7Vw4UIlJydr9uzZ8nq9Ki4uVocOHS7oXF5ZN03vVq1ssN3IaGX4Bn1zoEze4CskSV2jbpXU8MqOxNUdXHh8HQKwVYAxxjT3JM5UcnKy+vfvr3nz5kmSfD6f4uPjNX78eE2ePPkH719dXS23262qqiq5XK4znkfNiWO6J3uQjIwU0MiA/7/5t994FRzw74tn9bHzffhhg3Otsag5HXwtAvixON2f3xftlZza2loVFhZqypQpzrbAwEClpKSooKCg0fvU1NSopqbG+byqqkrSt4t1NlZ99JJqj574wXH5X/9DyUGdnc+3f7PilGM7u3/67Qd/WdNgX8hPPU2eI1Dv+JEjkqS9VbmnNf77vha/i69NABdC/c/tH7pOc9FGzoEDB1RXV6eYmBi/7TExMdq1a1ej98nKytKMGTMabI+Pjz8vc/yubG1twujnz9s8gKbhaxHAj9Phw4fldrtPuf+ijZwzMWXKFGVmZjqf+3w+HTx4UG3btlVAQGO/Zzoz1dXVio+P1759+87q12A2Ym0ax7qcGmvTONbl1Fibxtm0LsYYHT58WHFxcd877qKNnHbt2ikoKEhlZWV+28vKyhQbG9vofcLCwhQWFua3LSoq6nxNUS6X66L/QjpfWJvGsS6nxto0jnU5Ndamcbasy/ddwal30b6EPDQ0VImJicrLy3O2+Xw+5eXlyePheQEAALR0F+2VHEnKzMxUenq6kpKSNGDAAM2ePVtHjhzRqFGjmntqAACgmV3UkZOWlqaKigpNnTpVpaWl6tevn3Jycho8GflCCwsL07Rp0xr8agyszamwLqfG2jSOdTk11qZxLXFdLur3yQEAADiVi/Y5OQAAAN+HyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIOQ/mz5+vrl27Kjw8XMnJydq0aVNzT+mCWr9+vW6//XbFxcUpICBAK1as8NtvjNHUqVPVsWNHRUREKCUlRbt3726eyV5gWVlZ6t+/v9q0aaMOHTpo2LBhKi4u9htz7NgxZWRkqG3btoqMjNTw4cMbvLO3bRYsWKA+ffo478Tq8Xi0evVqZ39LXJPGzJw5UwEBAZo4caKzraWuzfTp0xUQEOB369mzp7O/pa5LvX/961/6j//4D7Vt21YRERHq3bu3PvroI2d/S/k+TOScY0uXLlVmZqamTZumLVu2qG/fvvJ6vSovL2/uqV0wR44cUd++fTV//vxG98+aNUtz587VwoULtXHjRrVu3Vper1fHjh27wDO98PLz85WRkaEPP/xQubm5On78uIYOHaoj//8vg0vSpEmTtHLlSi1btkz5+fnav3+/7rrrrmac9fnXqVMnzZw5U4WFhfroo490880364477tCOHTsktcw1+a7NmzfrpZdeUp8+ffy2t+S1ufrqq/Xll186tw8++MDZ15LX5dChQxo0aJBCQkK0evVqffrpp3r++ed1ySWXOGNazPdhg3NqwIABJiMjw/m8rq7OxMXFmaysrGacVfORZJYvX+587vP5TGxsrHnuueecbZWVlSYsLMz8+c9/boYZNq/y8nIjyeTn5xtjvl2LkJAQs2zZMmfMzp07jSRTUFDQXNNsFpdccolZtGgRa2KMOXz4sOnRo4fJzc01N9xwg5kwYYIxpmV/vUybNs307du30X0teV2MMeaJJ54wgwcPPuX+lvR9mCs551Btba0KCwuVkpLibAsMDFRKSooKCgqacWY/HiUlJSotLfVbI7fbreTk5Ba5RlVVVZKk6OhoSVJhYaGOHz/utz49e/ZU586dW8z61NXVacmSJTpy5Ig8Hg9rIikjI0Opqal+ayDx9bJ7927FxcXpsssu07333qu9e/dKYl3effddJSUl6ec//7k6dOiga665Rv/zP//j7G9J34eJnHPowIEDqqura/BnJWJiYlRaWtpMs/pxqV8H1ujbPyg7ceJEDRo0SL169ZL07fqEhoYqKirKb2xLWJ9t27YpMjJSYWFhGjt2rJYvX66EhIQWvSaStGTJEm3ZskVZWVkN9rXktUlOTtbixYuVk5OjBQsWqKSkRNddd50OHz7cotdFkv75z39qwYIF6tGjh9asWaOHH35Yv/rVr/Tqq69Kalnfhy/qv10FXMwyMjK0fft2v+cRtGRXXnmlioqKVFVVpbfeekvp6enKz89v7mk1q3379mnChAnKzc1VeHh4c0/nR+XWW291Pu7Tp4+Sk5PVpUsXvfnmm4qIiGjGmTU/n8+npKQkPfvss5Kka665Rtu3b9fChQuVnp7ezLO7sLiScw61a9dOQUFBDZ7BX1ZWptjY2Gaa1Y9L/Tq09DUaN26cVq1apffff1+dOnVytsfGxqq2tlaVlZV+41vC+oSGhqp79+5KTExUVlaW+vbtqzlz5rToNSksLFR5ebmuvfZaBQcHKzg4WPn5+Zo7d66Cg4MVExPTYtfmu6KionTFFVfos88+a9FfM5LUsWNHJSQk+G276qqrnF/ntaTvw0TOORQaGqrExETl5eU523w+n/Ly8uTxeJpxZj8e3bp1U2xsrN8aVVdXa+PGjS1ijYwxGjdunJYvX661a9eqW7dufvsTExMVEhLitz7FxcXau3dvi1ifk/l8PtXU1LToNRkyZIi2bdumoqIi55aUlKR7773X+bilrs13ff311/rHP/6hjh07tuivGUkaNGhQg7em+Pvf/64uXbpIamHfh5v7mc+2WbJkiQkLCzOLFy82n376qXnooYdMVFSUKS0tbe6pXTCHDx82H3/8sfn444+NJPPf//3f5uOPPzaff/65McaYmTNnmqioKPPOO++YrVu3mjvuuMN069bNHD16tJlnfv49/PDDxu12m3Xr1pkvv/zSuX3zzTfOmLFjx5rOnTubtWvXmo8++sh4PB7j8Xiacdbn3+TJk01+fr4pKSkxW7duNZMnTzYBAQHmvffeM8a0zDU5lZNfXWVMy12bX//612bdunWmpKTE/O1vfzMpKSmmXbt2pry83BjTctfFGGM2bdpkgoODzW9/+1uze/du8/rrr5tWrVqZ1157zRnTUr4PEznnwR/+8AfTuXNnExoaagYMGGA+/PDD5p7SBfX+++8bSQ1u6enpxphvX7741FNPmZiYGBMWFmaGDBliiouLm3fSF0hj6yLJvPLKK86Yo0ePmkceecRccsklplWrVubOO+80X375ZfNN+gJ48MEHTZcuXUxoaKhp3769GTJkiBM4xrTMNTmV70ZOS12btLQ007FjRxMaGmouvfRSk5aWZj777DNnf0tdl3orV640vXr1MmFhYaZnz57m5Zdf9tvfUr4PBxhjTPNcQwIAADh/eE4OAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAK/0/M03iEgiaBTAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALk9JREFUeJzt3XtcVXW+//H3BmSDysY0AU3MW5lo6UNN3N0ci9wVY8eyR2odJdQcFS2kNJ1KpFPZsU5qeRunk/h4zJiXbpOimIO3U1IWyslMnUxNZgzEUTaGCsJevz/mxzruQBMvIF9fz8djPXJ/12et9Vnfje23a6+9cViWZQkAAMAwAXXdAAAAwOVAyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAeqJadOmyeFw1Hi7J554Qm3atLn0DV2lHA6Hpk2bVuPtDhw4IIfDofT09EveE4DqEXKAq8yJEyc0bdo0bdy4sU6Of+jQIU2bNk25ubl1cnwAVw9CDnCVOXHihNLS0uo05KSlpRFyAFx2QXXdAICrQ3l5uXw+X123AeAqwpUc4Ar02Wef6dZbb1VISIjat2+vP/zhD9XW/elPf1KPHj0UGhqqpk2bavDgwcrLyzvrfg8cOKDmzZtLktLS0uRwOPzuMfnmm2/0xBNPqF27dgoJCVFUVJSGDx+uf/7znzXqv/L+kzfeeEOzZs1S+/bt5XQ6NW/ePN16662SpMTERPv453ufSnp6uhwOhz777DM99dRTat68uZo0aaLf/e53KisrU1FRkYYNG6ZrrrlG11xzjSZNmiTLsvz2UVJSomeeeUbR0dFyOp3q2LGj3njjjSp1paWlmjBhgpo3b66wsDA9+OCD+vvf/15tX//4xz80fPhwRUZGyul0qnPnznr33XdrNGfV2bhxoxwOh5YvX660tDRdd911CgsL0yOPPCKv16vS0lIlJycrIiJCjRs3VmJiokpLS/32sWjRIt19992KiIiQ0+lUTEyM5s+f71ezfv16BQQEaOrUqX7jS5YskcPhqFIP1BdcyQGuMDt27FC/fv3UvHlzTZs2TeXl5UpNTVVkZKRf3SuvvKIXX3xRjz76qEaOHKnCwkK9/fbbuuuuu7R9+3Y1adKkyr6bN2+u+fPna8yYMXrooYf08MMPS5JuueUWSdK6deu0b98+JSYmKioqSjt37tTChQu1c+dOffHFFzW+8XnRokU6deqURo0aJafTqYceekjHjx/X1KlTNWrUKN15552SpNtuu61G+x0/fryioqKUlpamL774QgsXLlSTJk20ZcsWtW7dWq+++qpWr16t119/XV26dNGwYcMkSZZl6cEHH9SGDRs0YsQIdevWTWvXrtXEiRP1j3/8QzNnzrSPMXLkSP3pT3/SY489pttuu03r169XfHx8lV4KCgrUu3dvORwOjRs3Ts2bN9eaNWs0YsQIFRcXKzk5uUbnVp3p06crNDRUkydP1t69e/X222+rQYMGCggI0LFjxzRt2jR98cUXSk9PV9u2bf3Cyvz589W5c2c9+OCDCgoK0sqVKzV27Fj5fD4lJSVJku6++26NHTtW06dP14ABA9S9e3f99NNPGj9+vOLi4jR69OiLPgegTlgArigDBgywQkJCrB9//NEe++6776zAwECr8q/sgQMHrMDAQOuVV17x23bHjh1WUFCQ33hCQoJ1/fXX248LCwstSVZqamqVY584caLK2HvvvWdJsjZv3nze57B//35LkuVyuazDhw/7rfvqq68sSdaiRYvOe3+VFi1aZEmyPB6P5fP57HG32205HA5r9OjR9lh5ebnVqlUrq0+fPvbYxx9/bEmyXn75Zb/9PvLII5bD4bD27t1rWZZl5ebmWpKssWPH+tU99thjVeZuxIgRVosWLawjR4741Q4ePNgKDw+357RyTmpy3hs2bLAkWV26dLHKysrs8SFDhlgOh8O6//77/erdbrffc21Z1T+nHo/Hateund9YSUmJ1aFDB6tz587WqVOnrPj4eMvlcvn9HAL1DW9XAVeQiooKrV27VgMGDFDr1q3t8U6dOsnj8diPP/zwQ/l8Pj366KM6cuSIvURFRemGG27Qhg0bLuj4oaGh9p9PnTqlI0eOqHfv3pKkbdu21Xh/AwcOtN8eu5RGjBjhd1UpNjZWlmVpxIgR9lhgYKB69uypffv22WOrV69WYGCgnnrqKb/9PfPMM7IsS2vWrLHrJFWp++VVGcuy9MEHH6h///6yLMvvufB4PPJ6vRc0b780bNgwNWjQoMr5Dh8+3K8uNjZWeXl5Ki8vt8fOfE69Xq+OHDmiPn36aN++ffJ6vfa6hg0bKj09Xbt27dJdd92ljIwMzZw50+/nEKhveLsKuIIUFhbq5MmTuuGGG6qs69ixo/3i+/3338uyrGrrJPm9INbE0aNHlZaWpqVLl+rw4cN+6858QTxfbdu2vaA+fs0vX3jDw8MlSdHR0VXGjx07Zj/+8ccf1bJlS4WFhfnVderUyV5f+d+AgAC1b9/er65jx45+jwsLC1VUVKSFCxdq4cKF1fb6y3m8EDU5X5/PJ6/Xq2bNmkmSPv/8c6Wmpio7O1snTpzwq/d6vfa+JOn222/XmDFjNHfuXHk8niohCqhvCDlAPeTz+eRwOLRmzRoFBgZWWd+4ceML2u+jjz6qLVu2aOLEierWrZsaN24sn8+n++6774I+GXXmVYRLqbpzPtu49Ysbii+lyjn593//dyUkJFRbU3m/08WoyflK/3fOP/zwg+655x7ddNNNevPNNxUdHa3g4GCtXr1aM2fOrPKclpaW2l8t8MMPP+jEiRNq2LDhRfcP1BVCDnAFad68uUJDQ/X9999XWbdnzx77z+3bt5dlWWrbtq1uvPHGGh3jbDcPHzt2TFlZWUpLS/O7cbW6Xi7GhXxr86Vy/fXX669//auOHz/udzVn9+7d9vrK//p8Pv3www9+V2/OfA4k2Z+8qqioUFxcXC2cQc2sXLlSpaWl+uSTT/yuBp3t7czU1FTt2rVLb7zxhp577jlNnjxZb731Vm21C1xy3JMDXEECAwPl8Xj08ccf6+DBg/b4rl27tHbtWvvxww8/rMDAQKWlpVW5UmFZ1jk/8l35L/OioqIqx67c/kyzZs26kFM5q0aNGlV7/NrwwAMPqKKiQnPmzPEbnzlzphwOh+6//35Jsv/7yxf4X85FYGCgBg4cqA8++EDffvttleMVFhZewu5rrrrn1Ov1atGiRVVqv/zyS73xxhtKTk7WM888o4kTJ2rOnDnatGlTrfULXGpcyQGuMGlpacrMzNSdd96psWPHqry8XG+//bY6d+6sb775RtK/ruS8/PLLmjJlig4cOKABAwYoLCxM+/fv10cffaRRo0bp2WefrXb/oaGhiomJ0bJly3TjjTeqadOm6tKli7p06aK77rpLM2bM0OnTp3Xdddfp008/1f79+y/p+bVv315NmjTRggULFBYWpkaNGik2Nvay3b9zpv79+6tv3756/vnndeDAAXXt2lWffvqp/vKXvyg5Odm+B6dbt24aMmSI5s2bJ6/Xq9tuu01ZWVnau3dvlX2+9tpr2rBhg2JjY/Xkk08qJiZGR48e1bZt2/TXv/5VR48evezndTb9+vVTcHCw+vfvr9/97nf6+eef9cc//lERERH66aef7LpTp04pISFBN9xwg1555RVJ//o5XLlypRITE7Vjxw47nAL1CVdygCvMLbfcorVr16p58+aaOnWq3n33XaWlpemhhx7yq5s8ebI++OADBQQEKC0tTc8++6w++eQT9evXTw8++OA5j/HOO+/ouuuu04QJEzRkyBC9//77kv715W8ej0dz587VlClT1KBBA/sTR5dKgwYNtHjxYgUGBmr06NEaMmRIrV0tCAgI0CeffKLk5GStWrVKycnJ+u677/T666/rzTff9Kt999139dRTTykzM1OTJk3S6dOnlZGRUWWfkZGR2rp1qxITE/Xhhx9q3Lhxmj17to4ePar//M//rJXzOpuOHTvq/fffl8Ph0LPPPqsFCxZo1KhRevrpp/3qfv/732vv3r1avHixQkJCJEnBwcFavHix8vLyNHHixLpoH7hoDuty3pUHAABQR7iSAwAAjMQ9OQDOW0VFxa/eTNu4ceMaf4T95MmTv/o9PE2bNlVwcHCN9nulKisr+9V7dcLDwy/bR/CBqwUhB8B5y8vL+9UbhFNTU+1f+Hm+li1bpsTExHPWbNiwQb/5zW9qtN8r1ZYtW9S3b99z1ixatEhPPPFE7TQEGIp7cgCct1OnTumzzz47Z027du3Url27Gu33p59+0s6dO89Z06NHD11zzTU12u+V6tixY8rJyTlnTefOndWiRYta6ggwEyEHAAAYiRuPAQCAka7qe3J8Pp8OHTqksLCwOv2qeQAAcP4sy9Lx48fVsmVLBQSc/XrNVR1yDh06VOW3+AIAgPohLy9PrVq1Ouv6qzrkVP6Cvry8PLlcrjruBgAAnI/i4mJFR0f7/aLd6lzVIafyLSqXy0XIAQCgnvm1W0248RgAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASEF13QAAXC6nMz/ze9zgvjvqqBMAdYErOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMNJFhZzXXntNDodDycnJ9tipU6eUlJSkZs2aqXHjxho4cKAKCgr8tjt48KDi4+PVsGFDRUREaOLEiSovL/er2bhxo7p37y6n06kOHTooPT29yvHnzp2rNm3aKCQkRLGxsdq6devFnA4AADDIBYecr776Sn/4wx90yy23+I1PmDBBK1eu1IoVK7Rp0yYdOnRIDz/8sL2+oqJC8fHxKisr05YtW7R48WKlp6dr6tSpds3+/fsVHx+vvn37Kjc3V8nJyRo5cqTWrl1r1yxbtkwpKSlKTU3Vtm3b1LVrV3k8Hh0+fPhCTwkAAJjEugDHjx+3brjhBmvdunVWnz59rKefftqyLMsqKiqyGjRoYK1YscKu3bVrlyXJys7OtizLslavXm0FBARY+fn5ds38+fMtl8tllZaWWpZlWZMmTbI6d+7sd8xBgwZZHo/HftyrVy8rKSnJflxRUWG1bNnSmj59+nmfh9frtSRZXq/3/E8eQL1RtuZ//BYAZjjf1+8LupKTlJSk+Ph4xcXF+Y3n5OTo9OnTfuM33XSTWrdurezsbElSdna2br75ZkVGRto1Ho9HxcXF2rlzp13zy317PB57H2VlZcrJyfGrCQgIUFxcnF1TndLSUhUXF/stAADATEE13WDp0qXatm2bvvrqqyrr8vPzFRwcrCZNmviNR0ZGKj8/3645M+BUrq9cd66a4uJinTx5UseOHVNFRUW1Nbt37z5r79OnT1daWtr5nSgAAKjXanQlJy8vT08//bT+/Oc/KyQk5HL1dNlMmTJFXq/XXvLy8uq6JQAAcJnUKOTk5OTo8OHD6t69u4KCghQUFKRNmzbprbfeUlBQkCIjI1VWVqaioiK/7QoKChQVFSVJioqKqvJpq8rHv1bjcrkUGhqqa6+9VoGBgdXWVO6jOk6nUy6Xy28BAABmqlHIueeee7Rjxw7l5ubaS8+ePfX444/bf27QoIGysrLsbfbs2aODBw/K7XZLktxut3bs2OH3Kah169bJ5XIpJibGrjlzH5U1lfsIDg5Wjx49/Gp8Pp+ysrLsGgAAcHWr0T05YWFh6tKli99Yo0aN1KxZM3t8xIgRSklJUdOmTeVyuTR+/Hi53W717t1bktSvXz/FxMRo6NChmjFjhvLz8/XCCy8oKSlJTqdTkjR69GjNmTNHkyZN0vDhw7V+/XotX75cGRkZ9nFTUlKUkJCgnj17qlevXpo1a5ZKSkqUmJh4URMCAADMUOMbj3/NzJkzFRAQoIEDB6q0tFQej0fz5s2z1wcGBmrVqlUaM2aM3G63GjVqpISEBL300kt2Tdu2bZWRkaEJEyZo9uzZatWqld555x15PB67ZtCgQSosLNTUqVOVn5+vbt26KTMzs8rNyAAA4OrksCzLqusm6kpxcbHCw8Pl9Xq5Pwcw0OnMz/weN7jvjjrqBMCldL6v3/zuKgAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGCmorhsAgMvlQNEav8c36I466gRAXeBKDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMVKOQM3/+fN1yyy1yuVxyuVxyu91as2aNvf7UqVNKSkpSs2bN1LhxYw0cOFAFBQV++zh48KDi4+PVsGFDRUREaOLEiSovL/er2bhxo7p37y6n06kOHTooPT29Si9z585VmzZtFBISotjYWG3durUmpwIAAAxXo5DTqlUrvfbaa8rJydHXX3+tu+++W//2b/+mnTt3SpImTJiglStXasWKFdq0aZMOHTqkhx9+2N6+oqJC8fHxKisr05YtW7R48WKlp6dr6tSpds3+/fsVHx+vvn37Kjc3V8nJyRo5cqTWrl1r1yxbtkwpKSlKTU3Vtm3b1LVrV3k8Hh0+fPhi5wMAABjCYVmWdTE7aNq0qV5//XU98sgjat68uZYsWaJHHnlEkrR792516tRJ2dnZ6t27t9asWaPf/va3OnTokCIjIyVJCxYs0HPPPafCwkIFBwfrueeeU0ZGhr799lv7GIMHD1ZRUZEyMzMlSbGxsbr11ls1Z84cSZLP51N0dLTGjx+vyZMnn3fvxcXFCg8Pl9frlcvluphpAHAF+n7p836Pbxj8Sh11AuBSOt/X7wu+J6eiokJLly5VSUmJ3G63cnJydPr0acXFxdk1N910k1q3bq3s7GxJUnZ2tm6++WY74EiSx+NRcXGxfTUoOzvbbx+VNZX7KCsrU05Ojl9NQECA4uLi7JqzKS0tVXFxsd8CAADMVOOQs2PHDjVu3FhOp1OjR4/WRx99pJiYGOXn5ys4OFhNmjTxq4+MjFR+fr4kKT8/3y/gVK6vXHeumuLiYp08eVJHjhxRRUVFtTWV+zib6dOnKzw83F6io6NrevoAAKCeqHHI6dixo3Jzc/Xll19qzJgxSkhI0HfffXc5ervkpkyZIq/Xay95eXl13RIAALhMgmq6QXBwsDp06CBJ6tGjh7766ivNnj1bgwYNUllZmYqKivyu5hQUFCgqKkqSFBUVVeVTUJWfvjqz5pefyCooKJDL5VJoaKgCAwMVGBhYbU3lPs7G6XTK6XTW9JQBAEA9dNHfk+Pz+VRaWqoePXqoQYMGysrKstft2bNHBw8elNvtliS53W7t2LHD71NQ69atk8vlUkxMjF1z5j4qayr3ERwcrB49evjV+Hw+ZWVl2TUAAAA1upIzZcoU3X///WrdurWOHz+uJUuWaOPGjVq7dq3Cw8M1YsQIpaSkqGnTpnK5XBo/frzcbrd69+4tSerXr59iYmI0dOhQzZgxQ/n5+XrhhReUlJRkX2EZPXq05syZo0mTJmn48OFav369li9froyMDLuPlJQUJSQkqGfPnurVq5dmzZqlkpISJSYmXsKpAQAA9VmNQs7hw4c1bNgw/fTTTwoPD9ctt9yitWvX6t5775UkzZw5UwEBARo4cKBKS0vl8Xg0b948e/vAwECtWrVKY8aMkdvtVqNGjZSQkKCXXnrJrmnbtq0yMjI0YcIEzZ49W61atdI777wjj8dj1wwaNEiFhYWaOnWq8vPz1a1bN2VmZla5GRkAAFy9Lvp7cuozvicHMBvfkwOY6bJ/Tw4AAMCVjJADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQahZzp06fr1ltvVVhYmCIiIjRgwADt2bPHr+bUqVNKSkpSs2bN1LhxYw0cOFAFBQV+NQcPHlR8fLwaNmyoiIgITZw4UeXl5X41GzduVPfu3eV0OtWhQwelp6dX6Wfu3Llq06aNQkJCFBsbq61bt9bkdAAAgMFqFHI2bdqkpKQkffHFF1q3bp1Onz6tfv36qaSkxK6ZMGGCVq5cqRUrVmjTpk06dOiQHn74YXt9RUWF4uPjVVZWpi1btmjx4sVKT0/X1KlT7Zr9+/crPj5effv2VW5urpKTkzVy5EitXbvWrlm2bJlSUlKUmpqqbdu2qWvXrvJ4PDp8+PDFzAcAADCEw7Is60I3LiwsVEREhDZt2qS77rpLXq9XzZs315IlS/TII49Iknbv3q1OnTopOztbvXv31po1a/Tb3/5Whw4dUmRkpCRpwYIFeu6551RYWKjg4GA999xzysjI0Lfffmsfa/DgwSoqKlJmZqYkKTY2VrfeeqvmzJkjSfL5fIqOjtb48eM1efLk8+q/uLhY4eHh8nq9crlcFzoNAK5Q3y993u/xDYNfqaNOAFxK5/v6fVH35Hi9XklS06ZNJUk5OTk6ffq04uLi7JqbbrpJrVu3VnZ2tiQpOztbN998sx1wJMnj8ai4uFg7d+60a87cR2VN5T7KysqUk5PjVxMQEKC4uDi7pjqlpaUqLi72WwAAgJkuOOT4fD4lJyfr9ttvV5cuXSRJ+fn5Cg4OVpMmTfxqIyMjlZ+fb9ecGXAq11euO1dNcXGxTp48qSNHjqiioqLamsp9VGf69OkKDw+3l+jo6JqfOAAAqBcuOOQkJSXp22+/1dKlSy9lP5fVlClT5PV67SUvL6+uWwIAAJdJ0IVsNG7cOK1atUqbN29Wq1at7PGoqCiVlZWpqKjI72pOQUGBoqKi7Jpffgqq8tNXZ9b88hNZBQUFcrlcCg0NVWBgoAIDA6utqdxHdZxOp5xOZ81PGAAA1Ds1upJjWZbGjRunjz76SOvXr1fbtm391vfo0UMNGjRQVlaWPbZnzx4dPHhQbrdbkuR2u7Vjxw6/T0GtW7dOLpdLMTExds2Z+6isqdxHcHCwevTo4Vfj8/mUlZVl1wAAgKtbja7kJCUlacmSJfrLX/6isLAw+/6X8PBwhYaGKjw8XCNGjFBKSoqaNm0ql8ul8ePHy+12q3fv3pKkfv36KSYmRkOHDtWMGTOUn5+vF154QUlJSfZVltGjR2vOnDmaNGmShg8frvXr12v58uXKyMiwe0lJSVFCQoJ69uypXr16adasWSopKVFiYuKlmhsAAFCP1SjkzJ8/X5L0m9/8xm980aJFeuKJJyRJM2fOVEBAgAYOHKjS0lJ5PB7NmzfPrg0MDNSqVas0ZswYud1uNWrUSAkJCXrppZfsmrZt2yojI0MTJkzQ7Nmz1apVK73zzjvyeDx2zaBBg1RYWKipU6cqPz9f3bp1U2ZmZpWbkQEAwNXpor4np77je3IAs/E9OYCZauV7cgAAAK5UhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI9U45GzevFn9+/dXy5Yt5XA49PHHH/uttyxLU6dOVYsWLRQaGqq4uDh9//33fjVHjx7V448/LpfLpSZNmmjEiBH6+eef/Wq++eYb3XnnnQoJCVF0dLRmzJhRpZcVK1bopptuUkhIiG6++WatXr26pqcDAAAMVeOQU1JSoq5du2ru3LnVrp8xY4beeustLViwQF9++aUaNWokj8ejU6dO2TWPP/64du7cqXXr1mnVqlXavHmzRo0aZa8vLi5Wv379dP311ysnJ0evv/66pk2bpoULF9o1W7Zs0ZAhQzRixAht375dAwYM0IABA/Ttt9/W9JQAAICBHJZlWRe8scOhjz76SAMGDJD0r6s4LVu21DPPPKNnn31WkuT1ehUZGan09HQNHjxYu3btUkxMjL766iv17NlTkpSZmakHHnhAf//739WyZUvNnz9fzz//vPLz8xUcHCxJmjx5sj7++GPt3r1bkjRo0CCVlJRo1apVdj+9e/dWt27dtGDBgvPqv7i4WOHh4fJ6vXK5XBc6DQCuUN8vfd7v8Q2DX6mjTgBcSuf7+n1J78nZv3+/8vPzFRcXZ4+Fh4crNjZW2dnZkqTs7Gw1adLEDjiSFBcXp4CAAH355Zd2zV133WUHHEnyeDzas2ePjh07ZteceZzKmsrjVKe0tFTFxcV+CwAAMNMlDTn5+fmSpMjISL/xyMhIe11+fr4iIiL81gcFBalp06Z+NdXt48xjnK2mcn11pk+frvDwcHuJjo6u6SkCAIB64qr6dNWUKVPk9XrtJS8vr65bAgAAl8klDTlRUVGSpIKCAr/xgoICe11UVJQOHz7st768vFxHjx71q6luH2ce42w1leur43Q65XK5/BYAAGCmSxpy2rZtq6ioKGVlZdljxcXF+vLLL+V2uyVJbrdbRUVFysnJsWvWr18vn8+n2NhYu2bz5s06ffq0XbNu3Tp17NhR11xzjV1z5nEqayqPAwAArm41Djk///yzcnNzlZubK+lfNxvn5ubq4MGDcjgcSk5O1ssvv6xPPvlEO3bs0LBhw9SyZUv7E1idOnXSfffdpyeffFJbt27V559/rnHjxmnw4MFq2bKlJOmxxx5TcHCwRowYoZ07d2rZsmWaPXu2UlJS7D6efvppZWZm6r/+67+0e/duTZs2TV9//bXGjRt38bMCAADqP6uGNmzYYEmqsiQkJFiWZVk+n8968cUXrcjISMvpdFr33HOPtWfPHr99/POf/7SGDBliNW7c2HK5XFZiYqJ1/Phxv5r//d//te644w7L6XRa1113nfXaa69V6WX58uXWjTfeaAUHB1udO3e2MjIyanQuXq/XkmR5vd6aTQKAeuFv7/3ebwFghvN9/b6o78mp7/ieHMBsfE8OYKY6+Z4cAACAKwUhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRguq6AQC41ErLT2lNzjvaX7FLTa1Q9QpsrSAH/6YDrjb1/m/93Llz1aZNG4WEhCg2NlZbt26t65YA1KFFG1M1JON2LS54V5vDDuhj1y4933Ct1pb/ra5bA1DL6nXIWbZsmVJSUpSamqpt27apa9eu8ng8Onz4cF23BqAOLNqYqk+8K2XJ8hu3JGWF/aBFG1PrpjEAdaJeh5w333xTTz75pBITExUTE6MFCxaoYcOGevfdd+u6NQC1rLT8lFZ6V/3rgeMXK///41XeVSotP1WrfQGoO/X2npyysjLl5ORoypQp9lhAQIDi4uKUnZ1d7TalpaUqLS21H3u9XklScXHx5W0WwGW36us/qOxk+a/WfbD5bf225+9qoSMAl0vl67ZlWeesq7ch58iRI6qoqFBkZKTfeGRkpHbv3l3tNtOnT1daWlqV8ejo6MvSI4ArT4YmSZpU120AuASOHz+u8PDws66vtyHnQkyZMkUpKSn2Y5/Pp6NHj6pZs2ZyOH55ffvqU1xcrOjoaOXl5cnlctV1O8ZinmsH81w7mOfawTz7syxLx48fV8uWLc9ZV29DzrXXXqvAwEAVFBT4jRcUFCgqKqrabZxOp5xOp99YkyZNLleL9ZbL5eIvUS1gnmsH81w7mOfawTz/n3NdwalUb288Dg4OVo8ePZSVlWWP+Xw+ZWVlye1212FnAADgSlBvr+RIUkpKihISEtSzZ0/16tVLs2bNUklJiRITE+u6NQAAUMfqdcgZNGiQCgsLNXXqVOXn56tbt27KzMyscjMyzo/T6VRqamqVt/RwaTHPtYN5rh3Mc+1gni+Mw/q1z18BAADUQ/X2nhwAAIBzIeQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQs5VZu7cuWrTpo1CQkIUGxurrVu3nrO+qKhISUlJatGihZxOp2688UatXr26lrqtv2o6z7NmzVLHjh0VGhqq6OhoTZgwQadO8duyz2Xz5s3q37+/WrZsKYfDoY8//vhXt9m4caO6d+8up9OpDh06KD09/bL3Wd/VdJ4//PBD3XvvvWrevLlcLpfcbrfWrl1bO83WYxfy81zp888/V1BQkLp163bZ+quvCDlXkWXLliklJUWpqanatm2bunbtKo/Ho8OHD1dbX1ZWpnvvvVcHDhzQ+++/rz179uiPf/yjrrvuulruvH6p6TwvWbJEkydPVmpqqnbt2qX//u//1rJly/T73/++ljuvX0pKStS1a1fNnTv3vOr379+v+Ph49e3bV7m5uUpOTtbIkSN5Af4VNZ3nzZs3695779Xq1auVk5Ojvn37qn///tq+fftl7rR+q+k8VyoqKtKwYcN0zz33XKbO6jkLV41evXpZSUlJ9uOKigqrZcuW1vTp06utnz9/vtWuXTurrKystlo0Qk3nOSkpybr77rv9xlJSUqzbb7/9svZpEknWRx99dM6aSZMmWZ07d/YbGzRokOXxeC5jZ2Y5n3muTkxMjJWWlnbpGzJUTeZ50KBB1gsvvGClpqZaXbt2vax91UdcyblKlJWVKScnR3FxcfZYQECA4uLilJ2dXe02n3zyidxut5KSkhQZGakuXbro1VdfVUVFRW21Xe9cyDzfdtttysnJsd/S2rdvn1avXq0HHnigVnq+WmRnZ/s9L5Lk8XjO+rzg0vD5fDp+/LiaNm1a160YZ9GiRdq3b59SU1PrupUrVr3+tQ44f0eOHFFFRUWVX3kRGRmp3bt3V7vNvn37tH79ej3++ONavXq19u7dq7Fjx+r06dP8pTqLC5nnxx57TEeOHNEdd9why7JUXl6u0aNH83bVJZafn1/t81JcXKyTJ08qNDS0jjoz2xtvvKGff/5Zjz76aF23YpTvv/9ekydP1v/8z/8oKIiX8rPhSg7OyufzKSIiQgsXLlSPHj00aNAgPf/881qwYEFdt2aUjRs36tVXX9W8efO0bds2ffjhh8rIyNB//Md/1HVrwEVZsmSJ0tLStHz5ckVERNR1O8aoqKjQY489prS0NN1444113c4Vjfh3lbj22msVGBiogoICv/GCggJFRUVVu02LFi3UoEEDBQYG2mOdOnVSfn6+ysrKFBwcfFl7ro8uZJ5ffPFFDR06VCNHjpQk3XzzzSopKdGoUaP0/PPPKyCAf4tcClFRUdU+Ly6Xi6s4l8HSpUs1cuRIrVixosrbhLg4x48f19dff63t27dr3Lhxkv71j1LLshQUFKRPP/1Ud999dx13eWXg/55XieDgYPXo0UNZWVn2mM/nU1ZWltxud7Xb3H777dq7d698Pp899re//U0tWrQg4JzFhczziRMnqgSZymBp8ftzLxm32+33vEjSunXrzvq84MK99957SkxM1Hvvvaf4+Pi6bsc4LpdLO3bsUG5urr2MHj1aHTt2VG5urmJjY+u6xStHHd/4jFq0dOlSy+l0Wunp6dZ3331njRo1ymrSpImVn59vWZZlDR061Jo8ebJdf/DgQSssLMwaN26ctWfPHmvVqlVWRESE9fLLL9fVKdQLNZ3n1NRUKywszHrvvfesffv2WZ9++qnVvn1769FHH62rU6gXjh8/bm3fvt3avn27Jcl68803re3bt1s//vijZVmWNXnyZGvo0KF2/b59+6yGDRtaEydOtHbt2mXNnTvXCgwMtDIzM+vqFOqFms7zn//8ZysoKMiaO3eu9dNPP9lLUVFRXZ1CvVDTef4lPl1VPULOVebtt9+2WrdubQUHB1u9evWyvvjiC3tdnz59rISEBL/6LVu2WLGxsZbT6bTatWtnvfLKK1Z5eXktd13/1GSeT58+bU2bNs1q3769FRISYkVHR1tjx461jh07VvuN1yMbNmywJFVZKuc2ISHB6tOnT5VtunXrZgUHB1vt2rWzFi1aVOt91zc1nec+ffqcsx7Vu5Cf5zMRcqrnsCyuhwMAAPNwTw4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjPT/AB200F57Hjq3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMZ5JREFUeJzt3XtUVXXex/HPAbl5AbwgyEiEmhfyVphIXrrII5j15GUmtWZCo6wGK3VSo4uXssdGqxmbvNSqtJqxi5U6UWEOeRmTLC0yHTVzcLAx0FBAMAHh9/zhsMcTmGLogZ/v11p7Lc5vf8/e3/1rr/ywz94HlzHGCAAAwDJenm4AAADgXCDkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAOK0ZM2bI5XLp+++/P+f7uvrqq3X11Vef8/3UFZfLpfHjx3u6DQA1IOQAF4CjR49qxowZWrt2radbAYDzhpADXACOHj2qmTNnEnIAXFAIOQAAwEqEHMDDqu53+frrr/XrX/9aQUFBCgkJ0SOPPCJjjPbt26cbb7xRgYGBCgsL01NPPeW8t6ysTNOmTVNMTIyCgoLUpEkT9e/fX2vWrHFq9u7dq5CQEEnSzJkz5XK55HK5NGPGDKdm586duummmxQSEqKAgAB16tRJDz30ULVeCwoKNGbMGAUHBysoKEhjx47V0aNHq9X9+c9/VkxMjAICAtSiRQuNGjVK+/btq1b3/PPPq3379goICFDv3r3197///azm8OKLL9b111+vDz/8UD179pS/v7+io6P1zjvv1HgMEyZMUEREhPz8/NShQwf9/ve/V2VlpVvdk08+qSuvvFItW7ZUQECAYmJi9NZbb51RP7NmzZKXl5f+9Kc/OWN/+tOfdOmll6px48Zq3ry5evXqpaVLl57xMe7du1cul0tPPvmk5s+fr3bt2qlx48YaNGiQ9u3bJ2OMHnvsMbVt21YBAQG68cYbdejQIbdtrFy5UkOGDFF4eLj8/PzUvn17PfbYY6qoqHBqduzYoYCAAN16661u792wYYO8vb01derUM+4Z8DgDwKOmT59uJJmePXua0aNHmwULFpghQ4YYSebpp582nTp1MnfffbdZsGCB6du3r5Fk1q1bZ4wx5uDBg6ZNmzZm0qRJZuHChWbOnDmmU6dOxsfHx3zxxRfGGGOKi4vNwoULjSQzbNgw8+qrr5pXX33VfPnll8YYY7788ksTGBhoWrZsaVJTU81zzz1npkyZYrp161atx8suu8wMHz7cLFiwwNx+++1GkpkyZYrb8cyaNcu4XC4zcuRIs2DBAjNz5kzTqlUrc/HFF5vDhw87dS+88IKRZK688krzzDPPmAkTJpjg4GDTrl07c9VVV9VqDiMjI03Hjh1NcHCweeCBB8zTTz9tunXrZry8vMyHH37o1JWUlJju3bubli1bmgcffNAsWrTI3Hrrrcblcpn77rvPbZtt27Y1v/3tb82zzz5rnn76adO7d28jyaSlpbnVSTIpKSnO64ceesi4XC7z/PPPO2PPP/+8kWR++ctfmueee87MmzfPJCcnm3vvvfeMjzE7O9s5T6Kjo83TTz9tHn74YePr62v69OljHnzwQWcu7733XuNyuczYsWPdtjF06FBz0003mblz55qFCxeaX/3qV0aSuf/++93q5s6daySZlStXGmNOnEPt27c30dHR5tixY2fcM+BphBzAw6oCxLhx45yx48ePm7Zt2xqXy2WeeOIJZ/zw4cMmICDAJCUlOXWlpaVu2zt8+LAJDQ01t912mzN28OBBI8lMnz692v4HDBhgmjVrZv71r3+5jVdWVlbr8eRtGmPMsGHDTMuWLZ3Xe/fuNd7e3ubxxx93q/vqq69Mo0aNnPGysjLTunVr07NnT7f+q8LA2YQcSebtt992xgoLC02bNm3MZZdd5ow99thjpkmTJubrr792e/8DDzxgvL29TU5OjjN29OhRt5qysjLTtWtXc+2117qNnxxyfve73xkvLy+zZMkSt5obb7zRXHrppbU6ph+rCjkhISGmoKDAGU9NTTWSTI8ePUx5ebkzPnr0aOPr6+sWSn58TMYYc+edd5rGjRu71VVUVJh+/fqZ0NBQ8/3335uUlBTTqFEj89lnn/2sYwDONz6uAuqJ22+/3fnZ29tbvXr1kjFGycnJznhwcLA6deqkf/7zn06dr6+vJKmyslKHDh3S8ePH1atXL33++een3efBgwe1fv163Xbbbbrooovc1rlcrmr1d911l9vr/v37Kz8/X0VFRZKkd955R5WVlbrpppv0/fffO0tYWJguueQS52O0zZs368CBA7rrrruc/iVpzJgxCgoKOm3fNQkPD9ewYcOc14GBgbr11lv1xRdfKDc3V5K0bNky9e/fX82bN3frLz4+XhUVFVq/fr3z/oCAAOfnw4cPq7CwUP37969xXo0xGj9+vObNm6c///nPSkpKclsfHBysb7/9Vp999tlZHdvJfvWrX7nNUWxsrCTp17/+tRo1auQ2XlZWpn//+981HtORI0f0/fffq3///jp69Kh27tzprPPy8tKSJUtUXFyswYMHa8GCBUpNTVWvXr1+dv/A+dTo9CUAzocfh4ygoCD5+/urVatW1cbz8/Od1y+//LKeeuop7dy5U+Xl5c54VFTUafdZFZa6du16Vj02b95c0okQEBgYqN27d8sYo0suuaTG9/v4+EiS/vWvf0lStTofHx+1a9fujHr5sQ4dOlQLZh07dpR04n6WsLAw7d69W1u3bnXuUfqxAwcOOD+npaVp1qxZysrKUmlpqTNeU/h75ZVXVFxcrIULF2r06NHV1k+dOlV/+9vf1Lt3b3Xo0EGDBg3SzTffrL59+9b6OGs6TyQpIiKixvHDhw87Y9u3b9fDDz+sjz76yAmmVQoLC91et2/fXjNmzNDkyZPVtWtXPfLII7XuFfA0Qg5QT3h7e5/RmHTiyoF04gbfMWPGaOjQoZo8ebJat24tb29vzZ49W3v27DkvPZ7cT2VlpVwulz744IMaa5s2bVrnPdVGZWWl/ud//kdTpkypcX1VKPr73/+u//3f/9WAAQO0YMECtWnTRj4+Plq8eHGNNwv37dtXWVlZevbZZ3XTTTepRYsWbuu7dOmiXbt2KS0tTenp6Xr77be1YMECTZs2TTNnzqzVMZzqv8Hp/tsUFBToqquuUmBgoB599FG1b99e/v7++vzzzzV16tRqN15L0ocffihJ2r9/v/Lz8xUWFlarXgFPI+QADdhbb72ldu3a6Z133nG7wjB9+nS3upquPkhyrpps27atTvpp3769jDGKiopyAkNNIiMjJUm7d+/Wtdde64yXl5crOztbPXr0qPW+v/nmGxlj3I7166+/lnTi6auq/oqLixUfH/+T23r77bfl7++vVatWyc/PzxlfvHhxjfUdOnTQnDlzdPXVVysxMVEZGRlq1qyZW02TJk00cuRIjRw5UmVlZRo+fLgef/xxpaamyt/fv9bHW1tr165Vfn6+3nnnHQ0YMMAZz87OrrF+0aJFWr16tR5//HHNnj1bd955p1auXHnO+wTqEvfkAA1Y1W/vVb+tS9KmTZuUmZnpVte4cWNJJ36bP1lISIgGDBigl156STk5OW7rTt7mmRo+fLi8vb01c+bMau83xjgfs/Xq1UshISFatGiRysrKnJolS5ZU6/FM7d+/X8uXL3deFxUV6ZVXXlHPnj2dKxA33XSTMjMztWrVqmrvLygo0PHjxyWdmFeXy+X2aPXevXu1YsWKU+6/e/fuev/997Vjxw7dcMMN+uGHH5x1J3+8KEm+vr6Kjo6WMcbtI8ZzqaZzpaysTAsWLKhWm52drcmTJ2vEiBF68MEH9eSTT+qvf/2rXnnllfPSK1BXuJIDNGDXX3+93nnnHQ0bNkxDhgxRdna2Fi1apOjoaBUXFzt1AQEBio6O1htvvKGOHTuqRYsW6tq1q7p27apnnnlG/fr10+WXX65x48YpKipKe/fu1XvvvaesrKxa9dO+fXvNmjVLqamp2rt3r4YOHapmzZopOztby5cv17hx43T//ffLx8dHs2bN0p133qlrr71WI0eOVHZ2thYvXnzW9+R07NhRycnJ+uyzzxQaGqqXXnpJeXl5bldfJk+erL/+9a+6/vrrNWbMGMXExKikpERfffWV3nrrLe3du1etWrXSkCFD9PTTTysxMVE333yzDhw4oPnz56tDhw7aunXrKXvo06ePVq5cqeuuu06//OUvtWLFCvn4+GjQoEEKCwtT3759FRoaqh07dujZZ5/VkCFDql3xOVeuvPJKNW/eXElJSbr33nvlcrn06quv1hhGb7vtNgUEBGjhwoWSpDvvvFNvv/227rvvPsXHxys8PPy89Az8bOf/gS4AJ6t6PPvgwYNu40lJSaZJkybV6q+66irnceTKykrzf//3fyYyMtL4+fmZyy67zKSlpZmkpCQTGRnp9r6NGzeamJgY4+vrW+1x8m3btplhw4aZ4OBg4+/vbzp16mQeeeSR0/a4ePFiI8lkZ2e7jb/99tumX79+pkmTJqZJkyamc+fOJiUlxezatcutbsGCBSYqKsr4+fmZXr16mfXr15urrrrqrB4hHzJkiFm1apXp3r278fPzM507dzbLli2rVnvkyBGTmppqOnToYHx9fU2rVq3MlVdeaZ588klTVlbm1L344ovmkksucba1ePFiZx5Oph99T44xxqxcudI0atTIjBw50lRUVJjnnnvODBgwwLRs2dL4+fmZ9u3bm8mTJ5vCwsIzPsaqR8jnzp3rNr5mzRojqdqxVv23Ofmx748//tj06dPHBAQEmPDwcDNlyhSzatUqI8msWbPGGGPMvHnzqj2Ob4wxOTk5JjAw0Fx33XVn3DPgaS5jzuKaNADUIxdffLG6du2qtLQ0T7cCoB7hnhwAAGAl7skBUG8dPHjQ7ebfH/P19a32uHZDU1FRoYMHD/5kTdOmTT3++D3QEBFyANRbV1xxhfPFgTW56qqrtHbt2vPX0Dmwb9++035x4/Tp093+oCqAM8M9OQDqrY8//tjtUewfa968uWJiYs5jR3Xv2LFj2rBhw0/WtGvX7qyfOgMuZIQcAABgJW48BgAAVrqg78mprKzU/v371axZs1N+7T0AAKhfjDE6cuSIwsPD5eV16us1F3TI2b9/f7W/3AsAABqGffv2qW3btqdcf0GHnKqvU9+3b58CAwM93A0AADgTRUVFioiIOO2fRbmgQ07VR1SBgYGEHAAAGpjT3WrCjccAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVmrk6QZsVZ6+odqYT2I/D3QCAMCFiSs5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYqVYhZ/bs2briiivUrFkztW7dWkOHDtWuXbvcao4dO6aUlBS1bNlSTZs21YgRI5SXl+dWk5OToyFDhqhx48Zq3bq1Jk+erOPHj7vVrF27Vpdffrn8/PzUoUMHLVmypFo/8+fP18UXXyx/f3/Fxsbq008/rc3hAAAAi9Uq5Kxbt04pKSn65JNPtHr1apWXl2vQoEEqKSlxaiZOnKh3331Xy5Yt07p167R//34NHz7cWV9RUaEhQ4aorKxMGzdu1Msvv6wlS5Zo2rRpTk12draGDBmia665RllZWZowYYJuv/12rVq1yql54403NGnSJE2fPl2ff/65evTooYSEBB04cODnzAcAALCEyxhjzvbNBw8eVOvWrbVu3ToNGDBAhYWFCgkJ0dKlS/XLX/5SkrRz50516dJFmZmZ6tOnjz744ANdf/312r9/v0JDQyVJixYt0tSpU3Xw4EH5+vpq6tSpeu+997Rt2zZnX6NGjVJBQYHS09MlSbGxsbriiiv07LPPSpIqKysVERGhe+65Rw888MAZ9V9UVKSgoCAVFhYqMDDwbKehRrtff0gXBw92G/NJ7Fen+wAA4EJ0pv9+/6x7cgoLCyVJLVq0kCRt2bJF5eXlio+Pd2o6d+6siy66SJmZmZKkzMxMdevWzQk4kpSQkKCioiJt377dqTl5G1U1VdsoKyvTli1b3Gq8vLwUHx/v1NSktLRURUVFbgsAALDTWYecyspKTZgwQX379lXXrl0lSbm5ufL19VVwcLBbbWhoqHJzc52akwNO1fqqdT9VU1RUpB9++EHff/+9Kioqaqyp2kZNZs+eraCgIGeJiIio/YEDAIAG4axDTkpKirZt26bXX3+9Lvs5p1JTU1VYWOgs+/bt83RLAADgHGl0Nm8aP3680tLStH79erVt29YZDwsLU1lZmQoKCtyu5uTl5SksLMyp+fFTUFVPX51c8+MnsvLy8hQYGKiAgAB5e3vL29u7xpqqbdTEz89Pfn5+tT9gAADQ4NTqSo4xRuPHj9fy5cv10UcfKSoqym19TEyMfHx8lJGR4Yzt2rVLOTk5iouLkyTFxcXpq6++cnsKavXq1QoMDFR0dLRTc/I2qmqqtuHr66uYmBi3msrKSmVkZDg1AADgwlarKzkpKSlaunSpVq5cqWbNmjn3vwQFBSkgIEBBQUFKTk7WpEmT1KJFCwUGBuqee+5RXFyc+vTpI0kaNGiQoqOj9Zvf/EZz5sxRbm6uHn74YaWkpDhXWe666y49++yzmjJlim677TZ99NFHevPNN/Xee+85vUyaNElJSUnq1auXevfurT/+8Y8qKSnR2LFj62puAABAA1arkLNw4UJJ0tVXX+02vnjxYo0ZM0aS9Ic//EFeXl4aMWKESktLlZCQoAULFji13t7eSktL09133624uDg1adJESUlJevTRR52aqKgovffee5o4caLmzZuntm3b6oUXXlBCQoJTM3LkSB08eFDTpk1Tbm6uevbsqfT09Go3IwMAgAvTz/qenIaO78kBAKDhOS/fkwMAAFBfEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwUq1Dzvr163XDDTcoPDxcLpdLK1ascFs/ZswYuVwutyUxMdGt5tChQ7rlllsUGBio4OBgJScnq7i42K1m69at6t+/v/z9/RUREaE5c+ZU62XZsmXq3Lmz/P391a1bN73//vu1PRwAAGCpWoeckpIS9ejRQ/Pnzz9lTWJior777jtnee2119zW33LLLdq+fbtWr16ttLQ0rV+/XuPGjXPWFxUVadCgQYqMjNSWLVs0d+5czZgxQ88//7xTs3HjRo0ePVrJycn64osvNHToUA0dOlTbtm2r7SEBAAALuYwx5qzf7HJp+fLlGjp0qDM2ZswYFRQUVLvCU2XHjh2Kjo7WZ599pl69ekmS0tPTdd111+nbb79VeHi4Fi5cqIceeki5ubny9fWVJD3wwANasWKFdu7cKUkaOXKkSkpKlJaW5my7T58+6tmzpxYtWnRG/RcVFSkoKEiFhYUKDAw8ixk4td2vP6SLgwe7jfkk9qvTfQAAcCE603+/z8k9OWvXrlXr1q3VqVMn3X333crPz3fWZWZmKjg42Ak4khQfHy8vLy9t2rTJqRkwYIATcCQpISFBu3bt0uHDh52a+Ph4t/0mJCQoMzPzlH2VlpaqqKjIbQEAAHaq85CTmJioV155RRkZGfr973+vdevWafDgwaqoqJAk5ebmqnXr1m7vadSokVq0aKHc3FynJjQ01K2m6vXpaqrW12T27NkKCgpyloiIiJ93sAAAoN5qVNcbHDVqlPNzt27d1L17d7Vv315r167VwIED63p3tZKamqpJkyY5r4uKigg6AABY6pw/Qt6uXTu1atVK33zzjSQpLCxMBw4ccKs5fvy4Dh06pLCwMKcmLy/Prabq9elqqtbXxM/PT4GBgW4LAACw0zkPOd9++63y8/PVpk0bSVJcXJwKCgq0ZcsWp+ajjz5SZWWlYmNjnZr169ervLzcqVm9erU6deqk5s2bOzUZGRlu+1q9erXi4uLO9SEBAIAGoNYhp7i4WFlZWcrKypIkZWdnKysrSzk5OSouLtbkyZP1ySefaO/evcrIyNCNN96oDh06KCEhQZLUpUsXJSYm6o477tCnn36qjz/+WOPHj9eoUaMUHh4uSbr55pvl6+ur5ORkbd++XW+88YbmzZvn9lHTfffdp/T0dD311FPauXOnZsyYoc2bN2v8+PF1MC0AAKDBM7W0Zs0aI6nakpSUZI4ePWoGDRpkQkJCjI+Pj4mMjDR33HGHyc3NddtGfn6+GT16tGnatKkJDAw0Y8eONUeOHHGr+fLLL02/fv2Mn5+f+cUvfmGeeOKJar28+eabpmPHjsbX19dceuml5r333qvVsRQWFhpJprCwsLbTcFpfv/agKfvg724LAAD4+c703++f9T05DR3fkwMAQMPj0e/JAQAA8DRCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKzXydANwV56+we21T2I/D3UCAEDDxpUcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACvVOuSsX79eN9xwg8LDw+VyubRixQq39cYYTZs2TW3atFFAQIDi4+O1e/dut5pDhw7plltuUWBgoIKDg5WcnKzi4mK3mq1bt6p///7y9/dXRESE5syZU62XZcuWqXPnzvL391e3bt30/vvv1/ZwAACApWodckpKStSjRw/Nnz+/xvVz5szRM888o0WLFmnTpk1q0qSJEhISdOzYMafmlltu0fbt27V69WqlpaVp/fr1GjdunLO+qKhIgwYNUmRkpLZs2aK5c+dqxowZev75552ajRs3avTo0UpOTtYXX3yhoUOHaujQodq2bVttDwkAAFjIZYwxZ/1ml0vLly/X0KFDJZ24ihMeHq7f/e53uv/++yVJhYWFCg0N1ZIlSzRq1Cjt2LFD0dHR+uyzz9SrVy9JUnp6uq677jp9++23Cg8P18KFC/XQQw8pNzdXvr6+kqQHHnhAK1as0M6dOyVJI0eOVElJidLS0px++vTpo549e2rRokU19ltaWqrS0lLndVFRkSIiIlRYWKjAwMCznYYa7X79IV0cPNhtzCex32nfV56+odbvAQDgQlJUVKSgoKDT/vtdp/fkZGdnKzc3V/Hx8c5YUFCQYmNjlZmZKUnKzMxUcHCwE3AkKT4+Xl5eXtq0aZNTM2DAACfgSFJCQoJ27dqlw4cPOzUn76eqpmo/NZk9e7aCgoKcJSIi4ucfNAAAqJfqNOTk5uZKkkJDQ93GQ0NDnXW5ublq3bq12/pGjRqpRYsWbjU1bePkfZyqpmp9TVJTU1VYWOgs+/btq+0hAgCABqKRpxs4n/z8/OTn5+fpNgAAwHlQp1dywsLCJEl5eXlu43l5ec66sLAwHThwwG398ePHdejQIbeamrZx8j5OVVO1HgAAXNjqNORERUUpLCxMGRkZzlhRUZE2bdqkuLg4SVJcXJwKCgq0ZcsWp+ajjz5SZWWlYmNjnZr169ervLzcqVm9erU6deqk5s2bOzUn76eqpmo/Nthb8IGnWwAAoMGqdcgpLi5WVlaWsrKyJJ242TgrK0s5OTlyuVyaMGGCZs2apb/+9a/66quvdOuttyo8PNx5AqtLly5KTEzUHXfcoU8//VQff/yxxo8fr1GjRik8PFySdPPNN8vX11fJycnavn273njjDc2bN0+TJk1y+rjvvvuUnp6up556Sjt37tSMGTO0efNmjR8//ufPCgAAaPBqfU/O5s2bdc011zivq4JHUlKSlixZoilTpqikpETjxo1TQUGB+vXrp/T0dPn7+zvv+ctf/qLx48dr4MCB8vLy0ogRI/TMM88464OCgvThhx8qJSVFMTExatWqlaZNm+b2XTpXXnmlli5dqocfflgPPvigLrnkEq1YsUJdu3Y9q4kAAAB2+Vnfk9PQnelz9mejLr4nZ2/BB7pk1ON12hcAAA2dR74nBwAAoL4g5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKjTzdAM6N8vQNbq99Evt5qBMAADyjzq/kzJgxQy6Xy23p3Lmzs/7YsWNKSUlRy5Yt1bRpU40YMUJ5eXlu28jJydGQIUPUuHFjtW7dWpMnT9bx48fdatauXavLL79cfn5+6tChg5YsWVLXhwIAABqwc/Jx1aWXXqrvvvvOWTZs+O9VhYkTJ+rdd9/VsmXLtG7dOu3fv1/Dhw931ldUVGjIkCEqKyvTxo0b9fLLL2vJkiWaNm2aU5Odna0hQ4bommuuUVZWliZMmKDbb79dq1atOheHAwAAGqBz8nFVo0aNFBYWVm28sLBQL774opYuXaprr71WkrR48WJ16dJFn3zyifr06aMPP/xQ//jHP/S3v/1NoaGh6tmzpx577DFNnTpVM2bMkK+vrxYtWqSoqCg99dRTkqQuXbpow4YN+sMf/qCEhIRT9lVaWqrS0lLndVFRUR0fOQAAqC/OyZWc3bt3Kzw8XO3atdMtt9yinJwcSdKWLVtUXl6u+Ph4p7Zz58666KKLlJmZKUnKzMxUt27dFBoa6tQkJCSoqKhI27dvd2pO3kZVTdU2TmX27NkKCgpyloiIiDo5XgAAUP/UeciJjY3VkiVLlJ6eroULFyo7O1v9+/fXkSNHlJubK19fXwUHB7u9JzQ0VLm5uZKk3Nxct4BTtb5q3U/VFBUV6Ycffjhlb6mpqSosLHSWffv2/dzDBQAA9VSdf1w1ePBg5+fu3bsrNjZWkZGRevPNNxUQEFDXu6sVPz8/+fn5ebQHAABwfpzz78kJDg5Wx44d9c033ygsLExlZWUqKChwq8nLy3Pu4QkLC6v2tFXV69PVBAYGejxIAQCA+uGch5zi4mLt2bNHbdq0UUxMjHx8fJSRkeGs37Vrl3JychQXFydJiouL01dffaUDBw44NatXr1ZgYKCio6OdmpO3UVVTtQ0AAIA6Dzn333+/1q1bp71792rjxo0aNmyYvL29NXr0aAUFBSk5OVmTJk3SmjVrtGXLFo0dO1ZxcXHq06ePJGnQoEGKjo7Wb37zG3355ZdatWqVHn74YaWkpDgfNd1111365z//qSlTpmjnzp1asGCB3nzzTU2cOLGuDwcAADRQdX5PzrfffqvRo0crPz9fISEh6tevnz755BOFhIRIkv7whz/Iy8tLI0aMUGlpqRISErRgwQLn/d7e3kpLS9Pdd9+tuLg4NWnSRElJSXr00UedmqioKL333nuaOHGi5s2bp7Zt2+qFF174ycfHAQDAhaXOQ87rr7/+k+v9/f01f/58zZ8//5Q1kZGRev/9939yO1dffbW++OKLs+oRAADYjz/QCQAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiHHYnsLPvB0CwAAeAwhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArNTI0w2gfitP3+D22iexn4c6AQCgdriSAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSI083APuUp2+oNuaT2M8DnQAALmRcyQEAAFYi5AAAACsRcnBKezY/5+kWAAA4a4QcAABgJUIOAACwEiEHAABYiUfIUW/xKDoA4OfgSg4AALASV3JgPa4IAcCFiSs5AADASoQcAABgJT6uAk7hxx9z8REXADQshBzgHCMsAYBn8HEVAACwEldygAaCK0IAUDuEHOACQ1gCcKEg5ACnYYyRDhep4vN/SIFN5dWurVxeF94nveXpG1RpKrXD7NFhU6SQ2L7q0vIyebu8Pd1ag1RhKrQj/wsdPva9mvu3Yi6Bc6DBh5z58+dr7ty5ys3NVY8ePfSnP/1JvXv39nRbOMnegg90iRrm1QKTl6/KndlSaZkqN28/MRjUTD7DBsq7e0fPNneebar8UkuOv618FZwY2PiyWvq3VnLXyYoLH3jG2+FKkpS5P0Mvbpur/GMHnLGzmUsAP61B/zr6xhtvaNKkSZo+fbo+//xz9ejRQwkJCTpw4MDp3wychsnLV+WXu6TSMvcVhUdUvmSFKrZ+7ZnGPCBzf4aeOv7ifwPOf+QfO6g5m6coc3/Gee+pPH2D23I27znT99WlzP0ZmrN5ilvAkTw7l4CtGnTIefrpp3XHHXdo7Nixio6O1qJFi9S4cWO99NJLnm4NDZyprDxxBecnlK/IkKmsPE8deU6FqdCL2+aeYq2RJL207UlVmIrz15SHnW1Y+u9cmhrWXphzCZxLDfbjqrKyMm3ZskWpqanOmJeXl+Lj45WZmVnje0pLS1VaWuq8LiwslCQVFRXVeX/FR0tV5FPiNuZzBvspL/nve4qPlp51b+UlJW49nMm+f+xI8Q8qKvl5xyCd/XH8eDtnuv+62E7Fnn0qP92+8o7J58sd8m4fUav9n80xeHI7/8j/XLmHvvvJmu+O7tdne/+u6JaX1/n+63I7njynpLqby/LV7v+P8/mfuNPu+1xuBzjfqv5NMaamXxhOYhqof//730aS2bhxo9v45MmTTe/evWt8z/Tp041O/LrEwsLCwsLC0sCXffv2/WRWaLBXcs5GamqqJk2a5LyurKzUoUOH1LJlS7lcrjrbT1FRkSIiIrRv3z4FBgbW2XYvVMxn3WEu6xbzWXeYy7pl+3waY3TkyBGFh4f/ZF2DDTmtWrWSt7e38vLy3Mbz8vIUFhZW43v8/Pzk5+fnNhYcHHyuWlRgYKCVJ5enMJ91h7msW8xn3WEu65bN8xkUFHTamgZ747Gvr69iYmKUkfHfJxEqKyuVkZGhuDg+VwYA4ELXYK/kSNKkSZOUlJSkXr16qXfv3vrjH/+okpISjR071tOtAQAAD2vQIWfkyJE6ePCgpk2bptzcXPXs2VPp6ekKDQ31aF9+fn6aPn16tY/GcHaYz7rDXNYt5rPuMJd1i/k8wWXM6Z6/AgAAaHga7D05AAAAP4WQAwAArETIAQAAViLkAAAAKxFyAACAlQg5dWjGjBlyuVxuS+fOnT3dVoOwfv163XDDDQoPD5fL5dKKFSvc1htjNG3aNLVp00YBAQGKj4/X7t27PdNsA3C6+RwzZky1czUxMdEzzdZzs2fP1hVXXKFmzZqpdevWGjp0qHbt2uVWc+zYMaWkpKhly5Zq2rSpRowYUe3b2HFmc3n11VdXOzfvuusuD3Vcvy1cuFDdu3d3vtU4Li5OH3zwgbOe85KQU+cuvfRSfffdd86yYcMGT7fUIJSUlKhHjx6aP39+jevnzJmjZ555RosWLdKmTZvUpEkTJSQk6NixY+e504bhdPMpSYmJiW7n6muvvXYeO2w41q1bp5SUFH3yySdavXq1ysvLNWjQIJWc9JfIJ06cqHfffVfLli3TunXrtH//fg0fPtyDXddPZzKXknTHHXe4nZtz5szxUMf1W9u2bfXEE09oy5Yt2rx5s6699lrdeOON2r59uyTOS0lqsH+FvD6aPn266dGjh6fbaPAkmeXLlzuvKysrTVhYmJk7d64zVlBQYPz8/Mxrr73mgQ4blh/PpzHGJCUlmRtvvNEj/TR0Bw4cMJLMunXrjDEnzkUfHx+zbNkyp2bHjh1GksnMzPRUmw3Cj+fSGGOuuuoqc99993muqQauefPm5oUXXuC8/A+u5NSx3bt3Kzw8XO3atdMtt9yinJwcT7fU4GVnZys3N1fx8fHOWFBQkGJjY5WZmenBzhq2tWvXqnXr1urUqZPuvvtu5efne7qlBqGwsFCS1KJFC0nSli1bVF5e7nZ+du7cWRdddBHn52n8eC6r/OUvf1GrVq3UtWtXpaam6ujRo55or0GpqKjQ66+/rpKSEsXFxXFe/keD/rMO9U1sbKyWLFmiTp066bvvvtPMmTPVv39/bdu2Tc2aNfN0ew1Wbm6uJFX7cx2hoaHOOtROYmKihg8frqioKO3Zs0cPPvigBg8erMzMTHl7e3u6vXqrsrJSEyZMUN++fdW1a1dJJ85PX19fBQcHu9Vyfv60muZSkm6++WZFRkYqPDxcW7du1dSpU7Vr1y698847Huy2/vrqq68UFxenY8eOqWnTplq+fLmio6OVlZXFeSlCTp0aPHiw83P37t0VGxuryMhIvfnmm0pOTvZgZ4C7UaNGOT9369ZN3bt3V/v27bV27VoNHDjQg53VbykpKdq2bRv32tWBU83luHHjnJ+7deumNm3aaODAgdqzZ4/at29/vtus9zp16qSsrCwVFhbqrbfeUlJSktatW+fptuoNPq46h4KDg9WxY0d98803nm6lQQsLC5Okak8F5OXlOevw87Rr106tWrXiXP0J48ePV1pamtasWaO2bds642FhYSorK1NBQYFbPefnqZ1qLmsSGxsrSZybp+Dr66sOHTooJiZGs2fPVo8ePTRv3jzOy/8g5JxDxcXF2rNnj9q0aePpVhq0qKgohYWFKSMjwxkrKirSpk2bFBcX58HO7PHtt98qPz+fc7UGxhiNHz9ey5cv10cffaSoqCi39TExMfLx8XE7P3ft2qWcnBzOzx853VzWJCsrS5I4N89QZWWlSktLOS//g4+r6tD999+vG264QZGRkdq/f7+mT58ub29vjR492tOt1XvFxcVuv6llZ2crKytLLVq00EUXXaQJEyZo1qxZuuSSSxQVFaVHHnlE4eHhGjp0qOearsd+aj5btGihmTNnasSIEQoLC9OePXs0ZcoUdejQQQkJCR7sun5KSUnR0qVLtXLlSjVr1sy5nyEoKEgBAQEKCgpScnKyJk2apBYtWigwMFD33HOP4uLi1KdPHw93X7+cbi737NmjpUuX6rrrrlPLli21detWTZw4UQMGDFD37t093H39k5qaqsGDB+uiiy7SkSNHtHTpUq1du1arVq3ivKzi6ce7bDJy5EjTpk0b4+vra37xi1+YkSNHmm+++cbTbTUIa9asMZKqLUlJScaYE4+RP/LIIyY0NNT4+fmZgQMHml27dnm26Xrsp+bz6NGjZtCgQSYkJMT4+PiYyMhIc8cdd5jc3FxPt10v1TSPkszixYudmh9++MH89re/Nc2bNzeNGzc2w4YNM999953nmq6nTjeXOTk5ZsCAAaZFixbGz8/PdOjQwUyePNkUFhZ6tvF66rbbbjORkZHG19fXhISEmIEDB5oPP/zQWc95aYzLGGPOZ6gCAAA4H7gnBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABW+n9N9VlYGWRKdwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPYRJREFUeJzt3X1cVGX+//E3iAN4MyAa4BSg3YmYoXlLmdbKikWWZVsqqVuk2wYl2te7Lc1uTczyNs0srV3dzN+mW1oooUkmoqLkTYq2kZp+ByqFSUpBOL8/+nLWSSupgYnj6/l4nEfOdX3mnM81Frw7c+aMj2EYhgAAACzG19sNAAAA1AZCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDnCBWLx4sXx8fPTFF194u5XfjVatWumWW27xdhsAagkhB0C9tnTpUs2YMcPbbQD4HSLkAKjXCDkAfgohBwAAWBIhB7iAvfTSS2rXrp38/f3lcDiUkpKikpISt5obbrhBV111lT799FPdeOONatSokS6++GKlp6eftb+DBw/q1ltvVePGjRUaGqpRo0ZpzZo18vHx0YcffuhWm5ubq759+yooKEiNGjVSr1699PHHH7vVfPvtt0pLS1OrVq3k7++v0NBQ/fGPf9T27dvN3lavXq2DBw/Kx8dHPj4+atWqVY1fh7Vr16pDhw4KCAhQTEyM3n777Rrvw8fHR6mpqVq+fLliYmIUGBiouLg47dq1S5L08ssv6/LLL1dAQIBuuOGGs66N+uijj/SnP/1JkZGR8vf3V0REhEaNGqXvv//erCkuLtZFF12kG264QYZhmOOfffaZGjdurLvvvrvGfQOWZgC4ICxatMiQZBQWFhqGYRiPP/64IcmIj483Zs+ebaSmphoNGjQwunTpYpSXl5vP69Wrl+FwOIyIiAhj5MiRxksvvWT84Q9/MCQZ7733nll34sQJ49JLLzUCAwON8ePHGzNmzDC6du1qxMbGGpKM9evXm7VZWVmGzWYz4uLijOnTpxsvvviicfXVVxs2m83Izc016wYPHmzYbDZj9OjRxsKFC42pU6ca/fr1M/7xj38YhmEYa9euNTp06GC0aNHC+Pvf/278/e9/N1asWHHer0lUVJRx5ZVXGsHBwcb48eONF154wWjfvr3h6+trrF27tkavryTj6quvNiIiIoznnnvOeO6554ygoCAjMjLSmDNnjhETE2NMnz7deOyxxwybzWbceOONbs9/6KGHjJtvvtl49tlnjZdfftlITk42GjRoYNx5551udcuXLzckGTNnzjQMwzAqKyuN6667zggLCzO+/vrrGvUMWB0hB7hAnBlyiouLDZvNZvTp08eorKw0a+bMmWNIMl577TVzrFevXoYk44033jDHTp06ZYSHhxsDBgwwx6ZPn25IMlauXGmOff/990Z0dLRbyKmqqjKuuOIKIyEhwaiqqjJrv/vuO6N169bGH//4R3MsKCjISElJ+dl1JSYmGlFRUTV+PQzjh5AjyfjXv/5ljpWWlhotW7Y0OnbsWKN9STL8/f3NEGkYhvHyyy8bkozw8HDD5XKZ4xMmTHALnIbxw/p/bMqUKYaPj49x8OBBt/FBgwYZjRo1Mvbv329MmzbtrNcdwA94uwq4AH3wwQcqLy9XWlqafH3/+2Ng+PDhstvtWr16tVt9kyZNdM8995iPbTabunbtqs8//9wcy8jI0MUXX6xbb73VHAsICNDw4cPd9pWfn68DBw5o8ODB+uabb/T111/r66+/VllZmXr37q3s7GxVVVVJkoKDg5Wbm6ujR496dP1ncjgcuv32283HdrtdQ4cO1Y4dO+R0Omu0r969e7u9XdatWzdJ0oABA9S0adOzxs98/QIDA80/l5WV6euvv9a1114rwzC0Y8cOt+PMmTNHQUFBuvPOOzVx4kQNGTJEt912W416BS4EhBzgAnTw4EFJUps2bdzGbTabLr30UnO+2iWXXCIfHx+3sWbNmun48eNu+7zsssvOqrv88svdHh84cECSNGzYMF100UVu28KFC3Xq1CmVlpZKktLT07V7925FRESoa9eumjx5slsw8ITLL7/8rJ6vvPJKSarxPYUiIyPdHgcFBUmSIiIizjl+5ut36NAh/fnPf1ZISIiaNGmiiy66SL169ZIk8/WoFhISolmzZmnnzp0KCgrSrFmzatQncKHw83YDAH7/GjRocM5x44yLX89X9VmaadOmqUOHDuesadKkiSTprrvu0vXXX68VK1Zo7dq1mjZtmqZOnaq3335bN910U42PXdt+6nX6pdevsrJSf/zjH3Xs2DGNGzdO0dHRaty4sY4cOaI///nP5mt2pjVr1kj6ISh9+eWXCg4O9swiAAsh5AAXoKioKElSQUGBLr30UnO8vLxchYWFio+P/1X7/PTTT2UYhtuZkc8++8yt7rLLLpP0w9tC53Ocli1b6sEHH9SDDz6o4uJiXXPNNXrmmWfMkPPjszA19dlnn53V8/79+yXpV31S69fYtWuX9u/fr9dff11Dhw41xzMzM89Zn5GRoYULF2rs2LFasmSJhg0bptzcXPn58SMdOBNvVwEXoPj4eNlsNs2aNcvtbMyrr76q0tJSJSYm1nifCQkJOnLkiN555x1z7OTJk3rllVfc6jp16qTLLrtMzz//vE6cOHHWfr766itJP5zd+PHbNKGhoXI4HDp16pQ51rhx47PqauLo0aNasWKF+djlcumNN95Qhw4dFB4e/qv3WxPVZ3rO/LswDEMzZ848q7akpET333+/unbtqmeffVYLFy7U9u3b9eyzz9ZJr0B9QuwHLkAXXXSRJkyYoCeeeEJ9+/bVrbfeqoKCAr300kvq0qWL20XG5+svf/mL5syZo0GDBmnkyJFq2bKllixZooCAAEn/PePi6+urhQsX6qabblK7du1077336uKLL9aRI0e0fv162e12vfvuu/r22291ySWX6M4771RsbKyaNGmiDz74QFu3btX06dPN43bq1EnLli3T6NGj1aVLFzVp0kT9+vU7776vvPJKJScna+vWrQoLC9Nrr72moqIiLVq0qMavwa8VHR2tyy67TP/zP/+jI0eOyG6361//+pfbNTvVRo4cqW+++UYffPCBGjRooL59++r+++/X008/rdtuu02xsbF11jfwu+e9D3YBqEs/vk+OYfzwkfHo6GijYcOGRlhYmPHXv/7VOH78uNvzevXqZbRr1+6s/Q0bNuysj25//vnnRmJiohEYGGhcdNFFxiOPPGL861//MiQZmzdvdqvdsWOHcccddxjNmzc3/P39jaioKOOuu+4ysrKyDMP44WPqY8aMMWJjY42mTZsajRs3NmJjY42XXnrJbT8nTpwwBg8ebAQHBxuSavRx8qioKCMxMdFYs2aNcfXVVxv+/v5GdHS0sXz58vPeRzVJZ33cvbCw0JBkTJs2zW18/fr1hiS343z66adGfHy80aRJE6NFixbG8OHDjU8++cSQZCxatMgwDMP497//bUgypk+f7rY/l8tlREVFGbGxsW73OAIudD6G8SuuHASA8zRjxgyNGjVKX375pS6++GJvtwPgAkLIAeAx33//vdv9Xk6ePKmOHTuqsrLSvJgXAOoK1+QA8Jg77rhDkZGR6tChg0pLS/WPf/xD+/bt05IlS+q0j6+++kqVlZU/OW+z2RQSEnJe+/qlGwIGBgaa970B8PvCmRwAHjNjxgwtXLhQX3zxhSorKxUTE6OxY8fW+RdHtmrV6qwbGp6pV69eZ31h6E/5pY+oDxs2TIsXL65BdwDqCiEHgOV8/PHHbt/e/WPNmjVTp06dzmtfH3zwwc/OOxwOxcTE1Kg/AHWDkAMAACyJmwECAABLuqAvPK6qqtLRo0fVtGnT33xreAAAUDcMw9C3334rh8MhX9+fPl9zQYeco0ePnvXtwAAAoH44fPiwLrnkkp+cv6BDTtOmTSX98CLZ7XYvdwMAAM6Hy+VSRESE+Xv8p1zQIaf6LSq73U7IAQCgnvmlS0248BgAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFiSn7cbQP1XkbHR7XHDvj281AkAAP/FmRwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJNQ452dnZ6tevnxwOh3x8fLRy5cqzavbu3atbb71VQUFBaty4sbp06aJDhw6Z8ydPnlRKSoqaN2+uJk2aaMCAASoqKnLbx6FDh5SYmKhGjRopNDRUY8aM0enTp91qPvzwQ11zzTXy9/fX5ZdfrsWLF9d0OQAAwKJqHHLKysoUGxuruXPnnnP+P//5j3r06KHo6Gh9+OGH2rlzpyZOnKiAgACzZtSoUXr33Xe1fPlybdiwQUePHtUdd9xhzldWVioxMVHl5eXatGmTXn/9dS1evFiTJk0yawoLC5WYmKgbb7xR+fn5SktL0/333681a9bUdEkAAMCCfAzDMH71k318tGLFCvXv398cGzhwoBo2bKi///3v53xOaWmpLrroIi1dulR33nmnJGnfvn1q27atcnJy1L17d73//vu65ZZbdPToUYWFhUmS5s+fr3Hjxumrr76SzWbTuHHjtHr1au3evdvt2CUlJcrIyDiv/l0ul4KCglRaWiq73f4rXwVUZGx0e9ywbw8vdQIAuBCc7+9vj16TU1VVpdWrV+vKK69UQkKCQkND1a1bN7e3tPLy8lRRUaH4+HhzLDo6WpGRkcrJyZEk5eTkqH379mbAkaSEhAS5XC7t2bPHrDlzH9U11fs4l1OnTsnlcrltAADAmjwacoqLi3XixAk999xz6tu3r9auXavbb79dd9xxhzZs2CBJcjqdstlsCg4OdntuWFiYnE6nWXNmwKmer577uRqXy6Xvv//+nP1NmTJFQUFB5hYREfGb1wwAAH6fPH4mR5Juu+02jRo1Sh06dND48eN1yy23aP78+Z481K8yYcIElZaWmtvhw4e93RIAAKglHg05LVq0kJ+fn2JiYtzG27Zta366Kjw8XOXl5SopKXGrKSoqUnh4uFnz409bVT/+pRq73a7AwMBz9ufv7y+73e62AQAAa/JoyLHZbOrSpYsKCgrcxvfv36+oqChJUqdOndSwYUNlZWWZ8wUFBTp06JDi4uIkSXFxcdq1a5eKi4vNmszMTNntdjNAxcXFue2juqZ6HwAA4MLmV9MnnDhxQp999pn5uLCwUPn5+QoJCVFkZKTGjBmju+++Wz179tSNN96ojIwMvfvuu/rwww8lSUFBQUpOTtbo0aMVEhIiu92uhx56SHFxcerevbskqU+fPoqJidGQIUOUnp4up9Opxx57TCkpKfL395ckPfDAA5ozZ47Gjh2r++67T+vWrdNbb72l1atXe+BlAQAA9Z5RQ+vXrzcknbUNGzbMrHn11VeNyy+/3AgICDBiY2ONlStXuu3j+++/Nx588EGjWbNmRqNGjYzbb7/d+N///V+3mi+++MK46aabjMDAQKNFixbGI488YlRUVJzVS4cOHQybzWZceumlxqJFi2q0ltLSUkOSUVpaWqPnwV35+x+5bQAA1Kbz/f39m+6TU99xnxzP4D45AIC65JX75AAAAPxeEHIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAl1TjkZGdnq1+/fnI4HPLx8dHKlSt/svaBBx6Qj4+PZsyY4TZ+7NgxJSUlyW63Kzg4WMnJyTpx4oRbzc6dO3X99dcrICBAERERSk9PP2v/y5cvV3R0tAICAtS+fXu99957NV0OAACwqBqHnLKyMsXGxmru3Lk/W7dixQpt3rxZDofjrLmkpCTt2bNHmZmZWrVqlbKzszVixAhz3uVyqU+fPoqKilJeXp6mTZumyZMna8GCBWbNpk2bNGjQICUnJ2vHjh3q37+/+vfvr927d9d0SQAAwIJ8DMMwfvWTfXy0YsUK9e/f3238yJEj6tatm9asWaPExESlpaUpLS1NkrR3717FxMRo69at6ty5syQpIyNDN998s7788ks5HA7NmzdPjz76qJxOp2w2myRp/PjxWrlypfbt2ydJuvvuu1VWVqZVq1aZx+3evbs6dOig+fPnn1f/LpdLQUFBKi0tld1u/7UvwwWvImOj2+OGfXt4qRMAwIXgfH9/e/yanKqqKg0ZMkRjxoxRu3btzprPyclRcHCwGXAkKT4+Xr6+vsrNzTVrevbsaQYcSUpISFBBQYGOHz9u1sTHx7vtOyEhQTk5OT/Z26lTp+Ryudw2AABgTR4POVOnTpWfn58efvjhc847nU6Fhoa6jfn5+SkkJEROp9OsCQsLc6upfvxLNdXz5zJlyhQFBQWZW0RERM0WBwAA6g2Phpy8vDzNnDlTixcvlo+Pjyd37RETJkxQaWmpuR0+fNjbLQEAgFri0ZDz0Ucfqbi4WJGRkfLz85Ofn58OHjyoRx55RK1atZIkhYeHq7i42O15p0+f1rFjxxQeHm7WFBUVudVUP/6lmur5c/H395fdbnfbAACANXk05AwZMkQ7d+5Ufn6+uTkcDo0ZM0Zr1qyRJMXFxamkpER5eXnm89atW6eqqip169bNrMnOzlZFRYVZk5mZqTZt2qhZs2ZmTVZWltvxMzMzFRcX58klAQCAesqvpk84ceKEPvvsM/NxYWGh8vPzFRISosjISDVv3tytvmHDhgoPD1ebNm0kSW3btlXfvn01fPhwzZ8/XxUVFUpNTdXAgQPNj5sPHjxYTzzxhJKTkzVu3Djt3r1bM2fO1Isvvmjud+TIkerVq5emT5+uxMREvfnmm9q2bZvbx8wBAMCFq8ZncrZt26aOHTuqY8eOkqTRo0erY8eOmjRp0nnvY8mSJYqOjlbv3r118803q0ePHm7hJCgoSGvXrlVhYaE6deqkRx55RJMmTXK7l861116rpUuXasGCBYqNjdX/+3//TytXrtRVV11V0yUBAAAL+k33yanvuE+OZ3CfHABAXfLafXIAAAB+Dwg5AADAkmp84TFwLl+UvG/++QrxdhUAwPs4kwMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACypxiEnOztb/fr1k8PhkI+Pj1auXGnOVVRUaNy4cWrfvr0aN24sh8OhoUOH6ujRo277OHbsmJKSkmS32xUcHKzk5GSdOHHCrWbnzp26/vrrFRAQoIiICKWnp5/Vy/LlyxUdHa2AgAC1b99e7733Xk2XAwAALKrGIaesrEyxsbGaO3fuWXPfffedtm/frokTJ2r79u16++23VVBQoFtvvdWtLikpSXv27FFmZqZWrVql7OxsjRgxwpx3uVzq06ePoqKilJeXp2nTpmny5MlasGCBWbNp0yYNGjRIycnJ2rFjh/r376/+/ftr9+7dNV0SAACwIB/DMIxf/WQfH61YsUL9+/f/yZqtW7eqa9euOnjwoCIjI7V3717FxMRo69at6ty5syQpIyNDN998s7788ks5HA7NmzdPjz76qJxOp2w2myRp/PjxWrlypfbt2ydJuvvuu1VWVqZVq1aZx+revbs6dOig+fPnn1f/LpdLQUFBKi0tld1u/5WvAioyNuqLkvfNx1cMfMaL3QAArO58f3/X+jU5paWl8vHxUXBwsCQpJydHwcHBZsCRpPj4ePn6+io3N9es6dmzpxlwJCkhIUEFBQU6fvy4WRMfH+92rISEBOXk5PxkL6dOnZLL5XLbAACANdVqyDl58qTGjRunQYMGmUnL6XQqNDTUrc7Pz08hISFyOp1mTVhYmFtN9eNfqqmeP5cpU6YoKCjI3CIiIn7bAgEAwO9WrYWciooK3XXXXTIMQ/Pmzautw9TIhAkTVFpaam6HDx/2dksAAKCW+NXGTqsDzsGDB7Vu3Tq398vCw8NVXFzsVn/69GkdO3ZM4eHhZk1RUZFbTfXjX6qpnj8Xf39/+fv7//qFAQCAesPjZ3KqA86BAwf0wQcfqHnz5m7zcXFxKikpUV5enjm2bt06VVVVqVu3bmZNdna2KioqzJrMzEy1adNGzZo1M2uysrLc9p2Zmam4uDhPLwkAANRDNQ45J06cUH5+vvLz8yVJhYWFys/P16FDh1RRUaE777xT27Zt05IlS1RZWSmn0ymn06ny8nJJUtu2bdW3b18NHz5cW7Zs0ccff6zU1FQNHDhQDodDkjR48GDZbDYlJydrz549WrZsmWbOnKnRo0ebfYwcOVIZGRmaPn269u3bp8mTJ2vbtm1KTU31wMsCAADqPaOG1q9fb0g6axs2bJhRWFh4zjlJxvr16819fPPNN8agQYOMJk2aGHa73bj33nuNb7/91u04n3zyidGjRw/D39/fuPjii43nnnvurF7eeust48orrzRsNpvRrl07Y/Xq1TVaS2lpqSHJKC0trenLgDOUv/+Rsf+ffzM3AABq0/n+/v5N98mp77hPjmdwnxwAQF363dwnBwAAwBtq5dNVqFsVGRvPGmvYt4cXOgEA4PeDMzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCS/LzdAPBbVGRsPGusYd8eXugEAPB7w5kcAABgSYQcAABgSYQcAABgSTUOOdnZ2erXr58cDod8fHy0cuVKt3nDMDRp0iS1bNlSgYGBio+P14EDB9xqjh07pqSkJNntdgUHBys5OVknTpxwq9m5c6euv/56BQQEKCIiQunp6Wf1snz5ckVHRysgIEDt27fXe++9V9PlAAAAi6pxyCkrK1NsbKzmzp17zvn09HTNmjVL8+fPV25urho3bqyEhASdPHnSrElKStKePXuUmZmpVatWKTs7WyNGjDDnXS6X+vTpo6ioKOXl5WnatGmaPHmyFixYYNZs2rRJgwYNUnJysnbs2KH+/furf//+2r17d02XBAAALMjHMAzjVz/Zx0crVqxQ//79Jf1wFsfhcOiRRx7R//zP/0iSSktLFRYWpsWLF2vgwIHau3evYmJitHXrVnXu3FmSlJGRoZtvvllffvmlHA6H5s2bp0cffVROp1M2m02SNH78eK1cuVL79u2TJN19990qKyvTqlWrzH66d++uDh06aP78+efVv8vlUlBQkEpLS2W323/ty+B13v6EUUXGRn1R8r75+IqBz9TpsX+MT1cBgLWd7+9vj16TU1hYKKfTqfj4eHMsKChI3bp1U05OjiQpJydHwcHBZsCRpPj4ePn6+io3N9es6dmzpxlwJCkhIUEFBQU6fvy4WXPmcaprqo9zLqdOnZLL5XLbAACANXk05DidTklSWFiY23hYWJg553Q6FRoa6jbv5+enkJAQt5pz7ePMY/xUTfX8uUyZMkVBQUHmFhERUdMlAgCAeuKC+nTVhAkTVFpaam6HDx/2dksAAKCWeDTkhIeHS5KKiorcxouKisy58PBwFRcXu82fPn1ax44dc6s51z7OPMZP1VTPn4u/v7/sdrvbBgAArMmjIad169YKDw9XVlaWOeZyuZSbm6u4uDhJUlxcnEpKSpSXl2fWrFu3TlVVVerWrZtZk52drYqKCrMmMzNTbdq0UbNmzcyaM49TXVN9HAAAcGGrccg5ceKE8vPzlZ+fL+mHi43z8/N16NAh+fj4KC0tTU8//bTeeecd7dq1S0OHDpXD4TA/gdW2bVv17dtXw4cP15YtW/Txxx8rNTVVAwcOlMPhkCQNHjxYNptNycnJ2rNnj5YtW6aZM2dq9OjRZh8jR45URkaGpk+frn379mny5Mnatm2bUlNTf/urAgAA6r0af0Hntm3bdOONN5qPq4PHsGHDtHjxYo0dO1ZlZWUaMWKESkpK1KNHD2VkZCggIMB8zpIlS5SamqrevXvL19dXAwYM0KxZs8z5oKAgrV27VikpKerUqZNatGihSZMmud1L59prr9XSpUv12GOP6W9/+5uuuOIKrVy5UlddddWveiEAAIC1/Kb75NR33CfHc8fnPjkAgLrilfvkAAAA/F4QcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCX5ebsBeNYXJe9Lkny37dFlnf/i5W4AAPAezuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABL8njIqays1MSJE9W6dWsFBgbqsssu01NPPSXDMMwawzA0adIktWzZUoGBgYqPj9eBAwfc9nPs2DElJSXJbrcrODhYycnJOnHihFvNzp07df311ysgIEARERFKT0/39HIAAEA95fGQM3XqVM2bN09z5szR3r17NXXqVKWnp2v27NlmTXp6umbNmqX58+crNzdXjRs3VkJCgk6ePGnWJCUlac+ePcrMzNSqVauUnZ2tESNGmPMul0t9+vRRVFSU8vLyNG3aNE2ePFkLFizw9JIAAEA95OfpHW7atEm33XabEhMTJUmtWrXSP//5T23ZskXSD2dxZsyYoccee0y33XabJOmNN95QWFiYVq5cqYEDB2rv3r3KyMjQ1q1b1blzZ0nS7NmzdfPNN+v555+Xw+HQkiVLVF5ertdee002m03t2rVTfn6+XnjhBbcwBAAALkweP5Nz7bXXKisrS/v375ckffLJJ9q4caNuuukmSVJhYaGcTqfi4+PN5wQFBalbt27KycmRJOXk5Cg4ONgMOJIUHx8vX19f5ebmmjU9e/aUzWYzaxISElRQUKDjx4+fs7dTp07J5XK5bQAAwJo8fiZn/Pjxcrlcio6OVoMGDVRZWalnnnlGSUlJkiSn0ylJCgsLc3teWFiYOed0OhUaGureqJ+fQkJC3Gpat2591j6q55o1a3ZWb1OmTNETTzzhgVUCAIDfO4+fyXnrrbe0ZMkSLV26VNu3b9frr7+u559/Xq+//rqnD1VjEyZMUGlpqbkdPnzY2y3hN/qi5H1zAwDgTB4/kzNmzBiNHz9eAwcOlCS1b99eBw8e1JQpUzRs2DCFh4dLkoqKitSyZUvzeUVFRerQoYMkKTw8XMXFxW77PX36tI4dO2Y+Pzw8XEVFRW411Y+ra37M399f/v7+v32RAADgd8/jZ3K+++47+fq677ZBgwaqqqqSJLVu3Vrh4eHKysoy510ul3JzcxUXFydJiouLU0lJifLy8syadevWqaqqSt26dTNrsrOzVVFRYdZkZmaqTZs253yrCgAAXFg8HnL69eunZ555RqtXr9YXX3yhFStW6IUXXtDtt98uSfLx8VFaWpqefvppvfPOO9q1a5eGDh0qh8Oh/v37S5Latm2rvn37avjw4dqyZYs+/vhjpaamauDAgXI4HJKkwYMHy2azKTk5WXv27NGyZcs0c+ZMjR492tNLAgAA9ZDH366aPXu2Jk6cqAcffFDFxcVyOBz6y1/+okmTJpk1Y8eOVVlZmUaMGKGSkhL16NFDGRkZCggIMGuWLFmi1NRU9e7dW76+vhowYIBmzZplzgcFBWnt2rVKSUlRp06d1KJFC02aNImPjwMAAEmSj3HmrYgvMC6XS0FBQSotLZXdbvd2O79aRcZG88/VF+D6Xh6pyzr/pc6Of+aFv1cMfKZOjitJB9581Pxzq+AfblPQsG+POjs+AKDune/vb767CgAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKthJwjR47onnvuUfPmzRUYGKj27dtr27Zt5rxhGJo0aZJatmypwMBAxcfH68CBA277OHbsmJKSkmS32xUcHKzk5GSdOHHCrWbnzp26/vrrFRAQoIiICKWnp9fGcgAAQD3k8ZBz/PhxXXfddWrYsKHef/99ffrpp5o+fbqaNWtm1qSnp2vWrFmaP3++cnNz1bhxYyUkJOjkyZNmTVJSkvbs2aPMzEytWrVK2dnZGjFihDnvcrnUp08fRUVFKS8vT9OmTdPkyZO1YMECTy8JAADUQ36e3uHUqVMVERGhRYsWmWOtW7c2/2wYhmbMmKHHHntMt912myTpjTfeUFhYmFauXKmBAwdq7969ysjI0NatW9W5c2dJ0uzZs3XzzTfr+eefl8Ph0JIlS1ReXq7XXntNNptN7dq1U35+vl544QW3MAQAAC5MHj+T884776hz587605/+pNDQUHXs2FGvvPKKOV9YWCin06n4+HhzLCgoSN26dVNOTo4kKScnR8HBwWbAkaT4+Hj5+voqNzfXrOnZs6dsNptZk5CQoIKCAh0/fvycvZ06dUoul8ttAwAA1uTxkPP5559r3rx5uuKKK7RmzRr99a9/1cMPP6zXX39dkuR0OiVJYWFhbs8LCwsz55xOp0JDQ93m/fz8FBIS4lZzrn2ceYwfmzJlioKCgswtIiLiN64WAAD8Xnk85FRVVemaa67Rs88+q44dO2rEiBEaPny45s+f7+lD1diECRNUWlpqbocPH/Z2SwAAoJZ4POS0bNlSMTExbmNt27bVoUOHJEnh4eGSpKKiIreaoqIicy48PFzFxcVu86dPn9axY8fcas61jzOP8WP+/v6y2+1uGwAAsCaPh5zrrrtOBQUFbmP79+9XVFSUpB8uQg4PD1dWVpY573K5lJubq7i4OElSXFycSkpKlJeXZ9asW7dOVVVV6tatm1mTnZ2tiooKsyYzM1Nt2rRx+yQXAAC4MHk85IwaNUqbN2/Ws88+q88++0xLly7VggULlJKSIkny8fFRWlqann76ab3zzjvatWuXhg4dKofDof79+0v64cxP3759NXz4cG3ZskUff/yxUlNTNXDgQDkcDknS4MGDZbPZlJycrD179mjZsmWaOXOmRo8e7eklAQCAesjjHyHv0qWLVqxYoQkTJujJJ59U69atNWPGDCUlJZk1Y8eOVVlZmUaMGKGSkhL16NFDGRkZCggIMGuWLFmi1NRU9e7dW76+vhowYIBmzZplzgcFBWnt2rVKSUlRp06d1KJFC02aNImPjwMAAEm1EHIk6ZZbbtEtt9zyk/M+Pj568skn9eSTT/5kTUhIiJYuXfqzx7n66qv10Ucf/eo+AQCAdfHdVQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJL8vN0AUJ9UZGx0e9ywbw8vdQIA+CWcyQEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZU6yHnueeek4+Pj9LS0syxkydPKiUlRc2bN1eTJk00YMAAFRUVuT3v0KFDSkxMVKNGjRQaGqoxY8bo9OnTbjUffvihrrnmGvn7++vyyy/X4sWLa3s5AACgnqjVkLN161a9/PLLuvrqq93GR40apXfffVfLly/Xhg0bdPToUd1xxx3mfGVlpRITE1VeXq5Nmzbp9ddf1+LFizVp0iSzprCwUImJibrxxhuVn5+vtLQ03X///VqzZk1tLgkAANQTtRZyTpw4oaSkJL3yyitq1qyZOV5aWqpXX31VL7zwgv7whz+oU6dOWrRokTZt2qTNmzdLktauXatPP/1U//jHP9ShQwfddNNNeuqppzR37lyVl5dLkubPn6/WrVtr+vTpatu2rVJTU3XnnXfqxRdfrK0lAQCAeqTWQk5KSooSExMVHx/vNp6Xl6eKigq38ejoaEVGRionJ0eSlJOTo/bt2yssLMysSUhIkMvl0p49e8yaH+87ISHB3Me5nDp1Si6Xy20DAADWVCvfXfXmm29q+/bt2rp161lzTqdTNptNwcHBbuNhYWFyOp1mzZkBp3q+eu7nalwul77//nsFBgaedewpU6boiSee+NXrAgAA9YfHz+QcPnxYI0eO1JIlSxQQEODp3f8mEyZMUGlpqbkdPnzY2y0BAIBa4vGQk5eXp+LiYl1zzTXy8/OTn5+fNmzYoFmzZsnPz09hYWEqLy9XSUmJ2/OKiooUHh4uSQoPDz/r01bVj3+pxm63n/MsjiT5+/vLbre7bQAAwJo8HnJ69+6tXbt2KT8/39w6d+6spKQk888NGzZUVlaW+ZyCggIdOnRIcXFxkqS4uDjt2rVLxcXFZk1mZqbsdrtiYmLMmjP3UV1TvQ8AAHBh8/g1OU2bNtVVV13lNta4cWM1b97cHE9OTtbo0aMVEhIiu92uhx56SHFxcerevbskqU+fPoqJidGQIUOUnp4up9Opxx57TCkpKfL395ckPfDAA5ozZ47Gjh2r++67T+vWrdNbb72l1atXe3pJAACgHqqVC49/yYsvvihfX18NGDBAp06dUkJCgl566SVzvkGDBlq1apX++te/Ki4uTo0bN9awYcP05JNPmjWtW7fW6tWrNWrUKM2cOVOXXHKJFi5cqISEBG8sCQAA/M7UScj58MMP3R4HBARo7ty5mjt37k8+JyoqSu+9997P7veGG27Qjh07PNEiAACwGL67CgAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWJJXbgYIWMEXJe/Ld9seSdJlnf/i5W4AAD/GmRwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJHg85U6ZMUZcuXdS0aVOFhoaqf//+KigocKs5efKkUlJS1Lx5czVp0kQDBgxQUVGRW82hQ4eUmJioRo0aKTQ0VGPGjNHp06fdaj788ENdc8018vf31+WXX67Fixd7ejkAAKCe8njI2bBhg1JSUrR582ZlZmaqoqJCffr0UVlZmVkzatQovfvuu1q+fLk2bNigo0eP6o477jDnKysrlZiYqPLycm3atEmvv/66Fi9erEmTJpk1hYWFSkxM1I033qj8/HylpaXp/vvv15o1azy9JAAAUA/5eXqHGRkZbo8XL16s0NBQ5eXlqWfPniotLdWrr76qpUuX6g9/+IMkadGiRWrbtq02b96s7t27a+3atfr000/1wQcfKCwsTB06dNBTTz2lcePGafLkybLZbJo/f75at26t6dOnS5Latm2rjRs36sUXX1RCQoKnlwUAAOqZWr8mp7S0VJIUEhIiScrLy1NFRYXi4+PNmujoaEVGRionJ0eSlJOTo/bt2yssLMysSUhIkMvl0p49e8yaM/dRXVO9j3M5deqUXC6X2wYAAKypVkNOVVWV0tLSdN111+mqq66SJDmdTtlsNgUHB7vVhoWFyel0mjVnBpzq+eq5n6txuVz6/vvvz9nPlClTFBQUZG4RERG/eY0AAOD3qVZDTkpKinbv3q0333yzNg9z3iZMmKDS0lJzO3z4sLdbAgAAtcTj1+RUS01N1apVq5Sdna1LLrnEHA8PD1d5eblKSkrczuYUFRUpPDzcrNmyZYvb/qo/fXVmzY8/kVVUVCS73a7AwMBz9uTv7y9/f//fvDYAAPD75/EzOYZhKDU1VStWrNC6devUunVrt/lOnTqpYcOGysrKMscKCgp06NAhxcXFSZLi4uK0a9cuFRcXmzWZmZmy2+2KiYkxa87cR3VN9T4AAMCFzeNnclJSUrR06VL9+9//VtOmTc1raIKCghQYGKigoCAlJydr9OjRCgkJkd1u10MPPaS4uDh1795dktSnTx/FxMRoyJAhSk9Pl9Pp1GOPPaaUlBTzTMwDDzygOXPmaOzYsbrvvvu0bt06vfXWW1q9erWnlwQAAOohj5/JmTdvnkpLS3XDDTeoZcuW5rZs2TKz5sUXX9Qtt9yiAQMGqGfPngoPD9fbb79tzjdo0ECrVq1SgwYNFBcXp3vuuUdDhw7Vk08+ada0bt1aq1evVmZmpmJjYzV9+nQtXLiQj48DAABJtXAmxzCMX6wJCAjQ3LlzNXfu3J+siYqK0nvvvfez+7nhhhu0Y8eOGvcIAACsj++uAgAAllRrn64C4FkVGRvPGmvYt4cXOgGA+oEzOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJL8vN2AVVVkbDxrrGHfHl7oBACACxMhB6hnvih53/zzFSI4A8BP4e0qAABgSYQcAABgSYQcAABgSYQcAABgSVx4XEvOvDi0VfBNXuwEAIALEyEHwHn58W0RuCUCgN873q4CAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWxKergBoyDEM67lKj4w1V1fS0yi9q4O2WLKciY6OqjCrtNf6j44ZLF3W7Tm2bd1QDH+u+1pVGpfZ+s0PHT36tZgEtLL9eoC7U+5Azd+5cTZs2TU6nU7GxsZo9e7a6du3q7bZgUUbRN6raVyidKldzNZL+U6bTjXxUGbBfDa6+0tvtWUZu1SdafPpf+kYlPwxsel3NA0KVfNUYxTl6e7W32pBzNEuv7p6mb04Wm2NWXi9QV+r121XLli3T6NGj9fjjj2v79u2KjY1VQkKCiouLf/nJQA1V7tyvqk8KpFPlbuMNvjNUsXilKnfu91Jn1pJzNEvTT7/634Dzf745+ZXSt41VztGsWj1+RcbGs7balHM0S+nbxroFHKnu1gtYWb0OOS+88IKGDx+ue++9VzExMZo/f74aNWqk1157zdutwWKMqipVrDj3Lxuf//tnxcosGVVVdddUHfui5H1zqy2VRqVe3T3tJ2YNSdJru59XpVFZaz3Upf+u1zjHrCHJsNR6gbpWb9+uKi8vV15eniZMmGCO+fr6Kj4+Xjk5Oed8zqlTp3Tq1CnzcWlpqSTJ5XJ5vL8T3/33OK6GZZKkhrVwHEmqKCs767g+J76vlXX91PHd1ltHx5Xq7nWu/M9hVRR/9fNFRSfV8JO9anBZhMePL/337/n38lrXxuv86Tfb5Tz2vz9b87/fHdXWLz5STPNrPH58yf2/p2q19d+ut9dbken+s7LhH+M8fozzPXZdHx/1W/XPPsM41/8gnMGop44cOWJIMjZt2uQ2PmbMGKNr167nfM7jjz/+w/8asbGxsbGxsdX77fDhwz+bFertmZxfY8KECRo9erT5uKqqSseOHVPz5s3l4+PzM8+sGZfLpYiICB0+fFh2u91j+/29utDWK114a2a91sZ6rc2K6zUMQ99++60cDsfP1tXbkNOiRQs1aNBARUVFbuNFRUUKDw8/53P8/f3l7+/vNhYcHFxbLcput1vmX6jzcaGtV7rw1sx6rY31WpvV1hsUFPSLNfX2wmObzaZOnTopK+u/F4NWVVUpKytLcXG8rwsAwIWu3p7JkaTRo0dr2LBh6ty5s7p27aoZM2aorKxM9957r7dbAwAAXlavQ87dd9+tr776SpMmTZLT6VSHDh2UkZGhsLAwr/bl7++vxx9//Ky3xqzqQluvdOGtmfVaG+u1tgttvWfyMYxf+vwVAABA/VNvr8kBAAD4OYQcAABgSYQcAABgSYQcAABgSYQcAABgSYScWjB37ly1atVKAQEB6tatm7Zs2eLtlmrFlClT1KVLFzVt2lShoaHq37+/CgoKvN1WnXnuuefk4+OjtLQ0b7dSa44cOaJ77rlHzZs3V2BgoNq3b69t27Z5u61aUVlZqYkTJ6p169YKDAzUZZddpqeeeuqXvwCwHsnOzla/fv3kcDjk4+OjlStXus0bhqFJkyapZcuWCgwMVHx8vA4cOOCdZj3g59ZbUVGhcePGqX379mrcuLEcDoeGDh2qo0ePeq/h3+iX/n7P9MADD8jHx0czZsyos/68gZDjYcuWLdPo0aP1+OOPa/v27YqNjVVCQoKKi4u93ZrHbdiwQSkpKdq8ebMyMzNVUVGhPn36qOwc3+JsNVu3btXLL7+sq6++2tut1Jrjx4/ruuuuU8OGDfX+++/r008/1fTp09WsWTNvt1Yrpk6dqnnz5mnOnDnau3evpk6dqvT0dM2ePdvbrXlMWVmZYmNjNXfu3HPOp6ena9asWZo/f75yc3PVuHFjJSQk6OTJk3XcqWf83Hq/++47bd++XRMnTtT27dv19ttvq6CgQLfeeqsXOvWMX/r7rbZixQpt3rz5F7/3yRI88Y3g+K+uXbsaKSkp5uPKykrD4XAYU6ZM8WJXdaO4uNiQZGzYsMHbrdSqb7/91rjiiiuMzMxMo1evXsbIkSO93VKtGDdunNGjRw9vt1FnEhMTjfvuu89t7I477jCSkpK81FHtkmSsWLHCfFxVVWWEh4cb06ZNM8dKSkoMf39/45///KcXOvSsH6/3XLZs2WJIMg4ePFg3TdWin1rvl19+aVx88cXG7t27jaioKOPFF1+s897qEmdyPKi8vFx5eXmKj483x3x9fRUfH6+cnBwvdlY3SktLJUkhISFe7qR2paSkKDEx0e3v2Yreeecdde7cWX/6058UGhqqjh076pVXXvF2W7Xm2muvVVZWlvbv3y9J+uSTT7Rx40bddNNNXu6sbhQWFsrpdLr9ex0UFKRu3bpdED+/pB9+hvn4+NTqFzd7U1VVlYYMGaIxY8aoXbt23m6nTtTrr3X4vfn6669VWVl51tdKhIWFad++fV7qqm5UVVUpLS1N1113na666ipvt1Nr3nzzTW3fvl1bt271diu17vPPP9e8efM0evRo/e1vf9PWrVv18MMPy2azadiwYd5uz+PGjx8vl8ul6OhoNWjQQJWVlXrmmWeUlJTk7dbqhNPplKRz/vyqnrOykydPaty4cRo0aJClvqn7TFOnTpWfn58efvhhb7dSZwg58IiUlBTt3r1bGzdu9HYrtebw4cMaOXKkMjMzFRAQ4O12al1VVZU6d+6sZ599VpLUsWNH7d69W/Pnz7dkyHnrrbe0ZMkSLV26VO3atVN+fr7S0tLkcDgsuV78V0VFhe666y4ZhqF58+Z5u51akZeXp5kzZ2r79u3y8fHxdjt1hrerPKhFixZq0KCBioqK3MaLiooUHh7upa5qX2pqqlatWqX169frkksu8XY7tSYvL0/FxcW65ppr5OfnJz8/P23YsEGzZs2Sn5+fKisrvd2iR7Vs2VIxMTFuY23bttWhQ4e81FHtGjNmjMaPH6+BAweqffv2GjJkiEaNGqUpU6Z4u7U6Uf0z6kL7+VUdcA4ePKjMzEzLnsX56KOPVFxcrMjISPPn18GDB/XII4+oVatW3m6v1hByPMhms6lTp07Kysoyx6qqqpSVlaW4uDgvdlY7DMNQamqqVqxYoXXr1ql169bebqlW9e7dW7t27VJ+fr65de7cWUlJScrPz1eDBg283aJHXXfddWfdEmD//v2KioryUke167vvvpOvr/uPxAYNGqiqqspLHdWt1q1bKzw83O3nl8vlUm5uriV/fkn/DTgHDhzQBx98oObNm3u7pVozZMgQ7dy50+3nl8Ph0JgxY7RmzRpvt1dreLvKw0aPHq1hw4apc+fO6tq1q2bMmKGysjLde++93m7N41JSUrR06VL9+9//VtOmTc337YOCghQYGOjl7jyvadOmZ11v1LhxYzVv3tyS1yGNGjVK1157rZ599lnddddd2rJlixYsWKAFCxZ4u7Va0a9fPz3zzDOKjIxUu3bttGPHDr3wwgu67777vN2ax5w4cUKfffaZ+biwsFD5+fkKCQlRZGSk0tLS9PTTT+uKK65Q69atNXHiRDkcDvXv3997Tf8GP7feli1b6s4779T27du1atUqVVZWmj/DQkJCZLPZvNX2r/ZLf78/DnENGzZUeHi42rRpU9et1h1vf7zLimbPnm1ERkYaNpvN6Nq1q7F582Zvt1QrJJ1zW7RokbdbqzNW/gi5YRjGu+++a1x11VWGv7+/ER0dbSxYsMDbLdUal8tljBw50oiMjDQCAgKMSy+91Hj00UeNU6dOebs1j1m/fv05/5sdNmyYYRg/fIx84sSJRlhYmOHv72/07t3bKCgo8G7Tv8HPrbewsPAnf4atX7/e263/Kr/09/tjF8JHyH0Mw0K38wQAAPg/XJMDAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAs6f8DBXJaR8VWY44AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP99JREFUeJzt3XtclGX+//H3IEcPgCdAEpEOK2qGZ8VMK1lBqSSt1Fi1Iu2Auymtmd9K7bC5YZqHzMNmaptu5X5XKi0UNWVTPKGsh5Q0SS0baFMYJQWE+/dHP+6vk3hAB5Hb1/PxuB+P5ro+9zXXNTfTvL3nnhmbYRiGAAAALMatuicAAABQFQg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5wHVi4cKFstls+u6776p7KgBwVRByANRoS5Ys0bRp06p7GgCuQYQcADUaIQfA+RByAACAJRFygOvYO++8o9atW8vLy0vBwcFKTExUfn6+U82dd96pW2+9VV9//bXuuusu1a5dWzfccIOSk5PPGe/QoUO67777VKdOHQUEBGj06NFauXKlbDab1q1b51S7efNmxcTEyM/PT7Vr11bPnj21YcMGp5oTJ05o1KhRat68uby8vBQQEKDf//732r59uzm3FStW6NChQ7LZbLLZbGrevPklrX3YsGFq1KiRSkpKzunr3bu3WrRocUnjSNIjjzyiunXr6vDhw7rnnntUt25d3XDDDZo1a5YkadeuXbr77rtVp04dhYaGasmSJU77Hzt2TH/+85/Vpk0b1a1bV76+vurTp4/+85//nDNnb29v7d2716k9Ojpa9evX19GjRy95zsD1gJADXKcmTpyoxMREBQcHa8qUKRowYIDmzp2r3r17n/PCf/z4ccXExCgiIkJTpkxReHi4xo4dqy+++MKsKSws1N13363Vq1frT3/6k1544QVt3LhRY8eOPee+165dqx49esjhcGjChAl6/fXXlZ+fr7vvvltbtmwx65588knNnj1bAwYM0DvvvKM///nP8vHxMV/kX3jhBbVt21aNGjXS3//+d/3973+/5LeuhgwZop9//lkrV650arfb7Vq7dq3+8Ic/XOpDKUkqLS1Vnz59FBISouTkZDVv3lwjR47UwoULFRMTo44dO+qNN95QvXr1NHToUOXk5Jj7Hjx4UCkpKbrnnns0depUjRkzRrt27VLPnj2dgsv06dPVuHFjDRs2TKWlpZKkuXPnatWqVZo5c6aCg4MrNWfA8gwA14UFCxYYkoycnBwjLy/P8PT0NHr37m2UlpaaNW+//bYhyXjvvffMtp49exqSjPfff99sKyoqMoKCgowBAwaYbVOmTDEkGSkpKWbbqVOnjPDwcEOS8eWXXxqGYRhlZWXGLbfcYkRHRxtlZWVm7S+//GKEhYUZv//97802Pz8/IzEx8YLrio2NNUJDQyv9eJSWlhpNmzY1Bg4c6NQ+depUw2azGQcPHrzksYYNG2ZIMl5//XWz7fjx44aPj49hs9mMDz/80Gzft2+fIcmYMGGC2Xb69Gmn42AYhpGTk2N4eXkZr7zyilP7ypUrDUnGa6+9Zhw8eNCoW7euERcXd8lzBa4nnMkBrkOrV69WcXGxRo0aJTe3//vfwPDhw+Xr66sVK1Y41detW9fpzIanp6c6d+6sgwcPmm2pqam64YYbdN9995lt3t7eGj58uNNYWVlZ2r9/vx5++GH9/PPP+u9//6v//ve/KiwsVK9evZSenq6ysjJJkr+/vzZv3lwlb8O4ubkpPj5en376qU6cOGG2L168WN26dVNYWFilx3z88cfN//b391eLFi1Up04dPfTQQ2Z7ixYt5O/v7/TYeXl5mcehtLRUP//8s+rWrasWLVqYb82V6927t5544gm98sor6t+/v7y9vTV37txKzxW4HhBygOvQoUOHJOmc6048PT114403mv3lmjZtKpvN5tRWv359HT9+3GnMm2666Zy6m2++2en2/v37Jf16fUnjxo2dtnfffVdFRUUqKCiQJCUnJ2v37t0KCQlR586dNXHiRKdwcKWGDh2qU6dOadmyZZKk7OxsZWZmasiQIZUey9vbW40bN3Zq8/Pzq/Cx8/Pzc3rsysrK9NZbb+mWW26Rl5eXGjVqpMaNG2vnzp3mY3G2N998Uw0aNFBWVpZmzJihgICASs8XuB4QcgBcVK1atSpsNwyj0mOVn6WZPHmy0tLSKtzq1q0rSXrooYd08OBB83qTyZMnq3Xr1k7XAl2JVq1aqUOHDvrggw8kSR988IE8PT2dzrxcqvM9Rpfy2L3++utKSkpSjx499MEHH2jlypVKS0tT69atzcfrbDt27FBeXp6kXy9qBlAx9+qeAICrLzQ0VNKvZy5uvPFGs724uFg5OTmKioq6rDG//vprGYbhdObiwIEDTnU33XSTJMnX1/eS7qdJkyZ6+umn9fTTTysvL0/t27fXX/7yF/Xp00eSzjlLUllDhw5VUlKSfvzxRy1ZskSxsbGqX7/+FY1ZWf/85z911113af78+U7t+fn5atSokVNbYWGhHn30UbVq1UrdunVTcnKy7r//fnXq1OlqThmoETiTA1yHoqKi5OnpqRkzZjidUZg/f74KCgoUGxtb6TGjo6P1ww8/6NNPPzXbTp8+rb/97W9OdR06dNBNN92kN998UydPnjxnnJ9++knSr9em/PatmoCAAAUHB6uoqMhsq1OnToVv6VyqwYMHy2az6ZlnntHBgwcr/akqV6hVq9Y5Z8WWLl2qH3744ZzasWPH6vDhw1q0aJGmTp2q5s2ba9iwYU6PCYBfcSYHuA41btxY48aN08svv6yYmBjdd999ys7O1jvvvKNOnTpd1gv9E088obfffluDBw/WM888oyZNmmjx4sXy9vaW9H9nXNzc3PTuu++qT58+at26tR599FHdcMMN+uGHH/Tll1/K19dXn332mU6cOKGmTZvqgQceUEREhOrWravVq1dr69atmjJlinm/HTp00EcffaSkpCR16tRJdevW1b333lupxyImJkZLly6Vv7//ZQW8K3XPPffolVde0aOPPqpu3bpp165dWrx4sdNZNunXj96/8847mjBhgtq3by9JWrBgge6880699NJLFX53EXBdq9bPdgG4as7+CHm5t99+2wgPDzc8PDyMwMBA46mnnjKOHz/utF/Pnj2N1q1bnzPesGHDzvno9sGDB43Y2FjDx8fHaNy4sfHss88a//u//2tIMjZt2uRUu2PHDqN///5Gw4YNDS8vLyM0NNR46KGHjDVr1hiG8evH1MeMGWNEREQY9erVM+rUqWNEREQY77zzjtM4J0+eNB5++GHD39/fkHRZHyf/+OOPDUnGiBEjKr2vYfz6WNSpU+ec9vM9dqGhoUZsbKx5+/Tp08azzz5rNGnSxPDx8TFuv/12IyMjw+jZs6fRs2dPwzAMw+FwGKGhoUb79u2NkpISp/FGjx5tuLm5GRkZGZc1f8CqbIZxGVcOAsAlmjZtmkaPHq3vv/9eN9xwQ3VPp0KffPKJ4uLilJ6erjvuuKO6pwPARQg5AFzm1KlT8vHxMW+fPn1a7dq1U2lpqb755ptqnNmF3XPPPdq7d68OHDhwxRcyA7h2cE0OAJfp37+/mjVrprZt26qgoEAffPCB9u3bp8WLF1/Vefz000/mzx5UxNPTUw0aNNCHH36onTt3asWKFZo+ffo5AaegoECnTp264H0FBQW5ZM4AXI8zOQBcZtq0aXr33Xf13XffqbS0VK1atdJzzz2ngQMHXtV5NG/e/JwvNDxbz549tW7dOtlsNtWtW1cDBw7UnDlz5O7u/O++Rx55RIsWLbrgffG/UODaRcgBYDkbNmy44BmY+vXrq0OHDhcd5+uvv77oT0pczncKAbg6CDkAAMCS+DJAAABgSdf1hcdlZWU6evSo6tWrxycqAACoIQzD0IkTJxQcHCw3t/Ofr7muQ87Ro0cVEhJS3dMAAACX4ciRI2ratOl5+6/rkFOvXj1Jvz5Ivr6+1TwbAABwKRwOh0JCQszX8fO5rkNO+VtUvr6+hBwAAGqYi11qwoXHAADAkgg5AADAkgg5AADAkgg5AADAkiodctLT03XvvfcqODhYNptNKSkp59Ts3btX9913n/z8/FSnTh116tRJhw8fNvtPnz6txMRENWzYUHXr1tWAAQOUm5vrNMbhw4cVGxur2rVrKyAgQGPGjNGZM2ecatatW6f27dvLy8tLN998sxYuXFjZ5QAAAIuqdMgpLCxURESEZs2aVWH/t99+q+7duys8PFzr1q3Tzp079dJLL8nb29usGT16tD777DMtXbpU69ev19GjR9W/f3+zv7S0VLGxsSouLtbGjRu1aNEiLVy4UOPHjzdrcnJyFBsbq7vuuktZWVkaNWqUHn/8ca1cubKySwIAABZ0Rb9dZbPZtGzZMsXFxZltgwYNkoeHh/7+979XuE9BQYEaN26sJUuW6IEHHpAk7du3Ty1btlRGRoa6du2qL774Qvfcc4+OHj2qwMBASdKcOXM0duxY/fTTT/L09NTYsWO1YsUK7d692+m+8/PzlZqaeknzdzgc8vPzU0FBAR8hBwCghrjU12+XXpNTVlamFStW6He/+52io6MVEBCgLl26OL2llZmZqZKSEqdf7g0PD1ezZs2UkZEhScrIyFCbNm3MgCNJ0dHRcjgc2rNnj1nz21//jY6ONseoSFFRkRwOh9MGAACsyaUhJy8vTydPntRf//pXxcTEaNWqVbr//vvVv39/rV+/XpJkt9vl6ekpf39/p30DAwNlt9vNmrMDTnl/ed+FahwOh06dOlXh/CZNmiQ/Pz9z4ycdAACwLpefyZGkfv36afTo0Wrbtq2ef/553XPPPZozZ44r7+qyjBs3TgUFBeZ25MiR6p4SAACoIi4NOY0aNZK7u7tatWrl1N6yZUvz01VBQUEqLi5Wfn6+U01ubq6CgoLMmt9+2qr89sVqfH195ePjU+H8vLy8zJ9w4KccAACwNpeGHE9PT3Xq1EnZ2dlO7d98841CQ0MlSR06dJCHh4fWrFlj9mdnZ+vw4cOKjIyUJEVGRmrXrl3Ky8sza9LS0uTr62sGqMjISKcxymvKxwAAANe3Sv9A58mTJ3XgwAHzdk5OjrKystSgQQM1a9ZMY8aM0cCBA9WjRw/dddddSk1N1WeffaZ169ZJkvz8/JSQkKCkpCQ1aNBAvr6++uMf/6jIyEh17dpVktS7d2+1atVKQ4YMUXJysux2u1588UUlJibKy8tLkvTkk0/q7bff1nPPPafHHntMa9eu1ccff6wVK1a44GEBAAA1nlFJX375pSHpnG3YsGFmzfz5842bb77Z8Pb2NiIiIoyUlBSnMU6dOmU8/fTTRv369Y3atWsb999/v/Hjjz861Xz33XdGnz59DB8fH6NRo0bGs88+a5SUlJwzl7Zt2xqenp7GjTfeaCxYsKBSaykoKDAkGQUFBZXaDwAAVJ9Lff2+ou/Jqelq6vfklKR+5XTbI6Z7Nc0EAICrr1q+JwcAAOBaQcgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMipYb7dNlff5X9R3dMAAOCaR8gBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWVOmQk56ernvvvVfBwcGy2WxKSUk5b+2TTz4pm82madOmObUfO3ZM8fHx8vX1lb+/vxISEnTy5Emnmp07d+qOO+6Qt7e3QkJClJycfM74S5cuVXh4uLy9vdWmTRt9/vnnlV0OAACwqEqHnMLCQkVERGjWrFkXrFu2bJk2bdqk4ODgc/ri4+O1Z88epaWlafny5UpPT9eIESPMfofDod69eys0NFSZmZmaPHmyJk6cqHnz5pk1Gzdu1ODBg5WQkKAdO3YoLi5OcXFx2r17d2WXBAAALMhmGIZx2TvbbFq2bJni4uKc2n/44Qd16dJFK1euVGxsrEaNGqVRo0ZJkvbu3atWrVpp69at6tixoyQpNTVVffv21ffff6/g4GDNnj1bL7zwgux2uzw9PSVJzz//vFJSUrRv3z5J0sCBA1VYWKjly5eb99u1a1e1bdtWc+bMuaT5OxwO+fn5qaCgQL6+vpf7MFxV326bq7IDh9Xcv4/Z5hHTvRpnBADA1XWpr98uvyanrKxMQ4YM0ZgxY9S6detz+jMyMuTv728GHEmKioqSm5ubNm/ebNb06NHDDDiSFB0drezsbB0/ftysiYqKcho7OjpaGRkZ551bUVGRHA6H0wYAAKzJ5SHnjTfekLu7u/70pz9V2G+32xUQEODU5u7urgYNGshut5s1gYGBTjXlty9WU95fkUmTJsnPz8/cQkJCKrc4AABQY7g05GRmZmr69OlauHChbDabK4d2iXHjxqmgoMDcjhw5Ut1TAgAAVcSlIeff//638vLy1KxZM7m7u8vd3V2HDh3Ss88+q+bNm0uSgoKClJeX57TfmTNndOzYMQUFBZk1ubm5TjXlty9WU95fES8vL/n6+jptAADAmlwacoYMGaKdO3cqKyvL3IKDgzVmzBitXLlSkhQZGan8/HxlZmaa+61du1ZlZWXq0qWLWZOenq6SkhKzJi0tTS1atFD9+vXNmjVr1jjdf1pamiIjI125JAAAUEO5V3aHkydP6sCBA+btnJwcZWVlqUGDBmrWrJkaNmzoVO/h4aGgoCC1aNFCktSyZUvFxMRo+PDhmjNnjkpKSjRy5EgNGjTI/Lj5ww8/rJdfflkJCQkaO3asdu/erenTp+utt94yx33mmWfUs2dPTZkyRbGxsfrwww+1bds2p4+ZAwCA61elz+Rs27ZN7dq1U7t27SRJSUlJateuncaPH3/JYyxevFjh4eHq1auX+vbtq+7duzuFEz8/P61atUo5OTnq0KGDnn32WY0fP97pu3S6deumJUuWaN68eYqIiNA///lPpaSk6NZbb63skgAAgAVd0ffk1HR8T46zktSvzmnjO3gAANeaavueHAAAgGsBIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQeSpG+3zdV3+V9U9zQAAHAZQg4AALAkQg4AALAkQg4AALAkQg4AALCkSoec9PR03XvvvQoODpbNZlNKSorZV1JSorFjx6pNmzaqU6eOgoODNXToUB09etRpjGPHjik+Pl6+vr7y9/dXQkKCTp486VSzc+dO3XHHHfL29lZISIiSk5PPmcvSpUsVHh4ub29vtWnTRp9//nlllwMAACyq0iGnsLBQERERmjVr1jl9v/zyi7Zv366XXnpJ27dv17/+9S9lZ2frvvvuc6qLj4/Xnj17lJaWpuXLlys9PV0jRoww+x0Oh3r37q3Q0FBlZmZq8uTJmjhxoubNm2fWbNy4UYMHD1ZCQoJ27NihuLg4xcXFaffu3ZVdEgAAsCCbYRjGZe9ss2nZsmWKi4s7b83WrVvVuXNnHTp0SM2aNdPevXvVqlUrbd26VR07dpQkpaamqm/fvvr+++8VHBys2bNn64UXXpDdbpenp6ck6fnnn1dKSor27dsnSRo4cKAKCwu1fPly8766du2qtm3bas6cOZc0f4fDIT8/PxUUFMjX1/cyH4Wr69ttc1V24LCa+/cx2zxiulfJuK4aGwAAV7rU1+8qvyanoKBANptN/v7+kqSMjAz5+/ubAUeSoqKi5Obmps2bN5s1PXr0MAOOJEVHRys7O1vHjx83a6KiopzuKzo6WhkZGeedS1FRkRwOh9MGAACsqUpDzunTpzV27FgNHjzYTFp2u10BAQFOde7u7mrQoIHsdrtZExgY6FRTfvtiNeX9FZk0aZL8/PzMLSQk5MoWCAAArllVFnJKSkr00EMPyTAMzZ49u6ruplLGjRungoICczty5Eh1TwkAAFQR96oYtDzgHDp0SGvXrnV6vywoKEh5eXlO9WfOnNGxY8cUFBRk1uTm5jrVlN++WE15f0W8vLzk5eV1+QsDAAA1hsvP5JQHnP3792v16tVq2LChU39kZKTy8/OVmZlptq1du1ZlZWXq0qWLWZOenq6SkhKzJi0tTS1atFD9+vXNmjVr1jiNnZaWpsjISFcvCQAA1ECVDjknT55UVlaWsrKyJEk5OTnKysrS4cOHVVJSogceeEDbtm3T4sWLVVpaKrvdLrvdruLiYklSy5YtFRMTo+HDh2vLli3asGGDRo4cqUGDBik4OFiS9PDDD8vT01MJCQnas2ePPvroI02fPl1JSUnmPJ555hmlpqZqypQp2rdvnyZOnKht27Zp5MiRLnhYAABATVfpkLNt2za1a9dO7dq1kyQlJSWpXbt2Gj9+vH744Qd9+umn+v7779W2bVs1adLE3DZu3GiOsXjxYoWHh6tXr17q27evunfv7vQdOH5+flq1apVycnLUoUMHPfvssxo/frzTd+l069ZNS5Ys0bx58xQREaF//vOfSklJ0a233noljwcAALCISl+Tc+edd+pCX61zKV+706BBAy1ZsuSCNbfddpv+/e9/X7DmwQcf1IMPPnjR+wMAANcffrsKAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUqVDTnp6uu69914FBwfLZrMpJSXFqd8wDI0fP15NmjSRj4+PoqKitH//fqeaY8eOKT4+Xr6+vvL391dCQoJOnjzpVLNz507dcccd8vb2VkhIiJKTk8+Zy9KlSxUeHi5vb2+1adNGn3/+eWWXAwAALKrSIaewsFARERGaNWtWhf3JycmaMWOG5syZo82bN6tOnTqKjo7W6dOnzZr4+Hjt2bNHaWlpWr58udLT0zVixAiz3+FwqHfv3goNDVVmZqYmT56siRMnat68eWbNxo0bNXjwYCUkJGjHjh2Ki4tTXFycdu/eXdklAQAAC7IZhmFc9s42m5YtW6a4uDhJv57FCQ4O1rPPPqs///nPkqSCggIFBgZq4cKFGjRokPbu3atWrVpp69at6tixoyQpNTVVffv21ffff6/g4GDNnj1bL7zwgux2uzw9PSVJzz//vFJSUrRv3z5J0sCBA1VYWKjly5eb8+natavatm2rOXPmVDjfoqIiFRUVmbcdDodCQkJUUFAgX1/fy30Yrqpvt81V2YHDau7fx2zziOleJeO6amwAAFzJ4XDIz8/voq/fLr0mJycnR3a7XVFRUWabn5+funTpooyMDElSRkaG/P39zYAjSVFRUXJzc9PmzZvNmh49epgBR5Kio6OVnZ2t48ePmzVn3095Tfn9VGTSpEny8/Mzt5CQkCtfNAAAuCa5NOTY7XZJUmBgoFN7YGCg2We32xUQEODU7+7urgYNGjjVVDTG2fdxvpry/oqMGzdOBQUF5nbkyJHKLhEAANQQ7tU9gavJy8tLXl5e1T0NAABwFbj0TE5QUJAkKTc316k9NzfX7AsKClJeXp5T/5kzZ3Ts2DGnmorGOPs+zldT3g8AAK5vLg05YWFhCgoK0po1a8w2h8OhzZs3KzIyUpIUGRmp/Px8ZWZmmjVr165VWVmZunTpYtakp6erpKTErElLS1OLFi1Uv359s+bs+ymvKb8fAABwfat0yDl58qSysrKUlZUl6deLjbOysnT48GHZbDaNGjVKr732mj799FPt2rVLQ4cOVXBwsPkJrJYtWyomJkbDhw/Xli1btGHDBo0cOVKDBg1ScHCwJOnhhx+Wp6enEhIStGfPHn300UeaPn26kpKSzHk888wzSk1N1ZQpU7Rv3z5NnDhR27Zt08iRI6/8UQEAADVepa/J2bZtm+666y7zdnnwGDZsmBYuXKjnnntOhYWFGjFihPLz89W9e3elpqbK29vb3Gfx4sUaOXKkevXqJTc3Nw0YMEAzZsww+/38/LRq1SolJiaqQ4cOatSokcaPH+/0XTrdunXTkiVL9OKLL+p//ud/dMsttyglJUW33nrrZT0QAADAWq7oe3Jqukv9nP21hO/JAQBc76rle3IAAACuFYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSS4POaWlpXrppZcUFhYmHx8f3XTTTXr11VdlGIZZYxiGxo8fryZNmsjHx0dRUVHav3+/0zjHjh1TfHy8fH195e/vr4SEBJ08edKpZufOnbrjjjvk7e2tkJAQJScnu3o5AACghnJ5yHnjjTc0e/Zsvf3229q7d6/eeOMNJScna+bMmWZNcnKyZsyYoTlz5mjz5s2qU6eOoqOjdfr0abMmPj5ee/bsUVpampYvX6709HSNGDHC7Hc4HOrdu7dCQ0OVmZmpyZMna+LEiZo3b56rlwQAAGogd1cPuHHjRvXr10+xsbGSpObNm+sf//iHtmzZIunXszjTpk3Tiy++qH79+kmS3n//fQUGBiolJUWDBg3S3r17lZqaqq1bt6pjx46SpJkzZ6pv37568803FRwcrMWLF6u4uFjvvfeePD091bp1a2VlZWnq1KlOYQgAAFyfXH4mp1u3blqzZo2++eYbSdJ//vMfffXVV+rTp48kKScnR3a7XVFRUeY+fn5+6tKlizIyMiRJGRkZ8vf3NwOOJEVFRcnNzU2bN282a3r06CFPT0+zJjo6WtnZ2Tp+/HiFcysqKpLD4XDaAACANbn8TM7zzz8vh8Oh8PBw1apVS6WlpfrLX/6i+Ph4SZLdbpckBQYGOu0XGBho9tntdgUEBDhP1N1dDRo0cKoJCws7Z4zyvvr1658zt0mTJunll192wSoBAMC1zuVncj7++GMtXrxYS5Ys0fbt27Vo0SK9+eabWrRokavvqtLGjRungoICczty5Eh1TwkAAFQRl5/JGTNmjJ5//nkNGjRIktSmTRsdOnRIkyZN0rBhwxQUFCRJys3NVZMmTcz9cnNz1bZtW0lSUFCQ8vLynMY9c+aMjh07Zu4fFBSk3Nxcp5ry2+U1v+Xl5SUvL68rXyQAALjmufxMzi+//CI3N+dha9WqpbKyMklSWFiYgoKCtGbNGrPf4XBo8+bNioyMlCRFRkYqPz9fmZmZZs3atWtVVlamLl26mDXp6ekqKSkxa9LS0tSiRYsK36oCAADXF5eHnHvvvVd/+ctftGLFCn333XdatmyZpk6dqvvvv1+SZLPZNGrUKL322mv69NNPtWvXLg0dOlTBwcGKi4uTJLVs2VIxMTEaPny4tmzZog0bNmjkyJEaNGiQgoODJUkPP/ywPD09lZCQoD179uijjz7S9OnTlZSU5OolAQCAGsjlb1fNnDlTL730kp5++mnl5eUpODhYTzzxhMaPH2/WPPfccyosLNSIESOUn5+v7t27KzU1Vd7e3mbN4sWLNXLkSPXq1Utubm4aMGCAZsyYYfb7+flp1apVSkxMVIcOHdSoUSONHz+ej48DAABJks04+6uIrzMOh0N+fn4qKCiQr69vdU/nkny7ba7KDhxWc/8+ZptHTPcqGddVYwMA4EqX+vrNb1cBAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLcq/uCeD6UJL6ldNtj5ju1TQTAMD1gjM5AADAkgg5AADAkgg5AADAkgg5AADAkqok5Pzwww/6wx/+oIYNG8rHx0dt2rTRtm3bzH7DMDR+/Hg1adJEPj4+ioqK0v79+53GOHbsmOLj4+Xr6yt/f38lJCTo5MmTTjU7d+7UHXfcIW9vb4WEhCg5ObkqlgMAAGogl4ec48eP6/bbb5eHh4e++OILff3115oyZYrq169v1iQnJ2vGjBmaM2eONm/erDp16ig6OlqnT582a+Lj47Vnzx6lpaVp+fLlSk9P14gRI8x+h8Oh3r17KzQ0VJmZmZo8ebImTpyoefPmuXpJAACgBnL5R8jfeOMNhYSEaMGCBWZbWFiY+d+GYWjatGl68cUX1a9fP0nS+++/r8DAQKWkpGjQoEHau3evUlNTtXXrVnXs2FGSNHPmTPXt21dvvvmmgoODtXjxYhUXF+u9996Tp6enWrduraysLE2dOtUpDAEAgOuTy8/kfPrpp+rYsaMefPBBBQQEqF27dvrb3/5m9ufk5MhutysqKsps8/PzU5cuXZSRkSFJysjIkL+/vxlwJCkqKkpubm7avHmzWdOjRw95enqaNdHR0crOztbx48crnFtRUZEcDofTBgAArMnlIefgwYOaPXu2brnlFq1cuVJPPfWU/vSnP2nRokWSJLvdLkkKDAx02i8wMNDss9vtCggIcOp3d3dXgwYNnGoqGuPs+/itSZMmyc/Pz9xCQkKucLUAAOBa5fKQU1ZWpvbt2+v1119Xu3btNGLECA0fPlxz5sxx9V1V2rhx41RQUGBuR44cqe4pAQCAKuLykNOkSRO1atXKqa1ly5Y6fPiwJCkoKEiSlJub61STm5tr9gUFBSkvL8+p/8yZMzp27JhTTUVjnH0fv+Xl5SVfX1+nDQAAWJPLQ87tt9+u7Oxsp7ZvvvlGoaGhkn69CDkoKEhr1qwx+x0OhzZv3qzIyEhJUmRkpPLz85WZmWnWrF27VmVlZerSpYtZk56erpKSErMmLS1NLVq0cPokFwAAuD65POSMHj1amzZt0uuvv64DBw5oyZIlmjdvnhITEyVJNptNo0aN0muvvaZPP/1Uu3bt0tChQxUcHKy4uDhJv575iYmJ0fDhw7VlyxZt2LBBI0eO1KBBgxQcHCxJevjhh+Xp6amEhATt2bNHH330kaZPn66kpCRXLwkAANRALv8IeadOnbRs2TKNGzdOr7zyisLCwjRt2jTFx8ebNc8995wKCws1YsQI5efnq3v37kpNTZW3t7dZs3jxYo0cOVK9evWSm5ubBgwYoBkzZpj9fn5+WrVqlRITE9WhQwc1atRI48eP5+PjAABAkmQzDMOo7klUF4fDIT8/PxUUFNSY63O+3TZXZQcOq7l/H7PNI6Z7lYzrqrElqST1qyoZFwBw/bnU129+uwoAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQdV7tttc6t7CgCA6xAhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKVh5y//vWvstlsGjVqlNl2+vRpJSYmqmHDhqpbt64GDBig3Nxcp/0OHz6s2NhY1a5dWwEBARozZozOnDnjVLNu3Tq1b99eXl5euvnmm7Vw4cKqXg4AAKghqjTkbN26VXPnztVtt93m1D569Gh99tlnWrp0qdavX6+jR4+qf//+Zn9paaliY2NVXFysjRs3atGiRVq4cKHGjx9v1uTk5Cg2NlZ33XWXsrKyNGrUKD3++ONauXJlVS4JAADUEFUWck6ePKn4+Hj97W9/U/369c32goICzZ8/X1OnTtXdd9+tDh06aMGCBdq4caM2bdokSVq1apW+/vprffDBB2rbtq369OmjV199VbNmzVJxcbEkac6cOQoLC9OUKVPUsmVLjRw5Ug888IDeeuutqloSAACoQaos5CQmJio2NlZRUVFO7ZmZmSopKXFqDw8PV7NmzZSRkSFJysjIUJs2bRQYGGjWREdHy+FwaM+ePWbNb8eOjo42x6hIUVGRHA6H0wYAAKzJvSoG/fDDD7V9+3Zt3br1nD673S5PT0/5+/s7tQcGBsput5s1Zwec8v7yvgvVOBwOnTp1Sj4+Pufc96RJk/Tyyy9f9roAAEDN4fIzOUeOHNEzzzyjxYsXy9vb29XDX5Fx48apoKDA3I4cOVLdUwIAAFXE5SEnMzNTeXl5at++vdzd3eXu7q7169drxowZcnd3V2BgoIqLi5Wfn++0X25uroKCgiRJQUFB53zaqvz2xWp8fX0rPIsjSV5eXvL19XXaAACANbk85PTq1Uu7du1SVlaWuXXs2FHx8fHmf3t4eGjNmjXmPtnZ2Tp8+LAiIyMlSZGRkdq1a5fy8vLMmrS0NPn6+qpVq1ZmzdljlNeUjwEAAK5vLr8mp169err11lud2urUqaOGDRua7QkJCUpKSlKDBg3k6+urP/7xj4qMjFTXrl0lSb1791arVq00ZMgQJScny26368UXX1RiYqK8vLwkSU8++aTefvttPffcc3rssce0du1affzxx1qxYoWrlwQAAGqgKrnw+GLeeustubm5acCAASoqKlJ0dLTeeecds79WrVpavny5nnrqKUVGRqpOnToaNmyYXnnlFbMmLCxMK1as0OjRozV9+nQ1bdpU7777rqKjo6tjSQAA4BpzVULOunXrnG57e3tr1qxZmjVr1nn3CQ0N1eeff37Bce+8807t2LHDFVMEAAAWw29XAQAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS3Kv7gkAV6Ik9atz2jxiulfDTAAA1xrO5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEtyeciZNGmSOnXqpHr16ikgIEBxcXHKzs52qjl9+rQSExPVsGFD1a1bVwMGDFBubq5TzeHDhxUbG6vatWsrICBAY8aM0ZkzZ5xq1q1bp/bt28vLy0s333yzFi5c6OrlAACAGsrlIWf9+vVKTEzUpk2blJaWppKSEvXu3VuFhYVmzejRo/XZZ59p6dKlWr9+vY4ePar+/fub/aWlpYqNjVVxcbE2btyoRYsWaeHChRo/frxZk5OTo9jYWN11113KysrSqFGj9Pjjj2vlypWuXhIAAKiB3F09YGpqqtPthQsXKiAgQJmZmerRo4cKCgo0f/58LVmyRHfffbckacGCBWrZsqU2bdqkrl27atWqVfr666+1evVqBQYGqm3btnr11Vc1duxYTZw4UZ6enpozZ47CwsI0ZcoUSVLLli311Vdf6a233lJ0dHSFcysqKlJRUZF52+FwuHr5AADgGlHl1+QUFBRIkho0aCBJyszMVElJiaKiosya8PBwNWvWTBkZGZKkjIwMtWnTRoGBgWZNdHS0HA6H9uzZY9acPUZ5TfkYFZk0aZL8/PzMLSQkxDWLBAAA15wqDTllZWUaNWqUbr/9dt16662SJLvdLk9PT/n7+zvVBgYGym63mzVnB5zy/vK+C9U4HA6dOnWqwvmMGzdOBQUF5nbkyJErXiMAALg2ufztqrMlJiZq9+7d+uqrr6rybi6Zl5eXvLy8qnsaAADgKqiyMzkjR47U8uXL9eWXX6pp06Zme1BQkIqLi5Wfn+9Un5ubq6CgILPmt5+2Kr99sRpfX1/5+Pi4ejkAAKCGcXnIMQxDI0eO1LJly7R27VqFhYU59Xfo0EEeHh5as2aN2Zadna3Dhw8rMjJSkhQZGaldu3YpLy/PrElLS5Ovr69atWpl1pw9RnlN+RgAAOD65vK3qxITE7VkyRJ98sknqlevnnkNjZ+fn3x8fOTn56eEhAQlJSWpQYMG8vX11R//+EdFRkaqa9eukqTevXurVatWGjJkiJKTk2W32/Xiiy8qMTHRfLvpySef1Ntvv63nnntOjz32mNauXauPP/5YK1ascPWSAABADeTykDN79mxJ0p133unUvmDBAj3yyCOSpLfeektubm4aMGCAioqKFB0drXfeecesrVWrlpYvX66nnnpKkZGRqlOnjoYNG6ZXXnnFrAkLC9OKFSs0evRoTZ8+XU2bNtW777573o+PA5VVknrutWQeMd2rYSYAgMvh8pBjGMZFa7y9vTVr1izNmjXrvDWhoaH6/PPPLzjOnXfeqR07dlR6jgAAwPr47SoAAGBJhBzUaN/lf6Hv8r+o7mkAAK5BhBwAAGBJhBwAAGBJhBwAAGBJVfqzDtczPn4MAED14kxOFeGCWAAAqhdncoBq8NszfZzlAwDX40wOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJL4nB7AQvmkbAP4PZ3IAAIAlEXIAAIAlEXIAAIAlcU0OgEvC720BqGk4kwMAACyJkAMAACyJkAMAACyJa3IAVCu+2wdAVeFMDgAAsCTO5ACwLD4RBlzfOJMDAAAsiZADAAAsiZADVODbbXP1Xf4X1T0NAMAV4JocAKgkPhEG1AycyQEAAJbEmRwAuIbwiTDAdQg5gAUYZWUqO/i9yn78STYvT6m+r2w2W3VPq9qUGqXa+/MO/VSaqfo2X7W03SQ325WfuK6qcQFUjRofcmbNmqXJkyfLbrcrIiJCM2fOVOfOnat7WsBVU7rzG5UsWyMVnJAkGZLk5Sm38DDZAhtW69yqQ8bRNZq/e7J+Pp1ntjWUvx5xH6DuuvyzIhcat4tbxBXNGUDVqNH/BPnoo4+UlJSkCRMmaPv27YqIiFB0dLTy8vIuvjNgAaU7v1HJwhQz4JiKilX2n2wZuT9Xy7yqS8bRNUre9pxTEJGkn5WvKWfmK+PomioZd3PZfy57zldLSepX52yA1dXokDN16lQNHz5cjz76qFq1aqU5c+aodu3aeu+996p7akCFvt02V99um+uSsYyysl/P4FxA2b4cGWVlLrm/a12pUar5uyfr/5/LqtB7u99UqVHq8nEXnvnfSo9rJYQnXKtq7NtVxcXFyszM1Lhx48w2Nzc3RUVFKSMjo8J9ioqKVFRUZN4uKCiQJDkcDpfP7+Qvv96Pw6PQbPNwwf2cOHlKxi9FV2VcV47tKHT9uNLVfZxdMfaJk6ckySWPR+m3R1SS99OFi4pOy+M/e1XrppBKj/9bJVV0DH877uWO/fXP22U/9uMFa3785ai2fvdvtWrY3qXj2vVzpcc9n2v9cb6UsV02btq5/y/3+H2kS8ZGzVb+um0Y5//HR3lBjfTDDz8YkoyNGzc6tY8ZM8bo3LlzhftMmDDB0K//HGNjY2NjY2Or4duRI0cumBVq7JmcyzFu3DglJSWZt8vKynTs2DE1bNjQpZ9EcTgcCgkJ0ZEjR+Tr6+uyca8lVl8j66v5rL5G1lfzWX2NVbk+wzB04sQJBQcHX7CuxoacRo0aqVatWsrNzXVqz83NVVBQUIX7eHl5ycvLy6nN39+/qqYoX19fS/7hns3qa2R9NZ/V18j6aj6rr7Gq1ufn53fRmhp74bGnp6c6dOigNWv+78LLsrIyrVmzRpGRvGcLAMD1rsaeyZGkpKQkDRs2TB07dlTnzp01bdo0FRYW6tFHH63uqQEAgGpWo0POwIED9dNPP2n8+PGy2+1q27atUlNTFRgYWK3z8vLy0oQJE855a8xKrL5G1lfzWX2NrK/ms/oar4X12QzjYp+/AgAAqHlq7DU5AAAAF0LIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIuUyzZs1S8+bN5e3trS5dumjLli0XrF+6dKnCw8Pl7e2tNm3a6PPPP79KM628SZMmqVOnTqpXr54CAgIUFxen7OzsC+6zcOFC2Ww2p83b2/sqzbhyJk6ceM5cw8PDL7hPTTp+ktS8efNz1miz2ZSYmFhh/bV+/NLT03XvvfcqODhYNptNKSkpTv2GYWj8+PFq0qSJfHx8FBUVpf3791903Mo+j6vKhdZXUlKisWPHqk2bNqpTp46Cg4M1dOhQHT169IJjXs7feVW62DF85JFHzplvTEzMRcetCcdQUoXPR5vNpsmTJ593zGvpGF7K68Lp06eVmJiohg0bqm7duhowYMA5v0rwW5f73L1UhJzL8NFHHykpKUkTJkzQ9u3bFRERoejoaOXl5VVYv3HjRg0ePFgJCQnasWOH4uLiFBcXp927d1/lmV+a9evXKzExUZs2bVJaWppKSkrUu3dvFVbwK8Zn8/X11Y8//mhuhw4dukozrrzWrVs7zfWrr746b21NO36StHXrVqf1paWlSZIefPDB8+5zLR+/wsJCRUREaNasWRX2Jycna8aMGZozZ442b96sOnXqKDo6WqdPnz7vmJV9HlelC63vl19+0fbt2/XSSy9p+/bt+te//qXs7Gzdd999Fx23Mn/nVe1ix1CSYmJinOb7j3/844Jj1pRjKMlpXT/++KPee+892Ww2DRgw4ILjXivH8FJeF0aPHq3PPvtMS5cu1fr163X06FH179//guNeznO3Ulzxi+DXm86dOxuJiYnm7dLSUiM4ONiYNGlShfUPPfSQERsb69TWpUsX44knnqjSebpKXl6eIclYv379eWsWLFhg+Pn5Xb1JXYEJEyYYERERl1xf04+fYRjGM888Y9x0001GWVlZhf016fhJMpYtW2beLisrM4KCgozJkyebbfn5+YaXl5fxj3/847zjVPZ5fLX8dn0V2bJliyHJOHTo0HlrKvt3fjVVtMZhw4YZ/fr1q9Q4NfkY9uvXz7j77rsvWHMtH8Pfvi7k5+cbHh4extKlS82avXv3GpKMjIyMCse43OduZXAmp5KKi4uVmZmpqKgos83NzU1RUVHKyMiocJ+MjAynekmKjo4+b/21pqCgQJLUoEGDC9adPHlSoaGhCgkJUb9+/bRnz56rMb3Lsn//fgUHB+vGG29UfHy8Dh8+fN7amn78iouL9cEHH+ixxx6TzWY7b11NOn5ny8nJkd1udzpGfn5+6tKly3mP0eU8j68lBQUFstlsF/2B4cr8nV8L1q1bp4CAALVo0UJPPfWUfv755/PW1uRjmJubqxUrVighIeGitdfqMfzt60JmZqZKSkqcjkd4eLiaNWt23uNxOc/dyiLkVNJ///tflZaWnvPTEYGBgbLb7RXuY7fbK1V/LSkrK9OoUaN0++2369Zbbz1vXYsWLfTee+/pk08+0QcffKCysjJ169ZN33///VWc7aXp0qWLFi5cqNTUVM2ePVs5OTm64447dOLEiQrra/Lxk6SUlBTl5+frkUceOW9NTTp+v1V+HCpzjC7neXytOH36tMaOHavBgwdf8JedK/t3Xt1iYmL0/vvva82aNXrjjTe0fv169enTR6WlpRXW1+RjuGjRItWrV++ib+Vcq8ewotcFu90uT0/Pc4L3xV4by2sudZ/KqtG/XYWql5iYqN27d1/0feDIyEinX3/v1q2bWrZsqblz5+rVV1+t6mlWSp8+fcz/vu2229SlSxeFhobq448/vqR/WdU08+fPV58+fRQcHHzempp0/K5nJSUleuihh2QYhmbPnn3B2pr2dz5o0CDzv9u0aaPbbrtNN910k9atW6devXpV48xc77333lN8fPxFL+6/Vo/hpb4uXAs4k1NJjRo1Uq1atc65Yjw3N1dBQUEV7hMUFFSp+mvFyJEjtXz5cn355Zdq2rRppfb18PBQu3btdODAgSqanev4+/vrd7/73XnnWlOPnyQdOnRIq1ev1uOPP16p/WrS8Ss/DpU5RpfzPK5u5QHn0KFDSktLu+BZnIpc7O/8WnPjjTeqUaNG551vTTyGkvTvf/9b2dnZlX5OStfGMTzf60JQUJCKi4uVn5/vVH+x18bymkvdp7IIOZXk6empDh06aM2aNWZbWVmZ1qxZ4/Qv4bNFRkY61UtSWlraeeurm2EYGjlypJYtW6a1a9cqLCys0mOUlpZq165datKkSRXM0LVOnjypb7/99rxzrWnH72wLFixQQECAYmNjK7VfTTp+YWFhCgoKcjpGDodDmzdvPu8xupzncXUqDzj79+/X6tWr1bBhw0qPcbG/82vN999/r59//vm8861px7Dc/Pnz1aFDB0VERFR63+o8hhd7XejQoYM8PDycjkd2drYOHz583uNxOc/dy5k4KunDDz80vLy8jIULFxpff/21MWLECMPf39+w2+2GYRjGkCFDjOeff96s37Bhg+Hu7m68+eabxt69e40JEyYYHh4exq5du6prCRf01FNPGX5+fsa6deuMH3/80dx++eUXs+a3a3z55ZeNlStXGt9++62RmZlpDBo0yPD29jb27NlTHUu4oGeffdZYt26dkZOTY2zYsMGIiooyGjVqZOTl5RmGUfOPX7nS0lKjWbNmxtixY8/pq2nH78SJE8aOHTuMHTt2GJKMqVOnGjt27DA/XfTXv/7V8Pf3Nz755BNj586dRr9+/YywsDDj1KlT5hh33323MXPmTPP2xZ7H18r6iouLjfvuu89o2rSpkZWV5fScLCoqOu/6LvZ3frVdaI0nTpww/vznPxsZGRlGTk6OsXr1aqN9+/bGLbfcYpw+fdoco6Yew3IFBQVG7dq1jdmzZ1c4xrV8DC/ldeHJJ580mjVrZqxdu9bYtm2bERkZaURGRjqN06JFC+Nf//qXeftSnrtXgpBzmWbOnGk0a9bM8PT0NDp37mxs2rTJ7OvZs6cxbNgwp/qPP/7Y+N3vfmd4enoarVu3NlasWHGVZ3zpJFW4LViwwKz57RpHjRplPh6BgYFG3759je3bt1/9yV+CgQMHGk2aNDE8PT2NG264wRg4cKBx4MABs7+mH79yK1euNCQZ2dnZ5/TVtOP35ZdfVvg3Wb6GsrIy46WXXjICAwMNLy8vo1evXuesOzQ01JgwYYJT24Wex1fThdaXk5Nz3ufkl19+aY7x2/Vd7O/8arvQGn/55Rejd+/eRuPGjQ0PDw8jNDTUGD58+DlhpaYew3Jz5841fHx8jPz8/ArHuJaP4aW8Lpw6dcp4+umnjfr16xu1a9c27r//fuPHH388Z5yz97mU5+6VsP3/OwUAALAUrskBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACW9P8ATs4aPf/VLRAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQoxJREFUeJzt3XlclXXe//E3iywu5+DGNqKRlkpuCaaU2pQkGTUtNjOWKbmMadiETlr+KlLLLLvLtFKzGumedErvyab0dmEwdUxyYcLU0rQwnOygpnBcATnf3x/dXMMRF0AMLn09H4/zeHC+3891ne/1Peh5c23HxxhjBAAAYCO+tT0AAACAqiLAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAHXMxIkT5ePjo4MHD1701/r1r3+tX//61xd9mbrqwQcf1BVXXFHbwwBQDQQYoIYdP35cEydO1OrVq2t7KHXOggUL9Oqrr9b2MM7Kju9dXZ9T4GLxr+0BAJea48ePa9KkSZJ0yeypKG/lypXVXnbBggXatm2bUlNTa25AF+Ctt96Sx+Oxntvxvatrcwr8UggwAKokICCgtodQY+rVq1fbQwBQTRxCwmWl7PySb775Rg888ICcTqeaN2+up59+WsYY7d27V3feeaccDofCw8P18ssvW8sWFxcrLS1NsbGxcjqdatCggXr16qVPP/3UqtmzZ4+aN28uSZo0aZJ8fHzk4+OjiRMnWjU7duzQ7373OzVv3lzBwcFq27atnnzyyQpjLSgo0IMPPqiQkBA5nU4NGTJEx48fr1D33nvvKTY2VsHBwWrSpIkGDBigvXv3VqibO3euWrdureDgYF133XX65z//Wa05PP0cmNWrV8vHx0cLFy7UlClT1KJFCwUFBalPnz7avXu313JLly7V999/b81L+fNPioqK9Mwzz6hNmzYKDAxUVFSUxo8fr6KiIq/X9/Hx0ejRo/XRRx+pQ4cOCgwM1DXXXKPly5d71R05ckSpqam64oorFBgYqNDQUN1yyy3617/+ZdWUPwfmXO/dvHnz5OPjoy+++KLCfDz//PPy8/PTDz/8UKn5S09Pl4+Pj9auXauHHnpITZs2lcPh0ODBg3X48OEK9cuWLdONN96oRo0ayeFwqFu3blqwYEGl5vR8rrjiCt1+++1avXq14uLiFBwcrI4dO1qH0D788EN17NhRQUFBio2NrbD9X375pR588EFdeeWVCgoKUnh4uIYOHaqffvrJqjlx4oTatWundu3a6cSJE1b7oUOHFBERoeuvv16lpaWVHjNgMcBl5JlnnjGSTJcuXcx9991nZs2aZZKSkowk88orr5i2bduaUaNGmVmzZpkbbrjBSDJr1qwxxhhz4MABExERYcaOHWtmz55tpk2bZtq2bWvq1atnvvjiC2OMMUePHjWzZ882kszdd99t/vKXv5i//OUvZsuWLcYYY7Zs2WIcDodp2rSpmTBhgnnzzTfN+PHjTceOHSuM8dprrzX33HOPmTVrlhk+fLiRZMaPH++1Pc8995zx8fExv//9782sWbPMpEmTTLNmzcwVV1xhDh8+bNW9/fbbRpK5/vrrzcyZM01qaqoJCQkxV155pbnxxhurNIc33nij1zKffvqpNd7Y2Fgzffp0M3HiRFO/fn1z3XXXWXUrV640Xbp0Mc2aNbPmZfHixcYYY0pLS03fvn1N/fr1TWpqqnnzzTfN6NGjjb+/v7nzzju9Xl+S6dy5s4mIiDDPPvusefXVV82VV15p6tevbw4ePGjV3X///SYgIMCMHTvWvP322+bFF180d9xxh3nvvfesmuTkZNOqVavzvndut9sEBwebP/3pTxXmIyYmxtx8882Vnr958+YZSaZjx46mV69eZubMmSYlJcX4+vqa3r17G4/H41Xr4+NjOnToYKZMmWLeeOMNM3z4cDNo0KDzzmlltGrVyrRt29ZERESYiRMnmunTp5tf/epXpmHDhua9994zLVu2NC+88IJ54YUXjNPpNG3atDGlpaXW8v/1X/9levXqZSZPnmzmzp1rHn30URMcHGyuu+46r+34/PPPjZ+fnxkzZozVNmDAABMcHGx27txZ6fEC5RFgcFkpCwcjRoyw2k6dOmVatGhhfHx8zAsvvGC1Hz582AQHB5vk5GSrrqioyGt9hw8fNmFhYWbo0KFW24EDB4wk88wzz1R4/d69e5tGjRqZ77//3qu9/H/2ZWMsv05jjLn77rtN06ZNred79uwxfn5+ZsqUKV51W7duNf7+/lZ7cXGxCQ0NNV26dPEa/9y5c42kGgsw7du391r/jBkzjCSzdetWqy0pKckKDOX95S9/Mb6+vuaf//ynV/ucOXOMJPPZZ59ZbZJMQECA2b17t9W2ZcsWI8m89tprVpvT6TQpKSnn3JbyAcaYc7939913n4mMjPT6AP/Xv/5lJJl58+ad83XKKwswsbGxpri42GqfNm2akWT+/ve/G2OMKSgoMI0aNTLdu3c3J06c8FpH+d+Xs81pZbRq1cpIMuvXr7faVqxYYSSZ4OBgr9/TN99800gyn376qdV2/PjxCuv861//aiSZtWvXerVPmDDB+Pr6mrVr15pFixYZSebVV1+t1rgBY4zhEBIuS8OHD7d+9vPzU1xcnIwxGjZsmNUeEhKitm3b6rvvvrPqys7/8Hg8OnTokE6dOqW4uDivwxJnc+DAAa1du1ZDhw5Vy5Ytvfp8fHwq1I8cOdLrea9evfTTTz/J7XZL+nn3vsfj0e9+9zsdPHjQeoSHh+uqq66yDm1t3rxZ+/fv18iRI73OX3nwwQfldDrPO+7KGjJkiNf6e/XqJUnW/J3LokWL1L59e7Vr185rW26++WZJ8jpMJ0kJCQlq3bq19bxTp05yOBxerxUSEqINGzZo3759F7RdZQYPHqx9+/Z5jWX+/PkKDg5W//79q7y+ESNGeJ2DM2rUKPn7++t///d/JUkZGRk6cuSInnjiCQUFBXkte6bfl+qKiYlRfHy89bx79+6SpJtvvtnr97SsvfwcBwcHWz+fPHlSBw8eVI8ePSSpwr+JiRMn6pprrlFycrIefvhh3XjjjfrjH/9YY9uByw8n8eKydHqAcDqdCgoKUrNmzSq0lz+e/+677+rll1/Wjh07VFJSYrVHR0ef9zXL/uPv0KFDtcbYuHFjSdLhw4flcDi0a9cuGWN01VVXnXH5sg/H77//XpIq1NWrV09XXnllpcZyoeM9n127dunrr7+2zkE53f79+8/5WmWvV/61pk2bpuTkZEVFRSk2Nla33XabBg8eXO1tvuWWWxQREaH58+erT58+8ng8+utf/6o777xTjRo1qvL6Tn8/GjZsqIiICO3Zs0eS9O2330qq/O9LdZ3p34IkRUVFnbG9/BwfOnRIkyZN0vvvv1/hPSosLPR6HhAQoD//+c/q1q2bgoKCrPOKgOoiwOCy5OfnV6k2STLGSPr5ZNkHH3xQd911l8aNG6fQ0FD5+flp6tSp1ofNxR5j+fF4PB75+Pho2bJlZ6xt2LBhjY/pXM433nPxeDzq2LGjXnnllTP2n/5hWpnX+t3vfqdevXpp8eLFWrlypV566SW9+OKL+vDDD9WvX7/zjul0fn5+uv/++/XWW29p1qxZ+uyzz7Rv3z498MADVV5XXXK2uazsHK9fv17jxo1Tly5d1LBhQ3k8Ht16661el6eXWbFihaSf99bs2rWrUsEfOBsCDFBJ//M//6Mrr7xSH374oddfjs8884xX3dn+qiz7y3/btm01Mp7WrVvLGKPo6GhdffXVZ61r1aqVpJ/3cpQdkpGkkpIS5ebmqnPnzjUynso429y0bt1aW7ZsUZ8+fWr0r/KIiAg9/PDDevjhh7V//3517dpVU6ZMOWuAOd9rDx48WC+//LI++eQTLVu2TM2bN1diYmK1xrZr1y7ddNNN1vOjR4/qxx9/1G233SZJ1iGybdu2qU2bNmddT23txTh8+LAyMzM1adIkpaWlWe27du06Y/2XX36pyZMna8iQIcrJydHw4cO1devWGj2MicsL58AAlVT2F2n5v0A3bNigrKwsr7r69etL+vky6PKaN2+u3r17689//rPy8vK8+iqzl+J099xzj/z8/DRp0qQKyxtjrENfcXFxat68uebMmaPi4mKrJj09vcIYL7YGDRpUOLQg/fyX/A8//KC33nqrQt+JEyd07NixKr1OaWlphdcJDQ1VZGRkhcuyyzvbe1emU6dO6tSpk95++2397W9/04ABA+TvX72/A+fOnet1GHL27Nk6deqUFa769u2rRo0aaerUqTp58qTXsuXf77PN6cV2pn8Pks54V+CSkhI9+OCDioyM1IwZM5Senq78/HyNGTPmlxgqLlHsgQEq6fbbb9eHH36ou+++W0lJScrNzdWcOXMUExOjo0ePWnXBwcGKiYnRBx98oKuvvlpNmjRRhw4d1KFDB82cOVM9e/ZU165dNWLECEVHR2vPnj1aunSpcnJyqjSe1q1b67nnntOECRO0Z88e3XXXXWrUqJFyc3O1ePFijRgxQo899pjq1aun5557Tg899JBuvvlm/f73v1dubq7mzZtXo+fAVEZsbKw++OADjR07Vt26dVPDhg11xx13aNCgQVq4cKFGjhypTz/9VDfccINKS0u1Y8cOLVy4UCtWrFBcXFylX+fIkSNq0aKF7r33XnXu3FkNGzbUP/7xD23atMnr3j6nO9d7V2bw4MF67LHHJOmCDh8VFxerT58++t3vfqedO3dq1qxZ6tmzp37zm99IkhwOh6ZPn67hw4erW7duuv/++9W4cWNt2bJFx48f17vvvivp7HN6sTkcDvXu3VvTpk1TSUmJfvWrX2nlypXKzc2tUPvcc88pJydHmZmZatSokTp16qS0tDQ99dRTuvfee629TkCV1MalT0BtKbtE+cCBA17tycnJpkGDBhXqb7zxRnPNNdcYY36+dPX55583rVq1MoGBgebaa681S5YsqXAprjHGrF+/3sTGxpqAgIAKl+Vu27bN3H333SYkJMQEBQWZtm3bmqeffvq8Yyy7/DY3N9er/W9/+5vp2bOnadCggWnQoIFp166dSUlJqXB/jVmzZpno6GgTGBho4uLizNq1aytcEl0ZZ7uMetGiRV51ubm5FS4xPnr0qLn//vtNSEiIkeQ1b8XFxebFF18011xzjQkMDDSNGzc2sbGxZtKkSaawsNCqk3TGy6NbtWplXfJeVFRkxo0bZzp37mwaNWpkGjRoYDp37mxmzZrltUxV3ztjjPnxxx+Nn5+fufrqq88/WWdQ9j6uWbPGjBgxwjRu3Ng0bNjQDBw40Pz0008V6j/++GNz/fXXm+DgYONwOMx1111n/vrXv1r955rT82nVqpVJSkqq0H6mOS57P1966SWr7d///rf1u+x0Os1vf/tbs2/fPq95y87ONv7+/uaRRx7xWt+pU6dMt27dTGRkpNc9i4DK8jGmGvuuAeAydfDgQUVERCgtLU1PP/10lZdPT0/XkCFDtGnTpirtVQLgjXNgAKAK0tPTVVpaqkGDBtX2UIDLGufAAJD08432zvWdNAEBAWrSpMkvOKK6ZdWqVfrqq680ZcoU3XXXXRW+c+jEiRPnPZn2l5o/3ktcDggwACRJ3bp1s256dyY33nij9SV/l6PJkydr/fr1uuGGG/Taa69V6P/ggw80ZMiQc67j9DsKXyy8l7gccA4MAEnSZ5995vVtwadr3LixYmNjf8ER2cuPP/6o7du3n7MmNjbWukPxxcR7icsBAQYAANgOJ/ECAADbuWTPgfF4PNq3b58aNWrEF4YBAGATxhgdOXJEkZGR8vU9+36WSzbA7Nu3r8IXwAEAAHvYu3evWrRocdb+SzbAlH29/d69e+VwOGp5NAAAoDLcbreioqKsz/GzuWQDTNlhI4fDQYABAMBmznf6ByfxAgAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA26lSgCktLdXTTz+t6OhoBQcHq3Xr1nr22WdljLFqjDFKS0tTRESEgoODlZCQoF27dnmt59ChQxo4cKAcDodCQkI0bNgwHT161Kvmyy+/VK9evRQUFKSoqChNmzbtAjYTAABcSqoUYF588UXNnj1br7/+ur7++mu9+OKLmjZtml577TWrZtq0aZo5c6bmzJmjDRs2qEGDBkpMTNTJkyetmoEDB2r79u3KyMjQkiVLtHbtWo0YMcLqd7vd6tu3r1q1aqXs7Gy99NJLmjhxoubOnVsDmwwAAOzOx5TffXIet99+u8LCwvTOO+9Ybf3791dwcLDee+89GWMUGRmpP/3pT3rsscckSYWFhQoLC1N6eroGDBigr7/+WjExMdq0aZPi4uIkScuXL9dtt92mf//734qMjNTs2bP15JNPyuVyKSAgQJL0xBNP6KOPPtKOHTvOOLaioiIVFRVZz8u+zbKwsJAvcwQAwCbcbrecTud5P7+rtAfm+uuvV2Zmpr755htJ0pYtW7Ru3Tr169dPkpSbmyuXy6WEhARrGafTqe7duysrK0uSlJWVpZCQECu8SFJCQoJ8fX21YcMGq6Z3795WeJGkxMRE7dy5U4cPHz7j2KZOnSqn02k9oqKiqrJpAADARvyrUvzEE0/I7XarXbt28vPzU2lpqaZMmaKBAwdKklwulyQpLCzMa7mwsDCrz+VyKTQ01HsQ/v5q0qSJV010dHSFdZT1NW7cuMLYJkyYoLFjx1rPy/bA/FK+3fxmhbbWcQ/9Yq8PAMDlpEoBZuHChZo/f74WLFiga665Rjk5OUpNTVVkZKSSk5Mv1hgrJTAwUIGBgbU6BgAA8MuoUoAZN26cnnjiCQ0YMECS1LFjR33//feaOnWqkpOTFR4eLknKz89XRESEtVx+fr66dOkiSQoPD9f+/fu91nvq1CkdOnTIWj48PFz5+fleNWXPy2oAAMDlq0rnwBw/fly+vt6L+Pn5yePxSJKio6MVHh6uzMxMq9/tdmvDhg2Kj4+XJMXHx6ugoEDZ2dlWzapVq+TxeNS9e3erZu3atSopKbFqMjIy1LZt2zMePgIAAJeXKgWYO+64Q1OmTNHSpUu1Z88eLV68WK+88oruvvtuSZKPj49SU1P13HPP6eOPP9bWrVs1ePBgRUZG6q677pIktW/fXrfeeqv+8Ic/aOPGjfrss880evRoDRgwQJGRkZKk+++/XwEBARo2bJi2b9+uDz74QDNmzPA6xwUAAFy+qnQI6bXXXtPTTz+thx9+WPv371dkZKQeeughpaWlWTXjx4/XsWPHNGLECBUUFKhnz55avny5goKCrJr58+dr9OjR6tOnj3x9fdW/f3/NnDnT6nc6nVq5cqVSUlIUGxurZs2aKS0tzeteMQAA4PJVpfvA2EllryOvKVyFBADAhbso94EBAACoCwgwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdqoUYK644gr5+PhUeKSkpEiSTp48qZSUFDVt2lQNGzZU//79lZ+f77WOvLw8JSUlqX79+goNDdW4ceN06tQpr5rVq1era9euCgwMVJs2bZSenn5hWwkAAC4pVQowmzZt0o8//mg9MjIyJEm//e1vJUljxozRJ598okWLFmnNmjXat2+f7rnnHmv50tJSJSUlqbi4WOvXr9e7776r9PR0paWlWTW5ublKSkrSTTfdpJycHKWmpmr48OFasWJFTWwvAAC4BPgYY0x1F05NTdWSJUu0a9cuud1uNW/eXAsWLNC9994rSdqxY4fat2+vrKws9ejRQ8uWLdPtt9+uffv2KSwsTJI0Z84cPf744zpw4IACAgL0+OOPa+nSpdq2bZv1OgMGDFBBQYGWL19e6bG53W45nU4VFhbK4XBUdxMr7dvNb1Zoax330EV/XQAALiWV/fyu9jkwxcXFeu+99zR06FD5+PgoOztbJSUlSkhIsGratWunli1bKisrS5KUlZWljh07WuFFkhITE+V2u7V9+3arpvw6ymrK1nE2RUVFcrvdXg8AAHBpqnaA+eijj1RQUKAHH3xQkuRyuRQQEKCQkBCvurCwMLlcLqumfHgp6y/rO1eN2+3WiRMnzjqeqVOnyul0Wo+oqKjqbhoAAKjjqh1g3nnnHfXr10+RkZE1OZ5qmzBhggoLC63H3r17a3tIAADgIvGvzkLff/+9/vGPf+jDDz+02sLDw1VcXKyCggKvvTD5+fkKDw+3ajZu3Oi1rrKrlMrXnH7lUn5+vhwOh4KDg886psDAQAUGBlZncwAAgM1Uaw/MvHnzFBoaqqSkJKstNjZW9erVU2ZmptW2c+dO5eXlKT4+XpIUHx+vrVu3av/+/VZNRkaGHA6HYmJirJry6yirKVsHAABAlQOMx+PRvHnzlJycLH///+zAcTqdGjZsmMaOHatPP/1U2dnZGjJkiOLj49WjRw9JUt++fRUTE6NBgwZpy5YtWrFihZ566imlpKRYe09Gjhyp7777TuPHj9eOHTs0a9YsLVy4UGPGjKmhTQYAAHZX5UNI//jHP5SXl6ehQ4dW6Js+fbp8fX3Vv39/FRUVKTExUbNmzbL6/fz8tGTJEo0aNUrx8fFq0KCBkpOTNXnyZKsmOjpaS5cu1ZgxYzRjxgy1aNFCb7/9thITE6u5iQAA4FJzQfeBqcu4DwwAAPZz0e8DAwAAUFsIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHb8a3sAl4KS5evkKciTJPm2aVnLowEA4NLHHhgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7XEZ9EX27+U2v563jHqqlkQAAcGlhDwwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALCdKgeYH374QQ888ICaNm2q4OBgdezYUZs3b7b6jTFKS0tTRESEgoODlZCQoF27dnmt49ChQxo4cKAcDodCQkI0bNgwHT161Kvmyy+/VK9evRQUFKSoqChNmzatmpsIAAAuNVUKMIcPH9YNN9ygevXqadmyZfrqq6/08ssvq3HjxlbNtGnTNHPmTM2ZM0cbNmxQgwYNlJiYqJMnT1o1AwcO1Pbt25WRkaElS5Zo7dq1GjFihNXvdrvVt29ftWrVStnZ2XrppZc0ceJEzZ07twY2GQAA2J2PMcZUtviJJ57QZ599pn/+859n7DfGKDIyUn/605/02GOPSZIKCwsVFham9PR0DRgwQF9//bViYmK0adMmxcXFSZKWL1+u2267Tf/+978VGRmp2bNn68knn5TL5VJAQID12h999JF27NhRqbG63W45nU4VFhbK4XBUdhOrpWT5Ou0pWCZJ8m3T8qx1fBcSAADnVtnP7yrtgfn4448VFxen3/72twoNDdW1116rt956y+rPzc2Vy+VSQkKC1eZ0OtW9e3dlZWVJkrKyshQSEmKFF0lKSEiQr6+vNmzYYNX07t3bCi+SlJiYqJ07d+rw4cNnHFtRUZHcbrfXAwAAXJqqFGC+++47zZ49W1dddZVWrFihUaNG6Y9//KPeffddSZLL5ZIkhYWFeS0XFhZm9blcLoWGhnr1+/v7q0mTJl41Z1pH+dc43dSpU+V0Oq1HVFRUVTYNAADYiH9Vij0ej+Li4vT8889Lkq699lpt27ZNc+bMUXJy8kUZYGVNmDBBY8eOtZ673e5aCTGe3XnWz+c6nAQAAKqvSntgIiIiFBMT49XWvn175eX9/KEdHh4uScrPz/eqyc/Pt/rCw8O1f/9+r/5Tp07p0KFDXjVnWkf51zhdYGCgHA6H1wMAAFyaqhRgbrjhBu3cudOr7ZtvvlGrVq0kSdHR0QoPD1dmZqbV73a7tWHDBsXHx0uS4uPjVVBQoOzsbKtm1apV8ng86t69u1Wzdu1alZSUWDUZGRlq27at1xVPAADg8lSlADNmzBh9/vnnev7557V7924tWLBAc+fOVUpKiiTJx8dHqampeu655/Txxx9r69atGjx4sCIjI3XXXXdJ+nmPza233qo//OEP2rhxoz777DONHj1aAwYMUGRkpCTp/vvvV0BAgIYNG6bt27frgw8+0IwZM7wOEQEAgMtXlc6B6datmxYvXqwJEyZo8uTJio6O1quvvqqBAwdaNePHj9exY8c0YsQIFRQUqGfPnlq+fLmCgoKsmvnz52v06NHq06ePfH191b9/f82cOdPqdzqdWrlypVJSUhQbG6tmzZopLS3N614xAADg8lWl+8DYSW3dB6a800/i5T4wAACc20W5DwwAAEBdQIABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC241/bA7iUeXbneTfE1c44AAC41LAHBgAA2A4BBgAA2A4BBgAA2A4BBgAA2E6VAszEiRPl4+Pj9WjXrp3Vf/LkSaWkpKhp06Zq2LCh+vfvr/z8fK915OXlKSkpSfXr11doaKjGjRunU6dOedWsXr1aXbt2VWBgoNq0aaP09PTqbyEAALjkVHkPzDXXXKMff/zReqxbt87qGzNmjD755BMtWrRIa9as0b59+3TPPfdY/aWlpUpKSlJxcbHWr1+vd999V+np6UpLS7NqcnNzlZSUpJtuukk5OTlKTU3V8OHDtWLFigvcVAAAcKmo8mXU/v7+Cg8Pr9BeWFiod955RwsWLNDNN98sSZo3b57at2+vzz//XD169NDKlSv11Vdf6R//+IfCwsLUpUsXPfvss3r88cc1ceJEBQQEaM6cOYqOjtbLL78sSWrfvr3WrVun6dOnKzEx8QI3FwAAXAqqvAdm165dioyM1JVXXqmBAwcqL+/ne51kZ2erpKRECQkJVm27du3UsmVLZWVlSZKysrLUsWNHhYWFWTWJiYlyu93avn27VVN+HWU1Zes4m6KiIrndbq8HAAC4NFUpwHTv3l3p6elavny5Zs+erdzcXPXq1UtHjhyRy+VSQECAQkJCvJYJCwuTy+WSJLlcLq/wUtZf1neuGrfbrRMnTpx1bFOnTpXT6bQeUVFRVdk0AABgI1U6hNSvXz/r506dOql79+5q1aqVFi5cqODg4BofXFVMmDBBY8eOtZ673W5CDAAAl6gL+iqBkJAQXX311dq9e7duueUWFRcXq6CgwGsvTH5+vnXOTHh4uDZu3Oi1jrKrlMrXnH7lUn5+vhwOxzlDUmBgoAIDAy9kc6rk281vWj97CvLOUQkAAGraBd0H5ujRo/r2228VERGh2NhY1atXT5mZmVb/zp07lZeXp/j4eElSfHy8tm7dqv3791s1GRkZcjgciomJsWrKr6OspmwdAAAAVQowjz32mNasWaM9e/Zo/fr1uvvuu+Xn56f77rtPTqdTw4YN09ixY/Xpp58qOztbQ4YMUXx8vHr06CFJ6tu3r2JiYjRo0CBt2bJFK1as0FNPPaWUlBRr78nIkSP13Xffafz48dqxY4dmzZqlhQsXasyYMTW/9QAAwJaqdAjp3//+t+677z799NNPat68uXr27KnPP/9czZs3lyRNnz5dvr6+6t+/v4qKipSYmKhZs2ZZy/v5+WnJkiUaNWqU4uPj1aBBAyUnJ2vy5MlWTXR0tJYuXaoxY8ZoxowZatGihd5++20uoQYAABYfY4yp7UFcDG63W06nU4WFhXI4HDW+fq9zYHZX7hyYqwZMqfFxAABwKans5zffhQQAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGyHAAMAAGynSt9GjQtT/gsgy7SOe6gWRgIAgL2xBwYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOAQYAANgOX+b4C/LszrN+9m3TshZHAgCAvbEHBgAA2A4BBgAA2A4BBgAA2A4BBgAA2A4BBgAA2A4BBgAA2A4BBgAA2M4FBZgXXnhBPj4+Sk1NtdpOnjyplJQUNW3aVA0bNlT//v2Vn5/vtVxeXp6SkpJUv359hYaGaty4cTp16pRXzerVq9W1a1cFBgaqTZs2Sk9Pv5ChAgCAS0i1A8ymTZv05ptvqlOnTl7tY8aM0SeffKJFixZpzZo12rdvn+655x6rv7S0VElJSSouLtb69ev17rvvKj09XWlpaVZNbm6ukpKSdNNNNyknJ0epqakaPny4VqxYUd3hAgCAS0i1AszRo0c1cOBAvfXWW2rcuLHVXlhYqHfeeUevvPKKbr75ZsXGxmrevHlav369Pv/8c0nSypUr9dVXX+m9995Tly5d1K9fPz377LN64403VFxcLEmaM2eOoqOj9fLLL6t9+/YaPXq07r33Xk2fPr0GNhkAANhdtQJMSkqKkpKSlJCQ4NWenZ2tkpISr/Z27dqpZcuWysrKkiRlZWWpY8eOCgsLs2oSExPldru1fft2q+b0dScmJlrrOJOioiK53W6vBwAAuDRV+buQ3n//ff3rX//Spk2bKvS5XC4FBAQoJCTEqz0sLEwul8uqKR9eyvrL+s5V43a7deLECQUHB1d47alTp2rSpElV3RwAAGBDVdoDs3fvXj366KOaP3++goKCLtaYqmXChAkqLCy0Hnv37q3tIQEAgIukSgEmOztb+/fvV9euXeXv7y9/f3+tWbNGM2fOlL+/v8LCwlRcXKyCggKv5fLz8xUeHi5JCg8Pr3BVUtnz89U4HI4z7n2RpMDAQDkcDq8HAAC4NFUpwPTp00dbt25VTk6O9YiLi9PAgQOtn+vVq6fMzExrmZ07dyovL0/x8fGSpPj4eG3dulX79++3ajIyMuRwOBQTE2PVlF9HWU3ZOgAAwOWtSufANGrUSB06dPBqa9CggZo2bWq1Dxs2TGPHjlWTJk3kcDj0yCOPKD4+Xj169JAk9e3bVzExMRo0aJCmTZsml8ulp556SikpKQoMDJQkjRw5Uq+//rrGjx+voUOHatWqVVq4cKGWLl1aE9sMAABsrson8Z7P9OnT5evrq/79+6uoqEiJiYmaNWuW1e/n56clS5Zo1KhRio+PV4MGDZScnKzJkydbNdHR0Vq6dKnGjBmjGTNmqEWLFnr77beVmJhY08MFAAA25GOMMbU9iIvB7XbL6XSqsLDwopwP8+3mN62fPbvzqry8b5uWkqTWcQ/V2JgAALC7yn5+811IAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwtcSzO0+e3XkqWb6utocCAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDtEGAAAIDt+Nf2AC53ewqWyXfzdut567iHanE0AADYA3tgAACA7RBgAACA7RBgAACA7VQpwMyePVudOnWSw+GQw+FQfHy8li1bZvWfPHlSKSkpatq0qRo2bKj+/fsrPz/fax15eXlKSkpS/fr1FRoaqnHjxunUqVNeNatXr1bXrl0VGBioNm3aKD09vfpbCAAALjlVCjAtWrTQCy+8oOzsbG3evFk333yz7rzzTm3f/vNJqGPGjNEnn3yiRYsWac2aNdq3b5/uuecea/nS0lIlJSWpuLhY69ev17vvvqv09HSlpaVZNbm5uUpKStJNN92knJwcpaamavjw4VqxYkUNbTIAALA7H2OMuZAVNGnSRC+99JLuvfdeNW/eXAsWLNC9994rSdqxY4fat2+vrKws9ejRQ8uWLdPtt9+uffv2KSwsTJI0Z84cPf744zpw4IACAgL0+OOPa+nSpdq2bZv1GgMGDFBBQYGWL19e6XG53W45nU4VFhbK4XBcyCae0beb37R+9uzOu6B1+bZpaf3MVUgAgMtZZT+/q30OTGlpqd5//30dO3ZM8fHxys7OVklJiRISEqyadu3aqWXLlsrKypIkZWVlqWPHjlZ4kaTExES53W5rL05WVpbXOspqytZxNkVFRXK73V4PAABwaapygNm6dasaNmyowMBAjRw5UosXL1ZMTIxcLpcCAgIUEhLiVR8WFiaXyyVJcrlcXuGlrL+s71w1brdbJ06cOOu4pk6dKqfTaT2ioqKqumkAAMAmqhxg2rZtq5ycHG3YsEGjRo1ScnKyvvrqq4sxtiqZMGGCCgsLrcfevXtre0gAAOAiqfKdeAMCAtSmTRtJUmxsrDZt2qQZM2bo97//vYqLi1VQUOC1FyY/P1/h4eGSpPDwcG3cuNFrfWVXKZWvOf3Kpfz8fDkcDgUHB591XIGBgQoMDKzq5gAAABu64PvAeDweFRUVKTY2VvXq1VNmZqbVt3PnTuXl5Sk+Pl6SFB8fr61bt2r//v1WTUZGhhwOh2JiYqya8usoqylbBwAAQJX2wEyYMEH9+vVTy5YtdeTIES1YsECrV6/WihUr5HQ6NWzYMI0dO1ZNmjSRw+HQI488ovj4ePXo0UOS1LdvX8XExGjQoEGaNm2aXC6XnnrqKaWkpFh7T0aOHKnXX39d48eP19ChQ7Vq1SotXLhQS5curfmtBwAAtlSlALN//34NHjxYP/74o5xOpzp16qQVK1bolltukSRNnz5dvr6+6t+/v4qKipSYmKhZs2ZZy/v5+WnJkiUaNWqU4uPj1aBBAyUnJ2vy5MlWTXR0tJYuXaoxY8ZoxowZatGihd5++20lJibW0CYDAAC7u+D7wNRV3AcGAAD7qeznd5VP4kXNKx+ASg6uU71be9biaAAAqPv4MkcAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA73AemGkqWr5On4MJuXgcAAKqPPTAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2/Gt7APC2p2CZfDdv92prHfdQLY0GAIC6iT0wAADAdggwAADAdjiEVAd5dudZP/u2aVmLIwEAoG5iDwwAALAdAgwAALCdKgWYqVOnqlu3bmrUqJFCQ0N11113aefOnV41J0+eVEpKipo2baqGDRuqf//+ys/P96rJy8tTUlKS6tevr9DQUI0bN06nTp3yqlm9erW6du2qwMBAtWnTRunp6dXbQgAAcMmpUoBZs2aNUlJS9PnnnysjI0MlJSXq27evjh07ZtWMGTNGn3zyiRYtWqQ1a9Zo3759uueee6z+0tJSJSUlqbi4WOvXr9e7776r9PR0paWlWTW5ublKSkrSTTfdpJycHKWmpmr48OFasWJFDWwyAACwOx9jjKnuwgcOHFBoaKjWrFmj3r17q7CwUM2bN9eCBQt07733SpJ27Nih9u3bKysrSz169NCyZct0++23a9++fQoLC5MkzZkzR48//rgOHDiggIAAPf7441q6dKm2bdtmvdaAAQNUUFCg5cuXV2psbrdbTqdThYWFcjgc1d3EMypZvk57CpbV6DrPxrdNS+4DAwC4bFT28/uCzoEpLCyUJDVp0kSSlJ2drZKSEiUkJFg17dq1U8uWLZWVlSVJysrKUseOHa3wIkmJiYlyu93avn27VVN+HWU1Zes4k6KiIrndbq8HAAC4NFU7wHg8HqWmpuqGG25Qhw4dJEkul0sBAQEKCQnxqg0LC5PL5bJqyoeXsv6yvnPVuN1unThx4ozjmTp1qpxOp/WIioqq7qYBAIA6rtoBJiUlRdu2bdP7779fk+OptgkTJqiwsNB67N27t7aHBAAALpJq3chu9OjRWrJkidauXasWLVpY7eHh4SouLlZBQYHXXpj8/HyFh4dbNRs3bvRaX9lVSuVrTr9yKT8/Xw6HQ8HBwWccU2BgoAIDA6uzOQAAwGaqtAfGGKPRo0dr8eLFWrVqlaKjo736Y2NjVa9ePWVmZlptO3fuVF5enuLj4yVJ8fHx2rp1q/bv32/VZGRkyOFwKCYmxqopv46ymrJ1AACAy1uV9sCkpKRowYIF+vvf/65GjRpZ56w4nU4FBwfL6XRq2LBhGjt2rJo0aSKHw6FHHnlE8fHx6tGjhySpb9++iomJ0aBBgzRt2jS5XC499dRTSklJsfagjBw5Uq+//rrGjx+voUOHatWqVVq4cKGWLl1aw5sPAADsqEp7YGbPnq3CwkL9+te/VkREhPX44IMPrJrp06fr9ttvV//+/dW7d2+Fh4frww8/tPr9/Py0ZMkS+fn5KT4+Xg888IAGDx6syZMnWzXR0dFaunSpMjIy1LlzZ7388st6++23lZiYWAObDAAA7O6C7gNTl3EfGAAA7OcXuQ8MAABAbSDAAAAA2yHAAAAA2yHAAAAA2yHAAAAA2yHAAAAA26nWVwngl+PZnaeSg+skSfVu7VnLowEAoG5gDwwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAd7gNjA3sKlkmSfDdvlyS1jnuoNocDAECtYw8MAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQKMjXh25/387dTL19X2UAAAqFUEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDv+tT0AVM/pXydQ79aetTQSAAB+eQQYG9pTsKxC21UiwAAALh9VPoS0du1a3XHHHYqMjJSPj48++ugjr35jjNLS0hQREaHg4GAlJCRo165dXjWHDh3SwIED5XA4FBISomHDhuno0aNeNV9++aV69eqloKAgRUVFadq0aVXfOgAAcEmqcoA5duyYOnfurDfeeOOM/dOmTdPMmTM1Z84cbdiwQQ0aNFBiYqJOnjxp1QwcOFDbt29XRkaGlixZorVr12rEiBFWv9vtVt++fdWqVStlZ2frpZde0sSJEzV37txqbCIAALjUVPkQUr9+/dSvX78z9hlj9Oqrr+qpp57SnXfeKUn67//+b4WFhemjjz7SgAED9PXXX2v58uXatGmT4uLiJEmvvfaabrvtNv3Xf/2XIiMjNX/+fBUXF+vPf/6zAgICdM011ygnJ0evvPKKV9ABAACXpxq9Cik3N1cul0sJCQlWm9PpVPfu3ZWVlSVJysrKUkhIiBVeJCkhIUG+vr7asGGDVdO7d28FBARYNYmJidq5c6cOHz58xtcuKiqS2+32egAAgEtTjQYYl8slSQoLC/NqDwsLs/pcLpdCQ0O9+v39/dWkSROvmjOto/xrnG7q1KlyOp3WIyoq6sI3CAAA1EmXzH1gJkyYoMLCQuuxd+/e2h4SAAC4SGr0Murw8HBJUn5+viIiIqz2/Px8denSxarZv3+/13KnTp3SoUOHrOXDw8OVn5/vVVP2vKzmdIGBgQoMDKyR7bCj8veF4Z4wAIBLXY3ugYmOjlZ4eLgyMzOtNrfbrQ0bNig+Pl6SFB8fr4KCAmVnZ1s1q1atksfjUffu3a2atWvXqqSkxKrJyMhQ27Zt1bhx45ocMgAAsKEqB5ijR48qJydHOTk5kn4+cTcnJ0d5eXny8fFRamqqnnvuOX388cfaunWrBg8erMjISN11112SpPbt2+vWW2/VH/7wB23cuFGfffaZRo8erQEDBigyMlKSdP/99ysgIEDDhg3T9u3b9cEHH2jGjBkaO3ZsjW04AACwryofQtq8ebNuuukm63lZqEhOTlZ6errGjx+vY8eOacSIESooKFDPnj21fPlyBQUFWcvMnz9fo0ePVp8+feTr66v+/ftr5syZVr/T6dTKlSuVkpKi2NhYNWvWTGlpaVxCDQAAJEk+xhhT24O4GNxut5xOpwoLC+VwOGp03SXL153xdv616YqQ/9ybh3NgAAB2VdnP70vmKiQAAHD54MscL0FckQQAuNSxBwYAANgOe2AuEaefk1P+nBgAAC417IEBAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2Q4ABAAC2w1VIl7jy94SRuC8MAODSwB4YAABgOwQYAABgOxxCukSd6csmubkdAOBSQYC5zPA9SQCASwGHkAAAgO0QYAAAgO0QYAAAgO1wDsxljPNhAAB2RYC5jJx+ZVL5q5K44R0AwE44hAQAAGyHPTA4Iw4vAQDqMgIMzoswAwCoaziEBAAAbIc9MJcxvm4AAGBXBBhUCVcrAQDqAgIMagznygAAfikEGFyQ0/fIAADwSyDAwMu5bnZXFRxqAgBcTAQY/CLOtqeGYAMAqA4CDM7pYl+pxHkzAIDqIMCgzjjX+TSEGwBAeQQYVFlNnSdTXZxfAwAgwOCC7SlYJo+Mcn0Pye1TJIcJVLSniXzlY9VcaMg5196ZC70S6lwByK6HuIzHI893/5bcRyVHQ/le2UI+vhf/xtulplRf//SFDp88qMZBzdS+6bXy8/G76K8L4PJTpwPMG2+8oZdeekkul0udO3fWa6+9puuuu662h4XTbPVz6eN6X6vQ96TV5vQE6Tcl7dWxNLwWR1Y5lQ1ANX3J+MUKRKVffqOSxZlS4ZH/NDobqd7dfeTX6eqL8pqSlLUvU+9se0k/ndxvtTUNCtWwDuMUH9nnor0ugMuTjzHG1PYgzuSDDz7Q4MGDNWfOHHXv3l2vvvqqFi1apJ07dyo0NPS8y7vdbjmdThUWFsrhcNTo2EqWrzvjya2Xo61+Lv0l4Iufn/iU6/i/36pBxdeeNcTwtQU1z+T/JM+WnWftr/fgXfLs+0/AKB+iLuTQXNa+TE3bPF7WG2/5+ZdifNw0QgyASqns53edDTDdu3dXt27d9Prrr0uSPB6PoqKi9Mgjj+iJJ5447/IEmIvPI6OpQatV6HPSO7yUMZLTBGnCyV97HU6qaQShnxlj5FmbLRUVn70oMEC+vWPl41Nz74fHeJRSMlE/qeCsNU0VojfvyDjj4aTKBie7Hs4DUDWV/fyuk4eQiouLlZ2drQkTJlhtvr6+SkhIUFZW1hmXKSoqUlFRkfW8sLBQ0s8TUdNKjh3T0eNF5y+8xH3ne0gHdeycNQd1TNtOunSlp8lFG8e24x9dlPW2dN5yUdZ7sZjDbnnO9/tedFK+P7jk07jmQv3X5lu5Tv10zhqXflLW395Ue5/W51/h31bUTM0FqHdLvPVzScaZ/8851zIAqq/sc/t8+1fqZIA5ePCgSktLFRYW5tUeFhamHTt2nHGZqVOnatKkSRXao6KiLsoYUXlL9WVtD6GaXq7tAVxSliqltocAwEaOHDkip9N51v46GWCqY8KECRo7dqz13OPx6NChQ2ratGmN7i53u92KiorS3r17a/zQ1OWCObxwzOGFYw4vHHNYM5hHb8YYHTlyRJGRkeesq5MBplmzZvLz81N+fr5Xe35+vsLDz3xCaGBgoAIDA73aQkJCLtYQ5XA4+EW7QMzhhWMOLxxzeOGYw5rBPP7Hufa8lLn4N4aohoCAAMXGxiozM9Nq83g8yszMVHw8x5kBALjc1ck9MJI0duxYJScnKy4uTtddd51effVVHTt2TEOGDKntoQEAgFpWZwPM73//ex04cEBpaWlyuVzq0qWLli9fXuHE3l9aYGCgnnnmmQqHq1B5zOGFYw4vHHN44ZjDmsE8Vk+dvQ8MAADA2dTJc2AAAADOhQADAABshwADAABshwADAABshwADAABshwBTBW+88YauuOIKBQUFqXv37tq4cWNtD6nOmjp1qrp166ZGjRopNDRUd911l3bu3OlVc/LkSaWkpKhp06Zq2LCh+vfvX+Huy/iPF154QT4+PkpNTbXamMPz++GHH/TAAw+oadOmCg4OVseOHbV582ar3xijtLQ0RUREKDg4WAkJCdq1a1ctjrjuKS0t1dNPP63o6GgFBwerdevWevbZZ72+bI959LZ27VrdcccdioyMlI+Pjz766COv/srM16FDhzRw4EA5HA6FhIRo2LBhOnr06C+4FXWcQaW8//77JiAgwPz5z38227dvN3/4wx9MSEiIyc/Pr+2h1UmJiYlm3rx5Ztu2bSYnJ8fcdtttpmXLlubo0aNWzciRI01UVJTJzMw0mzdvNj169DDXX399LY667tq4caO54oorTKdOncyjjz5qtTOH53bo0CHTqlUr8+CDD5oNGzaY7777zqxYscLs3r3bqnnhhReM0+k0H330kdmyZYv5zW9+Y6Kjo82JEydqceR1y5QpU0zTpk3NkiVLTG5urlm0aJFp2LChmTFjhlXDPHr73//9X/Pkk0+aDz/80Egyixcv9uqvzHzdeuutpnPnzubzzz83//znP02bNm3Mfffd9wtvSd1FgKmk6667zqSkpFjPS0tLTWRkpJk6dWotjso+9u/fbySZNWvWGGOMKSgoMPXq1TOLFi2yar7++msjyWRlZdXWMOukI0eOmKuuuspkZGSYG2+80QowzOH5Pf7446Znz55n7fd4PCY8PNy89NJLVltBQYEJDAw0f/3rX3+JIdpCUlKSGTp0qFfbPffcYwYOHGiMYR7P5/QAU5n5+uqrr4wks2nTJqtm2bJlxsfHx/zwww+/2NjrMg4hVUJxcbGys7OVkJBgtfn6+iohIUFZWVm1ODL7KCwslCQ1adJEkpSdna2SkhKvOW3Xrp1atmzJnJ4mJSVFSUlJXnMlMYeV8fHHHysuLk6//e1vFRoaqmuvvVZvvfWW1Z+bmyuXy+U1h06nU927d2cOy7n++uuVmZmpb775RpK0ZcsWrVu3Tv369ZPEPFZVZeYrKytLISEhiouLs2oSEhLk6+urDRs2/OJjrovq7FcJ1CUHDx5UaWlpha8xCAsL044dO2ppVPbh8XiUmpqqG264QR06dJAkuVwuBQQEVPjG8LCwMLlcrloYZd30/vvv61//+pc2bdpUoY85PL/vvvtOs2fP1tixY/X//t//06ZNm/THP/5RAQEBSk5OtubpTP+2mcP/eOKJJ+R2u9WuXTv5+fmptLRUU6ZM0cCBAyWJeayiysyXy+VSaGioV7+/v7+aNGnCnP4fAgwuupSUFG3btk3r1q2r7aHYyt69e/Xoo48qIyNDQUFBtT0cW/J4PIqLi9Pzzz8vSbr22mu1bds2zZkzR8nJybU8OvtYuHCh5s+frwULFuiaa65RTk6OUlNTFRkZyTyi1nAIqRKaNWsmPz+/Cld35OfnKzw8vJZGZQ+jR4/WkiVL9Omnn6pFixZWe3h4uIqLi1VQUOBVz5z+R3Z2tvbv36+uXbvK399f/v7+WrNmjWbOnCl/f3+FhYUxh+cRERGhmJgYr7b27dsrLy9Pkqx54t/2uY0bN05PPPGEBgwYoI4dO2rQoEEaM2aMpk6dKol5rKrKzFd4eLj279/v1X/q1CkdOnSIOf0/BJhKCAgIUGxsrDIzM602j8ejzMxMxcfH1+LI6i5jjEaPHq3Fixdr1apVio6O9uqPjY1VvXr1vOZ0586dysvLY07/T58+fbR161bl5ORYj7i4OA0cOND6mTk8txtuuKHC5fvffPONWrVqJUmKjo5WeHi41xy63W5t2LCBOSzn+PHj8vX1/rjw8/OTx+ORxDxWVWXmKz4+XgUFBcrOzrZqVq1aJY/Ho+7du//iY66TavssYrt4//33TWBgoElPTzdfffWVGTFihAkJCTEul6u2h1YnjRo1yjidTrN69Wrz448/Wo/jx49bNSNHjjQtW7Y0q1atMps3bzbx8fEmPj6+Fkdd95W/CskY5vB8Nm7caPz9/c2UKVPMrl27zPz58039+vXNe++9Z9W88MILJiQkxPz97383X375pbnzzjsv68t/zyQ5Odn86le/si6j/vDDD02zZs3M+PHjrRrm0duRI0fMF198Yb744gsjybzyyivmiy++MN9//70xpnLzdeutt5prr73WbNiwwaxbt85cddVVXEZdDgGmCl577TXTsmVLExAQYK677jrz+eef1/aQ6ixJZ3zMmzfPqjlx4oR5+OGHTePGjU39+vXN3XffbX788cfaG7QNnB5gmMPz++STT0yHDh1MYGCgadeunZk7d65Xv8fjMU8//bQJCwszgYGBpk+fPmbnzp21NNq6ye12m0cffdS0bNnSBAUFmSuvvNI8+eSTpqioyKphHr19+umnZ/w/MDk52RhTufn66aefzH333WcaNmxoHA6HGTJkiDly5EgtbE3d5GNMuVspAgAA2ADnwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANshwAAAANv5/7hutozoURiYAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANDdJREFUeJzt3Xt0U2W+xvGnLU0KhaQUe6FSLiMoVBG0VYiioFYqFkekjpfDYFFGFIozyBIdlggCDkW8wOiAICowKgfBox4FRaDeRqmAKDO1XERFywykhYE2wEh6yT5/eBoNLUjaptlJv5+19lp07zc772ZX8/B733cnwjAMQwAAACYSGewOAAAAnIiAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAqBeCxYs0NKlS4PdDQAtVATfxQOgPuedd57OOOMMffDBB8HuCoAWiAoKgEY7duxYsLsAIMwQUIAgO3LkiCZMmKCuXbvKarUqMTFRV199tT7//HNJ0qBBg3Teeedp69atuuSSS9S6dWt169ZNCxcurHMut9utadOmqXv37rJarUpNTdX9998vt9tdp+1LL72kiy++WG3atFH79u11+eWXa926dZKkrl27qri4WB9++KEiIiIUERGhQYMGSZKWLl2qiIgIffjhhxo3bpwSExPVqVMnSdKoUaPUtWvXOu/18MMPKyIiwmdfRESExo8fr1WrViktLU2tW7eWw+FQUVGRJGnRokXq3r27YmJiNGjQIH333Xd+/90WFxfryiuvVOvWrdWpUyc98sgjeuGFFxQREeHX+Wr7/9VXX+m3v/2t7Ha7EhIS9NBDD8kwDO3du1fXX3+9bDabkpOT9cQTT/i8vrKyUlOnTlV6errsdrtiY2N12WWX6f333/dpN23aNEVGRqqgoMBn/5gxY2SxWPT3v//d778DIFS1CnYHgJbu7rvv1quvvqrx48crLS1N//73v/Xxxx9rx44duvDCCyVJhw8f1rXXXqubbrpJt956q1auXKmxY8fKYrHojjvukCR5PB79+te/1scff6wxY8aoV69eKioq0ty5c/XVV1/pjTfe8L7n9OnT9fDDD+uSSy7RjBkzZLFYtGnTJr333nsaPHiw5s2bp3vuuUdt27bVgw8+KElKSkry6fe4ceOUkJCgqVOnNriC8re//U1vvvmm8vLyJEn5+fkaOnSo7r//fi1YsEDjxo3T4cOHNWfOHN1xxx167733TvvcTqdTV1xxhaqrq/XHP/5RsbGxevbZZ9W6desG9VWSbr75ZvXq1UuzZ8/WmjVr9Mgjjyg+Pl6LFi3SlVdeqUcffVQvv/yy7rvvPl100UW6/PLLJUkul0vPPfecbr31Vt155506cuSInn/+eWVlZWnz5s3q27evJGnKlCl66623NHr0aBUVFaldu3Z69913tXjxYs2cOVN9+vRpcN+BkGMACCq73W7k5eWd9PjAgQMNScYTTzzh3ed2u42+ffsaiYmJRmVlpWEYhvHiiy8akZGRxt/+9jef1y9cuNCQZHzyySeGYRjG7t27jcjISOOGG24wampqfNp6PB7vn88991xj4MCBdfqzZMkSQ5IxYMAAo7q62udYbm6u0aVLlzqvmTZtmnHi/24kGVar1dizZ49336JFiwxJRnJysuFyubz7J0+ebEjyaftLJkyYYEgyNm3a5N1XVlZm2O12v89V2/8xY8Z491VXVxudOnUyIiIijNmzZ3v3Hz582GjdurWRm5vr09btdvuc8/Dhw0ZSUpJxxx13+OwvKioyLBaL8bvf/c44fPiwceaZZxoZGRlGVVXVafcXCAcM8QBBFhcXp02bNmnfvn0nbdOqVSvddddd3p8tFovuuusulZWVaevWrZKkVatWqVevXurZs6cOHjzo3a688kpJ8g4nvPHGG/J4PJo6daoiI33/F3DiMMyp3HnnnYqKijrt9vW56qqrfIaE+vXrJ0nKyclRu3bt6uz/9ttvT/vcb7/9tvr376+LL77Yuy8hIUEjRoxocH9/97vfef8cFRWljIwMGYah0aNHe/fHxcXpnHPO8elrVFSULBaLpB8rXYcOHVJ1dbUyMjK8Q3m1zjvvPE2fPl3PPfecsrKydPDgQS1btkytWlHwRstCQAGCbM6cOfryyy+Vmpqqiy++WA8//HCdD+KUlBTFxsb67Dv77LMlyTuXYvfu3SouLlZCQoLPVtuurKxMkvTNN98oMjJSaWlpjep3t27dGvV6SercubPPz3a7XZKUmppa7/7Dhw+f9rm///579ejRo87+c845x99uetXX35iYGJ1xxhl19p/Y12XLlun8889XTEyMOnTooISEBK1Zs0YVFRV13mfSpEnq06ePNm/erGnTpjX6XgGhiEgOBNlNN92kyy67TK+//rrWrVunxx57TI8++qhee+01DRky5LTP4/F41Lt3bz355JP1Hj/xQ7+x6pvLcbIKTE1NTb37T1aBOdl+I8hPRaivX6fT15deekmjRo3SsGHDNGnSJCUmJioqKkr5+fn65ptv6rz222+/1e7duyXJO2kYaGkIKIAJdOzYUePGjdO4ceNUVlamCy+8UH/605+8AWXfvn06duyYTxXlq6++kiTvEMlZZ52lv//977rqqqtOOVRz1llnyePxaPv27d7JmfXxZ7inVvv27VVeXl5n//fff+/3uRqrS5cu3g/5n9u1a1ez9+XVV1/Vr371K7322ms+f6/Tpk2r09bj8WjUqFGy2WyaMGGCZs2apRtvvFHDhw9vzi4DQccQDxBENTU1dUr8iYmJSklJ8VkaXF1drUWLFnl/rqys1KJFi5SQkKD09HRJP1Zi/vWvf2nx4sV13ueHH37wrrQZNmyYIiMjNWPGDHk8Hp92P/9Xf2xsbL1h41TOOussVVRU6B//+Id33/79+/X666/7dZ6mcO211+rTTz/V5s2bvfsOHDigl19+udn7Ultl+fnf76ZNm1RYWFin7ZNPPqmNGzfq2Wef1cyZM3XJJZdo7NixOnjwYLP1FzADKihAEB05ckSdOnXSjTfeqD59+qht27basGGDtmzZ4vMsjZSUFD366KP67rvvdPbZZ+uVV17Rtm3b9Oyzzyo6OlqSNHLkSK1cuVJ333233n//fV166aWqqanRzp07tXLlSr377rvKyMhQ9+7d9eCDD2rmzJm67LLLNHz4cFmtVm3ZskUpKSnKz8+XJKWnp+uZZ57RI488ou7duysxMdE74fZkbrnlFj3wwAO64YYb9Pvf/17/+c9/9Mwzz+jss8+uMxk00O6//369+OKLuuaaa/SHP/zBu8y4S5cuPgGqOQwdOlSvvfaabrjhBmVnZ2vPnj1auHCh0tLSdPToUW+7HTt26KGHHtKoUaN03XXXSfrxuTN9+/bVuHHjtHLlymbtNxBUQV1DBLRwbrfbmDRpktGnTx+jXbt2RmxsrNGnTx9jwYIF3jYDBw40zj33XOOzzz4zHA6HERMTY3Tp0sX4y1/+Uud8lZWVxqOPPmqce+65htVqNdq3b2+kp6cb06dPNyoqKnzavvDCC8YFF1zgbTdw4EBj/fr13uNOp9PIzs422rVrZ0jyLjmuXWa8ZcuWeq9p3bp1xnnnnWdYLBbjnHPOMV566aWTLjM+cXn1nj17DEnGY4895rP//fffNyQZq1at+uW/1J/5xz/+YQwcONCIiYkxzjzzTGPmzJnG888/3+BlxgcOHPDZn5uba8TGxtZpX3vPank8HmPWrFlGly5dDKvValxwwQXG6tWrfZZlV1dXGxdddJHRqVMno7y83Od8f/7znw1JxiuvvHL6Fw+EOL6LBzC5QYMG6eDBg/ryyy+D3ZWwsHTpUt1+++3as2dPvU+9BWAOzEEBAACmwxwUACHlhx9+qPfZIT8XHx/vfTDaqRw9etRnDkh9EhISGv1AOgD+I6AACCmvvPKKbr/99lO2ef/9971fbngqjz/+uKZPn37KNgwFAcHBHBQAIWX//v0qLi4+ZZv09HS1b9/+F8/17bff/uLj8wcMGKCYmBi/+gig8QgoAADAdJgkCwAATCck56B4PB7t27dP7dq1a9DjuAEAQPMzDENHjhxRSkpKnW9TP1FIBpR9+/Y1+RefAQCA5rF371516tTplG1CMqC0a9dO0o8XaLPZgtwbAABwOlwul1JTU72f46cSkgGldljHZrMRUAAACDGnMz2DSbIAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0WgW7AwAAnK6qtR/X2Rd9zYAg9ASBRgUFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYDgEFAACYjl8BpWvXroqIiKiz5eXlSZKOHz+uvLw8dejQQW3btlVOTo5KS0t9zlFSUqLs7Gy1adNGiYmJmjRpkqqrq5vuigAAQMjzK6Bs2bJF+/fv927r16+XJP3mN7+RJN1777166623tGrVKn344Yfat2+fhg8f7n19TU2NsrOzVVlZqY0bN2rZsmVaunSppk6d2oSXBAAAQl2EYRhGQ188YcIErV69Wrt375bL5VJCQoKWL1+uG2+8UZK0c+dO9erVS4WFherfv7/eeecdDR06VPv27VNSUpIkaeHChXrggQd04MABWSyW03pfl8slu92uiooK2Wy2hnYfABBiqtZ+XGdf9DUDgtATNIQ/n98NnoNSWVmpl156SXfccYciIiK0detWVVVVKTMz09umZ8+e6ty5swoLCyVJhYWF6t27tzecSFJWVpZcLpeKi4tP+l5ut1sul8tnAwAA4avBAeWNN95QeXm5Ro0aJUlyOp2yWCyKi4vzaZeUlCSn0+lt8/NwUnu89tjJ5Ofny263e7fU1NSGdhsAAISABgeU559/XkOGDFFKSkpT9qdekydPVkVFhXfbu3dvwN8TAAAET6uGvOj777/Xhg0b9Nprr3n3JScnq7KyUuXl5T5VlNLSUiUnJ3vbbN682edctat8atvUx2q1ymq1NqSrAAAgBDWogrJkyRIlJiYqOzvbuy89PV3R0dEqKCjw7tu1a5dKSkrkcDgkSQ6HQ0VFRSorK/O2Wb9+vWw2m9LS0hp6DQAAIMz4XUHxeDxasmSJcnNz1arVTy+32+0aPXq0Jk6cqPj4eNlsNt1zzz1yOBzq37+/JGnw4MFKS0vTyJEjNWfOHDmdTk2ZMkV5eXlUSAAAgJffAWXDhg0qKSnRHXfcUefY3LlzFRkZqZycHLndbmVlZWnBggXe41FRUVq9erXGjh0rh8Oh2NhY5ebmasaMGY27CgAAEFYa9RyUYOE5KADQMvEclNDWLM9BAQAACBQCCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMJ0GfZsxAABmceLTZXmybHigggIAAEyHCgoAtFB8rw3MjAoKAAAwHQIKAAAwHYZ4AKCFqG9IBzArKigAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB0WMUDAAgKHlGPU6GCAgAATIeAAgAATIchHgCAXwI1NMN3A+HnqKAAAADTIaAAAADTYYgHAACxqshsqKAAAADToYICAIAJtfSKDhUUAABgOlRQAACoB8ueg4sKCgAAMB0qKACAFqe+6gjMhQoKAAAwHQIKAAAwHYZ4AAA4TS196W9z8ruC8q9//Uu//e1v1aFDB7Vu3Vq9e/fWZ5995j1uGIamTp2qjh07qnXr1srMzNTu3bt9znHo0CGNGDFCNptNcXFxGj16tI4ePdr4qwEAhL3vyt/x2RCe/Aoohw8f1qWXXqro6Gi988472r59u5544gm1b9/e22bOnDl66qmntHDhQm3atEmxsbHKysrS8ePHvW1GjBih4uJirV+/XqtXr9ZHH32kMWPGNN1VAQCAkObXEM+jjz6q1NRULVmyxLuvW7du3j8bhqF58+ZpypQpuv766yVJf/3rX5WUlKQ33nhDt9xyi3bs2KG1a9dqy5YtysjIkCQ9/fTTuvbaa/X4448rJSWlKa4LAACEML8qKG+++aYyMjL0m9/8RomJibrgggu0ePFi7/E9e/bI6XQqMzPTu89ut6tfv34qLCyUJBUWFiouLs4bTiQpMzNTkZGR2rRpU73v63a75XK5fDYAAE5X1dqPfTaYn18B5dtvv9UzzzyjHj166N1339XYsWP1+9//XsuWLZMkOZ1OSVJSUpLP65KSkrzHnE6nEhMTfY63atVK8fHx3jYnys/Pl91u926pqan+dBsATIsPTqB+fgUUj8ejCy+8ULNmzdIFF1ygMWPG6M4779TChQsD1T9J0uTJk1VRUeHd9u7dG9D3AwAAweXXHJSOHTsqLS3NZ1+vXr30P//zP5Kk5ORkSVJpaak6duzobVNaWqq+fft625SVlfmco7q6WocOHfK+/kRWq1VWq9WfrgIAwgBVpZbLr4By6aWXateuXT77vvrqK3Xp0kXSjxNmk5OTVVBQ4A0kLpdLmzZt0tixYyVJDodD5eXl2rp1q9LT0yVJ7733njwej/r169fY6wEAv/CFcM2DoOGL56n8Mr8Cyr333qtLLrlEs2bN0k033aTNmzfr2Wef1bPPPitJioiI0IQJE/TII4+oR48e6tatmx566CGlpKRo2LBhkn6suFxzzTXeoaGqqiqNHz9et9xyCyt4AACAJD8DykUXXaTXX39dkydP1owZM9StWzfNmzdPI0aM8La5//77dezYMY0ZM0bl5eUaMGCA1q5dq5iYGG+bl19+WePHj9dVV12lyMhI5eTk6Kmnnmq6qwIANJtAVqHM/iA2KnCB4/ej7ocOHaqhQ4ee9HhERIRmzJihGTNmnLRNfHy8li9f7u9bAwCaGUMzCBa+LBAAAJgOXxYIAAh79Q0VdY0bEoSe4HRRQQEAAKZDBQUA4MWcE5gFAQUAYApmX7GD5sUQDwAAMB0qKACAoGiqismJ54n8rFhnZdzVJOdG8BBQAAAIMub+1MUQDwAAMB0CCgAAMB0CCgAAMB0CCgAAMB0CCgAAMB1W8QAAcBInLmHm+3uaDwEFAEzuxCWo0dcMCFJPgObDEA8AADAdAgoAADAdAgoAADAd5qAAaFF4pDgQGqigAAAA06GCAgBAI5y4FLmHWGXVFAgoABBi6humYulx450YNBBcDPEAAADToYICAGhyTEZGYxFQADQZhh5CS31DGjzKHWZBQAEAwIRODJCRnxXrrIy7gtSb5kdAAYAmcDrVo3AZ9mjIF+gxARX+YpIsAAAwHQIKAAAwHYZ4AJhOQyfbnvi6UJygG67DQM3J83WJqg6Gx9/jz9V3XaH4O366qKAAAADToYICAAg7oTgpNxT7HEgEFAAIA+EwvAX8HAEFAIAmRFhsGgQUAAiQcJnwCgQDAQVAswqFx+GfTrAwW5+bSkMewgYEgl+reB5++GFFRET4bD179vQeP378uPLy8tShQwe1bdtWOTk5Ki0t9TlHSUmJsrOz1aZNGyUmJmrSpEmqrq5umqsBELaq1n7ss+HUTvz74u8MocbvCsq5556rDRs2/HSCVj+d4t5779WaNWu0atUq2e12jR8/XsOHD9cnn3wiSaqpqVF2draSk5O1ceNG7d+/X7fddpuio6M1a9asJrgcAAACh5U2zcfvgNKqVSslJyfX2V9RUaHnn39ey5cv15VXXilJWrJkiXr16qVPP/1U/fv317p167R9+3Zt2LBBSUlJ6tu3r2bOnKkHHnhADz/8sCwWS+OvCAAAhDy/A8ru3buVkpKimJgYORwO5efnq3Pnztq6dauqqqqUmZnpbduzZ0917txZhYWF6t+/vwoLC9W7d28lJSV522RlZWns2LEqLi7WBRdcUO97ut1uud1u788ul8vfbgMAGuB0KgZUFRAIfgWUfv36aenSpTrnnHO0f/9+TZ8+XZdddpm+/PJLOZ1OWSwWxcXF+bwmKSlJTqdTkuR0On3CSe3x2mMnk5+fr+nTp/vTVQAhhPkRAE7kV0AZMuSn2dznn3+++vXrpy5dumjlypVq3bp1k3eu1uTJkzVx4kTvzy6XS6mpqQF7PwCnh2ABIFAatcw4Li5OZ599tr7++mtdffXVqqysVHl5uU8VpbS01DtnJTk5WZs3b/Y5R+0qn/rmtdSyWq2yWq2N6SoAmFJzLutlKMYXfx/m1qgvCzx69Ki++eYbdezYUenp6YqOjlZBQYH3+K5du1RSUiKHwyFJcjgcKioqUllZmbfN+vXrZbPZlJaW1piuAADQ4oTzUnK/Kij33XefrrvuOnXp0kX79u3TtGnTFBUVpVtvvVV2u12jR4/WxIkTFR8fL5vNpnvuuUcOh0P9+/eXJA0ePFhpaWkaOXKk5syZI6fTqSlTpigvL48KCQAA8PIroPzzn//Urbfeqn//+99KSEjQgAED9OmnnyohIUGSNHfuXEVGRionJ0dut1tZWVlasGCB9/VRUVFavXq1xo4dK4fDodjYWOXm5mrGjBlNe1UAIObIAKHMr4CyYsWKUx6PiYnR/PnzNX/+/JO26dKli95++21/3hYAALQwjZqDAgAAEAgEFAAAYDoEFAAAYDqNeg4KAADwH89g+WUEFAAhKdgrdIL9/kC4Y4gHAACYDhUUAAiQ5nyMPRBuCChAEJw4PBB9zYAg9QShqL75C4QfhBsCCgCEAao1CDcEFKAFooIDwOyYJAsAAEyHCgqAsHU6z5pgKAQwJwIKfFD6Ry1+F0IbDwJDqCOgAGGkvoeHESwAhCICCgA0E6oawOkjoCAgGB4AADQGAQXAaeG7ZwA0JwIKYFLhUoVqzmDTnEMoPBgNCCwCCoAWjcfGI9CoPjYMAQWA6RAagPq1pModAQUA/8IDYDoEFAAAAowl5v7ju3gAAIDpUEEBgCbAv5BRi9+FpkFAAUwgkHNAwnV+CR8CQHhjiAcAAJgOFRQgwMK1ggEAgURAQYsUit/6G4p9BoCGYogHAACYDhUUIIQxfBQYwXxaJ5N/gR8RUIBGYNgFAAKDgIIWgUpD6KOyALQszEEBAACmQ0ABAACmwxAPwg7DOQAQ+ggoMI2GTjglkABA+GnUEM/s2bMVERGhCRMmePcdP35ceXl56tChg9q2baucnByVlpb6vK6kpETZ2dlq06aNEhMTNWnSJFVXVzemKwAAIIw0uIKyZcsWLVq0SOeff77P/nvvvVdr1qzRqlWrZLfbNX78eA0fPlyffPKJJKmmpkbZ2dlKTk7Wxo0btX//ft12222Kjo7WrFmzGnc1ABAArCBCKPnms0U+P5+VcVeQetI4DaqgHD16VCNGjNDixYvVvn177/6Kigo9//zzevLJJ3XllVcqPT1dS5Ys0caNG/Xpp59KktatW6ft27frpZdeUt++fTVkyBDNnDlT8+fPV2VlZdNcFRAgVWs/9tkAAIHRoICSl5en7OxsZWZm+uzfunWrqqqqfPb37NlTnTt3VmFhoSSpsLBQvXv3VlJSkrdNVlaWXC6XiouL630/t9stl8vlswEAgPDl9xDPihUr9Pnnn2vLli11jjmdTlksFsXFxfnsT0pKktPp9Lb5eTipPV57rD75+fmaPn26v10FAAAhyq+AsnfvXv3hD3/Q+vXrFRMTE6g+1TF58mRNnDjR+7PL5VJqamqzvX9DnTgEwCPQAQCBVLX2Y3nKS3x3ZgSnL43lV0DZunWrysrKdOGFF3r31dTU6KOPPtJf/vIXvfvuu6qsrFR5eblPFaW0tFTJycmSpOTkZG3evNnnvLWrfGrbnMhqtcpqtfrT1WbHfAQAAJqOX3NQrrrqKhUVFWnbtm3eLSMjQyNGjPD+OTo6WgUFBd7X7Nq1SyUlJXI4HJIkh8OhoqIilZWVedusX79eNptNaWlpTXRZAAAglPlVQWnXrp3OO+88n32xsbHq0KGDd//o0aM1ceJExcfHy2az6Z577pHD4VD//v0lSYMHD1ZaWppGjhypOXPmyOl0asqUKcrLyzN9lQQAADSPJn+S7Ny5cxUZGamcnBy53W5lZWVpwYIF3uNRUVFavXq1xo4dK4fDodjYWOXm5mrGjBlN3RUAABCiGh1QPvjgA5+fY2JiNH/+fM2fP/+kr+nSpYvefvvtxr41EFDMKwKA4OG7eIAmRrABgMYjoKDR+EBGY/EoeQAnatSXBQIAAAQCFRQAAUV1BEBDEFBwSvUN3/BEXAAwh3D+BwBDPAAAwHSooMDU+D4jAGiZqKAAAADToYLSgjTVcmCWFQMAAo0KCgAAMB0qKACaTDivKADQvKigAAAA06GC0kDMw0AoO7HS0TVuSJB6AgD1o4ICAABMhwpKMzqdp7Ly5NZTo3JlLsw5ARAoVFAAAIDpEFAAAIDpEFAAAIDpMAflNDDvAaGEFToAwgEBJQQxkRYAEO4IKEEWqO/HIbAAAEIZc1AAAIDpEFAAAIDpMMQDhDAelAYgXFFBAQAApkMFBQhzDa2ysFwZQDARUACcVohhOAlAcyKghCkeLgcACGUElHrw4d70eLjcL2NIBQB+QkBB0BAEAQAnwyoeAABgOgQUAABgOgzxhACGQgAALQ0VFAAAYDoEFAAAYDoM8QD/j6E0ADAPvyoozzzzjM4//3zZbDbZbDY5HA69885Pz244fvy48vLy1KFDB7Vt21Y5OTkqLS31OUdJSYmys7PVpk0bJSYmatKkSaqurm6aqwEAAGHBrwpKp06dNHv2bPXo0UOGYWjZsmW6/vrr9cUXX+jcc8/VvffeqzVr1mjVqlWy2+0aP368hg8frk8++USSVFNTo+zsbCUnJ2vjxo3av3+/brvtNkVHR2vWrFkBuUAgVNX3aHke3gagpYgwDMNozAni4+P12GOP6cYbb1RCQoKWL1+uG2+8UZK0c+dO9erVS4WFherfv7/eeecdDR06VPv27VNSUpIkaeHChXrggQd04MABWSyW03pPl8slu92uiooK2Wy2xnS/XpT6EQx81w2AQOhxy5+C3QUvfz6/GzxJtqamRitWrNCxY8fkcDi0detWVVVVKTMz09umZ8+e6ty5swoLCyVJhYWF6t27tzecSFJWVpZcLpeKi4tP+l5ut1sul8tnAwAA4cvvgFJUVKS2bdvKarXq7rvv1uuvv660tDQ5nU5ZLBbFxcX5tE9KSpLT6ZQkOZ1On3BSe7z22Mnk5+fLbrd7t9TUVH+7DQAAQojfAeWcc87Rtm3btGnTJo0dO1a5ubnavn17IPrmNXnyZFVUVHi3vXv3BvT9AABAcPm9zNhisah79+6SpPT0dG3ZskV//vOfdfPNN6uyslLl5eU+VZTS0lIlJydLkpKTk7V582af89Wu8qltUx+r1Sqr1epvVwEAQIhq9IPaPB6P3G630tPTFR0drYKCAu+xXbt2qaSkRA6HQ5LkcDhUVFSksrIyb5v169fLZrMpLS2tsV0BAABhwq8KyuTJkzVkyBB17txZR44c0fLly/XBBx/o3Xffld1u1+jRozVx4kTFx8fLZrPpnnvukcPhUP/+/SVJgwcPVlpamkaOHKk5c+bI6XRqypQpysvLo0KCsHbiCh2WCwPAqfkVUMrKynTbbbdp//79stvtOv/88/Xuu+/q6quvliTNnTtXkZGRysnJkdvtVlZWlhYsWOB9fVRUlFavXq2xY8fK4XAoNjZWubm5mjFjRtNeFQAACGmNfg5KMPAcFISa06mg8BwUAIHQ4p6DAgAAECh8WSAQBFRLAODUqKAAAADTIaAAAADTIaAAAADTIaAAAADTIaAAAADTIaAAAADTIaAAAADT4TkoQBPjGScA0HgEFKCRCCQAzKy+r2+JvmZAEHriHwIKwhLfHgwAoY05KAAAwHQIKAAAwHQY4gEAoIU5cV6KGeekUEEBAACmQwUFLRYTaQHAvKigAAAA06GCAlOhqgEAkKigAAAAEyKgAAAA02GIBzgFhpwAhLr6vo4jFP5fRgUFAACYDhUUAABaODN+oSAVFAAAYDoEFAAAYDoM8SDk1TcBLBzeCwBaMgIKTK2pZp+fTrAgfACAeRBQAABoYULhEQoEFAAAWrj6Ksg9FNxVPAQUhByGYgAg/BFQEBCh+uRCAIA5sMwYAACYDgEFAACYDgEFAACYDgEFAACYjl8BJT8/XxdddJHatWunxMREDRs2TLt27fJpc/z4ceXl5alDhw5q27atcnJyVFpa6tOmpKRE2dnZatOmjRITEzVp0iRVV1c3/mpgat+Vv/OLGwAAkp8B5cMPP1ReXp4+/fRTrV+/XlVVVRo8eLCOHTvmbXPvvffqrbfe0qpVq/Thhx9q3759Gj58uPd4TU2NsrOzVVlZqY0bN2rZsmVaunSppk6d2nRXBQAAQlqEYRhGQ1984MABJSYm6sMPP9Tll1+uiooKJSQkaPny5brxxhslSTt37lSvXr1UWFio/v3765133tHQoUO1b98+JSUlSZIWLlyoBx54QAcOHJDFYvnF93W5XLLb7aqoqJDNZmto90+qvq+dhn+ohgBAaOtxy5+a/Jz+fH43ag5KRUWFJCk+Pl6StHXrVlVVVSkzM9PbpmfPnurcubMKCwslSYWFherdu7c3nEhSVlaWXC6XiouL630ft9stl8vlswEAgPDV4IDi8Xg0YcIEXXrppTrvvPMkSU6nUxaLRXFxcT5tk5KS5HQ6vW1+Hk5qj9ceq09+fr7sdrt3S01NbWi3AQBACGhwQMnLy9OXX36pFStWNGV/6jV58mRVVFR4t7179wb8PQEAQPA06FH348eP1+rVq/XRRx+pU6dO3v3JycmqrKxUeXm5TxWltLRUycnJ3jabN2/2OV/tKp/aNieyWq2yWq0N6SoAAAhBflVQDMPQ+PHj9frrr+u9995Tt27dfI6np6crOjpaBQUF3n27du1SSUmJHA6HJMnhcKioqEhlZWXeNuvXr5fNZlNaWlpjrgUAAIQJvyooeXl5Wr58uf73f/9X7dq1884Zsdvtat26tex2u0aPHq2JEycqPj5eNptN99xzjxwOh/r37y9JGjx4sNLS0jRy5EjNmTNHTqdTU6ZMUV5eHlUSE+BL/gAAZuBXQHnmmWckSYMGDfLZv2TJEo0aNUqSNHfuXEVGRionJ0dut1tZWVlasGCBt21UVJRWr16tsWPHyuFwKDY2Vrm5uZoxY0bjrgRBxbJiAEBTatRzUIKF56AEzulUUAgjABD+Qvo5KAAAAIFAQAEAAKZDQAEAAKZDQAEAAKZDQAEAAKbToCfJomVh1Q4AoLkRUFo4wgcAwIwY4gEAAKZDQAEAAKZDQAEAAKZDQAEAAKbDJNkWhAmxAIBQQQUFAACYDhWUMEbFBAAQqggoIaC+oNE1bkgQegIAQPMgoIQJqiUAgHDCHBQAAGA6BBQAAGA6BBQAAGA6BBQAAGA6BBQAAGA6rOIxIVbkAABaOiooAADAdAgoAADAdAgoAADAdAgoAADAdAgoAADAdFjFE6JY6QMACGdUUAAAgOkQUAAAgOkQUAAAgOkQUAAAgOkwSbaZnTi5tWvckCD1BAAA8yKgBBmrcQAAqIshHgAAYDpUUAKI6ggAAA3jdwXlo48+0nXXXaeUlBRFRETojTfe8DluGIamTp2qjh07qnXr1srMzNTu3bt92hw6dEgjRoyQzWZTXFycRo8eraNHjzbqQgAAQPjwO6AcO3ZMffr00fz58+s9PmfOHD311FNauHChNm3apNjYWGVlZen48ePeNiNGjFBxcbHWr1+v1atX66OPPtKYMWMafhUm8V35Oz4bAABoGL+HeIYMGaIhQ+pfeWIYhubNm6cpU6bo+uuvlyT99a9/VVJSkt544w3dcsst2rFjh9auXastW7YoIyNDkvT000/r2muv1eOPP66UlJRGXA4AAAgHTTpJds+ePXI6ncrMzPTus9vt6tevnwoLCyVJhYWFiouL84YTScrMzFRkZKQ2bdpU73ndbrdcLpfPBgAAwleTBhSn0ylJSkpK8tmflJTkPeZ0OpWYmOhzvFWrVoqPj/e2OVF+fr7sdrt3S01NbcpuAwAAkwmJZcaTJ09WRUWFd9u7d2+wuwQAAAKoSQNKcnKyJKm0tNRnf2lpqfdYcnKyysrKfI5XV1fr0KFD3jYnslqtstlsPhsAAAhfTRpQunXrpuTkZBUUFHj3uVwubdq0SQ6HQ5LkcDhUXl6urVu3etu899578ng86tevX1N2BwAAhCi/V/EcPXpUX3/9tffnPXv2aNu2bYqPj1fnzp01YcIEPfLII+rRo4e6deumhx56SCkpKRo2bJgkqVevXrrmmmt05513auHChaqqqtL48eN1yy23sIIHAABIakBA+eyzz3TFFVd4f544caIkKTc3V0uXLtX999+vY8eOacyYMSovL9eAAQO0du1axcTEeF/z8ssva/z48brqqqsUGRmpnJwcPfXUU01wOQAAIBxEGIZhBLsT/nK5XLLb7aqoqAjIfJSqtR836HU8nA0AEC563PKnJj+nP5/fIbGKBwAAtCwEFAAAYDoEFAAAYDoEFAAAYDp+r+JpqZgACwBA86GCAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATIeAAgAATKdVsDtgRt+VvxPsLgAA0KJRQQEAAKZDQAEAAKbDEE+4MSTrkShFVUWqJtojd7saKeLkzT0ytCfykFwRbtkMq7p54hV5qhcAJsbvMxA+CChhpPWhVooraa1WlT8VxqotHpV3/kE/xFfXaV8U5dSb0TtUEXncu8/uidGvq3qpd01ys/QZaCr8PgPhhSGeMNH6UCt1+LqNoip9/7UYVRmhDl+3UetDvlm0KMqpFy1fqCLiuM/+iojjetHyhYqinAHvM9BU+H0Gwg8BJRwYUlxJa0lSxAnl7Nqf40paS8aP+zwy9Gb0jtoGOuEFkqQ3o3fIU/sCwMT4fQbCEwElDFiPRKlVZWSdcFIrQhFqVRkp65EoSdKeyEM/lsFPNjQfIVVEHteeyEMB6jHQdPh9BsJTUAPK/Pnz1bVrV8XExKhfv37avHlzMLsTsqKqTu821rZzRbhPq/3ptgOCid9nIDwFLaC88sormjhxoqZNm6bPP/9cffr0UVZWlsrKyoLVpZBVE+3xq53NsJ5W+9NtBwQTv89AeApaQHnyySd155136vbbb1daWpoWLlyoNm3a6IUXXghWl0KWu12Nqi0eGScZYzdkqNry/0uOJXXzxMvuidFJh+SNH1c/dPPEB6jHQNPh9xkIT0FZZlxZWamtW7dq8uTJ3n2RkZHKzMxUYWFhnfZut1tu90/l2YqKCkmSy+UKSP+O/if0SsF7E2oU/23dibK1oeXQmT/o+A8/LTXOdJ+lFZZ/6P9foJ+94MfjlWfpPzWVAe0z0FT4fQaaXiA+Y2vPaRi/PGk9KAHl4MGDqqmpUVJSks/+pKQk7dy5s077/Px8TZ8+vc7+1NTUgPWxpVujfwS7C0CT4fcZaIDRTwTs1EeOHJHdbj9lm5B4UNvkyZM1ceJE788ej0eHDh1Shw4dFBHRtE+JdLlcSk1N1d69e2Wz2Zr03GgY7ok5cV/MiftiTtyXHxmGoSNHjiglJeUX2wYloJxxxhmKiopSaWmpz/7S0lIlJ9d94qPVapXV6jvBLS4uLpBdlM1ma9G/RGbEPTEn7os5cV/MifuiX6yc1ArKJFmLxaL09HQVFBR493k8HhUUFMjhcASjSwAAwESCNsQzceJE5ebmKiMjQxdffLHmzZunY8eO6fbbbw9WlwAAgEkELaDcfPPNOnDggKZOnSqn06m+fftq7dq1dSbONjer1app06bVGVJC8HBPzIn7Yk7cF3PivvgvwjidtT4AAADNiO/iAQAApkNAAQAApkNAAQAApkNAAQAAptPiAsr8+fPVtWtXxcTEqF+/ftq8efMp269atUo9e/ZUTEyMevfurbfffruZetqy+HNfiouLlZOTo65duyoiIkLz5s1rvo62MP7cl8WLF+uyyy5T+/bt1b59e2VmZv7if19oGH/uy2uvvaaMjAzFxcUpNjZWffv21YsvvtiMvW05/P18qbVixQpFRERo2LBhge1gqDFakBUrVhgWi8V44YUXjOLiYuPOO+804uLijNLS0nrbf/LJJ0ZUVJQxZ84cY/v27caUKVOM6Ohoo6ioqJl7Ht78vS+bN2827rvvPuO///u/jeTkZGPu3LnN2+EWwt/78l//9V/G/PnzjS+++MLYsWOHMWrUKMNutxv//Oc/m7nn4c3f+/L+++8br732mrF9+3bj66+/NubNm2dERUUZa9eubeaehzd/70utPXv2GGeeeaZx2WWXGddff33zdDZEtKiAcvHFFxt5eXnen2tqaoyUlBQjPz+/3vY33XSTkZ2d7bOvX79+xl133RXQfrY0/t6Xn+vSpQsBJUAac18MwzCqq6uNdu3aGcuWLQtUF1ukxt4XwzCMCy64wJgyZUogutdiNeS+VFdXG5dcconx3HPPGbm5uQSUE7SYIZ7Kykpt3bpVmZmZ3n2RkZHKzMxUYWFhva8pLCz0aS9JWVlZJ20P/zXkviDwmuK+/Oc//1FVVZXi4+MD1c0Wp7H3xTAMFRQUaNeuXbr88ssD2dUWpaH3ZcaMGUpMTNTo0aObo5shJyS+zbgpHDx4UDU1NXWeVJuUlKSdO3fW+xqn01lve6fTGbB+tjQNuS8IvKa4Lw888IBSUlLqhHw0XEPvS0VFhc4880y53W5FRUVpwYIFuvrqqwPd3RajIffl448/1vPPP69t27Y1Qw9DU4sJKACaz+zZs7VixQp98MEHiomJCXZ3Wrx27dpp27ZtOnr0qAoKCjRx4kT96le/0qBBg4LdtRbpyJEjGjlypBYvXqwzzjgj2N0xrRYTUM444wxFRUWptLTUZ39paamSk5PrfU1ycrJf7eG/htwXBF5j7svjjz+u2bNna8OGDTr//PMD2c0Wp6H3JTIyUt27d5ck9e3bVzt27FB+fj4BpYn4e1+++eYbfffdd7ruuuu8+zwejySpVatW2rVrl84666zAdjoEtJg5KBaLRenp6SooKPDu83g8KigokMPhqPc1DofDp70krV+//qTt4b+G3BcEXkPvy5w5czRz5kytXbtWGRkZzdHVFqWp/nvxeDxyu92B6GKL5O996dmzp4qKirRt2zbv9utf/1pXXHGFtm3bptTU1ObsvnkFe5Zuc1qxYoVhtVqNpUuXGtu3bzfGjBljxMXFGU6n0zAMwxg5cqTxxz/+0dv+k08+MVq1amU8/vjjxo4dO4xp06axzDgA/L0vbrfb+OKLL4wvvvjC6Nixo3HfffcZX3zxhbF79+5gXUJY8ve+zJ4927BYLMarr75q7N+/37sdOXIkWJcQlvy9L7NmzTLWrVtnfPPNN8b27duNxx9/3GjVqpWxePHiYF1CWPL3vpyIVTx1taiAYhiG8fTTTxudO3c2LBaLcfHFFxuffvqp99jAgQON3Nxcn/YrV640zj77bMNisRjnnnuusWbNmmbuccvgz33Zs2ePIanONnDgwObveJjz57506dKl3vsybdq05u94mPPnvjz44ING9+7djZiYGKN9+/aGw+EwVqxYEYRehz9/P19+joBSV4RhGEawqjcAAAD1aTFzUAAAQOggoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANMhoAAAANP5P2wie6FrBRlVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM5tJREFUeJzt3Xt0VNXd//FP7gTITABJQkpAbgpR1BIqjILWmocI8faIpSjFqCiKQUtoBfMUAfECD94AFeOlGmqhiK1WFAFpEFxoVIxNG0FS0dCgOOFmMoCS6/794S/nYUjATMiFHd6vtWYtZp/vObPPNivzcZ99ToKMMUYAAAAWCW7tDgAAAASKAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAA6DJ3XjjjTr99NN/tG7Hjh0KCgpSdnZ2s/cJQNtCgAHQKLt27dLs2bOVn5/f2l0BcAoKbe0OALDTrl27dN999+n000/Xeeed57ftueeeU01NTet0DMApgQADoMmFhYW1dhcAtHFcQgIsN3v2bAUFBWnbtm0aM2aMXC6XunTpot/85jc6fPiwX+2f/vQnJSUlKTIyUp07d9bYsWO1c+dOv5qf//znOvvss5WXl6cLLrhAkZGR6tWrl7KyspyaDRs26Gc/+5kk6aabblJQUJDfWpb61sCUlpbqxhtvlNvtVnR0tNLS0lRaWlrvOW3btk3XXnutOnfurHbt2mnw4MFauXJlwGNTXl6ujIwMde3aVVFRUbryyiv11VdfKSgoSLNnz27wcWrX6jzyyCN66qmn1Lt3b7Vv314jRozQzp07ZYzR/fffr+7duysyMlJXXXWV9u/f73eM119/XampqYqPj1dERIT69Omj+++/X9XV1U7NZ599psjISN1www1++27atEkhISGaPn16wGMAtFUEGKCNGDNmjA4fPqy5c+dq1KhRWrRokSZOnOhsf/DBB3XDDTeoX79+euyxxzRlyhTl5OTooosuqhMkvv32W40aNUpJSUmaP3++unfvrkmTJumFF16QJA0YMEBz5syRJE2cOFEvvfSSXnrpJV100UX19s0Yo6uuukovvfSSfv3rX+uBBx7QV199pbS0tDq1W7Zs0dChQ/XZZ5/pnnvu0aOPPqoOHTro6quv1muvvRbQmNxyyy1asGCBRowYoXnz5iksLEypqakBHeNIS5cu1eLFi3XnnXfqt7/9rTZu3KgxY8ZoxowZWrNmjaZPn66JEyfqjTfe0O9+9zu/fbOzs9WxY0dNnTpVCxcuVFJSkmbOnKl77rnHqRkwYIDuv/9+vfTSS05gO3TokG688Ub179/fGXMAkgwAq82aNctIMldeeaVf+x133GEkmX/+859mx44dJiQkxDz44IN+NQUFBSY0NNSv/eKLLzaSzKOPPuq0lZeXm/POO8/ExMSYiooKY4wxmzdvNpLMiy++WKdPaWlppmfPns77v/3tb0aSmT9/vtNWVVVlhg8fXucYl156qRk4cKA5fPiw01ZTU2MuuOAC069fvwaPS35+vpFk7rjjDr/266+/3kgys2bNavCxioqKjCTTtWtXU1pa6rRnZmYaSebcc881lZWVTvt1111nwsPD/c7hu+++q3Pc2267zbRv396vrrq62gwbNszExsaavXv3mvT0dBMaGmo2b97c4P4CpwJmYIA2Ij093e/9nXfeKUl666239Oqrr6qmpkZjxozR3r17nVdcXJz69eund955x2/f0NBQ3Xbbbc778PBw3Xbbbdq9e7fy8vIC7ttbb72l0NBQTZo0yWkLCQlx+lhr//79Wr9+vcaMGaMDBw44/dy3b59SUlL0+eef6+uvv27wZ0rSXXfd5dc+ZcqUgPtf65e//KXcbrfzfsiQIZKkX//61woNDfVrr6io8OtrZGSk8+/acxs+fLi+++47bdu2zdkWHBys7OxsHTx4UCNHjtTixYuVmZmpwYMHN7rfQFvEIl6gjejXr5/f+z59+ig4OFg7duxQcHCwjDF1amodveg2Pj5eHTp08Gs744wzJP2wHmTo0KEB9e0///mPunXrpo4dO/q1n3nmmX7vt2/fLmOM7r33Xt177731Hmv37t36yU9+0qDPDA4OVp8+fY77mYHo0aOH3/vaMJOQkFBv+7fffuu0bdmyRTNmzND69evl8/n86svKyvze9+nTR7Nnz9bdd9+ts88++5hjAZzKCDBAGxUUFOT8u6amRkFBQVq9erVCQkLq1B4dLFpL7a3Xv/vd75SSklJvTd++fVuyS37qG7vjtRtjJP2wgPniiy+Wy+XSnDlz1KdPH7Vr106ffPKJpk+fXu8t52+//bakH25X37dvn+Li4proLIC2gQADtBGff/65evXq5bzfvn27ampqdPrppyskJETGGPXq1cuZSTmeXbt26dChQ36zMP/+978lybm76MiA9GN69uypnJwcHTx40C8sFRYW+tX17t1b0g8zQsnJyQ0+/rE+s6amRl988YXfrMvRn9kSNmzYoH379unVV1/1W+hcVFRUb31WVpbWrVunBx98UHPnztVtt92m119/vaW6C1iBNTBAG/HUU0/5vX/iiSckSSNHjtQ111yjkJAQ3Xfffc6sQC1jjPbt2+fXVlVVpWeeecZ5X1FRoWeeeUZdu3ZVUlKSJDnh5li3Qh9p1KhRqqqq0tNPP+20VVdXO32sFRMTo5///Od65pln9M0339Q5zp49e370s2qNHDlSkrRo0SK/9gULFjT4GE2ldobmyLGvqKjQ4sWL69QWFRXp7rvv1ujRo/U///M/euSRR7Ry5Ur98Y9/bLH+AjZgBgZoI4qKinTllVfqsssuU25urv70pz/p+uuv17nnnitJeuCBB5SZmakdO3bo6quvVlRUlIqKivTaa69p4sSJfrf9xsfH63//93+1Y8cOnXHGGXr55ZeVn5+vZ5991lkv06dPH0VHRysrK0tRUVHq0KGDhgwZ4jcLVOuKK67QhRdeqHvuuUc7duxQYmKiXn311TprP6QfgtiwYcM0cOBA3Xrrrerdu7dKSkqUm5urr776Sv/85z8bNB7nnXeerrvuOi1evFhlZWW64IILlJOTo+3btzdmeE/IBRdcoE6dOiktLU133XWXgoKC9NJLL9UbJm+++WZFRkY6Ye+2227TX//6V/3mN79RcnKy4uPjW7z/wEmp1e5/AtAkam+j3rp1q7n22mtNVFSU6dSpk5k8ebL5/vvv/Wr/+te/mmHDhpkOHTqYDh06mP79+5v09HRTWFjo1Fx88cXmrLPOMh9//LHxeDymXbt2pmfPnubJJ5+s89mvv/66SUxMNKGhoX63Qx99G7Uxxuzbt8+MHz/euFwu43a7zfjx480//vGPem/F/uKLL8wNN9xg4uLiTFhYmPnJT35iLr/8cvOXv/wloLH5/vvvzV133WW6dOliOnToYK644gqzc+fORt9G/fDDD/u1v/POO0aSeeWVV/zaX3zxRSPJ79bn9957zwwdOtRERkaa+Ph4M23aNLN27VojybzzzjvGGGMWLlxoJJm//vWvfscrLi42LpfLjBo1KqDzB9qyIGOO+l8AAFaZPXu27rvvPu3Zs0ennXbaCR/v5z//ufbu3atPP/20CXp3cgoKCtKsWbMCehovgJMLa2AAAIB1WAMDwDper/e42yMjI/0eOHcs1dXVP7owuGPHjifNbeYA/g8BBoB1unXrdtztaWlpzh+WPJ6dO3fWu+j4SFxqAk5OrIEBYJ2///3vx90eHx+vxMTEHz3O4cOHtWnTpuPW9O7d23k+DYCTBwEGAABYh0W8AADAOm12DUxNTY127dqlqKiogB55DgAAWo8xRgcOHFB8fLyCg489z9JmA8yuXbvq/IVYAABgh507d6p79+7H3N5mA0xUVJSkHwbA5XK1cm8AAEBD+Hw+JSQkON/jx9JmA0ztZSOXy0WAAQDAMj+2/INFvAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgnYADzNdff61f//rX6tKliyIjIzVw4EB9/PHHznZjjGbOnKlu3bopMjJSycnJ+vzzz/2OsX//fo0bN04ul0vR0dGaMGGCDh486Ffzr3/9S8OHD1e7du2UkJCg+fPnN/IUAQBAWxNQgPn222914YUXKiwsTKtXr9bWrVv16KOPqlOnTk7N/PnztWjRImVlZenDDz9Uhw4dlJKSosOHDzs148aN05YtW7Ru3Tq9+eabevfddzVx4kRnu8/n04gRI9SzZ0/l5eXp4Ycf1uzZs/Xss882wSkDAADrmQBMnz7dDBs27Jjba2pqTFxcnHn44YedttLSUhMREWH+/Oc/G2OM2bp1q5FkNm/e7NSsXr3aBAUFma+//toYY8zixYtNp06dTHl5ud9nn3nmmQ3ua1lZmZFkysrKGrwPAABoXQ39/g5oBmblypUaPHiwfvnLXyomJkY//elP9dxzzznbi4qK5PV6lZyc7LS53W4NGTJEubm5kqTc3FxFR0dr8ODBTk1ycrKCg4P14YcfOjUXXXSRwsPDnZqUlBQVFhbq22+/rbdv5eXl8vl8fi8AANA2BRRgvvzySz399NPq16+f1q5dq0mTJumuu+7SkiVLJEler1eSFBsb67dfbGyss83r9SomJsZve2hoqDp37uxXU98xjvyMo82dO1dut9t5JSQkBHJqAalcs6nOCwAAtJyAAkxNTY0GDRqkhx56SD/96U81ceJE3XrrrcrKymqu/jVYZmamysrKnNfOnTtbu0sAAKCZBBRgunXrpsTERL+2AQMGqLi4WJIUFxcnSSopKfGrKSkpcbbFxcVp9+7dfturqqq0f/9+v5r6jnHkZxwtIiJCLpfL7wUAANqmgALMhRdeqMLCQr+2f//73+rZs6ckqVevXoqLi1NOTo6z3efz6cMPP5TH45EkeTwelZaWKi8vz6lZv369ampqNGTIEKfm3XffVWVlpVOzbt06nXnmmX53PAEAgFNTQAEmIyNDH3zwgR566CFt375dy5Yt07PPPqv09HRJUlBQkKZMmaIHHnhAK1euVEFBgW644QbFx8fr6quvlvTDjM1ll12mW2+9VR999JHee+89TZ48WWPHjlV8fLwk6frrr1d4eLgmTJigLVu26OWXX9bChQs1derUpj17AABgpdBAin/2s5/ptddeU2ZmpubMmaNevXppwYIFGjdunFMzbdo0HTp0SBMnTlRpaamGDRumNWvWqF27dk7N0qVLNXnyZF166aUKDg7W6NGjtWjRIme72+3W22+/rfT0dCUlJem0007TzJkz/Z4VAwAATl1BxhjT2p1oDj6fT263W2VlZU2+Hqa+u47CLhvWpJ8BAMCpqKHf3/wtJAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoBBZjZs2crKCjI79W/f39n++HDh5Wenq4uXbqoY8eOGj16tEpKSvyOUVxcrNTUVLVv314xMTG6++67VVVV5VezYcMGDRo0SBEREerbt6+ys7Mbf4YAAKDNCXgG5qyzztI333zjvDZt2uRsy8jI0BtvvKFXXnlFGzdu1K5du3TNNdc426urq5WamqqKigq9//77WrJkibKzszVz5kynpqioSKmpqbrkkkuUn5+vKVOm6JZbbtHatWtP8FQBAEBbERrwDqGhiouLq9NeVlamP/zhD1q2bJl+8YtfSJJefPFFDRgwQB988IGGDh2qt99+W1u3btXf//53xcbG6rzzztP999+v6dOna/bs2QoPD1dWVpZ69eqlRx99VJI0YMAAbdq0SY8//rhSUlKO2a/y8nKVl5c7730+X6CnBgAALBHwDMznn3+u+Ph49e7dW+PGjVNxcbEkKS8vT5WVlUpOTnZq+/fvrx49eig3N1eSlJubq4EDByo2NtapSUlJkc/n05YtW5yaI49RW1N7jGOZO3eu3G6380pISAj01AAAgCUCCjBDhgxRdna21qxZo6efflpFRUUaPny4Dhw4IK/Xq/DwcEVHR/vtExsbK6/XK0nyer1+4aV2e+2249X4fD59//33x+xbZmamysrKnNfOnTsDOTUAAGCRgC4hjRw50vn3OeecoyFDhqhnz55asWKFIiMjm7xzgYiIiFBERESr9gEAALSME7qNOjo6WmeccYa2b9+uuLg4VVRUqLS01K+mpKTEWTMTFxdX566k2vc/VuNyuVo9JAEAgJPDCQWYgwcP6osvvlC3bt2UlJSksLAw5eTkONsLCwtVXFwsj8cjSfJ4PCooKNDu3budmnXr1snlcikxMdGpOfIYtTW1xwAAAAgowPzud7/Txo0btWPHDr3//vv67//+b4WEhOi6666T2+3WhAkTNHXqVL3zzjvKy8vTTTfdJI/Ho6FDh0qSRowYocTERI0fP17//Oc/tXbtWs2YMUPp6enO5Z/bb79dX375paZNm6Zt27Zp8eLFWrFihTIyMpr+7AEAgJUCWgPz1Vdf6brrrtO+ffvUtWtXDRs2TB988IG6du0qSXr88ccVHBys0aNHq7y8XCkpKVq8eLGzf0hIiN58801NmjRJHo9HHTp0UFpamubMmePU9OrVS6tWrVJGRoYWLlyo7t276/nnnz/uLdQAAODUEmSMMa3diebg8/nkdrtVVlYml8vVpMeuXLOpTlvYZcOa9DMAADgVNfT7m7+FBAAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsM4JBZh58+YpKChIU6ZMcdoOHz6s9PR0denSRR07dtTo0aNVUlLit19xcbFSU1PVvn17xcTE6O6771ZVVZVfzYYNGzRo0CBFRESob9++ys7OPpGuAgCANqTRAWbz5s165plndM455/i1Z2Rk6I033tArr7yijRs3ateuXbrmmmuc7dXV1UpNTVVFRYXef/99LVmyRNnZ2Zo5c6ZTU1RUpNTUVF1yySXKz8/XlClTdMstt2jt2rWN7S4AAGhDgowxJtCdDh48qEGDBmnx4sV64IEHdN5552nBggUqKytT165dtWzZMl177bWSpG3btmnAgAHKzc3V0KFDtXr1al1++eXatWuXYmNjJUlZWVmaPn269uzZo/DwcE2fPl2rVq3Sp59+6nzm2LFjVVpaqjVr1jSojz6fT263W2VlZXK5XIGe4nFVrtlUpy3ssmFN+hkAAJyKGvr93agZmPT0dKWmpio5OdmvPS8vT5WVlX7t/fv3V48ePZSbmytJys3N1cCBA53wIkkpKSny+XzasmWLU3P0sVNSUpxj1Ke8vFw+n8/vBQAA2qbQQHdYvny5PvnkE23evLnONq/Xq/DwcEVHR/u1x8bGyuv1OjVHhpfa7bXbjlfj8/n0/fffKzIyss5nz507V/fdd1+gpwMAACwU0AzMzp079Zvf/EZLly5Vu3btmqtPjZKZmamysjLntXPnztbuEgAAaCYBBZi8vDzt3r1bgwYNUmhoqEJDQ7Vx40YtWrRIoaGhio2NVUVFhUpLS/32KykpUVxcnCQpLi6uzl1Jte9/rMblctU7+yJJERERcrlcfi8AANA2BRRgLr30UhUUFCg/P995DR48WOPGjXP+HRYWppycHGefwsJCFRcXy+PxSJI8Ho8KCgq0e/dup2bdunVyuVxKTEx0ao48Rm1N7TEAAMCpLaA1MFFRUTr77LP92jp06KAuXbo47RMmTNDUqVPVuXNnuVwu3XnnnfJ4PBo6dKgkacSIEUpMTNT48eM1f/58eb1ezZgxQ+np6YqIiJAk3X777XryySc1bdo03XzzzVq/fr1WrFihVatWNcU5AwAAywW8iPfHPP744woODtbo0aNVXl6ulJQULV682NkeEhKiN998U5MmTZLH41GHDh2UlpamOXPmODW9evXSqlWrlJGRoYULF6p79+56/vnnlZKS0tTdBQAAFmrUc2BswHNgAACwT7M+BwYAAKA1EWAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWCSjAPP300zrnnHPkcrnkcrnk8Xi0evVqZ/vhw4eVnp6uLl26qGPHjho9erRKSkr8jlFcXKzU1FS1b99eMTExuvvuu1VVVeVXs2HDBg0aNEgRERHq27evsrOzG3+GAACgzQkowHTv3l3z5s1TXl6ePv74Y/3iF7/QVVddpS1btkiSMjIy9MYbb+iVV17Rxo0btWvXLl1zzTXO/tXV1UpNTVVFRYXef/99LVmyRNnZ2Zo5c6ZTU1RUpNTUVF1yySXKz8/XlClTdMstt2jt2rVNdMoAAMB2QcYYcyIH6Ny5sx5++GFde+216tq1q5YtW6Zrr71WkrRt2zYNGDBAubm5Gjp0qFavXq3LL79cu3btUmxsrCQpKytL06dP1549exQeHq7p06dr1apV+vTTT53PGDt2rEpLS7VmzZoG98vn88ntdqusrEwul+tETrGOyjWb6rSFXTasST8DAIBTUUO/vxu9Bqa6ulrLly/XoUOH5PF4lJeXp8rKSiUnJzs1/fv3V48ePZSbmytJys3N1cCBA53wIkkpKSny+XzOLE5ubq7fMWprao9xLOXl5fL5fH4vAADQNgUcYAoKCtSxY0dFRETo9ttv12uvvabExER5vV6Fh4crOjrarz42NlZer1eS5PV6/cJL7fbabcer8fl8+v7774/Zr7lz58rtdjuvhISEQE8NAABYIuAAc+aZZyo/P18ffvihJk2apLS0NG3durU5+haQzMxMlZWVOa+dO3e2dpcAAEAzCQ10h/DwcPXt21eSlJSUpM2bN2vhwoX61a9+pYqKCpWWlvrNwpSUlCguLk6SFBcXp48++sjveLV3KR1Zc/SdSyUlJXK5XIqMjDxmvyIiIhQRERHo6QAAAAud8HNgampqVF5erqSkJIWFhSknJ8fZVlhYqOLiYnk8HkmSx+NRQUGBdu/e7dSsW7dOLpdLiYmJTs2Rx6itqT0GAABAQDMwmZmZGjlypHr06KEDBw5o2bJl2rBhg9auXSu3260JEyZo6tSp6ty5s1wul+688055PB4NHTpUkjRixAglJiZq/Pjxmj9/vrxer2bMmKH09HRn9uT222/Xk08+qWnTpunmm2/W+vXrtWLFCq1atarpzx4AAFgpoACze/du3XDDDfrmm2/kdrt1zjnnaO3atfqv//ovSdLjjz+u4OBgjR49WuXl5UpJSdHixYud/UNCQvTmm29q0qRJ8ng86tChg9LS0jRnzhynplevXlq1apUyMjK0cOFCde/eXc8//7xSUlKa6JQBAIDtTvg5MCcrngMDAIB9mv05MAAAAK2FAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALBOQAFm7ty5+tnPfqaoqCjFxMTo6quvVmFhoV/N4cOHlZ6eri5duqhjx44aPXq0SkpK/GqKi4uVmpqq9u3bKyYmRnfffbeqqqr8ajZs2KBBgwYpIiJCffv2VXZ2duPOEAAAtDkBBZiNGzcqPT1dH3zwgdatW6fKykqNGDFChw4dcmoyMjL0xhtv6JVXXtHGjRu1a9cuXXPNNc726upqpaamqqKiQu+//76WLFmi7OxszZw506kpKipSamqqLrnkEuXn52vKlCm65ZZbtHbt2iY4ZQAAYLsgY4xp7M579uxRTEyMNm7cqIsuukhlZWXq2rWrli1bpmuvvVaStG3bNg0YMEC5ubkaOnSoVq9ercsvv1y7du1SbGysJCkrK0vTp0/Xnj17FB4erunTp2vVqlX69NNPnc8aO3asSktLtWbNmgb1zefzye12q6ysTC6Xq7GnWK/KNZvqtIVdNqxJPwMAgFNRQ7+/T2gNTFlZmSSpc+fOkqS8vDxVVlYqOTnZqenfv7969Oih3NxcSVJubq4GDhzohBdJSklJkc/n05YtW5yaI49RW1N7jPqUl5fL5/P5vQAAQNvU6ABTU1OjKVOm6MILL9TZZ58tSfJ6vQoPD1d0dLRfbWxsrLxer1NzZHip3V677Xg1Pp9P33//fb39mTt3rtxut/NKSEho7KkBAICTXKMDTHp6uj799FMtX768KfvTaJmZmSorK3NeO3fubO0uAQCAZhLamJ0mT56sN998U++++666d+/utMfFxamiokKlpaV+szAlJSWKi4tzaj766CO/49XepXRkzdF3LpWUlMjlcikyMrLePkVERCgiIqIxpwMAACwT0AyMMUaTJ0/Wa6+9pvXr16tXr15+25OSkhQWFqacnBynrbCwUMXFxfJ4PJIkj8ejgoIC7d6926lZt26dXC6XEhMTnZojj1FbU3sMAABwagtoBiY9PV3Lli3T66+/rqioKGfNitvtVmRkpNxutyZMmKCpU6eqc+fOcrlcuvPOO+XxeDR06FBJ0ogRI5SYmKjx48dr/vz58nq9mjFjhtLT050ZlNtvv11PPvmkpk2bpptvvlnr16/XihUrtGrVqiY+fQAAYKOAbqMOCgqqt/3FF1/UjTfeKOmHB9n99re/1Z///GeVl5crJSVFixcvdi4PSdJ//vMfTZo0SRs2bFCHDh2UlpamefPmKTT0//LUhg0blJGRoa1bt6p79+669957nc9oCG6jBgDAPg39/j6h58CczAgwAADYp0WeAwMAANAaCDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA64S2dgcAALBF5ZpNfu/DLhvWSj0BMzAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANbhNmoAAOpx9C3TOLkQYAAAEIHFNlxCAgAA1mEGBgCARqpv1oan87YMAgwAoM1rqj8BsKN0td/706NHNrpPODFcQgIAANZhBgYA0KawGPfUwAwMAACwDgEGAABYh0tIAAA00tGLeiWpn7gLqSUQYAAAqEd94QQnDy4hAQAA6xBgAACAdbiEBACAmu6SUVM9NA/HR4ABALR5R4cTFtrajwADADjl8LA7+7EGBgAAWIcAAwAArMMlJABAm9KQxbg848V+zMAAAADrEGAAAIB1CDAAAMA6BBgAAGAdFvECAE4K9T2bpSFPseWZLqcmAgwAAE2Ip/62jIAvIb377ru64oorFB8fr6CgIP3tb3/z226M0cyZM9WtWzdFRkYqOTlZn3/+uV/N/v37NW7cOLlcLkVHR2vChAk6ePCgX82//vUvDR8+XO3atVNCQoLmz58f+NkBAIA2KeAZmEOHDuncc8/VzTffrGuuuabO9vnz52vRokVasmSJevXqpXvvvVcpKSnaunWr2rVrJ0kaN26cvvnmG61bt06VlZW66aabNHHiRC1btkyS5PP5NGLECCUnJysrK0sFBQW6+eabFR0drYkTJ57gKQMAbMHlIRxLwAFm5MiRGjlyZL3bjDFasGCBZsyYoauuukqS9Mc//lGxsbH629/+prFjx+qzzz7TmjVrtHnzZg0ePFiS9MQTT2jUqFF65JFHFB8fr6VLl6qiokIvvPCCwsPDddZZZyk/P1+PPfYYAQYA4IeH0p2amvQupKKiInm9XiUnJzttbrdbQ4YMUW5uriQpNzdX0dHRTniRpOTkZAUHB+vDDz90ai666CKFh4c7NSkpKSosLNS3335b72eXl5fL5/P5vQAAQNvUpAHG6/VKkmJjY/3aY2NjnW1er1cxMTF+20NDQ9W5c2e/mvqOceRnHG3u3Llyu93OKyEh4cRPCAAAnJTazF1ImZmZmjp1qvPe5/MRYgCgjeFyEWo16QxMXFycJKmkpMSvvaSkxNkWFxen3bt3+22vqqrS/v37/WrqO8aRn3G0iIgIuVwuvxcAAGibmjTA9OrVS3FxccrJyXHafD6fPvzwQ3k8HkmSx+NRaWmp8vLynJr169erpqZGQ4YMcWreffddVVZWOjXr1q3TmWeeqU6dOjVllwEAgIUCDjAHDx5Ufn6+8vPzJf2wcDc/P1/FxcUKCgrSlClT9MADD2jlypUqKCjQDTfcoPj4eF199dWSpAEDBuiyyy7Trbfeqo8++kjvvfeeJk+erLFjxyo+Pl6SdP311ys8PFwTJkzQli1b9PLLL2vhwoV+l4gAAMCpK+A1MB9//LEuueQS531tqEhLS1N2dramTZumQ4cOaeLEiSotLdWwYcO0Zs0a5xkwkrR06VJNnjxZl156qYKDgzV69GgtWrTI2e52u/X2228rPT1dSUlJOu200zRz5kxuoQaANqy+9S2nR9f/2A4gyBhjWrsTzcHn88ntdqusrKzJ18M09u91AAD+z9G/S9vqAt1+Yx9s7S5YpaHf3/w1agAAYB0CDAAAsA4BBgAAWKfNPMgOAGCXtrrmBS2DAAMAaHb8VWk0NQIMAKDZMduCpkaAAQCcEB4tgdbAIl4AAGAdZmAAACekvstD/cQMDJoXAQYAcEyNvTz0xcfPNEd3AAcBBgAQkIaEk5rtxS3QE5zKCDAAgIAQTnAyIMAAAI6J259xsuIuJAAAYB0CDAAAsA6XkACgDeLhcmjrCDAAYLmm/DtDny//fZMdC2hOBBgAsExTBRb+wCJsRoABgDaovruHgj/e4ve+ppTboWEvFvECAADrMAPTRI6eimWxHICmUN9lnsY+m4UH0KEtIcAAQDNo7PoS/ucHaBgCDACc5HgaLlAXAQYATiLcxgw0DIt4AQCAdZiBAYAWUt+loNOjR7ZCT9CSeCpy8yDAAEArYn1L21fff+N+IsCcKAIMAPyIhjwmoSlvdwbw4wgwAE4ZTTWVT1gBWh8BBgAagcACtC4CDIA2qzEPk+M2ZrSEo3/O+o19sJV6Yi8CTDNh1TlgBwILYCcCDIA2obGP7gdgJwIMACsdHVga8owV1q0AbQcBpgXxF6uBhmmq2RQCC9B2EWAANJnGhPSGhBWeYAvgaAQYAHU01QxIcy5mZ3YFOLURYFoRdyrhVMRdPwCaAgHmJMM6GdRqqp+Fxj4G/8cwAwKgNRFgTnLM0qBWc17WORrhBMDJjgBjocZ8kRF6mkZzLVJtKgQPAKcKAswpoqEzOY253GBDOGqu4NGct/vyDBMAODYCzCmsOb+gm2qWqCHHOXq/lgwejdWQMEJgAYBjI8DghLXk2oym2q+pnitCyACA1kGAgVWaMzAQRgDYxsZL+k2FAAM/DfkSZ20GAKC1EWACUFVdqS2fvq19+z5Rp9BOGhA1UCHBIa3dLUl1Q0R9l0OaKmgQWIDWUyOjouD98gWVy2Ui1Kums4IV1NrdQguo73L50b+P+6lxMzBffPyM3/ua7cV1aoL79vB732fwbY36rKZyUgeYp556Sg8//LC8Xq/OPfdcPfHEEzr//PNbpS/v5f5JL3z9jPaHH5KifmjrfKi9bqy8XEM7N+wHpiW/+AkZQNtTEOLVyrDPVBZ82Glz17TTlZUDNLA6rhV7hhPVkHDSEPU96fro4FFfOGmIOvsNbtRhmsxJG2BefvllTZ06VVlZWRoyZIgWLFiglJQUFRYWKiYmpkX78l7un/TI7sekMP/2/eHf6bHwFZq6X4oLPtCifQJwaikI8eql8H/UaS8LOqyXwv+h8RU/JcRYrDn/p7OxgeVkF9zaHTiWxx57TLfeeqtuuukmJSYmKisrS+3bt9cLL7zQov2oqq7UC1///6m1o2dp///77LA3VGNMi/YLwKmjRkYrwz774c0xfg+tDPtMNeL3EE4dJ+UMTEVFhfLy8pSZmem0BQcHKzk5Wbm5ufXuU15ervLycud9WVmZJMnn851QXwoK1qqkyidVHbumRAdVWLpbCRHRJ/RZAFCfL4P3a68OHbdmrw7p08Ne9a7p3EK9wqnuRL9ff+y45kcmBk7KALN3715VV1crNjbWrz02Nlbbtm2rd5+5c+fqvvvuq9OekJDQLH082ir9q0U+BwCOhd9DaFETHm3Wwx84cEBut/uY20/KANMYmZmZmjp1qvO+pqZG+/fvV5cuXRQU1HQr9H0+nxISErRz5065XK4mOy5+HGPfehj71sG4tx7GvvUYY3TgwAHFx8cft+6kDDCnnXaaQkJCVFJS4tdeUlKiuLj6F6lFREQoIiLCry06Orq5uiiXy8UPdSth7FsPY986GPfWw9i3juPNvNQ6KRfxhoeHKykpSTk5OU5bTU2NcnJy5PF4WrFnAADgZHBSzsBI0tSpU5WWlqbBgwfr/PPP14IFC3To0CHddNNNrd01AADQyk7aAPOrX/1Ke/bs0cyZM+X1enXeeedpzZo1dRb2trSIiAjNmjWrzuUqND/GvvUw9q2DcW89jP3JL8j82H1KAAAAJ5mTcg0MAADA8RBgAACAdQgwAADAOgQYAABgHQIMAACwDgGmHk899ZROP/10tWvXTkOGDNFHH3103PpXXnlF/fv3V7t27TRw4EC99dZbLdTTtieQsX/uuec0fPhwderUSZ06dVJycvKP/rfCsQX6c19r+fLlCgoK0tVXX928HWyjAh330tJSpaenq1u3boqIiNAZZ5zB75xGCnTsFyxYoDPPPFORkZFKSEhQRkaGDh8+3EK9RR0GfpYvX27Cw8PNCy+8YLZs2WJuvfVWEx0dbUpKSuqtf++990xISIiZP3++2bp1q5kxY4YJCwszBQUFLdxz+wU69tdff7156qmnzD/+8Q/z2WefmRtvvNG43W7z1VdftXDP7Rfo2NcqKioyP/nJT8zw4cPNVVdd1TKdbUMCHffy8nIzePBgM2rUKLNp0yZTVFRkNmzYYPLz81u45/YLdOyXLl1qIiIizNKlS01RUZFZu3at6datm8nIyGjhnqMWAeYo559/vklPT3feV1dXm/j4eDN37tx668eMGWNSU1P92oYMGWJuu+22Zu1nWxTo2B+tqqrKREVFmSVLljRXF9usxox9VVWVueCCC8zzzz9v0tLSCDCNEOi4P/3006Z3796moqKipbrYZgU69unp6eYXv/iFX9vUqVPNhRde2Kz9xLFxCekIFRUVysvLU3JystMWHBys5ORk5ebm1rtPbm6uX70kpaSkHLMe9WvM2B/tu+++U2VlpTp37txc3WyTGjv2c+bMUUxMjCZMmNAS3WxzGjPuK1eulMfjUXp6umJjY3X22WfroYceUnV1dUt1u01ozNhfcMEFysvLcy4zffnll3rrrbc0atSoFukz6jpp/5RAa9i7d6+qq6vr/LmC2NhYbdu2rd59vF5vvfVer7fZ+tkWNWbsjzZ9+nTFx8fXCZQ4vsaM/aZNm/SHP/xB+fn5LdDDtqkx4/7ll19q/fr1GjdunN566y1t375dd9xxhyorKzVr1qyW6Hab0Jixv/7667V3714NGzZMxhhVVVXp9ttv1//8z/+0RJdRD2Zg0CbMmzdPy5cv12uvvaZ27dq1dnfatAMHDmj8+PF67rnndNppp7V2d04pNTU1iomJ0bPPPqukpCT96le/0u9//3tlZWW1dtfavA0bNuihhx7S4sWL9cknn+jVV1/VqlWrdP/997d2105ZzMAc4bTTTlNISIhKSkr82ktKShQXF1fvPnFxcQHVo36NGftajzzyiObNm6e///3vOuecc5qzm21SoGP/xRdfaMeOHbriiiuctpqaGklSaGioCgsL1adPn+btdBvQmJ/5bt26KSwsTCEhIU7bgAED5PV6VVFRofDw8Gbtc1vRmLG/9957NX78eN1yyy2SpIEDB+rQoUOaOHGifv/73ys4mPmAlsaIHyE8PFxJSUnKyclx2mpqapSTkyOPx1PvPh6Px69ektatW3fMetSvMWMvSfPnz9f999+vNWvWaPDgwS3R1TYn0LHv37+/CgoKlJ+f77yuvPJKXXLJJcrPz1dCQkJLdt9ajfmZv/DCC7V9+3YnMErSv//9b3Xr1o3wEoDGjP13331XJ6TUBknD30RuHa29ivhks3z5chMREWGys7PN1q1bzcSJE010dLTxer3GGGPGjx9v7rnnHqf+vffeM6GhoeaRRx4xn332mZk1axa3UTdSoGM/b948Ex4ebv7yl7+Yb775xnkdOHCgtU7BWoGO/dG4C6lxAh334uJiExUVZSZPnmwKCwvNm2++aWJiYswDDzzQWqdgrUDHftasWSYqKsr8+c9/Nl9++aV5++23TZ8+fcyYMWNa6xROeQSYejzxxBOmR48eJjw83Jx//vnmgw8+cLZdfPHFJi0tza9+xYoV5owzzjDh4eHmrLPOMqtWrWrhHrcdgYx9z549jaQ6r1mzZrV8x9uAQH/uj0SAabxAx/399983Q4YMMREREaZ3797mwQcfNFVVVS3c67YhkLGvrKw0s2fPNn369DHt2rUzCQkJ5o477jDffvtty3ccxhhjgoxh7gsAANiFNTAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsM7/A3QZlNEaSWJ6AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO0ZJREFUeJzt3XtcVHXi//E314FQQFRAvCCZd00LzdDKSlYsu1hW6lp5W3VNKjPdss27iZqVaRZarbW7bZn9TF01zdQ0ldRIy9TMytI0ICPAKwrz+f3hMl8HUAFnGA68no/HPGrO+cyZz+eckXnP53w+53gZY4wAAAAsxNvTFQAAACgtAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgxQShMmTJCXl5fTsoYNG6p///4ue4/+/furYcOGLtseLu7TTz+Vl5eXPvjgA09XpcRuvvlm3XzzzS7dZnGfbaCiIsCg3K1cuVITJkzwdDU87siRI5owYYJ27tzp6aqgCjl58qQmTJigTz/91NNVAS4LAQblbuXKlZo4caKnq+FS+/bt0+uvv16q1xw5ckQTJ04sNsC8/vrr2rdvn4tqB/yfkydPauLEicUGmGeffVanTp0q/0oBZUCAQbk6ceKEx9779OnTstvtbtm2zWaTn5+fy7bn5+cnm83msu2VN2PMBb8IXXEcPPk5cpeK0CZfX18FBAR4uhpAiRBg4DYF59P37NmjP//5z6pRo4bq1aunuXPnSpK8vLwcj5K6+eab1apVK6Wmpqpjx44KDAxUTEyMkpOTncoVjGl477339Oyzz6pu3bq64oorlJOTI0naunWrunXrppCQEF1xxRXq3LmzNm/eXOT9Nm3apPbt2ysgIECNGjXSvHnziq1XcWNgsrKy9MQTT6hhw4ay2WyqV6+eHn74YR09elSffvqp2rdvL0kaMGCAYz+89dZbkoofA3PixAk9+eSTql+/vmw2m5o2baqZM2eq8A3lvby8lJiYqCVLlqhVq1ay2Wxq2bKlVq1aVdLd7GC32zVr1iy1bNlSAQEBioiI0NChQ/XHH38Uaf8dd9yh1atXq127dgoMDNS8efMueRwWLVqk2NhYBQYGqlatWnrwwQd1+PBhp233799f1apV0w8//KDbb79d1atXV9++fUtU/8zMTI0aNUqtW7dWtWrVFBwcrNtuu01fffVVseXz8/P1zDPPKDIyUkFBQbrrrrt06NAhpzL79+9Xz549FRkZqYCAANWrV0+9e/dWdnZ2SXfrRdtU0n1e2JkzZzRu3DjFxsYqJCREQUFBuvHGG7V+/XpHmZ9++km1a9eWJE2cONHxuSs4pVt4DEyrVq10yy23FHkvu92uunXr6r777nNaVpZ6F1ZQh++++04PPvigQkJCVLt2bY0dO1bGGB06dEh33323goODFRkZqRdeeKHU+0GSxo8fL29vb61du9Zp+ZAhQ+Tv73/BzwgqDl9PVwCV3/3336/GjRtr6tSpyszM1IYNG7RmzRr961//KtP2/vjjD91+++164IEH1KdPH73//vsaNmyY/P39NXDgQKeykydPlr+/v0aNGqXc3Fz5+/tr3bp1uu222xQbG+v4I7ZgwQLdeuut+uyzz3TddddJknbt2qWuXbuqdu3amjBhgvLy8jR+/HhFRERcso7Hjx/XjTfeqL1792rgwIG69tprdfToUS1btky//PKLmjdvrkmTJmncuHEaMmSIbrzxRklSx44di92eMUZ33XWX1q9fr0GDBqlt27ZavXq1Ro8ercOHD+ull15yKr9p0yYtXrxYjzzyiKpXr67Zs2erZ8+eOnjwoGrWrFnifT106FC99dZbGjBggB577DEdOHBAr7zyinbs2KHNmzc79Trt27dPffr00dChQzV48GA1bdr0osehYLvt27dXUlKS0tPT9fLLL2vz5s3asWOHQkNDHa/Py8tTQkKCbrjhBs2cOVNXXHFFier/448/asmSJbr//vsVExOj9PR0zZs3T507d9aePXsUFRXlVP65556Tl5eXnnrqKWVkZGjWrFmKj4/Xzp07FRgYqDNnzighIUG5ubl69NFHFRkZqcOHD2v58uXKyspSSEhIiffthdpUmn1+vpycHL3xxhvq06ePBg8erGPHjunNN99UQkKCtm3bprZt26p27dp67bXXNGzYMN1zzz269957JUlXX311sdvs1auXJkyYoLS0NEVGRjqWb9q0SUeOHFHv3r0dy8pa7wvp1auXmjdvrmnTpmnFihWaMmWKwsLCNG/ePN16662aPn263nnnHY0aNUrt27fXTTfdVOL9IJ07Xfbf//5XgwYN0q5du1S9enWtXr1ar7/+uiZPnqw2bdqUqr7wAAO4yfjx440k06dPH6flw4cPN2X96HXu3NlIMi+88IJjWW5urmnbtq0JDw83Z86cMcYYs379eiPJXHnllebkyZOOsna73TRu3NgkJCQYu93uWH7y5EkTExNj/vSnPzmW9ejRwwQEBJiff/7ZsWzPnj3Gx8enSP2jo6NNv379HM/HjRtnJJnFixcXaUPB+27fvt1IMgsWLChSpl+/fiY6OtrxfMmSJUaSmTJlilO5++67z3h5eZnvv//esUyS8ff3d1r21VdfGUlmzpw5Rd7rQj777DMjybzzzjtOy1etWlVkeXR0tJFkVq1a5VT2QsfhzJkzJjw83LRq1cqcOnXKsXz58uVGkhk3bpzTvpBknn766RLXvcDp06dNfn6+07IDBw4Ym81mJk2aVKSedevWNTk5OY7l77//vpFkXn75ZWOMMTt27DCSzKJFi0pdl/NdqE2l2eedO3c2nTt3djzPy8szubm5Tq/7448/TEREhBk4cKBj2W+//WYkmfHjxxepV8G/2QL79u0r9nPzyCOPmGrVqjmOaWnqfSkFdRgyZIhT2+rVq2e8vLzMtGnTnNoXGBjo9G+vpPvBGGN27dpl/P39zV/+8hfzxx9/mLp165p27dqZs2fPlri+8BxOIcHt/vrXv7p0e76+vho6dKjjub+/v4YOHaqMjAylpqY6le3Xr58CAwMdz3fu3Kn9+/frz3/+s37//XcdPXpUR48e1YkTJ9SlSxdt3LhRdrtd+fn5Wr16tXr06KEGDRo4Xt+8eXMlJCRcso7/7//9P7Vp00b33HNPkXVlmaa6cuVK+fj46LHHHnNa/uSTT8oYo48++shpeXx8vBo1auR4fvXVVys4OFg//vhjid9z0aJFCgkJ0Z/+9CfHfjp69KhiY2NVrVq1Il3yMTExF9w3hY/DF198oYyMDD3yyCNOYy66d++uZs2aacWKFUW2MWzYsBLXvYDNZpO397k/c/n5+fr9999VrVo1NW3aVF9++WWR8g8//LCqV6/ueH7fffepTp06WrlypSQ5elhWr16tkydPlro+hRVuU2n3+fl8fHzk7+8v6dzpnMzMTOXl5aldu3bFtrUkmjRporZt22rhwoWOZfn5+frggw905513Oo7p5dT7Qv7yl784ta1du3YyxmjQoEGO5aGhoWratKnT57o0+6FVq1aaOHGi3njjDSUkJOjo0aN6++235evLyQkrIMDA7WJiYly6vaioKAUFBTkta9KkiaRz5/gv9t779++XdO4LtXbt2k6PN954Q7m5ucrOztZvv/2mU6dOqXHjxkXe//xTIxfyww8/qFWrVqVp1kX9/PPPioqKcvpylc4FqoL15zs/dBWoUaNGqcYj7N+/X9nZ2QoPDy+yr44fP66MjAyn8hc7zoXXFdS3uH3ZrFmzIu3x9fVVvXr1Slz3Ana7XS+99JIaN24sm82mWrVqqXbt2vr666+LHbNS+Hh7eXnpqquucnyuYmJiNHLkSL3xxhuqVauWEhISNHfu3FKNf7lYm0q7zwt7++23dfXVVysgIEA1a9ZU7dq1tWLFijLVr0CvXr20efNmx9ikTz/9VBkZGerVq5fL6l2cwp/hkJAQBQQEqFatWkWWF/5cl2Y/jB49Wm3atNG2bds0fvx4tWjRotR1hWcQM+F25//y9vR7F8x+ef755x3nwgurVq2acnNz3V01t/Lx8Sl2uSk04Pdi7Ha7wsPD9c477xS7vmAwaIGLHefL/Qyc35NSGlOnTtXYsWM1cOBATZ48WWFhYfL29taIESPKPBPqhRdeUP/+/bV06VJ9/PHHeuyxx5SUlKTPP/+8VCGruDaVdp+f79///rf69++vHj16aPTo0QoPD5ePj4+SkpL0ww8/lLhehfXq1UtjxozRokWLNGLECL3//vsKCQlRt27dXFLvCynuM1ySz3Vp98OPP/7o+GGza9euUtcTnkOAQbm73Ct9HjlyRCdOnHDqhfnuu+8k6ZJXry04rRIcHKz4+PgLlqtdu7YCAwMdf9jOV5LrszRq1EjffPPNRcuUZj9ER0frk08+0bFjx5x6Yb799lvHeldr1KiRPvnkE3Xq1MnlIbSgvvv27dOtt97qtG7fvn0ua88HH3ygW265RW+++abT8qysrCK/5CUVOd7GGH3//fdFBrm2bt1arVu31rPPPqstW7aoU6dOSk5O1pQpUy6rvpezzz/44ANdeeWVWrx4sdNna/z48U7lSvvvLyYmRtddd50WLlyoxMRELV68WD169HCa5u/Oz0pplXQ/SOeCV//+/RUcHKwRI0Zo6tSpuu+++xyDm1GxcQoJ5a4geGRlZZXp9Xl5eU7Tmc+cOaN58+apdu3aio2NvehrY2Nj1ahRI82cOVPHjx8vsv63336TdO6XXkJCgpYsWaKDBw861u/du1erV6++ZB179uypr776Sh9++GGRdQW/FkuzH26//Xbl5+frlVdecVr+0ksvycvLS7fddtslt1FaDzzwgPLz8zV58uQi6/Ly8sp8/CSpXbt2Cg8PV3JyslNv10cffaS9e/eqe/fuZd72+Xx8fIr0Oi1atKjIVO0C//znP3Xs2DHH8w8++EC//vqrY//m5OQoLy/P6TWtW7eWt7e3S3rtLmefF/ROnN/erVu3KiUlxalcwWyn0hy/Xr166fPPP9c//vEPHT161On00eXW29VKuh8k6cUXX9SWLVs0f/58TZ48WR07dtSwYcN09OjRcqsvyo4eGJS7gpDx2GOPKSEhQT4+Pk7TMS8lKipK06dP108//aQmTZpo4cKF2rlzp+bPn3/JqZre3t564403dNttt6lly5YaMGCA6tatq8OHD2v9+vUKDg7Wf//7X0nnrpOxatUq3XjjjXrkkUeUl5enOXPmqGXLlvr6668v+j6jR4/WBx98oPvvv18DBw5UbGysMjMztWzZMiUnJ6tNmzZq1KiRQkNDlZycrOrVqysoKEgdOnQodizJnXfeqVtuuUV///vf9dNPP6lNmzb6+OOPtXTpUo0YMcJpwK6rdO7cWUOHDlVSUpJ27typrl27ys/PT/v379eiRYv08ssvO10HpDT8/Pw0ffp0DRgwQJ07d1afPn0c06gbNmyoJ554wiVtuOOOOzRp0iQNGDBAHTt21K5du/TOO+/oyiuvLLZ8WFiYbrjhBg0YMEDp6emaNWuWrrrqKg0ePFiStG7dOiUmJur+++9XkyZNlJeXp3/961/y8fFRz549L7u+l7PP77jjDi1evFj33HOPunfvrgMHDig5OVktWrRwCuuBgYFq0aKFFi5cqCZNmigsLEytWrW66JitBx54QKNGjdKoUaMUFhZWpPfSnZ+V0irpfti7d6/Gjh2r/v37684775QkvfXWW2rbtq0eeeQRvf/+++VSX1wGj81/QqVXMB3yt99+c1qel5dnHn30UVO7dm3j5eVVqinVnTt3Ni1btjRffPGFiYuLMwEBASY6Otq88sorTuUKpsVeaLrrjh07zL333mtq1qxpbDabiY6ONg888IBZu3atU7kNGzaY2NhY4+/vb6688kqTnJxcZKqpMUWnURtjzO+//24SExNN3bp1jb+/v6lXr57p16+fOXr0qKPM0qVLTYsWLYyvr6/TlOrC06iNMebYsWPmiSeeMFFRUcbPz880btzYPP/8807TwY05N416+PDhRdpcXB1LYv78+SY2NtYEBgaa6tWrm9atW5u//e1v5siRI07b7t69e5HXXuo4LFy40FxzzTXGZrOZsLAw07dvX/PLL784lenXr58JCgoqdb2NOTeN+sknnzR16tQxgYGBplOnTiYlJaXIFOSCer777rtmzJgxJjw83AQGBpru3bs7TaP/8ccfzcCBA02jRo1MQECACQsLM7fccov55JNPSlWvS7WpJPu8cBvsdruZOnWqiY6ONjabzVxzzTVm+fLlxX6WtmzZ4vhc67wp1cV9tgt06tTJSDJ/+ctfLqvel3KhvxsX2mcFfxMKlGQ/5OXlmfbt25t69eqZrKwsp+29/PLLRpJZuHBhiesMz/AyphSj+gAPu/nmm3X06NFLji8BAFRujIEBAACWwxgYVAiZmZk6c+bMBdf7+PiUaSomisrPz3cMVr6QatWqqVq1auVUo9I7derUJa9tEhYW5rigWXnJzs6+5N2cz78kf1Vy/PjxYgfOn6927doXnCoNFEaAQYVw7733asOGDRdcHx0dXeQidSibQ4cOXfLiguPHj3fc4K8iWrhwoQYMGHDRMuvXr9fNN99cPhX6n8cff1xvv/32RctU1bP2M2fO1MSJEy9a5sCBA5e8FAJQgDEwqBBSU1MvepXYwMBAderUqRxrVHmdPn1amzZtumiZK6+88oIzdSqCX3/9Vbt3775omdjYWNWoUaOcanTOnj17dOTIkYuWudj1hyqzH3/88ZK3srjhhhucbi0BXAwBBgAAWA6DeAEAgOVU2jEwdrtdR44cUfXq1S/70vUAAKB8GGN07NgxRUVFXfQeaJU2wBw5ckT169f3dDUAAEAZHDp06KI3SK20AabghneHDh1ScHCwh2sDAABKIicnR/Xr13e6cW1xKm2AKThtFBwcTIABAMBiLjX8g0G8AADAcggwAADAckodYDZu3Kg777xTUVFR8vLy0pIlS5zWG2M0btw41alTR4GBgYqPj9f+/fudymRmZqpv374KDg5WaGioBg0aVOQS019//bVuvPFGBQQEqH79+poxY0bpWwcAACqlUgeYEydOqE2bNpo7d26x62fMmKHZs2crOTlZW7duVVBQkBISEnT69GlHmb59+2r37t1as2aNli9fro0bN2rIkCGO9Tk5Oeratauio6OVmpqq559/XhMmTND8+fPL0EQAAFDpmMsgyXz44YeO53a73URGRprnn3/esSwrK8vYbDbz7rvvGmOM2bNnj5Fktm/f7ijz0UcfGS8vL3P48GFjjDGvvvqqqVGjhsnNzXWUeeqpp0zTpk1LXLfs7GwjyWRnZ5e1eQAAoJyV9PvbpWNgDhw4oLS0NKd7fYSEhKhDhw5KSUmRJKWkpCg0NFTt2rVzlImPj5e3t7e2bt3qKHPTTTc53Uk2ISFB+/btu+D9cnJzc5WTk+P0AAAAlZNLA0xaWpokKSIiwml5RESEY11aWprCw8Od1vv6+iosLMypTHHbOP89CktKSlJISIjjwUXsAACovCrNLKQxY8YoOzvb8Th06JCnqwQAANzEpQEmMjJSkpSenu60PD093bEuMjJSGRkZTuvz8vKUmZnpVKa4bZz/HoXZbDbHReu4eB0AAJWbSwNMTEyMIiMjtXbtWseynJwcbd26VXFxcZKkuLg4ZWVlKTU11VFm3bp1stvt6tChg6PMxo0bdfbsWUeZNWvWqGnTpqpRo4YrqwwAACyo1AHm+PHj2rlzp3bu3Cnp3MDdnTt36uDBg/Ly8tKIESM0ZcoULVu2TLt27dLDDz+sqKgo9ejRQ5LUvHlzdevWTYMHD9a2bdu0efNmJSYmqnfv3oqKipIk/fnPf5a/v78GDRqk3bt3a+HChXr55Zc1cuRIlzUcAABYWGmnN61fv95IKvLo16+fMebcVOqxY8eaiIgIY7PZTJcuXcy+ffuctvH777+bPn36mGrVqpng4GAzYMAAc+zYMacyX331lbnhhhuMzWYzdevWNdOmTStVPZlGDQCA9ZT0+9vLGGM8mJ/cJicnRyEhIcrOzmY8DAAAFlHS7+9KMwsJAABUHb6erkBldXbVpiLL/Lrd4IGaAABQ+dADAwAALIcAAwAALIcAAwAALIcxMB7EOBkAAMqGHhgAAGA59MCUo+J6XAAAQOnRAwMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHK/FWMIWv1su9kQAAKIoeGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDm+nq4ALu7sqk1Flvl1u8EDNQEAoOKgBwYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOV+KtBLhaLwCgqqEHBgAAWA49MBZUXI8LAABVCT0wAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAclweYPLz8zV27FjFxMQoMDBQjRo10uTJk2WMcZQxxmjcuHGqU6eOAgMDFR8fr/379zttJzMzU3379lVwcLBCQ0M1aNAgHT9+3NXVdZmzqzY5PQAAgPu4PMBMnz5dr732ml555RXt3btX06dP14wZMzRnzhxHmRkzZmj27NlKTk7W1q1bFRQUpISEBJ0+fdpRpm/fvtq9e7fWrFmj5cuXa+PGjRoyZIirqwsAACzIy5zfNeICd9xxhyIiIvTmm286lvXs2VOBgYH697//LWOMoqKi9OSTT2rUqFGSpOzsbEVEROitt95S7969tXfvXrVo0ULbt29Xu3btJEmrVq3S7bffrl9++UVRUVGXrEdOTo5CQkKUnZ2t4OBgVzaxWBWt14W7UQMArKik398u74Hp2LGj1q5dq++++06S9NVXX2nTpk267bbbJEkHDhxQWlqa4uPjHa8JCQlRhw4dlJKSIklKSUlRaGioI7xIUnx8vLy9vbV169Zi3zc3N1c5OTlODwAAUDm5/G7UTz/9tHJyctSsWTP5+PgoPz9fzz33nPr27StJSktLkyRFREQ4vS4iIsKxLi0tTeHh4c4V9fVVWFiYo0xhSUlJmjhxoqubU6kV7jWi1wYAYBUuDzDvv/++3nnnHf3nP/9Ry5YttXPnTo0YMUJRUVHq16+fq9/OYcyYMRo5cqTjeU5OjurXr++296voCCcAgMrM5QFm9OjRevrpp9W7d29JUuvWrfXzzz8rKSlJ/fr1U2RkpCQpPT1dderUcbwuPT1dbdu2lSRFRkYqIyPDabt5eXnKzMx0vL4wm80mm83m6uZUGiUZo1NcGYIPAKAicvkYmJMnT8rb23mzPj4+stvtkqSYmBhFRkZq7dq1jvU5OTnaunWr4uLiJElxcXHKyspSamqqo8y6detkt9vVoUMHV1cZAABYjMt7YO68804999xzatCggVq2bKkdO3boxRdf1MCBAyVJXl5eGjFihKZMmaLGjRsrJiZGY8eOVVRUlHr06CFJat68ubp166bBgwcrOTlZZ8+eVWJionr37l2iGUgAAKByc3mAmTNnjsaOHatHHnlEGRkZioqK0tChQzVu3DhHmb/97W86ceKEhgwZoqysLN1www1atWqVAgICHGXeeecdJSYmqkuXLvL29lbPnj01e/ZsV1cXAABYkMuvA1NRVPXrwLgKY2AAAOXJY9eBAQAAcDcCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsByX340alV/hG1dyw0cAQHmjBwYAAFgOPTC4qMK9LQAAVAT0wAAAAMuhBwZuwTgZAIA7EWBQLoo7FUWoAQCUFaeQAACA5RBgAACA5RBgAACA5TAGBpeNqdYAgPJGDwwAALAcAgwAALAcTiHBUpiODQCQ6IEBAAAWRIABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWw3VgUKFxmwIAQHHogQEAAJZDgAEAAJZDgAEAAJZDgAEAAJbDIF54TOEButyUEQBQUvTAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy2EWEiyP2UwAUPUQYFBhcN8jAEBJcQoJAABYDgEGAABYDgEGAABYDgEGAABYDoN4AYsobpAzM64AVFX0wAAAAMuhBwZVAteKAYDKhR4YAABgOfTAAJeBcSkA4BkEGMDCODUGoKriFBIAALAcemCACoBTUQBQOgQYoBRcdcNJblwJAJeHAIMqqSQBwlU9IIQVAHA9AgxQiXAqCkBVwSBeAABgOW4JMIcPH9aDDz6omjVrKjAwUK1bt9YXX3zhWG+M0bhx41SnTh0FBgYqPj5e+/fvd9pGZmam+vbtq+DgYIWGhmrQoEE6fvy4O6qLSubsqk1FHlZUGdoAAO7i8gDzxx9/qFOnTvLz89NHH32kPXv26IUXXlCNGjUcZWbMmKHZs2crOTlZW7duVVBQkBISEnT69GlHmb59+2r37t1as2aNli9fro0bN2rIkCGuri4AALAgl4+BmT59uurXr68FCxY4lsXExDj+3xijWbNm6dlnn9Xdd98tSfrnP/+piIgILVmyRL1799bevXu1atUqbd++Xe3atZMkzZkzR7fffrtmzpypqKgoV1cbAABYiMt7YJYtW6Z27drp/vvvV3h4uK655hq9/vrrjvUHDhxQWlqa4uPjHctCQkLUoUMHpaSkSJJSUlIUGhrqCC+SFB8fL29vb23durXY983NzVVOTo7TAwAAVE4u74H58ccf9dprr2nkyJF65plntH37dj322GPy9/dXv379lJaWJkmKiIhwel1ERIRjXVpamsLDw50r6uursLAwR5nCkpKSNHHiRFc3B1VYWcedMF4FANzP5T0wdrtd1157raZOnaprrrlGQ4YM0eDBg5WcnOzqt3IyZswYZWdnOx6HDh1y6/sBAADPcXmAqVOnjlq0aOG0rHnz5jp48KAkKTIyUpKUnp7uVCY9Pd2xLjIyUhkZGU7r8/LylJmZ6ShTmM1mU3BwsNMDAABUTi4PMJ06ddK+ffucln333XeKjo6WdG5Ab2RkpNauXetYn5OTo61btyouLk6SFBcXp6ysLKWmpjrKrFu3Tna7XR06dHB1lQEAgMW4fAzME088oY4dO2rq1Kl64IEHtG3bNs2fP1/z58+XJHl5eWnEiBGaMmWKGjdurJiYGI0dO1ZRUVHq0aOHpHM9Nt26dXOcejp79qwSExPVu3dvZiABAADXB5j27dvrww8/1JgxYzRp0iTFxMRo1qxZ6tu3r6PM3/72N504cUJDhgxRVlaWbrjhBq1atUoBAQGOMu+8844SExPVpUsXeXt7q2fPnpo9e7arqwtUOdxuAEBl4GWMMZ6uhDvk5OQoJCRE2dnZ5TIehpknqKgKhxMCDICKrKTf39wLCQAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWI7Lp1EDsD5mKgGo6AgwQCXHFH8AlRGnkAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUwCwkAM5UAWA49MAAAwHIIMAAAwHI4hVQGdLcDAOBZ9MAAAADLoQcGgMsU7p3k/kkA3IUAA6BMOJUKwJMIMADKFb00AFyBMTAAAMByCDAAAMByOIUEwG0YJwPAXeiBAQAAlkMPDIASoTcFQEVCDwwAALAcAgwAALAcAgwAALAcxsAAqHC42B2AS6EHBgAAWA4BBgAAWA4BBgAAWA5jYAB4VFmvL8M4GaBqowcGAABYDgEGAABYDgEGAABYDgEGAABYDgEGAABYDgEGAABYDtOoUSX8lPWR0/OGobd5qCYoT0y1BiovemAAAIDlEGAAAIDlcAoJKAVORQFAxUAPDAAAsBx6YABUaQz0BayJHhgAAGA59MDA8hiXgpIq652vAVQ8BBhUOoUDjVURzP4PwQNAYQQY4H8IDABgHQQYADhPcb09DOwFKh4CDGBh9Br9H3eeZmKmElDxEGAADyhL8KgsY3vKori2V+WwBoAAAzep6D0DVSkMVPRjAQBlQYDxoIr4q5IvO+DSGCcDeB4BBqhEXNWzVBHDNQCcjwCDUqOXpmriuAOoSAgwVVhJfq1XpbEihZV1//DFDgDuR4CBx1TWX/QVvV2VJZRW9P0MwL0IMKjQKsuXbVVFDxUAdyHAVAKV5UuCsAIr42J3QPkiwFQRhIOKjeMDAKXj7e43mDZtmry8vDRixAjHstOnT2v48OGqWbOmqlWrpp49eyo9Pd3pdQcPHlT37t11xRVXKDw8XKNHj1ZeXp67q4sy+CnroyIP4EKqymfl7KpNl3wAKDu39sBs375d8+bN09VXX+20/IknntCKFSu0aNEihYSEKDExUffee682b94sScrPz1f37t0VGRmpLVu26Ndff9XDDz8sPz8/TZ061Z1VBlyuMn9JF1aWtrrzFCgDfYHKy209MMePH1ffvn31+uuvq0aNGo7l2dnZevPNN/Xiiy/q1ltvVWxsrBYsWKAtW7bo888/lyR9/PHH2rNnj/7973+rbdu2uu222zR58mTNnTtXZ86ccVeVK4Sq8usUAIDL4bYemOHDh6t79+6Kj4/XlClTHMtTU1N19uxZxcfHO5Y1a9ZMDRo0UEpKiq6//nqlpKSodevWioiIcJRJSEjQsGHDtHv3bl1zzTVF3i83N1e5ubmO5zk5OW5qWfFK8kuvPH+dEn4AAJWZWwLMe++9py+//FLbt28vsi4tLU3+/v4KDQ11Wh4REaG0tDRHmfPDS8H6gnXFSUpK0sSJE11Q+4rPiuHEinUGAFRcLg8whw4d0uOPP641a9YoICDA1Zu/oDFjxmjkyJGO5zk5Oapfv365vT8A1yHwArgUl4+BSU1NVUZGhq699lr5+vrK19dXGzZs0OzZs+Xr66uIiAidOXNGWVlZTq9LT09XZGSkJCkyMrLIrKSC5wVlCrPZbAoODnZ6AACAysnlPTBdunTRrl27nJYNGDBAzZo101NPPaX69evLz89Pa9euVc+ePSVJ+/bt08GDBxUXFydJiouL03PPPaeMjAyFh4dLktasWaPg4GC1aNHC1VV2C35BorKz4mfcChd95IJ4QMm4PMBUr15drVq1cloWFBSkmjVrOpYPGjRII0eOVFhYmIKDg/Xoo48qLi5O119/vSSpa9euatGihR566CHNmDFDaWlpevbZZzV8+HDZbDZXVxkAAFiMR67E+9JLL8nb21s9e/ZUbm6uEhIS9OqrrzrW+/j4aPny5Ro2bJji4uIUFBSkfv36adKkSZ6oLoBKjGvFANZULgHm008/dXoeEBCguXPnau7cuRd8TXR0tFauXOnmmgEAACty+60EAAAAXI2bOQKoFKw4qLis90NioC9AgAGAS2KcDFDxcAoJAABYDj0wAFCBlfU0E1DZEWAAwEOscGE9oKIiwADAeTw9GJjxNkDJEGAAwAVKEjzKMxz98MW8IssatRtabu8PuBuDeAEAgOUQYAAAgOUQYAAAgOUwBgYALK7Yqda1yr8eQHkiwACAxZRkMLB3rQblUBPAcwgwAOAGnp6ODVR2BJgy4A8TgIrO/v3BIsvOHuUmkKg8GMQLAAAshx4YACglemEBz6MHBgAAWA49MABQgbmzt6fw7Qbs3x8scguE4sbJFJ62zVgaeAI9MAAAwHIIMAAAwHI4hQQAVVRxU60Bq6AHBgAAWA49MACACyo80FeSGqilB2oCOKMHBgAAWA4BBgAAWA6nkACgivDkFYSLOxXVqN1QD9QElQUBBgDgUDjkeNdq4KGaABdHgAEAuF2xU7bblX89UHkQYAAALlf4dgOuwqkoFGAQLwAAsBx6YAAAl4VrxcAT6IEBAACWQw8MAOCCih18G9qy1GWKU7jnprixLMX17gASPTAAAMCC6IEBAFQI9LagNOiBAQAAlkMPDACgVEpyS4KSlCk8dsb7Kq76i5KjBwYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOs5AAAJZWkiv6ovIhwAAAKqyyTLU+u2pTkWUHa+12ek7IsT4CDADAMoq77xLXj6maGAMDAAAshx4YAECFUOxdrYELIMAAAFCM4m4uydiZioNTSAAAwHLogQEAWFqRU0+hLS/5muJ6V8qCXhrPoQcGAABYDgEGAABYDgEGAABYDmNgAAAooZKMneHWBuWDHhgAAGA5BBgAAGA5BBgAAGA5jIEBAFQqP2V9VGSZdy1u+FjZEGAAAJVe4YvdcQdr6yPAAABgUVV5xpPLx8AkJSWpffv2ql69usLDw9WjRw/t27fPqczp06c1fPhw1axZU9WqVVPPnj2Vnp7uVObgwYPq3r27rrjiCoWHh2v06NHKy8tzdXUBAJB0rpfm/Ed5+uGLeUUeuDiX98Bs2LBBw4cPV/v27ZWXl6dnnnlGXbt21Z49exQUFCRJeuKJJ7RixQotWrRIISEhSkxM1L333qvNmzdLkvLz89W9e3dFRkZqy5Yt+vXXX/Xwww/Lz89PU6dOdXWVAQAoVwSUy+fyALNq1Sqn52+99ZbCw8OVmpqqm266SdnZ2XrzzTf1n//8R7feeqskacGCBWrevLk+//xzXX/99fr444+1Z88effLJJ4qIiFDbtm01efJkPfXUU5owYYL8/f1dXW0AAJwU1wvD2JmKw+3TqLOzsyVJYWFhkqTU1FSdPXtW8fHxjjLNmjVTgwYNlJKSIklKSUlR69atFRER4SiTkJCgnJwc7d69u9j3yc3NVU5OjtMDAAC4RkU7xeXWQbx2u10jRoxQp06d1KpVK0lSWlqa/P39FRoa6lQ2IiJCaWlpjjLnh5eC9QXripOUlKSJEye6uAUAAFQMFSE0VCRuDTDDhw/XN998o02bNrnzbSRJY8aM0ciRIx3Pc3JyVL9+fbe/LwDAespzkC7Bwz3cFmASExO1fPlybdy4UfXq1XMsj4yM1JkzZ5SVleXUC5Oenq7IyEhHmW3btjltr2CWUkGZwmw2m2w2m4tbAQCAZxB8Ls7lY2CMMUpMTNSHH36odevWKSYmxml9bGys/Pz8tHbtWseyffv26eDBg4qLi5MkxcXFadeuXcrIyHCUWbNmjYKDg9WiRQtXVxkAAFiMy3tghg8frv/85z9aunSpqlev7hizEhISosDAQIWEhGjQoEEaOXKkwsLCFBwcrEcffVRxcXG6/vrrJUldu3ZVixYt9NBDD2nGjBlKS0vTs88+q+HDh9PLAgAAXB9gXnvtNUnSzTff7LR8wYIF6t+/vyTppZdekre3t3r27Knc3FwlJCTo1VdfdZT18fHR8uXLNWzYMMXFxSkoKEj9+vXTpEmTXF1dAABgQS4PMMaYS5YJCAjQ3LlzNXfu3AuWiY6O1sqVK11ZNQAALgv3VKo43H4dGAAAAFfjZo4AAJRRRbtab3Ezlwrf4LEks5uscFNIAgwAAHBihSncnEICAACWQw8MAACVmBV6U8qCHhgAAGA5BBgAAGA5BBgAAGA5jIEBAMCFynKnay6IV3r0wAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMvhQnYAAFRAhS+Ix8XunNEDAwAALIcAAwAALIcAAwAALIcxMAAAeFhZbgBZ3Ouq0jgZemAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlMAsJAAALKMlMpeLKVNaZSfTAAAAAyyHAAAAAy+EUEgAAVUhJTkVZ4bQTPTAAAMBy6IEBAKASK+ttCio6emAAAIDlEGAAAIDlEGAAAIDlMAYGAAA4scIF8eiBAQAAlkMPDAAAuKQivTLtPFOPAvTAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy/H1dAWqPCPZjvnI56y38v3sOlU9Twd8MpXjlatgY1OMPUze8vJ0LeEidhkd8Ob4AsDlIsB4UGCmr0IPBsr3zLmOsG21DuntGl8q03bKUSbEHqC7zjZX6/xIT1UTLrLLJ03L/PYq2/u0YxnHFwDKhlNIHhKY6aua318hnzPnfn1vq3VIL7XcrEz/U07lsr1O61/+O7TLJ80T1YSL7PJJ07/8dyjb67TTco4vAJQNAcYTjBR6MFCS5CUv2WXX21d9qf8tcPa/58v89souU351hMvYZbTMb++5JxxfAHCJCh1g5s6dq4YNGyogIEAdOnTQtm3bPF0ll7Ad85HvGW95/e/b69vQ35QZcKrol1sBLynb+7QOeGeWXyXhMge8M8+dNuL4AoDLVNgAs3DhQo0cOVLjx4/Xl19+qTZt2ighIUEZGRmertpl8znrvNv/8D99gZLOcrxy3VEduFlJjxvHFwBKrsIGmBdffFGDBw/WgAED1KJFCyUnJ+uKK67QP/7xD09X7bLl+9mdntc4E1Ci1wUbmzuqAzcr6XHj+AJAyVXIWUhnzpxRamqqxowZ41jm7e2t+Ph4paSkFPua3Nxc5eb+3y/Y7OxsSVJOTo7L63f85OX9Uj7uI/kab/mc8ZKXvBSVXl3VMv30h+0CpxnMuS+32qeDdFz8Srea2gpSYJ7vuR4Wji+ASsId36/nb9eYi48LrJAB5ujRo8rPz1dERITT8oiICH377bfFviYpKUkTJ04ssrx+/fpuqaMnvKvtnq4C3IjjC8BSBr3g1s0fO3ZMISEhF1xfIQNMWYwZM0YjR450PLfb7crMzFTNmjXl5eW6C4Xl5OSofv36OnTokIKDg1223YqsqrWZ9lZutLdyo73WZ4zRsWPHFBUVddFyFTLA1KpVSz4+PkpPT3danp6ersjI4i/4ZbPZZLM5jyEIDQ11VxUVHBxcaT4sJVXV2kx7KzfaW7nRXmu7WM9LgQo5iNff31+xsbFau3atY5ndbtfatWsVFxfnwZoBAICKoEL2wEjSyJEj1a9fP7Vr107XXXedZs2apRMnTmjAgAGerhoAAPCwChtgevXqpd9++03jxo1TWlqa2rZtq1WrVhUZ2FvebDabxo8fX+R0VWVW1dpMeys32lu50d6qw8tcap4SAABABVMhx8AAAABcDAEGAABYDgEGAABYDgEGAABYDgEGAABYDgFG0ty5c9WwYUMFBASoQ4cO2rZt20XLL1q0SM2aNVNAQIBat26tlStXOq03xmjcuHGqU6eOAgMDFR8fr/3797uzCaXiyvaePXtWTz31lFq3bq2goCBFRUXp4Ycf1pEjR9zdjBJz9fE931//+ld5eXlp1qxZLq512bmjvXv37tVdd92lkJAQBQUFqX379jp48KC7mlAqrm7v8ePHlZiYqHr16ikwMFAtWrRQcnKyO5tQKqVp7+7du9WzZ081bNjwop/T0u7D8ubqNiclJal9+/aqXr26wsPD1aNHD+3bt8+NLSgddxzjAtOmTZOXl5dGjBjh2kp7gqni3nvvPePv72/+8Y9/mN27d5vBgweb0NBQk56eXmz5zZs3Gx8fHzNjxgyzZ88e8+yzzxo/Pz+za9cuR5lp06aZkJAQs2TJEvPVV1+Zu+66y8TExJhTp06VV7MuyNXtzcrKMvHx8WbhwoXm22+/NSkpKea6664zsbGx5dmsC3LH8S2wePFi06ZNGxMVFWVeeuklN7ekZNzR3u+//96EhYWZ0aNHmy+//NJ8//33ZunSpRfcZnlyR3sHDx5sGjVqZNavX28OHDhg5s2bZ3x8fMzSpUvLq1kXVNr2btu2zYwaNcq8++67JjIystjPaWm3Wd7c0eaEhASzYMEC880335idO3ea22+/3TRo0MAcP37cza25NHe09/yyDRs2NFdffbV5/PHH3dOAclTlA8x1111nhg8f7nien59voqKiTFJSUrHlH3jgAdO9e3enZR06dDBDhw41xhhjt9tNZGSkef755x3rs7KyjM1mM++++64bWlA6rm5vcbZt22YkmZ9//tk1lb4M7mrvL7/8YurWrWu++eYbEx0dXWECjDva26tXL/Pggw+6p8KXyR3tbdmypZk0aZJTmWuvvdb8/e9/d2HNy6a07T3fhT6nl7PN8uCONheWkZFhJJkNGzZcTlVdwl3tPXbsmGncuLFZs2aN6dy5c6UIMFX6FNKZM2eUmpqq+Ph4xzJvb2/Fx8crJSWl2NekpKQ4lZekhIQER/kDBw4oLS3NqUxISIg6dOhwwW2WF3e0tzjZ2dny8vJy6800S8Jd7bXb7XrooYc0evRotWzZ0j2VLwN3tNdut2vFihVq0qSJEhISFB4erg4dOmjJkiVua0dJuev4duzYUcuWLdPhw4dljNH69ev13XffqWvXru5pSAmVpb2e2KYrlVf9srOzJUlhYWEu22ZZuLO9w4cPV/fu3Yt8/q2sSgeYo0ePKj8/v8jtCSIiIpSWllbsa9LS0i5avuC/pdlmeXFHews7ffq0nnrqKfXp08fjd0Z1V3unT58uX19fPfbYY66v9GVwR3szMjJ0/PhxTZs2Td26ddPHH3+se+65R/fee682bNjgnoaUkLuO75w5c9SiRQvVq1dP/v7+6tatm+bOnaubbrrJ9Y0ohbK01xPbdKXyqJ/dbteIESPUqVMntWrVyiXbLCt3tfe9997Tl19+qaSkpMutYoVSYe+FBOs5e/asHnjgARlj9Nprr3m6Om6Rmpqql19+WV9++aW8vLw8XR23s9vtkqS7775bTzzxhCSpbdu22rJli5KTk9W5c2dPVs8t5syZo88//1zLli1TdHS0Nm7cqOHDhysqKqpS/XrFOcOHD9c333yjTZs2eboqbnHo0CE9/vjjWrNmjQICAjxdHZeq0j0wtWrVko+Pj9LT052Wp6enKzIystjXREZGXrR8wX9Ls83y4o72FigILz///LPWrFnj8d4XyT3t/eyzz5SRkaEGDRrI19dXvr6++vnnn/Xkk0+qYcOGbmlHSbmjvbVq1ZKvr69atGjhVKZ58+Yen4XkjvaeOnVKzzzzjF588UXdeeeduvrqq5WYmKhevXpp5syZ7mlICZWlvZ7Ypiu5u36JiYlavny51q9fr3r16l329i6XO9qbmpqqjIwMXXvttY6/WRs2bNDs2bPl6+ur/Px8V1TdI6p0gPH391dsbKzWrl3rWGa327V27VrFxcUV+5q4uDin8pK0Zs0aR/mYmBhFRkY6lcnJydHWrVsvuM3y4o72Sv8XXvbv369PPvlENWvWdE8DSskd7X3ooYf09ddfa+fOnY5HVFSURo8erdWrV7uvMSXgjvb6+/urffv2RaaYfvfdd4qOjnZxC0rHHe09e/aszp49K29v5z+NPj4+jt4oTylLez2xTVdyV/2MMUpMTNSHH36odevWKSYmxhXVvWzuaG+XLl20a9cup79Z7dq1U9++fbVz5075+Pi4qvrlz8ODiD3uvffeMzabzbz11ltmz549ZsiQISY0NNSkpaUZY4x56KGHzNNPP+0ov3nzZuPr62tmzpxp9u7da8aPH1/sNOrQ0FCzdOlS8/XXX5u77767Qk2jdmV7z5w5Y+666y5Tr149s3PnTvPrr786Hrm5uR5p4/nccXwLq0izkNzR3sWLFxs/Pz8zf/58s3//fjNnzhzj4+NjPvvss3JvX2HuaG/nzp1Ny5Ytzfr1682PP/5oFixYYAICAsyrr75a7u0rrLTtzc3NNTt27DA7duwwderUMaNGjTI7duww+/fvL/E2Pc0dbR42bJgJCQkxn376qdPfrJMnT5Z7+wpzR3sLqyyzkKp8gDHGmDlz5pgGDRoYf39/c91115nPP//csa5z586mX79+TuXff/9906RJE+Pv729atmxpVqxY4bTebrebsWPHmoiICGOz2UyXLl3Mvn37yqMpJeLK9h44cMBIKvaxfv36cmrRxbn6+BZWkQKMMe5p75tvvmmuuuoqExAQYNq0aWOWLFni7maUmKvb++uvv5r+/fubqKgoExAQYJo2bWpeeOEFY7fby6M5l1Sa9l7o32fnzp1LvM2KwNVtvtDfrAULFpRfoy7CHcf4fJUlwHgZY0w5dfYAAAC4RJUeAwMAAKyJAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACzn/wNY0xCUUWAQ/QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMxBJREFUeJzt3XlYVdXCx/Ef4wEHwAmQQiQzTbOyLCQtK3lDo+mNBnupsMy6BqZZWd4yG6Vs1iwbbmU3vb75dhuuJV7TJouwzMwptbQwC9SLgEMynfX+4WVfD6BxEDgL+H6e5zwPZ+91zl57HeX8WMPefsYYIwAAAIv4+7oCAAAA1RFQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgrgY263W/v37/d1NTzs3bu30Y9hjNHvv//e6McB0DwRUIAGct9998nPz0/ff/+9rrjiCoWFhalTp04aN26cRwDx8/NTZmam5syZo759+8rlcik7O1uStG3bNl1//fWKioqSy+VS37599corr9Q41v79+3XffffpuOOOU0hIiLp27apLL71UP/74oyTp448/lp+fnz7++GOP1/3000/y8/PTa6+95mwbOXKk2rVrpx9//FHnn3++2rdvr7S0NEnSpk2blJqaqujoaIWEhOjoo4/WiBEjVFxc7Ly+oqJCDz74oHr06CGXy6Xu3bvrz3/+s0pLSz2O3b17d11wwQVatGiRBgwYoNDQUL3wwgt1atuqOm7evFnJyclq27atYmJi9MADD+jgG7JXnd/jjz+up556SnFxcQoNDdWQIUO0Zs2aWt8zLy9PF1xwgdq1a6ejjjpKM2fOlCStXr1a5557rtq2bau4uDjNnTu3TnU9WNVnPX/+fPXp00ehoaFKTEzU6tWrJUkvvPCCjj32WIWEhOjss8/WTz/95PH6zz77TJdffrm6desml8ul2NhY3XrrrR7Bbvv27erSpYvOPvtsj7b44Ycf1LZtW1155ZVe1xuwQaCvKwC0NFdccYW6d++urKwsffnll5o+fbp27dql119/3SmzdOlSvfnmm8rMzFTnzp3VvXt3FRQUaODAgc6XWpcuXbRw4UKNGjVKJSUlGj9+vCSpsrJSF1xwgZYsWaIRI0Zo3Lhx2r17txYvXqw1a9aoR48eXte5oqJCycnJGjx4sB5//HG1adNGZWVlSk5OVmlpqcaOHavo6Ght27ZNCxYsUFFRkcLDwyVJN9xwg2bPnq3LLrtMt912m3Jzc5WVlaX169fr7bff9jjOhg0bdNVVV+mmm27S6NGj1atXrzrXsbKyUsOGDdPAgQM1bdo0ZWdna8qUKaqoqNADDzzgUfb111/X7t27lZGRof379+uZZ57Rueeeq9WrVysqKsrjPYcPH66zzjpL06ZN05w5c5SZmam2bdvq7rvvVlpami699FLNmjVL1157rRITExUfH+9V23722Wd67733lJGRIUnKysrSBRdcoIkTJ+q5557TzTffrF27dmnatGm6/vrrtXTpUue18+fP1759+zRmzBh16tRJy5cv14wZM/TLL79o/vz5kqTIyEg9//zzuvzyyzVjxgzdcsstcrvdGjlypNq3b6/nnnvOq/oC1jAAGsSUKVOMJHPRRRd5bL/55puNJLNq1SpjjDGSjL+/v1m7dq1HuVGjRpmuXbuanTt3emwfMWKECQ8PN/v27TPGGPPKK68YSebJJ5+sUQe3222MMeajjz4yksxHH33ksX/Lli1Gknn11Vedbenp6UaSueuuuzzKrly50kgy8+fPP+Q5f/vtt0aSueGGGzy233777UaSWbp0qbMtLi7OSDLZ2dmHfL9Dqarj2LFjnW1ut9ukpKSY4OBgs2PHDo/zCw0NNb/88otTNjc310gyt956a433nDp1qrNt165dJjQ01Pj5+Zl58+Y527///nsjyUyZMsWreksyLpfLbNmyxdn2wgsvGEkmOjralJSUONsnTZpkJHmUrfrMD5aVlWX8/PzMzz//7LH9qquuMm3atDEbN240jz32mJFk3nnnHa/qC9iEIR6ggVX9pVxl7NixkqQPPvjA2TZkyBD16dPHeW6M0VtvvaULL7xQxhjt3LnTeSQnJ6u4uFjffPONJOmtt95S586dnfc9mJ+fX73rPWbMGI/nVT0kixYt0r59+2p9TdU5TZgwwWP7bbfdJkl6//33PbbHx8crOTm53nXMzMx0fq7qaSorK9OHH37oUe6SSy7RUUcd5Tw//fTTlZCQ4PEZVLnhhhucnyMiItSrVy+1bdtWV1xxhbO9V69eioiI0ObNm72u89ChQ9W9e3fneUJCgiQpNTVV7du3r7H94GOEhoY6P+/du1c7d+7UGWecIWOMVq5c6XGcZ599VuHh4brssss0efJkXXPNNbr44ou9ri9gCwIK0MB69uzp8bxHjx7y9/f3mF9QfZhgx44dKioq0osvvqguXbp4PK677jpJB+YaSNKPP/6oXr16KTCw4UZoAwMDdfTRR3tsi4+P14QJE/Tyyy+rc+fOSk5O1syZMz3mn/z888/y9/fXscce6/Ha6OhoRURE6Oeff67xnvXl7++vY445xmPbcccdJ0k15m5U/wyqylYvFxISoi5dunhsCw8P19FHH10j7IWHh2vXrl1e17tbt2413keSYmNja91+8DHy8vI0cuRIdezYUe3atVOXLl00ZMgQSfL4HCSpY8eOmj59ur777juFh4dr+vTpXtcVsAlzUIBGVluvxsF/GUsHVvJI0tVXX6309PRa3+fEE088omNKB+Zc1Mblcsnfv+bfK0888YRGjhypd999V//85z91yy23OHNrDg40de25qX7evhYQEODVdnPQJNTGPkZlZaX+67/+S4WFhbrzzjvVu3dvtW3bVtu2bdPIkSOdfzMHW7RokaQDIeeXX35RRESE1/UFbEFAARrYpk2bPHoKfvjhB7ndbo9u/uq6dOmi9u3bq7KyUklJSYd9/x49eig3N1fl5eUKCgqqtUyHDh0kSUVFRR7bq/do1EW/fv3Ur18/3XPPPfriiy80aNAgzZo1Sw899JDi4uLkdru1adMmHX/88c5rCgoKVFRUpLi4OK+Pdyhut1ubN292ek0kaePGjZJUo203bdpU4/UbN2487Gdgm9WrV2vjxo2aPXu2rr32Wmf74sWLay2fnZ2tl19+WRMnTtScOXOUnp6u3NzcBu1pA5oSQzxAA6taplplxowZkqThw4cf8jUBAQFKTU3VW2+9VWM5rHRgCKhKamqqdu7cqWeffbZGuaq/vuPi4hQQEKBPP/3UY783KzpKSkpUUVHhsa1fv37y9/d3lhCff/75kqSnn37ao9yTTz4pSUpJSanz8eri4HM2xujZZ59VUFCQhg4d6lHunXfe0bZt25zny5cvV25u7mE/A9tU9bAc3GtjjNEzzzxTo2xRUZFuuOEGnX766Zo6dapefvllffPNN5o6dWqT1RdoaERroIFt2bJFF110kYYNG6acnBy98cYb+p//+R+ddNJJh33dI488oo8++kgJCQkaPXq0+vTpo8LCQn3zzTf68MMPVVhYKEm69tpr9frrr2vChAlavny5zjzzTO3du1cffvihbr75Zl188cUKDw93lp36+fmpR48eWrBggTOPpS6WLl2qzMxMXX755TruuONUUVGhv/71r06YkqSTTjpJ6enpevHFF1VUVKQhQ4Zo+fLlmj17ti655BKdc8459W/IakJCQpSdna309HQlJCRo4cKFev/99/XnP/+5xjySY489VoMHD9aYMWNUWlqqp59+Wp06ddLEiRMbrD6NrXfv3urRo4duv/12bdu2TWFhYXrrrbdqnQczbtw4/etf/9KHH36ogIAADRs2TDfccIMeeughXXzxxX/4bw+wks/WDwEtTNUy43Xr1pnLLrvMtG/f3nTo0MFkZmaa33//3SknyWRkZNT6HgUFBSYjI8PExsaaoKAgEx0dbYYOHWpefPFFj3L79u0zd999t4mPj3fKXXbZZebHH390yuzYscOkpqaaNm3amA4dOpibbrrJrFmzptZlxm3btq1Rl82bN5vrr7/e9OjRw4SEhJiOHTuac845x3z44Yce5crLy83999/v1CU2NtZMmjTJ7N+/36NcXFycSUlJqXN7Hqyqjj/++KM577zzTJs2bUxUVJSZMmWKqaysdMpVLTN+7LHHzBNPPGFiY2ONy+UyZ555prPM+4/Oe8iQIaZv3741tten/rV91gfX8WBVS8MPXta9bt06k5SUZNq1a2c6d+5sRo8ebVatWuXxGb777rtGknniiSc83q+kpMTExcWZk046yZSVlXlVb8AGfsbUY9YXgBruu+8+3X///dqxY4c6d+7s6+q0KCNHjtT//d//ac+ePYct99NPPyk+Pl6PPfaYbr/99iaqHYDGwBwUAABgHeagAPCZ4uLiP7xhYHR0dBPVpu7y8/MPuz80NNS5rgmA+iGgAPCZcePGafbs2YctY+ModNeuXQ+7Pz093eOGjAC8xxwUAD6zbt06/frrr4ct80fXhfGF6pfWry4mJsbjVgYAvEdAAQAA1mGSLAAAsE6znIPidrv166+/qn379kd091YAANB0jDHavXu3YmJiar3/18GaZUD59ddfa9wJFAAANA9bt26tcQf16pplQGnfvr2kAycYFhbm49oAAIC6KCkpUWxsrPM9fjjNMqBUDeuEhYURUAAAaGbqMj2DSbIAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1gn0dQUA2Kk8e5nH86Bhg71+TV1fBwDV0YMCAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArBPo6woAQF2UZy/zeB40bLCPagKgKRBQANT48gcAX2OIBwAAWIceFAD1Rs8LgMZCDwoAALAOAQUAAFiHIR4AdcJwDoCmREABWrjaggVLdAHYjiEeAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWYRUPgEbFTf4A1Ac9KAAAwDoEFAAAYB2GeABYh6vWAqAHBQAAWIceFAA+R48JgOroQQEAANYhoAAAAOsQUAAAgHWYgwKgSTHfBEBd0IMCAACsQ0ABAADWIaAAAADrEFAAAIB1mCQLtEJMVAVgO3pQAACAdQgoAADAOl4FlMrKSk2ePFnx8fEKDQ1Vjx499OCDD8oY45Qxxujee+9V165dFRoaqqSkJG3atMnjfQoLC5WWlqawsDBFRERo1KhR2rNnT8OcEQAAaPa8CiiPPvqonn/+eT377LNav369Hn30UU2bNk0zZsxwykybNk3Tp0/XrFmzlJubq7Zt2yo5OVn79+93yqSlpWnt2rVavHixFixYoE8//VQ33nhjw50VAABo1vzMwd0ff+CCCy5QVFSU/vKXvzjbUlNTFRoaqjfeeEPGGMXExOi2227T7bffLkkqLi5WVFSUXnvtNY0YMULr169Xnz599NVXX2nAgAGSpOzsbJ1//vn65ZdfFBMT84f1KCkpUXh4uIqLixUWFubtOQOtSkudEBs0bLCvqwDAS958f3vVg3LGGWdoyZIl2rhxoyRp1apVWrZsmYYPHy5J2rJli/Lz85WUlOS8Jjw8XAkJCcrJyZEk5eTkKCIiwgknkpSUlCR/f3/l5ubWetzS0lKVlJR4PAAAQMvl1TLju+66SyUlJerdu7cCAgJUWVmphx9+WGlpaZKk/Px8SVJUVJTH66Kiopx9+fn5ioyM9KxEYKA6duzolKkuKytL999/vzdVBQAAzZhXPShvvvmm5syZo7lz5+qbb77R7Nmz9fjjj2v27NmNVT9J0qRJk1RcXOw8tm7d2qjHAwAAvuVVD8odd9yhu+66SyNGjJAk9evXTz///LOysrKUnp6u6OhoSVJBQYG6du3qvK6goEAnn3yyJCk6Olrbt2/3eN+KigoVFhY6r6/O5XLJ5XJ5U1WgxaltLgnzMAC0VF71oOzbt0/+/p4vCQgIkNvtliTFx8crOjpaS5YscfaXlJQoNzdXiYmJkqTExEQVFRVpxYoVTpmlS5fK7XYrISGh3icCoHUpz15W4wGg5fCqB+XCCy/Uww8/rG7duqlv375auXKlnnzySV1//fWSJD8/P40fP14PPfSQevbsqfj4eE2ePFkxMTG65JJLJEnHH3+8hg0bptGjR2vWrFkqLy9XZmamRowYUacVPAAAoOXzKqDMmDFDkydP1s0336zt27crJiZGN910k+69916nzMSJE7V3717deOONKioq0uDBg5Wdna2QkBCnzJw5c5SZmamhQ4fK399fqampmj59esOdFdBK0YsAoKXw6jootuA6KGiNCB9/jDk5gN0a7TooAAAATYGAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYx6tL3QNAc8IdoIHmix4UAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1uA4KgFaNa6UAdqIHBQAAWIceFMBStf1lDwCtBT0oAADAOvSgAGgx6HUCWg56UAAAgHUIKAAAwDoM8QBoVRgGApoHAgrQwKp/AXJNDQDwHkM8AADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1uFAbYAGubgoAnuhBAQAA1qEHBfABekwA4PDoQQEAANYhoAAAAOswxAOgQfxUtLDGtu4Rw31QEwAtAT0oAADAOgQUAABgHQIKAACwDnNQAKCa6svAg4YN9lFNgNaLgAIcgbpcz4RrngCA9xjiAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1uBcPgD/0U9HCGtu6Rwz3QU18o7b7KXEDQaBxEVCAf6vLHWy58R8ANA2GeAAAgHUIKAAAwDoEFAAAYB3moACHwHwTAPAdelAAAIB1CCgAAMA6XgeUbdu26eqrr1anTp0UGhqqfv366euvv3b2G2N07733qmvXrgoNDVVSUpI2bdrk8R6FhYVKS0tTWFiYIiIiNGrUKO3Zs+fIzwYAfKQ8e1mNB4D682oOyq5duzRo0CCdc845Wrhwobp06aJNmzapQ4cOTplp06Zp+vTpmj17tuLj4zV58mQlJydr3bp1CgkJkSSlpaXpt99+0+LFi1VeXq7rrrtON954o+bOnduwZwegXmq7MFtDvE9LurgbAQRoXF4FlEcffVSxsbF69dVXnW3x8fHOz8YYPf3007rnnnt08cUXS5Jef/11RUVF6Z133tGIESO0fv16ZWdn66uvvtKAAQMkSTNmzND555+vxx9/XDExMQ1xXgAAoBnzaojnvffe04ABA3T55ZcrMjJS/fv310svveTs37Jli/Lz85WUlORsCw8PV0JCgnJyciRJOTk5ioiIcMKJJCUlJcnf31+5ubm1Hre0tFQlJSUeDwAA0HJ5FVA2b96s559/Xj179tSiRYs0ZswY3XLLLZo9e7YkKT8/X5IUFRXl8bqoqChnX35+viIjIz32BwYGqmPHjk6Z6rKyshQeHu48YmNjvak2AABoZrwa4nG73RowYICmTp0qSerfv7/WrFmjWbNmKT09vVEqKEmTJk3ShAkTnOclJSWEFKCBNNR8EwBoSF71oHTt2lV9+vTx2Hb88ccrLy9PkhQdHS1JKigo8ChTUFDg7IuOjtb27ds99ldUVKiwsNApU53L5VJYWJjHAwAAtFxeBZRBgwZpw4YNHts2btyouLg4SQcmzEZHR2vJkiXO/pKSEuXm5ioxMVGSlJiYqKKiIq1YscIps3TpUrndbiUkJNT7RAAAQMvh1RDPrbfeqjPOOENTp07VFVdcoeXLl+vFF1/Uiy++KEny8/PT+PHj9dBDD6lnz57OMuOYmBhdcsklkg70uAwbNkyjR4/WrFmzVF5erszMTI0YMYIVPEALV9twUktaegyg4XgVUE477TS9/fbbmjRpkh544AHFx8fr6aefVlpamlNm4sSJ2rt3r2688UYVFRVp8ODBys7Odq6BIklz5sxRZmamhg4dKn9/f6Wmpmr69OkNd1YAAKBZ8zPGGF9XwlslJSUKDw9XcXEx81HQYJrbhbcaqjeivpNkqx+rod6nJQkaNtjXVQCs4s33N3czBlowhlQANFfcLBAAAFiHHhQA9cL1UwA0JnpQAACAdQgoAADAOgQUAABgHeagAPCpusxlYeUR0PoQUNAqNbdrngBAa8MQDwAAsA49KIAFqg9z1HdIg6W/AFoKAgoA6zVUgGtq1YcSufQ9UHcElAZS25wGfhkBAFA/BBSgmWio4RuGgQA0B0ySBQAA1iGgAAAA6xBQAACAdZiDglaBC7MBQPNCQAEAH2IpMlA7hngAAIB16EEBgCbCUCNQd/SgAAAA69CD0kK01HHslnpeAIDDI6AAaBGa6/16ANSOIR4AAGAdelAaSG33N+kphiMAX6FHBWjeCCjAIfAFBwC+Q0AB0OxwR2ag5SOgoEnUdv2Hlrgip7YvTnpeAMB7BBTAQvQQ4HBaS+BH60ZAaURcwwMAgPohoNRTc7xkNYEJANBcEFBwWHQlA77XHP8gAo4UAQWNgl+osE1d5vUwoRmwBwGlGeLL//Bsax+upwIA3uNS9wAAwDr0oMAaden5sG1ODMuBAaBx0IMCAACsQ0ABAADWYYgHzZ5tk2IBAEeOgAKvtcQLvjGXBADsQkBpxWybcAoAQBUCSgtV32GP1jJc4sseE3prAOCPMUkWAABYhx4UAPi32nq3uPIv4Bv0oAAAAOsQUAAAgHUIKAAAwDrMQcERay0rfwCbtcTrE6F1I6AAdcTyYABoOgzxAAAA69CDAq/UpRehMZdlVj9+XY5FzwcAND8EFAA4QvUJzofCnC7gAIZ4AACAdehBQYPjapwAgCNFQIHP0JUNADgUAgqsxeRWAGi9CCjNUEMNoTTkxD6gpWqu/09q66Hk4m1oTggoOCx6MQAAvsAqHgAAYB16UNDi0OuDxsS/L6Bp0IMCAACsQw9KC2XbtUia60RDAIBv0IMCAACsQw9KPdVlHLp6mZ7y7RI/xs4BAM3FEfWgPPLII/Lz89P48eOdbfv371dGRoY6deqkdu3aKTU1VQUFBR6vy8vLU0pKitq0aaPIyEjdcccdqqioOJKqAACAFqTePShfffWVXnjhBZ144oke22+99Va9//77mj9/vsLDw5WZmalLL71Un3/+uSSpsrJSKSkpio6O1hdffKHffvtN1157rYKCgjR16tQjOxsckebYw9Ic64yWz7Y5YEBzVK8elD179igtLU0vvfSSOnTo4GwvLi7WX/7yFz355JM699xzdeqpp+rVV1/VF198oS+//FKS9M9//lPr1q3TG2+8oZNPPlnDhw/Xgw8+qJkzZ6qsrKxhzqoV+qlooccDAIDmrF49KBkZGUpJSVFSUpIeeughZ/uKFStUXl6upKQkZ1vv3r3VrVs35eTkaODAgcrJyVG/fv0UFRXllElOTtaYMWO0du1a9e/fv8bxSktLVVpa6jwvKSmpT7WtVJcb5nF5agBAa+N1QJk3b56++eYbffXVVzX25efnKzg4WBERER7bo6KilJ+f75Q5OJxU7a/aV5usrCzdf//93lYVAAA0U14N8WzdulXjxo3TnDlzFBIS0lh1qmHSpEkqLi52Hlu3bm2yYwMAgKbnVQ/KihUrtH37dp1yyinOtsrKSn366ad69tlntWjRIpWVlamoqMijF6WgoEDR0dGSpOjoaC1fvtzjfatW+VSVqc7lcsnlcnlTVViOSYQAgMPxKqAMHTpUq1ev9th23XXXqXfv3rrzzjsVGxuroKAgLVmyRKmpqZKkDRs2KC8vT4mJiZKkxMREPfzww9q+fbsiIyMlSYsXL1ZYWJj69OnTEOcEANbzRUivPueN+W2wmVcBpX379jrhhBM8trVt21adOnVyto8aNUoTJkxQx44dFRYWprFjxyoxMVEDBw6UJJ133nnq06ePrrnmGk2bNk35+fm65557lJGRQS/JIdRlIm1LwOojAECVBr+S7FNPPSV/f3+lpqaqtLRUycnJeu6555z9AQEBWrBggcaMGaPExES1bdtW6enpeuCBBxq6KgAAoJk64oDy8ccfezwPCQnRzJkzNXPmzEO+Ji4uTh988MGRHhoAmg16CAHvcLNAAABgHQIKAACwDgEFAABYh4ACAACs0+CreAAA9VN9Ii0XL0RrRg8KAACwDgEFAABYhyGeJtRarggLAMCRIqAAQDPCPBW0FgzxAAAA6xBQAACAdRjiAYBWqrZ5cUHDBvugJkBN9KAAAADrEFAAAIB1GOJpBrhNOwCgtSGgAICl+OMErRkBxce4pgGA5qb65Fom1qIxMAcFAABYh4ACAACswxBPE2I8GQCAuiGgAAAOiZucwlcY4gEAANahB8UyDAMBAEBAAQAchCEd2IIhHgAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1mEVDwC0MNyEFC0BPSgAAMA69KAAAI5IbddOCRo22Ac1QUtCQAGAZoyrT6OlYogHAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6LDMGADQ6rpUCbxFQ6qC2/1gAAKDxEFAAAA2OP+xwpAgoAABrVQ86DAu1HkySBQAA1iGgAAAA6xBQAACAdQgoAADAOkySBQDU6qeihR7Pu0cM91FN0BoRUAAAVmBpMg5GQAEA+ASBBIfDHBQAAGAdelAAoBWqPr8EsA09KAAAwDoEFAAAYB2GeAAAdVLbsBBLj9FY6EEBAADWoQelFix9AwDAtwgoANDCsWIHzRFDPAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1vEqoGRlZem0005T+/btFRkZqUsuuUQbNmzwKLN//35lZGSoU6dOateunVJTU1VQUOBRJi8vTykpKWrTpo0iIyN1xx13qKKi4sjPBgAAtAheBZRPPvlEGRkZ+vLLL7V48WKVl5frvPPO0969e50yt956q/7xj39o/vz5+uSTT/Trr7/q0ksvdfZXVlYqJSVFZWVl+uKLLzR79my99tpruvfeexvurAAAQLPmZ4wx9X3xjh07FBkZqU8++URnnXWWiouL1aVLF82dO1eXXXaZJOn777/X8ccfr5ycHA0cOFALFy7UBRdcoF9//VVRUVGSpFmzZunOO+/Ujh07FBwc/IfHLSkpUXh4uIqLixUWFlbf6h/Spnl3ezyv7V4TXPgIAOqmIe/XEzRscIO9F5qeN9/fR3Ql2eLiYklSx44dJUkrVqxQeXm5kpKSnDK9e/dWt27dnICSk5Ojfv36OeFEkpKTkzVmzBitXbtW/fv3r3Gc0tJSlZaWepwgAKD1qcutSAgxLUO9J8m63W6NHz9egwYN0gknnCBJys/PV3BwsCIiIjzKRkVFKT8/3ylzcDip2l+1rzZZWVkKDw93HrGxsfWtNgAAaAbqHVAyMjK0Zs0azZs3ryHrU6tJkyapuLjYeWzdurXRjwkAAHynXkM8mZmZWrBggT799FMdffTRzvbo6GiVlZWpqKjIoxeloKBA0dHRTpnly5d7vF/VKp+qMtW5XC65XK76VBUAADRDXgUUY4zGjh2rt99+Wx9//LHi4+M99p966qkKCgrSkiVLlJqaKknasGGD8vLylJiYKElKTEzUww8/rO3btysyMlKStHjxYoWFhalPnz4NcU4NjgmxAFB/1X+HNuSkWbRcXgWUjIwMzZ07V++++67at2/vzBkJDw9XaGiowsPDNWrUKE2YMEEdO3ZUWFiYxo4dq8TERA0cOFCSdN5556lPnz665pprNG3aNOXn5+uee+5RRkYGvSQAAECSlwHl+eeflySdffbZHttfffVVjRw5UpL01FNPyd/fX6mpqSotLVVycrKee+45p2xAQIAWLFigMWPGKDExUW3btlV6eroeeOCBIzsTAADQYhzRdVB8pamvgwIAaDiNPcTDMmN7efP9zb14AACAdY7oQm0AAHirtoUHDdmrUtvF3OhVaX4IKAAA6zR2iIH9GOIBAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOy4wBAC1e9Wuj1HZdlLqUQdOhBwUAAFiHgAIAAKzDEA8AwOdqu3JsY6rtcviwCz0oAADAOgQUAABgHYZ4AADNQvVhIG4e2LLRgwIAAKxDDwoAoFmq78Rael6aB3pQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh1U8AAA0IO6K3DAIKAAA1BHho+kQUAAAqAU3FPQtAgoAAE2Mnpg/xiRZAABgHQIKAACwDgEFAABYh4ACAACswyRZAAD+QG13Tu4eMZyVPo2IgAIAQDW1BRI0LYZ4AACAdQgoAADAOgzxAABalerDN90jhvuoJjgcAgoAAD5W22Tb1n51WQIKAKBVq++EWHpiGhcBBQCARlTfpcit/X49TJIFAADWIaAAAADrEFAAAIB1CCgAAMA6TJIFAKABHOp+PagfelAAAIB1CCgAAMA6BBQAAGAd5qAAANBEmKdSdwQUAAAaSX0uo0+IOYAhHgAAYB16UAAA8KH63qywpaMHBQAAWIeAAgAArENAAQAA1iGgAAAA6zBJFgAAy/1UtFD+X691nvcYcJMPa9M06EEBAADWoQcFAIBmwP1DnvNz+c5lkqSgYYN9VZ1GRw8KAACwDgEFAABYhyEeAH/ILaMt/oUq8StVmHEp3t1R/vLzdbXsYyTX7gAFlPurMsit0vaVsrWZ+ExhOwIKgMNaHZCv94LWq9h/v7Mt3B2ii8qPV7/KaB/WzC6hhYGKyAtVYNl/OqYrgt0q6va7fu9Y4cOa1cRn2nKUZy/7wzLNdZ4KAQXAIa0OyNdfg1fW2F7st19/DV6pa8r684WmA+Gk0w9tamwPKPNTpx/a6F/H7rMmpPCZtlyHuqdP1fLk5rY0mTkoAGrlltF7QesPPKne8//v5+8FrZdbpknrZR0jReSFSpL8qjVU1fOIvFDZ0Ex8pmhOfBpQZs6cqe7duyskJEQJCQlavny5L6sD4CBb/AsPDAEcalqCn1Tsv19b/AubtF62ce0OUGCZf41wUsVPfgos85drd0AT16wmPtPWyf1Dntw/5Kk8e5nzaA58NsTzv//7v5owYYJmzZqlhIQEPf3000pOTtaGDRsUGRnpq2oB+LcSv9IGLddSBZTX7e+8A+UqG7cyf4DPtHXzGAKad+Dn7hHDJdk5T8VnAeXJJ5/U6NGjdd1110mSZs2apffff1+vvPKK7rrrLl9VC8C/hRlXg5ZrqSqD3A1arjHxmbYch5pvUl+19ar4OrT4JKCUlZVpxYoVmjRpkrPN399fSUlJysnJqVG+tLRUpaX/SfTFxcWSpJKSkkap3559/PUAdFFbhVYEHvhrurYhAXPgi6zL/rbao9b7f2ZPgBRo/BVQ5lfrMI+RUWWw0b8C9kn7fFDBg/CZoro1+97xeN4t/L+cn4Ma4Tu26nvbmD+e5+STgLJz505VVlYqKirKY3tUVJS+//77GuWzsrJ0//3319geGxvbaHUEUDd/01e+rgIaGJ9pa/ZEkxxl9+7dCg8PP2yZZrHMeNKkSZowYYLz3O12q7CwUJ06dZKfX8NeWKikpESxsbHaunWrwsLCGvS9cQBt3DRo56ZBOzc+2rhpNEU7G2O0e/duxcTE/GFZnwSUzp07KyAgQAUFBR7bCwoKFB1dc/29y+WSy+U5JhoREdGYVVRYWBj/ERoZbdw0aOemQTs3Ptq4aTR2O/9Rz0kVnywzDg4O1qmnnqolS5Y429xut5YsWaLExERfVAkAAFjEZ0M8EyZMUHp6ugYMGKDTTz9dTz/9tPbu3eus6gEAAK2XzwLKlVdeqR07dujee+9Vfn6+Tj75ZGVnZ9eYONvUXC6XpkyZUmNICQ2HNm4atHPToJ0bH23cNGxrZz9Tl7U+AAAATYh78QAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CykFmzpyp7t27KyQkRAkJCVq+fLmvq2StrKwsnXbaaWrfvr0iIyN1ySWXaMOGDR5l9u/fr4yMDHXq1Ent2rVTampqjYvz5eXlKSUlRW3atFFkZKTuuOMOVVRUeJT5+OOPdcopp8jlcunYY4/Va6+91tinZ6VHHnlEfn5+Gj9+vLONNm4Y27Zt09VXX61OnTopNDRU/fr109dff+3sN8bo3nvvVdeuXRUaGqqkpCRt2rTJ4z0KCwuVlpamsLAwRUREaNSoUdqzZ49Hme+++05nnnmmQkJCFBsbq2nTpjXJ+dmgsrJSkydPVnx8vEJDQ9WjRw89+OCDHvdkoZ299+mnn+rCCy9UTEyM/Pz89M4773jsb8o2nT9/vnr37q2QkBD169dPH3zwwZGdnIExxph58+aZ4OBg88orr5i1a9ea0aNHm4iICFNQUODrqlkpOTnZvPrqq2bNmjXm22+/Neeff77p1q2b2bNnj1PmT3/6k4mNjTVLliwxX3/9tRk4cKA544wznP0VFRXmhBNOMElJSWblypXmgw8+MJ07dzaTJk1yymzevNm0adPGTJgwwaxbt87MmDHDBAQEmOzs7CY9X19bvny56d69uznxxBPNuHHjnO208ZErLCw0cXFxZuTIkSY3N9ds3rzZLFq0yPzwww9OmUceecSEh4ebd955x6xatcpcdNFFJj4+3vz+++9OmWHDhpmTTjrJfPnll+azzz4zxx57rLnqqquc/cXFxSYqKsqkpaWZNWvWmL/97W8mNDTUvPDCC016vr7y8MMPm06dOpkFCxaYLVu2mPnz55t27dqZZ555xilDO3vvgw8+MHfffbf5+9//biSZt99+22N/U7Xp559/bgICAsy0adPMunXrzD333GOCgoLM6tWr631uBJR/O/30001GRobzvLKy0sTExJisrCwf1qr52L59u5FkPvnkE2OMMUVFRSYoKMjMnz/fKbN+/XojyeTk5BhjDvzH8vf3N/n5+U6Z559/3oSFhZnS0lJjjDETJ040ffv29TjWlVdeaZKTkxv7lKyxe/du07NnT7N48WIzZMgQJ6DQxg3jzjvvNIMHDz7kfrfbbaKjo81jjz3mbCsqKjIul8v87W9/M8YYs27dOiPJfPXVV06ZhQsXGj8/P7Nt2zZjjDHPPfec6dChg9PuVcfu1atXQ5+SlVJSUsz111/vse3SSy81aWlpxhjauSFUDyhN2aZXXHGFSUlJ8ahPQkKCuemmm+p9PgzxSCorK9OKFSuUlJTkbPP391dSUpJycnJ8WLPmo7i4WJLUsWNHSdKKFStUXl7u0aa9e/dWt27dnDbNyclRv379PC7Ol5ycrJKSEq1du9Ypc/B7VJVpTZ9LRkaGUlJSarQDbdww3nvvPQ0YMECXX365IiMj1b9/f7300kvO/i1btig/P9+jjcLDw5WQkODRzhERERowYIBTJikpSf7+/srNzXXKnHXWWQoODnbKJCcna8OGDdq1a1djn6bPnXHGGVqyZIk2btwoSVq1apWWLVum4cOHS6KdG0NTtmlj/B4hoEjauXOnKisra1zFNioqSvn5+T6qVfPhdrs1fvx4DRo0SCeccIIkKT8/X8HBwTVu6nhwm+bn59fa5lX7DlempKREv//+e2OcjlXmzZunb775RllZWTX20cYNY/PmzXr++efVs2dPLVq0SGPGjNEtt9yi2bNnS/pPOx3u90N+fr4iIyM99gcGBqpjx45efRYt2V133aURI0aod+/eCgoKUv/+/TV+/HilpaVJop0bQ1O26aHKHEmb++xS92g5MjIytGbNGi1btszXVWlRtm7dqnHjxmnx4sUKCQnxdXVaLLfbrQEDBmjq1KmSpP79+2vNmjWaNWuW0tPTfVy7luPNN9/UnDlzNHfuXPXt21fffvutxo8fr5iYGNoZtaIHRVLnzp0VEBBQY/VDQUGBoqOjfVSr5iEzM1MLFizQRx99pKOPPtrZHh0drbKyMhUVFXmUP7hNo6Oja23zqn2HKxMWFqbQ0NCGPh2rrFixQtu3b9cpp5yiwMBABQYG6pNPPtH06dMVGBioqKgo2rgBdO3aVX369PHYdvzxxysvL0/Sf9rpcL8foqOjtX37do/9FRUVKiws9OqzaMnuuOMOpxelX79+uuaaa3Trrbc6vYO0c8NryjY9VJkjaXMCiqTg4GCdeuqpWrJkibPN7XZryZIlSkxM9GHN7GWMUWZmpt5++20tXbpU8fHxHvtPPfVUBQUFebTphg0blJeX57RpYmKiVq9e7fGfY/HixQoLC3O+MBITEz3eo6pMa/hchg4dqtWrV+vbb791HgMGDFBaWprzM2185AYNGlRjifzGjRsVFxcnSYqPj1d0dLRHG5WUlCg3N9ejnYuKirRixQqnzNKlS+V2u5WQkOCU+fTTT1VeXu6UWbx4sXr16qUOHTo02vnZYt++ffL39/zKCQgIkNvtlkQ7N4ambNNG+T1S7+m1Lcy8efOMy+Uyr732mlm3bp258cYbTUREhMfqB/zHmDFjTHh4uPn444/Nb7/95jz27dvnlPnTn/5kunXrZpYuXWq+/vprk5iYaBITE539VUtgzzvvPPPtt9+a7Oxs06VLl1qXwN5xxx1m/fr1ZubMma1qCWx1B6/iMYY2bgjLly83gYGB5uGHHzabNm0yc+bMMW3atDFvvPGGU+aRRx4xERER5t133zXfffedufjii2tdqtm/f3+Tm5trli1bZnr27OmxVLOoqMhERUWZa665xqxZs8bMmzfPtGnTpsUuf60uPT3dHHXUUc4y47///e+mc+fOZuLEiU4Z2tl7u3fvNitXrjQrV640ksyTTz5pVq5caX7++WdjTNO16eeff24CAwPN448/btavX2+mTJnCMuOGNGPGDNOtWzcTHBxsTj/9dPPll1/6ukrWklTr49VXX3XK/P777+bmm282HTp0MG3atDH//d//bX777TeP9/npp5/M8OHDTWhoqOncubO57bbbTHl5uUeZjz76yJx88skmODjYHHPMMR7HaG2qBxTauGH84x//MCeccIJxuVymd+/e5sUXX/TY73a7zeTJk01UVJRxuVxm6NChZsOGDR5l/vWvf5mrrrrKtGvXzoSFhZnrrrvO7N6926PMqlWrzODBg43L5TJHHXWUeeSRRxr93GxRUlJixo0bZ7p162ZCQkLMMcccY+6++26Ppau0s/c++uijWn8Xp6enG2Oatk3ffPNNc9xxx5ng4GDTt29f8/777x/RufkZc9Bl/AAAACzAHBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArPP/3lbJqp7LLKQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAGzCAYAAAAmH71NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANidJREFUeJzt3Xt4FOX9///XkhMxsBsSSQISIBwUIieBGlZBa4kGjBYLfhWhgIK2YFCBVpBWObQqCFVBAWmrBftRVLCCCuUQOcRSI6caJCgRFQwWkiCYLCAkkNy/P/xlypKgCQSS3Hk+rmuvi73nnpn7vcPFvpiZe9ZljDECAACwUL3qHgAAAMCFQtABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AFqkSlTpsjlcumbb76p7qEAQK1A0AEAANYi6AAAAGsRdABcUMeOHavuIThq0lgAXBwEHaAWys/P1913363w8HB5PB7dc889+u677yRJ119/vTp37lzueldccYWSkpIkSXv37pXL5dKf/vQnPfvss2rRooVCQ0N1/fXXKzMzs8y6u3bt0u23366IiAjVr19f3bt31zvvvOPXZ+HChXK5XEpLS9P999+vqKgoNWvWTJJ05MgRjRkzRi1btlRISIiioqJ044036j//+Y/fNjZt2qSbb75ZjRo1UlhYmDp16qTZs2f79Vm3bp169eqlsLAwhYeHq1+/fvr000/9+pTez/TJJ59o0KBBatSokXr27Oksf+WVV9StWzeFhoYqIiJCAwcO1L59+yry8Zepd+PGjXrwwQfVuHFjhYeH69e//rWKioqUn5+voUOHqlGjRmrUqJHGjx8vY4zfNv70pz/pmmuuUWRkpEJDQ9WtWze9+eabfn0WLFggl8ulv/3tb37tTz75pFwul/75z39WatxAnWIA1BqTJ082ksxVV11l+vfvb+bNm2fuvfdeI8mMHz/eGGPMX//6VyPJ7Nixw2/dzZs3G0nm73//uzHGmD179hhJpmPHjqZly5bmqaeeMlOnTjURERGmcePGJicnx1k3MzPTeDweEx8fb5566ikzZ84cc9111xmXy2Xeeustp9+CBQuMJBMfH2+uv/568/zzz5vp06cbY4wZNGiQCQ4ONuPGjTMvvviieeqpp8ytt95qXnnlFWf9NWvWmODgYNOiRQszefJk88ILL5gHH3zQJCYmOn1SU1NNYGCgufzyy82MGTPM1KlTzaWXXmoaNWpk9uzZU+azio+PN/369TPz5s0zc+fONcYY8/jjjxuXy2XuvPNOM2/ePGcbLVu2NN9++22Fj0dpvV26dDF9+vQxc+fONUOGDHGOR8+ePc2gQYPMvHnzzC233GIkmZdfftlvG82aNTP333+/mTNnjnnmmWfM1VdfbSSZ5cuX+/W75ZZbjMfjMdnZ2cYYYz7++GMTHBxsRowYUeHxAnURQQeoRUq/vIcPH+7X/otf/MJERkYaY4zJz8839evXNxMmTPDr8+CDD5qwsDBz9OhRY8z/gk5oaKj5+uuvnX6bNm0ykszYsWOdtt69e5uOHTuaEydOOG0lJSXmmmuuMW3btnXaSr/4e/bsaU6dOuW3f4/HY1JSUs5a26lTp0xcXJxp0aJFmbBRUlLi/LlLly4mKirKHDp0yGnbvn27qVevnhk6dGiZz+quu+7y29bevXtNQECAeeKJJ/zad+zYYQIDA8u0/5DSepOSkvzG6PV6jcvlMiNHjvSrr1mzZub666/328Z3333n976oqMh06NDB/OxnP/NrP3DggImIiDA33nijKSwsNFdddZVp3ry5KSgoqPB4gbqIS1dALTRy5Ei/97169dKhQ4fk8/nk8XjUr18/vfbaa85lkuLiYr3xxhu67bbbFBYW5rfubbfdpssuu8x5f/XVVyshIcG5HHL48GGtW7dOd9xxh44cOaJvvvlG33zzjQ4dOqSkpCTt3r1b//3vf/22ed999ykgIMCvLTw8XJs2bdL+/fvLremjjz7Snj17NGbMGIWHh/stc7lckqQDBw4oIyNDd999tyIiIpzlnTp10o033ljuJZwzP6u33npLJSUluuOOO5xavvnmG8XExKht27Zav359ueP7ISNGjHDGKEkJCQkyxmjEiBFOW0BAgLp3764vv/zSb93Q0FDnz99++60KCgrUq1evMpf0YmJiNHfuXKWmpqpXr17KyMjQ3/72N7nd7kqPF6hLCDpALdS8eXO/940aNZL0/RelJA0dOlTZ2dn617/+JUl67733lJubqyFDhpTZVtu2bcu0XX755dq7d68k6fPPP5cxRo899pgaN27s95o8ebIkKS8vz2/9uLi4MtucMWOGMjMzFRsbq6uvvlpTpkzx+9L/4osvJEkdOnQ4a91fffWVpO/vNTpT+/bt9c0335S54fjMsezevVvGGLVt27ZMPZ9++mmZWirizOPh8XgkSbGxsWXaS49RqeXLl6tHjx6qX7++IiIi1LhxY73wwgsqKCgos5+BAwcqOTlZmzdv1n333afevXtXeqxAXRNY3QMAUHlnni0pVXoGJykpSdHR0XrllVd03XXX6ZVXXlFMTIwSExMrva+SkhJJ0m9/+1vnRuYztWnTxu/96WcpSt1xxx3q1auXli5dqjVr1mjmzJl66qmn9NZbb6lv376VHldFnTmWkpISuVwurVy5stzPsUGDBpXex9mOR3nt5rSbkf/1r3/p5z//ua677jrNmzdPTZo0UVBQkBYsWKBFixaVWffQoUPaunWrJOmTTz5RSUmJ6tXj/6vADyHoABYKCAjQoEGDtHDhQj311FNatmxZuZeTpO/PcJzps88+U8uWLSVJrVq1kiQFBQWdU1A6XZMmTXT//ffr/vvvV15enrp27aonnnhCffv2VevWrSVJmZmZZ91PixYtJElZWVlllu3atUuXXnppmUtzZ2rdurWMMYqLi9Pll19+XvWcr3/84x+qX7++Vq9erZCQEKd9wYIF5fZPSUnRkSNHNG3aNE2cOFGzZs3SuHHjLtZwgVqJ/woAlhoyZIi+/fZb/frXv9bRo0f1y1/+stx+y5Yt87vHZvPmzdq0aZNzliUqKko//elP9ec//1kHDhwos/7Bgwd/dCzFxcVlLsVERUWpadOmKiwslCR17dpVcXFxmjVrlvLz8/36lp4FadKkibp06aKXX37Zr09mZqbWrFmjm2+++UfH0r9/fwUEBGjq1KllpnobY3To0KEf3UZVCQgIkMvlUnFxsdO2d+9eLVu2rEzfN998U2+88YamT5+uRx55RAMHDtSjjz6qzz777KKNF6iNOKMDWOqqq65Shw4dtGTJErVv315du3Ytt1+bNm3Us2dPjRo1SoWFhZo1a5YiIyM1fvx4p8/cuXPVs2dPdezYUffdd59atWql3Nxcpaen6+uvv9b27dt/cCxHjhxRs2bNdPvtt6tz585q0KCB3nvvPW3ZskVPP/20JKlevXp64YUXdOutt6pLly6655571KRJE+3atUs7d+7U6tWrJUkzZ85U37595fV6NWLECB0/flzPP/+8PB6PpkyZ8qOfS+vWrfX4449r4sSJ2rt3r2677TY1bNhQe/bs0dKlS/WrX/1Kv/3tbyv4KZ+f5ORkPfPMM+rTp48GDRqkvLw8zZ07V23atNHHH3/s9MvLy9OoUaN0ww03aPTo0ZKkOXPmaP369br77ru1ceNGLmEBZ1Nd070AVF7plOmDBw/6tZdOcz79OTLGGDNjxgwjyTz55JNltlU6vXzmzJnm6aefNrGxsSYkJMT06tXLbN++vUz/L774wgwdOtTExMSYoKAgc9lll5lbbrnFvPnmm2XGsWXLFr91CwsLzcMPP2w6d+5sGjZsaMLCwkznzp3NvHnzyuxn48aN5sYbb3T6derUyTz//PN+fd577z1z7bXXmtDQUON2u82tt95qPvnkkwp9VqX+8Y9/mJ49e5qwsDATFhZm2rVrZ1JSUkxWVla5/ctztnrPtu9hw4aZsLAwv7aXXnrJtG3b1oSEhJh27dqZBQsWOOuX6t+/v2nYsKHZu3ev37pvv/22kWSeeuqpCo8ZqGtcxpxx7haANWbPnq2xY8dq7969ZWYG7d27V3FxcZo5c+ZFO4MBABcb5zoBSxlj9NJLL+n6668vE3IAoK7gHh3AMseOHdM777yj9evXa8eOHXr77bere0i1zvHjx8t9js3pIiIiFBwcfJFGBOBcEXQAyxw8eFCDBg1SeHi4fve73+nnP/95dQ+p1nnjjTd0zz33/GCf9evX66c//enFGRCAc8Y9OgBwhgMHDmjnzp0/2Kdbt27OE6kB1FwEHQAAYC1uRgYAANay9h6dkpIS7d+/Xw0bNvT7VWEAAFBzGWN05MgRNW3atEoehGlt0Nm/f3+ZXw4GAAC1w759+9SsWbPz3o61Qadhw4aSvv+g3G53NY8GAABUhM/nU2xsrPM9fr6sDTqll6vcbjdBBwCAWqaqbjvhZmQAAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1qpU0JkyZYpcLpffq127ds7yEydOKCUlRZGRkWrQoIEGDBig3Nxcv21kZ2crOTlZl1xyiaKiovTwww/r1KlTfn02bNigrl27KiQkRG3atNHChQvPvUIAAFBnBVZ2hSuvvFLvvffe/zYQ+L9NjB07VitWrNCSJUvk8Xg0evRo9e/fX//+978lScXFxUpOTlZMTIw++OADHThwQEOHDlVQUJCefPJJSdKePXuUnJyskSNH6tVXX9XatWt17733qkmTJkpKSjrfenGak6s2lmkL6tOzGkYCAMCFUemgExgYqJiYmDLtBQUFeumll7Ro0SL97Gc/kyQtWLBA7du314cffqgePXpozZo1+uSTT/Tee+8pOjpaXbp00R//+EdNmDBBU6ZMUXBwsObPn6+4uDg9/fTTkqT27dtr48aNevbZZwk6AACgUip9j87u3bvVtGlTtWrVSoMHD1Z2drYkadu2bTp58qQSExOdvu3atVPz5s2Vnp4uSUpPT1fHjh0VHR3t9ElKSpLP59POnTudPqdvo7RP6TbOprCwUD6fz+8FAADqtkqd0UlISNDChQt1xRVX6MCBA5o6dap69eqlzMxM5eTkKDg4WOHh4X7rREdHKycnR5KUk5PjF3JKl5cu+6E+Pp9Px48fV2hoaLljmzZtmqZOnVqZcuqU8i5TAQBgu0oFnb59+zp/7tSpkxISEtSiRQstXrz4rAHkYpk4caLGjRvnvPf5fIqNja3GEQEAgOp2XtPLw8PDdfnll+vzzz9XTEyMioqKlJ+f79cnNzfXuacnJiamzCys0vc/1sftdv9gmAoJCZHb7fZ7AQCAuu28gs7Ro0f1xRdfqEmTJurWrZuCgoK0du1aZ3lWVpays7Pl9XolSV6vVzt27FBeXp7TJzU1VW63W/Hx8U6f07dR2qd0GwAAABVVqaDz29/+Vmlpadq7d68++OAD/eIXv1BAQIDuuusueTwejRgxQuPGjdP69eu1bds23XPPPfJ6verRo4ck6aabblJ8fLyGDBmi7du3a/Xq1Xr00UeVkpKikJAQSdLIkSP15Zdfavz48dq1a5fmzZunxYsXa+zYsVVfPQAAsFql7tH5+uuvddddd+nQoUNq3LixevbsqQ8//FCNGzeWJD377LOqV6+eBgwYoMLCQiUlJWnevHnO+gEBAVq+fLlGjRolr9ersLAwDRs2TH/4wx+cPnFxcVqxYoXGjh2r2bNnq1mzZnrxxReZWg4AACrNZYwx1T2IC8Hn88nj8aigoID7dVTxWVc8MBAAUJ2q+vub37oCAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYK3A6h4ALoyK/lo5AAA244wOAACwFkEHAABYi0tX8HPmJa+gPj2raSQAAJw/zugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtc4r6EyfPl0ul0tjxoxx2k6cOKGUlBRFRkaqQYMGGjBggHJzc/3Wy87OVnJysi655BJFRUXp4Ycf1qlTp/z6bNiwQV27dlVISIjatGmjhQsXns9QAQBAHXTOQWfLli3685//rE6dOvm1jx07Vu+++66WLFmitLQ07d+/X/3793eWFxcXKzk5WUVFRfrggw/08ssva+HChZo0aZLTZ8+ePUpOTtYNN9ygjIwMjRkzRvfee69Wr159rsMFAAB1kMsYYyq70tGjR9W1a1fNmzdPjz/+uLp06aJZs2apoKBAjRs31qJFi3T77bdLknbt2qX27dsrPT1dPXr00MqVK3XLLbdo//79io6OliTNnz9fEyZM0MGDBxUcHKwJEyZoxYoVyszMdPY5cOBA5efna9WqVeWOqbCwUIWFhc57n8+n2NhYFRQUyO12V7bEWu/kqo1Vsp2gPj2rZDsAAFSEz+eTx+Opsu/vczqjk5KSouTkZCUmJvq1b9u2TSdPnvRrb9eunZo3b6709HRJUnp6ujp27OiEHElKSkqSz+fTzp07nT5nbjspKcnZRnmmTZsmj8fjvGJjY8+lNAAAYJFKB53XX39d//nPfzRt2rQyy3JychQcHKzw8HC/9ujoaOXk5Dh9Tg85pctLl/1QH5/Pp+PHj5c7rokTJ6qgoMB57du3r7KlAQAAywRWpvO+ffv00EMPKTU1VfXr179QYzonISEhCgkJqe5hAACAGqRSZ3S2bdumvLw8de3aVYGBgQoMDFRaWpqee+45BQYGKjo6WkVFRcrPz/dbLzc3VzExMZKkmJiYMrOwSt//WB+3263Q0NBKFQgAAOquSgWd3r17a8eOHcrIyHBe3bt31+DBg50/BwUFae3atc46WVlZys7OltfrlSR5vV7t2LFDeXl5Tp/U1FS53W7Fx8c7fU7fRmmf0m0AAABURKUuXTVs2FAdOnTwawsLC1NkZKTTPmLECI0bN04RERFyu9164IEH5PV61aNHD0nSTTfdpPj4eA0ZMkQzZsxQTk6OHn30UaWkpDiXnkaOHKk5c+Zo/PjxGj58uNatW6fFixdrxYoVVVEzAACoIyoVdCri2WefVb169TRgwAAVFhYqKSlJ8+bNc5YHBARo+fLlGjVqlLxer8LCwjRs2DD94Q9/cPrExcVpxYoVGjt2rGbPnq1mzZrpxRdfVFJSUlUPFwAAWOycnqNTG1T1PPzahufoAABqoxrxHB0AAIDagKADAACsRdABAADWqvKbkWGX8u714b4dAEBtwRkdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKwVWN0DQO1zctVGv/dBfXpW00gAAPhhnNEBAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAa1Uq6Lzwwgvq1KmT3G633G63vF6vVq5c6Sw/ceKEUlJSFBkZqQYNGmjAgAHKzc3120Z2draSk5N1ySWXKCoqSg8//LBOnTrl12fDhg3q2rWrQkJC1KZNGy1cuPDcKwQAAHVWpYJOs2bNNH36dG3btk1bt27Vz372M/Xr1087d+6UJI0dO1bvvvuulixZorS0NO3fv1/9+/d31i8uLlZycrKKior0wQcf6OWXX9bChQs1adIkp8+ePXuUnJysG264QRkZGRozZozuvfderV69uopKBgAAdYXLGGPOZwMRERGaOXOmbr/9djVu3FiLFi3S7bffLknatWuX2rdvr/T0dPXo0UMrV67ULbfcov379ys6OlqSNH/+fE2YMEEHDx5UcHCwJkyYoBUrVigzM9PZx8CBA5Wfn69Vq1addRyFhYUqLCx03vt8PsXGxqqgoEBut/t8SqyVTq7aeNH2FdSn50XbFwDAbj6fTx6Pp8q+v8/5Hp3i4mK9/vrrOnbsmLxer7Zt26aTJ08qMTHR6dOuXTs1b95c6enpkqT09HR17NjRCTmSlJSUJJ/P55wVSk9P99tGaZ/SbZzNtGnT5PF4nFdsbOy5lgYAACxR6aCzY8cONWjQQCEhIRo5cqSWLl2q+Ph45eTkKDg4WOHh4X79o6OjlZOTI0nKycnxCzmly0uX/VAfn8+n48ePn3VcEydOVEFBgfPat29fZUsDAACWCazsCldccYUyMjJUUFCgN998U8OGDVNaWtqFGFulhISEKCQkpLqHAQAAapBKB53g4GC1adNGktStWzdt2bJFs2fP1p133qmioiLl5+f7ndXJzc1VTEyMJCkmJkabN2/2217prKzT+5w5Uys3N1dut1uhoaGVHS4AAKjDzvs5OiUlJSosLFS3bt0UFBSktWvXOsuysrKUnZ0tr9crSfJ6vdqxY4fy8vKcPqmpqXK73YqPj3f6nL6N0j6l2wAAAKioSp3RmThxovr27avmzZvryJEjWrRokTZs2KDVq1fL4/FoxIgRGjdunCIiIuR2u/XAAw/I6/WqR48ekqSbbrpJ8fHxGjJkiGbMmKGcnBw9+uijSklJcS47jRw5UnPmzNH48eM1fPhwrVu3TosXL9aKFSuqvnoAAGC1SgWdvLw8DR06VAcOHJDH41GnTp20evVq3XjjjZKkZ599VvXq1dOAAQNUWFiopKQkzZs3z1k/ICBAy5cv16hRo+T1ehUWFqZhw4bpD3/4g9MnLi5OK1as0NixYzV79mw1a9ZML774opKSkqqoZAAAUFec93N0aqqqnodf2/AcHQBAbVRjnqMDAABQ0xF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKwVWN0DwPk7uWpjdQ8BAIAaiTM6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWYno5zlt509uD+vSshpEAAOCPMzoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsFZgdQ8Adjq5aqPf+6A+PatpJACAuqxSZ3SmTZumn/zkJ2rYsKGioqJ02223KSsry6/PiRMnlJKSosjISDVo0EADBgxQbm6uX5/s7GwlJyfrkksuUVRUlB5++GGdOnXKr8+GDRvUtWtXhYSEqE2bNlq4cOG5VQgAAOqsSgWdtLQ0paSk6MMPP1RqaqpOnjypm266SceOHXP6jB07Vu+++66WLFmitLQ07d+/X/3793eWFxcXKzk5WUVFRfrggw/08ssva+HChZo0aZLTZ8+ePUpOTtYNN9ygjIwMjRkzRvfee69Wr15dBSUDAIC6wmWMMee68sGDBxUVFaW0tDRdd911KigoUOPGjbVo0SLdfvvtkqRdu3apffv2Sk9PV48ePbRy5Urdcsst2r9/v6KjoyVJ8+fP14QJE3Tw4EEFBwdrwoQJWrFihTIzM519DRw4UPn5+Vq1alW5YyksLFRhYaHz3ufzKTY2VgUFBXK73edaYq1w5mWimohLVwCAivD5fPJ4PFX2/X1eNyMXFBRIkiIiIiRJ27Zt08mTJ5WYmOj0adeunZo3b6709HRJUnp6ujp27OiEHElKSkqSz+fTzp07nT6nb6O0T+k2yjNt2jR5PB7nFRsbez6lAQAAC5xz0CkpKdGYMWN07bXXqkOHDpKknJwcBQcHKzw83K9vdHS0cnJynD6nh5zS5aXLfqiPz+fT8ePHyx3PxIkTVVBQ4Lz27dt3rqUBAABLnPOsq5SUFGVmZmrjxppx2SQkJEQhISHVPQwAAFCDnNMZndGjR2v58uVav369mjVr5rTHxMSoqKhI+fn5fv1zc3MVExPj9DlzFlbp+x/r43a7FRoaei5DBgAAdVClgo4xRqNHj9bSpUu1bt06xcXF+S3v1q2bgoKCtHbtWqctKytL2dnZ8nq9kiSv16sdO3YoLy/P6ZOamiq32634+Hinz+nbKO1Tug0AAICKqNSlq5SUFC1atEhvv/22GjZs6NxT4/F4FBoaKo/HoxEjRmjcuHGKiIiQ2+3WAw88IK/Xqx49ekiSbrrpJsXHx2vIkCGaMWOGcnJy9OijjyolJcW59DRy5EjNmTNH48eP1/Dhw7Vu3TotXrxYK1asqOLyAQCAzSo1vdzlcpXbvmDBAt19992Svn9g4G9+8xu99tprKiwsVFJSkubNm+dclpKkr776SqNGjdKGDRsUFhamYcOGafr06QoM/F/u2rBhg8aOHatPPvlEzZo102OPPebsoyKqenpaTcb0cgCALar6+/u8nqNTkxF0ahaCDgCgImrUc3QAAABqMoIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWCuwugeAuuHkqo1l2oL69KyGkQAA6hLO6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYJOHbA3f2Wl2gEAsAVBBwAAWIugU0fszV/pvM62HAAA2wRW9wBw8RFqAAB1BWd0AACAtQg6ddzpl7M40wMAsA1BBwAAWIugYznO0gAA6jKCDvz80MwsAABqG4IOAACwFtPLLcVZGQAAOKMDAAAsRtABAADWIugAAABrEXQAAIC1uBkZ5dqbv1Itw/te0H2cXLXR731Qn54XdH8AgLqHMzoAAMBaBB0AAGAtgg4AALAWQQdnxc9BAABqO4IOfhRhBwBQWxF0AACAtQg6AADAWgQdAABgLYKOhbinBgCA7xF0UCGEJwBAbVTpoPP+++/r1ltvVdOmTeVyubRs2TK/5cYYTZo0SU2aNFFoaKgSExO1e/duvz6HDx/W4MGD5Xa7FR4erhEjRujo0aN+fT7++GP16tVL9evXV2xsrGbMmFH56gAAQJ1W6aBz7Ngxde7cWXPnzi13+YwZM/Tcc89p/vz52rRpk8LCwpSUlKQTJ044fQYPHqydO3cqNTVVy5cv1/vvv69f/epXznKfz6ebbrpJLVq00LZt2zRz5kxNmTJFf/nLX86hRAAAUFdV+kc9+/btq759y/+xR2OMZs2apUcffVT9+vWTJP39739XdHS0li1bpoEDB+rTTz/VqlWrtGXLFnXv3l2S9Pzzz+vmm2/Wn/70JzVt2lSvvvqqioqK9Le//U3BwcG68sorlZGRoWeeecYvEAEAAPyQKr1HZ8+ePcrJyVFiYqLT5vF4lJCQoPT0dElSenq6wsPDnZAjSYmJiapXr542bdrk9LnuuusUHBzs9ElKSlJWVpa+/fbbcvddWFgon8/n9wIAAHVbpc/o/JCcnBxJUnR0tF97dHS0sywnJ0dRUVH+gwgMVEREhF+fuLi4MtsoXdaoUaMy+542bZqmTp1aNYWgWpxctbFMW1CfntUwEgCALayZdTVx4kQVFBQ4r3379lX3kAAAQDWr0qATExMjScrNzfVrz83NdZbFxMQoLy/Pb/mpU6d0+PBhvz7lbeP0fZwpJCREbrfb7wUAAOq2Kg06cXFxiomJ0dq1a502n8+nTZs2yev1SpK8Xq/y8/O1bds2p8+6detUUlKihIQEp8/777+vkydPOn1SU1N1xRVXlHvZCgAAoDyVDjpHjx5VRkaGMjIyJH1/A3JGRoays7Plcrk0ZswYPf7443rnnXe0Y8cODR06VE2bNtVtt90mSWrfvr369Omj++67T5s3b9a///1vjR49WgMHDlTTpk0lSYMGDVJwcLBGjBihnTt36o033tDs2bM1bty4KiscAADYr9I3I2/dulU33HCD8740fAwbNkwLFy7U+PHjdezYMf3qV79Sfn6+evbsqVWrVql+/frOOq+++qpGjx6t3r17q169ehowYICee+45Z7nH49GaNWuUkpKibt266dJLL9WkSZOYWl5D7M1fqZbh5T9iAACAmsRljDHVPYgLwefzyePxqKCgwPr7dc6crXQxfq7hYgUdZl0BQN1S1d/fVTq9HNWL36MCAMCfNdPLAQAAzkTQAQAA1iLo4JzszV/JpTIAQI1H0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDs4LM68AADUZQQcAAFiLoAMAAKzFb12hSpRewqrqH/s88wdL+ZFPAEBlcEYH5437dAAANRVBBwAAWItLV1WESywAANQ8nNEBAADWIugAAABrEXQAAIC1CDqoUszAAgDUJAQdVLm9+SsJPACAGoFZV6hVzpzdJjHDDQBwdpzRAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdS9TEWU41cUwAgLqFoAMAAKxF0AEAANYi6OCC4wGCAIDqwgMDcUFdjIBz5kMEeYAgAKAUZ3QAAIC1CDoAAMBaBB0AAGAt7tG5QPjxSQAAqh9BpxYqL0TVBnvzV6pleN8Lvh9CJgCgFJeuAACAtQg6AADAWgQdXFQ8PBAAcDERdFAtCDsAgIuBoAMAAKzFrCvUCfxMBADUTQQdC3AZqPKYgg4AdQNB5xzU1ufY1DQX67k654owBAC1H0EH1ar0bFRNCDwEWACwD0EHOA+c9QGAmo2gcxFxQ2ztx1kfAKhdmF6OGoEbqgEAFwJBBwAAWItLV0AVq8jlrTMvW3KvDwBcGASdKnL6VOmaPm26pqpJM7AutIqEIe7pAoDzR9CpQtxnAgBAzULQQY3DGbHycXkLACqPoHOeznYWhy/r88PnVzHcDwQAP4ygU434wsHFwLN/ANRlBJ0L6ELfXGv7PUGn18fZnYuLEA7AFgSdi4DLMOevLs3Iqg7nMgusPIQhADUNQQe1CoGnZmNKPICahqBzkVT0C5ovioqp64HHGCN965MpLJIrJFhq5JbL5bog+yoxJfrUfKFvjU+NXG61d7VWPVfFHqp+rvcH1aUbqItNsT499JG+PfGNGtW/VO0jr1KAK6C6hwVYo0YHnblz52rmzJnKyclR586d9fzzz+vqq6+u7mE5zuUemTPXqatf1FWlLl4WNLmHVLJrj1RY9P17SQoJVr12cXJFR1bpvjaVbNfCU//QIeU7bZEK192BA5RQr3OV7ut0VXUp7VxczACVvn+tXsqcqUMn8py2yPpRGtHhYXmb9r5o4wBsVmODzhtvvKFx48Zp/vz5SkhI0KxZs5SUlKSsrCxFRUVV9/AuGmbM/Li6dNOyyT2kku1ZZRcUFqlke5bqdb6iysLOppLtevrUS2XaDylfT596Sb8JHHFBw05NUpEzrZU9G5u+f61mbB2v/z+qOg6dOKgZW8drfPcZhB2gCriMMebHu118CQkJ+slPfqI5c+ZIkkpKShQbG6sHHnhAjzzyyI+u7/P55PF4VFBQILfbXaVjK/0H7ULMeqroF7XtM66qgm2hxxijkve3OWdyyhUSrHrXdTvvy1glpkQpJ6f4nck5U6TCNTdoSoUvY+F/zvfzteWyHVCeqv7+rpFndIqKirRt2zZNnDjRaatXr54SExOVnp5e7jqFhYUqLCx03hcUFEj6/gOraiePHVN2QWqVb1eSMr9bdtZlzT03On8++l3hWfvhe2f7LE//HGsT861PJT/297nwhOr9N0euRuf3j8On5gvlnDr0g31ydEhbAjPV3tX6vPZVF5335/uP1RdoZOcm6EZvmbaTqeX/W/1j6/2Y8rZ7LttBzVX6vV1V52FqZND55ptvVFxcrOjoaL/26Oho7dq1q9x1pk2bpqlTp5Zpj42NvSBjrB5PV/cALMHnWFVWKKW6h2A1Pl/UZUeOHJHH4znv7dTIoHMuJk6cqHHjxjnvS0pKdPjwYUVGRl6w2SjnyufzKTY2Vvv27avyy2o1ge31SdRoC9trtL0+iRptcGZ9xhgdOXJETZs2rZLt18igc+mllyogIEC5ubl+7bm5uYqJiSl3nZCQEIWEhPi1hYeHX6ghVgm3223lX9pSttcnUaMtbK/R9vokarTB6fVVxZmcUjXyLsLg4GB169ZNa9euddpKSkq0du1aeb1ciwUAABVTI8/oSNK4ceM0bNgwde/eXVdffbVmzZqlY8eO6Z577qnuoQEAgFqixgadO++8UwcPHtSkSZOUk5OjLl26aNWqVWVuUK6NQkJCNHny5DKX2mxhe30SNdrC9hptr0+iRhtc6Ppq7HN0AAAAzleNvEcHAACgKhB0AACAtQg6AADAWgQdAABgLYIOAACwFkHnApk2bZp+8pOfqGHDhoqKitJtt92mrKwsvz4nTpxQSkqKIiMj1aBBAw0YMKDM06BrshdeeEGdOnVynmbp9Xq1cuX/flW9ttd3punTp8vlcmnMmDFOW22vccqUKXK5XH6vdu3aOctre32l/vvf/+qXv/ylIiMjFRoaqo4dO2rr1q3OcmOMJk2apCZNmig0NFSJiYnavXt3NY64clq2bFnmOLpcLqWkfP9bWbX9OBYXF+uxxx5TXFycQkND1bp1a/3xj3/0+9HH2n4Mpe9/22nMmDFq0aKFQkNDdc0112jLli3O8tpW4/vvv69bb71VTZs2lcvl0rJly/yWV6Sew4cPa/DgwXK73QoPD9eIESN09OjRyg3E4IJISkoyCxYsMJmZmSYjI8PcfPPNpnnz5ubo0aNOn5EjR5rY2Fizdu1as3XrVtOjRw9zzTXXVOOoK+edd94xK1asMJ999pnJysoyv/vd70xQUJDJzMw0xtT++k63efNm07JlS9OpUyfz0EMPOe21vcbJkyebK6+80hw4cMB5HTx40Fle2+szxpjDhw+bFi1amLvvvtts2rTJfPnll2b16tXm888/d/pMnz7deDwes2zZMrN9+3bz85//3MTFxZnjx49X48grLi8vz+8YpqamGklm/fr1xpjafxyfeOIJExkZaZYvX2727NljlixZYho0aGBmz57t9Kntx9AYY+644w4THx9v0tLSzO7du83kyZON2+02X3/9tTGm9tX4z3/+0/z+9783b731lpFkli5d6re8IvX06dPHdO7c2Xz44YfmX//6l2nTpo256667KjUOgs5FkpeXZySZtLQ0Y4wx+fn5JigoyCxZssTp8+mnnxpJJj09vbqGed4aNWpkXnzxRavqO3LkiGnbtq1JTU01119/vRN0bKhx8uTJpnPnzuUus6E+Y4yZMGGC6dmz51mXl5SUmJiYGDNz5kynLT8/34SEhJjXXnvtYgyxyj300EOmdevWpqSkxIrjmJycbIYPH+7X1r9/fzN48GBjjB3H8LvvvjMBAQFm+fLlfu1du3Y1v//972t9jWcGnYrU88knnxhJZsuWLU6flStXGpfLZf773/9WeN9curpICgoKJEkRERGSpG3btunkyZNKTEx0+rRr107NmzdXenp6tYzxfBQXF+v111/XsWPH5PV6raovJSVFycnJfrVI9hzD3bt3q2nTpmrVqpUGDx6s7OxsSfbU984776h79+76f//v/ykqKkpXXXWV/vrXvzrL9+zZo5ycHL86PR6PEhISalWdpYqKivTKK69o+PDhcrlcVhzHa665RmvXrtVnn30mSdq+fbs2btyovn37SrLjGJ46dUrFxcWqX7++X3toaKg2btxoRY2nq0g96enpCg8PV/fu3Z0+iYmJqlevnjZt2lThfdXYn4CwSUlJicaMGaNrr71WHTp0kCTl5OQoODi4zC+sR0dHKycnpxpGeW527Nghr9erEydOqEGDBlq6dKni4+OVkZFhRX2vv/66/vOf//hdJy9lwzFMSEjQwoULdcUVV+jAgQOaOnWqevXqpczMTCvqk6Qvv/xSL7zwgsaNG6ff/e532rJlix588EEFBwdr2LBhTi1n/rxMbauz1LJly5Sfn6+7775bkh1/Tx955BH5fD61a9dOAQEBKi4u1hNPPKHBgwdLkhXHsGHDhvJ6vfrjH/+o9u3bKzo6Wq+99prS09PVpk0bK2o8XUXqycnJUVRUlN/ywMBARUREVKpmgs5FkJKSoszMTG3cuLG6h1LlrrjiCmVkZKigoEBvvvmmhg0bprS0tOoeVpXYt2+fHnroIaWmppb5X5YtSv9HLEmdOnVSQkKCWrRoocWLFys0NLQaR1Z1SkpK1L17dz355JOSpKuuukqZmZmaP3++hg0bVs2jq3ovvfSS+vbtq6ZNm1b3UKrM4sWL9eqrr2rRokW68sorlZGRoTFjxqhp06ZWHcP/+7//0/Dhw3XZZZcpICBAXbt21V133aVt27ZV99BqNS5dXWCjR4/W8uXLtX79ejVr1sxpj4mJUVFRkfLz8/365+bmKiYm5iKP8twFBwerTZs26tatm6ZNm6bOnTtr9uzZVtS3bds25eXlqWvXrgoMDFRgYKDS0tL03HPPKTAwUNHR0bW+xjOFh4fr8ssv1+eff27FMZSkJk2aKD4+3q+tffv2ziW60lrOnIVU2+qUpK+++krvvfee7r33XqfNhuP48MMP65FHHtHAgQPVsWNHDRkyRGPHjtW0adMk2XMMW7durbS0NB09elT79u3T5s2bdfLkSbVq1cqaGktVpJ6YmBjl5eX5LT916pQOHz5cqZoJOheIMUajR4/W0qVLtW7dOsXFxfkt79atm4KCgrR27VqnLSsrS9nZ2fJ6vRd7uFWmpKREhYWFVtTXu3dv7dixQxkZGc6re/fuGjx4sPPn2l7jmY4ePaovvvhCTZo0seIYStK1115b5tEOn332mVq0aCFJiouLU0xMjF+dPp9PmzZtqlV1StKCBQsUFRWl5ORkp82G4/jdd9+pXj3/r6uAgACVlJRIsusYSlJYWJiaNGmib7/9VqtXr1a/fv2sq7Ei9Xi9XuXn5/ud0Vq3bp1KSkqUkJBQ8Z2d963UKNeoUaOMx+MxGzZs8Jv2+d133zl9Ro4caZo3b27WrVtntm7darxer/F6vdU46sp55JFHTFpamtmzZ4/5+OOPzSOPPGJcLpdZs2aNMab211ee02ddGVP7a/zNb35jNmzYYPbs2WP+/e9/m8TERHPppZeavLw8Y0ztr8+Y7x8NEBgYaJ544gmze/du8+qrr5pLLrnEvPLKK06f6dOnm/DwcPP222+bjz/+2PTr169GT9stT3FxsWnevLmZMGFCmWW1/TgOGzbMXHbZZc708rfeestceumlZvz48U4fG47hqlWrzMqVK82XX35p1qxZYzp37mwSEhJMUVGRMab21XjkyBHz0UcfmY8++shIMs8884z56KOPzFdffWWMqVg9ffr0MVdddZXZtGmT2bhxo2nbti3Ty2sKSeW+FixY4PQ5fvy4uf/++02jRo3MJZdcYn7xi1+YAwcOVN+gK2n48OGmRYsWJjg42DRu3Nj07t3bCTnG1P76ynNm0KntNd55552mSZMmJjg42Fx22WXmzjvv9Hu+TG2vr9S7775rOnToYEJCQky7du3MX/7yF7/lJSUl5rHHHjPR0dEmJCTE9O7d22RlZVXTaM/N6tWrjaRyx13bj6PP5zMPPfSQad68ualfv75p1aqV+f3vf28KCwudPjYcwzfeeMO0atXKBAcHm5iYGJOSkmLy8/Od5bWtxvXr15f7PThs2DBjTMXqOXTokLnrrrtMgwYNjNvtNvfcc485cuRIpcbhMua0R0sCAABYhHt0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGCt/w89ZgTJsjGAiQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANkdJREFUeJzt3XlYVnX+//HXDciNyiYuoIlLLrlTYSKjLRaJDZleYmo5SabNZGgqU5lT49I0YbZprjlNapPmkmkliWMuNI7kglFqaVY4WsZiCiglKPf5/dGP8/UOXFAU+Ph8XNd9Xd2f8z7nvM9HZnx5NhyWZVkCAAAwjEdlNwAAAHA5EHIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgBccZMmTZLD4ajsNirEggUL5HA4dODAgcpuBcBvEHIAVCtbtmzRpEmTlJubW9mtnNXs2bO1YMGCy7oPh8Mhh8Oh4cOHl7n86aeftmuOHDlyWXsBqioHv7sKwJV2+vRpnT59Wj4+PuVe96WXXtITTzyhjIwMNWvWrOKbK6fi4mKdOnVKTqfTPjvVoUMH1atXT5s2bbps+3U4HPLx8ZGPj4+ysrLk7e3ttvzaa6/Vjz/+qJMnTyonJ0f16tW7bL0AVRVncoAK5nK5dPLkycpuw01BQcFl34dlWfrll18uqNbLy+uiAk5V5OnpKR8fn0q5/NarVy/l5+drzZo1buNbtmxRRkaGYmJirnhPQFVCyAHOouS+kb1792rAgAHy9/dX3bp1NXr0aLcQ43A4NHLkSC1atEjt27eX0+lUcnKyJOmHH37QQw89pODgYDmdTrVv315vvvlmqX2dPHlSkyZNUuvWreXj46OGDRuqX79++vbbbyVJmzZtksPhKHVm4MCBA3I4HG6XRh588EH5+vrq22+/1e9//3v5+flp8ODBkqT9+/crNjZWISEh8vHxUePGjTVo0CDl5eXZ658+fVp/+9vf1KJFCzmdTjVr1kx/+ctfVFhY6LbvZs2a6e6779batWvVuXNn1axZU6+//nq55vZMJfO4atUqdejQwZ6vkrksWe+JJ56QJDVv3ty+HHPm/TBvv/22wsPDVbNmTQUFBWnQoEE6dOiQ275uu+02dejQQV9++aV69OihWrVq6ZprrtHUqVNL9Tpjxgy1b99etWrVUp06ddS5c2ctXrzYXv7be3KaNWumPXv2KCUlxe7vtttu03fffSeHw6FXX3211D62bNkih8Ohd95554Lmr8Q111yjW265xa0fSVq0aJE6duyoDh06lGt7Zx7P5s2b9dhjj6l+/foKDAzUn/70JxUVFSk3N1dDhgxRnTp1VKdOHT355JP67QWBl156Sb/73e9Ut25d1axZU+Hh4Xr33XfdaubPny+Hw1Hqfw/PP/+8HA6HPvroo3L3DvyWV2U3AFR1AwYMULNmzZSYmKhPP/1Ur732mo4dO6a33nrLrtmwYYOWLVumkSNHql69emrWrJmysrLUtWtX+y/v+vXra82aNRo2bJjy8/M1ZswYSb9e7rj77ru1fv16DRo0SKNHj9bx48e1bt067d69Wy1atCh3z6dPn1Z0dLS6d++ul156SbVq1VJRUZGio6NVWFioUaNGKSQkRD/88INWr16t3NxcBQQESJKGDx+uhQsXqn///vrzn/+srVu3KjExUV999ZVWrlzptp99+/bpvvvu05/+9Cc9/PDDuu666y5+oiVt3rxZ7733nh599FH5+fnptddeU2xsrA4ePKi6deuqX79++vrrr/XOO+/o1VdftS/B1K9fX5L097//XX/96181YMAADR8+XDk5OZoxY4ZuueUWffbZZwoMDLT3dezYMfXq1Uv9+vXTgAED9O6772rcuHHq2LGj7rrrLknSP/7xDz322GPq37+/HW6/+OILbd26Vffff3+ZxzBt2jSNGjVKvr6+evrppyVJwcHBuvbaa9WtWzctWrRIY8eOdVtn0aJF8vPzU58+fco9Z/fff79Gjx6tEydOyNfXV6dPn9by5cuVkJBwSWcUS35GJk+erE8//VTz5s1TYGCgtmzZoiZNmuj555/XRx99pBdffFEdOnTQkCFD7HWnT5+ue+65R4MHD1ZRUZGWLFmie++9V6tXr7bPLg0dOlTvvfeeEhISdOeddyo0NFS7du3S5MmTNWzYMP3+97+/6N4BmwWgTBMnTrQkWffcc4/b+KOPPmpJsj7//HPLsixLkuXh4WHt2bPHrW7YsGFWw4YNrSNHjriNDxo0yAoICLB+/vlny7Is680337QkWa+88kqpHlwul2VZlrVx40ZLkrVx40a35RkZGZYka/78+fZYXFycJcl66qmn3Go/++wzS5K1fPnysx5zenq6JckaPny42/jjjz9uSbI2bNhgjzVt2tSSZCUnJ591e2dTMrdnkmR5e3tb33zzjT32+eefW5KsGTNm2GMvvviiJcnKyMhwW//AgQOWp6en9fe//91tfNeuXZaXl5fb+K233mpJst566y17rLCw0AoJCbFiY2PtsT59+ljt27c/57HMnz+/VD/t27e3br311lK1r7/+uiXJ+uqrr+yxoqIiq169elZcXNw59/Nbkqz4+Hjr6NGjlre3t/Wvf/3LsizLSkpKshwOh3XgwAF7nnNyci54uyXHEx0dbf/8WZZlRUZGWg6Hw3rkkUfssdOnT1uNGzcudawlP9tnHmOHDh2s22+/3W38xx9/tIKCgqw777zTKiwstG644QarSZMmVl5e3gX3C5wLl6uA84iPj3f7PmrUKElyO51+6623ql27dvZ3y7K0YsUK9e7dW5Zl6ciRI/YnOjpaeXl52rlzpyRpxYoVqlevnr3dM13KfR4jRoxw+15ypmbt2rX6+eefy1yn5JgSEhLcxv/85z9LkpKSktzGmzdvrujo6Ivu8beioqLczlx16tRJ/v7++u6778677nvvvSeXy6UBAwa4zXdISIhatWqljRs3utX7+vrqD3/4g/3d29tbXbp0cdtXYGCgvv/+e23fvr0Cju7Xs4I+Pj5atGiRPbZ27VodOXLErZfyqFOnjnr16mVf6lq8eLF+97vfqWnTppfU67Bhw9x+/iIiImRZloYNG2aPeXp6qnPnzqX+fGrWrGn/97Fjx5SXl6ebb77Z/pkvERISolmzZmndunW6+eablZ6erjfffFP+/v6X1DtQgpADnEerVq3cvrdo0UIeHh5u94E0b97crSYnJ0e5ubmaN2+e6tev7/YZOnSoJCk7O1uS9O233+q6666Tl1fFXT328vJS48aN3caaN2+uhIQEvfHGG6pXr56io6M1a9Yst/tx/ve//8nDw0MtW7Z0WzckJESBgYH63//+V2qbFalJkyalxurUqaNjx46dd939+/fLsiy1atWq1Jx/9dVX9nyXaNy4cakQ+dt9jRs3Tr6+vurSpYtatWql+Ph4/fe//73Io/s1NPXu3dvtHppFixbpmmuu0e23337R273//vu1bt06HTx4UKtWrTrrpbTy+O2fRUlIDg0NLTX+2z+f1atXq2vXrvLx8VFQUJDq16+vOXPmuP2slRg0aJBiYmK0bds2Pfzww7rjjjsuuXegBPfkAOVU1tmVM//lKv36hJUk/eEPf1BcXFyZ2+nUqdMl7VP69X6esjidTnl4lP43zMsvv6wHH3xQ77//vv7973/rscces+81OjMUXegZpN8e96Xy9PQsc9y6gDdduFwuORwOrVmzpszt+Pr6lntfbdu21b59+7R69WolJydrxYoVmj17tiZMmKDJkyeft6eyDBkyRMuXL9eWLVvUsWNHffDBB3r00UfL/PO6UPfcc4+cTqfi4uJUWFioAQMGXPS2SpxtfsoaP3PO/vOf/+iee+7RLbfcotmzZ6thw4aqUaOG5s+fX+oGaUn66aeftGPHDknSl19+KZfLdUlzAZyJkAOcx/79+93OWHzzzTdyuVznfEdL/fr15efnp+LiYkVFRZ1z+y1atNDWrVt16tQp1ahRo8yaOnXqSFKpF+D99szKhejYsaM6duyoZ555Rlu2bFG3bt00d+5cPffcc2ratKlcLpf279+vtm3b2utkZWUpNzf3ki+BVISzBbAWLVrIsiw1b95crVu3rrD91a5dWwMHDtTAgQNVVFSkfv366e9//7vGjx9/1sfgzxUSe/Xqpfr162vRokWKiIjQzz//rAceeOCSeqxZs6b69u2rt99+W3fddVelvhNnxYoV8vHx0dq1a+V0Ou3x+fPnl1kfHx+v48ePKzExUePHj9e0adNKXS4FLhZxGTiPWbNmuX2fMWOGJNlP4JTF09NTsbGxWrFihXbv3l1qeU5Ojv3fsbGxOnLkiGbOnFmqruRfyE2bNpWnp6c++eQTt+WzZ8++4OPIz8/X6dOn3cY6duwoDw8P+/Hwkidapk2b5lb3yiuvSFKVeO9K7dq1JZUOfP369ZOnp6cmT55c6syPZVn66aefyr2v367j7e2tdu3aybIsnTp16pw9nu2NzF5eXrrvvvu0bNkyLViwQB07dizXWb2zefzxxzVx4kT99a9/veRtXQpPT085HA63s4wHDhzQqlWrStW+++67Wrp0qaZMmaKnnnpKgwYN0jPPPKOvv/76CnYMk3EmBziPjIwM3XPPPerVq5dSU1P19ttv6/7771dYWNg515syZYo2btyoiIgIPfzww2rXrp2OHj2qnTt36uOPP9bRo0cl/Xr54q233lJCQoK2bdumm2++WQUFBfr444/16KOPqk+fPgoICNC9996rGTNmyOFwqEWLFlq9enWp+0zOZcOGDRo5cqTuvfdetW7dWqdPn9a//vUvO5BJUlhYmOLi4jRv3jzl5ubq1ltv1bZt27Rw4UL17dtXPXr0uPiJrCDh4eGSfv21BYMGDVKNGjXUu3dvtWjRQs8995zGjx+vAwcOqG/fvvLz81NGRoZWrlypP/7xj3r88cfLta+ePXsqJCRE3bp1U3BwsL766ivNnDlTMTEx8vPzO2ePc+bM0XPPPaeWLVuqQYMGbvfcDBkyRK+99po2btyoF1544eIm4jfCwsLO+zN5JcTExOiVV15Rr169dP/99ys7O1uzZs1Sy5Yt9cUXX9h12dnZGjFihHr06KGRI0dKkmbOnKmNGzfqwQcf1ObNm7lshUtXOQ91AVVfyeO3X375pdW/f3/Lz8/PqlOnjjVy5Ejrl19+sev0/x/lLUtWVpYVHx9vhYaGWjVq1LBCQkKsO+64w5o3b55b3c8//2w9/fTTVvPmze26/v37W99++61dk5OTY8XGxlq1atWy6tSpY/3pT3+ydu/eXeYj5LVr1y7Vy3fffWc99NBDVosWLSwfHx8rKCjI6tGjh/Xxxx+71Z06dcqaPHmy3UtoaKg1fvx46+TJk251TZs2tWJiYi54Ps90tkfIy5rHpk2blnq8+m9/+5t1zTXXWB4eHqUe316xYoXVvXt3q3bt2lbt2rWtNm3aWPHx8da+ffvsmltvvbXMR8Pj4uKspk2b2t9ff/1165ZbbrHq1q1rOZ1Oq0WLFtYTTzzh9ohzWY+QZ2ZmWjExMZafn58lqczHydu3b295eHhY33///Vlm6dzO9XNX4lIeId++ffsFbausn7d//vOfVqtWrSyn02m1adPGmj9/fqk/8379+ll+fn7WgQMH3NZ9//33LUnWCy+8cME9A2fD764CzmLSpEmaPHkyv/cHl8UNN9ygoKAgrV+/vrJbAYzFuUAAuMJ27Nih9PR0t7cEA6h43JMDoMLk5eWd95d0hoSEXKFuqp7du3crLS1NL7/8sho2bKiBAwe6LS8uLna7Kb0svr6+pR6HvxC//PJLme+pOVNQUFCp32YOVGeEHAAVZvTo0Vq4cOE5a67mK+Tvvvuunn32WV133XV65513Sj2CfujQofO+YHHixImaNGlSufe9dOlS+0WUZ7Nx40bddttt5d42UFVxTw6ACvPll1/q8OHD56w533uDrmYnT57U5s2bz1lz7bXX6tprry33tn/88Uft2bPnnDXh4eH2O5kAExByAACAkbjxGAAAGOmqvifH5XLp8OHD8vPzu6Tf9gwAAK4cy7J0/PhxNWrU6JwvjbyqQ87hw4dL/UZdAABQPRw6dMjtlwv/1lUdckpey37o0CH5+/tXcjcAAOBC5OfnKzQ09Jy/XkW6ykNOySUqf39/Qg4AANXM+W414cZjAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACN5VXYDpjqVvLnUWI1e3SuhEwAArk6cyQEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAw0iWFnClTpsjhcGjMmDH22MmTJxUfH6+6devK19dXsbGxysrKclvv4MGDiomJUa1atdSgQQM98cQTOn36tFvNpk2bdOONN8rpdKply5ZasGBBqf3PmjVLzZo1k4+PjyIiIrRt27ZLORwAAGCQiw4527dv1+uvv65OnTq5jY8dO1Yffvihli9frpSUFB0+fFj9+vWzlxcXFysmJkZFRUXasmWLFi5cqAULFmjChAl2TUZGhmJiYtSjRw+lp6drzJgxGj58uNauXWvXLF26VAkJCZo4caJ27typsLAwRUdHKzs7+2IPCQAAGMRhWZZV3pVOnDihG2+8UbNnz9Zzzz2n66+/XtOmTVNeXp7q16+vxYsXq3///pKkvXv3qm3btkpNTVXXrl21Zs0a3X333Tp8+LCCg4MlSXPnztW4ceOUk5Mjb29vjRs3TklJSdq9e7e9z0GDBik3N1fJycmSpIiICN10002aOXOmJMnlcik0NFSjRo3SU089VWbfhYWFKiwstL/n5+crNDRUeXl58vf3L+80nNOp5M2lxmr06l6h+wAA4GqUn5+vgICA8/79fVFncuLj4xUTE6OoqCi38bS0NJ06dcptvE2bNmrSpIlSU1MlSampqerYsaMdcCQpOjpa+fn52rNnj13z221HR0fb2ygqKlJaWppbjYeHh6KiouyasiQmJiogIMD+hIaGXszhAwCAaqDcIWfJkiXauXOnEhMTSy3LzMyUt7e3AgMD3caDg4OVmZlp15wZcEqWlyw7V01+fr5++eUXHTlyRMXFxWXWlGyjLOPHj1deXp79OXTo0IUdNAAAqHa8ylN86NAhjR49WuvWrZOPj8/l6umycTqdcjqdld0GAAC4Asp1JictLU3Z2dm68cYb5eXlJS8vL6WkpOi1116Tl5eXgoODVVRUpNzcXLf1srKyFBISIkkKCQkp9bRVyffz1fj7+6tmzZqqV6+ePD09y6wp2QYAALi6lSvk3HHHHdq1a5fS09PtT+fOnTV48GD7v2vUqKH169fb6+zbt08HDx5UZGSkJCkyMlK7du1yewpq3bp18vf3V7t27eyaM7dRUlOyDW9vb4WHh7vVuFwurV+/3q4BAABXt3JdrvLz81OHDh3cxmrXrq26deva48OGDVNCQoKCgoLk7++vUaNGKTIyUl27dpUk9ezZU+3atdMDDzygqVOnKjMzU88884zi4+PtS0mPPPKIZs6cqSeffFIPPfSQNmzYoGXLlikpKcneb0JCguLi4tS5c2d16dJF06ZNU0FBgYYOHXpJEwIAAMxQrpBzIV599VV5eHgoNjZWhYWFio6O1uzZs+3lnp6eWr16tUaMGKHIyEjVrl1bcXFxevbZZ+2a5s2bKykpSWPHjtX06dPVuHFjvfHGG4qOjrZrBg4cqJycHE2YMEGZmZm6/vrrlZycXOpmZAAAcHW6qPfkmOJCn7O/GLwnBwCAy+OyvicHAACgqiPkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhJzL5EDuGh3IXVPZbQAAcNUi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMFK5Qs6cOXPUqVMn+fv7y9/fX5GRkVqzZo29/OTJk4qPj1fdunXl6+ur2NhYZWVluW3j4MGDiomJUa1atdSgQQM98cQTOn36tFvNpk2bdOONN8rpdKply5ZasGBBqV5mzZqlZs2aycfHRxEREdq2bVt5DgUAABiuXCGncePGmjJlitLS0rRjxw7dfvvt6tOnj/bs2SNJGjt2rD788EMtX75cKSkpOnz4sPr162evX1xcrJiYGBUVFWnLli1auHChFixYoAkTJtg1GRkZiomJUY8ePZSenq4xY8Zo+PDhWrt2rV2zdOlSJSQkaOLEidq5c6fCwsIUHR2t7OzsS50PAABgCIdlWdalbCAoKEgvvvii+vfvr/r162vx4sXq37+/JGnv3r1q27atUlNT1bVrV61Zs0Z33323Dh8+rODgYEnS3LlzNW7cOOXk5Mjb21vjxo1TUlKSdu/ebe9j0KBBys3NVXJysiQpIiJCN910k2bOnClJcrlcCg0N1ahRo/TUU09dcO/5+fkKCAhQXl6e/P39L2UaStm/5GlJUrPAu+yxGr26V+g+AAC4Gl3o398XfU9OcXGxlixZooKCAkVGRiotLU2nTp1SVFSUXdOmTRs1adJEqampkqTU1FR17NjRDjiSFB0drfz8fPtsUGpqqts2SmpKtlFUVKS0tDS3Gg8PD0VFRdk1Z1NYWKj8/Hy3DwAAMFO5Q86uXbvk6+srp9OpRx55RCtXrlS7du2UmZkpb29vBQYGutUHBwcrMzNTkpSZmekWcEqWlyw7V01+fr5++eUXHTlyRMXFxWXWlGzjbBITExUQEGB/QkNDy3v4AACgmih3yLnuuuuUnp6urVu3asSIEYqLi9OXX355OXqrcOPHj1deXp79OXToUGW3BAAALhOv8q7g7e2tli1bSpLCw8O1fft2TZ8+XQMHDlRRUZFyc3PdzuZkZWUpJCREkhQSElLqKaiSp6/OrPntE1lZWVny9/dXzZo15enpKU9PzzJrSrZxNk6nU06ns7yHDAAAqqFLfk+Oy+VSYWGhwsPDVaNGDa1fv95etm/fPh08eFCRkZGSpMjISO3atcvtKah169bJ399f7dq1s2vO3EZJTck2vL29FR4e7lbjcrm0fv16uwYAAKBcZ3LGjx+vu+66S02aNNHx48e1ePFibdq0SWvXrlVAQICGDRumhIQEBQUFyd/fX6NGjVJkZKS6du0qSerZs6fatWunBx54QFOnTlVmZqaeeeYZxcfH22dYHnnkEc2cOVNPPvmkHnroIW3YsEHLli1TUlKS3UdCQoLi4uLUuXNndenSRdOmTVNBQYGGDh1agVMDAACqs3KFnOzsbA0ZMkQ//vijAgIC1KlTJ61du1Z33nmnJOnVV1+Vh4eHYmNjVVhYqOjoaM2ePdte39PTU6tXr9aIESMUGRmp2rVrKy4uTs8++6xd07x5cyUlJWns2LGaPn26GjdurDfeeEPR0dF2zcCBA5WTk6MJEyYoMzNT119/vZKTk0vdjAwAAK5el/yenOqM9+QAAFD9XPb35AAAAFRlhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwUrlCTmJiom666Sb5+fmpQYMG6tu3r/bt2+dWc/LkScXHx6tu3bry9fVVbGyssrKy3GoOHjyomJgY1apVSw0aNNATTzyh06dPu9Vs2rRJN954o5xOp1q2bKkFCxaU6mfWrFlq1qyZfHx8FBERoW3btpXncAAAgMHKFXJSUlIUHx+vTz/9VOvWrdOpU6fUs2dPFRQU2DVjx47Vhx9+qOXLlyslJUWHDx9Wv3797OXFxcWKiYlRUVGRtmzZooULF2rBggWaMGGCXZORkaGYmBj16NFD6enpGjNmjIYPH661a9faNUuXLlVCQoImTpyonTt3KiwsTNHR0crOzr6U+QAAAIZwWJZlXezKOTk5atCggVJSUnTLLbcoLy9P9evX1+LFi9W/f39J0t69e9W2bVulpqaqa9euWrNmje6++24dPnxYwcHBkqS5c+dq3LhxysnJkbe3t8aNG6ekpCTt3r3b3tegQYOUm5ur5ORkSVJERIRuuukmzZw5U5LkcrkUGhqqUaNG6amnniqz38LCQhUWFtrf8/PzFRoaqry8PPn7+1/sNJRp/5KnJUnNAu+yx2r06l6h+wAA4GqUn5+vgICA8/79fUn35OTl5UmSgoKCJElpaWk6deqUoqKi7Jo2bdqoSZMmSk1NlSSlpqaqY8eOdsCRpOjoaOXn52vPnj12zZnbKKkp2UZRUZHS0tLcajw8PBQVFWXXlCUxMVEBAQH2JzQ09FIOHwAAVGEXHXJcLpfGjBmjbt26qUOHDpKkzMxMeXt7KzAw0K02ODhYmZmZds2ZAadkecmyc9Xk5+frl19+0ZEjR1RcXFxmTck2yjJ+/Hjl5eXZn0OHDpX/wAEAQLXgdbErxsfHa/fu3dq8eXNF9nNZOZ1OOZ3Oym4DAABcARd1JmfkyJFavXq1Nm7cqMaNG9vjISEhKioqUm5urlt9VlaWQkJC7JrfPm1V8v18Nf7+/qpZs6bq1asnT0/PMmtKtgEAAK5u5Qo5lmVp5MiRWrlypTZs2KDmzZu7LQ8PD1eNGjW0fv16e2zfvn06ePCgIiMjJUmRkZHatWuX21NQ69atk7+/v9q1a2fXnLmNkpqSbXh7eys8PNytxuVyaf369XYNAAC4upXrclV8fLwWL16s999/X35+fvb9LwEBAapZs6YCAgI0bNgwJSQkKCgoSP7+/ho1apQiIyPVtWtXSVLPnj3Vrl07PfDAA5o6daoyMzP1zDPPKD4+3r6U9Mgjj2jmzJl68skn9dBDD2nDhg1atmyZkpKS7F4SEhIUFxenzp07q0uXLpo2bZoKCgo0dOjQipobAABQjZUr5MyZM0eSdNttt7mNz58/Xw8++KAk6dVXX5WHh4diY2NVWFio6OhozZ4926719PTU6tWrNWLECEVGRqp27dqKi4vTs88+a9c0b95cSUlJGjt2rKZPn67GjRvrjTfeUHR0tF0zcOBA5eTkaMKECcrMzNT111+v5OTkUjcjAwCAq9MlvSenurvQ5+wvBu/JAQDg8rgi78kBAACoqgg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEjlDjmffPKJevfurUaNGsnhcGjVqlVuyy3L0oQJE9SwYUPVrFlTUVFR2r9/v1vN0aNHNXjwYPn7+yswMFDDhg3TiRMn3Gq++OIL3XzzzfLx8VFoaKimTp1aqpfly5erTZs28vHxUceOHfXRRx+V93AAAIChyh1yCgoKFBYWplmzZpW5fOrUqXrttdc0d+5cbd26VbVr11Z0dLROnjxp1wwePFh79uzRunXrtHr1an3yySf64x//aC/Pz89Xz5491bRpU6WlpenFF1/UpEmTNG/ePLtmy5Ytuu+++zRs2DB99tln6tu3r/r27avdu3eX95AAAICBHJZlWRe9ssOhlStXqm/fvpJ+PYvTqFEj/fnPf9bjjz8uScrLy1NwcLAWLFigQYMG6auvvlK7du20fft2de7cWZKUnJys3//+9/r+++/VqFEjzZkzR08//bQyMzPl7e0tSXrqqae0atUq7d27V5I0cOBAFRQUaPXq1XY/Xbt21fXXX6+5c+deUP/5+fkKCAhQXl6e/P39L3YayrR/ydOSpGaBd9ljNXp1r9B9AABwNbrQv78r9J6cjIwMZWZmKioqyh4LCAhQRESEUlNTJUmpqakKDAy0A44kRUVFycPDQ1u3brVrbrnlFjvgSFJ0dLT27dunY8eO2TVn7qekpmQ/ZSksLFR+fr7bBwAAmKlCQ05mZqYkKTg42G08ODjYXpaZmakGDRq4Lffy8lJQUJBbTVnbOHMfZ6spWV6WxMREBQQE2J/Q0NDyHiIAAKgmrqqnq8aPH6+8vDz7c+jQocpuCQAAXCYVGnJCQkIkSVlZWW7jWVlZ9rKQkBBlZ2e7LT99+rSOHj3qVlPWNs7cx9lqSpaXxel0yt/f3+0DAADMVKEhp3nz5goJCdH69evtsfz8fG3dulWRkZGSpMjISOXm5iotLc2u2bBhg1wulyIiIuyaTz75RKdOnbJr1q1bp+uuu0516tSxa87cT0lNyX4AAMDVrdwh58SJE0pPT1d6erqkX282Tk9P18GDB+VwODRmzBg999xz+uCDD7Rr1y4NGTJEjRo1sp/Aatu2rXr16qWHH35Y27Zt03//+1+NHDlSgwYNUqNGjSRJ999/v7y9vTVs2DDt2bNHS5cu1fTp05WQkGD3MXr0aCUnJ+vll1/W3r17NWnSJO3YsUMjR4689FkBAADVn1VOGzdutCSV+sTFxVmWZVkul8v661//agUHB1tOp9O64447rH379rlt46effrLuu+8+y9fX1/L397eGDh1qHT9+3K3m888/t7p37245nU7rmmuusaZMmVKql2XLllmtW7e2vL29rfbt21tJSUnlOpa8vDxLkpWXl1e+SbgAX7/zF+vrd/5iFa35j/0BAACX7kL//r6k9+RUd7wnBwCA6qdS3pMDAABQVRByAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIzkVdkNXE1OJW92+16jV/dK6gQAAPNxJgcAABiJMzlXgMty6SvrWx2z8lXH4a+2jhbycPxfvrRcLrm++17KPyH5+8rj2sZyOSx99dNnOnbyiOr41FPbujfI0+FZiUcBAED1Uu1DzqxZs/Tiiy8qMzNTYWFhmjFjhrp06VLZbdm2uj7XgtMr9JNy7bG6CtSDXrHqru4q/uJrnVq5Xso7bi/f1uSI3mq1Uz8VH/2/dXwaaFiHJxTZ6I4r2T4AANVWtb5ctXTpUiUkJGjixInauXOnwsLCFB0drezs7MpuTZK0yzNTL5/6p36yct3Gf1KuXj79T/1n8RSdWrDKPeDUO6RXm3+sn04fdV/nZI6m7nhSqYfXX4HOAQCo/qp1yHnllVf08MMPa+jQoWrXrp3mzp2rWrVq6c0336zs1uSSpQ9qfPXrF0fZNQtrrJZLrjPWcWlhy51nWceSJL25+yUVW8UV2ywAAAaqtperioqKlJaWpvHjx9tjHh4eioqKUmpqapnrFBYWqrCw0P6el5cnScrPz6/w/nafzNQRFZyzJlPHtcPne7XJayBJ2huQrSzXCemXs6/z48+HlbridbV1tLDHatwZWSE9AwBQHZT8vW1Z1jnrqm3IOXLkiIqLixUcHOw2HhwcrL1795a5TmJioiZPnlxqPDQ09LL0eCGS9MVFrBN/GToBAKB6OX78uAICAs66vNqGnIsxfvx4JSQk2N9dLpeOHj2qunXryuE4yzWli5Cfn6/Q0FAdOnRI/v7+FbZdUzFf5cN8lQ/zdeGYq/JhvsqnIufLsiwdP35cjRo1OmddtQ059erVk6enp7KystzGs7KyFBISUuY6TqdTTqfTbSwwMPBytSh/f39+8MuB+Sof5qt8mK8Lx1yVD/NVPhU1X+c6g1Oi2t547O3trfDwcK1f/39PG7lcLq1fv16RkdyjAgDA1a7ansmRpISEBMXFxalz587q0qWLpk2bpoKCAg0dOrSyWwMAAJWsWoecgQMHKicnRxMmTFBmZqauv/56JScnl7oZ+UpzOp2aOHFiqUtjKBvzVT7MV/kwXxeOuSof5qt8KmO+HNb5nr8CAACohqrtPTkAAADnQsgBAABGIuQAAAAjEXIAAICRCDkAAMBIhJzLYNasWWrWrJl8fHwUERGhbdu2VXZLVdInn3yi3r17q1GjRnI4HFq1alVlt1RlJSYm6qabbpKfn58aNGigvn37at++fZXdVpU1Z84cderUyX6zamRkpNasWVPZbVUbU6ZMkcPh0JgxYyq7lSpp0qRJcjgcbp82bdpUdltV2g8//KA//OEPqlu3rmrWrKmOHTtqx44dl32/hJwKtnTpUiUkJGjixInauXOnwsLCFB0drezs7MpurcopKChQWFiYZs2aVdmtVHkpKSmKj4/Xp59+qnXr1unUqVPq2bOnCgrO/Zvur1aNGzfWlClTlJaWph07duj2229Xnz59tGfPnspurcrbvn27Xn/9dXXq1KmyW6nS2rdvrx9//NH+bN68ubJbqrKOHTumbt26qUaNGlqzZo2+/PJLvfzyy6pTp87l37mFCtWlSxcrPj7e/l5cXGw1atTISkxMrMSuqj5J1sqVKyu7jWojOzvbkmSlpKRUdivVRp06daw33nijstuo0o4fP261atXKWrdunXXrrbdao0ePruyWqqSJEydaYWFhld1GtTFu3Dire/fulbJvzuRUoKKiIqWlpSkqKsoe8/DwUFRUlFJTUyuxM5gmLy9PkhQUFFTJnVR9xcXFWrJkiQoKCvi9ducRHx+vmJgYt/8PQ9n279+vRo0a6dprr9XgwYN18ODBym6pyvrggw/UuXNn3XvvvWrQoIFuuOEG/eMf/7gi+ybkVKAjR46ouLi41K+VCA4OVmZmZiV1BdO4XC6NGTNG3bp1U4cOHSq7nSpr165d8vX1ldPp1COPPKKVK1eqXbt2ld1WlbVkyRLt3LlTiYmJld1KlRcREaEFCxYoOTlZc+bMUUZGhm6++WYdP368slurkr777jvNmTNHrVq10tq1azVixAg99thjWrhw4WXfd7X+3VXA1Sg+Pl67d+/mHoDzuO6665Senq68vDy9++67iouLU0pKCkGnDIcOHdLo0aO1bt06+fj4VHY7Vd5dd91l/3enTp0UERGhpk2batmyZRo2bFgldlY1uVwude7cWc8//7wk6YYbbtDu3bs1d+5cxcXFXdZ9cyanAtWrV0+enp7KyspyG8/KylJISEgldQWTjBw5UqtXr9bGjRvVuHHjym6nSvP29lbLli0VHh6uxMREhYWFafr06ZXdVpWUlpam7Oxs3XjjjfLy8pKXl5dSUlL02muvycvLS8XFxZXdYpUWGBio1q1b65tvvqnsVqqkhg0blvrHRdu2ba/IJT5CTgXy9vZWeHi41q9fb4+5XC6tX7+eewFwSSzL0siRI7Vy5Upt2LBBzZs3r+yWqh2Xy6XCwsLKbqNKuuOOO7Rr1y6lp6fbn86dO2vw4MFKT0+Xp6dnZbdYpZ04cULffvutGjZsWNmtVEndunUr9cqLr7/+Wk2bNr3s++ZyVQVLSEhQXFycOnfurC5dumjatGkqKCjQ0KFDK7u1KufEiRNu//LJyMhQenq6goKC1KRJk0rsrOqJj4/X4sWL9f7778vPz8++xysgIEA1a9as5O6qnvHjx+uuu+5SkyZNdPz4cS1evFibNm3S2rVrK7u1KsnPz6/U/V21a9dW3bp1ue+rDI8//rh69+6tpk2b6vDhw5o4caI8PT113333VXZrVdLYsWP1u9/9Ts8//7wGDBigbdu2ad68eZo3b97l33mlPNNluBkzZlhNmjSxvL29rS5duliffvppZbdUJW3cuNGSVOoTFxdX2a1VOWXNkyRr/vz5ld1alfTQQw9ZTZs2tby9va369etbd9xxh/Xvf/+7stuqVniE/OwGDhxoNWzY0PL29rauueYaa+DAgdY333xT2W1VaR9++KHVoUMHy+l0Wm3atLHmzZt3RfbrsCzLuvxRCgAA4MrinhwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAoEJ98skn6t27txo1aiSHw6FVq1aVextr165V165d5efnp/r16ys2NlYHDhwo1zYIOQAAoEIVFBQoLCxMs2bNuqj1MzIy1KdPH91+++1KT0/X2rVrdeTIEfXr169c2+GNxwAA4LJxOBxauXKl+vbta48VFhbq6aef1jvvvKPc3Fx16NBBL7zwgm677TZJ0rvvvqv77rtPhYWF8vD49XzMhx9+qD59+qiwsFA1atS4oH1zJgcAAFxRI0eOVGpqqpYsWaIvvvhC9957r3r16qX9+/dLksLDw+Xh4aH58+eruLhYeXl5+te//qWoqKgLDjgSZ3IAAMBl9NszOQcPHtS1116rgwcPqlGjRnZdVFSUunTpoueff16SlJKSogEDBuinn35ScXGxIiMj9dFHHykwMPCC982ZHAAAcMXs2rVLxcXFat26tXx9fe1PSkqKvv32W0lSZmamHn74YcXFxWn79u1KSUmRt7e3+vfvr/Kcm/G6XAcBAADwWydOnJCnp6fS0tLk6enptszX11eSNGvWLAUEBGjq1Kn2srfffluhoaHaunWrunbtekH7IuQAAIAr5oYbblBxcbGys7N18803l1nz888/2zcclygJRC6X64L3xeUqAABQoU6cOKH09HSlp6dL+vWR8PT0dB08eFCtW7fW4MGDNWTIEL333nvKyMjQtm3blJiYqKSkJElSTEyMtm/frmeffVb79+/Xzp07NXToUDVt2lQ33HDDBffBjccAAKBCbdq0ST169Cg1HhcXpwULFujUqVN67rnn9NZbb+mHH35QvXr11LVrV02ePFkdO3aUJC1ZskRTp07V119/rVq1aikyMlIvvPCC2rRpc8F9EHIAAICRuFwFAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACP9P+pD93tgbxiYAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOENJREFUeJzt3XtcVXW+//H3BrmoXLyDJHktDUUtTKWazCKxyNEjplZTZNpF0VGZLB0bL40zljXd1LJOJ+liWWY6kyZmmPgryQvKpKaOGaWNgTgKKCYgfH9/eFjHLWCAKPH19Xw81uPR/q7PWuv7XYvdfrv2Wmu7jDFGAAAAlvGo7Q4AAABcCIQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwA523GjBlyuVy13Y0akZiYKJfLpe+//762uwLgPBFyANSqDRs2aMaMGcrJyantrlTo5ZdfVmJi4gXdhsvlksvl0qhRo8qdP3XqVKfm8OHD5729TZs2acyYMYqIiJCXl5c1IRU4k4vfrgJwvk6dOqVTp07J19e3yss+++yzmjRpkjIyMtSmTZua71wVFRcXq6ioSD4+Ps4Hf5cuXdSsWTOtW7fugm3X5XLJ19dXvr6+ysrKkre3t9v8du3a6aefftLJkyeVnZ2tZs2andf2ZsyYob/+9a/q2rWrjh07pn/961/i4wC24UwO8AtKSkp08uTJ2u6Gm/z8/Au+DWOMfv7550rV1qtXr1oB59fI09NTvr6+tXJmo3///srLy9OqVavc2jds2KCMjAzFxMRUaj0ul+sXzzyNHj1aubm52rJli2699dbqdhn4VSPk4JJRet3I7t27NXToUAUEBKhp06YaP368W4hxuVwaO3asFi1apM6dO8vHx0dJSUmSpH//+9964IEHFBQUJB8fH3Xu3FlvvPFGmW2dPHlSM2bM0JVXXilfX1+1bNlSgwcP1r59+yRJ69atk8vlKnNm4Pvvvy/zAXX//ffLz89P+/bt0+233y5/f3/dc889kqS9e/cqNjZWwcHB8vX1VatWrTR8+HDl5uY6y586dUp//vOf1b59e/n4+KhNmzb64x//qIKCArdtt2nTRnfccYdWr16tHj16qH79+nr11VertG/PVLofly9fri5dujj7q3Rfli43adIkSVLbtm2dr2POvB7mnXfeUUREhOrXr68mTZpo+PDhOnDggNu2brrpJnXp0kXffPON+vbtqwYNGuiyyy7TnDlzyvR17ty56ty5sxo0aKDGjRurR48eevfdd535Z1+T06ZNG+3cuVMpKSlO/2666SZ99913crlcev7558tsY8OGDXK5XHrvvfcqtf9KXXbZZbrxxhvd+iNJixYtUnh4uLp06VKl9Z1LUFCQ6tevXyPrKv3bWbdunfO3Ex4e7vx9f/TRRwoPD5evr68iIiK0bds2t+W//vpr3X///WrXrp18fX0VHBysBx54QP/5z3+cmp9//lmdOnVSp06d3ML3kSNH1LJlS1133XUqLi6ukfHAHvVquwPAxTZ06FC1adNGs2fP1ldffaWXXnpJR48e1VtvveXUrF27Vh988IHGjh2rZs2aqU2bNsrKylLv3r2dD+/mzZtr1apVGjlypPLy8jRhwgRJp7/uuOOOO5ScnKzhw4dr/PjxOnbsmNasWaMdO3aoffv2Ve7zqVOnFB0drRtuuEHPPvusGjRooMLCQkVHR6ugoEDjxo1TcHCw/v3vf2vFihXKyclRYGCgJGnUqFF68803NWTIEP3hD3/Qxo0bNXv2bO3atUvLli1z286ePXt011136eGHH9aDDz6ojh07Vn9HS/riiy/00UcfacyYMfL399dLL72k2NhY7d+/X02bNtXgwYP1r3/9S++9956ef/555yuY5s2bS5L+8pe/6E9/+pOGDh2qUaNGKTs7W3PnztWNN96obdu2qVGjRs62jh49qv79+2vw4MEaOnSoPvzwQz3++OMKDw/XbbfdJkn67//+b/3+97/XkCFDnHD79ddfa+PGjbr77rvLHcMLL7ygcePGyc/PT1OnTpV0OiC0a9dO119/vRYtWqSJEye6LbNo0SL5+/tr4MCBVd5nd999t8aPH6/jx4/Lz89Pp06d0pIlS5SQkPCrO6N4pm+//VZ33323Hn74Yf3ud7/Ts88+qwEDBmjBggX64x//qDFjxkiSZs+eraFDh2rPnj3y8Dj97+w1a9bou+++04gRIxQcHKydO3fqtdde086dO/XVV1/J5XKpfv36evPNN3X99ddr6tSpeu655yRJ8fHxys3NVWJiojw9PWtt/PiVMsAlYvr06UaS+e1vf+vWPmbMGCPJ/POf/zTGGCPJeHh4mJ07d7rVjRw50rRs2dIcPnzYrX348OEmMDDQnDhxwhhjzBtvvGEkmeeee65MH0pKSowxxnz++edGkvn888/d5mdkZBhJZuHChU5bXFyckWQmT57sVrtt2zYjySxZsqTCMaenpxtJZtSoUW7tjz76qJFk1q5d67S1bt3aSDJJSUkVrq8ipfv2TJKMt7e3+fbbb522f/7zn0aSmTt3rtP2zDPPGEkmIyPDbfnvv//eeHp6mr/85S9u7du3bzf16tVza+/Tp4+RZN566y2nraCgwAQHB5vY2FinbeDAgaZz587nHMvChQvL9Kdz586mT58+ZWpfffVVI8ns2rXLaSssLDTNmjUzcXFx59zO2SSZ+Ph4c+TIEePt7W3efvttY4wxK1euNC6Xy3z//ffOfs7Ozv7FdZ35N/RL4uPjyxy/qij929mwYYPTtnr1aiPJ1K9f3/zwww9Oe+k+O/Nvv/S9c6b33nvPSDLr1693a58yZYrx8PAw69evN0uWLDGSzAsvvFDtvsNufF2FS058fLzb63HjxkmSPvnkE6etT58+CgsLc14bY7R06VINGDBAxhgdPnzYmaKjo5Wbm6utW7dKkpYuXapmzZo56z3T+VznMXr0aLfXpWdqVq9erRMnTpS7TOmYEhIS3Nr/8Ic/SJJWrlzp1t62bVtFR0dXu49ni4qKcjtz1bVrVwUEBOi77777xWU/+ugjlZSUaOjQoW77Ozg4WFdccYU+//xzt3o/Pz/97ne/c157e3urZ8+ebttq1KiRfvzxR23evLkGRnf6rKCvr68WLVrktK1evVqHDx9260tVNG7cWP3793e+6nr33Xd13XXXqXXr1uXWnzhxwm3/lN55dfz4cbe2o0ePVqs/lRUWFqbIyEjnda9evSRJN998sy6//PIy7WcelzO/Njt58qQOHz6s3r17S5Lzvio1Y8YMde7cWXFxcRozZoz69Omj3//+9zU/IFiBkINLzhVXXOH2un379vLw8HC7DqRt27ZuNdnZ2crJydFrr72m5s2bu00jRoyQJB06dEiStG/fPnXs2FH16tXct8H16tVTq1at3Nratm2rhIQEvf7662rWrJmio6M1f/58t+txfvjhB3l4eKhDhw5uywYHB6tRo0b64YcfyqyzJp354VaqcePGlfrA3bt3r4wxuuKKK8rs8127djn7u1SrVq3KhMizt/X444/Lz89PPXv21BVXXKH4+Hh9+eWX1Rzd6dA0YMAAt2toFi1apMsuu0w333xztdd79913a82aNdq/f7+WL19e4VdpkjRnzpwy+0c6Hd7PbLv66qur3Z/KOPtYl4bw0NDQctvPPC5HjhzR+PHjneuEmjdv7vwtnvn3LJ0Or2+88YYyMjJ07NgxLVy4kNvfUSGuycElr7z/QZ59QWZJSYkk6Xe/+53i4uLKXU/Xrl3Pa5uSKrxw0sfHx7l+4Ux/+9vfdP/99+vvf/+7Pv30U/3+9793rjU6MxRV9kOgpi5ELVXRNRKmErcql5SUyOVyadWqVeWux8/Pr8rbuuqqq7Rnzx6tWLFCSUlJWrp0qV5++WVNmzZNM2fO/MU+lee+++7TkiVLtGHDBoWHh+sf//iHxowZU+7xqqzf/va38vHxUVxcnAoKCjR06NBzbv+GG25wa7v11ls1adIk9evXz2mr6WN7tor2f2WOy9ChQ7VhwwZNmjRJ3bt3l5+fn0pKStS/f3/nvXem1atXSzp91mfv3r01Hs5hD0IOLjln/0/x22+/VUlJyTmf0dK8eXP5+/uruLhYUVFR51x/+/bttXHjRhUVFcnLy6vcmsaNG0tSmQfgnX1mpTLCw8MVHh6uJ554Qhs2bND111+vBQsWaNasWWrdurVKSkq0d+9eXXXVVc4yWVlZysnJqfArkIupogDWvn17GWPUtm1bXXnllTW2vYYNG2rYsGEaNmyYCgsLNXjwYP3lL3/RlClTKrwN/lwhsX///mrevLkWLVqkXr166cSJE7r33nvPq4/169fXoEGD9M477+i222475zNx2rVrp3bt2pVpDwsL+8W/1V+Do0ePKjk5WTNnztS0adOc9r1795Zb//XXX+vJJ5/UiBEjlJ6erlGjRmn79u3OGSLgTHxdhUvO/Pnz3V7PnTtXkpw7cMrj6emp2NhYLV26VDt27CgzPzs72/nv2NhYHT58WPPmzStTV/qv19atW8vT01Pr1693m//yyy9Xehx5eXk6deqUW1t4eLg8PDyc28Nvv/12SafvEDpT6Z0plX3uyoXUsGFDSWUD3+DBg+Xp6amZM2eWOfNjjHG7vbiyzl7G29tbYWFhMsaoqKjonH2s6InM9erV01133aUPPvhAiYmJCg8Pr9JZvYo8+uijmj59uv70pz+d97p+zUrP9Jx9jM/+m5WkoqIi3X///QoJCdGLL76oxMREZWVllbm7DSjFmRxccjIyMvTb3/5W/fv3V2pqqt555x3dfffd6tat2zmXe+qpp/T555+rV69eevDBBxUWFqYjR45o69at+uyzz3TkyBFJp78+eOutt5SQkKBNmzbpN7/5jfLz8/XZZ59pzJgxGjhwoAIDA3XnnXdq7ty5crlcat++vVasWFHmOpNzWbt2rcaOHas777xTV155pU6dOqW3337bCWSS1K1bN8XFxem1115TTk6O+vTpo02bNunNN9/UoEGD1Ldv3+rvyBoSEREh6fTPFgwfPlxeXl4aMGCA2rdvr1mzZmnKlCn6/vvvNWjQIPn7+ysjI0PLli3TQw89pEcffbRK2+rXr5+Cg4N1/fXXKygoSLt27dK8efMUExMjf3//c/bxlVde0axZs9ShQwe1aNHC7Zqb++67Ty+99JI+//xzPf3009XbEWfp1q3bL/5Nno8ffvhBb7/9tiRpy5YtkqRZs2ZJOh3Cz/dsVGUFBAToxhtv1Jw5c1RUVKTLLrtMn376qTIyMsrUzpo1S+np6UpOTpa/v7+6du2qadOm6YknntCQIUOcUA84auemLuDiK7399ptvvjFDhgwx/v7+pnHjxmbs2LHm559/dur0v7fylicrK8vEx8eb0NBQ4+XlZYKDg80tt9xiXnvtNbe6EydOmKlTp5q2bds6dUOGDDH79u1zarKzs01sbKxp0KCBady4sXn44YfNjh07yr2FvGHDhmX68t1335kHHnjAtG/f3vj6+pomTZqYvn37ms8++8ytrqioyMycOdPpS2hoqJkyZYo5efKkW13r1q1NTExMpffnmSq6hby8/di6desyt1f/+c9/Npdddpnx8PAoc/v20qVLzQ033GAaNmxoGjZsaDp16mTi4+PNnj17nJo+ffqUe2t4XFycad26tfP61VdfNTfeeKNp2rSp8fHxMe3btzeTJk0yubm5Tk15t5BnZmaamJgY4+/vbySVezt5586djYeHh/nxxx8r2Evndq6/u1I1eQt56WMMypvKG9+5VPS3U96YSh+T8MwzzzhtP/74o/mv//ov06hRIxMYGGjuvPNOc/DgQSPJTJ8+3RhjTFpamqlXr54ZN26c2/pOnTplrr32WhMSEmKOHj1apX7Dfvx2FS4ZM2bM0MyZM2vkd3+As1199dVq0qSJkpOTa7srAP4X1+QAwHnasmWL0tPTdd9999V2VwCcgWtyAFQoNzf3F3+kMzg4+CL15tdnx44dSktL09/+9je1bNlSw4YNc5tfXFzsdlF6efz8/MrcDv9rkZ2dfc7fg/L29laTJk0uYo+AqiHkAKjQ+PHj9eabb56z5lL+xvvDDz/Uk08+qY4dO+q9994rcwv6gQMHfvEZLtOnT9eMGTMuYC+r79prrz3nYw369OlT5kdmgV8TrskBUKFvvvlGBw8ePGdNXXgWS205efKkvvjii3PWVPScm1+DL7/88pxn8ho3buzcHQf8GhFyAACAlbjwGAAAWOmSvianpKREBw8elL+/Pz/wBgBAHWGM0bFjxxQSEnLO34m7pEPOwYMHy/xCLgAAqBsOHDjg9mPEZ7ukQ07pY9wPHDiggICAWu4NAACojLy8PIWGhp7z51ikSzzklH5FFRAQQMgBAKCO+aVLTbjwGAAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBK9Wq7A7YqSvqiTJtX/xtqoScAAFyaOJMDAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACudV8h56qmn5HK5NGHCBKft5MmTio+PV9OmTeXn56fY2FhlZWW5Lbd//37FxMSoQYMGatGihSZNmqRTp0651axbt07XXHONfHx81KFDByUmJpbZ/vz589WmTRv5+vqqV69e2rRp0/kMBwAAWKTaIWfz5s169dVX1bVrV7f2iRMn6uOPP9aSJUuUkpKigwcPavDgwc784uJixcTEqLCwUBs2bNCbb76pxMRETZs2zanJyMhQTEyM+vbtq/T0dE2YMEGjRo3S6tWrnZr3339fCQkJmj59urZu3apu3bopOjpahw4dqu6QAACATUw1HDt2zFxxxRVmzZo1pk+fPmb8+PHGGGNycnKMl5eXWbJkiVO7a9cuI8mkpqYaY4z55JNPjIeHh8nMzHRqXnnlFRMQEGAKCgqMMcY89thjpnPnzm7bHDZsmImOjnZe9+zZ08THxzuvi4uLTUhIiJk9e3alx5Gbm2skmdzc3MoPvpIKV/2/MhMAADh/lf38rtaZnPj4eMXExCgqKsqtPS0tTUVFRW7tnTp10uWXX67U1FRJUmpqqsLDwxUUFOTUREdHKy8vTzt37nRqzl53dHS0s47CwkKlpaW51Xh4eCgqKsqpKU9BQYHy8vLcJgAAYKd6VV1g8eLF2rp1qzZv3lxmXmZmpry9vdWoUSO39qCgIGVmZjo1Zwac0vml885Vk5eXp59//llHjx5VcXFxuTW7d++usO+zZ8/WzJkzKzdQAABQp1XpTM6BAwc0fvx4LVq0SL6+vheqTxfMlClTlJub60wHDhyo7S4BAIALpEohJy0tTYcOHdI111yjevXqqV69ekpJSdFLL72kevXqKSgoSIWFhcrJyXFbLisrS8HBwZKk4ODgMndblb7+pZqAgADVr19fzZo1k6enZ7k1pesoj4+PjwICAtwmAABgpyqFnFtuuUXbt29Xenq6M/Xo0UP33HOP899eXl5KTk52ltmzZ4/279+vyMhISVJkZKS2b9/udhfUmjVrFBAQoLCwMKfmzHWU1pSuw9vbWxEREW41JSUlSk5OdmoAAMClrUrX5Pj7+6tLly5ubQ0bNlTTpk2d9pEjRyohIUFNmjRRQECAxo0bp8jISPXu3VuS1K9fP4WFhenee+/VnDlzlJmZqSeeeELx8fHy8fGRJD3yyCOaN2+eHnvsMT3wwANau3atPvjgA61cudLZbkJCguLi4tSjRw/17NlTL7zwgvLz8zVixIjz2iEAAMAOVb7w+Jc8//zz8vDwUGxsrAoKChQdHa2XX37Zme/p6akVK1Zo9OjRioyMVMOGDRUXF6cnn3zSqWnbtq1WrlypiRMn6sUXX1SrVq30+uuvKzo62qkZNmyYsrOzNW3aNGVmZqp79+5KSkoqczEyAAC4NLmMMaa2O1Fb8vLyFBgYqNzc3Bq/Pqco6YsybV79b6jRbQAAcCmq7Oc3v10FAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACvVq+0O2Or7nFVur9s0uq2WegIAwKWJMzkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACtVKeS88sor6tq1qwICAhQQEKDIyEitWrXKmX/y5EnFx8eradOm8vPzU2xsrLKystzWsX//fsXExKhBgwZq0aKFJk2apFOnTrnVrFu3Ttdcc418fHzUoUMHJSYmlunL/Pnz1aZNG/n6+qpXr17atGlTVYYCAAAsV6WQ06pVKz311FNKS0vTli1bdPPNN2vgwIHauXOnJGnixIn6+OOPtWTJEqWkpOjgwYMaPHiws3xxcbFiYmJUWFioDRs26M0331RiYqKmTZvm1GRkZCgmJkZ9+/ZVenq6JkyYoFGjRmn16tVOzfvvv6+EhARNnz5dW7duVbdu3RQdHa1Dhw6d7/4AAACWcBljzPmsoEmTJnrmmWc0ZMgQNW/eXO+++66GDBkiSdq9e7euuuoqpaamqnfv3lq1apXuuOMOHTx4UEFBQZKkBQsW6PHHH1d2dra8vb31+OOPa+XKldqxY4ezjeHDhysnJ0dJSUmSpF69eunaa6/VvHnzJEklJSUKDQ3VuHHjNHny5Er3PS8vT4GBgcrNzVVAQMD57IYy9i6e6va6TaPb5NX/hhrdBgAAl6LKfn5X+5qc4uJiLV68WPn5+YqMjFRaWpqKiooUFRXl1HTq1EmXX365UlNTJUmpqakKDw93Ao4kRUdHKy8vzzkblJqa6raO0prSdRQWFiotLc2txsPDQ1FRUU5NRQoKCpSXl+c2AQAAO1U55Gzfvl1+fn7y8fHRI488omXLliksLEyZmZny9vZWo0aN3OqDgoKUmZkpScrMzHQLOKXzS+edqyYvL08///yzDh8+rOLi4nJrStdRkdmzZyswMNCZQkNDqzp8AABQR1Q55HTs2FHp6enauHGjRo8erbi4OH3zzTcXom81bsqUKcrNzXWmAwcO1HaXAADABVKvqgt4e3urQ4cOkqSIiAht3rxZL774ooYNG6bCwkLl5OS4nc3JyspScHCwJCk4OLjMXVCld1+dWXP2HVlZWVkKCAhQ/fr15enpKU9Pz3JrStdRER8fH/n4+FR1yAAAoA467+fklJSUqKCgQBEREfLy8lJycrIzb8+ePdq/f78iIyMlSZGRkdq+fbvbXVBr1qxRQECAwsLCnJoz11FaU7oOb29vRUREuNWUlJQoOTnZqQEAAKjSmZwpU6botttu0+WXX65jx47p3Xff1bp167R69WoFBgZq5MiRSkhIUJMmTRQQEKBx48YpMjJSvXv3liT169dPYWFhuvfeezVnzhxlZmbqiSeeUHx8vHOG5ZFHHtG8efP02GOP6YEHHtDatWv1wQcfaOXKlU4/EhISFBcXpx49eqhnz5564YUXlJ+frxEjRtTgrgEAAHVZlULOoUOHdN999+mnn35SYGCgunbtqtWrV+vWW2+VJD3//PPy8PBQbGysCgoKFB0drZdfftlZ3tPTUytWrNDo0aMVGRmphg0bKi4uTk8++aRT07ZtW61cuVITJ07Uiy++qFatWun1119XdHS0UzNs2DBlZ2dr2rRpyszMVPfu3ZWUlFTmYmQAAHDpOu/n5NRlPCcHAIC654I/JwcAAODXjJADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVqpSyJk9e7auvfZa+fv7q0WLFho0aJD27NnjVnPy5EnFx8eradOm8vPzU2xsrLKystxq9u/fr5iYGDVo0EAtWrTQpEmTdOrUKbeadevW6ZprrpGPj486dOigxMTEMv2ZP3++2rRpI19fX/Xq1UubNm2qynAAAIDFqhRyUlJSFB8fr6+++kpr1qxRUVGR+vXrp/z8fKdm4sSJ+vjjj7VkyRKlpKTo4MGDGjx4sDO/uLhYMTExKiws1IYNG/Tmm28qMTFR06ZNc2oyMjIUExOjvn37Kj09XRMmTNCoUaO0evVqp+b9999XQkKCpk+frq1bt6pbt26Kjo7WoUOHzmd/AAAAS7iMMaa6C2dnZ6tFixZKSUnRjTfeqNzcXDVv3lzvvvuuhgwZIknavXu3rrrqKqWmpqp3795atWqV7rjjDh08eFBBQUGSpAULFujxxx9Xdna2vL299fjjj2vlypXasWOHs63hw4crJydHSUlJkqRevXrp2muv1bx58yRJJSUlCg0N1bhx4zR58uRK9T8vL0+BgYHKzc1VQEBAdXdDufYunur2uk2j2+TV/4Ya3QYAAJeiyn5+n9c1Obm5uZKkJk2aSJLS0tJUVFSkqKgop6ZTp066/PLLlZqaKklKTU1VeHi4E3AkKTo6Wnl5edq5c6dTc+Y6SmtK11FYWKi0tDS3Gg8PD0VFRTk15SkoKFBeXp7bBAAA7FTtkFNSUqIJEybo+uuvV5cuXSRJmZmZ8vb2VqNGjdxqg4KClJmZ6dScGXBK55fOO1dNXl6efv75Zx0+fFjFxcXl1pSuozyzZ89WYGCgM4WGhlZ94AAAoE6odsiJj4/Xjh07tHjx4prszwU1ZcoU5ebmOtOBAwdqu0sAAOACqVedhcaOHasVK1Zo/fr1atWqldMeHByswsJC5eTkuJ3NycrKUnBwsFNz9l1QpXdfnVlz9h1ZWVlZCggIUP369eXp6SlPT89ya0rXUR4fHx/5+PhUfcAAAKDOqdKZHGOMxo4dq2XLlmnt2rVq27at2/yIiAh5eXkpOTnZaduzZ4/279+vyMhISVJkZKS2b9/udhfUmjVrFBAQoLCwMKfmzHWU1pSuw9vbWxEREW41JSUlSk5OdmoAAMClrUpncuLj4/Xuu+/q73//u/z9/Z3rXwIDA1W/fn0FBgZq5MiRSkhIUJMmTRQQEKBx48YpMjJSvXv3liT169dPYWFhuvfeezVnzhxlZmbqiSeeUHx8vHOW5ZFHHtG8efP02GOP6YEHHtDatWv1wQcfaOXKlU5fEhISFBcXpx49eqhnz5564YUXlJ+frxEjRtTUvgEAAHVYlULOK6+8Ikm66aab3NoXLlyo+++/X5L0/PPPy8PDQ7GxsSooKFB0dLRefvllp9bT01MrVqzQ6NGjFRkZqYYNGyouLk5PPvmkU9O2bVutXLlSEydO1IsvvqhWrVrp9ddfV3R0tFMzbNgwZWdna9q0acrMzFT37t2VlJRU5mJkAABwaTqv5+TUdTwnBwCAuueiPCcHAADg14qQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFaqcshZv369BgwYoJCQELlcLi1fvtxtvjFG06ZNU8uWLVW/fn1FRUVp7969bjVHjhzRPffco4CAADVq1EgjR47U8ePH3Wq+/vpr/eY3v5Gvr69CQ0M1Z86cMn1ZsmSJOnXqJF9fX4WHh+uTTz6p6nAAAIClqhxy8vPz1a1bN82fP7/c+XPmzNFLL72kBQsWaOPGjWrYsKGio6N18uRJp+aee+7Rzp07tWbNGq1YsULr16/XQw895MzPy8tTv3791Lp1a6WlpemZZ57RjBkz9Nprrzk1GzZs0F133aWRI0dq27ZtGjRokAYNGqQdO3ZUdUgAAMBCLmOMqfbCLpeWLVumQYMGSTp9FickJER/+MMf9Oijj0qScnNzFRQUpMTERA0fPly7du1SWFiYNm/erB49ekiSkpKSdPvtt+vHH39USEiIXnnlFU2dOlWZmZny9vaWJE2ePFnLly/X7t27JUnDhg1Tfn6+VqxY4fSnd+/e6t69uxYsWFCp/ufl5SkwMFC5ubkKCAio7m4o197FU91et2l0m7z631Cj2wAA4FJU2c/vGr0mJyMjQ5mZmYqKinLaAgMD1atXL6WmpkqSUlNT1ahRIyfgSFJUVJQ8PDy0ceNGp+bGG290Ao4kRUdHa8+ePTp69KhTc+Z2SmtKt1OegoIC5eXluU0AAMBONRpyMjMzJUlBQUFu7UFBQc68zMxMtWjRwm1+vXr11KRJE7ea8tZx5jYqqimdX57Zs2crMDDQmUJDQ6s6RAAAUEdcUndXTZkyRbm5uc504MCB2u4SAAC4QGo05AQHB0uSsrKy3NqzsrKcecHBwTp06JDb/FOnTunIkSNuNeWt48xtVFRTOr88Pj4+CggIcJsAAICdajTktG3bVsHBwUpOTnba8vLytHHjRkVGRkqSIiMjlZOTo7S0NKdm7dq1KikpUa9evZya9evXq6ioyKlZs2aNOnbsqMaNGzs1Z26ntKZ0OwAA4NJW5ZBz/PhxpaenKz09XdLpi43T09O1f/9+uVwuTZgwQbNmzdI//vEPbd++Xffdd59CQkKcO7Cuuuoq9e/fXw8++KA2bdqkL7/8UmPHjtXw4cMVEhIiSbr77rvl7e2tkSNHaufOnXr//ff14osvKiEhwenH+PHjlZSUpL/97W/avXu3ZsyYoS1btmjs2LHnv1cAAECdV6+qC2zZskV9+/Z1XpcGj7i4OCUmJuqxxx5Tfn6+HnroIeXk5OiGG25QUlKSfH19nWUWLVqksWPH6pZbbpGHh4diY2P10ksvOfMDAwP16aefKj4+XhEREWrWrJmmTZvm9iyd6667Tu+++66eeOIJ/fGPf9QVV1yh5cuXq0uXLtXaEQAAwC7n9Zycuo7n5AAAUPfUynNyAAAAfi0IOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsVK+2O3ApKUr6wu21V/8baqknAADYjzM5AADASoQcAABgJUIOAACwEtfkXAQlMtpZsldHTZ4auwJ0lau9PFyn86UpKVHJdz9KecelAD95tGsll0fZ7FlsirXrP9t09ORhNfZtpquaXi1Pl+fFHgoAAHVGnQ858+fP1zPPPKPMzEx169ZNc+fOVc+ePWu7W47tnpn6h9cu5Z5KctqaqpHurxeryK9bqGhZspR77P8WCPSX13/dIs+uVzpNqQeT9T87ntF/Th76v3X4ttDILpMUGXLLRRkHAAB1TZ3+uur9999XQkKCpk+frq1bt6pbt26Kjo7WoUOHfnnhi2C7Z6be9t6mXNdJt/b/KEd/K/offblirnvAkaTcYypKXK7ir/8l6XTAmbPlMbeAI0n/OZmtOVseU+rB5As6BgAA6qo6HXKee+45PfjggxoxYoTCwsK0YMECNWjQQG+88UZtd00lMvqH167TL1zl17zVYZtKVFLuvKL3PtHJT1L0PzuekWTKqTjd9saOZ1Vsis+/wwAAWKbOfl1VWFiotLQ0TZkyxWnz8PBQVFSUUlNTy12moKBABQUFzuvc3FxJUl5eXo33b8fJTB1W/jlrMnVMW3x/VKfcFmVnFpzUnqxNyqz/0znX8dOJg0pd+qqucrV3a/e6NbLKfQYAoC4o/dw2pryTAP+nzoacw4cPq7i4WEFBQW7tQUFB2r17d7nLzJ49WzNnzizTHhoaekH6WBkr9XUNrCO+BnoCAEDdcuzYMQUGBlY4v86GnOqYMmWKEhISnNclJSU6cuSImjZtKpergu+UqiEvL0+hoaE6cOCAAgICamy9v1aX2nilS2/MjNdul9p4pUtvzLaN1xijY8eOKSQk5Jx1dTbkNGvWTJ6ensrKynJrz8rKUnBwcLnL+Pj4yMfHx62tUaNGF6qLCggIsOKPqbIutfFKl96YGa/dLrXxSpfemG0a77nO4JSqsxcee3t7KyIiQsnJ/3d3UUlJiZKTkxUZyfUoAABc6ursmRxJSkhIUFxcnHr06KGePXvqhRdeUH5+vkaMGFHbXQMAALWsToecYcOGKTs7W9OmTVNmZqa6d++upKSkMhcjX2w+Pj6aPn16ma/GbHWpjVe69MbMeO12qY1XuvTGfKmNt5TL/NL9VwAAAHVQnb0mBwAA4FwIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQU03z589XmzZt5Ovrq169emnTpk3nrF+yZIk6deokX19fhYeH65NPPrlIPa0ZVRlvYmKiXC6X2+Tr63sRe3t+1q9frwEDBigkJEQul0vLly//xWXWrVuna665Rj4+PurQoYMSExMveD9rSlXHu27dujLH1+VyKTMz8+J0+DzNnj1b1157rfz9/dWiRQsNGjRIe/bs+cXl6up7uDrjrevv4VdeeUVdu3Z1nu4bGRmpVatWnXOZunp8paqPt64f36og5FTD+++/r4SEBE2fPl1bt25Vt27dFB0drUOHDpVbv2HDBt11110aOXKktm3bpkGDBmnQoEHasWPHRe559VR1vNLpR4f/9NNPzvTDDz9cxB6fn/z8fHXr1k3z58+vVH1GRoZiYmLUt29fpaena8KECRo1apRWr159gXtaM6o63lJ79uxxO8YtWrS4QD2sWSkpKYqPj9dXX32lNWvWqKioSP369VN+fn6Fy9Tl93B1xivV7fdwq1at9NRTTyktLU1btmzRzTffrIEDB2rnzp3l1tfl4ytVfbxS3T6+VWJQZT179jTx8fHO6+LiYhMSEmJmz55dbv3QoUNNTEyMW1uvXr3Mww8/fEH7WVOqOt6FCxeawMDAi9S7C0uSWbZs2TlrHnvsMdO5c2e3tmHDhpno6OgL2LMLozLj/fzzz40kc/To0YvSpwvt0KFDRpJJSUmpsKauv4fPVJnx2vQeLtW4cWPz+uuvlzvPpuNb6lzjtfH4VoQzOVVUWFiotLQ0RUVFOW0eHh6KiopSampqucukpqa61UtSdHR0hfW/JtUZryQdP35crVu3Vmho6C/+i6Kuq8vH93x0795dLVu21K233qovv/yytrtTbbm5uZKkJk2aVFhj0zGuzHgle97DxcXFWrx4sfLz8yv8XUObjm9lxivZc3x/CSGnig4fPqzi4uIyPx0RFBRU4TUJmZmZVar/NanOeDt27Kg33nhDf//73/XOO++opKRE1113nX788ceL0eWLrqLjm5eXp59//rmWenXhtGzZUgsWLNDSpUu1dOlShYaG6qabbtLWrVtru2tVVlJSogkTJuj6669Xly5dKqyry+/hM1V2vDa8h7dv3y4/Pz/5+PjokUce0bJlyxQWFlZurQ3HtyrjteH4Vlad/u0q/DpFRka6/Qviuuuu01VXXaVXX31Vf/7zn2uxZ6gJHTt2VMeOHZ3X1113nfbt26fnn39eb7/9di32rOri4+O1Y8cOffHFF7XdlYuisuO14T3csWNHpaenKzc3Vx9++KHi4uKUkpJS4Qd/XVeV8dpwfCuLkFNFzZo1k6enp7Kystzas7KyFBwcXO4ywcHBVar/NanOeM/m5eWlq6++Wt9+++2F6GKtq+j4BgQEqH79+rXUq4urZ8+edS4ojB07VitWrND69evVqlWrc9bW5fdwqaqM92x18T3s7e2tDh06SJIiIiK0efNmvfjii3r11VfL1NpwfKsy3rPVxeNbWXxdVUXe3t6KiIhQcnKy01ZSUqLk5OQKv/+MjIx0q5ekNWvWnPP70l+L6oz3bMXFxdq+fbtatmx5obpZq+ry8a0p6enpdeb4GmM0duxYLVu2TGvXrlXbtm1/cZm6fIyrM96z2fAeLikpUUFBQbnz6vLxrci5xns2G45vhWr7yue6aPHixcbHx8ckJiaab775xjz00EOmUaNGJjMz0xhjzL333msmT57s1H/55ZemXr165tlnnzW7du0y06dPN15eXmb79u21NYQqqep4Z86caVavXm327dtn0tLSzPDhw42vr6/ZuXNnbQ2hSo4dO2a2bdtmtm3bZiSZ5557zmzbts388MMPxhhjJk+ebO69916n/rvvvjMNGjQwkyZNMrt27TLz5883np6eJikpqbaGUCVVHe/zzz9vli9fbvbu3Wu2b99uxo8fbzw8PMxnn31WW0OoktGjR5vAwECzbt0689NPPznTiRMnnBqb3sPVGW9dfw9PnjzZpKSkmIyMDPP111+byZMnG5fLZT799FNjjF3H15iqj7euH9+qIORU09y5c83ll19uvL29Tc+ePc1XX33lzOvTp4+Ji4tzq//ggw/MlVdeaby9vU3nzp3NypUrL3KPz09VxjthwgSnNigoyNx+++1m69attdDr6im9RfrsqXSMcXFxpk+fPmWW6d69u/H29jbt2rUzCxcuvOj9rq6qjvfpp5827du3N76+vqZJkybmpptuMmvXrq2dzldDeWOV5HbMbHoPV2e8df09/MADD5jWrVsbb29v07x5c3PLLbc4H/jG2HV8jan6eOv68a0KlzHGXLzzRgAAABcH1+QAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAADVq/fr1GjBggEJCQuRyubR8+fIqr2P16tXq3bu3/P391bx5c8XGxur777+v0joIOQAAoEbl5+erW7dumj9/frWWz8jI0MCBA3XzzTcrPT1dq1ev1uHDhzV48OAqrYcnHgMAgAvG5XJp2bJlGjRokNNWUFCgqVOn6r333lNOTo66dOmip59+WjfddJMk6cMPP9Rdd92lgoICeXicPh/z8ccfa+DAgSooKJCXl1elts2ZHAAAcFGNHTtWqampWrx4sb7++mvdeeed6t+/v/bu3StJioiIkIeHhxYuXKji4mLl5ubq7bffVlRUVKUDjsSZHAAAcAGdfSZn//79ateunfbv36+QkBCnLioqSj179tRf//pXSVJKSoqGDh2q//znPyouLlZkZKQ++eQTNWrUqNLb5kwOAAC4aLZv367i4mJdeeWV8vPzc6aUlBTt27dPkpSZmakHH3xQcXFx2rx5s1JSUuTt7a0hQ4aoKudm6l2oQQAAAJzt+PHj8vT0VFpamjw9Pd3m+fn5SZLmz5+vwMBAzZkzx5n3zjvvKDQ0VBs3blTv3r0rtS1CDgAAuGiuvvpqFRcX69ChQ/rNb35Tbs2JEyecC45LlQaikpKSSm+Lr6sAAECNOn78uNLT05Weni7p9C3h6enp2r9/v6688krdc889uu+++/TRRx8pIyNDmzZt0uzZs7Vy5UpJUkxMjDZv3qwnn3xSe/fu1datWzVixAi1bt1aV199daX7wYXHAACgRq1bt059+/Yt0x4XF6fExEQVFRVp1qxZeuutt/Tvf/9bzZo1U+/evTVz5kyFh4dLkhYvXqw5c+boX//6lxo0aKDIyEg9/fTT6tSpU6X7QcgBAABW4usqAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFjp/wPwcsnaGGvSiwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN41JREFUeJzt3XtYVWX+///XBgRUDp5BEs+lqaiFimSTWSRO5OhHTK0myUMHRUdlsnTs46FxxrJmzNKyPl2JlWaZ6UyakmHiryQPKJOaOWaYNgbqGKCkoHD//vDLyi1obkRJ7+fjutZ1zb7Xe611r9vV5jXrtF3GGCMAAAALeFV1BwAAAK4Ugg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CD4BKN3XqVLlcrqruRqVITk6Wy+XSvn37qrorACoBwQfAr8qGDRs0depU5ebmVnVXzuvll19WcnLyZd2Gy+WSy+XS8OHDy50/adIkp+bIkSO/uL5NmzZp5MiRioyMVLVq1a6ZYAp4ysVvdQGobKdPn9bp06fl7+/v8bLPP/+8xo8fr6ysLDVt2rTyO+eh4uJinTp1Sn5+fk5YaNeunerVq6d169Zdtu26XC75+/vL399fOTk58vX1dZvfvHlz/fDDDzp58qQOHz6sevXqXXB9U6dO1V//+le1b99ex44d07///W/x9Q8bccYH8FBJSYlOnjxZ1d1wU1BQcNm3YYzRiRMnLqrWx8enQqHn18jb21v+/v5VcoakV69eys/P16pVq9zaN2zYoKysLMXFxV30ukaMGKG8vDxt2bJFd911V2V3FbhqEHxgrdL7UL7++msNGDBAQUFBqlu3rsaMGeMWbFwul0aNGqWFCxeqbdu28vPz0+rVqyVJ//nPfzR06FCFhITIz89Pbdu21RtvvFFmWydPntTUqVN1ww03yN/fXw0bNlS/fv20d+9eSdK6devkcrnKnEHYt2+fXC6X22WVhx56SAEBAdq7d6/uvvtuBQYG6oEHHpAk7dmzR/Hx8QoNDZW/v78aNWqkQYMGKS8vz1n+9OnT+vOf/6wWLVrIz89PTZs21Z/+9CcVFha6bbtp06a65557lJKSok6dOql69ep69dVXPRrbs5WO4/Lly9WuXTtnvErHsnS58ePHS5KaNWvmXMo5+/6at99+W5GRkapevbrq1KmjQYMG6cCBA27buv3229WuXTt99dVX6tGjh2rUqKHrrrtOM2fOLNPXl156SW3btlWNGjVUu3ZtderUSYsWLXLmn3uPT9OmTbVz506lpaU5/bv99tv17bffyuVyadasWWW2sWHDBrlcLr3zzjsXNX6lrrvuOt12221u/ZGkhQsXKiIiQu3atbvodYWEhKh69eoebf98So+NdevWOcdGRESEc/x+8MEHioiIkL+/vyIjI7Vt2za35b/88ks99NBDat68ufz9/RUaGqqhQ4fqv//9r1Nz4sQJtW7dWq1bt3YL3EePHlXDhg11yy23qLi4uFL2B3bxqeoOAFVtwIABatq0qWbMmKEvvvhCL774on788Ue9+eabTs3atWv13nvvadSoUapXr56aNm2qnJwcde3a1fmDXr9+fa1atUrDhg1Tfn6+xo4dK+nMpZJ77rlHqampGjRokMaMGaNjx45pzZo12rFjh1q0aOFxn0+fPq3Y2Fjdeuutev7551WjRg0VFRUpNjZWhYWFGj16tEJDQ/Wf//xHK1asUG5uroKDgyVJw4cP14IFC9S/f3/98Y9/1MaNGzVjxgzt2rVLy5Ytc9vO7t27dd999+nRRx/Vww8/rFatWlV8oCV99tln+uCDDzRy5EgFBgbqxRdfVHx8vPbv36+6deuqX79++ve//6133nlHs2bNci7f1K9fX5L0l7/8Rf/7v/+rAQMGaPjw4Tp8+LBeeukl3Xbbbdq2bZtq1arlbOvHH39Ur1691K9fPw0YMEDvv/++nnzySUVEROi3v/2tJOn//u//9Ic//EH9+/d3Au+XX36pjRs36v777y93H1544QWNHj1aAQEBmjRpkqQzoaJ58+bq1q2bFi5cqHHjxrkts3DhQgUGBqpPnz4ej9n999+vMWPG6Pjx4woICNDp06e1ZMkSJSUlVemZx2+++Ub333+/Hn30Uf3+97/X888/r969e2vevHn605/+pJEjR0qSZsyYoQEDBmj37t3y8jrz/7XXrFmjb7/9VkOGDFFoaKh27typ1157TTt37tQXX3whl8ul6tWra8GCBerWrZsmTZqkv//975KkxMRE5eXlKTk5Wd7e3lW2/7iKGcBSU6ZMMZLM7373O7f2kSNHGknmX//6lzHGGEnGy8vL7Ny5061u2LBhpmHDhubIkSNu7YMGDTLBwcHmp59+MsYY88YbbxhJ5u9//3uZPpSUlBhjjPn000+NJPPpp5+6zc/KyjKSzPz58522hIQEI8lMmDDBrXbbtm1GklmyZMl59zkzM9NIMsOHD3drf/zxx40ks3btWqetSZMmRpJZvXr1edd3PqVjezZJxtfX13zzzTdO27/+9S8jybz00ktO23PPPWckmaysLLfl9+3bZ7y9vc1f/vIXt/bt27cbHx8ft/bu3bsbSebNN9902goLC01oaKiJj4932vr06WPatm17wX2ZP39+mf60bdvWdO/evUztq6++aiSZXbt2OW1FRUWmXr16JiEh4YLbOZckk5iYaI4ePWp8fX3NW2+9ZYwxZuXKlcblcpl9+/Y543z48GGP1p2YmFjm38cTpcfGhg0bnLaUlBQjyVSvXt189913TnvpmJx9bJf+t3G2d955x0gy69evd2ufOHGi8fLyMuvXrzdLliwxkswLL7xQ4b4DXOqC9RITE90+jx49WpL00UcfOW3du3dXmzZtnM/GGC1dulS9e/eWMUZHjhxxptjYWOXl5Wnr1q2SpKVLl6pevXrOes92KfeNjBgxwu1z6RmdlJQU/fTTT+UuU7pPSUlJbu1//OMfJUkrV650a2/WrJliY2Mr3MdzxcTEuJ3hat++vYKCgvTtt9/+4rIffPCBSkpKNGDAALfxDg0N1fXXX69PP/3UrT4gIEC///3vnc++vr7q0qWL27Zq1aql77//Xps3b66EvTtz9tDf318LFy502lJSUnTkyBG3vniidu3a6tWrl3OZbNGiRbrlllvUpEmTSulzRbVp00bR0dHO56ioKEnSHXfcocaNG5dpP3vcz77kdvLkSR05ckRdu3aVJOe/m1JTp05V27ZtlZCQoJEjR6p79+76wx/+UPk7BGsQfGC966+/3u1zixYt5OXl5XZfSbNmzdxqDh8+rNzcXL322muqX7++2zRkyBBJ0qFDhyRJe/fuVatWreTjU3lXln18fNSoUSO3tmbNmikpKUmvv/666tWrp9jYWM2dO9ft/p7vvvtOXl5eatmypduyoaGhqlWrlr777rsy66xMZ/9BLFW7dm39+OOPv7jsnj17ZIzR9ddfX2bMd+3a5Yx3qUaNGpUJludu68knn1RAQIC6dOmi66+/XomJifr8888ruHdnglTv3r3d7slZuHChrrvuOt1xxx0VXu/999+vNWvWaP/+/Vq+fPl5L8MdP35c2dnZznT48OEKb/OXnPtvWRq8w8PDy20/e9yPHj2qMWPGOPcd1a9f3znWzj5epTOB9Y033lBWVpaOHTum+fPn8yg+Lgn3+ADnKO9L9dybQktKSiRJv//975WQkFDuetq3b39J25R03ps3/fz8nPslzva3v/1NDz30kP7xj3/o448/1h/+8Afn3qWzg9LF/uGorJthS53vngxzEY9Vl5SUyOVyadWqVeWuJyAgwONt3Xjjjdq9e7dWrFih1atXa+nSpXr55Zc1efJkTZs27Rf7VJ7BgwdryZIl2rBhgyIiIvTPf/5TI0eOLPff62L97ne/k5+fnxISElRYWKgBAwaUW/f888+79btJkyaX7cWL5xvfixn3AQMGaMOGDRo/frw6duyogIAAlZSUqFevXs5/W2dLSUmRdObs0J49eyo9kMMuBB9Y79wv0m+++UYlJSUXfIdM/fr1FRgYqOLiYsXExFxw/S1atNDGjRt16tQpVatWrdya2rVrS1KZl/adewbmYkRERCgiIkJPPfWUNmzYoG7dumnevHmaPn26mjRpopKSEu3Zs0c33nijs0xOTo5yc3Or/PKJdP5Q1qJFCxlj1KxZM91www2Vtr2aNWtq4MCBGjhwoIqKitSvXz/95S9/0cSJE8/7SP6FgmOvXr1Uv359LVy4UFFRUfrpp5/04IMPXlIfq1evrr59++rtt9/Wb3/72/O+s2fw4MG69dZb3Zb7tfnxxx+VmpqqadOmafLkyU77nj17yq3/8ssv9fTTT2vIkCHKzMzU8OHDtX37dudMEuApLnXBenPnznX7/NJLL0mS8+RPeby9vRUfH6+lS5dqx44dZeaffYkhPj5eR44c0Zw5c8rUlf6/4CZNmsjb21vr1693m//yyy9f9H7k5+fr9OnTbm0RERHy8vJyHlW/++67JZ15MulspU/MePJemMulZs2aksqGwH79+snb21vTpk0rc4bIGOP2KPTFOncZX19ftWnTRsYYnTp16oJ9PN+bpX18fHTffffpvffeU3JysiIiIjw6+3c+jz/+uKZMmaL//d//PW9N8+bNFRMT40zdunW75O1WttIzQuf+G557TErSqVOn9NBDDyksLEyzZ89WcnKycnJyyjw1B3iCMz6wXlZWln73u9+pV69eSk9P19tvv637779fHTp0uOByzzzzjD799FNFRUXp4YcfVps2bXT06FFt3bpVn3zyiY4ePSrpzP8Lf/PNN5WUlKRNmzbpN7/5jQoKCvTJJ59o5MiR6tOnj4KDg3XvvffqpZdeksvlUosWLbRixYoy961cyNq1azVq1Cjde++9uuGGG3T69Gm99dZbTkiTpA4dOighIUGvvfaacnNz1b17d23atEkLFixQ37591aNHj4oPZCWJjIyUdOYnGQYNGqRq1aqpd+/eatGihaZPn66JEydq37596tu3rwIDA5WVlaVly5bpkUce0eOPP+7Rtnr27KnQ0FB169ZNISEh2rVrl+bMmaO4uDgFBgZesI+vvPKKpk+frpYtW6pBgwZu9/AMHjxYL774oj799FM9++yzFRuIc3To0OEXj8kL+e677/TWW29JkrZs2SJJmj59uqQzwftSz0pdrKCgIN12222aOXOmTp06peuuu04ff/yxsrKyytROnz5dmZmZSk1NVWBgoNq3b6/JkyfrqaeeUv/+/Z0gD3ikah4mA6pe6aPAX331lenfv78JDAw0tWvXNqNGjTInTpxw6vT/HisuT05OjklMTDTh4eGmWrVqJjQ01Nx5553mtddec6v76aefzKRJk0yzZs2cuv79+5u9e/c6NYcPHzbx8fGmRo0apnbt2ubRRx81O3bsKPdx9po1a5bpy7fffmuGDh1qWrRoYfz9/U2dOnVMjx49zCeffOJWd+rUKTNt2jSnL+Hh4WbixInm5MmTbnVNmjQxcXFxFz2eZzvf4+zljWOTJk3KPOr95z//2Vx33XXGy8urzKPkS5cuNbfeequpWbOmqVmzpmndurVJTEw0u3fvdmq6d+9e7mPqCQkJpkmTJs7nV1991dx2222mbt26xs/Pz7Ro0cKMHz/e5OXlOTXlPc6enZ1t4uLiTGBgoJFU7qPtbdu2NV5eXub7778/zyhd2IWOu1KePM5e+sqE8qby+n8h5zs2yutz6SsZnnvuOaft+++/N//zP/9jatWqZYKDg829995rDh48aCSZKVOmGGOMycjIMD4+Pmb06NFu6zt9+rTp3LmzCQsLMz/++KNH/QaMMYbf6oK1pk6dqmnTpl3U7xwBnrrppptUp04dpaamVnVXAJyFe3wAoJJt2bJFmZmZGjx4cFV3BcA5uMcHwEXLy8v7xR8qDQ0NvUK9+fXZsWOHMjIy9Le//U0NGzbUwIED3eYXFxf/4rt1AgICyjyaf6UcPnz4gr9/5evrqzp16lzBHgGVj+AD4KKNGTNGCxYsuGCNzVfP33//fT399NNq1aqV3nnnnTKPwx84cOAX30EzZcoUTZ069TL28vw6d+58wVcodO/evcwP6QJXG+7xAXDRvvrqKx08ePCCNb/0XiObnTx5Up999tkFa5o3b67mzZtfoR65+/zzzy94Rq927drOU3fA1YrgAwAArMHNzQAAwBpW3+NTUlKigwcPKjAwkB+9AwDgKmGM0bFjxxQWFubx7+BZHXwOHjxY5peEAQDA1eHAgQNuP8B8MawOPqWvpD9w4ICCgoKquDcAAOBi5OfnKzw8/II/LXM+Vgef0stbQUFBBB8AAK4yFblNhZubAQCANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKzhU9UduFadWv2Z2+dqvW6top4AAIBSnPEBAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANS4p+DzzzDNyuVwaO3as03by5EklJiaqbt26CggIUHx8vHJyctyW279/v+Li4lSjRg01aNBA48eP1+nTp91q1q1bp5tvvll+fn5q2bKlkpOTy2x/7ty5atq0qfz9/RUVFaVNmzZdyu4AAIBrXIWDz+bNm/Xqq6+qffv2bu3jxo3Thx9+qCVLligtLU0HDx5Uv379nPnFxcWKi4tTUVGRNmzYoAULFig5OVmTJ092arKyshQXF6cePXooMzNTY8eO1fDhw5WSkuLUvPvuu0pKStKUKVO0detWdejQQbGxsTp06FBFdwkAAFzrTAUcO3bMXH/99WbNmjWme/fuZsyYMcYYY3Jzc021atXMkiVLnNpdu3YZSSY9Pd0YY8xHH31kvLy8THZ2tlPzyiuvmKCgIFNYWGiMMeaJJ54wbdu2ddvmwIEDTWxsrPO5S5cuJjEx0flcXFxswsLCzIwZM87b75MnT5q8vDxnOnDggJFk8vLyKjIMF1S06v9zmwAAQOXIy8ur8N/vCp3xSUxMVFxcnGJiYtzaMzIydOrUKbf21q1bq3HjxkpPT5ckpaenKyIiQiEhIU5NbGys8vPztXPnTqfm3HXHxsY66ygqKlJGRoZbjZeXl2JiYpya8syYMUPBwcHOFB4eXpHdBwAAVymPg8/ixYu1detWzZgxo8y87Oxs+fr6qlatWm7tISEhys7OdmrODj2l80vnXagmPz9fJ06c0JEjR1RcXFxuTek6yjNx4kTl5eU504EDBy5upwEAwDXBx5PiAwcOaMyYMVqzZo38/f0vV58uGz8/P/n5+VV1NwAAQBXx6IxPRkaGDh06pJtvvlk+Pj7y8fFRWlqaXnzxRfn4+CgkJERFRUXKzc11Wy4nJ0ehoaGSpNDQ0DJPeZV+/qWaoKAgVa9eXfXq1ZO3t3e5NaXrAAAAOJdHwefOO+/U9u3blZmZ6UydOnXSAw884PzvatWqKTU11Vlm9+7d2r9/v6KjoyVJ0dHR2r59u9vTV2vWrFFQUJDatGnj1Jy9jtKa0nX4+voqMjLSraakpESpqalODQAAwLk8utQVGBiodu3aubXVrFlTdevWddqHDRumpKQk1alTR0FBQRo9erSio6PVtWtXSVLPnj3Vpk0bPfjgg5o5c6ays7P11FNPKTEx0bkM9dhjj2nOnDl64oknNHToUK1du1bvvfeeVq5c6Ww3KSlJCQkJ6tSpk7p06aIXXnhBBQUFGjJkyCUNCAAAuHZ5FHwuxqxZs+Tl5aX4+HgVFhYqNjZWL7/8sjPf29tbK1as0IgRIxQdHa2aNWsqISFBTz/9tFPTrFkzrVy5UuPGjdPs2bPVqFEjvf7664qNjXVqBg4cqMOHD2vy5MnKzs5Wx44dtXr16jI3PAMAAJRyGWNMVXeiquTn5ys4OFh5eXkKCgqq1HWfWv2Z2+dqvW6t1PUDAGCrS/n7zW91AQAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABr+FR1B65V+3JXuX322rJTLTo9WkW9AQAAEmd8AACARQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADW8Cj4vPLKK2rfvr2CgoIUFBSk6OhorVq1ypl/8uRJJSYmqm7dugoICFB8fLxycnLc1rF//37FxcWpRo0aatCggcaPH6/Tp0+71axbt04333yz/Pz81LJlSyUnJ5fpy9y5c9W0aVP5+/srKipKmzZt8mRXAACAhTwKPo0aNdIzzzyjjIwMbdmyRXfccYf69OmjnTt3SpLGjRunDz/8UEuWLFFaWpoOHjyofv36OcsXFxcrLi5ORUVF2rBhgxYsWKDk5GRNnjzZqcnKylJcXJx69OihzMxMjR07VsOHD1dKSopT8+677yopKUlTpkzR1q1b1aFDB8XGxurQoUOXOh4AAOAa5jLGmEtZQZ06dfTcc8+pf//+ql+/vhYtWqT+/ftLkr7++mvdeOONSk9PV9euXbVq1Srdc889OnjwoEJCQiRJ8+bN05NPPqnDhw/L19dXTz75pFauXKkdO3Y42xg0aJByc3O1evVqSVJUVJQ6d+6sOXPmSJJKSkoUHh6u0aNHa8KECRfd9/z8fAUHBysvL09BQUGXMgxl7Fk8ye2zV8vGatHp0UrdBgAANrqUv98VvsenuLhYixcvVkFBgaKjo5WRkaFTp04pJibGqWndurUaN26s9PR0SVJ6eroiIiKc0CNJsbGxys/Pd84apaenu62jtKZ0HUVFRcrIyHCr8fLyUkxMjFNzPoWFhcrPz3ebAACAPTwOPtu3b1dAQID8/Pz02GOPadmyZWrTpo2ys7Pl6+urWrVqudWHhIQoOztbkpSdne0Wekrnl867UE1+fr5OnDihI0eOqLi4uNya0nWcz4wZMxQcHOxM4eHhnu4+AAC4inkcfFq1aqXMzExt3LhRI0aMUEJCgr766qvL0bdKN3HiROXl5TnTgQMHqrpLAADgCvLxdAFfX1+1bNlSkhQZGanNmzdr9uzZGjhwoIqKipSbm+t21icnJ0ehoaGSpNDQ0DJPX5U+9XV2zblPguXk5CgoKEjVq1eXt7e3vL29y60pXcf5+Pn5yc/Pz9NdBgAA14hLfo9PSUmJCgsLFRkZqWrVqik1NdWZt3v3bu3fv1/R0dGSpOjoaG3fvt3t6as1a9YoKChIbdq0cWrOXkdpTek6fH19FRkZ6VZTUlKi1NRUpwYAAKA8Hp3xmThxon7729+qcePGOnbsmBYtWqR169YpJSVFwcHBGjZsmJKSklSnTh0FBQVp9OjRio6OVteuXSVJPXv2VJs2bfTggw9q5syZys7O1lNPPaXExETnTMxjjz2mOXPm6IknntDQoUO1du1avffee1q5cqXTj6SkJCUkJKhTp07q0qWLXnjhBRUUFGjIkCGVODQAAOBa41HwOXTokAYPHqwffvhBwcHBat++vVJSUnTXXXdJkmbNmiUvLy/Fx8ersLBQsbGxevnll53lvb29tWLFCo0YMULR0dGqWbOmEhIS9PTTTzs1zZo108qVKzVu3DjNnj1bjRo10uuvv67Y2FinZuDAgTp8+LAmT56s7OxsdezYUatXry5zwzMAAMDZLvk9Plcz3uMDAMDVp0re4wMAAHC1IfgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1vAo+MyYMUOdO3dWYGCgGjRooL59+2r37t1uNSdPnlRiYqLq1q2rgIAAxcfHKycnx61m//79iouLU40aNdSgQQONHz9ep0+fdqtZt26dbr75Zvn5+ally5ZKTk4u05+5c+eqadOm8vf3V1RUlDZt2uTJ7gAAAMt4FHzS0tKUmJioL774QmvWrNGpU6fUs2dPFRQUODXjxo3Thx9+qCVLligtLU0HDx5Uv379nPnFxcWKi4tTUVGRNmzYoAULFig5OVmTJ092arKyshQXF6cePXooMzNTY8eO1fDhw5WSkuLUvPvuu0pKStKUKVO0detWdejQQbGxsTp06NCljAcAALiGuYwxpqILHz58WA0aNFBaWppuu+025eXlqX79+lq0aJH69+8vSfr666914403Kj09XV27dtWqVat0zz336ODBgwoJCZEkzZs3T08++aQOHz4sX19fPfnkk1q5cqV27NjhbGvQoEHKzc3V6tWrJUlRUVHq3Lmz5syZI0kqKSlReHi4Ro8erQkTJlxU//Pz8xUcHKy8vDwFBQVVdBjKtWfxJLfPXi0bq0WnRyt1GwAA2OhS/n5f0j0+eXl5kqQ6depIkjIyMnTq1CnFxMQ4Na1bt1bjxo2Vnp4uSUpPT1dERIQTeiQpNjZW+fn52rlzp1Nz9jpKa0rXUVRUpIyMDLcaLy8vxcTEODXlKSwsVH5+vtsEAADsUeHgU1JSorFjx6pbt25q166dJCk7O1u+vr6qVauWW21ISIiys7OdmrNDT+n80nkXqsnPz9eJEyd05MgRFRcXl1tTuo7yzJgxQ8HBwc4UHh7u+Y4DAICrVoWDT2Jionbs2KHFixdXZn8uq4kTJyovL8+ZDhw4UNVdAgAAV5BPRRYaNWqUVqxYofXr16tRo0ZOe2hoqIqKipSbm+t21icnJ0ehoaFOzblPX5U+9XV2zblPguXk5CgoKEjVq1eXt7e3vL29y60pXUd5/Pz85Ofn5/kOAwCAa4JHZ3yMMRo1apSWLVumtWvXqlmzZm7zIyMjVa1aNaWmpjptu3fv1v79+xUdHS1Jio6O1vbt292evlqzZo2CgoLUpk0bp+bsdZTWlK7D19dXkZGRbjUlJSVKTU11agAAAM7l0RmfxMRELVq0SP/4xz8UGBjo3E8THBys6tWrKzg4WMOGDVNSUpLq1KmjoKAgjR49WtHR0erataskqWfPnmrTpo0efPBBzZw5U9nZ2XrqqaeUmJjonI157LHHNGfOHD3xxBMaOnSo1q5dq/fee08rV650+pKUlKSEhAR16tRJXbp00QsvvKCCggINGTKkssYGAABcYzwKPq+88ook6fbbb3drnz9/vh566CFJ0qxZs+Tl5aX4+HgVFhYqNjZWL7/8slPr7e2tFStWaMSIEYqOjlbNmjWVkJCgp59+2qlp1qyZVq5cqXHjxmn27Nlq1KiRXn/9dcXGxjo1AwcO1OHDhzV58mRlZ2erY8eOWr16dZkbngEAAEpd0nt8rna8xwcAgKtPlb3HBwAA4GpC8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACs4XHwWb9+vXr37q2wsDC5XC4tX77cbb4xRpMnT1bDhg1VvXp1xcTEaM+ePW41R48e1QMPPKCgoCDVqlVLw4YN0/Hjx91qvvzyS/3mN7+Rv7+/wsPDNXPmzDJ9WbJkiVq3bi1/f39FREToo48+8nR3AACARTwOPgUFBerQoYPmzp1b7vyZM2fqxRdf1Lx587Rx40bVrFlTsbGxOnnypFPzwAMPaOfOnVqzZo1WrFih9evX65FHHnHm5+fnq2fPnmrSpIkyMjL03HPPaerUqXrttdecmg0bNui+++7TsGHDtG3bNvXt21d9+/bVjh07PN0lAABgCZcxxlR4YZdLy5YtU9++fSWdOdsTFhamP/7xj3r88cclSXl5eQoJCVFycrIGDRqkXbt2qU2bNtq8ebM6deokSVq9erXuvvtuff/99woLC9Mrr7yiSZMmKTs7W76+vpKkCRMmaPny5fr6668lSQMHDlRBQYFWrFjh9Kdr167q2LGj5s2bd1H9z8/PV3BwsPLy8hQUFFTRYSjXnsWT3D57tWysFp0erdRtAABgo0v5+12p9/hkZWUpOztbMTExTltwcLCioqKUnp4uSUpPT1etWrWc0CNJMTEx8vLy0saNG52a2267zQk9khQbG6vdu3frxx9/dGrO3k5pTel2ylNYWKj8/Hy3CQAA2KNSg092drYkKSQkxK09JCTEmZedna0GDRq4zffx8VGdOnXcaspbx9nbOF9N6fzyzJgxQ8HBwc4UHh7u6S4CAICrmFVPdU2cOFF5eXnOdODAgaruEgAAuIIqNfiEhoZKknJyctzac3JynHmhoaE6dOiQ2/zTp0/r6NGjbjXlrePsbZyvpnR+efz8/BQUFOQ2AQAAe1Rq8GnWrJlCQ0OVmprqtOXn52vjxo2Kjo6WJEVHRys3N1cZGRlOzdq1a1VSUqKoqCinZv369Tp16pRTs2bNGrVq1Uq1a9d2as7eTmlN6XYAAADO5XHwOX78uDIzM5WZmSnpzA3NmZmZ2r9/v1wul8aOHavp06frn//8p7Zv367BgwcrLCzMefLrxhtvVK9evfTwww9r06ZN+vzzzzVq1CgNGjRIYWFhkqT7779fvr6+GjZsmHbu3Kl3331Xs2fPVlJSktOPMWPGaPXq1frb3/6mr7/+WlOnTtWWLVs0atSoSx8VAABwTfLxdIEtW7aoR48ezufSMJKQkKDk5GQ98cQTKigo0COPPKLc3FzdeuutWr16tfz9/Z1lFi5cqFGjRunOO++Ul5eX4uPj9eKLLzrzg4OD9fHHHysxMVGRkZGqV6+eJk+e7Paun1tuuUWLFi3SU089pT/96U+6/vrrtXz5crVr165CAwEAAK59l/Qen6sd7/EBAODq86t5jw8AAMCvGcEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2fqu7Atajw9EltOL1PR10nVMdUVxfvxvL5Zr9OHflMklSt161V3EMAAOx01Z/xmTt3rpo2bSp/f39FRUVp06ZNVdqf+eum6L6V3bQ8aJfWB+7T8qBdmlQjRSmn/12l/QIAAFd58Hn33XeVlJSkKVOmaOvWrerQoYNiY2N16NChKunP/HVT9M+8D2Vk3NqNpNTAvXorb3GV9AsAAJzhMsaYXy77dYqKilLnzp01Z84cSVJJSYnCw8M1evRoTZgw4ReXz8/PV3BwsPLy8hQUFHRJfSk8fVL3rex2JvS4yin4f81/+SlWPq4zebNprd9K4tIXAACeuJS/31ftPT5FRUXKyMjQxIkTnTYvLy/FxMQoPT293GUKCwtVWFjofM7Ly5N0ZgAv1Yotr6roxOlfrEs7vldR3o0lSTt+Wn6m8Y3lzvzGwXe51Ve7K/qS+wYAwLWk9O92Rc7dXLXB58iRIyouLlZISIhbe0hIiL7++utyl5kxY4amTZtWpj08PPyy9LE8K/XlL1T87Yr0AwCAq92xY8cUHBzs0TJXbfCpiIkTJyopKcn5XFJSoqNHj6pu3bpyucq7PlUx+fn5Cg8P14EDBy75EtrVjrH4GWNxBuPwM8biZ4zFzxiLMy40DsYYHTt2TGFhYR6v96oNPvXq1ZO3t7dycnLc2nNychQaGlruMn5+fvLz83Nrq1Wr1uXqooKCgqw+aM/GWPyMsTiDcfgZY/EzxuJnjMUZ5xsHT8/0lLpqn+ry9fVVZGSkUlNTnbaSkhKlpqYqOpr7YgAAQFlX7RkfSUpKSlJCQoI6deqkLl266IUXXlBBQYGGDBlS1V0DAAC/Qld18Bk4cKAOHz6syZMnKzs7Wx07dtTq1avL3PB8pfn5+WnKlCllLqvZiLH4GWNxBuPwM8biZ4zFzxiLMy7XOFzV7/EBAADwxFV7jw8AAICnCD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4FNBc+fOVdOmTeXv76+oqCht2rTpgvVLlixR69at5e/vr4iICH300UdXqKeXnydjkZycLJfL5Tb5+/tfwd5eHuvXr1fv3r0VFhYml8ul5cuX/+Iy69at08033yw/Pz+1bNlSycnJl72fV4KnY7Fu3boyx4TL5VJ2dvaV6fBlMmPGDHXu3FmBgYFq0KCB+vbtq927d//ictfid0VFxuJa/a545ZVX1L59e+dtxNHR0Vq1atUFl7kWjwlPx6EyjweCTwW8++67SkpK0pQpU7R161Z16NBBsbGxOnToULn1GzZs0H333adhw4Zp27Zt6tu3r/r27asdO3Zc4Z5XPk/HQjrz+vEffvjBmb777rsr2OPLo6CgQB06dNDcuXMvqj4rK0txcXHq0aOHMjMzNXbsWA0fPlwpKSmXuaeXn6djUWr37t1ux0WDBg0uUw+vjLS0NCUmJuqLL77QmjVrdOrUKfXs2VMFBQXnXeZa/a6oyFhI1+Z3RaNGjfTMM88oIyNDW7Zs0R133KE+ffpo586d5dZfq8eEp+MgVeLxYOCxLl26mMTEROdzcXGxCQsLMzNmzCi3fsCAASYuLs6tLSoqyjz66KOXtZ9XgqdjMX/+fBMcHHyFelc1JJlly5ZdsOaJJ54wbdu2dWsbOHCgiY2NvYw9u/IuZiw+/fRTI8n8+OOPV6RPVeXQoUNGkklLSztvzbX8XXG2ixkLG74rStWuXdu8/vrr5c6z5Zgw5sLjUJnHA2d8PFRUVKSMjAzFxMQ4bV5eXoqJiVF6enq5y6Snp7vVS1JsbOx5668WFRkLSTp+/LiaNGmi8PDwX0z416pr9Zi4FB07dlTDhg1111136fPPP6/q7lS6vLw8SVKdOnXOW2PLcXExYyFd+98VxcXFWrx4sQoKCs77G5M2HBMXMw5S5R0PBB8PHTlyRMXFxWV+FiMkJOS89yRkZ2d7VH+1qMhYtGrVSm+88Yb+8Y9/6O2331ZJSYluueUWff/991eiy78a5zsm8vPzdeLEiSrqVdVo2LCh5s2bp6VLl2rp0qUKDw/X7bffrq1bt1Z11ypNSUmJxo4dq27duqldu3bnrbtWvyvOdrFjcS1/V2zfvl0BAQHy8/PTY489pmXLlqlNmzbl1l7Lx4Qn41CZx8NV/VtduPpER0e7JfpbbrlFN954o1599VX9+c9/rsKeoaq0atVKrVq1cj7fcsst2rt3r2bNmqW33nqrCntWeRITE7Vjxw599tlnVd2VKnexY3Etf1e0atVKmZmZysvL0/vvv6+EhASlpaWd94/+tcqTcajM44Hg46F69erJ29tbOTk5bu05OTkKDQ0td5nQ0FCP6q8WFRmLc1WrVk033XSTvvnmm8vRxV+t8x0TQUFBql69ehX16tejS5cu10xIGDVqlFasWKH169erUaNGF6y9Vr8rSnkyFue6lr4rfH191bJlS0lSZGSkNm/erNmzZ+vVV18tU3stHxOejMO5LuV44FKXh3x9fRUZGanU1FSnraSkRKmpqee9NhkdHe1WL0lr1qy54LXMq0FFxuJcxcXF2r59uxo2bHi5uvmrdK0eE5UlMzPzqj8mjDEaNWqUli1bprVr16pZs2a/uMy1elxUZCzOdS1/V5SUlKiwsLDcedfqMVGeC43DuS7peKiUW6Qts3jxYuPn52eSk5PNV199ZR555BFTq1Ytk52dbYwx5sEHHzQTJkxw6j///HPj4+Njnn/+ebNr1y4zZcoUU61aNbN9+/aq2oVK4+lYTJs2zaSkpJi9e/eajIwMM2jQIOPv72927txZVbtQKY4dO2a2bdtmtm3bZiSZv//972bbtm3mu+++M8YYM2HCBPPggw869d9++62pUaOGGT9+vNm1a5eZO3eu8fb2NqtXr66qXag0no7FrFmzzPLly82ePXvM9u3bzZgxY4yXl5f55JNPqmoXKsWIESNMcHCwWbdunfnhhx+c6aeffnJqbPmuqMhYXKvfFRMmTDBpaWkmKyvLfPnll2bChAnG5XKZjz/+2BhjzzHh6ThU5vFA8Kmgl156yTRu3Nj4+vqaLl26mC+++MKZ1717d5OQkOBW/95775kbbrjB+Pr6mrZt25qVK1de4R5fPp6MxdixY53akJAQc/fdd5utW7dWQa8rV+kj2edOpfuekJBgunfvXmaZjh07Gl9fX9O8eXMzf/78K97vy8HTsXj22WdNixYtjL+/v6lTp465/fbbzdq1a6um85WovDGQ5PbvbMt3RUXG4lr9rhg6dKhp0qSJ8fX1NfXr1zd33nmn88feGHuOCU/HoTKPB5cxxnh+nggAAODqwz0+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAEClWr9+vXr37q2wsDC5XC4tX77c43WkpKSoa9euCgwMVP369RUfH699+/Zdct8IPgAAoFIVFBSoQ4cOmjt3boWWz8rKUp8+fXTHHXcoMzNTKSkpOnLkiPr163fJfePNzQAA4LJxuVxatmyZ+vbt67QVFhZq0qRJeuedd5Sbm6t27drp2Wef1e233y5Jev/993XfffepsLBQXl5nztF8+OGH6tOnjwoLC1WtWrUK94czPgAA4IoaNWqU0tPTtXjxYn355Ze699571atXL+3Zs0eSFBkZKS8vL82fP1/FxcXKy8vTW2+9pZiYmEsKPRJnfAAAwGV07hmf/fv3q3nz5tq/f7/CwsKcupiYGHXp0kV//etfJUlpaWkaMGCA/vvf/6q4uFjR0dH66KOPVKtWrUvqD2d8AADAFbN9+3YVFxfrhhtuUEBAgDOlpaVp7969kqTs7Gw9/PDDSkhI0ObNm5WWliZfX1/1799fl3q+xqcydgIAAOBiHD9+XN7e3srIyJC3t7fbvICAAEnS3LlzFRwcrJkzZzrz3n77bYWHh2vjxo3q2rVrhbdP8AEAAFfMTTfdpOLiYh06dEi/+c1vyq356aefnJuaS5WGpJKSkkvaPpe6AABApTp+/LgyMzOVmZkp6czj6ZmZmdq/f79uuOEGPfDAAxo8eLA++OADZWVladOmTZoxY4ZWrlwpSYqLi9PmzZv19NNPa8+ePdq6dauGDBmiJk2a6KabbrqkvnFzMwAAqFTr1q1Tjx49yrQnJCQoOTlZp06d0vTp0/Xmm2/qP//5j+rVq6euXbtq2rRpioiIkCQtXrxYM2fO1L///W/VqFFD0dHRevbZZ9W6detL6hvBBwAAWINLXQAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwxv8PC7T0PQIC43IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN4xJREFUeJzt3Xt8FPW9//H3JiEXA0kIkiwLCaZKuRcskTSAipJDuBTliFI0SkQOWE6iApUCVah4ISWicpESsUfBHqhoT6GKlZpyrTVyCaYiIkKLJIVuIo9cFkJJQjK/P/hlyiYBE9xkd5LX8/HYx3Fmvrv7mTk2+/b7/c53bIZhGAIAALAQP28XAAAA0FQEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGMCL9u3bpyFDhig0NFQ2m015eXneLgkWs3PnTtlsNu3cudPbpQAtKsDbBQBtVVVVle655x4FBwfrpZde0jXXXKPu3bt7uyyvOnfunDIzMzV8+HANHz7c2+UA8GEEGMBL/va3v+nEiRN69dVX9V//9V/eLscnnDt3TosWLZIkAkwj3XLLLfrXv/6lwMBAb5cCtCiGkAAvKSoqkiRFRERcsV15eXkLVAOr8vPzU3BwsPz8+HOOtoV/4wEvePDBB3XrrbdKku655x7ZbDYNHz5cDz74oNq3b6+//e1vGjNmjDp06KCUlBRJ0p///Gfdc889io2NVVBQkGJiYjRr1iz961//qvf5b7/9tvr06aPg4GD169dPmzZt0oMPPqjrrrvObPPVV1/JZrNp6dKlWrVqlb7zne/ommuu0ciRI1VQUCDDMPTMM8+oW7duCgkJ0Z133qni4uJ63/X+++/r5ptvVmhoqDp06KCxY8fq0KFD9c63ffv2OnnypMaPH6/27durc+fOevzxx1VdXW3W07lzZ0nSokWLZLPZZLPZ9NRTTzXqmtbOBdm4caN+9rOfyW63KzQ0VHfccYcKCgrc2g4fPlz9+vVTbm6uhgwZopCQEMXFxSkrK6vBz3zrrbe0aNEide3aVR06dNDdd9+tsrIyVVRUaObMmYqKilL79u01ZcoUVVRUNKreutcmPz9fP/zhD9W+fXt17dpVq1atkiQdPHhQt99+u0JDQ9W9e3dt2LChwRovnQNTe36ff/65brvtNl1zzTXq2rWrMjMzm1Qb4MsYQgK84OGHH1bXrl21ePFiPfroo7rpppsUHR2t9evX68KFC0pOTtawYcO0dOlSXXPNNZIuhpJz585pxowZ6tSpk/bu3auVK1fqH//4h95++23zs9977z396Ec/Uv/+/ZWRkaGSkhJNnTpVXbt2bbCW9evXq7KyUo888oiKi4uVmZmpiRMn6vbbb9fOnTs1d+5cHTt2TCtXrtTjjz+u1157zXzvr3/9a6Wmpio5OVlLlizRuXPntHr1ag0bNkyffPKJW2Cqrq5WcnKyEhIStHTpUv3pT3/SCy+8oOuvv14zZsxQ586dtXr1as2YMUP/+Z//qbvuukuS9L3vfa9J1/a5556TzWbT3LlzVVRUpGXLlikpKUl5eXkKCQkx25WUlGjMmDGaOHGi7r33Xr311luaMWOGAgMD9dBDD7l9ZkZGhkJCQjRv3jzzWrRr105+fn4qKSnRU089pY8//lhr165VXFycFi5c2KSaq6urNXr0aN1yyy3KzMzU+vXrlZ6ertDQUD3xxBNKSUnRXXfdpaysLE2ePFmJiYmKi4u74meWlJRo1KhRuuuuuzRx4kT99re/1dy5c9W/f3+NHj26SfUBPskA4BU7duwwJBlvv/22uS81NdWQZMybN69e+3PnztXbl5GRYdhsNuPEiRPmvv79+xvdunUzzpw5Y+7buXOnIcno3r27ue/48eOGJKNz585GaWmpuX/+/PmGJGPAgAFGVVWVuf/ee+81AgMDjfPnzxuGYRhnzpwxIiIijGnTprnV5HQ6jfDwcLf9tef19NNPu7W98cYbjUGDBpnbX3/9tSHJ+PnPf17vXL9J7fXs2rWr4XK5zP1vvfWWIclYvny5ue/WW281JBkvvPCCua+iosIYOHCgERUVZVRWVrp9Zr9+/cx9tdfCZrMZo0ePdqshMTHR7Ro3Ru21Wbx4sbmvpKTECAkJMWw2m/Hmm2+a+7/44ot616e2xh07dtQ7vzfeeMPt/Ox2uzFhwoQm1Qf4KoaQAB80Y8aMevsu7T0oLy/X6dOnNWTIEBmGoU8++USSdOrUKR08eFCTJ09W+/btzfa33nqr+vfv3+B33XPPPQoPDze3ExISJEn333+/AgIC3PZXVlbq5MmTkqTs7GyVlpbq3nvv1enTp82Xv7+/EhIStGPHjnrf9eMf/9ht++abb9bf//73b7weTTF58mR16NDB3L777rvVpUsX/eEPf3BrFxAQoIcfftjcDgwM1MMPP6yioiLl5ubW+8x27dqZ2wkJCTIMo15PTUJCggoKCnThwoUm133pRO6IiAj17NlToaGhmjhxorm/Z8+eioiIaNQ1a9++ve6//3638xs8eLDHrzfgLQQYwMcEBASoW7du9fbn5+frwQcfVGRkpDmHpHYeTVlZmSTpxIkTkqQbbrih3vsb2idJsbGxbtu1YSYmJqbB/SUlJZKko0ePSpJuv/12de7c2e31wQcfmJOUawUHB5tzXGp17NjR/DxP6dGjh9u2zWbTDTfcoK+++sptv8PhUGhoqNu+7373u5JUr21TrlFNTY35/4/GaujahIeHq1u3brLZbPX2N+aaNfTe5rjegLcwBwbwMUFBQfXuKKmurtZ//Md/qLi4WHPnzlWvXr0UGhqqkydP6sEHH1RNTc1Vf5+/v3+T9huGIUnmd/7617+W3W6v1+7S3psrfZ4VXO018ubne6o2wFcRYAALOHjwoL788kutW7dOkydPNvdnZ2e7tatdCO/YsWP1PqOhfd/G9ddfL0mKiopSUlKSRz6zbo/B1ajtGaplGIaOHTtWbzLwqVOnVF5e7tYL8+WXX0qS2+RjAL6JISTAAmr/a/rS/3o2DEPLly93a+dwONSvXz+98cYbOnv2rLl/165dOnjwoEdrSk5OVlhYmBYvXqyqqqp6x7/++usmf2btHVelpaVXXdcbb7yhM2fOmNu//e1v9c9//rPenTcXLlzQK6+8Ym5XVlbqlVdeUefOnTVo0KCr/n4ALYMeGMACevXqpeuvv16PP/64Tp48qbCwMP3f//1fg/MZFi9erDvvvFNDhw7VlClTVFJSopdffln9+vVzCzXfVlhYmFavXq0HHnhA3//+9zVp0iR17txZ+fn5eu+99zR06FC9/PLLTfrMkJAQ9enTRxs3btR3v/tdRUZGql+/furXr1+jPyMyMlLDhg3TlClTVFhYqGXLlumGG27QtGnT3No5HA4tWbJEX331lb773e9q48aNysvL05o1a9wm7ALwTfTAABbQrl07vfvuuxo4cKAyMjK0aNEi9ejRQ2+88Ua9tuPGjdNvfvMbVVZWat68efrd736ntWvXqmfPngoODvZoXffdd5+2bdumrl276vnnn9djjz2mN998UwMHDtSUKVOu6jN/9atfqWvXrpo1a5buvfde/fa3v23S+3/2s59p7NixysjI0PLlyzVixAht27bN7N2p1bFjR/3hD3/Q/v37NWfOHBUUFOjll1+uF3QA+CabwYwuoE0YOHCgOnfuXG/eTGuxc+dO3XbbbXr77bd19913X7Ht8OHDdfr0aX322WctVB0AT6MHBmhlqqqq6q1DsnPnTv31r3/lAYkAWg3mwACtzMmTJ5WUlKT7779fDodDX3zxhbKysmS32+stJGcFlZWVDT6D6VKXLsTnK8rKyhp8TtWlGrr9HEDjEGCAVqZjx44aNGiQfvWrX+nrr79WaGioxo4dq1/84hfq1KmTt8trso8++ki33XbbFdu8/vrrPnfr82OPPaZ169ZdsQ0j+MDVYw4MAJ9WUlJSb2n/uvr27asuXbq0UEWN8/nnn+vUqVNXbOOp9XOAtogAAwAALIdJvAAAwHJa7RyYmpoanTp1Sh06dPDI8uQAAKD5GYahM2fOyOFw1Hsu3KVabYA5depUvSfFAgAAaygoKFC3bt0ue7zVBpgOHTpIungBwsLCvFwNAABoDJfLpZiYGPN3/HJabYCpHTYKCwsjwAAAYDHfNP2DSbwAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByArxdAHxb1dYP3bbbjRrmpUoAAPg3emAAAIDlEGAAAIDlEGAAAIDlNDnA7N69W+PGjZPD4ZDNZtPmzZsv2/bHP/6xbDabli1b5ra/uLhYKSkpCgsLU0REhKZOnaqzZ8+6tfn000918803Kzg4WDExMcrMzGxqqQAAoJVqcoApLy/XgAEDtGrVqiu227Rpkz7++GM5HI56x1JSUnTo0CFlZ2dry5Yt2r17t6ZPn24ed7lcGjlypLp3767c3Fw9//zzeuqpp7RmzZqmlosWULX1Q7cXAADNrcl3IY0ePVqjR4++YpuTJ0/qkUce0R//+EeNHTvW7djhw4e1detW7du3T/Hx8ZKklStXasyYMVq6dKkcDofWr1+vyspKvfbaawoMDFTfvn2Vl5enF1980S3oXKqiokIVFRXmtsvlauqpAQAAi/D4HJiamho98MADmjNnjvr27VvveE5OjiIiIszwIklJSUny8/PTnj17zDa33HKLAgMDzTbJyck6cuSISkpKGvzejIwMhYeHm6+YmBgPn1nrV7cnhd4UAICv8niAWbJkiQICAvToo482eNzpdCoqKsptX0BAgCIjI+V0Os020dHRbm1qt2vb1DV//nyVlZWZr4KCgm97KgAAwEd5dCG73NxcLV++XAcOHJDNZvPkR3+joKAgBQUFteh3AgAA7/BoD8yf//xnFRUVKTY2VgEBAQoICNCJEyf0k5/8RNddd50kyW63q6ioyO19Fy5cUHFxsex2u9mmsLDQrU3tdm0bAADQdnk0wDzwwAP69NNPlZeXZ74cDofmzJmjP/7xj5KkxMRElZaWKjc313zf9u3bVVNTo4SEBLPN7t27VVVVZbbJzs5Wz5491bFjR0+WDAAALKjJQ0hnz57VsWPHzO3jx48rLy9PkZGRio2NVadOndzat2vXTna7XT179pQk9e7dW6NGjdK0adOUlZWlqqoqpaena9KkSeYt1/fdd58WLVqkqVOnau7cufrss8+0fPlyvfTSS9/mXAEAQCvR5ACzf/9+3Xbbbeb27NmzJUmpqalau3Ztoz5j/fr1Sk9P14gRI+Tn56cJEyZoxYoV5vHw8HB98MEHSktL06BBg3Tttddq4cKFl72FGr6lobuXeAgkAMCTbIZhGN4uojm4XC6Fh4errKxMYWFh3i7HEhpz23RDQeRq3wcAQF2N/f3mWUgAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByPPooAbR+POARAOALCDBtGGEEAGBVDCEBAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLYSE7tIi6i+a1GzXMS5UAAFoDemAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDl8DBHeEXdhztKPOARANB49MAAAADLIcAAAADLIcAAAADLYQ5MG9HQnBMAAKyKHhgAAGA5BBgAAGA5DCHBZ3GrNQDgcuiBAQAAlkOAAQAAltPkALN7926NGzdODodDNptNmzdvNo9VVVVp7ty56t+/v0JDQ+VwODR58mSdOnXK7TOKi4uVkpKisLAwRUREaOrUqTp79qxbm08//VQ333yzgoODFRMTo8zMzKs7QwAA0Oo0OcCUl5drwIABWrVqVb1j586d04EDB7RgwQIdOHBAv/vd73TkyBHdcccdbu1SUlJ06NAhZWdna8uWLdq9e7emT59uHne5XBo5cqS6d++u3NxcPf/883rqqae0Zs2aqzhFAADQ2jR5Eu/o0aM1evToBo+Fh4crOzvbbd/LL7+swYMHKz8/X7GxsTp8+LC2bt2qffv2KT4+XpK0cuVKjRkzRkuXLpXD4dD69etVWVmp1157TYGBgerbt6/y8vL04osvugUdAADQNjX7HJiysjLZbDZFRERIknJychQREWGGF0lKSkqSn5+f9uzZY7a55ZZbFBgYaLZJTk7WkSNHVFJS0uD3VFRUyOVyub0AAEDr1Ky3UZ8/f15z587Vvffeq7CwMEmS0+lUVFSUexEBAYqMjJTT6TTbxMXFubWJjo42j3Xs2LHed2VkZGjRokXNcRqWZMWVd61YMwDAO5qtB6aqqkoTJ06UYRhavXp1c32Naf78+SorKzNfBQUFzf6dAADAO5qlB6Y2vJw4cULbt283e18kyW63q6ioyK39hQsXVFxcLLvdbrYpLCx0a1O7XdumrqCgIAUFBXnyNAAAgI/yeA9MbXg5evSo/vSnP6lTp05uxxMTE1VaWqrc3Fxz3/bt21VTU6OEhASzze7du1VVVWW2yc7OVs+ePRscPgIAAG1LkwPM2bNnlZeXp7y8PEnS8ePHlZeXp/z8fFVVVenuu+/W/v37tX79elVXV8vpdMrpdKqyslKS1Lt3b40aNUrTpk3T3r179Ze//EXp6emaNGmSHA6HJOm+++5TYGCgpk6dqkOHDmnjxo1avny5Zs+e7bkzBwAAlmUzDMNoyht27typ2267rd7+1NRUPfXUU/Um39basWOHhg8fLuniQnbp6el699135efnpwkTJmjFihVq37692f7TTz9VWlqa9u3bp2uvvVaPPPKI5s6d2+g6XS6XwsPDVVZW5jaE1Va01gmxPAsJAFq3xv5+NznAWAUBhgADALCexv5+8zTqVqC1hhUAAC6HhzkCAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADL4VlIsJS6z33i4Y4A0DbRAwMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHu5BgaXXvSpK4MwkA2gJ6YAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOWwEi9aPVbrBYDWhx4YAABgOfTAoNVpqMcFANC60AMDAAAshwADAAAshwADAAAshwADAAAshwADAAAsh7uQ0CbVvVOJdWEAwFrogQEAAJbT5ACze/dujRs3Tg6HQzabTZs3b3Y7bhiGFi5cqC5duigkJERJSUk6evSoW5vi4mKlpKQoLCxMERERmjp1qs6ePevW5tNPP9XNN9+s4OBgxcTEKDMzs+lnBwAAWqUmB5jy8nINGDBAq1atavB4ZmamVqxYoaysLO3Zs0ehoaFKTk7W+fPnzTYpKSk6dOiQsrOztWXLFu3evVvTp083j7tcLo0cOVLdu3dXbm6unn/+eT311FNas2bNVZxi61O19UO3FwAAbY3NMAzjqt9ss2nTpk0aP368pIu9Lw6HQz/5yU/0+OOPS5LKysoUHR2ttWvXatKkSTp8+LD69Omjffv2KT4+XpK0detWjRkzRv/4xz/kcDi0evVqPfHEE3I6nQoMDJQkzZs3T5s3b9YXX3zRqNpcLpfCw8NVVlamsLCwqz1Fn0Ro8TzmwACAb2js77dH58AcP35cTqdTSUlJ5r7w8HAlJCQoJydHkpSTk6OIiAgzvEhSUlKS/Pz8tGfPHrPNLbfcYoYXSUpOTtaRI0dUUlLS4HdXVFTI5XK5vQAAQOvk0QDjdDolSdHR0W77o6OjzWNOp1NRUVFuxwMCAhQZGenWpqHPuPQ76srIyFB4eLj5iomJ+fYnBAAAfFKruQtp/vz5KisrM18FBQXeLgkAADQTjwYYu90uSSosLHTbX1hYaB6z2+0qKipyO37hwgUVFxe7tWnoMy79jrqCgoIUFhbm9gIAAK2TRwNMXFyc7Ha7tm3bZu5zuVzas2ePEhMTJUmJiYkqLS1Vbm6u2Wb79u2qqalRQkKC2Wb37t2qqqoy22RnZ6tnz57q2LGjJ0sGAAAW1OQAc/bsWeXl5SkvL0/SxYm7eXl5ys/Pl81m08yZM/Xss8/qnXfe0cGDBzV58mQ5HA7zTqXevXtr1KhRmjZtmvbu3au//OUvSk9P16RJk+RwOCRJ9913nwIDAzV16lQdOnRIGzdu1PLlyzV79myPnTgAALCuJj9KYP/+/brtttvM7dpQkZqaqrVr1+qnP/2pysvLNX36dJWWlmrYsGHaunWrgoODzfesX79e6enpGjFihPz8/DRhwgStWLHCPB4eHq4PPvhAaWlpGjRokK699lotXLjQba0YAADQdn2rdWB8GevAWNNXpe+7bV8XMbpFvpd1YADAN3hlHRgAAICWQIABAACW0+Q5MEBrVHdYjiElAPBt9MAAAADLIcAAAADLYQgJXlP3jiMAABqLHhgAAGA5BBgAAGA5BBgAAGA5zIFBi2HOCwDAU+iBAQAAlkOAAQAAlkOAAQAAlsMcGHiEt54iDQBom+iBAQAAlkMPDJqMu4kAAN5GgAEaiSdWA4DvIMD4uLo/mmgZXHcA8G3MgQEAAJZDDwyaBfNkAADNiR4YAABgOQQYAABgOQQYAABgOcyBgU9raC4Nq/wCAAgwsBweWwAAYAgJAABYDj0wsDyGmQCg7aEHBgAAWA4BBgAAWA5DSPhGrKoLAPA19MAAAADLoQcGrVJL3Grd0BOr240a5vHvAQDURw8MAACwHAIMAACwHIaQ2jhWtQUAWBE9MAAAwHLogUGbRe8TAFgXAQZtAmvZAEDr4vEhpOrqai1YsEBxcXEKCQnR9ddfr2eeeUaGYZhtDMPQwoUL1aVLF4WEhCgpKUlHjx51+5zi4mKlpKQoLCxMERERmjp1qs6ePevpcgEAgAV5vAdmyZIlWr16tdatW6e+fftq//79mjJlisLDw/Xoo49KkjIzM7VixQqtW7dOcXFxWrBggZKTk/X5558rODhYkpSSkqJ//vOfys7OVlVVlaZMmaLp06drw4YNni4Zl6CnAgBgBR4PMB999JHuvPNOjR07VpJ03XXX6Te/+Y327t0r6WLvy7Jly/Tkk0/qzjvvlCS98cYbio6O1ubNmzVp0iQdPnxYW7du1b59+xQfHy9JWrlypcaMGaOlS5fK4XB4umwAAGAhHh9CGjJkiLZt26Yvv/xSkvTXv/5VH374oUaPvjhB8vjx43I6nUpKSjLfEx4eroSEBOXk5EiScnJyFBERYYYXSUpKSpKfn5/27NnT4PdWVFTI5XK5vayoauuHbi8AAFCfx3tg5s2bJ5fLpV69esnf31/V1dV67rnnlJKSIklyOp2SpOjoaLf3RUdHm8ecTqeioqLcCw0IUGRkpNmmroyMDC1atMjTp4M2jjuVAMA3eTzAvPXWW1q/fr02bNigvn37Ki8vTzNnzpTD4VBqaqqnv840f/58zZ4929x2uVyKiYlptu9D6+OJ+T91e814NhIANA+PB5g5c+Zo3rx5mjRpkiSpf//+OnHihDIyMpSamiq73S5JKiwsVJcuXcz3FRYWauDAgZIku92uoqIit8+9cOGCiouLzffXFRQUpKCgIE+fDgAA8EEenwNz7tw5+fm5f6y/v79qamokSXFxcbLb7dq2bZt53OVyac+ePUpMTJQkJSYmqrS0VLm5uWab7du3q6amRgkJCZ4uGQAAWIzHe2DGjRun5557TrGxserbt68++eQTvfjii3rooYckSTabTTNnztSzzz6rHj16mLdROxwOjR8/XpLUu3dvjRo1StOmTVNWVpaqqqqUnp6uSZMmcQcSAADwfIBZuXKlFixYoP/+7/9WUVGRHA6HHn74YS1cuNBs89Of/lTl5eWaPn26SktLNWzYMG3dutVcA0aS1q9fr/T0dI0YMUJ+fn6aMGGCVqxY4elyAQCABdmMS5fIbUVcLpfCw8NVVlamsLAwb5fTaC196zQL1zVNU+9CYhIvADRNY3+/eRYS0MK4UwkAvj0CDNCMWIwQAJqHx+9CAgAAaG4EGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDmsA9OGsOrut9fQNWzq6rwAgG+PAAN8S3VDTVMDTUOL3bE6LwBcGUNIAADAcuiBATyMYSYAaH70wAAAAMshwAAAAMshwAAAAMshwAAAAMthEi/gg+reWs1t1QDgjh4YAABgOQQYAABgOQQYAABgOQQYAABgOUzibcV4eCMAoLUiwHhRQw/xAwAA34whJAAAYDn0wAA+ym0I8M2L/3ylh0KyVgyAtoQeGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDlM4gV8BOv2AEDjEWCAFlA3nFzpbiIAwDdjCAkAAFgOAQYAAFgOQ0iAF7TUfJe6j6tgsTsArQU9MAAAwHIIMAAAwHIIMAAAwHIIMAAAwHKaJcCcPHlS999/vzp16qSQkBD1799f+/fvN48bhqGFCxeqS5cuCgkJUVJSko4ePer2GcXFxUpJSVFYWJgiIiI0depUnT17tjnKBdqMqq0f1nsBgBV5PMCUlJRo6NChateund5//319/vnneuGFF9SxY0ezTWZmplasWKGsrCzt2bNHoaGhSk5O1vnz5802KSkpOnTokLKzs7Vlyxbt3r1b06dP93S5AADAgjx+G/WSJUsUExOj119/3dwXFxdn/rNhGFq2bJmefPJJ3XnnnZKkN954Q9HR0dq8ebMmTZqkw4cPa+vWrdq3b5/i4+MlSStXrtSYMWO0dOlSORyOet9bUVGhiooKc9vlcnn61AAAgI/weA/MO++8o/j4eN1zzz2KiorSjTfeqFdffdU8fvz4cTmdTiUlJZn7wsPDlZCQoJycHElSTk6OIiIizPAiSUlJSfLz89OePXsa/N6MjAyFh4ebr5iYGE+fGgAA8BEeDzB///vftXr1avXo0UN//OMfNWPGDD366KNat26dJMnpdEqSoqOj3d4XHR1tHnM6nYqKinI7HhAQoMjISLNNXfPnz1dZWZn5Kigo8PSpAQAAH+HxIaSamhrFx8dr8eLFkqQbb7xRn332mbKyspSamurprzMFBQUpKCio2T4f8AVXeigkE3IBtCUe74Hp0qWL+vTp47avd+/eys/PlyTZ7XZJUmFhoVubwsJC85jdbldRUZHb8QsXLqi4uNhsAwAA2i6PB5ihQ4fqyJEjbvu+/PJLde/eXdLFCb12u13btm0zj7tcLu3Zs0eJiYmSpMTERJWWlio3N9dss337dtXU1CghIcHTJQMAAIvx+BDSrFmzNGTIEC1evFgTJ07U3r17tWbNGq1Zs0aSZLPZNHPmTD377LPq0aOH4uLitGDBAjkcDo0fP17SxR6bUaNGadq0acrKylJVVZXS09M1adKkBu9AAgAAbYvHA8xNN92kTZs2af78+Xr66acVFxenZcuWKSUlxWzz05/+VOXl5Zo+fbpKS0s1bNgwbd26VcHBwWab9evXKz09XSNGjJCfn58mTJigFStWeLpcAABgQTbDMAxvF9EcXC6XwsPDVVZWprCwMG+X0yBPTrqsO7kTbcOlk3ivVrtRwzxQCQB4RmN/v3kWEgAAsBwCDAAAsBwCDAAAsByPT+IF4PsunTPlt/+Qro9/2IvVAEDT0QMDAAAshwADAAAshyEki+K2aQBAW0YPDAAAsBwCDAAAsByGkFqQJ1feBaSGhxI9sTovAPg6emAAAIDlEGAAAIDlMIQEtDJ1h5UYUgLQGtEDAwAALIceGABuGpps3m7UMC9UAgCXR4ABWjlPLHpYN9QQaAB4G0NIAADAcuiBAdBkDDMB8DYCDNDG1RzLV9VpFlkEYC0MIQEAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMvhNmoADa7W29SHQLJaL4CWRA8MAACwHHpgLMATz7IBAKA1IcAAaBY8bgBAc2IICQAAWA4BBgAAWA4BBgAAWA5zYAA0qO7k8abeVg0AzYkAA6BRPLFWDAB4CgEGgMd80y3/fvsP6fr4h1uoGgCtGQEGwFVr6hpFNcfyVXX637dXc1s1gKvFJF4AAGA5BBgAAGA5zR5gfvGLX8hms2nmzJnmvvPnzystLU2dOnVS+/btNWHCBBUWFrq9Lz8/X2PHjtU111yjqKgozZkzRxcuXGjucgEAgAU0a4DZt2+fXnnlFX3ve99z2z9r1iy9++67evvtt7Vr1y6dOnVKd911l3m8urpaY8eOVWVlpT766COtW7dOa9eu1cKFC5uzXAAAYBHNFmDOnj2rlJQUvfrqq+rYsaO5v6ysTP/zP/+jF198UbfffrsGDRqk119/XR999JE+/vhjSdIHH3ygzz//XP/7v/+rgQMHavTo0XrmmWe0atUqVVZWNlfJAADAIpotwKSlpWns2LFKSkpy25+bm6uqqiq3/b169VJsbKxycnIkSTk5Oerfv7+io6PNNsnJyXK5XDp06FCD31dRUSGXy+X2AgAArVOz3Eb95ptv6sCBA9q3b1+9Y06nU4GBgYqIiHDbHx0dLafTaba5NLzUHq891pCMjAwtWrTIA9UDaCk8sRrA1fJ4D0xBQYEee+wxrV+/XsHBwZ7++MuaP3++ysrKzFdBQUGLfTcAAGhZHg8wubm5Kioq0ve//30FBAQoICBAu3bt0ooVKxQQEKDo6GhVVlaqtLTU7X2FhYWy2+2SJLvdXu+upNrt2jZ1BQUFKSwszO0FAABaJ48HmBEjRujgwYPKy8szX/Hx8UpJSTH/uV27dtq2bZv5niNHjig/P1+JiYmSpMTERB08eFBFRUVmm+zsbIWFhalPnz6eLhkAAFiMx+fAdOjQQf369XPbFxoaqk6dOpn7p06dqtmzZysyMlJhYWF65JFHlJiYqB/84AeSpJEjR6pPnz564IEHlJmZKafTqSeffFJpaWkKCgrydMkAAMBivPIspJdeekl+fn6aMGGCKioqlJycrF/+8pfmcX9/f23ZskUzZsxQYmKiQkNDlZqaqqefftob5QIAAB9jMwzD8HYRzcHlcik8PFxlZWU+Mx+moTsuGtLUB+QBVnJdxOgrHm83apj+tv+Vevt5ijXQNjT295tnIQEAAMshwAAAAMvxyhwYALicqq0fqqY039z2uyHWi9UA8FX0wAAAAMuhBwaAT6s5drE3pur0vyfB87gBAPTAAAAAyyHAAAAAy2EIqZk0ds0XAADQdAQYAF7XHIs31v2PCObNAK0LAQaA5RBOABBgAFgeQ7ZA20OAAWAJdYeZvumZSgBaN+5CAgAAlkMPDIAW5a2nrTc0zMTcGcC66IEBAACWQ4ABAACWwxASgFaDib5A20EPDAAAsBx6YLzMWxMaAavjfztA20aAAdBmsaIvYF0MIQEAAMshwAAAAMshwAAAAMshwAAAAMthEi+AVquhO5VYGwZoHQgwAHAF3KkE+CYCDIA25Uqr9Tb0wEcAvok5MAAAwHLogQHQpjFPBrAmAgwANEFDw0zMiwFaHgEGAOrgqdaA7yPAAMA3+LbDTPTaAJ7HJF4AAGA59MAAwLfEWjFAy6MHBgAAWA49MABwFZjoC3gXAQYAPIwVfYHmxxASAACwHI8HmIyMDN10003q0KGDoqKiNH78eB05csStzfnz55WWlqZOnTqpffv2mjBhggoLC93a5Ofna+zYsbrmmmsUFRWlOXPm6MKFC54uFwAAWJDHA8yuXbuUlpamjz/+WNnZ2aqqqtLIkSNVXl5utpk1a5beffddvf3229q1a5dOnTqlu+66yzxeXV2tsWPHqrKyUh999JHWrVuntWvXauHChZ4uFwAAWJDNMAyjOb/g66+/VlRUlHbt2qVbbrlFZWVl6ty5szZs2KC7775bkvTFF1+od+/eysnJ0Q9+8AO9//77+uEPf6hTp04pOjpakpSVlaW5c+fq66+/VmBg4Dd+r8vlUnh4uMrKyhQWFtacp9igxo6BN7RAFgDraeokXm61BhrW2N/vZp8DU1ZWJkmKjIyUJOXm5qqqqkpJSUlmm169eik2NlY5OTmSpJycHPXv398ML5KUnJwsl8ulQ4cONfg9FRUVcrlcbi8A8KavSt93ewHwnGa9C6mmpkYzZ87U0KFD1a9fP0mS0+lUYGCgIiIi3NpGR0fL6XSabS4NL7XHa481JCMjQ4sWLfLwGQBA86jtpa0NNn43xEqSro9/2Gs1AVbSrAEmLS1Nn332mT78sPlvKZw/f75mz55tbrtcLsXExDT79wJAc2GFX+Dymi3ApKena8uWLdq9e7e6detm7rfb7aqsrFRpaalbL0xhYaHsdrvZZu/evW6fV3uXUm2buoKCghQUFOThswCAxmGICGhZHg8whmHokUce0aZNm7Rz507FxcW5HR80aJDatWunbdu2acKECZKkI0eOKD8/X4mJiZKkxMREPffccyoqKlJUVJQkKTs7W2FhYerTp4+nSwYAr6s5li9JqjrdtB5remnQVnk8wKSlpWnDhg36/e9/rw4dOphzVsLDwxUSEqLw8HBNnTpVs2fPVmRkpMLCwvTII48oMTFRP/jBDyRJI0eOVJ8+ffTAAw8oMzNTTqdTTz75pNLS0izfy8J/pQEA8O15PMCsXr1akjR8+HC3/a+//roefPBBSdJLL70kPz8/TZgwQRUVFUpOTtYvf/lLs62/v7+2bNmiGTNmKDExUaGhoUpNTdXTTz/t6XIBAIAFNcsQ0jcJDg7WqlWrtGrVqsu26d69u/7whz94sjQA8Cp6YAHP4VlIAADAcngaNQBYBE+5Bv6NAAMAPqShYaamPqYAaAsIMABgMYQcgAADAD6Pyb9AfQQYAGjlWOwOrRF3IQEAAMuhBwYAWpG6T7m+VGPmyfxt/ytu2zwdG76KHhgAAGA59MAAQCvARF+0NQQYAGhjGloQj4m9sBqGkAAAgOXQA9OM6NIFYBW1vTI1pfmSJL8bYr1ZDvCN6IEBAACWQw8MAKBRWBAPvoQAAwCop+bYxaGkqtM8ARu+iQADAG1E3Xl5PAASVkaAAQB8K3VX75VYwRfNjwDjIQ2tqwAAAJoHAQYA0CS1Q1F++w/VO1Z37gwTfdFcCDAAgMu60npWtWEF8AYCDAC0Ub6y2CaPNsDVYCE7AABgOfTAAAA8zuzdefPi/730lm16V+AJBBgAQIuqHTJiXRp8GwwhAQAAy6EHBgDQ7HxlwjBaDwIMAMDnNGZx0Nq5NHVXAmYV4LaBAAMAsIxLe3IaWkgPbQdzYAAAgOXQA+NBjPECwNVr6G8odybhcggwAACf1ZT/MKx9tMHRY0/UO1YbhFiDpvVgCAkAAFgOPTAAAEtqysMkr/QE7abgDiffQYABALQZDYUevxtivVAJvi0CTEszpKAz/vKv8lN1uxpVdKhWjc3Qcb9iuWwVCjOCFFcTKT/ZvF2pR9Wo9Z8jAGtqTE9Obci50pozddeuYb5N8yLAtKCQ4gBF5IcooPLfU49y7Pl644YDKg04b+4LrwnWHVW91b/a7o0yPe6gv1PvtDusMr/We44AWre6IYdeG+8jwLSQkOIAdTp2jdu+vdcWaEXPj+q1LbOd168DP9EDlTda/gf+oL9Tvw78pN7+1nSOANqe2kBTdfqbVwxG8/DpALNq1So9//zzcjqdGjBggFauXKnBgwd7uyxVbf2waWu+GFJEfogkyfb/h01qVKN1NxzQ/9/pznbxPe+0O6y+1dGWHWqpkaF32h2+uNFKzxFA23bF34I3L3/scuvbMOzUeD4bYDZu3KjZs2crKytLCQkJWrZsmZKTk3XkyBFFRUV5u7wmCTrj7zZsJElfRHyt4uB/Xf5Ntou9FMf9inV9TadmrrB5HPcrdhs2qqcVnCMAeIIZhC4JPYScK/PZAPPiiy9q2rRpmjJliiQpKytL7733nl577TXNmzfPy9U1jX9V/eV2SgKv8MN+CZetwtPltJjG1m7lcwSAq3E1K7df6Vbw2iGttrRgn08GmMrKSuXm5mr+/PnmPj8/PyUlJSknJ6fB91RUVKii4t8/hGVlZZIkl8vl8fqqyst19lzjf3QrL1xQuwr3ENPOZVPVuepvfK//eZvO1ljzB97fz6aq6tZ9jgDQXD47t7nhA58e/eb3vPbv98aG/4ckqd1/JHqmsGZW+7ttGMYV2/lkgDl9+rSqq6sVHR3ttj86OlpffPFFg+/JyMjQokWL6u2PiYlplhpbynv61NslNLu2cI4A4D0veLuAq3LmzBmFh4df9rhPBpirMX/+fM2ePdvcrqmpUXFxsTp16iSbzTMTRF0ul2JiYlRQUKCwsDCPfGZrwvW5PK7N5XFtLo9rc3lcm8uz+rUxDENnzpyRw+G4YjufDDDXXnut/P39VVhY6La/sLBQdnvDt9wGBQUpKCjIbV9ERESz1BcWFmbJfylaCtfn8rg2l8e1uTyuzeVxbS7PytfmSj0vtXzyYY6BgYEaNGiQtm3bZu6rqanRtm3blJhojTE8AADQfHyyB0aSZs+erdTUVMXHx2vw4MFatmyZysvLzbuSAABA2+WzAeZHP/qRvv76ay1cuFBOp1MDBw7U1q1b603sbUlBQUH6+c9/Xm+oChdxfS6Pa3N5XJvL49pcHtfm8trKtbEZ33SfEgAAgI/xyTkwAAAAV0KAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAaYJVq1bpuuuuU3BwsBISErR3715vl+R1GRkZuummm9ShQwdFRUVp/PjxOnLkiLfL8km/+MUvZLPZNHPmTG+X4hNOnjyp+++/X506dVJISIj69++v/fv3e7ssn1BdXa0FCxYoLi5OISEhuv766/XMM89848PtWqPdu3dr3Lhxcjgcstls2rx5s9txwzC0cOFCdenSRSEhIUpKStLRo5d/2GFrcqVrU1VVpblz56p///4KDQ2Vw+HQ5MmTderUKe8V7GEEmEbauHGjZs+erZ///Oc6cOCABgwYoOTkZBUVFXm7NK/atWuX0tLS9PHHHys7O1tVVVUaOXKkysvLvV2aT9m3b59eeeUVfe973/N2KT6hpKREQ4cOVbt27fT+++/r888/1wsvvKCOHTt6uzSfsGTJEq1evVovv/yyDh8+rCVLligzM1MrV670dmktrry8XAMGDNCqVasaPJ6ZmakVK1YoKytLe/bsUWhoqJKTk3X+/PkWrrTlXenanDt3TgcOHNCCBQt04MAB/e53v9ORI0d0xx13eKHSZmKgUQYPHmykpaWZ29XV1YbD4TAyMjK8WJXvKSoqMiQZu3bt8nYpPuPMmTNGjx49jOzsbOPWW281HnvsMW+X5HVz5841hg0b5u0yfNbYsWONhx56yG3fXXfdZaSkpHipIt8gydi0aZO5XVNTY9jtduP5558395WWlhpBQUHGb37zGy9U6D11r01D9u7da0gyTpw40TJFNTN6YBqhsrJSubm5SkpKMvf5+fkpKSlJOTk5XqzM95SVlUmSIiMjvVyJ70hLS9PYsWPd/v1p69555x3Fx8frnnvuUVRUlG688Ua9+uqr3i7LZwwZMkTbtm3Tl19+KUn661//qg8//FCjR4/2cmW+5fjx43I6nW7/2woPD1dCQgJ/mxtQVlYmm83WbA86bmk++ygBX3L69GlVV1fXe4xBdHS0vvjiCy9V5Xtqamo0c+ZMDR06VP369fN2OT7hzTff1IEDB7Rv3z5vl+JT/v73v2v16tWaPXu2fvazn2nfvn169NFHFRgYqNTUVG+X53Xz5s2Ty+VSr1695O/vr+rqaj333HNKSUnxdmk+xel0SlKDf5trj+Gi8+fPa+7cubr33nst+4Tquggw8Ji0tDR99tln+vDDD71dik8oKCjQY489puzsbAUHB3u7HJ9SU1Oj+Ph4LV68WJJ044036rPPPlNWVhYBRtJbb72l9evXa8OGDerbt6/y8vI0c+ZMORwOrg+arKqqShMnTpRhGFq9erW3y/EYhpAa4dprr5W/v78KCwvd9hcWFsput3upKt+Snp6uLVu2aMeOHerWrZu3y/EJubm5Kioq0ve//30FBAQoICBAu3bt0ooVKxQQEKDq6mpvl+g1Xbp0UZ8+fdz29e7dW/n5+V6qyLfMmTNH8+bN06RJk9S/f3898MADmjVrljIyMrxdmk+p/fvL3+bLqw0vJ06cUHZ2dqvpfZEIMI0SGBioQYMGadu2bea+mpoabdu2TYmJiV6szPsMw1B6ero2bdqk7du3Ky4uztsl+YwRI0bo4MGDysvLM1/x8fFKSUlRXl6e/P39vV2i1wwdOrTe7fZffvmlunfv7qWKfMu5c+fk5+f+59nf3181NTVeqsg3xcXFyW63u/1tdrlc2rNnT5v/2yz9O7wcPXpUf/rTn9SpUydvl+RRDCE10uzZs5Wamqr4+HgNHjxYy5YtU3l5uaZMmeLt0rwqLS1NGzZs0O9//3t16NDBHHcODw9XSEiIl6vzrg4dOtSbCxQaGqpOnTq1+TlCs2bN0pAhQ7R48WJNnDhRe/fu1Zo1a7RmzRpvl+YTxo0bp+eee06xsbHq27evPvnkE7344ot66KGHvF1aizt79qyOHTtmbh8/flx5eXmKjIxUbGysZs6cqWeffVY9evRQXFycFixYIIfDofHjx3uv6BZypWvTpUsX3X333Tpw4IC2bNmi6upq8+9zZGSkAgMDvVW253j7NigrWblypREbG2sEBgYagwcPNj7++GNvl+R1khp8vf76694uzSdxG/W/vfvuu0a/fv2MoKAgo1evXsaaNWu8XZLPcLlcxmOPPWbExsYawcHBxne+8x3jiSeeMCoqKrxdWovbsWNHg39jUlNTDcO4eCv1ggULjOjoaCMoKMgYMWKEceTIEe8W3UKudG2OHz9+2b/PO3bs8HbpHmEzjDa4tCMAALA05sAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADL+X/VQttCrxX1rAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMS1JREFUeJzt3X10FPXd//9XQsiNyCYET7JsDZgql9xFQVJDBGkruQhCadNiFYhKNYXaJi0RLwQqRLxNiaLcyEWkVrGnUG/6k1SDBtKg5EJCgEAEIka8jEDlbNKrkF0JAoHM7w+/meOSoEQ2Lvvh+ThnznE+n/fMvGc8Na/OzuyGWJZlCQAAwDChgW4AAACgMxByAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIABJ2QkBDl5OQEug3Nnz9fISEhgW4DwFkQcgAAgJEIOQDwDc2dO1eff/55oNsAcBaEHACdpqmpKdAtdKqwsDBFRkYGug0AZ0HIAeAXrc+nvP/++5o8ebJ69OihESNGaNeuXfrFL36h7373u4qMjJTT6dTdd9+tf//73+1u/9FHH+kXv/iFYmJiFB0drbvuukvHjh372uM/+uijCg0N1dKlS8+55yuuuEI/+tGP9M477yg5OVlRUVFKSkrSO++8I0l67bXXlJSUpMjISA0dOlQ7d+5st+cva31eqKioSIMGDVJERIQGDhyokpKSc+4LgH+EBboBAGb5+c9/rr59++rxxx+XZVkqLS3Vxx9/rLvuuktOp1M1NTVasWKFampqtGXLljYh4dZbb1ViYqLy8/O1Y8cOPffcc4qLi9OCBQvOesy5c+fq8ccf17PPPqupU6d2qN+PPvpIkydP1q9+9SvdfvvtevLJJzV+/HgVFhbq97//vX7zm99IkvLz83XrrbeqtrZWoaFf/f8PN23apNdee02/+c1v1L17dy1ZskQTJkzQgQMH1LNnzw71B+A8WADgBw8++KAlyZo0aZLP+LFjx9rU/vWvf7UkWeXl5W22v/vuu31qf/rTn1o9e/b0GZNkZWdnW5ZlWffdd58VGhpqrVy5ssM99+nTx5Jkbd682R5bt26dJcmKioqy9u/fb48/++yzliTr7bffbtPzmb2Fh4dbH330kT323nvvWZKspUuXdrhHAN8cH1cB8Kt77rnHZz0qKsr+5+PHj+v//u//NGzYMEnSjh07vnb7G2+8Uf/+97/l9Xp9xi3LUk5OjhYvXqy//OUvmjJlyjfqd8CAAUpNTbXXU1JSJEk33XSTevfu3Wb8448//tp9pqWl6corr7TXr7nmGjkcjnPaFoD/8HEVAL9KTEz0WT98+LAeeughvfTSS2poaPCZ83g8bbb/crCQpB49ekiSjhw5IofDYY//+c9/1tGjR7V8+XJNmjTpG/d75vGio6MlSQkJCe2OHzlypMP7lL44j3PZFoD/EHIA+NWX79xIXzxjs3nzZs2cOVODBw/WpZdeqpaWFo0ZM0YtLS1ttu/SpUu7+7Usy2d9+PDhqq6u1jPPPKNbb71VsbGx36jfsx3vXPvw97YA/IePqwB0miNHjqisrEyzZ8/WQw89pJ/+9Kf6z//8T333u989731fddVVWr9+vQ4dOqQxY8bos88+80PHAExCyAHQaVrvaJx5B2PRokV+2f8111yjN998U3v37tX48eP5Yj4APvi4CkCncTgcGjlypAoKCtTc3KzvfOc7Wr9+verq6vx2jGHDhunvf/+7xo4dq1tuuUVFRUXq2rWr3/YPIHhxJwdAp1q9erXS09O1bNkyzZkzR127dtVbb73l12PcdNNNeuWVV7R+/Xrdcccd7T7rA+DiE2LxJBwAADAQd3IAAICReCYHgHH+9a9/6fTp02edDw8P/8avnAMIHnxcBcA4V1xxhfbv33/W+e9///v2j3ACMBd3cgAYZ9WqVV/5OnnrtygDMBt3cgAAgJF48BgAABjpov64qqWlRYcOHVL37t0VEhIS6HYAAMA5sCxLn332mVwul0JDz36/5qIOOYcOHWrzS8MAACA4HDx4UJdffvlZ5y/qkNO9e3dJX1wkh8MR4G4AAMC58Hq9SkhIsP+On81FHXJaP6JyOByEHAAAgszXPWrCg8cAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARgoLdAOmai7Z1Gas65gRAegEAICLE3dyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI3U45JSXl2v8+PFyuVwKCQlRUVHRWWvvuecehYSEaNGiRT7jhw8fVmZmphwOh2JiYpSVlaWjR4/61OzatUs33nijIiMjlZCQoIKCgjb7f/XVV9WvXz9FRkYqKSlJb775ZkdPBwAAGKrDIaepqUnXXnutli1b9pV1a9as0ZYtW+RyudrMZWZmqqamRqWlpSouLlZ5ebmmTZtmz3u9Xo0ePVp9+vRRVVWVnnjiCc2fP18rVqywazZv3qxJkyYpKytLO3fuVEZGhjIyMrRnz56OnhIAADBQiGVZ1jfeOCREa9asUUZGhs/4p59+qpSUFK1bt07jxo1Tbm6ucnNzJUl79+7VgAEDtG3bNiUnJ0uSSkpKNHbsWP3zn/+Uy+XS8uXL9cADD8jtdis8PFySNHv2bBUVFemDDz6QJN12221qampScXGxfdxhw4Zp8ODBKiwsPKf+vV6voqOj5fF45HA4vullaFdzyaY2Y13HjPDrMQAAuBid699vvz+T09LSojvuuEMzZ87UwIED28xXVFQoJibGDjiSlJaWptDQUFVWVto1I0eOtAOOJKWnp6u2tlZHjhyxa9LS0nz2nZ6eroqKirP2duLECXm9Xp8FAACYye8hZ8GCBQoLC9Pvfve7dufdbrfi4uJ8xsLCwhQbGyu3223XxMfH+9S0rn9dTet8e/Lz8xUdHW0vCQkJHTs5AAAQNPwacqqqqrR48WKtXLlSISEh/ty1X8yZM0cej8deDh48GOiWAABAJ/FryPmf//kfNTQ0qHfv3goLC1NYWJj279+v++67T1dccYUkyel0qqGhwWe7U6dO6fDhw3I6nXZNfX29T03r+tfVtM63JyIiQg6Hw2cBAABm8mvIueOOO7Rr1y5VV1fbi8vl0syZM7Vu3TpJUmpqqhobG1VVVWVvt2HDBrW0tCglJcWuKS8vV3Nzs11TWlqqq6++Wj169LBrysrKfI5fWlqq1NRUf54SAAAIUmEd3eDo0aP66KOP7PW6ujpVV1crNjZWvXv3Vs+ePX3qu3btKqfTqauvvlqS1L9/f40ZM0ZTp05VYWGhmpublZOTo4kTJ9qvm0+ePFkPPfSQsrKyNGvWLO3Zs0eLFy/W008/be93+vTp+v73v6+FCxdq3Lhxeumll7R9+3af18wBAMDFq8N3crZv364hQ4ZoyJAhkqQZM2ZoyJAhysvLO+d9rFq1Sv369dOoUaM0duxYjRgxwiecREdHa/369aqrq9PQoUN13333KS8vz+e7dG644QatXr1aK1as0LXXXqu//e1vKioq0qBBgzp6SgAAwEDn9T05wY7vyQEAIPgE7HtyAAAALgSEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwUodDTnl5ucaPHy+Xy6WQkBAVFRXZc83NzZo1a5aSkpLUrVs3uVwu3XnnnTp06JDPPg4fPqzMzEw5HA7FxMQoKytLR48e9anZtWuXbrzxRkVGRiohIUEFBQVtenn11VfVr18/RUZGKikpSW+++WZHTwcAABiqwyGnqalJ1157rZYtW9Zm7tixY9qxY4fmzZunHTt26LXXXlNtba1+/OMf+9RlZmaqpqZGpaWlKi4uVnl5uaZNm2bPe71ejR49Wn369FFVVZWeeOIJzZ8/XytWrLBrNm/erEmTJikrK0s7d+5URkaGMjIytGfPno6eEgAAMFCIZVnWN944JERr1qxRRkbGWWu2bdum66+/Xvv371fv3r21d+9eDRgwQNu2bVNycrIkqaSkRGPHjtU///lPuVwuLV++XA888IDcbrfCw8MlSbNnz1ZRUZE++OADSdJtt92mpqYmFRcX28caNmyYBg8erMLCwnPq3+v1Kjo6Wh6PRw6H4xtehfY1l2xqM9Z1zAi/HgMAgIvRuf797vRncjwej0JCQhQTEyNJqqioUExMjB1wJCktLU2hoaGqrKy0a0aOHGkHHElKT09XbW2tjhw5YtekpaX5HCs9PV0VFRVn7eXEiRPyer0+CwAAMFOnhpzjx49r1qxZmjRpkp203G634uLifOrCwsIUGxsrt9tt18THx/vUtK5/XU3rfHvy8/MVHR1tLwkJCed3ggAA4ILVaSGnublZt956qyzL0vLlyzvrMB0yZ84ceTweezl48GCgWwIAAJ0krDN22hpw9u/frw0bNvh8XuZ0OtXQ0OBTf+rUKR0+fFhOp9Ouqa+v96lpXf+6mtb59kRERCgiIuKbnxgAAAgafr+T0xpw9u3bp3/84x/q2bOnz3xqaqoaGxtVVVVlj23YsEEtLS1KSUmxa8rLy9Xc3GzXlJaW6uqrr1aPHj3smrKyMp99l5aWKjU11d+nBAAAglCHQ87Ro0dVXV2t6upqSVJdXZ2qq6t14MABNTc365ZbbtH27du1atUqnT59Wm63W263WydPnpQk9e/fX2PGjNHUqVO1detWvfvuu8rJydHEiRPlcrkkSZMnT1Z4eLiysrJUU1Ojl19+WYsXL9aMGTPsPqZPn66SkhItXLhQH3zwgebPn6/t27crJyfHD5cFAAAEPauD3n77bUtSm2XKlClWXV1du3OSrLffftvex7///W9r0qRJ1qWXXmo5HA7rrrvusj777DOf47z33nvWiBEjrIiICOs73/mO9Yc//KFNL6+88or1H//xH1Z4eLg1cOBAa+3atR06F4/HY0myPB5PRy/D1zr51v+0WQAAwPk717/f5/U9OcGO78kBACD4nOvf70558BjB4cwgRggDAJiEH+gEAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACN1OOSUl5dr/PjxcrlcCgkJUVFRkc+8ZVnKy8tTr169FBUVpbS0NO3bt8+n5vDhw8rMzJTD4VBMTIyysrJ09OhRn5pdu3bpxhtvVGRkpBISElRQUNCml1dffVX9+vVTZGSkkpKS9Oabb3b0dAAAgKE6HHKampp07bXXatmyZe3OFxQUaMmSJSosLFRlZaW6deum9PR0HT9+3K7JzMxUTU2NSktLVVxcrPLyck2bNs2e93q9Gj16tPr06aOqqio98cQTmj9/vlasWGHXbN68WZMmTVJWVpZ27typjIwMZWRkaM+ePR09JQAAYKAQy7Ksb7xxSIjWrFmjjIwMSV/cxXG5XLrvvvv0X//1X5Ikj8ej+Ph4rVy5UhMnTtTevXs1YMAAbdu2TcnJyZKkkpISjR07Vv/85z/lcrm0fPlyPfDAA3K73QoPD5ckzZ49W0VFRfrggw8kSbfddpuamppUXFxs9zNs2DANHjxYhYWF59S/1+tVdHS0PB6PHA7HN70M7Wou2dRmrOuYEX49xvk6s8cLrT8AANpzrn+//fpMTl1dndxut9LS0uyx6OhopaSkqKKiQpJUUVGhmJgYO+BIUlpamkJDQ1VZWWnXjBw50g44kpSenq7a2lodOXLErvnycVprWo/TnhMnTsjr9fosAADATH4NOW63W5IUHx/vMx4fH2/Pud1uxcXF+cyHhYUpNjbWp6a9fXz5GGeraZ1vT35+vqKjo+0lISGho6cIAACCxEX1dtWcOXPk8Xjs5eDBg4FuCQAAdBK/hhyn0ylJqq+v9xmvr6+355xOpxoaGnzmT506pcOHD/vUtLePLx/jbDWt8+2JiIiQw+HwWQAAgJn8GnISExPldDpVVlZmj3m9XlVWVio1NVWSlJqaqsbGRlVVVdk1GzZsUEtLi1JSUuya8vJyNTc32zWlpaW6+uqr1aNHD7vmy8dprWk9DgAAuLh1OOQcPXpU1dXVqq6ulvTFw8bV1dU6cOCAQkJClJubq0cffVSvv/66du/erTvvvFMul8t+A6t///4aM2aMpk6dqq1bt+rdd99VTk6OJk6cKJfLJUmaPHmywsPDlZWVpZqaGr388stavHixZsyYYfcxffp0lZSUaOHChfrggw80f/58bd++XTk5Oed/VQAAQNAL6+gG27dv1w9/+EN7vTV4TJkyRStXrtT999+vpqYmTZs2TY2NjRoxYoRKSkoUGRlpb7Nq1Srl5ORo1KhRCg0N1YQJE7RkyRJ7Pjo6WuvXr1d2draGDh2qyy67THl5eT7fpXPDDTdo9erVmjt3rn7/+9+rb9++Kioq0qBBg77RhQAAAGY5r+/JCXZ8Tw7fkwMACD4B+Z4cAACACwUhBwAAGImQAwAAjETIAQAARurw21UwxyeNb/ms9xUPHgMAzMGdHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI/k95Jw+fVrz5s1TYmKioqKidOWVV+qRRx6RZVl2jWVZysvLU69evRQVFaW0tDTt27fPZz+HDx9WZmamHA6HYmJilJWVpaNHj/rU7Nq1SzfeeKMiIyOVkJCggoICf58OAAAIUn4POQsWLNDy5cv1zDPPaO/evVqwYIEKCgq0dOlSu6agoEBLlixRYWGhKisr1a1bN6Wnp+v48eN2TWZmpmpqalRaWqri4mKVl5dr2rRp9rzX69Xo0aPVp08fVVVV6YknntD8+fO1YsUKf58SAAAIQmH+3uHmzZv1k5/8ROPGjZMkXXHFFfrrX/+qrVu3SvriLs6iRYs0d+5c/eQnP5Ek/fnPf1Z8fLyKioo0ceJE7d27VyUlJdq2bZuSk5MlSUuXLtXYsWP15JNPyuVyadWqVTp58qSef/55hYeHa+DAgaqurtZTTz3lE4YAAMDFye93cm644QaVlZXpww8/lCS999572rRpk26++WZJUl1dndxut9LS0uxtoqOjlZKSooqKCklSRUWFYmJi7IAjSWlpaQoNDVVlZaVdM3LkSIWHh9s16enpqq2t1ZEjR9rt7cSJE/J6vT4LAAAwk9/v5MyePVter1f9+vVTly5ddPr0aT322GPKzMyUJLndbklSfHy8z3bx8fH2nNvtVlxcnG+jYWGKjY31qUlMTGyzj9a5Hj16tOktPz9fDz30kB/OEgAAXOj8fifnlVde0apVq7R69Wrt2LFDL774op588km9+OKL/j5Uh82ZM0cej8deDh48GOiWAABAJ/H7nZyZM2dq9uzZmjhxoiQpKSlJ+/fvV35+vqZMmSKn0ylJqq+vV69evezt6uvrNXjwYEmS0+lUQ0ODz35PnTqlw4cP29s7nU7V19f71LSut9acKSIiQhEREed/kgAA4ILn9zs5x44dU2io7267dOmilpYWSVJiYqKcTqfKysrsea/Xq8rKSqWmpkqSUlNT1djYqKqqKrtmw4YNamlpUUpKil1TXl6u5uZmu6a0tFRXX311ux9VAQCAi4vfQ8748eP12GOPae3atfrkk0+0Zs0aPfXUU/rpT38qSQoJCVFubq4effRRvf7669q9e7fuvPNOuVwuZWRkSJL69++vMWPGaOrUqdq6daveffdd5eTkaOLEiXK5XJKkyZMnKzw8XFlZWaqpqdHLL7+sxYsXa8aMGf4+JQAAEIT8/nHV0qVLNW/ePP3mN79RQ0ODXC6XfvWrXykvL8+uuf/++9XU1KRp06apsbFRI0aMUElJiSIjI+2aVatWKScnR6NGjVJoaKgmTJigJUuW2PPR0dFav369srOzNXToUF122WXKy8vj9XEAACBJCrG+/FXEFxmv16vo6Gh5PB45HA6/7ru5ZFObsa5jRvj1GOdr30sP+Kz3nfhYgDoBAODcnevfb367CgAAGMnvH1cB/hIMd8MAABcu7uQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBK/Qt5JPml8q81YX/EL2gAAfFu4kwMAAIxEyAEAAEYi5AAAACPxTA4uWDzXBAA4H9zJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIzUKSHn008/1e23366ePXsqKipKSUlJ2r59uz1vWZby8vLUq1cvRUVFKS0tTfv27fPZx+HDh5WZmSmHw6GYmBhlZWXp6NGjPjW7du3SjTfeqMjISCUkJKigoKAzTgcAAAQhv4ecI0eOaPjw4erataveeustvf/++1q4cKF69Ohh1xQUFGjJkiUqLCxUZWWlunXrpvT0dB0/ftyuyczMVE1NjUpLS1VcXKzy8nJNmzbNnvd6vRo9erT69OmjqqoqPfHEE5o/f75WrFjh71MCAABBKMzfO1ywYIESEhL0wgsv2GOJiYn2P1uWpUWLFmnu3Ln6yU9+Ikn685//rPj4eBUVFWnixInau3evSkpKtG3bNiUnJ0uSli5dqrFjx+rJJ5+Uy+XSqlWrdPLkST3//PMKDw/XwIEDVV1draeeesonDAEAgIuT3+/kvP7660pOTtbPf/5zxcXFaciQIfrjH/9oz9fV1cntdistLc0ei46OVkpKiioqKiRJFRUViomJsQOOJKWlpSk0NFSVlZV2zciRIxUeHm7XpKenq7a2VkeOHGm3txMnTsjr9fosAADATH4POR9//LGWL1+uvn37at26dfr1r3+t3/3ud3rxxRclSW63W5IUHx/vs118fLw953a7FRcX5zMfFham2NhYn5r29vHlY5wpPz9f0dHR9pKQkHCeZwsAAC5Ufg85LS0tuu666/T4449ryJAhmjZtmqZOnarCwkJ/H6rD5syZI4/HYy8HDx4MdEsAAKCT+D3k9OrVSwMGDPAZ69+/vw4cOCBJcjqdkqT6+nqfmvr6envO6XSqoaHBZ/7UqVM6fPiwT017+/jyMc4UEREhh8PhswAAADP5PeQMHz5ctbW1PmMffvih+vTpI+mLh5CdTqfKysrsea/Xq8rKSqWmpkqSUlNT1djYqKqqKrtmw4YNamlpUUpKil1TXl6u5uZmu6a0tFRXX321z5tcAADg4uT3kHPvvfdqy5Ytevzxx/XRRx9p9erVWrFihbKzsyVJISEhys3N1aOPPqrXX39du3fv1p133imXy6WMjAxJX9z5GTNmjKZOnaqtW7fq3XffVU5OjiZOnCiXyyVJmjx5ssLDw5WVlaWamhq9/PLLWrx4sWbMmOHvUwIAAEHI76+Qf+9739OaNWs0Z84cPfzww0pMTNSiRYuUmZlp19x///1qamrStGnT1NjYqBEjRqikpESRkZF2zapVq5STk6NRo0YpNDRUEyZM0JIlS+z56OhorV+/XtnZ2Ro6dKguu+wy5eXl8fo4AACQJIVYlmUFuolA8Xq9io6Olsfj8fvzOfteeqDNWN+Jj/n1GOfrzB4v9P6kC69HAMC371z/fvPbVQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwkt9/oBO4mDSXbPJZ7zpmRIA6AQCciTs5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAj8T05wHn4pPEtn/W+4ntyAOBCwZ0cAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJE6PeT84Q9/UEhIiHJzc+2x48ePKzs7Wz179tSll16qCRMmqL6+3me7AwcOaNy4cbrkkksUFxenmTNn6tSpUz4177zzjq677jpFREToqquu0sqVKzv7dAAAQJDo1JCzbds2Pfvss7rmmmt8xu+991698cYbevXVV7Vx40YdOnRIP/vZz+z506dPa9y4cTp58qQ2b96sF198UStXrlReXp5dU1dXp3HjxumHP/yhqqurlZubq1/+8pdat25dZ54SAAAIEp0Wco4eParMzEz98Y9/VI8ePexxj8ejP/3pT3rqqad00003aejQoXrhhRe0efNmbdmyRZK0fv16vf/++/rLX/6iwYMH6+abb9YjjzyiZcuW6eTJk5KkwsJCJSYmauHCherfv79ycnJ0yy236Omnn+6sUwIAAEGk00JOdna2xo0bp7S0NJ/xqqoqNTc3+4z369dPvXv3VkVFhSSpoqJCSUlJio+Pt2vS09Pl9XpVU1Nj15y57/T0dHsf7Tlx4oS8Xq/PAgAAzBTWGTt96aWXtGPHDm3btq3NnNvtVnh4uGJiYnzG4+Pj5Xa77ZovB5zW+da5r6rxer36/PPPFRUV1ebY+fn5euihh77xeQEAgODh9zs5Bw8e1PTp07Vq1SpFRkb6e/fnZc6cOfJ4PPZy8ODBQLcEAAA6id9DTlVVlRoaGnTdddcpLCxMYWFh2rhxo5YsWaKwsDDFx8fr5MmTamxs9Nmuvr5eTqdTkuR0Otu8bdW6/nU1Doej3bs4khQRESGHw+GzAAAAM/k95IwaNUq7d+9WdXW1vSQnJyszM9P+565du6qsrMzepra2VgcOHFBqaqokKTU1Vbt371ZDQ4NdU1paKofDoQEDBtg1X95Ha03rPgAAwMXN78/kdO/eXYMGDfIZ69atm3r27GmPZ2VlacaMGYqNjZXD4dBvf/tbpaamatiwYZKk0aNHa8CAAbrjjjtUUFAgt9utuXPnKjs7WxEREZKke+65R88884zuv/9+3X333dqwYYNeeeUVrV271t+nBAAAglCnPHj8dZ5++mmFhoZqwoQJOnHihNLT0/Xf//3f9nyXLl1UXFysX//610pNTVW3bt00ZcoUPfzww3ZNYmKi1q5dq3vvvVeLFy/W5Zdfrueee07p6emBOCUAAHCB+VZCzjvvvOOzHhkZqWXLlmnZsmVn3aZPnz568803v3K/P/jBD7Rz505/tAgAAAzDb1cBAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIwUkC8DBPDtaC7Z1Gas65gRAegEAL593MkBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAk3q4CDPZJ41ttxvqKt6sAXBy4kwMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIfg85+fn5+t73vqfu3bsrLi5OGRkZqq2t9ak5fvy4srOz1bNnT1166aWaMGGC6uvrfWoOHDigcePG6ZJLLlFcXJxmzpypU6dO+dS88847uu666xQREaGrrrpKK1eu9PfpAACAIOX3kLNx40ZlZ2dry5YtKi0tVXNzs0aPHq2mpia75t5779Ubb7yhV199VRs3btShQ4f0s5/9zJ4/ffq0xo0bp5MnT2rz5s168cUXtXLlSuXl5dk1dXV1GjdunH74wx+qurpaubm5+uUvf6l169b5+5QAAEAQCvP3DktKSnzWV65cqbi4OFVVVWnkyJHyeDz605/+pNWrV+umm26SJL3wwgvq37+/tmzZomHDhmn9+vV6//339Y9//EPx8fEaPHiwHnnkEc2aNUvz589XeHi4CgsLlZiYqIULF0qS+vfvr02bNunpp59Wenq6v08LQCdpLtnUZqzrmBEB6ASAaTr9mRyPxyNJio2NlSRVVVWpublZaWlpdk2/fv3Uu3dvVVRUSJIqKiqUlJSk+Ph4uyY9PV1er1c1NTV2zZf30VrTuo/2nDhxQl6v12cBAABm6tSQ09LSotzcXA0fPlyDBg2SJLndboWHhysmJsanNj4+Xm632675csBpnW+d+6oar9erzz//vN1+8vPzFR0dbS8JCQnnfY4AAODC1KkhJzs7W3v27NFLL73UmYc5Z3PmzJHH47GXgwcPBrolAADQSfz+TE6rnJwcFRcXq7y8XJdffrk97nQ6dfLkSTU2Nvrczamvr5fT6bRrtm7d6rO/1revvlxz5htZ9fX1cjgcioqKareniIgIRUREnPe5AQCAC5/f7+RYlqWcnBytWbNGGzZsUGJios/80KFD1bVrV5WVldljtbW1OnDggFJTUyVJqamp2r17txoaGuya0tJSORwODRgwwK758j5aa1r3AQAALm5+v5OTnZ2t1atX6+9//7u6d+9uP0MTHR2tqKgoRUdHKysrSzNmzFBsbKwcDod++9vfKjU1VcOGDZMkjR49WgMGDNAdd9yhgoICud1uzZ07V9nZ2fadmHvuuUfPPPOM7r//ft19993asGGDXnnlFa1du9bfpwSgE33S+Fabsb7i7SoA58/vd3KWL18uj8ejH/zgB+rVq5e9vPzyy3bN008/rR/96EeaMGGCRo4cKafTqddee82e79Kli4qLi9WlSxelpqbq9ttv15133qmHH37YrklMTNTatWtVWlqqa6+9VgsXLtRzzz3H6+MAAEBSJ9zJsSzra2siIyO1bNkyLVu27Kw1ffr00ZtvvvmV+/nBD36gnTt3drhHAABgPn67CgAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIYYFuAAAudM0lm3zWu44ZEaBOAHQEIQcAvsYnjW/5rPcVIQcIBnxcBQAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMxDceA0CQO/NnJyR+egKQCDkAEPTO/NkJiZ+eACQ+rgIAAIYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBKvkAMAOt2+lx7wWe878bEAdYKLCSHHz06cOq63qp5T3em9irWidH2X3goL4YYZAADftqD/67ts2TJdccUVioyMVEpKirZu3RqwXl5450FNWjtcL9Y/r/Lun6jIsVcPXLJO6059GLCeAAC4WAX1nZyXX35ZM2bMUGFhoVJSUrRo0SKlp6ertrZWcXFx32ovL7zzoF73vNFm3JJU1v1/pc+kvt9qRwCAc3Xmx2kSH6mZIKjv5Dz11FOaOnWq7rrrLg0YMECFhYW65JJL9Pzzz3+rfZw4dVxveIq/WAk5Y/L/rW/o/r86cer4t9oXAAAXs6C9k3Py5ElVVVVpzpw59lhoaKjS0tJUUVHR7jYnTpzQiRMn7HWPxyNJ8nq959VL8fZndfLzU19b9/+VL9WPkn91Xsfyp6PHTvisn+918Lcz+5Mu/B4v9P4kevwm+Pd8/riG5+9///awz/qVt+QFqJPAa/13Y1nWVxdaQerTTz+1JFmbN2/2GZ85c6Z1/fXXt7vNgw8+aOmLT5BYWFhYWFhYgnw5ePDgV2aFoL2T803MmTNHM2bMsNdbWlp0+PBh9ezZUyEhZ37OZDav16uEhAQdPHhQDocj0O0ELa6jf3Ad/YPr6B9cR//ozOtoWZY+++wzuVyur6wL2pBz2WWXqUuXLqqvr/cZr6+vl9PpbHebiIgIRURE+IzFxMR0VotBweFw8D9iP+A6+gfX0T+4jv7BdfSPzrqO0dHRX1sTtA8eh4eHa+jQoSorK7PHWlpaVFZWptTU1AB2BgAALgRBeydHkmbMmKEpU6YoOTlZ119/vRYtWqSmpibdddddgW4NAAAEWFCHnNtuu03/+te/lJeXJ7fbrcGDB6ukpETx8fGBbu2CFxERoQcffLDNx3foGK6jf3Ad/YPr6B9cR/+4EK5jiGV93ftXAAAAwSdon8kBAAD4KoQcAABgJEIOAAAwEiEHAAAYiZADAACMRMi5yOTn5+t73/ueunfvrri4OGVkZKi2tjbQbQW1P/zhDwoJCVFubm6gWwlKn376qW6//Xb17NlTUVFRSkpK0vbt2wPdVlA5ffq05s2bp8TEREVFRenKK6/UI4888vU/XniRKy8v1/jx4+VyuRQSEqKioiKfecuylJeXp169eikqKkppaWnat29fYJq9gH3VdWxubtasWbOUlJSkbt26yeVy6c4779ShQ4e+ld4IOReZjRs3Kjs7W1u2bFFpaamam5s1evRoNTU1Bbq1oLRt2zY9++yzuuaaawLdSlA6cuSIhg8frq5du+qtt97S+++/r4ULF6pHjx6Bbi2oLFiwQMuXL9czzzyjvXv3asGCBSooKNDSpUsD3doFrampSddee62WLVvW7nxBQYGWLFmiwsJCVVZWqlu3bkpPT9fx48e/5U4vbF91HY8dO6YdO3Zo3rx52rFjh1577TXV1tbqxz/+8bfTnD9+ERzBq6GhwZJkbdy4MdCtBJ3PPvvM6tu3r1VaWmp9//vft6ZPnx7oloLOrFmzrBEjRgS6jaA3btw46+677/YZ+9nPfmZlZmYGqKPgI8las2aNvd7S0mI5nU7riSeesMcaGxutiIgI669//WsAOgwOZ17H9mzdutWSZO3fv7/T++FOzkXO4/FIkmJjYwPcSfDJzs7WuHHjlJaWFuhWgtbrr7+u5ORk/fznP1dcXJyGDBmiP/7xj4FuK+jccMMNKisr04cffihJeu+997Rp0ybdfPPNAe4seNXV1cntdvv87zs6OlopKSmqqKgIYGfBz+PxKCQk5Fv5geyg/lkHnJ+Wlhbl5uZq+PDhGjRoUKDbCSovvfSSduzYoW3btgW6laD28ccfa/ny5ZoxY4Z+//vfa9u2bfrd736n8PBwTZkyJdDtBY3Zs2fL6/WqX79+6tKli06fPq3HHntMmZmZgW4taLndbklq8zNB8fHx9hw67vjx45o1a5YmTZr0rfzCOyHnIpadna09e/Zo06ZNgW4lqBw8eFDTp09XaWmpIiMjA91OUGtpaVFycrIef/xxSdKQIUO0Z88eFRYWEnI64JVXXtGqVau0evVqDRw4UNXV1crNzZXL5eI64oLR3NysW2+9VZZlafny5d/KMfm46iKVk5Oj4uJivf3227r88ssD3U5QqaqqUkNDg6677jqFhYUpLCxMGzdu1JIlSxQWFqbTp08HusWg0atXLw0YMMBnrH///jpw4ECAOgpOM2fO1OzZszVx4kQlJSXpjjvu0L333qv8/PxAtxa0nE6nJKm+vt5nvL6+3p7DuWsNOPv371dpaem3chdHIuRcdCzLUk5OjtasWaMNGzYoMTEx0C0FnVGjRmn37t2qrq62l+TkZGVmZqq6ulpdunQJdItBY/jw4W2+wuDDDz9Unz59AtRRcDp27JhCQ33/c96lSxe1tLQEqKPgl5iYKKfTqbKyMnvM6/WqsrJSqampAews+LQGnH379ukf//iHevbs+a0dm4+rLjLZ2dlavXq1/v73v6t79+72Z8vR0dGKiooKcHfBoXv37m2eYerWrZt69uzJs00ddO+99+qGG27Q448/rltvvVVbt27VihUrtGLFikC3FlTGjx+vxx57TL1799bAgQO1c+dOPfXUU7r77rsD3doF7ejRo/roo4/s9bq6OlVXVys2Nla9e/dWbm6uHn30UfXt21eJiYmaN2+eXC6XMjIyAtf0BeirrmOvXr10yy23aMeOHSouLtbp06ftvzuxsbEKDw/v3OY6/f0tXFAktbu88MILgW4tqPEK+Tf3xhtvWIMGDbIiIiKsfv36WStWrAh0S0HH6/Va06dPt3r37m1FRkZa3/3ud60HHnjAOnHiRKBbu6C9/fbb7f73cMqUKZZlffEa+bx586z4+HgrIiLCGjVqlFVbWxvYpi9AX3Ud6+rqzvp35+233+703kIsi6/EBAAA5uGZHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAY6f8HW+DZDfbn7UYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALOlJREFUeJzt3X1UVXWi//EPIE+KB8IHiETFhzQS8YaKZyp7kPHYpa6mTVithsrqauhNmTJtCqVVQ8tmpjQta7kmunMzzSYtNTEHA2dG0kQZH0quNhh29QBmgKGCwv794Y+9PIEmPh358n6tddbi7P09+3zPbhfv9tnn4GNZliUAAADD+Hp7AgAAAJcCkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDtGGzZ8+Wj49Pix/30EMPqWfPnhd/QmjifP8ZASByAFwER48e1ezZs5WXl+ftqVwSixcv1muvvebtaQBoISIHwAU7evSoMjMziZxL4LnnntOxY8e88txAa9fO2xMAAJxZu3bt1K4d/6kGzgdncoA24u9//7uGDBmioKAg9e7dW2+99Vaz4/7nf/5HCQkJCg4OVnh4uMaPH6/9+/efcbv79u1Tly5dJEmZmZny8fGRj4+PZs+eLUnavn27HnroIfXq1UtBQUGKjIzUI488ou+//75F89+3b598fHz0+9//Xm+//bZ69+6twMBADRkyRF9++WWT8bt379Y999yj8PBwBQUFafDgwfrkk0/s9eXl5erSpYtuvfVWWZZlL9+7d686dOiglJQUSdKtt96q1atX69tvv7VfW0uuR+rZs6fuvPNO5eXlafDgwQoODlZcXJx91uujjz5SXFycgoKClJCQoG3btnk8vrlrcnx8fDR58mStWLFCAwYMUGBgoK6//nrl5OSc87yAtsDHOv3fbgBG2rFjhxITE9WlSxdNmjRJJ0+e1Pz58xUREaHt27fbv+RfeuklPf/887r33nt1yy23qKKiQq+//rpCQkK0bds2hYWFSTp14XFeXp727dunmpoa/fnPf9akSZN09913a+zYsZKkgQMHauDAgfrDH/6gjz/+WL/85S8VGRmpXbt26e2331ZcXJy++OKLc76odt++fYqJidG//du/6ciRI3rsscfk4+OjOXPmKCgoSP/617/k7+8vSdq1a5duvPFGXXPNNUpNTVWHDh30wQcf6G9/+5v+8pe/6O6775Ykffjhh/rVr36luXPn6r/+67/U0NCg4cOHa+/evdq1a5c6deqkdevWafr06fruu+/06quvSpJCQkI0ZsyYc5p3z549FRQUpOrqav3nf/6nQkND9fvf/15VVVVauHChnn32WT3xxBOSpKysLHXp0kXFxcXy9T31/6CzZ89WZmamR4j5+PgoPj5e5eXleuKJJ9SxY0fNmzdPbrdbpaWl6tSp0znNDTCeBcB4Y8aMsYKCgqxvv/3WXvbVV19Zfn5+VuN/Bvbt22f5+flZL730ksdjd+zYYbVr185jeWpqqtWjRw/7fkVFhSXJmjVrVpPnPnr0aJNl77//viXJ2rBhwzm/hpKSEkuS1alTJ+vw4cP28o8//tiSZK1cudJeNmLECCsuLs46fvy4vayhocH6xS9+YfXt29dju/fdd5/Vvn1763//93+tV155xZJkrVixwmNMcnKyx+ttiR49eliSrI0bN9rL1q5da0mygoODPf6ZvPXWW5Yk6/PPP7eXzZo1y/rpf6olWQEBAdbevXvtZf/85z8tSdbrr79+XvMETMTbVYDh6uvrtXbtWo0ZM0bdu3e3l1933XVyuVz2/Y8++kgNDQ269957dejQIfsWGRmpvn376vPPPz+v5w8ODrZ/Pn78uA4dOqRhw4ZJkrZu3dri7aWkpOiqq66y7998882SpH/961+SpMOHD2v9+vW69957deTIEft1fP/993K5XNqzZ4/+7//+z378/PnzFRoaqnvuuUfPP/+8HnzwQY0ePfq8XuuZxMbGyul02vcTExMlSbfffrvHP5PG5Y2v5WySkpLUu3dv+/7AgQPlcDjO6bFAW8HVbIDhKioqdOzYMfXt27fJun79+unTTz+VJO3Zs0eWZTU7TpL9VlBLHT58WJmZmVqyZInKy8s91lVVVbV4e6dHgSQ7eH744QdJp66psSxLzz//vJ5//vlmt1FeXq5rrrlGkhQeHq558+bpV7/6lSIiIjRv3rwWz6mlcw4NDZUkRUdHN7u88bW0ZJvSqX1xLo8F2goiB4AkqaGhQT4+PlqzZo38/PyarA8JCTmv7d57773auHGjnn76aQ0aNEghISFqaGjQqFGj1NDQ0OLtNTc3SfY1K43bfOqppzzOVJ2uT58+HvfXrl0r6VRcfPfdd/a1RxfLmeb8c6/lfLZ5Lo8F2goiBzBcly5dFBwcrD179jRZV1xcbP/cu3dvWZalmJgYXXvttS16jjNdPPzDDz8oNzdXmZmZysjIsJc3N5eLpVevXpJOnXlKSkr62fE5OTlatGiRpk+frvfee0+pqanatGmTx8e2+cZhoHXimhzAcH5+fnK5XFqxYoVKS0vt5V9//bV9BkOSxo4dKz8/vyaf5JFOnR0420e+27dvL0mqrKxs8tyNjz/dpfxiva5du+rWW2/VW2+9pYMHDzZZX1FRYf9cWVmpRx99VEOHDtXvfvc7LVq0SFu3btXvfvc7j8d06NDhvN5aA+BdnMkB2oDMzEzl5OTo5ptv1hNPPKGTJ0/q9ddf1/XXX6/t27dLOnUm58UXX9TMmTO1b98+jRkzRh07dlRJSYmWL1+uxx9/XE899VSz2w8ODlZsbKyWLl2qa6+9VuHh4RowYIAGDBig4cOHa86cOTpx4oSuueYaffbZZyopKbmkr3fBggW66aabFBcXp8cee0y9evVSWVmZCgoK9N133+mf//ynJOnJJ5/U999/r7/+9a/y8/PTqFGj9Oijj+rFF1/U6NGjFR8fL0lKSEjQ0qVLlZ6eriFDhigkJER33XXXJX0NAC4cZ3KANmDgwIFau3atunTpooyMDP3pT39SZmam/X0xjWbMmKG//OUv8vX1VWZmpp566il98sknGjlypP7jP/7jrM+xaNEiXXPNNZo2bZruu+8+ffjhh5JO/UkEl8ulBQsWaObMmfL399eaNWsu2WuVTn2aacuWLUpOTlZ2drbS0tK0cOFC+fr62m+bffLJJ/rv//5vvfTSS+rfv7/92D/+8Y+KiopSamqqTpw4IUl64okndP/99+udd97R/fffrylTplzS+QO4OPgyQAAAYCTO5AAAACNxTQ4Ar6qvr/e4GLg5ISEh5/0R9kuloqJC9fX1Z1wfEBCg8PDwyzgjAD/F21UAvKrxb1KdzaxZs+w/+Hml6Nmzp7799tszrr/lllvsP8IJwDs4kwPAqyIjI7Vu3bqzjmn87psryXvvvadjx46dcf3pf3oCgHdwJgcAABiJC48BAICR2vTbVQ0NDTpw4IA6duzI17YDANBKWJalI0eOKCoqSr6+Zz5f06Yj58CBA03+CjAAAGgd9u/fr27dup1xfZuOnI4dO0o6tZMcDoeXZwMAAM5FdXW1oqOj7d/jZ9KmI6fxLSqHw0HkAADQyvzcpSZceAwAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACO18/YETHUi5+9NlvmPuskLMwEAoG3iTA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACNdUOS8/PLL8vHx0dSpU+1lx48fV1pamjp16qSQkBCNGzdOZWVlHo8rLS1VcnKy2rdvr65du+rpp5/WyZMnPcbk5eXphhtuUGBgoPr06aPs7Owmz79gwQL17NlTQUFBSkxM1ObNmy/k5QAAAIOcd+R8+eWXeuuttzRw4ECP5dOmTdPKlSu1bNky5efn68CBAxo7dqy9vr6+XsnJyaqrq9PGjRv17rvvKjs7WxkZGfaYkpISJScn67bbblNRUZGmTp2qRx99VGvXrrXHLF26VOnp6Zo1a5a2bt2q+Ph4uVwulZeXn+9LAgAAJrHOw5EjR6y+ffta69ats2655RbrySeftCzLsiorKy1/f39r2bJl9tivv/7akmQVFBRYlmVZn376qeXr62u53W57zJtvvmk5HA6rtrbWsizLmj59unX99dd7PGdKSorlcrns+0OHDrXS0tLs+/X19VZUVJSVlZV1zq+jqqrKkmRVVVWd+4s/R3Vr/tbkBgAALty5/v4+rzM5aWlpSk5OVlJSksfywsJCnThxwmN5//791b17dxUUFEiSCgoKFBcXp4iICHuMy+VSdXW1du3aZY/56bZdLpe9jbq6OhUWFnqM8fX1VVJSkj2mObW1taqurva4AQAAM7Vr6QOWLFmirVu36ssvv2yyzu12KyAgQGFhYR7LIyIi5Ha77TGnB07j+sZ1ZxtTXV2tY8eO6YcfflB9fX2zY3bv3n3GuWdlZSkzM/PcXigAAGjVWnQmZ//+/XryySf13nvvKSgo6FLN6ZKZOXOmqqqq7Nv+/fu9PSUAAHCJtChyCgsLVV5erhtuuEHt2rVTu3btlJ+fr3nz5qldu3aKiIhQXV2dKisrPR5XVlamyMhISVJkZGSTT1s13v+5MQ6HQ8HBwercubP8/PyaHdO4jeYEBgbK4XB43AAAgJlaFDkjRozQjh07VFRUZN8GDx6sBx54wP7Z399fubm59mOKi4tVWloqp9MpSXI6ndqxY4fHp6DWrVsnh8Oh2NhYe8zp22gc07iNgIAAJSQkeIxpaGhQbm6uPQYAALRtLbomp2PHjhowYIDHsg4dOqhTp0728gkTJig9PV3h4eFyOByaMmWKnE6nhg0bJkkaOXKkYmNj9eCDD2rOnDlyu9167rnnlJaWpsDAQEnSxIkTNX/+fE2fPl2PPPKI1q9frw8++ECrV6+2nzc9PV2pqakaPHiwhg4dqtdee001NTV6+OGHL2iHAAAAM7T4wuOf8+qrr8rX11fjxo1TbW2tXC6X3njjDXu9n5+fVq1apUmTJsnpdKpDhw5KTU3VCy+8YI+JiYnR6tWrNW3aNM2dO1fdunXTokWL5HK57DEpKSmqqKhQRkaG3G63Bg0apJycnCYXIwMAgLbJx7Isy9uT8Jbq6mqFhoaqqqrqol+fcyLn702W+Y+66aI+BwAAbdG5/v7mb1cBAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEjtvD0BU+2rXONxv2fYHV6aCQAAbRNncgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABipRZHz5ptvauDAgXI4HHI4HHI6nVqzZo29/vjx40pLS1OnTp0UEhKicePGqayszGMbpaWlSk5OVvv27dW1a1c9/fTTOnnypMeYvLw83XDDDQoMDFSfPn2UnZ3dZC4LFixQz549FRQUpMTERG3evLklLwUAABiuRZHTrVs3vfzyyyosLNSWLVt0++23a/To0dq1a5ckadq0aVq5cqWWLVum/Px8HThwQGPHjrUfX19fr+TkZNXV1Wnjxo169913lZ2drYyMDHtMSUmJkpOTddttt6moqEhTp07Vo48+qrVr19pjli5dqvT0dM2aNUtbt25VfHy8XC6XysvLL3R/AAAAQ/hYlmVdyAbCw8P1yiuv6J577lGXLl20ePFi3XPPPZKk3bt367rrrlNBQYGGDRumNWvW6M4779SBAwcUEREhSVq4cKGeeeYZVVRUKCAgQM8884xWr16tnTt32s8xfvx4VVZWKicnR5KUmJioIUOGaP78+ZKkhoYGRUdHa8qUKZoxY8Y5z726ulqhoaGqqqqSw+G4kN3QxJ4lv/W43zPsDvmPuumiPgcAAG3Ruf7+Pu9rcurr67VkyRLV1NTI6XSqsLBQJ06cUFJSkj2mf//+6t69uwoKCiRJBQUFiouLswNHklwul6qrq+2zQQUFBR7baBzTuI26ujoVFhZ6jPH19VVSUpI95kxqa2tVXV3tcQMAAGZqceTs2LFDISEhCgwM1MSJE7V8+XLFxsbK7XYrICBAYWFhHuMjIiLkdrslSW632yNwGtc3rjvbmOrqah07dkyHDh1SfX19s2Mat3EmWVlZCg0NtW/R0dEtffkAAKCVaHHk9OvXT0VFRdq0aZMmTZqk1NRUffXVV5dibhfdzJkzVVVVZd/279/v7SkBAIBLpF1LHxAQEKA+ffpIkhISEvTll19q7ty5SklJUV1dnSorKz3O5pSVlSkyMlKSFBkZ2eRTUI2fvjp9zE8/kVVWViaHw6Hg4GD5+fnJz8+v2TGN2ziTwMBABQYGtvQlAwCAVuiCvyenoaFBtbW1SkhIkL+/v3Jzc+11xcXFKi0tldPplCQ5nU7t2LHD41NQ69atk8PhUGxsrD3m9G00jmncRkBAgBISEjzGNDQ0KDc31x4DAADQojM5M2fO1B133KHu3bvryJEjWrx4sfLy8rR27VqFhoZqwoQJSk9PV3h4uBwOh6ZMmSKn06lhw4ZJkkaOHKnY2Fg9+OCDmjNnjtxut5577jmlpaXZZ1gmTpyo+fPna/r06XrkkUe0fv16ffDBB1q9erU9j/T0dKWmpmrw4MEaOnSoXnvtNdXU1Ojhhx++iLsGAAC0Zi2KnPLycv3617/WwYMHFRoaqoEDB2rt2rX65S9/KUl69dVX5evrq3Hjxqm2tlYul0tvvPGG/Xg/Pz+tWrVKkyZNktPpVIcOHZSamqoXXnjBHhMTE6PVq1dr2rRpmjt3rrp166ZFixbJ5XLZY1JSUlRRUaGMjAy53W4NGjRIOTk5TS5GBgAAbdcFf09Oa8b35AAA0Ppc8u/JAQAAuJIROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASC2KnKysLA0ZMkQdO3ZU165dNWbMGBUXF3uMOX78uNLS0tSpUyeFhIRo3LhxKisr8xhTWlqq5ORktW/fXl27dtXTTz+tkydPeozJy8vTDTfcoMDAQPXp00fZ2dlN5rNgwQL17NlTQUFBSkxM1ObNm1vycgAAgMFaFDn5+flKS0vTF198oXXr1unEiRMaOXKkampq7DHTpk3TypUrtWzZMuXn5+vAgQMaO3asvb6+vl7Jycmqq6vTxo0b9e677yo7O1sZGRn2mJKSEiUnJ+u2225TUVGRpk6dqkcffVRr1661xyxdulTp6emaNWuWtm7dqvj4eLlcLpWXl1/I/gAAAIbwsSzLOt8HV1RUqGvXrsrPz9fw4cNVVVWlLl26aPHixbrnnnskSbt379Z1112ngoICDRs2TGvWrNGdd96pAwcOKCIiQpK0cOFCPfPMM6qoqFBAQICeeeYZrV69Wjt37rSfa/z48aqsrFROTo4kKTExUUOGDNH8+fMlSQ0NDYqOjtaUKVM0Y8aMc5p/dXW1QkNDVVVVJYfDcb67oVl7lvzW437PsDvkP+qmi/ocAAC0Ref6+/uCrsmpqqqSJIWHh0uSCgsLdeLECSUlJdlj+vfvr+7du6ugoECSVFBQoLi4ODtwJMnlcqm6ulq7du2yx5y+jcYxjduoq6tTYWGhxxhfX18lJSXZY5pTW1ur6upqjxsAADDTeUdOQ0ODpk6dqhtvvFEDBgyQJLndbgUEBCgsLMxjbEREhNxutz3m9MBpXN+47mxjqqurdezYMR06dEj19fXNjmncRnOysrIUGhpq36Kjo1v+wgEAQKtw3pGTlpamnTt3asmSJRdzPpfUzJkzVVVVZd/279/v7SkBAIBLpN35PGjy5MlatWqVNmzYoG7dutnLIyMjVVdXp8rKSo+zOWVlZYqMjLTH/PRTUI2fvjp9zE8/kVVWViaHw6Hg4GD5+fnJz8+v2TGN22hOYGCgAgMDW/6CAQBAq9OiMzmWZWny5Mlavny51q9fr5iYGI/1CQkJ8vf3V25urr2suLhYpaWlcjqdkiSn06kdO3Z4fApq3bp1cjgcio2Ntcecvo3GMY3bCAgIUEJCgseYhoYG5ebm2mMAAEDb1qIzOWlpaVq8eLE+/vhjdezY0b7+JTQ0VMHBwQoNDdWECROUnp6u8PBwORwOTZkyRU6nU8OGDZMkjRw5UrGxsXrwwQc1Z84cud1uPffcc0pLS7PPskycOFHz58/X9OnT9cgjj2j9+vX64IMPtHr1ansu6enpSk1N1eDBgzV06FC99tprqqmp0cMPP3yx9g0AAGjFWhQ5b775piTp1ltv9Vj+zjvv6KGHHpIkvfrqq/L19dW4ceNUW1srl8ulN954wx7r5+enVatWadKkSXI6nerQoYNSU1P1wgsv2GNiYmK0evVqTZs2TXPnzlW3bt20aNEiuVwue0xKSooqKiqUkZEht9utQYMGKScnp8nFyAAAoG26oO/Jae34nhwAAFqfy/I9OQAAAFcqIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGKnFkbNhwwbdddddioqKko+Pj1asWOGx3rIsZWRk6Oqrr1ZwcLCSkpK0Z88ejzGHDx/WAw88IIfDobCwME2YMEE//vijx5jt27fr5ptvVlBQkKKjozVnzpwmc1m2bJn69++voKAgxcXF6dNPP23pywEAAIZqceTU1NQoPj5eCxYsaHb9nDlzNG/ePC1cuFCbNm1Shw4d5HK5dPz4cXvMAw88oF27dmndunVatWqVNmzYoMcff9xeX11drZEjR6pHjx4qLCzUK6+8otmzZ+vtt9+2x2zcuFH33XefJkyYoG3btmnMmDEaM2aMdu7c2dKXBAAADORjWZZ13g/28dHy5cs1ZswYSafO4kRFRek3v/mNnnrqKUlSVVWVIiIilJ2drfHjx+vrr79WbGysvvzySw0ePFiSlJOTo3//93/Xd999p6ioKL355pv67W9/K7fbrYCAAEnSjBkztGLFCu3evVuSlJKSopqaGq1atcqez7BhwzRo0CAtXLjwnOZfXV2t0NBQVVVVyeFwnO9uaNaeJb/1uN8z7A75j7rpoj4HAABt0bn+/r6o1+SUlJTI7XYrKSnJXhYaGqrExEQVFBRIkgoKChQWFmYHjiQlJSXJ19dXmzZtsscMHz7cDhxJcrlcKi4u1g8//GCPOf15Gsc0Pk9zamtrVV1d7XEDAABmuqiR43a7JUkREREeyyMiIux1brdbXbt29Vjfrl07hYeHe4xpbhunP8eZxjSub05WVpZCQ0PtW3R0dEtfIgAAaCXa1KerZs6cqaqqKvu2f/9+b08JAABcIhc1ciIjIyVJZWVlHsvLysrsdZGRkSovL/dYf/LkSR0+fNhjTHPbOP05zjSmcX1zAgMD5XA4PG4AAMBMFzVyYmJiFBkZqdzcXHtZdXW1Nm3aJKfTKUlyOp2qrKxUYWGhPWb9+vVqaGhQYmKiPWbDhg06ceKEPWbdunXq16+frrrqKnvM6c/TOKbxeQAAQNvW4sj58ccfVVRUpKKiIkmnLjYuKipSaWmpfHx8NHXqVL344ov65JNPtGPHDv36179WVFSU/Qms6667TqNGjdJjjz2mzZs36x//+IcmT56s8ePHKyoqSpJ0//33KyAgQBMmTNCuXbu0dOlSzZ07V+np6fY8nnzySeXk5OgPf/iDdu/erdmzZ2vLli2aPHnyhe8VAADQ6rVr6QO2bNmi2267zb7fGB6pqanKzs7W9OnTVVNTo8cff1yVlZW66aablJOTo6CgIPsx7733niZPnqwRI0bI19dX48aN07x58+z1oaGh+uyzz5SWlqaEhAR17txZGRkZHt+l84tf/EKLFy/Wc889p2effVZ9+/bVihUrNGDAgPPaEQAAwCwX9D05rR3fkwMAQOvjle/JAQAAuFIQOQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAI7Xz9gRMU3vyuNYULlJJ/dcKt4I11K+72vnQkgAAXG6t/rfvggUL1LNnTwUFBSkxMVGbN2/22lzeyZul+1bfqHfL/qQNHfdpheNr/bb9Wq09+b9emxMAAG1Vq46cpUuXKj09XbNmzdLWrVsVHx8vl8ul8vLyyz6Xd/Jm6ZOqlbJkeSy3JOV2/EZ/rlpy2ecEAEBb5mNZlvXzw65MiYmJGjJkiObPny9JamhoUHR0tKZMmaIZM2b87OOrq6sVGhqqqqoqORyO855H7cnjum/1jacCx6eZAf9/8UtHXWd966pn2B3yH3XTec8DAIC24Fx/f7faa3Lq6upUWFiomTNn2st8fX2VlJSkgoKCZh9TW1ur2tpa+35VVZWkUzvrQqza8pbqjp382XH5P36jRL/uZ1y/8+gK6U8rPJb59Opm/9zrhkfOd4oAABij8ff2z52nabWRc+jQIdXX1ysiIsJjeUREhHbv3t3sY7KyspSZmdlkeXR09CWZ40+t1vYL3MK0izIPAABMcOTIEYWGhp5xfauNnPMxc+ZMpaen2/cbGhp0+PBhderUST4+zb3PdH6qq6sVHR2t/fv3X9DbYKZi/5wZ++bs2D9nxr45O/bPmbXGfWNZlo4cOaKoqKizjmu1kdO5c2f5+fmprKzMY3lZWZkiIyObfUxgYKACAwM9loWFhV2qKcrhcLSaA8Yb2D9nxr45O/bPmbFvzo79c2atbd+c7QxOo1b76aqAgAAlJCQoNzfXXtbQ0KDc3Fw5nU4vzgwAAFwJWu2ZHElKT09XamqqBg8erKFDh+q1115TTU2NHn74YW9PDQAAeFmrjpyUlBRVVFQoIyNDbrdbgwYNUk5OTpOLkS+3wMBAzZo1q8lbYziF/XNm7JuzY/+cGfvm7Ng/Z2byvmnV35MDAABwJq32mhwAAICzIXIAAICRiBwAAGAkIgcAABiJyAEAAEYici6BBQsWqGfPngoKClJiYqI2b97s7Sl53ezZs+Xj4+Nx69+/v7en5TUbNmzQXXfdpaioKPn4+GjFihUe6y3LUkZGhq6++moFBwcrKSlJe/bs8c5kL7Of2zcPPfRQk2Np1KhR3pnsZZaVlaUhQ4aoY8eO6tq1q8aMGaPi4mKPMcePH1daWpo6deqkkJAQjRs3rsk3w5vqXPbPrbfe2uT4mThxopdmfHm9+eabGjhwoP3Nxk6nU2vWrLHXm3jsEDkX2dKlS5Wenq5Zs2Zp69atio+Pl8vlUnl5uben5nXXX3+9Dh48aN/+/ve/e3tKXlNTU6P4+HgtWLCg2fVz5szRvHnztHDhQm3atEkdOnSQy+XS8ePHL/NML7+f2zeSNGrUKI9j6f3337+MM/Se/Px8paWl6YsvvtC6det04sQJjRw5UjU1NfaYadOmaeXKlVq2bJny8/N14MABjR071ouzvnzOZf9I0mOPPeZx/MyZM8dLM768unXrppdfflmFhYXasmWLbr/9do0ePVq7du2SZOixY+GiGjp0qJWWlmbfr6+vt6KioqysrCwvzsr7Zs2aZcXHx3t7GlckSdby5cvt+w0NDVZkZKT1yiuv2MsqKyutwMBA6/333/fCDL3np/vGsiwrNTXVGj16tFfmc6UpLy+3JFn5+fmWZZ06Tvz9/a1ly5bZY77++mtLklVQUOCtaXrNT/ePZVnWLbfcYj355JPem9QV5qqrrrIWLVpk7LHDmZyLqK6uToWFhUpKSrKX+fr6KikpSQUFBV6c2ZVhz549ioqKUq9evfTAAw+otLTU21O6IpWUlMjtdnscR6GhoUpMTOQ4+v/y8vLUtWtX9evXT5MmTdL333/v7Sl5RVVVlSQpPDxcklRYWKgTJ054HDv9+/dX9+7d2+Sx89P90+i9995T586dNWDAAM2cOVNHjx71xvS8qr6+XkuWLFFNTY2cTqexx06r/rMOV5pDhw6pvr6+yZ+ViIiI0O7du700qytDYmKisrOz1a9fPx08eFCZmZm6+eabtXPnTnXs2NHb07uiuN1uSWr2OGpc15aNGjVKY8eOVUxMjL755hs9++yzuuOOO1RQUCA/Pz9vT++yaWho0NSpU3XjjTdqwIABkk4dOwEBAQoLC/MY2xaPneb2jyTdf//96tGjh6KiorR9+3Y988wzKi4u1kcffeTF2V4+O3bskNPp1PHjxxUSEqLly5crNjZWRUVFRh47RA4uizvuuMP+eeDAgUpMTFSPHj30wQcfaMKECV6cGVqb8ePH2z/HxcVp4MCB6t27t/Ly8jRixAgvzuzySktL086dO9v0tW1nc6b98/jjj9s/x8XF6eqrr9aIESP0zTffqHfv3pd7mpddv379VFRUpKqqKn344YdKTU1Vfn6+t6d1yfB21UXUuXNn+fn5NbkavaysTJGRkV6a1ZUpLCxM1157rfbu3evtqVxxGo8VjqNz06tXL3Xu3LlNHUuTJ0/WqlWr9Pnnn6tbt2728sjISNXV1amystJjfFs7ds60f5qTmJgoSW3m+AkICFCfPn2UkJCgrKwsxcfHa+7cucYeO0TORRQQEKCEhATl5ubayxoaGpSbmyun0+nFmV15fvzxR33zzTe6+uqrvT2VK05MTIwiIyM9jqPq6mpt2rSJ46gZ3333nb7//vs2cSxZlqXJkydr+fLlWr9+vWJiYjzWJyQkyN/f3+PYKS4uVmlpaZs4dn5u/zSnqKhIktrE8dOchoYG1dbWmnvsePvKZ9MsWbLECgwMtLKzs62vvvrKevzxx62wsDDL7XZ7e2pe9Zvf/MbKy8uzSkpKrH/84x9WUlKS1blzZ6u8vNzbU/OKI0eOWNu2bbO2bdtmSbL++Mc/Wtu2bbO+/fZby7Is6+WXX7bCwsKsjz/+2Nq+fbs1evRoKyYmxjp27JiXZ37pnW3fHDlyxHrqqaesgoICq6SkxPrrX/9q3XDDDVbfvn2t48ePe3vql9ykSZOs0NBQKy8vzzp48KB9O3r0qD1m4sSJVvfu3a3169dbW7ZssZxOp+V0Or0468vn5/bP3r17rRdeeMHasmWLVVJSYn388cdWr169rOHDh3t55pfHjBkzrPz8fKukpMTavn27NWPGDMvHx8f67LPPLMsy89ghci6B119/3erevbsVEBBgDR061Priiy+8PSWvS0lJsa6++morICDAuuaaa6yUlBRr79693p6W13z++eeWpCa31NRUy7JOfYz8+eeftyIiIqzAwEBrxIgRVnFxsXcnfZmcbd8cPXrUGjlypNWlSxfL39/f6tGjh/XYY4+1mf+JaG6/SLLeeecde8yxY8esJ554wrrqqqus9u3bW3fffbd18OBB7036Mvq5/VNaWmoNHz7cCg8PtwIDA60+ffpYTz/9tFVVVeXdiV8mjzzyiNWjRw8rICDA6tKlizVixAg7cCzLzGPHx7Is6/KdNwIAALg8uCYHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkf4fizXWIL0VUygAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALPdJREFUeJzt3XtcVXW+//E3bGSDyoY0BEnMS2WiJY8wcXe3yD3F1LHskVpHCTHHQgspTacS6VR2rFNa3sbTSXo8ZszLdJkSxRy8TUlZKCczdWrUZMZAHAXMFIT9/f0xP/ZxB5p4Afn6ej4e66H7uz5rrc/6ku03i7U2AcYYIwAAAMsENncDAAAA5wIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHaIGmTp2qgICARm/30EMPqUuXLme/oQtUQECApk6d2ujtdu/erYCAAOXk5Jz1nk6mS5cueuihh5r0mEBzIuQAF7CffvpJU6dO1dq1a5vl+Hv37tXUqVNVVFTULMcHYLeg5m4AQPP56aeflJ2dLUm65ZZbmvz4e/fuVXZ2trp06aL4+PgmP/6FZseOHQoM5HtbXDgIOQCaXE1Njbxeb3O3ccFxOp3N3QLQpIj0wHnuk08+0bXXXquQkBB1795dv/vd7xqs+/3vf6+EhASFhoaqXbt2Gjp0qIqLi0+43927dysyMlKSlJ2drYCAAL97TL766is99NBD6tatm0JCQhQdHa2RI0fqn//8Z6P6r7v/5JVXXtGMGTPUvXt3OZ1OzZkzR9dee60kKTU11Xf8U71PJScnRwEBAfrkk0/02GOPKTIyUhEREfrNb36j6upqlZeXa8SIEbrooot00UUXaeLEiTLG+O3j8OHDeuKJJxQbGyun06kePXrolVdeqVdXVVWl8ePHKzIyUmFhYbr77rv197//vcG+/vGPf2jkyJGKioqS0+lUr1699NZbbzVqzhqydu1aBQQEaMmSJcrOztYll1yisLAw3XfffaqoqFBVVZUyMjLUoUMHtW3bVqmpqaqqqvLbx8/vyambw08//VSZmZmKjIxUmzZtdM8996isrOyMewaaG1dygPPYli1bNHDgQEVGRmrq1KmqqalRVlaWoqKi/OpeeOEFPfvss7r//vs1atQolZWV6Y033tBNN92kzZs3KyIiot6+IyMjNXfuXD3yyCO65557dO+990qSrr76aknSqlWrtHPnTqWmpio6Olpbt27V/PnztXXrVn322WeNvvF5wYIFOnr0qEaPHi2n06l77rlHhw4d0pQpUzR69GjdeOONkqTrrruuUfsdN26coqOjlZ2drc8++0zz589XRESENmzYoM6dO+vFF1/U8uXL9fLLL6t3794aMWKEJMkYo7vvvltr1qxRWlqa4uPjtXLlSk2YMEH/+Mc/9Nprr/mOMWrUKP3+97/XAw88oOuuu06rV69WcnJyvV5KS0vVv39/BQQEaOzYsYqMjNSKFSuUlpamyspKZWRkNOrcGjJt2jSFhoZq0qRJ+u677/TGG2+oVatWCgwM1MGDBzV16lR99tlnysnJUdeuXTVlypRTmsOLLrpIWVlZ2r17t2bMmKGxY8dq8eLFZ9wv0KwMgPPWoEGDTEhIiPn+++99Y998841xOBym7p/v7t27jcPhMC+88ILftlu2bDFBQUF+4ykpKebSSy/1vS4rKzOSTFZWVr1j//TTT/XG3nnnHSPJrF+//pTPYdeuXUaScblcZt++fX7rvvjiCyPJLFiw4JT3V2fBggVGkvF4PMbr9frG3W63CQgIMGPGjPGN1dTUmE6dOpmbb77ZN/bBBx8YSeb555/32+99991nAgICzHfffWeMMaaoqMhIMo8++qhf3QMPPFBv7tLS0kzHjh3N/v37/WqHDh1qwsPDfXNaNyeNOe81a9YYSaZ3796murraNz5s2DATEBBg7rjjDr96t9vt97U2xphLL73UpKSk+F7XzWFSUpLfHI4fP944HA5TXl5+yv0B5yN+XAWcp2pra7Vy5UoNGjRInTt39o337NlTHo/H9/q9996T1+vV/fffr/379/uW6OhoXX755VqzZs1pHT80NNT396NHj2r//v3q37+/JGnTpk2N3t/gwYN9Px47m9LS0vyuKiUmJsoYo7S0NN+Yw+FQ3759tXPnTt/Y8uXL5XA49Nhjj/nt74knnpAxRitWrPDVSapX9/OrMsYYvfvuu7rrrrtkjPH7Wng8HlVUVJzWvP3ciBEj1KpVq3rnO3LkSL+6xMREFRcXq6am5hf3OXr0aL85vPHGG1VbW6vvv//+jPsFmhM/rgLOU2VlZTpy5Iguv/zyeut69Ojhe/P99ttvZYxpsE6S3xtiYxw4cEDZ2dlatGiR9u3b57euoqKi0fvr2rXrafXxS44PgJIUHh4uSYqNja03fvDgQd/r77//XjExMQoLC/Or69mzp2993Z+BgYHq3r27X12PHj38XpeVlam8vFzz58/X/PnzG+z15/N4Ohpzvl6vVxUVFWrfvn2j9nnRRRdJkt98AS0RIQdo4bxerwICArRixQo5HI5669u2bXta+73//vu1YcMGTZgwQfHx8Wrbtq28Xq9+9atfndaTUcdfGTqbGjrnE42bn91QfDbVzcm///u/KyUlpcGauvudzkRjzlc6tXM+k22B8xkhBzhPRUZGKjQ0VN9++229dTt27PD9vXv37jLGqGvXrrriiisadYwT3Tx88OBB5efnKzs72+/G1YZ6OROn86nNZ8ull16qP//5zzp06JDf1Zzt27f71tf96fV69be//c3v6s3xXwNJvievamtrlZSU1ARnAOCXcE8OcJ5yOBzyeDz64IMPtGfPHt/4tm3btHLlSt/re++9Vw6HQ9nZ2fW+8zbGnPSR79atW0uSysvL6x27bvvjzZgx43RO5YTatGnT4PGbwp133qna2lrNmjXLb/y1115TQECA7rjjDkny/fn666/71f18LhwOhwYPHqx3331XX3/9db3j8Ug20PS4kgOcx7Kzs5WXl6cbb7xRjz76qGpqavTGG2+oV69e+uqrryT960rO888/r8mTJ2v37t0aNGiQwsLCtGvXLr3//vsaPXq0nnzyyQb3Hxoaqri4OC1evFhXXHGF2rVrp969e6t379666aabNH36dB07dkyXXHKJPv74Y+3ateusnl/37t0VERGhefPmKSwsTG3atFFiYuI5u3/neHfddZcGDBigp59+Wrt371afPn308ccf609/+pMyMjJ89+DEx8dr2LBhmjNnjioqKnTdddcpPz9f3333Xb19vvTSS1qzZo0SExP18MMPKy4uTgcOHNCmTZv05z//WQcOHDjn5wXg/3AlBziPXX311Vq5cqUiIyM1ZcoUvfXWW8rOztY999zjVzdp0iS9++67CgwMVHZ2tp588kl9+OGHGjhwoO6+++6THuPNN9/UJZdcovHjx2vYsGH64x//KElauHChPB6PZs+ercmTJ6tVq1a+J47OllatWuntt9+Ww+HQmDFjNGzYMK1bt+6sHuNEAgMD9eGHHyojI0PLli1TRkaGvvnmG7388st69dVX/WrfeustPfbYY8rLy9PEiRN17Ngx5ebm1ttnVFSUNm7cqNTUVL333nsaO3asZs6cqQMHDug///M/m+S8APyfAMOdZQAAwEJcyQEAAFbinhwAp6W2tvYXb6Zt27Ztox9hP3LkyC9+Dk+7du0UHBzcqP2er6qrq3/xXp3w8PBz9gg+YDNCDoDTUlxc/Is3CGdlZfl+4eepWrx4sVJTU09as2bNGt1yyy2N2u/5asOGDRowYMBJaxYsWOD3izUBnBruyQFwWo4ePapPPvnkpDXdunVTt27dGrXfH374QVu3bj1pTUJCgu9TeVu6gwcPqrCw8KQ1vXr1UseOHZuoI8AehBwAAGAlbjwGAABWuqDvyfF6vdq7d6/CwsKa9ePlAQDAqTPG6NChQ4qJiVFg4Imv11zQIWfv3r31fnMvAABoGYqLi9WpU6cTrr+gQ07dL+UrLi6Wy+Vq5m4AAMCpqKysVGxsrN8v123IBR1y6n5E5XK5CDkAALQwv3SrCTceAwAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFgpqLkbAIBz5VjeJ36vW/3qhmbqBEBz4EoOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsdEYh56WXXlJAQIAyMjJ8Y0ePHlV6errat2+vtm3bavDgwSotLfXbbs+ePUpOTlbr1q3VoUMHTZgwQTU1NX41a9eu1TXXXCOn06nLLrtMOTk59Y4/e/ZsdenSRSEhIUpMTNTGjRvP5HQAAIBFTjvkfPHFF/rd736nq6++2m98/Pjx+uijj7R06VKtW7dOe/fu1b333utbX1tbq+TkZFVXV2vDhg16++23lZOToylTpvhqdu3apeTkZA0YMEBFRUXKyMjQqFGjtHLlSl/N4sWLlZmZqaysLG3atEl9+vSRx+PRvn37TveUAACATcxpOHTokLn88svNqlWrzM0332wef/xxY4wx5eXlplWrVmbp0qW+2m3bthlJpqCgwBhjzPLly01gYKApKSnx1cydO9e4XC5TVVVljDFm4sSJplevXn7HHDJkiPF4PL7X/fr1M+np6b7XtbW1JiYmxkybNu2Uz6OiosJIMhUVFad+8gBajOoVf/FbANjhVN+/T+tKTnp6upKTk5WUlOQ3XlhYqGPHjvmNX3nllercubMKCgokSQUFBbrqqqsUFRXlq/F4PKqsrNTWrVt9NT/ft8fj8e2jurpahYWFfjWBgYFKSkry1TSkqqpKlZWVfgsAALBTUGM3WLRokTZt2qQvvvii3rqSkhIFBwcrIiLCbzwqKkolJSW+muMDTt36unUnq6msrNSRI0d08OBB1dbWNlizffv2E/Y+bdo0ZWdnn9qJAgCAFq1RV3KKi4v1+OOP6w9/+INCQkLOVU/nzOTJk1VRUeFbiouLm7slAABwjjQq5BQWFmrfvn265pprFBQUpKCgIK1bt06vv/66goKCFBUVperqapWXl/ttV1paqujoaElSdHR0vaet6l7/Uo3L5VJoaKguvvhiORyOBmvq9tEQp9Mpl8vltwAAADs1KuTcdttt2rJli4qKinxL37599eCDD/r+3qpVK+Xn5/u22bFjh/bs2SO32y1Jcrvd2rJli99TUKtWrZLL5VJcXJyv5vh91NXU7SM4OFgJCQl+NV6vV/n5+b4aAABwYWvUPTlhYWHq3bu331ibNm3Uvn1733haWpoyMzPVrl07uVwujRs3Tm63W/3795ckDRw4UHFxcRo+fLimT5+ukpISPfPMM0pPT5fT6ZQkjRkzRrNmzdLEiRM1cuRIrV69WkuWLFFubq7vuJmZmUpJSVHfvn3Vr18/zZgxQ4cPH1ZqauoZTQgAALBDo288/iWvvfaaAgMDNXjwYFVVVcnj8WjOnDm+9Q6HQ8uWLdMjjzwit9utNm3aKCUlRc8995yvpmvXrsrNzdX48eM1c+ZMderUSW+++aY8Ho+vZsiQISorK9OUKVNUUlKi+Ph45eXl1bsZGQAAXJgCjDGmuZtoLpWVlQoPD1dFRQX35wAWOpb3id/rVr+6oZk6AXA2ner7N7+7CgAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVgpq7gYA4FzZXb7C7/XluqGZOgHQHLiSAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArNSrkzJ07V1dffbVcLpdcLpfcbrdWrFjhW3/06FGlp6erffv2atu2rQYPHqzS0lK/fezZs0fJyclq3bq1OnTooAkTJqimpsavZu3atbrmmmvkdDp12WWXKScnp14vs2fPVpcuXRQSEqLExERt3LixMacCAAAs16iQ06lTJ7300ksqLCzUl19+qVtvvVX/9m//pq1bt0qSxo8fr48++khLly7VunXrtHfvXt17772+7Wtra5WcnKzq6mpt2LBBb7/9tnJycjRlyhRfza5du5ScnKwBAwaoqKhIGRkZGjVqlFauXOmrWbx4sTIzM5WVlaVNmzapT58+8ng82rdv35nOBwAAsESAMcacyQ7atWunl19+Wffdd58iIyO1cOFC3XfffZKk7du3q2fPniooKFD//v21YsUK/frXv9bevXsVFRUlSZo3b56eeuoplZWVKTg4WE899ZRyc3P19ddf+44xdOhQlZeXKy8vT5KUmJioa6+9VrNmzZIkeb1excbGaty4cZo0adIp915ZWanw8HBVVFTI5XKdyTQAOA99u+hpv9eXD32hmToBcDad6vv3ad+TU1tbq0WLFunw4cNyu90qLCzUsWPHlJSU5Ku58sor1blzZxUUFEiSCgoKdNVVV/kCjiR5PB5VVlb6rgYVFBT47aOupm4f1dXVKiws9KsJDAxUUlKSr+ZEqqqqVFlZ6bcAAAA7NTrkbNmyRW3btpXT6dSYMWP0/vvvKy4uTiUlJQoODlZERIRffVRUlEpKSiRJJSUlfgGnbn3dupPVVFZW6siRI9q/f79qa2sbrKnbx4lMmzZN4eHhviU2Nraxpw8AAFqIRoecHj16qKioSJ9//rkeeeQRpaSk6JtvvjkXvZ11kydPVkVFhW8pLi5u7pYAAMA5EtTYDYKDg3XZZZdJkhISEvTFF19o5syZGjJkiKqrq1VeXu53Nae0tFTR0dGSpOjo6HpPQdU9fXV8zc+fyCotLZXL5VJoaKgcDoccDkeDNXX7OBGn0ymn09nYUwYAAC3QGX9OjtfrVVVVlRISEtSqVSvl5+f71u3YsUN79uyR2+2WJLndbm3ZssXvKahVq1bJ5XIpLi7OV3P8Pupq6vYRHByshIQEvxqv16v8/HxfDQAAQKOu5EyePFl33HGHOnfurEOHDmnhwoVau3atVq5cqfDwcKWlpSkzM1Pt2rWTy+XSuHHj5Ha71b9/f0nSwIEDFRcXp+HDh2v69OkqKSnRM888o/T0dN8VljFjxmjWrFmaOHGiRo4cqdWrV2vJkiXKzc319ZGZmamUlBT17dtX/fr104wZM3T48GGlpqaexakBAAAtWaNCzr59+zRixAj98MMPCg8P19VXX62VK1fq9ttvlyS99tprCgwM1ODBg1VVVSWPx6M5c+b4tnc4HFq2bJkeeeQRud1utWnTRikpKXruued8NV27dlVubq7Gjx+vmTNnqlOnTnrzzTfl8Xh8NUOGDFFZWZmmTJmikpISxcfHKy8vr97NyAAA4MJ1xp+T05LxOTmA3ficHMBO5/xzcgAAAM5nhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKzUq5EybNk3XXnutwsLC1KFDBw0aNEg7duzwqzl69KjS09PVvn17tW3bVoMHD1ZpaalfzZ49e5ScnKzWrVurQ4cOmjBhgmpqavxq1q5dq2uuuUZOp1OXXXaZcnJy6vUze/ZsdenSRSEhIUpMTNTGjRsbczoAAMBijQo569atU3p6uj777DOtWrVKx44d08CBA3X48GFfzfjx4/XRRx9p6dKlWrdunfbu3at7773Xt762tlbJycmqrq7Whg0b9PbbbysnJ0dTpkzx1ezatUvJyckaMGCAioqKlJGRoVGjRmnlypW+msWLFyszM1NZWVnatGmT+vTpI4/Ho3379p3JfAAAAEsEGGPM6W5cVlamDh06aN26dbrppptUUVGhyMhILVy4UPfdd58kafv27erZs6cKCgrUv39/rVixQr/+9a+1d+9eRUVFSZLmzZunp556SmVlZQoODtZTTz2l3Nxcff31175jDR06VOXl5crLy5MkJSYm6tprr9WsWbMkSV6vV7GxsRo3bpwmTZp0Sv1XVlYqPDxcFRUVcrlcpzsNAM5T3y562u/15UNfaKZOAJxNp/r+fUb35FRUVEiS2rVrJ0kqLCzUsWPHlJSU5Ku58sor1blzZxUUFEiSCgoKdNVVV/kCjiR5PB5VVlZq69atvprj91FXU7eP6upqFRYW+tUEBgYqKSnJV9OQqqoqVVZW+i0AAMBOpx1yvF6vMjIydP3116t3796SpJKSEgUHBysiIsKvNioqSiUlJb6a4wNO3fq6dSerqays1JEjR7R//37V1tY2WFO3j4ZMmzZN4eHhviU2NrbxJw4AAFqE0w456enp+vrrr7Vo0aKz2c85NXnyZFVUVPiW4uLi5m4JAACcI0Gns9HYsWO1bNkyrV+/Xp06dfKNR0dHq7q6WuXl5X5Xc0pLSxUdHe2r+flTUHVPXx1f8/MnskpLS+VyuRQaGiqHwyGHw9FgTd0+GuJ0OuV0Oht/wgAAoMVp1JUcY4zGjh2r999/X6tXr1bXrl391ickJKhVq1bKz8/3je3YsUN79uyR2+2WJLndbm3ZssXvKahVq1bJ5XIpLi7OV3P8Pupq6vYRHByshIQEvxqv16v8/HxfDQAAuLA16kpOenq6Fi5cqD/96U8KCwvz3f8SHh6u0NBQhYeHKy0tTZmZmWrXrp1cLpfGjRsnt9ut/v37S5IGDhyouLg4DR8+XNOnT1dJSYmeeeYZpaen+66yjBkzRrNmzdLEiRM1cuRIrV69WkuWLFFubq6vl8zMTKWkpKhv377q16+fZsyYocOHDys1NfVszQ0AAGjBGhVy5s6dK0m65ZZb/MYXLFighx56SJL02muvKTAwUIMHD1ZVVZU8Ho/mzJnjq3U4HFq2bJkeeeQRud1utWnTRikpKXruued8NV27dlVubq7Gjx+vmTNnqlOnTnrzzTfl8Xh8NUOGDFFZWZmmTJmikpISxcfHKy8vr97NyAAA4MJ0Rp+T09LxOTmA3ficHMBOTfI5OQAAAOcrQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlRodctavX6+77rpLMTExCggI0AcffOC33hijKVOmqGPHjgoNDVVSUpK+/fZbv5oDBw7owQcflMvlUkREhNLS0vTjjz/61Xz11Ve68cYbFRISotjYWE2fPr1eL0uXLtWVV16pkJAQXXXVVVq+fHljTwcAAFiq0SHn8OHD6tOnj2bPnt3g+unTp+v111/XvHnz9Pnnn6tNmzbyeDw6evSor+bBBx/U1q1btWrVKi1btkzr16/X6NGjfesrKys1cOBAXXrppSosLNTLL7+sqVOnav78+b6aDRs2aNiwYUpLS9PmzZs1aNAgDRo0SF9//XVjTwkAAFgowBhjTnvjgAC9//77GjRokKR/XcWJiYnRE088oSeffFKSVFFRoaioKOXk5Gjo0KHatm2b4uLi9MUXX6hv376SpLy8PN155536+9//rpiYGM2dO1dPP/20SkpKFBwcLEmaNGmSPvjgA23fvl2SNGTIEB0+fFjLli3z9dO/f3/Fx8dr3rx5p9R/ZWWlwsPDVVFRIZfLdbrTAOA89e2ip/1eXz70hWbqBMDZdKrv32f1npxdu3appKRESUlJvrHw8HAlJiaqoKBAklRQUKCIiAhfwJGkpKQkBQYG6vPPP/fV3HTTTb6AI0kej0c7duzQwYMHfTXHH6eupu44DamqqlJlZaXfAgAA7HRWQ05JSYkkKSoqym88KirKt66kpEQdOnTwWx8UFKR27dr51TS0j+OPcaKauvUNmTZtmsLDw31LbGxsY08RAAC0EBfU01WTJ09WRUWFbykuLm7ulgAAwDlyVkNOdHS0JKm0tNRvvLS01LcuOjpa+/bt81tfU1OjAwcO+NU0tI/jj3Gimrr1DXE6nXK5XH4LAACw01kNOV27dlV0dLTy8/N9Y5WVlfr888/ldrslSW63W+Xl5SosLPTVrF69Wl6vV4mJib6a9evX69ixY76aVatWqUePHrrooot8Nccfp66m7jgAAODC1uiQ8+OPP6qoqEhFRUWS/nWzcVFRkfbs2aOAgABlZGTo+eef14cffqgtW7ZoxIgRiomJ8T2B1bNnT/3qV7/Sww8/rI0bN+rTTz/V2LFjNXToUMXExEiSHnjgAQUHBystLU1bt27V4sWLNXPmTGVmZvr6ePzxx5WXl6f/+q//0vbt2zV16lR9+eWXGjt27JnPCgAAaPlMI61Zs8ZIqrekpKQYY4zxer3m2WefNVFRUcbpdJrbbrvN7Nixw28f//znP82wYcNM27ZtjcvlMqmpqebQoUN+Nf/7v/9rbrjhBuN0Os0ll1xiXnrppXq9LFmyxFxxxRUmODjY9OrVy+Tm5jbqXCoqKowkU1FR0bhJANAi/PWd3/otAOxwqu/fZ/Q5OS0dn5MD2I3PyQHs1CyfkwMAAHC+IOQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFJQczcAAGdbVc1RrSh8U7tqt6mdCVU/R2cFBfA9HXChafH/6mfPnq0uXbooJCREiYmJ2rhxY3O3BKAZLVibpWG51+vt0re0Pmy3PnBt09OtV2plzV+buzUATaxFh5zFixcrMzNTWVlZ2rRpk/r06SOPx6N9+/Y1d2sAmsGCtVn6sOIjGRm/cSMpP+xvWrA2q3kaA9AsWnTIefXVV/Xwww8rNTVVcXFxmjdvnlq3bq233nqruVsD0MSqao7qo4pl/3oR8LOV///1soplqqo52qR9AWg+LfaenOrqahUWFmry5Mm+scDAQCUlJamgoKDBbaqqqlRVVeV7XVFRIUmqrKw8t80COOeWffk7VR+p+cW6d9e/oV/3/U0TdATgXKl73zbGnLSuxYac/fv3q7a2VlFRUX7jUVFR2r59e4PbTJs2TdnZ2fXGY2Njz0mPAM4/uZooaWJztwHgLDh06JDCw8NPuL7FhpzTMXnyZGVmZvpee71eHThwQO3bt1dAwM+vb194KisrFRsbq+LiYrlcruZux1rMc9NgnpsG89w0mGd/xhgdOnRIMTExJ61rsSHn4osvlsPhUGlpqd94aWmpoqOjG9zG6XTK6XT6jUVERJyrFlssl8vFP6ImwDw3Dea5aTDPTYN5/j8nu4JTp8XeeBwcHKyEhATl5+f7xrxer/Lz8+V2u5uxMwAAcD5osVdyJCkzM1MpKSnq27ev+vXrpxkzZujw4cNKTU1t7tYAAEAza9EhZ8iQISorK9OUKVNUUlKi+Ph45eXl1bsZGafG6XQqKyur3o/0cHYxz02DeW4azHPTYJ5PT4D5peevAAAAWqAWe08OAADAyRByAACAlQg5AADASoQcAABgJUIOAACwEiHnAjN79mx16dJFISEhSkxM1MaNG09aX15ervT0dHXs2FFOp1NXXHGFli9f3kTdtlyNnecZM2aoR48eCg0NVWxsrMaPH6+jR/lt2Sezfv163XXXXYqJiVFAQIA++OCDX9xm7dq1uuaaa+R0OnXZZZcpJyfnnPfZ0jV2nt977z3dfvvtioyMlMvlktvt1sqVK5um2RbsdP57rvPpp58qKChI8fHx56y/loqQcwFZvHixMjMzlZWVpU2bNqlPnz7yeDzat29fg/XV1dW6/fbbtXv3bv3xj3/Ujh079N///d+65JJLmrjzlqWx87xw4UJNmjRJWVlZ2rZtm/7nf/5Hixcv1m9/+9sm7rxlOXz4sPr06aPZs2efUv2uXbuUnJysAQMGqKioSBkZGRo1ahRvwL+gsfO8fv163X777Vq+fLkKCws1YMAA3XXXXdq8efM57rRla+w81ykvL9eIESN02223naPOWjiDC0a/fv1Menq673Vtba2JiYkx06ZNa7B+7ty5plu3bqa6urqpWrRCY+c5PT3d3HrrrX5jmZmZ5vrrrz+nfdpEknn//fdPWjNx4kTTq1cvv7EhQ4YYj8dzDjuzy6nMc0Pi4uJMdnb22W/IUo2Z5yFDhphnnnnGZGVlmT59+pzTvloiruRcIKqrq1VYWKikpCTfWGBgoJKSklRQUNDgNh9++KHcbrfS09MVFRWl3r1768UXX1RtbW1Ttd3inM48X3fddSosLPT9SGvnzp1avny57rzzzibp+UJRUFDg93WRJI/Hc8KvC84Or9erQ4cOqV27ds3dinUWLFignTt3Kisrq7lbOW+16F/rgFO3f/9+1dbW1vuVF1FRUdq+fXuD2+zcuVOrV6/Wgw8+qOXLl+u7777To48+qmPHjvGP6gROZ54feOAB7d+/XzfccIOMMaqpqdGYMWP4cdVZVlJS0uDXpbKyUkeOHFFoaGgzdWa3V155RT/++KPuv//+5m7FKt9++60mTZqkv/zlLwoK4q38RLiSgxPyer3q0KGD5s+fr4SEBA0ZMkRPP/205s2b19ytWWXt2rV68cUXNWfOHG3atEnvvfeecnNz9R//8R/N3RpwRhYuXKjs7GwtWbJEHTp0aO52rFFbW6sHHnhA2dnZuuKKK5q7nfMa8e8CcfHFF8vhcKi0tNRvvLS0VNHR0Q1u07FjR7Vq1UoOh8M31rNnT5WUlKi6ulrBwcHntOeW6HTm+dlnn9Xw4cM1atQoSdJVV12lw4cPa/To0Xr66acVGMj3ImdDdHR0g18Xl8vFVZxzYNGiRRo1apSWLl1a78eEODOHDh3Sl19+qc2bN2vs2LGS/vVNqTFGQUFB+vjjj3Xrrbc2c5fnB/7veYEIDg5WQkKC8vPzfWNer1f5+flyu90NbnP99dfru+++k9fr9Y399a9/VceOHQk4J3A68/zTTz/VCzJ1wdLw+3PPGrfb7fd1kaRVq1ad8OuC0/fOO+8oNTVV77zzjpKTk5u7Heu4XC5t2bJFRUVFvmXMmDHq0aOHioqKlJiY2Nwtnj+a+cZnNKFFixYZp9NpcnJyzDfffGNGjx5tIiIiTElJiTHGmOHDh5tJkyb56vfs2WPCwsLM2LFjzY4dO8yyZctMhw4dzPPPP99cp9AiNHaes7KyTFhYmHnnnXfMzp07zccff2y6d+9u7r///uY6hRbh0KFDZvPmzWbz5s1Gknn11VfN5s2bzffff2+MMWbSpElm+PDhvvqdO3ea1q1bmwkTJpht27aZ2bNnG4fDYfLy8prrFFqExs7zH/7wBxMUFGRmz55tfvjhB99SXl7eXKfQIjR2nn+Op6saRsi5wLzxxhumc+fOJjg42PTr18989tlnvnU333yzSUlJ8avfsGGDSUxMNE6n03Tr1s288MILpqampom7bnkaM8/Hjh0zU6dONd27dzchISEmNjbWPProo+bgwYNN33gLsmbNGiOp3lI3tykpKebmm2+ut018fLwJDg423bp1MwsWLGjyvluaxs7zzTfffNJ6NOx0/ns+HiGnYQHGcD0cAADYh3tyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGCl/we61UAqR4LEIgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPCNJREFUeJzt3XtYFnX+//HXDXLSvCEPgCyoqHkg8YSJ5GE7sKJRm2Wbmlt4ytUvVsrmgdVQO6ylm2V5ym8ldnBT23QLV4gwdU3yQJGHTdMWV1u9kVK4FRMU5vdHP+brHVii2A3j83Fdc63zmffMvGeg5cXcM4PNMAxDAAAAFuPh7gYAAACuBkIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOgGqZOXOmbDabvv3226u+r1tuuUW33HLLVd9PTbHZbBo/fry727gkde3cApeDkANcY86cOaOZM2dq48aN7m4FAK6qeu5uAMAv68yZM5o1a5Yk8Zv8NezDDz90dwvAVUfIAYBrkLe3t7tbAK46Pq4CapGK+12++uor/f73v5e/v7+aNm2qJ554QoZh6MiRI7r77rtlt9sVHBys559/3ly3tLRUKSkpioqKkr+/vxo0aKA+ffro448/NmsOHTqkpk2bSpJmzZolm80mm82mmTNnmjX79u3T/fffr6ZNm8rPz0/t2rXTtGnTKvVaWFio4cOHKyAgQP7+/hoxYoTOnDlTqe6tt95SVFSU/Pz81KhRIw0ZMkRHjhypVLd06VK1bt1afn5+6tGjh/75z39e1jls2bKl7rzzTn344Yfq0qWLfH19FRERoffee6/KY5gwYYLCwsLk4+OjNm3a6LnnnlN5eblL3V/+8hfdfPPNaty4sfz8/BQVFaV33333kvp5+umn5eHhoZdfftkce/nll3XjjTeqfv36uv7669W9e3etWLHiko/x0KFDstls+stf/qKFCxeqVatWql+/vvr166cjR47IMAw99dRTCg0NlZ+fn+6++26dOHHCZRs/vidn48aNstlsWrVqlZ555hmFhobK19dXt99+uw4ePHjJvQG1igGg1pgxY4YhyejSpYsxdOhQY9GiRUZ8fLwhyZg3b57Rrl07Y9y4ccaiRYuMXr16GZKMTZs2GYZhGAUFBUazZs2MpKQkY/HixcacOXOMdu3aGV5eXsbnn39uGIZhnD592li8eLEhybjnnnuMN99803jzzTeNL774wjAMw/jiiy8Mu91uNG7c2EhOTjZeeeUVY/LkyUZkZGSlHrt27Wrce++9xqJFi4zRo0cbkozJkye7HM/TTz9t2Gw2Y/DgwcaiRYuMWbNmGU2aNDFatmxpnDx50qx79dVXDUnGzTffbLz00kvGhAkTjICAAKNVq1bGr3/962qdwxYtWhht27Y1AgICjKlTpxrz5s0zIiMjDQ8PD+PDDz8064qLi41OnToZjRs3Nv70pz8ZS5YsMR566CHDZrMZjz32mMs2Q0NDjf/5n/8xFixYYMybN8/o0aOHIclIS0tzqZNkJCYmmvPTpk0zbDabsXTpUnNs6dKlhiTjvvvuM1555RVj/vz5xqhRo4xHH330ko8xLy/P/D6JiIgw5s2bZ0yfPt3w9vY2evbsafzpT38yz+Wjjz5q2Gw2Y8SIES7b+PWvf+1ybj/++GPz6xoVFWW88MILxsyZM4369esbPXr0uOTegNqEkAPUIhUBYsyYMebY+fPnjdDQUMNmsxnPPvusOX7y5EnDz8/PSEhIMOtKSkpctnfy5EkjKCjIGDlypDlWUFBgSDJmzJhRaf99+/Y1GjZsaPznP/9xGS8vL6/U44XbNAzDuOeee4zGjRub84cOHTI8PT2NZ555xqVu9+7dRr169czx0tJSIzAw0OjSpYtL/xVh4HJCjiTjb3/7mzlWVFRkNGvWzOjatas59tRTTxkNGjQwvvrqK5f1p06danh6ehqHDx82x86cOeNSU1paanTs2NG47bbbXMYvDDl//OMfDQ8PDyM1NdWl5u677zZuvPHGah3Tj1WEnKZNmxqFhYXmeHJysiHJ6Ny5s3Hu3DlzfOjQoYa3t7dx9uxZc+xiIadDhw4uX4f58+cbkozdu3dfUc+AO/BxFVALjR492vy3p6enunfvLsMwNGrUKHM8ICBA7dq107///W+zruI+i/Lycp04cULnz59X9+7d9dlnn/3sPgsKCrR582aNHDlSzZs3d1lms9kq1Y8dO9Zlvk+fPvruu+/kdDolSe+9957Ky8t1//3369tvvzWn4OBg3XDDDebHaDt37tTx48c1duxYl/tEhg8fLn9//5/tuyohISG65557zHm73a6HHnpIn3/+uRwOhyRp9erV6tOnj66//nqX/mJjY1VWVqbNmzeb6/v5+Zn/PnnypIqKitSnT58qz6thGBo/frzmz5+vt956SwkJCS7LAwIC9M0332jHjh2XdWwX+t3vfudyjqKjoyVJv//971WvXj2X8dLSUv33v//92W2OGDHC5evQp08fSTK/z4C6hBuPgVroxyHD399fvr6+atKkSaXx7777zpxfvny5nn/+ee3bt0/nzp0zx8PDw392nxU/xDp27HhZPV5//fWSfggBdrtdBw4ckGEYuuGGG6pc38vLS5L0n//8R5Iq1Xl5ealVq1aX1MuPtWnTplIwa9u2raQf7mcJDg7WgQMHtGvXLvMepR87fvy4+e+0tDQ9/fTTys3NVUlJiTleVfh74403dPr0aS1evFhDhw6ttHzKlCn66KOP1KNHD7Vp00b9+vXTAw88oF69elX7OKv6PpGksLCwKsdPnjxZ7W1e+HUF6hpCDlALeXp6XtKY9MOVA+mHG3yHDx+ugQMHatKkSQoMDJSnp6dmz56tr7/++hfp8cJ+ysvLZbPZtH79+iprr7vuuhrvqTrKy8v1m9/8RpMnT65yeUUo+uc//6nf/va36tu3rxYtWqRmzZrJy8tLy5Ytq/Jm4V69eik3N1cLFizQ/fffr0aNGrks79Chg/bv36+0tDSlp6frb3/7mxYtWqSUlBTz0f5LdbGvwc99bS5nm5eyLlDbEHIAi3j33XfVqlUrvffeey5XGGbMmOFSV9XVB0nmVZM9e/bUSD+tW7eWYRgKDw83A0NVWrRoIUk6cOCAbrvtNnP83LlzysvLU+fOnau974MHD8owDJdj/eqrryT98PRVRX+nT59WbGzsT27rb3/7m3x9fZWRkSEfHx9zfNmyZVXWt2nTRnPmzNEtt9yi/v37KysrSw0bNnSpadCggQYPHqzBgwertLRU9957r5555hklJyfL19e32scLoGrckwNYRMVv4Bf+xr1t2zZlZ2e71NWvX1/SD49PX6hp06bq27evXn/9dR0+fNhl2eX8Fn/vvffK09NTs2bNqrS+YRjmx2zdu3dX06ZNtWTJEpWWlpo1qamplXq8VEePHtWaNWvMeafTqTfeeENdunRRcHCwJOn+++9Xdna2MjIyKq1fWFio8+fPS/rhvNpsNpWVlZnLDx06pLVr1150/506ddI//vEPffnll7rrrrv0/fffm8su/HhR+uF9NRERETIMw+UjRgBXjis5gEXceeedeu+993TPPfcoPj5eeXl5WrJkiSIiInT69Gmzzs/PTxEREVq5cqXatm2rRo0aqWPHjurYsaNeeukl9e7dW926ddOYMWMUHh6uQ4cOad26dcrNza1WP61bt9bTTz+t5ORkHTp0SAMHDlTDhg2Vl5enNWvWaMyYMXr88cfl5eWlp59+Wn/4wx902223afDgwcrLy9OyZcsu+56ctm3batSoUdqxY4eCgoL0+uuvKz8/3+Xqy6RJk/T+++/rzjvv1PDhwxUVFaXi4mLt3r1b7777rg4dOqQmTZooPj5e8+bNU//+/fXAAw/o+PHjWrhwodq0aaNdu3ZdtIeePXvq73//u+644w7dd999Wrt2rby8vNSvXz8FBwerV69eCgoK0pdffqkFCxYoPj6+0hUfAFeGkANYxPDhw+VwOPTKK68oIyNDEREReuutt7R69epKf6fq1Vdf1SOPPKKJEyeqtLRUM2bMUMeOHdW5c2d9+umneuKJJ7R48WKdPXtWLVq00P33339ZPU2dOlVt27bVCy+8YN5vEhYWpn79+um3v/2tWTdmzBiVlZVp7ty5mjRpkiIjI/X+++/riSeeuKz93nDDDXr55Zc1adIk7d+/X+Hh4Vq5cqXi4uLMmvr162vTpk3685//rNWrV+uNN96Q3W5X27ZtNWvWLPNm3dtuu02vvfaann32WU2YMEHh4eF67rnndOjQoZ8MORXrrlq1SoMGDdKDDz6oFStW6A9/+IPefvttzZs3T6dPn1ZoaKgeffRRTZ8+/bKOFcDF2QzuJgNgIS1btlTHjh2Vlpbm7lYAuBn35AAAAEvi4yoAdUJBQYHLzb8/5u3tXelx7bqmrKxMBQUFP1lz3XXXuf3xe6CuIOQAqBNuuukm88WBVfn1r39d6d6juubIkSM/++LGGTNmuPxBVQAXxz05AOqETz75xOVR7B+7/vrrFRUV9Qt2VPPOnj2rLVu2/GRNq1atLvupM+BaQ8gBAACWxI3HAADAkq7pe3LKy8t19OhRNWzY8KKvugcAALWLYRg6deqUQkJC5OFx8es113TIOXr0aKW/1gsAAOqGI0eOKDQ09KLLr+mQU/EK9SNHjshut7u5GwAAcCmcTqfCwsJ+9k+hXNMhp+IjKrvdTsgBAKCO+blbTbjxGAAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFI9dzdgVefSt1Qa8+rf2w2dAABwbeJKDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKRqhZzFixerU6dOstvtstvtiomJ0fr1683lt9xyi2w2m8s0duxYl20cPnxY8fHxql+/vgIDAzVp0iSdP3/epWbjxo3q1q2bfHx81KZNG6WmplbqZeHChWrZsqV8fX0VHR2t7du3V+dQAACAxVUr5ISGhurZZ59VTk6Odu7cqdtuu01333239u7da9Y8/PDDOnbsmDnNmTPHXFZWVqb4+HiVlpZq69atWr58uVJTU5WSkmLW5OXlKT4+Xrfeeqtyc3M1YcIEjR49WhkZGWbNypUrlZSUpBkzZuizzz5T586dFRcXp+PHj1/JuQAAABZiMwzDuJINNGrUSHPnztWoUaN0yy23qEuXLnrxxRerrF2/fr3uvPNOHT16VEFBQZKkJUuWaMqUKSooKJC3t7emTJmidevWac+ePeZ6Q4YMUWFhodLT0yVJ0dHRuummm7RgwQJJUnl5ucLCwvTII49o6tSpl9y70+mUv7+/ioqKZLfbL/MMVI1HyAEAuDou9ef3Zd+TU1ZWpnfeeUfFxcWKiYkxx99++201adJEHTt2VHJyss6cOWMuy87OVmRkpBlwJCkuLk5Op9O8GpSdna3Y2FiXfcXFxSk7O1uSVFpaqpycHJcaDw8PxcbGmjUXU1JSIqfT6TIBAABrqvbLAHfv3q2YmBidPXtW1113ndasWaOIiAhJ0gMPPKAWLVooJCREu3bt0pQpU7R//3699957kiSHw+EScCSZ8w6H4ydrnE6nvv/+e508eVJlZWVV1uzbt+8ne589e7ZmzZpV3UMGAAB1ULVDTrt27ZSbm6uioiK9++67SkhI0KZNmxQREaExY8aYdZGRkWrWrJluv/12ff3112rdunWNNn45kpOTlZSUZM47nU6FhYW5sSMAAHC1VDvkeHt7q02bNpKkqKgo7dixQ/Pnz9crr7xSqTY6OlqSdPDgQbVu3VrBwcGVnoLKz8+XJAUHB5v/WzF2YY3dbpefn588PT3l6elZZU3FNi7Gx8dHPj4+1ThaAABQV13xe3LKy8tVUlJS5bLc3FxJUrNmzSRJMTEx2r17t8tTUJmZmbLb7eZHXjExMcrKynLZTmZmpnnfj7e3t6KiolxqysvLlZWV5XJvEAAAuLZV60pOcnKyBgwYoObNm+vUqVNasWKFNm7cqIyMDH399ddasWKF7rjjDjVu3Fi7du3SxIkT1bdvX3Xq1EmS1K9fP0VEROjBBx/UnDlz5HA4NH36dCUmJppXWMaOHasFCxZo8uTJGjlypDZs2KBVq1Zp3bp1Zh9JSUlKSEhQ9+7d1aNHD7344osqLi7WiBEjavDUAACAuqxaIef48eN66KGHdOzYMfn7+6tTp07KyMjQb37zGx05ckQfffSRGTjCwsI0aNAgTZ8+3Vzf09NTaWlpGjdunGJiYtSgQQMlJCToySefNGvCw8O1bt06TZw4UfPnz1doaKheffVVxcXFmTWDBw9WQUGBUlJS5HA41KVLF6Wnp1e6GRkAAFy7rvg9OXUZ78kBAKDuuervyQEAAKjNCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSqhVyFi9erE6dOslut8tutysmJkbr1683l589e1aJiYlq3LixrrvuOg0aNEj5+fku2zh8+LDi4+NVv359BQYGatKkSTp//rxLzcaNG9WtWzf5+PioTZs2Sk1NrdTLwoUL1bJlS/n6+io6Olrbt2+vzqEAAACLq1bICQ0N1bPPPqucnBzt3LlTt912m+6++27t3btXkjRx4kR98MEHWr16tTZt2qSjR4/q3nvvNdcvKytTfHy8SktLtXXrVi1fvlypqalKSUkxa/Ly8hQfH69bb71Vubm5mjBhgkaPHq2MjAyzZuXKlUpKStKMGTP02WefqXPnzoqLi9Px48ev9HwAAACLsBmGYVzJBho1aqS5c+fqvvvuU9OmTbVixQrdd999kqR9+/apQ4cOys7OVs+ePbV+/XrdeeedOnr0qIKCgiRJS5Ys0ZQpU1RQUCBvb29NmTJF69at0549e8x9DBkyRIWFhUpPT5ckRUdH66abbtKCBQskSeXl5QoLC9MjjzyiqVOnXnLvTqdT/v7+Kioqkt1uv5LTUMm59C2Vxrz6967RfQAAcC261J/fl31PTllZmd555x0VFxcrJiZGOTk5OnfunGJjY82a9u3bq3nz5srOzpYkZWdnKzIy0gw4khQXFyen02leDcrOznbZRkVNxTZKS0uVk5PjUuPh4aHY2Fiz5mJKSkrkdDpdJgAAYE3VDjm7d+/WddddJx8fH40dO1Zr1qxRRESEHA6HvL29FRAQ4FIfFBQkh8MhSXI4HC4Bp2J5xbKfqnE6nfr+++/17bffqqysrMqaim1czOzZs+Xv729OYWFh1T18AABQR1Q75LRr1065ubnatm2bxo0bp4SEBP3rX/+6Gr3VuOTkZBUVFZnTkSNH3N0SAAC4SupVdwVvb2+1adNGkhQVFaUdO3Zo/vz5Gjx4sEpLS1VYWOhyNSc/P1/BwcGSpODg4EpPQVU8fXVhzY+fyMrPz5fdbpefn588PT3l6elZZU3FNi7Gx8dHPj4+1T1kAABQB13xe3LKy8tVUlKiqKgoeXl5KSsry1y2f/9+HT58WDExMZKkmJgY7d692+UpqMzMTNntdkVERJg1F26joqZiG97e3oqKinKpKS8vV1ZWllkDAABQrSs5ycnJGjBggJo3b65Tp05pxYoV2rhxozIyMuTv769Ro0YpKSlJjRo1kt1u1yOPPKKYmBj17NlTktSvXz9FRETowQcf1Jw5c+RwODR9+nQlJiaaV1jGjh2rBQsWaPLkyRo5cqQ2bNigVatWad26dWYfSUlJSkhIUPfu3dWjRw+9+OKLKi4u1ogRI2rw1AAAgLqsWiHn+PHjeuihh3Ts2DH5+/urU6dOysjI0G9+8xtJ0gsvvCAPDw8NGjRIJSUliouL06JFi8z1PT09lZaWpnHjxikmJkYNGjRQQkKCnnzySbMmPDxc69at08SJEzV//nyFhobq1VdfVVxcnFkzePBgFRQUKCUlRQ6HQ126dFF6enqlm5EBAMC164rfk1OX8Z4cAADqnqv+nhwAAIDajJADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsqZ67G7CqQ4XrXeZbBgxwUycAAFybuJIDAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsqVohZ/bs2brpppvUsGFDBQYGauDAgdq/f79LzS233CKbzeYyjR071qXm8OHDio+PV/369RUYGKhJkybp/PnzLjUbN25Ut27d5OPjozZt2ig1NbVSPwsXLlTLli3l6+ur6Ohobd++vTqHAwAALKxaIWfTpk1KTEzUp59+qszMTJ07d079+vVTcXGxS93DDz+sY8eOmdOcOXPMZWVlZYqPj1dpaam2bt2q5cuXKzU1VSkpKWZNXl6e4uPjdeuttyo3N1cTJkzQ6NGjlZGRYdasXLlSSUlJmjFjhj777DN17txZcXFxOn78+OWeCwAAYCE2wzCMy125oKBAgYGB2rRpk/r27Svphys5Xbp00YsvvljlOuvXr9edd96po0ePKigoSJK0ZMkSTZkyRQUFBfL29taUKVO0bt067dmzx1xvyJAhKiwsVHp6uiQpOjpaN910kxYsWCBJKi8vV1hYmB555BFNnTr1kvp3Op3y9/dXUVGR7Hb75Z6GKh14Z5rLfMuAAfLq37tG9wEAwLXoUn9+X9E9OUVFRZKkRo0auYy//fbbatKkiTp27Kjk5GSdOXPGXJadna3IyEgz4EhSXFycnE6n9u7da9bExsa6bDMuLk7Z2dmSpNLSUuXk5LjUeHh4KDY21qypSklJiZxOp8sEAACsqd7lrlheXq4JEyaoV69e6tixozn+wAMPqEWLFgoJCdGuXbs0ZcoU7d+/X++9954kyeFwuAQcSea8w+H4yRqn06nvv/9eJ0+eVFlZWZU1+/btu2jPs2fP1qxZsy73kAEAQB1y2SEnMTFRe/bs0ZYtW1zGx4wZY/47MjJSzZo10+23366vv/5arVu3vvxOa0BycrKSkpLMeafTqbCwMDd2BAAArpbLCjnjx49XWlqaNm/erNDQ0J+sjY6OliQdPHhQrVu3VnBwcKWnoPLz8yVJwcHB5v9WjF1YY7fb5efnJ09PT3l6elZZU7GNqvj4+MjHx+fSDhIAANRp1bonxzAMjR8/XmvWrNGGDRsUHh7+s+vk5uZKkpo1ayZJiomJ0e7du12egsrMzJTdbldERIRZk5WV5bKdzMxMxcTESJK8vb0VFRXlUlNeXq6srCyzBgAAXNuqdSUnMTFRK1as0N///nc1bNjQvIfG399ffn5++vrrr7VixQrdcccdaty4sXbt2qWJEyeqb9++6tSpkySpX79+ioiI0IMPPqg5c+bI4XBo+vTpSkxMNK+yjB07VgsWLNDkyZM1cuRIbdiwQatWrdK6devMXpKSkpSQkKDu3burR48eevHFF1VcXKwRI0bU1LkBAAB1WLVCzuLFiyX98Jj4hZYtW6bhw4fL29tbH330kRk4wsLCNGjQIE2fPt2s9fT0VFpamsaNG6eYmBg1aNBACQkJevLJJ82a8PBwrVu3ThMnTtT8+fMVGhqqV199VXFxcWbN4MGDVVBQoJSUFDkcDnXp0kXp6emVbkYGAADXpit6T05dx3tyAACoe36R9+QAAADUVoQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSdUKObNnz9ZNN92khg0bKjAwUAMHDtT+/ftdas6ePavExEQ1btxY1113nQYNGqT8/HyXmsOHDys+Pl7169dXYGCgJk2apPPnz7vUbNy4Ud26dZOPj4/atGmj1NTUSv0sXLhQLVu2lK+vr6Kjo7V9+/bqHA4AALCwaoWcTZs2KTExUZ9++qkyMzN17tw59evXT8XFxWbNxIkT9cEHH2j16tXatGmTjh49qnvvvddcXlZWpvj4eJWWlmrr1q1avny5UlNTlZKSYtbk5eUpPj5et956q3JzczVhwgSNHj1aGRkZZs3KlSuVlJSkGTNm6LPPPlPnzp0VFxen48ePX8n5AAAAFmEzDMO43JULCgoUGBioTZs2qW/fvioqKlLTpk21YsUK3XfffZKkffv2qUOHDsrOzlbPnj21fv163XnnnTp69KiCgoIkSUuWLNGUKVNUUFAgb29vTZkyRevWrdOePXvMfQ0ZMkSFhYVKT0+XJEVHR+umm27SggULJEnl5eUKCwvTI488oqlTp15S/06nU/7+/ioqKpLdbr/c01ClA+9Mc5lvGTBAXv171+g+AAC4Fl3qz+8ruienqKhIktSoUSNJUk5Ojs6dO6fY2Fizpn379mrevLmys7MlSdnZ2YqMjDQDjiTFxcXJ6XRq7969Zs2F26ioqdhGaWmpcnJyXGo8PDwUGxtr1lSlpKRETqfTZQIAANZ02SGnvLxcEyZMUK9evdSxY0dJksPhkLe3twICAlxqg4KC5HA4zJoLA07F8oplP1XjdDr1/fff69tvv1VZWVmVNRXbqMrs2bPl7+9vTmFhYdU/cAAAUCdcdshJTEzUnj179M4779RkP1dVcnKyioqKzOnIkSPubgkAAFwl9S5npfHjxystLU2bN29WaGioOR4cHKzS0lIVFha6XM3Jz89XcHCwWfPjp6Aqnr66sObHT2Tl5+fLbrfLz89Pnp6e8vT0rLKmYhtV8fHxkY+PT/UPGAAA1DnVupJjGIbGjx+vNWvWaMOGDQoPD3dZHhUVJS8vL2VlZZlj+/fv1+HDhxUTEyNJiomJ0e7du12egsrMzJTdbldERIRZc+E2KmoqtuHt7a2oqCiXmvLycmVlZZk1AADg2latKzmJiYlasWKF/v73v6thw4bm/S/+/v7y8/OTv7+/Ro0apaSkJDVq1Eh2u12PPPKIYmJi1LNnT0lSv379FBERoQcffFBz5syRw+HQ9OnTlZiYaF5lGTt2rBYsWKDJkydr5MiR2rBhg1atWqV169aZvSQlJSkhIUHdu3dXjx499OKLL6q4uFgjRoyoqXMDAADqsGqFnMWLF0uSbrnlFpfxZcuWafjw4ZKkF154QR4eHho0aJBKSkoUFxenRYsWmbWenp5KS0vTuHHjFBMTowYNGighIUFPPvmkWRMeHq5169Zp4sSJmj9/vkJDQ/Xqq68qLi7OrBk8eLAKCgqUkpIih8OhLl26KD09vdLNyAAA4Np0Re/Jqet4Tw4AAHXPL/KeHAAAgNqKkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyp2iFn8+bNuuuuuxQSEiKbzaa1a9e6LB8+fLhsNpvL1L9/f5eaEydOaNiwYbLb7QoICNCoUaN0+vRpl5pdu3apT58+8vX1VVhYmObMmVOpl9WrV6t9+/by9fVVZGSk/vGPf1T3cAAAgEVVO+QUFxerc+fOWrhw4UVr+vfvr2PHjpnTX//6V5flw4YN0969e5WZmam0tDRt3rxZY8aMMZc7nU7169dPLVq0UE5OjubOnauZM2dq6dKlZs3WrVs1dOhQjRo1Sp9//rkGDhyogQMHas+ePdU9JAAAYEE2wzCMy17ZZtOaNWs0cOBAc2z48OEqLCysdIWnwpdffqmIiAjt2LFD3bt3lySlp6frjjvu0DfffKOQkBAtXrxY06ZNk8PhkLe3tyRp6tSpWrt2rfbt2ydJGjx4sIqLi5WWlmZuu2fPnurSpYuWLFlySf07nU75+/urqKhIdrv9Ms7AxR14Z5rLfMuAAfLq37tG9wEAwLXoUn9+X5V7cjZu3KjAwEC1a9dO48aN03fffWcuy87OVkBAgBlwJCk2NlYeHh7atm2bWdO3b18z4EhSXFyc9u/fr5MnT5o1sbGxLvuNi4tTdnb2RfsqKSmR0+l0mQAAgDXVeMjp37+/3njjDWVlZem5557Tpk2bNGDAAJWVlUmSHA6HAgMDXdapV6+eGjVqJIfDYdYEBQW51FTM/1xNxfKqzJ49W/7+/uYUFhZ2ZQcLAABqrXo1vcEhQ4aY/46MjFSnTp3UunVrbdy4UbfffntN765akpOTlZSUZM47nU6CDgAAFnXVHyFv1aqVmjRpooMHD0qSgoODdfz4cZea8+fP68SJEwoODjZr8vPzXWoq5n+upmJ5VXx8fGS3210mAABgTVc95HzzzTf67rvv1KxZM0lSTEyMCgsLlZOTY9Zs2LBB5eXlio6ONms2b96sc+fOmTWZmZlq166drr/+erMmKyvLZV+ZmZmKiYm52ocEAADqgGqHnNOnTys3N1e5ubmSpLy8POXm5urw4cM6ffq0Jk2apE8//VSHDh1SVlaW7r77brVp00ZxcXGSpA4dOqh///56+OGHtX37dn3yyScaP368hgwZopCQEEnSAw88IG9vb40aNUp79+7VypUrNX/+fJePmh577DGlp6fr+eef1759+zRz5kzt3LlT48ePr4HTAgAA6rpqh5ydO3eqa9eu6tq1qyQpKSlJXbt2VUpKijw9PbVr1y799re/Vdu2bTVq1ChFRUXpn//8p3x8fMxtvP3222rfvr1uv/123XHHHerdu7fLO3D8/f314YcfKi8vT1FRUfrjH/+olJQUl3fp3HzzzVqxYoWWLl2qzp07691339XatWvVsWPHKzkfAADAIq7oPTl1He/JAQCg7nHre3IAAADcjZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsqdohZ/PmzbrrrrsUEhIim82mtWvXuiw3DEMpKSlq1qyZ/Pz8FBsbqwMHDrjUnDhxQsOGDZPdbldAQIBGjRql06dPu9Ts2rVLffr0ka+vr8LCwjRnzpxKvaxevVrt27eXr6+vIiMj9Y9//KO6hwMAACyq2iGnuLhYnTt31sKFC6tcPmfOHL300ktasmSJtm3bpgYNGiguLk5nz541a4YNG6a9e/cqMzNTaWlp2rx5s8aMGWMudzqd6tevn1q0aKGcnBzNnTtXM2fO1NKlS82arVu3aujQoRo1apQ+//xzDRw4UAMHDtSePXuqe0gAAMCCbIZhGJe9ss2mNWvWaODAgZJ+uIoTEhKiP/7xj3r88cclSUVFRQoKClJqaqqGDBmiL7/8UhEREdqxY4e6d+8uSUpPT9cdd9yhb775RiEhIVq8eLGmTZsmh8Mhb29vSdLUqVO1du1a7du3T5I0ePBgFRcXKy0tzeynZ8+e6tKli5YsWXJJ/TudTvn7+6uoqEh2u/1yT0OVDrwzzWW+ZcAAefXvXaP7AADgWnSpP79r9J6cvLw8ORwOxcbGmmP+/v6Kjo5Wdna2JCk7O1sBAQFmwJGk2NhYeXh4aNu2bWZN3759zYAjSXFxcdq/f79Onjxp1ly4n4qaiv1UpaSkRE6n02UCAADWVKMhx+FwSJKCgoJcxoOCgsxlDodDgYGBLsvr1aunRo0audRUtY0L93GxmorlVZk9e7b8/f3NKSwsrLqHCAAA6ohr6umq5ORkFRUVmdORI0fc3RIAALhKajTkBAcHS5Ly8/NdxvPz881lwcHBOn78uMvy8+fP68SJEy41VW3jwn1crKZieVV8fHxkt9tdJgAAYE01GnLCw8MVHBysrKwsc8zpdGrbtm2KiYmRJMXExKiwsFA5OTlmzYYNG1ReXq7o6GizZvPmzTp37pxZk5mZqXbt2un66683ay7cT0VNxX4AAMC1rdoh5/Tp08rNzVVubq6kH242zs3N1eHDh2Wz2TRhwgQ9/fTTev/997V792499NBDCgkJMZ/A6tChg/r376+HH35Y27dv1yeffKLx48dryJAhCgkJkSQ98MAD8vb21qhRo7R3716tXLlS8+fPV1JSktnHY489pvT0dD3//PPat2+fZs6cqZ07d2r8+PFXflYAAECdV6+6K+zcuVO33nqrOV8RPBISEpSamqrJkyeruLhYY8aMUWFhoXr37q309HT5+vqa67z99tsaP368br/9dnl4eGjQoEF66aWXzOX+/v768MMPlZiYqKioKDVp0kQpKSku79K5+eabtWLFCk2fPl1/+tOfdMMNN2jt2rXq2LHjZZ0IAABgLVf0npy6jvfkAABQ97jlPTkAAAC1BSEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUrVfBgjUhHPpWyqN8R4hAEBN4koOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwpHrubgA4VLhekuSxc68kqXX3P7izHQCARXAlBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKNh5yZM2fKZrO5TO3btzeXnz17VomJiWrcuLGuu+46DRo0SPn5+S7bOHz4sOLj41W/fn0FBgZq0qRJOn/+vEvNxo0b1a1bN/n4+KhNmzZKTU2t6UMBAAB12FW5knPjjTfq2LFj5rRlyxZz2cSJE/XBBx9o9erV2rRpk44ePap7773XXF5WVqb4+HiVlpZq69atWr58uVJTU5WSkmLW5OXlKT4+Xrfeeqtyc3M1YcIEjR49WhkZGVfjcAAAQB10VV4GWK9ePQUHB1caLyoq0muvvaYVK1botttukyQtW7ZMHTp00KeffqqePXvqww8/1L/+9S999NFHCgoKUpcuXfTUU09pypQpmjlzpry9vbVkyRKFh4fr+eeflyR16NBBW7Zs0QsvvKC4uLircUgAAKCOuSpXcg4cOKCQkBC1atVKw4YN0+HDhyVJOTk5OnfunGJjY83a9u3bq3nz5srOzpYkZWdnKzIyUkFBQWZNXFycnE6n9u7da9ZcuI2KmoptXExJSYmcTqfLBAAArKnGQ050dLRSU1OVnp6uxYsXKy8vT3369NGpU6fkcDjk7e2tgIAAl3WCgoLkcDgkSQ6HwyXgVCyvWPZTNU6nU99///1Fe5s9e7b8/f3NKSws7EoPFwAA1FI1/nHVgAEDzH936tRJ0dHRatGihVatWiU/P7+a3l21JCcnKykpyZx3Op0EHQAALOqqP0IeEBCgtm3b6uDBgwoODlZpaakKCwtdavLz8817eIKDgys9bVUx/3M1drv9J4OUj4+P7Ha7ywQAAKzpqoec06dP6+uvv1azZs0UFRUlLy8vZWVlmcv379+vw4cPKyYmRpIUExOj3bt36/jx42ZNZmam7Ha7IiIizJoLt1FRU7ENAACAGg85jz/+uDZt2qRDhw5p69atuueee+Tp6amhQ4fK399fo0aNUlJSkj7++GPl5ORoxIgRiomJUc+ePSVJ/fr1U0REhB588EF98cUXysjI0PTp05WYmCgfHx9J0tixY/Xvf/9bkydP1r59+7Ro0SKtWrVKEydOrOnDAQAAdVSN35PzzTffaOjQofruu+/UtGlT9e7dW59++qmaNm0qSXrhhRfk4eGhQYMGqaSkRHFxcVq0aJG5vqenp9LS0jRu3DjFxMSoQYMGSkhI0JNPPmnWhIeHa926dZo4caLmz5+v0NBQvfrqqzw+DgAATDbDMAx3N+EuTqdT/v7+KioqqvH7cw68M81lvmXAAHn1712j+6jLzqX/3wsiDxWulyR5tGkuSWrd/Q9u6QkAUDdc6s9v/nYVAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwpHrubgDApTmXvsVl3qt/bzd1AgB1A1dyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJfEyQKAOOVS43vy3x869at39D27sBgBqN67kAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS+JlgDXsfNk57d3zoQ59n6/rbN4K9QmQh83m7rZQx5UZZdpbfkBfeR6V3fBReHkjfkO5BOfSt7jMe/Xv7aZOALhDnQ85Cxcu1Ny5c+VwONS5c2e9/PLL6tGjh1t6+ST7Lb3+31d0wrtYavzDWKMSP91z6ka1DHBLS7CA7KNZem3PXH13/rjk88OYf7mvBn7fR63d2xoA1Gp1+pfBlStXKikpSTNmzNBnn32mzp07Ky4uTsePH//Fe/kk+y395fg8nfAqdhk/4f29Xmu8U5+e2HKRNYGLyz6apTk7J+u7s67f00W2s1p+MlPZR7Pc1BkA1H51OuTMmzdPDz/8sEaMGKGIiAgtWbJE9evX1+uvv/6L9nG+7Jxe/+8rP8z8+JOp/z+/3CtN58vO/aJ9oW4rM8r02p65kozKC///99Xre/6iMqPsF+2rLjlUuN6cAFx76uzHVaWlpcrJyVFycrI55uHhodjYWGVnZ1e5TklJiUpKSsz5oqIiSZLT6byiXnbvzlD+ead0/uI1Dp3Stk/XKjIy7or2ZRXniv/vitfpMz98TWynv5d05V8Pq/jXd5/JceLYT9YcO3NUOw79UxGNu/1CXdUtFd9bkuT0KpYX31suzmW6/n+l129i3NQJUD0VPycMo4pfAi9QZ0POt99+q7KyMgUFBbmMBwUFad++fVWuM3v2bM2aNavSeFhY2FXp8cfW6f5fZD9130R3N1CnrNOt7m6hjnje3Q0AqGGnTp2Sv7//RZfX2ZBzOZKTk5WUlGTOl5eX68SJE2rcuLFsNfgElNPpVFhYmI4cOSK73V5j27UiztWl41xVD+fr0nGuLh3n6tJdzXNlGIZOnTqlkJCQn6yrsyGnSZMm8vT0VH5+vst4fn6+goODq1zHx8dHPj4+LmMBAQFXq0XZ7Xb+I7hEnKtLx7mqHs7XpeNcXTrO1aW7Wufqp67gVKizNx57e3srKipKWVn/93RJeXm5srKyFBPD58oAAFzr6uyVHElKSkpSQkKCunfvrh49eujFF19UcXGxRowY4e7WAACAm9XpkDN48GAVFBQoJSVFDodDXbp0UXp6eqWbkX9pPj4+mjFjRqWPxlAZ5+rSca6qh/N16ThXl45zdelqw7myGT/3/BUAAEAdVGfvyQEAAPgphBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhJwaNHPmTNlsNpepffv27m6r1vrvf/+r3//+92rcuLH8/PwUGRmpnTt3urutWqdly5aVvq9sNpsSExPd3VqtU1ZWpieeeELh4eHy8/NT69at9dRTT/3sH/G7Vp06dUoTJkxQixYt5Ofnp5tvvlk7duxwd1u1wubNm3XXXXcpJCRENptNa9eudVluGIZSUlLUrFkz+fn5KTY2VgcOHHBPs272c+fqvffeU79+/cw/oZSbm/uL9UbIqWE33nijjh07Zk5btmxxd0u10smTJ9WrVy95eXlp/fr1+te//qXnn39e119/vbtbq3V27Njh8j2VmZkpSfrd737n5s5qn+eee06LFy/WggUL9OWXX+q5557TnDlz9PLLL7u7tVpp9OjRyszM1Jtvvqndu3erX79+io2N1X//+193t+Z2xcXF6ty5sxYuXFjl8jlz5uill17SkiVLtG3bNjVo0EBxcXE6e/bsL9yp+/3cuSouLlbv3r313HPP/cKdSTJQY2bMmGF07tzZ3W3UCVOmTDF69+7t7jbqpMcee8xo3bq1UV5e7u5Wap34+Hhj5MiRLmP33nuvMWzYMDd1VHudOXPG8PT0NNLS0lzGu3XrZkybNs1NXdVOkow1a9aY8+Xl5UZwcLAxd+5cc6ywsNDw8fEx/vrXv7qhw9rjx+fqQnl5eYYk4/PPP//F+uFKTg07cOCAQkJC1KpVKw0bNkyHDx92d0u10vvvv6/u3bvrd7/7nQIDA9W1a1f97//+r7vbqvVKS0v11ltvaeTIkbLZbO5up9a5+eablZWVpa+++kqS9MUXX2jLli0aMGCAmzurfc6fP6+ysjL5+vq6jPv5+XEF+mfk5eXJ4XAoNjbWHPP391d0dLSys7Pd2Bl+jJBTg6Kjo5Wamqr09HQtXrxYeXl56tOnj06dOuXu1mqdf//731q8eLFuuOEGZWRkaNy4cXr00Ue1fPlyd7dWq61du1aFhYUaPny4u1uplaZOnaohQ4aoffv28vLyUteuXTVhwgQNGzbM3a3VOg0bNlRMTIyeeuopHT16VGVlZXrrrbeUnZ2tY8eOubu9Ws3hcEhSpT8hFBQUZC5D7VCn/3ZVbXPhb4udOnVSdHS0WrRooVWrVmnUqFFu7Kz2KS8vV/fu3fXnP/9ZktS1a1ft2bNHS5YsUUJCgpu7q71ee+01DRgwQCEhIe5upVZatWqV3n77ba1YsUI33nijcnNzNWHCBIWEhPB9VYU333xTI0eO1K9+9St5enqqW7duGjp0qHJyctzdGlAjuJJzFQUEBKht27Y6ePCgu1updZo1a6aIiAiXsQ4dOvDx3k/4z3/+o48++kijR492dyu11qRJk8yrOZGRkXrwwQc1ceJEzZ49292t1UqtW7fWpk2bdPr0aR05ckTbt2/XuXPn1KpVK3e3VqsFBwdLkvLz813G8/PzzWWoHQg5V9Hp06f19ddfq1mzZu5updbp1auX9u/f7zL21VdfqUWLFm7qqPZbtmyZAgMDFR8f7+5Waq0zZ87Iw8P1/9Y8PT1VXl7upo7qhgYNGqhZs2Y6efKkMjIydPfdd7u7pVotPDxcwcHBysrKMsecTqe2bdummJgYN3aGH+Pjqhr0+OOP66677lKLFi109OhRzZgxQ56enho6dKi7W6t1Jk6cqJtvvll//vOfdf/992v79u1aunSpli5d6u7WaqXy8nItW7ZMCQkJqleP/2wv5q677tIzzzyj5s2b68Ybb9Tnn3+uefPmaeTIke5urVbKyMiQYRhq166dDh48qEmTJql9+/YaMWKEu1tzu9OnT7tchc/Ly1Nubq4aNWqk5s2ba8KECXr66ad1ww03KDw8XE888YRCQkI0cOBA9zXtJj93rk6cOKHDhw/r6NGjkmT+ghscHHz1r3z9Ys9xXQMGDx5sNGvWzPD29jZ+9atfGYMHDzYOHjzo7rZqrQ8++MDo2LGj4ePjY7Rv395YunSpu1uqtTIyMgxJxv79+93dSq3mdDqNxx57zGjevLnh6+trtGrVypg2bZpRUlLi7tZqpZUrVxqtWrUyvL29jeDgYCMxMdEoLCx0d1u1wscff2xIqjQlJCQYhvHDY+RPPPGEERQUZPj4+Bi33377Nfvf58+dq2XLllW5fMaMGVe9N5th8CpQAABgPdyTAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALOn/AR03Qg0bVVMcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOM5JREFUeJzt3XtUVXX+//HXET0HTcBb3BLxmooXVEyitDQJJMbGySlTSyrSLGxUGnWY+irld8LRMbXxllNqs9Jvat80b6mIFzLxhpKXktHErBScSjlKCgr798f82N9OaEkBRzbPx1p7LfZnv89nvz8n1/CaffbZ2AzDMAQAAGAxtdzdAAAAQGUg5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AA1zOLFi2Wz2XTy5El3t3LTaN68uX7zm9+4uw1J0hNPPKHmzZu7uw3AEgg5ACxh6dKlmjlzprvbAHATIeQAsASrhJx//OMfys7OdncbgCXUdncDAID/U6dOHXe3AFgGV3IAaO7cuerQoYMcDocCAwOVkJCg8+fPu9T07t1bHTt21Keffqo+ffqoXr16uu222zR16tQy833xxRd68MEHdcstt8jX11djx47Vxo0bZbPZtG3bNpfa3bt3q1+/fvLx8VG9evV077336uOPP3apuXDhgsaMGaPmzZvL4XDI19dX999/v/bv32/2tm7dOn3xxRey2Wyy2Wy/6L6WTZs2qUuXLvL09FRISIjef//9cs9hs9k0atQorVixQiEhIapbt64iIiJ06NAhSdIbb7yh1q1by9PTU7179y5zb9SP78k5efKkbDab/va3v2nBggVq1aqVHA6H7rjjDu3du7fc/QE1CVdygBouOTlZL7/8siIjI/Xss88qOztb8+bN0969e/Xxxx+7XFk4d+6c+vXrp4ceekiPPPKI3nvvPU2YMEGdOnVSTEyMJKmgoED33Xefzpw5o9GjR8vf319Lly7V1q1by5x7y5YtiomJUVhYmCZNmqRatWpp0aJFuu+++/TRRx+pR48ekqSRI0fqvffe06hRoxQSEqJvv/1WO3bs0GeffaZu3brpxRdfVH5+vr766ivNmDFDklS/fv1yvQ/Hjh3ToEGDNHLkSMXFxWnRokV6+OGHtWHDBt1///3lmuujjz7S6tWrlZCQIElKSUnRb37zG40fP15z587Vc889p3Pnzmnq1Kl66qmntGXLlp+dc+nSpbpw4YKeeeYZ2Ww2TZ06VQ899JBOnDjB1R/gegwANcqiRYsMSUZOTo5x9uxZw263G1FRUUZxcbFZM3v2bEOSsXDhQnPs3nvvNSQZ//znP82xwsJCw9/f3xg4cKA5Nn36dEOSsWrVKnPs0qVLRrt27QxJxtatWw3DMIySkhKjTZs2RnR0tFFSUmLWfv/990aLFi2M+++/3xzz8fExEhISfnJdsbGxRnBwcLnfD8MwjODgYEOS8b//+7/mWH5+vhEQEGB07dq1XHNJMhwOh5GTk2OOvfHGG4Ykw9/f33A6neZ4UlKS+d+iVFxcnMs6cnJyDElG48aNje+++84c/+CDDwxJxpo1a8rVH1CT8HEVUINt3rxZRUVFGjNmjGrV+r//ORg+fLi8vb21bt06l/r69evrscceM/ftdrt69OihEydOmGMbNmzQbbfdpgcffNAc8/T01PDhw13mysrK0rFjxzRkyBB9++23+uabb/TNN9+ooKBAffv2VXp6ukpKSiRJDRo00O7du3X69OkKXf8PBQYG6ne/+5257+3trWHDhunAgQPKzc0t11x9+/Z1+cgpPDxckjRw4EB5eXmVGf/h+3c9gwYNUsOGDc39Xr163fBrgZqKj6uAGuyLL76QJLVt29Zl3G63q2XLlubxUk2bNpXNZnMZa9iwoQ4ePOgyZ6tWrcrUtW7d2mX/2LFjkqS4uLjr9pefn6+GDRtq6tSpiouLU1BQkMLCwvTAAw9o2LBhatmy5Q2u9Oe1bt26TM+33367pP/cF+Pv73/DczVr1sxl38fHR5IUFBR0zfFz586Ve87SwHMjrwVqKkIOgBvm4eFxzXHDMMo9V+lVmmnTpqlLly7XrCm9r+aRRx5Rr169tHLlSm3atEnTpk3TX//6V73//vvmvUA3k+u9T7/m/avI9x6oKQg5QA0WHBwsScrOzna5KlJUVKScnBxFRkb+ojk//fRTGYbhcmXk+PHjLnWtWrWS9J+PhW7kPAEBAXruuef03HPP6ezZs+rWrZv+8pe/mCHnx1dhyuv48eNlev7Xv/4lSTyBGKimuCcHqMEiIyNlt9v1+uuvu1wReOutt5Sfn6/Y2NhyzxkdHa2vv/5aq1evNscuX76sf/zjHy51YWFhatWqlf72t7/p4sWLZeb597//LUkqLi5Wfn6+yzFfX18FBgaqsLDQHLvlllvK1JXH6dOntXLlSnPf6XTqn//8p7p06VKuj6oA3Dy4kgPUYLfeequSkpL08ssvq1+/fnrwwQeVnZ2tuXPn6o477nC5yfhGPfPMM5o9e7YGDx6s0aNHKyAgQEuWLJGnp6ek/7viUqtWLb355puKiYlRhw4d9OSTT+q2227T119/ra1bt8rb21tr1qzRhQsX1LRpU/3+979XaGio6tevr82bN2vv3r2aPn26ed6wsDAtW7ZMiYmJuuOOO1S/fn3179//hvu+/fbbFR8fr71798rPz08LFy5UXl6eFi1aVO73AMDNgZAD1HDJycm69dZbNXv2bI0dO1aNGjXSiBEj9Oqrr/6i56/Ur19fW7Zs0fPPP69Zs2apfv36GjZsmO666y4NHDjQDDvSfx7il5GRocmTJ2v27Nm6ePGi/P39FR4ermeeeUaSVK9ePT333HPatGmT3n//fZWUlKh169aaO3eunn32WXOu5557TllZWVq0aJFmzJih4ODgcoWcNm3a6O9//7vGjRun7OxstWjRQsuWLVN0dHS53wMANwebwV1rAKrAzJkzNXbsWH311Ve67bbb3N0OgBqAkAOgwl26dEl169Y19y9fvqyuXbuquLjYvJkXACobH1cBqHAPPfSQmjVrpi5duig/P1/vvPOOjh49qiVLllRpH//+979VXFx83eN2u12NGjW6obl+7oGAdevWNZ97A+DmwJUcABVu5syZevPNN3Xy5EkVFxcrJCRE48eP16BBg6q0j+bNm5d5oOEP3XvvvWX+YOj1/NxX1OPi4rR48eJydAegshFyAFjWxx9/rEuXLl33eMOGDRUWFnZDc23evPknjwcGBiokJKRc/QGoXIQcAABgSTwMEAAAWFKNvvG4pKREp0+flpeX169+JDwAAKgahmHowoULCgwMVK1a179eU6NDzunTp8v8VWAAAFA9fPnll2ratOl1j9fokOPl5SXpP2+St7e3m7sBAAA3wul0KigoyPw9fj01OuSUfkTl7e1NyAEAoJr5uVtNuPEYAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUrlCTkpKiu644w55eXnJ19dXAwYMUHZ2tkvN5cuXlZCQoMaNG6t+/foaOHCg8vLyXGpOnTql2NhY1atXT76+vho3bpyuXr3qUrNt2zZ169ZNDodDrVu31uLFi8v0M2fOHDVv3lyenp4KDw/Xnj17yrMcAABgYeUKOdu3b1dCQoJ27dql1NRUXblyRVFRUSooKDBrxo4dqzVr1mjFihXavn27Tp8+rYceesg8XlxcrNjYWBUVFWnnzp16++23tXjxYk2cONGsycnJUWxsrPr06aOsrCyNGTNGTz/9tDZu3GjWLFu2TImJiZo0aZL279+v0NBQRUdH6+zZs7/m/QAAAFZh/Apnz541JBnbt283DMMwzp8/b9SpU8dYsWKFWfPZZ58ZkoyMjAzDMAxj/fr1Rq1atYzc3FyzZt68eYa3t7dRWFhoGIZhjB8/3ujQoYPLuQYNGmRER0eb+z169DASEhLM/eLiYiMwMNBISUm54f7z8/MNSUZ+fn45Vg0AANzpRn9//6p7cvLz8yVJjRo1kiRlZmbqypUrioyMNGvatWunZs2aKSMjQ5KUkZGhTp06yc/Pz6yJjo6W0+nUkSNHzJofzlFaUzpHUVGRMjMzXWpq1aqlyMhIs+ZaCgsL5XQ6XTYAAGBNvzjklJSUaMyYMbr77rvVsWNHSVJubq7sdrsaNGjgUuvn56fc3Fyz5ocBp/R46bGfqnE6nbp06ZK++eYbFRcXX7OmdI5rSUlJkY+Pj7kFBQWVf+EAAKBaqP1LX5iQkKDDhw9rx44dFdlPpUpKSlJiYqK573Q6CTqV4MqGsv8m6vTr6YZOAAA12S8KOaNGjdLatWuVnp6upk2bmuP+/v4qKirS+fPnXa7m5OXlyd/f36z58begSr999cOaH38jKy8vT97e3qpbt648PDzk4eFxzZrSOa7F4XDI4XCUf8EAAKDaKdfHVYZhaNSoUVq5cqW2bNmiFi1auBwPCwtTnTp1lJaWZo5lZ2fr1KlTioiIkCRFRETo0KFDLt+CSk1Nlbe3t0JCQsyaH85RWlM6h91uV1hYmEtNSUmJ0tLSzBoAAFCzletKTkJCgpYuXaoPPvhAXl5e5v0vPj4+qlu3rnx8fBQfH6/ExEQ1atRI3t7eev755xUREaE777xTkhQVFaWQkBA9/vjjmjp1qnJzc/XSSy8pISHBvMoycuRIzZ49W+PHj9dTTz2lLVu2aPny5Vq3bp3ZS2JiouLi4tS9e3f16NFDM2fOVEFBgZ588smKem8AAEB1Vp6vbEm65rZo0SKz5tKlS8Zzzz1nNGzY0KhXr57xu9/9zjhz5ozLPCdPnjRiYmKMunXrGk2aNDFeeOEF48qVKy41W7duNbp06WLY7XajZcuWLuco9fe//91o1qyZYbfbjR49ehi7du0qz3L4CnklKfrwozIbAAAV5UZ/f9sMwzDcF7Hcy+l0ysfHR/n5+fL29nZ3O5bBjccAgMp0o7+/+dtVAADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAksodctLT09W/f38FBgbKZrNp1apVLsdtNts1t2nTppk1zZs3L3N8ypQpLvMcPHhQvXr1kqenp4KCgjR16tQyvaxYsULt2rWTp6enOnXqpPXr15d3OQAAwKLKHXIKCgoUGhqqOXPmXPP4mTNnXLaFCxfKZrNp4MCBLnWvvPKKS93zzz9vHnM6nYqKilJwcLAyMzM1bdo0JScna8GCBWbNzp07NXjwYMXHx+vAgQMaMGCABgwYoMOHD5d3SQAAwIJql/cFMTExiomJue5xf39/l/0PPvhAffr0UcuWLV3Gvby8ytSWWrJkiYqKirRw4ULZ7XZ16NBBWVlZeu211zRixAhJ0qxZs9SvXz+NGzdOkjR58mSlpqZq9uzZmj9/fnmXBQAALKZS78nJy8vTunXrFB8fX+bYlClT1LhxY3Xt2lXTpk3T1atXzWMZGRm65557ZLfbzbHo6GhlZ2fr3LlzZk1kZKTLnNHR0crIyLhuP4WFhXI6nS4bAACwpnJfySmPt99+W15eXnrooYdcxv/whz+oW7duatSokXbu3KmkpCSdOXNGr732miQpNzdXLVq0cHmNn5+feaxhw4bKzc01x35Yk5ube91+UlJS9PLLL1fE0gAAwE2uUkPOwoULNXToUHl6erqMJyYmmj937txZdrtdzzzzjFJSUuRwOCqtn6SkJJdzO51OBQUFVdr5AACA+1RayPnoo4+UnZ2tZcuW/WxteHi4rl69qpMnT6pt27by9/dXXl6eS03pful9PNerud59PpLkcDgqNUQBAICbR6Xdk/PWW28pLCxMoaGhP1ublZWlWrVqydfXV5IUERGh9PR0XblyxaxJTU1V27Zt1bBhQ7MmLS3NZZ7U1FRFRERU4CoAAEB1Ve6Qc/HiRWVlZSkrK0uSlJOTo6ysLJ06dcqscTqdWrFihZ5++ukyr8/IyNDMmTP1ySef6MSJE1qyZInGjh2rxx57zAwwQ4YMkd1uV3x8vI4cOaJly5Zp1qxZLh81jR49Whs2bND06dN19OhRJScna9++fRo1alR5lwQAAKzIKKetW7cakspscXFxZs0bb7xh1K1b1zh//nyZ12dmZhrh4eGGj4+P4enpabRv39549dVXjcuXL7vUffLJJ0bPnj0Nh8Nh3HbbbcaUKVPKzLV8+XLj9ttvN+x2u9GhQwdj3bp15VpLfn6+IcnIz88v1+vw04o+/KjMBgBARbnR3982wzAMN2Yst3I6nfLx8VF+fr68vb3d3Y5lXNmwo8xYnX493dAJAMCKbvT3N3+7CgAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKl/oFOoKbhGUEAcPPgSg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALCkcoec9PR09e/fX4GBgbLZbFq1apXL8SeeeEI2m81l69evn0vNd999p6FDh8rb21sNGjRQfHy8Ll686FJz8OBB9erVS56engoKCtLUqVPL9LJixQq1a9dOnp6e6tSpk9avX1/e5QAAAIsqd8gpKChQaGio5syZc92afv366cyZM+b2P//zPy7Hhw4dqiNHjig1NVVr165Venq6RowYYR53Op2KiopScHCwMjMzNW3aNCUnJ2vBggVmzc6dOzV48GDFx8frwIEDGjBggAYMGKDDhw+Xd0kAAMCCbIZhGL/4xTabVq5cqQEDBphjTzzxhM6fP1/mCk+pzz77TCEhIdq7d6+6d+8uSdqwYYMeeOABffXVVwoMDNS8efP04osvKjc3V3a7XZL0pz/9SatWrdLRo0clSYMGDVJBQYHWrl1rzn3nnXeqS5cumj9//g3173Q65ePjo/z8fHl7e/+CdwDXcmXDjjJjdfr1dEMnVa8mrx0AqsqN/v6ulHtytm3bJl9fX7Vt21bPPvusvv32W/NYRkaGGjRoYAYcSYqMjFStWrW0e/dus+aee+4xA44kRUdHKzs7W+fOnTNrIiMjXc4bHR2tjIyM6/ZVWFgop9PpsgEAAGuq8JDTr18//fOf/1RaWpr++te/avv27YqJiVFxcbEkKTc3V76+vi6vqV27tho1aqTc3Fyzxs/Pz6WmdP/nakqPX0tKSop8fHzMLSgo6NctFgAA3LRqV/SEjz76qPlzp06d1LlzZ7Vq1Urbtm1T3759K/p05ZKUlKTExERz3+l0EnQAALCoSv8KecuWLdWkSRMdP35ckuTv76+zZ8+61Fy9elXfffed/P39zZq8vDyXmtL9n6spPX4tDodD3t7eLhsAALCmSg85X331lb799lsFBARIkiIiInT+/HllZmaaNVu2bFFJSYnCw8PNmvT0dF25csWsSU1NVdu2bdWwYUOzJi0tzeVcqampioiIqOwlAQCAaqDcIefixYvKyspSVlaWJCknJ0dZWVk6deqULl68qHHjxmnXrl06efKk0tLS9Nvf/latW7dWdHS0JKl9+/bq16+fhg8frj179ujjjz/WqFGj9OijjyowMFCSNGTIENntdsXHx+vIkSNatmyZZs2a5fJR0+jRo7VhwwZNnz5dR48eVXJysvbt26dRo0ZVwNsCAACqu3KHnH379qlr167q2rWrJCkxMVFdu3bVxIkT5eHhoYMHD+rBBx/U7bffrvj4eIWFhemjjz6Sw+Ew51iyZInatWunvn376oEHHlDPnj1dnoHj4+OjTZs2KScnR2FhYXrhhRc0ceJEl2fp3HXXXVq6dKkWLFig0NBQvffee1q1apU6duz4a94PAABgEb/qOTnVHc/JqRw1+VkxNXntAFBV3PqcHAAAAHcj5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEuq7e4GACs5ef7DMmNtxBOPAcAduJIDAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsqdwhJz09Xf3791dgYKBsNptWrVplHrty5YomTJigTp066ZZbblFgYKCGDRum06dPu8zRvHlz2Ww2l23KlCkuNQcPHlSvXr3k6empoKAgTZ06tUwvK1asULt27eTp6alOnTpp/fr15V0OAACwqHKHnIKCAoWGhmrOnDlljn3//ffav3+//uu//kv79+/X+++/r+zsbD344INlal955RWdOXPG3J5//nnzmNPpVFRUlIKDg5WZmalp06YpOTlZCxYsMGt27typwYMHKz4+XgcOHNCAAQM0YMAAHT58uLxLQgU7ef7DMhsAAFWtdnlfEBMTo5iYmGse8/HxUWpqqsvY7Nmz1aNHD506dUrNmjUzx728vOTv73/NeZYsWaKioiItXLhQdrtdHTp0UFZWll577TWNGDFCkjRr1iz169dP48aNkyRNnjxZqampmj17tubPn3/NeQsLC1VYWGjuO53OG184AACoVir9npz8/HzZbDY1aNDAZXzKlClq3LixunbtqmnTpunq1avmsYyMDN1zzz2y2+3mWHR0tLKzs3Xu3DmzJjIy0mXO6OhoZWRkXLeXlJQU+fj4mFtQUFAFrBAAANyMKjXkXL58WRMmTNDgwYPl7e1tjv/hD3/Qu+++q61bt+qZZ57Rq6++qvHjx5vHc3Nz5efn5zJX6X5ubu5P1pQev5akpCTl5+eb25dffvmr1wgAAG5O5f646kZduXJFjzzyiAzD0Lx581yOJSYmmj937txZdrtdzzzzjFJSUuRwOCqrJTkcjkqdHwAA3Dwq5UpOacD54osvlJqa6nIV51rCw8N19epVnTx5UpLk7++vvLw8l5rS/dL7eK5Xc737fAAAQM1S4SGnNOAcO3ZMmzdvVuPGjX/2NVlZWapVq5Z8fX0lSREREUpPT9eVK1fMmtTUVLVt21YNGzY0a9LS0lzmSU1NVURERAWuBgAAVFfl/rjq4sWLOn78uLmfk5OjrKwsNWrUSAEBAfr973+v/fv3a+3atSouLjbvkWnUqJHsdrsyMjK0e/du9enTR15eXsrIyNDYsWP12GOPmQFmyJAhevnllxUfH68JEybo8OHDmjVrlmbMmGGed/To0br33ns1ffp0xcbG6t1339W+fftcvmYOAABqrnKHnH379qlPnz7mfun9NXFxcUpOTtbq1aslSV26dHF53datW9W7d285HA69++67Sk5OVmFhoVq0aKGxY8e63Kfj4+OjTZs2KSEhQWFhYWrSpIkmTpxofn1cku666y4tXbpUL730kv785z+rTZs2WrVqlTp27FjeJQEAAAuyGYZhuLsJd3E6nfLx8VF+fv7P3jeEG3fs3RfLjLV59C9u6KTq1eS1A0BVudHf3/ztKgAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEnlDjnp6enq37+/AgMDZbPZtGrVKpfjhmFo4sSJCggIUN26dRUZGaljx4651Hz33XcaOnSovL291aBBA8XHx+vixYsuNQcPHlSvXr3k6empoKAgTZ06tUwvK1asULt27eTp6alOnTpp/fr15V0OAACwqHKHnIKCAoWGhmrOnDnXPD516lS9/vrrmj9/vnbv3q1bbrlF0dHRunz5slkzdOhQHTlyRKmpqVq7dq3S09M1YsQI87jT6VRUVJSCg4OVmZmpadOmKTk5WQsWLDBrdu7cqcGDBys+Pl4HDhzQgAEDNGDAAB0+fLi8SwIAABZkMwzD+MUvttm0cuVKDRgwQNJ/ruIEBgbqhRde0B//+EdJUn5+vvz8/LR48WI9+uij+uyzzxQSEqK9e/eqe/fukqQNGzbogQce0FdffaXAwEDNmzdPL774onJzc2W32yVJf/rTn7Rq1SodPXpUkjRo0CAVFBRo7dq1Zj933nmnunTpovnz599Q/06nUz4+PsrPz5e3t/cvfRvwI8fefbHMWJtH/+KGTqpeTV47AFSVG/39XaH35OTk5Cg3N1eRkZHmmI+Pj8LDw5WRkSFJysjIUIMGDcyAI0mRkZGqVauWdu/ebdbcc889ZsCRpOjoaGVnZ+vcuXNmzQ/PU1pTep5rKSwslNPpdNkAAIA1VWjIyc3NlST5+fm5jPv5+ZnHcnNz5evr63K8du3aatSokUvNteb44TmuV1N6/FpSUlLk4+NjbkFBQeVdIgAAqCZq1LerkpKSlJ+fb25ffvmlu1sCAACVpEJDjr+/vyQpLy/PZTwvL8885u/vr7Nnz7ocv3r1qr777juXmmvN8cNzXK+m9Pi1OBwOeXt7u2wAAMCaKjTktGjRQv7+/kpLSzPHnE6ndu/erYiICElSRESEzp8/r8zMTLNmy5YtKikpUXh4uFmTnp6uK1eumDWpqalq27atGjZsaNb88DylNaXnAQAANVu5Q87FixeVlZWlrKwsSf+52TgrK0unTp2SzWbTmDFj9N///d9avXq1Dh06pGHDhikwMND8Blb79u3Vr18/DR8+XHv27NHHH3+sUaNG6dFHH1VgYKAkaciQIbLb7YqPj9eRI0e0bNkyzZo1S4mJiWYfo0eP1oYNGzR9+nQdPXpUycnJ2rdvn0aNGvXr3xUAAFDt1S7vC/bt26c+ffqY+6XBIy4uTosXL9b48eNVUFCgESNG6Pz58+rZs6c2bNggT09P8zVLlizRqFGj1LdvX9WqVUsDBw7U66+/bh738fHRpk2blJCQoLCwMDVp0kQTJ050eZbOXXfdpaVLl+qll17Sn//8Z7Vp00arVq1Sx44df9EbAQAArOVXPSenuuM5OZWjJj8rpiavHQCqiluekwMAAHCzIOQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLqvCQ07x5c9lstjJbQkKCJKl3795ljo0cOdJljlOnTik2Nlb16tWTr6+vxo0bp6tXr7rUbNu2Td26dZPD4VDr1q21ePHiil4KAACoxmpX9IR79+5VcXGxuX/48GHdf//9evjhh82x4cOH65VXXjH369WrZ/5cXFys2NhY+fv7a+fOnTpz5oyGDRumOnXq6NVXX5Uk5eTkKDY2ViNHjtSSJUuUlpamp59+WgEBAYqOjq7oJQEAgGqowkPOrbfe6rI/ZcoUtWrVSvfee685Vq9ePfn7+1/z9Zs2bdKnn36qzZs3y8/PT126dNHkyZM1YcIEJScny263a/78+WrRooWmT58uSWrfvr127NihGTNmEHIAAICkSr4np6ioSO+8846eeuop2Ww2c3zJkiVq0qSJOnbsqKSkJH3//ffmsYyMDHXq1El+fn7mWHR0tJxOp44cOWLWREZGupwrOjpaGRkZP9lPYWGhnE6nywYAAKypwq/k/NCqVat0/vx5PfHEE+bYkCFDFBwcrMDAQB08eFATJkxQdna23n//fUlSbm6uS8CRZO7n5ub+ZI3T6dSlS5dUt27da/aTkpKil19+uaKWBwAAbmKVGnLeeustxcTEKDAw0BwbMWKE+XOnTp0UEBCgvn376vPPP1erVq0qsx0lJSUpMTHR3Hc6nQoKCqrUcwIAAPeotJDzxRdfaPPmzeYVmusJDw+XJB0/flytWrWSv7+/9uzZ41KTl5cnSeZ9PP7+/ubYD2u8vb2vexVHkhwOhxwOR7nXAgAAqp9Kuydn0aJF8vX1VWxs7E/WZWVlSZICAgIkSRERETp06JDOnj1r1qSmpsrb21shISFmTVpamss8qampioiIqMAVAACA6qxSQk5JSYkWLVqkuLg41a79fxeLPv/8c02ePFmZmZk6efKkVq9erWHDhumee+5R586dJUlRUVEKCQnR448/rk8++UQbN27USy+9pISEBPMqzMiRI3XixAmNHz9eR48e1dy5c7V8+XKNHTu2MpYDAACqoUoJOZs3b9apU6f01FNPuYzb7XZt3rxZUVFRateunV544QUNHDhQa9asMWs8PDy0du1aeXh4KCIiQo899piGDRvm8lydFi1aaN26dUpNTVVoaKimT5+uN998k6+PAwAAU6XckxMVFSXDMMqMBwUFafv27T/7+uDgYK1fv/4na3r37q0DBw784h4BAIC18berAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJdV2dwMArOPKhh0u+3X69XRTJwDAlRwAAGBRhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJPPEYQIU5ef5Dl/024onHANyHKzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSKjzkJCcny2azuWzt2rUzj1++fFkJCQlq3Lix6tevr4EDByovL89ljlOnTik2Nlb16tWTr6+vxo0bp6tXr7rUbNu2Td26dZPD4VDr1q21ePHiil4KAACoxirlSk6HDh105swZc9uxY4d5bOzYsVqzZo1WrFih7du36/Tp03rooYfM48XFxYqNjVVRUZF27typt99+W4sXL9bEiRPNmpycHMXGxqpPnz7KysrSmDFj9PTTT2vjxo2VsRwAAFANVcpzcmrXri1/f/8y4/n5+Xrrrbe0dOlS3XfffZKkRYsWqX379tq1a5fuvPNObdq0SZ9++qk2b94sPz8/denSRZMnT9aECROUnJwsu92u+fPnq0WLFpo+fbokqX379tqxY4dmzJih6OjoylgSAACoZirlSs6xY8cUGBioli1baujQoTp16pQkKTMzU1euXFFkZKRZ265dOzVr1kwZGRmSpIyMDHXq1El+fn5mTXR0tJxOp44cOWLW/HCO0prSOa6nsLBQTqfTZQMAANZU4SEnPDxcixcv1oYNGzRv3jzl5OSoV69eunDhgnJzc2W329WgQQOX1/j5+Sk3N1eSlJub6xJwSo+XHvupGqfTqUuXLl23t5SUFPn4+JhbUFDQr10uAAC4SVX4x1UxMTHmz507d1Z4eLiCg4O1fPly1a1bt6JPVy5JSUlKTEw0951OJ0EHAACLqvSvkDdo0EC33367jh8/Ln9/fxUVFen8+fMuNXl5eeY9PP7+/mW+bVW6/3M13t7ePxmkHA6HvL29XTYAAGBNlR5yLl68qM8//1wBAQEKCwtTnTp1lJaWZh7Pzs7WqVOnFBERIUmKiIjQoUOHdPbsWbMmNTVV3t7eCgkJMWt+OEdpTekcAAAAFR5y/vjHP2r79u06efKkdu7cqd/97nfy8PDQ4MGD5ePjo/j4eCUmJmrr1q3KzMzUk08+qYiICN15552SpKioKIWEhOjxxx/XJ598oo0bN+qll15SQkKCHA6HJGnkyJE6ceKExo8fr6NHj2ru3Llavny5xo4dW9HLAQAA1VSF35Pz1VdfafDgwfr222916623qmfPntq1a5duvfVWSdKMGTNUq1YtDRw4UIWFhYqOjtbcuXPN13t4eGjt2rV69tlnFRERoVtuuUVxcXF65ZVXzJoWLVpo3bp1Gjt2rGbNmqWmTZvqzTff5OvjAADAVOEh59133/3J456enpozZ47mzJlz3Zrg4GCtX7/+J+fp3bu3Dhw48It6BAAA1sffrgIAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZU4SEnJSVFd9xxh7y8vOTr66sBAwYoOzvbpaZ3796y2Wwu28iRI11qTp06pdjYWNWrV0++vr4aN26crl696lKzbds2devWTQ6HQ61bt9bixYsrejkAAKCaqvCQs337diUkJGjXrl1KTU3VlStXFBUVpYKCApe64cOH68yZM+Y2depU81hxcbFiY2NVVFSknTt36u2339bixYs1ceJEsyYnJ0exsbHq06ePsrKyNGbMGD399NPauHFjRS8JAABUQ7UresINGza47C9evFi+vr7KzMzUPffcY47Xq1dP/v7+15xj06ZN+vTTT7V582b5+fmpS5cumjx5siZMmKDk5GTZ7XbNnz9fLVq00PTp0yVJ7du3144dOzRjxgxFR0dX9LIAAEA1U+n35OTn50uSGjVq5DK+ZMkSNWnSRB07dlRSUpK+//5781hGRoY6deokPz8/cyw6OlpOp1NHjhwxayIjI13mjI6OVkZGxnV7KSwslNPpdNkAAIA1VfiVnB8qKSnRmDFjdPfdd6tjx47m+JAhQxQcHKzAwEAdPHhQEyZMUHZ2tt5//31JUm5urkvAkWTu5+bm/mSN0+nUpUuXVLdu3TL9pKSk6OWXX67QNQIAgJtTpYachIQEHT58WDt27HAZHzFihPlzp06dFBAQoL59++rzzz9Xq1atKq2fpKQkJSYmmvtOp1NBQUGVdj4AAOA+lRZyRo0apbVr1yo9PV1Nmzb9ydrw8HBJ0vHjx9WqVSv5+/trz549LjV5eXmSZN7H4+/vb479sMbb2/uaV3EkyeFwyOFw/KL1lNeVDTvKjNXp17NKzg0AACrhnhzDMDRq1CitXLlSW7ZsUYsWLX72NVlZWZKkgIAASVJERIQOHTqks2fPmjWpqany9vZWSEiIWZOWluYyT2pqqiIiIipoJQAAoDqr8JCTkJCgd955R0uXLpWXl5dyc3OVm5urS5cuSZI+//xzTZ48WZmZmTp58qRWr16tYcOG6Z577lHnzp0lSVFRUQoJCdHjjz+uTz75RBs3btRLL72khIQE80rMyJEjdeLECY0fP15Hjx7V3LlztXz5co0dO7ailwQAAKqhCg858+bNU35+vnr37q2AgABzW7ZsmSTJbrdr8+bNioqKUrt27fTCCy9o4MCBWrNmjTmHh4eH1q5dKw8PD0VEROixxx7TsGHD9Morr5g1LVq00Lp165SamqrQ0FBNnz5db775Jl8fBwAAkirhnhzDMH7yeFBQkLZv3/6z8wQHB2v9+vU/WdO7d28dOHCgXP0BAICagb9dBQAALImQAwAALImQAwAALImQAwAALImQAwAALKlS/6wDANRUPPUccD9CDgBUgpPnPywz1kaEHKAq8XEVAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwpNrubsCqTp7/sMxYG/V0QycAANRMXMkBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWxMMAAQAV6sqGHWXG6vTjYaioeoQcAECF4onvuFkQclDhrhol2lN8St/ZLqmRUVc9PJq5uyUAQA1U7e/JmTNnjpo3by5PT0+Fh4drz5497m6pRlu0bZJerLdRq7w/U7rXSa3y/kwv1tuoRdsmubs1AEANU61DzrJly5SYmKhJkyZp//79Cg0NVXR0tM6ePevu1mqkRdsmaXX+Ghk/Gjckrc5fQ9ABAFSpah1yXnvtNQ0fPlxPPvmkQkJCNH/+fNWrV08LFy50d2s1TuHVy1qTv/Y/O7YfHfz/+2vz16rw6uUq7QsAUHNV23tyioqKlJmZqaSkJHOsVq1aioyMVEZGxjVfU1hYqMLCQnM/Pz9fkuR0Oiu8v4vfF5YZq4zz3CzW7ntDRZeu/mzd/6b/Xb/p/kwVdOQeNe2/+4/9eP01ae0/VpP/LdTktaNqlP57Mowff3bwI0Y19fXXXxuSjJ07d7qMjxs3zujRo8c1XzNp0iRD//n0hI2NjY2Nja2ab19++eVPZoVqeyXnl0hKSlJiYqK5X1JSou+++06NGzeWzfbjz1h+OafTqaCgIH355Zfy9vausHmrk5r+HrD+mr1+ifegpq9f4j2ozPUbhqELFy4oMDDwJ+uqbchp0qSJPDw8lJeX5zKel5cnf3//a77G4XDI4XC4jDVo0KCyWpS3t3eN/If9QzX9PWD9NXv9Eu9BTV+/xHtQWev38fH52Zpqe+Ox3W5XWFiY0tLSzLGSkhKlpaUpIiLCjZ0BAICbQbW9kiNJiYmJiouLU/fu3dWjRw/NnDlTBQUFevLJJ93dGgAAcLNqHXIGDRqkf//735o4caJyc3PVpUsXbdiwQX5+fm7ty+FwaNKkSWU+GqtJavp7wPpr9vol3oOavn6J9+BmWL/NMH7u+1cAAADVT7W9JwcAAOCnEHIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIqwZw5c9S8eXN5enoqPDxce/bscXdLVSY9PV39+/dXYGCgbDabVq1a5e6WqlRKSoruuOMOeXl5ydfXVwMGDFB2dra726oy8+bNU+fOnc0nnEZEROjDDz90d1tuM2XKFNlsNo0ZM8bdrVSZ5ORk2Ww2l61du3bubqtKff3113rsscfUuHFj1a1bV506ddK+ffvc3VaVad68eZl/AzabTQkJCVXeCyGngi1btkyJiYmaNGmS9u/fr9DQUEVHR+vs2bPubq1KFBQUKDQ0VHPmzHF3K26xfft2JSQkaNeuXUpNTdWVK1cUFRWlgoICd7dWJZo2baopU6YoMzNT+/bt03333aff/va3OnLkiLtbq3J79+7VG2+8oc6dO7u7lSrXoUMHnTlzxtx27Njh7paqzLlz53T33XerTp06+vDDD/Xpp59q+vTpatiwobtbqzJ79+51+e+fmpoqSXr44YervpmK+ZvgKNWjRw8jISHB3C8uLjYCAwONlJQUN3blHpKMlStXursNtzp79qwhydi+fbu7W3Gbhg0bGm+++aa726hSFy5cMNq0aWOkpqYa9957rzF69Gh3t1RlJk2aZISGhrq7DbeZMGGC0bNnT3e3cVMZPXq00apVK6OkpKTKz82VnApUVFSkzMxMRUZGmmO1atVSZGSkMjIy3NgZ3CU/P1+S1KhRIzd3UvWKi4v17rvvqqCgoMb9PbmEhATFxsa6/G9BTXLs2DEFBgaqZcuWGjp0qE6dOuXulqrM6tWr1b17dz388MPy9fVV165d9Y9//MPdbblNUVGR3nnnHT311FOy2WxVfn5CTgX65ptvVFxcXObPSvj5+Sk3N9dNXcFdSkpKNGbMGN19993q2LGju9upMocOHVL9+vXlcDg0cuRIrVy5UiEhIe5uq8q8++672r9/v1JSUtzdiluEh4dr8eLF2rBhg+bNm6ecnBz16tVLFy5ccHdrVeLEiROaN2+e2rRpo40bN+rZZ5/VH/7wB7399tvubs0tVq1apfPnz+uJJ55wy/mr9d+uAm5mCQkJOnz4cI26H0GS2rZtq6ysLOXn5+u9995TXFyctm/fXiOCzpdffqnRo0crNTVVnp6e7m7HLWJiYsyfO3furPDwcAUHB2v58uWKj493Y2dVo6SkRN27d9err74qSeratasOHz6s+fPnKy4uzs3dVb233npLMTExCgwMdMv5uZJTgZo0aSIPDw/l5eW5jOfl5cnf399NXcEdRo0apbVr12rr1q1q2rSpu9upUna7Xa1bt1ZYWJhSUlIUGhqqWbNmubutKpGZmamzZ8+qW7duql27tmrXrq3t27fr9ddfV+3atVVcXOzuFqtcgwYNdPvtt+v48ePubqVKBAQElAn07du3r1Ef2ZX64osvtHnzZj399NNu64GQU4HsdrvCwsKUlpZmjpWUlCgtLa3G3ZNQUxmGoVGjRmnlypXasmWLWrRo4e6W3K6kpESFhYXubqNK9O3bV4cOHVJWVpa5de/eXUOHDlVWVpY8PDzc3WKVu3jxoj7//HMFBAS4u5Uqcffdd5d5bMS//vUvBQcHu6kj91m0aJF8fX0VGxvrth74uKqCJSYmKi4uTt27d1ePHj00c+ZMFRQU6Mknn3R3a1Xi4sWLLv+PLScnR1lZWWrUqJGaNWvmxs6qRkJCgpYuXaoPPvhAXl5e5r1YPj4+qlu3rpu7q3xJSUmKiYlRs2bNdOHCBS1dulTbtm3Txo0b3d1alfDy8ipz/9Utt9yixo0b15j7sv74xz+qf//+Cg4O1unTpzVp0iR5eHho8ODB7m6tSowdO1Z33XWXXn31VT3yyCPas2ePFixYoAULFri7tSpVUlKiRYsWKS4uTrVruzFqVPn3uWqAv//970azZs0Mu91u9OjRw9i1a5e7W6oyW7duNSSV2eLi4tzdWpW41tolGYsWLXJ3a1XiqaeeMoKDgw273W7ceuutRt++fY1Nmza5uy23qmlfIR80aJAREBBg2O1247bbbjMGDRpkHD9+3N1tVak1a9YYHTt2NBwOh9GuXTtjwYIF7m6pym3cuNGQZGRnZ7u1D5thGIZ74hUAAEDl4Z4cAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSf8PkozqoFBQO0gAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKkZJREFUeJzt3XtclHWix/HvgA6gOOANEMVLtqui5gVvmNpFVjCq4+Y5qbl5WbMtsVUpTbdWPadNj7qWlbfaSttNj+Y5q5UWSnghFW8Ym/c0NTUDSoURUkR4zh8uzzZ5SRQb+PF5v17Pa53n+c0zv2dmlU/PPDM4LMuyBAAAYBgfb08AAADgViByAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicoBKaOHChXI4HDp69Ki3p4IfWb9+vRwOh9avX+/tqQAVHpEDwBiLFy/WrFmzvD0NAOVEFW9PAADKyuLFi7V7926NHj3a21O5YT169NC5c+fkdDq9PRWgwiNyAKAc8fHxkb+/v7enARiBt6sASJLmzp2rli1bys/PT+Hh4UpISFBOTo7HmLvvvlutWrXS3r17dc8996hatWqqX7++pk+fftn+vvrqKz344IOqXr26QkJCNGbMGK1evfqK15ts3bpVcXFxCgoKUrVq1XTXXXdp06ZNHmPOnj2r0aNHq3HjxvLz81NISIh+9atfaefOnfbcVq1apa+++koOh0MOh0ONGze+rmMfPHiw6tSpo8LCwsu29erVS82aNbuu/UjSkCFDFBgYqGPHjun+++9XYGCg6tevrzlz5kiSdu3apXvvvVfVq1dXo0aNtHjxYo/7X+manNI87wD+hcgBoMmTJyshIUHh4eGaOXOm+vbtq9dff129evW67Af/mTNnFBcXpzZt2mjmzJlq3ry5nn32WX388cf2mPz8fN1777365JNP9Pvf/17PPfecNm/erGefffayx167dq169Oght9utSZMmacqUKcrJydG9996rbdu22eOeeOIJzZs3T3379tXcuXP1zDPPKCAgQPv27ZMkPffcc2rbtq3q1Kmjv/3tb/rb3/523dfnPProozp16pRWr17tsT4zM1Nr167Vb37zm+t9KiVJRUVF6t27tyIiIjR9+nQ1btxYI0eO1MKFCxUXF6cOHTpo2rRpqlGjhgYNGqQjR4785D6v53kH8CMWgEpnwYIFliTryJEjVnZ2tuV0Oq1evXpZRUVF9pjZs2dbkqy3337bXnfXXXdZkqy//vWv9rqCggIrLCzM6tu3r71u5syZliRrxYoV9rpz585ZzZs3tyRZ69atsyzLsoqLi61f/OIXVmxsrFVcXGyP/f77760mTZpYv/rVr+x1QUFBVkJCwjWPKz4+3mrUqFGpn4+ioiKrQYMGVr9+/TzWv/TSS5bD4bAOHz583fsaPHiwJcmaMmWKve7MmTNWQECA5XA4rCVLltjr9+/fb0myJk2aZK9bt26dx3NkWdf/vAPwxJkcoJL75JNPdOHCBY0ePVo+Pv/6J2H48OFyuVxatWqVx/jAwECPMxtOp1OdOnXS4cOH7XVJSUmqX7++HnzwQXudv7+/hg8f7rGvjIwMHTx4UI888ohOnTql7777Tt99953y8/PVs2dPpaamqri4WJIUHBysrVu36uTJk2V6/NKl62AGDhyoDz74QGfPnrXXL1q0SF27dlWTJk1Kvc/HHnvM/nNwcLCaNWum6tWr6+GHH7bXN2vWTMHBwR7P3dVcz/MOwBORA1RyX331lSRddt2J0+nUbbfdZm8v0aBBAzkcDo91NWvW1JkzZzz22bRp08vG3X777R63Dx48KOnSNTF169b1WN58800VFBQoNzdXkjR9+nTt3r1bERER6tSpkyZPnlymP+AHDRqkc+fOafny5ZKkAwcOKD09XY8++mip9+Xv76+6det6rAsKCrricxcUFOTx3F3N9TzvADzx6SoApeLr63vF9ZZllXpfJWdpZsyYobZt215xTGBgoCTp4YcfVvfu3bV8+XKtWbNGM2bM0LRp0/T3v/9dvXv3LvVj/1hkZKSioqL07rvvatCgQXr33XfldDo9zrxcr6s9Rzfz3JXl8w5UFkQOUMk1atRI0qUzF7fddpu9/sKFCzpy5IhiYmJuaJ979+6VZVkeZx8OHTrkMa5p06aSJJfLdV2PU69ePY0YMUIjRoxQdna22rdvrxdffNGOnB+f6SitQYMGKTExUd98840WL16s+Ph41axZ86b2CcB7eLsKqORiYmLkdDr16quvepwVeOutt5Sbm6v4+PhS7zM2NlZff/21PvjgA3vd+fPn9Ze//MVjXFRUlJo2bao///nPysvLu2w/3377raRLn1YqeduqREhIiMLDw1VQUGCvq169+mXjSmPAgAFyOBwaNWqUDh8+XOpPVQEoXziTA1RydevW1YQJE/Sf//mfiouL04MPPqgDBw5o7ty56tix4w39oP/d736n2bNna8CAARo1apTq1aunRYsW2V9yV3LGxcfHR2+++aZ69+6tli1baujQoapfv76+/vprrVu3Ti6XSx9++KHOnj2rBg0a6N///d/Vpk0bBQYG6pNPPtH27ds1c+ZM+3GjoqK0dOlSJSYmqmPHjgoMDNQDDzxQquciLi5Oy5YtU3Bw8A0FHoDyg8gBoMmTJ6tu3bqaPXu2xowZo1q1aunxxx/XlClTVLVq1VLvLzAwUGvXrtVTTz2lV155RYGBgRo0aJC6du2qvn37enyj79133620tDS98MILmj17tvLy8hQWFqbOnTvrd7/7nSSpWrVqGjFihNasWaO///3vKi4u1u233665c+fqySeftPc1YsQIZWRkaMGCBXr55ZfVqFGjUkWOdOktq5UrV+rhhx+Wn59fqY8dQPnhsLhqDcDPZNasWRozZoxOnDih+vXre3s6V/T++++rT58+Sk1NVffu3b09HQA3gcgBcEucO3dOAQEB9u3z58+rXbt2Kioq0hdffOHFmV3b/fffr3379unQoUM3fSEzAO/i7SoAt8RDDz2khg0bqm3btsrNzdW7776r/fv3a9GiRT/rPL799lsVFRVddbvT6VStWrW0ZMkSff7551q1apVeeeWVywInNzdX586du+ZjhYWFlcmcAZQNzuQAuCVmzZqlN998U0ePHlVRUZEiIyM1btw49evX72edR+PGjS/7QsMfuuuuu+xfihkYGKh+/fpp/vz5qlLF878BhwwZonfeeeeaj8U/p0D5QuQAMNqmTZuueQamZs2aioqK+sn97N279yd/pcSNfKcQgFuHyAEAAEbiywABAICRKvWFx8XFxTp58qRq1KjBpygAAKggLMvS2bNnFR4eLh+fq5+vqdSRc/LkSUVERHh7GgAA4AYcP35cDRo0uOr2Sh05NWrUkHTpSXK5XF6eDQAAuB5ut1sRERH2z/GrqdSRU/IWlcvlInIAAKhgfupSEy48BgAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkap4ewIo3wqTNnrcrhrXzUszAQCgdDiTAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwUqkiZ+rUqerYsaNq1KihkJAQ9enTRwcOHPAYc/78eSUkJKh27doKDAxU3759lZWV5THm2LFjio+PV7Vq1RQSEqKxY8fq4sWLHmPWr1+v9u3by8/PT7fffrsWLlx42XzmzJmjxo0by9/fX507d9a2bdtKczgAAMBgpYqcDRs2KCEhQVu2bFFycrIKCwvVq1cv5efn22PGjBmjDz/8UMuWLdOGDRt08uRJPfTQQ/b2oqIixcfH68KFC9q8ebPeeecdLVy4UBMnTrTHHDlyRPHx8brnnnuUkZGh0aNH67HHHtPq1avtMUuXLlViYqImTZqknTt3qk2bNoqNjVV2dvbNPB8AAMAU1k3Izs62JFkbNmywLMuycnJyrKpVq1rLli2zx+zbt8+SZKWlpVmWZVkfffSR5ePjY2VmZtpj5s2bZ7lcLqugoMCyLMsaN26c1bJlS4/H6tevnxUbG2vf7tSpk5WQkGDfLioqssLDw62pU6de9/xzc3MtSVZubm4pjrpyufDxpx4LAADedr0/v2/qmpzc3FxJUq1atSRJ6enpKiwsVExMjD2mefPmatiwodLS0iRJaWlpat26tUJDQ+0xsbGxcrvd2rNnjz3mh/soGVOyjwsXLig9Pd1jjI+Pj2JiYuwxV1JQUCC32+2xAAAAM91w5BQXF2v06NG688471apVK0lSZmamnE6ngoODPcaGhoYqMzPTHvPDwCnZXrLtWmPcbrfOnTun7777TkVFRVccU7KPK5k6daqCgoLsJSIiovQHDgAAKoQbjpyEhATt3r1bS5YsKcv53FITJkxQbm6uvRw/ftzbUwIAALdIlRu508iRI7Vy5UqlpqaqQYMG9vqwsDBduHBBOTk5HmdzsrKyFBYWZo/58aegSj599cMxP/5EVlZWllwulwICAuTr6ytfX98rjinZx5X4+fnJz8+v9AcMAAAqnFKdybEsSyNHjtTy5cu1du1aNWnSxGN7VFSUqlatqpSUFHvdgQMHdOzYMUVHR0uSoqOjtWvXLo9PQSUnJ8vlcikyMtIe88N9lIwp2YfT6VRUVJTHmOLiYqWkpNhjAABA5VaqMzkJCQlavHix3n//fdWoUcO+/iUoKEgBAQEKCgrSsGHDlJiYqFq1asnlcumpp55SdHS0unTpIknq1auXIiMj9eijj2r69OnKzMzU888/r4SEBPssyxNPPKHZs2dr3Lhx+u1vf6u1a9fqvffe06pVq+y5JCYmavDgwerQoYM6deqkWbNmKT8/X0OHDi2r5wYAAFRkpfnIlqQrLgsWLLDHnDt3zhoxYoRVs2ZNq1q1atavf/1r65tvvvHYz9GjR63evXtbAQEBVp06daynn37aKiws9Bizbt06q23btpbT6bRuu+02j8co8dprr1kNGza0nE6n1alTJ2vLli2lORw+Qn4d+Ag5AKC8ud6f3w7LsizvJZZ3ud1uBQUFKTc3Vy6Xy9vTKZcKkzZ63K4a181LMwEA4JLr/fnN764CAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYqYq3J4Dy68sdr6s455h9u3Fwby/OBgCA0uFMDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwUqkjJzU1VQ888IDCw8PlcDi0YsUKj+1DhgyRw+HwWOLi4jzGnD59WgMHDpTL5VJwcLCGDRumvLw8jzGff/65unfvLn9/f0VERGj69OmXzWXZsmVq3ry5/P391bp1a3300UelPRwAAGCoUkdOfn6+2rRpozlz5lx1TFxcnL755ht7+Z//+R+P7QMHDtSePXuUnJyslStXKjU1VY8//ri93e12q1evXmrUqJHS09M1Y8YMTZ48WW+88YY9ZvPmzRowYICGDRumzz77TH369FGfPn20e/fu0h4SAAAwkMOyLOuG7+xwaPny5erTp4+9bsiQIcrJybnsDE+Jffv2KTIyUtu3b1eHDh0kSUlJSbrvvvt04sQJhYeHa968eXruueeUmZkpp9MpSRo/frxWrFih/fv3S5L69eun/Px8rVy50t53ly5d1LZtW82fP/+65u92uxUUFKTc3Fy5XK4beAbM9uWO11V86Jh9u3Fwb1WN6+bFGQEAcP0/v2/JNTnr169XSEiImjVrpieffFKnTp2yt6WlpSk4ONgOHEmKiYmRj4+Ptm7dao/p0aOHHTiSFBsbqwMHDujMmTP2mJiYGI/HjY2NVVpa2lXnVVBQILfb7bEAAAAzlXnkxMXF6a9//atSUlI0bdo0bdiwQb1791ZRUZEkKTMzUyEhIR73qVKlimrVqqXMzEx7TGhoqMeYkts/NaZk+5VMnTpVQUFB9hIREXFzBwsAAMqtKmW9w/79+9t/bt26te644w41bdpU69evV8+ePcv64UplwoQJSkxMtG+73W5CBwAAQ93yj5DfdtttqlOnjg4dOiRJCgsLU3Z2tseYixcv6vTp0woLC7PHZGVleYwpuf1TY0q2X4mfn59cLpfHAgAAzHTLI+fEiRM6deqU6tWrJ0mKjo5WTk6O0tPT7TFr165VcXGxOnfubI9JTU1VYWGhPSY5OVnNmjVTzZo17TEpKSkej5WcnKzo6OhbfUgAAKACKHXk5OXlKSMjQxkZGZKkI0eOKCMjQ8eOHVNeXp7Gjh2rLVu26OjRo0pJSdG//du/6fbbb1dsbKwkqUWLFoqLi9Pw4cO1bds2bdq0SSNHjlT//v0VHh4uSXrkkUfkdDo1bNgw7dmzR0uXLtUrr7zi8VbTqFGjlJSUpJkzZ2r//v2aPHmyduzYoZEjR5bB0wIAACq6UkfOjh071K5dO7Vr106SlJiYqHbt2mnixIny9fXV559/rgcffFC//OUvNWzYMEVFRenTTz+Vn5+fvY9FixapefPm6tmzp+677z5169bN4ztwgoKCtGbNGh05ckRRUVF6+umnNXHiRI/v0unatasWL16sN954Q23atNH//u//asWKFWrVqtXNPB8AAMAQN/U9ORUd35NzbXxPDgCgPPLq9+QAAAB4G5EDAACMROQAAAAjETkAAMBIZf6Nx0B5U5i08bJ1XEANAObjTA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADBSqSMnNTVVDzzwgMLDw+VwOLRixQqP7ZZlaeLEiapXr54CAgIUExOjgwcPeow5ffq0Bg4cKJfLpeDgYA0bNkx5eXkeYz7//HN1795d/v7+ioiI0PTp0y+by7Jly9S8eXP5+/urdevW+uijj0p7OAAAwFCljpz8/Hy1adNGc+bMueL26dOn69VXX9X8+fO1detWVa9eXbGxsTp//rw9ZuDAgdqzZ4+Sk5O1cuVKpaam6vHHH7e3u91u9erVS40aNVJ6erpmzJihyZMn64033rDHbN68WQMGDNCwYcP02WefqU+fPurTp492795d2kMCAAAGcliWZd3wnR0OLV++XH369JF06SxOeHi4nn76aT3zzDOSpNzcXIWGhmrhwoXq37+/9u3bp8jISG3fvl0dOnSQJCUlJem+++7TiRMnFB4ernnz5um5555TZmamnE6nJGn8+PFasWKF9u/fL0nq16+f8vPztXLlSns+Xbp0Udu2bTV//vzrmr/b7VZQUJByc3Plcrlu9Gkw1pc7XlfxoWP27cbBvVU1rpsXZ3RjCpM2XrauIh4HAOCS6/35XabX5Bw5ckSZmZmKiYmx1wUFBalz585KS0uTJKWlpSk4ONgOHEmKiYmRj4+Ptm7dao/p0aOHHTiSFBsbqwMHDujMmTP2mB8+TsmYkse5koKCArndbo8FAACYqUwjJzMzU5IUGhrqsT40NNTelpmZqZCQEI/tVapUUa1atTzGXGkfP3yMq40p2X4lU6dOVVBQkL1ERESU9hABAEAFUak+XTVhwgTl5ubay/Hjx709JdxiX+54XUdzPrYXAEDlUaaRExYWJknKysryWJ+VlWVvCwsLU3Z2tsf2ixcv6vTp0x5jrrSPHz7G1caUbL8SPz8/uVwujwUAAJipTCOnSZMmCgsLU0pKir3O7XZr69atio6OliRFR0crJydH6enp9pi1a9equLhYnTt3tsekpqaqsLDQHpOcnKxmzZqpZs2a9pgfPk7JmJLHAQAAlVupIycvL08ZGRnKyMiQdOli44yMDB07dkwOh0OjR4/Wn/70J33wwQfatWuXBg0apPDwcPsTWC1atFBcXJyGDx+ubdu2adOmTRo5cqT69++v8PBwSdIjjzwip9OpYcOGac+ePVq6dKleeeUVJSYm2vMYNWqUkpKSNHPmTO3fv1+TJ0/Wjh07NHLkyJt/VgAAQIVXpbR32LFjh+655x77dkl4DB48WAsXLtS4ceOUn5+vxx9/XDk5OerWrZuSkpLk7+9v32fRokUaOXKkevbsKR8fH/Xt21evvvqqvT0oKEhr1qxRQkKCoqKiVKdOHU2cONHju3S6du2qxYsX6/nnn9cf/vAH/eIXv9CKFSvUqlWrG3oiAACAWW7qe3IqOr4n59pM+J6cKx2DxPfkAEBF5pXvyQEAACgviBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGqeHsCAK5PYdJGj9tV47p5aSYAUDGU+ZmcyZMny+FweCzNmze3t58/f14JCQmqXbu2AgMD1bdvX2VlZXns49ixY4qPj1e1atUUEhKisWPH6uLFix5j1q9fr/bt28vPz0+33367Fi5cWNaHAgAAKrBb8nZVy5Yt9c0339jLxo3/+i/QMWPG6MMPP9SyZcu0YcMGnTx5Ug899JC9vaioSPHx8bpw4YI2b96sd955RwsXLtTEiRPtMUeOHFF8fLzuueceZWRkaPTo0Xrssce0evXqW3E4AACgArolb1dVqVJFYWFhl63Pzc3VW2+9pcWLF+vee++VJC1YsEAtWrTQli1b1KVLF61Zs0Z79+7VJ598otDQULVt21YvvPCCnn32WU2ePFlOp1Pz589XkyZNNHPmTElSixYttHHjRr388suKjY296rwKCgpUUFBg33a73WV85AAAoLy4JWdyDh48qPDwcN12220aOHCgjh07JklKT09XYWGhYmJi7LHNmzdXw4YNlZaWJklKS0tT69atFRoaao+JjY2V2+3Wnj177DE/3EfJmJJ9XM3UqVMVFBRkLxEREWVyvAAAoPwp88jp3LmzFi5cqKSkJM2bN09HjhxR9+7ddfbsWWVmZsrpdCo4ONjjPqGhocrMzJQkZWZmegROyfaSbdca43a7de7cuavObcKECcrNzbWX48eP3+zhAgCAcqrM367q3bu3/ec77rhDnTt3VqNGjfTee+8pICCgrB+uVPz8/OTn5+fVOQAAgJ/HLf+enODgYP3yl7/UoUOHFBYWpgsXLignJ8djTFZWln0NT1hY2GWftiq5/VNjXC6X10MKAACUD7c8cvLy8vTll1+qXr16ioqKUtWqVZWSkmJvP3DggI4dO6bo6GhJUnR0tHbt2qXs7Gx7THJyslwulyIjI+0xP9xHyZiSfQAAAJR55DzzzDPasGGDjh49qs2bN+vXv/61fH19NWDAAAUFBWnYsGFKTEzUunXrlJ6erqFDhyo6OlpdunSRJPXq1UuRkZF69NFH9Y9//EOrV6/W888/r4SEBPutpieeeEKHDx/WuHHjtH//fs2dO1fvvfeexowZU9aHAwAAKqgyvybnxIkTGjBggE6dOqW6deuqW7du2rJli+rWrStJevnll+Xj46O+ffuqoKBAsbGxmjt3rn1/X19frVy5Uk8++aSio6NVvXp1DR48WP/1X/9lj2nSpIlWrVqlMWPG6JVXXlGDBg305ptvXvPj4wAAoHIp88hZsmTJNbf7+/trzpw5mjNnzlXHNGrUSB999NE193P33Xfrs88+u6E5AgAA8/ELOgEAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEaq4u0JmKowaeNl66rGdfPCTFDRfbnjdUlScc4xSVLj4N7enA4AVBicyQEAAEYicgAAgJGIHAAAYCSuyblFjuZ87HGb6ygAAPh5cSYHAAAYicgBAABGInIAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAYicgBAABGInIAAICRiBwAAGCkKt6eAIDKpTBpo8ftqnHdvDQTAKbjTA4AADASkQMAAIxE5AAAACMROQAAwEhEDgAAMBKRAwAAjETkAAAAIxE5AADASEQOAAAwEpEDAACMxK91APCzO5rzsf1nnx171LTD77w4GwCm4kwOAAAwEpEDAACMROQAAAAjETkAAMBIRA4AADASkQMAAIzER8gBoJQKkzZetq5qXDcvzATAtRA5uKIiq0iHCk4q1/ekXJafmhTX8vaUKrXioiIdO39GedYF5Tky1KJGa1X19qQAoJyr8JEzZ84czZgxQ5mZmWrTpo1ee+01derUydvTqtDSTqbord0zdOp8tuR3aV1Qsb8eK66vbuK/Vn9u+48f1N8vpul0rXP/XLNTtfKr6bdpT+jO6N94dW4AUJ5V6Gtyli5dqsTERE2aNEk7d+5UmzZtFBsbq+zsbG9PrcJKO5mi6TvGXQqcH8h1nNfMi28p7WSKl2ZWOW1Ke1dv+qzVaec5j/Wnnd/rz9kvaVPau16aGQCUfxU6cl566SUNHz5cQ4cOVWRkpObPn69q1arp7bff9vbUKqQiq0hv7Z4hybp8o+PS/7y9+88qsop+1nlVVheLCvX2169fuuH40cZ/3l7w9eu6WFT4s84LlxzN+dhjAVD+VNi3qy5cuKD09HRNmDDBXufj46OYmBilpaVd8T4FBQUqKCiwb+fm5kqS3G53mc8v7/sCj9vuqvmqegsepyztPbVTmae/ueaYb74/qe1HP1Vk7fY/06xuztm8c7J+8Fq4q+ZLUrl/LSRp167Vyrroli5efUym3Nq6ZYVat479+SZ2kwrz8z3+fjjyzt2Sv4O30o+PQbo1/47caoXJnv9WVv1VtJdmApROyd83y7rCf5T/kFVBff3115Yka/PmzR7rx44da3Xq1OmK95k0aZKlS6cpWFhYWFhYWCr4cvz48Wu2QoU9k3MjJkyYoMTERPt2cXGxTp8+rdq1a8vh+PH7ATfO7XYrIiJCx48fl8vlKrP94sbwepQ/vCblC69H+cLr8dMsy9LZs2cVHh5+zXEVNnLq1KkjX19fZWVleazPyspSWFjYFe/j5+cnPz8/j3XBwcG3aopyuVz8H7Qc4fUof3hNyhdej/KF1+PagoKCfnJMhb3w2Ol0KioqSikp//q0T3FxsVJSUhQdzfvKAABUdhX2TI4kJSYmavDgwerQoYM6deqkWbNmKT8/X0OHDvX21AAAgJdV6Mjp16+fvv32W02cOFGZmZlq27atkpKSFBoa6tV5+fn5adKkSZe9NQbv4PUof3hNyhdej/KF16PsOCzrpz5/BQAAUPFU2GtyAAAAroXIAQAARiJyAACAkYgcAABgJCIHAAAYici5BebMmaPGjRvL399fnTt31rZt27w9pUpp6tSp6tixo2rUqKGQkBD16dNHBw4c8Pa08E///d//LYfDodGjR3t7KpXW119/rd/85jeqXbu2AgIC1Lp1a+3YscPb06q0ioqK9Mc//lFNmjRRQECAmjZtqhdeeOGnfwklrorIKWNLly5VYmKiJk2apJ07d6pNmzaKjY1Vdna2t6dW6WzYsEEJCQnasmWLkpOTVVhYqF69eik/P9/bU6v0tm/frtdff1133HGHt6dSaZ05c0Z33nmnqlatqo8//lh79+7VzJkzVbNmTW9PrdKaNm2a5s2bp9mzZ2vfvn2aNm2apk+frtdee83bU6uw+J6cMta5c2d17NhRs2fPlnTpV01EREToqaee0vjx4708u8rt22+/VUhIiDZs2KAePXp4ezqVVl5entq3b6+5c+fqT3/6k9q2batZs2Z5e1qVzvjx47Vp0yZ9+umn3p4K/un+++9XaGio3nrrLXtd3759FRAQoHfffdeLM6u4OJNThi5cuKD09HTFxMTY63x8fBQTE6O0tDQvzgySlJubK0mqVauWl2dSuSUkJCg+Pt7j7wl+fh988IE6dOig//iP/1BISIjatWunv/zlL96eVqXWtWtXpaSk6IsvvpAk/eMf/9DGjRvVu3dvL8+s4qrQv9ahvPnuu+9UVFR02a+VCA0N1f79+700K0iXzqiNHj1ad955p1q1auXt6VRaS5Ys0c6dO7V9+3ZvT6XSO3z4sObNm6fExET94Q9/0Pbt2/X73/9eTqdTgwcP9vb0KqXx48fL7XarefPm8vX1VVFRkV588UUNHDjQ21OrsIgcVAoJCQnavXu3Nm7c6O2pVFrHjx/XqFGjlJycLH9/f29Pp9IrLi5Whw4dNGXKFElSu3bttHv3bs2fP5/I8ZL33ntPixYt0uLFi9WyZUtlZGRo9OjRCg8P5zW5QUROGapTp458fX2VlZXlsT4rK0thYWFemhVGjhyplStXKjU1VQ0aNPD2dCqt9PR0ZWdnq3379va6oqIipaamavbs2SooKJCvr68XZ1i51KtXT5GRkR7rWrRoof/7v//z0owwduxYjR8/Xv3795cktW7dWl999ZWmTp1K5NwgrskpQ06nU1FRUUpJSbHXFRcXKyUlRdHR0V6cWeVkWZZGjhyp5cuXa+3atWrSpIm3p1Sp9ezZU7t27VJGRoa9dOjQQQMHDlRGRgaB8zO78847L/tKhS+++EKNGjXy0ozw/fffy8fH88eyr6+viouLvTSjio8zOWUsMTFRgwcPVocOHdSpUyfNmjVL+fn5Gjp0qLenVukkJCRo8eLFev/991WjRg1lZmZKkoKCghQQEODl2VU+NWrUuOx6qOrVq6t27dpcJ+UFY8aMUdeuXTVlyhQ9/PDD2rZtm9544w298cYb3p5apfXAAw/oxRdfVMOGDdWyZUt99tlneumll/Tb3/7W21OrsPgI+S0we/ZszZgxQ5mZmWrbtq1effVVde7c2dvTqnQcDscV1y9YsEBDhgz5eSeDK7r77rv5CLkXrVy5UhMmTNDBgwfVpEkTJSYmavjw4d6eVqV19uxZ/fGPf9Ty5cuVnZ2t8PBwDRgwQBMnTpTT6fT29CokIgcAABiJa3IAAICRiBwAAGAkIgcAABiJyAEAAEYicgAAgJGIHAAAYCQiBwAAGInIAQAARiJyAACAkYgcAABgJCIHAAAY6f8BI7RUBVG3+iIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOrxJREFUeJzt3Xl4VOX9//9XFrKwZMKWTSFEVBZB1ARiZLGVlKDRimIViYKK4pJYERWhCIKKYfmgggqItuBVUYEWqIIgKSAoRoRoEFAi1rBUTYJCZliTkNzfP/zl/BgSVpOGuXk+rutcV+e+33POfc+hmZdnGz9jjBEAAIBl/Ot6AAAAALWBkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQA/iwMWPGyM/PTz///HOtb+t3v/udfve739X6e85Wd911l1q1alXXw/BZlf9Wgf8lQg5Qhw4ePKgxY8boo48+quuhnHXefvttvfTSS3U9jOPyxX13tn+mQE0j5AB16ODBgxo7dqxPfVGejuXLl2v58uVn9N6z7Qv59ddfV15envPaF/ddXX6mTz31lA4dOlQn28a5K7CuBwDAXkFBQXU9hBpTr169uh6CTwsMDFRgIF85+N/iSA5wHJXXEHz77be644475HK51Lx5c40aNUrGGO3atUs33nijwsLCFBUVpcmTJzvvLS0t1ejRoxUfHy+Xy6UGDRqoe/fuWrVqlVOzfft2NW/eXJI0duxY+fn5yc/PT2PGjHFqtm7dqltvvVXNmzdXaGio2rRpo5EjR1YZa3Fxse666y6Fh4fL5XLp7rvv1sGDB6vUvfXWW4qPj1doaKiaNGmifv36adeuXVXqZs6cqdatWys0NFRdunTRxx9/fEaf4bHX5Hz00Ufy8/PTvHnzNG7cOJ1//vkKCQlRz5499d1333m9b8mSJdqxY4fzuRx9PUxJSYmefvppXXjhhQoODlaLFi00bNgwlZSUeG3fz89PGRkZWrRokTp06KDg4GBdcsklWrZsmVfdvn37NGTIELVq1UrBwcGKiIjQH/7wB33xxRdOzdHX5Jxo382aNUt+fn768ssvq3wezz//vAICAvTDDz+c0uc3e/Zs+fn5ac2aNbr//vvVtGlThYWFacCAAdq7d2+V+qVLl+rqq69Wo0aNFBYWps6dO+vtt98+pc/0ZFq1aqXrr79eH330kRISEhQaGqqOHTs6R7IWLFigjh07KiQkRPHx8VXmX901Oae6f4AzZgBU6+mnnzaSzGWXXWZuv/12M23aNJOammokmRdeeMG0adPGPPjgg2batGmma9euRpJZvXq1McaY3bt3m+joaDN06FAzffp0M3HiRNOmTRtTr1498+WXXxpjjNm/f7+ZPn26kWRuuukm8/e//938/e9/Nxs3bjTGGLNx40YTFhZmmjZtakaMGGFee+01M2zYMNOxY8cqY7z88svNzTffbKZNm2buvfdeI8kMGzbMaz7PPfec8fPzM7fddpuZNm2aGTt2rGnWrJlp1aqV2bt3r1P3xhtvGEnmqquuMlOnTjVDhgwx4eHh5oILLjBXX331aX2GV199tdd7Vq1a5Yw3Pj7evPjii2bMmDGmfv36pkuXLk7d8uXLzWWXXWaaNWvmfC4LFy40xhhTXl5uevXqZerXr2+GDBliXnvtNZORkWECAwPNjTfe6LV9SaZTp04mOjraPPvss+all14yF1xwgalfv775+eefnbr+/fuboKAgM3ToUPPGG2+YCRMmmBtuuMG89dZbTs3AgQNNbGzsSfedx+MxoaGh5rHHHqvyebRv395cc801p/z5zZo1y0gyHTt2NN27dzdTp0416enpxt/f3/To0cNUVFR41fr5+ZkOHTqYcePGmVdffdXce++95s477zzpZ3oqYmNjTZs2bUx0dLQZM2aMefHFF815551nGjZsaN566y3TsmVLM378eDN+/HjjcrnMhRdeaMrLy533V/5bPdqp7h/gTBFygOOo/KM8ePBgp+3IkSPm/PPPN35+fmb8+PFO+969e01oaKgZOHCgU1dSUuK1vr1795rIyEhzzz33OG27d+82kszTTz9dZfs9evQwjRo1Mjt27PBqP/qLrXKMR6/TGGNuuukm07RpU+f19u3bTUBAgBk3bpxX3aZNm0xgYKDTXlpaaiIiIsxll13mNf6ZM2caSTUWctq1a+e1/ilTphhJZtOmTU5bamqqEyqO9ve//934+/ubjz/+2Kt9xowZRpJZu3at0ybJBAUFme+++85p27hxo5FkXn75ZafN5XKZ9PT0E87l6JBjzIn33e23325iYmK8vuS/+OILI8nMmjXrhNs5WmXIiY+PN6WlpU77xIkTjSTzr3/9yxhjTHFxsWnUqJFJTEw0hw4d8lrH0f9ejveZnorY2FgjyXz66adO24cffmgkmdDQUK9/p6+99pqRZFatWuW0HS/knMr+Ac4Up6uAk7j33nud/x0QEKCEhAQZYzRo0CCnPTw8XG3atNH333/v1FVej1JRUaE9e/boyJEjSkhI8DoFcjy7d+/WmjVrdM8996hly5ZefdXdhvvAAw94ve7evbt++eUXeTweSb+eSqioqNCtt96qn3/+2VmioqJ00UUXOafRNmzYoKKiIj3wwANe19PcddddcrlcJx33qbr77ru91t+9e3dJcj6/E5k/f77atWuntm3bes3lmmuukSSvU4KSlJycrNatWzuvL730UoWFhXltKzw8XOvWrdOPP/74m+ZVacCAAfrxxx+9xjJnzhyFhoaqb9++p72+wYMHe10T9OCDDyowMFAffPCBJCkrK0v79u3T8OHDFRIS4vXemrxtu3379kpKSnJeJyYmSpKuueYar3+nle2nsj9PZf8AZ4qrwICTODZkuFwuhYSEqFmzZlXaf/nlF+f1m2++qcmTJ2vr1q0qKytz2uPi4k66zco/8B06dDijMTZu3FiStHfvXoWFhWnbtm0yxuiiiy6q9v2VX6A7duyQpCp19erV0wUXXHBKY/mt4z2Zbdu26ZtvvnGuiTlWUVHRCbdVub2jtzVx4kQNHDhQLVq0UHx8vK677joNGDDgjOf8hz/8QdHR0ZozZ4569uypiooKvfPOO7rxxhvVqFGj017fsfujYcOGio6O1vbt2yVJ//nPfySd+r+XM1Xd/xckqUWLFtW2n8r+PJX9A5wpQg5wEgEBAafUJknGGEm/XuB71113qU+fPnriiScUERGhgIAAZWZmOl9ItT3Go8dTUVEhPz8/LV26tNrahg0b1viYTuRk4z2RiooKdezYUS+88EK1/cd+4Z7Ktm699VZ1795dCxcu1PLlyzVp0iRNmDBBCxYs0LXXXnvSMR0rICBA/fv31+uvv65p06Zp7dq1+vHHH3XHHXec9rrOJsf7LH/L/vwt7wVOhpAD1IJ//OMfuuCCC7RgwQKv0wVPP/20V93xTiVUHkHYvHlzjYyndevWMsYoLi5OF1988XHrYmNjJf16tKTy9I8klZWVKT8/X506daqR8ZyK4302rVu31saNG9WzZ88aPRUTHR2thx56SA899JCKiop0xRVXaNy4cccNOSfb9oABAzR58mS9//77Wrp0qZo3b66UlJQzGtu2bdv0+9//3nm9f/9+/fTTT7ruuuskyTnds3nzZl144YXHXQ9PHMa5hmtygFpQ+V+nR//X6Lp165Sdne1VV79+fUm/3gJ+tObNm6tHjx7629/+pp07d3r1ncl/4d58880KCAjQ2LFjq7zfGOOcZktISFDz5s01Y8YMlZaWOjWzZ8+uMsba1qBBA7nd7irtt956q3744Qe9/vrrVfoOHTqkAwcOnNZ2ysvLq2wnIiJCMTExVW5JP9rx9l2lSy+9VJdeeqneeOMN/fOf/1S/fv3O+DkxM2fO9DrlOX36dB05csQJYL169VKjRo2UmZmpw4cPe7336P19vM8UsBVHcoBacP3112vBggW66aablJqaqvz8fM2YMUPt27fX/v37nbrQ0FC1b99ec+fO1cUXX6wmTZqoQ4cO6tChg6ZOnapu3brpiiuu0ODBgxUXF6ft27dryZIlys3NPa3xtG7dWs8995xGjBih7du3q0+fPmrUqJHy8/O1cOFCDR48WI8//rjq1aun5557Tvfff7+uueYa3XbbbcrPz9esWbNq9JqcUxEfH6+5c+dq6NCh6ty5sxo2bKgbbrhBd955p+bNm6cHHnhAq1atUteuXVVeXq6tW7dq3rx5+vDDD5WQkHDK29m3b5/OP/983XLLLerUqZMaNmyof//731q/fr3Xs4+OdaJ9V2nAgAF6/PHHJek3naoqLS1Vz549deuttyovL0/Tpk1Tt27d9Mc//lGSFBYWphdffFH33nuvOnfurP79+6tx48bauHGjDh48qDfffFPS8T9TwFp1cUsX4Asqb3ndvXu3V/vAgQNNgwYNqtRfffXV5pJLLjHG/Hrb7vPPP29iY2NNcHCwufzyy83ixYur3IZsjDGffvqpiY+PN0FBQVVuSd68ebO56aabTHh4uAkJCTFt2rQxo0aNOukYK289zs/P92r/5z//abp162YaNGhgGjRoYNq2bWvS09NNXl6eV920adNMXFycCQ4ONgkJCWbNmjVVbgc/Fce7hXz+/Pledfn5+VVur96/f7/p37+/CQ8PN5K8PrfS0lIzYcIEc8kll5jg4GDTuHFjEx8fb8aOHWvcbrdTJ6naW8NjY2Od2/1LSkrME088YTp16mQaNWpkGjRoYDp16mSmTZvm9Z7T3XfGGPPTTz+ZgIAAc/HFF5/8w6pG5X5cvXq1GTx4sGncuLFp2LChSUtLM7/88kuV+vfee89cddVVJjQ01ISFhZkuXbqYd955x+k/0Wd6MrGxsSY1NbVKe3WfceX+nDRpktN2vFvIT7Z/gN/Czxiu7gKA2vDzzz8rOjpao0eP1qhRo077/bNnz9bdd9+t9evXn9bRKQC/4pocAKgls2fPVnl5ue688866HgpwTuKaHACnbffu3SovLz9uf1BQkJo0afI/HNHZZeXKlfr66681btw49enTp8pvRB06dOikFwD/rz4/9iVsRsgBcNo6d+7sPDiwOldffbXzw43nomeeeUaffvqpunbtqpdffrlK/9y5c3X33XefcB3HPrm5trAvYTOuyQFw2tauXatDhw4dt79x48aKj4//H47It/z000/asmXLCWvi4+OdJ0HXJvYlbEbIAQAAVuLCYwAAYKXTviZnzZo1mjRpknJycvTTTz9p4cKF6tOnj6RfH/3+1FNP6YMPPtD3338vl8ul5ORkjR8/XjExMc469uzZo4cffljvv/++/P391bdvX02ZMsXr93O++uorpaena/369WrevLkefvhhDRs2zGss8+fP16hRo7R9+3ZddNFFmjBhgvOY81NRUVGhH3/8UY0aNeJx5wAA+AhjjPbt26eYmBj5+5/geM3pPljngw8+MCNHjjQLFiwwkszChQudvuLiYpOcnGzmzp1rtm7darKzs02XLl1MfHy81zp69+5tOnXqZD777DPz8ccfmwsvvNDcfvvtTr/b7TaRkZEmLS3NbN682bzzzjsmNDTUvPbaa07N2rVrTUBAgJk4caL5+uuvzVNPPWXq1atnNm3adMpz2bVrl5HEwsLCwsLC4oPLrl27Tvg9/5uuyfHz8/M6klOd9evXq0uXLtqxY4datmypb775Ru3bt/d6uNWyZct03XXX6b///a9iYmI0ffp0jRw5UgUFBQoKCpIkDR8+XIsWLdLWrVslSbfddpsOHDigxYsXO9u68sorddlll2nGjBnVjqWkpMTrt2jcbrdatmypXbt2KSws7Ew/BgAA8D/k8XjUokULFRcXy+VyHbeu1m8hd7vd8vPzU3h4uCQpOztb4eHhXk/vTE5Olr+/v9atW6ebbrpJ2dnZ6tGjhxNwJCklJUUTJkzQ3r171bhxY2VnZ2vo0KFe20pJSdGiRYuOO5bMzEyNHTu2SntYWBghBwAAH3OyS01q9cLjw4cP68knn9Ttt9/uhIiCggJFRER41QUGBqpJkyYqKChwaiIjI71qKl+frKayvzojRoyQ2+12ll27dv22CQIAgLNWrR3JKSsr06233ipjjKZPn15bmzktwcHBCg4OruthAACA/4FaCTmVAWfHjh1auXKl16mgqKgoFRUVedUfOXJEe/bsUVRUlFNTWFjoVVP5+mQ1lf0AAODcVuOnqyoDzrZt2/Tvf/9bTZs29epPSkpScXGxcnJynLaVK1eqoqJCiYmJTs2aNWtUVlbm1GRlZalNmzbOE0CTkpK0YsUKr3VnZWUpKSmppqcEAAB80GmHnP379ys3N1e5ubmSpPz8fOXm5mrnzp0qKyvTLbfcog0bNmjOnDkqLy9XQUGBCgoKVFpaKklq166devfurfvuu0+ff/651q5dq4yMDPXr1895lk7//v0VFBSkQYMGacuWLZo7d66mTJnidaHxI488omXLlmny5MnaunWrxowZow0bNigjI6MGPhYAAODzTvmhMv+fVatWVXuv+sCBA01+fv5x72VftWqVs45ffvnF3H777aZhw4YmLCzM3H333Wbfvn1e29m4caPp1q2bCQ4ONuedd54ZP358lbHMmzfPXHzxxSYoKMhccsklZsmSJac1F7fbbSQZt9t9uh8DAACoI6f6/X1O/3aVx+ORy+WS2+3mFnIAAHzEqX5/89tVAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAAr1doPdKKqsmWfeL2u17tbHY0EAAD7cSQHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArHTaIWfNmjW64YYbFBMTIz8/Py1atMir3xij0aNHKzo6WqGhoUpOTta2bdu8avbs2aO0tDSFhYUpPDxcgwYN0v79+71qvvrqK3Xv3l0hISFq0aKFJk6cWGUs8+fPV9u2bRUSEqKOHTvqgw8+ON3pAAAAS512yDlw4IA6deqkV199tdr+iRMnaurUqZoxY4bWrVunBg0aKCUlRYcPH3Zq0tLStGXLFmVlZWnx4sVas2aNBg8e7PR7PB716tVLsbGxysnJ0aRJkzRmzBjNnDnTqfn00091++23a9CgQfryyy/Vp08f9enTR5s3bz7dKQEAABuZ30CSWbhwofO6oqLCREVFmUmTJjltxcXFJjg42LzzzjvGGGO+/vprI8msX7/eqVm6dKnx8/MzP/zwgzHGmGnTppnGjRubkpISp+bJJ580bdq0cV7feuutJjU11Ws8iYmJ5v777z/l8bvdbiPJuN3uU37Pb1G69GOvBQAAnL5T/f6u0Wty8vPzVVBQoOTkZKfN5XIpMTFR2dnZkqTs7GyFh4crISHBqUlOTpa/v7/WrVvn1PTo0UNBQUFOTUpKivLy8rR3716n5ujtVNZUbqc6JSUl8ng8XgsAALBTjYacgoICSVJkZKRXe2RkpNNXUFCgiIgIr/7AwEA1adLEq6a6dRy9jePVVPZXJzMzUy6Xy1latGhxulMEAAA+4py6u2rEiBFyu93OsmvXrroeEgAAqCU1GnKioqIkSYWFhV7thYWFTl9UVJSKioq8+o8cOaI9e/Z41VS3jqO3cbyayv7qBAcHKywszGsBAAB2qtGQExcXp6ioKK1YscJp83g8WrdunZKSkiRJSUlJKi4uVk5OjlOzcuVKVVRUKDEx0alZs2aNysrKnJqsrCy1adNGjRs3dmqO3k5lTeV2AADAue20Q87+/fuVm5ur3NxcSb9ebJybm6udO3fKz89PQ4YM0XPPPaf33ntPmzZt0oABAxQTE6M+ffpIktq1a6fevXvrvvvu0+eff661a9cqIyND/fr1U0xMjCSpf//+CgoK0qBBg7RlyxbNnTtXU6ZM0dChQ51xPPLII1q2bJkmT56srVu3asyYMdqwYYMyMjJ++6cCAAB83+netrVq1SojqcoycOBAY8yvt5GPGjXKREZGmuDgYNOzZ0+Tl5fntY5ffvnF3H777aZhw4YmLCzM3H333Wbfvn1eNRs3bjTdunUzwcHB5rzzzjPjx4+vMpZ58+aZiy++2AQFBZlLLrnELFmy5LTmwi3kAAD4nlP9/vYzxpg6zFh1yuPxyOVyye12/0+uzylb9onX63q9u9X6NgEAsM2pfn+fU3dXAQCAcwchBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSYF0P4FxWtuyTKm31energ5EAAGAfjuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFaq8ZBTXl6uUaNGKS4uTqGhoWrdurWeffZZGWOcGmOMRo8erejoaIWGhio5OVnbtm3zWs+ePXuUlpamsLAwhYeHa9CgQdq/f79XzVdffaXu3bsrJCRELVq00MSJE2t6OgAAwEfVeMiZMGGCpk+frldeeUXffPONJkyYoIkTJ+rll192aiZOnKipU6dqxowZWrdunRo0aKCUlBQdPnzYqUlLS9OWLVuUlZWlxYsXa82aNRo8eLDT7/F41KtXL8XGxionJ0eTJk3SmDFjNHPmzJqeEgAA8EF+5uhDLDXg+uuvV2RkpP761786bX379lVoaKjeeustGWMUExOjxx57TI8//rgkye12KzIyUrNnz1a/fv30zTffqH379lq/fr0SEhIkScuWLdN1112n//73v4qJidH06dM1cuRIFRQUKCgoSJI0fPhwLVq0SFu3bj2lsXo8HrlcLrndboWFhdXkx1DFfza8porvdnq1tQq/tkodP+sAAMCJner3d40fybnqqqu0YsUKffvtt5KkjRs36pNPPtG11/76hZ6fn6+CggIlJyc773G5XEpMTFR2drYkKTs7W+Hh4U7AkaTk5GT5+/tr3bp1Tk2PHj2cgCNJKSkpysvL0969e6sdW0lJiTwej9cCAADsVOM/0Dl8+HB5PB61bdtWAQEBKi8v17hx45SWliZJKigokCRFRkZ6vS8yMtLpKygoUEREhPdAAwPVpEkTr5q4uLgq66jsa9y4cZWxZWZmauzYsTUwSwAAcLar8SM58+bN05w5c/T222/riy++0Jtvvqn/+7//05tvvlnTmzptI0aMkNvtdpZdu3bV9ZAAAEAtqfEjOU888YSGDx+ufv36SZI6duyoHTt2KDMzUwMHDlRUVJQkqbCwUNHR0c77CgsLddlll0mSoqKiVFRU5LXeI0eOaM+ePc77o6KiVFhY6FVT+bqy5ljBwcEKDg7+7ZMEAABnvRo/knPw4EH5+3uvNiAgQBUVFZKkuLg4RUVFacWKFU6/x+PRunXrlJSUJElKSkpScXGxcnJynJqVK1eqoqJCiYmJTs2aNWtUVlbm1GRlZalNmzbVnqoCAADnlhoPOTfccIPGjRunJUuWaPv27Vq4cKFeeOEF3XTTTZIkPz8/DRkyRM8995zee+89bdq0SQMGDFBMTIz69OkjSWrXrp169+6t++67T59//rnWrl2rjIwM9evXTzExMZKk/v37KygoSIMGDdKWLVs0d+5cTZkyRUOHDq3pKQEAAB9U46erXn75ZY0aNUoPPfSQioqKFBMTo/vvv1+jR492aoYNG6YDBw5o8ODBKi4uVrdu3bRs2TKFhIQ4NXPmzFFGRoZ69uwpf39/9e3bV1OnTnX6XS6Xli9frvT0dMXHx6tZs2YaPXq017N0AADAuavGn5PjS3hODgAAvqfOnpMDAABwNiDkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqBdT2Ac9n24qVer1uFX1tHIwEAwD4cyQEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKVaCTk//PCD7rjjDjVt2lShoaHq2LGjNmzY4PQbYzR69GhFR0crNDRUycnJ2rZtm9c69uzZo7S0NIWFhSk8PFyDBg3S/v37vWq++uorde/eXSEhIWrRooUmTpxYG9MBAAA+qMZDzt69e9W1a1fVq1dPS5cu1ddff63JkyercePGTs3EiRM1depUzZgxQ+vWrVODBg2UkpKiw4cPOzVpaWnasmWLsrKytHjxYq1Zs0aDBw92+j0ej3r16qXY2Fjl5ORo0qRJGjNmjGbOnFnTUwIAAD7IzxhjanKFw4cP19q1a/Xxxx9X22+MUUxMjB577DE9/vjjkiS3263IyEjNnj1b/fr10zfffKP27dtr/fr1SkhIkCQtW7ZM1113nf773/8qJiZG06dP18iRI1VQUKCgoCBn24sWLdLWrVtPaawej0cul0tut1thYWE1MPvj+8+G11Tx3c4T1lT3nJx6vbvV1pAAAPBJp/r9XeNHct577z0lJCToT3/6kyIiInT55Zfr9ddfd/rz8/NVUFCg5ORkp83lcikxMVHZ2dmSpOzsbIWHhzsBR5KSk5Pl7++vdevWOTU9evRwAo4kpaSkKC8vT3v37q12bCUlJfJ4PF4LAACwU42HnO+//17Tp0/XRRddpA8//FAPPvig/vznP+vNN9+UJBUUFEiSIiMjvd4XGRnp9BUUFCgiIsKrPzAwUE2aNPGqqW4dR2/jWJmZmXK5XM7SokWL3zhbAABwtqrxkFNRUaErrrhCzz//vC6//HINHjxY9913n2bMmFHTmzptI0aMkNvtdpZdu3bV9ZAAAEAtqfGQEx0drfbt23u1tWvXTjt3/no9SlRUlCSpsLDQq6awsNDpi4qKUlFRkVf/kSNHtGfPHq+a6tZx9DaOFRwcrLCwMK8FAADYqcZDTteuXZWXl+fV9u233yo2NlaSFBcXp6ioKK1YscLp93g8WrdunZKSkiRJSUlJKi4uVk5OjlOzcuVKVVRUKDEx0alZs2aNysrKnJqsrCy1adPG604uAABwbqrxkPPoo4/qs88+0/PPP6/vvvtOb7/9tmbOnKn09HRJkp+fn4YMGaLnnntO7733njZt2qQBAwYoJiZGffr0kfTrkZ/evXvrvvvu0+eff661a9cqIyND/fr1U0xMjCSpf//+CgoK0qBBg7RlyxbNnTtXU6ZM0dChQ2t6SgAAwAcF1vQKO3furIULF2rEiBF65plnFBcXp5deeklpaWlOzbBhw3TgwAENHjxYxcXF6tatm5YtW6aQkBCnZs6cOcrIyFDPnj3l7++vvn37aurUqU6/y+XS8uXLlZ6ervj4eDVr1kyjR4/2epYOAAA4d9X4c3J8Cc/JAQDA99TZc3IAAADOBoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKXAuh6ArcqWfeL1uqJ4Zx2NBACAcxNHcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFgpsK4HgP/f9uKlXq9bhV9bRyMBAMD3cSQHAABYiZADAACsRMgBAABW4pqcs1zZsk+qtNXr3a0ORgIAgG/hSA4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACvVesgZP368/Pz8NGTIEKft8OHDSk9PV9OmTdWwYUP17dtXhYWFXu/buXOnUlNTVb9+fUVEROiJJ57QkSNHvGo++ugjXXHFFQoODtaFF16o2bNn1/Z0AACAj6jVkLN+/Xq99tpruvTSS73aH330Ub3//vuaP3++Vq9erR9//FE333yz019eXq7U1FSVlpbq008/1ZtvvqnZs2dr9OjRTk1+fr5SU1P1+9//Xrm5uRoyZIjuvfdeffjhh7U5JQAA4CNqLeTs379faWlpev3119W4cWOn3e12669//ateeOEFXXPNNYqPj9esWbP06aef6rPPPpMkLV++XF9//bXeeustXXbZZbr22mv17LPP6tVXX1VpaakkacaMGYqLi9PkyZPVrl07ZWRk6JZbbtGLL75YW1MCAAA+pNZCTnp6ulJTU5WcnOzVnpOTo7KyMq/2tm3bqmXLlsrOzpYkZWdnq2PHjoqMjHRqUlJS5PF4tGXLFqfm2HWnpKQ466hOSUmJPB6P1wIAAOxUK088fvfdd/XFF19o/fr1VfoKCgoUFBSk8PBwr/bIyEgVFBQ4NUcHnMr+yr4T1Xg8Hh06dEihoaFVtp2ZmamxY8ee8bwAAIDvqPEjObt27dIjjzyiOXPmKCQkpKZX/5uMGDFCbrfbWXbt2lXXQwIAALWkxkNOTk6OioqKdMUVVygwMFCBgYFavXq1pk6dqsDAQEVGRqq0tFTFxcVe7yssLFRUVJQkKSoqqsrdVpWvT1YTFhZW7VEcSQoODlZYWJjXAgAA7FTjIadnz57atGmTcnNznSUhIUFpaWnO/65Xr55WrFjhvCcvL087d+5UUlKSJCkpKUmbNm1SUVGRU5OVlaWwsDC1b9/eqTl6HZU1lesAAADnthq/JqdRo0bq0KGDV1uDBg3UtGlTp33QoEEaOnSomjRporCwMD388MNKSkrSlVdeKUnq1auX2rdvrzvvvFMTJ05UQUGBnnrqKaWnpys4OFiS9MADD+iVV17RsGHDdM8992jlypWaN2+elixZUtNTAgAAPqhWLjw+mRdffFH+/v7q27evSkpKlJKSomnTpjn9AQEBWrx4sR588EElJSWpQYMGGjhwoJ555hmnJi4uTkuWLNGjjz6qKVOm6Pzzz9cbb7yhlJSUupgSAAA4y/gZY0xdD6KueDweuVwuud3uGr8+p2zZJ16vtxcvPe11tAq/ttr2er27ndGYAACwwal+f9fJkZxzwZmEGgAAUHP4gU4AAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoF1PQAc3/bipV6vW4VfW0cjAQDA93AkBwAAWImQAwAArMTpKh9UtuwTr9f1enero5EAAHD24kgOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQLregA4dduLl3q9bhV+bR2NBACAsx9HcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIXHlugbNknVdrq9e5WByMBAODswZEcAABgpRoPOZmZmercubMaNWqkiIgI9enTR3l5eV41hw8fVnp6upo2baqGDRuqb9++Kiws9KrZuXOnUlNTVb9+fUVEROiJJ57QkSNHvGo++ugjXXHFFQoODtaFF16o2bNn1/R0AACAj6rxkLN69Wqlp6frs88+U1ZWlsrKytSrVy8dOHDAqXn00Uf1/vvva/78+Vq9erV+/PFH3XzzzU5/eXm5UlNTVVpaqk8//VRvvvmmZs+erdGjRzs1+fn5Sk1N1e9//3vl5uZqyJAhuvfee/Xhhx/W9JQAAIAP8jPGmNrcwO7duxUREaHVq1erR48ecrvdat68ud5++23dcsstkqStW7eqXbt2ys7O1pVXXqmlS5fq+uuv148//qjIyEhJ0owZM/Tkk09q9+7dCgoK0pNPPqklS5Zo8+bNzrb69eun4uJiLVu27JTG5vF45HK55Ha7FRYWVqPz3vbuyBpdX3VO9DBArskBANjqVL+/a/2aHLfbLUlq0qSJJCknJ0dlZWVKTk52atq2bauWLVsqOztbkpSdna2OHTs6AUeSUlJS5PF4tGXLFqfm6HVU1lSuozolJSXyeDxeCwAAsFOthpyKigoNGTJEXbt2VYcOHSRJBQUFCgoKUnh4uFdtZGSkCgoKnJqjA05lf2XfiWo8Ho8OHTpU7XgyMzPlcrmcpUWLFr95jgAA4OxUqyEnPT1dmzdv1rvvvlubmzllI0aMkNvtdpZdu3bV9ZAAAEAtqbXn5GRkZGjx4sVas2aNzj//fKc9KipKpaWlKi4u9jqaU1hYqKioKKfm888/91pf5d1XR9cce0dWYWGhwsLCFBoaWu2YgoODFRwc/JvnBgAAzn41fiTHGKOMjAwtXLhQK1euVFxcnFd/fHy86tWrpxUrVjhteXl52rlzp5KSkiRJSUlJ2rRpk4qKipyarKwshYWFqX379k7N0euorKlcBwAAOLfV+JGc9PR0vf322/rXv/6lRo0aOdfQuFwuhYaGyuVyadCgQRo6dKiaNGmisLAwPfzww0pKStKVV14pSerVq5fat2+vO++8UxMnTlRBQYGeeuoppaenO0diHnjgAb3yyisaNmyY7rnnHq1cuVLz5s3TkiVLanpKAADAB9X4kZzp06fL7Xbrd7/7naKjo51l7ty5Ts2LL76o66+/Xn379lWPHj0UFRWlBQsWOP0BAQFavHixAgIClJSUpDvuuEMDBgzQM88849TExcVpyZIlysrKUqdOnTR58mS98cYbSklJqekpAQAAH1Trz8k5m/GcHAAAfM9Z85wcAACAukDIAQAAVqq1W8hR+7YXL63SdqJTWAAAnEs4kgMAAKxEyAEAAFbidJWlypZ94vWau60AAOcajuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACvxxGPLHPujnfxgJwDgXMWRHAAAYCVCDgAAsBIhBwAAWIlrcs4Rx/4qucQvkwMA7MaRHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK3ELueX4mQcAwLmKIzkAAMBKhBwAAGAlTledw459CjJPQAYA2IQjOQAAwEqEHAAAYCVCDgAAsBIhBwAAWIkLj88xPDcHAHCu4EgOAACwEiEHAABYidNVcBz73ByJZ+cAAHwXIeccxzU6AABbEXJwQjwVGQDgq7gmBwAAWImQAwAArMTpKnjhGh0AgC0IOTgt3IEFAPAVhByc0LFHdiSO7gAAfAMhB78Zd2ABAM5GXHgMAACsxJEcnDYuTgYA+AJCDmocFycDAM4GhJw6UGGMdpUU67uAX2QCjGIDGqu1aSp/+dX10M7IqRzZ4bodAMD/ms+HnFdffVWTJk1SQUGBOnXqpJdfflldunSp62EdV97B3Zrr+kr7G5R6tdcvr6e+RzqoY3lUHY2s5pxJ6JEIPgCAmuXTIWfu3LkaOnSoZsyYocTERL300ktKSUlRXl6eIiIi6np4VeQd3K2/Nt1Qbd9B/zL9PehL3Vl6uRVB52jV3YZ+rFbh11YbfI5FEAIAnCo/Y4yp60GcqcTERHXu3FmvvPKKJKmiokItWrTQww8/rOHDh5/0/R6PRy6XS263W2FhYTU6tm3vjvR6XWGMJgSu1t6gQzruWSkjhZlg/eXw73321FVtOZ2LmwlCAGC3U/3+9tkjOaWlpcrJydGIESOcNn9/fyUnJys7O7va95SUlKikpMR57Xa7Jf36YdW0/QdLvF7vKilWUeP90qETv+8XHdTmwwW6oKJJjY/Jl20+uOjUi/9WfW1L1x+8Xu90Z52w/1j1/pBUpa0sK/ukNQCAmlX5vX2y4zQ+G3J+/vlnlZeXKzIy0qs9MjJSW7durfY9mZmZGjt2bJX2Fi1a1MoYz9QSfVXXQ7DU5N/YDwA4m+zbt08ul+u4/T4bcs7EiBEjNHToUOd1RUWF9uzZo6ZNm8rPr2ZOD3k8HrVo0UK7du2q8VNgZwvmaAfb52j7/CTmaAvb51gb8zPGaN++fYqJiTlhnc+GnGbNmikgIECFhYVe7YWFhYqKqv7C3eDgYAUHB3u1hYeH18r4wsLCrPzHejTmaAfb52j7/CTmaAvb51jT8zvREZxKPvuzDkFBQYqPj9eKFSuctoqKCq1YsUJJSVwXAQDAuc5nj+RI0tChQzVw4EAlJCSoS5cueumll3TgwAHdfffddT00AABQx3w65Nx2223avXu3Ro8erYKCAl122WVatmxZlYuR/5eCg4P19NNPVzktZhPmaAfb52j7/CTmaAvb51iX8/Pp5+QAAAAcj89ekwMAAHAihBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyKlhr776qlq1aqWQkBAlJibq888/r+shnbE1a9bohhtuUExMjPz8/LRo0SKvfmOMRo8erejoaIWGhio5OVnbtm2rm8GegczMTHXu3FmNGjVSRESE+vTpo7y8PK+aw4cPKz09XU2bNlXDhg3Vt2/fKk/ZPptNnz5dl156qfOk0aSkJC1dutTp9/X5HWv8+PHy8/PTkCFDnDZfn+OYMWPk5+fntbRt29bp9/X5Vfrhhx90xx13qGnTpgoNDVXHjh21YcMGp9/X/960atWqyn708/NTenq6JN/fj+Xl5Ro1apTi4uIUGhqq1q1b69lnn/X6Ac062YcGNebdd981QUFB5m9/+5vZsmWLue+++0x4eLgpLCys66GdkQ8++MCMHDnSLFiwwEgyCxcu9OofP368cblcZtGiRWbjxo3mj3/8o4mLizOHDh2qmwGfppSUFDNr1iyzefNmk5uba6677jrTsmVLs3//fqfmgQceMC1atDArVqwwGzZsMFdeeaW56qqr6nDUp+e9994zS5YsMd9++63Jy8szf/nLX0y9evXM5s2bjTG+P7+jff7556ZVq1bm0ksvNY888ojT7utzfPrpp80ll1xifvrpJ2fZvXu30+/r8zPGmD179pjY2Fhz1113mXXr1pnvv//efPjhh+a7775zanz9701RUZHXPszKyjKSzKpVq4wxvr8fx40bZ5o2bWoWL15s8vPzzfz5803Dhg3NlClTnJq62IeEnBrUpUsXk56e7rwuLy83MTExJjMzsw5HVTOODTkVFRUmKirKTJo0yWkrLi42wcHB5p133qmDEf52RUVFRpJZvXq1MebX+dSrV8/Mnz/fqfnmm2+MJJOdnV1Xw/zNGjdubN544w2r5rdv3z5z0UUXmaysLHP11Vc7IceGOT799NOmU6dO1fbZMD9jjHnyySdNt27djttv49+bRx55xLRu3dpUVFRYsR9TU1PNPffc49V28803m7S0NGNM3e1DTlfVkNLSUuXk5Cg5Odlp8/f3V3JysrKzs+twZLUjPz9fBQUFXvN1uVxKTEz02fm63W5JUpMmTSRJOTk5Kisr85pj27Zt1bJlS5+cY3l5ud59910dOHBASUlJVs0vPT1dqampXnOR7NmH27ZtU0xMjC644AKlpaVp586dkuyZ33vvvaeEhAT96U9/UkREhC6//HK9/vrrTr9tf29KS0v11ltv6Z577pGfn58V+/Gqq67SihUr9O2330qSNm7cqE8++UTXXnutpLrbhz79sw5nk59//lnl5eVVflIiMjJSW7duraNR1Z6CggJJqna+lX2+pKKiQkOGDFHXrl3VoUMHSb/OMSgoqMov1fvaHDdt2qSkpCQdPnxYDRs21MKFC9W+fXvl5uZaMb93331XX3zxhdavX1+lz4Z9mJiYqNmzZ6tNmzb66aefNHbsWHXv3l2bN2+2Yn6S9P3332v69OkaOnSo/vKXv2j9+vX685//rKCgIA0cONC6vzeLFi1ScXGx7rrrLkl2/DsdPny4PB6P2rZtq4CAAJWXl2vcuHFKS0uTVHffGYQcQL8eCdi8ebM++eSTuh5KjWvTpo1yc3Pldrv1j3/8QwMHDtTq1avrelg1YteuXXrkkUeUlZWlkJCQuh5Oraj8L2FJuvTSS5WYmKjY2FjNmzdPoaGhdTiymlNRUaGEhAQ9//zzkqTLL79cmzdv1owZMzRw4MA6Hl3N++tf/6prr71WMTExdT2UGjNv3jzNmTNHb7/9ti655BLl5uZqyJAhiomJqdN9yOmqGtKsWTMFBARUuRq+sLBQUVFRdTSq2lM5Jxvmm5GRocWLF2vVqlU6//zznfaoqCiVlpaquLjYq97X5hgUFKQLL7xQ8fHxyszMVKdOnTRlyhQr5peTk6OioiJdccUVCgwMVGBgoFavXq2pU6cqMDBQkZGRPj/HY4WHh+viiy/Wd999Z8U+lKTo6Gi1b9/eq61du3bOaTmb/t7s2LFD//73v3Xvvfc6bTbsxyeeeELDhw9Xv3791LFjR91555169NFHlZmZKanu9iEhp4YEBQUpPj5eK1ascNoqKiq0YsUKJSUl1eHIakdcXJyioqK85uvxeLRu3Tqfma8xRhkZGVq4cKFWrlypuLg4r/74+HjVq1fPa455eXnauXOnz8yxOhUVFSopKbFifj179tSmTZuUm5vrLAkJCUpLS3P+t6/P8Vj79+/Xf/7zH0VHR1uxDyWpa9euVR7f8O233yo2NlaSHX9vKs2aNUsRERFKTU112mzYjwcPHpS/v3ekCAgIUEVFhaQ63Ie1dknzOejdd981wcHBZvbs2ebrr782gwcPNuHh4aagoKCuh3ZG9u3bZ7788kvz5ZdfGknmhRdeMF9++aXZsWOHMebX2wHDw8PNv/71L/PVV1+ZG2+80adu6XzwwQeNy+UyH330kdetnQcPHnRqHnjgAdOyZUuzcuVKs2HDBpOUlGSSkpLqcNSnZ/jw4Wb16tUmPz/ffPXVV2b48OHGz8/PLF++3Bjj+/OrztF3Vxnj+3N87LHHzEcffWTy8/PN2rVrTXJysmnWrJkpKioyxvj+/Iz59fb/wMBAM27cOLNt2zYzZ84cU79+ffPWW285Nb7+98aYX++4bdmypXnyySer9Pn6fhw4cKA577zznFvIFyxYYJo1a2aGDRvm1NTFPiTk1LCXX37ZtGzZ0gQFBZkuXbqYzz77rK6HdMZWrVplJFVZBg4caIz59ZbAUaNGmcjISBMcHGx69uxp8vLy6nbQp6G6uUkys2bNcmoOHTpkHnroIdO4cWNTv359c9NNN5mffvqp7gZ9mu655x4TGxtrgoKCTPPmzU3Pnj2dgGOM78+vOseGHF+f42233Waio6NNUFCQOe+888xtt93m9fwYX59fpffff9906NDBBAcHm7Zt25qZM2d69fv63xtjjPnwww+NpGrH7ev70ePxmEceecS0bNnShISEmAsuuMCMHDnSlJSUODV1sQ/9jDnqcYQAAACW4JocAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFjp/wGwToP6O0GPJgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAL7BJREFUeJzt3XtcFnXe//E3oICCF+QBiMDDZh7IU6IiZZpFXhl1a2qrZopmtXmjpWSpW+uhu1ZX1zstT+16r5ibq9m9WmrhcmNgrZiKS6Glm7sWlnFwlYOUgDC/P/ox6xVYouglX17Px2MeD+c7n5n5zFw8ut4NM4OHZVmWAAAADOPp7gYAAACuBEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg5whezbt0+33nqr/Pz85OHhoczMTHe3VG998cUX8vDwUGJiortbqRMeHh6aO3euu9uolcTERHl4eOiLL75wdyvARSPkAFdAeXm5HnzwQZ06dUovv/yy1q1bpzZt2ri7Lbf69ttvNXfuXKWmpjaI/dbG7t27NXfuXBUUFLi7FcAojdzdAGCif/zjH/ryyy/1+9//Xo8++qi727kmfPvtt5o3b54k6Y477qjVum3atNF3332nxo0bX9X9XinfffedGjX6939+d+/erXnz5mn8+PEKDAx0X2M/YuzYsRo1apR8fHzc3Qpw0Qg5wBWQl5cnST/5hVVSUiI/P7+r0FH95uHhIV9fX3e3UWfq47F4eXnJy8vL3W0AtWMBqFNxcXGWJJdpwIABVlxcnOXn52cdPXrUGjx4sOXv728NGTLEsizL2rVrlzVixAgrPDzc8vb2tsLCwqypU6da3377bbXtv/nmm1bnzp0tHx8f6+abb7b+/Oc/W3FxcVabNm3smmPHjlmSrEWLFlnLli2z2rVrZzVp0sS6++67rezsbKuystJ64YUXrBtuuMHy9fW1/uM//sP617/+VW1f7777rtWvXz+radOmlr+/v3XvvfdaBw8erHa8fn5+1ldffWUNGTLE8vPzs1q2bGk9/fTT1rlz51z6+eE0Z86cizqnVeuvWbOmzvf72WefWcOHD7euu+46y8fHx4qMjLTefvttl/2vWbPGkmR9+OGH1rRp06yWLVtaTZs2tYYOHWrl5eW51O7bt88aNGiQ1aJFC8vX19dq27atNWHCBJea83uYM2dOjT0eO3bM6t+/v9WtW7caz0mHDh2sQYMGXdT5syzLGjBggHXzzTdbH3/8sdW/f3+rSZMm1o033mht2rTJsizLSk1Ntfr06WP5+vpaHTp0sJKTk2s8B8eOHbPH2rRpY8XGxloffPCB1bt3b8vHx8dq166dtXbt2ovuC7iSuCcHqGO/+MUv9Mtf/lKS9OSTT2rdunV67rnnJEnnzp2T0+lUUFCQfvvb32r48OGSpE2bNunbb7/VpEmT9Oqrr8rpdOrVV1/VuHHjXLa9fft2jRw5Uo0bN9b8+fM1bNgwTZw4URkZGTX28sYbb2jFihWaMmWKnn76aaWlpennP/+5nn/+eSUlJWnGjBl6/PHHtXXrVk2fPt1l3XXr1ik2Nlb+/v76zW9+o1/96lf69NNP1a9fv2o3n1ZUVMjpdKpFixb67W9/qwEDBmjx4sX63e9+J0lq1aqVVq5cKUl64IEHtG7dOq1bt07Dhg27rHN9ufs9dOiQ+vbtq88++0wzZ87U4sWL5efnp6FDh2rz5s3V9jdlyhR9/PHHmjNnjiZNmqStW7dq8uTJ9vK8vDwNGjRIX3zxhWbOnKlXX31VY8aM0Z49ey54DMOGDdPo0aMlyb5/a926dWrVqpXGjh2rTz75RAcPHnRZZ9++ffr73/+uhx9+uFbn6/Tp07rvvvsUFRWlhQsXysfHR6NGjdLGjRs1atQo3XvvvVqwYIFKSko0YsQIFRcX/+Q2jx49qhEjRujuu+/W4sWLdd1112n8+PE6dOhQrXoDrgh3pyzARO+//74lyf6/ZMv69xWemTNnVquv6YrN/PnzLQ8PD+vLL7+0x7p27WqFhYVZxcXF9lhqaqolqcYrOa1atbIKCgrs8VmzZlmSrO7du1vl5eX2+OjRoy1vb2/r7NmzlmVZVnFxsRUYGGg99thjLj3l5ORYAQEBLuNVx/XCCy+41N5yyy1WZGSkPZ+fn1+rqzfnu9CVnMvd71133WV17drVPm7LsqzKykrr1ltvtW666SZ7rOoqRkxMjFVZWWmPT5s2zfLy8rLP8ebNmy1J1r59+370eH7Yz6JFi6pdJbEsyyooKLB8fX2tGTNmuIw/+eSTlp+fn3XmzJkf3c/5BgwYYEmy1q9fb48dPnzYkmR5enpae/bsscd37NhR7Xxf6EqOJGvXrl32WF5enuXj42M9/fTTF90bcKVwJQe4yiZNmlRtrEmTJva/S0pKdPLkSd16662yLEt/+9vfJEknTpxQVlaWxo0bJ39/f7t+wIAB6tq1a437evDBBxUQEGDPR0VFSZIefvhhlxtfo6KiVFZWpq+//lqSlJycrIKCAo0ePVonT560Jy8vL0VFRen999+vtq8nnnjCZf7222/XP//5z588H5frUvd76tQp7dy5Uz//+c9VXFxsH+O//vUvOZ1Off755/b5qPL444/Lw8PDZV8VFRX68ssvJf37Hqxt27apvLz8Mo9MCggI0JAhQ/SnP/1JlmVJ+v7q1caNGzV06NBa38/l7++vUaNG2fMdO3ZUYGCgOnfubP9sSP/+ObmY8xgREaHbb7/dnm/VqpU6dux4VT574KcQcoCrqFGjRgoLC6s2np2drfHjx6t58+by9/dXq1atNGDAAElSYWGhJNlfpO3bt6+2fk1jktS6dWuX+arAEx4eXuP46dOnJUmff/65JOnOO+9Uq1atXKa//OUv9o3VVXx9fdWqVSuXseuuu87e3pVyOfs9evSoLMvSr371q2rHOGfOHEmqdpw/PJ/XXXedpH+ftwEDBmj48OGaN2+eWrZsqSFDhmjNmjUqLS295GMcN26csrOz9cEHH0iS/u///k+5ubkaO3ZsrbcVFhbmEtKk7z/7n/p5+DE/PCfS1fnsgYvB01XAVeTj4yNPT9f/t6ioqNDdd9+tU6dOacaMGerUqZP8/Pz09ddfa/z48aqsrLzk/V3oaZgLjVddLaja57p16xQSElKt7vyrQD+2vSvtcvZbdYzTp0+X0+msseaH4fGnzpuHh4feeust7dmzR1u3btWOHTv0yCOPaPHixdqzZ4/LFbiL5XQ6FRwcrD/+8Y/q37+//vjHPyokJEQxMTG13tal/jxcyjYvZl3gSiPkAG6WlZWlv//971q7dq3LjcbJyckudVUvEzx69Gi1bdQ0djluvPFGSVJQUNAlfZnW5IdXEK6WC+33Zz/7mSSpcePGdXaMVfr27au+ffvqpZde0vr16zVmzBht2LDhgu9M+rFz4+XlpYceekiJiYn6zW9+oy1btuixxx7jcW7gIvDrKsDNqr6szv8/X8uytHTpUpe60NBQdenSRa+//rrOnDljj6elpSkrK6tOe3I6nXI4HPr1r39d470l+fn5td5m06ZNJemqv9X3QvsNCgrSHXfcoddee03ffPNNtfUu5RhPnz5d7QpGjx49JOlHf2VVdW/Nhc7N2LFjdfr0af3iF7/QmTNnav1UFdBQcSUHcLNOnTrpxhtv1PTp0/X111/L4XDof//3f2u8p+HXv/61hgwZottuu00TJkzQ6dOntWzZMnXp0sUl+Fwuh8OhlStXauzYserZs6dGjRqlVq1aKTs7W9u3b9dtt92mZcuW1WqbTZo0UUREhDZu3KgOHTqoefPm6tKli7p06VJnfdd2v8uXL1e/fv3UtWtXPfbYY/rZz36m3Nxcpaen66uvvtLHH39cq32tXbtWK1as0AMPPKAbb7xRxcXF+v3vfy+Hw6F77733gutFRkZKkp577jmNGjVKjRs31v3332+Hn1tuuUVdunTRpk2b1LlzZ/Xs2fPSTwjQgHAlB3Czxo0ba+vWrerRo4fmz5+vefPm6aabbtLrr79erfb+++/Xn/70J5WVlWnmzJn685//rMTERHXs2LHO36L70EMPKSUlRTfccIMWLVqkp556Shs2bFCPHj00YcKES9rm6tWrdcMNN2jatGkaPXq03nrrrTrtubb7jYiI0P79+xUbG6vExETFx8dr1apV8vT01OzZs2u9nwEDBqhXr17asGGDnnzySS1cuFA33XSTdu7cqXbt2l1wvd69e+u//uu/9PHHH2v8+PEaPXp0tStJVb/KvJQbjoGGysPi7jCg3uvRo4datWpV7T4emGPp0qWaNm2avvjiixqfaAJQHVdygHqkvLxc586dcxlLTU3Vxx9/fM388UnUPcuy9D//8z8aMGAAAQeoBe7JAeqRr7/+WjExMXr44YcVGhqqw4cPa9WqVQoJCan2Urz6oKysTKdOnfrRmoCAAJeXJTYkJSUleuedd/T+++8rKytLb7/9drWaU6dOqays7ILb8PLyqvYuIaCh4NdVQD1SWFioxx9/XH/961+Vn58vPz8/3XXXXVqwYIH92Hd9kpqaqoEDB/5ozZo1azR+/Pir09A15osvvlC7du0UGBio//zP/9RLL71UreaOO+5QWlraBbfRpk2ban9rDGgoCDkA3Ob06dMX/OOiVW6++WZdf/31V6mj+icjI+NH3y7cpEkT3XbbbVexI+DaQcgBAABG4sZjAABgpAZ943FlZaVOnDihZs2aue2V8wAAoHYsy1JxcbFCQ0Or/T3A8zXokHPixIlqf30XAADUD8ePH1dYWNgFlzfokNOsWTNJ358kh8Ph5m4AAMDFKCoqUnh4uP09fiENOuRU/YrK4XAQcgAAqGd+6lYTbjwGAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMFIjdzdgqvKkD6uNNb6nnxs6AQCgYeJKDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRLivkLFiwQB4eHpo6dao9dvbsWcXHx6tFixby9/fX8OHDlZub67Jedna2YmNj1bRpUwUFBemZZ57RuXPnXGpSU1PVs2dP+fj4qH379kpMTKy2/+XLl6tt27by9fVVVFSU9u7dezmHAwAADHLJIWffvn167bXX1K1bN5fxadOmaevWrdq0aZPS0tJ04sQJDRs2zF5eUVGh2NhYlZWVaffu3Vq7dq0SExM1e/Zsu+bYsWOKjY3VwIEDlZmZqalTp+rRRx/Vjh077JqNGzcqISFBc+bM0YEDB9S9e3c5nU7l5eVd6iEBAACTWJeguLjYuummm6zk5GRrwIAB1lNPPWVZlmUVFBRYjRs3tjZt2mTXfvbZZ5YkKz093bIsy3r33XctT09PKycnx65ZuXKl5XA4rNLSUsuyLOvZZ5+1br75Zpd9jhw50nI6nfZ8nz59rPj4eHu+oqLCCg0NtebPn3/Rx1FYWGhJsgoLCy/+4C9S2XsfVJsAAMDlu9jv70u6khMfH6/Y2FjFxMS4jGdkZKi8vNxlvFOnTmrdurXS09MlSenp6eratauCg4PtGqfTqaKiIh06dMiu+eG2nU6nvY2ysjJlZGS41Hh6eiomJsauqUlpaamKiopcJgAAYKZGtV1hw4YNOnDggPbt21dtWU5Ojry9vRUYGOgyHhwcrJycHLvm/IBTtbxq2Y/VFBUV6bvvvtPp06dVUVFRY83hw4cv2Pv8+fM1b968iztQAABQr9XqSs7x48f11FNP6Y033pCvr++V6umKmTVrlgoLC+3p+PHj7m4JAABcIbUKORkZGcrLy1PPnj3VqFEjNWrUSGlpaXrllVfUqFEjBQcHq6ysTAUFBS7r5ebmKiQkRJIUEhJS7WmrqvmfqnE4HGrSpIlatmwpLy+vGmuqtlETHx8fORwOlwkAAJipViHnrrvuUlZWljIzM+2pV69eGjNmjP3vxo0bKyUlxV7nyJEjys7OVnR0tCQpOjpaWVlZLk9BJScny+FwKCIiwq45fxtVNVXb8Pb2VmRkpEtNZWWlUlJS7BoAANCw1eqenGbNmqlLly4uY35+fmrRooU9PnHiRCUkJKh58+ZyOByaMmWKoqOj1bdvX0nSoEGDFBERobFjx2rhwoXKycnR888/r/j4ePn4+EiSnnjiCS1btkzPPvusHnnkEe3cuVNvvvmmtm/fbu83ISFBcXFx6tWrl/r06aMlS5aopKREEyZMuKwTAgAAzFDrG49/yssvvyxPT08NHz5cpaWlcjqdWrFihb3cy8tL27Zt06RJkxQdHS0/Pz/FxcXphRdesGvatWun7du3a9q0aVq6dKnCwsK0evVqOZ1Ou2bkyJHKz8/X7NmzlZOTox49eigpKanazcgAAKBh8rAsy3J3E+5SVFSkgIAAFRYW1vn9OeVJH1Yba3xPvzrdBwAADdHFfn/zt6sAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYqZG7GzDVFwXvucy3DRzspk4AAGiYuJIDAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkWoVclauXKlu3brJ4XDI4XAoOjpa7733nr387Nmzio+PV4sWLeTv76/hw4crNzfXZRvZ2dmKjY1V06ZNFRQUpGeeeUbnzp1zqUlNTVXPnj3l4+Oj9u3bKzExsVovy5cvV9u2beXr66uoqCjt3bu3NocCAAAMV6uQExYWpgULFigjI0P79+/XnXfeqSFDhujQoUOSpGnTpmnr1q3atGmT0tLSdOLECQ0bNsxev6KiQrGxsSorK9Pu3bu1du1aJSYmavbs2XbNsWPHFBsbq4EDByozM1NTp07Vo48+qh07dtg1GzduVEJCgubMmaMDBw6oe/fucjqdysvLu9zzAQAADOFhWZZ1ORto3ry5Fi1apBEjRqhVq1Zav369RowYIUk6fPiwOnfurPT0dPXt21fvvfee7rvvPp04cULBwcGSpFWrVmnGjBnKz8+Xt7e3ZsyYoe3bt+vgwYP2PkaNGqWCggIlJSVJkqKiotS7d28tW7ZMklRZWanw8HBNmTJFM2fOvOjei4qKFBAQoMLCQjkcjss5DdV8vuE5l/m2gYPV+J5+dboPAAAaoov9/r7ke3IqKiq0YcMGlZSUKDo6WhkZGSovL1dMTIxd06lTJ7Vu3Vrp6emSpPT0dHXt2tUOOJLkdDpVVFRkXw1KT0932UZVTdU2ysrKlJGR4VLj6empmJgYu+ZCSktLVVRU5DIBAAAz1TrkZGVlyd/fXz4+PnriiSe0efNmRUREKCcnR97e3goMDHSpDw4OVk5OjiQpJyfHJeBULa9a9mM1RUVF+u6773Ty5ElVVFTUWFO1jQuZP3++AgIC7Ck8PLy2hw8AAOqJWoecjh07KjMzUx999JEmTZqkuLg4ffrpp1eitzo3a9YsFRYW2tPx48fd3RIAALhCGtV2BW9vb7Vv316SFBkZqX379mnp0qUaOXKkysrKVFBQ4HI1Jzc3VyEhIZKkkJCQak9BVT19dX7ND5/Iys3NlcPhUJMmTeTl5SUvL68aa6q2cSE+Pj7y8fGp7SEDAIB66LLfk1NZWanS0lJFRkaqcePGSklJsZcdOXJE2dnZio6OliRFR0crKyvL5Smo5ORkORwORURE2DXnb6Oqpmob3t7eioyMdKmprKxUSkqKXQMAAFCrKzmzZs3S4MGD1bp1axUXF2v9+vVKTU3Vjh07FBAQoIkTJyohIUHNmzeXw+HQlClTFB0drb59+0qSBg0apIiICI0dO1YLFy5UTk6Onn/+ecXHx9tXWJ544gktW7ZMzz77rB555BHt3LlTb775prZv3273kZCQoLi4OPXq1Ut9+vTRkiVLVFJSogkTJtThqQEAAPVZrUJOXl6exo0bp2+++UYBAQHq1q2bduzYobvvvluS9PLLL8vT01PDhw9XaWmpnE6nVqxYYa/v5eWlbdu2adKkSYqOjpafn5/i4uL0wgsv2DXt2rXT9u3bNW3aNC1dulRhYWFavXq1nE6nXTNy5Ejl5+dr9uzZysnJUY8ePZSUlFTtZmQAANBwXfZ7cuoz3pMDAED9c8XfkwMAAHAtI+QAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkWoVcubPn6/evXurWbNmCgoK0tChQ3XkyBGXmrNnzyo+Pl4tWrSQv7+/hg8frtzcXJea7OxsxcbGqmnTpgoKCtIzzzyjc+fOudSkpqaqZ8+e8vHxUfv27ZWYmFitn+XLl6tt27by9fVVVFSU9u7dW5vDAQAABqtVyElLS1N8fLz27Nmj5ORklZeXa9CgQSopKbFrpk2bpq1bt2rTpk1KS0vTiRMnNGzYMHt5RUWFYmNjVVZWpt27d2vt2rVKTEzU7Nmz7Zpjx44pNjZWAwcOVGZmpqZOnapHH31UO3bssGs2btyohIQEzZkzRwcOHFD37t3ldDqVl5d3OecDAAAYwsOyLOtSV87Pz1dQUJDS0tLUv39/FRYWqlWrVlq/fr1GjBghSTp8+LA6d+6s9PR09e3bV++9957uu+8+nThxQsHBwZKkVatWacaMGcrPz5e3t7dmzJih7du36+DBg/a+Ro0apYKCAiUlJUmSoqKi1Lt3by1btkySVFlZqfDwcE2ZMkUzZ86ssd/S0lKVlpba80VFRQoPD1dhYaEcDselnoYafb7hOZf5toGD1fiefnW6DwAAGqKioiIFBAT85Pf3Zd2TU1hYKElq3ry5JCkjI0Pl5eWKiYmxazp16qTWrVsrPT1dkpSenq6uXbvaAUeSnE6nioqKdOjQIbvm/G1U1VRto6ysTBkZGS41np6eiomJsWtqMn/+fAUEBNhTeHj45Rw+AAC4hl1yyKmsrNTUqVN12223qUuXLpKknJwceXt7KzAw0KU2ODhYOTk5ds35AadqedWyH6spKirSd999p5MnT6qioqLGmqpt1GTWrFkqLCy0p+PHj9f+wAEAQL3Q6FJXjI+P18GDB/Xhhx/WZT9XlI+Pj3x8fNzdBgAAuAou6UrO5MmTtW3bNr3//vsKCwuzx0NCQlRWVqaCggKX+tzcXIWEhNg1P3zaqmr+p2ocDoeaNGmili1bysvLq8aaqm0AAICGrVYhx7IsTZ48WZs3b9bOnTvVrl07l+WRkZFq3LixUlJS7LEjR44oOztb0dHRkqTo6GhlZWW5PAWVnJwsh8OhiIgIu+b8bVTVVG3D29tbkZGRLjWVlZVKSUmxawAAQMNWq19XxcfHa/369Xr77bfVrFkz+/6XgIAANWnSRAEBAZo4caISEhLUvHlzORwOTZkyRdHR0erbt68kadCgQYqIiNDYsWO1cOFC5eTk6Pnnn1d8fLz9q6QnnnhCy5Yt07PPPqtHHnlEO3fu1Jtvvqnt27fbvSQkJCguLk69evVSnz59tGTJEpWUlGjChAl1dW4AAEA9VquQs3LlSknSHXfc4TK+Zs0ajR8/XpL08ssvy9PTU8OHD1dpaamcTqdWrFhh13p5eWnbtm2aNGmSoqOj5efnp7i4OL3wwgt2Tbt27bR9+3ZNmzZNS5cuVVhYmFavXi2n02nXjBw5Uvn5+Zo9e7ZycnLUo0cPJSUlVbsZGQAANEyX9Z6c+u5in7O/FLwnBwCAK+OqvCcHAADgWkXIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEaqdcjZtWuX7r//foWGhsrDw0NbtmxxWW5ZlmbPnq3rr79eTZo0UUxMjD7//HOXmlOnTmnMmDFyOBwKDAzUxIkTdebMGZeaTz75RLfffrt8fX0VHh6uhQsXVutl06ZN6tSpk3x9fdW1a1e9++67tT0cAABgqFqHnJKSEnXv3l3Lly+vcfnChQv1yiuvaNWqVfroo4/k5+cnp9Ops2fP2jVjxozRoUOHlJycrG3btmnXrl16/PHH7eVFRUUaNGiQ2rRpo4yMDC1atEhz587V7373O7tm9+7dGj16tCZOnKi//e1vGjp0qIYOHaqDBw/W9pAAAICBPCzLsi55ZQ8Pbd68WUOHDpX0/VWc0NBQPf3005o+fbokqbCwUMHBwUpMTNSoUaP02WefKSIiQvv27VOvXr0kSUlJSbr33nv11VdfKTQ0VCtXrtRzzz2nnJwceXt7S5JmzpypLVu26PDhw5KkkSNHqqSkRNu2bbP76du3r3r06KFVq1ZdVP9FRUUKCAhQYWGhHA7HpZ6GGn2+4TmX+baBg9X4nn51ug8AABqii/3+rtN7co4dO6acnBzFxMTYYwEBAYqKilJ6erokKT09XYGBgXbAkaSYmBh5enrqo48+smv69+9vBxxJcjqdOnLkiE6fPm3XnL+fqpqq/dSktLRURUVFLhMAADBTnYacnJwcSVJwcLDLeHBwsL0sJydHQUFBLssbNWqk5s2bu9TUtI3z93GhmqrlNZk/f74CAgLsKTw8vLaHCAAA6okG9XTVrFmzVFhYaE/Hjx93d0sAAOAKqdOQExISIknKzc11Gc/NzbWXhYSEKC8vz2X5uXPndOrUKZeamrZx/j4uVFO1vCY+Pj5yOBwuEwAAMFOdhpx27dopJCREKSkp9lhRUZE++ugjRUdHS5Kio6NVUFCgjIwMu2bnzp2qrKxUVFSUXbNr1y6Vl5fbNcnJyerYsaOuu+46u+b8/VTVVO0HAAA0bLUOOWfOnFFmZqYyMzMlfX+zcWZmprKzs+Xh4aGpU6fqxRdf1DvvvKOsrCyNGzdOoaGh9hNYnTt31j333KPHHntMe/fu1V//+ldNnjxZo0aNUmhoqCTpoYcekre3tyZOnKhDhw5p48aNWrp0qRISEuw+nnrqKSUlJWnx4sU6fPiw5s6dq/3792vy5MmXf1YAAEC916i2K+zfv18DBw6056uCR1xcnBITE/Xss8+qpKREjz/+uAoKCtSvXz8lJSXJ19fXXueNN97Q5MmTddddd8nT01PDhw/XK6+8Yi8PCAjQX/7yF8XHxysyMlItW7bU7NmzXd6lc+utt2r9+vV6/vnn9ctf/lI33XSTtmzZoi5dulzSiQAAAGa5rPfk1He8JwcAgPrHLe/JAQAAuFYQcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgpEbubqCh+KLgPXnuP2TP39jrF27sBgAA8xFyrqLKo9n2v8tPfqjG9/RzYzcAAJiNX1cBAAAjEXIAAICRCDkAAMBI3JNTx8oqy5T0j406an2qVmX+uq20jSqaWZKHuzsDAKBhqfdXcpYvX662bdvK19dXUVFR2rt3r9t6WXtoiUZvi9aaz17WB35f6s/XHdL04HeVevqfanKKPAkAwNVUr795N27cqISEBK1atUpRUVFasmSJnE6njhw5oqCgoKvay9pDS7TlH69Lllyu2liS3r3hiDyPe8h56iZ91/ycpO8fKdeG9+y6toGDJYknrgAAqCP1+krOf//3f+uxxx7ThAkTFBERoVWrVqlp06b6wx/+cFX7KKss0zv/+GO1gCP9e/7d8MPyz/b+vgYAAFxx9fZKTllZmTIyMjRr1ix7zNPTUzExMUpPT69xndLSUpWWltrzhYWFkqSioqLL6uW9f25U6bflP1m3zfGZbsm7QWXNKqotO/jtlu//8YctNa7bOuBu+9+N746+lDYBADBC1fe2Zf34lYN6G3JOnjypiooKBQcHu4wHBwfr8OHDNa4zf/58zZs3r9p4eHj4Fenxh7brk8tYe3Gd9QEAgAmKi4sVEBBwweX1NuRcilmzZikhIcGer6ys1KlTp9SiRQt5eNTd409FRUUKDw/X8ePH5XA46my7qD0+i2sDn8O1g8/i2sDncHksy1JxcbFCQ0N/tK7ehpyWLVvKy8tLubm5LuO5ubkKCQmpcR0fHx/5+Pi4jAUGBl6pFuVwOPjhvUbwWVwb+ByuHXwW1wY+h0v3Y1dwqtTbG4+9vb0VGRmplJQUe6yyslIpKSmKjuaeFQAAGrp6eyVHkhISEhQXF6devXqpT58+WrJkiUpKSjRhwgR3twYAANysXoeckSNHKj8/X7Nnz1ZOTo569OihpKSkajcjX20+Pj6aM2dOtV+N4erjs7g28DlcO/gsrg18DleHh/VTz18BAADUQ/X2nhwAAIAfQ8gBAABGIuQAAAAjEXIAAICRCDkAAMBIhJwrYPny5Wrbtq18fX0VFRWlvXv3urulBmfXrl26//77FRoaKg8PD23ZssXdLTVI8+fPV+/evdWsWTMFBQVp6NChOnLkiLvbapBWrlypbt262W/YjY6O1nvvvefuthq8BQsWyMPDQ1OnTnV3K0Yi5NSxjRs3KiEhQXPmzNGBAwfUvXt3OZ1O5eXlubu1BqWkpETdu3fX8uXL3d1Kg5aWlqb4+Hjt2bNHycnJKi8v16BBg1RSUuLu1hqcsLAwLViwQBkZGdq/f7/uvPNODRkyRIcOHXJ3aw3Wvn379Nprr6lbt27ubsVYvCenjkVFRal3795atmyZpO//1ER4eLimTJmimTNnurm7hsnDw0ObN2/W0KFD3d1Kg5efn6+goCClpaWpf//+7m6nwWvevLkWLVqkiRMnuruVBufMmTPq2bOnVqxYoRdffFE9evTQkiVL3N2WcbiSU4fKysqUkZGhmJgYe8zT01MxMTFKT093Y2fAtaGwsFDS91+ucJ+Kigpt2LBBJSUl/K0/N4mPj1dsbKzL9wXqXr3+sw7XmpMnT6qioqLan5UIDg7W4cOH3dQVcG2orKzU1KlTddttt6lLly7ubqdBysrKUnR0tM6ePSt/f39t3rxZERER7m6rwdmwYYMOHDigffv2ubsV4xFyAFwV8fHxOnjwoD788EN3t9JgdezYUZmZmSosLNRbb72luLg4paWlEXSuouPHj+upp55ScnKyfH193d2O8Qg5dahly5by8vJSbm6uy3hubq5CQkLc1BXgfpMnT9a2bdu0a9cuhYWFubudBsvb21vt27eXJEVGRmrfvn1aunSpXnvtNTd31nBkZGQoLy9PPXv2tMcqKiq0a9cuLVu2TKWlpfLy8nJjh2bhnpw65O3trcjISKWkpNhjlZWVSklJ4ffeaJAsy9LkyZO1efNm7dy5U+3atXN3SzhPZWWlSktL3d1Gg3LXXXcpKytLmZmZ9tSrVy+NGTNGmZmZBJw6xpWcOpaQkKC4uDj16tVLffr00ZIlS1RSUqIJEya4u7UG5cyZMzp69Kg9f+zYMWVmZqp58+Zq3bq1GztrWOLj47V+/Xq9/fbbatasmXJyciRJAQEBatKkiZu7a1hmzZqlwYMHq3Xr1iouLtb69euVmpqqHTt2uLu1BqVZs2bV7knz8/NTixYtuFftCiDk1LGRI0cqPz9fs2fPVk5Ojnr06KGkpKRqNyPjytq/f78GDhxozyckJEiS4uLilJiY6KauGp6VK1dKku644w6X8TVr1mj8+PFXv6EGLC8vT+PGjdM333yjgIAAdevWTTt27NDdd9/t7taAK4b35AAAACNxTw4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAUKd27dql+++/X6GhofLw8NCWLVtqtf7cuXPl4eFRbfLz86vVdgg5AACgTpWUlKh79+5avnz5Ja0/ffp0ffPNNy5TRESEHnzwwVpth5ADAADq1ODBg/Xiiy/qgQceqHF5aWmppk+frhtuuEF+fn6KiopSamqqvdzf318hISH2lJubq08//VQTJ06sVR+EHAAAcFVNnjxZ6enp2rBhgz755BM9+OCDuueee/T555/XWL969Wp16NBBt99+e632Q8gBAABXTXZ2ttasWaNNmzbp9ttv14033qjp06erX79+WrNmTbX6s2fP6o033qj1VRyJv0IOAACuoqysLFVUVKhDhw4u46WlpWrRokW1+s2bN6u4uFhxcXG13hchBwAAXDVnzpyRl5eXMjIy5OXl5bLM39+/Wv3q1at13333KTg4uNb7IuQAAICr5pZbblFFRYXy8vJ+8h6bY8eO6f3339c777xzSfsi5AAAgDp15swZHT161J4/duyYMjMz1bx5c3Xo0EFjxozRuHHjtHjxYt1yyy3Kz89XSkqKunXrptjYWHu9P/zhD7r++us1ePDgS+rDw7Is67KPBgAA4P9LTU3VwIEDq43HxcUpMTFR5eXlevHFF/X666/r66+/VsuWLdW3b1/NmzdPXbt2lSRVVlaqTZs2GjdunF566aVL6oOQAwAAjMQj5AAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAw0v8DR5zIME6eZJMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANiNJREFUeJzt3X1YVXW+//8XiNx4swEx2JJ4U86gmEdNR6JQ80RiUh1mdEoltYa0JqxMLXUqsprSMDO10nFq1HONXpkz6TTeFWkjUyIpRSopU2c0787GTsje6oyIsH5/9GN92wEiCm74+Hxc17ou1+fz3mt91ufaul+utfbafpZlWQIAADCMv68HAAAA0BgIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5ABrdzTffrJtvvtnXw2gSli9fLj8/Px08eNDXQwGMR8gBAABG8uO3qwA0trNnz0qSAgMDfTwS36uoqFB5ebmCgoLk5+fn6+EARiPkAAAAI3G5CkA1s2bNkp+fn/bv36+77rpLDodDERERevTRR3XmzBm77ty5c3r++ed17bXXKigoSF26dNFvfvMblZWVeW2vpntyFi1apJ49e6pVq1YKDw9X//79tWrVKrv/5MmTmjx5srp06aKgoCBFRkbq1ltv1Weffea1nTVr1qhfv34KCQlR+/btdc899+jo0aNeNffee6/atGmjo0ePKjU1VW3atNFVV12ladOmqaKiol5zc/PNN+u6667T7t27NXjwYLVq1UrdunXTn/70J0nStm3bFB8fr5CQEMXGxurDDz/0en1N9+R06dJFt99+uz7++GMNGDBAwcHBuuaaa/Tf//3f9RobAG+EHAC1uuuuu3TmzBnNnj1bw4cP18KFCzVx4kS7//7771dmZqauv/56zZ8/X4MHD9bs2bM1atSo827397//vR555BHFxcXp1Vdf1bPPPqs+ffooLy/PrnnwwQe1ePFijRgxQm+88YamTZumkJAQ7du3z65Zvny57rrrLrVo0UKzZ8/WhAkT9O677yoxMVGlpaVe+6yoqFBycrIiIiL08ssva/DgwZo3b56WLl1a73k5ceKEbr/9dsXHxysrK0tBQUEaNWqUVq9erVGjRmn48OGaM2eOTp8+rZEjR+rkyZN1bvPrr7/WyJEjdeutt2revHkKDw/Xvffeq8LCwnqPD8D/zwKAH3nmmWcsSdadd97p1f7QQw9ZkqwvvvjCKigosCRZ999/v1fNtGnTLEnW1q1b7bbBgwdbgwcPttf/67/+y+rZs+d5xxAaGmplZGTU2n/27FkrMjLSuu6666x///vfdvv69estSVZmZqbdNn78eEuS9dxzz3lto2/fvla/fv3OO44fGzx4sCXJWrVqld22f/9+S5Ll7+9v7dixw25///33LUnWsmXL7LZly5ZZkqwDBw7YbZ07d7YkWTk5OXbb8ePHraCgIGvq1Kn1Gh+A/4czOQBqlZGR4bX+8MMPS5I2btyojRs3SpKmTJniVTN16lRJ0oYNG2rdblhYmI4cOaKdO3eetyYvL0/Hjh2rsX/Xrl06fvy4HnroIQUHB9vtKSkp6t69e437f/DBB73WBw4cqH/+85+1jqE2bdq08TpbFRsbq7CwMPXo0UPx8fF2e9WfL2QfcXFxGjhwoL1+1VVXKTY29qLGB+B7hBwAtfrJT37itX7ttdfK399fBw8e1DfffCN/f39169bNq8bpdCosLEzffPNNrdudPn262rRpowEDBugnP/mJMjIy9Mknn3jVZGVlae/evYqJidGAAQM0a9Ysrw/8qu3HxsZW23737t2r7T84OFhXXXWVV1t4eLhOnDhxnhmoWceOHat9Myo0NFQxMTHV2iRd0D46depUre1ixwfge4QcABespq88X8zXoHv06KGioiK9/fbbSkxM1J///GclJibqmWeesWvuuusu/fOf/9SiRYsUHR2tuXPnqmfPntq0adNFjb1FixYX9br6bKu2dusCvsR6Ka8FUDNCDoBaffXVV17rX3/9tSorK9WlSxd17txZlZWV1WqKi4tVWlqqzp07n3fbrVu31t13361ly5bp0KFDSklJ0QsvvOD17a0OHTrooYce0rp163TgwAFFRETohRdekCR7+0VFRdW2XVRUVOf+AZiPkAOgVq+//rrX+qJFiyRJt912m4YPHy5JevXVV71qXnnlFUnf3xtTm++++85rPTAwUHFxcbIsS+Xl5aqoqJDb7faqiYyMVHR0tP319P79+ysyMlJLlizx+sr6pk2btG/fvvPuH8CVIcDXAwDQdB04cEB33nmnhg0bptzcXP3xj3/UmDFj1Lt3b0nS+PHjtXTpUpWWlmrw4MH69NNPtWLFCqWmpmrIkCG1bnfo0KFyOp266aabFBUVpX379um1115TSkqK2rZtq9LSUnXs2FEjR45U79691aZNG3344YfauXOn5s2bJ0lq2bKlXnrpJd13330aPHiwRo8ereLiYi1YsEBdunTRY489dlnmCEDTRcgBUKvVq1crMzNTM2bMUEBAgCZNmqS5c+fa/W+++aauueYaLV++XGvXrpXT6dTMmTO97q2pyQMPPKCVK1fqlVde0alTp9SxY0c98sgjeuqppyRJrVq10kMPPaQPPvhA7777riorK9WtWze98cYb+vWvf21v595771WrVq00Z84cTZ8+Xa1bt9bPf/5zvfTSSwoLC2uUOQHQfPCzDgCqmTVrlp599ll9++23at++va+HAwAXhXtyAACAkbhcBQCSSkpK7F9Lr0mLFi2qPWcHQNNGyAEASb/4xS+0bdu2Wvs7d+7s9aOaAJo+7skBAEn5+fnnfbpwSEiIbrrppss4IgCXipADAACMxI3HAADASFf0PTmVlZU6duyY2rZte1G/vwMAAC4/y7J08uRJRUdHy9+/9vM1V3TIOXbsWLVfDQYAAM3D4cOH1bFjx1r7r+iQ07ZtW0nfT5LD4fDxaAAAwIXweDyKiYmxP8drc0WHnKpLVA6Hg5ADAEAzU9etJtx4DAAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgpHqHnJycHN1xxx2Kjo6Wn5+f1q1bV2vtgw8+KD8/P7366qte7SUlJUpLS5PD4VBYWJjS09N16tQpr5rdu3dr4MCBCg4OVkxMjLKysqptf82aNerevbuCg4PVq1cvbdy4sb6HAwAADFXvkHP69Gn17t1br7/++nnr1q5dqx07dig6OrpaX1pamgoLC5Wdna3169crJydHEydOtPs9Ho+GDh2qzp07Kz8/X3PnztWsWbO0dOlSu2b79u0aPXq00tPT9fnnnys1NVWpqanau3dvfQ8JAACYyLoEkqy1a9dWaz9y5Ih19dVXW3v37rU6d+5szZ8/3+778ssvLUnWzp077bZNmzZZfn5+1tGjRy3Lsqw33njDCg8Pt8rKyuya6dOnW7Gxsfb6XXfdZaWkpHjtNz4+3nrggQcuePxut9uSZLnd7gt+DQAA8K0L/fxu8HtyKisrNXbsWD3++OPq2bNntf7c3FyFhYWpf//+dltSUpL8/f2Vl5dn1wwaNEiBgYF2TXJysoqKinTixAm7JikpyWvbycnJys3NrXVsZWVl8ng8XgsAADBTg4ecl156SQEBAXrkkUdq7He5XIqMjPRqCwgIULt27eRyueyaqKgor5qq9bpqqvprMnv2bIWGhtoLP84JAIC5GjTk5Ofna8GCBVq+fHmdvyfhCzNnzpTb7baXw4cP+3pIAACgkTRoyPn73/+u48ePq1OnTgoICFBAQIC++eYbTZ06VV26dJEkOZ1OHT9+3Ot1586dU0lJiZxOp11TXFzsVVO1XldNVX9NgoKC7B/j5Ec5AQAwW4OGnLFjx2r37t0qKCiwl+joaD3++ON6//33JUkJCQkqLS1Vfn6+/bqtW7eqsrJS8fHxdk1OTo7Ky8vtmuzsbMXGxio8PNyu2bJli9f+s7OzlZCQ0JCHBAAAmqmA+r7g1KlT+vrrr+31AwcOqKCgQO3atVOnTp0UERHhVd+yZUs5nU7FxsZKknr06KFhw4ZpwoQJWrJkicrLyzVp0iSNGjXK/rr5mDFj9Oyzzyo9PV3Tp0/X3r17tWDBAs2fP9/e7qOPPqrBgwdr3rx5SklJ0dtvv61du3Z5fc0cAABcuvLNH1drazks0QcjqZ96n8nZtWuX+vbtq759+0qSpkyZor59+yozM/OCt7Fy5Up1795dt9xyi4YPH67ExESvcBIaGqoPPvhABw4cUL9+/TR16lRlZmZ6PUvnxhtv1KpVq7R06VL17t1bf/rTn7Ru3Tpdd9119T0kAABgID/LsixfD8JXPB6PQkND5Xa7uT8HAIBaNLUzORf6+c1vVwEAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGqnfIycnJ0R133KHo6Gj5+flp3bp1dl95ebmmT5+uXr16qXXr1oqOjta4ceN07Ngxr22UlJQoLS1NDodDYWFhSk9P16lTp7xqdu/erYEDByo4OFgxMTHKysqqNpY1a9aoe/fuCg4OVq9evbRx48b6Hg4AADBUvUPO6dOn1bt3b73++uvV+v71r3/ps88+09NPP63PPvtM7777roqKinTnnXd61aWlpamwsFDZ2dlav369cnJyNHHiRLvf4/Fo6NCh6ty5s/Lz8zV37lzNmjVLS5cutWu2b9+u0aNHKz09XZ9//rlSU1OVmpqqvXv31veQAACAgfwsy7Iu+sV+flq7dq1SU1Nrrdm5c6cGDBigb775Rp06ddK+ffsUFxennTt3qn///pKkzZs3a/jw4Tpy5Iiio6O1ePFiPfnkk3K5XAoMDJQkzZgxQ+vWrdP+/fslSXfffbdOnz6t9evX2/u64YYb1KdPHy1ZsuSCxu/xeBQaGiq32y2Hw3GRswAAgNnKN39cra3lsEQfjOR7F/r53ej35Ljdbvn5+SksLEySlJubq7CwMDvgSFJSUpL8/f2Vl5dn1wwaNMgOOJKUnJysoqIinThxwq5JSkry2ldycrJyc3NrHUtZWZk8Ho/XAgAAzNSoIefMmTOaPn26Ro8ebSctl8ulyMhIr7qAgAC1a9dOLpfLromKivKqqVqvq6aqvyazZ89WaGiovcTExFzaAQIAgCar0UJOeXm57rrrLlmWpcWLFzfWbupl5syZcrvd9nL48GFfDwkAADSSgMbYaFXA+eabb7R161av62VOp1PHjx/3qj937pxKSkrkdDrtmuLiYq+aqvW6aqr6axIUFKSgoKCLPzAAANBsNPiZnKqA89VXX+nDDz9URESEV39CQoJKS0uVn59vt23dulWVlZWKj4+3a3JyclReXm7XZGdnKzY2VuHh4XbNli1bvLadnZ2thISEhj4kAADQDNU75Jw6dUoFBQUqKCiQJB04cEAFBQU6dOiQysvLNXLkSO3atUsrV65URUWFXC6XXC6Xzp49K0nq0aOHhg0bpgkTJujTTz/VJ598okmTJmnUqFGKjo6WJI0ZM0aBgYFKT09XYWGhVq9erQULFmjKlCn2OB599FFt3rxZ8+bN0/79+zVr1izt2rVLkyZNaoBpAQAAzZ5VTx999JElqdoyfvx468CBAzX2SbI++ugjexvfffedNXr0aKtNmzaWw+Gw7rvvPuvkyZNe+/niiy+sxMREKygoyLr66qutOXPmVBvLO++8Y/30pz+1AgMDrZ49e1obNmyo17G43W5LkuV2u+s7DQAAXDHObvp7tcWXLvTz+5Kek9Pc8ZwcAADqxnNyAAAAmhBCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBI9Q45OTk5uuOOOxQdHS0/Pz+tW7fOq9+yLGVmZqpDhw4KCQlRUlKSvvrqK6+akpISpaWlyeFwKCwsTOnp6Tp16pRXze7duzVw4EAFBwcrJiZGWVlZ1cayZs0ade/eXcHBwerVq5c2btxY38MBAACGqnfIOX36tHr37q3XX3+9xv6srCwtXLhQS5YsUV5enlq3bq3k5GSdOXPGrklLS1NhYaGys7O1fv165eTkaOLEiXa/x+PR0KFD1blzZ+Xn52vu3LmaNWuWli5datds375do0ePVnp6uj7//HOlpqYqNTVVe/fure8hAQAAA/lZlmVd9Iv9/LR27VqlpqZK+v4sTnR0tKZOnapp06ZJktxut6KiorR8+XKNGjVK+/btU1xcnHbu3Kn+/ftLkjZv3qzhw4fryJEjio6O1uLFi/Xkk0/K5XIpMDBQkjRjxgytW7dO+/fvlyTdfffdOn36tNavX2+P54YbblCfPn20ZMmSCxq/x+NRaGio3G63HA7HxU4DAABGK9/8cbW2lsMSfTCS713o53eD3pNz4MABuVwuJSUl2W2hoaGKj49Xbm6uJCk3N1dhYWF2wJGkpKQk+fv7Ky8vz64ZNGiQHXAkKTk5WUVFRTpx4oRd88P9VNVU7acmZWVl8ng8XgsAADBTg4Ycl8slSYqKivJqj4qKsvtcLpciIyO9+gMCAtSuXTuvmpq28cN91FZT1V+T2bNnKzQ01F5iYmLqe4gAAKCZuKK+XTVz5ky53W57OXz4sK+HBAAAGkmDhhyn0ylJKi4u9movLi62+5xOp44fP+7Vf+7cOZWUlHjV1LSNH+6jtpqq/poEBQXJ4XB4LQAAwEwNGnK6du0qp9OpLVu22G0ej0d5eXlKSEiQJCUkJKi0tFT5+fl2zdatW1VZWan4+Hi7JicnR+Xl5XZNdna2YmNjFR4ebtf8cD9VNVX7AQAAV7Z6h5xTp06poKBABQUFkr6/2bigoECHDh2Sn5+fJk+erN/+9rd67733tGfPHo0bN07R0dH2N7B69OihYcOGacKECfr000/1ySefaNKkSRo1apSio6MlSWPGjFFgYKDS09NVWFio1atXa8GCBZoyZYo9jkcffVSbN2/WvHnztH//fs2aNUu7du3SpEmTLn1WAABA82fV00cffWRJqraMHz/esizLqqystJ5++mkrKirKCgoKsm655RarqKjIaxvfffedNXr0aKtNmzaWw+Gw7rvvPuvkyZNeNV988YWVmJhoBQUFWVdffbU1Z86camN55513rJ/+9KdWYGCg1bNnT2vDhg31Oha3221Jstxud/0mAQCAK8jZTX+vtvjShX5+X9Jzcpo7npMDAEDdeE4OAABAE0LIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABipwUNORUWFnn76aXXt2lUhISG69tpr9fzzz8uyLLvGsixlZmaqQ4cOCgkJUVJSkr766iuv7ZSUlCgtLU0Oh0NhYWFKT0/XqVOnvGp2796tgQMHKjg4WDExMcrKymrowwEAAM1Ug4ecl156SYsXL9Zrr72mffv26aWXXlJWVpYWLVpk12RlZWnhwoVasmSJ8vLy1Lp1ayUnJ+vMmTN2TVpamgoLC5Wdna3169crJydHEydOtPs9Ho+GDh2qzp07Kz8/X3PnztWsWbO0dOnShj4kAADQDPlZPzzF0gBuv/12RUVF6a233rLbRowYoZCQEP3xj3+UZVmKjo7W1KlTNW3aNEmS2+1WVFSUli9frlGjRmnfvn2Ki4vTzp071b9/f0nS5s2bNXz4cB05ckTR0dFavHixnnzySblcLgUGBkqSZsyYoXXr1mn//v0XNFaPx6PQ0FC53W45HI6GnAYAAIxRvvnjam0thyX6YCTfu9DP7wY/k3PjjTdqy5Yt+sc//iFJ+uKLL/Txxx/rtttukyQdOHBALpdLSUlJ9mtCQ0MVHx+v3NxcSVJubq7CwsLsgCNJSUlJ8vf3V15enl0zaNAgO+BIUnJysoqKinTixIkax1ZWViaPx+O1AAAAMwU09AZnzJghj8ej7t27q0WLFqqoqNALL7ygtLQ0SZLL5ZIkRUVFeb0uKirK7nO5XIqMjPQeaECA2rVr51XTtWvXatuo6gsPD682ttmzZ+vZZ59tgKMEAABNXYOfyXnnnXe0cuVKrVq1Sp999plWrFihl19+WStWrGjoXdXbzJkz5Xa77eXw4cO+HhIAAGgkDX4m5/HHH9eMGTM0atQoSVKvXr30zTffaPbs2Ro/frycTqckqbi4WB06dLBfV1xcrD59+kiSnE6njh8/7rXdc+fOqaSkxH690+lUcXGxV03VelXNjwUFBSkoKOjSDxIAADR5DX4m51//+pf8/b0326JFC1VWVkqSunbtKqfTqS1bttj9Ho9HeXl5SkhIkCQlJCSotLRU+fn5ds3WrVtVWVmp+Ph4uyYnJ0fl5eV2TXZ2tmJjY2u8VAUAAK4sDR5y7rjjDr3wwgvasGGDDh48qLVr1+qVV17Rz3/+c0mSn5+fJk+erN/+9rd67733tGfPHo0bN07R0dFKTU2VJPXo0UPDhg3ThAkT9Omnn+qTTz7RpEmTNGrUKEVHR0uSxowZo8DAQKWnp6uwsFCrV6/WggULNGXKlIY+JAAA0Aw1+OWqRYsW6emnn9ZDDz2k48ePKzo6Wg888IAyMzPtmieeeEKnT5/WxIkTVVpaqsTERG3evFnBwcF2zcqVKzVp0iTdcsst8vf314gRI7Rw4UK7PzQ0VB988IEyMjLUr18/tW/fXpmZmV7P0gEAAFeuBn9OTnPCc3IAAKgbz8kBAABoQgg5AADASIQcAABgpAa/8RgAAJjvx/fp+PIendpwJgcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGCvD1AAAAgO+Ub/64WlvLYYk+GEnD40wOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKRGCTlHjx7VPffco4iICIWEhKhXr17atWuX3W9ZljIzM9WhQweFhIQoKSlJX331ldc2SkpKlJaWJofDobCwMKWnp+vUqVNeNbt379bAgQMVHBysmJgYZWVlNcbhAACAZqjBQ86JEyd00003qWXLltq0aZO+/PJLzZs3T+Hh4XZNVlaWFi5cqCVLligvL0+tW7dWcnKyzpw5Y9ekpaWpsLBQ2dnZWr9+vXJycjRx4kS73+PxaOjQoercubPy8/M1d+5czZo1S0uXLm3oQwIAAM2Qn2VZVkNucMaMGfrkk0/097//vcZ+y7IUHR2tqVOnatq0aZIkt9utqKgoLV++XKNGjdK+ffsUFxennTt3qn///pKkzZs3a/jw4Tpy5Iiio6O1ePFiPfnkk3K5XAoMDLT3vW7dOu3fv/+CxurxeBQaGiq32y2Hw9EARw8AQPNSvvnjam0thyXWWVPXaxrThX5+N/iZnPfee0/9+/fXL3/5S0VGRqpv3776/e9/b/cfOHBALpdLSUlJdltoaKji4+OVm5srScrNzVVYWJgdcCQpKSlJ/v7+ysvLs2sGDRpkBxxJSk5OVlFRkU6cOFHj2MrKyuTxeLwWAABgpgYPOf/85z+1ePFi/eQnP9H777+vX//613rkkUe0YsUKSZLL5ZIkRUVFeb0uKirK7nO5XIqMjPTqDwgIULt27bxqatrGD/fxY7Nnz1ZoaKi9xMTEXOLRAgCApqrBQ05lZaWuv/56vfjii+rbt68mTpyoCRMmaMmSJQ29q3qbOXOm3G63vRw+fNjXQwIAAI2kwUNOhw4dFBcX59XWo0cPHTp0SJLkdDolScXFxV41xcXFdp/T6dTx48e9+s+dO6eSkhKvmpq28cN9/FhQUJAcDofXAgAAzNTgIeemm25SUVGRV9s//vEPde7cWZLUtWtXOZ1Obdmyxe73eDzKy8tTQkKCJCkhIUGlpaXKz8+3a7Zu3arKykrFx8fbNTk5OSovL7drsrOzFRsb6/VNLgAAcGVq8JDz2GOPaceOHXrxxRf19ddfa9WqVVq6dKkyMjIkSX5+fpo8ebJ++9vf6r333tOePXs0btw4RUdHKzU1VdL3Z36GDRumCRMm6NNPP9Unn3yiSZMmadSoUYqOjpYkjRkzRoGBgUpPT1dhYaFWr16tBQsWaMqUKQ19SAAAoBkKaOgN/uxnP9PatWs1c+ZMPffcc+ratateffVVpaWl2TVPPPGETp8+rYkTJ6q0tFSJiYnavHmzgoOD7ZqVK1dq0qRJuuWWW+Tv768RI0Zo4cKFdn9oaKg++OADZWRkqF+/fmrfvr0yMzO9nqUDAACuXA3+nJzmhOfkAACudDwnBwAAoJkh5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACM1OghZ86cOfLz89PkyZPttjNnzigjI0MRERFq06aNRowYoeLiYq/XHTp0SCkpKWrVqpUiIyP1+OOP69y5c141f/vb33T99dcrKChI3bp10/Llyxv7cAAAQDPRqCFn586d+t3vfqf/+I//8Gp/7LHH9Ne//lVr1qzRtm3bdOzYMf3iF7+w+ysqKpSSkqKzZ89q+/btWrFihZYvX67MzEy75sCBA0pJSdGQIUNUUFCgyZMn6/7779f777/fmIcEAACaiUYLOadOnVJaWpp+//vfKzw83G53u91666239Morr+g///M/1a9fPy1btkzbt2/Xjh07JEkffPCBvvzyS/3xj39Unz59dNttt+n555/X66+/rrNnz0qSlixZoq5du2revHnq0aOHJk2apJEjR2r+/PmNdUgAAKAZabSQk5GRoZSUFCUlJXm15+fnq7y83Ku9e/fu6tSpk3JzcyVJubm56tWrl6Kiouya5ORkeTweFRYW2jU/3nZycrK9jZqUlZXJ4/F4LQAAwEwBjbHRt99+W5999pl27txZrc/lcikwMFBhYWFe7VFRUXK5XHbNDwNOVX9V3/lqPB6P/v3vfyskJKTavmfPnq1nn332oo8LAAA0Hw1+Jufw4cN69NFHtXLlSgUHBzf05i/JzJkz5Xa77eXw4cO+HhIAAGgkDR5y8vPzdfz4cV1//fUKCAhQQECAtm3bpoULFyogIEBRUVE6e/asSktLvV5XXFwsp9MpSXI6ndW+bVW1XleNw+Go8SyOJAUFBcnhcHgtAADATA0ecm655Rbt2bNHBQUF9tK/f3+lpaXZf27ZsqW2bNliv6aoqEiHDh1SQkKCJCkhIUF79uzR8ePH7Zrs7Gw5HA7FxcXZNT/cRlVN1TYAAMCVrcHvyWnbtq2uu+46r7bWrVsrIiLCbk9PT9eUKVPUrl07ORwOPfzww0pISNANN9wgSRo6dKji4uI0duxYZWVlyeVy6amnnlJGRoaCgoIkSQ8++KBee+01PfHEE/rVr36lrVu36p133tGGDRsa+pAAAEAz1Cg3Htdl/vz58vf314gRI1RWVqbk5GS98cYbdn+LFi20fv16/frXv1ZCQoJat26t8ePH67nnnrNrunbtqg0bNuixxx7TggUL1LFjR7355ptKTk72xSEBAIAmxs+yLMvXg/AVj8ej0NBQud1u7s8BAFyRyjd/XK2t5bDEOmvqek1jutDPb367CgAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAAAu2MHSTb4ewgUj5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAXJDm9M0qiZADAAAMRcgBAABGIuQAAAAjEXIAAEC9NJd7cwg5AADASIQcAABgJEIOAAAwEiEHAAAYKcDXAwAAAE1L+eaPfT2EBsGZHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASDwMEAAAQ/z4IX4thyX6aCRNAyEHAIAriClPM74QXK4CAABGIuQAAAAjEXIAAICRCDkAAKDeDpZu8vUQ6kTIAQAARmrwkDN79mz97Gc/U9u2bRUZGanU1FQVFRV51Zw5c0YZGRmKiIhQmzZtNGLECBUXF3vVHDp0SCkpKWrVqpUiIyP1+OOP69y5c141f/vb33T99dcrKChI3bp10/Llyxv6cAAAQDPV4CFn27ZtysjI0I4dO5Sdna3y8nINHTpUp0+ftmsee+wx/fWvf9WaNWu0bds2HTt2TL/4xS/s/oqKCqWkpOjs2bPavn27VqxYoeXLlyszM9OuOXDggFJSUjRkyBAVFBRo8uTJuv/++/X+++839CEBAIBmyM+yLKsxd/Dtt98qMjJS27Zt06BBg+R2u3XVVVdp1apVGjlypCRp//796tGjh3Jzc3XDDTdo06ZNuv3223Xs2DFFRUVJkpYsWaLp06fr22+/VWBgoKZPn64NGzZo79699r5GjRql0tJSbd68ucaxlJWVqayszF73eDyKiYmR2+2Ww+FoxFkAAKDxNfYzcH58H06XsNvsP1/OBw96PB6FhobW+fnd6PfkuN1uSVK7du0kSfn5+SovL1dSUpJd0717d3Xq1Em5ubmSpNzcXPXq1csOOJKUnJwsj8ejwsJCu+aH26iqqdpGTWbPnq3Q0FB7iYmJaZiDBAAATU6jhpzKykpNnjxZN910k6677jpJksvlUmBgoMLCwrxqo6Ki5HK57JofBpyq/qq+89V4PB79+9//rnE8M2fOlNvttpfDhw9f8jECAICmqVF/1iEjI0N79+7Vxx83jUdIBwUFKSgoyNfDAAAAl0GjncmZNGmS1q9fr48++kgdO3a0251Op86ePavS0lKv+uLiYjmdTrvmx9+2qlqvq8bhcCgkJKShDwcAADQzDR5yLMvSpEmTtHbtWm3dulVdu3b16u/Xr59atmypLVu22G1FRUU6dOiQEhISJEkJCQnas2ePjh8/btdkZ2fL4XAoLi7OrvnhNqpqqrYBAACubA1+uSojI0OrVq3SX/7yF7Vt29a+hyY0NFQhISEKDQ1Venq6pkyZonbt2snhcOjhhx9WQkKCbrjhBknS0KFDFRcXp7FjxyorK0sul0tPPfWUMjIy7MtNDz74oF577TU98cQT+tWvfqWtW7fqnXfe0YYNGxr6kAAAQDPU4GdyFi9eLLfbrZtvvlkdOnSwl9WrV9s18+fP1+23364RI0Zo0KBBcjqdevfdd+3+Fi1aaP369WrRooUSEhJ0zz33aNy4cXruuefsmq5du2rDhg3Kzs5W7969NW/ePL355ptKTk5u6EMCAOCK1xx+xuHHGv05OU3ZhX7PHgCA5qAxn5NTU8i54p+TAwAA4AuEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAACucBf7kw1N/aceCDkAAMBIhBwAAGAkQg4AAGjyl54uBiEHAAAYiZADAMAVzMQzOFUIOQAAwEiEHAAAYCRCDgAAkFT7pavmekkrwNcDAAAAdSvf/LHXesthiT4aSfPBmRwAAGAkQg4AADASIQcAABiJe3IAAGhifnz/TVN2sHSTuoTd5uth1IgzOQAAXKFq+tZUc/0mVU0IOQAAwEiEHAAAYCRCDgAAMBIhBwAAGIlvVwEA0Aw1p29g+QohBwCARlJTEGkOP8fQlL8WXh+EHAAALqPL9RtUlzOoHCzdpJ+o6YU3Qg4AAIa6nEGnKZ614sZjAAAM88MH+tX2cL8Lfehfc344IGdyAAC4AJfrMlNTYcJ9OYQcAAAuQlO8PCPV/lMNzT2wXAxCDgDgitJUw0lT1JwvVUmEHABAM9ZQl5B8eSnqcj3vprHP5jTFs0XceAwAgCGa+5mXhsaZHADGqbAqtO+7z3XizP8pPLi9ekT0VQu/Fr4eVpPQVOemoS4h/XA7lmVJJzxq0b2r5Ggj/2s6ys+f/9tLV04YavYh5/XXX9fcuXPlcrnUu3dvLVq0SAMGDPD1sAD4SO6xLXpr71x9d+a43RYRHKn06x5XQvQtPhyZ7zWlubmQSzSXchnHKv5OlfsPSGVnVbmr8PvGoED5d+8qv6iIRtt3U/+phaZ4Sakx+VmWZfl6EBdr9erVGjdunJYsWaL4+Hi9+uqrWrNmjYqKihQZGVnn6z0ej0JDQ+V2u+VwOC7DiAE0ptxjW5S16wlJP/5nzU+S9ET/rCs26NQ+N9+bGpCuxOEZdW7nYj7Eazoj05hhwCr+TpVfFNXa79879oKCTlPzw7MvtQUVX5+h+fG4Guvepgv9/G7WISc+Pl4/+9nP9Nprr0mSKisrFRMTo4cfflgzZsyo8/WEHMAcFVaFHshO8TpL4c1P7YMjteTW9Zd8eaaxbnatyY+3fTHhoNKqVEb5LH2n0lprIhSm11vOkr9f876cY1mWKnPypbKztRcFBcp/UD/5+fldvoFdotrCyw9Dha8DTpUfjsnXIafZXq46e/as8vPzNXPmTLvN399fSUlJys3NrfE1ZWVlKisrs9fdbrek7ycLQNNQnl3z39+67LP+R65z/3vemv/91zHl/vl36uF37UXto1Z/fr9ht9fA2/5+br47b41L32lnwN6Gn5vLzDrhUWVd/6aXnZH/UZf8wpv+f24PubPP27/3X+suz0DqYe+/1qlT6K2SpJaN9Pla9bld13maZhty/u///k8VFRWKioryao+KitL+/ftrfM3s2bP17LPPVmuPiYlplDECaHo2qO5LMlcq5gYNZ95l2cvJkycVGhpaa3+zDTkXY+bMmZoyZYq9XllZqZKSEkVERDSr05aXyuPxKCYmRocPH+YyXS2Yo7oxR3Vjjs6P+akbc1Qzy7J08uRJRUdHn7eu2Yac9u3bq0WLFiouLvZqLy4ultPprPE1QUFBCgoK8moLCwtrrCE2eQ6Hg780dWCO6sYc1Y05Oj/mp27MUXXnO4NTpdneYRYYGKh+/fppy5YtdltlZaW2bNmihIQEH44MAAA0Bc32TI4kTZkyRePHj1f//v01YMAAvfrqqzp9+rTuu+8+Xw8NAAD4WLMOOXfffbe+/fZbZWZmyuVyqU+fPtq8eXO1m5HhLSgoSM8880y1S3f4f5ijujFHdWOOzo/5qRtzdGma9XNyAAAAatNs78kBAAA4H0IOAAAwEiEHAAAYiZADAACMRMgBAABGIuRcYe6880516tRJwcHB6tChg8aOHatjx4551ezevVsDBw5UcHCwYmJilJWV5aPRXn4HDx5Uenq6unbtqpCQEF177bV65plndPbsWa8aPz+/asuOHTt8OPLL50LmSLqy30cvvPCCbrzxRrVq1arWp6rX9B56++23L+9AfehC5ujQoUNKSUlRq1atFBkZqccff1znzp27vANtYrp06VLtfTNnzhxfD6vJatbPyUH9DRkyRL/5zW/UoUMHHT16VNOmTdPIkSO1fft2Sd//TsrQoUOVlJSkJUuWaM+ePfrVr36lsLAwTZw40cejb3z79+9XZWWlfve736lbt27au3evJkyYoNOnT+vll1/2qv3www/Vs2dPez0iIuJyD9cnLmSOrvT30dmzZ/XLX/5SCQkJeuutt2qtW7ZsmYYNG2avX0k/M1PXHFVUVCglJUVOp1Pbt2/X//7v/2rcuHFq2bKlXnzxRR+MuOl47rnnNGHCBHu9bdu2PhxNE2fhivaXv/zF8vPzs86ePWtZlmW98cYbVnh4uFVWVmbXTJ8+3YqNjfXVEH0uKyvL6tq1q71+4MABS5L1+eef+25QTcyP54j30feWLVtmhYaG1tgnyVq7du1lHU9TVNscbdy40fL397dcLpfdtnjxYsvhcHi9r640nTt3tubPn+/rYTQbXK66gpWUlGjlypW68cYb1bJlS0lSbm6uBg0apMDAQLsuOTlZRUVFOnHihK+G6lNut1vt2rWr1n7nnXcqMjJSiYmJeu+993wwsqbjx3PE++jCZGRkqH379howYID+8Ic/yOLZrLbc3Fz16tXL6wn2ycnJ8ng8Kiws9OHIfG/OnDmKiIhQ3759NXfu3Cv+Et75EHKuQNOnT1fr1q0VERGhQ4cO6S9/+Yvd53K5qv0sRtW6y+W6rONsCr7++mstWrRIDzzwgN3Wpk0bzZs3T2vWrNGGDRuUmJio1NTUKzbo1DRHvI/q9txzz+mdd95Rdna2RowYoYceekiLFi3y9bCaDN5DNXvkkUf09ttv66OPPtIDDzygF198UU888YSvh9V0+fpUEi7d9OnTLUnnXfbt22fXf/vtt1ZRUZH1wQcfWDfddJM1fPhwq7Ky0rIsy7r11lutiRMnem2/sLDQkmR9+eWXl/W4GlJ958iyLOvIkSPWtddea6Wnp9e5/bFjx1qJiYmNNfzLoiHnyMT30cXMz/kuV/3Y008/bXXs2LERRn75NOQcTZgwwRo6dKhX2+nTpy1J1saNGxvzMC67i5m3Km+99ZYVEBBgnTlz5jKPunngxmMDTJ06Vffee+95a6655hr7z+3bt1f79u3105/+VD169FBMTIx27NihhIQEOZ1OFRcXe722at3pdDb42C+X+s7RsWPHNGTIEN14441aunRpnduPj49Xdnb2pQ7Tpxpyjkx8H9V3fuorPj5ezz//vMrKyprtjzE25Bw5nU59+umnXm3N/T1Um0uZt/j4eJ07d04HDx5UbGxsI4yueSPkGOCqq67SVVdddVGvrayslCSVlZVJkhISEvTkk0+qvLzcvk8nOztbsbGxCg8Pb5gB+0B95ujo0aMaMmSI+vXrp2XLlsnfv+6rugUFBerQocOlDtOnGnKOTHwfXcrfswtRUFCg8PDwZhtwpIado4SEBL3wwgs6fvy4IiMjJX3/HnI4HIqLi2uQfTQVlzJvBQUF8vf3t+cI3gg5V5C8vDzt3LlTiYmJCg8P1//8z//o6aef1rXXXquEhARJ0pgxY/Tss88qPT1d06dP1969e7VgwQLNnz/fx6O/PI4ePaqbb75ZnTt31ssvv6xvv/3W7qv63+OKFSsUGBiovn37SpLeffdd/eEPf9Cbb77pkzFfbhcyR1f6++jQoUMqKSnRoUOHVFFRoYKCAklSt27d1KZNG/31r39VcXGxbrjhBgUHBys7O1svvviipk2b5tuBX0Z1zdHQoUMVFxensWPHKisrSy6XS0899ZQyMjKadRC8FLm5ucrLy9OQIUPUtm1b5ebm6rHHHtM999zTbP/z0Oh8fb0Ml8/u3butIUOGWO3atbOCgoKsLl26WA8++KB15MgRr7ovvvjCSkxMtIKCgqyrr77amjNnjo9GfPktW7as1mviVZYvX2716NHDatWqleVwOKwBAwZYa9as8eGoL68LmSPLurLfR+PHj69xfj766CPLsixr06ZNVp8+faw2bdpYrVu3tnr37m0tWbLEqqio8O3AL6O65siyLOvgwYPWbbfdZoWEhFjt27e3pk6dapWXl/tu0D6Wn59vxcfHW6GhoVZwcLDVo0cP68UXX+R+nPPwsyy+swgAAMzDV8gBAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKT/D847qqoPt8dhAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANNdJREFUeJzt3X9clfX9//EniBzwxzn4gx8yUVmslLJMnXqWVhaTira1aJubc5SW07BNnGnecmquDWc1s5U/qk38bDnT3dJPyUQNfzSL1FgsxDQrChsdsCUcdQoC1/ePfbk+HkHlIL/e8Ljfbtft1nlfr+t9vS+u5DzP+1zXRYBlWZYAAAAMEtjaAwAAAPAXAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgDakE8++UQBAQHKyMho7aEAbRoBBsBlW758OW+4AFpUAH8LCcDluuaaa9S7d2/t2rWrtYdiPMuyVFFRoc6dO6tTp06tPRygzWIGBkCLOnXqVGsPoU0LCAhQSEgI4QW4BAIMYJATJ05oxowZGjBggBwOhyIiIvTNb35T//jHPyRJN998s6655hrl5ubqG9/4hkJDQxUbG6uVK1fW6auiokILFixQXFycHA6HYmJiNHv2bFVUVNSp/fOf/6wRI0aoS5cu6tGjh2688UZt27ZNkjRgwAAVFBRo9+7dCggIUEBAgG6++WZJUkZGhgICArR79249+OCDioiIUN++fSVJ9957rwYMGFBnXwsXLlRAQIBPW0BAgKZPn64NGzYoPj5eoaGhcrvdys/PlyStWrVKcXFxCgkJ0c0336xPPvnE759tQUGBbrnlFoWGhqpv3756/PHH9cc//lEBAQF+9Vc7/g8++EA//vGP5XK5FB4erl/+8peyLEtHjx7Vd77zHTmdTkVFRempp57y2b6+a2DuvfdedevWTf/617901113qVu3bgoPD9esWbNUXV3t97EC7UFQaw8AQMNNnTpVf/3rXzV9+nTFx8fr3//+t/bs2aP3339fQ4cOlSQdP35cd9xxh77//e/rhz/8odavX69p06YpODhYkyZNkiTV1NTo29/+tvbs2aMpU6Zo0KBBys/P19KlS/XBBx9o06ZN9j4fe+wxLVy4UN/4xje0aNEiBQcHa+/evdqxY4fGjRunp59+Wg899JC6deumRx99VJIUGRnpM+4HH3xQ4eHhmj9/fqNnYP7+97/r1VdfVWpqqiQpPT1dd955p2bPnq3ly5frwQcf1PHjx7VkyRJNmjRJO3bsaHDfHo9HY8eOVVVVlR555BF17dpVzz//vEJDQxs1Vkn6wQ9+oEGDBmnx4sXKzMzU448/rp49e2rVqlW65ZZb9Nvf/lYvvfSSZs2apa9//eu68cYbL9pfdXW1EhMTNXLkSD355JN6/fXX9dRTT+mKK67QtGnTGj1OwFgWAGO4XC4rNTX1gutvuukmS5L11FNP2W0VFRXWkCFDrIiICKuystKyLMv605/+ZAUGBlp///vffbZfuXKlJcl68803LcuyrCNHjliBgYHWd7/7Xau6utqntqamxv7vq6++2rrpppvqjGf16tWWJGv06NFWVVWVz7qUlBSrf//+dbZZsGCBdf6vJkmWw+GwCgsL7bZVq1ZZkqyoqCjL6/Xa7XPnzrUk+dReyowZMyxJ1t69e+220tJSy+Vy+d1X7finTJlit1VVVVl9+/a1AgICrMWLF9vtx48ft0JDQ62UlBS7rbCw0JJkrV692m5LSUmxJFmLFi3y2df1119vDRs2rMFjA9oTvkICDBIWFqa9e/equLj4gjVBQUH66U9/ar8ODg7WT3/6U5WWlio3N1eStGHDBg0aNEgDBw7UF198YS+33HKLJGnnzp2SpE2bNqmmpkbz589XYKDvr4vzv+a5mAceeOCyr+m49dZbfb5yGjlypCQpOTlZ3bt3r9P+8ccfN7jvv/3tbxo1apRGjBhht4WHh2vChAmNHu/9999v/3enTp00fPhwWZalyZMn2+1hYWG66qqrGjzWqVOn+rweM2aMX8cJtCcEGMAgS5Ys0YEDBxQTE6MRI0Zo4cKFdd7AoqOj1bVrV5+2K6+8UpLsazmOHDmigoIChYeH+yy1daWlpZKkjz76SIGBgYqPj7+sccfGxl7W9pLUr18/n9cul0uSFBMTU2/78ePHG9z3p59+qq997Wt12q+66ip/h2mrb7whISHq3bt3nfaGjDUkJETh4eE+bT169PDrOIH2hGtgAIN8//vf15gxY7Rx40Zt27ZNTzzxhH7729/qlVde0e23397gfmpqajR48GD97ne/q3f9+aHgctV3LcmFZnAudFHqhWZwLtRutfITIuob1+WMlbuSAF8EGMAwffr00YMPPqgHH3xQpaWlGjp0qH7961/bAaa4uFinTp3ymYX54IMPJMn+CuaKK67QP//5T916660X/SroiiuuUE1NjQ4ePKghQ4ZcsM6fr5Nq9ejRQ2VlZXXaP/30U7/7ulz9+/fXkSNH6rQfPny4xccCoGH4CgkwRHV1tcrLy33aIiIiFB0d7XPrc1VVlVatWmW/rqys1KpVqxQeHq5hw4ZJ+u9Mzr/+9S+98MILdfZz+vRp+06hu+66S4GBgVq0aJFqamp86s6dNejatWu9YeRirrjiCpWXl+u9996z2z7//HNt3LjRr36awh133KG3335b+/bts9uOHTuml156qcXHAqBhmIEBDHHixAn17dtX99xzj6677jp169ZNr7/+uvbv3+/zLJHo6Gj99re/1SeffKIrr7xSL7/8svLy8vT888+rc+fOkqSJEydq/fr1mjp1qnbu3KkbbrhB1dXVOnTokNavX6+tW7dq+PDhiouL06OPPqpf/epXGjNmjO6++245HA7t379f0dHRSk9PlyQNGzZMK1as0OOPP664uDhFRETYFwRfyPjx4zVnzhx997vf1c9+9jP95z//0YoVK3TllVfaz7VpKbNnz9af/vQn3Xbbbfr5z39u30bdv39/n4AFoO0gwACG6NKlix588EFt27ZNr7zyimpqahQXF6fly5f7PAekR48eWrNmjR566CG98MILioyM1LPPPqsHHnjArgkMDNSmTZu0dOlS/c///I82btyoLl266Ktf/ap+/vOf2xfzStKiRYsUGxur3//+93r00UfVpUsXXXvttZo4caJdM3/+fH366adasmSJTpw4oZtuuumSAaZXr17auHGjZs6cqdmzZys2Nlbp6ek6cuRIiweYPn36aOfOnXrooYe0ePFi9erVS1OnTlV0dLTPXUMA2g7+FhLQjtx888364osvdODAgdYeSruQkZGh++67T4WFhfU+NRhA6+EaGAAAYBy+QgLQbp0+fbrOhc/n69mzp4KDgy/Z18mTJ3Xy5MmL1oSHh3O7M9BCCDAA2q2XX35Z991330Vrdu7caf/xyYt58skn9dhjj120hq+agJbDNTAA2q3PP/9cBQUFF60ZNmyYevToccm+Pv7440s+tn/06NEKCQnxa4wAGocAAwAAjMNFvAAAwDjt9hqYmpoaFRcXq3v37o16zDkAAGh5lmXpxIkTio6OVmDghedZ2m2AKS4ubvI/SAcAAFrG0aNH1bdv3wuub7cBpnv37pL++wNwOp2tPBoAANAQXq9XMTEx9vv4hbTbAFP7tZHT6STAAABgmEtd/sFFvAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADG8SvADBgwQAEBAXWW1NRUSdKZM2eUmpqqXr16qVu3bkpOTlZJSYlPH0VFRUpKSlKXLl0UERGhhx9+WFVVVT41u3bt0tChQ+VwOBQXF6eMjIzLO8omdjZrT50FAAC0HL8CzP79+/X555/by/bt2yVJ3/ve9yRJaWlpeu2117Rhwwbt3r1bxcXFuvvuu+3tq6urlZSUpMrKSr311ltas2aNMjIyNH/+fLumsLBQSUlJGjt2rPLy8jRjxgzdf//92rp1a1McLwAAaAcCLMuyGrvxjBkztHnzZh05ckRer1fh4eFau3at7rnnHknSoUOHNGjQIOXk5GjUqFHasmWL7rzzThUXFysyMlKStHLlSs2ZM0fHjh1TcHCw5syZo8zMTB04cMDez/jx41VWVqasrKwGj83r9crlcqm8vFxOp7Oxh1iv+mZcOt82ukn3AQBAR9TQ9+9GXwNTWVmpP//5z5o0aZICAgKUm5urs2fPKiEhwa4ZOHCg+vXrp5ycHElSTk6OBg8ebIcXSUpMTJTX61VBQYFdc24ftTW1fVxIRUWFvF6vzwIAANqnRgeYTZs2qaysTPfee68kyePxKDg4WGFhYT51kZGR8ng8ds254aV2fe26i9V4vV6dPn36guNJT0+Xy+Wyl5iYmMYeGgAAaOMaHWD+8Ic/6Pbbb1d0dHRTjqfR5s6dq/Lycns5evRoaw8JAAA0k6DGbPTpp5/q9ddf1yuvvGK3RUVFqbKyUmVlZT6zMCUlJYqKirJr9u3b59NX7V1K59acf+dSSUmJnE6nQkNDLzgmh8Mhh8PRmMMBAACGadQMzOrVqxUREaGkpCS7bdiwYercubOys7PttsOHD6uoqEhut1uS5Ha7lZ+fr9LSUrtm+/btcjqdio+Pt2vO7aO2prYPAAAAvwNMTU2NVq9erZSUFAUF/d8Ejsvl0uTJkzVz5kzt3LlTubm5uu++++R2uzVq1ChJ0rhx4xQfH6+JEyfqn//8p7Zu3ap58+YpNTXVnj2ZOnWqPv74Y82ePVuHDh3S8uXLtX79eqWlpTXRIQMAANP5/RXS66+/rqKiIk2aNKnOuqVLlyowMFDJycmqqKhQYmKili9fbq/v1KmTNm/erGnTpsntdqtr165KSUnRokWL7JrY2FhlZmYqLS1Ny5YtU9++ffXiiy8qMTGxkYcIAADam8t6DkxbxnNgAAAwT7M/BwYAAKC1EGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjON3gPnXv/6lH//4x+rVq5dCQ0M1ePBgvfPOO/Z6y7I0f/589enTR6GhoUpISNCRI0d8+vjyyy81YcIEOZ1OhYWFafLkyTp58qRPzXvvvacxY8YoJCREMTExWrJkSSMPEQAAtDd+BZjjx4/rhhtuUOfOnbVlyxYdPHhQTz31lHr06GHXLFmyRM8884xWrlypvXv3qmvXrkpMTNSZM2fsmgkTJqigoEDbt2/X5s2b9cYbb2jKlCn2eq/Xq3Hjxql///7Kzc3VE088oYULF+r5559vgkMGAACmC7Asy2po8SOPPKI333xTf//73+tdb1mWoqOj9Ytf/EKzZs2SJJWXlysyMlIZGRkaP3683n//fcXHx2v//v0aPny4JCkrK0t33HGHPvvsM0VHR2vFihV69NFH5fF4FBwcbO9706ZNOnToUL37rqioUEVFhf3a6/UqJiZG5eXlcjqdDT3EBjmbtadOW+fbRjfpPgAA6Ii8Xq9cLtcl37/9moF59dVXNXz4cH3ve99TRESErr/+er3wwgv2+sLCQnk8HiUkJNhtLpdLI0eOVE5OjiQpJydHYWFhdniRpISEBAUGBmrv3r12zY033miHF0lKTEzU4cOHdfz48XrHlp6eLpfLZS8xMTH+HBoAADCIXwHm448/1ooVK/S1r31NW7du1bRp0/Szn/1Ma9askSR5PB5JUmRkpM92kZGR9jqPx6OIiAif9UFBQerZs6dPTX19nLuP882dO1fl5eX2cvToUX8ODQAAGCTIn+KamhoNHz5cv/nNbyRJ119/vQ4cOKCVK1cqJSWlWQbYUA6HQw6Ho1XHAAAAWoZfMzB9+vRRfHy8T9ugQYNUVFQkSYqKipIklZSU+NSUlJTY66KiolRaWuqzvqqqSl9++aVPTX19nLsPAADQcfkVYG644QYdPnzYp+2DDz5Q//79JUmxsbGKiopSdna2vd7r9Wrv3r1yu92SJLfbrbKyMuXm5to1O3bsUE1NjUaOHGnXvPHGGzp79qxds337dl111VU+dzwBAICOya8Ak5aWprffflu/+c1v9OGHH2rt2rV6/vnnlZqaKkkKCAjQjBkz9Pjjj+vVV19Vfn6+fvKTnyg6Olp33XWXpP/O2Nx222164IEHtG/fPr355puaPn26xo8fr+joaEnSj370IwUHB2vy5MkqKCjQyy+/rGXLlmnmzJlNe/QAAMBIfl0D8/Wvf10bN27U3LlztWjRIsXGxurpp5/WhAkT7JrZs2fr1KlTmjJlisrKyjR69GhlZWUpJCTErnnppZc0ffp03XrrrQoMDFRycrKeeeYZe73L5dK2bduUmpqqYcOGqXfv3po/f77Ps2IAAEDH5ddzYEzS0PvIG4PnwAAA0Dya5TkwAAAAbQEBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBx/AowCxcuVEBAgM8ycOBAe/2ZM2eUmpqqXr16qVu3bkpOTlZJSYlPH0VFRUpKSlKXLl0UERGhhx9+WFVVVT41u3bt0tChQ+VwOBQXF6eMjIzGHyEAAGh3/J6Bufrqq/X555/by549e+x1aWlpeu2117Rhwwbt3r1bxcXFuvvuu+311dXVSkpKUmVlpd566y2tWbNGGRkZmj9/vl1TWFiopKQkjR07Vnl5eZoxY4buv/9+bd269TIPFQAAtBdBfm8QFKSoqKg67eXl5frDH/6gtWvX6pZbbpEkrV69WoMGDdLbb7+tUaNGadu2bTp48KBef/11RUZGasiQIfrVr36lOXPmaOHChQoODtbKlSsVGxurp556SpI0aNAg7dmzR0uXLlViYuJlHi4AAGgP/J6BOXLkiKKjo/XVr35VEyZMUFFRkSQpNzdXZ8+eVUJCgl07cOBA9evXTzk5OZKknJwcDR48WJGRkXZNYmKivF6vCgoK7Jpz+6itqe3jQioqKuT1en0WAADQPvkVYEaOHKmMjAxlZWVpxYoVKiws1JgxY3TixAl5PB4FBwcrLCzMZ5vIyEh5PB5Jksfj8Qkvtetr112sxuv16vTp0xccW3p6ulwul73ExMT4c2gAAMAgfn2FdPvtt9v/fe2112rkyJHq37+/1q9fr9DQ0CYfnD/mzp2rmTNn2q+9Xi8hBgCAduqybqMOCwvTlVdeqQ8//FBRUVGqrKxUWVmZT01JSYl9zUxUVFSdu5JqX1+qxul0XjQkORwOOZ1OnwUAALRPlxVgTp48qY8++kh9+vTRsGHD1LlzZ2VnZ9vrDx8+rKKiIrndbkmS2+1Wfn6+SktL7Zrt27fL6XQqPj7erjm3j9qa2j4AAAD8CjCzZs3S7t279cknn+itt97Sd7/7XXXq1Ek//OEP5XK5NHnyZM2cOVM7d+5Ubm6u7rvvPrndbo0aNUqSNG7cOMXHx2vixIn65z//qa1bt2revHlKTU2Vw+GQJE2dOlUff/yxZs+erUOHDmn58uVav3690tLSmv7oAQCAkfy6Buazzz7TD3/4Q/373/9WeHi4Ro8erbffflvh4eGSpKVLlyowMFDJycmqqKhQYmKili9fbm/fqVMnbd68WdOmTZPb7VbXrl2VkpKiRYsW2TWxsbHKzMxUWlqali1bpr59++rFF1/kFmoAAGALsCzLau1BNAev1yuXy6Xy8vImvx7mbNaeOm2dbxvdpPsAAKAjauj7N38LCQAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGCcywowixcvVkBAgGbMmGG3nTlzRqmpqerVq5e6deum5ORklZSU+GxXVFSkpKQkdenSRREREXr44YdVVVXlU7Nr1y4NHTpUDodDcXFxysjIuJyhAgCAdqTRAWb//v1atWqVrr32Wp/2tLQ0vfbaa9qwYYN2796t4uJi3X333fb66upqJSUlqbKyUm+99ZbWrFmjjIwMzZ8/364pLCxUUlKSxo4dq7y8PM2YMUP333+/tm7d2tjhAgCAdiTAsizL341OnjypoUOHavny5Xr88cc1ZMgQPf300yovL1d4eLjWrl2re+65R5J06NAhDRo0SDk5ORo1apS2bNmiO++8U8XFxYqMjJQkrVy5UnPmzNGxY8cUHBysOXPmKDMzUwcOHLD3OX78eJWVlSkrK6tBY/R6vXK5XCovL5fT6fT3EC/qbNaeOm2dbxvdpPsAAKAjauj7d6NmYFJTU5WUlKSEhASf9tzcXJ09e9anfeDAgerXr59ycnIkSTk5ORo8eLAdXiQpMTFRXq9XBQUFds35fScmJtp91KeiokJer9dnAQAA7VOQvxusW7dO//jHP7R///466zwej4KDgxUWFubTHhkZKY/HY9ecG15q19euu1iN1+vV6dOnFRoaWmff6enpeuyxx/w9HAAAYCC/ZmCOHj2qn//853rppZcUEhLSXGNqlLlz56q8vNxejh492tpDAgAAzcSvAJObm6vS0lINHTpUQUFBCgoK0u7du/XMM88oKChIkZGRqqysVFlZmc92JSUlioqKkiRFRUXVuSup9vWlapxOZ72zL5LkcDjkdDp9FgAA0D75FWBuvfVW5efnKy8vz16GDx+uCRMm2P/duXNnZWdn29scPnxYRUVFcrvdkiS32638/HyVlpbaNdu3b5fT6VR8fLxdc24ftTW1fQAAgI7Nr2tgunfvrmuuucanrWvXrurVq5fdPnnyZM2cOVM9e/aU0+nUQw89JLfbrVGjRkmSxo0bp/j4eE2cOFFLliyRx+PRvHnzlJqaKofDIUmaOnWqnn32Wc2ePVuTJk3Sjh07tH79emVmZjbFMQMAAMP5fRHvpSxdulSBgYFKTk5WRUWFEhMTtXz5cnt9p06dtHnzZk2bNk1ut1tdu3ZVSkqKFi1aZNfExsYqMzNTaWlpWrZsmfr27asXX3xRiYmJTT1cAABgoEY9B8YEPAcGAADzNOtzYAAAAFoTAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOH4FmBUrVujaa6+V0+mU0+mU2+3Wli1b7PVnzpxRamqqevXqpW7duik5OVklJSU+fRQVFSkpKUldunRRRESEHn74YVVVVfnU7Nq1S0OHDpXD4VBcXJwyMjIaf4QAAKDd8SvA9O3bV4sXL1Zubq7eeecd3XLLLfrOd76jgoICSVJaWppee+01bdiwQbt371ZxcbHuvvtue/vq6molJSWpsrJSb731ltasWaOMjAzNnz/friksLFRSUpLGjh2rvLw8zZgxQ/fff7+2bt3aRIcMAABMF2BZlnU5HfTs2VNPPPGE7rnnHoWHh2vt2rW65557JEmHDh3SoEGDlJOTo1GjRmnLli268847VVxcrMjISEnSypUrNWfOHB07dkzBwcGaM2eOMjMzdeDAAXsf48ePV1lZmbKysho8Lq/XK5fLpfLycjmdzss5xDrOZu2p09b5ttFNug8AADqihr5/N/oamOrqaq1bt06nTp2S2+1Wbm6uzp49q4SEBLtm4MCB6tevn3JyciRJOTk5Gjx4sB1eJCkxMVFer9eexcnJyfHpo7amto8LqaiokNfr9VkAAED75HeAyc/PV7du3eRwODR16lRt3LhR8fHx8ng8Cg4OVlhYmE99ZGSkPB6PJMnj8fiEl9r1tesuVuP1enX69OkLjis9PV0ul8teYmJi/D00AABgCL8DzFVXXaW8vDzt3btX06ZNU0pKig4ePNgcY/PL3LlzVV5ebi9Hjx5t7SEBAIBmEuTvBsHBwYqLi5MkDRs2TPv379eyZcv0gx/8QJWVlSorK/OZhSkpKVFUVJQkKSoqSvv27fPpr/YupXNrzr9zqaSkRE6nU6GhoRccl8PhkMPh8PdwAACAgS77OTA1NTWqqKjQsGHD1LlzZ2VnZ9vrDh8+rKKiIrndbkmS2+1Wfn6+SktL7Zrt27fL6XQqPj7erjm3j9qa2j4AAAD8moGZO3eubr/9dvXr108nTpzQ2rVrtWvXLm3dulUul0uTJ0/WzJkz1bNnTzmdTj300ENyu90aNWqUJGncuHGKj4/XxIkTtWTJEnk8Hs2bN0+pqan27MnUqVP17LPPavbs2Zo0aZJ27Nih9evXKzMzs+mPHgAAGMmvAFNaWqqf/OQn+vzzz+VyuXTttddq69at+uY3vylJWrp0qQIDA5WcnKyKigolJiZq+fLl9vadOnXS5s2bNW3aNLndbnXt2lUpKSlatGiRXRMbG6vMzEylpaVp2bJl6tu3r1588UUlJiY20SEDAADTXfZzYNoqngMDAIB5mv05MAAAAK2FAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHL8CTHp6ur7+9a+re/fuioiI0F133aXDhw/71Jw5c0apqanq1auXunXrpuTkZJWUlPjUFBUVKSkpSV26dFFERIQefvhhVVVV+dTs2rVLQ4cOlcPhUFxcnDIyMhp3hAAAoN3xK8Ds3r1bqampevvtt7V9+3adPXtW48aN06lTp+yatLQ0vfbaa9qwYYN2796t4uJi3X333fb66upqJSUlqbKyUm+99ZbWrFmjjIwMzZ8/364pLCxUUlKSxo4dq7y8PM2YMUP333+/tm7d2gSHDAAATBdgWZbV2I2PHTumiIgI7d69WzfeeKPKy8sVHh6utWvX6p577pEkHTp0SIMGDVJOTo5GjRqlLVu26M4771RxcbEiIyMlSStXrtScOXN07NgxBQcHa86cOcrMzNSBAwfsfY0fP15lZWXKyspq0Ni8Xq9cLpfKy8vldDobe4j1Opu1p05b59tGN+k+AADoiBr6/n1Z18CUl5dLknr27ClJys3N1dmzZ5WQkGDXDBw4UP369VNOTo4kKScnR4MHD7bDiyQlJibK6/WqoKDArjm3j9qa2j7qU1FRIa/X67MAAID2qdEBpqamRjNmzNANN9yga665RpLk8XgUHByssLAwn9rIyEh5PB675tzwUru+dt3Farxer06fPl3veNLT0+VyuewlJiamsYcGAADauEYHmNTUVB04cEDr1q1ryvE02ty5c1VeXm4vR48ebe0hAQCAZhLUmI2mT5+uzZs364033lDfvn3t9qioKFVWVqqsrMxnFqakpERRUVF2zb59+3z6q71L6dya8+9cKikpkdPpVGhoaL1jcjgccjgcjTkcAABgGL9mYCzL0vTp07Vx40bt2LFDsbGxPuuHDRumzp07Kzs72247fPiwioqK5Ha7JUlut1v5+fkqLS21a7Zv3y6n06n4+Hi75tw+amtq+wAAAB2bXzMwqampWrt2rf73f/9X3bt3t69ZcblcCg0Nlcvl0uTJkzVz5kz17NlTTqdTDz30kNxut0aNGiVJGjdunOLj4zVx4kQtWbJEHo9H8+bNU2pqqj2DMnXqVD377LOaPXu2Jk2apB07dmj9+vXKzMxs4sMHAAAm8us26oCAgHrbV69erXvvvVfSfx9k94tf/EJ/+ctfVFFRocTERC1fvtz+ekiSPv30U02bNk27du1S165dlZKSosWLFyso6P/y1K5du5SWlqaDBw+qb9+++uUvf2nvoyG4jRoAAPM09P37sp4D05YRYAAAME+LPAcGAACgNRBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIzjd4B544039K1vfUvR0dEKCAjQpk2bfNZblqX58+erT58+Cg0NVUJCgo4cOeJT8+WXX2rChAlyOp0KCwvT5MmTdfLkSZ+a9957T2PGjFFISIhiYmK0ZMkS/48OAAC0S34HmFOnTum6667Tc889V+/6JUuW6JlnntHKlSu1d+9ede3aVYmJiTpz5oxdM2HCBBUUFGj79u3avHmz3njjDU2ZMsVe7/V6NW7cOPXv31+5ubl64okntHDhQj3//PONOEQAANDeBFiWZTV644AAbdy4UXfddZek/86+REdH6xe/+IVmzZolSSovL1dkZKQyMjI0fvx4vf/++4qPj9f+/fs1fPhwSVJWVpbuuOMOffbZZ4qOjtaKFSv06KOPyuPxKDg4WJL0yCOPaNOmTTp06FC9Y6moqFBFRYX92uv1KiYmRuXl5XI6nY09xHqdzdpTp63zbaObdB8AAHREXq9XLpfrku/fTXoNTGFhoTwejxISEuw2l8ulkSNHKicnR5KUk5OjsLAwO7xIUkJCggIDA7V371675sYbb7TDiyQlJibq8OHDOn78eL37Tk9Pl8vlspeYmJimPDQAANCGNGmA8Xg8kqTIyEif9sjISHudx+NRRESEz/qgoCD17NnTp6a+Ps7dx/nmzp2r8vJyezl69OjlHxAAAGiTglp7AE3F4XDI4XC09jAAAEALaNIZmKioKElSSUmJT3tJSYm9LioqSqWlpT7rq6qq9OWXX/rU1NfHufsAAAAdV5MGmNjYWEVFRSk7O9tu83q92rt3r9xutyTJ7XarrKxMubm5ds2OHTtUU1OjkSNH2jVvvPGGzp49a9ds375dV111lXr06NGUQwYAAAbyO8CcPHlSeXl5ysvLk/TfC3fz8vJUVFSkgIAAzZgxQ48//rheffVV5efn6yc/+Ymio6PtO5UGDRqk2267TQ888ID27dunN998U9OnT9f48eMVHR0tSfrRj36k4OBgTZ48WQUFBXr55Ze1bNkyzZw5s8kOHAAAmMvva2DeeecdjR071n5dGypSUlKUkZGh2bNn69SpU5oyZYrKyso0evRoZWVlKSQkxN7mpZde0vTp03XrrbcqMDBQycnJeuaZZ+z1LpdL27ZtU2pqqoYNG6bevXtr/vz5Ps+KAQAAHddlPQemLWvofeSNwXNgAABoHq3yHBgAAICW0G5uo25t58/KMCMDAEDzYQYGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHJ/E2E/5eEgAAzYcZGAAAYBwCDAAAMA5fIQFAG9bSX0fzh2lhCgIMAOCCuJ4PbRUBphXxiwEA/NOQ35v8bu0YCDAAgAv6pGxLnbav6dJhgK+i0NwIMAA6DD6ZA+0HAaYF1ffLE0DTaKpw0pB/p40NPY2dlTh/FuT8GZCW/t3SmP019vw0ZF8fvbPK53U/XX3Jfgiu5iPAAGhRDXkjaUxNY7/qOLLuUZ/XA8Jur1NzqQDRlJoqjNT38zj/2BpS09h9NaTf84NHfWrKii49gLLzXofVDTAN0VT/b6JlEGAM1Nr/gJpq/615HCZ8ldBcv0wbcuznv6lL0tfG//qSfTdkX41RXz8NedM8/w2yIW+GDem3vp9PQ5z/Jl5fPw0JEM0549KQ429ITWPUfNiAsNKCGvJzNuF3SXtFgIFRmvOXRXMFqsbeNdFc6v3UnXXp7Roy49GQT/h1rGvcp/eGaGtviM0ZDlozeDREvfsua8F9nae+WbTzt2vs/3doGQSYNqa5PlHDfy35c21IGGjIp/6GBJGG7r+5ahqjNd942yJ+HpevIV9fNTakN+dXjPg/BJg2rrGfzBvz9cOF6vzdV339tOQMQ0O+bmiqT1ZNdX6aSlNd0wC0d42dnWtIeGztr/k7CgIMfLS1O6Wa6g6E87X2J6uWnM3g0zrQsup8YKpnZrStf/VtAgJMB9GUwaQhsxmNubOjIddC1KvsvH7VfJ+smmIbAB1LQ64760jBo6kQYNqJhoSKxnyNwiyAr8befQIA/mprM+JtDQHGQK19J0NT7QsAOqqGPFuoMb9bm/PrqraGANPKGjNz0lz7BgC0jobcFQVfBJg2hlABAB1Pcz6zqL1e6EuAaUaEEQBAS+pIj1IgwDQRwgoAoC1qyb/l1ZIIMAAAdCDt5entBBgAADqQ9vLnDwgwjcDXRQAAtK7A1h4AAACAv5iB8UNF1RltyX1RhdXvq6cVqhGd+ikogAwIADBbQ/78S1u7TibAsiyrtQdxIc8995yeeOIJeTweXXfddfr973+vESNGNGhbr9crl8ul8vJyOZ3Oyx7L6l0L9Fr5ZlkB//fjCrCkW05cocSgKy+7fwAATPK18b9uln4b+v7dZqcPXn75Zc2cOVMLFizQP/7xD1133XVKTExUaWlpi49l9a4FerX8NVnyzXqWpOzuH2lr1QctPiYAADqyNhtgfve73+mBBx7Qfffdp/j4eK1cuVJdunTRH//4xxYdR0XVGb1Wvvm/LwLOW/n/X+/o/pGqrJoWHRcAAB1Zm7wGprKyUrm5uZo7d67dFhgYqISEBOXk5NS7TUVFhSoqKuzX5eXlkv47FXU5Nr+zSpWnqy5Zt/vkRxrZqd9l7QsAAFNc7vvrpfq91BUubTLAfPHFF6qurlZkZKRPe2RkpA4dOlTvNunp6XrsscfqtMfExDTLGM+XqfdaZD8AALQJk59q1u5PnDghl8t1wfVtMsA0xty5czVz5kz7dU1Njb788kv16tVLAQHnf/fTeF6vVzExMTp69GiTXByMpsF5aZs4L20T56Vt4rz8l2VZOnHihKKjoy9a1yYDTO/evdWpUyeVlJT4tJeUlCgqKqrebRwOhxwOh09bWFhYcw1RTqezQ/8P1lZxXtomzkvbxHlpmzgvuujMS602eRFvcHCwhg0bpuzsbLutpqZG2dnZcrvdrTgyAADQFrTJGRhJmjlzplJSUjR8+HCNGDFCTz/9tE6dOqX77ruvtYcGAABaWZsNMD/4wQ907NgxzZ8/Xx6PR0OGDFFWVladC3tbmsPh0IIFC+p8XYXWxXlpmzgvbRPnpW3ivPinTT+JFwAAoD5t8hoYAACAiyHAAAAA4xBgAACAcQgwAADAOAQYAABgHAJMPZ577jkNGDBAISEhGjlypPbt23fR+g0bNmjgwIEKCQnR4MGD9be//a2FRtqx+HNeCgoKlJycrAEDBiggIEBPP/10yw20g/HnvLzwwgsaM2aMevTooR49eighIeGS/77QOP6cl1deeUXDhw9XWFiYunbtqiFDhuhPf/pTC462Y/D3vaXWunXrFBAQoLvuuqt5B2gaCz7WrVtnBQcHW3/84x+tgoIC64EHHrDCwsKskpKSeuvffPNNq1OnTtaSJUusgwcPWvPmzbM6d+5s5efnt/DI2zd/z8u+ffusWbNmWX/5y1+sqKgoa+nSpS074A7C3/Pyox/9yHruueesd99913r//fete++913K5XNZnn33WwiNv3/w9Lzt37rReeeUV6+DBg9aHH35oPf3001anTp2srKysFh55++XvOalVWFhofeUrX7HGjBljfec732mZwRqCAHOeESNGWKmpqfbr6upqKzo62kpPT6+3/vvf/76VlJTk0zZy5Ejrpz/9abOOs6Px97ycq3///gSYZnI558WyLKuqqsrq3r27tWbNmuYaYod0uefFsizr+uuvt+bNm9ccw+uQGnNOqqqqrG984xvWiy++aKWkpBBgzsNXSOeorKxUbm6uEhIS7LbAwEAlJCQoJyen3m1ycnJ86iUpMTHxgvXwX2POC5pfU5yX//znPzp79qx69uzZXMPscC73vFiWpezsbB0+fFg33nhjcw61w2jsOVm0aJEiIiI0efLklhimcdrsnxJoDV988YWqq6vr/LmCyMhIHTp0qN5tPB5PvfUej6fZxtnRNOa8oPk1xXmZM2eOoqOj63wIQOM19ryUl5frK1/5iioqKtSpUyctX75c3/zmN5t7uB1CY87Jnj179Ic//EF5eXktMEIzEWAAtIrFixdr3bp12rVrl0JCQlp7OB1e9+7dlZeXp5MnTyo7O1szZ87UV7/6Vd18882tPbQO58SJE5o4caJeeOEF9e7du7WH02YRYM7Ru3dvderUSSUlJT7tJSUlioqKqnebqKgov+rhv8acFzS/yzkvTz75pBYvXqzXX39d1157bXMOs8Np7HkJDAxUXFycJGnIkCF6//33lZ6eToBpAv6ek48++kiffPKJvvWtb9ltNTU1kqSgoCAdPnxYV1xxRfMO2gBcA3OO4OBgDRs2TNnZ2XZbTU2NsrOz5Xa7693G7Xb71EvS9u3bL1gP/zXmvKD5Nfa8LFmyRL/61a+UlZWl4cOHt8RQO5Sm+vdSU1OjioqK5hhih+PvORk4cKDy8/OVl5dnL9/+9rc1duxY5eXlKSYmpiWH33a19lXEbc26dessh8NhZWRkWAcPHrSmTJlihYWFWR6Px7Isy5o4caL1yCOP2PVvvvmmFRQUZD355JPW+++/by1YsIDbqJuBv+eloqLCevfdd613333X6tOnjzVr1izr3XfftY4cOdJah9Au+XteFi9ebAUHB1t//etfrc8//9xeTpw40VqH0C75e15+85vfWNu2bbM++ugj6+DBg9aTTz5pBQUFWS+88EJrHUK74+85OR93IdVFgKnH73//e6tfv35WcHCwNWLECOvtt9+21910001WSkqKT/369eutK6+80goODrauvvpqKzMzs4VH3DH4c14KCwstSXWWm266qeUH3s75c1769+9f73lZsGBByw+8nfPnvDz66KNWXFycFRISYvXo0cNyu93WunXrWmHU7Zu/7y3nIsDUFWBZltVasz8AAACNwTUwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADDO/wMlr0dhy9Mc5QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANNdJREFUeJzt3Xt4VNW9//FP7oTLTARJQiRIEBVSUQtUGC4qmkPEeCtYilIauQoGW0IRzBG5eYFDtQIqxnvoTyjCqXqUSBCDwYNExLSxXCQFCU1snICFZIBKLmT//vCX/WNIgExISFZ4v55nP4+z9nfWrL3N43xce+09fpZlWQIAADCIf1MPAAAAwFcEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAI3mgQceUNeuXc9Zd+DAAfn5+SktLa3Rx9TUbr75Zt18881NPQzAeAQYAOelqKhI8+bNU25ublMPBcBFJLCpBwDAbEVFRZo/f766du2q66+/3mvfq6++qqqqqqYZWDP10UcfNfUQgBaBAAOg0QQFBTX1EJqd4ODgph4C0CJwCQloIebNmyc/Pz/t2bNHI0eOlMPhUIcOHfTb3/5WJ06c8Kp966231KdPH4WGhqp9+/YaNWqUCgsLvWpuvvlmXXPNNcrJydGAAQMUGhqqmJgYpaam2jVZWVn62c9+JkkaO3as/Pz8vNay1LYGpqSkRA888ICcTqfCwsKUmJiokpKSWo9pz549uvfee9W+fXu1atVKffv21fvvv+/zuSkrK1NycrI6duyodu3a6a677tK3334rPz8/zZs3r879VK/VeeaZZ/Tiiy+qW7duat26tYYOHarCwkJZlqUnnnhCnTt3VmhoqO6++24dPnzYq4/T18BkZWXJz89Pa9as0VNPPaXOnTurVatWuvXWW7Vv3z6fjxW4WDADA7QwI0eOVNeuXbVw4UJ9/vnnWrZsmY4cOaI//vGPkqSnnnpKjz/+uEaOHKkJEybo0KFDev7553XjjTfqr3/9q8LCwuy+jhw5ottvv10jR47UfffdpzVr1mjKlCkKDg7WuHHj1LNnTy1YsEBz5szRpEmTNHjwYEnSgAEDah2bZVm6++67tWXLFk2ePFk9e/bUu+++q8TExBq1u3bt0sCBA3XZZZfp0UcfVZs2bbRmzRrdc889+vOf/6yf//zndT4nEyZM0FtvvaX7779fAwYM0KZNm5SQkODDWfW2cuVKlZeX6+GHH9bhw4e1ePFijRw5UrfccouysrI0a9Ys7du3T88//7xmzJihN95445x9Llq0SP7+/poxY4ZKS0u1ePFijR49Wtu2bav3OIEWzQLQIsydO9eSZN11111e7Q899JAlyfrqq6+sAwcOWAEBAdZTTz3lVbNjxw4rMDDQq/2mm26yJFnPPvus3VZWVmZdf/31Vnh4uFVeXm5ZlmVt377dkmS9+eabNcaUmJhoXX755fbr9957z5JkLV682G6rrKy0Bg8eXKOPW2+91erVq5d14sQJu62qqsoaMGCAdeWVV9b5vOTm5lqSrIceesir/f7777ckWXPnzq1zX/n5+ZYkq2PHjlZJSYndnpKSYkmyrrvuOquiosJuv++++6zg4GCvY7jpppusm266yX79ySefWJKsnj17WmVlZXb70qVLLUnWjh076jw+4GLCJSSghUlKSvJ6/fDDD0uSPvzwQ73zzjuqqqrSyJEj9f3339tbZGSkrrzySn3yySde7w0MDNSDDz5ovw4ODtaDDz6ogwcPKicnx+exffjhhwoMDNSUKVPstoCAAHuM1Q4fPqxNmzZp5MiROnr0qD3Of/3rX4qPj9fevXv1z3/+s86fKUm/+c1vvNqnTZvm8/ir/eIXv5DT6bRf9+vXT5L0q1/9SoGBgV7t5eXldRrr2LFjvdbHVM9m7d+/v97jBFoyLiEBLcyVV17p9fqKK66Qv7+/Dhw4IH9/f1mWVaOm2umLbqOiotSmTRuvtquuukrSj+tB+vfv79PY/vGPf6hTp05q27atV/vVV1/t9Xrfvn2yLEuPP/64Hn/88Vr7OnjwoC677LI6faa/v7+uuOKKs36mL7p06eL1ujrMREdH19p+5MgRn/u85JJL6vxe4GJEgAFaOD8/P/ufq6qq5Ofnp/Xr1ysgIKBG7enBoqlU33o9Y8YMxcfH11rTvXv3CzkkL7Wdu7O1W5ZV7z7r8l7gYkSAAVqYvXv3KiYmxn69b98+VVVVqWvXrgoICJBlWYqJibFnUs6mqKhIx48f95qF+fvf/y5J9t1Fpwakc7n88suVmZmpY8eOeYWlvLw8r7pu3bpJ+nFGKC4urs79n+kzq6qq9M0333jNupz+mQDMwhoYoIV58cUXvV4///zzkqRhw4Zp+PDhCggI0Pz582v8n71lWfrXv/7l1VZZWamXX37Zfl1eXq6XX35ZHTt2VJ8+fSTJDjdnuhX6VLfffrsqKyv10ksv2W0nT560x1gtPDxcN998s15++WV99913Nfo5dOjQOT+r2rBhwyRJy5Yt82pfsmRJnfsA0PwwAwO0MPn5+brrrrt02223KTs72759+LrrrpMkPfnkk0pJSdGBAwd0zz33qF27dsrPz9e7776rSZMmacaMGXZfUVFR+q//+i8dOHBAV111ld5++23l5ubqlVdesdfLXHHFFQoLC1NqaqratWunNm3aqF+/fl6zQNXuvPNODRw4UI8++qgOHDig2NhYvfPOOyotLa1R++KLL2rQoEHq1auXJk6cqG7duqm4uFjZ2dn69ttv9dVXX9XpfFx//fW67777tHz5cpWWlmrAgAHKzMzkGSuA4ZiBAVqYt99+WyEhIXr00UeVnp6uqVOn6vXXX7f3P/roo/rzn/8sf39/zZ8/XzNmzND777+voUOH6q677vLq65JLLtGHH36oL7/8Uo888ogKCwv1wgsvaOLEiXZNUFCQVqxYoYCAAE2ePFn33XefNm/eXOvY/P399f7772v06NF666239Nhjj+myyy7TihUratTGxsbqyy+/VEJCgtLS0pSUlKTU1FT5+/trzpw5Pp2TN954Q7/5zW+UkZGhmTNnqqKiQunp6T71AaB58bNYIQa0CPPmzdP8+fN16NAhXXrppefd380336zvv/9eO3fubIDRNU9+fn6aO3euT0/jBdA8MAMDAACMwxoYAMZyu91n3R8aGur1wLkzOXny5DkXBrdt27bZ3GYOgAADwGCdOnU66/7ExET7hyXPprCwsNZFx6fiUhPQvLAGBoCxPv7447Puj4qKUmxs7Dn7OXHihLZs2XLWmm7dutnPpwHQ9AgwAADAOCziBQAAxmmxa2CqqqpUVFSkdu3a+fSocwAA0HQsy9LRo0cVFRUlf/8zz7O02ABTVFRU45dhAQCAGQoLC9W5c+cz7m+xAaZdu3aSfjwBDoejiUcDAADqwuPxKDo62v4eP5MWG2CqLxs5HA4CDAAAhjnX8g8W8QIAAOMQYAAAgHEIMAAAwDg+BZiuXbvKz8+vxpaUlCTpx6dZJiUlqUOHDmrbtq1GjBih4uJirz4KCgqUkJCg1q1bKzw8XI888ogqKyu9arKystS7d2+FhISoe/fudXoUOAAAuHj4FGC2b9+u7777zt42btwoSfrFL34hSUpOTtYHH3ygtWvXavPmzSoqKtLw4cPt9588eVIJCQkqLy/X1q1btWLFCqWlpWnOnDl2TX5+vhISEjRkyBDl5uZq2rRpmjBhgjZs2NAQxwsAAFqA8/opgWnTpmndunXau3evPB6POnbsqFWrVunee++VJO3Zs0c9e/ZUdna2+vfvr/Xr1+uOO+5QUVGRIiIiJEmpqamaNWuWDh06pODgYM2aNUvp6enauXOn/TmjRo1SSUmJMjIy6jw2j8cjp9Op0tJS7kICAMAQdf3+rvcamPLycr311lsaN26c/Pz8lJOTo4qKCsXFxdk1PXr0UJcuXZSdnS1Jys7OVq9evezwIknx8fHyeDzatWuXXXNqH9U11X2cSVlZmTwej9cGAABapnoHmPfee08lJSV64IEHJElut1vBwcEKCwvzqouIiJDb7bZrTg0v1fur952txuPx6IcffjjjeBYuXCin02lvPIUXAICWq94B5vXXX9ewYcMUFRXVkOOpt5SUFJWWltpbYWFhUw8JAAA0kno9ifcf//iHPv74Y73zzjt2W2RkpMrLy1VSUuI1C1NcXKzIyEi75osvvvDqq/oupVNrTr9zqbi4WA6HQ6GhoWccU0hIiEJCQupzOAAAwDD1moF58803FR4eroSEBLutT58+CgoKUmZmpt2Wl5engoICuVwuSZLL5dKOHTt08OBBu2bjxo1yOByKjY21a07to7qmug8AAACfA0xVVZXefPNNJSYmKjDw/0/gOJ1OjR8/XtOnT9cnn3yinJwcjR07Vi6XS/3795ckDR06VLGxsRozZoy++uorbdiwQbNnz1ZSUpI9ezJ58mTt379fM2fO1J49e7R8+XKtWbNGycnJDXTIAADAdD5fQvr4449VUFCgcePG1dj33HPPyd/fXyNGjFBZWZni4+O1fPlye39AQIDWrVunKVOmyOVyqU2bNkpMTNSCBQvsmpiYGKWnpys5OVlLly5V586d9dprryk+Pr6ehwgAAFqa83oOTHPGc2AAADBPXb+/67WI92JXkbGlRlvQbYOaYCQAAFyc+DFHAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHF8DjD//Oc/9atf/UodOnRQaGioevXqpS+//NLeb1mW5syZo06dOik0NFRxcXHau3evVx+HDx/W6NGj5XA4FBYWpvHjx+vYsWNeNX/72980ePBgtWrVStHR0Vq8eHE9DxEAALQ0PgWYI0eOaODAgQoKCtL69eu1e/duPfvss7rkkkvsmsWLF2vZsmVKTU3Vtm3b1KZNG8XHx+vEiRN2zejRo7Vr1y5t3LhR69at06effqpJkybZ+z0ej4YOHarLL79cOTk5+v3vf6958+bplVdeaYBDBgAApvOzLMuqa/Gjjz6qzz77TP/7v/9b637LshQVFaXf/e53mjFjhiSptLRUERERSktL06hRo/T1118rNjZW27dvV9++fSVJGRkZuv322/Xtt98qKipKL730kh577DG53W4FBwfbn/3ee+9pz549dRqrx+OR0+lUaWmpHA5HXQ+xTioyttRoC7ptUIN+BgAAF6O6fn/7NAPz/vvvq2/fvvrFL36h8PBw/fSnP9Wrr75q78/Pz5fb7VZcXJzd5nQ61a9fP2VnZ0uSsrOzFRYWZocXSYqLi5O/v7+2bdtm19x44412eJGk+Ph45eXl6ciRI7WOraysTB6Px2sDAAAtk08BZv/+/XrppZd05ZVXasOGDZoyZYp+85vfaMWKFZIkt9stSYqIiPB6X0REhL3P7XYrPDzca39gYKDat2/vVVNbH6d+xukWLlwop9Npb9HR0b4cGgAAMIhPAaaqqkq9e/fW008/rZ/+9KeaNGmSJk6cqNTU1MYaX52lpKSotLTU3goLC5t6SAAAoJH4FGA6deqk2NhYr7aePXuqoKBAkhQZGSlJKi4u9qopLi6290VGRurgwYNe+ysrK3X48GGvmtr6OPUzThcSEiKHw+G1AQCAlsmnADNw4EDl5eV5tf3973/X5ZdfLkmKiYlRZGSkMjMz7f0ej0fbtm2Ty+WSJLlcLpWUlCgnJ8eu2bRpk6qqqtSvXz+75tNPP1VFRYVds3HjRl199dVedzwBAICLk08BJjk5WZ9//rmefvpp7du3T6tWrdIrr7yipKQkSZKfn5+mTZumJ598Uu+//7527NihX//614qKitI999wj6ccZm9tuu00TJ07UF198oc8++0xTp07VqFGjFBUVJUm6//77FRwcrPHjx2vXrl16++23tXTpUk2fPr1hjx4AABgp0Jfin/3sZ3r33XeVkpKiBQsWKCYmRkuWLNHo0aPtmpkzZ+r48eOaNGmSSkpKNGjQIGVkZKhVq1Z2zcqVKzV16lTdeuut8vf314gRI7Rs2TJ7v9Pp1EcffaSkpCT16dNHl156qebMmeP1rBgAAHDx8uk5MCbhOTAAAJinUZ4DAwAA0BwQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADj+BRg5s2bJz8/P6+tR48e9v4TJ04oKSlJHTp0UNu2bTVixAgVFxd79VFQUKCEhAS1bt1a4eHheuSRR1RZWelVk5WVpd69eyskJETdu3dXWlpa/Y8QAAC0OD7PwPzkJz/Rd999Z29btmyx9yUnJ+uDDz7Q2rVrtXnzZhUVFWn48OH2/pMnTyohIUHl5eXaunWrVqxYobS0NM2ZM8euyc/PV0JCgoYMGaLc3FxNmzZNEyZM0IYNG87zUAEAQEsR6PMbAgMVGRlZo720tFSvv/66Vq1apVtuuUWS9Oabb6pnz576/PPP1b9/f3300UfavXu3Pv74Y0VEROj666/XE088oVmzZmnevHkKDg5WamqqYmJi9Oyzz0qSevbsqS1btui5555TfHz8GcdVVlamsrIy+7XH4/H10AAAgCF8noHZu3evoqKi1K1bN40ePVoFBQWSpJycHFVUVCguLs6u7dGjh7p06aLs7GxJUnZ2tnr16qWIiAi7Jj4+Xh6PR7t27bJrTu2juqa6jzNZuHChnE6nvUVHR/t6aAAAwBA+BZh+/fopLS1NGRkZeumll5Sfn6/Bgwfr6NGjcrvdCg4OVlhYmNd7IiIi5Ha7JUlut9srvFTvr953thqPx6MffvjhjGNLSUlRaWmpvRUWFvpyaAAAwCA+XUIaNmyY/c/XXnut+vXrp8svv1xr1qxRaGhogw/OFyEhIQoJCWnSMQAAgAvjvG6jDgsL01VXXaV9+/YpMjJS5eXlKikp8aopLi6218xERkbWuCup+vW5ahwOR5OHJAAA0DycV4A5duyYvvnmG3Xq1El9+vRRUFCQMjMz7f15eXkqKCiQy+WSJLlcLu3YsUMHDx60azZu3CiHw6HY2Fi75tQ+qmuq+wAAAPApwMyYMUObN2/WgQMHtHXrVv385z9XQECA7rvvPjmdTo0fP17Tp0/XJ598opycHI0dO1Yul0v9+/eXJA0dOlSxsbEaM2aMvvrqK23YsEGzZ89WUlKSffln8uTJ2r9/v2bOnKk9e/Zo+fLlWrNmjZKTkxv+6AEAgJF8WgPz7bff6r777tO//vUvdezYUYMGDdLnn3+ujh07SpKee+45+fv7a8SIESorK1N8fLyWL19uvz8gIEDr1q3TlClT5HK51KZNGyUmJmrBggV2TUxMjNLT05WcnKylS5eqc+fOeu211856CzUAALi4+FmWZTX1IBqDx+OR0+lUaWmpHA5Hg/ZdkbGlRlvQbYMa9DMAALgY1fX7m99CAgAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxzXgFm0aJF8vPz07Rp0+y2EydOKCkpSR06dFDbtm01YsQIFRcXe72voKBACQkJat26tcLDw/XII4+osrLSqyYrK0u9e/dWSEiIunfvrrS0tPMZKgAAaEHqHWC2b9+ul19+Wddee61Xe3Jysj744AOtXbtWmzdvVlFRkYYPH27vP3nypBISElReXq6tW7dqxYoVSktL05w5c+ya/Px8JSQkaMiQIcrNzdW0adM0YcIEbdiwob7DBQAALYifZVmWr286duyYevfureXLl+vJJ5/U9ddfryVLlqi0tFQdO3bUqlWrdO+990qS9uzZo549eyo7O1v9+/fX+vXrdccdd6ioqEgRERGSpNTUVM2aNUuHDh1ScHCwZs2apfT0dO3cudP+zFGjRqmkpEQZGRl1GqPH45HT6VRpaakcDoevh3hWFRlbarQF3TaoQT8DAICLUV2/v+s1A5OUlKSEhATFxcV5tefk5KiiosKrvUePHurSpYuys7MlSdnZ2erVq5cdXiQpPj5eHo9Hu3btsmtO7zs+Pt7uozZlZWXyeDxeGwAAaJkCfX3D6tWr9Ze//EXbt2+vsc/tdis4OFhhYWFe7REREXK73XbNqeGlen/1vrPVeDwe/fDDDwoNDa3x2QsXLtT8+fN9PRwAAGAgn2ZgCgsL9dvf/lYrV65Uq1atGmtM9ZKSkqLS0lJ7KywsbOohAQCARuJTgMnJydHBgwfVu3dvBQYGKjAwUJs3b9ayZcsUGBioiIgIlZeXq6SkxOt9xcXFioyMlCRFRkbWuCup+vW5ahwOR62zL5IUEhIih8PhtQEAgJbJpwBz6623aseOHcrNzbW3vn37avTo0fY/BwUFKTMz035PXl6eCgoK5HK5JEkul0s7duzQwYMH7ZqNGzfK4XAoNjbWrjm1j+qa6j4AAMDFzac1MO3atdM111zj1damTRt16NDBbh8/frymT5+u9u3by+Fw6OGHH5bL5VL//v0lSUOHDlVsbKzGjBmjxYsXy+12a/bs2UpKSlJISIgkafLkyXrhhRc0c+ZMjRs3Tps2bdKaNWuUnp7eEMcMAAAM5/Mi3nN57rnn5O/vrxEjRqisrEzx8fFavny5vT8gIEDr1q3TlClT5HK51KZNGyUmJmrBggV2TUxMjNLT05WcnKylS5eqc+fOeu211xQfH9/QwwUAAAaq13NgTMBzYAAAME+jPgcGAACgKRFgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMbxKcC89NJLuvbaa+VwOORwOORyubR+/Xp7/4kTJ5SUlKQOHTqobdu2GjFihIqLi736KCgoUEJCglq3bq3w8HA98sgjqqys9KrJyspS7969FRISou7duystLa3+RwgAAFocnwJM586dtWjRIuXk5OjLL7/ULbfcorvvvlu7du2SJCUnJ+uDDz7Q2rVrtXnzZhUVFWn48OH2+0+ePKmEhASVl5dr69atWrFihdLS0jRnzhy7Jj8/XwkJCRoyZIhyc3M1bdo0TZgwQRs2bGigQwYAAKbzsyzLOp8O2rdvr9///ve699571bFjR61atUr33nuvJGnPnj3q2bOnsrOz1b9/f61fv1533HGHioqKFBERIUlKTU3VrFmzdOjQIQUHB2vWrFlKT0/Xzp077c8YNWqUSkpKlJGRUedxeTweOZ1OlZaWyuFwnM8h1lCRsaVGW9Btgxr0MwAAuBjV9fu73mtgTp48qdWrV+v48eNyuVzKyclRRUWF4uLi7JoePXqoS5cuys7OliRlZ2erV69edniRpPj4eHk8HnsWJzs726uP6prqPs6krKxMHo/HawMAAC2TzwFmx44datu2rUJCQjR58mS9++67io2NldvtVnBwsMLCwrzqIyIi5Ha7JUlut9srvFTvr953thqPx6MffvjhjONauHChnE6nvUVHR/t6aAAAwBA+B5irr75aubm52rZtm6ZMmaLExETt3r27Mcbmk5SUFJWWltpbYWFhUw8JAAA0kkBf3xAcHKzu3btLkvr06aPt27dr6dKl+uUvf6ny8nKVlJR4zcIUFxcrMjJSkhQZGakvvvjCq7/qu5ROrTn9zqXi4mI5HA6FhoaecVwhISEKCQnx9XAAAICBzvs5MFVVVSorK1OfPn0UFBSkzMxMe19eXp4KCgrkcrkkSS6XSzt27NDBgwftmo0bN8rhcCg2NtauObWP6prqPgAAAHyagUlJSdGwYcPUpUsXHT16VKtWrVJWVpY2bNggp9Op8ePHa/r06Wrfvr0cDocefvhhuVwu9e/fX5I0dOhQxcbGasyYMVq8eLHcbrdmz56tpKQke/Zk8uTJeuGFFzRz5kyNGzdOmzZt0po1a5Sent7wRw8AAIzkU4A5ePCgfv3rX+u7776T0+nUtddeqw0bNug//uM/JEnPPfec/P39NWLECJWVlSk+Pl7Lly+33x8QEKB169ZpypQpcrlcatOmjRITE7VgwQK7JiYmRunp6UpOTtbSpUvVuXNnvfbaa4qPj2+gQwYAAKY77+fANFc8BwYAAPM0+nNgAAAAmgoBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADCOTwFm4cKF+tnPfqZ27dopPDxc99xzj/Ly8rxqTpw4oaSkJHXo0EFt27bViBEjVFxc7FVTUFCghIQEtW7dWuHh4XrkkUdUWVnpVZOVlaXevXsrJCRE3bt3V1paWv2OEAAAtDg+BZjNmzcrKSlJn3/+uTZu3KiKigoNHTpUx48ft2uSk5P1wQcfaO3atdq8ebOKioo0fPhwe//JkyeVkJCg8vJybd26VStWrFBaWprmzJlj1+Tn5yshIUFDhgxRbm6upk2bpgkTJmjDhg0NcMgAAMB0fpZlWfV986FDhxQeHq7NmzfrxhtvVGlpqTp27KhVq1bp3nvvlSTt2bNHPXv2VHZ2tvr376/169frjjvuUFFRkSIiIiRJqampmjVrlg4dOqTg4GDNmjVL6enp2rlzp/1Zo0aNUklJiTIyMuo0No/HI6fTqdLSUjkcjvoeYq0qMrbUaAu6bVCDfgYAABejun5/n9camNLSUklS+/btJUk5OTmqqKhQXFycXdOjRw916dJF2dnZkqTs7Gz16tXLDi+SFB8fL4/Ho127dtk1p/ZRXVPdR23Kysrk8Xi8NgAA0DLVO8BUVVVp2rRpGjhwoK655hpJktvtVnBwsMLCwrxqIyIi5Ha77ZpTw0v1/up9Z6vxeDz64Ycfah3PwoUL5XQ67S06Orq+hwYAAJq5egeYpKQk7dy5U6tXr27I8dRbSkqKSktL7a2wsLCphwQAABpJYH3eNHXqVK1bt06ffvqpOnfubLdHRkaqvLxcJSUlXrMwxcXFioyMtGu++OILr/6q71I6teb0O5eKi4vlcDgUGhpa65hCQkIUEhJSn8MBAACG8WkGxrIsTZ06Ve+++642bdqkmJgYr/19+vRRUFCQMjMz7ba8vDwVFBTI5XJJklwul3bs2KGDBw/aNRs3bpTD4VBsbKxdc2of1TXVfQAAgIubTzMwSUlJWrVqlf7nf/5H7dq1s9esOJ1OhYaGyul0avz48Zo+fbrat28vh8Ohhx9+WC6XS/3795ckDR06VLGxsRozZowWL14st9ut2bNnKykpyZ5BmTx5sl544QXNnDlT48aN06ZNm7RmzRqlp6c38OEDAAAT+XQbtZ+fX63tb775ph544AFJPz7I7ne/+53+9Kc/qaysTPHx8Vq+fLl9eUiS/vGPf2jKlCnKyspSmzZtlJiYqEWLFikw8P/nqaysLCUnJ2v37t3q3LmzHn/8cfsz6oLbqAEAME9dv7/P6zkwzRkBBgAA81yQ58AAAAA0BQIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxgls6gEAAGCCiowtNdqCbhvUBCOBxAwMAAAwEAEGAAAYhwADAACMQ4ABAADGYREvAOCiV9sCXTRvzMAAAADjMAMDAGjRuP25ZSLAAABalAt5OYhw1HQIMAAA1NGBkvVer7uGDWuikYA1MAAAwDgEGAAAYBwuIQEAUIvTLxeheWEGBgAAGIcZGABAi3f6bMqVqnmnUH1mXGp7T219o+ExAwMAAIzDDAwAoEWpy0wKPx1gPgIMAOCi05gLdE8PRzzYrnFwCQkAABjH5wDz6aef6s4771RUVJT8/Pz03nvvee23LEtz5sxRp06dFBoaqri4OO3du9er5vDhwxo9erQcDofCwsI0fvx4HTt2zKvmb3/7mwYPHqxWrVopOjpaixcv9v3oAABAi+TzJaTjx4/ruuuu07hx4zR8+PAa+xcvXqxly5ZpxYoViomJ0eOPP674+Hjt3r1brVq1kiSNHj1a3333nTZu3KiKigqNHTtWkyZN0qpVqyRJHo9HQ4cOVVxcnFJTU7Vjxw6NGzdOYWFhmjRp0nkeMgCgOarPpRfWsly8fA4ww4YN07Bhtf/2g2VZWrJkiWbPnq27775bkvTHP/5REREReu+99zRq1Ch9/fXXysjI0Pbt29W3b19J0vPPP6/bb79dzzzzjKKiorRy5UqVl5frjTfeUHBwsH7yk58oNzdXf/jDHwgwAACgYdfA5Ofny+12Ky4uzm5zOp3q16+fsrOzJUnZ2dkKCwuzw4skxcXFyd/fX9u2bbNrbrzxRgUHB9s18fHxysvL05EjR2r97LKyMnk8Hq8NAGCuiowtNTagWoPeheR2uyVJERERXu0RERH2PrfbrfDwcO9BBAaqffv2XjUxMTE1+qjed8kll9T47IULF2r+/PkNcyAAAGPwyP+LU4u5jTolJUXTp0+3X3s8HkVHRzfhiAAADY1ZGFRr0EtIkZGRkqTi4mKv9uLiYntfZGSkDh486LW/srJShw8f9qqprY9TP+N0ISEhcjgcXhsAAGiZGjTAxMTEKDIyUpmZmXabx+PRtm3b5HK5JEkul0slJSXKycmxazZt2qSqqir169fPrvn0009VUVFh12zcuFFXX311rZePAABoLg6UrPfa0Dh8voR07Ngx7du3z36dn5+v3NxctW/fXl26dNG0adP05JNP6sorr7Rvo46KitI999wjSerZs6duu+02TZw4UampqaqoqNDUqVM1atQoRUVFSZLuv/9+zZ8/X+PHj9esWbO0c+dOLV26VM8991zDHDUAwEgEAlTzOcB8+eWXGjJkiP26et1JYmKi0tLSNHPmTB0/flyTJk1SSUmJBg0apIyMDPsZMJK0cuVKTZ06Vbfeeqv8/f01YsQILVu2zN7vdDr10UcfKSkpSX369NGll16qOXPmcAs1AACQJPlZlmU19SAag8fjkdPpVGlpaYOvh6ltERm/dQEA52fv6seaegiN4spRTzX1EIxS1+9vfgsJAAAYp8XcRg0AMAe3Q+N8MQMDAACMwwwMAKBJcEcRzgcBBgDQ6LhkhIbGJSQAAGAcZmAAAOfl9NmV2h4rweUiNDQCDADgjOoTTvy/3NWoYwIkLiEBAAADMQMDAPDJN1++fNb9VfsKLtBIcDEjwAAAzqjG2pXVrGVB88AlJAAAYBwCDAAAMA6XkAAAtnOtbwGaCwJMA6nLrYYAcKHw3yS0dAQYAGjG6vsI/ro8m+X0u4X8u3ep12cBTYEAAwAtQEM86Zbbn2ESAgwAGKY+YYVwgpaGAAMAjaC+l35YqwLUDQEGAJqRvasfa+ohAEbgOTAAAMA4zMAAwAXSEAttAfyIAAMA51DfZ6oQWIDGQ4ABcNGobWFtfRbN1tYPYQW4sAgwAFAPBBagaRFgGklD/Z8egAurtt8CqirhGSpAc0OAAdAi1Pe5K6cHFh74hoZWWyi+ou+DTTCSloUAcwHx42pA46n3JZ2SBh0GUEOtobjvhR9HS0OAAdCkeGItLkb8D+35I8AAaDCN9R/lWmdXVrOIFuY6/W/6ShFgfEWAaUIs9EVzVZe/zbrMnNTl2j938wCoDwIM0MI11KxIXQJLjTBSUrNm7z5+6wfA+SPANDNcF0W1C/m3UONOHG4bBtDMEWCaOS4zNS+NFSrqu5D19PfVdjmma9iwc34WgQWAaQgwBqrPlx2h58Kpz7+f+gaPuqwfYY0JgJaIAHORaKhbVes6I9TcL4U11CLV+p5XggcAnB8CDM6qvl/QjdVPY6rL5RgAQPNAgMF5a+pwQtAAgIsPAeYiVpd1F/WtAQCgMRFgfFBWeULrc16Tu/RvivDvqPjWcQoKCGrqYdVZQ627ILAAAJpasw4wL774on7/+9/L7Xbruuuu0/PPP68bbrihScbyZtZcfVC6TpafJYX+2PZ/KjN0xzGXxjhH1akPvvgBAHVVn4dHnj5DLtW8QaG2J2TX5VfY/bt38Xrd1L+o7WdZltWkIziDt99+W7/+9a+Vmpqqfv36acmSJVq7dq3y8vIUHh5+zvd7PB45nU6VlpbK4XCc11jezJqr90s/+PGF3yk7/t+Zu/PEAA22nOf1GQAAmOTKUU81Sr91/f72b5RPbwB/+MMfNHHiRI0dO1axsbFKTU1V69at9cYbb1zQcZRVntAHpet+fOF32s7/93pdq62qtKou6LgAALiYNctLSOXl5crJyVFKSord5u/vr7i4OGVnZ9f6nrKyMpWVldmvS0tLJf2Y5M7Hui9fVvkPlees23zsG/UL6HLOOgAAWoLz/X49V7/nukDULAPM999/r5MnTyoiIsKrPSIiQnv27Kn1PQsXLtT8+fNrtEdHRzfKGE+Xrr9dkM8BAKBZGP9so3Z/9OhROZ1nXp7RLANMfaSkpGj69On266qqKh0+fFgdOnSQn9/p137qz+PxKDo6WoWFhee9tga+4dw3Hc590+C8Nx3OfdOxLEtHjx5VVFTUWeuaZYC59NJLFRAQoOLiYq/24uJiRUZG1vqekJAQhYSEeLWFhYU11hDlcDj4o24inPumw7lvGpz3psO5bxpnm3mp1iwX8QYHB6tPnz7KzMy026qqqpSZmSmXy9WEIwMAAM1Bs5yBkaTp06crMTFRffv21Q033KAlS5bo+PHjGjt2bFMPDQAANLFmG2B++ctf6tChQ5ozZ47cbreuv/56ZWRk1FjYe6GFhIRo7ty5NS5XofFx7psO575pcN6bDue++Wu2D7IDAAA4k2a5BgYAAOBsCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAFOLF198UV27dlWrVq3Ur18/ffHFF2etX7t2rXr06KFWrVqpV69e+vDDDy/QSFseX879q6++qsGDB+uSSy7RJZdcori4uHP+u8KZ+fp3X2316tXy8/PTPffc07gDbKF8Pe8lJSVKSkpSp06dFBISoquuuor/5tSTr+d+yZIluvrqqxUaGqro6GglJyfrxIkTF2i0qMGCl9WrV1vBwcHWG2+8Ye3atcuaOHGiFRYWZhUXF9da/9lnn1kBAQHW4sWLrd27d1uzZ8+2goKCrB07dlzgkZvP13N///33Wy+++KL117/+1fr666+tBx54wHI6nda33357gUduPl/PfbX8/HzrsssuswYPHmzdfffdF2awLYiv572srMzq27evdfvtt1tbtmyx8vPzraysLCs3N/cCj9x8vp77lStXWiEhIdbKlSut/Px8a8OGDVanTp2s5OTkCzxyVCPAnOaGG26wkpKS7NcnT560oqKirIULF9ZaP3LkSCshIcGrrV+/ftaDDz7YqONsiXw996errKy02rVrZ61YsaKxhthi1efcV1ZWWgMGDLBee+01KzExkQBTD76e95deesnq1q2bVV5efqGG2GL5eu6TkpKsW265xatt+vTp1sCBAxt1nDgzLiGdory8XDk5OYqLi7Pb/P39FRcXp+zs7Frfk52d7VUvSfHx8WesR+3qc+5P9+9//1sVFRVq3759Yw2zRarvuV+wYIHCw8M1fvz4CzHMFqc+5/3999+Xy+VSUlKSIiIidM011+jpp5/WyZMnL9SwW4T6nPsBAwYoJyfHvsy0f/9+ffjhh7r99tsvyJhRU7P9KYGm8P333+vkyZM1fq4gIiJCe/bsqfU9bre71nq3291o42yJ6nPuTzdr1ixFRUXVCJQ4u/qc+y1btuj1119Xbm7uBRhhy1Sf875//35t2rRJo0eP1ocffqh9+/bpoYceUkVFhebOnXshht0i1Ofc33///fr+++81aNAgWZalyspKTZ48Wf/5n/95IYaMWjADgxZh0aJFWr16td599121atWqqYfToh09elRjxozRq6++qksvvbSph3NRqaqqUnh4uF555RX16dNHv/zlL/XYY48pNTW1qYfW4mVlZenpp5/W8uXL9Ze//EXvvPOO0tPT9cQTTzT10C5azMCc4tJLL1VAQICKi4u92ouLixUZGVnreyIjI32qR+3qc+6rPfPMM1q0aJE+/vhjXXvttY05zBbJ13P/zTff6MCBA7rzzjvttqqqKklSYGCg8vLydMUVVzTuoFuA+vzNd+rUSUFBQQoICLDbevbsKbfbrfLycgUHBzfqmFuK+pz7xx9/XGPGjNGECRMkSb169dLx48c1adIkPfbYY/L3Zz7gQuOMnyI4OFh9+vRRZmam3VZVVaXMzEy5XK5a3+NyubzqJWnjxo1nrEft6nPuJWnx4sV64oknlJGRob59+16IobY4vp77Hj16aMeOHcrNzbW3u+66S0OGDFFubq6io6Mv5PCNVZ+/+YEDB2rfvn12YJSkv//97+rUqRPhxQf1Off//ve/a4SU6iBp8ZvITaOpVxE3N6tXr7ZCQkKstLQ0a/fu3dakSZOssLAwy+12W5ZlWWPGjLEeffRRu/6zzz6zAgMDrWeeecb6+uuvrblz53IbdT35eu4XLVpkBQcHW//93/9tfffdd/Z29OjRpjoEY/l67k/HXUj14+t5LygosNq1a2dNnTrVysvLs9atW2eFh4dbTz75ZFMdgrF8Pfdz58612rVrZ/3pT3+y9u/fb3300UfWFVdcYY0cObKpDuGiR4CpxfPPP2916dLFCg4Otm644Qbr888/t/fddNNNVmJiolf9mjVrrKuuusoKDg62fvKTn1jp6ekXeMQthy/n/vLLL7ck1djmzp174QfeAvj6d38qAkz9+Xret27davXr188KCQmxunXrZj311FNWZWXlBR51y+DLua+oqLDmzZtnXXHFFVarVq2s6Oho66GHHrKOHDly4QcOy7Isy8+ymPsCAABmYQ0MAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIzzfwGGdQmAYi/ymgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKntJREFUeJzt3X90VOWdx/HP5AeT8CMJQTNDSoDU5QgIFUpsHKGtLZGA+IOF6kajRsqRliYqZKvAVlhFIUrVsrgpqKcL2IK1bgtVVrPGYOFQYoAgFYFGWqmwwiS7jclAkCQkd/+w3DohQICZzDwz79c5cw5z7zN3nnmMyWe+z3PvdViWZQkAAMAgMaHuAAAAwIUiwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAIgKq1evlsPh0F/+8pdQdwVAABBgAHSbN954Q48++miouwEgAji4FxKA7lJUVKTS0lKF4tdOW1ubWltb5XQ65XA4uv39AQRWXKg7ACA6NDU1hfT9Y2NjFRsbG9I+AAgcppAABNyjjz4qh8Ohffv26c4771Tfvn01YMAAlZaWSpIcDof96Krrr79eI0aM0Pvvv69vfvOb6tmzp/7hH/5B//mf/ylJ2rx5s7Kzs5WYmKgrr7xSb7/9tt/rO1sDM3jwYN10003aunWrvva1rykhIUFf/vKX9dJLL136IAAIKgIMgKC57bbbdOLECS1ZskQ//OEPdcMNN0iSfv7zn9uPC/Hpp5/qpptuUnZ2tpYuXSqn06m8vDy98sorysvL04033qgnn3xSTU1N+s53vqNjx46d95h/+tOf9J3vfEc33HCDnnnmGfXt21f33nuv9u7de1GfGUD3YAoJQNBcffXVWrdunf386NGjKi8v11133XVRxzty5IjWrVunO+64Q5J0ww03aOjQobrzzju1bds2ZWdnS5KGDRum3Nxc/frXv9a99957zmPW1NRoy5Yt+vrXvy5Juv3225WRkaFVq1bp6aefvqh+Agg+AgyAoPn+978f0OP17t1beXl59vMrr7xSKSkp+tKXvmSHF0n2vz/66KPzHnP48OF2eJGkyy+/XFdeeWWXXgsgdJhCAhA0mZmZAT3egAEDzlg3k5ycrIyMjDO2SZ9POZ3PwIEDz9jWt2/fLr0WQOgQYAAETWJiYkCPd7aziM62vSuna1/KawGEDgEGQLfh+isAAoUAA6Db9OrVS5LU0NAQ2o4AMB6LeAF0mzFjxkiSHnjgAeXm5io2NtZvUS4AdBUVGADdZurUqbr//vtVVlamu+++2z4dGgAuFPdCAgAAxqECAwAAjMMaGAAhVV9fr5aWlrPuj42N1eWXX96NPQJgAqaQAITU9ddfr82bN591/6BBg/xuwAgAEgEGQIhVV1ef86q3iYmJGjt2bDf2CIAJCDAAAMA4LOIFAADGidhFvO3t7Tpy5Ij69OnD5csBADCEZVk6duyY0tPTFRNz9jpLxAaYI0eOnHGHWgAAYIbDhw9rwIABZ90fsQGmT58+kj4fgKSkpBD3BgAAdIXP51NGRob9d/xsIjbAnJ42SkpKIsAAAGCY8y3/YBEvAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHHiQt0BAAh3rWVb/Z7HTxwXop4AOI0KDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjXHCA2bJli26++Walp6fL4XBow4YNfvsty9LChQvVv39/JSYmKicnRwcOHPBrU19fr/z8fCUlJSklJUUzZszQ8ePH/dq8//77+vrXv66EhARlZGRo6dKlF/7pAABARLrgANPU1KSrr75apaWlne5funSpli9frpUrV6qqqkq9evVSbm6uTp48abfJz8/X3r17VV5ero0bN2rLli2aOXOmvd/n82nChAkaNGiQqqur9eMf/1iPPvqoXnjhhYv4iAAAINI4LMuyLvrFDofWr1+vKVOmSPq8+pKenq5//ud/1g9/+ENJUmNjo1wul1avXq28vDzt379fw4cP144dO5SVlSVJKisr04033qj/+Z//UXp6ulasWKEf/ehH8nq96tGjhyRp3rx52rBhg/74xz922pfm5mY1Nzfbz30+nzIyMtTY2KikpKSL/YgAoNayrX7P4yeOC1FPgMjn8/mUnJx83r/fAV0Dc/DgQXm9XuXk5NjbkpOTlZ2drcrKSklSZWWlUlJS7PAiSTk5OYqJiVFVVZXd5hvf+IYdXiQpNzdXNTU1+vTTTzt975KSEiUnJ9uPjIyMQH40AAAQRgIaYLxeryTJ5XL5bXe5XPY+r9ertLQ0v/1xcXFKTU31a9PZMb74Hh3Nnz9fjY2N9uPw4cOX/oEAAEBYigt1BwLF6XTK6XSGuhsAAKAbBLQC43a7JUm1tbV+22tra+19brdbdXV1fvtPnTql+vp6vzadHeOL7wEAAKJXQANMZmam3G63Kioq7G0+n09VVVXyeDySJI/Ho4aGBlVXV9ttNm3apPb2dmVnZ9tttmzZotbWVrtNeXm5rrzySvXt2zeQXQYAAAa64ABz/Phx7d69W7t375b0+cLd3bt369ChQ3I4HJo9e7aeeOIJvfbaa9qzZ4/uuecepaen22cqDRs2TBMnTtR9992n7du36/e//72KioqUl5en9PR0SdKdd96pHj16aMaMGdq7d69eeeUV/du//ZuKi4sD9sEBAIC5LngNzM6dO/Wtb33Lfn46VBQUFGj16tV6+OGH1dTUpJkzZ6qhoUHjxo1TWVmZEhIS7NesXbtWRUVFGj9+vGJiYjRt2jQtX77c3p+cnKy33npLhYWFGjNmjC677DItXLjQ71oxAAAgel3SdWDCWVfPIweA8+E6MED3Ccl1YAAAALoDAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGOeC74UEANGu460FJG4vAHQ3KjAAAMA4BBgAAGAcppAAIAC4YzXQvajAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMaJC3UHAES31rKtZ2yLnzguBD0BYBICDIBu1VlgAYALxRQSAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHWwkAiAjcUwmILgQYAAgCAhUQXEwhAQAA4xBgAACAcZhCAmCkzqZoAEQPAgyAiNUx5LAGBYgcTCEBAADjEGAAAIBxCDAAAMA4rIEBgG7SlYXHrNMBuoYAA+CicKG28MF/C0QjppAAAIBxqMAACDuc/gzgfAJegWlra9OCBQuUmZmpxMREXXHFFXr88cdlWZbdxrIsLVy4UP3791diYqJycnJ04MABv+PU19crPz9fSUlJSklJ0YwZM3T8+PFAdxcAABgo4BWYp556SitWrNCaNWt01VVXaefOnZo+fbqSk5P1wAMPSJKWLl2q5cuXa82aNcrMzNSCBQuUm5urffv2KSEhQZKUn5+vo0ePqry8XK2trZo+fbpmzpypdevWBbrLAGDjCr+AGQIeYLZt26Zbb71VkydPliQNHjxYL7/8srZv3y7p8+rLsmXL9Mgjj+jWW2+VJL300ktyuVzasGGD8vLytH//fpWVlWnHjh3KysqSJD333HO68cYb9fTTTys9PT3Q3QYQBIQBAMES8Cmk6667ThUVFfrwww8lSX/4wx+0detWTZo0SZJ08OBBeb1e5eTk2K9JTk5Wdna2KisrJUmVlZVKSUmxw4sk5eTkKCYmRlVVVZ2+b3Nzs3w+n98DAABEpoBXYObNmyefz6ehQ4cqNjZWbW1tWrx4sfLz8yVJXq9XkuRyufxe53K57H1er1dpaWn+HY2LU2pqqt2mo5KSEj322GOB/jgAwgCVHAAdBbwC86tf/Upr167VunXrtGvXLq1Zs0ZPP/201qxZE+i38jN//nw1Njbaj8OHDwf1/QAAQOgEvALz0EMPad68ecrLy5MkjRw5Uh9//LFKSkpUUFAgt9stSaqtrVX//v3t19XW1mrUqFGSJLfbrbq6Or/jnjp1SvX19fbrO3I6nXI6nYH+OAAAIAwFvAJz4sQJxcT4HzY2Nlbt7e2SpMzMTLndblVUVNj7fT6fqqqq5PF4JEkej0cNDQ2qrq6222zatEnt7e3Kzs4OdJcBAIBhAl6Bufnmm7V48WINHDhQV111ld577z09++yz+u53vytJcjgcmj17tp544gkNGTLEPo06PT1dU6ZMkSQNGzZMEydO1H333aeVK1eqtbVVRUVFysvL4wwkAAAQ+ADz3HPPacGCBfrBD36guro6paen63vf+54WLlxot3n44YfV1NSkmTNnqqGhQePGjVNZWZl9DRhJWrt2rYqKijR+/HjFxMRo2rRpWr58eaC7CwAADOSwvniJ3Aji8/mUnJysxsZGJSUlhbo7QMTpyg0Ew+3soa7ckiDUfb6Y2yZwM0dEkq7+/eZmjgAAwDgEGAAAYBzuRg0AYYQ7cQNdQwUGAAAYhwoMgIAJ9QJYANGDCgwAADAOAQYAABiHKSQgTLGYE+GKn02EAwIMgG73l4Y3/Z4PTpkUop4AMBVTSAAAwDhUYACcgUvTAwh3VGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDjcSgAAcFad3VYCCAcEGADAJeHeWQgFAgwQ4Tr+ceEPS/D8peFNv+eDUyaFqCdA5GMNDAAAMA4VGABRg6kOIHIQYIAg448mAAQeAQYAYOOsI5iCNTAAAMA4BBgAAGAcAgwAADAOa2AAIIyxCBzoHAEGQFTr6qJVLlIHhBemkAAAgHGowABAkHSs2khUboBAoQIDAACMQwUGgBGoZvwdF5sDCDAAxB9EAOZhCgkAABiHCgwARCkqbzAZFRgAAGAcAgwAADAOAQYAABiHAAMAAIzDIl4AEaM7rxXT2XsB6D5UYAAAgHGowAAIOqoVAAKNAAMg5II59dPx2NF6+wEg0hBggAjChcnME6n3eOr4sxg/cVyIeoJIxRoYAABgHAIMAAAwDgEGAAAYhzUwQJRhnQyASECAAQKsOwMCYQRAtGIKCQAAGIcKDBAGqKREDy7qBwRGUCown3zyie666y7169dPiYmJGjlypHbu3GnvtyxLCxcuVP/+/ZWYmKicnBwdOHDA7xj19fXKz89XUlKSUlJSNGPGDB0/fjwY3QUQ5f7S8Kbfw0QdP8Ofdz4f6i4BQRXwCsynn36qsWPH6lvf+pbefPNNXX755Tpw4ID69u1rt1m6dKmWL1+uNWvWKDMzUwsWLFBubq727dunhIQESVJ+fr6OHj2q8vJytba2avr06Zo5c6bWrVsX6C4D3e5iKi5Uac5katgAcOkCHmCeeuopZWRkaNWqVfa2zMxM+9+WZWnZsmV65JFHdOutt0qSXnrpJblcLm3YsEF5eXnav3+/ysrKtGPHDmVlZUmSnnvuOd144416+umnlZ6eHuhuAwgzhBMA5xLwKaTXXntNWVlZuu2225SWlqbRo0frxRdftPcfPHhQXq9XOTk59rbk5GRlZ2ersrJSklRZWamUlBQ7vEhSTk6OYmJiVFVV1en7Njc3y+fz+T0AIFq1/+mQWsu2+j2ASBLwAPPRRx9pxYoVGjJkiP77v/9bs2bN0gMPPKA1a9ZIkrxeryTJ5XL5vc7lctn7vF6v0tLS/PbHxcUpNTXVbtNRSUmJkpOT7UdGRkagPxoAAAgTAZ9Cam9vV1ZWlpYsWSJJGj16tD744AOtXLlSBQUFgX472/z581VcXGw/9/l8hBjgbyL1hoEAolfAA0z//v01fPhwv23Dhg3Tr3/9a0mS2+2WJNXW1qp///52m9raWo0aNcpuU1dX53eMU6dOqb6+3n59R06nU06nM1AfA0AUY/0NEP4CPoU0duxY1dTU+G378MMPNWjQIEmfL+h1u92qqKiw9/t8PlVVVcnj8UiSPB6PGhoaVF1dbbfZtGmT2tvblZ2dHeguAwAAwwS8AjNnzhxdd911WrJkiW6//XZt375dL7zwgl544QVJksPh0OzZs/XEE09oyJAh9mnU6enpmjJliqTPKzYTJ07Ufffdp5UrV6q1tVVFRUXKy8vjDCQAABD4AHPNNddo/fr1mj9/vhYtWqTMzEwtW7ZM+fn5dpuHH35YTU1NmjlzphoaGjRu3DiVlZXZ14CRpLVr16qoqEjjx49XTEyMpk2bpuXLlwe6uwACjOkXAN0hKLcSuOmmm3TTTTeddb/D4dCiRYu0aNGis7ZJTU3lonUAAKBT3MwRAAAYhwADAACMw92oAQBB19mVgOMnjgtBTxApqMAAAADjUIEBAFwSrvSMUKACAwAAjEOAAQAAxiHAAAAA47AGBgDCTMc1JawnAc5EBQYAABiHCgyALunsOh4AECoEGACIEoRQRBKmkAAAgHGowACIKp1ddA2h0bEixK0FcCEIMEA34cwSAAgcAgwQxky4RDsVDQChwBoYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjcBo1gLPi2jUAwhUBBggCro2CYOuunzETrkWE6ESAASCJ0IWu42cF4YA1MAAAwDgEGAAAYBymkADDsLAWAKjAAAAAAxFgAACAcQgwAADAOKyBAYAoxTVeYDICDHABWsu2+j2PnzguRD1BNOG6K8CZCDCA4fgWDZwfXz4iD2tgAACAcQgwAADAOAQYAABgHAIMAAAwDot4AQBhoeNCW4nFtjg7AgwARCjum4VIxhQSAAAwDgEGAAAYhykk4Cw6m4+PJFzdFYDJCDAwHlfY7D6EHgDhggCDqMTZDgBgNgIMECJUMxBNuGcXAo1FvAAAwDhUYAAAAUeFEcFGgAEA2LozeHChPVwKAgyiQqSfEt0R334RTTgTMToRYIBLEG3BCAg1/p/DaSziBQAAxqECA/wN3+wAwBxUYAAAgHEIMAAAwDgEGAAAYJygB5gnn3xSDodDs2fPtredPHlShYWF6tevn3r37q1p06aptrbW73WHDh3S5MmT1bNnT6Wlpemhhx7SqVOngt1dRIDWsq1nPAAAkSWoi3h37Nih559/Xl/5ylf8ts+ZM0f/9V//pVdffVXJyckqKirS1KlT9fvf/16S1NbWpsmTJ8vtdmvbtm06evSo7rnnHsXHx2vJkiXB7DIAIEpxPRmzBK0Cc/z4ceXn5+vFF19U37597e2NjY362c9+pmeffVbf/va3NWbMGK1atUrbtm3Tu+++K0l66623tG/fPv3iF7/QqFGjNGnSJD3++OMqLS1VS0tLsLqMbkaVBABwsYIWYAoLCzV58mTl5OT4ba+urlZra6vf9qFDh2rgwIGqrKyUJFVWVmrkyJFyuVx2m9zcXPl8Pu3du7fT92tubpbP5/N7AACAyBSUKaRf/vKX2rVrl3bs2HHGPq/Xqx49eiglJcVvu8vlktfrtdt8Mbyc3n96X2dKSkr02GOPBaD3AAAg3AU8wBw+fFgPPvigysvLlZCQEOjDn9X8+fNVXFxsP/f5fMrIyOi29wcAmINpa/MFfAqpurpadXV1+upXv6q4uDjFxcVp8+bNWr58ueLi4uRyudTS0qKGhga/19XW1srtdkuS3G73GWclnX5+uk1HTqdTSUlJfg8AABCZAl6BGT9+vPbs2eO3bfr06Ro6dKjmzp2rjIwMxcfHq6KiQtOmTZMk1dTU6NChQ/J4PJIkj8ejxYsXq66uTmlpaZKk8vJyJSUlafjw4YHuMgAgTFEpwdkEPMD06dNHI0aM8NvWq1cv9evXz94+Y8YMFRcXKzU1VUlJSbr//vvl8Xh07bXXSpImTJig4cOH6+6779bSpUvl9Xr1yCOPqLCwUE6nM9BdBgBEuL80vOn3fHDKpBD1BIESkps5/uQnP1FMTIymTZum5uZm5ebm6qc//am9PzY2Vhs3btSsWbPk8XjUq1cvFRQUaNGiRaHoLrpJZ9+0uA4DAKAz3RJgfve73/k9T0hIUGlpqUpLS8/6mkGDBumNN94Ics+AC9fxm5zEtzmYobOfXcBU3AsJAAAYJyRTSEBXcWlvIHpQ3cSFoAIDAACMQ4ABAADGIcAAAADjEGAAAIBxWMQLo3BVTgCARIABzotrZwBA+GEKCQAAGIcAAwAAjEOAAQAAxmENDNABa14AIPxRgQEAAMYhwAAAAOMQYAAAgHFYAwMEAOtmAKB7EWAAAEbr+AViiMaFqCfoTkwhAQAA41CBAQAYg+lanEYFBgAAGIcAAwAAjEOAAQAAxmENDKIa8+kAYCYCDC5Za9nW87aJn9j9pzV2Fk4Gp0zq9n4AAAKPAINu0ZWQAwAIjY6/o0PxpfNCsQYGAAAYhwoMACDqBHOK2cRqhomowAAAAONQgcEFC9f1LF05o4izjgCcDfdUMgsVGAAAYBwqMDBCx29GnA4NANGNAAMjMRUEANGNAAMACFt8WcHZsAYGAAAYhwADAACMQ4ABAADGYQ0Mwg5z3gCA86ECAwAAjEOAAQAAxmEKCSHHlBEA4EJRgQEAAMYhwAAAAOMwhQQAiCitZVuDdpz4idyhOlwQYAAA6GYdwxHB6MIRYAAACKCOJyYMEeEkGAgwAAB0EZWT8MEiXgAAYBwqMDinQC2GAwAgkAgwCKqOc8GDUyaFqCcAgEjCFBIAADAOFRj4YcoIAGACKjAAAMA4VGAQMNyUEQDQXajAAAAA41CBAQAgiFhbGBxUYAAAgHECHmBKSkp0zTXXqE+fPkpLS9OUKVNUU1Pj1+bkyZMqLCxUv3791Lt3b02bNk21tbV+bQ4dOqTJkyerZ8+eSktL00MPPaRTp04FursAAMBAAQ8wmzdvVmFhod59912Vl5ertbVVEyZMUFNTk91mzpw5ev311/Xqq69q8+bNOnLkiKZOnWrvb2tr0+TJk9XS0qJt27ZpzZo1Wr16tRYuXBjo7gIAAAMFfA1MWVmZ3/PVq1crLS1N1dXV+sY3vqHGxkb97Gc/07p16/Ttb39bkrRq1SoNGzZM7777rq699lq99dZb2rdvn95++225XC6NGjVKjz/+uObOnatHH31UPXr0CHS30U04UwmAybjTdPgI+iLexsZGSVJqaqokqbq6Wq2trcrJybHbDB06VAMHDlRlZaWuvfZaVVZWauTIkXK5XHab3NxczZo1S3v37tXo0aPPeJ/m5mY1Nzfbz30+X7A+UsRgYRmASMQXpegQ1EW87e3tmj17tsaOHasRI0ZIkrxer3r06KGUlBS/ti6XS16v127zxfByev/pfZ0pKSlRcnKy/cjIyAjwpwEAAOEiqBWYwsJCffDBB9q6Nfjf9OfPn6/i4mL7uc/nI8QEUGffaLgxIwAgVIIWYIqKirRx40Zt2bJFAwYMsLe73W61tLSooaHBrwpTW1srt9ttt9m+fbvf8U6fpXS6TUdOp1NOpzPAnwLnQpkWQCTjd1x4C/gUkmVZKioq0vr167Vp0yZlZmb67R8zZozi4+NVUVFhb6upqdGhQ4fk8XgkSR6PR3v27FFdXZ3dpry8XElJSRo+fHiguwwAQEi1lm0944FzC3gFprCwUOvWrdNvf/tb9enTx16zkpycrMTERCUnJ2vGjBkqLi5WamqqkpKSdP/998vj8ejaa6+VJE2YMEHDhw/X3XffraVLl8rr9eqRRx5RYWEhVRYAABD4ALNixQpJ0vXXX++3fdWqVbr33nslST/5yU8UExOjadOmqbm5Wbm5ufrpT39qt42NjdXGjRs1a9YseTwe9erVSwUFBVq0aFGgu4uzoHQKAAhnAQ8wlmWdt01CQoJKS0tVWlp61jaDBg3SG2+8EciuRTXKkQCASMLNHAEA6Eac1RkY3MwRAAAYhwoMWO8CABeJ6fnQoQIDAACMQwUGAIAgosodHFRgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYh7OQAAAIsY5nKnFl3vOjAgMAAIxDBQYAAEN1vBJw/MRxIepJ9yPAAABgAG5b4I8pJAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxuEspAjAynQAwMX6887n1d5wyG/bEIX/6dhUYAAAgHGowAAAEMEi9WJ3BJgo1PGeGwAAmIYAAwBAGGJ947kRYAAAuEhUtEOHAAMAQBTpWNnpeAaSKTgLCQAAGIcAAwAAjEOAAQAAxmENTITpuKBscMqkEPUEABBMnS0gNuEKuoFCgAEAIMx0Fk74QuqPABPhOMUPAHCh/rzzeb/nV2R9L0Q9OTvWwAAAAOMQYAAAgHGYQgIAIIpEytICKjAAAMA4VGAAADBApFROAoUAE+a4GykAAGdiCgkAABiHAAMAAIxDgAEAAMZhDUyYYc0LACBQ/rzzebU3HAp1N4KCAAMAQITo+CU4UsOLxBQSAAAwEAEGAAAYhymkELrQ9S4dL2LErdUBANGKCgwAADAOFRiDcVlpAEC0IsAAAIDz6rjsIX7iuBD15HNMIQEAAOMQYAAAgHGYQgpjrHEBAFyIaPq7QYABcOksyXksVrGtMWqLb1dznzbJEepOdV27LB2MqZfP0awky6nM9lTFBOADBOu4AAgwQXOp13gBTJFYH6eUQ4mKa/n7jPSpHu1qGPiZPks9FcKedc2eWK9ei9+vxpiT9rbk9gTd0jpMI9vcYXdcIBQ6u6fSELGIF4ChEuvj1O9PPRXb4l9ViG1xqN+feiqxPry/I+2J9ernPd5To+Ok3/ZGx0n9vMd72hPrDavjAvi78P7tEiE6q65wFV0Yz5JSDiVKkhwdpkUccsiSpZRDifqs77GwnE5ql6XX4vd//qRj/xySLOm1+P26qs11QdM+wTouAH9hXYEpLS3V4MGDlZCQoOzsbG3fvj3UXQLwN85jsYpriTkjvJzmkENxLTFyHovt5p51zcGY+s+nd86WIRxSY8xJHYypD4vjAvAXthWYV155RcXFxVq5cqWys7O1bNky5ebmqqamRmlpaaHu3iVjzQtMF9vate8/n7drC25nLoLP0RzQdsE+LgB/YVuBefbZZ3Xfffdp+vTpGj58uFauXKmePXvqP/7jP0LdtU61lm31ewCRri2+PaDtuluS5Qxou2AfF4C/sKzAtLS0qLq6WvPnz7e3xcTEKCcnR5WVlZ2+prm5Wc3Nf/9G09jYKEny+XwB719reed9OJvjJ/imhchzPFaKs2IU2+LodBrJkqW2Hpb+GntCOhGCDp7H5eqlxFNxn1dCOpvusT4PGZef7KXj6vr/w8E6LtCt3j9w3ibB+Pv6xeNalnXOdmEZYP7v//5PbW1tcrlcfttdLpf++Mc/dvqakpISPfbYY2dsz8jICEofAUSHl7XDqOMC3WbGM0E9/LFjx5ScnHzW/WEZYC7G/PnzVVxcbD9vb29XfX29+vXrJ4fj/Cv9fT6fMjIydPjwYSUlJQWzqxGLMbx0jOGlYwwDg3G8dIzhxbEsS8eOHVN6evo524VlgLnssssUGxur2tpav+21tbVyuzu/AJTT6ZTT6T+nnJKScsHvnZSUxA/aJWIMLx1jeOkYw8BgHC8dY3jhzlV5OS0sF/H26NFDY8aMUUVFhb2tvb1dFRUV8ng8IewZAAAIB2FZgZGk4uJiFRQUKCsrS1/72te0bNkyNTU1afr06aHuGgAACLGwDTD/9E//pP/93//VwoUL5fV6NWrUKJWVlZ2xsDdQnE6n/vVf//WMaSh0HWN46RjDS8cYBgbjeOkYw+ByWOc7TwkAACDMhOUaGAAAgHMhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYJyoCzAlJSW65ppr1KdPH6WlpWnKlCmqqanxa3Py5EkVFhaqX79+6t27t6ZNm3bGVYHxuSeffFIOh0OzZ8+2tzF+XfPJJ5/orrvuUr9+/ZSYmKiRI0dq586d9n7LsrRw4UL1799fiYmJysnJ0YED57/BWrRoa2vTggULlJmZqcTERF1xxRV6/PHH/W4Axxj627Jli26++Walp6fL4XBow4YNfvu7Ml719fXKz89XUlKSUlJSNGPGDB0/frwbP0VonWsMW1tbNXfuXI0cOVK9evVSenq67rnnHh05csTvGNE+hoESdQFm8+bNKiws1Lvvvqvy8nK1trZqwoQJampqstvMmTNHr7/+ul599VVt3rxZR44c0dSpU0PY6/C0Y8cOPf/88/rKV77it53xO79PP/1UY8eOVXx8vN58803t27dPzzzzjPr27Wu3Wbp0qZYvX66VK1eqqqpKvXr1Um5urk6ePBnCnoePp556SitWrNC///u/a//+/Xrqqae0dOlSPffcc3YbxtBfU1OTrr76apWWlna6vyvjlZ+fr71796q8vFwbN27Uli1bNHPmzO76CCF3rjE8ceKEdu3apQULFmjXrl36zW9+o5qaGt1yyy1+7aJ9DAPGinJ1dXWWJGvz5s2WZVlWQ0ODFR8fb7366qt2m/3791uSrMrKylB1M+wcO3bMGjJkiFVeXm5985vftB588EHLshi/rpo7d641bty4s+5vb2+33G639eMf/9je1tDQYDmdTuvll1/uji6GvcmTJ1vf/e53/bZNnTrVys/PtyyLMTwfSdb69evt510Zr3379lmSrB07dtht3nzzTcvhcFiffPJJt/U9XHQcw85s377dkmR9/PHHlmUxhoEUdRWYjhobGyVJqampkqTq6mq1trYqJyfHbjN06FANHDhQlZWVIeljOCosLNTkyZP9xkli/LrqtddeU1ZWlm677TalpaVp9OjRevHFF+39Bw8elNfr9RvH5ORkZWdnM45/c91116miokIffvihJOkPf/iDtm7dqkmTJkliDC9UV8arsrJSKSkpysrKstvk5OQoJiZGVVVV3d5nEzQ2NsrhcNg3F2YMAydsbyXQHdrb2zV79myNHTtWI0aMkCR5vV716NHjjDtZu1wueb3eEPQy/Pzyl7/Url27tGPHjjP2MX5d89FHH2nFihUqLi7Wv/zLv2jHjh164IEH1KNHDxUUFNhj1fHWGYzj382bN08+n09Dhw5VbGys2tratHjxYuXn50sSY3iBujJeXq9XaWlpfvvj4uKUmprKmHbi5MmTmjt3ru644w77btSMYeBEdYApLCzUBx98oK1bt4a6K8Y4fPiwHnzwQZWXlyshISHU3TFWe3u7srKytGTJEknS6NGj9cEHH2jlypUqKCgIce/M8Ktf/Upr167VunXrdNVVV2n37t2aPXu20tPTGUOEXGtrq26//XZZlqUVK1aEujsRKWqnkIqKirRx40a98847GjBggL3d7XarpaVFDQ0Nfu1ra2vldru7uZfhp7q6WnV1dfrqV7+quLg4xcXFafPmzVq+fLni4uLkcrkYvy7o37+/hg8f7rdt2LBhOnTokCTZY9Xx7C3G8e8eeughzZs3T3l5eRo5cqTuvvtuzZkzRyUlJZIYwwvVlfFyu92qq6vz23/q1CnV19czpl9wOrx8/PHHKi8vt6svEmMYSFEXYCzLUlFRkdavX69NmzYpMzPTb/+YMWMUHx+viooKe1tNTY0OHTokj8fT3d0NO+PHj9eePXu0e/du+5GVlaX8/Hz734zf+Y0dO/aM0/c//PBDDRo0SJKUmZkpt9vtN44+n09VVVWM49+cOHFCMTH+v8JiY2PV3t4uiTG8UF0ZL4/Ho4aGBlVXV9ttNm3apPb2dmVnZ3d7n8PR6fBy4MABvf322+rXr5/ffsYwgEK9iri7zZo1y0pOTrZ+97vfWUePHrUfJ06csNt8//vftwYOHGht2rTJ2rlzp+XxeCyPxxPCXoe3L56FZFmMX1ds377diouLsxYvXmwdOHDAWrt2rdWzZ0/rF7/4hd3mySeftFJSUqzf/va31vvvv2/deuutVmZmpvXZZ5+FsOfho6CgwPrSl75kbdy40Tp48KD1m9/8xrrsssushx9+2G7DGPo7duyY9d5771nvvfeeJcl69tlnrffee88+Q6Yr4zVx4kRr9OjRVlVVlbV161ZryJAh1h133BGqj9TtzjWGLS0t1i233GINGDDA2r17t9/fmObmZvsY0T6GgRJ1AUZSp49Vq1bZbT777DPrBz/4gdW3b1+rZ8+e1j/+4z9aR48eDV2nw1zHAMP4dc3rr79ujRgxwnI6ndbQoUOtF154wW9/e3u7tWDBAsvlcllOp9MaP368VVNTE6Lehh+fz2c9+OCD1sCBA62EhATry1/+svWjH/3I7w8FY+jvnXfe6fT3X0FBgWVZXRuvv/71r9Ydd9xh9e7d20pKSrKmT59uHTt2LASfJjTONYYHDx4869+Yd955xz5GtI9hoDgs6wuXrQQAADBA1K2BAQAA5iPAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBx/h+j8WweFZJ7YgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMr5JREFUeJzt3Xtc1HXe///ncBQPgJqAJCrr5eYxLSkidWtXVjS31qS6LDZJvWUqah7W0muTtFJSO61mkrWrXVd2ddhLzSw1UtMsIsOoPGS2mVoGZATjkYN8vn/4Y34OkqLOMPOeedxvt7lt8/m8Z+Y97y148nq/P++PzbIsSwAAAAYJ8HQHAAAALhQBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGgNvNnDlTNpvN6Vj79u11zz33uOwz7rnnHrVv395l7+fNbDabZs6c6eluAB5FgAEM8M477/ALS9KhQ4c0c+ZMFRQUeLorADwsyNMdAHB+77zzjhYtWuRTIWbPnj0KCLiwv6EOHTqkWbNmqX379urZs6fTuRdeeEHV1dUu7KH3OnHihIKC+PEN/8Z/AYCXO3bsmMc+++TJkwoJCbngoFEfoaGhLn2/4OBgl76fN2vUqJGnuwB4HFNIgBepWSuya9cu3XXXXWrevLnatGmjRYsWSTq99qHmUV833nijunXrpvz8fF1//fUKCwtTfHy8srOzndq9//77stlsevXVV/XQQw/p8ssvV+PGjWW32yVJeXl5GjBggCIiItS4cWPdcMMN+vDDD8/6vK1bt+qaa65Ro0aN1KFDBz3//PN19quuNTClpaWaNGmS2rdvr9DQULVp00bDhg3T4cOH9f777+uaa66RJA0fPtwxDsuWLZNU9xqYY8eOacqUKYqLi1NoaKiuuOIKPfHEE7Isy6mdzWbTuHHjtGrVKnXr1k2hoaHq2rWr1q1b59TuyJEjmjhxoqN/UVFR+uMf/6jt27ef8/+DMy1btkw2m01bt27VhAkT1KpVK0VGRuq+++5TRUWFSktLNWzYMDVv3lzNmzfXAw88UGd/z6zG1fx788033+iee+5RZGSkIiIiNHz4cB0/frzefQNMQgUG8EK33367OnbsqDlz5qikpESbN29WTk6O/ud//uei3u+XX37RTTfdpDvuuEN33nmnXn/9dY0ZM0YhISEaMWKEU9tHH31UISEh+utf/6ry8nKFhIRo48aNGjhwoHr16qWHH35YAQEBWrp0qf7whz/ogw8+0LXXXitJ+vLLL9W/f3+1atVKM2fOVFVVlR5++GFFR0eft49Hjx5V3759tXv3bo0YMUJXX321Dh8+rNWrV+v7779X586d9cgjjygzM1OjRo1S3759JUnXX399ne9nWZZuueUWbdq0SSNHjlTPnj21fv16TZ06VT/88IOefvppp/Zbt27VihUrNHbsWDVr1kwLFixQamqqDhw4oJYtW0qSRo8erX/9618aN26cunTpop9//llbt27V7t27dfXVV1/Q/yfjx49XTEyMZs2apY8//lhLlixRZGSkPvroI7Vt21Zz5szRO++8o/nz56tbt24aNmzYed/zjjvuUHx8vLKysrR9+3a9+OKLioqK0ty5cy+ob4ARLABe4+GHH7YkWXfeeafT8YyMDOti/3O94YYbLEnWk08+6ThWXl5u9ezZ04qKirIqKiosy7KsTZs2WZKs3/zmN9bx48cdbaurq62OHTtaKSkpVnV1teP48ePHrfj4eOuPf/yj49jgwYOtRo0aWfv373cc27VrlxUYGHhW/9u1a2elp6c7nmdmZlqSrBUrVpz1HWo+d9u2bZYka+nSpWe1SU9Pt9q1a+d4vmrVKkuS9dhjjzm1u+222yybzWZ98803jmOSrJCQEKdjn3/+uSXJWrhwoeNYRESElZGRcdZnX4ilS5daks4az6SkJMtms1mjR492HKuqqrLatGlj3XDDDU7vIcl6+OGHHc9r/r0ZMWKEU7tbb73Vatmy5SX1F/BWTCEBXmj06NEufb+goCDdd999juchISG67777VFxcrPz8fKe26enpCgsLczwvKCjQ3r17ddddd+nnn3/W4cOHdfjwYR07dkz9+vXTli1bVF1drVOnTmn9+vUaPHiw2rZt63h9586dlZKSct4+/t///Z969OihW2+99axzFzJlVuOdd95RYGCgJkyY4HR8ypQpsixLa9eudTqenJysDh06OJ5feeWVCg8P17fffus4FhkZqby8PB06dOiC+1PbyJEjnb5XYmKiLMvSyJEjHccCAwOVkJDg1Idzqf3vTd++ffXzzz87pgEBX0KAAbxQfHy8S98vNjZWTZo0cTr229/+VpL03XffnfOz9+7dK+l0sGnVqpXT48UXX1R5ebnKysr0008/6cSJE+rYseNZn3/FFVect4///ve/1a1btwv5Wue0f/9+xcbGqlmzZk7HO3fu7Dh/pjNDV43mzZvrl19+cTyfN2+eduzYobi4OF177bWaOXNmvcNFbbU/LyIiQpIUFxd31vEz+3Ah79m8eXNJqvfrAZOwBgbwQmdWQDz92TWXJs+fP/+sS5drNG3aVOXl5e7umlsFBgbWedw6YwHtHXfcob59+2rlypV69913NX/+fM2dO1crVqzQwIEDXfJ5dR23ai3ivdD3rO/rAZMQYAADXMwUypkOHTqkY8eOOVVhvv76a0k67+61NdMq4eHhSk5O/tV2rVq1UlhYmKNic6Y9e/act48dOnTQjh07ztnmQsahXbt2eu+993TkyBGnKsxXX33lOH8xWrdurbFjx2rs2LEqLi7W1VdfrdmzZ19wgAFwaZhCAgxQEzxKS0sv6vVVVVVOlzNXVFTo+eefV6tWrdSrV69zvrZXr17q0KGDnnjiCR09evSs8z/99JOk03/9p6SkaNWqVTpw4IDj/O7du7V+/frz9jE1NVWff/65Vq5ceda5mgrChYzDTTfdpFOnTunZZ591Ov7000/LZrNdcOA4deqUysrKnI5FRUUpNjbW+OoTYCIqMIABakLGhAkTlJKSosDAQA0dOrTer4+NjdXcuXP13Xff6be//a1ee+01FRQUaMmSJefdAC4gIEAvvviiBg4cqK5du2r48OG6/PLL9cMPP2jTpk0KDw/XW2+9JUmaNWuW1q1bp759+2rs2LGqqqrSwoUL1bVrV33xxRfn/JypU6fqX//6l26//XaNGDFCvXr1UklJiVavXq3s7Gz16NFDHTp0UGRkpLKzs9WsWTM1adJEiYmJda4Zuvnmm/X73/9ef/vb3/Tdd9+pR48eevfdd/Xmm29q4sSJTgt26+PIkSNq06aNbrvtNvXo0UNNmzbVe++9p23btunJJ5+8oPcCcOkIMIABhgwZovHjx+vVV1/Vyy+/LMuyLijANG/eXC+99JLGjx+vF154QdHR0Xr22Wd177331uv1N954o3Jzc/Xoo4/q2Wef1dGjRxUTE6PExESnq5uuvPJKrV+/XpMnT1ZmZqbatGmjWbNm6ccffzxvgGnatKk++OADPfzww1q5cqVeeuklRUVFqV+/fmrTpo2k07vtvvTSS5o+fbpGjx6tqqoqLV26tM4AExAQoNWrVyszM1Ovvfaali5dqvbt22v+/PmaMmVKvceuRuPGjTV27Fi9++67WrFihaqrq/Uf//Efeu655zRmzJgLfj8Al8ZmsboL8Gk33nijDh8+fN71JQBgEtbAAAAA4zCFBBiqpKREFRUVv3o+MDBQrVq1asAe+bcTJ06ctci3thYtWigkJKSBegT4NgIMYKghQ4Zo8+bNv3q+Xbt2Z21SB/d57bXXNHz48HO22bRpk2688caG6RDg41gDAxgqPz//nDushoWFqXfv3g3YI//2448/aufOneds06tXL8fuuAAuDQEGAAAYh0W8AADAOD67Bqa6ulqHDh1Ss2bNLnkbdgAA0DAsy9KRI0cUGxurgIBfr7P4bIA5dOjQWXd1BQAAZjh48KBjE8u6+GyAqbl528GDBxUeHu7h3gAAgPqw2+2Ki4tzuglrXXw2wNRMG4WHhxNgAAAwzPmWf7CIFwAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4QZ7uAAC4Q+W6rU7Pgwf08VBPALgDFRgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDhsZAfAeLU3rQPg+wgwAPD/qSsIsYMv4J2YQgIAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGId9YAB4FfZiAVAfF1yB2bJli26++WbFxsbKZrNp1apVTucty1JmZqZat26tsLAwJScna+/evU5tSkpKlJaWpvDwcEVGRmrkyJE6evSoU5svvvhCffv2VaNGjRQXF6d58+Zd+LcDAAA+6YIDzLFjx9SjRw8tWrSozvPz5s3TggULlJ2drby8PDVp0kQpKSk6efKko01aWpp27typnJwcrVmzRlu2bNGoUaMc5+12u/r376927dopPz9f8+fP18yZM7VkyZKL+IoAAMDXXPAU0sCBAzVw4MA6z1mWpWeeeUYPPfSQ/vznP0uS/vu//1vR0dFatWqVhg4dqt27d2vdunXatm2bEhISJEkLFy7UTTfdpCeeeEKxsbFavny5Kioq9M9//lMhISHq2rWrCgoK9NRTTzkFHQAA4J9cuoh33759KiwsVHJysuNYRESEEhMTlZubK0nKzc1VZGSkI7xIUnJysgICApSXl+do87vf/U4hISGONikpKdqzZ49++eWXOj+7vLxcdrvd6QEAAHyTSwNMYWGhJCk6OtrpeHR0tONcYWGhoqKinM4HBQWpRYsWTm3qeo8zP6O2rKwsRUREOB5xcXGX/oUAAIBX8pnLqKdPn66ysjLH4+DBg57uEgAAcBOXXkYdExMjSSoqKlLr1q0dx4uKitSzZ09Hm+LiYqfXVVVVqaSkxPH6mJgYFRUVObWpeV7TprbQ0FCFhoa65HsAOL/alzubeKlzXZdsAzCDSysw8fHxiomJ0YYNGxzH7Ha78vLylJSUJElKSkpSaWmp8vPzHW02btyo6upqJSYmOtps2bJFlZWVjjY5OTm64oor1Lx5c1d2GYCfqFy39awHAHNdcIA5evSoCgoKVFBQIOn0wt2CggIdOHBANptNEydO1GOPPabVq1fryy+/1LBhwxQbG6vBgwdLkjp37qwBAwbo3nvv1SeffKIPP/xQ48aN09ChQxUbGytJuuuuuxQSEqKRI0dq586deu211/T3v/9dkydPdtkXBwAA5rrgKaRPP/1Uv//97x3Pa0JFenq6li1bpgceeEDHjh3TqFGjVFpaqj59+mjdunVq1KiR4zXLly/XuHHj1K9fPwUEBCg1NVULFixwnI+IiNC7776rjIwM9erVS5dddpkyMzO5hBoAAEiSbJZlWZ7uhDvY7XZFRESorKxM4eHhnu4O4HPctQbmYm4l4M7pIBPX9gAmq+/vb5+5CgkAAPgPAgwAADAOAQYAABjHpfvAAIA7+MKeMwBciwoMAAAwDhUYAG5D5QSAu1CBAQAAxiHAAAAA4xBgAACAcVgDA8AluDkigIZEBQYAABiHAAMAAIzDFBKABnMxN2oEgLpQgQEAAMYhwAAAAOMwhQQADYBdiQHXogIDAACMQwUGAM6BygngnajAAAAA4xBgAACAcZhCAoALwF42gHegAgMAAIxDgAEAAMZhCgmAcbjzNQAqMAAAwDgEGAAAYBymkAB4FNNBAC4GFRgAAGAcAgwAADAOAQYAABiHAAMAAIzDIl4AZ+EOzAC8HQEGAC4RgQ9oeAQYAOfFpc4AvA0BBvBh3DkZgK9iES8AADAOFRjAzzAdBMAXUIEBAADGIcAAAADjEGAAAIBxWAMDAF6Kq8iAX0cFBgAAGIcKDOBDuMLIHFRXgEtDgAEMRVgB4M+YQgIAAMahAgMALkZ1DHA/KjAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIzDVUgAYDA2xIO/IsAAgEG4RBs4jSkkAABgHCowAOAlqK4A9efyCsypU6c0Y8YMxcfHKywsTB06dNCjjz4qy7IcbSzLUmZmplq3bq2wsDAlJydr7969Tu9TUlKitLQ0hYeHKzIyUiNHjtTRo0dd3V0AAGAglweYuXPnavHixXr22We1e/duzZ07V/PmzdPChQsdbebNm6cFCxYoOztbeXl5atKkiVJSUnTy5ElHm7S0NO3cuVM5OTlas2aNtmzZolGjRrm6uwAAwEA268zSiAv86U9/UnR0tP7xj384jqWmpiosLEwvv/yyLMtSbGyspkyZor/+9a+SpLKyMkVHR2vZsmUaOnSodu/erS5dumjbtm1KSEiQJK1bt0433XSTvv/+e8XGxp63H3a7XRERESorK1N4eLgrvyLgEUwvXLjvStc6PW8fOdBDPWlYXIUEk9X397fLKzDXX3+9NmzYoK+//lqS9Pnnn2vr1q0aOPD0D459+/apsLBQycnJjtdEREQoMTFRubm5kqTc3FxFRkY6woskJScnKyAgQHl5eXV+bnl5uex2u9MDAAD4Jpcv4p02bZrsdrs6deqkwMBAnTp1SrNnz1ZaWpokqbCwUJIUHR3t9Lro6GjHucLCQkVFRTl3NChILVq0cLSpLSsrS7NmzXL11wEAAF7I5QHm9ddf1/Lly/XKK6+oa9euKigo0MSJExUbG6v09HRXf5zD9OnTNXnyZMdzu92uuLg4t30e4E5MFwHAubk8wEydOlXTpk3T0KFDJUndu3fX/v37lZWVpfT0dMXExEiSioqK1Lp1a8frioqK1LNnT0lSTEyMiouLnd63qqpKJSUljtfXFhoaqtDQUFd/HQAA4IVcvgbm+PHjCghwftvAwEBVV1dLkuLj4xUTE6MNGzY4ztvtduXl5SkpKUmSlJSUpNLSUuXn5zvabNy4UdXV1UpMTHR1lwH4ie9K1571AGAml1dgbr75Zs2ePVtt27ZV165d9dlnn+mpp57SiBEjJEk2m00TJ07UY489po4dOyo+Pl4zZsxQbGysBg8eLEnq3LmzBgwYoHvvvVfZ2dmqrKzUuHHjNHTo0HpdgQQAAHybywPMwoULNWPGDI0dO1bFxcWKjY3Vfffdp8zMTEebBx54QMeOHdOoUaNUWlqqPn36aN26dWrUqJGjzfLlyzVu3Dj169dPAQEBSk1N1YIFC1zdXQAAYCCX7wPjLdgHBiZjEa9r1GeKyBf3hmEfGJjMY/vAAAAAuBs3cwSAM9RVtfHFKg1gOgIMAJ/AFUWAf2EKCQAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOFxGDcDrcYk0gNoIMAAuSn02fGNTOADuQoAB4DJUSgA0FNbAAAAA41CBAeBRTDMBuBhUYAAAgHGowADAedSuElEhAjyPAAOgXligC8CbMIUEAACMQwUGgF+jsgSYiQADuFnluq1Oz4MH9PFQTwDAdzCFBAAAjEOAAQAAxiHAAAAA47AGBmhgtdfESKyLgWux7gr+gAoMAAAwDhUYAF6HS5sBnA8VGAAAYBwCDAAAMA4BBgAAGIcAAwAAjMMiXgANigW6AFyBCgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAONwFRIANJDaV2C1jxzooZ4A5iPAAF6grjtUX4y6LlGuzy9JfrFemIsdZwCuwxQSAAAwDhUYAHADNuwD3IsAAwAewlQUcPEIMMAlqL12JXhAHw/1BJ5GxQVoWKyBAQAAxiHAAAAA4xBgAACAcQgwAADAOCziBQAfV9dGiSw4h+mowAAAAONQgQH8DJf7AvAFBBignlx1v6KGRmAxC/elAuqHAAO4kKkhBwBMQ4ABfoUJYYTqCgB/xSJeAABgHAIMAAAwDgEGAAAYxy0B5ocfftBf/vIXtWzZUmFhYerevbs+/fRTx3nLspSZmanWrVsrLCxMycnJ2rt3r9N7lJSUKC0tTeHh4YqMjNTIkSN19OhRd3QXAAAYxuUB5pdfflHv3r0VHBystWvXateuXXryySfVvHlzR5t58+ZpwYIFys7OVl5enpo0aaKUlBSdPHnS0SYtLU07d+5UTk6O1qxZoy1btmjUqFGu7i4AADCQzbIsy5VvOG3aNH344Yf64IMP6jxvWZZiY2M1ZcoU/fWvf5UklZWVKTo6WsuWLdPQoUO1e/dudenSRdu2bVNCQoIkad26dbrpppv0/fffKzY29rz9sNvtioiIUFlZmcLDw133BeE3uAoJ3sBd+8BwKwF4q/r+/nZ5BWb16tVKSEjQ7bffrqioKF111VV64YUXHOf37dunwsJCJScnO45FREQoMTFRubm5kqTc3FxFRkY6woskJScnKyAgQHl5eXV+bnl5uex2u9MDAAD4JpcHmG+//VaLFy9Wx44dtX79eo0ZM0YTJkzQSy+9JEkqLCyUJEVHRzu9Ljo62nGusLBQUVFRTueDgoLUokULR5vasrKyFBER4XjExcW5+qsBAAAv4fKN7Kqrq5WQkKA5c+ZIkq666irt2LFD2dnZSk9Pd/XHOUyfPl2TJ092PLfb7YQY+BSmi+BKtadImVKCaVxegWndurW6dOnidKxz5846cOCAJCkmJkaSVFRU5NSmqKjIcS4mJkbFxcVO56uqqlRSUuJoU1toaKjCw8OdHgAAwDe5PMD07t1be/bscTr29ddfq127dpKk+Ph4xcTEaMOGDY7zdrtdeXl5SkpKkiQlJSWptLRU+fn5jjYbN25UdXW1EhMTXd1lAABgGJdPIU2aNEnXX3+95syZozvuuEOffPKJlixZoiVLlkiSbDabJk6cqMcee0wdO3ZUfHy8ZsyYodjYWA0ePFjS6YrNgAEDdO+99yo7O1uVlZUaN26chg4dWq8rkABfwJQRAPw6lweYa665RitXrtT06dP1yCOPKD4+Xs8884zS0tIcbR544AEdO3ZMo0aNUmlpqfr06aN169apUaNGjjbLly/XuHHj1K9fPwUEBCg1NVULFixwdXcBAKp72wDWxcCbuXwfGG/BPjC4VJ7eB4YKDCT37QNTHwQYeILH9oEBAABwNwIMAAAwjsvXwAAAGlZ9pxs9OR0FuBoVGAAAYBwqMABgGBZ4A1RgAACAgQgwAADAOEwhAYAXY7oIqBsVGAAAYBwCDAAAMA5TSIAXYJoAAC4MFRgAAGAcAgwAADAOAQYAABiHNTCAB7DmBSaqXLf1rGPBA/p4oCcAAQaQVPcPZlchrACA6zGFBAAAjEOAAQAAxiHAAAAA4xBgAACAcVjECwC4aPVZAM+VSnAHKjAAAMA4BBgAAGAcppDgl9y57wvgK/jvBN6MAAMAfqL2portIwd6qCfApWMKCQAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMw60EgAtQn63Ya7cBALgeFRgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMbhKiT4hcp1W93yvlxxBACeQQUGAAAYhwoMAMCtaldAgwf08VBP4EuowAAAAONQgQEAP1XXGq66dpd2tbrWpFGVwYWiAgMAAIxDgAEAAMYhwAAAAOOwBgYA4FCfO64D3oAKDAAAMA4VGBiPPSYAwP9QgQEAAMYhwAAAAOMwhQSf464bNwIAvIfbKzCPP/64bDabJk6c6Dh28uRJZWRkqGXLlmratKlSU1NVVFTk9LoDBw5o0KBBaty4saKiojR16lRVVVW5u7sAAMAAbq3AbNu2Tc8//7yuvPJKp+OTJk3S22+/rTfeeEMREREaN26chgwZog8//FCSdOrUKQ0aNEgxMTH66KOP9OOPP2rYsGEKDg7WnDlz3NllwKGubdYBf+Op2w0A5+O2CszRo0eVlpamF154Qc2bN3ccLysr0z/+8Q899dRT+sMf/qBevXpp6dKl+uijj/Txxx9Lkt59913t2rVLL7/8snr27KmBAwfq0Ucf1aJFi1RRUVHn55WXl8tutzs9AACAb3JbgMnIyNCgQYOUnJzsdDw/P1+VlZVOxzt16qS2bdsqNzdXkpSbm6vu3bsrOjra0SYlJUV2u107d+6s8/OysrIUERHheMTFxbnhWwEAAG/glgDz6quvavv27crKyjrrXGFhoUJCQhQZGel0PDo6WoWFhY42Z4aXmvM15+oyffp0lZWVOR4HDx50wTcBAADeyOVrYA4ePKj7779fOTk5atSokavf/leFhoYqNDS0wT4PAOA6bEiJC+XyCkx+fr6Ki4t19dVXKygoSEFBQdq8ebMWLFigoKAgRUdHq6KiQqWlpU6vKyoqUkxMjCQpJibmrKuSap7XtAEAAP7L5QGmX79++vLLL1VQUOB4JCQkKC0tzfHPwcHB2rBhg+M1e/bs0YEDB5SUlCRJSkpK0pdffqni4mJHm5ycHIWHh6tLly6u7jIAADCMy6eQmjVrpm7dujkda9KkiVq2bOk4PnLkSE2ePFktWrRQeHi4xo8fr6SkJF133XWSpP79+6tLly66++67NW/ePBUWFuqhhx5SRkYG00RwCS6RBgCzeWQn3qeffloBAQFKTU1VeXm5UlJS9NxzzznOBwYGas2aNRozZoySkpLUpEkTpaen65FHHvFEdwEAgJexWZZleboT7mC32xUREaGysjKFh4d7ujtwo4u5dQAVGODiNcRGdizi9V/1/f3NzRwBAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAON4ZCdeAIC5am8E2RAb2wG1EWDgF9h5FwB8CwEGHlP7FgBsHQ4AqC8CDLxGfe5pRMgBAEgEGBjmYm7cCADwPQQYNAiCBwDAlbiMGgAAGIcAAwAAjEOAAQAAxiHAAAAA47CIFwDgcuzWC3ejAgMAAIxDBQYAcEm4VQc8gQADAHC7+oQcpplwIZhCAgAAxiHAAAAA4zCFBLfg1gEAAHeiAgMAAIxDBQaXjGoLAKChEWBgPDbMAgD/wxQSAAAwDgEGAAAYhwADAACMwxoY+By2NQcA30cFBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOFxGDaNwiTQAQKICAwAADESAAQAAxiHAAAAA4xBgAACAcVjECwDwCmcu0g/4dKckqUPCfZ7qDrwcFRgAAGAcKjDwmNqXRLePHHjeNgAASFRgAACAgQgwAADAOEwhwWswXQSgRvU3ByRJlYe31vs1wQP6uKs78EJUYAAAgHGowAAAvFZ9FvvDP1GBAQAAxqECgwbB+hYAgCtRgQEAAMahAgMAMEZd1VzWxfgnl1dgsrKydM0116hZs2aKiorS4MGDtWfPHqc2J0+eVEZGhlq2bKmmTZsqNTVVRUVFTm0OHDigQYMGqXHjxoqKitLUqVNVVVXl6u4CAAADuTzAbN68WRkZGfr444+Vk5OjyspK9e/fX8eOHXO0mTRpkt566y298cYb2rx5sw4dOqQhQ4Y4zp86dUqDBg1SRUWFPvroI7300ktatmyZMjMzXd1dAABgIJtlWZY7P+Cnn35SVFSUNm/erN/97ncqKytTq1at9Morr+i2226TJH311Vfq3LmzcnNzdd1112nt2rX605/+pEOHDik6OlqSlJ2drQcffFA//fSTQkJCzvqc8vJylZeXO57b7XbFxcWprKxM4eHh7vyKfq9y3fk3mmIRLwB3qZlCYiM732C32xUREXHe399uX8RbVlYmSWrRooUkKT8/X5WVlUpOTna06dSpk9q2bavc3FxJUm5urrp37+4IL5KUkpIiu92unTt31vk5WVlZioiIcDzi4uLc9ZVQD9+VrnV6AIAnVK7b6vSA73BrgKmurtbEiRPVu3dvdevWTZJUWFiokJAQRUZGOrWNjo5WYWGho82Z4aXmfM25ukyfPl1lZWWOx8GDB138bQAAgLdw61VIGRkZ2rFjh7ZudX/qDQ0NVWhoqNs/BwAAeJ7bKjDjxo3TmjVrtGnTJrVp08ZxPCYmRhUVFSotLXVqX1RUpJiYGEeb2lcl1TyvaQMAAPyXyyswlmVp/PjxWrlypd5//33Fx8c7ne/Vq5eCg4O1YcMGpaamSpL27NmjAwcOKCkpSZKUlJSk2bNnq7i4WFFRUZKknJwchYeHq0uXLq7uMgDAYI51dq+e/l/2hfEPLg8wGRkZeuWVV/Tmm2+qWbNmjjUrERERCgsLU0REhEaOHKnJkyerRYsWCg8P1/jx45WUlKTrrrtOktS/f3916dJFd999t+bNm6fCwkI99NBDysjIYJoIAAC4PsAsXrxYknTjjTc6HV+6dKnuueceSdLTTz+tgIAApaamqry8XCkpKXruueccbQMDA7VmzRqNGTNGSUlJatKkidLT0/XII4+4ursAAB/Dbr3+we37wHhKfa8jx6Wr69JELp0G4E3YK8Yc9f39zb2QcMkIKwCAhsbdqAEAgHGowAAA/EZdU95MK5mJCgwAADAOFRhcMO4nAgDwNAIMAMCv1f6jjCklMzCFBAAAjEOAAQAAxiHAAAAA4xBgAACAcVjECwDAebDQ1/tQgQEAAMahAoNzYs8XAIA3IsDACYEFgC+qfdPZmrtTw1xMIQEAAONQgcE51f6rReIvFwCA5xFgcMHqCjUA4CuYSjcDAcZHcIkfANQf1WXzsQYGAAAYhwqMj6qrBEpVBgBcg5+xnkcFBgAAGIcAAwAAjMMUkh9hoS8AwFcQYPxYXXO4XCINwF+xW69ZCDB+jLACADAVa2AAAIBxqMD4gH9/+ryqSw84HaP0CQDwZVRgAACAcajAGKj24tva1RcAwKWrzzpBqt2eQ4AxEItvAQD+jgDjJwg9AABfwhoYAABgHAIMAAAwDlNIPoopIwCAL6MCAwAAjEMFBgCAi3RmtTvg052SpA4J93mqO36FAGOAum66CACAPyPAeLm6bhMAAIC/I8B4GXbZBQDg/AgwAAC4QPU3p//grDx8+g/R4AF9PNkdn0eA8TJc/gwAwPlxGTUAADAOFRgAAFyoppLOZdXuRQUGAAAYhwoMAABu9O9Pnz/rGFWZS0eAAQCggdUONQSaC0eAAQDADWouqz5TwH+09UBPfBNrYAAAgHGowHgY9zkCAODCEWAAAGggtaeVmFK6eAQYAOdmSaFHAhVYGaBTwdUqb3ZKsnm6U65VpWrlBu3XYdtxXWY1VlJVOwUxw44GUBNo9n7zN8exXws1LPR1RoDxIO40DW8XVhKkyANhCqr4/3+ZV4VUq7TtCZ1oUeXBnrnO28FfaUvQPllnhLI1wV/pd1XxGlTZyXMdg9+qT5Wm9vIDf7zvEn9iAKhTWEmQWn7TWIEVzuWWwAqbWn7TWGEl5v/983bwV9octE9WreOWpM1B+/R28Fee6BaAejD/JxAA17OkyANhkiRbrfkim2yyZCnyQJhOND9i7HRSlaq1JWjf6Se1v4NNkiVtCdqnlMrfMp0Er3Dm3jE11fv2kQMl1X1BiK9XZbz6v8pFixapffv2atSokRITE/XJJ594ukuAXwg9EqigioCzwksNm2wKqghQ6JHABu6Z6+QG7T89bfRrAcwmWbbT7QBv9V3pWqeHP/HaCsxrr72myZMnKzs7W4mJiXrmmWeUkpKiPXv2KCoqytPdA3xaYGX9/rY53e6UezvjJodtx13aDnCXujbE+zVnhpiam0nWVtdiYBN3BvbaAPPUU0/p3nvv1fDhwyVJ2dnZevvtt/XPf/5T06ZN83DvLk5d98MAvNGp4GqXtvNGl1mNXdoO8Da/FnwqD5893VQzJWXSZd1eGWAqKiqUn5+v6dOnO44FBAQoOTlZubm5db6mvLxc5eXljudlZWWSJLvd7vL+fbv9ny57L+t4+fkbAQ3saKAUZAUosMJW5zSSJUunQiz9HHhcMrRA0V0xWhm28/QC3rqmkazTh7ufiNFR8d8pfMeO46t+9Zzt6AlJUsH7z5z3fX5z9QgX9chZze9ty6q9vN6ZVwaYw4cP69SpU4qOjnY6Hh0dra++qvuqgKysLM2aNeus43FxcW7pIwD/sEZfeLoLgJea5NZ3P3LkiCIiIn71vFcGmIsxffp0TZ482fG8urpaJSUlatmypWw277pMwm63Ky4uTgcPHlR4eLinu+MxjMNpjMNpjMNpjMNpjIP/joFlWTpy5IhiY2PP2c4rA8xll12mwMBAFRUVOR0vKipSTExMna8JDQ1VaGio07HIyEh3ddElwsPD/epfyl/DOJzGOJzGOJzGOJzGOPjnGJyr8lLDKy+jDgkJUa9evbRhwwbHserqam3YsEFJSUke7BkAAPAGXlmBkaTJkycrPT1dCQkJuvbaa/XMM8/o2LFjjquSAACA//LaAPOf//mf+umnn5SZmanCwkL17NlT69atO2thr4lCQ0P18MMPnzXl5W8Yh9MYh9MYh9MYh9MYB8bgfGzW+a5TAgAA8DJeuQYGAADgXAgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwDjJllZWbrmmmvUrFkzRUVFafDgwdqzZ49Tm5MnTyojI0MtW7ZU06ZNlZqaetbuw77m8ccfl81m08SJEx3H/GUcfvjhB/3lL39Ry5YtFRYWpu7du+vTTz91nLcsS5mZmWrdurXCwsKUnJysvXv3erDHrnfq1CnNmDFD8fHxCgsLU4cOHfToo4863bTNF8dhy5YtuvnmmxUbGyubzaZVq1Y5na/Pdy4pKVFaWprCw8MVGRmpkSNH6ujRow34LS7ducahsrJSDz74oLp3764mTZooNjZWw4YN06FDh5zew9fHobbRo0fLZrPpmWeecTruC+NwqQgwbrJ582ZlZGTo448/Vk5OjiorK9W/f38dO3bM0WbSpEl666239MYbb2jz5s06dOiQhgwZ4sFeu9e2bdv0/PPP68orr3Q67g/j8Msvv6h3794KDg7W2rVrtWvXLj355JNq3ry5o828efO0YMECZWdnKy8vT02aNFFKSopOnjzpwZ671ty5c7V48WI9++yz2r17t+bOnat58+Zp4cKFjja+OA7Hjh1Tjx49tGjRojrP1+c7p6WlaefOncrJydGaNWu0ZcsWjRo1qqG+gkucaxyOHz+u7du3a8aMGdq+fbtWrFihPXv26JZbbnFq5+vjcKaVK1fq448/rvOeQL4wDpfMQoMoLi62JFmbN2+2LMuySktLreDgYOuNN95wtNm9e7clycrNzfVUN93myJEjVseOHa2cnBzrhhtusO6//37LsvxnHB588EGrT58+v3q+urraiomJsebPn+84VlpaaoWGhlr/+7//2xBdbBCDBg2yRowY4XRsyJAhVlpammVZ/jEOkqyVK1c6ntfnO+/atcuSZG3bts3RZu3atZbNZrN++OGHBuu7K9Ueh7p88sknliRr//79lmX51zh8//331uWXX27t2LHDateunfX00087zvniOFwMKjANpKysTJLUokULSVJ+fr4qKyuVnJzsaNOpUye1bdtWubm5HumjO2VkZGjQoEFO31fyn3FYvXq1EhISdPvttysqKkpXXXWVXnjhBcf5ffv2qbCw0GkcIiIilJiY6FPjcP3112vDhg36+uuvJUmff/65tm7dqoEDB0ryn3E4U32+c25uriIjI5WQkOBok5ycrICAAOXl5TV4nxtKWVmZbDab48a8/jIO1dXVuvvuuzV16lR17dr1rPP+Mg7n47W3EvAl1dXVmjhxonr37q1u3bpJkgoLCxUSEnLWHbOjo6NVWFjogV66z6uvvqrt27dr27ZtZ53zl3H49ttvtXjxYk2ePFn/9V//pW3btmnChAkKCQlRenq647vWvlWGr43DtGnTZLfb1alTJwUGBurUqVOaPXu20tLSJMlvxuFM9fnOhYWFioqKcjofFBSkFi1a+Oy4nDx5Ug8++KDuvPNOx52Y/WUc5s6dq6CgIE2YMKHO8/4yDudDgGkAGRkZ2rFjh7Zu3erprjS4gwcP6v7771dOTo4aNWrk6e54THV1tRISEjRnzhxJ0lVXXaUdO3YoOztb6enpHu5dw3n99de1fPlyvfLKK+ratasKCgo0ceJExcbG+tU44NwqKyt1xx13yLIsLV682NPdaVD5+fn6+9//ru3bt8tms3m6O16NKSQ3GzdunNasWaNNmzapTZs2juMxMTGqqKhQaWmpU/uioiLFxMQ0cC/dJz8/X8XFxbr66qsVFBSkoKAgbd68WQsWLFBQUJCio6P9Yhxat26tLl26OB3r3LmzDhw4IEmO71r76itfG4epU6dq2rRpGjp0qLp37667775bkyZNUlZWliT/GYcz1ec7x8TEqLi42Ol8VVWVSkpKfG5casLL/v37lZOT46i+SP4xDh988IGKi4vVtm1bx8/M/fv3a8qUKWrfvr0k/xiH+iDAuIllWRo3bpxWrlypjRs3Kj4+3ul8r169FBwcrA0bNjiO7dmzRwcOHFBSUlJDd9dt+vXrpy+//FIFBQWOR0JCgtLS0hz/7A/j0Lt377Muo//666/Vrl07SVJ8fLxiYmKcxsFutysvL8+nxuH48eMKCHD+sRMYGKjq6mpJ/jMOZ6rPd05KSlJpaany8/MdbTZu3Kjq6molJiY2eJ/dpSa87N27V++9955atmzpdN4fxuHuu+/WF1984fQzMzY2VlOnTtX69esl+cc41IunVxH7qjFjxlgRERHW+++/b/3444+Ox/Hjxx1tRo8ebbVt29bauHGj9emnn1pJSUlWUlKSB3vdMM68Csmy/GMcPvnkEysoKMiaPXu2tXfvXmv58uVW48aNrZdfftnR5vHHH7ciIyOtN9980/riiy+sP//5z1Z8fLx14sQJD/bctdLT063LL7/cWrNmjbVv3z5rxYoV1mWXXWY98MADjja+OA5HjhyxPvvsM+uzzz6zJFlPPfWU9dlnnzmurqnPdx4wYIB11VVXWXl5edbWrVutjh07WnfeeaenvtJFOdc4VFRUWLfccovVpk0bq6CgwOnnZnl5ueM9fH0c6lL7KiTL8o1xuFQEGDeRVOdj6dKljjYnTpywxo4dazVv3txq3Lixdeutt1o//vij5zrdQGoHGH8Zh7feesvq1q2bFRoaanXq1MlasmSJ0/nq6mprxowZVnR0tBUaGmr169fP2rNnj4d66x52u926//77rbZt21qNGjWyfvOb31h/+9vfnH5B+eI4bNq0qc6fB+np6ZZl1e87//zzz9add95pNW3a1AoPD7eGDx9uHTlyxAPf5uKdaxz27dv3qz83N23a5HgPXx+HutQVYHxhHC6VzbLO2AITAADAAKyBAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBx/h/9Av3WZVtfpAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOV9JREFUeJzt3Xl4FFWi/vG3A+lOWJLIkoRACIuyB9SoGBERzRBCXBhQBmRkFRETHUAdLr9BFp0rIzruOOAdBR1RAa+igoJhCSgG0EhkNRcQCQoJm0mzJiE5vz+c9NDZEztLJd/P8/Tz0FWnqs/p6k6/nDqnymaMMQIAALAQr5quAAAAQEURYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYIA6Yvbs2bLZbG7L2rVrpzFjxnjsNcaMGaN27dp5bH8oXWJiomw2m95///2arkq5FNQ3MTGxpquCeoAAA/zbp59+qtmzZ9d0NWrckSNHNHv2bKWkpNR0VQCgRA1rugJAbfHpp59q/vz5dSrEpKamysurYv9POXLkiObMmaN27drpyiuvdFv3P//zP8rPz/dgDVGX3HTTTTp//rzsdntNVwX1AD0wgKSzZ8/W2GtfuHChykKBw+GQt7e3x/bn7e0th8Phsf1VN2OMzp8/X+w6TxyHmvwc1QZeXl7y8fGpcGgGKoNPGeqdgrEie/bs0T333KPLLrtMbdq00fz58yVJNpvN9Sivm2++WT169FBycrJuuOEG+fr6qn379lqwYIFbuYIxAu+9955mzJih1q1bq1GjRnI6nZKkrVu3auDAgfL391ejRo3Ur18/bd68ucjrffnll7r22mvl4+Ojjh07auHChcXWq7gxMJmZmZoyZYratWsnh8OhNm3aaNSoUTpx4oQSExN17bXXSpLGjh3reh8WL14sqfgxMGfPntUjjzyi0NBQORwOde7cWc8++6wK3+jeZrMpPj5eK1asUI8ePeRwONS9e3etXr26vG+zS35+vl544QV1795dPj4+CgoK0sSJE/XLL78Uaf9tt92mNWvW6JprrpGvr68WLlxY5nFYvny5IiIi5OvrqxYtWuiPf/yjfv75Z7d9jxkzRk2aNNGBAwc0aNAgNW3aVCNHjixX/U+dOqVHH31U4eHhatKkifz8/BQTE6Pvvvuu2PJ5eXn6f//v/yk4OFiNGzfWHXfcocOHD7uV2bdvn4YOHarg4GD5+PioTZs2Gj58uLKyssr7trralJaWpttuu01NmjRR69atXd+NnTt36pZbblHjxo0VFhamd955x2374sbAFHw39uzZo/79+6tRo0Zq3bq15s2bV+56AcXhFBLqrbvvvltXXHGFnnrqKZ06dUobN25UQkKC/vWvf1Vqf7/88osGDRqkYcOGacSIEVq2bJkmTZoku92ucePGuZV98sknZbfb9eijjyo7O1t2u13r169XTEyMIiIiNGvWLHl5eWnRokW65ZZb9MUXX+i6666T9OuPyIABA9SyZUvNnj1bFy9e1KxZsxQUFFRmHc+cOaO+fftq7969GjdunK6++mqdOHFCH3/8sX766Sd17dpVTzzxhGbOnKn7779fffv2lSTdcMMNxe7PGKM77rhDGzZs0Pjx43XllVdqzZo1euyxx/Tzzz/r+eefdyv/5Zdf6oMPPtCDDz6opk2b6qWXXtLQoUOVlpam5s2bl/u9njhxohYvXqyxY8fq4Ycf1sGDB/XKK69o+/bt2rx5s1uvU2pqqkaMGKGJEydqwoQJ6ty5c6nHoWC/1157rebOnauMjAy9+OKL2rx5s7Zv366AgADX9hcvXlR0dLRuvPFGPfvss2rUqFG56v/DDz9oxYoVuvvuu9W+fXtlZGRo4cKF6tevn/bs2aOQkBC38v/93/8tm82madOm6dixY3rhhRcUFRWllJQU+fr6KicnR9HR0crOztZDDz2k4OBg/fzzz1q5cqUyMzPl7+9f7vc2Ly9PMTExuummmzRv3jwtWbJE8fHxaty4sf7yl79o5MiRGjJkiBYsWKBRo0YpMjJS7du3L3Wfv/zyiwYOHKghQ4Zo2LBhev/99zVt2jSFh4crJiam3HUD3Bignpk1a5aRZEaMGOG2PC4uzlT2K9GvXz8jyfz97393LcvOzjZXXnmlCQwMNDk5OcYYYzZs2GAkmQ4dOphz5865yubn55srrrjCREdHm/z8fNfyc+fOmfbt25vf/e53rmWDBw82Pj4+5tChQ65le/bsMQ0aNChS/7CwMDN69GjX85kzZxpJ5oMPPijShoLX/frrr40ks2jRoiJlRo8ebcLCwlzPV6xYYSSZv/71r27l7rrrLmOz2cz+/ftdyyQZu93utuy7774zkszLL79c5LVK8sUXXxhJZsmSJW7LV69eXWR5WFiYkWRWr17tVrak45CTk2MCAwNNjx49zPnz513LV65caSSZmTNnur0Xksx//dd/lbvuBS5cuGDy8vLclh08eNA4HA7zxBNPFKln69atjdPpdC1ftmyZkWRefPFFY4wx27dvN5LM8uXLK1yXSxW06amnnnIt++WXX4yvr6+x2Wzmvffecy3//vvvjSQza9asIvXdsGGDa1nBd+Ott95yLcvOzjbBwcFm6NChv6m+qN84hYR664EHHvDo/ho2bKiJEye6ntvtdk2cOFHHjh1TcnKyW9nRo0fL19fX9TwlJUX79u3TPffco5MnT+rEiRM6ceKEzp49q1tvvVWbNm1Sfn6+8vLytGbNGg0ePFht27Z1bd+1a1dFR0eXWcf//d//Va9evfT73/++yLqKnDIr8Omnn6pBgwZ6+OGH3ZY/8sgjMsbos88+c1seFRWljh07up737NlTfn5++uGHH8r9msuXL5e/v79+97vfud6nEydOKCIiQk2aNNGGDRvcyrdv377E96bwcfjmm2907NgxPfjgg/Lx8XEtj42NVZcuXbRq1aoi+5g0aVK5617A4XC4xonk5eXp5MmTatKkiTp37qxvv/22SPlRo0apadOmrud33XWXWrVqpU8//VSSXD0sa9as0blz5ypcn8Luu+8+178DAgLUuXNnNW7cWMOGDXMt79y5swICAsp17Jo0aaI//vGPrud2u13XXXddhY47UBgBBvVWWd3eFRUSEqLGjRu7LevUqZMk6ccffyz1tfft2yfp1x/Uli1buj3++c9/Kjs7W1lZWTp+/LjOnz+vK664osjrX3pqpCQHDhxQjx49KtKsUh06dEghISFuP67Sr4GqYP2lLg1dBS677LIiY1dKs2/fPmVlZSkwMLDIe3XmzBkdO3bMrXxpx7nwuoL6FvdedunSpUh7GjZsqDZt2pS77gXy8/P1/PPP64orrpDD4VCLFi3UsmVL7dixo9gxK4WPt81m0+WXX+76XLVv315Tp07VP//5T7Vo0ULR0dGaP39+hca/FPDx8VHLli3dlvn7+6tNmzZFQq6/v3+5jl1x21b0uAOFMQYG9dal//Ou6dcumP3yzDPPFJm6XKBJkybKzs6u6qpVqQYNGhS73BQa8Fua/Px8BQYGasmSJcWuL/zjW9px/q2fgUt7Uiriqaee0uOPP65x48bpySefVLNmzeTl5aXJkydXeibU3//+d40ZM0YfffSRPv/8cz388MOaO3eutmzZUqGQVdIx+i3HzhPHHSiMAAP8W2VOoVzqyJEjOnv2rFsvzP/93/9JUplXry04reLn56eoqKgSy7Vs2VK+vr6uHptLpaamllnHjh07ateuXaWWqcj7EBYWprVr1+r06dNuvTDff/+9a72ndezYUWvXrlWfPn08HkIL6puamqpbbrnFbV1qaqrH2vP++++rf//+ev31192WZ2ZmqkWLFkXKFz7exhjt379fPXv2dFseHh6u8PBwzZgxQ1999ZX69OmjBQsW6K9//atH6g3UJpxCAv6tIHhkZmZWavuLFy+6TWfOycnRwoUL1bJlS0VERJS6bUREhDp27Khnn31WZ86cKbL++PHjkn79n2x0dLRWrFihtLQ01/q9e/dqzZo1ZdZx6NCh+u677/Thhx8WWVfwv+GKvA+DBg1SXl6eXnnlFbflzz//vGw2W5XMMBk2bJjy8vL05JNPFll38eLFSh8/SbrmmmsUGBioBQsWuPV2ffbZZ9q7d69iY2Mrve9LNWjQoEjvw/Lly4tM1S7w1ltv6fTp067n77//vo4ePep6f51Opy5evOi2TXh4uLy8vCzfaweUhB4Y4N8KQsbDDz+s6OhoNWjQQMOHDy/39iEhIXr66af1448/qlOnTlq6dKlSUlL02muvlXkxOS8vL/3zn/9UTEyMunfvrrFjx6p169b6+eeftWHDBvn5+emTTz6RJM2ZM0erV69W37599eCDD+rixYt6+eWX1b17d+3YsaPU13nsscf0/vvv6+6779a4ceMUERGhU6dO6eOPP9aCBQvUq1cvdezYUQEBAVqwYIGaNm2qxo0bq3fv3sWOJbn99tvVv39//eUvf9GPP/6oXr166fPPP9dHH32kyZMnuw3Y9ZR+/fpp4sSJmjt3rlJSUjRgwAB5e3tr3759Wr58uV588UXdddddldq3t7e3nn76aY0dO1b9+vXTiBEjXNOo27VrpylTpnikDbfddpueeOIJjR07VjfccIN27typJUuWqEOHDsWWb9asmW688UaNHTtWGRkZeuGFF3T55ZdrwoQJkqT169crPj5ed999tzp16qSLFy/qX//6lxo0aKChQ4d6pM5ArVODM6CAGlEwjfr48eNuyy9evGgeeugh07JlS2Oz2So0pbpfv36me/fu5ptvvjGRkZHGx8fHhIWFmVdeecWtXME005Kmu27fvt0MGTLENG/e3DgcDhMWFmaGDRtm1q1b51Zu48aNJiIiwtjtdtOhQwezYMECV7suVXgatTHGnDx50sTHx5vWrVsbu91u2rRpY0aPHm1OnDjhKvPRRx+Zbt26mYYNG7pNqS48jdoYY06fPm2mTJliQkJCjLe3t7niiivMM8884zYd3Jhfp1HHxcUVaXNxdSyP1157zURERBhfX1/TtGlTEx4ebv785z+bI0eOuO07Nja2yLZlHYelS5eaq666yjgcDtOsWTMzcuRI89NPP7mVGT16tGncuHGF623Mr9OoH3nkEdOqVSvj6+tr+vTpY5KSkky/fv1Mv379itTz3XffNdOnTzeBgYHG19fXxMbGuk2j/+GHH8y4ceNMx44djY+Pj2nWrJnp37+/Wbt2bYXqVVKbCj7fhRV+f0uaRl3ctsV9loCKsBnDKCrgt7r55pt14sSJMseXAAA8gzEwAADAchgDA5Ti1KlTysnJKXF9gwYNikzbReXk5eW5BiuXpEmTJmrSpEk11ajizp8/X+a1V5o1a1btd2vOysoq8SaWBYKDg6upNoBnEGCAUgwZMkQbN24scX1YWFiRi9Shcg4fPlzmxQVnzZql2bNnV0+FKmHp0qUaO3ZsqWU2bNigm2++uXoq9G9/+tOf9Oabb5ZahtEEsBrGwAClSE5OLvVqob6+vurTp0811qjuunDhgr788stSy3To0KHEmTq1wdGjR7V79+5Sy0REROiyyy6rphr9as+ePTpy5EipZUq7/hBQGxFgAACA5TCIFwAAWE6dHQOTn5+vI0eOqGnTpr/5EvEAAKB6GGN0+vRphYSElHqvsTobYI4cOaLQ0NCargYAAKiEw4cPl3oj0jobYApuLHf48GH5+fnVcG0AAEB5OJ1OhYaGut0gtjh1NsAUnDby8/MjwAAAYDFlDf9gEC8AALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALCchjVdASvKXf1lkWXeA2+sgZoAAFA/0QMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsp0IBZu7cubr22mvVtGlTBQYGavDgwUpNTXUrc/PNN8tms7k9HnjgAbcyaWlpio2NVaNGjRQYGKjHHntMFy9edCuTmJioq6++Wg6HQ5dffrkWL15cuRYCAIA6p0IBZuPGjYqLi9OWLVuUkJCg3NxcDRgwQGfPnnUrN2HCBB09etT1mDdvnmtdXl6eYmNjlZOTo6+++kpvvvmmFi9erJkzZ7rKHDx4ULGxserfv79SUlI0efJk3XfffVqzZs1vbC4AAKgLbMYYU9mNjx8/rsDAQG3cuFE33XSTpF97YK688kq98MILxW7z2Wef6bbbbtORI0cUFBQkSVqwYIGmTZum48ePy263a9q0aVq1apV27drl2m748OHKzMzU6tWry1U3p9Mpf39/ZWVlyc/Pr7JNLFbu6i+LLPMeeKNHXwMAgPqovL/fv2kMTFZWliSpWbNmbsuXLFmiFi1aqEePHpo+fbrOnTvnWpeUlKTw8HBXeJGk6OhoOZ1O7d6921UmKirKbZ/R0dFKSkoqsS7Z2dlyOp1uDwAAUDc1rOyG+fn5mjx5svr06aMePXq4lt9zzz0KCwtTSEiIduzYoWnTpik1NVUffPCBJCk9Pd0tvEhyPU9PTy+1jNPp1Pnz5+Xr61ukPnPnztWcOXMq2xwAAGAhlQ4wcXFx2rVrl7780v10yv333+/6d3h4uFq1aqVbb71VBw4cUMeOHStf0zJMnz5dU6dOdT13Op0KDQ2tstcDAAA1p1KnkOLj47Vy5Upt2LBBbdq0KbVs7969JUn79++XJAUHBysjI8OtTMHz4ODgUsv4+fkV2/siSQ6HQ35+fm4PAABQN1UowBhjFB8frw8//FDr169X+/bty9wmJSVFktSqVStJUmRkpHbu3Kljx465yiQkJMjPz0/dunVzlVm3bp3bfhISEhQZGVmR6gIAgDqqQgEmLi5Ob7/9tt555x01bdpU6enpSk9P1/nz5yVJBw4c0JNPPqnk5GT9+OOP+vjjjzVq1CjddNNN6tmzpyRpwIAB6tatm+6991599913WrNmjWbMmKG4uDg5HA5J0gMPPKAffvhBf/7zn/X999/r1Vdf1bJlyzRlyhQPNx8AAFhRhaZR22y2YpcvWrRIY8aM0eHDh/XHP/5Ru3bt0tmzZxUaGqrf//73mjFjhtspnUOHDmnSpElKTExU48aNNXr0aP3tb39Tw4b/GZKTmJioKVOmaM+ePWrTpo0ef/xxjRkzptwNYxo1AADWU97f7990HZjajAADAID1VMt1YAAAAGoCAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFhOhQLM3Llzde2116pp06YKDAzU4MGDlZqa6lbmwoULiouLU/PmzdWkSRMNHTpUGRkZbmXS0tIUGxurRo0aKTAwUI899pguXrzoViYxMVFXX321HA6HLr/8ci1evLhyLQQAAHVOhQLMxo0bFRcXpy1btighIUG5ubkaMGCAzp496yozZcoUffLJJ1q+fLk2btyoI0eOaMiQIa71eXl5io2NVU5Ojr766iu9+eabWrx4sWbOnOkqc/DgQcXGxqp///5KSUnR5MmTdd9992nNmjUeaDIAALA6mzHGVHbj48ePKzAwUBs3btRNN92krKwstWzZUu+8847uuusuSdL333+vrl27KikpSddff70+++wz3XbbbTpy5IiCgoIkSQsWLNC0adN0/Phx2e12TZs2TatWrdKuXbtcrzV8+HBlZmZq9erV5aqb0+mUv7+/srKy5OfnV9kmFit39ZdFlnkPvNGjrwEAQH1U3t/v3zQGJisrS5LUrFkzSVJycrJyc3MVFRXlKtOlSxe1bdtWSUlJkqSkpCSFh4e7woskRUdHy+l0avfu3a4yl+6joEzBPoqTnZ0tp9Pp9gAAAHVTpQNMfn6+Jk+erD59+qhHjx6SpPT0dNntdgUEBLiVDQoKUnp6uqvMpeGlYH3ButLKOJ1OnT9/vtj6zJ07V/7+/q5HaGhoZZsGAABquUoHmLi4OO3atUvvvfeeJ+tTadOnT1dWVpbrcfjw4ZquEgAAqCINK7NRfHy8Vq5cqU2bNqlNmzau5cHBwcrJyVFmZqZbL0xGRoaCg4NdZbZt2+a2v4JZSpeWKTxzKSMjQ35+fvL19S22Tg6HQw6HozLNAQAAFlOhHhhjjOLj4/Xhhx9q/fr1at++vdv6iIgIeXt7a926da5lqampSktLU2RkpCQpMjJSO3fu1LFjx1xlEhIS5Ofnp27durnKXLqPgjIF+wAAAPVbhXpg4uLi9M477+ijjz5S06ZNXWNW/P395evrK39/f40fP15Tp05Vs2bN5Ofnp4ceekiRkZG6/vrrJUkDBgxQt27ddO+992revHlKT0/XjBkzFBcX5+pBeeCBB/TKK6/oz3/+s8aNG6f169dr2bJlWrVqlYebDwAArKhC06htNluxyxctWqQxY8ZI+vVCdo888ojeffddZWdnKzo6Wq+++qrr9JAkHTp0SJMmTVJiYqIaN26s0aNH629/+5saNvxPnkpMTNSUKVO0Z88etWnTRo8//rjrNcqDadQAAFhPeX+/f9N1YGozAgwAANZTLdeBAQAAqAkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkVDjCbNm3S7bffrpCQENlsNq1YscJt/ZgxY2Sz2dweAwcOdCtz6tQpjRw5Un5+fgoICND48eN15swZtzI7duxQ37595ePjo9DQUM2bN6/irQMAAHVShQPM2bNn1atXL82fP7/EMgMHDtTRo0ddj3fffddt/ciRI7V7924lJCRo5cqV2rRpk+6//37XeqfTqQEDBigsLEzJycl65plnNHv2bL322msVrS4AAKiDGlZ0g5iYGMXExJRaxuFwKDg4uNh1e/fu1erVq/X111/rmmuukSS9/PLLGjRokJ599lmFhIRoyZIlysnJ0RtvvCG73a7u3bsrJSVFzz33nFvQAQAA9VOVjIFJTExUYGCgOnfurEmTJunkyZOudUlJSQoICHCFF0mKioqSl5eXtm7d6ipz0003yW63u8pER0crNTVVv/zyS7GvmZ2dLafT6fYAAAB1k8cDzMCBA/XWW29p3bp1evrpp7Vx40bFxMQoLy9PkpSenq7AwEC3bRo2bKhmzZopPT3dVSYoKMitTMHzgjKFzZ07V/7+/q5HaGiop5sGAABqiQqfQirL8OHDXf8ODw9Xz5491bFjRyUmJurWW2/19Mu5TJ8+XVOnTnU9dzqdhBgAAOqoKp9G3aFDB7Vo0UL79++XJAUHB+vYsWNuZS5evKhTp065xs0EBwcrIyPDrUzB85LG1jgcDvn5+bk9AABA3VTlAeann37SyZMn1apVK0lSZGSkMjMzlZyc7Cqzfv165efnq3fv3q4ymzZtUm5urqtMQkKCOnfurMsuu6yqqwwAAGq5CgeYM2fOKCUlRSkpKZKkgwcPKiUlRWlpaTpz5owee+wxbdmyRT/++KPWrVunO++8U5dffrmio6MlSV27dtXAgQM1YcIEbdu2TZs3b1Z8fLyGDx+ukJAQSdI999wju92u8ePHa/fu3Vq6dKlefPFFt1NEAACg/qpwgPnmm2901VVX6aqrrpIkTZ06VVdddZVmzpypBg0aaMeOHbrjjjvUqVMnjR8/XhEREfriiy/kcDhc+1iyZIm6dOmiW2+9VYMGDdKNN97odo0Xf39/ff755zp48KAiIiL0yCOPaObMmUyhBgAAkiSbMcbUdCWqgtPplL+/v7Kysjw+HiZ39ZdFlnkPvNGjrwEAQH1U3t9vj89Cqq8KhxoCDQAAVYebOQIAAMuhB6aKcJoJAICqQw8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHC5kV4243QAAAJ5BDwwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALCchjVdgfosd/WXRZZ5D7yxBmoCAIC10AMDAAAshwADAAAshwADAAAshzEwtUzhcTGMiQEAoCh6YAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOVwK4FarvCtBSRuLwAAAD0wAADAcggwAADAcggwAADAcggwAADAchjEWwcw0BcAUN/QAwMAACyHAAMAACyHAAMAACynwgFm06ZNuv322xUSEiKbzaYVK1a4rTfGaObMmWrVqpV8fX0VFRWlffv2uZU5deqURo4cKT8/PwUEBGj8+PE6c+aMW5kdO3aob9++8vHxUWhoqObNm1fx1gEAgDqpwgHm7Nmz6tWrl+bPn1/s+nnz5umll17SggULtHXrVjVu3FjR0dG6cOGCq8zIkSO1e/duJSQkaOXKldq0aZPuv/9+13qn06kBAwYoLCxMycnJeuaZZzR79my99tprlWgiAACoayo8CykmJkYxMTHFrjPG6IUXXtCMGTN05513SpLeeustBQUFacWKFRo+fLj27t2r1atX6+uvv9Y111wjSXr55Zc1aNAgPfvsswoJCdGSJUuUk5OjN954Q3a7Xd27d1dKSoqee+45t6ADAADqJ4+OgTl48KDS09MVFRXlWubv76/evXsrKSlJkpSUlKSAgABXeJGkqKgoeXl5aevWra4yN910k+x2u6tMdHS0UlNT9csvvxT72tnZ2XI6nW6Puip39ZduDwAA6huPBpj09HRJUlBQkNvyoKAg17r09HQFBga6rW/YsKGaNWvmVqa4fVz6GoXNnTtX/v7+rkdoaOhvbxAAAKiV6syF7KZPn66pU6e6njudznodYgr3zHBhOwBAXeLRHpjg4GBJUkZGhtvyjIwM17rg4GAdO3bMbf3Fixd16tQptzLF7ePS1yjM4XDIz8/P7QEAAOomjwaY9u3bKzg4WOvWrXMtczqd2rp1qyIjIyVJkZGRyszMVHJysqvM+vXrlZ+fr969e7vKbNq0Sbm5ua4yCQkJ6ty5sy677DJPVhkAAFhQhQPMmTNnlJKSopSUFEm/DtxNSUlRWlqabDabJk+erL/+9a/6+OOPtXPnTo0aNUohISEaPHiwJKlr164aOHCgJkyYoG3btmnz5s2Kj4/X8OHDFRISIkm65557ZLfbNX78eO3evVtLly7Viy++6HaKCAAA1F82Y4ypyAaJiYnq379/keWjR4/W4sWLZYzRrFmz9NprrykzM1M33nijXn31VXXq1MlV9tSpU4qPj9cnn3wiLy8vDR06VC+99JKaNGniKrNjxw7FxcXp66+/VosWLfTQQw9p2rRp5a6n0+mUv7+/srKyPH46qa7M/GFcDACgtinv73eFA4xVEGDKRoABANQ25f395l5IAADAcurMNGr8dsX1LNFLAwCojeiBAQAAlkMPTD1WV8byAADqH3pgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5XAlXpSqPFfr5X5JAIDqRg8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHKZRo0oUnn7NVGsAgCcRYPCbledaMQAAeBKnkAAAgOXQA4NqUVwvDaeVAACVRQ8MAACwHAIMAACwHE4hocYwUwkAUFkEmEr4MfOzIsvaBcTUQE0AAKifCDCwFAYDAwAkAgxqEcIJAKC8GMQLAAAshwADAAAshwADAAAshzEwHlJ4ZhKzkqpPeaZjM2UbAOoWAgxqNW4UCQAoDqeQAACA5dADU404zQQAgGcQYGoQV/QFAKByOIUEAAAshwADAAAsh1NItQzjZAAAKBsBBnUOU68BoO4jwFSR4gboAgAAzyDAAL8Bd9AGgJpBgKnlyjPVmunYnsHtBgDAOpiFBAAALIceGAtifA0AoL4jwKBeKs9MJca3AEDtRYCBG65DU7rKTNEuTxAiLAFAxRBgAIsg5ADAfxBg6ih6Umq3yp7CKqsMgQZAfcEsJAAAYDn0wNQTnrxWDL07AICaRoCpxzw1HZsL6bnjXkwAUPUIMChVVV5zpjp7cupLrxEDfQHUFx4fAzN79mzZbDa3R5cuXVzrL1y4oLi4ODVv3lxNmjTR0KFDlZGR4baPtLQ0xcbGqlGjRgoMDNRjjz2mixcverqqAADAoqqkB6Z79+5au3btf16k4X9eZsqUKVq1apWWL18uf39/xcfHa8iQIdq8ebMkKS8vT7GxsQoODtZXX32lo0ePatSoUfL29tZTTz1VFdVFHcOVigGg7quSANOwYUMFBwcXWZ6VlaXXX39d77zzjm655RZJ0qJFi9S1a1dt2bJF119/vT7//HPt2bNHa9euVVBQkK688ko9+eSTmjZtmmbPni273V4VVUYVK0+o4MaVAIDyqpJp1Pv27VNISIg6dOigkSNHKi0tTZKUnJys3NxcRUVFucp26dJFbdu2VVJSkiQpKSlJ4eHhCgoKcpWJjo6W0+nU7t27S3zN7OxsOZ1Otwfqhx8zP3N7AADqPo/3wPTu3VuLFy9W586ddfToUc2ZM0d9+/bVrl27lJ6eLrvdroCAALdtgoKClJ6eLklKT093Cy8F6wvWlWTu3LmaM2eOZxuDSiNI1B5c7A5AXeTxABMT85/u/J49e6p3794KCwvTsmXL5Ovr6+mXc5k+fbqmTp3qeu50OhUaGlplr4fqUZ1BqL7MVAKAuqDKp1EHBASoU6dO2r9/v373u98pJydHmZmZbr0wGRkZrjEzwcHB2rZtm9s+CmYpFTeupoDD4ZDD4fB8A1An1eceIqZaA6gLqvxWAmfOnNGBAwfUqlUrRUREyNvbW+vWrXOtT01NVVpamiIjIyVJkZGR2rlzp44dO+Yqk5CQID8/P3Xr1q2qqwsAACzA4z0wjz76qG6//XaFhYXpyJEjmjVrlho0aKARI0bI399f48eP19SpU9WsWTP5+fnpoYceUmRkpK6//npJ0oABA9StWzfde++9mjdvntLT0zVjxgzFxcXRw4JqxYwnAKi9PB5gfvrpJ40YMUInT55Uy5YtdeONN2rLli1q2bKlJOn555+Xl5eXhg4dquzsbEVHR+vVV191bd+gQQOtXLlSkyZNUmRkpBo3bqzRo0friSee8HRVAZSA00wAajubMcbUdCWqgtPplL+/v7KysuTn5+fRfe977y8e3R+sozw9MHV1MDABBkB1KO/vN/dCAiqgJmdFFae2hSOmbAOoLgQYoAbUhV4a7roNoCYRYIBaoLI9O3UhCAFAZRBggDrOUyHnwDcL3Z63VfdK1wkAfqsqvw4MAACAp9EDA1Sx+nTV38JtvUJlD+JlyjaAyiDAAKiysTQM9AVQVQgwQB1Snt6eSpfJLPQ8gDEwAGoOAQZAleF2DACqCoN4AQCA5dADA6BalWe8TXnGzjDQF6jfCDAAar3iTkWVZ4YTgLqLAAPAkgrfVPWK4f9dpAw9OUDdRYABUClVeX2b+nTtHACVQ4ABUCcU19vCvaKAuosAA6BG1XRvS+HgwyklwBoIMADqtSK9NKvL3oaQA9Q8AgyAesNTvT3cvwmoeQQYAHVCTZ+KAlC9uBIvAACwHHpgAMADuOYMUL0IMABwifKciirPdOzi9uP1zW635x2vmVikzIFvFpZZBgABBgA8ojJjcApfTbg4B7SwyLK2J7q7PS+uZ6dwEJIIQ6hbGAMDAAAshx4YAKigys54yt+f5pFtfpT7Mm5sifqIAAMAFlfcAOL8TPeQ43V52+qqDlAtCDAAUA/k709T7gn3oJPWYneRcoyTgVUQYADA4jx1Eb/yhJz8/WlFZmExPRw1gQADAPVE4aDj1aJyp5UK74cxOKgJBBgAgEtlQk55pmx7qgxQgAADAPC44sJIVe2HkFM/EWAAoJ4qz7TuypSpjTOeuMJx3UOAAQBUueJCjqd6aVA/EWAAAB5VmQv2ARVFgAEAVLviQk5lTz156vQQp5mshQADALCM2jbehplTNYcAAwCoFawQTiqzHYGmahBgAAC1UmXH0hS+NxRXCq6bCDAAAMsqz926vb4pes8nZkBZHwEGAIBqVp7TTJyKKh0BBgBQp5VnxpMnZ0UVxlWJq4ZXTVcAAACgouiBAQDUO5UZIGyFXhpPvb4VenIIMAAAFMOK94GqT6eZCDAAAFSjquzJKY+6cn0bAgwAAB5S0+HEU2r6lFZ5EGAAAKhC3NyyahBgAACoYXWl56Y6EWAAAKiFatsA4dqGAAMAgAXQS+OOAAMAgEVVppemrgQhAgwAAHVEZcOJFU9XEWAq6GJertIu/KIzJkdNbHa1cQTIy2YrdZt8GR30OiWnLVt+xqH2+c3kpdK3AQDAE+rqLCgCTAVsTnpbb/y8UKeanXUta5btq9+f7q7OjVoWu83OBun62HuvsrwuuJb55/vojtyuCs8LrvI6AwBQUeUKPddUfT1KU6tv5jh//ny1a9dOPj4+6t27t7Zt21Zjddmc9LaePfacTnmfdVt+yn5erzf/RqnnjhfZZmeDdP3Lvl1Ztgtuy7NsF/Qv+3btbJBepXUGAKCuqrUBZunSpZo6dapmzZqlb7/9Vr169VJ0dLSOHTtW7XW5mJerN37+91UJC5/5+ffzD5vuVr4xrsX5MvrYe2+p23zsvVf5MgIAABVTawPMc889pwkTJmjs2LHq1q2bFixYoEaNGumNN96o9rrs3vW5TtnPFg0iBWzSKcd5/ZSd6Vp00OvUr6eNStkmy+uCDnqd8nR1AQCo82rlGJicnBwlJydr+vTprmVeXl6KiopSUlJSsdtkZ2crOzvb9TwrK0uS5HQ6f3N9fk7/Qbnn8sosd+zcGTXLbyRJSm9wWrn5ZW+Tnn1aQXlNfnMdAQCoTp74fS1tv8aUfoaiVgaYEydOKC8vT0FBQW7Lg4KC9P333xe7zdy5czVnzpwiy0NDQ6ukjsVZpR3Vsg0AADVu/N+rdPenT5+Wv79/ietrZYCpjOnTp2vq1Kmu5/n5+Tp16pSaN28uWxnTnCvC6XQqNDRUhw8flp+fn8f2W1vU5fbRNuuqy+2jbdZUl9sm1Wz7jDE6ffq0QkJCSi1XKwNMixYt1KBBA2VkZLgtz8jIUHBw8VOPHQ6HHA6H27KAgICqqqL8/Pzq5Ie2QF1uH22zrrrcPtpmTXW5bVLNta+0npcCtXIQr91uV0REhNatW+dalp+fr3Xr1ikyMrIGawYAAGqDWtkDI0lTp07V6NGjdc011+i6667TCy+8oLNnz2rs2LE1XTUAAFDDam2A+cMf/qDjx49r5syZSk9P15VXXqnVq1cXGdhb3RwOh2bNmlXkdFVdUZfbR9usqy63j7ZZU11um2SN9tlMWfOUAAAAaplaOQYGAACgNAQYAABgOQQYAABgOQQYAABgOQQYAABgOQSYYsyfP1/t2rWTj4+PevfurW3btpVafvny5erSpYt8fHwUHh6uTz/9tJpqWjFz587Vtddeq6ZNmyowMFCDBw9WampqqdssXrxYNpvN7eHj41NNNS6/2bNnF6lnly5dSt3GKsetXbt2Rdpms9kUFxdXbPnafsw2bdqk22+/XSEhIbLZbFqxYoXbemOMZs6cqVatWsnX11dRUVHat29fmfut6Pe2KpTWttzcXE2bNk3h4eFq3LixQkJCNGrUKB05cqTUfVbms10VyjpuY8aMKVLPgQMHlrnf2nDcpLLbV9x30Gaz6Zlnnilxn7Xh2JXn7/6FCxcUFxen5s2bq0mTJho6dGiRK+EXVtnvqScRYApZunSppk6dqlmzZunbb79Vr169FB0drWPHjhVb/quvvtKIESM0fvx4bd++XYMHD9bgwYO1a9euaq552TZu3Ki4uDht2bJFCQkJys3N1YABA3T27NlSt/Pz89PRo0ddj0OHDlVTjSume/fubvX88ssvSyxrpeP29ddfu7UrISFBknT33XeXuE1tPmZnz55Vr169NH/+/GLXz5s3Ty+99JIWLFigrVu3qnHjxoqOjtaFCxdK3GdFv7dVpbS2nTt3Tt9++60ef/xxffvtt/rggw+UmpqqO+64o8z9VuSzXVXKOm6SNHDgQLd6vvvuu6Xus7YcN6ns9l3arqNHj+qNN96QzWbT0KFDS91vTR+78vzdnzJlij755BMtX75cGzdu1JEjRzRkyJBS91uZ76nHGbi57rrrTFxcnOt5Xl6eCQkJMXPnzi22/LBhw0xsbKzbst69e5uJEydWaT094dixY0aS2bhxY4llFi1aZPz9/auvUpU0a9Ys06tXr3KXt/Jx+9Of/mQ6duxo8vPzi11vlWNmjDGSzIcffuh6np+fb4KDg80zzzzjWpaZmWkcDod59913S9xPRb+31aFw24qzbds2I8kcOnSoxDIV/WxXh+LaNnr0aHPnnXdWaD+18bgZU75jd+edd5pbbrml1DK18dgV/rufmZlpvL29zfLly11l9u7daySZpKSkYvdR2e+pp9EDc4mcnBwlJycrKirKtczLy0tRUVFKSkoqdpukpCS38pIUHR1dYvnaJCsrS5LUrFmzUsudOXNGYWFhCg0N1Z133qndu3dXR/UqbN++fQoJCVGHDh00cuRIpaWllVjWqsctJydHb7/9tsaNG1fqXdatcswKO3jwoNLT092Ojb+/v3r37l3isanM97a2yMrKks1mK/PGsxX5bNekxMREBQYGqnPnzpo0aZJOnjxZYlkrH7eMjAytWrVK48ePL7NsbTt2hf/uJycnKzc31+04dOnSRW3bti3xOFTme1oVCDCXOHHihPLy8orcriAoKEjp6enFbpOenl6h8rVFfn6+Jk+erD59+qhHjx4lluvcubPeeOMNffTRR3r77beVn5+vG264QT/99FM11rZsvXv31uLFi7V69Wr94x//0MGDB9W3b1+dPn262PJWPW4rVqxQZmamxowZU2IZqxyz4hS8/xU5NpX53tYGFy5c0LRp0zRixIhS7/Zb0c92TRk4cKDeeustrVu3Tk8//bQ2btyomJgY5eXlFVveqsdNkt588001bdq0zNMste3YFfd3Pz09XXa7vUiILut3r6BMebepCrX2XkioWnFxcdq1a1eZ52MjIyPd7gB+ww03qGvXrlq4cKGefPLJqq5mucXExLj+3bNnT/Xu3VthYWFatmxZuf6XZBWvv/66YmJiFBISUmIZqxyz+iw3N1fDhg2TMUb/+Mc/Si1rlc/28OHDXf8ODw9Xz5491bFjRyUmJurWW2+twZp53htvvKGRI0eWOTi+th278v7dtwp6YC7RokULNWjQoMjo64yMDAUHBxe7TXBwcIXK1wbx8fFauXKlNmzYoDZt2lRoW29vb1111VXav39/FdXOMwICAtSpU6cS62nF43bo0CGtXbtW9913X4W2s8oxk+R6/ytybCrzva1JBeHl0KFDSkhIKLX3pThlfbZriw4dOqhFixYl1tNqx63AF198odTU1Ap/D6WaPXYl/d0PDg5WTk6OMjMz3cqX9btXUKa821QFAswl7Ha7IiIitG7dOtey/Px8rVu3zu1/tJeKjIx0Ky9JCQkJJZavScYYxcfH68MPP9T69evVvn37Cu8jLy9PO3fuVKtWraqghp5z5swZHThwoMR6Wum4FVi0aJECAwMVGxtboe2scswkqX379goODnY7Nk6nU1u3bi3x2FTme1tTCsLLvn37tHbtWjVv3rzC+yjrs11b/PTTTzp58mSJ9bTScbvU66+/roiICPXq1avC29bEsSvr735ERIS8vb3djkNqaqrS0tJKPA6V+Z5WiWobLmwR7733nnE4HGbx4sVmz5495v777zcBAQEmPT3dGGPMvffea/7rv/7LVX7z5s2mYcOG5tlnnzV79+41s2bNMt7e3mbnzp011YQSTZo0yfj7+5vExERz9OhR1+PcuXOuMoXbN2fOHLNmzRpz4MABk5ycbIYPH258fHzM7t27a6IJJXrkkUdMYmKiOXjwoNm8ebOJiooyLVq0MMeOHTPGWPu4GfPr7Iy2bduaadOmFVlntWN2+vRps337drN9+3YjyTz33HNm+/btrpk4f/vb30xAQID56KOPzI4dO8ydd95p2rdvb86fP+/axy233GJefvll1/Oyvre1oW05OTnmjjvuMG3atDEpKSlu38Hs7OwS21bWZ7s2tO306dPm0UcfNUlJSebgwYNm7dq15uqrrzZXXHGFuXDhQoltqy3Hraz2FcjKyjKNGjUy//jHP4rdR208duX5u//AAw+Ytm3bmvXr15tvvvnGREZGmsjISLf9dO7c2XzwwQeu5+X5nlY1AkwxXn75ZdO2bVtjt9vNddddZ7Zs2eJa169fPzN69Gi38suWLTOdOnUydrvddO/e3axataqaa1w+kop9LFq0yFWmcPsmT57sei+CgoLMoEGDzLffflv9lS/DH/7wB9OqVStjt9tN69atzR/+8Aezf/9+13orHzdjjFmzZo2RZFJTU4uss9ox27BhQ7Gfw4I25Ofnm8cff9wEBQUZh8Nhbr311iLtDgsLM7NmzXJbVtr3trqU1raDBw+W+B3csGGDax+F21bWZ7s2tO3cuXNmwIABpmXLlsbb29uEhYWZCRMmFAkitfW4GVP259IYYxYuXGh8fX1NZmZmsfuojceuPH/3z58/bx588EFz2WWXmUaNGpnf//735ujRo0X2c+k25fmeVjXbvysGAABgGYyBAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlvP/AfcxJaBDSYyIAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOyRJREFUeJzt3XtclFXix/HvADLgBYgUkDC8lOYtLTQjNbuwolFmWalZqZmZQa2aruuueal+UWZXq9V2S9tdK7Wfaaulkdc0zDLJa6SFaSqgGYxXruf3Rz9mHUAEnAEe+Lxfr3nVnOc8z5wzM8DX85zzPDZjjBEAAICFeFV3AwAAACqKAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAANU0rRp02Sz2VzKmjdvrmHDhrntNYYNG6bmzZu77Xgo29q1a2Wz2fThhx9Wd1PK7YYbbtANN9zg1mOW9t22mn379slms2nevHnV3RR4CAEG1eaTTz7RtGnTqrsZ1e7QoUOaNm2aUlJSqrspqENOnTqladOmae3atdXdFKBSCDCoNp988ommT59e3c1wq9TUVP3973+v0D6HDh3S9OnTSw0wf//735Wamuqm1gH/derUKU2fPr3UADN58mSdPn266hvlRpGRkTp9+rTuv//+6m4KPIQAg2px8uTJanvtM2fOqLCw0CPHttvtqlevntuOV69ePdntdrcdr6oZY875h9Adn0N1fo88pSb0ycfHR35+ftXdjAtis9nk5+cnb2/v6m4KPIQAA48rOp++a9cu3XvvvbrooosUERGhN954Q9Lvv2iKHuV1ww03qEOHDtqyZYuuu+46+fv7q0WLFpo9e7ZLvaI5DR988IEmT56sSy65RPXr15fD4ZAkffXVV+rTp48CAwNVv3599erVSxs3bizxehs2bFDXrl3l5+enVq1aac6cOaW2q7Q5MFlZWRo7dqyaN28uu92uiIgIPfDAAzp69KjWrl2rrl27SpKGDx/ufB+KztuXNgfm5MmTeuKJJ9SsWTPZ7Xa1adNGM2fOVPEby9tsNiUkJGjJkiXq0KGD7Ha72rdvrxUrVpT3bXYqLCzUK6+8ovbt28vPz0+hoaEaNWqUfvvttxL9v/XWW7Vy5Up16dJF/v7+mjNnznk/h0WLFikqKkr+/v5q3Lix7rvvPh08eNDl2MOGDVPDhg31448/6pZbblGjRo00ZMiQcrX/2LFjGj9+vDp27KiGDRsqICBAffv21XfffVdq/YKCAv3lL39RWFiYGjRooH79+unAgQMudfbs2aMBAwYoLCxMfn5+ioiI0KBBg5SdnV3et7XMPpX3PS8uNzdXU6ZMUVRUlAIDA9WgQQP17NlTa9ascdbZt2+fmjRpIkmaPn2683tXdEq3+ByYDh066MYbbyzxWoWFhbrkkkt01113uZRVpt3FFbXhhx9+0H333afAwEA1adJETz75pIwxOnDggG6//XYFBAQoLCxML774osv+pc2BKXq/Dx48qP79+6thw4Zq0qSJxo8fr4KCggq1D9XPp7obgLrj7rvv1uWXX65nn31Wx44d07p165SUlKR//etflTreb7/9pltuuUX33HOPBg8erIULF2r06NHy9fXVgw8+6FL36aeflq+vr8aPH6+cnBz5+vpq9erV6tu3r6KiojR16lR5eXlp7ty5uummm/TFF1/ommuukSRt375dvXv3VpMmTTRt2jTl5+dr6tSpCg0NPW8bT5w4oZ49e2r37t168MEHdfXVV+vo0aP6+OOP9csvv6ht27Z66qmnNGXKFD388MPq2bOnJOm6664r9XjGGPXr109r1qzRiBEj1LlzZ61cuVITJkzQwYMH9fLLL7vU37BhgxYvXqxHH31UjRo10muvvaYBAwZo//79uvjii8v9Xo8aNUrz5s3T8OHD9fjjjystLU2vv/66tm7dqo0bN7qMOqWmpmrw4MEaNWqURo4cqTZt2pT5ORQdt2vXrkpMTFRGRoZeffVVbdy4UVu3blVQUJBz//z8fMXGxqpHjx6aOXOm6tevX672//TTT1qyZInuvvtutWjRQhkZGZozZ4569eqlXbt2KTw83KX+//zP/8hms2nixInKzMzUK6+8opiYGKWkpMjf31+5ubmKjY1VTk6OHnvsMYWFhengwYNatmyZsrKyFBgYWO739lx9qsh7fjaHw6F//OMfGjx4sEaOHKnjx4/r7bffVmxsrDZv3qzOnTurSZMm+tvf/qbRo0frjjvu0J133ilJuvLKK0s95sCBAzVt2jSlp6crLCzMWb5hwwYdOnRIgwYNcpZVtt3nMnDgQLVt21bPPfecli9frmeeeUbBwcGaM2eObrrpJj3//POaP3++xo8fr65du+r6668v83gFBQWKjY1Vt27dNHPmTH3++ed68cUX1apVK40ePbpCbUM1M4CHTZ061UgygwcPdimPj483lf0K9urVy0gyL774orMsJyfHdO7c2YSEhJjc3FxjjDFr1qwxkkzLli3NqVOnnHULCwvN5ZdfbmJjY01hYaGz/NSpU6ZFixbmD3/4g7Osf//+xs/Pz/z888/Osl27dhlvb+8S7Y+MjDRDhw51Pp8yZYqRZBYvXlyiD0Wv+/XXXxtJZu7cuSXqDB061ERGRjqfL1myxEgyzzzzjEu9u+66y9hsNrN3715nmSTj6+vrUvbdd98ZSWbWrFklXutcvvjiCyPJzJ8/36V8xYoVJcojIyONJLNixQqXuuf6HHJzc01ISIjp0KGDOX36tLN82bJlRpKZMmWKy3shyfz5z38ud9uLnDlzxhQUFLiUpaWlGbvdbp566qkS7bzkkkuMw+Fwli9cuNBIMq+++qoxxpitW7caSWbRokUVbsvZztWnirznvXr1Mr169XI+z8/PNzk5OS77/fbbbyY0NNQ8+OCDzrIjR44YSWbq1Kkl2lX0M1skNTW11O/No48+aho2bOj8TCvS7vMpasPDDz/s0reIiAhjs9nMc88959I/f39/l5+9tLS0Ej9XRe/32Z+5McZcddVVJioqqtxtQ83AKSRUmUceecStx/Px8dGoUaOcz319fTVq1ChlZmZqy5YtLnWHDh0qf39/5/OUlBTt2bNH9957r3799VcdPXpUR48e1cmTJ3XzzTdr/fr1KiwsVEFBgVauXKn+/fvr0ksvde7ftm1bxcbGnreN//u//6tOnTrpjjvuKLGtMstUP/nkE3l7e+vxxx93KX/iiSdkjNGnn37qUh4TE6NWrVo5n1955ZUKCAjQTz/9VO7XXLRokQIDA/WHP/zB+T4dPXpUUVFRatiwocupCUlq0aLFOd+b4p/DN998o8zMTD366KMucy7i4uJ0xRVXaPny5SWOUZl/Jdvtdnl5/f7rrqCgQL/++qsaNmyoNm3a6Ntvvy1R/4EHHlCjRo2cz++66y41bdpUn3zyiSQ5R1hWrlypU6dOVbg9xRXvU0Xf87N5e3vL19dX0u+nc44dO6b8/Hx16dKl1L6WR+vWrdW5c2ctWLDAWVZQUKAPP/xQt912m/MzvZB2n8tDDz3k0rcuXbrIGKMRI0Y4y4OCgtSmTZtyf6+L/y7q2bNnhX4mUDNwCglVpkWLFm49Xnh4uBo0aOBS1rp1a0m/n/++9tprz/nae/bskfT7H9Rzyc7OVk5Ojk6fPq3LL7+8xPY2bdo4/6Cdy48//qgBAwaU3ZEK+PnnnxUeHu7yx1X6PVAVbT/b2aGryEUXXVSh+Qh79uxRdna2QkJCSt2emZnp8rysz7n4tqL2nn2aqcgVV1yhDRs2uJT5+PgoIiKiXO0+W2FhoV599VW9+eabSktLc5nvUNqptOKft81m02WXXaZ9+/Y5+zFu3Di99NJLmj9/vnr27Kl+/fo552pURGl9quh7Xty7776rF198Ud9//73y8vKc5RfyMzhw4ED95S9/0cGDB3XJJZdo7dq1yszM1MCBA93W7tIU/w4HBgbKz89PjRs3LlH+66+/nvd4fn5+zvk/RSr6M4GagQCDKnP2v7yr+7WLVr+88MIL6ty5c6n7NGzYUDk5OZ5umkedawWGKTbhtyyFhYUKCQnR/PnzS91e/I9BWZ/zhX4Hzh5JqYhnn31WTz75pB588EE9/fTTCg4OlpeXl8aMGVPplVAvvviihg0bpqVLl+qzzz7T448/rsTERG3atKlCIau0PlX0PT/bv//9bw0bNkz9+/fXhAkTFBISIm9vbyUmJurHH38sd7uKGzhwoCZNmqRFixZpzJgxWrhwoQIDA9WnTx+3tPtcSvsOX8j3mlVJtQcBBtXmQq/0eejQIZ08edJlFOaHH36QpPNevbbotEpAQIBiYmLOWa9Jkyby9/d3jticrTzXZ2nVqpV27NhRZp2KvA+RkZH6/PPPdfz4cZdRmO+//9653d1atWqlzz//XN27d3d7CC1qb2pqqm666SaXbampqW7rz4cffqgbb7xRb7/9tkt5VlZWiX/JSyrxeRtjtHfv3hKTXDt27KiOHTtq8uTJ+vLLL9W9e3fNnj1bzzzzzAW190Le8w8//FAtW7bU4sWLXb5bU6dOdalX0Z+/Fi1a6JprrtGCBQuUkJCgxYsXq3///i7L/D35XQGKYw4Mqk1R8MjKyqrU/vn5+S7LmXNzczVnzhw1adJEUVFRZe4bFRWlVq1aaebMmTpx4kSJ7UeOHJH0+7/WYmNjtWTJEu3fv9+5fffu3Vq5cuV52zhgwAB99913+uijj0psK/rXYkXeh1tuuUUFBQV6/fXXXcpffvll2Ww29e3b97zHqKh77rlHBQUFevrpp0tsy8/Pr/TnJ0ldunRRSEiIZs+e7TLa9emnn2r37t2Ki4ur9LHP5u3tXeJf54sWLSqxVLvIP//5Tx0/ftz5/MMPP9Thw4ed76/D4VB+fr7LPh07dpSXl5dbRu0u5D0vGmE4u79fffWVkpOTXeoVrXaqyOc3cOBAbdq0Se+8846OHj3qcvroQtsNVBQjMKg2RSHj8ccfV2xsrLy9vV2WY55PeHi4nn/+ee3bt0+tW7fWggULlJKSorfeeuu8SzW9vLz0j3/8Q3379lX79u01fPhwXXLJJTp48KDWrFmjgIAA/ec//5H0+3UyVqxYoZ49e+rRRx9Vfn6+Zs2apfbt22vbtm1lvs6ECRP04Ycf6u6779aDDz6oqKgoHTt2TB9//LFmz56tTp06qVWrVgoKCtLs2bPVqFEjNWjQQN26dSt1vsJtt92mG2+8UX/961+1b98+derUSZ999pmWLl2qMWPGuEzYdZdevXpp1KhRSkxMVEpKinr37q169eppz549WrRokV599VWX64BURL169fT8889r+PDh6tWrlwYPHuxcRt28eXONHTvWLX249dZb9dRTT2n48OG67rrrtH37ds2fP18tW7YstX5wcLB69Oih4cOHKyMjQ6+88oouu+wyjRw5UpK0evVqJSQk6O6771br1q2Vn5+vf/3rX/L29nbLnKcLec9vvfVWLV68WHfccYfi4uKUlpam2bNnq127di5h3d/fX+3atdOCBQvUunVrBQcHq0OHDurQocM523XPPfdo/PjxGj9+vIKDg0uMXnryuwKUUH0LoFBXFC2HPHLkiEt5fn6+eeyxx0yTJk2MzWar0JLqXr16mfbt25tvvvnGREdHGz8/PxMZGWlef/11l3pFy2LPtdx169at5s477zQXX3yxsdvtJjIy0txzzz1m1apVLvXWrVtnoqKijK+vr2nZsqWZPXt2iaWmxpRcRm2MMb/++qtJSEgwl1xyifH19TURERFm6NCh5ujRo846S5cuNe3atTM+Pj4uSz+LL6M2xpjjx4+bsWPHmvDwcFOvXj1z+eWXmxdeeMFlObgxvy+jjo+PL9Hn0tpYHm+99ZaJiooy/v7+plGjRqZjx47mT3/6kzl06JDLsePi4krse77PYcGCBeaqq64ydrvdBAcHmyFDhphffvnFpc7QoUNNgwYNKtxuY35fRv3EE0+Ypk2bGn9/f9O9e3eTnJxcYglyUTvff/99M2nSJBMSEmL8/f1NXFycyzL6n376yTz44IOmVatWxs/PzwQHB5sbb7zRfP755xVq1/n6VJ73vHgfCgsLzbPPPmsiIyON3W43V111lVm2bFmp36Uvv/zS+b3WWUuqS/tuF+nevbuRZB566KELavf5nOv3xrnes6LfCUXOtYy6tH3L6i9qLpsxFZjNB9QQN9xwg44ePXre+SUAgNqJOTAAAMBymAODGuXYsWPKzc0953Zvb+9KLcVESQUFBc7JyufSsGFDNWzYsIpaVHGnT58+772HgoODnRd2qyrZ2dnnvZvz2Zfkr0tOnDhR6sT5szVp0oTlzjgvAgxqlDvvvFPr1q075/bIyEjnxcRwYQ4cOHDeC5tNnTrVeYO/mmjBggUaPnx4mXXWrFmjG264oWoa9P/++Mc/6t133y2zTl09ez9z5kxNnz69zDppaWnnvRQCwBwY1Chbtmwp84qY/v7+6t69exW2qPY6c+ZMiSvdFteyZctzrtSpCQ4fPqydO3eWWScqKkoXXXRRFbXod7t27dKhQ4fKrFPW9Ydqs59++um8l+3v0aOHy60lgNIQYAAAgOUwiRcAAFhOrZ0DU1hYqEOHDqlRo0YXfMl6AABQNYwxOn78uMLDw8u891mtDTCHDh1Ss2bNqrsZAACgEg4cOFDmjVFrbYAputHdgQMHFBAQUM2tAQAA5eFwONSsWTOXG9aWptYGmKLTRgEBAQQYAAAs5nzTP5jECwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALMenuhtgRXkrNpQoq9enRzW0BACAuokRGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkVCjCJiYnq2rWrGjVqpJCQEPXv31+pqakudW644QbZbDaXxyOPPOJSZ//+/YqLi1P9+vUVEhKiCRMmKD8/36XO2rVrdfXVV8tut+uyyy7TvHnzKtdDAABQ61QowKxbt07x8fHatGmTkpKSlJeXp969e+vkyZMu9UaOHKnDhw87HzNmzHBuKygoUFxcnHJzc/Xll1/q3Xff1bx58zRlyhRnnbS0NMXFxenGG29USkqKxowZo4ceekgrV668wO4CAIDawGaMMZXd+ciRIwoJCdG6det0/fXXS/p9BKZz58565ZVXSt3n008/1a233qpDhw4pNDRUkjR79mxNnDhRR44cka+vryZOnKjly5drx44dzv0GDRqkrKwsrVixolxtczgcCgwMVHZ2tgICAirbxVLlrdhQoqxenx5ufQ0AAOqi8v79vqA5MNnZ2ZKk4OBgl/L58+ercePG6tChgyZNmqRTp045tyUnJ6tjx47O8CJJsbGxcjgc2rlzp7NOTEyMyzFjY2OVnJx8zrbk5OTI4XC4PAAAQO3kU9kdCwsLNWbMGHXv3l0dOnRwlt97772KjIxUeHi4tm3bpokTJyo1NVWLFy+WJKWnp7uEF0nO5+np6WXWcTgcOn36tPz9/Uu0JzExUdOnT69sdwAAgIVUOsDEx8drx44d2rDB9XTKww8/7Pz/jh07qmnTprr55pv1448/qlWrVpVv6XlMmjRJ48aNcz53OBxq1qyZx14PAABUn0qdQkpISNCyZcu0Zs0aRURElFm3W7dukqS9e/dKksLCwpSRkeFSp+h5WFhYmXUCAgJKHX2RJLvdroCAAJcHAAConSoUYIwxSkhI0EcffaTVq1erRYsW590nJSVFktS0aVNJUnR0tLZv367MzExnnaSkJAUEBKhdu3bOOqtWrXI5TlJSkqKjoyvSXAAAUEtVKMDEx8fr3//+t9577z01atRI6enpSk9P1+nTpyVJP/74o55++mlt2bJF+/bt08cff6wHHnhA119/va688kpJUu/evdWuXTvdf//9+u6777Ry5UpNnjxZ8fHxstvtkqRHHnlEP/30k/70pz/p+++/15tvvqmFCxdq7Nixbu4+AACwogoto7bZbKWWz507V8OGDdOBAwd03333aceOHTp58qSaNWumO+64Q5MnT3Y5pfPzzz9r9OjRWrt2rRo0aKChQ4fqueeek4/Pf6fkrF27VmPHjtWuXbsUERGhJ598UsOGDSt3x1hGDQCA9ZT37/cFXQemJiPAAABgPVVyHRgAAIDqQIABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWU6EAk5iYqK5du6pRo0YKCQlR//79lZqa6lLnzJkzio+P18UXX6yGDRtqwIABysjIcKmzf/9+xcXFqX79+goJCdGECROUn5/vUmft2rW6+uqrZbfbddlll2nevHmV6yEAAKh1KhRg1q1bp/j4eG3atElJSUnKy8tT7969dfLkSWedsWPH6j//+Y8WLVqkdevW6dChQ7rzzjud2wsKChQXF6fc3Fx9+eWXevfddzVv3jxNmTLFWSctLU1xcXG68cYblZKSojFjxuihhx7SypUr3dBlAABgdTZjjKnszkeOHFFISIjWrVun66+/XtnZ2WrSpInee+893XXXXZKk77//Xm3btlVycrKuvfZaffrpp7r11lt16NAhhYaGSpJmz56tiRMn6siRI/L19dXEiRO1fPly7dixw/lagwYNUlZWllasWFGutjkcDgUGBio7O1sBAQGV7WKp8lZsKFFWr08Pt74GAAB1UXn/fl/QHJjs7GxJUnBwsCRpy5YtysvLU0xMjLPOFVdcoUsvvVTJycmSpOTkZHXs2NEZXiQpNjZWDodDO3fudNY5+xhFdYqOUZqcnBw5HA6XBwAAqJ0qHWAKCws1ZswYde/eXR06dJAkpaeny9fXV0FBQS51Q0NDlZ6e7qxzdngp2l60raw6DodDp0+fLrU9iYmJCgwMdD6aNWtW2a4BAIAartIBJj4+Xjt27NAHH3zgzvZU2qRJk5Sdne18HDhwoLqbBAAAPMSnMjslJCRo2bJlWr9+vSIiIpzlYWFhys3NVVZWlssoTEZGhsLCwpx1Nm/e7HK8olVKZ9cpvnIpIyNDAQEB8vf3L7VNdrtddru9Mt0BAAAWU6ERGGOMEhIS9NFHH2n16tVq0aKFy/aoqCjVq1dPq1atcpalpqZq//79io6OliRFR0dr+/btyszMdNZJSkpSQECA2rVr56xz9jGK6hQdAwAA1G0VGoGJj4/Xe++9p6VLl6pRo0bOOSuBgYHy9/dXYGCgRowYoXHjxik4OFgBAQF67LHHFB0drWuvvVaS1Lt3b7Vr107333+/ZsyYofT0dE2ePFnx8fHOEZRHHnlEr7/+uv70pz/pwQcf1OrVq7Vw4UItX77czd0HAABWVKFl1DabrdTyuXPnatiwYZJ+v5DdE088offff185OTmKjY3Vm2++6Tw9JEk///yzRo8erbVr16pBgwYaOnSonnvuOfn4/DdPrV27VmPHjtWuXbsUERGhJ5980vka5cEyagAArKe8f78v6DowNRkBBgAA66mS68AAAABUBwIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwnAoHmPXr1+u2225TeHi4bDablixZ4rJ92LBhstlsLo8+ffq41Dl27JiGDBmigIAABQUFacSIETpx4oRLnW3btqlnz57y8/NTs2bNNGPGjIr3DgAA1EoVDjAnT55Up06d9MYbb5yzTp8+fXT48GHn4/3333fZPmTIEO3cuVNJSUlatmyZ1q9fr4cffti53eFwqHfv3oqMjNSWLVv0wgsvaNq0aXrrrbcq2lwAAFAL+VR0h759+6pv375l1rHb7QoLCyt12+7du7VixQp9/fXX6tKliyRp1qxZuuWWWzRz5kyFh4dr/vz5ys3N1TvvvCNfX1+1b99eKSkpeumll1yCDgAAqJs8Mgdm7dq1CgkJUZs2bTR69Gj9+uuvzm3JyckKCgpyhhdJiomJkZeXl7766itnneuvv16+vr7OOrGxsUpNTdVvv/1W6mvm5OTI4XC4PAAAQO3k9gDTp08f/fOf/9SqVav0/PPPa926derbt68KCgokSenp6QoJCXHZx8fHR8HBwUpPT3fWCQ0NdalT9LyoTnGJiYkKDAx0Ppo1a+burgEAgBqiwqeQzmfQoEHO/+/YsaOuvPJKtWrVSmvXrtXNN9/s7pdzmjRpksaNG+d87nA4CDEAANRSHl9G3bJlSzVu3Fh79+6VJIWFhSkzM9OlTn5+vo4dO+acNxMWFqaMjAyXOkXPzzW3xm63KyAgwOUBAABqJ48HmF9++UW//vqrmjZtKkmKjo5WVlaWtmzZ4qyzevVqFRYWqlu3bs4669evV15enrNOUlKS2rRpo4suusjTTQYAADVchQPMiRMnlJKSopSUFElSWlqaUlJStH//fp04cUITJkzQpk2btG/fPq1atUq33367LrvsMsXGxkqS2rZtqz59+mjkyJHavHmzNm7cqISEBA0aNEjh4eGSpHvvvVe+vr4aMWKEdu7cqQULFujVV191OUUEAADqrgoHmG+++UZXXXWVrrrqKknSuHHjdNVVV2nKlCny9vbWtm3b1K9fP7Vu3VojRoxQVFSUvvjiC9ntducx5s+fryuuuEI333yzbrnlFvXo0cPlGi+BgYH67LPPlJaWpqioKD3xxBOaMmUKS6gBAIAkyWaMMdXdCE9wOBwKDAxUdna22+fD5K3YUKKsXp8ebn0NAADqovL+/Xb7KqS6qnioIdAAAOA53MwRAABYDiMwHsJpJgAAPIcRGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDlcyK4KcbsBAADcgxEYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOT7V3YC6LG/FhhJl9fr0qIaWAABgLYzAAAAAyyHAAAAAyyHAAAAAy2EOTA1TfF4Mc2IAACiJERgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA53Eqghit+awGJ2wsAAMAIDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwm8dYCTPQFANQ1jMAAAADLIcAAAADLIcAAAADLqXCAWb9+vW677TaFh4fLZrNpyZIlLtuNMZoyZYqaNm0qf39/xcTEaM+ePS51jh07piFDhiggIEBBQUEaMWKETpw44VJn27Zt6tmzp/z8/NSsWTPNmDGj4r0DAAC1UoUDzMmTJ9WpUye98cYbpW6fMWOGXnvtNc2ePVtfffWVGjRooNjYWJ05c8ZZZ8iQIdq5c6eSkpK0bNkyrV+/Xg8//LBzu8PhUO/evRUZGaktW7bohRde0LRp0/TWW29VoosAAKC2qfAqpL59+6pv376lbjPG6JVXXtHkyZN1++23S5L++c9/KjQ0VEuWLNGgQYO0e/durVixQl9//bW6dOkiSZo1a5ZuueUWzZw5U+Hh4Zo/f75yc3P1zjvvyNfXV+3bt1dKSopeeukll6ADAADqJrfOgUlLS1N6erpiYmKcZYGBgerWrZuSk5MlScnJyQoKCnKGF0mKiYmRl5eXvvrqK2ed66+/Xr6+vs46sbGxSk1N1W+//Vbqa+fk5MjhcLg8aqu8FRtcHgAA1DVuDTDp6emSpNDQUJfy0NBQ57b09HSFhIS4bPfx8VFwcLBLndKOcfZrFJeYmKjAwEDno1mzZhfeIQAAUCPVmgvZTZo0SePGjXM+dzgcdTrEFB+Z4cJ2AIDaxK0jMGFhYZKkjIwMl/KMjAzntrCwMGVmZrpsz8/P17Fjx1zqlHaMs1+jOLvdroCAAJcHAACondwaYFq0aKGwsDCtWrXKWeZwOPTVV18pOjpakhQdHa2srCxt2bLFWWf16tUqLCxUt27dnHXWr1+vvLw8Z52kpCS1adNGF110kTubDAAALKjCAebEiRNKSUlRSkqKpN8n7qakpGj//v2y2WwaM2aMnnnmGX388cfavn27HnjgAYWHh6t///6SpLZt26pPnz4aOXKkNm/erI0bNyohIUGDBg1SeHi4JOnee++Vr6+vRowYoZ07d2rBggV69dVXXU4RAQCAustmjDEV2WHt2rW68cYbS5QPHTpU8+bNkzFGU6dO1VtvvaWsrCz16NFDb775plq3bu2se+zYMSUkJOg///mPvLy8NGDAAL322mtq2LChs862bdsUHx+vr7/+Wo0bN9Zjjz2miRMnlrudDodDgYGBys7OdvvppNqy8od5MQCAmqa8f78rHGCsggBzfgQYAEBNU96/39wLCQAAWE6tWUaNC1fayBKjNACAmogRGAAAYDmMwNRhtWUuDwCg7mEEBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA5X4kWZynO1Xu6XBACoaozAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy2EZNTyi+PJrlloDANyJAIMLVp5rxQAA4E6cQgIAAJbDCAyqRGmjNJxWAgBUFiMwAADAcggwAADAcjiFhGrDSiUAQGURYCphX9anJcqaB/WthpYAAFA3EWBgKUwGBgBIBBjUIIQTAEB5MYkXAABYDgEGAABYDgEGAABYDnNg3KT4yiRWJVWd8izHZsk2ANQuBBjUaNwoEgBQGk4hAQAAy2EEpgpxmgkAAPcgwFQjrugLAEDlcAoJAABYDgEGAABYDqeQahjmyQAAcH4EGNQ6LL0GgNqPAOMhpU3QBQAA7kGAAS4Ad9AGgOpBgKnhyrPUmuXY7sHtBgDAOliFBAAALIcRGAtifg0AoK4jwKBOKs9KJea3AEDNRYCBC65DU7bKLNEuTxAiLAFAxRBgAIsg5ADAfxFgailGUmq2yp7COl8dAg2AuoJVSAAAwHIYgakj3HmtGEZ3AADVjQBTh7lrOTYX0nPFvZgAwPMIMCiTJ685U5UjOXVl1IiJvgDqCrfPgZk2bZpsNpvL44orrnBuP3PmjOLj43XxxRerYcOGGjBggDIyMlyOsX//fsXFxal+/foKCQnRhAkTlJ+f7+6mAgAAi/LICEz79u31+eef//dFfP77MmPHjtXy5cu1aNEiBQYGKiEhQXfeeac2btwoSSooKFBcXJzCwsL05Zdf6vDhw3rggQdUr149Pfvss55oLmoZrlQMALWfRwKMj4+PwsLCSpRnZ2fr7bff1nvvvaebbrpJkjR37ly1bdtWmzZt0rXXXqvPPvtMu3bt0ueff67Q0FB17txZTz/9tCZOnKhp06bJ19fXE02Gh5UnVHDjSgBAeXlkGfWePXsUHh6uli1basiQIdq/f78kacuWLcrLy1NMTIyz7hVXXKFLL71UycnJkqTk5GR17NhRoaGhzjqxsbFyOBzauXPnOV8zJydHDofD5YG6YV/Wpy4PAEDt5/YRmG7dumnevHlq06aNDh8+rOnTp6tnz57asWOH0tPT5evrq6CgIJd9QkNDlZ6eLklKT093CS9F24u2nUtiYqKmT5/u3s6g0ggSNQcXuwNQG7k9wPTt+9/h/CuvvFLdunVTZGSkFi5cKH9/f3e/nNOkSZM0btw453OHw6FmzZp57PVQNaoyCNWVlUoAUBt4fBl1UFCQWrdurb179+oPf/iDcnNzlZWV5TIKk5GR4ZwzExYWps2bN7sco2iVUmnzaorY7XbZ7Xb3dwC1Ul0eIWKpNYDawOO3Ejhx4oR+/PFHNW3aVFFRUapXr55WrVrl3J6amqr9+/crOjpakhQdHa3t27crMzPTWScpKUkBAQFq166dp5sLAAAswO0jMOPHj9dtt92myMhIHTp0SFOnTpW3t7cGDx6swMBAjRgxQuPGjVNwcLACAgL02GOPKTo6Wtdee60kqXfv3mrXrp3uv/9+zZgxQ+np6Zo8ebLi4+MZYUGVYsUTANRcbg8wv/zyiwYPHqxff/1VTZo0UY8ePbRp0yY1adJEkvTyyy/Ly8tLAwYMUE5OjmJjY/Xmm2869/f29tayZcs0evRoRUdHq0GDBho6dKieeuopdzcVwDlwmglATWczxpjqboQnOBwOBQYGKjs7WwEBAW499p4P/urW48E6yjMCU1snAxNgAFSF8v795l5IQAVU56qo0tS0cMSSbQBVhQADVIPaMErDXbcBVCcCDFADVHZkpzYEIQCoDAIMUMu5K+T8+M0cl+eXqn2l2wQAF8rj14EBAABwN0ZgAA+rS1f9Ld7Xy3X+Sbws2QZQGQQYAB6bS8NEXwCeQoABapHyjPZUuk5WsedBzIEBUH0IMAA8htsxAPAUJvECAADLYQQGQJUqz3yb8sydYaIvULcRYADUeKWdiirPCicAtRcBBoAlFb+p6uWD/qdEHUZygNqLAAOgUjx5fZu6dO0cAJVDgAFQK5Q22sK9ooDaiwADoFpV92hL8eDDKSXAGggwAOq0EqM0K86/DyEHqH4EGAB1hrtGe7h/E1D9CDAAaoXqPhUFoGpxJV4AAGA5jMAAgBtwzRmgahFgAOAs5TkVVZ7l2KUdx+ubnS7PW3UZVaLOj9/MOW8dAAQYAHCLyszBKX414dL8qDklyi492t7leWkjO8WDkEQYQu3CHBgAAGA5jMAAQAVVdsVT4d79btlnn1zLuLEl6iICDABYXGkTiAuzXEOO12WXVlVzgCpBgAGAOqBw737lHXUNOvsb7yxRj3kysAoCDABYnLsu4leekFO4d3+JVVgsD0d1IMAAQB1RPOh4Na7caaXix2EODqoDAQYA4FSZkFOeJdvuqgMUIcAAANyutDDiqeMQcuomAgwA1FHlWdZdmTo1ccUTVziufQgwAACPKy3kuGuUBnUTAQYA4FaVuWAfUFEEGABAlSst5FT21JO7Tg9xmslaCDAAAMuoafNtWDlVfQgwAIAawQrhpDL7EWg8gwADAKiRKjuXpvi9obhScO1EgAEAWFZ57tbt9U3Jez6xAsr6CDAAAFSx8pxm4lRU2QgwAIBarTwrnty5Kqo4rkrsGV7V3QAAAICKYgQGAFDnVGaCsBVGadz1+lYYySHAAABQCiveB6ounWYiwAAAUIU8OZJTHrXl+jYEGAAA3KS6w4m7VPcprfIgwAAA4EHc3NIzCDAAAFSz2jJyU5UIMAAA1EA1bYJwTUOAAQDAAhilcUWAAQDAoiozSlNbghABBgCAWqKy4cSKp6sIMBWUX5Cn/Wd+0wmTq4Y2X0XYg+Rls5W5T6GM0ryOyWHLUYCxq0VhsLxU9j4AALhDbV0FRYCpgI3J/9Y7B+foWPBJZ1lwjr/uON5ebeo3KXWf7d7p+rjebmV7nXGWBRb6qV9eW3UsCPN4mwEAqKhyhZ4unm9HWWr0zRzfeOMNNW/eXH5+furWrZs2b95cbW3ZmPxvzcx8ScfqnXQpP+Z7Wm9f/I1STx0psc9273T9y3ersm1nXMqzbWf0L9+t2u6d7tE2AwBQW9XYALNgwQKNGzdOU6dO1bfffqtOnTopNjZWmZmZVd6W/II8vXPw/69KWPzMz/8//6jRThUa4ywulNHH9XaXuc/H9XarUEYAAKBiamyAeemllzRy5EgNHz5c7dq10+zZs1W/fn298847Vd6WnTs+0zHfkyWDSBGbdMx+Wr/kZDmL0ryO/X7aqIx9sr3OKM3rmLubCwBArVcj58Dk5uZqy5YtmjRpkrPMy8tLMTExSk5OLnWfnJwc5eTkOJ9nZ2dLkhwOxwW352D6T8o7VXDeepmnTii4sL4kKd37uPIKz79Pes5xhRY0vOA2AgBQldzx97Ws4xpT9hmKGhlgjh49qoKCAoWGhrqUh4aG6vvvvy91n8TERE2fPr1EebNmzTzSxtIs17Yq2QcAgGo34kWPHv748eMKDAw85/YaGWAqY9KkSRo3bpzzeWFhoY4dO6aLL75YtvMsc64Ih8OhZs2a6cCBAwoICHDbcWuyutZn+lu70d/ajf5anzFGx48fV3h4eJn1amSAady4sby9vZWRkeFSnpGRobCw0pce2+122e12l7KgoCBPNVEBAQG15stSXnWtz/S3dqO/tRv9tbayRl6K1MhJvL6+voqKitKqVaucZYWFhVq1apWio6OrsWUAAKAmqJEjMJI0btw4DR06VF26dNE111yjV155RSdPntTw4cOru2kAAKCa1dgAM3DgQB05ckRTpkxRenq6OnfurBUrVpSY2FvV7Ha7pk6dWuJ0VW1W1/pMf2s3+lu70d+6w2bOt04JAACghqmRc2AAAADKQoABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4CR9MYbb6h58+by8/NTt27dtHnz5jLrL1q0SFdccYX8/PzUsWNHffLJJy7bjTGaMmWKmjZtKn9/f8XExGjPnj2e7EKFuLO/eXl5mjhxojp27KgGDRooPDxcDzzwgA4dOuTpbpSbuz/fsz3yyCOy2Wx65ZVX3NzqyvNEf3fv3q1+/fopMDBQDRo0UNeuXbV//35PdaFC3N3fEydOKCEhQREREfL391e7du00e/ZsT3ahQirS3507d2rAgAFq3rx5md/Tir6HVc3dfU5MTFTXrl3VqFEjhYSEqH///kpNTfVgDyrGE59xkeeee042m01jxoxxb6Org6njPvjgA+Pr62veeecds3PnTjNy5EgTFBRkMjIySq2/ceNG4+3tbWbMmGF27dplJk+ebOrVq2e2b9/urPPcc8+ZwMBAs2TJEvPdd9+Zfv36mRYtWpjTp09XVbfOyd39zcrKMjExMWbBggXm+++/N8nJyeaaa64xUVFRVdmtc/LE51tk8eLFplOnTiY8PNy8/PLLHu5J+Xiiv3v37jXBwcFmwoQJ5ttvvzV79+41S5cuPecxq5In+jty5EjTqlUrs2bNGpOWlmbmzJljvL29zdKlS6uqW+dU0f5u3rzZjB8/3rz//vsmLCys1O9pRY9Z1TzR59jYWDN37lyzY8cOk5KSYm655RZz6aWXmhMnTni4N+fnif6eXbd58+bmyiuvNH/84x8904EqVOcDzDXXXGPi4+OdzwsKCkx4eLhJTEwstf4999xj4uLiXMq6detmRo0aZYwxprCw0ISFhZkXXnjBuT0rK8vY7Xbz/vvve6AHFePu/pZm8+bNRpL5+eef3dPoC+Cp/v7yyy/mkksuMTt27DCRkZE1JsB4or8DBw409913n2cafIE80d/27dubp556yqXO1Vdfbf7617+6seWVU9H+nu1c39MLOWZV8ESfi8vMzDSSzLp16y6kqW7hqf4eP37cXH755SYpKcn06tWrVgSYOn0KKTc3V1u2bFFMTIyzzMvLSzExMUpOTi51n+TkZJf6khQbG+usn5aWpvT0dJc6gYGB6tat2zmPWVU80d/SZGdny2azefRmmuXhqf4WFhbq/vvv14QJE9S+fXvPNL4SPNHfwsJCLV++XK1bt1ZsbKxCQkLUrVs3LVmyxGP9KC9Pfb7XXXedPv74Yx08eFDGGK1Zs0Y//PCDevfu7ZmOlFNl+lsdx3Snqmpfdna2JCk4ONhtx6wMT/Y3Pj5ecXFxJb7/VlanA8zRo0dVUFBQ4vYEoaGhSk9PL3Wf9PT0MusX/bcix6wqnuhvcWfOnNHEiRM1ePDgar8zqqf6+/zzz8vHx0ePP/64+xt9ATzR38zMTJ04cULPPfec+vTpo88++0x33HGH7rzzTq1bt84zHSknT32+s2bNUrt27RQRESFfX1/16dNHb7zxhq6//nr3d6ICKtPf6jimO1VF+woLCzVmzBh1795dHTp0cMsxK8tT/f3ggw/07bffKjEx8UKbWKPU2HshwXry8vJ0zz33yBijv/3tb9XdHI/YsmWLXn31VX377bey2WzV3RyPKywslCTdfvvtGjt2rCSpc+fO+vLLLzV79mz16tWrOpvnEbNmzdKmTZv08ccfKzIyUuvXr1d8fLzCw8Nr1b9e8bv4+Hjt2LFDGzZsqO6meMSBAwf0xz/+UUlJSfLz86vu5rhVnR6Bady4sby9vZWRkeFSnpGRobCwsFL3CQsLK7N+0X8rcsyq4on+FikKLz///LOSkpKqffRF8kx/v/jiC2VmZurSSy+Vj4+PfHx89PPPP+uJJ55Q8+bNPdKP8vJEfxs3biwfHx+1a9fOpU7btm2rfRWSJ/p7+vRp/eUvf9FLL72k2267TVdeeaUSEhI0cOBAzZw50zMdKafK9Lc6julOnm5fQkKCli1bpjVr1igiIuKCj3ehPNHfLVu2KDMzU1dffbXzd9a6dev02muvycfHRwUFBe5oerWo0wHG19dXUVFRWrVqlbOssLBQq1atUnR0dKn7REdHu9SXpKSkJGf9Fi1aKCwszKWOw+HQV199dc5jVhVP9Ff6b3jZs2ePPv/8c1188cWe6UAFeaK/999/v7Zt26aUlBTnIzw8XBMmTNDKlSs915ly8ER/fX191bVr1xJLTH/44QdFRka6uQcV44n+5uXlKS8vT15err8avb29naNR1aUy/a2OY7qTp9pnjFFCQoI++ugjrV69Wi1atHBHcy+YJ/p78803a/v27S6/s7p06aIhQ4YoJSVF3t7e7mp+1avmScTV7oMPPjB2u93MmzfP7Nq1yzz88MMmKCjIpKenG2OMuf/++82f//xnZ/2NGzcaHx8fM3PmTLN7924zderUUpdRBwUFmaVLl5pt27aZ22+/vUYto3Znf3Nzc02/fv1MRESESUlJMYcPH3Y+cnJyqqWPZ/PE51tcTVqF5In+Ll682NSrV8+89dZbZs+ePWbWrFnG29vbfPHFF1Xev+I80d9evXqZ9u3bmzVr1piffvrJzJ071/j5+Zk333yzyvtXXEX7m5OTY7Zu3Wq2bt1qmjZtasaPH2+2bt1q9uzZU+5jVjdP9Hn06NEmMDDQrF271uV31qlTp6q8f8V5or/F1ZZVSHU+wBhjzKxZs8yll15qfH19zTXXXGM2bdrk3NarVy8zdOhQl/oLFy40rVu3Nr6+vqZ9+/Zm+fLlLtsLCwvNk08+aUJDQ43dbjc333yzSU1NrYqulIs7+5uWlmYklfpYs2ZNFfWobO7+fIurSQHGGM/09+233zaXXXaZ8fPzM506dTJLlizxdDfKzd39PXz4sBk2bJgJDw83fn5+pk2bNubFF180hYWFVdGd86pIf8/189mrV69yH7MmcHefz/U7a+7cuVXXqTJ44jM+W20JMDZjjKmiwR4AAAC3qNNzYAAAgDURYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOX8H07zUxcn+HS3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPQRJREFUeJzt3XtcVVXC//Hv4XYAE1AUjhQiaWkqmmkhk1mNjqh0e3JqLCucTMvAUhozJvPWFI72mF0s85lR6xnN8lfZpEWhpnYhLYu8FXmNpgQrheMlkcv6/TEPezyCCnS4bPi8X6/9erHXXmfvtRfq+br22ns7jDFGAAAANuLT0A0AAACoKQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMAACwHQIMADQBI0eOVIcOHRq6GUC9IcAAAADbcfAuJACwv5KSEpWXl8vpdDZ0U4B6wQgMYCPl5eU6fvx4QzfDw9GjR+v8GMYY/fLLL3V+HDvz9/cnvKBZIcAADWDatGlyOBz6+uuvdfPNNyskJETh4eG6//77PQKKw+FQamqqlixZom7dusnpdCozM1OS9P333+vOO+9UZGSknE6nunXrpoULF1Y61vHjxzVt2jRdeOGFCgwMVLt27XTjjTdq9+7dkqR169bJ4XBo3bp1Hp/bt2+fHA6HFi9ebJWNHDlS55xzjnbv3q2hQ4eqZcuWGjFihCRp586dGjZsmFwulwIDA3Xeeedp+PDhKioqsj5fWlqqRx99VB07dpTT6VSHDh305z//WcXFxR7H7tChg6655hq9++676tOnj4KCgvTCCy9Uq28r2rhnzx4lJiaqRYsWioqK0owZM3TygHPF+T3xxBN68sknFRMTo6CgIF155ZXatm1blfvMy8vTNddco3POOUfnnnuu5s2bJ0naunWrfvvb36pFixaKiYnR0qVLq9XWk1X8rpcvX66uXbsqKChICQkJ2rp1qyTphRdeUKdOnRQYGKirrrpK+/btq9TGk+fAnHx+CxYssPr80ksv1aefflrj9gGNjV9DNwBozm6++WZ16NBBGRkZ+uSTT/T000/r0KFDeumll6w6a9eu1auvvqrU1FS1adNGHTp0UEFBgfr27Wt96bVt21bvvPOORo0aJbfbrfHjx0uSysrKdM0112jNmjUaPny47r//fh0+fFhZWVnatm2bOnbsWOM2l5aWKjExUf369dMTTzyh4OBgnThxQomJiSouLta4cePkcrn0/fffa+XKlSosLFRoaKgk6a677tKLL76o3//+93rggQe0ceNGZWRk6KuvvtIbb7zhcZzc3FzdcsstuvvuuzV69Gh17ty52m0sKyvT4MGD1bdvX82aNUuZmZmaOnWqSktLNWPGDI+6L730kg4fPqyUlBQdP35cTz31lH77299q69atioyM9NjnkCFD1L9/f82aNUtLlixRamqqWrRooYcfflgjRozQjTfeqPnz5+uOO+5QQkKCYmNja9S3H3zwgf75z38qJSVFkpSRkaFrrrlGDz74oJ577jnde++9OnTokGbNmqU777xTa9euPes+ly5dqsOHD+vuu++Ww+HQrFmzdOONN2rPnj3y9/evUfuARsUAqHdTp041ksx1113nUX7vvfcaSebLL780xhgjyfj4+Jjt27d71Bs1apRp166d+emnnzzKhw8fbkJDQ82xY8eMMcYsXLjQSDJz5syp1Iby8nJjjDHvv/++kWTef/99j+179+41ksyiRYussuTkZCPJPPTQQx51v/jiCyPJLF++/LTnnJOTYySZu+66y6P8T3/6k5Fk1q5da5XFxMQYSSYzM/O0+zudijaOGzfOKisvLzdJSUkmICDA/Pjjjx7nFxQUZP71r39ZdTdu3GgkmQkTJlTa5+OPP26VHTp0yAQFBRmHw2GWLVtmlX/99ddGkpk6dWqN2i3JOJ1Os3fvXqvshRdeMJKMy+UybrfbKk9PTzeSPOomJyebmJgYa73i/MLDw83Bgwet8jfffNNIMm+99VaN2gc0NlxCAhpQxf+0K4wbN06S9Pbbb1tlV155pbp27WqtG2P02muv6dprr5UxRj/99JO1JCYmqqioSJ9//rkk6bXXXlObNm2s/Z7M4XDUut1jx471WK8YYXn33Xd17NixKj9TcU5paWke5Q888IAkadWqVR7lsbGxSkxMrHUbU1NTrZ8rRqpOnDih1atXe9S74YYbdO6551rrl112meLj4z1+BxXuuusu6+ewsDB17txZLVq00M0332yVd+7cWWFhYdqzZ0+N2zxgwACPy0Dx8fGSpGHDhqlly5aVyqtzjD/84Q9q1aqVtX7FFVdU+7NAY0aAARrQBRdc4LHesWNH+fj4eMxvOPUyxI8//qjCwkItWLBAbdu29Vj++Mc/SpIOHDggSdq9e7c6d+4sPz/vXS328/PTeeed51EWGxurtLQ0/e1vf1ObNm2UmJioefPmecx/+fbbb+Xj46NOnTp5fNblciksLEzffvttpX3Wlo+Pj84//3yPsgsvvFCSKs0dOfV3UFH31HqBgYFq27atR1loaKjOO++8SmEwNDRUhw4dqnG727dvX2k/khQdHV1leXWOceo+K8JMbdoHNCbMgQEakapGRYKCgjzWy8vLJUm33XabkpOTq9xPjx49ftUxpX/P+aiK0+mUj0/l//v893//t0aOHKk333xT7733nu677z5rbs/Jgae6Iz+nnndD8/X1rVG5qcUTKuriGN5sH9CYEGCABrRz506PkYZdu3apvLz8jE9Ubdu2rVq2bKmysjINHDjwjPvv2LGjNm7cqJKSktNO2Kz4H3lhYaFH+akjItURFxenuLg4TZ48WR9//LEuv/xyzZ8/X3/5y18UExOj8vJy7dy5UxdddJH1mYKCAhUWFiomJqbGxzud8vJy7dmzxxp1kaRvvvlGkir17c6dOyt9/ptvvuGptkAjxyUkoAFV3IZb4ZlnnpEkDRky5LSf8fX11bBhw/Taa69Vut1X+vclpgrDhg3TTz/9pGeffbZSvYr/gcfExMjX11cbNmzw2P7cc89V+zzcbrdKS0s9yuLi4uTj42PdIj106FBJ0ty5cz3qzZkzR5KUlJRU7eNVx8nnbIzRs88+K39/fw0YMMCj3ooVK/T9999b65s2bdLGjRvP+DsA0PAYgQEa0N69e3Xddddp8ODBys7O1j/+8Q/deuut6tmz5xk/N3PmTL3//vuKj4/X6NGj1bVrVx08eFCff/65Vq9erYMHD0qS7rjjDr300ktKS0vTpk2bdMUVV+jo0aNavXq17r33Xl1//fUKDQ3VTTfdpGeeeUYOh0MdO3bUypUrrXk01bF27Vqlpqbqpptu0oUXXqjS0lL97//+rxW2JKlnz55KTk7WggULVFhYqCuvvFKbNm3Siy++qBtuuEFXX3117TvyFIGBgcrMzFRycrLi4+P1zjvvaNWqVfrzn/9caR5Lp06d1K9fP40dO1bFxcWaO3euwsPD9eCDD3qtPQC8jwADNKBXXnlFU6ZM0UMPPSQ/Pz+lpqZq9uzZZ/1cZGSkNm3apBkzZuj111/Xc889p/DwcHXr1k1//etfrXq+vr56++239dhjj2np0qV67bXXFB4ern79+ikuLs6q98wzz6ikpETz58+X0+nUzTffrNmzZ6t79+7VOo+ePXsqMTFRb731lr7//nsFBwerZ8+eeuedd9S3b1+r3t/+9jedf/75Wrx4sd544w25XC6lp6dr6tSpNei1s/P19VVmZqbGjh2riRMnqmXLlpo6daqmTJlSqe4dd9whHx8fzZ07VwcOHNBll12mZ599Vu3atfNqmwB4F+9CAhrAtGnTNH36dP34449q06ZNQzenSRk5cqT+3//7fzpy5MgZ6+3bt0+xsbGaPXu2/vSnP9VT6wB4C3NgAACA7XAJCYAtFBUVnfWFji6Xq55aU335+fln3B4UFGQ91wVA9RFgANjC/fffrxdffPGMdRrjFfGzzaVJTk72eGEmgOphDgwAW9ixY4d++OGHM9Y523NxGsKpry44VVRUlMerIgBUDwEGAADYDpN4AQCA7TTZOTDl5eX64Ycf1LJly1/11l0AAFB/jDE6fPiwoqKiqnzvWoUmG2B++OGHSm9wBQAA9vDdd995vAj2VE02wLRs2VLSvzsgJCSkgVsDAACqw+12Kzo62voeP50mG2AqLhuFhIQQYAAAsJmzTf9gEi8AALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdAgwAALAdv4ZuQHNSkvmhx7r/4H4N1BIAAOyNERgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7BBgAAGA7NQowGRkZuvTSS9WyZUtFRETohhtuUG5urked48ePKyUlReHh4TrnnHM0bNgwFRQUeNTJy8tTUlKSgoODFRERoYkTJ6q0tNSjzrp163TJJZfI6XSqU6dOWrx4ce3OEAAANDk1CjDr169XSkqKPvnkE2VlZamkpESDBg3S0aNHrToTJkzQW2+9peXLl2v9+vX64YcfdOONN1rby8rKlJSUpBMnTujjjz/Wiy++qMWLF2vKlClWnb179yopKUlXX321cnJyNH78eN1111169913vXDKAADA7hzGGFPbD//444+KiIjQ+vXr1b9/fxUVFalt27ZaunSpfv/730uSvv76a1100UXKzs5W37599c477+iaa67RDz/8oMjISEnS/PnzNWnSJP34448KCAjQpEmTtGrVKm3bts061vDhw1VYWKjMzMxqtc3tdis0NFRFRUUKCQmp7Sl6FQ+yAwDgzKr7/f2r5sAUFRVJklq3bi1J2rx5s0pKSjRw4ECrTpcuXdS+fXtlZ2dLkrKzsxUXF2eFF0lKTEyU2+3W9u3brTon76OiTsU+qlJcXCy32+2xAACApqnWAaa8vFzjx4/X5Zdfru7du0uS8vPzFRAQoLCwMI+6kZGRys/Pt+qcHF4qtldsO1Mdt9utX375pcr2ZGRkKDQ01Fqio6Nre2oAAKCRq3WASUlJ0bZt27Rs2TJvtqfW0tPTVVRUZC3fffddQzcJAADUkVq9zDE1NVUrV67Uhg0bdN5551nlLpdLJ06cUGFhoccoTEFBgVwul1Vn06ZNHvuruEvp5Dqn3rlUUFCgkJAQBQUFVdkmp9Mpp9NZm9MBAAA2U6MRGGOMUlNT9cYbb2jt2rWKjY312N67d2/5+/trzZo1Vllubq7y8vKUkJAgSUpISNDWrVt14MABq05WVpZCQkLUtWtXq87J+6ioU7EPAADQvNVoBCYlJUVLly7Vm2++qZYtW1pzVkJDQxUUFKTQ0FCNGjVKaWlpat26tUJCQjRu3DglJCSob9++kqRBgwapa9euuv322zVr1izl5+dr8uTJSklJsUZQ7rnnHj377LN68MEHdeedd2rt2rV69dVXtWrVKi+fPgAAsKMa3UbtcDiqLF+0aJFGjhwp6d8PsnvggQf08ssvq7i4WImJiXruueesy0OS9O2332rs2LFat26dWrRooeTkZM2cOVN+fv/JU+vWrdOECRO0Y8cOnXfeeXrkkUesY1QHt1EDAGA/1f3+/lXPgWnMCDAAANhPdb+/azWJF2d3algBAADew8scAQCA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7RBgAACA7dQ4wGzYsEHXXnutoqKi5HA4tGLFCo/tDoejymX27NlWnQ4dOlTaPnPmTI/9bNmyRVdccYUCAwMVHR2tWbNm1e4MAQBAk1PjAHP06FH17NlT8+bNq3L7/v37PZaFCxfK4XBo2LBhHvVmzJjhUW/cuHHWNrfbrUGDBikmJkabN2/W7NmzNW3aNC1YsKCmzQUAAE2QX00/MGTIEA0ZMuS0210ul8f6m2++qauvvlrnn3++R3nLli0r1a2wZMkSnThxQgsXLlRAQIC6deumnJwczZkzR2PGjKlpkwEAQBNTp3NgCgoKtGrVKo0aNarStpkzZyo8PFy9evXS7NmzVVpaam3Lzs5W//79FRAQYJUlJiYqNzdXhw4dqvJYxcXFcrvdHgsAAGiaajwCUxMvvviiWrZsqRtvvNGj/L777tMll1yi1q1b6+OPP1Z6err279+vOXPmSJLy8/MVGxvr8ZnIyEhrW6tWrSodKyMjQ9OnT6+jMwEAAI1JnQaYhQsXasSIEQoMDPQoT0tLs37u0aOHAgICdPfddysjI0NOp7NWx0pPT/fYr9vtVnR0dO0aDgAAGrU6CzAffPCBcnNz9corr5y1bnx8vEpLS7Vv3z517txZLpdLBQUFHnUq1k83b8bpdNY6/AAAAHupszkwf//739W7d2/17NnzrHVzcnLk4+OjiIgISVJCQoI2bNigkpISq05WVpY6d+5c5eUjAADQvNQ4wBw5ckQ5OTnKycmRJO3du1c5OTnKy8uz6rjdbi1fvlx33XVXpc9nZ2dr7ty5+vLLL7Vnzx4tWbJEEyZM0G233WaFk1tvvVUBAQEaNWqUtm/frldeeUVPPfWUxyUiAADQfNX4EtJnn32mq6++2lqvCBXJyclavHixJGnZsmUyxuiWW26p9Hmn06lly5Zp2rRpKi4uVmxsrCZMmOARTkJDQ/Xee+8pJSVFvXv3Vps2bTRlyhRuoQYAAJIkhzHGNHQj6oLb7VZoaKiKiooUEhJS78cvyfzwrHX8B/erh5YAAGAf1f3+5l1IAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdggwAADAdmr8Nmp4T1UvfOQFjwAAnB0jMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHYIMAAAwHZqHGA2bNiga6+9VlFRUXI4HFqxYoXH9pEjR8rhcHgsgwcP9qhz8OBBjRgxQiEhIQoLC9OoUaN05MgRjzpbtmzRFVdcocDAQEVHR2vWrFk1PzsAANAk1TjAHD16VD179tS8efNOW2fw4MHav3+/tbz88sse20eMGKHt27crKytLK1eu1IYNGzRmzBhru9vt1qBBgxQTE6PNmzdr9uzZmjZtmhYsWFDT5gIAgCbIr6YfGDJkiIYMGXLGOk6nUy6Xq8ptX331lTIzM/Xpp5+qT58+kqRnnnlGQ4cO1RNPPKGoqCgtWbJEJ06c0MKFCxUQEKBu3bopJydHc+bM8Qg6AACgeaqTOTDr1q1TRESEOnfurLFjx+rnn3+2tmVnZyssLMwKL5I0cOBA+fj4aOPGjVad/v37KyAgwKqTmJio3NxcHTp0qMpjFhcXy+12eywAAKBp8nqAGTx4sF566SWtWbNGf/3rX7V+/XoNGTJEZWVlkqT8/HxFRER4fMbPz0+tW7dWfn6+VScyMtKjTsV6RZ1TZWRkKDQ01Fqio6O9fWoAAKCRqPElpLMZPny49XNcXJx69Oihjh07at26dRowYIC3D2dJT09XWlqate52uwkxAAA0UXV+G/X555+vNm3aaNeuXZIkl8ulAwcOeNQpLS3VwYMHrXkzLpdLBQUFHnUq1k83t8bpdCokJMRjAQAATVOdB5h//etf+vnnn9WuXTtJUkJCggoLC7V582arztq1a1VeXq74+HirzoYNG1RSUmLVycrKUufOndWqVau6bjIAAGjkahxgjhw5opycHOXk5EiS9u7dq5ycHOXl5enIkSOaOHGiPvnkE+3bt09r1qzR9ddfr06dOikxMVGSdNFFF2nw4MEaPXq0Nm3apI8++kipqakaPny4oqKiJEm33nqrAgICNGrUKG3fvl2vvPKKnnrqKY9LRAAAoPmqcYD57LPP1KtXL/Xq1UuSlJaWpl69emnKlCny9fXVli1bdN111+nCCy/UqFGj1Lt3b33wwQdyOp3WPpYsWaIuXbpowIABGjp0qPr16+fxjJfQ0FC999572rt3r3r37q0HHnhAU6ZM4RZqAAAgSXIYY0xDN6IuuN1uhYaGqqioqEHmw5Rkflirz/kP7ufllgAAYB/V/f7mXUgAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2ahxgNmzYoGuvvVZRUVFyOBxasWKFta2kpESTJk1SXFycWrRooaioKN1xxx364YcfPPbRoUMHORwOj2XmzJkedbZs2aIrrrhCgYGBio6O1qxZs2p3hgAAoMmpcYA5evSoevbsqXnz5lXaduzYMX3++ed65JFH9Pnnn+v1119Xbm6urrvuukp1Z8yYof3791vLuHHjrG1ut1uDBg1STEyMNm/erNmzZ2vatGlasGBBTZsLAACaIL+afmDIkCEaMmRIldtCQ0OVlZXlUfbss8/qsssuU15entq3b2+Vt2zZUi6Xq8r9LFmyRCdOnNDChQsVEBCgbt26KScnR3PmzNGYMWNq2mQAANDE1PkcmKKiIjkcDoWFhXmUz5w5U+Hh4erVq5dmz56t0tJSa1t2drb69++vgIAAqywxMVG5ubk6dOhQlccpLi6W2+32WAAAQNNU4xGYmjh+/LgmTZqkW265RSEhIVb5fffdp0suuUStW7fWxx9/rPT0dO3fv19z5syRJOXn5ys2NtZjX5GRkda2Vq1aVTpWRkaGpk+fXodnAwAAGos6CzAlJSW6+eabZYzR888/77EtLS3N+rlHjx4KCAjQ3XffrYyMDDmdzlodLz093WO/brdb0dHRtWs8AABo1OokwFSEl2+//VZr1671GH2pSnx8vEpLS7Vv3z517txZLpdLBQUFHnUq1k83b8bpdNY6/AAAAHvx+hyYivCyc+dOrV69WuHh4Wf9TE5Ojnx8fBQRESFJSkhI0IYNG1RSUmLVycrKUufOnau8fAQAAJqXGo/AHDlyRLt27bLW9+7dq5ycHLVu3Vrt2rXT73//e33++edauXKlysrKlJ+fL0lq3bq1AgIClJ2drY0bN+rqq69Wy5YtlZ2drQkTJui2226zwsmtt96q6dOna9SoUZo0aZK2bdump556Sk8++aSXThsAANiZwxhjavKBdevW6eqrr65UnpycrGnTplWafFvh/fff11VXXaXPP/9c9957r77++msVFxcrNjZWt99+u9LS0jwuAW3ZskUpKSn69NNP1aZNG40bN06TJk2qdjvdbrdCQ0NVVFR01ktYdaEk88Nafc5/cD8vtwQAAPuo7vd3jQOMXRBgAACwn+p+f/MuJAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDt+Dd2A5mRf4Tse6x3ChjRQSwAAsDdGYAAAgO0QYAAAgO0QYAAAgO0QYAAAgO0QYAAAgO0QYAAAgO3UOMBs2LBB1157raKiouRwOLRixQqP7cYYTZkyRe3atVNQUJAGDhyonTt3etQ5ePCgRowYoZCQEIWFhWnUqFE6cuSIR50tW7boiiuuUGBgoKKjozVr1qyanx0AAGiSahxgjh49qp49e2revHlVbp81a5aefvppzZ8/Xxs3blSLFi2UmJio48ePW3VGjBih7du3KysrSytXrtSGDRs0ZswYa7vb7dagQYMUExOjzZs3a/bs2Zo2bZoWLFhQi1MEAABNTY0fZDdkyBANGVL1A9iMMZo7d64mT56s66+/XpL00ksvKTIyUitWrNDw4cP11VdfKTMzU59++qn69OkjSXrmmWc0dOhQPfHEE4qKitKSJUt04sQJLVy4UAEBAerWrZtycnI0Z84cj6BzsuLiYhUXF1vrbre7pqeGWirJ/LBSmf/gfg3QEgBAc+HVOTB79+5Vfn6+Bg4caJWFhoYqPj5e2dnZkqTs7GyFhYVZ4UWSBg4cKB8fH23cuNGq079/fwUEBFh1EhMTlZubq0OHDlV57IyMDIWGhlpLdHS0N0/trEoyP/RYAABA3fFqgMnPz5ckRUZGepRHRkZa2/Lz8xUREeGx3c/PT61bt/aoU9U+Tj7GqdLT01VUVGQt33333a8/IQAA0Cg1mXchOZ1OOZ3Ohm4GAACoB14dgXG5XJKkgoICj/KCggJrm8vl0oEDBzy2l5aW6uDBgx51qtrHyccAAADNl1cDTGxsrFwul9asWWOVud1ubdy4UQkJCZKkhIQEFRYWavPmzVadtWvXqry8XPHx8VadDRs2qKSkxKqTlZWlzp07q1WrVt5sMgAAsKEaX0I6cuSIdu3aZa3v3btXOTk5at26tdq3b6/x48frL3/5iy644ALFxsbqkUceUVRUlG644QZJ0kUXXaTBgwdr9OjRmj9/vkpKSpSamqrhw4crKipKknTrrbdq+vTpGjVqlCZNmqRt27bpqaee0pNPPumds24GTp1IzF1BAICmpMYB5rPPPtPVV19traelpUmSkpOTtXjxYj344IM6evSoxowZo8LCQvXr10+ZmZkKDAy0PrNkyRKlpqZqwIAB8vHx0bBhw/T0009b20NDQ/Xee+8pJSVFvXv3Vps2bTRlypTT3kKN+sVdVgCAhuYwxpiGbkRdcLvdCg0NVVFRkUJCQur8eNX5Ut9X+I7Heoewys/T8dZISXXaU9WxqjNyU9t9AwBwNtX9/m4ydyGh5hhJAQDYFS9zBAAAtsMIDM6IURoAQGPECAwAALAdAgwAALAdLiGhTvAcGgBAXSLAoF5UNZeGUAMAqC0uIQEAANthBKaOnPrQOgAA4D0EmEamOc8d4TITAKC6CDBoMDxjBgBQW8yBAQAAtkOAAQAAtkOAAQAAtkOAAQAAtkOAAQAAtkOAAQAAtkOAAQAAtsNzYGB7zfnhfwDQXDECAwAAbIcAAwAAbIcAAwAAbIc5MA2oqjdWdwgb0gAtAQDAXhiBAQAAtsMITCNX1RubucsGANDcMQIDAABshwADAABshwADAABshzkwsJWq5gQBAJofRmAAAIDtMAID/B/eqQQA9uH1EZgOHTrI4XBUWlJSUiRJV111VaVt99xzj8c+8vLylJSUpODgYEVERGjixIkqLS31dlPRjJRkfuixAADszesjMJ9++qnKysqs9W3btul3v/udbrrpJqts9OjRmjFjhrUeHBxs/VxWVqakpCS5XC59/PHH2r9/v+644w75+/vr8ccf93Zz0QQRUACg6fN6gGnbtq3H+syZM9WxY0ddeeWVVllwcLBcLleVn3/vvfe0Y8cOrV69WpGRkbr44ov16KOPatKkSZo2bZoCAgK83WTba8pf2E353AAAtVenk3hPnDihf/zjH7rzzjvlcDis8iVLlqhNmzbq3r270tPTdezYMWtbdna24uLiFBkZaZUlJibK7XZr+/btpz1WcXGx3G63xwIAAJqmOp3Eu2LFChUWFmrkyJFW2a233qqYmBhFRUVpy5YtmjRpknJzc/X6669LkvLz8z3CiyRrPT8//7THysjI0PTp071/EgAAoNGp0wDz97//XUOGDFFUVJRVNmbMGOvnuLg4tWvXTgMGDNDu3bvVsWPHWh8rPT1daWlp1rrb7VZ0dHSt9wfwHioAaLzqLMB8++23Wr16tTWycjrx8fGSpF27dqljx45yuVzatGmTR52CggJJOu28GUlyOp1yOp2/stVoLmo7t4ZbrQGgcaizALNo0SJFREQoKSnpjPVycnIkSe3atZMkJSQk6LHHHtOBAwcUEREhScrKylJISIi6du1aV821FSa2AgCauzoJMOXl5Vq0aJGSk5Pl5/efQ+zevVtLly7V0KFDFR4eri1btmjChAnq37+/evToIUkaNGiQunbtqttvv12zZs1Sfn6+Jk+erJSUFEZYAACApDoKMKtXr1ZeXp7uvPNOj/KAgACtXr1ac+fO1dGjRxUdHa1hw4Zp8uTJVh1fX1+tXLlSY8eOVUJCglq0aKHk5GSP58YAAIDmrU4CzKBBg2SMqVQeHR2t9evXn/XzMTExevvtt+uiaQAAoAngZY4AAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB2CDAAAMB26vRljkBTV53XOvC+JADwPkZgAACA7RBgAACA7RBgAACA7RBgAACA7TCJtxnbV/iOx3qHsCEN1BIAAGqGAAOvOzUYSc07HFV1pxJ3JgHAr0OAaaIYXQEANGUEGJwRQQgA0BgxiRcAANgOIzD41aqa84IzO3VeDHNiAKBmCDDNRHVCBkEEAGAXXEICAAC2wwhMLVTnBX6oOSYMAwCqiwADWyP0AEDzRIBBvaiv+TU8RA8AmgcCTCPDiAIAAGdHgEGN2PFOJUIhADQ9BBigCtW5FOXNy1XVeV8S71QCgP8gwMA27Dj6AwCoGwSYJoAv9qaJ2/UB4PQIMACqFZa4pAWgMeFJvAAAwHYYgUGjVVeXxpr7s2Jqe2mKS1oAGhMCTCPX3L9s60tTedmlHS7r8CZuAN7g9UtI06ZNk8Ph8Fi6dOlibT9+/LhSUlIUHh6uc845R8OGDVNBQYHHPvLy8pSUlKTg4GBFRERo4sSJKi0t9XZTAdsryfzQYwGA5qJORmC6deum1atX/+cgfv85zIQJE7Rq1SotX75coaGhSk1N1Y033qiPPvpIklRWVqakpCS5XC59/PHH2r9/v+644w75+/vr8ccfr4vmAgAAm6mTAOPn5yeXy1WpvKioSH//+9+1dOlS/fa3v5UkLVq0SBdddJE++eQT9e3bV++995527Nih1atXKzIyUhdffLEeffRRTZo0SdOmTVNAQEBdNLlGGvqyjh0uZcC7fs2fOUZmADRFdRJgdu7cqaioKAUGBiohIUEZGRlq3769Nm/erJKSEg0cONCq26VLF7Vv317Z2dnq27evsrOzFRcXp8jISKtOYmKixo4dq+3bt6tXr15VHrO4uFjFxcXWutvtrotTA3AGhCUA9cXrc2Di4+O1ePFiZWZm6vnnn9fevXt1xRVX6PDhw8rPz1dAQIDCwsI8PhMZGan8/HxJUn5+vkd4qdhese10MjIyFBoaai3R0dHePTEAANBoeH0EZsiQ/wxr9+jRQ/Hx8YqJidGrr76qoKAgbx/Okp6errS0NGvd7XYTYtAo8XJJAPj16vw26rCwMF144YXatWuXfve73+nEiRMqLCz0GIUpKCiw5sy4XC5t2rTJYx8VdylVNa+mgtPplNPp9P4JADXQkPOTGnpuFgDUpzp/Eu+RI0e0e/dutWvXTr1795a/v7/WrFljbc/NzVVeXp4SEhIkSQkJCdq6dasOHDhg1cnKylJISIi6du1a182ttX2F73gsQGPAn0sATZXXR2D+9Kc/6dprr1VMTIx++OEHTZ06Vb6+vrrlllsUGhqqUaNGKS0tTa1bt1ZISIjGjRunhIQE9e3bV5I0aNAgde3aVbfffrtmzZql/Px8TZ48WSkpKYywAL9SdUIMozYA7MDrAeZf//qXbrnlFv38889q27at+vXrp08++URt27aVJD355JPy8fHRsGHDVFxcrMTERD333HPW5319fbVy5UqNHTtWCQkJatGihZKTkzVjxgxvNxVoFJr7pR87PD0YQOPjMMaYhm5EXXC73QoNDVVRUZFCQkK8uu+dyx726v6AU50aYKoTcuryEpE3AlVNghoBBmi+qvv9zbuQgEbIjvNVuLsKQH0iwAA2ZceQU5e4FAU0LwQYAI0e4QTAqQgwAGqsOqM/v2aEiFcSADgbAgyAs6qry1XMmwFQW3X+IDsAAABvI8AAAADb4RISgEajJs+KYZ4M0LwRYAA0asyTAVAVAgyAJuvUURpuvQaaDgIMAFvhhZQAJCbxAgAAGyLAAAAA2yHAAAAA22EODIBmjYm+gD0xAgMAAGyHAAMAAGyHS0gAmqXdn70gSSovzLPKuP0asA8CDIAm57TPillWN2/VBlD/CDAAcJKq3rHExF6g8SHAAMBZcKcS0PgQYADg//DiSMA+CDAAcBpVzaXpEDaEy0xAI8Bt1AAAwHYIMAAAwHYIMAAAwHYIMAAAwHaYxAsANcCdSkDjQIABAC+reE1BhY597pbE82QAbyLAAIAXnBxOygvz5NOpfQO2Bmj6CDAAUMdO9+JInicD1B4BBgDqQPmuvDNuZy4N8Ot4/S6kjIwMXXrppWrZsqUiIiJ0ww03KDc316POVVddJYfD4bHcc889HnXy8vKUlJSk4OBgRUREaOLEiSotLfV2cwHgV9lX+E6l5dcoyfzQYwFQNa+PwKxfv14pKSm69NJLVVpaqj//+c8aNGiQduzYoRYtWlj1Ro8erRkzZljrwcHB1s9lZWVKSkqSy+XSxx9/rP379+uOO+6Qv7+/Hn/8cW83GQAarZNDTEU4Onl+TcUEYaC58XqAyczM9FhfvHixIiIitHnzZvXv398qDw4OlsvlqnIf7733nnbs2KHVq1crMjJSF198sR599FFNmjRJ06ZNU0BAgLebDQAAbKTOH2RXVFQkSWrdurVH+ZIlS9SmTRt1795d6enpOnbsmLUtOztbcXFxioyMtMoSExPldru1ffv2Ko9TXFwst9vtsQCAnXnz0hTQ1NTpJN7y8nKNHz9el19+ubp3726V33rrrYqJiVFUVJS2bNmiSZMmKTc3V6+//rokKT8/3yO8SLLW8/PzqzxWRkaGpk+fXkdnAgB1i4AC1EydBpiUlBRt27ZNH37oORFtzJgx1s9xcXFq166dBgwYoN27d6tjx461OlZ6errS0tKsdbfbrejo6No1HABs4nQPzQOaujoLMKmpqVq5cqU2bNig884774x14+PjJUm7du1Sx44d5XK5tGnTJo86BQUFknTaeTNOp1NOp9MLLQcA+zo10EiEGjRNXp8DY4xRamqq3njjDa1du1axsbFn/UxOTo4kqV27dpKkhIQEbd26VQcOHLDqZGVlKSQkRF27dvV2kwHA1sp35VVagKbO6yMwKSkpWrp0qd588021bNnSmrMSGhqqoKAg7d69W0uXLtXQoUMVHh6uLVu2aMKECerfv7969OghSRo0aJC6du2q22+/XbNmzVJ+fr4mT56slJQURlkAoBpODjElP/37Mv6pT/nlScCwM68HmOeff17Svx9Wd7JFixZp5MiRCggI0OrVqzV37lwdPXpU0dHRGjZsmCZPnmzV9fX11cqVKzV27FglJCSoRYsWSk5O9nhuDACgZngwHpoSrwcYY8wZt0dHR2v9+vVn3U9MTIzefvttbzULAAA0IbwLCQBs5tfOcanqlm3exQS7qfMH2QEAAHgbAQYAANgOl5AAoInjKb9oihiBAQAAtkOAAQAAtsMlJABAjVQ8T6bi0pRPp/aSPF9ZcOozZ3hAHryNAAMAsNQmeFTc1l3xxF+gPhBgAACndepoC9BYEGAAAJUCCg+2Q2NHgAEAeAVP+EV9IsAAACrx9iUj3nwNbyPAAAAaBUIOaoIAAwCoM9WZW7P7sxckSeWFeaetU4GQgwo8yA4AANgOIzAAgHrjMSKzrPbzbKraT8XIDSMyzQMBBgDQqJwpnAAVCDAAgCaFeTLNAwEGANAknOnWb5/PtkvyfF8T7I0AAwBo9HiVAU5FgAEANHmnvnCy4pJSxS3cJ2OUxh4IMACAZsMayaniDiifTu3ruTX4NXgODAAAsB1GYAAA0OkvM53s1DucuLup4RBgAACoA6fOr2FujXcRYAAAOMmp82SqeoheRZ2qbs+uGKWpeLcTc2vqBgEGAIAz4BbuxokAAwBALVXMm9m56+EafY65NL8eAQYAgDp0ppBTk3c88YoETwSYJqZcRrt9ftZun4NySDq/vLU6lofLRw7vH8xIzsO+8i3xUZl/uYpblqkuDgMATdWZ5tLgzAgwTchW33y95r9Nx3xKrLI12q1g469hJ7orrszltWMFHfRTWF6Q/E7851FCpQHlKmz/i35pXeq14wBAc1CTS1G8mfvfGvWD7ObNm6cOHTooMDBQ8fHx2rRpU0M3qdHa6puv/w34QsccJZW2HVOJ/jfgC231zffKsYIO+il8V7B8T3gOt/iecCh8V7CCDpKLAaA+lGR+qJLMD7Vz2cPauexh7f7shSpfj9AUNdpvmldeeUVpaWmaP3++4uPjNXfuXCUmJio3N1cREREN3bxGpVxGb/rv+PdKVZdwHJKM9E//r9StLPLXXU4yUlhe0P/t1nM/DjlkZBSWF6RfWh3mchIA1AHuivq3Rhtg5syZo9GjR+uPf/yjJGn+/PlatWqVFi5cqIceeqiBW9e47PU5KLdP8ZkrOaQix3Ht9TmojuXhtT6W87Cvx2WjyodxyO+EQ87DvioOKav1cQAA3lOdURm7zb9plAHmxIkT2rx5s9LT060yHx8fDRw4UNnZ2VV+pri4WMXF//kSLyoqkiS53W6vt+/IsbOEhXqW73tYJeXVCwv5xYcVWXZOrY9V5vaXu/j4Wesdc5foF7/Kl7MAAHVoy05J0hdb/mQVOc4/z6OK2fOvKj/687fvWj/7/y6hDhpXPRXf28aYM9ZrlAHmp59+UllZmSIjIz3KIyMj9fXXX1f5mYyMDE2fPr1SeXR0dJ200a5WaUtDNwEA0Cj9d0M3wMPhw4cVGhp62u2NMsDURnp6utLS0qz18vJyHTx4UOHh4XI4vDcZw+12Kzo6Wt99951CQkK8tl94op/rB/1cP+jnukcf14/66GdjjA4fPqyoqKgz1muUAaZNmzby9fVVQUGBR3lBQYFcrqpvBXY6nXI6nR5lYWFhddVEhYSE8JekHtDP9YN+rh/0c92jj+tHXffzmUZeKjTK26gDAgLUu3dvrVmzxiorLy/XmjVrlJDQcNflAABA49AoR2AkKS0tTcnJyerTp48uu+wyzZ07V0ePHrXuSgIAAM1Xow0wf/jDH/Tjjz9qypQpys/P18UXX6zMzMxKE3vrm9Pp1NSpUytdroJ30c/1g36uH/Rz3aOP60dj6meHOdt9SgAAAI1Mo5wDAwAAcCYEGAAAYDsEGAAAYDsEGAAAYDsEGAAAYDsEmBqaN2+eOnTooMDAQMXHx2vTpk0N3aRGKyMjQ5deeqlatmypiIgI3XDDDcrNzfWoc/z4caWkpCg8PFznnHOOhg0bVukJzHl5eUpKSlJwcLAiIiI0ceJElZaWetRZt26dLrnkEjmdTnXq1EmLFy+u69NrlGbOnCmHw6Hx48dbZfSxd3z//fe67bbbFB4erqCgIMXFxemzzz6zthtjNGXKFLVr105BQUEaOHCgdu7c6bGPgwcPasSIEQoJCVFYWJhGjRqlI0eOeNTZsmWLrrjiCgUGBio6OlqzZs2ql/NrDMrKyvTII48oNjZWQUFB6tixox599FGPl/rRzzW3YcMGXXvttYqKipLD4dCKFSs8ttdnny5fvlxdunRRYGCg4uLi9Pbbb9f+xAyqbdmyZSYgIMAsXLjQbN++3YwePdqEhYWZgoKChm5ao5SYmGgWLVpktm3bZnJycszQoUNN+/btzZEjR6w699xzj4mOjjZr1qwxn332menbt6/5zW9+Y20vLS013bt3NwMHDjRffPGFefvtt02bNm1Menq6VWfPnj0mODjYpKWlmR07dphnnnnG+Pr6mszMzHo934a2adMm06FDB9OjRw9z//33W+X08a938OBBExMTY0aOHGk2btxo9uzZY959912za9cuq87MmTNNaGioWbFihfnyyy/NddddZ2JjY80vv/xi1Rk8eLDp2bOn+eSTT8wHH3xgOnXqZG655RZre1FRkYmMjDQjRoww27ZtMy+//LIJCgoyL7zwQr2eb0N57LHHTHh4uFm5cqXZu3evWb58uTnnnHPMU089ZdWhn2vu7bffNg8//LB5/fXXjSTzxhtveGyvrz796KOPjK+vr5k1a5bZsWOHmTx5svH39zdbt26t1XkRYGrgsssuMykpKdZ6WVmZiYqKMhkZGQ3YKvs4cOCAkWTWr19vjDGmsLDQ+Pv7m+XLl1t1vvrqKyPJZGdnG2P+/RfPx8fH5OfnW3Wef/55ExISYoqLi40xxjz44IOmW7duHsf6wx/+YBITE+v6lBqNw4cPmwsuuMBkZWWZK6+80gow9LF3TJo0yfTr1++028vLy43L5TKzZ8+2ygoLC43T6TQvv/yyMcaYHTt2GEnm008/teq88847xuFwmO+//94YY8xzzz1nWrVqZfV7xbE7d+7s7VNqlJKSksydd97pUXbjjTeaESNGGGPoZ284NcDUZ5/efPPNJikpyaM98fHx5u67767VuXAJqZpOnDihzZs3a+DAgVaZj4+PBg4cqOzs7AZsmX0UFRVJklq3bi1J2rx5s0pKSjz6tEuXLmrfvr3Vp9nZ2YqLi/N4AnNiYqLcbre2b99u1Tl5HxV1mtPvJSUlRUlJSZX6gT72jn/+85/q06ePbrrpJkVERKhXr176n//5H2v73r17lZ+f79FHoaGhio+P9+jnsLAw9enTx6ozcOBA+fj4aOPGjVad/v37KyAgwKqTmJio3NxcHTp0qK5Ps8H95je/0Zo1a/TNN99Ikr788kt9+OGHGjJkiCT6uS7UZ596+98RAkw1/fTTTyorK6v0KoPIyEjl5+c3UKvso7y8XOPHj9fll1+u7t27S5Ly8/MVEBBQ6a3hJ/dpfn5+lX1ese1Mddxut3755Ze6OJ1GZdmyZfr888+VkZFRaRt97B179uzR888/rwsuuEDvvvuuxo4dq/vuu08vvviipP/005n+fcjPz1dERITHdj8/P7Vu3bpGv4um7KGHHtLw4cPVpUsX+fv7q1evXho/frxGjBghiX6uC/XZp6erU9s+b7TvQkLTkpKSom3btunDDz9s6KY0Kd99953uv/9+ZWVlKTAwsKGb02SVl5erT58+evzxxyVJvXr10rZt2zR//nwlJyc3cOuajldffVVLlizR0qVL1a1bN+Xk5Gj8+PGKioqin1EJIzDV1KZNG/n6+la6e6OgoEAul6uBWmUPqampWrlypd5//32dd955VrnL5dKJEydUWFjoUf/kPnW5XFX2ecW2M9UJCQlRUFCQt0+nUdm8ebMOHDigSy65RH5+fvLz89P69ev19NNPy8/PT5GRkfSxF7Rr105du3b1KLvooouUl5cn6T/9dKZ/H1wulw4cOOCxvbS0VAcPHqzR76IpmzhxojUKExcXp9tvv10TJkywRhfpZ++rzz49XZ3a9jkBppoCAgLUu3dvrVmzxiorLy/XmjVrlJCQ0IAta7yMMUpNTdUbb7yhtWvXKjY21mN779695e/v79Gnubm5ysvLs/o0ISFBW7du9fjLk5WVpZCQEOsLJSEhwWMfFXWaw+9lwIAB2rp1q3JycqylT58+GjFihPUzffzrXX755ZUeAfDNN98oJiZGkhQbGyuXy+XRR263Wxs3bvTo58LCQm3evNmqs3btWpWXlys+Pt6qs2HDBpWUlFh1srKy1LlzZ7Vq1arOzq+xOHbsmHx8PL+WfH19VV5eLol+rgv12ade/3ekVlN/m6lly5YZp9NpFi9ebHbs2GHGjBljwsLCPO7ewH+MHTvWhIaGmnXr1pn9+/dby7Fjx6w699xzj2nfvr1Zu3at+eyzz0xCQoJJSEiwtlfc4jto0CCTk5NjMjMzTdu2bau8xXfixInmq6++MvPmzWtWt/ie6uS7kIyhj71h06ZNxs/Pzzz22GNm586dZsmSJSY4ONj84x//sOrMnDnThIWFmTfffNNs2bLFXH/99VXeitqrVy+zceNG8+GHH5oLLrjA41bUwsJCExkZaW6//Xazbds2s2zZMhMcHNxkb+89VXJysjn33HOt26hff/1106ZNG/Pggw9adejnmjt8+LD54osvzBdffGEkmTlz5pgvvvjCfPvtt8aY+uvTjz76yPj5+ZknnnjCfPXVV2bq1KncRl2fnnnmGdO+fXsTEBBgLrvsMvPJJ580dJMaLUlVLosWLbLq/PLLL+bee+81rVq1MsHBwea//uu/zP79+z32s2/fPjNkyBATFBRk2rRpYx544AFTUlLiUef99983F198sQkICDDnn3++xzGam1MDDH3sHW+99Zbp3r27cTqdpkuXLmbBggUe28vLy80jjzxiIiMjjdPpNAMGDDC5ubkedX7++Wdzyy23mHPOOceEhISYP/7xj+bw4cMedb788kvTr18/43Q6zbnnnmtmzpxZ5+fWWLjdbnP//feb9u3bm8DAQHP++eebhx9+2OPWXPq55t5///0q/y1OTk42xtRvn7766qvmwgsvNAEBAaZbt25m1apVtT4vhzEnPeIQAADABpgDAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbIcAAwAAbOf/AyP+1JmUhX6UAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALtBJREFUeJzt3Xl8VNXB//HvZCUsmRAgWwkYFhVkE9CYRxaVSAhoxeXxQSiLRigQrJAqmL6Q5Wk1CraCu77aiv0Jbn1ELVYksoSiATE2QhBSoWDwgQmbyYQIIZD7+8MnVycJkMQkkzP5vF+vecHce+bOuXNn+eacc891WJZlCQAAwCB+3q4AAABAXRFgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAy1atEgOh0PHjh3zdlXQQBwOhxYtWuTtagDGIMAAAADjBHi7AgAA6dSpUwoI4CsZqC1aYAA0idLSUm9Xwdac6lKpVatWBBigDggwgMGKioo0ZcoUhYWFyel06u6779Z3330nSRo+fLj69+9f4+Muu+wyJSUlSZIOHDggh8OhJ554Qk8++aS6du2qkJAQDR8+XHl5edUeu2fPHt1xxx0KDw9Xq1atNHjwYL333nseZVasWCGHw6GsrCzNnDlTERER6ty5sySppKREs2fP1iWXXKLg4GBFREToxhtv1Oeff+6xjW3btmn06NFq37692rRpo379+mn58uUeZTZs2KChQ4eqTZs2CgsL0y233KLdu3d7lKkcL/Tll19q/Pjxat++vYYMGWKvf/XVVzVo0CCFhIQoPDxc48aN08GDB2vz8lfb3y1btuhXv/qVOnXqpLCwMP3yl7/UmTNnVFRUpEmTJql9+/Zq37695s6dK8uyPLZRdQxMZb337t173mMMtGTEfcBgd955p+Li4pSRkaHPP/9cf/zjHxUREaHHH39cEydO1NSpU5WXl6c+ffrYj9m+fbv+9a9/af78+R7b+stf/qKSkhKlpqbq9OnTWr58uW644Qbt3LlTkZGRkqRdu3bp2muv1c9+9jM99NBDatOmjd58802NHTtW//M//6Nbb73VY5szZ85Up06dtGDBArvVY/r06frrX/+qWbNmqXfv3jp+/Li2bNmi3bt3a+DAgZKkzMxM3XTTTYqOjtb999+vqKgo7d69W2vWrNH9998vSfroo4+UnJysbt26adGiRTp16pSefvppXXvttfr88891ySWXeNTlP//zP9WzZ089+uijdnh45JFH9PDDD+vOO+/Uvffeq6NHj+rpp5/WsGHD9M9//lNhYWF1Oh733XefoqKitHjxYm3dulUvvfSSwsLC9Mknn6hLly569NFH9fe//11Lly5Vnz59NGnSpItu80LHGGjRLADGWbhwoSXJuueeezyW33rrrVaHDh0sy7KsoqIiq1WrVta8efM8yvzqV7+y2rRpY508edKyLMvav3+/JckKCQmxvvnmG7vctm3bLEnWnDlz7GUjRoyw+vbta50+fdpeVlFRYf3Hf/yH1bNnT3vZyy+/bEmyhgwZYp09e9bj+Z1Op5WamnrefTt79qwVFxdnde3a1fr222891lVUVNj/HzBggBUREWEdP37cXvbFF19Yfn5+1qRJk6q9VnfddZfHtg4cOGD5+/tbjzzyiMfynTt3WgEBAdWWX0jl/iYlJXnUMSEhwXI4HNb06dM99q9z587W8OHDPbYhyVq4cGG1el/oGAMtGV1IgMGmT5/ucX/o0KE6fvy43G63nE6nbrnlFr322mt2i8O5c+f0xhtvaOzYsWrTpo3HY8eOHauf/exn9v2rr75a8fHx+vvf/y5JOnHihDZs2KA777xTJSUlOnbsmI4dO6bjx48rKSlJX331lf73f//XY5tTp06Vv7+/x7KwsDBt27ZNhw4dqnGf/vnPf2r//v2aPXt2tRYQh8MhSTp8+LByc3M1ZcoUhYeH2+v79eunG2+80a7zhV6rt99+WxUVFbrzzjvtfTl27JiioqLUs2dPbdy4scb6XUhKSopdR0mKj4+XZVlKSUmxl/n7+2vw4MH697//XattXugYAy0ZAQYwWJcuXTzut2/fXpL07bffSpImTZqkgoIC/eMf/5D0fbdLYWGhJk6cWG1bPXv2rLbs0ksv1YEDByRJe/fulWVZevjhh9WpUyeP28KFCyVJR44c8Xh8XFxctW0uWbJEeXl5io2N1dVXX61FixZ5/Jjv27dPkjy6var6+uuvJX0/lqeqXr166dixY9UG6laty1dffSXLstSzZ89q+7N79+5q+1IbVY+H0+mUJMXGxlZbXnmM6rrNqscYaKkYAwMYrGrrRqXKFpekpCRFRkbq1Vdf1bBhw/Tqq68qKipKiYmJdX6uiooKSdIDDzxgDwCuqkePHh73Q0JCqpW58847NXToUK1evVrr1q3T0qVL9fjjj+vtt99WcnJynetVW1XrUlFRIYfDoQ8++KDG17Ft27Z1fo7zHY+alltVBvHWdZu1fTzgqwgwgA/z9/fX+PHjtWLFCj3++ON65513auzWkb5vkajqX//6lz0Ytlu3bpKkwMDAegWgH4uOjtbMmTM1c+ZMHTlyRAMHDtQjjzyi5ORkde/eXZKUl5d33ufp2rWrJCk/P7/auj179qhjx47Vusiq6t69uyzLUlxcnC699NKftD8Amh5dSICPmzhxor799lv98pe/1MmTJ/WLX/yixnLvvPOOxxiWTz/9VNu2bbNbRSIiInTdddfpxRdf1OHDh6s9/ujRoxety7lz51RcXOyxLCIiQjExMSorK5MkDRw4UHFxcVq2bJmKioo8yla2OkRHR2vAgAF65ZVXPMrk5eVp3bp1Gj169EXrctttt8nf31+LFy+u1pphWZaOHz9+0W0A8B5aYAAfd+WVV6pPnz5666231KtXL/tU5ap69OihIUOGaMaMGSorK9OyZcvUoUMHzZ071y7z7LPPasiQIerbt6+mTp2qbt26qbCwUNnZ2frmm2/0xRdfXLAuJSUl6ty5s+644w71799fbdu21UcffaTt27fr97//vSTJz89Pzz//vG6++WYNGDBAd999t6Kjo7Vnzx7t2rVLH374oSRp6dKlSk5OVkJCglJSUuzTqJ1OZ62uKdS9e3f97ne/U3p6ug4cOKCxY8eqXbt22r9/v1avXq1p06bpgQceqOWrDKCpEWCAFmDSpEmaO3dujYN3f1zGz89Py5Yt05EjR3T11VfrmWeeUXR0tF2md+/e+uyzz7R48WKtWLFCx48fV0REhK688kotWLDgovVo3bq1Zs6cqXXr1tlnAfXo0UPPPfecZsyYYZdLSkrSxo0btXjxYv3+979XRUWFunfvrqlTp9plEhMTtXbtWi1cuFALFixQYGCghg8frscff7zGwcM1eeihh3TppZfqySef1OLFiyV9P+B25MiR+vnPf16rbQDwDofFSDDA5y1fvlxz5szRgQMHqp3VcuDAAcXFxWnp0qW0OAAwBmNgAB9nWZb+9Kc/afjw4dXCCwCYii4kwEeVlpbqvffe08aNG7Vz5069++673q6ScU6dOlVt0HFV4eHhCgoKaqIaAahEgAF81NGjRzV+/HiFhYXpN7/5DWM66uGNN97Q3XfffcEyGzdu1HXXXdc0FQJgYwwMAJzH4cOHtWvXrguWGTRokD07LoCmQ4ABAADGYRAvAAAwjs+OgamoqNChQ4fUrl07j6vDAgCA5suyLJWUlCgmJkZ+fudvZ/HZAHPo0KFqV4AFAABmOHjwoDp37nze9T4bYNq1ayfp+xcgNDTUy7UBAAC14Xa7FRsba/+On4/PBpjKbqPQ0FACDAAAhrnY8A8G8QIAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYJ8DbFQB8XfnaLdWWBY4a4oWaAIDvoAUGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxTpwCTkZGhq666Su3atVNERITGjh2r/Px8jzLXXXedHA6Hx2369OkeZQoKCjRmzBi1bt1aERERevDBB3X27FmPMps2bdLAgQMVHBysHj16aMWKFfXbQwAA4HPqFGCysrKUmpqqrVu3KjMzU+Xl5Ro5cqRKS0s9yk2dOlWHDx+2b0uWLLHXnTt3TmPGjNGZM2f0ySef6JVXXtGKFSu0YMECu8z+/fs1ZswYXX/99crNzdXs2bN177336sMPP/yJuwsAAHyBw7Isq74PPnr0qCIiIpSVlaVhw4ZJ+r4FZsCAAVq2bFmNj/nggw9000036dChQ4qMjJQkvfDCC5o3b56OHj2qoKAgzZs3T++//77y8vLsx40bN05FRUVau3ZtjdstKytTWVmZfd/tdis2NlbFxcUKDQ2t7y4CP1lNF3Osios7AsD33G63nE7nRX+/f9IYmOLiYklSeHi4x/KVK1eqY8eO6tOnj9LT0/Xdd9/Z67Kzs9W3b187vEhSUlKS3G63du3aZZdJTEz02GZSUpKys7PPW5eMjAw5nU77Fhsb+1N2DQAANGMB9X1gRUWFZs+erWuvvVZ9+vSxl48fP15du3ZVTEyMduzYoXnz5ik/P19vv/22JMnlcnmEF0n2fZfLdcEybrdbp06dUkhISLX6pKenKy0tzb5f2QIDmKCmVhpaZQDg/OodYFJTU5WXl6ctWzy/eKdNm2b/v2/fvoqOjtaIESO0b98+de/evf41vYjg4GAFBwc32vYBAEDzUa8upFmzZmnNmjXauHGjOnfufMGy8fHxkqS9e/dKkqKiolRYWOhRpvJ+VFTUBcuEhobW2PoCAABaljoFGMuyNGvWLK1evVobNmxQXFzcRR+Tm5srSYqOjpYkJSQkaOfOnTpy5IhdJjMzU6Ghoerdu7ddZv369R7byczMVEJCQl2qCwAAfFSdAkxqaqpeffVVrVq1Su3atZPL5ZLL5dKpU6ckSfv27dNvf/tb5eTk6MCBA3rvvfc0adIkDRs2TP369ZMkjRw5Ur1799bEiRP1xRdf6MMPP9T8+fOVmppqdwFNnz5d//73vzV37lzt2bNHzz33nN58803NmTOngXcfAACYqE6nUTscjhqXv/zyy5oyZYoOHjyoX/ziF8rLy1NpaaliY2N16623av78+R6nQn399deaMWOGNm3apDZt2mjy5Ml67LHHFBDww5CcTZs2ac6cOfryyy/VuXNnPfzww5oyZUqtd6y2p2EBja02p1HXhEG8AFqi2v5+/6R5YJozAgyaCwIMANRek8wDAwAA4A0EGAAAYBwCDAAAMA4BBgAAGKfeM/ECaFxVB/8yqBcAfkALDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDjPxAg2s6gy6AICGRwsMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjBPg7QoAqJ3ytVuqLQscNcQLNQEA76MFBgAAGIcAAwAAjEOAAQAAxiHAAAAA4zCIFzBY1YG9DOoF0FLQAgMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYp04BJiMjQ1dddZXatWuniIgIjR07Vvn5+R5lTp8+rdTUVHXo0EFt27bV7bffrsLCQo8yBQUFGjNmjFq3bq2IiAg9+OCDOnv2rEeZTZs2aeDAgQoODlaPHj20YsWK+u0hAADwOXUKMFlZWUpNTdXWrVuVmZmp8vJyjRw5UqWlpXaZOXPm6G9/+5veeustZWVl6dChQ7rtttvs9efOndOYMWN05swZffLJJ3rllVe0YsUKLViwwC6zf/9+jRkzRtdff71yc3M1e/Zs3Xvvvfrwww8bYJcBAIDpHJZlWfV98NGjRxUREaGsrCwNGzZMxcXF6tSpk1atWqU77rhDkrRnzx716tVL2dnZuuaaa/TBBx/opptu0qFDhxQZGSlJeuGFFzRv3jwdPXpUQUFBmjdvnt5//33l5eXZzzVu3DgVFRVp7dq1taqb2+2W0+lUcXGxQkND67uLQJ2Vr93itecOHDXEa88NAA2htr/fP2kMTHFxsSQpPDxckpSTk6Py8nIlJibaZS6//HJ16dJF2dnZkqTs7Gz17dvXDi+SlJSUJLfbrV27dtllfryNyjKV26hJWVmZ3G63xw0AAPimegeYiooKzZ49W9dee6369OkjSXK5XAoKClJYWJhH2cjISLlcLrvMj8NL5frKdRcq43a7derUqRrrk5GRIafTad9iY2Pru2sAAKCZq3eASU1NVV5enl5//fWGrE+9paenq7i42L4dPHjQ21UCAACNJKA+D5o1a5bWrFmjzZs3q3PnzvbyqKgonTlzRkVFRR6tMIWFhYqKirLLfPrppx7bqzxL6cdlqp65VFhYqNDQUIWEhNRYp+DgYAUHB9dndwAAgGHq1AJjWZZmzZql1atXa8OGDYqLi/NYP2jQIAUGBmr9+vX2svz8fBUUFCghIUGSlJCQoJ07d+rIkSN2mczMTIWGhqp37952mR9vo7JM5TYA1Kx87ZZqNwDwRXVqgUlNTdWqVav07rvvql27dvaYFafTqZCQEDmdTqWkpCgtLU3h4eEKDQ3Vfffdp4SEBF1zzTWSpJEjR6p3796aOHGilixZIpfLpfnz5ys1NdVuQZk+fbqeeeYZzZ07V/fcc482bNigN998U++//34D7z4AADBRnU6jdjgcNS5/+eWXNWXKFEnfT2T361//Wq+99prKysqUlJSk5557zu4ekqSvv/5aM2bM0KZNm9SmTRtNnjxZjz32mAICfshTmzZt0pw5c/Tll1+qc+fOevjhh+3nqA1Oo0ZTMKGFg1OrAZiktr/fP2kemOaMAIOmQIABgIbVJPPAAAAAeAMBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYp04XcwRgnpoud8DlBQCYjhYYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADG4SwkoAWqemYSZyUBMA0tMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOMzECzQTB4o+8Lh/SViyl2oCAM0fLTAAAMA4BBgAAGAcAgwAADAOY2AAL6k65gUAUHu0wAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwG8QJQ+dot1ZYFjhrihZoAQO3QAgMAAIxDgAEAAMahCwloJMzzAgCNhwADNFNc3BEAzo8uJAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADG4WrUAGpUvnaLx/3AUUO8VBMAqI4WGAAAYBwCDAAAMA4BBgAAGKfOAWbz5s26+eabFRMTI4fDoXfeecdj/ZQpU+RwODxuo0aN8ihz4sQJTZgwQaGhoQoLC1NKSopOnjzpUWbHjh0aOnSoWrVqpdjYWC1ZsqTuewcAAHxSnQNMaWmp+vfvr2efffa8ZUaNGqXDhw/bt9dee81j/YQJE7Rr1y5lZmZqzZo12rx5s6ZNm2avd7vdGjlypLp27aqcnBwtXbpUixYt0ksvvVTX6gIAAB9U57OQkpOTlZycfMEywcHBioqKqnHd7t27tXbtWm3fvl2DBw+WJD399NMaPXq0nnjiCcXExGjlypU6c+aM/vznPysoKEhXXHGFcnNz9Yc//MEj6AAAgJapUcbAbNq0SREREbrssss0Y8YMHT9+3F6XnZ2tsLAwO7xIUmJiovz8/LRt2za7zLBhwxQUFGSXSUpKUn5+vr799tsan7OsrExut9vjBgAAfFODzwMzatQo3XbbbYqLi9O+ffv0m9/8RsnJycrOzpa/v79cLpciIiI8KxEQoPDwcLlcLkmSy+VSXFycR5nIyEh7Xfv27as9b0ZGhhYvXtzQuwN4qDo3SlM6UPSBx/1Lwi7cEgoAvqzBA8y4cePs//ft21f9+vVT9+7dtWnTJo0YMaKhn86Wnp6utLQ0+77b7VZsbGyjPR8AAPCeRp+Jt1u3burYsaP27t2rESNGKCoqSkeOHPEoc/bsWZ04ccIeNxMVFaXCwkKPMpX3zze2Jjg4WMHBwY2wB0DzRIsMgJas0eeB+eabb3T8+HFFR0dLkhISElRUVKScnBy7zIYNG1RRUaH4+Hi7zObNm1VeXm6XyczM1GWXXVZj9xEAAGhZ6hxgTp48qdzcXOXm5kqS9u/fr9zcXBUUFOjkyZN68MEHtXXrVh04cEDr16/XLbfcoh49eigpKUmS1KtXL40aNUpTp07Vp59+qo8//lizZs3SuHHjFBMTI0kaP368goKClJKSol27dumNN97Q8uXLPbqIAABAy1XnAPPZZ5/pyiuv1JVXXilJSktL05VXXqkFCxbI399fO3bs0M9//nNdeumlSklJ0aBBg/SPf/zDo3tn5cqVuvzyyzVixAiNHj1aQ4YM8Zjjxel0at26ddq/f78GDRqkX//611qwYAGnUAMAAEmSw7Isy9uVaAxut1tOp1PFxcUKDQ31dnXgI+pyFlLVMSqNrbHHwHA1agBNoba/31wLCQAAGIcAAwAAjEOAAQAAxiHAAAAA4zT6RHZAS9HUg3Yv9vxMbAfAl9ECAwAAjEOAAQAAxqELCUCt1DQHDnPDAPAWWmAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMZhHhjAR3FpAQC+jBYYAABgHAIMAAAwDgEGAAAYhwADAACMwyBeoIVgUC8AX0ILDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4Ad6uAADvOFD0gcf9S8KSvVQTAKg7WmAAAIBxaIEB6qlqC0ZLVL52i8f9wFFDvFQTAC0NLTAAAMA4BBgAAGAcupAANJiqXUoS3UoAGgctMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIdBvAAkMTMvALPQAgMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA7zwACoEfPCAGjOCDAAGlXVK1RzdWoADaHOXUibN2/WzTffrJiYGDkcDr3zzjse6y3L0oIFCxQdHa2QkBAlJibqq6++8ihz4sQJTZgwQaGhoQoLC1NKSopOnjzpUWbHjh0aOnSoWrVqpdjYWC1ZsqTuewcAAHxSnQNMaWmp+vfvr2effbbG9UuWLNFTTz2lF154Qdu2bVObNm2UlJSk06dP22UmTJigXbt2KTMzU2vWrNHmzZs1bdo0e73b7dbIkSPVtWtX5eTkaOnSpVq0aJFeeumleuwiAADwNXXuQkpOTlZycs194ZZladmyZZo/f75uueUWSdJf/vIXRUZG6p133tG4ceO0e/durV27Vtu3b9fgwYMlSU8//bRGjx6tJ554QjExMVq5cqXOnDmjP//5zwoKCtIVV1yh3Nxc/eEPf/AIOgAAoGVq0LOQ9u/fL5fLpcTERHuZ0+lUfHy8srOzJUnZ2dkKCwuzw4skJSYmys/PT9u2bbPLDBs2TEFBQXaZpKQk5efn69tvv63xucvKyuR2uz1uAADANzVogHG5XJKkyMhIj+WRkZH2OpfLpYiICI/1AQEBCg8P9yhT0zZ+/BxVZWRkyOl02rfY2NifvkMAAKBZ8pl5YNLT01VcXGzfDh486O0qAQCARtKgp1FHRUVJkgoLCxUdHW0vLyws1IABA+wyR44c8Xjc2bNndeLECfvxUVFRKiws9ChTeb+yTFXBwcEKDg5ukP0ApOqn/wIAmo8GbYGJi4tTVFSU1q9fby9zu93atm2bEhISJEkJCQkqKipSTk6OXWbDhg2qqKhQfHy8XWbz5s0qLy+3y2RmZuqyyy5T+/btG7LKAADAQHUOMCdPnlRubq5yc3MlfT9wNzc3VwUFBXI4HJo9e7Z+97vf6b333tPOnTs1adIkxcTEaOzYsZKkXr16adSoUZo6dao+/fRTffzxx5o1a5bGjRunmJgYSdL48eMVFBSklJQU7dq1S2+88YaWL1+utLS0BttxAABgrjp3IX322We6/vrr7fuVoWLy5MlasWKF5s6dq9LSUk2bNk1FRUUaMmSI1q5dq1atWtmPWblypWbNmqURI0bIz89Pt99+u5566il7vdPp1Lp165SamqpBgwapY8eOWrBgAadQAwAASZLDsizL25VoDG63W06nU8XFxQoNDfV2dWCgi42BqXqtoJamvtdG4lICAC6ktr/fPnMWEgAAaDkIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxmnQayEBaDmqzoNT33lhAKA+aIEBAADGIcAAAADjEGAAAIBxGAMDoEnVdI0pro8EoK5ogQEAAMYhwAAAAOMQYAAAgHEIMAAAwDgM4gXQIJjYDkBTogUGAAAYhwADAACMQ4ABAADGIcAAAADjMIgXgNdVnZ2XmXkBXAwtMAAAwDgEGAAAYBwCDAAAMA5jYIBaqjpRGwDAe2iBAQAAxiHAAAAA4xBgAACAcRgDA6DZqTovjMTcMAA80QIDAACMQ4ABAADGIcAAAADjEGAAAIBxGMQLoFFUnfjvkrBkL9UEgC+iBQYAABiHAAMAAIxDgAEAAMYhwAAAAOMwiBdAk6jpat4M7AVQX7TAAAAA4xBgAACAcQgwAADAOIyBAWCEqleo5urUQMtGCwwAADAOAQYAABiHLiQARqrapSTRrQS0JLTAAAAA4xBgAACAcQgwAADAOAQYAABgHAbxAvCaqtdH4tpIAGqLAONlTM4FAEDd0YUEAACMQ4ABAADGIcAAAADjMAYGQLPBoF4AtdXgLTCLFi2Sw+HwuF1++eX2+tOnTys1NVUdOnRQ27Ztdfvtt6uwsNBjGwUFBRozZoxat26tiIgIPfjggzp79mxDVxUAABiqUVpgrrjiCn300Uc/PEnAD08zZ84cvf/++3rrrbfkdDo1a9Ys3Xbbbfr4448lSefOndOYMWMUFRWlTz75RIcPH9akSZMUGBioRx99tDGq26xwfRcAAC6uUQJMQECAoqKiqi0vLi7Wn/70J61atUo33HCDJOnll19Wr169tHXrVl1zzTVat26dvvzyS3300UeKjIzUgAED9Nvf/lbz5s3TokWLFBQU1BhVBuADmJYAaDkaZRDvV199pZiYGHXr1k0TJkxQQUGBJCknJ0fl5eVKTEy0y15++eXq0qWLsrOzJUnZ2dnq27evIiMj7TJJSUlyu93atWvXeZ+zrKxMbrfb4wYAAHxTgweY+Ph4rVixQmvXrtXzzz+v/fv3a+jQoSopKZHL5VJQUJDCwsI8HhMZGSmXyyVJcrlcHuGlcn3luvPJyMiQ0+m0b7GxsQ27YwAAoNlo8C6k5OQfzhro16+f4uPj1bVrV7355psKCQlp6KezpaenKy0tzb7vdrubXYipaXwLAACou0Y/jTosLEyXXnqp9u7dqxtvvFFnzpxRUVGRRytMYWGhPWYmKipKn376qcc2Ks9SqmlcTaXg4GAFBwc3/A6gxSBgAoA5Gn0iu5MnT2rfvn2Kjo7WoEGDFBgYqPXr19vr8/PzVVBQoISEBElSQkKCdu7cqSNHjthlMjMzFRoaqt69ezd2dQEAgAEavAXmgQce0M0336yuXbvq0KFDWrhwofz9/XXXXXfJ6XQqJSVFaWlpCg8PV2hoqO677z4lJCTommuukSSNHDlSvXv31sSJE7VkyRK5XC7Nnz9fqamptLAALQwT2wE4nwYPMN98843uuusuHT9+XJ06ddKQIUO0detWderUSZL05JNPys/PT7fffrvKysqUlJSk5557zn68v7+/1qxZoxkzZighIUFt2rTR5MmT9d///d8NXVXggqr+eAIAmg+HZVmWtyvRGNxut5xOp4qLixUaGurt6kiq/xgL5rJoGlWPDwGm+btYiwyfHcA8tf395lpIBmByLgAAPHE1agAAYBwCDAAAMA5dSAB8FhdHBXwXLTAAAMA4BBgAAGAcupAAGIuJ7oCWiwADoEVhWgLAN9CFBAAAjEOAAQAAxiHAAAAA4zAGphHV99pHAJoOc8UAZqIFBgAAGIcAAwAAjEOAAQAAxmEMDACfwcR2QMtBgPGSql+0VfHFCwDA+RFgAPgsWmQA38UYGAAAYBxaYAzEvBUAgJaOANNM0fQNAMD5EWAAtBi1/cOAK1YDzR9jYAAAgHFogWkiFzttGgAA1B4tMAAAwDi0wABoseo7JkZiXAzgbbTAAAAA49ACYwhOqwaaF85UAryLAOMj+DIFALQkBBhDXaxFhj57AIAvI8AAwP+hqxYwBwEG+D/M1QMA5iDANJCaumwAAEDjIMAAQCNhcD3QeJgHBgAAGIcWGB9Rm8GH/DUI1E1dBvXSjQw0LQJMC8ap1kDdcJYS0HwQYNAi8dcyGgKBBvAeAoyP4osVAODLCDCNgPlEAABoXAQYeGCgL9B4GHcGNBwCDAA0I4QcoHYIMADQQC7WfcxYNKDhMJEdAAAwDi0wLUR9/zKkORsA0BwRYADAi5iTCKgfAgwANBHmZwIaDgEGALyEQAPUHwEGkjh7AmjOmJ8JqI4AgzrzlS9TZkwGAHMRYPCTcaYSAKCpEWAawL7PXlRFUYG3q9Go6KsHvM/+HL7+/b8//hzyRwNaGgIMGoWvdDMBTakhuzVpGYWvI8CgXkxrkWGuDfi62rzH+cMCvoQAU08//iLw9e6jhuCLfw1WyNJ+vxNyO8oUagUrriJcfnJ4u1pNz5KCS/zlX+6nc4EVKmt3Ts3hZWgJx4ezB9GSEWDQKExroamrnf4uvRe4W8V+p+1lzopW+nl5L/U9F+XFmjWtkBMBCisIUcCZHy6rdjaoQkVdTulU+Fmv1YvjUzu1abUx/Q8N+K5mHWCeffZZLV26VC6XS/3799fTTz+tq6++2tvVQg3q03dv6pfnTn+X/l/QP6stL3ac1v8L+qcmnrmyRfxIhpwIUIe9rast9z/jUIe9rXW8x3deCTEcnx/U53NZ9Y8NX2w9hW9otgHmjTfeUFpaml544QXFx8dr2bJlSkpKUn5+viIiIrxdPdRRQ7XI1PfLtKEGR1bI0nuBu7+/U7U3wiHJkt4L3K0rzkX6XHeFB0sKKwiRJDmq7KdDDlmyFFYQolPtS5q0O4nj89PRLQVTOCzLsrxdiZrEx8frqquu0jPPPCNJqqioUGxsrO677z499NBDF3282+2W0+lUcXGxQkNDG7x+P/4hZUK0n67ql2JDd0E11DHa53dcL7b69KLlfnn6anWv6NAgz9kcBbv9FbGn7UXLHbn8pMpCzzVBjb7H8Wl65/ts0kqD+qrt73ezbIE5c+aMcnJylJ6ebi/z8/NTYmKisrOza3xMWVmZysrK7PvFxcWSvn8hGtq/P/+zrEPfNPh2W7K87975Seubisu/ROUVF/9BdpWVKPLcxX/gTXXOHSh32emLlvvOXa5TAeVNUKPvcXya3nk/m38+z/Iqujhv9LhfUJzpcb/7HQs87pdnev4GFBRnytGts32/28B7anyeqo8LvDGhVvVD06v83b5Y+0qzDDDHjh3TuXPnFBkZ6bE8MjJSe/bsqfExGRkZWrx4cbXlsbGxjVJH4ELe1w5vVwEXwPFpTn5/4dUpF1lfzZx61wTNS0lJiZxO53nXN8sAUx/p6elKS0uz71dUVOjEiRPq0KGDHA76uuvC7XYrNjZWBw8ebJTuN1wYr7/3cQy8j2PgXd58/S3LUklJiWJiYi5YrlkGmI4dO8rf31+FhYUeywsLCxUVVfPZA8HBwQoODvZYFhYW1lhVbBFCQ0P54vAiXn/v4xh4H8fAu7z1+l+o5aWS30VLeEFQUJAGDRqk9evX28sqKiq0fv16JSTQbwkAQEvXLFtgJCktLU2TJ0/W4MGDdfXVV2vZsmUqLS3V3Xff7e2qAQAAL2u2Aea//uu/dPToUS1YsEAul0sDBgzQ2rVrqw3sRcMLDg7WwoULq3XJoWnw+nsfx8D7OAbeZcLr32zngQEAADifZjkGBgAA4EIIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcA00JlZGToqquuUrt27RQREaGxY8cqPz/fo8zp06eVmpqqDh06qG3btrr99turzY6M+qvNMbjuuuvkcDg8btOnT/dSjX3L888/r379+tkzjSYkJOiDD364ajnv/8Z3sWPA+79pPfbYY3I4HJo9e7a9rDl/DggwLVRWVpZSU1O1detWZWZmqry8XCNHjlRpaaldZs6cOfrb3/6mt956S1lZWTp06JBuu+02L9bat9TmGEjS1KlTdfjwYfu2ZMkSL9XYt3Tu3FmPPfaYcnJy9Nlnn+mGG27QLbfcol27dkni/d8ULnYMJN7/TWX79u168cUX1a9fP4/lzfpzYAGWZR05csSSZGVlZVmWZVlFRUVWYGCg9dZbb9lldu/ebUmysrOzvVVNn1b1GFiWZQ0fPty6//77vVepFqZ9+/bWH//4R97/XlR5DCyL939TKSkpsXr27GllZmZ6vObN/XNACwwkScXFxZKk8PBwSVJOTo7Ky8uVmJhol7n88svVpUsXZWdne6WOvq7qMai0cuVKdezYUX369FF6erq+++47b1TPp507d06vv/66SktLlZCQwPvfC6oeg0q8/xtfamqqxowZ4/F+l5r/70CzvZQAmk5FRYVmz56ta6+9Vn369JEkuVwuBQUFVbuid2RkpFwulxdq6dtqOgaSNH78eHXt2lUxMTHasWOH5s2bp/z8fL399tterK3v2LlzpxISEnT69Gm1bdtWq1evVu/evZWbm8v7v4mc7xhIvP+bwuuvv67PP/9c27dvr7auuf8OEGCg1NRU5eXlacuWLd6uSot1vmMwbdo0+/99+/ZVdHS0RowYoX379ql79+5NXU2fc9lllyk3N1fFxcX661//qsmTJysrK8vb1WpRzncMevfuzfu/kR08eFD333+/MjMz1apVK29Xp87oQmrhZs2apTVr1mjjxo3q3LmzvTwqKkpnzpxRUVGRR/nCwkJFRUU1cS192/mOQU3i4+MlSXv37m2Kqvm8oKAg9ejRQ4MGDVJGRob69++v5cuX8/5vQuc7BjXh/d+wcnJydOTIEQ0cOFABAQEKCAhQVlaWnnrqKQUEBCgyMrJZfw4IMC2UZVmaNWuWVq9erQ0bNiguLs5j/aBBgxQYGKj169fby/Lz81VQUODRP436u9gxqElubq4kKTo6upFr1zJVVFSorKyM978XVR6DmvD+b1gjRozQzp07lZuba98GDx6sCRMm2P9vzp8DupBaqNTUVK1atUrvvvuu2rVrZ/dnOp1OhYSEyOl0KiUlRWlpaQoPD1doaKjuu+8+JSQk6JprrvFy7X3DxY7Bvn37tGrVKo0ePVodOnTQjh07NGfOHA0bNqzaqY6ou/T0dCUnJ6tLly4qKSnRqlWrtGnTJn344Ye8/5vIhY4B7//G165dO48xd5LUpk0bdejQwV7erD8H3j4NCt4hqcbbyy+/bJc5deqUNXPmTKt9+/ZW69atrVtvvdU6fPiw9yrtYy52DAoKCqxhw4ZZ4eHhVnBwsNWjRw/rwQcftIqLi71bcR9xzz33WF27drWCgoKsTp06WSNGjLDWrVtnr+f93/gudAx4/3tH1VPXm/PnwGFZluWd6AQAAFA/jIEBAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHH+P4UnzrToRmWcAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAK5xJREFUeJzt3XtYVXWi//EPoFwUN4QpDIqX8lLkbcJAmtQujLsOzolRT2o9RqY1edBSStPflEinHj3WHHXStBnPRHNmHC+do1OSEKOpv0bSxJzQ1OmiR0s3YCabTEHg+/ujH2vcgSaoIF/er+fZz+Ne67vW/q41Ju9Ze+2NnzHGCAAAwDL+TT0BAACAK4HIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFiJyAFasDlz5sjPz6/e2z300EPq1q3b5Z/QBRw6dEh+fn566aWXGvV1m1JWVpb8/Px06NChpp4K0CwROQAu2bfffqs5c+Zo8+bNTT2Vy+7tt9/WnDlzmnoaABqAyAFwyb799ltlZmZaGzmZmZlN8trjxo3T6dOn1bVr1yZ5faC5a9XUEwAA1C0gIEABAQFNPQ2g2eJKDtBCvPfee7rlllsUHBys66+/Xq+++mqd4/7whz8oLi5OISEhioiI0JgxY3TkyJHz7vfQoUPq0KGDJCkzM1N+fn7y8/Nz3uL56KOP9NBDD+m6665TcHCwoqKi9PDDD+urr75q8LEsWLBAXbt2VUhIiIYOHao9e/bUGrN//36NGjVKERERCg4O1sCBA/Xmm2/6jDl79qwyMzPVs2dPBQcHq3379rrtttuUl5cn6bt7j5YsWSJJznHV5x6m22+/XX369NFHH32koUOHqk2bNurRo4feeOMNSdKWLVuUkJCgkJAQ9e7dW3/5y198tq/rnpxu3bpp+PDheu+99xQfH6/g4GBdd911+v3vf3/R8wJaCq7kAC1AYWGhhg0bpg4dOmjOnDmqrKxURkaGIiMjfca98MILevbZZ3Xfffdp4sSJKikp0csvv6whQ4boww8/VHh4eK19d+jQQUuXLtWkSZP085//XCNGjJAk9evXT5KUl5enzz//XOPHj1dUVJT27t2r3/zmN9q7d6/ef//9et/4/Pvf/15lZWVKS0vTmTNntGjRIt15550qLCx0jmfv3r36yU9+ok6dOmnmzJlq27atVq9erZSUFP33f/+3fv7zn0v67sbruXPnauLEiYqPj5fX69XOnTu1a9cu/fSnP9UvfvELHT16VHl5efqv//qv+p52SdLXX3+t4cOHa8yYMfqXf/kXLV26VGPGjNEf//hHTZ06VY899pjuv/9+vfjiixo1apSOHDmidu3aXXCfn376qUaNGqUJEyYoNTVVv/vd7/TQQw8pLi5ON910U4PmCVjJALBeSkqKCQ4ONv/7v//rLPv4449NQECAqfln4NChQyYgIMC88MILPtsWFhaaVq1a+SxPTU01Xbt2dZ6XlJQYSSYjI6PWa3/77be1lv3pT38ykszWrVsv+hgOHjxoJJmQkBDzxRdfOMu3b99uJJlp06Y5y+666y7Tt29fc+bMGWdZdXW1ufXWW03Pnj2dZf379zfJyckXfN20tDTT0H8qhw4daiSZFStWOMv2799vJBl/f3/z/vvvO8tzc3ONJPPaa685y1577TUjyRw8eNBZ1rVr11rnrri42AQFBZknn3yyQfMEbMXbVYDlqqqqlJubq5SUFHXp0sVZfuONN8rtdjvP/+d//kfV1dW67777dPz4cecRFRWlnj176t13323Q64eEhDh/PnPmjI4fP65BgwZJknbt2lXv/aWkpKhTp07O8/j4eCUkJOjtt9+WJJ04cUKbNm3Sfffdp7KyMuc4vvrqK7ndbn3yySf68ssvJUnh4eHau3evPvnkkwYd28UIDQ3VmDFjnOe9e/dWeHi4brzxRiUkJDjLa/78+eef/+A+Y2NjNXjwYOd5hw4d1Lt374vaFmhJiBzAciUlJTp9+rR69uxZa13v3r2dP3/yyScyxqhnz57q0KGDz2Pfvn0qLi5u0OufOHFCTzzxhCIjIxUSEqIOHTqoe/fukqTS0tJ676+u4+jVq5dz38qnn34qY4yeffbZWseRkZEhSc6xPPfcczp58qR69eqlvn37avr06froo48adJzn07lz51pvyYWFhSkmJqbWMum7t7d+yLmxWuOaa665qG2BloR7cgBIkqqrq+Xn56cNGzbU+Yme0NDQBu33vvvu07Zt2zR9+nQNGDBAoaGhqq6u1t13363q6upLnXYtNft86qmnfK5UnatHjx6SpCFDhuizzz7Tn//8Z73zzjtavny5FixYoGXLlmnixImXZT7n+3TU+ZYbYxq8z4vZFmhJiBzAch06dFBISEidb8kcOHDA+fP1118vY4y6d++uXr161es1znfz8Ndff62NGzcqMzNTs2fPdpZfyttDdW3797//3fkG5uuuu06S1Lp1ayUlJf3g/iIiIjR+/HiNHz9e33zzjYYMGaI5c+Y4kdOQb4QGcHXg7SrAcgEBAXK73Vq3bp0OHz7sLN+3b59yc3Od5yNGjFBAQIAyMzNrXREwxlzwI99t2rSRJJ08ebLWa9dsf66FCxc25FAkSevWrXPuqZGkHTt2aPv27brnnnskSR07dtTtt9+uV199VceOHau1fUlJifPn7x9TaGioevToofLycmdZ27ZtJdU+NgBXP67kAC1AZmamcnJyNHjwYP3rv/6rKisr9fLLL+umm25y7kG5/vrr9fzzz2vWrFk6dOiQUlJS1K5dOx08eFBr167Vo48+qqeeeqrO/YeEhCg2NlarVq1Sr169FBERoT59+qhPnz4aMmSI5s+fr7Nnz6pTp0565513dPDgwQYfS48ePXTbbbdp0qRJKi8v18KFC9W+fXvNmDHDGbNkyRLddttt6tu3rx555BFdd911KioqUn5+vr744gv97W9/k/TdDby333674uLiFBERoZ07d+qNN97Q5MmTnX3FxcVJkh5//HG53W4FBAT43EgM4OpF5AAtQL9+/ZSbm6v09HTNnj1bnTt3VmZmpo4dO+Zzo+3MmTPVq1cvLViwwPlVBjExMRo2bJj++Z//+YKvsXz5ck2ZMkXTpk1TRUWFMjIy1KdPH61YsUJTpkzRkiVLZIzRsGHDtGHDBkVHRzfoWB588EH5+/tr4cKFKi4uVnx8vBYvXqwf/ehHzpjY2Fjt3LlTmZmZysrK0ldffaWOHTvqxz/+sc/bZo8//rjefPNNvfPOOyovL1fXrl31/PPPa/r06c6YESNGaMqUKVq5cqX+8Ic/yBhD5ADNhJ/hTjUAAGAh7skBAABW4u0qAE2qqqrK52bguoSGhjb4I+xXwokTJ1RRUXHe9QEBAc7v8wLQdHi7CkCTOnTokPPlgOeTkZHh/MLPq8Htt9+uLVu2nHd9165dfX6pJoCmwZUcAE0qKirK+a3f51Pz3TdXi1/96lcX/Hbhc3+VBYCmw5UcAABgJW48BgAAVmrRb1dVV1fr6NGjateuHV/dDgBAM2GMUVlZmaKjo+Xvf/7rNS06co4ePVrrNwEDAIDm4ciRI+rcufN517foyGnXrp2k706Sy+Vq4tkAAICL4fV6FRMT4/wcP58WHTk1b1G5XC4iBwCAZuaHbjXhxmMAAGAlIgcAAFiJyAEAAFYicgAAgJWIHAAAYCUiBwAAWInIAQAAViJyAACAlYgcAABgJSIHAABYicgBAABWInIAAICViBwAAGAlIgcAAFipVVNPAACulLM57/k8b333bU00EwBNgSs5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsdEmRM2/ePPn5+Wnq1KnOsjNnzigtLU3t27dXaGioRo4cqaKiIp/tDh8+rOTkZLVp00YdO3bU9OnTVVlZ6TNm8+bNuvnmmxUUFKQePXooKyur1usvWbJE3bp1U3BwsBISErRjx45LORwAAGCRBkfOBx98oFdffVX9+vXzWT5t2jS99dZbWrNmjbZs2aKjR49qxIgRzvqqqiolJyeroqJC27Zt0+uvv66srCzNnj3bGXPw4EElJyfrjjvu0O7duzV16lRNnDhRubm5zphVq1YpPT1dGRkZ2rVrl/r37y+3263i4uKGHhIAALCJaYCysjLTs2dPk5eXZ4YOHWqeeOIJY4wxJ0+eNK1btzZr1qxxxu7bt89IMvn5+cYYY95++23j7+9vPB6PM2bp0qXG5XKZ8vJyY4wxM2bMMDfddJPPa44ePdq43W7neXx8vElLS3OeV1VVmejoaDN37tyLPo7S0lIjyZSWll78wQNoNio2/F+fBwA7XOzP7wZdyUlLS1NycrKSkpJ8lhcUFOjs2bM+y2+44QZ16dJF+fn5kqT8/Hz17dtXkZGRzhi32y2v16u9e/c6Y76/b7fb7eyjoqJCBQUFPmP8/f2VlJTkjKlLeXm5vF6vzwMAANipVX03WLlypXbt2qUPPvig1jqPx6PAwECFh4f7LI+MjJTH43HGnBs4Netr1l1ojNfr1enTp/X111+rqqqqzjH79+8/79znzp2rzMzMiztQAADQrNXrSs6RI0f0xBNP6I9//KOCg4Ov1JyumFmzZqm0tNR5HDlypKmnBAAArpB6RU5BQYGKi4t18803q1WrVmrVqpW2bNmiX//612rVqpUiIyNVUVGhkydP+mxXVFSkqKgoSVJUVFStT1vVPP+hMS6XSyEhIbr22msVEBBQ55iafdQlKChILpfL5wEAAOxUr8i56667VFhYqN27dzuPgQMH6oEHHnD+3Lp1a23cuNHZ5sCBAzp8+LASExMlSYmJiSosLPT5FFReXp5cLpdiY2OdMefuo2ZMzT4CAwMVFxfnM6a6ulobN250xgAAgJatXvfktGvXTn369PFZ1rZtW7Vv395ZPmHCBKWnpysiIkIul0tTpkxRYmKiBg0aJEkaNmyYYmNjNW7cOM2fP18ej0fPPPOM0tLSFBQUJEl67LHHtHjxYs2YMUMPP/ywNm3apNWrVys7O9t53fT0dKWmpmrgwIGKj4/XwoULderUKY0fP/6STggAALBDvW88/iELFiyQv7+/Ro4cqfLycrndbr3yyivO+oCAAK1fv16TJk1SYmKi2rZtq9TUVD333HPOmO7duys7O1vTpk3TokWL1LlzZy1fvlxut9sZM3r0aJWUlGj27NnyeDwaMGCAcnJyat2MDAAAWiY/Y4xp6kk0Fa/Xq7CwMJWWlnJ/DmChsznv+TxvffdtTTQTAJfTxf785ndXAQAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwUqumngAAXCmHTm7wed5TtzXRTAA0Ba7kAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsFK9Imfp0qXq16+fXC6XXC6XEhMTtWHDBmf9mTNnlJaWpvbt2ys0NFQjR45UUVGRzz4OHz6s5ORktWnTRh07dtT06dNVWVnpM2bz5s26+eabFRQUpB49eigrK6vWXJYsWaJu3bopODhYCQkJ2rFjR30OBQAAWK5ekdO5c2fNmzdPBQUF2rlzp+68807de++92rt3ryRp2rRpeuutt7RmzRpt2bJFR48e1YgRI5ztq6qqlJycrIqKCm3btk2vv/66srKyNHv2bGfMwYMHlZycrDvuuEO7d+/W1KlTNXHiROXm5jpjVq1apfT0dGVkZGjXrl3q37+/3G63iouLL/V8AAAAS/gZY8yl7CAiIkIvvviiRo0apQ4dOmjFihUaNWqUJGn//v268cYblZ+fr0GDBmnDhg0aPny4jh49qsjISEnSsmXL9PTTT6ukpESBgYF6+umnlZ2drT179jivMWbMGJ08eVI5OTmSpISEBN1yyy1avHixJKm6uloxMTGaMmWKZs6cedFz93q9CgsLU2lpqVwu16WcBgBXoU9W/tLnec8xLzTRTABcThf787vB9+RUVVVp5cqVOnXqlBITE1VQUKCzZ88qKSnJGXPDDTeoS5cuys/PlyTl5+erb9++TuBIktvtltfrda4G5efn++yjZkzNPioqKlRQUOAzxt/fX0lJSc6Y8ykvL5fX6/V5AAAAO9U7cgoLCxUaGqqgoCA99thjWrt2rWJjY+XxeBQYGKjw8HCf8ZGRkfJ4PJIkj8fjEzg162vWXWiM1+vV6dOndfz4cVVVVdU5pmYf5zN37lyFhYU5j5iYmPoePgAAaCbqHTm9e/fW7t27tX37dk2aNEmpqan6+OOPr8TcLrtZs2aptLTUeRw5cqSppwQAAK6QVvXdIDAwUD169JAkxcXF6YMPPtCiRYs0evRoVVRU6OTJkz5Xc4qKihQVFSVJioqKqvUpqJpPX5075vufyCoqKpLL5VJISIgCAgIUEBBQ55iafZxPUFCQgoKC6nvIAACgGbrk78mprq5WeXm54uLi1Lp1a23cuNFZd+DAAR0+fFiJiYmSpMTERBUWFvp8CiovL08ul0uxsbHOmHP3UTOmZh+BgYGKi4vzGVNdXa2NGzc6YwAAAOp1JWfWrFm655571KVLF5WVlWnFihXavHmzcnNzFRYWpgkTJig9PV0RERFyuVyaMmWKEhMTNWjQIEnSsGHDFBsbq3Hjxmn+/PnyeDx65plnlJaW5lxheeyxx7R48WLNmDFDDz/8sDZt2qTVq1crOzvbmUd6erpSU1M1cOBAxcfHa+HChTp16pTGjx9/GU8NAABozuoVOcXFxXrwwQd17NgxhYWFqV+/fsrNzdVPf/pTSdKCBQvk7++vkSNHqry8XG63W6+88oqzfUBAgNavX69JkyYpMTFRbdu2VWpqqp577jlnTPfu3ZWdna1p06Zp0aJF6ty5s5YvXy632+2MGT16tEpKSjR79mx5PB4NGDBAOTk5tW5GBgAALdclf09Oc8b35AB243tyADtd8e/JAQAAuJoROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsFK9Imfu3Lm65ZZb1K5dO3Xs2FEpKSk6cOCAz5gzZ84oLS1N7du3V2hoqEaOHKmioiKfMYcPH1ZycrLatGmjjh07avr06aqsrPQZs3nzZt18880KCgpSjx49lJWVVWs+S5YsUbdu3RQcHKyEhATt2LGjPocDAAAsVq/I2bJli9LS0vT+++8rLy9PZ8+e1bBhw3Tq1ClnzLRp0/TWW29pzZo12rJli44ePaoRI0Y466uqqpScnKyKigpt27ZNr7/+urKysjR79mxnzMGDB5WcnKw77rhDu3fv1tSpUzVx4kTl5uY6Y1atWqX09HRlZGRo165d6t+/v9xut4qLiy/lfAAAAEv4GWNMQzcuKSlRx44dtWXLFg0ZMkSlpaXq0KGDVqxYoVGjRkmS9u/frxtvvFH5+fkaNGiQNmzYoOHDh+vo0aOKjIyUJC1btkxPP/20SkpKFBgYqKefflrZ2dnas2eP81pjxozRyZMnlZOTI0lKSEjQLbfcosWLF0uSqqurFRMToylTpmjmzJkXNX+v16uwsDCVlpbK5XI19DQAuEp9svKXPs97jnmhiWYC4HK62J/fl3RPTmlpqSQpIiJCklRQUKCzZ88qKSnJGXPDDTeoS5cuys/PlyTl5+erb9++TuBIktvtltfr1d69e50x5+6jZkzNPioqKlRQUOAzxt/fX0lJSc6YupSXl8vr9fo8AACAnRocOdXV1Zo6dap+8pOfqE+fPpIkj8ejwMBAhYeH+4yNjIyUx+NxxpwbODXra9ZdaIzX69Xp06d1/PhxVVVV1TmmZh91mTt3rsLCwpxHTExM/Q8cAAA0Cw2OnLS0NO3Zs0crV668nPO5ombNmqXS0lLnceTIkaaeEgAAuEJaNWSjyZMna/369dq6das6d+7sLI+KilJFRYVOnjzpczWnqKhIUVFRzpjvfwqq5tNX5475/ieyioqK5HK5FBISooCAAAUEBNQ5pmYfdQkKClJQUFD9DxgAADQ79bqSY4zR5MmTtXbtWm3atEndu3f3WR8XF6fWrVtr48aNzrIDBw7o8OHDSkxMlCQlJiaqsLDQ51NQeXl5crlcio2Ndcacu4+aMTX7CAwMVFxcnM+Y6upqbdy40RkDAABatnpdyUlLS9OKFSv05z//We3atXPufwkLC1NISIjCwsI0YcIEpaenKyIiQi6XS1OmTFFiYqIGDRokSRo2bJhiY2M1btw4zZ8/Xx6PR88884zS0tKcqyyPPfaYFi9erBkzZujhhx/Wpk2btHr1amVnZztzSU9PV2pqqgYOHKj4+HgtXLhQp06d0vjx4y/XuQEAAM1YvSJn6dKlkqTbb7/dZ/lrr72mhx56SJK0YMEC+fv7a+TIkSovL5fb7dYrr7zijA0ICND69es1adIkJSYmqm3btkpNTdVzzz3njOnevbuys7M1bdo0LVq0SJ07d9by5cvldrudMaNHj1ZJSYlmz54tj8ejAQMGKCcnp9bNyAAAoGW6pO/Jae74nhzAbnxPDmCnRvmeHAAAgKsVkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACvVO3K2bt2qn/3sZ4qOjpafn5/WrVvns94Yo9mzZ+tHP/qRQkJClJSUpE8++cRnzIkTJ/TAAw/I5XIpPDxcEyZM0DfffOMz5qOPPtLgwYMVHBysmJgYzZ8/v9Zc1qxZoxtuuEHBwcHq27ev3n777foeDgAAsFS9I+fUqVPq37+/lixZUuf6+fPn69e//rWWLVum7du3q23btnK73Tpz5owz5oEHHtDevXuVl5en9evXa+vWrXr00Ued9V6vV8OGDVPXrl1VUFCgF198UXPmzNFvfvMbZ8y2bds0duxYTZgwQR9++KFSUlKUkpKiPXv21PeQAACAhfyMMabBG/v5ae3atUpJSZH03VWc6OhoPfnkk3rqqackSaWlpYqMjFRWVpbGjBmjffv2KTY2Vh988IEGDhwoScrJydE//dM/6YsvvlB0dLSWLl2qX/7yl/J4PAoMDJQkzZw5U+vWrdP+/fslSaNHj9apU6e0fv16Zz6DBg3SgAEDtGzZsouav9frVVhYmEpLS+VyuRp6GgBcpT5Z+Uuf5z3HvNBEMwFwOV3sz+/Lek/OwYMH5fF4lJSU5CwLCwtTQkKC8vPzJUn5+fkKDw93AkeSkpKS5O/vr+3btztjhgwZ4gSOJLndbh04cEBff/21M+bc16kZU/M6dSkvL5fX6/V5AAAAO13WyPF4PJKkyMhIn+WRkZHOOo/Ho44dO/qsb9WqlSIiInzG1LWPc1/jfGNq1tdl7ty5CgsLcx4xMTH1PUQAANBMtKhPV82aNUulpaXO48iRI009JQAAcIVc1siJioqSJBUVFfksLyoqctZFRUWpuLjYZ31lZaVOnDjhM6aufZz7GucbU7O+LkFBQXK5XD4PAABgp8saOd27d1dUVJQ2btzoLPN6vdq+fbsSExMlSYmJiTp58qQKCgqcMZs2bVJ1dbUSEhKcMVu3btXZs2edMXl5eerdu7euueYaZ8y5r1MzpuZ1AABAy1bvyPnmm2+0e/du7d69W9J3Nxvv3r1bhw8flp+fn6ZOnarnn39eb775pgoLC/Xggw8qOjra+QTWjTfeqLvvvluPPPKIduzYob/+9a+aPHmyxowZo+joaEnS/fffr8DAQE2YMEF79+7VqlWrtGjRIqWnpzvzeOKJJ5STk6Nf/epX2r9/v+bMmaOdO3dq8uTJl35WAABA82fq6d133zWSaj1SU1ONMcZUV1ebZ5991kRGRpqgoCBz1113mQMHDvjs46uvvjJjx441oaGhxuVymfHjx5uysjKfMX/729/MbbfdZoKCgkynTp3MvHnzas1l9erVplevXiYwMNDcdNNNJjs7u17HUlpaaiSZ0tLS+p0EAM3C3//0f3weAOxwsT+/L+l7cpo7vicHsBvfkwPYqUm+JwcAAOBqQeQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACwEpEDAACsROQAAAArtWrqCQDA5VZeeUYbCpbrYNU+RZgQxQd0USs//j8d0NI0+//qlyxZom7duik4OFgJCQnasWNHU08JQBN6bXOGxmb/RK8X/U5b2x3SOtc+/bJNrnIr/97UUwPQyJp15KxatUrp6enKyMjQrl271L9/f7ndbhUXFzf11AA0gdc2Z+jN0rdkZHyWG0kb232m1zZnNM3EADSJZh05//Ef/6FHHnlE48ePV2xsrJYtW6Y2bdrod7/7XVNPDUAjK688o7dK13/3xO97K///8/Wl61VeeaZR5wWg6TTbe3IqKipUUFCgWbNmOcv8/f2VlJSk/Pz8OrcpLy9XeXm587y0tFSS5PV6r+xkAVxx63e+qorTlT847r+3vqzhA3/RCDMCcKXU/Nw2xlxwXLONnOPHj6uqqkqRkZE+yyMjI7V///46t5k7d64yMzNrLY+JibkicwRw9cnWDEkzmnoaAC6DsrIyhYWFnXd9s42chpg1a5bS09Od59XV1Tpx4oTat28vP7/vX99uWbxer2JiYnTkyBG5XK6mno61OM+Nh3PdODjPjYPz7MsYo7KyMkVHR19wXLONnGuvvVYBAQEqKiryWV5UVKSoqKg6twkKClJQUJDPsvDw8Cs1xWbJ5XLxH1Aj4Dw3Hs514+A8Nw7O8z9c6ApOjWZ743FgYKDi4uK0ceNGZ1l1dbU2btyoxMTEJpwZAAC4GjTbKzmSlJ6ertTUVA0cOFDx8fFauHChTp06pfHjxzf11AAAQBNr1pEzevRolZSUaPbs2fJ4PBowYIBycnJq3YyMHxYUFKSMjIxab+fh8uI8Nx7OdePgPDcOznPD+Jkf+vwVAABAM9Rs78kBAAC4ECIHAABYicgBAABWInIAAICViBwAAGAlIqcFO3HihB544AG5XC6Fh4drwoQJ+uabby5qW2OM7rnnHvn5+WndunVXdqLNXH3P84kTJzRlyhT17t1bISEh6tKlix5//HHnF8riH5YsWaJu3bopODhYCQkJ2rFjxwXHr1mzRjfccIOCg4PVt29fvf3224000+atPuf5t7/9rQYPHqxrrrlG11xzjZKSkn7wfxd8p75/n2usXLlSfn5+SklJubITbIaInBbsgQce0N69e5WXl6f169dr69atevTRRy9q24ULF7b43/d1sep7no8ePaqjR4/qpZde0p49e5SVlaWcnBxNmDChEWd99Vu1apXS09OVkZGhXbt2qX///nK73SouLq5z/LZt2zR27FhNmDBBH374oVJSUpSSkqI9e/Y08sybl/qe582bN2vs2LF69913lZ+fr5iYGA0bNkxffvllI8+8eanvea5x6NAhPfXUUxo8eHAjzbSZMWiRPv74YyPJfPDBB86yDRs2GD8/P/Pll19ecNsPP/zQdOrUyRw7dsxIMmvXrr3Cs22+LuU8n2v16tUmMDDQnD179kpMs1mKj483aWlpzvOqqioTHR1t5s6dW+f4++67zyQnJ/ssS0hIML/4xS+u6Dybu/qe5++rrKw07dq1M6+//vqVmqIVGnKeKysrza233mqWL19uUlNTzb333tsIM21euJLTQuXn5ys8PFwDBw50liUlJcnf31/bt28/73bffvut7r//fi1ZsuS8vwgV/9DQ8/x9paWlcrlcatWqWX9J+WVTUVGhgoICJSUlOcv8/f2VlJSk/Pz8OrfJz8/3GS9Jbrf7vOPRsPP8fd9++63Onj2riIiIKzXNZq+h5/m5555Tx44ducp7AfyL2UJ5PB517NjRZ1mrVq0UEREhj8dz3u2mTZumW2+9Vffee++VnqIVGnqez3X8+HH927/920W/ldgSHD9+XFVVVbV+hUtkZKT2799f5zYej6fO8Rf7v0NL1JDz/H1PP/20oqOjawUm/qEh5/m9997Tf/7nf2r37t2NMMPmiys5lpk5c6b8/Pwu+LjYf5y+780339SmTZu0cOHCyzvpZuhKnudzeb1eJScnKzY2VnPmzLn0iQONaN68eVq5cqXWrl2r4ODgpp6ONcrKyjRu3Dj99re/1bXXXtvU07mqcSXHMk8++aQeeuihC4657rrrFBUVVeuGtsrKSp04ceK8b0Nt2rRJn332mcLDw32Wjxw5UoMHD9bmzZsvYebNy5U8zzXKysp09913q127dlq7dq1at259qdO2xrXXXquAgAAVFRX5LC8qKjrveY2KiqrXeDTsPNd46aWXNG/ePP3lL39Rv379ruQ0m736nufPPvtMhw4d0s9+9jNnWXV1taTvrhQfOHBA119//ZWddHPR1DcFoWnU3BC7c+dOZ1lubu4Fb4g9duyYKSws9HlIMosWLTKff/55Y029WWnIeTbGmNLSUjNo0CAzdOhQc+rUqcaYarMTHx9vJk+e7DyvqqoynTp1uuCNx8OHD/dZlpiYyI3HP6C+59kYY/793//duFwuk5+f3xhTtEJ9zvPp06dr/Vt87733mjvvvNMUFhaa8vLyxpz6VY3IacHuvvtu8+Mf/9hs377dvPfee6Znz55m7NixzvovvvjC9O7d22zfvv28+xCfrvpB9T3PpaWlJiEhwfTt29d8+umn5tixY86jsrKyqQ7jqrNy5UoTFBRksrKyzMcff2weffRREx4ebjwejzHGmHHjxpmZM2c64//617+aVq1amZdeesns27fPZGRkmNatW5vCwsKmOoRmob7ned68eSYwMNC88cYbPn93y8rKmuoQmoX6nufv49NVdSNyWrCvvvrKjB071oSGhhqXy2XGjx/v8w/RwYMHjSTz7rvvnncfRM4Pq+95fvfdd42kOh8HDx5smoO4Sr388sumS5cuJjAw0MTHx5v333/fWTd06FCTmprqM3716tWmV69eJjAw0Nx0000mOzu7kWfcPNXnPHft2rXOv7sZGRmNP/Fmpr5/n89F5NTNzxhjGvstMgAAgCuNT1cBAAArETkAAMBKRA4AALASkQMAAKxE5AAAACsROQAAwEpEDgAAsBKRAwAArETkAAAAKxE5AADASkQOAACw0v8DFx9432T+NAkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM91JREFUeJzt3XtUVXX+//HXAQRUPOAVNPF+KZWwMJFu6gzjcaLSrzhqNUqmXdFUKtOp8dLUMFmTlWLWtzVhpWWO6UyiMAxe+pWkhjKhmWOFaRmoGaCUXPfvj37sn0dQOXhBPj4fa521OJ/93nu/98ez4OU+++zjsCzLEgAAgGG86rsBAACAC4GQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADoF7NmTNHDoejvts4L5KTk+VwOLRv3776buWS4XA4NGfOnPpuA5cpQg6ABmvz5s2aM2eOCgoK6ruV01q0aJGSk5Mv6D4cDoccDocmTpxY4/InnnjCrjly5MgF7QW4lDj47ioA9am8vFzl5eXy9/f3eN3nn39ejz32mHJzc9WpU6fz35yHKioqVFZWJj8/P/vsVJ8+fdSqVStt3Ljxgu3X4XDI399f/v7+ys/Pl6+vr9vyLl266Pvvv9eJEyd0+PBhtWrV6oL1cqoTJ07Ix8dHPj4+F22fQBXO5AAXUGVlpU6cOFHfbbgpLi6+4PuwLEs///xzrWp9fHzqFHAuRd7e3vL396+Xt9+GDh2qoqIirVu3zm188+bNys3NVUxMzEXvSZL8/f0JOKg3hBygFqquG/niiy80atQoOZ1OtWzZUlOmTHELMQ6HQ5MmTdLSpUvVu3dv+fn5KTU1VZL03Xff6Z577lFwcLD8/PzUu3dv/e1vf6u2rxMnTmjOnDnq0aOH/P391bZtW40YMUJfffWVJGnjxo1yOBzVzgzs27dPDofD7a2Ru+++WwEBAfrqq690yy23qFmzZrrrrrskSXv37lVsbKxCQkLk7++v9u3ba8yYMSosLLTXLy8v15/+9Cd17dpVfn5+6tSpk/7whz+opKTEbd+dOnXSrbfeqrS0NPXr10+NGzfWq6++6tHcnqxqHlevXq0+ffrY81U1l1XrPfbYY5Kkzp0722/HnHw9zNtvv62IiAg1btxYLVq00JgxY3TgwAG3fQ0aNEh9+vTR559/rsGDB6tJkya64oorNG/evGq9LliwQL1791aTJk3UvHlz9evXT8uWLbOXn3pNTqdOnbRr1y5t2rTJ7m/QoEH6+uuv5XA4NH/+/Gr72Lx5sxwOh955551azV+VK664QjfffLNbP5K0dOlShYWFqU+fPh5t7+Tj+eijj/Twww+rdevWCgoK0v3336/S0lIVFBRo3Lhxat68uZo3b67p06fr1DcHTr0mp+rf+8svv9Tdd9+toKAgBQYGavz48frpp5887hE4E+I14IFRo0apU6dOSkxM1CeffKKXX35ZP/74o9588027Zv369Xrvvfc0adIktWrVSp06dVJ+fr4GDBhg//Fu3bq11q1bpwkTJqioqEhTp06V9MvbHbfeeqsyMjI0ZswYTZkyRceOHVN6erp27typrl27etxzeXm5XC6XbrzxRj3//PNq0qSJSktL5XK5VFJSosmTJyskJETfffed1qxZo4KCAgUGBkqSJk6cqCVLlmjkyJF65JFHtGXLFiUmJmr37t1atWqV23727NmjO+64Q/fff7/uvfde9ezZs+4TLemjjz7S+++/r4ceekjNmjXTyy+/rNjYWO3fv18tW7bUiBEj9N///lfvvPOO5s+fb78F07p1a0nSM888oz/+8Y8aNWqUJk6cqMOHD2vBggW6+eabtWPHDgUFBdn7+vHHHzV06FCNGDFCo0aN0t///nc9/vjjCgsL029/+1tJ0v/+7//q4Ycf1siRI+1w+9lnn2nLli268847azyGF198UZMnT1ZAQICeeOIJSVJwcLC6dOmiG264QUuXLtW0adPc1lm6dKmaNWumYcOGeTxnd955p6ZMmaLjx48rICBA5eXlWrFihRISEs7pjGLVa2Tu3Ln65JNP9NprrykoKEibN29Whw4d9Oc//1lr167Vc889pz59+mjcuHFn3eaoUaPUuXNnJSYmavv27Xr99dfVpk0bPfvss3XuE6jGAnBWs2fPtiRZt99+u9v4Qw89ZEmy/vOf/1iWZVmSLC8vL2vXrl1udRMmTLDatm1rHTlyxG18zJgxVmBgoPXTTz9ZlmVZf/vb3yxJ1gsvvFCth8rKSsuyLGvDhg2WJGvDhg1uy3Nzcy1J1htvvGGPxcXFWZKsGTNmuNXu2LHDkmStWLHitMecnZ1tSbImTpzoNv7oo49akqz169fbYx07drQkWampqafd3ulUze3JJFm+vr7Wl19+aY/95z//sSRZCxYssMeee+45S5KVm5vrtv6+ffssb29v65lnnnEbz8nJsXx8fNzGBw4caEmy3nzzTXuspKTECgkJsWJjY+2xYcOGWb179z7jsbzxxhvV+undu7c1cODAarWvvvqqJcnavXu3PVZaWmq1atXKiouLO+N+TiXJio+Pt44ePWr5+vpab731lmVZlpWSkmI5HA5r37599jwfPny41tutOh6Xy2W//izLsqKioiyHw2E98MAD9lh5ebnVvn37ascqyZo9e7b9vKqPe+65x63uf/7nf6yWLVt6cNTA2fF2FeCB+Ph4t+eTJ0+WJK1du9YeGzhwoHr16mU/tyxLK1eu1G233SbLsnTkyBH74XK5VFhYqO3bt0uSVq5cqVatWtnbPdm5XOfx4IMPuj2vOlOTlpZ22rcIqo4pISHBbfyRRx6RJKWkpLiNd+7cWS6Xq849nio6OtrtzNXVV18tp9Opr7/++qzrvv/++6qsrNSoUaPc5jskJETdu3fXhg0b3OoDAgL0+9//3n7u6+ur/v37u+0rKChI3377rbZt23Yeju6XMxn+/v5aunSpPZaWlqYjR4649eKJ5s2ba+jQofZbXcuWLdP111+vjh07nlOvEyZMcHv9RUZGyrIsTZgwwR7z9vZWv379avXvI0kPPPCA2/ObbrpJP/zwg4qKis6pV+BkhBzAA927d3d73rVrV3l5ebldB9K5c2e3msOHD6ugoECvvfaaWrdu7fYYP368JOnQoUOSpK+++ko9e/Y8rxdq+vj4qH379m5jnTt3VkJCgl5//XW1atVKLpdLSUlJbtfjfPPNN/Ly8lK3bt3c1g0JCVFQUJC++eabats8nzp06FBtrHnz5vrxxx/Puu7evXtlWZa6d+9ebc53795tz3eV9u3bVwuRp+7r8ccfV0BAgPr376/u3bsrPj5eH3/8cR2P7pfQdNttt7ldQ7N06VJdccUV+tWvflXn7d55551KT0/X/v37tXr16tO+leaJU/8tqkJyaGhotfHa/PvUtM3mzZtLUq3XB2qDa3KAc1DT2ZXGjRu7Pa+srJQk/f73v1dcXFyN27n66qvPaZ/SL9fz1MTPz09eXtX/P/PXv/5Vd999t/7xj3/oX//6lx5++GH7WqOTQ1FtzyCdetznytvbu8ZxqxZ3vaisrJTD4dC6detq3E5AQIDH+7rqqqu0Z88erVmzRqmpqVq5cqUWLVqkWbNmae7cuWftqSbjxo3TihUrtHnzZoWFhemf//ynHnrooRr/vWrr9ttvl5+fn+Li4lRSUqJRo0bVeVtVTjc/NY3X5t/nTNus7fpAbRByAA/s3bvX7YzFl19+qcrKyjPeo6V169Zq1qyZKioqFB0dfcbtd+3aVVu2bFFZWZkaNWpUY03V/3hPvQHeqWdWaiMsLExhYWF68skntXnzZt1www1avHixnn76aXXs2FGVlZXau3evrrrqKnud/Px8FRQUnPNbIOfD6QJY165dZVmWOnfurB49epy3/TVt2lSjR4/W6NGjVVpaqhEjRuiZZ57RzJkzT/sx+DOFxKFDh6p169ZaunSpIiMj9dNPP2ns2LHn1GPjxo01fPhwvf322/rtb397Ue+JA1xqeLsK8EBSUpLb8wULFkiS/Qmcmnh7eys2NlYrV67Uzp07qy0/fPiw/XNsbKyOHDmihQsXVqur+h9ux44d5e3trQ8//NBt+aJFi2p9HEVFRSovL3cbCwsLk5eXl/3x8FtuuUXSL58QOtkLL7wgSfV235WTNW3aVFL1wDdixAh5e3tr7ty51c4MWJalH374weN9nbqOr6+vevXqJcuyVFZWdsYeT3dHZh8fH91xxx167733lJycrLCwMI/O6p3Oo48+qtmzZ+uPf/zjOW8LaMg4kwN4IDc3V7fffruGDh2qzMxMvf3227rzzjsVHh5+xvX+8pe/aMOGDYqMjNS9996rXr166ejRo9q+fbv+/e9/6+jRo5J+efvizTffVEJCgrZu3aqbbrpJxcXF+ve//62HHnpIw4YNU2BgoH73u99pwYIFcjgc6tq1q9asWVPtOpMzWb9+vSZNmqTf/e536tGjh8rLy/XWW2/ZgUySwsPDFRcXp9dee00FBQUaOHCgtm7dqiVLlmj48OEaPHhw3SfyPImIiJD0y9cWjBkzRo0aNdJtt92mrl276umnn9bMmTO1b98+DR8+XM2aNVNubq5WrVql++67T48++qhH+xoyZIhCQkJ0ww03KDg4WLt379bChQsVExOjZs2anbHHV155RU8//bS6deumNm3auF1zM27cOL388svasGHDefv4dHh4+Flfk8DlgJADeGD58uWaNWuWZsyYIR8fH02aNEnPPffcWdcLDg7W1q1b9dRTT+n999/XokWL1LJlS/Xu3dvtD5u3t7fWrl2rZ555RsuWLdPKlSvVsmVL3XjjjQoLC7PrFixYoLKyMi1evFh+fn4aNWqUfY+S2ggPD5fL5dIHH3yg7777Tk2aNFF4eLjWrVunAQMG2HWvv/66unTpouTkZK1atUohISGaOXOmZs+e7cGsXTjXXXed/vSnP2nx4sVKTU1VZWWlcnNz1bRpU82YMUM9evTQ/Pnz7WtmQkNDNWTIEN1+++0e7+v+++/X0qVL9cILL+j48eNq3769Hn74YT355JNnXG/WrFn65ptvNG/ePB07dkwDBw50CzkRERHq3bu3du/ebd+oEcD5wXdXAbUwZ84czZ0796J/7w8uD9dcc41atGihjIyM+m4FMArX5ABAPfr000+VnZ1dq7sEA/AMb1cBuCAKCwvP+iWdISEhF6mbS8/OnTuVlZWlv/71r2rbtq1Gjx7ttryiosLtovSaBAQEVPs4fG38/PPPbvdEqkmLFi2qfZs50NAQcgBcEFOmTNGSJUvOWHM5v1v+97//XU899ZR69uypd955p9pH0A8cOHDWGyzOnj3b7csva2v58uX2jShPZ8OGDRo0aJDH2wYuJVyTA+CC+Pzzz3Xw4MEz1pztvkGXsxMnTuijjz46Y02XLl3UpUsXj7f9/fffa9euXWesiYiIsO/JBDRUhBwAAGAkLjwGAABGuqyvyamsrNTBgwfVrFmzc/qGZwAAcPFYlqVjx46pXbt2Z/yut8s65Bw8eLDat+gCAICG4cCBA25fKHyqyzrkVN2K/cCBA3I6nfXcDQAAqI2ioiKFhoae8StVpMs85FS9ReV0Ogk5AAA0MGe71IQLjwEAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACM5FPfDZiqLPUj++dGQ2+sx04AALg8cSYHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASOcUcv7yl7/I4XBo6tSp9tiJEycUHx+vli1bKiAgQLGxscrPz3dbb//+/YqJiVGTJk3Upk0bPfbYYyovL3er2bhxo6699lr5+fmpW7duSk5Orrb/pKQkderUSf7+/oqMjNTWrVvP5XAAAIBB6hxytm3bpldffVVXX3212/i0adP0wQcfaMWKFdq0aZMOHjyoESNG2MsrKioUExOj0tJSbd68WUuWLFFycrJmzZpl1+Tm5iomJkaDBw9Wdna2pk6dqokTJyotLc2uWb58uRISEjR79mxt375d4eHhcrlcOnToUF0PCQAAmMSqg2PHjlndu3e30tPTrYEDB1pTpkyxLMuyCgoKrEaNGlkrVqywa3fv3m1JsjIzMy3Lsqy1a9daXl5eVl5enl3zyiuvWE6n0yopKbEsy7KmT59u9e7d222fo0ePtlwul/28f//+Vnx8vP28oqLCateunZWYmHjavk+cOGEVFhbajwMHDliSrMLCwrpMwxmVrvs/9gMAAJw/hYWFtfr7XaczOfHx8YqJiVF0dLTbeFZWlsrKytzGr7zySnXo0EGZmZmSpMzMTIWFhSk4ONiucblcKioq0q5du+yaU7ftcrnsbZSWliorK8utxsvLS9HR0XZNTRITExUYGGg/QkND63L4AACgAfA45Lz77rvavn27EhMTqy3Ly8uTr6+vgoKC3MaDg4OVl5dn15wccKqWVy07U01RUZF+/vlnHTlyRBUVFTXWVG2jJjNnzlRhYaH9OHDgQO0OGgAANDg+nhQfOHBAU6ZMUXp6uvz9/S9UTxeMn5+f/Pz86rsNAABwEXh0JicrK0uHDh3StddeKx8fH/n4+GjTpk16+eWX5ePjo+DgYJWWlqqgoMBtvfz8fIWEhEiSQkJCqn3aqur52WqcTqcaN26sVq1aydvbu8aaqm0AAIDLm0ch59e//rVycnKUnZ1tP/r166e77rrL/rlRo0bKyMiw19mzZ4/279+vqKgoSVJUVJRycnLcPgWVnp4up9OpXr162TUnb6Oqpmobvr6+ioiIcKuprKxURkaGXQMAAC5vHr1d1axZM/Xp08dtrGnTpmrZsqU9PmHCBCUkJKhFixZyOp2aPHmyoqKiNGDAAEnSkCFD1KtXL40dO1bz5s1TXl6ennzyScXHx9tvJT3wwANauHChpk+frnvuuUfr16/Xe++9p5SUFHu/CQkJiouLU79+/dS/f3+9+OKLKi4u1vjx489pQgAAgBk8Cjm1MX/+fHl5eSk2NlYlJSVyuVxatGiRvdzb21tr1qzRgw8+qKioKDVt2lRxcXF66qmn7JrOnTsrJSVF06ZN00svvaT27dvr9ddfl8vlsmtGjx6tw4cPa9asWcrLy1Pfvn2Vmppa7WJkAABweXJYlmXVdxP1paioSIGBgSosLJTT6Tyv2y5L/cj+udHQG8/rtgEAuJzV9u83310FAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADCST303YKp9Bevsn70+3SVJ6trv/vpqBwCAyw5ncgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI3kUcl555RVdffXVcjqdcjqdioqK0rp16+zlJ06cUHx8vFq2bKmAgADFxsYqPz/fbRv79+9XTEyMmjRpojZt2uixxx5TeXm5W83GjRt17bXXys/PT926dVNycnK1XpKSktSpUyf5+/srMjJSW7du9eRQAACA4TwKOe3bt9df/vIXZWVl6dNPP9WvfvUrDRs2TLt27ZIkTZs2TR988IFWrFihTZs26eDBgxoxYoS9fkVFhWJiYlRaWqrNmzdryZIlSk5O1qxZs+ya3NxcxcTEaPDgwcrOztbUqVM1ceJEpaWl2TXLly9XQkKCZs+ere3btys8PFwul0uHDh061/kAAACGcFiWZZ3LBlq0aKHnnntOI0eOVOvWrbVs2TKNHDlSkvTFF1/oqquuUmZmpgYMGKB169bp1ltv1cGDBxUcHCxJWrx4sR5//HEdPnxYvr6+evzxx5WSkqKdO3fa+xgzZowKCgqUmpoqSYqMjNR1112nhQsXSpIqKysVGhqqyZMna8aMGbXuvaioSIGBgSosLJTT6TyXaahm77tP2D97desgSera7/7zug8AAC5Htf37XedrcioqKvTuu++quLhYUVFRysrKUllZmaKjo+2aK6+8Uh06dFBmZqYkKTMzU2FhYXbAkSSXy6WioiL7bFBmZqbbNqpqqrZRWlqqrKwstxovLy9FR0fbNadTUlKioqIitwcAADCTxyEnJydHAQEB8vPz0wMPPKBVq1apV69eysvLk6+vr4KCgtzqg4ODlZeXJ0nKy8tzCzhVy6uWnammqKhIP//8s44cOaKKiooaa6q2cTqJiYkKDAy0H6GhoZ4ePgAAaCA8Djk9e/ZUdna2tmzZogcffFBxcXH6/PPPL0Rv593MmTNVWFhoPw4cOFDfLQEAgAvEx9MVfH191a1bN0lSRESEtm3bppdeekmjR49WaWmpCgoK3M7m5OfnKyQkRJIUEhJS7VNQVZ++Ornm1E9k5efny+l0qnHjxvL29pa3t3eNNVXbOB0/Pz/5+fl5esgAAKABOuf75FRWVqqkpEQRERFq1KiRMjIy7GV79uzR/v37FRUVJUmKiopSTk6O26eg0tPT5XQ61atXL7vm5G1U1VRtw9fXVxEREW41lZWVysjIsGsAAAA8OpMzc+ZM/fa3v1WHDh107NgxLVu2TBs3blRaWpoCAwM1YcIEJSQkqEWLFnI6nZo8ebKioqI0YMAASdKQIUPUq1cvjR07VvPmzVNeXp6efPJJxcfH22dYHnjgAS1cuFDTp0/XPffco/Xr1+u9995TSkqK3UdCQoLi4uLUr18/9e/fXy+++KKKi4s1fvz48zg1AACgIfMo5Bw6dEjjxo3T999/r8DAQF199dVKS0vTb37zG0nS/Pnz5eXlpdjYWJWUlMjlcmnRokX2+t7e3lqzZo0efPBBRUVFqWnTpoqLi9NTTz1l13Tu3FkpKSmaNm2aXnrpJbVv316vv/66XC6XXTN69GgdPnxYs2bNUl5envr27avU1NRqFyMDAIDL1znfJ6ch4z45AAA0PBf8PjkAAACXMkIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCSPQk5iYqKuu+46NWvWTG3atNHw4cO1Z88et5oTJ04oPj5eLVu2VEBAgGJjY5Wfn+9Ws3//fsXExKhJkyZq06aNHnvsMZWXl7vVbNy4Uddee638/PzUrVs3JScnV+snKSlJnTp1kr+/vyIjI7V161ZPDgcAABjMo5CzadMmxcfH65NPPlF6errKyso0ZMgQFRcX2zXTpk3TBx98oBUrVmjTpk06ePCgRowYYS+vqKhQTEyMSktLtXnzZi1ZskTJycmaNWuWXZObm6uYmBgNHjxY2dnZmjp1qiZOnKi0tDS7Zvny5UpISNDs2bO1fft2hYeHy+Vy6dChQ+cyHwAAwBAOy7Ksuq58+PBhtWnTRps2bdLNN9+swsJCtW7dWsuWLdPIkSMlSV988YWuuuoqZWZmasCAAVq3bp1uvfVWHTx4UMHBwZKkxYsX6/HHH9fhw4fl6+urxx9/XCkpKdq5c6e9rzFjxqigoECpqamSpMjISF133XVauHChJKmyslKhoaGaPHmyZsyYUWO/JSUlKikpsZ8XFRUpNDRUhYWFcjqddZ2GGu199wn7Z69uHSRJXfvdf173AQDA5aioqEiBgYFn/ft9TtfkFBYWSpJatGghScrKylJZWZmio6PtmiuvvFIdOnRQZmamJCkzM1NhYWF2wJEkl8uloqIi7dq1y645eRtVNVXbKC0tVVZWlluNl5eXoqOj7ZqaJCYmKjAw0H6Ehoaey+EDAIBLWJ1DTmVlpaZOnaobbrhBffr0kSTl5eXJ19dXQUFBbrXBwcHKy8uza04OOFXLq5adqaaoqEg///yzjhw5ooqKihprqrZRk5kzZ6qwsNB+HDhwwPMDBwAADYJPXVeMj4/Xzp079dFHH53Pfi4oPz8/+fn51XcbAADgIqjTmZxJkyZpzZo12rBhg9q3b2+Ph4SEqLS0VAUFBW71+fn5CgkJsWtO/bRV1fOz1TidTjVu3FitWrWSt7d3jTVV2wAAAJc3j0KOZVmaNGmSVq1apfXr16tz585uyyMiItSoUSNlZGTYY3v27NH+/fsVFRUlSYqKilJOTo7bp6DS09PldDrVq1cvu+bkbVTVVG3D19dXERERbjWVlZXKyMiwawAAwOXNo7er4uPjtWzZMv3jH/9Qs2bN7OtfAgMD1bhxYwUGBmrChAlKSEhQixYt5HQ6NXnyZEVFRWnAgAGSpCFDhqhXr14aO3as5s2bp7y8PD355JOKj4+330p64IEHtHDhQk2fPl333HOP1q9fr/fee08pKSl2LwkJCYqLi1O/fv3Uv39/vfjiiyouLtb48ePP19wAAIAGzKOQ88orr0iSBg0a5Db+xhtv6O6775YkzZ8/X15eXoqNjVVJSYlcLpcWLVpk13p7e2vNmjV68MEHFRUVpaZNmyouLk5PPfWUXdO5c2elpKRo2rRpeumll9S+fXu9/vrrcrlcds3o0aN1+PBhzZo1S3l5eerbt69SU1OrXYwMAAAuT+d0n5yGrrafs68L7pMDAMCFcVHukwMAAHCpIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjORxyPnwww912223qV27dnI4HFq9erXbcsuyNGvWLLVt21aNGzdWdHS09u7d61Zz9OhR3XXXXXI6nQoKCtKECRN0/Phxt5rPPvtMN910k/z9/RUaGqp58+ZV62XFihW68sor5e/vr7CwMK1du9bTwwEAAIbyOOQUFxcrPDxcSUlJNS6fN2+eXn75ZS1evFhbtmxR06ZN5XK5dOLECbvmrrvu0q5du5Senq41a9boww8/1H333WcvLyoq0pAhQ9SxY0dlZWXpueee05w5c/Taa6/ZNZs3b9Ydd9yhCRMmaMeOHRo+fLiGDx+unTt3enpIAADAQA7Lsqw6r+xwaNWqVRo+fLikX87itGvXTo888ogeffRRSVJhYaGCg4OVnJysMWPGaPfu3erVq5e2bdumfv36SZJSU1N1yy236Ntvv1W7du30yiuv6IknnlBeXp58fX0lSTNmzNDq1av1xRdfSJJGjx6t4uJirVmzxu5nwIAB6tu3rxYvXlyr/ouKihQYGKjCwkI5nc66TkON9r77hP2zV7cOkqSu/e4/r/sAAOByVNu/3+f1mpzc3Fzl5eUpOjraHgsMDFRkZKQyMzMlSZmZmQoKCrIDjiRFR0fLy8tLW7ZssWtuvvlmO+BIksvl0p49e/Tjjz/aNSfvp6qmaj81KSkpUVFRkdsDAACY6byGnLy8PElScHCw23hwcLC9LC8vT23atHFb7uPjoxYtWrjV1LSNk/dxupqq5TVJTExUYGCg/QgNDfX0EAEAQANxWX26aubMmSosLLQfBw4cqO+WAADABXJeQ05ISIgkKT8/3208Pz/fXhYSEqJDhw65LS8vL9fRo0fdamraxsn7OF1N1fKa+Pn5yel0uj0AAICZzmvI6dy5s0JCQpSRkWGPFRUVacuWLYqKipIkRUVFqaCgQFlZWXbN+vXrVVlZqcjISLvmww8/VFlZmV2Tnp6unj17qnnz5nbNyfupqqnaDwAAuLx5HHKOHz+u7OxsZWdnS/rlYuPs7Gzt379fDodDU6dO1dNPP61//vOfysnJ0bhx49SuXTv7E1hXXXWVhg4dqnvvvVdbt27Vxx9/rEmTJmnMmDFq166dJOnOO++Ur6+vJkyYoF27dmn58uV66aWXlJCQYPcxZcoUpaam6q9//au++OILzZkzR59++qkmTZp07rMCAAAaPB9PV/j00081ePBg+3lV8IiLi1NycrKmT5+u4uJi3XfffSooKNCNN96o1NRU+fv72+ssXbpUkyZN0q9//Wt5eXkpNjZWL7/8sr08MDBQ//rXvxQfH6+IiAi1atVKs2bNcruXzvXXX69ly5bpySef1B/+8Ad1795dq1evVp8+feo0EQAAwCzndJ+cho775AAA0PDUy31yAAAALhWEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAj+dR3A6YpryhTTk6qtpR9KcvbUkfv5uputZeXgzwJAMDF1OBDTlJSkp577jnl5eUpPDxcCxYsUP/+/eull48z39big0k63qhECvz/400PfqaRLW5W13rpCgCAy1ODPr2wfPlyJSQkaPbs2dq+fbvCw8Plcrl06NChi97Lx5lv6/lDL+i4T0m1ZcUq0ZKj6fpobdJF7wsAgMuVw7Isq76bqKvIyEhdd911WrhwoSSpsrJSoaGhmjx5smbMmHHW9YuKihQYGKjCwkI5nc4691FeUab7Vg3Wj41+khynKbKkQMtfT1wx1n7rqmu/++u8TwAALle1/fvdYN+uKi0tVVZWlmbOnGmPeXl5KTo6WpmZmTWuU1JSopKS/3+mpbCwUNIvk3UucnLSdKj8mFR+5rojKtZnu7apS2ULSdKOzx61lzm6tJckdbn2nnPqBQAA01X93T7beZoGG3KOHDmiiooKBQcHu40HBwfriy++qHGdxMREzZ07t9p4aGjoBemxJin67CwV0y5KHwAANHTHjh1TYGDgaZc32JBTFzNnzlRCQoL9vLKyUkePHlXLli3lcJzufSbPFRUVKTQ0VAcOHDint8FQN8x//WHu6xfzX3+Y+4vLsiwdO3ZM7dq1O2Ndgw05rVq1kre3t/Lz893G8/PzFRISUuM6fn5+8vPzcxsLCgq6UC3K6XTyYq9HzH/9Ye7rF/Nff5j7i+dMZ3CqNNhPV/n6+ioiIkIZGRn2WGVlpTIyMhQVFVWPnQEAgEtBgz2TI0kJCQmKi4tTv3791L9/f7344osqLi7W+PHj67s1AABQzxp0yBk9erQOHz6sWbNmKS8vT3379lVqamq1i5EvNj8/P82ePbvaW2O4OJj/+sPc1y/mv/4w95emBn2fHAAAgNNpsNfkAAAAnAkhBwAAGImQAwAAjETIAQAARiLkAAAAIxFy6igpKUmdOnWSv7+/IiMjtXXr1jPWr1ixQldeeaX8/f0VFhamtWvXXqROzeTJ/CcnJ8vhcLg9/P39L2K35vjwww912223qV27dnI4HFq9evVZ19m4caOuvfZa+fn5qVu3bkpOTr7gfZrI07nfuHFjtde9w+FQXl7exWnYIImJibruuuvUrFkztWnTRsOHD9eePXvOuh6/9+sfIacOli9froSEBM2ePVvbt29XeHi4XC6XDh06VGP95s2bdccdd2jChAnasWOHhg8fruHDh2vnzp0XuXMzeDr/0i+3Wv/+++/txzfffHMROzZHcXGxwsPDlZSUVKv63NxcxcTEaPDgwcrOztbUqVM1ceJEpaWlXeBOzePp3FfZs2eP22u/TZs2F6hDc23atEnx8fH65JNPlJ6errKyMg0ZMkTFxcWnXYff+5cICx7r37+/FR8fbz+vqKiw2rVrZyUmJtZYP2rUKCsmJsZtLDIy0rr//vsvaJ+m8nT+33jjDSswMPAidXf5kGStWrXqjDXTp0+3evfu7TY2evRoy+VyXcDOzFebud+wYYMlyfrxxx8vSk+Xk0OHDlmSrE2bNp22ht/7lwbO5HiotLRUWVlZio6Otse8vLwUHR2tzMzMGtfJzMx0q5ckl8t12nqcXl3mX5KOHz+ujh07KjQ0VMOGDdOuXbsuRruXPV779a9v375q27atfvOb3+jjjz+u73aMUFhYKElq0aLFaWt47V8aCDkeOnLkiCoqKqp9dURwcPBp3+vOy8vzqB6nV5f579mzp/72t7/pH//4h95++21VVlbq+uuv17fffnsxWr6sne61X1RUpJ9//rmeuro8tG3bVosXL9bKlSu1cuVKhYaGatCgQdq+fXt9t9agVVZWaurUqbrhhhvUp0+f09bxe//S0KC/uwqojaioKLdvpr/++ut11VVX6dVXX9Wf/vSneuwMuHB69uypnj172s+vv/56ffXVV5o/f77eeuuteuysYYuPj9fOnTv10Ucf1XcrqAXO5HioVatW8vb2Vn5+vtt4fn6+QkJCalwnJCTEo3qcXl3m/1SNGjXSNddcoy+//PJCtIiTnO6173Q61bhx43rq6vLVv39/XvfnYNKkSVqzZo02bNig9u3bn7GW3/uXBkKOh3x9fRUREaGMjAx7rLKyUhkZGW5nC04WFRXlVi9J6enpp63H6dVl/k9VUVGhnJwctW3b9kK1if+H1/6lJTs7m9d9HViWpUmTJmnVqlVav369OnfufNZ1eO1fIur7yueG6N1337X8/Pys5ORk6/PPP7fuu+8+KygoyMrLy7Msy7LGjh1rzZgxw67/+OOPLR8fH+v555+3du/ebc2ePdtq1KiRlZOTU1+H0KB5Ov9z58610tLSrK+++srKysqyxowZY/n7+1u7du2qr0NosI4dO2bt2LHD2rFjhyXJeuGFF6wdO3ZY33zzjWVZljVjxgxr7Nixdv3XX39tNWnSxHrssces3bt3W0lJSZa3t7eVmppaX4fQYHk69/Pnz7dWr15t7d2718rJybGmTJlieXl5Wf/+97/r6xAarAcffNAKDAy0Nm7caH3//ff246effrJr+L1/aSLk1NGCBQusDh06WL6+vlb//v2tTz75xF42cOBAKy4uzq3+vffes3r06GH5+vpavXv3tlJSUi5yx2bxZP6nTp1q1wYHB1u33HKLtX379nrouuGr+ljyqY+q+Y6Li7MGDhxYbZ2+fftavr6+VpcuXaw33njjovdtAk/n/tlnn7W6du1q+fv7Wy1atLAGDRpkrV+/vn6ab+BqmndJbq9lfu9fmhyWZVkX++wRAADAhcY1OQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAADAefXhhx/qtttuU7t27eRwOLR69WqPt5GWlqYBAwaoWbNmat26tWJjY7Vv3z6PtkHIAQAA51VxcbHCw8OVlJRUp/Vzc3M1bNgw/epXv1J2drbS0tJ05MgRjRgxwqPtcMdjAABwwTgcDq1atUrDhw+3x0pKSvTEE0/onXfeUUFBgfr06aNnn31WgwYNkiT9/e9/1x133KGSkhJ5ef1yPuaDDz7QsGHDVFJSokaNGtVq35zJAQAAF9WkSZOUmZmpd999V5999pl+97vfaejQodq7d68kKSIiQl5eXnrjjTdUUVGhwsJCvfXWW4qOjq51wJE4kwMAAC6gU8/k7N+/X126dNH+/fvVrl07uy46Olr9+/fXn//8Z0nSpk2bNGrUKP3www+qqKhQVFSU1q5dq6CgoFrvmzM5AADgosnJyVFFRYV69OihgIAA+7Fp0yZ99dVXkqS8vDzde++9iouL07Zt27Rp0yb5+vpq5MiR8uTcjM+FOggAAIBTHT9+XN7e3srKypK3t7fbsoCAAElSUlKSAgMDNW/ePHvZ22+/rdDQUG3ZskUDBgyo1b4IOQAA4KK55pprVFFRoUOHDummm26qseann36yLziuUhWIKisra70v3q4CAADn1fHjx5Wdna3s7GxJv3wkPDs7W/v371ePHj101113ady4cXr//feVm5urrVu3KjExUSkpKZKkmJgYbdu2TU899ZT27t2r7du3a/z48erYsaOuueaaWvfBhccAAOC82rhxowYPHlxtPC4uTsnJySorK9PTTz+tN998U999951atWqlAQMGaO7cuQoLC5Mkvfvuu5o3b57++9//qkmTJoqKitKzzz6rK6+8stZ9EHIAAICReLsKAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEb6v3RPv+6qKlIvAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHFCAYAAAAe+pb9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANYFJREFUeJzt3XtYVWX+///XBmSjcvAMmnjWDEUrTKST2TBui0wvadRsjEo7iY7KZGo6aqbZ2MnykDV9CivNstQpURwHU38lo4YyqalZYTg5IE4Bislxff/ox7rcgoeNKOH9fFzXvq72vd5rrfe+3bpfrb3W2g7LsiwBAAAYyKumGwAAAKgpBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQDVasaMGXI4HDXdRrVITEyUw+HQoUOHaroVY1xJ7x/UDgQhAL8ZW7du1YwZM5Sbm1vTrZzVokWLlJiYeEn34XA45HA4NHLkyEqXT5kyxa45duzYRe9v+/btGjVqlCIiIlSnTh2CCIzi4LfGAFSnkpISlZSUyM/Pz+N1X3jhBU2YMEEZGRlq06ZN9TfnodLSUhUXF8vpdNrhoGvXrmrSpIk2bdp0yfbrcDjk5+cnPz8/ZWdny9fX1215u3bt9N///lenTp1STk6OmjRpclH7mzFjhp599ll169ZNx48f1zfffKOa+mi4mPcPUBUcEQI8UFZWplOnTtV0G24KCgou+T4sy9Ivv/xyQbU+Pj5XzIeYt7e3/Pz8auQISb9+/ZSfn69169a5jW/dulUZGRmKiYm5oO04HI7zHsF6/PHHlZeXpy+//FK///3vq9pytbiS3j+oHQhCMFL5eQj79+/X4MGDFRgYqMaNG2vs2LFuQcfhcGj06NFaunSpunTpIqfTqeTkZEnSjz/+qIceekjBwcFyOp3q0qWL3nrrrQr7OnXqlGbMmKFOnTrJz89PzZs316BBg/Tdd99JkjZt2iSHw1HhCMOhQ4cqfIg98MAD8vf313fffac777xTAQEBuu+++yRJBw8eVGxsrEJCQuTn56eWLVtq6NChysvLs9cvKSnRM888o/bt28vpdKpNmzZ66qmnVFhY6LbvNm3a6K677tL69evVo0cP1a1bV6+//rpHc3u68nlcvXq1unbtas9X+VyWrzdhwgRJUtu2be2vfk4/P+e9995TRESE6tatq0aNGmno0KE6fPiw275uu+02de3aVV9//bX69OmjevXq6aqrrtLcuXMr9Dp//nx16dJF9erVU8OGDdWjRw8tW7bMXn7mOUJt2rTR3r17tXnzZru/2267Td9//70cDodefvnlCvvYunWrHA6H3n///Quav3JXXXWVbr31Vrd+JGnp0qUKDw9X165dPdreuQQHB6tu3brVsq3y986mTZvs9054eLj9/l65cqXCw8Pl5+eniIgI7dq1y239qr5/gKryqekGgJo0ePBgtWnTRnPmzNG//vUvvfrqq/r555/1zjvv2DUbN27Uhx9+qNGjR6tJkyZq06aNsrOz1atXL/sf6KZNm2rdunUaMWKE8vPzNW7cOEm/frVy1113KSUlRUOHDtXYsWN1/PhxbdiwQXv27FH79u097rmkpEQul0s333yzXnjhBdWrV09FRUVyuVwqLCzUmDFjFBISoh9//FFr1qxRbm6ugoKCJEkjR47UkiVLdM899+jPf/6ztm3bpjlz5mjfvn1atWqV234OHDige++9V48++qgefvhhXX311VWfaEmff/65Vq5cqVGjRikgIECvvvqqYmNjlZmZqcaNG2vQoEH65ptv9P777+vll1+2v+5p2rSpJGn27Nn6y1/+osGDB2vkyJHKycnR/Pnzdeutt2rXrl1q0KCBva+ff/5Z/fr106BBgzR48GB99NFHmjhxosLDw3XHHXdIkv72t7/pT3/6k+655x47AH/11Vfatm2bhg0bVulrmDdvnsaMGSN/f39NmTJF0q8hol27drrpppu0dOlSjR8/3m2dpUuXKiAgQAMGDPB4zoYNG6axY8fqxIkT8vf3V0lJiVasWKGEhITf3JHJ03377bcaNmyYHn30Uf3xj3/UCy+8oP79+2vx4sV66qmnNGrUKEnSnDlzNHjwYB04cEBeXuf+//LzvX+AKrMAA02fPt2SZN19991u46NGjbIkWf/+978ty7IsSZaXl5e1d+9et7oRI0ZYzZs3t44dO+Y2PnToUCsoKMg6efKkZVmW9dZbb1mSrJdeeqlCD2VlZZZlWdZnn31mSbI+++wzt+UZGRmWJOvtt9+2x+Li4ixJ1qRJk9xqd+3aZUmyVqxYcdbXnJ6ebkmyRo4c6Tb+xBNPWJKsjRs32mOtW7e2JFnJycln3d7ZlM/t6SRZvr6+1rfffmuP/fvf/7YkWfPnz7fHnn/+eUuSlZGR4bb+oUOHLG9vb2v27Nlu47t377Z8fHzcxnv37m1Jst555x17rLCw0AoJCbFiY2PtsQEDBlhdunQ552t5++23K/TTpUsXq3fv3hVqX3/9dUuStW/fPnusqKjIatKkiRUXF3fO/ZxJkhUfH2/99NNPlq+vr/Xuu+9almVZSUlJlsPhsA4dOmTPc05Oznm3dfp76Hzi4+Mr/Pl5ovy9s3XrVnts/fr1liSrbt261g8//GCPl8/Z6e/9i3n/AFXBV2MwWnx8vNvzMWPGSJLWrl1rj/Xu3VthYWH2c8uy9PHHH6t///6yLEvHjh2zHy6XS3l5edq5c6ck6eOPP1aTJk3s7Z7uYs47efzxx92elx/xWb9+vU6ePFnpOuWvKSEhwW38z3/+syQpKSnJbbxt27ZyuVxV7vFM0dHRbkfAunXrpsDAQH3//ffnXXflypUqKyvT4MGD3eY7JCREHTt21GeffeZW7+/vrz/+8Y/2c19fX/Xs2dNtXw0aNNB//vMf7dixoxpe3a9HF/38/LR06VJ7bP369Tp27JhbL55o2LCh+vXrZ3+ttmzZMt14441q3bp1pfUnT550m5/yK8pOnDjhNvbzzz9XqZ8LFRYWpqioKPt5ZGSkJOn2229Xq1atKoxfyHvgYt4/wLkQhGC0jh07uj1v3769vLy83M5Ladu2rVtNTk6OcnNz9cYbb6hp06ZujwcffFCSdPToUUnSd999p6uvvlo+PtX3LbSPj49atmzpNta2bVslJCTozTffVJMmTeRyubRw4UK384N++OEHeXl5qUOHDm7rhoSEqEGDBvrhhx8qbLM6nf4BWK5hw4YX9KF88OBBWZaljh07Vpjzffv22fNdrmXLlhWC5pn7mjhxovz9/dWzZ0917NhR8fHx+uKLL6r46n4NVv3793c7p2fp0qW66qqrdPvtt1d5u8OGDdOGDRuUmZmp1atXn/VrO0maO3duhfmRfg34p49dd911Ve7nQpz5Z10e1ENDQysdv5D3wMW8f4Bz4Rwh4DSVHaU58yTSsrIySdIf//hHxcXFVbqdbt26XdQ+pV/PL6qM0+ms9HyKF198UQ888ID+/ve/6x//+If+9Kc/2ec+nR6cLvRIVHWdPFvO29u70nHrAi7TLisrk8Ph0Lp16yrdjr+/v8f7uuaaa3TgwAGtWbNGycnJ+vjjj7Vo0SJNmzZNTz/99Hl7qsz999+vFStWaOvWrQoPD9cnn3yiUaNGnff8l3O5++675XQ6FRcXp8LCQg0ePPic+7/55pvdxn7/+99rwoQJ6tu3rz1W3X+2Zzrb/F/Me+Bi1gXOhSAEox08eNDtyMe3336rsrKyc97DpmnTpgoICFBpaamio6PPuf327dtr27ZtKi4uVp06dSqtadiwoSRVuIngmUdoLkR4eLjCw8M1depUbd26VTfddJMWL16sWbNmqXXr1iorK9PBgwd1zTXX2OtkZ2crNzf3rF+3XE5nC2nt27eXZVlq27atOnXqVG37q1+/voYMGaIhQ4aoqKhIgwYN0uzZszV58uSzXsJ9riDZr18/NW3aVEuXLlVkZKROnjyp4cOHX1SPdevW1cCBA/Xee+/pjjvuOOc9g9q1a6d27dpVGA8LCzvvexUwFV+NwWgLFy50ez5//nxJsq8sqoy3t7diY2P18ccfa8+ePRWW5+Tk2P8dGxurY8eOacGCBRXqyv9PtnXr1vL29taWLVvcli9atOiCX0d+fr5KSkrcxsLDw+Xl5WVfGn/nnXdK+vXKp9O99NJLknTB96W5lOrXry+pYigcNGiQvL299fTTT1c4AmBZlv73v/95vK8z1/H19VVYWJgsy1JxcfE5ezzbna99fHx077336sMPP1RiYqLCw8M9Ojp4Nk888YSmT5+uv/zlLxe9LQDuOCIEo2VkZOjuu+9Wv379lJqaqvfee0/Dhg1T9+7dz7nec889p88++0yRkZF6+OGHFRYWpp9++kk7d+7UP//5T/3000+Sfv2q4p133lFCQoK2b9+uW265RQUFBfrnP/+pUaNGacCAAQoKCtIf/vAHzZ8/Xw6HQ+3bt9eaNWsqnPdyLhs3btTo0aP1hz/8QZ06dVJJSYneffddO7RJUvfu3RUXF6c33nhDubm56t27t7Zv364lS5Zo4MCB6tOnT9UnsppERERI+vUnJIYOHao6deqof//+at++vWbNmqXJkyfr0KFDGjhwoAICApSRkaFVq1bpkUce0RNPPOHRvvr27auQkBDddNNNCg4O1r59+7RgwQLFxMQoICDgnD2+9tprmjVrljp06KBmzZq5nQN0//3369VXX9Vnn32mv/71r1WbiDN07979vO/Ji/HDDz/o3XfflSR9+eWXkqRZs2ZJ+jWoX+xRLeC3jCAEo33wwQeaNm2aJk2aJB8fH40ePVrPP//8edcLDg7W9u3bNXPmTK1cuVKLFi1S48aN1aVLF7cPP29vb61du1azZ8/WsmXL9PHHH6tx48a6+eabFR4ebtfNnz9fxcXFWrx4sZxOpwYPHqznn3/+gm+a1717d7lcLn366af68ccfVa9ePXXv3l3r1q1Tr1697Lo333xT7dq1U2JiolatWqWQkBBNnjxZ06dP92DWLp0bbrhBzzzzjBYvXqzk5GSVlZUpIyND9evX16RJk9SpUye9/PLL9jk8oaGh6tu3r+6++26P9/Xoo49q6dKleumll3TixAm1bNlSf/rTnzR16tRzrjdt2jT98MMPmjt3ro4fP67evXu7BaGIiAh16dJF+/bts292+VuXkZFR4WhT+fPevXsThHBF47fGYKQZM2bo6aefrpbfaQLOdN1116lRo0ZKSUmp6VYAnAfnCAFANfryyy+Vnp6u+++/v6ZbAXAB+GoMwAXJy8s77w+vhoSEXKZufnv27NmjtLQ0vfjii2revLmGDBnitry0tNTtRPrK+Pv7V7gVwG9FTk7OWW/pIP16snmjRo0uY0dA9SAIAbggY8eO1ZIlS85ZY/I37R999JFmzpypq6++Wu+//36Fy+8PHz583ptUTp8+XTNmzLiEXVbdDTfccM5bOvTu3bvCDwcDtQHnCAG4IF9//bWOHDlyzhruVXN2p06d0ueff37OmrPdB+i34IsvvjjnEcGGDRvaV/0BtQlBCAAAGIuTpQEAgLGMPkeorKxMR44cUUBAwEX9EjgAALh8LMvS8ePH1aJFi4v6LT/J8CB05MiRCr+GDAAAaofDhw+7/ah0VRgdhMpvo3/48GEFBgbWcDcAAOBC5OfnKzQ09Jw/h3OhjA5C5V+HBQYGEoQAAKhlquO0Fk6WBgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADCWT003cKUqTv68wlidfjfXQCcAAOBsOCIEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAY11UEHruuefkcDg0btw4e+zUqVOKj49X48aN5e/vr9jYWGVnZ7utl5mZqZiYGNWrV0/NmjXThAkTVFJS4lazadMmXX/99XI6nerQoYMSExMr7H/hwoVq06aN/Pz8FBkZqe3bt1/MywEAAIapchDasWOHXn/9dXXr1s1tfPz48fr000+1YsUKbd68WUeOHNGgQYPs5aWlpYqJiVFRUZG2bt2qJUuWKDExUdOmTbNrMjIyFBMToz59+ig9PV3jxo3TyJEjtX79ervmgw8+UEJCgqZPn66dO3eqe/fucrlcOnr0aFVfEgAAMI1VBcePH7c6duxobdiwwerdu7c1duxYy7IsKzc316pTp461YsUKu3bfvn2WJCs1NdWyLMtau3at5eXlZWVlZdk1r732mhUYGGgVFhZalmVZTz75pNWlSxe3fQ4ZMsRyuVz28549e1rx8fH289LSUqtFixbWnDlzLvh15OXlWZKsvLy8C3/xF6ho3f9X4QEAAC5edX5+V+mIUHx8vGJiYhQdHe02npaWpuLiYrfxzp07q1WrVkpNTZUkpaamKjw8XMHBwXaNy+VSfn6+9u7da9ecuW2Xy2Vvo6ioSGlpaW41Xl5eio6OtmsqU1hYqPz8fLcHAAAwl4+nKyxfvlw7d+7Ujh07KizLysqSr6+vGjRo4DYeHBysrKwsu+b0EFS+vHzZuWry8/P1yy+/6Oeff1ZpaWmlNfv37z9r73PmzNHTTz99YS8UAABc8Tw6InT48GGNHTtWS5culZ+f36Xq6ZKZPHmy8vLy7Mfhw4druiUAAFCDPApCaWlpOnr0qK6//nr5+PjIx8dHmzdv1quvviofHx8FBwerqKhIubm5butlZ2crJCREkhQSElLhKrLy5+erCQwMVN26ddWkSRN5e3tXWlO+jco4nU4FBga6PQAAgLk8CkK/+93vtHv3bqWnp9uPHj166L777rP/u06dOkpJSbHXOXDggDIzMxUVFSVJioqK0u7du92u7tqwYYMCAwMVFhZm15y+jfKa8m34+voqIiLCraasrEwpKSl2DQAAwPl4dI5QQECAunbt6jZWv359NW7c2B4fMWKEEhIS1KhRIwUGBmrMmDGKiopSr169JEl9+/ZVWFiYhg8frrlz5yorK0tTp05VfHy8nE6nJOmxxx7TggUL9OSTT+qhhx7Sxo0b9eGHHyopKcneb0JCguLi4tSjRw/17NlT8+bNU0FBgR588MGLmhAAAGAOj0+WPp+XX35ZXl5eio2NVWFhoVwulxYtWmQv9/b21po1a/T4448rKipK9evXV1xcnGbOnGnXtG3bVklJSRo/frxeeeUVtWzZUm+++aZcLpddM2TIEOXk5GjatGnKysrStddeq+Tk5AonUAMAAJyNw7Isq6abqCn5+fkKCgpSXl5etZ8vVJz8eYWxOv1urtZ9AABgour8/Oa3xgAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwlk9NN3ClOpS7rsJYR91cA50AAICz4YgQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADG8igIvfbaa+rWrZsCAwMVGBioqKgorVu3zl5+6tQpxcfHq3HjxvL391dsbKyys7PdtpGZmamYmBjVq1dPzZo104QJE1RSUuJWs2nTJl1//fVyOp3q0KGDEhMTK/SycOFCtWnTRn5+foqMjNT27ds9eSkAAACeBaGWLVvqueeeU1pamr788kvdfvvtGjBggPbu3StJGj9+vD799FOtWLFCmzdv1pEjRzRo0CB7/dLSUsXExKioqEhbt27VkiVLlJiYqGnTptk1GRkZiomJUZ8+fZSenq5x48Zp5MiRWr9+vV3zwQcfKCEhQdOnT9fOnTvVvXt3uVwuHT169GLnAwAAGMRhWZZ1MRto1KiRnn/+ed1zzz1q2rSpli1bpnvuuUeStH//fl1zzTVKTU1Vr169tG7dOt111106cuSIgoODJUmLFy/WxIkTlZOTI19fX02cOFFJSUnas2ePvY+hQ4cqNzdXycnJkqTIyEjdcMMNWrBggSSprKxMoaGhGjNmjCZNmnTBvefn5ysoKEh5eXkKDAy8mGmo4ODyKRXGOg6dXa37AADARNX5+V3lc4RKS0u1fPlyFRQUKCoqSmlpaSouLlZ0dLRd07lzZ7Vq1UqpqamSpNTUVIWHh9shSJJcLpfy8/Pto0qpqalu2yivKd9GUVGR0tLS3Gq8vLwUHR1t15xNYWGh8vPz3R4AAMBcHgeh3bt3y9/fX06nU4899phWrVqlsLAwZWVlydfXVw0aNHCrDw4OVlZWliQpKyvLLQSVLy9fdq6a/Px8/fLLLzp27JhKS0srrSnfxtnMmTNHQUFB9iM0NNTTlw8AAK4gHgehq6++Wunp6dq2bZsef/xxxcXF6euvv74UvVW7yZMnKy8vz34cPny4plsCAAA1yMfTFXx9fdWhQwdJUkREhHbs2KFXXnlFQ4YMUVFRkXJzc92OCmVnZyskJESSFBISUuHqrvKryk6vOfNKs+zsbAUGBqpu3bry9vaWt7d3pTXl2zgbp9Mpp9Pp6UsGAABXqIu+j1BZWZkKCwsVERGhOnXqKCUlxV524MABZWZmKioqSpIUFRWl3bt3u13dtWHDBgUGBiosLMyuOX0b5TXl2/D19VVERIRbTVlZmVJSUuwaAACAC+HREaHJkyfrjjvuUKtWrXT8+HEtW7ZMmzZt0vr16xUUFKQRI0YoISFBjRo1UmBgoMaMGaOoqCj16tVLktS3b1+FhYVp+PDhmjt3rrKysjR16lTFx8fbR2oee+wxLViwQE8++aQeeughbdy4UR9++KGSkpLsPhISEhQXF6cePXqoZ8+emjdvngoKCvTggw9W49QAAIArnUdB6OjRo7r//vv13//+V0FBQerWrZvWr1+v3//+95Kkl19+WV5eXoqNjVVhYaFcLpcWLVpkr+/t7a01a9bo8ccfV1RUlOrXr6+4uDjNnDnTrmnbtq2SkpI0fvx4vfLKK2rZsqXefPNNuVwuu2bIkCHKycnRtGnTlJWVpWuvvVbJyckVTqAGAAA4l4u+j1Btxn2EAACofX4T9xECAACo7QhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLE8CkJz5szRDTfcoICAADVr1kwDBw7UgQMH3GpOnTql+Ph4NW7cWP7+/oqNjVV2drZbTWZmpmJiYlSvXj01a9ZMEyZMUElJiVvNpk2bdP3118vpdKpDhw5KTEys0M/ChQvVpk0b+fn5KTIyUtu3b/fk5QAAAMN5FIQ2b96s+Ph4/etf/9KGDRtUXFysvn37qqCgwK4ZP368Pv30U61YsUKbN2/WkSNHNGjQIHt5aWmpYmJiVFRUpK1bt2rJkiVKTEzUtGnT7JqMjAzFxMSoT58+Sk9P17hx4zRy5EitX7/ervnggw+UkJCg6dOna+fOnerevbtcLpeOHj16MfMBAAAM4rAsy6rqyjk5OWrWrJk2b96sW2+9VXl5eWratKmWLVume+65R5K0f/9+XXPNNUpNTVWvXr20bt063XXXXTpy5IiCg4MlSYsXL9bEiROVk5MjX19fTZw4UUlJSdqzZ4+9r6FDhyo3N1fJycmSpMjISN1www1asGCBJKmsrEyhoaEaM2aMJk2adEH95+fnKygoSHl5eQoMDKzqNFTq4PIpFcY6Dp1drfsAAMBE1fn5fVHnCOXl5UmSGjVqJElKS0tTcXGxoqOj7ZrOnTurVatWSk1NlSSlpqYqPDzcDkGS5HK5lJ+fr71799o1p2+jvKZ8G0VFRUpLS3Or8fLyUnR0tF1TmcLCQuXn57s9AACAuaochMrKyjRu3DjddNNN6tq1qyQpKytLvr6+atCggVttcHCwsrKy7JrTQ1D58vJl56rJz8/XL7/8omPHjqm0tLTSmvJtVGbOnDkKCgqyH6GhoZ6/cAAAcMWochCKj4/Xnj17tHz58urs55KaPHmy8vLy7Mfhw4druiUAAFCDfKqy0ujRo7VmzRpt2bJFLVu2tMdDQkJUVFSk3Nxct6NC2dnZCgkJsWvOvLqr/Kqy02vOvNIsOztbgYGBqlu3rry9veXt7V1pTfk2KuN0OuV0Oj1/wQAA4Irk0REhy7I0evRorVq1Shs3blTbtm3dlkdERKhOnTpKSUmxxw4cOKDMzExFRUVJkqKiorR79263q7s2bNigwMBAhYWF2TWnb6O8pnwbvr6+ioiIcKspKytTSkqKXQMAAHA+Hh0Rio+P17Jly/T3v/9dAQEB9vk4QUFBqlu3roKCgjRixAglJCSoUaNGCgwM1JgxYxQVFaVevXpJkvr27auwsDANHz5cc+fOVVZWlqZOnar4+Hj7aM1jjz2mBQsW6Mknn9RDDz2kjRs36sMPP1RSUpLdS0JCguLi4tSjRw/17NlT8+bNU0FBgR588MHqmhsAAHCF8ygIvfbaa5Kk2267zW387bff1gMPPCBJevnll+Xl5aXY2FgVFhbK5XJp0aJFdq23t7fWrFmjxx9/XFFRUapfv77i4uI0c+ZMu6Zt27ZKSkrS+PHj9corr6hly5Z688035XK57JohQ4YoJydH06ZNU1ZWlq699lolJydXOIEaAADgbC7qPkK1HfcRAgCg9vnN3EcIAACgNiMIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMbyOAht2bJF/fv3V4sWLeRwOLR69Wq35ZZladq0aWrevLnq1q2r6OhoHTx40K3mp59+0n333afAwEA1aNBAI0aM0IkTJ9xqvvrqK91yyy3y8/NTaGio5s6dW6GXFStWqHPnzvLz81N4eLjWrl3r6csBAAAG8zgIFRQUqHv37lq4cGGly+fOnatXX31Vixcv1rZt21S/fn25XC6dOnXKrrnvvvu0d+9ebdiwQWvWrNGWLVv0yCOP2Mvz8/PVt29ftW7dWmlpaXr++ec1Y8YMvfHGG3bN1q1bde+992rEiBHatWuXBg4cqIEDB2rPnj2eviQAAGAoh2VZVpVXdji0atUqDRw4UNKvR4NatGihP//5z3riiSckSXl5eQoODlZiYqKGDh2qffv2KSwsTDt27FCPHj0kScnJybrzzjv1n//8Ry1atNBrr72mKVOmKCsrS76+vpKkSZMmafXq1dq/f78kaciQISooKNCaNWvsfnr16qVrr71WixcvvqD+8/PzFRQUpLy8PAUGBlZ1Gip1cPmUCmMdh86u1n0AAGCi6vz8rtZzhDIyMpSVlaXo6Gh7LCgoSJGRkUpNTZUkpaamqkGDBnYIkqTo6Gh5eXlp27Ztds2tt95qhyBJcrlcOnDggH7++We75vT9lNeU76cyhYWFys/Pd3sAAABzVWsQysrKkiQFBwe7jQcHB9vLsrKy1KxZM7flPj4+atSokVtNZds4fR9nqylfXpk5c+YoKCjIfoSGhnr6EgEAwBXEqKvGJk+erLy8PPtx+PDhmm4JAADUoGoNQiEhIZKk7Oxst/Hs7Gx7WUhIiI4ePeq2vKSkRD/99JNbTWXbOH0fZ6spX14Zp9OpwMBAtwcAADBXtQahtm3bKiQkRCkpKfZYfn6+tm3bpqioKElSVFSUcnNzlZaWZtds3LhRZWVlioyMtGu2bNmi4uJiu2bDhg26+uqr1bBhQ7vm9P2U15TvBwAA4Hw8DkInTpxQenq60tPTJf16gnR6eroyMzPlcDg0btw4zZo1S5988ol2796t+++/Xy1atLCvLLvmmmvUr18/Pfzww9q+fbu++OILjR49WkOHDlWLFi0kScOGDZOvr69GjBihvXv36oMPPtArr7yihIQEu4+xY8cqOTlZL774ovbv368ZM2boyy+/1OjRoy9+VgAAgBF8PF3hyy+/VJ8+fezn5eEkLi5OiYmJevLJJ1VQUKBHHnlEubm5uvnmm5WcnCw/Pz97naVLl2r06NH63e9+Jy8vL8XGxurVV1+1lwcFBekf//iH4uPjFRERoSZNmmjatGlu9xq68cYbtWzZMk2dOlVPPfWUOnbsqNWrV6tr165VmggAAGCei7qPUG3HfYQAAKh9frP3EQIAAKhNCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAY/nUdANXmsKSU1qX9qYySvepkVVXPb1bycdB3gQA4Leo1gehhQsX6vnnn1dWVpa6d++u+fPnq2fPnjXSy9ubpuvTvDWyHJYU8OvY3619uv14e7l8Oqk4+XO3+jr9bq6BLgEAQLlaHYQ++OADJSQkaPHixYqMjNS8efPkcrl04MABNWvW7LL28vam6fok79MK45aklIDvpOOSK9d9WUcRhAAAqEkOy7Ksmm6iqiIjI3XDDTdowYIFkqSysjKFhoZqzJgxmjRp0nnXz8/PV1BQkPLy8hQYGFjlPgpLTunepJtkyZIclRT8/8OzT7rcviZr0+COCqUcJQIA4Nyq6/NbqsVHhIqKipSWlqbJkyfbY15eXoqOjlZqamql6xQWFqqwsNB+npeXJ+nXCb0Ya758XUW/lJy3bvOJ7xTp3cp+vufk6opFb7mPtb9n2kX1BgDAlab8c7s6juXU2iB07NgxlZaWKjg42G08ODhY+/fvr3SdOXPm6Omnn64wHhoaekl6PFOSvvJ8pREvVn8jAABcAY4fP66goKCL2katDUJVMXnyZCUkJNjPy8rK9NNPP6lx48ZyOCr7Tqtq8vPzFRoaqsOHD1/0ITtcOOa95jD3NYN5rxnMe80pn/vMzEw5HA61aNHiordZa4NQkyZN5O3trezsbLfx7OxshYSEVLqO0+mU0+l0G2vQoMGlalGBgYH8JakBzHvNYe5rBvNeM5j3mhMUFFRtc19rb3Dj6+uriIgIpaSk2GNlZWVKSUlRVFRUDXYGAABqi1p7REiSEhISFBcXpx49eqhnz56aN2+eCgoK9OCDD9Z0awAAoBao1UFoyJAhysnJ0bRp05SVlaVrr71WycnJFU6gvtycTqemT59e4Ws4XFrMe81h7msG814zmPeacynmvlbfRwgAAOBi1NpzhAAAAC4WQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhKpo4cKFatOmjfz8/BQZGant27efs37FihXq3Lmz/Pz8FB4errVr116mTq8snsz73/72N91yyy1q2LChGjZsqOjo6PP+OeHsPH3Pl1u+fLkcDocGDhx4aRu8Qnk677m5uYqPj1fz5s3ldDrVqVMn/r2pAk/nfd68ebr66qtVt25dhYaGavz48Tp16tRl6vbKsGXLFvXv318tWrSQw+HQ6tWrz7vOpk2bdP3118vpdKpDhw5KTEz0fMcWPLZ8+XLL19fXeuutt6y9e/daDz/8sNWgQQMrOzu70vovvvjC8vb2tubOnWt9/fXX1tSpU606depYu3fvvsyd126ezvuwYcOshQsXWrt27bL27dtnPfDAA1ZQUJD1n//85zJ3Xvt5OvflMjIyrKuuusq65ZZbrAEDBlyeZq8gns57YWGh1aNHD+vOO++0Pv/8cysjI8PatGmTlZ6efpk7r908nfelS5daTqfTWrp0qZWRkWGtX7/eat68uTV+/PjL3HnttnbtWmvKlCnWypUrLUnWqlWrzln//fffW/Xq1bMSEhKsr7/+2po/f77l7e1tJScne7RfglAV9OzZ04qPj7efl5aWWi1atLDmzJlTaf3gwYOtmJgYt7HIyEjr0UcfvaR9Xmk8nfczlZSUWAEBAdaSJUsuVYtXrKrMfUlJiXXjjTdab775phUXF0cQqgJP5/21116z2rVrZxUVFV2uFq9Ins57fHy8dfvtt7uNJSQkWDfddNMl7fNKdiFB6Mknn7S6dOniNjZkyBDL5XJ5tC++GvNQUVGR0tLSFB0dbY95eXkpOjpaqampla6TmprqVi9JLpfrrPWoqCrzfqaTJ0+quLhYjRo1ulRtXpGqOvczZ85Us2bNNGLEiMvR5hWnKvP+ySefKCoqSvHx8QoODlbXrl317LPPqrS09HK1XetVZd5vvPFGpaWl2V+fff/991q7dq3uvPPOy9Kzqarrs7VW/8RGTTh27JhKS0sr/IxHcHCw9u/fX+k6WVlZldZnZWVdsj6vNFWZ9zNNnDhRLVq0qPAXB+dWlbn//PPP9X//939KT0+/DB1emaoy799//702btyo++67T2vXrtW3336rUaNGqbi4WNOnT78cbdd6VZn3YcOG6dixY7r55ptlWZZKSkr02GOP6amnnrocLRvrbJ+t+fn5+uWXX1S3bt0L2g5HhGCE5557TsuXL9eqVavk5+dX0+1c0Y4fP67hw4frb3/7m5o0aVLT7RilrKxMzZo10xtvvKGIiAgNGTJEU6ZM0eLFi2u6tSvapk2b9Oyzz2rRokXauXOnVq5cqaSkJD3zzDM13RouAEeEPNSkSRN5e3srOzvbbTw7O1shISGVrhMSEuJRPSqqyryXe+GFF/Tcc8/pn//8p7p163Yp27wieTr33333nQ4dOqT+/fvbY2VlZZIkHx8fHThwQO3bt7+0TV8BqvKeb968uerUqSNvb2977JprrlFWVpaKiork6+t7SXu+ElRl3v/yl79o+PDhGjlypCQpPDxcBQUFeuSRRzRlyhR5eXHM4VI422drYGDgBR8Nkjgi5DFfX19FREQoJSXFHisrK1NKSoqioqIqXScqKsqtXpI2bNhw1npUVJV5l6S5c+fqmWeeUXJysnr06HE5Wr3ieDr3nTt31u7du5Wenm4/7r77bvXp00fp6ekKDQ29nO3XWlV5z99000369ttv7eApSd98842aN29OCLpAVZn3kydPVgg75WHU4nfNL5lq+2z17DxuWNavl1Y6nU4rMTHR+vrrr61HHnnEatCggZWVlWVZlmUNHz7cmjRpkl3/xRdfWD4+PtYLL7xg7du3z5o+fTqXz1eBp/P+3HPPWb6+vtZHH31k/fe//7Ufx48fr6mXUGt5Ovdn4qqxqvF03jMzM62AgABr9OjR1oEDB6w1a9ZYzZo1s2bNmlVTL6FW8nTep0+fbgUEBFjvv/++9f3331v/+Mc/rPbt21uDBw+uqZdQKx0/ftzatWuXtWvXLkuS9dJLL1m7du2yfvjhB8uyLGvSpEnW8OHD7fryy+cnTJhg7du3z1q4cCGXz19O8+fPt1q1amX5+vpaPXv2tP71r3/Zy3r37m3FxcW51X/44YdWp06dLF9fX6tLly5WUlLSZe74yuDJvLdu3dqSVOExffr0y9/4FcDT9/zpCEJV5+m8b9261YqMjLScTqfVrl07a/bs2VZJScll7rr282Tei4uLrRkzZljt27e3/Pz8rNDQUGvUqFHWzz//fPkbr8U+++yzSv/NLp/ruLg4q3fv3hXWufbaay1fX1+rXbt21ttvv+3xfh2WxXE7AABgJs4RAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACq1ZYtW9S/f3+1aNFCDodDq1ev9ngb69evV69evRQQEKCmTZsqNjZWhw4dqvZeCUIAAKBaFRQUqHv37lq4cGGV1s/IyNCAAQN0++23Kz09XevXr9exY8c0aNCgau5U4s7SAADgknE4HFq1apUGDhxojxUWFmrKlCl6//33lZubq65du+qvf/2rbrvtNknSRx99pHvvvVeFhYX2D9p++umnGjBggAoLC1WnTp1q648jQgAA4LIaPXq0UlNTtXz5cn311Vf6wx/+oH79+ungwYOSpIiICHl5eentt99WaWmp8vLy9O677yo6OrpaQ5DEESEAAHAJnXlEKDMzU+3atVNmZqZatGhh10VHR6tnz5569tlnJUmbN2/W4MGD9b///U+lpaWKiorS2rVr1aBBg2rtjyNCAADgstm9e7dKS0vVqVMn+fv724/Nmzfru+++kyRlZWXp4YcfVlxcnHbs2KHNmzfL19dX99xzj6r7+I1PtW4NAADgHE6cOCFvb2+lpaXJ29vbbZm/v78kaeHChQoKCtLcuXPtZe+9955CQ0O1bds29erVq9r6IQgBAIDL5rrrrlNpaamOHj2qW265pdKakydP2idJlysPTWVlZdXaD1+NAQCAanXixAmlp6crPT1d0q+Xw6enpyszM1OdOnXSfffdp/vvv18rV65URkaGtm/frjlz5igpKUmSFBMTox07dmjmzJk6ePCgdu7cqQcffFCtW7fWddddV629crI0AACoVps2bVKfPn0qjMfFxSkxMVHFxcWaNWuW3nnnHf34449q0qSJevXqpaefflrh4eGSpOXLl2vu3Ln65ptvVK9ePUVFRemvf/2rOnfuXK29EoQAAICx+GoMAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMb6f7aOYdsgf41ZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANThJREFUeJzt3XtUVXUe///XAeSgIngHTbynhSIWplJNZsOIE5kubdRqkjFtytBRmS46NV66DGVNVl6y+bqSLpqXTGeShHFQ6VuSF5RJTc0avEwG4hSglKDw+f3Rl/3zCCqgiH54Ptbaa3k++733/uyPe53zYp+993EZY4wAAAAs41XbHQAAAKgJhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAA1asaMGXK5XLXdjUsiMTFRLpdLBw4cqO2uWMOm4wNXHkIOgCvWpk2bNGPGDOXl5dV2V85p/vz5SkxMrNFtuFwuuVwujR07tsL5Tz31lFNz7NixC65vy5YtevTRRxUREaF69eoRMmAtF79dBaAmnT59WqdPn5afn1+Vl3355Zf1+OOPKysrS+3bt7/0nauikpISnTp1Sm632wkG3bt3V/PmzbVx48Ya267L5ZKfn5/8/PyUk5MjX19fj/kdO3bUd999p5MnTyo3N1fNmzc/7/pmzJihv/zlL+rRo4eOHz+ur776SrX1UXAxxwdwIZzJAS5CaWmpTp48Wdvd8FBYWFjj2zDG6KeffqpUrY+PjzUfYN7e3vLz86uVMx8DBw5UQUGB1q5d69G+adMmZWVlKSYmptLrGjdunPLz87Vt2zb96le/utRdrRKbjg9ceQg5gP7/6wL27t2r4cOHKyAgQM2aNdPEiRM9QozL5dL48eO1ePFidevWTW63W8nJyZKkb7/9Vg8++KCCgoLkdrvVrVs3vfXWW+W2dfLkSc2YMUNdunSRn5+fWrVqpaFDh+qbb76RJG3cuFEul6vcmYEDBw7I5XJ5fDXyu9/9Tv7+/vrmm2905513qlGjRrr//vslSfv379ewYcMUHBwsPz8/tWnTRiNHjlR+fr6z/OnTp/Xss8+qU6dOcrvdat++vf70pz+pqKjIY9vt27fXXXfdpZSUFPXq1Uv169fXm2++WaWxPVPZOK5evVrdu3d3xqtsLMuWe/zxxyVJHTp0cL6OOfN6mPfee08RERGqX7++mjZtqpEjR+rw4cMe27r99tvVvXt3ffnll+rfv78aNGiga665RrNmzSrX1zlz5qhbt25q0KCBmjRpol69emnJkiXO/LOvyWnfvr12796ttLQ0p3+33367/vOf/8jlcmn27NnltrFp0ya5XC69//77lRq/Mtdcc41uu+02j/5I0uLFixUWFqbu3btXel1BQUGqX79+lbZ/LmXHxsaNG51jIywszDl+P/zwQ4WFhcnPz08RERHasWOHx/LVPT6AyvCp7Q4AV5Lhw4erffv2SkhI0Oeff67XX39dP/zwg9555x2nZv369Vq+fLnGjx+v5s2bq3379srJyVHfvn2dN+cWLVpo7dq1GjNmjAoKCjRp0iRJP3/dcddddyk1NVUjR47UxIkTdfz4ca1bt067du1Sp06dqtzn06dPKzo6WrfeeqtefvllNWjQQMXFxYqOjlZRUZEmTJig4OBgffvtt1qzZo3y8vIUGBgoSRo7dqzefvtt3XPPPfrjH/+ozZs3KyEhQXv27NGqVas8trNv3z7de++9evjhh/XQQw+pa9eu1R9oSZ9++qk+/PBDPfroo2rUqJFef/11DRs2TIcOHVKzZs00dOhQffXVV3r//fc1e/Zs5yuYFi1aSJKef/55/fnPf9bw4cM1duxY5ebmas6cObrtttu0Y8cONW7c2NnWDz/8oIEDB2ro0KEaPny4PvjgAz355JMKCwvTr3/9a0nS//k//0d/+MMfdM899zjh9osvvtDmzZt13333VbgPr776qiZMmCB/f3899dRTkn4OEB07dtQtt9yixYsXa/LkyR7LLF68WI0aNdLgwYOrPGb33XefJk6cqBMnTsjf31+nT5/WihUrFB8fX6tnFL/++mvdd999evjhh/Xb3/5WL7/8sgYNGqQFCxboT3/6kx599FFJUkJCgoYPH659+/bJy+v8f2Nf6PgAKsUAMNOnTzeSzN133+3R/uijjxpJ5t///rcxxhhJxsvLy+zevdujbsyYMaZVq1bm2LFjHu0jR440gYGB5scffzTGGPPWW28ZSeaVV14p14fS0lJjjDEbNmwwksyGDRs85mdlZRlJZtGiRU5bbGyskWSmTJniUbtjxw4jyaxYseKc+5yZmWkkmbFjx3q0P/bYY0aSWb9+vdPWrl07I8kkJyefc33nUja2Z5JkfH19zddff+20/fvf/zaSzJw5c5y2l156yUgyWVlZHssfOHDAeHt7m+eff96jfefOncbHx8ejvV+/fkaSeeedd5y2oqIiExwcbIYNG+a0DR482HTr1u28+7Jo0aJy/enWrZvp169fudo333zTSDJ79uxx2oqLi03z5s1NbGzsebdzNkkmLi7OfP/998bX19e8++67xhhjkpKSjMvlMgcOHHDGOTc3t0rrjouLK/f/UxVlx8amTZuctpSUFCPJ1K9f3xw8eNBpLxuTM4/tizk+gAvh6yrgDHFxcR6vJ0yYIEn6+OOPnbZ+/fopNDTUeW2M0cqVKzVo0CAZY3Ts2DFnio6OVn5+vrZv3y5JWrlypZo3b+6s90wXc53HuHHjPF6XnalJSUnRjz/+WOEyZfsUHx/v0f7HP/5RkpSUlOTR3qFDB0VHR1e7j2eLioryOHPVo0cPBQQE6D//+c8Fl/3www9VWlqq4cOHe4x3cHCwrr32Wm3YsMGj3t/fX7/97W+d176+vurdu7fHtho3bqz//ve/2rp16yXYu5/PCvr5+Wnx4sVOW0pKio4dO+bRl6po0qSJBg4c6HzVtWTJEt18881q167dJelzdYWGhioyMtJ53adPH0nSHXfcobZt25Zrr8z/8cUcH0AZQg5whmuvvdbjdadOneTl5eVxHUiHDh08anJzc5WXl6e//e1vatGihcc0evRoSdLRo0clSd988426du0qH59L902xj4+P2rRp49HWoUMHxcfHa+HChWrevLmio6M1b948j+txDh48KC8vL3Xu3Nlj2eDgYDVu3FgHDx4st85L6cwPvzJNmjTRDz/8cMFl9+/fL2OMrr322nJjvmfPHme8y7Rp06ZciDx7W08++aT8/f3Vu3dvXXvttYqLi9Nnn31Wzb37OTQNGjTI4xqaxYsX65prrtEdd9xR7fXed999WrdunQ4dOqTVq1ef86u0EydOKDs725lyc3Orvc0LOfv/sixkh4SEVNhemf/jizk+gDJckwOcR0VnV86+YLO0tFSS9Nvf/laxsbEVrqdHjx4XtU3p5+t5KuJ2uyu8vuGvf/2rfve73+nvf/+7/vnPf+oPf/iDc63RmaGosmeQLtWFqmW8vb0rbDeVuJW5tLRULpdLa9eurXA9/v7+Vd7W9ddfr3379mnNmjVKTk7WypUrNX/+fE2bNk0zZ868YJ8qMmrUKK1YsUKbNm1SWFiY/vGPf+jRRx+94PUo53P33XfL7XYrNjZWRUVFGj58eIV1L7/8ske/27VrV2MPMTzX+F7M//HFLAuUIeQAZ9i/f7/HGYuvv/5apaWl531GS4sWLdSoUSOVlJQoKirqvOvv1KmTNm/erFOnTqlevXoV1jRp0kSSyj0A7+wzK5URFhamsLAwPf3009q0aZNuueUWLViwQM8995zatWun0tJS7d+/X9dff72zTE5OjvLy8mr9KxDp3AGsU6dOMsaoQ4cO6tKlyyXbXsOGDTVixAiNGDFCxcXFGjp0qJ5//nlNnTr1nLc5ny8kDhw4UC1atNDixYvVp08f/fjjj3rggQcuqo/169fXkCFD9N577+nXv/71OZ+JM2rUKN16660eywF1DV9XAWeYN2+ex+s5c+ZIknMHTkW8vb01bNgwrVy5Urt27So3/8yvCYYNG6Zjx45p7ty55erK/kJt166dvL299cknn3jMnz9/fqX3o6CgQKdPn/ZoCwsLk5eXl3N7+J133inp5zuEzvTKK69IUpWeu1JTGjZsKKl84Bs6dKi8vb01c+bMcn/ZG2P0v//9r8rbOnsZX19fhYaGyhijU6dOnbeP53ois4+Pj+69914tX75ciYmJCgsLq9JZvXN57LHHNH36dP35z38+Z03Hjh0VFRXlTLfccstFbxe42nAmBzhDVlaW7r77bg0cOFDp6el67733dN999yk8PPy8y73wwgvasGGD+vTpo4ceekihoaH6/vvvtX37dv3rX//S999/L+nnv67feecdxcfHa8uWLfrFL36hwsJC/etf/9Kjjz6qwYMHKzAwUL/5zW80Z84cuVwuderUSWvWrCl3ncn5rF+/XuPHj9dvfvMbdenSRadPn9a7777rBDJJCg8PV2xsrP72t78pLy9P/fr105YtW/T2229ryJAh6t+/f/UH8hKJiIiQ9PPPFowcOVL16tXToEGD1KlTJz333HOaOnWqDhw4oCFDhqhRo0bKysrSqlWr9Pvf/16PPfZYlbY1YMAABQcH65ZbblFQUJD27NmjuXPnKiYmRo0aNTpvH9944w0999xz6ty5s1q2bOlxzc2oUaP0+uuva8OGDXrxxRerNxBnCQ8Pv+AxeT4HDx7Uu+++K0natm2bJOm5556T9HPIvtizTcCVgpADnGHZsmWaNm2apkyZIh8fH40fP14vvfTSBZcLCgrSli1b9Mwzz+jDDz/U/Pnz1axZM3Xr1s3jg83b21sff/yxnn/+eS1ZskQrV65Us2bNdOuttyosLMypmzNnjk6dOqUFCxbI7XZr+PDheumllyr9wLfw8HBFR0fro48+0rfffqsGDRooPDxca9euVd++fZ26hQsXqmPHjkpMTNSqVasUHBysqVOnavr06VUYtZpz00036dlnn9WCBQuUnJys0tJSZWVlqWHDhpoyZYq6dOmi2bNnO9eehISEaMCAAbr77rurvK2HH35Yixcv1iuvvKITJ06oTZs2+sMf/qCnn376vMtNmzZNBw8e1KxZs3T8+HH169fPI+RERESoW7du2rNnj/OgxtqWlZVV7ixQ2et+/foRcmANfrsK0M9PXZ05c2alfvcHqKobbrhBTZs2VWpqam13BahTuCYHAGrQtm3blJmZqVGjRtV2V4A6h6+rAFRLfn7+BX+kMzg4+DL15sqza9cuZWRk6K9//atatWqlESNGeMwvKSm54LNr/P39y90Of7nk5uae87EF0s8XZjdt2vQy9gioOkIOgGqZOHGi3n777fPW1OVvwz/44AM988wz6tq1q95///1yt6AfPnz4gg9YnD59umbMmFGDvTy3m2666byPLejXr1+5H5EFrjRckwOgWr788ksdOXLkvDUXem5QXXby5El9+umn563p2LGjOnbseJl65Omzzz4775m6Jk2aOHe/AVcqQg4AALASFx4DAAAr1elrckpLS3XkyBE1atToon4BGgAAXD7GGB0/flytW7c+72/B1emQc+TIkXK/kgsAAK4Ohw8f9vjB4bPV6ZBT9qj2w4cPKyAgoJZ7AwAAKqOgoEAhISHn/ckVqY6HnLKvqAICAgg5AABcZS50qQkXHgMAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZBTQ04lf6pTyZ/WdjcAAKizCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABY6aJCzgsvvCCXy6VJkyY5bSdPnlRcXJyaNWsmf39/DRs2TDk5OR7LHTp0SDExMWrQoIFatmypxx9/XKdPn/ao2bhxo2688Ua53W517txZiYmJ5bY/b948tW/fXn5+furTp4+2bNlyMbsDAAAsUu2Qs3XrVr355pvq0aOHR/vkyZP10UcfacWKFUpLS9ORI0c0dOhQZ35JSYliYmJUXFysTZs26e2331ZiYqKmTZvm1GRlZSkmJkb9+/dXZmamJk2apLFjxyolJcWpWbZsmeLj4zV9+nRt375d4eHhio6O1tGjR6u7SwAAwCamGo4fP26uvfZas27dOtOvXz8zceJEY4wxeXl5pl69embFihVO7Z49e4wkk56ebowx5uOPPzZeXl4mOzvbqXnjjTdMQECAKSoqMsYY88QTT5hu3bp5bHPEiBEmOjraed27d28TFxfnvC4pKTGtW7c2CQkJld6P/Px8I8nk5+dXfucrqXjt/zXFa//vJV8vAAB1XWU/v6t1JicuLk4xMTGKioryaM/IyNCpU6c82q+77jq1bdtW6enpkqT09HSFhYUpKCjIqYmOjlZBQYF2797t1Jy97ujoaGcdxcXFysjI8Kjx8vJSVFSUU1ORoqIiFRQUeEwAAMBOPlVdYOnSpdq+fbu2bt1abl52drZ8fX3VuHFjj/agoCBlZ2c7NWcGnLL5ZfPOV1NQUKCffvpJP/zwg0pKSiqs2bt37zn7npCQoJkzZ1ZuRwEAwFWtSmdyDh8+rIkTJ2rx4sXy8/OrqT7VmKlTpyo/P9+ZDh8+XNtdAgAANaRKIScjI0NHjx7VjTfeKB8fH/n4+CgtLU2vv/66fHx8FBQUpOLiYuXl5Xksl5OTo+DgYElScHBwubutyl5fqCYgIED169dX8+bN5e3tXWFN2Toq4na7FRAQ4DEBAAA7VSnk/PKXv9TOnTuVmZnpTL169dL999/v/LtevXpKTU11ltm3b58OHTqkyMhISVJkZKR27tzpcRfUunXrFBAQoNDQUKfmzHWU1ZStw9fXVxERER41paWlSk1NdWoAAEDdVqVrcho1aqTu3bt7tDVs2FDNmjVz2seMGaP4+Hg1bdpUAQEBmjBhgiIjI9W3b19J0oABAxQaGqoHHnhAs2bNUnZ2tp5++mnFxcXJ7XZLkh555BHNnTtXTzzxhB588EGtX79ey5cvV1JSkrPd+Ph4xcbGqlevXurdu7deffVVFRYWavTo0Rc1IAAAwA5VvvD4QmbPni0vLy8NGzZMRUVFio6O1vz585353t7eWrNmjcaNG6fIyEg1bNhQsbGxeuaZZ5yaDh06KCkpSZMnT9Zrr72mNm3aaOHChYqOjnZqRowYodzcXE2bNk3Z2dnq2bOnkpOTy12MDAAA6iaXMcbUdidqS0FBgQIDA5Wfn3/Jr885lfypJKnewFsv6XoBAKjrKvv5zW9XAQAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYyae2O2CrA3lrJUle23Y7bZ16PVxb3QEAoM7hTA4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWKlKIeeNN95Qjx49FBAQoICAAEVGRmrt2rXO/JMnTyouLk7NmjWTv7+/hg0bppycHI91HDp0SDExMWrQoIFatmypxx9/XKdPn/ao2bhxo2688Ua53W517txZiYmJ5foyb948tW/fXn5+furTp4+2bNlSlV0BAACWq1LIadOmjV544QVlZGRo27ZtuuOOOzR48GDt3r1bkjR58mR99NFHWrFihdLS0nTkyBENHTrUWb6kpEQxMTEqLi7Wpk2b9PbbbysxMVHTpk1zarKyshQTE6P+/fsrMzNTkyZN0tixY5WSkuLULFu2TPHx8Zo+fbq2b9+u8PBwRUdH6+jRoxc7HgAAwBIuY4y5mBU0bdpUL730ku655x61aNFCS5Ys0T333CNJ2rt3r66//nqlp6erb9++Wrt2re666y4dOXJEQUFBkqQFCxboySefVG5urnx9ffXkk08qKSlJu3btcrYxcuRI5eXlKTk5WZLUp08f3XTTTZo7d64kqbS0VCEhIZowYYKmTJlS6b4XFBQoMDBQ+fn5CggIuJhhKGf/0qckSV6d2zptnXo9fEm3AQBAXVTZz+9qX5NTUlKipUuXqrCwUJGRkcrIyNCpU6cUFRXl1Fx33XVq27at0tPTJUnp6ekKCwtzAo4kRUdHq6CgwDkblJ6e7rGOspqydRQXFysjI8OjxsvLS1FRUU7NuRQVFamgoMBjAgAAdqpyyNm5c6f8/f3ldrv1yCOPaNWqVQoNDVV2drZ8fX3VuHFjj/qgoCBlZ2dLkrKzsz0CTtn8snnnqykoKNBPP/2kY8eOqaSkpMKasnWcS0JCggIDA50pJCSkqrsPAACuElUOOV27dlVmZqY2b96scePGKTY2Vl9++WVN9O2Smzp1qvLz853p8OHDtd0lAABQQ3yquoCvr686d+4sSYqIiNDWrVv12muvacSIESouLlZeXp7H2ZycnBwFBwdLkoKDg8vdBVV299WZNWffkZWTk6OAgADVr19f3t7e8vb2rrCmbB3n4na75Xa7q7rLAADgKnTRz8kpLS1VUVGRIiIiVK9ePaWmpjrz9u3bp0OHDikyMlKSFBkZqZ07d3rcBbVu3ToFBAQoNDTUqTlzHWU1Zevw9fVVRESER01paalSU1OdGgAAgCqdyZk6dap+/etfq23btjp+/LiWLFmijRs3KiUlRYGBgRozZozi4+PVtGlTBQQEaMKECYqMjFTfvn0lSQMGDFBoaKgeeOABzZo1S9nZ2Xr66acVFxfnnGF55JFHNHfuXD3xxBN68MEHtX79ei1fvlxJSUlOP+Lj4xUbG6tevXqpd+/eevXVV1VYWKjRo0dfwqEBAABXsyqFnKNHj2rUqFH67rvvFBgYqB49eiglJUW/+tWvJEmzZ8+Wl5eXhg0bpqKiIkVHR2v+/PnO8t7e3lqzZo3GjRunyMhINWzYULGxsXrmmWecmg4dOigpKUmTJ0/Wa6+9pjZt2mjhwoWKjo52akaMGKHc3FxNmzZN2dnZ6tmzp5KTk8tdjAwAAOqui35OztWM5+QAAHD1qfHn5AAAAFzJCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlaoUchISEnTTTTepUaNGatmypYYMGaJ9+/Z51Jw8eVJxcXFq1qyZ/P39NWzYMOXk5HjUHDp0SDExMWrQoIFatmypxx9/XKdPn/ao2bhxo2688Ua53W517txZiYmJ5fozb948tW/fXn5+furTp4+2bNlSld0BAAAWq1LISUtLU1xcnD7//HOtW7dOp06d0oABA1RYWOjUTJ48WR999JFWrFihtLQ0HTlyREOHDnXml5SUKCYmRsXFxdq0aZPefvttJSYmatq0aU5NVlaWYmJi1L9/f2VmZmrSpEkaO3asUlJSnJply5YpPj5e06dP1/bt2xUeHq7o6GgdPXr0YsYDAABYwmWMMdVdODc3Vy1btlRaWppuu+025efnq0WLFlqyZInuueceSdLevXt1/fXXKz09XX379tXatWt111136ciRIwoKCpIkLViwQE8++aRyc3Pl6+urJ598UklJSdq1a5ezrZEjRyovL0/JycmSpD59+uimm27S3LlzJUmlpaUKCQnRhAkTNGXKlAr7W1RUpKKiIud1QUGBQkJClJ+fr4CAgOoOQ4X2L31KkuTVua3T1qnXw5d0GwAA1EUFBQUKDAy84Of3RV2Tk5+fL0lq2rSpJCkjI0OnTp1SVFSUU3Pdddepbdu2Sk9PlySlp6crLCzMCTiSFB0drYKCAu3evdupOXMdZTVl6yguLlZGRoZHjZeXl6KiopyaiiQkJCgwMNCZQkJCLmb3AQDAFazaIae0tFSTJk3SLbfcou7du0uSsrOz5evrq8aNG3vUBgUFKTs726k5M+CUzS+bd76agoIC/fTTTzp27JhKSkoqrClbR0WmTp2q/Px8Zzp8+HDVdxwAAFwVfKq7YFxcnHbt2qVPP/30UvanRrndbrnd7truBgAAuAyqdSZn/PjxWrNmjTZs2KA2bdo47cHBwSouLlZeXp5HfU5OjoKDg52as++2Knt9oZqAgADVr19fzZs3l7e3d4U1ZesAAAB1W5VCjjFG48eP16pVq7R+/Xp16NDBY35ERITq1aun1NRUp23fvn06dOiQIiMjJUmRkZHauXOnx11Q69atU0BAgEJDQ52aM9dRVlO2Dl9fX0VERHjUlJaWKjU11akBAAB1W5W+roqLi9OSJUv097//XY0aNXKufwkMDFT9+vUVGBioMWPGKD4+Xk2bNlVAQIAmTJigyMhI9e3bV5I0YMAAhYaG6oEHHtCsWbOUnZ2tp59+WnFxcc5XSY888ojmzp2rJ554Qg8++KDWr1+v5cuXKykpyelLfHy8YmNj1atXL/Xu3VuvvvqqCgsLNXr06Es1NgAA4CpWpZDzxhtvSJJuv/12j/ZFixbpd7/7nSRp9uzZ8vLy0rBhw1RUVKTo6GjNnz/fqfX29taaNWs0btw4RUZGqmHDhoqNjdUzzzzj1HTo0EFJSUmaPHmyXnvtNbVp00YLFy5UdHS0UzNixAjl5uZq2rRpys7OVs+ePZWcnFzuYmQAAFA3XdRzcq52lb3Pvjp4Tg4AADXjsjwnBwAA4EpFyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsVOWQ88knn2jQoEFq3bq1XC6XVq9e7THfGKNp06apVatWql+/vqKiorR//36Pmu+//17333+/AgIC1LhxY40ZM0YnTpzwqPniiy/0i1/8Qn5+fgoJCdGsWbPK9WXFihW67rrr5Ofnp7CwMH388cdV3R0AAGCpKoecwsJChYeHa968eRXOnzVrll5//XUtWLBAmzdvVsOGDRUdHa2TJ086Nffff792796tdevWac2aNfrkk0/0+9//3plfUFCgAQMGqF27dsrIyNBLL72kGTNm6G9/+5tTs2nTJt17770aM2aMduzYoSFDhmjIkCHatWtXVXcJAABYyGWMMdVe2OXSqlWrNGTIEEk/n8Vp3bq1/vjHP+qxxx6TJOXn5ysoKEiJiYkaOXKk9uzZo9DQUG3dulW9evWSJCUnJ+vOO+/Uf//7X7Vu3VpvvPGGnnrqKWVnZ8vX11eSNGXKFK1evVp79+6VJI0YMUKFhYVas2aN05++ffuqZ8+eWrBgQYX9LSoqUlFRkfO6oKBAISEhys/PV0BAQHWHoUL7lz4lSfLq3NZp69Tr4Uu6DQAA6qKCggIFBgZe8PP7kl6Tk5WVpezsbEVFRTltgYGB6tOnj9LT0yVJ6enpaty4sRNwJCkqKkpeXl7avHmzU3Pbbbc5AUeSoqOjtW/fPv3www9OzZnbKasp205FEhISFBgY6EwhISEXv9MAAOCKdElDTnZ2tiQpKCjIoz0oKMiZl52drZYtW3rM9/HxUdOmTT1qKlrHmds4V03Z/IpMnTpV+fn5znT48OGq7iIAALhK+NR2By4nt9stt9td290AAACXwSU9kxMcHCxJysnJ8WjPyclx5gUHB+vo0aMe80+fPq3vv//eo6aidZy5jXPVlM0HAAB12yUNOR06dFBwcLBSU1OdtoKCAm3evFmRkZGSpMjISOXl5SkjI8OpWb9+vUpLS9WnTx+n5pNPPtGpU6ecmnXr1qlr165q0qSJU3PmdspqyrYDAADqtiqHnBMnTigzM1OZmZmSfr7YODMzU4cOHZLL5dKkSZP03HPP6R//+Id27typUaNGqXXr1s4dWNdff70GDhyohx56SFu2bNFnn32m8ePHa+TIkWrdurUk6b777pOvr6/GjBmj3bt3a9myZXrttdcUHx/v9GPixIlKTk7WX//6V+3du1czZszQtm3bNH78+IsfFQAAcPUzVbRhwwYjqdwUGxtrjDGmtLTU/PnPfzZBQUHG7XabX/7yl2bfvn0e6/jf//5n7r33XuPv728CAgLM6NGjzfHjxz1q/v3vf5tbb73VuN1uc80115gXXnihXF+WL19uunTpYnx9fU23bt1MUlJSlfYlPz/fSDL5+flVG4RK+Or9P5mv3v+T+XrrAmcCAAAXr7Kf3xf1nJyrXWXvs68OnpMDAEDNqJXn5AAAAFwpCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVvKp7Q7Ypuj0Sa3NWKiskj1qauqr7+lW8vGpV9vdAgCgzrnqz+TMmzdP7du3l5+fn/r06aMtW7bUWl8WbZyue5Nu0ds5b+mTRge0OmCPpua8pbWHP6u1PgEAUFdd1SFn2bJlio+P1/Tp07V9+3aFh4crOjpaR48evex9WbRxuv6R/5GMjEe7kZTqtYugAwDAZXZVh5xXXnlFDz30kEaPHq3Q0FAtWLBADRo00FtvvXVZ+1F0+qQ+yl/z8wvXWTP/3+v1XrtVdPrkZe0XAAB12VV7TU5xcbEyMjI0depUp83Ly0tRUVFKT0+vcJmioiIVFRU5r/Pz8yVJBQUFF9WXNdveVPFPpy9Yt2jRKPW99mbndccbH7yo7QIAUBeVfW4bY85bd9WGnGPHjqmkpERBQUEe7UFBQdq7d2+FyyQkJGjmzJnl2kNCQmqkj2dL0heSVpzRMvmybBcAABsdP35cgYGB55x/1Yac6pg6dari4+Od16Wlpfr+++/VrFkzuVxnf89UfQUFBQoJCdHhw4cVEBBwydZ7tWNcymNMKsa4VIxxKY8xqZjt42KM0fHjx9W6devz1l21Iad58+by9vZWTk6OR3tOTo6Cg4MrXMbtdsvtdnu0NW7cuKa6qICAACsProvFuJTHmFSMcakY41IeY1Ixm8flfGdwyly1Fx77+voqIiJCqampTltpaalSU1MVGRlZiz0DAABXgqv2TI4kxcfHKzY2Vr169VLv3r316quvqrCwUKNHj67trgEAgFp2VYecESNGKDc3V9OmTVN2drZ69uyp5OTkchcjX25ut1vTp08v99VYXce4lMeYVIxxqRjjUh5jUjHG5Wcuc6H7rwAAAK5CV+01OQAAAOdDyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEnGqaN2+e2rdvLz8/P/Xp00dbtmw5b/2KFSt03XXXyc/PT2FhYfr4448vU08vr6qMS2Jiolwul8fk5+d3GXtb8z755BMNGjRIrVu3lsvl0urVqy+4zMaNG3XjjTfK7Xarc+fOSkxMrPF+Xk5VHZONGzeWO05cLpeys7MvT4cvk4SEBN10001q1KiRWrZsqSFDhmjfvn0XXM7m95bqjEldeF9544031KNHD+dpxpGRkVq7du15l7H5ODkfQk41LFu2TPHx8Zo+fbq2b9+u8PBwRUdH6+jRoxXWb9q0Sffee6/GjBmjHTt2aMiQIRoyZIh27dp1mXtes6o6LtLPjxz/7rvvnOngwYOXscc1r7CwUOHh4Zo3b16l6rOyshQTE6P+/fsrMzNTkyZN0tixY5WSklLDPb18qjomZfbt2+dxrLRs2bKGelg70tLSFBcXp88//1zr1q3TqVOnNGDAABUWFp5zGdvfW6ozJpL97ytt2rTRCy+8oIyMDG3btk133HGHBg8erN27d1dYb/txcl4GVda7d28TFxfnvC4pKTGtW7c2CQkJFdYPHz7cxMTEeLT16dPHPPzwwzXaz8utquOyaNEiExgYeJl6V/skmVWrVp235oknnjDdunXzaBsxYoSJjo6uwZ7VnsqMyYYNG4wk88MPP1yWPl0pjh49aiSZtLS0c9bUlfeWMpUZk7r2vlKmSZMmZuHChRXOq2vHyZk4k1NFxcXFysjIUFRUlNPm5eWlqKgopaenV7hMenq6R70kRUdHn7P+alSdcZGkEydOqF27dgoJCTnvXyJ1RV04VqqrZ8+eatWqlX71q1/ps88+q+3u1Lj8/HxJUtOmTc9ZU9eOl8qMiVS33ldKSkq0dOlSFRYWnvN3G+vacXImQk4VHTt2TCUlJeV+OiIoKOic1whkZ2dXqf5qVJ1x6dq1q9566y39/e9/13vvvafS0lLdfPPN+u9//3s5unxFOtexUlBQoJ9++qmWelW7WrVqpQULFmjlypVauXKlQkJCdPvtt2v79u213bUaU1paqkmTJumWW25R9+7dz1lXF95bylR2TOrK+8rOnTvl7+8vt9utRx55RKtWrVJoaGiFtXXpODnbVf3bVbi6RUZGevzlcfPNN+v666/Xm2++qWeffbYWe4YrSdeuXdW1a1fn9c0336xvvvlGs2fP1rvvvluLPas5cXFx2rVrlz799NPa7soVo7JjUlfeV7p27arMzEzl5+frgw8+UGxsrNLS0s4ZdOoqzuRUUfPmzeXt7a2cnByP9pycHAUHB1e4THBwcJXqr0bVGZez1atXTzfccIO+/vrrmujiVeFcx0pAQIDq169fS7268vTu3dva42T8+PFas2aNNmzYoDZt2py3ti68t0hVG5Oz2fq+4uvrq86dOysiIkIJCQkKDw/Xa6+9VmFtXTlOKkLIqSJfX19FREQoNTXVaSstLVVqauo5vw+NjIz0qJekdevWnbP+alSdcTlbSUmJdu7cqVatWtVUN694deFYuRQyMzOtO06MMRo/frxWrVql9evXq0OHDhdcxvbjpTpjcra68r5SWlqqoqKiCufZfpycV21f+Xw1Wrp0qXG73SYxMdF8+eWX5ve//71p3Lixyc7ONsYY88ADD5gpU6Y49Z999pnx8fExL7/8stmzZ4+ZPn26qVevntm5c2dt7UKNqOq4zJw506SkpJhvvvnGZGRkmJEjRxo/Pz+ze/fu2tqFS+748eNmx44dZseOHUaSeeWVV8yOHTvMwYMHjTHGTJkyxTzwwANO/X/+8x/ToEED8/jjj5s9e/aYefPmGW9vb5OcnFxbu3DJVXVMZs+ebVavXm32799vdu7caSZOnGi8vLzMv/71r9rahRoxbtw4ExgYaDZu3Gi+++47Z/rxxx+dmrr23lKdMakL7ytTpkwxaWlpJisry3zxxRdmypQpxuVymX/+85/GmLp3nJwPIaea5syZY9q2bWt8fX1N7969zeeff+7M69evn4mNjfWoX758uenSpYvx9fU13bp1M0lJSZe5x5dHVcZl0qRJTm1QUJC58847zfbt22uh1zWn7Pbns6eycYiNjTX9+vUrt0zPnj2Nr6+v6dixo1m0aNFl73dNquqYvPjii6ZTp07Gz8/PNG3a1Nx+++1m/fr1tdP5GlTRmEjy+P+va+8t1RmTuvC+8uCDD5p27doZX19f06JFC/PLX/7SCTjG1L3j5Hxcxhhz+c4bAQAAXB5ckwMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAXFKffPKJBg0apNatW8vlcmn16tVVXkdKSor69u2rRo0aqUWLFho2bJgOHDhQpXUQcgAAwCVVWFio8PBwzZs3r1rLZ2VlafDgwbrjjjuUmZmplJQUHTt2TEOHDq3SenjiMQAAqDEul0urVq3SkCFDnLaioiI99dRTev/995WXl6fu3bvrxRdf1O233y5J+uCDD3TvvfeqqKhIXl4/n4/56KOPNHjwYBUVFalevXqV2jZncgAAwGU1fvx4paena+nSpfriiy/0m9/8RgMHDtT+/fslSREREfLy8tKiRYtUUlKi/Px8vfvuu4qKiqp0wJE4kwMAAGrQ2WdyDh06pI4dO+rQoUNq3bq1UxcVFaXevXvrL3/5iyQpLS1Nw4cP1//+9z+VlJQoMjJSH3/8sRo3blzpbXMmBwAAXDY7d+5USUmJunTpIn9/f2dKS0vTN998I0nKzs7WQw89pNjYWG3dulVpaWny9fXVPffco6qcm/GpqZ0AAAA424kTJ+Tt7a2MjAx5e3t7zPP395ckzZs3T4GBgZo1a5Yz77333lNISIg2b96svn37VmpbhBwAAHDZ3HDDDSopKdHRo0f1i1/8osKaH3/80bnguExZICotLa30tvi6CgAAXFInTpxQZmamMjMzJf18S3hmZqYOHTqkLl266P7779eoUaP04YcfKisrS1u2bFFCQoKSkpIkSTExMdq6daueeeYZ7d+/X9u3b9fo0aPVrl073XDDDZXuBxceAwCAS2rjxo3q379/ufbY2FglJibq1KlTeu655/TOO+/o22+/VfPmzdW3b1/NnDlTYWFhkqSlS5dq1qxZ+uqrr9SgQQNFRkbqxRdf1HXXXVfpfhByAACAlfi6CgAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABW+v8AiOuo9ZVCtL0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALuVJREFUeJzt3Xt4VNWh/vE3kzuRXLgkISVAFBWCKAqCURCUlCCopcZjOaUYlQMIiRUREY4KgmgwVfGg3OSoUMXi5YjHokZoUBGMASO0NFxERcHKJFLIDGAJJLN/f/hjjpMESMJMZlbm+3meeR5m7TV7r8kimXfWXnvtEMuyLAEAABjE5u8GAAAANBYBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwAD4IwWLlyoZcuW+bsZAOAWwr2QAJzJRRddpHbt2unDDz/0d1MAQBIjMAC87OjRo/5uAoAgQIABAsjhw4c1adIkdenSRZGRkUpMTNQvf/lLff7555KkQYMG6aKLLlJpaamuvPJKRUdHKy0tTYsXL66zr6qqKs2cOVNdu3ZVZGSkUlNTNXXqVFVVVdWp+/LLL6tv375q1aqVEhISdPXVV2vNmjWSpC5duqisrEwfffSRQkJCFBISokGDBkmSli1bppCQEH300UeaOHGiEhMT1bFjR0nSbbfdpi5dutQ51sMPP6yQkBCPspCQEOXl5en1119Xenq6oqOjlZGRoW3btkmSlixZoq5duyoqKkqDBg3SN9980+ifbVlZma699lpFR0erY8eOmjNnjl544QWFhIQ0an8n2//FF1/od7/7neLi4tS+fXs99NBDsixL+/bt069+9SvFxsYqOTlZTz75ZJ19NLRvXnzxRV177bVKTExUZGSk0tPTtWjRojr769Kli66//npt2LBBffv2VVRUlM4991z98Y9/bPTPCTBFmL8bAOD/3HnnnXrjjTeUl5en9PR0/fOf/9SGDRu0Y8cOXXbZZZKkQ4cOadiwYbrlllv07//+73rttdc0YcIERURE6I477pAkuVwu3XjjjdqwYYPGjRun7t27a9u2bZo3b56++OILvfXWW+5jzpo1Sw8//LCuvPJKzZ49WxERESopKdG6des0ZMgQPf3007rrrrt0zjnn6IEHHpAkJSUlebR74sSJat++vWbMmNHkEZiPP/5Yb7/9tnJzcyVJ+fn5uv766zV16lQtXLhQEydO1KFDh1RQUKA77rhD69ata/C+7Xa7rrnmGlVXV2vatGmKiYnRc889p+jo6Ca1VZJ+85vfqHv37po7d67eeecdzZkzR23atNGSJUt07bXX6vHHH9eKFSs0ZcoUXX755br66qslNa5vFi1apB49eujGG29UWFiY/vznP2vixIlyuVzun9NJX375pW6++WaNGTNGOTk5euGFF3Tbbbepd+/e6tGjR5PfJxCwLAABIy4uzsrNzT3l9oEDB1qSrCeffNJdVlVVZfXq1ctKTEy0jh8/blmWZb300kuWzWazPv74Y4/XL1682JJkbdy40bIsy9q9e7dls9msX//611ZNTY1HXZfL5f53jx49rIEDB9Zpz4svvmhJsvr3729VV1d7bMvJybE6d+5c5zUzZ860av/pkWRFRkZae/bscZctWbLEkmQlJydbTqfTXT59+nRLkkfdM5k0aZIlySopKXGXVVRUWHFxcY3e18n2jxs3zl1WXV1tdezY0QoJCbHmzp3rLj906JAVHR1t5eTkuMsa2jeWZVk//vhjneNnZWVZ5557rkdZ586dLUnW+vXrPd5fZGSkde+99zb4vQEm4RQSEEDi4+NVUlKi77///pR1wsLCNH78ePfziIgIjR8/XhUVFSotLZUkvf766+revbu6deumAwcOuB/XXnutJOmDDz6QJL311ltyuVyaMWOGbDbPPwe1T/OcztixYxUaGtrg+vUZPHiwxymnfv36SZKys7PVunXrOuVff/11g/f97rvv6oorrlDfvn3dZe3bt9eoUaOa3N7/+I//cP87NDRUffr0kWVZGjNmjLs8Pj5eF154oUdbG9o3kjxGiBwOhw4cOKCBAwfq66+/lsPh8GhPenq6BgwY4PH+ah8baEk4hQQEkIKCAuXk5Cg1NVW9e/fWsGHDdOutt+rcc89110lJSVFMTIzH6y644AJJ0jfffKMrrrhCu3fv1o4dO9S+fft6j1NRUSFJ+uqrr2Sz2ZSenn5W7U5LSzur10tSp06dPJ7HxcVJklJTU+stP3ToUIP3/e2337qDz89deOGFjW2mW33tjYqKUrt27eqU//Of/3Q/b2jfSNLGjRs1c+ZMFRcX68cff/So53A43D+L+tojSQkJCY36OQEmIcAAAeSWW27RgAEDtGrVKq1Zs0Z/+MMf9Pjjj+vNN9/Udddd1+D9uFwu9ezZU0899VS922uHgrNV31ySU43g1NTU1Ft+qhGcU5Vbfl4Bor52NaStDe2br776SoMHD1a3bt301FNPKTU1VREREXr33Xc1b948uVyuRh8baEkIMECA6dChgyZOnKiJEyeqoqJCl112mR599FF3gPn+++919OhRj1GYL774QpLcp2DOO+88/fWvf9XgwYNPeyrovPPOk8vl0vbt29WrV69T1mvM6aSTEhISVFlZWaf822+/bfS+zlbnzp21e/fuOuW7du1q9rY0tG/+/Oc/q6qqSm+//bbH6MrPTzEBwYw5MECAqKmpqTOvITExUSkpKR6X11ZXV2vJkiXu58ePH9eSJUvUvn179e7dW9JPIzn/+Mc/tHTp0jrH+de//uW+UmjEiBGy2WyaPXt2nW/0P//mHhMTU28YOZ3zzjtPDodDf/vb39xl+/fv16pVqxq1H28YNmyYPv30U23atMld9sMPP2jFihXN3paG9s3JEZWf94PD4dCLL77YPA0FAhwjMECAOHz4sDp27Kibb75Zl1xyic455xz95S9/0ebNmz3WEklJSdHjjz+ub775RhdccIFeffVVbd26Vc8995zCw8MlSaNHj9Zrr72mO++8Ux988IGuuuoq1dTUaOfOnXrttdf0/vvvq0+fPurataseeOABPfLIIxowYIBuuukmRUZGavPmzUpJSVF+fr4kqXfv3lq0aJHmzJmjrl27KjEx0T3p9FRGjhyp+++/X7/+9a/1+9//Xj/++KMWLVqkCy64wL2uTXOZOnWqXnrpJQ0dOlR33323+zLqzp07ewSs5tDQvhkyZIgiIiJ0ww03aPz48Tpy5IiWLl2qxMRE7d+/v1nbDAQiAgwQIFq1aqWJEydqzZo1evPNN+VyudS1a1ctXLhQEyZMcNdLSEjQ8uXLddddd2np0qVKSkrSs88+q7Fjx7rr2Gw2vfXWW5o3b57++Mc/atWqVWrVqpXOPfdc3X333e5Jv5I0e/ZspaWl6ZlnntEDDzygVq1a6eKLL9bo0aPddWbMmKFvv/1WBQUFOnz4sAYOHHjGANO2bVutWrVKkydP1tSpU5WWlqb8/Hzt3r272QNMhw4d9MEHH+iuu+7S3Llz1bZtW915551KSUnxuGqoOTS0by688EK98cYbevDBBzVlyhQlJydrwoQJat++vXu9HyCYcS8kwCCDBg3SgQMH9Pe//93fTWkRli1bpttvv1179uypd9VgAIGLOTAAAMA4nEICYKx//etfdSY+19amTRtFRESccV9HjhzRkSNHTlunffv2Z71gHwDvIMAAMNarr76q22+//bR1PvjgA/fNJ0/niSee0KxZs05bh1NNQOBgDgwAY+3fv19lZWWnrdO7d28lJCSccV9ff/31GZfd79+/v6KiohrVRgC+QYABAADGYRIvAAAwToudA+NyufT999+rdevWTVoGHQAAND/LsnT48GGlpKTIZjv1OEuLDTDff/+9129YBwAAmse+ffvUsWPHU25vsQGmdevWkn76AcTGxvq5NQAAoCGcTqdSU1Pdn+On0mIDzMnTRrGxsQQYAAAMc6bpH0ziBQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADBOmL8bYKIThRvqlIUP7e+HlgAAEJwIMF5SO9QQaAAA8B1OIQEAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGKfRAWb9+vW64YYblJKSopCQEL311lse2y3L0owZM9ShQwdFR0crMzNTu3fv9qhz8OBBjRo1SrGxsYqPj9eYMWN05MgRjzp/+9vfNGDAAEVFRSk1NVUFBQWNf3cAAKBFanSAOXr0qC655BItWLCg3u0FBQWaP3++Fi9erJKSEsXExCgrK0vHjh1z1xk1apTKysq0du1arV69WuvXr9e4cePc251Op4YMGaLOnTurtLRUf/jDH/Twww/rueeea8JbBAAALU2IZVlWk18cEqJVq1ZpxIgRkn4afUlJSdG9996rKVOmSJIcDoeSkpK0bNkyjRw5Ujt27FB6ero2b96sPn36SJIKCws1bNgwfffdd0pJSdGiRYv0wAMPyG63KyIiQpI0bdo0vfXWW9q5c2eD2uZ0OhUXFyeHw6HY2NimvsV6nSjccMY64UP7e/WYAAAEg4Z+fnt1DsyePXtkt9uVmZnpLouLi1O/fv1UXFwsSSouLlZ8fLw7vEhSZmambDabSkpK3HWuvvpqd3iRpKysLO3atUuHDh3yZpMBAICBwry5M7vdLklKSkryKE9KSnJvs9vtSkxM9GxEWJjatGnjUSctLa3OPk5uS0hIqHPsqqoqVVVVuZ87nc6zfDcAACBQtZirkPLz8xUXF+d+pKam+rtJAADAR7waYJKTkyVJ5eXlHuXl5eXubcnJyaqoqPDYXl1drYMHD3rUqW8fPz9GbdOnT5fD4XA/9u3bd/ZvCAAABCSvBpi0tDQlJyerqKjIXeZ0OlVSUqKMjAxJUkZGhiorK1VaWuqus27dOrlcLvXr189dZ/369Tpx4oS7ztq1a3XhhRfWe/pIkiIjIxUbG+vxAAAALVOjA8yRI0e0detWbd26VdJPE3e3bt2qvXv3KiQkRJMmTdKcOXP09ttva9u2bbr11luVkpLivlKpe/fuGjp0qMaOHatNmzZp48aNysvL08iRI5WSkiJJ+u1vf6uIiAiNGTNGZWVlevXVV/Vf//Vfmjx5stfeOAAAMFejJ/F+9tlnuuaaa9zPT4aKnJwcLVu2TFOnTtXRo0c1btw4VVZWqn///iosLFRUVJT7NStWrFBeXp4GDx4sm82m7OxszZ8/3709Li5Oa9asUW5urnr37q127dppxowZHmvFAACA4HVW68AEMn+vA1Mf1oYBAOD0/LIODAAAQHMgwAAAAOMQYAAAgHEIMAAAwDgEGAAAYByv3gsJp1f76iWuSgIAoGkYgQEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGCcMH83IJidKNxQpyx8aH8/tAQAALMwAgMAAIzj9QBTU1Ojhx56SGlpaYqOjtZ5552nRx55RJZluetYlqUZM2aoQ4cOio6OVmZmpnbv3u2xn4MHD2rUqFGKjY1VfHy8xowZoyNHjni7uQAAwEBeDzCPP/64Fi1apGeffVY7duzQ448/roKCAj3zzDPuOgUFBZo/f74WL16skpISxcTEKCsrS8eOHXPXGTVqlMrKyrR27VqtXr1a69ev17hx47zdXAAAYKAQ6+dDI15w/fXXKykpSc8//7y7LDs7W9HR0Xr55ZdlWZZSUlJ07733asqUKZIkh8OhpKQkLVu2TCNHjtSOHTuUnp6uzZs3q0+fPpKkwsJCDRs2TN99951SUlLO2A6n06m4uDg5HA7FxsZ68y3WO3fFW5gDAwAIZg39/Pb6CMyVV16poqIiffHFF5Kkv/71r9qwYYOuu+46SdKePXtkt9uVmZnpfk1cXJz69eun4uJiSVJxcbHi4+Pd4UWSMjMzZbPZVFJSUu9xq6qq5HQ6PR4AAKBl8vpVSNOmTZPT6VS3bt0UGhqqmpoaPfrooxo1apQkyW63S5KSkpI8XpeUlOTeZrfblZiY6NnQsDC1adPGXae2/Px8zZo1y9tvBwAABCCvj8C89tprWrFihV555RV9/vnnWr58uZ544gktX77c24fyMH36dDkcDvdj3759Pj0eAADwH6+PwNx3332aNm2aRo4cKUnq2bOnvv32W+Xn5ysnJ0fJycmSpPLycnXo0MH9uvLycvXq1UuSlJycrIqKCo/9VldX6+DBg+7X1xYZGanIyEhvvx0AABCAvD4C8+OPP8pm89xtaGioXC6XJCktLU3JyckqKipyb3c6nSopKVFGRoYkKSMjQ5WVlSotLXXXWbdunVwul/r16+ftJgMAAMN4fQTmhhtu0KOPPqpOnTqpR48e2rJli5566indcccdkqSQkBBNmjRJc+bM0fnnn6+0tDQ99NBDSklJ0YgRIyRJ3bt319ChQzV27FgtXrxYJ06cUF5enkaOHNmgK5AAAEDL5vUA88wzz+ihhx7SxIkTVVFRoZSUFI0fP14zZsxw15k6daqOHj2qcePGqbKyUv3791dhYaGioqLcdVasWKG8vDwNHjxYNptN2dnZmj9/vrebCwAADOT1dWACBevAAABgHr+tAwMAAOBrBBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjBPm7wbAU+07XXN3agAA6mIEBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjBPm7wbg9E4UbqhTFj60vx9aAgBA4GAEBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYh5V4AQButVf/ZuVvBCpGYAAAgHF8EmD+8Y9/6He/+53atm2r6Oho9ezZU5999pl7u2VZmjFjhjp06KDo6GhlZmZq9+7dHvs4ePCgRo0apdjYWMXHx2vMmDE6cuSIL5oLAAAM4/UAc+jQIV111VUKDw/Xe++9p+3bt+vJJ59UQkKCu05BQYHmz5+vxYsXq6SkRDExMcrKytKxY8fcdUaNGqWysjKtXbtWq1ev1vr16zVu3DhvNxcAABgoxLIsy5s7nDZtmjZu3KiPP/643u2WZSklJUX33nuvpkyZIklyOBxKSkrSsmXLNHLkSO3YsUPp6enavHmz+vTpI0kqLCzUsGHD9N133yklJeWM7XA6nYqLi5PD4VBsbKz33qDqv0N0c+KcNABfYQ4M/K2hn99eH4F5++231adPH/3bv/2bEhMTdemll2rp0qXu7Xv27JHdbldmZqa7LC4uTv369VNxcbEkqbi4WPHx8e7wIkmZmZmy2WwqKSmp97hVVVVyOp0eDwCAf5wo3ODxALzN6wHm66+/1qJFi3T++efr/fff14QJE/T73/9ey5cvlyTZ7XZJUlJSksfrkpKS3NvsdrsSExM9toeFhalNmzbuOrXl5+crLi7O/UhNTfX2WwMAAAHC6wHG5XLpsssu02OPPaZLL71U48aN09ixY7V48WJvH8rD9OnT5XA43I99+/b59HgAAMB/vL4OTIcOHZSenu5R1r17d/3P//yPJCk5OVmSVF5erg4dOrjrlJeXq1evXu46FRUVHvuorq7WwYMH3a+vLTIyUpGRkd56GwGNc9QAgGDn9RGYq666Srt27fIo++KLL9S5c2dJUlpampKTk1VUVOTe7nQ6VVJSooyMDElSRkaGKisrVVpa6q6zbt06uVwu9evXz9tNBgAAhvH6CMw999yjK6+8Uo899phuueUWbdq0Sc8995yee+45SVJISIgmTZqkOXPm6Pzzz1daWpoeeughpaSkaMSIEZJ+GrEZOnSo+9TTiRMnlJeXp5EjRzboCiQAQPCqb9IwI9Utj9cDzOWXX65Vq1Zp+vTpmj17ttLS0vT0009r1KhR7jpTp07V0aNHNW7cOFVWVqp///4qLCxUVFSUu86KFSuUl5enwYMHy2azKTs7W/Pnz/d2cwEAp0EYQKDy+jowgaIlrwNTG39MAHhLQ/6+NeRvjj/n6hG6zOa3dWAAAAB8jQADAACM4/U5MACA4NKcp9U5PYSTGIEBAADGYQQGANAogXYhA4ITAQYAELAISzgVAgwABDDmfAD1Yw4MAAAwDiMwAACfYyQJ3sYIDAAAMA4BBgAAGIdTSAAAo3GlUnAiwABAkOKDHyYjwAAAWjx/3h0bvkGAAYAWiNEVtHQEGAAA6sGl34GNAAMAP8OHFmAGAkwLxfleIPCY+Hv5TeV7dcq6xF/nt+M357ER2AgwAGA4f8938XfIqS3Q2gPfIMAAAALC7pUPNOl19QWWpvB3EETjEGAABA0T5rcE04foV58t8XcTGs3E04AtFQEGgJGa84OEDy1P3hrxAM4GAQYA/CSYRlvq4/pyr7+bAIMRYADAMMEefACJAAOghTBhfosJvHV6yFeXPwfa6Sv+3/kPAaYF4NsYEHj4vQR8iwADAAHEW2uYNGQ/gTaaATQGAQaAkfy5WFlznzbw1ukYAsvpseqvWQgwAIJK7Q+p88V8hWBAv7c8BBgAQa32Ymquyr188wYMQIABgFqa81QCp3WApiHAAGhWDVnV1lsr39Y3ugKgZSDAAIAX1Dexl0mhgO/Y/N0AAACAxmIEBgDOwJ+XbAOoHwEGgM94azVaX65q21JuKMhkYO8juAY2TiEBAADjMAIDAE3ABN3GCbQRIu5VZT4CDAA0k0D7EAdMRoABAC8gnADNiwADBBlv3YiwqUPwdT7oV77H6Re0KN5aiBGnR4ABUIepd1sGGooRM/NxFRIAADAOIzBoNIZHAf9i9CBwsFaM/xBggADVnDc9bKpAO/VT58Ok0i/NANAMCDAAGqQ5183gWy2AMyHABInmnpQJAIAvEWCCGKEGAGAqAgwAIzBxFcDPEWDgwd+TQgGgpWG02zcIMAB8OkGXkRMAvkCAAYJQQy5/DrRLpIFAQCAPHD5fiXfu3LkKCQnRpEmT3GXHjh1Tbm6u2rZtq3POOUfZ2dkqLy/3eN3evXs1fPhwtWrVSomJibrvvvtUXV3t6+YCAAAD+HQEZvPmzVqyZIkuvvhij/J77rlH77zzjl5//XXFxcUpLy9PN910kzZu3ChJqqmp0fDhw5WcnKxPPvlE+/fv16233qrw8HA99thjvmwymlGwzLfx5vnvrz5b4vG8k3o0aT8AYDqfjcAcOXJEo0aN0tKlS5WQkOAudzgcev755/XUU0/p2muvVe/evfXiiy/qk08+0aeffipJWrNmjbZv366XX35ZvXr10nXXXadHHnlECxYs0PHjx33VZAAAYAifBZjc3FwNHz5cmZmZHuWlpaU6ceKER3m3bt3UqVMnFRcXS5KKi4vVs2dPJSUluetkZWXJ6XSqrKys3uNVVVXJ6XR6PAAAQMvkk1NIK1eu1Oeff67NmzfX2Wa32xUREaH4+HiP8qSkJNntdnedn4eXk9tPbqtPfn6+Zs2a5YXWAwDgPfVN/D1f3jllHiyn4uvj9QCzb98+3X333Vq7dq2ioqK8vftTmj59uiZPnux+7nQ6lZqa2mzHB3ztROEGuSr3ehbGn3kOTHPewwgAmovXA0xpaakqKip02WWXuctqamq0fv16Pfvss3r//fd1/PhxVVZWeozClJeXKzk5WZKUnJysTZs2eez35FVKJ+vUFhkZqcjISC+/GwSTYP4mAwCm8XqAGTx4sLZt2+ZRdvvtt6tbt266//77lZqaqvDwcBUVFSk7O1uStGvXLu3du1cZGRmSpIyMDD366KOqqKhQYmKiJGnt2rWKjY1Venq6t5uM02ip394D7X0FWnsA+BZfmM6e1wNM69atddFFF3mUxcTEqG3btu7yMWPGaPLkyWrTpo1iY2N11113KSMjQ1dccYUkaciQIUpPT9fo0aNVUFAgu92uBx98ULm5uYyyBCCWyQ4cBCEAwcIvK/HOmzdPNptN2dnZqqqqUlZWlhYuXOjeHhoaqtWrV2vChAnKyMhQTEyMcnJyNHv2bH80F17AB6v5WIEUQCBplgDz4YcfejyPiorSggULtGDBglO+pnPnznr33Xd93DIAALyLsN88fH4rAQAAAG/jZo7wCU4ZNY/6vunVvuliQ74N8o0RgGkIMMApMDm58QhCAJoLAQbwMkafAMD3CDAwHuspAEDwIcAgKJgwKlL79EvtuSwAggtfzk6PAAP4gS8DFfNQAAQDAgxwFkwY2QHQMvD3xhMBBkbhFxhAsGrIsgnBhIXsAACAcRiBQUBjxAUAUB9GYAAAgHEIMAAAwDgEGAAAYBzmwKDFYd4MgEBX+4oi22dldep0Uo/mao6RCDBAIzRnOGJBOgA4NQIM0Ay4TQAAeBcBBgCAAMQo7OkRYBAwgmnuCn+YAODsEGCAs8TpIQD+Uvvvz/kKnjtWE2AAAPAz15d7/d0E4xBgEBS4CRoAtCwsZAcAAIxDgAEAAMbhFBLw/3GaCQDMwQgMAAAwDgEGAAAYh1NIwGmwxgsABCYCDIIWq+ECaGnqW9E8fGjLXNyOAAPjMCoCACDAAF7GyA6AQFJ7VKaljMgQYIBGIJwAQGAgwMB4rN8CAMGHAAO/8WXwYKQEAFo21oEBAADGIcAAAADjEGAAAIBxCDAAAMA4TOJFQGGROgBAQxBgENC4mggAGi6YlpXgFBIAADAOAQYAABiHAAMAAIzDHBg0G+azAAC8hQADAEALVvvL4/nibtQIUsE0yx0AEJiYAwMAAIzDCAx8gvkuAABfYgQGAAAYhxEYeAUjLgCA5sQIDAAAMA4BBgAAGMfrASY/P1+XX365WrdurcTERI0YMUK7du3yqHPs2DHl5uaqbdu2Ouecc5Sdna3y8nKPOnv37tXw4cPVqlUrJSYm6r777lN1dbW3mwsAAAzk9TkwH330kXJzc3X55Zerurpa//mf/6khQ4Zo+/btiomJkSTdc889euedd/T6668rLi5OeXl5uummm7Rx40ZJUk1NjYYPH67k5GR98skn2r9/v2699VaFh4frscce83aTAQAIGicKN9QpCx9q3uJ2IZZlWb48wA8//KDExER99NFHuvrqq+VwONS+fXu98soruvnmmyVJO3fuVPfu3VVcXKwrrrhC7733nq6//np9//33SkpKkiQtXrxY999/v3744QdFRESc8bhOp1NxcXFyOByKjY316nuqr/ODCRN2AcBc9S08GkgBpqGf3z6fA+NwOCRJbdq0kSSVlpbqxIkTyszMdNfp1q2bOnXqpOLiYklScXGxevbs6Q4vkpSVlSWn06mysrJ6j1NVVSWn0+nxAAAALZNPL6N2uVyaNGmSrrrqKl100UWSJLvdroiICMXHx3vUTUpKkt1ud9f5eXg5uf3ktvrk5+dr1qxZXn4HkBhxAYCWpL6/6SbeH8mnIzC5ubn6+9//rpUrV/ryMJKk6dOny+FwuB/79u3z+TEBAIB/+GwEJi8vT6tXr9b69evVsWNHd3lycrKOHz+uyspKj1GY8vJyJScnu+ts2rTJY38nr1I6Wae2yMhIRUZGevldAACAQOT1ERjLspSXl6dVq1Zp3bp1SktL89jeu3dvhYeHq6ioyF22a9cu7d27VxkZGZKkjIwMbdu2TRUVFe46a9euVWxsrNLT073d5KD2TeV7Hg8AAEzg9RGY3NxcvfLKK/rf//1ftW7d2j1nJS4uTtHR0YqLi9OYMWM0efJktWnTRrGxsbrrrruUkZGhK664QpI0ZMgQpaena/To0SooKJDdbteDDz6o3NxcRll8jBADADCB1wPMokWLJEmDBg3yKH/xxRd12223SZLmzZsnm82m7OxsVVVVKSsrSwsXLnTXDQ0N1erVqzVhwgRlZGQoJiZGOTk5mj17trebCwAADOTzdWD8hXVgGoYRFwDA+SMf9XcT3Br6+c3dqIMIYQUA0FIQYFqI+sJJfastAgDQEhBgDMVoCgAgmPn8VgIAAADeRoABAADGIcAAAADjEGAAAIBxmMTbgjHRFwDQUjECAwAAjEOAAQAAxiHAAAAA4zAHxgDMZQEAwBMjMAAAwDgEGAAAYBwCDAAAMA5zYPyMu0gDANB4BJgAxKRdAABOj1NIAADAOIzAAAAQ5L76bInH8/P6jPdTSxqOERgAAGAcRmCaGfNbAAA4e4zAAAAA4zACAwBAkHN9udfj+YkDG+rUCR/av7ma0yCMwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwm8foQl0wDAOAbBBgAAOCh3hsNF3o+9/dVSQQYAABwRrVDzfkiwLQYnDICAKB5MIkXAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYJwwfzfAVN9UvufvJgAAELQYgQEAAMZhBOZsWVLk4VCFnrDpRHiNdsb9IKetSrFWpNJcbWRTiFcP55KlPbaDcob47hgAAAQ6AsxZiD4Ypvi90Qo7btOmdvu0vOvnOhj1L/f2OFeUbjzRXT1rkr1yvG2hdr0dvkMO2zGfHQMAABNwCqmJog+Gqe2XrRR6PESb2u3TvB4bdTDyXx51HCHH9FLEFm0LtZ/18baF2vVSxBY5Qo55lHvzGAAAmIIA0wSWZSl+b/RP/5al5V0//2lD7TM5///52+E75JLV5OO5ZOnt8B0+PQYAACYJ6ACzYMECdenSRVFRUerXr582bdrk7yb95JBTYcdtClGIdsb/8NNpo1NNQwmRHLZj2mM72OTD7bEd/Om0kQ+PAQCASQI2wLz66quaPHmyZs6cqc8//1yXXHKJsrKyVFFR4e+myao67v73oYhjp6n5f5whVU0+XkNfezbHAADAJAEbYJ566imNHTtWt99+u9LT07V48WK1atVKL7zwgr+bppDICPe/E45HNeg1sVZkk4/X0NeezTEAADBJQF6FdPz4cZWWlmr69OnuMpvNpszMTBUXF9f7mqqqKlVV/d8IhMPhkCQ5nU7vty8yVMetHxV6PEQp5a11zsFwHYo8xSke66dg0f5YjI6oaSMk7RWj6Oqwn0ZYfHQMAAAawxefrz/fr2Wdfl5nQAaYAwcOqKamRklJSR7lSUlJ2rlzZ72vyc/P16xZs+qUp6am+qSNjfUnbW4RxwAAQJI05kmf7v7w4cOKi4s75faADDBNMX36dE2ePNn93OVy6eDBg2rbtq1CQry30JvT6VRqaqr27dun2NhYr+0XZ4d+CUz0S2CiXwIT/fITy7J0+PBhpaSknLZeQAaYdu3aKTQ0VOXl5R7l5eXlSk6uf8G2yMhIRUZ6zgGJj4/3VRMVGxsb1P/BAhX9Epjol8BEvwQm+kWnHXk5KSAn8UZERKh3794qKipyl7lcLhUVFSkjI8OPLQMAAIEgIEdgJGny5MnKyclRnz591LdvXz399NM6evSobr/9dn83DQAA+FnABpjf/OY3+uGHHzRjxgzZ7Xb16tVLhYWFdSb2NrfIyEjNnDmzzukq+Bf9Epjol8BEvwQm+qVxQqwzXacEAAAQYAJyDgwAAMDpEGAAAIBxCDAAAMA4BBgAAGAcAkw9FixYoC5duigqKkr9+vXTpk2bTlv/9ddfV7du3RQVFaWePXvq3XffbaaWBpfG9EtZWZmys7PVpUsXhYSE6Omnn26+hgaZxvTL0qVLNWDAACUkJCghIUGZmZln/P1C0zSmX95880316dNH8fHxiomJUa9evfTSSy81Y2uDQ2M/W05auXKlQkJCNGLECN820DQWPKxcudKKiIiwXnjhBausrMwaO3asFR8fb5WXl9dbf+PGjVZoaKhVUFBgbd++3XrwwQet8PBwa9u2bc3c8patsf2yadMma8qUKdaf/vQnKzk52Zo3b17zNjhINLZffvvb31oLFiywtmzZYu3YscO67bbbrLi4OOu7775r5pa3bI3tlw8++MB68803re3bt1tffvml9fTTT1uhoaFWYWFhM7e85Wpsn5y0Z88e6xe/+IU1YMAA61e/+lXzNNYQBJha+vbta+Xm5rqf19TUWCkpKVZ+fn699W+55RZr+PDhHmX9+vWzxo8f79N2BpvG9svPde7cmQDjI2fTL5ZlWdXV1Vbr1q2t5cuX+6qJQels+8WyLOvSSy+1HnzwQV80Lyg1pU+qq6utK6+80vrv//5vKycnhwBTC6eQfub48eMqLS1VZmamu8xmsykzM1PFxcX1vqa4uNijviRlZWWdsj4aryn9At/zRr/8+OOPOnHihNq0aeOrZgads+0Xy7JUVFSkXbt26eqrr/ZlU4NGU/tk9uzZSkxM1JgxY5qjmcYJ2JV4/eHAgQOqqamps9pvUlKSdu7cWe9r7HZ7vfXtdrvP2hlsmtIv8D1v9Mv999+vlJSUOl8C0HRN7ReHw6Ff/OIXqqqqUmhoqBYuXKhf/vKXvm5uUGhKn2zYsEHPP/+8tm7d2gwtNBMBBoBfzJ07VytXrtSHH36oqKgofzcn6LVu3Vpbt27VkSNHVFRUpMmTJ+vcc8/VoEGD/N20oHP48GGNHj1aS5cuVbt27fzdnIBFgPmZdu3aKTQ0VOXl5R7l5eXlSk5Orvc1ycnJjaqPxmtKv8D3zqZfnnjiCc2dO1d/+ctfdPHFF/uymUGnqf1is9nUtWtXSVKvXr20Y8cO5efnE2C8oLF98tVXX+mbb77RDTfc4C5zuVySpLCwMO3atUvnnXeebxttAObA/ExERIR69+6toqIid5nL5VJRUZEyMjLqfU1GRoZHfUlau3btKeuj8ZrSL/C9pvZLQUGBHnnkERUWFqpPnz7N0dSg4q3fF5fLpaqqKl80Meg0tk+6deumbdu2aevWre7HjTfeqGuuuUZbt25VampqczY/cPl7FnGgWblypRUZGWktW7bM2r59uzVu3DgrPj7estvtlmVZ1ujRo61p06a562/cuNEKCwuznnjiCWvHjh3WzJkzuYzaBxrbL1VVVdaWLVusLVu2WB06dLCmTJlibdmyxdq9e7e/3kKL1Nh+mTt3rhUREWG98cYb1v79+92Pw4cP++sttEiN7ZfHHnvMWrNmjfXVV19Z27dvt5544gkrLCzMWrp0qb/eQovT2D6pjauQ6iLA1OOZZ56xOnXqZEVERFh9+/a1Pv30U/e2gQMHWjk5OR71X3vtNeuCCy6wIiIirB49eljvvPNOM7c4ODSmX/bs2WNJqvMYOHBg8ze8hWtMv3Tu3Lnefpk5c2bzN7yFa0y/PPDAA1bXrl2tqKgoKyEhwcrIyLBWrlzph1a3bI39bPk5AkxdIZZlWf4a/QEAAGgK5sAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYJz/B9z9ohCDtKgwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANCNJREFUeJzt3Xl8VNX9//F3FrIQMhNAkhAJGECFKEqBGobFNV8ixh1LUYpBWQSDLaEq8lNZ3FDUiiiLSzW2BRHaahUkSEOBLxIQo1EMkoKEBhsngJAMoGQh9/eHv9wfQwJmQrYTXs/HYx4P5tzPvXPuSR7m7bnn3vGzLMsSAACAQfybugMAAAC+IsAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAA4I6NHj9Z55533s3V79uyRn5+f0tPTG7xPAFo+AgyAn1VYWKiZM2cqJyenqbsCAJKkwKbuAIDmr7CwULNmzdJ5552n3r17e2177bXXVFlZ2TQdA3DWIsAAOCOtWrVq6i4AOAtxCQkwyMyZM+Xn56cdO3Zo+PDhcjgcat++vX73u9/p2LFjXrV/+ctf1LdvX4WGhqpdu3YaMWKE9u7d61Vz5ZVX6uKLL1Z2drYGDBig0NBQxcXFadGiRXbNunXr9Mtf/lKSdNddd8nPz89rLUtNa2CKi4s1evRoOZ1ORUREKCUlRcXFxTWe044dO3TbbbepXbt2CgkJUb9+/fT+++/7PDalpaVKS0tThw4dFB4erhtvvFHffvut/Pz8NHPmzFofp2qtznPPPaf58+era9euat26tYYMGaK9e/fKsiw9/vjj6tSpk0JDQ3XTTTfp4MGD1Y6zatUqDR48WGFhYQoPD1dycrJyc3O9ar788kuNHj1aXbt2VUhIiKKjo3X33Xfr+++/96qr+rnv2rVLo0ePVkREhJxOp+666y798MMPPo8V0BIwAwMYaPjw4TrvvPM0e/Zsbd68WfPmzdOhQ4f0pz/9SZL05JNP6tFHH9Xw4cM1duxY7d+/Xy+99JIuv/xyff7554qIiLCPdejQIV133XUaPny4br/9di1btkwTJ05UUFCQ7r77bvXs2VOPPfaYpk+frvHjx2vw4MGSpAEDBtTYN8uydNNNN2njxo2aMGGCevbsqXfffVcpKSnVanNzczVw4ECde+65euihhxQWFqZly5bp5ptv1t/+9jfdcssttR6TsWPH6i9/+YvuuOMODRgwQGvXrlVycrIPo+pt8eLFKisr03333aeDBw9qzpw5Gj58uK6++mqtW7dOU6dO1a5du/TSSy/p/vvv1xtvvGHv++c//1kpKSlKSkrSM888ox9++EELFy7UoEGD9Pnnn9uBb82aNdq9e7fuuusuRUdHKzc3V6+++qpyc3O1efNm+fn5efVp+PDhiouL0+zZs/XZZ5/p9ddfV2RkpJ555pk6nydgLAuAMWbMmGFJsm688Uav9nvvvdeSZH3xxRfWnj17rICAAOvJJ5/0qtm2bZsVGBjo1X7FFVdYkqznn3/ebistLbV69+5tRUZGWmVlZZZlWdbWrVstSdabb75ZrU8pKSlWly5d7PfvvfeeJcmaM2eO3VZRUWENHjy42jGuueYaq1evXtaxY8fstsrKSmvAgAHW+eefX+txycnJsSRZ9957r1f7HXfcYUmyZsyYUetj5efnW5KsDh06WMXFxXb7tGnTLEnWpZdeapWXl9vtt99+uxUUFGSfw+HDh62IiAhr3LhxXsd1u92W0+n0av/hhx+qff7bb79tSbI2bNhgt1X93O+++26v2ltuucVq3759rc8NaEm4hAQYKDU11ev9fffdJ0n68MMP9fe//12VlZUaPny4Dhw4YL+io6N1/vnn61//+pfXvoGBgbrnnnvs90FBQbrnnnu0b98+ZWdn+9y3Dz/8UIGBgZo4caLdFhAQYPexysGDB7V27VoNHz5chw8ftvv5/fffKykpSTt37tR///vfWn+mJP32t7/1ap88ebLP/a/yq1/9Sk6n036fkJAgSfrNb36jwMBAr/aysjK7r2vWrFFxcbFuv/12r/EPCAhQQkKC1/iHhoba/z527JgOHDig/v37S5I+++yzan2aMGGC1/vBgwfr+++/l8fjqfN5AqbiEhJgoPPPP9/rfbdu3eTv7689e/bI399flmVVq6ly8qLbmJgYhYWFebVdcMEFkn5aD1L1B7W2/vOf/6hjx45q06aNV/uFF17o9X7Xrl2yLEuPPvqoHn300RqPtW/fPp177rm1+kx/f39169bttJ/pi86dO3u9rwozsbGxNbYfOnRIkrRz505J0tVXX13jcR0Oh/3vgwcPatasWVq6dKn27dvnVVdSUvKzfWrbtq392SceFzgbEGCAFuDEtRKVlZXy8/PTqlWrFBAQUK325GDRVKpuvb7//vuVlJRUY0337t0bs0teahq707VbliXp/5/Xn//8Z0VHR1erO3H2Zvjw4dq0aZMeeOAB9e7dW23atFFlZaWuvfbaGm9N/7nPBs4mBBjAQDt37lRcXJz9fteuXaqsrNR5552ngIAAWZaluLg4eybldAoLC3X06FGvWZh///vfkmQvNj15MenpdOnSRZmZmTpy5IhXWMrLy/Oq69q1q6SfZoQSExNrffxTfWZlZaW++eYbr1mXkz+zMVTNAkVGRp72vA4dOqTMzEzNmjVL06dPt9urZnAAnB5rYAADzZ8/3+v9Sy+9JEkaOnSobr31VgUEBGjWrFnV/s/csqxqt+hWVFTolVdesd+XlZXplVdeUYcOHdS3b19JssPNqW6FPtF1112niooKLVy40G47fvy43ccqkZGRuvLKK/XKK6/ou+++q3ac/fv3/+xnVRk6dKgkad68eV7tc+fOrfUx6ktSUpIcDoeeeuoplZeXV9tedV5Vsykn/4yaos+AiZiBAQyUn5+vG2+8Uddee62ysrLs24cvvfRSSdITTzyhadOmac+ePbr55psVHh6u/Px8vfvuuxo/frzuv/9++1gxMTF65plntGfPHl1wwQV65513lJOTo1dffdVeL9OtWzdFRERo0aJFCg8PV1hYmBISErxmgarccMMNGjhwoB566CHt2bNH8fHx+vvf/17jmo758+dr0KBB6tWrl8aNG6euXbuqqKhIWVlZ+vbbb/XFF1/Uajx69+6t22+/XQsWLFBJSYkGDBigzMxM7dq1qy7De0YcDocWLlyoUaNGqU+fPhoxYoQ6dOiggoICrVy5UgMHDtTLL78sh8Ohyy+/XHPmzFF5ebnOPfdcffTRR8rPz2/0PgNGaroboAD4qup22u3bt1u33XabFR4ebrVt29aaNGmS9eOPP3rV/u1vf7MGDRpkhYWFWWFhYVaPHj2s1NRUKy8vz6654oorrIsuusj69NNPLZfLZYWEhFhdunSxXn755Wqf/Y9//MOKj4+3AgMDvW6HPvk2asuyrO+//94aNWqU5XA4LKfTaY0aNcr6/PPPa7wV+5tvvrHuvPNOKzo62mrVqpV17rnnWtdff73117/+1aex+fHHH63f/va3Vvv27a2wsDDrhhtusPbu3Vvn26ifffZZr/Z//etfliRr+fLlXu1vvvmmJcnaunVrtfqkpCTL6XRaISEhVrdu3azRo0dbn376qV3z7bffWrfccosVERFhOZ1O61e/+pVVWFhYrc9VP/f9+/fX+Nn5+fm1Pj+gpfCzLFZ/AaaYOXOmZs2apf379+ucc8454+NdeeWVOnDggL766qt66F3z5OfnpxkzZvj0NF4AzR9rYAAAgHFYAwOgWXO73afdHhoa6vXAuVM5fvz4zy4MbtOmTbO5zRzA6RFgADRrHTt2PO32lJQU+4slT2fv3r01Ljo+EZeaAHOwBgZAs/bPf/7ztNtjYmIUHx//s8c5duyYNm7ceNqarl272s+nAdC8EWAAAIBxWMQLAACM02LXwFRWVqqwsFDh4eE+PQYdAAA0HcuydPjwYcXExMjf/9TzLC02wBQWFlb71lgAAGCGvXv3qlOnTqfc3mIDTHh4uKSfBoCvmQcAwAwej0exsbH23/FTabEBpuqykcPhIMAAAGCYn1v+wSJeAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMENnUHTFSesbFaW6trBzVBTwAAODsxAwMAAIzjc4D573//q9/85jdq3769QkND1atXL3366af2dsuyNH36dHXs2FGhoaFKTEzUzp07vY5x8OBBjRw5Ug6HQxERERozZoyOHDniVfPll19q8ODBCgkJUWxsrObMmVPHUwQAAC2NTwHm0KFDGjhwoFq1aqVVq1Zp+/btev7559W2bVu7Zs6cOZo3b54WLVqkLVu2KCwsTElJSTp27JhdM3LkSOXm5mrNmjVasWKFNmzYoPHjx9vbPR6PhgwZoi5duig7O1vPPvusZs6cqVdffbUeThkAAJjOz7Isq7bFDz30kD7++GP97//+b43bLctSTEyMfv/73+v++++XJJWUlCgqKkrp6ekaMWKEvv76a8XHx2vr1q3q16+fJCkjI0PXXXedvv32W8XExGjhwoV6+OGH5Xa7FRQUZH/2e++9px07dtSqrx6PR06nUyUlJXI4HLU9xVphDQwAAA2jtn+/fZqBef/999WvXz/96le/UmRkpH7xi1/otddes7fn5+fL7XYrMTHRbnM6nUpISFBWVpYkKSsrSxEREXZ4kaTExET5+/try5Ytds3ll19uhxdJSkpKUl5eng4dOlRj30pLS+XxeLxeAACgZfIpwOzevVsLFy7U+eefr9WrV2vixIn67W9/q7feekuS5Ha7JUlRUVFe+0VFRdnb3G63IiMjvbYHBgaqXbt2XjU1HePEzzjZ7Nmz5XQ67VdsbKwvpwYAAAziU4CprKxUnz599NRTT+kXv/iFxo8fr3HjxmnRokUN1b9amzZtmkpKSuzX3r17m7pLAACggfgUYDp27Kj4+Hivtp49e6qgoECSFB0dLUkqKiryqikqKrK3RUdHa9++fV7bKyoqdPDgQa+amo5x4mecLDg4WA6Hw+sFAABaJp8CzMCBA5WXl+fV9u9//1tdunSRJMXFxSk6OlqZmZn2do/Hoy1btsjlckmSXC6XiouLlZ2dbdesXbtWlZWVSkhIsGs2bNig8vJyu2bNmjW68MILve54AgAAZyefAkxaWpo2b96sp556Srt27dKSJUv06quvKjU1VZLk5+enyZMn64knntD777+vbdu26c4771RMTIxuvvlmST/N2Fx77bUaN26cPvnkE3388ceaNGmSRowYoZiYGEnSHXfcoaCgII0ZM0a5ubl655139OKLL2rKlCn1e/YAAMBIPn2VwC9/+Uu9++67mjZtmh577DHFxcVp7ty5GjlypF3z4IMP6ujRoxo/fryKi4s1aNAgZWRkKCQkxK5ZvHixJk2apGuuuUb+/v4aNmyY5s2bZ293Op366KOPlJqaqr59++qcc87R9OnTvZ4VAwAAzl4+PQfGJDwHBgAA8zTIc2AAAACaAwIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcXwKMDNnzpSfn5/Xq0ePHvb2Y8eOKTU1Ve3bt1ebNm00bNgwFRUVeR2joKBAycnJat26tSIjI/XAAw+ooqLCq2bdunXq06ePgoOD1b17d6Wnp9f9DAEAQIvj8wzMRRddpO+++85+bdy40d6WlpamDz74QMuXL9f69etVWFioW2+91d5+/PhxJScnq6ysTJs2bdJbb72l9PR0TZ8+3a7Jz89XcnKyrrrqKuXk5Gjy5MkaO3asVq9efYanCgAAWopAn3cIDFR0dHS19pKSEv3xj3/UkiVLdPXVV0uS3nzzTfXs2VObN29W//799dFHH2n79u365z//qaioKPXu3VuPP/64pk6dqpkzZyooKEiLFi1SXFycnn/+eUlSz549tXHjRr3wwgtKSko6w9MFAAAtgc8zMDt37lRMTIy6du2qkSNHqqCgQJKUnZ2t8vJyJSYm2rU9evRQ586dlZWVJUnKyspSr169FBUVZdckJSXJ4/EoNzfXrjnxGFU1Vcc4ldLSUnk8Hq8XAABomXwKMAkJCUpPT1dGRoYWLlyo/Px8DR48WIcPH5bb7VZQUJAiIiK89omKipLb7ZYkud1ur/BStb1q2+lqPB6Pfvzxx1P2bfbs2XI6nfYrNjbWl1MDAAAG8ekS0tChQ+1/X3LJJUpISFCXLl20bNkyhYaG1nvnfDFt2jRNmTLFfu/xeAgxAAC0UGd0G3VERIQuuOAC7dq1S9HR0SorK1NxcbFXTVFRkb1mJjo6utpdSVXvf67G4XCcNiQFBwfL4XB4vQAAQMt0RgHmyJEj+uabb9SxY0f17dtXrVq1UmZmpr09Ly9PBQUFcrlckiSXy6Vt27Zp3759ds2aNWvkcDgUHx9v15x4jKqaqmMAAAD4FGDuv/9+rV+/Xnv27NGmTZt0yy23KCAgQLfffrucTqfGjBmjKVOm6F//+peys7N11113yeVyqX///pKkIUOGKD4+XqNGjdIXX3yh1atX65FHHlFqaqqCg4MlSRMmTNDu3bv14IMPaseOHVqwYIGWLVumtLS0+j97AABgJJ/WwHz77be6/fbb9f3336tDhw4aNGiQNm/erA4dOkiSXnjhBfn7+2vYsGEqLS1VUlKSFixYYO8fEBCgFStWaOLEiXK5XAoLC1NKSooee+wxuyYuLk4rV65UWlqaXnzxRXXq1Emvv/46t1ADAACbn2VZVlN3oiF4PB45nU6VlJTU+3qY8oyN1dpaXTuoXj8DAICzUW3/fvNdSAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOOcUYB5+umn5efnp8mTJ9ttx44dU2pqqtq3b682bdpo2LBhKioq8tqvoKBAycnJat26tSIjI/XAAw+ooqLCq2bdunXq06ePgoOD1b17d6Wnp59JVwEAQAtS5wCzdetWvfLKK7rkkku82tPS0vTBBx9o+fLlWr9+vQoLC3Xrrbfa248fP67k5GSVlZVp06ZNeuutt5Senq7p06fbNfn5+UpOTtZVV12lnJwcTZ48WWPHjtXq1avr2l0AANCC+FmWZfm605EjR9SnTx8tWLBATzzxhHr37q25c+eqpKREHTp00JIlS3TbbbdJknbs2KGePXsqKytL/fv316pVq3T99dersLBQUVFRkqRFixZp6tSp2r9/v4KCgjR16lStXLlSX331lf2ZI0aMUHFxsTIyMmrVR4/HI6fTqZKSEjkcDl9P8bTKMzZWa2t17aB6/QwAAM5Gtf37XacZmNTUVCUnJysxMdGrPTs7W+Xl5V7tPXr0UOfOnZWVlSVJysrKUq9evezwIklJSUnyeDzKzc21a04+dlJSkn2MmpSWlsrj8Xi9AABAyxTo6w5Lly7VZ599pq1bt1bb5na7FRQUpIiICK/2qKgoud1uu+bE8FK1vWrb6Wo8Ho9+/PFHhYaGVvvs2bNna9asWb6eDgAAMJBPMzB79+7V7373Oy1evFghISEN1ac6mTZtmkpKSuzX3r17m7pLAACggfgUYLKzs7Vv3z716dNHgYGBCgwM1Pr16zVv3jwFBgYqKipKZWVlKi4u9tqvqKhI0dHRkqTo6OhqdyVVvf+5GofDUePsiyQFBwfL4XB4vQAAQMvkU4C55pprtG3bNuXk5Nivfv36aeTIkfa/W7VqpczMTHufvLw8FRQUyOVySZJcLpe2bdumffv22TVr1qyRw+FQfHy8XXPiMapqqo4BAADObj6tgQkPD9fFF1/s1RYWFqb27dvb7WPGjNGUKVPUrl07ORwO3XfffXK5XOrfv78kaciQIYqPj9eoUaM0Z84cud1uPfLII0pNTVVwcLAkacKECXr55Zf14IMP6u6779batWu1bNkyrVy5sj7OGQAAGM7nRbw/54UXXpC/v7+GDRum0tJSJSUlacGCBfb2gIAArVixQhMnTpTL5VJYWJhSUlL02GOP2TVxcXFauXKl0tLS9OKLL6pTp056/fXXlZSUVN/dBQAABqrTc2BMwHNgAAAwT4M+BwYAAKApEWAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYx6cAs3DhQl1yySVyOBxyOBxyuVxatWqVvf3YsWNKTU1V+/bt1aZNGw0bNkxFRUVexygoKFBycrJat26tyMhIPfDAA6qoqPCqWbdunfr06aPg4GB1795d6enpdT9DAADQ4vgUYDp16qSnn35a2dnZ+vTTT3X11VfrpptuUm5uriQpLS1NH3zwgZYvX67169ersLBQt956q73/8ePHlZycrLKyMm3atElvvfWW0tPTNX36dLsmPz9fycnJuuqqq5STk6PJkydr7NixWr16dT2dMgAAMJ2fZVnWmRygXbt2evbZZ3XbbbepQ4cOWrJkiW677TZJ0o4dO9SzZ09lZWWpf//+WrVqla6//noVFhYqKipKkrRo0SJNnTpV+/fvV1BQkKZOnaqVK1fqq6++sj9jxIgRKi4uVkZGRq375fF45HQ6VVJSIofDcSanWE15xsZqba2uHVSvnwEAwNmotn+/67wG5vjx41q6dKmOHj0ql8ul7OxslZeXKzEx0a7p0aOHOnfurKysLElSVlaWevXqZYcXSUpKSpLH47FncbKysryOUVVTdYxTKS0tlcfj8XoBAICWyecAs23bNrVp00bBwcGaMGGC3n33XcXHx8vtdisoKEgRERFe9VFRUXK73ZIkt9vtFV6qtldtO12Nx+PRjz/+eMp+zZ49W06n037Fxsb6emoAAMAQPgeYCy+8UDk5OdqyZYsmTpyolJQUbd++vSH65pNp06appKTEfu3du7epuwQAABpIoK87BAUFqXv37pKkvn37auvWrXrxxRf161//WmVlZSouLvaahSkqKlJ0dLQkKTo6Wp988onX8aruUjqx5uQ7l4qKiuRwOBQaGnrKfgUHBys4ONjX0wEAAAY64+fAVFZWqrS0VH379lWrVq2UmZlpb8vLy1NBQYFcLpckyeVyadu2bdq3b59ds2bNGjkcDsXHx9s1Jx6jqqbqGAAAAD7NwEybNk1Dhw5V586ddfjwYS1ZskTr1q3T6tWr5XQ6NWbMGE2ZMkXt2rWTw+HQfffdJ5fLpf79+0uShgwZovj4eI0aNUpz5syR2+3WI488otTUVHv2ZMKECXr55Zf14IMP6u6779batWu1bNkyrVy5sv7PHgAAGMmnALNv3z7deeed+u677+R0OnXJJZdo9erV+p//+R9J0gsvvCB/f38NGzZMpaWlSkpK0oIFC+z9AwICtGLFCk2cOFEul0thYWFKSUnRY489ZtfExcVp5cqVSktL04svvqhOnTrp9ddfV1JSUj2dMgAAMN0ZPwemueI5MAAAmKfBnwMDAADQVAgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxvEpwMyePVu//OUvFR4ersjISN18883Ky8vzqjl27JhSU1PVvn17tWnTRsOGDVNRUZFXTUFBgZKTk9W6dWtFRkbqgQceUEVFhVfNunXr1KdPHwUHB6t79+5KT0+v2xkCAIAWx6cAs379eqWmpmrz5s1as2aNysvLNWTIEB09etSuSUtL0wcffKDly5dr/fr1Kiws1K233mpvP378uJKTk1VWVqZNmzbprbfeUnp6uqZPn27X5OfnKzk5WVdddZVycnI0efJkjR07VqtXr66HUwYAAKbzsyzLquvO+/fvV2RkpNavX6/LL79cJSUl6tChg5YsWaLbbrtNkrRjxw717NlTWVlZ6t+/v1atWqXrr79ehYWFioqKkiQtWrRIU6dO1f79+xUUFKSpU6dq5cqV+uqrr+zPGjFihIqLi5WRkVGrvnk8HjmdTpWUlMjhcNT1FGtUnrGxWlurawfV62cAAHA2qu3f7zNaA1NSUiJJateunSQpOztb5eXlSkxMtGt69Oihzp07KysrS5KUlZWlXr162eFFkpKSkuTxeJSbm2vXnHiMqpqqY9SktLRUHo/H6wUAAFqmOgeYyspKTZ48WQMHDtTFF18sSXK73QoKClJERIRXbVRUlNxut11zYnip2l617XQ1Ho9HP/74Y439mT17tpxOp/2KjY2t66kBAIBmrs4BJjU1VV999ZWWLl1an/2ps2nTpqmkpMR+7d27t6m7BAAAGkhgXXaaNGmSVqxYoQ0bNqhTp052e3R0tMrKylRcXOw1C1NUVKTo6Gi75pNPPvE6XtVdSifWnHznUlFRkRwOh0JDQ2vsU3BwsIKDg+tyOgAAwDA+zcBYlqVJkybp3Xff1dq1axUXF+e1vW/fvmrVqpUyMzPttry8PBUUFMjlckmSXC6Xtm3bpn379tk1a9askcPhUHx8vF1z4jGqaqqOAQAAzm4+zcCkpqZqyZIl+sc//qHw8HB7zYrT6VRoaKicTqfGjBmjKVOmqF27dnI4HLrvvvvkcrnUv39/SdKQIUMUHx+vUaNGac6cOXK73XrkkUeUmppqz6BMmDBBL7/8sh588EHdfffdWrt2rZYtW6aVK1fW8+kDAAAT+XQbtZ+fX43tb775pkaPHi3ppwfZ/f73v9fbb7+t0tJSJSUlacGCBfblIUn6z3/+o4kTJ2rdunUKCwtTSkqKnn76aQUG/v88tW7dOqWlpWn79u3q1KmTHn30UfszaoPbqAEAME9t/36f0XNgmjMCDAAA5mmU58AAAAA0BQIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOIFN3QEAAExQnrGxWlurawc1QU8gMQMDAAAMRIABAADGIcAAAADjsAYGAIAa1LTmBc0HAQYAcNYjrJiHS0gAAMA4zMAAAFqUk2dTuNW5ZSLAAABatIZ8fgvPhmk6XEICAADGYQYGAIBa2lO8yuv9eRFDm6gnYAYGAAAYhxkYAABqcPJsC5oXZmAAAIBxmIEBAKCOapqlOV/chdQYCDAAgBbv5KBRU8jgkpFZCDAAgLMOXx1gPtbAAAAA4zADAwBoUWpzKaghLxfxVQaNgxkYAABgHAIMAAAwDgEGAAAYhzUwAABjcTfR2cvnGZgNGzbohhtuUExMjPz8/PTee+95bbcsS9OnT1fHjh0VGhqqxMRE7dy506vm4MGDGjlypBwOhyIiIjRmzBgdOXLEq+bLL7/U4MGDFRISotjYWM2ZM8f3swMAGKM8Y6PXCzgdnwPM0aNHdemll2r+/Pk1bp8zZ47mzZunRYsWacuWLQoLC1NSUpKOHTtm14wcOVK5ublas2aNVqxYoQ0bNmj8+PH2do/HoyFDhqhLly7Kzs7Ws88+q5kzZ+rVV1+twykCAICWxudLSEOHDtXQoTV/fbhlWZo7d64eeeQR3XTTTZKkP/3pT4qKitJ7772nESNG6Ouvv1ZGRoa2bt2qfv36SZJeeuklXXfddXruuecUExOjxYsXq6ysTG+88YaCgoJ00UUXKScnR3/4wx+8gg4AADg71esamPz8fLndbiUmJtptTqdTCQkJysrK0ogRI5SVlaWIiAg7vEhSYmKi/P39tWXLFt1yyy3KysrS5ZdfrqCgILsmKSlJzzzzjA4dOqS2bdtW++zS0lKVlpba7z0eT32eGgCgkXEZCadTrwHG7XZLkqKiorzao6Ki7G1ut1uRkZHenQgMVLt27bxq4uLiqh2jaltNAWb27NmaNWtW/ZwIAMAYfIfR2anF3EY9bdo0lZSU2K+9e/c2dZcAAEADqdcZmOjoaElSUVGROnbsaLcXFRWpd+/eds2+ffu89quoqNDBgwft/aOjo1VUVORVU/W+quZkwcHBCg4OrpfzAAA0TybMttTmm69x5up1BiYuLk7R0dHKzMy02zwej7Zs2SKXyyVJcrlcKi4uVnZ2tl2zdu1aVVZWKiEhwa7ZsGGDysvL7Zo1a9bowgsvrPHyEQAAOLv4HGCOHDminJwc5eTkSPpp4W5OTo4KCgrk5+enyZMn64knntD777+vbdu26c4771RMTIxuvvlmSVLPnj117bXXaty4cfrkk0/08ccfa9KkSRoxYoRiYmIkSXfccYeCgoI0ZswY5ebm6p133tGLL76oKVOm1NuJAwAAc/l8CenTTz/VVVddZb+vChUpKSlKT0/Xgw8+qKNHj2r8+PEqLi7WoEGDlJGRoZCQEHufxYsXa9KkSbrmmmvk7++vYcOGad68efZ2p9Opjz76SKmpqerbt6/OOeccTZ8+nVuoAQCAJMnPsiyrqTvREDwej5xOp0pKSuRwOOr12DXd2sfXpQPAmdm59OGm7kKDOH/Ek03dBaPU9u93i7kLCQAAnD0IMAAAwDgEGAAAYJx6fQ4MAAC1wdcE4EwRYAAADa6mwGLCQ+nQfHEJCQAAGIcZGABAg2O2BfWNAAMAOCMnXx7iuVhoDAQYAMAZOXl2xf/T3CbqCc4mBBgAwCnVZXalcldBQ3UHsBFgAAC1Vp6xkfUsaBa4CwkAABiHGRgAwCkx24LmigBTT1iFDwBA4yHAAABs33z6SlN3AagV1sAAAADjMAMDAC1QbS5r1/T9RJXF3AINMxBgAMAwtfkm59o8XI6wApMRYACgGavttzifFzG0MboDNBsEGABoAX7udmeejouWhgADAI2Exy0A9YcAAwANoDbrVGpy8m3MlcUFXB4CakCAAYAmUtu7gHgaLlAdAQYAGgmLb4H6Q4ABgAZSm5kTZleAuiHANJCapoZZsAcAQP0gwAA4a9T1fyzquiAXQMMhwABAPeBSENC4CDAAcIKavo25sy6q1kZgAZoWAaYR8RArwEyEFZyJmkJxt373NEFPWhYCDIAW6+T/aagxiCwlnKBh1fg1Dv0avx8tDQGmCXGnElB/di59uFobz1gBWi4CDIAmVZs7fGoK9rXZj0s/aK5YUnDmCDDNDL/UQHU1za4AJjs5XJ8v/lvvKwIMgDqp68wJANQHAgyAauprfVZNx+GyDoD6QIBp5ljoizNVX5cla3VHDwA0EgKMgVgnc3aoy8+5ro+8Z0EsANMQYFoA1iI0b7WZRavNz7CuIePkW4m5rAOgJSDAnCXq+ke0vi43mBigGjIY1uZyTG2eYVKb4EE4AdASEWDOYnW53NDUIachv024oRap1hRECB4AcGYIMGgU9XWJpL4+qyE//2QEEQCofwQYnFZjBo+6qsvn1+aSTV1rAAANjwCDBlGbyyj1cdz6xGUdADAHAQZeavMHui6zEPzhBwDUJwKMDyqOlyv3q4/0/fefqW1gW/UM76UA/4Cf3a/SqtTX1jc6ZHnU1s+hnn7d5O/nX699q6+Fo3X5LABA0zj5e8Jq+m+/iXeB1kazDjDz58/Xs88+K7fbrUsvvVQvvfSSLrvssibpy8dZf9Eb/31FB4OOSuE/tbU72lqjy69X/3an/uXYUvmF0iv+pu9VbLc5K0N0Y3lP9Toe3WD9JWQAgNnq8vTrmmpO/qLIun45qn/3zl7vu/W7p07HqS9+lmVZTdqDU3jnnXd05513atGiRUpISNDcuXO1fPly5eXlKTIy8mf393g8cjqdKikpkcPhOKO+fJz1Fz237w8/vfE7YcP/G7kpR4cr2v9wtf22Bbj156DPT7nfqLJfNGiIAQCgoZw/4skGOW5t/37X73WMevSHP/xB48aN01133aX4+HgtWrRIrVu31htvvNGo/ag4Xq43/vvKT2/8Ttr4/96nt/pAlSflwEpZer/V16fd7/1WX6tSzTI/AgDQrDXLS0hlZWXKzs7WtGnT7DZ/f38lJiYqKyurxn1KS0tVWlpqvy8pKZH0U5I7E9u2rVZRhUeqOHVNkY4or3ifYoMj7Lbd/gd1QEdPe+wDOqqvjrnVtbLdGfURAIDGdqZ/X3/uuD93gahZBpgDBw7o+PHjioqK8mqPiorSjh07atxn9uzZmjVrVrX22NjYBunjyVbqy0bdDwCAJjXm+QY9/OHDh+V0Ok+5vVkGmLqYNm2apkyZYr+vrKzUwYMH1b59e/n5nXwNp+48Ho9iY2O1d+/eM15bA98w9k2HsW8ajHvTYeybjmVZOnz4sGJiYk5b1ywDzDnnnKOAgAAVFRV5tRcVFSk6uuZFr8HBwQoODvZqi4iIaKguyuFw8EvdRBj7psPYNw3Gvekw9k3jdDMvVZrlIt6goCD17dtXmZmZdltlZaUyMzPlcrmasGcAAKA5aJYzMJI0ZcoUpaSkqF+/frrssss0d+5cHT16VHfddVdTdw0AADSxZhtgfv3rX2v//v2aPn263G63evfurYyMjGoLextbcHCwZsyYUe1yFRoeY990GPumwbg3Hca++Wu2D7IDAAA4lWa5BgYAAOB0CDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAFOD+fPn67zzzlNISIgSEhL0ySefnLZ++fLl6tGjh0JCQtSrVy99+OGHjdTTlseXsX/ttdc0ePBgtW3bVm3btlViYuLP/qxwar7+3ldZunSp/Pz8dPPNNzdsB1soX8e9uLhYqamp6tixo4KDg3XBBRfw35w68nXs586dqwsvvFChoaGKjY1VWlqajh071ki9RTUWvCxdutQKCgqy3njjDSs3N9caN26cFRERYRUVFdVY//HHH1sBAQHWnDlzrO3bt1uPPPKI1apVK2vbtm2N3HPz+Tr2d9xxhzV//nzr888/t77++mtr9OjRltPptL799ttG7rn5fB37Kvn5+da5555rDR482Lrpppsap7MtiK/jXlpaavXr18+67rrrrI0bN1r5+fnWunXrrJycnEbuufl8HfvFixdbwcHB1uLFi638/Hxr9erVVseOHa20tLRG7jmqEGBOctlll1mpqan2++PHj1sxMTHW7Nmza6wfPny4lZyc7NWWkJBg3XPPPQ3az5bI17E/WUVFhRUeHm699dZbDdXFFqsuY19RUWENGDDAev31162UlBQCTB34Ou4LFy60unbtapWVlTVWF1ssX8c+NTXVuvrqq73apkyZYg0cOLBB+4lT4xLSCcrKypSdna3ExES7zd/fX4mJicrKyqpxn6ysLK96SUpKSjplPWpWl7E/2Q8//KDy8nK1a9euobrZItV17B977DFFRkZqzJgxjdHNFqcu4/7+++/L5XIpNTVVUVFRuvjii/XUU0/p+PHjjdXtFqEuYz9gwABlZ2fbl5l2796tDz/8UNddd12j9BnVNduvEmgKBw4c0PHjx6t9XUFUVJR27NhR4z5ut7vGerfb3WD9bInqMvYnmzp1qmJiYqoFSpxeXcZ+48aN+uMf/6icnJxG6GHLVJdx3717t9auXauRI0fqww8/1K5du3TvvfeqvLxcM2bMaIxutwh1Gfs77rhDBw4c0KBBg2RZlioqKjRhwgT9n//zfxqjy6gBMzBoEZ5++mktXbpU7777rkJCQpq6Oy3a4cOHNWrUKL322ms655xzmro7Z5XKykpFRkbq1VdfVd++ffXrX/9aDz/8sBYtWtTUXWvx1q1bp6eeekoLFizQZ599pr///e9auXKlHn/88abu2lmLGZgTnHPOOQoICFBRUZFXe1FRkaKjo2vcJzo62qd61KwuY1/lueee09NPP61//vOfuuSSSxqymy2Sr2P/zTffaM+ePbrhhhvstsrKSklSYGCg8vLy1K1bt4btdAtQl9/5jh07qlWrVgoICLDbevbsKbfbrbKyMgUFBTVon1uKuoz9o48+qlGjRmns2LGSpF69euno0aMaP368Hn74Yfn7Mx/Q2BjxEwQFBalv377KzMy02yorK5WZmSmXy1XjPi6Xy6tektasWXPKetSsLmMvSXPmzNHjjz+ujIwM9evXrzG62uL4OvY9evTQtm3blJOTY79uvPFGXXXVVcrJyVFsbGxjdt9YdfmdHzhwoHbt2mUHRkn697//rY4dOxJefFCXsf/hhx+qhZSqIGnxnchNo6lXETc3S5cutYKDg6309HRr+/bt1vjx462IiAjL7XZblmVZo0aNsh566CG7/uOPP7YCAwOt5557zvr666+tGTNmcBt1Hfk69k8//bQVFBRk/fWvf7W+++47+3X48OGmOgVj+Tr2J+MupLrxddwLCgqs8PBwa9KkSVZeXp61YsUKKzIy0nriiSea6hSM5evYz5gxwwoPD7fefvtta/fu3dZHH31kdevWzRo+fHhTncJZjwBTg5deesnq3LmzFRQUZF122WXW5s2b7W1XXHGFlZKS4lW/bNky64ILLrCCgoKsiy66yFq5cmUj97jl8GXsu3TpYkmq9poxY0bjd7wF8PX3/kQEmLrzddw3bdpkJSQkWMHBwVbXrl2tJ5980qqoqGjkXrcMvox9eXm5NXPmTKtbt25WSEiIFRsba917773WoUOHGr/jsCzLsvwsi7kvAABgFtbAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4/xeWm2ySfOo40wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANXxJREFUeJzt3XtcVVX+//H3AQRUPOAVZMR7WiphYSpZqUUeJyodcdRukmlZoalUXiZH02oom8nKS9a3R2GlZWbaJIpjqPQtSQ1lUlPHisIyUKcAxQTk7N8f/dhfj6ACXpDl6/l4nMeDs/Zn7732Okd4u/c6+zgsy7IEAABgGK+a7gAAAMD5QMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAFwXj355JNyOBw13Y1zIikpSQ6HQ99//31NdwVAJRByAFy0Nm7cqCeffFJ5eXk13ZVTmj9/vpKSks7rPhwOhxwOh0aNGlXh8ieeeMKuOXTo0HntC1CbOPjuKgDn0/Hjx3X8+HH5+/tXed2///3vevzxx5WVlaXWrVuf+85VUWlpqUpKSuTn52efnerSpYuaNGmiDRs2nLf9OhwO+fv7y9/fX7m5ufL19fVY3rZtW/388886duyYDh48qCZNmpy3vgC1CWdygLPgdrt17Nixmu6Gh8LCwvO+D8uy9Ntvv1Wq1sfHp1oB52Lk7e0tf3//Grn81r9/fxUUFGj16tUe7Rs3blRWVpZiYmIueJ+Aix0hB9D/zRvZvXu3hgwZIqfTqcaNG2vcuHEeIcbhcGjMmDFatGiROnfuLD8/P6WkpEiSfvrpJ913330KDg6Wn5+fOnfurDfeeKPcvo4dO6Ynn3xSHTp0kL+/v5o3b65Bgwbp22+/lSRt2LBBDoej3JmB77//Xg6Hw+PSyL333quAgAB9++23uuWWW9SgQQPdddddkqS9e/cqNjZWISEh8vf3V4sWLTRs2DDl5+fb6x8/flxPPfWU2rVrJz8/P7Vu3Vp/+ctfVFRU5LHv1q1b69Zbb9WaNWvUrVs31a1bV6+++mqVxvZEZeO4YsUKdenSxR6vsrEsW+/xxx+XJLVp08a+HHPifJh33nlHkZGRqlu3rho1aqRhw4Zp3759Hvvq06ePunTpoq+//lp9+/ZVvXr19Ic//EGzZs0q19c5c+aoc+fOqlevnho2bKhu3bpp8eLF9vKT5+S0bt1aO3fuVFpamt2/Pn366LvvvpPD4dDs2bPL7WPjxo1yOBx69913KzV+Zf7whz/ohhtu8OiPJC1atEjh4eHq0qVLlbZ34vF89tlneuSRR9S0aVMFBQVp9OjRKi4uVl5enoYPH66GDRuqYcOGmjhxok4++e92u/Xiiy+qc+fO8vf3V3BwsEaPHq1ff/3Vo+6jjz5STEyMQkND5efnp3bt2umpp55SaWmpR11VXi/gTHxqugPAxWTIkCFq3bq1EhMT9cUXX+jll1/Wr7/+qrfeesuuWbdund5//32NGTNGTZo0UevWrZWbm6uePXvaf7ybNm2q1atXa+TIkSooKND48eMl/X6549Zbb1VqaqqGDRumcePG6fDhw1q7dq127Nihdu3aVbnPx48fl8vl0nXXXae///3vqlevnoqLi+VyuVRUVKSxY8cqJCREP/30k1auXKm8vDwFBgZKkkaNGqWFCxdq8ODBevTRR7Vp0yYlJiZq165dWr58ucd+9uzZozvuuEOjR4/W/fffr44dO1Z/oCV99tln+vDDD/Xwww+rQYMGevnllxUbG6vs7Gw1btxYgwYN0n/+8x+9++67mj17tn0JpmnTppKkZ555Rn/96181ZMgQjRo1SgcPHtScOXN0ww03aNu2bQoKCrL39euvv6p///4aNGiQhgwZog8++ECTJk1SeHi4/vjHP0qS/ud//kePPPKIBg8ebIfbr776Sps2bdKdd95Z4TG8+OKLGjt2rAICAvTEE09IkoKDg9W2bVv16tVLixYt0oQJEzzWWbRokRo0aKABAwZUeczuvPNOjRs3TkeOHFFAQICOHz+upUuXKiEh4azOKJa9R2bMmKEvvvhCr732moKCgrRx40a1bNlSf/vb37Rq1So9//zz6tKli4YPH26vO3r0aCUlJWnEiBF65JFHlJWVpblz52rbtm36/PPPVadOHUm/B6qAgAAlJCQoICBA69at07Rp01RQUKDnn3/eoz+Veb2ASrEAWNOnT7ckWbfffrtH+8MPP2xJsv79739blmVZkiwvLy9r586dHnUjR460mjdvbh06dMijfdiwYVZgYKB19OhRy7Is64033rAkWS+88EK5PrjdbsuyLGv9+vWWJGv9+vUey7OysixJ1ptvvmm3xcXFWZKsyZMne9Ru27bNkmQtXbr0lMecmZlpSbJGjRrl0f7YY49Zkqx169bZba1atbIkWSkpKafc3qmUje2JJFm+vr7WN998Y7f9+9//tiRZc+bMsduef/55S5KVlZXlsf73339veXt7W88884xH+/bt2y0fHx+P9t69e1uSrLfeestuKyoqskJCQqzY2Fi7bcCAAVbnzp1Peyxvvvlmuf507tzZ6t27d7naV1991ZJk7dq1y24rLi62mjRpYsXFxZ12PyeTZMXHx1u//PKL5evra7399tuWZVlWcnKy5XA4rO+//94e54MHD1Z6u2XH43K57PefZVlWVFSU5XA4rAcffNBuO378uNWiRQuPY/3f//1fS5K1aNEij+2mpKSUay/7N3Ci0aNHW/Xq1bOOHTtmt1X29QIqg8tVwAni4+M9no8dO1aStGrVKrutd+/e6tSpk/3csiwtW7ZMt912myzL0qFDh+yHy+VSfn6+tm7dKklatmyZmjRpYm/3RGczz+Ohhx7yeF52pmbNmjU6evRoheuUHVNCQoJH+6OPPipJSk5O9mhv06aNXC5Xtft4sujoaI8zV1deeaWcTqe+++67M6774Ycfyu12a8iQIR7jHRISossuu0zr16/3qA8ICNDdd99tP/f19VX37t099hUUFKQff/xRW7ZsOQdH9/tZQX9/fy1atMhuW7NmjQ4dOuTRl6po2LCh+vfvb1/qWrx4sa699lq1atXqrPo6cuRIj/dfjx49ZFmWRo4cabd5e3urW7duHmO2dOlSBQYG6uabb/Z4HSIjIxUQEODxOtStW9f++fDhwzp06JCuv/56HT16VLt37/boT2VeL6AyCDnACS677DKP5+3atZOXl5fHPJA2bdp41Bw8eFB5eXl67bXX1LRpU4/HiBEjJEkHDhyQJH377bfq2LGjfHzO3ZViHx8ftWjRwqOtTZs2SkhI0Ouvv64mTZrI5XJp3rx5HvNxfvjhB3l5eal9+/Ye64aEhCgoKEg//PBDuW2eSy1btizX1rBhw3JzOSqyd+9eWZalyy67rNyY79q1yx7vMi1atCgXIk/e16RJkxQQEKDu3bvrsssuU3x8vD7//PNqHt3voem2227zmEOzaNEi/eEPf9CNN95Y7e3eeeedWrt2rbKzs7VixYpTXkqripNfi7KQHBYWVq79xDHbu3ev8vPz1axZs3Kvw5EjRzxeh507d+pPf/qTAgMD5XQ61bRpUzvInPi+lCr3egGVwZwc4DQqOrty4v9Ipd8nXkrS3Xffrbi4uAq3c+WVV57VPiWVm6BZxs/PT15e5f+/8o9//EP33nuvPvroI/3rX//SI488Ys81OjEUVfYM0snHfba8vb0rbLcqcVcLt9sth8Oh1atXV7idgICAKu/riiuu0J49e7Ry5UqlpKRo2bJlmj9/vqZNm6YZM2acsU8VGT58uJYuXaqNGzcqPDxc//znP/Xwww9X+HpV1u233y4/Pz/FxcWpqKhIQ4YMqfa2ypxqfCpqP3HM3G63mjVr5nG26kRl86fy8vLUu3dvOZ1OzZw5U+3atZO/v7+2bt2qSZMm2f+GztSfyrw3gBMRcoAT7N271+OMxTfffCO3233ae7Q0bdpUDRo0UGlpqaKjo0+7/Xbt2mnTpk0qKSmxJ2SerGHDhpJU7gZ4J59ZqYzw8HCFh4dr6tSp2rhxo3r16qUFCxbo6aefVqtWreR2u7V3715dccUV9jq5ubnKy8s760sg58KpAli7du1kWZbatGmjDh06nLP91a9fX0OHDtXQoUNVXFysQYMG6ZlnntGUKVNO+TH404XE/v37q2nTplq0aJF69Oiho0eP6p577jmrPtatW1cDBw7UO++8oz/+8Y81ek+cdu3a6ZNPPlGvXr1OG4I3bNig//73v/rwww91ww032O1ZWVkXopu4hHG5CjjBvHnzPJ7PmTNHkk77iQ5vb2/FxsZq2bJl2rFjR7nlBw8etH+OjY3VoUOHNHfu3HJ1Zf9LbdWqlby9vfXpp596LJ8/f36lj6OgoEDHjx/3aAsPD5eXl5f98fBbbrlF0u+fEDrRCy+8IEkXxX1X6tevL6l84Bs0aJC8vb01Y8aMcv+7tyxL//3vf6u8r5PX8fX1VadOnWRZlkpKSk7bx1PdkdnHx0d33HGH3n//fSUlJSk8PLxKZ/VO5bHHHtP06dP117/+9ay3dTaGDBmi0tJSPfXUU+WWHT9+3B6XsjMzJ75WxcXFVXpPA9XBmRzgBFlZWbr99tvVv39/paen65133tGdd96piIiI06737LPPav369erRo4fuv/9+derUSb/88ou2bt2qTz75RL/88ouk3y9fvPXWW0pISNDmzZt1/fXXq7CwUJ988okefvhhDRgwQIGBgfrzn/+sOXPmyOFwqF27dlq5cmW5eSans27dOo0ZM0Z//vOf1aFDBx0/flxvv/22HcgkKSIiQnFxcXrttdfsywmbN2/WwoULNXDgQPXt27f6A3mOREZGSvr9awuGDRumOnXq6LbbblO7du309NNPa8qUKfr+++81cOBANWjQQFlZWVq+fLkeeOABPfbYY1XaV79+/RQSEqJevXopODhYu3bt0ty5cxUTE6MGDRqcto+vvPKKnn76abVv317NmjXzmHMzfPhwvfzyy1q/fr2ee+656g3ESSIiIs74nrwQevfurdGjRysxMVGZmZnq16+f6tSpo71792rp0qV66aWXNHjwYF177bVq2LCh4uLi9Mgjj8jhcOjtt9/m8hPOO0IOcIIlS5Zo2rRpmjx5snx8fDRmzJhy9/CoSHBwsDZv3qyZM2fqww8/1Pz589W4cWN17tzZ4w+bt7e3Vq1apWeeeUaLFy/WsmXL1LhxY1133XUKDw+36+bMmaOSkhItWLBAfn5+GjJkiH2PksqIiIiQy+XSxx9/rJ9++kn16tVTRESEVq9erZ49e9p1r7/+utq2baukpCQtX75cISEhmjJliqZPn16FUTt/rrnmGj311FNasGCBUlJS5Ha7lZWVpfr162vy5Mnq0KGDZs+ebc+ZCQsLU79+/XT77bdXeV+jR4/WokWL9MILL+jIkSNq0aKFHnnkEU2dOvW0602bNk0//PCDZs2apcOHD6t3794eIScyMlKdO3fWrl277Bs1mmTBggWKjIzUq6++qr/85S/y8fFR69atdffdd6tXr16SpMaNG2vlypV69NFHNXXqVDVs2FB33323brrppnP6iT3gZHx3FaDf7647Y8YMvvcH58VVV12lRo0aKTU1taa7AlxSmJMDAOfRl19+qczMTI+7BAO4MLhcBaBa8vPzz/glnSEhIReoNxefHTt2KCMjQ//4xz/UvHlzDR061GN5aWmpx6T0igQEBJT7OHxl/Pbbb+XuPXOyRo0alfs2c8A0hBwA1TJu3DgtXLjwtDWX8tXwDz74QDNnzlTHjh317rvvlvsI+r59+854g8Xp06frySefrPK+lyxZYt+I8lTWr1+vPn36VHnbQG3CnBwA1fL1119r//79p605032DLmXHjh3TZ599dtqatm3bqm3btlXe9s8//6ydO3eetiYyMtK+JxNgKkIOAAAwEhOPAQCAkS7pOTlut1v79+9XgwYNzuoboAEAwIVjWZYOHz6s0NDQ034X3CUdcvbv31/uW3YBAEDtsG/fPo8vHD7ZJR1yym7Vvm/fPjmdzhruDQAAqIyCggKFhYWd9itXpEs85JRdonI6nYQcAABqmTNNNWHiMQAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRfGq6A6YqSfnM/rlO/+tqsCcAAFyaOJMDAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRzirkPPvss3I4HBo/frzdduzYMcXHx6tx48YKCAhQbGyscnNzPdbLzs5WTEyM6tWrp2bNmunxxx/X8ePHPWo2bNigq6++Wn5+fmrfvr2SkpLK7X/evHlq3bq1/P391aNHD23evPlsDgcAABik2iFny5YtevXVV3XllVd6tE+YMEEff/yxli5dqrS0NO3fv1+DBg2yl5eWliomJkbFxcXauHGjFi5cqKSkJE2bNs2uycrKUkxMjPr27avMzEyNHz9eo0aN0po1a+yaJUuWKCEhQdOnT9fWrVsVEREhl8ulAwcOVPeQAACASaxqOHz4sHXZZZdZa9eutXr37m2NGzfOsizLysvLs+rUqWMtXbrUrt21a5clyUpPT7csy7JWrVpleXl5WTk5OXbNK6+8YjmdTquoqMiyLMuaOHGi1blzZ499Dh061HK5XPbz7t27W/Hx8fbz0tJSKzQ01EpMTKz0ceTn51uSrPz8/MoffCUVr/5f+wEAAM6dyv79rtaZnPj4eMXExCg6OtqjPSMjQyUlJR7tl19+uVq2bKn09HRJUnp6usLDwxUcHGzXuFwuFRQUaOfOnXbNydt2uVz2NoqLi5WRkeFR4+XlpejoaLumIkVFRSooKPB4AAAAM/lUdYX33ntPW7du1ZYtW8oty8nJka+vr4KCgjzag4ODlZOTY9ecGHDKlpctO11NQUGBfvvtN/36668qLS2tsGb37t2n7HtiYqJmzJhRuQMFAAC1WpXO5Ozbt0/jxo3TokWL5O/vf776dN5MmTJF+fn59mPfvn013SUAAHCeVCnkZGRk6MCBA7r66qvl4+MjHx8fpaWl6eWXX5aPj4+Cg4NVXFysvLw8j/Vyc3MVEhIiSQoJCSn3aauy52eqcTqdqlu3rpo0aSJvb+8Ka8q2URE/Pz85nU6PBwAAMFOVQs5NN92k7du3KzMz035069ZNd911l/1znTp1lJqaaq+zZ88eZWdnKyoqSpIUFRWl7du3e3wKau3atXI6nerUqZNdc+I2ymrKtuHr66vIyEiPGrfbrdTUVLsGAABc2qo0J6dBgwbq0qWLR1v9+vXVuHFju33kyJFKSEhQo0aN5HQ6NXbsWEVFRalnz56SpH79+qlTp0665557NGvWLOXk5Gjq1KmKj4+Xn5+fJOnBBx/U3LlzNXHiRN13331at26d3n//fSUnJ9v7TUhIUFxcnLp166bu3bvrxRdfVGFhoUaMGHFWAwIAAMxQ5YnHZzJ79mx5eXkpNjZWRUVFcrlcmj9/vr3c29tbK1eu1EMPPaSoqCjVr19fcXFxmjlzpl3Tpk0bJScna8KECXrppZfUokULvf7663K5XHbN0KFDdfDgQU2bNk05OTnq2rWrUlJSyk1GBgAAlyaHZVlWTXeiphQUFCgwMFD5+fnnfH5OScpn9s91+l93TrcNAMClrLJ/v/nuKgAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACM5FPTHTDV93mr7Z+9vtwpSWrXbXRNdQcAgEsOZ3IAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACNVKeS88soruvLKK+V0OuV0OhUVFaXVq1fby48dO6b4+Hg1btxYAQEBio2NVW5ursc2srOzFRMTo3r16qlZs2Z6/PHHdfz4cY+aDRs26Oqrr5afn5/at2+vpKSkcn2ZN2+eWrduLX9/f/Xo0UObN2+uyqEAAADDVSnktGjRQs8++6wyMjL05Zdf6sYbb9SAAQO0c+dOSdKECRP08ccfa+nSpUpLS9P+/fs1aNAge/3S0lLFxMSouLhYGzdu1MKFC5WUlKRp06bZNVlZWYqJiVHfvn2VmZmp8ePHa9SoUVqzZo1ds2TJEiUkJGj69OnaunWrIiIi5HK5dODAgbMdDwAAYAiHZVnW2WygUaNGev755zV48GA1bdpUixcv1uDBgyVJu3fv1hVXXKH09HT17NlTq1ev1q233qr9+/crODhYkrRgwQJNmjRJBw8elK+vryZNmqTk5GTt2LHD3sewYcOUl5enlJQUSVKPHj10zTXXaO7cuZIkt9utsLAwjR07VpMnTz5lX4uKilRUVGQ/LygoUFhYmPLz8+V0Os9mGMrZ+94T9s9e7VtKktp1G31O9wEAwKWooKBAgYGBZ/z7Xe05OaWlpXrvvfdUWFioqKgoZWRkqKSkRNHR0XbN5ZdfrpYtWyo9PV2SlJ6ervDwcDvgSJLL5VJBQYF9Nig9Pd1jG2U1ZdsoLi5WRkaGR42Xl5eio6PtmlNJTExUYGCg/QgLC6vu4QMAgItclUPO9u3bFRAQID8/Pz344INavny5OnXqpJycHPn6+iooKMijPjg4WDk5OZKknJwcj4BTtrxs2elqCgoK9Ntvv+nQoUMqLS2tsKZsG6cyZcoU5efn2499+/ZV9fABAEAt4VPVFTp27KjMzEzl5+frgw8+UFxcnNLS0s5H3845Pz8/+fn51XQ3AADABVDlkOPr66v27dtLkiIjI7Vlyxa99NJLGjp0qIqLi5WXl+dxNic3N1chISGSpJCQkHKfgir79NWJNSd/Iis3N1dOp1N169aVt7e3vL29K6wp2wYAAMBZ3yfH7XarqKhIkZGRqlOnjlJTU+1le/bsUXZ2tqKioiRJUVFR2r59u8enoNauXSun06lOnTrZNSduo6ymbBu+vr6KjIz0qHG73UpNTbVrAAAAqnQmZ8qUKfrjH/+oli1b6vDhw1q8eLE2bNigNWvWKDAwUCNHjlRCQoIaNWokp9OpsWPHKioqSj179pQk9evXT506ddI999yjWbNmKScnR1OnTlV8fLx9GenBBx/U3LlzNXHiRN13331at26d3n//fSUnJ9v9SEhIUFxcnLp166bu3bvrxRdfVGFhoUaMGHEOhwYAANRmVQo5Bw4c0PDhw/Xzzz8rMDBQV155pdasWaObb75ZkjR79mx5eXkpNjZWRUVFcrlcmj9/vr2+t7e3Vq5cqYceekhRUVGqX7++4uLiNHPmTLumTZs2Sk5O1oQJE/TSSy+pRYsWev311+VyueyaoUOH6uDBg5o2bZpycnLUtWtXpaSklJuMDAAALl1nfZ+c2qyyn7OvDu6TAwDA+XHe75MDAABwMSPkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYKQqhZzExERdc801atCggZo1a6aBAwdqz549HjXHjh1TfHy8GjdurICAAMXGxio3N9ejJjs7WzExMapXr56aNWumxx9/XMePH/eo2bBhg66++mr5+fmpffv2SkpKKtefefPmqXXr1vL391ePHj20efPmqhwOAAAwWJVCTlpamuLj4/XFF19o7dq1KikpUb9+/VRYWGjXTJgwQR9//LGWLl2qtLQ07d+/X4MGDbKXl5aWKiYmRsXFxdq4caMWLlyopKQkTZs2za7JyspSTEyM+vbtq8zMTI0fP16jRo3SmjVr7JolS5YoISFB06dP19atWxURESGXy6UDBw6czXgAAABDOCzLsqq78sGDB9WsWTOlpaXphhtuUH5+vpo2barFixdr8ODBkqTdu3friiuuUHp6unr27KnVq1fr1ltv1f79+xUcHCxJWrBggSZNmqSDBw/K19dXkyZNUnJysnbs2GHva9iwYcrLy1NKSookqUePHrrmmms0d+5cSZLb7VZYWJjGjh2ryZMnV9jfoqIiFRUV2c8LCgoUFham/Px8OZ3O6g5Dhfa+94T9s1f7lpKkdt1Gn9N9AABwKSooKFBgYOAZ/36f1Zyc/Px8SVKjRo0kSRkZGSopKVF0dLRdc/nll6tly5ZKT0+XJKWnpys8PNwOOJLkcrlUUFCgnTt32jUnbqOspmwbxcXFysjI8Kjx8vJSdHS0XVORxMREBQYG2o+wsLCzOXwAAHARq3bIcbvdGj9+vHr16qUuXbpIknJycuTr66ugoCCP2uDgYOXk5Ng1JwacsuVly05XU1BQoN9++02HDh1SaWlphTVl26jIlClTlJ+fbz/27dtX9QMHAAC1gk91V4yPj9eOHTv02Wefncv+nFd+fn7y8/Or6W4AAIALoFpncsaMGaOVK1dq/fr1atGihd0eEhKi4uJi5eXledTn5uYqJCTErjn501Zlz89U43Q6VbduXTVp0kTe3t4V1pRtAwAAXNqqFHIsy9KYMWO0fPlyrVu3Tm3atPFYHhkZqTp16ig1NdVu27Nnj7KzsxUVFSVJioqK0vbt2z0+BbV27Vo5nU516tTJrjlxG2U1Zdvw9fVVZGSkR43b7VZqaqpdAwAALm1VulwVHx+vxYsX66OPPlKDBg3s+S+BgYGqW7euAgMDNXLkSCUkJKhRo0ZyOp0aO3asoqKi1LNnT0lSv3791KlTJ91zzz2aNWuWcnJyNHXqVMXHx9uXkh588EHNnTtXEydO1H333ad169bp/fffV3Jyst2XhIQExcXFqVu3burevbtefPFFFRYWasSIEedqbAAAQC1WpZDzyiuvSJL69Onj0f7mm2/q3nvvlSTNnj1bXl5eio2NVVFRkVwul+bPn2/Xent7a+XKlXrooYcUFRWl+vXrKy4uTjNnzrRr2rRpo+TkZE2YMEEvvfSSWrRooddff10ul8uuGTp0qA4ePKhp06YpJydHXbt2VUpKSrnJyAAA4NJ0VvfJqe0q+zn76uA+OQAAnB8X5D45AAAAFytCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEaqcsj59NNPddtttyk0NFQOh0MrVqzwWG5ZlqZNm6bmzZurbt26io6O1t69ez1qfvnlF911111yOp0KCgrSyJEjdeTIEY+ar776Stdff738/f0VFhamWbNmlevL0qVLdfnll8vf31/h4eFatWpVVQ8HAAAYqsohp7CwUBEREZo3b16Fy2fNmqWXX35ZCxYs0KZNm1S/fn25XC4dO3bMrrnrrru0c+dOrV27VitXrtSnn36qBx54wF5eUFCgfv36qVWrVsrIyNDzzz+vJ598Uq+99ppds3HjRt1xxx0aOXKktm3bpoEDB2rgwIHasWNHVQ8JAAAYyGFZllXtlR0OLV++XAMHDpT0+1mc0NBQPfroo3rsscckSfn5+QoODlZSUpKGDRumXbt2qVOnTtqyZYu6desmSUpJSdEtt9yiH3/8UaGhoXrllVf0xBNPKCcnR76+vpKkyZMna8WKFdq9e7ckaejQoSosLNTKlSvt/vTs2VNdu3bVggULKuxvUVGRioqK7OcFBQUKCwtTfn6+nE5ndYehQnvfe8L+2at9S0lSu26jz+k+AAC4FBUUFCgwMPCMf7/P6ZycrKws5eTkKDo62m4LDAxUjx49lJ6eLklKT09XUFCQHXAkKTo6Wl5eXtq0aZNdc8MNN9gBR5JcLpf27NmjX3/91a45cT9lNWX7qUhiYqICAwPtR1hY2NkfNAAAuCid05CTk5MjSQoODvZoDw4Otpfl5OSoWbNmHst9fHzUqFEjj5qKtnHiPk5VU7a8IlOmTFF+fr792LdvX1UPEQAA1BI+Nd2BC8nPz09+fn413Q0AAHABnNMzOSEhIZKk3Nxcj/bc3Fx7WUhIiA4cOOCx/Pjx4/rll188airaxon7OFVN2XIAAHBpO6chp02bNgoJCVFqaqrdVlBQoE2bNikqKkqSFBUVpby8PGVkZNg169atk9vtVo8ePeyaTz/9VCUlJXbN2rVr1bFjRzVs2NCuOXE/ZTVl+wEAAJe2KoecI0eOKDMzU5mZmZJ+n2ycmZmp7OxsORwOjR8/Xk8//bT++c9/avv27Ro+fLhCQ0PtT2BdccUV6t+/v+6//35t3rxZn3/+ucaMGaNhw4YpNDRUknTnnXfK19dXI0eO1M6dO7VkyRK99NJLSkhIsPsxbtw4paSk6B//+Id2796tJ598Ul9++aXGjBlz9qMCAABqvSrPyfnyyy/Vt29f+3lZ8IiLi1NSUpImTpyowsJCPfDAA8rLy9N1112nlJQU+fv72+ssWrRIY8aM0U033SQvLy/Fxsbq5ZdftpcHBgbqX//6l+Lj4xUZGakmTZpo2rRpHvfSufbaa7V48WJNnTpVf/nLX3TZZZdpxYoV6tKlS7UGAgAAmOWs7pNT21X2c/bVwX1yAAA4P2rkPjkAAAAXC0IOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkHMBuL/JlvubbJWkfFbTXQEA4JJByAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGMmnpjtwqXDL0vbSPdq5MlmS1NnRXhG33CsvyyH3dz9KBUckZ4C82raQw4vsCQDA2ar1IWfevHl6/vnnlZOTo4iICM2ZM0fdu3ev6W552O6do2W+O3S0NMVu+1BrFJC8UPd/01Pds5v8X3FgA9X5003yvrJDDfQUAABz1OpTBkuWLFFCQoKmT5+urVu3KiIiQi6XSwcOHKjprtm2e+fobd9tOqqScsuOlB7R7DafaHOTff/XmH9YJUkrVPrVfy5gLwEAME+tDjkvvPCC7r//fo0YMUKdOnXSggULVK9ePb3xxhs13TVJv1+i+medr39/4qig4P+3LWy/VW65PRaVrEiV5XZXsBIAAKiMWnu5qri4WBkZGZoyZYrd5uXlpejoaKWnp1e4TlFRkYqKiuzn+fn5kqSCgoJz3r8jR4v0ndcvOqSjZ6zN1RF96f+jLs9vdkLjMR2cM0UhLW60m+rcHHXO+wkAQG1T9nfbsqzT1tXakHPo0CGVlpYqODjYoz04OFi7d++ucJ3ExETNmDGjXHtYWNh56WNVJOurUyyZdUH7AQBAbXH48GEFBgaecnmtDTnVMWXKFCUkJNjP3W63fvnlFzVu3FgOR0XXk6qnoKBAYWFh2rdvn5xO5znbLiqH8a85jH3NYvxrDmN/YVmWpcOHDys0NPS0dbU25DRp0kTe3t7Kzc31aM/NzVVISEiF6/j5+cnPz8+jLSgo6Hx1UU6nkzd7DWL8aw5jX7MY/5rD2F84pzuDU6bWTjz29fVVZGSkUlNT7Ta3263U1FRFRTF3BQCAS12tPZMjSQkJCYqLi1O3bt3UvXt3vfjiiyosLNSIESNqumsAAKCG1eqQM3ToUB08eFDTpk1TTk6OunbtqpSUlHKTkS80Pz8/TZ8+vdylMVwYjH/NYexrFuNfcxj7i5PDOtPnrwAAAGqhWjsnBwAA4HQIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQU03z5s1T69at5e/vrx49emjz5s2nrV+6dKkuv/xy+fv7Kzw8XKtWrbpAPTVTVcY/KSlJDofD4+Hv738Be2uOTz/9VLfddptCQ0PlcDi0YsWKM66zYcMGXX311fLz81P79u2VlJR03vtpoqqO/YYNG8q97x0Oh3Jyci5Mhw2SmJioa665Rg0aNFCzZs00cOBA7dmz54zr8Xu/5hFyqmHJkiVKSEjQ9OnTtXXrVkVERMjlcunAgQMV1m/cuFF33HGHRo4cqW3btmngwIEaOHCgduzYcYF7boaqjr/0+63Wf/75Z/vxww8/XMAem6OwsFARERGaN29epeqzsrIUExOjvn37KjMzU+PHj9eoUaO0Zs2a89xT81R17Mvs2bPH473frFmz89RDc6WlpSk+Pl5ffPGF1q5dq5KSEvXr10+FhYWnXIff+xcJC1XWvXt3Kz4+3n5eWlpqhYaGWomJiRXWDxkyxIqJifFo69GjhzV69Ojz2k9TVXX833zzTSswMPAC9e7SIclavnz5aWsmTpxode7c2aNt6NChlsvlOo89M19lxn79+vWWJOvXX3+9IH26lBw4cMCSZKWlpZ2yht/7FwfO5FRRcXGxMjIyFB0dbbd5eXkpOjpa6enpFa6Tnp7uUS9JLpfrlPU4teqMvyQdOXJErVq1UlhYmAYMGKCdO3deiO5e8njv17yuXbuqefPmuvnmm/X555/XdHeMkJ+fL0lq1KjRKWt4718cCDlVdOjQIZWWlpb76ojg4OBTXuvOycmpUj1OrTrj37FjR73xxhv66KOP9M4778jtduvaa6/Vjz/+eCG6fEk71Xu/oKBAv/32Ww316tLQvHlzLViwQMuWLdOyZcsUFhamPn36aOvWrTXdtVrN7XZr/Pjx6tWrl7p06XLKOn7vXxxq9XdXAZURFRXl8c301157ra644gq9+uqreuqpp2qwZ8D507FjR3Xs2NF+fu211+rbb7/V7Nmz9fbbb9dgz2q3+Ph47dixQ5999llNdwWVwJmcKmrSpIm8vb2Vm5vr0Z6bm6uQkJAK1wkJCalSPU6tOuN/sjp16uiqq67SN998cz66iBOc6r3vdDpVt27dGurVpat79+6878/CmDFjtHLlSq1fv14tWrQ4bS2/9y8OhJwq8vX1VWRkpFJTU+02t9ut1NRUj7MFJ4qKivKol6S1a9eesh6nVp3xP1lpaam2b9+u5s2bn69u4v/jvX9xyczM5H1fDZZlacyYMVq+fLnWrVunNm3anHEd3vsXiZqe+Vwbvffee5afn5+VlJRkff3119YDDzxgBQUFWTk5OZZlWdY999xjTZ482a7//PPPLR8fH+vvf/+7tWvXLmv69OlWnTp1rO3bt9fUIdRqVR3/GTNmWGvWrLG+/fZbKyMjwxo2bJjl7+9v7dy5s6YOodY6fPiwtW3bNmvbtm2WJOuFF16wtm3bZv3www+WZVnW5MmTrXvuuceu/+6776x69epZjz/+uLVr1y5r3rx5lre3t5WSklJTh1BrVXXsZ8+eba1YscLau3evtX37dmvcuHGWl5eX9cknn9TUIdRaDz30kBUYGGht2LDB+vnnn+3H0aNH7Rp+71+cCDnVNGfOHKtly5aWr6+v1b17d+uLL76wl/Xu3duKi4vzqH///fetDh06WL6+vlbnzp2t5OTkC9xjs1Rl/MePH2/XBgcHW7fccou1devWGuh17Vf2seSTH2XjHRcXZ/Xu3bvcOl27drV8fX2ttm3bWm+++eYF77cJqjr2zz33nNWuXTvL39/fatSokdWnTx9r3bp1NdP5Wq6icZfk8V7m9/7FyWFZlnWhzx4BAACcb8zJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAADOqU8//VS33XabQkND5XA4tGLFiipvY82aNerZs6caNGigpk2bKjY2Vt9//32VtkHIAQAA51RhYaEiIiI0b968aq2flZWlAQMG6MYbb1RmZqbWrFmjQ4cOadCgQVXaDnc8BgAA543D4dDy5cs1cOBAu62oqEhPPPGE3n33XeXl5alLly567rnn1KdPH0nSBx98oDvuuENFRUXy8vr9fMzHH3+sAQMGqKioSHXq1KnUvjmTAwAALqgxY8YoPT1d7733nr766iv9+c9/Vv/+/bV3715JUmRkpLy8vPTmm2+qtLRU+fn5evvttxUdHV3pgCNxJgcAAJxHJ5/Jyc7OVtu2bZWdna3Q0FC7Ljo6Wt27d9ff/vY3SVJaWpqGDBmi//73vyotLVVUVJRWrVqloKCgSu+bMzkAAOCC2b59u0pLS9WhQwcFBATYj7S0NH377beSpJycHN1///2Ki4vTli1blJaWJl9fXw0ePFhVOTfjc74OAgAA4GRHjhyRt7e3MjIy5O3t7bEsICBAkjRv3jwFBgZq1qxZ9rJ33nlHYWFh2rRpk3r27FmpfRFyAADABXPVVVeptLRUBw4c0PXXX19hzdGjR+0Jx2XKApHb7a70vrhcBQAAzqkjR44oMzNTmZmZkn7/SHhmZqays7PVoUMH3XXXXRo+fLg+/PBDZWVlafPmzUpMTFRycrIkKSYmRlu2bNHMmTO1d+9ebd26VSNGjFCrVq101VVXVbofTDwGAADn1IYNG9S3b99y7XFxcUpKSlJJSYmefvppvfXWW/rpp5/UpEkT9ezZUzNmzFB4eLgk6b333tOsWbP0n//8R/Xq1VNUVJSee+45XX755ZXuByEHAAAYictVAADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADDS/wOkkWX6MC9RzwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOFxJREFUeJzt3XlYVeX+9/EPIGxUBmdwIOdZtMJU0jKLIxaZ/tTU9CiZ2iD6Uykrs9Rs0GOdJoes0ymsNFNLTzngMU19So4aysk5B0zLQM0A02S8nz96WI9bcAAH5Pb9uq59Xe17fdda33W7iQ9rr7W3hzHGCAAAwDKeJd0AAADAlUDIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBUCQTJ06Uh4dHSbdxWcTFxcnDw0MHDhwo6VYAXAGEHABXzfr16zVx4kSlpaWVdCvnNHPmTMXFxV3RfXh4eMjDw0NDhgwpdPm4ceOcmmPHjl3y/jZu3Khhw4YpLCxM3t7e1oRU4EI8+O4qAEWRk5OjnJwc+fr6FnndV199VWPGjFFycrLq1Klz+ZsrotzcXGVnZ8vlcjm/+Fu0aKEqVapozZo1V2y/Hh4e8vX1la+vr1JTU+Xj4+O2vF69evrll190+vRpHT16VFWqVLmk/U2cOFEvv/yyWrZsqRMnTuiHH34Q/+vH9YAzOcAZ8vLydPr06ZJuw83Jkyev+D6MMfrjjz8uqrZMmTLFCjjXIi8vL/n6+pbImY0uXbooIyNDy5cvdxtfv369kpOTFRUVdVHb8fDwuOCZp8cee0zp6en67rvv9Je//KW4LQOlDiEHVsq/bmTXrl3q3bu3AgICVLlyZY0cOdItxHh4eGj48OGaM2eOmjdvLpfLpfj4eEnSzz//rIceekhBQUFyuVxq3ry53n///QL7On36tCZOnKhGjRrJ19dX1atXV48ePbRv3z5J0po1a+Th4VHgzMCBAwcK/IJ68MEH5efnp3379umee+6Rv7+/+vfvL0nas2ePevbsqeDgYPn6+qpWrVrq27ev0tPTnfVzcnL0wgsvqH79+nK5XKpTp46eeeYZZWZmuu27Tp06uvfee7VixQq1bt1aZcuW1TvvvFOkuT1T/jwuXrxYLVq0cOYrfy7z1xszZowkqW7dus7bMWdeD/Pxxx8rLCxMZcuWVaVKldS3b18dOnTIbV933HGHWrRooR07dqhTp04qV66catasqalTpxboddq0aWrevLnKlSunihUrqnXr1po7d66z/OxrcurUqaPt27dr7dq1Tn933HGH9u/fLw8PD73++usF9rF+/Xp5eHjok08+uaj5y1ezZk3dfvvtbv1I0pw5cxQaGqoWLVoUaXvnExQUpLJly16WbeW/dtasWeO8dkJDQ53X9+eff67Q0FD5+voqLCxMW7ZsKbCNXbt2qVevXqpUqZJ8fX3VunVrffHFF241x48f1xNPPKHQ0FD5+fkpICBAd999t/773/+61eX/fM2fP18vvfSSatWqJV9fX911113au3fvZTlmlF5lSroB4Erq3bu36tSpo8mTJ+s///mP3nrrLf3222/68MMPnZrVq1dr/vz5Gj58uKpUqaI6deooNTVV7dq1c355V61aVcuXL9fgwYOVkZGhUaNGSfrz7Y57771Xq1atUt++fTVy5EidOHFCK1eu1LZt21S/fv0i95yTk6PIyEh16NBBr776qsqVK6esrCxFRkYqMzNTI0aMUHBwsH7++WctWbJEaWlpCgwMlCQNGTJEs2fPVq9evfT4449rw4YNmjx5snbu3KlFixa57Wf37t164IEH9Mgjj2jo0KFq3Lhx8Sda0jfffKPPP/9cw4YNk7+/v9566y317NlTBw8eVOXKldWjRw/98MMP+uSTT/T66687b8FUrVpVkvTSSy/pueeeU+/evTVkyBAdPXpU06ZN0+23364tW7aoQoUKzr5+++03denSRT169FDv3r21cOFCPfXUUwoNDdXdd98tSfrHP/6h//3f/1WvXr2ccPv9999rw4YN6tevX6HH8MYbb2jEiBHy8/PTuHHjJP0ZEOrVq6f27dtrzpw5Gj16tNs6c+bMkb+/v7p161bkOevXr59Gjhyp33//XX5+fsrJydGCBQsUGxt7zZ1RPNPevXvVr18/PfLII/rrX/+qV199VV27dtWsWbP0zDPPaNiwYZKkyZMnq3fv3tq9e7c8Pf/8m3r79u1q3769atasqaefflrly5fX/Pnz1b17d3322Wf6n//5H0nS/v37tXjxYt1///2qW7euUlNT9c4776hjx47asWOHatSo4dbTlClT5OnpqSeeeELp6emaOnWq+vfvrw0bNlzdycG1xQAWmjBhgpFk7rvvPrfxYcOGGUnmv//9rzHGGEnG09PTbN++3a1u8ODBpnr16ubYsWNu43379jWBgYHm1KlTxhhj3n//fSPJvPbaawV6yMvLM8YY8/XXXxtJ5uuvv3ZbnpycbCSZDz74wBmLjo42kszTTz/tVrtlyxYjySxYsOCcx5yUlGQkmSFDhriNP/HEE0aSWb16tTNWu3ZtI8nEx8efc3vnkj+3Z5JkfHx8zN69e52x//73v0aSmTZtmjP2yiuvGEkmOTnZbf0DBw4YLy8v89JLL7mNb9261ZQpU8ZtvGPHjkaS+fDDD52xzMxMExwcbHr27OmMdevWzTRv3vy8x/LBBx8U6Kd58+amY8eOBWrfeecdI8ns3LnTGcvKyjJVqlQx0dHR593P2SSZmJgYc/z4cePj42M++ugjY4wxS5cuNR4eHubAgQPOPB89evSC2zrzNXQhMTExBf79iiL/tbN+/XpnbMWKFUaSKVu2rPnxxx+d8fw5O/O1f9ddd5nQ0FBz+vRpZywvL8/ceuutpmHDhs7Y6dOnTW5urtu+k5OTjcvlMpMmTXLG8n++mjZtajIzM53xN99800gyW7duLfaxovTj7SpYLSYmxu35iBEjJEnLli1zxjp27KhmzZo5z40x+uyzz9S1a1cZY3Ts2DHnERkZqfT0dG3evFmS9Nlnn6lKlSrOds90Kdd5PPbYY27P88/UrFixQqdOnSp0nfxjio2NdRt//PHHJUlLly51G69bt64iIyOL3ePZIiIi3M5ctWzZUgEBAdq/f/8F1/3888+Vl5en3r17u813cHCwGjZsqK+//tqt3s/PT3/961+d5z4+PmrTpo3bvipUqKCffvpJmzZtugxH9+dZQV9fX82ZM8cZW7FihY4dO+bWS1FUrFhRXbp0cd7qmjt3rm699VbVrl270PpTp065zU/+nVe///6729hvv/1WrH4uVrNmzRQeHu48b9u2rSTpzjvv1A033FBgPP/f5fjx41q9erV69+6tEydOOP3++uuvioyM1J49e/Tzzz9Lklwul3P2Jzc3V7/++qv8/PzUuHFj5+fvTIMGDXK7gPu2225z2zeuT4QcWK1hw4Zuz+vXry9PT0+360Dq1q3rVnP06FGlpaXp3XffVdWqVd0egwYNkiQdOXJEkrRv3z41btxYZcpcvnd+y5Qpo1q1armN1a1bV7GxsXrvvfdUpUoVRUZGasaMGW7X4/z444/y9PRUgwYN3NYNDg5WhQoV9OOPPxbY5uV05i+3fBUrVryoX7h79uyRMUYNGzYsMOc7d+505jtfrVq1CoTIs/f11FNPyc/PT23atFHDhg0VExOjb7/9tphH92do6tq1q9s1NHPmzFHNmjV15513Fnu7/fr108qVK3Xw4EEtXrz4nG+lSdLUqVMLzI/0Z3g/c+ymm24qdj8X4+x/6/wQHhISUuh4/r/L3r17ZYzRc889V+A4JkyYIOn//2zl5eXp9ddfV8OGDeVyuVSlShVVrVpV33//vdvr/lw9VaxY0W3fuD5xTQ6uK4WdXTn7gsy8vDxJ0l//+ldFR0cXup2WLVte0j6lP/86LcyZf8Ge6e9//7sefPBB/etf/9K///1v/e///q9zrdGZoehizyBdrgtR83l5eRU6bi7iVuW8vDx5eHho+fLlhW7Hz8+vyPtq2rSpdu/erSVLlig+Pl6fffaZZs6cqfHjx+v555+/YE+FGThwoBYsWKD169crNDRUX3zxhYYNG1bov9fFuu++++RyuRQdHa3MzEz17t37vPvv0KGD29hf/vIXjRkzRp07d3bGLve/7dnONf8X+nfJ/9l64oknznkWMT+kv/zyy3ruuef00EMP6YUXXlClSpXk6empUaNGOdspyr5xfSLkwGp79uxxO2Oxd+9e5eXlnfczWqpWrSp/f3/l5uYqIiLivNuvX7++NmzYoOzsbHl7exdak/8X5dkfgHf2mZWLERoaqtDQUD377LNav3692rdvr1mzZunFF19U7dq1lZeXpz179qhp06bOOqmpqUpLSzvnWyBX07kCWP369WWMUd26ddWoUaPLtr/y5curT58+6tOnj7KystSjRw+99NJLGjt27Dlvgz9fSOzSpYuqVq2qOXPmqG3btjp16pQGDBhwST2WLVtW3bt318cff6y77777vJ+JU69ePdWrV6/AeLNmzS74Wr0W5Pfu7e19wX4XLlyoTp066Z///KfbeFpa2iV/bhCuH7xdBavNmDHD7fm0adMkybkDpzBeXl7q2bOnPvvsM23btq3A8qNHjzr/3bNnTx07dkzTp08vUJf/F2Tt2rXl5eWldevWuS2fOXPmRR9HRkaGcnJy3MZCQ0Pl6enp3B5+zz33SPrzDqEzvfbaa5J00Z+7ciWVL19eUsHA16NHD3l5een5558v8Je3MUa//vprkfd19jo+Pj5q1qyZjDHKzs4+b4/n+kTmMmXK6IEHHtD8+fMVFxen0NDQIp3VO5cnnnhCEyZM0HPPPXfJ27qWVatWTXfccYfeeecd/fLLLwWWn/mz5eXlVeC1sGDBAueaHeBicCYHVktOTtZ9992nLl26KCEhQR9//LH69eunVq1anXe9KVOm6Ouvv1bbtm01dOhQNWvWTMePH9fmzZv11Vdf6fjx45L+fPvgww8/VGxsrDZu3KjbbrtNJ0+e1FdffaVhw4apW7duCgwM1P33369p06bJw8ND9evX15IlSwpcZ3I+q1ev1vDhw3X//ferUaNGysnJ0UcffeQEMklq1aqVoqOj9e677yotLU0dO3bUxo0bNXv2bHXv3l2dOnUq/kReJmFhYZL+/NqCvn37ytvbW127dlX9+vX14osvauzYsTpw4IC6d+8uf39/JScna9GiRXr44Yf1xBNPFGlfnTt3VnBwsNq3b6+goCDt3LlT06dPV1RUlPz9/c/b49tvv60XX3xRDRo0ULVq1dyuuRk4cKDeeustff311/rb3/5WvIk4S6tWrS74mrwUP/74oz766CNJ0nfffSdJevHFFyX9GcIv9WxUUcyYMUMdOnRQaGiohg4dqnr16ik1NVUJCQn66aefnM/BuffeezVp0iQNGjRIt956q7Zu3ao5c+YUeiYLOKeSuKULuNLyb7/dsWOH6dWrl/H39zcVK1Y0w4cPN3/88YdTp/93K29hUlNTTUxMjAkJCTHe3t4mODjY3HXXXebdd991qzt16pQZN26cqVu3rlPXq1cvs2/fPqfm6NGjpmfPnqZcuXKmYsWK5pFHHjHbtm0r9Bby8uXLF+hl//795qGHHjL169c3vr6+plKlSqZTp07mq6++cqvLzs42zz//vNNLSEiIGTt2rNvtusb8eRtwVFTURc/nmc51C3lh81i7du0Ct1e/8MILpmbNmsbT07PA7dufffaZ6dChgylfvrwpX768adKkiYmJiTG7d+92ajp27FjoreHR0dGmdu3azvN33nnH3H777aZy5crG5XKZ+vXrmzFjxpj09HSnprBbyFNSUkxUVJTx9/c3kgq9nbx58+bG09PT/PTTT+eYpfM73+su3+W8hTz/NuvCHoUd3/mc67VT2DHlf0zCK6+84ja+b98+M3DgQBMcHGy8vb1NzZo1zb333msWLlzo1Jw+fdo8/vjjpnr16qZs2bKmffv2JiEhwXTs2NGt5/xjO/vjFQr7iAZcf/juKlhp4sSJev755y/L9/4AZ7vppptUqVIlrVq1qqRbAXAeXJMDAEXw3XffKSkpSQMHDizpVgBcANfkAJAkpaenX/BLOoODg69SN9eebdu2KTExUX//+99VvXp19enTx215bm6u24WzhfHz8ytwO/y14ujRo+f8WAPpzwu3K1WqdBU7Ai4dIQeAJGnkyJGaPXv2eWuu53e3Fy5cqEmTJqlx48b65JNPCtyCfujQoQt+wOKECRM0ceLEK9hl8d1yyy3n/ViDjh07FviSWeBaxzU5ACRJO3bs0OHDh89bUxo+i6WknD59Wt988815a871OTfXgm+//fa8Z/IqVqzo3B0HlBaEHAAAYCUuPAYAAFa6rq/JycvL0+HDh+Xv739J3xgNAACuHmOMTpw4oRo1apz3u+Ou65Bz+PDhAt+aCwAASodDhw65fUHx2a7rkJP/0e6HDh1SQEBACXcDAAAuRkZGhkJCQs77FS3SdR5y8t+iCggIIOQAAFDKXOhSEy48BgAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSmZJuwFbZ8d8UGPPu0qEEOgEA4PrEmRwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClSwo5U6ZMkYeHh0aNGuWMnT59WjExMapcubL8/PzUs2dPpaamuq138OBBRUVFqVy5cqpWrZrGjBmjnJwct5o1a9bo5ptvlsvlUoMGDRQXF1dg/zNmzFCdOnXk6+urtm3bauPGjZdyOAAAwCLFDjmbNm3SO++8o5YtW7qNjx49Wl9++aUWLFigtWvX6vDhw+rRo4ezPDc3V1FRUcrKytL69es1e/ZsxcXFafz48U5NcnKyoqKi1KlTJyUlJWnUqFEaMmSIVqxY4dR8+umnio2N1YQJE7R582a1atVKkZGROnLkSHEPCQAA2MQUw4kTJ0zDhg3NypUrTceOHc3IkSONMcakpaUZb29vs2DBAqd2586dRpJJSEgwxhizbNky4+npaVJSUpyat99+2wQEBJjMzExjjDFPPvmkad68uds++/TpYyIjI53nbdq0MTExMc7z3NxcU6NGDTN58uSLPo709HQjyaSnp1/8wV+krOX/p8ADAABcuov9/V2sMzkxMTGKiopSRESE23hiYqKys7Pdxps0aaIbbrhBCQkJkqSEhASFhoYqKCjIqYmMjFRGRoa2b9/u1Jy97cjISGcbWVlZSkxMdKvx9PRURESEU1OYzMxMZWRkuD0AAICdyhR1hXnz5mnz5s3atGlTgWUpKSny8fFRhQoV3MaDgoKUkpLi1JwZcPKX5y87X01GRob++OMP/fbbb8rNzS20ZteuXefsffLkyXr++ecv7kABAECpVqQzOYcOHdLIkSM1Z84c+fr6XqmerpixY8cqPT3deRw6dKikWwIAAFdIkUJOYmKijhw5optvvlllypRRmTJltHbtWr311lsqU6aMgoKClJWVpbS0NLf1UlNTFRwcLEkKDg4ucLdV/vML1QQEBKhs2bKqUqWKvLy8Cq3J30ZhXC6XAgIC3B4AAMBORQo5d911l7Zu3aqkpCTn0bp1a/Xv39/5b29vb61atcpZZ/fu3Tp48KDCw8MlSeHh4dq6davbXVArV65UQECAmjVr5tScuY38mvxt+Pj4KCwszK0mLy9Pq1atcmoAAMD1rUjX5Pj7+6tFixZuY+XLl1flypWd8cGDBys2NlaVKlVSQECARowYofDwcLVr106S1LlzZzVr1kwDBgzQ1KlTlZKSomeffVYxMTFyuVySpEcffVTTp0/Xk08+qYceekirV6/W/PnztXTpUme/sbGxio6OVuvWrdWmTRu98cYbOnnypAYNGnRJEwIAAOxQ5AuPL+T111+Xp6enevbsqczMTEVGRmrmzJnOci8vLy1ZskSPPfaYwsPDVb58eUVHR2vSpElOTd26dbV06VKNHj1ab775pmrVqqX33ntPkZGRTk2fPn109OhRjR8/XikpKbrxxhsVHx9f4GJkAABwffIwxpiSbqKkZGRkKDAwUOnp6Zf9+pzs+G8KjHl36XBZ9wEAwPXoYn9/891VAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKUyJd2ArQ6kLXd7XqfC3SXUCQAA1yfO5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEpFCjlvv/22WrZsqYCAAAUEBCg8PFzLly93lp8+fVoxMTGqXLmy/Pz81LNnT6Wmprpt4+DBg4qKilK5cuVUrVo1jRkzRjk5OW41a9as0c033yyXy6UGDRooLi6uQC8zZsxQnTp15Ovrq7Zt22rjxo1FORQAAGC5IoWcWrVqacqUKUpMTNR3332nO++8U926ddP27dslSaNHj9aXX36pBQsWaO3atTp8+LB69OjhrJ+bm6uoqChlZWVp/fr1mj17tuLi4jR+/HinJjk5WVFRUerUqZOSkpI0atQoDRkyRCtWrHBqPv30U8XGxmrChAnavHmzWrVqpcjISB05cuRS5wMAAFjCwxhjLmUDlSpV0iuvvKJevXqpatWqmjt3rnr16iVJ2rVrl5o2baqEhAS1a9dOy5cv17333qvDhw8rKChIkjRr1iw99dRTOnr0qHx8fPTUU09p6dKl2rZtm7OPvn37Ki0tTfHx8ZKktm3b6pZbbtH06dMlSXl5eQoJCdGIESP09NNPn7PXzMxMZWZmOs8zMjIUEhKi9PR0BQQEXMo0FLBn3ji353Uq3C3vLh0u6z4AALgeZWRkKDAw8IK/v4t9TU5ubq7mzZunkydPKjw8XImJicrOzlZERIRT06RJE91www1KSEiQJCUkJCg0NNQJOJIUGRmpjIwM52xQQkKC2zbya/K3kZWVpcTERLcaT09PRUREODXnMnnyZAUGBjqPkJCQ4h4+AAC4xhU55GzdulV+fn5yuVx69NFHtWjRIjVr1kwpKSny8fFRhQoV3OqDgoKUkpIiSUpJSXELOPnL85edryYjI0N//PGHjh07ptzc3EJr8rdxLmPHjlV6errzOHToUFEPHwAAlBJlirpC48aNlZSUpPT0dC1cuFDR0dFau3btlejtsnO5XHK5XCXdBgAAuAqKHHJ8fHzUoEEDSVJYWJg2bdqkN998U3369FFWVpbS0tLczuakpqYqODhYkhQcHFzgLqj8u6/OrDn7jqzU1FQFBASobNmy8vLykpeXV6E1+dsAAAC45M/JycvLU2ZmpsLCwuTt7a1Vq1Y5y3bv3q2DBw8qPDxckhQeHq6tW7e63QW1cuVKBQQEqFmzZk7NmdvIr8nfho+Pj8LCwtxq8vLytGrVKqcGAACgSGdyxo4dq7vvvls33HCDTpw4oblz52rNmjVasWKFAgMDNXjwYMXGxqpSpUoKCAjQiBEjFB4ernbt2kmSOnfurGbNmmnAgAGaOnWqUlJS9OyzzyomJsZ5G+nRRx/V9OnT9eSTT+qhhx7S6tWrNX/+fC1dutTpIzY2VtHR0WrdurXatGmjN954QydPntSgQYMu49QAAIDSrEgh58iRIxo4cKB++eUXBQYGqmXLllqxYoX+8pe/SJJef/11eXp6qmfPnsrMzFRkZKRmzpzprO/l5aUlS5boscceU3h4uMqXL6/o6GhNmjTJqalbt66WLl2q0aNH680331StWrX03nvvKTIy0qnp06ePjh49qvHjxyslJUU33nij4uPjC1yMDAAArl+X/Dk5pdnF3mdfHHxODgAAV8YV/5wcAACAaxkhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsVKeRMnjxZt9xyi/z9/VWtWjV1795du3fvdqs5ffq0YmJiVLlyZfn5+alnz55KTU11qzl48KCioqJUrlw5VatWTWPGjFFOTo5bzZo1a3TzzTfL5XKpQYMGiouLK9DPjBkzVKdOHfn6+qpt27bauHFjUQ4HAABYrEghZ+3atYqJidF//vMfrVy5UtnZ2ercubNOnjzp1IwePVpffvmlFixYoLVr1+rw4cPq0aOHszw3N1dRUVHKysrS+vXrNXv2bMXFxWn8+PFOTXJysqKiotSpUyclJSVp1KhRGjJkiFasWOHUfPrpp4qNjdWECRO0efNmtWrVSpGRkTpy5MilzAcAALCEhzHGFHflo0ePqlq1alq7dq1uv/12paenq2rVqpo7d6569eolSdq1a5eaNm2qhIQEtWvXTsuXL9e9996rw4cPKygoSJI0a9YsPfXUUzp69Kh8fHz01FNPaenSpdq2bZuzr759+yotLU3x8fGSpLZt2+qWW27R9OnTJUl5eXkKCQnRiBEj9PTTT19U/xkZGQoMDFR6eroCAgKKOw2F2jNvnNvzOhXulneXDpd1HwAAXI8u9vf3JV2Tk56eLkmqVKmSJCkxMVHZ2dmKiIhwapo0aaIbbrhBCQkJkqSEhASFhoY6AUeSIiMjlZGRoe3btzs1Z24jvyZ/G1lZWUpMTHSr8fT0VEREhFNTmMzMTGVkZLg9AACAnYodcvLy8jRq1Ci1b99eLVq0kCSlpKTIx8dHFSpUcKsNCgpSSkqKU3NmwMlfnr/sfDUZGRn6448/dOzYMeXm5hZak7+NwkyePFmBgYHOIyQkpOgHDgAASoVih5yYmBht27ZN8+bNu5z9XFFjx45Venq68zh06FBJtwQAAK6QMsVZafjw4VqyZInWrVunWrVqOePBwcHKyspSWlqa29mc1NRUBQcHOzVn3wWVf/fVmTVn35GVmpqqgIAAlS1bVl5eXvLy8iq0Jn8bhXG5XHK5XEU/YAAAUOoU6UyOMUbDhw/XokWLtHr1atWtW9dteVhYmLy9vbVq1SpnbPfu3Tp48KDCw8MlSeHh4dq6davbXVArV65UQECAmjVr5tScuY38mvxt+Pj4KCwszK0mLy9Pq1atcmoAAMD1rUhncmJiYjR37lz961//kr+/v3P9S2BgoMqWLavAwEANHjxYsbGxqlSpkgICAjRixAiFh4erXbt2kqTOnTurWbNmGjBggKZOnaqUlBQ9++yziomJcc6yPProo5o+fbqefPJJPfTQQ1q9erXmz5+vpUuXOr3ExsYqOjparVu3Vps2bfTGG2/o5MmTGjRo0OWaGwAAUIoVKeS8/fbbkqQ77rjDbfyDDz7Qgw8+KEl6/fXX5enpqZ49eyozM1ORkZGaOXOmU+vl5aUlS5boscceU3h4uMqXL6/o6GhNmjTJqalbt66WLl2q0aNH680331StWrX03nvvKTIy0qnp06ePjh49qvHjxyslJUU33nij4uPjC1yMDAAArk+X9Dk5pR2fkwMAQOlzVT4nBwAA4FpFyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClIoecdevWqWvXrqpRo4Y8PDy0ePFit+XGGI0fP17Vq1dX2bJlFRERoT179rjVHD9+XP3791dAQIAqVKigwYMH6/fff3er+f7773XbbbfJ19dXISEhmjp1aoFeFixYoCZNmsjX11ehoaFatmxZUQ8HAABYqsgh5+TJk2rVqpVmzJhR6PKpU6fqrbfe0qxZs7RhwwaVL19ekZGROn36tFPTv39/bd++XStXrtSSJUu0bt06Pfzww87yjIwMde7cWbVr11ZiYqJeeeUVTZw4Ue+++65Ts379ej3wwAMaPHiwtmzZou7du6t79+7atm1bUQ8JAABYyMMYY4q9soeHFi1apO7du0v68yxOjRo19Pjjj+uJJ56QJKWnpysoKEhxcXHq27evdu7cqWbNmmnTpk1q3bq1JCk+Pl733HOPfvrpJ9WoUUNvv/22xo0bp5SUFPn4+EiSnn76aS1evFi7du2SJPXp00cnT57UkiVLnH7atWunG2+8UbNmzSq038zMTGVmZjrPMzIyFBISovT0dAUEBBR3Ggq1Z944t+d1Ktwt7y4dLus+AAC4HmVkZCgwMPCCv78v6zU5ycnJSklJUUREhDMWGBiotm3bKiEhQZKUkJCgChUqOAFHkiIiIuTp6akNGzY4NbfffrsTcCQpMjJSu3fv1m+//ebUnLmf/Jr8/RRm8uTJCgwMdB4hISGXftAAAOCadFlDTkpKiiQpKCjIbTwoKMhZlpKSomrVqrktL1OmjCpVquRWU9g2ztzHuWrylxdm7NixSk9Pdx6HDh0q6iECAIBSokxJN3A1uVwuuVyukm4DAABcBZf1TE5wcLAkKTU11W08NTXVWRYcHKwjR464Lc/JydHx48fdagrbxpn7OFdN/nIAAHB9u6whp27dugoODtaqVaucsYyMDG3YsEHh4eGSpPDwcKWlpSkxMdGpWb16tfLy8tS2bVunZt26dcrOznZqVq5cqcaNG6tixYpOzZn7ya/J3w8AALi+FTnk/P7770pKSlJSUpKkPy82TkpK0sGDB+Xh4aFRo0bpxRdf1BdffKGtW7dq4MCBqlGjhnMHVtOmTdWlSxcNHTpUGzdu1Lfffqvhw4erb9++qlGjhiSpX79+8vHx0eDBg7V9+3Z9+umnevPNNxUbG+v0MXLkSMXHx+vvf/+7du3apYkTJ+q7777T8OHDL31WAABAqVfka3K+++47derUyXmeHzyio6MVFxenJ598UidPntTDDz+stLQ0dejQQfHx8fL19XXWmTNnjoYPH6677rpLnp6e6tmzp9566y1neWBgoP79738rJiZGYWFhqlKlisaPH+/2WTq33nqr5s6dq2effVbPPPOMGjZsqMWLF6tFixbFmggAAGCXS/qcnNLuYu+zLw4+JwcAgCujRD4nBwAA4FpByAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVipT0g1cT7Ljv3F77t2lQwl1AgCA/TiTAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsxCceXyUH0pY7/50noz8CGur40k3KML/LX36q5BGopulV5d2kvhTgJ896teThSQYFAKC4Sn3ImTFjhl555RWlpKSoVatWmjZtmtq0aVPSbZ3TVq8UfeG9U+k58QWWVSpTVtHxN6vNsRAp0F/e/3OXvFo2KoEuAQAo/Ur1qYJPP/1UsbGxmjBhgjZv3qxWrVopMjJSR44cKenWCrXVK0Uf+WxRusfpQpcfd/2h15t/q41VDknpJ5Qdt1i53/9wlbsEAMAOpTrkvPbaaxo6dKgGDRqkZs2aadasWSpXrpzef//9km6tgDwZfeG9888nHuco+n/jHzbYojzlSZKyP1mmrOX/R9nx3zgPAABwYaX27aqsrCwlJiZq7Nixzpinp6ciIiKUkJBQ6DqZmZnKzMx0nqenp0uSMjIyLnt/v5/KdHu+3/O4junkRa2bohP6zvcnNUmvJmWelufPKfKoGPD/Cz5bccFteP8lvEj9AgBQWuT/3jbGnLeu1IacY8eOKTc3V0FBQW7jQUFB2rVrV6HrTJ48Wc8//3yB8ZCQkCvS46VYqu9LugUAAK5pJ06cUGBg4DmXl9qQUxxjx45VbGys8zwvL0/Hjx9X5cqV5eFxrveQii4jI0MhISE6dOiQAgICLrwCCmAOLx1zeOmYw0vD/F065rBwxhidOHFCNWrUOG9dqQ05VapUkZeXl1JTU93GU1NTFRwcXOg6LpdLLpfLbaxChQpXqkUFBATworxEzOGlYw4vHXN4aZi/S8ccFnS+Mzj5Su2Fxz4+PgoLC9OqVaucsby8PK1atUrh4VyPAgDA9a7UnsmRpNjYWEVHR6t169Zq06aN3njjDZ08eVKDBg0q6dYAAEAJK9Uhp0+fPjp69KjGjx+vlJQU3XjjjYqPjy9wMfLV5nK5NGHChAJvjeHiMYeXjjm8dMzhpWH+Lh1zeGk8zIXuvwIAACiFSu01OQAAAOdDyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEnGKaMWOG6tSpI19fX7Vt21YbN248b/2CBQvUpEkT+fr6KjQ0VMuWLbtKnV67ijKH//jHP3TbbbepYsWKqlixoiIiIi4459eDor4O882bN08eHh7q3r37lW3wGlfU+UtLS1NMTIyqV68ul8ulRo0aXfc/y0WdwzfeeEONGzdW2bJlFRISotGjR+v06dNXqdtrz7p169S1a1fVqFFDHh4eWrx48QXXWbNmjW6++Wa5XC41aNBAcXFxV7zPUsugyObNm2d8fHzM+++/b7Zv326GDh1qKlSoYFJTUwut//bbb42Xl5eZOnWq2bFjh3n22WeNt7e32bp161Xu/NpR1Dns16+fmTFjhtmyZYvZuXOnefDBB01gYKD56aefrnLn146izmG+5ORkU7NmTXPbbbeZbt26XZ1mr0FFnb/MzEzTunVrc88995hvvvnGJCcnmzVr1pikpKSr3Pm1o6hzOGfOHONyucycOXNMcnKyWbFihalevboZPXr0Ve782rFs2TIzbtw48/nnnxtJZtGiReet379/vylXrpyJjY01O3bsMNOmTTNeXl4mPj7+6jRcyhByiqFNmzYmJibGeZ6bm2tq1KhhJk+eXGh97969TVRUlNtY27ZtzSOPPHJF+7yWFXUOz5aTk2P8/f3N7Nmzr1SL17zizGFOTo659dZbzXvvvWeio6Ov65BT1Pl7++23Tb169UxWVtbVavGaV9Q5jImJMXfeeafbWGxsrGnfvv0V7bO0uJiQ8+STT5rmzZu7jfXp08dERkZewc5KL96uKqKsrCwlJiYqIiLCGfP09FRERIQSEhIKXSchIcGtXpIiIyPPWW+74szh2U6dOqXs7GxVqlTpSrV5TSvuHE6aNEnVqlXT4MGDr0ab16zizN8XX3yh8PBwxcTEKCgoSC1atNDLL7+s3Nzcq9X2NaU4c3jrrbcqMTHReUtr//79WrZsme65556r0rMN+H1SNKX6ax1KwrFjx5Sbm1vgqyOCgoK0a9euQtdJSUkptD4lJeWK9XktK84cnu2pp55SjRo1CvywXy+KM4fffPON/vnPfyopKekqdHhtK8787d+/X6tXr1b//v21bNky7d27V8OGDVN2drYmTJhwNdq+phRnDvv166djx46pQ4cOMsYoJydHjz76qJ555pmr0bIVzvX7JCMjQ3/88YfKli1bQp1dmziTg1JnypQpmjdvnhYtWiRfX9+SbqdUOHHihAYMGKB//OMfqlKlSkm3Uyrl5eWpWrVqevfddxUWFqY+ffpo3LhxmjVrVkm3VmqsWbNGL7/8smbOnKnNmzfr888/19KlS/XCCy+UdGuwFGdyiqhKlSry8vJSamqq23hqaqqCg4MLXSc4OLhI9bYrzhzme/XVVzVlyhR99dVXatmy5ZVs85pW1Dnct2+fDhw4oK5duzpjeXl5kqQyZcpo9+7dql+//pVt+hpSnNdg9erV5e3tLS8vL2esadOmSklJUVZWlnx8fK5oz9ea4szhc889pwEDBmjIkCGSpNDQUJ08eVIPP/ywxo0bJ09P/u6+kHP9PgkICOAsTiF4RRWRj4+PwsLCtGrVKmcsLy9Pq1atUnh4eKHrhIeHu9VL0sqVK89Zb7vizKEkTZ06VS+88ILi4+PVunXrq9HqNauoc9ikSRNt3bpVSUlJzuO+++5Tp06dlJSUpJCQkKvZfokrzmuwffv22rt3rxMOJemHH35Q9erVr7uAIxVvDk+dOlUgyOSHRsN3RV8Ufp8UUUlf+VwazZs3z7hcLhMXF2d27NhhHn74YVOhQgWTkpJijDFmwIAB5umnn3bqv/32W1OmTBnz6quvmp07d5oJEyZwC3kR53DKlCnGx8fHLFy40Pzyyy/O48SJEyV1CCWuqHN4tuv97qqizt/BgweNv7+/GT58uNm9e7dZsmSJqVatmnnxxRdL6hBKXFHncMKECcbf39988sknZv/+/ebf//63qV+/vundu3dJHUKJO3HihNmyZYvZsmWLkWRee+01s2XLFvPjjz8aY4x5+umnzYABA5z6/FvIx4wZY3bu3GlmzJjBLeTnQcgppmnTppkbbrjB+Pj4mDZt2pj//Oc/zrKOHTua6Ohot/r58+ebRo0aGR8fH9O8eXOzdOnSq9zxtacoc1i7dm0jqcBjwoQJV7/xa0hRX4dnut5DjjFFn7/169ebtm3bGpfLZerVq2deeuklk5OTc5W7vrYUZQ6zs7PNxIkTTf369Y2vr68JCQkxw4YNM7/99tvVb/wa8fXXXxf6/7b8eYuOjjYdO3YssM6NN95ofHx8TL169cwHH3xw1fsuLTyM4RwhAACwD9fkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAACX1bp169S1a1fVqFFDHh4eWrx4cZG3sWLFCrVr107+/v6qWrWqevbsqQMHDhRpG4QcAABwWZ08eVKtWrXSjBkzirV+cnKyunXrpjvvvFNJSUlasWKFjh07ph49ehRpO3ziMQAAuGI8PDy0aNEide/e3RnLzMzUuHHj9MknnygtLU0tWrTQ3/72N91xxx2SpIULF+qBBx5QZmam86WuX375pbp166bMzEx5e3tf1L45kwMAAK6q4cOHKyEhQfPmzdP333+v+++/X126dNGePXskSWFhYfL09NQHH3yg3Nxcpaen66OPPlJERMRFBxyJMzkAAOAKOvtMzsGDB1WvXj0dPHhQNWrUcOoiIiLUpk0bvfzyy5KktWvXqnfv3vr111+Vm5ur8PBwLVu2TBUqVLjofXMmBwAAXDVbt25Vbm6uGjVqJD8/P+exdu1a7du3T5KUkpKioUOHKjo6Wps2bdLatWvl4+OjXr16qSjnZspcqYMAAAA42++//y4vLy8lJibKy8vLbZmfn58kacaMGQoMDNTUqVOdZR9//LFCQkK0YcMGtWvX7qL2RcgBAABXzU033aTc3FwdOXJEt912W6E1p06dci44zpcfiPLy8i56X7xdBQAALqvff/9dSUlJSkpKkvTnLeFJSUk6ePCgGjVqpP79+2vgwIH6/PPPlZycrI0bN2ry5MlaunSpJCkqKkqbNm3SpEmTtGfPHm3evFmDBg1S7dq1ddNNN110H1x4DAAALqs1a9aoU6dOBcajo6MVFxen7Oxsvfjii/rwww/1888/q0qVKmrXrp2ef/55hYaGSpLmzZunqVOn6ocfflC5cuUUHh6uv/3tb2rSpMlF90HIAQAAVuLtKgAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABY6f8C+5GBiC+lkQIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN8tJREFUeJzt3XtcFnX+//8noFyoHBQP4AHPZ0UtTCQrtVixyNWvmlptsh7aMnRV0tKtPFVLWbtmaWmfPkUHyzTTLUld84DfktRQCk3NjNIyEDNAKUHh/fujL/PzEjyAB/LN4367ze3m9Z7XzLzn7XDxZK6ZuTyMMUYAAACW8azoDgAAAFwOhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAXZcaMGfLw8KjoblwSCQkJ8vDw0HfffVfRXQFwCRByAFSYzZs3a8aMGcrOzq7orpzViy++qISEhMu6DQ8PD3l4eGj06NGlzn/kkUecmiNHjpx3fVu3btUDDzygsLAwVa1a1ZoQCpSVB99dBeBinDp1SqdOnZKPj0+Zl3322Wc1efJkpaenq2nTppe+c2VUWFiokydPyuVyOcGgY8eOqlOnjjZu3HjZtuvh4SEfHx/5+PgoMzNT3t7ebvObN2+un376SSdOnFBWVpbq1KlzzvXNmDFD//znP9WpUycdO3ZMX3/9tXirR2XEmRzgHIqKinTixImK7oabvLy8y74NY4x+++23C6qtUqVKuQLOH5GXl5d8fHwq5MxH3759lZubq1WrVrm1b968Wenp6YqOjr7gdY0ZM0Y5OTn6/PPP9ac//elSdxW4ahByUCkUXzeyZ88eDRkyRP7+/qpdu7bGjx/vFmI8PDw0duxYLVq0SB06dJDL5dLq1aslST/++KNGjhypoKAguVwudejQQa+++mqJbZ04cUIzZsxQ69at5ePjo/r162vgwIHav3+/JGnjxo3y8PAocWbgu+++k4eHh9tHI3/961/l6+ur/fv367bbbpOfn5/uvvtuSdK+ffs0aNAgBQcHy8fHR40aNdKwYcOUk5PjLH/q1Ck9/vjjatGihVwul5o2bap//OMfys/Pd9t206ZNdfvtt2vNmjXq2rWrqlWrpoULF5ZpbE9XPI4rVqxQx44dnfEqHsvi5SZPnixJatasmfNxzOnXw7z11lsKCwtTtWrVFBgYqGHDhungwYNu2+rVq5c6duyor776Sr1791b16tXVsGFDzZ49u0RfX3jhBXXo0EHVq1dXrVq11LVrV7399tvO/DOvyWnatKl27dqlpKQkp3+9evXSt99+Kw8PD82ZM6fENjZv3iwPDw+98847FzR+xRo2bKibbrrJrT+StGjRIoWGhqpjx44XvK6goCBVq1atTNs/m+JjY+PGjc6xERoa6hy/77//vkJDQ+Xj46OwsDDt2LGjxDr27NmjwYMHKzAwUD4+Puratas++OADt5qjR49q0qRJCg0Nla+vr/z9/XXrrbfqiy++cKsr/vlZsmSJnnzySTVq1Eg+Pj665ZZb9M0331ySfYY9qlR0B4AraciQIWratKni4+P12Wef6fnnn9cvv/yiN954w6lZv369lixZorFjx6pOnTpq2rSpMjMz1b17d+eXd926dbVq1SqNGjVKubm5mjBhgqTfP+64/fbbtW7dOg0bNkzjx4/XsWPHtHbtWu3cuVMtWrQoc59PnTqlqKgo3XDDDXr22WdVvXp1FRQUKCoqSvn5+Ro3bpyCg4P1448/auXKlcrOzlZAQIAkafTo0Xr99dc1ePBgPfjgg9qyZYvi4+O1e/duLV++3G07e/fu1Z133qn77rtP9957r9q0aVP+gZb0ySef6P3339cDDzwgPz8/Pf/88xo0aJAOHDig2rVra+DAgfr666/1zjvvaM6cOc5HMHXr1pUkPfnkk3rsscc0ZMgQjR49WllZWXrhhRd00003aceOHapZs6azrV9++UV9+/bVwIEDNWTIEL333nt6+OGHFRoaqltvvVWS9D//8z/6+9//rsGDBzvh9ssvv9SWLVt01113lboPzz33nMaNGydfX1898sgjkn4PEM2bN1ePHj20aNEiTZw40W2ZRYsWyc/PT/379y/zmN11110aP368jh8/Ll9fX506dUpLly5VXFxchZ5R/Oabb3TXXXfpvvvu01/+8hc9++yz6tevnxYsWKB//OMfeuCBByRJ8fHxGjJkiPbu3StPz9//ht61a5d69Oihhg0basqUKapRo4aWLFmiAQMGaNmyZfo//+f/SJK+/fZbrVixQnfccYeaNWumzMxMLVy4UD179tRXX32lBg0auPXpqaeekqenpyZNmqScnBzNnj1bd999t7Zs2XJlBwd/bAaoBKZPn24kmT//+c9u7Q888ICRZL744gtjjDGSjKenp9m1a5db3ahRo0z9+vXNkSNH3NqHDRtmAgICzK+//mqMMebVV181ksy///3vEn0oKioyxhizYcMGI8ls2LDBbX56erqRZF577TWnLSYmxkgyU6ZMcavdsWOHkWSWLl161n1OTU01kszo0aPd2idNmmQkmfXr1zttTZo0MZLM6tWrz7q+syke29NJMt7e3uabb75x2r744gsjybzwwgtO2zPPPGMkmfT0dLflv/vuO+Pl5WWefPJJt/a0tDRTpUoVt/aePXsaSeaNN95w2vLz801wcLAZNGiQ09a/f3/ToUOHc+7La6+9VqI/HTp0MD179ixRu3DhQiPJ7N6922krKCgwderUMTExMefczpkkmdjYWHP06FHj7e1t3nzzTWOMMYmJicbDw8N89913zjhnZWWVad2xsbEl/n/KovjY2Lx5s9O2Zs0aI8lUq1bNfP/990578ZicfmzfcsstJjQ01Jw4ccJpKyoqMtdff71p1aqV03bixAlTWFjotu309HTjcrnMrFmznLbin5927dqZ/Px8p33u3LlGkklLSyv3vsI+fFyFSiU2Ntbt9bhx4yRJH330kdPWs2dPtW/f3nltjNGyZcvUr18/GWN05MgRZ4qKilJOTo62b98uSVq2bJnq1KnjrPd0F3Odx5gxY9xeF5+pWbNmjX799ddSlynep7i4OLf2Bx98UJKUmJjo1t6sWTNFRUWVu49nioyMdDtz1alTJ/n7++vbb78977Lvv/++ioqKNGTIELfxDg4OVqtWrbRhwwa3el9fX/3lL39xXnt7e6tbt25u26pZs6Z++OEHbdu27RLs3e9nBX18fLRo0SKnbc2aNTpy5IhbX8qiVq1a6tu3r/NR19tvv63rr79eTZo0uSR9Lq/27dsrIiLCeR0eHi5Juvnmm9W4ceMS7cXjfvToUa1fv15DhgzRsWPHnP/Hn3/+WVFRUdq3b59+/PFHSZLL5XLO/hQWFurnn3+Wr6+v2rRp4/x8nW7EiBFuF2jfeOONbtsGJK7JQSXTqlUrt9ctWrSQp6en23UgzZo1c6vJyspSdna2Xn75ZdWtW9dtGjFihCTp8OHDkqT9+/erTZs2qlLl0n0SXKVKFTVq1MitrVmzZoqLi9Mrr7yiOnXqKCoqSvPnz3e7Huf777+Xp6enWrZs6bZscHCwatasqe+//77EOi+l03/5FatVq5Z++eWX8y67b98+GWPUqlWrEmO+e/duZ7yLNWrUqESIPHNbDz/8sHx9fdWtWze1atVKsbGx+vTTT8u5d7+Hpn79+rldQ7No0SI1bNhQN998c7nXe9ddd2nt2rU6cOCAVqxYcdaP0o4fP66MjAxnysrKKvc2z+fM/8vikB0SElJqe/G4f/PNNzLG6LHHHivx/zh9+nRJ///PTlFRkebMmaNWrVrJ5XKpTp06qlu3rr788ku34/psfapVq5bbtgGJa3JQyZV2duXMCzaLiookSX/5y18UExNT6no6dep0UduUfv/rtTSn/4V7un/961/661//qv/85z/673//q7///e/OtUanh6ILPYN0qS5ULebl5VVqu7mAW5mLiork4eGhVatWlboeX1/fMm+rXbt22rt3r1auXKnVq1dr2bJlevHFFzVt2jTNnDnzvH0qzfDhw7V06VJt3rxZoaGh+uCDD/TAAw+U+v91of785z/L5XIpJiZG+fn5GjJkSKl1zz77rFu/mzRpctkeYni28T3fuBf/7EyaNOmsZwmLQ/g///lPPfbYYxo5cqQef/xxBQYGytPTUxMmTHDWU5ZtAxIhB5XMvn373M5YfPPNNyoqKjrnM1rq1q0rPz8/FRYWKjIy8pzrb9GihbZs2aKTJ0+qatWqpdYU/8V55gPwzjyzciFCQ0MVGhqqRx99VJs3b1aPHj20YMECPfHEE2rSpImKioq0b98+tWvXzlkmMzNT2dnZFf4RiHT2ANaiRQsZY9SsWTO1bt36km2vRo0aGjp0qIYOHaqCggINHDhQTz75pKZOnXrW2+DPFRL79u2runXratGiRQoPD9evv/6qe+6556L6WK1aNQ0YMEBvvfWWbr311rM+E2f48OG64YYb3Jb7o2nevLkkqWrVquf92XnvvffUu3dv/e///q9be3Z29nmfCwScDR9XoVKZP3++2+sXXnhBkpw7cErj5eWlQYMGadmyZdq5c2eJ+ad/TDBo0CAdOXJE8+bNK1FX/BdmkyZN5OXlpU2bNrnNf/HFFy94P3Jzc3Xq1Cm3ttDQUHl6ejq3h992222Sfr9D6HT//ve/JalMz125XGrUqCGpZOAbOHCgvLy8NHPmzBJ/mRtj9PPPP5d5W2cu4+3trfbt28sYo5MnT56zj2d7InOVKlV05513asmSJUpISFBoaGiZzuqdzaRJkzR9+nQ99thjZ61p3ry5IiMjnalHjx4Xvd1LrV69eurVq5cWLlyon376qcT80392vLy8SvxfL1261LlmBygPzuSgUklPT9ef//xn9e3bV8nJyXrrrbd01113qXPnzudc7qmnntKGDRsUHh6ue++9V+3bt9fRo0e1fft2ffzxxzp69Kik3/+6fuONNxQXF6etW7fqxhtvVF5enj7++GM98MAD6t+/vwICAnTHHXfohRdekIeHh1q0aKGVK1eWuM7kXNavX6+xY8fqjjvuUOvWrXXq1Cm9+eabTiCTpM6dOysmJkYvv/yysrOz1bNnT23dulWvv/66BgwYoN69e5d/IC+RsLAwSb9/bcGwYcNUtWpV9evXTy1atNATTzyhqVOn6rvvvtOAAQPk5+en9PR0LV++XH/72980adKkMm2rT58+Cg4OVo8ePRQUFKTdu3dr3rx5io6Olp+f3zn7+NJLL+mJJ55Qy5YtVa9ePbdrboYPH67nn39eGzZs0NNPP12+gThD586dz3tMnsv333+vN998U5L0+eefS5KeeOIJSb+H7Is921QW8+fP1w033KDQ0FDde++9at68uTIzM5WcnKwffvjBeQ7O7bffrlmzZmnEiBG6/vrrlZaWpkWLFjlng4ByqYhbuoArrfj226+++soMHjzY+Pn5mVq1apmxY8ea3377zanT/7uVtzSZmZkmNjbWhISEmKpVq5rg4GBzyy23mJdfftmt7tdffzWPPPKIadasmVM3ePBgs3//fqcmKyvLDBo0yFSvXt3UqlXL3HfffWbnzp2l3kJeo0aNEn359ttvzciRI02LFi2Mj4+PCQwMNL179zYff/yxW93JkyfNzJkznb6EhISYqVOnut3Oa8zvtwlHR0df8Hie7my3kJc2jk2aNClxe/Xjjz9uGjZsaDw9PUvcvr1s2TJzww03mBo1apgaNWqYtm3bmtjYWLN3716npmfPnqXeGh4TE2OaNGnivF64cKG56aabTO3atY3L5TItWrQwkydPNjk5OU5NabeQZ2RkmOjoaOPn52cklXo7eYcOHYynp6f54YcfzjJK53au465YWW4hL77NurSptP6fy9mOjdL6XPwYhGeeecatff/+/Wb48OEmODjYVK1a1TRs2NDcfvvt5r333nNqTpw4YR588EFTv359U61aNdOjRw+TnJxsevbs6dbn4n078/EJpT2CAeC7q1ApzJgxQzNnzryg7/0Byuqaa65RYGCg1q1bV9FdAXAarskBgIvw+eefKzU1VcOHD6/orgA4A9fkAChVTk7Oeb+kMzg4+Ar15o9n586dSklJ0b/+9S/Vr19fQ4cOdZtfWFh43mfX+Pr6lrgd/krJyso662MLpN8vzA4MDLyCPQIuPUIOgFKNHz9er7/++jlrKvOn3e+9955mzZqlNm3a6J133ilxC/rBgwfP+4DF6dOna8aMGZexl2d33XXXnfOxBT179izxJbLA1YZrcgCU6quvvtKhQ4fOWXO+Z59UZidOnNAnn3xyzprmzZtX2N1Dn3766TnP1NWqVcu5+w24WhFyAACAlbjwGAAAWKlSX5NTVFSkQ4cOyc/P76K+IRoAAFw5xhgdO3ZMDRo0OOd3xVXqkHPo0KES36ILAACuDgcPHnT7QuIzVeqQU/wo94MHD8rf37+CewMAAC5Ebm6uQkJCzvmVLFIlDznFH1H5+/sTcgAAuMqc71ITLjwGAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIh5zI5ufoTnVz9SUV3AwCASouQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKx0USHnqaeekoeHhyZMmOC0nThxQrGxsapdu7Z8fX01aNAgZWZmui134MABRUdHq3r16qpXr54mT56sU6dOudVs3LhR1157rVwul1q2bKmEhIQS258/f76aNm0qHx8fhYeHa+vWrRezOwAAwCLlDjnbtm3TwoUL1alTJ7f2iRMn6sMPP9TSpUuVlJSkQ4cOaeDAgc78wsJCRUdHq6CgQJs3b9brr7+uhIQETZs2zalJT09XdHS0evfurdTUVE2YMEGjR4/WmjVrnJp3331XcXFxmj59urZv367OnTsrKipKhw8fLu8uAQAAm5hyOHbsmGnVqpVZu3at6dmzpxk/frwxxpjs7GxTtWpVs3TpUqd29+7dRpJJTk42xhjz0UcfGU9PT5ORkeHUvPTSS8bf39/k5+cbY4x56KGHTIcOHdy2OXToUBMVFeW87tatm4mNjXVeFxYWmgYNGpj4+PgL3o+cnBwjyeTk5Fz4zl+gglX/1xSs+r+XfL0AAFR2F/r7u1xncmJjYxUdHa3IyEi39pSUFJ08edKtvW3btmrcuLGSk5MlScnJyQoNDVVQUJBTExUVpdzcXO3atcupOXPdUVFRzjoKCgqUkpLiVuPp6anIyEinpjT5+fnKzc11mwAAgJ2qlHWBxYsXa/v27dq2bVuJeRkZGfL29lbNmjXd2oOCgpSRkeHUnB5wiucXzztXTW5urn777Tf98ssvKiwsLLVmz549Z+17fHy8Zs6ceWE7CgAArmplOpNz8OBBjR8/XosWLZKPj8/l6tNlM3XqVOXk5DjTwYMHK7pLAADgMilTyElJSdHhw4d17bXXqkqVKqpSpYqSkpL0/PPPq0qVKgoKClJBQYGys7PdlsvMzFRwcLAkKTg4uMTdVsWvz1fj7++vatWqqU6dOvLy8iq1pngdpXG5XPL393ebAACAncoUcm655RalpaUpNTXVmbp27aq7777b+XfVqlW1bt06Z5m9e/fqwIEDioiIkCRFREQoLS3N7S6otWvXyt/fX+3bt3dqTl9HcU3xOry9vRUWFuZWU1RUpHXr1jk1AACgcivTNTl+fn7q2LGjW1uNGjVUu3Ztp33UqFGKi4tTYGCg/P39NW7cOEVERKh79+6SpD59+qh9+/a65557NHv2bGVkZOjRRx9VbGysXC6XJOn+++/XvHnz9NBDD2nkyJFav369lixZosTERGe7cXFxiomJUdeuXdWtWzc999xzysvL04gRIy5qQAAAgB3KfOHx+cyZM0eenp4aNGiQ8vPzFRUVpRdffNGZ7+XlpZUrV2rMmDGKiIhQjRo1FBMTo1mzZjk1zZo1U2JioiZOnKi5c+eqUaNGeuWVVxQVFeXUDB06VFlZWZo2bZoyMjLUpUsXrV69usTFyAAAoHLyMMaYiu5ERcnNzVVAQIBycnIu+fU5J1d/Ikmq2veGS7peAAAquwv9/c13VwEAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVqpS0R2w1XfZqyRJnp/vctpadL2voroDAEClw5kcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKZQo5L730kjp16iR/f3/5+/srIiJCq1atcuafOHFCsbGxql27tnx9fTVo0CBlZma6rePAgQOKjo5W9erVVa9ePU2ePFmnTp1yq9m4caOuvfZauVwutWzZUgkJCSX6Mn/+fDVt2lQ+Pj4KDw/X1q1by7IrAADAcmUKOY0aNdJTTz2llJQUff7557r55pvVv39/7dq1S5I0ceJEffjhh1q6dKmSkpJ06NAhDRw40Fm+sLBQ0dHRKigo0ObNm/X6668rISFB06ZNc2rS09MVHR2t3r17KzU1VRMmTNDo0aO1Zs0ap+bdd99VXFycpk+fru3bt6tz586KiorS4cOHL3Y8AACAJTyMMeZiVhAYGKhnnnlGgwcPVt26dfX2229r8ODBkqQ9e/aoXbt2Sk5OVvfu3bVq1SrdfvvtOnTokIKCgiRJCxYs0MMPP6ysrCx5e3vr4YcfVmJionbu3OlsY9iwYcrOztbq1aslSeHh4bruuus0b948SVJRUZFCQkI0btw4TZky5YL7npubq4CAAOXk5Mjf3/9ihqGEfYsfkSR5tmzstLXoet8l3QYAAJXRhf7+Lvc1OYWFhVq8eLHy8vIUERGhlJQUnTx5UpGRkU5N27Zt1bhxYyUnJ0uSkpOTFRoa6gQcSYqKilJubq5zNig5OdltHcU1xesoKChQSkqKW42np6ciIyOdmrPJz89Xbm6u2wQAAOxU5pCTlpYmX19fuVwu3X///Vq+fLnat2+vjIwMeXt7q2bNmm71QUFBysjIkCRlZGS4BZzi+cXzzlWTm5ur3377TUeOHFFhYWGpNcXrOJv4+HgFBAQ4U0hISFl3HwAAXCXKHHLatGmj1NRUbdmyRWPGjFFMTIy++uqry9G3S27q1KnKyclxpoMHD1Z0lwAAwGVSpawLeHt7q2XLlpKksLAwbdu2TXPnztXQoUNVUFCg7Oxst7M5mZmZCg4OliQFBweXuAuq+O6r02vOvCMrMzNT/v7+qlatmry8vOTl5VVqTfE6zsblcsnlcpV1lwEAwFXoop+TU1RUpPz8fIWFhalq1apat26dM2/v3r06cOCAIiIiJEkRERFKS0tzuwtq7dq18vf3V/v27Z2a09dRXFO8Dm9vb4WFhbnVFBUVad26dU4NAABAmc7kTJ06VbfeeqsaN26sY8eO6e2339bGjRu1Zs0aBQQEaNSoUYqLi1NgYKD8/f01btw4RUREqHv37pKkPn36qH379rrnnns0e/ZsZWRk6NFHH1VsbKxzhuX+++/XvHnz9NBDD2nkyJFav369lixZosTERKcfcXFxiomJUdeuXdWtWzc999xzysvL04gRIy7h0AAAgKtZmULO4cOHNXz4cP30008KCAhQp06dtGbNGv3pT3+SJM2ZM0eenp4aNGiQ8vPzFRUVpRdffNFZ3svLSytXrtSYMWMUERGhGjVqKCYmRrNmzXJqmjVrpsTERE2cOFFz585Vo0aN9MorrygqKsqpGTp0qLKysjRt2jRlZGSoS5cuWr16dYmLkQEAQOV10c/JuZrxnBwAAK4+l/05OQAAAH9khBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpTKFnPj4eF133XXy8/NTvXr1NGDAAO3du9et5sSJE4qNjVXt2rXl6+urQYMGKTMz063mwIEDio6OVvXq1VWvXj1NnjxZp06dcqvZuHGjrr32WrlcLrVs2VIJCQkl+jN//nw1bdpUPj4+Cg8P19atW8uyOwAAwGJlCjlJSUmKjY3VZ599prVr1+rkyZPq06eP8vLynJqJEyfqww8/1NKlS5WUlKRDhw5p4MCBzvzCwkJFR0eroKBAmzdv1uuvv66EhARNmzbNqUlPT1d0dLR69+6t1NRUTZgwQaNHj9aaNWucmnfffVdxcXGaPn26tm/frs6dOysqKkqHDx++mPEAAACW8DDGmPIunJWVpXr16ikpKUk33XSTcnJyVLduXb399tsaPHiwJGnPnj1q166dkpOT1b17d61atUq33367Dh06pKCgIEnSggUL9PDDDysrK0ve3t56+OGHlZiYqJ07dzrbGjZsmLKzs7V69WpJUnh4uK677jrNmzdPklRUVKSQkBCNGzdOU6ZMuaD+5+bmKiAgQDk5OfL39y/vMJRq3+JHJEmeLRs7bS263ndJtwEAQGV0ob+/L+qanJycHElSYGCgJCklJUUnT55UZGSkU9O2bVs1btxYycnJkqTk5GSFhoY6AUeSoqKilJubq127djk1p6+juKZ4HQUFBUpJSXGr8fT0VGRkpFNTmvz8fOXm5rpNAADATuUOOUVFRZowYYJ69Oihjh07SpIyMjLk7e2tmjVrutUGBQUpIyPDqTk94BTPL553rprc3Fz99ttvOnLkiAoLC0utKV5HaeLj4xUQEOBMISEhZd9xAABwVSh3yImNjdXOnTu1ePHiS9mfy2rq1KnKyclxpoMHD1Z0lwAAwGVSpTwLjR07VitXrtSmTZvUqFEjpz04OFgFBQXKzs52O5uTmZmp4OBgp+bMu6CK7746vebMO7IyMzPl7++vatWqycvLS15eXqXWFK+jNC6XSy6Xq+w7DAAArjplOpNjjNHYsWO1fPlyrV+/Xs2aNXObHxYWpqpVq2rdunVO2969e3XgwAFFRERIkiIiIpSWluZ2F9TatWvl7++v9u3bOzWnr6O4pngd3t7eCgsLc6spKirSunXrnBoAAFC5lelMTmxsrN5++2395z//kZ+fn3P9S0BAgKpVq6aAgACNGjVKcXFxCgwMlL+/v8aNG6eIiAh1795dktSnTx+1b99e99xzj2bPnq2MjAw9+uijio2Ndc6y3H///Zo3b54eeughjRw5UuvXr9eSJUuUmJjo9CUuLk4xMTHq2rWrunXrpueee055eXkaMWLEpRobAABwFStTyHnppZckSb169XJrf+211/TXv/5VkjRnzhx5enpq0KBBys/PV1RUlF588UWn1svLSytXrtSYMWMUERGhGjVqKCYmRrNmzXJqmjVrpsTERE2cOFFz585Vo0aN9MorrygqKsqpGTp0qLKysjRt2jRlZGSoS5cuWr16dYmLkQEAQOV0Uc/JudrxnBwAAK4+V+Q5OQAAAH9UhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpTKHnE2bNqlfv35q0KCBPDw8tGLFCrf5xhhNmzZN9evXV7Vq1RQZGal9+/a51Rw9elR33323/P39VbNmTY0aNUrHjx93q/nyyy914403ysfHRyEhIZo9e3aJvixdulRt27aVj4+PQkND9dFHH5V1dwAAgKXKHHLy8vLUuXNnzZ8/v9T5s2fP1vPPP68FCxZoy5YtqlGjhqKionTixAmn5u6779auXbu0du1arVy5Ups2bdLf/vY3Z35ubq769OmjJk2aKCUlRc8884xmzJihl19+2anZvHmz7rzzTo0aNUo7duzQgAEDNGDAAO3cubOsuwQAACzkYYwx5V7Yw0PLly/XgAEDJP1+FqdBgwZ68MEHNWnSJElSTk6OgoKClJCQoGHDhmn37t1q3769tm3bpq5du0qSVq9erdtuu00//PCDGjRooJdeekmPPPKIMjIy5O3tLUmaMmWKVqxYoT179kiShg4dqry8PK1cudLpT/fu3dWlSxctWLCg1P7m5+crPz/feZ2bm6uQkBDl5OTI39+/vMNQqn2LH5EkebZs7LS16HrfJd0GAACVUW5urgICAs77+/uSXpOTnp6ujIwMRUZGOm0BAQEKDw9XcnKyJCk5OVk1a9Z0Ao4kRUZGytPTU1u2bHFqbrrpJifgSFJUVJT27t2rX375xak5fTvFNcXbKU18fLwCAgKcKSQk5OJ3GgAA/CFd0pCTkZEhSQoKCnJrDwoKcuZlZGSoXr16bvOrVKmiwMBAt5rS1nH6Ns5WUzy/NFOnTlVOTo4zHTx4sKy7CAAArhJVKroDV5LL5ZLL5arobgAAgCvgkp7JCQ4OliRlZma6tWdmZjrzgoODdfjwYbf5p06d0tGjR91qSlvH6ds4W03xfAAAULld0pDTrFkzBQcHa926dU5bbm6utmzZooiICElSRESEsrOzlZKS4tSsX79eRUVFCg8Pd2o2bdqkkydPOjVr165VmzZtVKtWLafm9O0U1xRvBwAAVG5lDjnHjx9XamqqUlNTJf1+sXFqaqoOHDggDw8PTZgwQU888YQ++OADpaWlafjw4WrQoIFzB1a7du3Ut29f3Xvvvdq6das+/fRTjR07VsOGDVODBg0kSXfddZe8vb01atQo7dq1S++++67mzp2ruLg4px/jx4/X6tWr9a9//Ut79uzRjBkz9Pnnn2vs2LEXPyoAAODqZ8pow4YNRlKJKSYmxhhjTFFRkXnsscdMUFCQcblc5pZbbjF79+51W8fPP/9s7rzzTuPr62v8/f3NiBEjzLFjx9xqvvjiC3PDDTcYl8tlGjZsaJ566qkSfVmyZIlp3bq18fb2Nh06dDCJiYll2pecnBwjyeTk5JRtEC7A1+/8w3z9zj/MN9sWOBMAALh4F/r7+6Kek3O1u9D77MuD5+QAAHB5VMhzcgAAAP4oCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK1Wp6A7YJv/UCa1KeUXphbsVaKqp274iebdqWtHdAgCg0rnqz+TMnz9fTZs2lY+Pj8LDw7V169YK68trG6frzsQeej3zVW3y+04r/HfrkeprtOrgpxXWJwAAKqurOuS8++67iouL0/Tp07V9+3Z17txZUVFROnz48BXvy2sbp+uDnA9lZNzajaR1njsJOgAAXGEexhhz/rI/pvDwcF133XWaN2+eJKmoqEghISEaN26cpkyZct7lc3NzFRAQoJycHPn7+5e7H/mnTujOxB6/BxyPUgr+X3N80EhVqVLVaW7R9b5ybxMAgMrqQn9/X7XX5BQUFCglJUVTp0512jw9PRUZGank5ORSl8nPz1d+fr7zOicnR9Lvg3UxVn6+UAW/nTpv3Ya0TQr3aixJ8mjeSKkbnytR0/zakRfVFwAAbFf8e/t852mu2pBz5MgRFRYWKigoyK09KChIe/bsKXWZ+Ph4zZw5s0R7SEjIZenjmRL15QVUTbzs/QAAwAbHjh1TQEDAWedftSGnPKZOnaq4uDjndVFRkY4eParatWvLw6O0z5nKJzc3VyEhITp48OBFfQxmG8alJMakdIxL6RiXkhiT0tk+LsYYHTt2TA0aNDhn3VUbcurUqSMvLy9lZma6tWdmZio4OLjUZVwul1wul1tbzZo1L1cX5e/vb+XBdbEYl5IYk9IxLqVjXEpiTEpn87ic6wxOsav27ipvb2+FhYVp3bp1TltRUZHWrVuniIiICuwZAAD4I7hqz+RIUlxcnGJiYtS1a1d169ZNzz33nPLy8jRixIiK7hoAAKhgV3XIGTp0qLKysjRt2jRlZGSoS5cuWr16dYmLka80l8ul6dOnl/horLJjXEpiTErHuJSOcSmJMSkd4/K7q/o5OQAAAGdz1V6TAwAAcC6EHAAAYCVCDgAAsBIhBwAAWImQAwAArETIKaf58+eradOm8vHxUXh4uLZu3XrO+qVLl6pt27by8fFRaGioPvrooyvU0yurLOOSkJAgDw8Pt8nHx+cK9vby27Rpk/r166cGDRrIw8NDK1asOO8yGzdu1LXXXiuXy6WWLVsqISHhsvfzSirrmGzcuLHEceLh4aGMjIwr0+ErJD4+Xtddd538/PxUr149DRgwQHv37j3vcja/t5RnTCrD+8pLL72kTp06OU8zjoiI0KpVq865jM3HybkQcsrh3XffVVxcnKZPn67t27erc+fOioqK0uHDh0ut37x5s+68806NGjVKO3bs0IABAzRgwADt3LnzCvf88irruEi/P3L8p59+cqbvv//+Cvb48svLy1Pnzp01f/78C6pPT09XdHS0evfurdTUVE2YMEGjR4/WmjVrLnNPr5yyjkmxvXv3uh0r9erVu0w9rBhJSUmKjY3VZ599prVr1+rkyZPq06eP8vLyzrqM7e8t5RkTyf73lUaNGumpp55SSkqKPv/8c918883q37+/du3aVWq97cfJORmUWbdu3UxsbKzzurCw0DRo0MDEx8eXWj9kyBATHR3t1hYeHm7uu+++y9rPK62s4/Laa6+ZgICAK9S7iifJLF++/Jw1Dz30kOnQoYNb29ChQ01UVNRl7FnFuZAx2bBhg5FkfvnllyvSpz+Kw4cPG0kmKSnprDWV5b2l2IWMSWV7XylWq1Yt88orr5Q6r7IdJ6fjTE4ZFRQUKCUlRZGRkU6bp6enIiMjlZycXOoyycnJbvWSFBUVddb6q1F5xkWSjh8/riZNmigkJOScf4lUFpXhWCmvLl26qH79+vrTn/6kTz/9tKK7c9nl5ORIkgIDA89aU9mOlwsZE6lyva8UFhZq8eLFysvLO+v3Nla24+R0hJwyOnLkiAoLC0t8dURQUNBZrxHIyMgoU/3VqDzj0qZNG7366qv6z3/+o7feektFRUW6/vrr9cMPP1yJLv8hne1Yyc3N1W+//VZBvapY9evX14IFC7Rs2TItW7ZMISEh6tWrl7Zv317RXbtsioqKNGHCBPXo0UMdO3Y8a11leG8pdqFjUlneV9LS0uTr6yuXy6X7779fy5cvV/v27UutrUzHyZmu6u+uwtUtIiLC7S+P66+/Xu3atdPChQv1+OOPV2DP8EfSpk0btWnTxnl9/fXXa//+/ZozZ47efPPNCuzZ5RMbG6udO3fqk08+qeiu/GFc6JhUlveVNm3aKDU1VTk5OXrvvfcUExOjpKSkswadyoozOWVUp04deXl5KTMz0609MzNTwcHBpS4THBxcpvqrUXnG5UxVq1bVNddco2+++eZydPGqcLZjxd/fX9WqVaugXv3xdOvWzdrjZOzYsVq5cqU2bNigRo0anbO2Mry3SGUbkzPZ+r7i7e2tli1bKiwsTPHx8ercubPmzp1bam1lOU5KQ8gpI29vb4WFhWndunVOW1FRkdatW3fWz0MjIiLc6iVp7dq1Z62/GpVnXM5UWFiotLQ01a9f/3J18w+vMhwrl0Jqaqp1x4kxRmPHjtXy5cu1fv16NWvW7LzL2H68lGdMzlRZ3leKioqUn59f6jzbj5Nzqugrn69GixcvNi6XyyQkJJivvvrK/O1vfzM1a9Y0GRkZxhhj7rnnHjNlyhSn/tNPPzVVqlQxzz77rNm9e7eZPn26qVq1qklLS6uoXbgsyjouM2fONGvWrDH79+83KSkpZtiwYcbHx8fs2rWronbhkjt27JjZsWOH2bFjh5Fk/v3vf5sdO3aY77//3hhjzJQpU8w999zj1H/77bemevXqZvLkyWb37t1m/vz5xsvLy6xevbqiduGSK+uYzJkzx6xYscLs27fPpKWlmfHjxxtPT0/z8ccfV9QuXBZjxowxAQEBZuPGjeann35ypl9//dWpqWzvLeUZk8rwvjJlyhSTlJRk0tPTzZdffmmmTJliPDw8zH//+19jTOU7Ts6FkFNOL7zwgmncuLHx9vY23bp1M5999pkzr2fPniYmJsatfsmSJaZ169bG29vbdOjQwSQmJl7hHl8ZZRmXCRMmOLVBQUHmtttuM9u3b6+AXl8+xbc/nzkVj0NMTIzp2bNniWW6dOlivL29TfPmzc1rr712xft9OZV1TJ5++mnTokUL4+PjYwIDA02vXr3M+vXrK6bzl1FpYyLJ7f+/sr23lGdMKsP7ysiRI02TJk2Mt7e3qVu3rrnlllucgGNM5TtOzsXDGGOu3HkjAACAK4NrcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAACAS2rTpk3q16+fGjRoIA8PD61YsaLM61izZo26d+8uPz8/1a1bV4MGDdJ3331XpnUQcgAAwCWVl5enzp07a/78+eVaPj09Xf3799fNN9+s1NRUrVmzRkeOHNHAgQPLtB6eeAwAAC4bDw8PLV++XAMGDHDa8vPz9cgjj+idd95Rdna2OnbsqKefflq9evWSJL333nu68847lZ+fL0/P38/HfPjhh+rfv7/y8/NVtWrVC9o2Z3IAAMAVNXbsWCUnJ2vx4sX68ssvdccdd6hv377at2+fJCksLEyenp567bXXVFhYqJycHL355puKjIy84IAjcSYHAABcRmeeyTlw4ICaN2+uAwcOqEGDBk5dZGSkunXrpn/+85+SpKSkJA0ZMkQ///yzCgsLFRERoY8++kg1a9a84G1zJgcAAFwxaWlpKiwsVOvWreXr6+tMSUlJ2r9/vyQpIyND9957r2JiYrRt2zYlJSXJ29tbgwcPVlnOzVS5XDsBAABwpuPHj8vLy0spKSny8vJym+fr6ytJmj9/vgICAjR79mxn3ltvvaWQkBBt2bJF3bt3v6BtEXIAAMAVc80116iwsFCHDx/WjTfeWGrNr7/+6lxwXKw4EBUVFV3wtvi4CgAAXFLHjx9XamqqUlNTJf1+S3hqaqoOHDig1q1b6+6779bw4cP1/vvvKz09XVu3blV8fLwSExMlSdHR0dq2bZtmzZqlffv2afv27RoxYoSaNGmia6655oL7wYXHAADgktq4caN69+5doj0mJkYJCQk6efKknnjiCb3xxhv68ccfVadOHXXv3l0zZ85UaGioJGnx4sWaPXu2vv76a1WvXl0RERF6+umn1bZt2wvuByEHAABYiY+rAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGCl/w9nZcC5/OPvQQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANvpJREFUeJzt3Xl0VFX67vEnA1UJkATCkIBEhiBCIEALEtIig0aCRpQfICA2RAZtJdBAFIFGGRQbGlFRBtH2p2DLIKjY3QyhkfEqETQQZW6UICgmQGMSQMi47x/e1KVIQCoBAuzvZ61ay9rnPee8tSmph1PnnPIyxhgBAABYwLu8GwAAALhaCD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgDKxcSJE+Xl5VXebVwW8+bNk5eXlw4ePFjerQD4DQQfANedzZs3a+LEicrMzCzvVi5ozpw5mjdv3hXdh5eXl7y8vDR48OASl48bN85Vc/z48SvaC3C98OK3ugCUh/z8fOXn58vPz8/jdadPn65Ro0YpLS1N9erVu/zNeaigoEB5eXlyOp2uo1jNmjVT9erVtWHDhiu2Xy8vL/n5+cnPz08ZGRlyOBxuyxs0aKCffvpJZ8+e1bFjx1S9evUr1gtwveCID3AFFBYW6uzZs+XdhpvTp09f8X0YY3TmzJlLqvX19S1V6LkW+fj4yM/Pr1y+uuvSpYuys7O1atUqt/HNmzcrLS1NcXFxV70n4FpG8AEuoug8lL1796pXr14KDAxUtWrVNHz4cLdg4+XlpaFDh2rBggVq2rSpnE6nkpKSJEk//vijBg4cqJCQEDmdTjVt2lTvvPNOsX2dPXtWEydOVKNGjeTn56datWqpe/fu+u677yRJGzZskJeXV7EjCAcPHpSXl5fb1yqPPvqoKleurO+++0733XefAgIC9Mgjj0iS9u/frx49eig0NFR+fn6qU6eO+vTpo6ysLNf6+fn5euGFFxQeHi6n06l69erpz3/+s3Jyctz2Xa9ePd1///1avXq1WrduLX9/f7355pseze25iubxk08+UbNmzVzzVTSXReuNGjVKklS/fn3XVznnnl/z/vvvq1WrVvL391dwcLD69Omjw4cPu+2rY8eOatasmXbv3q1OnTqpYsWKuummmzRt2rRivc6cOVNNmzZVxYoVVbVqVbVu3VoLFy50LT//HJ969epp165d2rhxo6u/jh076sCBA/Ly8tKrr75abB+bN2+Wl5eXFi1adEnzV+Smm25S+/bt3fqRpAULFigyMlLNmjXzaHuSlJeXp0mTJumWW26Rn5+fqlWrpnbt2mnNmjWumo4dO6pjx47F1n300UfdjsIVvT+nT5+u2bNnq0GDBqpYsaI6d+6sw4cPyxijF154QXXq1JG/v78efPBBnThxwuOegUvlW94NANeDXr16qV69epoyZYq++OILvf766/r555/13nvvuWrWrVunJUuWaOjQoapevbrq1aunjIwMtW3b1vWBXqNGDa1atUqDBg1Sdna2RowYIenXr0ruv/9+rV27Vn369NHw4cN18uRJrVmzRjt37lR4eLjHPefn5ys2Nlbt2rXT9OnTVbFiReXm5io2NlY5OTkaNmyYQkND9eOPP2r58uXKzMxUUFCQJGnw4MGaP3++evbsqaeeekpbtmzRlClTtGfPHi1btsxtP/v27dPDDz+sP/7xj3rsscd06623ln6iJX322Wf6+OOPNWTIEAUEBOj1119Xjx49dOjQIVWrVk3du3fXf/7zHy1atEivvvqq6+ubGjVqSJJefPFFPffcc+rVq5cGDx6sY8eOaebMmWrfvr22b9+uKlWquPb1888/q0uXLurevbt69eqlDz/8UKNHj1ZkZKTuvfdeSdLf/vY3/elPf1LPnj1dgfebb77Rli1b1Ldv3xJfw4wZMzRs2DBVrlxZ48aNkySFhISoQYMGuuOOO7RgwQKNHDnSbZ0FCxYoICBADz74oMdz1rdvXw0fPlynTp1S5cqVlZ+fr6VLlyoxMbFURx4nTpyoKVOmaPDgwWrTpo2ys7P11Vdfadu2bbrnnns83p706+vLzc3VsGHDdOLECU2bNk29evXSXXfdpQ0bNmj06NH69ttvNXPmTD399NMl/uMAuCwMgAuaMGGCkWQeeOABt/EhQ4YYSebrr782xhgjyXh7e5tdu3a51Q0aNMjUqlXLHD9+3G28T58+JigoyPzyyy/GGGPeeecdI8m88sorxXooLCw0xhizfv16I8msX7/ebXlaWpqRZN59913XWHx8vJFkxowZ41a7fft2I8ksXbr0gq85NTXVSDKDBw92G3/66aeNJLNu3TrXWN26dY0kk5SUdMHtXUjR3J5LknE4HObbb791jX399ddGkpk5c6Zr7KWXXjKSTFpamtv6Bw8eND4+PubFF190G9+xY4fx9fV1G+/QoYORZN577z3XWE5OjgkNDTU9evRwjT344IOmadOmF30t7777brF+mjZtajp06FCs9s033zSSzJ49e1xjubm5pnr16iY+Pv6i+zmfJJOQkGBOnDhhHA6H+fvf/26MMWbFihXGy8vLHDx40DXPx44du+TttmjRwsTFxV20pkOHDiW+vvj4eFO3bl3X86L3Z40aNUxmZqZrfOzYsUaSadGihcnLy3ONP/zww8bhcJizZ89ecr+AJ/iqC7gECQkJbs+HDRsmSVq5cqVrrEOHDoqIiHA9N8boo48+UteuXWWM0fHjx12P2NhYZWVladu2bZKkjz76SNWrV3dt91xlOW/kySefdHtedERn9erV+uWXX0pcp+g1JSYmuo0/9dRTkqQVK1a4jdevX1+xsbGl7vF8MTExbke4mjdvrsDAQB04cOA31/34449VWFioXr16uc13aGiobrnlFq1fv96tvnLlyvrDH/7geu5wONSmTRu3fVWpUkU//PCDvvzyy8vw6n49eujn56cFCxa4xlavXq3jx4+79eKJqlWrqkuXLq6vyRYuXKjf//73qlu3bqm2V6VKFe3atUv79+8v1foleeihh1zvP0mKioqSJP3hD3+Qr6+v23hubq5+/PHHy7Zv4FwEH+AS3HLLLW7Pw8PD5e3t7XZeSf369d1qjh07pszMTL311luqUaOG22PAgAGSpKNHj0qSvvvuO916661uHwBl5evrqzp16riN1a9fX4mJiXr77bdVvXp1xcbGavbs2W7n93z//ffy9vZWw4YN3dYNDQ1VlSpV9P333xfb5uV08803FxurWrWqfv75599cd//+/TLG6JZbbik253v27HHNd5E6deoUC5bn72v06NGqXLmy2rRpo1tuuUUJCQn6/PPPS/nqfg0VXbt2dTsnZ8GCBbrpppt01113lXq7ffv21Zo1a3To0CF98sknF/wa7lI8//zzyszMVKNGjRQZGalRo0bpm2++KfX2pOJ/rkUhKCwsrMTxS/nzBkqDc3yAUijpKIy/v7/b88LCQkm//os2Pj6+xO00b968TPuUfj0/qCROp1Pe3sX/bfPyyy/r0Ucf1T/+8Q/9+9//1p/+9CfXuUvnBqVLPdJ0/usuKx8fnxLHzSXceaOwsFBeXl5atWpVidupXLmyx/tq0qSJ9u3bp+XLlyspKUkfffSR5syZo/Hjx2vSpEm/2VNJ+vfvr6VLl2rz5s2KjIzUP//5Tw0ZMqTEP69L9cADD8jpdCo+Pl45OTnq1atXqbfVvn17fffdd673yNtvv61XX31Vc+fOdd0zyMvLq8Q/kwu9Hy8012X58wZKg+ADXIL9+/e7Hdn49ttvVVhYeNF7yNSoUUMBAQEqKChQTEzMRbcfHh6uLVu2KC8vTxUqVCixpmrVqpJU7KZ95x+BuRSRkZGKjIzUs88+q82bN+uOO+7Q3LlzNXnyZNWtW1eFhYXav3+/mjRp4lonIyNDmZmZpf765HK6UCgLDw+XMUb169dXo0aNLtv+KlWqpN69e6t3797Kzc1V9+7d9eKLL2rs2LEXvCT/YsGxS5cuqlGjhhYsWKCoqCj98ssv6tevX5l69Pf3V7du3fT+++/r3nvvLfM9e4KDgzVgwAANGDBAp06dUvv27TVx4kRX8KlatWqJXz+W5v0IXE181QVcgtmzZ7s9nzlzpiS5rvwpiY+Pj3r06KGPPvpIO3fuLLb82LFjrv/u0aOHjh8/rlmzZhWrK/qXb926deXj46NNmza5LZ8zZ84lv47s7Gzl5+e7jUVGRsrb29t1qfp9990n6dcrk871yiuvSNI1cV+YSpUqSSoeArt37y4fHx9NmjSp2BEDY4z++9//eryv89dxOByKiIiQMUZ5eXkX7fFCd5b29fXVww8/rCVLlmjevHmKjIz06OjfhTz99NOaMGGCnnvuuTJt5/zXXLlyZTVs2NDtdgbh4eHau3ev2/v466+/LtPXgMDVwBEf4BKkpaXpgQceUJcuXZScnKz3339fffv2VYsWLS663tSpU7V+/XpFRUXpscceU0REhE6cOKFt27bp008/dd2vpH///nrvvfeUmJiorVu36s4779Tp06f16aefasiQIXrwwQcVFBSkhx56SDNnzpSXl5fCw8O1fPnyYuetXMy6des0dOhQPfTQQ2rUqJHy8/P197//3RXSJKlFixaKj4/XW2+9pczMTHXo0EFbt27V/Pnz1a1bN3Xq1Kn0E3mZtGrVStKvP8nQp08fVahQQV27dlV4eLgmT56ssWPH6uDBg+rWrZsCAgKUlpamZcuW6fHHH9fTTz/t0b46d+6s0NBQ3XHHHQoJCdGePXs0a9YsxcXFKSAg4KI9vvHGG5o8ebIaNmyomjVrup3D079/f73++utav369/vrXv5ZuIs7TokWL33xPXoqIiAh17NhRrVq1UnBwsL766it9+OGHGjp0qKtm4MCBeuWVVxQbG6tBgwbp6NGjmjt3rpo2bars7Owy9wBcMeVzMRlwfSi6FHj37t2mZ8+eJiAgwFStWtUMHTrUnDlzxlWn/3dZcUkyMjJMQkKCCQsLMxUqVDChoaHm7rvvNm+99ZZb3S+//GLGjRtn6tev76rr2bOn+e6771w1x44dMz169DAVK1Y0VatWNX/84x/Nzp07S7ycvVKlSsV6OXDggBk4cKAJDw83fn5+Jjg42HTq1Ml8+umnbnV5eXlm0qRJrl7CwsLM2LFji11iXLdu3d+87PlCLnQ5e0nzWLdu3WKXer/wwgvmpptuMt7e3sUuJf/oo49Mu3btTKVKlUylSpVM48aNTUJCgtm3b5+rpkOHDiVepn7+5dhvvvmmad++valWrZpxOp0mPDzcjBo1ymRlZblqSrqcPT093cTFxZmAgAAjqcRLv5s2bWq8vb3NDz/8cIFZuriLve+KlOZy9smTJ5s2bdqYKlWqGH9/f9O4cWPz4osvmtzcXLe6999/3zRo0MA4HA7TsmVLs3r16gtezv7SSy+5rVt0e4bzb61QNJdffvnlJfcLeILf6gIuYuLEiZo0aRK/c4Qr4ne/+52Cg4O1du3a8m4FsAbn+ABAOfjqq6+Umpqq/v37l3crgFU4xwfAZZWVlfWbP1QaGhp6lbq59uzcuVMpKSl6+eWXVatWLfXu3dtteUFBgdsJwyWpXLlysUvzL8WZM2fc7tlUkuDg4GK/8g7cSAg+AC6r4cOHa/78+Retsfkb9g8//FDPP/+8br31Vi1atKjY5fCHDx/+zZtCTpgwQRMnTvR43x988IHr5pkXsn79+hJ/fBS4UXCOD4DLavfu3Tpy5MhFa37rvkY2O3v2rD777LOL1jRo0EANGjTweNs//fSTdu3addGaVq1aue4ZBdyICD4AAMAanNwMAACsYfU5PoWFhTpy5IgCAgLK9AvYAADg6jHG6OTJk6pdu7bHv3FndfA5cuRIsV8GBgAA14fDhw+7/bjypbA6+BTdbv7w4cMKDAws524AAMClyM7OVlhY2EV/NuZCrA4+RV9vBQYGEnwAALjOlOY0FU5uBgAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALCGb3k3cKPKS/qs2FiFLu3KoRMAAFCEIz4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaZQo+U6dOlZeXl0aMGOEaO3v2rBISElStWjVVrlxZPXr0UEZGhtt6hw4dUlxcnCpWrKiaNWtq1KhRys/Pd6vZsGGDbrvtNjmdTjVs2FDz5s0rtv/Zs2erXr168vPzU1RUlLZu3VqWlwMAAG5wpQ4+X375pd588001b97cbXzkyJH617/+paVLl2rjxo06cuSIunfv7lpeUFCguLg45ebmavPmzZo/f77mzZun8ePHu2rS0tIUFxenTp06KTU1VSNGjNDgwYO1evVqV80HH3ygxMRETZgwQdu2bVOLFi0UGxuro0ePlvYlAQCAG5yXMcZ4utKpU6d02223ac6cOZo8ebJatmypGTNmKCsrSzVq1NDChQvVs2dPSdLevXvVpEkTJScnq23btlq1apXuv/9+HTlyRCEhIZKkuXPnavTo0Tp27JgcDodGjx6tFStWaOfOna599unTR5mZmUpKSpIkRUVF6fbbb9esWbMkSYWFhQoLC9OwYcM0ZsyYEvvOyclRTk6O63l2drbCwsKUlZWlwMBAT6fhovKSPis2VqFLu8u6DwAAbJSdna2goKBSfX6X6ohPQkKC4uLiFBMT4zaekpKivLw8t/HGjRvr5ptvVnJysiQpOTlZkZGRrtAjSbGxscrOztauXbtcNedvOzY21rWN3NxcpaSkuNV4e3srJibGVVOSKVOmKCgoyPUICwsrzcsHAADXKY+Dz+LFi7Vt2zZNmTKl2LL09HQ5HA5VqVLFbTwkJETp6emumnNDT9HyomUXq8nOztaZM2d0/PhxFRQUlFhTtI2SjB07VllZWa7H4cOHL+1FAwCAG4KvJ8WHDx/W8OHDtWbNGvn5+V2pnq4Yp9Mpp9NZ3m0AAIBy4tERn5SUFB09elS33XabfH195evrq40bN+r111+Xr6+vQkJClJubq8zMTLf1MjIyFBoaKkkKDQ0tdpVX0fPfqgkMDJS/v7+qV68uHx+fEmuKtgEAAHA+j4LP3XffrR07dig1NdX1aN26tR555BHXf1eoUEFr1651rbNv3z4dOnRI0dHRkqTo6Gjt2LHD7eqrNWvWKDAwUBEREa6ac7dRVFO0DYfDoVatWrnVFBYWau3ata4aAACA83n0VVdAQICaNWvmNlapUiVVq1bNNT5o0CAlJiYqODhYgYGBGjZsmKKjo9W2bVtJUufOnRUREaF+/fpp2rRpSk9P17PPPquEhATX11BPPPGEZs2apWeeeUYDBw7UunXrtGTJEq1YscK138TERMXHx6t169Zq06aNZsyYodOnT2vAgAFlmhAAAHDj8ij4XIpXX31V3t7e6tGjh3JychQbG6s5c+a4lvv4+Gj58uV68sknFR0drUqVKik+Pl7PP/+8q6Z+/fpasWKFRo4cqddee0116tTR22+/rdjYWFdN7969dezYMY0fP17p6elq2bKlkpKSip3wDAAAUKRU9/G5UZTlPgC/hfv4AABwZVz1+/gAAABcjwg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANbwKPi88cYbat68uQIDAxUYGKjo6GitWrXKtfzs2bNKSEhQtWrVVLlyZfXo0UMZGRlu2zh06JDi4uJUsWJF1axZU6NGjVJ+fr5bzYYNG3TbbbfJ6XSqYcOGmjdvXrFeZs+erXr16snPz09RUVHaunWrJy8FAABYyKPgU6dOHU2dOlUpKSn66quvdNddd+nBBx/Url27JEkjR47Uv/71Ly1dulQbN27UkSNH1L17d9f6BQUFiouLU25urjZv3qz58+dr3rx5Gj9+vKsmLS1NcXFx6tSpk1JTUzVixAgNHjxYq1evdtV88MEHSkxM1IQJE7Rt2za1aNFCsbGxOnr0aFnnAwAA3MC8jDGmLBsIDg7WSy+9pJ49e6pGjRpauHChevbsKUnau3evmjRpouTkZLVt21arVq3S/fffryNHjigkJESSNHfuXI0ePVrHjh2Tw+HQ6NGjtWLFCu3cudO1jz59+igzM1NJSUmSpKioKN1+++2aNWuWJKmwsFBhYWEaNmyYxowZc8m9Z2dnKygoSFlZWQoMDCzLNBSTl/RZsbEKXdpd1n0AAGCjsnx+l/ocn4KCAi1evFinT59WdHS0UlJSlJeXp5iYGFdN48aNdfPNNys5OVmSlJycrMjISFfokaTY2FhlZ2e7jholJye7baOopmgbubm5SklJcavx9vZWTEyMq+ZCcnJylJ2d7fYAAAD28Dj47NixQ5UrV5bT6dQTTzyhZcuWKSIiQunp6XI4HKpSpYpbfUhIiNLT0yVJ6enpbqGnaHnRsovVZGdn68yZMzp+/LgKCgpKrCnaxoVMmTJFQUFBrkdYWJinLx8AAFzHPA4+t956q1JTU7VlyxY9+eSTio+P1+7du69Eb5fd2LFjlZWV5XocPny4vFsCAABXka+nKzgcDjVs2FCS1KpVK3355Zd67bXX1Lt3b+Xm5iozM9PtqE9GRoZCQ0MlSaGhocWuviq66uvcmvOvBMvIyFBgYKD8/f3l4+MjHx+fEmuKtnEhTqdTTqfT05cMAABuEGW+j09hYaFycnLUqlUrVahQQWvXrnUt27dvnw4dOqTo6GhJUnR0tHbs2OF29dWaNWsUGBioiIgIV8252yiqKdqGw+FQq1at3GoKCwu1du1aVw0AAEBJPDriM3bsWN177726+eabdfLkSS1cuFAbNmzQ6tWrFRQUpEGDBikxMVHBwcEKDAzUsGHDFB0drbZt20qSOnfurIiICPXr10/Tpk1Tenq6nn32WSUkJLiOxDzxxBOaNWuWnnnmGQ0cOFDr1q3TkiVLtGLFClcfiYmJio+PV+vWrdWmTRvNmDFDp0+f1oABAy7j1AAAgBuNR8Hn6NGj6t+/v3766ScFBQWpefPmWr16te655x5J0quvvipvb2/16NFDOTk5io2N1Zw5c1zr+/j4aPny5XryyScVHR2tSpUqKT4+Xs8//7yrpn79+lqxYoVGjhyp1157TXXq1NHbb7+t2NhYV03v3r117NgxjR8/Xunp6WrZsqWSkpKKnfAMAABwrjLfx+d6xn18AAC4/pTLfXwAAACuNwQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDU8Cj5TpkzR7bffroCAANWsWVPdunXTvn373GrOnj2rhIQEVatWTZUrV1aPHj2UkZHhVnPo0CHFxcWpYsWKqlmzpkaNGqX8/Hy3mg0bNui2226T0+lUw4YNNW/evGL9zJ49W/Xq1ZOfn5+ioqK0detWT14OAACwjEfBZ+PGjUpISNAXX3yhNWvWKC8vT507d9bp06ddNSNHjtS//vUvLV26VBs3btSRI0fUvXt31/KCggLFxcUpNzdXmzdv1vz58zVv3jyNHz/eVZOWlqa4uDh16tRJqampGjFihAYPHqzVq1e7aj744AMlJiZqwoQJ2rZtm1q0aKHY2FgdPXq0LPMBAABuYF7GGFPalY8dO6aaNWtq48aNat++vbKyslSjRg0tXLhQPXv2lCTt3btXTZo0UXJystq2batVq1bp/vvv15EjRxQSEiJJmjt3rkaPHq1jx47J4XBo9OjRWrFihXbu3OnaV58+fZSZmamkpCRJUlRUlG6//XbNmjVLklRYWKiwsDANGzZMY8aMuaT+s7OzFRQUpKysLAUGBpZ2GkqUl/RZsbEKXdpd1n0AAGCjsnx+l+kcn6ysLElScHCwJCklJUV5eXmKiYlx1TRu3Fg333yzkpOTJUnJycmKjIx0hR5Jio2NVXZ2tnbt2uWqOXcbRTVF28jNzVVKSopbjbe3t2JiYlw1JcnJyVF2drbbAwAA2KPUwaewsFAjRozQHXfcoWbNmkmS0tPT5XA4VKVKFbfakJAQpaenu2rODT1Fy4uWXawmOztbZ86c0fHjx1VQUFBiTdE2SjJlyhQFBQW5HmFhYZ6/cAAAcN0qdfBJSEjQzp07tXjx4svZzxU1duxYZWVluR6HDx8u75YAAMBV5FualYYOHarly5dr06ZNqlOnjms8NDRUubm5yszMdDvqk5GRodDQUFfN+VdfFV31dW7N+VeCZWRkKDAwUP7+/vLx8ZGPj0+JNUXbKInT6ZTT6fT8BQMAgBuCR0d8jDEaOnSoli1bpnXr1ql+/fpuy1u1aqUKFSpo7dq1rrF9+/bp0KFDio6OliRFR0drx44dbldfrVmzRoGBgYqIiHDVnLuNopqibTgcDrVq1cqtprCwUGvXrnXVAAAAnM+jIz4JCQlauHCh/vGPfyggIMB1Pk1QUJD8/f0VFBSkQYMGKTExUcHBwQoMDNSwYcMUHR2ttm3bSpI6d+6siIgI9evXT9OmTVN6erqeffZZJSQkuI7GPPHEE5o1a5aeeeYZDRw4UOvWrdOSJUu0YsUKVy+JiYmKj49X69at1aZNG82YMUOnT5/WgAEDLtfcAACAG43xgKQSH++++66r5syZM2bIkCGmatWqpmLFiuZ//ud/zE8//eS2nYMHD5p7773X+Pv7m+rVq5unnnrK5OXludWsX7/etGzZ0jgcDtOgQQO3fRSZOXOmufnmm43D4TBt2rQxX3zxhScvx2RlZRlJJisry6P1LkXuqv9T7AEAAMquLJ/fZbqPz/WO+/gAAHD9Kbf7+AAAAFxPCD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAa3gcfDZt2qSuXbuqdu3a8vLy0ieffOK23Bij8ePHq1atWvL391dMTIz279/vVnPixAk98sgjCgwMVJUqVTRo0CCdOnXKreabb77RnXfeKT8/P4WFhWnatGnFelm6dKkaN24sPz8/RUZGauXKlZ6+HAAAYBGPg8/p06fVokULzZ49u8Tl06ZN0+uvv665c+dqy5YtqlSpkmJjY3X27FlXzSOPPKJdu3ZpzZo1Wr58uTZt2qTHH3/ctTw7O1udO3dW3bp1lZKSopdeekkTJ07UW2+95arZvHmzHn74YQ0aNEjbt29Xt27d1K1bN+3cudPTlwQAACzhZYwxpV7Zy0vLli1Tt27dJP16tKd27dp66qmn9PTTT0uSsrKyFBISonnz5qlPnz7as2ePIiIi9OWXX6p169aSpKSkJN1333364YcfVLt2bb3xxhsaN26c0tPT5XA4JEljxozRJ598or1790qSevfurdOnT2v58uWuftq2bauWLVtq7ty5Jfabk5OjnJwc1/Ps7GyFhYUpKytLgYGBpZ2GEuUlfVZsrEKXdpd1HwAA2Cg7O1tBQUGl+vy+rOf4pKWlKT09XTExMa6xoKAgRUVFKTk5WZKUnJysKlWquEKPJMXExMjb21tbtmxx1bRv394VeiQpNjZW+/bt088//+yqOXc/RTVF+ynJlClTFBQU5HqEhYWV/UUDAIDrxmUNPunp6ZKkkJAQt/GQkBDXsvT0dNWsWdNtua+vr4KDg91qStrGufu4UE3R8pKMHTtWWVlZrsfhw4c9fYkAAOA65lveDVxNTqdTTqezvNsAAADl5LIe8QkNDZUkZWRkuI1nZGS4loWGhuro0aNuy/Pz83XixAm3mpK2ce4+LlRTtBwAAOB8lzX41K9fX6GhoVq7dq1rLDs7W1u2bFF0dLQkKTo6WpmZmUpJSXHVrFu3ToWFhYqKinLVbNq0SXl5ea6aNWvW6NZbb1XVqlVdNefup6imaD8AAADn8zj4nDp1SqmpqUpNTZX06wnNqampOnTokLy8vDRixAhNnjxZ//znP7Vjxw71799ftWvXdl351aRJE3Xp0kWPPfaYtm7dqs8//1xDhw5Vnz59VLt2bUlS37595XA4NGjQIO3atUsffPCBXnvtNSUmJrr6GD58uJKSkvTyyy9r7969mjhxor766isNHTq07LMCAABuTMZD69evN5KKPeLj440xxhQWFprnnnvOhISEGKfTae6++26zb98+t23897//NQ8//LCpXLmyCQwMNAMGDDAnT550q/n6669Nu3btjNPpNDfddJOZOnVqsV6WLFliGjVqZBwOh2natKlZsWKFR68lKyvLSDJZWVmeTcIlyF31f4o9AABA2ZXl87tM9/G53pXlPgC/hfv4AABwZVwz9/EBAAC4lhF8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFiD4AMAAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AACANQg+AADAGgQfAABgDYIPAACwBsEHAABYg+ADAACsQfABAADWIPgAAABrEHwAAIA1CD4AAMAaBB8AAGANgg8AALAGwQcAAFjDt7wbuBHlF+RpZ1aqTuSfULYjR4H+1VTNu6oiTbR8vHzKuz0AAKx13Qef2bNn66WXXlJ6erpatGihmTNnqk2bNuXWz+fJ7+udH9/UCf/T/3+w8NdHtTUfaFCzUYqufXe59QcAgM2u66+6PvjgAyUmJmrChAnatm2bWrRoodjYWB09erRc+vk8+X1NP/qKTlQ4XeLy/549qmlfPaPkI2uvcmcAAEC6zoPPK6+8oscee0wDBgxQRESE5s6dq4oVK+qdd9656r3kF+TpnR/f/PWJ18Uqjd7ZOV0FpuBqtAUAAM5x3X7VlZubq5SUFI0dO9Y15u3trZiYGCUnJ5e4Tk5OjnJyclzPs7KyJEnZ2dll7mfHjtXKyM+W8n+79qdfjij5ozfVvPMfyrxfAABsU/S5bYzxeN3rNvgcP35cBQUFCgkJcRsPCQnR3r17S1xnypQpmjRpUrHxsLCwK9LjxaxQgqSEq75fAABuFCdPnlRQUJBH61y3wac0xo4dq8TERNfzwsJCnThxQtWqVZOX10W/n/JIdna2wsLCdPjwYQUGBl627d7omLfSYd5Kh3krHeatdJg3z11szowxOnnypGrXru3xdq/b4FO9enX5+PgoIyPDbTwjI0OhoaElruN0OuV0Ot3GqlSpcqVaVGBgIG/wUmDeSod5Kx3mrXSYt9Jh3jx3oTnz9EhPkev25GaHw6FWrVpp7dr/f4VUYWGh1q5dq+jo6HLsDAAAXKuu2yM+kpSYmKj4+Hi1bt1abdq00YwZM3T69GkNGDCgvFsDAADXoOs6+PTu3VvHjh3T+PHjlZ6erpYtWyopKanYCc9Xm9Pp1IQJE4p9rYaLY95Kh3krHeatdJi30mHePHel5szLlOZaMAAAgOvQdXuODwAAgKcIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgU0qzZ89WvXr15Ofnp6ioKG3duvWi9UuXLlXjxo3l5+enyMhIrVy58ip1em3xZN7+9re/6c4771TVqlVVtWpVxcTE/OY836g8fb8VWbx4sby8vNStW7cr2+A1ytN5y8zMVEJCgmrVqiWn06lGjRpZ+f+qp/M2Y8YM3XrrrfL391dYWJhGjhyps2fPXqVuy9+mTZvUtWtX1a5dW15eXvrkk09+c50NGzbotttuk9PpVMOGDTVv3rwr3ue1xtN5+/jjj3XPPfeoRo0aCgwMVHR0tFavXu35jg08tnjxYuNwOMw777xjdu3aZR577DFTpUoVk5GRUWL9559/bnx8fMy0adPM7t27zbPPPmsqVKhgduzYcZU7L1+ezlvfvn3N7Nmzzfbt282ePXvMo48+aoKCgswPP/xwlTsvX57OW5G0tDRz0003mTvvvNM8+OCDV6fZa4in85aTk2Nat25t7rvvPvPZZ5+ZtLQ0s2HDBpOamnqVOy9fns7bggULjNPpNAsWLDBpaWlm9erVplatWmbkyJFXufPys3LlSjNu3Djz8ccfG0lm2bJlF60/cOCAqVixoklMTDS7d+82M2fOND4+PiYpKenqNHyN8HTehg8fbv7617+arVu3mv/85z9m7NixpkKFCmbbtm0e7ZfgUwpt2rQxCQkJrucFBQWmdu3aZsqUKSXW9+rVy8TFxbmNRUVFmT/+8Y9XtM9rjafzdr78/HwTEBBg5s+ff6VavCaVZt7y8/PN73//e/P222+b+Ph4K4OPp/P2xhtvmAYNGpjc3Nyr1eI1ydN5S0hIMHfddZfbWGJiornjjjuuaJ/Xqkv5AH/mmWdM06ZN3cZ69+5tYmNjr2Bn17ZLmbeSREREmEmTJnm0Dl91eSg3N1cpKSmKiYlxjXl7eysmJkbJycklrpOcnOxWL0mxsbEXrL8RlWbezvfLL78oLy9PwcHBV6rNa05p5+35559XzZo1NWjQoKvR5jWnNPP2z3/+U9HR0UpISFBISIiaNWumv/zlLyooKLhabZe70szb73//e6WkpLi+Djtw4IBWrlyp++6776r0fD3iM+HyKCws1MmTJz3+TLiuf7KiPBw/flwFBQXFfhYjJCREe/fuLXGd9PT0EuvT09OvWJ/XmtLM2/lGjx6t2rVrF/sL40ZWmnn77LPP9L//+79KTU29Ch1em0ozbwcOHNC6dev0yCOPaOXKlfr22281ZMgQ5eXlacKECVej7XJXmnnr27evjh8/rnbt2skYo/z8fD3xxBP685//fDVavi5d6DMhOztbZ86ckb+/fzl1dn2ZPn26Tp06pV69enm0Hkd8cF2YOnWqFi9erGXLlsnPz6+827lmnTx5Uv369dPf/vY3Va9evbzbua4UFhaqZs2aeuutt9SqVSv17t1b48aN09y5c8u7tWvahg0b9Je//EVz5szRtm3b9PHHH2vFihV64YUXyrs13MAWLlyoSZMmacmSJapZs6ZH63LEx0PVq1eXj4+PMjIy3MYzMjIUGhpa4jqhoaEe1d+ISjNvRaZPn66pU6fq008/VfPmza9km9ccT+ftu+++08GDB9W1a1fXWGFhoSTJ19dX+/btU3h4+JVt+hpQmvdbrVq1VKFCBfn4+LjGmjRpovT0dOXm5srhcFzRnq8FpZm35557Tv369dPgwYMlSZGRkTp9+rQef/xxjRs3Tt7e/Pv6fBf6TAgMDORozyVYvHixBg8erKVLl5bqGwDekR5yOBxq1aqV1q5d6xorLCzU2rVrFR0dXeI60dHRbvWStGbNmgvW34hKM2+SNG3aNL3wwgtKSkpS69atr0ar1xRP561x48basWOHUlNTXY8HHnhAnTp1UmpqqsLCwq5m++WmNO+3O+64Q99++60rKErSf/7zH9WqVcuK0COVbt5++eWXYuGmKDwafgO7RHwmlN6iRYs0YMAALVq0SHFxcaXbiMenUMMsXrzYOJ1OM2/ePLN7927z+OOPmypVqpj09HRjjDH9+vUzY8aMcdV//vnnxtfX10yfPt3s2bPHTJgwwdrL2T2Zt6lTpxqHw2E+/PBD89NPP7keJ0+eLK+XUC48nbfz2XpVl6fzdujQIRMQEGCGDh1q9u3bZ5YvX25q1qxpJk+eXF4voVx4Om8TJkwwAQEBZtGiRebAgQPm3//+twkPDze9evUqr5dw1Z08edJs377dbN++3Ugyr7zyitm+fbv5/vvvjTHGjBkzxvTr189VX3Q5+6hRo8yePXvM7Nmzrbyc3dN5W7BggfH19TWzZ892+0zIzMz0aL8En1KaOXOmufnmm43D4TBt2rQxX3zxhWtZhw4dTHx8vFv9kiVLTKNGjYzD4TBNmzY1K1asuModXxs8mbe6desaScUeEyZMuPqNlzNP32/nsjX4GOP5vG3evNlERUUZp9NpGjRoYF588UWTn59/lbsuf57MW15enpk4caIJDw83fn5+JiwszAwZMsT8/PPPV7/xcrJ+/foS/64qmqf4+HjToUOHYuu0bNnSOBwO06BBA/Puu+9e9b7Lm6fz1qFDh4vWXyovYzgWCQAA7MA5PgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAaxB8AADAJdu0aZO6du2q2rVry8vLS5988olH6589e1aPPvqoIiMj5evrq27duhWr+fjjj3XPPfeoRo0aCgwMVHR0tFavXn1Z+if4AACAS3b69Gm1aNFCs2fPLtX6BQUF8vf315/+9KcL/sjopk2bdM8992jlypVKSUlRp06d1LVrV23fvr0srUuSuHMzAAAoFS8vLy1btsztqE1OTo7GjRunRYsWKTMzU82aNdNf//pXdezYsdj6jz76qDIzMy/pqFHTpk3Vu3dvjR8/vkw9c8QHAABcNkOHDlVycrIWL16sb775Rg899JC6dOmi/fv3l3qbhYWFOnnypIKDg8vcH8EHAABcFocOHdK7776rpUuX6s4771R4eLiefvpptWvXTu+++26ptzt9+nSdOnVKvXr1KnOPvmXeAgAAgKQdO3aooKBAjRo1chvPyclRtWrVSrXNhQsXatKkSfrHP/6hmjVrlrlHgg8AALgsTp06JR8fH6WkpMjHx8dtWeXKlT3e3uLFizV48GAtXbr0gidCe4rgAwAALovf/e53Kigo0NGjR3XnnXeWaVuLFi3SwIEDtXjxYsXFxV2mDgk+AADAA6dOndK3337rep6WlqbU1FQFBwerUaNGeuSRR9S/f3+9/PLL+t3vfqdjx45p7dq1at68uSvA7N69W7m5uTpx4oROnjyp1NRUSVLLli0l/fr1Vnx8vF577TVFRUUpPT1dkuTv76+goKAy9c/l7AAA4JJt2LBBnTp1KjYeHx+vefPmKS8vT5MnT9Z7772nH3/8UdWrV1fbtm01adIkRUZGSpLq1aun77//vtg2iiJJx44dtXHjxgvuoywIPgAAwBpczg4AAKxB8AEAANYg+AAAAGsQfAAAgDUIPgAAwBoEHwAAYA2CDwAAsAbBBwAAWIPgAwAArEHwAQAA1iD4AAAAa/xfy+P/ZqSuducAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANn1JREFUeJzt3Xl4VOXd//FPFjIJJBOWQMIStiAgEEBBIBVFNBI0ohQoIBQii1YJFIgiUJRFUSjusojLI2AFEVRsZS2G7VGiaCAte1WCoJgQClkAyXr//vDJ/BgTMAmEkJv367rmujr3+Z5zvufO1Plw5pwZD2OMEQAAgGU8K7oBAACA8kDIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBcFlMnz5dHh4eFd3GZbF48WJ5eHjo8OHDFd0KgEtAyAFQ4bZv367p06crPT29olu5oAULFmjx4sXlug8PDw95eHho5MiRxS6fMmWKq+bEiROXvL8dO3Zo1KhR6tChg6pUqWJNSAUKefDbVQAuh7y8POXl5cnX17fU6z7//POaMGGCkpOT1bhx48vfXCnl5+crNzdXDofD9cbfpk0bBQUFacuWLeW2Xw8PD/n6+srX11epqany8fFxW960aVP99NNPOnfunNLS0hQUFHRJ+5s+fbqeffZZtW3bVllZWfrPf/4j3hJgE87kACVQUFCgc+fOVXQbbs6cOVPu+zDG6Oeffy5Rrbe3d5kCztXIy8tLvr6+FXJmo2fPnsrMzNS6devcxrdv367k5GRFR0eXaDseHh6/eebpkUceUUZGhr7++mvdeeedZW0ZuGoRcnBNKbxu5MCBA+rfv7+cTqdq1aqlsWPHuoUYDw8PjR49WkuXLlXr1q3lcDi0fv16SdKPP/6o4cOHKzg4WA6HQ61bt9bbb79dZF/nzp3T9OnT1bx5c/n6+qpu3brq06ePvvvuO0nSli1b5OHhUeTMwOHDh4u8QT3wwAPy9/fXd999p7vvvlsBAQEaPHiwJOmbb75R3759FRISIl9fXzVo0EADBw5URkaGa/28vDw9/fTTCgsLk8PhUOPGjfWXv/xF2dnZbvtu3Lix7rnnHm3YsEEdO3aUn5+fXn/99VLN7fkK5/Hjjz9WmzZtXPNVOJeF602YMEGS1KRJE9fHMedfD/Puu++qQ4cO8vPzU82aNTVw4EAdPXrUbV+33Xab2rRpo3379ql79+6qWrWq6tevrzlz5hTpde7cuWrdurWqVq2qGjVqqGPHjlq2bJlr+a+vyWncuLH27t2rrVu3uvq77bbbdOjQIXl4eOill14qso/t27fLw8ND7733Xonmr1D9+vV16623uvUjSUuXLlV4eLjatGlTqu1dTHBwsPz8/C7Ltr7++mtFRUUpKChIfn5+atKkiYYPH+5aXpbX+5EjR3TPPffI399f9evX1/z58yVJu3fv1u23365q1aqpUaNGReYKKORd0Q0AFaF///5q3LixZs2apS+++EKvvvqqTp06pXfeecdVs2nTJq1YsUKjR49WUFCQGjdurNTUVHXp0sX15l27dm2tW7dOI0aMUGZmpsaNGyfpl4877rnnHsXHx2vgwIEaO3assrKytHHjRu3Zs0dhYWGl7jkvL09RUVHq2rWrnn/+eVWtWlU5OTmKiopSdna2xowZo5CQEP34449avXq10tPTFRgYKEkaOXKklixZon79+unRRx/Vl19+qVmzZmn//v1atWqV234OHjyo+++/X3/605/04IMPqkWLFmWfaEmfffaZPvroI40aNUoBAQF69dVX1bdvXx05ckS1atVSnz599J///EfvvfeeXnrpJddHMLVr15YkPfPMM3ryySfVv39/jRw5UmlpaZo7d65uvfVW7dq1S9WrV3ft69SpU+rZs6f69Omj/v3764MPPtDEiRMVHh6uu+66S5L05ptv6s9//rP69evnCrf//ve/9eWXX2rQoEHFHsPLL7+sMWPGyN/fX1OmTJH0S0Bo2rSpbr75Zi1dulTjx493W2fp0qUKCAjQfffdV+o5GzRokMaOHavTp0/L399feXl5WrlypeLi4q66M4qSdPz4cfXo0UO1a9fWpEmTVL16dR0+fFgfffRRmbeZn5+vu+66S7feeqvmzJmjpUuXavTo0apWrZqmTJmiwYMHq0+fPlq4cKGGDh2qiIgINWnS5DIeFaxggGvItGnTjCRz7733uo2PGjXKSDL/+te/jDHGSDKenp5m7969bnUjRowwdevWNSdOnHAbHzhwoAkMDDRnz541xhjz9ttvG0nmxRdfLNJDQUGBMcaYzZs3G0lm8+bNbsuTk5ONJLNo0SLXWExMjJFkJk2a5Fa7a9cuI8msXLnygseclJRkJJmRI0e6jT/22GNGktm0aZNrrFGjRkaSWb9+/QW3dyGFc3s+ScbHx8d8++23rrF//etfRpKZO3eua+y5554zkkxycrLb+ocPHzZeXl7mmWeecRvfvXu38fb2dhvv1q2bkWTeeecd11h2drYJCQkxffv2dY3dd999pnXr1hc9lkWLFhXpp3Xr1qZbt25Fal9//XUjyezfv981lpOTY4KCgkxMTMxF9/NrkkxsbKw5efKk8fHxMX/729+MMcasWbPGeHh4mMOHD7vmOS0t7Te3df5r6LfExsYW+fuV1KpVq4wk89VXX12wpiyv92effdY1durUKePn52c8PDzM8uXLXeMHDhwwksy0adPK1DvsxsdVuCbFxsa6PR8zZowkae3ata6xbt26qVWrVq7nxhh9+OGH6tWrl4wxOnHihOsRFRWljIwM7dy5U5L04YcfKigoyLXd813KdR6PPPKI2/PCMzUbNmzQ2bNni12n8Jji4uLcxh999FFJ0po1a9zGmzRpoqioqDL3+GuRkZFuZ67atm0rp9OpQ4cO/ea6H330kQoKCtS/f3+3+Q4JCdF1112nzZs3u9X7+/vrj3/8o+u5j4+POnXq5Lav6tWr64cfftBXX311GY7ul7OCvr6+Wrp0qWtsw4YNOnHihFsvpVGjRg317NnT9VHXsmXL9Lvf/U6NGjUqtv7s2bNu81N459Xp06fdxk6dOlWmfn5L4dm01atXKzc397Jt9/y7zKpXr64WLVqoWrVq6t+/v2u8RYsWql69eoleT7j2EHJwTbruuuvcnoeFhcnT09PtOpBfn/pOS0tTenq63njjDdWuXdvtMWzYMEm/nLaXpO+++04tWrSQt/fl+0TY29tbDRo0cBtr0qSJ4uLi9NZbbykoKEhRUVGaP3++2/U433//vTw9PdWsWTO3dUNCQlS9enV9//33RbZ5OTVs2LDIWI0aNUr0hvvNN9/IGKPrrruuyJzv37/fNd+FGjRoUCRE/npfEydOlL+/vzp16qTrrrtOsbGx+vzzz8t4dL+8+fbq1cvtupClS5eqfv36uv3228u83UGDBmnjxo06cuSIPv744wt+lCZJc+bMKTI/0i/h/fyxG264ocz9XEy3bt3Ut29fzZgxQ0FBQbrvvvu0aNGiItd8lYavr6/rOAoFBgYW+zcODAwstwCHyo1rcgAVf3bl1xdkFhQUSJL++Mc/KiYmptjttG3b9pL2Kf1yLUJxHA6HPD2L/rvkhRde0AMPPKC///3v+uc//6k///nPrmuNzg9FJT2DdLkuRC3k5eVV7Lgpwa3KBQUF8vDw0Lp164rdjr+/f6n3df311+vgwYNavXq11q9frw8//FALFizQ1KlTNWPGjN/sqThDhw7VypUrtX37doWHh+sf//iHRo0aVezfq6TuvfdeORwOxcTEKDs72+3sRXH779q1q9vYnXfeqQkTJqhHjx6uscv9ty3k4eGhDz74QF988YU++eQTbdiwQcOHD9cLL7ygL774Qv7+/qV+vV/ob3kprydcewg5uCZ98803bmcsvv32WxUUFFz0O1pq166tgIAA5efnKzIy8qLbDwsL05dffqnc3FxVqVKl2JoaNWpIUpEvwPv1mZWSCA8PV3h4uJ544glt375dN998sxYuXKiZM2eqUaNGKigo0DfffKPrr7/etU5qaqrS09Mv+BHIlXShN8CwsDAZY9SkSRM1b978su2vWrVqGjBggAYMGKCcnBz16dNHzzzzjCZPnnzB2+AvFhJ79uyp2rVra+nSpercubPOnj2rIUOGXFKPfn5+6t27t959913dddddF/1OnKZNm6pp06ZFxlu1avWbr9XLqUuXLurSpYueeeYZLVu2TIMHD9by5cs1cuTIy/p6B0qKj6twTSq8FbXQ3LlzJcl1B05xvLy81LdvX3344Yfas2dPkeVpaWmu/923b1+dOHFC8+bNK1JX+C/ORo0aycvLS9u2bXNbvmDBghIfR2ZmpvLy8tzGwsPD5enp6fqo4O6775b0yx1C53vxxRclqcTfu1KeqlWrJqnoG2CfPn3k5eWlGTNmFPmXujFG//3vf0u9r1+v4+Pjo1atWskYc9HrSapVq3bBb2T29vbW/fffrxUrVmjx4sUKDw8v1Vm9C3nsscc0bdo0Pfnkk5e8rfJ06tSpIn+f9u3bS5LrdXg5Xu9AaXEmB9ek5ORk3XvvverZs6cSEhL07rvvatCgQWrXrt1F15s9e7Y2b96szp0768EHH1SrVq108uRJ7dy5U59++qlOnjwp6ZePD9555x3FxcVpx44duuWWW3TmzBl9+umnGjVqlO677z4FBgbqD3/4g+bOnSsPDw+FhYVp9erVRa4zuZhNmzZp9OjR+sMf/qDmzZsrLy9Pf/vb31yBTJLatWunmJgYvfHGG0pPT1e3bt20Y8cOLVmyRL1791b37t3LPpGXSYcOHST98rMFAwcOVJUqVdSrVy+FhYVp5syZmjx5sg4fPqzevXsrICBAycnJWrVqlR566CE99thjpdpXjx49FBISoptvvlnBwcHav3+/5s2bp+joaAUEBFy0x9dee00zZ85Us2bNVKdOHbdrboYOHapXX31Vmzdv1l//+teyTcSvtGvX7jdfk5fi+++/19/+9jdJv3zPjSTNnDlT0i+hpKRno5YsWaIFCxbo97//vcLCwpSVlaU333xTTqfTFbIvx+sdKLWKuakLqBiFt9/u27fP9OvXzwQEBJgaNWqY0aNHm59//tlVp/+7lbc4qampJjY21oSGhpoqVaqYkJAQc8cdd5g33njDre7s2bNmypQppkmTJq66fv36me+++85Vk5aWZvr27WuqVq1qatSoYf70pz+ZPXv2FHtLbbVq1Yr0cujQITN8+HATFhZmfH19Tc2aNU337t3Np59+6laXm5trZsyY4eolNDTUTJ482Zw7d86trlGjRiY6OrrE83m+C91CXtw8NmrUqMjt1U8//bSpX7++8fT0LHL79ocffmi6du1qqlWrZqpVq2ZatmxpYmNjzcGDB1013bp1K/bW8JiYGNOoUSPX89dff93ceuutplatWsbhcJiwsDAzYcIEk5GR4aop7hbylJQUEx0dbQICAoykYm8nb926tfH09DQ//PDDBWbp4i72uit0OW8hL7ytu7hHccd3ITt37jT333+/adiwoXE4HKZOnTrmnnvuMV9//bVb3aW+3i/0N76U1y3sxm9X4Zoyffp0zZgx47L87g/wazfccINq1qyp+Pj4im4FgLgmBwAui6+//lpJSUkaOnRoRbcC4P9wTQ6Ai8rIyPjNH+kMCQm5Qt1cffbs2aPExES98MILqlu3rgYMGOC2PD8/3+2i9OL4+/sXuR3+apGWlnbB27ylXy7crlmz5hXsCCg5Qg6Aixo7dqyWLFly0Zpr+VPvDz74QE899ZRatGih9957r8gt6EePHv3NL1icNm2apk+fXo5dlt1NN9100du8u3XrVuRHN4GrBdfkALioffv26dixYxetuZLfxVLZnDt3Tp999tlFay70PTdXg88///yiZ/Jq1KjhujsOuNoQcgAAgJW48BgAAFjpmr4mp6CgQMeOHVNAQMAl/TI0AAC4cowxysrKUr169S76G3HXdMg5duyYQkNDK7oNAABQBkePHnX7IeJfu6ZDTuFXuB89elROp7OCuwEAACWRmZmp0NDQi/4Ui3SNh5zCj6icTichBwCASua3LjXhwmMAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK3lXdAO2yl3/WZGxKj27VkAnAABcmziTAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArHRJIWf27Nny8PDQuHHjXGPnzp1TbGysatWqJX9/f/Xt21epqalu6x05ckTR0dGqWrWq6tSpowkTJigvL8+tZsuWLbrxxhvlcDjUrFkzLV68uMj+58+fr8aNG8vX11edO3fWjh07LuVwAACARcoccr766iu9/vrratu2rdv4+PHj9cknn2jlypXaunWrjh07pj59+riW5+fnKzo6Wjk5Odq+fbuWLFmixYsXa+rUqa6a5ORkRUdHq3v37kpKStK4ceM0cuRIbdiwwVXz/vvvKy4uTtOmTdPOnTvVrl07RUVF6fjx42U9JAAAYBNTBllZWea6664zGzduNN26dTNjx441xhiTnp5uqlSpYlauXOmq3b9/v5FkEhISjDHGrF271nh6epqUlBRXzWuvvWacTqfJzs42xhjz+OOPm9atW7vtc8CAASYqKsr1vFOnTiY2Ntb1PD8/39SrV8/MmjWrxMeRkZFhJJmMjIySH3wJ5az73yIPAABw6Ur6/l2mMzmxsbGKjo5WZGSk23hiYqJyc3Pdxlu2bKmGDRsqISFBkpSQkKDw8HAFBwe7aqKiopSZmam9e/e6an697aioKNc2cnJylJiY6Fbj6empyMhIV01xsrOzlZmZ6fYAAAB28i7tCsuXL9fOnTv11VdfFVmWkpIiHx8fVa9e3W08ODhYKSkprprzA07h8sJlF6vJzMzUzz//rFOnTik/P7/YmgMHDlyw91mzZmnGjBklO1AAAFCplepMztGjRzV27FgtXbpUvr6+5dVTuZk8ebIyMjJcj6NHj1Z0SwAAoJyUKuQkJibq+PHjuvHGG+Xt7S1vb29t3bpVr776qry9vRUcHKycnBylp6e7rZeamqqQkBBJUkhISJG7rQqf/1aN0+mUn5+fgoKC5OXlVWxN4TaK43A45HQ63R4AAMBOpQo5d9xxh3bv3q2kpCTXo2PHjho8eLDrf1epUkXx8fGudQ4ePKgjR44oIiJCkhQREaHdu3e73QW1ceNGOZ1OtWrVylVz/jYKawq34ePjow4dOrjVFBQUKD4+3lUDAACubaW6JicgIEBt2rRxG6tWrZpq1arlGh8xYoTi4uJUs2ZNOZ1OjRkzRhEREerSpYskqUePHmrVqpWGDBmiOXPmKCUlRU888YRiY2PlcDgkSQ8//LDmzZunxx9/XMOHD9emTZu0YsUKrVmzxrXfuLg4xcTEqGPHjurUqZNefvllnTlzRsOGDbukCQEAAHYo9YXHv+Wll16Sp6en+vbtq+zsbEVFRWnBggWu5V5eXlq9erUeeeQRRUREqFq1aoqJidFTTz3lqmnSpInWrFmj8ePH65VXXlGDBg301ltvKSoqylUzYMAApaWlaerUqUpJSVH79u21fv36IhcjAwCAa5OHMcZUdBMVJTMzU4GBgcrIyLjs1+fkrv+syFiVnl0v6z4AALgWlfT9m9+uAgAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxUqpDz2muvqW3btnI6nXI6nYqIiNC6detcy8+dO6fY2FjVqlVL/v7+6tu3r1JTU922ceTIEUVHR6tq1aqqU6eOJkyYoLy8PLeaLVu26MYbb5TD4VCzZs20ePHiIr3Mnz9fjRs3lq+vrzp37qwdO3aU5lAAAIDlShVyGjRooNmzZysxMVFff/21br/9dt13333au3evJGn8+PH65JNPtHLlSm3dulXHjh1Tnz59XOvn5+crOjpaOTk52r59u5YsWaLFixdr6tSprprk5GRFR0ere/fuSkpK0rhx4zRy5Eht2LDBVfP+++8rLi5O06ZN086dO9WuXTtFRUXp+PHjlzofAADAEh7GGHMpG6hZs6aee+459evXT7Vr19ayZcvUr18/SdKBAwd0/fXXKyEhQV26dNG6det0zz336NixYwoODpYkLVy4UBMnTlRaWpp8fHw0ceJErVmzRnv27HHtY+DAgUpPT9f69eslSZ07d9ZNN92kefPmSZIKCgoUGhqqMWPGaNKkSRfsNTs7W9nZ2a7nmZmZCg0NVUZGhpxO56VMQxG56z8rMlalZ9fLug8AAK5FmZmZCgwM/M337zJfk5Ofn6/ly5frzJkzioiIUGJionJzcxUZGemqadmypRo2bKiEhARJUkJCgsLDw10BR5KioqKUmZnpOhuUkJDgto3CmsJt5OTkKDEx0a3G09NTkZGRrpoLmTVrlgIDA12P0NDQsh4+AAC4ypU65OzevVv+/v5yOBx6+OGHtWrVKrVq1UopKSny8fFR9erV3eqDg4OVkpIiSUpJSXELOIXLC5ddrCYzM1M///yzTpw4ofz8/GJrCrdxIZMnT1ZGRobrcfTo0dIePgAAqCS8S7tCixYtlJSUpIyMDH3wwQeKiYnR1q1by6O3y87hcMjhcFR0GwAA4Aoodcjx8fFRs2bNJEkdOnTQV199pVdeeUUDBgxQTk6O0tPT3c7mpKamKiQkRJIUEhJS5C6owruvzq/59R1Zqampcjqd8vPzk5eXl7y8vIqtKdwGAADAJX9PTkFBgbKzs9WhQwdVqVJF8fHxrmUHDx7UkSNHFBERIUmKiIjQ7t273e6C2rhxo5xOp1q1auWqOX8bhTWF2/Dx8VGHDh3cagoKChQfH++qAQAAKNWZnMmTJ+uuu+5Sw4YNlZWVpWXLlmnLli3asGGDAgMDNWLECMXFxalmzZpyOp0aM2aMIiIi1KVLF0lSjx491KpVKw0ZMkRz5sxRSkqKnnjiCcXGxro+Rnr44Yc1b948Pf744xo+fLg2bdqkFStWaM2aNa4+4uLiFBMTo44dO6pTp056+eWXdebMGQ0bNuwyTg0AAKjMShVyjh8/rqFDh+qnn35SYGCg2rZtqw0bNujOO++UJL300kvy9PRU3759lZ2draioKC1YsMC1vpeXl1avXq1HHnlEERERqlatmmJiYvTUU0+5apo0aaI1a9Zo/PjxeuWVV9SgQQO99dZbioqKctUMGDBAaWlpmjp1qlJSUtS+fXutX7++yMXIAADg2nXJ35NTmZX0Pvuy4HtyAAAoH+X+PTkAAABXM0IOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJVKFXJmzZqlm266SQEBAapTp4569+6tgwcPutWcO3dOsbGxqlWrlvz9/dW3b1+lpqa61Rw5ckTR0dGqWrWq6tSpowkTJigvL8+tZsuWLbrxxhvlcDjUrFkzLV68uEg/8+fPV+PGjeXr66vOnTtrx44dpTkcAABgsVKFnK1btyo2NlZffPGFNm7cqNzcXPXo0UNnzpxx1YwfP16ffPKJVq5cqa1bt+rYsWPq06ePa3l+fr6io6OVk5Oj7du3a8mSJVq8eLGmTp3qqklOTlZ0dLS6d++upKQkjRs3TiNHjtSGDRtcNe+//77i4uI0bdo07dy5U+3atVNUVJSOHz9+KfMBAAAs4WGMMWVdOS0tTXXq1NHWrVt16623KiMjQ7Vr19ayZcvUr18/SdKBAwd0/fXXKyEhQV26dNG6det0zz336NixYwoODpYkLVy4UBMnTlRaWpp8fHw0ceJErVmzRnv27HHta+DAgUpPT9f69eslSZ07d9ZNN92kefPmSZIKCgoUGhqqMWPGaNKkSSXqPzMzU4GBgcrIyJDT6SzrNBQrd/1nRcaq9Ox6WfcBAMC1qKTv35d0TU5GRoYkqWbNmpKkxMRE5ebmKjIy0lXTsmVLNWzYUAkJCZKkhIQEhYeHuwKOJEVFRSkzM1N79+511Zy/jcKawm3k5OQoMTHRrcbT01ORkZGumuJkZ2crMzPT7QEAAOxU5pBTUFCgcePG6eabb1abNm0kSSkpKfLx8VH16tXdaoODg5WSkuKqOT/gFC4vXHaxmszMTP388886ceKE8vPzi60p3EZxZs2apcDAQNcjNDS09AcOAAAqhTKHnNjYWO3Zs0fLly+/nP2Uq8mTJysjI8P1OHr0aEW3BAAAyol3WVYaPXq0Vq9erW3btqlBgwau8ZCQEOXk5Cg9Pd3tbE5qaqpCQkJcNb++C6rw7qvza359R1ZqaqqcTqf8/Pzk5eUlLy+vYmsKt1Ech8Mhh8NR+gMGAACVTqnO5BhjNHr0aK1atUqbNm1SkyZN3JZ36NBBVapUUXx8vGvs4MGDOnLkiCIiIiRJERER2r17t9tdUBs3bpTT6VSrVq1cNedvo7CmcBs+Pj7q0KGDW01BQYHi4+NdNQAA4NpWqjM5sbGxWrZsmf7+978rICDAdf1LYGCg/Pz8FBgYqBEjRiguLk41a9aU0+nUmDFjFBERoS5dukiSevTooVatWmnIkCGaM2eOUlJS9MQTTyg2NtZ1luXhhx/WvHnz9Pjjj2v48OHatGmTVqxYoTVr1rh6iYuLU0xMjDp27KhOnTrp5Zdf1pkzZzRs2LDLNTcAAKAyM6UgqdjHokWLXDU///yzGTVqlKlRo4apWrWq+f3vf29++uknt+0cPnzY3HXXXcbPz88EBQWZRx991OTm5rrVbN682bRv3974+PiYpk2buu2j0Ny5c03Dhg2Nj4+P6dSpk/niiy9KczgmIyPDSDIZGRmlWq8kctb9b5EHAAC4dCV9/76k78mp7PieHAAAKp8r8j05AAAAVytCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKpQ4527ZtU69evVSvXj15eHjo448/dltujNHUqVNVt25d+fn5KTIyUt98841bzcmTJzV48GA5nU5Vr15dI0aM0OnTp91q/v3vf+uWW26Rr6+vQkNDNWfOnCK9rFy5Ui1btpSvr6/Cw8O1du3a0h4OAACwVKlDzpkzZ9SuXTvNnz+/2OVz5szRq6++qoULF+rLL79UtWrVFBUVpXPnzrlqBg8erL1792rjxo1avXq1tm3bpoceesi1PDMzUz169FCjRo2UmJio5557TtOnT9cbb7zhqtm+fbvuv/9+jRgxQrt27VLv3r3Vu3dv7dmzp7SHBAAALORhjDFlXtnDQ6tWrVLv3r0l/XIWp169enr00Uf12GOPSZIyMjIUHBysxYsXa+DAgdq/f79atWqlr776Sh07dpQkrV+/Xnfffbd++OEH1atXT6+99pqmTJmilJQU+fj4SJImTZqkjz/+WAcOHJAkDRgwQGfOnNHq1atd/XTp0kXt27fXwoULS9R/ZmamAgMDlZGRIafTWdZpKFbu+s+KjFXp2fWy7gMAgGtRSd+/L+s1OcnJyUpJSVFkZKRrLDAwUJ07d1ZCQoIkKSEhQdWrV3cFHEmKjIyUp6envvzyS1fNrbfe6go4khQVFaWDBw/q1KlTrprz91NYU7if4mRnZyszM9PtAQAA7HRZQ05KSookKTg42G08ODjYtSwlJUV16tRxW+7t7a2aNWu61RS3jfP3caGawuXFmTVrlgIDA12P0NDQ0h4iAACoJK6pu6smT56sjIwM1+Po0aMV3RIAACgnlzXkhISESJJSU1PdxlNTU13LQkJCdPz4cbfleXl5OnnypFtNcds4fx8XqilcXhyHwyGn0+n2AAAAdrqsIadJkyYKCQlRfHy8aywzM1NffvmlIiIiJEkRERFKT09XYmKiq2bTpk0qKChQ586dXTXbtm1Tbm6uq2bjxo1q0aKFatSo4ao5fz+FNYX7AQAA17ZSh5zTp08rKSlJSUlJkn652DgpKUlHjhyRh4eHxo0bp5kzZ+of//iHdu/eraFDh6pevXquO7Cuv/569ezZUw8++KB27Nihzz//XKNHj9bAgQNVr149SdKgQYPk4+OjESNGaO/evXr//ff1yiuvKC4uztXH2LFjtX79er3wwgs6cOCApk+frq+//lqjR4++9FkBAACVnymlzZs3G0lFHjExMcYYYwoKCsyTTz5pgoODjcPhMHfccYc5ePCg2zb++9//mvvvv9/4+/sbp9Nphg0bZrKystxq/vWvf5muXbsah8Nh6tevb2bPnl2klxUrVpjmzZsbHx8f07p1a7NmzZpSHUtGRoaRZDIyMko3CSWQs+5/izwAAMClK+n79yV9T05lx/fkAABQ+VTI9+QAAABcLQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKzkXdEN2CgvP1d7MpJ0Mu+kMn2y5fSrpVqeNRRuIuTl4VXR7QEAcE2o9CFn/vz5eu6555SSkqJ27dpp7ty56tSpU4X183nCu3r7x9d10u/M/x8s+OVRa+P7GtFmgiLq3VFh/QEAcK2o1B9Xvf/++4qLi9O0adO0c+dOtWvXTlFRUTp+/HiF9PN5wrt6/viLOlnlTLHL/3vuuOZ8/bgSjsVf4c4AALj2VOqQ8+KLL+rBBx/UsGHD1KpVKy1cuFBVq1bV22+/fcV7ycvP1ds/vv7LE4+LVRq9ved55Zv8K9EWAADXrEr7cVVOTo4SExM1efJk15inp6ciIyOVkJBQ7DrZ2dnKzs52Pc/IyJAkZWZmXnI/u3dvUGpeppT327U/nT2mhA9fV9sef7zk/QIAcK0pfN82xly0rtKGnBMnTig/P1/BwcFu48HBwTpw4ECx68yaNUszZswoMh4aGlouPV7MGsVKir3i+wUAwBZZWVkKDAy84PJKG3LKYvLkyYqLi3M9Lygo0MmTJ1WrVi15eFz0M6ZSyczMVGhoqI4ePSqn03nZtgvmtjwxt+WHuS0/zG35uZrn1hijrKws1atX76J1lTbkBAUFycvLS6mpqW7jqampCgkJKXYdh8Mhh8PhNla9evXyalFOp/Oqe2HYgrktP8xt+WFuyw9zW36u1rm92BmcQpX2wmMfHx916NBB8fH//06lgoICxcfHKyIiogI7AwAAV4NKeyZHkuLi4hQTE6OOHTuqU6dOevnll3XmzBkNGzasolsDAAAVrFKHnAEDBigtLU1Tp05VSkqK2rdvr/Xr1xe5GPlKczgcmjZtWpGPxnDpmNvyw9yWH+a2/DC35ceGufUwv3X/FQAAQCVUaa/JAQAAuBhCDgAAsBIhBwAAWImQAwAArETIAQAAViLklNH8+fPVuHFj+fr6qnPnztqxY8dF61euXKmWLVvK19dX4eHhWrt27RXqtPIpzdy++eabuuWWW1SjRg3VqFFDkZGRv/m3uJaV9nVbaPny5fLw8FDv3r3Lt8FKrLRzm56ertjYWNWtW1cOh0PNmzfnvwsXUNq5ffnll9WiRQv5+fkpNDRU48eP17lz565Qt5XHtm3b1KtXL9WrV08eHh76+OOPf3OdLVu26MYbb5TD4VCzZs20ePHicu/zkhiU2vLly42Pj495++23zd69e82DDz5oqlevblJTU4ut//zzz42Xl5eZM2eO2bdvn3niiSdMlSpVzO7du69w51e/0s7toEGDzPz5882uXbvM/v37zQMPPGACAwPNDz/8cIU7v/qVdm4LJScnm/r165tbbrnF3HfffVem2UqmtHObnZ1tOnbsaO6++27z2WefmeTkZLNlyxaTlJR0hTu/+pV2bpcuXWocDodZunSpSU5ONhs2bDB169Y148ePv8KdX/3Wrl1rpkyZYj766CMjyaxateqi9YcOHTJVq1Y1cXFxZt++fWbu3LnGy8vLrF+//so0XAaEnDLo1KmTiY2NdT3Pz8839erVM7NmzSq2vn///iY6OtptrHPnzuZPf/pTufZZGZV2bn8tLy/PBAQEmCVLlpRXi5VWWeY2Ly/P/O53vzNvvfWWiYmJIeRcQGnn9rXXXjNNmzY1OTk5V6rFSqu0cxsbG2tuv/12t7G4uDhz8803l2uflV1JQs7jjz9uWrdu7TY2YMAAExUVVY6dXRo+riqlnJwcJSYmKjIy0jXm6empyMhIJSQkFLtOQkKCW70kRUVFXbD+WlWWuf21s2fPKjc3VzVr1iyvNiulss7tU089pTp16mjEiBFXos1KqSxz+49//EMRERGKjY1VcHCw2rRpo2effVb5+flXqu1KoSxz+7vf/U6JiYmuj7QOHTqktWvX6u67774iPdusMr6XVeqfdagIJ06cUH5+fpGfjggODtaBAweKXSclJaXY+pSUlHLrszIqy9z+2sSJE1WvXr0i/0e81pVlbj/77DP9z//8j5KSkq5Ah5VXWeb20KFD2rRpkwYPHqy1a9fq22+/1ahRo5Sbm6tp06ZdibYrhbLM7aBBg3TixAl17dpVxhjl5eXp4Ycf1l/+8pcr0bLVLvRelpmZqZ9//ll+fn4V1NmFcSYH1pg9e7aWL1+uVatWydfXt6LbqdSysrI0ZMgQvfnmmwoKCqrodqxTUFCgOnXq6I033lCHDh00YMAATZkyRQsXLqzo1iq9LVu26Nlnn9WCBQu0c+dOffTRR1qzZo2efvrpim4NFYAzOaUUFBQkLy8vpaamuo2npqYqJCSk2HVCQkJKVX+tKsvcFnr++ec1e/Zsffrpp2rbtm15tlkplXZuv/vuOx0+fFi9evVyjRUUFEiSvL29dfDgQYWFhZVv05VEWV63devWVZUqVeTl5eUau/7665WSkqKcnBz5+PiUa8+VRVnm9sknn9SQIUM0cuRISVJ4eLjOnDmjhx56SFOmTJGnJ/+2L6sLvZc5nc6r8iyOxJmcUvPx8VGHDh0UHx/vGisoKFB8fLwiIiKKXSciIsKtXpI2btx4wfprVVnmVpLmzJmjp59+WuvXr1fHjh2vRKuVTmnntmXLltq9e7eSkpJcj3vvvVfdu3dXUlKSQkNDr2T7V7WyvG5vvvlmffvtt67gKEn/+c9/VLduXQLOecoyt2fPni0SZArDpOH3qC9JpXwvq+grnyuj5cuXG4fDYRYvXmz27dtnHnroIVO9enWTkpJijDFmyJAhZtKkSa76zz//3Hh7e5vnn3/e7N+/30ybNo1byC+gtHM7e/Zs4+PjYz744APz008/uR5ZWVkVdQhXrdLO7a9xd9WFlXZujxw5YgICAszo0aPNwYMHzerVq02dOnXMzJkzK+oQrlqlndtp06aZgIAA895775lDhw6Zf/7znyYsLMz079+/og7hqpWVlWV27dpldu3aZSSZF1980ezatct8//33xhhjJk2aZIYMGeKqL7yFfMKECWb//v1m/vz53EJuq7lz55qGDRsaHx8f06lTJ/PFF1+4lnXr1s3ExMS41a9YscI0b97c+Pj4mNatW5s1a9Zc4Y4rj9LMbaNGjYykIo9p06Zd+cYrgdK+bs9HyLm40s7t9u3bTefOnY3D4TBNmzY1zzzzjMnLy7vCXVcOpZnb3NxcM336dBMWFmZ8fX1NaGioGTVqlDl16tSVb/wqt3nz5mL/+1k4nzExMaZbt25F1mnfvr3x8fExTZs2NYsWLbrifZeGhzGcvwMAAPbhmhwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAoMS2bdumXr16qV69evLw8NDHH39cqvXPnTunBx54QOHh4fL29lbv3r2L1Hz00Ue68847Vbt2bTmdTkVERGjDhg2l7pWQAwAASuzMmTNq166d5s+fX6b18/Pz5efnpz//+c+KjIwstmbbtm268847tXbtWiUmJqp79+7q1auXdu3aVap98Y3HAACgTDw8PLRq1Sq3szHZ2dmaMmWK3nvvPaWnp6tNmzb661//qttuu63I+g888IDS09NLdDaodevWGjBggKZOnVri/jiTAwAALpvRo0crISFBy5cv17///W/94Q9/UM+ePfXNN9+UeZsFBQXKyspSzZo1S7UeIQcAAFwWR44c0aJFi7Ry5UrdcsstCgsL02OPPaauXbtq0aJFZd7u888/r9OnT6t///6lWs+7zHsEAAA4z+7du5Wfn6/mzZu7jWdnZ6tWrVpl2uayZcs0Y8YM/f3vf1edOnVKtS4hBwAAXBanT5+Wl5eXEhMT5eXl5bbM39+/1Ntbvny5Ro4cqZUrV17wIuWLIeQAAIDL4oYbblB+fr6OHz+uW2655ZK29d5772n48OFavny5oqOjy7QNQg4AACix06dP69tvv3U9T05OVlJSkmrWrKnmzZtr8ODBGjp0qF544QXdcMMNSktLU3x8vNq2besKK/v27VNOTo5OnjyprKwsJSUlSZLat28v6ZePqGJiYvTKK6+oc+fOSklJkST5+fkpMDCwxL1yCzkAACixLVu2qHv37kXGY2JitHjxYuXm5mrmzJl655139OOPPyooKEhdunTRjBkzFB4eLklq3Lixvv/++yLbKIwkt912m7Zu3XrBfZQUIQcAAFiJW8gBAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKX/B1KmAEZjaH9EAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAHFCAYAAAAQU+iSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANFBJREFUeJzt3Xt0VOXd/v9rEsgkJJkECCQiASIoCgQQEEhBkJoy2GjlSxRQKuFkqwYEUlGoysGiKJ5QTmp9BKwgQi22gsBDw6lK5BCM5SxVECpNCIUkgJJAcv/+8Mn+MSZgAsGBO+/XWnst596ffe/P7IlrLvbsPeMyxhgBAABYJsDfDQAAAFwKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHACXxMSJE+VyufzdRpWYO3euXC6X9u/f7+9WAFQCIQfAZWfDhg2aOHGi8vLy/N3KOc2aNUtz5869pPtwuVxyuVwaNmxYuesff/xxp+bIkSM/Ot+mTZv00EMPqX379qpZs6Y1IRQ4Fxe/XQXgUjhz5ozOnDmj4ODgSm/7wgsvaMyYMdq3b5+aNGlS9c1VUnFxsU6fPi232+0Eg1atWikqKkpr1669ZPt1uVwKDg5WcHCwcnJyFBQU5LP+mmuu0X/+8x+dOnVKubm5ioqKOu98EydO1DPPPKPWrVvr+PHj+uKLL8RbAGzGmRzgApSUlOjUqVP+bsPHyZMnL/k+jDH67rvvKlRbo0aNCwo4l6PAwEAFBwf75cxHr169VFBQoOXLl/uMb9iwQfv27VNSUlKF53rwwQeVn5+vLVu26Be/+EVVtwpcdgg5qNZKrxvZvXu3+vbtK4/Ho7p162rkyJE+Icblcmn48OGaP3++WrZsKbfbrRUrVkiSvvnmGw0ZMkTR0dFyu91q2bKl3nrrrTL7OnXqlCZOnKjrrrtOwcHBuuqqq9SnTx99+eWXkqS1a9fK5XKVOTOwf/9+uVwun49GBg0apLCwMH355Zf65S9/qfDwcA0YMECStHfvXiUnJysmJkbBwcFq2LCh+vfvr/z8fGf7M2fO6A9/+IOaNm0qt9utJk2a6Pe//70KCwt99t2kSRPdfvvtWrlypTp06KCQkBC9/vrrlTq2Zys9jh988IFatWrlHK/SY1m63ZgxYyRJcXFxzscxZ18P884776h9+/YKCQlRnTp11L9/fx08eNBnX7fccotatWqlnTt3qkePHqpVq5auvvpqTZ06tUyv06dPV8uWLVWrVi3Vrl1bHTp00IIFC5z1P7wmp0mTJtqxY4fWrVvn9HfLLbfoq6++ksvl0ssvv1xmHxs2bJDL5dK7775boeNX6uqrr1a3bt18+pGk+fPnKz4+Xq1atarwXNHR0QoJCanU/s9ly5Yt8nq9ioqKUkhIiOLi4jRkyBBn/YX8PR84cEC33367wsLCdPXVV2vmzJmSpG3btunnP/+5QkND1bhx4zLHAjiXGv5uALgc9O3bV02aNNGUKVP06aef6tVXX9WxY8f09ttvOzWrV6/WokWLNHz4cEVFRalJkybKyclR586dnTfvevXqafny5Ro6dKgKCgo0atQoSd9/3HH77bcrPT1d/fv318iRI3X8+HGtWrVK27dvV9OmTSvd85kzZ+T1etW1a1e98MILqlWrloqKiuT1elVYWKgRI0YoJiZG33zzjZYuXaq8vDxFRERIkoYNG6Z58+bprrvu0u9+9ztt3LhRU6ZM0a5du7RkyRKf/ezZs0f33HOPfvvb3+r+++9X8+bNL/xAS/r444/1l7/8RQ899JDCw8P16quvKjk5WQcOHFDdunXVp08fffHFF3r33Xf18ssvOx/B1KtXT5L09NNP68knn1Tfvn01bNgw5ebmavr06erWrZs+++wzRUZGOvs6duyYevXqpT59+qhv377685//rMcee0zx8fG67bbbJEl//OMf9fDDD+uuu+5ywu0///lPbdy4Uffee2+5z2HatGkaMWKEwsLC9Pjjj0v6PkBcc8016tKli+bPn6/Ro0f7bDN//nyFh4frzjvvrPQxu/feezVy5EidOHFCYWFhOnPmjBYvXqy0tDS/nFE8fPiwevbsqXr16mns2LGKjIzU/v379Ze//OWC5ywuLtZtt92mbt26aerUqZo/f76GDx+u0NBQPf744xowYID69Omj1157TQMHDlRCQoLi4uKq8FnBSgaoxiZMmGAkmV/96lc+4w899JCRZD7//HNjjDGSTEBAgNmxY4dP3dChQ81VV11ljhw54jPev39/ExERYb799ltjjDFvvfWWkWReeumlMj2UlJQYY4xZs2aNkWTWrFnjs37fvn1GkpkzZ44zlpKSYiSZsWPH+tR+9tlnRpJZvHjxOZ9zVlaWkWSGDRvmM/7II48YSWb16tXOWOPGjY0ks2LFinPOdy6lx/ZskkxQUJD517/+5Yx9/vnnRpKZPn26M/b8888bSWbfvn0+2+/fv98EBgaap59+2md827ZtpkaNGj7j3bt3N5LM22+/7YwVFhaamJgYk5yc7IzdeeedpmXLlud9LnPmzCnTT8uWLU337t3L1L7++utGktm1a5czVlRUZKKiokxKSsp59/NDkkxqaqo5evSoCQoKMn/605+MMcYsW7bMuFwus3//fuc45+bmVmru1NTUMq9PRS1ZssRIMps3bz5nzYX8PT/zzDPO2LFjx0xISIhxuVxm4cKFzvju3buNJDNhwoQL6h3VCx9XAZJSU1N9Ho8YMUKS9NFHHzlj3bt3V4sWLZzHxhi9//77uuOOO2SM0ZEjR5zF6/UqPz9fW7dulSS9//77ioqKcuY928Vc5/Hggw/6PC49U7Ny5Up9++235W5T+pzS0tJ8xn/3u99JkpYtW+YzHhcXJ6/Xe8E9/lBiYqLPmavWrVvL4/Hoq6+++tFt//KXv6ikpER9+/b1Od4xMTG69tprtWbNGp/6sLAw/frXv3YeBwUFqWPHjj77ioyM1L///W9t3ry5Cp7d92cFg4ODNX/+fGds5cqVOnLkiE8vlVG7dm316tXL+ahrwYIF+tnPfqbGjRtXSc+VVXq2bOnSpTp9+nSVzXv2XWSRkZFq3ry5QkND1bdvX2e8efPmioyMrNDfC0DIASRde+21Po+bNm2qgIAAn+tAfnhqPDc3V3l5eXrjjTdUr149n2Xw4MGSvj+tL0lffvmlmjdvrho1qu4T4ho1aqhhw4Y+Y3FxcUpLS9Obb76pqKgoeb1ezZw50+d6nK+//loBAQFq1qyZz7YxMTGKjIzU119/XWbOqtSoUaMyY7Vr19axY8d+dNu9e/fKGKNrr722zDHftWuXc7xLNWzYsEyI/OG+HnvsMYWFhaljx4669tprlZqaqk8++eQCn933b8533HGHz3Uj8+fP19VXX62f//znFzzvvffeq1WrVunAgQP64IMPzvlR2okTJ5Sdne0subm5F7zPc+nevbuSk5M1adIkRUVF6c4779ScOXPKXNNVGcHBwc5HkqUiIiLKfQ0jIiIq9PcCcE0OUI7yzq788ILNkpISSdKvf/1rpaSklDtP69atL2qf0vfXKpTH7XYrIKDsv1NefPFFDRo0SH/961/1v//7v3r44Yeda43ODkUVPYNUVReqlgoMDCx33FTgVuaSkhK5XC4tX7683HnCwsIqva8bbrhBe/bs0dKlS7VixQq9//77mjVrlsaPH69Jkyb9aE/lGThwoBYvXqwNGzYoPj5ef/vb3/TQQw+V+3pV1K9+9Su53W6lpKSosLDQ5+zG2V544QWfvhs3blzlX2Locrn05z//WZ9++qk+/PBDrVy5UkOGDNGLL76oTz/9VGFhYZX+ez7Xa3Uxfy8AIQfQ92cIzj5j8a9//UslJSXn/Y6WevXqKTw8XMXFxUpMTDzv/E2bNtXGjRt1+vRp1axZs9ya2rVrS1KZL8D74ZmVioiPj1d8fLyeeOIJbdiwQV26dNFrr72myZMnq3HjxiopKdHevXt1ww03ONvk5OQoLy/Pbx+BnO1cb5BNmzaVMUZxcXG67rrrqmx/oaGh6tevn/r166eioiL16dNHTz/9tMaNG3fO2+DPFxJ79eqlevXqaf78+erUqZO+/fZb3XfffRfVY0hIiHr37q133nlHt9122zm/E2fgwIHq2rWrz3aXSufOndW5c2c9/fTTWrBggQYMGKCFCxdq2LBhVfr3DFwoPq4CJOdW1VLTp0+XJOcOnPIEBgYqOTlZ77//vrZv315m/dkfEyQnJ+vIkSOaMWNGmbrSf5E2btxYgYGBWr9+vc/6WbNmVfh5FBQU6MyZMz5j8fHxCggIcD5K+OUvfynp+zuEzvbSSy9JUqW+d+VSCQ0NlVT2DbJPnz4KDAzUpEmTyvxL3hij//73v5Xe1w+3CQoKUosWLWSMOe/1JqGhoef8RuYaNWronnvu0aJFizR37lzFx8dX6qzeuTzyyCOaMGGCnnzyyXPWXHPNNUpMTHSWLl26XPR+f+jYsWNljn/btm0lyfk7q4q/Z+BicSYHkLRv3z796le/Uq9evZSRkaF33nlH9957r9q0aXPe7Z599lmtWbNGnTp10v33368WLVro6NGj2rp1q/7+97/r6NGjkr7/1/Xbb7+ttLQ0bdq0STfffLNOnjypv//973rooYd05513KiIiQnfffbemT58ul8ulpk2baunSpWWuMzmf1atXa/jw4br77rt13XXX6cyZM/rTn/7kBDJJatOmjVJSUvTGG28oLy9P3bt316ZNmzRv3jz17t1bPXr0uPADWUXat28v6fufLejfv79q1qypO+64Q02bNtXkyZM1btw47d+/X71791Z4eLj27dunJUuW6De/+Y0eeeSRSu2rZ8+eiomJUZcuXRQdHa1du3ZpxowZSkpKUnh4+Hl7nD17tiZPnqxmzZqpfv36PtfcDBw4UK+++qrWrFmj55577sIOxA+0adPmR/8mz+frr7/Wn/70J0nff8+NJE2ePFnS96Gkomeb5s2bp1mzZun//b//p6ZNm+r48eP64x//KI/H44Toqvh7Bi6af27qAi4Ppbff7ty509x1110mPDzc1K5d2wwfPtx89913Tp3+71be8uTk5JjU1FQTGxtratasaWJiYsytt95q3njjDZ+6b7/91jz++OMmLi7OqbvrrrvMl19+6dTk5uaa5ORkU6tWLVO7dm3z29/+1mzfvr3cW25DQ0PL9PLVV1+ZIUOGmKZNm5rg4GBTp04d06NHD/P3v//dp+706dNm0qRJTi+xsbFm3Lhx5tSpUz51jRs3NklJSRU+nmc71y3k5R3Hxo0bl7m9+g9/+IO5+uqrTUBAQJnbt99//33TtWtXExoaakJDQ831119vUlNTzZ49e5ya7t27l3treEpKimncuLHz+PXXXzfdunUzdevWNW632zRt2tSMGTPG5OfnOzXl3UKenZ1tkpKSTHh4uJFU7u3kLVu2NAEBAebf//73OY7S+Z3v765UZW4hL72tu7ylvP7PZevWreaee+4xjRo1Mm6329SvX9/cfvvtZsuWLT51F/v3fK7X8GL+LlG98NtVqNYmTpyoSZMmVeh3f4DKuvHGG1WnTh2lp6f7uxWgWuKaHAC4BLZs2aKsrCwNHDjQ360A1RbX5AColPz8/B/9kc6YmJifqJvLz/bt25WZmakXX3xRV111lfr16+ezvri4+Ee/uyYsLKzM7fA/ldzc3HPe5i19f2F2nTp1fsKOgAtHyAFQKSNHjtS8efPOW1OdPwX/85//rKeeekrNmzfXu+++W+YW9IMHD/7oFyxOmDBBEydOvIRdnttNN9103tu8u3fvXuZHN4HLFdfkAKiUnTt36tChQ+et+bHvDarOTp06pY8//vi8Nddcc42uueaan6gjX5988sl5z9TVrl3bufsNuNwRcgAAgJW48BgAAFipWl+TU1JSokOHDik8PPyifgkaAAD8dIwxOn78uBo0aHDe34Sr1iHn0KFDio2N9XcbAADgAhw8eNDnh4d/qFqHnNKvbD948KA8Ho+fuwEAABVRUFCg2NjY8/70ilTNQ07pR1Qej4eQAwDAFebHLjXhwmMAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK9XwdwO2Or3i4zJjNXt19UMnAABUT5zJAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK11UyHn22Wflcrk0atQoZ+zUqVNKTU1V3bp1FRYWpuTkZOXk5Phsd+DAASUlJalWrVqqX7++xowZozNnzvjUrF27Vu3atZPb7VazZs00d+7cMvufOXOmmjRpouDgYHXq1EmbNm26mKcDAAAscsEhZ/PmzXr99dfVunVrn/HRo0frww8/1OLFi7Vu3TodOnRIffr0cdYXFxcrKSlJRUVF2rBhg+bNm6e5c+dq/PjxTs2+ffuUlJSkHj16KCsrS6NGjdKwYcO0cuVKp+a9995TWlqaJkyYoK1bt6pNmzbyer06fPjwhT4lAABgE3MBjh8/bq699lqzatUq0717dzNy5EhjjDF5eXmmZs2aZvHixU7trl27jCSTkZFhjDHmo48+MgEBASY7O9upmT17tvF4PKawsNAYY8yjjz5qWrZs6bPPfv36Ga/X6zzu2LGjSU1NdR4XFxebBg0amClTplT4eeTn5xtJJj8/v+JPvoKKlv+jzAIAAC5eRd+/L+hMTmpqqpKSkpSYmOgznpmZqdOnT/uMX3/99WrUqJEyMjIkSRkZGYqPj1d0dLRT4/V6VVBQoB07djg1P5zb6/U6cxQVFSkzM9OnJiAgQImJiU5NeQoLC1VQUOCzAAAAO9Wo7AYLFy7U1q1btXnz5jLrsrOzFRQUpMjISJ/x6OhoZWdnOzVnB5zS9aXrzldTUFCg7777TseOHVNxcXG5Nbt37z5n71OmTNGkSZMq9kQBAMAVrVJncg4ePKiRI0dq/vz5Cg4OvlQ9XTLjxo1Tfn6+sxw8eNDfLQEAgEukUiEnMzNThw8fVrt27VSjRg3VqFFD69at06uvvqoaNWooOjpaRUVFysvL89kuJydHMTExkqSYmJgyd1uVPv6xGo/Ho5CQEEVFRSkwMLDcmtI5yuN2u+XxeHwWAABgp0qFnFtvvVXbtm1TVlaWs3To0EEDBgxw/rtmzZpKT093ttmzZ48OHDighIQESVJCQoK2bdvmcxfUqlWr5PF41KJFC6fm7DlKa0rnCAoKUvv27X1qSkpKlJ6e7tQAAIDqrVLX5ISHh6tVq1Y+Y6Ghoapbt64zPnToUKWlpalOnTryeDwaMWKEEhIS1LlzZ0lSz5491aJFC913332aOnWqsrOz9cQTTyg1NVVut1uS9MADD2jGjBl69NFHNWTIEK1evVqLFi3SsmXLnP2mpaUpJSVFHTp0UMeOHTVt2jSdPHlSgwcPvqgDAgAA7FDpC49/zMsvv6yAgAAlJyersLBQXq9Xs2bNctYHBgZq6dKlevDBB5WQkKDQ0FClpKToqaeecmri4uK0bNkyjR49Wq+88ooaNmyoN998U16v16np16+fcnNzNX78eGVnZ6tt27ZasWJFmYuRAQBA9eQyxhh/N+EvBQUFioiIUH5+fpVfn3N6xcdlxmr26lql+wAAoDqq6Ps3v10FAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDmXyP685f5uAQCAao2QAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWqlTImT17tlq3bi2PxyOPx6OEhAQtX77cWX/q1Cmlpqaqbt26CgsLU3JysnJycnzmOHDggJKSklSrVi3Vr19fY8aM0ZkzZ3xq1q5dq3bt2sntdqtZs2aaO3dumV5mzpypJk2aKDg4WJ06ddKmTZsq81QAAIDlKhVyGjZsqGeffVaZmZnasmWLfv7zn+vOO+/Ujh07JEmjR4/Whx9+qMWLF2vdunU6dOiQ+vTp42xfXFyspKQkFRUVacOGDZo3b57mzp2r8ePHOzX79u1TUlKSevTooaysLI0aNUrDhg3TypUrnZr33ntPaWlpmjBhgrZu3ao2bdrI6/Xq8OHDF3s8AACALcxFql27tnnzzTdNXl6eqVmzplm8eLGzbteuXUaSycjIMMYY89FHH5mAgACTnZ3t1MyePdt4PB5TWFhojDHm0UcfNS1btvTZR79+/YzX63Ued+zY0aSmpjqPi4uLTYMGDcyUKVMq1Xt+fr6RZPLz8yu1XUV88e7vTdHyf/gsAADg4lX0/fuCr8kpLi7WwoULdfLkSSUkJCgzM1OnT59WYmKiU3P99derUaNGysjIkCRlZGQoPj5e0dHRTo3X61VBQYFzNigjI8NnjtKa0jmKioqUmZnpUxMQEKDExESn5lwKCwtVUFDgswAAADtVOuRs27ZNYWFhcrvdeuCBB7RkyRK1aNFC2dnZCgoKUmRkpE99dHS0srOzJUnZ2dk+Aad0fem689UUFBTou+++05EjR1RcXFxuTekc5zJlyhRFREQ4S2xsbGWfPgAAuEJUOuQ0b95cWVlZ2rhxox588EGlpKRo586dl6K3Kjdu3Djl5+c7y8GDB/3dEgAAuERqVHaDoKAgNWvWTJLUvn17bd68Wa+88or69eunoqIi5eXl+ZzNycnJUUxMjCQpJiamzF1QpXdfnV3zwzuycnJy5PF4FBISosDAQAUGBpZbUzrHubjdbrnd7so+ZQAAcAW66O/JKSkpUWFhodq3b6+aNWsqPT3dWbdnzx4dOHBACQkJkqSEhARt27bN5y6oVatWyePxqEWLFk7N2XOU1pTOERQUpPbt2/vUlJSUKD093akBAACo1JmccePG6bbbblOjRo10/PhxLViwQGvXrtXKlSsVERGhoUOHKi0tTXXq1JHH49GIESOUkJCgzp07S5J69uypFi1a6L777tPUqVOVnZ2tJ554Qqmpqc4ZlgceeEAzZszQo48+qiFDhmj16tVatGiRli1b5vSRlpamlJQUdejQQR07dtS0adN08uRJDR48uAoPDQAAuJJVKuQcPnxYAwcO1H/+8x9FRESodevWWrlypX7xi19Ikl5++WUFBAQoOTlZhYWF8nq9mjVrlrN9YGCgli5dqgcffFAJCQkKDQ1VSkqKnnrqKacmLi5Oy5Yt0+jRo/XKK6+oYcOGevPNN+X1ep2afv36KTc3V+PHj1d2drbatm2rFStWlLkYGQAAVF8uY4zxdxP+UlBQoIiICOXn58vj8VTp3HsXPq4mkbf5jNXs1bVK9wEAQHVU0fdvfrsKAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFKlQs6UKVN00003KTw8XPXr11fv3r21Z88en5pTp04pNTVVdevWVVhYmJKTk5WTk+NTc+DAASUlJalWrVqqX7++xowZozNnzvjUrF27Vu3atZPb7VazZs00d+7cMv3MnDlTTZo0UXBwsDp16qRNmzZV5ukAAACLVSrkrFu3Tqmpqfr000+1atUqnT59Wj179tTJkyedmtGjR+vDDz/U4sWLtW7dOh06dEh9+vRx1hcXFyspKUlFRUXasGGD5s2bp7lz52r8+PFOzb59+5SUlKQePXooKytLo0aN0rBhw7Ry5Uqn5r333lNaWpomTJigrVu3qk2bNvJ6vTp8+PDFHA8AAGAJlzHGXOjGubm5ql+/vtatW6du3bopPz9f9erV04IFC3TXXXdJknbv3q0bbrhBGRkZ6ty5s5YvX67bb79dhw4dUnR0tCTptdde02OPPabc3FwFBQXpscce07Jly7R9+3ZnX/3791deXp5WrFghSerUqZNuuukmzZgxQ5JUUlKi2NhYjRgxQmPHji2338LCQhUWFjqPCwoKFBsbq/z8fHk8ngs9DOXau/BxNYm8zWesZq+uVboPAACqo4KCAkVERPzo+/dFXZOTn58vSapTp44kKTMzU6dPn1ZiYqJTc/3116tRo0bKyMiQJGVkZCg+Pt4JOJLk9XpVUFCgHTt2ODVnz1FaUzpHUVGRMjMzfWoCAgKUmJjo1JRnypQpioiIcJbY2NiLefoAAOAydsEhp6SkRKNGjVKXLl3UqlUrSVJ2draCgoIUGRnpUxsdHa3s7Gyn5uyAU7q+dN35agoKCvTdd9/pyJEjKi4uLremdI7yjBs3Tvn5+c5y8ODByj9xAABwRahxoRumpqZq+/bt+vjjj6uyn0vK7XbL7Xb7uw0AAPATuKAzOcOHD9fSpUu1Zs0aNWzY0BmPiYlRUVGR8vLyfOpzcnIUExPj1PzwbqvSxz9W4/F4FBISoqioKAUGBpZbUzoHAACo3ioVcowxGj58uJYsWaLVq1crLi7OZ3379u1Vs2ZNpaenO2N79uzRgQMHlJCQIElKSEjQtm3bfO6CWrVqlTwej1q0aOHUnD1HaU3pHEFBQWrfvr1PTUlJidLT050aAABQvVXq46rU1FQtWLBAf/3rXxUeHu5c/xIREaGQkBBFRERo6NChSktLU506deTxeDRixAglJCSoc+fOkqSePXuqRYsWuu+++zR16lRlZ2friSeeUGpqqvNR0gMPPKAZM2bo0Ucf1ZAhQ7R69WotWrRIy5Ytc3pJS0tTSkqKOnTooI4dO2ratGk6efKkBg8eXFXHBgAAXMEqFXJmz54tSbrlllt8xufMmaNBgwZJkl5++WUFBAQoOTlZhYWF8nq9mjVrllMbGBiopUuX6sEHH1RCQoJCQ0OVkpKip556yqmJi4vTsmXLNHr0aL3yyitq2LCh3nzzTXm9XqemX79+ys3N1fjx45Wdna22bdtqxYoVZS5GBgAA1dNFfU/Ola6i99lfCL4nBwCAS+Mn+Z4cAACAyxUhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKlQ4569ev1x133KEGDRrI5XLpgw8+8FlvjNH48eN11VVXKSQkRImJidq7d69PzdGjRzVgwAB5PB5FRkZq6NChOnHihE/NP//5T918880KDg5WbGyspk6dWqaXxYsX6/rrr1dwcLDi4+P10UcfVfbpAAAAS1U65Jw8eVJt2rTRzJkzy10/depUvfrqq3rttde0ceNGhYaGyuv16tSpU07NgAEDtGPHDq1atUpLly7V+vXr9Zvf/MZZX1BQoJ49e6px48bKzMzU888/r4kTJ+qNN95wajZs2KB77rlHQ4cO1WeffabevXurd+/e2r59e2WfEgAAsJG5CJLMkiVLnMclJSUmJibGPP/8885YXl6ecbvd5t133zXGGLNz504jyWzevNmpWb58uXG5XOabb74xxhgza9YsU7t2bVNYWOjUPPbYY6Z58+bO4759+5qkpCSffjp16mR++9vfVrj//Px8I8nk5+dXeJuK+uLd35ui5f/wWQAAwMWr6Pt3lV6Ts2/fPmVnZysxMdEZi4iIUKdOnZSRkSFJysjIUGRkpDp06ODUJCYmKiAgQBs3bnRqunXrpqCgIKfG6/Vqz549OnbsmFNz9n5Ka0r3U57CwkIVFBT4LAAAwE5VGnKys7MlSdHR0T7j0dHRzrrs7GzVr1/fZ32NGjVUp04dn5ry5jh7H+eqKV1fnilTpigiIsJZYmNjK/sUAQDAFaJa3V01btw45efnO8vBgwf93RIAALhEqjTkxMTESJJycnJ8xnNycpx1MTExOnz4sM/6M2fO6OjRoz415c1x9j7OVVO6vjxut1sej8dnAQAAdqrSkBMXF6eYmBilp6c7YwUFBdq4caMSEhIkSQkJCcrLy1NmZqZTs3r1apWUlKhTp05Ozfr163X69GmnZtWqVWrevLlq167t1Jy9n9Ka0v0AAIDqrdIh58SJE8rKylJWVpak7y82zsrK0oEDB+RyuTRq1ChNnjxZf/vb37Rt2zYNHDhQDRo0UO/evSVJN9xwg3r16qX7779fmzZt0ieffKLhw4erf//+atCggSTp3nvvVVBQkIYOHaodO3bovffe0yuvvKK0tDSnj5EjR2rFihV68cUXtXv3bk2cOFFbtmzR8OHDL/6oAACAK19lb9tas2aNkVRmSUlJMcZ8fxv5k08+aaKjo43b7Ta33nqr2bNnj88c//3vf80999xjwsLCjMfjMYMHDzbHjx/3qfn8889N165djdvtNldffbV59tlny/SyaNEic91115mgoCDTsmVLs2zZsko9F24hBwDgylPR92+XMcb4MWP5VUFBgSIiIpSfn1/l1+fsXfi4mkTe5jNWs1fXKt0HAADVUUXfv6vV3VUAAKD6IOQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFINfzdgmzPFp7Vj+/9q33c52h64XJ6QuqobUFs3uJr6uzUAAKqVKz7kzJw5U88//7yys7PVpk0bTZ8+XR07dvRLL59kvKO3vnldR4NOSnX/b7Dk+6WuIjX00ONKaHCrX3oDAKC6uaI/rnrvvfeUlpamCRMmaOvWrWrTpo28Xq8OHz78k/fyScY7euHwSzpa82S56/9r8jR1y6PKOJT+E3cGAED1dEWHnJdeekn333+/Bg8erBYtWui1115TrVq19NZbb/2kfZwpPq23vnn9+weucxS5JMnore0vqNgU/0SdAQBQfV2xH1cVFRUpMzNT48aNc8YCAgKUmJiojIyMcrcpLCxUYWGh8zg/P1+SVFBQcFG9bNu2UjlnCqQzP177n28PafP+f6hF3XYXtU8AAKqr0vdtY8x5667YkHPkyBEVFxcrOjraZzw6Olq7d+8ud5spU6Zo0qRJZcZjY2MvSY/nskw9ftL9AQBgo+PHjysiIuKc66/YkHMhxo0bp7S0NOdxSUmJjh49qrp168rlOtfnTJVXUFCg2NhYHTx4UB6Pp8rmxYXjNbm88HpcfnhNLi+8HudnjNHx48fVoEGD89ZdsSEnKipKgYGBysnJ8RnPyclRTExMudu43W653W6fscjIyEvVojweD3+clxlek8sLr8flh9fk8sLrcW7nO4NT6oq98DgoKEjt27dXevr/f7dSSUmJ0tPTlZCQ4MfOAADA5eCKPZMjSWlpaUpJSVGHDh3UsWNHTZs2TSdPntTgwYP93RoAAPCzKzrk9OvXT7m5uRo/fryys7PVtm1brVixoszFyD81t9utCRMmlPloDP7Da3J54fW4/PCaXF54PaqGy/zY/VcAAABXoCv2mhwAAIDzIeQAAAArEXIAAICVCDkAAMBKhBwAAGAlQs4lMHPmTDVp0kTBwcHq1KmTNm3a5O+WqqUpU6bopptuUnh4uOrXr6/evXtrz549/m4LZ3n22Wflcrk0atQof7dSbX3zzTf69a9/rbp16yokJETx8fHasmWLv9uqtoqLi/Xkk08qLi5OISEhatq0qf7whz/86A9RonyEnCr23nvvKS0tTRMmTNDWrVvVpk0beb1eHT582N+tVTvr1q1TamqqPv30U61atUqnT59Wz549dfLkSX+3BkmbN2/W66+/rtatW/u7lWrr2LFj6tKli2rWrKnly5dr586devHFF1W7dm1/t1ZtPffcc5o9e7ZmzJihXbt26bnnntPUqVM1ffp0f7d2ReJ7cqpYp06ddNNNN2nGjBmSvv+pidjYWI0YMUJjx471c3fVW25ururXr69169apW7du/m6nWjtx4oTatWunWbNmafLkyWrbtq2mTZvm77aqnbFjx+qTTz7RP/7xD3+3gv9z++23Kzo6Wv/zP//jjCUnJyskJETvvPOOHzu7MnEmpwoVFRUpMzNTiYmJzlhAQIASExOVkZHhx84gSfn5+ZKkOnXq+LkTpKamKikpyef/Ffz0/va3v6lDhw66++67Vb9+fd1444364x//6O+2qrWf/exnSk9P1xdffCFJ+vzzz/Xxxx/rtttu83NnV6Yr+mcdLjdHjhxRcXFxmZ+ViI6O1u7du/3UFaTvz6iNGjVKXbp0UatWrfzdTrW2cOFCbd26VZs3b/Z3K9XeV199pdmzZystLU2///3vtXnzZj388MMKCgpSSkqKv9urlsaOHauCggJdf/31CgwMVHFxsZ5++mkNGDDA361dkQg5qBZSU1O1fft2ffzxx/5upVo7ePCgRo4cqVWrVik4ONjf7VR7JSUl6tChg5555hlJ0o033qjt27frtddeI+T4yaJFizR//nwtWLBALVu2VFZWlkaNGqUGDRrwmlwAQk4VioqKUmBgoHJycnzGc3JyFBMT46euMHz4cC1dulTr169Xw4YN/d1OtZaZmanDhw+rXbt2zlhxcbHWr1+vGTNmqLCwUIGBgX7ssHq56qqr1KJFC5+xG264Qe+//76fOsKYMWM0duxY9e/fX5IUHx+vr7/+WlOmTCHkXACuyalCQUFBat++vdLT052xkpISpaenKyEhwY+dVU/GGA0fPlxLlizR6tWrFRcX5++Wqr1bb71V27ZtU1ZWlrN06NBBAwYMUFZWFgHnJ9alS5cyX6vwxRdfqHHjxn7qCN9++60CAnzfmgMDA1VSUuKnjq5snMmpYmlpaUpJSVGHDh3UsWNHTZs2TSdPntTgwYP93Vq1k5qaqgULFuivf/2rwsPDlZ2dLUmKiIhQSEiIn7urnsLDw8tcExUaGqq6detyrZQfjB49Wj/72c/0zDPPqG/fvtq0aZPeeOMNvfHGG/5urdq644479PTTT6tRo0Zq2bKlPvvsM7300ksaMmSIv1u7InEL+SUwY8YMPf/888rOzlbbtm316quvqlOnTv5uq9pxuVzljs+ZM0eDBg36aZvBOd1yyy3cQu5HS5cu1bhx47R3717FxcUpLS1N999/v7/bqraOHz+uJ598UkuWLNHhw4fVoEED3XPPPRo/fryCgoL83d4Vh5ADAACsxDU5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAECFrV+/XnfccYcaNGggl8ulDz74oFLbnzp1SoMGDVJ8fLxq1Kih3r17l1u3du1atWvXTm63W82aNdPcuXMr3SshBwAAVNjJkyfVpk0bzZw584K2Ly4uVkhIiB5++GElJiaWW7Nv3z4lJSWpR48ezi+xDxs2TCtXrqzUvvjGYwAAcEFcLpeWLFniczamsLBQjz/+uN59913l5eWpVatWeu6553TLLbeU2X7QoEHKy8srczboscce07Jly7R9+3ZnrH///srLy9OKFSsq3B9ncgAAQJUZPny4MjIytHDhQv3zn//U3XffrV69emnv3r0VniMjI6PMWR6v16uMjIxK9ULIAQAAVeLAgQOaM2eOFi9erJtvvllNmzbVI488oq5du2rOnDkVnic7O1vR0dE+Y9HR0SooKNB3331X4XlqVLgSAADgPLZt26bi4mJdd911PuOFhYWqW7fuT94PIQcAAFSJEydOKDAwUJmZmQoMDPRZFxYWVuF5YmJilJOT4zOWk5Mjj8ejkJCQCs9DyAEAAFXixhtvVHFxsQ4fPqybb775gudJSEjQRx995DO2atUqJSQkVGoeQg4AAKiwEydO6F//+pfzeN++fcrKylKdOnV03XXXacCAARo4cKBefPFF3XjjjcrNzVV6erpat26tpKQkSdLOnTtVVFSko0eP6vjx48rKypIktW3bVpL0wAMPaMaMGXr00Uc1ZMgQrV69WosWLdKyZcsq1Su3kAMAgApbu3atevToUWY8JSVFc+fO1enTpzV58mS9/fbb+uabbxQVFaXOnTtr0qRJio+PlyQ1adJEX3/9dZk5zo4ka9eu1ejRo7Vz5041bNhQTz75pAYNGlSpXgk5AADAStxCDgAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAAr/X8yiKMFHa+y7wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARVRJREFUeJzt3XtcVXW+//E3oHuDlw2hXOSI91LJ24SJlKYmuUtqtLHS6hiaZhraKOWtPF4rO1aTjtccZ9TzGx1NT9okhpGmZmLmheOldNI0LQXJhK2oIOz1+6MHa9yCCggiy9fz8dgP3d/1WWt915d9ebNueBmGYQgAAMBivCu6AwAAAOWBkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkIMbNnHiRHl5eZnPGzRooH79+pX7eo8ePSovLy8tWrTIbOvXr59q1KhR7usu4OXlpYkTJ9609VV2nTt3VufOnct0mVe+/lBYUe+V29WiRYvk5eWlo0ePXrf2Zn2WofwQcnBLWLt27S0bFm7lvt0uzp8/r4kTJ2rjxo0V3ZUKx+vRGv7617+qefPm8vX11Z133qmZM2dWdJcsiZCDMnfw4EH95S9/KdE8a9eu1aRJk0o0T/369XXhwgX17du3RPOV1LX6duHCBY0bN65c14/fQs6kSZOKDDnjxo3ThQsXbn6nKsit/F6pDPr27asLFy6ofv36FdaHDz74QAMHDtTdd9+tmTNnKjo6Wi+//LL++7//u8L6ZFVVKroDsB673V6uy8/Ly5Pb7ZbNZpOvr2+5rut6Knr9N8PFixdls9nk7V34d6Ls7GxVr169Anr1b1WqVFGVKnyUFeVWeq/cKnx8fOTj41Nh679w4YJef/11xcbGauXKlZKkF154QW63W1OmTNGgQYN0xx13VFj/rIY9OSiRLVu26N5775Wvr68aN26sDz74oFDNlcexL126pEmTJunOO++Ur6+vatWqpQ4dOig5OVnSb+fRzJ49W9Jv57gUPKR/n0vw7rvvavr06WrcuLHsdru+/fbba55n8MMPP8jpdKp69eoKCwvT5MmTZRiGOX3jxo3y8vIqtGfgymVeq28FbVceOti9e7ceeeQRORwO1ahRQ127dtW2bds8agrOC/jqq6+UkJCgoKAgVa9eXY8//rgyMjKu/gO4ip9//lkDBgxQWFiY7Ha7GjZsqCFDhig3N9djTJ588kkFBgaqWrVqat++vRITEz2WUzAuy5Yt07hx4/Qf//Efqlatmlwul3m+0+HDh9W9e3fVrFlTzz77rCTJ7XZr+vTpuvvuu+Xr66uQkBC9+OKLOnPmzDX7nZubq/HjxysyMlL+/v6qXr26OnbsqC+++MKsOXr0qIKCgiRJkyZNMn8GBeNe1Dk5eXl5mjJlivl6adCggV577TXl5OR41DVo0ECPPvqotmzZonbt2snX11eNGjXS//zP/5TsB6DfXgtDhw7VihUrFBERIT8/P0VHR2vv3r2SfvvtvUmTJvL19VXnzp0LnRPy5Zdf6sknn1S9evVkt9sVHh6uESNGeOylKqv3yqlTpxQUFKTOnTt7vC8OHTqk6tWrq3fv3sXe7oLX8ubNm/Xiiy+qVq1acjgceu655wr9/Hfs2CGn06natWvLz89PDRs21PPPP29Ov3wbZs+erUaNGqlatWrq1q2bjh8/LsMwNGXKFNWtW1d+fn7q0aOHfv3112L39fL+Xj7+hmHojTfeUN26dVWtWjV16dJF+/fvLzTv9T7LiuOLL77Q6dOn9dJLL3m0x8fHKzs7u9B7EjeGX39QbHv37lW3bt0UFBSkiRMnKi8vTxMmTFBISMg155s4caKmTp2qgQMHql27dnK5XNqxY4d27dqlhx56SC+++KJOnDih5ORk/b//9/+KXMbChQt18eJFDRo0SHa7XYGBgXK73UXW5ufn6+GHH1b79u01bdo0JSUlacKECcrLy9PkyZNLtM3F6dvl9u/fr44dO8rhcGjUqFGqWrWqPvjgA3Xu3FmbNm1SVFSUR/2wYcN0xx13aMKECTp69KimT5+uoUOHavny5cXu44kTJ9SuXTtlZmZq0KBBatasmX7++WetXLlS58+fl81mU3p6uu677z6dP39eL7/8smrVqqXFixfr97//vVauXKnHH3/cY5lTpkyRzWbTq6++qpycHNlsNkm/hQen06kOHTro3XffVbVq1cxxWrRokfr376+XX35ZR44c0axZs7R792599dVXqlq1apF9d7lcWrBggZ5++mm98MILOnv2rP7617/K6XRq+/btatOmjYKCgjR37lwNGTJEjz/+uP7whz9Iklq1anXVMRk4cKAWL16sJ554Qq+88oq+/vprTZ06Vd99951WrVrlUXvo0CE98cQTGjBggOLi4vS3v/1N/fr1U2RkpO6+++5i/xyk34LKP//5T8XHx0uSpk6dqkcffVSjRo3SnDlz9NJLL+nMmTOaNm2ann/+eW3YsMGcd8WKFTp//ryGDBmiWrVqafv27Zo5c6Z++uknrVixwhznsnivBAcHa+7cuXryySc1c+ZMvfzyy3K73erXr59q1qypOXPmlGi7JWno0KEKCAjQxIkTdfDgQc2dO1c//vijGZxPnTplfn6MGTNGAQEBOnr0qD766KNCy1qyZIlyc3M1bNgw/frrr5o2bZqeeuopPfjgg9q4caNGjx6tQ4cOaebMmXr11Vf1t7/9rcT9vdz48eP1xhtvqHv37urevbt27dqlbt26efySIF3/s6w4du/eLUlq27atR3tkZKS8vb21e/du/ed//ucNbQ8uYwDF1LNnT8PX19f48ccfzbZvv/3W8PHxMS5/KdWvX9+Ii4szn7du3dqIjY295rLj4+ONol6OR44cMSQZDofDOHXqVJHTFi5caLbFxcUZkoxhw4aZbW6324iNjTVsNpuRkZFhGIZhfPHFF4Yk44svvrjuMq/WN8MwDEnGhAkTzOc9e/Y0bDabcfjwYbPtxIkTRs2aNY0HHnjAbFu4cKEhyYiJiTHcbrfZPmLECMPHx8fIzMwscn1Fee655wxvb2/jm2++KTStYNnDhw83JBlffvmlOe3s2bNGw4YNjQYNGhj5+fmGYfx7XBo1amScP3/eY1kFYztmzBiP9i+//NKQZCxZssSjPSkpqVB7p06djE6dOpnP8/LyjJycHI/5zpw5Y4SEhBjPP/+82ZaRkVForAtMmDDB4+eTmppqSDIGDhzoUffqq68akowNGzaYbfXr1zckGZs3bzbbTp06ZdjtduOVV14ptK5rkWTY7XbjyJEjZtsHH3xgSDJCQ0MNl8tlto8dO9aQ5FF75XgbhmFMnTrV8PLy8njPldV7xTAM4+mnnzaqVatm/Otf/zLeeecdQ5KxevXqEm13wWs5MjLSyM3NNdunTZtmSDI+/vhjwzAMY9WqVYakIl+nV/YzKCjI4z1QMF6tW7c2Ll265NF/m81mXLx4scT9LRj7U6dOGTabzYiNjfV4L7722muGpBJ/ll1PfHy84ePjU+S0oKAgo0+fPje0fHjicBWKJT8/X+vWrVPPnj1Vr149s7158+ZyOp3XnDcgIED79+/X999/X+r19+rVyzxkURxDhw41/19wGCE3N1eff/55qftwPfn5+frss8/Us2dPNWrUyGyvU6eOnnnmGW3ZskUul8tjnkGDBnkcaunYsaPy8/P1448/Fmudbrdbq1ev1mOPPVboN0NJ5rLXrl2rdu3aqUOHDua0GjVqaNCgQTp69Ki+/fZbj/ni4uLk5+dX5DqHDBni8XzFihXy9/fXQw89pF9++cV8REZGqkaNGh6Hnq7k4+Nj7iVyu9369ddflZeXp7Zt22rXrl3FGoMrrV27VpKUkJDg0f7KK69IUqHDAREREerYsaP5PCgoSE2bNtUPP/xQ4nV37dpVDRo0MJ8X7Lnr1auXatasWaj98nVcPt7Z2dn65ZdfdN9998kwDPO3/+IoyXtl1qxZ8vf31xNPPKH/+q//Ut++fdWjR49ir+tygwYN8thjN2TIEFWpUsX8eQQEBEiS1qxZo0uXLl1zWU8++aT8/f3N5wXj9Z//+Z8e519FRUUpNzdXP//8c6n6LEmff/65udfo8vfi8OHDC9WWxWfZhQsXzNf8lXx9fW+rk+hvBkIOiiUjI0MXLlzQnXfeWWha06ZNrznv5MmTlZmZqbvuukstW7bUyJEjtWfPnhKtv2HDhsWu9fb29ggZknTXXXdJUrHujVFaGRkZOn/+fJHj0bx5c7ndbh0/ftyj/fLAKMk84fB657Jcvk6Xy6UWLVpcs+7HH3+8ar8Kpl/uauNdpUoV1a1b16Pt+++/V1ZWloKDgxUUFOTxOHfunE6dOnXNvi1evFitWrUyz3EICgpSYmKisrKyrjnf1fz444/y9vZWkyZNPNpDQ0MVEBBQaFuv/BlIv/0civszuNayCr6ow8PDi2y/fB3Hjh1Tv379FBgYqBo1aigoKEidOnWSpBKNRUneK4GBgfrzn/+sPXv2yN/fX3/+85+LPe+VrvxsqFGjhurUqWO+5zp16qRevXpp0qRJql27tnr06KGFCxcWOk9KurFxLKmC18OV/Q8KCip0AnBZfJb5+fkVOgxW4OLFi1f95QKlwzk5KHcPPPCADh8+rI8//lifffaZFixYoPfff1/z5s3TwIEDi7WMsn7jX+3mcfn5+WW6nuu52lUexmUng1aEq4233W4vdJWV2+1WcHCwlixZUuQ819qr8Pe//139+vVTz549NXLkSAUHB8vHx0dTp07V4cOHS78BuvrP+Epl+TO42rKut478/Hw99NBD+vXXXzV69Gg1a9ZM1atX188//6x+/fpd9fyzopT0vbJu3TpJvwWFn376ydzjUta8vLy0cuVKbdu2TZ988onWrVun559/Xu+99562bdvmcRPP0o5jeSuLz7I6deooPz9fp06dUnBwsNmem5ur06dPKywsrLy6f1tiTw6KJSgoSH5+fkXupj148OB15w8MDFT//v31j3/8Q8ePH1erVq08rkoqyzvWut3uQoca/vWvf0mSeSih4De0zMxMj7qiDhMVt29BQUGqVq1akeNx4MABeXt7F/pN9EYFBQXJ4XBo375916yrX7/+VftVML20GjdurNOnT+v+++9XTExMoUfr1q2vOu/KlSvVqFEjffTRR+rbt6+cTqdiYmJ08eJFj7qSvD7q168vt9td6LWanp6uzMzMCr0/ytXs3btX//rXv/Tee+9p9OjR6tGjh2JiYor8wivL90pSUpIWLFigUaNGKSgoSHFxccrLyyvVsq4c73PnzunkyZMeh+8kqX379nrzzTe1Y8cOLVmyRPv379eyZctKuwk3rOD1cGX/MzIyitxDdL3Psutp06aNpN+uNLvcjh075Ha7zekoG4QcFIuPj4+cTqdWr16tY8eOme3fffed+Zvg1Zw+fdrjeY0aNdSkSROP3dQF91q5MnSU1qxZs8z/G4ahWbNmqWrVquratauk3z7YfHx8tHnzZo/5irqqpLh98/HxUbdu3fTxxx97HBZLT0/X0qVL1aFDBzkcjlJuUdG8vb3Vs2dPffLJJ4U+NKV//4bbvXt3bd++XSkpKea07OxszZ8/Xw0aNFBERESp+/DUU08pPz9fU6ZMKTQtLy/vmuNW8Jv55b+Jf/311x79lGRexVWc10f37t0lSdOnT/do/9Of/iRJio2Nve4ybraixsEwDM2YMaNQbVm9VzIzM82rhN566y0tWLBAu3bt0ltvvVWq5c2fP9/jXJu5c+cqLy9PjzzyiKTf9hRducel4Au9qENWN0tMTIyqVq2qmTNnevTvytePVLzPsut58MEHFRgYqLlz53q0z507V9WqVbslX5+VGYerUGyTJk1SUlKSOnbsqJdeekl5eXmaOXOm7r777msel46IiFDnzp0VGRmpwMBA7dixQytXrvQ4OTgyMlKS9PLLL8vpdMrHx0d9+vQpVT99fX2VlJSkuLg4RUVF6dNPP1ViYqJee+0189CJv7+/efmsl5eXGjdurDVr1hR5/khJ+vbGG28oOTlZHTp00EsvvaQqVarogw8+UE5OjqZNm1aq7bmet956S5999pk6deqkQYMGqXnz5jp58qRWrFihLVu2KCAgQGPGjNE//vEPPfLII3r55ZcVGBioxYsX68iRI/rf//3fIm/0V1ydOnXSiy++qKlTpyo1NVXdunVT1apV9f3332vFihWaMWOGnnjiiSLnffTRR/XRRx/p8ccfV2xsrI4cOaJ58+YpIiJC586dM+v8/PwUERGh5cuX66677lJgYKBatGhR5LlIrVu3VlxcnObPn6/MzEx16tRJ27dv1+LFi9WzZ0916dKl1NtaXpo1a6bGjRvr1Vdf1c8//yyHw6H//d//LXJPQlm9V/74xz/q9OnT+vzzz+Xj46OHH35YAwcO1BtvvKEePXpccw9cUXJzc9W1a1c99dRTOnjwoObMmaMOHTro97//vaTfzr2aM2eOHn/8cTVu3Fhnz57VX/7yFzkcDjOYVoSgoCC9+uqr5uX+3bt31+7du/Xpp5+qdu3aHrXF+Sy7Hj8/P02ZMkXx8fF68skn5XQ69eWXX+rvf/+73nzzTQUGBpb1Jt7eKuaiLlRWmzZtMiIjIw2bzWY0atTImDdvXqFLeK+8hPyNN94w2rVrZwQEBBh+fn5Gs2bNjDfffNPjctO8vDxj2LBhRlBQkOHl5WUur+CS0nfeeadQX652CXn16tWNw4cPG926dTOqVatmhISEGBMmTDAvky6QkZFh9OrVy6hWrZpxxx13GC+++KKxb9++Qsu8Wt8Mo/Al5IZhGLt27TKcTqdRo0YNo1q1akaXLl2MrVu3etQUXMZ65eW0V7u0/Xp+/PFH47nnnjOCgoIMu91uNGrUyIiPj/e4PPvw4cPGE088YQQEBBi+vr5Gu3btjDVr1hS5/hUrVhRaR8HYXs38+fONyMhIw8/Pz6hZs6bRsmVLY9SoUcaJEyfMmisvIXe73cZbb71l1K9f37Db7cbvfvc7Y82aNUZcXJxRv359j+Vv3brVfO1dPu5Xvv4MwzAuXbpkTJo0yWjYsKFRtWpVIzw83Bg7dmyhS43r169f5CXBV/azOCQZ8fHxHm1Xe/0WNc7ffvutERMTY9SoUcOoXbu28cILLxj/93//V+zXY0neKx9//LEhyXjvvfc86lwul1G/fn2jdevWHu/Payl4LW/atMkYNGiQcccddxg1atQwnn32WeP06dNm3a5du4ynn37aqFevnmG3243g4GDj0UcfNXbs2FGq8bp83de6LP1q/b388v38/Hxj0qRJRp06dQw/Pz+jc+fOxr59+0r1WVZc8+fPN5o2bWrYbDajcePGxvvvv+9xCTvKhpdhVPAZjgCASqvgJpDffPNNkbcxACoS5+QAAABL4pwc4BZ17tw5j/NSihIUFFShf2zwdpCWlnbN6X5+fh43rrOKCxcuXPf+PLfS+SMV/X7Jzc297t/R8vf35z44NxkhB7hFvfvuu5o0adI1a44cOVLoEl2UrTp16lxzelxcXJF/JLayW758ufr373/Nmmvdzfpmq+j3y9atW697UvvChQs9/ngxyh/n5AC3qB9++OG6f1qgQ4cO8vX1vUk9uj1d70+BhIWF3dAl+LeqkydPFvmXuC8XGRlZ6K7AFaWi3y9nzpzRzp07r1lz9913Xzc0o2wRcgAAgCVx4jEAALCk2/qcHLfbrRMnTqhmzZpleqt0AABQfgzD0NmzZxUWFnbNm5ne1iHnxIkTZf63hAAAwM1x/Phx1a1b96rTb+uQU7NmTUm/DVJZ/00hAABQPlwul8LDw83v8au5rUNOwSEqh8NByAEAoJK53qkmnHgMAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsqUpFd8CqLiVtKdRW9eEOFdATAABuT+zJAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAllSikDN37ly1atVKDodDDodD0dHR+vTTT83pnTt3lpeXl8dj8ODBHss4duyYYmNjVa1aNQUHB2vkyJHKy8vzqNm4caPuuece2e12NWnSRIsWLSrUl9mzZ6tBgwby9fVVVFSUtm/fXpJNAQAAFleikFO3bl29/fbb2rlzp3bs2KEHH3xQPXr00P79+82aF154QSdPnjQf06ZNM6fl5+crNjZWubm52rp1qxYvXqxFixZp/PjxZs2RI0cUGxurLl26KDU1VcOHD9fAgQO1bt06s2b58uVKSEjQhAkTtGvXLrVu3VpOp1OnTp26kbEAAAAW4mUYhnEjCwgMDNQ777yjAQMGqHPnzmrTpo2mT59eZO2nn36qRx99VCdOnFBISIgkad68eRo9erQyMjJks9k0evRoJSYmat++feZ8ffr0UWZmppKSkiRJUVFRuvfeezVr1ixJktvtVnh4uIYNG6YxY8YUu+8ul0v+/v7KysqSw+Eo5QgUjZsBAgBQPor7/V3qc3Ly8/O1bNkyZWdnKzo62mxfsmSJateurRYtWmjs2LE6f/68OS0lJUUtW7Y0A44kOZ1OuVwuc29QSkqKYmJiPNbldDqVkpIiScrNzdXOnTs9ary9vRUTE2PWXE1OTo5cLpfHAwAAWFOJ/6zD3r17FR0drYsXL6pGjRpatWqVIiIiJEnPPPOM6tevr7CwMO3Zs0ejR4/WwYMH9dFHH0mS0tLSPAKOJPN5WlraNWtcLpcuXLigM2fOKD8/v8iaAwcOXLPvU6dO1aRJk0q6yQAAoBIqcchp2rSpUlNTlZWVpZUrVyouLk6bNm1SRESEBg0aZNa1bNlSderUUdeuXXX48GE1bty4TDteGmPHjlVCQoL53OVyKTw8vAJ7BAAAykuJQ47NZlOTJk0kSZGRkfrmm280Y8YMffDBB4Vqo6KiJEmHDh1S48aNFRoaWugqqPT0dElSaGio+W9B2+U1DodDfn5+8vHxkY+PT5E1Bcu4GrvdLrvdXoKtBQAAldUN3yfH7XYrJyenyGmpqamSpDp16kiSoqOjtXfvXo+roJKTk+VwOMxDXtHR0Vq/fr3HcpKTk83zfmw2myIjIz1q3G631q9f73FuEAAAuL2VaE/O2LFj9cgjj6hevXo6e/asli5dqo0bN2rdunU6fPiwli5dqu7du6tWrVras2ePRowYoQceeECtWrWSJHXr1k0RERHq27evpk2bprS0NI0bN07x8fHmHpbBgwdr1qxZGjVqlJ5//nlt2LBBH374oRITE81+JCQkKC4uTm3btlW7du00ffp0ZWdnq3///mU4NAAAoDIrUcg5deqUnnvuOZ08eVL+/v5q1aqV1q1bp4ceekjHjx/X559/bgaO8PBw9erVS+PGjTPn9/Hx0Zo1azRkyBBFR0erevXqiouL0+TJk82ahg0bKjExUSNGjNCMGTNUt25dLViwQE6n06zp3bu3MjIyNH78eKWlpalNmzZKSkoqdDIyAAC4fd3wfXIqM+6TAwBA5VPu98kBAAC4lRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJZUo5MydO1etWrWSw+GQw+FQdHS0Pv30U3P6xYsXFR8fr1q1aqlGjRrq1auX0tPTPZZx7NgxxcbGqlq1agoODtbIkSOVl5fnUbNx40bdc889stvtatKkiRYtWlSoL7Nnz1aDBg3k6+urqKgobd++vSSbAgAALK5EIadu3bp6++23tXPnTu3YsUMPPvigevToof3790uSRowYoU8++UQrVqzQpk2bdOLECf3hD38w58/Pz1dsbKxyc3O1detWLV68WIsWLdL48ePNmiNHjig2NlZdunRRamqqhg8froEDB2rdunVmzfLly5WQkKAJEyZo165dat26tZxOp06dOnWj4wEAACzCyzAM40YWEBgYqHfeeUdPPPGEgoKCtHTpUj3xxBOSpAMHDqh58+ZKSUlR+/bt9emnn+rRRx/ViRMnFBISIkmaN2+eRo8erYyMDNlsNo0ePVqJiYnat2+fuY4+ffooMzNTSUlJkqSoqCjde++9mjVrliTJ7XYrPDxcw4YN05gxY67a15ycHOXk5JjPXS6XwsPDlZWVJYfDcSPDUMilpC2F2qo+3KFM1wEAwO3I5XLJ39//ut/fpT4nJz8/X8uWLVN2draio6O1c+dOXbp0STExMWZNs2bNVK9ePaWkpEiSUlJS1LJlSzPgSJLT6ZTL5TL3BqWkpHgso6CmYBm5ubnauXOnR423t7diYmLMmquZOnWq/P39zUd4eHhpNx8AANziShxy9u7dqxo1ashut2vw4MFatWqVIiIilJaWJpvNpoCAAI/6kJAQpaWlSZLS0tI8Ak7B9IJp16pxuVy6cOGCfvnlF+Xn5xdZU7CMqxk7dqyysrLMx/Hjx0u6+QAAoJKoUtIZmjZtqtTUVGVlZWnlypWKi4vTpk2byqNvZc5ut8tut1d0NwAAwE1Q4pBjs9nUpEkTSVJkZKS++eYbzZgxQ71791Zubq4yMzM99uakp6crNDRUkhQaGlroKqiCq68ur7nyiqz09HQ5HA75+fnJx8dHPj4+RdYULAMAAOCG75PjdruVk5OjyMhIVa1aVevXrzenHTx4UMeOHVN0dLQkKTo6Wnv37vW4Cio5OVkOh0MRERFmzeXLKKgpWIbNZlNkZKRHjdvt1vr1680aAACAEu3JGTt2rB555BHVq1dPZ8+e1dKlS7Vx40atW7dO/v7+GjBggBISEhQYGCiHw6Fhw4YpOjpa7du3lyR169ZNERER6tu3r6ZNm6a0tDSNGzdO8fHx5mGkwYMHa9asWRo1apSef/55bdiwQR9++KESExPNfiQkJCguLk5t27ZVu3btNH36dGVnZ6t///5lODQAAKAyK1HIOXXqlJ577jmdPHlS/v7+atWqldatW6eHHnpIkvT+++/L29tbvXr1Uk5OjpxOp+bMmWPO7+PjozVr1mjIkCGKjo5W9erVFRcXp8mTJ5s1DRs2VGJiokaMGKEZM2aobt26WrBggZxOp1nTu3dvZWRkaPz48UpLS1ObNm2UlJRU6GRkAABw+7rh++RUZsW9zr40uE8OAADlo9zvkwMAAHArI+QAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLKvGfdUDxHM38tFDbneIScgAAbhb25AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsqUciZOnWq7r33XtWsWVPBwcHq2bOnDh486FHTuXNneXl5eTwGDx7sUXPs2DHFxsaqWrVqCg4O1siRI5WXl+dRs3HjRt1zzz2y2+1q0qSJFi1aVKg/s2fPVoMGDeTr66uoqCht3769JJsDAAAsrEQhZ9OmTYqPj9e2bduUnJysS5cuqVu3bsrOzvaoe+GFF3Ty5EnzMW3aNHNafn6+YmNjlZubq61bt2rx4sVatGiRxo8fb9YcOXJEsbGx6tKli1JTUzV8+HANHDhQ69atM2uWL1+uhIQETZgwQbt27VLr1q3ldDp16tSp0o4FAACwEC/DMIzSzpyRkaHg4GBt2rRJDzzwgKTf9uS0adNG06dPL3KeTz/9VI8++qhOnDihkJAQSdK8efM0evRoZWRkyGazafTo0UpMTNS+ffvM+fr06aPMzEwlJSVJkqKionTvvfdq1qxZkiS3263w8HANGzZMY8aMKVb/XS6X/P39lZWVJYfDUdphKNL3y14v1HZnnzfLdB0AANyOivv9fUPn5GRlZUmSAgMDPdqXLFmi2rVrq0WLFho7dqzOnz9vTktJSVHLli3NgCNJTqdTLpdL+/fvN2tiYmI8lul0OpWSkiJJys3N1c6dOz1qvL29FRMTY9YUJScnRy6Xy+MBAACsqUppZ3S73Ro+fLjuv/9+tWjRwmx/5plnVL9+fYWFhWnPnj0aPXq0Dh48qI8++kiSlJaW5hFwJJnP09LSrlnjcrl04cIFnTlzRvn5+UXWHDhw4Kp9njp1qiZNmlTaTQYAAJVIqUNOfHy89u3bpy1btni0Dxo0yPx/y5YtVadOHXXt2lWHDx9W48aNS9/TMjB27FglJCSYz10ul8LDwyuwRwAAoLyUKuQMHTpUa9as0ebNm1W3bt1r1kZFRUmSDh06pMaNGys0NLTQVVDp6emSpNDQUPPfgrbLaxwOh/z8/OTj4yMfH58iawqWURS73S673V68jQQAAJVaic7JMQxDQ4cO1apVq7RhwwY1bNjwuvOkpqZKkurUqSNJio6O1t69ez2ugkpOTpbD4VBERIRZs379eo/lJCcnKzo6WpJks9kUGRnpUeN2u7V+/XqzBgAA3N5KtCcnPj5eS5cu1ccff6yaNWua59D4+/vLz89Phw8f1tKlS9W9e3fVqlVLe/bs0YgRI/TAAw+oVatWkqRu3bopIiJCffv21bRp05SWlqZx48YpPj7e3MsyePBgzZo1S6NGjdLzzz+vDRs26MMPP1RiYqLZl4SEBMXFxalt27Zq166dpk+fruzsbPXv37+sxgYAAFRiJQo5c+fOlfTbZeKXW7hwofr16yebzabPP//cDBzh4eHq1auXxo0bZ9b6+PhozZo1GjJkiKKjo1W9enXFxcVp8uTJZk3Dhg2VmJioESNGaMaMGapbt64WLFggp9Np1vTu3VsZGRkaP3680tLS1KZNGyUlJRU6GRkAANyebug+OZUd98kBAKDyuSn3yQEAALhVEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAllSjkTJ06Vffee69q1qyp4OBg9ezZUwcPHvSouXjxouLj41WrVi3VqFFDvXr1Unp6ukfNsWPHFBsbq2rVqik4OFgjR45UXl6eR83GjRt1zz33yG63q0mTJlq0aFGh/syePVsNGjSQr6+voqKitH379pJsDgAAsLAShZxNmzYpPj5e27ZtU3Jysi5duqRu3bopOzvbrBkxYoQ++eQTrVixQps2bdKJEyf0hz/8wZyen5+v2NhY5ebmauvWrVq8eLEWLVqk8ePHmzVHjhxRbGysunTpotTUVA0fPlwDBw7UunXrzJrly5crISFBEyZM0K5du9S6dWs5nU6dOnXqRsYDAABYhJdhGEZpZ87IyFBwcLA2bdqkBx54QFlZWQoKCtLSpUv1xBNPSJIOHDig5s2bKyUlRe3bt9enn36qRx99VCdOnFBISIgkad68eRo9erQyMjJks9k0evRoJSYmat++fea6+vTpo8zMTCUlJUmSoqKidO+992rWrFmSJLfbrfDwcA0bNkxjxowpVv9dLpf8/f2VlZUlh8NR2mEo0vfLXi/UdmefN8t0HQAA3I6K+/19Q+fkZGVlSZICAwMlSTt37tSlS5cUExNj1jRr1kz16tVTSkqKJCklJUUtW7Y0A44kOZ1OuVwu7d+/36y5fBkFNQXLyM3N1c6dOz1qvL29FRMTY9YUJScnRy6Xy+MBAACsqdQhx+12a/jw4br//vvVokULSVJaWppsNpsCAgI8akNCQpSWlmbWXB5wCqYXTLtWjcvl0oULF/TLL78oPz+/yJqCZRRl6tSp8vf3Nx/h4eEl33AAAFAplDrkxMfHa9++fVq2bFlZ9qdcjR07VllZWebj+PHjFd0lAABQTqqUZqahQ4dqzZo12rx5s+rWrWu2h4aGKjc3V5mZmR57c9LT0xUaGmrWXHkVVMHVV5fXXHlFVnp6uhwOh/z8/OTj4yMfH58iawqWURS73S673V7yDQYAAJVOifbkGIahoUOHatWqVdqwYYMaNmzoMT0yMlJVq1bV+vXrzbaDBw/q2LFjio6OliRFR0dr7969HldBJScny+FwKCIiwqy5fBkFNQXLsNlsioyM9Khxu91av369WQMAAG5vJdqTEx8fr6VLl+rjjz9WzZo1zfNf/P395efnJ39/fw0YMEAJCQkKDAyUw+HQsGHDFB0drfbt20uSunXrpoiICPXt21fTpk1TWlqaxo0bp/j4eHMvy+DBgzVr1iyNGjVKzz//vDZs2KAPP/xQiYmJZl8SEhIUFxentm3bql27dpo+fbqys7PVv3//shobAABQiZUo5MydO1eS1LlzZ4/2hQsXql+/fpKk999/X97e3urVq5dycnLkdDo1Z84cs9bHx0dr1qzRkCFDFB0drerVqysuLk6TJ082axo2bKjExESNGDFCM2bMUN26dbVgwQI5nU6zpnfv3srIyND48eOVlpamNm3aKCkpqdDJyAAA4PZ0Q/fJqey4Tw4AAJXPTblPDgAAwK2KkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACypxCFn8+bNeuyxxxQWFiYvLy+tXr3aY3q/fv3k5eXl8Xj44Yc9an799Vc9++yzcjgcCggI0IABA3Tu3DmPmj179qhjx47y9fVVeHi4pk2bVqgvK1asULNmzeTr66uWLVtq7dq1Jd0cAABgUSUOOdnZ2WrdurVmz5591ZqHH35YJ0+eNB//+Mc/PKY/++yz2r9/v5KTk7VmzRpt3rxZgwYNMqe7XC5169ZN9evX186dO/XOO+9o4sSJmj9/vlmzdetWPf300xowYIB2796tnj17qmfPntq3b19JNwkAAFiQl2EYRqln9vLSqlWr1LNnT7OtX79+yszMLLSHp8B3332niIgIffPNN2rbtq0kKSkpSd27d9dPP/2ksLAwzZ07V6+//rrS0tJks9kkSWPGjNHq1at14MABSVLv3r2VnZ2tNWvWmMtu37692rRpo3nz5hWr/y6XS/7+/srKypLD4SjFCFzd98teL9R2Z583y3QdAADcjor7/V0u5+Rs3LhRwcHBatq0qYYMGaLTp0+b01JSUhQQEGAGHEmKiYmRt7e3vv76a7PmgQceMAOOJDmdTh08eFBnzpwxa2JiYjzW63Q6lZKSctV+5eTkyOVyeTwAAIA1lXnIefjhh/U///M/Wr9+vf77v/9bmzZt0iOPPKL8/HxJUlpamoKDgz3mqVKligIDA5WWlmbWhISEeNQUPL9eTcH0okydOlX+/v7mIzw8/MY2FgAA3LKqlPUC+/TpY/6/ZcuWatWqlRo3bqyNGzeqa9euZb26Ehk7dqwSEhLM5y6Xi6ADAIBFlfsl5I0aNVLt2rV16NAhSVJoaKhOnTrlUZOXl6dff/1VoaGhZk16erpHTcHz69UUTC+K3W6Xw+HweAAAAGsq95Dz008/6fTp06pTp44kKTo6WpmZmdq5c6dZs2HDBrndbkVFRZk1mzdv1qVLl8ya5ORkNW3aVHfccYdZs379eo91JScnKzo6urw3CQAAVAIlDjnnzp1TamqqUlNTJUlHjhxRamqqjh07pnPnzmnkyJHatm2bjh49qvXr16tHjx5q0qSJnE6nJKl58+Z6+OGH9cILL2j79u366quvNHToUPXp00dhYWGSpGeeeUY2m00DBgzQ/v37tXz5cs2YMcPjUNMf//hHJSUl6b333tOBAwc0ceJE7dixQ0OHDi2DYQEAAJVdiUPOjh079Lvf/U6/+93vJEkJCQn63e9+p/Hjx8vHx0d79uzR73//e911110aMGCAIiMj9eWXX8put5vLWLJkiZo1a6auXbuqe/fu6tChg8c9cPz9/fXZZ5/pyJEjioyM1CuvvKLx48d73Evnvvvu09KlSzV//ny1bt1aK1eu1OrVq9WiRYsbGQ8AAGARN3SfnMqO++QAAFD5VOh9cgAAACoaIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSiUPO5s2b9dhjjyksLExeXl5avXq1x3TDMDR+/HjVqVNHfn5+iomJ0ffff+9R8+uvv+rZZ5+Vw+FQQECABgwYoHPnznnU7NmzRx07dpSvr6/Cw8M1bdq0Qn1ZsWKFmjVrJl9fX7Vs2VJr164t6eYAAACLKnHIyc7OVuvWrTV79uwip0+bNk1//vOfNW/ePH399deqXr26nE6nLl68aNY8++yz2r9/v5KTk7VmzRpt3rxZgwYNMqe7XC5169ZN9evX186dO/XOO+9o4sSJmj9/vlmzdetWPf300xowYIB2796tnj17qmfPntq3b19JNwkAAFiQl2EYRqln9vLSqlWr1LNnT0m/7cUJCwvTK6+8oldffVWSlJWVpZCQEC1atEh9+vTRd999p4iICH3zzTdq27atJCkpKUndu3fXTz/9pLCwMM2dO1evv/660tLSZLPZJEljxozR6tWrdeDAAUlS7969lZ2drTVr1pj9ad++vdq0aaN58+YVq/8ul0v+/v7KysqSw+Eo7TAU6ftlrxdqu7PPm2W6DgAAbkfF/f4u03Nyjhw5orS0NMXExJht/v7+ioqKUkpKiiQpJSVFAQEBZsCRpJiYGHl7e+vrr782ax544AEz4EiS0+nUwYMHdebMGbPm8vUU1BSspyg5OTlyuVweDwAAYE1lGnLS0tIkSSEhIR7tISEh5rS0tDQFBwd7TK9SpYoCAwM9aopaxuXruFpNwfSiTJ06Vf7+/uYjPDy8pJsIAAAqidvq6qqxY8cqKyvLfBw/fryiuwQAAMpJmYac0NBQSVJ6erpHe3p6ujktNDRUp06d8piel5enX3/91aOmqGVcvo6r1RRML4rdbpfD4fB4AAAAayrTkNOwYUOFhoZq/fr1ZpvL5dLXX3+t6OhoSVJ0dLQyMzO1c+dOs2bDhg1yu92KiooyazZv3qxLly6ZNcnJyWratKnuuOMOs+by9RTUFKwHAADc3koccs6dO6fU1FSlpqZK+u1k49TUVB07dkxeXl4aPny43njjDf3zn//U3r179dxzzyksLMy8Aqt58+Z6+OGH9cILL2j79u366quvNHToUPXp00dhYWGSpGeeeUY2m00DBgzQ/v37tXz5cs2YMUMJCQlmP/74xz8qKSlJ7733ng4cOKCJEydqx44dGjp06I2PCgAAqPSqlHSGHTt2qEuXLubzguARFxenRYsWadSoUcrOztagQYOUmZmpDh06KCkpSb6+vuY8S5Ys0dChQ9W1a1d5e3urV69e+vOf/2xO9/f312effab4+HhFRkaqdu3aGj9+vMe9dO677z4tXbpU48aN02uvvaY777xTq1evVosWLUo1EAAAwFpu6D45lR33yQEAoPKpkPvkAAAA3CoIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJLKPORMnDhRXl5eHo9mzZqZ0y9evKj4+HjVqlVLNWrUUK9evZSenu6xjGPHjik2NlbVqlVTcHCwRo4cqby8PI+ajRs36p577pHdbleTJk20aNGist4UAABQiZXLnpy7775bJ0+eNB9btmwxp40YMUKffPKJVqxYoU2bNunEiRP6wx/+YE7Pz89XbGyscnNztXXrVi1evFiLFi3S+PHjzZojR44oNjZWXbp0UWpqqoYPH66BAwdq3bp15bE5AACgEqpSLgutUkWhoaGF2rOysvTXv/5VS5cu1YMPPihJWrhwoZo3b65t27apffv2+uyzz/Ttt9/q888/V0hIiNq0aaMpU6Zo9OjRmjhxomw2m+bNm6eGDRvqvffekyQ1b95cW7Zs0fvvvy+n03nVfuXk5CgnJ8d87nK5ynjLAQDAraJc9uR8//33CgsLU6NGjfTss8/q2LFjkqSdO3fq0qVLiomJMWubNWumevXqKSUlRZKUkpKili1bKiQkxKxxOp1yuVzav3+/WXP5MgpqCpZxNVOnTpW/v7/5CA8PL5PtBQAAt54yDzlRUVFatGiRkpKSNHfuXB05ckQdO3bU2bNnlZaWJpvNpoCAAI95QkJClJaWJklKS0vzCDgF0wumXavG5XLpwoULV+3b2LFjlZWVZT6OHz9+o5sLAABuUWV+uOqRRx4x/9+qVStFRUWpfv36+vDDD+Xn51fWqysRu90uu91eoX0AAAA3R7lfQh4QEKC77rpLhw4dUmhoqHJzc5WZmelRk56ebp7DExoaWuhqq4Ln16txOBwVHqQAAMCtodxDzrlz53T48GHVqVNHkZGRqlq1qtavX29OP3jwoI4dO6bo6GhJUnR0tPbu3atTp06ZNcnJyXI4HIqIiDBrLl9GQU3BMgAAAMo85Lz66qvatGmTjh49qq1bt+rxxx+Xj4+Pnn76afn7+2vAgAFKSEjQF198oZ07d6p///6Kjo5W+/btJUndunVTRESE+vbtq//7v//TunXrNG7cOMXHx5uHmgYPHqwffvhBo0aN0oEDBzRnzhx9+OGHGjFiRFlvDgAAqKTK/Jycn376SU8//bROnz6toKAgdejQQdu2bVNQUJAk6f3335e3t7d69eqlnJwcOZ1OzZkzx5zfx8dHa9as0ZAhQxQdHa3q1asrLi5OkydPNmsaNmyoxMREjRgxQjNmzFDdunW1YMGCa14+DgAAbi9ehmEYFd2JiuJyueTv76+srCw5HI4yXfb3y14v1HZnnzfLdB0AANyOivv9zd+uAgAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAlkTIAQAAllSlojsAAACs4VLSFo/nVR/uUEE9+Q17cgAAgCURcgAAgCURcgAAgCVxTg4AACgTRzM/9Xh+pzgnBwAAoMwRcgAAgCVxuKqM5eVf0t69Sfr60iEZPobq+9yhxkYtecurorsGAMBtpdKHnNmzZ+udd95RWlqaWrdurZkzZ6pdu3YV0pevUv6ueSdm61zVHMn/3+3V86vqD3kt1OAWu38AAABWVqlDzvLly5WQkKB58+YpKipK06dPl9Pp1MGDBxUcHHxT+/JVyt/17qk/FTmi2d6X9P9suxXsvkdR3q1var8AACgPV97471bkZRiGUdGdKK2oqCjde++9mjVrliTJ7XYrPDxcw4YN05gxY647v8vlkr+/v7KysuRwOErdj7z8Sxq0qovOVD2vqx6VMiR/w1djL3Y2D101CHjkustmbw8AoLwVJ7BceeVUcdzZ583SdOe6ivv9XWn35OTm5mrnzp0aO3as2ebt7a2YmBilpKQUOU9OTo5ycnLM51lZWZJ+G6wbsXfvOp3KOyvlXbvuF2Vr38U0NXIHSpL2nV99/YX/7fo19fwfuv5yLKrqQ9GF2i4lF/3zv9Z8pZnnRua7nrJablHLKc22F3d9pVn/7ay0P5/S/OxL+3opjpvZ59L2sSIdy0r2eF5Wn9lXLvdWdKPfr9db7vX201TakPPLL78oPz9fISEhHu0hISE6cOBAkfNMnTpVkyZNKtQeHh5eLn0sSqL2lMNS3yuHZQIAysdt9Jk9oHy39ezZs/L397/q9Eobckpj7NixSkhIMJ+73W79+uuvqlWrlry8yu7qJ5fLpfDwcB0/fvyGDoPh2hjnm4exvjkY55uDcb45ynOcDcPQ2bNnFRYWds26ShtyateuLR8fH6Wnp3u0p6enKzQ0tMh57Ha77Ha7R1tAQEB5dVEOh4M30E3AON88jPXNwTjfHIzzzVFe43ytPTgFKu3NAG02myIjI7V+/Xqzze12a/369YqO5pg/AAC3u0q7J0eSEhISFBcXp7Zt26pdu3aaPn26srOz1b9//4ruGgAAqGCVOuT07t1bGRkZGj9+vNLS0tSmTRslJSUVOhn5ZrPb7ZowYUKhQ2MoW4zzzcNY3xyM883BON8ct8I4V+r75AAAAFxNpT0nBwAA4FoIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOaU0e/ZsNWjQQL6+voqKitL27duvWb9ixQo1a9ZMvr6+atmypdauXXuTelq5lWSc//KXv6hjx4664447dMcddygmJua6Pxf8pqSv5wLLli2Tl5eXevbsWb4dtJCSjnVmZqbi4+NVp04d2e123XXXXXx+FENJx3n69Olq2rSp/Pz8FB4erhEjRujixYs3qbeV0+bNm/XYY48pLCxMXl5eWr169XXn2bhxo+655x7Z7XY1adJEixYtKt9OGiixZcuWGTabzfjb3/5m7N+/33jhhReMgIAAIz09vcj6r776yvDx8TGmTZtmfPvtt8a4ceOMqlWrGnv37r3JPa9cSjrOzzzzjDF79mxj9+7dxnfffWf069fP8Pf3N3766aeb3PPKpaTjXODIkSPGf/zHfxgdO3Y0evTocXM6W8mVdKxzcnKMtm3bGt27dze2bNliHDlyxNi4caORmpp6k3teuZR0nJcsWWLY7XZjyZIlxpEjR4x169YZderUMUaMGHGTe165rF271nj99deNjz76yJBkrFq16pr1P/zwg1GtWjUjISHB+Pbbb42ZM2caPj4+RlJSUrn1kZBTCu3atTPi4+PN5/n5+UZYWJgxderUIuufeuopIzY21qMtKirKePHFF8u1n5VdScf5Snl5eUbNmjWNxYsXl1cXLaE045yXl2fcd999xoIFC4y4uDhCTjGVdKznzp1rNGrUyMjNzb1ZXbSEko5zfHy88eCDD3q0JSQkGPfff3+59tNKihNyRo0aZdx9990ebb179zacTme59YvDVSWUm5urnTt3KiYmxmzz9vZWTEyMUlJSipwnJSXFo16SnE7nVetRunG+0vnz53Xp0iUFBgaWVzcrvdKO8+TJkxUcHKwBAwbcjG5aQmnG+p///Keio6MVHx+vkJAQtWjRQm+99Zby8/NvVrcrndKM83333aedO3eah7R++OEHrV27Vt27d78pfb5dVMR3YaX+sw4V4ZdfflF+fn6hPx0REhKiAwcOFDlPWlpakfVpaWnl1s/KrjTjfKXRo0crLCys0JsK/1aacd6yZYv++te/KjU19Sb00DpKM9Y//PCDNmzYoGeffVZr167VoUOH9NJLL+nSpUuaMGHCzeh2pVOacX7mmWf0yy+/qEOHDjIMQ3l5eRo8eLBee+21m9Hl28bVvgtdLpcuXLggPz+/Ml8ne3JgSW+//baWLVumVatWydfXt6K7Yxlnz55V37599Ze//EW1a9eu6O5YntvtVnBwsObPn6/IyEj17t1br7/+uubNm1fRXbOUjRs36q233tKcOXO0a9cuffTRR0pMTNSUKVMqumu4QezJKaHatWvLx8dH6enpHu3p6ekKDQ0tcp7Q0NAS1aN041zg3Xff1dtvv63PP/9crVq1Ks9uVnolHefDhw/r6NGjeuyxx8w2t9stSapSpYoOHjyoxo0bl2+nK6nSvKbr1KmjqlWrysfHx2xr3ry50tLSlJubK5vNVq59roxKM87/9V//pb59+2rgwIGSpJYtWyo7O1uDBg3S66+/Lm9v9geUhat9FzocjnLZiyOxJ6fEbDabIiMjtX79erPN7XZr/fr1io6OLnKe6Ohoj3pJSk5Ovmo9SjfOkjRt2jRNmTJFSUlJatu27c3oaqVW0nFu1qyZ9u7dq9TUVPPx+9//Xl26dFFqaqrCw8NvZvcrldK8pu+//34dOnTIDJKS9K9//Ut16tQh4FxFacb5/PnzhYJMQbA0+BvWZaZCvgvL7ZRmC1u2bJlht9uNRYsWGd9++60xaNAgIyAgwEhLSzMMwzD69u1rjBkzxqz/6quvjCpVqhjvvvuu8d133xkTJkzgEvJiKOk4v/3224bNZjNWrlxpnDx50nycPXu2ojahUijpOF+Jq6uKr6RjfezYMaNmzZrG0KFDjYMHDxpr1qwxgoODjTfeeKOiNqFSKOk4T5gwwahZs6bxj3/8w/jhhx+Mzz77zGjcuLHx1FNPVdQmVApnz541du/ebezevduQZPzpT38ydu/ebfz444+GYRjGmDFjjL59+5r1BZeQjxw50vjuu++M2bNncwn5rWrmzJlGvXr1DJvNZrRr187Ytm2bOa1Tp05GXFycR/2HH35o3HXXXYbNZjPuvvtuIzEx8Sb3uHIqyTjXr1/fkFToMWHChJvf8UqmpK/nyxFySqakY71161YjKirKsNvtRqNGjYw333zTyMvLu8m9rnxKMs6XLl0yJk6caDRu3Njw9fU1wsPDjZdeesk4c+bMze94JfLFF18U+ZlbMLZxcXFGp06dCs3Tpk0bw2azGY0aNTIWLlxYrn30Mgz2xQEAAOvhnBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJ/x8J7hdwMs79KQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQlBJREFUeJzt3XtcVXW+//E3oHsDKiDKRUa8V2p5KUykNLVITGqisdLqGJZmGdoo5a083rrYWJ108lbjpM7v6Gg2aZMaRpo6JmainLykU4qp2UbTYHsFge/vjx6scQteQC6xfD0fj/Wo/V2ftdZ3fdl783bd8DLGGAEAANiMd1V3AAAAoCIQcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcnDFJkyYIC8vL+t1kyZN1L9//wrf7v79++Xl5aV58+ZZbf3791ft2rUrfNtFvLy8NGHChErbXnXXrVs3devWrVzXeeH7D8WV9Fm5Vs2bN09eXl7av3//ZWsr67sMlY+Qg0q1cuXK32xY+C337Vpx+vRpTZgwQWvXrq3qrlQ53o/V28GDBzVx4kR17NhRdevWVf369dWtWzd9/vnnxWqLAllJk8vlqoLe20eNqu4Aqq89e/bI27t0OXnlypWaMWNGqb68GzdurDNnzqhmzZql7GHpXKpvZ86cUY0afFwq2unTpzVx4kRJKnYkaOzYsRo9enQV9Kpq/JY/K9VBv3791LdvXzmdzirZ/scff6w//elPSkhIUGJiovLz8/W3v/1Nd999t95//3098cQTxZaZNGmSmjZt6tEWFBRUST22J761UWYV/eWRn5+vwsJCORwO+fr6Vui2Lqeqt18Zzp49K4fDUWJwPXXqlGrVqlUFvfqPGjVqEDQv4rf0Wfmt8PHxkY+PT5Vtv3v37jpw4IDq169vtT3zzDNq3769xo0bV2LIueeee9ShQ4fK7KbtcboKJdqwYYNuvfVW+fr6qnnz5nr33XeL1Vx4HvvcuXOaOHGirrvuOvn6+qpevXrq3LmzUlNTJf16Hc2MGTMkyeNwrPSfawnefPNNTZ06Vc2bN5fT6dSuXbsueZ3Bvn37FBcXp1q1aikiIkKTJk2SMcaav3btWnl5eRU7/XHhOi/Vt6K2C/9FvW3bNt1zzz0KCAhQ7dq1ddddd2nTpk0eNUWHob/88kslJycrJCREtWrV0gMPPKCjR49e/AdwET/++KMGDBigiIgIOZ1ONW3aVIMHD1ZeXp7HmDz00EMKDg6Wv7+/OnXqpBUrVnisp2hcFi1apLFjx+p3v/ud/P395Xa7reud9u7dq169eqlOnTp67LHHJEmFhYWaOnWqbrzxRvn6+iosLExPP/20fvnll0v2Oy8vT+PGjVNUVJQCAwNVq1YtdenSRV988YVVs3//foWEhEiSJk6caP0Misa9pGty8vPz9fLLL1vvlyZNmujFF19Ubm6uR12TJk107733asOGDerYsaN8fX3VrFkz/e1vfyvdD0C/vheGDBmiJUuWqHXr1vLz81NMTIy2b98uSXr33XfVokUL+fr6qlu3bsWuCfnXv/6lhx56SI0aNZLT6VRkZKSGDx+uM2fOWDXl9Vk5cuSIQkJC1K1bN4/Pxffff69atWqpT58+V7zfRe/l9evX6+mnn1a9evUUEBCgxx9/vNjPf8uWLYqLi1P9+vXl5+enpk2b6sknn7Tmn78PM2bMULNmzeTv768ePXro4MGDMsbo5ZdfVsOGDeXn56f7779fx48fv+K+nt/f88ffGKNXXnlFDRs2lL+/v7p3766dO3cWW/Zy32VX4sYbb/QIONKv/zDs1auXDh06pBMnTpS43IkTJ1RQUHDF28Gl8c8iFLN9+3b16NFDISEhmjBhgvLz8zV+/HiFhYVdcrkJEyZo8uTJGjhwoDp27Ci3260tW7Zo69atuvvuu/X000/r8OHDSk1N1f/7f/+vxHXMnTtXZ8+e1aBBg+R0OhUcHKzCwsISawsKCtSzZ0916tRJU6ZMUUpKisaPH6/8/HxNmjSpVPt8JX07386dO9WlSxcFBARo5MiRqlmzpt59911169ZN69atU3R0tEf90KFDVbduXY0fP1779+/X1KlTNWTIEC1evPiK+3j48GF17NhR2dnZGjRokFq2bKkff/xRH374oU6fPi2Hw6GsrCzddtttOn36tJ577jnVq1dP8+fP1+9//3t9+OGHeuCBBzzW+fLLL8vhcOiFF15Qbm6uHA6HpF/DQ1xcnDp37qw333xT/v7+1jjNmzdPTzzxhJ577jllZmZq+vTp2rZtm7788suLniZxu92aM2eOHnnkET311FM6ceKE/vrXvyouLk6bN29W+/btFRISolmzZmnw4MF64IEH9Ic//EGS1LZt24uOycCBAzV//nw9+OCDev755/XVV19p8uTJ+vbbb7V06VKP2u+//14PPvigBgwYoMTERL3//vvq37+/oqKidOONN17xz0H6Naj885//VFJSkiRp8uTJuvfeezVy5EjNnDlTzz77rH755RdNmTJFTz75pNasWWMtu2TJEp0+fVqDBw9WvXr1tHnzZr3zzjs6dOiQlixZYo1zeXxWQkNDNWvWLD300EN655139Nxzz6mwsFD9+/dXnTp1NHPmzFLttyQNGTJEQUFBmjBhgvbs2aNZs2bphx9+sILzkSNHrO+P0aNHKygoSPv379dHH31UbF0LFixQXl6ehg4dquPHj2vKlCl6+OGHdeedd2rt2rUaNWqUvv/+e73zzjt64YUX9P7775e6v+cbN26cXnnlFfXq1Uu9evXS1q1b1aNHD49/JEiX/y67Gi6XS/7+/tZn6nzdu3fXyZMn5XA4FBcXp7feekvXXXfdVW3vmmeACyQkJBhfX1/zww8/WG27du0yPj4+5vy3TOPGjU1iYqL1ul27diY+Pv6S605KSjIlve0yMzONJBMQEGCOHDlS4ry5c+dabYmJiUaSGTp0qNVWWFho4uPjjcPhMEePHjXGGPPFF18YSeaLL7647Dov1jdjjJFkxo8fb71OSEgwDofD7N2712o7fPiwqVOnjrnjjjustrlz5xpJJjY21hQWFlrtw4cPNz4+PiY7O7vE7ZXk8ccfN97e3ubrr78uNq9o3cOGDTOSzL/+9S9r3okTJ0zTpk1NkyZNTEFBgTHmP+PSrFkzc/r0aY91FY3t6NGjPdr/9a9/GUlmwYIFHu0pKSnF2rt27Wq6du1qvc7Pzze5ubkey/3yyy8mLCzMPPnkk1bb0aNHi411kfHjx3v8fDIyMowkM3DgQI+6F154wUgya9assdoaN25sJJn169dbbUeOHDFOp9M8//zzxbZ1KZKM0+k0mZmZVtu7775rJJnw8HDjdrut9jFjxhhJHrUXjrcxxkyePNl4eXl5fObK67NijDGPPPKI8ff3N//+97/NG2+8YSSZZcuWlWq/i97LUVFRJi8vz2qfMmWKkWQ+/vhjY4wxS5cuNZJKfJ9e2M+QkBCPz0DReLVr186cO3fOo/8Oh8OcPXu21P0tGvsjR44Yh8Nh4uPjPT6LL774opFU6u+ysvjuu++Mr6+v6devn0f74sWLTf/+/c38+fPN0qVLzdixY42/v7+pX7++OXDgQLn341rC6Sp4KCgo0KpVq5SQkKBGjRpZ7a1atVJcXNwllw0KCtLOnTv13XfflXn7vXv3tk5ZXIkhQ4ZY/190GiEvL6/EOxjKS0FBgT777DMlJCSoWbNmVnuDBg306KOPasOGDXK73R7LDBo0yONUS5cuXVRQUKAffvjhirZZWFioZcuW6b777ivxnH3RuleuXKmOHTuqc+fO1rzatWtr0KBB2r9/v3bt2uWxXGJiovz8/Erc5uDBgz1eL1myRIGBgbr77rv1888/W1NUVJRq167tcerpQj4+PtZRosLCQh0/flz5+fnq0KGDtm7dekVjcKGVK1dKkpKTkz3an3/+eUkqdoqudevW6tKli/U6JCREN9xwg/bt21fqbd91111q0qSJ9broyF3v3r1Vp06dYu3nb+P88T516pR+/vln3XbbbTLGaNu2bVfch9J8VqZPn67AwEA9+OCD+u///m/169dP999//xVv63yDBg3yOGI3ePBg1ahRw/p5FF0ou3z5cp07d+6S63rooYcUGBhovS4ar//6r//yuP4qOjpaeXl5+vHHH8vUZ0n6/PPPraNG538Whw0bVqy2PL7LLnT69Gk99NBD8vPz0+uvv+4x7+GHH9bcuXP1+OOPKyEhQS+//LJWrVqlY8eO6dVXXy23PlyLCDnwcPToUZ05c6bEQ6Q33HDDJZedNGmSsrOzdf3116tNmzYaMWKEvvnmm1Jt/8I7Cy7F29vbI2RI0vXXXy9JV/RsjLI6evSoTp8+XeJ4tGrVSoWFhTp48KBH+/mBUZLq1q0rSZe9luX8bbrdbt10002XrPvhhx8u2q+i+ee72HjXqFFDDRs29Gj77rvvlJOTo9DQUIWEhHhMJ0+e1JEjRy7Zt/nz56tt27bWNQ4hISFasWKFcnJyLrncxfzwww/y9vZWixYtPNrDw8MVFBRUbF8v/BlIv/4crvRncKl1Ff2ijoyMLLH9/G0cOHBA/fv3V3BwsGrXrq2QkBB17dpVkko1FqX5rAQHB+vPf/6zvvnmGwUGBurPf/7zFS97oQu/G2rXrq0GDRpYn7muXbuqd+/emjhxourXr6/7779fc+fOLXadlHR141haRe+HC/sfEhJifR6LlMd32fkKCgrUt29f7dq1Sx9++KEiIiIuu0znzp0VHR1dof9guxZwTQ7KzR133KG9e/fq448/1meffaY5c+bo7bff1uzZszVw4MArWsfFjiqU1cUeHlfZF/Zd7C4Pc97FoFXhYuPtdDqL3WVVWFio0NBQLViwoMRlLnVU4X//93/Vv39/JSQkaMSIEQoNDZWPj48mT56svXv3ln0HdPGf8YXK82dwsXVdbhsFBQW6++67dfz4cY0aNUotW7ZUrVq19OOPP6p///4Xvf6sJKX9rKxatUrSr0Hh0KFDFXZrspeXlz788ENt2rRJn3zyiVatWqUnn3xSb731ljZt2uTxEM+yjmNFK4/vsvM99dRTWr58uRYsWKA777zzipeLjIzUnj17Sr09/AdHcuAhJCREfn5+JR6mvZIPW3BwsJ544gn9/e9/18GDB9W2bVuPu5LK84m1hYWFxU41/Pvf/5Yk61RC0b/QsrOzPepKOk10pX0LCQmRv79/ieOxe/dueXt7F/uX6NUKCQlRQECAduzYccm6xo0bX7RfRfPLqnnz5jp27Jhuv/12xcbGFpvatWt30WU//PBDNWvWTB999JH69eunuLg4xcbG6uzZsx51pXl/NG7cWIWFhcXeq1lZWcrOzr6qfa0o27dv17///W+99dZbGjVqlO6//37FxsaW+C/78vyspKSkaM6cORo5cqRCQkKs57aUxYXjffLkSf30008ep+8kqVOnTnr11Ve1ZcsWLViwQDt37tSiRYvKugtXrej9cGH/jx49WuIRost9l12pESNGaO7cuXr77bf1yCOPlGrZffv2ler0PYoj5MCDj4+P4uLitGzZMh04cMBq//bbb61/CV7MsWPHPF7Xrl1bLVq08DhMXfSslQtDR1lNnz7d+n9jjKZPn66aNWvqrrvukvTrF5uPj4/Wr1/vsVxJd5Vcad98fHzUo0cPffzxxx6nxbKysrRw4UJ17txZAQEBZdyjknl7eyshIUGffPKJtmzZUmx+0b9we/Xqpc2bNystLc2ad+rUKb333ntq0qSJWrduXeY+PPzwwyooKNDLL79cbF5+fv4lx63oX+bn/0v8q6++8uinJOuOkyt5f/Tq1UuSNHXqVI/2//mf/5EkxcfHX3Ydla2kcTDGaNq0acVqy+uzkp2dbd0l9Nprr2nOnDnaunWrXnvttTKt77333vO41mbWrFnKz8/XPffcI+nXI0UXHnFp3769JJV4yqqyxMbGqmbNmnrnnXc8+nfh+0e6su+yK/HGG2/ozTff1Isvvqg//vGPF60r6XESK1euVHp6unr27FmqbcITp6tQzMSJE5WSkqIuXbro2WefVX5+vt555x3deOONlzwv3bp1a3Xr1k1RUVEKDg7Wli1b9OGHH3pcHBwVFSVJeu655xQXFycfHx/17du3TP309fVVSkqKEhMTFR0drU8//VQrVqzQiy++aP3rJzAw0Lp91svLS82bN9fy5ctLvH6kNH175ZVXlJqaqs6dO+vZZ59VjRo19O677yo3N1dTpkwp0/5czmuvvabPPvtMXbt21aBBg9SqVSv99NNPWrJkiTZs2KCgoCCNHj1af//733XPPffoueeeU3BwsObPn6/MzEz94x//KPUTqs/XtWtXPf3005o8ebIyMjLUo0cP1axZU999952WLFmiadOm6cEHHyxx2XvvvVcfffSRHnjgAcXHxyszM1OzZ89W69atdfLkSavOz89PrVu31uLFi3X99dcrODhYN910U4nXIrVr106JiYl67733lJ2dra5du2rz5s2aP3++EhIS1L179zLva0Vp2bKlmjdvrhdeeEE//vijAgIC9I9//KPEIwnl9Vn54x//qGPHjunzzz+Xj4+PevbsqYEDB+qVV17R/ffff8kjcCXJy8vTXXfdpYcfflh79uzRzJkz1blzZ/3+97+X9Ou1VzNnztQDDzyg5s2b68SJE/rLX/6igIAAK5hWhZCQEL3wwgvW7f69evXStm3b9OmnnxZ7ns2VfJddztKlSzVy5Ehdd911atWqlf73f//XY/7dd99tPZbjtttu080336wOHTooMDBQW7du1fvvv6/IyEi9+OKLV7/z17KquakLv3Xr1q0zUVFRxuFwmGbNmpnZs2cXu4X3wlvIX3nlFdOxY0cTFBRk/Pz8TMuWLc2rr77qcbtpfn6+GTp0qAkJCTFeXl7W+opuKX3jjTeK9eVit5DXqlXL7N271/To0cP4+/ubsLAwM378eOs26SJHjx41vXv3Nv7+/qZu3brm6aefNjt27Ci2zov1zZjit5AbY8zWrVtNXFycqV27tvH39zfdu3c3Gzdu9Kgpuo31wttpL3Zr++X88MMP5vHHHzchISHG6XSaZs2amaSkJI/bs/fu3WsefPBBExQUZHx9fU3Hjh3N8uXLS9z+kiVLim2jaGwv5r333jNRUVHGz8/P1KlTx7Rp08aMHDnSHD582Kq58BbywsJC89prr5nGjRsbp9Npbr75ZrN8+XKTmJhoGjdu7LH+jRs3Wu+988f9wvefMcacO3fOTJw40TRt2tTUrFnTREZGmjFjxhS71bhx48Yl3hJ8YT+vhCSTlJTk0Xax929J47xr1y4TGxtrateuberXr2+eeuop83//939X/H4szWfl448/NpLMW2+95VHndrtN48aNTbt27Tw+n5dS9F5et26dGTRokKlbt66pXbu2eeyxx8yxY8esuq1bt5pHHnnENGrUyDidThMaGmruvfdes2XLljKN1/nbvtRt6Rfr7/m37xcUFJiJEyeaBg0aGD8/P9OtWzezY8eOMn2XXU7R+/Vi0/mf/Zdeesm0b9/eBAYGmpo1a5pGjRqZwYMHG5fLdcXbQ8m8jKniKx8BAL95RQ+B/Prrr/nTA6g2uCYHAADYEtfkAFXs5MmTHtellCQkJKRK/9jgtcDlcl1yvp+fn8eD6+zizJkzl30+T3BwcCX15vKq+vOSl5d32b+jFRgYWO6Pw0DZEHKAKvbmm29q4sSJl6zJzMwsdosuyleDBg0uOT8xMbHEPxJb3S1evLjEv4h9vks9zbqyVfXnZePGjZe9qH3u3Lkef7wYVYdrcoAqtm/fvsv+aYHOnTvL19e3knp0bbrck2UjIiKu6hb836qffvqpxL/Efb6oqKhiTwWuKlX9efnll1+Unp5+yZobb7zxsqEZlYOQAwAAbIkLjwEAgC1d09fkFBYW6vDhw6pTp065PkIdAABUHGOMTpw4oYiIiEs+5PSaDjmHDx8u978xBAAAKsfBgwfVsGHDi86/pkNOnTp1JP06SOX9t4YAAEDFcLvdioyMtH6PX8w1HXKKTlEFBAQQcgAAqGYud6kJFx4DAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbqlHVHbCrcykbirXV7Nm5CnoCAMC1iSM5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlkoVcmbNmqW2bdsqICBAAQEBiomJ0aeffmrNP3v2rJKSklSvXj3Vrl1bvXv3VlZWlsc6Dhw4oPj4ePn7+ys0NFQjRoxQfn6+R83atWt1yy23yOl0qkWLFpo3b16xvsyYMUNNmjSRr6+voqOjtXnz5tLsCgAAsLlShZyGDRvq9ddfV3p6urZs2aI777xT999/v3bu3ClJGj58uD755BMtWbJE69at0+HDh/WHP/zBWr6goEDx8fHKy8vTxo0bNX/+fM2bN0/jxo2zajIzMxUfH6/u3bsrIyNDw4YN08CBA7Vq1SqrZvHixUpOTtb48eO1detWtWvXTnFxcTpy5MjVjgcAALAJL2OMuZoVBAcH64033tCDDz6okJAQLVy4UA8++KAkaffu3WrVqpXS0tLUqVMnffrpp7r33nt1+PBhhYWFSZJmz56tUaNG6ejRo3I4HBo1apRWrFihHTt2WNvo27evsrOzlZKSIkmKjo7WrbfequnTp0uSCgsLFRkZqaFDh2r06NFX3He3263AwEDl5OQoICDgaoahmHMpG4q11ezZuVy3AQDAtehKf3+X+ZqcgoICLVq0SKdOnVJMTIzS09N17tw5xcbGWjUtW7ZUo0aNlJaWJklKS0tTmzZtrIAjSXFxcXK73dbRoLS0NI91FNUUrSMvL0/p6ekeNd7e3oqNjbVqLiY3N1dut9tjAgAA9lTqkLN9+3bVrl1bTqdTzzzzjJYuXarWrVvL5XLJ4XAoKCjIoz4sLEwul0uS5HK5PAJO0fyieZeqcbvdOnPmjH7++WcVFBSUWFO0jouZPHmyAgMDrSkyMrK0uw8AAKqJUoecG264QRkZGfrqq680ePBgJSYmateuXRXRt3I3ZswY5eTkWNPBgweruksAAKCC1CjtAg6HQy1atJAkRUVF6euvv9a0adPUp08f5eXlKTs72+NoTlZWlsLDwyVJ4eHhxe6CKrr76vyaC+/IysrKUkBAgPz8/OTj4yMfH58Sa4rWcTFOp1NOp7O0uwwAAKqhq35OTmFhoXJzcxUVFaWaNWtq9erV1rw9e/bowIEDiomJkSTFxMRo+/btHndBpaamKiAgQK1bt7Zqzl9HUU3ROhwOh6KiojxqCgsLtXr1aqsGAACgVEdyxowZo3vuuUeNGjXSiRMntHDhQq1du1arVq1SYGCgBgwYoOTkZAUHBysgIEBDhw5VTEyMOnXqJEnq0aOHWrdurX79+mnKlClyuVwaO3askpKSrCMszzzzjKZPn66RI0fqySef1Jo1a/TBBx9oxYoVVj+Sk5OVmJioDh06qGPHjpo6dapOnTqlJ554ohyHBgAAVGelCjlHjhzR448/rp9++kmBgYFq27atVq1apbvvvluS9Pbbb8vb21u9e/dWbm6u4uLiNHPmTGt5Hx8fLV++XIMHD1ZMTIxq1aqlxMRETZo0yapp2rSpVqxYoeHDh2vatGlq2LCh5syZo7i4OKumT58+Onr0qMaNGyeXy6X27dsrJSWl2MXIAADg2nXVz8mpznhODgAA1U+FPycHAADgt4yQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbKlGVXfArvZnf1qs7Tp1roKeAABwbeJIDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKVShZzJkyfr1ltvVZ06dRQaGqqEhATt2bPHo6Zbt27y8vLymJ555hmPmgMHDig+Pl7+/v4KDQ3ViBEjlJ+f71Gzdu1a3XLLLXI6nWrRooXmzZtXrD8zZsxQkyZN5Ovrq+joaG3evLk0uwMAAGysVCFn3bp1SkpK0qZNm5Samqpz586pR48eOnXqlEfdU089pZ9++smapkyZYs0rKChQfHy88vLytHHjRs2fP1/z5s3TuHHjrJrMzEzFx8ere/fuysjI0LBhwzRw4ECtWrXKqlm8eLGSk5M1fvx4bd26Ve3atVNcXJyOHDlS1rEAAAA24mWMMWVd+OjRowoNDdW6det0xx13SPr1SE779u01derUEpf59NNPde+99+rw4cMKCwuTJM2ePVujRo3S0aNH5XA4NGrUKK1YsUI7duywluvbt6+ys7OVkpIiSYqOjtatt96q6dOnS5IKCwsVGRmpoUOHavTo0VfUf7fbrcDAQOXk5CggIKCsw1Ci7xa9VKztur6vlus2AAC4Fl3p7++ruiYnJydHkhQcHOzRvmDBAtWvX1833XSTxowZo9OnT1vz0tLS1KZNGyvgSFJcXJzcbrd27txp1cTGxnqsMy4uTmlpaZKkvLw8paene9R4e3srNjbWqilJbm6u3G63xwQAAOypRlkXLCws1LBhw3T77bfrpptustofffRRNW7cWBEREfrmm280atQo7dmzRx999JEkyeVyeQQcSdZrl8t1yRq3260zZ87ol19+UUFBQYk1u3fvvmifJ0+erIkTJ5Z1lwEAQDVS5pCTlJSkHTt2aMOGDR7tgwYNsv6/TZs2atCgge666y7t3btXzZs3L3tPy8GYMWOUnJxsvXa73YqMjKzCHgEAgIpSppAzZMgQLV++XOvXr1fDhg0vWRsdHS1J+v7779W8eXOFh4cXuwsqKytLkhQeHm79t6jt/JqAgAD5+fnJx8dHPj4+JdYUraMkTqdTTqfzynYSAABUa6W6JscYoyFDhmjp0qVas2aNmjZtetllMjIyJEkNGjSQJMXExGj79u0ed0GlpqYqICBArVu3tmpWr17tsZ7U1FTFxMRIkhwOh6KiojxqCgsLtXr1aqsGAABc20p1JCcpKUkLFy7Uxx9/rDp16ljX0AQGBsrPz0979+7VwoUL1atXL9WrV0/ffPONhg8frjvuuENt27aVJPXo0UOtW7dWv379NGXKFLlcLo0dO1ZJSUnWUZZnnnlG06dP18iRI/Xkk09qzZo1+uCDD7RixQqrL8nJyUpMTFSHDh3UsWNHTZ06VadOndITTzxRXmMDAACqsVKFnFmzZkn69Tbx882dO1f9+/eXw+HQ559/bgWOyMhI9e7dW2PHjrVqfXx8tHz5cg0ePFgxMTGqVauWEhMTNWnSJKumadOmWrFihYYPH65p06apYcOGmjNnjuLi4qyaPn366OjRoxo3bpxcLpfat2+vlJSUYhcjAwCAa9NVPSenuuM5OQAAVD+V8pwcAACA3ypCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKVShZzJkyfr1ltvVZ06dRQaGqqEhATt2bPHo+bs2bNKSkpSvXr1VLt2bfXu3VtZWVkeNQcOHFB8fLz8/f0VGhqqESNGKD8/36Nm7dq1uuWWW+R0OtWiRQvNmzevWH9mzJihJk2ayNfXV9HR0dq8eXNpdgcAANhYqULOunXrlJSUpE2bNik1NVXnzp1Tjx49dOrUKatm+PDh+uSTT7RkyRKtW7dOhw8f1h/+8AdrfkFBgeLj45WXl6eNGzdq/vz5mjdvnsaNG2fVZGZmKj4+Xt27d1dGRoaGDRumgQMHatWqVVbN4sWLlZycrPHjx2vr1q1q166d4uLidOTIkasZDwAAYBNexhhT1oWPHj2q0NBQrVu3TnfccYdycnIUEhKihQsX6sEHH5Qk7d69W61atVJaWpo6deqkTz/9VPfee68OHz6ssLAwSdLs2bM1atQoHT16VA6HQ6NGjdKKFSu0Y8cOa1t9+/ZVdna2UlJSJEnR0dG69dZbNX36dElSYWGhIiMjNXToUI0ePbrE/ubm5io3N9d67Xa7FRkZqZycHAUEBJR1GEr03aKXirVd1/fVct0GAADXIrfbrcDAwMv+/r6qa3JycnIkScHBwZKk9PR0nTt3TrGxsVZNy5Yt1ahRI6WlpUmS0tLS1KZNGyvgSFJcXJzcbrd27txp1Zy/jqKaonXk5eUpPT3do8bb21uxsbFWTUkmT56swMBAa4qMjLya3QcAAL9hZQ45hYWFGjZsmG6//XbddNNNkiSXyyWHw6GgoCCP2rCwMLlcLqvm/IBTNL9o3qVq3G63zpw5o59//lkFBQUl1hStoyRjxoxRTk6ONR08eLD0Ow4AAKqFGmVdMCkpSTt27NCGDRvKsz8Vyul0yul0VnU3AABAJSjTkZwhQ4Zo+fLl+uKLL9SwYUOrPTw8XHl5ecrOzvaoz8rKUnh4uFVz4d1WRa8vVxMQECA/Pz/Vr19fPj4+JdYUrQMAAFzbShVyjDEaMmSIli5dqjVr1qhp06Ye86OiolSzZk2tXr3aatuzZ48OHDigmJgYSVJMTIy2b9/ucRdUamqqAgIC1Lp1a6vm/HUU1RStw+FwKCoqyqOmsLBQq1evtmoAAMC1rVSnq5KSkrRw4UJ9/PHHqlOnjnX9S2BgoPz8/BQYGKgBAwYoOTlZwcHBCggI0NChQxUTE6NOnTpJknr06KHWrVurX79+mjJlilwul8aOHaukpCTrVNIzzzyj6dOna+TIkXryySe1Zs0affDBB1qxYoXVl+TkZCUmJqpDhw7q2LGjpk6dqlOnTumJJ54or7EBAADVWKlCzqxZsyRJ3bp182ifO3eu+vfvL0l6++235e3trd69eys3N1dxcXGaOXOmVevj46Ply5dr8ODBiomJUa1atZSYmKhJkyZZNU2bNtWKFSs0fPhwTZs2TQ0bNtScOXMUFxdn1fTp00dHjx7VuHHj5HK51L59e6WkpBS7GBkAAFybruo5OdXdld5nXxY8JwcAgIpRKc/JAQAA+K0i5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsqdchZv3697rvvPkVERMjLy0vLli3zmN+/f395eXl5TD179vSoOX78uB577DEFBAQoKChIAwYM0MmTJz1qvvnmG3Xp0kW+vr6KjIzUlClTivVlyZIlatmypXx9fdWmTRutXLmytLsDAABsqtQh59SpU2rXrp1mzJhx0ZqePXvqp59+sqa///3vHvMfe+wx7dy5U6mpqVq+fLnWr1+vQYMGWfPdbrd69Oihxo0bKz09XW+88YYmTJig9957z6rZuHGjHnnkEQ0YMEDbtm1TQkKCEhIStGPHjtLuEgAAsCEvY4wp88JeXlq6dKkSEhKstv79+ys7O7vYEZ4i3377rVq3bq2vv/5aHTp0kCSlpKSoV69eOnTokCIiIjRr1iy99NJLcrlccjgckqTRo0dr2bJl2r17tySpT58+OnXqlJYvX26tu1OnTmrfvr1mz559Rf13u90KDAxUTk6OAgICyjACF/fdopeKtV3X99Vy3QYAANeiK/39XSHX5Kxdu1ahoaG64YYbNHjwYB07dsyal5aWpqCgICvgSFJsbKy8vb311VdfWTV33HGHFXAkKS4uTnv27NEvv/xi1cTGxnpsNy4uTmlpaRftV25urtxut8cEAADsqdxDTs+ePfW3v/1Nq1ev1p/+9CetW7dO99xzjwoKCiRJLpdLoaGhHsvUqFFDwcHBcrlcVk1YWJhHTdHry9UUzS/J5MmTFRgYaE2RkZFXt7MAAOA3q0Z5r7Bv377W/7dp00Zt27ZV8+bNtXbtWt11113lvblSGTNmjJKTk63XbreboAMAgE1V+C3kzZo1U/369fX9999LksLDw3XkyBGPmvz8fB0/flzh4eFWTVZWlkdN0evL1RTNL4nT6VRAQIDHBAAA7KnCQ86hQ4d07NgxNWjQQJIUExOj7OxspaenWzVr1qxRYWGhoqOjrZr169fr3LlzVk1qaqpuuOEG1a1b16pZvXq1x7ZSU1MVExNT0bsEAACqgVKHnJMnTyojI0MZGRmSpMzMTGVkZOjAgQM6efKkRowYoU2bNmn//v1avXq17r//frVo0UJxcXGSpFatWqlnz5566qmntHnzZn355ZcaMmSI+vbtq4iICEnSo48+KofDoQEDBmjnzp1avHixpk2b5nGq6Y9//KNSUlL01ltvaffu3ZowYYK2bNmiIUOGlMOwAACA6q7UIWfLli26+eabdfPNN0uSkpOTdfPNN2vcuHHy8fHRN998o9///ve6/vrrNWDAAEVFRelf//qXnE6ntY4FCxaoZcuWuuuuu9SrVy917tzZ4xk4gYGB+uyzz5SZmamoqCg9//zzGjdunMezdG677TYtXLhQ7733ntq1a6cPP/xQy5Yt00033XQ14wEAAGziqp6TU93xnBwAAKqfKn1ODgAAQFUj5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsqdchZv3697rvvPkVERMjLy0vLli3zmG+M0bhx49SgQQP5+fkpNjZW3333nUfN8ePH9dhjjykgIEBBQUEaMGCATp486VHzzTffqEuXLvL19VVkZKSmTJlSrC9LlixRy5Yt5evrqzZt2mjlypWl3R0AAGBTpQ45p06dUrt27TRjxowS50+ZMkV//vOfNXv2bH311VeqVauW4uLidPbsWavmscce086dO5Wamqrly5dr/fr1GjRokDXf7XarR48eaty4sdLT0/XGG29owoQJeu+996yajRs36pFHHtGAAQO0bds2JSQkKCEhQTt27CjtLgEAABvyMsaYMi/s5aWlS5cqISFB0q9HcSIiIvT888/rhRdekCTl5OQoLCxM8+bNU9++ffXtt9+qdevW+vrrr9WhQwdJUkpKinr16qVDhw4pIiJCs2bN0ksvvSSXyyWHwyFJGj16tJYtW6bdu3dLkvr06aNTp05p+fLlVn86deqk9u3ba/bs2SX2Nzc3V7m5udZrt9utyMhI5eTkKCAgoKzDUKLvFr1UrO26vq+W6zYAALgWud1uBQYGXvb3d7lek5OZmSmXy6XY2FirLTAwUNHR0UpLS5MkpaWlKSgoyAo4khQbGytvb2999dVXVs0dd9xhBRxJiouL0549e/TLL79YNedvp6imaDslmTx5sgIDA60pMjLy6ncaAAD8JpVryHG5XJKksLAwj/awsDBrnsvlUmhoqMf8GjVqKDg42KOmpHWcv42L1RTNL8mYMWOUk5NjTQcPHiztLgIAgGqiRlV3oDI5nU45nc6q7gYAAKgE5XokJzw8XJKUlZXl0Z6VlWXNCw8P15EjRzzm5+fn6/jx4x41Ja3j/G1crKZoPgAAuLaVa8hp2rSpwsPDtXr1aqvN7Xbrq6++UkxMjCQpJiZG2dnZSk9Pt2rWrFmjwsJCRUdHWzXr16/XuXPnrJrU1FTdcMMNqlu3rlVz/naKaoq2AwAArm2lDjknT55URkaGMjIyJP16sXFGRoYOHDggLy8vDRs2TK+88or++c9/avv27Xr88ccVERFh3YHVqlUr9ezZU0899ZQ2b96sL7/8UkOGDFHfvn0VEREhSXr00UflcDg0YMAA7dy5U4sXL9a0adOUnJxs9eOPf/yjUlJS9NZbb2n37t2aMGGCtmzZoiFDhlz9qAAAgGqv1NfkbNmyRd27d7deFwWPxMREzZs3TyNHjtSpU6c0aNAgZWdnq3PnzkpJSZGvr6+1zIIFCzRkyBDddddd8vb2Vu/evfXnP//Zmh8YGKjPPvtMSUlJioqKUv369TVu3DiPZ+ncdtttWrhwocaOHasXX3xR1113nZYtW6abbrqpTAMBAADs5aqek1PdXel99mXBc3IAAKgYVfKcHAAAgN8KQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClcg85EyZMkJeXl8fUsmVLa/7Zs2eVlJSkevXqqXbt2urdu7eysrI81nHgwAHFx8fL399foaGhGjFihPLz8z1q1q5dq1tuuUVOp1MtWrTQvHnzyntXAABANVYhR3JuvPFG/fTTT9a0YcMGa97w4cP1ySefaMmSJVq3bp0OHz6sP/zhD9b8goICxcfHKy8vTxs3btT8+fM1b948jRs3zqrJzMxUfHy8unfvroyMDA0bNkwDBw7UqlWrKmJ3AABANVSjQlZao4bCw8OLtefk5Oivf/2rFi5cqDvvvFOSNHfuXLVq1UqbNm1Sp06d9Nlnn2nXrl36/PPPFRYWpvbt2+vll1/WqFGjNGHCBDkcDs2ePVtNmzbVW2+9JUlq1aqVNmzYoLfffltxcXEVsUsAAKCaqZAjOd99950iIiLUrFkzPfbYYzpw4IAkKT09XefOnVNsbKxV27JlSzVq1EhpaWmSpLS0NLVp00ZhYWFWTVxcnNxut3bu3GnVnL+OopqidVxMbm6u3G63xwQAAOyp3ENOdHS05s2bp5SUFM2aNUuZmZnq0qWLTpw4IZfLJYfDoaCgII9lwsLC5HK5JEkul8sj4BTNL5p3qRq3260zZ85ctG+TJ09WYGCgNUVGRl7t7gIAgN+ocj9ddc8991j/37ZtW0VHR6tx48b64IMP5OfnV96bK5UxY8YoOTnZeu12uwk6AADYVIXfQh4UFKTrr79e33//vcLDw5WXl6fs7GyPmqysLOsanvDw8GJ3WxW9vlxNQEDAJYOU0+lUQECAxwQAAOypwkPOyZMntXfvXjVo0EBRUVGqWbOmVq9ebc3fs2ePDhw4oJiYGElSTEyMtm/friNHjlg1qampCggIUOvWra2a89dRVFO0DgAAgHIPOS+88ILWrVun/fv3a+PGjXrggQfk4+OjRx55RIGBgRowYICSk5P1xRdfKD09XU888YRiYmLUqVMnSVKPHj3UunVr9evXT//3f/+nVatWaezYsUpKSpLT6ZQkPfPMM9q3b59Gjhyp3bt3a+bMmfrggw80fPjw8t4dAABQTZX7NTmHDh3SI488omPHjikkJESdO3fWpk2bFBISIkl6++235e3trd69eys3N1dxcXGaOXOmtbyPj4+WL1+uwYMHKyYmRrVq1VJiYqImTZpk1TRt2lQrVqzQ8OHDNW3aNDVs2FBz5szh9nEAAGDxMsaYqu5EVXG73QoMDFROTk65X5/z3aKXirVd1/fVct0GAADXoiv9/c3frgIAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZUo6o7AAAA7OFcygaP1zV7dq6invyKIzkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWuPAYAACUi/3Zn3q8vk5Ve+ExIacS/dauOgcAwM44XQUAAGyJkAMAAGyJ01UVpFBGmd7H5fbKVYBxqmlhcIVvs8AU6Ntj2/TL2Z9V17e+WtW7WT5ePjKFhSrcd0hyn5QCasu7WUN5eZNvAQD2Vu1DzowZM/TGG2/I5XKpXbt2euedd9SxY8cq7VPa4dV613etcrzPWm2Bhb4aWPg7RXu3s9ouvEZHKvt1OmmHV+uvO97QsbNHrLZ6vqF6os5/KeqzE1LOif8UB9ZRzQfukk/b68u0LQAASvod9lvjZYwxVd2Jslq8eLEef/xxzZ49W9HR0Zo6daqWLFmiPXv2KDQ09LLLu91uBQYGKicnRwEBAeXSp7TDqzVly0jJGMnrvBlGkpf0fI0BHkHncq4k9FjbVAk/SiMN33m7Ov4cWXzd/RMIOgCAK3IloabY3VV9X62Qvlzp7+9qHXKio6N16623avr06ZKkwsJCRUZGaujQoRo9evRlly/vkFNgCvR0arzH0RQPRgo0vhpztpu8PRLQfzQJuqdU2yw0hUo6N0HHlH3RbdbL9defN90r7wsvwQqqI+fYpy956oo7wgCg+qjIoysXBpgrUdUhp9qersrLy1N6errGjBljtXl7eys2NlZpaWklLpObm6vc3FzrdU5OjqRfB6s87Dq2Va7jP12y5med0o6zLjW7yDU6O04vK9U293kfl8v32CVrXDqhLb6H1DLngqNbWWd19J0xyqtTIElqFHj35Tf4j1Wl6h9gRzXvjinWdi615O8dVA8HclKLtV34nVjWmrIo6fu4vNZdmcrr9+vF1nvZ4zSmmvrxxx+NJLNx40aP9hEjRpiOHTuWuMz48eONfj2nw8TExMTExFTNp4MHD14yK1TbIzllMWbMGCUnJ1uvCwsLdfz4cdWrV09eXiWfPioLt9utyMhIHTx4sNyu9UFxjHPlYawrB+NcORjnylGR42yM0YkTJxQREXHJumobcurXry8fHx9lZWV5tGdlZSk8PLzEZZxOp5xOp0dbUFBQRXVRAQEBfIAqAeNceRjrysE4Vw7GuXJU1DgHBgZetqbaPizF4XAoKipKq1evttoKCwu1evVqxcQUP18OAACuLdX2SI4kJScnKzExUR06dFDHjh01depUnTp1Sk888URVdw0AAFSxah1y+vTpo6NHj2rcuHFyuVxq3769UlJSFBYWVqX9cjqdGj9+fLFTYyhfjHPlYawrB+NcORjnyvFbGOdq/ZwcAACAi6m21+QAAABcCiEHAADYEiEHAADYEiEHAADYEiEHAADYEiGnjGbMmKEmTZrI19dX0dHR2rx58yXrlyxZopYtW8rX11dt2rTRypUrK6mn1Vtpxvkvf/mLunTporp166pu3bqKjY297M8Fvyrt+7nIokWL5OXlpYSEhIrtoI2Udqyzs7OVlJSkBg0ayOl06vrrr+f74wqUdpynTp2qG264QX5+foqMjNTw4cN19uzZSupt9bR+/Xrdd999ioiIkJeXl5YtW3bZZdauXatbbrlFTqdTLVq00Lx58yq2k+Xz5zKvLYsWLTIOh8O8//77ZufOneapp54yQUFBJisrq8T6L7/80vj4+JgpU6aYXbt2mbFjx5qaNWua7du3V3LPq5fSjvOjjz5qZsyYYbZt22a+/fZb079/fxMYGGgOHTpUyT2vXko7zkUyMzPN7373O9OlSxdz//33V05nq7nSjnVubq7p0KGD6dWrl9mwYYPJzMw0a9euNRkZGZXc8+qltOO8YMEC43Q6zYIFC0xmZqZZtWqVadCggRk+fHgl97x6WblypXnppZfMRx99ZCSZpUuXXrJ+3759xt/f3yQnJ5tdu3aZd955x/j4+JiUlJQK6yMhpww6duxokpKSrNcFBQUmIiLCTJ48ucT6hx9+2MTHx3u0RUdHm6effrpC+1ndlXacL5Sfn2/q1Klj5s+fX1FdtIWyjHN+fr657bbbzJw5c0xiYiIh5wqVdqxnzZplmjVrZvLy8iqri7ZQ2nFOSkoyd955p0dbcnKyuf322yu0n3ZyJSFn5MiR5sYbb/Ro69Onj4mLi6uwfnG6qpTy8vKUnp6u2NhYq83b21uxsbFKS0srcZm0tDSPekmKi4u7aD3KNs4XOn36tM6dO6fg4OCK6ma1V9ZxnjRpkkJDQzVgwIDK6KYtlGWs//nPfyomJkZJSUkKCwvTTTfdpNdee00FBQWV1e1qpyzjfNtttyk9Pd06pbVv3z6tXLlSvXr1qpQ+Xyuq4ndhtf6zDlXh559/VkFBQbE/HREWFqbdu3eXuIzL5Sqx3uVyVVg/q7uyjPOFRo0apYiIiGIfKvxHWcZ5w4YN+utf/6qMjIxK6KF9lGWs9+3bpzVr1uixxx7TypUr9f333+vZZ5/VuXPnNH78+MrodrVTlnF+9NFH9fPPP6tz584yxig/P1/PPPOMXnzxxcro8jXjYr8L3W63zpw5Iz8/v3LfJkdyYEuvv/66Fi1apKVLl8rX17equ2MbJ06cUL9+/fSXv/xF9evXr+ru2F5hYaFCQ0P13nvvKSoqSn369NFLL72k2bNnV3XXbGXt2rV67bXXNHPmTG3dulUfffSRVqxYoZdffrmqu4arxJGcUqpfv758fHyUlZXl0Z6VlaXw8PASlwkPDy9VPco2zkXefPNNvf766/r888/Vtm3biuxmtVfacd67d6/279+v++67z2orLCyUJNWoUUN79uxR8+bNK7bT1VRZ3tMNGjRQzZo15ePjY7W1atVKLpdLeXl5cjgcFdrn6qgs4/zf//3f6tevnwYOHChJatOmjU6dOqVBgwbppZdekrc3xwPKw8V+FwYEBFTIURyJIzml5nA4FBUVpdWrV1tthYWFWr16tWJiYkpcJiYmxqNeklJTUy9aj7KNsyRNmTJFL7/8slJSUtShQ4fK6Gq1VtpxbtmypbZv366MjAxr+v3vf6/u3bsrIyNDkZGRldn9aqUs7+nbb79d33//vRUkJenf//63GjRoQMC5iLKM8+nTp4sFmaJgafgb1uWmSn4XVtglzTa2aNEi43Q6zbx588yuXbvMoEGDTFBQkHG5XMYYY/r162dGjx5t1X/55ZemRo0a5s033zTffvutGT9+PLeQX4HSjvPrr79uHA6H+fDDD81PP/1kTSdOnKiqXagWSjvOF+LuqitX2rE+cOCAqVOnjhkyZIjZs2ePWb58uQkNDTWvvPJKVe1CtVDacR4/frypU6eO+fvf/2727dtnPvvsM9O8eXPz8MMPV9UuVAsnTpww27ZtM9u2bTOSzP/8z/+Ybdu2mR9++MEYY8zo0aNNv379rPqiW8hHjBhhvv32WzNjxgxuIf+teuedd0yjRo2Mw+EwHTt2NJs2bbLmde3a1SQmJnrUf/DBB+b66683DofD3HjjjWbFihWV3OPqqTTj3LhxYyOp2DR+/PjK73g1U9r38/kIOaVT2rHeuHGjiY6ONk6n0zRr1sy8+uqrJj8/v5J7Xf2UZpzPnTtnJkyYYJo3b258fX1NZGSkefbZZ80vv/xS+R2vRr744osSv3OLxjYxMdF07dq12DLt27c3DofDNGvWzMydO7dC++hlDMfiAACA/XBNDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKX/D3xCcGnDunt+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQp5JREFUeJzt3XlcVfW+//E3oHuDwwZRBrniXKk5FSpSmnokKam0o6XVNSzNMrSjlFN5nRrsWp305FTHk3jvT49mJ+2khhqmHhMzB65TmhmmpaClsB1B4Pv7owfruAUHECSWr+fjsR66v+uz1vquL3tv3qy91tpexhgjAAAAm/Eu7w4AAACUBUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOrtmECRPk5eVlPa5fv7769+9f5ts9ePCgvLy8lJiYaLX1799f1apVK/NtF/Dy8tKECRNu2PYqus6dO6tz586lus5Ln38orKjXys0qMTFRXl5eOnjw4FVrb9R7GW48Qg5uqBUrVvxuw8LvuW83i7Nnz2rChAlau3ZteXel3PF8rPi8vLyKnN58881CtT///LMeffRRBQQEyOVyqUePHvrhhx/Kodf2Uqm8O4CKa9++ffL2Ll5OXrFihWbMmFGsN+969erp3Llzqly5cjF7WDxX6tu5c+dUqRIvl7J29uxZTZw4UZIKHQkaO3asRo8eXQ69Kh+/59dKRdCvXz/17dtXTqezXPtx77336sknn/Rou+OOOzwenz59Wl26dFFWVpZefvllVa5cWe+++646deqk1NRU1axZ80Z22VZ410aJlfWbR25urvLz8+VwOOTr61um27qa8t7+jXD+/Hk5HI4ig+uZM2dUtWrVcujVv1WqVImgeRm/p9fK74WPj498fHzKuxu69dZb9Z//+Z9XrJk5c6b279+vzZs3q23btpKk+++/X82bN9c777yjN95440Z01Zb4uApF2rBhg9q2bStfX181atRI77//fqGaSz/HvnDhgiZOnKhbbrlFvr6+qlmzpjp06KDVq1dL+u08mhkzZkjyPIwr/ftcgrfffltTp05Vo0aN5HQ6tWfPniueZ/DDDz8oJiZGVatWVVhYmCZNmiRjjDV/7dq18vLyKvTxx6XrvFLfCtou/Yt6+/btuv/+++VyuVStWjV17dpVmzZt8qgpOC/gq6++UkJCgoKCglS1alU9/PDDOn78+OV/AJfx888/a8CAAQoLC5PT6VSDBg00ePBg5eTkeIzJI488osDAQFWpUkXt27fX8uXLPdZTMC4LFy7U2LFj9R//8R+qUqWK3G63db7TgQMH1L17d1WvXl1PPPGEJCk/P19Tp07V7bffLl9fX4WEhOjZZ5/VyZMnr9jvnJwcjRs3ThEREfL391fVqlXVsWNHffnll1bNwYMHFRQUJEmaOHGi9TMoGPeizsnJzc3Vq6++aj1f6tevr5dfflnZ2dkedfXr19cDDzygDRs2qF27dvL19VXDhg31P//zP8X7Aei358KQIUO0ePFiNWvWTH5+foqKitLOnTslSe+//74aN24sX19fde7cudA5If/617/0yCOPqG7dunI6nQoPD9fw4cN17tw5q6a0XivHjh1TUFCQOnfu7PG6+P7771W1alX16dPnmve74Lm8fv16Pfvss6pZs6ZcLpeefPLJQj//LVu2KCYmRrVq1ZKfn58aNGigp59+2pp/8T7MmDFDDRs2VJUqVdStWzcdPnxYxhi9+uqrqlOnjvz8/NSjRw+dOHHimvt6cX8vHn9jjF577TXVqVNHVapUUZcuXbR79+5Cy17tvay4zp07p/Pnz192/scff6y2bdtaAUeSmjRpoq5du+qjjz4q0TbxG/4sQiE7d+5Ut27dFBQUpAkTJig3N1fjx49XSEjIFZebMGGCJk+erIEDB6pdu3Zyu93asmWLtm3bpnvvvVfPPvusjhw5otWrV+t///d/i1zH3Llzdf78eQ0aNEhOp1OBgYHKz88vsjYvL0/33Xef2rdvrylTpigpKUnjx49Xbm6uJk2aVKx9vpa+XWz37t3q2LGjXC6XRo4cqcqVK+v9999X586dtW7dOkVGRnrUDx06VDVq1ND48eN18OBBTZ06VUOGDNGiRYuuuY9HjhxRu3btlJmZqUGDBqlJkyb6+eef9fHHH+vs2bNyOBzKyMjQXXfdpbNnz+qFF15QzZo1NW/ePD300EP6+OOP9fDDD3us89VXX5XD4dBLL72k7OxsORwOSb+Fh5iYGHXo0EFvv/22qlSpYo1TYmKinnrqKb3wwgtKS0vT9OnTtX37dn311VeX/ZjE7XZrzpw5euyxx/TMM8/o1KlT+tvf/qaYmBht3rxZrVu3VlBQkGbNmqXBgwfr4Ycf1h//+EdJUsuWLS87JgMHDtS8efPUu3dvvfjii/r66681efJkffvtt1qyZIlH7ffff6/evXtrwIABiouL04cffqj+/fsrIiJCt99++zX/HKTfgso///lPxcfHS5ImT56sBx54QCNHjtTMmTP1/PPP6+TJk5oyZYqefvpprVmzxlp28eLFOnv2rAYPHqyaNWtq8+bNeu+99/TTTz9p8eLF1jiXxmslODhYs2bN0iOPPKL33ntPL7zwgvLz89W/f39Vr15dM2fOLNZ+S9KQIUMUEBCgCRMmaN++fZo1a5Z+/PFHKzgfO3bMev8YPXq0AgICdPDgQX3yySeF1jV//nzl5ORo6NChOnHihKZMmaJHH31Uf/jDH7R27VqNGjVK33//vd577z299NJL+vDDD4vd34uNGzdOr732mrp3767u3btr27Zt6tatm8cfCdLV38uKIzExUTNnzpQxRk2bNtXYsWP1+OOPW/Pz8/O1Y8cOjxBYoF27dlq1apVOnTql6tWrl2ynb3YGuETPnj2Nr6+v+fHHH622PXv2GB8fH3PxU6ZevXomLi7OetyqVSsTGxt7xXXHx8ebop52aWlpRpJxuVzm2LFjRc6bO3eu1RYXF2ckmaFDh1pt+fn5JjY21jgcDnP8+HFjjDFffvmlkWS+/PLLq67zcn0zxhhJZvz48dbjnj17GofDYQ4cOGC1HTlyxFSvXt3cc889VtvcuXONJBMdHW3y8/Ot9uHDhxsfHx+TmZlZ5PaK8uSTTxpvb2/zzTffFJpXsO5hw4YZSeZf//qXNe/UqVOmQYMGpn79+iYvL88Y8+9xadiwoTl79qzHugrGdvTo0R7t//rXv4wkM3/+fI/2pKSkQu2dOnUynTp1sh7n5uaa7Oxsj+VOnjxpQkJCzNNPP221HT9+vNBYFxg/frzHzyc1NdVIMgMHDvSoe+mll4wks2bNGqutXr16RpJZv3691Xbs2DHjdDrNiy++WGhbVyLJOJ1Ok5aWZrW9//77RpIJDQ01brfbah8zZoyR5FF76XgbY8zkyZONl5eXx2uutF4rxhjz2GOPmSpVqpjvvvvOvPXWW0aSWbp0abH2u+C5HBERYXJycqz2KVOmGEnm008/NcYYs2TJEiOpyOfppf0MCgryeA0UjFerVq3MhQsXPPrvcDjM+fPni93fgrE/duyYcTgcJjY21uO1+PLLLxtJxX4vuxZ33XWXmTp1qvn000/NrFmzTPPmzY0kM3PmTKum4Dk/adKkQsvPmDHDSDJ79+697r7crPi4Ch7y8vK0cuVK9ezZU3Xr1rXamzZtqpiYmCsuGxAQoN27d2v//v0l3n6vXr2sjyyuxZAhQ6z/F3yMkJOToy+++KLEfbiavLw8rVq1Sj179lTDhg2t9tq1a+vxxx/Xhg0b5Ha7PZYZNGiQx0ctHTt2VF5enn788cdr2mZ+fr6WLl2qBx98UG3atCk0v2DdK1asULt27dShQwdrXrVq1TRo0CAdPHhQe/bs8VguLi5Ofn5+RW5z8ODBHo8XL14sf39/3Xvvvfrll1+sKSIiQtWqVfP46OlSPj4+1lGi/Px8nThxQrm5uWrTpo22bdt2TWNwqRUrVkiSEhISPNpffPFFSSr0EV2zZs3UsWNH63FQUJBuu+22El3B0rVrV9WvX996XHDkrlevXh5/cRe0X7yNi8f7zJkz+uWXX3TXXXfJGKPt27dfcx+K81qZPn26/P391bt3b/3Xf/2X+vXrpx49elzzti42aNAgjyN2gwcPVqVKlayfR0BAgCRp2bJlunDhwhXX9cgjj8jf3996XDBe//mf/+lx/lVkZKRycnL0888/l6jPkvTFF19YR40ufi0OGzasUG1pvJdJ0ldffaU//elPeuihh/Tcc89p69atat68uV5++WXr48mCf4s6x7Hg/KqLP8pE8RBy4OH48eM6d+6cbrnllkLzbrvttisuO2nSJGVmZurWW29VixYtNGLECO3YsaNY22/QoME113p7e3uEDOm3k/wkXdO9MUrq+PHjOnv2bJHj0bRpU+Xn5+vw4cMe7RcHRkmqUaOGJF31XJaLt+l2u9W8efMr1v3444+X7VfB/ItdbrwrVaqkOnXqeLTt379fWVlZCg4OVlBQkMd0+vRpHTt27Ip9mzdvnlq2bGmd4xAUFKTly5crKyvristdzo8//ihvb281btzYoz00NFQBAQGF9vXSn4H028/hWn8GV1pXwS/q8PDwItsv3sahQ4fUv39/BQYGqlq1agoKClKnTp0kqVhjUZzXSmBgoP7yl79ox44d8vf311/+8pdrXvZSl743VKtWTbVr17Zec506dVKvXr00ceJE1apVSz169NDcuXMLnSclXd84FlfB8+HS/gcFBVmvxwKl8V5WFIfDoSFDhigzM1Nbt26V9O/QW9T4FJzHc7k/RHB1nJODUnPPPffowIED+vTTT7Vq1SrNmTNH7777rmbPnq2BAwde0zpK+8V8uZvH5eXllep2ruZyV3mYi04GLQ+XG2+n01noKqv8/HwFBwdr/vz5RS5zpaMK/+///T/1799fPXv21IgRIxQcHCwfHx9NnjxZBw4cKPkO6PI/40uV5s/gcuu62jby8vJ077336sSJExo1apSaNGmiqlWr6ueff1b//v0ve/5ZUYr7Wlm5cqWk34LCTz/9ZB1xKW1eXl76+OOPtWnTJn322WdauXKlnn76ab3zzjvatGmTx008SzqOZa003ssupyDAFZxIHRgYKKfTqaNHjxaqLWgLCwu7rm3ezDiSAw9BQUHy8/Mr8jDtvn37rrp8YGCgnnrqKf3973/X4cOH1bJlS4+rkkrzjrX5+fmFPmr47rvvJMn6KKHgL7TMzEyPuqI+JrrWvgUFBalKlSpFjsfevXvl7e1d6C/R6xUUFCSXy6Vdu3Zdsa5evXqX7VfB/JJq1KiRfv31V919992Kjo4uNLVq1eqyy3788cdq2LChPvnkE/Xr108xMTGKjo4udMVJcZ4f9erVU35+fqHnakZGhjIzM69rX8vKzp079d133+mdd97RqFGj1KNHD0VHRxf5S6w0XytJSUmaM2eORo4cqaCgIMXFxSk3N7dE67p0vE+fPq2jR496fHwnSe3bt9frr7+uLVu2aP78+dq9e7cWLlxY0l24bgXPh0v7f/z48SKPEF3tvaykCt6zCv4o8Pb2VosWLbRly5ZCtV9//bUaNmzIScfXgZADDz4+PoqJidHSpUt16NAhq/3bb7+1/hK8nF9//dXjcbVq1dS4cWOPw7AF91q5NHSU1PTp063/G2M0ffp0Va5cWV27dpX02xubj4+P1q9f77FcUVeVXGvffHx81K1bN3366aceH4tlZGRowYIF6tChg1wuVwn3qGje3t7q2bOnPvvssyLfDAv+wu3evbs2b96slJQUa96ZM2f0wQcfqH79+mrWrFmJ+/Doo48qLy9Pr776aqF5ubm5Vxy3gr/ML/5L/Ouvv/bopyTrKq5reX50795dkjR16lSP9j//+c+SpNjY2Kuu40YrahyMMZo2bVqh2tJ6rWRmZlpXCb3xxhuaM2eOtm3bVuJ7r3zwwQce59rMmjVLubm5uv/++yX9dqTo0iMurVu3llT0RzI3SnR0tCpXrqz33nvPo3+XPn+ka3svu5qibhFx6tQpTZ06VbVq1VJERITV3rt3b33zzTcer+19+/ZpzZo1euSRR655myiMj6tQyMSJE5WUlKSOHTvq+eefV25urt577z3dfvvtV/xculmzZurcubMiIiIUGBioLVu26OOPP/Y4Objghf3CCy8oJiZGPj4+6tu3b4n66evrq6SkJMXFxSkyMlKff/65li9frpdfftn6K8nf39+6fNbLy0uNGjXSsmXLijx/pDh9e+2117R69Wp16NBBzz//vCpVqqT3339f2dnZmjJlSon252reeOMNrVq1Sp06ddKgQYPUtGlTHT16VIsXL9aGDRsUEBCg0aNH6+9//7vuv/9+vfDCCwoMDNS8efOUlpamf/zjH8W+Q/XFOnXqpGeffVaTJ09WamqqunXrpsqVK2v//v1avHixpk2bpt69exe57AMPPKBPPvlEDz/8sGJjY5WWlqbZs2erWbNmOn36tFXn5+enZs2aadGiRbr11lsVGBio5s2bF3kuUqtWrRQXF6cPPvhAmZmZ6tSpkzZv3qx58+apZ8+e6tKlS4n3taw0adJEjRo10ksvvaSff/5ZLpdL//jHP4o8klBar5U//elP+vXXX/XFF1/Ix8dH9913nwYOHKjXXntNPXr0uOIRuKLk5OSoa9euevTRR7Vv3z7NnDlTHTp00EMPPSTpt3OvZs6cqYcffliNGjXSqVOn9Ne//lUul8sKpuUhKChIL730knW5f/fu3bV9+3Z9/vnnqlWrlkfttbyXXc2MGTOsiwXq1q2ro0eP6sMPP9ShQ4f0v//7v9aJ+JL0/PPP669//atiY2P10ksvqXLlyvrzn/+skJAQ60R6lFD5XNSF37t169aZiIgI43A4TMOGDc3s2bMLXcJ76SXkr732mmnXrp0JCAgwfn5+pkmTJub111/3uNw0NzfXDB061AQFBRkvLy9rfQWXlL711luF+nK5S8irVq1qDhw4YLp162aqVKliQkJCzPjx463LpAscP37c9OrVy1SpUsXUqFHDPPvss2bXrl2F1nm5vhlT+BJyY4zZtm2biYmJMdWqVTNVqlQxXbp0MRs3bvSoKbiM9dLLaS93afvV/Pjjj+bJJ580QUFBxul0moYNG5r4+HiPy7MPHDhgevfubQICAoyvr69p166dWbZsWZHbX7x4caFtFIzt5XzwwQcmIiLC+Pn5merVq5sWLVqYkSNHmiNHjlg1l15Cnp+fb9544w1Tr14943Q6zR133GGWLVtm4uLiTL169TzWv3HjRuu5d/G4X/r8M8aYCxcumIkTJ5oGDRqYypUrm/DwcDNmzJhClxrXq1evyEuCL+3ntZBk4uPjPdou9/wtapz37NljoqOjTbVq1UytWrXMM888Y/7v//7vmp+PxXmtfPrpp0aSeeeddzzq3G63qVevnmnVqpXH6/NKCp7L69atM4MGDTI1atQw1apVM0888YT59ddfrbpt27aZxx57zNStW9c4nU4THBxsHnjgAbNly5YSjdfF277SZemX6+/Fl+/n5eWZiRMnmtq1axs/Pz/TuXNns2vXrhK9l13NqlWrzL333mtCQ0NN5cqVTUBAgOnWrZtJTk4usv7w4cOmd+/exuVymWrVqpkHHnjA7N+//5q3h6J5GVPOZz4CAH73Cm4C+c033xR5GwPg94hzcgAAgC1xTg5Qzk6fPu1xXkpRgoKCfhdfNmhn6enpV5zv5+fnceM6uzh37txV788TGBh4g3pzdeX9esnJybnq92j5+/tzb5vfCUIOUM7efvttTZw48Yo1aWlphS7RRemqXbv2FefHxcUV+SWxFd2iRYv01FNPXbHmSnezvtHK+/WycePGq57UPnfuXI8vL0b54ZwcoJz98MMPV/1qgQ4dOli3eEfZuNpXgYSFhV3XJfi/V0ePHi3ym7gvFhERUeiuwOWlvF8vJ0+etO5WfDm33377VUMzbgxCDgAAsCVOPAYAALZ0U5+Tk5+fryNHjqh69eqlegt1AABQdowxOnXqlMLCwq54k9ObOuQcOXKk1L9jCAAA3BiHDx9WnTp1Ljv/pg45BV96dvjw4VL/riEAAFA23G63wsPDr/rlpTd1yCn4iMrlchFyAACoYK52qgknHgMAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFuqVN4dsKsLSRsKtVW+r0M59AQAgJsTR3IAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtFSvkzJo1Sy1btpTL5ZLL5VJUVJQ+//xza/758+cVHx+vmjVrqlq1aurVq5cyMjI81nHo0CHFxsaqSpUqCg4O1ogRI5Sbm+tRs3btWt15551yOp1q3LixEhMTC/VlxowZql+/vnx9fRUZGanNmzcXZ1cAAIDNFSvk1KlTR2+++aa2bt2qLVu26A9/+IN69Oih3bt3S5KGDx+uzz77TIsXL9a6det05MgR/fGPf7SWz8vLU2xsrHJycrRx40bNmzdPiYmJGjdunFWTlpam2NhYdenSRampqRo2bJgGDhyolStXWjWLFi1SQkKCxo8fr23btqlVq1aKiYnRsWPHrnc8AACATXgZY8z1rCAwMFBvvfWWevfuraCgIC1YsEC9e/eWJO3du1dNmzZVSkqK2rdvr88//1wPPPCAjhw5opCQEEnS7NmzNWrUKB0/flwOh0OjRo3S8uXLtWvXLmsbffv2VWZmppKSkiRJkZGRatu2raZPny5Jys/PV3h4uIYOHarRo0dfc9/dbrf8/f2VlZUll8t1PcNQCPfJAQCgbFzr7+8Sn5OTl5enhQsX6syZM4qKitLWrVt14cIFRUdHWzVNmjRR3bp1lZKSIklKSUlRixYtrIAjSTExMXK73dbRoJSUFI91FNQUrCMnJ0dbt271qPH29lZ0dLRVcznZ2dlyu90eEwAAsKdih5ydO3eqWrVqcjqdeu6557RkyRI1a9ZM6enpcjgcCggI8KgPCQlRenq6JCk9Pd0j4BTML5h3pRq3261z587pl19+UV5eXpE1Beu4nMmTJ8vf39+awsPDi7v7AACggih2yLntttuUmpqqr7/+WoMHD1ZcXJz27NlTFn0rdWPGjFFWVpY1HT58uLy7BAAAykixv7vK4XCocePGkqSIiAh98803mjZtmvr06aOcnBxlZmZ6HM3JyMhQaGioJCk0NLTQVVAFV19dXHPpFVkZGRlyuVzy8/OTj4+PfHx8iqwpWMflOJ1OOZ3O4u4yAACogK77Pjn5+fnKzs5WRESEKleurOTkZGvevn37dOjQIUVFRUmSoqKitHPnTo+roFavXi2Xy6VmzZpZNRevo6CmYB0Oh0MREREeNfn5+UpOTrZqAAAAinUkZ8yYMbr//vtVt25dnTp1SgsWLNDatWu1cuVK+fv7a8CAAUpISFBgYKBcLpeGDh2qqKgotW/fXpLUrVs3NWvWTP369dOUKVOUnp6usWPHKj4+3jrC8txzz2n69OkaOXKknn76aa1Zs0YfffSRli9fbvUjISFBcXFxatOmjdq1a6epU6fqzJkzeuqpp0pxaAAAQEVWrJBz7NgxPfnkkzp69Kj8/f3VsmVLrVy5Uvfee68k6d1335W3t7d69eql7OxsxcTEaObMmdbyPj4+WrZsmQYPHqyoqChVrVpVcXFxmjRpklXToEEDLV++XMOHD9e0adNUp04dzZkzRzExMVZNnz59dPz4cY0bN07p6elq3bq1kpKSCp2MDAAAbl7XfZ+cioz75AAAUPGU+X1yAAAAfs8IOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYqlXcH7Opg5ueF2m5Rh3LoCQAANyeO5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsqVsiZPHmy2rZtq+rVqys4OFg9e/bUvn37PGo6d+4sLy8vj+m5557zqDl06JBiY2NVpUoVBQcHa8SIEcrNzfWoWbt2re688045nU41btxYiYmJhfozY8YM1a9fX76+voqMjNTmzZuLszsAAMDGihVy1q1bp/j4eG3atEmrV6/WhQsX1K1bN505c8aj7plnntHRo0etacqUKda8vLw8xcbGKicnRxs3btS8efOUmJiocePGWTVpaWmKjY1Vly5dlJqaqmHDhmngwIFauXKlVbNo0SIlJCRo/Pjx2rZtm1q1aqWYmBgdO3aspGMBAABsxMsYY0q68PHjxxUcHKx169bpnnvukfTbkZzWrVtr6tSpRS7z+eef64EHHtCRI0cUEhIiSZo9e7ZGjRql48ePy+FwaNSoUVq+fLl27dplLde3b19lZmYqKSlJkhQZGam2bdtq+vTpkqT8/HyFh4dr6NChGj169DX13+12y9/fX1lZWXK5XCUdhiLtX/hKobZb+r5eqtsAAOBmdK2/v6/rnJysrCxJUmBgoEf7/PnzVatWLTVv3lxjxozR2bNnrXkpKSlq0aKFFXAkKSYmRm63W7t377ZqoqOjPdYZExOjlJQUSVJOTo62bt3qUePt7a3o6GirpijZ2dlyu90eEwAAsKdKJV0wPz9fw4YN0913363mzZtb7Y8//rjq1aunsLAw7dixQ6NGjdK+ffv0ySefSJLS09M9Ao4k63F6evoVa9xut86dO6eTJ08qLy+vyJq9e/dets+TJ0/WxIkTS7rLAACgAilxyImPj9euXbu0YcMGj/ZBgwZZ/2/RooVq166trl276sCBA2rUqFHJe1oKxowZo4SEBOux2+1WeHh4OfYIAACUlRKFnCFDhmjZsmVav3696tSpc8XayMhISdL333+vRo0aKTQ0tNBVUBkZGZKk0NBQ69+CtotrXC6X/Pz85OPjIx8fnyJrCtZRFKfTKafTeW07CQAAKrRinZNjjNGQIUO0ZMkSrVmzRg0aNLjqMqmpqZKk2rVrS5KioqK0c+dOj6ugVq9eLZfLpWbNmlk1ycnJHutZvXq1oqKiJEkOh0MREREeNfn5+UpOTrZqAADAza1YR3Li4+O1YMECffrpp6pevbp1Do2/v7/8/Px04MABLViwQN27d1fNmjW1Y8cODR8+XPfcc49atmwpSerWrZuaNWumfv36acqUKUpPT9fYsWMVHx9vHWV57rnnNH36dI0cOVJPP/201qxZo48++kjLly+3+pKQkKC4uDi1adNG7dq109SpU3XmzBk99dRTpTU2AACgAitWyJk1a5ak3y4Tv9jcuXPVv39/ORwOffHFF1bgCA8PV69evTR27Fir1sfHR8uWLdPgwYMVFRWlqlWrKi4uTpMmTbJqGjRooOXLl2v48OGaNm2a6tSpozlz5igmJsaq6dOnj44fP65x48YpPT1drVu3VlJSUqGTkQEAwM3puu6TU9FxnxwAACqeG3KfHAAAgN8rQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClYoWcyZMnq23btqpevbqCg4PVs2dP7du3z6Pm/Pnzio+PV82aNVWtWjX16tVLGRkZHjWHDh1SbGysqlSpouDgYI0YMUK5ubkeNWvXrtWdd94pp9Opxo0bKzExsVB/ZsyYofr168vX11eRkZHavHlzcXYHAADYWLFCzrp16xQfH69NmzZp9erVunDhgrp166YzZ85YNcOHD9dnn32mxYsXa926dTpy5Ij++Mc/WvPz8vIUGxurnJwcbdy4UfPmzVNiYqLGjRtn1aSlpSk2NlZdunRRamqqhg0bpoEDB2rlypVWzaJFi5SQkKDx48dr27ZtatWqlWJiYnTs2LHrGQ8AAGATXsYYU9KFjx8/ruDgYK1bt0733HOPsrKyFBQUpAULFqh3796SpL1796pp06ZKSUlR+/bt9fnnn+uBBx7QkSNHFBISIkmaPXu2Ro0apePHj8vhcGjUqFFavny5du3aZW2rb9++yszMVFJSkiQpMjJSbdu21fTp0yVJ+fn5Cg8P19ChQzV69Ohr6r/b7Za/v7+ysrLkcrlKOgxF2r/wlUJtt/R9vVS3AQDAzehaf39f1zk5WVlZkqTAwEBJ0tatW3XhwgVFR0dbNU2aNFHdunWVkpIiSUpJSVGLFi2sgCNJMTExcrvd2r17t1Vz8ToKagrWkZOTo61bt3rUeHt7Kzo62qopSnZ2ttxut8cEAADsqcQhJz8/X8OGDdPdd9+t5s2bS5LS09PlcDgUEBDgURsSEqL09HSr5uKAUzC/YN6Vatxut86dO6dffvlFeXl5RdYUrKMokydPlr+/vzWFh4cXf8cBAECFUOKQEx8fr127dmnhwoWl2Z8yNWbMGGVlZVnT4cOHy7tLAACgjFQqyUJDhgzRsmXLtH79etWpU8dqDw0NVU5OjjIzMz2O5mRkZCg0NNSqufQqqIKrry6uufSKrIyMDLlcLvn5+cnHx0c+Pj5F1hSsoyhOp1NOp7P4OwwAACqcYh3JMcZoyJAhWrJkidasWaMGDRp4zI+IiFDlypWVnJxste3bt0+HDh1SVFSUJCkqKko7d+70uApq9erVcrlcatasmVVz8ToKagrW4XA4FBER4VGTn5+v5ORkqwYAANzcinUkJz4+XgsWLNCnn36q6tWrW+e/+Pv7y8/PT/7+/howYIASEhIUGBgol8uloUOHKioqSu3bt5ckdevWTc2aNVO/fv00ZcoUpaena+zYsYqPj7eOsjz33HOaPn26Ro4cqaefflpr1qzRRx99pOXLl1t9SUhIUFxcnNq0aaN27dpp6tSpOnPmjJ566qnSGhsAAFCBFSvkzJo1S5LUuXNnj/a5c+eqf//+kqR3331X3t7e6tWrl7KzsxUTE6OZM2datT4+Plq2bJkGDx6sqKgoVa1aVXFxcZo0aZJV06BBAy1fvlzDhw/XtGnTVKdOHc2ZM0cxMTFWTZ8+fXT8+HGNGzdO6enpat26tZKSkgqdjAwAAG5O13WfnIqO++QAAFDx3JD75AAAAPxeEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtFTvkrF+/Xg8++KDCwsLk5eWlpUuXeszv37+/vLy8PKb77rvPo+bEiRN64okn5HK5FBAQoAEDBuj06dMeNTt27FDHjh3l6+ur8PBwTZkypVBfFi9erCZNmsjX11ctWrTQihUrirs7AADApoodcs6cOaNWrVppxowZl6257777dPToUWv6+9//7jH/iSee0O7du7V69WotW7ZM69ev16BBg6z5brdb3bp1U7169bR161a99dZbmjBhgj744AOrZuPGjXrsscc0YMAAbd++XT179lTPnj21a9eu4u4SAACwIS9jjCnxwl5eWrJkiXr27Gm19e/fX5mZmYWO8BT49ttv1axZM33zzTdq06aNJCkpKUndu3fXTz/9pLCwMM2aNUuvvPKK0tPT5XA4JEmjR4/W0qVLtXfvXklSnz59dObMGS1btsxad/v27dW6dWvNnj37mvrvdrvl7++vrKwsuVyuEozA5e1f+Eqhtlv6vl6q2wAA4GZ0rb+/y+ScnLVr1yo4OFi33XabBg8erF9//dWal5KSooCAACvgSFJ0dLS8vb319ddfWzX33HOPFXAkKSYmRvv27dPJkyetmujoaI/txsTEKCUl5bL9ys7Oltvt9pgAAIA9lXrIue+++/Q///M/Sk5O1n//939r3bp1uv/++5WXlydJSk9PV3BwsMcylSpVUmBgoNLT062akJAQj5qCx1erKZhflMmTJ8vf39+awsPDr29nAQDA71al0l5h3759rf+3aNFCLVu2VKNGjbR27Vp17dq1tDdXLGPGjFFCQoL12O12E3QAALCpMr+EvGHDhqpVq5a+//57SVJoaKiOHTvmUZObm6sTJ04oNDTUqsnIyPCoKXh8tZqC+UVxOp1yuVweEwAAsKcyDzk//fSTfv31V9WuXVuSFBUVpczMTG3dutWqWbNmjfLz8xUZGWnVrF+/XhcuXLBqVq9erdtuu001atSwapKTkz22tXr1akVFRZX1LgEAgAqg2CHn9OnTSk1NVWpqqiQpLS1NqampOnTokE6fPq0RI0Zo06ZNOnjwoJKTk9WjRw81btxYMTExkqSmTZvqvvvu0zPPPKPNmzfrq6++0pAhQ9S3b1+FhYVJkh5//HE5HA4NGDBAu3fv1qJFizRt2jSPj5r+9Kc/KSkpSe+884727t2rCRMmaMuWLRoyZEgpDAsAAKjoih1ytmzZojvuuEN33HGHJCkhIUF33HGHxo0bJx8fH+3YsUMPPfSQbr31Vg0YMEARERH617/+JafTaa1j/vz5atKkibp27aru3burQ4cOHvfA8ff316pVq5SWlqaIiAi9+OKLGjdunMe9dO666y4tWLBAH3zwgVq1aqWPP/5YS5cuVfPmza9nPAAAgE1c131yKjrukwMAQMVTrvfJAQAAKG+EHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEvFDjnr16/Xgw8+qLCwMHl5eWnp0qUe840xGjdunGrXri0/Pz9FR0dr//79HjUnTpzQE088IZfLpYCAAA0YMECnT5/2qNmxY4c6duwoX19fhYeHa8qUKYX6snjxYjVp0kS+vr5q0aKFVqxYUdzdAQAANlXskHPmzBm1atVKM2bMKHL+lClT9Je//EWzZ8/W119/rapVqyomJkbnz5+3ap544gnt3r1bq1ev1rJly7R+/XoNGjTImu92u9WtWzfVq1dPW7du1VtvvaUJEybogw8+sGo2btyoxx57TAMGDND27dvVs2dP9ezZU7t27SruLgEAABvyMsaYEi/s5aUlS5aoZ8+ekn47ihMWFqYXX3xRL730kiQpKytLISEhSkxMVN++ffXtt9+qWbNm+uabb9SmTRtJUlJSkrp3766ffvpJYWFhmjVrll555RWlp6fL4XBIkkaPHq2lS5dq7969kqQ+ffrozJkzWrZsmdWf9u3bq3Xr1po9e/Y19d/tdsvf319ZWVlyuVwlHYYi7V/4SqG2W/q+XqrbAADgZnStv79L9ZyctLQ0paenKzo62mrz9/dXZGSkUlJSJEkpKSkKCAiwAo4kRUdHy9vbW19//bVVc88991gBR5JiYmK0b98+nTx50qq5eDsFNQXbKUp2drbcbrfHBAAA7KlUQ056erokKSQkxKM9JCTEmpeenq7g4GCP+ZUqVVJgYKBHTVHruHgbl6spmF+UyZMny9/f35rCw8OLu4sAAKCCuKmurhozZoyysrKs6fDhw+XdJQAAUEZKNeSEhoZKkjIyMjzaMzIyrHmhoaE6duyYx/zc3FydOHHCo6aodVy8jcvVFMwvitPplMvl8pgAAIA9lWrIadCggUJDQ5WcnGy1ud1uff3114qKipIkRUVFKTMzU1u3brVq1qxZo/z8fEVGRlo169ev14ULF6ya1atX67bbblONGjWsmou3U1BTsB0AAHBzK3bIOX36tFJTU5Wamirpt5ONU1NTdejQIXl5eWnYsGF67bXX9M9//lM7d+7Uk08+qbCwMOsKrKZNm+q+++7TM888o82bN+urr77SkCFD1LdvX4WFhUmSHn/8cTkcDg0YMEC7d+/WokWLNG3aNCUkJFj9+NOf/qSkpCS988472rt3ryZMmKAtW7ZoyJAh1z8qAACgwqtU3AW2bNmiLl26WI8LgkdcXJwSExM1cuRInTlzRoMGDVJmZqY6dOigpKQk+fr6WsvMnz9fQ4YMUdeuXeXt7a1evXrpL3/5izXf399fq1atUnx8vCIiIlSrVi2NGzfO4146d911lxYsWKCxY8fq5Zdf1i233KKlS5eqefPmJRoIAABgL9d1n5yKjvvkAABQ8ZTLfXIAAAB+Lwg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlko95EyYMEFeXl4eU5MmTaz558+fV3x8vGrWrKlq1aqpV69eysjI8FjHoUOHFBsbqypVqig4OFgjRoxQbm6uR83atWt15513yul0qnHjxkpMTCztXQEAABVYmRzJuf3223X06FFr2rBhgzVv+PDh+uyzz7R48WKtW7dOR44c0R//+Edrfl5enmJjY5WTk6ONGzdq3rx5SkxM1Lhx46yatLQ0xcbGqkuXLkpNTdWwYcM0cOBArVy5six2BwAAVECVymSllSopNDS0UHtWVpb+9re/acGCBfrDH/4gSZo7d66aNm2qTZs2qX379lq1apX27NmjL774QiEhIWrdurVeffVVjRo1ShMmTJDD4dDs2bPVoEEDvfPOO5Kkpk2basOGDXr33XcVExNTFrsEAAAqmDI5krN//36FhYWpYcOGeuKJJ3To0CFJ0tatW3XhwgVFR0dbtU2aNFHdunWVkpIiSUpJSVGLFi0UEhJi1cTExMjtdmv37t1WzcXrKKgpWMflZGdny+12e0wAAMCeSj3kREZGKjExUUlJSZo1a5bS0tLUsWNHnTp1Sunp6XI4HAoICPBYJiQkROnp6ZKk9PR0j4BTML9g3pVq3G63zp07d9m+TZ48Wf7+/tYUHh5+vbsLAAB+p0r946r777/f+n/Lli0VGRmpevXq6aOPPpKfn19pb65YxowZo4SEBOux2+0m6AAAYFNlfgl5QECAbr31Vn3//fcKDQ1VTk6OMjMzPWoyMjKsc3hCQ0MLXW1V8PhqNS6X64pByul0yuVyeUwAAMCeyjzknD59WgcOHFDt2rUVERGhypUrKzk52Zq/b98+HTp0SFFRUZKkqKgo7dy5U8eOHbNqVq9eLZfLpWbNmlk1F6+joKZgHQAAAKUecl566SWtW7dOBw8e1MaNG/Xwww/Lx8dHjz32mPz9/TVgwAAlJCToyy+/1NatW/XUU08pKipK7du3lyR169ZNzZo1U79+/fR///d/WrlypcaOHav4+Hg5nU5J0nPPPacffvhBI0eO1N69ezVz5kx99NFHGj58eGnvDgAAqKBK/Zycn376SY899ph+/fVXBQUFqUOHDtq0aZOCgoIkSe+++668vb3Vq1cvZWdnKyYmRjNnzrSW9/Hx0bJlyzR48GBFRUWpatWqiouL06RJk6yaBg0aaPny5Ro+fLimTZumOnXqaM6cOVw+DgAALF7GGFPenSgvbrdb/v7+ysrKKvXzc/YvfKVQ2y19Xy/VbQAAcDO61t/ffHcVAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwpUrl3QEAAGAPF5I2eDyufF+HcurJbziSAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbIn75AAAgFJxMPNzj8e3iPvkAAAAlDpCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCWuripD+TJK8z4ht1e2XMaphiZPPl4+5d0t3MTyTJ6+/XW7Tp7/RTV8a6lpzTt4Tt4AJj9f+T/8JLlPS65q8m5YR17e/I2Jiu3Sbxz/ParwIWfGjBl66623lJ6erlatWum9995Tu3btyrtb2umTrn9W/lZZ3uetto8/u1f9K/VSpHcrSeX/FfS4uaQcSdbfdr2lX88fs9pq+gZrQPMRigrrWo49s7e8Hd/pwpJkKevUvxv9q6vyw13l0/LW8usYUEwVIdRcyssYY8q7EyW1aNEiPfnkk5o9e7YiIyM1depULV68WPv27VNwcPBVl3e73fL391dWVpZcLlep9SvlSLKmfDPitwdehee/WGmAFXQuRfBBWUg5kqwpW0ZKuvTl/tsTdGSbKQSdMpC34ztdSFx62fmV+/ck6KBUXRpEivqdUlph5dJ74hTllr6vl8q2LnWtv78rdMiJjIxU27ZtNX36dElSfn6+wsPDNXToUI0ePfqqy5dFyMkzeXp2dax+PXesyIAjI/kbX40531kNA7qXyjYJRrgS6zl50REcT16q5Rus2fcu46OrUmTy85X96vueR3AuFVBdzrHP8tFVBVFUOLj0/bciHu0oyrUEmGtR3iGnwn5clZOTo61bt2rMmDFWm7e3t6Kjo5WSklLkMtnZ2crOzrYeZ2VlSfptsErLnl+3Kf3E0SvW/KIz2nU+XWePLC2djX5YOuup63/vVWsOZa0uteVKoz+4um/NAaXnXvk5efTsEaX843019Wp02ZpLf4Y38udzLc+f39vzxZx0K//Y8SsXZZyX94f/kFeN0juS/HtQEX5eJXlPKlIpvf9eqqjxKbU+30Cl+fu1qPVe9TiNqaB+/vlnI8ls3LjRo33EiBGmXbt2RS4zfvx4o9+O1zMxMTExMTFV8Onw4cNXzAoV9khOSYwZM0YJCQnW4/z8fJ04cUI1a9aUl1dRny2VjNvtVnh4uA4fPlyq5/rAE+N84zDWNwbjfGMwzjdGWY6zMUanTp1SWFjYFesqbMipVauWfHx8lJGR4dGekZGh0NDQIpdxOp1yOp0ebQEBAWXVRblcLl5ANwDjfOMw1jcG43xjMM43RlmNs7+//1VrKuzZbg6HQxEREUpOTrba8vPzlZycrKioqHLsGQAA+D2osEdyJCkhIUFxcXFq06aN2rVrp6lTp+rMmTN66qmnyrtrAACgnFXokNOnTx8dP35c48aNU3p6ulq3bq2kpCSFhISUa7+cTqfGjx9f6KMxlC7G+cZhrG8MxvnGYJxvjN/DOFfo++QAAABcToU9JwcAAOBKCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDklNGPGDNWvX1++vr6KjIzU5s2br1i/ePFiNWnSRL6+vmrRooVWrFhxg3pasRVnnP/617+qY8eOqlGjhmrUqKHo6Oir/lzwm+I+nwssXLhQXl5e6tmzZ9l20EaKO9aZmZmKj49X7dq15XQ6deutt/L+cQ2KO85Tp07VbbfdJj8/P4WHh2v48OE6f/78DeptxbR+/Xo9+OCDCgsLk5eXl5YuXXrVZdauXas777xTTqdTjRs3VmJiYtl2snS+LvPmsnDhQuNwOMyHH35odu/ebZ555hkTEBBgMjIyiqz/6quvjI+Pj5kyZYrZs2ePGTt2rKlcubLZuXPnDe55xVLccX788cfNjBkzzPbt2823335r+vfvb/z9/c1PP/10g3tesRR3nAukpaWZ//iP/zAdO3Y0PXr0uDGdreCKO9bZ2dmmTZs2pnv37mbDhg0mLS3NrF271qSmpt7gnlcsxR3n+fPnG6fTaebPn2/S0tLMypUrTe3atc3w4cNvcM8rlhUrVphXXnnFfPLJJ0aSWbJkyRXrf/jhB1OlShWTkJBg9uzZY9577z3j4+NjkpKSyqyPhJwSaNeunYmPj7ce5+XlmbCwMDN58uQi6x999FETGxvr0RYZGWmeffbZMu1nRVfccb5Ubm6uqV69upk3b15ZddEWSjLOubm55q677jJz5swxcXFxhJxrVNyxnjVrlmnYsKHJycm5UV20heKOc3x8vPnDH/7g0ZaQkGDuvvvuMu2nnVxLyBk5cqS5/fbbPdr69OljYmJiyqxffFxVTDk5Odq6dauio6OtNm9vb0VHRyslJaXIZVJSUjzqJSkmJuay9SjZOF/q7NmzunDhggIDA8uqmxVeScd50qRJCg4O1oABA25EN22hJGP9z3/+U1FRUYqPj1dISIiaN2+uN954Q3l5eTeq2xVOScb5rrvu0tatW62PtH744QetWLFC3bt3vyF9vlmUx+/CCv21DuXhl19+UV5eXqGvjggJCdHevXuLXCY9Pb3I+vT09DLrZ0VXknG+1KhRoxQWFlboRYV/K8k4b9iwQX/729+Umpp6A3poHyUZ6x9++EFr1qzRE088oRUrVuj777/X888/rwsXLmj8+PE3otsVTknG+fHHH9cvv/yiDh06yBij3NxcPffcc3r55ZdvRJdvGpf7Xeh2u3Xu3Dn5+fmV+jY5kgNbevPNN7Vw4UItWbJEvr6+5d0d2zh16pT69eunv/71r6pVq1Z5d8f28vPzFRwcrA8++EARERHq06ePXnnlFc2ePbu8u2Yra9eu1RtvvKGZM2dq27Zt+uSTT7R8+XK9+uqr5d01XCeO5BRTrVq15OPjo4yMDI/2jIwMhYaGFrlMaGhosepRsnEu8Pbbb+vNN9/UF198oZYtW5ZlNyu84o7zgQMHdPDgQT344INWW35+viSpUqVK2rdvnxo1alS2na6gSvKcrl27tipXriwfHx+rrWnTpkpPT1dOTo4cDkeZ9rkiKsk4/9d//Zf69eungQMHSpJatGihM2fOaNCgQXrllVfk7c3xgNJwud+FLperTI7iSBzJKTaHw6GIiAglJydbbfn5+UpOTlZUVFSRy0RFRXnUS9Lq1asvW4+SjbMkTZkyRa+++qqSkpLUpk2bG9HVCq2449ykSRPt3LlTqamp1vTQQw+pS5cuSk1NVXh4+I3sfoVSkuf03Xffre+//94KkpL03XffqXbt2gScyyjJOJ89e7ZQkCkIlobvsC415fK7sMxOabaxhQsXGqfTaRITE82ePXvMoEGDTEBAgElPTzfGGNOvXz8zevRoq/6rr74ylSpVMm+//bb59ttvzfjx47mE/BoUd5zffPNN43A4zMcff2yOHj1qTadOnSqvXagQijvOl+LqqmtX3LE+dOiQqV69uhkyZIjZt2+fWbZsmQkODjavvfZaee1ChVDccR4/frypXr26+fvf/25++OEHs2rVKtOoUSPz6KOPltcuVAinTp0y27dvN9u3bzeSzJ///Gezfft28+OPPxpjjBk9erTp16+fVV9wCfmIESPMt99+a2bMmMEl5L9X7733nqlbt65xOBymXbt2ZtOmTda8Tp06mbi4OI/6jz76yNx6663G4XCY22+/3SxfvvwG97hiKs4416tXz0gqNI0fP/7Gd7yCKe7z+WKEnOIp7lhv3LjRREZGGqfTaRo2bGhef/11k5ube4N7XfEUZ5wvXLhgJkyYYBo1amR8fX1NeHi4ef75583JkydvfMcrkC+//LLI99yCsY2LizOdOnUqtEzr1q2Nw+EwDRs2NHPnzi3TPnoZw7E4AABgP5yTAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbOn/A7Z/t8LL3M9wAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQiFJREFUeJzt3XlcVfX+7/E3oHuDAyDKID9xrpScChMpTU0SkzrRsZNW17A0y9BSyqn8OTR5rtUvPY51PEf93atp+ks7qWGkqZmYOXAcUk8qpqWgqbAdQeB7/+iyjltQgRhi+Xo+Hvuh+7s+a63v+rLX3m/WXmvhYYwxAgAAsBnPyu4AAABAeSDkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkoNgmTJggDw8P63njxo3Vv3//cl/v4cOH5eHhoXnz5llt/fv3V61atcp93QU8PDw0YcKECltfVde1a1d17dq1TJd59esPhRW1r9ys5s2bJw8PDx0+fPiGtRX1XoaKR8hBhVq1atXvNiz8nvt2s7hw4YImTJigdevWVXZXKh2vx6qtIGRd67FgwQKrtiDAX/3w9vauxC2wh2qV3QFUXfv375enZ8ly8qpVqzRjxowSvXk3atRIFy9eVPXq1UvYw5K5Xt8uXryoatXYXcrbhQsXNHHiREkqdCRo7NixGj16dCX0qnL8nveVqqBfv37q27evnE5npaz/3nvv1f/5P/+nUPv777+vf/7zn+revXuhabNmzXI7Qu3l5VWufbwZ8K6NUivvN4/c3Fzl5+fL4XBU+m80lb3+inDp0iU5HI4ig+v58+dVs2bNSujVv1WrVo2geQ2/p33l98LLy6tSQ0LTpk3VtGlTt7aLFy/qhRde0H333aeQkJBC8zz66KOqV69eRXXxpsDXVSjSxo0bddddd8nb21vNmjXTBx98UKjm6u+xL1++rIkTJ+qWW26Rt7e36tatq06dOik5OVnSr+fRzJgxQ5LcDslK/z6X4N1339WUKVPUrFkzOZ1Off/999c9z+DQoUOKiYlRzZo1FRoaqtdff13GGGv6unXr5OHhUejrj6uXeb2+FbRd/Rv1jh079MADD8jX11e1atVS9+7dtXnzZreagkPW33zzjRITExUYGKiaNWvqkUce0cmTJ6/9A7iGn3/+WQMGDFBoaKicTqeaNGmiwYMHKycnx21M/vSnPykgIEA1atRQx44dtXLlSrflFIzLokWLNHbsWP3Hf/yHatSoIZfLZZ3vdPDgQfXq1Uu1a9fWk08+KUnKz8/XlClTdPvtt8vb21vBwcF67rnndObMmev2OycnR+PGjVNERIT8/PxUs2ZNde7cWV999ZVVc/jwYQUGBkqSJk6caP0MCsa9qHNycnNz9cYbb1ivl8aNG+vVV19Vdna2W13jxo314IMPauPGjerQoYO8vb3VtGlT/fd//3fJfgD69bUwZMgQLVmyROHh4fLx8VFUVJR27dolSfrggw/UvHlzeXt7q2vXroXOCfn666/1pz/9SQ0bNpTT6VRYWJiGDx+uixcvWjVlta+cOHFCgYGB6tq1q9t+ceDAAdWsWVN9+vQp9nYXvJY3bNig5557TnXr1pWvr6+eeuqpQj//rVu3KiYmRvXq1ZOPj4+aNGmiZ555xpp+5TbMmDFDTZs2VY0aNdSjRw8dPXpUxhi98cYbatCggXx8fPTwww/r9OnTxe7rlf29cvyNMXrzzTfVoEED1ahRQ926ddOePXsKzXuj97LS+uyzz3T27Flrf7qaMUYul8vtZ4Xfhl+LUMiuXbvUo0cPBQYGasKECcrNzdX48eMVHBx83fkmTJigSZMmaeDAgerQoYNcLpe2bt2q7du36/7779dzzz2nY8eOKTk5ucjDuJI0d+5cXbp0SYMGDZLT6VRAQIDy8/OLrM3Ly1PPnj3VsWNHTZ48WUlJSRo/frxyc3P1+uuvl2ibi9O3K+3Zs0edO3eWr6+vRo4cqerVq+uDDz5Q165dtX79ekVGRrrVDx06VHXq1NH48eN1+PBhTZkyRUOGDNHixYuL3cdjx46pQ4cOyszM1KBBg9SiRQv9/PPPWrp0qS5cuCCHw6GMjAzdfffdunDhgl588UXVrVtX8+fP1x/+8ActXbpUjzzyiNsy33jjDTkcDr3yyivKzs6Ww+GQ9Gt4iImJUadOnfTuu++qRo0a1jjNmzdPTz/9tF588UWlpaVp+vTp2rFjh7755ptrfk3icrk0Z84cPf7443r22Wd19uxZ/e1vf1NMTIy2bNmidu3aKTAwULNmzdLgwYP1yCOP6I9//KMkqU2bNtcck4EDB2r+/Pl69NFH9fLLL+vbb7/VpEmTtHfvXi1btsyt9sCBA3r00Uc1YMAAxcfH6+9//7v69++viIgI3X777cX+OUi/BpV//OMfSkhIkCRNmjRJDz74oEaOHKmZM2fqhRde0JkzZzR58mQ988wzWrt2rTXvkiVLdOHCBQ0ePFh169bVli1bNG3aNP30009asmSJNc5lsa8EBQVp1qxZ+tOf/qRp06bpxRdfVH5+vvr376/atWtr5syZJdpuSRoyZIj8/f01YcIE7d+/X7NmzdKPP/5oBecTJ05Y7x+jR4+Wv7+/Dh8+rE8++aTQshYsWKCcnBwNHTpUp0+f1uTJk/XYY4/pvvvu07p16zRq1CgdOHBA06ZN0yuvvKK///3vJe7vlcaNG6c333xTvXr1Uq9evbR9+3b16NHD7ZcE6cbvZaW1YMEC+fj4WK/tqzVt2lTnzp1TzZo1FRcXp/fee++G77u4AQNcJS4uznh7e5sff/zRavv++++Nl5eXufIl06hRIxMfH289b9u2rYmNjb3ushMSEkxRL7u0tDQjyfj6+poTJ04UOW3u3LlWW3x8vJFkhg4darXl5+eb2NhY43A4zMmTJ40xxnz11VdGkvnqq69uuMxr9c0YYySZ8ePHW8/j4uKMw+EwBw8etNqOHTtmateube69916rbe7cuUaSiY6ONvn5+Vb78OHDjZeXl8nMzCxyfUV56qmnjKenp/nuu+8KTStY9rBhw4wk8/XXX1vTzp49a5o0aWIaN25s8vLyjDH/HpemTZuaCxcuuC2rYGxHjx7t1v71118bSWbBggVu7UlJSYXau3TpYrp06WI9z83NNdnZ2W7znTlzxgQHB5tnnnnGajt58mShsS4wfvx4t59PamqqkWQGDhzoVvfKK68YSWbt2rVWW6NGjYwks2HDBqvtxIkTxul0mpdffrnQuq5HknE6nSYtLc1q++CDD4wkExISYlwul9U+ZswYI8mt9urxNsaYSZMmGQ8PD7d9rqz2FWOMefzxx02NGjXMv/71L/POO+8YSWb58uUl2u6C13JERITJycmx2idPnmwkmU8//dQYY8yyZcuMpCJfp1f3MzAw0G0fKBivtm3bmsuXL7v13+FwmEuXLpW4vwVjf+LECeNwOExsbKzbvvjqq68aSSV+LyupU6dOGYfDYR577LFC06ZMmWKGDBliFixYYJYuXWpeeuklU61aNXPLLbeYrKysMu3HzYavq+AmLy9Pq1evVlxcnBo2bGi1t2zZUjExMded19/fX3v27NEPP/xQ6vX37t3b+sqiOIYMGWL9v+BrhJycHH355Zel7sON5OXl6YsvvlBcXJzbd+7169fXE088oY0bN8rlcrnNM2jQILevWjp37qy8vDz9+OOPxVpnfn6+li9froceekjt27cvNL1g2atWrVKHDh3UqVMna1qtWrU0aNAgHT58WN9//73bfPHx8fLx8SlynYMHD3Z7vmTJEvn5+en+++/XL7/8Yj0iIiJUq1Ytt6+erubl5WUdJcrPz9fp06eVm5ur9u3ba/v27cUag6utWrVKkpSYmOjW/vLLL0tSoa/owsPD1blzZ+t5YGCgbrvtNh06dKjE6+7evbsaN25sPS84cte7d2/Vrl27UPuV67hyvM+fP69ffvlFd999t4wx2rFjR7H7UJJ9Zfr06fLz89Ojjz6q//zP/1S/fv308MMPF3tdVxo0aJDbEbvBgwerWrVq1s/D399fkrRixQpdvnz5usv605/+JD8/P+t5wXj9r//1v9zOv4qMjFROTo5+/vnnUvVZkr788kvrqNGV++KwYcMK1ZbFe9nVli5dqpycnCK/qnrppZc0bdo0PfHEE+rdu7emTJmi+fPn64cffijV0Tb8GyEHbk6ePKmLFy/qlltuKTTttttuu+68r7/+ujIzM3XrrbeqdevWGjFihHbu3Fmi9Tdp0qTYtZ6enoVO7Lv11lslqVj3xiitkydP6sKFC0WOR8uWLZWfn6+jR4+6tV8ZGCWpTp06knTDc1muXKfL5VKrVq2uW/fjjz9es18F0690rfGuVq2aGjRo4Nb2ww8/KCsrS0FBQQoMDHR7nDt3TidOnLhu3+bPn682bdpY5zgEBgZq5cqVysrKuu581/Ljjz/K09NTzZs3d2sPCQmRv79/oW29+mcg/fpzKO7P4HrLKvigDgsLK7L9ynUcOXJE/fv3V0BAgGrVqqXAwEB16dJFkko0FiXZVwICAvSXv/xFO3fulJ+fn/7yl78Ue96rXf3eUKtWLdWvX9/a57p06aLevXtr4sSJqlevnh5++GHNnTu30HlS0m8bx5IqeD1c3f/AwEBrfyxQFu9lV1uwYIECAgL0wAMPFKv+iSeeUEhISLn+wnYz4JwclJl7771XBw8e1KeffqovvvhCc+bM0fvvv6/Zs2dr4MCBxVrGtY4qlNa1bh6Xl5dXpuu5kWtd5WEq+QTDa4230+ksdJVVfn6+goKC3O7vcaXrHVX4v//3/6p///6Ki4vTiBEjFBQUJC8vL02aNEkHDx4s/Qbo2j/jq5Xlz+Bay7rROvLy8nT//ffr9OnTGjVqlFq0aKGaNWvq559/Vv/+/a95/llRSrqvrF69WtKvQeGnn36yjriUNQ8PDy1dulSbN2/WZ599ptWrV+uZZ57Re++9p82bNxfrEunK3l/K4r3sSkeOHNHXX39d6CjYjYSFhZX4hGu440gO3AQGBsrHx6fIw7T79++/4fwBAQF6+umn9dFHH+no0aNq06aN21VJZXnH2vz8/EJfNfzrX/+SJOurhILf0DIzM93qivqaqLh9CwwMVI0aNYocj3379snT07PQb6K/VWBgoHx9fbV79+7r1jVq1Oia/SqYXlrNmjXTqVOndM899yg6OrrQo23bttecd+nSpWratKk++eQT9evXTzExMYqOjtalS5fc6kry+mjUqJHy8/MLvVYzMjKUmZn5m7a1vOzatUv/+te/9N5772nUqFF6+OGHFR0drdDQ0EK1ZbmvJCUlac6cORo5cqQCAwMVHx+v3NzcUi3r6vE+d+6cjh8/7vb1nSR17NhRb731lrZu3aoFCxZoz549WrRoUWk34TcreD1c3f+TJ08WeYToRu9lJfHRRx/JGHPNq6qKYoxxu+IQpUPIgRsvLy/FxMRo+fLlOnLkiNW+d+9e6zfBazl16pTb81q1aql58+Zuh6kL7rVydegorenTp1v/N8Zo+vTpql69unWjrUaNGsnLy0sbNmxwm6+o77mL2zcvLy/16NFDn376qdvXYhkZGVq4cKE6deokX1/fUm5R0Tw9PRUXF6fPPvtMW7duLTS94DfcXr16acuWLUpJSbGmnT9/Xh9++KEaN26s8PDwUvfhscceU15ent54441C03Jzc687bgW/mV/5m/i3337r1k9J1lVcxXl99OrVS5I0ZcoUt/b/+q//kiTFxsbecBkVrahxMMZo6tSphWrLal/JzMy0rhJ6++23NWfOHG3fvl1vv/12qZb34Ycfup1rM2vWLOXm5lpfw5w5c6bQEZd27dpJUpFfWVWU6OhoVa9eXdOmTXPr39WvH6l472UlsXDhQjVs2NDtXLkrFXU7iVmzZunkyZPq2bNnqdaJX/F1FQqZOHGikpKS1LlzZ73wwgvKzc3VtGnTdPvtt1/3e+nw8HB17dpVERERCggI0NatW7V06VK3k4MjIiIkSS+++KJiYmLk5eWlvn37lqqf3t7eSkpKUnx8vCIjI/X5559r5cqVevXVV63ffvz8/KzLZz08PNSsWTOtWLGiyPNHStK3N998U8nJyerUqZNeeOEFVatWTR988IGys7M1efLkUm3Pjbz99tv64osv1KVLFw0aNEgtW7bU8ePHtWTJEm3cuFH+/v4aPXq0PvroIz3wwAN68cUXFRAQoPnz5ystLU3/8z//U+I7VF+pS5cueu655zRp0iSlpqaqR48eql69un744QctWbJEU6dO1aOPPlrkvA8++KA++eQTPfLII4qNjVVaWppmz56t8PBwnTt3zqrz8fFReHi4Fi9erFtvvVUBAQFq1apVkecitW3bVvHx8frwww+VmZmpLl26aMuWLZo/f77i4uLUrVu3Um9reWnRooWaNWumV155RT///LN8fX31P//zP0UeSSirfeWll17SqVOn9OWXX8rLy0s9e/bUwIED9eabb+rhhx++7hG4ouTk5Kh79+567LHHtH//fs2cOVOdOnXSH/7wB0m/nns1c+ZMPfLII2rWrJnOnj2rv/71r/L19bWCaWUIDAzUK6+8Yl3u36tXL+3YsUOff/55oRvwFee9rLh2796tnTt3avTo0dc8OteoUSP16dNHrVu3lre3tzZu3KhFixapXbt2eu6550q1vfj/KuOSLvz+rV+/3kRERBiHw2GaNm1qZs+eXegS3qsvIX/zzTdNhw4djL+/v/Hx8TEtWrQwb731ltvlprm5uWbo0KEmMDDQeHh4WMsruKT0nXfeKdSXa11CXrNmTXPw4EHTo0cPU6NGDRMcHGzGjx9vXSZd4OTJk6Z3796mRo0apk6dOua5554zu3fvLrTMa/XNmMKXkBtjzPbt201MTIypVauWqVGjhunWrZvZtGmTW03BZaxXX057rUvbb+THH380Tz31lAkMDDROp9M0bdrUJCQkuF2effDgQfPoo48af39/4+3tbTp06GBWrFhR5PqXLFlSaB0FY3stH374oYmIiDA+Pj6mdu3apnXr1mbkyJHm2LFjVs3Vl5Dn5+ebt99+2zRq1Mg4nU5zxx13mBUrVpj4+HjTqFEjt+Vv2rTJeu1dOe5Xv/6MMeby5ctm4sSJpkmTJqZ69eomLCzMjBkzptClxo0aNSrykuCr+1kckkxCQoJb27Vev0WN8/fff2+io6NNrVq1TL169cyzzz5r/vnPfxb79ViSfeXTTz81ksx7773nVudyuUyjRo1M27Zt3fbP6yl4La9fv94MGjTI1KlTx9SqVcs8+eST5tSpU1bd9u3bzeOPP24aNmxonE6nCQoKMg8++KDZunVrqcbrynVf77L0a/X3ysv38/LyzMSJE039+vWNj4+P6dq1q9m9e3ep3suKa/To0UaS2blz5zVrBg4caMLDw03t2rVN9erVTfPmzc2oUaPcbkeA0vEwhlsrAgCur+AmkN99912RtzEAfo84JwcAANgS5+QAlezcuXNu56UUJTAwkL9IXM7S09OvO93Hx8ftxnV2cfHixRvenycgIKCCenNjlb2/5OTk3PCybj8/vzK/HQZKh5ADVLJ3331XEydOvG5NWlpaoUt0Ubbq169/3enx8fFF/pHYqm7x4sV6+umnr1tzvbtZV7TK3l82bdp0w5Pa586d6/bHi1F5OCcHqGSHDh264Z8W6NSpk7y9vSuoRzenG91ZNjQ09Dddgv97dfz48SL/EveVIiIiCt0VuLJU9v5y5swZbdu27bo1t99++w1DMyoGIQcAANgSJx4DAABbuqnPycnPz9exY8dUu3btMr2FOgAAKD/GGJ09e1ahoaHXvcnpTR1yjh07VuZ/YwgAAFSMo0ePqkGDBtecflOHnNq1a0v6dZDK+m8NAQCA8uFyuRQWFmZ9jl/LTR1yCr6i8vX1JeQAAFDF3OhUE048BgAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtlSikDNr1iy1adPGukNwVFSUPv/8c2v6pUuXlJCQoLp166pWrVrq3bu3MjIy3JZx5MgRxcbGqkaNGgoKCtKIESOUm5vrVrNu3Trdeeedcjqdat68uebNm1eoLzNmzFDjxo3l7e2tyMhIbdmypSSbAgAAbK5EIadBgwb685//rG3btmnr1q2677779PDDD2vPnj2SpOHDh+uzzz7TkiVLtH79eh07dkx//OMfrfnz8vIUGxurnJwcbdq0SfPnz9e8efM0btw4qyYtLU2xsbHq1q2bUlNTNWzYMA0cOFCrV6+2ahYvXqzExESNHz9e27dvV9u2bRUTE6MTJ0781vEAAAB2YX6jOnXqmDlz5pjMzExTvXp1s2TJEmva3r17jSSTkpJijDFm1apVxtPT06Snp1s1s2bNMr6+viY7O9sYY8zIkSPN7bff7raOPn36mJiYGOt5hw4dTEJCgvU8Ly/PhIaGmkmTJpWo71lZWUaSycrKKtF8AACg8hT387vU5+Tk5eVp0aJFOn/+vKKiorRt2zZdvnxZ0dHRVk2LFi3UsGFDpaSkSJJSUlLUunVrBQcHWzUxMTFyuVzW0aCUlBS3ZRTUFCwjJydH27Ztc6vx9PRUdHS0VXMt2dnZcrlcbg8AAGBPJQ45u3btUq1ateR0OvX8889r2bJlCg8PV3p6uhwOh/z9/d3qg4ODlZ6eLklKT093CzgF0wumXa/G5XLp4sWL+uWXX5SXl1dkTcEyrmXSpEny8/OzHmFhYSXdfAAAUEVUK+kMt912m1JTU5WVlaWlS5cqPj5e69evL4++lbkxY8YoMTHReu5yucot6FxO2liorXrPTuWyLgAAUFiJQ47D4VDz5s0lSREREfruu+80depU9enTRzk5OcrMzHQ7mpORkaGQkBBJUkhISKGroAquvrqy5uorsjIyMuTr6ysfHx95eXnJy8uryJqCZVyL0+mU0+ks6SYDAIAq6DffJyc/P1/Z2dmKiIhQ9erVtWbNGmva/v37deTIEUVFRUmSoqKitGvXLreroJKTk+Xr66vw8HCr5splFNQULMPhcCgiIsKtJj8/X2vWrLFqAAAASnQkZ8yYMXrggQfUsGFDnT17VgsXLtS6deu0evVq+fn5acCAAUpMTFRAQIB8fX01dOhQRUVFqWPHjpKkHj16KDw8XP369dPkyZOVnp6usWPHKiEhwTrC8vzzz2v69OkaOXKknnnmGa1du1Yff/yxVq5cafUjMTFR8fHxat++vTp06KApU6bo/Pnzevrpp8twaAAAQFVWopBz4sQJPfXUUzp+/Lj8/PzUpk0brV69Wvfff78k6f3335enp6d69+6t7OxsxcTEaObMmdb8Xl5eWrFihQYPHqyoqCjVrFlT8fHxev31162aJk2aaOXKlRo+fLimTp2qBg0aaM6cOYqJibFq+vTpo5MnT2rcuHFKT09Xu3btlJSUVOhkZAAAcPPyMMaYyu5EZXG5XPLz81NWVpZ8fX3LdNmceAwAQPko7uc3f7sKAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYUrXK7oBdHc78vFDbLepUCT0BAODmxJEcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgSyUKOZMmTdJdd92l2rVrKygoSHFxcdq/f79bTdeuXeXh4eH2eP75591qjhw5otjYWNWoUUNBQUEaMWKEcnNz3WrWrVunO++8U06nU82bN9e8efMK9WfGjBlq3LixvL29FRkZqS1btpRkcwAAgI2VKOSsX79eCQkJ2rx5s5KTk3X58mX16NFD58+fd6t79tlndfz4cesxefJka1peXp5iY2OVk5OjTZs2af78+Zo3b57GjRtn1aSlpSk2NlbdunVTamqqhg0bpoEDB2r16tVWzeLFi5WYmKjx48dr+/btatu2rWJiYnTixInSjgUAALARD2OMKe3MJ0+eVFBQkNavX697771X0q9Hctq1a6cpU6YUOc/nn3+uBx98UMeOHVNwcLAkafbs2Ro1apROnjwph8OhUaNGaeXKldq9e7c1X9++fZWZmamkpCRJUmRkpO666y5Nnz5dkpSfn6+wsDANHTpUo0ePLlb/XS6X/Pz8lJWVJV9f39IOQ5F+WPRaobZb+r5VpusAAOBmVNzP7990Tk5WVpYkKSAgwK19wYIFqlevnlq1aqUxY8bowoUL1rSUlBS1bt3aCjiSFBMTI5fLpT179lg10dHRbsuMiYlRSkqKJCknJ0fbtm1zq/H09FR0dLRVU5Ts7Gy5XC63BwAAsKdqpZ0xPz9fw4YN0z333KNWrVpZ7U888YQaNWqk0NBQ7dy5U6NGjdL+/fv1ySefSJLS09PdAo4k63l6evp1a1wuly5evKgzZ84oLy+vyJp9+/Zds8+TJk3SxIkTS7vJAACgCil1yElISNDu3bu1ceNGt/ZBgwZZ/2/durXq16+v7t276+DBg2rWrFnpe1oGxowZo8TEROu5y+VSWFhYJfYIAACUl1KFnCFDhmjFihXasGGDGjRocN3ayMhISdKBAwfUrFkzhYSEFLoKKiMjQ5IUEhJi/VvQdmWNr6+vfHx85OXlJS8vryJrCpZRFKfTKafTWbyNBAAAVVqJzskxxmjIkCFatmyZ1q5dqyZNmtxwntTUVElS/fr1JUlRUVHatWuX21VQycnJ8vX1VXh4uFWzZs0at+UkJycrKipKkuRwOBQREeFWk5+frzVr1lg1AADg5laiIzkJCQlauHChPv30U9WuXds6h8bPz08+Pj46ePCgFi5cqF69eqlu3brauXOnhg8frnvvvVdt2rSRJPXo0UPh4eHq16+fJk+erPT0dI0dO1YJCQnWUZbnn39e06dP18iRI/XMM89o7dq1+vjjj7Vy5UqrL4mJiYqPj1f79u3VoUMHTZkyRefPn9fTTz9dVmMDAACqsBKFnFmzZkn69TLxK82dO1f9+/eXw+HQl19+aQWOsLAw9e7dW2PHjrVqvby8tGLFCg0ePFhRUVGqWbOm4uPj9frrr1s1TZo00cqVKzV8+HBNnTpVDRo00Jw5cxQTE2PV9OnTRydPntS4ceOUnp6udu3aKSkpqdDJyAAA4Ob0m+6TU9VxnxwAAKqeCrlPDgAAwO8VIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANhSiULOpEmTdNddd6l27doKCgpSXFyc9u/f71Zz6dIlJSQkqG7duqpVq5Z69+6tjIwMt5ojR44oNjZWNWrUUFBQkEaMGKHc3Fy3mnXr1unOO++U0+lU8+bNNW/evEL9mTFjhho3bixvb29FRkZqy5YtJdkcAABgYyUKOevXr1dCQoI2b96s5ORkXb58WT169ND58+etmuHDh+uzzz7TkiVLtH79eh07dkx//OMfrel5eXmKjY1VTk6ONm3apPnz52vevHkaN26cVZOWlqbY2Fh169ZNqampGjZsmAYOHKjVq1dbNYsXL1ZiYqLGjx+v7du3q23btoqJidGJEyd+y3gAAACb8DDGmNLOfPLkSQUFBWn9+vW69957lZWVpcDAQC1cuFCPPvqoJGnfvn1q2bKlUlJS1LFjR33++ed68MEHdezYMQUHB0uSZs+erVGjRunkyZNyOBwaNWqUVq5cqd27d1vr6tu3rzIzM5WUlCRJioyM1F133aXp06dLkvLz8xUWFqahQ4dq9OjRxeq/y+WSn5+fsrKy5OvrW9phKNIPi14r1HZL37fKdB0AANyMivv5/ZvOycnKypIkBQQESJK2bdumy5cvKzo62qpp0aKFGjZsqJSUFElSSkqKWrdubQUcSYqJiZHL5dKePXusmiuXUVBTsIycnBxt27bNrcbT01PR0dFWTVGys7PlcrncHgAAwJ5KHXLy8/M1bNgw3XPPPWrVqpUkKT09XQ6HQ/7+/m61wcHBSk9Pt2quDDgF0wumXa/G5XLp4sWL+uWXX5SXl1dkTcEyijJp0iT5+flZj7CwsJJvOAAAqBJKHXISEhK0e/duLVq0qCz7U67GjBmjrKws63H06NHK7hIAACgn1Uoz05AhQ7RixQpt2LBBDRo0sNpDQkKUk5OjzMxMt6M5GRkZCgkJsWquvgqq4OqrK2uuviIrIyNDvr6+8vHxkZeXl7y8vIqsKVhGUZxOp5xOZ8k3GAAAVDklOpJjjNGQIUO0bNkyrV27Vk2aNHGbHhERoerVq2vNmjVW2/79+3XkyBFFRUVJkqKiorRr1y63q6CSk5Pl6+ur8PBwq+bKZRTUFCzD4XAoIiLCrSY/P19r1qyxagAAwM2tREdyEhIStHDhQn366aeqXbu2df6Ln5+ffHx85OfnpwEDBigxMVEBAQHy9fXV0KFDFRUVpY4dO0qSevToofDwcPXr10+TJ09Wenq6xo4dq4SEBOsoy/PPP6/p06dr5MiReuaZZ7R27Vp9/PHHWrlypdWXxMRExcfHq3379urQoYOmTJmi8+fP6+mnny6rsQEAAFVYiULOrFmzJEldu3Z1a587d6769+8vSXr//ffl6emp3r17Kzs7WzExMZo5c6ZV6+XlpRUrVmjw4MGKiopSzZo1FR8fr9dff92qadKkiVauXKnhw4dr6tSpatCggebMmaOYmBirpk+fPjp58qTGjRun9PR0tWvXTklJSYVORgYAADen33SfnKqO++QAAFD1VMh9cgAAAH6vCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWShxyNmzYoIceekihoaHy8PDQ8uXL3ab3799fHh4ebo+ePXu61Zw+fVpPPvmkfH195e/vrwEDBujcuXNuNTt37lTnzp3l7e2tsLAwTZ48uVBflixZohYtWsjb21utW7fWqlWrSro5AADApkoccs6fP6+2bdtqxowZ16zp2bOnjh8/bj0++ugjt+lPPvmk9uzZo+TkZK1YsUIbNmzQoEGDrOkul0s9evRQo0aNtG3bNr3zzjuaMGGCPvzwQ6tm06ZNevzxxzVgwADt2LFDcXFxiouL0+7du0u6SQAAwIY8jDGm1DN7eGjZsmWKi4uz2vr376/MzMxCR3gK7N27V+Hh4fruu+/Uvn17SVJSUpJ69eqln376SaGhoZo1a5Zee+01paeny+FwSJJGjx6t5cuXa9++fZKkPn366Pz581qxYoW17I4dO6pdu3aaPXt2kevOzs5Wdna29dzlciksLExZWVny9fUt7TAU6YdFrxVqu6XvW2W6DgAAbkYul0t+fn43/Pwul3Ny1q1bp6CgIN12220aPHiwTp06ZU1LSUmRv7+/FXAkKTo6Wp6envr222+tmnvvvdcKOJIUExOj/fv368yZM1ZNdHS023pjYmKUkpJyzX5NmjRJfn5+1iMsLKxMthcAAPz+lHnI6dmzp/77v/9ba9as0f/+3/9b69ev1wMPPKC8vDxJUnp6uoKCgtzmqVatmgICApSenm7VBAcHu9UUPL9RTcH0oowZM0ZZWVnW4+jRo79tYwEAwO9WtbJeYN++fa3/t27dWm3atFGzZs20bt06de/evaxXVyJOp1NOp7NS+wAAACpGuV9C3rRpU9WrV08HDhyQJIWEhOjEiRNuNbm5uTp9+rRCQkKsmoyMDLeaguc3qimYDgAAbm7lHnJ++uknnTp1SvXr15ckRUVFKTMzU9u2bbNq1q5dq/z8fEVGRlo1GzZs0OXLl62a5ORk3XbbbapTp45Vs2bNGrd1JScnKyoqqrw3CQAAVAElDjnnzp1TamqqUlNTJUlpaWlKTU3VkSNHdO7cOY0YMUKbN2/W4cOHtWbNGj388MNq3ry5YmJiJEktW7ZUz5499eyzz2rLli365ptvNGTIEPXt21ehoaGSpCeeeEIOh0MDBgzQnj17tHjxYk2dOlWJiYlWP1566SUlJSXpvffe0759+zRhwgRt3bpVQ4YMKYNhAQAAVV2JQ87WrVt1xx136I477pAkJSYm6o477tC4cePk5eWlnTt36g9/+INuvfVWDRgwQBEREfr666/dzoVZsGCBWrRooe7du6tXr17q1KmT2z1w/Pz89MUXXygtLU0RERF6+eWXNW7cOLd76dx9991auHChPvzwQ7Vt21ZLly7V8uXL1apVq98yHgAAwCZ+031yqrriXmdfGtwnBwCA8lGp98kBAACobIQcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgSyUOORs2bNBDDz2k0NBQeXh4aPny5W7TjTEaN26c6tevLx8fH0VHR+uHH35wqzl9+rSefPJJ+fr6yt/fXwMGDNC5c+fcanbu3KnOnTvL29tbYWFhmjx5cqG+LFmyRC1atJC3t7dat26tVatWlXRzAACATZU45Jw/f15t27bVjBkzipw+efJk/eUvf9Hs2bP17bffqmbNmoqJidGlS5esmieffFJ79uxRcnKyVqxYoQ0bNmjQoEHWdJfLpR49eqhRo0batm2b3nnnHU2YMEEffvihVbNp0yY9/vjjGjBggHbs2KG4uDjFxcVp9+7dJd0kAABgQx7GGFPqmT08tGzZMsXFxUn69ShOaGioXn75Zb3yyiuSpKysLAUHB2vevHnq27ev9u7dq/DwcH333Xdq3769JCkpKUm9evXSTz/9pNDQUM2aNUuvvfaa0tPT5XA4JEmjR4/W8uXLtW/fPklSnz59dP78ea1YscLqT8eOHdWuXTvNnj27yP5mZ2crOzvbeu5yuRQWFqasrCz5+vqWdhiK9MOi1wq13dL3rTJdBwAANyOXyyU/P78bfn6X6Tk5aWlpSk9PV3R0tNXm5+enyMhIpaSkSJJSUlLk7+9vBRxJio6Olqenp7799lur5t5777UCjiTFxMRo//79OnPmjFVz5XoKagrWU5RJkybJz8/PeoSFhf32jQYAAL9LZRpy0tPTJUnBwcFu7cHBwda09PR0BQUFuU2vVq2aAgIC3GqKWsaV67hWTcH0oowZM0ZZWVnW4+jRoyXdRAAAUEVUq+wOVCSn0ymn01nZ3QAAABWgTI/khISESJIyMjLc2jMyMqxpISEhOnHihNv03NxcnT592q2mqGVcuY5r1RRMBwAAN7cyDTlNmjRRSEiI1qxZY7W5XC59++23ioqKkiRFRUUpMzNT27Zts2rWrl2r/Px8RUZGWjUbNmzQ5cuXrZrk5GTddtttqlOnjlVz5XoKagrWAwAAbm4lDjnnzp1TamqqUlNTJf16snFqaqqOHDkiDw8PDRs2TG+++ab+8Y9/aNeuXXrqqacUGhpqXYHVsmVL9ezZU88++6y2bNmib775RkOGDFHfvn0VGhoqSXriiSfkcDg0YMAA7dmzR4sXL9bUqVOVmJho9eOll15SUlKS3nvvPe3bt08TJkzQ1q1bNWTIkN8+KgAAoMor8Tk5W7duVbdu3aznBcEjPj5e8+bN08iRI3X+/HkNGjRImZmZ6tSpk5KSkuTt7W3Ns2DBAg0ZMkTdu3eXp6enevfurb/85S/WdD8/P33xxRdKSEhQRESE6tWrp3HjxrndS+fuu+/WwoULNXbsWL366qu65ZZbtHz5crVq1apUAwEAAOzlN90np6or7nX2pcF9cgAAKB+Vcp8cAACA3wtCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKUyDzkTJkyQh4eH26NFixbW9EuXLikhIUF169ZVrVq11Lt3b2VkZLgt48iRI4qNjVWNGjUUFBSkESNGKDc3161m3bp1uvPOO+V0OtW8eXPNmzevrDcFAABUYeVyJOf222/X8ePHrcfGjRutacOHD9dnn32mJUuWaP369Tp27Jj++Mc/WtPz8vIUGxurnJwcbdq0SfPnz9e8efM0btw4qyYtLU2xsbHq1q2bUlNTNWzYMA0cOFCrV68uj80BAABVULVyWWi1agoJCSnUnpWVpb/97W9auHCh7rvvPknS3Llz1bJlS23evFkdO3bUF198oe+//15ffvmlgoOD1a5dO73xxhsaNWqUJkyYIIfDodmzZ6tJkyZ67733JEktW7bUxo0b9f777ysmJqY8NgkAAFQx5XIk54cfflBoaKiaNm2qJ598UkeOHJEkbdu2TZcvX1Z0dLRV26JFCzVs2FApKSmSpJSUFLVu3VrBwcFWTUxMjFwul/bs2WPVXLmMgpqCZVxLdna2XC6X2wMAANhTmYecyMhIzZs3T0lJSZo1a5bS0tLUuXNnnT17Vunp6XI4HPL393ebJzg4WOnp6ZKk9PR0t4BTML1g2vVqXC6XLl68eM2+TZo0SX5+ftYjLCzst24uAAD4nSrzr6seeOAB6/9t2rRRZGSkGjVqpI8//lg+Pj5lvboSGTNmjBITE63nLpeLoAMAgE2V+yXk/v7+uvXWW3XgwAGFhIQoJydHmZmZbjUZGRnWOTwhISGFrrYqeH6jGl9f3+sGKafTKV9fX7cHAACwp3IPOefOndPBgwdVv359RUREqHr16lqzZo01ff/+/Tpy5IiioqIkSVFRUdq1a5dOnDhh1SQnJ8vX11fh4eFWzZXLKKgpWAYAAECZh5xXXnlF69ev1+HDh7Vp0yY98sgj8vLy0uOPPy4/Pz8NGDBAiYmJ+uqrr7Rt2zY9/fTTioqKUseOHSVJPXr0UHh4uPr166d//vOfWr16tcaOHauEhAQ5nU5J0vPPP69Dhw5p5MiR2rdvn2bOnKmPP/5Yw4cPL+vNAQAAVVSZn5Pz008/6fHHH9epU6cUGBioTp06afPmzQoMDJQkvf/++/L09FTv3r2VnZ2tmJgYzZw505rfy8tLK1as0ODBgxUVFaWaNWsqPj5er7/+ulXTpEkTrVy5UsOHD9fUqVPVoEEDzZkzh8vHAQCAxcMYYyq7E5XF5XLJz89PWVlZZX5+zg+LXivUdkvft8p0HQAA3IyK+/nN364CAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2VK2yOwAAAOzhctJGt+fVe3aqpJ78iiM5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlqpVdgcAAIA9HM783O35LepUST35FUdyAACALRFyAACALRFyAACALRFyAACALRFyAACALXF1FQAAKLHLSRsruws3xJEcAABgSxzJAQAAN1QVjtxcjZCDm06eydPeUzt05tIvquNdTy3r3iEvD6/K7hZQpbAf2dv1Ao0xRjrjksnOkYfTIdXxlYeHRwX2rviqfMiZMWOG3nnnHaWnp6tt27aaNm2aOnToUNndwu9UyrE1+tvud3Tq0gmrra53kAa0GqGo0O6V2DOg6mA/qhxXB4/qPQvfTbi8j7aYjFPK35cmZef8+lySnA55tmgij+C65bru0qjSIWfx4sVKTEzU7NmzFRkZqSlTpigmJkb79+9XUFBQZXcPvzMpx9Zo8taR+v+7peXUpZOavHWkRrafzBs0cAMVuR8V9YFd1Ad7RSltf8oreFT010cZh5JV90ANSZKH/n3kxmRnK++f+3Sq+QUpoEK7dEMexhhz47Lfp8jISN11112aPn26JCk/P19hYWEaOnSoRo8efcP5XS6X/Pz8lJWVJV9f3zLt2w+LXivU1tj/Abfnlbmz3mzyTJ6eS451+83TnYfqeQdp9v0rOOQOWyiPD8B8k6+EyxN0SpnXrKkrf82oPkGeHlzX8nt19d+XKhYj1f9nbXnleLgFnH9PNspzGB1ve1ZXTr6l71u/oafXVtzP7yp7JCcnJ0fbtm3TmDFjrDZPT09FR0crJSWlyHmys7OVnZ1tPc/KypL062CVtXMXsgu17b6w3L3h78sL1TT0u9/tefX7o264rsvJhbe3OPOVlavXX5HrLo7LySnaaw4qPff4deuOXzim7w5/rfC6d1rzXamo7Spq7K929XzFmQfujmQlF2q7el+pbFf3saz6V5xtL+34FDXf9RzyPK1071PXrUnXKa24NE9N839nv9LjN3Gc9dKFsznXL8qWck7kKqd2ntVUHp+vVy73hsdpTBX1888/G0lm06ZNbu0jRowwHTp0KHKe8ePHG/16jJUHDx48ePDgUcUfR48evW5WqLJHckpjzJgxSkxMtJ7n5+fr9OnTqlu3bpmeGe5yuRQWFqajR4+W+ddg+DfGueIw1hWDca4YjHPFKM9xNsbo7NmzCg0NvW5dlQ059erVk5eXlzIyMtzaMzIyFBISUuQ8TqdTTqfTrc3f37+8uihfX192oArAOFccxrpiMM4Vg3GuGOU1zn5+fjesqbJnhjkcDkVERGjNmjVWW35+vtasWaOoqN/XOSEAAKDiVdkjOZKUmJio+Ph4tW/fXh06dNCUKVN0/vx5Pf3005XdNQAAUMmqdMjp06ePTp48qXHjxik9PV3t2rVTUlKSgoODK7VfTqdT48ePL/TVGMoW41xxGOuKwThXDMa5YvwexrlK3ycHAADgWqrsOTkAAADXQ8gBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgppRkzZqhx48by9vZWZGSktmzZct36JUuWqEWLFvL29lbr1q21atWqCupp1VaScf7rX/+qzp07q06dOqpTp46io6Nv+HPBr0r6ei6waNEieXh4KC4urnw7aCMlHevMzEwlJCSofv36cjqduvXWW3n/KIaSjvOUKVN02223ycfHR2FhYRo+fLguXbpUQb2tmjZs2KCHHnpIoaGh8vDw0PLly284z7p163TnnXfK6XSqefPmmjdvXvl2smz+XObNZdGiRcbhcJi///3vZs+ePebZZ581/v7+JiMjo8j6b775xnh5eZnJkyeb77//3owdO9ZUr17d7Nq1q4J7XrWUdJyfeOIJM2PGDLNjxw6zd+9e079/f+Pn52d++umnCu551VLScS6QlpZm/uM//sN07tzZPPzwwxXT2SqupGOdnZ1t2rdvb3r16mU2btxo0tLSzLp160xqamoF97xqKek4L1iwwDidTrNgwQKTlpZmVq9eberXr2+GDx9ewT2vWlatWmVee+0188knnxhJZtmyZdetP3TokKlRo4ZJTEw033//vZk2bZrx8vIySUlJ5dZHQk4pdOjQwSQkJFjP8/LyTGhoqJk0aVKR9Y899piJjY11a4uMjDTPPfdcufazqivpOF8tNzfX1K5d28yfP7+8umgLpRnn3Nxcc/fdd5s5c+aY+Ph4Qk4xlXSsZ82aZZo2bWpycnIqqou2UNJxTkhIMPfdd59bW2JiornnnnvKtZ92UpyQM3LkSHP77be7tfXp08fExMSUW7/4uqqEcnJytG3bNkVHR1ttnp6eio6OVkpKSpHzpKSkuNVLUkxMzDXrUbpxvtqFCxd0+fJlBQQElFc3q7zSjvPrr7+uoKAgDRgwoCK6aQulGet//OMfioqKUkJCgoKDg9WqVSu9/fbbysvLq6huVzmlGee7775b27Zts77SOnTokFatWqVevXpVSJ9vFpXxWVil/6xDZfjll1+Ul5dX6E9HBAcHa9++fUXOk56eXmR9enp6ufWzqivNOF9t1KhRCg0NLbRT4d9KM84bN27U3/72N6WmplZAD+2jNGN96NAhrV27Vk8++aRWrVqlAwcO6IUXXtDly5c1fvz4iuh2lVOacX7iiSf0yy+/qFOnTjLGKDc3V88//7xeffXViujyTeNan4Uul0sXL16Uj49Pma+TIzmwpT//+c9atGiRli1bJm9v78rujm2cPXtW/fr101//+lfVq1evsrtje/n5+QoKCtKHH36oiIgI9enTR6+99ppmz55d2V2zlXXr1untt9/WzJkztX37dn3yySdauXKl3njjjcruGn4jjuSUUL169eTl5aWMjAy39oyMDIWEhBQ5T0hISInqUbpxLvDuu+/qz3/+s7788ku1adOmPLtZ5ZV0nA8ePKjDhw/roYcestry8/MlSdWqVdP+/fvVrFmz8u10FVWa13T9+vVVvXp1eXl5WW0tW7ZUenq6cnJy5HA4yrXPVVFpxvk///M/1a9fPw0cOFCS1Lp1a50/f16DBg3Sa6+9Jk9PjgeUhWt9Fvr6+pbLURyJIzkl5nA4FBERoTVr1lht+fn5WrNmjaKiooqcJyoqyq1ekpKTk69Zj9KNsyRNnjxZb7zxhpKSktS+ffuK6GqVVtJxbtGihXbt2qXU1FTr8Yc//EHdunVTamqqwsLCKrL7VUppXtP33HOPDhw4YAVJSfrXv/6l+vXrE3CuoTTjfOHChUJBpiBYGv6GdZmplM/Ccjul2cYWLVpknE6nmTdvnvn+++/NoEGDjL+/v0lPTzfGGNOvXz8zevRoq/6bb74x1apVM++++67Zu3evGT9+PJeQF0NJx/nPf/6zcTgcZunSpeb48ePW4+zZs5W1CVVCScf5alxdVXwlHesjR46Y2rVrmyFDhpj9+/ebFStWmKCgIPPmm29W1iZUCSUd5/Hjx5vatWubjz76yBw6dMh88cUXplmzZuaxxx6rrE2oEs6ePWt27NhhduzYYSSZ//qv/zI7duwwP/74ozHGmNGjR5t+/fpZ9QWXkI8YMcLs3bvXzJgxg0vIf6+mTZtmGjZsaBwOh+nQoYPZvHmzNa1Lly4mPj7erf7jjz82t956q3E4HOb22283K1eurOAeV00lGedGjRoZSYUe48ePr/iOVzElfT1fiZBTMiUd602bNpnIyEjjdDpN06ZNzVtvvWVyc3MruNdVT0nG+fLly2bChAmmWbNmxtvb24SFhZkXXnjBnDlzpuI7XoV89dVXRb7nFoxtfHy86dKlS6F52rVrZxwOh2natKmZO3duufbRwxiOxQEAAPvhnBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBL/w85qQdytrR9wQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQh5JREFUeJzt3XlcVfW+//E3oGxw2CDKIEecK8XxhImUphaJSYMdO2l1DU2zDO0olUN5nRrsWp2jJ6c8ntR7f3k0vWklhpGmZlLmwMm5MsxKQUthO4LA9/dHD9Z1C6ibGGL5ej4e+6F7rc9a67u+7L15s9Z3re1ljDECAACwGe+qbgAAAEBFIOQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuSgRJMnT5aXl5f1vGnTpho0aFCFb/fQoUPy8vLSokWLrGmDBg1SnTp1KnzbRby8vDR58uRK215116NHD/Xo0aNc13np6w/FlfReuVYtWrRIXl5eOnTo0BVrK+uzDL8PhBxUmDVr1vxuw8LvuW3XirNnz2ry5MnasGFDVTelyvF6rP7mzp2rP//5z2rcuLG8vLwuG6Sys7M1bNgwBQcHq3bt2urZs6d27NhRYu3777+vG2+8UX5+fmrcuLEmTZqk/Pz8CtoLGzJACSZNmmQufnmcP3/e5OXlebSOxMRE4+lLrLCw0Jw7d87k5+db0xISEkzt2rU9Ws9vadu5c+fMhQsXynV7dta9e3fTvXt3j5c7fvy4kWQmTZpUbN6FCxfMuXPnfnvjqonyeq9cq/Lz8825c+dMYWHhFWubNGliEhISyr0NTZo0MUFBQaZ3796mRo0apW6joKDA3HzzzaZ27dpm8uTJZtasWSYyMtLUrVvXfP311261a9asMV5eXqZnz55m/vz5ZuTIkcbb29s88cQT5d5+u6pRpQkL1YbD4ajQ9efn56uwsFC+vr7y8/Or0G1dSVVvvzKcP39evr6+8vYufjD3zJkzql27dhW06v/UqFFDNWrw8VSS39N75ffCx8dHPj4+VdqGjRs3WkdxLnd6fcWKFdqyZYuWL1+u+++/X5L0wAMP6Prrr9ekSZO0ZMkSq/aZZ55R+/bt9dFHH1nvB6fTqZdffll/+ctf1KpVq4rdKRvgdBW0efNm3XTTTfLz81OLFi305ptvFqu59Dz2hQsXNGXKFF133XXy8/NT/fr11bVrV6Wmpkr6dRzN7NmzJf06xqXoIf3fWILXXntNM2bMUIsWLeRwOLR3797LjjP47rvvFBcXp9q1ays8PFxTp06VMcaav2HDBnl5eRU7/XHpOi/XtqJpl5462Llzp+688045nU7VqVNHt99+uz7//HO3mqJxAZ999pmSkpKsQ9H33Xefjh8/XvoPoBQ//fSThgwZovDwcDkcDjVr1kzDhw9XXl6eW5/8+c9/VlBQkGrVqqUuXbooOTnZbT1F/bJ06VJNmDBBf/jDH1SrVi25XC5rvNPBgwfVp08f1a1bVw8//LAkqbCwUDNmzFCbNm3k5+en0NBQPf744zp58uRl252Xl6eJEycqKipKAQEBql27trp166ZPPvnEqjl06JCCg4MlSVOmTLF+BkX9XtKYnPz8fL3wwgvW66Vp06Z67rnnlJub61bXtGlT3XXXXdq8ebM6d+4sPz8/NW/eXP/93//t2Q9Av74WRowYoeXLlysyMlL+/v6KiYnRrl27JElvvvmmWrZsKT8/P/Xo0aPYmJBPP/3UOoXhcDgUERGh0aNH69y5c1ZNeb1Xjh07puDgYPXo0cPtffHtt9+qdu3a6t+//1Xvd9FredOmTXr88cdVv359OZ1OPfLII8V+/tu2bVNcXJwaNGggf39/NWvWTI8++qg1/+J9mD17tpo3b65atWqpV69e+uGHH2SM0QsvvKBGjRrJ399f9957r06cOHHVbb24vRf3vzFGL774oho1aqRatWqpZ8+e2rNnT7Flr/RZdrWaNGlyVePIVqxYodDQUP3pT3+ypgUHB+uBBx7Qe++9Z72e9+7dq71792rYsGFugf/JJ5+UMUYrVqzwqH3XKv5Uusbt2rVLvXr1UnBwsCZPnqz8/HxNmjRJoaGhl11u8uTJmjZtmoYOHarOnTvL5XJp27Zt2rFjh+644w49/vjjOnLkiFJTU/U///M/Ja5j4cKFOn/+vIYNGyaHw6GgoCAVFhaWWFtQUKDevXurS5cumj59ulJSUqxz01OnTvVon6+mbRfbs2ePunXrJqfTqTFjxqhmzZp688031aNHD23cuFHR0dFu9SNHjlS9evU0adIkHTp0SDNmzNCIESO0bNmyq27jkSNH1LlzZ+vcfatWrfTTTz9pxYoVOnv2rHx9fZWVlaWbb75ZZ8+e1VNPPaX69etr8eLFuueee7RixQrdd999but84YUX5Ovrq2eeeUa5ubny9fWV9Gt4iIuLU9euXfXaa6+pVq1aVj8tWrRIgwcP1lNPPaWMjAzNmjVLO3fu1GeffaaaNWuW2HaXy6UFCxbowQcf1GOPPaZTp07pn//8p+Li4rR161Z17NhRwcHBmjt3roYPH6777rvP+sBv3759qX0ydOhQLV68WPfff7+efvppffHFF5o2bZr27dunlStXutV+++23uv/++zVkyBAlJCTorbfe0qBBgxQVFaU2bdpc9c9B+jWovP/++0pMTJQkTZs2TXfddZfGjBmjOXPm6Mknn9TJkyc1ffp0Pfroo1q/fr217PLly3X27FkNHz5c9evX19atW/XGG2/oxx9/1PLly61+Lo/3SkhIiDUu5I033tBTTz2lwsJCDRo0SHXr1tWcOXM82m9JGjFihAIDAzV58mQdOHBAc+fO1ffff28F52PHjlmfH+PGjVNgYKAOHTqkd999t9i63n77beXl5WnkyJE6ceKEpk+frgceeEC33XabNmzYoLFjx+rbb7/VG2+8oWeeeUZvvfWWx+292MSJE/Xiiy+qT58+6tOnj3bs2KFevXq5/ZEgXfmzrLzt3LlTN954Y7GjqJ07d9b8+fP19ddfq127dtq5c6ckqVOnTm514eHhatSokTUfV1ClJ8tQ5fr27Wv8/PzM999/b03bu3ev8fHxcRsjcOl57A4dOpj4+PjLrru0cQYZGRlGknE6nebYsWMlzlu4cKE1LSEhwUgyI0eOtKYVFhaa+Ph44+vra44fP26MMeaTTz4xkswnn3xyxXVebgyELhkn0rdvX+Pr62sOHjxoTTty5IipW7euufXWW61pCxcuNJJMbGys29iA0aNHGx8fH5OdnV3i9kryyCOPGG9vb/Pll18Wm1e07lGjRhlJ5tNPP7XmnTp1yjRr1sw0bdrUFBQUGGP+r1+aN29uzp4967auor4dN26c2/RPP/3USDJvv/222/SUlJRi0y8dk5Ofn29yc3Pdljt58qQJDQ01jz76qDXtcmNyLh0Tlp6ebiSZoUOHutU988wzRpJZv369Na1JkyZGktm0aZM17dixY8bhcJinn3662LYuR5JxOBwmIyPDmvbmm28aSSYsLMy4XC5r+vjx440kt9pL+9sYY6ZNm2a8vLzc3nPl9V4xxpgHH3zQ1KpVy3z99dfm1VdfNZLMqlWrPNrvotdyVFSU21i86dOnG0nmvffeM8YYs3LlSiOpxNfppe0MDg52ew8U9VeHDh3cxsA9+OCDxtfX15w/f97j9hb1/bFjx4yvr6+Jj493ey8+99xzRpLHn2Weql27dqljcmrXru32PiiSnJxsJJmUlBRjjLF+docPHy5We9NNN5kuXbqUa5vtitNV17CCggKtXbtWffv2VePGja3prVu3Vlxc3GWXDQwM1J49e/TNN9+Uefv9+vWzTllcjREjRlj/LzqNkJeXp48//rjMbbiSgoICffTRR+rbt6+aN29uTW/YsKEeeughbd68WS6Xy22ZYcOGuR227tatmwoKCvT9999f1TYLCwu1atUq3X333cX+ipNkrXvNmjXq3Lmzunbtas2rU6eOhg0bpkOHDmnv3r1uyyUkJMjf37/EbQ4fPtzt+fLlyxUQEKA77rhDP//8s/WIiopSnTp13E49XcrHx8c6SlRYWKgTJ04oPz9fnTp1KvUKkitZs2aNJCkpKclt+tNPPy1JxU7RRUZGqlu3btbz4OBg3XDDDfruu+883vbtt9+upk2bWs+Ljtz169dPdevWLTb94m1c3N9nzpzRzz//rJtvvlnGGI/+EvfkvTJr1iwFBATo/vvv13/+539q4MCBuvfee696WxcbNmyY2xG74cOHq0aNGtbPIzAwUJK0evVqXbhw4bLr+vOf/6yAgADreVF//cd//Ifb6Zjo6Gjl5eXpp59+KlObJenjjz+2jhpd/F4cNWpUsdry+CzzxLlz50oc41g0vqroVGbRv6XVXnzKE6Uj5FzDjh8/rnPnzum6664rNu+GG2647LJTp05Vdna2rr/+erVr107PPvusvvrqK4+236xZs6uu9fb2dgsZknT99ddL0lXdG6Osjh8/rrNnz5bYH61bt1ZhYaF++OEHt+kXB0ZJqlevniRdcSzLxdt0uVxq27btZeu+//77UttVNP9ipfV3jRo11KhRI7dp33zzjXJychQSEqLg4GC3x+nTp3Xs2LHLtm3x4sVq3769NcYhODhYycnJysnJuexypfn+++/l7e2tli1buk0PCwtTYGBgsX299Gcg/fpzuNqfweXWVfSLOiIiosTpF2/j8OHDGjRokIKCglSnTh0FBwere/fukuRRX3jyXgkKCtLf//53ffXVVwoICNDf//73q172Upd+NtSpU0cNGza03nPdu3dXv379NGXKFDVo0ED33nuvFi5cWGyclPTb+tFTRa+HS9sfHBxsvR+LlMdnmSf8/f1L7J/z589b8y/+t7Ta0v5ggTtCDsrk1ltv1cGDB/XWW2+pbdu2WrBggW688UYtWLDgqtdR3m/S0gb9FRQUlOt2rqS0qzzMRYNBq0Jp/e1wOIqNDygsLFRISIhSU1NLfFxuHNT/+3//T4MGDVKLFi30z3/+UykpKUpNTdVtt91W6pirq3W1Nwgsz59Baeu60jYKCgp0xx13KDk5WWPHjtWqVauUmppqDRT2pC88fa+sXbtW0q9B4ccff/RoWU94eXlpxYoVSktL04gRI/TTTz/p0UcfVVRUlE6fPu1WW9Z+rGjl8VnmiYYNG+ro0aPFphdNCw8Pt+ounn5pbVEdLo+Qcw0LDg6Wv79/iYdpDxw4cMXlg4KCNHjwYP3rX//SDz/8oPbt27tdlVSed6wtLCwsdqrh66+/liTrVELRX2jZ2dludSWdJrratgUHB6tWrVol9sf+/fvl7e1d7C/R3yo4OFhOp1O7d+++bF2TJk1KbVfR/LJq0aKFfvnlF91yyy2KjY0t9ujQoUOpy65YsULNmzfXu+++q4EDByouLk6xsbHWX6pFPHl9NGnSRIWFhcVeq1lZWcrOzv5N+1pRdu3apa+//lqvv/66xo4dq3vvvVexsbEl/nIqz/dKSkqKFixYoDFjxig4OFgJCQllvnncpf19+vRpHT161O30nSR16dJFL730krZt26a3335be/bs0dKlS8u6C79Z0evh0vYfP368xCNEV/osK08dO3bUjh07ioXcL774QrVq1bKOUHfs2FHSr1evXezIkSP68ccfrfm4PELONczHx0dxcXFatWqVDh8+bE3ft2+f9ZdgaX755Re353Xq1FHLli3dDq0W3Wvl0tBRVrNmzbL+b4zRrFmzVLNmTd1+++2Sfv1g8/Hx0aZNm9yWK+mqkqttm4+Pj3r16qX33nvP7bRYVlaWlixZoq5du8rpdJZxj0rm7e2tvn376oMPPij2ASf931+4ffr00datW5WWlmbNO3PmjObPn6+mTZsqMjKyzG144IEHVFBQoBdeeKHYvPz8/Mv2W9Ff5hf/Jf7FF1+4tVOSdRXX1bw++vTpI0maMWOG2/S//vWvkqT4+PgrrqOyldQPxhjNnDmzWG15vVeys7Otq4RefvllLViwQDt27NDLL79cpvXNnz/fbazN3LlzlZ+frzvvvFPSr0eKLj3iUvTLt6TTLJUlNjZWNWvW1BtvvOHWvktfP9LVfZaVp/vvv19ZWVluV6D9/PPPWr58ue6++25rDE6bNm3UqlUrzZ8/3+1o9Ny5c+Xl5WXdYweXxyXk17gpU6YoJSVF3bp105NPPqn8/Hy98cYbatOmzWXPS0dGRqpHjx6KiopSUFCQtm3bphUrVrgNDo6KipIkPfXUU4qLi5OPj48GDBhQpnb6+fkpJSVFCQkJio6O1ocffqjk5GQ999xz1oDMgIAA6/JZLy8vtWjRQqtXry5x/IgnbXvxxReVmpqqrl276sknn1SNGjX05ptvKjc3V9OnTy/T/lzJyy+/rI8++kjdu3fXsGHD1Lp1ax09elTLly/X5s2bFRgYqHHjxulf//qX7rzzTj311FMKCgrS4sWLlZGRof/93/8t8UZ/V6t79+56/PHHNW3aNKWnp6tXr16qWbOmvvnmGy1fvlwzZ84s9UP2rrvu0rvvvqv77rtP8fHxysjI0Lx58xQZGel2CsPf31+RkZFatmyZrr/+egUFBalt27YljkXq0KGDEhISNH/+fGVnZ6t79+7aunWrFi9erL59+6pnz55l3teK0qpVK7Vo0ULPPPOMfvrpJzmdTv3v//5viUcSyuu98pe//EW//PKLPv74Y/n4+Kh3794aOnSoXnzxRd17772XPQJXkry8PN1+++164IEHdODAAc2ZM0ddu3bVPffcI+nXsVdz5szRfffdpxYtWujUqVP6xz/+IafTaQXTqhAcHKxnnnnGuty/T58+2rlzpz788EM1aNDArfZqPsuuxgcffKB///vfkn69985XX32lF198UZJ0zz33WLdHuP/++9WlSxcNHjxYe/fuVYMGDTRnzhwVFBRoypQpbut89dVXdc8996hXr14aMGCAdu/erVmzZmno0KHW2DtcQdVc1IXfk40bN5qoqCjj6+trmjdvbubNm1fsEt5LLyF/8cUXTefOnU1gYKDx9/c3rVq1Mi+99JLb5ab5+flm5MiRJjg42Hh5eVnrK7qk9NVXXy3WltIuIa9du7Y5ePCg6dWrl6lVq5YJDQ01kyZNsi6TLnL8+HHTr18/U6tWLVOvXj3z+OOPm927dxdbZ2ltM6b4JeTGGLNjxw4TFxdn6tSpY2rVqmV69uxptmzZ4lZTdBnrpZfTlnZp+5V8//335pFHHjHBwcHG4XCY5s2bm8TERLfLsw8ePGjuv/9+ExgYaPz8/Eznzp3N6tWrS9z+8uXLi23jSl+ZMX/+fBMVFWX8/f1N3bp1Tbt27cyYMWPMkSNHrJpLLyEvLCw0L7/8smnSpIlxOBzmj3/8o1m9erVJSEgwTZo0cVv/li1brNfexf1+6evPmF+/6mHKlCmmWbNmpmbNmiYiIsKMHz++2KXGTZo0KfGS4LJ8/YQkk5iY6DattNdvSf28d+9eExsba+rUqWMaNGhgHnvsMfPvf//7ql+PnrxX3nvvPSPJvP766251LpfLNGnSxHTo0OGqv5ql6LW8ceNGM2zYMFOvXj1Tp04d8/DDD5tffvnFqtuxY4d58MEHTePGjY3D4TAhISHmrrvuMtu2bStTf1287ctdll5aey++fL+goMBMmTLFNGzY0Pj7+5sePXqY3bt3l+mz7GoU3Y6hpMell/mfOHHCDBkyxNSvX9/UqlXLdO/evdT9XblypenYsaNxOBymUaNGZsKECR637VrmZUwVj4YEAPyuFN0E8ssvvyzxNgZAdcGYHAAAYEuMyQEq0enTp4tdWnup4ODgKv+yQbvLzMy87Hx/f3+3G9fZxblz5654f56goKBKas2VVfX7JS8v74rfoxUQEMA9a37HCDlAJXrttdeKDS68VEZGRrFLdFG+iu5BUpqEhIQSvyS2ulu2bJkGDx582ZrL3c26slX1+2XLli1XHNS+cOFCty8vxu8LY3KASvTdd99d8asFunbtat3iHRXjSl8FEh4e/psuwf+9Onr0aInfxH2xqKioYncFripV/X45efKktm/fftmaNm3aXDE0o+oQcgAAgC0x8BgAANjSNT0mp7CwUEeOHFHdunXL9bbqAACg4hhjdOrUKYWHh1/2xqfXdMg5cuRIuX/vEAAAqBw//PCDGjVqVOr8azrk1K1bV9KvnVTe3z8EAAAqhsvlUkREhPV7vDTXdMgpOkXldDoJOQAAVDNXGmrCwGMAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLHoWcuXPnqn379tbN82JiYvThhx9a88+fP6/ExETVr19fderUUb9+/ZSVleW2jsOHDys+Pl61atVSSEiInn32WeXn57vVbNiwQTfeeKMcDodatmypRYsWFWvL7Nmz1bRpU/n5+Sk6Olpbt271ZFcAAIDNeRRyGjVqpFdeeUXbt2/Xtm3bdNttt+nee+/Vnj17JEmjR4/WBx98oOXLl2vjxo06cuSI/vSnP1nLFxQUKD4+Xnl5edqyZYsWL16sRYsWaeLEiVZNRkaG4uPj1bNnT6Wnp2vUqFEaOnSo1q5da9UsW7ZMSUlJmjRpknbs2KEOHTooLi5Ox44d+639AQAA7ML8RvXq1TMLFiww2dnZpmbNmmb58uXWvH379hlJJi0tzRhjzJo1a4y3t7fJzMy0aubOnWucTqfJzc01xhgzZswY06ZNG7dt9O/f38TFxVnPO3fubBITE63nBQUFJjw83EybNs2jtufk5BhJJicnx6PlAABA1bna399lHpNTUFCgpUuX6syZM4qJidH27dt14cIFxcbGWjWtWrVS48aNlZaWJklKS0tTu3btFBoaatXExcXJ5XJZR4PS0tLc1lFUU7SOvLw8bd++3a3G29tbsbGxVk1pcnNz5XK53B4AAMCePA45u3btUp06deRwOPTEE09o5cqVioyMVGZmpnx9fRUYGOhWHxoaqszMTElSZmamW8Apml8073I1LpdL586d088//6yCgoISa4rWUZpp06YpICDAekRERHi6+wAAoJrwOOTccMMNSk9P1xdffKHhw4crISFBe/furYi2lbvx48crJyfHevzwww9V3SQAAFBBani6gK+vr1q2bClJioqK0pdffqmZM2eqf//+ysvLU3Z2ttvRnKysLIWFhUmSwsLCil0FVXT11cU1l16RlZWVJafTKX9/f/n4+MjHx6fEmqJ1lMbhcMjhcHi6y2VyIWVzsWk1e3etlG0DAIByuE9OYWGhcnNzFRUVpZo1a2rdunXWvAMHDujw4cOKiYmRJMXExGjXrl1uV0GlpqbK6XQqMjLSqrl4HUU1Revw9fVVVFSUW01hYaHWrVtn1QAAAHh0JGf8+PG688471bhxY506dUpLlizRhg0btHbtWgUEBGjIkCFKSkpSUFCQnE6nRo4cqZiYGHXp0kWS1KtXL0VGRmrgwIGaPn26MjMzNWHCBCUmJlpHWJ544gnNmjVLY8aM0aOPPqr169frnXfeUXJystWOpKQkJSQkqFOnTurcubNmzJihM2fOaPDgweXYNQAAoDrzKOQcO3ZMjzzyiI4ePaqAgAC1b99ea9eu1R133CFJ+tvf/iZvb2/169dPubm5iouL05w5c6zlfXx8tHr1ag0fPlwxMTGqXbu2EhISNHXqVKumWbNmSk5O1ujRozVz5kw1atRICxYsUFxcnFXTv39/HT9+XBMnTlRmZqY6duyolJSUYoORAQDAtcvLGGOquhFVxeVyKSAgQDk5OXI6neW6bsbkAABQMa729zffXQUAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGypRlU3wK4OZX9YbNp16loFLQEA4NrEkRwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLHoWcadOm6aabblLdunUVEhKivn376sCBA241PXr0kJeXl9vjiSeecKs5fPiw4uPjVatWLYWEhOjZZ59Vfn6+W82GDRt04403yuFwqGXLllq0aFGx9syePVtNmzaVn5+foqOjtXXrVk92BwAA2JhHIWfjxo1KTEzU559/rtTUVF24cEG9evXSmTNn3Ooee+wxHT161HpMnz7dmldQUKD4+Hjl5eVpy5YtWrx4sRYtWqSJEydaNRkZGYqPj1fPnj2Vnp6uUaNGaejQoVq7dq1Vs2zZMiUlJWnSpEnasWOHOnTooLi4OB07dqysfQEAAGzEyxhjyrrw8ePHFRISoo0bN+rWW2+V9OuRnI4dO2rGjBklLvPhhx/qrrvu0pEjRxQaGipJmjdvnsaOHavjx4/L19dXY8eOVXJysnbv3m0tN2DAAGVnZyslJUWSFB0drZtuukmzZs2SJBUWFioiIkIjR47UuHHjrqr9LpdLAQEBysnJkdPpLGs3lOibpc8Xm3bdgJfKdRsAAFyLrvb3928ak5OTkyNJCgoKcpv+9ttvq0GDBmrbtq3Gjx+vs2fPWvPS0tLUrl07K+BIUlxcnFwul/bs2WPVxMbGuq0zLi5OaWlpkqS8vDxt377drcbb21uxsbFWTUlyc3PlcrncHgAAwJ5qlHXBwsJCjRo1Srfccovatm1rTX/ooYfUpEkThYeH66uvvtLYsWN14MABvfvuu5KkzMxMt4AjyXqemZl52RqXy6Vz587p5MmTKigoKLFm//79pbZ52rRpmjJlSll3GQAAVCNlDjmJiYnavXu3Nm/e7DZ92LBh1v/btWunhg0b6vbbb9fBgwfVokWLsre0HIwfP15JSUnWc5fLpYiIiCpsEQAAqChlCjkjRozQ6tWrtWnTJjVq1OiytdHR0ZKkb7/9Vi1atFBYWFixq6CysrIkSWFhYda/RdMurnE6nfL395ePj498fHxKrClaR0kcDoccDsfV7SQAAKjWPBqTY4zRiBEjtHLlSq1fv17NmjW74jLp6emSpIYNG0qSYmJitGvXLreroFJTU+V0OhUZGWnVrFu3zm09qampiomJkST5+voqKirKraawsFDr1q2zagAAwLXNoyM5iYmJWrJkid577z3VrVvXGkMTEBAgf39/HTx4UEuWLFGfPn1Uv359ffXVVxo9erRuvfVWtW/fXpLUq1cvRUZGauDAgZo+fboyMzM1YcIEJSYmWkdZnnjiCc2aNUtjxozRo48+qvXr1+udd95RcnKy1ZakpCQlJCSoU6dO6ty5s2bMmKEzZ85o8ODB5dU3AACgGvMo5MydO1fSr5eJX2zhwoUaNGiQfH199fHHH1uBIyIiQv369dOECROsWh8fH61evVrDhw9XTEyMateurYSEBE2dOtWqadasmZKTkzV69GjNnDlTjRo10oIFCxQXF2fV9O/fX8ePH9fEiROVmZmpjh07KiUlpdhgZAAAcG36TffJqe64Tw4AANVPpdwnBwAA4PeKkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGzJo5Azbdo03XTTTapbt65CQkLUt29fHThwwK3m/PnzSkxMVP369VWnTh3169dPWVlZbjWHDx9WfHy8atWqpZCQED377LPKz893q9mwYYNuvPFGORwOtWzZUosWLSrWntmzZ6tp06by8/NTdHS0tm7d6snuAAAAG/Mo5GzcuFGJiYn6/PPPlZqaqgsXLqhXr146c+aMVTN69Gh98MEHWr58uTZu3KgjR47oT3/6kzW/oKBA8fHxysvL05YtW7R48WItWrRIEydOtGoyMjIUHx+vnj17Kj09XaNGjdLQoUO1du1aq2bZsmVKSkrSpEmTtGPHDnXo0EFxcXE6duzYb+kPAABgE17GGFPWhY8fP66QkBBt3LhRt956q3JychQcHKwlS5bo/vvvlyTt379frVu3Vlpamrp06aIPP/xQd911l44cOaLQ0FBJ0rx58zR27FgdP35cvr6+Gjt2rJKTk7V7925rWwMGDFB2drZSUlIkSdHR0brppps0a9YsSVJhYaEiIiI0cuRIjRs37qra73K5FBAQoJycHDmdzrJ2Q4m+Wfp8sWnXDXipXLcBAMC16Gp/f/+mMTk5OTmSpKCgIEnS9u3bdeHCBcXGxlo1rVq1UuPGjZWWliZJSktLU7t27ayAI0lxcXFyuVzas2ePVXPxOopqitaRl5en7du3u9V4e3srNjbWqilJbm6uXC6X2wMAANhTmUNOYWGhRo0apVtuuUVt27aVJGVmZsrX11eBgYFutaGhocrMzLRqLg44RfOL5l2uxuVy6dy5c/r5559VUFBQYk3ROkoybdo0BQQEWI+IiAjPdxwAAFQLZQ45iYmJ2r17t5YuXVqe7alQ48ePV05OjvX44YcfqrpJAACggtQoy0IjRozQ6tWrtWnTJjVq1MiaHhYWpry8PGVnZ7sdzcnKylJYWJhVc+lVUEVXX11cc+kVWVlZWXI6nfL395ePj498fHxKrClaR0kcDoccDofnOwwAAKodj47kGGM0YsQIrVy5UuvXr1ezZs3c5kdFRalmzZpat26dNe3AgQM6fPiwYmJiJEkxMTHatWuX21VQqampcjqdioyMtGouXkdRTdE6fH19FRUV5VZTWFiodevWWTUAAODa5tGRnMTERC1ZskTvvfee6tata41/CQgIkL+/vwICAjRkyBAlJSUpKChITqdTI0eOVExMjLp06SJJ6tWrlyIjIzVw4EBNnz5dmZmZmjBhghITE62jLE888YRmzZqlMWPG6NFHH9X69ev1zjvvKDk52WpLUlKSEhIS1KlTJ3Xu3FkzZszQmTNnNHjw4PLqGwAAUI15FHLmzp0rSerRo4fb9IULF2rQoEGSpL/97W/y9vZWv379lJubq7i4OM2ZM8eq9fHx0erVqzV8+HDFxMSodu3aSkhI0NSpU62aZs2aKTk5WaNHj9bMmTPVqFEjLViwQHFxcVZN//79dfz4cU2cOFGZmZnq2LGjUlJSig1GBgAA16bfdJ+c6o775AAAUP1Uyn1yAAAAfq8IOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJY8DjmbNm3S3XffrfDwcHl5eWnVqlVu8wcNGiQvLy+3R+/evd1qTpw4oYcfflhOp1OBgYEaMmSITp8+7Vbz1VdfqVu3bvLz81NERISmT59erC3Lly9Xq1at5Ofnp3bt2mnNmjWe7g4AALApj0POmTNn1KFDB82ePbvUmt69e+vo0aPW41//+pfb/Icfflh79uxRamqqVq9erU2bNmnYsGHWfJfLpV69eqlJkybavn27Xn31VU2ePFnz58+3arZs2aIHH3xQQ4YM0c6dO9W3b1/17dtXu3fv9nSXAACADXkZY0yZF/by0sqVK9W3b19r2qBBg5SdnV3sCE+Rffv2KTIyUl9++aU6deokSUpJSVGfPn30448/Kjw8XHPnztXzzz+vzMxM+fr6SpLGjRunVatWaf/+/ZKk/v3768yZM1q9erW17i5duqhjx46aN2/eVbXf5XIpICBAOTk5cjqdZeiB0n2z9Pli064b8FK5bgMAgGvR1f7+rpAxORs2bFBISIhuuOEGDR8+XL/88os1Ly0tTYGBgVbAkaTY2Fh5e3vriy++sGpuvfVWK+BIUlxcnA4cOKCTJ09aNbGxsW7bjYuLU1paWqntys3NlcvlcnsAAAB7KveQ07t3b/33f/+31q1bp//6r//Sxo0bdeedd6qgoECSlJmZqZCQELdlatSooaCgIGVmZlo1oaGhbjVFz69UUzS/JNOmTVNAQID1iIiI+G07CwAAfrdqlPcKBwwYYP2/Xbt2at++vVq0aKENGzbo9ttvL+/NeWT8+PFKSkqynrtcLoIOAAA2VeGXkDdv3lwNGjTQt99+K0kKCwvTsWPH3Gry8/N14sQJhYWFWTVZWVluNUXPr1RTNL8kDodDTqfT7QEAAOypwkPOjz/+qF9++UUNGzaUJMXExCg7O1vbt2+3atavX6/CwkJFR0dbNZs2bdKFCxesmtTUVN1www2qV6+eVbNu3Tq3baWmpiomJqaidwkAAFQDHoec06dPKz09Xenp6ZKkjIwMpaen6/Dhwzp9+rSeffZZff755zp06JDWrVune++9Vy1btlRcXJwkqXXr1urdu7cee+wxbd26VZ999plGjBihAQMGKDw8XJL00EMPydfXV0OGDNGePXu0bNkyzZw50+1U01/+8helpKTo9ddf1/79+zV58mRt27ZNI0aMKIduAQAA1Z3HIWfbtm364x//qD/+8Y+SpKSkJP3xj3/UxIkT5ePjo6+++kr33HOPrr/+eg0ZMkRRUVH69NNP5XA4rHW8/fbbatWqlW6//Xb16dNHXbt2dbsHTkBAgD766CNlZGQoKipKTz/9tCZOnOh2L52bb75ZS5Ys0fz589WhQwetWLFCq1atUtu2bX9LfwAAAJv4TffJqe64Tw4AANVPld4nBwAAoKoRcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC15HHI2bdqku+++W+Hh4fLy8tKqVavc5htjNHHiRDVs2FD+/v6KjY3VN99841Zz4sQJPfzww3I6nQoMDNSQIUN0+vRpt5qvvvpK3bp1k5+fnyIiIjR9+vRibVm+fLlatWolPz8/tWvXTmvWrPF0dwAAgE15HHLOnDmjDh06aPbs2SXOnz59uv7+979r3rx5+uKLL1S7dm3FxcXp/PnzVs3DDz+sPXv2KDU1VatXr9amTZs0bNgwa77L5VKvXr3UpEkTbd++Xa+++qomT56s+fPnWzVbtmzRgw8+qCFDhmjnzp3q27ev+vbtq927d3u6SwAAwIa8jDGmzAt7eWnlypXq27evpF+P4oSHh+vpp5/WM888I0nKyclRaGioFi1apAEDBmjfvn2KjIzUl19+qU6dOkmSUlJS1KdPH/34448KDw/X3Llz9fzzzyszM1O+vr6SpHHjxmnVqlXav3+/JKl///46c+aMVq9ebbWnS5cu6tixo+bNm3dV7Xe5XAoICFBOTo6cTmdZu6FE3yx9vti06wa8VK7bAADgWnS1v7/LdUxORkaGMjMzFRsba00LCAhQdHS00tLSJElpaWkKDAy0Ao4kxcbGytvbW1988YVVc+utt1oBR5Li4uJ04MABnTx50qq5eDtFNUXbKUlubq5cLpfbAwAA2FO5hpzMzExJUmhoqNv00NBQa15mZqZCQkLc5teoUUNBQUFuNSWt4+JtlFZTNL8k06ZNU0BAgPWIiIjwdBcBAEA1cU1dXTV+/Hjl5ORYjx9++KGqmwQAACpIuYacsLAwSVJWVpbb9KysLGteWFiYjh075jY/Pz9fJ06ccKspaR0Xb6O0mqL5JXE4HHI6nW4PAABgT+Uacpo1a6awsDCtW7fOmuZyufTFF18oJiZGkhQTE6Ps7Gxt377dqlm/fr0KCwsVHR1t1WzatEkXLlywalJTU3XDDTeoXr16Vs3F2ymqKdoOAAC4tnkcck6fPq309HSlp6dL+nWwcXp6ug4fPiwvLy+NGjVKL774ot5//33t2rVLjzzyiMLDw60rsFq3bq3evXvrscce09atW/XZZ59pxIgRGjBggMLDwyVJDz30kHx9fTVkyBDt2bNHy5Yt08yZM5WUlGS14y9/+YtSUlL0+uuva//+/Zo8ebK2bdumESNG/PZeAQAA1V4NTxfYtm2bevbsaT0vCh4JCQlatGiRxowZozNnzmjYsGHKzs5W165dlZKSIj8/P2uZt99+WyNGjNDtt98ub29v9evXT3//+9+t+QEBAfroo4+UmJioqKgoNWjQQBMnTnS7l87NN9+sJUuWaMKECXruued03XXXadWqVWrbtm2ZOgIAANjLb7pPTnXHfXIAAKh+quQ+OQAAAL8XhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLNaq6AQAAwB4upGx2e16zd9cqasmvOJIDAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsqdxDzuTJk+Xl5eX2aNWqlTX//PnzSkxMVP369VWnTh3169dPWVlZbus4fPiw4uPjVatWLYWEhOjZZ59Vfn6+W82GDRt04403yuFwqGXLllq0aFF57woAAKjGKuRITps2bXT06FHrsXnzZmve6NGj9cEHH2j58uXauHGjjhw5oj/96U/W/IKCAsXHxysvL09btmzR4sWLtWjRIk2cONGqycjIUHx8vHr27Kn09HSNGjVKQ4cO1dq1aytidwAAQDVUo0JWWqOGwsLCik3PycnRP//5Ty1ZskS33XabJGnhwoVq3bq1Pv/8c3Xp0kUfffSR9u7dq48//lihoaHq2LGjXnjhBY0dO1aTJ0+Wr6+v5s2bp2bNmun111+XJLVu3VqbN2/W3/72N8XFxVXELgEAgGqmQo7kfPPNNwoPD1fz5s318MMP6/Dhw5Kk7du368KFC4qNjbVqW7VqpcaNGystLU2SlJaWpnbt2ik0NNSqiYuLk8vl0p49e6yai9dRVFO0jtLk5ubK5XK5PQAAgD2Ve8iJjo7WokWLlJKSorlz5yojI0PdunXTqVOnlJmZKV9fXwUGBrotExoaqszMTElSZmamW8Apml8073I1LpdL586dK7Vt06ZNU0BAgPWIiIj4rbsLAAB+p8r9dNWdd95p/b99+/aKjo5WkyZN9M4778jf37+8N+eR8ePHKykpyXrucrkIOgAA2FSFX0IeGBio66+/Xt9++63CwsKUl5en7Oxst5qsrCxrDE9YWFixq62Knl+pxul0XjZIORwOOZ1OtwcAALCnCg85p0+f1sGDB9WwYUNFRUWpZs2aWrdunTX/wIEDOnz4sGJiYiRJMTEx2rVrl44dO2bVpKamyul0KjIy0qq5eB1FNUXrAAAAKPeQ88wzz2jjxo06dOiQtmzZovvuu08+Pj568MEHFRAQoCFDhigpKUmffPKJtm/frsGDBysmJkZdunSRJPXq1UuRkZEaOHCg/v3vf2vt2rWaMGGCEhMT5XA4JElPPPGEvvvuO40ZM0b79+/XnDlz9M4772j06NHlvTsAAKCaKvcxOT/++KMefPBB/fLLLwoODlbXrl31+eefKzg4WJL0t7/9Td7e3urXr59yc3MVFxenOXPmWMv7+Pho9erVGj58uGJiYlS7dm0lJCRo6tSpVk2zZs2UnJys0aNHa+bMmWrUqJEWLFjA5eMAAMDiZYwxVd2IquJyuRQQEKCcnJxyH5/zzdLni027bsBL5boNAAB+Ty6kbHZ7XrN31wrZztX+/ua7qwAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC3VqOoGAAAAeziU/aHb8+vUtYpa8iuO5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFviW8gBAIDHLqRsruomXBFHcgAAgC0RcgAAgC0RcgAAgC0xJgcAAFxRdRiDcylCDgAAcFMdA01JCDkAAMBjh7I/LDatUEYZ3ieUo/M6n3dBP346X0HOP6hN216q4VOz0ttY7UPO7Nmz9eqrryozM1MdOnTQG2+8oc6dO1d1swAA+F0q61GakkLNxXb5ZOr9mvuU433+1wl+kk7uk05KQd+8okf/8LhuifmPMm27rKp1yFm2bJmSkpI0b948RUdHa8aMGYqLi9OBAwcUEhJS1c0DAKBSlddppisFmkvt8snU//juLHX+iZpn9Nqxv0ppqtSgU61Dzl//+lc99thjGjx4sCRp3rx5Sk5O1ltvvaVx48ZVcesAACiuIoNI08A7r1hT3gpl9H7Nfb8+8SqlyEuSkRb+9KaiC/pX2qmrahty8vLytH37do0fP96a5u3trdjYWKWlpZW4TG5urnJzc63nOTk5kiSXy1Xu7Tt9NrfYtJ1vPXPF5RoH3OH2vOYdMeXWJgBlcyHV/TOlvN6Xl663rOu+mvWUVHM12y7LcgdXTL3iMpd+1l2twzmpZVruWrH77KpK3+Z33if0s85cVW2mXPri81Vq1y7uN22z6Pe2MeayddU25Pz8888qKChQaGio2/TQ0FDt37+/xGWmTZumKVOmFJseERFRIW0sm9erugEAUAn4rLtWJeuBclvXqVOnFBAQUOr8ahtyymL8+PFKSkqynhcWFurEiROqX7++vLxKO8bmOZfLpYiICP3www9yOp3ltl64o58rD31dOejnykE/V46K7GdjjE6dOqXw8PDL1lXbkNOgQQP5+PgoKyvLbXpWVpbCwsJKXMbhcMjhcLhNCwwMrKgmyul08gaqBPRz5aGvKwf9XDno58pRUf18uSM4Rart1zr4+voqKipK69ats6YVFhZq3bp1iolhHAsAANe6anskR5KSkpKUkJCgTp06qXPnzpoxY4bOnDljXW0FAACuXdU65PTv31/Hjx/XxIkTlZmZqY4dOyolJaXYYOTK5nA4NGnSpGKnxlC+6OfKQ19XDvq5ctDPleP30M9e5krXXwEAAFRD1XZMDgAAwOUQcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0Rcspo9uzZatq0qfz8/BQdHa2tW7detn758uVq1aqV/Pz81K5dO61Zs6aSWlq9edLP//jHP9StWzfVq1dP9erVU2xs7BV/LviVp6/nIkuXLpWXl5f69u1bsQ20EU/7Ojs7W4mJiWrYsKEcDoeuv/56Pj+ugqf9PGPGDN1www3y9/dXRESERo8erfPnz1dSa6unTZs26e6771Z4eLi8vLy0atWqKy6zYcMG3XjjjXI4HGrZsqUWLVpUsY008NjSpUuNr6+veeutt8yePXvMY489ZgIDA01WVlaJ9Z999pnx8fEx06dPN3v37jUTJkwwNWvWNLt27arkllcvnvbzQw89ZGbPnm127txp9u3bZwYNGmQCAgLMjz/+WMktr1487eciGRkZ5g9/+IPp1q2buffeeyunsdWcp32dm5trOnXqZPr06WM2b95sMjIyzIYNG0x6enolt7x68bSf3377beNwOMzbb79tMjIyzNq1a03Dhg3N6NGjK7nl1cuaNWvM888/b959910jyaxcufKy9d99952pVauWSUpKMnv37jVvvPGG8fHxMSkpKRXWRkJOGXTu3NkkJiZazwsKCkx4eLiZNm1aifUPPPCAiY+Pd5sWHR1tHn/88QptZ3XnaT9fKj8/39StW9csXry4oppoC2Xp5/z8fHPzzTebBQsWmISEBELOVfK0r+fOnWuaN29u8vLyKquJtuBpPycmJprbbrvNbVpSUpK55ZZbKrSddnI1IWfMmDGmTZs2btP69+9v4uLiKqxdnK7yUF5enrZv367Y2Fhrmre3t2JjY5WWllbiMmlpaW71khQXF1dqPcrWz5c6e/asLly4oKCgoIpqZrVX1n6eOnWqQkJCNGTIkMpopi2Upa/ff/99xcTEKDExUaGhoWrbtq1efvllFRQUVFazq52y9PPNN9+s7du3W6e0vvvuO61Zs0Z9+vSplDZfK6rid2G1/lqHqvDzzz+roKCg2FdHhIaGav/+/SUuk5mZWWJ9ZmZmhbWzuitLP19q7NixCg8PL/amwv8pSz9v3rxZ//znP5Wenl4JLbSPsvT1d999p/Xr1+vhhx/WmjVr9O233+rJJ5/UhQsXNGnSpMpodrVTln5+6KGH9PPPP6tr164yxig/P19PPPGEnnvuucpo8jWjtN+FLpdL586dk7+/f7lvkyM5sKVXXnlFS5cu1cqVK+Xn51fVzbGNU6dOaeDAgfrHP/6hBg0aVHVzbK+wsFAhISGaP3++oqKi1L9/fz3//POaN29eVTfNVjZs2KCXX35Zc+bM0Y4dO/Tuu+8qOTlZL7zwQlU3Db8RR3I81KBBA/n4+CgrK8ttelZWlsLCwkpcJiwszKN6lK2fi7z22mt65ZVX9PHHH6t9+/YV2cxqz9N+PnjwoA4dOqS7777bmlZYWChJqlGjhg4cOKAWLVpUbKOrqbK8phs2bKiaNWvKx8fHmta6dWtlZmYqLy9Pvr6+Fdrm6qgs/fyf//mfGjhwoIYOHSpJateunc6cOaNhw4bp+eefl7c3xwPKQ2m/C51OZ4UcxZE4kuMxX19fRUVFad26dda0wsJCrVu3TjExMSUuExMT41YvSampqaXWo2z9LEnTp0/XCy+8oJSUFHXq1KkymlqtedrPrVq10q5du5Senm497rnnHvXs2VPp6emKiIiozOZXK2V5Td9yyy369ttvrSApSV9//bUaNmxIwClFWfr57NmzxYJMUbA0fId1uamS34UVNqTZxpYuXWocDodZtGiR2bt3rxk2bJgJDAw0mZmZxhhjBg4caMaNG2fVf/bZZ6ZGjRrmtddeM/v27TOTJk3iEvKr4Gk/v/LKK8bX19esWLHCHD161HqcOnWqqnahWvC0ny/F1VVXz9O+Pnz4sKlbt64ZMWKEOXDggFm9erUJCQkxL774YlXtQrXgaT9PmjTJ1K1b1/zrX/8y3333nfnoo49MixYtzAMPPFBVu1AtnDp1yuzcudPs3LnTSDJ//etfzc6dO833339vjDFm3LhxZuDAgVZ90SXkzz77rNm3b5+ZPXs2l5D/Xr3xxhumcePGxtfX13Tu3Nl8/vnn1rzu3bubhIQEt/p33nnHXH/99cbX19e0adPGJCcnV3KLqydP+rlJkyZGUrHHpEmTKr/h1Yynr+eLEXI842lfb9myxURHRxuHw2GaN29uXnrpJZOfn1/Jra5+POnnCxcumMmTJ5sWLVoYPz8/ExERYZ588klz8uTJym94NfLJJ5+U+Jlb1LcJCQmme/fuxZbp2LGj8fX1Nc2bNzcLFy6s0DZ6GcOxOAAAYD+MyQEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALb0/wFcn0yLehz2oAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARe9JREFUeJzt3XlcVfW+//E3oGxw2CDGIEdyrJScChMxNT2RmNSJ0nLoYWgOqWhHKaeTV80Gu3o66ckpr+eE9xxNs5t2EkURUzNJE+U6exwwNQVtgK2oILB+f/RjXbfgsBE0lq/n47Eetb/rs9b6ri97w9s1bTfDMAwBAABYjPud7gAAAEBFIOQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuSgXEyePFlubm7m6/r166tfv34Vvt1jx47Jzc1NCQkJZlu/fv1Uo0aNCt92MTc3N02ePPm2ba+y69Spkzp16lSu67z6/YeSSvuslKdDhw6pS5cu8vHxkZubm1asWFEh27kVrrxP+FxbAyEHvxmrVq36zf5S+S337W5x4cIFTZ48WRs2bLjTXbnjfovvx9jYWO3evVvvvPOO/vGPf6h169Z3uku/SUVFRZo2bZoaNGggLy8vtWjRQp988smd7pZ1GUA5mDRpknHl2+nSpUtGfn6+S+uIi4szXH1LFhUVGRcvXjQKCgrMttjYWKN69eouredW+nbx4kXj8uXL5bo9K3vssceMxx57zOXlzp49a0gyJk2aVGLe5cuXjYsXL9565yqJ8vqslJcLFy4Ykow33nij3Nddnlx5n1zrvXarxo0bZ0gyBg0aZMyfP9+Ijo42JBmffPJJuW8LhsGRHFQIm82mqlWrVtj6CwoKlJ+fLzc3N3l5ecnDw6PCtnUjXl5eqlKlyh3b/u1w6dIlFRUVlTovNzf3NvempCpVqsjLy+tOd+M36XZ8Vs6ePStJ8vX1vWHtnXy/3On3yQ8//KD3339fcXFxmj9/vgYNGqQvv/xSHTp00OjRo1VYWHjH+mZVhBy4bPPmzXrkkUfk5eWlRo0a6aOPPipRc/U1OZcvX9abb76p++67T15eXqpdu7bat2+v5ORkSb9eRzN79mxJv54LL56k/7uW4M9//rNmzJihRo0ayWazad++fde9zuDo0aOKiopS9erVFRwcrClTpsgwDHP+hg0b5ObmVuL0x9XrvF7fituuPnWwc+dOPfnkk7Lb7apRo4Yef/xxffvtt041CQkJcnNz0zfffKP4+Hj5+/urevXqevbZZ80/Gq744YcfNGDAAAUHB8tms6lBgwYaOnSo8vPzncbk+eefl5+fn6pVq6a2bdsqMTHRaT3F47JkyRJNmDBBv/vd71StWjU5HA7zeqcjR46oW7duqlmzpl588UVJvx6GnzFjhh588EF5eXkpMDBQr7zyin755Zfr9js/P18TJ05UWFiYfHx8VL16dXXo0EFfffWVWXPs2DH5+/tLkt58803zZ1A87qVda1FQUKC33nrLfL/Ur19ff/rTn5SXl+dUV79+fT311FPavHmz2rRpIy8vLzVs2FD//d//7doPQL++F4YPH65ly5YpNDRU3t7eioiI0O7duyVJH330kRo3biwvLy916tRJx44dc1r+66+/1vPPP697771XNptNISEhGjVqlC5evGjWlNdn5cyZM/L391enTp2cPheHDx9W9erV1bNnz5va58mTJ6tevXqSpNGjR8vNzU3169c357m5uWnfvn3q06ePatWqpfbt20uSdu3apX79+qlhw4by8vJSUFCQXn75Zf30008ltrFhwwa1bt3a6XdOWa7DKm2ZvLw8jRo1Sv7+/qpZs6b+8Ic/6OTJkyWWPXfunEaOHKn69evLZrMpICBATzzxhHbs2HHT2//iiy90+fJlDRs2zGxzc3PT0KFDdfLkSaWmprq0P7gxa//zE+Vu9+7d6tKli/z9/TV58mQVFBRo0qRJCgwMvO5ykydP1tSpUzVw4EC1adNGDodD27dv144dO/TEE0/olVde0alTp5ScnKx//OMfpa7j448/1qVLlzR48GDZbDb5+fld8+hCYWGhunbtqrZt22ratGlKSkrSpEmTVFBQoClTpri0zzfTtyvt3btXHTp0kN1u15gxY1S1alV99NFH6tSpkzZu3Kjw8HCn+hEjRqhWrVqaNGmSjh07phkzZmj48OFaunTpTffx1KlTatOmjbKzszV48GA1adJEP/zwgz777DNduHBBnp6eysrKUrt27XThwgW9+uqrql27thYuXKg//OEP+uyzz/Tss886rfOtt96Sp6enXn/9deXl5cnT01PSr+EhKipK7du315///GdVq1bNHKeEhAT1799fr776qjIyMjRr1izt3LlT33zzzTWP7DkcDi1YsEC9e/fWoEGDdO7cOf3tb39TVFSUtm3bplatWsnf319z587V0KFD9eyzz+q5556TJLVo0eKaYzJw4EAtXLhQPXr00GuvvaatW7dq6tSp2r9/v5YvX+5Ue/jwYfXo0UMDBgxQbGys/v73v6tfv34KCwvTgw8+eNM/B+nXoPKvf/1LcXFxkqSpU6fqqaee0pgxYzRnzhwNGzZMv/zyi6ZNm6aXX35Z69evN5ddtmyZLly4oKFDh6p27dratm2bPvzwQ508eVLLli0zx7k8PisBAQGaO3eunn/+eX344Yd69dVXVVRUpH79+qlmzZqaM2fOTe3vc889J19fX40aNUq9e/dWt27dSlz4//zzz+u+++7Tu+++awaq5ORkHT16VP3791dQUJD27t2r+fPna+/evfr222/NMLJz50517dpVderU0ZtvvqnCwkJNmTLFDL23auDAgfrnP/+pPn36qF27dlq/fr2io6NL1A0ZMkSfffaZhg8frtDQUP3000/avHmz9u/fr4cffvimtrVz505Vr15dTZs2dWpv06aNOb84BKKc3OHTZahkYmJiDC8vL+P777832/bt22d4eHg4XSNQr149IzY21nzdsmVLIzo6+rrrvtZ1BhkZGYYkw263G2fOnCl13scff2y2xcbGGpKMESNGmG1FRUVGdHS04enpaZw9e9YwDMP46quvDEnGV199dcN1Xu8aCF117j4mJsbw9PQ0jhw5YradOnXKqFmzptGxY0ez7eOPPzYkGZGRkUZRUZHZPmrUKMPDw8PIzs4udXuleemllwx3d3fju+++KzGveN0jR440JBlff/21Oe/cuXNGgwYNjPr16xuFhYWGYfzfuDRs2NC4cOGC07qKx3bcuHFO7V9//bUhyVi0aJFTe1JSUon2q6/JKSgoMPLy8pyW++WXX4zAwEDj5ZdfNtuud03O1deEpaenG5KMgQMHOtW9/vrrhiRj/fr1Zlu9evUMScamTZvMtjNnzhg2m8147bXXSmzreiQZNpvNyMjIMNs++ugjQ5IRFBRkOBwOs338+PGGJKfaq8fbMAxj6tSphpubm9Nnrrw+K4ZhGL179zaqVatm/Pvf/zamT59uSDJWrFjh0n4Xr3v69OlO7cU/l969e5dYprR9/eSTT0r8LJ5++mmjWrVqxg8//GC2HTp0yKhSpYrL1yVd630ybNgwp7o+ffqUeK/5+PgYcXFxLm3vatHR0UbDhg1LtOfm5pb6ucKt43QVblphYaHWrFmjmJgY3XvvvWZ706ZNFRUVdd1lfX19tXfvXh06dKjM2+/evbtL/3obPny4+f/FpxHy8/O1bt26MvfhRgoLC7V27VrFxMSoYcOGZnudOnXUp08fbd68WQ6Hw2mZwYMHOx1C79ChgwoLC/X999/f1DaLioq0YsUKPf3006Xe0VK87lWrVqlNmzZO/1KsUaOGBg8erGPHjmnfvn1Oy8XGxsrb27vUbQ4dOtTp9bJly+Tj46MnnnhCP/74ozmFhYWpRo0aTqeerubh4WEeJSoqKtLPP/+sgoICtW7d2qVTAVdatWqVJCk+Pt6p/bXXXpOkEqfoQkND1aFDB/O1v7+/HnjgAR09etTlbT/++OPm6RpJ5pG77t27q2bNmiXar9zGleOdm5urH3/8Ue3atZNhGNq5c+dN98GVz8qsWbPk4+OjHj166D/+4z/Ut29fPfPMMze9rZsxZMiQEm1X7uulS5f0448/qm3btpJk/twLCwu1bt06xcTEKDg42Kxv3LixnnzyyVvuV/H75NVXX3VqHzlyZIlaX19fbd26VadOnSrz9i5evCibzVaivfg6oStPS6J8EHJw086ePauLFy/qvvvuKzHvgQceuO6yU6ZMUXZ2tu6//341b95co0eP1q5du1zafoMGDW661t3d3SlkSNL9998vSSWugyhPZ8+e1YULF0odj6ZNm6qoqEgnTpxwar8yMEpSrVq1JOmG17JcuU2Hw6FmzZpdt+7777+/Zr+K51/pWuNdpUoV1a1b16nt0KFDysnJUUBAgPz9/Z2m8+fP68yZM9ft28KFC9WiRQvzei1/f38lJiYqJyfnustdy/fffy93d3c1btzYqT0oKEi+vr4l9vXqn4H068/hZn8G11uXj4+PJCkkJKTU9iu3cfz4cfXr109+fn6qUaOG/P399dhjj0mSS2PhymfFz89Pf/3rX7Vr1y75+Pjor3/9600veyv9+fnnn/XHP/5RgYGB8vb2lr+/v1lXvK9nzpzRxYsXS/wcJZXa5qri90mjRo2c2kv7nEybNk179uxRSEiI2rRpo8mTJ7scgr29vUtcEyb9GvKK56N8cU0ObouOHTvqyJEj+uKLL7R27VotWLBAH3zwgebNm6eBAwfe1DrK+xfAtS5avN13OFzrbhfjiotB74RrjbfNZpO7u/O/j4qKihQQEKBFixaVusz1jir885//VL9+/RQTE6PRo0crICBAHh4emjp1qo4cOVL2HdC1f8ZXK8+fwbXWdaNtFBYW6oknntDPP/+ssWPHqkmTJqpevbp++OEH9evX75rXn5XG1c/KmjVrJP0auE6ePHlTd0m5orT+vPDCC9qyZYtGjx6tVq1aqUaNGioqKlLXrl1d2tfb5YUXXlCHDh20fPlyrV27VtOnT9d//ud/6vPPP7/po0p16tTRV199JcMwnN6bp0+fliSno1UoH4Qc3DR/f395e3uXesrp4MGDN1zez89P/fv3V//+/XX+/Hl17NhRkydPNkNOeT6xtqioSEePHjWP3kjSv//9b0kyTyUUHzHJzs52Wra000Q32zd/f39Vq1at1PE4cOCA3N3dS/yL/lb5+/vLbrdrz549162rV6/eNftVPL+sGjVqpHXr1unRRx91+Q/sZ599poYNG+rzzz93GudJkyY51bny/qhXr56Kiop06NAhp4s8s7KylJ2dfUv7WlF2796tf//731q4cKFeeukls734DsQrlednJSkpSQsWLNCYMWO0aNEixcbGauvWrRX6WIRffvlFKSkpevPNNzVx4kSz/erfLQEBAfLy8tLhw4dLrKO0NlcVv0+OHDnidPTmWr/P6tSpo2HDhmnYsGE6c+aMHn74Yb3zzjs3HXJatWqlBQsWaP/+/QoNDTXbt27das5H+eJ0FW6ah4eHoqKitGLFCh0/ftxs379/v/kvwWu5+rbQGjVqqHHjxk6HbqtXry6pZOgoq1mzZpn/bxiGZs2apapVq+rxxx+X9OsvOA8PD23atMlpudLuKrnZvnl4eKhLly764osvnE6LZWVlafHixWrfvr3sdnsZ96h07u7uiomJ0Zdffqnt27eXmF98pKBbt27atm2b022qubm5mj9/vurXr+/0S9dVL7zwggoLC/XWW2+VmFdQUHDdcSs+wnHlUZOtW7eWuJ22+C6um3l/dOvWTZI0Y8YMp/a//OUvklTq3TN3WmnjYBiGZs6cWaK2vD4r2dnZ5h2P7777rhYsWKAdO3bo3XffvaX13khp+yqV/Hl5eHgoMjJSK1ascLoW5vDhw1q9evUt96M4nFx9iu7qfhQWFpY4XRgQEKDg4OBSTz9dyzPPPKOqVas6/Y4xDEPz5s3T7373O7Vr187FPcCNcCQHLnnzzTeVlJSkDh06aNiwYSooKNCHH36oBx988LrX2ISGhqpTp04KCwuTn5+ftm/fbt6OWSwsLEzSrxcBRkVFycPDQ7169SpTP728vJSUlKTY2FiFh4dr9erVSkxM1J/+9Cfz1ImPj495+6ybm5saNWqklStXlnr9iCt9e/vtt5WcnKz27dtr2LBhqlKlij766CPl5eVp2rRpZdqfG3n33Xe1du1aPfbYYxo8eLCaNm2q06dPa9myZdq8ebN8fX01btw4ffLJJ3ryySf16quvys/PTwsXLlRGRob+53/+p8QpKFc89thjeuWVVzR16lSlp6erS5cuqlq1qg4dOqRly5Zp5syZ6tGjR6nLPvXUU/r888/17LPPKjo6WhkZGZo3b55CQ0N1/vx5s87b21uhoaFaunSp7r//fvn5+alZs2alXovUsmVLxcbGav78+crOztZjjz2mbdu2aeHChYqJiVHnzp3LvK8VpUmTJmrUqJFef/11/fDDD7Lb7fqf//mfUq8LKq/Pyh//+Ef99NNPWrdunTw8PNS1a1cNHDhQb7/9tp555hm1bNnylverNHa7XR07dtS0adN0+fJl/e53v9PatWuVkZFRonby5Mlau3atHn30UQ0dOlSFhYWaNWuWmjVrpvT09FvqR6tWrdS7d2/NmTNHOTk5ateunVJSUkocJTp37pzq1q2rHj16qGXLlqpRo4bWrVun7777Tu+///5Nb69u3boaOXKkpk+frsuXL+uRRx7RihUr9PXXX2vRokV39KGmlnVnbupCZbZx40YjLCzM8PT0NBo2bGjMmzevxK2ZV99C/vbbbxtt2rQxfH19DW9vb6NJkybGO++84/TVDwUFBcaIESMMf39/w83NzVzftW5PvXLe1beQV69e3Thy5IjRpUsXo1q1akZgYKAxadIk8zbpYmfPnjW6d+9uVKtWzahVq5bxyiuvGHv27Cmxzmv1zTBKf/z7jh07jKioKKNGjRpGtWrVjM6dOxtbtmxxqim+hfzq276vdWv7jXz//ffGSy+9ZPj7+xs2m81o2LChERcX53R79pEjR4wePXoYvr6+hpeXl9GmTRtj5cqVpW5/2bJlJbZxo6/MmD9/vhEWFmZ4e3sbNWvWNJo3b26MGTPGOHXqlFlz9S3kRUVFxrvvvmvUq1fPsNlsxkMPPWSsXLnSiI2NNerVq+e0/i1btpjvvSvH/er3n2H8+gj/N99802jQoIFRtWpVIyQkxBg/frxx6dIlp7p69eqV+niDsnz9hKQStxlf6/1b2jjv27fPiIyMNGrUqGHcc889xqBBg4z//d//ven3oyuflS+++MKQZLz//vtOdQ6Hw6hXr57RsmXLm/5qlhvdQl782IYrnTx50nj22WcNX19fw8fHx3j++eeNU6dOlfp5SklJMR566CHD09PTaNSokbFgwQLjtddeM7y8vG6qf1f350oXL140Xn31VaN27dpG9erVjaeffto4ceKEUz/y8vKM0aNHGy1btjRq1qxpVK9e3WjZsqUxZ84cl7ZvGIZRWFhovt89PT2NBx980PjnP//p8npwc9wM4w5f3QgAgItiYmJu+bEUsD6uyQEA/KZd/fyYQ4cOadWqVerUqdOd6RAqDY7kAL9h58+fd7oupTT+/v6cy69gmZmZ153v7e1tPvfGSi5evHjD5/P4+fmZD3OsKHXq1DG/5+r777/X3LlzlZeXp507d+q+++5TTk7ODR+kFxQUVGH9+62ME0pxZ8+WAbie4msIrjdd+bUAqBg3+hlcef2ZlRRfN3a9ydVrx8qiX79+5jVbdrvdiIqKMtLS0sz5xV83cr2pIv1WxgklcSQH+A07evToDZ+q2r59e/Ox8KgYN/oqkODg4Fu6Bf+36vTp09q7d+91a8LCwsxnTt0p+/btu+HXLURGRlbY9ivLON2NCDkAAMCSuPAYAABY0l39MMCioiKdOnVKNWvWLNfHpAMAgIpjGIbOnTun4ODg6z7I9K4OOadOnSr37xECAAC3x4kTJ1S3bt1rzr+rQ07NmjUl/TpI5f19QgAAoGI4HA6FhISYf8ev5a4OOcWnqOx2OyEHAIBK5kaXmnDhMQAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKQqd7oDVnU5aXOJtqpd29+BngAAcHfiSA4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkl0LO3Llz1aJFC9ntdtntdkVERGj16tXm/E6dOsnNzc1pGjJkiNM6jh8/rujoaFWrVk0BAQEaPXq0CgoKnGo2bNighx9+WDabTY0bN1ZCQkKJvsyePVv169eXl5eXwsPDtW3bNld2BQAAWJxLIadu3bp67733lJaWpu3bt+v3v/+9nnnmGe3du9esGTRokE6fPm1O06ZNM+cVFhYqOjpa+fn52rJlixYuXKiEhARNnDjRrMnIyFB0dLQ6d+6s9PR0jRw5UgMHDtSaNWvMmqVLlyo+Pl6TJk3Sjh071LJlS0VFRenMmTO3MhYAAMBC3AzDMG5lBX5+fpo+fboGDBigTp06qVWrVpoxY0aptatXr9ZTTz2lU6dOKTAwUJI0b948jR07VmfPnpWnp6fGjh2rxMRE7dmzx1yuV69eys7OVlJSkiQpPDxcjzzyiGbNmiVJKioqUkhIiEaMGKFx48bddN8dDod8fHyUk5Mju91exhEoHd9dBQBAxbjZv99lviansLBQS5YsUW5uriIiIsz2RYsW6Z577lGzZs00fvx4XbhwwZyXmpqq5s2bmwFHkqKiouRwOMyjQampqYqMjHTaVlRUlFJTUyVJ+fn5SktLc6pxd3dXZGSkWXMteXl5cjgcThMAALAml7+FfPfu3YqIiNClS5dUo0YNLV++XKGhoZKkPn36qF69egoODtauXbs0duxYHTx4UJ9//rkkKTMz0yngSDJfZ2ZmXrfG4XDo4sWL+uWXX1RYWFhqzYEDB67b96lTp+rNN990dZcBAEAl5HLIeeCBB5Senq6cnBx99tlnio2N1caNGxUaGqrBgwebdc2bN1edOnX0+OOP68iRI2rUqFG5drwsxo8fr/j4ePO1w+FQSEjIHewRAACoKC6HHE9PTzVu3FiSFBYWpu+++04zZ87URx99VKI2PDxcknT48GE1atRIQUFBJe6CysrKkiQFBQWZ/y1uu7LGbrfL29tbHh4e8vDwKLWmeB3XYrPZZLPZXNhbAABQWd3yc3KKioqUl5dX6rz09HRJUp06dSRJERER2r17t9NdUMnJybLb7eYpr4iICKWkpDitJzk52bzux9PTU2FhYU41RUVFSklJcbo2CAAA3N1cOpIzfvx4Pfnkk7r33nt17tw5LV68WBs2bNCaNWt05MgRLV68WN26dVPt2rW1a9cujRo1Sh07dlSLFi0kSV26dFFoaKj69u2radOmKTMzUxMmTFBcXJx5hGXIkCGaNWuWxowZo5dfflnr16/Xp59+qsTERLMf8fHxio2NVevWrdWmTRvNmDFDubm56t+/fzkODQAAqMxcCjlnzpzRSy+9pNOnT8vHx0ctWrTQmjVr9MQTT+jEiRNat26dGThCQkLUvXt3TZgwwVzew8NDK1eu1NChQxUREaHq1asrNjZWU6ZMMWsaNGigxMREjRo1SjNnzlTdunW1YMECRUVFmTU9e/bU2bNnNXHiRGVmZqpVq1ZKSkoqcTEyAAC4e93yc3IqM56TAwBA5VPhz8kBAAD4LSPkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS3Ip5MydO1ctWrSQ3W6X3W5XRESEVq9ebc6/dOmS4uLiVLt2bdWoUUPdu3dXVlaW0zqOHz+u6OhoVatWTQEBARo9erQKCgqcajZs2KCHH35YNptNjRs3VkJCQom+zJ49W/Xr15eXl5fCw8O1bds2V3YFAABYnEshp27dunrvvfeUlpam7du36/e//72eeeYZ7d27V5I0atQoffnll1q2bJk2btyoU6dO6bnnnjOXLywsVHR0tPLz87VlyxYtXLhQCQkJmjhxolmTkZGh6Ohode7cWenp6Ro5cqQGDhyoNWvWmDVLly5VfHy8Jk2apB07dqhly5aKiorSmTNnbnU8AACARbgZhmHcygr8/Pw0ffp09ejRQ/7+/lq8eLF69OghSTpw4ICaNm2q1NRUtW3bVqtXr9ZTTz2lU6dOKTAwUJI0b948jR07VmfPnpWnp6fGjh2rxMRE7dmzx9xGr169lJ2draSkJElSeHi4HnnkEc2aNUuSVFRUpJCQEI0YMULjxo276b47HA75+PgoJydHdrv9VoahhMtJm0u0Ve3avly3AQDA3ehm/36X+ZqcwsJCLVmyRLm5uYqIiFBaWpouX76syMhIs6ZJkya69957lZqaKklKTU1V8+bNzYAjSVFRUXI4HObRoNTUVKd1FNcUryM/P19paWlONe7u7oqMjDRrriUvL08Oh8NpAgAA1uRyyNm9e7dq1Kghm82mIUOGaPny5QoNDVVmZqY8PT3l6+vrVB8YGKjMzExJUmZmplPAKZ5fPO96NQ6HQxcvXtSPP/6owsLCUmuK13EtU6dOlY+PjzmFhIS4uvsAAKCScDnkPPDAA0pPT9fWrVs1dOhQxcbGat++fRXRt3I3fvx45eTkmNOJEyfudJcAAEAFqeLqAp6enmrcuLEkKSwsTN99951mzpypnj17Kj8/X9nZ2U5Hc7KyshQUFCRJCgoKKnEXVPHdV1fWXH1HVlZWlux2u7y9veXh4SEPD49Sa4rXcS02m002m83VXQYAAJXQLT8np6ioSHl5eQoLC1PVqlWVkpJizjt48KCOHz+uiIgISVJERIR2797tdBdUcnKy7Ha7QkNDzZor11FcU7wOT09PhYWFOdUUFRUpJSXFrAEAAHDpSM748eP15JNP6t5779W5c+e0ePFibdiwQWvWrJGPj48GDBig+Ph4+fn5yW63a8SIEYqIiFDbtm0lSV26dFFoaKj69u2radOmKTMzUxMmTFBcXJx5hGXIkCGaNWuWxowZo5dfflnr16/Xp59+qsTERLMf8fHxio2NVevWrdWmTRvNmDFDubm56t+/fzkODQAAqMxcCjlnzpzRSy+9pNOnT8vHx0ctWrTQmjVr9MQTT0iSPvjgA7m7u6t79+7Ky8tTVFSU5syZYy7v4eGhlStXaujQoYqIiFD16tUVGxurKVOmmDUNGjRQYmKiRo0apZkzZ6pu3bpasGCBoqKizJqePXvq7NmzmjhxojIzM9WqVSslJSWVuBgZAADcvW75OTmVGc/JAQCg8qnw5+QAAAD8lhFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJbn8LeS4OceyV5dou0888RgAgNuFIzkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSXAo5U6dO1SOPPKKaNWsqICBAMTExOnjwoFNNp06d5Obm5jQNGTLEqeb48eOKjo5WtWrVFBAQoNGjR6ugoMCpZsOGDXr44Ydls9nUuHFjJSQklOjP7NmzVb9+fXl5eSk8PFzbtm1zZXcAAICFuRRyNm7cqLi4OH377bdKTk7W5cuX1aVLF+Xm5jrVDRo0SKdPnzanadOmmfMKCwsVHR2t/Px8bdmyRQsXLlRCQoImTpxo1mRkZCg6OlqdO3dWenq6Ro4cqYEDB2rNmjVmzdKlSxUfH69JkyZpx44datmypaKionTmzJmyjgUAALAQN8MwjLIufPbsWQUEBGjjxo3q2LGjpF+P5LRq1UozZswodZnVq1frqaee0qlTpxQYGChJmjdvnsaOHauzZ8/K09NTY8eOVWJiovbs2WMu16tXL2VnZyspKUmSFB4erkceeUSzZs2SJBUVFSkkJEQjRozQuHHjbqr/DodDPj4+ysnJkd1uL+swlOrQkjdKtN3X651y3QYAAHejm/37fUvX5OTk5EiS/Pz8nNoXLVqke+65R82aNdP48eN14cIFc15qaqqaN29uBhxJioqKksPh0N69e82ayMhIp3VGRUUpNTVVkpSfn6+0tDSnGnd3d0VGRpo1pcnLy5PD4XCaAACANVUp64JFRUUaOXKkHn30UTVr1sxs79Onj+rVq6fg4GDt2rVLY8eO1cGDB/X5559LkjIzM50CjiTzdWZm5nVrHA6HLl68qF9++UWFhYWl1hw4cOCafZ46darefPPNsu4yAACoRMoccuLi4rRnzx5t3rzZqX3w4MHm/zdv3lx16tTR448/riNHjqhRo0Zl72k5GD9+vOLj483XDodDISEhd7BHAACgopQp5AwfPlwrV67Upk2bVLdu3evWhoeHS5IOHz6sRo0aKSgoqMRdUFlZWZKkoKAg87/FbVfW2O12eXt7y8PDQx4eHqXWFK+jNDabTTab7eZ2EgAAVGouXZNjGIaGDx+u5cuXa/369WrQoMENl0lPT5ck1alTR5IUERGh3bt3O90FlZycLLvdrtDQULMmJSXFaT3JycmKiIiQJHl6eiosLMyppqioSCkpKWYNAAC4u7l0JCcuLk6LFy/WF198oZo1a5rX0Pj4+Mjb21tHjhzR4sWL1a1bN9WuXVu7du3SqFGj1LFjR7Vo0UKS1KVLF4WGhqpv376aNm2aMjMzNWHCBMXFxZlHWYYMGaJZs2ZpzJgxevnll7V+/Xp9+umnSkxMNPsSHx+v2NhYtW7dWm3atNGMGTOUm5ur/v37l9fYAACASsylkDN37lxJv94mfqWPP/5Y/fr1k6enp9atW2cGjpCQEHXv3l0TJkwwaz08PLRy5UoNHTpUERERql69umJjYzVlyhSzpkGDBkpMTNSoUaM0c+ZM1a1bVwsWLFBUVJRZ07NnT509e1YTJ05UZmamWrVqpaSkpBIXIwMAgLvTLT0np7LjOTkAAFQ+t+U5OQAAAL9VhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJLoWcqVOn6pFHHlHNmjUVEBCgmJgYHTx40Knm0qVLiouLU+3atVWjRg11795dWVlZTjXHjx9XdHS0qlWrpoCAAI0ePVoFBQVONRs2bNDDDz8sm82mxo0bKyEhoUR/Zs+erfr168vLy0vh4eHatm2bK7sDAAAszKWQs3HjRsXFxenbb79VcnKyLl++rC5duig3N9esGTVqlL788kstW7ZMGzdu1KlTp/Tcc8+Z8wsLCxUdHa38/Hxt2bJFCxcuVEJCgiZOnGjWZGRkKDo6Wp07d1Z6erpGjhypgQMHas2aNWbN0qVLFR8fr0mTJmnHjh1q2bKloqKidObMmVsZDwAAYBFuhmEYZV347NmzCggI0MaNG9WxY0fl5OTI399fixcvVo8ePSRJBw4cUNOmTZWamqq2bdtq9erVeuqpp3Tq1CkFBgZKkubNm6exY8fq7Nmz8vT01NixY5WYmKg9e/aY2+rVq5eys7OVlJQkSQoPD9cjjzyiWbNmSZKKiooUEhKiESNGaNy4cTfVf4fDIR8fH+Xk5Mhut5d1GEp1aMkbJdru6/VOuW4DAIC70c3+/b6la3JycnIkSX5+fpKktLQ0Xb58WZGRkWZNkyZNdO+99yo1NVWSlJqaqubNm5sBR5KioqLkcDi0d+9es+bKdRTXFK8jPz9faWlpTjXu7u6KjIw0a0qTl5cnh8PhNAEAAGsqc8gpKirSyJEj9eijj6pZs2aSpMzMTHl6esrX19epNjAwUJmZmWbNlQGneH7xvOvVOBwOXbx4UT/++KMKCwtLrSleR2mmTp0qHx8fcwoJCXF9xwEAQKVQ5pATFxenPXv2aMmSJeXZnwo1fvx45eTkmNOJEyfudJcAAEAFqVKWhYYPH66VK1dq06ZNqlu3rtkeFBSk/Px8ZWdnOx3NycrKUlBQkFlz9V1QxXdfXVlz9R1ZWVlZstvt8vb2loeHhzw8PEqtKV5HaWw2m2w2m+s7DAAAKh2XjuQYhqHhw4dr+fLlWr9+vRo0aOA0PywsTFWrVlVKSorZdvDgQR0/flwRERGSpIiICO3evdvpLqjk5GTZ7XaFhoaaNVeuo7imeB2enp4KCwtzqikqKlJKSopZAwAA7m4uHcmJi4vT4sWL9cUXX6hmzZrm9S8+Pj7y9vaWj4+PBgwYoPj4ePn5+clut2vEiBGKiIhQ27ZtJUldunRRaGio+vbtq2nTpikzM1MTJkxQXFyceZRlyJAhmjVrlsaMGaOXX35Z69ev16effqrExESzL/Hx8YqNjVXr1q3Vpk0bzZgxQ7m5uerfv395jQ0AAKjEXAo5c+fOlSR16tTJqf3jjz9Wv379JEkffPCB3N3d1b17d+Xl5SkqKkpz5swxaz08PLRy5UoNHTpUERERql69umJjYzVlyhSzpkGDBkpMTNSoUaM0c+ZM1a1bVwsWLFBUVJRZ07NnT509e1YTJ05UZmamWrVqpaSkpBIXIwMAgLvTLT0np7LjOTkAAFQ+t+U5OQAAAL9VhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJLoecTZs26emnn1ZwcLDc3Ny0YsUKp/n9+vWTm5ub09S1a1enmp9//lkvvvii7Ha7fH19NWDAAJ0/f96pZteuXerQoYO8vLwUEhKiadOmlejLsmXL1KRJE3l5eal58+ZatWqVq7sDAAAsyuWQk5ubq5YtW2r27NnXrOnatatOnz5tTp988onT/BdffFF79+5VcnKyVq5cqU2bNmnw4MHmfIfDoS5duqhevXpKS0vT9OnTNXnyZM2fP9+s2bJli3r37q0BAwZo586diomJUUxMjPbs2ePqLgEAAAtyMwzDKPPCbm5avny5YmJizLZ+/fopOzu7xBGeYvv371doaKi+++47tW7dWpKUlJSkbt266eTJkwoODtbcuXP1xhtvKDMzU56enpKkcePGacWKFTpw4IAkqWfPnsrNzdXKlSvNdbdt21atWrXSvHnzSt12Xl6e8vLyzNcOh0MhISHKycmR3W4v6zCU6tCSN0q03dfrnXLdBgAAdyOHwyEfH58b/v2ukGtyNmzYoICAAD3wwAMaOnSofvrpJ3NeamqqfH19zYAjSZGRkXJ3d9fWrVvNmo4dO5oBR5KioqJ08OBB/fLLL2ZNZGSk03ajoqKUmpp6zX5NnTpVPj4+5hQSElIu+wsAAH57yj3kdO3aVf/93/+tlJQU/ed//qc2btyoJ598UoWFhZKkzMxMBQQEOC1TpUoV+fn5KTMz06wJDAx0qil+faOa4vmlGT9+vHJycszpxIkTt7azAADgN6tKea+wV69e5v83b95cLVq0UKNGjbRhwwY9/vjj5b05l9hsNtlstjvaBwAAcHtU+C3kDRs21D333KPDhw9LkoKCgnTmzBmnmoKCAv38888KCgoya7Kyspxqil/fqKZ4PgAAuLtVeMg5efKkfvrpJ9WpU0eSFBERoezsbKWlpZk169evV1FRkcLDw82aTZs26fLly2ZNcnKyHnjgAdWqVcusSUlJcdpWcnKyIiIiKnqXAABAJeByyDl//rzS09OVnp4uScrIyFB6erqOHz+u8+fPa/To0fr222917NgxpaSk6JlnnlHjxo0VFRUlSWratKm6du2qQYMGadu2bfrmm280fPhw9erVS8HBwZKkPn36yNPTUwMGDNDevXu1dOlSzZw5U/Hx8WY//vjHPyopKUnvv/++Dhw4oMmTJ2v79u0aPnx4OQwLAACo7FwOOdu3b9dDDz2khx56SJIUHx+vhx56SBMnTpSHh4d27dqlP/zhD7r//vs1YMAAhYWF6euvv3a6FmbRokVq0qSJHn/8cXXr1k3t27d3egaOj4+P1q5dq4yMDIWFhem1117TxIkTnZ6l065dOy1evFjz589Xy5Yt9dlnn2nFihVq1qzZrYwHAACwiFt6Tk5ld7P32ZcFz8kBAKBi3NHn5AAAANxphBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJLoecTZs26emnn1ZwcLDc3Ny0YsUKp/mGYWjixImqU6eOvL29FRkZqUOHDjnV/Pzzz3rxxRdlt9vl6+urAQMG6Pz58041u3btUocOHeTl5aWQkBBNmzatRF+WLVumJk2ayMvLS82bN9eqVatc3R0AAGBRLoec3NxctWzZUrNnzy51/rRp0/TXv/5V8+bN09atW1W9enVFRUXp0qVLZs2LL76ovXv3Kjk5WStXrtSmTZs0ePBgc77D4VCXLl1Ur149paWlafr06Zo8ebLmz59v1mzZskW9e/fWgAEDtHPnTsXExCgmJkZ79uxxdZcAAIAFuRmGYZR5YTc3LV++XDExMZJ+PYoTHBys1157Ta+//rokKScnR4GBgUpISFCvXr20f/9+hYaG6rvvvlPr1q0lSUlJSerWrZtOnjyp4OBgzZ07V2+88YYyMzPl6ekpSRo3bpxWrFihAwcOSJJ69uyp3NxcrVy50uxP27Zt1apVK82bN++m+u9wOOTj46OcnBzZ7fayDkOpDi15o0Tbfb3eKddtAABwN7rZv9/lek1ORkaGMjMzFRkZabb5+PgoPDxcqampkqTU1FT5+vqaAUeSIiMj5e7urq1bt5o1HTt2NAOOJEVFRengwYP65ZdfzJort1NcU7yd0uTl5cnhcDhNAADAmso15GRmZkqSAgMDndoDAwPNeZmZmQoICHCaX6VKFfn5+TnVlLaOK7dxrZri+aWZOnWqfHx8zCkkJMTVXQQAAJXEXXV31fjx45WTk2NOJ06cuNNdAgAAFaRcQ05QUJAkKSsry6k9KyvLnBcUFKQzZ844zS8oKNDPP//sVFPaOq7cxrVqiueXxmazyW63O00AAMCayjXkNGjQQEFBQUpJSTHbHA6Htm7dqoiICElSRESEsrOzlZaWZtasX79eRUVFCg8PN2s2bdqky5cvmzXJycl64IEHVKtWLbPmyu0U1xRvBwAA3N1cDjnnz59Xenq60tPTJf16sXF6erqOHz8uNzc3jRw5Um+//bb+9a9/affu3XrppZcUHBxs3oHVtGlTde3aVYMGDdK2bdv0zTffaPjw4erVq5eCg4MlSX369JGnp6cGDBigvXv3aunSpZo5c6bi4+PNfvzxj39UUlKS3n//fR04cECTJ0/W9u3bNXz48FsfFQAAUOlVcXWB7du3q3Pnzubr4uARGxurhIQEjRkzRrm5uRo8eLCys7PVvn17JSUlycvLy1xm0aJFGj58uB5//HG5u7ure/fu+utf/2rO9/Hx0dq1axUXF6ewsDDdc889mjhxotOzdNq1a6fFixdrwoQJ+tOf/qT77rtPK1asULNmzco0EAAAwFpu6Tk5lR3PyQEAoPK5I8/JAQAA+K0g5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEuqcqc7AAAArOFy0man11W7tr9DPfkVR3IAAIAlEXIAAIAlEXIAAIAllXvImTx5stzc3JymJk2amPMvXbqkuLg41a5dWzVq1FD37t2VlZXltI7jx48rOjpa1apVU0BAgEaPHq2CggKnmg0bNujhhx+WzWZT48aNlZCQUN67AgAAKrEKOZLz4IMP6vTp0+a0efP/XYg0atQoffnll1q2bJk2btyoU6dO6bnnnjPnFxYWKjo6Wvn5+dqyZYsWLlyohIQETZw40azJyMhQdHS0OnfurPT0dI0cOVIDBw7UmjVrKmJ3AABAJVQhd1dVqVJFQUFBJdpzcnL0t7/9TYsXL9bvf/97SdLHH3+spk2b6ttvv1Xbtm21du1a7du3T+vWrVNgYKBatWqlt956S2PHjtXkyZPl6empefPmqUGDBnr//fclSU2bNtXmzZv1wQcfKCoqqiJ2CQAAVDIVciTn0KFDCg4OVsOGDfXiiy/q+PHjkqS0tDRdvnxZkZGRZm2TJk107733KjU1VZKUmpqq5s2bKzAw0KyJioqSw+HQ3r17zZor11FcU7yOa8nLy5PD4XCaAACANZV7yAkPD1dCQoKSkpI0d+5cZWRkqEOHDjp37pwyMzPl6ekpX19fp2UCAwOVmZkpScrMzHQKOMXzi+ddr8bhcOjixYvX7NvUqVPl4+NjTiEhIbe6uwAA4Deq3E9XPfnkk+b/t2jRQuHh4apXr54+/fRTeXt7l/fmXDJ+/HjFx8ebrx0OB0EHAACLqvBbyH19fXX//ffr8OHDCgoKUn5+vrKzs51qsrKyzGt4goKCStxtVfz6RjV2u/26Qcpms8lutztNAADAmio85Jw/f15HjhxRnTp1FBYWpqpVqyolJcWcf/DgQR0/flwRERGSpIiICO3evVtnzpwxa5KTk2W32xUaGmrWXLmO4pridQAAgNvvWPZqp+lOK/eQ8/rrr2vjxo06duyYtmzZomeffVYeHh7q3bu3fHx8NGDAAMXHx+urr75SWlqa+vfvr4iICLVt21aS1KVLF4WGhqpv37763//9X61Zs0YTJkxQXFycbDabJGnIkCE6evSoxowZowMHDmjOnDn69NNPNWrUqPLeHQAAUEmV+zU5J0+eVO/evfXTTz/J399f7du317fffit/f39J0gcffCB3d3d1795deXl5ioqK0pw5c8zlPTw8tHLlSg0dOlQRERGqXr26YmNjNWXKFLOmQYMGSkxM1KhRozRz5kzVrVtXCxYs4PZxAABgcjMMw7jTnbhTHA6HfHx8lJOTU+7X5xxa8kaJtvt6vVOu2wAA4Lfk6r99FfV372b/fvPdVQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJKq3OkO3E0uJ212el21a/s71BMAAKyPIzkAAMCSCDkAAMCSOF11B119+kriFBYAAOWFkFPOCo1C7f9pp/Z4/KALypfvRS/Vyq+mBkW1ZPgYcnNzu9NdBADgrlDpQ87s2bM1ffp0ZWZmqmXLlvrwww/Vpk2bO9KX1FMp+tue6frp0hnJ9v8b//9//S55K3bPebUN6CS3wNp3pH8AANxNKnXIWbp0qeLj4zVv3jyFh4drxowZioqK0sGDBxUQEHBb+5J6KkXTto+RZJQ6/2fbRX1w/0aN3FugRrl+uuhXoPq+T5aoK8sdWBV52os7wgAAlVWlDjl/+ctfNGjQIPXv31+SNG/ePCUmJurvf/+7xo0bd9v6UWgU6m97putaAUeS5Pbr7H803qG/7IjWxVoFOpa9ukTZ1cGH63Zuj9LG+WqMOwBULpU25OTn5ystLU3jx48329zd3RUZGanU1NRSl8nLy1NeXp75OicnR5LkcDhuqS/7ftqhzJ9P31Rtps4r3f2Uap+prvyahSXm77mw4sYr+fuNa+79n9yb6s+NHM9JdnrdyNGiXNb7W3Pk1Iob1lh13wGgvJy/kOf0+lb/vl5L8XoN4zoHF/5/QaX0ww8/GJKMLVu2OLWPHj3aaNOmTanLTJo0ydCvh1uYmJiYmJiYKvl04sSJ62aFSnskpyzGjx+v+Ph483VRUZF+/vln1a5du1zvenI4HAoJCdGJEydkt9vLbb1wxjjfPoz17cE43x6M8+1RkeNsGIbOnTun4ODg69ZV2pBzzz33yMPDQ1lZWU7tWVlZCgoKKnUZm80mm83m1Obr61tRXZTdbucDdBswzrcPY317MM63B+N8e1TUOPv4+NywptI+8djT01NhYWFKSUkx24qKipSSkqKIiIg72DMAAPBbUGmP5EhSfHy8YmNj1bp1a7Vp00YzZsxQbm6uebcVAAC4e1XqkNOzZ0+dPXtWEydOVGZmplq1aqWkpCQFBgbe0X7ZbDZNmjSpxKkxlC/G+fZhrG8Pxvn2YJxvj9/COLsZxo3uvwIAAKh8Ku01OQAAANdDyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyCmj2bNnq379+vLy8lJ4eLi2bdt23fply5apSZMm8vLyUvPmzbVq1arb1NPKzZVx/q//+i916NBBtWrVUq1atRQZGXnDnwt+5er7udiSJUvk5uammJiYiu2ghbg61tnZ2YqLi1OdOnVks9l0//338/vjJrg6zjNmzNADDzwgb29vhYSEaNSoUbp06dJt6m3ltGnTJj399NMKDg6Wm5ubVqxYccNlNmzYoIcfflg2m02NGzdWQkJCxXayfL4u8+6yZMkSw9PT0/j73/9u7N271xg0aJDh6+trZGVllVr/zTffGB4eHsa0adOMffv2GRMmTDCqVq1q7N69+zb3vHJxdZz79OljzJ4929i5c6exf/9+o1+/foaPj49x8uTJ29zzysXVcS6WkZFh/O53vzM6dOhgPPPMM7ens5Wcq2Odl5dntG7d2ujWrZuxefNmIyMjw9iwYYORnp5+m3teubg6zosWLTJsNpuxaNEiIyMjw1izZo1Rp04dY9SoUbe555XLqlWrjDfeeMP4/PPPDUnG8uXLr1t/9OhRo1q1akZ8fLyxb98+48MPPzQ8PDyMpKSkCusjIacM2rRpY8TFxZmvCwsLjeDgYGPq1Kml1r/wwgtGdHS0U1t4eLjxyiuvVGg/KztXx/lqBQUFRs2aNY2FCxdWVBctoSzjXFBQYLRr185YsGCBERsbS8i5Sa6O9dy5c42GDRsa+fn5t6uLluDqOMfFxRm///3vndri4+ONRx99tEL7aSU3E3LGjBljPPjgg05tPXv2NKKioiqsX5yuclF+fr7S0tIUGRlptrm7uysyMlKpqamlLpOamupUL0lRUVHXrEfZxvlqFy5c0OXLl+Xn51dR3az0yjrOU6ZMUUBAgAYMGHA7umkJZRnrf/3rX4qIiFBcXJwCAwPVrFkzvfvuuyosLLxd3a50yjLO7dq1U1pamnlK6+jRo1q1apW6det2W/p8t7gTfwsr9dc63Ak//vijCgsLS3x1RGBgoA4cOFDqMpmZmaXWZ2ZmVlg/K7uyjPPVxo4dq+Dg4BIfKvyfsozz5s2b9be//U3p6em3oYfWUZaxPnr0qNavX68XX3xRq1at0uHDhzVs2DBdvnxZkyZNuh3drnTKMs59+vTRjz/+qPbt28swDBUUFGjIkCH605/+dDu6fNe41t9Ch8Ohixcvytvbu9y3yZEcWNJ7772nJUuWaPny5fLy8rrT3bGMc+fOqW/fvvqv//ov3XPPPXe6O5ZXVFSkgIAAzZ8/X2FhYerZs6feeOMNzZs37053zVI2bNigd999V3PmzNGOHTv0+eefKzExUW+99dad7hpuEUdyXHTPPffIw8NDWVlZTu1ZWVkKCgoqdZmgoCCX6lG2cS725z//We+9957WrVunFi1aVGQ3Kz1Xx/nIkSM6duyYnn76abOtqKhIklSlShUdPHhQjRo1qthOV1JleU/XqVNHVatWlYeHh9nWtGlTZWZmKj8/X56enhXa58qoLOP8H//xH+rbt68GDhwoSWrevLlyc3M1ePBgvfHGG3J353hAebjW30K73V4hR3EkjuS4zNPTU2FhYUpJSTHbioqKlJKSooiIiFKXiYiIcKqXpOTk5GvWo2zjLEnTpk3TW2+9paSkJLVu3fp2dLVSc3WcmzRpot27dys9Pd2c/vCHP6hz585KT09XSEjI7ex+pVKW9/Sjjz6qw4cPm0FSkv7973+rTp06BJxrKMs4X7hwoUSQKQ6WBt9hXW7uyN/CCruk2cKWLFli2Gw2IyEhwdi3b58xePBgw9fX18jMzDQMwzD69u1rjBs3zqz/5ptvjCpVqhh//vOfjf379xuTJk3iFvKb4Oo4v/fee4anp6fx2WefGadPnzanc+fO3aldqBRcHeercXfVzXN1rI8fP27UrFnTGD58uHHw4EFj5cqVRkBAgPH222/fqV2oFFwd50mTJhk1a9Y0PvnkE+Po0aPG2rVrjUaNGhkvvPDCndqFSuHcuXPGzp07jZ07dxqSjL/85S/Gzp07je+//94wDMMYN26c0bdvX7O++Bby0aNHG/v37zdmz57NLeS/VR9++KFx7733Gp6enkabNm2Mb7/91pz32GOPGbGxsU71n376qXH//fcbnp6exoMPPmgkJibe5h5XTq6Mc7169QxJJaZJkybd/o5XMq6+n69EyHGNq2O9ZcsWIzw83LDZbEbDhg2Nd955xygoKLjNva58XBnny5cvG5MnTzYaNWpkeHl5GSEhIcawYcOMX3755fZ3vBL56quvSv2dWzy2sbGxxmOPPVZimVatWhmenp5Gw4YNjY8//rhC++hmGByLAwAA1sM1OQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJL+H8GvpOYuD8M/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOjBJREFUeJzt3XtYVWX+//8XoGxA2RDGQUbyXEqZTphKadZEUlETpWXZZWiapWgppWk1onawj9Vk5anGmfTzGRvNpmxSQw1TxyQtlW/mKfOQloE6BZgHELh/f/RjjVtQ2SgQt8/Hde3rct/rvda61733Zr9cp+1jjDECAACwjG9tdwAAAKA6EHIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcuCVcePGycfHx3nerFkz9evXr9rXu2fPHvn4+GjWrFlOW79+/dSwYcNqX3cZHx8fjRs3rsbWV9ddf/31uv7668/rMk99/6G8ij4r59OOHTvUo0cPhYSEyMfHRwsWLKiW9ZwLb94nfK7tRshBjVu8ePFv9o/Kb7lvF4qjR49q3LhxWrFiRW13pdb9Ft+PKSkp2rRpk55//nn93//9nzp27FjbXfrN2bZtm0aNGqUOHTooODhYjRs3VlJSkr788stytWWB7NRHQEBALfTcPvVquwOo27Zv3y5fX++y8uLFizV16lSv/ng3bdpUx44dU/369b3soXfO1Ldjx46pXj0+MtXt6NGjGj9+vCSV2xP0zDPPaPTo0bXQq9rxW/usHDt2TFlZWXr66ac1dOjQ877886W23yczZ87UX//6V/Xs2VNDhgxRfn6+3nzzTXXp0kUZGRlKSEgoN8/06dM99kz7+fnVZJetxV9snBOXy1Wtyy8uLlZpaan8/f1r/X82tb3+mnD8+HH5+/tXGFyPHDmiBg0a1EKv/qtevXoEzdOoic/KwYMHJUmhoaFnra3N90ttv0/uu+8+jRs3ziO0PPjgg2rbtq3GjRtXYcjp1auXLr744prs5gWBw1U4rdWrV+vqq69WQECAWrZsqTfffLNczann5Jw4cULjx49X69atFRAQoEaNGqlr165atmyZpF/Po5k6daokeeyalf57LsHLL7+syZMnq2XLlnK5XNqyZcsZzzPYtWuXEhMT1aBBA0VHR2vChAkyxjjTV6xYIR8fn3KHP05d5pn6VtZ26v+oN27cqFtuuUVut1sNGzbUjTfeqM8//9yjZtasWfLx8dFnn32mtLQ0hYeHq0GDBrrzzjudLw1v/PDDDxowYICio6PlcrnUvHlzDR48WEVFRR5jcvfddyssLExBQUHq0qWLFi1a5LGcsnGZO3eunnnmGf3ud79TUFCQCgoKnPOddu7cqVtvvVXBwcG6//77JUmlpaWaPHmyLr/8cgUEBCgyMlIPP/ywfv755zP2u6ioSGPHjlVcXJxCQkLUoEEDdevWTZ9++qlTs2fPHoWHh0uSxo8f77wGZeNe0bkWxcXFevbZZ533S7NmzfTUU0+psLDQo65Zs2a67bbbtHr1anXq1EkBAQFq0aKF/vd//9e7F0C/vheGDh2q+fPnKzY2VoGBgYqPj9emTZskSW+++aZatWqlgIAAXX/99dqzZ4/H/P/+9791991365JLLpHL5VJMTIxGjBihY8eOOTXn67Ny4MABhYeH6/rrr/f4XHz77bdq0KCBevfuXaltHjdunJo2bSpJGjlypHx8fNSsWTNnmo+Pj7Zs2aI+ffrooosuUteuXSVJX331lfr166cWLVooICBAUVFRevDBB/Wf//yn3DpWrFihjh07evzNqcp5WBXNU1hYqBEjRig8PFzBwcH64x//qO+//77cvIcPH9bw4cPVrFkzuVwuRURE6KabbtKGDRsqvf64uLhy5ws2atRI3bp109atWyucxxijgoICj9cI547/EqFCmzZtUo8ePRQeHq5x48apuLhY6enpioyMPON848aN08SJEzVw4EB16tRJBQUF+vLLL7VhwwbddNNNevjhh7V//34tW7ZM//d//1fhMt5++20dP35cgwYNksvlUlhYmEpLSyusLSkp0c0336wuXbpo0qRJysjIUHp6uoqLizVhwgSvtrkyfTvZ5s2b1a1bN7ndbo0aNUr169fXm2++qeuvv14rV65U586dPeqHDRumiy66SOnp6dqzZ48mT56soUOHat68eZXu4/79+9WpUyfl5eVp0KBBatOmjX744Qe99957Onr0qPz9/ZWbm6trrrlGR48e1aOPPqpGjRpp9uzZ+uMf/6j33ntPd955p8cyn332Wfn7++uJJ55QYWGh/P39Jf0aHhITE9W1a1e9/PLLCgoKcsZp1qxZ6t+/vx599FHt3r1bU6ZM0caNG/XZZ5+d9jBJQUGBZs6cqfvuu08PPfSQDh8+rL/+9a9KTEzUunXr1KFDB4WHh2v69OkaPHiw7rzzTt11112SpCuvvPK0YzJw4EDNnj1bvXr10uOPP661a9dq4sSJ2rp1qz744AOP2m+//Va9evXSgAEDlJKSor/97W/q16+f4uLidPnll1f6dZB+DSr/+te/lJqaKkmaOHGibrvtNo0aNUrTpk3TkCFD9PPPP2vSpEl68MEHtXz5cmfe+fPn6+jRoxo8eLAaNWqkdevW6Y033tD333+v+fPnO+N8Pj4rERERmj59uu6++2698cYbevTRR1VaWqp+/fopODhY06ZNq9T23nXXXQoNDdWIESN033336dZbby33RX733XerdevWeuGFF5wv62XLlmnXrl3q37+/oqKitHnzZr311lvavHmzPv/8cyeMbNy4UTfffLMaN26s8ePHq6SkRBMmTHBC77kaOHCg/v73v6tPnz665pprtHz5ciUlJZWre+SRR/Tee+9p6NChio2N1X/+8x+tXr1aW7du1VVXXXVOfcjJyTnt3poWLVrol19+UYMGDZScnKxXXnnlrH9vUQkGqEBycrIJCAgw3333ndO2ZcsW4+fnZ05+2zRt2tSkpKQ4z9u3b2+SkpLOuOzU1FRT0Vtv9+7dRpJxu93mwIEDFU57++23nbaUlBQjyQwbNsxpKy0tNUlJScbf398cPHjQGGPMp59+aiSZTz/99KzLPF3fjDFGkklPT3eeJycnG39/f7Nz506nbf/+/SY4ONhcd911Ttvbb79tJJmEhARTWlrqtI8YMcL4+fmZvLy8CtdXkQceeMD4+vqaL774oty0smUPHz7cSDL//ve/nWmHDx82zZs3N82aNTMlJSXGmP+OS4sWLczRo0c9llU2tqNHj/Zo//e//20kmTlz5ni0Z2RklGvv3r276d69u/O8uLjYFBYWesz3888/m8jISPPggw86bQcPHiw31mXS09M9Xp/s7GwjyQwcONCj7oknnjCSzPLly522pk2bGklm1apVTtuBAweMy+Uyjz/+eLl1nYkk43K5zO7du522N99800gyUVFRpqCgwGkfM2aMkeRRe+p4G2PMxIkTjY+Pj8dn7nx9Vowx5r777jNBQUHmm2++MS+99JKRZBYsWODVdpct+6WXXvJoL3td7rvvvnLzVLSt//jHP8q9FrfffrsJCgoyP/zwg9O2Y8cOU69evdN+Jk/ndO+TIUOGeNT16dOn3HstJCTEpKamerW+yli1apXx8fExf/rTnzzaJ0+ebIYOHWrmzJlj3nvvPfPYY4+ZevXqmdatW5v8/Pzz3o8LDYerUE5JSYmWLFmi5ORkXXLJJU5727ZtlZiYeMZ5Q0NDtXnzZu3YsaPK6+/Zs6dX/3s7+QTIssMIRUVF+uSTT6rch7MpKSnR0qVLlZycrBYtWjjtjRs3Vp8+fbR69WoVFBR4zDNo0CCPXejdunVTSUmJvvvuu0qts7S0VAsWLNDtt99e4RUtZctevHixOnXq5BwukKSGDRtq0KBB2rNnj7Zs2eIxX0pKigIDAytc5+DBgz2ez58/XyEhIbrpppt06NAh51G2e/7kQ0+n8vPzc/YSlZaW6qefflJxcbE6duzo1aGAky1evFiSlJaW5tH++OOPS1K5Q3SxsbHq1q2b8zw8PFyXXXaZdu3a5fW6b7zxRudwjSRnz13Pnj0VHBxcrv3kdZw83keOHNGhQ4d0zTXXyBijjRs3VroP3nxWpkyZopCQEPXq1Ut/+tOf1LdvX91xxx2VXldlPPLII+XaTt7W48eP69ChQ+rSpYskOa97SUmJPvnkEyUnJys6Otqpb9WqlW655ZZz7lfZ++TRRx/1aB8+fHi52tDQUK1du1b79+8/5/WWOXDggPr06aPmzZtr1KhRHtMee+wxvfHGG+rTp4969uypyZMna/bs2dqxY0el97Lh9Ag5KOfgwYM6duyYWrduXW7aZZdddsZ5J0yYoLy8PF166aVq166dRo4cqa+++sqr9Tdv3rzStb6+vh4hQ5IuvfRSSSp3HsT5dPDgQR09erTC8Wjbtq1KS0u1b98+j/aTA6MkXXTRRZJ01nNZTl5nQUGBrrjiijPWfffdd6ftV9n0k51uvOvVq6cmTZp4tO3YsUP5+fmKiIhQeHi4x+OXX37RgQMHzti32bNn68orr3TO1woPD9eiRYuUn59/xvlO57vvvpOvr69atWrl0R4VFaXQ0NBy23rqayD9+jpU9jU407JCQkIkSTExMRW2n7yOvXv3ql+/fgoLC1PDhg0VHh6u7t27S5JXY+HNZyUsLEyvv/66vvrqK4WEhOj111+v9Lzn0p+ffvpJjz32mCIjIxUYGKjw8HCnrmxbDxw4oGPHjpV7HSVV2OatsvdJy5YtPdor+pxMmjRJX3/9tWJiYtSpUyeNGzeuSiG4zJEjR3Tbbbfp8OHD+vDDDyt1b68+ffooKiqqWv+jdqHgnBycV9ddd5127typDz/8UEuXLtXMmTP16quvasaMGRo4cGCllnG6vQpVdbqTFktKSs7res7mdJeEmlo+0fB04+1yucpdZVVaWqqIiAjNmTOnwnnOtFfh73//u/r166fk5GSNHDlSERER8vPz08SJE7Vz586qb4BO/xqf6ny+Bqdb1tnWUVJSoptuukk//fSTnnzySbVp00YNGjTQDz/8oH79+p32/LOKePtZWbJkiaRfA9f3339fqaukvFFRf+655x6tWbNGI0eOVIcOHdSwYUOVlpbq5ptv9mpba8o999yjbt266YMPPtDSpUv10ksv6X/+53/0/vvve71XqaioSHfddZe++uorLVmy5Kz/QTlZTEyMfvrpJ2+7j1MQclBOeHi4AgMDKzzktH379rPOHxYWpv79+6t///765ZdfdN1112ncuHFOyDmfd6wtLS3Vrl27nL03kvTNN99IknMooWyPSV5ense8FR0mqmzfwsPDFRQUVOF4bNu2Tb6+vuX+R3+uwsPD5Xa79fXXX5+xrmnTpqftV9n0qmrZsqU++eQTXXvttV5/wb733ntq0aKF3n//fY9xTk9P96jz5v3RtGlTlZaWaseOHc6eKknKzc1VXl7eOW1rddm0aZO++eYbzZ49Ww888IDTXnYF4snO52clIyNDM2fO1KhRozRnzhylpKRo7dq11Xqp9c8//6zMzEyNHz9eY8eOddpP/dsSERGhgIAAffvtt+WWUVGbt8reJzt37vTYe3O6v2eNGzfWkCFDNGTIEB04cEBXXXWVnn/+ea9CTmlpqR544AFlZmbq3XffdfbUVYYxRnv27NHvf//7Ss+DinG4CuX4+fkpMTFRCxYs0N69e532rVu3Ov8TPJ1TLwtt2LChWrVq5XE5b9m9M04NHVU1ZcoU59/GGE2ZMkX169fXjTfeKOnXP3B+fn5atWqVx3wVHe+ubN/8/PzUo0cPffjhhx6HxXJzc/XOO++oa9eucrvdVdyiivn6+io5OVkfffRRhXdOLdtTcOutt2rdunXKyspyph05ckRvvfWWmjVrptjY2Cr34Z577lFJSYmeffbZctOKi4vPOG5lezhO3muydu1aj35Kcq7iqsz749Zbb5UkTZ482aP9z3/+syRVePVMbatoHIwxeu2118rVnq/PSl5ennPF4wsvvKCZM2dqw4YNeuGFF85puWdT0bZK5V8vPz8/JSQkaMGCBR7nwnz77bf6+OOPz7kfZeHk1EN0p/ajpKSk3OHCiIgIRUdHl7slwdkMGzZM8+bN07Rp05yrBCtS0W0kpk+froMHD+rmm2/2ap0ojz05qND48eOVkZGhbt26aciQISouLtYbb7yhyy+//Izn2MTGxur6669XXFycwsLC9OWXXzqXY5aJi4uT9OtJgImJifLz89O9995bpX4GBAQoIyNDKSkp6ty5sz7++GMtWrRITz31lHPoJCQkxLl81sfHRy1bttTChQsrPH/Em74999xzWrZsmbp27aohQ4aoXr16evPNN1VYWKhJkyZVaXvO5oUXXtDSpUvVvXt3DRo0SG3bttWPP/6o+fPna/Xq1QoNDdXo0aP1j3/8Q7fccoseffRRhYWFafbs2dq9e7f++c9/en2H6pN1795dDz/8sCZOnKjs7Gz16NFD9evX144dOzR//ny99tpr6tWrV4Xz3nbbbXr//fd15513KikpSbt379aMGTMUGxurX375xakLDAxUbGys5s2bp0svvVRhYWG64oorKtzV3759e6WkpOitt95SXl6eunfvrnXr1mn27NlKTk7WDTfcUOVtrS5t2rRRy5Yt9cQTT+iHH36Q2+3WP//5zwrPCzpfn5XHHntM//nPf/TJJ5/Iz89PN998swYOHKjnnntOd9xxh9q3b3/O21URt9ut6667TpMmTdKJEyf0u9/9TkuXLtXu3bvL1Y4bN05Lly7Vtddeq8GDB6ukpERTpkzRFVdcoezs7HPqR4cOHXTfffdp2rRpys/P1zXXXKPMzMxye4kOHz6sJk2aqFevXmrfvr0aNmyoTz75RF988YVeeeWVSq9v8uTJmjZtmuLj4xUUFKS///3vHtPvvPNOJ8A2bdpUvXv3Vrt27RQQEKDVq1dr7ty56tChgx5++OFz2m6IS8hxeitXrjRxcXHG39/ftGjRwsyYMaPcpZmnXkL+3HPPmU6dOpnQ0FATGBho2rRpY55//nlTVFTk1BQXF5thw4aZ8PBw4+Pj4yzvdJennjzt1EvIGzRoYHbu3Gl69OhhgoKCTGRkpElPT3cuky5z8OBB07NnTxMUFGQuuugi8/DDD5uvv/663DJP1zdjyl9CbowxGzZsMImJiaZhw4YmKCjI3HDDDWbNmjUeNWWXkJ962ffpLm0/m++++8488MADJjw83LhcLtOiRQuTmprqcXn2zp07Ta9evUxoaKgJCAgwnTp1MgsXLqxw/fPnzy+3jrKxPZ233nrLxMXFmcDAQBMcHGzatWtnRo0aZfbv3+/UnHoJeWlpqXnhhRdM06ZNjcvlMr///e/NwoULTUpKimnatKnH8tesWeO8904e91Pff8YYc+LECTN+/HjTvHlzU79+fRMTE2PGjBljjh8/7lHXtGnTCm9vcGo/K0NSucuMT/f+rWict2zZYhISEkzDhg3NxRdfbB566CHz//7f/6v0+9Gbz8qHH35oJJlXXnnFo66goMA0bdrUtG/f3uPzeSZnu4S87LYNJ/v+++/NnXfeaUJDQ01ISIi5++67zf79+yv8PGVmZprf//73xt/f37Rs2dLMnDnTPP744yYgIKBS/Tu1Pyc7duyYefTRR02jRo1MgwYNzO2332727dvn0Y/CwkIzcuRI0759exMcHGwaNGhg2rdvb6ZNm+bV+stuwXC6x8m3Exg4cKCJjY01wcHBpn79+qZVq1bmySef9LgNAarOxxhurwgA+G1KTk4+59tS4MLFOTkAgN+Ek3/WQvr1BOXFixeX+6FWoLLYkwP8Bvzyyy8e56VUJDw8nF8mrmY5OTlnnB4YGOjc98Ymx44dO+v9ecLCwpybOVaXxo0bO79z9d1332n69OkqLCzUxo0b1bp1a+Xn55cLQqeKioqqtv79VsYJXqjdo2UAjPnvOQRnepx8HB/V42yvwcnnn9mk7LyxMz28PXesKvr16+ecs+V2u01iYqJZv369M/1s57pU91fab2WcUHnsyQF+A3bt2nXWu6p27dpVAQEBNdSjC9PZ7jAbHR19Tpfg/1b9+OOP2rx58xlr4uLinHtO1ZYtW7ac9ecWEhISqm39dWWc8F+EHAAAYCVOPAYAAFa6oG8GWFpaqv379ys4OPi83j4dAABUH2OMDh8+rOjo6DPe4PSCDjn79+8/778vBAAAasa+ffvUpEmT006/oENOcHCwpF8H6Xz/zhAAAKgeBQUFiomJcb7HT+eCDjllh6jcbjchBwCAOuZsp5pw4jEAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlerVdgdsdSJjdbm2+jd3rYWeAABwYWJPDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsNI5hZwXX3xRPj4+Gj58uNN2/PhxpaamqlGjRmrYsKF69uyp3Nxcj/n27t2rpKQkBQUFKSIiQiNHjlRxcbFHzYoVK3TVVVfJ5XKpVatWmjVrVrn1T506Vc2aNVNAQIA6d+6sdevWncvmAAAAi1Q55HzxxRd68803deWVV3q0jxgxQh999JHmz5+vlStXav/+/brrrruc6SUlJUpKSlJRUZHWrFmj2bNna9asWRo7dqxTs3v3biUlJemGG25Qdna2hg8froEDB2rJkiVOzbx585SWlqb09HRt2LBB7du3V2Jiog4cOFDVTQIAADYxVXD48GHTunVrs2zZMtO9e3fz2GOPGWOMycvLM/Xr1zfz5893ardu3WokmaysLGOMMYsXLza+vr4mJyfHqZk+fbpxu92msLDQGGPMqFGjzOWXX+6xzt69e5vExETneadOnUxqaqrzvKSkxERHR5uJEydWejvy8/ONJJOfn1/5ja+koo//Xe4BAADOXWW/v6u0Jyc1NVVJSUlKSEjwaF+/fr1OnDjh0d6mTRtdcsklysrKkiRlZWWpXbt2ioyMdGoSExNVUFCgzZs3OzWnLjsxMdFZRlFRkdavX+9R4+vrq4SEBKemIoWFhSooKPB4AAAAO9Xzdoa5c+dqw4YN+uKLL8pNy8nJkb+/v0JDQz3aIyMjlZOT49ScHHDKppdNO1NNQUGBjh07pp9//lklJSUV1mzbtu20fZ84caLGjx9fuQ0FAAB1mld7cvbt26fHHntMc+bMUUBAQHX1qdqMGTNG+fn5zmPfvn213SUAAFBNvAo569ev14EDB3TVVVepXr16qlevnlauXKnXX39d9erVU2RkpIqKipSXl+cxX25urqKioiRJUVFR5a62Knt+thq3263AwEBdfPHF8vPzq7CmbBkVcblccrvdHg8AAGAnr0LOjTfeqE2bNik7O9t5dOzYUffff7/z7/r16yszM9OZZ/v27dq7d6/i4+MlSfHx8dq0aZPHVVDLli2T2+1WbGysU3PyMspqypbh7++vuLg4j5rS0lJlZmY6NQAA4MLm1Tk5wcHBuuKKKzzaGjRooEaNGjntAwYMUFpamsLCwuR2uzVs2DDFx8erS5cukqQePXooNjZWffv21aRJk5STk6NnnnlGqampcrlckqRHHnlEU6ZM0ahRo/Tggw9q+fLlevfdd7Vo0SJnvWlpaUpJSVHHjh3VqVMnTZ48WUeOHFH//v3PaUAAAIAdvD7x+GxeffVV+fr6qmfPniosLFRiYqKmTZvmTPfz89PChQs1ePBgxcfHq0GDBkpJSdGECROcmubNm2vRokUaMWKEXnvtNTVp0kQzZ85UYmKiU9O7d28dPHhQY8eOVU5Ojjp06KCMjIxyJyMDAIALk48xxtR2J2pLQUGBQkJClJ+ff97PzzmRsbpcW/2bu57XdQAAcCGq7Pc3v10FAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAAr1avtDthqT97H5dpaq2st9AQAgAsTe3IAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCWvQs706dN15ZVXyu12y+12Kz4+Xh9//LEz/fjx40pNTVWjRo3UsGFD9ezZU7m5uR7L2Lt3r5KSkhQUFKSIiAiNHDlSxcXFHjUrVqzQVVddJZfLpVatWmnWrFnl+jJ16lQ1a9ZMAQEB6ty5s9atW+fNpgAAAMt5FXKaNGmiF198UevXr9eXX36pP/zhD7rjjju0efNmSdKIESP00Ucfaf78+Vq5cqX279+vu+66y5m/pKRESUlJKioq0po1azR79mzNmjVLY8eOdWp2796tpKQk3XDDDcrOztbw4cM1cOBALVmyxKmZN2+e0tLSlJ6erg0bNqh9+/ZKTEzUgQMHznU8AACAJXyMMeZcFhAWFqaXXnpJvXr1Unh4uN555x316tVLkrRt2za1bdtWWVlZ6tKliz7++GPddttt2r9/vyIjIyVJM2bM0JNPPqmDBw/K399fTz75pBYtWqSvv/7aWce9996rvLw8ZWRkSJI6d+6sq6++WlOmTJEklZaWKiYmRsOGDdPo0aMr3feCggKFhIQoPz9fbrf7XIahnB1zny7X1vre58/rOgAAuBBV9vu7yufklJSUaO7cuTpy5Iji4+O1fv16nThxQgkJCU5NmzZtdMkllygrK0uSlJWVpXbt2jkBR5ISExNVUFDg7A3KysryWEZZTdkyioqKtH79eo8aX19fJSQkODWnU1hYqIKCAo8HAACwk9chZ9OmTWrYsKFcLpceeeQRffDBB4qNjVVOTo78/f0VGhrqUR8ZGamcnBxJUk5OjkfAKZteNu1MNQUFBTp27JgOHTqkkpKSCmvKlnE6EydOVEhIiPOIiYnxdvMBAEAd4XXIueyyy5Sdna21a9dq8ODBSklJ0ZYtW6qjb+fdmDFjlJ+f7zz27dtX210CAADVpJ63M/j7+6tVq1aSpLi4OH3xxRd67bXX1Lt3bxUVFSkvL89jb05ubq6ioqIkSVFRUeWugiq7+urkmlOvyMrNzZXb7VZgYKD8/Pzk5+dXYU3ZMk7H5XLJ5XJ5u8kAAKAOOuf75JSWlqqwsFBxcXGqX7++MjMznWnbt2/X3r17FR8fL0mKj4/Xpk2bPK6CWrZsmdxut2JjY52ak5dRVlO2DH9/f8XFxXnUlJaWKjMz06kBAADwak/OmDFjdMstt+iSSy7R4cOH9c4772jFihVasmSJQkJCNGDAAKWlpSksLExut1vDhg1TfHy8unTpIknq0aOHYmNj1bdvX02aNEk5OTl65plnlJqa6uxheeSRRzRlyhSNGjVKDz74oJYvX653331XixYtcvqRlpamlJQUdezYUZ06ddLkyZN15MgR9e/f/zwODQAAqMu8CjkHDhzQAw88oB9//FEhISG68sortWTJEt10002SpFdffVW+vr7q2bOnCgsLlZiYqGnTpjnz+/n5aeHChRo8eLDi4+PVoEEDpaSkaMKECU5N8+bNtWjRIo0YMUKvvfaamjRpopkzZyoxMdGp6d27tw4ePKixY8cqJydHHTp0UEZGRrmTkQEAwIXrnO+TU5dxnxwAAOqear9PDgAAwG8ZIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJa9CzsSJE3X11VcrODhYERERSk5O1vbt2z1qjh8/rtTUVDVq1EgNGzZUz549lZub61Gzd+9eJSUlKSgoSBERERo5cqSKi4s9alasWKGrrrpKLpdLrVq10qxZs8r1Z+rUqWrWrJkCAgLUuXNnrVu3zpvNAQAAFvMq5KxcuVKpqan6/PPPtWzZMp04cUI9evTQkSNHnJoRI0boo48+0vz587Vy5Urt379fd911lzO9pKRESUlJKioq0po1azR79mzNmjVLY8eOdWp2796tpKQk3XDDDcrOztbw4cM1cOBALVmyxKmZN2+e0tLSlJ6erg0bNqh9+/ZKTEzUgQMHzmU8AACAJXyMMaaqMx88eFARERFauXKlrrvuOuXn5ys8PFzvvPOOevXqJUnatm2b2rZtq6ysLHXp0kUff/yxbrvtNu3fv1+RkZGSpBkzZujJJ5/UwYMH5e/vryeffFKLFi3S119/7azr3nvvVV5enjIyMiRJnTt31tVXX60pU6ZIkkpLSxUTE6Nhw4Zp9OjRlep/QUGBQkJClJ+fL7fbXdVhqNCOuU+Xa2t97/PndR0AAFyIKvv9fU7n5OTn50uSwsLCJEnr16/XiRMnlJCQ4NS0adNGl1xyibKysiRJWVlZateunRNwJCkxMVEFBQXavHmzU3PyMspqypZRVFSk9evXe9T4+voqISHBqalIYWGhCgoKPB4AAMBOVQ45paWlGj58uK699lpdccUVkqScnBz5+/srNDTUozYyMlI5OTlOzckBp2x62bQz1RQUFOjYsWM6dOiQSkpKKqwpW0ZFJk6cqJCQEOcRExPj/YYDAIA6ocohJzU1VV9//bXmzp17PvtTrcaMGaP8/HznsW/fvtruEgAAqCb1qjLT0KFDtXDhQq1atUpNmjRx2qOiolRUVKS8vDyPvTm5ubmKiopyak69Cqrs6quTa069Iis3N1dut1uBgYHy8/OTn59fhTVly6iIy+WSy+XyfoMBAECd49WeHGOMhg4dqg8++EDLly9X8+bNPabHxcWpfv36yszMdNq2b9+uvXv3Kj4+XpIUHx+vTZs2eVwFtWzZMrndbsXGxjo1Jy+jrKZsGf7+/oqLi/OoKS0tVWZmplMDAAAubF7tyUlNTdU777yjDz/8UMHBwc75LyEhIQoMDFRISIgGDBigtLQ0hYWFye12a9iwYYqPj1eXLl0kST169FBsbKz69u2rSZMmKScnR88884xSU1OdvSyPPPKIpkyZolGjRunBBx/U8uXL9e6772rRokVOX9LS0pSSkqKOHTuqU6dOmjx5so4cOaL+/fufr7EBAAB1mFchZ/r06ZKk66+/3qP97bffVr9+/SRJr776qnx9fdWzZ08VFhYqMTFR06ZNc2r9/Py0cOFCDR48WPHx8WrQoIFSUlI0YcIEp6Z58+ZatGiRRowYoddee01NmjTRzJkzlZiY6NT07t1bBw8e1NixY5WTk6MOHTooIyOj3MnIAADgwnRO98mp67hPDgAAdU+N3CcHAADgt4qQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALCS1yFn1apVuv322xUdHS0fHx8tWLDAY7oxRmPHjlXjxo0VGBiohIQE7dixw6Pmp59+0v333y+3263Q0FANGDBAv/zyi0fNV199pW7duikgIEAxMTGaNGlSub7Mnz9fbdq0UUBAgNq1a6fFixd7uzkAAMBSXoecI0eOqH379po6dWqF0ydNmqTXX39dM2bM0Nq1a9WgQQMlJibq+PHjTs3999+vzZs3a9myZVq4cKFWrVqlQYMGOdMLCgrUo0cPNW3aVOvXr9dLL72kcePG6a233nJq1qxZo/vuu08DBgzQxo0blZycrOTkZH399dfebhIAALCQjzHGVHlmHx998MEHSk5OlvTrXpzo6Gg9/vjjeuKJJyRJ+fn5ioyM1KxZs3Tvvfdq69atio2N1RdffKGOHTtKkjIyMnTrrbfq+++/V3R0tKZPn66nn35aOTk58vf3lySNHj1aCxYs0LZt2yRJvXv31pEjR7Rw4UKnP126dFGHDh00Y8aMSvW/oKBAISEhys/Pl9vtruowVGjH3KfLtbW+9/nzug4AAC5Elf3+Pq/n5OzevVs5OTlKSEhw2kJCQtS5c2dlZWVJkrKyshQaGuoEHElKSEiQr6+v1q5d69Rcd911TsCRpMTERG3fvl0///yzU3PyespqytZTkcLCQhUUFHg8AACAnc5ryMnJyZEkRUZGerRHRkY603JychQREeExvV69egoLC/OoqWgZJ6/jdDVl0ysyceJEhYSEOI+YmBhvNxEAANQRF9TVVWPGjFF+fr7z2LdvX213CQAAVJPzGnKioqIkSbm5uR7tubm5zrSoqCgdOHDAY3pxcbF++uknj5qKlnHyOk5XUza9Ii6XS2632+MBAADsdF5DTvPmzRUVFaXMzEynraCgQGvXrlV8fLwkKT4+Xnl5eVq/fr1Ts3z5cpWWlqpz585OzapVq3TixAmnZtmyZbrssst00UUXOTUnr6espmw9AADgwuZ1yPnll1+UnZ2t7OxsSb+ebJydna29e/fKx8dHw4cP13PPPad//etf2rRpkx544AFFR0c7V2C1bdtWN998sx566CGtW7dOn332mYYOHap7771X0dHRkqQ+ffrI399fAwYM0ObNmzVv3jy99tprSktLc/rx2GOPKSMjQ6+88oq2bdumcePG6csvv9TQoUPPfVQAAECdV8/bGb788kvdcMMNzvOy4JGSkqJZs2Zp1KhROnLkiAYNGqS8vDx17dpVGRkZCggIcOaZM2eOhg4dqhtvvFG+vr7q2bOnXn/9dWd6SEiIli5dqtTUVMXFxeniiy/W2LFjPe6lc8011+idd97RM888o6eeekqtW7fWggULdMUVV1RpIAAAgF3O6T45dR33yQEAoO6plfvkAAAA/FYQcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYqV5td8A2hcXH9fH6mdpdslVhJlCd/C5RPR+yJAAANa3Of/tOnTpVzZo1U0BAgDp37qx169bVWl/eXpGu+xZdq9m5f9Oq4D1a4N6qp4OWaEnxN7XWJwAALlR1OuTMmzdPaWlpSk9P14YNG9S+fXslJibqwIEDNd6Xt1ek61/5H8nIeLQbSZnBOwk6AADUsDodcv785z/roYceUv/+/RUbG6sZM2YoKChIf/vb32q0H4XFx/VR/sJfn/icMvH/f748eKcKi4/XaL8AALiQ1dlzcoqKirR+/XqNGTPGafP19VVCQoKysrIqnKewsFCFhYXO8/z8fElSQUHBOfVl4ZdvquhY8Vnr/rnqDd3W8eFzWhcAABe6su9tY8wZ6+psyDl06JBKSkoUGRnp0R4ZGalt27ZVOM/EiRM1fvz4cu0xMTHV0sdTLdIoSaNqZF0AANju8OHDCgkJOe30OhtyqmLMmDFKS0tznpeWluqnn35So0aN5ONz6nGmqisoKFBMTIz27dsnt9t93pYLT4xzzWGsawbjXDMY55pRneNsjNHhw4cVHR19xro6G3Iuvvhi+fn5KTc316M9NzdXUVFRFc7jcrnkcrk82kJDQ6uri3K73XyAagDjXHMY65rBONcMxrlmVNc4n2kPTpk6e+Kxv7+/4uLilJmZ6bSVlpYqMzNT8fHxtdgzAADwW1Bn9+RIUlpamlJSUtSxY0d16tRJkydP1pEjR9S/f//a7hoAAKhldTrk9O7dWwcPHtTYsWOVk5OjDh06KCMjo9zJyDXN5XIpPT293KExnF+Mc81hrGsG41wzGOea8VsYZx9ztuuvAAAA6qA6e04OAADAmRByAACAlQg5AADASoQcAABgJUIOAACwEiGniqZOnapmzZopICBAnTt31rp1685YP3/+fLVp00YBAQFq166dFi9eXEM9rdu8Gee//OUv6tatmy666CJddNFFSkhIOOvrgl95+34uM3fuXPn4+Cg5Obl6O2gRb8c6Ly9Pqampaty4sVwuly699FL+flSCt+M8efJkXXbZZQoMDFRMTIxGjBih48eP11Bv66ZVq1bp9ttvV3R0tHx8fLRgwYKzzrNixQpdddVVcrlcatWqlWbNmlW9nTTw2ty5c42/v7/529/+ZjZv3mweeughExoaanJzcyus/+yzz4yfn5+ZNGmS2bJli3nmmWdM/fr1zaZNm2q453WLt+Pcp08fM3XqVLNx40azdetW069fPxMSEmK+//77Gu553eLtOJfZvXu3+d3vfme6detm7rjjjprpbB3n7VgXFhaajh07mltvvdWsXr3a7N6926xYscJkZ2fXcM/rFm/Hec6cOcblcpk5c+aY3bt3myVLlpjGjRubESNG1HDP65bFixebp59+2rz//vtGkvnggw/OWL9r1y4TFBRk0tLSzJYtW8wbb7xh/Pz8TEZGRrX1kZBTBZ06dTKpqanO85KSEhMdHW0mTpxYYf0999xjkpKSPNo6d+5sHn744WrtZ13n7Tifqri42AQHB5vZs2dXVxetUJVxLi4uNtdcc42ZOXOmSUlJIeRUkrdjPX36dNOiRQtTVFRUU120grfjnJqaav7whz94tKWlpZlrr722Wvtpk8qEnFGjRpnLL7/co613794mMTGx2vrF4SovFRUVaf369UpISHDafH19lZCQoKysrArnycrK8qiXpMTExNPWo2rjfKqjR4/qxIkTCgsLq65u1nlVHecJEyYoIiJCAwYMqIluWqEqY/2vf/1L8fHxSk1NVWRkpK644gq98MILKikpqalu1zlVGedrrrlG69evdw5p7dq1S4sXL9att95aI32+UNTGd2Gd/lmH2nDo0CGVlJSU++mIyMhIbdu2rcJ5cnJyKqzPycmptn7WdVUZ51M9+eSTio6OLvehwn9VZZxXr16tv/71r8rOzq6BHtqjKmO9a9cuLV++XPfff78WL16sb7/9VkOGDNGJEyeUnp5eE92uc6oyzn369NGhQ4fUtWtXGWNUXFysRx55RE899VRNdPmCcbrvwoKCAh07dkyBgYHnfZ3syYGVXnzxRc2dO1cffPCBAgICars71jh8+LD69u2rv/zlL7r44otruzvWKy0tVUREhN566y3FxcWpd+/eevrppzVjxoza7ppVVqxYoRdeeEHTpk3Thg0b9P7772vRokV69tlna7trOEfsyfHSxRdfLD8/P+Xm5nq05+bmKioqqsJ5oqKivKpH1ca5zMsvv6wXX3xRn3zyia688srq7Gad5+0479y5U3v27NHtt9/utJWWlkqS6tWrp+3bt6tly5bV2+k6qirv6caNG6t+/fry8/Nz2tq2baucnBwVFRXJ39+/WvtcF1VlnP/0pz+pb9++GjhwoCSpXbt2OnLkiAYNGqSnn35avr7sDzgfTvdd6Ha7q2UvjsSeHK/5+/srLi5OmZmZTltpaakyMzMVHx9f4Tzx8fEe9ZK0bNmy09ajauMsSZMmTdKzzz6rjIwMdezYsSa6Wqd5O85t2rTRpk2blJ2d7Tz++Mc/6oYbblB2drZiYmJqsvt1SlXe09dee62+/fZbJ0hK0jfffKPGjRsTcE6jKuN89OjRckGmLFgafsP6vKmV78JqO6XZYnPnzjUul8vMmjXLbNmyxQwaNMiEhoaanJwcY4wxffv2NaNHj3bqP/vsM1OvXj3z8ssvm61bt5r09HQuIa8Eb8f5xRdfNP7+/ua9994zP/74o/M4fPhwbW1CneDtOJ+Kq6sqz9ux3rt3rwkODjZDhw4127dvNwsXLjQRERHmueeeq61NqBO8Hef09HQTHBxs/vGPf5hdu3aZpUuXmpYtW5p77rmntjahTjh8+LDZuHGj2bhxo5Fk/vznP5uNGzea7777zhhjzOjRo03fvn2d+rJLyEeOHGm2bt1qpk6dyiXkv1VvvPGGueSSS4y/v7/p1KmT+fzzz51p3bt3NykpKR717777rrn00kuNv7+/ufzyy82iRYtquMd1kzfj3LRpUyOp3CM9Pb3mO17HePt+PhkhxzvejvWaNWtM586djcvlMi1atDDPP/+8KS4uruFe1z3ejPOJEyfMuHHjTMuWLU1AQICJiYkxQ4YMMT///HPNd7wO+fTTTyv8m1s2tikpKaZ79+7l5unQoYPx9/c3LVq0MG+//Xa19tHHGPbFAQAA+3BODgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACs9P8Bl8PDlaXjgx8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO89JREFUeJzt3X1cVHX+//8noAwqDIhxIXl9UYaZbbgYpVkbiUVtlpWrfQ1NMxUrpdXNakW7kD7WblZeVOuW7m5l0WZbapphWiapoW6mZl6mqYBmgJcg8P794Y+zjoA6KCLvHvfbbW435pzXOed13jMDT86cM+NjjDECAACwjG9NNwAAAFAdCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOfDKuHHj5OPj49xv0aKF+vfvX+3b3b59u3x8fDRjxgxnWv/+/RUYGFjt2y7j4+OjcePGnbft1XbXX3+9rr/++nO6zpOffyivotfKubRp0yZ1795dwcHB8vHx0Ycfflgt2zkb3jxPeF3bjZCD827evHkX7C+VC7m3X4vDhw9r3LhxWrx4cU23UuMuxOdjUlKS1q5dq2effVb//Oc/1alTp5pu6YJTFjQrus2aNatc/YYNG9SjRw8FBgYqNDRU/fr10969e2ugc/vUqekGULtt3LhRvr7eZeV58+ZpypQpXv3ybt68uY4cOaK6det62aF3TtXbkSNHVKcOL5nqdvjwYY0fP16Syh0JevLJJ/XYY4/VQFc140J7rRw5ckSZmZl64oknNHz48HO+/nPlQnme9OnTR7fccovHtLi4OI/7P/30k6677joFBwdrwoQJOnjwoF544QWtXbtWK1askL+///ls2Tr8xsZZcblc1br+4uJilZaWyt/fXwEBAdW6rdOp6e2fD0ePHpW/v3+FwfXQoUNq0KBBDXT1P3Xq1CFoVuJ8vFbKji6EhISctrYmny8XyvPkqquu0v/7f//vlDUTJkzQoUOHlJWVpWbNmkmSYmNjddNNN2nGjBkaPHjw+WjVWrxdhUotXbpUv/3tbxUQEKDWrVvrtddeK1dz8jk5x44d0/jx49W2bVsFBASoUaNG6tKlixYuXCjp+Hk0U6ZMkSSPQ7jS/w7xvvDCC5o0aZJat24tl8ul9evXn/I8g61btyohIUENGjRQVFSUnnrqKRljnPmLFy+Wj49Pubc/Tl7nqXorm3byf9SrV6/WzTffLLfbrcDAQN144436+uuvPWpmzJghHx8fffXVV0pJSVFYWJgaNGigO+64o0qHpHft2qWBAwcqKipKLpdLLVu21NChQ1VUVOQxJnfffbdCQ0NVv359XX311Zo7d67HesrGZdasWXryySd18cUXq379+iooKHDOd9qyZYtuueUWBQUF6d5775UklZaWatKkSWrfvr0CAgIUERGhBx98UL/88ssp+y4qKtLYsWMVExOj4OBgNWjQQF27dtXnn3/u1Gzfvl1hYWGSpPHjxzuPQdm4V3SuRXFxsZ5++mnn+dKiRQs9/vjjKiws9Khr0aKFbr31Vi1dulSxsbEKCAhQq1at9I9//MO7B0DHnwvDhw9Xenq6oqOjVa9ePcXFxWnt2rWSpNdee01t2rRRQECArr/+em3fvt1j+S+//FJ33323mjVrJpfLpaZNm2rkyJE6cuSIU3OuXiu5ubkKCwvT9ddf7/G62Lx5sxo0aKDevXuf0T6PGzdOzZs3lySNGjVKPj4+atGihTPPx8dH69evV9++fdWwYUN16dJFkvTtt9+qf//+atWqlQICAhQZGan7779fP//8c7ltLF68WJ06dfL4nVOV87AqWqawsFAjR45UWFiYgoKC9Pvf/14//fRTuWUPHDigESNGqEWLFnK5XAoPD9dNN92kVatWedVDmUOHDnm8Nk/273//W7feeqsTcCQpPj5el1xyid57770qbRP/U/NRFxektWvXqnv37goLC9O4ceNUXFys1NRURUREnHK5cePGKS0tTYMGDVJsbKwKCgr0zTffaNWqVbrpppv04IMPavfu3Vq4cKH++c9/VriON998U0ePHtXgwYPlcrkUGhqq0tLSCmtLSkrUo0cPXX311Zo4caLmz5+v1NRUFRcX66mnnvJqn8+ktxOtW7dOXbt2ldvt1ujRo1W3bl299tpruv7667VkyRJ17tzZo/6hhx5Sw4YNlZqaqu3bt2vSpEkaPny43n333TPucffu3YqNjVVeXp4GDx6sdu3aadeuXXr//fd1+PBh+fv7KycnR9dcc40OHz6shx9+WI0aNdLMmTP1+9//Xu+//77uuOMOj3U+/fTT8vf31x//+EcVFhY6h8eLi4uVkJCgLl266IUXXlD9+vWdcZoxY4YGDBighx9+WNu2bdPkyZO1evVqffXVV5W+TVJQUKDp06erT58+euCBB3TgwAH9/e9/V0JCglasWKErr7xSYWFhmjZtmoYOHao77rhDd955pyTpiiuuqHRMBg0apJkzZ+quu+7So48+quXLlystLU0bNmzQ7NmzPWo3b96su+66SwMHDlRSUpLeeOMN9e/fXzExMWrfvv0ZPw7S8aDy0UcfKTk5WZKUlpamW2+9VaNHj9bUqVM1bNgw/fLLL5o4caLuv/9+LVq0yFk2PT1dhw8f1tChQ9WoUSOtWLFCr7zyin766Selp6c743wuXivh4eGaNm2a7r77br3yyit6+OGHVVpaqv79+ysoKEhTp049o/298847FRISopEjRzpvw5x84v/dd9+ttm3basKECU6gWrhwobZu3aoBAwYoMjJS69at0+uvv65169bp66+/dsLI6tWr1aNHDzVu3Fjjx49XSUmJnnrqKSf0nq1BgwbpX//6l/r27atrrrlGixYtUmJiYrm6IUOG6P3339fw4cMVHR2tn3/+WUuXLtWGDRt01VVXebXN8ePHO4EwJiZGzz77rLp37+7M37Vrl3Jzcys8ryk2Nlbz5s3zfkfhyQAV6NmzpwkICDA//vijM239+vXGz8/PnPi0ad68uUlKSnLud+zY0SQmJp5y3cnJyaaip962bduMJON2u01ubm6F8958801nWlJSkpFkHnroIWdaaWmpSUxMNP7+/mbv3r3GGGM+//xzI8l8/vnnp11nZb0ZY4wkk5qa6tzv2bOn8ff3N1u2bHGm7d692wQFBZnrrrvOmfbmm28aSSY+Pt6UlpY600eOHGn8/PxMXl5ehduryH333Wd8fX3NypUry80rW/eIESOMJPPll1868w4cOGBatmxpWrRoYUpKSowx/xuXVq1amcOHD3usq2xsH3vsMY/pX375pZFk3nrrLY/p8+fPLze9W7duplu3bs794uJiU1hY6LHcL7/8YiIiIsz999/vTNu7d2+5sS6Tmprq8fisWbPGSDKDBg3yqPvjH/9oJJlFixY505o3b24kmS+++MKZlpuba1wul3n00UfLbetUJBmXy2W2bdvmTHvttdeMJBMZGWkKCgqc6WPGjDGSPGpPHm9jjElLSzM+Pj4er7lz9Voxxpg+ffqY+vXrmx9++ME8//zzRpL58MMPvdrvsnU///zzHtPLHpc+ffqUW6aifX3nnXfKPRa33XabqV+/vtm1a5czbdOmTaZOnTqVviYrU9nzZNiwYR51ffv2LfdcCw4ONsnJyV5t72Q//vij6d69u5k2bZr56KOPzKRJk0yzZs2Mr6+vmTNnjlO3cuVKI8n84x//KLeOUaNGGUnm6NGjZ9XLrx1vV6GckpISLViwQD179vQ4hHrZZZcpISHhlMuGhIRo3bp12rRpU5W336tXL6/+ezvxBMiytxGKior02WefVbmH0ykpKdGnn36qnj17qlWrVs70xo0bq2/fvlq6dKkKCgo8lhk8eLDHIfSuXbuqpKREP/744xlts7S0VB9++KFuu+22Cv/zK1v3vHnzFBsb67xdIEmBgYEaPHiwtm/frvXr13ssl5SUpHr16lW4zaFDh3rcT09PV3BwsG666Sbt27fPucXExCgwMNDjraeT+fn5OUeJSktLtX//fhUXF6tTp05Vfiug7D/dlJQUj+mPPvqoJJV7iy46Olpdu3Z17oeFhenSSy/V1q1bvd72jTfe6LxdI8k5cterVy8FBQWVm37iNk4c70OHDmnfvn265pprZIzR6tWrz7gHb14rkydPVnBwsO666y79+c9/Vr9+/XT77bef8bbOxJAhQ8pNO3Ffjx49qn379unqq6+WJOdxLykp0WeffaaePXsqKirKqW/Tpo1uvvnms+6r7Hny8MMPe0wfMWJEudqQkBAtX75cu3fvrvL2mjVrpgULFmjIkCG67bbb9Mgjj2j16tUKCwtznpuSnLcnKzq3sey8qhPfwoT3CDkoZ+/evTpy5Ijatm1bbt6ll156ymWfeuop5eXl6ZJLLlGHDh00atQoffvtt15tv2XLlmdc6+vr6xEyJOmSSy6RpHLnQZxLe/fu1eHDhyscj8suu0ylpaXauXOnx/QTA6MkNWzYUJJOey7LidssKCjQ5Zdffsq6H3/8sdK+yuafqLLxrlOnjpo0aeIxbdOmTcrPz1d4eLjCwsI8bgcPHlRubu4pe5s5c6auuOIK53ytsLAwzZ07V/n5+adcrjI//vijfH191aZNG4/pkZGRCgkJKbevJz8G0vHH4Uwfg1OtKzg4WJLUtGnTCqefuI0dO3aof//+Cg0NVWBgoMLCwtStWzdJ8mosvHmthIaG6uWXX9a3336r4OBgvfzyy2e87Nn0s3//fj3yyCOKiIhQvXr1FBYW5tSV7Wtubq6OHDlS7nGUVOE0b5U9T1q3bu0xvaLXycSJE/Xdd9+padOmio2N1bhx46oUgk8WGhqqAQMGaOPGjc65QGUB8OTzx6TjgfDEGlQN5+TgnLruuuu0ZcsW/ec//9Gnn36q6dOn68UXX9Srr76qQYMGndE6zvWLurKTFktKSs7pdk7Hz8+vwunmhJNBa0Jl4+1yucpdZVVaWqrw8HC99dZbFS5zqqMK//rXv9S/f3/17NlTo0aNUnh4uPz8/JSWlqYtW7ZUfQdU+WN8snP5GFS2rtNto6SkRDfddJP279+vP/3pT2rXrp0aNGigXbt2qX///pWef1YRb18rCxYskHQ8cP30009ndJWUNyrq55577tGyZcs0atQoXXnllQoMDFRpaal69Ojh1b6eL/fcc4+6du2q2bNn69NPP9Xzzz+v//u//9MHH3xw1keVygLw/v371aRJEzVu3FiStGfPnnK1e/bsUWhoaLVfwWo7Qg7KCQsLU7169Sp8y2njxo2nXb7sP5YBAwbo4MGDuu666zRu3Dgn5JzLT6wtLS3V1q1bnaM3kvTDDz9IkvNWQtkRk7y8PI9lK3qb6Ex7CwsLU/369Sscj++//16+vr7l/qM/W2FhYXK73fruu+9OWde8efNK+yqbX1WtW7fWZ599pmuvvdbrP7Dvv/++WrVqpQ8++MBjnFNTUz3qvHl+NG/eXKWlpdq0aZNzpEqScnJylJeXd1b7Wl3Wrl2rH374QTNnztR9993nTC+7AvFE5/K1Mn/+fE2fPl2jR4/WW2+9paSkJC1fvrxaL7X+5ZdflJGRofHjx2vs2LHO9JN/t4SHhysgIECbN28ut46Kpnmr7HmyZcsWj6M3lf0+a9y4sYYNG6Zhw4YpNzdXV111lZ599tmzDjllR4TK/hm4+OKLFRYWpm+++aZcbdnJ+Dg7vF2Fcvz8/JSQkKAPP/xQO3bscKZv2LDB+U+wMidfFhoYGKg2bdp4HI4t++yMk0NHVU2ePNn52RijyZMnq27durrxxhslHf8F5+fnpy+++MJjuYquKjnT3vz8/NS9e3f95z//8XhbLCcnR2+//ba6dOkit9tdxT2qmK+vr3r27KmPP/64wl+KZUcKbrnlFq1YsUKZmZnOvEOHDun1119XixYtFB0dXeUe7rnnHpWUlOjpp58uN6+4uPiU41Z2hOPEoybLly/36FOScxXXmTw/yj5obdKkSR7T//rXv0pShVfP1LSKxsEYo5deeqlc7bl6reTl5TlXPE6YMEHTp0/XqlWrNGHChLNa7+lUtK9S+cfLz89P8fHx+vDDDz3Ohdm8ebM++eSTs+6jLJyc/BbdyX2UlJSUe7swPDxcUVFRFb6lVJmKPhpi165deuONN3TFFVc4R3Ck4+dVzZkzx+Pt7YyMDP3www+6++67z3ibqBhHclCh8ePHa/78+eratauGDRum4uJivfLKK2rfvv0pz7GJjo7W9ddfr5iYGIWGhuqbb75xLscsExMTI+n4SYAJCQny8/PTH/7whyr1GRAQoPnz5yspKUmdO3fWJ598orlz5+rxxx93/lsKDg52Lp/18fFR69atNWfOnArPH/Gmt2eeeUYLFy5Uly5dNGzYMNWpU0evvfaaCgsLNXHixCrtz+lMmDBBn376qbp166bBgwfrsssu0549e5Senq6lS5cqJCREjz32mN555x3dfPPNevjhhxUaGqqZM2dq27Zt+ve//+31J1SfqFu3bnrwwQeVlpamNWvWqHv37qpbt642bdqk9PR0vfTSS7rrrrsqXPbWW2/VBx98oDvuuEOJiYnatm2bXn31VUVHR+vgwYNOXb169RQdHa13331Xl1xyiUJDQ3X55ZdXeC5Sx44dlZSUpNdff115eXnq1q2bVqxYoZkzZ6pnz5664YYbqryv1aVdu3Zq3bq1/vjHP2rXrl1yu93697//XeF5QefqtfLII4/o559/1meffSY/Pz/16NFDgwYN0jPPPKPbb79dHTt2POv9qojb7dZ1112niRMn6tixY7r44ov16aefatu2beVqx40bp08//VTXXnuthg4dqpKSEk2ePFmXX3651qxZc1Z9XHnllerTp4+mTp2q/Px8XXPNNcrIyCh3lOjAgQNq0qSJ7rrrLnXs2FGBgYH67LPPtHLlSv3lL3854+2NHj1aW7Zs0Y033qioqCht375dr732mg4dOlQuzD7++ONKT0/XDTfcoEceeUQHDx7U888/rw4dOmjAgAFntd8Ql5CjckuWLDExMTHG39/ftGrVyrz66qvlLs08+RLyZ555xsTGxpqQkBBTr149065dO/Pss8+aoqIip6a4uNg89NBDJiwszPj4+Djrq+zy1BPnnXwJeYMGDcyWLVtM9+7dTf369U1ERIRJTU11LpMus3fvXtOrVy9Tv35907BhQ/Pggw+a7777rtw6K+vNmPKXkBtjzKpVq0xCQoIJDAw09evXNzfccINZtmyZR03ZJeQnX/Zd2aXtp/Pjjz+a++67z4SFhRmXy2VatWplkpOTPS7P3rJli7nrrrtMSEiICQgIMLGxsR6Xrp64/fT09HLbKBvbyrz++usmJibG1KtXzwQFBZkOHTqY0aNHm927dzs1J19CXlpaaiZMmGCaN29uXC6X+c1vfmPmzJljkpKSTPPmzT3Wv2zZMue5d+K4n/z8M8aYY8eOmfHjx5uWLVuaunXrmqZNm5oxY8aUu/S2efPmFX68wcl9nglJ5S4zruz5W9E4r1+/3sTHx5vAwEBz0UUXmQceeMD897//PePnozevlf/85z9GkvnLX/7iUVdQUGCaN29uOnbs6PH6PJXTXUJe9rENJ/rpp5/MHXfcYUJCQkxwcLC5++67ze7duyt8PWVkZJjf/OY3xt/f37Ru3dpMnz7dPProoyYgIOCM+ju5nxMdOXLEPPzww6ZRo0amQYMG5rbbbjM7d+706KOwsNCMGjXKdOzY0QQFBZkGDRqYjh07mqlTp3q1/bfffttcd911JiwszNSpU8dcdNFF5o477jBZWVkV1n/33XfO77CQkBBz7733muzsbK+2iYr5GFPDZz0CAFCJnj17nvXHUuDXi3NyAAAXhJM/E2bTpk2aN29euS9qBc4UR3KAC8DBgwc9zkupSFhYWKWXJ+PcyM7OPuX8evXqOZ97Y5MjR46c9vN5QkNDq/0bsRs3bux8z9WPP/6oadOmqbCwUKtXr1bbtm2Vn59/2g/Hi4yMrLb+LpRxghdq9t0yAMb87xyCU91O/FoAVI/TPQYnnn9mk7Lzxk518/bcsaro37+/c86W2+02CQkJHuexlH3dyKlu1elCGSecOY7kABeArVu3nvZTVbt06eJ81Duqx+m+CiQqKuqsLsG/UO3Zs0fr1q07ZU1MTIzzmVM1Zf369af9uoX4+Phq235tGSf8DyEHAABYiROPAQCAlX7VHwZYWlqq3bt3Kygo6Jx+fDoAAKg+xhgdOHBAUVFRp/yA0191yNm9e/c5/34hAABwfuzcuVNNmjSpdP6vOuQEBQVJOj5I5/p7hgAAQPUoKChQ06ZNnb/jlflVh5yyt6jcbjchBwCAWuZ0p5pw4jEAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlerUdAMAzp9j85c6P9ft0aUGOwGA6seRHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWOmsQs5zzz0nHx8fjRgxwpl29OhRJScnq1GjRgoMDFSvXr2Uk5PjsdyOHTuUmJio+vXrKzw8XKNGjVJxcbFHzeLFi3XVVVfJ5XKpTZs2mjFjRrntT5kyRS1atFBAQIA6d+6sFStWnM3uAAAAi1Q55KxcuVKvvfaarrjiCo/pI0eO1Mcff6z09HQtWbJEu3fv1p133unMLykpUWJiooqKirRs2TLNnDlTM2bM0NixY52abdu2KTExUTfccIPWrFmjESNGaNCgQVqwYIFT8+677yolJUWpqalatWqVOnbsqISEBOXm5lZ1lwAAgE1MFRw4cMC0bdvWLFy40HTr1s088sgjxhhj8vLyTN26dU16erpTu2HDBiPJZGZmGmOMmTdvnvH19TXZ2dlOzbRp04zb7TaFhYXGGGNGjx5t2rdv77HN3r17m4SEBOd+bGysSU5Odu6XlJSYqKgok5aWdsb7kZ+fbySZ/Pz8M995oBYr+uRL5wYAtdWZ/v2u0pGc5ORkJSYmKj4+3mN6VlaWjh075jG9Xbt2atasmTIzMyVJmZmZ6tChgyIiIpyahIQEFRQUaN26dU7NyetOSEhw1lFUVKSsrCyPGl9fX8XHxzs1FSksLFRBQYHHDQAA2KmOtwvMmjVLq1at0sqVK8vNy87Olr+/v0JCQjymR0REKDs726k5MeCUzS+bd6qagoICHTlyRL/88otKSkoqrPn+++8r7T0tLU3jx48/sx0FAAC1mldHcnbu3KlHHnlEb731lgICAqqrp2ozZswY5efnO7edO3fWdEsAAKCaeBVysrKylJubq6uuukp16tRRnTp1tGTJEr388suqU6eOIiIiVFRUpLy8PI/lcnJyFBkZKUmKjIwsd7VV2f3T1bjdbtWrV08XXXSR/Pz8KqwpW0dFXC6X3G63xw0AANjJq5Bz4403au3atVqzZo1z69Spk+69917n57p16yojI8NZZuPGjdqxY4fi4uIkSXFxcVq7dq3HVVALFy6U2+1WdHS0U3PiOspqytbh7++vmJgYj5rS0lJlZGQ4NQAA4NfNq3NygoKCdPnll3tMa9CggRo1auRMHzhwoFJSUhQaGiq3262HHnpIcXFxuvrqqyVJ3bt3V3R0tPr166eJEycqOztbTz75pJKTk+VyuSRJQ4YM0eTJkzV69Gjdf//9WrRokd577z3NnTvX2W5KSoqSkpLUqVMnxcbGatKkSTp06JAGDBhwVgMCAADs4PWJx6fz4osvytfXV7169VJhYaESEhI0depUZ76fn5/mzJmjoUOHKi4uTg0aNFBSUpKeeuopp6Zly5aaO3euRo4cqZdeeklNmjTR9OnTlZCQ4NT07t1be/fu1dixY5Wdna0rr7xS8+fPL3cyMgAA+HXyMcaYmm6iphQUFCg4OFj5+fmcn4NfhWPzlzo/1+3RpQY7AYCqO9O/33x3FQAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArFSnphsAcP5sz/vE+bmtutRgJwBQ/TiSAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAAreRVypk2bpiuuuEJut1tut1txcXH65JNPnPlHjx5VcnKyGjVqpMDAQPXq1Us5OTke69ixY4cSExNVv359hYeHa9SoUSouLvaoWbx4sa666iq5XC61adNGM2bMKNfLlClT1KJFCwUEBKhz585asWKFN7sCAAAs51XIadKkiZ577jllZWXpm2++0e9+9zvdfvvtWrdunSRp5MiR+vjjj5Wenq4lS5Zo9+7duvPOO53lS0pKlJiYqKKiIi1btkwzZ87UjBkzNHbsWKdm27ZtSkxM1A033KA1a9ZoxIgRGjRokBYsWODUvPvuu0pJSVFqaqpWrVqljh07KiEhQbm5uWc7HgAAwBbmLDVs2NBMnz7d5OXlmbp165r09HRn3oYNG4wkk5mZaYwxZt68ecbX19dkZ2c7NdOmTTNut9sUFhYaY4wZPXq0ad++vcc2evfubRISEpz7sbGxJjk52blfUlJioqKiTFpamle95+fnG0kmPz/fq+WA2uqHdx53bgBQW53p3+8qn5NTUlKiWbNm6dChQ4qLi1NWVpaOHTum+Ph4p6Zdu3Zq1qyZMjMzJUmZmZnq0KGDIiIinJqEhAQVFBQ4R4MyMzM91lFWU7aOoqIiZWVledT4+voqPj7eqalMYWGhCgoKPG4AAMBOXoectWvXKjAwUC6XS0OGDNHs2bMVHR2t7Oxs+fv7KyQkxKM+IiJC2dnZkqTs7GyPgFM2v2zeqWoKCgp05MgR7du3TyUlJRXWlK2jMmlpaQoODnZuTZs29Xb3AQBALeF1yLn00ku1Zs0aLV++XEOHDlVSUpLWr19fHb2dc2PGjFF+fr5z27lzZ023BAAAqkkdbxfw9/dXmzZtJEkxMTFauXKlXnrpJfXu3VtFRUXKy8vzOJqTk5OjyMhISVJkZGS5q6DKrr46sebkK7JycnLkdrtVr149+fn5yc/Pr8KasnVUxuVyyeVyebvLAACgFjrrz8kpLS1VYWGhYmJiVLduXWVkZDjzNm7cqB07diguLk6SFBcXp7Vr13pcBbVw4UK53W5FR0c7NSeuo6ymbB3+/v6KiYnxqCktLVVGRoZTAwAA4NWRnDFjxujmm29Ws2bNdODAAb399ttavHixFixYoODgYA0cOFApKSkKDQ2V2+3WQw89pLi4OF199dWSpO7duys6Olr9+vXTxIkTlZ2drSeffFLJycnOEZYhQ4Zo8uTJGj16tO6//34tWrRI7733nubOnev0kZKSoqSkJHXq1EmxsbGaNGmSDh06pAEDBpzDoQEAALWZVyEnNzdX9913n/bs2aPg4GBdccUVWrBggW666SZJ0osvvihfX1/16tVLhYWFSkhI0NSpU53l/fz8NGfOHA0dOlRxcXFq0KCBkpKS9NRTTzk1LVu21Ny5czVy5Ei99NJLatKkiaZPn66EhASnpnfv3tq7d6/Gjh2r7OxsXXnllZo/f365k5EBAMCvl48xxtR0EzWloKBAwcHBys/Pl9vtrul2gGq3adYTzs9t//BsDXYCAFV3pn+/+e4qAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJW8CjlpaWn67W9/q6CgIIWHh6tnz57auHGjR83Ro0eVnJysRo0aKTAwUL169VJOTo5HzY4dO5SYmKj69esrPDxco0aNUnFxsUfN4sWLddVVV8nlcqlNmzaaMWNGuX6mTJmiFi1aKCAgQJ07d9aKFSu82R0AAGAxr0LOkiVLlJycrK+//loLFy7UsWPH1L17dx06dMipGTlypD7++GOlp6dryZIl2r17t+68805nfklJiRITE1VUVKRly5Zp5syZmjFjhsaOHevUbNu2TYmJibrhhhu0Zs0ajRgxQoMGDdKCBQucmnfffVcpKSlKTU3VqlWr1LFjRyUkJCg3N/dsxgMAANjCnIXc3FwjySxZssQYY0xeXp6pW7euSU9Pd2o2bNhgJJnMzExjjDHz5s0zvr6+Jjs726mZNm2acbvdprCw0BhjzOjRo0379u09ttW7d2+TkJDg3I+NjTXJycnO/ZKSEhMVFWXS0tLOuP/8/HwjyeTn53ux10Dt9cM7jzs3AKitzvTv91mdk5Ofny9JCg0NlSRlZWXp2LFjio+Pd2ratWunZs2aKTMzU5KUmZmpDh06KCIiwqlJSEhQQUGB1q1b59ScuI6ymrJ1FBUVKSsry6PG19dX8fHxTk1FCgsLVVBQ4HEDAAB2qnLIKS0t1YgRI3Tttdfq8ssvlyRlZ2fL399fISEhHrURERHKzs52ak4MOGXzy+adqqagoEBHjhzRvn37VFJSUmFN2ToqkpaWpuDgYOfWtGlT73ccAADUClUOOcnJyfruu+80a9asc9lPtRozZozy8/Od286dO2u6JQAAUE3qVGWh4cOHa86cOfriiy/UpEkTZ3pkZKSKioqUl5fncTQnJydHkZGRTs3JV0GVXX11Ys3JV2Tl5OTI7XarXr168vPzk5+fX4U1ZeuoiMvlksvl8n6HAQBArePVkRxjjIYPH67Zs2dr0aJFatmypcf8mJgY1a1bVxkZGc60jRs3aseOHYqLi5MkxcXFae3atR5XQS1cuFBut1vR0dFOzYnrKKspW4e/v79iYmI8akpLS5WRkeHUAACAXzevjuQkJyfr7bff1n/+8x8FBQU5578EBwerXr16Cg4O1sCBA5WSkqLQ0FC53W499NBDiouL09VXXy1J6t69u6Kjo9WvXz9NnDhR2dnZevLJJ5WcnOwcZRkyZIgmT56s0aNH6/7779eiRYv03nvvae7cuU4vKSkpSkpKUqdOnRQbG6tJkybp0KFDGjBgwLkaGwAAUJt5c8mWpApvb775plNz5MgRM2zYMNOwYUNTv359c8cdd5g9e/Z4rGf79u3m5ptvNvXq1TMXXXSRefTRR82xY8c8aj7//HNz5ZVXGn9/f9OqVSuPbZR55ZVXTLNmzYy/v7+JjY01X3/9tTe7wyXk+NXhEnIANjjTv98+xhhTcxGrZhUUFCg4OFj5+flyu9013Q5Q7TbNesL5ue0fnq3BTgCg6s707zffXQUAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwktch54svvtBtt92mqKgo+fj46MMPP/SYb4zR2LFj1bhxY9WrV0/x8fHatGmTR83+/ft17733yu12KyQkRAMHDtTBgwc9ar799lt17dpVAQEBatq0qSZOnFiul/T0dLVr104BAQHq0KGD5s2b5+3uAAAAS3kdcg4dOqSOHTtqypQpFc6fOHGiXn75Zb366qtavny5GjRooISEBB09etSpuffee7Vu3TotXLhQc+bM0RdffKHBgwc78wsKCtS9e3c1b95cWVlZev755zVu3Di9/vrrTs2yZcvUp08fDRw4UKtXr1bPnj3Vs2dPfffdd97uEgAAsJE5C5LM7NmznfulpaUmMjLSPP/88860vLw843K5zDvvvGOMMWb9+vVGklm5cqVT88knnxgfHx+za9cuY4wxU6dONQ0bNjSFhYVOzZ/+9Cdz6aWXOvfvuecek5iY6NFP586dzYMPPnjG/efn5xtJJj8//4yXAWqzH9553LkBQG11pn+/z+k5Odu2bVN2drbi4+OdacHBwercubMyMzMlSZmZmQoJCVGnTp2cmvj4ePn6+mr58uVOzXXXXSd/f3+nJiEhQRs3btQvv/zi1Jy4nbKasu1UpLCwUAUFBR43AABgp3MacrKzsyVJERERHtMjIiKcednZ2QoPD/eYX6dOHYWGhnrUVLSOE7dRWU3Z/IqkpaUpODjYuTVt2tTbXQQAALXEr+rqqjFjxig/P9+57dy5s6ZbAgAA1eSchpzIyEhJUk5Ojsf0nJwcZ15kZKRyc3M95hcXF2v//v0eNRWt48RtVFZTNr8iLpdLbrfb4wYAAOx0TkNOy5YtFRkZqYyMDGdaQUGBli9frri4OElSXFyc8vLylJWV5dQsWrRIpaWl6ty5s1PzxRdf6NixY07NwoULdemll6phw4ZOzYnbKasp2w4AAPh18zrkHDx4UGvWrNGaNWskHT/ZeM2aNdqxY4d8fHw0YsQIPfPMM/roo4+0du1a3XfffYqKilLPnj0lSZdddpl69OihBx54QCtWrNBXX32l4cOH6w9/+IOioqIkSX379pW/v78GDhyodevW6d1339VLL72klJQUp49HHnlE8+fP11/+8hd9//33GjdunL755hsNHz787EcFAADUft5etvX5558bSeVuSUlJxpjjl5H/+c9/NhEREcblcpkbb7zRbNy40WMdP//8s+nTp48JDAw0brfbDBgwwBw4cMCj5r///a/p0qWLcblc5uKLLzbPPfdcuV7ee+89c8kllxh/f3/Tvn17M3fuXK/2hUvI8WvDJeQAbHCmf799jDGmBjNWjSooKFBwcLDy8/M5Pwe/CptmPeH83PYPz9ZgJwBQdWf69/tXdXUVAAD49SDkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSnZpuAED1Kyw+qk+ypmtbyQaFmnqK9WtW0y0BQLWr9UdypkyZohYtWiggIECdO3fWihUrarol4ILy5uJU9Zl7rWbmvKEvgrbrQ/cGPVF/gd5cnFrTrQFAtarVIefdd99VSkqKUlNTtWrVKnXs2FEJCQnKzc2t6daAC8Kbi1P1Uf7HMjIe042kj/I/JugAsFqtDjl//etf9cADD2jAgAGKjo7Wq6++qvr16+uNN96o6daAGldYfFQf5885fsfnpJn///05+XNUWHz0vPYFAOdLrT0np6ioSFlZWRozZowzzdfXV/Hx8crMzKxwmcLCQhUWFjr38/PzJUkFBQXV2yxQA+Z885qKjhSftu7fX7yiWzs9eB46AoBzo+zvtjHmlHW1NuTs27dPJSUlioiI8JgeERGh77//vsJl0tLSNH78+HLTmzZtWi09ArXBXI2WNLqm2wAArx04cEDBwcGVzq+1IacqxowZo5SUFOd+aWmp9u/fr0aNGsnH5+Tj+bVbQUGBmjZtqp07d8rtdtd0OzWKsTiOcTiOcfgfxuI4xuG42jQOxhgdOHBAUVFRp6yrtSHnoosukp+fn3Jycjym5+TkKDIyssJlXC6XXC6Xx7SQkJDqavGC4Ha7L/gn6/nCWBzHOBzHOPwPY3Ec43BcbRmHUx3BKVNrTzz29/dXTEyMMjIynGmlpaXKyMhQXFxcDXYGAAAuBLX2SI4kpaSkKCkpSZ06dVJsbKwmTZqkQ4cOacCAATXdGgAAqGG1OuT07t1be/fu1dixY5Wdna0rr7xS8+fPL3cy8q+Ry+VSampqubfnfo0Yi+MYh+MYh/9hLI5jHI6zcRx8zOmuvwIAAKiFau05OQAAAKdCyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHIvs379f9957r9xut0JCQjRw4EAdPHjwjJY1xujmm2+Wj4+PPvzww+pttJp5Ow779+/XQw89pEsvvVT16tVTs2bN9PDDDztf4FqbTJkyRS1atFBAQIA6d+6sFStWnLI+PT1d7dq1U0BAgDp06KB58+adp06rlzfj8Le//U1du3ZVw4YN1bBhQ8XHx5923GoLb58PZWbNmiUfHx/17Nmzehs8j7wdi7y8PCUnJ6tx48ZyuVy65JJLrHh9eDsOkyZNcn43Nm3aVCNHjtTRo0fPU7fngIE1evToYTp27Gi+/vpr8+WXX5o2bdqYPn36nNGyf/3rX83NN99sJJnZs2dXb6PVzNtxWLt2rbnzzjvNRx99ZDZv3mwyMjJM27ZtTa9evc5j12dv1qxZxt/f37zxxhtm3bp15oEHHjAhISEmJyenwvqvvvrK+Pn5mYkTJ5r169ebJ5980tStW9esXbv2PHd+bnk7Dn379jVTpkwxq1evNhs2bDD9+/c3wcHB5qeffjrPnZ9b3o5DmW3btpmLL77YdO3a1dx+++3np9lq5u1YFBYWmk6dOplbbrnFLF261Gzbts0sXrzYrFmz5jx3fm55Ow5vvfWWcblc5q233jLbtm0zCxYsMI0bNzYjR448z51XHSHHEuvXrzeSzMqVK51pn3zyifHx8TG7du065bKrV682F198sdmzZ0+tDzlnMw4neu+994y/v785duxYdbRZLWJjY01ycrJzv6SkxERFRZm0tLQK6++55x6TmJjoMa1z587mwQcfrNY+q5u343Cy4uJiExQUZGbOnFldLZ4XVRmH4uJic80115jp06ebpKQka0KOt2Mxbdo006pVK1NUVHS+WjwvvB2H5ORk87vf/c5jWkpKirn22murtc9ziberLJGZmamQkBB16tTJmRYfHy9fX18tX7680uUOHz6svn37asqUKZV+sWltUtVxOFl+fr7cbrfq1KkdHwpeVFSkrKwsxcfHO9N8fX0VHx+vzMzMCpfJzMz0qJekhISESutrg6qMw8kOHz6sY8eOKTQ0tLrarHZVHYennnpK4eHhGjhw4Plo87yoylh89NFHiouLU3JysiIiInT55ZdrwoQJKikpOV9tn3NVGYdrrrlGWVlZzltaW7du1bx583TLLbecl57PhdrxGxynlZ2drfDwcI9pderUUWhoqLKzsytdbuTIkbrmmmt0++23V3eL50VVx+FE+/bt09NPP63BgwdXR4vVYt++fSopKSn3lSYRERH6/vvvK1wmOzu7wvozHacLUVXG4WR/+tOfFBUVVS4A1iZVGYelS5fq73//u9asWXMeOjx/qjIWW7du1aJFi3Tvvfdq3rx52rx5s4YNG6Zjx44pNTX1fLR9zlVlHPr27at9+/apS5cuMsaouLhYQ4YM0eOPP34+Wj4nOJJzgXvsscfk4+NzytuZ/vI+2UcffaRFixZp0qRJ57bpalCd43CigoICJSYmKjo6WuPGjTv7xlGrPPfcc5o1a5Zmz56tgICAmm7nvDlw4ID69eunv/3tb7roootqup0aV1paqvDwcL3++uuKiYlR79699cQTT+jVV1+t6dbOq8WLF2vChAmaOnWqVq1apQ8++EBz587V008/XdOtnTGO5FzgHn30UfXv3/+UNa1atVJkZKRyc3M9phcXF2v//v2Vvg21aNEibdmyRSEhIR7Te/Xqpa5du2rx4sVn0fm5VZ3jUObAgQPq0aOHgoKCNHv2bNWtW/ds2z5vLrroIvn5+SknJ8djek5OTqX7HRkZ6VV9bVCVcSjzwgsv6LnnntNnn32mK664ojrbrHbejsOWLVu0fft23Xbbbc600tJSScePhG7cuFGtW7eu3qarSVWeE40bN1bdunXl5+fnTLvsssuUnZ2toqIi+fv7V2vP1aEq4/DnP/9Z/fr106BBgyRJHTp00KFDhzR48GA98cQT8vW98I+TXPgd/sqFhYWpXbt2p7z5+/srLi5OeXl5ysrKcpZdtGiRSktL1blz5wrX/dhjj+nbb7/VmjVrnJskvfjii3rzzTfPx+6dseocB+n4EZzu3bvL399fH330Ua37L97f318xMTHKyMhwppWWliojI0NxcXEVLhMXF+dRL0kLFy6stL42qMo4SNLEiRP19NNPa/78+R7nc9VW3o5Du3bttHbtWo/fBb///e91ww03aM2aNWratOn5bP+cqspz4tprr9XmzZudoCdJP/zwgxo3blwrA45UtXE4fPhwuSBTFvxMbflu75o+8xnnTo8ePcxvfvMbs3z5crN06VLTtm1bj0unf/rpJ3PppZea5cuXV7oO1fKrq4zxfhzy8/NN586dTYcOHczmzZvNnj17nFtxcXFN7YbXZs2aZVwul5kxY4ZZv369GTx4sAkJCTHZ2dnGGGP69etnHnvsMaf+q6++MnXq1DEvvPCC2bBhg0lNTbXmEnJvxuG5554z/v7+5v333/d47A8cOFBTu3BOeDsOJ7Pp6ipvx2LHjh0mKCjIDB8+3GzcuNHMmTPHhIeHm2eeeaamduGc8HYcUlNTTVBQkHnnnXfM1q1bzaeffmpat25t7rnnnpraBa8Rcizy888/mz59+pjAwEDjdrvNgAEDPH5Rb9u2zUgyn3/+eaXrsCHkeDsOn3/+uZFU4W3btm01sxNV9Morr5hmzZoZf39/Exsba77++mtnXrdu3UxSUpJH/XvvvWcuueQS4+/vb9q3b2/mzp17njuuHt6MQ/PmzSt87FNTU89/4+eYt8+HE9kUcozxfiyWLVtmOnfubFwul2nVqpV59tlna9U/PZXxZhyOHTtmxo0bZ1q3bm0CAgJM06ZNzbBhw8wvv/xy/huvIh9jassxJwAAgDPHOTkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsNL/B47NT4N/ORokAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOTtJREFUeJzt3XtcVVX+//E3FzmgcECMSyTeLaNMC0MpzZpILGqitNSaQtMsQ0spTWcaUbvQWDNpaVnjTPqdqTSb0UoNM00dk7S8TF7SzDQtAjUT8AYC6/dHP/Z4BBRURJav5+NxHg/P2p+999rrnINv9ll742WMMQIAALCMd213AAAAoCYQcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyUC1jxoyRl5eX87xZs2bq27dvje93x44d8vLy0rRp05y2vn37KjAwsMb3XcbLy0tjxow5a/ur666//npdf/31Z3Sbx7//UF5Fn5UzaevWrerWrZuCg4Pl5eWlOXPm1Mh+Tkd13id8ru1GyMFZN3/+/HP2h8q53LfzxaFDhzRmzBgtWbKktrtS687F92NKSorWr1+vZ599Vv/4xz/UoUOH2u7SOacsZFX2+Oyzz5zavn37VljTpk2bWjwCe/jWdgdQt23ZskXe3tXLyvPnz9fkyZOr9cO7adOmOnz4sOrVq1fNHlbPifp2+PBh+frykalphw4d0tixYyWp3Jmgp556SiNHjqyFXtWOc+2zcvjwYWVlZekPf/iDBg8efMa3f6bU9vvkzjvvVKtWrcq1//73v9eBAwd09dVXe7S7XC5NnTrVoy04OLhG+3i+4Cc2TovL5arR7RcXF6u0tFR+fn7y9/ev0X2dTG3v/2w4cuSI/Pz8KgyuBw8eVIMGDWqhV//j6+tL0KzE2fis7NmzR5IUEhJy0trafL/U9vvkiiuu0BVXXOHRtmvXLv3www8aMGCA/Pz8PJb5+vrqd7/73dns4nmDr6tQqeXLl+vqq6+Wv7+/WrZsqddff71czfFzco4ePaqxY8eqdevW8vf3V6NGjdS5c2ctXLhQ0q+nZidPnixJHqdmpf/NJXjxxRc1YcIEtWzZUi6XS5s2bTrhPIPvvvtOiYmJatCggaKiojRu3DgZY5zlS5YskZeXV7mvP47f5on6VtZ2/G/Ua9eu1c033yy3263AwEDdeOON+vzzzz1qpk2b5pyiTktLU1hYmBo0aKA77rjD+U+jOn788Uf1799fUVFRcrlcat68uQYNGqSioiKPMbnrrrsUGhqq+vXrq1OnTpo3b57HdsrGZcaMGXrqqad00UUXqX79+srPz3fmO23btk233HKLgoKCdO+990qSSktLNWHCBF122WXy9/dXRESEHnroIf3yyy8n7HdRUZFGjx6t2NhYBQcHq0GDBurSpYs+/fRTp2bHjh0KCwuTJI0dO9Z5DcrGvaK5FsXFxXr66aed90uzZs30+9//XoWFhR51zZo106233qrly5crLi5O/v7+atGihf7v//6vei+Afn0vDB48WLNmzVJMTIwCAgIUHx+v9evXS5Jef/11tWrVSv7+/rr++uu1Y8cOj/X/85//6K677lKTJk3kcrkUHR2tYcOG6fDhw07Nmfqs7N69W2FhYbr++us9PhfffvutGjRooF69elXpmMeMGaOmTZtKkoYPHy4vLy81a9bMWebl5aVNmzbpnnvuUcOGDdW5c2dJ0ldffaW+ffuqRYsW8vf3V2RkpB544AH9/PPP5faxZMkSdejQweNnzqnMw6poncLCQg0bNkxhYWEKCgrSb3/7W/3www/l1i0oKNDQoUPVrFkzuVwuhYeH66abbtKaNWuq1YfjvfPOOzLGOJ+j45WUlCg/P/+09oHy+JUIFVq/fr26deumsLAwjRkzRsXFxUpPT1dERMQJ1xszZowyMjI0YMAAxcXFKT8/X19++aXWrFmjm266SQ899JCys7O1cOFC/eMf/6hwG2+++aaOHDmigQMHyuVyKTQ0VKWlpRXWlpSUqHv37urUqZPGjx+vzMxMpaenq7i4WOPGjavWMVelb8fauHGjunTpIrfbrREjRqhevXp6/fXXdf3112vp0qXq2LGjR/2QIUPUsGFDpaena8eOHZowYYIGDx6smTNnVrmP2dnZiouL0/79+zVw4EC1adNGP/74o9577z0dOnRIfn5+ys3N1TXXXKNDhw7p0UcfVaNGjTR9+nT99re/1Xvvvac77rjDY5tPP/20/Pz89MQTT6iwsND5LbO4uFiJiYnq3LmzXnzxRdWvX98Zp2nTpqlfv3569NFHtX37dk2aNElr167VZ599VunXJPn5+Zo6dar69OmjBx98UAUFBfrb3/6mxMRErVq1Su3bt1dYWJhee+01DRo0SHfccYfuvPNOSSr3W/GxBgwYoOnTp6tnz556/PHHtXLlSmVkZOjrr7/W7NmzPWq//fZb9ezZU/3791dKSor+/ve/q2/fvoqNjdVll11W5ddB+jWofPDBB0pNTZUkZWRk6NZbb9WIESP06quv6pFHHtEvv/yi8ePH64EHHtDixYuddWfNmqVDhw5p0KBBatSokVatWqVXXnlFP/zwg2bNmuWM85n4rISHh+u1117TXXfdpVdeeUWPPvqoSktL1bdvXwUFBenVV1+t0vHeeeedCgkJ0bBhw9SnTx/dcsst5Sb+33XXXWrdurWee+45J1AtXLhQ3333nfr166fIyEht3LhRb7zxhjZu3KjPP//cCSNr165V9+7ddeGFF2rs2LEqKSnRuHHjnNB7ugYMGKB//vOfuueee3TNNddo8eLFSkpKKlf38MMP67333tPgwYMVExOjn3/+WcuXL9fXX3+tq6666pT3/9Zbbyk6OlrXXXdduWWHDh2S2+3WoUOH1LBhQ/Xp00d/+tOfzuqFFdYyQAWSk5ONv7+/+f777522TZs2GR8fH3Ps26Zp06YmJSXFed6uXTuTlJR0wm2npqaait5627dvN5KM2+02u3fvrnDZm2++6bSlpKQYSWbIkCFOW2lpqUlKSjJ+fn5mz549xhhjPv30UyPJfPrppyfdZmV9M8YYSSY9Pd15npycbPz8/My2bductuzsbBMUFGSuu+46p+3NN980kkxCQoIpLS112ocNG2Z8fHzM/v37K9xfRe6//37j7e1tvvjii3LLyrY9dOhQI8n85z//cZYVFBSY5s2bm2bNmpmSkhJjzP/GpUWLFubQoUMe2yob25EjR3q0/+c//zGSzFtvveXRnpmZWa69a9eupmvXrs7z4uJiU1hY6LHeL7/8YiIiIswDDzzgtO3Zs6fcWJdJT0/3eH3WrVtnJJkBAwZ41D3xxBNGklm8eLHT1rRpUyPJLFu2zGnbvXu3cblc5vHHHy+3rxORZFwul9m+fbvT9vrrrxtJJjIy0uTn5zvto0aNMpI8ao8fb2OMycjIMF5eXh6fuTP1WTHGmD59+pj69eubb775xrzwwgtGkpkzZ061jrts2y+88IJHe9nr0qdPn3LrVHSs77zzTrnX4rbbbjP169c3P/74o9O2detW4+vrW+lnsjKVvU8eeeQRj7p77rmn3HstODjYpKamVmt/J7NhwwYjyYwYMaLcspEjR5onn3zSzJw507zzzjvOZ+/aa681R48ePaP9OB/xdRXKKSkp0YIFC5ScnKwmTZo47ZdeeqkSExNPuG5ISIg2btyorVu3nvL+e/ToUa3f3o6dAFn2NUJRUZE++eSTU+7DyZSUlOjjjz9WcnKyWrRo4bRfeOGFuueee7R8+fJyp54HDhzocQq9S5cuKikp0ffff1+lfZaWlmrOnDm67bbbKryipWzb8+fPV1xcnPN1gSQFBgZq4MCB2rFjhzZt2uSxXkpKigICAirc56BBgzyez5o1S8HBwbrpppu0d+9e5xEbG6vAwECPr56O5+Pj45wlKi0t1b59+1RcXKwOHTqc8lcB8+fPlySlpaV5tD/++OOSVO4rupiYGHXp0sV5HhYWpksuuUTfffddtfd94403Ol/XSHLO3PXo0UNBQUHl2o/dx7HjffDgQe3du1fXXHONjDFau3ZtlftQnc/KpEmTFBwcrJ49e+qPf/yj7rvvPt1+++1V3ldVPPzww+Xajj3WI0eOaO/everUqZMkOa97SUmJPvnkEyUnJysqKsqpb9WqlW6++ebT7lfZ++TRRx/1aB86dGi52pCQEK1cuVLZ2dmnvd8yb731liRV+FVVRkaGnn/+ed19993q3bu3pk2bpmeffVafffaZ3nvvvTPWh/MVIQfl7NmzR4cPH1br1q3LLbvkkktOuO64ceO0f/9+XXzxxWrbtq2GDx+ur776qlr7b968eZVrvb29PUKGJF188cWSVG4exJm0Z88eHTp0qMLxuPTSS1VaWqpdu3Z5tB8bGCWpYcOGknTSuSzH7jM/P1+XX375Ceu+//77SvtVtvxYlY23r6+vGjdu7NG2detW5eXlKTw8XGFhYR6PAwcOaPfu3Sfs2/Tp03XFFVc487XCwsI0b9485eXlnXC9ynz//ffy9vYudyVLZGSkQkJCyh3r8a+B9OvrUNXX4ETbKrsaJjo6usL2Y/exc+dO9e3bV6GhoQoMDFRYWJi6du0qSdUai+p8VkJDQ/Xyyy/rq6++UnBwsF5++eUqr3s6/dm3b58ee+wxRUREKCAgQGFhYU5d2bHu3r1bhw8frvCKpIraqqvsfdKyZUuP9oo+J+PHj9eGDRsUHR2tuLg4jRkz5pRCcBljjN5++21dfvnlJ/za9VjDhg2Tt7d3jf6idr5gTg7OqOuuu07btm3T+++/r48//lhTp07VSy+9pClTpmjAgAFV2kZlZxVOVWWTFktKSs7ofk7Gx8enwnZzzGTQ2lDZeLtcrnJXWZWWlio8PNz5zfR4Jzqr8M9//lN9+/ZVcnKyhg8frvDwcPn4+CgjI0Pbtm079QNQ5a/x8c7ka1DZtk62j5KSEt10003at2+fnnzySbVp00YNGjTQjz/+qL59+1Y6/6wi1f2sLFiwQNKvgeuHH36o0lVS1VFRf+6++26tWLFCw4cPV/v27RUYGKjS0lJ17969Wsd6ttx9993q0qWLZs+erY8//lgvvPCC/vSnP+nf//73KZ1V+uyzz/T9998rIyOjyusEBASoUaNG2rdvX7X3B0+EHJQTFhamgICACr9y2rJly0nXDw0NVb9+/dSvXz8dOHBA1113ncaMGeOEnDN5x9rS0lJ99913ztkbSfrmm28kyfkqoeyMyf79+z3Wrehroqr2LSwsTPXr169wPDZv3ixvb+9yv9GfrrCwMLndbm3YsOGEdU2bNq20X2XLT1XLli31ySef6Nprr632f7DvvfeeWrRooX//+98e45yenu5RV533R9OmTVVaWqqtW7c6Z6okKTc3V/v37z+tY60p69ev1zfffKPp06fr/vvvd9rLrkA81pn8rGRmZmrq1KkaMWKE3nrrLaWkpGjlypU1eqn1L7/8okWLFmns2LEaPXq00378z5bw8HD5+/vr22+/LbeNitqqq+x9sm3bNo+zN5X9PLvwwgv1yCOP6JFHHtHu3bt11VVX6dlnnz2lkPPWW2/Jy8tL99xzT5XXKSgo0N69e8/YpOvzGV9XoRwfHx8lJiZqzpw52rlzp9P+9ddfO78JVub4y0IDAwPVqlUrj8t5y+6dcXzoOFWTJk1y/m2M0aRJk1SvXj3deOONkn79Aefj46Nly5Z5rFfRVSVV7ZuPj4+6deum999/3+NrsdzcXL399tvq3Lmz3G73KR5Rxby9vZWcnKwPP/xQX375ZbnlZWcKbrnlFq1atUpZWVnOsoMHD+qNN95Qs2bNFBMTc8p9uPvuu1VSUqKnn3663LLi4uITjlvZGY5jz5qsXLnSo5+SnKu4qvL+uOWWWyRJEyZM8Gj/y1/+IkkVXj1T2yoaB2OMJk6cWK72TH1W9u/f71zx+Nxzz2nq1Klas2aNnnvuudPa7slUdKxS+dfLx8dHCQkJmjNnjsdcmG+//VYfffTRafejLJwc/xXd8f0oKSkp93VheHi4oqKiyt2SoCqOHj2qWbNmqXPnzhV+VXrkyBEVFBSUa3/66adljFH37t2rvU944kwOKjR27FhlZmaqS5cueuSRR1RcXKxXXnlFl1122Qnn2MTExOj6669XbGysQkND9eWXXzqXY5aJjY2V9OskwMTERPn4+Kh3796n1E9/f39lZmYqJSVFHTt21EcffaR58+bp97//vfNbUHBwsHP5rJeXl1q2bKm5c+dWOH+kOn175plntHDhQnXu3FmPPPKIfH199frrr6uwsFDjx48/peM5meeee04ff/yxunbtqoEDB+rSSy/VTz/9pFmzZmn58uUKCQnRyJEj9c477+jmm2/Wo48+qtDQUE2fPl3bt2/Xv/71r2rfofpYXbt21UMPPaSMjAytW7dO3bp1U7169bR161bNmjVLEydOVM+ePStc99Zbb9W///1v3XHHHUpKStL27ds1ZcoUxcTE6MCBA05dQECAYmJiNHPmTF188cUKDQ3V5ZdfXuFcpHbt2iklJUVvvPGG9u/fr65du2rVqlWaPn26kpOTdcMNN5zysdaUNm3aqGXLlnriiSf0448/yu1261//+leF84LO1Gflscce088//6xPPvlEPj4+6t69uwYMGKBnnnlGt99+u9q1a3fax1URt9ut6667TuPHj9fRo0d10UUX6eOPP9b27dvL1Y4ZM0Yff/yxrr32Wg0aNEglJSWaNGmSLr/8cq1bt+60+tG+fXv16dNHr776qvLy8nTNNddo0aJF5c4SFRQUqHHjxurZs6fatWunwMBAffLJJ/riiy/05z//udr7XbBggX7++edK742Tk5OjK6+8Un369HH+jMOCBQs0f/58de/e/YxPDD8v1c5FXagLli5damJjY42fn59p0aKFmTJlSrlLM4+/hPyZZ54xcXFxJiQkxAQEBJg2bdqYZ5991hQVFTk1xcXFZsiQISYsLMx4eXk526vs8tRjlx1/CXmDBg3Mtm3bTLdu3Uz9+vVNRESESU9Pdy6TLrNnzx7To0cPU79+fdOwYUPz0EMPOZd1HrvNyvpmTPlLyI0xZs2aNSYxMdEEBgaa+vXrmxtuuMGsWLHCo6bsEvLjL/uu7NL2k/n+++/N/fffb8LCwozL5TItWrQwqampHpdnb9u2zfTs2dOEhIQYf39/ExcXZ+bOnVvh/mfNmlVuH2VjW5k33njDxMbGmoCAABMUFGTatm1rRowYYbKzs52a4y8hLy0tNc8995xp2rSpcblc5sorrzRz5841KSkppmnTph7bX7FihfPeO3bcj3//GWPM0aNHzdixY03z5s1NvXr1THR0tBk1apQ5cuSIR13Tpk0rvL3B8f2sCknlLjOu7P1b0Thv2rTJJCQkmMDAQHPBBReYBx980Pz3v/+t8vuxOp+V999/30gyf/7znz3q8vPzTdOmTU27du08Pp8ncrJLyMtu23CsH374wdxxxx0mJCTEBAcHm7vuustkZ2dX+HlatGiRufLKK42fn59p2bKlmTp1qnn88ceNv79/lfp3fH+OdfjwYfPoo4+aRo0amQYNGpjbbrvN7Nq1y6MfhYWFZvjw4aZdu3YmKCjINGjQwLRr1868+uqr1dp/md69e5t69eqZn3/+ucLlv/zyi/nd735nWrVqZerXr29cLpe57LLLzHPPPVfl1wQn5mVMLc96BACgEsnJyad9Wwqcv5iTAwA4Jxz7Zy2kXycoz58/v9wfagWqijM5wDngwIEDHvNSKhIWFlbp5ck4M3Jyck64PCAgwMq/Dn348OGT3p8nNDS03B+WPNMuvPBC5+9cff/993rttddUWFiotWvXqnXr1srLyysXhI4XGRlZY/07V8YJ1VC735YBMOZ/cwhO9Dj2zwKgZpzsNTh2/plNyuaNnehR3bljp6Jv377OnC23220SExPN6tWrneVlf/LgRI+adK6ME6qOMznAOeC777476V1VO3fuLH9//7PUo/PTye4wGxUVdVqX4J+rfvrpJ23cuPGENbGxsc49p2rLpk2bTvrnFhISEmps/3VlnPA/hBwAAGAlJh4DAAArndc3AywtLVV2draCgoLO6O3TAQBAzTHGqKCgQFFRUSe8wel5HXKys7PP+N8XAgAAZ8euXbvUuHHjSpef1yEnKChI0q+DdKb/zhAAAKgZ+fn5io6Odv4fr8x5HXLKvqJyu92EHAAA6piTTTVh4jEAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlXxruwMAUFOOZi73eF6ve+da6gmA2sCZHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWOm0Qs7zzz8vLy8vDR061Gk7cuSIUlNT1ahRIwUGBqpHjx7Kzc31WG/nzp1KSkpS/fr1FR4eruHDh6u4uNijZsmSJbrqqqvkcrnUqlUrTZs2rdz+J0+erGbNmsnf318dO3bUqlWrTudwAACARU455HzxxRd6/fXXdcUVV3i0Dxs2TB9++KFmzZqlpUuXKjs7W3feeaezvKSkRElJSSoqKtKKFSs0ffp0TZs2TaNHj3Zqtm/frqSkJN1www1at26dhg4dqgEDBmjBggVOzcyZM5WWlqb09HStWbNG7dq1U2Jionbv3n2qhwQAAGxiTkFBQYFp3bq1Wbhwoenatat57LHHjDHG7N+/39SrV8/MmjXLqf3666+NJJOVlWWMMWb+/PnG29vb5OTkODWvvfaacbvdprCw0BhjzIgRI8xll13msc9evXqZxMRE53lcXJxJTU11npeUlJioqCiTkZFR5ePIy8szkkxeXl7VDx5AnVH00X88HgDsUNX/v0/pTE5qaqqSkpKUkJDg0b569WodPXrUo71NmzZq0qSJsrKyJElZWVlq27atIiIinJrExETl5+dr48aNTs3x205MTHS2UVRUpNWrV3vUeHt7KyEhwampSGFhofLz8z0eAADATr7VXWHGjBlas2aNvvjii3LLcnJy5Ofnp5CQEI/2iIgI5eTkODXHBpyy5WXLTlSTn5+vw4cP65dfflFJSUmFNZs3b6607xkZGRo7dmzVDhQAANRp1TqTs2vXLj322GN666235O/vX1N9qjGjRo1SXl6e89i1a1dtdwkAANSQaoWc1atXa/fu3brqqqvk6+srX19fLV26VC+//LJ8fX0VERGhoqIi7d+/32O93NxcRUZGSpIiIyPLXW1V9vxkNW63WwEBAbrgggvk4+NTYU3ZNiricrnkdrs9HgAAwE7VCjk33nij1q9fr3Xr1jmPDh066N5773X+Xa9ePS1atMhZZ8uWLdq5c6fi4+MlSfHx8Vq/fr3HVVALFy6U2+1WTEyMU3PsNspqyrbh5+en2NhYj5rS0lItWrTIqQEAAOe3as3JCQoK0uWXX+7R1qBBAzVq1Mhp79+/v9LS0hQaGiq3260hQ4YoPj5enTp1kiR169ZNMTExuu+++zR+/Hjl5OToqaeeUmpqqlwulyTp4Ycf1qRJkzRixAg98MADWrx4sd59913NmzfP2W9aWppSUlLUoUMHxcXFacKECTp48KD69et3WgMCAADsUO2Jxyfz0ksvydvbWz169FBhYaESExP16quvOst9fHw0d+5cDRo0SPHx8WrQoIFSUlI0btw4p6Z58+aaN2+ehg0bpokTJ6px48aaOnWqEhMTnZpevXppz549Gj16tHJyctS+fXtlZmaWm4wMAADOT17GGFPbnagt+fn5Cg4OVl5eHvNzAAsdzVzu8bxe98611BMAZ1JV///mb1cBAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKvrXdAQCoKTv2f+TxvLU611JPANQGzuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwErVCjmvvfaarrjiCrndbrndbsXHx+ujjz5ylh85ckSpqalq1KiRAgMD1aNHD+Xm5npsY+fOnUpKSlL9+vUVHh6u4cOHq7i42KNmyZIluuqqq+RyudSqVStNmzatXF8mT56sZs2ayd/fXx07dtSqVauqcygAAMBy1Qo5jRs31vPPP6/Vq1fryy+/1G9+8xvdfvvt2rhxoyRp2LBh+vDDDzVr1iwtXbpU2dnZuvPOO531S0pKlJSUpKKiIq1YsULTp0/XtGnTNHr0aKdm+/btSkpK0g033KB169Zp6NChGjBggBYsWODUzJw5U2lpaUpPT9eaNWvUrl07JSYmavfu3ac7HgAAwBJexhhzOhsIDQ3VCy+8oJ49eyosLExvv/22evbsKUnavHmzLr30UmVlZalTp0766KOPdOuttyo7O1sRERGSpClTpujJJ5/Unj175OfnpyeffFLz5s3Thg0bnH307t1b+/fvV2ZmpiSpY8eOuvrqqzVp0iRJUmlpqaKjozVkyBCNHDmyyn3Pz89XcHCw8vLy5Ha7T2cYAJyDts74g8fz1r2fraWeADiTqvr/9ynPySkpKdGMGTN08OBBxcfHa/Xq1Tp69KgSEhKcmjZt2qhJkybKysqSJGVlZalt27ZOwJGkxMRE5efnO2eDsrKyPLZRVlO2jaKiIq1evdqjxtvbWwkJCU5NZQoLC5Wfn+/xAAAAdqp2yFm/fr0CAwPlcrn08MMPa/bs2YqJiVFOTo78/PwUEhLiUR8REaGcnBxJUk5OjkfAKVtetuxENfn5+Tp8+LD27t2rkpKSCmvKtlGZjIwMBQcHO4/o6OjqHj4AAKgjqh1yLrnkEq1bt04rV67UoEGDlJKSok2bNtVE3864UaNGKS8vz3ns2rWrtrsEAABqiG91V/Dz81OrVq0kSbGxsfriiy80ceJE9erVS0VFRdq/f7/H2Zzc3FxFRkZKkiIjI8tdBVV29dWxNcdfkZWbmyu3262AgAD5+PjIx8enwpqybVTG5XLJ5XJV95ABAEAddNr3ySktLVVhYaFiY2NVr149LVq0yFm2ZcsW7dy5U/Hx8ZKk+Ph4rV+/3uMqqIULF8rtdismJsapOXYbZTVl2/Dz81NsbKxHTWlpqRYtWuTUAAAAVOtMzqhRo3TzzTerSZMmKigo0Ntvv60lS5ZowYIFCg4OVv/+/ZWWlqbQ0FC53W4NGTJE8fHx6tSpkySpW7duiomJ0X333afx48crJydHTz31lFJTU50zLA8//LAmTZqkESNG6IEHHtDixYv17rvvat68eU4/0tLSlJKSog4dOiguLk4TJkzQwYMH1a9fvzM4NAAAoC6rVsjZvXu37r//fv30008KDg7WFVdcoQULFuimm26SJL300kvy9vZWjx49VFhYqMTERL366qvO+j4+Ppo7d64GDRqk+Ph4NWjQQCkpKRo3bpxT07x5c82bN0/Dhg3TxIkT1bhxY02dOlWJiYlOTa9evbRnzx6NHj1aOTk5at++vTIzM8tNRgYAAOev075PTl3GfXIAu3GfHMBONX6fHAAAgHMZIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADAStUKORkZGbr66qsVFBSk8PBwJScna8uWLR41R44cUWpqqho1aqTAwED16NFDubm5HjU7d+5UUlKS6tevr/DwcA0fPlzFxcUeNUuWLNFVV10ll8ulVq1aadq0aeX6M3nyZDVr1kz+/v7q2LGjVq1aVZ3DAQAAFqtWyFm6dKlSU1P1+eefa+HChTp69Ki6deumgwcPOjXDhg3Thx9+qFmzZmnp0qXKzs7WnXfe6SwvKSlRUlKSioqKtGLFCk2fPl3Tpk3T6NGjnZrt27crKSlJN9xwg9atW6ehQ4dqwIABWrBggVMzc+ZMpaWlKT09XWvWrFG7du2UmJio3bt3n854AAAAS3gZY8yprrxnzx6Fh4dr6dKluu6665SXl6ewsDC9/fbb6tmzpyRp8+bNuvTSS5WVlaVOnTrpo48+0q233qrs7GxFRERIkqZMmaInn3xSe/bskZ+fn5588knNmzdPGzZscPbVu3dv7d+/X5mZmZKkjh076uqrr9akSZMkSaWlpYqOjtaQIUM0cuTIKvU/Pz9fwcHBysvLk9vtPtVhAHCO2jrjDx7PW/d+tpZ6AuBMqur/36c1JycvL0+SFBoaKklavXq1jh49qoSEBKemTZs2atKkibKysiRJWVlZatu2rRNwJCkxMVH5+fnauHGjU3PsNspqyrZRVFSk1atXe9R4e3srISHBqalIYWGh8vPzPR4AAMBOpxxySktLNXToUF177bW6/PLLJUk5OTny8/NTSEiIR21ERIRycnKcmmMDTtnysmUnqsnPz9fhw4e1d+9elZSUVFhTto2KZGRkKDg42HlER0dX/8ABAECdcMohJzU1VRs2bNCMGTPOZH9q1KhRo5SXl+c8du3aVdtdAgAANcT3VFYaPHiw5s6dq2XLlqlx48ZOe2RkpIqKirR//36Pszm5ubmKjIx0ao6/Cqrs6qtja46/Iis3N1dut1sBAQHy8fGRj49PhTVl26iIy+WSy+Wq/gEDAIA6p1pncowxGjx4sGbPnq3FixerefPmHstjY2NVr149LVq0yGnbsmWLdu7cqfj4eElSfHy81q9f73EV1MKFC+V2uxUTE+PUHLuNspqybfj5+Sk2NtajprS0VIsWLXJqAADA+a1aZ3JSU1P19ttv6/3331dQUJAz/yU4OFgBAQEKDg5W//79lZaWptDQULndbg0ZMkTx8fHq1KmTJKlbt26KiYnRfffdp/HjxysnJ0dPPfWUUlNTnbMsDz/8sCZNmqQRI0bogQce0OLFi/Xuu+9q3rx5Tl/S0tKUkpKiDh06KC4uThMmTNDBgwfVr1+/MzU2AACgDqtWyHnttdckSddff71H+5tvvqm+fftKkl566SV5e3urR48eKiwsVGJiol599VWn1sfHR3PnztWgQYMUHx+vBg0aKCUlRePGjXNqmjdvrnnz5mnYsGGaOHGiGjdurKlTpyoxMdGp6dWrl/bs2aPRo0crJydH7du3V2ZmZrnJyAAA4Px0WvfJqeu4Tw5gN+6TA9jprNwnBwAA4FxFyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwUrVDzrJly3TbbbcpKipKXl5emjNnjsdyY4xGjx6tCy+8UAEBAUpISNDWrVs9avbt26d7771XbrdbISEh6t+/vw4cOOBR89VXX6lLly7y9/dXdHS0xo8fX64vs2bNUps2beTv76+2bdtq/vz51T0cAABgqWqHnIMHD6pdu3aaPHlyhcvHjx+vl19+WVOmTNHKlSvVoEEDJSYm6siRI07Nvffeq40bN2rhwoWaO3euli1bpoEDBzrL8/Pz1a1bNzVt2lSrV6/WCy+8oDFjxuiNN95walasWKE+ffqof//+Wrt2rZKTk5WcnKwNGzZU95AAAICFvIwx5pRX9vLS7NmzlZycLOnXszhRUVF6/PHH9cQTT0iS8vLyFBERoWnTpql37976+uuvFRMToy+++EIdOnSQJGVmZuqWW27RDz/8oKioKL322mv6wx/+oJycHPn5+UmSRo4cqTlz5mjz5s2SpF69eungwYOaO3eu059OnTqpffv2mjJlSpX6n5+fr+DgYOXl5cntdp/qMAA4R22d8QeP5617P1tLPQFwJlX1/+8zOidn+/btysnJUUJCgtMWHBysjh07KisrS5KUlZWlkJAQJ+BIUkJCgry9vbVy5Uqn5rrrrnMCjiQlJiZqy5Yt+uWXX5yaY/dTVlO2n4oUFhYqPz/f4wEAAOx0RkNOTk6OJCkiIsKjPSIiwlmWk5Oj8PBwj+W+vr4KDQ31qKloG8fuo7KasuUVycjIUHBwsPOIjo6u7iECAIA64ry6umrUqFHKy8tzHrt27artLgEAgBpyRkNOZGSkJCk3N9ejPTc311kWGRmp3bt3eywvLi7Wvn37PGoq2sax+6ispmx5RVwul9xut8cDAADY6YyGnObNmysyMlKLFi1y2vLz87Vy5UrFx8dLkuLj47V//36tXr3aqVm8eLFKS0vVsWNHp2bZsmU6evSoU7Nw4UJdcsklatiwoVNz7H7Kasr2AwAAzm/VDjkHDhzQunXrtG7dOkm/TjZet26ddu7cKS8vLw0dOlTPPPOMPvjgA61fv17333+/oqKinCuwLr30UnXv3l0PPvigVq1apc8++0yDBw9W7969FRUVJUm655575Ofnp/79+2vjxo2aOXOmJk6cqLS0NKcfjz32mDIzM/XnP/9Zmzdv1pgxY/Tll19q8ODBpz8qAACg7jPV9OmnnxpJ5R4pKSnGGGNKS0vNH//4RxMREWFcLpe58cYbzZYtWzy28fPPP5s+ffqYwMBA43a7Tb9+/UxBQYFHzX//+1/TuXNn43K5zEUXXWSef/75cn159913zcUXX2z8/PzMZZddZubNm1etY8nLyzOSTF5eXvUGAUCd8M07v/d4ALBDVf//Pq375NR13CcHsBv3yQHsVCv3yQEAADhXEHIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWMm3tjsAAGdaYfERfbR6qraXfK1QE6A4nyby9eJ3OuB8U+c/9ZMnT1azZs3k7++vjh07atWqVbXdJQC16M0l6eoz71pNz/27lgXt0Bz31/pD/QVaUPxNbXcNwFlWp0POzJkzlZaWpvT0dK1Zs0bt2rVTYmKidu/eXdtdA1AL3lySrg/yPpSR8Wg3khYFbdObS9Jrp2MAakWdDjl/+ctf9OCDD6pfv36KiYnRlClTVL9+ff3973+v7a4BOMsKi4/ow7y5vz7xOm7h/38+N2+uCouPnNV+Aag9dXZOTlFRkVavXq1Ro0Y5bd7e3kpISFBWVlaF6xQWFqqwsNB5npeXJ0nKz8+v2c4CqHFzv3xdRYeLT1r3r2Wv6NYOD52FHgGoKWX/bxtjTlhXZ0PO3r17VVJSooiICI/2iIgIbd68ucJ1MjIyNHbs2HLt0dHRNdJHAOeeeRohaURtdwPAGVBQUKDg4OBKl9fZkHMqRo0apbS0NOd5aWmp9u3bp0aNGsnL6/jz2+eX/Px8RUdHa9euXXK73bXdHWsxzmcPY312MM5nB+PsyRijgoICRUVFnbCuzoacCy64QD4+PsrNzfVoz83NVWRkZIXruFwuuVwuj7aQkJCa6mKd5Ha7+QCdBYzz2cNYnx2M89nBOP/Pic7glKmzE4/9/PwUGxurRYsWOW2lpaVatGiR4uPja7FnAADgXFBnz+RIUlpamlJSUtShQwfFxcVpwoQJOnjwoPr161fbXQMAALWsToecXr16ac+ePRo9erRycnLUvn17ZWZmlpuMjJNzuVxKT08v93UezizG+exhrM8OxvnsYJxPjZc52fVXAAAAdVCdnZMDAABwIoQcAABgJUIOAACwEiEHAABYiZADAACsRMg5j+3bt0/33nuv3G63QkJC1L9/fx04cKBK6xpjdPPNN8vLy0tz5syp2Y7WcdUd53379mnIkCG65JJLFBAQoCZNmujRRx91/qAs/mfy5Mlq1qyZ/P391bFjR61ateqE9bNmzVKbNm3k7++vtm3bav78+Wepp3Vbdcb5r3/9q7p06aKGDRuqYcOGSkhIOOnrgl9V9/1cZsaMGfLy8lJycnLNdrAOIuScx+69915t3LhRCxcu1Ny5c7Vs2TINHDiwSutOmDDhvP97X1VV3XHOzs5Wdna2XnzxRW3YsEHTpk1TZmam+vfvfxZ7fe6bOXOm0tLSlJ6erjVr1qhdu3ZKTEzU7t27K6xfsWKF+vTpo/79+2vt2rVKTk5WcnKyNmzYcJZ7XrdUd5yXLFmiPn366NNPP1VWVpaio6PVrVs3/fjjj2e553VLdce5zI4dO/TEE0+oS5cuZ6mndYzBeWnTpk1Gkvniiy+cto8++sh4eXmZH3/88YTrrl271lx00UXmp59+MpLM7Nmza7i3ddfpjPOx3n33XePn52eOHj1aE92sk+Li4kxqaqrzvKSkxERFRZmMjIwK6++++26TlJTk0daxY0fz0EMP1Wg/67rqjvPxiouLTVBQkJk+fXpNddEKpzLOxcXF5pprrjFTp041KSkp5vbbbz8LPa1bOJNznsrKylJISIg6dOjgtCUkJMjb21srV66sdL1Dhw7pnnvu0eTJkyv9Q6j4n1Md5+Pl5eXJ7XbL17dO36T8jCkqKtLq1auVkJDgtHl7eyshIUFZWVkVrpOVleVRL0mJiYmV1uPUxvl4hw4d0tGjRxUaGlpT3azzTnWcx40bp/DwcM7yngA/Mc9TOTk5Cg8P92jz9fVVaGiocnJyKl1v2LBhuuaaa3T77bfXdBetcKrjfKy9e/fq6aefrvJXieeDvXv3qqSkpNyfcImIiNDmzZsrXCcnJ6fC+qq+DuejUxnn4z355JOKiooqFzDxP6cyzsuXL9ff/vY3rVu37iz0sO7iTI5lRo4cKS8vrxM+qvrD6XgffPCBFi9erAkTJpzZTtdBNTnOx8rPz1dSUpJiYmI0ZsyY0+84cBY9//zzmjFjhmbPni1/f//a7o41CgoKdN999+mvf/2rLrjggtruzjmNMzmWefzxx9W3b98T1rRo0UKRkZHlJrQVFxdr3759lX4NtXjxYm3btk0hISEe7T169FCXLl20ZMmS0+h53VKT41ymoKBA3bt3V1BQkGbPnq169eqdbretccEFF8jHx0e5ubke7bm5uZWOa2RkZLXqcWrjXObFF1/U888/r08++URXXHFFTXazzqvuOG/btk07duzQbbfd5rSVlpZK+vVM8ZYtW9SyZcua7XRdUduTglA7yibEfvnll07bggULTjgh9qeffjLr16/3eEgyEydONN99993Z6nqdcirjbIwxeXl5plOnTqZr167m4MGDZ6OrdU5cXJwZPHiw87ykpMRcdNFFJ5x4fOutt3q0xcfHM/H4JKo7zsYY86c//cm43W6TlZV1NrpoheqM8+HDh8v9LL799tvNb37zG7N+/XpTWFh4Nrt+TiPknMe6d+9urrzySrNy5UqzfPly07p1a9OnTx9n+Q8//GAuueQSs3Llykq3Ia6uOqnqjnNeXp7p2LGjadu2rfn222/NTz/95DyKi4tr6zDOOTNmzDAul8tMmzbNbNq0yQwcONCEhISYnJwcY4wx9913nxk5cqRT/9lnnxlfX1/z4osvmq+//tqkp6ebevXqmfXr19fWIdQJ1R3n559/3vj5+Zn33nvP471bUFBQW4dQJ1R3nI/H1VUVI+Scx37++WfTp08fExgYaNxut+nXr5/HD6Lt27cbSebTTz+tdBuEnJOr7jh/+umnRlKFj+3bt9fOQZyjXnnlFdOkSRPj5+dn4uLizOeff+4s69q1q0lJSfGof/fdd83FF19s/Pz8zGWXXWbmzZt3lntcN1VnnJs2bVrhezc9Pf3sd7yOqe77+ViEnIp5GWPM2f6KDAAAoKZxdRUAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArPT/ABq7aavwzC82AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOklJREFUeJzt3XtYVWX+//8XoBwEN4RxiMSzZZTphKE0mjaRWNhEaZn1NTTNUrSU0nJqRO1gYyctTzXOpJ+ZGs1mtElLM4+Z5NnJQzpmmiYBmgnkAYR9//7oxxq3IIqCyO3zcV37utz3eq+17nWzN7xc+15rexljjAAAACzjXd0dAAAAqAqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcnNaoUaPk5eXlPG/UqJF69+5d5fvds2ePvLy8NH36dKetd+/eCgoKqvJ9l/Dy8tKoUaMu2P5quk6dOqlTp06Vus1TX38oraz3SmXauXOnOnfurODgYHl5eWnu3LlVsp/zUZHXCe/rSw8hB1Xqk08+uWh/qVzMfbtUHD16VKNGjdKyZcuquyvV7mJ8PaakpGjz5s168cUX9be//U1t2rSp7i5dlF588UX9/ve/V0RExBmD1P79+3XfffcpJCRELpdLd911l7777rsya//yl7/ommuukb+/v5o3b6633nqrio7AYgY4jfT0dHPyS+T48eOmsLCwQttITU01FX2Zud1uc+zYMVNUVOS0paSkmMDAwApt53z6duzYMXPixIlK3Z/NOnbsaDp27Fjh9Q4cOGAkmfT09FLLTpw4YY4dO3b+nashKuu9UlmOHj1qJJlnn3220rddmSryOjnda+18STKRkZEmMTGx3H3k5+eb5s2bm/DwcPOnP/3JvP766yY6OtrUr1/fHDx40KN26tSpRpLp1q2beeedd0yvXr2MJPPyyy9Xev9tVquashVqID8/vyrdflFRkdxut3x9feXv71+l+zqT6t7/hXD8+HH5+vrK27v0Cd0jR44oMDCwGnr1P7Vq1VKtWvyKKsuFeK8cOHBAkhQSEnLG2up8vVwMr5Pdu3erUaNGOnjwoMLCwk5bN3nyZO3cuVNr1qzRjTfeKEm6/fbbdd111+m1117TSy+9JEk6duyYnn32WSUlJenDDz+UJD3yyCNyu916/vnn1b9/f1122WVVf2AW4OMqSJJWrlypG2+8Uf7+/mratKnefvvtUjWnzsk5ceKERo8erebNm8vf31/16tVT+/bttWjRIkm/zqOZNGmSpF8/Cy95SP+bS/Dqq69q/Pjxatq0qfz8/LRt27Zy5xl89913SkxMVGBgoKKiojRmzBgZY5zly5Ytk5eXV6mPP07dZnl9K2k79ZTzxo0bdfvtt8vlcikoKEi33nqrvvrqK4+a6dOny8vLS19++aXS0tIUFhamwMBA3X333c4fjYrYv3+/+vbtq6ioKPn5+alx48YaMGCACgsLPcbk3nvvVWhoqOrUqaN27dpp/vz5HtspGZeZM2fqueee05VXXqk6deooLy/Pme+0a9cu3XHHHapbt64efPBBSZLb7db48eN17bXXyt/fXxEREXr00Uf1888/l9vvwsJCjRw5UrGxsQoODlZgYKA6dOigpUuXOjV79uxx/iCMHj3a+RmUjHtZcy2Kior0/PPPO6+XRo0a6Q9/+IMKCgo86ho1aqSuXbtq5cqViouLk7+/v5o0aaL/+7//q9gPQL++FgYNGqTZs2crJiZGAQEBio+P1+bNmyVJb7/9tpo1ayZ/f3916tRJe/bs8Vj/iy++0L333qsGDRrIz89P0dHRGjp0qI4dO+bUVNZ7JScnR2FhYerUqZPH++Lbb79VYGCgevTocVbHPGrUKDVs2FCSNGzYMHl5ealRo0bOMi8vL23btk0PPPCALrvsMrVv316S9PXXX6t3795q0qSJ/P39FRkZqYcfflg//fRTqX0sW7ZMbdq08fidcy7zsMpap6CgQEOHDlVYWJjq1q2r3//+9/rhhx9KrZufn68hQ4aoUaNG8vPzU3h4uG677TZt2LChQn0oGZsz+fDDD3XjjTc6AUeSWrRooVtvvVUffPCB07Z06VL99NNPGjhwoMf6qampOnLkSKn3N06P/yZBmzdvVufOnRUWFqZRo0apqKhI6enpioiIKHe9UaNGaezYserXr5/i4uKUl5endevWacOGDbrtttv06KOPKjMzU4sWLdLf/va3Mrfx7rvv6vjx4+rfv7/8/PwUGhoqt9tdZm1xcbG6dOmidu3aady4cVqwYIHS09NVVFSkMWPGVOiYz6ZvJ9u6das6dOggl8ul4cOHq3bt2nr77bfVqVMnLV++XG3btvWoHzx4sC677DKlp6drz549Gj9+vAYNGqRZs2addR8zMzMVFxenw4cPq3///mrRooX279+vDz/8UEePHpWvr6+ys7N100036ejRo3r88cdVr149zZgxQ7///e/14Ycf6u677/bY5vPPPy9fX1899dRTKigokK+vr6Rfw0NiYqLat2+vV199VXXq1HHGafr06erTp48ef/xx7d69WxMnTtTGjRv15Zdfqnbt2mX2PS8vT9OmTVPPnj31yCOPKD8/X3/5y1+UmJioNWvWqHXr1goLC9OUKVM0YMAA3X333brnnnskSddff/1px6Rfv36aMWOGunfvrieffFKrV6/W2LFj9c0332jOnDketd9++626d++uvn37KiUlRX/961/Vu3dvxcbG6tprrz3rn4P0a1D597//rdTUVEnS2LFj1bVrVw0fPlyTJ0/WwIED9fPPP2vcuHF6+OGHtWTJEmfd2bNn6+jRoxowYIDq1aunNWvW6K233tIPP/yg2bNnO+NcGe+V8PBwTZkyRffee6/eeustPf7443K73erdu7fq1q2ryZMnn9Xx3nPPPQoJCdHQoUPVs2dP3XHHHaUm/t97771q3ry5XnrpJSdQLVq0SN9995369OmjyMhIbd26Ve+88462bt2qr776ygkjGzduVJcuXXTFFVdo9OjRKi4u1pgxY8o9C1IR/fr109///nc98MADuummm7RkyRIlJSWVqnvsscf04YcfatCgQYqJidFPP/2klStX6ptvvtENN9xQKX0p4Xa79fXXX+vhhx8utSwuLk6fffaZ8vPzVbduXW3cuFGSSs2Bio2Nlbe3tzZu3Kj/9//+X6X2z1rV/HEZLgLJycnG39/ffP/9907btm3bjI+Pj8ccgYYNG5qUlBTneatWrUxSUlK52z7dPIPdu3cbScblcpmcnJwyl7377rtOW0pKipFkBg8e7LS53W6TlJRkfH19zYEDB4wxxixdutRIMkuXLj3jNsubA6FTPldPTk42vr6+ZteuXU5bZmamqVu3rrn55pudtnfffddIMgkJCcbtdjvtQ4cONT4+Pubw4cNl7q8sDz30kPH29jZr164ttaxk20OGDDGSzBdffOEsy8/PN40bNzaNGjUyxcXFxpj/jUuTJk3M0aNHPbZVMrbPPPOMR/sXX3xhJJn33nvPo33BggWl2k+dk1NUVGQKCgo81vv5559NRESEefjhh5228ubknDonbNOmTUaS6devn0fdU089ZSSZJUuWOG0NGzY0ksyKFSuctpycHOPn52eefPLJUvsqjyTj5+dndu/e7bS9/fbbzjyMvLw8p33EiBFGkkftqeNtjDFjx441Xl5eHu+5ynqvGGNMz549TZ06dcx///tf88orrxhJZu7cuRU67pJtv/LKKx7tJT+Xnj17llqnrGP9xz/+Uepnceedd5o6deqY/fv3O207d+40tWrVqvC8pNO9TgYOHOhR98ADD5R6rQUHB5vU1NQK7a885b2eS5aNGTOm1LJJkyYZSWb79u3GmF9fCz4+PmXuIywszNx///2V1mfb8XHVJa64uFgLFy5UcnKyGjRo4LRfc801SkxMLHfdkJAQbd26VTt37jzn/Xfr1q1C/3sbNGiQ8++SjxEKCwv1+eefn3MfzqS4uFifffaZkpOT1aRJE6f9iiuu0AMPPKCVK1cqLy/PY53+/ft7nELv0KGDiouL9f3335/VPt1ut+bOnas777yzzCtaSrb9ySefKC4uzvm4QJKCgoLUv39/7dmzR9u2bfNYLyUlRQEBAWXuc8CAAR7PZ8+ereDgYN122206ePCg84iNjVVQUJDHR0+n8vHxcc4Sud1uHTp0SEVFRWrTpk2FPwoo8cknn0iS0tLSPNqffPJJSSp1Cj8mJkYdOnRwnoeFhenqq68+7ZUs5bn11ls9PpIoOXPXrVs31a1bt1T7yfs4ebyPHDmigwcP6qabbpIxxvkf+9moyHtl4sSJCg4OVvfu3fXHP/5RvXr10l133XXW+zobjz32WKm2k4/1+PHjOnjwoNq1aydJzs+9uLhYn3/+uZKTkxUVFeXUN2vWTLfffvt596vkdfL44497tA8ZMqRUbUhIiFavXq3MzMzz3u+ZlHw8WdbcxpJ5VSU1x44dc94/ZdWe/FEnykfIucQdOHBAx44dU/PmzUstu/rqq8tdd8yYMTp8+LCuuuoqtWzZUsOGDdPXX39dof03btz4rGu9vb09QoYkXXXVVZJUah5EZTpw4ICOHj1a5nhcc801crvd2rdvn0f7yYFRkjNJ8ExzWU7eZ15enq677rpy677//vvT9qtk+clON961atVS/fr1Pdp27typ3NxchYeHKywszOPxyy+/KCcnp9y+zZgxQ9dff70zXyssLEzz589Xbm5uueudzvfffy9vb281a9bMoz0yMlIhISGljvXUn4H068/hbH8G5W0rODhYkhQdHV1m+8n72Lt3r3r37q3Q0FAFBQUpLCxMHTt2lKQKjUVF3iuhoaF688039fXXXys4OFhvvvnmWa97Pv05dOiQnnjiCUVERCggIEBhYWFOXcmx5uTk6NixY6V+jpLKbKuoktdJ06ZNPdrLep+MGzdOW7ZsUXR0tOLi4jRq1KhzCsFnoyQAnjp/TPo1EJ5cExAQ4DHv7tTa0/1HBaUxJwfn7Oabb9auXbv00Ucf6bPPPtO0adP0xhtvaOrUqerXr99ZbaOy36ynm7RYXFxcqfs5Ex8fnzLbzUmTQavD6cbbz8+v1FVWbrdb4eHheu+998pcp7yzCn//+9/Vu3dvJScna9iwYQoPD5ePj4/Gjh2rXbt2nfsB6PQ/41NV5s/gdNs60z6Ki4t122236dChQ3r66afVokULBQYGav/+/erdu/dp55+VpaLvlYULF0r6NXD98MMPZ3WVVEWU1Z/77rtPq1at0rBhw9S6dWsFBQXJ7XarS5cuFTrWC+W+++5Thw4dNGfOHH322Wd65ZVX9Kc//Un/+te/KuWs0slCQ0Pl5+enH3/8sdSykraSM1tXXHGFiouLlZOTo/DwcKeusLBQP/30k8cZMJSPkHOJCwsLU0BAQJkfOe3YseOM64eGhqpPnz7q06ePfvnlF918880aNWqUE3Iq8461brdb3333nXP2RpL++9//Svrf1Q0lZ0wOHz7ssW5ZHxOdbd/CwsJUp06dMsdj+/bt8vb2LvU/+vMVFhYml8ulLVu2lFvXsGHD0/arZPm5atq0qT7//HP99re/rfAf2A8//FBNmjTRv/71L49xTk9P96iryOujYcOGcrvd2rlzp3OmSpKys7N1+PDh8zrWqrJ582b997//1YwZM/TQQw857SVXIJ6sMt8rCxYs0LRp0zR8+HC99957SklJ0erVq6v0Uuuff/5Zixcv1ujRozVy5Ein/dTfLeHh4fL399e3335bahtltVVUyetk165dHmdvTvf77IorrtDAgQM1cOBA5eTk6IYbbtCLL75Y6SHH29tbLVu21Lp160otW716tZo0aeJ89Nm6dWtJ0rp163THHXc4devWrZPb7XaW48z4uOoS5+Pjo8TERM2dO1d79+512r/55hvnf4Knc+ploUFBQWrWrJnH6diSe2ecGjrO1cSJE51/G2M0ceJE1a5dW7feequkX3/B+fj4aMWKFR7rlXVVydn2zcfHR507d9ZHH33k8bFYdna23n//fbVv314ul+scj6hs3t7eSk5O1scff1zmL8WSMwV33HGH1qxZo4yMDGfZkSNH9M4776hRo0aKiYk55z7cd999Ki4u1vPPP19qWVFRUbnjVnKG4+SzJqtXr/bopyTnKq6zeX2U/LIfP368R/vrr78uSWVePVPdyhoHY4wmTJhQqray3iuHDx92rnh86aWXNG3aNG3YsMG5B0tVKetYpdI/Lx8fHyUkJGju3Lkec2G+/fZbffrpp+fdj5JwcupHdKf2o7i4uNTHheHh4YqKiirzI6XK0L17d61du9bjPb1jxw4tWbJE9957r9P2u9/9TqGhoZoyZYrH+lOmTFGdOnUuytf6xYozOdDo0aO1YMECdejQQQMHDlRRUZHeeustXXvtteXOsYmJiVGnTp0UGxur0NBQrVu3zrkcs0RsbKykXycBJiYmysfHR/fff/859dPf318LFixQSkqK2rZtq08//VTz58/XH/7wB+ejk+DgYOfyWS8vLzVt2lTz5s0rc/5IRfr2wgsvaNGiRWrfvr0GDhyoWrVq6e2331ZBQYHGjRt3TsdzJi+99JI+++wzdezYUf3799c111yjH3/8UbNnz9bKlSsVEhKiZ555Rv/4xz90++236/HHH1doaKhmzJih3bt365///GeZN/o7Wx07dtSjjz6qsWPHatOmTercubNq166tnTt3avbs2ZowYYK6d+9e5rpdu3bVv/71L919991KSkrS7t27NXXqVMXExOiXX35x6gICAhQTE6NZs2bpqquuUmhoqK677roy5yK1atVKKSkpeuedd3T48GF17NhRa9as0YwZM5ScnKxbbrnlnI+1qrRo0UJNmzbVU089pf3798vlcumf//xnmfOCKuu98sQTT+inn37S559/Lh8fH3Xp0kX9+vXTCy+8oLvuukutWrU67+Mqi8vl0s0336xx48bpxIkTuvLKK/XZZ59p9+7dpWpHjRqlzz77TL/97W81YMAAFRcXa+LEibruuuu0adOm8+pH69at1bNnT02ePFm5ubm66aabtHjx4lJnifLz81W/fn11795drVq1UlBQkD7//HOtXbtWr732WoX2+be//U3ff/+9jh49KklasWKFXnjhBUlSr169nLOMAwcO1J///GclJSXpqaeeUu3atfX6668rIiLCmUAv/fq+eP7555Wamqp7771XiYmJ+uKLL/T3v/9dL774okJDQ89niC4t1XVZFy4uy5cvN7GxscbX19c0adLETJ06tdSlmadeQv7CCy+YuLg4ExISYgICAkyLFi3Miy++6PHVD0VFRWbw4MEmLCzMeHl5Ods73eWpJy879RLywMBAs2vXLtO5c2dTp04dExERYdLT053LpEscOHDAdOvWzdSpU8dcdtll5tFHHzVbtmwptc3T9c2Ysm//vmHDBpOYmGiCgoJMnTp1zC233GJWrVrlUVNyCfmpl32f7tL2M/n+++/NQw89ZMLCwoyfn59p0qSJSU1N9bg8e9euXaZ79+4mJCTE+Pv7m7i4ODNv3rwy9z979uxS+zjTV2a88847JjY21gQEBJi6deuali1bmuHDh5vMzEyn5tRLyN1ut3nppZdMw4YNjZ+fn/nNb35j5s2bZ1JSUkzDhg09tr9q1SrntXfyuJ/6+jPm11v4jx492jRu3NjUrl3bREdHmxEjRpjjx4971DVs2LDM2xucy9dPSCp1mfHpXr9ljfO2bdtMQkKCCQoKMpdffrl55JFHzH/+85+zfj1W5L3y0UcfGUnmtdde86jLy8szDRs2NK1atTrrr2Y50yXkJbdtONkPP/xg7r77bhMSEmKCg4PNvffeazIzM8t8Py1evNj85je/Mb6+vqZp06Zm2rRp5sknnzT+/v5n1b9T+3OyY8eOmccff9zUq1fPBAYGmjvvvNPs27fPox8FBQVm2LBhplWrVqZu3bomMDDQtGrVykyePLlC+zfm19eVpDIfp77n9+3bZ7p3725cLpcJCgoyXbt2NTt37ixzu++88465+uqrnTF64403PG5NgTPzMqaaZ0ICACApOTn5vG9LAZyMOTkAgAvu1Hu97Ny5U5988ok6depUPR2ClTiTA1xgv/zyi8e8lLKEhYWd9vJkVI6srKxylwcEBDj3vbHJsWPHznh/ntDQ0NPejK6yXHHFFc73XH3//feaMmWKCgoKtHHjRjVv3ly5ublnvOldZGRklfXvYhknnKfq/bQMuPSUzCEo73Hy1wKgapzpZ3Dy/DOblMwbK+9R0blj56J3797OnC2Xy2USExPN+vXrneUlXzdS3qMqXSzjhPPDmRzgAvvuu+/OeFfV9u3bO7d6R9U401eBREVFndcl+BerH3/8UVu3bi23JjY21rnnVHXZtm3bGb9uISEhocr2X1PGCeUj5AAAACsx8RgAAFjpkr4ZoNvtVmZmpurWrVupt1QHAABVxxij/Px8RUVFlXvT00s65GRmZlb6dw4BAIALY9++fapfv/5pl1/SIafky9D27dtX6d89BAAAqkZeXp6io6Odv+Onc0mHnJKPqFwuFyEHAIAa5kxTTZh4DAAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClWtXdAQCoKicWrPR4XrtL+2rqCYDqwJkcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABY6bxCzssvvywvLy8NGTLEaTt+/LhSU1NVr149BQUFqVu3bsrOzvZYb+/evUpKSlKdOnUUHh6uYcOGqaioyKNm2bJluuGGG+Tn56dmzZpp+vTppfY/adIkNWrUSP7+/mrbtq3WrFlzPocDAAAscs4hZ+3atXr77bd1/fXXe7QPHTpUH3/8sWbPnq3ly5crMzNT99xzj7O8uLhYSUlJKiws1KpVqzRjxgxNnz5dI0eOdGp2796tpKQk3XLLLdq0aZOGDBmifv36aeHChU7NrFmzlJaWpvT0dG3YsEGtWrVSYmKicnJyzvWQAACATcw5yM/PN82bNzeLFi0yHTt2NE888YQxxpjDhw+b2rVrm9mzZzu133zzjZFkMjIyjDHGfPLJJ8bb29tkZWU5NVOmTDEul8sUFBQYY4wZPny4ufbaaz322aNHD5OYmOg8j4uLM6mpqc7z4uJiExUVZcaOHXvWx5Gbm2skmdzc3LM/eAA1RuGnX3g8ANjhbP9+n9OZnNTUVCUlJSkhIcGjff369Tpx4oRHe4sWLdSgQQNlZGRIkjIyMtSyZUtFREQ4NYmJicrLy9PWrVudmlO3nZiY6GyjsLBQ69ev96jx9vZWQkKCU1OWgoIC5eXleTwAAICdalV0hZkzZ2rDhg1au3ZtqWVZWVny9fVVSEiIR3tERISysrKcmpMDTsnykmXl1eTl5enYsWP6+eefVVxcXGbN9u3bT9v3sWPHavTo0Wd3oAAAoEar0Jmcffv26YknntB7770nf3//qupTlRkxYoRyc3Odx759+6q7SwAAoIpUKOSsX79eOTk5uuGGG1SrVi3VqlVLy5cv15tvvqlatWopIiJChYWFOnz4sMd62dnZioyMlCRFRkaWutqq5PmZalwulwICAnT55ZfLx8enzJqSbZTFz89PLpfL4wEAAOxUoZBz6623avPmzdq0aZPzaNOmjR588EHn37Vr19bixYuddXbs2KG9e/cqPj5ekhQfH6/Nmzd7XAW1aNEiuVwuxcTEODUnb6OkpmQbvr6+io2N9ahxu91avHixUwMAAC5tFZqTU7duXV133XUebYGBgapXr57T3rdvX6WlpSk0NFQul0uDBw9WfHy82rVrJ0nq3LmzYmJi1KtXL40bN05ZWVl67rnnlJqaKj8/P0nSY489pokTJ2r48OF6+OGHtWTJEn3wwQeaP3++s9+0tDSlpKSoTZs2iouL0/jx43XkyBH16dPnvAYEAADYocITj8/kjTfekLe3t7p166aCggIlJiZq8uTJznIfHx/NmzdPAwYMUHx8vAIDA5WSkqIxY8Y4NY0bN9b8+fM1dOhQTZgwQfXr19e0adOUmJjo1PTo0UMHDhzQyJEjlZWVpdatW2vBggWlJiMDAIBLk5cxxlR3J6pLXl6egoODlZuby/wcwEInFqz0eF67S/tq6gmAynS2f7/57ioAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipVnV3AACqyp7Dn3o8b6721dQTANWBMzkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFKFQs6UKVN0/fXXy+VyyeVyKT4+Xp9++qmz/Pjx40pNTVW9evUUFBSkbt26KTs722Mbe/fuVVJSkurUqaPw8HANGzZMRUVFHjXLli3TDTfcID8/PzVr1kzTp08v1ZdJkyapUaNG8vf3V9u2bbVmzZqKHAoAALBchUJO/fr19fLLL2v9+vVat26dfve73+muu+7S1q1bJUlDhw7Vxx9/rNmzZ2v58uXKzMzUPffc46xfXFyspKQkFRYWatWqVZoxY4amT5+ukSNHOjW7d+9WUlKSbrnlFm3atElDhgxRv379tHDhQqdm1qxZSktLU3p6ujZs2KBWrVopMTFROTk55zseAADAEl7GGHM+GwgNDdUrr7yi7t27KywsTO+//766d+8uSdq+fbuuueYaZWRkqF27dvr000/VtWtXZWZmKiIiQpI0depUPf300zpw4IB8fX319NNPa/78+dqyZYuzj/vvv1+HDx/WggULJElt27bVjTfeqIkTJ0qS3G63oqOjNXjwYD3zzDNn3fe8vDwFBwcrNzdXLpfrfIYBwEVo58xnPZ43v//FauoJgMp0tn+/z3lOTnFxsWbOnKkjR44oPj5e69ev14kTJ5SQkODUtGjRQg0aNFBGRoYkKSMjQy1btnQCjiQlJiYqLy/PORuUkZHhsY2SmpJtFBYWav369R413t7eSkhIcGpOp6CgQHl5eR4PAABgpwqHnM2bNysoKEh+fn567LHHNGfOHMXExCgrK0u+vr4KCQnxqI+IiFBWVpYkKSsryyPglCwvWVZeTV5eno4dO6aDBw+quLi4zJqSbZzO2LFjFRwc7Dyio6MrevgAAKCGqHDIufrqq7Vp0yatXr1aAwYMUEpKirZt21YVfat0I0aMUG5urvPYt29fdXcJAABUkVoVXcHX11fNmjWTJMXGxmrt2rWaMGGCevToocLCQh0+fNjjbE52drYiIyMlSZGRkaWugiq5+urkmlOvyMrOzpbL5VJAQIB8fHzk4+NTZk3JNk7Hz89Pfn5+FT1kAABQA533fXLcbrcKCgoUGxur2rVra/Hixc6yHTt2aO/evYqPj5ckxcfHa/PmzR5XQS1atEgul0sxMTFOzcnbKKkp2Yavr69iY2M9atxutxYvXuzUAAAAVOhMzogRI3T77berQYMGys/P1/vvv69ly5Zp4cKFCg4OVt++fZWWlqbQ0FC5XC4NHjxY8fHxateunSSpc+fOiomJUa9evTRu3DhlZWXpueeeU2pqqnOG5bHHHtPEiRM1fPhwPfzww1qyZIk++OADzZ8/3+lHWlqaUlJS1KZNG8XFxWn8+PE6cuSI+vTpU4lDAwAAarIKhZycnBw99NBD+vHHHxUcHKzrr79eCxcu1G233SZJeuONN+Tt7a1u3bqpoKBAiYmJmjx5srO+j4+P5s2bpwEDBig+Pl6BgYFKSUnRmDFjnJrGjRtr/vz5Gjp0qCZMmKD69etr2rRpSkxMdGp69OihAwcOaOTIkcrKylLr1q21YMGCUpORAQDApeu875NTk3GfHMBu3CcHsFOV3ycHAADgYkbIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBShULO2LFjdeONN6pu3boKDw9XcnKyduzY4VFz/Phxpaamql69egoKClK3bt2UnZ3tUbN3714lJSWpTp06Cg8P17Bhw1RUVORRs2zZMt1www3y8/NTs2bNNH369FL9mTRpkho1aiR/f3+1bdtWa9asqcjhAAAAi1Uo5Cxfvlypqan66quvtGjRIp04cUKdO3fWkSNHnJqhQ4fq448/1uzZs7V8+XJlZmbqnnvucZYXFxcrKSlJhYWFWrVqlWbMmKHp06dr5MiRTs3u3buVlJSkW265RZs2bdKQIUPUr18/LVy40KmZNWuW0tLSlJ6erg0bNqhVq1ZKTExUTk7O+YwHAACwhJcxxpzrygcOHFB4eLiWL1+um2++Wbm5uQoLC9P777+v7t27S5K2b9+ua665RhkZGWrXrp0+/fRTde3aVZmZmYqIiJAkTZ06VU8//bQOHDggX19fPf3005o/f762bNni7Ov+++/X4cOHtWDBAklS27ZtdeONN2rixImSJLfbrejoaA0ePFjPPPPMWfU/Ly9PwcHBys3NlcvlOtdhAHCR2jnzWY/nze9/sZp6AqAyne3f7/Oak5ObmytJCg0NlSStX79eJ06cUEJCglPTokULNWjQQBkZGZKkjIwMtWzZ0gk4kpSYmKi8vDxt3brVqTl5GyU1JdsoLCzU+vXrPWq8vb2VkJDg1JSloKBAeXl5Hg8AAGCncw45brdbQ4YM0W9/+1tdd911kqSsrCz5+voqJCTEozYiIkJZWVlOzckBp2R5ybLyavLy8nTs2DEdPHhQxcXFZdaUbKMsY8eOVXBwsPOIjo6u+IEDAIAa4ZxDTmpqqrZs2aKZM2dWZn+q1IgRI5Sbm+s89u3bV91dAgAAVaTWuaw0aNAgzZs3TytWrFD9+vWd9sjISBUWFurw4cMeZ3Oys7MVGRnp1Jx6FVTJ1Vcn15x6RVZ2drZcLpcCAgLk4+MjHx+fMmtKtlEWPz8/+fn5VfyAAQBAjVOhMznGGA0aNEhz5szRkiVL1LhxY4/lsbGxql27thYvXuy07dixQ3v37lV8fLwkKT4+Xps3b/a4CmrRokVyuVyKiYlxak7eRklNyTZ8fX0VGxvrUeN2u7V48WKnBgAAXNoqdCYnNTVV77//vj766CPVrVvXmf8SHBysgIAABQcHq2/fvkpLS1NoaKhcLpcGDx6s+Ph4tWvXTpLUuXNnxcTEqFevXho3bpyysrL03HPPKTU11TnL8thjj2nixIkaPny4Hn74YS1ZskQffPCB5s+f7/QlLS1NKSkpatOmjeLi4jR+/HgdOXJEffr0qayxAQAANViFQs6UKVMkSZ06dfJof/fdd9W7d29J0htvvCFvb29169ZNBQUFSkxM1OTJk51aHx8fzZs3TwMGDFB8fLwCAwOVkpKiMWPGODWNGzfW/PnzNXToUE2YMEH169fXtGnTlJiY6NT06NFDBw4c0MiRI5WVlaXWrVtrwYIFpSYjAwCAS9N53SenpuM+OYDduE8OYKcLcp8cAACAixUhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKFQ45K1as0J133qmoqCh5eXlp7ty5HsuNMRo5cqSuuOIKBQQEKCEhQTt37vSoOXTokB588EG5XC6FhISob9+++uWXXzxqvv76a3Xo0EH+/v6Kjo7WuHHjSvVl9uzZatGihfz9/dWyZUt98sknFT0cAABgqQqHnCNHjqhVq1aaNGlSmcvHjRunN998U1OnTtXq1asVGBioxMREHT9+3Kl58MEHtXXrVi1atEjz5s3TihUr1L9/f2d5Xl6eOnfurIYNG2r9+vV65ZVXNGrUKL3zzjtOzapVq9SzZ0/17dtXGzduVHJyspKTk7Vly5aKHhIAALCQlzHGnPPKXl6aM2eOkpOTJf16FicqKkpPPvmknnrqKUlSbm6uIiIiNH36dN1///365ptvFBMTo7Vr16pNmzaSpAULFuiOO+7QDz/8oKioKE2ZMkXPPvussrKy5OvrK0l65plnNHfuXG3fvl2S1KNHDx05ckTz5s1z+tOuXTu1bt1aU6dOPav+5+XlKTg4WLm5uXK5XOc6DAAuUjtnPuvxvPn9L1ZTTwBUprP9+12pc3J2796trKwsJSQkOG3BwcFq27atMjIyJEkZGRkKCQlxAo4kJSQkyNvbW6tXr3Zqbr75ZifgSFJiYqJ27Nihn3/+2ak5eT8lNSX7KUtBQYHy8vI8HgAAwE6VGnKysrIkSRERER7tERERzrKsrCyFh4d7LK9Vq5ZCQ0M9asraxsn7OF1NyfKyjB07VsHBwc4jOjq6oocIAABqiEvq6qoRI0YoNzfXeezbt6+6uwQAAKpIpYacyMhISVJ2drZHe3Z2trMsMjJSOTk5HsuLiop06NAhj5qytnHyPk5XU7K8LH5+fnK5XB4PAABgp0oNOY0bN1ZkZKQWL17stOXl5Wn16tWKj4+XJMXHx+vw4cNav369U7NkyRK53W61bdvWqVmxYoVOnDjh1CxatEhXX321LrvsMqfm5P2U1JTsBwAAXNoqHHJ++eUXbdq0SZs2bZL062TjTZs2ae/evfLy8tKQIUP0wgsv6N///rc2b96shx56SFFRUc4VWNdcc426dOmiRx55RGvWrNGXX36pQYMG6f7771dUVJQk6YEHHpCvr6/69u2rrVu3atasWZowYYLS0tKcfjzxxBNasGCBXnvtNW3fvl2jRo3SunXrNGjQoPMfFQAAUPOZClq6dKmRVOqRkpJijDHG7XabP/7xjyYiIsL4+fmZW2+91ezYscNjGz/99JPp2bOnCQoKMi6Xy/Tp08fk5+d71PznP/8x7du3N35+fubKK680L7/8cqm+fPDBB+aqq64yvr6+5tprrzXz58+v0LHk5uYaSSY3N7digwCgRvjvP/7g8QBgh7P9+31e98mp6bhPDmA37pMD2Kla7pMDAABwsSDkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSreruAABUtoKi4/p0/TTtLv5GoSZAcT4NVMuL/9MBl5oa/66fNGmSGjVqJH9/f7Vt21Zr1qyp7i4BqEbvLktXz/m/1Yzsv2pF3T2a6/pGz9ZZqIVF/63urgG4wGp0yJk1a5bS0tKUnp6uDRs2qFWrVkpMTFROTk51dw1ANXh3Wbr+nfuxjIxHu5G0uO4uvbssvXo6BqBa1OiQ8/rrr+uRRx5Rnz59FBMTo6lTp6pOnTr661//Wt1dA3CBFRQd18e583594nXKwv//+bzceSooOn5B+wWg+tTYOTmFhYVav369RowY4bR5e3srISFBGRkZZa5TUFCggoIC53lubq4kKS8vr2o7C6DKzVv3tgqPFZ2x7p8r3lLXNo9egB4BqColf7eNMeXW1diQc/DgQRUXFysiIsKjPSIiQtu3by9znbFjx2r06NGl2qOjo6ukjwAuPvM1XNLw6u4GgEqQn5+v4ODg0y6vsSHnXIwYMUJpaWnOc7fbrUOHDqlevXry8jr1/PalJS8vT9HR0dq3b59cLld1d8dajPOFw1hfGIzzhcE4ezLGKD8/X1FRUeXW1diQc/nll8vHx0fZ2dke7dnZ2YqMjCxzHT8/P/n5+Xm0hYSEVFUXaySXy8Ub6AJgnC8cxvrCYJwvDMb5f8o7g1Oixk489vX1VWxsrBYvXuy0ud1uLV68WPHx8dXYMwAAcDGosWdyJCktLU0pKSlq06aN4uLiNH78eB05ckR9+vSp7q4BAIBqVqNDTo8ePXTgwAGNHDlSWVlZat26tRYsWFBqMjLOzM/PT+np6aU+zkPlYpwvHMb6wmCcLwzG+dx4mTNdfwUAAFAD1dg5OQAAAOUh5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCziXs0KFDevDBB+VyuRQSEqK+ffvql19+Oat1jTG6/fbb5eXlpblz51ZtR2u4io7zoUOHNHjwYF199dUKCAhQgwYN9PjjjztfKIv/mTRpkho1aiR/f3+1bdtWa9asKbd+9uzZatGihfz9/dWyZUt98sknF6inNVtFxvnPf/6zOnTooMsuu0yXXXaZEhISzvhzwa8q+nouMXPmTHl5eSk5OblqO1gDEXIuYQ8++KC2bt2qRYsWad68eVqxYoX69+9/VuuOHz/+kv++r7NV0XHOzMxUZmamXn31VW3ZskXTp0/XggUL1Ldv3wvY64vfrFmzlJaWpvT0dG3YsEGtWrVSYmKicnJyyqxftWqVevbsqb59+2rjxo1KTk5WcnKytmzZcoF7XrNUdJyXLVumnj17aunSpcrIyFB0dLQ6d+6s/fv3X+Ce1ywVHecSe/bs0VNPPaUOHTpcoJ7WMAaXpG3bthlJZu3atU7bp59+ary8vMz+/fvLXXfjxo3myiuvND/++KORZObMmVPFva25zmecT/bBBx8YX19fc+LEiaroZo0UFxdnUlNTnefFxcUmKirKjB07tsz6++67zyQlJXm0tW3b1jz66KNV2s+arqLjfKqioiJTt25dM2PGjKrqohXOZZyLiorMTTfdZKZNm2ZSUlLMXXfddQF6WrNwJucSlZGRoZCQELVp08ZpS0hIkLe3t1avXn3a9Y4ePaoHHnhAkyZNOu0XoeJ/znWcT5WbmyuXy6VatWr0TcorTWFhodavX6+EhASnzdvbWwkJCcrIyChznYyMDI96SUpMTDxtPc5tnE919OhRnThxQqGhoVXVzRrvXMd5zJgxCg8P5yxvOfiNeYnKyspSeHi4R1utWrUUGhqqrKys0643dOhQ3XTTTbrrrruquotWONdxPtnBgwf1/PPPn/VHiZeCgwcPqri4uNRXuERERGj79u1lrpOVlVVm/dn+HC5F5zLOp3r66acVFRVVKmDif85lnFeuXKm//OUv2rRp0wXoYc3FmRzLPPPMM/Ly8ir3cba/nE7173//W0uWLNH48eMrt9M1UFWO88ny8vKUlJSkmJgYjRo16vw7DlxAL7/8smbOnKk5c+bI39+/urtjjfz8fPXq1Ut//vOfdfnll1d3dy5qnMmxzJNPPqnevXuXW9OkSRNFRkaWmtBWVFSkQ4cOnfZjqCVLlmjXrl0KCQnxaO/WrZs6dOigZcuWnUfPa5aqHOcS+fn56tKli+rWras5c+aodu3a59tta1x++eXy8fFRdna2R3t2dvZpxzUyMrJC9Ti3cS7x6quv6uWXX9bnn3+u66+/viq7WeNVdJx37dqlPXv26M4773Ta3G63pF/PFO/YsUNNmzat2k7XFNU9KQjVo2RC7Lp165y2hQsXljsh9scffzSbN2/2eEgyEyZMMN99992F6nqNci7jbIwxubm5pl27dqZjx47myJEjF6KrNU5cXJwZNGiQ87y4uNhceeWV5U487tq1q0dbfHw8E4/PoKLjbIwxf/rTn4zL5TIZGRkXootWqMg4Hzt2rNTv4rvuusv87ne/M5s3bzYFBQUXsusXNULOJaxLly7mN7/5jVm9erVZuXKlad68uenZs6ez/IcffjBXX321Wb169Wm3Ia6uOqOKjnNubq5p27atadmypfn222/Njz/+6DyKioqq6zAuOjNnzjR+fn5m+vTpZtu2baZ///4mJCTEZGVlGWOM6dWrl3nmmWec+i+//NLUqlXLvPrqq+abb74x6enppnbt2mbz5s3VdQg1QkXH+eWXXza+vr7mww8/9Hjt5ufnV9ch1AgVHedTcXVV2Qg5l7CffvrJ9OzZ0wQFBRmXy2X69Onj8Yto9+7dRpJZunTpabdByDmzio7z0qVLjaQyH7t3766eg7hIvfXWW6ZBgwbG19fXxMXFma+++spZ1rFjR5OSkuJR/8EHH5irrrrK+Pr6mmuvvdbMnz//Ave4ZqrIODds2LDM1256evqF73gNU9HX88kIOWXzMsaYC/0RGQAAQFXj6ioAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWOn/Aypb7YEiZ2UpAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPahJREFUeJzt3Xl4VNXh//HPZJskwCREskpkVTZxixKibBYkQNSiuCAUggVxCVrBDZSyqDV+0SoWUUqtQlusgF+xyBJBEBANKAhf2aQsAaSQgGIyrCHL+f3hL1MmG5khk+SG9+t55nky9565c87MZPLJWe61GWOMAAAALMSvtisAAADgKQIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMat2kSZNks9lc95s3b65hw4b5/Hn37dsnm82mWbNmubYNGzZMDRs29Plzl7DZbJo0aVKNPZ/V9ejRQz169KjWY5b+/NUWX3zuSx9z1apVstlsWrVqlcfHquprfyHP4Ql+d0CAQb2wZMmSOvtlVpfrdrE4deqUJk2a5PM/qqj7Fi5cqOuuu07BwcG67LLLNHHiRBUWFtZ2teCFgNquAFDazp075efnWbZesmSJpk+f7lFQaNasmU6fPq3AwEAPa+iZyup2+vRpBQTwa+hrp06d0uTJkyWpTC/C+PHjNXbs2FqolTtvPvee6tatm06fPq2goCCPH7ts2TIf1KhmLV26VP3791ePHj00bdo0bdmyRS+++KKOHDmit99+u7arBw/xzYk6x263+/T4hYWFKi4uVlBQkIKDg336XOdT289fE86cOaOgoKBy/zifPHlSDRo0qIVa/VdAQECdCJG+/txLkp+fn9efOW9CT13z5JNP6qqrrtKyZctc77nD4dBLL72k3/3ud2rbtm0t1xCeYAgJNWrt2rW64YYbFBwcrFatWunPf/5zmTKlx+0LCgo0efJkXX755QoODtYll1yiLl26aPny5ZJ+mbcyffp0Sb+Mi5fcpP/Oc3n11Vc1depUtWrVSna7Xdu3by93DkyJvXv3Kjk5WQ0aNFBcXJyef/55nXvh9orG+Usfs7K6lWwr3TOzadMm9e3bVw6HQw0bNlTPnj21bt06tzKzZs2SzWbTl19+qTFjxigyMlINGjTQHXfcoaNHj1b8BlTgP//5j4YPH664uDjZ7Xa1aNFCDz/8sM6ePev2mtx9992KiIhQaGioOnfurMWLF7sdp+R1+eCDDzR+/HhdeumlCg0NldPpdM0v2rNnj/r166dGjRpp8ODBkqTi4mJNnTpVHTp0UHBwsKKjo/Xggw/q559/rrTeZ8+e1YQJE5SQkKCwsDA1aNBAXbt21eeff+4qs2/fPkVGRkqSJk+e7HoPSl738ubAFBYW6oUXXnB9Xpo3b65nn31W+fn5buWaN2+uW2+9VWvXrlWnTp0UHBysli1b6m9/+5tnb4DKfu49eY+NMXrxxRfVtGlThYaG6uabb9a2bdvKPEfpz+2oUaPUsGFDnTp1qkzZ++67TzExMSoqKpJU/hyYgwcPqn///mrQoIGioqI0evToMq9ReW0rUfqYVXk/vbV9+3Zt375dI0eOdAusjzzyiIwx+vDDDy/4OVCzav/fDlw0tmzZot69eysyMlKTJk1SYWGhJk6cqOjo6EofN2nSJKWnp2vEiBHq1KmTnE6nNmzYoG+//Va33HKLHnzwQR06dEjLly/X3//+93KP8d577+nMmTMaOXKk7Ha7IiIiVFxcXG7ZoqIi9enTR507d9aUKVOUkZHhGid//vnnPWpzVep2rm3btqlr165yOBx6+umnFRgYqD//+c/q0aOHVq9ercTERLfyjz76qBo3bqyJEydq3759mjp1qkaNGqW5c+dWuY6HDh1Sp06dlJubq5EjR6pt27b6z3/+ow8//FCnTp1SUFCQcnJydOONN+rUqVN67LHHdMkll2j27Nm6/fbb9eGHH+qOO+5wO+YLL7ygoKAgPfnkk8rPz3f9915YWKjk5GR16dJFr776qkJDQ12v06xZs3T//ffrscceU1ZWlt58801t2rRJX375ZYXDfE6nU++8847uu+8+PfDAAzp+/Lj++te/Kjk5WV9//bWuueYaRUZG6u2339bDDz+sO+64Q3feeack6aqrrqrwNRkxYoRmz56tu+66S0888YTWr1+v9PR07dixQwsWLHAru3v3bt11110aPny4UlNT9e6772rYsGFKSEhQhw4dqvw+VKQq7/GECRP04osvql+/furXr5++/fZb9e7d2y2Alufee+/V9OnTtXjxYt19992u7adOndInn3yiYcOGyd/fv9zHnj59Wj179tSBAwf02GOPKS4uTn//+9+1cuVKr9talffTW5s2bZIkXX/99W7b4+Li1LRpU9d+WIgBakj//v1NcHCw2b9/v2vb9u3bjb+/vzn3o9isWTOTmprqun/11VeblJSUSo+dlpZmyvs4Z2VlGUnG4XCYI0eOlLvvvffec21LTU01ksyjjz7q2lZcXGxSUlJMUFCQOXr0qDHGmM8//9xIMp9//vl5j1lR3YwxRpKZOHGi637//v1NUFCQ2bNnj2vboUOHTKNGjUy3bt1c29577z0jyfTq1csUFxe7to8ePdr4+/ub3Nzccp+vPEOHDjV+fn7mm2++KbOv5NiPP/64kWS++OIL177jx4+bFi1amObNm5uioiJjzH9fl5YtW5pTp065HavktR07dqzb9i+++MJIMnPmzHHbnpGRUWZ79+7dTffu3V33CwsLTX5+vtvjfv75ZxMdHW1++9vfurYdPXq0zGtdYuLEiW7vz+bNm40kM2LECLdyTz75pJFkVq5c6drWrFkzI8msWbPGte3IkSPGbrebJ554osxzVab0576q7/GRI0dMUFCQSUlJcSv37LPPGkluxyz9uS0uLjaXXnqpGTBggFtd5s2bV6ZdpV/7qVOnGklm3rx5rm0nT540rVu3LvO7UbptFR2zqu+nMWV/d87nlVdeMZLMgQMHyuy74YYbTOfOnat8LNQNDCGhRhQVFenTTz9V//79ddlll7m2t2vXTsnJyZU+Njw8XNu2bdOuXbu8fv4BAwa4hhGqYtSoUa6fbTabRo0apbNnz+qzzz7zug7nU1RUpGXLlql///5q2bKla3tsbKwGDRqktWvXyul0uj1m5MiRbsMfXbt2VVFRkfbv31+l5ywuLtbHH3+s2267rcx/ppJcx16yZIk6deqkLl26uPY1bNhQI0eO1L59+7R9+3a3x6WmpiokJKTc53z44Yfd7s+fP19hYWG65ZZb9OOPP7puCQkJatiwYaXDB/7+/q7eneLiYh07dkyFhYW6/vrr9e2331bpNShtyZIlkqQxY8a4bX/iiSckqcywWfv27dW1a1fX/cjISLVp00Z79+716vlLO997/Nlnn+ns2bN69NFH3co9/vjj5z22zWbT3XffrSVLlujEiROu7XPnztWll17q9n6XtmTJEsXGxuquu+5ybQsNDdXIkSM9aZ4bX7yfJU6fPi2p/LlGwcHBrv2wDgIMasTRo0d1+vRpXX755WX2tWnTptLHPv/888rNzdUVV1yhjh076qmnntJ3333n0fO3aNGiymX9/PzcAoQkXXHFFZJ+mU/hK0ePHtWpU6fKfT3atWun4uJi/fDDD27bzw2DktS4cWNJOu/ckXOf0+l06sorr6y03P79+yusV8n+c1X0egcEBKhp06Zu23bt2qW8vDxFRUUpMjLS7XbixAkdOXKk0rrNnj1bV111lWt+VGRkpBYvXqy8vLxKH1eR/fv3y8/PT61bt3bbHhMTo/Dw8DJtLf0eSL+8D1V9D87nfO9xSX1K/25FRka6ylbm3nvv1enTp7Vw4UJJ0okTJ7RkyRLdfffdlZ4fZ//+/WrdunWZMuf7fT6f6n4/S5QE6vLm6Jw5c6bCwI26izkwqPO6deumPXv26F//+peWLVumd955R6+//rpmzJihESNGVOkY1f3lVNEXe8mEx5pS0fwEc86E49pQ0ettt9vLrEYqLi5WVFSU5syZU+5jKus5+8c//qFhw4apf//+euqppxQVFSV/f3+lp6drz5493jdAFb/Hpfn6PfD18Tt37qzmzZtr3rx5GjRokD755BOdPn1a9957b7UcX6r89+Xc9vny/YyNjZUkHT58WPHx8W77Dh8+rE6dOl3Q8VHzCDCoEZGRkQoJCSl3GGjnzp3nfXxERITuv/9+3X///Tpx4oS6deumSZMmuQJMdZ5Jtbi4WHv37nX1ukjSv//9b0m/rKaQ/vtfcG5urttjyxu6qWrdIiMjFRoaWu7r8f3338vPz6/MF++FioyMlMPh0NatWyst16xZswrrVbLfW61atdJnn32mm266yeOg+eGHH6ply5b66KOP3F7niRMnupXz5PPRrFkzFRcXa9euXa4eJknKyclRbm7uBbXVF0rqs2vXLreew6NHj1a5F+iee+7RG2+8IafTqblz56p58+bq3LnzeZ9369atMsa4vb7lfU4aN25c5ndF+uX35dw6V/X99EbJBOANGza4hZVDhw7p4MGDFzT0hdrBEBJqhL+/v5KTk/Xxxx/rwIEDru07duzQp59+Wuljf/rpJ7f7DRs2VOvWrd26gkvOJVLel6Q33nzzTdfPxhi9+eabCgwMVM+ePSX98uXt7++vNWvWuD3urbfeKnOsqtbN399fvXv31r/+9S+3oaqcnBy9//776tKlixwOh5ctKp+fn5/69++vTz75RBs2bCizv+S//H79+unrr79WZmama9/Jkyc1c+ZMNW/eXO3bt/e6Dvfcc4+Kior0wgsvlNlXWFhY6etW8t/7ub0R69evd6unJNdqp6p8Pvr16ydJmjp1qtv21157TZKUkpJy3mPUpF69eikwMFDTpk1zex1K178y9957r/Lz8zV79mxlZGTonnvuOe9j+vXrp0OHDrktPz516pRmzpxZpmyrVq20bt06t1VRixYtKjMkWtX30xsdOnRQ27ZtNXPmTLee0rfffls2m81tLg+sgR4Y1JjJkycrIyNDXbt21SOPPKLCwkJNmzZNHTp0qHROS/v27dWjRw8lJCQoIiJCGzZs0Icffug20TYhIUGS9Nhjjyk5OVn+/v4aOHCgV/UMDg5WRkaGUlNTlZiYqKVLl2rx4sV69tlnXcMZYWFhuvvuuzVt2jTZbDa1atVKixYtKne+hid1e/HFF7V8+XJ16dJFjzzyiAICAvTnP/9Z+fn5mjJlilftOZ+XXnpJy5YtU/fu3TVy5Ei1a9dOhw8f1vz587V27VqFh4dr7Nix+uc//6m+ffvqscceU0REhGbPnq2srCz97//+7wWdQbZ79+568MEHlZ6ers2bN6t3794KDAzUrl27NH/+fL3xxhsV/nG59dZb9dFHH+mOO+5QSkqKsrKyNGPGDLVv395tUmpISIjat2+vuXPn6oorrlBERISuvPLKcuf+XH311UpNTdXMmTOVm5ur7t276+uvv9bs2bPVv39/3XzzzV631RciIyP15JNPKj09Xbfeeqv69eunTZs2aenSpWrSpEmVjnHdddepdevWeu6555Sfn1+l4aMHHnhAb775poYOHaqNGzcqNjZWf//7311h8VwjRozQhx9+qD59+uiee+7Rnj179I9//EOtWrVyK1fV99Nbr7zyim6//Xb17t1bAwcO1NatW/Xmm29qxIgRbr1tsIhaW/+Ei9Lq1atNQkKCCQoKMi1btjQzZswos4y19JLLF1980XTq1MmEh4ebkJAQ07ZtW/OHP/zBnD171lWmsLDQPProoyYyMtLYbDbX8UqWNb/yyitl6lLRMuoGDRqYPXv2mN69e5vQ0FATHR1tJk6c6FoqXOLo0aNmwIABJjQ01DRu3Ng8+OCDZuvWrWWOWVHdjCl/Kei3335rkpOTTcOGDU1oaKi5+eabzVdffeVWpmSJbemlzxUt7z6f/fv3m6FDh5rIyEhjt9tNy5YtTVpamtuS1j179pi77rrLhIeHm+DgYNOpUyezaNGicp9//vz5ZZ6j5LWtyMyZM01CQoIJCQkxjRo1Mh07djRPP/20OXTokKtM6WW3xcXF5qWXXjLNmjUzdrvdXHvttWbRokUmNTXVNGvWzO34X331leuzd+7rXvrzZ4wxBQUFZvLkyaZFixYmMDDQxMfHm3HjxpkzZ864lWvWrFm5S/xL17MqKlpGXZX3uKioyEyePNnExsaakJAQ06NHD7N169Yyx6zs8/Hcc88ZSaZ169bl1q+8Nu3fv9/cfvvtJjQ01DRp0sT87ne/cy1/L/0cf/zjH82ll15q7Ha7uemmm8yGDRsu6P0s73enKhYsWGCuueYaY7fbTdOmTc348ePdvktgHTZjanm2HwAAgIeYAwMAACyHOTBAPXXixInzzhuIjIyscJkuqkd2dnal+0NCQhQWFlZDtal/ioqKznv9r4YNG6phw4Y1VCPUFIaQgHpq0qRJmjx5cqVlsrKyXEvD4RvnW8Kdmppa7gVFUTX79u0774kqJ06cWOaiqbA+emCAemro0KGVngpe+uXssvCtkqumVyQuLq6GalI/xcTEnPc1Ln1mbdQP9MAAAADLYRIvAACwnHo7hFRcXKxDhw6pUaNG1XqaeQAA4DvGGB0/flxxcXGVniSz3gaYQ4cOVft1YwAAQM344Ycfyly9/lz1NsA0atRI0i8vQHVfPwYAAPiG0+lUfHy86+94ReptgCkZNnI4HAQYAAAs5nzTP5jECwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALMejAJOenq4bbrhBjRo1UlRUlPr376+dO3e6lenRo4dsNpvb7aGHHnIrc+DAAaWkpCg0NFRRUVF66qmnVFhY6FZm1apVuu6662S329W6dWvNmjXLuxYCAIB6J8CTwqtXr1ZaWppuuOEGFRYW6tlnn1Xv3r21fft2NWjQwFXugQce0PPPP++6Hxoa6vq5qKhIKSkpiomJ0VdffaXDhw9r6NChCgwM1EsvvSRJysrKUkpKih566CHNmTNHK1as0IgRIxQbG6vk5OQLbTNgCQUZa93uB/bpUks1AYC6x2aMMd4++OjRo4qKitLq1avVrVs3Sb/0wFxzzTWaOnVquY9ZunSpbr31Vh06dEjR0dGSpBkzZuiZZ57R0aNHFRQUpGeeeUaLFy/W1q1bXY8bOHCgcnNzlZGRUaW6OZ1OhYWFKS8vTw6Hw9smArWGAAPgYlTVv98XNAcmLy9PkhQREeG2fc6cOWrSpImuvPJKjRs3TqdOnXLty8zMVMeOHV3hRZKSk5PldDq1bds2V5levXq5HTM5OVmZmZkV1iU/P19Op9PtBgAA6iePhpDOVVxcrMcff1w33XSTrrzyStf2QYMGqVmzZoqLi9N3332nZ555Rjt37tRHH30kScrOznYLL5Jc97Ozsyst43Q6dfr0aYWEhJSpT3p6uiZPnuxtcwAAgIV4HWDS0tK0detWrV3r3s09cuRI188dO3ZUbGysevbsqT179qhVq1be1/Q8xo0bpzFjxrjuO51OxcfH++z5AABA7fFqCGnUqFFatGiRPv/8czVt2rTSsomJiZKk3bt3S5JiYmKUk5PjVqbkfkxMTKVlHA5Hub0vkmS32+VwONxuAACgfvIowBhjNGrUKC1YsEArV65UixYtzvuYzZs3S5JiY2MlSUlJSdqyZYuOHDniKrN8+XI5HA61b9/eVWbFihVux1m+fLmSkpI8qS4AAKinPAowaWlp+sc//qH3339fjRo1UnZ2trKzs3X69GlJ0p49e/TCCy9o48aN2rdvnxYuXKihQ4eqW7duuuqqqyRJvXv3Vvv27TVkyBD93//9nz799FONHz9eaWlpstvtkqSHHnpIe/fu1dNPP63vv/9eb731lubNm6fRo0dXc/MBAIAVebSM2mazlbv9vffe07Bhw/TDDz/oN7/5jbZu3aqTJ08qPj5ed9xxh8aPH+82pLN//349/PDDWrVqlRo0aKDU1FS9/PLLCgj475ScVatWafTo0dq+fbuaNm2q3//+9xo2bFiVG8Yyalgdy6gBXIyq+vf7gs4DU5cRYGB1BBgAF6MaOQ8MAABAbSDAAAAAy/H6PDAAqk/p4SIAQOXogQEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJYTUNsVAFA1BRlry2wL7NOlFmoCALWPHhgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5AbVdAeBiVJCxtrarAACWRg8MAACwHAIMAACwHIaQgDpqX+5St/vNw/vWUk0AoO6hBwYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFiORwEmPT1dN9xwgxo1aqSoqCj1799fO3fudCtz5swZpaWl6ZJLLlHDhg01YMAA5eTkuJU5cOCAUlJSFBoaqqioKD311FMqLCx0K7Nq1Spdd911stvtat26tWbNmuVdC4F6rCBjrdsNAC4WHgWY1atXKy0tTevWrdPy5ctVUFCg3r176+TJk64yo0eP1ieffKL58+dr9erVOnTokO68807X/qKiIqWkpOjs2bP66quvNHv2bM2aNUsTJkxwlcnKylJKSopuvvlmbd68WY8//rhGjBihTz/9tBqaDAAArM5mjDHePvjo0aOKiorS6tWr1a1bN+Xl5SkyMlLvv/++7rrrLknS999/r3bt2ikzM1OdO3fW0qVLdeutt+rQoUOKjo6WJM2YMUPPPPOMjh49qqCgID3zzDNavHixtm7d6nqugQMHKjc3VxkZGeXWJT8/X/n5+a77TqdT8fHxysvLk8Ph8LaJgE9UpbfEmxPZBfbp4nWdAKAucDqdCgsLO+/f7wuaA5OXlydJioiIkCRt3LhRBQUF6tWrl6tM27ZtddlllykzM1OSlJmZqY4dO7rCiyQlJyfL6XRq27ZtrjLnHqOkTMkxypOenq6wsDDXLT4+/kKaBgAA6jCvA0xxcbEef/xx3XTTTbryyislSdnZ2QoKClJ4eLhb2ejoaGVnZ7vKnBteSvaX7KusjNPp1OnTp8utz7hx45SXl+e6/fDDD942DQAA1HFeXwspLS1NW7du1dq1dWPioN1ul91ur+1qAACAGuBVD8yoUaO0aNEiff7552ratKlre0xMjM6ePavc3Fy38jk5OYqJiXGVKb0qqeT++co4HA6FhIR4U2UAAFCPeBRgjDEaNWqUFixYoJUrV6pFixZu+xMSEhQYGKgVK1a4tu3cuVMHDhxQUlKSJCkpKUlbtmzRkSNHXGWWL18uh8Oh9u3bu8qce4ySMiXHAAAAFzePhpDS0tL0/vvv61//+pcaNWrkmrMSFhamkJAQhYWFafjw4RozZowiIiLkcDj06KOPKikpSZ07d5Yk9e7dW+3bt9eQIUM0ZcoUZWdna/z48UpLS3MNAT300EN688039fTTT+u3v/2tVq5cqXnz5mnx4sXV3HwAAGBFHvXAvP3228rLy1OPHj0UGxvrus2dO9dV5vXXX9ett96qAQMGqFu3boqJidFHH33k2u/v769FixbJ399fSUlJ+s1vfqOhQ4fq+eefd5Vp0aKFFi9erOXLl+vqq6/WH//4R73zzjtKTk6uhiYDAACru6DzwNRlVV1HDtQGzgMDAOWrkfPAAAAA1Aavl1EDqD6le1sAAJWjBwYAAFgOAQYAAFgOAQYAAFgOc2AAiyhvnkxVViYBQH1EDwwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALCcgNquAFDfFWSsre0qAEC9Qw8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHJZRA/VI6SXbgX261FJNAMC36IEBAACWQw8MUAv25S6t7SoAgKXRAwMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACwnoLYrAMB7+3KXut1vHt63lmoCADWLHhgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5rEIC6rGCjLVltgX26VILNQGA6kUPDAAAsByPA8yaNWt02223KS4uTjabTR9//LHb/mHDhslms7nd+vTp41bm2LFjGjx4sBwOh8LDwzV8+HCdOHHCrcx3332nrl27Kjg4WPHx8ZoyZYrnrQMAAPWSxwHm5MmTuvrqqzV9+vQKy/Tp00eHDx923f75z3+67R88eLC2bdum5cuXa9GiRVqzZo1Gjhzp2u90OtW7d281a9ZMGzdu1CuvvKJJkyZp5syZnlYXAADUQx7Pgenbt6/69q38bJ92u10xMTHl7tuxY4cyMjL0zTff6Prrr5ckTZs2Tf369dOrr76quLg4zZkzR2fPntW7776roKAgdejQQZs3b9Zrr73mFnTOlZ+fr/z8fNd9p9PpadMAAIBF+GQOzKpVqxQVFaU2bdro4Ycf1k8//eTal5mZqfDwcFd4kaRevXrJz89P69evd5Xp1q2bgoKCXGWSk5O1c+dO/fzzz+U+Z3p6usLCwly3+Ph4XzQNAADUAdUeYPr06aO//e1vWrFihf7nf/5Hq1evVt++fVVUVCRJys7OVlRUlNtjAgICFBERoezsbFeZ6OhotzIl90vKlDZu3Djl5eW5bj/88EN1Nw0AANQR1b6MeuDAga6fO3bsqKuuukqtWrXSqlWr1LNnz+p+Ohe73S673e6z4wMAgLrD58uoW7ZsqSZNmmj37t2SpJiYGB05csStTGFhoY4dO+aaNxMTE6OcnBy3MiX3K5pbAwAALh4+DzAHDx7UTz/9pNjYWElSUlKScnNztXHjRleZlStXqri4WImJia4ya9asUUFBgavM8uXL1aZNGzVu3NjXVQYAAHWcxwHmxIkT2rx5szZv3ixJysrK0ubNm3XgwAGdOHFCTz31lNatW6d9+/ZpxYoV+vWvf63WrVsrOTlZktSuXTv16dNHDzzwgL7++mt9+eWXGjVqlAYOHKi4uDhJ0qBBgxQUFKThw4dr27Ztmjt3rt544w2NGTOm+loOAAAsy+MAs2HDBl177bW69tprJUljxozRtddeqwkTJsjf31/fffedbr/9dl1xxRUaPny4EhIS9MUXX7jNT5kzZ47atm2rnj17ql+/furSpYvbOV7CwsK0bNkyZWVlKSEhQU888YQmTJhQ4RJqAABwcbEZY0xtV8IXnE6nwsLClJeXJ4fDUdvVwUWsvOsR7ctd6pPnah5e+TmaJK6FBKBuq+rfb66FBAAALIerUQPVrLwel5pSXs9OVXplAMBq6IEBAACWQ4ABAACWwxAScJEpPcTFpF4AVkQPDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwm8QIXufLOW8PEXgB1HT0wAADAcggwAADAchhCAnzMVxduBICLGT0wAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcgJquwKA1RVkrK3tKgDARYceGAAAYDkEGAAAYDkEGAAAYDnMgQHquX25S93uNw/vW0s1AYDqQw8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwnIDargCAmrUvd2mZbc3D+7rdL8hY63Y/sE8Xn9YJADxFDwwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcViEB1ay8VT4AgOpFgAE8UHp58cWCZdUA6hqGkAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUwiRdAmZVTpa+NBAB1jcc9MGvWrNFtt92muLg42Ww2ffzxx277jTGaMGGCYmNjFRISol69emnXrl1uZY4dO6bBgwfL4XAoPDxcw4cP14kTJ9zKfPfdd+ratauCg4MVHx+vKVOmeN46AABQL3kcYE6ePKmrr75a06dPL3f/lClT9Kc//UkzZszQ+vXr1aBBAyUnJ+vMmTOuMoMHD9a2bdu0fPlyLVq0SGvWrNHIkSNd+51Op3r37q1mzZpp48aNeuWVVzRp0iTNnDnTiyYCAID6xmaMMV4/2GbTggUL1L9/f0m/9L7ExcXpiSee0JNPPilJysvLU3R0tGbNmqWBAwdqx44dat++vb755htdf/31kqSMjAz169dPBw8eVFxcnN5++20999xzys7OVlBQkCRp7Nix+vjjj/X999+XW5f8/Hzl5+e77judTsXHxysvL08Oh8PbJgJuqnIemPpwIjtvhpA4NwyA6uB0OhUWFnbev9/VOok3KytL2dnZ6tWrl2tbWFiYEhMTlZmZKUnKzMxUeHi4K7xIUq9eveTn56f169e7ynTr1s0VXiQpOTlZO3fu1M8//1zuc6enpyssLMx1i4+Pr86mAQCAOqRaA0x2drYkKTo62m17dHS0a192draioqLc9gcEBCgiIsKtTHnHOPc5Shs3bpzy8vJctx9++OHCGwQAAOqkerMKyW63y26313Y1AABADajWHpiYmBhJUk5Ojtv2nJwc176YmBgdOXLEbX9hYaGOHTvmVqa8Y5z7HAAA4OJVrQGmRYsWiomJ0YoVK1zbnE6n1q9fr6SkJElSUlKScnNztXHjRleZlStXqri4WImJia4ya9asUUFBgavM8uXL1aZNGzVu3Lg6qwwAACzI4wBz4sQJbd68WZs3b5b0y8TdzZs368CBA7LZbHr88cf14osvauHChdqyZYuGDh2quLg410qldu3aqU+fPnrggQf09ddf68svv9SoUaM0cOBAxcXFSZIGDRqkoKAgDR8+XNu2bdPcuXP1xhtvaMyYMdXWcAAAYF0ez4HZsGGDbr75Ztf9klCRmpqqWbNm6emnn9bJkyc1cuRI5ebmqkuXLsrIyFBwcLDrMXPmzNGoUaPUs2dP+fn5acCAAfrTn/7k2h8WFqZly5YpLS1NCQkJatKkiSZMmOB2rhgAAHDxuqDzwNRlVV1HDniC88BUHeeFAeCNWjkPDAAAQE0gwAAAAMshwAAAAMupNyeyA1B9ypvHUx3zYgCgutADAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIdVSAB8oryzFnN2XgDVhQADVKIqlw4AANQ8hpAAAIDlEGAAAIDlMIQEoMaUHpJjTgwAbxFgAFRJ6csLcGkBALWJAANcgPKuGQQA8D3mwAAAAMuhBwZArWFODABv0QMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshxPZAagzSp/YTuLkdgDKRw8MAACwHAIMAACwHIaQAHilvCtxNw/vWws1AXAxogcGAABYDgEGAABYDkNIACyFlUoAJAIM4JHy5n3gv0q/PsyJAeArDCEBAADLoQcGQJ1W3pARABBggP+PP5QAYB0MIQEAAMuhBwaAz3CyOwC+Qg8MAACwHAIMAACwHAIMAACwHObAALC80ivIODMvUP8RYADUKM7WC6A6MIQEAAAshx4YXLQ4cR0AWBc9MAAAwHLogQFQqzjZHQBv0AMDAAAshwADAAAshyEkoALlDW3AujhXDFC/0AMDAAAshx4YAPUOS+SB+o8eGAAAYDn0wACoc2ricgPMiQGsjR4YAABgOQQYAABgOQwhAYDKn/jLsBJQd1V7D8ykSZNks9ncbm3btnXtP3PmjNLS0nTJJZeoYcOGGjBggHJyctyOceDAAaWkpCg0NFRRUVF66qmnVFhYWN1VBQAAFuWTHpgOHTros88++++TBPz3aUaPHq3Fixdr/vz5CgsL06hRo3TnnXfqyy+/lCQVFRUpJSVFMTEx+uqrr3T48GENHTpUgYGBeumll3xRXQAAYDE+CTABAQGKiYkpsz0vL09//etf9f777+tXv/qVJOm9995Tu3bttG7dOnXu3FnLli3T9u3b9dlnnyk6OlrXXHONXnjhBT3zzDOaNGmSgoKCfFFlACiDlUpA3eWTSby7du1SXFycWrZsqcGDB+vAgQOSpI0bN6qgoEC9evVylW3btq0uu+wyZWZmSpIyMzPVsWNHRUdHu8okJyfL6XRq27ZtFT5nfn6+nE6n2w1A/bAvd2mZG4CLW7UHmMTERM2aNUsZGRl6++23lZWVpa5du+r48ePKzs5WUFCQwsPD3R4THR2t7OxsSVJ2drZbeCnZX7KvIunp6QoLC3Pd4uPjq7dhAACgzqj2IaS+ff97wqmrrrpKiYmJatasmebNm6eQkJDqfjqXcePGacyYMa77TqeTEAPUYzVxsjsAdZfPl1GHh4friiuu0O7du3XLLbfo7Nmzys3NdeuFycnJcc2ZiYmJ0ddff+12jJJVSuXNqylht9tlt9urvwEALKG8YaWaCDXMkwFqh89PZHfixAnt2bNHsbGxSkhIUGBgoFasWOHav3PnTh04cEBJSUmSpKSkJG3ZskVHjhxxlVm+fLkcDofat2/v6+qiHivIWOt2AwBYV7X3wDz55JO67bbb1KxZMx06dEgTJ06Uv7+/7rvvPoWFhWn48OEaM2aMIiIi5HA49OijjyopKUmdO3eWJPXu3Vvt27fXkCFDNGXKFGVnZ2v8+PFKS0ujhwU+xcRQALCOag8wBw8e1H333aeffvpJkZGR6tKli9atW6fIyEhJ0uuvvy4/Pz8NGDBA+fn5Sk5O1ltvveV6vL+/vxYtWqSHH35YSUlJatCggVJTU/X8889Xd1UBAIBF2YwxprYr4QtOp1NhYWHKy8uTw+Go7eqgDjjfsBE9MPVPdc+BKW9+C3NggOpV1b/fXMwRAABYDhdzBIAqqq7J3/TaABeOAAOg3uJcMUD9RYABcNGorXPFAKh+zIEBAACWQ4ABAACWwxASAPgQZ30GfIMeGAAAYDn0wAC4qLFSCbAmemAAAIDl0AODeol5B6hOnvTS8NkDagYBBhclrnsEANbGEBIAALAcAgwAALAchpAA4By1MbxY3rwZLvAIVI4AAwAe4ppKQO0jwABAHVS6V4YeGcAdc2AAAIDl0AMDAD5Q3cNM9MgA7uiBAQAAlkMPDABUA06OCNQsAgwAWBBLr3GxI8AAQA3x9ZWvmSeDiwkBBgDqKXppUJ8RYFAvnO8KwMxPgFVx0jygfAQYALAYXw9FAVZAgAGAWlIXrrvEkBKsivPAAAAAyyHAAAAAy2EICQAsjom+uBgRYFDvsOII8B5Lr2EVBBhYzvmWTAOgVwb1HwEGAC5iVfmHoCorl1jdhJrGJF4AAGA59MAAwEWiJk+Ax1wa+Bo9MAAAwHLogQEAeISJ9KgLCDAAcJFipRKsjAADAHDhQpGwCgIM6rzzdVdz4jrAGlhqjepEgAEAVIhhJtRVBBgAgEeqMszkq6EolmejBAEGdQ4rHABr8XYYtyq/64QTVITzwAAAAMshwAAAAMthCAmWwooj4OJSXRebRP1DgAEA1GtM/K2fCDAAAJ/ztvfUV0u26bWxPgIMahUnqQNQmap8B3BemosTAQY1iiXSAHyN75mLAwEGAFCvVNfZg883zMTcmtpFgAEAWFp1DDUXZKytlrMHM7em5hBgAACoAoam6hYCDOoMJuwCqG+qMsxEr413CDAAgHrPm3+QuBJ33UaAgc/Q3QoAZfHdWD0IMKg2nv5SMmQEwGqq67w0lU0Y5irdVUOAQf1hJPtxf/kX+KkosFj5jYokm2eHKJZRlt8xOW35chi7WhRHyM/TgwAWwmfe92rqn7WLbS4NAQZeq+y/hJruXQk5FqDwAyEKOPvfC6wXBhUr97LTOh1RWKVjbPHP1sLAHcrzO+PaFlYcrNsL2qljUUy11xmobXzmfaMmvv8YhqrjAWb69Ol65ZVXlJ2drauvvlrTpk1Tp06dartaF6W6/MsScixAl+wOLbPd/6xNl+wO1U+tT503xGzxz9bfgzaV2Z5nO6O/B23SkLPX8oWOeoXPvPV4OnxV34ei6myAmTt3rsaMGaMZM2YoMTFRU6dOVXJysnbu3KmoqKjarp6lVXcYqdW5LEYKPxAiSbKV6va2ySYjo/ADITrd+HiFw0nFMloYuKPkQe5svzzHwsAd6lAUTdc66gU+83VPdX2PerpyysrDTnU2wLz22mt64IEHdP/990uSZsyYocWLF+vdd9/V2LFja7l2F4+6PtHWftzfbdioNJtsCjhrk/24v/IdReWWyfI75taFXs5BlGc7oyy/Y2pVfMmFVhmodXzmLy6e9NxYqdemTgaYs2fPauPGjRo3bpxrm5+fn3r16qXMzMxyH5Ofn6/8/HzX/by8PEmS0+n0bWVrUMHy8tt+rsBbkiRJe799V5Jk9h6UJF0WdkuZsgfylldj7WpHkTNQzvxKvoj/v1POAp0OKCh3X7b/cRUUlx9u3MrlH1d0UUOP6wjUNXzmUdrWUx9Xuaxt1QZJUsvrfuuTupT83TbGVFquTgaYH3/8UUVFRYqOjnbbHh0dre+//77cx6Snp2vy5MlltsfHx/ukjtbzx9qugOUt1ne1XQWgRvGZR+VG+/Tox48fV1hYWIX762SA8ca4ceM0ZswY1/3i4mIdO3ZMl1xyiWw234zhOp1OxcfH64cffpDD4fDJc9Sm+t4+qf63sb63T6r/bazv7ZPqfxvre/uk6m2jMUbHjx9XXFxcpeXqZIBp0qSJ/P39lZOT47Y9JydHMTHlz4q32+2y2+1u28LDw31VRTcOh6Pefiil+t8+qf63sb63T6r/bazv7ZPqfxvre/uk6mtjZT0vJSqe/ViLgoKClJCQoBUrVri2FRcXa8WKFUpKSqrFmgEAgLqgTvbASNKYMWOUmpqq66+/Xp06ddLUqVN18uRJ16okAABw8aqzAebee+/V0aNHNWHCBGVnZ+uaa65RRkZGmYm9tclut2vixIllhq7qi/rePqn+t7G+t0+q/22s7+2T6n8b63v7pNppo82cb50SAABAHVMn58AAAABUhgADAAAshwADAAAshwADAAAshwADAAAshwDjgWPHjmnw4MFyOBwKDw/X8OHDdeLEifM+LjMzU7/61a/UoEEDORwOdevWTadPn66BGnvO2zZKv5z+uW/fvrLZbPr44499W1Evedq+Y8eO6dFHH1WbNm0UEhKiyy67TI899pjrYqF1wfTp09W8eXMFBwcrMTFRX3/9daXl58+fr7Zt2yo4OFgdO3bUkiVLaqim3vOkjX/5y1/UtWtXNW7cWI0bN1avXr3O+5rUNk/fwxIffPCBbDab+vfv79sKVgNP25ibm6u0tDTFxsbKbrfriiuuqNOfVU/bN3XqVNf3Snx8vEaPHq0zZ85/YdrasGbNGt12222Ki4ur8vf7qlWrdN1118lut6t169aaNWtW9VfMoMr69Oljrr76arNu3TrzxRdfmNatW5v77ruv0sd89dVXxuFwmPT0dLN161bz/fffm7lz55ozZ87UUK09400bS7z22mumb9++RpJZsGCBbyvqJU/bt2XLFnPnnXeahQsXmt27d5sVK1aYyy+/3AwYMKAGa12xDz74wAQFBZl3333XbNu2zTzwwAMmPDzc5OTklFv+yy+/NP7+/mbKlClm+/btZvz48SYwMNBs2bKlhmtedZ62cdCgQWb69Olm06ZNZseOHWbYsGEmLCzMHDx4sIZrXjWetq9EVlaWufTSS03Xrl3Nr3/965qprJc8bWN+fr65/vrrTb9+/czatWtNVlaWWbVqldm8eXMN17xqPG3fnDlzjN1uN3PmzDFZWVnm008/NbGxsWb06NE1XPOqWbJkiXnuuefMRx99VKXv971795rQ0FAzZswYs337djNt2jTj7+9vMjIyqrVeBJgq2r59u5FkvvnmG9e2pUuXGpvNZv7zn/9U+LjExEQzfvz4mqjiBfO2jcYYs2nTJnPppZeaw4cP19kAcyHtO9e8efNMUFCQKSgo8EU1PdKpUyeTlpbmul9UVGTi4uJMenp6ueXvuecek5KS4rYtMTHRPPjggz6t54XwtI2lFRYWmkaNGpnZs2f7qooXxJv2FRYWmhtvvNG88847JjU1tc4HGE/b+Pbbb5uWLVuas2fP1lQVL4in7UtLSzO/+tWv3LaNGTPG3HTTTT6tZ3Woyvf7008/bTp06OC27d577zXJycnVWheGkKooMzNT4eHhuv76613bevXqJT8/P61fv77cxxw5ckTr169XVFSUbrzxRkVHR6t79+5au3ZtTVXbI960UZJOnTqlQYMGafr06RVebLMu8LZ9peXl5cnhcCggoHZPZH327Flt3LhRvXr1cm3z8/NTr169lJmZWe5jMjMz3cpLUnJycoXla5s3bSzt1KlTKigoUEREhK+q6TVv2/f8888rKipKw4cPr4lqXhBv2rhw4UIlJSUpLS1N0dHRuvLKK/XSSy+pqKiopqpdZd6078Ybb9TGjRtdw0x79+7VkiVL1K9fvxqps6/V1PdMnb2UQF2TnZ2tqKgot20BAQGKiIhQdnZ2uY/Zu3evJGnSpEl69dVXdc011+hvf/ubevbsqa1bt+ryyy/3eb094U0bJWn06NG68cYb9etf/9rXVbwg3rbvXD/++KNeeOEFjRw50hdV9MiPP/6ooqKiMpfXiI6O1vfff1/uY7Kzs8stX9X21zRv2ljaM888o7i4uDJfqHWBN+1bu3at/vrXv2rz5s01UMML500b9+7dq5UrV2rw4MFasmSJdu/erUceeUQFBQWaOHFiTVS7yrxp36BBg/Tjjz+qS5cuMsaosLBQDz30kJ599tmaqLLPVfQ943Q6dfr0aYWEhFTL81z0PTBjx46VzWar9FbVL8rSiouLJUkPPvig7r//fl177bV6/fXX1aZNG7377rvV2YxK+bKNCxcu1MqVKzV16tTqrbQHfNm+czmdTqWkpKh9+/aaNGnShVccPvfyyy/rgw8+0IIFCxQcHFzb1blgx48f15AhQ/SXv/xFTZo0qe3q+ExxcbGioqI0c+ZMJSQk6N5779Vzzz2nGTNm1HbVqsWqVav00ksv6a233tK3336rjz76SIsXL9YLL7xQ21WzlIu+B+aJJ57QsGHDKi3TsmVLxcTE6MiRI27bCwsLdezYsQqHTWJjYyVJ7du3d9verl07HThwwPtKe8iXbVy5cqX27Nmj8PBwt+0DBgxQ165dtWrVqguoedX4sn0ljh8/rj59+qhRo0ZasGCBAgMDL7TaF6xJkyby9/dXTk6O2/acnJwK2xMTE+NR+drmTRtLvPrqq3r55Zf12Wef6aqrrvJlNb3mafv27Nmjffv26bbbbnNtK/lHKSAgQDt37lSrVq18W2kPefMexsbGKjAwUP7+/q5t7dq1U3Z2ts6ePaugoCCf1tkT3rTv97//vYYMGaIRI0ZIkjp27KiTJ09q5MiReu655+TnZ+2+hYq+ZxwOR7X1vkgEGEVGRioyMvK85ZKSkpSbm6uNGzcqISFB0i9/vIuLi5WYmFjuY5o3b664uDjt3LnTbfu///1v9e3b98IrX0W+bOPYsWNdv4QlOnbsqNdff93tS9aXfNk+6Zeel+TkZNntdi1cuLDO/CcfFBSkhIQErVixwrWMtri4WCtWrNCoUaPKfUxSUpJWrFihxx9/3LVt+fLlSkpKqoEae86bNkrSlClT9Ic//EGffvqp25ynusbT9rVt21Zbtmxx2zZ+/HgdP35cb7zxhuLj42ui2h7x5j286aab9P7776u4uNj1x/zf//63YmNj61R4kbxr36lTp8qElJKwZurB9ZWTkpLKLHn3yfdMtU4Jruf69Oljrr32WrN+/Xqzdu1ac/nll7stwT148KBp06aNWb9+vWvb66+/bhwOh5k/f77ZtWuXGT9+vAkODja7d++ujSaclzdtLE11dBWSMZ63Ly8vzyQmJpqOHTua3bt3m8OHD7tuhYWFtdUMlw8++MDY7XYza9Yss337djNy5EgTHh5usrOzjTHGDBkyxIwdO9ZV/ssvvzQBAQHm1VdfNTt27DATJ060xDJqT9r48ssvm6CgIPPhhx+6vV/Hjx+vrSZUytP2lWaFVUietvHAgQOmUaNGZtSoUWbnzp1m0aJFJioqyrz44ou11YRKedq+iRMnmkaNGpl//vOfZu/evWbZsmWmVatW5p577qmtJlTq+PHjZtOmTWbTpk1GknnttdfMpk2bzP79+40xxowdO9YMGTLEVb5kGfVTTz1lduzYYaZPn84y6tr2008/mfvuu880bNjQOBwOc//997t9KWZlZRlJ5vPPP3d7XHp6umnatKkJDQ01SUlJ5osvvqjhmledt208V10OMJ627/PPPzeSyr1lZWXVTiNKmTZtmrnssstMUFCQ6dSpk1m3bp1rX/fu3U1qaqpb+Xnz5pkrrrjCBAUFmQ4dOpjFixfXcI0950kbmzVrVu77NXHixJqveBV5+h6eywoBxhjP2/jVV1+ZxMREY7fbTcuWLc0f/vCHOvFPQ0U8aV9BQYGZNGmSadWqlQkODjbx8fHmkUceMT///HPNV7wKKvoeLGlTamqq6d69e5nHXHPNNSYoKMi0bNnSvPfee9VeL5sx9aC/CgAAXFSsPVMIAABclAgwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcv4fkJdrtCvW1r0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPkxJREFUeJzt3Xl4VNXh//FP1kkCJCGSVSOrsomoUUKQRQslLC4oKghlsSAuAX+AC1Api1pj0SoWsZS6gC1WlrogYCSyCgZQhMomZUeLCSgmw5r1/P7wmymTTJYJM0lueL+eZ54nc++5d86ZO5l8cu459/oYY4wAAAAsxLemKwAAAOAuAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgyqzbRp0+Tj4+N43qRJEw0fPtzrr3v48GH5+Pho3rx5jmXDhw9X/fr1vf7axXx8fDRt2rRqez2ru+WWW3TLLbd4dJ8lP381xRuf+5L7XLt2rXx8fLR27Vq391XZ9/5iXsMd/O6gLAQYWMqKFStq7ZdZba7bpeLs2bOaNm2a1/+oovb66aef9OKLL6pr166KjIxUeHi4OnbsqIULF5YqWxzCXD02bdpUA7WHO/xrugK4dO3du1e+vu5l6BUrVmj27NluBYXGjRvr3LlzCggIcLOG7imvbufOnZO/P79u3nb27FlNnz5dkkr1IkyePFkTJ06sgVo5q8rn3l1du3bVuXPnFBgY6Pa2K1eu9EKNqk9GRoaefvpp9enTR5MnT5a/v7/+9a9/aeDAgdq9e7fj83Ghxx57TDfddJPTshYtWlRXlVFFfKOixthsNq/uv6CgQEVFRQoMDFRQUJBXX6siNf361eH8+fMKDAx0+cf5zJkzqlevXg3U6n/8/f1rRYj09udeknx9fav8matK6KlN2rZtq3379qlx48aOZY8++qh69OihP/7xj3rqqadKfRa7dOmie+65p7qriovEKSR4xYYNG3TTTTcpKChIzZs311//+tdSZUqet8/Pz9f06dN11VVXKSgoSJdddpk6d+6s9PR0Sb+MW5k9e7YkOXX1Sv8b5/LSSy9p5syZat68uWw2m3bv3u1yDEyxgwcPKjk5WfXq1VNcXJyeeeYZXXiD9rLO85fcZ3l1K15Wsmdm27Zt6t27t0JDQ1W/fn117969VLf1vHnz5OPjo40bN2r8+PGKjIxUvXr1dNddd+nEiRNlH4Ay/Pe//9WIESMUFxcnm82mpk2b6pFHHlFeXp7Te3LvvfcqIiJCISEh6tixo5YvX+60n+L35b333tPkyZN1+eWXKyQkRHa73TG+6MCBA+rTp48aNGigwYMHS5KKioo0c+ZMtW3bVkFBQYqOjtZDDz2kn3/+udx65+XlacqUKUpISFBYWJjq1aunLl26aM2aNY4yhw8fVmRkpCRp+vTpjmNQ/L67GgNTUFCgZ5991vF5adKkiX73u98pNzfXqVyTJk102223acOGDerQoYOCgoLUrFkzvfPOO+4dAJX+3LtzjI0xeu6553TFFVcoJCREt956q3bt2lXqNUp+bkePHq369evr7Nmzpcref//9iomJUWFhoSTXY2C+//579evXT/Xq1VNUVJTGjRtX6j1y1bZiJfdZmeNZVU2bNnUKL9Ivv3/9+vVTbm6uDh486HK7U6dOqaCg4KJfH9Wn5v8dQZ2zY8cO9ezZU5GRkZo2bZoKCgo0depURUdHl7vdtGnTlJqaqpEjR6pDhw6y2+366quv9PXXX+vXv/61HnroIR07dkzp6en6+9//7nIfb7/9ts6fP69Ro0bJZrMpIiJCRUVFLssWFhaqV69e6tixo2bMmKG0tDRNnTpVBQUFeuaZZ9xqc2XqdqFdu3apS5cuCg0N1VNPPaWAgAD99a9/1S233KJ169YpMTHRqfyYMWPUsGFDTZ06VYcPH9bMmTM1evRol+f1y3Ls2DF16NBB2dnZGjVqlFq1aqX//ve/WrJkic6ePavAwEBlZWWpU6dOOnv2rB577DFddtllmj9/vu644w4tWbJEd911l9M+n332WQUGBuqJJ55Qbm6u47/3goICJScnq3PnznrppZcUEhLieJ/mzZunBx54QI899pgOHTqk1157Tdu2bdPGjRvLPM1nt9v1xhtv6P7779eDDz6oU6dO6c0331RycrK2bNmi6667TpGRkfrLX/6iRx55RHfddZfuvvtuSdK1115b5nsycuRIzZ8/X/fcc48ef/xxbd68WampqdqzZ48++OADp7L79+/XPffcoxEjRmjYsGF66623NHz4cCUkJKht27aVPg5lqcwxnjJlip577jn16dNHffr00ddff62ePXs6BVBXBgwYoNmzZ2v58uW69957HcvPnj2rjz/+WMOHD5efn5/Lbc+dO6fu3bvr6NGjeuyxxxQXF6e///3vWr16dZXbWpnj6WmZmZmSpEaNGpVa98ADD+j06dPy8/NTly5d9OKLL+rGG2/0eB3gYQbwsH79+pmgoCBz5MgRx7Ldu3cbPz8/c+FHrnHjxmbYsGGO5+3btzd9+/Ytd98pKSnG1cf20KFDRpIJDQ01x48fd7nu7bffdiwbNmyYkWTGjBnjWFZUVGT69u1rAgMDzYkTJ4wxxqxZs8ZIMmvWrKlwn2XVzRhjJJmpU6c6nvfr188EBgaaAwcOOJYdO3bMNGjQwHTt2tWx7O233zaSTI8ePUxRUZFj+bhx44yfn5/Jzs52+XquDB061Pj6+povv/yy1LrifY8dO9ZIMp9//rlj3alTp0zTpk1NkyZNTGFhoTHmf+9Ls2bNzNmzZ532VfzeTpw40Wn5559/biSZBQsWOC1PS0srtbxbt26mW7dujucFBQUmNzfXabuff/7ZREdHm9/+9reOZSdOnCj1XhebOnWq0/HZvn27kWRGjhzpVO6JJ54wkszq1asdyxo3bmwkmfXr1zuWHT9+3NhsNvP444+Xeq3ylPzcV/YYHz9+3AQGBpq+ffs6lfvd735nJDnts+TntqioyFx++eWmf//+TnVZtGhRqXaVfO9nzpxpJJlFixY5lp05c8a0aNGi1O9GybaVtc/KHk9jSv/uVMVPP/1koqKiTJcuXZyWb9y40fTv39+8+eab5qOPPjKpqanmsssuM0FBQebrr7++qNeE93EKCR5VWFioTz/9VP369dOVV17pWN66dWslJyeXu214eLh27dqlffv2Vfn1+/fv7ziNUBmjR492/Ozj46PRo0crLy9Pn332WZXrUJHCwkKtXLlS/fr1U7NmzRzLY2NjNWjQIG3YsEF2u91pm1GjRjmd/ujSpYsKCwt15MiRSr1mUVGRPvzwQ91+++0u/7Ms3veKFSvUoUMHde7c2bGufv36GjVqlA4fPqzdu3c7bTds2DAFBwe7fM1HHnnE6fnixYsVFhamX//61/rxxx8dj4SEBNWvX7/c0wd+fn6O3p2ioiKdPHlSBQUFuvHGG/X1119X6j0oacWKFZKk8ePHOy1//PHHJanUabM2bdqoS5cujueRkZFq2bJlmack3FXRMf7ss8+Ul5enMWPGOJUbO3Zshfv28fHRvffeqxUrVuj06dOO5QsXLtTll1/udLxLWrFihWJjY53GiISEhGjUqFHuNM+JN45nWYqKijR48GBlZ2dr1qxZTus6deqkJUuW6Le//a3uuOMOTZw4UZs2bZKPj48mTZrk0XrA8wgw8KgTJ07o3Llzuuqqq0qta9myZbnbPvPMM8rOztbVV1+tdu3a6cknn9Q333zj1us3bdq00mV9fX2dAoQkXX311ZJ+GU/hLSdOnNDZs2ddvh+tW7dWUVGRvvvuO6flF4ZBSWrYsKEkVTh25MLXtNvtuuaaa8otd+TIkTLrVbz+QmW93/7+/rriiiuclu3bt085OTmKiopSZGSk0+P06dM6fvx4uXWbP3++rr32Wsf4qMjISC1fvlw5OTnlbleWI0eOyNfXt9Rsk5iYGIWHh5dqa8ljIP1yHCp7DCpS0TEurk/J363IyEhH2fIMGDBA586d09KlSyVJp0+f1ooVK3TvvfeWe32cI0eOqEWLFqXKVPT7XBFPH8+yjBkzRmlpaXrjjTfUvn37Csu3aNFCd955p9asWeMYF4TaiTEwqDW6du2qAwcO6KOPPtLKlSv1xhtv6JVXXtGcOXM0cuTISu2jrN6Aqirri726v9jKGp9gLhhwXBPKer9tNlup2UhFRUWKiorSggULXG5TXs/ZP/7xDw0fPlz9+vXTk08+qaioKPn5+Sk1NVUHDhyoegNU9jEuydvHwNv779ixo5o0aaJFixZp0KBB+vjjj3Xu3DkNGDDAI/uXyv99ubB93jyeF5o+fbpef/11vfDCCxoyZEilt4uPj1deXp7OnDmj0NBQj9UHnkWAgUdFRkYqODjY5WmgvXv3Vrh9RESEHnjgAceguq5du2ratGmOAOPJK6kWFRXp4MGDjl4XSfrPf/4j6ZfZFNL//gvOzs522tbVqZvK1i0yMlIhISEu349vv/1Wvr6+io+Pr9S+KisyMlKhoaHauXNnueUaN25cZr2K11dV8+bN9dlnn+nmm292O2guWbJEzZo10/vvv+/0Pk+dOtWpnDufj8aNG6uoqEj79u1z9DBJUlZWlrKzsy+qrd5QXJ99+/Y59RyeOHGi0r1A9913n1599VXZ7XYtXLhQTZo0UceOHSt83Z07d8oY4/T+uvqcNGzYsNTvivTL78uFda7s8bwYxddkGjt2rCZMmODWtgcPHlRQUFC1Xq0b7uMUEjzKz89PycnJ+vDDD3X06FHH8j179ujTTz8td9uffvrJ6Xn9+vXVokULp+maxddvcPUlWRWvvfaa42djjF577TUFBASoe/fukn758vbz89P69eudtnv99ddL7auydfPz81PPnj310UcfOZ2qysrK0rvvvqvOnTt7/L8+X19f9evXTx9//LG++uqrUuuL/8vv06ePtmzZooyMDMe6M2fOaO7cuWrSpInatGlT5Trcd999Kiws1LPPPltqXUFBQbnvW/F/7xf2RmzevNmpnpIcs50q8/no06ePJGnmzJlOy19++WVJUt++fSvcR3Xq0aOHAgICNGvWLKf3oWT9yzNgwADl5uZq/vz5SktL03333VfhNn369NGxY8e0ZMkSx7KzZ89q7ty5pco2b95cmzZtcpoVtWzZslKnRCt7PKtq4cKFeuyxxzR48GDH8XTF1aUI/v3vf2vp0qXq2bOn1y84iItDDww8bvr06UpLS1OXLl306KOPqqCgQLNmzVLbtm3LHdPSpk0b3XLLLUpISFBERIS++uorLVmyxGmgbUJCgqRfrpyZnJwsPz8/DRw4sEr1DAoKUlpamoYNG6bExER98sknWr58uX73u985TmeEhYXp3nvv1axZs+Tj46PmzZtr2bJlLsdruFO35557Tunp6ercubMeffRR+fv7669//atyc3M1Y8aMKrWnIs8//7xWrlypbt26adSoUWrdurV++OEHLV68WBs2bFB4eLgmTpyof/7zn+rdu7cee+wxRUREaP78+Tp06JD+9a9/XdQXerdu3fTQQw8pNTVV27dvV8+ePRUQEKB9+/Zp8eLFevXVV8u8mNhtt92m999/X3fddZf69u2rQ4cOac6cOWrTpo3ToNTg4GC1adNGCxcu1NVXX62IiAhdc801Lsf+tG/fXsOGDdPcuXOVnZ2tbt26acuWLZo/f7769eunW2+9tcpt9YbIyEg98cQTSk1N1W233aY+ffpo27Zt+uSTT1xODXblhhtuUIsWLfT0008rNze3UqePHnzwQb322msaOnSotm7dqtjYWP397393hMULjRw5UkuWLFGvXr1033336cCBA/rHP/6h5s2bO5Wr7PGsii1btmjo0KG67LLL1L1791KnLDt16uToDRowYICCg4PVqVMnRUVFaffu3Zo7d65CQkL0wgsvXFQ9UA1qbP4T6rR169aZhIQEExgYaJo1a2bmzJlTahprySmXzz33nOnQoYMJDw83wcHBplWrVuYPf/iDycvLc5QpKCgwY8aMMZGRkcbHx8exv+JpzS+++GKpupQ1jbpevXrmwIEDpmfPniYkJMRER0ebqVOnOqYKFztx4oTp37+/CQkJMQ0bNjQPPfSQ2blzZ6l9llU3Y1xPBf36669NcnKyqV+/vgkJCTG33nqr+eKLL5zKFE+xLTn1uazp3RU5cuSIGTp0qImMjDQ2m800a9bMpKSkOE1pPXDggLnnnntMeHi4CQoKMh06dDDLli1z+fqLFy8u9RrF721Z5s6daxISEkxwcLBp0KCBadeunXnqqafMsWPHHGVKTrstKioyzz//vGncuLGx2Wzm+uuvN8uWLTPDhg0zjRs3dtr/F1984fjsXfi+l/z8GWNMfn6+mT59umnatKkJCAgw8fHxZtKkSeb8+fNO5Ro3buxyin/JelZGWdOoK3OMCwsLzfTp001sbKwJDg42t9xyi9m5c2epfZb3+Xj66aeNJNOiRQuX9XPVpiNHjpg77rjDhISEmEaNGpn/9//+n2P6e8nX+NOf/mQuv/xyY7PZzM0332y++uqrizqern53ylP8fpb1uPB39tVXXzUdOnQwERERxt/f38TGxprf/OY3Zt++fZV+PdQcH2NqeBQgAACAmzjBBwAALIcxMIDFnT59usJxA5GRkWVO04VnFF+qvizBwcEKCwurptrUPYWFhRXe/6t+/frMHLqEcAoJsLhp06Zp+vTp5ZY5dOiQY2o4vKOiKdzDhg1zeUNRVM7hw4crvFDl1KlTS900FXUXPTCAxQ0dOrTcS8FLv1xdFt5VfNf0ssTFxVVTTeqmmJiYCt/jklfWRt1GDwwAALAcBvECAADLqbOnkIqKinTs2DE1aNDAo5efBwAA3mOM0alTpxQXF1fuxTPrbIA5duyYx+8nAwAAqsd3331X6q72F6qzAaZBgwaSfnkDuJsoAADWYLfbFR8f7/g7XpY6G2CKTxuFhoYSYAAAsJiKhn8wiBcAAFgOAQYAAFgOAQYAAFiOWwEmNTVVN910kxo0aKCoqCj169dPe/fudSpzyy23yMfHx+nx8MMPO5U5evSo+vbtq5CQEEVFRenJJ59UQUGBU5m1a9fqhhtukM1mU4sWLbgENwAAcHArwKxbt04pKSnatGmT0tPTlZ+fr549e+rMmTNO5R588EH98MMPjseMGTMc6woLC9W3b1/l5eXpiy++0Pz58zVv3jxNmTLFUebQoUPq27evbr31Vm3fvl1jx47VyJEj9emnn15kcwEAQF1wUbcSOHHihKKiorRu3Tp17dpV0i89MNddd51mzpzpcptPPvlEt912m44dO6bo6GhJ0pw5czRhwgSdOHFCgYGBmjBhgpYvX66dO3c6ths4cKCys7OVlpZWqbrZ7XaFhYUpJyeHWUgAAFhEZf9+X9QYmJycHElSRESE0/IFCxaoUaNGuuaaazRp0iSdPXvWsS4jI0Pt2rVzhBdJSk5Olt1u165duxxlevTo4bTP5ORkZWRklFmX3Nxc2e12pwcAAKibqnwdmKKiIo0dO1Y333yzrrnmGsfyQYMGqXHjxoqLi9M333yjCRMmaO/evXr//fclSZmZmU7hRZLjeWZmZrll7Ha7zp07p+Dg4FL1SU1N1fTp06vaHAAAYCFVDjApKSnauXOnNmzY4LR81KhRjp/btWun2NhYde/eXQcOHFDz5s2rXtMKTJo0SePHj3c8L76SHwAAqHuqdApp9OjRWrZsmdasWVPufQokKTExUZK0f/9+SVJMTIyysrKcyhQ/j4mJKbdMaGioy94XSbLZbI6r7nL1XQAA6ja3AowxRqNHj9YHH3yg1atXq2nTphVus337dklSbGysJCkpKUk7duzQ8ePHHWXS09MVGhqqNm3aOMqsWrXKaT/p6elKSkpyp7oAAKCOcivApKSk6B//+IfeffddNWjQQJmZmcrMzNS5c+ckSQcOHNCzzz6rrVu36vDhw1q6dKmGDh2qrl276tprr5Uk9ezZU23atNGQIUP073//W59++qkmT56slJQU2Ww2SdLDDz+sgwcP6qmnntK3336r119/XYsWLdK4ceM83HwAAGBFbk2jLuvGSm+//baGDx+u7777Tr/5zW+0c+dOnTlzRvHx8brrrrs0efJkp1M6R44c0SOPPKK1a9eqXr16GjZsmF544QX5+/9vSM7atWs1btw47d69W1dccYV+//vfa/jw4ZVuGNOoAQCwnsr+/b6o68DUZgQYAACsp7J/v6s8CwmA9+SnbSi1LKBX5xqoCQDUTgQYoBZwFVgAAGXjbtQAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMBy/Gu6AgAqJz9tg9PzgF6da6gmAFDz6IEBAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWw72QgBpQ8r5GAAD30AMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsx7+mKwBAOpz9SallTcJ710BNAMAa6IEBAACW41aASU1N1U033aQGDRooKipK/fr10969e53KnD9/XikpKbrssstUv3599e/fX1lZWU5ljh49qr59+yokJERRUVF68sknVVBQ4FRm7dq1uuGGG2Sz2dSiRQvNmzevai0EAAB1jlsBZt26dUpJSdGmTZuUnp6u/Px89ezZU2fOnHGUGTdunD7++GMtXrxY69at07Fjx3T33Xc71hcWFqpv377Ky8vTF198ofnz52vevHmaMmWKo8yhQ4fUt29f3Xrrrdq+fbvGjh2rkSNH6tNPP/VAkwEAgNX5GGNMVTc+ceKEoqKitG7dOnXt2lU5OTmKjIzUu+++q3vuuUeS9O2336p169bKyMhQx44d9cknn+i2227TsWPHFB0dLUmaM2eOJkyYoBMnTigwMFATJkzQ8uXLtXPnTsdrDRw4UNnZ2UpLS3NZl9zcXOXm5jqe2+12xcfHKycnR6GhoVVtIuAV+WkbnJ5XZQxMQK/OHq0TANQGdrtdYWFhFf79vqgxMDk5OZKkiIgISdLWrVuVn5+vHj16OMq0atVKV155pTIyMiRJGRkZateunSO8SFJycrLsdrt27drlKHPhPorLFO/DldTUVIWFhTke8fHxF9M0AABQi1U5wBQVFWns2LG6+eabdc0110iSMjMzFRgYqPDwcKey0dHRyszMdJS5MLwUry9eV14Zu92uc+fOuazPpEmTlJOT43h89913VW0aUCsczv7E6QEA+J8qT6NOSUnRzp07tWHDhooLVwObzSabzVbT1QAAANWgSj0wo0eP1rJly7RmzRpdccUVjuUxMTHKy8tTdna2U/msrCzFxMQ4ypSclVT8vKIyoaGhCg4OrkqVAQBAHeJWgDHGaPTo0frggw+0evVqNW3a1Gl9QkKCAgICtGrVKseyvXv36ujRo0pKSpIkJSUlaceOHTp+/LijTHp6ukJDQ9WmTRtHmQv3UVymeB8AfhkIXPIBAJcKt04hpaSk6N1339VHH32kBg0aOMashIWFKTg4WGFhYRoxYoTGjx+viIgIhYaGasyYMUpKSlLHjh0lST179lSbNm00ZMgQzZgxQ5mZmZo8ebJSUlIcp4Aefvhhvfbaa3rqqaf029/+VqtXr9aiRYu0fPlyDzcfAABYkVs9MH/5y1+Uk5OjW265RbGxsY7HwoULHWVeeeUV3Xbbberfv7+6du2qmJgYvf/++471fn5+WrZsmfz8/JSUlKTf/OY3Gjp0qJ555hlHmaZNm2r58uVKT09X+/bt9ac//UlvvPGGkpOTPdBkAABgdRd1HZjarLLzyIGaUJnrwJRUmXsjcW0YAFZXLdeBAQAAqAkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDn+NV0BAJVzOPuTUsuahPeugZoAQM2jBwYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgO06gBL8tP21Bqmasp0QCAyqMHBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA7XgQHqkJLXnAno1bmGagIA3kUPDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBz/mq4AAO/JT9tQallAr841UBMA8Cx6YAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOUQYAAAgOVwKwHAwg5nf+L0vEl47xqqCQBUL7d7YNavX6/bb79dcXFx8vHx0Ycffui0fvjw4fLx8XF69OrVy6nMyZMnNXjwYIWGhio8PFwjRozQ6dOnncp888036tKli4KCghQfH68ZM2a43zoAAFAnuR1gzpw5o/bt22v27NlllunVq5d++OEHx+Of//yn0/rBgwdr165dSk9P17Jly7R+/XqNGjXKsd5ut6tnz55q3Lixtm7dqhdffFHTpk3T3Llz3a0uAACog9w+hdS7d2/17l1+N7XNZlNMTIzLdXv27FFaWpq+/PJL3XjjjZKkWbNmqU+fPnrppZcUFxenBQsWKC8vT2+99ZYCAwPVtm1bbd++XS+//LJT0LlQbm6ucnNzHc/tdru7TQMAABbhlUG8a9euVVRUlFq2bKlHHnlEP/30k2NdRkaGwsPDHeFFknr06CFfX19t3rzZUaZr164KDAx0lElOTtbevXv1888/u3zN1NRUhYWFOR7x8fHeaBoAAKgFPB5gevXqpXfeeUerVq3SH//4R61bt069e/dWYWGhJCkzM1NRUVFO2/j7+ysiIkKZmZmOMtHR0U5lip8Xlylp0qRJysnJcTy+++47TzcNAADUEh6fhTRw4EDHz+3atdO1116r5s2ba+3aterevbunX87BZrPJZrN5bf8AAKD28Pp1YJo1a6ZGjRpp//79kqSYmBgdP37cqUxBQYFOnjzpGDcTExOjrKwspzLFz8saWwMAAC4dXg8w33//vX766SfFxsZKkpKSkpSdna2tW7c6yqxevVpFRUVKTEx0lFm/fr3y8/MdZdLT09WyZUs1bNjQ21UGAAC1nNsB5vTp09q+fbu2b98uSTp06JC2b9+uo0eP6vTp03ryySe1adMmHT58WKtWrdKdd96pFi1aKDk5WZLUunVr9erVSw8++KC2bNmijRs3avTo0Ro4cKDi4uIkSYMGDVJgYKBGjBihXbt2aeHChXr11Vc1fvx4z7UcAABYltsB5quvvtL111+v66+/XpI0fvx4XX/99ZoyZYr8/Pz0zTff6I477tDVV1+tESNGKCEhQZ9//rnT+JQFCxaoVatW6t69u/r06aPOnTs7XeMlLCxMK1eu1KFDh5SQkKDHH39cU6ZMKXMKNQAAuLT4GGNMTVfCG+x2u8LCwpSTk6PQ0NCarg4uYflpG0otK3kLAE+pzK0EAnp19sprA4AnVPbvN/dCAjysZGDxVlgBgEsZd6MGAACWQw8McIkp2UPEKSUAVkQPDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwG8QJ1iKsp25W5NgwAWA09MAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHK4FxJwictP2+D0PKBX5xqqCQBUHj0wAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcggwAADAcrgXEnARSt5HCABQPeiBAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlsN1YIA67nD2J07Pm4T3rqGaAIDn0AMDAAAshx4YAE5cXV04oFfnGqgJAJSNHhgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5TKMGUKGSU6uZVg2gphFggEtMySvzSlydF4D1EGAAD3MVEAAAnsUYGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkM4gXc4OpOzQCA6kcPDAAAsBwCDAAAsBwCDAAAsBzGwABwm6uxQNxeAEB1ogcGAABYjtsBZv369br99tsVFxcnHx8fffjhh07rjTGaMmWKYmNjFRwcrB49emjfvn1OZU6ePKnBgwcrNDRU4eHhGjFihE6fPu1U5ptvvlGXLl0UFBSk+Ph4zZgxw/3WAQCAOsntAHPmzBm1b99es2fPdrl+xowZ+vOf/6w5c+Zo8+bNqlevnpKTk3X+/HlHmcGDB2vXrl1KT0/XsmXLtH79eo0aNcqx3m63q2fPnmrcuLG2bt2qF198UdOmTdPcuXOr0EQAAFDXuD0Gpnfv3urd2/Wda40xmjlzpiZPnqw777xTkvTOO+8oOjpaH374oQYOHKg9e/YoLS1NX375pW688UZJ0qxZs9SnTx+99NJLiouL04IFC5SXl6e33npLgYGBatu2rbZv366XX37ZKehcKDc3V7m5uY7ndrvd3aYBAACL8OgYmEOHDikzM1M9evRwLAsLC1NiYqIyMjIkSRkZGQoPD3eEF0nq0aOHfH19tXnzZkeZrl27KjAw0FEmOTlZe/fu1c8//+zytVNTUxUWFuZ4xMfHe7JpQJ12OPsTpwcA1HYeDTCZmZmSpOjoaKfl0dHRjnWZmZmKiopyWu/v76+IiAinMq72ceFrlDRp0iTl5OQ4Ht99993FNwgAANRKdWYatc1mk81mq+lqAACAauDRHpiYmBhJUlZWltPyrKwsx7qYmBgdP37caX1BQYFOnjzpVMbVPi58DQAAcOnyaIBp2rSpYmJitGrVKscyu92uzZs3KykpSZKUlJSk7Oxsbd261VFm9erVKioqUmJioqPM+vXrlZ+f7yiTnp6uli1bqmHDhp6sMgAPyU/b4PQAAG9yO8CcPn1a27dv1/bt2yX9MnB3+/btOnr0qHx8fDR27Fg999xzWrp0qXbs2KGhQ4cqLi5O/fr1kyS1bt1avXr10oMPPqgtW7Zo48aNGj16tAYOHKi4uDhJ0qBBgxQYGKgRI0Zo165dWrhwoV599VWNHz/eYw0HAADW5fYYmK+++kq33nqr43lxqBg2bJjmzZunp556SmfOnNGoUaOUnZ2tzp07Ky0tTUFBQY5tFixYoNGjR6t79+7y9fVV//799ec//9mxPiwsTCtXrlRKSooSEhLUqFEjTZkypcwp1AAA4NLiY4wxNV0Jb7Db7QoLC1NOTo5CQ0NrujqoIypzaqQuTENuEu76Wk/u4N5IAKqisn+/uRcSAACwHAIMAACwHAIMAACwnDpzITugJtSF8S4AYEUEGACluApmnhjYCwCewikkAABgOQQYAABgOQQYAABgOYyBAcrA/Xw8y9X7ycXuAFQVPTAAAMByCDAAAMByOIUEwCs4BQfAmwgwACql5LVhuC4MgJrEKSQAAGA59MAAqDElTzMxKwlAZdEDAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcr8QKoNVzdAJKr8wJwhQADwGO44SOA6sIpJAAAYDn0wABuKNnDAACoGfTAAAAAyyHAAAAAy+EUEoBareTMJGYlAZAIMICDqym8AIDaiQADoEoY0AygJjEGBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA6DeAFYHlOtgUsPPTAAAMBy6IEBYClcrweARA8MAACwIHpgAHiNq4vdNQnvXQM1AVDX0AMDAAAshx4YANWqZK8MPTIAqoIeGAAAYDn0wACoUYyTAVAV9MAAAADLIcAAAADL4RQSLllcEA0ArIseGAAAYDn0wABlcDW4FNbkqreNGz4C1kYPDAAAsBx6YADUOYxvAuo+emAAAIDlEGAAAIDlcAoJwCWp5GkmBvUC1kIPDAAAsBwCDAAAsBxOIQGodUpeg4ebOwIoiR4YAABgOR4PMNOmTZOPj4/To1WrVo7158+fV0pKii677DLVr19f/fv3V1ZWltM+jh49qr59+yokJERRUVF68sknVVBQ4OmqAgAAi/LKKaS2bdvqs88++9+L+P/vZcaNG6fly5dr8eLFCgsL0+jRo3X33Xdr48aNkqTCwkL17dtXMTEx+uKLL/TDDz9o6NChCggI0PPPP++N6gKo5Vzd1sHTp5W43QBgLV4JMP7+/oqJiSm1PCcnR2+++abeffdd/epXv5Ikvf3222rdurU2bdqkjh07auXKldq9e7c+++wzRUdH67rrrtOzzz6rCRMmaNq0aQoMDPRGlQHufQQAFuKVMTD79u1TXFycmjVrpsGDB+vo0aOSpK1btyo/P189evRwlG3VqpWuvPJKZWRkSJIyMjLUrl07RUdHO8okJyfLbrdr165dZb5mbm6u7Ha70wNA3XU4+xOnhzfkp21wegCoPTzeA5OYmKh58+apZcuW+uGHHzR9+nR16dJFO3fuVGZmpgIDAxUeHu60TXR0tDIzMyVJmZmZTuGleH3xurKkpqZq+vTpnm0M6gz++ABA3eLxANO79//OS1977bVKTExU48aNtWjRIgUHB3v65RwmTZqk8ePHO57b7XbFx8d77fUAAEDN8fp1YMLDw3X11Vdr//79+vWvf628vDxlZ2c79cJkZWU5xszExMRoy5YtTvsonqXkalxNMZvNJpvN5vkGALCE6hjoC6D28Pp1YE6fPq0DBw4oNjZWCQkJCggI0KpVqxzr9+7dq6NHjyopKUmSlJSUpB07duj48eOOMunp6QoNDVWbNm28XV0AAGABHu+BeeKJJ3T77bercePGOnbsmKZOnSo/Pz/df//9CgsL04gRIzR+/HhFREQoNDRUY8aMUVJSkjp27ChJ6tmzp9q0aaMhQ4ZoxowZyszM1OTJk5WSkkIPCwAAkOSFAPP999/r/vvv108//aTIyEh17txZmzZtUmRkpCTplVdeka+vr/r376/c3FwlJyfr9ddfd2zv5+enZcuW6ZFHHlFSUpLq1aunYcOG6ZlnnvF0VQHgonDtGKDm+BhjTE1XwhvsdrvCwsKUk5Oj0NDQmq4OalhlZiFxHZi6x9NjYEqGEwIM4HmV/fvNvZAAAIDlcDdqAHVWZXrVmKkEWBM9MAAAwHIIMAAAwHI4hQQAlcQtKYDagx4YAABgOfTAoE7iP2XUlJKfPVfTqitTBkD5CDAA4EWEacA7OIUEAAAshx4YXJK46i6KlfwscF0YwBrogQEAAJZDgAEAAJbDKSQAqACnmYDahx4YAABgOQQYAABgOZxCAoAa5upaMVzcDigfPTAAAMBy6IEBgFqI2w0A5SPAAMAFuMghYA2cQgIAAJZDDwwAuMlTvTTuXE+GU0qAMwIMAFgQM5dwqSPAAEAdQS8NLiWMgQEAAJZDDwwuCcwsgVW5+uxyLyaAAIM6wNVYAABA3cYpJAAAYDn0wACAxZQ8rcQpJVyKCDAAUIt4crwWU61RlxFgYDmMeQGcMdAXlyICDOocZhwBQN1HgAGASwgXu0NdQYABgBpSG3sLGTcDqyDAAMAlrDJjyui1QW1EgAEAXDRCDqobF7IDAACWQw8MANRBTK1GXUeAAYBLBFfwRV1CgIHl1caZHEBdxsUkURsQYADgElWZ00xVPRXFdGx4GwEGtR7/7QHVhx5NWAWzkAAAgOXQAwMAqBGV6V3ltBPKQg8MAACwHHpgYCmcnwesgSnb8DYCDADgolT2H4uqDMjnNBPKQoBBrcKMI6D2oycUtQEBBgBQ53GzybqHAAMAsDTCyaWJAAMAqBW8eWXgkgg91keAQY1izAtwaahq8KjKeBu+Vy4NBBgAQI1gMDAuBgEGtRpfcACqy4Gv/ur0/Mof2zo95zRT7UKAQbWhWxeAN9TkRfMYS1NzCDCoNehtAeAJnhro6wmu/nEj5HgGAQYAUOdV1EuTn7ZBRdlHnTcKb1uqDGoPAgwA4JJDj6/1EWDgEVXpJuULBEBdU5leGsbNeAYBBl5DdysAK6uusTSMk6kaAgzgJUUyOuR7UnafXIUam5oWRchXPu7txEi2U37yy/dVYUCRchsUyt1doHweOU64ZFSm59gTVw/mLtwVI8DAKy7100M7/DK1NGCPcnzPO5aFFQXpjvzWalcYU6l9BJ/0V/jRYPnn+TqWFQQWKfvKczoXUeDxOl+KPHGcgJIq8/3njanfl9qpKR9jjKnpSpRl9uzZevHFF5WZman27dtr1qxZ6tChQ6W2tdvtCgsLU05OjkJDQ71c00tPRf8dXMoBZodfpv4euO2XJxf+I/9/v2lD8q6v8I9j8El/XbY/5P928b+dmP/byU8tzhJiLpInjhPgKZ66rYK7Qag2hpzK/v2utT0wCxcu1Pjx4zVnzhwlJiZq5syZSk5O1t69exUVFVXT1atTLnasyqUcVkoqktHSgD2/PCl5FsJHkpGWBuxR28Losk9TGCn8aPD/beJcxkc+MjIKPxqscw1PcTqpijxynAAPqqnvUSuPv6m1PTCJiYm66aab9Nprr0mSioqKFB8frzFjxmjixIkVbk8PjGueGFhLYCnbAd+f9NegLRWWe+h8BzUvuszlOpvdT1Hf1q9wH8dbnVZuaKHbdYRnjhNgVRd7usrbAcfSPTB5eXnaunWrJk2a5Fjm6+urHj16KCMjw+U2ubm5ys3NdTzPycmR9MsbUVfkp7tu+4UCfp3kcpujOeleqROcZfqdUn5RxaEiM/eUogtdh5RCe4DsueddrrvQWXu+zvnnu11HeOY4AVa18+yHF7W9z9qvJEnNbvitB2pTWvHf7Yr6V2plgPnxxx9VWFio6Ohop+XR0dH69ttvXW6Tmpqq6dOnl1oeHx/vlToCF2O5vqnpKqASOE5AecZ5de+nTp1SWFhYmetrZYCpikmTJmn8+PGO50VFRTp58qQuu+wy+fh47hy23W5XfHy8vvvuuzp7aoo21g200frqevsk2lhXeLKNxhidOnVKcXFx5ZarlQGmUaNG8vPzU1ZWltPyrKwsxcS4nhVgs9lks9mcloWHh3urigoNDa2zH8RitLFuoI3WV9fbJ9HGusJTbSyv56WYb4UlakBgYKASEhK0atUqx7KioiKtWrVKSUlJ5WwJAAAuBbWyB0aSxo8fr2HDhunGG29Uhw4dNHPmTJ05c0YPPPBATVcNAADUsFobYAYMGKATJ05oypQpyszM1HXXXae0tLRSA3urm81m09SpU0udrqpLaGPdQButr663T6KNdUVNtLHWXgcGAACgLLVyDAwAAEB5CDAAAMByCDAAAMByCDAAAMByCDAAAMByCDCVcPLkSQ0ePFihoaEKDw/XiBEjdPr06Qq3y8jI0K9+9SvVq1dPoaGh6tq1q86dO1cNNXZfVdso/XLZ5969e8vHx0cffvihdyt6Edxt48mTJzVmzBi1bNlSwcHBuvLKK/XYY485bhRaG8yePVtNmjRRUFCQEhMTtWVL+XdYXrx4sVq1aqWgoCC1a9dOK1asqKaaVp07bfzb3/6mLl26qGHDhmrYsKF69OhR4XtS09w9hsXee+89+fj4qF+/ft6toAe428bs7GylpKQoNjZWNptNV199da3/rLrbxpkzZzq+W+Lj4zVu3DidP1/xTVxrwvr163X77bcrLi6u0t/za9eu1Q033CCbzaYWLVpo3rx5nq+YQYV69epl2rdvbzZt2mQ+//xz06JFC3P//feXu80XX3xhQkNDTWpqqtm5c6f59ttvzcKFC8358+erqdbuqUobi7388sumd+/eRpL54IMPvFvRi+BuG3fs2GHuvvtus3TpUrN//36zatUqc9VVV5n+/ftXY63L9t5775nAwEDz1ltvmV27dpkHH3zQhIeHm6ysLJflN27caPz8/MyMGTPM7t27zeTJk01AQIDZsWNHNde88txt46BBg8zs2bPNtm3bzJ49e8zw4cNNWFiY+f7776u55pXjbvuKHTp0yFx++eWmS5cu5s4776yeylaRu23Mzc01N954o+nTp4/ZsGGDOXTokFm7dq3Zvn17Nde88txt44IFC4zNZjMLFiwwhw4dMp9++qmJjY0148aNq+aaV86KFSvM008/bd5///1Kfc8fPHjQhISEmPHjx5vdu3ebWbNmGT8/P5OWlubRehFgKrB7924jyXz55ZeOZZ988onx8fEx//3vf8vcLjEx0UyePLk6qnjRqtpGY4zZtm2bufzyy80PP/xQqwPMxbTxQosWLTKBgYEmPz/fG9V0S4cOHUxKSorjeWFhoYmLizOpqakuy993332mb9++TssSExPNQw895NV6Xgx321hSQUGBadCggZk/f763qnhRqtK+goIC06lTJ/PGG2+YYcOG1foA424b//KXv5hmzZqZvLy86qriRXO3jSkpKeZXv/qV07Lx48ebm2++2av19ITKfM8/9dRTpm3btk7LBgwYYJKTkz1aF04hVSAjI0Ph4eG68cYbHct69OghX19fbd682eU2x48f1+bNmxUVFaVOnTopOjpa3bp104YNG6qr2m6pShsl6ezZsxo0aJBmz55d5k02a4uqtrGknJwchYaGyt+/Zi9inZeXp61bt6pHjx6OZb6+vurRo4cyMjJcbpORkeFUXpKSk5PLLF/TqtLGks6ePav8/HxFRER4q5pVVtX2PfPMM4qKitKIESOqo5oXpSptXLp0qZKSkpSSkqLo6Ghdc801ev7551VYWFhd1XZLVdrYqVMnbd261XGa6eDBg1qxYoX69OlTLXX2tur6rqm1txKoLTIzMxUVFeW0zN/fXxEREcrMzHS5zcGDByVJ06ZN00svvaTrrrtO77zzjrp3766dO3fqqquu8nq93VGVNkrSuHHj1KlTJ915553eruJFq2obL/Tjjz/q2Wef1ahRo7xRRbf8+OOPKiwsLHVrjejoaH377bcut8nMzHRZvrLtr25VaWNJEyZMUFxcXKkv09qgKu3bsGGD3nzzTW3fvr0aanjxqtLGgwcPavXq1Ro8eLBWrFih/fv369FHH1V+fr6mTp1aHdV2S1XaOGjQIP3444/q3LmzjDEqKCjQww8/rN/97nfVUWWvK+u7xm6369y5cwoODvbI61yyPTATJ06Uj49PuY/KfkmWVFRUJEl66KGH9MADD+j666/XK6+8opYtW+qtt97yZDPK5c02Ll26VKtXr9bMmTM9W2k3ebONF7Lb7erbt6/atGmjadOmXXzF4XUvvPCC3nvvPX3wwQcKCgqq6epctFOnTmnIkCH629/+pkaNGtV0dbymqKhIUVFRmjt3rhISEjRgwAA9/fTTmjNnTk1XzWPWrl2r559/Xq+//rq+/vprvf/++1q+fLmeffbZmq6apVyyPTCPP/64hg8fXm6ZZs2aKSYmRsePH3daXlBQoJMnT5Z52iQ2NlaS1KZNG6flrVu31tGjR6teaTd5s42rV6/WgQMHFB4e7rS8f//+6tKli9auXXsRNa88b7ax2KlTp9SrVy81aNBAH3zwgQICAi622hetUaNG8vPzU1ZWltPyrKysMtsTExPjVvmaVpU2FnvppZf0wgsv6LPPPtO1117rzWpWmbvtO3DggA4fPqzbb7/dsaz4nyV/f3/t3btXzZs3926l3VSVYxgbG6uAgAD5+fk5lrVu3VqZmZnKy8tTYGCgV+vsrqq08fe//72GDBmikSNHSpLatWunM2fOaNSoUXr66afl62vtvoWyvmtCQ0M91vsiXcIBJjIyUpGRkRWWS0pKUnZ2trZu3aqEhARJv/zxLioqUmJiosttmjRpori4OO3du9dp+X/+8x/17t374itfSd5s48SJEx2/fMXatWunV155xekL1tu82Ubpl56X5ORk2Ww2LV26tNb8Jx8YGKiEhAStWrXKMY22qKhIq1at0ujRo11uk5SUpFWrVmns2LGOZenp6UpKSqqGGruvKm2UpBkzZugPf/iDPv30U6cxT7WNu+1r1aqVduzY4bRs8uTJOnXqlF599VXFx8dXR7XdUpVjePPNN+vdd99VUVGR4w/5f/7zH8XGxta68CJVrY1nz54tFVKKA5upA/dXTkpKKjXt3SvfNR4dElxH9erVy1x//fVm8+bNZsOGDeaqq65ymn77/fffm5YtW5rNmzc7lr3yyismNDTULF682Ozbt89MnjzZBAUFmf3799dEEypUlTaWpFo8C8kY99uYk5NjEhMTTbt27cz+/fvNDz/84HgUFBTUVDMc3nvvPWOz2cy8efPM7t27zahRo0x4eLjJzMw0xhgzZMgQM3HiREf5jRs3Gn9/f/PSSy+ZPXv2mKlTp1piGrU7bXzhhRdMYGCgWbJkidPxOnXqVE01oVzutq8kK8xCcreNR48eNQ0aNDCjR482e/fuNcuWLTNRUVHmueeeq6kmVMjdNk6dOtU0aNDA/POf/zQHDx40K1euNM2bNzf33XdfTTWhXKdOnTLbtm0z27ZtM5LMyy+/bLZt22aOHDlijDFm4sSJZsiQIY7yxdOon3zySbNnzx4ze/ZsplHXlJ9++sncf//9pn79+iY0NNQ88MADTl+Ihw4dMpLMmjVrnLZLTU01V1xxhQkJCTFJSUnm888/r+aaV15V23ih2h5g3G3jmjVrjCSXj0OHDtVMI0qYNWuWufLKK01gYKDp0KGD2bRpk2Ndt27dzLBhw5zKL1q0yFx99dUmMDDQtG3b1ixfvryaa+w+d9rYuHFjl8dr6tSp1V/xSnL3GF7ICgHGGPfb+MUXX5jExERjs9lMs2bNzB/+8Ida8U9DedxpY35+vpk2bZpp3ry5CQoKMvHx8ebRRx81P//8c/VXvBLK+i4sbtOwYcNMt27dSm1z3XXXmcDAQNOsWTPz9ttve7xePsbUgf4qAABwSbH2SCEAAHBJIsAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADL+f+9K4kOPOuypwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPjNJREFUeJzt3Xl4VNXh//FPEjKTBEgCkhUjq6yiaJQQZbNQAkQqCqJCBSyIS8ACCoJSFrXGolUsYil1AS1Ulq8iAkYiCIgEUITKJrIE0EICismwZj2/P/xlymSBTMgkucn79TzzwJx77r3nzEwmn5x77r1exhgjAAAAC/Gu7AYAAAC4iwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwCDCjVt2jR5eXk5nzdu3FjDhg3z+H4PHz4sLy8vzZs3z1k2bNgw1alTx+P7LuDl5aVp06ZV2P6srlu3burWrVu5brPw56+yeOJzX3ib69atk5eXl9atW+f2tkr72l/JPtzBzw6KQ4CB5axatarKfplV5bbVFOfOndO0adM8/ksVVVvjxo3l5eVV5PHII48UqZuRkaGRI0cqJCREtWvX1u23365vvvmmEloNd9Sq7AagZtu3b5+8vd3L0atWrdLs2bPdCgqNGjXS+fPn5evr62YL3XOptp0/f161avEj52nnzp3T9OnTJanIKMLkyZM1ceLESmiVq7J87t3VpUsXnT9/Xjabze11V69e7YEWVbz27dvriSeecClr0aKFy/P8/HzFx8frP//5j8aPH68GDRrojTfeULdu3bRt2zZde+21FdlkuIFvU1Qqu93u0e3n5uYqPz9fNptNfn5+Ht3X5VT2/ivChQsXZLPZiv3lfPbsWdWuXbsSWvU/tWrVqhIh0tOfe0ny9vYu82euLKGnKmrYsKF+//vfX7LO0qVLtWnTJi1ZskQDBgyQJA0cOFAtWrTQ1KlTtXDhwopoKsqAQ0jwmI0bN+qWW26Rn5+fmjVrpn/84x9F6hQ+bp+Tk6Pp06fr2muvlZ+fn6666ip16tRJycnJkn6dtzJ79mxJchkWlv43z+Xll1/WzJkz1axZM9ntdu3Zs6fYOTAFDh06pLi4ONWuXVuRkZF69tlndfFN2ks6zl94m5dqW0FZ4ZGZ7du3q3fv3goMDFSdOnXUvXt3bd682aXOvHnz5OXlpS+//FLjxo1zDnPfddddOnnyZMlvQAn++9//avjw4YqMjJTdbleTJk306KOPKjs72+U1ueeee1S/fn0FBASoY8eOWrlypct2Cl6X999/X5MnT1bDhg0VEBAgh8PhnF908OBB9enTR3Xr1tXgwYMl/foX78yZM9W2bVv5+fkpLCxMDz/8sH755ZdLtjs7O1tTpkxRdHS0goKCVLt2bXXu3Fmff/65s87hw4cVEhIiSZo+fbrzPSh43YubA5Obm6vnnnvO+Xlp3Lixnn76aWVlZbnUa9y4se644w5t3LhRHTp0kJ+fn5o2bap3333XvTdART/37rzHxhg9//zzuvrqqxUQEKDbb79du3fvLrKPwp/bUaNGqU6dOjp37lyRuvfff7/Cw8OVl5cnqfg5MD/++KP69eun2rVrKzQ0VGPHji3yGhXXtwKFt1ma97M8ZGdn6+zZsyUuX7p0qcLCwnT33Xc7y0JCQjRw4EB99NFHxfYRVUPl/ymCamnnzp3q2bOnQkJCNG3aNOXm5mrq1KkKCwu75HrTpk1TYmKiRowYoQ4dOsjhcOjrr7/WN998o9/+9rd6+OGHdezYMSUnJ+u9994rdhvvvPOOLly4oJEjR8put6t+/frKz88vtm5eXp569eqljh07asaMGUpKStLUqVOVm5urZ5991q0+l6ZtF9u9e7c6d+6swMBATZgwQb6+vvrHP/6hbt26af369YqJiXGpP3r0aNWrV09Tp07V4cOHNXPmTI0aNUqLFi0qdRuPHTumDh06OI/5t2rVSv/973+1dOlSnTt3TjabTenp6br11lt17tw5Pf7447rqqqs0f/58/e53v9PSpUt11113uWzzueeek81m05NPPqmsrCznX++5ubmKi4tTp06d9PLLLysgIMD5Os2bN08PPvigHn/8caWmpur111/X9u3b9eWXX5Z4mM/hcOjNN9/U/fffr4ceekinT5/WW2+9pbi4OG3dulXt27dXSEiI/v73v+vRRx/VXXfd5fyldP3115f4mowYMULz58/XgAED9MQTT2jLli1KTEzU3r179eGHH7rUPXDggAYMGKDhw4dr6NChevvttzVs2DBFR0erbdu2pX4fSlKa93jKlCl6/vnn1adPH/Xp00fffPONevbs6RJAi3Pvvfdq9uzZWrlype655x5n+blz5/Txxx9r2LBh8vHxKXbd8+fPq3v37jp69Kgef/xxRUZG6r333tPatWvL3NfSvJ9Xau3atQoICFBeXp4aNWqksWPH6o9//KNLne3bt+umm24qMmrYoUMHzZ07V99//73atWt3xW2BBxjAA/r162f8/PzMkSNHnGV79uwxPj4+5uKPXaNGjczQoUOdz2+44QYTHx9/yW0nJCSY4j66qampRpIJDAw0J06cKHbZO++84ywbOnSokWRGjx7tLMvPzzfx8fHGZrOZkydPGmOM+fzzz40k8/nnn192myW1zRhjJJmpU6c6n/fr18/YbDZz8OBBZ9mxY8dM3bp1TZcuXZxl77zzjpFkevToYfLz853lY8eONT4+PiYjI6PY/RVnyJAhxtvb23z11VdFlhVse8yYMUaS+eKLL5zLTp8+bZo0aWIaN25s8vLyjDH/e12aNm1qzp0757Ktgtd24sSJLuVffPGFkWQWLFjgUp6UlFSkvGvXrqZr167O57m5uSYrK8tlvV9++cWEhYWZP/zhD86ykydPFnmtC0ydOtXl/dmxY4eRZEaMGOFS78knnzSSzNq1a51ljRo1MpLMhg0bnGUnTpwwdrvdPPHEE0X2dSmFP/elfY9PnDhhbDabiY+Pd6n39NNPG0ku2yz8uc3PzzcNGzY0/fv3d2nL4sWLi/Sr8Gs/c+ZMI8ksXrzYWXb27FnTvHnzIj8bhftW0jZL+34aU/RnpzT69u1r/vKXv5hly5aZt956y3Tu3NlIMhMmTHCpV7t27SL7M8aYlStXGkkmKSnJrf2i4nAICeUuLy9Pn376qfr166drrrnGWd66dWvFxcVdct3g4GDt3r1b+/fvL/P++/fv7zyMUBqjRo1y/t/Ly0ujRo1Sdna2PvvsszK34XLy8vK0evVq9evXT02bNnWWR0REaNCgQdq4caMcDofLOiNHjnQ5/NG5c2fl5eXpyJEjpdpnfn6+li1bpr59++rmm28usrxg26tWrVKHDh3UqVMn57I6depo5MiROnz4sPbs2eOy3tChQ+Xv71/sPh999FGX50uWLFFQUJB++9vf6qeffnI+oqOjVadOnUsePvDx8XGO7uTn5+vUqVPKzc3VzTffXOYzRlatWiVJGjdunEt5wcTPwofN2rRpo86dOzufh4SEqGXLljp06FCZ9l/Y5d7jzz77TNnZ2Ro9erRLvTFjxlx2215eXrrnnnu0atUqnTlzxlm+aNEiNWzY0OX9LmzVqlWKiIhwzhGRpICAAI0cOdKd7rnwxPt5seXLl2vChAm688479Yc//EHr169XXFycXnnlFf3444/OeufPny92TlLB/KHz589fcVvgGQQYlLuTJ0/q/Pnzxc7eb9my5SXXffbZZ5WRkaEWLVqoXbt2Gj9+vL799lu39t+kSZNS1/X29nYJENL/zlI4fPiwW/t1x8mTJ3Xu3LliX4/WrVsrPz9fP/zwg0v5xWFQkurVqydJl507cvE+HQ6HrrvuukvWO3LkSIntKlh+sZJe71q1aunqq692Kdu/f78yMzMVGhqqkJAQl8eZM2d04sSJS7Zt/vz5uv76653zo0JCQrRy5UplZmZecr2SHDlyRN7e3mrevLlLeXh4uIKDg4v0tfB7IP36PpT2Pbicy73HBe0p/LMVEhLirHsp9957r86fP6/ly5dLks6cOaNVq1bpnnvuueT1cY4cOaLmzZsXqXO5n+fLKe/381K8vLw0duxY5ebmusxn8/f3L3aey4ULF5zLUTUxBwZVSpcuXXTw4EF99NFHWr16td588029+uqrmjNnjkaMGFGqbZT3F05JX+wFEx4rSknzE8xFE44rQ0mvt91uLzKvID8/X6GhoVqwYEGx61xq5Oxf//qXhg0bpn79+mn8+PEKDQ2Vj4+PEhMTdfDgwbJ3QCW/x4V5+j3w9PY7duyoxo0ba/HixRo0aJA+/vhjnT9/Xvfee2+5bF+69M/Lxf3z5PtZkqioKEnSqVOnnGURERE6fvx4kboFZZGRkR5pC64cAQblLiQkRP7+/sUeBtq3b99l169fv74efPBBPfjggzpz5oy6dOmiadOmOQNMeV5JNT8/X4cOHXK5NsT3338v6dezKaT//RWckZHhsm5xh25K27aQkBAFBAQU+3p899138vb2dn7ZlpeQkBAFBgZq165dl6zXqFGjEttVsLysmjVrps8++0y33Xab20Fz6dKlatq0qT744AOX13nq1Kku9dz5fDRq1Ej5+fnav3+/c4RJktLT05WRkXFFffWEgvbs37/fZeTw5MmTpR4FGjhwoF577TU5HA4tWrRIjRs3VseOHS+73127dskY4/L6Fvc5qVevXpGfFenXn5eL21za97M8FRzquzgot2/fXl988YXy8/NdAveWLVsUEBBQ5LoxqDo4hIRy5+Pjo7i4OC1btkxHjx51lu/du1effvrpJdf9+eefXZ7XqVNHzZs3dxniLbiWSHFfkmXx+uuvO/9vjNHrr78uX19fde/eXdKvX94+Pj7asGGDy3pvvPFGkW2Vtm0+Pj7q2bOnPvroI5dDVenp6Vq4cKE6deqkwMDAMvaoeN7e3urXr58+/vhjff3110WWF/yV36dPH23dulUpKSnOZWfPntXcuXPVuHFjtWnTpsxtGDhwoPLy8vTcc88VWZabm3vJ163gr/eLRyO2bNni0k5JzrOdSvP56NOnjyRp5syZLuWvvPKKJCk+Pv6y26hIPXr0kK+vr2bNmuXyOhRu/6Xce++9ysrK0vz585WUlKSBAwdedp0+ffro2LFjWrp0qbPs3Llzmjt3bpG6zZo10+bNm13OilqxYkWRQ6KlfT/L4tSpU0VGSHNycvTiiy/KZrPp9ttvd5YPGDBA6enp+uCDD5xlP/30k5YsWaK+fftWyDV7UDaMwMAjpk+frqSkJHXu3FmPPfaYcnNzNWvWLLVt2/aSc1ratGmjbt26KTo6WvXr19fXX3+tpUuXuky0jY6OliQ9/vjjiouLk4+Pj+67774ytdPPz09JSUkaOnSoYmJi9Mknn2jlypV6+umnnX+lBQUF6Z577tGsWbPk5eWlZs2aacWKFcXO13Cnbc8//7ySk5PVqVMnPfbYY6pVq5b+8Y9/KCsrSzNmzChTfy7nhRde0OrVq9W1a1eNHDlSrVu31vHjx7VkyRJt3LhRwcHBmjhxov7973+rd+/eevzxx1W/fn3Nnz9fqamp+r//+78ruoJs165d9fDDDysxMVE7duxQz5495evrq/3792vJkiV67bXXXCaKXuyOO+7QBx98oLvuukvx8fFKTU3VnDlz1KZNG5dJqf7+/mrTpo0WLVqkFi1aqH79+rruuuuKnftzww03aOjQoZo7d64yMjLUtWtXbd26VfPnz1e/fv1cftFVBSEhIXryySeVmJioO+64Q3369NH27dv1ySefqEGDBqXaxk033aTmzZvrmWeeUVZWVqkOHz300EN6/fXXNWTIEG3btk0RERF67733nGHxYiNGjNDSpUvVq1cvDRw4UAcPHtS//vUvNWvWzKVead/Psli+fLmef/55DRgwQE2aNNGpU6e0cOFC7dq1Sy+88ILCw8OddQcMGKCOHTvqwQcf1J49e5xX4s3Ly3Ne0RlVVKWd/4Rqb/369SY6OtrYbDbTtGlTM2fOnCKnsRY+5fL55583HTp0MMHBwcbf39+0atXK/PnPfzbZ2dnOOrm5uWb06NEmJCTEeHl5ObdXcFrzSy+9VKQtJZ1GXbt2bXPw4EHTs2dPExAQYMLCwszUqVOdpwoXOHnypOnfv78JCAgw9erVMw8//LDZtWtXkW2W1DZjij8V9JtvvjFxcXGmTp06JiAgwNx+++1m06ZNLnUKTrEtfOpzSad3X86RI0fMkCFDTEhIiLHb7aZp06YmISHB5ZTWgwcPmgEDBpjg4GDj5+dnOnToYFasWFHs/pcsWVJkHwWvbUnmzp1roqOjjb+/v6lbt65p166dmTBhgjl27JizTuHTbvPz880LL7xgGjVqZOx2u7nxxhvNihUrzNChQ02jRo1ctr9p0ybnZ+/i173w588YY3Jycsz06dNNkyZNjK+vr4mKijKTJk0yFy5ccKnXqFGjYk/xL9zO0ijpNOrSvMd5eXlm+vTpJiIiwvj7+5tu3bqZXbt2FdnmpT4fzzzzjJFkmjdvXmz7iuvTkSNHzO9+9zsTEBBgGjRoYP74xz86T38vvI+//vWvpmHDhsZut5vbbrvNfP3111f0fhb3s3MpX3/9tenbt69p2LChsdlspk6dOqZTp04up4Ff7NSpU2b48OHmqquuMgEBAaZr167FXmoAVYuXMZU8AxAAAMBNzIEBAACWwxwYoBo4c+bMZecNhISElHiaLspHWlraJZf7+/srKCioglpT/eTl5V32/l916tRRnTp1KqhFqEwcQgKqgWnTpl12wmFqaqrz1HB4xuVO4R46dGixNxRF6Rw+fPiyF6qcOnVqkZumonpiBAaoBoYMGXLJS8FLcjnzAp5RcNf0knBRtCsTHh5+2de48JW1UX0xAgMAACyHSbwAAMByqu0hpPz8fB07dkx169Yt10vPAwAAzzHG6PTp04qMjLzkhTOrbYA5duxYud9LBgAAVIwffvihyB3tL1ZtA0zdunUl/foClPc9ZQAAgGc4HA5FRUU5f4+XpNoGmILDRoGBgQQYAAAs5nLTP5jECwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALKdWZTcAgJSTtLFImW+vTpXQEgCwBkZgAACA5bgVYBITE3XLLbeobt26Cg0NVb9+/bRv3z6XOt26dZOXl5fL45FHHnGpc/ToUcXHxysgIEChoaEaP368cnNzXeqsW7dON910k+x2u5o3b6558+aVrYcAAKDacSvArF+/XgkJCdq8ebOSk5OVk5Ojnj176uzZsy71HnroIR0/ftz5mDFjhnNZXl6e4uPjlZ2drU2bNmn+/PmaN2+epkyZ4qyTmpqq+Ph43X777dqxY4fGjBmjESNG6NNPP73C7gIAgOrAyxhjyrryyZMnFRoaqvXr16tLly6Sfh2Bad++vWbOnFnsOp988onuuOMOHTt2TGFhYZKkOXPm6KmnntLJkydls9n01FNPaeXKldq1a5dzvfvuu08ZGRlKSkoqVdscDoeCgoKUmZmpwMDAsnYRqBDMgQGAX5X29/cVzYHJzMyUJNWvX9+lfMGCBWrQoIGuu+46TZo0SefOnXMuS0lJUbt27ZzhRZLi4uLkcDi0e/duZ50ePXq4bDMuLk4pKSkltiUrK0sOh8PlAQAAqqcyn4WUn5+vMWPG6LbbbtN1113nLB80aJAaNWqkyMhIffvtt3rqqae0b98+ffDBB5KktLQ0l/Aiyfk8LS3tknUcDofOnz8vf3//Iu1JTEzU9OnTy9odAABgIWUOMAkJCdq1a5c2bnQd+h45cqTz/+3atVNERIS6d++ugwcPqlmzZmVv6WVMmjRJ48aNcz53OByKiory2P4AAEDlKVOAGTVqlFasWKENGzbo6quvvmTdmJgYSdKBAwfUrFkzhYeHa+vWrS510tPTJUnh4eHOfwvKLq4TGBhY7OiLJNntdtnt9rJ0B6hwxc15AQCUnltzYIwxGjVqlD788EOtXbtWTZo0uew6O3bskCRFRERIkmJjY7Vz506dOHHCWSc5OVmBgYFq06aNs86aNWtctpOcnKzY2Fh3mgsAAKoptwJMQkKC/vWvf2nhwoWqW7eu0tLSlJaWpvPnz0uSDh48qOeee07btm3T4cOHtXz5cg0ZMkRdunTR9ddfL0nq2bOn2rRpowceeED/+c9/9Omnn2ry5MlKSEhwjqA88sgjOnTokCZMmKDvvvtOb7zxhhYvXqyxY8eWc/cBAIAVuXUatZeXV7Hl77zzjoYNG6YffvhBv//977Vr1y6dPXtWUVFRuuuuuzR58mSXU6GOHDmiRx99VOvWrVPt2rU1dOhQvfjii6pV639HtNatW6exY8dqz549uvrqq/WnP/1Jw4YNK3XHOI0aVVlpDiFxGjWAmqi0v7+v6DowVRkBBlUZAQYAilch14EBAACoDAQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgObUquwEAipeTtNHluW+vTpXUEgCoehiBAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAlkOAAQAAllOrshsAVHc5SRsruwkAUO0wAgMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHC9kBVcDhjE+KlDUO7l0JLQEAa2AEBgAAWA4BBgAAWA6HkACLKO6eSr69OlVCSwCg8rk1ApOYmKhbbrlFdevWVWhoqPr166d9+/a51Llw4YISEhJ01VVXqU6dOurfv7/S09Nd6hw9elTx8fEKCAhQaGioxo8fr9zcXJc669at00033SS73a7mzZtr3rx5ZeshAACodtwKMOvXr1dCQoI2b96s5ORk5eTkqGfPnjp79qyzztixY/Xxxx9ryZIlWr9+vY4dO6a7777buTwvL0/x8fHKzs7Wpk2bNH/+fM2bN09Tpkxx1klNTVV8fLxuv/127dixQ2PGjNGIESP06aeflkOXAQCA1XkZY0xZVz558qRCQ0O1fv16denSRZmZmQoJCdHChQs1YMAASdJ3332n1q1bKyUlRR07dtQnn3yiO+64Q8eOHVNYWJgkac6cOXrqqad08uRJ2Ww2PfXUU1q5cqV27drl3Nd9992njIwMJSUllaptDodDQUFByszMVGBgYFm7CFyx4g79FFbWs5A4hASguint7+8rmsSbmZkpSapfv74kadu2bcrJyVGPHj2cdVq1aqVrrrlGKSkpkqSUlBS1a9fOGV4kKS4uTg6HQ7t373bWuXgbBXUKtlGcrKwsORwOlwcAAKieyhxg8vPzNWbMGN1222267rrrJElpaWmy2WwKDg52qRsWFqa0tDRnnYvDS8HygmWXquNwOHT+/Pli25OYmKigoCDnIyoqqqxdAwAAVVyZA0xCQoJ27dql999/vzzbU2aTJk1SZmam8/HDDz9UdpMAAICHlOk06lGjRmnFihXasGGDrr76amd5eHi4srOzlZGR4TIKk56ervDwcGedrVu3umyv4Cyli+sUPnMpPT1dgYGB8vf3L7ZNdrtddru9LN0BKlxxc14AAKXn1giMMUajRo3Shx9+qLVr16pJkyYuy6Ojo+Xr66s1a9Y4y/bt26ejR48qNjZWkhQbG6udO3fqxIkTzjrJyckKDAxUmzZtnHUu3kZBnYJtAACAms2tEZiEhAQtXLhQH330kerWreucsxIUFCR/f38FBQVp+PDhGjdunOrXr6/AwECNHj1asbGx6tixoySpZ8+eatOmjR544AHNmDFDaWlpmjx5shISEpwjKI888ohef/11TZgwQX/4wx+0du1aLV68WCtXrizn7gMAACtyawTm73//uzIzM9WtWzdFREQ4H4sWLXLWefXVV3XHHXeof//+6tKli8LDw/XBBx84l/v4+GjFihXy8fFRbGysfv/732vIkCF69tlnnXWaNGmilStXKjk5WTfccIP++te/6s0331RcXFw5dBkAAFjdFV0HpirjOjCoKoq7Dkxp5sBwHRgANVGFXAcGAACgMhBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5dSq7AYAKF7hO1aX5u7UAFBTMAIDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwvZAeUsJ2ljZTcBAKo9RmAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlcB0YwMIKX3PGt1enSmoJAFQsRmAAAIDlEGAAAIDlcAgJ8LDDGZ9UdhMAoNphBAYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFhOrcpuAIDyk5O0sUiZb69OldASAPAsRmAAAIDlEGAAAIDlEGAAAIDlMAcGsIjDGZ8UKWsc3LsSWgIAlY8RGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDluB5gNGzaob9++ioyMlJeXl5YtW+ayfNiwYfLy8nJ59OrVy6XOqVOnNHjwYAUGBio4OFjDhw/XmTNnXOp8++236ty5s/z8/BQVFaUZM2a43zsAAFAtuR1gzp49qxtuuEGzZ88usU6vXr10/Phx5+Pf//63y/LBgwdr9+7dSk5O1ooVK7RhwwaNHDnSudzhcKhnz55q1KiRtm3bppdeeknTpk3T3Llz3W0uAACohty+Dkzv3r3Vu/elrz1ht9sVHh5e7LK9e/cqKSlJX331lW6++WZJ0qxZs9SnTx+9/PLLioyM1IIFC5Sdna23335bNptNbdu21Y4dO/TKK6+4BB0AAFAzeWQOzLp16xQaGqqWLVvq0Ucf1c8//+xclpKSouDgYGd4kaQePXrI29tbW7Zscdbp0qWLbDabs05cXJz27dunX375pdh9ZmVlyeFwuDwAAED1VO4BplevXnr33Xe1Zs0a/eUvf9H69evVu3dv5eXlSZLS0tIUGhrqsk6tWrVUv359paWlOeuEhYW51Cl4XlCnsMTERAUFBTkfUVFR5d01AABQRZT7rQTuu+8+5//btWun66+/Xs2aNdO6devUvXv38t6d06RJkzRu3Djnc4fDQYgBAKCa8vhp1E2bNlWDBg104MABSVJ4eLhOnDjhUic3N1enTp1yzpsJDw9Xenq6S52C5yXNrbHb7QoMDHR5AACA6snjAebHH3/Uzz//rIiICElSbGysMjIytG3bNmedtWvXKj8/XzExMc46GzZsUE5OjrNOcnKyWrZsqXr16nm6yQAAoIpzO8CcOXNGO3bs0I4dOyRJqamp2rFjh44ePaozZ85o/Pjx2rx5sw4fPqw1a9bozjvvVPPmzRUXFydJat26tXr16qWHHnpIW7du1ZdffqlRo0bpvvvuU2RkpCRp0KBBstlsGj58uHbv3q1FixbptddeczlEBAAAai63A8zXX3+tG2+8UTfeeKMkady4cbrxxhs1ZcoU+fj46Ntvv9Xvfvc7tWjRQsOHD1d0dLS++OIL2e125zYWLFigVq1aqXv37urTp486derkco2XoKAgrV69WqmpqYqOjtYTTzyhKVOmcAo1AACQJHkZY0xlN8ITHA6HgoKClJmZyXwYVKicpI0uzw9nfOKxfTUOvvQ1mSTJt1cnj+0fAMpbaX9/l/tZSAAqTuFwVJpAAwDVATdzBAAAlkOAAQAAlsMhJKCaKzwnhzkxAKoDRmAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlcBYScAUKn+EDAKgYjMAAAADLIcAAAADL4RASUM48efNGAMCvGIEBAACWQ4ABAACWQ4ABAACWwxwYoIYp7tRvbvAIwGoYgQEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZDgAEAAJZTq7IbAFhJTtLGym4CAECMwAAAAAsiwAAAAMvhEBKAIofGfHt1qqSWAEDpEGCAauRwxidFyhoH966ElgCAZ3EICQAAWA4BBgAAWA4BBgAAWA4BBgAAWA6TeIFqrvDEXib1AqgOGIEBAACWwwgMgCKKu2UC14YBUJUwAgMAACyHAAMAACyHAAMAACyHOTAASoX7JQGoShiBAQAAlkOAAQAAlkOAAQAAlkOAAQAAlsMkXqAExV3MDQBQNRBggCtQ+D5DAICKwSEkAABgOW4HmA0bNqhv376KjIyUl5eXli1b5rLcGKMpU6YoIiJC/v7+6tGjh/bv3+9S59SpUxo8eLACAwMVHBys4cOH68yZMy51vv32W3Xu3Fl+fn6KiorSjBkz3O8dAAColtwOMGfPntUNN9yg2bNnF7t8xowZ+tvf/qY5c+Zoy5Ytql27tuLi4nThwgVnncGDB2v37t1KTk7WihUrtGHDBo0cOdK53OFwqGfPnmrUqJG2bduml156SdOmTdPcuXPL0EUAFzuc8UmRBwBYjdtzYHr37q3evXsXu8wYo5kzZ2ry5Mm68847JUnvvvuuwsLCtGzZMt13333au3evkpKS9NVXX+nmm2+WJM2aNUt9+vTRyy+/rMjISC1YsEDZ2dl6++23ZbPZ1LZtW+3YsUOvvPKKS9ABAAA1U7nOgUlNTVVaWpp69OjhLAsKClJMTIxSUlIkSSkpKQoODnaGF0nq0aOHvL29tWXLFmedLl26yGazOevExcVp3759+uWXX4rdd1ZWlhwOh8sDAABUT+UaYNLS0iRJYWFhLuVhYWHOZWlpaQoNDXVZXqtWLdWvX9+lTnHbuHgfhSUmJiooKMj5iIqKuvIOAQCAKqnanEY9adIkjRs3zvnc4XAQYgAPKu46OdzgEUBFKdcRmPDwcElSenq6S3l6erpzWXh4uE6cOOGyPDc3V6dOnXKpU9w2Lt5HYXa7XYGBgS4PAABQPZVrgGnSpInCw8O1Zs0aZ5nD4dCWLVsUGxsrSYqNjVVGRoa2bdvmrLN27Vrl5+crJibGWWfDhg3Kyclx1klOTlbLli1Vr1698mwyAACwILcDzJkzZ7Rjxw7t2LFD0q8Td3fs2KGjR4/Ky8tLY8aM0fPPP6/ly5dr586dGjJkiCIjI9WvXz9JUuvWrdWrVy899NBD2rp1q7788kuNGjVK9913nyIjIyVJgwYNks1m0/Dhw7V7924tWrRIr732msshIgAAUHO5PQfm66+/1u233+58XhAqhg4dqnnz5mnChAk6e/asRo4cqYyMDHXq1ElJSUny8/NzrrNgwQKNGjVK3bt3l7e3t/r376+//e1vzuVBQUFavXq1EhISFB0drQYNGmjKlCmcQg0AACRJXsYYU9mN8ASHw6GgoCBlZmYyHwZlUpqbOVaXi8A1Di7+2k7uYhIvgCtV2t/f3AsJAABYDgEGAABYDgEGAABYDgEGAABYTrW5Ei+Asis8Gbm8JvUCgKcwAgMAACyHAAMAACyHQ0iAG6rLdV8AwOoIMAA8hjtWA/AUDiEBAADLYQQG+P9Kc+sAAEDVQIABUG4IgQAqCoeQAACA5RBgAACA5RBgAACA5RBgAACA5TCJF0ARxV2wr7zuj1R4oi/XhQFQFozAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy+E0agCVitOqAZQFAQZAqRS+Nkx5XRcGAMqCQ0gAAMByCDAAAMByOIQEoEopPCdGYl4MgKIIMADKxJP3SwKAy+EQEgAAsBxGYIASFDfCAACoGhiBAQAAlkOAAQAAlkOAAQAAlsMcGABVHrcbAFAYIzAAAMByGIFBjVTcxdJw5bhfEoCKwggMAACwHEZgAFgOtxsAwAgMAACwHAIMAACwHA4hAfAYbvgIwFMYgQEAAJbDCAyACsWp1gDKAyMwAADAcggwAADAcggwAADAcggwAADAcpjEC6Ba4I7VQM3CCAwAALAcRmCA/6+4i67Bukpzx3FGaQDrIsCgRijNLzMAgHVwCAkAAFgOAQYAAFgOh5AAVCpu+AigLBiBAQAAlkOAAQAAlkOAAQAAllPuAWbatGny8vJyebRq1cq5/MKFC0pISNBVV12lOnXqqH///kpPT3fZxtGjRxUfH6+AgACFhoZq/Pjxys3NLe+mArCIwxmfFHkAqNk8Mom3bdu2+uyzz/63k1r/283YsWO1cuVKLVmyREFBQRo1apTuvvtuffnll5KkvLw8xcfHKzw8XJs2bdLx48c1ZMgQ+fr66oUXXvBEcwHUUMVdH4iL2wHW4JEAU6tWLYWHhxcpz8zM1FtvvaWFCxfqN7/5jSTpnXfeUevWrbV582Z17NhRq1ev1p49e/TZZ58pLCxM7du313PPPaennnpK06ZNk81m80STAQCAhXhkDsz+/fsVGRmppk2bavDgwTp69Kgkadu2bcrJyVGPHj2cdVu1aqVrrrlGKSkpkqSUlBS1a9dOYWFhzjpxcXFyOBzavXt3ifvMysqSw+FweQAAgOqp3EdgYmJiNG/ePLVs2VLHjx/X9OnT1blzZ+3atUtpaWmy2WwKDg52WScsLExpaWmSpLS0NJfwUrC8YFlJEhMTNX369PLtDIAqq/A8GK4dA9Qs5R5gevf+35fI9ddfr5iYGDVq1EiLFy+Wv79/ee/OadKkSRo3bpzzucPhUFRUlMf2B8BzmKQL4HI8fiXe4OBgtWjRQgcOHNBvf/tbZWdnKyMjw2UUJj093TlnJjw8XFu3bnXZRsFZSsXNqylgt9tlt9vLvwOolvgFiZIUntjLpF6gavL4dWDOnDmjgwcPKiIiQtHR0fL19dWaNWucy/ft26ejR48qNjZWkhQbG6udO3fqxIkTzjrJyckKDAxUmzZtPN1cAABgAeU+AvPkk0+qb9++atSokY4dO6apU6fKx8dH999/v4KCgjR8+HCNGzdO9evXV2BgoEaPHq3Y2Fh17NhRktSzZ0+1adNGDzzwgGbMmKG0tDRNnjxZCQkJjLAAAABJHggwP/74o+6//379/PPPCgkJUadOnbR582aFhIRIkl599VV5e3urf//+ysrKUlxcnN544w3n+j4+PlqxYoUeffRRxcbGqnbt2ho6dKieffbZ8m4qqqniru0BlBXXigGqJi9jjKnsRniCw+FQUFCQMjMzFRgYWNnNQQUqTYBhDkz1U5FnIRFgAM8p7e9vj0/iBYCKUJpQWl4hh4m+QOXjZo4AAMByCDAAAMByOIQEAB7AYSbAsxiBAQAAlsMIDCyP06ZR2fgMAhWPAAOgxijuTKWKOv2a68kA5YtDSAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHI4CwlAjVaR91ACUH4IMABQSbhaL1B2BBjUCKX5KxsAYB0EGACoIrjYHVB6BBgAuAzmyQBVDwEGACyEURrgV5xGDQAALIcRGADwgMq8cSRQEzACAwAALIcRGFQ7nDKN6qS4OS8AGIEBAAAWxAgMAJSDyhz544q+qIkIMABgMYXDEpODURMRYGApzAeAlRE8gPLDHBgAAGA5jMAAQBVSHnNpSjNSyTwZWB0BBgBqIG5JAKvjEBIAALAcRmBQpTFpFwBQHAIMLI8r78Kq+OwCZUeAAQCLK20Q8sRp28ylQWUhwAAAJHH2EqyFAAMAKDXmpaGq4CwkAABgOYzAAEANVdzcGW5vAKsgwMBSOGsDqPq4OzYqAgEGVQbH1gHP4g8AVCcEGACAE3fMhlUQYAAAJWKeDKoqAgwAwKPKerE75tLgUggwqDSlmfPCMXug6vHEYSbmwMFdBBgAwBUpzR8ahUNOWQILty3AxQgwAADL4jBTzUWAAQBUa4Sc6olbCQAAAMthBAYA4HGcjo3yRoABAFSKskz+vVwQKs3kYCYDVw8EGABAlVVZl1Ig5FR9BBh4BNd0AFBRKuv2B4ScykWAQZXBResAVJacpI2XDUL8YVa1EGBQaQgsADyhLHNrYD0EGFQIwgqAqsRT30lcc6bicB0YAABgOYzAwG38hQGgJijNtWvK47Tu0uB7tigCDK5YcT+gHDIqR0byPe2tVO9flGE7L3+7r5qY+vKWV6k3kS+jVO9TcnhlKdDY1STfvfUB/Kos323lMSeHM56KIsAAVZj/qVraf+Zn/avxdp3yO+8sD871U9+81mqXF37Zbez0SdNy373K9L7gLAvK99Pvckq3PgBrqGkhp0oHmNmzZ+ull15SWlqabrjhBs2aNUsdOnSo7GbVKJw2WHn8T9XSwYxT+lvbTUWWZfhc0Hs+2/VA9o2XDCE7fdL0nm17kfJMrwt6z3b59QG4r6JGoEtz6ndx6xRm1ZBTZQPMokWLNG7cOM2ZM0cxMTGaOXOm4uLitG/fPoWGhlZ28yypNHNXyhJYOFzkAUYKPGrXuzd98+vzwkd7vH6ts9x3r9rmhRV7OChfRst995Z5fQAVp6LOiqpOvIwxprIbUZyYmBjdcsstev311yVJ+fn5ioqK0ujRozVx4sTLru9wOBQUFKTMzEwFBgZ6urlVTnl9aAknlcPu8NFPaWf1XPvPL1v34Qsd1Cz/qiLlB71/1j/8tpZ5fQDVU1mugVORozSl/f1dJUdgsrOztW3bNk2aNMlZ5u3trR49eiglJaXYdbKyspSVleV8npmZKenXF8JKcpKL79+lHM1M9kBLUJnyHL76Md+hnHN5l62blnVaYXl1ipb7nFZOftnXB1A97Tq3zP2V3l6ma4J+63zq+9vY8mtQIQW/ty83vlIlA8xPP/2kvLw8hYWFuZSHhYXpu+++K3adxMRETZ8+vUh5VFSUR9oIVBUr9W2lrg+gpvhrhe7t9OnTCgoKKnF5lQwwZTFp0iSNGzfO+Tw/P1+nTp3SVVddJS+vsh3fdzgcioqK0g8//FCtD0PVhH7WhD5KNaOf9LH6qAn9rAl9lMq3n8YYnT59WpGRkZesVyUDTIMGDeTj46P09HSX8vT0dIWHF3/GhN1ul91udykLDg4ul/YEBgZW6w9egZrQz5rQR6lm9JM+Vh81oZ81oY9S+fXzUiMvBarkrQRsNpuio6O1Zs0aZ1l+fr7WrFmj2FjPHXcDAADWUCVHYCRp3LhxGjp0qG6++WZ16NBBM2fO1NmzZ/Xggw9WdtMAAEAlq7IB5t5779XJkyc1ZcoUpaWlqX379kpKSioysdeT7Ha7pk6dWuTQVHVTE/pZE/oo1Yx+0sfqoyb0syb0UaqcflbZ68AAAACUpErOgQEAALgUAgwAALAcAgwAALAcAgwAALAcAgwAALAcAkwhp06d0uDBgxUYGKjg4GANHz5cZ86cuex6KSkp+s1vfqPatWsrMDBQXbp00fnz5yugxe4rax+lXy/x3Lt3b3l5eWnZsmWebegVcrefp06d0ujRo9WyZUv5+/vrmmuu0eOPP+68MWhVMHv2bDVu3Fh+fn6KiYnR1q2Xvtv0kiVL1KpVK/n5+aldu3ZatWpVBbX0yrjTz3/+85/q3Lmz6tWrp3r16qlHjx6XfV2qAnffywLvv/++vLy81K9fP882sJy428+MjAwlJCQoIiJCdrtdLVq0qPKfW3f7OHPmTOf3TFRUlMaOHasLFy5UUGvLZsOGDerbt68iIyNL/f2/bt063XTTTbLb7WrevLnmzZtXvo0ycNGrVy9zww03mM2bN5svvvjCNG/e3Nx///2XXGfTpk0mMDDQJCYmml27dpnvvvvOLFq0yFy4cKGCWu2esvSxwCuvvGJ69+5tJJkPP/zQsw29Qu72c+fOnebuu+82y5cvNwcOHDBr1qwx1157renfv38Ftrpk77//vrHZbObtt982u3fvNg899JAJDg426enpxdb/8ssvjY+Pj5kxY4bZs2ePmTx5svH19TU7d+6s4Ja7x91+Dho0yMyePdts377d7N271wwbNswEBQWZH3/8sYJbXnru9rFAamqqadiwoencubO58847K6axV8DdfmZlZZmbb77Z9OnTx2zcuNGkpqaadevWmR07dlRwy0vP3T4uWLDA2O12s2DBApOammo+/fRTExERYcaOHVvBLXfPqlWrzDPPPGM++OCDUn3/Hzp0yAQEBJhx48aZPXv2mFmzZhkfHx+TlJRUbm0iwFxkz549RpL56quvnGWffPKJ8fLyMv/9739LXC8mJsZMnjy5Ipp4xcraR2OM2b59u2nYsKE5fvx4lQ8wV9LPiy1evNjYbDaTk5PjiWa6pUOHDiYhIcH5PC8vz0RGRprExMRi6w8cONDEx8e7lMXExJiHH37Yo+28Uu72s7Dc3FxTt25dM3/+fE818YqVpY+5ubnm1ltvNW+++aYZOnSoJQKMu/38+9//bpo2bWqys7MrqolXzN0+JiQkmN/85jcuZePGjTO33XabR9tZnkrz/T9hwgTTtm1bl7J7773XxMXFlVs7OIR0kZSUFAUHB+vmm292lvXo0UPe3t7asmVLseucOHFCW7ZsUWhoqG699VaFhYWpa9eu2rhxY0U12y1l6aMknTt3ToMGDdLs2bNLvKFmVVLWfhaWmZmpwMBA1apVuRetzs7O1rZt29SjRw9nmbe3t3r06KGUlJRi10lJSXGpL0lxcXEl1q8KytLPws6dO6ecnBzVr1/fU828ImXt47PPPqvQ0FANHz68Ipp5xcrSz+XLlys2NlYJCQkKCwvTddddpxdeeEF5eXkV1Wy3lKWPt956q7Zt2+Y8zHTo0CGtWrVKffr0qZA2V5SK+P6psrcSqAxpaWkKDQ11KatVq5bq16+vtLS0Ytc5dOiQJGnatGl6+eWX1b59e7377rvq3r27du3apWuvvdbj7XZHWfooSWPHjtWtt96qO++809NNLBdl7efFfvrpJz333HMaOXKkJ5rolp9++kl5eXlFbqURFham7777rth10tLSiq1f2v5XhrL0s7CnnnpKkZGRRb48q4qy9HHjxo166623tGPHjgpoYfkoSz8PHTqktWvXavDgwVq1apUOHDigxx57TDk5OZo6dWpFNNstZenjoEGD9NNPP6lTp04yxig3N1ePPPKInn766YpocoUp6fvH4XDo/Pnz8vf3v+J91IgRmIkTJ8rLy+uSj9J+ORaWn58vSXr44Yf14IMP6sYbb9Srr76qli1b6u233y7PblySJ/u4fPlyrV27VjNnzizfRpeBJ/t5MYfDofj4eLVp00bTpk278oajQrz44ot6//339eGHH8rPz6+ym1MuTp8+rQceeED//Oc/1aBBg8pujkfl5+crNDRUc+fOVXR0tO69914988wzmjNnTmU3rdysW7dOL7zwgt544w198803+uCDD7Ry5Uo999xzld00y6kRIzBPPPGEhg0bdsk6TZs2VXh4uE6cOOFSnpubq1OnTpV42CQiIkKS1KZNG5fy1q1b6+jRo2VvtJs82ce1a9fq4MGDCg4Odinv37+/OnfurHXr1l1By93jyX4WOH36tHr16qW6devqww8/lK+v75U2+4o1aNBAPj4+Sk9PdylPT08vsT/h4eFu1a8KytLPAi+//LJefPFFffbZZ7r++us92cwr4m4fDx48qMOHD6tv377OsoI/nGrVqqV9+/apWbNmnm10GZTlvYyIiJCvr698fHycZa1bt1ZaWpqys7Nls9k82mZ3laWPf/rTn/TAAw9oxIgRkqR27drp7NmzGjlypJ555hl5e1ePcYWSvn8CAwPLZfRFqiEBJiQkRCEhIZetFxsbq4yMDG3btk3R0dGSfv3lnZ+fr5iYmGLXady4sSIjI7Vv3z6X8u+//169e/e+8saXkif7OHHiROcPW4F27drp1VdfdflSrQie7Kf068hLXFyc7Ha7li9fXmX+irfZbIqOjtaaNWucp8/m5+drzZo1GjVqVLHrxMbGas2aNRozZoyzLDk5WbGxsRXQ4rIpSz8lacaMGfrzn/+sTz/91GXeU1Xkbh9btWqlnTt3upRNnjxZp0+f1muvvaaoqKiKaLbbyvJe3nbbbVq4cKHy8/Odv8i///57RUREVLnwIpWtj+fOnSsSUgoCm6lG91aOjY0tcvp7uX//lNt04GqiV69e5sYbbzRbtmwxGzduNNdee63Lqbc//vijadmypdmyZYuz7NVXXzWBgYFmyZIlZv/+/Wby5MnGz8/PHDhwoDK6cFll6WNhquJnIRnjfj8zMzNNTEyMadeunTlw4IA5fvy485Gbm1tZ3XB6//33jd1uN/PmzTN79uwxI0eONMHBwSYtLc0YY8wDDzxgJk6c6Kz/5Zdfmlq1apmXX37Z7N2710ydOtUyp1G7088XX3zR2Gw2s3TpUpf37PTp05XVhctyt4+FWeUsJHf7efToUVO3bl0zatQos2/fPrNixQoTGhpqnn/++crqwmW528epU6eaunXrmn//+9/m0KFDZvXq1aZZs2Zm4MCBldWFUjl9+rTZvn272b59u5FkXnnlFbN9+3Zz5MgRY4wxEydONA888ICzfsFp1OPHjzd79+41s2fP5jRqT/v555/N/fffb+rUqWMCAwPNgw8+6PJFmJqaaiSZzz//3GW9xMREc/XVV5uAgAATGxtrvvjiiwpueemVtY8Xs0KAcbefn3/+uZFU7CM1NbVyOlHIrFmzzDXXXGNsNpvp0KGD2bx5s3NZ165dzdChQ13qL1682LRo0cLYbDbTtm1bs3Llygpucdm4089GjRoV+55NnTq14hvuBnffy4tZJcAY434/N23aZGJiYozdbjdNmzY1f/7zn6vEHxCX4k4fc3JyzLRp00yzZs2Mn5+fiYqKMo899pj55ZdfKr7hbijp+7Ggb0OHDjVdu3Ytsk779u2NzWYzTZs2Ne+88065tsnLmGo0ZgUAAGqE6jFbCAAA1CgEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDkEGAAAYDn/D7l8XPECoFx/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPYNJREFUeJzt3Xl8U1XC//FvW5q0BdKCdKFaWZVN3IqUKosOHQpURxRXGCgOiEvRH+AGysMian3QURzEYRxHQQdHwEccZK8gIFpAkT6yybAU0MEWFNuwdj2/P3yaIW1amtK0ve3n/Xrl9SL3ntyck6TJl7Pc62eMMQIAALAQ/9quAAAAgLcIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMKhRU6dOlZ+fn+t+69atNWLECJ8/78GDB+Xn56e5c+e6to0YMUJNmjTx+XOX8PPz09SpU2vs+azuxhtv1I033litxyz9+astvvjclz7munXr5Ofnp3Xr1nl9rMq+9hfyHN7gbweeEGBgOcuXL6+zX2Z1uW4NxenTpzV16lSf/6ii7ioJVuXdnn/+eVfZuXPnllsuKyurFluB82lU2xVAw7Znzx75+3uXo5cvX67Zs2d7FRRatWqlM2fOKDAw0Msaeqeiup05c0aNGvEn52unT5/WtGnTJKlML8KkSZM0YcKEWqiVu6p87r3Vu3dvnTlzRjabzevHrl692gc1qjmdOnXSe++9V2b7e++9p9WrV6tfv35l9j377LNq06aN27awsDBfVRHVgG9T1Cq73e7T4xcWFqq4uFg2m01BQUE+fa7zqe3nrwlnz56VzWbz+ON86tQpNW7cuBZq9R+NGjWqEyHS1597SfL396/yZ64qoacuiYyM1O9///sy26dNm6bLLrtM1113XZl9AwYMULdu3WqieqgmDCHBZzZu3KjrrrtOQUFBateunf7yl7+UKVN63L6goMD1JRMUFKSLLrpIPXv2VFpamqRf563Mnj1bkty6eqX/zHN5+eWXNXPmTLVr1052u127du3yOAemxIEDB5SYmKjGjRsrOjpazz77rM69SHt54/ylj1lR3Uq2le6Z2bZtmwYMGCCHw6EmTZqob9++2rRpk1uZki7uL774QuPHj1d4eLgaN26s2267TceOHSv/DSjHv//9b40cOVLR0dGy2+1q06aNHnroIeXn57u9JnfeeaeaN2+ukJAQ9ejRQ8uWLXM7Tsnr8sEHH2jSpEm6+OKLFRISIqfT6ZpftH//fg0cOFBNmzbV0KFDJUnFxcWaOXOmunTpoqCgIEVGRuqBBx7QL7/8UmG98/PzNXnyZMXGxio0NFSNGzdWr1699Nlnn7nKHDx4UOHh4ZJ+/bEqeQ9KXndPc2AKCws1ffp01+eldevWevrpp5WXl+dWrnXr1rr55pu1ceNGde/eXUFBQWrbtq3effdd794Alf3ce/MeG2P03HPP6ZJLLlFISIhuuukm7dy5s8xzlP7cjhkzRk2aNNHp06fLlL333nsVFRWloqIiSZ7nwPzwww8aNGiQGjdurIiICI0bN67Ma+SpbSVKH7My72d12rJli/bt2+f6HHpy4sQJ12uAuq/2/yuCemn79u3q16+fwsPDNXXqVBUWFmrKlCmKjIys8HFTp05VamqqRo0ape7du8vpdOrrr7/WN998o9/+9rd64IEHdOTIEaWlpXnsIpakd955R2fPntXo0aNlt9vVvHlzFRcXeyxbVFSk/v37q0ePHpoxY4ZWrlypKVOmqLCwUM8++6xXba5M3c61c+dO9erVSw6HQ08++aQCAwP1l7/8RTfeeKPWr1+vuLg4t/KPPPKImjVrpilTpujgwYOaOXOmxowZowULFlS6jkeOHFH37t2Vk5Oj0aNHq2PHjvr3v/+tDz/8UKdPn5bNZlN2drauv/56nT59Wo8++qguuugizZs3T7/73e/04Ycf6rbbbnM75vTp02Wz2fT4448rLy/P9b/3wsJCJSYmqmfPnnr55ZcVEhLiep3mzp2r++67T48++qgyMzP1+uuva9u2bfriiy/KHeZzOp166623dO+99+r+++/XiRMn9Le//U2JiYnasmWLrr76aoWHh+vPf/6zHnroId122226/fbbJUlXXnllua/JqFGjNG/ePN1xxx167LHHtHnzZqWmpmr37t1avHixW9l9+/bpjjvu0MiRI5WcnKy3335bI0aMUGxsrLp06VLp96E8lXmPJ0+erOeee04DBw7UwIED9c0336hfv35uAdSTu+++W7Nnz9ayZct05513urafPn1an3zyiUaMGKGAgACPjz1z5oz69u2rw4cP69FHH1V0dLTee+89rV27tsptrcz7WZ3mz58vSeUGmJtuukknT56UzWZTYmKi/vjHP+qyyy6r1jqgmhnABwYNGmSCgoLMoUOHXNt27dplAgICzLkfu1atWpnk5GTX/auuusokJSVVeOyUlBTj6aObmZlpJBmHw2GOHj3qcd8777zj2pacnGwkmUceecS1rbi42CQlJRmbzWaOHTtmjDHms88+M5LMZ599dt5jllc3Y4yRZKZMmeK6P2jQIGOz2cz+/ftd244cOWKaNm1qevfu7dr2zjvvGEkmISHBFBcXu7aPGzfOBAQEmJycHI/P58nw4cONv7+/+eqrr8rsKzn22LFjjSTz+eefu/adOHHCtGnTxrRu3doUFRUZY/7zurRt29acPn3a7Vglr+2ECRPctn/++edGkpk/f77b9pUrV5bZ3qdPH9OnTx/X/cLCQpOXl+f2uF9++cVERkaaP/zhD65tx44dK/Nal5gyZYrb+5ORkWEkmVGjRrmVe/zxx40ks3btWte2Vq1aGUlmw4YNrm1Hjx41drvdPPbYY2WeqyKlP/eVfY+PHj1qbDabSUpKciv39NNPG0luxyz9uS0uLjYXX3yxGTx4sFtdFi5cWKZdpV/7mTNnGklm4cKFrm2nTp0y7du3L/O3Ubpt5R2zsu+nMWX/drxVWFhoIiMjTffu3cvsW7BggRkxYoSZN2+eWbx4sZk0aZIJCQkxLVq0MIcPH67yc8L3GEJCtSsqKtKqVas0aNAgXXrppa7tnTp1UmJiYoWPDQsL086dO7V3794qP//gwYNdwwiVMWbMGNe//fz8NGbMGOXn5+vTTz+tch3Op6ioSKtXr9agQYPUtm1b1/aWLVtqyJAh2rhxo5xOp9tjRo8e7Tb80atXLxUVFenQoUOVes7i4mJ9/PHHuuWWWzyO9Zcce/ny5erevbt69uzp2tekSRONHj1aBw8e1K5du9wel5ycrODgYI/P+dBDD7ndX7RokUJDQ/Xb3/5WP/30k+sWGxurJk2aVDh8EBAQ4OrdKS4u1vHjx1VYWKhu3brpm2++qdRrUNry5cslSePHj3fb/thjj0lSmWGzzp07q1evXq774eHh6tChgw4cOFCl5y/tfO/xp59+qvz8fD3yyCNu5caOHXveY/v5+enOO+/U8uXLdfLkSdf2BQsW6OKLL3Z7v0tbvny5WrZsqTvuuMO1LSQkRKNHj/ameW588X6WZ82aNcrOzvbY+3LXXXfpnXfe0fDhwzVo0CBNnz5dq1at0s8//+y2Wgl1DwEG1e7YsWM6c+aMx+7XDh06VPjYZ599Vjk5Obr88svVtWtXPfHEE/r222+9ev7SKwkq4u/v7xYgJOnyyy+X9Ot8Cl85duyYTp8+7fH16NSpk4qLi/X999+7bT83DEpSs2bNJOm8c0fOfU6n06krrriiwnKHDh0qt14l+89V3uvdqFEjXXLJJW7b9u7dq9zcXEVERCg8PNztdvLkSR09erTCus2bN09XXnmla35UeHi4li1bptzc3AofV55Dhw7J399f7du3d9seFRWlsLCwMm0t/R5Iv74PlX0Pzud873FJfUr/bYWHh7vKVuTuu+/WmTNntGTJEknSyZMntXz5ct15550Vnh/n0KFDat++fZky5/t7Pp/qfj/LM3/+fAUEBOjuu++uVPmePXsqLi7Op/+JwYVjDgzqlN69e2v//v365z//qdWrV+utt97Sq6++qjlz5mjUqFGVOkZ5vQFVVd4Xe01P9itvfoI5Z8JxbSjv9bbb7WVWIxUXFysiIsI1H6G0inrO/v73v2vEiBEaNGiQnnjiCUVERCggIECpqanav39/1Rug8t/j0nz9Hvj6+D169FDr1q21cOFCDRkyRJ988onOnDlT6R/2yqjo7+Xc9vny/TzXmTNntHjxYiUkJJx3Dt65YmJitGfPnmqrB6ofAQbVLjw8XMHBwR6HgSrzhdC8eXPdd999uu+++3Ty5En17t1bU6dOdQWY6jyTanFxsQ4cOODqdZGkf/3rX5J+XU0h/ed/wTk5OW6P9TR0U9m6hYeHKyQkxOPr8d1338nf318xMTGVOlZlhYeHy+FwaMeOHRWWa9WqVbn1KtlfVe3atdOnn36qG264weug+eGHH6pt27b66KOP3F7nKVOmuJXz5vPRqlUrFRcXa+/eva4eJknKzs5WTk7OBbXVF0rqs3fvXreew2PHjlW6F+iuu+7Sa6+9JqfTqQULFqh169bq0aPHeZ93x44dMsa4vb6ePifNmjUr87ci/fr3cm6dK/t+XqglS5boxIkTFa4+8uTAgQNeDUWj5jGEhGoXEBCgxMREffzxxzp8+LBr++7du7Vq1aoKH/vzzz+73W/SpInat2/vtlyz5Fwinr4kq+L11193/dsYo9dff12BgYHq27evpF+/vAMCArRhwwa3x73xxhtljlXZugUEBKhfv3765z//6TZUlZ2drffff189e/aUw+GoYos88/f316BBg/TJJ5/o66+/LrO/5H/5AwcO1JYtW5Senu7ad+rUKb355ptq3bq1OnfuXOU63HXXXSoqKtL06dPL7CssLKzwdSv53/u5vRGbN292q6ck12qnynw+Bg4cKEmaOXOm2/ZXXnlFkpSUlHTeY9SkhIQEBQYGatasWW6vQ+n6V+Tuu+9WXl6e5s2bp5UrV+quu+4672MGDhyoI0eO6MMPP3RtO336tN58880yZdu1a6dNmza5rYpaunRpmSHRyr6fF+r9999XSEhImdVzJTydimD58uXaunWr+vfvX611QfWiBwY+MW3aNK1cuVK9evXSww8/rMLCQs2aNUtdunSpcE5L586ddeONNyo2NlbNmzfX119/rQ8//NBtom1sbKwk6dFHH1ViYqICAgJ0zz33VKmeQUFBWrlypZKTkxUXF6cVK1Zo2bJlevrpp13/+woNDdWdd96pWbNmyc/PT+3atdPSpUs9ztfwpm7PPfec0tLS1LNnTz388MNq1KiR/vKXvygvL08zZsyoUnvO54UXXtDq1avVp08fjR49Wp06ddKPP/6oRYsWaePGjQoLC9OECRP0j3/8QwMGDNCjjz6q5s2ba968ecrMzNT//M//XNAZZPv06aMHHnhAqampysjIUL9+/RQYGKi9e/dq0aJFeu2119wmip7r5ptv1kcffaTbbrtNSUlJyszM1Jw5c9S5c2e3SanBwcHq3LmzFixYoMsvv1zNmzfXFVdc4XHuz1VXXaXk5GS9+eabysnJUZ8+fbRlyxbNmzdPgwYN0k033VTltvpCeHi4Hn/8caWmpurmm2/WwIEDtW3bNq1YsUItWrSo1DGuvfZatW/fXs8884zy8vIqNXx0//336/XXX9fw4cO1detWtWzZUu+9954rLJ5r1KhR+vDDD9W/f3/ddddd2r9/v/7+97+rXbt2buUq+35eiOPHj2vFihUaPHhwudc9u/7663XNNdeoW7duCg0N1TfffKO3335bMTExevrpp6ulHvCRWlv/hHpv/fr1JjY21thsNtO2bVszZ86cMstYSy+5fO6550z37t1NWFiYCQ4ONh07djTPP/+8yc/Pd5UpLCw0jzzyiAkPDzd+fn6u45Usa37ppZfK1KW8ZdSNGzc2+/fvN/369TMhISEmMjLSTJkyxbVUuMSxY8fM4MGDTUhIiGnWrJl54IEHzI4dO8ocs7y6GeN5Keg333xjEhMTTZMmTUxISIi56aabzJdffulWpmSJbemlz+Ut7z6fQ4cOmeHDh5vw8HBjt9tN27ZtTUpKituS1v3795s77rjDhIWFmaCgINO9e3ezdOlSj8+/aNGiMs9R8tqW58033zSxsbEmODjYNG3a1HTt2tU8+eST5siRI64ypZfdFhcXmxdeeMG0atXK2O12c80115ilS5ea5ORk06pVK7fjf/nll67P3rmve+nPnzHGFBQUmGnTppk2bdqYwMBAExMTYyZOnGjOnj3rVq5Vq1Yel/iXrmdllLeMujLvcVFRkZk2bZpp2bKlCQ4ONjfeeKPZsWNHmWNW9Pl45plnjCTTvn17j/Xz1KZDhw6Z3/3ud64lxv/v//0/1/L30s/xxz/+0Vx88cXGbrebG264wXz99dcX9H56+tupjDlz5hhJZsmSJeWWeeaZZ8zVV19tQkNDTWBgoLn00kvNQw89ZLKysrx+PtQsP2NqeQYgAACAl5gDAwAALIc5MEA9cPLkyfPOGwgPDy93mS6qR1ZWVoX7g4ODFRoaWkO1qX+KiorOe/2vJk2alDvfBfULQ0hAPTB16lRNmzatwjKZmZmupeHwjfMt4U5OTvZ4QVFUzsGDB897osopU6aUuWgq6id6YIB6YPjw4RWeCl769eyy8K2Sq6aXJzo6uoZqUj9FRUWd9zUufWZt1F/0wAAAAMthEi8AALCcejuEVFxcrCNHjqhp06bVeup5AADgO8YYnThxQtHR0RWeOLPeBpgjR45U+7VkAABAzfj+++/LXNH+XPU2wDRt2lTSry9AdV9TBgAA+IbT6VRMTIzrd7w89TbAlAwbORwOAgwAABZzvukfTOIFAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACW06i2KwA0VAUrN7rdD+zfs5ZqAgDWQw8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHK8CTGpqqq677jo1bdpUERERGjRokPbs2eNW5sYbb5Sfn5/b7cEHH3Qrc/jwYSUlJSkkJEQRERF64oknVFhY6FZm3bp1uvbaa2W329W+fXvNnTu3ai0EAAD1jlcBZv369UpJSdGmTZuUlpamgoIC9evXT6dOnXIrd//99+vHH3903WbMmOHaV1RUpKSkJOXn5+vLL7/UvHnzNHfuXE2ePNlVJjMzU0lJSbrpppuUkZGhsWPHatSoUVq1atUFNhcAANQHfsYYU9UHHzt2TBEREVq/fr169+4t6dcemKuvvlozZ870+JgVK1bo5ptv1pEjRxQZGSlJmjNnjp566ikdO3ZMNptNTz31lJYtW6YdO3a4HnfPPfcoJydHK1eurFTdnE6nQkNDlZubK4fDUdUmAj7DpQQAoKzK/n5f0ByY3NxcSVLz5s3dts+fP18tWrTQFVdcoYkTJ+r06dOufenp6eratasrvEhSYmKinE6ndu7c6SqTkJDgdszExESlp6eXW5e8vDw5nU63GwAAqJ+qfDHH4uJijR07VjfccIOuuOIK1/YhQ4aoVatWio6O1rfffqunnnpKe/bs0UcffSRJysrKcgsvklz3s7KyKizjdDp15swZBQcHl6lPamqqpk2bVtXmAAAAC6lygElJSdGOHTu0caN7N/jo0aNd/+7atatatmypvn37av/+/WrXrl3Va3oeEydO1Pjx4133nU6nYmJifPZ8AACg9lRpCGnMmDFaunSpPvvsM11yySUVlo2Li5Mk7du3T5IUFRWl7OxstzIl96Oioios43A4PPa+SJLdbpfD4XC7AQCA+smrAGOM0ZgxY7R48WKtXbtWbdq0Oe9jMjIyJEktW7aUJMXHx2v79u06evSoq0xaWpocDoc6d+7sKrNmzRq346SlpSk+Pt6b6gIAgHrKqwCTkpKiv//973r//ffVtGlTZWVlKSsrS2fOnJEk7d+/X9OnT9fWrVt18OBBLVmyRMOHD1fv3r115ZVXSpL69eunzp07a9iwYfrf//1frVq1SpMmTVJKSorsdrsk6cEHH9SBAwf05JNP6rvvvtMbb7yhhQsXaty4cdXcfAAAYEVeLaP28/PzuP2dd97RiBEj9P333+v3v/+9duzYoVOnTikmJka33XabJk2a5Dakc+jQIT300ENat26dGjdurOTkZL344otq1Og/U3LWrVuncePGadeuXbrkkkv0X//1XxoxYkSlG8YyatR1LKMGgLIq+/t9QeeBqcsIMKjrCDAAUFaNnAcGAACgNhBgAACA5RBgAACA5RBgAACA5VT5TLwAqlfpSb0SE3sBoDz0wAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMtpVNsVABqCgpUba7sKAFCv0AMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsp1FtVwBA+QpWbnS7H9i/Zy3VBADqFnpgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5TSq7QoADdHBnBVu91uHDailmgCANXnVA5OamqrrrrtOTZs2VUREhAYNGqQ9e/a4lTl79qxSUlJ00UUXqUmTJho8eLCys7Pdyhw+fFhJSUkKCQlRRESEnnjiCRUWFrqVWbduna699lrZ7Xa1b99ec+fOrVoLAQs4mLOizA0AUD6vAsz69euVkpKiTZs2KS0tTQUFBerXr59OnTrlKjNu3Dh98sknWrRokdavX68jR47o9ttvd+0vKipSUlKS8vPz9eWXX2revHmaO3euJk+e7CqTmZmppKQk3XTTTcrIyNDYsWM1atQorVq1qhqaDAAArM7PGGOq+uBjx44pIiJC69evV+/evZWbm6vw8HC9//77uuOOOyRJ3333nTp16qT09HT16NFDK1as0M0336wjR44oMjJSkjRnzhw99dRTOnbsmGw2m5566iktW7ZMO3bscD3XPffco5ycHK1cubJSdXM6nQoNDVVubq4cDkdVmwhUi4KVG93uV6aHxdOwUmD/ntVWJwCoiyr7+31Bk3hzc3MlSc2bN5ckbd26VQUFBUpISHCV6dixoy699FKlp6dLktLT09W1a1dXeJGkxMREOZ1O7dy501Xm3GOUlCk5hid5eXlyOp1uNwAAUD9VOcAUFxdr7NixuuGGG3TFFVdIkrKysmSz2RQWFuZWNjIyUllZWa4y54aXkv0l+yoq43Q6debMGY/1SU1NVWhoqOsWExNT1aYBAIA6rsoBJiUlRTt27NAHH3xQnfWpsokTJyo3N9d1+/7772u7SgAAwEeqtIx6zJgxWrp0qTZs2KBLLrnEtT0qKkr5+fnKyclx64XJzs5WVFSUq8yWLVvcjleySuncMqVXLmVnZ8vhcCg4ONhjnex2u+x2e1WaAwAALMarHhhjjMaMGaPFixdr7dq1atOmjdv+2NhYBQYGas2aNa5te/bs0eHDhxUfHy9Jio+P1/bt23X06FFXmbS0NDkcDnXu3NlV5txjlJQpOQYAAGjYvOqBSUlJ0fvvv69//vOfatq0qWvOSmhoqIKDgxUaGqqRI0dq/Pjxat68uRwOhx555BHFx8erR48ekqR+/fqpc+fOGjZsmGbMmKGsrCxNmjRJKSkprh6UBx98UK+//rqefPJJ/eEPf9DatWu1cOFCLVu2rJqbDwAArMirHpg///nPys3N1Y033qiWLVu6bgsWLHCVefXVV3XzzTdr8ODB6t27t6KiovTRRx+59gcEBGjp0qUKCAhQfHy8fv/732v48OF69tlnXWXatGmjZcuWKS0tTVdddZX++Mc/6q233lJiYmI1NBkAAFjdBZ0Hpi7jPDCoSzgPDABUTo2cBwYAAKA2EGAAAIDlEGAAAIDlVOk8MAAqVnrOCwCgetEDAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcAAwAALIcT2QEW4ukEeVzgEUBDRA8MAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHAIMAACwHM7EC/jYwZwVtV0FAKh36IEBAACWQ4ABAACWwxASUEeVHnpqHTaglmoCAHUPPTAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByGtV2BQBcmIKVG93uB/bvWUs1AYCaQw8MAACwHAIMAACwHAIMAACwHAIMAACwHCbxAheo9CRaAIDv0QMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsh/PAAPWMp/PScIFHAPWN1z0wGzZs0C233KLo6Gj5+fnp448/dts/YsQI+fn5ud369+/vVub48eMaOnSoHA6HwsLCNHLkSJ08edKtzLfffqtevXopKChIMTExmjFjhvetA+qRgzkrytwAoKHyOsCcOnVKV111lWbPnl1umf79++vHH3903f7xj3+47R86dKh27typtLQ0LV26VBs2bNDo0aNd+51Op/r166dWrVpp69ateumllzR16lS9+eab3lYXAADUQ14PIQ0YMEADBgyosIzdbldUVJTHfbt379bKlSv11VdfqVu3bpKkWbNmaeDAgXr55ZcVHR2t+fPnKz8/X2+//bZsNpu6dOmijIwMvfLKK25B51x5eXnKy8tz3Xc6nd42DQAAWIRPJvGuW7dOERER6tChgx566CH9/PPPrn3p6ekKCwtzhRdJSkhIkL+/vzZv3uwq07t3b9lsNleZxMRE7dmzR7/88ovH50xNTVVoaKjrFhMT44umAQCAOqDaA0z//v317rvvas2aNfrv//5vrV+/XgMGDFBRUZEkKSsrSxEREW6PadSokZo3b66srCxXmcjISLcyJfdLypQ2ceJE5ebmum7ff/99dTcNAADUEdW+Cumee+5x/btr16668sor1a5dO61bt059+/at7qdzsdvtstvtPjs+AACoO3x+Hpi2bduqRYsW2rdvnyQpKipKR48edStTWFio48ePu+bNREVFKTs7261Myf3y5tYAAICGw+cB5ocfftDPP/+sli1bSpLi4+OVk5OjrVu3usqsXbtWxcXFiouLc5XZsGGDCgoKXGXS0tLUoUMHNWvWzNdVBgAAdZzXAebkyZPKyMhQRkaGJCkzM1MZGRk6fPiwTp48qSeeeEKbNm3SwYMHtWbNGt16661q3769EhMTJUmdOnVS//79df/992vLli364osvNGbMGN1zzz2Kjo6WJA0ZMkQ2m00jR47Uzp07tWDBAr322msaP3589bUcAABYltcB5uuvv9Y111yja665RpI0fvx4XXPNNZo8ebICAgL07bff6ne/+50uv/xyjRw5UrGxsfr888/d5qfMnz9fHTt2VN++fTVw4ED17NnT7RwvoaGhWr16tTIzMxUbG6vHHntMkydPLncJNQAAaFj8jDGmtivhC06nU6GhocrNzZXD4ajt6qAeK33q/po8Q27rsIrPyVSCSwkAsIrK/n5zMUcAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA51X4pAQA1p/SKp8quSgIAqyPAAA1A6aXeLKsGYHUMIQEAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMtpVNsVAKymYOXG2q7CBSvdhsD+PWupJgBQNfTAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy+Fq1EA9cjBnRZltrcMG1EJNAMC36IEBAACWQ4ABAACWwxASUIGClRsr3O9pyAYA4Hv0wAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMthFRIAj6utAvv3rIWaAEDl0AMDAAAshwADAAAshwADAAAshzkwQD1X+mzBXNwRQH1ADwwAALAcAgwAALAchpAAeFR6aTXLqgHUJfTAAAAAyyHAAAAAyyHAAAAAy2EODIBK4XIDAOoSr3tgNmzYoFtuuUXR0dHy8/PTxx9/7LbfGKPJkyerZcuWCg4OVkJCgvbu3etW5vjx4xo6dKgcDofCwsI0cuRInTx50q3Mt99+q169eikoKEgxMTGaMWOG960DAAD1ktcB5tSpU7rqqqs0e/Zsj/tnzJihP/3pT5ozZ442b96sxo0bKzExUWfPnnWVGTp0qHbu3Km0tDQtXbpUGzZs0OjRo137nU6n+vXrp1atWmnr1q166aWXNHXqVL355ptVaCIAAKhvvB5CGjBggAYM8HwmT2OMZs6cqUmTJunWW2+VJL377ruKjIzUxx9/rHvuuUe7d+/WypUr9dVXX6lbt26SpFmzZmngwIF6+eWXFR0drfnz5ys/P19vv/22bDabunTpooyMDL3yyituQedceXl5ysvLc913Op3eNg0AAFhEtU7izczMVFZWlhISElzbQkNDFRcXp/T0dElSenq6wsLCXOFFkhISEuTv76/Nmze7yvTu3Vs2m81VJjExUXv27NEvv/zi8blTU1MVGhrqusXExFRn0wAAQB1SrZN4s7KyJEmRkZFu2yMjI137srKyFBER4V6JRo3UvHlztzJt2rQpc4ySfc2aNSvz3BMnTtT48eNd951OJyEG8KD0tZEkro8EwHrqzSoku90uu91e29WAxXlaaQMAqHuqdQgpKipKkpSdne22PTs727UvKipKR48eddtfWFio48ePu5XxdIxznwMAADRc1Rpg2rRpo6ioKK1Zs8a1zel0avPmzYqPj5ckxcfHKycnR1u3bnWVWbt2rYqLixUXF+cqs2HDBhUUFLjKpKWlqUOHDh6HjwAAQMPidYA5efKkMjIylJGRIenXibsZGRk6fPiw/Pz8NHbsWD333HNasmSJtm/fruHDhys6OlqDBg2SJHXq1En9+/fX/fffry1btuiLL77QmDFjdM899yg6OlqSNGTIENlsNo0cOVI7d+7UggUL9Nprr7nNcQEAAA2X13Ngvv76a910002u+yWhIjk5WXPnztWTTz6pU6dOafTo0crJyVHPnj21cuVKBQUFuR4zf/58jRkzRn379pW/v78GDx6sP/3pT679oaGhWr16tVJSUhQbG6sWLVpo8uTJ5S6hBgAADYufMcbUdiV8wel0KjQ0VLm5uXI4HLVdHViEt5N4Pa3osaKqrkLiUgIAqltlf7/rzSokADWvdOAj0ACoKVyNGgAAWA4BBgAAWA5DSADKzOXhzLwA6joCDOCF+jJpFwCsjiEkAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOZwHBoBPcb0kAL5ADwwAALAcAgwAALAchpAAVJvSw0UA4CsEGABleLrmExd4BFCXMIQEAAAshwADAAAshyEkALWOpdYAvEWAQYPGpFMAsCYCDIAaRWgEUB2YAwMAACyHAAMAACyHISSgHJ7OhQIAqBvogQEAAJZDgAEAAJZDgAEAAJZDgAEAAJbDJF4AVcIFHwHUJgIMgDrH08nuuLwAgHMxhAQAACyHAAMAACyHAAMAACyHOTAAKoUzEwOoS+iBAQAAlkOAAQAAlkOAAQAAlsMcGACWUPrcMJwXBmjYCDAAqk3pib6cmReArzCEBAAALIceGACWxOUGgIaNAIMGw9MPHnyLCz4C8BUCDIAaxTwZANWBOTAAAMByCDAAAMByGEIC/g/X+gEA6yDAAKg3ONkd0HAwhAQAACyHAAMAACyHAAMAACyHAAMAACyHSbwA6i0m9QL1FwEGQK3icgMAqoIAg3qLax8BQP1FgAHQYHAFa6D+YBIvAACwnGoPMFOnTpWfn5/brWPHjq79Z8+eVUpKii666CI1adJEgwcPVnZ2ttsxDh8+rKSkJIWEhCgiIkJPPPGECgsLq7uqACziYM6KMjcADZtPhpC6dOmiTz/99D9P0ug/TzNu3DgtW7ZMixYtUmhoqMaMGaPbb79dX3zxhSSpqKhISUlJioqK0pdffqkff/xRw4cPV2BgoF544QVfVBcAAFiMTwJMo0aNFBUVVWZ7bm6u/va3v+n999/Xb37zG0nSO++8o06dOmnTpk3q0aOHVq9erV27dunTTz9VZGSkrr76ak2fPl1PPfWUpk6dKpvN5vE58/LylJeX57rvdDp90TQA9RzzZABr8MkcmL179yo6Olpt27bV0KFDdfjwYUnS1q1bVVBQoISEBFfZjh076tJLL1V6erokKT09XV27dlVkZKSrTGJiopxOp3bu3Fnuc6ampio0NNR1i4mJ8UXTUE8wJAEA1lbtPTBxcXGaO3euOnTooB9//FHTpk1Tr169tGPHDmVlZclmsyksLMztMZGRkcrKypIkZWVluYWXkv0l+8ozceJEjR8/3nXf6XQSYgCLqslAyXJ7wJqqPcAMGPCfE1BdeeWViouLU6tWrbRw4UIFBwdX99O52O122e12nx0fAADUHT5fRh0WFqbLL79c+/btU1RUlPLz85WTk+NWJjs72zVnJioqqsyqpJL7nubVAGiYGAIEGjafB5iTJ09q//79atmypWJjYxUYGKg1a9a49u/Zs0eHDx9WfHy8JCk+Pl7bt2/X0aNHXWXS0tLkcDjUuXNnX1cXAABYQLUPIT3++OO65ZZb1KpVKx05ckRTpkxRQECA7r33XoWGhmrkyJEaP368mjdvLofDoUceeUTx8fHq0aOHJKlfv37q3Lmzhg0bphkzZigrK0uTJk1SSkoKQ0QAAECSDwLMDz/8oHvvvVc///yzwsPD1bNnT23atEnh4eGSpFdffVX+/v4aPHiw8vLylJiYqDfeeMP1+ICAAC1dulQPPfSQ4uPj1bhxYyUnJ+vZZ5+t7qoCAACL8jPGmNquhC84nU6FhoYqNzdXDoejtquDWlDR6hLmTNQ/vryCNeeBAWpOZX+/uRYSAACwHK5GjXqBc3mgJnG2XqD2EWAA1AuehgWra1iJgAzUPQQYNAjMeYGvlQ459MgAvkWAAYAaQsgBqg8BBkC9VbrnzZcrlQDULFYhAQAAy6EHBgB8gIm/gG8RYAA0GL5cqQSgZjGEBAAALIceGAA4B700gDXQAwMAACyHAAMAACyHISRYEis8UF0qc5ZmzicD1D30wAAAAMshwAAAAMthCAkA6hCulwRUDgEGAGpJVedyEXIAAgzqocpMygQuBOeKAWofAQYA6jBW3AGeEWAAoBpUpuePXhqg+rAKCQAAWA4BBgAAWA5DSABQh1TmrL+ly1wmViGh4SHAAEAN8dUlCVhWjYaIAIM6j1UYAIDSCDAAUIdV5bxGnkI/vTKobwgwANAAMMyE+oZVSAAAwHLogYHlcekAWBWfXaDq6IEBAACWQw8MLIX/sQK+wzwZWAkBBgAaoOo6PQErnlBbCDAAYHGeeiZ9deFIzsuEuoIAgzqHL0jgwlVHqKnq3yJDUagJBBgAaKBqsucGqG4EGABoICozCd5X12sCqhsBBgBQLnppUFcRYAAAPsVKJfgCAQYAYAlMDsa5CDAAgAvCMBNqAwEGtYol0wAkhpngPQIM6jQuHQDUPdWxmqky/3nhPzioCBdzBAAAlkMPDADAkioz7MTQVP1FgEGNoksYAFAdCDAAAJ+r6ny20nNnzrfiyVdX2abXpu4hwKDOYMIugNJ88b1AOKkfmMQLAAAshwADAAAshyEkVBtvx54ZMgLgC5X5bvE0b6aic9dU5vuNoaiaRYBBjSCsAPAVvl8aJgIMAKDBqYnJwZ7QS1N9CDAAAHjg7VBUZRByqg8BBpXCCehqiJHsJwLkV+CnfzU+pp9Dzsghu9oUN5e//Gq7diqWUab/cTn98uQwdadeQG2piStxczZhzwgw8AnGpL0XfLyRwg4H6xvHvzWv/Tc6HnTGtS+0OEi/K+ikrkVRtVa/7QFZWhK4W7n+Z+tUvQArutAJw6U1xJBTpwPM7Nmz9dJLLykrK0tXXXWVZs2ape7du9d2tRqEiv6ACCfVL/h4I120L0RbWvygmV2+KLM/1++s3rNt07D8a2olLGwPyNJ7tm11rl5AXVSV70h6crxXZwPMggULNH78eM2ZM0dxcXGaOXOmEhMTtWfPHkVERNR29eoVhodqmZHCDgerWMV6t/03v24rPSrj92u5JYG71aUoskaHbYpltCRwd52rF1DfVRiEPvC8z9ueHCuflbjOBphXXnlF999/v+677z5J0pw5c7Rs2TK9/fbbmjBhQi3XzjouNJzQ2+J79hMBapTvr11h2W7DRmX4/drjkel/XO2KL6qx+mX6H3cbNqor9QJQORUNV5VmpUnGdTLA5Ofna+vWrZo4caJrm7+/vxISEpSenu7xMXl5ecrLy3Pdz83NlSQ5nU7fVrYGFaT92vbDuWm1XBNUpyJnoJx5Z/VDsVMFp4vOWz4r74Qii5rUQM3+7/kCTqiguO7VC0BZO05/XC1lPLk09LeSpEAf/66W/G4bYyosVycDzE8//aSioiJFRka6bY+MjNR3333n8TGpqamaNm1ame0xMTE+qSNQW5bp29qugkd1tV4Aqssfa/TZTpw4odDQ0HL318kAUxUTJ07U+PHjXfeLi4t1/PhxXXTRRfLz825c3ul0KiYmRt9//70cDkd1V7XOoJ31R0Noo0Q765OG0EaJdlaFMUYnTpxQdHR0heXqZIBp0aKFAgIClJ2d7bY9OztbUVGeVzrY7XbZ7Xa3bWFhYRdUD4fDUa8/cCVoZ/3RENoo0c76pCG0UaKd3qqo56VEnbwatc1mU2xsrNasWePaVlxcrDVr1ig+Pr4WawYAAOqCOtkDI0njx49XcnKyunXrpu7du2vmzJk6deqUa1USAABouOpsgLn77rt17NgxTZ48WVlZWbr66qu1cuXKMhN7fcFut2vKlCllhqTqG9pZfzSENkq0sz5pCG2UaKcv+ZnzrVMCAACoY+rkHBgAAICKEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGD+z/HjxzV06FA5HA6FhYVp5MiROnny5Hkfl56ert/85jdq3LixHA6HevfurTNnKriicC2rajulX0/vPGDAAPn5+enjjz/2bUUvgLdtPH78uB555BF16NBBwcHBuvTSS/Xoo4+6LghaV8yePVutW7dWUFCQ4uLitGXLlgrLL1q0SB07dlRQUJC6du2q5cuX11BNL4w37fzrX/+qXr16qVmzZmrWrJkSEhLO+7rUFd6+nyU++OAD+fn5adCgQb6tYDXwto05OTlKSUlRy5YtZbfbdfnll1vic+ttO2fOnOn6vomJidG4ceN09mwFV3yvAzZs2KBbbrlF0dHRlf4NWLduna699lrZ7Xa1b99ec+fOrd5KGRhjjOnfv7+56qqrzKZNm8znn39u2rdvb+69994KH/Pll18ah8NhUlNTzY4dO8x3331nFixYYM6ePVtDtfZeVdpZ4pVXXjEDBgwwkszixYt9W9EL4G0bt2/fbm6//XazZMkSs2/fPrNmzRpz2WWXmcGDB9dgrSv2wQcfGJvNZt5++22zc+dOc//995uwsDCTnZ3tsfwXX3xhAgICzIwZM8yuXbvMpEmTTGBgoNm+fXsN19w73rZzyJAhZvbs2Wbbtm1m9+7dZsSIESY0NNT88MMPNVxz73jbzhKZmZnm4osvNr169TK33nprzVS2irxtY15enunWrZsZOHCg2bhxo8nMzDTr1q0zGRkZNVxz73jbzvnz5xu73W7mz59vMjMzzapVq0zLli3NuHHjarjm3lm+fLl55plnzEcffVSp34ADBw6YkJAQM378eLNr1y4za9YsExAQYFauXFltdSLAGGN27dplJJmvvvrKtW3FihXGz8/P/Pvf/y73cXFxcWbSpEk1UcVqUdV2GmPMtm3bzMUXX2x+/PHHOh1gLqSN51q4cKGx2WymoKDAF9X0Wvfu3U1KSorrflFRkYmOjjapqakey991110mKSnJbVtcXJx54IEHfFrPC+VtO0srLCw0TZs2NfPmzfNVFatFVdpZWFhorr/+evPWW2+Z5OTkOh9gvG3jn//8Z9O2bVuTn59fU1WsFt62MyUlxfzmN79x2zZ+/Hhzww03+LSe1akyvwFPPvmk6dKli9u2u+++2yQmJlZbPRhC0q/DQGFhYerWrZtrW0JCgvz9/bV582aPjzl69Kg2b96siIgIXX/99YqMjFSfPn20cePGmqq216rSTkk6ffq0hgwZotmzZ5d7Mc26oqptLC03N1cOh0ONGtX+yarz8/O1detWJSQkuLb5+/srISFB6enpHh+Tnp7uVl6SEhMTyy1fF1SlnaWdPn1aBQUFat68ua+qecGq2s5nn31WERERGjlyZE1U84JUpY1LlixRfHy8UlJSFBkZqSuuuEIvvPCCioqKaqraXqtKO6+//npt3brVNcx04MABLV++XAMHDqyROteUmvgOqv1v5zogKytLERERbtsaNWqk5s2bKysry+NjDhw4IEmaOnWqXn75ZV199dV699131bdvX+3YsUOXXXaZz+vtraq0U5LGjRun66+/Xrfeequvq3jBqtrGc/3000+aPn26Ro8e7Ysqeu2nn35SUVFRmctoREZG6rvvvvP4mKysLI/lK/sa1IaqtLO0p556StHR0WW+OOuSqrRz48aN+tvf/qaMjIwaqOGFq0obDxw4oLVr12ro0KFavny59u3bp4cfflgFBQWaMmVKTVTba1Vp55AhQ/TTTz+pZ8+eMsaosLBQDz74oJ5++umaqHKNKe87yOl06syZMwoODr7g56jXPTATJkyQn59fhbfKfjGWVlxcLEl64IEHdN999+maa67Rq6++qg4dOujtt9+uzmacly/buWTJEq1du1YzZ86s3kp7yZdtPJfT6VRSUpI6d+6sqVOnXnjFUWNefPFFffDBB1q8eLGCgoJquzrV5sSJExo2bJj++te/qkWLFrVdHZ8pLi5WRESE3nzzTcXGxuruu+/WM888ozlz5tR21arVunXr9MILL+iNN97QN998o48++kjLli3T9OnTa7tqllOve2Aee+wxjRgxosIybdu2VVRUlI4ePeq2vbCwUMePHy93yKRly5aSpM6dO7tt79Spkw4fPlz1SleBL9u5du1a7d+/X2FhYW7bBw8erF69emndunUXUPPK82UbS5w4cUL9+/dX06ZNtXjxYgUGBl5otatFixYtFBAQoOzsbLft2dnZ5bYpKirKq/J1QVXaWeLll1/Wiy++qE8//VRXXnmlL6t5wbxt5/79+3Xw4EHdcsstrm0l/4Fq1KiR9uzZo3bt2vm20l6qynvZsmVLBQYGKiAgwLWtU6dOysrKUn5+vmw2m0/rXBVVaed//dd/adiwYRo1apQkqWvXrjp16pRGjx6tZ555Rv7+9aNfobzvIIfDUS29L1I9DzDh4eEKDw8/b7n4+Hjl5ORo69atio2NlfTrD3dxcbHi4uI8PqZ169aKjo7Wnj173Lb/61//0oABAy688l7wZTsnTJjg+kMr0bVrV7366qtuX6i+5ss2Sr/2vCQmJsput2vJkiV16n/wNptNsbGxWrNmjWvpbHFxsdasWaMxY8Z4fEx8fLzWrFmjsWPHuralpaUpPj6+BmpcNVVppyTNmDFDzz//vFatWuU296mu8radHTt21Pbt2922TZo0SSdOnNBrr72mmJiYmqi2V6ryXt5www16//33VVxc7PoR/9e//qWWLVvWyfAiVa2dp0+fLhNSSkKbqUfXVo6Pjy+zBL7av4OqbTqwxfXv399cc801ZvPmzWbjxo3msssuc1t6+8MPP5gOHTqYzZs3u7a9+uqrxuFwmEWLFpm9e/eaSZMmmaCgILNv377aaEKlVKWdpakOr0Iyxvs25ubmmri4ONO1a1ezb98+8+OPP7puhYWFtdUMNx988IGx2+1m7ty5ZteuXWb06NEmLCzMZGVlGWOMGTZsmJkwYYKr/BdffGEaNWpkXn75ZbN7924zZcoUyyyj9qadL774orHZbObDDz90e99OnDhRW02oFG/bWZoVViF528bDhw+bpk2bmjFjxpg9e/aYpUuXmoiICPPcc8/VVhMqxdt2TpkyxTRt2tT84x//MAcOHDCrV6827dq1M3fddVdtNaFSTpw4YbZt22a2bdtmJJlXXnnFbNu2zRw6dMgYY8yECRPMsGHDXOVLllE/8cQTZvfu3Wb27Nkso/aVn3/+2dx7772mSZMmxuFwmPvuu8/tSzAzM9NIMp999pnb41JTU80ll1xiQkJCTHx8vPn8889ruObeqWo7z1XXA4y3bfzss8+MJI+3zMzM2mmEB7NmzTKXXnqpsdlspnv37mbTpk2ufX369DHJyclu5RcuXGguv/xyY7PZTJcuXcyyZctquMZV4007W7Vq5fF9mzJlSs1X3Evevp/nskKAMcb7Nn755ZcmLi7O2O1207ZtW/P888/Xmf9EVMSbdhYUFJipU6eadu3amaCgIBMTE2Mefvhh88svv9R8xb1Q3vdkSduSk5NNnz59yjzm6quvNjabzbRt29a888471VonP2PqUZ8VAABoEOrHbCEAANCgEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDl/H/fb0v3t8YovAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPuJJREFUeJzt3Xl4FFWi/vE3CUknATohklUj+w6KRglRFhWGsOiI4goKeEFcAl7ABVCGxS1eZBQHUcZxARVHlquOsklkFQmgCFc2GZYAKiSgmDRLyHp+f/hLD529QzpJJd/P8/QDXXWq6pyuTvfbp05VeRljjAAAACzEu7orAAAA4C4CDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDAAAsBwCDDxi2rRp8vLycj5v2rSphg8f7vHtHj58WF5eXpo3b55z2vDhw9WgQQOPb7uAl5eXpk2bVmXbs7obbrhBN9xwQ6Wus/D7r7p44n1feJ3r1q2Tl5eX1q1b5/a6yvvaX8w23MHfDtxBgEGNtXz58hr7YVaT61ZXnDt3TtOmTfP4lypqtoULF+q+++5Tq1at5OXlVWogy8rK0oQJExQVFaWAgADFxsYqKSmp2LKbNm1St27dFBgYqIiICD322GM6c+aMh1qBiqhX3RVA3bBv3z55e7uXl5cvX645c+a4FRSaNGmizMxM+fr6ullD95RWt8zMTNWrx5+Wp507d07Tp0+XpCJfWpMnT9bEiROroVauKvK+d1ePHj2UmZkpPz8/t5ddtWqVB2pUtd58801t27ZN1157rX777bdSyw4fPlxLlizR2LFj1apVK82bN0/9+/fX2rVr1a1bN2e5HTt2qFevXmrXrp1eeeUV/fzzz5o5c6b279+vFStWeLpJKCc+ZVElbDabR9efm5ur/Px8+fn5yd/f36PbKkt1b78qnD9/Xn5+fsV+OZ89e1b169evhlr9R7169WpEiPT0+16SvL29K/yeq0joqWk++OADXXrppfL29lbHjh1LLLd161Z9/PHHevnll/XEE09IkoYOHaqOHTvqqaee0qZNm5xln376aTVq1Ejr1q2T3W6X9MehuwcffFCrVq1Snz59PNsolAuHkHDRNm7cqGuvvVb+/v5q0aKF/v73vxcpU/i4fU5OjqZPn65WrVrJ399fl1xyibp16+bszh0+fLjmzJkj6Y/j4gUP6T/jXGbOnKlZs2apRYsWstls2rNnT7FjYAocOnRI8fHxql+/vqKiovTss8/qwpuxl3Scv/A6S6tbwbTCPTPbt29Xv379ZLfb1aBBA/Xq1UubN292KTNv3jx5eXnpm2++0fjx4xUaGqr69evrtttu08mTJ0veASX45ZdfNGLECEVFRclms6lZs2Z65JFHlJ2d7fKa3HnnnQoJCVFgYKC6du2qZcuWuayn4HX5+OOPNXnyZF166aUKDAyUw+Fwji86ePCg+vfvr4YNG2rIkCGSpPz8fM2aNUsdOnSQv7+/wsPD9dBDD+n3338vtd7Z2dmaMmWKYmJiFBQUpPr166t79+5au3ats8zhw4cVGhoqSZo+fbpzHxS87sWNgcnNzdVzzz3nfL80bdpUTz/9tLKyslzKNW3aVDfffLM2btyoLl26yN/fX82bN9f777/v3g5Q0fe9O/vYGKPnn39el112mQIDA3XjjTdq9+7dRbZR+H07evRoNWjQQOfOnStS9t5771VERITy8vIkFT8G5ueff9bAgQNVv359hYWFady4cUVeo+LaVqDwOsuzPy9GdHR0uXq5lixZIh8fH40aNco5zd/fXyNGjFBycrJ++uknSZLD4VBSUpLuu+8+Z3iR/gg7DRo00KJFiyql3rh41f8TBZa2c+dO9enTR6GhoZo2bZpyc3M1depUhYeHl7rctGnTlJiYqJEjR6pLly5yOBz67rvv9P333+tPf/qTHnroIR07dkxJSUn64IMPil3He++9p/Pnz2vUqFGy2WwKCQlRfn5+sWXz8vLUt29fde3aVTNmzNDKlSs1depU5ebm6tlnn3WrzeWp24V2796t7t27y26366mnnpKvr6/+/ve/64YbbtD69esVGxvrUn7MmDFq1KiRpk6dqsOHD2vWrFkaPXq0Fi5cWO46Hjt2TF26dFF6erpGjRqltm3b6pdfftGSJUt07tw5+fn5KS0tTdddd53OnTunxx57TJdcconmz5+vP//5z1qyZIluu+02l3U+99xz8vPz0xNPPKGsrCznr/fc3FzFx8erW7dumjlzpgIDA52v07x58/TAAw/oscceU0pKil5//XVt375d33zzTYmH+RwOh95++23de++9evDBB3X69Gm98847io+P19atW9W5c2eFhobqzTff1COPPKLbbrtNt99+uyTpiiuuKPE1GTlypObPn6877rhDjz/+uLZs2aLExETt3btXn376qUvZAwcO6I477tCIESM0bNgwvfvuuxo+fLhiYmLUoUOHcu+HkpRnH0+ZMkXPP/+8+vfvr/79++v7779Xnz59XAJoce6++27NmTNHy5Yt05133umcfu7cOX3xxRcaPny4fHx8il02MzNTvXr10tGjR/XYY48pKipKH3zwgdasWVPhtpZnf1aF7du3q3Xr1i6hRJK6dOki6Y/DRtHR0dq5c6dyc3N1zTXXuJTz8/NT586dtX379iqpL8rBABdh4MCBxt/f3xw5csQ5bc+ePcbHx8dc+PZq0qSJGTZsmPP5lVdeaQYMGFDquhMSEkxxb9GUlBQjydjtdnPixIli57333nvOacOGDTOSzJgxY5zT8vPzzYABA4yfn585efKkMcaYtWvXGklm7dq1Za6zpLoZY4wkM3XqVOfzgQMHGj8/P3Pw4EHntGPHjpmGDRuaHj16OKe99957RpLp3bu3yc/Pd04fN26c8fHxMenp6cVurzhDhw413t7e5ttvvy0yr2DdY8eONZLM119/7Zx3+vRp06xZM9O0aVOTl5dnjPnP69K8eXNz7tw5l3UVvLYTJ050mf71118bSWbBggUu01euXFlkes+ePU3Pnj2dz3Nzc01WVpbLcr///rsJDw83//Vf/+WcdvLkySKvdYGpU6e67J8dO3YYSWbkyJEu5Z544gkjyaxZs8Y5rUmTJkaS2bBhg3PaiRMnjM1mM48//niRbZWm8Pu+vPv4xIkTxs/PzwwYMMCl3NNPP20kuayz8Ps2Pz/fXHrppWbQoEEudVm0aFGRdhV+7WfNmmUkmUWLFjmnnT171rRs2bLI30bhtpW0zvLuT2OK/u24q0OHDi7bLjzvpptuKjJ99+7dRpKZO3euMcaYxYsXF3mdCtx5550mIiKiwvVD5eIQEiosLy9PX375pQYOHKjLL7/cOb1du3aKj48vddng4GDt3r1b+/fvr/D2Bw0a5DyMUB6jR492/t/Ly0ujR49Wdna2vvrqqwrXoSx5eXlatWqVBg4cqObNmzunR0ZGavDgwdq4caMcDofLMqNGjXI5/NG9e3fl5eXpyJEj5dpmfn6+PvvsM91yyy1FfkVKcq57+fLl6tKli8vgxQYNGmjUqFE6fPiw9uzZ47LcsGHDFBAQUOw2H3nkEZfnixcvVlBQkP70pz/p119/dT5iYmLUoEGDUg8f+Pj4OHt38vPzderUKecv4u+//75cr0Fhy5cvlySNHz/eZfrjjz8uSUUOm7Vv317du3d3Pg8NDVWbNm106NChCm2/sLL28VdffaXs7GyNGTPGpdzYsWPLXLeXl5fuvPNOLV++3OWsmYULF+rSSy912d+FLV++XJGRkbrjjjuc0wIDA10Ou7jLE/uzIjIzM4sdk1QwfigzM9Pl35LKFsxH9SPAoMJOnjypzMxMtWrVqsi8Nm3alLrss88+q/T0dLVu3VqdOnXSk08+qR9++MGt7Tdr1qzcZb29vV0ChCS1bt1a0h/jKTzl5MmTOnfuXLGvR7t27ZSfn+889l7gwjAoSY0aNZKkMseOXLhNh8NR6oBGSTpy5EiJ9SqYf6GSXu969erpsssuc5m2f/9+ZWRkKCwsTKGhoS6PM2fO6MSJE6XWbf78+briiiuc46NCQ0O1bNkyZWRklLpcSY4cOSJvb2+1bNnSZXpERISCg4OLtLXwPpD+2A/l3QdlKWsfF9Sn8N9WaGios2xp7r77bmVmZurzzz+XJJ05c0bLly/XnXfeWer1cY4cOaKWLVsWKVPW33NZKnt/VkRAQECxY3nOnz/vnH/hvyWVLSnEo+oxBgbVokePHjp48KD+9a9/adWqVXr77bf16quvau7cuRo5cmS51lHZHyQlfbAXDHisKiWNTzAXDDiuDiW93jabrcggyvz8fIWFhWnBggXFLlNaz9mHH36o4cOHa+DAgXryyScVFhYmHx8fJSYm6uDBgxVvgErex4V5eh94ev1du3ZV06ZNtWjRIg0ePFhffPGFMjMzdffdd1fK+qXS/14ubJ8n96c7IiMj9csvvxSZfvz4cUlSVFSUs9yF0wuXLSiH6keAQYWFhoYqICCg2MNA+/btK3P5kJAQPfDAA3rggQd05swZ9ejRQ9OmTXMGmMq8kmp+fr4OHTrk7HWRpH//+9+S/jibQvrPr+D09HSXZYs7dFPeuoWGhiowMLDY1+PHH3+Ut7e3oqOjy7Wu8goNDZXdbteuXbtKLdekSZMS61Uwv6JatGihr776Stdff73bQXPJkiVq3ry5PvnkE5fXeerUqS7l3Hl/NGnSRPn5+dq/f7+zh0mS0tLSlJ6eflFt9YSC+uzfv9+l5/DkyZPl7gW666679Nprr8nhcGjhwoVq2rSpunbtWuZ2d+3aJWOMy+tb3PukUaNGRf5WpD/+Xi6sc3n3p6d17txZa9eulcPhcBnIu2XLFud8SerYsaPq1aun7777TnfddZezXHZ2tnbs2OEyDdWLQ0ioMB8fH8XHx+uzzz7T0aNHndP37t2rL7/8stRlC19wqkGDBmrZsqVLt23BtUSK+5CsiNdff935f2OMXn/9dfn6+qpXr16S/vjw9vHx0YYNG1yWe+ONN4qsq7x18/HxUZ8+ffSvf/3L5VBVWlqaPvroI3Xr1q3IWREXy9vbWwMHDtQXX3yh7777rsj8gl/5/fv319atW5WcnOycd/bsWb311ltq2rSp2rdvX+E63HXXXcrLy9Nzzz1XZF5ubm6pr1vBr/cLeyO2bNniUk9JzrOdyvP+6N+/vyRp1qxZLtNfeeUVSdKAAQPKXEdV6t27t3x9fTV79myX16Fw/Utz9913KysrS/Pnz9fKlSvL9cXbv39/HTt2TEuWLHFOO3funN56660iZVu0aKHNmze7nBW1dOnSIodEy7s/Pe2OO+5QXl6eS1uysrL03nvvKTY21vlDIigoSL1799aHH36o06dPO8t+8MEHOnPmjMuZXahe9MDgokyfPl0rV65U9+7d9eijjyo3N1ezZ89Whw4dSh3T0r59e91www2KiYlRSEiIvvvuOy1ZssRloG1MTIwk6bHHHlN8fLx8fHx0zz33VKie/v7+WrlypYYNG6bY2FitWLFCy5Yt09NPP+08nBEUFKQ777xTs2fPlpeXl1q0aKGlS5cWO17Dnbo9//zzSkpKUrdu3fToo4+qXr16+vvf/66srCzNmDGjQu0py4svvqhVq1apZ8+eGjVqlNq1a6fjx49r8eLF2rhxo4KDgzVx4kT985//VL9+/fTYY48pJCRE8+fPV0pKiv73f//3oq4g27NnTz300ENKTEzUjh071KdPH/n6+mr//v1avHixXnvtNZeBohe6+eab9cknn+i2227TgAEDlJKSorlz56p9+/Yug1IDAgLUvn17LVy4UK1bt1ZISIg6duxY7NifK6+8UsOGDdNbb72l9PR09ezZU1u3btX8+fM1cOBA3XjjjRVuqyeEhobqiSeeUGJiom6++Wb1799f27dv14oVK9S4ceNyrePqq69Wy5Yt9cwzzygrK6tch48efPBBvf766xo6dKi2bdumyMhIffDBB86weKGRI0dqyZIl6tu3r+666y4dPHhQH374oVq0aOFSrrz7s6I2bNjg/NFx8uRJnT17Vs8//7ykPw5V9+jRQ5IUGxurO++8U5MmTdKJEyfUsmVLzZ8/X4cPH9Y777zjss4XXnhB1113nfPv5+eff9Zf//pX9enTR3379r3oOqOSVNv5T6g11q9fb2JiYoyfn59p3ry5mTt3bpHTWAufcvn888+bLl26mODgYBMQEGDatm1rXnjhBZOdne0sk5uba8aMGWNCQ0ONl5eXc30FpzW//PLLRepS0mnU9evXNwcPHjR9+vQxgYGBJjw83EydOtV5qnCBkydPmkGDBpnAwEDTqFEj89BDD5ldu3YVWWdJdTOm+FNBv//+exMfH28aNGhgAgMDzY033mg2bdrkUqbgFNvCpz6XdHp3WY4cOWKGDh1qQkNDjc1mM82bNzcJCQkup7QePHjQ3HHHHSY4ONj4+/ubLl26mKVLlxa7/cWLFxfZRsFrW5K33nrLxMTEmICAANOwYUPTqVMn89RTT5ljx445yxQ+7TY/P9+8+OKLpkmTJsZms5mrrrrKLF261AwbNsw0adLEZf2bNm1yvvcufN0Lv/+MMSYnJ8dMnz7dNGvWzPj6+pro6GgzadIkc/78eZdyTZo0KfYU/8L1LI+STqMuzz7Oy8sz06dPN5GRkSYgIMDccMMNZteuXUXWWdr745lnnjGSTMuWLYutX3FtOnLkiPnzn/9sAgMDTePGjc1///d/O09/L7yNv/71r+bSSy81NpvNXH/99ea77767qP1Z3N9OWQr2dXGPwuvKzMw0TzzxhImIiDA2m81ce+21ZuXKlcWu9+uvvzbXXXed8ff3N6GhoSYhIcE4HA636gbP8jKmmkcGAgAAuIkxMAAAwHIYAwNYyJkzZ8ocNxAaGlriabqoHKmpqaXODwgIUFBQUBXVpvbJy8sr8/5fDRo0UIMGDaqoRqiJOIQEWMi0adM0ffr0UsukpKQ4Tw2HZ5R1CvewYcOKvaEoyufw4cNlXqhy6tSpRW6airqFHhjAQoYOHVrqpeClP64uC88quGt6SbjY2cWJiIgo8zUufGVt1D30wAAAAMthEC8AALCcWnsIKT8/X8eOHVPDhg0r9ZL0AADAc4wxOn36tKKiokq9oGatDTDHjh2r9HvMAACAqvHTTz8VudP9hWptgGnYsKGkP16Ayr7XDAAA8AyHw6Ho6Gjn93hJam2AKThsZLfbCTAAAFhMWcM/GMQLAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsx60Ak5iYqGuvvVYNGzZUWFiYBg4cqH379rmUueGGG+Tl5eXyePjhh13KHD16VAMGDFBgYKDCwsL05JNPKjc316XMunXrdPXVV8tms6lly5aaN29exVoIWETOyo1FHgCA4rkVYNavX6+EhARt3rxZSUlJysnJUZ8+fXT27FmXcg8++KCOHz/ufMyYMcM5Ly8vTwMGDFB2drY2bdqk+fPna968eZoyZYqzTEpKigYMGKAbb7xRO3bs0NixYzVy5Eh9+eWXF9lcAABQG3gZY0xFFz558qTCwsK0fv169ejRQ9IfPTCdO3fWrFmzil1mxYoVuvnmm3Xs2DGFh4dLkubOnasJEybo5MmT8vPz04QJE7Rs2TLt2rXLudw999yj9PR0rVy5slx1czgcCgoKUkZGhux2e0WbCFSZ4npcfPt2q4aaAED1Ke/390WNgcnIyJAkhYSEuExfsGCBGjdurI4dO2rSpEk6d+6cc15ycrI6derkDC+SFB8fL4fDod27dzvL9O7d22Wd8fHxSk5OLrEuWVlZcjgcLg8AAFA71avogvn5+Ro7dqyuv/56dezY0Tl98ODBatKkiaKiovTDDz9owoQJ2rdvnz755BNJUmpqqkt4keR8npqaWmoZh8OhzMxMBQQEFKlPYmKipk+fXtHmAAAAC6lwgElISNCuXbu0caNrt/eoUaOc/+/UqZMiIyPVq1cvHTx4UC1atKh4TcswadIkjR8/3vnc4XAoOjraY9sDLhaDdAGg4ip0CGn06NFaunSp1q5dq8suu6zUsrGxsZKkAwcOSJIiIiKUlpbmUqbgeURERKll7HZ7sb0vkmSz2WS3210eAACgdnIrwBhjNHr0aH366adas2aNmjVrVuYyO3bskCRFRkZKkuLi4rRz506dOHHCWSYpKUl2u13t27d3llm9erXLepKSkhQXF+dOdQEAQC3lVoBJSEjQhx9+qI8++kgNGzZUamqqUlNTlZmZKUk6ePCgnnvuOW3btk2HDx/W559/rqFDh6pHjx664oorJEl9+vRR+/btdf/99+v//u//9OWXX2ry5MlKSEiQzWaTJD388MM6dOiQnnrqKf3444964403tGjRIo0bN66Smw8AAKzIrdOovby8ip3+3nvvafjw4frpp5903333adeuXTp79qyio6N12223afLkyS6HdI4cOaJHHnlE69atU/369TVs2DC99NJLqlfvP0Ny1q1bp3HjxmnPnj267LLL9Je//EXDhw8vd8M4jRo1XXnGwHAaNYC6przf3xd1HZiajACDmo4AAwBFVcl1YAAAAKoDAQYAAFgOAQYAAFhOhS9kB8DzCo+TYUwMAPyBHhgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA59aq7AgCkw+krikxrGtyvGmoCANZADwwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAc7kYNVIGclRuruwoAUKvQAwMAACyHAAMAACyHQ0iAhRQ+FOXbt1s11QQAqhc9MAAAwHLogQFqqMPpK1yeNw3uV001AYCax60emMTERF177bVq2LChwsLCNHDgQO3bt8+lzPnz55WQkKBLLrlEDRo00KBBg5SWluZS5ujRoxowYIACAwMVFhamJ598Urm5uS5l1q1bp6uvvlo2m00tW7bUvHnzKtZCAABQ67gVYNavX6+EhARt3rxZSUlJysnJUZ8+fXT27FlnmXHjxumLL77Q4sWLtX79eh07dky33367c35eXp4GDBig7Oxsbdq0SfPnz9e8efM0ZcoUZ5mUlBQNGDBAN954o3bs2KGxY8dq5MiR+vLLLyuhyQAAwOq8jDGmogufPHlSYWFhWr9+vXr06KGMjAyFhobqo48+0h133CFJ+vHHH9WuXTslJyera9euWrFihW6++WYdO3ZM4eHhkqS5c+dqwoQJOnnypPz8/DRhwgQtW7ZMu3btcm7rnnvuUXp6ulauXFmuujkcDgUFBSkjI0N2u72iTQQqRVnXgSl8uKg4xR1CYhAvgNqmvN/fFzWINyMjQ5IUEhIiSdq2bZtycnLUu3dvZ5m2bdvq8ssvV3JysiQpOTlZnTp1coYXSYqPj5fD4dDu3budZS5cR0GZgnUUJysrSw6Hw+UBAABqpwoHmPz8fI0dO1bXX3+9OnbsKElKTU2Vn5+fgoODXcqGh4crNTXVWebC8FIwv2BeaWUcDocyMzOLrU9iYqKCgoKcj+jo6Io2DQAA1HAVDjAJCQnatWuXPv7448qsT4VNmjRJGRkZzsdPP/1U3VUCAAAeUqHTqEePHq2lS5dqw4YNuuyyy5zTIyIilJ2drfT0dJdemLS0NEVERDjLbN261WV9BWcpXVim8JlLaWlpstvtCggIKLZONptNNputIs0BAAAW41YPjDFGo0eP1qeffqo1a9aoWbNmLvNjYmLk6+ur1atXO6ft27dPR48eVVxcnCQpLi5OO3fu1IkTJ5xlkpKSZLfb1b59e2eZC9dRUKZgHQAAoG5zqwcmISFBH330kf71r3+pYcOGzjErQUFBCggIUFBQkEaMGKHx48crJCREdrtdY8aMUVxcnLp27SpJ6tOnj9q3b6/7779fM2bMUGpqqiZPnqyEhARnD8rDDz+s119/XU899ZT+67/+S2vWrNGiRYu0bNmySm4+AACwIrd6YN58801lZGTohhtuUGRkpPOxcOFCZ5lXX31VN998swYNGqQePXooIiJCn3zyiXO+j4+Pli5dKh8fH8XFxem+++7T0KFD9eyzzzrLNGvWTMuWLVNSUpKuvPJK/fWvf9Xbb7+t+Pj4SmgyAACwuou6DkxNxnVgUJNwHRgAKJ8quQ4MAABAdSDAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy6nQzRwBXJzyXLgOAFAyemAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDl1KvuCgCouJyVG4tM8+3brRpqAgBVix4YAABgOQQYAABgOQQYAABgOYyBATyguLEpAIDKQw8MAACwHAIMAACwHA4hARZxOH1FkWlNg/tVQ00AoPrRAwMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHmzkCHlbcTRgBABeHHhgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5DOIFapmclRtdnvv27VZNNQEAz6EHBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWI7bAWbDhg265ZZbFBUVJS8vL3322Wcu84cPHy4vLy+XR9++fV3KnDp1SkOGDJHdbldwcLBGjBihM2fOuJT54Ycf1L17d/n7+ys6OlozZsxwv3UAAKBWcjvAnD17VldeeaXmzJlTYpm+ffvq+PHjzsc///lPl/lDhgzR7t27lZSUpKVLl2rDhg0aNWqUc77D4VCfPn3UpEkTbdu2TS+//LKmTZumt956y93qAgCAWsjtC9n169dP/fr1K7WMzWZTREREsfP27t2rlStX6ttvv9U111wjSZo9e7b69++vmTNnKioqSgsWLFB2drbeffdd+fn5qUOHDtqxY4deeeUVl6ADAADqJo+MgVm3bp3CwsLUpk0bPfLII/rtt9+c85KTkxUcHOwML5LUu3dveXt7a8uWLc4yPXr0kJ+fn7NMfHy89u3bp99//73YbWZlZcnhcLg8AABA7VTpAaZv3756//33tXr1av3P//yP1q9fr379+ikvL0+SlJqaqrCwMJdl6tWrp5CQEKWmpjrLhIeHu5QpeF5QprDExEQFBQU5H9HR0ZXdNAAAUENU+r2Q7rnnHuf/O3XqpCuuuEItWrTQunXr1KtXr8renNOkSZM0fvx453OHw0GIAQCglvL4adTNmzdX48aNdeDAAUlSRESETpw44VImNzdXp06dco6biYiIUFpamkuZguclja2x2Wyy2+0uDwAAUDt5PMD8/PPP+u233xQZGSlJiouLU3p6urZt2+Yss2bNGuXn5ys2NtZZZsOGDcrJyXGWSUpKUps2bdSoUSNPVxkAANRwbgeYM2fOaMeOHdqxY4ckKSUlRTt27NDRo0d15swZPfnkk9q8ebMOHz6s1atX69Zbb1XLli0VHx8vSWrXrp369u2rBx98UFu3btU333yj0aNH65577lFUVJQkafDgwfLz89OIESO0e/duLVy4UK+99prLISIAAFB3uR1gvvvuO1111VW66qqrJEnjx4/XVVddpSlTpsjHx0c//PCD/vznP6t169YaMWKEYmJi9PXXX8tmsznXsWDBArVt21a9evVS//791a1bN5drvAQFBWnVqlVKSUlRTEyMHn/8cU2ZMoVTqAEAgCTJyxhjqrsSnuBwOBQUFKSMjAzGw6DK5azc6Pz/4fQVHttO0+DSr8kkSb59u3ls+wBQ2cr7/c29kAAAgOVU+mnUAKpO4d6d8vTIAEBtQIABKsGFh4wAAJ7HISQAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5BBgAAGA5nEYN1HLFneLN1XkBWB09MAAAwHIIMAAAwHI4hATUQYUPK3FICYDV0AMDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsh3shAbXI4fQVRaY1De5XDTUBAM8iwABuKnwjRABA1eMQEgAAsBx6YIBKVtxhHABA5aIHBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA4BBgAAWE696q4AgOqXs3JjkWm+fbtVQ00AoHwIMEAtdzh9hcvzpsH9qqkmAFB5OIQEAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsh+vAAChW4YvbcWE7ADUJAQaoYwpf2E7i4nYArIdDSAAAwHLogQHKUNx9ggAA1YseGAAAYDkEGAAAYDluB5gNGzbolltuUVRUlLy8vPTZZ5+5zDfGaMqUKYqMjFRAQIB69+6t/fv3u5Q5deqUhgwZIrvdruDgYI0YMUJnzpxxKfPDDz+oe/fu8vf3V3R0tGbMmOF+6wAAQK3kdoA5e/asrrzySs2ZM6fY+TNmzNDf/vY3zZ07V1u2bFH9+vUVHx+v8+fPO8sMGTJEu3fvVlJSkpYuXaoNGzZo1KhRzvkOh0N9+vRRkyZNtG3bNr388suaNm2a3nrrrQo0EQAA1DZuD+Lt16+f+vUr/pRLY4xmzZqlyZMn69Zbb5Ukvf/++woPD9dnn32me+65R3v37tXKlSv17bff6pprrpEkzZ49W/3799fMmTMVFRWlBQsWKDs7W++++678/PzUoUMH7dixQ6+88opL0AEAAHVTpY6BSUlJUWpqqnr37u2cFhQUpNjYWCUnJ0uSkpOTFRwc7AwvktS7d295e3try5YtzjI9evSQn5+fs0x8fLz27dun33//vdhtZ2VlyeFwuDwAAEDtVKmnUaempkqSwsPDXaaHh4c756WmpiosLMy1EvXqKSQkxKVMs2bNiqyjYF6jRo2KbDsxMVHTp0+vnIYA5VTcReEAAJ5Xa85CmjRpkjIyMpyPn376qbqrBAAAPKRSA0xERIQkKS0tzWV6Wlqac15ERIROnDjhMj83N1enTp1yKVPcOi7cRmE2m012u93lAQAAaqdKDTDNmjVTRESEVq9e7ZzmcDi0ZcsWxcXFSZLi4uKUnp6ubdu2OcusWbNG+fn5io2NdZbZsGGDcnJynGWSkpLUpk2bYg8fAQCAusXtMTBnzpzRgQMHnM9TUlK0Y8cOhYSE6PLLL9fYsWP1/PPPq1WrVmrWrJn+8pe/KCoqSgMHDpQktWvXTn379tWDDz6ouXPnKicnR6NHj9Y999yjqKgoSdLgwYM1ffp0jRgxQhMmTNCuXbv02muv6dVXX62cVgNwG3enBlCTuB1gvvvuO914443O5+PHj5ckDRs2TPPmzdNTTz2ls2fPatSoUUpPT1e3bt20cuVK+fv7O5dZsGCBRo8erV69esnb21uDBg3S3/72N+f8oKAgrVq1SgkJCYqJiVHjxo01ZcoUTqEGPKTwYGTuTg2gpvMyxpjqroQnOBwOBQUFKSMjg/EwuCil3cyxtp6FVJ4AQw8MAE8o7/d3rTkLCQAA1B0EGAAAYDkEGAAAYDkEGAAAYDmVeisBwOpKG7ALV8W9VgzsBVBV6IEBAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWQ4ABAACWw4XsAFSawhe348J2ADyFAAOgiMPpK4pMaxrcrxpqAgDFI8AAqFL00gCoDIyBAQAAlkOAAQAAlsMhJMANxY0NAQBUPXpgAACA5RBgAACA5XAICYDHFD7jCAAqCz0wAADAcuiBAVAuhQcwV9aF7bguDICKoAcGAABYDgEGAABYDgEGAABYDgEGAABYDgEGAABYDgEGAABYDgEGAABYDteBQZ3GlWJrnuL2CdeGAVAYPTAAAMByCDAAAMByCDAAAMByGAMDoNJ46n5JAFAYAQZAhRQOKwBQlTiEBAAALIcAAwAALIdDSABqvMLXhuG6MAAIMEAJGOMBADUXh5AAAIDl0AMDwHK43QAAemAAAIDl0AMDoEpxsTsAlYEeGAAAYDkEGAAAYDkEGAAAYDmMgUGdUtzZK/AcrqUDwFPogQEAAJZDgAEAAJbDISQA1aq4w0ycWg2gLAQYALUSN4AEajcCDIBagQHaQN3CGBgAAGA5BBgAAGA5HEIC/j+uWQIA1kEPDAAAsBx6YADUWZypBFhXpffATJs2TV5eXi6Ptm3bOuefP39eCQkJuuSSS9SgQQMNGjRIaWlpLus4evSoBgwYoMDAQIWFhenJJ59Ubm5uZVcVAABYlEd6YDp06KCvvvrqPxup95/NjBs3TsuWLdPixYsVFBSk0aNH6/bbb9c333wjScrLy9OAAQMUERGhTZs26fjx4xo6dKh8fX314osveqK6AOoATrMGahePBJh69eopIiKiyPSMjAy98847+uijj3TTTTdJkt577z21a9dOmzdvVteuXbVq1Srt2bNHX331lcLDw9W5c2c999xzmjBhgqZNmyY/Pz9PVBkAAFiIRwbx7t+/X1FRUWrevLmGDBmio0ePSpK2bdumnJwc9e7d21m2bdu2uvzyy5WcnCxJSk5OVqdOnRQeHu4sEx8fL4fDod27d5e4zaysLDkcDpcHALgjZ+XGIg8ANVOl98DExsZq3rx5atOmjY4fP67p06ere/fu2rVrl1JTU+Xn56fg4GCXZcLDw5WamipJSk1NdQkvBfML5pUkMTFR06dPr9zGAKgWhU9pL+7eSOUpA6D2qvQA06/ffz5ErrjiCsXGxqpJkyZatGiRAgICKntzTpMmTdL48eOdzx0Oh6Kjoz22PQBVh2v0ACjM46dRBwcHq3Xr1jpw4ID+9Kc/KTs7W+np6S69MGlpac4xMxEREdq6davLOgrOUipuXE0Bm80mm81W+Q2AZdH9DwC1l8cvZHfmzBkdPHhQkZGRiomJka+vr1avXu2cv2/fPh09elRxcXGSpLi4OO3cuVMnTpxwlklKSpLdblf79u09XV0AFnU4fUWRB4Daq9J7YJ544gndcsstatKkiY4dO6apU6fKx8dH9957r4KCgjRixAiNHz9eISEhstvtGjNmjOLi4tS1a1dJUp8+fdS+fXvdf//9mjFjhlJTUzV58mQlJCTQwwIAACR5IMD8/PPPuvfee/Xbb78pNDRU3bp10+bNmxUaGipJevXVV+Xt7a1BgwYpKytL8fHxeuONN5zL+/j4aOnSpXrkkUcUFxen+vXra9iwYXr22Wcru6oAAMCivIwxpror4QkOh0NBQUHKyMiQ3W6v7uqgGrg7BoZDDrWPJ85M4nYDgGeV9/ubmzkCAADL4WaOqJPobUFFFdezR68MUPXogQEAAJZDgAEAAJZDgAEAAJbDGBgAtVZV3S+p8LgYxsQAnkeAQa3BrQNQluIGb3MTSMCaOIQEAAAshx4YAKhkFekN5LAT4B56YAAAgOUQYAAAgOUQYAAAgOUwBgZAnVZVp1oDqFz0wAAAAMuhBwYALlCeG33SSwNUP3pgAACA5dADgzqhPL+qAQDWQQ8MAACwHHpgAMADuO8S4FkEGACoAcpz+4HCtxsobhluSYC6gkNIAADAcuiBAQA3Vdeg8IrcJBKoreiBAQAAlkMPDABUEW5bAFQeAgwAWAxBCCDAwKJKGwvARetQm7j7fi78t8FZSaitGAMDAAAshx4YAKhB6EEEyocAAwC1GBe7Q21FgAGAOoZxMqgNCDCwBAbtAjULPTuobgziBQAAlkMPDABUk8rqPSzvesp7vRh6V2AFBBgAqOMq6x5LjK1BVeIQEgAAsBx6YAAAZeJO2KhpCDAAUEcVN3aG+yrBKggwAFBHlGewLzeKhFUQYAAAHsHZTPAkAgxqHI61AzWHpw8zceYSKooAA0vhqruANXjyUBQ9O5AIMKgB6HEBrI0fFqgOBBgAQJUp6wcLP2hQXgQYAIBb6HFBTUCAAQDUeoybqX0IMAAAyyjprCjOZqp7CDAAAI/jqr+obAQY1GgcawdqL0/+fTMYuPYjwKDK8cECoCbgsJO1EWAAAChBWT+4CD3VhwADALC0yrrq7/6Pn6mU9aBqEGDgUe4cLmK8C4DKwIDhuoEAAwCo9Tz1A6k8P9I4zOQZBBgAADyIi+h5BgEGlYpDRgBqi6o8FEXIcR8BBhVGWAFQ11U05JTn85PTvEtHgIF1Gcl22kc+Od7K881XVsM8yau6K1Wz5MsoxfuUHF5ZshubmuWHyLsKXqTq2i7gaRX5MVaeZSor9NSlkEOAQbnVpAvQBZyqp+CjAaqX7e2cluuXr/TLM5UZkluNNas5dvqk6nPfvcrwPu+cFpTvrz/ntFOnvIhat12gpqjOHueKfE5bNfR4GWNMdVeiJHPmzNHLL7+s1NRUXXnllZo9e7a6dOlSrmUdDoeCgoKUkZEhu93u4ZrWTuX9Q6jqP9aAU/V0yYFASZLXBb/qjf54K//W8lydDzE7fVL1gd/2P55c2PHx///a78++yiNhorq2C9QFxfXSVMY1cGpagCnv93eN7YFZuHChxo8fr7lz5yo2NlazZs1SfHy89u3bp7CwsOquXp1WreNZjBR8NECSa3gpeG5kFHw0QJmNTtfZw0n5Mvrcd+8fTwq/Bl6SjPS57151yAuv1MM61bVdoK6oqlPBa1qgKUmN7YGJjY3Vtddeq9dff12SlJ+fr+joaI0ZM0YTJ04sc3l6YEpXU3tXymJz+CjsxwZlljvR9oyy7HlVUKOa56D3b/q7/9Yyyz10vota5F9i+e0CcE9N76WxdA9Mdna2tm3bpkmTJjmneXt7q3fv3kpOTi52maysLGVlZTmfZ2RkSPrjhbCynCTX9vr+Ka5ImYNLni0y7fKgP7k8P5qRVLkVqyZ5Dl85ss6XWe6cI0eZ9XKqoEY1T6rPaeXklx3eUrNOKzyv7DBY07cLwD27zn3m/kLvfubyvVLcd1FlKfjeLqt/pUYGmF9//VV5eXkKDw93mR4eHq4ff/yx2GUSExM1ffr0ItOjo6M9Usea76/VXQHUcMv0Q53aLoCLVbXfK6dPn1ZQUFCJ82tkgKmISZMmafz48c7n+fn5OnXqlC655BJ5eV388XaHw6Ho6Gj99NNPtfaQFG2sHepCG6W60U7aWDvQRvcYY3T69GlFRUWVWq5GBpjGjRvLx8dHaWlpLtPT0tIUEVH8GQw2m002m81lWnBwcKXXzW6319o3YAHaWDvUhTZKdaOdtLF2oI3lV1rPSwHvMktUAz8/P8XExGj16tXOafn5+Vq9erXi4jx33A0AAFhDjeyBkaTx48dr2LBhuuaaa9SlSxfNmjVLZ8+e1QMPPFDdVQMAANWsxgaYu+++WydPntSUKVOUmpqqzp07a+XKlUUG9lYVm82mqVOnFjlMVZvQxtqhLrRRqhvtpI21A230jBp7HRgAAICS1MgxMAAAAKUhwAAAAMshwAAAAMshwAAAAMshwAAAAMshwJTi1KlTGjJkiOx2u4KDgzVixAidOXOmzOWSk5N10003qX79+rLb7erRo4cyMzOroMbuq2gbpT8u99yvXz95eXnps88+82xFL4K7bTx16pTGjBmjNm3aKCAgQJdffrkee+wx5w1Ca4I5c+aoadOm8vf3V2xsrLZuLf0u0IsXL1bbtm3l7++vTp06afny5VVU04pzp43/+Mc/1L17dzVq1EiNGjVS7969y3xNagp392WBjz/+WF5eXho4cKBnK1gJ3G1jenq6EhISFBkZKZvNptatW9f496y7bZw1a5bzMyY6Olrjxo3T+fNl36i2OmzYsEG33HKLoqKiyv15v27dOl199dWy2Wxq2bKl5s2bV/kVMyhR3759zZVXXmk2b95svv76a9OyZUtz7733lrrMpk2bjN1uN4mJiWbXrl3mxx9/NAsXLjTnz5+volq7pyJtLPDKK6+Yfv36GUnm008/9WxFL4K7bdy5c6e5/fbbzeeff24OHDhgVq9ebVq1amUGDRpUhbUu2ccff2z8/PzMu+++a3bv3m0efPBBExwcbNLS0oot/8033xgfHx8zY8YMs2fPHjN58mTj6+trdu7cWcU1Lz932zh48GAzZ84cs337drN3714zfPhwExQUZH7++ecqrrl73G1ngZSUFHPppZea7t27m1tvvbVqKltB7rYxKyvLXHPNNaZ///5m48aNJiUlxaxbt87s2LGjimtefu62ccGCBcZms5kFCxaYlJQU8+WXX5rIyEgzbty4Kq55+Sxfvtw888wz5pNPPinX5/2hQ4dMYGCgGT9+vNmzZ4+ZPXu28fHxMStXrqzUehFgSrBnzx4jyXz77bfOaStWrDBeXl7ml19+KXG52NhYM3ny5Kqo4kWraBuNMWb79u3m0ksvNcePH6/RAeZi2nihRYsWGT8/P5OTk+OJarqlS5cuJiEhwfk8Ly/PREVFmcTExGLL33XXXWbAgAEu02JjY81DDz3k0XpeDHfbWFhubq5p2LChmT9/vqeqWCkq0s7c3Fxz3XXXmbffftsMGzasxgcYd9v45ptvmubNm5vs7OyqquJFc7eNCQkJ5qabbnKZNn78eHP99dd7tJ6VoTyf90899ZTp0KGDy7S7777bxMfHV2pdOIRUguTkZAUHB+uaa65xTuvdu7e8vb21ZcuWYpc5ceKEtmzZorCwMF133XUKDw9Xz549tXHjxqqqtlsq0kZJOnfunAYPHqw5c+aUeHPNmqKibSwsIyNDdrtd9epV78Wrs7OztW3bNvXu3ds5zdvbW71791ZycnKxyyQnJ7uUl6T4+PgSy1e3irSxsHPnziknJ0chISGequZFq2g7n332WYWFhWnEiBFVUc2LUpE2fv7554qLi1NCQoLCw8PVsWNHvfjii8rLy6uqarulIm287rrrtG3bNudhpkOHDmn58uXq379/ldTZ06rqM6fG3kqguqWmpiosLMxlWr169RQSEqLU1NRilzl06JAkadq0aZo5c6Y6d+6s999/X7169dKuXbvUqlUrj9fbHRVpoySNGzdO1113nW699VZPV/GiVbSNF/r111/13HPPadSoUZ6oolt+/fVX5eXlFbmlRnh4uH788cdil0lNTS22fHnbX9Uq0sbCJkyYoKioqCIfojVJRdq5ceNGvfPOO9qxY0cV1PDiVaSNhw4d0po1azRkyBAtX75cBw4c0KOPPqqcnBxNnTq1Kqrtloq0cfDgwfr111/VrVs3GWOUm5urhx9+WE8//XRVVNnjSvrMcTgcyszMVEBAQKVsp871wEycOFFeXl6lPsr7IVlYfn6+JOmhhx7SAw88oKuuukqvvvqq2rRpo3fffbcym1EqT7bx888/15o1azRr1qzKrbSbPNnGCzkcDg0YMEDt27fXtGnTLr7i8LiXXnpJH3/8sT799FP5+/tXd3UqzenTp3X//ffrH//4hxo3blzd1fGY/Px8hYWF6a233lJMTIzuvvtuPfPMM5o7d251V63SrFu3Ti+++KLeeOMNff/99/rkk0+0bNkyPffcc9VdNUupcz0wjz/+uIYPH15qmebNmysiIkInTpxwmZ6bm6tTp06VeNgkMjJSktS+fXuX6e3atdPRo0crXmk3ebKNa9as0cGDBxUcHOwyfdCgQerevbvWrVt3ETUvP0+2scDp06fVt29fNWzYUJ9++ql8fX0vttoXrXHjxvLx8VFaWprL9LS0tBLbExER4Vb56laRNhaYOXOmXnrpJX311Ve64oorPFnNi+ZuOw8ePKjDhw/rlltucU4r+NFUr1497du3Ty1atPBspd1UkX0ZGRkpX19f+fj4OKe1a9dOqampys7Olp+fn0fr7K6KtPEvf/mL7r//fo0cOVKS1KlTJ509e1ajRo3SM888I29va/ctlPSZY7fbK633RaqDASY0NFShoaFllouLi1N6erq2bdummJgYSX98eefn5ys2NrbYZZo2baqoqCjt27fPZfq///1v9evX7+IrX06ebOPEiROdf3QFOnXqpFdffdXlg9XTPNlG6Y+el/j4eNlsNn3++ec15pe8n5+fYmJitHr1aufps/n5+Vq9erVGjx5d7DJxcXFavXq1xo4d65yWlJSkuLi4Kqix+yrSRkmaMWOGXnjhBX355ZcuY55qKnfb2bZtW+3cudNl2uTJk3X69Gm99tprio6Oropqu6Ui+/L666/XRx99pPz8fOcX+b///W9FRkbWuPAiVayN586dKxJSCgKbqQX3V46Liyty2rtHPnMqdUhwLdO3b19z1VVXmS1btpiNGzeaVq1auZx++/PPP5s2bdqYLVu2OKe9+uqrxm63m8WLF5v9+/ebyZMnG39/f3PgwIHqaEKZKtLGwlSDz0Iyxv02ZmRkmNjYWNOpUydz4MABc/z4cecjNze3uprh9PHHHxubzWbmzZtn9uzZY0aNGmWCg4NNamqqMcaY+++/30ycONFZ/ptvvjH16tUzM2fONHv37jVTp061xGnU7rTxpZdeMn5+fmbJkiUu++v06dPV1YRycbedhVnhLCR323j06FHTsGFDM3r0aLNv3z6zdOlSExYWZp5//vnqakKZ3G3j1KlTTcOGDc0///lPc+jQIbNq1SrTokULc9ddd1VXE0p1+vRps337drN9+3Yjybzyyitm+/bt5siRI8YYYyZOnGjuv/9+Z/mC06iffPJJs3fvXjNnzhxOo65qv/32m7n33ntNgwYNjN1uNw888IDLB2JKSoqRZNauXeuyXGJiornssstMYGCgiYuLM19//XUV17z8KtrGC9X0AONuG9euXWskFftISUmpnkYUMnv2bHP55ZcbPz8/06VLF7N582bnvJ49e5phw4a5lF+0aJFp3bq18fPzMx06dDDLli2r4hq7z502NmnSpNj9NXXq1KqvuJvc3ZcXskKAMcb9Nm7atMnExsYam81mmjdvbl544YUa8eOhNO60MScnx0ybNs20aNHC+Pv7m+joaPPoo4+a33//veorXg4lfSYWtGnYsGGmZ8+eRZbp3Lmz8fPzM82bNzfvvfdepdfLy5ha0F8FAADqFGuPFAIAAHUSAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFgOAQYAAFjO/wMnlro/iWuhBwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQU9JREFUeJzt3XlYVHX///EXO7gAYgqSirikoqa5k2u33GKaRWlpWS6pdBvkVlaWuyalaa5fzRa1O71Tu9NcSXLN3Ldyy7zNrQzwTmFyQ2DO749+nNsR3AdHjs/HdZ3rYs7nc855f+YMw4uzzLgZhmEIAADAYtxdXQAAAEB+IOQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQg3w0bNkxubm7m43Llyqlr1675vt2jR4/Kzc1Ns2bNMud17dpVRYoUyfdt53Bzc9OwYcPu2PYKuubNm6t58+ZOXeeVrz9XyY/X/ZXrXLt2rdzc3LR27dqbXteNPve3s42b4crfnbzeO66ma9euKleuXL7XhFtDyEGBsHz58rs2LNzNtd0rzp8/r2HDhuX7H17c/RYvXqzatWvL19dXZcuW1dChQ5WVleXqsuAinq4uAPeegwcPyt395vL18uXLNXXq1JsKE2FhYbpw4YK8vLxussKbc63aLly4IE9Pfs3y2/nz5zV8+HBJynU0YtCgQXrzzTddUJWjW3nd36ymTZvqwoUL8vb2vullV65cmQ8V3VkrVqxQTEyMmjdvrsmTJ2vPnj0aNWqUUlNTNW3atBtez51670D+490Xd5yPj0++rj8rK0t2u13e3t7y9fXN121dj6u3fydcvHhR3t7eef4BP3funAoXLuyCqv7H09Pzrgia+f26lyR3d/dbfs3dSjC627z22mt68MEHtXLlSnOf+/v7a/To0erTp4+qVKlyQ+txc3O7J3537wWcroJTbdiwQfXq1ZOvr68qVKigDz/8MFefK68jyMzM1PDhw1WpUiX5+vqqePHiaty4sZKSkiT9dc576tSpkv5688mZpP+dO3///fc1YcIEVahQQT4+Ptq/f/81z6v/8ssvio6OVuHChRUaGqoRI0bIMAyz/WrXHVy5zmvVljPvyiM8u3bt0qOPPip/f38VKVJELVq00ObNmx36zJo1S25ubvr+++/Vv39/lShRQoULF9aTTz6pU6dOXX0HXMVvv/2m7t27KzQ0VD4+PgoPD1evXr106dIlh+fk6aefVlBQkAoVKqSGDRtq2bJlDuvJeV6++OILDRo0SPfff78KFSokm81mXu90+PBhtW7dWkWLFlWnTp0kSXa7XRMmTFC1atXk6+ur4OBgvfTSSzpz5sw167506ZKGDBmiOnXqKCAgQIULF1aTJk20Zs0as8/Ro0dVokQJSdLw4cPNfZDzvOd1TU5WVpZGjhxpvl7KlSunt956SxkZGQ79ypUrp8cee0wbNmxQ/fr15evrq/Lly+uzzz67uR2g3K/7m9nHhmFo1KhRKl26tAoVKqRHHnlE+/bty7WNK1+38fHxKlKkiM6fP5+r77PPPquQkBBlZ2dLyvuanF9//VUxMTEqXLiwSpYsqX79+uV6jvIaW44r13kj+/NW7d+/X/v371dsbKxDqH355ZdlGIa+/PLLG17X1d47Fi1apOrVq8vX11fVq1fXwoULcy07dOhQubu7a9WqVQ7zY2Nj5e3trR9++OHmBobb4vp/b2AZe/bsUcuWLVWiRAkNGzZMWVlZGjp0qIKDg6+53LBhw5SQkKAePXqofv36stls2r59u3bu3Km///3veumll3Ty5EklJSXpn//8Z57rmDlzpi5evKjY2Fj5+PgoKChIdrs9z77Z2dlq1aqVGjZsqDFjxigxMdE8bz9ixIibGvON1Ha5ffv2qUmTJvL399frr78uLy8vffjhh2revLnWrVunBg0aOPR/5ZVXVKxYMQ0dOlRHjx7VhAkTFB8fr3nz5t1wjSdPnlT9+vWVlpam2NhYValSRb/99pu+/PJLnT9/Xt7e3kpJSdHDDz+s8+fPq3fv3ipevLhmz56txx9/XF9++aWefPJJh3WOHDlS3t7eeu2115SRkWEeBcjKylJ0dLQaN26s999/X4UKFTKfp1mzZqlbt27q3bu3jhw5oilTpmjXrl36/vvvr3pawGaz6eOPP9azzz6rnj176s8//9Qnn3yi6Ohobd26VbVq1VKJEiU0bdo09erVS08++aSeeuopSdKDDz541eekR48emj17ttq3b69XX31VW7ZsUUJCgg4cOJDrD9d//vMftW/fXt27d1eXLl306aefqmvXrqpTp46qVat2w/vham5kHw8ZMkSjRo1S69at1bp1a+3cuVMtW7Z0CKl56dChg6ZOnaply5bp6aefNuefP39eS5YsUdeuXeXh4ZHnshcuXFCLFi10/Phx9e7dW6GhofrnP/+p1atX3/JYb2R/3qpdu3ZJkurWreswPzQ0VKVLlzbbb9XKlSvVrl07RUREKCEhQX/88Ye6deum0qVLO/QbNGiQlixZou7du2vPnj0qWrSovvnmG3300UcaOXKkataseVt14CYZgJPExMQYvr6+xrFjx8x5+/fvNzw8PIzLX2phYWFGly5dzMc1a9Y02rRpc811x8XFGXm9XI8cOWJIMvz9/Y3U1NQ822bOnGnO69KliyHJeOWVV8x5drvdaNOmjeHt7W2cOnXKMAzDWLNmjSHJWLNmzXXXebXaDMMwJBlDhw41H8fExBje3t7G4cOHzXknT540ihYtajRt2tScN3PmTEOSERUVZdjtdnN+v379DA8PDyMtLS3P7eWlc+fOhru7u7Ft27ZcbTnr7tu3ryHJ+O6778y2P//80wgPDzfKlStnZGdnG4bxv+elfPnyxvnz5x3WlfPcvvnmmw7zv/vuO0OSMWfOHIf5iYmJueY3a9bMaNasmfk4KyvLyMjIcFjuzJkzRnBwsPHiiy+a806dOpXruc4xdOhQh/2ze/duQ5LRo0cPh36vvfaaIclYvXq1OS8sLMyQZKxfv96cl5qaavj4+Bivvvpqrm1dy5Wv+xvdx6mpqYa3t7fRpk0bh35vvfWWIclhnVe+bu12u3H//fcb7dq1c6hl/vz5ucZ15XM/YcIEQ5Ixf/58c965c+eMihUr5vrduHJsV1vnje5Pw8j9u3M9Y8eONSQZx48fz9VWr149o2HDhje8rrx+z2vVqmWUKlXK4Xdv5cqVhiQjLCzMYfk9e/YY3t7eRo8ePYwzZ84Y999/v1G3bl0jMzPzhmuAc3C6Ck6RnZ2tb775RjExMSpbtqw5v2rVqoqOjr7msoGBgdq3b58OHTp0y9tv166decriRsTHx5s/u7m5KT4+XpcuXdK33357yzVcT3Z2tlauXKmYmBiVL1/enF+qVCk999xz2rBhg2w2m8MysbGxDqdamjRpouzsbB07duyGtmm327Vo0SK1bds213+4ksx1L1++XPXr11fjxo3NtiJFiig2NlZHjx7V/v37HZbr0qWL/Pz88txmr169HB4vWLBAAQEB+vvf/67//ve/5lSnTh0VKVLkmqcqPDw8zKNEdrtdp0+fVlZWlurWraudO3fe0HNwpeXLl0uS+vfv7zD/1VdflaRcp+giIiLUpEkT83GJEiVUuXJl/fLLL7e0/Stdbx9/++23unTpkl555RWHfn379r3uut3c3PT0009r+fLlOnv2rDl/3rx5uv/++x3295WWL1+uUqVKqX379ua8QoUKKTY29maG5yA/9meOCxcuSMr72idfX1+z/Vb8/vvv2r17t7p06aKAgABz/t///ndFRETk6l+9enUNHz5cH3/8saKjo/Xf//5Xs2fPviuuDbvXEHLgFKdOndKFCxdUqVKlXG2VK1e+5rIjRoxQWlqaHnjgAdWoUUMDBgzQjz/+eFPbDw8Pv+G+7u7uDiFDkh544AFJf52Lzy+nTp3S+fPn83w+qlatKrvdrhMnTjjMvzwwSlKxYsUk6brXsly+TZvNpurVq1+z37Fjx65aV0775a72fHt6euY6fH/o0CGlp6erZMmSKlGihMN09uxZpaamXrO22bNn68EHHzSv1ypRooSWLVum9PT0ay53NceOHZO7u7sqVqzoMD8kJESBgYG5xnrlPpD+2g83ug+u53r7OKeeK3+3SpQoYfa9lg4dOujChQtavHixJOns2bNavny5nn766Wt+ftCxY8dUsWLFXH2u9/t8Pc7enzlyQnde1wxdvHjxqqH8RlxtH0hXfz4GDBigmjVrauvWrRo6dGieYQj5j1gJl2vatKkOHz6sr7/+WitXrtTHH3+sDz74QNOnT1ePHj1uaB238waWl6u9+edcpHmnXO16CeOyi6Rd4WrPt4+PT667rOx2u0qWLKk5c+bkucy1jsB9/vnn6tq1q2JiYjRgwACVLFlSHh4eSkhI0OHDh299ALr6Pr5Sfu+D/F5/w4YNVa5cOc2fP1/PPfeclixZogsXLqhDhw5OWb907d+Xy8eXn/uzVKlSkv466lKmTBmHtt9//13169e/rfXfrF9++cU8Or1nz547um38DyEHTlGiRAn5+fnlecrp4MGD110+KChI3bp1U7du3XT27Fk1bdpUw4YNM0OOMz+x1m6365dffjGP3kjSzz//LEnmJ5fm/IeclpbmsGxep4lutLYSJUqoUKFCeT4fP/30k9zd3XO9Od+uEiVKyN/fX3v37r1mv7CwsKvWldN+qypUqKBvv/1WjRo1uukw+uWXX6p8+fL66quvHJ7noUOHOvS7mddHWFiY7Ha7Dh06ZB6pkqSUlBSlpaXd1ljzQ049hw4dcjgCeerUqRs+mvTMM89o4sSJstlsmjdvnsqVK6eGDRted7t79+6VYRgOz29er5NixYrl+l2R/vp9ubzmG92ftyLnouXt27c7BJqTJ0/q119/va3TbJfvgyvl9XzY7XZ17dpV/v7+6tu3r0aPHq327dubF8XjzuF0FZzCw8ND0dHRWrRokY4fP27OP3DggL755ptrLvvHH384PC5SpIgqVqzocNg557NW8nojvRVTpkwxfzYMQ1OmTJGXl5datGgh6a83NQ8PD61fv95huf/7v//Lta4brc3Dw0MtW7bU119/7XBaLCUlRXPnzlXjxo3l7+9/iyPKm7u7u2JiYrRkyRJt3749V3vO0YLWrVtr69at2rRpk9l27tw5zZgxQ+XKlbutQ+3PPPOMsrOzNXLkyFxtWVlZ13zeco4CXH5UY8uWLQ51SjLv4rqR10fr1q0lSRMmTHCYP378eElSmzZtrruOOykqKkpeXl6aPHmyw/NwZf3X0qFDB2VkZGj27NlKTEzUM888c91lWrdurZMnTzrcen3+/HnNmDEjV98KFSpo8+bNDnd7LV26NNfp1xvdn7eiWrVqqlKlimbMmOFwxHXatGlyc3NzuLboZpUqVUq1atXS7NmzHU6rJSUl5bpeTfrrtbRx40bNmDFDI0eO1MMPP6xevXrpv//97y3XgFvDkRw4zfDhw5WYmKgmTZro5ZdfVlZWliZPnqxq1apd8xqbiIgINW/eXHXq1FFQUJC2b9+uL7/80uHi4Dp16kiSevfurejoaHl4eKhjx463VKevr68SExPVpUsXNWjQQCtWrNCyZcv01ltvmadOAgIC9PTTT2vy5Mlyc3NThQoVtHTp0jyvH7mZ2kaNGqWkpCQ1btxYL7/8sjw9PfXhhx8qIyNDY8aMuaXxXM/o0aO1cuVKNWvWTLGxsapatap+//13LViwQBs2bFBgYKDefPNN/etf/9Kjjz6q3r17KygoSLNnz9aRI0f073//+7Y+qbdZs2Z66aWXlJCQoN27d6tly5by8vLSoUOHtGDBAk2cOPGqf4Aee+wxffXVV3ryySfVpk0bHTlyRNOnT1dERITDhbR+fn6KiIjQvHnz9MADDygoKEjVq1fP81qkmjVrqkuXLpoxY4bS0tLUrFkzbd26VbNnz1ZMTIweeeSRWx5rfihRooRee+01JSQk6LHHHlPr1q21a9curVixQvfdd98NraN27dqqWLGi3n77bWVkZNzQqaqePXtqypQp6ty5s3bs2KFSpUrpn//8pxkoL9ejRw99+eWXatWqlZ555hkdPnxYn3/+uSpUqODQ70b3560aO3asHn/8cbVs2VIdO3bU3r17NWXKFPXo0cPhqN2tSEhIUJs2bdS4cWO9+OKLOn36tPn+dnntBw4c0ODBg9W1a1e1bdtW0l+fiVSrVi29/PLLmj9//m3VgZvksvu6YEnr1q0z6tSpY3h7exvly5c3pk+fnusW3itvNx01apRRv359IzAw0PDz8zOqVKlivPPOO8alS5fMPllZWcYrr7xilChRwnBzczPXl3Or59ixY3PVcrVbyAsXLmwcPnzYaNmypVGoUCEjODjYGDp0qHmbdI5Tp04Z7dq1MwoVKmQUK1bMeOmll4y9e/fmWufVajOMvG+D3blzpxEdHW0UKVLEKFSokPHII48YGzdudOiTc3vxlbd9X+3W9us5duyY0blzZ6NEiRKGj4+PUb58eSMuLs7hdt7Dhw8b7du3NwIDAw1fX1+jfv36xtKlS/Pc/oIFC3JtI+e5vZoZM2YYderUMfz8/IyiRYsaNWrUMF5//XXj5MmTZp8rbzm22+3G6NGjjbCwMMPHx8d46KGHjKVLlxpdunTJddvuxo0bzdfe5c/7la8/wzCMzMxMY/jw4UZ4eLjh5eVllClTxhg4cKBx8eJFh35hYWF5frzBlXXeiKvdQn4j+zg7O9sYPny4UapUKcPPz89o3ry5sXfv3lzrvNbr4+233zYkGRUrVsyzvrzGdOzYMePxxx83ChUqZNx3331Gnz59zFv/r9zGuHHjjPvvv9/w8fExGjVqZGzfvv229mdevzs3YuHChUatWrUMHx8fo3Tp0sagQYMc3ktuRF7vHYZhGP/+97+NqlWrGj4+PkZERITx1VdfOdSelZVl1KtXzyhdunSuj3mYOHGiIcmYN2/eTY8Jt87NMFx8BSMAAEA+4JocAABgSVyTAxRQZ8+eve51DCVKlLjqLcpwjuTk5Gu2+/n5OXyAHG5Odnb2db+vrUiRIipSpMh113Xp0iWdPn36mn0CAgKc/pEUcB1OVwEF1LBhwzR8+PBr9jly5Ih5Wzzyx/VuX+/SpUueXxKLG3P06NHrftjn0KFDc30Rbl7Wrl173QvLZ86cmeeXjaJgIuQABdQvv/xy3a8WaNy4sXx9fe9QRfem630VSGhoKJ92exsuXryoDRs2XLNP+fLlc32KeV7OnDmjHTt2XLNPtWrVzA8WRMFHyAEAAJbEhccAAMCS7ukLj+12u06ePKmiRYs69WsDAABA/jEMQ3/++adCQ0Ov+WGl93TIOXnypNO/KwgAANwZJ06cUOnSpa/afk+HnKJFi0r660ly9ncGAQCA/GGz2VSmTBnz7/jV3NMhJ+cUlb+/PyEHAIAC5nqXmnDhMQAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKSbDjnr169X27ZtFRoaKjc3Ny1atMhsy8zM1BtvvKEaNWqocOHCCg0NVefOnXXy5EmHdZw+fVqdOnWSv7+/AgMD1b17d509e9ahz48//qgmTZrI19dXZcqU0ZgxY3LVsmDBAlWpUkW+vr6qUaOGli9ffrPDAQAAFnXTIefcuXOqWbOmpk6dmqvt/Pnz2rlzpwYPHqydO3fqq6++0sGDB/X444879OvUqZP27dunpKQkLV26VOvXr1dsbKzZbrPZ1LJlS4WFhWnHjh0aO3ashg0bphkzZph9Nm7cqGeffVbdu3fXrl27FBMTo5iYGO3du/dmhwQAACzIzTAM45YXdnPTwoULFRMTc9U+27ZtU/369XXs2DGVLVtWBw4cUEREhLZt26a6detKkhITE9W6dWv9+uuvCg0N1bRp0/T2228rOTlZ3t7ekqQ333xTixYt0k8//SRJ6tChg86dO6elS5ea22rYsKFq1aql6dOn31D9NptNAQEBSk9P5xOPAQAoIG7073e+X5OTnp4uNzc3BQYGSpI2bdqkwMBAM+BIUlRUlNzd3bVlyxazT9OmTc2AI0nR0dE6ePCgzpw5Y/aJiopy2FZ0dLQ2bdp01VoyMjJks9kcJgAAYE35GnIuXryoN954Q88++6yZtJKTk1WyZEmHfp6engoKClJycrLZJzg42KFPzuPr9clpz0tCQoICAgLMiW8gBwDAuvIt5GRmZuqZZ56RYRiaNm1afm3mpgwcOFDp6enmdOLECVeXBAAA8km+fAt5TsA5duyYVq9e7XC+LCQkRKmpqQ79s7KydPr0aYWEhJh9UlJSHPrkPL5en5z2vPj4+MjHx+fWBwYAAAoMpx/JyQk4hw4d0rfffqvixYs7tEdGRiotLU07duww561evVp2u10NGjQw+6xfv16ZmZlmn6SkJFWuXFnFihUz+6xatcph3UlJSYqMjHT2kO56mYkbck0AANzrbjrknD17Vrt379bu3bslSUeOHNHu3bt1/PhxZWZmqn379tq+fbvmzJmj7OxsJScnKzk5WZcuXZIkVa1aVa1atVLPnj21detWff/994qPj1fHjh0VGhoqSXruuefk7e2t7t27a9++fZo3b54mTpyo/v37m3X06dNHiYmJGjdunH766ScNGzZM27dvV3x8vBOeFgAAUOAZN2nNmjWGpFxTly5djCNHjuTZJslYs2aNuY4//vjDePbZZ40iRYoY/v7+Rrdu3Yw///zTYTs//PCD0bhxY8PHx8e4//77jXfffTdXLfPnzzceeOABw9vb26hWrZqxbNmymxpLenq6IclIT0+/2afhrnJpxXe5JgAArOpG/37f1ufkFHRW+ZycvE5PebVq7IJKAADIf3fN5+QAAAC4AiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYkqerC0DBkpm4Idc8r1aNXVAJAADXxpEcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSTcdctavX6+2bdsqNDRUbm5uWrRokUO7YRgaMmSISpUqJT8/P0VFRenQoUMOfU6fPq1OnTrJ399fgYGB6t69u86ePevQ58cff1STJk3k6+urMmXKaMyYMblqWbBggapUqSJfX1/VqFFDy5cvv9nhAAAAi7rpkHPu3DnVrFlTU6dOzbN9zJgxmjRpkqZPn64tW7aocOHCio6O1sWLF80+nTp10r59+5SUlKSlS5dq/fr1io2NNdttNptatmypsLAw7dixQ2PHjtWwYcM0Y8YMs8/GjRv17LPPqnv37tq1a5diYmIUExOjvXv33uyQAACABbkZhmHc8sJublq4cKFiYmIk/XUUJzQ0VK+++qpee+01SVJ6erqCg4M1a9YsdezYUQcOHFBERIS2bdumunXrSpISExPVunVr/frrrwoNDdW0adP09ttvKzk5Wd7e3pKkN998U4sWLdJPP/0kSerQoYPOnTunpUuXmvU0bNhQtWrV0vTp0/OsNyMjQxkZGeZjm82mMmXKKD09Xf7+/rf6NLhcZuKGXPO8WjUu8NsCACAvNptNAQEB1/377dRrco4cOaLk5GRFRUWZ8wICAtSgQQNt2rRJkrRp0yYFBgaaAUeSoqKi5O7uri1btph9mjZtagYcSYqOjtbBgwd15swZs8/l28npk7OdvCQkJCggIMCcypQpc/uDBgAAdyWnhpzk5GRJUnBwsMP84OBgsy05OVklS5Z0aPf09FRQUJBDn7zWcfk2rtYnpz0vAwcOVHp6ujmdOHHiZocIAAAKCE9XF3An+fj4yMfHx9VlAACAO8CpR3JCQkIkSSkpKQ7zU1JSzLaQkBClpqY6tGdlZen06dMOffJax+XbuFqfnHYAAHBvc2rICQ8PV0hIiFatWmXOs9ls2rJliyIjIyVJkZGRSktL044dO8w+q1evlt1uV4MGDcw+69evV2ZmptknKSlJlStXVrFixcw+l28np0/OdgAAwL3tpkPO2bNntXv3bu3evVvSXxcb7969W8ePH5ebm5v69u2rUaNGafHixdqzZ486d+6s0NBQ8w6sqlWrqlWrVurZs6e2bt2q77//XvHx8erYsaNCQ0MlSc8995y8vb3VvXt37du3T/PmzdPEiRPVv39/s44+ffooMTFR48aN008//aRhw4Zp+/btio+Pv/1nBQAAFHg3fU3O9u3b9cgjj5iPc4JHly5dNGvWLL3++us6d+6cYmNjlZaWpsaNGysxMVG+vr7mMnPmzFF8fLxatGghd3d3tWvXTpMmTTLbAwICtHLlSsXFxalOnTq67777NGTIEIfP0nn44Yc1d+5cDRo0SG+99ZYqVaqkRYsWqXr16rf0RAAAAGu5rc/JKehu9D77ux2fkwMAuJe45HNyAAAA7haEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmeri4AznE0bYX5c7nAR11YCQAAdweO5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEvydHUBKLiOpq2QJFVSYxdXAgBAbhzJAQAAlkTIAQAAlkTIAQAAlkTIAQAAluT0kJOdna3BgwcrPDxcfn5+qlChgkaOHCnDMMw+hmFoyJAhKlWqlPz8/BQVFaVDhw45rOf06dPq1KmT/P39FRgYqO7du+vs2bMOfX788Uc1adJEvr6+KlOmjMaMGePs4QAAgALK6XdXvffee5o2bZpmz56tatWqafv27erWrZsCAgLUu3dvSdKYMWM0adIkzZ49W+Hh4Ro8eLCio6O1f/9++fr6SpI6deqk33//XUlJScrMzFS3bt0UGxuruXPnSpJsNptatmypqKgoTZ8+XXv27NGLL76owMBAxcbGOntYNy0zcUOueV6tuAsJAIA7xekhZ+PGjXriiSfUpk0bSVK5cuX0r3/9S1u3bpX011GcCRMmaNCgQXriiSckSZ999pmCg4O1aNEidezYUQcOHFBiYqK2bdumunXrSpImT56s1q1b6/3331doaKjmzJmjS5cu6dNPP5W3t7eqVaum3bt3a/z48XdFyAEAAK7l9NNVDz/8sFatWqWff/5ZkvTDDz9ow4YNevTRRyVJR44cUXJysqKiosxlAgIC1KBBA23atEmStGnTJgUGBpoBR5KioqLk7u6uLVu2mH2aNm0qb29vs090dLQOHjyoM2fO5FlbRkaGbDabwwQAAKzJ6Udy3nzzTdlsNlWpUkUeHh7Kzs7WO++8o06dOkmSkpOTJUnBwcEOywUHB5ttycnJKlmypGOhnp4KCgpy6BMeHp5rHTltxYoVy1VbQkKChg8f7oRRAgCAu53Tj+TMnz9fc+bM0dy5c7Vz507Nnj1b77//vmbPnu3sTd20gQMHKj093ZxOnDjh6pIAAEA+cfqRnAEDBujNN99Ux44dJUk1atTQsWPHlJCQoC5duigkJESSlJKSolKlSpnLpaSkqFatWpKkkJAQpaamOqw3KytLp0+fNpcPCQlRSkqKQ5+cxzl9ruTj4yMfH5/bHyQAALjrOf1Izvnz5+Xu7rhaDw8P2e12SVJ4eLhCQkK0atUqs91ms2nLli2KjIyUJEVGRiotLU07duww+6xevVp2u10NGjQw+6xfv16ZmZlmn6SkJFWuXDnPU1UAAODe4vSQ07ZtW73zzjtatmyZjh49qoULF2r8+PF68sknJUlubm7q27evRo0apcWLF2vPnj3q3LmzQkNDFRMTI0mqWrWqWrVqpZ49e2rr1q36/vvvFR8fr44dOyo0NFSS9Nxzz8nb21vdu3fXvn37NG/ePE2cOFH9+/d39pAAAEAB5PTTVZMnT9bgwYP18ssvKzU1VaGhoXrppZc0ZMgQs8/rr7+uc+fOKTY2VmlpaWrcuLESExPNz8iRpDlz5ig+Pl4tWrSQu7u72rVrp0mTJpntAQEBWrlypeLi4lSnTh3dd999GjJkCLePAwAASZKbcflHEd9jbDabAgIClJ6eLn9/f6eu+05+GGBm4gYdTVthPi4X+Gi+bitHzjYrdXwnX7YFAEBebvTvN99dBQAALMnpp6sAZ+GrMQAAt4MjOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJLyJeT89ttvev7551W8eHH5+fmpRo0a2r59u9luGIaGDBmiUqVKyc/PT1FRUTp06JDDOk6fPq1OnTrJ399fgYGB6t69u86ePevQ58cff1STJk3k6+urMmXKaMyYMfkxnFtyNG2FOQEAgDvP6SHnzJkzatSokby8vLRixQrt379f48aNU7Fixcw+Y8aM0aRJkzR9+nRt2bJFhQsXVnR0tC5evGj26dSpk/bt26ekpCQtXbpU69evV2xsrNlus9nUsmVLhYWFaceOHRo7dqyGDRumGTNmOHtIAACgAPJ09grfe+89lSlTRjNnzjTnhYeHmz8bhqEJEyZo0KBBeuKJJyRJn332mYKDg7Vo0SJ17NhRBw4cUGJiorZt26a6detKkiZPnqzWrVvr/fffV2hoqObMmaNLly7p008/lbe3t6pVq6bdu3dr/PjxDmEIAADcm5x+JGfx4sWqW7eunn76aZUsWVIPPfSQPvroI7P9yJEjSk5OVlRUlDkvICBADRo00KZNmyRJmzZtUmBgoBlwJCkqKkru7u7asmWL2adp06by9vY2+0RHR+vgwYM6c+ZMnrVlZGTIZrM5TAAAwJqcHnJ++eUXTZs2TZUqVdI333yjXr16qXfv3po9e7YkKTk5WZIUHBzssFxwcLDZlpycrJIlSzq0e3p6KigoyKFPXuu4fBtXSkhIUEBAgDmVKVPmNkcLAADuVk4POXa7XbVr19bo0aP10EMPKTY2Vj179tT06dOdvambNnDgQKWnp5vTiRMnXF0SAADIJ04POaVKlVJERITDvKpVq+r48eOSpJCQEElSSkqKQ5+UlBSzLSQkRKmpqQ7tWVlZOn36tEOfvNZx+Tau5OPjI39/f4cJAABYk9NDTqNGjXTw4EGHeT///LPCwsIk/XURckhIiFatWmW222w2bdmyRZGRkZKkyMhIpaWlaceOHWaf1atXy263q0GDBmaf9evXKzMz0+yTlJSkypUrO9zJBQAA7k1ODzn9+vXT5s2bNXr0aP3nP//R3LlzNWPGDMXFxUmS3Nzc1LdvX40aNUqLFy/Wnj171LlzZ4WGhiomJkbSX0d+WrVqpZ49e2rr1q36/vvvFR8fr44dOyo0NFSS9Nxzz8nb21vdu3fXvn37NG/ePE2cOFH9+/d39pAAAEAB5PRbyOvVq6eFCxdq4MCBGjFihMLDwzVhwgR16tTJ7PP666/r3Llzio2NVVpamho3bqzExET5+vqafebMmaP4+Hi1aNFC7u7uateunSZNmmS2BwQEaOXKlYqLi1OdOnV03333aciQIdw+DgAAJOVDyJGkxx57TI899thV293c3DRixAiNGDHiqn2CgoI0d+7ca27nwQcf1HfffXfLdQIAAOviu6sAAIAlEXIAAIAl5cvpKiA/HE1bIfft+yRJFeq+5OJqAAB3O47kAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS+LuKuAqMhM3ODz2atXYRZUAAG4FR3IAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAl5XvIeffdd+Xm5qa+ffua8y5evKi4uDgVL15cRYoUUbt27ZSSkuKw3PHjx9WmTRsVKlRIJUuW1IABA5SVleXQZ+3atapdu7Z8fHxUsWJFzZo1K7+Hg3vI0bQV5gQAKHjyNeRs27ZNH374oR588EGH+f369dOSJUu0YMECrVu3TidPntRTTz1ltmdnZ6tNmza6dOmSNm7cqNmzZ2vWrFkaMmSI2efIkSNq06aNHnnkEe3evVt9+/ZVjx499M033+TnkAAAQAGRbyHn7Nmz6tSpkz766CMVK1bMnJ+enq5PPvlE48eP19/+9jfVqVNHM2fO1MaNG7V582ZJ0sqVK7V//359/vnnqlWrlh599FGNHDlSU6dO1aVLlyRJ06dPV3h4uMaNG6eqVasqPj5e7du31wcffJBfQwIAAAVIvoWcuLg4tWnTRlFRUQ7zd+zYoczMTIf5VapUUdmyZbVp0yZJ0qZNm1SjRg0FBwebfaKjo2Wz2bRv3z6zz5Xrjo6ONteRl4yMDNlsNocJAABYk2d+rPSLL77Qzp07tW3btlxtycnJ8vb2VmBgoMP84OBgJScnm30uDzg57Tlt1+pjs9l04cIF+fn55dp2QkKChg8ffsvjAgAABYfTj+ScOHFCffr00Zw5c+Tr6+vs1d+WgQMHKj093ZxOnDjh6pIAAEA+cXrI2bFjh1JTU1W7dm15enrK09NT69at06RJk+Tp6ang4GBdunRJaWlpDsulpKQoJCREkhQSEpLrbqucx9fr4+/vn+dRHEny8fGRv7+/wwQAAKzJ6SGnRYsW2rNnj3bv3m1OdevWVadOncyfvby8tGrVKnOZgwcP6vjx44qMjJQkRUZGas+ePUpNTTX7JCUlyd/fXxEREWafy9eR0ydnHQAA4N7m9GtyihYtqurVqzvMK1y4sIoXL27O7969u/r376+goCD5+/vrlVdeUWRkpBo2bChJatmypSIiIvTCCy9ozJgxSk5O1qBBgxQXFycfHx9J0j/+8Q9NmTJFr7/+ul588UWtXr1a8+fP17Jly5w9JAAAUADly4XH1/PBBx/I3d1d7dq1U0ZGhqKjo/V///d/ZruHh4eWLl2qXr16KTIyUoULF1aXLl00YsQIs094eLiWLVumfv36aeLEiSpdurQ+/vhjRUdHu2JIAADgLnNHQs7atWsdHvv6+mrq1KmaOnXqVZcJCwvT8uXLr7ne5s2ba9euXc4oEQAAWAzfXQUAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACyJkAMAACzJ6SEnISFB9erVU9GiRVWyZEnFxMTo4MGDDn0uXryouLg4FS9eXEWKFFG7du2UkpLi0Of48eNq06aNChUqpJIlS2rAgAHKyspy6LN27VrVrl1bPj4+qlixombNmuXs4QB3RGbiBocJAHD7nB5y1q1bp7i4OG3evFlJSUnKzMxUy5Ytde7cObNPv379tGTJEi1YsEDr1q3TyZMn9dRTT5nt2dnZatOmjS5duqSNGzdq9uzZmjVrloYMGWL2OXLkiNq0aaNHHnlEu3fvVt++fdWjRw998803zh4SAAAogDydvcLExESHx7NmzVLJkiW1Y8cONW3aVOnp6frkk080d+5c/e1vf5MkzZw5U1WrVtXmzZvVsGFDrVy5Uvv379e3336r4OBg1apVSyNHjtQbb7yhYcOGydvbW9OnT1d4eLjGjRsnSapatao2bNigDz74QNHR0c4eFgAAKGDy/Zqc9PR0SVJQUJAkaceOHcrMzFRUVJTZp0qVKipbtqw2bdokSdq0aZNq1Kih4OBgs090dLRsNpv27dtn9rl8HTl9ctaRl4yMDNlsNocJAABYU76GHLvdrr59+6pRo0aqXr26JCk5OVne3t4KDAx06BscHKzk5GSzz+UBJ6c9p+1afWw2my5cuJBnPQkJCQoICDCnMmXK3PYYAQDA3SlfQ05cXJz27t2rL774Ij83c8MGDhyo9PR0czpx4oSrSwIAAPnE6dfk5IiPj9fSpUu1fv16lS5d2pwfEhKiS5cuKS0tzeFoTkpKikJCQsw+W7dudVhfzt1Xl/e58o6slJQU+fv7y8/PL8+afHx85OPjc9tjAwAAdz+nH8kxDEPx8fFauHChVq9erfDwcIf2OnXqyMvLS6tWrTLnHTx4UMePH1dkZKQkKTIyUnv27FFqaqrZJykpSf7+/oqIiDD7XL6OnD456wAAAPc2px/JiYuL09y5c/X111+raNGi5jU0AQEB8vPzU0BAgLp3767+/fsrKChI/v7+euWVVxQZGamGDRtKklq2bKmIiAi98MILGjNmjJKTkzVo0CDFxcWZR2L+8Y9/aMqUKXr99df14osvavXq1Zo/f76WLVvm7CEBAIACyOlHcqZNm6b09HQ1b95cpUqVMqd58+aZfT744AM99thjateunZo2baqQkBB99dVXZruHh4eWLl0qDw8PRUZG6vnnn1fnzp01YsQIs094eLiWLVumpKQk1axZU+PGjdPHH3/M7eMAAEBSPhzJMQzjun18fX01depUTZ069ap9wsLCtHz58muup3nz5tq1a9dN1wgAAKyP764CAACWRMgBAACWRMgBAACWlG+fkwPg5hxNW2H+XEmNXVgJAFgDR3IAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlebq6AAB3VmbiBofHXq0au6gSAMhfHMkBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWxN1VwD3qaNoKSZL79n2qUPclF1cDAM7HkRwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJfOJxAWfY7TJOp6vQGS9le9mVUTTb1SU5nd2w64BxWD97nFRAhqfKe4e4uiSnyjaytc9+SD97nJS/4aNwe5CrS3KazMQNueZ5tWrsgkoA3IsKfMiZOnWqxo4dq+TkZNWsWVOTJ09W/fr1XV3WHZH948/KXLhKSv9TxVVIkpTlbZdR9Q8XV+Y8W+w/aFbWv/WH0iQfSX/8oAD3wnrp5AOKDG3h6vJu26aTq/TJ3rH6Iyv1r/FJCrD76qWTqywxPgBwpQJ9umrevHnq37+/hg4dqp07d6pmzZqKjo5Wamqqq0vLd9k//qzMWYuk9D8d5ntccpP9h4PK/vFn1xTmRFvsP2hc1id/BZzLpNvPacz217Xp5CrXFOYkm06u0pjtr+uPi46v13S3i5YY35WOpq3Q0bQVOrz9Q1eXAuAeUaBDzvjx49WzZ09169ZNERERmj59ugoVKqRPP/3U1aXlK8Nu/+sITh7c5CZJyly0SobdfifLcqpsI1uzsv59zT6f7n1f2UbBPD2XbWTrk71jJRm5G//ahQV6fABwNyiwp6suXbqkHTt2aODAgeY8d3d3RUVFadOmTXkuk5GRoYyMDPNxenq6JMlmszm9vrPn/7cdm9c5SZKXk7aTffiEMlNPXbtTykV5/XBAHhXKOGWbOTLPnTN/zhljfjx/+//YqeTz1z7t9vv5k9p29DtFFK/t9O1Lufehs/af9P/Hd/r3a/bJr/Hl7MOc8bmdvZAv+/Dybd2p7V3p8JcjJEllA/4uSfL6e+Qd2S6A/JXzHmIYefyjeDmjgPrtt98MScbGjRsd5g8YMMCoX79+nssMHTrU0F//OjMxMTExMTEV8OnEiRPXzAoF9kjOrRg4cKD69+9vPrbb7Tp9+rSKFy8uNzc3p23HZrOpTJkyOnHihPz9/Z223ruJ1cfI+Ao+q4+R8RV8Vh9jfo7PMAz9+eefCg0NvWa/Ahty7rvvPnl4eCglJcVhfkpKikJC8r7F2MfHRz4+Pg7zAgMD86tE+fv7W/KFezmrj5HxFXxWHyPjK/isPsb8Gl9AQMB1+xTYC4+9vb1Vp04drVr1vwtw7Xa7Vq1apchIzrsDAHCvK7BHciSpf//+6tKli+rWrav69etrwoQJOnfunLp16+bq0gAAgIsV6JDToUMHnTp1SkOGDFFycrJq1aqlxMREBQcHu7QuHx8fDR06NNepMSux+hgZX8Fn9TEyvoLP6mO8G8bnZhjXu/8KAACg4Cmw1+QAAABcCyEHAABYEiEHAABYEiEHAABYEiEHAABYEiHHiRISElSvXj0VLVpUJUuWVExMjA4ePOjqsvLNu+++Kzc3N/Xt29fVpTjNb7/9pueff17FixeXn5+fatSooe3bt7u6LKfJzs7W4MGDFR4eLj8/P1WoUEEjR468/pfc3aXWr1+vtm3bKjQ0VG5ublq0aJFDu2EYGjJkiEqVKiU/Pz9FRUXp0KFDrin2Fl1rjJmZmXrjjTdUo0YNFS5cWKGhoercubNOnjzpuoJv0vX24eX+8Y9/yM3NTRMmTLhj9d2uGxnfgQMH9PjjjysgIECFCxdWvXr1dPz48Ttf7C263hjPnj2r+Ph4lS5dWn5+foqIiND06dPvSG2EHCdat26d4uLitHnzZiUlJSkzM1MtW7bUucu+idkqtm3bpg8//FAPPvigq0txmjNnzqhRo0by8vLSihUrtH//fo0bN07FihVzdWlO895772natGmaMmWKDhw4oPfee09jxozR5MmTXV3aLTl37pxq1qypqVOn5tk+ZswYTZo0SdOnT9eWLVtUuHBhRUdH6+LFi3e40lt3rTGeP39eO3fu1ODBg7Vz50599dVXOnjwoB5//HEXVHprrrcPcyxcuFCbN2++7ncV3W2uN77Dhw+rcePGqlKlitauXasff/xRgwcPlq+v7x2u9NZdb4z9+/dXYmKiPv/8cx04cEB9+/ZVfHy8Fi9enP/FOeMbwZG31NRUQ5Kxbt06V5fiVH/++adRqVIlIykpyWjWrJnRp08fV5fkFG+88YbRuHFjV5eRr9q0aWO8+OKLDvOeeuopo1OnTi6qyHkkGQsXLjQf2+12IyQkxBg7dqw5Ly0tzfDx8TH+9a9/uaDC23flGPOydetWQ5Jx7NixO1OUE11tfL/++qtx//33G3v37jXCwsKMDz744I7X5gx5ja9Dhw7G888/75qC8kFeY6xWrZoxYsQIh3m1a9c23n777XyvhyM5+Sg9PV2SFBQU5OJKnCsuLk5t2rRRVFSUq0txqsWLF6tu3bp6+umnVbJkST300EP66KOPXF2WUz388MNatWqVfv75Z0nSDz/8oA0bNujRRx91cWXOd+TIESUnJzu8TgMCAtSgQQNt2rTJhZXlr/T0dLm5ueXrlw/fSXa7XS+88IIGDBigatWqubocp7Lb7Vq2bJkeeOABRUdHq2TJkmrQoME1T9kVRA8//LAWL16s3377TYZhaM2aNfr555/VsmXLfN82ISef2O129e3bV40aNVL16tVdXY7TfPHFF9q5c6cSEhJcXYrT/fLLL5o2bZoqVaqkb775Rr169VLv3r01e/ZsV5fmNG+++aY6duyoKlWqyMvLSw899JD69u2rTp06ubo0p0tOTpakXF/zEhwcbLZZzcWLF/XGG2/o2Weftcy3Wr/33nvy9PRU7969XV2K06Wmpurs2bN699131apVK61cuVJPPvmknnrqKa1bt87V5TnN5MmTFRERodKlS8vb21utWrXS1KlT1bRp03zfdoH+7qq7WVxcnPbu3asNGza4uhSnOXHihPr06aOkpKQCdb74RtntdtWtW1ejR4+WJD300EPau3evpk+fri5duri4OueYP3++5syZo7lz56patWravXu3+vbtq9DQUMuM8V6VmZmpZ555RoZhaNq0aa4uxyl27NihiRMnaufOnXJzc3N1OU5nt9slSU888YT69esnSapVq5Y2btyo6dOnq1mzZq4sz2kmT56szZs3a/HixQoLC9P69esVFxen0NDQfD8jwJGcfBAfH6+lS5dqzZo1Kl26tKvLcZodO3YoNTVVtWvXlqenpzw9PbVu3TpNmjRJnp6eys7OdnWJt6VUqVKKiIhwmFe1atUCdZfD9QwYMMA8mlOjRg298MIL6tevnyWPzIWEhEiSUlJSHOanpKSYbVaRE3COHTumpKQkyxzF+e6775SamqqyZcua7znHjh3Tq6++qnLlyrm6vNt23333ydPT09LvOxcuXNBbb72l8ePHq23btnrwwQcVHx+vDh066P3338/37XMkx4kMw9Arr7yihQsXau3atQoPD3d1SU7VokUL7dmzx2Fet27dVKVKFb3xxhvy8PBwUWXO0ahRo1y3/P/8888KCwtzUUXOd/78ebm7O/5v4+HhYf5HaSXh4eEKCQnRqlWrVKtWLUmSzWbTli1b1KtXL9cW50Q5AefQoUNas2aNihcv7uqSnOaFF17I9Z9+dHS0XnjhBXXr1s1FVTmPt7e36tWrZ+n3nczMTGVmZrrsfYeQ40RxcXGaO3euvv76axUtWtQ87x8QECA/Pz8XV3f7ihYtmuv6osKFC6t48eKWuO6oX79+evjhhzV69Gg988wz2rp1q2bMmKEZM2a4ujSnadu2rd555x2VLVtW1apV065duzR+/Hi9+OKLri7tlpw9e1b/+c9/zMdHjhzR7t27FRQUpLJly6pv374aNWqUKlWqpPDwcA0ePFihoaGKiYlxXdE36VpjLFWqlNq3b6+dO3dq6dKlys7ONt93goKC5O3t7aqyb9j19uGVoc3Ly0shISGqXLnynS71llxvfAMGDFCHDh3UtGlTPfLII0pMTNSSJUu0du1a1xV9k643xmbNmmnAgAHy8/NTWFiY1q1bp88++0zjx4/P/+Ly/f6te4ikPKeZM2e6urR8Y6VbyA3DMJYsWWJUr17d8PHxMapUqWLMmDHD1SU5lc1mM/r06WOULVvW8PX1NcqXL2+8/fbbRkZGhqtLuyVr1qzJ83euS5cuhmH8dRv54MGDjeDgYMPHx8do0aKFcfDgQdcWfZOuNcYjR45c9X1nzZo1ri79hlxvH16poN1CfiPj++STT4yKFSsavr6+Rs2aNY1Fixa5ruBbcL0x/v7770bXrl2N0NBQw9fX16hcubIxbtw4w26353ttboZRQD/qFAAA4Bq48BgAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFjS/wOmUAUjeRicjQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQYxJREFUeJzt3Xd4FWX+/vE7PaEkoaQQxRBApYi4gkAQsJAlCJYoKmB2AQ3gaiIiKsKKNN1FwUKRBVmluOIu4AoqYCRSBUILoDRZxFBcTMJXSEJNO8/vD36Z5ZBG4ISQ4f26rrkuzsxnnueZcuBmzsw5bsYYIwAAAJtxr+wBAAAAVARCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDlxq9OjRcnNzs143aNBA/fr1q/B+Dxw4IDc3N82ePdua169fP9WoUaPC+y7k5uam0aNHX7H+qrq7775bd999t0vbvPD8qywVcd5f2OaqVavk5uamVatWlbuti933l9NHeVSV9055zq+qsk12R8jBVWfp0qVX7V8OV/PYrhWnT5/W6NGjK/wfXly9fvvtN02YMEGdOnVSUFCQAgMD1a5dO82bN69IbWFQK27asGFDJYweV5JnZQ8A9rZ37165u5cvSy9dulRTp04tV5gIDw/XmTNn5OXlVc4Rlk9pYztz5ow8PXlLVbTTp09rzJgxklTkasSIESM0bNiwShiVs0s578urU6dOOnPmjLy9vcu97rJlyypgRFdOcnKyXn31VXXr1k0jRoyQp6en/v3vf6tXr17avXu3dX6cb9CgQbrjjjuc5jVu3Lhc/V4t5xcuHn8jo0L5+PhUaPv5+flyOBzy9vaWr69vhfZVlsru/0o4e/asvL29i/0H/NSpU6pevXoljOp/PD09r4qgWdHnvSS5u7tf8jl3KcHoatK8eXPt27dP4eHh1rxnn31WUVFReuuttzR06NAi52LHjh316KOPXla/V8v5hYvHx1W4ZGvXrtUdd9whX19fNWrUSB988EGRmgvvI8jLy9OYMWN04403ytfXV3Xq1FGHDh2UlJQk6dx9NFOnTpUkp8vK0v/uu3n77bc1ceJENWrUSD4+Ptq9e3ex9+QU+vnnnxUdHa3q1asrLCxMY8eOlTHGWl7SfQcXtlna2ArnXXiFZ9u2bbrvvvvk7++vGjVqqHPnzkUukc+ePVtubm5at26dhgwZoqCgIFWvXl0PP/ywjh49WvIBKMF///tfxcXFKSwsTD4+PoqIiNAzzzyj3Nxcp33y2GOPqXbt2qpWrZratWunJUuWOLVTuF/+9a9/acSIEbruuutUrVo1ZWdnW/c77d+/X926dVPNmjUVGxsrSXI4HJo4caKaN28uX19fhYSE6Omnn9bx48dLHXdubq5GjhypVq1aKSAgQNWrV1fHjh21cuVKq+bAgQMKCgqSJI0ZM8Y6BoX7vbh7JvLz8/X6669b50uDBg305z//WTk5OU51DRo00P3336+1a9eqTZs28vX1VcOGDfXxxx+X7wCo6HlfnmNsjNEbb7yh66+/XtWqVdM999yjXbt2FenjwvM2ISFBNWrU0OnTp4vU9u7dW6GhoSooKJBU/D05v/zyi2JiYlS9enUFBwfrhRdeKLKPitu2Qhe2eTHH81JFREQ4BRzp3PsvJiZGOTk5+vnnn4td78SJE8rPz7/kfos7v3JycvTCCy8oKChINWvW1IMPPqhffvnFqebMmTNq0qSJmjRpojNnzljzjx07pnr16ql9+/bWsYFrEUlxSXbs2KEuXbooKChIo0ePVn5+vkaNGqWQkJBS1xs9erTGjRun/v37q02bNsrOztaWLVu0detW/f73v9fTTz+tI0eOKCkpSf/4xz+KbWPWrFk6e/asBg4cKB8fH9WuXVsOh6PY2oKCAnXt2lXt2rXT+PHjlZiYqFGjRik/P19jx44t1zZfzNjOt2vXLnXs2FH+/v4aOnSovLy89MEHH+juu+/W6tWr1bZtW6f65557TrVq1dKoUaN04MABTZw4UQkJCcXeZ1CSI0eOqE2bNsrMzNTAgQPVpEkT/fe//9Vnn32m06dPy9vbW+np6Wrfvr1Onz6tQYMGqU6dOpozZ44efPBBffbZZ3r44Yed2nz99dfl7e2tl156STk5OdZVgPz8fEVHR6tDhw56++23Va1aNWs/zZ49W08++aQGDRqk1NRUvf/++9q2bZvWrVtX4keK2dnZ+vDDD9W7d28NGDBAJ06c0EcffaTo6Ght2rRJt912m4KCgjRt2jQ988wzevjhh/XII49Ikm699dYS90n//v01Z84cPfroo3rxxRe1ceNGjRs3Tnv27NHChQudan/66Sc9+uijiouLU9++fTVz5kz169dPrVq1UvPmzS/6OJTkYo7xyJEj9cYbb6hbt27q1q2btm7dqi5dujiF1OL07NlTU6dO1ZIlS/TYY49Z80+fPq2vvvpK/fr1k4eHR7HrnjlzRp07d9ahQ4c0aNAghYWF6R//+IdWrFhxydt6McfT1dLS0iRJdevWLbLsySef1MmTJ+Xh4aGOHTtqwoQJat269WX32b9/f33yySd64okn1L59e61YsULdu3d3qvHz89OcOXN055136tVXX9W7774rSYqPj1dWVpZmz55d4rHBZTLAJYiJiTG+vr7m4MGD1rzdu3cbDw8Pc/5pFR4ebvr27Wu9btmypenevXupbcfHx5viTs3U1FQjyfj7+5uMjIxil82aNcua17dvXyPJPPfcc9Y8h8Nhunfvbry9vc3Ro0eNMcasXLnSSDIrV64ss82SxmaMMZLMqFGjrNcxMTHG29vb7N+/35p35MgRU7NmTdOpUydr3qxZs4wkExUVZRwOhzX/hRdeMB4eHiYzM7PY/orTp08f4+7ubjZv3lxkWWHbgwcPNpLMd999Zy07ceKEiYiIMA0aNDAFBQXGmP/tl4YNG5rTp087tVW4b4cNG+Y0/7vvvjOSzNy5c53mJyYmFpl/1113mbvuust6nZ+fb3JycpzWO378uAkJCTFPPfWUNe/o0aNF9nWhUaNGOR2f7du3G0mmf//+TnUvvfSSkWRWrFhhzQsPDzeSzJo1a6x5GRkZxsfHx7z44otF+irNhef9xR7jjIwM4+3tbbp37+5U9+c//9lIcmrzwvPW4XCY6667zvTo0cNpLPPnzy+yXRfu+4kTJxpJZv78+da8U6dOmcaNGxd5b1y4bSW1ebHH05ii751L8dtvv5ng4GDTsWNHp/nr1q0zPXr0MB999JH54osvzLhx40ydOnWMr6+v2bp1a7n6KOn8evbZZ53qnnjiiWK3afjw4cbd3d2sWbPGLFiwwEgyEydOLN+Golz4uArlVlBQoG+++UYxMTG64YYbrPlNmzZVdHR0qesGBgZq165d2rdv3yX336NHD+sji4uRkJBg/dnNzU0JCQnKzc3Vt99+e8ljKEtBQYGWLVummJgYNWzY0Jpfr149PfHEE1q7dq2ys7Od1hk4cKDTpfCOHTuqoKBABw8evKg+HQ6HFi1apAceeKDY/6EWtr106VK1adNGHTp0sJbVqFFDAwcO1IEDB7R7926n9fr27Ss/P79i+3zmmWecXi9YsEABAQH6/e9/r//7v/+zplatWqlGjRqlflTh4eFhXSVyOBw6duyY8vPz1bp1a23duvWi9sGFli5dKkkaMmSI0/wXX3xRkop8RNesWTN17NjReh0UFKSbb765xI8/yqusY/ztt98qNzdXzz33nFPd4MGDy2zbzc1Njz32mJYuXaqTJ09a8+fNm6frrrvO6XhfaOnSpapXr57TPSvVqlXTwIEDy7N5TirieJbE4XAoNjZWmZmZmjJlitOy9u3b67PPPtNTTz2lBx98UMOGDdOGDRvk5uam4cOHX1a/hefXoEGDnOaXdLxGjx6t5s2bq2/fvnr22Wd11113FVkXrkXIQbkdPXpUZ86c0Y033lhk2c0331zqumPHjlVmZqZuuukmtWjRQi+//LJ++OGHcvUfERFx0bXu7u5OIUOSbrrpJknn7u+oKEePHtXp06eL3R9NmzaVw+HQ4cOHneafHxglqVatWpJU5r0s5/eZnZ2tW265pdS6gwcPljiuwuXnK2l/e3p66vrrr3eat2/fPmVlZSk4OFhBQUFO08mTJ5WRkVHq2ObMmaNbb73Vul8rKChIS5YsUVZWVqnrleTgwYNyd3cv8hRNaGioAgMDi2zrhcdAOnccLvYYlKWsY1w4ngvfW0FBQVZtaXr27KkzZ87oyy+/lCSdPHlSS5cu1WOPPVbq97scPHhQjRs3LlJT1vu5LK4+niV57rnnlJiYqA8//FAtW7Yss75x48Z66KGHtHLlysu6F6bw/GrUqJHT/JL2m7e3t2bOnKnU1FSdOHFCs2bNuiq+18nOuCcHV1SnTp20f/9+ffHFF1q2bJk+/PBDvffee5o+fbr69+9/UW2UdFXhUpX0l8yVvhGwpM/kzXk3SVeGkva3j49PkaesHA6HgoODNXfu3GLXKe0K3CeffKJ+/fopJiZGL7/8soKDg+Xh4aFx48Zp//79l74BKvkYX6iij0FFt9+uXTs1aNBA8+fP1xNPPKGvvvpKZ86cUc+ePV3SvlT6++X87avI43m+MWPG6G9/+5vefPNN/fGPf7zo9erXr6/c3FydOnVK/v7+LhtPWb755htJ555U3LdvX7n+04byI+Sg3IKCguTn51fsR0579+4tc/3atWvrySeftG4E7NSpk0aPHm2FHFf+z8bhcOjnn3+2rt5I0n/+8x9J554Skf73v+nMzEyndYv7mOhixxYUFKRq1aoVuz9+/PFHubu7q379+hfV1sUKCgqSv7+/du7cWWpdeHh4ieMqXH6pGjVqpG+//VZ33nlnucPoZ599poYNG+rzzz932s+jRo1yqivP+REeHi6Hw6F9+/ZZV6okKT09XZmZmZe1rRWhcDz79u1zugJ59OjRi76a9Pjjj2vSpEnKzs7WvHnz1KBBA7Vr167Mfnfu3CljjNP+Le48qVWrVpH3inTu/XL+mC/2eF6Owu+sGjx4sF555ZVyrfvzzz/L19f3sr4VvfD82r9/v9PVm5L+Hvzhhx80duxYPfnkk9q+fbv69++vHTt2KCAg4JLHgNLxcRXKzcPDQ9HR0Vq0aJEOHTpkzd+zZ4/1v5SS/Pbbb06va9SoocaNGzs9qlr4/RbF/UV6Kd5//33rz8YYvf/++/Ly8lLnzp0lnfuLysPDQ2vWrHFa729/+1uRti52bB4eHurSpYu++OILp4/F0tPT9emnn6pDhw4u/9+ju7u7YmJi9NVXX2nLli1FlhdeLejWrZs2bdqk5ORka9mpU6c0Y8YMNWjQQM2aNbvkMTz++OMqKCjQ66+/XmRZfn5+qfut8CrA+Vc1Nm7c6DROSdZTXBdzfnTr1k2SNHHiRKf5hU+3XPgUTGWLioqSl5eXpkyZ4rQfLhx/aXr27KmcnBzNmTNHiYmJevzxx8tcp1u3bjpy5Ig+++wza97p06c1Y8aMIrWNGjXShg0bnJ72Wrx4cZGPXy/2eF6qefPmadCgQYqNjbWOZ3GK+xqG77//Xl9++aW6dOlyWV/aeN9990mSJk+e7DS/uOOVl5enfv36KSwsTJMmTdLs2bOVnp6uF1544ZL7R9m4koNLMmbMGCUmJqpjx4569tlnlZ+frylTpqh58+al3mPTrFkz3X333WrVqpVq166tLVu26LPPPnO6ObhVq1aSzt3MFx0dLQ8PD/Xq1euSxunr66vExET17dtXbdu21ddff60lS5boz3/+s/XRSUBAgB577DFNmTJFbm5uatSokRYvXlzs/SPlGdsbb7yhpKQkdejQQc8++6w8PT31wQcfKCcnR+PHj7+k7SnLX//6Vy1btkx33XWXBg4cqKZNm+rXX3/VggULtHbtWgUGBmrYsGH65z//qfvuu0+DBg1S7dq1NWfOHKWmpurf//73Zf2lf9ddd+npp5/WuHHjtH37dnXp0kVeXl7at2+fFixYoEmTJpX4hWz333+/Pv/8cz388MPq3r27UlNTNX36dDVr1szpRlo/Pz81a9ZM8+bN00033aTatWvrlltuKfZepJYtW6pv376aMWOGMjMzddddd2nTpk2aM2eOYmJidM8991zytlaEoKAgvfTSSxo3bpzuv/9+devWTdu2bdPXX39d7GPRxbn99tvVuHFjvfrqq8rJybmoj6oGDBig999/X3369FFKSorq1aunf/zjH1agPF///v312WefqWvXrnr88ce1f/9+ffLJJ0XuS7nY43kpNm3apD59+qhOnTrq3LlzkY9H27dvb11V6tmzp/z8/NS+fXsFBwdr9+7dmjFjhqpVq6Y333zzssZx2223qXfv3vrb3/6mrKwstW/fXsuXL9dPP/1UpPaNN97Q9u3btXz5ctWsWVO33nqrRo4cqREjRujRRx+1AjlcrNKe60KVt3r1atOqVSvj7e1tGjZsaKZPn17kEcsLHzd94403TJs2bUxgYKDx8/MzTZo0MX/5y19Mbm6uVZOfn2+ee+45ExQUZNzc3Kz2Ch/pnjBhQpGxlPQIefXq1c3+/ftNly5dTLVq1UxISIgZNWqU9Zh0oaNHj5oePXqYatWqmVq1apmnn37a7Ny5s0ibJY3NmOIfg926dauJjo42NWrUMNWqVTP33HOPWb9+vVNN4ePFFz72XdKj7WU5ePCg6dOnjwkKCjI+Pj6mYcOGJj4+3ulx3v3795tHH33UBAYGGl9fX9OmTRuzePHiYvtfsGBBkT4K921JZsyYYVq1amX8/PxMzZo1TYsWLczQoUPNkSNHrJoLHzl2OBzmr3/9qwkPDzc+Pj7md7/7nVm8eLHp27evCQ8Pd2p//fr11rl3/n6/8Pwzxpi8vDwzZswYExERYby8vEz9+vXN8OHDzdmzZ53qwsPDi/16gwvHeTFKeoT8Yo5xQUGBGTNmjKlXr57x8/Mzd999t9m5c2eRNks7P1599VUjyTRu3LjY8RW3TQcPHjQPPvigqVatmqlbt655/vnnrUf/L+zjnXfeMdddd53x8fExd955p9myZctlHc/i3julKdyfJU3nv2cnTZpk2rRpY2rXrm08PT1NvXr1zB/+8Aezb9++i+6vUHHn15kzZ8ygQYNMnTp1TPXq1c0DDzxgDh8+7LRNKSkpxtPT0+nrLIw59/fJHXfcYcLCwszx48fLPR6Uzc2YSr6rEQAAoAJwTw4AALAl7skBqoCTJ0+WeR9DUFAQXw1fwQp/NqAkfn5+PClzGQoKCsr8vbYaNWpc1hNRxcnKynL6TanihIaGurRPXBl8XAVUAaNHj9aYMWNKrUlNTbUei0fFKOvx9b59+xb7I7G4OAcOHCjze2NGjRpV5IdwL1e/fv00Z86cUmv4p7JqIuQAVcDPP/9c5k8LdOjQQb6+vldoRNemsn4KJCws7LIewb/WnT17VmvXri21pmHDhkW+xfxy7d69W0eOHCm1JioqyqV94sog5AAAAFvixmMAAGBL1/SNxw6HQ0eOHFHNmjX5kTQAAKoIY4xOnDihsLCwUr/A9JoOOUeOHHH57wcBAIAr4/Dhw7r++utLXH5Nh5yaNWtKOreTruSv0AIAgEuXnZ2t+vXrW/+Ol+SaDjmFH1H5+/sTcgAAqGLKutWEG48BAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtlTvkrFmzRg888IDCwsLk5uamRYsWWcvy8vL0yiuvqEWLFqpevbrCwsLUp08fHTlyxKmNY8eOKTY2Vv7+/goMDFRcXJxOnjzpVPPDDz+oY8eO8vX1Vf369TV+/PgiY1mwYIGaNGkiX19ftWjRQkuXLi3v5gAAAJsqd8g5deqUWrZsqalTpxZZdvr0aW3dulWvvfaatm7dqs8//1x79+7Vgw8+6FQXGxurXbt2KSkpSYsXL9aaNWs0cOBAa3l2dra6dOmi8PBwpaSkaMKECRo9erRmzJhh1axfv169e/dWXFyctm3bppiYGMXExGjnzp3l3SQAAGBDbsYYc8kru7lp4cKFiomJKbFm8+bNatOmjQ4ePKgbbrhBe/bsUbNmzbR582a1bt1akpSYmKhu3brpl19+UVhYmKZNm6ZXX31VaWlp8vb2liQNGzZMixYt0o8//ihJ6tmzp06dOqXFixdbfbVr10633Xabpk+fflHjz87OVkBAgLKysviBTgAAqoiL/fe7wu/JycrKkpubmwIDAyVJycnJCgwMtAKOJEVFRcnd3V0bN260ajp16mQFHEmKjo7W3r17dfz4casmKirKqa/o6GglJyeXOJacnBxlZ2c7TQAAwJ48K7Lxs2fP6pVXXlHv3r2tpJWWlqbg4GDnQXh6qnbt2kpLS7NqIiIinGpCQkKsZbVq1VJaWpo17/yawjaKM27cOI0ZM+ayt6uy5SWudXrt1bVDJY0EAICrV4VdycnLy9Pjjz8uY4ymTZtWUd2Uy/Dhw5WVlWVNhw8fruwhAQCAClIhV3IKA87Bgwe1YsUKp8/LQkNDlZGR4VSfn5+vY8eOKTQ01KpJT093qil8XVZN4fLi+Pj4yMfH59I3DAAAVBkuv5JTGHD27dunb7/9VnXq1HFaHhkZqczMTKWkpFjzVqxYIYfDobZt21o1a9asUV5enlWTlJSkm2++WbVq1bJqli9f7tR2UlKSIiMjXb1JAACgCip3yDl58qS2b9+u7du3S5JSU1O1fft2HTp0SHl5eXr00Ue1ZcsWzZ07VwUFBUpLS1NaWppyc3MlSU2bNlXXrl01YMAAbdq0SevWrVNCQoJ69eqlsLAwSdITTzwhb29vxcXFadeuXZo3b54mTZqkIUOGWON4/vnnlZiYqHfeeUc//vijRo8erS1btighIcEFuwUAAFR5ppxWrlxpJBWZ+vbta1JTU4tdJsmsXLnSauO3334zvXv3NjVq1DD+/v7mySefNCdOnHDq5/vvvzcdOnQwPj4+5rrrrjNvvvlmkbHMnz/f3HTTTcbb29s0b97cLFmypFzbkpWVZSSZrKys8u6GSpX79XdOEwAA15KL/ff7sr4np6qrqt+Tw9NVAIBr2VXzPTkAAACVgZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsybOyB4CrW17iWqfXXl07VNJIAAAoH67kAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyp3yFmzZo0eeOABhYWFyc3NTYsWLXJabozRyJEjVa9ePfn5+SkqKkr79u1zqjl27JhiY2Pl7++vwMBAxcXF6eTJk041P/zwgzp27ChfX1/Vr19f48ePLzKWBQsWqEmTJvL19VWLFi20dOnS8m4OAACwqXKHnFOnTqlly5aaOnVqscvHjx+vyZMna/r06dq4caOqV6+u6OhonT171qqJjY3Vrl27lJSUpMWLF2vNmjUaOHCgtTw7O1tdunRReHi4UlJSNGHCBI0ePVozZsywatavX6/evXsrLi5O27ZtU0xMjGJiYrRz587ybhIAALAhN2OMueSV3dy0cOFCxcTESDp3FScsLEwvvviiXnrpJUlSVlaWQkJCNHv2bPXq1Ut79uxRs2bNtHnzZrVu3VqSlJiYqG7duumXX35RWFiYpk2bpldffVVpaWny9vaWJA0bNkyLFi3Sjz/+KEnq2bOnTp06pcWLF1vjadeunW677TZNnz79osafnZ2tgIAAZWVlyd/f/1J3wxWXl7jW6bVX1w626AsAgItxsf9+u/SenNTUVKWlpSkqKsqaFxAQoLZt2yo5OVmSlJycrMDAQCvgSFJUVJTc3d21ceNGq6ZTp05WwJGk6Oho7d27V8ePH7dqzu+nsKawn+Lk5OQoOzvbaQIAAPbk0pCTlpYmSQoJCXGaHxISYi1LS0tTcHCw03JPT0/Vrl3bqaa4Ns7vo6SawuXFGTdunAICAqypfv365d1EAABQRVxTT1cNHz5cWVlZ1nT48OHKHhIAAKggLg05oaGhkqT09HSn+enp6day0NBQZWRkOC3Pz8/XsWPHnGqKa+P8PkqqKVxeHB8fH/n7+ztNAADAnlwaciIiIhQaGqrly5db87Kzs7Vx40ZFRkZKkiIjI5WZmamUlBSrZsWKFXI4HGrbtq1Vs2bNGuXl5Vk1SUlJuvnmm1WrVi2r5vx+CmsK+wEAANe2coeckydPavv27dq+fbukczcbb9++XYcOHZKbm5sGDx6sN954Q19++aV27NihPn36KCwszHoCq2nTpuratasGDBigTZs2ad26dUpISFCvXr0UFhYmSXriiSfk7e2tuLg47dq1S/PmzdOkSZM0ZMgQaxzPP/+8EhMT9c477+jHH3/U6NGjtWXLFiUkJFz+XgEAAFWeZ3lX2LJli+655x7rdWHw6Nu3r2bPnq2hQ4fq1KlTGjhwoDIzM9WhQwclJibK19fXWmfu3LlKSEhQ586d5e7urh49emjy5MnW8oCAAC1btkzx8fFq1aqV6tatq5EjRzp9l0779u316aefasSIEfrzn/+sG2+8UYsWLdItt9xySTsCAADYy2V9T05Vx/fkXF19AQBwMSrle3IAAACuFoQcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcG9i/5QPt3/JBZQ8DAICrCiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYkmdlDwBVx4HMr+W+ZZckqVHrpyt5NAAAlI4rOQAAwJa4klNB8hLXFpnn1bVDJYwEAIBrE1dyAACALRFyAACALbk85BQUFOi1115TRESE/Pz81KhRI73++usyxlg1xhiNHDlS9erVk5+fn6KiorRv3z6ndo4dO6bY2Fj5+/srMDBQcXFxOnnypFPNDz/8oI4dO8rX11f169fX+PHjXb05AACginJ5yHnrrbc0bdo0vf/++9qzZ4/eeustjR8/XlOmTLFqxo8fr8mTJ2v69OnauHGjqlevrujoaJ09e9aqiY2N1a5du5SUlKTFixdrzZo1GjhwoLU8OztbXbp0UXh4uFJSUjRhwgSNHj1aM2bMcPUmAQCAKsjlNx6vX79eDz30kLp37y5JatCggf75z39q06ZNks5dxZk4caJGjBihhx56SJL08ccfKyQkRIsWLVKvXr20Z88eJSYmavPmzWrdurUkacqUKerWrZvefvtthYWFae7cucrNzdXMmTPl7e2t5s2ba/v27Xr33XedwhAAALg2ufxKTvv27bV8+XL95z//kSR9//33Wrt2re677z5JUmpqqtLS0hQVFWWtExAQoLZt2yo5OVmSlJycrMDAQCvgSFJUVJTc3d21ceNGq6ZTp07y9va2aqKjo7V3714dP3682LHl5OQoOzvbaQIAAPbk8is5w4YNU3Z2tpo0aSIPDw8VFBToL3/5i2JjYyVJaWlpkqSQkBCn9UJCQqxlaWlpCg4Odh6op6dq167tVBMREVGkjcJltWrVKjK2cePGacyYMS7YSgAAcLVz+ZWc+fPna+7cufr000+1detWzZkzR2+//bbmzJnj6q7Kbfjw4crKyrKmw4cPV/aQAABABXH5lZyXX35Zw4YNU69evSRJLVq00MGDBzVu3Dj17dtXoaGhkqT09HTVq1fPWi89PV233XabJCk0NFQZGRlO7ebn5+vYsWPW+qGhoUpPT3eqKXxdWHMhHx8f+fj4XP5GAgCAq57Lr+ScPn1a7u7OzXp4eMjhcEiSIiIiFBoaquXLl1vLs7OztXHjRkVGRkqSIiMjlZmZqZSUFKtmxYoVcjgcatu2rVWzZs0a5eXlWTVJSUm6+eabi/2oCgAAXFtcHnIeeOAB/eUvf9GSJUt04MABLVy4UO+++64efvhhSZKbm5sGDx6sN954Q19++aV27NihPn36KCwsTDExMZKkpk2bqmvXrhowYIA2bdqkdevWKSEhQb169VJYWJgk6YknnpC3t7fi4uK0a9cuzZs3T5MmTdKQIUNcvUkAAKAKcvnHVVOmTNFrr72mZ599VhkZGQoLC9PTTz+tkSNHWjVDhw7VqVOnNHDgQGVmZqpDhw5KTEyUr6+vVTN37lwlJCSoc+fOcnd3V48ePTR58mRreUBAgJYtW6b4+Hi1atVKdevW1ciRI3l8HAAASJLczPlfRXyNyc7OVkBAgLKysuTv7+/StivyBzovbPtQ3V2SpEatn3ZJ+yX1dSDza7k3vqHC+gIA4GJc7L/f/HYVAACwJUIOAACwJUIOAACwJZffeAxcqgvvNXLVPUwAgGsTV3IAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtVUjI+e9//6s//OEPqlOnjvz8/NSiRQtt2bLFWm6M0ciRI1WvXj35+fkpKipK+/btc2rj2LFjio2Nlb+/vwIDAxUXF6eTJ0861fzwww/q2LGjfH19Vb9+fY0fP74iNueSHMj82poAAMCV5/KQc/z4cd15553y8vLS119/rd27d+udd95RrVq1rJrx48dr8uTJmj59ujZu3Kjq1asrOjpaZ8+etWpiY2O1a9cuJSUlafHixVqzZo0GDhxoLc/OzlaXLl0UHh6ulJQUTZgwQaNHj9aMGTNcvUkAAKAK8nR1g2+99Zbq16+vWbNmWfMiIiKsPxtjNHHiRI0YMUIPPfSQJOnjjz9WSEiIFi1apF69emnPnj1KTEzU5s2b1bp1a0nSlClT1K1bN7399tsKCwvT3LlzlZubq5kzZ8rb21vNmzfX9u3b9e677zqFIQAAcG1y+ZWcL7/8Uq1bt9Zjjz2m4OBg/e53v9Pf//53a3lqaqrS0tIUFRVlzQsICFDbtm2VnJwsSUpOTlZgYKAVcCQpKipK7u7u2rhxo1XTqVMneXt7WzXR0dHau3evjh8/XuzYcnJylJ2d7TQBAAB7cnnI+fnnnzVt2jTdeOON+uabb/TMM89o0KBBmjNnjiQpLS1NkhQSEuK0XkhIiLUsLS1NwcHBTss9PT1Vu3Ztp5ri2ji/jwuNGzdOAQEB1lS/fv3L3FoAAHC1cnnIcTgcuv322/XXv/5Vv/vd7zRw4EANGDBA06dPd3VX5TZ8+HBlZWVZ0+HDhyt7SAAAoIK4POTUq1dPzZo1c5rXtGlTHTp0SJIUGhoqSUpPT3eqSU9Pt5aFhoYqIyPDaXl+fr6OHTvmVFNcG+f3cSEfHx/5+/s7TQAAwJ5cHnLuvPNO7d2712nef/7zH4WHh0s6dxNyaGioli9fbi3Pzs7Wxo0bFRkZKUmKjIxUZmamUlJSrJoVK1bI4XCobdu2Vs2aNWuUl5dn1SQlJenmm292epILAABcm1wecl544QVt2LBBf/3rX/XTTz/p008/1YwZMxQfHy9JcnNz0+DBg/XGG2/oyy+/1I4dO9SnTx+FhYUpJiZG0rkrP127dtWAAQO0adMmrVu3TgkJCerVq5fCwsIkSU888YS8vb0VFxenXbt2ad68eZo0aZKGDBni6k0CAABVkMsfIb/jjju0cOFCDR8+XGPHjlVERIQmTpyo2NhYq2bo0KE6deqUBg4cqMzMTHXo0EGJiYny9fW1aubOnauEhAR17txZ7u7u6tGjhyZPnmwtDwgI0LJlyxQfH69WrVqpbt26GjlyJI+PAwAASRUQciTp/vvv1/3331/icjc3N40dO1Zjx44tsaZ27dr69NNPS+3n1ltv1XfffXfJ4wQAAPbFb1cBAABbIuQAAABbIuTgqnQg82vt3/JBZQ8DAFCFEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtVcjPOgBXu7zEtU6vvbp2qKSRAAAqCldyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALVV4yHnzzTfl5uamwYMHW/POnj2r+Ph41alTRzVq1FCPHj2Unp7utN6hQ4fUvXt3VatWTcHBwXr55ZeVn5/vVLNq1Srdfvvt8vHxUePGjTV79uyK3hzYzIHMr3Ug82vt3/JBZQ8FAOBiFRpyNm/erA8++EC33nqr0/wXXnhBX331lRYsWKDVq1fryJEjeuSRR6zlBQUF6t69u3Jzc7V+/XrNmTNHs2fP1siRI62a1NRUde/eXffcc4+2b9+uwYMHq3///vrmm28qcpMAAEAVUWEh5+TJk4qNjdXf//531apVy5qflZWljz76SO+++67uvfdetWrVSrNmzdL69eu1YcMGSdKyZcu0e/duffLJJ7rtttt033336fXXX9fUqVOVm5srSZo+fboiIiL0zjvvqGnTpkpISNCjjz6q9957r6I2CQAAVCEVFnLi4+PVvXt3RUVFOc1PSUlRXl6e0/wmTZrohhtuUHJysiQpOTlZLVq0UEhIiFUTHR2t7Oxs7dq1y6q5sO3o6GirjeLk5OQoOzvbaQIAAPbkWRGN/utf/9LWrVu1efPmIsvS0tLk7e2twMBAp/khISFKS0uzas4POIXLC5eVVpOdna0zZ87Iz8+vSN/jxo3TmDFjLnm7AABA1eHyKzmHDx/W888/r7lz58rX19fVzV+W4cOHKysry5oOHz5c2UMCAAAVxOUhJyUlRRkZGbr99tvl6ekpT09PrV69WpMnT5anp6dCQkKUm5urzMxMp/XS09MVGhoqSQoNDS3ytFXh67Jq/P39i72KI0k+Pj7y9/d3mgAAgD25POR07txZO3bs0Pbt262pdevWio2Ntf7s5eWl5cuXW+vs3btXhw4dUmRkpCQpMjJSO3bsUEZGhlWTlJQkf39/NWvWzKo5v43CmsI2AADAtc3l9+TUrFlTt9xyi9O86tWrq06dOtb8uLg4DRkyRLVr15a/v7+ee+45RUZGql27dpKkLl26qFmzZvrjH/+o8ePHKy0tTSNGjFB8fLx8fHwkSX/605/0/vvva+jQoXrqqae0YsUKzZ8/X0uWLHH1JgEAgCqoQm48Lst7770nd3d39ejRQzk5OYqOjtbf/vY3a7mHh4cWL16sZ555RpGRkapevbr69u2rsWPHWjURERFasmSJXnjhBU2aNEnXX3+9PvzwQ0VHR1fGJgEAgKvMFQk5q1atcnrt6+urqVOnaurUqSWuEx4erqVLl5ba7t13361t27a5YogAAMBm+O0qAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgSy4POePGjdMdd9yhmjVrKjg4WDExMdq7d69TzdmzZxUfH686deqoRo0a6tGjh9LT051qDh06pO7du6tatWoKDg7Wyy+/rPz8fKeaVatW6fbbb5ePj48aN26s2bNnu3pzgMuWl7jWaQIAXBkuDzmrV69WfHy8NmzYoKSkJOXl5alLly46deqUVfPCCy/oq6++0oIFC7R69WodOXJEjzzyiLW8oKBA3bt3V25urtavX685c+Zo9uzZGjlypFWTmpqq7t2765577tH27ds1ePBg9e/fX998842rNwkAAFRBnq5uMDEx0en17NmzFRwcrJSUFHXq1ElZWVn66KOP9Omnn+ree++VJM2aNUtNmzbVhg0b1K5dOy1btky7d+/Wt99+q5CQEN122216/fXX9corr2j06NHy9vbW9OnTFRERoXfeeUeS1LRpU61du1bvvfeeoqOjix1bTk6OcnJyrNfZ2dmu3nwAAHCVqPB7crKysiRJtWvXliSlpKQoLy9PUVFRVk2TJk10ww03KDk5WZKUnJysFi1aKCQkxKqJjo5Wdna2du3aZdWc30ZhTWEbxRk3bpwCAgKsqX79+q7ZSAAAcNWp0JDjcDg0ePBg3XnnnbrlllskSWlpafL29lZgYKBTbUhIiNLS0qya8wNO4fLCZaXVZGdn68yZM8WOZ/jw4crKyrKmw4cPX/Y2AgCAq5PLP646X3x8vHbu3Km1a6+Omy19fHzk4+NT2cMAAABXQIVdyUlISNDixYu1cuVKXX/99db80NBQ5ebmKjMz06k+PT1doaGhVs2FT1sVvi6rxt/fX35+fq7eHAAAUMW4POQYY5SQkKCFCxdqxYoVioiIcFreqlUreXl5afny5da8vXv36tChQ4qMjJQkRUZGaseOHcrIyLBqkpKS5O/vr2bNmlk157dRWFPYBgAAuLa5/OOq+Ph4ffrpp/riiy9Us2ZN6x6agIAA+fn5KSAgQHFxcRoyZIhq164tf39/Pffcc4qMjFS7du0kSV26dFGzZs30xz/+UePHj1daWppGjBih+Ph46+OmP/3pT3r//fc1dOhQPfXUU1qxYoXmz5+vJUuWuHqTAABAFeTyKznTpk1TVlaW7r77btWrV8+a5s2bZ9W89957uv/++9WjRw916tRJoaGh+vzzz63lHh4eWrx4sTw8PBQZGak//OEP6tOnj8aOHWvVREREaMmSJUpKSlLLli31zjvv6MMPPyzx8XEAAHBtcfmVHGNMmTW+vr6aOnWqpk6dWmJNeHi4li5dWmo7d999t7Zt21buMQIAAPvjt6sAAIAtEXIAAIAtVej35AD4nwOZX0uSblSHSh4JAFwbuJIDAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsybOyBwDAdfIS1zq99uraoZJGAgCVjys5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlni6CrCZA5lfW3++UTxdBeDaxZUcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS3wZIIBLkpe4tsg8r658+SCAqwchpwpzGIf2mP366fRPqulRTQ1MgTzcPCqsn/94HFFAjqcaeoe6vI9CxhjpeLaqHfeSo2a+jMMhN3cuOAIAyq/Kh5ypU6dqwoQJSktLU8uWLTVlyhS1adOmsodV4TY6vtfs/H/rN2VKmefmLUjaqLhbXlZkWOeK6cdH0m/fK8C9up4+cpNL+5Ekk/6bHD+mSjm5qqNq0v5Tytnygbwe7iyPW29yaV8AAPur0v9FnjdvnoYMGaJRo0Zp69atatmypaKjo5WRkVHZQ6tQGx3f6538j84Fj/P8dvaoxm8ZquQjy13ST/KR5cX2k+U45dJ+JKngh//I8f1eKSfXeUHWCeXNXqSCH/7jsr7gOgcyv3b6rSwAuJpU6ZDz7rvvasCAAXryySfVrFkzTZ8+XdWqVdPMmTMre2gVpsAUaHb+v0tYaiRJM3e+rQJTcNn9fLRzQqk1ruhHkozDobyFpQemvEXLZRyOy+4LAHDtqLIfV+Xm5iolJUXDhw+35rm7uysqKkrJycnFrpOTk6OcnBzrdVZWliQpOzvb5eM7efp//WR7nZIkebmgn92/bVXa6d9Krfn19BFtPvCdmtW5/fL6OfZrhfcjSQX7Dysv42jpReln5fX9Hnk0qn9ZfRXKO3XumBQeJ7eTZyrkPCiur4rqp7Avp3PvCvXlynO82L6Sir6nvX4fWSF9Abj6Ff7dZowpvdBUUf/973+NJLN+/Xqn+S+//LJp06ZNseuMGjXK6NzlDiYmJiYmJqYqPh0+fLjUrFBlr+RciuHDh2vIkCHWa4fDoWPHjqlOnTpyc3OrxJGdS6X169fX4cOH5e/vX6ljqWzsi3PYD+ewH/6HfXEO++Gca3k/GGN04sQJhYWFlVpXZUNO3bp15eHhofT0dKf56enpCg0t/hFnHx8f+fj4OM0LDAysqCFeEn9//2vuZC0J++Ic9sM57If/YV+cw34451rdDwEBAWXWVNkbj729vdWqVSstX/6/G1YdDoeWL1+uyEg+qwcA4FpXZa/kSNKQIUPUt29ftW7dWm3atNHEiRN16tQpPfnkk5U9NAAAUMmqdMjp2bOnjh49qpEjRyotLU233XabEhMTFRISUtlDKzcfHx+NGjWqyMdp1yL2xTnsh3PYD//DvjiH/XAO+6FsbsaU9fwVAABA1VNl78kBAAAoDSEHAADYEiEHAADYEiEHAADYEiEHAADYEiHnChg3bpzuuOMO1axZU8HBwYqJidHevXtLXWf27Nlyc3Nzmnx9fa/QiCvO6NGji2xXkyZNSl1nwYIFatKkiXx9fdWiRQstXbr0Co224jRo0KDIfnBzc1N8fHyx9XY6H9asWaMHHnhAYWFhcnNz06JFi5yWG2M0cuRI1atXT35+foqKitK+ffvKbHfq1Klq0KCBfH191bZtW23atKmCtsA1StsPeXl5euWVV9SiRQtVr15dYWFh6tOnj44cOVJqm5fy/qpsZZ0P/fr1K7JNXbt2LbNdO50Pkor9+8LNzU0TJkwosc2qeD64GiHnCli9erXi4+O1YcMGJSUlKS8vT126dNGp///r1CXx9/fXr7/+ak0HDx68QiOuWM2bN3farrVr15ZYu379evXu3VtxcXHatm2bYmJiFBMTo507d17BEbve5s2bnfZBUlKSJOmxxx4rcR27nA+nTp1Sy5YtNXXq1GKXjx8/XpMnT9b06dO1ceNGVa9eXdHR0Tp79myJbc6bN09DhgzRqFGjtHXrVrVs2VLR0dHKyMioqM24bKXth9OnT2vr1q167bXXtHXrVn3++efau3evHnzwwTLbLc/762pQ1vkgSV27dnXapn/+85+ltmm380GS0/b/+uuvmjlzptzc3NSjR49S261q54PLueQnwVEuGRkZRpJZvXp1iTWzZs0yAQEBV25QV8ioUaNMy5YtL7r+8ccfN927d3ea17ZtW/P000+7eGSV6/nnnzeNGjUyDoej2OV2PR8kmYULF1qvHQ6HCQ0NNRMmTLDmZWZmGh8fH/PPf/6zxHbatGlj4uPjrdcFBQUmLCzMjBs3rkLG7WoX7ofibNq0yUgyBw8eLLGmvO+vq01x+6Fv377moYceKlc718L58NBDD5l777231Jqqfj64AldyKkFWVpYkqXbt2qXWnTx5UuHh4apfv74eeugh7dq160oMr8Lt27dPYWFhatiwoWJjY3Xo0KESa5OTkxUVFeU0Lzo6WsnJyRU9zCsmNzdXn3zyiZ566im5ubmVWGfX8+F8qampSktLczrmAQEBatu2bYnHPDc3VykpKU7ruLu7KyoqylbnSVZWltzc3Mr8UeHyvL+qilWrVik4OFg333yznnnmGf32228l1l4L50N6erqWLFmiuLi4MmvteD6UByHnCnM4HBo8eLDuvPNO3XLLLSXW3XzzzZo5c6a++OILffLJJ3I4HGrfvr1++eWXKzha12vbtq1mz56txMRETZs2TampqerYsaNOnDhRbH1aWlqRn+kICQlRWlralRjuFbFo0SJlZmaqX79+JdbY9Xy4UOFxLc8x/7//+z8VFBTY+jw5e/asXnnlFfXu3bvUX5su7/urKujatas+/vhjLV++XG+99ZZWr16t++67TwUFBcXWXwvnw5w5c1SzZk098sgjpdbZ8Xworyr921VVUXx8vHbu3Fnm56KRkZFOv6bevn17NW3aVB988IFef/31ih5mhbnvvvusP996661q27atwsPDNX/+/Iv6X4kdffTRR7rvvvsUFhZWYo1dzweULS8vT48//riMMZo2bVqptXZ8f/Xq1cv6c4sWLXTrrbeqUaNGWrVqlTp37lyJI6s8M2fOVGxsbJkPH9jxfCgvruRcQQkJCVq8eLFWrlyp66+/vlzrenl56Xe/+51++umnChpd5QgMDNRNN91U4naFhoYqPT3daV56erpCQ0OvxPAq3MGDB/Xtt9+qf//+5VrPrudD4XEtzzGvW7euPDw8bHmeFAacgwcPKikpqdSrOMUp6/1VFTVs2FB169YtcZvsfD5I0nfffae9e/eW++8MyZ7nQ1kIOVeAMUYJCQlauHChVqxYoYiIiHK3UVBQoB07dqhevXoVMMLKc/LkSe3fv7/E7YqMjNTy5cud5iUlJTld1ajKZs2apeDgYHXv3r1c69n1fIiIiFBoaKjTMc/OztbGjRtLPObe3t5q1aqV0zoOh0PLly+v0udJYcDZt2+fvv32W9WpU6fcbZT1/qqKfvnlF/32228lbpNdz4dCH330kVq1aqWWLVuWe107ng9lquw7n68FzzzzjAkICDCrVq0yv/76qzWdPn3aqvnjH/9ohg0bZr0eM2aM+eabb8z+/ftNSkqK6dWrl/H19TW7du2qjE1wmRdffNGsWrXKpKammnXr1pmoqChTt25dk5GRYYwpuh/WrVtnPD09zdtvv2327NljRo0aZby8vMyOHTsqaxNcpqCgwNxwww3mlVdeKbLMzufDiRMnzLZt28y2bduMJPPuu++abdu2WU8NvfnmmyYwMNB88cUX5ocffjAPPfSQiYiIMGfOnLHauPfee82UKVOs1//617+Mj4+PmT17ttm9e7cZOHCgCQwMNGlpaVd8+y5WafshNzfXPPjgg+b6668327dvd/p7Iycnx2rjwv1Q1vvralTafjhx4oR56aWXTHJysklNTTXffvutuf32282NN95ozp49a7Vh9/OhUFZWlqlWrZqZNm1asW3Y4XxwNULOFSCp2GnWrFlWzV133WX69u1rvR48eLC54YYbjLe3twkJCTHdunUzW7duvfKDd7GePXuaevXqGW9vb3PdddeZnj17mp9++slafuF+MMaY+fPnm5tuusl4e3ub5s2bmyVLllzhUVeMb775xkgye/fuLbLMzufDypUri30/FG6vw+Ewr732mgkJCTE+Pj6mc+fORfZReHi4GTVqlNO8KVOmWPuoTZs2ZsOGDVdoiy5NafshNTW1xL83Vq5cabVx4X4o6/11NSptP5w+fdp06dLFBAUFGS8vLxMeHm4GDBhQJKzY/Xwo9MEHHxg/Pz+TmZlZbBt2OB9czc0YYyr0UhEAAEAl4J4cAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS/8PRd77WAQ/NGIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQQ1JREFUeJzt3XucjeX+//H3nE/MjNEcjBgTlUOiCJNj22wjUlOEEpNItWcci6gcE0VKDpt0Yu/NzuEbFZpMiESDQTmF5FT2zNgxs3IaM7Pu3x/95t6WGQytZZnb6/l43A+zrvta9/W51lqz5u1e930vD8MwDAEAAFiMp7sLAAAAcAVCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDpxq1KhR8vDwMG9Xq1ZNTz75pMvHPXjwoDw8PDR79myz7cknn1S5cuVcPnYRDw8PjRo16pqNV9a1atVKrVq1cuo2L3z9uYsrXvcXbvPrr7+Wh4eHvv766yveVmkf+z8zxpUoK787Tz75pKpVq3bZfiW9H8E9CDm47ixfvvy6fcO7nmu7UZw+fVqjRo1y+R9eXN+qVasmDw+PYsuzzz5brG9OTo769Omj8PBwBQUF6b777tOWLVvcUDWuNW93FwBr27Nnjzw9ryxLL1++XNOnT7+iMBETE6MzZ87Ix8fnCiu8Mpeq7cyZM/L25lfK1U6fPq3Ro0dLUrG9Ea+88oqGDh3qhqocXc3r/kq1aNFCZ86cka+v7xXfd8WKFS6o6NqrX7++nn/+eYe22267zeG23W5X+/bt9f3332vw4MG66aab9Pe//12tWrVSRkaGbr311lKP995778lutzuldlwbvCPDpfz8/Fy6/YKCAtntdvn6+srf39+lY12Ou8e/Fs6ePStfX98S/4CfOnVKQUFBbqjqf7y9va+LoOnq170keXp6XvVr7mqC0fWocuXKeuKJJy7ZZ9GiRVq/fr0WLlyoTp06SZI6d+6s2267TSNHjtS8efNKPZ6r/xMF5+PjKly1devW6Z577pG/v7+qV6+ud999t1ifC48jyM/P1+jRo3XrrbfK399fFStWVLNmzZSWlibpj8+8p0+fLkkOu6Cl/33O/eabb2ry5MmqXr26/Pz8tGvXrkt+Bv7zzz8rISFBQUFBio6O1pgxY2QYhrn+YscdXLjNS9VW1HbhHp6tW7fq/vvvV3BwsMqVK6fWrVvru+++c+gze/ZseXh46Ntvv9WgQYPMXeoPP/ywjh07dvEn4CJ+/fVX9erVS9HR0fLz81NsbKyee+45nTt3zuExefTRRxUWFqbAwEA1adJEy5Ytc9hO0ePy8ccf65VXXlHlypUVGBgom81mHu+0f/9+tWvXTuXLl1e3bt0k/fE/58mTJ6tOnTry9/dXZGSknnnmGZ04ceKSdZ87d04jRoxQgwYNFBISoqCgIDVv3lyrV682+xw8eFDh4eGSpNGjR5vPQdHjXtIxOQUFBXr11VfN10u1atX00ksvKS8vz6FftWrV9MADD2jdunVq1KiR/P39dcstt+gf//jHlT0BKv66v5Ln2DAMjR07VjfffLMCAwN13333aefOncXGuPB1m5KSonLlyun06dPF+j722GOKiopSYWGhpJKPyfnll1+UmJiooKAgRUREaODAgcUeo5LmVuTCbZbm+XSGc+fO6dSpUxddv2jRIkVGRuqRRx4x28LDw9W5c2d9+umnJc7xYko6JicnJ0dPPvmkQkJCFBoaqqSkJOXk5Dj0yc7OVnh4uFq1auXw3vPTTz8pKChIXbp0KXUNuDLu/y8PyqTt27erTZs2Cg8P16hRo1RQUKCRI0cqMjLykvcbNWqUxo8fr969e6tRo0ay2WzavHmztmzZor/+9a965plndPToUaWlpemf//xnidv46KOPdPbsWfXp00d+fn4KCwu76C7kwsJCtW3bVk2aNNGECROUmpqqkSNHqqCgQGPGjLmiOZemtvPt3LlTzZs3V3BwsIYMGSIfHx+9++67atWqldasWaPGjRs79O/bt68qVKigkSNH6uDBg5o8ebJSUlI0f/78Utd49OhRNWrUyDwGoWbNmvr111+1aNEinT59Wr6+vsrKytK9996r06dPq1+/fqpYsaLmzJmjBx98UIsWLdLDDz/ssM1XX31Vvr6+euGFF5SXl2fuBSgoKFBCQoKaNWumN998U4GBgebjNHv2bPXs2VP9+vXTgQMHNG3aNG3dulXffvvtRf83bLPZ9P777+uxxx7T008/rd9//10ffPCBEhIStHHjRtWvX1/h4eGaMWOGnnvuOT388MPmH64777zzoo9J7969NWfOHHXq1EnPP/+80tPTNX78eO3evVuLFy926PvTTz+pU6dO6tWrl5KSkvThhx/qySefVIMGDVSnTp1SPw8XU5rneMSIERo7dqzatWundu3aacuWLWrTpo1DSC1Jly5dNH36dC1btkyPPvqo2X769Gl9/vnnevLJJ+Xl5VXifc+cOaPWrVvr8OHD6tevn6Kjo/XPf/5Tq1atuuq5lub5/LNWrVqlwMBAFRYWKiYmRgMHDlT//v0d+mzdulV33313sb2PjRo10qxZs7R3717VrVv3qsY3DEMPPfSQ1q1bp2effVa1atXS4sWLlZSU5NAvIiJCM2bM0KOPPqqpU6eqX79+stvtevLJJ1W+fHn9/e9/v6rxUQoGcBUSExMNf39/49ChQ2bbrl27DC8vL+P8l1VMTIyRlJRk3q5Xr57Rvn37S247OTnZKOmleeDAAUOSERwcbGRnZ5e47qOPPjLbkpKSDElG3759zTa73W60b9/e8PX1NY4dO2YYhmGsXr3akGSsXr36stu8WG2GYRiSjJEjR5q3ExMTDV9fX2P//v1m29GjR43y5csbLVq0MNs++ugjQ5IRHx9v2O12s33gwIGGl5eXkZOTU+J4JenRo4fh6elpbNq0qdi6om0PGDDAkGR888035rrff//diI2NNapVq2YUFhYahvG/x+WWW24xTp8+7bCtosd26NChDu3ffPONIcmYO3euQ3tqamqx9pYtWxotW7Y0bxcUFBh5eXkO9ztx4oQRGRlpPPXUU2bbsWPHij3WRUaOHOnw/Gzbts2QZPTu3duh3wsvvGBIMlatWmW2xcTEGJKMtWvXmm3Z2dmGn5+f8fzzzxcb61IufN2X9jnOzs42fH19jfbt2zv0e+mllwxJDtu88HVrt9uNypUrGx07dnSoZcGCBcXmdeFjP3nyZEOSsWDBArPt1KlTRo0aNYr9blw4t4tts7TPp2EU/90pjQ4dOhhvvPGGsWTJEuODDz4wmjdvbkgyhgwZ4tAvKCio2HiGYRjLli0zJBmpqamlHjMpKcmIiYkxby9ZssSQZEyYMMFsKygoMGs5/73DMAzjscceMwIDA429e/caEydONCQZS5YsKfX4uHJ8XIUrVlhYqC+//FKJiYmqWrWq2V6rVi0lJCRc8r6hoaHauXOn9u3bd9Xjd+zY0fzIojRSUlLMnz08PJSSkqJz587pq6++uuoaLqewsFArVqxQYmKibrnlFrO9UqVKevzxx7Vu3TrZbDaH+/Tp08fho5bmzZursLBQhw4dKtWYdrtdS5YsUYcOHdSwYcNi64u2vXz5cjVq1EjNmjUz15UrV059+vTRwYMHtWvXLof7JSUlKSAgoMQxn3vuOYfbCxcuVEhIiP7617/qv//9r7k0aNBA5cqVu+RHFV5eXuZeIrvdruPHj6ugoEANGza86jNhli9fLkkaNGiQQ3vRwaoXfkRXu3ZtNW/e3LwdHh6u22+/XT///PNVjX+hyz3HX331lc6dO6e+ffs69BswYMBlt+3h4aFHH31Uy5cv18mTJ832+fPnq3Llyg7P94WWL1+uSpUqmcesSFJgYKD69OlzJdNz4Irn83yfffaZhgwZooceekhPPfWU1qxZo4SEBL311lv65ZdfzH5nzpwp8RipouOZzpw5c9U1LF++XN7e3g6/B15eXurbt2+J/adNm6aQkBB16tRJw4cPV/fu3fXQQw9d9fi4PEIOrtixY8d05syZEs9KuP322y953zFjxignJ0e33Xab6tatq8GDB+uHH364ovFjY2NL3dfT09MhZEj/O/vi4MGDVzTulTh27JhOnz5d4uNRq1Yt2e12HTlyxKH9/MAoSRUqVJCkyx7Lcv6YNptNd9xxxyX7HTp06KJ1Fa0/38Ueb29vb918880Obfv27VNubq4iIiIUHh7usJw8eVLZ2dmXrG3OnDm68847zeO1wsPDtWzZMuXm5l7yfhdz6NAheXp6qkaNGg7tUVFRCg0NLTbXC58D6Y/nobTPweVc7jkuqufC363w8HCz76V06dJFZ86c0WeffSZJOnnypJYvX65HH330ktcPOnTokGrUqFGsz+V+ny/H2c/npXh4eGjgwIEqKChwOL4uICCgxONuzp49a66/WocOHVKlSpWKXY/rYo9bWFiYpkyZoh9++EEhISGaMmXKVY+N0uGYHFxTLVq00P79+/Xpp59qxYoVev/99/X2229r5syZ6t27d6m28WfelEpysTf/ooM0r5WLHS9hnHegojtc7PH28/MrdpyD3W5XRESE5s6dW+J9LrUH7l//+peefPJJJSYmavDgwYqIiJCXl5fGjx+v/fv3X/0EdPHn+EKufg5cvf0mTZqoWrVqWrBggR5//HF9/vnnOnPmjFMPbL3U78v583Pl83kxVapUkSQdP37cbKtUqZL+85//FOtb1BYdHe2SWi7myy+/lPRHsP3ll18UGhp6Tce/0RBycMXCw8MVEBBQ4kdOe/bsuez9w8LC1LNnT/Xs2VMnT55UixYtNGrUKDPkOPOKtXa7XT///LPDtTP27t0rSeZZEkX/Q77wjIiSPiYqbW3h4eEKDAws8fH48ccf5enpab4hO0t4eLiCg4O1Y8eOS/aLiYm5aF1F669W9erV9dVXX6lp06ZXHEYXLVqkW265RZ988onD4zxy5EiHflfy+oiJiZHdbte+ffvMPVWSlJWVpZycnD81V1coqmffvn0OeyCPHTtW6r1JnTt31jvvvCObzab58+erWrVqatKkyWXH3bFjhwzDcHh8S3qdVKhQodjvivTH78v5NZf2+XSmoo8Vzw/T9evX1zfffCO73e4QytPT0xUYGFjsujpXIiYmRitXrtTJkycd9uZc7H0wNTVV77//voYMGaK5c+cqKSlJ6enp18VlD6yKj6twxby8vJSQkKAlS5bo8OHDZvvu3bvN/6VczG+//eZwu1y5cqpRo4bD7uSia62U9EZ6NaZNm2b+bBiGpk2bJh8fH7Vu3VrSH29UXl5eWrt2rcP9SjrjobS1eXl5qU2bNvr0008dPhbLysrSvHnz1KxZMwUHB1/ljErm6empxMREff7559q8eXOx9UV7C9q1a6eNGzdqw4YN5rpTp05p1qxZqlatmmrXrn3VNXTu3FmFhYV69dVXi60rKCi45ONWtBfg/L0a6enpDnVKMs/iKs3ro127dpKkyZMnO7S/9dZbkqT27dtfdhvXUnx8vHx8fDR16lSHx+HC+i+lS5cuysvL05w5c5SamqrOnTtf9j7t2rXT0aNHtWjRIrPt9OnTmjVrVrG+1atX13fffedwttfSpUuLffxa2ufzahw/frzYntb8/Hy9/vrr8vX11X333We2d+rUSVlZWfrkk0/Mtv/+979auHChOnTo8KeuadSuXTsVFBRoxowZZlthYaGmTp1arG9OTo55Vum4ceP0/vvva8uWLRo3btxVj4/LIz7iqowePVqpqalq3ry5/va3v6mgoEBTp05VnTp1LnmMTe3atdWqVSs1aNBAYWFh2rx5sxYtWuRwcHCDBg0kSf369VNCQoK8vLzUtWvXq6rT399fqampSkpKUuPGjfXFF19o2bJleumll8z/7YWEhJindnp4eKh69epaunRpicePXEltY8eOVVpampo1a6a//e1v8vb21rvvvqu8vDxNmDDhquZzOePGjdOKFSvUsmVL9enTR7Vq1dJ//vMfLVy4UOvWrVNoaKiGDh2qf//737r//vvVr18/hYWFac6cOTpw4ID+7//+709dqbdly5Z65plnNH78eG3btk1t2rSRj4+P9u3bp4ULF+qdd95xOLj1fA888IA++eQTPfzww2rfvr0OHDigmTNnqnbt2g4H0gYEBKh27dqaP3++brvtNoWFhemOO+4o8VikevXqKSkpSbNmzVJOTo5atmypjRs3as6cOUpMTHT4Y3g9CA8P1wsvvKDx48frgQceULt27bR161Z98cUXuummm0q1jbvvvls1atTQyy+/rLy8vFJ9VPX0009r2rRp6tGjhzIyMlSpUiX985//NAPl+Xr37q1Fixapbdu26ty5s/bv369//etfql69ukO/0j6fV+Ozzz7T2LFj1alTJ8XGxur48eOaN2+eduzYoXHjxikqKsrs26lTJzVp0kQ9e/bUrl27zCseFxYWmlfOvlodOnRQ06ZNNXToUB08eFC1a9fWJ598UuIxR/3799dvv/2mr776Sl5eXmrbtq169+6tsWPH6qGHHlK9evX+VC24CLed14Uyb82aNUaDBg0MX19f45ZbbjFmzpxZ7BTeC083HTt2rNGoUSMjNDTUCAgIMGrWrGm89tprxrlz58w+BQUFRt++fY3w8HDDw8PD3F7RKd0TJ04sVsvFTiEPCgoy9u/fb7Rp08YIDAw0IiMjjZEjR5qnSRc5duyY0bFjRyMwMNCoUKGC8cwzzxg7duwots2L1WYYJZ8Gu2XLFiMhIcEoV66cERgYaNx3333G+vXrHfoUnV584WnfFzu1/XIOHTpk9OjRwwgPDzf8/PyMW265xUhOTnY4nXf//v1Gp06djNDQUMPf399o1KiRsXTp0hLHX7hwYbExih7bi5k1a5bRoEEDIyAgwChfvrxRt25dY8iQIcbRo0fNPheecmy3241x48YZMTExhp+fn3HXXXcZS5cuLXbarmEYxvr1683X3vmP+4WvP8MwjPz8fGP06NFGbGys4ePjY1SpUsUYNmyYcfbsWYd+MTExJV7e4MI6S+Nip5CX5jkuLCw0Ro8ebVSqVMkICAgwWrVqZezYsaPYNi/1+nj55ZcNSUaNGjVKrK+kOR06dMh48MEHjcDAQOOmm24y+vfvb576f+EYkyZNMipXrmz4+fkZTZs2NTZv3vynns+SfncuZfPmzUaHDh2MypUrG76+vka5cuWMZs2aOZwCf77jx48bvXr1MipWrGgEBgYaLVu2LPEyC5dTUu2//fab0b17dyM4ONgICQkxunfvbmzdutXhvePTTz81JBmTJk1yuK/NZjNiYmKMevXqObwHwnk8DMPNRzUCAAC4AMfkAAAAS+KYHKAMOHny5GWPYwgPD7/oKcpwjszMzEuuDwgIUEhIyDWqxnoKCwsv+31t5cqVK3Zdmj/r+PHjl/zaDC8vryu6ACmuH3xcBZQBo0aNuuxBkgcOHCj25YFwrsudvp6UlFTil8SidA4ePHjZi32OHDmy2Bfh/llF3yd3MTExMS69eChchz05QBnQo0ePS16WX5LDGSVwjbS0tEuuv9YXlrOaqKioyz7GF17B3BkmTZp0yesQOfsCpLh22JMDAAAsiQOPAQCAJd3QH1fZ7XYdPXpU5cuXd+pXCQAAANcxDEO///67oqOjL3kB0xs65Bw9etTp3x8EAACujSNHjujmm2++6PobOuSUL19e0h8PkrO/RwgAALiGzWZTlSpVzL/jF3NDh5yij6iCg4MJOQAAlDGXO9SEA48BAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlXXHIWbt2rTp06KDo6Gh5eHhoyZIl5rr8/Hy9+OKLqlu3roKCghQdHa0ePXro6NGjDts4fvy4unXrpuDgYIWGhqpXr146efKkQ58ffvhBzZs3l7+/v6pUqaIJEyYUq2XhwoWqWbOm/P39VbduXS1fvvxKpwMAACzqikPOqVOnVK9ePU2fPr3YutOnT2vLli0aPny4tmzZok8++UR79uzRgw8+6NCvW7du2rlzp9LS0rR06VKtXbtWffr0MdfbbDa1adNGMTExysjI0MSJEzVq1CjNmjXL7LN+/Xo99thj6tWrl7Zu3arExEQlJiZqx44dVzqlMi8/dV2xBQCAG52HYRjGVd/Zw0OLFy9WYmLiRfts2rRJjRo10qFDh1S1alXt3r1btWvX1qZNm9SwYUNJUmpqqtq1a6dffvlF0dHRmjFjhl5++WVlZmbK19dXkjR06FAtWbJEP/74oySpS5cuOnXqlJYuXWqO1aRJE9WvX18zZ84sVf02m00hISHKzc1VcHDwVT4K7ldSqPFp28wNlQAA4Hql/fvt8mNycnNz5eHhodDQUEnShg0bFBoaagYcSYqPj5enp6fS09PNPi1atDADjiQlJCRoz549OnHihNknPj7eYayEhARt2LDhorXk5eXJZrM5LAAAwJpcGnLOnj2rF198UY899piZtDIzMxUREeHQz9vbW2FhYcrMzDT7REZGOvQpun25PkXrSzJ+/HiFhISYS5UqVf7cBAEAwHXLZSEnPz9fnTt3lmEYmjFjhquGuSLDhg1Tbm6uuRw5csTdJQEAABfxdsVGiwLOoUOHtGrVKofPy6KiopSdne3Qv6CgQMePH1dUVJTZJysry6FP0e3L9SlaXxI/Pz/5+fld/cQAAECZ4fQ9OUUBZ9++ffrqq69UsWJFh/VxcXHKyclRRkaG2bZq1SrZ7XY1btzY7LN27Vrl5+ebfdLS0nT77berQoUKZp+VK1c6bDstLU1xcXHOnhIAACiDrjjknDx5Utu2bdO2bdskSQcOHNC2bdt0+PBh5efnq1OnTtq8ebPmzp2rwsJCZWZmKjMzU+fOnZMk1apVS23bttXTTz+tjRs36ttvv1VKSoq6du2q6OhoSdLjjz8uX19f9erVSzt37tT8+fP1zjvvaNCgQWYd/fv3V2pqqiZNmqQff/xRo0aN0ubNm5WSkuKEhwUAAJR5xhVavXq1IanYkpSUZBw4cKDEdZKM1atXm9v47bffjMcee8woV66cERwcbPTs2dP4/fffHcb5/vvvjWbNmhl+fn5G5cqVjddff71YLQsWLDBuu+02w9fX16hTp46xbNmyK5pLbm6uIcnIzc290ofhunLui2+KLQAAWFVp/37/qevklHVcJwcAgLLnurlODgAAgDsQcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCV5u7sAlH35qescbvu0beamSgAA+B/25AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEu64pCzdu1adejQQdHR0fLw8NCSJUsc1huGoREjRqhSpUoKCAhQfHy89u3b59Dn+PHj6tatm4KDgxUaGqpevXrp5MmTDn1++OEHNW/eXP7+/qpSpYomTJhQrJaFCxeqZs2a8vf3V926dbV8+fIrnQ4AALCoKw45p06dUr169TR9+vQS10+YMEFTpkzRzJkzlZ6erqCgICUkJOjs2bNmn27dumnnzp1KS0vT0qVLtXbtWvXp08dcb7PZ1KZNG8XExCgjI0MTJ07UqFGjNGvWLLPP+vXr9dhjj6lXr17aunWrEhMTlZiYqB07dlzplAAAgAV5GIZhXPWdPTy0ePFiJSYmSvpjL050dLSef/55vfDCC5Kk3NxcRUZGavbs2eratat2796t2rVra9OmTWrYsKEkKTU1Ve3atdMvv/yi6OhozZgxQy+//LIyMzPl6+srSRo6dKiWLFmiH3/8UZLUpUsXnTp1SkuXLjXradKkierXr6+ZM2eWqn6bzaaQkBDl5uYqODj4ah8Gt8tPXVeszadtM7eNfy3HBgDceEr799upx+QcOHBAmZmZio+PN9tCQkLUuHFjbdiwQZK0YcMGhYaGmgFHkuLj4+Xp6an09HSzT4sWLcyAI0kJCQnas2ePTpw4YfY5f5yiPkXjlCQvL082m81hAQAA1uTUkJOZmSlJioyMdGiPjIw012VmZioiIsJhvbe3t8LCwhz6lLSN88e4WJ+i9SUZP368QkJCzKVKlSpXOkUAAFBG3FBnVw0bNky5ubnmcuTIEXeXBAAAXMSpIScqKkqSlJWV5dCelZVlrouKilJ2drbD+oKCAh0/ftyhT0nbOH+Mi/UpWl8SPz8/BQcHOywAAMCanBpyYmNjFRUVpZUrV5ptNptN6enpiouLkyTFxcUpJydHGRkZZp9Vq1bJbrercePGZp+1a9cqPz/f7JOWlqbbb79dFSpUMPucP05Rn6JxAADAje2KQ87Jkye1bds2bdu2TdIfBxtv27ZNhw8floeHhwYMGKCxY8fqs88+0/bt29WjRw9FR0ebZ2DVqlVLbdu21dNPP62NGzfq22+/VUpKirp27aro6GhJ0uOPPy5fX1/16tVLO3fu1Pz58/XOO+9o0KBBZh39+/dXamqqJk2apB9//FGjRo3S5s2blZKS8ucfFQAAUOZ5X+kdNm/erPvuu8+8XRQ8kpKSNHv2bA0ZMkSnTp1Snz59lJOTo2bNmik1NVX+/v7mfebOnauUlBS1bt1anp6e6tixo6ZMmWKuDwkJ0YoVK5ScnKwGDRropptu0ogRIxyupXPvvfdq3rx5euWVV/TSSy/p1ltv1ZIlS3THHXdc1QMBAACs5U9dJ6es4zo5rhmf6+QAAFzJLdfJAQAAuF4QcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCV5u7sAONfBnC8kSZ6bd6p6w2fcXA0AAO7DnhwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJXPHYRfJT1xVr82nbzA2VAABwY2JPDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCQuBginOJjzhfnzreKihwAA92NPDgAAsCRCDgAAsCRCDgAAsCSnh5zCwkINHz5csbGxCggIUPXq1fXqq6/KMAyzj2EYGjFihCpVqqSAgADFx8dr3759Dts5fvy4unXrpuDgYIWGhqpXr146efKkQ58ffvhBzZs3l7+/v6pUqaIJEyY4ezoAAKCMcnrIeeONNzRjxgxNmzZNu3fv1htvvKEJEyZo6tSpZp8JEyZoypQpmjlzptLT0xUUFKSEhASdPXvW7NOtWzft3LlTaWlpWrp0qdauXas+ffqY6202m9q0aaOYmBhlZGRo4sSJGjVqlGbNmuXsKQEAgDLI6WdXrV+/Xg899JDat28vSapWrZr+/e9/a+PGjZL+2IszefJkvfLKK3rooYckSf/4xz8UGRmpJUuWqGvXrtq9e7dSU1O1adMmNWzYUJI0depUtWvXTm+++aaio6M1d+5cnTt3Th9++KF8fX1Vp04dbdu2TW+99ZZDGAIAADcmp+/Juffee7Vy5Urt3btXkvT9999r3bp1uv/++yVJBw4cUGZmpuLj4837hISEqHHjxtqwYYMkacOGDQoNDTUDjiTFx8fL09NT6enpZp8WLVrI19fX7JOQkKA9e/boxIkTJdaWl5cnm83msAAAAGty+p6coUOHymazqWbNmvLy8lJhYaFee+01devWTZKUmZkpSYqMjHS4X2RkpLkuMzNTERERjoV6eyssLMyhT2xsbLFtFK2rUKFCsdrGjx+v0aNHO2GWAADgeuf0PTkLFizQ3LlzNW/ePG3ZskVz5szRm2++qTlz5jh7qCs2bNgw5ebmmsuRI0fcXRIAAHARp+/JGTx4sIYOHaquXbtKkurWratDhw5p/PjxSkpKUlRUlCQpKytLlSpVMu+XlZWl+vXrS5KioqKUnZ3tsN2CggIdP37cvH9UVJSysrIc+hTdLupzIT8/P/n5+f35SQIAgOue0/fknD59Wp6ejpv18vKS3W6XJMXGxioqKkorV64019tsNqWnpysuLk6SFBcXp5ycHGVkZJh9Vq1aJbvdrsaNG5t91q5dq/z8fLNPWlqabr/99hI/qgIAADcWp4ecDh066LXXXtOyZct08OBBLV68WG+99ZYefvhhSZKHh4cGDBigsWPH6rPPPtP27dvVo0cPRUdHKzExUZJUq1YttW3bVk8//bQ2btyob7/9VikpKeratauio6MlSY8//rh8fX3Vq1cv7dy5U/Pnz9c777yjQYMGOXtKAACgDHL6x1VTp07V8OHD9be//U3Z2dmKjo7WM888oxEjRph9hgwZolOnTqlPnz7KyclRs2bNlJqaKn9/f7PP3LlzlZKSotatW8vT01MdO3bUlClTzPUhISFasWKFkpOT1aBBA910000aMWIEp48DAABJkodx/qWIbzA2m00hISHKzc1VcHCwU7edn7quWJtPW9d8O/f5YxV9G7hnjaqq3vAZl4xX0vgO30Le9bVrMi4A4MZU2r/ffHcVAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJKdf8Ri4lq7lRRcBAGULe3IAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlebu7AKs6mPOF+XO10PvdWAkAADcm9uQAAABLIuQAAABLIuQAAABLcknI+fXXX/XEE0+oYsWKCggIUN26dbV582ZzvWEYGjFihCpVqqSAgADFx8dr3759Dts4fvy4unXrpuDgYIWGhqpXr146efKkQ58ffvhBzZs3l7+/v6pUqaIJEya4YjoAAKAMcnrIOXHihJo2bSofHx998cUX2rVrlyZNmqQKFSqYfSZMmKApU6Zo5syZSk9PV1BQkBISEnT27FmzT7du3bRz506lpaVp6dKlWrt2rfr06WOut9lsatOmjWJiYpSRkaGJEydq1KhRmjVrlrOnBAAAyiCnn131xhtvqEqVKvroo4/MttjYWPNnwzA0efJkvfLKK3rooYckSf/4xz8UGRmpJUuWqGvXrtq9e7dSU1O1adMmNWzYUJI0depUtWvXTm+++aaio6M1d+5cnTt3Th9++KF8fX1Vp04dbdu2TW+99ZZDGDpfXl6e8vLyzNs2m83Z0wcAANcJp+/J+eyzz9SwYUM9+uijioiI0F133aX33nvPXH/gwAFlZmYqPj7ebAsJCVHjxo21YcMGSdKGDRsUGhpqBhxJio+Pl6enp9LT080+LVq0kK+vr9knISFBe/bs0YkTJ0qsbfz48QoJCTGXKlWqOHXuAADg+uH0kPPzzz9rxowZuvXWW/Xll1/queeeU79+/TRnzhxJUmZmpiQpMjLS4X6RkZHmuszMTEVERDis9/b2VlhYmEOfkrZx/hgXGjZsmHJzc83lyJEjf3K2AADgeuX0j6vsdrsaNmyocePGSZLuuusu7dixQzNnzlRSUpKzh7sifn5+8vPzc2sNAADg2nD6npxKlSqpdu3aDm21atXS4cOHJUlRUVGSpKysLIc+WVlZ5rqoqChlZ2c7rC8oKNDx48cd+pS0jfPHAAAANy6nh5ymTZtqz549Dm179+5VTEyMpD8OQo6KitLKlSvN9TabTenp6YqLi5MkxcXFKScnRxkZGWafVatWyW63q3HjxmaftWvXKj8/3+yTlpam22+/3eFMLgAAcGNyesgZOHCgvvvuO40bN04//fST5s2bp1mzZik5OVmS5OHhoQEDBmjs2LH67LPPtH37dvXo0UPR0dFKTEyU9Meen7Zt2+rpp5/Wxo0b9e233yolJUVdu3ZVdHS0JOnxxx+Xr6+vevXqpZ07d2r+/Pl65513NGjQIGdPCQAAlEFOPybnnnvu0eLFizVs2DCNGTNGsbGxmjx5srp162b2GTJkiE6dOqU+ffooJydHzZo1U2pqqvz9/c0+c+fOVUpKilq3bi1PT0917NhRU6ZMMdeHhIRoxYoVSk5OVoMGDXTTTTdpxIgRFz19HAAA3Fhc8i3kDzzwgB544IGLrvfw8NCYMWM0ZsyYi/YJCwvTvHnzLjnOnXfeqW+++eaq6wQAANbFd1cBAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLcskp5MC1cjDnC/PnaqH3u7ESAMD1hj05AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkjiFHCil/NR1xdp82jZzQyUAgNJgTw4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkl4ec119/XR4eHhowYIDZdvbsWSUnJ6tixYoqV66cOnbsqKysLIf7HT58WO3bt1dgYKAiIiI0ePBgFRQUOPT5+uuvdffdd8vPz081atTQ7NmzXT0dAABQRrg05GzatEnvvvuu7rzzTof2gQMH6vPPP9fChQu1Zs0aHT16VI888oi5vrCwUO3bt9e5c+e0fv16zZkzR7Nnz9aIESPMPgcOHFD79u113333adu2bRowYIB69+6tL7/80pVTAiRJB3O+0MGcL7R/87vuLgUAcBEuCzknT55Ut27d9N5776lChQpme25urj744AO99dZb+stf/qIGDRroo48+0vr16/Xdd99JklasWKFdu3bpX//6l+rXr6/7779fr776qqZPn65z585JkmbOnKnY2FhNmjRJtWrVUkpKijp16qS3337bVVMCAABliMtCTnJystq3b6/4+HiH9oyMDOXn5zu016xZU1WrVtWGDRskSRs2bFDdunUVGRlp9klISJDNZtPOnTvNPhduOyEhwdxGSfLy8mSz2RwWAABgTd6u2OjHH3+sLVu2aNOmTcXWZWZmytfXV6GhoQ7tkZGRyszMNPucH3CK1hetu1Qfm82mM2fOKCAgoNjY48eP1+jRo696XgAAoOxw+p6cI0eOqH///po7d678/f2dvfk/ZdiwYcrNzTWXI0eOuLskAADgIk4PORkZGcrOztbdd98tb29veXt7a82aNZoyZYq8vb0VGRmpc+fOKScnx+F+WVlZioqKkiRFRUUVO9uq6Pbl+gQHB5e4F0eS/Pz8FBwc7LAAAABrcnrIad26tbZv365t27aZS8OGDdWtWzfzZx8fH61cudK8z549e3T48GHFxcVJkuLi4rR9+3ZlZ2ebfdLS0hQcHKzatWubfc7fRlGfom0AAIAbm9OPySlfvrzuuOMOh7agoCBVrFjRbO/Vq5cGDRqksLAwBQcHq2/fvoqLi1OTJk0kSW3atFHt2rXVvXt3TZgwQZmZmXrllVeUnJwsPz8/SdKzzz6radOmaciQIXrqqae0atUqLViwQMuWLXP2lAAAQBnkkgOPL+ftt9+Wp6enOnbsqLy8PCUkJOjvf/+7ud7Ly0tLly7Vc889p7i4OAUFBSkpKUljxowx+8TGxmrZsmUaOHCg3nnnHd188816//33lZCQ4I4pAQCA68w1CTlff/21w21/f39Nnz5d06dPv+h9YmJitHz58ktut1WrVtq6daszSgQAABbDd1cBAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLcnrIGT9+vO655x6VL19eERERSkxM1J49exz6nD17VsnJyapYsaLKlSunjh07Kisry6HP4cOH1b59ewUGBioiIkKDBw9WQUGBQ5+vv/5ad999t/z8/FSjRg3Nnj3b2dMBAABllNNDzpo1a5ScnKzvvvtOaWlpys/PV5s2bXTq1Cmzz8CBA/X5559r4cKFWrNmjY4ePapHHnnEXF9YWKj27dvr3LlzWr9+vebMmaPZs2drxIgRZp8DBw6offv2uu+++7Rt2zYNGDBAvXv31pdffunsKQEAgDLI29kbTE1Ndbg9e/ZsRUREKCMjQy1atFBubq4++OADzZs3T3/5y18kSR999JFq1aql7777Tk2aNNGKFSu0a9cuffXVV4qMjFT9+vX16quv6sUXX9SoUaPk6+urmTNnKjY2VpMmTZIk1apVS+vWrdPbb7+thIQEZ08LcLv81HUOt33aNnNTJQBQNrj8mJzc3FxJUlhYmCQpIyND+fn5io+PN/vUrFlTVatW1YYNGyRJGzZsUN26dRUZGWn2SUhIkM1m086dO80+52+jqE/RNkqSl5cnm83msAAAAGtyacix2+0aMGCAmjZtqjvuuEOSlJmZKV9fX4WGhjr0jYyMVGZmptnn/IBTtL5o3aX62Gw2nTlzpsR6xo8fr5CQEHOpUqXKn54jAAC4Prk05CQnJ2vHjh36+OOPXTlMqQ0bNky5ubnmcuTIEXeXBAAAXMTpx+QUSUlJ0dKlS7V27VrdfPPNZntUVJTOnTunnJwch705WVlZioqKMvts3LjRYXtFZ1+d3+fCM7KysrIUHBysgICAEmvy8/OTn5/fn54bAAC4/jl9T45hGEpJSdHixYu1atUqxcbGOqxv0KCBfHx8tHLlSrNtz549Onz4sOLi4iRJcXFx2r59u7Kzs80+aWlpCg4OVu3atc0+52+jqE/RNgAAwI3N6XtykpOTNW/ePH366acqX768eQxNSEiIAgICFBISol69emnQoEEKCwtTcHCw+vbtq7i4ODVp0kSS1KZNG9WuXVvdu3fXhAkTlJmZqVdeeUXJycnmnphnn31W06ZN05AhQ/TUU09p1apVWrBggZYtW+bsKQEAgDLI6XtyZsyYodzcXLVq1UqVKlUyl/nz55t93n77bT3wwAPq2LGjWrRooaioKH3yySfmei8vLy1dulReXl6Ki4vTE088oR49emjMmDFmn9jYWC1btkxpaWmqV6+eJk2apPfff5/TxwEAgCQX7MkxDOOyffz9/TV9+nRNnz79on1iYmK0fPnyS26nVatW2rp16xXXCAAArI/vrgIAAJZEyAEAAJZEyAEAAJZEyAEAAJbksosBAnC+gzlfmD/fKr6gEwAuhT05AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkrzdXQCAsiE/dZ3DbZ+2zdxUCQCUDntyAACAJRFyAACAJRFyAACAJXFMDoBSOZjzhflztdD73VgJAJQOe3IAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlccVjizAMQzphU+AJHxX62JVvN67JuIVGoXba92mv11EFG36KtYdds3F3/7ZVu67xuLg2+MZzAM5Q5kPO9OnTNXHiRGVmZqpevXqaOnWqGjVq5O6yrikj6zfZfzwg5Z1TRQVKkgoO/65C/73yuvM2l4274ehKfbBjon4ryJb8/mgLsfvrmaMrFRfd2vXjnnUct7e9shp71nPZuACAsqVMf1w1f/58DRo0SCNHjtSWLVtUr149JSQkKDs7292lXTOFP+yV/fs9Ut45h3av04byZy9R4Q97XTLuhqMrNWHzkD+CxnlyPc5qwuYh2nB05TUfd1LBB0q3f++SceE+B3O+0P7N72r/5nfdXQqAMqZMh5y33npLTz/9tHr27KnatWtr5syZCgwM1Icffuju0q4Jw25X/uKSw4TH//83f8lKGXa7U8ctNAr1wY6Jkkr4SOz/D/zhjjdVaBRe83FnF/yf08cFAJRNZfbjqnPnzikjI0PDhg0z2zw9PRUfH68NGzaUeJ+8vDzl5eWZt3NzcyVJNpvN6fWdPP2/cWw+pyRJPk4ep3D/EeVnH7t0p6yz8vl+t7yqV3HauLt+26LM4/+5ZJ//nD6qTQe/Ue2Kd1/TcTP1m9PHLZJ/6pT5c9Hz63HyjEtePxcb3+F1dY3GLXLha9rZr+fzXfhYe5w888e412DO+Wl/vH8czk0z26p3GuHycQGUXtF7gWFc5vhTo4z69ddfDUnG+vXrHdoHDx5sNGrUqMT7jBw50tAfuwFYWFhYWFhYyvhy5MiRS2aFMrsn52oMGzZMgwYNMm/b7XYdP35cFStWlIeHxyXueWVsNpuqVKmiI0eOKDg42GnbvV4xX+u70ebMfK2N+ZZ9hmHo999/V3R09CX7ldmQc9NNN8nLy0tZWVkO7VlZWYqKiirxPn5+fvLz83NoCw0NdVWJCg4OtswLqjSYr/XdaHNmvtbGfMu2kJCQy/Ypswce+/r6qkGDBlq58n8H3trtdq1cuVJxcXFurAwAAFwPyuyeHEkaNGiQkpKS1LBhQzVq1EiTJ0/WqVOn1LNnT3eXBgAA3KxMh5wuXbro2LFjGjFihDIzM1W/fn2lpqYqMjLSrXX5+flp5MiRxT4asyrma3032pyZr7Ux3xuHh2Fc7vwrAACAsqfMHpMDAABwKYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcJxo/frzuuecelS9fXhEREUpMTNSePXvcXdY18/rrr8vDw0MDBgxwdyku8+uvv+qJJ55QxYoVFRAQoLp162rz5s3uLsslCgsLNXz4cMXGxiogIEDVq1fXq6++evkvxCsj1q5dqw4dOig6OloeHh5asmSJw3rDMDRixAhVqlRJAQEBio+P1759+9xTrBNcar75+fl68cUXVbduXQUFBSk6Olo9evTQ0aNH3VewE1zuOT7fs88+Kw8PD02ePPma1edspZnv7t279eCDDyokJERBQUG65557dPjw4Wtf7DVCyHGiNWvWKDk5Wd99953S0tKUn5+vNm3a6NR536hsVZs2bdK7776rO++8092luMyJEyfUtGlT+fj46IsvvtCuXbs0adIkVahQwd2lucQbb7yhGTNmaNq0adq9e7feeOMNTZgwQVOnTnV3aU5x6tQp1atXT9OnTy9x/YQJEzRlyhTNnDlT6enpCgoKUkJCgs6ePXuNK3WOS8339OnT2rJli4YPH64tW7bok08+0Z49e/Tggw+6oVLnudxzXGTx4sX67rvvLvs9SNe7y813//79atasmWrWrKmvv/5aP/zwg4YPHy5/f/9rXOk15IxvBEfJsrOzDUnGmjVr3F2KS/3+++/GrbfeaqSlpRktW7Y0+vfv7+6SXOLFF180mjVr5u4yrpn27dsbTz31lEPbI488YnTr1s1NFbmOJGPx4sXmbbvdbkRFRRkTJ04023Jycgw/Pz/j3//+txsqdK4L51uSjRs3GpKMQ4cOXZuiXOxic/7ll1+MypUrGzt27DBiYmKMt99++5rX5golzbdLly7GE0884Z6C3IQ9OS6Um5srSQoLC3NzJa6VnJys9u3bKz4+3t2luNRnn32mhg0b6tFHH1VERITuuusuvffee+4uy2XuvfderVy5Unv37pUkff/991q3bp3uv/9+N1fmegcOHFBmZqbDazokJESNGzfWhg0b3FjZtZObmysPDw+Xfomxu9ntdnXv3l2DBw9WnTp13F2OS9ntdi1btky33XabEhISFBERocaNG1/yIzwrIOS4iN1u14ABA9S0aVPdcccd7i7HZT7++GNt2bJF48ePd3cpLvfzzz9rxowZuvXWW/Xll1/queeeU79+/TRnzhx3l+YSQ4cOVdeuXVWzZk35+Pjorrvu0oABA9StWzd3l+ZymZmZklTsK2IiIyPNdVZ29uxZvfjii3rssccs9a3VF3rjjTfk7e2tfv36ubsUl8vOztbJkyf1+uuvq23btlqxYoUefvhhPfLII1qzZo27y3OZMv3dVdez5ORk7dixQ+vWrXN3KS5z5MgR9e/fX2lpadb+TPf/s9vtatiwocaNGydJuuuuu7Rjxw7NnDlTSUlJbq7O+RYsWKC5c+dq3rx5qlOnjrZt26YBAwYoOjrakvPFH/Lz89W5c2cZhqEZM2a4uxyXycjI0DvvvKMtW7bIw8PD3eW4nN1ulyQ99NBDGjhwoCSpfv36Wr9+vWbOnKmWLVu6szyXYU+OC6SkpGjp0qVavXq1br75ZneX4zIZGRnKzs7W3XffLW9vb3l7e2vNmjWaMmWKvL29VVhY6O4SnapSpUqqXbu2Q1utWrUse2bC4MGDzb05devWVffu3TVw4MAbYq9dVFSUJCkrK8uhPSsry1xnRUUB59ChQ0pLS7P0XpxvvvlG2dnZqlq1qvn+dejQIT3//POqVq2au8tzuptuukne3t431HuYxJ4cpzIMQ3379tXixYv19ddfKzY21t0luVTr1q21fft2h7aePXuqZs2aevHFF+Xl5eWmylyjadOmxS4JsHfvXsXExLipItc6ffq0PD0d/x/k5eVl/o/QymJjYxUVFaWVK1eqfv36kiSbzab09HQ999xz7i3ORYoCzr59+7R69WpVrFjR3SW5VPfu3YsdR5iQkKDu3burZ8+ebqrKdXx9fXXPPffcUO9hEiHHqZKTkzVv3jx9+umnKl++vPnZfUhIiAICAtxcnfOVL1++2PFGQUFBqlixoiWPQxo4cKDuvfdejRs3Tp07d9bGjRs1a9YszZo1y92luUSHDh302muvqWrVqqpTp462bt2qt956S0899ZS7S3OKkydP6qeffjJvHzhwQNu2bVNYWJiqVq2qAQMGaOzYsbr11lsVGxur4cOHKzo6WomJie4r+k+41HwrVaqkTp06acuWLVq6dKkKCwvN96+wsDD5+vq6q+w/5XLP8YVBzsfHR1FRUbr99tuvdalOcbn5Dh48WF26dFGLFi103333KTU1VZ9//rm+/vpr9xXtau4+vctKJJW4fPTRR+4u7Zqx8inkhmEYn3/+uXHHHXcYfn5+Rs2aNY1Zs2a5uySXsdlsRv/+/Y2qVasa/v7+xi233GK8/PLLRl5enrtLc4rVq1eX+PualJRkGMYfp5EPHz7ciIyMNPz8/IzWrVsbe/bscW/Rf8Kl5nvgwIGLvn+tXr3a3aVftcs9xxcq66eQl2a+H3zwgVGjRg3D39/fqFevnrFkyRL3FXwNeBiGRS5fCgAAcB4OPAYAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJb0/wCXp+adaxqxoQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPuhJREFUeJzt3XlcFvX+//8nO4gCYixSiqSVS6alqeSSHTli2kJpppmiuVQHXEvTctf0ZFmuR7NOah09R+2TZqgkqWnmDnpSMzNzKz+A3xQucUGW+f3Rj/l4ySIoeMH4uN9uc7t5ved1zbxmrgt8MtfMXE6GYRgCAACwGGdHNwAAAFAWCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkAAMCSCDkoVePHj5eTk5P5uFatWurdu3eZr/f48eNycnLSokWLzLHevXurcuXKZb7uPE5OTho/fvwtW19F17ZtW7Vt27ZUl3nt+89RyuJ9f+0yv/32Wzk5Oenbb78t8bKKu+9vZh0lUVF+dnr37q1atWpdt66g30dwDEIOyp21a9eW21945bm328XFixc1fvz4Mv+PF+VXXvgqbHr77bfN2kWLFhVal5yc7MCtwK3g6ugGYG2HDx+Ws3PJsvTatWs1d+7cEoWJ0NBQXbp0SW5ubiXssGSK6u3SpUtydeVHqqxdvHhREyZMkKR8RyNGjx6tkSNHOqArezfyvi+pNm3a6NKlS3J3dy/xc9evX18GHd069erV02effZZv/LPPPtP69evVvn37fPMmTpyosLAwuzE/P78Srfejjz5Sbm5uiZ4Dx+I3MsqUh4dHmS4/Oztbubm5cnd3l6enZ5mu63ocvf5b4fLly3J3dy/wP/ALFy7I29vbAV39H1dX13IRNMv6fS9Jzs7ON/yeu5FgVJ4EBQXpxRdfzDc+YcIE3XPPPXr44YfzzXv88cfVtGnTm1pvWf8RhdLHx1W4YVu3btXDDz8sT09P1a5dWx9++GG+mmvPI8jKyjJ/EXl6eqpatWpq1aqVEhISJP35mffcuXMlye6wsvR/n3O/9957mjFjhmrXri0PDw/9+OOPRX4G/uuvvyoyMlLe3t4KCQnRxIkTZRiGOb+w8w6uXWZRveWNXXuEZ+/evXr88cfl4+OjypUrq127dtqxY4ddTd7h9O+//17Dhg1TQECAvL299cwzz+jMmTOFvwCF+P3339W3b1+FhITIw8NDYWFhevXVV3XlyhW7ffLcc8/J399flSpVUosWLbRmzRq75eTtl//85z8aPXq07rzzTlWqVEk2m8083+no0aPq2LGjqlSpoh49ekiScnNzNWPGDDVo0ECenp4KCgrSyy+/rHPnzhXZ95UrVzR27Fg1adJEvr6+8vb2VuvWrbVp0yaz5vjx4woICJD0539oea9B3n4v6Jyc7OxsTZo0yXy/1KpVS2+++aYyMzPt6mrVqqUnnnhCW7duVbNmzeTp6am7775bn376acleAOV/35fkNTYMQ5MnT9Zdd92lSpUq6bHHHtPBgwfzrePa921sbKwqV66sixcv5qvt3r27goODlZOTI6ngc3J+++03RUVFydvbW4GBgRo6dGi+fVTQtuW5dpnFeT1L065du/TLL7+Y78OCnD9/3twHN6Kgc3LS0tLUu3dv+fr6ys/PT9HR0UpLS7OrSU1NVUBAgNq2bWv3u+eXX36Rt7e3nn/++RvuCUVz/J88qJD279+v9u3bKyAgQOPHj1d2drbGjRunoKCgIp83fvx4TZ06Vf369VOzZs1ks9m0Z88eJSUl6a9//atefvllnT59WgkJCQUejpakhQsX6vLlyxowYIA8PDzk7+9f6CHknJwcdejQQS1atNC0adMUHx+vcePGKTs7WxMnTizRNhent6sdPHhQrVu3lo+Pj0aMGCE3Nzd9+OGHatu2rTZv3qzmzZvb1Q8cOFBVq1bVuHHjdPz4cc2YMUOxsbFatmxZsXs8ffq0mjVrprS0NA0YMEB169bV77//rs8//1wXL16Uu7u7UlJS9Mgjj+jixYsaNGiQqlWrpsWLF+upp57S559/rmeeecZumZMmTZK7u7tef/11ZWZmmkcBsrOzFRkZqVatWum9995TpUqVzP20aNEi9enTR4MGDdKxY8c0Z84c7d27V99//32hfw3bbDZ9/PHH6t69u/r376/z58/rn//8pyIjI7Vr1y41btxYAQEBmjdvnl599VU988wzevbZZyVJDzzwQKH7pF+/flq8eLG6dOmi1157TTt37tTUqVN16NAhrVy50q72l19+UZcuXdS3b19FR0frk08+Ue/evdWkSRM1aNCg2K9DYYrzGo8dO1aTJ09Wx44d1bFjRyUlJal9+/Z2IbUgzz//vObOnas1a9boueeeM8cvXryor776Sr1795aLi0uBz7106ZLatWunkydPatCgQQoJCdFnn32mjRs33vC2Fuf1LE1LliyRpEJDzmOPPaaMjAy5u7srMjJS06dP1z333HNT6zQMQ08//bS2bt2qV155RfXq1dPKlSsVHR1tVxcYGKh58+bpueee0+zZszVo0CDl5uaqd+/eqlKliv7xj3/cVB8oggHcgKioKMPT09M4ceKEOfbjjz8aLi4uxtVvq9DQUCM6Otp83KhRI6NTp05FLjsmJsYo6K157NgxQ5Lh4+NjpKamFjhv4cKF5lh0dLQhyRg4cKA5lpuba3Tq1Mlwd3c3zpw5YxiGYWzatMmQZGzatOm6yyysN8MwDEnGuHHjzMdRUVGGu7u7cfToUXPs9OnTRpUqVYw2bdqYYwsXLjQkGREREUZubq45PnToUMPFxcVIS0srcH0F6dWrl+Hs7Gzs3r0737y8ZQ8ZMsSQZHz33XfmvPPnzxthYWFGrVq1jJycHMMw/m+/3H333cbFixftlpW3b0eOHGk3/t133xmSjCVLltiNx8fH5xt/9NFHjUcffdR8nJ2dbWRmZto979y5c0ZQUJDx0ksvmWNnzpzJt6/zjBs3zu712bdvnyHJ6Nevn13d66+/bkgyNm7caI6FhoYakowtW7aYY6mpqYaHh4fx2muv5VtXUa593xf3NU5NTTXc3d2NTp062dW9+eabhiS7ZV77vs3NzTXuvPNOo3Pnzna9LF++PN92XbvvZ8yYYUgyli9fbo5duHDBqFOnTr6fjWu3rbBlFvf1NIz8PzsllZ2dbQQFBRnNmjXLN2/ZsmVG7969jcWLFxsrV640Ro8ebVSqVMm44447jJMnT5ZoPdHR0UZoaKj5eNWqVYYkY9q0aXa9tG7dOt/vDsMwjO7duxuVKlUyfv75Z+Pdd981JBmrVq0qUQ8oGT6uQonl5OTo66+/VlRUlGrWrGmO16tXT5GRkUU+18/PTwcPHtSRI0dueP2dO3c2P7IojtjYWPPfTk5Oio2N1ZUrV/TNN9/ccA/Xk5OTo/Xr1ysqKkp33323OV69enW98MIL2rp1q2w2m91zBgwYYPdRS+vWrZWTk6MTJ04Ua525ublatWqVnnzyyQLPPchb9tq1a9WsWTO1atXKnFe5cmUNGDBAx48f148//mj3vOjoaHl5eRW4zldffdXu8YoVK+Tr66u//vWv+n//7/+ZU5MmTVS5cuUiP6pwcXExjxLl5ubq7Nmzys7OVtOmTZWUlFSsfXCttWvXSpKGDRtmN/7aa69JUr6P6OrXr6/WrVubjwMCAnTffffp119/vaH1X+t6r/E333yjK1euaODAgXZ1Q4YMue6ynZyc9Nxzz2nt2rXKyMgwx5ctW6Y777zT7vW+1tq1a1W9enV16dLFHKtUqZIGDBhQks2zUxavZ2E2bNiglJSUAo/idO3aVQsXLlSvXr0UFRWlSZMm6euvv9Yff/xhdxXWjVi7dq1cXV3tfg5cXFw0cODAAuvnzJkjX19fdenSRWPGjFHPnj319NNP31QPKBohByV25swZXbp0qcBDvffdd1+Rz504caLS0tJ07733qmHDhho+fLh++OGHEq3/2iskiuLs7GwXMiTp3nvvlfTn+R1l5cyZM7p48WKB+6NevXrKzc3VqVOn7MavDoySVLVqVUm67rksV6/TZrPp/vvvL7LuxIkThfaVN/9qhe1vV1dX3XXXXXZjR44cUXp6ugIDAxUQEGA3ZWRkKDU1tcjeFi9erAceeMA8XysgIEBr1qxRenp6kc8rzIkTJ+Ts7Kw6derYjQcHB8vPzy/ftl77Gkh/vg7FfQ2u53qvcV4/1/5sBQQEmLVFef7553Xp0iWtXr1akpSRkaG1a9fqueeeK/L+QSdOnFCdOnXy1Vzv5/l6Svv1LMySJUvk4uJS7HNbWrVqpebNm9/0HzonTpxQ9erV892Pq7D95u/vr1mzZumHH36Qr6+vZs2adVPrx/VxTg5uqTZt2ujo0aP68ssvtX79en388cf64IMPNH/+fPXr169YyyjsqMKNKuyX/82coHgjCjtfwrjqREVHKGx/e3h45LvKKjc3V4GBgeb5Edcq6gjcv/71L/Xu3VtRUVEaPny4AgMD5eLioqlTp+ro0aM3vgEq/DW+Vlm/BmW9/BYtWqhWrVpavny5XnjhBX311Ve6dOlSqZ7YWtTPy9XbV5av59UuXbqklStXKiIi4rrnBF6tRo0aOnz4cKn1UVxff/21pD+D7W+//Vbiy9hRMoQclFhAQIC8vLwK/MipOL80/P391adPH/Xp00cZGRlq06aNxo8fb4ac0rxjbW5urn799Vfz6I0k/fzzz5JkXiWR9xfytVdEFPQxUXF7CwgIUKVKlQrcHz/99JOcnZ1Vo0aNYi2ruAICAuTj46MDBw4UWRcaGlpoX3nzb1Tt2rX1zTffqGXLliUOo59//rnuvvtuffHFF3b7edy4cXZ1JXl/hIaGKjc3V0eOHDGPVElSSkqK0tLSbmpby0JeP0eOHLE7AnnmzJliH03q2rWrZs6cKZvNpmXLlqlWrVpq0aLFddd74MABGYZht38Lep9UrVo138+K9OfPy9U9F/f1vFmrV6/W+fPni7yqqiC//vpriT72LkhoaKg2bNigjIwMu6M5hf0ejI+P18cff6wRI0ZoyZIlio6O1s6dO8vFbQ+sio+rUGIuLi6KjIzUqlWrdPLkSXP80KFD5l8phfnjjz/sHleuXFl16tSxu1Q1714rBf0ivRFz5swx/20YhubMmSM3Nze1a9dO0p+/qFxcXLRlyxa75xV0xUNxe3NxcVH79u315Zdf2n0slpKSoqVLl6pVq1by8fG5wS0qmLOzs6KiovTVV19pz549+ebnHS3o2LGjdu3ape3bt5vzLly4oAULFqhWrVqqX7/+DffQtWtX5eTkaNKkSfnmZWdnF7nf8o4CXH1UY+fOnXZ9SjKv4irO+6Njx46SpBkzZtiNv//++5KkTp06XXcZt1JERITc3Nw0e/Zsu/1wbf9Fef7555WZmanFixcrPj5eXbt2ve5zOnbsqNOnT+vzzz83xy5evKgFCxbkq61du7Z27Nhhd7VXXFxcvo9fi/t63qylS5eqUqVK+a4KzFPQbRjWrl2rxMREdejQ4abW3bFjR2VnZ2vevHnmWE5OjmbPnp2vNi0tzbyqdMqUKfr444+VlJSkKVOm3FQPKBrxETdkwoQJio+PV+vWrfW3v/1N2dnZmj17tho0aFDkOTb169dX27Zt1aRJE/n7+2vPnj36/PPP7U4ObtKkiSRp0KBBioyMlIuLi7p163ZDfXp6eio+Pl7R0dFq3ry51q1bpzVr1ujNN980/4rz9fU1L+10cnJS7dq1FRcXV+D5IyXpbfLkyUpISFCrVq30t7/9Ta6urvrwww+VmZmpadOm3dD2XM+UKVO0fv16PfrooxowYIDq1aun//3f/9WKFSu0detW+fn5aeTIkfr3v/+txx9/XIMGDZK/v78WL16sY8eO6X/+539u6k69jz76qF5++WVNnTpV+/btU/v27eXm5qYjR45oxYoVmjlzpt3JrVd74okn9MUXX+iZZ55Rp06ddOzYMc2fP1/169e3O5HWy8tL9evX17Jly3TvvffK399f999/f4HnIjVq1EjR0dFasGCB0tLS9Oijj2rXrl1avHixoqKi9Nhjj93wtpaFgIAAvf7665o6daqeeOIJdezYUXv37tW6det0xx13FGsZDz30kOrUqaO33npLmZmZxfqoqn///pozZ4569eqlxMREVa9eXZ999pkZKK/Wr18/ff755+rQoYO6du2qo0eP6l//+pdq165tV1fc1/NmnD17VuvWrVPnzp0L/Z66Rx55RA8++KCaNm0qX19fJSUl6ZNPPlGNGjX05ptv3tT6n3zySbVs2VIjR47U8ePHVb9+fX3xxRcFnnM0ePBg/fHHH/rmm2/k4uKiDh06qF+/fpo8ebKefvppNWrU6KZ6QSEcdl0XKrzNmzcbTZo0Mdzd3Y27777bmD9/fr5LeK+93HTy5MlGs2bNDD8/P8PLy8uoW7eu8fbbbxtXrlwxa7Kzs42BAwcaAQEBhpOTk7m8vEu633333Xy9FHYJube3t3H06FGjffv2RqVKlYygoCBj3Lhx5mXSec6cOWN07tzZqFSpklG1alXj5ZdfNg4cOJBvmYX1ZhgFXwablJRkREZGGpUrVzYqVapkPPbYY8a2bdvsavIuL772su/CLm2/nhMnThi9evUyAgICDA8PD+Puu+82YmJi7C7nPXr0qNGlSxfDz8/P8PT0NJo1a2bExcUVuP4VK1bkW0fevi3MggULjCZNmhheXl5GlSpVjIYNGxojRowwTp8+bdZce8lxbm6uMWXKFCM0NNTw8PAwHnzwQSMuLi7fZbuGYRjbtm0z33tX7/dr33+GYRhZWVnGhAkTjLCwMMPNzc2oUaOGMWrUKOPy5ct2daGhoQXe3uDaPoujsEvIi/Ma5+TkGBMmTDCqV69ueHl5GW3btjUOHDiQb5lFvT/eeustQ5JRp06dAvsraJtOnDhhPPXUU+bl1YMHDzYv/b92HdOnTzfuvPNOw8PDw2jZsqWxZ8+em3o9C/rZKY758+cbkozVq1cXWvPWW28ZjRs3Nnx9fQ03NzejZs2axquvvmokJyeXeH0F9f7HH38YPXv2NHx8fAxfX1+jZ8+ext69e+1+d3z55ZeGJGP69Ol2z7XZbEZoaKjRqFEju9+BKD1OhuHgsxoBAADKAOfkAAAAS+KcHKACyMjIuO55DAEBAYVeoozSkZycXOR8Ly8v+fr63qJurCcnJ+e639dWuXLlQs+/uVFnz54t8mszXFxcbvpKLDgGH1cBFcD48eM1YcKEImuOHTuW78sDUbqud/l6dHR0gV8Si+I5fvz4dW/2OW7cuHxfhHuz8r5PrjChoaFlevNQlB2O5AAVQK9evYq8Lb/05118UbYSEhKKnB8SEnKLOrGm4ODg6+7ja+9gXhqmT59e5H2ISvsGpLh1OJIDAAAsiROPAQCAJd3WH1fl5ubq9OnTqlKlSql+lQAAACg7hmHo/PnzCgkJKfIGprd1yDl9+nSpf38QAAC4NU6dOqW77rqr0Pm3dcipUqWKpD93Uml/jxAAACgbNptNNWrUMP8fL8xtHXLyPqLy8fEh5AAAUMFc71QTTjwGAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACW5OroBnBrZMVvzTfm1qGVAzoBAODWKPGRnC1btujJJ59USEiInJyctGrVKnNeVlaW3njjDTVs2FDe3t4KCQlRr169dPr0abtlnD17Vj169JCPj4/8/PzUt29fZWRk2NX88MMPat26tTw9PVWjRg1NmzYtXy8rVqxQ3bp15enpqYYNG2rt2rUl3RwAAGBRJQ45Fy5cUKNGjTR37tx88y5evKikpCSNGTNGSUlJ+uKLL3T48GE99dRTdnU9evTQwYMHlZCQoLi4OG3ZskUDBgww59tsNrVv316hoaFKTEzUu+++q/Hjx2vBggVmzbZt29S9e3f17dtXe/fuVVRUlKKionTgwIGSbhIAALAgJ8MwjBt+spOTVq5cqaioqEJrdu/erWbNmunEiROqWbOmDh06pPr162v37t1q2rSpJCk+Pl4dO3bUb7/9ppCQEM2bN09vvfWWkpOT5e7uLkkaOXKkVq1apZ9++kmS9Pzzz+vChQuKi4sz19WiRQs1btxY8+fPL1b/NptNvr6+Sk9Pl4+Pzw3uhYqBj6sAAFZR3P+/y/zE4/T0dDk5OcnPz0+StH37dvn5+ZkBR5IiIiLk7OysnTt3mjVt2rQxA44kRUZG6vDhwzp37pxZExERYbeuyMhIbd++vdBeMjMzZbPZ7CYAAGBNZRpyLl++rDfeeEPdu3c3k1ZycrICAwPt6lxdXeXv76/k5GSzJigoyK4m7/H1avLmF2Tq1Kny9fU1pxo1atzcBgIAgHKrzEJOVlaWunbtKsMwNG/evLJaTYmMGjVK6enp5nTq1ClHtwQAAMpImVxCnhdwTpw4oY0bN9p9XhYcHKzU1FS7+uzsbJ09e1bBwcFmTUpKil1N3uPr1eTNL4iHh4c8PDxufMMAAECFUepHcvICzpEjR/TNN9+oWrVqdvPDw8OVlpamxMREc2zjxo3Kzc1V8+bNzZotW7YoKyvLrElISNB9992nqlWrmjUbNmywW3ZCQoLCw8NLe5MAAEAFVOKQk5GRoX379mnfvn2SpGPHjmnfvn06efKksrKy1KVLF+3Zs0dLlixRTk6OkpOTlZycrCtXrkiS6tWrpw4dOqh///7atWuXvv/+e8XGxqpbt24KCQmRJL3wwgtyd3dX3759dfDgQS1btkwzZ87UsGHDzD4GDx6s+Ph4TZ8+XT/99JPGjx+vPXv2KDY2thR2CwAAqPCMEtq0aZMhKd8UHR1tHDt2rMB5koxNmzaZy/jjjz+M7t27G5UrVzZ8fHyMPn36GOfPn7dbz3//+1+jVatWhoeHh3HnnXcaf//73/P1snz5cuPee+813N3djQYNGhhr1qwp0bakp6cbkoz09PSS7oYK58q67/JNAABURMX9//um7pNT0XGfHO6TAwCoeMrNfXIAAAAcgZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsydXRDeD2lBW/Nd+YW4dWDugEAGBVHMkBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWVOKQs2XLFj355JMKCQmRk5OTVq1aZTffMAyNHTtW1atXl5eXlyIiInTkyBG7mrNnz6pHjx7y8fGRn5+f+vbtq4yMDLuaH374Qa1bt5anp6dq1KihadOm5etlxYoVqlu3rjw9PdWwYUOtXbu2pJsDAAAsqsQh58KFC2rUqJHmzp1b4Pxp06Zp1qxZmj9/vnbu3Clvb29FRkbq8uXLZk2PHj108OBBJSQkKC4uTlu2bNGAAQPM+TabTe3bt1doaKgSExP17rvvavz48VqwYIFZs23bNnXv3l19+/bV3r17FRUVpaioKB04cKCkmwQAACzIyTAM44af7OSklStXKioqStKfR3FCQkL02muv6fXXX5ckpaenKygoSIsWLVK3bt106NAh1a9fX7t371bTpk0lSfHx8erYsaN+++03hYSEaN68eXrrrbeUnJwsd3d3SdLIkSO1atUq/fTTT5Kk559/XhcuXFBcXJzZT4sWLdS4cWPNnz+/WP3bbDb5+voqPT1dPj4+N7obKoSs+K35xtw6tHJAJ38qb/0AACqO4v7/Xarn5Bw7dkzJycmKiIgwx3x9fdW8eXNt375dkrR9+3b5+fmZAUeSIiIi5OzsrJ07d5o1bdq0MQOOJEVGRurw4cM6d+6cWXP1evJq8tZTkMzMTNlsNrsJAABYU6mGnOTkZElSUFCQ3XhQUJA5Lzk5WYGBgXbzXV1d5e/vb1dT0DKuXkdhNXnzCzJ16lT5+vqaU40aNUq6iQAAoIK4ra6uGjVqlNLT083p1KlTjm4JAACUkVINOcHBwZKklJQUu/GUlBRzXnBwsFJTU+3mZ2dn6+zZs3Y1BS3j6nUUVpM3vyAeHh7y8fGxmwAAgDWVasgJCwtTcHCwNmzYYI7ZbDbt3LlT4eHhkqTw8HClpaUpMTHRrNm4caNyc3PVvHlzs2bLli3KysoyaxISEnTfffepatWqZs3V68mryVsPAAC4vZU45GRkZGjfvn3at2+fpD9PNt63b59OnjwpJycnDRkyRJMnT9bq1au1f/9+9erVSyEhIeYVWPXq1VOHDh3Uv39/7dq1S99//71iY2PVrVs3hYSESJJeeOEFubu7q2/fvjp48KCWLVummTNnatiwYWYfgwcPVnx8vKZPn66ffvpJ48eP1549exQbG3vzewUAAFR4riV9wp49e/TYY4+Zj/OCR3R0tBYtWqQRI0bowoULGjBggNLS0tSqVSvFx8fL09PTfM6SJUsUGxurdu3aydnZWZ07d9asWbPM+b6+vlq/fr1iYmLUpEkT3XHHHRo7dqzdvXQeeeQRLV26VKNHj9abb76pe+65R6tWrdL9999/QzsCAABYy03dJ6ei4z453CcHAFDxOOQ+OQAAAOUFIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFiSq6MbsKqs+K35xtw6tHJAJwAA3J44kgMAACyJkAMAACyJkAMAACyJc3JuM8fT1pn/vkecIwQAsC6O5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEtydXQDwPG0dZIk5z0HJUm1m77syHYAABbBkRwAAGBJhBwAAGBJhBwAAGBJpR5ycnJyNGbMGIWFhcnLy0u1a9fWpEmTZBiGWWMYhsaOHavq1avLy8tLEREROnLkiN1yzp49qx49esjHx0d+fn7q27evMjIy7Gp++OEHtW7dWp6enqpRo4amTZtW2psDAAAqqFIPOe+8847mzZunOXPm6NChQ3rnnXc0bdo0zZ4926yZNm2aZs2apfnz52vnzp3y9vZWZGSkLl++bNb06NFDBw8eVEJCguLi4rRlyxYNGDDAnG+z2dS+fXuFhoYqMTFR7777rsaPH68FCxaU9iYBAIAKqNSvrtq2bZuefvppderUSZJUq1Yt/fvf/9auXbsk/XkUZ8aMGRo9erSefvppSdKnn36qoKAgrVq1St26ddOhQ4cUHx+v3bt3q2nTppKk2bNnq2PHjnrvvfcUEhKiJUuW6MqVK/rkk0/k7u6uBg0aaN++fXr//fftwhAAALg9lfqRnEceeUQbNmzQzz//LEn673//q61bt+rxxx+XJB07dkzJycmKiIgwn+Pr66vmzZtr+/btkqTt27fLz8/PDDiSFBERIWdnZ+3cudOsadOmjdzd3c2ayMhIHT58WOfOnSuwt8zMTNlsNrsJAABYU6kfyRk5cqRsNpvq1q0rFxcX5eTk6O2331aPHj0kScnJyZKkoKAgu+cFBQWZ85KTkxUYGGjfqKur/P397WrCwsLyLSNvXtWqVfP1NnXqVE2YMKEUthIAAJR3pX4kZ/ny5VqyZImWLl2qpKQkLV68WO+9954WL15c2qsqsVGjRik9Pd2cTp065eiWAABAGSn1IznDhw/XyJEj1a1bN0lSw4YNdeLECU2dOlXR0dEKDg6WJKWkpKh69erm81JSUtS4cWNJUnBwsFJTU+2Wm52drbNnz5rPDw4OVkpKil1N3uO8mmt5eHjIw8Pj5jcSAACUe6V+JOfixYtydrZfrIuLi3JzcyVJYWFhCg4O1oYNG8z5NptNO3fuVHh4uCQpPDxcaWlpSkxMNGs2btyo3NxcNW/e3KzZsmWLsrKyzJqEhATdd999BX5UBQAAbi+lHnKefPJJvf3221qzZo2OHz+ulStX6v3339czzzwjSXJyctKQIUM0efJkrV69Wvv371evXr0UEhKiqKgoSVK9evXUoUMH9e/fX7t27dL333+v2NhYdevWTSEhIZKkF154Qe7u7urbt68OHjyoZcuWaebMmRo2bFhpbxIAAKiASv3jqtmzZ2vMmDH629/+ptTUVIWEhOjll1/W2LFjzZoRI0bowoULGjBggNLS0tSqVSvFx8fL09PTrFmyZIliY2PVrl07OTs7q3Pnzpo1a5Y539fXV+vXr1dMTIyaNGmiO+64Q2PHjuXycQAAIElyMq6+FfFtxmazydfXV+np6fLx8SnVZWfFb8035tahVamuoyTy+sn7xm9Juqfb245qx27/mN9CXqemJL6FHABQtOL+/813VwEAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEtydXQDQHl17TfJO/Jb5AEAJceRHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmujm7Aqo6nrbN7XMvvcQd1AgDA7YkjOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJLKJOT8/vvvevHFF1WtWjV5eXmpYcOG2rNnjznfMAyNHTtW1atXl5eXlyIiInTkyBG7ZZw9e1Y9evSQj4+P/Pz81LdvX2VkZNjV/PDDD2rdurU8PT1Vo0YNTZs2rSw2BwAAVEClHnLOnTunli1bys3NTevWrdOPP/6o6dOnq2rVqmbNtGnTNGvWLM2fP187d+6Ut7e3IiMjdfnyZbOmR48eOnjwoBISEhQXF6ctW7ZowIAB5nybzab27dsrNDRUiYmJevfddzV+/HgtWLCgtDcJAABUQKV+M8B33nlHNWrU0MKFC82xsLAw89+GYWjGjBkaPXq0nn76aUnSp59+qqCgIK1atUrdunXToUOHFB8fr927d6tp06aSpNmzZ6tjx4567733FBISoiVLlujKlSv65JNP5O7urgYNGmjfvn16//337cIQAAC4PZX6kZzVq1eradOmeu655xQYGKgHH3xQH330kTn/2LFjSk5OVkREhDnm6+ur5s2ba/v27ZKk7du3y8/Pzww4khQRESFnZ2ft3LnTrGnTpo3c3d3NmsjISB0+fFjnzp0rsLfMzEzZbDa7CQAAWFOph5xff/1V8+bN0z333KOvv/5ar776qgYNGqTFixdLkpKTkyVJQUFBds8LCgoy5yUnJyswMNBuvqurq/z9/e1qClrG1eu41tSpU+Xr62tONWrUuMmtBQAA5VWph5zc3Fw99NBDmjJlih588EENGDBA/fv31/z580t7VSU2atQopaenm9OpU6cc3RIAACgjpR5yqlevrvr169uN1atXTydPnpQkBQcHS5JSUlLsalJSUsx5wcHBSk1NtZufnZ2ts2fP2tUUtIyr13EtDw8P+fj42E0AAMCaSj3ktGzZUocPH7Yb+/nnnxUaGirpz5OQg4ODtWHDBnO+zWbTzp07FR4eLkkKDw9XWlqaEhMTzZqNGzcqNzdXzZs3N2u2bNmirKwssyYhIUH33Xef3ZVcAADg9lTqIWfo0KHasWOHpkyZol9++UVLly7VggULFBMTI0lycnLSkCFDNHnyZK1evVr79+9Xr169FBISoqioKEl/Hvnp0KGD+vfvr127dun7779XbGysunXrppCQEEnSCy+8IHd3d/Xt21cHDx7UsmXLNHPmTA0bNqy0NwkAAFRApX4J+cMPP6yVK1dq1KhRmjhxosLCwjRjxgz16NHDrBkxYoQuXLigAQMGKC0tTa1atVJ8fLw8PT3NmiVLlig2Nlbt2rWTs7OzOnfurFmzZpnzfX19tX79esXExKhJkya64447NHbsWC4fBwAAksog5EjSE088oSeeeKLQ+U5OTpo4caImTpxYaI2/v7+WLl1a5HoeeOABfffddzfcJwAAsC6+uwoAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSmVxCDljB8bR1do/vUSsHdQIAuBEcyQEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJbEzQCBCiIrfqvdY7cO3JwQAIrCkRwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJZR5y/v73v8vJyUlDhgwxxy5fvqyYmBhVq1ZNlStXVufOnZWSkmL3vJMnT6pTp06qVKmSAgMDNXz4cGVnZ9vVfPvtt3rooYfk4eGhOnXqaNGiRWW9OQAAoIIo05Cze/duffjhh3rggQfsxocOHaqvvvpKK1as0ObNm3X69Gk9++yz5vycnBx16tRJV65c0bZt27R48WItWrRIY8eONWuOHTumTp066bHHHtO+ffs0ZMgQ9evXT19//XVZbhIAAKggyizkZGRkqEePHvroo49UtWpVczw9PV3//Oc/9f777+svf/mLmjRpooULF2rbtm3asWOHJGn9+vX68ccf9a9//UuNGzfW448/rkmTJmnu3Lm6cuWKJGn+/PkKCwvT9OnTVa9ePcXGxqpLly764IMPymqTAIc7nrbOnI7u+dDR7QBAuVZmIScmJkadOnVSRESE3XhiYqKysrLsxuvWrauaNWtq+/btkqTt27erYcOGCgoKMmsiIyNls9l08OBBs+baZUdGRprLKEhmZqZsNpvdBAAArMm1LBb6n//8R0lJSdq9e3e+ecnJyXJ3d5efn5/deFBQkJKTk82aqwNO3vy8eUXV2Gw2Xbp0SV5eXvnWPXXqVE2YMOGGtwsAAFQcpX4k59SpUxo8eLCWLFkiT0/P0l78TRk1apTS09PN6dSpU45uCQAAlJFSDzmJiYlKTU3VQw89JFdXV7m6umrz5s2aNWuWXF1dFRQUpCtXrigtLc3ueSkpKQoODpYkBQcH57vaKu/x9Wp8fHwKPIojSR4eHvLx8bGbAACANZV6yGnXrp3279+vffv2mVPTpk3Vo0cP899ubm7asGGD+ZzDhw/r5MmTCg8PlySFh4dr//79Sk1NNWsSEhLk4+Oj+vXrmzVXLyOvJm8ZAADg9lbq5+RUqVJF999/v92Yt7e3qlWrZo737dtXw4YNk7+/v3x8fDRw4ECFh4erRYsWkqT27durfv366tmzp6ZNm6bk5GSNHj1aMTEx8vDwkCS98sormjNnjkaMGKGXXnpJGzdu1PLly7VmzZrS3iQAAFABlcmJx9fzwQcfyNnZWZ07d1ZmZqYiIyP1j3/8w5zv4uKiuLg4vfrqqwoPD5e3t7eio6M1ceJEsyYsLExr1qzR0KFDNXPmTN111136+OOPFRkZ6YhNAgAA5cwtCTnffvut3WNPT0/NnTtXc+fOLfQ5oaGhWrt2bZHLbdu2rfbu3VsaLQIAAIvhu6sAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAllXrImTp1qh5++GFVqVJFgYGBioqK0uHDh+1qLl++rJiYGFWrVk2VK1dW586dlZKSYldz8uRJderUSZUqVVJgYKCGDx+u7Oxsu5pvv/1WDz30kDw8PFSnTh0tWrSotDcHAABUUKUecjZv3qyYmBjt2LFDCQkJysrKUvv27XXhwgWzZujQofrqq6+0YsUKbd68WadPn9azzz5rzs/JyVGnTp105coVbdu2TYsXL9aiRYs0duxYs+bYsWPq1KmTHnvsMe3bt09DhgxRv3799PXXX5f2JgEAgArItbQXGB8fb/d40aJFCgwMVGJiotq0aaP09HT985//1NKlS/WXv/xFkrRw4ULVq1dPO3bsUIsWLbR+/Xr9+OOP+uabbxQUFKTGjRtr0qRJeuONNzR+/Hi5u7tr/vz5CgsL0/Tp0yVJ9erV09atW/XBBx8oMjKywN4yMzOVmZlpPrbZbKW9+QAAoJwo83Ny0tPTJUn+/v6SpMTERGVlZSkiIsKsqVu3rmrWrKnt27dLkrZv366GDRsqKCjIrImMjJTNZtPBgwfNmquXkVeTt4yCTJ06Vb6+vuZUo0aN0tlI4DaUFb813wQA5UmZhpzc3FwNGTJELVu21P333y9JSk5Olru7u/z8/Oxqg4KClJycbNZcHXDy5ufNK6rGZrPp0qVLBfYzatQopaenm9OpU6duehsBAED5VOofV10tJiZGBw4c0Nat5eMvPA8PD3l4eDi6DQAAcAuU2ZGc2NhYxcXFadOmTbrrrrvM8eDgYF25ckVpaWl29SkpKQoODjZrrr3aKu/x9Wp8fHzk5eVV2psDAAAqmFIPOYZhKDY2VitXrtTGjRsVFhZmN79JkyZyc3PThg0bzLHDhw/r5MmTCg8PlySFh4dr//79Sk1NNWsSEhLk4+Oj+vXrmzVXLyOvJm8ZAADg9lbqH1fFxMRo6dKl+vLLL1WlShXzHBpfX195eXnJ19dXffv21bBhw+Tv7y8fHx8NHDhQ4eHhatGihSSpffv2ql+/vnr27Klp06YpOTlZo0ePVkxMjPlx0yuvvKI5c+ZoxIgReumll7Rx40YtX75ca9asKe1NAgAAFVCpH8mZN2+e0tPT1bZtW1WvXt2cli1bZtZ88MEHeuKJJ9S5c2e1adNGwcHB+uKLL8z5Li4uiouLk4uLi8LDw/Xiiy+qV69emjhxolkTFhamNWvWKCEhQY0aNdL06dP18ccfF3r5OAAAuL2U+pEcwzCuW+Pp6am5c+dq7ty5hdaEhoZq7dq1RS6nbdu22rt3b4l7BAAA1sd3VwEAAEsi5AAAAEsi5AAAAEsi5AAAAEsq0zseA7g9HE9bJ0ly3vPnd8vVbvqyI9sBAEkcyQEAABZFyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJbk6ugGAKCsZMVvtXvs1qGVgzoB4AgcyQEAAJZEyAEAAJZEyAEAAJbEOTkALOt42jrz37X8HndgJwAcgSM5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkgg5AADAkrgZIBwmKydLX1/8RsdzDsnf8FKL7OpydXVzdFtAmeELQ4Fbq8IfyZk7d65q1aolT09PNW/eXLt27XJ0SyiGz9L/oxezX9enHuu0pcpxrfI5pFEpn2jdqe8d3RoAwCIqdMhZtmyZhg0bpnHjxikpKUmNGjVSZGSkUlNTHd0airDw23H6ynObDBl244akDc4HtPDbcY5pDLgFjqetM6ejez50dDuApVXokPP++++rf//+6tOnj+rXr6/58+erUqVK+uSTTxzdGgqRmX1ZX6XH/fnA6ZqZ///juPQ4ZWZfvqV9AQCsp8Kek3PlyhUlJiZq1KhR5pizs7MiIiK0ffv2Ap+TmZmpzMxM83F6erokyWazlXp/GRcz7R7b3C7IrQzWU1xZFy5Isu+rLLb7euL2fKgrl7KvW/c/W2briaYv34KOCpfvNXTg6yf9+Rpe3ZNTxiWH9pT3npL+b185ZVyS5Ph9lcfu/e7gn0Gp/L2GV/s1yf6Pw7sfeslBnQDXl/dzYxhG0YVGBfX7778bkoxt27bZjQ8fPtxo1qxZgc8ZN26coT8/FWFiYmJiYmKq4NOpU6eKzAoV9kjOjRg1apSGDRtmPs7NzdXZs2dVrVo1OTld+9nJjbPZbKpRo4ZOnTolHx+fUluuFbGvio99VTLsr+JjXxUf+6r4ynJfGYah8+fPKyQkpMi6Chty7rjjDrm4uCglJcVuPCUlRcHBwQU+x8PDQx4eHnZjfn5+ZdWifHx8+CEoJvZV8bGvSob9VXzsq+JjXxVfWe0rX1/f69ZU2BOP3d3d1aRJE23YsMEcy83N1YYNGxQeHu7AzgAAQHlQYY/kSNKwYcMUHR2tpk2bqlmzZpoxY4YuXLigPn36OLo1AADgYBU65Dz//PM6c+aMxo4dq+TkZDVu3Fjx8fEKCgpyaF8eHh4aN25cvo/GkB/7qvjYVyXD/io+9lXxsa+KrzzsKyfDuN71VwAAABVPhT0nBwAAoCiEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEnFI0depUPfzww6pSpYoCAwMVFRWlw4cPO7qtCuHvf/+7nJycNGTIEEe3Ui79/vvvevHFF1WtWjV5eXmpYcOG2rNnj6PbKndycnI0ZswYhYWFycvLS7Vr19akSZOu/yV+t4EtW7boySefVEhIiJycnLRq1Sq7+YZhaOzYsapevbq8vLwUERGhI0eOOKbZcqCo/ZWVlaU33nhDDRs2lLe3t0JCQtSrVy+dPn3acQ070PXeW1d75ZVX5OTkpBkzZtyS3gg5pWjz5s2KiYnRjh07lJCQoKysLLVv314Xrvq2ZuS3e/duffjhh3rggQcc3Uq5dO7cObVs2VJubm5at26dfvzxR02fPl1Vq1Z1dGvlzjvvvKN58+Zpzpw5OnTokN555x1NmzZNs2fPdnRrDnfhwgU1atRIc+fOLXD+tGnTNGvWLM2fP187d+6Ut7e3IiMjdfny5VvcaflQ1P66ePGikpKSNGbMGCUlJemLL77Q4cOH9dRTTzmgU8e73nsrz8qVK7Vjx47rft9UqSqNbwRHwVJTUw1JxubNmx3dSrl1/vx545577jESEhKMRx991Bg8eLCjWyp33njjDaNVq1aObqNC6NSpk/HSSy/ZjT377LNGjx49HNRR+STJWLlypfk4NzfXCA4ONt59911zLC0tzfDw8DD+/e9/O6DD8uXa/VWQXbt2GZKMEydO3JqmyqnC9tVvv/1m3HnnncaBAweM0NBQ44MPPrgl/XAkpwylp6dLkvz9/R3cSfkVExOjTp06KSIiwtGtlFurV69W06ZN9dxzzykwMFAPPvigPvroI0e3VS498sgj2rBhg37++WdJ0n//+19t3bpVjz/+uIM7K9+OHTum5ORku59DX19fNW/eXNu3b3dgZxVHenq6nJycyvRLnyuq3Nxc9ezZU8OHD1eDBg1u6bor9Nc6lGe5ubkaMmSIWrZsqfvvv9/R7ZRL//nPf5SUlKTdu3c7upVy7ddff9W8efM0bNgwvfnmm9q9e7cGDRokd3d3RUdHO7q9cmXkyJGy2WyqW7euXFxclJOTo7fffls9evRwdGvlWnJysiTl+0qcoKAgcx4Kd/nyZb3xxhvq3r0730xegHfeeUeurq4aNGjQLV83IaeMxMTE6MCBA9q6daujWymXTp06pcGDByshIUGenp6Obqdcy83NVdOmTTVlyhRJ0oMPPqgDBw5o/vz5hJxrLF++XEuWLNHSpUvVoEED7du3T0OGDFFISAj7CmUiKytLXbt2lWEYmjdvnqPbKXcSExM1c+ZMJSUlycnJ6Zavn4+rykBsbKzi4uK0adMm3XXXXY5up1xKTExUamqqHnroIbm6usrV1VWbN2/WrFmz5OrqqpycHEe3WG5Ur15d9evXtxurV6+eTp486aCOyq/hw4dr5MiR6tatmxo2bKiePXtq6NChmjp1qqNbK9eCg4MlSSkpKXbjKSkp5jzklxdwTpw4oYSEBI7iFOC7775Tamqqatasaf6uP3HihF577TXVqlWrzNfPkZxSZBiGBg4cqJUrV+rbb79VWFiYo1sqt9q1a6f9+/fbjfXp00d169bVG2+8IRcXFwd1Vv60bNky360Ifv75Z4WGhjqoo/Lr4sWLcna2/9vNxcVFubm5DuqoYggLC1NwcLA2bNigxo0bS5JsNpt27typV1991bHNlVN5AefIkSPatGmTqlWr5uiWyqWePXvmO+cyMjJSPXv2VJ8+fcp8/YScUhQTE6OlS5fqyy+/VJUqVczPsn19feXl5eXg7sqXKlWq5DtXydvbW9WqVeMcpmsMHTpUjzzyiKZMmaKuXbtq165dWrBggRYsWODo1sqdJ598Um+//bZq1qypBg0aaO/evXr//ff10ksvObo1h8vIyNAvv/xiPj527Jj27dsnf39/1axZU0OGDNHkyZN1zz33KCwsTGPGjFFISIiioqIc17QDFbW/qlevri5duigpKUlxcXHKyckxf9/7+/vL3d3dUW07xPXeW9cGQDc3NwUHB+u+++4r++ZuyTVctwlJBU4LFy50dGsVApeQF+6rr74y7r//fsPDw8OoW7eusWDBAke3VC7ZbDZj8ODBRs2aNQ1PT0/j7rvvNt566y0jMzPT0a053KZNmwr8/RQdHW0Yxp+XkY8ZM8YICgoyPDw8jHbt2hmHDx92bNMOVNT+OnbsWKG/7zdt2uTo1m+56723rnUrLyF3MgxuBQoAAKyHE48BAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAl/X+o+xYvNpYE8AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPspJREFUeJzt3XlYFvX+//EXiywugBiLlCKp5ZqWppJLdiQxqQ6llkWpRdq3A5lamZa5ZVGaZi5H8lTqKS2Xb1qpkaSmmeSCcnLLzONWHsBfCreiIsv8/ujLHG9BRQWRT8/Hdc2l98x7Zt4z983Ni1nu28WyLEsAAACGca3oBgAAAMoDIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhB5dl9OjRcnFxsR/Xq1dP/fr1K/f17t+/Xy4uLpo9e7Y9rl+/fqpevXq5r7uIi4uLRo8efdXWV9l17txZnTt3LtNlnvv6qyjl8bo/d5nffvutXFxc9O23317yskq7769kHZfCxJ+d0m7TtfKa/bMh5KDCLF++/Jp9w7uWe/uzOHnypEaPHl3uv3hxbZs/f74ee+wxNWzYUC4uLhcMbbm5uXrppZcUEhIib29vtW3bVsnJySXWrl+/Xh06dFDVqlUVHBysgQMH6sSJE+W0Fago7hXdAMywe/duubpeWmZevny5pk+ffklhIjQ0VKdOnVKVKlUuscNLc6HeTp06JXd3fnTK28mTJzVmzBhJKvaLbcSIERo2bFgFdOXscl73l6pTp046deqUPDw8LnneFStWlENHV9eMGTOUmpqq22+/Xb///vsFa/v166dFixZp0KBBatiwoWbPnq3u3btr9erV6tChg12XlpamLl26qHHjxpo0aZJ+/fVXvf3229qzZ4+++uqrS+qP94NrG88MyoSnp2e5Lj8/P1+FhYXy8PCQl5dXua7rYip6/VfD6dOn5eHhUeIv8JycHFWrVq0Cuvovd3f3a+IXS3m/7iXJ1dX1sl9zlxOMrjUfffSRrr/+erm6uqpZs2bnrdu4caM+/fRTTZgwQS+88IIkqU+fPmrWrJmGDh2q9evX27Uvv/yyatasqW+//VY+Pj6S/jhN2L9/f61YsUJdu3YtdX9/hveDyozTVbiodevW6fbbb5eXl5fq16+v9957r1jNudcR5OXlacyYMWrYsKG8vLxUq1YtdejQwT503K9fP02fPl3SH+e0iwbpv9fdvP3225o8ebLq168vT09P7dy5s8Rrcor8+9//VmRkpKpVq6aQkBCNHTtWlmXZ08933cG5y7xQb0Xjzj3Cs3XrVt1zzz3y8fFR9erV1aVLF/3www9ONbNnz5aLi4u+//57DRkyRAEBAapWrZoeeOABHTly5PxPwHn89ttvio2NVUhIiDw9PRUWFqZnnnlGZ86ccdonvXr1kr+/v6pWrap27dpp2bJlTssp2i+ffvqpRowYoeuvv15Vq1aVw+Gwr3fau3evunfvrho1aigmJkaSVFhYqMmTJ6tp06by8vJSUFCQnn76aR07duyCfZ85c0YjR45Uq1at5Ovrq2rVqqljx45avXq1XbN//34FBARIksaMGWM/B0X7vaTrG/Lz8/Xaa6/Zr5d69erp5ZdfVm5urlNdvXr1dO+992rdunVq06aNvLy8dOONN+qf//znpT0BKv66v5Tn2LIsjRs3TjfccIOqVq2qu+66Szt27Ci2jnNft/Hx8apevbpOnjxZrPaRRx5RcHCwCgoKJJV8Tc6vv/6q6OhoVatWTYGBgRo8eHCxfVTSthU5d5mleT6vRJ06dUp1tGzRokVyc3PTgAED7HFeXl6KjY1VSkqKDh06JElyOBxKTk7WY489Zgcc6Y9AVL16dS1YsOCS+ivp/aA075mzZs2Si4uLPvzwQ6fxb7zxhlxcXLR8+fJL6gMlq/g/hXBN27Ztm7p27aqAgACNHj1a+fn5GjVqlIKCgi443+jRo5WQkKCnnnpKbdq0kcPh0ObNm7Vlyxbdfffdevrpp3X48GElJyfro48+KnEZs2bN0unTpzVgwAB5enrK399fhYWFJdYWFBSoW7duateuncaPH6+kpCSNGjVK+fn5Gjt27CVtc2l6O9uOHTvUsWNH+fj4aOjQoapSpYree+89de7cWWvWrFHbtm2d6p999lnVrFlTo0aN0v79+zV58mTFx8dr/vz5pe7x8OHDatOmjbKysjRgwAA1atRIv/32mxYtWqSTJ0/Kw8NDGRkZuuOOO3Ty5EkNHDhQtWrV0pw5c3T//fdr0aJFeuCBB5yW+dprr8nDw0MvvPCCcnNz7aMA+fn5ioyMVIcOHfT222+ratWq9n6aPXu2nnjiCQ0cOFD79u3TtGnTtHXrVn3//ffnPaXocDj0/vvv65FHHlH//v11/PhxffDBB4qMjNTGjRvVsmVLBQQEaMaMGXrmmWf0wAMP6MEHH5Qk3XLLLefdJ0899ZTmzJmjnj176vnnn9eGDRuUkJCgXbt2afHixU61v/zyi3r27KnY2Fj17dtXH374ofr166dWrVqpadOmpX4ezqc0z/HIkSM1btw4de/eXd27d9eWLVvUtWtXp5BakocffljTp0/XsmXL1KtXL3v8yZMn9eWXX6pfv35yc3Mrcd5Tp06pS5cuOnjwoAYOHKiQkBB99NFHWrVq1WVva2mez6th69atuummm5yCiyS1adNG0h+nqOrUqaNt27YpPz9frVu3dqrz8PBQy5YttXXr1ivqo7TvmU888YQ+++wzDRkyRHfffbfd25gxYxQbG6vu3btfUR/4PxZwAdHR0ZaXl5d14MABe9zOnTstNzc36+yXT2hoqNW3b1/7cYsWLayoqKgLLjsuLs4q6SW4b98+S5Ll4+NjZWZmljht1qxZ9ri+fftakqxnn33WHldYWGhFRUVZHh4e1pEjRyzLsqzVq1dbkqzVq1dfdJnn682yLEuSNWrUKPtxdHS05eHhYe3du9ced/jwYatGjRpWp06d7HGzZs2yJFkRERFWYWGhPX7w4MGWm5ublZWVVeL6StKnTx/L1dXV2rRpU7FpRcseNGiQJcn67rvv7GnHjx+3wsLCrHr16lkFBQWWZf13v9x4443WyZMnnZZVtG+HDRvmNP67776zJFlz5851Gp+UlFRs/J133mndeeed9uP8/HwrNzfXab5jx45ZQUFB1pNPPmmPO3LkSLF9XWTUqFFOz09aWpolyXrqqaec6l544QVLkrVq1Sp7XGhoqCXJWrt2rT0uMzPT8vT0tJ5//vli67qQc1/3pX2OMzMzLQ8PDysqKsqp7uWXX7YkOS3z3NdtYWGhdf3111s9evRw6mXBggXFtuvcfT958mRLkrVgwQJ7XE5OjtWgQYNiPxvnbtv5llna59Oyiv/sXKqmTZs6rfvcaX/5y1+Kjd+xY4clyUpMTLQsy7IWLlxYbD8V6dWrlxUcHHxJPZX0flCa90zLsqz//Oc/lr+/v3X33Xdbubm51q233mrVrVvXys7OvqQecH6crsJ5FRQU6Ouvv1Z0dLTq1q1rj2/cuLEiIyMvOK+fn5927NihPXv2XPb6e/ToYZ+yKI34+Hj7/y4uLoqPj9eZM2f0zTffXHYPF1NQUKAVK1YoOjpaN954oz2+du3aevTRR7Vu3To5HA6neQYMGOB0qqVjx44qKCjQgQMHSrXOwsJCLVmyRPfdd1+xv0Yl2ctevny52rRp43TBZfXq1TVgwADt379fO3fudJqvb9++8vb2LnGdzzzzjNPjhQsXytfXV3fffbf+3//7f/bQqlUrVa9e/YKnKtzc3OyjRIWFhTp69Kj9l/WWLVtKtQ/OVXRof8iQIU7jn3/+eUkqdoquSZMm6tixo/04ICBAN998s/79739f1vrPdbHn+JtvvtGZM2f07LPPOtUNGjToost2cXFRr169tHz5cqe7gebPn6/rr7/e6fk+1/Lly1W7dm317NnTHle1alWnUzyXqjyez8tx6tSpEq+RKrpm5tSpU07/nq+2aPrluNT3zODgYE2fPl3Jycnq2LGj0tLS9OGHHxY7GoXLR8jBeR05ckSnTp1Sw4YNi027+eabLzjv2LFjlZWVpZtuuknNmzfXiy++qB9//PGS1h8WFlbqWldXV6eQIUk33XSTpD+u7ygvR44c0cmTJ0vcH40bN1ZhYaF9LUCRs9/8JKlmzZqSdNFrWc5ep8PhuOBFmJJ04MCB8/ZVNP1s59vf7u7uuuGGG5zG7dmzR9nZ2QoMDFRAQIDTcOLECWVmZl6wtzlz5uiWW26xr9cKCAjQsmXLlJ2dfcH5zufAgQNydXVVgwYNnMYHBwfLz8+v2Lae+xxIfzwPpX0OLuZiz3FRP+f+bAUEBNi1F/Lwww/r1KlT+uKLLyRJJ06c0PLly9WrV68LfhbLgQMH1KBBg2I1F/t5vpiyfj4vh7e3d4nXFp0+fdqefva/56s9X9Avjct5z+zdu7eioqK0ceNG9e/fX126dLns9aM4rslBuejUqZP27t2rzz//XCtWrND777+vd955R4mJiXrqqadKtYwrebMpyfne/Isu0rxazne9hHXWRdIV4Xz729PTs9iFn4WFhQoMDNTcuXNLnOdCR+A+/vhj9evXT9HR0XrxxRcVGBgoNzc3JSQkaO/evZe/ATr/c3yu8n4Oynv57dq1U7169bRgwQI9+uij+vLLL3Xq1Ck9/PDDZbJ86cI/L2dvX3k+n5eidu3a+u2334qN/89//iNJCgkJsevOHn9ubVHd1fL7779r8+bNkqSdO3eqsLCw3D+W4M+EPYnzCggIkLe3d4mnnHbv3n3R+f39/fXEE0/ok08+0aFDh3TLLbc43YVQlp/+WVhYWOxUw88//yzpj7tEpP/+NZ2VleVUV9JpotL2FhAQoKpVq5a4P3766Se5urqqTp06pVpWaQUEBMjHx0fbt2+/YF1oaOh5+yqafrnq16+v33//Xe3bt1dERESxoUWLFuedd9GiRbrxxhv12Wef6fHHH1dkZKQiIiLsv7iLXMrrIzQ0VIWFhcVeqxkZGcrKyrqibS0PRf2c2++RI0dKfTTpoYceUlJSkhwOh+bPn6969eqpXbt2F13v3r17i4Wtkl4nNWvWLPazIhX/eSnt81neWrZsqZ9//rnY6eENGzbY0yWpWbNmcnd3t4NFkTNnzigtLe2KLpS+nPfMuLg4HT9+XAkJCVq3bp0mT5582etHcYQcnJebm5siIyO1ZMkSHTx40B6/a9cuff311xec99wP7apevboaNGjgdIi46LNWSnojvRzTpk2z/29ZlqZNm6YqVarYh39DQ0Pl5uamtWvXOs3397//vdiyStubm5ubunbtqs8//9zptFhGRobmzZunDh06lPn5dVdXV0VHR+vLL78s9kYt/fdoQffu3bVx40alpKTY03JycjRz5kzVq1dPTZo0ueweHnroIRUUFOi1114rNi0/P/+C+63oKMDZv2g3bNjg1Kck+y6u0rw+iu5EOfcXxKRJkyRJUVFRF13G1RQREaEqVapo6tSpTvvhUn7BPfzww8rNzdWcOXOUlJSkhx566KLzdO/eXYcPH9aiRYvscSdPntTMmTOL1davX18//PCD091eS5cuLXb6tbTPZ3nr2bOnCgoKnLYlNzdXs2bNUtu2be0/Nnx9fRUREaGPP/5Yx48ft2s/+ugjnThxwumOtUt1qe+ZixYt0vz58/Xmm29q2LBh6t27t0aMGGH/gYYrx+kqXNCYMWOUlJSkjh076m9/+5vy8/M1depUNW3a9ILX2DRp0kSdO3dWq1at5O/vr82bN2vRokVOFwe3atVKkjRw4EBFRkbKzc1NvXv3vqw+vby8lJSUpL59+6pt27b66quvtGzZMr388sv2qRNfX1/16tVLU6dOlYuLi+rXr6+lS5eWeP3IpfQ2btw4JScnq0OHDvrb3/4md3d3vffee8rNzdX48eMva3su5o033tCKFSt05513asCAAWrcuLH+85//aOHChVq3bp38/Pw0bNgwffLJJ7rnnns0cOBA+fv7a86cOdq3b5/+93//94oOid955516+umnlZCQoLS0NHXt2lVVqlTRnj17tHDhQr377rtOF7ee7d5779Vnn32mBx54QFFRUdq3b58SExPVpEkTpwtpvb291aRJE82fP1833XST/P391axZsxKvRWrRooX69u2rmTNnKisrS3feeac2btyoOXPmKDo6Wnfddddlb2t5CAgI0AsvvKCEhATde++96t69u7Zu3aqvvvpK1113XamWcdttt6lBgwZ65ZVXlJubW6pTVf3799e0adPUp08fpaamqnbt2vroo4/sQHm2p556SosWLVK3bt300EMPae/evfr4449Vv359p7rSPp+Xa+3atfYfJkeOHFFOTo7GjRsn6Y/T4p06dZIktW3bVr169dLw4cOVmZmpBg0aaM6cOdq/f78++OADp2W+/vrruuOOO+yfn19//VUTJ05U165d1a1btyvqt7TvmZmZmXrmmWd011132e+L06ZN0+rVq9WvXz+tW7eO01ZlocLu60KlsWbNGqtVq1aWh4eHdeONN1qJiYnFbuE993bTcePGWW3atLH8/Pwsb29vq1GjRtbrr79unTlzxq7Jz8+3nn32WSsgIMBycXGxl1d0S/eECROK9XK+W8irVatm7d271+ratatVtWpVKygoyBo1apR9m3SRI0eOWD169LCqVq1q1axZ03r66aet7du3F1vm+XqzrJJvg92yZYsVGRlpVa9e3apatap11113WevXr3eqKbq9+Nzbvs93a/vFHDhwwOrTp48VEBBgeXp6WjfeeKMVFxfndDvv3r17rZ49e1p+fn6Wl5eX1aZNG2vp0qUlrn/hwoXF1lG0b89n5syZVqtWrSxvb2+rRo0aVvPmza2hQ4dahw8ftmvOveW4sLDQeuONN6zQ0FDL09PTuvXWW62lS5daffv2tUJDQ52Wv379evu1d/Z+P/f1Z1mWlZeXZ40ZM8YKCwuzqlSpYtWpU8caPny4dfr0aae60NDQEj/e4Nw+S+N8t5CX5jkuKCiwxowZY9WuXdvy9va2OnfubG3fvr3YMi/0+njllVcsSVaDBg1K7K+kbTpw4IB1//33W1WrVrWuu+4667nnnrNv/T93HRMnTrSuv/56y9PT02rfvr21efPmK3o+S/rZuZii57qk4dxlnTp1ynrhhRes4OBgy9PT07r99tutpKSkEpf73XffWXfccYfl5eVlBQQEWHFxcZbD4bik3s63TaV5z3zwwQetGjVqWPv373ea9/PPP7ckWW+99dYl94LiXCyrgq92BAAAKAccCwMAAEbimhzgGnLixImLXscQEBBw3luUUTbS09MvON3b21u+vr5XqRvzFBQUXPT72qpXr67q1atfpY6cXev9ofQ4XQVcQ0aPHq0xY8ZcsGbfvn32bfEoHxe7fb1v374lfkksSmf//v0X/bDPUaNGFfviy6vlWu8PpceRHOAa0qdPnwt+LL/0x6f4onwlJydfcPrV/sA40wQHB190H5/7CeZX07XeH0qPIzkAAMBIXHgMAACM9Kc+XVVYWKjDhw+rRo0aZfoVAwAAoPxYlqXjx48rJCTkgh+a+KcOOYcPHy7z7xUCAABXx6FDh3TDDTecd/qfOuTUqFFD0h87qay/XwgAAJQPh8OhOnXq2L/Hz+dPHXKKTlH5+PgQcgAAqGQudqkJFx4DAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGMm9ohvAtSMvaV2xcVW6daiATgAAuHIcyQEAAEYi5AAAACNdcshZu3at7rvvPoWEhMjFxUVLliyxp+Xl5emll15S8+bNVa1aNYWEhKhPnz46fPiw0zKOHj2qmJgY+fj4yM/PT7GxsTpx4oRTzY8//qiOHTvKy8tLderU0fjx44v1snDhQjVq1EheXl5q3ry5li9ffqmbAwAADHXJIScnJ0ctWrTQ9OnTi007efKktmzZoldffVVbtmzRZ599pt27d+v+++93qouJidGOHTuUnJyspUuXau3atRowYIA93eFwqGvXrgoNDVVqaqomTJig0aNHa+bMmXbN+vXr9cgjjyg2NlZbt25VdHS0oqOjtX379kvdJAAAYCAXy7Ksy57ZxUWLFy9WdHT0eWs2bdqkNm3a6MCBA6pbt6527dqlJk2aaNOmTWrdurUkKSkpSd27d9evv/6qkJAQzZgxQ6+88orS09Pl4eEhSRo2bJiWLFmin376SZL08MMPKycnR0uXLrXX1a5dO7Vs2VKJiYml6t/hcMjX11fZ2dny8fG5zL1gDi48BgBUBqX9/V3u1+RkZ2fLxcVFfn5+kqSUlBT5+fnZAUeSIiIi5Orqqg0bNtg1nTp1sgOOJEVGRmr37t06duyYXRMREeG0rsjISKWkpJy3l9zcXDkcDqcBAACYqVxDzunTp/XSSy/pkUcesZNWenq6AgMDnerc3d3l7++v9PR0uyYoKMippujxxWqKppckISFBvr6+9lCnTp0r20AAAHDNKreQk5eXp4ceekiWZWnGjBnltZpLMnz4cGVnZ9vDoUOHKrolAABQTsrlwwCLAs6BAwe0atUqp/NlwcHByszMdKrPz8/X0aNHFRwcbNdkZGQ41RQ9vlhN0fSSeHp6ytPT8/I3DAAAVBplfiSnKODs2bNH33zzjWrVquU0PTw8XFlZWUpNTbXHrVq1SoWFhWrbtq1ds3btWuXl5dk1ycnJuvnmm1WzZk27ZuXKlU7LTk5OVnh4eFlvEgAAqIQuOeScOHFCaWlpSktLkyTt27dPaWlpOnjwoPLy8tSzZ09t3rxZc+fOVUFBgdLT05Wenq4zZ85Ikho3bqxu3bqpf//+2rhxo77//nvFx8erd+/eCgkJkSQ9+uij8vDwUGxsrHbs2KH58+fr3Xff1ZAhQ+w+nnvuOSUlJWnixIn66aefNHr0aG3evFnx8fFlsFsAAEClZ12i1atXW5KKDX379rX27dtX4jRJ1urVq+1l/P7779YjjzxiVa9e3fLx8bGeeOIJ6/jx407r+de//mV16NDB8vT0tK6//nrrzTffLNbLggULrJtuusny8PCwmjZtai1btuyStiU7O9uSZGVnZ1/qbjDSma++KzYAAHCtKe3v7yv6nJzKjs/Jccbn5AAAKoNr5nNyAAAAKgIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASOXy3VXgM2cAAKhoHMkBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGOmSQ87atWt13333KSQkRC4uLlqyZInTdMuyNHLkSNWuXVve3t6KiIjQnj17nGqOHj2qmJgY+fj4yM/PT7GxsTpx4oRTzY8//qiOHTvKy8tLderU0fjx44v1snDhQjVq1EheXl5q3ry5li9ffqmbAwAADHXJIScnJ0ctWrTQ9OnTS5w+fvx4TZkyRYmJidqwYYOqVaumyMhInT592q6JiYnRjh07lJycrKVLl2rt2rUaMGCAPd3hcKhr164KDQ1VamqqJkyYoNGjR2vmzJl2zfr16/XII48oNjZWW7duVXR0tKKjo7V9+/ZL3SQAAGAgF8uyrMue2cVFixcvVnR0tKQ/juKEhITo+eef1wsvvCBJys7OVlBQkGbPnq3evXtr165datKkiTZt2qTWrVtLkpKSktS9e3f9+uuvCgkJ0YwZM/TKK68oPT1dHh4ekqRhw4ZpyZIl+umnnyRJDz/8sHJycrR06VK7n3bt2qlly5ZKTEwsVf8Oh0O+vr7Kzs6Wj4/P5e6GEuUlrSs2rkq3DmW6jrJWGXsGAPz5lPb3d5lek7Nv3z6lp6crIiLCHufr66u2bdsqJSVFkpSSkiI/Pz874EhSRESEXF1dtWHDBrumU6dOdsCRpMjISO3evVvHjh2za85eT1FN0XpKkpubK4fD4TQAAAAzuZflwtLT0yVJQUFBTuODgoLsaenp6QoMDHRuwt1d/v7+TjVhYWHFllE0rWbNmkpPT7/gekqSkJCgMWPGXMaW4VrF0ScAwPn8qe6uGj58uLKzs+3h0KFDFd0SAAAoJ2UacoKDgyVJGRkZTuMzMjLsacHBwcrMzHSanp+fr6NHjzrVlLSMs9dxvpqi6SXx9PSUj4+P0wAAAMxUpiEnLCxMwcHBWrlypT3O4XBow4YNCg8PlySFh4crKytLqampds2qVatUWFiotm3b2jVr165VXl6eXZOcnKybb75ZNWvWtGvOXk9RTdF6AADAn9slh5wTJ04oLS1NaWlpkv642DgtLU0HDx6Ui4uLBg0apHHjxumLL77Qtm3b1KdPH4WEhNh3YDVu3FjdunVT//79tXHjRn3//feKj49X7969FRISIkl69NFH5eHhodjYWO3YsUPz58/Xu+++qyFDhth9PPfcc0pKStLEiRP1008/afTo0dq8ebPi4+OvfK8AAIBK75IvPN68ebPuuusu+3FR8Ojbt69mz56toUOHKicnRwMGDFBWVpY6dOigpKQkeXl52fPMnTtX8fHx6tKli1xdXdWjRw9NmTLFnu7r66sVK1YoLi5OrVq10nXXXaeRI0c6fZbOHXfcoXnz5mnEiBF6+eWX1bBhQy1ZskTNmjW7rB0BAADMckWfk1PZ8Tk5zugZAFAZVMjn5AAAAFwrCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACM5F7RDeDasT/rK6fH9fzuqaBOAAC4chzJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGKnMQ05BQYFeffVVhYWFydvbW/Xr19drr70my7LsGsuyNHLkSNWuXVve3t6KiIjQnj17nJZz9OhRxcTEyMfHR35+foqNjdWJEyecan788Ud17NhRXl5eqlOnjsaPH1/WmwMAACqpMg85b731lmbMmKFp06Zp165deuuttzR+/HhNnTrVrhk/frymTJmixMREbdiwQdWqVVNkZKROnz5t18TExGjHjh1KTk7W0qVLtXbtWg0YMMCe7nA41LVrV4WGhio1NVUTJkzQ6NGjNXPmzLLeJAAAUAm5l/UC169fr7/+9a+KioqSJNWrV0+ffPKJNm7cKOmPoziTJ0/WiBEj9Ne//lWS9M9//lNBQUFasmSJevfurV27dikpKUmbNm1S69atJUlTp05V9+7d9fbbbyskJERz587VmTNn9OGHH8rDw0NNmzZVWlqaJk2a5BSGAADAn1OZH8m54447tHLlSv3888+SpH/9619at26d7rnnHknSvn37lJ6eroiICHseX19ftW3bVikpKZKklJQU+fn52QFHkiIiIuTq6qoNGzbYNZ06dZKHh4ddExkZqd27d+vYsWMl9pabmyuHw+E0AAAAM5X5kZxhw4bJ4XCoUaNGcnNzU0FBgV5//XXFxMRIktLT0yVJQUFBTvMFBQXZ09LT0xUYGOjcqLu7/P39nWrCwsKKLaNoWs2aNYv1lpCQoDFjxpTBVgIAgGtdmR/JWbBggebOnat58+Zpy5YtmjNnjt5++23NmTOnrFd1yYYPH67s7Gx7OHToUEW3BAAAykmZH8l58cUXNWzYMPXu3VuS1Lx5cx04cEAJCQnq27evgoODJUkZGRmqXbu2PV9GRoZatmwpSQoODlZmZqbTcvPz83X06FF7/uDgYGVkZDjVFD0uqjmXp6enPD09r3wjAQDANa/Mj+ScPHlSrq7Oi3Vzc1NhYaEkKSwsTMHBwVq5cqU93eFwaMOGDQoPD5ckhYeHKysrS6mpqXbNqlWrVFhYqLZt29o1a9euVV5enl2TnJysm2++ucRTVTDP3s3vaX/WV/YAAMDZyjzk3HfffXr99de1bNky7d+/X4sXL9akSZP0wAMPSJJcXFw0aNAgjRs3Tl988YW2bdumPn36KCQkRNHR0ZKkxo0bq1u3burfv782btyo77//XvHx8erdu7dCQkIkSY8++qg8PDwUGxurHTt2aP78+Xr33Xc1ZMiQst4kAABQCZX56aqpU6fq1Vdf1d/+9jdlZmYqJCRETz/9tEaOHGnXDB06VDk5ORowYICysrLUoUMHJSUlycvLy66ZO3eu4uPj1aVLF7m6uqpHjx6aMmWKPd3X11crVqxQXFycWrVqpeuuu04jR47k9nEAACBJcrHO/ijiPxmHwyFfX19lZ2fLx8enTJedl7Su2Lgq3TqU6TrK2p5PX3F6XM/vnmu6572b31PhLwftx/X8/viYgmu5ZwDAlSvt72++uwoAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjFTm312FP5z7rdhFXzkAAACuDo7kAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkdwrugHgzyYvaV2xcVW6daiATgDAbBzJAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGKpeQ89tvv+mxxx5TrVq15O3trebNm2vz5s32dMuyNHLkSNWuXVve3t6KiIjQnj17nJZx9OhRxcTEyMfHR35+foqNjdWJEyecan788Ud17NhRXl5eqlOnjsaPH18emwMAACqhMg85x44dU/v27VWlShV99dVX2rlzpyZOnKiaNWvaNePHj9eUKVOUmJioDRs2qFq1aoqMjNTp06ftmpiYGO3YsUPJyclaunSp1q5dqwEDBtjTHQ6HunbtqtDQUKWmpmrChAkaPXq0Zs6cWdabBAAAKqEy/+6qt956S3Xq1NGsWbPscWFhYfb/LcvS5MmTNWLECP31r3+VJP3zn/9UUFCQlixZot69e2vXrl1KSkrSpk2b1Lp1a0nS1KlT1b17d7399tsKCQnR3LlzdebMGX344Yfy8PBQ06ZNlZaWpkmTJjmFIQAA8OdU5kdyvvjiC7Vu3Vq9evVSYGCgbr31Vv3jH/+wp+/bt0/p6emKiIiwx/n6+qpt27ZKSUmRJKWkpMjPz88OOJIUEREhV1dXbdiwwa7p1KmTPDw87JrIyEjt3r1bx44dK7G33NxcORwOpwEAAJipzEPOv//9b82YMUMNGzbU119/rWeeeUYDBw7UnDlzJEnp6emSpKCgIKf5goKC7Gnp6ekKDAx0mu7u7i5/f3+nmpKWcfY6zpWQkCBfX197qFOnzhVuLQAAuFaVecgpLCzUbbfdpjfeeEO33nqrBgwYoP79+ysxMbGsV3XJhg8fruzsbHs4dOhQRbcEAADKSZmHnNq1a6tJkyZO4xo3bqyDBw9KkoKDgyVJGRkZTjUZGRn2tODgYGVmZjpNz8/P19GjR51qSlrG2es4l6enp3x8fJwGAABgpjIPOe3bt9fu3budxv38888KDQ2V9MdFyMHBwVq5cqU93eFwaMOGDQoPD5ckhYeHKysrS6mpqXbNqlWrVFhYqLZt29o1a9euVV5enl2TnJysm2++2elOLgAA8OdU5iFn8ODB+uGHH/TGG2/ol19+0bx58zRz5kzFxcVJklxcXDRo0CCNGzdOX3zxhbZt26Y+ffooJCRE0dHRkv448tOtWzf1799fGzdu1Pfff6/4+Hj17t1bISEhkqRHH31UHh4eio2N1Y4dOzR//ny9++67GjJkSFlvEgAAqITK/Bby22+/XYsXL9bw4cM1duxYhYWFafLkyYqJibFrhg4dqpycHA0YMEBZWVnq0KGDkpKS5OXlZdfMnTtX8fHx6tKli1xdXdWjRw9NmTLFnu7r66sVK1YoLi5OrVq10nXXXaeRI0dy+zgAAJBUDiFHku69917de++9553u4uKisWPHauzYseet8ff317x58y64nltuuUXffffdZfcJAADMxXdXAQAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACO5V3QDwJ/J3s3vqTDroP24nt89FdgNAJiNIzkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJH4MEAApZKXtM7pcZVuHSqoEwAoHY7kAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEjlHnLefPNNubi4aNCgQfa406dPKy4uTrVq1VL16tXVo0cPZWRkOM138OBBRUVFqWrVqgoMDNSLL76o/Px8p5pvv/1Wt912mzw9PdWgQQPNnj27vDcHAABUEuUacjZt2qT33ntPt9xyi9P4wYMH68svv9TChQu1Zs0aHT58WA8++KA9vaCgQFFRUTpz5ozWr1+vOXPmaPbs2Ro5cqRds2/fPkVFRemuu+5SWlqaBg0apKeeekpff/11eW4SAACoJMot5Jw4cUIxMTH6xz/+oZo1a9rjs7Oz9cEHH2jSpEn6y1/+olatWmnWrFlav369fvjhB0nSihUrtHPnTn388cdq2bKl7rnnHr322muaPn26zpw5I0lKTExUWFiYJk6cqMaNGys+Pl49e/bUO++8U16bBAAAKpFyCzlxcXGKiopSRESE0/jU1FTl5eU5jW/UqJHq1q2rlJQUSVJKSoqaN2+uoKAguyYyMlIOh0M7duywa85ddmRkpL2MkuTm5srhcDgNAADATO7lsdBPP/1UW7Zs0aZNm4pNS09Pl4eHh/z8/JzGBwUFKT093a45O+AUTS+adqEah8OhU6dOydvbu9i6ExISNGbMmMveLgAAUHmU+ZGcQ4cO6bnnntPcuXPl5eVV1ou/IsOHD1d2drY9HDp0qKJbAgAA5aTMQ05qaqoyMzN12223yd3dXe7u7lqzZo2mTJkid3d3BQUF6cyZM8rKynKaLyMjQ8HBwZKk4ODgYndbFT2+WI2Pj0+JR3EkydPTUz4+Pk4DAAAwU5mHnC5dumjbtm1KS0uzh9atWysmJsb+f5UqVbRy5Up7nt27d+vgwYMKDw+XJIWHh2vbtm3KzMy0a5KTk+Xj46MmTZrYNWcvo6imaBkAAODPrcyvyalRo4aaNWvmNK5atWqqVauWPT42NlZDhgyRv7+/fHx89Oyzzyo8PFzt2rWTJHXt2lVNmjTR448/rvHjxys9PV0jRoxQXFycPD09JUn/8z//o2nTpmno0KF68skntWrVKi1YsEDLli0r600C/tT2bn5PklSYdVCSVM/vnopsBwBKrVwuPL6Yd955R66ururRo4dyc3MVGRmpv//97/Z0Nzc3LV26VM8884zCw8NVrVo19e3bV2PHjrVrwsLCtGzZMg0ePFjvvvuubrjhBr3//vuKjIysiE0CAADXmKsScr799lunx15eXpo+fbqmT59+3nlCQ0O1fPnyCy63c+fO2rp1a1m0CAAADMN3VwEAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxU5iEnISFBt99+u2rUqKHAwEBFR0dr9+7dTjWnT59WXFycatWqperVq6tHjx7KyMhwqjl48KCioqJUtWpVBQYG6sUXX1R+fr5TzbfffqvbbrtNnp6eatCggWbPnl3WmwMAACqpMg85a9asUVxcnH744QclJycrLy9PXbt2VU5Ojl0zePBgffnll1q4cKHWrFmjw4cP68EHH7SnFxQUKCoqSmfOnNH69es1Z84czZ49WyNHjrRr9u3bp6ioKN11111KS0vToEGD9NRTT+nrr78u600CAACVkHtZLzApKcnp8ezZsxUYGKjU1FR16tRJ2dnZ+uCDDzRv3jz95S9/kSTNmjVLjRs31g8//KB27dppxYoV2rlzp7755hsFBQWpZcuWeu211/TSSy9p9OjR8vDwUGJiosLCwjRx4kRJUuPGjbVu3Tq98847ioyMLOvNAgAAlUy5X5OTnZ0tSfL395ckpaamKi8vTxEREXZNo0aNVLduXaWkpEiSUlJS1Lx5cwUFBdk1kZGRcjgc2rFjh11z9jKKaoqWUZLc3Fw5HA6nAQAAmKlcQ05hYaEGDRqk9u3bq1mzZpKk9PR0eXh4yM/Pz6k2KChI6enpds3ZAadoetG0C9U4HA6dOnWqxH4SEhLk6+trD3Xq1LnibQQAANemcg05cXFx2r59uz799NPyXE2pDR8+XNnZ2fZw6NChim4JAACUkzK/JqdIfHy8li5dqrVr1+qGG26wxwcHB+vMmTPKyspyOpqTkZGh4OBgu2bjxo1Oyyu6++rsmnPvyMrIyJCPj4+8vb1L7MnT01Oenp5XvG0AAODaV+ZHcizLUnx8vBYvXqxVq1YpLCzMaXqrVq1UpUoVrVy50h63e/duHTx4UOHh4ZKk8PBwbdu2TZmZmXZNcnKyfHx81KRJE7vm7GUU1RQtAwAA/LmV+ZGcuLg4zZs3T59//rlq1KhhX0Pj6+srb29v+fr6KjY2VkOGDJG/v798fHz07LPPKjw8XO3atZMkde3aVU2aNNHjjz+u8ePHKz09XSNGjFBcXJx9JOZ//ud/NG3aNA0dOlRPPvmkVq1apQULFmjZsmVlvUkAAKASKvMjOTNmzFB2drY6d+6s2rVr28P8+fPtmnfeeUf33nuvevTooU6dOik4OFifffaZPd3NzU1Lly6Vm5ubwsPD9dhjj6lPnz4aO3asXRMWFqZly5YpOTlZLVq00MSJE/X+++9z+zgAAJBUDkdyLMu6aI2Xl5emT5+u6dOnn7cmNDRUy5cvv+ByOnfurK1bt15yjwAAwHzlduExAFS0vKR1To+rdOtQQZ0AqAh8QScAADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJG4hRyAUfZufs/+f2HWQdXzu6cCuwFQkTiSAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRCDkAAMBIhBwAAGAkQg4AADASIQcAABiJkAMAAIxEyAEAAEYi5AAAACMRcgAAgJEIOQAAwEiEHAAAYCRCDgAAMBIhBwAAGImQAwAAjETIAQAARiLkAAAAI7lXdAMAgP/KS1rn9LhKtw4V1AlQ+XEkBwAAGImQAwAAjMTpKgCoYHs3v2f/vzDroOr53VOB3QDm4EgOAAAwEiEHAAAYiZADAACMRMgBAABGIuQAAAAjEXIAAICRuIUcyi/I047tK7T/VIaqu3joBk8/ubq4VHRbF1RgFeiX3MPKdjssH8tTYYX+Fd0SAOAaU+lDzvTp0zVhwgSlp6erRYsWmjp1qtq0aVPRbVUa36d8rA9/e09HPXKkWn+M88/11gPHm6qeX4W2dl4ph1fqg+0T9PvpTMnzj3G+hV56qvB6tXVtUbHNAQCuGZU65MyfP19DhgxRYmKi2rZtq8mTJysyMlK7d+9WYGBgRbd3zfs+5WO9nTlJquI8/qjHKX1Qa7N8j96ojrq2vjcn5fBKjd88VJLlND7b5bQm5n+g591j1eEa6xkwkdMHGP7i/AGGfN8WrhWV+pqcSZMmqX///nriiSfUpEkTJSYmqmrVqvrwww8rurVrXn5Bnj787f/epM49M/V/j+dUWar8gryr2teFFFgF+mD7BJ0bcCTZPc/O/18VWAVXtS8AwLWp0h7JOXPmjFJTUzV8+HB7nKurqyIiIpSSklLiPLm5ucrNzbUfZ2dnS5IcDkeZ93fiZK7TY0eVHFUph/Vcrm3bvlZGvkPKP39Nuo5rww9L1Lx55NVr7AJ2/r5F6Uf/c8GadP2uTfu/U5Nat12lri7N8ROnZJ312nBUyZGka+q1ca7jJ05Jkt33td5zUb/SHz0X9SvRc1mqjD3DHEW/ty2rhD96z2ZVUr/99pslyVq/fr3T+BdffNFq06ZNifOMGjXK0h+HARgYGBgYGBgq+XDo0KELZoVKeyTncgwfPlxDhgyxHxcWFuro0aOqVauWXMrwbiKHw6E6dero0KFD8vHxKbPlwhn7+ephX18d7Oerg/18dZTnfrYsS8ePH1dISMgF6yptyLnuuuvk5uamjIwMp/EZGRkKDg4ucR5PT095eno6jfPz8yuvFuXj48MP0FXAfr562NdXB/v56mA/Xx3ltZ99fX0vWlNpLzz28PBQq1attHLlSntcYWGhVq5cqfDw8ArsDAAAXAsq7ZEcSRoyZIj69u2r1q1bq02bNpo8ebJycnL0xBNPVHRrAACgglXqkPPwww/ryJEjGjlypNLT09WyZUslJSUpKCioQvvy9PTUqFGjip0aQ9liP1897Ourg/18dbCfr45rYT+7WNbF7r8CAACofCrtNTkAAAAXQsgBAABGIuQAAAAjEXIAAICRCDkAAMBIhJwylJCQoNtvv101atRQYGCgoqOjtXv37opuy3hvvvmmXFxcNGjQoIpuxTi//fabHnvsMdWqVUve3t5q3ry5Nm/eXNFtGaWgoECvvvqqwsLC5O3trfr16+u11167+BcP4qLWrl2r++67TyEhIXJxcdGSJUucpluWpZEjR6p27dry9vZWRESE9uzZUzHNVmIX2s95eXl66aWX1Lx5c1WrVk0hISHq06ePDh8+fFV6I+SUoTVr1iguLk4//PCDkpOTlZeXp65duyonJ+fiM+OybNq0Se+9955uueWWim7FOMeOHVP79u1VpUoVffXVV9q5c6cmTpyomjVrVnRrRnnrrbc0Y8YMTZs2Tbt27dJbb72l8ePHa+rUqRXdWqWXk5OjFi1aaPr06SVOHz9+vKZMmaLExERt2LBB1apVU2RkpE6fPn2VO63cLrSfT548qS1btujVV1/Vli1b9Nlnn2n37t26//77r05zZfGN4ChZZmamJclas2ZNRbdipOPHj1sNGza0kpOTrTvvvNN67rnnKrolo7z00ktWhw4dKroN40VFRVlPPvmk07gHH3zQiomJqaCOzCTJWrx4sf24sLDQCg4OtiZMmGCPy8rKsjw9Pa1PPvmkAjo0w7n7uSQbN260JFkHDhwo9344klOOsrOzJUn+/v4V3ImZ4uLiFBUVpYiIiIpuxUhffPGFWrdurV69eikwMFC33nqr/vGPf1R0W8a54447tHLlSv3888+SpH/9619at26d7rnnngruzGz79u1Tenq60/uHr6+v2rZtq5SUlArszHzZ2dlycXEp1y/ILlKpv9bhWlZYWKhBgwapffv2atasWUW3Y5xPP/1UW7Zs0aZNmyq6FWP9+9//1owZMzRkyBC9/PLL2rRpkwYOHCgPDw/17du3otszxrBhw+RwONSoUSO5ubmpoKBAr7/+umJiYiq6NaOlp6dLUrGvAQoKCrKnoeydPn1aL730kh555JGr8g3whJxyEhcXp+3bt2vdunUV3YpxDh06pOeee07Jycny8vKq6HaMVVhYqNatW+uNN96QJN16663avn27EhMTCTllaMGCBZo7d67mzZunpk2bKi0tTYMGDVJISAj7GUbJy8vTQw89JMuyNGPGjKuyTk5XlYP4+HgtXbpUq1ev1g033FDR7RgnNTVVmZmZuu222+Tu7i53d3etWbNGU6ZMkbu7uwoKCiq6RSPUrl1bTZo0cRrXuHFjHTx4sII6MtOLL76oYcOGqXfv3mrevLkef/xxDR48WAkJCRXdmtGCg4MlSRkZGU7jMzIy7GkoO0UB58CBA0pOTr4qR3EkQk6ZsixL8fHxWrx4sVatWqWwsLCKbslIXbp00bZt25SWlmYPrVu3VkxMjNLS0uTm5lbRLRqhffv2xT4C4eeff1ZoaGgFdWSmkydPytXV+a3Yzc1NhYWFFdTRn0NYWJiCg4O1cuVKe5zD4dCGDRsUHh5egZ2Zpyjg7NmzR998841q1ap11dbN6aoyFBcXp3nz5unzzz9XjRo17PO6vr6+8vb2ruDuzFGjRo1i1zlVq1ZNtWrV4vqnMjR48GDdcccdeuONN/TQQw9p48aNmjlzpmbOnFnRrRnlvvvu0+uvv666deuqadOm2rp1qyZNmqQnn3yyolur9E6cOKFffvnFfrxv3z6lpaXJ399fdevW1aBBgzRu3Dg1bNhQYWFhevXVVxUSEqLo6OiKa7oSutB+rl27tnr27KktW7Zo6dKlKigosH83+vv7y8PDo3ybK/f7t/5EJJU4zJo1q6JbMx63kJePL7/80mrWrJnl6elpNWrUyJo5c2ZFt2Qch8NhPffcc1bdunUtLy8v68Ybb7ReeeUVKzc3t6Jbq/RWr15d4nty3759Lcv64zbyV1991QoKCrI8PT2tLl26WLt3767YpiuhC+3nffv2nfd34+rVq8u9NxfL4mM1AQCAebgmBwAAGImQAwAAjETIAQAARiLkAAAAIxFyAACAkQg5AADASIQcAABgJEIOAAAwEiEHAAAYiZADAACMRMgBAABG+v8ox3xM1dVylwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPdBJREFUeJzt3X1cVHX+//8nIDPgxYAkF6J4Xal5VZiIeZHFOiW1We4nLbewvNhc7LvKpunqelnZ2pVumVaWuru5mm26m7oYaeqWqEmymSmZYtbaoKYwXhQIvH9/dOP8HEEFQojj4367za3mfV7nnNd5OzhPz5wz+BljjAAAAGzGv6YbAAAAuBwIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOYDNbdy4UX5+ftq4cWOVbtfPz0/Tpk2r0m3azdChQ9WiRYuabuNnoUWLFho6dOgl6xYvXiw/Pz8dPHjwsvcE+yPkoFbZsmWLpk2bptzc3Jpu5Yqwdu1agoykM2fOaNq0aVUeFFF9srKyNHbsWPXo0UNBQUEEqSsEIQe1ypYtWzR9+nRCTjVZu3atpk+fXuay77//XpMnT67mjmrGmTNnNH369AqHnNdee01ZWVmXp6laJisrS6+99lqN7T89PV1//vOfdfLkSbVr167G+kD1IuQAP1Nnzpwpc7ywsFAFBQXV3E1pQUFBqlOnTk238bN0+vRpSVJgYKCcTmcNd/Pz4HQ6FRgYWGP7/+Uvf6nc3Fzt2rVLQ4YMqbE+UL0IOag1pk2bpnHjxkmSWrZsKT8/P+uUc2FhoWbOnKnWrVvL6XSqRYsW+sMf/qD8/HyfbbRo0UJ33HGH3nvvPXXp0kVBQUFq37693nnnnUr19Le//U3dunVT3bp11bBhQ/Xu3VvvvfeeT83LL7+s6667Tk6nU9HR0UpOTi51Jurmm29Whw4dlJGRod69e6tu3br6wx/+oIMHD8rPz0/PPvus5syZYx3f559/Lknau3evfvWrXyksLExBQUHq2rWr/vWvf12y7//85z/6v//7PzVr1kxOp1MxMTEaO3asvv/+e6tm6NChmjdvniRZc+3n52ctL+uanJ07d+r222+Xy+VS/fr1deutt2rr1q0+NSXXXHz00UdKSUlReHi46tWrp7vvvltHjx69ZO/nmjZtmvz8/PTFF1/o17/+tUJCQhQeHq4//vGPMsbo66+/1l133SWXy6WoqCg999xzPusXFBRoypQpio2NVUhIiOrVq6devXrpgw8+sGoOHjyo8PBwSdL06dOteSg59qFDh6p+/frav3+/+vfvrwYNGlhvoudfkzN16lT5+/tr/fr1Pn2MHDlSDodD//3vf8t97OV9LZ89e1bTp0/X1VdfraCgIF111VXq2bOn0tLSrJqSYzh06JDuuOMO1a9fX02aNLH+/Hft2qVbbrlF9erVU/PmzbV06dJy93luv+dfk7N7927dcsstCg4OVtOmTfXEE0+ouLi41Lo7duyQ2+1Wo0aNFBwcrJYtW+rhhx+u0P7DwsLUoEGDCveN2o1/hqHWuOeee/TFF1/o73//u1544QU1atRIkhQeHq7hw4dryZIl+tWvfqXf//732rZtm2bNmqU9e/Zo5cqVPtvZt2+fBg0apEceeURJSUlatGiR/u///k+pqan6xS9+Ue5+pk+frmnTpqlHjx6aMWOGHA6Htm3bpg0bNqhfv36SfnwTnj59uhISEjRq1ChlZWVp/vz5+vjjj/XRRx/5/Mv2u+++0+23367Bgwfr17/+tSIjI61lixYt0g8//KCRI0fK6XQqLCxMu3fv1k033aQmTZpowoQJqlevnt566y0NGDBA//jHP3T33XdfsPcVK1bozJkzGjVqlK666ipt375dL774or755hutWLFCkvSb3/xGhw8fVlpamv76179ecj52796tXr16yeVyafz48QoMDNQrr7yim2++WZs2bVJcXJxP/aOPPqqGDRtq6tSpOnjwoObMmaPRo0dr+fLl5f4zKDFo0CC1a9dOTz/9tNasWaMnnnhCYWFheuWVV3TLLbfoT3/6k95880099thjuvHGG9W7d29Jktfr1cKFC3XfffdpxIgROnnypF5//XW53W5t375dXbp0UXh4uObPn69Ro0bp7rvv1j333CNJ6tSpk7X/wsJCud1u9ezZU88++6zq1q1bZp+TJ0/Wu+++q2HDhmnXrl1q0KCB1q1bp9dee00zZ85U586dK3Tc5XktT5s2TbNmzdLw4cPVrVs3eb1e7dixQ5988onP672oqEi33367evfurdmzZ+vNN9/U6NGjVa9ePU2aNElDhgzRPffcowULFujBBx9UfHy8WrZsWaF+z+XxeNS3b18VFhZar99XX31VwcHBPnVHjhxRv379FB4ergkTJig0NFQHDx6s9D9McIUxQC3yzDPPGEkmOzvbGsvMzDSSzPDhw31qH3vsMSPJbNiwwRpr3ry5kWT+8Y9/WGN5eXmmcePG5vrrry93H/v27TP+/v7m7rvvNkVFRT7LiouLjTHGHDlyxDgcDtOvXz+fmpdeeslIMm+88YY11qdPHyPJLFiwwGdb2dnZRpJxuVzmyJEjPstuvfVW07FjR/PDDz/47LtHjx7m6quvtsY++OADI8l88MEH1tiZM2dKHdOsWbOMn5+f+eqrr6yx5ORkc6G/JiSZqVOnWs8HDBhgHA6H2b9/vzV2+PBh06BBA9O7d29rbNGiRUaSSUhIsObKGGPGjh1rAgICTG5ubpn7K8vUqVONJDNy5EhrrLCw0DRt2tT4+fmZp59+2ho/ceKECQ4ONklJST61+fn5Pts8ceKEiYyMNA8//LA1dvTo0VLHWyIpKclIMhMmTChzWfPmzX3Gdu3aZRwOhxk+fLg5ceKEadKkienatas5e/ZsuY/bmPK/ljt37mwSExMvuq2SY3jqqaessZL58vPzM8uWLbPG9+7de8G5uFS/5879mDFjjCSzbds2a+zIkSMmJCTE52d85cqVRpL5+OOPK7S/iynr7xHYEx9XodZbu3atJCklJcVn/Pe//70kac2aNT7j0dHRPmc5XC6XHnzwQe3cuVMej6dc+1y1apWKi4s1ZcoU+fv7/hiVfKTz/vvvq6CgQGPGjPGpGTFihFwuV6m+nE6nHnrooTL3N3DgQOsjE0k6fvy4NmzYoHvvvVcnT57UsWPHdOzYMX333Xdyu93at2+f/ve//12w/3P/tXz69GkdO3ZMPXr0kDFGO3fuLNccnKuoqEjvvfeeBgwYoFatWlnjjRs31v33368PP/xQXq/XZ52RI0f6fPzVq1cvFRUV6auvvqrw/ocPH279f0BAgLp27SpjjIYNG2aNh4aG6tprr9WBAwd8ah0OhySpuLhYx48fV2Fhobp27apPPvmkQj2MGjWqXHUdOnTQ9OnTtXDhQrndbh07dkxLliyp1PVN5Xkth4aGavfu3dq3b98lt3fuPJbMV7169XTvvfda49dee61CQ0N95rEy1q5dq+7du6tbt27WWHh4eKnrZUJDQyVJq1ev1tmzZ3/SPnHlIeSg1vvqq6/k7++vNm3a+IxHRUUpNDS01JtmmzZtfN5cJemaa66RpHLfUrp//375+/urffv2F+1L+vFN4VwOh0OtWrUq1VeTJk2sN9zznf+xwJdffiljjP74xz8qPDzc5zF16lRJP57mv5BDhw5p6NChCgsLU/369RUeHq4+ffpIkvLy8i643oUcPXpUZ86cKXWsktSuXTsVFxfr66+/9hlv1qyZz/OGDRtKkk6cOFHh/Z+/rZCQEAUFBVkfaZ47fv72lyxZok6dOlnXq4SHh2vNmjUVmoc6deqoadOm5a4fN26cOnfurO3bt2vq1KkXfR1dTHleyzNmzFBubq6uueYadezYUePGjdOnn35aaltBQUE+QVr6cb6aNm1aah9lzWNFffXVV7r66qtLjZ//GurTp48GDhyo6dOnq1GjRrrrrru0aNGiUtfbAWXhmhzYxvl/Edc251+LcLFlJRdnPvbYY3K73WWuc37oK1FUVKRf/OIXOn78uB5//HG1bdtW9erV0//+9z8NHTq0zAs/L4eAgIAyx40xVbKt8mz/b3/7m4YOHaoBAwZo3LhxioiIUEBAgGbNmqX9+/eXe/9Op7PUGb2LOXDggHVmZdeuXeVerzJ69+6t/fv365///Kfee+89LVy4UC+88IIWLFhQ6gxYWaryz6ky/Pz89Pbbb2vr1q169913tW7dOj388MN67rnntHXrVtWvX79a+kDtRMhBrVJWkGnevLmKi4u1b98+n++/yMnJUW5urpo3b+5TX3IW5NxtffHFF5JU7m+nbd26tYqLi/X555+rS5cuZdaU7DcrK8vnI5yCggJlZ2crISGhXPsqS8n2AgMDK7ydXbt26YsvvtCSJUv04IMPWuPn3m1TorzBMTw8XHXr1i3zO2H27t0rf39/xcTEVKjP6vD222+rVatWeuedd3yOteRsWImqDNDFxcUaOnSoXC6XxowZo6eeekq/+tWvrAuaK6K8r+WwsDA99NBDeuihh3Tq1Cn17t1b06ZN8wk51a158+ZlfoR2oe8V6t69u7p3764nn3xSS5cu1ZAhQ7Rs2bIaPQb8/PFxFWqVevXqSZLPLdj9+/eXJM2ZM8en9vnnn5ckJSYm+owfPnzY544rr9erv/zlL+rSpYuioqLK1ceAAQPk7++vGTNmlDrzUfIv3ISEBDkcDv35z3/2+Vfv66+/rry8vFJ9VURERIRuvvlmvfLKK/r2229LLb/Yrdgl/zI/tydjjObOnVuqtqz5vtA2+/Xrp3/+858+H/nl5ORo6dKl6tmzp1wu10W3URPKmott27YpPT3dp67kbqmq+BLK559/Xlu2bNGrr76qmTNnqkePHho1apSOHTtW4W2V57X83Xff+axTv359tWnTpsY/7unfv7+2bt2q7du3W2NHjx7Vm2++6VN34sSJUmeNSv5hUdPHgJ8/zuSgVomNjZUkTZo0SYMHD1ZgYKDuvPNOJSUl6dVXX1Vubq769Omj7du3a8mSJRowYID69u3rs41rrrlGw4YN08cff6zIyEi98cYbysnJ0aJFi8rdR5s2bTRp0iTNnDlTvXr10j333COn06mPP/5Y0dHRmjVrlsLDwzVx4kRNnz5dt912m375y18qKytLL7/8sm688Ub9+te//klzMW/ePPXs2VMdO3bUiBEj1KpVK+Xk5Cg9PV3ffPPNBb9zpW3btmrdurUee+wx/e9//5PL5dI//vGPMq+xKJnv//f//p/cbrcCAgI0ePDgMrf7xBNPKC0tTT179tRvf/tb1alTR6+88ory8/M1e/bsn3Ssl8sdd9yhd955R3fffbcSExOVnZ2tBQsWqH379jp16pRVFxwcrPbt22v58uW65pprFBYWpg4dOqhDhw4V2t+ePXv0xz/+UUOHDtWdd94p6cfvDerSpYt++9vf6q233qrQ9srzWm7fvr1uvvlmxcbGKiwsTDt27NDbb7+t0aNHV2hfVW38+PH661//qttuu02/+93vrFvImzdv7nPN0JIlS/Tyyy/r7rvvVuvWrXXy5Em99tprcrlc1j9wyiMvL08vvviiJOmjjz6SJL300ksKDQ1VaGhojc8HLpOauKUL+ClmzpxpmjRpYvz9/a3bQM+ePWumT59uWrZsaQIDA01MTIyZOHGiz+3Vxvx4G2tiYqJZt26d6dSpk3E6naZt27ZmxYoVlerljTfeMNdff71xOp2mYcOGpk+fPiYtLc2n5qWXXjJt27Y1gYGBJjIy0owaNcqcOHHCp6ZPnz7muuuuK7X9klvIn3nmmTL3v3//fvPggw+aqKgoExgYaJo0aWLuuOMO8/bbb1s1Zd1C/vnnn5uEhARTv35906hRIzNixAjz3//+10gyixYtsuoKCwvNo48+asLDw42fn5/P7eQq4zbiTz75xLjdblO/fn1Tt25d07dvX7NlyxafmpJbyM+/JbisPi+l5Bbyo0eP+ownJSWZevXqlao/f56Li4vNU089ZZo3b26cTqe5/vrrzerVq8u89XvLli0mNjbWOBwOn2O/0L5KlpVsp7Cw0Nx4442madOmpW6Tnzt3rpFkli9fXu5jL+9r+YknnjDdunUzoaGhJjg42LRt29Y8+eSTpqCgwKfP8szX+fuuiPNvITfGmE8//dT06dPHBAUFmSZNmpiZM2ea119/3ef27k8++cTcd999plmzZsbpdJqIiAhzxx13mB07dlRo/yU/S2U9zv+zhn34GVNNV48BPwMtWrRQhw4dtHr16ppuBfhJeC0Dl8Y1OQAAwJa4Jgc4z6W+EDA4OFghISHV1M2V6dSpUz7XxJQlPDz8grc312ZHjx5VUVHRBZc7HA6FhYVVY0cXV9M/L8ePH7/oL6wNCAgo9f0/uHIQcoDzNG7c+KLLk5KStHjx4upp5gr17LPPavr06Retyc7OLvct/7XJjTfeeNFvfe7Tp482btxYfQ1dQk3/vNxzzz3atGnTBZc3b9683F/yCfvhmhzgPO+///5Fl0dHR1f6G2pRPgcOHLjkrw3o2bOngoKCqqmj6vPRRx/5/Db48zVs2NC66+3noKZ/XjIyMi767cvBwcG66aabLtv+8fNGyAEAALbEhccAAMCWruhrcoqLi3X48GE1aNCg1v/eIwAArhTGGJ08eVLR0dEX/b1xV3TIOXz48M/y9+kAAIBL+/rrr9W0adMLLr+iQ06DBg0k/ThJP8ffqwMAAErzer2KiYmx3scv5IoOOSUfUblcLkIOAAC1zKUuNeHCYwAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEsVCjnz589Xp06drC/Pi4+P17///W9r+Q8//KDk5GRdddVVql+/vgYOHKicnByfbRw6dEiJiYmqW7euIiIiNG7cOBUWFvrUbNy4UTfccIOcTqfatGmjxYsXl+pl3rx5atGihYKCghQXF6ft27dX5FAAAIDNVSjkNG3aVE8//bQyMjK0Y8cO3XLLLbrrrru0e/duSdLYsWP17rvvasWKFdq0aZMOHz6se+65x1q/qKhIiYmJKigo0JYtW7RkyRItXrxYU6ZMsWqys7OVmJiovn37KjMzU2PGjNHw4cO1bt06q2b58uVKSUnR1KlT9cknn6hz585yu906cuTIT50PAABgF+YnatiwoVm4cKHJzc01gYGBZsWKFdayPXv2GEkmPT3dGGPM2rVrjb+/v/F4PFbN/PnzjcvlMvn5+cYYY8aPH2+uu+46n30MGjTIuN1u63m3bt1McnKy9byoqMhER0ebWbNmVaj3vLw8I8nk5eVVaD0AAFBzyvv+XelrcoqKirRs2TKdPn1a8fHxysjI0NmzZ5WQkGDVtG3bVs2aNVN6erokKT09XR07dlRkZKRV43a75fV6rbNB6enpPtsoqSnZRkFBgTIyMnxq/P39lZCQYNVcSH5+vrxer88DAADYU4VDzq5du1S/fn05nU498sgjWrlypdq3by+PxyOHw6HQ0FCf+sjISHk8HkmSx+PxCTgly0uWXazG6/Xq+++/17Fjx1RUVFRmTck2LmTWrFkKCQmxHjExMRU9fAAAUEtUOORce+21yszM1LZt2zRq1CglJSXp888/vxy9VbmJEycqLy/Penz99dc13RIAALhM6lR0BYfDoTZt2kiSYmNj9fHHH2vu3LkaNGiQCgoKlJub63M2JycnR1FRUZKkqKioUndBldx9dW7N+Xdk5eTkyOVyKTg4WAEBAQoICCizpmQbF+J0OuV0Oit6yJVyNvXDUmOBt/Wsln0DAIAq+J6c4uJi5efnKzY2VoGBgVq/fr21LCsrS4cOHVJ8fLwkKT4+Xrt27fK5CyotLU0ul0vt27e3as7dRklNyTYcDodiY2N9aoqLi7V+/XqrBgAAoEJnciZOnKjbb79dzZo108mTJ7V06VJt3LhR69atU0hIiIYNG6aUlBSFhYXJ5XLp0UcfVXx8vLp37y5J6tevn9q3b68HHnhAs2fPlsfj0eTJk5WcnGydYXnkkUf00ksvafz48Xr44Ye1YcMGvfXWW1qzZo3VR0pKipKSktS1a1d169ZNc+bM0enTp/XQQw9V4dQAAIDarEIh58iRI3rwwQf17bffKiQkRJ06ddK6dev0i1/8QpL0wgsvyN/fXwMHDlR+fr7cbrdefvlla/2AgACtXr1ao0aNUnx8vOrVq6ekpCTNmDHDqmnZsqXWrFmjsWPHau7cuWratKkWLlwot9tt1QwaNEhHjx7VlClT5PF41KVLF6Wmppa6GBkAAFy5/IwxpqabqCler1chISHKy8uTy+Wq0m1zTQ4AAJdHed+/+d1VAADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlurUdAN2dTD336XGrlbPGugEAIArE2dyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALVUo5MyaNUs33nijGjRooIiICA0YMEBZWVk+NTfffLP8/Px8Ho888ohPzaFDh5SYmKi6desqIiJC48aNU2FhoU/Nxo0bdcMNN8jpdKpNmzZavHhxqX7mzZunFi1aKCgoSHFxcdq+fXtFDgcAANhYhULOpk2blJycrK1btyotLU1nz55Vv379dPr0aZ+6ESNG6Ntvv7Ues2fPtpYVFRUpMTFRBQUF2rJli5YsWaLFixdrypQpVk12drYSExPVt29fZWZmasyYMRo+fLjWrVtn1SxfvlwpKSmaOnWqPvnkE3Xu3Flut1tHjhyp7FwAAAAb8TPGmMqufPToUUVERGjTpk3q3bu3pB/P5HTp0kVz5swpc51///vfuuOOO3T48GFFRkZKkhYsWKDHH39cR48elcPh0OOPP641a9bos88+s9YbPHiwcnNzlZqaKkmKi4vTjTfeqJdeekmSVFxcrJiYGD366KOaMGFCufr3er0KCQlRXl6eXC5XZaehTPuWTSo1dvXgJ6t0HwAAXInK+/79k67JycvLkySFhYX5jL/55ptq1KiROnTooIkTJ+rMmTPWsvT0dHXs2NEKOJLkdrvl9Xq1e/duqyYhIcFnm263W+np6ZKkgoICZWRk+NT4+/srISHBqilLfn6+vF6vzwMAANhTncquWFxcrDFjxuimm25Shw4drPH7779fzZs3V3R0tD799FM9/vjjysrK0jvvvCNJ8ng8PgFHkvXc4/FctMbr9er777/XiRMnVFRUVGbN3r17L9jzrFmzNH369MoeMgAAqEUqHXKSk5P12Wef6cMPP/QZHzlypPX/HTt2VOPGjXXrrbdq//79at26deU7rQITJ05USkqK9dzr9SomJqYGOwIAAJdLpULO6NGjtXr1am3evFlNmza9aG1cXJwk6csvv1Tr1q0VFRVV6i6onJwcSVJUVJT135Kxc2tcLpeCg4MVEBCggICAMmtKtlEWp9Mpp9NZvoMEAAC1WoWuyTHGaPTo0Vq5cqU2bNigli1bXnKdzMxMSVLjxo0lSfHx8dq1a5fPXVBpaWlyuVxq3769VbN+/Xqf7aSlpSk+Pl6S5HA4FBsb61NTXFys9evXWzUAAODKVqEzOcnJyVq6dKn++c9/qkGDBtY1NCEhIQoODtb+/fu1dOlS9e/fX1dddZU+/fRTjR07Vr1791anTp0kSf369VP79u31wAMPaPbs2fJ4PJo8ebKSk5OtsyyPPPKIXnrpJY0fP14PP/ywNmzYoLfeektr1qyxeklJSVFSUpK6du2qbt26ac6cOTp9+rQeeuihqpobAABQi1Uo5MyfP1/Sj7eJn2vRokUaOnSoHA6H3n//fStwxMTEaODAgZo8ebJVGxAQoNWrV2vUqFGKj49XvXr1lJSUpBkzZlg1LVu21Jo1azR27FjNnTtXTZs21cKFC+V2u62aQYMG6ejRo5oyZYo8Ho+6dOmi1NTUUhcjAwCAK9NP+p6c2o7vyQEAoPaplu/JAQAA+Lki5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFuqUMiZNWuWbrzxRjVo0EAREREaMGCAsrKyfGp++OEHJScn66qrrlL9+vU1cOBA5eTk+NQcOnRIiYmJqlu3riIiIjRu3DgVFhb61GzcuFE33HCDnE6n2rRpo8WLF5fqZ968eWrRooWCgoIUFxen7du3V+RwAACAjVUo5GzatEnJycnaunWr0tLSdPbsWfXr10+nT5+2asaOHat3331XK1as0KZNm3T48GHdc8891vKioiIlJiaqoKBAW7Zs0ZIlS7R48WJNmTLFqsnOzlZiYqL69u2rzMxMjRkzRsOHD9e6deusmuXLlyslJUVTp07VJ598os6dO8vtduvIkSM/ZT4AAIBN+BljTGVXPnr0qCIiIrRp0yb17t1beXl5Cg8P19KlS/WrX/1KkrR37161a9dO6enp6t69u/7973/rjjvu0OHDhxUZGSlJWrBggR5//HEdPXpUDodDjz/+uNasWaPPPvvM2tfgwYOVm5ur1NRUSVJcXJxuvPFGvfTSS5Kk4uJixcTE6NFHH9WECRPK1b/X61VISIjy8vLkcrkqOw1l2rdsUqmxqwc/WaX7AADgSlTe9++fdE1OXl6eJCksLEySlJGRobNnzyohIcGqadu2rZo1a6b09HRJUnp6ujp27GgFHElyu93yer3avXu3VXPuNkpqSrZRUFCgjIwMnxp/f38lJCRYNWXJz8+X1+v1eQAAAHuqdMgpLi7WmDFjdNNNN6lDhw6SJI/HI4fDodDQUJ/ayMhIeTweq+bcgFOyvGTZxWq8Xq++//57HTt2TEVFRWXWlGyjLLNmzVJISIj1iImJqfiBAwCAWqHSISc5OVmfffaZli1bVpX9XFYTJ05UXl6e9fj6669ruiUAAHCZ1KnMSqNHj9bq1au1efNmNW3a1BqPiopSQUGBcnNzfc7m5OTkKCoqyqo5/y6okruvzq05/46snJwcuVwuBQcHKyAgQAEBAWXWlGyjLE6nU06ns+IHDAAAap0Knckxxmj06NFauXKlNmzYoJYtW/osj42NVWBgoNavX2+NZWVl6dChQ4qPj5ckxcfHa9euXT53QaWlpcnlcql9+/ZWzbnbKKkp2YbD4VBsbKxPTXFxsdavX2/VAACAK1uFzuQkJydr6dKl+uc//6kGDRpY17+EhIQoODhYISEhGjZsmFJSUhQWFiaXy6VHH31U8fHx6t69uySpX79+at++vR544AHNnj1bHo9HkydPVnJysnWW5ZFHHtFLL72k8ePH6+GHH9aGDRv01ltvac2aNVYvKSkpSkpKUteuXdWtWzfNmTNHp0+f1kMPPVRVcwMAAGqxCoWc+fPnS5Juvvlmn/FFixZp6NChkqQXXnhB/v7+GjhwoPLz8+V2u/Xyyy9btQEBAVq9erVGjRql+Ph41atXT0lJSZoxY4ZV07JlS61Zs0Zjx47V3Llz1bRpUy1cuFBut9uqGTRokI4ePaopU6bI4/GoS5cuSk1NLXUxMgAAuDL9pO/Jqe34nhwAAGqfavmeHAAAgJ8rQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClCoeczZs3684771R0dLT8/Py0atUqn+VDhw6Vn5+fz+O2227zqTl+/LiGDBkil8ul0NBQDRs2TKdOnfKp+fTTT9WrVy8FBQUpJiZGs2fPLtXLihUr1LZtWwUFBaljx45au3ZtRQ8HAADYVIVDzunTp9W5c2fNmzfvgjW33Xabvv32W+vx97//3Wf5kCFDtHv3bqWlpWn16tXavHmzRo4caS33er3q16+fmjdvroyMDD3zzDOaNm2aXn31Vatmy5Ytuu+++zRs2DDt3LlTAwYM0IABA/TZZ59V9JAAAIAN+RljTKVX9vPTypUrNWDAAGts6NChys3NLXWGp8SePXvUvn17ffzxx+rataskKTU1Vf3799c333yj6OhozZ8/X5MmTZLH45HD4ZAkTZgwQatWrdLevXslSYMGDdLp06e1evVqa9vdu3dXly5dtGDBgnL17/V6FRISory8PLlcrkrMwIXtWzap1NjVg5+s0n0AAHAlKu/792W5Jmfjxo2KiIjQtddeq1GjRum7776zlqWnpys0NNQKOJKUkJAgf39/bdu2zarp3bu3FXAkye12KysrSydOnLBqEhISfPbrdruVnp5+wb7y8/Pl9Xp9HgAAwJ6qPOTcdttt+stf/qL169frT3/6kzZt2qTbb79dRUVFkiSPx6OIiAifderUqaOwsDB5PB6rJjIy0qem5PmlakqWl2XWrFkKCQmxHjExMT/tYAEAwM9Wnare4ODBg63/79ixozp16qTWrVtr48aNuvXWW6t6dxUyceJEpaSkWM+9Xi9BBwAAm7rst5C3atVKjRo10pdffilJioqK0pEjR3xqCgsLdfz4cUVFRVk1OTk5PjUlzy9VU7K8LE6nUy6Xy+cBAADs6bKHnG+++UbfffedGjduLEmKj49Xbm6uMjIyrJoNGzaouLhYcXFxVs3mzZt19uxZqyYtLU3XXnutGjZsaNWsX7/eZ19paWmKj4+/3IcEAABqgQqHnFOnTikzM1OZmZmSpOzsbGVmZurQoUM6deqUxo0bp61bt+rgwYNav3697rrrLrVp00Zut1uS1K5dO912220aMWKEtm/fro8++kijR4/W4MGDFR0dLUm6//775XA4NGzYMO3evVvLly/X3LlzfT5q+t3vfqfU1FQ999xz2rt3r6ZNm6YdO3Zo9OjRVTAtAACgtqtwyNmxY4euv/56XX/99ZKklJQUXX/99ZoyZYoCAgL06aef6pe//KWuueYaDRs2TLGxsfrPf/4jp9NpbePNN99U27Ztdeutt6p///7q2bOnz3fghISE6L333lN2drZiY2P1+9//XlOmTPH5Lp0ePXpo6dKlevXVV9W5c2e9/fbbWrVqlTp06PBT5gMAANjET/qenNqO78kBAKD2qdHvyQEAAKhphBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLFQ45mzdv1p133qno6Gj5+flp1apVPsuNMZoyZYoaN26s4OBgJSQkaN++fT41x48f15AhQ+RyuRQaGqphw4bp1KlTPjWffvqpevXqpaCgIMXExGj27NmlelmxYoXatm2roKAgdezYUWvXrq3o4QAAAJuqcMg5ffq0OnfurHnz5pW5fPbs2frzn/+sBQsWaNu2bapXr57cbrd++OEHq2bIkCHavXu30tLStHr1am3evFkjR460lnu9XvXr10/NmzdXRkaGnnnmGU2bNk2vvvqqVbNlyxbdd999GjZsmHbu3KkBAwZowIAB+uyzzyp6SAAAwIb8jDGm0iv7+WnlypUaMGCApB/P4kRHR+v3v/+9HnvsMUlSXl6eIiMjtXjxYg0ePFh79uxR+/bt9fHHH6tr166SpNTUVPXv31/ffPONoqOjNX/+fE2aNEkej0cOh0OSNGHCBK1atUp79+6VJA0aNEinT5/W6tWrrX66d++uLl26aMGCBeXq3+v1KiQkRHl5eXK5XJWdhjLtWzap1NjVg5+s0n0AAHAlKu/7d5Vek5OdnS2Px6OEhARrLCQkRHFxcUpPT5ckpaenKzQ01Ao4kpSQkCB/f39t27bNqundu7cVcCTJ7XYrKytLJ06csGrO3U9JTcl+ypKfny+v1+vzAAAA9lSlIcfj8UiSIiMjfcYjIyOtZR6PRxERET7L69Spo7CwMJ+asrZx7j4uVFOyvCyzZs1SSEiI9YiJianoIQIAgFriirq7auLEicrLy7MeX3/9dU23BAAALpMqDTlRUVGSpJycHJ/xnJwca1lUVJSOHDnis7ywsFDHjx/3qSlrG+fu40I1JcvL4nQ65XK5fB4AAMCeqjTktGzZUlFRUVq/fr015vV6tW3bNsXHx0uS4uPjlZubq4yMDKtmw4YNKi4uVlxcnFWzefNmnT171qpJS0vTtddeq4YNG1o15+6npKZkPwAA4MpW4ZBz6tQpZWZmKjMzU9KPFxtnZmbq0KFD8vPz05gxY/TEE0/oX//6l3bt2qUHH3xQ0dHR1h1Y7dq102233aYRI0Zo+/bt+uijjzR69GgNHjxY0dHRkqT7779fDodDw4YN0+7du7V8+XLNnTtXKSkpVh+/+93vlJqaqueee0579+7VtGnTtGPHDo0ePfqnzwoAAKj16lR0hR07dqhv377W85LgkZSUpMWLF2v8+PE6ffq0Ro4cqdzcXPXs2VOpqakKCgqy1nnzzTc1evRo3XrrrfL399fAgQP15z//2VoeEhKi9957T8nJyYqNjVWjRo00ZcoUn+/S6dGjh5YuXarJkyfrD3/4g66++mqtWrVKHTp0qNREAAAAe/lJ35NT2/E9OQAA1D418j05AAAAPxeEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEt1aroBAABgD2dTP/R5Hnhbzxrq5EecyQEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZU5SFn2rRp8vPz83m0bdvWWv7DDz8oOTlZV111lerXr6+BAwcqJyfHZxuHDh1SYmKi6tatq4iICI0bN06FhYU+NRs3btQNN9wgp9OpNm3aaPHixVV9KAAAoBa7LGdyrrvuOn377bfW48MPP7SWjR07Vu+++65WrFihTZs26fDhw7rnnnus5UVFRUpMTFRBQYG2bNmiJUuWaPHixZoyZYpVk52drcTERPXt21eZmZkaM2aMhg8frnXr1l2OwwEAALVQncuy0Tp1FBUVVWo8Ly9Pr7/+upYuXapbbrlFkrRo0SK1a9dOW7duVffu3fXee+/p888/1/vvv6/IyEh16dJFM2fO1OOPP65p06bJ4XBowYIFatmypZ577jlJUrt27fThhx/qhRdekNvtvhyHBAAAapnLciZn3759io6OVqtWrTRkyBAdOnRIkpSRkaGzZ88qISHBqm3btq2aNWum9PR0SVJ6ero6duyoyMhIq8btdsvr9Wr37t1WzbnbKKkp2caF5Ofny+v1+jwAAIA9VXnIiYuL0+LFi5Wamqr58+crOztbvXr10smTJ+XxeORwOBQaGuqzTmRkpDwejyTJ4/H4BJyS5SXLLlbj9Xr1/fffX7C3WbNmKSQkxHrExMT81MMFAAA/U1X+cdXtt99u/X+nTp0UFxen5s2b66233lJwcHBV765CJk6cqJSUFOu51+sl6AAAYFOX/Rby0NBQXXPNNfryyy8VFRWlgoIC5ebm+tTk5ORY1/BERUWVutuq5Pmlalwu10WDlNPplMvl8nkAAAB7uuwh59SpU9q/f78aN26s2NhYBQYGav369dbyrKwsHTp0SPHx8ZKk+Ph47dq1S0eOHLFq0tLS5HK51L59e6vm3G2U1JRsAwAAoMpDzmOPPaZNmzbp4MGD2rJli+6++24FBATovvvuU0hIiIYNG6aUlBR98MEHysjI0EMPPaT4+Hh1795dktSvXz+1b99eDzzwgP773/9q3bp1mjx5spKTk+V0OiVJjzzyiA4cOKDx48dr7969evnll/XWW29p7NixVX04AACglqrya3K++eYb3Xffffruu+8UHh6unj17auvWrQoPD5ckvfDCC/L399fAgQOVn58vt9utl19+2Vo/ICBAq1ev1qhRoxQfH6969eopKSlJM2bMsGpatmypNWvWaOzYsZo7d66aNm2qhQsXcvs4AACw+BljTE03UVO8Xq9CQkKUl5dX5dfn7Fs2qdTY1YOfrNJ9AADwc3I29UOf54G39bws+ynv+ze/uwoAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANhSnZpuAAAA2MPB3H/7PL9aPWuokx9xJgcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSv4UcAABU2NnUD2u6hUviTA4AALAlQg4AALAlQg4AALAlrskBAACXVBuuwTkfIQcAAPiojYGmLIQcAABQYQdz/11qrFhG2f7Hlacf9EPBWX3zn1cV5mqi6zr0U52AwGrvsdaHnHnz5umZZ56Rx+NR586d9eKLL6pbt2413RYAAD9LlT1LU1aoOdeuAI/+FbhHef4//DgQJOnEHumEFLbvaT3c5De6Kf7Xldp3ZdXqkLN8+XKlpKRowYIFiouL05w5c+R2u5WVlaWIiIiabg8AgGpVVR8zXSrQnG9XgEd/dey84PLjgaf17JHnpXRVa9Cp1SHn+eef14gRI/TQQw9JkhYsWKA1a9bojTfe0IQJE2q4OwAASrucQaRF6O2XrKlqxTL6V+CeH5/4XaDIT5KRFv3vFcUVDaq2j65qbcgpKChQRkaGJk6caI35+/srISFB6enpZa6Tn5+v/Px863leXp4kyev1Vnl/p87klxrb+cZjl1yvWcgvfJ4H/iK+ynoCUDln03z/Tqmqn8vzt1vZbZdnO2XVlGfflVlv/9szLrnO+X/XldehvLRKrXel+OzMqmrf5wH/4zqm0+Wq9cirbVtXqWNH90/aZ8n7tjHmonW1NuQcO3ZMRUVFioyM9BmPjIzU3r17y1xn1qxZmj59eqnxmJiYy9Jj5TxX0w0AQDXg77or1RrdW2XbOnnypEJCQi64vNaGnMqYOHGiUlJSrOfFxcU6fvy4rrrqKvn5XegcW8V5vV7FxMTo66+/lsvlqrLtwhfzXH2Y6+rBPFcP5rl6XM55Nsbo5MmTio6OvmhdrQ05jRo1UkBAgHJycnzGc3JyFBUVVeY6TqdTTqfTZyw0NPRytSiXy8UPUDVgnqsPc109mOfqwTxXj8s1zxc7g1Oi1v5aB4fDodjYWK1fv94aKy4u1vr16xUfz3UsAABc6WrtmRxJSklJUVJSkrp27apu3bppzpw5On36tHW3FQAAuHLV6pAzaNAgHT16VFOmTJHH41GXLl2Umppa6mLk6uZ0OjV16tRSH42hajHP1Ye5rh7Mc/VgnqvHz2Ge/cyl7r8CAACohWrtNTkAAAAXQ8gBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMippHnz5qlFixYKCgpSXFyctm/fftH6FStWqG3btgoKClLHjh21du3aauq0dqvIPL/22mvq1auXGjZsqIYNGyohIeGSfy74UUVfzyWWLVsmPz8/DRgw4PI2aCMVnevc3FwlJyercePGcjqduuaaa/j7oxwqOs9z5szRtddeq+DgYMXExGjs2LH64Ycfqqnb2mnz5s268847FR0dLT8/P61ateqS62zcuFE33HCDnE6n2rRpo8WLF1/eJg0qbNmyZcbhcJg33njD7N6924wYMcKEhoaanJycMus/+ugjExAQYGbPnm0+//xzM3nyZBMYGGh27dpVzZ3XLhWd5/vvv9/MmzfP7Ny50+zZs8cMHTrUhISEmG+++aaaO69dKjrPJbKzs02TJk1Mr169zF133VU9zdZyFZ3r/Px807VrV9O/f3/z4YcfmuzsbLNx40aTmZlZzZ3XLhWd5zfffNM4nU7z5ptvmuzsbLNu3TrTuHFjM3bs2GruvHZZu3atmTRpknnnnXeMJLNy5cqL1h84cMDUrVvXpKSkmM8//9y8+OKLJiAgwKSmpl62Hgk5ldCtWzeTnJxsPS8qKjLR0dFm1qxZZdbfe++9JjEx0WcsLi7O/OY3v7msfdZ2FZ3n8xUWFpoGDRqYJUuWXK4WbaEy81xYWGh69OhhFi5caJKSkgg55VTRuZ4/f75p1aqVKSgoqK4WbaGi85ycnGxuueUWn7GUlBRz0003XdY+7aQ8IWf8+PHmuuuu8xkbNGiQcbvdl60vPq6qoIKCAmVkZCghIcEa8/f3V0JCgtLT08tcJz093adektxu9wXrUbl5Pt+ZM2d09uxZhYWFXa42a73KzvOMGTMUERGhYcOGVUebtlCZuf7Xv/6l+Ph4JScnKzIyUh06dNBTTz2loqKi6mq71qnMPPfo0UMZGRnWR1oHDhzQ2rVr1b9//2rp+UpRE++FtfrXOtSEY8eOqaioqNSvjoiMjNTevXvLXMfj8ZRZ7/F4LluftV1l5vl8jz/+uKKjo0v9UOH/V5l5/vDDD/X6668rMzOzGjq0j8rM9YEDB7RhwwYNGTJEa9eu1Zdffqnf/va3Onv2rKZOnVodbdc6lZnn+++/X8eOHVPPnj1ljFFhYaEeeeQR/eEPf6iOlq8YF3ov9Hq9+v777xUcHFzl++RMDmzp6aef1rJly7Ry5UoFBQXVdDu2cfLkST3wwAN67bXX1KhRo5pux/aKi4sVERGhV199VbGxsRo0aJAmTZqkBQsW1HRrtrJx40Y99dRTevnll/XJJ5/onXfe0Zo1azRz5syabg0/EWdyKqhRo0YKCAhQTk6Oz3hOTo6ioqLKXCcqKqpC9ajcPJd49tln9fTTT+v9999Xp06dLmebtV5F53n//v06ePCg7rzzTmusuLhYklSnTh1lZWWpdevWl7fpWqoyr+nGjRsrMDBQAQEB1li7du3k8XhUUFAgh8NxWXuujSozz3/84x/1wAMPaPjw4ZKkjh076vTp0xo5cqQmTZokf3/OB1SFC70Xulyuy3IWR+JMToU5HA7FxsZq/fr11lhxcbHWr1+v+Pj4MteJj4/3qZektLS0C9ajcvMsSbNnz9bMmTOVmpqqrl27VkertVpF57lt27batWuXMjMzrccvf/lL9e3bV5mZmYqJianO9muVyrymb7rpJn355ZdWkJSkL774Qo0bNybgXEBl5vnMmTOlgkxJsDT8DusqUyPvhZftkmYbW7ZsmXE6nWbx4sXm888/NyNHjjShoaHG4/EYY4x54IEHzIQJE6z6jz76yNSpU8c8++yzZs+ePWbq1KncQl4OFZ3np59+2jgcDvP222+bb7/91nqcPHmypg6hVqjoPJ+Pu6vKr6JzfejQIdOgQQMzevRok5WVZVavXm0iIiLME088UVOHUCtUdJ6nTp1qGjRoYP7+97+bAwcOmPfee8+0bt3a3HvvvTV1CLXCyZMnzc6dO83OnTuNJPP888+bnTt3mq+++soYY8yECRPMAw88YNWX3EI+btw4s2fPHjNv3jxuIf+5evHFF02zZs2Mw+Ew3bp1M1u3brWW9enTxyQlJfnUv/XWW+aaa64xDofDXHfddWbNmjXV3HHtVJF5bt68uZFU6jF16tTqb7yWqejr+VyEnIqp6Fxv2bLFxMXFGafTaVq1amWefPJJU1hYWM1d1z4VmeezZ8+aadOmmdatW5ugoCATExNjfvvb35oTJ05Uf+O1yAcffFDm37klc5uUlGT69OlTap0uXboYh8NhWrVqZRYtWnRZe/QzhnNxAADAfrgmBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2NL/B9D6vRaN4p1RAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPmhJREFUeJzt3Xt4FOX9/vE7CewmHDYByYFAOKuAnDQIRDmIpiwSrSitoKhBOVQa/BaiIBTLUcXiCVoRVBRoCwWhQivQYASBIgEkkIoIiBBEixtASJaDJiR5fn94ZX4sCZCNITHD+3Vde7X7zGdmPvO4ZO/MzmwCjDFGAAAANhNY2Q0AAABcCYQcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcwObWr1+vgIAArV+/vly3GxAQoEmTJpXrNu1m0KBBatKkSWW38bPQpEkTDRo06LJ18+fPV0BAgA4dOnTFe4L9EXJQpWzevFmTJk1SdnZ2ZbdyVVi9ejVBRtLZs2c1adKkcg+KqDjvvfee+vfvr2bNmqlGjRq6/vrr9eSTT/KzxOaqVXYDgD82b96syZMna9CgQQoLC6vsdmxv9erVmjVrVolB5/vvv1e1alfHj5CzZ89q8uTJkqTbbrut1Ou99dZbKiwsvEJdVS379u1TYGDl/V49bNgwRUdH66GHHlKjRo20a9cuvfbaa1q9erV27NihkJCQSusNV87V8RMKqILOnj2rGjVqFBvPz89XYWGhHA5HJXT1/wUHB1fq/n/Ozpw5o5o1a6p69eqV3crPhtPprNT9L1u2rFhAjY2NVWJiohYuXKghQ4ZUTmO4ovi4ClXGpEmTNHr0aElS06ZNFRAQYH12n5+fr6lTp6p58+ZyOp1q0qSJfv/73ys3N9dnG02aNNFdd92lDz74QB06dFBwcLBat26t9957r0w9/e1vf1OnTp1Uo0YN1alTR927d9cHH3zgU/P666/rhhtukNPpVHR0tJKSkoqdIr/tttvUpk0bpaenq3v37qpRo4Z+//vf69ChQwoICNBLL72kGTNmWMf3+eefS5L27t2rX/3qV6pbt66Cg4PVsWNH/etf/7ps3//5z3/061//Wo0aNZLT6VRMTIxGjRql77//3qoZNGiQZs2aJUnWXAcEBFjLS7omZ+fOnbrzzjvlcrlUq1Yt3XHHHdqyZYtPTdE1Fx9//LGSk5MVHh6umjVr6t5779WxY8cu2/v5Jk2apICAAH3xxRd66KGHFBoaqvDwcP3hD3+QMUZff/217rnnHrlcLkVFRenll1/2WT8vL08TJkxQbGysQkNDVbNmTXXr1k0fffSRVXPo0CGFh4dLkiZPnmzNQ9GxDxo0SLVq1dKBAwfUp08f1a5dWwMHDrSWnX9NzsSJExUYGKi1a9f69DFs2DA5HA7997//LfWxl/a1fO7cOU2ePFnXXnutgoODdc0116hr165KTU21aoqO4fDhw7rrrrtUq1YtNWjQwPrvv2vXLt1+++2qWbOmGjdurEWLFpW6z/P7vfCanN27d+v2229XSEiIGjZsqGeffbbEM1/bt2+X2+1WvXr1FBISoqZNm+qxxx7za/8lnYG79957JUl79uzxa1uoOjiTgyrjvvvu0xdffKG///3vevXVV1WvXj1JUnh4uIYMGaIFCxboV7/6lZ588klt3bpV06ZN0549e7R8+XKf7ezfv1/9+/fX448/rsTERM2bN0+//vWvlZKSol/84hel7mfy5MmaNGmSbrnlFk2ZMkUOh0Nbt27VunXr1KtXL0k/vglPnjxZ8fHxGj58uPbt26fZs2frk08+0ccff+zzm/53332nO++8UwMGDNBDDz2kyMhIa9m8efP0ww8/aNiwYXI6napbt652796tW2+9VQ0aNNDYsWNVs2ZNvfvuu+rbt6/+8Y9/WD/AS7J06VKdPXtWw4cP1zXXXKNt27bpz3/+s7755hstXbpUkvSb3/xGR44cUWpqqv76179edj52796tbt26yeVyacyYMapevbreeOMN3XbbbdqwYYM6d+7sU//EE0+oTp06mjhxog4dOqQZM2ZoxIgRWrJkSan/GxTp37+/WrVqpRdeeEGrVq3Ss88+q7p16+qNN97Q7bffrj/+8Y9auHChnnrqKd18883q3r27JMnr9Wru3Ll64IEHNHToUJ06dUpvv/223G63tm3bpg4dOig8PFyzZ8/W8OHDde+99+q+++6TJLVr187af35+vtxut7p27aqXXnqpxDNwkvTMM8/o/fff1+DBg7Vr1y7Vrl1ba9as0VtvvaWpU6eqffv2fh13aV7LkyZN0rRp0zRkyBB16tRJXq9X27dv144dO3xe7wUFBbrzzjvVvXt3TZ8+XQsXLtSIESNUs2ZNjR8/XgMHDtR9992nOXPm6JFHHlFcXJyaNm3qV7/n83g86tmzp/Lz863X75tvvlnsY6OjR4+qV69eCg8P19ixYxUWFqZDhw6V+ReTC3uQZP0sgQ0ZoAp58cUXjSSTmZlpjWVkZBhJZsiQIT61Tz31lJFk1q1bZ401btzYSDL/+Mc/rLGcnBxTv359c+ONN5a6j/3795vAwEBz7733moKCAp9lhYWFxhhjjh49ahwOh+nVq5dPzWuvvWYkmXfeecca69Gjh5Fk5syZ47OtzMxMI8m4XC5z9OhRn2V33HGHadu2rfnhhx989n3LLbeYa6+91hr76KOPjCTz0UcfWWNnz54tdkzTpk0zAQEB5quvvrLGkpKSzMV+TEgyEydOtJ737dvXOBwOc+DAAWvsyJEjpnbt2qZ79+7W2Lx584wkEx8fb82VMcaMGjXKBAUFmezs7BL3V5KJEycaSWbYsGHWWH5+vmnYsKEJCAgwL7zwgjV+8uRJExISYhITE31qc3NzfbZ58uRJExkZaR577DFr7NixY8WOt0hiYqKRZMaOHVvissaNG/uM7dq1yzgcDjNkyBBz8uRJ06BBA9OxY0dz7ty5Uh+3MaV/Lbdv394kJCRccltFx/D8889bY0XzFRAQYBYvXmyN792796Jzcbl+z5/7kSNHGklm69at1tjRo0dNaGioz7/x5cuXG0nmk08+8Wt/pTF48GATFBRkvvjii3LfNn4e+LgKVd7q1aslScnJyT7jTz75pCRp1apVPuPR0dE+ZzlcLpceeeQR7dy50/rN7nJWrFihwsJCTZgwodjFlEUf6Xz44YfKy8vTyJEjfWqGDh0ql8tVrC+n06lHH320xP3169fP+shEkk6cOKF169bp/vvv16lTp3T8+HEdP35c3333ndxut/bv36///e9/F+3//N+Wz5w5o+PHj+uWW26RMUY7d+4s1Rycr6CgQB988IH69u2rZs2aWeP169fXgw8+qE2bNsnr9fqsM2zYMJ+Pv7p166aCggJ99dVXfu///OspgoKC1LFjRxljNHjwYGs8LCxM119/vQ4ePOhTW3RtU2FhoU6cOKH8/Hx17NhRO3bs8KuH4cOHl6quTZs2mjx5subOnSu3263jx49rwYIFZbqIuzSv5bCwMO3evVv79++/7PbOn8ei+apZs6buv/9+a/z6669XWFiYzzyWxerVq9WlSxd16tTJGgsPD7c+6ju/D0lauXKlzp0795P2eb5Fixbp7bff1pNPPqlrr7223LaLnxdCDqq8r776SoGBgWrRooXPeFRUlMLCwoq9abZo0cLnzVWSrrvuOkkq9XdzHDhwQIGBgWrduvUl+5J+fFM4n8PhULNmzYr11aBBg4teTHzhxwJffvmljDH6wx/+oPDwcJ/HxIkTJf14mv9iDh8+rEGDBqlu3bqqVauWwsPD1aNHD0lSTk7ORde7mGPHjuns2bPFjlWSWrVqpcLCQn399dc+440aNfJ5XqdOHUnSyZMn/d7/hdsKDQ1VcHBwsY8hQkNDi21/wYIFateunXW9Snh4uFatWuXXPFSrVk0NGzYsdf3o0aPVvn17bdu2TRMnTrzk6+hSSvNanjJlirKzs3Xdddepbdu2Gj16tD799NNi2woODvYJ0tKP89WwYcNi+yhpHv311VdflRguLnwN9ejRQ/369dPkyZNVr1493XPPPZo3b16x6+388Z///EeDBw+W2+3Wc889V+bt4OePa3JgGxf+IK5qLnUL64XLii7OfOqpp+R2u0tc58LQV6SgoEC/+MUvdOLECT399NNq2bKlatasqf/9738aNGhQhd3yHBQUVOK4MaZctlWa7f/tb3/ToEGD1LdvX40ePVoREREKCgrStGnTdODAgVLv3+l0+nV79MGDB60zK7t27Sr1emXRvXt3HThwQP/85z/1wQcfaO7cuXr11Vc1Z86cYmfASlKe/53KIiAgQMuWLdOWLVv0/vvva82aNXrsscf08ssva8uWLapVq5Zf2/vvf/+rX/7yl2rTpo2WLVt21XwNwtWK/7qoUkoKMo0bN1ZhYaH279+vVq1aWeNZWVnKzs5W48aNfeqLzoKcv60vvvhCkkr97bTNmzdXYWGhPv/8c3Xo0KHEmqL97tu3z+cjnLy8PGVmZio+Pr5U+ypJ0faqV6/u93Z27dqlL774QgsWLNAjjzxijZ9/t02R0gbH8PBw1ahRQ/v27Su2bO/evQoMDFRMTIxffVaEZcuWqVmzZnrvvfd8jrXobFiR8gzQhYWFGjRokFwul0aOHKnnn39ev/rVr6wLmv1R2tdy3bp19eijj+rRRx/V6dOn1b17d02aNKlSb5tu3LhxiR+hlfQakqQuXbqoS5cueu6557Ro0SINHDhQixcv9usYDhw4oN69eysiIkKrV6/2OyCh6uHjKlQpNWvWlCSfW7D79OkjSZoxY4ZP7SuvvCJJSkhI8Bk/cuSIzx1XXq9Xf/nLX9ShQwdFRUWVqo++ffsqMDBQU6ZMKXbmo+g33Pj4eDkcDv3pT3/y+a337bffVk5OTrG+/BEREaHbbrtNb7zxhr799ttiyy91K3bRb+bn92SM0cyZM4vVljTfF9tmr1699M9//tPnI7+srCwtWrRIXbt2lcvluuQ2KkNJc7F161alpaX51BXdLVUe3477yiuvaPPmzXrzzTc1depU3XLLLRo+fLiOHz/u97ZK81r+7rvvfNapVauWWrRo8ZM+7ikPffr00ZYtW7Rt2zZr7NixY1q4cKFP3cmTJ4udNSr6xcKfY/B4POrVq5cCAwO1Zs2aYh/NwZ44k4MqJTY2VpI0fvx4DRgwQNWrV9fdd9+txMREvfnmm8rOzlaPHj20bds2LViwQH379lXPnj19tnHddddp8ODB+uSTTxQZGal33nlHWVlZmjdvXqn7aNGihcaPH6+pU6eqW7duuu++++R0OvXJJ58oOjpa06ZNU3h4uMaNG6fJkyerd+/e+uUvf6l9+/bp9ddf180336yHHnroJ83FrFmz1LVrV7Vt21ZDhw5Vs2bNlJWVpbS0NH3zzTcX/c6Vli1bqnnz5nrqqaf0v//9Ty6XS//4xz9KvMaiaL7/7//+T263W0FBQRowYECJ23322WeVmpqqrl276re//a2qVaumN954Q7m5uZo+ffpPOtYr5a677tJ7772ne++9VwkJCcrMzNScOXPUunVrnT592qoLCQlR69attWTJEl133XWqW7eu2rRpozZt2vi1vz179ugPf/iDBg0apLvvvlvSj98b1KFDB/32t7/Vu+++69f2SvNabt26tW677TbFxsaqbt262r59u5YtW6YRI0b4ta/yNmbMGP31r39V79699bvf/c66hbxx48Y+1wwtWLBAr7/+uu699141b95cp06d0ltvvSWXy2X9glMavXv31sGDBzVmzBht2rRJmzZtspZFRkb69fURqEIq45Yu4KeYOnWqadCggQkMDLRuNT137pyZPHmyadq0qalevbqJiYkx48aN87m92pgfb2NNSEgwa9asMe3atTNOp9O0bNnSLF26tEy9vPPOO+bGG280TqfT1KlTx/To0cOkpqb61Lz22mumZcuWpnr16iYyMtIMHz7cnDx50qemR48e5oYbbii2/aJbyF988cUS93/gwAHzyCOPmKioKFO9enXToEEDc9ddd5lly5ZZNSXdQv7555+b+Ph4U6tWLVOvXj0zdOhQ89///tdIMvPmzbPq8vPzzRNPPGHCw8NNQECAz+3kKuE24h07dhi3221q1aplatSoYXr27Gk2b97sU1N0C/mFtwSX1OflFN1CfuzYMZ/xxMREU7NmzWL1F85zYWGhef75503jxo2N0+k0N954o1m5cmWJt35v3rzZxMbGGofD4XPsF9tX0bKi7eTn55ubb77ZNGzYsNht8jNnzjSSzJIlS0p97KV9LT/77LOmU6dOJiwszISEhJiWLVua5557zuTl5fn0WZr5unDf/rjwFnJjjPn0009Njx49THBwsGnQoIGZOnWqefvtt31uId+xY4d54IEHTKNGjYzT6TQRERHmrrvuMtu3b/dr/5Iu+ujRo4df20LVEWBMBV09BvwMNGnSRG3atNHKlSsruxXgJ+G1DFwe1+QAAABb4poc4AKX+0LAkJAQhYaGVlA3V6fTp0/7XBNTkvDw8Ive3lyVHTt2TAUFBRdd7nA4VLdu3Qrs6NIq+9/LiRMnlJeXd9HlQUFBXGR8FSPkABeoX7/+JZcnJiZq/vz5FdPMVeqll17S5MmTL1mTmZlZ6lv+q5Kbb775kt/63KNHD61fv77iGrqMyv73ct9992nDhg0XXd64ceNSf8kn7IdrcoALfPjhh5dcHh0dXeZvqEXpHDx48LJ/NqBr164KDg6uoI4qzscff+zz1+AvVKdOHeuut5+Dyv73kp6efslvXw4JCdGtt956xfaPnzdCDgAAsCUuPAYAALZ0VV+TU1hYqCNHjqh27dpV/u8eAQBwtTDG6NSpU4qOjr7k3427qkPOkSNHfpZ/TwcAAFze119/rYYNG150+VUdcmrXri3px0n6Of5dHQAAUJzX61VMTIz1Pn4xV3XIKfqIyuVyEXIAAKhiLnepCRceAwAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAW/Ir5MyePVvt2rWzvjwvLi5O//73v63lP/zwg5KSknTNNdeoVq1a6tevn7Kysny2cfjwYSUkJKhGjRqKiIjQ6NGjlZ+f71Ozfv163XTTTXI6nWrRooXmz59frJdZs2apSZMmCg4OVufOnbVt2zZ/DgUAANicXyGnYcOGeuGFF5Senq7t27fr9ttv1z333KPdu3dLkkaNGqX3339fS5cu1YYNG3TkyBHdd9991voFBQVKSEhQXl6eNm/erAULFmj+/PmaMGGCVZOZmamEhAT17NlTGRkZGjlypIYMGaI1a9ZYNUuWLFFycrImTpyoHTt2qH379nK73Tp69OhPnQ8AAGAX5ieqU6eOmTt3rsnOzjbVq1c3S5cutZbt2bPHSDJpaWnGGGNWr15tAgMDjcfjsWpmz55tXC6Xyc3NNcYYM2bMGHPDDTf47KN///7G7XZbzzt16mSSkpKs5wUFBSY6OtpMmzbNr95zcnKMJJOTk+PXegAAoPKU9v27zNfkFBQUaPHixTpz5ozi4uKUnp6uc+fOKT4+3qpp2bKlGjVqpLS0NElSWlqa2rZtq8jISKvG7XbL6/VaZ4PS0tJ8tlFUU7SNvLw8paen+9QEBgYqPj7eqrmY3Nxceb1enwcAALAnv0POrl27VKtWLTmdTj3++ONavny5WrduLY/HI4fDobCwMJ/6yMhIeTweSZLH4/EJOEXLi5Zdqsbr9er777/X8ePHVVBQUGJN0TYuZtq0aQoNDbUeMTEx/h4+AACoIvwOOddff70yMjK0detWDR8+XImJifr888+vRG/lbty4ccrJybEeX3/9dWW3BAAArpBq/q7gcDjUokULSVJsbKw++eQTzZw5U/3791deXp6ys7N9zuZkZWUpKipKkhQVFVXsLqiiu6/Or7nwjqysrCy5XC6FhIQoKChIQUFBJdYUbeNinE6nnE6nv4dcJudSNhUbq967a4XsGwAAlMP35BQWFio3N1exsbGqXr261q5day3bt2+fDh8+rLi4OElSXFycdu3a5XMXVGpqqlwul1q3bm3VnL+NopqibTgcDsXGxvrUFBYWau3atVYNAACAX2dyxo0bpzvvvFONGjXSqVOntGjRIq1fv15r1qxRaGioBg8erOTkZNWtW1cul0tPPPGE4uLi1KVLF0lSr1691Lp1az388MOaPn26PB6PnnnmGSUlJVlnWB5//HG99tprGjNmjB577DGtW7dO7777rlatWmX1kZycrMTERHXs2FGdOnXSjBkzdObMGT366KPlODUAAKAq8yvkHD16VI888oi+/fZbhYaGql27dlqzZo1+8YtfSJJeffVVBQYGql+/fsrNzZXb7dbrr79urR8UFKSVK1dq+PDhiouLU82aNZWYmKgpU6ZYNU2bNtWqVas0atQozZw5Uw0bNtTcuXPldrutmv79++vYsWOaMGGCPB6POnTooJSUlGIXIwMAgKtXgDHGVHYTlcXr9So0NFQ5OTlyuVzlum2uyQEA4Moo7fs3f7sKAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYUrXKbsCuDmX/u9jYtepaCZ0AAHB14kwOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJb9CzrRp03TzzTerdu3aioiIUN++fbVv3z6fmttuu00BAQE+j8cff9yn5vDhw0pISFCNGjUUERGh0aNHKz8/36dm/fr1uummm+R0OtWiRQvNnz+/WD+zZs1SkyZNFBwcrM6dO2vbtm3+HA4AALAxv0LOhg0blJSUpC1btig1NVXnzp1Tr169dObMGZ+6oUOH6ttvv7Ue06dPt5YVFBQoISFBeXl52rx5sxYsWKD58+drwoQJVk1mZqYSEhLUs2dPZWRkaOTIkRoyZIjWrFlj1SxZskTJycmaOHGiduzYofbt28vtduvo0aNlnQsAAGAjAcYYU9aVjx07poiICG3YsEHdu3eX9OOZnA4dOmjGjBklrvPvf/9bd911l44cOaLIyEhJ0pw5c/T000/r2LFjcjgcevrpp7Vq1Sp99tln1noDBgxQdna2UlJSJEmdO3fWzTffrNdee02SVFhYqJiYGD3xxBMaO3Zsqfr3er0KDQ1VTk6OXC5XWaehRPsXjy82du2A58p1HwAAXI1K+/79k67JycnJkSTVrVvXZ3zhwoWqV6+e2rRpo3Hjxuns2bPWsrS0NLVt29YKOJLkdrvl9Xq1e/duqyY+Pt5nm263W2lpaZKkvLw8paen+9QEBgYqPj7eqilJbm6uvF6vzwMAANhTtbKuWFhYqJEjR+rWW29VmzZtrPEHH3xQjRs3VnR0tD799FM9/fTT2rdvn9577z1Jksfj8Qk4kqznHo/nkjVer1fff/+9Tp48qYKCghJr9u7de9Gep02bpsmTJ5f1kAEAQBVS5pCTlJSkzz77TJs2bfIZHzZsmPX/27Ztq/r16+uOO+7QgQMH1Lx587J3Wg7GjRun5ORk67nX61VMTEwldgQAAK6UMoWcESNGaOXKldq4caMaNmx4ydrOnTtLkr788ks1b95cUVFRxe6CysrKkiRFRUVZ/1s0dn6Ny+VSSEiIgoKCFBQUVGJN0TZK4nQ65XQ6S3eQAACgSvPrmhxjjEaMGKHly5dr3bp1atq06WXXycjIkCTVr19fkhQXF6ddu3b53AWVmpoql8ul1q1bWzVr16712U5qaqri4uIkSQ6HQ7GxsT41hYWFWrt2rVUDAACubn6dyUlKStKiRYv0z3/+U7Vr17auoQkNDVVISIgOHDigRYsWqU+fPrrmmmv06aefatSoUerevbvatWsnSerVq5dat26thx9+WNOnT5fH49EzzzyjpKQk6yzL448/rtdee01jxozRY489pnXr1undd9/VqlWrrF6Sk5OVmJiojh07qlOnTpoxY4bOnDmjRx99tLzmBgAAVGF+hZzZs2dL+vE28fPNmzdPgwYNksPh0IcffmgFjpiYGPXr10/PPPOMVRsUFKSVK1dq+PDhiouLU82aNZWYmKgpU6ZYNU2bNtWqVas0atQozZw5Uw0bNtTcuXPldrutmv79++vYsWOaMGGCPB6POnTooJSUlGIXIwMAgKvTT/qenKqO78kBAKDqqZDvyQEAAPi5IuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABb8ivkTJs2TTfffLNq166tiIgI9e3bV/v27fOp+eGHH5SUlKRrrrlGtWrVUr9+/ZSVleVTc/jwYSUkJKhGjRqKiIjQ6NGjlZ+f71Ozfv163XTTTXI6nWrRooXmz59frJ9Zs2apSZMmCg4OVufOnbVt2zZ/DgcAANiYXyFnw4YNSkpK0pYtW5Samqpz586pV69eOnPmjFUzatQovf/++1q6dKk2bNigI0eO6L777rOWFxQUKCEhQXl5edq8ebMWLFig+fPna8KECVZNZmamEhIS1LNnT2VkZGjkyJEaMmSI1qxZY9UsWbJEycnJmjhxonbs2KH27dvL7Xbr6NGjP2U+AACATQQYY0xZVz527JgiIiK0YcMGde/eXTk5OQoPD9eiRYv0q1/9SpK0d+9etWrVSmlpaerSpYv+/e9/66677tKRI0cUGRkpSZozZ46efvppHTt2TA6HQ08//bRWrVqlzz77zNrXgAEDlJ2drZSUFElS586ddfPNN+u1116TJBUWFiomJkZPPPGExo4dW6r+vV6vQkNDlZOTI5fLVdZpKNH+xeOLjV074Lly3QcAAFej0r5//6RrcnJyciRJdevWlSSlp6fr3Llzio+Pt2patmypRo0aKS0tTZKUlpamtm3bWgFHktxut7xer3bv3m3VnL+NopqibeTl5Sk9Pd2nJjAwUPHx8VZNSXJzc+X1en0eAADAnsoccgoLCzVy5EjdeuutatOmjSTJ4/HI4XAoLCzMpzYyMlIej8eqOT/gFC0vWnapGq/Xq++//17Hjx9XQUFBiTVF2yjJtGnTFBoaaj1iYmL8P3AAAFAllDnkJCUl6bPPPtPixYvLs58raty4ccrJybEeX3/9dWW3BAAArpBqZVlpxIgRWrlypTZu3KiGDRta41FRUcrLy1N2drbP2ZysrCxFRUVZNRfeBVV099X5NRfekZWVlSWXy6WQkBAFBQUpKCioxJqibZTE6XTK6XT6f8AAAKDK8etMjjFGI0aM0PLly7Vu3To1bdrUZ3lsbKyqV6+utWvXWmP79u3T4cOHFRcXJ0mKi4vTrl27fO6CSk1NlcvlUuvWra2a87dRVFO0DYfDodjYWJ+awsJCrV271qoBAABXN7/O5CQlJWnRokX65z//qdq1a1vXv4SGhiokJEShoaEaPHiwkpOTVbduXblcLj3xxBOKi4tTly5dJEm9evVS69at9fDDD2v69OnyeDx65plnlJSUZJ1lefzxx/Xaa69pzJgxeuyxx7Ru3Tq9++67WrVqldVLcnKyEhMT1bFjR3Xq1EkzZszQmTNn9Oijj5bX3AAAgCrMr5Aze/ZsSdJtt93mMz5v3jwNGjRIkvTqq68qMDBQ/fr1U25urtxut15//XWrNigoSCtXrtTw4cMVFxenmjVrKjExUVOmTLFqmjZtqlWrVmnUqFGaOXOmGjZsqLlz58rtdls1/fv317FjxzRhwgR5PB516NBBKSkpxS5GBgAAV6ef9D05VR3fkwMAQNVTId+TAwAA8HNFyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALbkd8jZuHGj7r77bkVHRysgIEArVqzwWT5o0CAFBAT4PHr37u1Tc+LECQ0cOFAul0thYWEaPHiwTp8+7VPz6aefqlu3bgoODlZMTIymT59erJelS5eqZcuWCg4OVtu2bbV69Wp/DwcAANiU3yHnzJkzat++vWbNmnXRmt69e+vbb7+1Hn//+999lg8cOFC7d+9WamqqVq5cqY0bN2rYsGHWcq/Xq169eqlx48ZKT0/Xiy++qEmTJunNN9+0ajZv3qwHHnhAgwcP1s6dO9W3b1/17dtXn332mb+HBAAAbCjAGGPKvHJAgJYvX66+fftaY4MGDVJ2dnaxMzxF9uzZo9atW+uTTz5Rx44dJUkpKSnq06ePvvnmG0VHR2v27NkaP368PB6PHA6HJGns2LFasWKF9u7dK0nq37+/zpw5o5UrV1rb7tKlizp06KA5c+aUqn+v16vQ0FDl5OTI5XKVYQYubv/i8cXGrh3wXLnuAwCAq1Fp37+vyDU569evV0REhK6//noNHz5c3333nbUsLS1NYWFhVsCRpPj4eAUGBmrr1q1WTffu3a2AI0lut1v79u3TyZMnrZr4+Hif/brdbqWlpV20r9zcXHm9Xp8HAACwp3IPOb1799Zf/vIXrV27Vn/84x+1YcMG3XnnnSooKJAkeTweRURE+KxTrVo11a1bVx6Px6qJjIz0qSl6frmaouUlmTZtmkJDQ61HTEzMTztYAADws1WtvDc4YMAA6/+3bdtW7dq1U/PmzbV+/Xrdcccd5b07v4wbN07JycnWc6/XS9ABAMCmrvgt5M2aNVO9evX05ZdfSpKioqJ09OhRn5r8/HydOHFCUVFRVk1WVpZPTdHzy9UULS+J0+mUy+XyeQAAAHu64iHnm2++0Xfffaf69etLkuLi4pSdna309HSrZt26dSosLFTnzp2tmo0bN+rcuXNWTWpqqq6//nrVqVPHqlm7dq3PvlJTUxUXF3elDwkAAFQBfoec06dPKyMjQxkZGZKkzMxMZWRk6PDhwzp9+rRGjx6tLVu26NChQ1q7dq3uuecetWjRQm63W5LUqlUr9e7dW0OHDtW2bdv08ccfa8SIERowYICio6MlSQ8++KAcDocGDx6s3bt3a8mSJZo5c6bPR02/+93vlJKSopdffll79+7VpEmTtH37do0YMaIcpgUAAFR1foec7du368Ybb9SNN94oSUpOTtaNN96oCRMmKCgoSJ9++ql++ctf6rrrrtPgwYMVGxur//znP3I6ndY2Fi5cqJYtW+qOO+5Qnz591LVrV5/vwAkNDdUHH3ygzMxMxcbG6sknn9SECRN8vkvnlltu0aJFi/Tmm2+qffv2WrZsmVasWKE2bdr8lPkAAAA28ZO+J6eq43tyAACoeir1e3IAAAAqGyEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYkt8hZ+PGjbr77rsVHR2tgIAArVixwme5MUYTJkxQ/fr1FRISovj4eO3fv9+n5sSJExo4cKBcLpfCwsI0ePBgnT592qfm008/Vbdu3RQcHKyYmBhNnz69WC9Lly5Vy5YtFRwcrLZt22r16tX+Hg4AALApv0POmTNn1L59e82aNavE5dOnT9ef/vQnzZkzR1u3blXNmjXldrv1ww8/WDUDBw7U7t27lZqaqpUrV2rjxo0aNmyYtdzr9apXr15q3Lix0tPT9eKLL2rSpEl68803rZrNmzfrgQce0ODBg7Vz50717dtXffv21WeffebvIQEAABsKMMaYMq8cEKDly5erb9++kn48ixMdHa0nn3xSTz31lCQpJydHkZGRmj9/vgYMGKA9e/aodevW+uSTT9SxY0dJUkpKivr06aNvvvlG0dHRmj17tsaPHy+PxyOHwyFJGjt2rFasWKG9e/dKkvr3768zZ85o5cqVVj9dunRRhw4dNGfOnFL17/V6FRoaqpycHLlcrrJOQ4n2Lx5fbOzaAc+V6z4AALgalfb9u1yvycnMzJTH41F8fLw1Fhoaqs6dOystLU2SlJaWprCwMCvgSFJ8fLwCAwO1detWq6Z79+5WwJEkt9utffv26eTJk1bN+fspqinaT0lyc3Pl9Xp9HgAAwJ7KNeR4PB5JUmRkpM94ZGSktczj8SgiIsJnebVq1VS3bl2fmpK2cf4+LlZTtLwk06ZNU2hoqPWIiYnx9xABAEAVcVXdXTVu3Djl5ORYj6+//rqyWwIAAFdIuYacqKgoSVJWVpbPeFZWlrUsKipKR48e9Vmen5+vEydO+NSUtI3z93GxmqLlJXE6nXK5XD4PAABgT+Uacpo2baqoqCitXbvWGvN6vdq6davi4uIkSXFxccrOzlZ6erpVs27dOhUWFqpz585WzcaNG3Xu3DmrJjU1Vddff73q1Klj1Zy/n6Kaov0AAICrm98h5/Tp08rIyFBGRoakHy82zsjI0OHDhxUQEKCRI0fq2Wef1b/+9S/t2rVLjzzyiKKjo607sFq1aqXevXtr6NCh2rZtmz7++GONGDFCAwYMUHR0tCTpwQcflMPh0ODBg7V7924tWbJEM2fOVHJystXH7373O6WkpOjll1/W3r17NWnSJG3fvl0jRoz46bMCAACqvGr+rrB9+3b17NnTel4UPBITEzV//nyNGTNGZ86c0bBhw5Sdna2uXbsqJSVFwcHB1joLFy7UiBEjdMcddygwMFD9+vXTn/70J2t5aGioPvjgAyUlJSk2Nlb16tXThAkTfL5L55ZbbtGiRYv0zDPP6Pe//72uvfZarVixQm3atCnTRAAAAHv5Sd+TU9XxPTkAAFQ9lfI9OQAAAD8XhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBL1Sq7AQAAYA/nUjb5PK/eu2sldfIjzuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbKveQM2nSJAUEBPg8WrZsaS3/4YcflJSUpGuuuUa1atVSv379lJWV5bONw4cPKyEhQTVq1FBERIRGjx6t/Px8n5r169frpptuktPpVIsWLTR//vzyPhQAAFCFXZEzOTfccIO+/fZb67Fp0yZr2ahRo/T+++9r6dKl2rBhg44cOaL77rvPWl5QUKCEhATl5eVp8+bNWrBggebPn68JEyZYNZmZmUpISFDPnj2VkZGhkSNHasiQIVqzZs2VOBwAAFAFVbsiG61WTVFRUcXGc3Jy9Pbbb2vRokW6/fbbJUnz5s1Tq1attGXLFnXp0kUffPCBPv/8c3344YeKjIxUhw4dNHXqVD399NOaNGmSHA6H5syZo6ZNm+rll1+WJLVq1UqbNm3Sq6++KrfbfSUOCQAAVDFX5EzO/v37FR0drWbNmmngwIE6fPiwJCk9PV3nzp1TfHy8VduyZUs1atRIaWlpkqS0tDS1bdtWkZGRVo3b7ZbX69Xu3butmvO3UVRTtI2Lyc3Nldfr9XkAAAB7KveQ07lzZ82fP18pKSmaPXu2MjMz1a1bN506dUoej0cOh0NhYWE+60RGRsrj8UiSPB6PT8ApWl607FI1Xq9X33///UV7mzZtmkJDQ61HTEzMTz1cAADwM1XuH1fdeeed1v9v166dOnfurMaNG+vdd99VSEhIee/OL+PGjVNycrL13Ov1EnQAALCpK34LeVhYmK677jp9+eWXioqKUl5enrKzs31qsrKyrGt4oqKiit1tVfT8cjUul+uSQcrpdMrlcvk8AACAPV3xkHP69GkdOHBA9evXV2xsrKpXr661a9day/ft26fDhw8rLi5OkhQXF6ddu3bp6NGjVk1qaqpcLpdat25t1Zy/jaKaom0AAACUe8h56qmntGHDBh06dEibN2/Wvffeq6CgID3wwAMKDQ3V4MGDlZycrI8++kjp6el69NFHFRcXpy5dukiSevXqpdatW+vhhx/Wf//7X61Zs0bPPPOMkpKS5HQ6JUmPP/64Dh48qDFjxmjv3r16/fXX9e6772rUqFHlfTgAAKCKKvdrcr755hs98MAD+u677xQeHq6uXbtqy5YtCg8PlyS9+uqrCgwMVL9+/ZSbmyu3263XX3/dWj8oKEgrV67U8OHDFRcXp5o1ayoxMVFTpkyxapo2bapVq1Zp1KhRmjlzpho2bKi5c+dy+zgAALAEGGNMZTdRWbxer0JDQ5WTk1Pu1+fsXzy+2Ni1A54r130AAPBzci5lk8/z6r27XpH9lPb9m79dBQAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbKlaZTcAAADs4VD2v32eX6uuldTJjziTAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbIm/Qg4AAPx2LmVTZbdwWZzJAQAAtkTIAQAAtkTIAQAAtsQ1OQAA4LKqwjU4FyLkAAAAH1Ux0JSEkAMAAPx2KPvfxcYKZZQZeEI5+kE/5J3TN/95U3VdDXRDm16qFlS9wnus8iFn1qxZevHFF+XxeNS+fXv9+c9/VqdOnSq7LQAAfpbKepampFBzvl1BHv2r+h7lBP7w40CwpJN7pJNS3f0v6LEGv9GtcQ+Vad9lVaVDzpIlS5ScnKw5c+aoc+fOmjFjhtxut/bt26eIiIjKbg8AgApVXh8zXS7QXGhXkEd/dey86PIT1c/opaOvSGmq0KBTpUPOK6+8oqFDh+rRRx+VJM2ZM0erVq3SO++8o7Fjx1ZydwAAFHclg0iTsDsvW1PeCmX0r+p7fnwScJGiAElGmve/N9S5oH+FfXRVZUNOXl6e0tPTNW7cOGssMDBQ8fHxSktLK3Gd3Nxc5ebmWs9zcnIkSV6vt9z7O302t9jYzneeuux6jUJ/4fO8+i/iyq0nAGVzLtX3Z0p5/bu8cLtl3XZptlNSTWn2XZb1Diybctl1LvxZV1qHc1LLtN7V4rOzKyp8nwcDT+i4zpSq1iOvtm5ZobZt3T9pn0Xv28aYS9ZV2ZBz/PhxFRQUKDIy0mc8MjJSe/fuLXGdadOmafLkycXGY2JirkiPZfNyZTcAABWAn3VXq1W6v9y2derUKYWGhl50eZUNOWUxbtw4JScnW88LCwt14sQJXXPNNQoIuNg5Nv95vV7FxMTo66+/lsvlKrftwhfzXHGY64rBPFcM5rliXMl5Nsbo1KlTio6OvmRdlQ059erVU1BQkLKysnzGs7KyFBUVVeI6TqdTTqfTZywsLOxKtSiXy8U/oArAPFcc5rpiMM8Vg3muGFdqni91BqdIlf2zDg6HQ7GxsVq7dq01VlhYqLVr1youjutYAAC42lXZMzmSlJycrMTERHXs2FGdOnXSjBkzdObMGetuKwAAcPWq0iGnf//+OnbsmCZMmCCPx6MOHTooJSWl2MXIFc3pdGrixInFPhpD+WKeKw5zXTGY54rBPFeMn8M8B5jL3X8FAABQBVXZa3IAAAAuhZADAABsiZADAABsiZADAABsiZADAABsiZBTRrNmzVKTJk0UHByszp07a9u2bZesX7p0qVq2bKng4GC1bdtWq1evrqBOqzZ/5vmtt95St27dVKdOHdWpU0fx8fGX/e+CH/n7ei6yePFiBQQEqG/fvle2QRvxd66zs7OVlJSk+vXry+l06rrrruPnRyn4O88zZszQ9ddfr5CQEMXExGjUqFH64YcfKqjbqmnjxo26++67FR0drYCAAK1YseKy66xfv1433XSTnE6nWrRoofnz51/ZJg38tnjxYuNwOMw777xjdu/ebYYOHWrCwsJMVlZWifUff/yxCQoKMtOnTzeff/65eeaZZ0z16tXNrl27KrjzqsXfeX7wwQfNrFmzzM6dO82ePXvMoEGDTGhoqPnmm28quPOqxd95LpKZmWkaNGhgunXrZu65556KabaK83euc3NzTceOHU2fPn3Mpk2bTGZmplm/fr3JyMio4M6rFn/neeHChcbpdJqFCxeazMxMs2bNGlO/fn0zatSoCu68alm9erUZP368ee+994wks3z58kvWHzx40NSoUcMkJyebzz//3Pz5z382QUFBJiUl5Yr1SMgpg06dOpmkpCTreUFBgYmOjjbTpk0rsf7+++83CQkJPmOdO3c2v/nNb65on1Wdv/N8ofz8fFO7dm2zYMGCK9WiLZRlnvPz880tt9xi5s6daxITEwk5peTvXM+ePds0a9bM5OXlVVSLtuDvPCclJZnbb7/dZyw5OdnceuutV7RPOylNyBkzZoy54YYbfMb69+9v3G73FeuLj6v8lJeXp/T0dMXHx1tjgYGBio+PV1paWonrpKWl+dRLktvtvmg9yjbPFzp79qzOnTununXrXqk2q7yyzvOUKVMUERGhwYMHV0SbtlCWuf7Xv/6luLg4JSUlKTIyUm3atNHzzz+vgoKCimq7yinLPN9yyy1KT0+3PtI6ePCgVq9erT59+lRIz1eLyngvrNJ/1qEyHD9+XAUFBcX+dERkZKT27t1b4joej6fEeo/Hc8X6rOrKMs8XevrppxUdHV3sHxX+v7LM86ZNm/T2228rIyOjAjq0j7LM9cGDB7Vu3ToNHDhQq1ev1pdffqnf/va3OnfunCZOnFgRbVc5ZZnnBx98UMePH1fXrl1ljFF+fr4ef/xx/f73v6+Ilq8aF3sv9Hq9+v777xUSElLu++RMDmzphRde0OLFi7V8+XIFBwdXdju2cerUKT388MN66623VK9evcpux/YKCwsVERGhN998U7Gxserfv7/Gjx+vOXPmVHZrtrJ+/Xo9//zzev3117Vjxw699957WrVqlaZOnVrZreEn4kyOn+rVq6egoCBlZWX5jGdlZSkqKqrEdaKiovyqR9nmuchLL72kF154QR9++KHatWt3Jdus8vyd5wMHDujQoUO6++67rbHCwkJJUrVq1bRv3z41b978yjZdRZXlNV2/fn1Vr15dQUFB1lirVq3k8XiUl5cnh8NxRXuuisoyz3/4wx/08MMPa8iQIZKktm3b6syZMxo2bJjGjx+vwEDOB5SHi70XulyuK3IWR+JMjt8cDodiY2O1du1aa6ywsFBr165VXFxcievExcX51EtSamrqRetRtnmWpOnTp2vq1KlKSUlRx44dK6LVKs3feW7ZsqV27dqljIwM6/HLX/5SPXv2VEZGhmJiYiqy/SqlLK/pW2+9VV9++aUVJCXpiy++UP369Qk4F1GWeT579myxIFMULA1/w7rcVMp74RW7pNnGFi9ebJxOp5k/f775/PPPzbBhw0xYWJjxeDzGGGMefvhhM3bsWKv+448/NtWqVTMvvfSS2bNnj5k4cSK3kJeCv/P8wgsvGIfDYZYtW2a+/fZb63Hq1KnKOoQqwd95vhB3V5Wev3N9+PBhU7t2bTNixAizb98+s3LlShMREWGeffbZyjqEKsHfeZ44caKpXbu2+fvf/24OHjxoPvjgA9O8eXNz//33V9YhVAmnTp0yO3fuNDt37jSSzCuvvGJ27txpvvrqK2OMMWPHjjUPP/ywVV90C/no0aPNnj17zKxZs7iF/Ofqz3/+s2nUqJFxOBymU6dOZsuWLdayHj16mMTERJ/6d99911x33XXG4XCYG264waxataqCO66a/Jnnxo0bG0nFHhMnTqz4xqsYf1/P5yPk+Mffud68ebPp3LmzcTqdplmzZua5554z+fn5Fdx11ePPPJ87d85MmjTJNG/e3AQHB5uYmBjz29/+1pw8ebLiG69CPvrooxJ/5hbNbWJiounRo0exdTp06GAcDodp1qyZmTdv3hXtMcAYzsUBAAD74ZocAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS/8PKXrgh93UAt0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQwdJREFUeJzt3Xl4FGW+9vE7CXQnLJ2wZCESdgUimwYIUVbJ0EpwRPEIymBAloEJvgMZ2QaGVcXBDWbYVBQ4Z2BYHHFGgsEYBI8SQAIZFiUiguhghyAkzZqQpN4/vFKHJgHTAQIpvp/rqkv6qV899dRjQ9+prqr4GIZhCAAAwGJ8b/YAAAAAbgRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDmBxmzdvlo+PjzZv3nxd+/Xx8dH06dOva59WM3jwYDVq1OhmD+OW0KhRIw0ePPgX65YtWyYfHx8dOXLkho8J1kfIQaWydetWTZ8+XTk5OTd7KLeFDRs2EGQknTt3TtOnT7/uQREVZ926dXI6nQoPD5fdblf9+vX1+OOPa9++fTd7aLiBqtzsAQDe2Lp1q2bMmKHBgwcrKCjoZg/H8jZs2KAFCxaUGnTOnz+vKlVuj39Czp07pxkzZkiSunfvXubt3nrrLRUVFd2gUVUumZmZ8vW9eT9X7927V7Vq1dLvf/971a1bVy6XS++88446duyotLQ0tW3b9qaNDTfO7fEvFFAJnTt3TtWqVSvRXlBQoKKiItlstpswqv/j7+9/U/d/Kzt79qyqV6+uqlWr3uyh3DLsdvtN3f/UqVNLtA0bNkz169fXokWLtHjx4pswKtxofF2FSmP69OkaN26cJKlx48by8fExv7svKCjQrFmz1LRpU9ntdjVq1Eh//OMflZeX59FHo0aN1KdPH3300Udq166d/P39FRkZqffee69cY/rb3/6mjh07qlq1aqpVq5a6du2qjz76yKNm4cKFuvvuu2W32xUeHq6EhIQSX7d1795drVq1Unp6urp27apq1arpj3/8o44cOSIfHx+98sormjt3rnl8X375pSTpwIEDevzxx1W7dm35+/urffv2+te//vWL4/7f//1f/dd//ZcaNGggu92uiIgIjR07VufPnzdrBg8erAULFkiSOdc+Pj7m+tKuydm9e7ceeughORwO1ahRQz179tS2bds8aoqvufj888+VmJio4OBgVa9eXY8++qiys7N/ceyXmj59unx8fPT111/rN7/5jQIDAxUcHKw//elPMgxD33//vR555BE5HA6FhYXp1Vdf9dg+Pz9fU6dOVVRUlAIDA1W9enV16dJFn3zyiVlz5MgRBQcHS5JmzJhhzkPxsQ8ePFg1atTQoUOH1Lt3b9WsWVMDBw401116Tc60adPk6+ur1NRUj3GMGDFCNptN//73v8t87GV9L1+8eFEzZszQnXfeKX9/f9WpU0edO3dWSkqKWVN8DEePHlWfPn1Uo0YN3XHHHeb//7179+qBBx5Q9erV1bBhQ61cubLM47x0vJdfk7N//3498MADCggIUP369fX888+XeuZr586dcjqdqlu3rgICAtS4cWM988wzXo/hciEhIapWrRpff1sYZ3JQaTz22GP6+uuv9fe//12vv/666tatK0kKDg7WsGHDtHz5cj3++OP6wx/+oO3bt2v27Nn66quvtG7dOo9+Dh48qP79+2vkyJGKj4/X0qVL9V//9V9KTk7Wr371qzKPZ8aMGZo+fbruu+8+zZw5UzabTdu3b9emTZvUq1cvST9/CM+YMUOxsbEaNWqUMjMztWjRIn3xxRf6/PPPPX7S/+mnn/TQQw9pwIAB+s1vfqPQ0FBz3dKlS3XhwgWNGDFCdrtdtWvX1v79+3X//ffrjjvu0MSJE1W9enWtWbNGffv21T/+8Q89+uijVxz72rVrde7cOY0aNUp16tTRjh079Ne//lU//PCD1q5dK0n67W9/q2PHjiklJUX/8z//84vzsX//fnXp0kUOh0Pjx49X1apV9cYbb6h79+7asmWLoqOjPeqfffZZ1apVS9OmTdORI0c0d+5cjR49WqtXry7z/4Ni/fv3V8uWLfXSSy8pKSlJzz//vGrXrq033nhDDzzwgP785z9rxYoVeu6559ShQwd17dpVkuR2u7VkyRI9+eSTGj58uE6fPq23335bTqdTO3bsULt27RQcHKxFixZp1KhRevTRR/XYY49Jktq0aWPuv6CgQE6nU507d9Yrr7xS6hk4SZoyZYo++OADDR06VHv37lXNmjW1ceNGvfXWW5o1a5bXX5mU5b08ffp0zZ49W8OGDVPHjh3ldru1c+dO7dq1y+P9XlhYqIceekhdu3bVnDlztGLFCo0ePVrVq1fX5MmTNXDgQD322GNavHixnn76acXExKhx48ZejfdSLpdLPXr0UEFBgfn+ffPNNxUQEOBRd/z4cfXq1UvBwcGaOHGigoKCdOTIkXL/YJKTk6OLFy/K5XJp7ty5crvd6tmzZ7mPA7c4A6hEXn75ZUOScfjwYbMtIyPDkGQMGzbMo/a5554zJBmbNm0y2xo2bGhIMv7xj3+Ybbm5uUa9evWMe+65p8zjOHjwoOHr62s8+uijRmFhoce6oqIiwzAM4/jx44bNZjN69erlUTN//nxDkvHOO++Ybd26dTMkGYsXL/bo6/Dhw4Ykw+FwGMePH/dY17NnT6N169bGhQsXPPZ93333GXfeeafZ9sknnxiSjE8++cRsO3fuXIljmj17tuHj42N89913ZltCQoJxpX8mJBnTpk0zX/ft29ew2WzGoUOHzLZjx44ZNWvWNLp27Wq2LV261JBkxMbGmnNlGIYxduxYw8/Pz8jJySl1f6WZNm2aIckYMWKE2VZQUGDUr1/f8PHxMV566SWz/dSpU0ZAQIARHx/vUZuXl+fR56lTp4zQ0FDjmWeeMduys7NLHG+x+Ph4Q5IxceLEUtc1bNjQo23v3r2GzWYzhg0bZpw6dcq44447jPbt2xsXL14s83EbRtnfy23btjXi4uKu2lfxMbz44otmW/F8+fj4GKtWrTLbDxw4cMW5+KXxXjr3Y8aMMSQZ27dvN9uOHz9uBAYGevwdX7dunSHJ+OKLL7za35U0b97ckGRIMmrUqGFMmTKlxN9hWAdfV6HS27BhgyQpMTHRo/0Pf/iDJCkpKcmjPTw83OMsh8Ph0NNPP63du3fL5XKVaZ/vv/++ioqKNHXq1BIXUxZ/pfPxxx8rPz9fY8aM8agZPny4HA5HiXHZ7XYNGTKk1P3169fP/MpEkk6ePKlNmzbpiSee0OnTp3XixAmdOHFCP/30k5xOpw4ePKj//Oc/Vxz/pT8tnz17VidOnNB9990nwzC0e/fuMs3BpQoLC/XRRx+pb9++atKkidler149PfXUU/rss8/kdrs9thkxYoTH119dunRRYWGhvvvuO6/3P2zYMPPPfn5+at++vQzD0NChQ832oKAgNW/eXN9++61HbfG1TUVFRTp58qQKCgrUvn177dq1y6sxjBo1qkx1rVq10owZM7RkyRI5nU6dOHFCy5cvL9dF3GV5LwcFBWn//v06ePDgL/Z36TwWz1f16tX1xBNPmO3NmzdXUFCQxzyWx4YNG9SpUyd17NjRbAsODja/6rt0HJK0fv16Xbx48Zr2Kf18VjQ5OVkLFy5Uy5Ytdf78eRUWFl5zv7g1EXJQ6X333Xfy9fVVs2bNPNrDwsIUFBRU4kOzWbNmHh+uknTXXXdJUpmfzXHo0CH5+voqMjLyquOSfv5QuJTNZlOTJk1KjOuOO+644sXEl38t8M0338gwDP3pT39ScHCwxzJt2jRJP5/mv5KjR49q8ODBql27tmrUqKHg4GB169ZNkpSbm3vF7a4kOztb586dK3GsktSyZUsVFRXp+++/92hv0KCBx+tatWpJkk6dOuX1/i/vKzAwUP7+/uZXmpe2X97/8uXL1aZNG/N6leDgYCUlJXk1D1WqVFH9+vXLXD9u3Di1bdtWO3bs0LRp0676PrqasryXZ86cqZycHN11111q3bq1xo0bpz179pToy9/f3yNISz/PV/369Uvso7R59NZ3332nO++8s0T75e+hbt26qV+/fpoxY4bq1q2rRx55REuXLi1xvV1ZxcTEyOl0atSoUdq4caP+9re/adKkSeXqC7c+rsmBZVz+D3Flc/m1CFdbV3xx5nPPPSen01nqNpeHvmKFhYX61a9+pZMnT2rChAlq0aKFqlevrv/85z8aPHhwhd3y7OfnV2q7YRjXpa+y9P+3v/1NgwcPVt++fTVu3DiFhITIz89Ps2fP1qFDh8q8f7vd7tXt0d9++615ZmXv3r1l3q48unbtqkOHDumf//ynPvroIy1ZskSvv/66Fi9eXOIMWGmu5/+n8vDx8dG7776rbdu26YMPPtDGjRv1zDPP6NVXX9W2bdtUo0aNcvddq1YtPfDAA1qxYoVeeeWV6zhq3CoIOahUSgsyDRs2VFFRkQ4ePKiWLVua7VlZWcrJyVHDhg096ovPglza19dffy1JZX46bdOmTVVUVKQvv/xS7dq1K7WmeL+ZmZkeX+Hk5+fr8OHDio2NLdO+SlPcX9WqVb3uZ+/evfr666+1fPlyPf3002b7pXfbFCtrcAwODla1atWUmZlZYt2BAwfk6+uriIgIr8ZZEd599101adJE7733nsexFp8NK3Y9A3RRUZEGDx4sh8OhMWPG6MUXX9Tjjz9uXtDsjbK+l2vXrq0hQ4ZoyJAhOnPmjLp27arp06d7hJyK1rBhw1K/QivtPSRJnTp1UqdOnfTCCy9o5cqVGjhwoFatWnXNx3D+/Plynb1E5cDXVahUqlevLkket3z27t1bkjR37lyP2tdee02SFBcX59F+7Ngxjzuu3G63/vu//1vt2rVTWFhYmcbRt29f+fr6aubMmSXOfBT/hBsbGyubzaa//OUvHj/1vv3228rNzS0xLm+EhISoe/fueuONN/Tjjz+WWH+1W7GLfzK/dEyGYWjevHklakub7yv12atXL/3zn//0+MovKytLK1euVOfOneVwOK7ax81Q2lxs375daWlpHnXFd0tdj1uNX3vtNW3dulVvvvmmZs2apfvuu0+jRo3SiRMnvO6rLO/ln376yWObGjVqqFmzZuX+uud66d27t7Zt26YdO3aYbdnZ2VqxYoVH3alTp0qcNSr+wcKbYyjt69sjR44oNTVV7du392LkqEw4k4NKJSoqSpI0efJkDRgwQFWrVtXDDz+s+Ph4vfnmm8rJyVG3bt20Y8cOLV++XH379lWPHj08+rjrrrs0dOhQffHFFwoNDdU777yjrKwsLV26tMzjaNasmSZPnqxZs2apS5cueuyxx2S32/XFF18oPDxcs2fPVnBwsCZNmqQZM2bowQcf1K9//WtlZmZq4cKF6tChg37zm99c01wsWLBAnTt3VuvWrTV8+HA1adJEWVlZSktL0w8//HDFZ660aNFCTZs21XPPPaf//Oc/cjgc+sc//lHqNRbF8/3//t//k9PplJ+fnwYMGFBqv88//7xSUlLUuXNn/e53v1OVKlX0xhtvKC8vT3PmzLmmY71R+vTpo/fee0+PPvqo4uLidPjwYS1evFiRkZE6c+aMWRcQEKDIyEitXr1ad911l2rXrq1WrVqpVatWXu3vq6++0p/+9CcNHjxYDz/8sKSfnxvUrl07/e53v9OaNWu86q8s7+XIyEh1795dUVFRql27tnbu3Kl3331Xo0eP9mpf19v48eP1P//zP3rwwQf1+9//3ryFvGHDhh7XDC1fvlwLFy7Uo48+qqZNm+r06dN666235HA4zB9wyqJ169bq2bOn2rVrp1q1aungwYN6++23dfHiRb300ks34hBxK7gZt3QB12LWrFnGHXfcYfj6+pq3ml68eNGYMWOG0bhxY6Nq1apGRESEMWnSJI/bqw3j59tY4+LijI0bNxpt2rQx7Ha70aJFC2Pt2rXlGss777xj3HPPPYbdbjdq1apldOvWzUhJSfGomT9/vtGiRQujatWqRmhoqDFq1Cjj1KlTHjXdunUz7r777hL9F99C/vLLL5e6/0OHDhlPP/20ERYWZlStWtW44447jD59+hjvvvuuWVPaLeRffvmlERsba9SoUcOoW7euMXz4cOPf//63IclYunSpWVdQUGA8++yzRnBwsOHj4+NxO7lKuY14165dhtPpNGrUqGFUq1bN6NGjh7F161aPmuJbyC+/Jbi0cf6S4lvIs7OzPdrj4+ON6tWrl6i/fJ6LioqMF1980WjYsKFht9uNe+65x1i/fn2pt35v3brViIqKMmw2m8exX2lfxeuK+ykoKDA6dOhg1K9fv8Rt8vPmzTMkGatXry7zsZf1vfz8888bHTt2NIKCgoyAgACjRYsWxgsvvGDk5+d7jLMs83X5vr1x+S3khmEYe/bsMbp162b4+/sbd9xxhzFr1izj7bff9riFfNeuXcaTTz5pNGjQwLDb7UZISIjRp08fY+fOnV7tf9q0aUb79u2NWrVqGVWqVDHCw8ONAQMGGHv27PGqH1QuPoZRQVePAbeARo0aqVWrVlq/fv3NHgpwTXgvA7+Ma3IAAIAlcU0OcJlfeiBgQECAAgMDK2g0t6czZ854XBNTmuDg4Cve3lyZZWdnX/XhdDabTbVr167AEV3dzf77cvLkSeXn519xvZ+fX4nn/+D2QcgBLlOvXr2rro+Pj9eyZcsqZjC3qVdeeUUzZsy4as3hw4fLfMt/ZdKhQ4erPvW5W7du2rx5c8UN6Bfc7L8vjz32mLZs2XLF9Q0bNizzQz5hPVyTA1zm448/vur68PDwcj+hFmXz7bff/uKvDejcubP8/f0raEQV5/PPP/f4bfCXq1WrlnnX263gZv99SU9Pv+rTlwMCAnT//fffsP3j1kbIAQAAlsSFxwAAwJJu62tyioqKdOzYMdWsWbPS/94jAABuF4Zh6PTp0woPD7/q7427rUPOsWPHbsnfpwMAAH7Z999/r/r1619x/W0dcmrWrCnp50m6FX+vDgAAKMntdisiIsL8HL+S2zrkFH9F5XA4CDkAAFQyv3SpCRceAwAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS6pyswdgVReTPyvRVvXBzjdhJAAA3J44kwMAACyJkAMAACzJq5CzaNEitWnTRg6HQw6HQzExMfrwww/N9d27d5ePj4/HMnLkSI8+jh49qri4OFWrVk0hISEaN26cCgoKPGo2b96se++9V3a7Xc2aNdOyZctKjGXBggVq1KiR/P39FR0drR07dnhzKAAAwOK8Cjn169fXSy+9pPT0dO3cuVMPPPCAHnnkEe3fv9+sGT58uH788UdzmTNnjrmusLBQcXFxys/P19atW7V8+XItW7ZMU6dONWsOHz6suLg49ejRQxkZGRozZoyGDRumjRs3mjWrV69WYmKipk2bpl27dqlt27ZyOp06fvz4tcwFAACwEB/DMIxr6aB27dp6+eWXNXToUHXv3l3t2rXT3LlzS6398MMP1adPHx07dkyhoaGSpMWLF2vChAnKzs6WzWbThAkTlJSUpH379pnbDRgwQDk5OUpOTpYkRUdHq0OHDpo/f74kqaioSBEREXr22Wc1ceLEMo/d7XYrMDBQubm5cjgc5ZyB0nHhMQAAN0ZZP7/LfU1OYWGhVq1apbNnzyomJsZsX7FiherWratWrVpp0qRJOnfunLkuLS1NrVu3NgOOJDmdTrndbvNsUFpammJjYz325XQ6lZaWJknKz89Xenq6R42vr69iY2PNmivJy8uT2+32WAAAgDV5fQv53r17FRMTowsXLqhGjRpat26dIiMjJUlPPfWUGjZsqPDwcO3Zs0cTJkxQZmam3nvvPUmSy+XyCDiSzNcul+uqNW63W+fPn9epU6dUWFhYas2BAweuOvbZs2drxowZ3h4yAACohLwOOc2bN1dGRoZyc3P17rvvKj4+Xlu2bFFkZKRGjBhh1rVu3Vr16tVTz549dejQITVt2vS6Drw8Jk2apMTERPO12+1WRETETRwRAAC4UbwOOTabTc2aNZMkRUVF6YsvvtC8efP0xhtvlKiNjo6WJH3zzTdq2rSpwsLCStwFlZWVJUkKCwsz/1vcdmmNw+FQQECA/Pz85OfnV2pNcR9XYrfbZbfbvThaAABQWV3zc3KKioqUl5dX6rqMjAxJUr169SRJMTEx2rt3r8ddUCkpKXI4HOZXXjExMUpNTfXoJyUlxbzux2azKSoqyqOmqKhIqampHtcGAQCA25tXZ3ImTZqkhx56SA0aNNDp06e1cuVKbd68WRs3btShQ4e0cuVK9e7dW3Xq1NGePXs0duxYde3aVW3atJEk9erVS5GRkRo0aJDmzJkjl8ulKVOmKCEhwTzDMnLkSM2fP1/jx4/XM888o02bNmnNmjVKSkoyx5GYmKj4+Hi1b99eHTt21Ny5c3X27FkNGTLkOk4NAACozLwKOcePH9fTTz+tH3/8UYGBgWrTpo02btyoX/3qV/r+++/18ccfm4EjIiJC/fr105QpU8zt/fz8tH79eo0aNUoxMTGqXr264uPjNXPmTLOmcePGSkpK0tixYzVv3jzVr19fS5YskdPpNGv69++v7OxsTZ06VS6XS+3atVNycnKJi5EBAMDt65qfk1OZ8ZwcAAAqnxv+nBwAAIBbGSEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUpWbPQCrOpLzYYm2O9X5JowEAIDbE2dyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJRFyAACAJXkVchYtWqQ2bdrI4XDI4XAoJiZGH374f7+I8sKFC0pISFCdOnVUo0YN9evXT1lZWR59HD16VHFxcapWrZpCQkI0btw4FRQUeNRs3rxZ9957r+x2u5o1a6Zly5aVGMuCBQvUqFEj+fv7Kzo6Wjt27PDmUAAAgMV5FXLq16+vl156Senp6dq5c6ceeOABPfLII9q/f78kaezYsfrggw+0du1abdmyRceOHdNjjz1mbl9YWKi4uDjl5+dr69atWr58uZYtW6apU6eaNYcPH1ZcXJx69OihjIwMjRkzRsOGDdPGjRvNmtWrVysxMVHTpk3Trl271LZtWzmdTh0/fvxa5wMAAFiEj2EYxrV0ULt2bb388st6/PHHFRwcrJUrV+rxxx+XJB04cEAtW7ZUWlqaOnXqpA8//FB9+vTRsWPHFBoaKklavHixJkyYoOzsbNlsNk2YMEFJSUnat2+fuY8BAwYoJydHycnJkqTo6Gh16NBB8+fPlyQVFRUpIiJCzz77rCZOnFjmsbvdbgUGBio3N1cOh+NapqGEg6sml2i7c8AL13UfAADcjsr6+V3ua3IKCwu1atUqnT17VjExMUpPT9fFixcVGxtr1rRo0UINGjRQWlqaJCktLU2tW7c2A44kOZ1Oud1u82xQWlqaRx/FNcV95OfnKz093aPG19dXsbGxZs2V5OXlye12eywAAMCavA45e/fuVY0aNWS32zVy5EitW7dOkZGRcrlcstlsCgoK8qgPDQ2Vy+WSJLlcLo+AU7y+eN3Vatxut86fP68TJ06osLCw1JriPq5k9uzZCgwMNJeIiAhvDx8AAFQSXoec5s2bKyMjQ9u3b9eoUaMUHx+vL7/88kaM7bqbNGmScnNzzeX777+/2UMCAAA3SBVvN7DZbGrWrJkkKSoqSl988YXmzZun/v37Kz8/Xzk5OR5nc7KyshQWFiZJCgsLK3EXVPHdV5fWXH5HVlZWlhwOhwICAuTn5yc/P79Sa4r7uBK73S673e7tIQMAgEromp+TU1RUpLy8PEVFRalq1apKTU0112VmZuro0aOKiYmRJMXExGjv3r0ed0GlpKTI4XAoMjLSrLm0j+Ka4j5sNpuioqI8aoqKipSammrWAAAAeHUmZ9KkSXrooYfUoEEDnT59WitXrtTmzZu1ceNGBQYGaujQoUpMTFTt2rXlcDj07LPPKiYmRp06dZIk9erVS5GRkRo0aJDmzJkjl8ulKVOmKCEhwTzDMnLkSM2fP1/jx4/XM888o02bNmnNmjVKSkoyx5GYmKj4+Hi1b99eHTt21Ny5c3X27FkNGTLkOk4NAACozLwKOcePH9fTTz+tH3/8UYGBgWrTpo02btyoX/3qV5Kk119/Xb6+vurXr5/y8vLkdDq1cOFCc3s/Pz+tX79eo0aNUkxMjKpXr674+HjNnDnTrGncuLGSkpI0duxYzZs3T/Xr19eSJUvkdDrNmv79+ys7O1tTp06Vy+VSu3btlJycXOJiZAAAcPu65ufkVGY8JwcAgMrnhj8nBwAA4FZGyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJbkVciZPXu2OnTooJo1ayokJER9+/ZVZmamR0337t3l4+PjsYwcOdKj5ujRo4qLi1O1atUUEhKicePGqaCgwKNm8+bNuvfee2W329WsWTMtW7asxHgWLFigRo0ayd/fX9HR0dqxY4c3hwMAACzMq5CzZcsWJSQkaNu2bUpJSdHFixfVq1cvnT171qNu+PDh+vHHH81lzpw55rrCwkLFxcUpPz9fW7du1fLly7Vs2TJNnTrVrDl8+LDi4uLUo0cPZWRkaMyYMRo2bJg2btxo1qxevVqJiYmaNm2adu3apbZt28rpdOr48ePlnQsAAGAhPoZhGOXdODs7WyEhIdqyZYu6du0q6eczOe3atdPcuXNL3ebDDz9Unz59dOzYMYWGhkqSFi9erAkTJig7O1s2m00TJkxQUlKS9u3bZ243YMAA5eTkKDk5WZIUHR2tDh06aP78+ZKkoqIiRURE6Nlnn9XEiRNL3XdeXp7y8vLM1263WxEREcrNzZXD4SjvNJTq4KrJJdruHPDCdd0HAAC3I7fbrcDAwF/8/L6ma3Jyc3MlSbVr1/ZoX7FiherWratWrVpp0qRJOnfunLkuLS1NrVu3NgOOJDmdTrndbu3fv9+siY2N9ejT6XQqLS1NkpSfn6/09HSPGl9fX8XGxpo1pZk9e7YCAwPNJSIiopxHDgAAbnVVyrthUVGRxowZo/vvv1+tWrUy25966ik1bNhQ4eHh2rNnjyZMmKDMzEy99957kiSXy+URcCSZr10u11Vr3G63zp8/r1OnTqmwsLDUmgMHDlxxzJMmTVJiYqL5uvhMDgAAsJ5yh5yEhATt27dPn332mUf7iBEjzD+3bt1a9erVU8+ePXXo0CE1bdq0/CO9Dux2u+x2+00dAwAAqBjl+rpq9OjRWr9+vT755BPVr1//qrXR0dGSpG+++UaSFBYWpqysLI+a4tdhYWFXrXE4HAoICFDdunXl5+dXak1xHwAA4PbmVcgxDEOjR4/WunXrtGnTJjVu3PgXt8nIyJAk1atXT5IUExOjvXv3etwFlZKSIofDocjISLMmNTXVo5+UlBTFxMRIkmw2m6KiojxqioqKlJqaatYAAIDbm1dfVyUkJGjlypX65z//qZo1a5rX0AQGBiogIECHDh3SypUr1bt3b9WpU0d79uzR2LFj1bVrV7Vp00aS1KtXL0VGRmrQoEGaM2eOXC6XpkyZooSEBPOrpJEjR2r+/PkaP368nnnmGW3atElr1qxRUlKSOZbExETFx8erffv26tixo+bOnauzZ89qyJAh12tuAABAJeZVyFm0aJGkn28Tv9TSpUs1ePBg2Ww2ffzxx2bgiIiIUL9+/TRlyhSz1s/PT+vXr9eoUaMUExOj6tWrKz4+XjNnzjRrGjdurKSkJI0dO1bz5s1T/fr1tWTJEjmdTrOmf//+ys7O1tSpU+VyudSuXTslJyeXuBgZAADcnq7pOTmVXVnvsy8PnpMDAMCNUSHPyQEAALhVEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAlEXIAAIAleRVyZs+erQ4dOqhmzZoKCQlR3759lZmZ6VFz4cIFJSQkqE6dOqpRo4b69eunrKwsj5qjR48qLi5O1apVU0hIiMaNG6eCggKPms2bN+vee++V3W5Xs2bNtGzZshLjWbBggRo1aiR/f39FR0drx44d3hwOAACwMK9CzpYtW5SQkKBt27YpJSVFFy9eVK9evXT27FmzZuzYsfrggw+0du1abdmyRceOHdNjjz1mri8sLFRcXJzy8/O1detWLV++XMuWLdPUqVPNmsOHDysuLk49evRQRkaGxowZo2HDhmnjxo1mzerVq5WYmKhp06Zp165datu2rZxOp44fP34t8wEAACzCxzAMo7wbZ2dnKyQkRFu2bFHXrl2Vm5ur4OBgrVy5Uo8//rgk6cCBA2rZsqXS0tLUqVMnffjhh+rTp4+OHTum0NBQSdLixYs1YcIEZWdny2azacKECUpKStK+ffvMfQ0YMEA5OTlKTk6WJEVHR6tDhw6aP3++JKmoqEgRERF69tlnNXHixDKN3+12KzAwULm5uXI4HOWdhlIdXDW5RNudA164rvsAAOB2VNbP72u6Jic3N1eSVLt2bUlSenq6Ll68qNjYWLOmRYsWatCggdLS0iRJaWlpat26tRlwJMnpdMrtdmv//v1mzaV9FNcU95Gfn6/09HSPGl9fX8XGxpo1pcnLy5Pb7fZYAACANZU75BQVFWnMmDG6//771apVK0mSy+WSzWZTUFCQR21oaKhcLpdZc2nAKV5fvO5qNW63W+fPn9eJEydUWFhYak1xH6WZPXu2AgMDzSUiIsL7AwcAAJVCuUNOQkKC9u3bp1WrVl3P8dxQkyZNUm5urrl8//33N3tIAADgBqlSno1Gjx6t9evX69NPP1X9+vXN9rCwMOXn5ysnJ8fjbE5WVpbCwsLMmsvvgiq+++rSmsvvyMrKypLD4VBAQID8/Pzk5+dXak1xH6Wx2+2y2+3eHzAAAKh0vDqTYxiGRo8erXXr1mnTpk1q3Lixx/qoqChVrVpVqampZltmZqaOHj2qmJgYSVJMTIz27t3rcRdUSkqKHA6HIiMjzZpL+yiuKe7DZrMpKirKo6aoqEipqalmDQAAuL15dSYnISFBK1eu1D//+U/VrFnTvP4lMDBQAQEBCgwM1NChQ5WYmKjatWvL4XDo2WefVUxMjDp16iRJ6tWrlyIjIzVo0CDNmTNHLpdLU6ZMUUJCgnmWZeTIkZo/f77Gjx+vZ555Rps2bdKaNWuUlJRkjiUxMVHx8fFq3769OnbsqLlz5+rs2bMaMmTI9ZobAABQiXkVchYtWiRJ6t69u0f70qVLNXjwYEnS66+/Ll9fX/Xr1095eXlyOp1auHChWevn56f169dr1KhRiomJUfXq1RUfH6+ZM2eaNY0bN1ZSUpLGjh2refPmqX79+lqyZImcTqdZ079/f2VnZ2vq1KlyuVxq166dkpOTS1yMDAAAbk/X9Jycyo7n5AAAUPlUyHNyAAAAblWEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEleh5xPP/1UDz/8sMLDw+Xj46P333/fY/3gwYPl4+PjsTz44IMeNSdPntTAgQPlcDgUFBSkoUOH6syZMx41e/bsUZcuXeTv76+IiAjNmTOnxFjWrl2rFi1ayN/fX61bt9aGDRu8PRwAAGBRXoecs2fPqm3btlqwYMEVax588EH9+OOP5vL3v//dY/3AgQO1f/9+paSkaP369fr00081YsQIc73b7VavXr3UsGFDpaen6+WXX9b06dP15ptvmjVbt27Vk08+qaFDh2r37t3q27ev+vbtq3379nl7SAAAwIJ8DMMwyr2xj4/WrVunvn37mm2DBw9WTk5OiTM8xb766itFRkbqiy++UPv27SVJycnJ6t27t3744QeFh4dr0aJFmjx5slwul2w2myRp4sSJev/993XgwAFJUv/+/XX27FmtX7/e7LtTp05q166dFi9eXKbxu91uBQYGKjc3Vw6HoxwzcGUHV00u0XbngBeu6z4AALgdlfXz+4Zck7N582aFhISoefPmGjVqlH766SdzXVpamoKCgsyAI0mxsbHy9fXV9u3bzZquXbuaAUeSnE6nMjMzderUKbMmNjbWY79Op1NpaWlXHFdeXp7cbrfHAgAArOm6h5wHH3xQ//3f/63U1FT9+c9/1pYtW/TQQw+psLBQkuRyuRQSEuKxTZUqVVS7dm25XC6zJjQ01KOm+PUv1RSvL83s2bMVGBhoLhEREdd2sAAA4JZV5Xp3OGDAAPPPrVu3Vps2bdS0aVNt3rxZPXv2vN6788qkSZOUmJhovna73QQdAAAs6obfQt6kSRPVrVtX33zzjSQpLCxMx48f96gpKCjQyZMnFRYWZtZkZWV51BS//qWa4vWlsdvtcjgcHgsAALCmGx5yfvjhB/3000+qV6+eJCkmJkY5OTlKT083azZt2qSioiJFR0ebNZ9++qkuXrxo1qSkpKh58+aqVauWWZOamuqxr5SUFMXExNzoQwIAAJWA1yHnzJkzysjIUEZGhiTp8OHDysjI0NGjR3XmzBmNGzdO27Zt05EjR5SamqpHHnlEzZo1k9PplCS1bNlSDz74oIYPH64dO3bo888/1+jRozVgwACFh4dLkp566inZbDYNHTpU+/fv1+rVqzVv3jyPr5p+//vfKzk5Wa+++qoOHDig6dOna+fOnRo9evR1mBYAAFDZeR1ydu7cqXvuuUf33HOPJCkxMVH33HOPpk6dKj8/P+3Zs0e//vWvddddd2no0KGKiorS//7v/8put5t9rFixQi1atFDPnj3Vu3dvde7c2eMZOIGBgfroo490+PBhRUVF6Q9/+IOmTp3q8Syd++67TytXrtSbb76ptm3b6t1339X777+vVq1aXct8AAAAi7im5+RUdjwnBwCAyuemPicHAADgZiPkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAASyLkAAAAS/I65Hz66ad6+OGHFR4eLh8fH73//vse6w3D0NSpU1WvXj0FBAQoNjZWBw8e9Kg5efKkBg4cKIfDoaCgIA0dOlRnzpzxqNmzZ4+6dOkif39/RUREaM6cOSXGsnbtWrVo0UL+/v5q3bq1NmzY4O3hAAAAi/I65Jw9e1Zt27bVggULSl0/Z84c/eUvf9HixYu1fft2Va9eXU6nUxcuXDBrBg4cqP379yslJUXr16/Xp59+qhEjRpjr3W63evXqpYYNGyo9PV0vv/yypk+frjfffNOs2bp1q5588kkNHTpUu3fvVt++fdW3b1/t27fP20MCAAAW5GMYhlHujX18tG7dOvXt21fSz2dxwsPD9Yc//EHPPfecJCk3N1ehoaFatmyZBgwYoK+++kqRkZH64osv1L59e0lScnKyevfurR9++EHh4eFatGiRJk+eLJfLJZvNJkmaOHGi3n//fR04cECS1L9/f509e1br1683x9OpUye1a9dOixcvLtP43W63AgMDlZubK4fDUd5pKNXBVZNLtN054IXrug8AAG5HZf38vq7X5Bw+fFgul0uxsbFmW2BgoKKjo5WWliZJSktLU1BQkBlwJCk2Nla+vr7avn27WdO1a1cz4EiS0+lUZmamTp06ZdZcup/imuL9lCYvL09ut9tjAQAA1nRdQ47L5ZIkhYaGerSHhoaa61wul0JCQjzWV6lSRbVr1/aoKa2PS/dxpZri9aWZPXu2AgMDzSUiIsLbQwQAAJXEbXV31aRJk5Sbm2su33///c0eEgAAuEGua8gJCwuTJGVlZXm0Z2VlmevCwsJ0/Phxj/UFBQU6efKkR01pfVy6jyvVFK8vjd1ul8Ph8FgAAIA1XdeQ07hxY4WFhSk1NdVsc7vd2r59u2JiYiRJMTExysnJUXp6ulmzadMmFRUVKTo62qz59NNPdfHiRbMmJSVFzZs3V61atcyaS/dTXFO8HwAAcHvzOuScOXNGGRkZysjIkPTzxcYZGRk6evSofHx8NGbMGD3//PP617/+pb179+rpp59WeHi4eQdWy5Yt9eCDD2r48OHasWOHPv/8c40ePVoDBgxQeHi4JOmpp56SzWbT0KFDtX//fq1evVrz5s1TYmKiOY7f//73Sk5O1quvvqoDBw5o+vTp2rlzp0aPHn3tswIAACq9Kt5usHPnTvXo0cN8XRw84uPjtWzZMo0fP15nz57ViBEjlJOTo86dOys5OVn+/v7mNitWrNDo0aPVs2dP+fr6ql+/fvrLX/5irg8MDNRHH32khIQERUVFqW7dupo6darHs3Tuu+8+rVy5UlOmTNEf//hH3XnnnXr//ffVqlWrck0EAACwlmt6Tk5lx3NyAACofG7Kc3IAAABuFYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSdc95EyfPl0+Pj4eS4sWLcz1Fy5cUEJCgurUqaMaNWqoX79+ysrK8ujj6NGjiouLU7Vq1RQSEqJx48apoKDAo2bz5s269957Zbfb1axZMy1btux6HwoAAKjEbsiZnLvvvls//vijuXz22WfmurFjx+qDDz7Q2rVrtWXLFh07dkyPPfaYub6wsFBxcXHKz8/X1q1btXz5ci1btkxTp041aw4fPqy4uDj16NFDGRkZGjNmjIYNG6aNGzfeiMMBAACVUJUb0mmVKgoLCyvRnpubq7ffflsrV67UAw88IElaunSpWrZsqW3btqlTp0766KOP9OWXX+rjjz9WaGio2rVrp1mzZmnChAmaPn26bDabFi9erMaNG+vVV1+VJLVs2VKfffaZXn/9dTmdzhtxSAAA4BdcTP7M43XVBzvfpJH87IacyTl48KDCw8PVpEkTDRw4UEePHpUkpaen6+LFi4qNjTVrW7RooQYNGigtLU2SlJaWptatWys0NNSscTqdcrvd2r9/v1lzaR/FNcV9XEleXp7cbrfHAgAArOm6h5zo6GgtW7ZMycnJWrRokQ4fPqwuXbro9OnTcrlcstlsCgoK8tgmNDRULpdLkuRyuTwCTvH64nVXq3G73Tp//vwVxzZ79mwFBgaaS0RExLUeLgAAuEVd96+rHnroIfPPbdq0UXR0tBo2bKg1a9YoICDgeu/OK5MmTVJiYqL52u12E3QAALCoG34LeVBQkO666y598803CgsLU35+vnJycjxqsrKyzGt4wsLCStxtVfz6l2ocDsdVg5TdbpfD4fBYAACANd3wkHPmzBkdOnRI9erVU1RUlKpWrarU1FRzfWZmpo4ePaqYmBhJUkxMjPbu3avjx4+bNSkpKXI4HIqMjDRrLu2juKa4DwAAgOsecp577jlt2bJFR44c0datW/Xoo4/Kz89PTz75pAIDAzV06FAlJibqk08+UXp6uoYMGaKYmBh16tRJktSrVy9FRkZq0KBB+ve//62NGzdqypQpSkhIkN1ulySNHDlS3377rcaPH68DBw5o4cKFWrNmjcaOHXu9DwcAAFRS1/2anB9++EFPPvmkfvrpJwUHB6tz587atm2bgoODJUmvv/66fH191a9fP+Xl5cnpdGrhwoXm9n5+flq/fr1GjRqlmJgYVa9eXfHx8Zo5c6ZZ07hxYyUlJWns2LGaN2+e6tevryVLlnD7OAAAMPkYhmHc7EHcLG63W4GBgcrNzb3u1+ccXDW5RNudA164rvsAAOBWUlHPySnr5ze/uwoAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFhSlZs9AAAAUPlcTP7sZg/hFxFyAADAdXEk50OP13eq800ayc8IOQAA3GYKjUJ99dNunbpwQrX866plnXvk5+N31W28OXNTZBj6IS9Hxz5boqCa9XR3q16q4lf1WofttUofchYsWKCXX35ZLpdLbdu21V//+ld17NjxZg8LAIBbUtqxVL2972X9dOG42VbHP0RDW41TTHjPa+4/81y21tXcr5PVz0snt0knpdoHX9Izd/xW98f85pr790alDjmrV69WYmKiFi9erOjoaM2dO1dOp1OZmZkKCQm52cMDAOCWknYsVXN2jpdkeLT/dOG45uwcpz9UGapo37bl7j/zXLberrOzRPvJqmf1yvHXpDRVaNCp1CHntdde0/DhwzVkyBBJ0uLFi5WUlKR33nlHEydOvMmjAwCgYl3tK6Uio0hvX3xBlwecSy0r+Ic6VG0tXx/vb74uLCrUupr7f37hc9lKn593u/Q/byi6sH+FfXVVaUNOfn6+0tPTNWnSJLPN19dXsbGxSktLK3WbvLw85eXlma9zc3MlSW63+7qP78y5vBJtN2I/AICKcTGl9M+WyuIr45BcBT9dtcaln/RFlX2q7v7W6/6/z8tRVq0z0vmr9e/W9m3vq3Vrp9f9X6r489QwrhzYpEocck6cOKHCwkKFhoZ6tIeGhurAgQOlbjN79mzNmDGjRHtERMQNGWMJQ1+tmP0AAFBOSUq4wf0/cd36On36tAIDA6+4vtKGnPKYNGmSEhMTzddFRUU6efKk6tSpIx+fy8+tlZ/b7VZERIS+//57ORyO69YvPDHPFYe5rhjMc8VgnivGjZxnwzB0+vRphYeHX7Wu0oacunXrys/PT1lZWR7tWVlZCgsLK3Ubu90uu93u0RYUFHSjhiiHw8FfoArAPFcc5rpiMM8Vg3muGDdqnq92BqdYpf21DjabTVFRUUpNTTXbioqKlJqaqpiYmJs4MgAAcCuotGdyJCkxMVHx8fFq3769OnbsqLlz5+rs2bPm3VYAAOD2ValDTv/+/ZWdna2pU6fK5XKpXbt2Sk5OLnExckWz2+2aNm1aia/GcH0xzxWHua4YzHPFYJ4rxq0wzz7GL91/BQAAUAlV2mtyAAAAroaQAwAALImQAwAALImQAwAALImQAwAALImQU04LFixQo0aN5O/vr+joaO3YseOq9WvXrlWLFi3k7++v1q1ba8OGDRU00srNm3l+66231KVLF9WqVUu1atVSbGzsL/5/wc+8fT8XW7VqlXx8fNS3b98bO0AL8Xauc3JylJCQoHr16slut+uuu+7i348y8Hae586dq+bNmysgIEAREREaO3asLly4UEGjrZw+/fRTPfzwwwoPD5ePj4/ef//9X9xm8+bNuvfee2W329WsWTMtW7bsxg7SgNdWrVpl2Gw245133jH2799vDB8+3AgKCjKysrJKrf/8888NPz8/Y86cOcaXX35pTJkyxahataqxd+/eCh555eLtPD/11FPGggULjN27dxtfffWVMXjwYCMwMND44YcfKnjklYu381zs8OHDxh133GF06dLFeOSRRypmsJWct3Odl5dntG/f3ujdu7fx2WefGYcPHzY2b95sZGRkVPDIKxdv53nFihWG3W43VqxYYRw+fNjYuHGjUa9ePWPs2LEVPPLKZcOGDcbkyZON9957z5BkrFu37qr13377rVGtWjUjMTHR+PLLL42//vWvhp+fn5GcnHzDxkjIKYeOHTsaCQkJ5uvCwkIjPDzcmD17dqn1TzzxhBEXF+fRFh0dbfz2t7+9oeOs7Lyd58sVFBQYNWvWNJYvX36jhmgJ5ZnngoIC47777jOWLFlixMfHE3LKyNu5XrRokdGkSRMjPz+/ooZoCd7Oc0JCgvHAAw94tCUmJhr333//DR2nlZQl5IwfP964++67Pdr69+9vOJ3OGzYuvq7yUn5+vtLT0xUbG2u2+fr6KjY2VmlpaaVuk5aW5lEvSU6n84r1KN88X+7cuXO6ePGiateufaOGWemVd55nzpypkJAQDR06tCKGaQnlmet//etfiomJUUJCgkJDQ9WqVSu9+OKLKiwsrKhhVzrlmef77rtP6enp5lda3377rTZs2KDevXtXyJhvFzfjs7BS/1qHm+HEiRMqLCws8asjQkNDdeDAgVK3cblcpda7XK4bNs7KrjzzfLkJEyYoPDy8xF8q/J/yzPNnn32mt99+WxkZGRUwQusoz1x/++232rRpkwYOHKgNGzbom2++0e9+9ztdvHhR06ZNq4hhVzrlmeennnpKJ06cUOfOnWUYhgoKCjRy5Ej98Y9/rIgh3zau9Fnodrt1/vx5BQQEXPd9ciYHlvTSSy9p1apVWrdunfz9/W/2cCzj9OnTGjRokN566y3VrVv3Zg/H8oqKihQSEqI333xTUVFR6t+/vyZPnqzFixff7KFZyubNm/Xiiy9q4cKF2rVrl9577z0lJSVp1qxZN3touEacyfFS3bp15efnp6ysLI/2rKwshYWFlbpNWFiYV/Uo3zwXe+WVV/TSSy/p448/Vps2bW7kMCs9b+f50KFDOnLkiB5++GGzraioSJJUpUoVZWZmqmnTpjd20JVUed7T9erVU9WqVeXn52e2tWzZUi6XS/n5+bLZbDd0zJVReeb5T3/6kwYNGqRhw4ZJklq3bq2zZ89qxIgRmjx5snx9OR9wPVzps9DhcNyQszgSZ3K8ZrPZFBUVpdTUVLOtqKhIqampiomJKXWbmJgYj3pJSklJuWI9yjfPkjRnzhzNmjVLycnJat++fUUMtVLzdp5btGihvXv3KiMjw1x+/etfq0ePHsrIyFBERERFDr9SKc97+v7779c333xjBklJ+vrrr1WvXj0CzhWUZ57PnTtXIsgUB0uD32F93dyUz8Ibdkmzha1atcqw2+3GsmXLjC+//NIYMWKEERQUZLhcLsMwDGPQoEHGxIkTzfrPP//cqFKlivHKK68YX331lTFt2jRuIS8Db+f5pZdeMmw2m/Huu+8aP/74o7mcPn36Zh1CpeDtPF+Ou6vKztu5Pnr0qFGzZk1j9OjRRmZmprF+/XojJCTEeP7552/WIVQK3s7ztGnTjJo1axp///vfjW+//db46KOPjKZNmxpPPPHEzTqESuH06dPG7t27jd27dxuSjNdee83YvXu38d133xmGYRgTJ040Bg0aZNYX30I+btw446uvvjIWLFjALeS3qr/+9a9GgwYNDJvNZnTs2NHYtm2bua5bt25GfHy8R/2aNWuMu+66y7DZbMbdd99tJCUlVfCIKydv5rlhw4aGpBLLtGnTKn7glYy37+dLEXK84+1cb9261YiOjjbsdrvRpEkT44UXXjAKCgoqeNSVjzfzfPHiRWP69OlG06ZNDX9/fyMiIsL43e9+Z5w6dariB16JfPLJJ6X+m1s8t/Hx8Ua3bt1KbNOuXTvDZrMZTZo0MZYuXXpDx+hjGJyLAwAA1sM1OQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJL+P0CERXCFDQzpAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQtBJREFUeJzt3XtcVWXe//83oHuDhw2aApJ4zgN5KlTETLNISmyy7JtWY2gebh30HqVMTcdDVnbrVDp56ozNnaPVqDMjhhKm3SVmkuShZEotaxTEFLZigsD1+6MH6+cWNDcqxvL1fDzWI/e1Puta17raut+svdbCxxhjBAAAYDO+V3sAAAAAVwIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhB7C5TZs2ycfHR5s2bbqs/fr4+GjmzJmXtU+7GTp0qJo1a3a1h/Gb0KxZMw0dOvRX65KSkuTj46Pvvvvuio8J9kfIQbWyZcsWzZw5U3l5eVd7KNeEdevWEWQknTp1SjNnzrzsQRFXz5133ikfHx+NHTv2ag8FV1CNqz0AwBtbtmzRrFmzNHToUAUFBV3t4djeunXrtGjRogqDzs8//6waNa6Nf0JOnTqlWbNmSZJuu+22i97utddeU2lp6RUaVfWSlZUlX9/fxs/Vq1atUnp6+tUeBqrAb+MdB6CcU6dOVdheXFysoqKiKh5Nef7+/tdMyPFWQUGBJKlmzZpyOp1XeTS/DU6nUzVr1rzaw9Dp06f1+OOPa9KkSVd7KKgChBxUGzNnztTEiRMlSc2bN5ePj4/13X1xcbFmz56tli1byul0qlmzZnrqqadUWFjo0UezZs3Uv39/bdiwQZ07d5a/v78iIiK0atWqSo3pf//3f9WtWzfVqlVL9erVU69evbRhwwaPmsWLF+vGG2+U0+lUWFiYEhISyn3ddtttt6l9+/bKyMhQr169VKtWLT311FP67rvv5OPjoz//+c+aP3++dXxfffWVJGnv3r164IEHVL9+ffn7+6tLly765z//+avj/r//+z/9v//3/9SkSRM5nU6Fh4drwoQJ+vnnn62aoUOHatGiRZJkzbWPj4+1vqJrcnbs2KG7775bLpdLderU0R133KGtW7d61JRdc/Hpp58qMTFRDRs2VO3atXXfffcpNzf3V8d+tpkzZ8rHx0f//ve/9fvf/16BgYFq2LCh/vSnP8kYox9++EH33nuvXC6XQkND9cILL3hsX1RUpOnTpysyMlKBgYGqXbu2br31Vn300UdWzXfffaeGDRtKkmbNmmXNQ9mxDx06VHXq1NG+ffvUr18/1a1bV4888oi17uxrcmbMmCFfX1+lpaV5jGPUqFFyOBz68ssvL/rYL/a9fObMGc2aNUs33HCD/P39dd1116lnz55KTU21asqO4eDBg+rfv7/q1Kmj66+/3vr/v2vXLt1+++2qXbu2mjZtquXLl1/0OM8e77nX5OzZs0e33367AgIC1LhxYz3zzDMVnvnavn27YmNj1aBBAwUEBKh58+Z67LHHvB6DJM2dO1elpaV64oknKrU9qhkDVBNffvmleeihh4wk89JLL5m//vWv5q9//as5efKkiY+PN5LMAw88YBYtWmQeffRRI8kMGDDAo4+mTZua1q1bm6CgIDN58mTz4osvmg4dOhhfX1+zYcMGr8Yzc+ZMI8n06NHDzJs3zyxYsMA8/PDDZtKkSVbNjBkzjCQTExNjXn75ZTN27Fjj5+dnunbtaoqKiqy63r17m9DQUNOwYUMzbtw488orr5g1a9aYAwcOGEkmIiLCtGjRwjz//PPmpZdeMt9//73ZvXu3CQwMNBEREeZ//ud/zMKFC02vXr2Mj4+PWbVqldX3Rx99ZCSZjz76yGobN26c6devn3nuuefMK6+8YoYPH278/PzMAw88YNVs2bLF3HnnnUaSNdd//etfrfWSzIwZM6zXu3fvNrVr1zaNGjUys2fPNs8//7xp3ry5cTqdZuvWrVbdW2+9ZSSZm266ydx+++3m5ZdfNo8//rjx8/MzDz74oFf/D8rmt3Pnzuahhx4yixcvNnFxcUaSefHFF02bNm3MmDFjzOLFi80tt9xiJJnNmzdb2+fm5ppGjRqZxMREs2TJEjN37lzTpk0bU7NmTbNjxw5jjDEnT540S5YsMZLMfffdZ83Dl19+aYwxJj4+3jidTtOyZUsTHx9vli5dat5++21rXdOmTa39FRUVmZtuusk0bdrUuN1uY4wxKSkpRpKZPXu2V8d+se/lp556yvj4+JiRI0ea1157zbzwwgvmoYceMs8//7xVEx8fb/z9/U1ERIQZPXq0WbRokenRo4eRZN566y0TFhZmJk6caF5++WVz4403Gj8/P7N//36vxxsfH2+9Pnz4sGnYsKGpV6+emTlzppk3b5654YYbTMeOHY0kc+DAAWOMMTk5OaZevXqmdevWZt68eea1114zU6dONe3atfNq/8YY8/3335uAgADzt7/9zRjzy3s4ISHB635QfRByUK3MmzfP4x9AY4zJzMw0ksyIESM8ap944gkjyWzcuNFqa9q0qZFk/v73v1tt+fn5plGjRuamm2666HF88803xtfX19x3332mpKTEY11paakxxpgjR44Yh8Nh+vbt61GzcOFCI8m8+eabVlvv3r2NJLN06VKPvspCjsvlMkeOHPFYd8cdd5gOHTqY06dPe+y7R48e5oYbbrDaKgo5p06dKndMc+bMMT4+Pub777+32hISEsz5fhY6N+QMGDDAOBwOs2/fPqvt0KFDpm7duqZXr15WW1nIiYmJsebKGGMmTJhg/Pz8TF5eXoX7q0hZyBk1apTVVlxcbBo3bmx8fHw8PsiPHz9uAgICPD5oi4uLTWFhoUefx48fNyEhIeaxxx6z2nJzc8sdb5mygD158uQK150dcowxZteuXcbhcJgRI0aY48ePm+uvv9506dLFnDlz5qKP25iLfy936tTJxMXFXbCvsmN47rnnrLay+fLx8TErVqyw2vfu3Xveufi18Z499+PHjzeSzGeffWa1HTlyxAQGBnr8HV+9erWRZD7//HOv9leRBx54wPTo0cN6TcixP76uQrW3bt06SVJiYqJH++OPPy5JSk5O9mgPCwvTfffdZ712uVx69NFHtWPHDmVnZ1/UPtesWaPS0lJNnz693MWUZV/pfPjhhyoqKtL48eM9akaOHCmXy1VuXE6nU8OGDatwfwMHDrS+MpGkY8eOaePGjXrwwQd14sQJHT16VEePHtVPP/2k2NhYffPNN/rPf/5z3vEHBARYfy4oKNDRo0fVo0cPGWO0Y8eOi5qDs5WUlGjDhg0aMGCAWrRoYbU3atRIDz/8sD755BO53W6PbUaNGuXx9dett96qkpISff/9917vf8SIEdaf/fz81KVLFxljNHz4cKs9KChIbdq00f79+z1qHQ6HJKm0tFTHjh1TcXGxunTpoi+++MKrMYwZM+ai6tq3b69Zs2bp9ddfV2xsrI4ePaply5ZV6vqmi3kvBwUFac+ePfrmm29+tb+z57FsvmrXrq0HH3zQam/Tpo2CgoI85rEy1q1bp+7du6tbt25WW8OGDa2v+s4ehyStXbtWZ86cqfT+PvroI/3973/X/PnzK90Hqh9CDqq977//Xr6+vmrVqpVHe2hoqIKCgsp9aLZq1crjw1WSWrduLUkX/WyOffv2ydfXVxERERccl/TLh8LZHA6HWrRoUW5c119/vfWBe67mzZt7vP72229ljNGf/vQnNWzY0GOZMWOGJOnIkSPnHdvBgwc1dOhQ1a9fX3Xq1FHDhg3Vu3dvSVJ+fv55tzuf3NxcnTp1qtyxSlK7du1UWlqqH374waO9SZMmHq/r1asnSTp+/LjX+z+3r8DAQPn7+6tBgwbl2s/tf9myZerYsaN1vUrDhg2VnJzs1TzUqFFDjRs3vuj6iRMnqlOnTtq2bZtmzJhxwffRhVzMe/npp59WXl6eWrdurQ4dOmjixInauXNnub78/f09grT0y3w1bty43D4qmkdvff/997rhhhvKtZ/7Hurdu7cGDhyoWbNmqUGDBrr33nv11ltvlbve7kKKi4v13//93xoyZIi6du16SeNG9cKtEbCNc/8hrm7OPrvya+vKLs584oknFBsbW+E254a+MiUlJbrzzjt17NgxTZo0SW3btlXt2rX1n//8R0OHDq2yW579/PwqbDfGXJa+Lqb///3f/9XQoUM1YMAATZw4UcHBwfLz89OcOXO0b9++i96/0+n06vbo/fv3W2dWdu3addHbVUavXr20b98+/eMf/9CGDRv0+uuv66WXXtLSpUvLnQGryOX8/1QZPj4+ev/997V161b961//0vr16/XYY4/phRde0NatW1WnTp1f7ePtt99WVlaWXnnllXI/yJw4cULfffedgoODVatWrSt0FLhaCDmoVioKMk2bNlVpaam++eYbtWvXzmrPyclRXl6emjZt6lFfdhbk7L7+/e9/S9JFP522ZcuWKi0t1VdffaXOnTtXWFO236ysLI+vcIqKinTgwAHFxMRc1L4qUtZfzZo1ve5n165d+ve//61ly5bp0UcftdrPvtumzMUGx4YNG6pWrVrKysoqt27v3r3y9fVVeHi4V+OsCu+//75atGihVatWeRxr2dmwMpczQJeWlmro0KFyuVwaP368nnvuOT3wwAO6//77ve7rYt/L9evX17BhwzRs2DCdPHlSvXr10syZMz1CTlVr2rRphV+hVfQekqTu3bure/fuevbZZ7V8+XI98sgjWrFixUUdw8GDB3XmzBndcsst5da9/fbbevvtt7V69WoNGDDA6+PAbxtfV6FaqV27tiR53ILdr18/SSr3XfuLL74oSYqLi/NoP3TokFavXm29drvdevvtt9W5c2eFhoZe1DgGDBggX19fPf300+XOfJT9hBsTEyOHw6G//OUvHj/1vvHGG8rPzy83Lm8EBwfrtttu0yuvvKLDhw+XW3+hW7HLfjI/e0zGGC1YsKBcbUXzfb4++/btq3/84x8ePynn5ORo+fLl6tmzp1wu1wX7uBoqmovPPvus3IPiyn7CvxxP2n7xxRe1ZcsWvfrqq5o9e7Z69OihMWPG6OjRo173dTHv5Z9++sljmzp16qhVq1Zefd1zJfTr109bt27Vtm3brLbc3Fy98847HnXHjx8vd9ao7AeLiz2GwYMHa/Xq1eWWsnGsXr1aUVFRl3A0+K3iTA6qlcjISEnS1KlTNXjwYNWsWVP33HOP4uPj9eqrryovL0+9e/fWtm3btGzZMg0YMEB9+vTx6KN169YaPny4Pv/8c4WEhOjNN99UTk6O3nrrrYseR6tWrTR16lTNnj1bt956q+6//345nU59/vnnCgsL05w5c9SwYUNNmTJFs2bN0l133aXf/e53ysrK0uLFi9W1a1f9/ve/v6S5WLRokXr27KkOHTpo5MiRatGihXJycpSenq4ff/zxvM9cadu2rVq2bKknnnhC//nPf+RyufT3v/+9wmssyub7v//7vxUbGys/Pz8NHjy4wn6feeYZpaamqmfPnvrDH/6gGjVq6JVXXlFhYaHmzp17Scd6pfTv31+rVq3Sfffdp7i4OB04cEBLly5VRESETp48adUFBAQoIiJCK1euVOvWrVW/fn21b99e7du392p/X3/9tf70pz9p6NChuueeeyT98tygzp076w9/+IPeffddr/q7mPdyRESEbrvtNkVGRqp+/fravn273n///av+6wyefPJJ/fWvf9Vdd92lP/7xj6pdu7ZeffVVNW3a1OOaoWXLlmnx4sW677771LJlS504cUKvvfaaXC6X9QPOr2nbtq3atm1b4brmzZtzBsfOrsYtXcClmD17trn++uuNr6+vdavpmTNnzKxZs0zz5s1NzZo1TXh4uJkyZYrH7dXG/HIba1xcnFm/fr3p2LGjcTqdpm3btua9996r1FjefPNNc9NNNxmn02nq1atnevfubVJTUz1qFi5caNq2bWtq1qxpQkJCzJgxY8zx48c9anr37m1uvPHGcv2X3UI+b968Cve/b98+8+ijj5rQ0FBTs2ZNc/3115v+/fub999/36qp6Bbyr776ysTExJg6deqYBg0amJEjR5ovv/zSei5KmeLiYjNu3DjTsGFD4+Pj43E7uSq4jfiLL74wsbGxpk6dOqZWrVqmT58+ZsuWLR41ZbeQn3tLcEXj/DVlt5Dn5uZ6tMfHx5vatWuXqz93nktLS81zzz1nmjZtapxOp7npppvM2rVrK7z1e8uWLSYyMtI4HA6PYz/fvsrWlfVTXFxsunbtaho3blzuNvkFCxYYSWblypUXfewX+15+5plnTLdu3UxQUJAJCAgwbdu2Nc8++6zHc5oudr7O3bc3zr2F3Bhjdu7caXr37m38/f3N9ddfb2bPnm3eeOMNj1vIv/jiC/PQQw+ZJk2aGKfTaYKDg03//v3N9u3bvdp/RcQt5LbnY0wVXT0G/AY0a9ZM7du319q1a6/2UIBLwnsZ+HVckwMAAGyJa3KAc/zaAwEDAgIUGBhYRaO5Np08edLjmpiKNGzY8Ly3N1dnubm5KikpOe96h8Oh+vXrV+GILuxq/305duzYBX9hrZ+fX7nn/+DaQcgBztGoUaMLro+Pj1dSUlLVDOYa9ec//1mzZs26YM2BAwcu+pb/6qRr164XfOpz7969tWnTpqob0K+42n9f7r//fm3evPm865s2bXrRD/mE/XBNDnCODz/88ILrw8LCKv2EWlyc/fv3/+qvDejZs6f8/f2raERV59NPP/X4bfDnqlevnnXX22/B1f77kpGRccGnLwcEBFT4fBxcGwg5AADAlrjwGAAA2NI1fU1OaWmpDh06pLp161b733sEAMC1whijEydOKCws7IK/N+6aDjmHDh36Tf4+HQAA8Ot++OEHNW7c+Lzrr+mQU7duXUm/TNJv8ffqAACA8txut8LDw63P8fO5pkNO2VdULpeLkAMAQDXza5eacOExAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwJUIOAACwpRpXewB2dSblk3JtNe/qeRVGAgDAtYkzOQAAwJYIOQAAwJa8CjlLlixRx44d5XK55HK5FB0drQ8++MBaf9ttt8nHx8djGT16tEcfBw8eVFxcnGrVqqXg4GBNnDhRxcXFHjWbNm3SzTffLKfTqVatWikpKancWBYtWqRmzZrJ399fUVFR2rZtmzeHAgAAbM6rkNO4cWM9//zzysjI0Pbt23X77bfr3nvv1Z49e6yakSNH6vDhw9Yyd+5ca11JSYni4uJUVFSkLVu2aNmyZUpKStL06dOtmgMHDiguLk59+vRRZmamxo8frxEjRmj9+vVWzcqVK5WYmKgZM2boiy++UKdOnRQbG6sjR45cylwAAAAb8THGmEvpoH79+po3b56GDx+u2267TZ07d9b8+fMrrP3ggw/Uv39/HTp0SCEhIZKkpUuXatKkScrNzZXD4dCkSZOUnJys3bt3W9sNHjxYeXl5SklJkSRFRUWpa9euWrhwoSSptLRU4eHhGjdunCZPnnzRY3e73QoMDFR+fr5cLlclZ6BiXHgMAMCVcbGf35W+JqekpEQrVqxQQUGBoqOjrfZ33nlHDRo0UPv27TVlyhSdOnXKWpeenq4OHTpYAUeSYmNj5Xa7rbNB6enpiomJ8dhXbGys0tPTJUlFRUXKyMjwqPH19VVMTIxVcz6FhYVyu90eCwAAsCevbyHftWuXoqOjdfr0adWpU0erV69WRESEJOnhhx9W06ZNFRYWpp07d2rSpEnKysrSqlWrJEnZ2dkeAUeS9To7O/uCNW63Wz///LOOHz+ukpKSCmv27t17wbHPmTNHs2bN8vaQAQBANeR1yGnTpo0yMzOVn5+v999/X/Hx8dq8ebMiIiI0atQoq65Dhw5q1KiR7rjjDu3bt08tW7a8rAOvjClTpigxMdF67Xa7FR4efhVHBAAArhSvQ47D4VCrVq0kSZGRkfr888+1YMECvfLKK+Vqo6KiJEnffvutWrZsqdDQ0HJ3QeXk5EiSQkNDrf+WtZ1d43K5FBAQID8/P/n5+VVYU9bH+TidTjmdTi+OFgAAVFeX/Jyc0tJSFRYWVrguMzNTktSoUSNJUnR0tHbt2uVxF1RqaqpcLpf1lVd0dLTS0tI8+klNTbWu+3E4HIqMjPSoKS0tVVpamse1QQAA4Nrm1ZmcKVOm6O6771aTJk104sQJLV++XJs2bdL69eu1b98+LV++XP369dN1112nnTt3asKECerVq5c6duwoSerbt68iIiI0ZMgQzZ07V9nZ2Zo2bZoSEhKsMyyjR4/WwoUL9eSTT+qxxx7Txo0b9e677yo5OdkaR2JiouLj49WlSxd169ZN8+fPV0FBgYYNG3YZpwYAAFRnXoWcI0eO6NFHH9Xhw4cVGBiojh07av369brzzjv1ww8/6MMPP7QCR3h4uAYOHKhp06ZZ2/v5+Wnt2rUaM2aMoqOjVbt2bcXHx+vpp5+2apo3b67k5GRNmDBBCxYsUOPGjfX6668rNjbWqhk0aJByc3M1ffp0ZWdnq3PnzkpJSSl3MTIAALh2XfJzcqoznpMDAED1c8WfkwMAAPBbRsgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2VONqD8Cuvsv7oFzbDep5FUYCAMC1iTM5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlrwKOUuWLFHHjh3lcrnkcrkUHR2tDz74/38R5enTp5WQkKDrrrtOderU0cCBA5WTk+PRx8GDBxUXF6datWopODhYEydOVHFxsUfNpk2bdPPNN8vpdKpVq1ZKSkoqN5ZFixapWbNm8vf3V1RUlLZt2+bNoQAAAJvzKuQ0btxYzz//vDIyMrR9+3bdfvvtuvfee7Vnzx5J0oQJE/Svf/1L7733njZv3qxDhw7p/vvvt7YvKSlRXFycioqKtGXLFi1btkxJSUmaPn26VXPgwAHFxcWpT58+yszM1Pjx4zVixAitX7/eqlm5cqUSExM1Y8YMffHFF+rUqZNiY2N15MiRS50PAABgEz7GGHMpHdSvX1/z5s3TAw88oIYNG2r58uV64IEHJEl79+5Vu3btlJ6eru7du+uDDz5Q//79dejQIYWEhEiSli5dqkmTJik3N1cOh0OTJk1ScnKydu/ebe1j8ODBysvLU0pKiiQpKipKXbt21cKFCyVJpaWlCg8P17hx4zR58uSLHrvb7VZgYKDy8/PlcrkuZRrK+WbF1HJtNwx+9rLuAwCAa9HFfn5X+pqckpISrVixQgUFBYqOjlZGRobOnDmjmJgYq6Zt27Zq0qSJ0tPTJUnp6enq0KGDFXAkKTY2Vm632zoblJ6e7tFHWU1ZH0VFRcrIyPCo8fX1VUxMjFVzPoWFhXK73R4LAACwJ69Dzq5du1SnTh05nU6NHj1aq1evVkREhLKzs+VwOBQUFORRHxISouzsbElSdna2R8ApW1+27kI1brdbP//8s44ePaqSkpIKa8r6OJ85c+YoMDDQWsLDw709fAAAUE14HXLatGmjzMxMffbZZxozZozi4+P11VdfXYmxXXZTpkxRfn6+tfzwww9Xe0gAAOAKqeHtBg6HQ61atZIkRUZG6vPPP9eCBQs0aNAgFRUVKS8vz+NsTk5OjkJDQyVJoaGh5e6CKrv76uyac+/IysnJkcvlUkBAgPz8/OTn51dhTVkf5+N0OuV0Or09ZAAAUA1d8nNySktLVVhYqMjISNWsWVNpaWnWuqysLB08eFDR0dGSpOjoaO3atcvjLqjU1FS5XC5FRERYNWf3UVZT1ofD4VBkZKRHTWlpqdLS0qwaAAAAr87kTJkyRXfffbeaNGmiEydOaPny5dq0aZPWr1+vwMBADR8+XImJiapfv75cLpfGjRun6Ohode/eXZLUt29fRUREaMiQIZo7d66ys7M1bdo0JSQkWGdYRo8erYULF+rJJ5/UY489po0bN+rdd99VcnKyNY7ExETFx8erS5cu6tatm+bPn6+CggINGzbsMk4NAACozrwKOUeOHNGjjz6qw4cPKzAwUB07dtT69et15513SpJeeukl+fr6auDAgSosLFRsbKwWL15sbe/n56e1a9dqzJgxio6OVu3atRUfH6+nn37aqmnevLmSk5M1YcIELViwQI0bN9brr7+u2NhYq2bQoEHKzc3V9OnTlZ2drc6dOyslJaXcxcgAAODadcnPyanOeE4OAADVzxV/Tg4AAMBvGSEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYklchZ86cOeratavq1q2r4OBgDRgwQFlZWR41t912m3x8fDyW0aNHe9QcPHhQcXFxqlWrloKDgzVx4kQVFxd71GzatEk333yznE6nWrVqpaSkpHLjWbRokZo1ayZ/f39FRUVp27Zt3hwOAACwMa9CzubNm5WQkKCtW7cqNTVVZ86cUd++fVVQUOBRN3LkSB0+fNha5s6da60rKSlRXFycioqKtGXLFi1btkxJSUmaPn26VXPgwAHFxcWpT58+yszM1Pjx4zVixAitX7/eqlm5cqUSExM1Y8YMffHFF+rUqZNiY2N15MiRys4FAACwER9jjKnsxrm5uQoODtbmzZvVq1cvSb+cyencubPmz59f4TYffPCB+vfvr0OHDikkJESStHTpUk2aNEm5ublyOByaNGmSkpOTtXv3bmu7wYMHKy8vTykpKZKkqKgode3aVQsXLpQklZaWKjw8XOPGjdPkyZMr3HdhYaEKCwut1263W+Hh4crPz5fL5arsNFTomxVTy7XdMPjZy7oPAACuRW63W4GBgb/6+X1J1+Tk5+dLkurXr+/R/s4776hBgwZq3769pkyZolOnTlnr0tPT1aFDByvgSFJsbKzcbrf27Nlj1cTExHj0GRsbq/T0dElSUVGRMjIyPGp8fX0VExNj1VRkzpw5CgwMtJbw8PBKHjkAAPitq1HZDUtLSzV+/Hjdcsstat++vdX+8MMPq2nTpgoLC9POnTs1adIkZWVladWqVZKk7Oxsj4AjyXqdnZ19wRq3262ff/5Zx48fV0lJSYU1e/fuPe+Yp0yZosTEROt12ZkcAABgP5UOOQkJCdq9e7c++eQTj/ZRo0ZZf+7QoYMaNWqkO+64Q/v27VPLli0rP9LLwOl0yul0XtUxAACAqlGpr6vGjh2rtWvX6qOPPlLjxo0vWBsVFSVJ+vbbbyVJoaGhysnJ8agpex0aGnrBGpfLpYCAADVo0EB+fn4V1pT1AQAArm1ehRxjjMaOHavVq1dr48aNat68+a9uk5mZKUlq1KiRJCk6Olq7du3yuAsqNTVVLpdLERERVk1aWppHP6mpqYqOjpYkORwORUZGetSUlpYqLS3NqgEAANc2r76uSkhI0PLly/WPf/xDdevWta6hCQwMVEBAgPbt26fly5erX79+uu6667Rz505NmDBBvXr1UseOHSVJffv2VUREhIYMGaK5c+cqOztb06ZNU0JCgvVV0ujRo7Vw4UI9+eSTeuyxx7Rx40a9++67Sk5OtsaSmJio+Ph4denSRd26ddP8+fNVUFCgYcOGXa65AQAA1ZhXIWfJkiWSfrlN/GxvvfWWhg4dKofDoQ8//NAKHOHh4Ro4cKCmTZtm1fr5+Wnt2rUaM2aMoqOjVbt2bcXHx+vpp5+2apo3b67k5GRNmDBBCxYsUOPGjfX6668rNjbWqhk0aJByc3M1ffp0ZWdnq3PnzkpJSSl3MTIAALg2XdJzcqq7i73PvjJ4Tg4AAFdGlTwnBwAA4LeKkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGyJkAMAAGzJq5AzZ84cde3aVXXr1lVwcLAGDBigrKwsj5rTp08rISFB1113nerUqaOBAwcqJyfHo+bgwYOKi4tTrVq1FBwcrIkTJ6q4uNijZtOmTbr55pvldDrVqlUrJSUllRvPokWL1KxZM/n7+ysqKkrbtm3z5nAAAICNeRVyNm/erISEBG3dulWpqak6c+aM+vbtq4KCAqtmwoQJ+te//qX33ntPmzdv1qFDh3T//fdb60tKShQXF6eioiJt2bJFy5YtU1JSkqZPn27VHDhwQHFxcerTp48yMzM1fvx4jRgxQuvXr7dqVq5cqcTERM2YMUNffPGFOnXqpNjYWB05cuRS5gMAANiEjzHGVHbj3NxcBQcHa/PmzerVq5fy8/PVsGFDLV++XA888IAkae/evWrXrp3S09PVvXt3ffDBB+rfv78OHTqkkJAQSdLSpUs1adIk5ebmyuFwaNKkSUpOTtbu3butfQ0ePFh5eXlKSUmRJEVFRalr165auHChJKm0tFTh4eEaN26cJk+efFHjd7vdCgwMVH5+vlwuV2WnoULfrJharu2Gwc9e1n0AAHAtutjP70u6Jic/P1+SVL9+fUlSRkaGzpw5o5iYGKumbdu2atKkidLT0yVJ6enp6tChgxVwJCk2NlZut1t79uyxas7uo6ymrI+ioiJlZGR41Pj6+iomJsaqqUhhYaHcbrfHAgAA7KnSIae0tFTjx4/XLbfcovbt20uSsrOz5XA4FBQU5FEbEhKi7Oxsq+bsgFO2vmzdhWrcbrd+/vlnHT16VCUlJRXWlPVRkTlz5igwMNBawsPDvT9wAABQLVQ65CQkJGj37t1asWLF5RzPFTVlyhTl5+dbyw8//HC1hwQAAK6QGpXZaOzYsVq7dq0+/vhjNW7c2GoPDQ1VUVGR8vLyPM7m5OTkKDQ01Ko59y6osruvzq45946snJwcuVwuBQQEyM/PT35+fhXWlPVREafTKafT6f0BAwCAaserMznGGI0dO1arV6/Wxo0b1bx5c4/1kZGRqlmzptLS0qy2rKwsHTx4UNHR0ZKk6Oho7dq1y+MuqNTUVLlcLkVERFg1Z/dRVlPWh8PhUGRkpEdNaWmp0tLSrBoAAHBt8+pMTkJCgpYvX65//OMfqlu3rnX9S2BgoAICAhQYGKjhw4crMTFR9evXl8vl0rhx4xQdHa3u3btLkvr27auIiAgNGTJEc+fOVXZ2tqZNm6aEhATrLMvo0aO1cOFCPfnkk3rssce0ceNGvfvuu0pOTrbGkpiYqPj4eHXp0kXdunXT/PnzVVBQoGHDhl2uuQEAANWYVyFnyZIlkqTbbrvNo/2tt97S0KFDJUkvvfSSfH19NXDgQBUWFio2NlaLFy+2av38/LR27VqNGTNG0dHRql27tuLj4/X0009bNc2bN1dycrImTJigBQsWqHHjxnr99dcVGxtr1QwaNEi5ubmaPn26srOz1blzZ6WkpJS7GBkAAFybLuk5OdUdz8kBAKD6qZLn5AAAAPxWEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAteR1yPv74Y91zzz0KCwuTj4+P1qxZ47F+6NCh8vHx8Vjuuusuj5pjx47pkUcekcvlUlBQkIYPH66TJ0961OzcuVO33nqr/P39FR4errlz55Yby3vvvae2bdvK399fHTp00Lp167w9HAAAYFNeh5yCggJ16tRJixYtOm/NXXfdpcOHD1vL3/72N4/1jzzyiPbs2aPU1FStXbtWH3/8sUaNGmWtd7vd6tu3r5o2baqMjAzNmzdPM2fO1KuvvmrVbNmyRQ899JCGDx+uHTt2aMCAARowYIB2797t7SEBAAAb8jHGmEpv7OOj1atXa8CAAVbb0KFDlZeXV+4MT5mvv/5aERER+vzzz9WlSxdJUkpKivr166cff/xRYWFhWrJkiaZOnars7Gw5HA5J0uTJk7VmzRrt3btXkjRo0CAVFBRo7dq1Vt/du3dX586dtXTp0osav9vtVmBgoPLz8+VyuSoxA+f3zYqp5dpuGPzsZd0HAADXoov9/L4i1+Rs2rRJwcHBatOmjcaMGaOffvrJWpeenq6goCAr4EhSTEyMfH199dlnn1k1vXr1sgKOJMXGxiorK0vHjx+3amJiYjz2Gxsbq/T09POOq7CwUG6322MBAAD2dNlDzl133aW3335baWlp+p//+R9t3rxZd999t0pKSiRJ2dnZCg4O9timRo0aql+/vrKzs62akJAQj5qy179WU7a+InPmzFFgYKC1hIeHX9rBAgCA36wal7vDwYMHW3/u0KGDOnbsqJYtW2rTpk264447LvfuvDJlyhQlJiZar91uN0EHAACbuuK3kLdo0UINGjTQt99+K0kKDQ3VkSNHPGqKi4t17NgxhYaGWjU5OTkeNWWvf62mbH1FnE6nXC6XxwIAAOzpioecH3/8UT/99JMaNWokSYqOjlZeXp4yMjKsmo0bN6q0tFRRUVFWzccff6wzZ85YNampqWrTpo3q1atn1aSlpXnsKzU1VdHR0Vf6kAAAQDXgdcg5efKkMjMzlZmZKUk6cOCAMjMzdfDgQZ08eVITJ07U1q1b9d133yktLU333nuvWrVqpdjYWElSu3btdNddd2nkyJHatm2bPv30U40dO1aDBw9WWFiYJOnhhx+Ww+HQ8OHDtWfPHq1cuVILFizw+Krpj3/8o1JSUvTCCy9o7969mjlzprZv366xY8dehmkBAADVndchZ/v27brpppt00003SZISExN10003afr06fLz89POnTv1u9/9Tq1bt9bw4cMVGRmp//u//5PT6bT6eOedd9S2bVvdcccd6tevn3r27OnxDJzAwEBt2LBBBw4cUGRkpB5//HFNnz7d41k6PXr00PLly/Xqq6+qU6dOev/997VmzRq1b9/+UuYDAADYxCU9J6e64zk5AABUP1f1OTkAAABXGyEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYktch5+OPP9Y999yjsLAw+fj4aM2aNR7rjTGaPn26GjVqpICAAMXExOibb77xqDl27JgeeeQRuVwuBQUFafjw4Tp58qRHzc6dO3XrrbfK399f4eHhmjt3brmxvPfee2rbtq38/f3VoUMHrVu3ztvDAQAANuV1yCkoKFCnTp20aNGiCtfPnTtXf/nLX7R06VJ99tlnql27tmJjY3X69Gmr5pFHHtGePXuUmpqqtWvX6uOPP9aoUaOs9W63W3379lXTpk2VkZGhefPmaebMmXr11Vetmi1btuihhx7S8OHDtWPHDg0YMEADBgzQ7t27vT0kAABgQz7GGFPpjX18tHr1ag0YMEDSL2dxwsLC9Pjjj+uJJ56QJOXn5yskJERJSUkaPHiwvv76a0VEROjzzz9Xly5dJEkpKSnq16+ffvzxR4WFhWnJkiWaOnWqsrOz5XA4JEmTJ0/WmjVrtHfvXknSoEGDVFBQoLVr11rj6d69uzp37qylS5de1PjdbrcCAwOVn58vl8tV2Wmo0DcrppZru2Hws5d1HwAAXIsu9vP7sl6Tc+DAAWVnZysmJsZqCwwMVFRUlNLT0yVJ6enpCgoKsgKOJMXExMjX11efffaZVdOrVy8r4EhSbGyssrKydPz4cavm7P2U1ZTtpyKFhYVyu90eCwAAsKfLGnKys7MlSSEhIR7tISEh1rrs7GwFBwd7rK9Ro4bq16/vUVNRH2fv43w1ZesrMmfOHAUGBlpLeHi4t4cIAACqiWvq7qopU6YoPz/fWn744YerPSQAAHCFXNaQExoaKknKycnxaM/JybHWhYaG6siRIx7ri4uLdezYMY+aivo4ex/nqylbXxGn0ymXy+WxAAAAe7qsIad58+YKDQ1VWlqa1eZ2u/XZZ58pOjpakhQdHa28vDxlZGRYNRs3blRpaamioqKsmo8//lhnzpyxalJTU9WmTRvVq1fPqjl7P2U1ZfsBAADXNq9DzsmTJ5WZmanMzExJv1xsnJmZqYMHD8rHx0fjx4/XM888o3/+85/atWuXHn30UYWFhVl3YLVr10533XWXRo4cqW3btunTTz/V2LFjNXjwYIWFhUmSHn74YTkcDg0fPlx79uzRypUrtWDBAiUmJlrj+OMf/6iUlBS98MIL2rt3r2bOnKnt27dr7Nixlz4rAACg2qvh7Qbbt29Xnz59rNdlwSM+Pl5JSUl68sknVVBQoFGjRikvL089e/ZUSkqK/P39rW3eeecdjR07VnfccYd8fX01cOBA/eUvf7HWBwYGasOGDUpISFBkZKQaNGig6dOnezxLp0ePHlq+fLmmTZump556SjfccIPWrFmj9u3bV2oiAACAvVzSc3KqO56TAwBA9XNVnpMDAADwW0HIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtnTZQ87MmTPl4+PjsbRt29Zaf/r0aSUkJOi6665TnTp1NHDgQOXk5Hj0cfDgQcXFxalWrVoKDg7WxIkTVVxc7FGzadMm3XzzzXI6nWrVqpWSkpIu96EAAIBq7Iqcybnxxht1+PBha/nkk0+sdRMmTNC//vUvvffee9q8ebMOHTqk+++/31pfUlKiuLg4FRUVacuWLVq2bJmSkpI0ffp0q+bAgQOKi4tTnz59lJmZqfHjx2vEiBFav379lTgcAABQDdW4Ip3WqKHQ0NBy7fn5+XrjjTe0fPly3X777ZKkt956S+3atdPWrVvVvXt3bdiwQV999ZU+/PBDhYSEqHPnzpo9e7YmTZqkmTNnyuFwaOnSpWrevLleeOEFSVK7du30ySef6KWXXlJsbOyVOCQAAPArzqR84vG65l09r9JIfnFFzuR88803CgsLU4sWLfTII4/o4MGDkqSMjAydOXNGMTExVm3btm3VpEkTpaenS5LS09PVoUMHhYSEWDWxsbFyu93as2ePVXN2H2U1ZX2cT2Fhodxut8cCAADs6bKHnKioKCUlJSklJUVLlizRgQMHdOutt+rEiRPKzs6Ww+FQUFCQxzYhISHKzs6WJGVnZ3sEnLL1ZesuVON2u/Xzzz+fd2xz5sxRYGCgtYSHh1/q4QIAgN+oy/511d133239uWPHjoqKilLTpk317rvvKiAg4HLvzitTpkxRYmKi9drtdhN0AACwqSt+C3lQUJBat26tb7/9VqGhoSoqKlJeXp5HTU5OjnUNT2hoaLm7rcpe/1qNy+W6YJByOp1yuVweCwAAsKcrHnJOnjypffv2qVGjRoqMjFTNmjWVlpZmrc/KytLBgwcVHR0tSYqOjtauXbt05MgRqyY1NVUul0sRERFWzdl9lNWU9QEAAHDZQ84TTzyhzZs367vvvtOWLVt03333yc/PTw899JACAwM1fPhwJSYm6qOPPlJGRoaGDRum6Ohode/eXZLUt29fRUREaMiQIfryyy+1fv16TZs2TQkJCXI6nZKk0aNHa//+/XryySe1d+9eLV68WO+++64mTJhwuQ8HAABUU5f9mpwff/xRDz30kH766Sc1bNhQPXv21NatW9WwYUNJ0ksvvSRfX18NHDhQhYWFio2N1eLFi63t/fz8tHbtWo0ZM0bR0dGqXbu24uPj9fTTT1s1zZs3V3JysiZMmKAFCxaocePGev3117l9HAAAWHyMMeZqD+JqcbvdCgwMVH5+/mW/PuebFVPLtd0w+NnLug8AAH5Lquo5ORf7+c3vrgIAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZU42oPAAAAVD9nUj652kP4VYQcAABwWXyX94HH6xvU8yqN5BeEHAAArjElpkRf/7RDx08fVT3/Bmp33U3y8/G74DbenLkpNUY/Fubp0CevK6huI93Yvq9q+NW81GF7rdqHnEWLFmnevHnKzs5Wp06d9PLLL6tbt25Xe1gAAPwmpR9K0xu75+mn00estuv8gzW8/URFh91xyf1nncrV6rp7dKz2z9KxrdIxqf43z+ux6/9Lt0T//pL790a1DjkrV65UYmKili5dqqioKM2fP1+xsbHKyspScHDw1R4eAAC/KemH0jR3+5OSjEf7T6ePaO72iXq8xnBF+XaqdP9Zp3L1xnXby7Ufq1mgPx95UUpXlQadah1yXnzxRY0cOVLDhg2TJC1dulTJycl68803NXny5Ks8OgAAqtaFvlIqNaV648yzOjfgnC2p+O/qWrODfH28v/m6pLREq+vu+eWFzzkrfX7Z7Vv/eUVRJYOq7KurahtyioqKlJGRoSlTplhtvr6+iomJUXp6eoXbFBYWqrCw0Hqdn58vSXK73Zd9fCdPFZZruxL7AQBUjTOpFX+2VBdfm33KLv7pgjXZ+kmf19it2u79Xvf/Q2GecuqdlH6+UP9ufbZ1jTp0iPW6/7OVfZ4ac/7AJlXjkHP06FGVlJQoJCTEoz0kJER79+6tcJs5c+Zo1qxZ5drDw8OvyBjLGf5C1ewHAIBKSlbCFe7/wcvW14kTJxQYGHje9dU25FTGlClTlJiYaL0uLS3VsWPHdN1118nH59xza5XndrsVHh6uH374QS6X67L1C0/Mc9VhrqsG81w1mOeqcSXn2RijEydOKCws7IJ11TbkNGjQQH5+fsrJyfFoz8nJUWhoaIXbOJ1OOZ1Oj7agoKArNUS5XC7+AlUB5rnqMNdVg3muGsxz1bhS83yhMzhlqu2vdXA4HIqMjFRaWprVVlpaqrS0NEVHR1/FkQEAgN+CansmR5ISExMVHx+vLl26qFu3bpo/f74KCgqsu60AAMC1q1qHnEGDBik3N1fTp09Xdna2OnfurJSUlHIXI1c1p9OpGTNmlPtqDJcX81x1mOuqwTxXDea5avwW5tnH/Nr9VwAAANVQtb0mBwAA4EIIOQAAwJYIOQAAwJYIOQAAwJYIOQAAwJYIOZW0aNEiNWvWTP7+/oqKitK2bdsuWP/ee++pbdu28vf3V4cOHbRu3boqGmn15s08v/baa7r11ltVr1491atXTzExMb/6/wW/8Pb9XGbFihXy8fHRgAEDruwAbcTbuc7Ly1NCQoIaNWokp9Op1q1b8+/HRfB2nufPn682bdooICBA4eHhmjBhgk6fPl1Fo62ePv74Y91zzz0KCwuTj4+P1qxZ86vbbNq0STfffLOcTqdatWqlpKSkKztIA6+tWLHCOBwO8+abb5o9e/aYkSNHmqCgIJOTk1Nh/aeffmr8/PzM3LlzzVdffWWmTZtmatasaXbt2lXFI69evJ3nhx9+2CxatMjs2LHDfP3112bo0KEmMDDQ/Pjjj1U88urF23kuc+DAAXP99debW2+91dx7771VM9hqztu5LiwsNF26dDH9+vUzn3zyiTlw4IDZtGmTyczMrOKRVy/ezvM777xjnE6neeedd8yBAwfM+vXrTaNGjcyECROqeOTVy7p168zUqVPNqlWrjCSzevXqC9bv37/f1KpVyyQmJpqvvvrKvPzyy8bPz8+kpKRcsTESciqhW7duJiEhwXpdUlJiwsLCzJw5cyqsf/DBB01cXJxHW1RUlPmv//qvKzrO6s7beT5XcXGxqVu3rlm2bNmVGqItVGaei4uLTY8ePczrr79u4uPjCTkXydu5XrJkiWnRooUpKiqqqiHagrfznJCQYG6//XaPtsTERHPLLbdc0XHaycWEnCeffNLceOONHm2DBg0ysbGxV2xcfF3lpaKiImVkZCgmJsZq8/X1VUxMjNLT0yvcJj093aNekmJjY89bj8rN87lOnTqlM2fOqH79+ldqmNVeZef56aefVnBwsIYPH14Vw7SFysz1P//5T0VHRyshIUEhISFq3769nnvuOZWUlFTVsKudysxzjx49lJGRYX2ltX//fq1bt079+vWrkjFfK67GZ2G1/rUOV8PRo0dVUlJS7ldHhISEaO/evRVuk52dXWF9dnb2FRtndVeZeT7XpEmTFBYWVu4vFf5/lZnnTz75RG+88YYyMzOrYIT2UZm53r9/vzZu3KhHHnlE69at07fffqs//OEPOnPmjGbMmFEVw652KjPPDz/8sI4ePaqePXvKGKPi4mKNHj1aTz31VFUM+Zpxvs9Ct9utn3/+WQEBAZd9n5zJgS09//zzWrFihVavXi1/f/+rPRzbOHHihIYMGaLXXntNDRo0uNrDsb3S0lIFBwfr1VdfVWRkpAYNGqSpU6dq6dKlV3totrJp0yY999xzWrx4sb744gutWrVKycnJmj179tUeGi4RZ3K81KBBA/n5+SknJ8ejPScnR6GhoRVuExoa6lU9KjfPZf785z/r+eef14cffqiOHTteyWFWe97O8759+/Tdd9/pnnvusdpKS0slSTVq1FBWVpZatmx5ZQddTVXmPd2oUSPVrFlTfn5+Vlu7du2UnZ2toqIiORyOKzrm6qgy8/ynP/1JQ4YM0YgRIyRJHTp0UEFBgUaNGqWpU6fK15fzAZfD+T4LXS7XFTmLI3Emx2sOh0ORkZFKS0uz2kpLS5WWlqbo6OgKt4mOjvaol6TU1NTz1qNy8yxJc+fO1ezZs5WSkqIuXbpUxVCrNW/nuW3bttq1a5cyMzOt5Xe/+5369OmjzMxMhYeHV+Xwq5XKvKdvueUWffvtt1aQlKR///vfatSoEQHnPCozz6dOnSoXZMqCpeF3WF82V+Wz8Ipd0mxjK1asME6n0yQlJZmvvvrKjBo1ygQFBZns7GxjjDFDhgwxkydPtuo//fRTU6NGDfPnP//ZfP3112bGjBncQn4RvJ3n559/3jgcDvP++++bw4cPW8uJEyeu1iFUC97O87m4u+rieTvXBw8eNHXr1jVjx441WVlZZu3atSY4ONg888wzV+sQqgVv53nGjBmmbt265m9/+5vZv3+/2bBhg2nZsqV58MEHr9YhVAsnTpwwO3bsMDt27DCSzIsvvmh27Nhhvv/+e2OMMZMnTzZDhgyx6stuIZ84caL5+uuvzaJFi7iF/Lfq5ZdfNk2aNDEOh8N069bNbN261VrXu3dvEx8f71H/7rvvmtatWxuHw2FuvPFGk5ycXMUjrp68meemTZsaSeWWGTNmVP3Aqxlv389nI+R4x9u53rJli4mKijJOp9O0aNHCPPvss6a4uLiKR139eDPPZ86cMTNnzjQtW7Y0/v7+Jjw83PzhD38wx48fr/qBVyMfffRRhf/mls1tfHy86d27d7ltOnfubBwOh2nRooV56623rugYfYzhXBwAALAfrskBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC2RMgBAAC29P8BPAXOetGg9iEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQwdJREFUeJzt3XtcVWXe9/EvoGzwsEFTQBLxlAcSD6EiZprFSIlNlj1pOobmYXTQJ2UyNR0PWdmtU+nkqbPO3HlrNenMiKGEqXeJmSR5KB1TSxsFMYXtoUDgev7oxXrcgsZGRVl+3q/XeuW+1m9d61pXW/eXtddaeBljjAAAAGzG+3oPAAAA4Fog5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AAAAFsi5AA2t3HjRnl5eWnjxo1XtV8vLy/NmDHjqvZpN0OGDFHjxo2v9zBuCI0bN9aQIUN+tW7p0qXy8vLSd999d83HBPsj5KBK2bJli2bMmKHc3NzrPZSbwtq1awkyks6dO6cZM2Zc9aCIyjNjxgx5eXmVWvz8/K730HANVbveAwA8sWXLFs2cOVNDhgxRYGDg9R6O7a1du1YLFy4sM+j89NNPqlbt5vgn5Ny5c5o5c6Yk6e677y73dm+88YaKi4uv0aiqln379snb+/r/XL148WLVqlXLeu3j43MdR4Nr7eb4Fwqogs6dO6caNWqUai8sLFRxcbF8fX2vw6j+P34CvrSzZ8+qZs2aql69+vUeyg3D4XBc7yFIkh555BHVq1fveg8DleT6x2qgnGbMmKEJEyZIkpo0aWKdbv7uu+9UWFioWbNmqVmzZnI4HGrcuLGeeeYZ5efnu/XRuHFj9enTR+vXr1f79u3l5+eniIgIffjhhxUa03//93+rc+fOqlGjhurUqaPu3btr/fr1bjWLFi3S7bffLofDodDQUCUmJpb6uu3uu+9WmzZtlJGRoe7du6tGjRp65pln9N1338nLy0t//vOfNW/ePOv4vv76a0nS3r179cgjj6hu3bry8/NTx44d9c9//vNXx/2///u/+j//5/+oUaNGcjgcCgsL0/jx4/XTTz9ZNUOGDNHChQslye30fomyrsnZsWOH7r//fjmdTtWqVUv33nuvtm7d6lZTcs3FZ599pqSkJNWvX181a9bUQw89pJycnF8d+4VKvoL497//rd/97ncKCAhQ/fr19ac//UnGGB05ckQPPvignE6nQkJC9NJLL7ltX1BQoGnTpikqKkoBAQGqWbOm7rrrLn3yySdWzXfffaf69etLkmbOnGnNQ8mxDxkyRLVq1dKBAwfUu3dv1a5dW4MGDbLWXXhNzvTp0+Xt7a20tDS3cYwcOVK+vr766quvyn3s5X0vnz9/XjNnztRtt90mPz8/3XLLLerWrZtSU1OtmpJjOHz4sPr06aNatWrp1ltvtf7/79q1S/fcc49q1qyp8PBwLV++vNzjvHC8F1+Ts2fPHt1zzz3y9/dXw4YN9dxzz5V55mv79u2Ki4tTvXr15O/vryZNmuiJJ57weAySZIyRy+WSMaZC26OKMUAV8dVXX5nHHnvMSDKvvPKK+dvf/mb+9re/mTNnzpiEhAQjyTzyyCNm4cKF5vHHHzeSTN++fd36CA8PNy1atDCBgYFm0qRJ5uWXXzaRkZHG29vbrF+/3qPxzJgxw0gyXbt2NXPnzjXz5883AwcONBMnTrRqpk+fbiSZ2NhY8+qrr5oxY8YYHx8f06lTJ1NQUGDV9ejRw4SEhJj69eubsWPHmtdee82sXr3aHDp0yEgyERERpmnTpubFF180r7zyivn+++/N7t27TUBAgImIiDD/9V//ZRYsWGC6d+9uvLy8zIcffmj1/cknnxhJ5pNPPrHaxo4da3r37m1eeOEF89prr5lhw4YZHx8f88gjj1g1W7ZsMb/5zW+MJGuu//a3v1nrJZnp06dbr3fv3m1q1qxpGjRoYGbNmmVefPFF06RJE+NwOMzWrVutunfeecdIMh06dDD33HOPefXVV80f//hH4+PjYx599FGP/h+UzG/79u3NY489ZhYtWmTi4+ONJPPyyy+bli1bmtGjR5tFixaZO++800gymzZtsrbPyckxDRo0MElJSWbx4sVmzpw5pmXLlqZ69epmx44dxhhjzpw5YxYvXmwkmYceesiah6+++soYY0xCQoJxOBymWbNmJiEhwSxZssT89a9/tdaFh4db+ysoKDAdOnQw4eHhxuVyGWOMSUlJMZLMrFmzPDr28r6Xn3nmGePl5WVGjBhh3njjDfPSSy+Zxx57zLz44otWTUJCgvHz8zMRERFm1KhRZuHChaZr165GknnnnXdMaGiomTBhgnn11VfN7bffbnx8fMzBgwc9Hm9CQoL1+tixY6Z+/fqmTp06ZsaMGWbu3LnmtttuM23btjWSzKFDh4wxxmRnZ5s6deqYFi1amLlz55o33njDTJkyxbRu3dqj/Ze8V2rVqmUkmZo1a5pBgwaZrKwsj/pB1ULIQZUyd+5ct38AjTEmMzPTSDLDhw93q33qqaeMJLNhwwarLTw83Egyf//73622vLw806BBA9OhQ4dyj2P//v3G29vbPPTQQ6aoqMhtXXFxsTHGmOPHjxtfX1/Tq1cvt5oFCxYYSebtt9+22nr06GEkmSVLlrj1VRJynE6nOX78uNu6e++910RGRpqff/7Zbd9du3Y1t912m9VWVsg5d+5cqWOaPXu28fLyMt9//73VlpiYaC71s9DFIadv377G19fXHDhwwGo7evSoqV27tunevbvVVhJyYmNjrbkyxpjx48cbHx8fk5ubW+b+ylLywTVy5EirrbCw0DRs2NB4eXm5fZCfOnXK+Pv7u33QFhYWmvz8fLc+T506ZYKDg80TTzxhteXk5JQ63hIlAXvSpEllrrsw5BhjzK5du4yvr68ZPny4OXXqlLn11ltNx44dzfnz58t93MaU/73crl07Ex8ff9m+So7hhRdesNpK5svLy8usWLHCat+7d+8l5+LXxnvh3I8bN85IMp9//rnVdvz4cRMQEOD2d3zVqlVGkvniiy882t/F5s2bZ8aMGWPeffdd88EHH5gnn3zSVKtWzdx2220mLy/vivrGjYuvq1DlrV27VpKUlJTk1v7HP/5RkpScnOzWHhoaqoceesh67XQ69fjjj2vHjh3Kysoq1z5Xr16t4uJiTZs2rdTFlCVf6Xz88ccqKCjQuHHj3GpGjBghp9NZalwOh0NDhw4tc3/9+vWzvjKRpJMnT2rDhg169NFHdfr0aZ04cUInTpzQjz/+qLi4OO3fv1//+c9/Ljl+f39/689nz57ViRMn1LVrVxljtGPHjnLNwYWKioq0fv169e3bV02bNrXaGzRooIEDB+rTTz+Vy+Vy22bkyJFuX3/dddddKioq0vfff+/x/ocPH2792cfHRx07dpQxRsOGDbPaAwMD1bJlSx08eNCttuTapuLiYp08eVKFhYXq2LGjvvzyS4/GMHr06HLVtWnTRjNnztSbb76puLg4nThxQsuWLavQRdzleS8HBgZqz5492r9//6/2d+E8lsxXzZo19eijj1rtLVu2VGBgoNs8VsTatWvVpUsXde7c2WqrX7++9VXfheOQpDVr1uj8+fMV3t+TTz6pV199VQMHDlS/fv00b948LVu2TPv379eiRYsq3C9ubIQcVHnff/+9vL291bx5c7f2kJAQBQYGlvrQbN68uduHqyS1aNFCksr9bI4DBw7I29tbERERlx2X9MuHwoV8fX3VtGnTUuO69dZbL3kxcZMmTdxef/vttzLG6E9/+pPq16/vtkyfPl2SdPz48UuO7fDhwxoyZIjq1q2rWrVqqX79+urRo4ckKS8v75LbXUpOTo7OnTtX6lglqXXr1iouLtaRI0fc2hs1auT2uk6dOpKkU6dOebz/i/sKCAiQn59fqQtMAwICSvW/bNkytW3b1rpepX79+kpOTvZoHqpVq6aGDRuWu37ChAlq166dtm3bpunTp1/2fXQ55XkvP/vss8rNzVWLFi0UGRmpCRMmaOfOnaX68vPzcwvS0i/z1bBhw1L7KGsePfX999/rtttuK9V+8XuoR48e6tevn2bOnKl69erpwQcf1DvvvFPqeruKGDhwoEJCQvTxxx9fcV+4MXF3FWzj4n+Iq5oLz6782rqSizOfeuopxcXFlbnNxaGvRFFRkX7zm9/o5MmTmjhxolq1aqWaNWvqP//5j4YMGVJptzxf6tZdU4ELQsvqqzz9//d//7eGDBmivn37asKECQoKCpKPj49mz56tAwcOlHv/DofDo9ujDx48aJ1Z2bVrV7m3q4ju3bvrwIED+sc//qH169frzTff1CuvvKIlS5aUOgNWlqv5/6kivLy89MEHH2jr1q3617/+pXXr1umJJ57QSy+9pK1bt7rdDl4RYWFhOnny5FUaLW40hBxUKWUFmfDwcBUXF2v//v1q3bq11Z6dna3c3FyFh4e71ZecBbmwr3//+9+SVO6n0zZr1kzFxcX6+uuv1b59+zJrSva7b98+t69wCgoKdOjQIcXGxpZrX2Up6a969eoe97Nr1y79+9//1rJly/T4449b7RfebVOivMGxfv36qlGjhvbt21dq3d69e+Xt7a2wsDCPxlkZPvjgAzVt2lQffvih27GWnA0rcTUDdHFxsYYMGSKn06lx48bphRde0COPPKKHH37Y477K+16uW7euhg4dqqFDh+rMmTPq3r27ZsyY4RZyKlt4eHiZX6GV9R6SpC5duqhLly56/vnntXz5cg0aNEgrVqy4omMwxui7775Thw4dKtwHbmx8XYUqpWbNmpLkdgt27969JUnz5s1zq3355ZclSfHx8W7tR48e1apVq6zXLpdLf/3rX9W+fXuFhISUaxx9+/aVt7e3nn322VJnPkp+wo2NjZWvr6/+8pe/uP3U+9ZbbykvL6/UuDwRFBSku+++W6+99pqOHTtWav3lbsUu+cn8wjEZYzR//vxStWXN96X67NWrl/7xj3+4feWXnZ2t5cuXq1u3bnI6nZft43ooay4+//xzpaenu9WVPK/oajxp++WXX9aWLVv0+uuva9asWeratatGjx6tEydOeNxXed7LP/74o9s2tWrVUvPmza/K1z1Xonfv3tq6dau2bdtmteXk5Ojdd991qzt16lSps0YlP1h4cgxl/Z1YvHixcnJydN9993kwclQlnMlBlRIVFSVJmjJligYMGKDq1avrgQceUEJCgl5//XXl5uaqR48e2rZtm5YtW6a+ffuqZ8+ebn20aNFCw4YN0xdffKHg4GC9/fbbys7O1jvvvFPucTRv3lxTpkzRrFmzdNddd+nhhx+Ww+HQF198odDQUM2ePVv169fX5MmTNXPmTN1333367W9/q3379mnRokXq1KmTfve7313RXCxcuFDdunVTZGSkRowYoaZNmyo7O1vp6en64YcfLvnMlVatWqlZs2Z66qmn9J///EdOp1N///vfy7zGomS+/+///b+Ki4uTj4+PBgwYUGa/zz33nFJTU9WtWzf94Q9/ULVq1fTaa68pPz9fc+bMuaJjvVb69OmjDz/8UA899JDi4+N16NAhLVmyRBERETpz5oxV5+/vr4iICK1cuVItWrRQ3bp11aZNG7Vp08aj/X3zzTf605/+pCFDhuiBBx6Q9Mtzg9q3b68//OEPeu+99zzqrzzv5YiICN19992KiopS3bp1tX37dn3wwQcaM2aMR/u62p5++mn97W9/03333acnn3xSNWvW1Ouvv67w8HC3a4aWLVumRYsW6aGHHlKzZs10+vRpvfHGG3I6ndYPOOURHh6u/v37KzIyUn5+fvr000+1YsUKtW/fXr///e+vxSHiRnAd7ugCrsisWbPMrbfeary9va1bTc+fP29mzpxpmjRpYqpXr27CwsLM5MmT3W6vNuaX21jj4+PNunXrTNu2bY3D4TCtWrUy77//foXG8vbbb5sOHToYh8Nh6tSpY3r06GFSU1PdahYsWGBatWplqlevboKDg83o0aPNqVOn3Gp69Ohhbr/99lL9l9xCPnfu3DL3f+DAAfP444+bkJAQU716dXPrrbeaPn36mA8++MCqKesW8q+//trExsaaWrVqmXr16pkRI0aYr776ynouSonCwkIzduxYU79+fePl5eV2O7nKuI34yy+/NHFxcaZWrVqmRo0apmfPnmbLli1uNSW3kF98S3BZ4/w1JbeQ5+TkuLUnJCSYmjVrlqq/eJ6Li4vNCy+8YMLDw43D4TAdOnQwa9asKfPW7y1btpioqCjj6+vrduyX2lfJupJ+CgsLTadOnUzDhg1L3SY/f/58I8msXLmy3Mde3vfyc889Zzp37mwCAwONv7+/adWqlXn++efdntNU3vm6eN+euPgWcmOM2blzp+nRo4fx8/Mzt956q5k1a5Z566233G4h//LLL81jjz1mGjVqZBwOhwkKCjJ9+vQx27dv92j/w4cPNxEREaZ27dqmevXqpnnz5mbixInW84pgT17G8NhH3DwaN26sNm3aaM2aNdd7KMAV4b0M/DquyQEAALbENTnARX7tgYD+/v4KCAiopNHcnM6cOeN2TUxZ6tevb8vfIJ2Tk6OioqJLrvf19VXdunUrcUSXd73/vpw8eVIFBQWXXO/j41Pq+T+4eRBygIs0aNDgsusTEhK0dOnSyhnMTerPf/6zZs6cedmaQ4cOlfuW/6qkU6dOl33qc48ePbRx48bKG9CvuN5/Xx5++GFt2rTpkuvDw8PL/ZBP2A/X5AAX+bWnn4aGhlb4CbUon4MHD/7qrw3o1q2b/Pz8KmlEleezzz5z+23wF6tTp45119uN4Hr/fcnIyLjs05f9/f115513XrP948ZGyAEAALbEhccAAMCWbuprcoqLi3X06FHVrl27yv/eIwAAbhbGGJ0+fVqhoaGX/b1xN3XIOXr06A35+3QAAMCvO3LkiBo2bHjJ9Td1yKldu7akXybpRvy9OgAAoDSXy6WwsDDrc/xSbuqQU/IVldPpJOQAAFDF/NqlJlx4DAAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbKna9R6AXZ1P+bRUW/X7ul2HkQAAcHPiTA4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlj0LO4sWL1bZtWzmdTjmdTsXExOijjz6y1t99993y8vJyW0aNGuXWx+HDhxUfH68aNWooKChIEyZMUGFhoVvNxo0bdccdd8jhcKh58+ZaunRpqbEsXLhQjRs3lp+fn6Kjo7Vt2zZPDgUAANicRyGnYcOGevHFF5WRkaHt27frnnvu0YMPPqg9e/ZYNSNGjNCxY8esZc6cOda6oqIixcfHq6CgQFu2bNGyZcu0dOlSTZs2zao5dOiQ4uPj1bNnT2VmZmrcuHEaPny41q1bZ9WsXLlSSUlJmj59ur788ku1a9dOcXFxOn78+JXMBQAAsBEvY4y5kg7q1q2ruXPnatiwYbr77rvVvn17zZs3r8zajz76SH369NHRo0cVHBwsSVqyZIkmTpyonJwc+fr6auLEiUpOTtbu3but7QYMGKDc3FylpKRIkqKjo9WpUyctWLBAklRcXKywsDCNHTtWkyZNKvfYXS6XAgIClJeXJ6fTWcEZKBsPAwQA4Noo7+d3ha/JKSoq0ooVK3T27FnFxMRY7e+++67q1aunNm3aaPLkyTp37py1Lj09XZGRkVbAkaS4uDi5XC7rbFB6erpiY2Pd9hUXF6f09HRJUkFBgTIyMtxqvL29FRsba9VcSn5+vlwul9sCAADsyeNf67Br1y7FxMTo559/Vq1atbRq1SpFRERIkgYOHKjw8HCFhoZq586dmjhxovbt26cPP/xQkpSVleUWcCRZr7Oysi5b43K59NNPP+nUqVMqKioqs2bv3r2XHfvs2bM1c+ZMTw8ZAABUQR6HnJYtWyozM1N5eXn64IMPlJCQoE2bNikiIkIjR4606iIjI9WgQQPde++9OnDggJo1a3ZVB14RkydPVlJSkvXa5XIpLCzsOo4IAABcKx6HHF9fXzVv3lySFBUVpS+++ELz58/Xa6+9Vqo2OjpakvTtt9+qWbNmCgkJKXUXVHZ2tiQpJCTE+m9J24U1TqdT/v7+8vHxkY+PT5k1JX1cisPhkMPh8OBoAQBAVXXFz8kpLi5Wfn5+mesyMzMlSQ0aNJAkxcTEaNeuXW53QaWmpsrpdFpfecXExCgtLc2tn9TUVOu6H19fX0VFRbnVFBcXKy0tze3aIAAAcHPz6EzO5MmTdf/996tRo0Y6ffq0li9fro0bN2rdunU6cOCAli9frt69e+uWW27Rzp07NX78eHXv3l1t27aVJPXq1UsREREaPHiw5syZo6ysLE2dOlWJiYnWGZZRo0ZpwYIFevrpp/XEE09ow4YNeu+995ScnGyNIykpSQkJCerYsaM6d+6sefPm6ezZsxo6dOhVnBoAAFCVeRRyjh8/rscff1zHjh1TQECA2rZtq3Xr1uk3v/mNjhw5oo8//tgKHGFhYerXr5+mTp1qbe/j46M1a9Zo9OjRiomJUc2aNZWQkKBnn33WqmnSpImSk5M1fvx4zZ8/Xw0bNtSbb76puLg4q6Z///7KycnRtGnTlJWVpfbt2yslJaXUxcgAAODmdcXPyanKeE4OAABVzzV/Tg4AAMCNjJADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsqdr1HoBdfZf7Uam229TtOowEAICbE2dyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALXkUchYvXqy2bdvK6XTK6XQqJiZGH330kbX+559/VmJiom655RbVqlVL/fr1U3Z2tlsfhw8fVnx8vGrUqKGgoCBNmDBBhYWFbjUbN27UHXfcIYfDoebNm2vp0qWlxrJw4UI1btxYfn5+io6O1rZt2zw5FAAAYHMehZyGDRvqxRdfVEZGhrZv36577rlHDz74oPbs2SNJGj9+vP71r3/p/fff16ZNm3T06FE9/PDD1vZFRUWKj49XQUGBtmzZomXLlmnp0qWaNm2aVXPo0CHFx8erZ8+eyszM1Lhx4zR8+HCtW7fOqlm5cqWSkpI0ffp0ffnll2rXrp3i4uJ0/PjxK50PAABgE17GGHMlHdStW1dz587VI488ovr162v58uV65JFHJEl79+5V69atlZ6eri5duuijjz5Snz59dPToUQUHB0uSlixZookTJyonJ0e+vr6aOHGikpOTtXv3bmsfAwYMUG5urlJSUiRJ0dHR6tSpkxYsWCBJKi4uVlhYmMaOHatJkyaVe+wul0sBAQHKy8uT0+m8kmkoZf+KKaXabhvw/FXdBwAAN6Pyfn5X+JqcoqIirVixQmfPnlVMTIwyMjJ0/vx5xcbGWjWtWrVSo0aNlJ6eLklKT09XZGSkFXAkKS4uTi6XyzoblJ6e7tZHSU1JHwUFBcrIyHCr8fb2VmxsrFVzKfn5+XK5XG4LAACwJ49Dzq5du1SrVi05HA6NGjVKq1atUkREhLKysuTr66vAwEC3+uDgYGVlZUmSsrKy3AJOyfqSdZercblc+umnn3TixAkVFRWVWVPSx6XMnj1bAQEB1hIWFubp4QMAgCrC45DTsmVLZWZm6vPPP9fo0aOVkJCgr7/++lqM7aqbPHmy8vLyrOXIkSPXe0gAAOAaqebpBr6+vmrevLkkKSoqSl988YXmz5+v/v37q6CgQLm5uW5nc7KzsxUSEiJJCgkJKXUXVMndVxfWXHxHVnZ2tpxOp/z9/eXj4yMfH58ya0r6uBSHwyGHw+HpIQMAgCroip+TU1xcrPz8fEVFRal69epKS0uz1u3bt0+HDx9WTEyMJCkmJka7du1yuwsqNTVVTqdTERERVs2FfZTUlPTh6+urqKgot5ri4mKlpaVZNQAAAB6dyZk8ebLuv/9+NWrUSKdPn9by5cu1ceNGrVu3TgEBARo2bJiSkpJUt25dOZ1OjR07VjExMerSpYskqVevXoqIiNDgwYM1Z84cZWVlaerUqUpMTLTOsIwaNUoLFizQ008/rSeeeEIbNmzQe++9p+TkZGscSUlJSkhIUMeOHdW5c2fNmzdPZ8+e1dChQ6/i1AAAgKrMo5Bz/PhxPf744zp27JgCAgLUtm1brVu3Tr/5zW8kSa+88oq8vb3Vr18/5efnKy4uTosWLbK29/Hx0Zo1azR69GjFxMSoZs2aSkhI0LPPPmvVNGnSRMnJyRo/frzmz5+vhg0b6s0331RcXJxV079/f+Xk5GjatGnKyspS+/btlZKSUupiZAAAcPO64ufkVGU8JwcAgKrnmj8nBwAA4EZGyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALbkUciZPXu2OnXqpNq1aysoKEh9+/bVvn373GruvvtueXl5uS2jRo1yqzl8+LDi4+NVo0YNBQUFacKECSosLHSr2bhxo+644w45HA41b95cS5cuLTWehQsXqnHjxvLz81N0dLS2bdvmyeEAAAAb8yjkbNq0SYmJidq6datSU1N1/vx59erVS2fPnnWrGzFihI4dO2Ytc+bMsdYVFRUpPj5eBQUF2rJli5YtW6alS5dq2rRpVs2hQ4cUHx+vnj17KjMzU+PGjdPw4cO1bt06q2blypVKSkrS9OnT9eWXX6pdu3aKi4vT8ePHKzoXAADARryMMaaiG+fk5CgoKEibNm1S9+7dJf1yJqd9+/aaN29emdt89NFH6tOnj44eParg4GBJ0pIlSzRx4kTl5OTI19dXEydOVHJysnbv3m1tN2DAAOXm5iolJUWSFB0drU6dOmnBggWSpOLiYoWFhWns2LGaNGlSucbvcrkUEBCgvLw8OZ3Oik5DmfavmFKq7bYBz1/VfQAAcDMq7+f3FV2Tk5eXJ0mqW7euW/u7776revXqqU2bNpo8ebLOnTtnrUtPT1dkZKQVcCQpLi5OLpdLe/bssWpiY2Pd+oyLi1N6erokqaCgQBkZGW413t7eio2NtWrKkp+fL5fL5bYAAAB7qlbRDYuLizVu3DjdeeedatOmjdU+cOBAhYeHKzQ0VDt37tTEiRO1b98+ffjhh5KkrKwst4AjyXqdlZV12RqXy6WffvpJp06dUlFRUZk1e/fuveSYZ8+erZkzZ1b0kAEAQBVS4ZCTmJio3bt369NPP3VrHzlypPXnyMhINWjQQPfee68OHDigZs2aVXykV8HkyZOVlJRkvXa5XAoLC7uOIwIAANdKhULOmDFjtGbNGm3evFkNGza8bG10dLQk6dtvv1WzZs0UEhJS6i6o7OxsSVJISIj135K2C2ucTqf8/f3l4+MjHx+fMmtK+iiLw+GQw+Eo30ECAIAqzaNrcowxGjNmjFatWqUNGzaoSZMmv7pNZmamJKlBgwaSpJiYGO3atcvtLqjU1FQ5nU5FRERYNWlpaW79pKamKiYmRpLk6+urqKgot5ri4mKlpaVZNQAA4Obm0ZmcxMRELV++XP/4xz9Uu3Zt6xqagIAA+fv768CBA1q+fLl69+6tW265RTt37tT48ePVvXt3tW3bVpLUq1cvRUREaPDgwZozZ46ysrI0depUJSYmWmdZRo0apQULFujpp5/WE088oQ0bNui9995TcnKyNZakpCQlJCSoY8eO6ty5s+bNm6ezZ89q6NChV2tuAABAFeZRyFm8eLGkX24Tv9A777yjIUOGyNfXVx9//LEVOMLCwtSvXz9NnTrVqvXx8dGaNWs0evRoxcTEqGbNmkpISNCzzz5r1TRp0kTJyckaP3685s+fr4YNG+rNN99UXFycVdO/f3/l5ORo2rRpysrKUvv27ZWSklLqYmQAAHBzuqLn5FR1PCcHAICqp1KekwMAAHCjIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABb8ijkzJ49W506dVLt2rUVFBSkvn37at++fW41P//8sxITE3XLLbeoVq1a6tevn7Kzs91qDh8+rPj4eNWoUUNBQUGaMGGCCgsL3Wo2btyoO+64Qw6HQ82bN9fSpUtLjWfhwoVq3Lix/Pz8FB0drW3btnlyOAAAwMY8CjmbNm1SYmKitm7dqtTUVJ0/f169evXS2bNnrZrx48frX//6l95//31t2rRJR48e1cMPP2ytLyoqUnx8vAoKCrRlyxYtW7ZMS5cu1bRp06yaQ4cOKT4+Xj179lRmZqbGjRun4cOHa926dVbNypUrlZSUpOnTp+vLL79Uu3btFBcXp+PHj1/JfAAAAJvwMsaYim6ck5OjoKAgbdq0Sd27d1deXp7q16+v5cuX65FHHpEk7d27V61bt1Z6erq6dOmijz76SH369NHRo0cVHBwsSVqyZIkmTpyonJwc+fr6auLEiUpOTtbu3butfQ0YMEC5ublKSUmRJEVHR6tTp05asGCBJKm4uFhhYWEaO3asJk2aVK7xu1wuBQQEKC8vT06ns6LTUKb9K6aUarttwPNXdR8AANyMyvv5fUXX5OTl5UmS6tatK0nKyMjQ+fPnFRsba9W0atVKjRo1Unp6uiQpPT1dkZGRVsCRpLi4OLlcLu3Zs8equbCPkpqSPgoKCpSRkeFW4+3trdjYWKumLPn5+XK5XG4LAACwpwqHnOLiYo0bN0533nmn2rRpI0nKysqSr6+vAgMD3WqDg4OVlZVl1VwYcErWl6y7XI3L5dJPP/2kEydOqKioqMyakj7KMnv2bAUEBFhLWFiY5wcOAACqhAqHnMTERO3evVsrVqy4muO5piZPnqy8vDxrOXLkyPUeEgAAuEaqVWSjMWPGaM2aNdq8ebMaNmxotYeEhKigoEC5ubluZ3Oys7MVEhJi1Vx8F1TJ3VcX1lx8R1Z2dracTqf8/f3l4+MjHx+fMmtK+iiLw+GQw+Hw/IABAECV49GZHGOMxowZo1WrVmnDhg1q0qSJ2/qoqChVr15daWlpVtu+fft0+PBhxcTESJJiYmK0a9cut7ugUlNT5XQ6FRERYdVc2EdJTUkfvr6+ioqKcqspLi5WWlqaVQMAAG5uHp3JSUxM1PLly/WPf/xDtWvXtq5/CQgIkL+/vwICAjRs2DAlJSWpbt26cjqdGjt2rGJiYtSlSxdJUq9evRQREaHBgwdrzpw5ysrK0tSpU5WYmGidZRk1apQWLFigp59+Wk888YQ2bNig9957T8nJydZYkpKSlJCQoI4dO6pz586aN2+ezp49q6FDh16tuQEAAFWYRyFn8eLFkqS7777brf2dd97RkCFDJEmvvPKKvL291a9fP+Xn5ysuLk6LFi2yan18fLRmzRqNHj1aMTExqlmzphISEvTss89aNU2aNFFycrLGjx+v+fPnq2HDhnrzzTcVFxdn1fTv3185OTmaNm2asrKy1L59e6WkpJS6GBkAANycrug5OVUdz8kBAKDqqZTn5AAAANyoCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWPA45mzdv1gMPPKDQ0FB5eXlp9erVbuuHDBkiLy8vt+W+++5zqzl58qQGDRokp9OpwMBADRs2TGfOnHGr2blzp+666y75+fkpLCxMc+bMKTWW999/X61atZKfn58iIyO1du1aTw8HAADYlMch5+zZs2rXrp0WLlx4yZr77rtPx44ds5b/+Z//cVs/aNAg7dmzR6mpqVqzZo02b96skSNHWutdLpd69eql8PBwZWRkaO7cuZoxY4Zef/11q2bLli167LHHNGzYMO3YsUN9+/ZV3759tXv3bk8PCQAA2JCXMcZUeGMvL61atUp9+/a12oYMGaLc3NxSZ3hKfPPNN4qIiNAXX3yhjh07SpJSUlLUu3dv/fDDDwoNDdXixYs1ZcoUZWVlydfXV5I0adIkrV69Wnv37pUk9e/fX2fPntWaNWusvrt06aL27dtryZIl5Rq/y+VSQECA8vLy5HQ6KzADl7Z/xZRSbbcNeP6q7gMAgJtReT+/r8k1ORs3blRQUJBatmyp0aNH68cff7TWpaenKzAw0Ao4khQbGytvb299/vnnVk337t2tgCNJcXFx2rdvn06dOmXVxMbGuu03Li5O6enplxxXfn6+XC6X2wIAAOzpqoec++67T3/961+Vlpam//qv/9KmTZt0//33q6ioSJKUlZWloKAgt22qVaumunXrKisry6oJDg52qyl5/Ws1JevLMnv2bAUEBFhLWFjYlR0sAAC4YVW72h0OGDDA+nNkZKTatm2rZs2aaePGjbr33nuv9u48MnnyZCUlJVmvXS4XQQcAAJu65reQN23aVPXq1dO3334rSQoJCdHx48fdagoLC3Xy5EmFhIRYNdnZ2W41Ja9/raZkfVkcDoecTqfbAgAA7Omah5wffvhBP/74oxo0aCBJiomJUW5urjIyMqyaDRs2qLi4WNHR0VbN5s2bdf78easmNTVVLVu2VJ06dayatLQ0t32lpqYqJibmWh8SAACoAjwOOWfOnFFmZqYyMzMlSYcOHVJmZqYOHz6sM2fOaMKECdq6dau+++47paWl6cEHH1Tz5s0VFxcnSWrdurXuu+8+jRgxQtu2bdNnn32mMWPGaMCAAQoNDZUkDRw4UL6+vho2bJj27NmjlStXav78+W5fNT355JNKSUnRSy+9pL1792rGjBnavn27xowZcxWmBQAAVHUeh5zt27erQ4cO6tChgyQpKSlJHTp00LRp0+Tj46OdO3fqt7/9rVq0aKFhw4YpKipK//u//yuHw2H18e6776pVq1a699571bt3b3Xr1s3tGTgBAQFav369Dh06pKioKP3xj3/UtGnT3J6l07VrVy1fvlyvv/662rVrpw8++ECrV69WmzZtrmQ+AACATVzRc3KqOp6TAwBA1XNdn5MDAABwvRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALXkccjZv3qwHHnhAoaGh8vLy0urVq93WG2M0bdo0NWjQQP7+/oqNjdX+/fvdak6ePKlBgwbJ6XQqMDBQw4YN05kzZ9xqdu7cqbvuukt+fn4KCwvTnDlzSo3l/fffV6tWreTn56fIyEitXbvW08MBAAA25XHIOXv2rNq1a6eFCxeWuX7OnDn6y1/+oiVLlujzzz9XzZo1FRcXp59//tmqGTRokPbs2aPU1FStWbNGmzdv1siRI631LpdLvXr1Unh4uDIyMjR37lzNmDFDr7/+ulWzZcsWPfbYYxo2bJh27Nihvn37qm/fvtq9e7enhwQAAGzIyxhjKryxl5dWrVqlvn37SvrlLE5oaKj++Mc/6qmnnpIk5eXlKTg4WEuXLtWAAQP0zTffKCIiQl988YU6duwoSUpJSVHv3r31ww8/KDQ0VIsXL9aUKVOUlZUlX19fSdKkSZO0evVq7d27V5LUv39/nT17VmvWrLHG06VLF7Vv315Lliwp1/hdLpcCAgKUl5cnp9NZ0Wko0/4VU0q13Tbg+au6DwAAbkbl/fy+qtfkHDp0SFlZWYqNjbXaAgICFB0drfT0dElSenq6AgMDrYAjSbGxsfL29tbnn39u1XTv3t0KOJIUFxenffv26dSpU1bNhfspqSnZT1ny8/PlcrncFgAAYE9XNeRkZWVJkoKDg93ag4ODrXVZWVkKCgpyW1+tWjXVrVvXraasPi7cx6VqStaXZfbs2QoICLCWsLAwTw8RAABUETfV3VWTJ09WXl6etRw5cuR6DwkAAFwjVzXkhISESJKys7Pd2rOzs611ISEhOn78uNv6wsJCnTx50q2mrD4u3MelakrWl8XhcMjpdLotAADAnq5qyGnSpIlCQkKUlpZmtblcLn3++eeKiYmRJMXExCg3N1cZGRlWzYYNG1RcXKzo6GirZvPmzTp//rxVk5qaqpYtW6pOnTpWzYX7Kakp2Q8AALi5eRxyzpw5o8zMTGVmZkr65WLjzMxMHT58WF5eXho3bpyee+45/fOf/9SuXbv0+OOPKzQ01LoDq3Xr1rrvvvs0YsQIbdu2TZ999pnGjBmjAQMGKDQ0VJI0cOBA+fr6atiwYdqzZ49Wrlyp+fPnKykpyRrHk08+qZSUFL300kvau3evZsyYoe3bt2vMmDFXPisAAKDKq+bpBtu3b1fPnj2t1yXBIyEhQUuXLtXTTz+ts2fPauTIkcrNzVW3bt2UkpIiPz8/a5t3331XY8aM0b333itvb2/169dPf/nLX6z1AQEBWr9+vRITExUVFaV69epp2rRpbs/S6dq1q5YvX66pU6fqmWee0W233abVq1erTZs2FZoIAABgL1f0nJyqjufkAABQ9VyX5+QAAADcKAg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlgg5AADAlq56yJkxY4a8vLzcllatWlnrf/75ZyUmJuqWW25RrVq11K9fP2VnZ7v1cfjwYcXHx6tGjRoKCgrShAkTVFhY6FazceNG3XHHHXI4HGrevLmWLl16tQ8FAABUYdfkTM7tt9+uY8eOWcunn35qrRs/frz+9a9/6f3339emTZt09OhRPfzww9b6oqIixcfHq6CgQFu2bNGyZcu0dOlSTZs2zao5dOiQ4uPj1bNnT2VmZmrcuHEaPny41q1bdy0OBwAAVEHVrkmn1aopJCSkVHteXp7eeustLV++XPfcc48k6Z133lHr1q21detWdenSRevXr9fXX3+tjz/+WMHBwWrfvr1mzZqliRMnasaMGfL19dWSJUvUpEkTvfTSS5Kk1q1b69NPP9Urr7yiuLi4S44rPz9f+fn51muXy3WVjxwAANworsmZnP379ys0NFRNmzbVoEGDdPjwYUlSRkaGzp8/r9jYWKu2VatWatSokdLT0yVJ6enpioyMVHBwsFUTFxcnl8ulPXv2WDUX9lFSU9LHpcyePVsBAQHWEhYWdlWOFwAA3HiuesiJjo7W0qVLlZKSosWLF+vQoUO66667dPr0aWVlZcnX11eBgYFu2wQHBysrK0uSlJWV5RZwStaXrLtcjcvl0k8//XTJsU2ePFl5eXnWcuTIkSs9XAAAcIO66l9X3X///daf27Ztq+joaIWHh+u9996Tv7//1d6dRxwOhxwOx3UdAwAAqBzX/BbywMBAtWjRQt9++61CQkJUUFCg3Nxct5rs7GzrGp6QkJBSd1uVvP61GqfTed2DFAAAuDFc85Bz5swZHThwQA0aNFBUVJSqV6+utLQ0a/2+fft0+PBhxcTESJJiYmK0a9cuHT9+3KpJTU2V0+lURESEVXNhHyU1JX0AAIDKdz7lU7flervqIeepp57Spk2b9N1332nLli166KGH5OPjo8cee0wBAQEaNmyYkpKS9MknnygjI0NDhw5VTEyMunTpIknq1auXIiIiNHjwYH311Vdat26dpk6dqsTEROurplGjRungwYN6+umntXfvXi1atEjvvfeexo8ff7UPBwAAVFFX/ZqcH374QY899ph+/PFH1a9fX926ddPWrVtVv359SdIrr7wib29v9evXT/n5+YqLi9OiRYus7X18fLRmzRqNHj1aMTExqlmzphISEvTss89aNU2aNFFycrLGjx+v+fPnq2HDhnrzzTcve/s4AAC4uXgZY8z1HsT14nK5FBAQoLy8PDmdzqva9/4VU0q13Tbg+au6DwAAbiQXf0VV/b5u12Q/5f385ndXAQAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAW6p2vQcAAACqnvMpn17vIfwqQg4AADeRIlOkb37coVM/n1Adv3pqfUsH+Xj5XJW+v8v9SJJUbIx+yM9VtU/3KrB2A93eppeq+VS/KvvwRJUPOQsXLtTcuXOVlZWldu3a6dVXX1Xnzp2v97AAALjhpB9N01u75+rHn49bbbf4BWlYmwmKCb33stuW98zNvnM5WlV7j07W/Ek6uVU6KdXd/6KeuPX3ujPmd1c0fk9V6ZCzcuVKJSUlacmSJYqOjta8efMUFxenffv2KSgo6HoPDwCAG0b60TTN2f60JOPW/uPPOZqzfYL+WG2Yor3bXdE+9p3L0Vu3bC/VfrL6Wf35+MtSuio16FTpkPPyyy9rxIgRGjp0qCRpyZIlSk5O1ttvv61JkyZd59EBAFC5LnW2pdgU663zz+vigPOLX9qWFv5dnapHyturYvckFRUXaVXtPb+88Lpopdcvu3nnP68puqh/pX11VWVDTkFBgTIyMjR58mSrzdvbW7GxsUpPTy9zm/z8fOXn51uv8/LyJEkul+uqj+/MufxSbT/+fZ3b6+q/ibnq+wUAXB3nU90/S8r6N/vimhvVN+aAsgp/vGxNln7UF9V2q7VXMx3OS/V4H0fyc5Vd54z00+X24dLnW1crMjLO4/4vVPK5bUxZoe3/q7Ih58SJEyoqKlJwcLBbe3BwsPbu3VvmNrNnz9bMmTNLtYeFhV2TMZb2UiXtBwAAzyUrsRL28ehV6+v06dMKCAi45PoqG3IqYvLkyUpKSrJeFxcX6+TJk7rlllvk5XXxubWKc7lcCgsL05EjR+R0Oq9av3DHPFce5rpyMM+Vg3muHNdyno0xOn36tEJDQy9bV2VDTr169eTj46Ps7Gy39uzsbIWEhJS5jcPhkMPhcGsLDAy8VkOU0+nkL1AlYJ4rD3NdOZjnysE8V45rNc+XO4NToso+8djX11dRUVFKS0uz2oqLi5WWlqaYGK51AQDgZldlz+RIUlJSkhISEtSxY0d17txZ8+bN09mzZ627rQAAwM2rSoec/v37KycnR9OmTVNWVpbat2+vlJSUUhcjVzaHw6Hp06eX+moMVxfzXHmY68rBPFcO5rly3Ajz7GV+7f4rAACAKqjKXpMDAABwOYQcAABgS4QcAABgS4QcAABgS4QcAABgS4ScClq4cKEaN24sPz8/RUdHa9u2bZetf//999WqVSv5+fkpMjJSa9euraSRVm2ezPMbb7yhu+66S3Xq1FGdOnUUGxv7q/9f8AtP388lVqxYIS8vL/Xt2/faDtBGPJ3r3NxcJSYmqkGDBnI4HGrRogX/fpSDp/M8b948tWzZUv7+/goLC9P48eP1888/V9Joq6bNmzfrgQceUGhoqLy8vLR69epf3Wbjxo2644475HA41Lx5cy1duvTaDtLAYytWrDC+vr7m7bffNnv27DEjRowwgYGBJjs7u8z6zz77zPj4+Jg5c+aYr7/+2kydOtVUr17d7Nq1q5JHXrV4Os8DBw40CxcuNDt27DDffPONGTJkiAkICDA//PBDJY+8avF0nkscOnTI3Hrrreauu+4yDz74YOUMtorzdK7z8/NNx44dTe/evc2nn35qDh06ZDZu3GgyMzMreeRVi6fz/O677xqHw2Heffddc+jQIbNu3TrToEEDM378+EoeedWydu1aM2XKFPPhhx8aSWbVqlWXrT948KCpUaOGSUpKMl9//bV59dVXjY+Pj0lJSblmYyTkVEDnzp1NYmKi9bqoqMiEhoaa2bNnl1n/6KOPmvj4eLe26Oho8/vf//6ajrOq83SeL1ZYWGhq165tli1bdq2GaAsVmefCwkLTtWtX8+abb5qEhARCTjl5OteLFy82TZs2NQUFBZU1RFvwdJ4TExPNPffc49aWlJRk7rzzzms6TjspT8h5+umnze233+7W1r9/fxMXF3fNxsXXVR4qKChQRkaGYmNjrTZvb2/FxsYqPT29zG3S09Pd6iUpLi7ukvWo2Dxf7Ny5czp//rzq1q17rYZZ5VV0np999lkFBQVp2LBhlTFMW6jIXP/zn/9UTEyMEhMTFRwcrDZt2uiFF15QUVFRZQ27yqnIPHft2lUZGRnWV1oHDx7U2rVr1bt370oZ883ienwWVulf63A9nDhxQkVFRaV+dURwcLD27t1b5jZZWVll1mdlZV2zcVZ1FZnni02cOFGhoaGl/lLh/6vIPH/66ad66623lJmZWQkjtI+KzPXBgwe1YcMGDRo0SGvXrtW3336rP/zhDzp//rymT59eGcOucioyzwMHDtSJEyfUrVs3GWNUWFioUaNG6ZlnnqmMId80LvVZ6HK59NNPP8nf3/+q75MzObClF198UStWrNCqVavk5+d3vYdjG6dPn9bgwYP1xhtvqF69etd7OLZXXFysoKAgvf7664qKilL//v01ZcoULVmy5HoPzVY2btyoF154QYsWLdKXX36pDz/8UMnJyZo1a9b1HhquEGdyPFSvXj35+PgoOzvbrT07O1shISFlbhMSEuJRPSo2zyX+/Oc/68UXX9THH3+stm3bXsthVnmezvOBAwf03Xff6YEHHrDaiouLJUnVqlXTvn371KxZs2s76CqqIu/pBg0aqHr16vLx8bHaWrduraysLBUUFMjX1/eajrkqqsg8/+lPf9LgwYM1fPhwSVJkZKTOnj2rkSNHasqUKfL25nzA1XCpz0Kn03lNzuJInMnxmK+vr6KiopSWlma1FRcXKy0tTTExMWVuExMT41YvSampqZesR8XmWZLmzJmjWbNmKSUlRR07dqyMoVZpns5zq1attGvXLmVmZlrLb3/7W/Xs2VOZmZkKCwurzOFXKRV5T99555369ttvrSApSf/+97/VoEEDAs4lVGSez507VyrIlARLw++wvmquy2fhNbuk2cZWrFhhHA6HWbp0qfn666/NyJEjTWBgoMnKyjLGGDN48GAzadIkq/6zzz4z1apVM3/+85/NN998Y6ZPn84t5OXg6Ty/+OKLxtfX13zwwQfm2LFj1nL69OnrdQhVgqfzfDHurio/T+f68OHDpnbt2mbMmDFm3759Zs2aNSYoKMg899xz1+sQqgRP53n69Ommdu3a5n/+53/MwYMHzfr1602zZs3Mo48+er0OoUo4ffq02bFjh9mxY4eRZF5++WWzY8cO8/333xtjjJk0aZIZPHiwVV9yC/mECRPMN998YxYuXMgt5DeqV1991TRq1Mj4+vqazp07m61bt1rrevToYRISEtzq33vvPdOiRQvj6+trbr/9dpOcnFzJI66aPJnn8PBwI6nUMn369MofeBXj6fv5QoQcz3g611u2bDHR0dHG4XCYpk2bmueff94UFhZW8qirHk/m+fz582bGjBmmWbNmxs/Pz4SFhZk//OEP5tSpU5U/8Crkk08+KfPf3JK5TUhIMD169Ci1Tfv27Y2vr69p2rSpeeedd67pGL2M4VwcAACwH67JAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtvT/AIfou65r4HbTAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ2VJREFUeJzt3XtcVWXe9/EvoHuDhw2eAEk854E8FSpiplmMlNhk6ZNWY2geRgd9RplMTcdjZbdOpZOnykqnO2+tJp1JDCVMvUvMJMlDaaWWNgpiCttDgsD1/NGL9bgFje0BZfl5v17rlftav3Wta11t3F/XXmvhY4wxAgAAsBnf6z0AAACAa4GQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQA9jchg0b5OPjow0bNlzVfn18fDR16tSr2qfdDBw4UA0bNrzew7ghNGzYUAMHDvzNuiVLlsjHx0c//PDDNR8T7I+Qgwpl8+bNmjp1qnJycq73UG4Ka9asIchIOnPmjKZOnXrVgyLK34oVKxQdHa2qVasqKChInTt31vr166/3sHCNVLreAwC8sXnzZk2bNk0DBw5UUFDQ9R6O7a1Zs0bz588vNej88ssvqlTp5vgr5MyZM5o2bZok6e677y7zdq+//rqKioqu0agqlr1798rX9/r+u3rq1KmaPn26+vbtq4EDB+rcuXPatWuX/vOf/1zXceHauTn+hgIqoDNnzqhKlSol2gsKClRUVCSHw3EdRvX/+fv7X9f938hOnz6tqlWrqnLlytd7KDcMp9N5Xfe/ZcsWTZ8+XS+++KLGjBlzXceC8sPXVagwpk6dqrFjx0qSGjVqJB8fH+u7+4KCAs2YMUNNmjSR0+lUw4YN9cwzzygvL8+jj4YNG6pXr15at26d2rVrJ39/f0VEROiDDz64rDH993//tzp27KgqVaqoRo0a6tq1q9atW+dRs2DBAt12221yOp0KCwtTQkJCia/b7r77brVq1Urp6enq2rWrqlSpomeeeUY//PCDfHx89Le//U1z5syxju/rr7+WJO3Zs0d9+/ZVzZo15e/vr/bt2+vf//73b477f//3f/V//s//Uf369eV0OhUeHq4xY8bol19+sWoGDhyo+fPnS5I11z4+Ptb60q7J2b59u+6//365XC5Vq1ZN9957r7Zs2eJRU3zNxWeffabExETVqVNHVatW1UMPPaTs7OzfHPv5pk6dKh8fH3377bf6wx/+oMDAQNWpU0d//etfZYzRoUOH9OCDD8rlcik0NFQvvviix/b5+fmaPHmyIiMjFRgYqKpVq+quu+7SJ598YtX88MMPqlOnjiRp2rRp1jwUH/vAgQNVrVo17du3Tz179lT16tX1+OOPW+vOvyZnypQp8vX1VWpqqsc4hg0bJofDoa+++qrMx17W9/K5c+c0bdo03XrrrfL391etWrXUpUsXpaSkWDXFx3Dw4EH16tVL1apV0y233GL9/9+5c6fuueceVa1aVQ0aNNCyZcvKPM7zx3vhNTm7d+/WPffco4CAANWrV0/PPvtsqWe+tm3bptjYWNWuXVsBAQFq1KiRnnzySa/2P2fOHIWGhurPf/6zjDE6deqU18eACsgAFcRXX31lHn30USPJvPzyy+btt982b7/9tjl16pSJj483kkzfvn3N/PnzzRNPPGEkmd69e3v00aBBA9OsWTMTFBRkxo8fb1566SXTunVr4+vra9atW+fVeKZOnWokmc6dO5vZs2ebuXPnmscee8yMGzfOqpkyZYqRZGJiYswrr7xiRo4cafz8/EyHDh1Mfn6+VdetWzcTGhpq6tSpY0aNGmVeffVVs2rVKnPgwAEjyURERJjGjRubF154wbz88svmxx9/NLt27TKBgYEmIiLC/Nd//ZeZN2+e6dq1q/Hx8TEffPCB1fcnn3xiJJlPPvnEahs1apTp2bOnef75582rr75qBg8ebPz8/Ezfvn2tms2bN5vf/e53RpI112+//ba1XpKZMmWK9XrXrl2matWqpm7dumbGjBnmhRdeMI0aNTJOp9Ns2bLFqnvrrbeMJHP77bebe+65x7zyyivmL3/5i/Hz8zOPPPKIV/8Piue3Xbt25tFHHzULFiwwcXFxRpJ56aWXTPPmzc2IESPMggULzJ133mkkmY0bN1rbZ2dnm7p165rExESzcOFCM2vWLNO8eXNTuXJls337dmOMMadOnTILFy40ksxDDz1kzcNXX31ljDEmPj7eOJ1O06RJExMfH28WLVpk/vGPf1jrGjRoYO0vPz/f3H777aZBgwbG7XYbY4xJTk42ksyMGTO8OvayvpefeeYZ4+PjY4YOHWpef/118+KLL5pHH33UvPDCC1ZNfHy88ff3NxEREWb48OFm/vz5pnPnzkaSeeutt0xYWJgZO3aseeWVV8xtt91m/Pz8zP79+70eb3x8vPX6yJEjpk6dOqZGjRpm6tSpZvbs2ebWW281bdq0MZLMgQMHjDHGZGVlmRo1aphmzZqZ2bNnm9dff91MnDjRtGzZ0qv9165d2/z+9783L7/8sqlVq5aRZEJDQ80rr7ziVT+oWAg5qFBmz57t8RegMcZkZGQYSWbIkCEetU899ZSRZNavX2+1NWjQwEgy//znP6223NxcU7duXXP77beXeRzfffed8fX1NQ899JApLCz0WFdUVGSMMebo0aPG4XCYHj16eNTMmzfPSDJvvvmm1datWzcjySxatMijr+KQ43K5zNGjRz3W3XvvvaZ169bm7NmzHvvu3LmzufXWW6220kLOmTNnShzTzJkzjY+Pj/nxxx+ttoSEBHOxfwtdGHJ69+5tHA6H2bdvn9V2+PBhU716ddO1a1errTjkxMTEWHNljDFjxowxfn5+Jicnp9T9laY45AwbNsxqKygoMPXq1TM+Pj4eH+QnTpwwAQEBHh+0BQUFJi8vz6PPEydOmJCQEPPkk09abdnZ2SWOt1hxwB4/fnyp684POcYYs3PnTuNwOMyQIUPMiRMnzC233GLat29vzp07V+bjNqbs7+W2bduauLi4S/ZVfAzPP/+81VY8Xz4+Pmb58uVW+549ey46F7813vPnfvTo0UaS+fzzz622o0ePmsDAQI+f8ZUrVxpJ5osvvvBqf+c7fvy4kWRq1aplqlWrZmbPnm1WrFhh7rvvvlJ/7mAffF2FCm/NmjWSpMTERI/2v/zlL5KkpKQkj/awsDA99NBD1muXy6UnnnhC27dvV2ZmZpn2uWrVKhUVFWny5MklLqYs/krn448/Vn5+vkaPHu1RM3ToULlcrhLjcjqdGjRoUKn769Onj/WViSQdP35c69ev1yOPPKKTJ0/q2LFjOnbsmH7++WfFxsbqu+++u+TFlAEBAdafT58+rWPHjqlz584yxmj79u1lmoPzFRYWat26derdu7caN25stdetW1ePPfaYPv30U7ndbo9thg0b5vH111133aXCwkL9+OOPXu9/yJAh1p/9/PzUvn17GWM0ePBgqz0oKEjNmzfX/v37PWqLr20qKirS8ePHVVBQoPbt2+vLL7/0agwjRowoU12rVq00bdo0LV68WLGxsTp27JiWLl16WRdxl+W9HBQUpN27d+u77777zf7On8fi+apataoeeeQRq7158+YKCgrymMfLsWbNGnXq1EkdO3a02urUqWN91Xf+OCRp9erVOnfu3GXtq/irqZ9//lmLFy/WU089pUceeURJSUmKiIjQs88+e3kHgRseIQcV3o8//ihfX181bdrUoz00NFRBQUElPjSbNm3q8eEqSc2aNZOkMj+bY9++ffL19VVERMQlxyX9+qFwPofDocaNG5cY1y233HLRi4kbNWrk8fr777+XMUZ//etfVadOHY9lypQpkqSjR49edGwHDx7UwIEDVbNmTVWrVk116tRRt27dJEm5ubkX3e5isrOzdebMmRLHKkktW7ZUUVGRDh065NFev359j9c1atSQJJ04ccLr/V/YV2BgoPz9/VW7du0S7Rf2v3TpUrVp08a6XqVOnTpKSkryah4qVaqkevXqlbl+7Nixatu2rbZu3aopU6Zc8n10KWV5L0+fPl05OTlq1qyZWrdurbFjx2rHjh0l+vL39/cI0tKv81WvXr0S+yhtHr31448/6tZbby3RfuF7qFu3burTp4+mTZum2rVr68EHH9Rbb71V4nq7SykO9ZUrV1bfvn2tdl9fX/Xr108//fSTDh48eJlHghsZd1fBNi78i7iiOf/sym+tK74486mnnlJsbGyp21wY+ooVFhbqd7/7nY4fP65x48apRYsWqlq1qv7zn/9o4MCB5XbLs5+fX6ntxpir0ldZ+v/v//5vDRw4UL1799bYsWMVHBwsPz8/zZw5U/v27Svz/p1Op1e3R+/fv986s7Jz584yb3c5unbtqn379ulf//qX1q1bp8WLF+vll1/WokWLSpwBK83V/P90OXx8fPT+++9ry5Yt+vDDD7V27Vo9+eSTevHFF7VlyxZVq1btN/sovjA/KCioxPEEBwdL+jVcXxiWUfERclChlBZkGjRooKKiIn333Xdq2bKl1Z6VlaWcnBw1aNDAo774LMj5fX377beSVOan0zZp0kRFRUX6+uuv1a5du1Jrive7d+9ej69w8vPzdeDAAcXExJRpX6Up7q9y5cpe97Nz5059++23Wrp0qZ544gmr/fy7bYqVNTjWqVNHVapU0d69e0us27Nnj3x9fRUeHu7VOMvD+++/r8aNG+uDDz7wONbis2HFrmaALioq0sCBA+VyuTR69Gg9//zz6tu3rx5++GGv+yrre7lmzZoaNGiQBg0apFOnTqlr166aOnWqR8gpbw0aNCj1K7TS3kOS1KlTJ3Xq1EnPPfecli1bpscff1zLly8v0zH4+vqqXbt2+uKLL5Sfn+9xxvTw4cOSVOIsFuyBr6tQoVStWlWSPG7B7tmzp6RfbxE930svvSRJiouL82g/fPiwVq5cab12u936xz/+oXbt2ik0NLRM4+jdu7d8fX01ffr0Emc+iv+FGxMTI4fDob///e8e/+p94403lJubW2Jc3ggODtbdd9+tV199VUeOHCmx/lK3Yhf/S/b8MRljNHfu3BK1pc33xfrs0aOH/vWvf3l85ZeVlaVly5apS5cucrlcl+zjeihtLj7//HOlpaV51BU/r+hqPGn7pZde0ubNm/Xaa69pxowZ6ty5s0aMGKFjx4553VdZ3ss///yzxzbVqlVT06ZNvfq651ro2bOntmzZoq1bt1pt2dnZeueddzzqTpw4UeKsUfE/LLw5hn79+qmwsFBLly612s6ePat33nlHERERCgsLu4yjwI2OMzmoUCIjIyVJEydOVP/+/VW5cmU98MADio+P12uvvaacnBx169ZNW7du1dKlS9W7d291797do49mzZpp8ODB+uKLLxQSEqI333xTWVlZeuutt8o8jqZNm2rixImaMWOG7rrrLj388MNyOp364osvFBYWppkzZ6pOnTqaMGGCpk2bpvvuu0+///3vtXfvXi1YsEAdOnTQH/7whyuai/nz56tLly5q3bq1hg4dqsaNGysrK0tpaWn66aefLvrMlRYtWqhJkyZ66qmn9J///Ecul0v//Oc/S73Goni+/+///b+KjY2Vn5+f+vfvX2q/zz77rFJSUtSlSxf96U9/UqVKlfTqq68qLy9Ps2bNuqJjvVZ69eqlDz74QA899JDi4uJ04MABLVq0SBERER7PUQkICFBERIRWrFihZs2aqWbNmmrVqpVatWrl1f6++eYb/fWvf9XAgQP1wAMPSPr1uUHt2rXTn/70J7377rte9VeW93JERITuvvtuRUZGqmbNmtq2bZvef/99jRw50qt9XW1PP/203n77bd13333685//rKpVq+q1115TgwYNPK4ZWrp0qRYsWKCHHnpITZo00cmTJ/X666/L5XJZ/8Apiz/+8Y9avHixEhIS9O2336p+/fp6++239eOPP+rDDz+8FoeIG8H1uKULuBIzZswwt9xyi/H19bVuNT137pyZNm2aadSokalcubIJDw83EyZM8Li92phfb2ONi4sza9euNW3atDFOp9O0aNHCvPfee5c1ljfffNPcfvvtxul0mho1aphu3bqZlJQUj5p58+aZFi1amMqVK5uQkBAzYsQIc+LECY+abt26mdtuu61E/8W3kM+ePbvU/e/bt8888cQTJjQ01FSuXNnccsstplevXub999+3akq7hfzrr782MTExplq1aqZ27dpm6NCh5quvvrKei1KsoKDAjBo1ytSpU8f4+Ph43E6uUm4j/vLLL01sbKypVq2aqVKliunevbvZvHmzR03xLeQX3hJc2jh/S/Et5NnZ2R7t8fHxpmrVqiXqL5znoqIi8/zzz5sGDRoYp9Npbr/9drN69epSb/3evHmziYyMNA6Hw+PYL7av4nXF/RQUFJgOHTqYevXqlbhNfu7cuUaSWbFiRZmPvazv5WeffdZ07NjRBAUFmYCAANOiRQvz3HPPeTynqazzdeG+vXHhLeTGGLNjxw7TrVs34+/vb2655RYzY8YM88Ybb3jcQv7ll1+aRx991NSvX984nU4THBxsevXqZbZt2+bV/o359Zk78fHxpmbNmsbpdJqoqCiTnJzsdT+oOHyMKaerx4AbQMOGDdWqVSutXr36eg8FuCK8l4HfxjU5AADAlrgmB7jAbz0QMCAgQIGBgeU0mpvTqVOnfvN3C9WpU+eitzdXZNnZ2SosLLzoeofDoZo1a5bjiC7tev+8HD9+XPn5+Rdd7+fnx51TNzFCDnCBunXrXnJ9fHy8lixZUj6DuUn97W9/07Rp0y5Zc+DAgTLf8l+RdOjQ4ZJPfe7WrZs2bNhQfgP6Ddf75+Xhhx/Wxo0bL7q+QYMGZX7IJ+yHa3KAC3z88ceXXB8WFnbZT6hF2ezfv/83f21Aly5d5O/vX04jKj+fffaZx2+Dv1CNGjWsu95uBNf75yU9Pf2ST18OCAjQnXfeec32jxsbIQcAANgSFx4DAABbuqmvySkqKtLhw4dVvXr1Cv97jwAAuFkYY3Ty5EmFhYVd8vfG3dQh5/Dhwzfk79MBAAC/7dChQ6pXr95F19/UIad69eqSfp2kG/H36gAAgJLcbrfCw8Otz/GLualDTvFXVC6Xi5ADAEAF81uXmnDhMQAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsKVK13sAdnUu+dMSbZXv63IdRgIAwM2JMzkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWvAo5CxcuVJs2beRyueRyuRQdHa2PPvrIWn/33XfLx8fHYxk+fLhHHwcPHlRcXJyqVKmi4OBgjR07VgUFBR41GzZs0B133CGn06mmTZtqyZIlJcYyf/58NWzYUP7+/oqKitLWrVu9ORQAAGBzXoWcevXq6YUXXlB6erq2bdume+65Rw8++KB2795t1QwdOlRHjhyxllmzZlnrCgsLFRcXp/z8fG3evFlLly7VkiVLNHnyZKvmwIEDiouLU/fu3ZWRkaHRo0dryJAhWrt2rVWzYsUKJSYmasqUKfryyy/Vtm1bxcbG6ujRo1cyFwAAwEZ8jDHmSjqoWbOmZs+ercGDB+vuu+9Wu3btNGfOnFJrP/roI/Xq1UuHDx9WSEiIJGnRokUaN26csrOz5XA4NG7cOCUlJWnXrl3Wdv3791dOTo6Sk5MlSVFRUerQoYPmzZsnSSoqKlJ4eLhGjRql8ePHl3nsbrdbgYGBys3NlcvluswZKB0PAwQA4Noo6+f3ZV+TU1hYqOXLl+v06dOKjo622t955x3Vrl1brVq10oQJE3TmzBlrXVpamlq3bm0FHEmKjY2V2+22zgalpaUpJibGY1+xsbFKS0uTJOXn5ys9Pd2jxtfXVzExMVbNxeTl5cntdnssAADAnrz+tQ47d+5UdHS0zp49q2rVqmnlypWKiIiQJD322GNq0KCBwsLCtGPHDo0bN0579+7VBx98IEnKzMz0CDiSrNeZmZmXrHG73frll1904sQJFRYWllqzZ8+eS4595syZmjZtmreHDAAAKiCvQ07z5s2VkZGh3Nxcvf/++4qPj9fGjRsVERGhYcOGWXWtW7dW3bp1de+992rfvn1q0qTJVR345ZgwYYISExOt1263W+Hh4ddxRAAA4FrxOuQ4HA41bdpUkhQZGakvvvhCc+fO1auvvlqiNioqSpL0/fffq0mTJgoNDS1xF1RWVpYkKTQ01Ppvcdv5NS6XSwEBAfLz85Ofn1+pNcV9XIzT6ZTT6fTiaAEAQEV1xc/JKSoqUl5eXqnrMjIyJEl169aVJEVHR2vnzp0ed0GlpKTI5XJZX3lFR0crNTXVo5+UlBTruh+Hw6HIyEiPmqKiIqWmpnpcGwQAAG5uXp3JmTBhgu6//37Vr19fJ0+e1LJly7RhwwatXbtW+/bt07Jly9SzZ0/VqlVLO3bs0JgxY9S1a1e1adNGktSjRw9FRERowIABmjVrljIzMzVp0iQlJCRYZ1iGDx+uefPm6emnn9aTTz6p9evX691331VSUpI1jsTERMXHx6t9+/bq2LGj5syZo9OnT2vQoEFXcWoAAEBF5lXIOXr0qJ544gkdOXJEgYGBatOmjdauXavf/e53OnTokD7++GMrcISHh6tPnz6aNGmStb2fn59Wr16tESNGKDo6WlWrVlV8fLymT59u1TRq1EhJSUkaM2aM5s6dq3r16mnx4sWKjY21avr166fs7GxNnjxZmZmZateunZKTk0tcjAwAAG5eV/ycnIqM5+QAAFDxXPPn5AAAANzICDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWKl3vAdjVDzkflWi7VV2uw0gAALg5cSYHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYklchZ+HChWrTpo1cLpdcLpeio6P10UcfWevPnj2rhIQE1apVS9WqVVOfPn2UlZXl0cfBgwcVFxenKlWqKDg4WGPHjlVBQYFHzYYNG3THHXfI6XSqadOmWrJkSYmxzJ8/Xw0bNpS/v7+ioqK0detWbw4FAADYnFchp169enrhhReUnp6ubdu26Z577tGDDz6o3bt3S5LGjBmjDz/8UO+99542btyow4cP6+GHH7a2LywsVFxcnPLz87V582YtXbpUS5Ys0eTJk62aAwcOKC4uTt27d1dGRoZGjx6tIUOGaO3atVbNihUrlJiYqClTpujLL79U27ZtFRsbq6NHj17pfAAAAJvwMcaYK+mgZs2amj17tvr27as6depo2bJl6tu3ryRpz549atmypdLS0tSpUyd99NFH6tWrlw4fPqyQkBBJ0qJFizRu3DhlZ2fL4XBo3LhxSkpK0q5du6x99O/fXzk5OUpOTpYkRUVFqUOHDpo3b54kqaioSOHh4Ro1apTGjx9f5rG73W4FBgYqNzdXLpfrSqahhO+WTyzRdmv/567qPgAAuBmV9fP7sq/JKSws1PLly3X69GlFR0crPT1d586dU0xMjFXTokUL1a9fX2lpaZKktLQ0tW7d2go4khQbGyu3222dDUpLS/Poo7imuI/8/Hylp6d71Pj6+iomJsaquZi8vDy53W6PBQAA2JPXIWfnzp2qVq2anE6nhg8frpUrVyoiIkKZmZlyOBwKCgryqA8JCVFmZqYkKTMz0yPgFK8vXnepGrfbrV9++UXHjh1TYWFhqTXFfVzMzJkzFRgYaC3h4eHeHj4AAKggvA45zZs3V0ZGhj7//HONGDFC8fHx+vrrr6/F2K66CRMmKDc311oOHTp0vYcEAACukUrebuBwONS0aVNJUmRkpL744gvNnTtX/fr1U35+vnJycjzO5mRlZSk0NFSSFBoaWuIuqOK7r86vufCOrKysLLlcLgUEBMjPz09+fn6l1hT3cTFOp1NOp9PbQwYAABXQFT8np6ioSHl5eYqMjFTlypWVmppqrdu7d68OHjyo6OhoSVJ0dLR27tzpcRdUSkqKXC6XIiIirJrz+yiuKe7D4XAoMjLSo6aoqEipqalWDQAAgFdnciZMmKD7779f9evX18mTJ7Vs2TJt2LBBa9euVWBgoAYPHqzExETVrFlTLpdLo0aNUnR0tDp16iRJ6tGjhyIiIjRgwADNmjVLmZmZmjRpkhISEqwzLMOHD9e8efP09NNP68knn9T69ev17rvvKikpyRpHYmKi4uPj1b59e3Xs2FFz5szR6dOnNWjQoKs4NQAAoCLzKuQcPXpUTzzxhI4cOaLAwEC1adNGa9eu1e9+9ztJ0ssvvyxfX1/16dNHeXl5io2N1YIFC6zt/fz8tHr1ao0YMULR0dGqWrWq4uPjNX36dKumUaNGSkpK0pgxYzR37lzVq1dPixcvVmxsrFXTr18/ZWdna/LkycrMzFS7du2UnJxc4mJkAABw87ri5+RUZDwnBwCAiueaPycHAADgRkbIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtuRVyJk5c6Y6dOig6tWrKzg4WL1799bevXs9au6++275+Ph4LMOHD/eoOXjwoOLi4lSlShUFBwdr7NixKigo8KjZsGGD7rjjDjmdTjVt2lRLliwpMZ758+erYcOG8vf3V1RUlLZu3erN4QAAABvzKuRs3LhRCQkJ2rJli1JSUnTu3Dn16NFDp0+f9qgbOnSojhw5Yi2zZs2y1hUWFiouLk75+fnavHmzli5dqiVLlmjy5MlWzYEDBxQXF6fu3bsrIyNDo0eP1pAhQ7R27VqrZsWKFUpMTNSUKVP05Zdfqm3btoqNjdXRo0cvdy4AAICN+BhjzOVunJ2dreDgYG3cuFFdu3aV9OuZnHbt2mnOnDmlbvPRRx+pV69eOnz4sEJCQiRJixYt0rhx45SdnS2Hw6Fx48YpKSlJu3btsrbr37+/cnJylJycLEmKiopShw4dNG/ePElSUVGRwsPDNWrUKI0fP75M43e73QoMDFRubq5cLtflTkOpvls+sUTbrf2fu6r7AADgZlTWz+8ruiYnNzdXklSzZk2P9nfeeUe1a9dWq1atNGHCBJ05c8Zal5aWptatW1sBR5JiY2Pldru1e/duqyYmJsajz9jYWKWlpUmS8vPzlZ6e7lHj6+urmJgYq6Y0eXl5crvdHgsAALCnSpe7YVFRkUaPHq0777xTrVq1stofe+wxNWjQQGFhYdqxY4fGjRunvXv36oMPPpAkZWZmegQcSdbrzMzMS9a43W798ssvOnHihAoLC0ut2bNnz0XHPHPmTE2bNu1yDxkAAFQglx1yEhIStGvXLn366ace7cOGDbP+3Lp1a9WtW1f33nuv9u3bpyZNmlz+SK+CCRMmKDEx0XrtdrsVHh5+HUcEAACulcsKOSNHjtTq1au1adMm1atX75K1UVFRkqTvv/9eTZo0UWhoaIm7oLKysiRJoaGh1n+L286vcblcCggIkJ+fn/z8/EqtKe6jNE6nU06ns2wHCQAAKjSvrskxxmjkyJFauXKl1q9fr0aNGv3mNhkZGZKkunXrSpKio6O1c+dOj7ugUlJS5HK5FBERYdWkpqZ69JOSkqLo6GhJksPhUGRkpEdNUVGRUlNTrRoAAHBz8+pMTkJCgpYtW6Z//etfql69unUNTWBgoAICArRv3z4tW7ZMPXv2VK1atbRjxw6NGTNGXbt2VZs2bSRJPXr0UEREhAYMGKBZs2YpMzNTkyZNUkJCgnWWZfjw4Zo3b56efvppPfnkk1q/fr3effddJSUlWWNJTExUfHy82rdvr44dO2rOnDk6ffq0Bg0adLXmBgAAVGBehZyFCxdK+vU28fO99dZbGjhwoBwOhz7++GMrcISHh6tPnz6aNGmSVevn56fVq1drxIgRio6OVtWqVRUfH6/p06dbNY0aNVJSUpLGjBmjuXPnql69elq8eLFiY2Otmn79+ik7O1uTJ09WZmam2rVrp+Tk5BIXIwMAgJvTFT0np6LjOTkAAFQ85fKcHAAAgBsVIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANgSIQcAANiSVyFn5syZ6tChg6pXr67g4GD17t1be/fu9ag5e/asEhISVKtWLVWrVk19+vRRVlaWR83BgwcVFxenKlWqKDg4WGPHjlVBQYFHzYYNG3THHXfI6XSqadOmWrJkSYnxzJ8/Xw0bNpS/v7+ioqK0detWbw4HAADYmFchZ+PGjUpISNCWLVuUkpKic+fOqUePHjp9+rRVM2bMGH344Yd67733tHHjRh0+fFgPP/ywtb6wsFBxcXHKz8/X5s2btXTpUi1ZskSTJ0+2ag4cOKC4uDh1795dGRkZGj16tIYMGaK1a9daNStWrFBiYqKmTJmiL7/8Um3btlVsbKyOHj16JfMBAABswscYYy534+zsbAUHB2vjxo3q2rWrcnNzVadOHS1btkx9+/aVJO3Zs0ctW7ZUWlqaOnXqpI8++ki9evXS4cOHFRISIklatGiRxo0bp+zsbDkcDo0bN05JSUnatWuXta/+/fsrJydHycnJkqSoqCh16NBB8+bNkyQVFRUpPDxco0aN0vjx48s0frfbrcDAQOXm5srlcl3uNJTqu+UTS7Td2v+5q7oPAABuRmX9/L6ia3Jyc3MlSTVr1pQkpaen69y5c4qJibFqWrRoofr16ystLU2SlJaWptatW1sBR5JiY2Pldru1e/duq+b8PoprivvIz89Xenq6R42vr69iYmKsmtLk5eXJ7XZ7LAAAwJ4uO+QUFRVp9OjRuvPOO9WqVStJUmZmphwOh4KCgjxqQ0JClJmZadWcH3CK1xevu1SN2+3WL7/8omPHjqmwsLDUmuI+SjNz5kwFBgZaS3h4uPcHDgAAKoTLDjkJCQnatWuXli9ffjXHc01NmDBBubm51nLo0KHrPSQAAHCNVLqcjUaOHKnVq1dr06ZNqlevntUeGhqq/Px85eTkeJzNycrKUmhoqFVz4V1QxXdfnV9z4R1ZWVlZcrlcCggIkJ+fn/z8/EqtKe6jNE6nU06n0/sDBgAAFY5XZ3KMMRo5cqRWrlyp9evXq1GjRh7rIyMjVblyZaWmplpte/fu1cGDBxUdHS1Jio6O1s6dOz3ugkpJSZHL5VJERIRVc34fxTXFfTgcDkVGRnrUFBUVKTU11aoBAAA3N6/O5CQkJGjZsmX617/+perVq1vXvwQGBiogIECBgYEaPHiwEhMTVbNmTblcLo0aNUrR0dHq1KmTJKlHjx6KiIjQgAEDNGvWLGVmZmrSpElKSEiwzrIMHz5c8+bN09NPP60nn3xS69ev17vvvqukpCRrLImJiYqPj1f79u3VsWNHzZkzR6dPn9agQYOu1twAAIAKzKuQs3DhQknS3Xff7dH+1ltvaeDAgZKkl19+Wb6+vurTp4/y8vIUGxurBQsWWLV+fn5avXq1RowYoejoaFWtWlXx8fGaPn26VdOoUSMlJSVpzJgxmjt3rurVq6fFixcrNjbWqunXr5+ys7M1efJkZWZmql27dkpOTi5xMTIAALg5XdFzcio6npMDAEDFUy7PyQEAALhREXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAteR1yNm3apAceeEBhYWHy8fHRqlWrPNYPHDhQPj4+Hst9993nUXP8+HE9/vjjcrlcCgoK0uDBg3Xq1CmPmh07duiuu+6Sv7+/wsPDNWvWrBJjee+999SiRQv5+/urdevWWrNmjbeHAwAAbMrrkHP69Gm1bdtW8+fPv2jNfffdpyNHjljL//zP/3isf/zxx7V7926lpKRo9erV2rRpk4YNG2atd7vd6tGjhxo0aKD09HTNnj1bU6dO1WuvvWbVbN68WY8++qgGDx6s7du3q3fv3urdu7d27drl7SEBAAAb8jHGmMve2MdHK1euVO/eva22gQMHKicnp8QZnmLffPONIiIi9MUXX6h9+/aSpOTkZPXs2VM//fSTwsLCtHDhQk2cOFGZmZlyOBySpPHjx2vVqlXas2ePJKlfv346ffq0Vq9ebfXdqVMntWvXTosWLSrT+N1utwIDA5WbmyuXy3UZM3Bx3y2fWKLt1v7PXdV9AABwMyrr5/c1uSZnw4YNCg4OVvPmzTVixAj9/PPP1rq0tDQFBQVZAUeSYmJi5Ovrq88//9yq6dq1qxVwJCk2NlZ79+7ViRMnrJqYmBiP/cbGxiotLe2i48rLy5Pb7fZYAACAPV31kHPffffpH//4h1JTU/Vf//Vf2rhxo+6//34VFhZKkjIzMxUcHOyxTaVKlVSzZk1lZmZaNSEhIR41xa9/q6Z4fWlmzpypwMBAawkPD7+ygwUAADesSle7w/79+1t/bt26tdq0aaMmTZpow4YNuvfee6/27rwyYcIEJSYmWq/dbjdBBwAAm7rmt5A3btxYtWvX1vfffy9JCg0N1dGjRz1qCgoKdPz4cYWGhlo1WVlZHjXFr3+rpnh9aZxOp1wul8cCAADs6ZqHnJ9++kk///yz6tatK0mKjo5WTk6O0tPTrZr169erqKhIUVFRVs2mTZt07tw5qyYlJUXNmzdXjRo1rJrU1FSPfaWkpCg6OvpaHxIAAKgAvA45p06dUkZGhjIyMiRJBw4cUEZGhg4ePKhTp05p7Nix2rJli3744QelpqbqwQcfVNOmTRUbGytJatmype677z4NHTpUW7du1WeffaaRI0eqf//+CgsLkyQ99thjcjgcGjx4sHbv3q0VK1Zo7ty5Hl81/fnPf1ZycrJefPFF7dmzR1OnTtW2bds0cuTIqzAtAACgovM65Gzbtk233367br/9dklSYmKibr/9dk2ePFl+fn7asWOHfv/736tZs2YaPHiwIiMj9b//+79yOp1WH++8845atGihe++9Vz179lSXLl08noETGBiodevW6cCBA4qMjNRf/vIXTZ482eNZOp07d9ayZcv02muvqW3btnr//fe1atUqtWrV6krmAwAA2MQVPSenouM5OQAAVDzX9Tk5AAAA1xshBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2BIhBwAA2JLXIWfTpk164IEHFBYWJh8fH61atcpjvTFGkydPVt26dRUQEKCYmBh99913HjXHjx/X448/LpfLpaCgIA0ePFinTp3yqNmxY4fuuusu+fv7Kzw8XLNmzSoxlvfee08tWrSQv7+/WrdurTVr1nh7OAAAwKa8DjmnT59W27ZtNX/+/FLXz5o1S3//+9+1aNEiff7556patapiY2N19uxZq+bxxx/X7t27lZKSotWrV2vTpk0aNmyYtd7tdqtHjx5q0KCB0tPTNXv2bE2dOlWvvfaaVbN582Y9+uijGjx4sLZv367evXurd+/e2rVrl7eHBAAAbMjHGGMue2MfH61cuVK9e/eW9OtZnLCwMP3lL3/RU089JUnKzc1VSEiIlixZov79++ubb75RRESEvvjiC7Vv316SlJycrJ49e+qnn35SWFiYFi5cqIkTJyozM1MOh0OSNH78eK1atUp79uyRJPXr10+nT5/W6tWrrfF06tRJ7dq106JFi8o0frfbrcDAQOXm5srlcl3uNJTqu+UTS7Td2v+5q7oPAABuRmX9/L6q1+QcOHBAmZmZiomJsdoCAwMVFRWltLQ0SVJaWpqCgoKsgCNJMTEx8vX11eeff27VdO3a1Qo4khQbG6u9e/fqxIkTVs35+ymuKd5PafLy8uR2uz0WAABgT1c15GRmZkqSQkJCPNpDQkKsdZmZmQoODvZYX6lSJdWsWdOjprQ+zt/HxWqK15dm5syZCgwMtJbw8HBvDxEAAFQQN9XdVRMmTFBubq61HDp06HoPCQAAXCNXNeSEhoZKkrKysjzas7KyrHWhoaE6evSox/qCggIdP37co6a0Ps7fx8VqiteXxul0yuVyeSwAAMCermrIadSokUJDQ5Wammq1ud1uff7554qOjpYkRUdHKycnR+np6VbN+vXrVVRUpKioKKtm06ZNOnfunFWTkpKi5s2bq0aNGlbN+fsprineDwAAuLl5HXJOnTqljIwMZWRkSPr1YuOMjAwdPHhQPj4+Gj16tJ599ln9+9//1s6dO/XEE08oLCzMugOrZcuWuu+++zR06FBt3bpVn332mUaOHKn+/fsrLCxMkvTYY4/J4XBo8ODB2r17t1asWKG5c+cqMTHRGsef//xnJScn68UXX9SePXs0depUbdu2TSNHjrzyWQEAABVeJW832LZtm7p37269Lg4e8fHxWrJkiZ5++mmdPn1aw4YNU05Ojrp06aLk5GT5+/tb27zzzjsaOXKk7r33Xvn6+qpPnz76+9//bq0PDAzUunXrlJCQoMjISNWuXVuTJ0/2eJZO586dtWzZMk2aNEnPPPOMbr31Vq1atUqtWrW6rIkAAAD2ckXPyanoeE4OAAAVz3V5Tg4AAMCNgpADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABs6aqHnKlTp8rHx8djadGihbX+7NmzSkhIUK1atVStWjX16dNHWVlZHn0cPHhQcXFxqlKlioKDgzV27FgVFBR41GzYsEF33HGHnE6nmjZtqiVLllztQwEAABXYNTmTc9ttt+nIkSPW8umnn1rrxowZow8//FDvvfeeNm7cqMOHD+vhhx+21hcWFiouLk75+fnavHmzli5dqiVLlmjy5MlWzYEDBxQXF6fu3bsrIyNDo0eP1pAhQ7R27dprcTgAAKACqnRNOq1USaGhoSXac3Nz9cYbb2jZsmW65557JElvvfWWWrZsqS1btqhTp05at26dvv76a3388ccKCQlRu3btNGPGDI0bN05Tp06Vw+HQokWL1KhRI7344ouSpJYtW+rTTz/Vyy+/rNjY2IuOKy8vT3l5edZrt9t9lY8cAADcKK7JmZzvvvtOYWFhaty4sR5//HEdPHhQkpSenq5z584pJibGqm3RooXq16+vtLQ0SVJaWppat26tkJAQqyY2NlZut1u7d++2as7vo7imuI+LmTlzpgIDA60lPDz8qhwvAAC48Vz1kBMVFaUlS5YoOTlZCxcu1IEDB3TXXXfp5MmTyszMlMPhUFBQkMc2ISEhyszMlCRlZmZ6BJzi9cXrLlXjdrv1yy+/XHRsEyZMUG5urrUcOnToSg8XAADcoK7611X333+/9ec2bdooKipKDRo00LvvvquAgICrvTuvOJ1OOZ3O6zoGAABQPq75LeRBQUFq1qyZvv/+e4WGhio/P185OTkeNVlZWdY1PKGhoSXutip+/Vs1LpfrugcpAABwY7jmIefUqVPat2+f6tatq8jISFWuXFmpqanW+r179+rgwYOKjo6WJEVHR2vnzp06evSoVZOSkiKXy6WIiAir5vw+imuK+wAAAOXvXPKnHsv1dtVDzlNPPaWNGzfqhx9+0ObNm/XQQw/Jz89Pjz76qAIDAzV48GAlJibqk08+UXp6ugYNGqTo6Gh16tRJktSjRw9FRERowIAB+uqrr7R27VpNmjRJCQkJ1ldNw4cP1/79+/X0009rz549WrBggd59912NGTPmah8OAACooK76NTk//fSTHn30Uf3888+qU6eOunTpoi1btqhOnTqSpJdfflm+vr7q06eP8vLyFBsbqwULFljb+/n5afXq1RoxYoSio6NVtWpVxcfHa/r06VZNo0aNlJSUpDFjxmju3LmqV6+eFi9efMnbxwEAwM3Fxxhjrvcgrhe3263AwEDl5ubK5XJd1b6/Wz6xRNut/Z+7qvsAAOBGcuFXVJXv63JN9lPWz29+dxUAALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClStd7AAAAoOI5l/zp9R7CbyLkAABwEyk0hfrm5+06cfaYavjXVstat8vPx++q9P1DzkeSpCJj9FNejip9ukdB1evqtlY9VMmv8lXZhzcqfMiZP3++Zs+erczMTLVt21avvPKKOnbseL2HBQDADSftcKre2DVbP589arXV8g/W4FZjFR127yW3LeuZm71nsrWy+m4dr/qLdHyLdFyq+d0LevKWP+rO6D9c0fi9VaFDzooVK5SYmKhFixYpKipKc+bMUWxsrPbu3avg4ODrPTwAAG4YaYdTNWvb05KMR/vPZ7M1a9tY/aXSYEX5tr2ifew9k603am0r0X688mn97ehLUprKNehU6JDz0ksvaejQoRo0aJAkadGiRUpKStKbb76p8ePHX+fRAQBQvi52tqXIFOmNc8/pwoDzq1/blhT8Ux0qt5avz+Xdk1RYVKiV1Xf/+sLngpU+v+7mrf+8qqjCfuX21VWFDTn5+flKT0/XhAkTrDZfX1/FxMQoLS2t1G3y8vKUl5dnvc7NzZUkud3uqz6+U2fySrT9/M+1Hq8r/y76qu8XAHB1nEvx/Cwp7e/sC2tuVN+Yfcos+PmSNZn6WV9U2qWWPk10MDfF630cystRVo1T0i+X2odbn29ZpdatY73u/3zFn9vGlBba/r8KG3KOHTumwsJChYSEeLSHhIRoz549pW4zc+ZMTZs2rUR7eHj4NRljSS+W034AAPBekhLKYR+PXLW+Tp48qcDAwIuur7Ah53JMmDBBiYmJ1uuioiIdP35ctWrVko/PhefWLp/b7VZ4eLgOHTokl8t11fqFJ+a5/DDX5YN5Lh/Mc/m4lvNsjNHJkycVFhZ2yboKG3Jq164tPz8/ZWVlebRnZWUpNDS01G2cTqecTqdHW1BQ0LUaolwuFz9A5YB5Lj/MdflgnssH81w+rtU8X+oMTrEK+8Rjh8OhyMhIpaamWm1FRUVKTU1VdDTXugAAcLOrsGdyJCkxMVHx8fFq3769OnbsqDlz5uj06dPW3VYAAODmVaFDTr9+/ZSdna3JkycrMzNT7dq1U3JycomLkcub0+nUlClTSnw1hquLeS4/zHX5YJ7LB/NcPm6EefYxv3X/FQAAQAVUYa/JAQAAuBRCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCzmWaP3++GjZsKH9/f0VFRWnr1q2XrH/vvffUokUL+fv7q3Xr1lqzZk05jbRi82aeX3/9dd11112qUaOGatSooZiYmN/8/4Jfeft+LrZ8+XL5+Piod+/e13aANuLtXOfk5CghIUF169aV0+lUs2bN+PujDLyd5zlz5qh58+YKCAhQeHi4xowZo7Nnz5bTaCumTZs26YEHHlBYWJh8fHy0atWq39xmw4YNuuOOO+R0OtW0aVMtWbLk2g7SwGvLly83DofDvPnmm2b37t1m6NChJigoyGRlZZVa/9lnnxk/Pz8za9Ys8/XXX5tJkyaZypUrm507d5bzyCsWb+f5scceM/Pnzzfbt28333zzjRk4cKAJDAw0P/30UzmPvGLxdp6LHThwwNxyyy3mrrvuMg8++GD5DLaC83au8/LyTPv27U3Pnj3Np59+ag4cOGA2bNhgMjIyynnkFYu38/zOO+8Yp9Np3nnnHXPgwAGzdu1aU7duXTNmzJhyHnnFsmbNGjNx4kTzwQcfGElm5cqVl6zfv3+/qVKliklMTDRff/21eeWVV4yfn59JTk6+ZmMk5FyGjh07moSEBOt1YWGhCQsLMzNnziy1/pFHHjFxcXEebVFRUeaPf/zjNR1nReftPF+ooKDAVK9e3SxduvRaDdEWLmeeCwoKTOfOnc3ixYtNfHw8IaeMvJ3rhQsXmsaNG5v8/PzyGqIteDvPCQkJ5p577vFoS0xMNHfeeec1HaedlCXkPP300+a2227zaOvXr5+JjY29ZuPi6yov5efnKz09XTExMVabr6+vYmJilJaWVuo2aWlpHvWSFBsbe9F6XN48X+jMmTM6d+6catasea2GWeFd7jxPnz5dwcHBGjx4cHkM0xYuZ67//e9/Kzo6WgkJCQoJCVGrVq30/PPPq7CwsLyGXeFczjx37txZ6enp1lda+/fv15o1a9SzZ89yGfPN4np8FlboX+twPRw7dkyFhYUlfnVESEiI9uzZU+o2mZmZpdZnZmZes3FWdJczzxcaN26cwsLCSvxQ4f+7nHn+9NNP9cYbbygjI6McRmgflzPX+/fv1/r16/X4449rzZo1+v777/WnP/1J586d05QpU8pj2BXO5czzY489pmPHjqlLly4yxqigoEDDhw/XM888Ux5Dvmlc7LPQ7Xbrl19+UUBAwFXfJ2dyYEsvvPCCli9frpUrV8rf3/96D8c2Tp48qQEDBuj1119X7dq1r/dwbK+oqEjBwcF67bXXFBkZqX79+mnixIlatGjR9R6arWzYsEHPP/+8FixYoC+//FIffPCBkpKSNGPGjOs9NFwhzuR4qXbt2vLz81NWVpZHe1ZWlkJDQ0vdJjQ01Kt6XN48F/vb3/6mF154QR9//LHatGlzLYdZ4Xk7z/v27dMPP/ygBx54wGorKiqSJFWqVEl79+5VkyZNru2gK6jLeU/XrVtXlStXlp+fn9XWsmVLZWZmKj8/Xw6H45qOuSK6nHn+61//qgEDBmjIkCGSpNatW+v06dMaNmyYJk6cKF9fzgdcDRf7LHS5XNfkLI7EmRyvORwORUZGKjU11WorKipSamqqoqOjS90mOjrao16SUlJSLlqPy5tnSZo1a5ZmzJih5ORktW/fvjyGWqF5O88tWrTQzp07lZGRYS2///3v1b17d2VkZCg8PLw8h1+hXM57+s4779T3339vBUlJ+vbbb1W3bl0CzkVczjyfOXOmRJApDpaG32F91VyXz8JrdkmzjS1fvtw4nU6zZMkS8/XXX5thw4aZoKAgk5mZaYwxZsCAAWb8+PFW/WeffWYqVapk/va3v5lvvvnGTJkyhVvIy8DbeX7hhReMw+Ew77//vjly5Ii1nDx58nodQoXg7TxfiLurys7buT548KCpXr26GTlypNm7d69ZvXq1CQ4ONs8+++z1OoQKwdt5njJliqlevbr5n//5H7N//36zbt0606RJE/PII49cr0OoEE6ePGm2b99utm/fbiSZl156yWzfvt38+OOPxhhjxo8fbwYMGGDVF99CPnbsWPPNN9+Y+fPncwv5jeqVV14x9evXNw6Hw3Ts2NFs2bLFWtetWzcTHx/vUf/uu++aZs2aGYfDYW677TaTlJRUziOumLyZ5wYNGhhJJZYpU6aU/8ArGG/fz+cj5HjH27nevHmziYqKMk6n0zRu3Ng899xzpqCgoJxHXfF4M8/nzp0zU6dONU2aNDH+/v4mPDzc/OlPfzInTpwo/4FXIJ988kmpf+cWz218fLzp1q1biW3atWtnHA6Hady4sXnrrbeu6Rh9jOFcHAAAsB+uyQEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALZEyAEAALb0/wDVYOCnYdpxswAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARoNJREFUeJzt3Xt4TOfePvA7GZlJhJkIOVZEUIdUCAkx6lipUdE2xVunTRC8NPwqaYmUJg5tY9M6tA5pqxW7W7ZDN7qbaEij2JooQiqoVEnRMhElGYKc5vn94Zr1GgkykYMs9+e61lXzrO961rOehrmzZq01VkIIASIiIiKZsa7rARARERHVBIYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwimdu7dy+srKywd+/eau3XysoK8+fPr9Y+5Wb8+PFo2bJlXQ/jidCyZUuMHz/+kXXx8fGwsrLC77//XuNjIvljyKF6JS0tDfPnz0d+fn5dD+WpsHPnTgYZALdu3cL8+fOrPShS7WnZsiWsrKwqXJ599tm6Hh7VkAZ1PQAiS6SlpWHBggUYP348HBwc6no4srdz506sXr26wqBz+/ZtNGjwdPwTcuvWLSxYsAAA0K9fv0pv9/nnn8NoNNbQqOqX7OxsWFvX3e/VK1aswM2bN83azp8/j3nz5mHgwIF1NCqqaU/Hv1BE9dCtW7fQsGHDcu2lpaUwGo1QKpV1MKr/Y2trW6f7f5IVFhbC3t4eNjY2dT2UJ4ZKparT/QcHB5dre++99wAAY8aMqeXRUG3hx1VUb8yfPx+zZs0CAHh5eUmnmn///XeUlpZi0aJFaN26NVQqFVq2bIl33nkHRUVFZn20bNkSQ4YMwe7du+Hr6wtbW1t4e3tj27ZtVRrTP//5T3Tv3h0NGzZEkyZN0KdPH+zevdusZs2aNXjuueegUqng7u6OsLCwch+39evXDx07dkRGRgb69OmDhg0b4p133sHvv/8OKysrfPjhh1ixYoV0fKdOnQIAnD59GsOHD4ejoyNsbW3h7++P//znP48c93//+1/8z//8D1q0aAGVSgUPDw+Eh4fj9u3bUs348eOxevVqADA7tW9S0TU5x44dw0svvQS1Wo1GjRphwIABOHjwoFmN6ZqLH3/8EREREXBycoK9vT1ee+015OXlPXLs95o/fz6srKzw66+/4m9/+xs0Gg2cnJzw7rvvQgiBixcv4tVXX4VarYarqys++ugjs+2Li4sRHR0NPz8/aDQa2Nvbo3fv3vjhhx+kmt9//x1OTk4AgAULFkjzYDr28ePHo1GjRjh79iwGDx6Mxo0bS2+a91+TExMTA2tra6SmppqNY8qUKVAqlfj5558rfeyV/VkuKSnBggUL8Oyzz8LW1hZNmzZFr169kJKSItWYjuHChQsYMmQIGjVqhGeeeUb6/5+VlYUXXngB9vb28PT0REJCQqXHee94778m5+TJk3jhhRdgZ2eH5s2b47333qvwzNeRI0eg0+nQrFkz2NnZwcvLCxMnTrR4DPdLSEiAl5cXevbs+dh90RNKENUTP//8sxg1apQAIJYvXy6++uor8dVXX4mbN2+KkJAQAUAMHz5crF69WowbN04AEMHBwWZ9eHp6irZt2woHBwcxZ84csWzZMuHj4yOsra3F7t27LRrP/PnzBQDRs2dPsXTpUrFy5UoxevRoERkZKdXExMQIACIwMFB88sknYvr06UKhUIhu3bqJ4uJiqa5v377C1dVVODk5iRkzZohPP/1U7NixQ+Tk5AgAwtvbW7Rq1UosXrxYLF++XJw/f16cOHFCaDQa4e3tLf7+97+LVatWiT59+ggrKyuxbds2qe8ffvhBABA//PCD1DZjxgwxePBg8cEHH4hPP/1UhIaGCoVCIYYPHy7VpKWliRdffFEAkOb6q6++ktYDEDExMdLrEydOCHt7e+Hm5iYWLVokFi9eLLy8vIRKpRIHDx6U6tavXy8AiC5duogXXnhBfPLJJ+Ktt94SCoVCvP766xb9PzDNr6+vrxg1apRYs2aNCAoKEgDEsmXLRLt27cS0adPEmjVrxPPPPy8AiH379knb5+XlCTc3NxERESHWrl0rlixZItq1aydsbGzEsWPHhBBC3Lx5U6xdu1YAEK+99po0Dz///LMQQoiQkBChUqlE69atRUhIiIiLixP/+Mc/pHWenp7S/oqLi0WXLl2Ep6enMBgMQgghkpOTBQCxaNEii469sj/L77zzjrCyshKTJ08Wn3/+ufjoo4/EqFGjxOLFi6WakJAQYWtrK7y9vcXUqVPF6tWrRc+ePQUAsX79euHu7i5mzZolPvnkE/Hcc88JhUIhzp07Z/F4Q0JCpNeXL18WTk5OokmTJmL+/Pli6dKl4tlnnxWdOnUSAEROTo4QQojc3FzRpEkT0bZtW7F06VLx+eefi7lz54oOHTpYtP/7HT16VAAQc+fOfax+6MnGkEP1ytKlS83+ARRCiMzMTAFATJo0yaz27bffFgDEnj17pDZPT08BQPz73/+W2goKCoSbm5vo0qVLpcdx5swZYW1tLV577TVRVlZmts5oNAohhLhy5YpQKpVi4MCBZjWrVq0SAMSXX34ptfXt21cAEHFxcWZ9mUKOWq0WV65cMVs3YMAA4ePjI+7cuWO27549e4pnn31Waqso5Ny6davcMcXGxgorKytx/vx5qS0sLEw86Heh+0NOcHCwUCqV4uzZs1LbpUuXROPGjUWfPn2kNlPICQwMlOZKCCHCw8OFQqEQ+fn5Fe6vIqaQM2XKFKmttLRUNG/eXFhZWZm9kV+/fl3Y2dmZvdGWlpaKoqIisz6vX78uXFxcxMSJE6W2vLy8csdrYgrYc+bMqXDdvSFHCCGysrKEUqkUkyZNEtevXxfPPPOM8Pf3FyUlJZU+biEq/7PcuXNnERQU9NC+TMfwwQcfSG2m+bKyshKbNm2S2k+fPv3AuXjUeO+d+5kzZwoA4qeffpLarly5IjQajdnf8e3btwsA4vDhwxbt71HeeustAUCcOnWqWvulJws/rqJ6b+fOnQCAiIgIs/a33noLAJCUlGTW7u7ujtdee016rVarMW7cOBw7dgx6vb5S+9yxYweMRiOio6PLXUxp+kjn+++/R3FxMWbOnGlWM3nyZKjV6nLjUqlUmDBhQoX7GzZsmPSRCQBcu3YNe/bsweuvv44bN27g6tWruHr1Kv766y/odDqcOXMGf/755wPHb2dnJ/25sLAQV69eRc+ePSGEwLFjxyo1B/cqKyvD7t27ERwcjFatWkntbm5uGD16NA4cOACDwWC2zZQpU8w+/urduzfKyspw/vx5i/c/adIk6c8KhQL+/v4QQiA0NFRqd3BwQLt27XDu3DmzWtO1TUajEdeuXUNpaSn8/f1x9OhRi8Ywbdq0StV17NgRCxYswLp166DT6XD16lVs2LChShdxV+Zn2cHBASdPnsSZM2ce2d+982iaL3t7e7z++utSe7t27eDg4GA2j1Wxc+dO9OjRA927d5fanJycyl0fY7rBIDExESUlJY+1TxOj0YhNmzahS5cu6NChQ7X0SU8mhhyq986fPw9ra2u0adPGrN3V1RUODg7l3jTbtGlj9uYKAG3btgWASj+b4+zZs7C2toa3t/dDxwXcfVO4l1KpRKtWrcqN65lnnnngxcReXl5mr3/77TcIIfDuu+/CycnJbImJiQEAXLly5YFju3DhAsaPHw9HR0c0atQITk5O6Nu3LwCgoKDggds9SF5eHm7dulXuWAGgQ4cOMBqNuHjxoll7ixYtzF43adIEAHD9+nWL939/XxqNBra2tmjWrFm59vv737BhAzp16iRdr+Lk5ISkpCSL5qFBgwZo3rx5petnzZqFzp0749ChQ4iJiXnoz9HDVOZneeHChcjPz0fbtm3h4+ODWbNm4fjx4+X6srW1NQvSwN35at68ebl9VDSPljp//nyFt27f/zPUt29fDBs2DAsWLECzZs3w6quvYv369eWut7PEvn378Oeff/KC46cA764i2bj/H+L65t6zK49aZ7o48+2334ZOp6twm/tDn0lZWRlefPFFXLt2DZGRkWjfvj3s7e3x559/Yvz48bV2y7NCoaiwXQhRLX1Vpv9//vOfGD9+PIKDgzFr1iw4OztDoVAgNjYWZ8+erfT+VSqVRbdHnzt3TjqzkpWVVentqqJPnz44e/YsvvnmG+zevRvr1q3D8uXLERcXV+4MWEWq8/9TVVhZWeHrr7/GwYMH8e2332LXrl2YOHEiPvroIxw8eBCNGjWyuM+NGzfC2toao0aNqoER05OEIYfqlYqCjKenJ4xGI86cOWN26jk3Nxf5+fnw9PQ0qzedBbm3r19//RUAKv102tatW8NoNOLUqVPw9fWtsMa03+zsbLOPcIqLi5GTk4PAwMBK7asipv5sbGws7icrKwu//vorNmzYgHHjxknt995tY1LZ4Ojk5ISGDRsiOzu73LrTp0/D2toaHh4eFo2zNnz99ddo1aoVtm3bZnasprNhJtUZoI1GI8aPHw+1Wo2ZM2figw8+wPDhwzF06FCL+6rsz7KjoyMmTJiACRMm4ObNm+jTpw/mz59vFnJqm6enZ4UfoVX0MwQAPXr0QI8ePfD+++8jISEBY8aMwaZNmyw+hqKiIvz73/9Gv3794O7uXqWxU/3Bj6uoXrG3twcAs1uwBw8eDODuw77utWzZMgBAUFCQWfulS5ewfft26bXBYMA//vEP+Pr6wtXVtVLjCA4OhrW1NRYuXFjuzIfpN9zAwEAolUp8/PHHZr/1fvHFFygoKCg3Lks4OzujX79++PTTT3H58uVy6x92K7bpN/N7xySEwMqVK8vVVjTfD+pz4MCB+Oabb8w+8svNzUVCQgJ69eoFtVr90D7qQkVz8dNPPyE9Pd2szvS8oup40vayZcuQlpaGzz77DIsWLULPnj0xbdo0XL161eK+KvOz/Ndff5lt06hRI7Rp0+axPu6pDoMHD8bBgwdx6NAhqS0vLw8bN240q7t+/Xq5s0amXyyqcgw7d+5Efn4+P6p6SvBMDtUrfn5+AIC5c+di5MiRsLGxwcsvv4yQkBB89tlnyM/PR9++fXHo0CFs2LABwcHB6N+/v1kfbdu2RWhoKA4fPgwXFxd8+eWXyM3Nxfr16ys9jjZt2mDu3LlYtGgRevfujaFDh0KlUuHw4cNwd3dHbGwsnJycEBUVhQULFmDQoEF45ZVXkJ2djTVr1qBbt27429/+9lhzsXr1avTq1Qs+Pj6YPHkyWrVqhdzcXKSnp+OPP/544DNX2rdvj9atW+Ptt9/Gn3/+CbVajX//+98VXmNhmu//9//+H3Q6HRQKBUaOHFlhv++99x5SUlLQq1cvvPHGG2jQoAE+/fRTFBUVYcmSJY91rDVlyJAh2LZtG1577TUEBQUhJycHcXFx8Pb2Nns6rp2dHby9vbF582a0bdsWjo6O6NixIzp27GjR/n755Re8++67GD9+PF5++WUAd58b5OvrizfeeANbtmyxqL/K/Cx7e3ujX79+8PPzg6OjI44cOYKvv/4a06dPt2hf1W327Nn46quvMGjQILz55puwt7fHZ599Bk9PT7NrhjZs2IA1a9bgtddeQ+vWrXHjxg18/vnnUKvV0i84lti4cSNUKhWGDRtWnYdDT6q6uKWL6HEsWrRIPPPMM8La2lq61bSkpEQsWLBAeHl5CRsbG+Hh4SGioqLMbq8W4u5trEFBQWLXrl2iU6dOQqVSifbt24utW7dWaSxffvml6NKli1CpVKJJkyaib9++IiUlxaxm1apVon379sLGxka4uLiIadOmievXr5vV9O3bVzz33HPl+jfdQr506dIK93/27Fkxbtw44erqKmxsbMQzzzwjhgwZIr7++muppqJbyE+dOiUCAwNFo0aNRLNmzcTkyZPFzz//LD0XxaS0tFTMmDFDODk5CSsrK7PbyVHBbcRHjx4VOp1ONGrUSDRs2FD0799fpKWlmdWYbiG//5bgisb5KKZbyPPy8szaQ0JChL29fbn6++fZaDSKDz74QHh6egqVSiW6dOkiEhMTK7z1Oy0tTfj5+QmlUml27A/al2mdqZ/S0lLRrVs30bx583K3ya9cuVIAEJs3b670sVf2Z/m9994T3bt3Fw4ODsLOzk60b99evP/++2bPaarsfN2/b0vcfwu5EEIcP35c9O3bV9ja2opnnnlGLFq0SHzxxRdmt5AfPXpUjBo1SrRo0UKoVCrh7OwshgwZIo4cOWLR/oW4e4u9ra2tGDp0qMXbUv1kJUQtXT1G9ARo2bIlOnbsiMTExLoeCtFj4c8y0aPxmhwiIiKSJV6TQ3SfRz0Q0M7ODhqNppZG83S6efNmuW+Mvp+Tk9MDb2+uz/Ly8lBWVvbA9UqlEo6OjrU4ooer678v165dQ3Fx8QPXKxSKcs//oacHQw7Rfdzc3B66PiQkBPHx8bUzmKfUhx9+iAULFjy0Jicnp9K3/Ncn3bp1e+hTn/v27Yu9e/fW3oAeoa7/vgwdOhT79u174HpPT89KP+ST5IfX5BDd5/vvv3/oend39yo/oZYq59y5c4/82oBevXrB1ta2lkZUe3788Uezb4O/X5MmTaS73p4Edf33JSMj46FPX7azs8Pzzz9fY/unJ9zjXLUcGxsrAIg333xTart9+7Z44403hKOjo7C3txdDhw4Ver3ebLvz58+LwYMHCzs7O+Hk5CTefvvtcl9O98MPP4guXboIpVIpWrdubXbHh8mqVaukuyK6d+9u9kVvRERE9HSr8oXHhw8fxqeffopOnTqZtYeHh+Pbb7/F1q1bsW/fPly6dMnsSZ5lZWUICgpCcXEx0tLSsGHDBsTHxyM6OlqqycnJQVBQEPr374/MzEzMnDkTkyZNwq5du6SazZs3IyIiAjExMTh69Cg6d+4MnU730O/rISIioqdHlT6uunnzJrp27Yo1a9bgvffeg6+vL1asWIGCggI4OTkhISEBw4cPB3D3ke4dOnRAeno6evToge+++w5DhgzBpUuX4OLiAgCIi4tDZGQk8vLyoFQqERkZiaSkJJw4cULa58iRI5Gfn4/k5GQAQEBAALp164ZVq1YBuPuodA8PD8yYMQNz5syp1HEYjUZcunQJjRs3rvffe0RERPS0EELgxo0bcHd3f/j3xlXl9M+4cePEzJkzhRB3HxZl+rgqNTVVACj3oLMWLVqIZcuWCSGEePfdd0Xnzp3N1p87d04AEEePHhVCCNG7d2+zj8CEuPvQNbVaLYQQoqioSCgUCrF9+/Zy43rllVceOO47d+6IgoICaTl16pQAwIULFy5cuHCph8vFixcfmlcsvrtq06ZNOHr0KA4fPlxunV6vh1KphIODg1m7i4uLdJuhXq+XzuDcu9607mE1BoMBt2/fxvXr11FWVlZhzenTpx849tjY2Arv2Lh48eIT+b06REREVJ7BYICHhwcaN2780DqLQs7Fixfx5ptvIiUlpV7e1RAVFYWIiAjptWmS1Go1Qw4REVE986hLTSy68DgjIwNXrlxB165d0aBBAzRo0AD79u3Dxx9/jAYNGsDFxQXFxcXlvqk3NzdX+kZcV1dX5ObmlltvWvewGrVaDTs7OzRr1gwKhaLCmod9i7RKpZICDYMNERGRvFkUcgYMGICsrCxkZmZKi7+/P8aMGSP92cbGBqmpqdI22dnZuHDhArRaLQBAq9UiKyvL7C6olJQUqNVq6VkKWq3WrA9TjakPpVIJPz8/sxqj0YjU1FSphoiIiJ5uFn1c1bhxY3Ts2NGszd7eHk2bNpXaQ0NDERERAUdHR6jVasyYMQNarRY9evQAAAwcOBDe3t4YO3YslixZAr1ej3nz5iEsLAwqlQoAMHXqVKxatQqzZ8/GxIkTsWfPHmzZsgVJSUnSfiMiIhASEgJ/f390794dK1asQGFhISZMmPBYE0JERETyUO1f67B8+XJYW1tj2LBhKCoqgk6nw5o1a6T1CoUCiYmJmDZtGrRaLezt7RESEoKFCxdKNV5eXkhKSkJ4eDhWrlyJ5s2bY926ddDpdFLNiBEjkJeXh+joaOj1evj6+iI5ObncxchERET0dHqqv9bBYDBAo9GgoKCA1+cQERHVE5V9/67yE4+JiIiInmQMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS9X+tQ50V0nygXJtNoN61cFIiIiInk48k0NERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyZFHIWbt2LTp16gS1Wg21Wg2tVovvvvtOWt+vXz9YWVmZLVOnTjXr48KFCwgKCkLDhg3h7OyMWbNmobS01Kxm79696Nq1K1QqFdq0aYP4+PhyY1m9ejVatmwJW1tbBAQE4NChQ5YcChEREcmcRSGnefPmWLx4MTIyMnDkyBG88MILePXVV3Hy5EmpZvLkybh8+bK0LFmyRFpXVlaGoKAgFBcXIy0tDRs2bEB8fDyio6OlmpycHAQFBaF///7IzMzEzJkzMWnSJOzatUuq2bx5MyIiIhATE4OjR4+ic+fO0Ol0uHLlyuPMBREREcmIlRBCPE4Hjo6OWLp0KUJDQ9GvXz/4+vpixYoVFdZ+9913GDJkCC5dugQXFxcAQFxcHCIjI5GXlwelUonIyEgkJSXhxIkT0nYjR45Efn4+kpOTAQABAQHo1q0bVq1aBQAwGo3w8PDAjBkzMGfOnEqP3WAwQKPRoKCgAGq1uoozULGS5APl2mwG9arWfRARET2NKvv+XeVrcsrKyrBp0yYUFhZCq9VK7Rs3bkSzZs3QsWNHREVF4datW9K69PR0+Pj4SAEHAHQ6HQwGg3Q2KD09HYGBgWb70ul0SE9PBwAUFxcjIyPDrMba2hqBgYFSzYMUFRXBYDCYLURERCRPDSzdICsrC1qtFnfu3EGjRo2wfft2eHt7AwBGjx4NT09PuLu74/jx44iMjER2dja2bdsGANDr9WYBB4D0Wq/XP7TGYDDg9u3buH79OsrKyiqsOX369EPHHhsbiwULFlh6yERERFQPWRxy2rVrh8zMTBQUFODrr79GSEgI9u3bB29vb0yZMkWq8/HxgZubGwYMGICzZ8+idevW1TrwqoiKikJERIT02mAwwMPDow5HRERERDXF4pCjVCrRpk0bAICfnx8OHz6MlStX4tNPPy1XGxAQAAD47bff0Lp1a7i6upa7Cyo3NxcA4OrqKv3X1HZvjVqthp2dHRQKBRQKRYU1pj4eRKVSQaVSWXC0REREVF899nNyjEYjioqKKlyXmZkJAHBzcwMAaLVaZGVlmd0FlZKSArVaLX3kpdVqkZqaatZPSkqKdN2PUqmEn5+fWY3RaERqaqrZtUFERET0dLPoTE5UVBReeukltGjRAjdu3EBCQgL27t2LXbt24ezZs0hISMDgwYPRtGlTHD9+HOHh4ejTpw86deoEABg4cCC8vb0xduxYLFmyBHq9HvPmzUNYWJh0hmXq1KlYtWoVZs+ejYkTJ2LPnj3YsmULkpKSpHFEREQgJCQE/v7+6N69O1asWIHCwkJMmDChGqeGiIiI6jOLQs6VK1cwbtw4XL58GRqNBp06dcKuXbvw4osv4uLFi/j++++lwOHh4YFhw4Zh3rx50vYKhQKJiYmYNm0atFot7O3tERISgoULF0o1Xl5eSEpKQnh4OFauXInmzZtj3bp10Ol0Us2IESOQl5eH6Oho6PV6+Pr6Ijk5udzFyERERPT0euzn5NRnfE4OERFR/VPjz8khIiIiepIx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSxZ/N1VVDm/539Xru1Z8Dk5REREtYVncoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYsCjlr165Fp06doFaroVarodVq8d1330nr79y5g7CwMDRt2hSNGjXCsGHDkJuba9bHhQsXEBQUhIYNG8LZ2RmzZs1CaWmpWc3evXvRtWtXqFQqtGnTBvHx8eXGsnr1arRs2RK2trYICAjAoUOHLDkUIiIikjmLQk7z5s2xePFiZGRk4MiRI3jhhRfw6quv4uTJkwCA8PBwfPvtt9i6dSv27duHS5cuYejQodL2ZWVlCAoKQnFxMdLS0rBhwwbEx8cjOjpaqsnJyUFQUBD69++PzMxMzJw5E5MmTcKuXbukms2bNyMiIgIxMTE4evQoOnfuDJ1OhytXrjzufBAREZFMWAkhxON04OjoiKVLl2L48OFwcnJCQkIChg8fDgA4ffo0OnTogPT0dPTo0QPfffcdhgwZgkuXLsHFxQUAEBcXh8jISOTl5UGpVCIyMhJJSUk4ceKEtI+RI0ciPz8fycnJAICAgAB069YNq1atAgAYjUZ4eHhgxowZmDNnTqXHbjAYoNFoUFBQALVa/TjTUM6ZTXPLtT078v1q3QcREdHTqLLv31W+JqesrAybNm1CYWEhtFotMjIyUFJSgsDAQKmmffv2aNGiBdLT0wEA6enp8PHxkQIOAOh0OhgMBulsUHp6ulkfphpTH8XFxcjIyDCrsba2RmBgoFTzIEVFRTAYDGYLERERyZPFIScrKwuNGjWCSqXC1KlTsX37dnh7e0Ov10OpVMLBwcGs3sXFBXq9HgCg1+vNAo5pvWndw2oMBgNu376Nq1evoqysrMIaUx8PEhsbC41GIy0eHh6WHj4RERHVExaHnHbt2iEzMxM//fQTpk2bhpCQEJw6daomxlbtoqKiUFBQIC0XL16s6yERERFRDWlg6QZKpRJt2rQBAPj5+eHw4cNYuXIlRowYgeLiYuTn55udzcnNzYWrqysAwNXVtdxdUKa7r+6tuf+OrNzcXKjVatjZ2UGhUEChUFRYY+rjQVQqFVQqlaWHTERERPXQYz8nx2g0oqioCH5+frCxsUFqaqq0Ljs7GxcuXIBWqwUAaLVaZGVlmd0FlZKSArVaDW9vb6nm3j5MNaY+lEol/Pz8zGqMRiNSU1OlGiIiIiKLzuRERUXhpZdeQosWLXDjxg0kJCRg79692LVrFzQaDUJDQxEREQFHR0eo1WrMmDEDWq0WPXr0AAAMHDgQ3t7eGDt2LJYsWQK9Xo958+YhLCxMOsMydepUrFq1CrNnz8bEiROxZ88ebNmyBUlJSdI4IiIiEBISAn9/f3Tv3h0rVqxAYWEhJkyYUI1TQ0RERPWZRSHnypUrGDduHC5fvgyNRoNOnTph165dePHFFwEAy5cvh7W1NYYNG4aioiLodDqsWbNG2l6hUCAxMRHTpk2DVquFvb09QkJCsHDhQqnGy8sLSUlJCA8Px8qVK9G8eXOsW7cOOp1OqhkxYgTy8vIQHR0NvV4PX19fJCcnl7sYmYiIiJ5ej/2cnPqMz8khIiKqf2r8OTlERERETzKGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIli0JObGwsunXrhsaNG8PZ2RnBwcHIzs42q+nXrx+srKzMlqlTp5rVXLhwAUFBQWjYsCGcnZ0xa9YslJaWmtXs3bsXXbt2hUqlQps2bRAfH19uPKtXr0bLli1ha2uLgIAAHDp0yJLDISIiIhmzKOTs27cPYWFhOHjwIFJSUlBSUoKBAweisLDQrG7y5Mm4fPmytCxZskRaV1ZWhqCgIBQXFyMtLQ0bNmxAfHw8oqOjpZqcnBwEBQWhf//+yMzMxMyZMzFp0iTs2rVLqtm8eTMiIiIQExODo0ePonPnztDpdLhy5UpV54KIiIhkxEoIIaq6cV5eHpydnbFv3z706dMHwN0zOb6+vlixYkWF23z33XcYMmQILl26BBcXFwBAXFwcIiMjkZeXB6VSicjISCQlJeHEiRPSdiNHjkR+fj6Sk5MBAAEBAejWrRtWrVoFADAajfDw8MCMGTMwZ86cSo3fYDBAo9GgoKAAarW6qtNQoTOb5pZre3bk+9W6DyIioqdRZd+/H+uanIKCAgCAo6OjWfvGjRvRrFkzdOzYEVFRUbh165a0Lj09HT4+PlLAAQCdTgeDwYCTJ09KNYGBgWZ96nQ6pKenAwCKi4uRkZFhVmNtbY3AwECppiJFRUUwGAxmCxEREclTg6puaDQaMXPmTDz//PPo2LGj1D569Gh4enrC3d0dx48fR2RkJLKzs7Ft2zYAgF6vNws4AKTXer3+oTUGgwG3b9/G9evXUVZWVmHN6dOnHzjm2NhYLFiwoKqHTERERPVIlUNOWFgYTpw4gQMHDpi1T5kyRfqzj48P3NzcMGDAAJw9exatW7eu+kirQVRUFCIiIqTXBoMBHh4edTgiIiIiqilVCjnTp09HYmIi9u/fj+bNmz+0NiAgAADw22+/oXXr1nB1dS13F1Rubi4AwNXVVfqvqe3eGrVaDTs7OygUCigUigprTH1URKVSQaVSVe4giYiIqF6z6JocIQSmT5+O7du3Y8+ePfDy8nrkNpmZmQAANzc3AIBWq0VWVpbZXVApKSlQq9Xw9vaWalJTU836SUlJgVarBQAolUr4+fmZ1RiNRqSmpko1RERE9HSz6ExOWFgYEhIS8M0336Bx48bSNTQajQZ2dnY4e/YsEhISMHjwYDRt2hTHjx9HeHg4+vTpg06dOgEABg4cCG9vb4wdOxZLliyBXq/HvHnzEBYWJp1lmTp1KlatWoXZs2dj4sSJ2LNnD7Zs2YKkpCRpLBEREQgJCYG/vz+6d++OFStWoLCwEBMmTKiuuSEiIqJ6zKKQs3btWgB3bxO/1/r16zF+/HgolUp8//33UuDw8PDAsGHDMG/ePKlWoVAgMTER06ZNg1arhb29PUJCQrBw4UKpxsvLC0lJSQgPD8fKlSvRvHlzrFu3DjqdTqoZMWIE8vLyEB0dDb1eD19fXyQnJ5e7GJmIiIieTo/1nJz6js/JISIiqn9q5Tk5RERERE8qhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYtCTmxsLLp164bGjRvD2dkZwcHByM7ONqu5c+cOwsLC0LRpUzRq1AjDhg1Dbm6uWc2FCxcQFBSEhg0bwtnZGbNmzUJpaalZzd69e9G1a1eoVCq0adMG8fHx5cazevVqtGzZEra2tggICMChQ4csORwiIiKSMYtCzr59+xAWFoaDBw8iJSUFJSUlGDhwIAoLC6Wa8PBwfPvtt9i6dSv27duHS5cuYejQodL6srIyBAUFobi4GGlpadiwYQPi4+MRHR0t1eTk5CAoKAj9+/dHZmYmZs6ciUmTJmHXrl1SzebNmxEREYGYmBgcPXoUnTt3hk6nw5UrVx5nPoiIiEgmrIQQoqob5+XlwdnZGfv27UOfPn1QUFAAJycnJCQkYPjw4QCA06dPo0OHDkhPT0ePHj3w3XffYciQIbh06RJcXFwAAHFxcYiMjEReXh6USiUiIyORlJSEEydOSPsaOXIk8vPzkZycDAAICAhAt27dsGrVKgCA0WiEh4cHZsyYgTlz5lRq/AaDARqNBgUFBVCr1VWdhgqd2TS3XNuzI9+v1n0QERE9jSr7/v1Y1+QUFBQAABwdHQEAGRkZKCkpQWBgoFTTvn17tGjRAunp6QCA9PR0+Pj4SAEHAHQ6HQwGA06ePCnV3NuHqcbUR3FxMTIyMsxqrK2tERgYKNVUpKioCAaDwWwhIiIieapyyDEajZg5cyaef/55dOzYEQCg1+uhVCrh4OBgVuvi4gK9Xi/V3BtwTOtN6x5WYzAYcPv2bVy9ehVlZWUV1pj6qEhsbCw0Go20eHh4WH7gREREVC9UOeSEhYXhxIkT2LRpU3WOp0ZFRUWhoKBAWi5evFjXQyIiIqIa0qAqG02fPh2JiYnYv38/mjdvLrW7urqiuLgY+fn5ZmdzcnNz4erqKtXcfxeU6e6re2vuvyMrNzcXarUadnZ2UCgUUCgUFdaY+qiISqWCSqWy/ICJiIio3rHoTI4QAtOnT8f27duxZ88eeHl5ma338/ODjY0NUlNTpbbs7GxcuHABWq0WAKDVapGVlWV2F1RKSgrUajW8vb2lmnv7MNWY+lAqlfDz8zOrMRqNSE1NlWqIiIjo6WbRmZywsDAkJCTgm2++QePGjaXrXzQaDezs7KDRaBAaGoqIiAg4OjpCrVZjxowZ0Gq16NGjBwBg4MCB8Pb2xtixY7FkyRLo9XrMmzcPYWFh0lmWqVOnYtWqVZg9ezYmTpyIPXv2YMuWLUhKSpLGEhERgZCQEPj7+6N79+5YsWIFCgsLMWHChOqaGyIiIqrHLAo5a9euBQD069fPrH39+vUYP348AGD58uWwtrbGsGHDUFRUBJ1OhzVr1ki1CoUCiYmJmDZtGrRaLezt7RESEoKFCxdKNV5eXkhKSkJ4eDhWrlyJ5s2bY926ddDpdFLNiBEjkJeXh+joaOj1evj6+iI5ObncxchERET0dHqs5+TUd3xODhERUf1TK8/JISIiInpSMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLFkccvbv34+XX34Z7u7usLKywo4dO8zWjx8/HlZWVmbLoEGDzGquXbuGMWPGQK1Ww8HBAaGhobh586ZZzfHjx9G7d2/Y2trCw8MDS5YsKTeWrVu3on379rC1tYWPjw927txp6eEQERGRTFkccgoLC9G5c2esXr36gTWDBg3C5cuXpeVf//qX2foxY8bg5MmTSElJQWJiIvbv348pU6ZI6w0GAwYOHAhPT09kZGRg6dKlmD9/Pj777DOpJi0tDaNGjUJoaCiOHTuG4OBgBAcH48SJE5YeEhEREcmQlRBCVHljKyts374dwcHBUtv48eORn59f7gyPyS+//AJvb28cPnwY/v7+AIDk5GQMHjwYf/zxB9zd3bF27VrMnTsXer0eSqUSADBnzhzs2LEDp0+fBgCMGDEChYWFSExMlPru0aMHfH19ERcXV6nxGwwGaDQaFBQUQK1WV2EGHuzMprnl2p4d+X617oOIiOhpVNn37xq5Jmfv3r1wdnZGu3btMG3aNPz111/SuvT0dDg4OEgBBwACAwNhbW2Nn376Sarp06ePFHAAQKfTITs7G9evX5dqAgMDzfar0+mQnp7+wHEVFRXBYDCYLURERCRP1R5yBg0ahH/84x9ITU3F3//+d+zbtw8vvfQSysrKAAB6vR7Ozs5m2zRo0ACOjo7Q6/VSjYuLi1mN6fWjakzrKxIbGwuNRiMtHh4ej3ewRERE9MRqUN0djhw5Uvqzj48POnXqhNatW2Pv3r0YMGBAde/OIlFRUYiIiJBeGwwGBh0iIiKZqvFbyFu1aoVmzZrht99+AwC4urriypUrZjWlpaW4du0aXF1dpZrc3FyzGtPrR9WY1ldEpVJBrVabLURERCRPNR5y/vjjD/z1119wc3MDAGi1WuTn5yMjI0Oq2bNnD4xGIwICAqSa/fv3o6SkRKpJSUlBu3bt0KRJE6kmNTXVbF8pKSnQarU1fUhERERUD1gccm7evInMzExkZmYCAHJycpCZmYkLFy7g5s2bmDVrFg4ePIjff/8dqampePXVV9GmTRvodDoAQIcOHTBo0CBMnjwZhw4dwo8//ojp06dj5MiRcHd3BwCMHj0aSqUSoaGhOHnyJDZv3oyVK1eafdT05ptvIjk5GR999BFOnz6N+fPn48iRI5g+fXo1TAsRERHVdxaHnCNHjqBLly7o0qULACAiIgJdunRBdHQ0FAoFjh8/jldeeQVt27ZFaGgo/Pz88N///hcqlUrqY+PGjWjfvj0GDBiAwYMHo1evXmbPwNFoNNi9ezdycnLg5+eHt956C9HR0WbP0unZsycSEhLw2WefoXPnzvj666+xY8cOdOzY8XHmg4iIiGTisZ6TU9/xOTlERET1T50+J4eIiIiorjHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSxZHHL279+Pl19+Ge7u7rCyssKOHTvM1gshEB0dDTc3N9jZ2SEwMBBnzpwxq7l27RrGjBkDtVoNBwcHhIaG4ubNm2Y1x48fR+/evWFrawsPDw8sWbKk3Fi2bt2K9u3bw9bWFj4+Pti5c6elh0NEREQyZXHIKSwsROfOnbF69eoK1y9ZsgQff/wx4uLi8NNPP8He3h46nQ537tyRasaMGYOTJ08iJSUFiYmJ2L9/P6ZMmSKtNxgMGDhwIDw9PZGRkYGlS5di/vz5+Oyzz6SatLQ0jBo1CqGhoTh27BiCg4MRHByMEydOWHpIREREJENWQghR5Y2trLB9+3YEBwcDuHsWx93dHW+99RbefvttAEBBQQFcXFwQHx+PkSNH4pdffoG3tzcOHz4Mf39/AEBycjIGDx6MP/74A+7u7li7di3mzp0LvV4PpVIJAJgzZw527NiB06dPAwBGjBiBwsJCJCYmSuPp0aMHfH19ERcXV6nxGwwGaDQaFBQUQK1WV3UaKnRm09xybc+OfL9a90FERPQ0quz7d7Vek5OTkwO9Xo/AwECpTaPRICAgAOnp6QCA9PR0ODg4SAEHAAIDA2FtbY2ffvpJqunTp48UcABAp9MhOzsb169fl2ru3Y+pxrSfihQVFcFgMJgtREREJE/VGnL0ej0AwMXFxazdxcVFWqfX6+Hs7Gy2vkGDBnB0dDSrqaiPe/fxoBrT+orExsZCo9FIi4eHh6WHSERERPXEU3V3VVRUFAoKCqTl4sWLdT0kIiIiqiHVGnJcXV0BALm5uWbtubm50jpXV1dcuXLFbH1paSmuXbtmVlNRH/fu40E1pvUVUalUUKvVZgsRERHJU7WGHC8vL7i6uiI1NVVqMxgM+Omnn6DVagEAWq0W+fn5yMjIkGr27NkDo9GIgIAAqWb//v0oKSmRalJSUtCuXTs0adJEqrl3P6Ya036IiIjo6WZxyLl58yYyMzORmZkJ4O7FxpmZmbhw4QKsrKwwc+ZMvPfee/jPf/6DrKwsjBs3Du7u7tIdWB06dMCgQYMwefJkHDp0CD/++COmT5+OkSNHwt3dHQAwevRoKJVKhIaG4uTJk9i8eTNWrlyJiIgIaRxvvvkmkpOT8dFHH+H06dOYP38+jhw5gunTpz/+rBAREVG918DSDY4cOYL+/ftLr03BIyQkBPHx8Zg9ezYKCwsxZcoU5Ofno1evXkhOToatra20zcaNGzF9+nQMGDAA1tbWGDZsGD7++GNpvUajwe7duxEWFgY/Pz80a9YM0dHRZs/S6dmzJxISEjBv3jy88847ePbZZ7Fjxw507NixShNBRERE8vJYz8mp7/icHCIiovqnTp6TQ0RERPSkYMghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWar2kDN//nxYWVmZLe3bt5fW37lzB2FhYWjatCkaNWqEYcOGITc316yPCxcuICgoCA0bNoSzszNmzZqF0tJSs5q9e/eia9euUKlUaNOmDeLj46v7UIiIiKgeq5EzOc899xwuX74sLQcOHJDWhYeH49tvv8XWrVuxb98+XLp0CUOHDpXWl5WVISgoCMXFxUhLS8OGDRsQHx+P6OhoqSYnJwdBQUHo378/MjMzMXPmTEyaNAm7du2qicMhIiKieqhBjXTaoAFcXV3LtRcUFOCLL75AQkICXnjhBQDA+vXr0aFDBxw8eBA9evTA7t27cerUKXz//fdwcXGBr68vFi1ahMjISMyfPx9KpRJxcXHw8vLCRx99BADo0KEDDhw4gOXLl0On09XEIREREVE9UyNncs6cOQN3d3e0atUKY8aMwYULFwAAGRkZKCkpQWBgoFTbvn17tGjRAunp6QCA9PR0+Pj4wMXFRarR6XQwGAw4efKkVHNvH6YaUx8PUlRUBIPBYLYQERGRPFV7yAkICEB8fDySk5Oxdu1a5OTkoHfv3rhx4wb0ej2USiUcHBzMtnFxcYFerwcA6PV6s4BjWm9a97Aag8GA27dvP3BssbGx0Gg00uLh4fG4h0tERERPqGr/uOqll16S/typUycEBATA09MTW7ZsgZ2dXXXvziJRUVGIiIiQXhsMBgYdIiIimarxW8gdHBzQtm1b/Pbbb3B1dUVxcTHy8/PNanJzc6VreFxdXcvdbWV6/agatVr90CClUqmgVqvNFiIiIpKnGg85N2/exNmzZ+Hm5gY/Pz/Y2NggNTVVWp+dnY0LFy5Aq9UCALRaLbKysnDlyhWpJiUlBWq1Gt7e3lLNvX2Yakx9EBEREVV7yHn77bexb98+/P7770hLS8Nrr70GhUKBUaNGQaPRIDQ0FBEREfjhhx+QkZGBCRMmQKvVokePHgCAgQMHwtvbG2PHjsXPP/+MXbt2Yd68eQgLC4NKpQIATJ06FefOncPs2bNx+vRprFmzBlu2bEF4eHh1Hw4RERHVU9V+Tc4ff/yBUaNG4a+//oKTkxN69eqFgwcPwsnJCQCwfPlyWFtbY9iwYSgqKoJOp8OaNWuk7RUKBRITEzFt2jRotVrY29sjJCQECxculGq8vLyQlJSE8PBwrFy5Es2bN8e6det4+zgRERFJrIQQoq4HUVcMBgM0Gg0KCgqq/fqcM5vmlmt7duT71boPIiKip1Fl37/53VVEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRL1f6cHCIiIno6lSQfMHttM6hXHY3kLp7JISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWpQ1wMgIiKiyisTZfjlr2O4fucqmtg2Q4emXaCwUtT6OEqSD1TYXmYswy83snC99Dqa/lyA5zoORAOFTS2P7q56H3JWr16NpUuXQq/Xo3Pnzvjkk0/QvXv3uh4WERFRtUu/lIovTizFX3euSG1NbZ0R2nEWtO4D6nBkdx28dgDxNom4ZnfrbsP57XA8sxgTn/lfPK/9W62Pp16HnM2bNyMiIgJxcXEICAjAihUroNPpkJ2dDWdn57oeHhERUbVJv5SKJUdmAxBm7X/dycOSI7Mx239JtQWdB52leZiD1w5gmf2Wcu3XbArx4ZVlQDpqPejU65CzbNkyTJ48GRMmTAAAxMXFISkpCV9++SXmzJlTx6MjIiKqHmWiDF+cWIr7A85dAoAVvjzxIbq79XvkR1dVCTCPHJ+xDPE2iXdfWN230uruENf/+SkCykbU6kdX9TbkFBcXIyMjA1FRUVKbtbU1AgMDkZ6eXuE2RUVFKCoqkl4XFBQAAAwGQ7WP7+atonJtNbEfIiKqOyUp5u83Ni9qH1lTFb+Is9CXXn5ozeVbl5D+70/Rwar1Y+/PUqcMx5FrdwO4/eAaPQz46eAO+PjoHnt/pvdTISoKff+n3oacq1evoqysDC4uLmbtLi4uOH36dIXbxMbGYsGCBeXaPTw8amSM5YR+VDv7ISKip1ISwup6CA+VhNertb8bN25Ao9E8cH29DTlVERUVhYiICOm10WjEtWvX0LRpU1hZ3X9+reoMBgM8PDxw8eJFqNXqauuXzHGeaw/nunZwnmsH57l21OQ8CyFw48YNuLu7P7Su3oacZs2aQaFQIDc316w9NzcXrq6uFW6jUqmgUqnM2hwcHGpqiFCr1fwLVAs4z7WHc107OM+1g/NcO2pqnh92Bsek3j4MUKlUws/PD6mpqVKb0WhEamoqtNryn4kSERHR06XenskBgIiICISEhMDf3x/du3fHihUrUFhYKN1tRURERE+veh1yRowYgby8PERHR0Ov18PX1xfJycnlLkaubSqVCjExMeU+GqPqxXmuPZzr2sF5rh2c59rxJMyzlXjU/VdERERE9VC9vSaHiIiI6GEYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKqaPXq1WjZsiVsbW0REBCAQ4cOPbR+69ataN++PWxtbeHj44OdO3fW0kjrN0vm+fPPP0fv3r3RpEkTNGnSBIGBgY/8/0J3WfrzbLJp0yZYWVkhODi4ZgcoI5bOdX5+PsLCwuDm5gaVSoW2bdvy349KsHSeV6xYgXbt2sHOzg4eHh4IDw/HnTt3amm09dP+/fvx8ssvw93dHVZWVtixY8cjt9m7dy+6du0KlUqFNm3aID4+vmYHKchimzZtEkqlUnz55Zfi5MmTYvLkycLBwUHk5uZWWP/jjz8KhUIhlixZIk6dOiXmzZsnbGxsRFZWVi2PvH6xdJ5Hjx4tVq9eLY4dOyZ++eUXMX78eKHRaMQff/xRyyOvXyydZ5OcnBzxzDPPiN69e4tXX321dgZbz1k610VFRcLf318MHjxYHDhwQOTk5Ii9e/eKzMzMWh55/WLpPG/cuFGoVCqxceNGkZOTI3bt2iXc3NxEeHh4LY+8ftm5c6eYO3eu2LZtmwAgtm/f/tD6c+fOiYYNG4qIiAhx6tQp8cknnwiFQiGSk5NrbIwMOVXQvXt3ERYWJr0uKysT7u7uIjY2tsL6119/XQQFBZm1BQQEiP/93/+t0XHWd5bO8/1KS0tF48aNxYYNG2pqiLJQlXkuLS0VPXv2FOvWrRMhISEMOZVk6VyvXbtWtGrVShQXF9fWEGXB0nkOCwsTL7zwgllbRESEeP7552t0nHJSmZAze/Zs8dxzz5m1jRgxQuh0uhobFz+uslBxcTEyMjIQGBgotVlbWyMwMBDp6ekVbpOenm5WDwA6ne6B9VS1eb7frVu3UFJSAkdHx5oaZr1X1XleuHAhnJ2dERoaWhvDlIWqzPV//vMfaLVahIWFwcXFBR07dsQHH3yAsrKy2hp2vVOVee7ZsycyMjKkj7TOnTuHnTt3YvDgwbUy5qdFXbwX1uuvdagLV69eRVlZWbmvjnBxccHp06cr3Eav11dYr9fra2yc9V1V5vl+kZGRcHd3L/eXiv5PVeb5wIED+OKLL5CZmVkLI5SPqsz1uXPnsGfPHowZMwY7d+7Eb7/9hjfeeAMlJSWIiYmpjWHXO1WZ59GjR+Pq1avo1asXhBAoLS3F1KlT8c4779TGkJ8aD3ovNBgMuH37Nuzs7Kp9nzyTQ7K0ePFibNq0Cdu3b4etrW1dD0c2bty4gbFjx+Lzzz9Hs2bN6no4smc0GuHs7IzPPvsMfn5+GDFiBObOnYu4uLi6Hpqs7N27Fx988AHWrFmDo0ePYtu2bUhKSsKiRYvqemj0mHgmx0LNmjWDQqFAbm6uWXtubi5cXV0r3MbV1dWieqraPJt8+OGHWLx4Mb7//nt06tSpJodZ71k6z2fPnsXvv/+Ol19+WWozGo0AgAYNGiA7OxutW7eu2UHXU1X5mXZzc4ONjQ0UCoXU1qFDB+j1ehQXF0OpVNbomOujqszzu+++i7Fjx2LSpEkAAB8fHxQWFmLKlCmYO3curK15PqA6POi9UK1W18hZHIBnciymVCrh5+eH1NRUqc1oNCI1NRVarbbCbbRarVk9AKSkpDywnqo2zwCwZMkSLFq0CMnJyfD396+NodZrls5z+/btkZWVhczMTGl55ZVX0L9/f2RmZsLDw6M2h1+vVOVn+vnnn8dvv/0mBUkA+PXXX+Hm5saA8wBVmedbt26VCzKmYCn4HdbVpk7eC2vskmYZ27Rpk1CpVCI+Pl6cOnVKTJkyRTg4OAi9Xi+EEGLs2LFizpw5Uv2PP/4oGjRoID788EPxyy+/iJiYGN5CXgmWzvPixYuFUqkUX3/9tbh8+bK03Lhxo64OoV6wdJ7vx7urKs/Sub5w4YJo3LixmD59usjOzhaJiYnC2dlZvPfee3V1CPWCpfMcExMjGjduLP71r3+Jc+fOid27d4vWrVuL119/va4OoV64ceOGOHbsmDh27JgAIJYtWyaOHTsmzp8/L4QQYs6cOWLs2LFSvekW8lmzZolffvlFrF69mreQP6k++eQT0aJFC6FUKkX37t3FwYMHpXV9+/YVISEhZvVbtmwRbdu2FUqlUjz33HMiKSmplkdcP1kyz56engJAuSUmJqb2B17PWPrzfC+GHMtYOtdpaWkiICBAqFQq0apVK/H++++L0tLSWh51/WPJPJeUlIj58+eL1q1bC1tbW+Hh4SHeeOMNcf369dofeD3yww8/VPhvrmluQ0JCRN++fctt4+vrK5RKpWjVqpVYv359jY7RSgieiyMiIiL54TU5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRL/x/7r5nTwHjQLAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARyNJREFUeJzt3Xt4TOfePvB7MjKTCDMRcqyIU4lUCAkx6lipUdE2LW+dNkGwafhVskukNE5tY9M6tEHaasVu2Q7daJtoiCheTRQhFVTqkJZuJqIkQ5DTPL8/es16jQSZyKFZ7s91ravmWd/1rGc9DXNnzVprFEIIASIiIiKZsanrARARERHVBIYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwimdu3bx8UCgX27dtXrf0qFArMnz+/WvuUm3HjxqFly5Z1PYy/hJYtW2LcuHGPrEtISIBCocCvv/5a42Mi+WPIoXolLS0N8+fPR35+fl0P5Ymwc+dOBhkAt2/fxvz586s9KFLt2rNnD/r3749mzZrB0dER3bt3xxdffFHXw6Ia1KCuB0BkjbS0NCxYsADjxo2Do6NjXQ9H9nbu3IlVq1ZVGHTu3LmDBg2ejH9Cbt++jQULFgAA+vXrV+ntPv30U5hMphoaVf2SnZ0NG5u6+736m2++QUhICHQ6HebPnw+FQoEtW7Zg7NixuHbtGiIiIupsbFRznox/oYjqodu3b6Nhw4bl2ktLS2EymaBSqepgVP/Hzs6uTvf/V1ZYWAgHBwfY2trW9VD+MtRqdZ3uPy4uDu7u7ti7d680lr///e/w9vZGQkICQ45M8eMqqjfmz5+PmTNnAgBatWoFhUIhfXZfWlqKRYsWoU2bNlCr1WjZsiXeeustFBUVWfTRsmVLDBkyBLt374afnx/s7Ozg4+ODbdu2VWlMX375Jbp3746GDRuiSZMm6NOnD3bv3m1Rs3r1ajzzzDNQq9Xw8PBAeHh4uY/b+vXrh44dOyIjIwN9+vRBw4YN8dZbb+HXX3+FQqHA+++/jxUrVkjHd/r0aQDAmTNnMGzYMDg5OcHOzg4BAQH45ptvHjnu//3f/8X//M//oEWLFlCr1fD09ERERATu3Lkj1YwbNw6rVq0CAGmuFQqFtL6ia3KOHz+OF154ARqNBo0aNcKAAQNw6NAhixrzNRc//PADIiMj4ezsDAcHB7zyyivIy8t75NjvZf6N/JdffsHf/vY3aLVaODs74+2334YQApcuXcLLL78MjUYDNzc3fPDBBxbbFxcXIyYmBv7+/tBqtXBwcEDv3r3x/fffSzW//vornJ2dAQALFiyQ5sF87OPGjUOjRo1w/vx5DB48GI0bN8bo0aOldfdekzNv3jzY2NggNTXVYhyTJ0+GSqXCTz/9VOljr+zPcklJCRYsWICnn34adnZ2aNq0KXr16oWUlBSpxnwMFy9exJAhQ9CoUSM89dRT0v//rKwsPPfcc3BwcICXlxc2btxY6XHeO977r8k5deoUnnvuOdjb26N58+Z45513KjzzdfToUej1ejRr1gz29vZo1aoVJkyYYNX+jUYjmjRpYhG2GjRoIPVJMiWI6omffvpJjBw5UgAQy5cvF1988YX44osvxK1bt0RoaKgAIIYNGyZWrVolxo4dKwCIkJAQiz68vLxEu3bthKOjo5g9e7ZYtmyZ8PX1FTY2NmL37t1WjWf+/PkCgOjZs6dYunSpWLlypRg1apSIioqSaubNmycAiKCgIPHRRx+JadOmCaVSKbp16yaKi4ulur59+wo3Nzfh7Owspk+fLj7++GOxY8cOkZOTIwAIHx8f0bp1a7F48WKxfPly8dtvv4mTJ08KrVYrfHx8xD//+U8RFxcn+vTpIxQKhdi2bZvU9/fffy8AiO+//15qmz59uhg8eLB47733xMcffyzCwsKEUqkUw4YNk2rS0tLE888/LwBIc/3FF19I6wGIefPmSa9PnjwpHBwchLu7u1i0aJFYvHixaNWqlVCr1eLQoUNS3bp16wQA0aVLF/Hcc8+Jjz76SPzjH/8QSqVSvPbaa1b9PzDPr5+fnxg5cqRYvXq1CA4OFgDEsmXLRPv27cXUqVPF6tWrxbPPPisAiP3790vb5+XlCXd3dxEZGSnWrFkjlixZItq3by9sbW3F8ePHhRBC3Lp1S6xZs0YAEK+88oo0Dz/99JMQQojQ0FChVqtFmzZtRGhoqIiPjxf/+te/pHVeXl7S/oqLi0WXLl2El5eXMBqNQgghkpOTBQCxaNEiq469sj/Lb731llAoFGLSpEni008/FR988IEYOXKkWLx4sVQTGhoq7OzshI+Pj5gyZYpYtWqV6NmzpwAg1q1bJzw8PMTMmTPFRx99JJ555hmhVCrFhQsXrB5vaGio9PrKlSvC2dlZNGnSRMyfP18sXbpUPP3006JTp04CgMjJyRFCCJGbmyuaNGki2rVrJ5YuXSo+/fRTMWfOHNGhQwer9h8VFSUAiLlz54qzZ8+Kc+fOiYULFwqlUin+85//WNUX1R8MOVSvLF261OIfQCGEyMzMFADExIkTLWrffPNNAUDs3btXavPy8hIALP5RKygoEO7u7qJLly6VHsfZs2eFjY2NeOWVV0RZWZnFOpPJJIQQ4urVq0KlUomBAwda1MTFxQkA4vPPP5fa+vbtKwCI+Ph4i77MIUej0YirV69arBswYIDw9fUVd+/etdh3z549xdNPPy21VRRybt++Xe6YYmNjhUKhEL/99pvUFh4eLh70u9D9ISckJESoVCpx/vx5qe3y5cuicePGok+fPlKbOeQEBQVJcyWEEBEREUKpVIr8/PwK91cRc8iZPHmy1FZaWiqaN28uFAqFxRv5jRs3hL29vcUbbWlpqSgqKrLo88aNG8LV1VVMmDBBasvLyyt3vGbmgD179uwK190bcoQQIisrS6hUKjFx4kRx48YN8dRTT4mAgABRUlJS6eMWovI/y507dxbBwcEP7ct8DO+9957UZp4vhUIhNm3aJLWfOXPmgXPxqPHeO/czZswQAMSPP/4otV29elVotVqLv+Pbt28XAMSRI0es2t/9bt26JV577TWhUCgEAAFANGzYUOzYseOx+qW/Nn5cRfXezp07AQCRkZEW7f/4xz8AAElJSRbtHh4eeOWVV6TXGo0GY8eOxfHjx2EwGCq1zx07dsBkMiEmJqbcxZTmj3T27NmD4uJizJgxw6Jm0qRJ0Gg05calVqsxfvz4Cvc3dOhQ6SMTALh+/Tr27t2L1157DTdv3sS1a9dw7do1/PHHH9Dr9Th79iz++9//PnD8956eLywsxLVr19CzZ08IIXD8+PFKzcG9ysrKsHv3boSEhKB169ZSu7u7O0aNGoWDBw/CaDRabDN58mSLj7969+6NsrIy/Pbbb1bvf+LEidKflUolAgICIIRAWFiY1O7o6Ij27dvjwoULFrXma5tMJhOuX7+O0tJSBAQE4NixY1aNYerUqZWq69ixIxYsWIC1a9dCr9fj2rVrWL9+fZUu4q7Mz7KjoyNOnTqFs2fPPrK/e+fRPF8ODg547bXXpPb27dvD0dHRYh6rYufOnejRowe6d+8utTk7O0sf9d07DgBITExESUlJlfenVqvRrl07DBs2DP/+97/x5ZdfIiAgAH/729/KfaRK8sGQQ/Xeb7/9BhsbG7Rt29ai3c3NDY6OjuXeNNu2bWvx5goA7dq1A4BKP5vj/PnzsLGxgY+Pz0PHBfz5pnAvlUqF1q1blxvXU0899cCLiVu1amXx+ty5cxBC4O2334azs7PFMm/ePADA1atXHzi2ixcvYty4cXByckKjRo3g7OyMvn37AgAKCgoeuN2D5OXl4fbt2+WOFQA6dOgAk8mES5cuWbS3aNHC4nWTJk0AADdu3LB6//f3pdVqYWdnh2bNmpVrv7//9evXo1OnTtL1Ks7OzkhKSrJqHho0aIDmzZtXun7mzJno3LkzDh8+jHnz5j305+hhKvOzvHDhQuTn56Ndu3bw9fXFzJkzceLEiXJ92dnZWQRp4M/5at68ebl9VDSP1vrtt9/w9NNPl2u//2eob9++GDp0KBYsWIBmzZrh5Zdfxrp168pdb/co06ZNw7fffotNmzZhxIgRGD16NPbs2QN3d3e88cYbj3Us9NfFu6tINu7/h7i+edjFj/evM1+c+eabb0Kv11e4zf2hz6ysrAzPP/88rl+/jqioKHh7e8PBwQH//e9/MW7cuFq75VmpVFbYLoSolr4q0/+XX36JcePGISQkBDNnzoSLiwuUSiViY2Nx/vz5Su9frVZbdXv0hQsXpDMrWVlZld6uKvr06YPz58/j66+/xu7du7F27VosX74c8fHx5c6AVaQ6/z9VhUKhwFdffYVDhw7h22+/xa5duzBhwgR88MEHOHToEBo1avTIPoqLi/HZZ59h1qxZFv+fbG1t8cILLyAuLg7FxcV1fsciVT+GHKpXKgoyXl5eMJlMOHv2LDp06CC15+bmIj8/H15eXhb15rMg9/b1yy+/AECln07bpk0bmEwmnD59Gn5+fhXWmPebnZ1t8RFOcXExcnJyEBQUVKl9VcTcn62trdX9ZGVl4ZdffsH69esxduxYqf3eu23MKhscnZ2d0bBhQ2RnZ5dbd+bMGdjY2MDT09OqcdaGr776Cq1bt8a2bdssjtV8NsysOgO0yWTCuHHjoNFoMGPGDLz33nsYNmwYXn31Vav7quzPspOTE8aPH4/x48fj1q1b6NOnD+bPn28Rcmqbl5dXhR+hVfQzBAA9evRAjx498O6772Ljxo0YPXo0Nm3aVKlj+OOPP1BaWoqysrJy60pKSmAymSpcR/UfP66iesXBwQEALG7BHjx4MABgxYoVFrXLli0DAAQHB1u0X758Gdu3b5deG41G/Otf/4Kfnx/c3NwqNY6QkBDY2Nhg4cKF5c58mH/DDQoKgkqlwocffmjxW+9nn32GgoKCcuOyhouLC/r164ePP/4YV65cKbf+Ybdim38zv3dMQgisXLmyXG1F8/2gPgcOHIivv/7a4iO/3NxcbNy4Eb169YJGo3loH3Whorn48ccfkZ6eblFnfl5RdTxpe9myZUhLS8Mnn3yCRYsWoWfPnpg6dSquXbtmdV+V+Vn+448/LLZp1KgR2rZta/XHPdVt8ODBOHToEA4fPiy15eXlYcOGDRZ1N27cKHfWyPyLRWWPwcXFBY6Ojti+fTuKi4ul9lu3buHbb7+Ft7c3byOXKZ7JoXrF398fADBnzhyMGDECtra2ePHFFxEaGopPPvkE+fn56Nu3Lw4fPoz169cjJCQE/fv3t+ijXbt2CAsLw5EjR+Dq6orPP/8cubm5WLduXaXH0bZtW8yZMweLFi1C79698eqrr0KtVuPIkSPw8PBAbGwsnJ2dER0djQULFmDQoEF46aWXkJ2djdWrV6Nbt27429/+9lhzsWrVKvTq1Qu+vr6YNGkSWrdujdzcXKSnp+P3339/4DNXvL290aZNG7z55pv473//C41Gg//85z8VXmNhnu//9//+H/R6PZRKJUaMGFFhv++88w5SUlLQq1cvvP7662jQoAE+/vhjFBUVYcmSJY91rDVlyJAh2LZtG1555RUEBwcjJycH8fHx8PHxwa1bt6Q6e3t7+Pj4YPPmzWjXrh2cnJzQsWNHdOzY0ar9/fzzz3j77bcxbtw4vPjiiwD+fG6Qn58fXn/9dWzZssWq/irzs+zj44N+/frB398fTk5OOHr0KL766itMmzbNqn1Vt1mzZuGLL77AoEGD8MYbb8DBwQGffPIJvLy8LK4ZWr9+PVavXo1XXnkFbdq0wc2bN/Hpp59Co9FIv+A8ilKpxJtvvom5c+eiR48eGDt2LMrKyvDZZ5/h999/x5dffllTh0l1rS5u6SJ6HIsWLRJPPfWUsLGxkW41LSkpEQsWLBCtWrUStra2wtPTU0RHR1vcXi3En7exBgcHi127dolOnToJtVotvL29xdatW6s0ls8//1x06dJFqNVq0aRJE9G3b1+RkpJiURMXFye8vb2Fra2tcHV1FVOnThU3btywqOnbt6945plnyvVvvoV86dKlFe7//PnzYuzYscLNzU3Y2tqKp556SgwZMkR89dVXUk1Ft5CfPn1aBAUFiUaNGolmzZqJSZMmiZ9++kl6LopZaWmpmD59unB2dpZuvTVDBbcRHzt2TOj1etGoUSPRsGFD0b9/f5GWlmZRY76F/P5bgisa56OYbyHPy8uzaA8NDRUODg7l6u+fZ5PJJN577z3h5eUl1Gq16NKli0hMTKzw1u+0tDTh7+8vVCqVxbE/aF/mdeZ+SktLRbdu3UTz5s3L3Sa/cuVKAUBs3ry50sde2Z/ld955R3Tv3l04OjoKe3t74e3tLd59912L5zRVdr7u37c17r+FXAghTpw4Ifr27Svs7OzEU089JRYtWiQ+++wzi1vIjx07JkaOHClatGgh1Gq1cHFxEUOGDBFHjx61av9CCLFhwwaLuQgMDLT4u0LyoxCilq4eI/oLaNmyJTp27IjExMS6HgrRY+HPMtGj8ZocIiIikiVek0N0n0c9ENDe3h5arbaWRvNkunXrlsU1MRVxdnZ+4O3N9VleXt5D7/RRqVRwcnKqxRE9XF3/fbl+/brFxcT3UyqV5Z7/Q08Ohhyi+7i7uz90fWhoKBISEmpnME+o999/HwsWLHhoTU5OTqVv+a9PunXr9tCnPvft2xf79u2rvQE9Ql3/fXn11Vexf//+B6738vKq9EM+SX54TQ7Rffbs2fPQ9R4eHlV+Qi1VzoULFx75tQG9evWCnZ1dLY2o9vzwww8W3wZ/vyZNmkh3vf0V1PXfl4yMjIc+fdne3h7PPvtsje2f/uIe56rl2NhYAUC88cYbUtudO3fE66+/LpycnISDg4N49dVXhcFgsNjut99+E4MHDxb29vbC2dlZvPnmm+W+nO77778XXbp0ESqVSrRp08bijg+zuLg46a6I7t27W3zRGxERET3Zqnzh8ZEjR/Dxxx+jU6dOFu0RERH49ttvsXXrVuzfvx+XL1+2eJJnWVkZgoODUVxcjLS0NKxfvx4JCQmIiYmRanJychAcHIz+/fsjMzMTM2bMwMSJE7Fr1y6pZvPmzYiMjMS8efNw7NgxdO7cGXq9/qHf10NERERPjip9XHXr1i107doVq1evxjvvvAM/Pz+sWLECBQUFcHZ2xsaNGzFs2DAAfz7SvUOHDkhPT0ePHj3w3XffYciQIbh8+TJcXV0BAPHx8YiKikJeXh5UKhWioqKQlJSEkydPSvscMWIE8vPzkZycDAAIDAxEt27dEBcXB+DPR6V7enpi+vTpmD17dqWOw2Qy4fLly2jcuHG9/94jIiKiJ4UQAjdv3oSHh8fDvzeuKqd/xo4dK2bMmCGE+PNhUeaPq1JTUwWAcg86a9GihVi2bJkQQoi3335bdO7c2WL9hQsXBABx7NgxIYQQvXv3tvgITIg/H7qm0WiEEEIUFRUJpVIptm/fXm5cL7300gPHfffuXVFQUCAtp0+fFgC4cOHChQsXLvVwuXTp0kPzitV3V23atAnHjh3DkSNHyq0zGAxQqVRwdHS0aHd1dZVuMzQYDNIZnHvXm9c9rMZoNOLOnTu4ceMGysrKKqw5c+bMA8ceGxtb4R0bly5d+kt+rw4RERGVZzQa4enpicaNGz+0zqqQc+nSJbzxxhtISUmpl3c1REdHIzIyUnptniSNRsOQQ0REVM886lITqy48zsjIwNWrV9G1a1c0aNAADRo0wP79+/Hhhx+iQYMGcHV1RXFxcblv6s3NzZW+EdfNzQ25ubnl1pvXPaxGo9HA3t4ezZo1g1KprLDmYd8irVarpUDDYENERCRvVoWcAQMGICsrC5mZmdISEBCA0aNHS3+2tbVFamqqtE12djYuXrwInU4HANDpdMjKyrK4CyolJQUajUZ6loJOp7Pow1xj7kOlUsHf39+ixmQyITU1VaohIiKiJ5tVH1c1btwYHTt2tGhzcHBA06ZNpfawsDBERkbCyckJGo0G06dPh06nQ48ePQAAAwcOhI+PD8aMGYMlS5bAYDBg7ty5CA8Ph1qtBgBMmTIFcXFxmDVrFiZMmIC9e/diy5YtSEpKkvYbGRmJ0NBQBAQEoHv37lixYgUKCwsxfvz4x5oQIiIikodq/1qH5cuXw8bGBkOHDkVRURH0ej1Wr14trVcqlUhMTMTUqVOh0+ng4OCA0NBQLFy4UKpp1aoVkpKSEBERgZUrV6J58+ZYu3Yt9Hq9VDN8+HDk5eUhJiYGBoMBfn5+SE5OLncxMhERET2ZnuivdTAajdBqtSgoKOD1OURERPVEZd+/q/zEYyIiIqK/MoYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpKlav9aB/pTSfLBcm22g3rVwUiIiIieTDyTQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLJkVchZs2YNOnXqBI1GA41GA51Oh++++05a369fPygUCotlypQpFn1cvHgRwcHBaNiwIVxcXDBz5kyUlpZa1Ozbtw9du3aFWq1G27ZtkZCQUG4sq1atQsuWLWFnZ4fAwEAcPnzYmkMhIiIimbMq5DRv3hyLFy9GRkYGjh49iueeew4vv/wyTp06JdVMmjQJV65ckZYlS5ZI68rKyhAcHIzi4mKkpaVh/fr1SEhIQExMjFSTk5OD4OBg9O/fH5mZmZgxYwYmTpyIXbt2STWbN29GZGQk5s2bh2PHjqFz587Q6/W4evXq48wFERERyYhCCCEepwMnJycsXboUYWFh6NevH/z8/LBixYoKa7/77jsMGTIEly9fhqurKwAgPj4eUVFRyMvLg0qlQlRUFJKSknDy5ElpuxEjRiA/Px/JyckAgMDAQHTr1g1xcXEAAJPJBE9PT0yfPh2zZ8+u9NiNRiO0Wi0KCgqg0WiqOAMVK0k+WK7NdlCvat0HERHRk6iy799VvianrKwMmzZtQmFhIXQ6ndS+YcMGNGvWDB07dkR0dDRu374trUtPT4evr68UcABAr9fDaDRKZ4PS09MRFBRksS+9Xo/09HQAQHFxMTIyMixqbGxsEBQUJNU8SFFREYxGo8VCRERE8tTA2g2ysrKg0+lw9+5dNGrUCNu3b4ePjw8AYNSoUfDy8oKHhwdOnDiBqKgoZGdnY9u2bQAAg8FgEXAASK8NBsNDa4xGI+7cuYMbN26grKyswpozZ848dOyxsbFYsGCBtYdMRERE9ZDVIad9+/bIzMxEQUEBvvrqK4SGhmL//v3w8fHB5MmTpTpfX1+4u7tjwIABOH/+PNq0aVOtA6+K6OhoREZGSq+NRiM8PT3rcERERERUU6wOOSqVCm3btgUA+Pv748iRI1i5ciU+/vjjcrWBgYEAgHPnzqFNmzZwc3MrdxdUbm4uAMDNzU36r7nt3hqNRgN7e3solUoolcoKa8x9PIharYZarbbiaImIiKi+euzn5JhMJhQVFVW4LjMzEwDg7u4OANDpdMjKyrK4CyolJQUajUb6yEun0yE1NdWin5SUFOm6H5VKBX9/f4sak8mE1NRUi2uDiIiI6Mlm1Zmc6OhovPDCC2jRogVu3ryJjRs3Yt++fdi1axfOnz+PjRs3YvDgwWjatClOnDiBiIgI9OnTB506dQIADBw4ED4+PhgzZgyWLFkCg8GAuXPnIjw8XDrDMmXKFMTFxWHWrFmYMGEC9u7diy1btiApKUkaR2RkJEJDQxEQEIDu3btjxYoVKCwsxPjx46txaoiIiKg+syrkXL16FWPHjsWVK1eg1WrRqVMn7Nq1C88//zwuXbqEPXv2SIHD09MTQ4cOxdy5c6XtlUolEhMTMXXqVOh0Ojg4OCA0NBQLFy6Ualq1aoWkpCRERERg5cqVaN68OdauXQu9Xi/VDB8+HHl5eYiJiYHBYICfnx+Sk5PLXYxMRERET67Hfk5Ofcbn5BAREdU/Nf6cHCIiIqK/MoYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJau/u4oq59f878q1PQ0+J4eIiKi28EwOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJklUhZ82aNejUqRM0Gg00Gg10Oh2+++47af3du3cRHh6Opk2bolGjRhg6dChyc3Mt+rh48SKCg4PRsGFDuLi4YObMmSgtLbWo2bdvH7p27Qq1Wo22bdsiISGh3FhWrVqFli1bws7ODoGBgTh8+LA1h0JEREQyZ1XIad68ORYvXoyMjAwcPXoUzz33HF5++WWcOnUKABAREYFvv/0WW7duxf79+3H58mW8+uqr0vZlZWUIDg5GcXEx0tLSsH79eiQkJCAmJkaqycnJQXBwMPr374/MzEzMmDEDEydOxK5du6SazZs3IzIyEvPmzcOxY8fQuXNn6PV6XL169XHng4iIiGRCIYQQj9OBk5MTli5dimHDhsHZ2RkbN27EsGHDAABnzpxBhw4dkJ6ejh49euC7777DkCFDcPnyZbi6ugIA4uPjERUVhby8PKhUKkRFRSEpKQknT56U9jFixAjk5+cjOTkZABAYGIhu3bohLi4OAGAymeDp6Ynp06dj9uzZlR670WiEVqtFQUEBNBrN40xDOWc3zSnX9vSId6t1H0RERE+iyr5/V/manLKyMmzatAmFhYXQ6XTIyMhASUkJgoKCpBpvb2+0aNEC6enpAID09HT4+vpKAQcA9Ho9jEajdDYoPT3dog9zjbmP4uJiZGRkWNTY2NggKChIqnmQoqIiGI1Gi4WIiIjkyeqQk5WVhUaNGkGtVmPKlCnYvn07fHx8YDAYoFKp4OjoaFHv6uoKg8EAADAYDBYBx7zevO5hNUajEXfu3MG1a9dQVlZWYY25jweJjY2FVquVFk9PT2sPn4iIiOoJq0NO+/btkZmZiR9//BFTp05FaGgoTp8+XRNjq3bR0dEoKCiQlkuXLtX1kIiIiKiGNLB2A5VKhbZt2wIA/P39ceTIEaxcuRLDhw9HcXEx8vPzLc7m5Obmws3NDQDg5uZW7i4o891X99bcf0dWbm4uNBoN7O3toVQqoVQqK6wx9/EgarUaarXa2kMmIiKieuixn5NjMplQVFQEf39/2NraIjU1VVqXnZ2NixcvQqfTAQB0Oh2ysrIs7oJKSUmBRqOBj4+PVHNvH+Yacx8qlQr+/v4WNSaTCampqVINERERkVVncqKjo/HCCy+gRYsWuHnzJjZu3Ih9+/Zh165d0Gq1CAsLQ2RkJJycnKDRaDB9+nTodDr06NEDADBw4ED4+PhgzJgxWLJkCQwGA+bOnYvw8HDpDMuUKVMQFxeHWbNmYcKECdi7dy+2bNmCpKQkaRyRkZEIDQ1FQEAAunfvjhUrVqCwsBDjx4+vxqkhIiKi+syqkHP16lWMHTsWV65cgVarRadOnbBr1y48//zzAIDly5fDxsYGQ4cORVFREfR6PVavXi1tr1QqkZiYiKlTp0Kn08HBwQGhoaFYuHChVNOqVSskJSUhIiICK1euRPPmzbF27Vro9XqpZvjw4cjLy0NMTAwMBgP8/PyQnJxc7mJkIiIienI99nNy6jM+J4eIiKj+qfHn5BARERH9lTHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSxZFXJiY2PRrVs3NG7cGC4uLggJCUF2drZFTb9+/aBQKCyWKVOmWNRcvHgRwcHBaNiwIVxcXDBz5kyUlpZa1Ozbtw9du3aFWq1G27ZtkZCQUG48q1atQsuWLWFnZ4fAwEAcPnzYmsMhIiIiGbMq5Ozfvx/h4eE4dOgQUlJSUFJSgoEDB6KwsNCibtKkSbhy5Yq0LFmyRFpXVlaG4OBgFBcXIy0tDevXr0dCQgJiYmKkmpycHAQHB6N///7IzMzEjBkzMHHiROzatUuq2bx5MyIjIzFv3jwcO3YMnTt3hl6vx9WrV6s6F0RERCQjCiGEqOrGeXl5cHFxwf79+9GnTx8Af57J8fPzw4oVKyrc5rvvvsOQIUNw+fJluLq6AgDi4+MRFRWFvLw8qFQqREVFISkpCSdPnpS2GzFiBPLz85GcnAwACAwMRLdu3RAXFwcAMJlM8PT0xPTp0zF79uxKjd9oNEKr1aKgoAAajaaq01Chs5vmlGt7esS71boPIiKiJ1Fl378f65qcgoICAICTk5NF+4YNG9CsWTN07NgR0dHRuH37trQuPT0dvr6+UsABAL1eD6PRiFOnTkk1QUFBFn3q9Xqkp6cDAIqLi5GRkWFRY2Njg6CgIKmmIkVFRTAajRYLERERyVODqm5oMpkwY8YMPPvss+jYsaPUPmrUKHh5ecHDwwMnTpxAVFQUsrOzsW3bNgCAwWCwCDgApNcGg+GhNUajEXfu3MGNGzdQVlZWYc2ZM2ceOObY2FgsWLCgqodMRERE9UiVQ054eDhOnjyJgwcPWrRPnjxZ+rOvry/c3d0xYMAAnD9/Hm3atKn6SKtBdHQ0IiMjpddGoxGenp51OCIiIiKqKVUKOdOmTUNiYiIOHDiA5s2bP7Q2MDAQAHDu3Dm0adMGbm5u5e6Cys3NBQC4ublJ/zW33Vuj0Whgb28PpVIJpVJZYY25j4qo1Wqo1erKHSQRERHVa1ZdkyOEwLRp07B9+3bs3bsXrVq1euQ2mZmZAAB3d3cAgE6nQ1ZWlsVdUCkpKdBoNPDx8ZFqUlNTLfpJSUmBTqcDAKhUKvj7+1vUmEwmpKamSjVERET0ZLPqTE54eDg2btyIr7/+Go0bN5auodFqtbC3t8f58+exceNGDB48GE2bNsWJEycQERGBPn36oFOnTgCAgQMHwsfHB2PGjMGSJUtgMBgwd+5chIeHS2dZpkyZgri4OMyaNQsTJkzA3r17sWXLFiQlJUljiYyMRGhoKAICAtC9e3esWLEChYWFGD9+fHXNDREREdVjVoWcNWvWAPjzNvF7rVu3DuPGjYNKpcKePXukwOHp6YmhQ4di7ty5Uq1SqURiYiKmTp0KnU4HBwcHhIaGYuHChVJNq1atkJSUhIiICKxcuRLNmzfH2rVrodfrpZrhw4cjLy8PMTExMBgM8PPzQ3JycrmLkYmIiOjJ9FjPyanv+JwcIiKi+qdWnpNDRERE9FfFkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyZFXIiY2NRbdu3dC4cWO4uLggJCQE2dnZFjV3795FeHg4mjZtikaNGmHo0KHIzc21qLl48SKCg4PRsGFDuLi4YObMmSgtLbWo2bdvH7p27Qq1Wo22bdsiISGh3HhWrVqFli1bws7ODoGBgTh8+LA1h0NEREQyZlXI2b9/P8LDw3Ho0CGkpKSgpKQEAwcORGFhoVQTERGBb7/9Flu3bsX+/ftx+fJlvPrqq9L6srIyBAcHo7i4GGlpaVi/fj0SEhIQExMj1eTk5CA4OBj9+/dHZmYmZsyYgYkTJ2LXrl1SzebNmxEZGYl58+bh2LFj6Ny5M/R6Pa5evfo480FEREQyoRBCiKpunJeXBxcXF+zfvx99+vRBQUEBnJ2dsXHjRgwbNgwAcObMGXTo0AHp6eno0aMHvvvuOwwZMgSXL1+Gq6srACA+Ph5RUVHIy8uDSqVCVFQUkpKScPLkSWlfI0aMQH5+PpKTkwEAgYGB6NatG+Li4gAAJpMJnp6emD59OmbPnl2p8RuNRmi1WhQUFECj0VR1Gip0dtOccm1Pj3i3WvdBRET0JKrs+/djXZNTUFAAAHBycgIAZGRkoKSkBEFBQVKNt7c3WrRogfT0dABAeno6fH19pYADAHq9HkajEadOnZJq7u3DXGPuo7i4GBkZGRY1NjY2CAoKkmoqUlRUBKPRaLEQERGRPFU55JhMJsyYMQPPPvssOnbsCAAwGAxQqVRwdHS0qHV1dYXBYJBq7g045vXmdQ+rMRqNuHPnDq5du4aysrIKa8x9VCQ2NhZarVZaPD09rT9wIiIiqheqHHLCw8Nx8uRJbNq0qTrHU6Oio6NRUFAgLZcuXarrIREREVENaVCVjaZNm4bExEQcOHAAzZs3l9rd3NxQXFyM/Px8i7M5ubm5cHNzk2ruvwvKfPfVvTX335GVm5sLjUYDe3t7KJVKKJXKCmvMfVRErVZDrVZbf8BERERU71h1JkcIgWnTpmH79u3Yu3cvWrVqZbHe398ftra2SE1Nldqys7Nx8eJF6HQ6AIBOp0NWVpbFXVApKSnQaDTw8fGRau7tw1xj7kOlUsHf39+ixmQyITU1VaohIiKiJ5tVZ3LCw8OxceNGfP3112jcuLF0/YtWq4W9vT20Wi3CwsIQGRkJJycnaDQaTJ8+HTqdDj169AAADBw4ED4+PhgzZgyWLFkCg8GAuXPnIjw8XDrLMmXKFMTFxWHWrFmYMGEC9u7diy1btiApKUkaS2RkJEJDQxEQEIDu3btjxYoVKCwsxPjx46trboiIiKgesyrkrFmzBgDQr18/i/Z169Zh3LhxAIDly5fDxsYGQ4cORVFREfR6PVavXi3VKpVKJCYmYurUqdDpdHBwcEBoaCgWLlwo1bRq1QpJSUmIiIjAypUr0bx5c6xduxZ6vV6qGT58OPLy8hATEwODwQA/Pz8kJyeXuxiZiIiInkyP9Zyc+o7PySEiIqp/auU5OURERER/VQw5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEtWh5wDBw7gxRdfhIeHBxQKBXbs2GGxfty4cVAoFBbLoEGDLGquX7+O0aNHQ6PRwNHREWFhYbh165ZFzYkTJ9C7d2/Y2dnB09MTS5YsKTeWrVu3wtvbG3Z2dvD19cXOnTutPRwiIiKSKatDTmFhITp37oxVq1Y9sGbQoEG4cuWKtPz73/+2WD969GicOnUKKSkpSExMxIEDBzB58mRpvdFoxMCBA+Hl5YWMjAwsXboU8+fPxyeffCLVpKWlYeTIkQgLC8Px48cREhKCkJAQnDx50tpDIiIiIhlSCCFElTdWKLB9+3aEhIRIbePGjUN+fn65MzxmP//8M3x8fHDkyBEEBAQAAJKTkzF48GD8/vvv8PDwwJo1azBnzhwYDAaoVCoAwOzZs7Fjxw6cOXMGADB8+HAUFhYiMTFR6rtHjx7w8/NDfHx8pcZvNBqh1WpRUFAAjUZThRl4sLOb5pRre3rEu9W6DyIioidRZd+/a+SanH379sHFxQXt27fH1KlT8ccff0jr0tPT4ejoKAUcAAgKCoKNjQ1+/PFHqaZPnz5SwAEAvV6P7Oxs3LhxQ6oJCgqy2K9er0d6evoDx1VUVASj0WixEBERkTxVe8gZNGgQ/vWvfyE1NRX//Oc/sX//frzwwgsoKysDABgMBri4uFhs06BBAzg5OcFgMEg1rq6uFjXm14+qMa+vSGxsLLRarbR4eno+3sESERHRX1aD6u5wxIgR0p99fX3RqVMntGnTBvv27cOAAQOqe3dWiY6ORmRkpPTaaDQy6BAREclUjd9C3rp1azRr1gznzp0DALi5ueHq1asWNaWlpbh+/Trc3NykmtzcXIsa8+tH1ZjXV0StVkOj0VgsREREJE81HnJ+//13/PHHH3B3dwcA6HQ65OfnIyMjQ6rZu3cvTCYTAgMDpZoDBw6gpKREqklJSUH79u3RpEkTqSY1NdViXykpKdDpdDV9SERERFQPWB1ybt26hczMTGRmZgIAcnJykJmZiYsXL+LWrVuYOXMmDh06hF9//RWpqal4+eWX0bZtW+j1egBAhw4dMGjQIEyaNAmHDx/GDz/8gGnTpmHEiBHw8PAAAIwaNQoqlQphYWE4deoUNm/ejJUrV1p81PTGG28gOTkZH3zwAc6cOYP58+fj6NGjmDZtWjVMCxEREdV3Voeco0ePokuXLujSpQsAIDIyEl26dEFMTAyUSiVOnDiBl156Ce3atUNYWBj8/f3xv//7v1Cr1VIfGzZsgLe3NwYMGIDBgwejV69eFs/A0Wq12L17N3JycuDv749//OMfiImJsXiWTs+ePbFx40Z88skn6Ny5M7766ivs2LEDHTt2fJz5ICIiIpl4rOfk1Hd8Tg4REVH9U6fPySEiIiKqaww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEtWh5wDBw7gxRdfhIeHBxQKBXbs2GGxXgiBmJgYuLu7w97eHkFBQTh79qxFzfXr1zF69GhoNBo4OjoiLCwMt27dsqg5ceIEevfuDTs7O3h6emLJkiXlxrJ161Z4e3vDzs4Ovr6+2Llzp7WHQ0RERDJldcgpLCxE586dsWrVqgrXL1myBB9++CHi4+Px448/wsHBAXq9Hnfv3pVqRo8ejVOnTiElJQWJiYk4cOAAJk+eLK03Go0YOHAgvLy8kJGRgaVLl2L+/Pn45JNPpJq0tDSMHDkSYWFhOH78OEJCQhASEoKTJ09ae0hEREQkQwohhKjyxgoFtm/fjpCQEAB/nsXx8PDAP/7xD7z55psAgIKCAri6uiIhIQEjRozAzz//DB8fHxw5cgQBAQEAgOTkZAwePBi///47PDw8sGbNGsyZMwcGgwEqlQoAMHv2bOzYsQNnzpwBAAwfPhyFhYVITEyUxtOjRw/4+fkhPj6+UuM3Go3QarUoKCiARqOp6jRU6OymOeXanh7xbrXug4iI6ElU2ffvar0mJycnBwaDAUFBQVKbVqtFYGAg0tPTAQDp6elwdHSUAg4ABAUFwcbGBj/++KNU06dPHyngAIBer0d2djZu3Lgh1dy7H3ONeT8VKSoqgtFotFiIiIhInqo15BgMBgCAq6urRburq6u0zmAwwMXFxWJ9gwYN4OTkZFFTUR/37uNBNeb1FYmNjYVWq5UWT09Paw+RiIiI6okn6u6q6OhoFBQUSMulS5fqekhERERUQ6o15Li5uQEAcnNzLdpzc3OldW5ubrh69arF+tLSUly/ft2ipqI+7t3Hg2rM6yuiVquh0WgsFiIiIpKnag05rVq1gpubG1JTU6U2o9GIH3/8ETqdDgCg0+mQn5+PjIwMqWbv3r0wmUwIDAyUag4cOICSkhKpJiUlBe3bt0eTJk2kmnv3Y64x74eIiIiebFaHnFu3biEzMxOZmZkA/rzYODMzExcvXoRCocCMGTPwzjvv4JtvvkFWVhbGjh0LDw8P6Q6sDh06YNCgQZg0aRIOHz6MH374AdOmTcOIESPg4eEBABg1ahRUKhXCwsJw6tQpbN68GStXrkRkZKQ0jjfeeAPJycn44IMPcObMGcyfPx9Hjx7FtGnTHn9WiIiIqN5rYO0GR48eRf/+/aXX5uARGhqKhIQEzJo1C4WFhZg8eTLy8/PRq1cvJCcnw87OTtpmw4YNmDZtGgYMGAAbGxsMHToUH374obReq9Vi9+7dCA8Ph7+/P5o1a4aYmBiLZ+n07NkTGzduxNy5c/HWW2/h6aefxo4dO9CxY8cqTQQRERHJy2M9J6e+43NyiIiI6p86eU4OERER0V8FQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJUrWHnPnz50OhUFgs3t7e0vq7d+8iPDwcTZs2RaNGjTB06FDk5uZa9HHx4kUEBwejYcOGcHFxwcyZM1FaWmpRs2/fPnTt2hVqtRpt27ZFQkJCdR8KERER1WM1cibnmWeewZUrV6Tl4MGD0rqIiAh8++232Lp1K/bv34/Lly/j1VdfldaXlZUhODgYxcXFSEtLw/r165GQkICYmBipJicnB8HBwejfvz8yMzMxY8YMTJw4Ebt27aqJwyEiIqJ6qEGNdNqgAdzc3Mq1FxQU4LPPPsPGjRvx3HPPAQDWrVuHDh064NChQ+jRowd2796N06dPY8+ePXB1dYWfnx8WLVqEqKgozJ8/HyqVCvHx8WjVqhU++OADAECHDh1w8OBBLF++HHq9viYOiYiIiOqZGjmTc/bsWXh4eKB169YYPXo0Ll68CADIyMhASUkJgoKCpFpvb2+0aNEC6enpAID09HT4+vrC1dVVqtHr9TAajTh16pRUc28f5hpzHw9SVFQEo9FosRAREZE8VXvICQwMREJCApKTk7FmzRrk5OSgd+/euHnzJgwGA1QqFRwdHS22cXV1hcFgAAAYDAaLgGNeb173sBqj0Yg7d+48cGyxsbHQarXS4unp+biHS0RERH9R1f5x1QsvvCD9uVOnTggMDISXlxe2bNkCe3v76t6dVaKjoxEZGSm9NhqNDDpEREQyVeO3kDs6OqJdu3Y4d+4c3NzcUFxcjPz8fIua3Nxc6RoeNze3cndbmV8/qkaj0Tw0SKnVamg0GouFiIiI5KnGQ86tW7dw/vx5uLu7w9/fH7a2tkhNTZXWZ2dn4+LFi9DpdAAAnU6HrKwsXL16VapJSUmBRqOBj4+PVHNvH+Yacx9ERERE1R5y3nzzTezfvx+//vor0tLS8Morr0CpVGLkyJHQarUICwtDZGQkvv/+e2RkZGD8+PHQ6XTo0aMHAGDgwIHw8fHBmDFj8NNPP2HXrl2YO3cuwsPDoVarAQBTpkzBhQsXMGvWLJw5cwarV6/Gli1bEBERUd2HQ0RERPVUtV+T8/vvv2PkyJH4448/4OzsjF69euHQoUNwdnYGACxfvhw2NjYYOnQoioqKoNfrsXr1aml7pVKJxMRETJ06FTqdDg4ODggNDcXChQulmlatWiEpKQkRERFYuXIlmjdvjrVr1/L2cSIiIpIohBCirgdRV4xGI7RaLQoKCqr9+pyzm+aUa3t6xLvVug8iIqInUWXfv/ndVURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEvV/pwcIiIiejKVJB+0eG07qFcdjeRPPJNDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESy1KCuB0BERESVVybK8PMfx3Hj7jU0sWuGDk27QKlQ1vo4SpIPVtheZirDzzezcKP0Bpr+VIBnOg5EA6VtLY/uT/U+5KxatQpLly6FwWBA586d8dFHH6F79+51PSwiIqJql345FZ+dXIo/7l6V2prauSCs40zoPAbU4cj+dOj6QSTYJuK6/e0/G37bDqezizHhqb/jWd3fan089TrkbN68GZGRkYiPj0dgYCBWrFgBvV6P7OxsuLi41PXwiIiIqk365VQsOToLgLBo/+NuHpYcnYVZAUuqLeg86CzNwxy6fhDLHLaUa79uW4j3ry4D0lHrQadeh5xly5Zh0qRJGD9+PAAgPj4eSUlJ+PzzzzF79uw6Hh0REVH1KBNl+OzkUtwfcP4kACjw+cn30d293yM/uqpKgHnk+ExlSLBN/POF4r6Vij+HuO6/HyOwbHitfnRVb0NOcXExMjIyEB0dLbXZ2NggKCgI6enpFW5TVFSEoqIi6XVBQQEAwGg0Vvv4bt0uKtdWE/shIqK6U5Ji+X5j+7zukTVV8bM4D0PplYfWXLl9Gen/+RgdFG0ee3/WOm08gVz7m8CdB9cYYMSPh3bA11f/2Pszv58KUVHo+z/1NuRcu3YNZWVlcHV1tWh3dXXFmTNnKtwmNjYWCxYsKNfu6elZI2MsJ+yD2tkPERE9kZIQXtdDeKgkvFat/d28eRNarfaB6+ttyKmK6OhoREZGSq9NJhOuX7+Opk2bQqG4//xa1RmNRnh6euLSpUvQaDTV1i9Z4jzXHs517eA81w7Oc+2oyXkWQuDmzZvw8PB4aF29DTnNmjWDUqlEbm6uRXtubi7c3Nwq3EatVkOtVlu0OTo61tQQodFo+BeoFnCeaw/nunZwnmsH57l21NQ8P+wMjlm9fRigSqWCv78/UlNTpTaTyYTU1FTodOU/EyUiIqInS709kwMAkZGRCA0NRUBAALp3744VK1agsLBQutuKiIiInlz1OuQMHz4ceXl5iImJgcFggJ+fH5KTk8tdjFzb1Go15s2bV+6jMapenOfaw7muHZzn2sF5rh1/hXlWiEfdf0VERERUD9Xba3KIiIiIHoYhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIaeKVq1ahZYtW8LOzg6BgYE4fPjwQ+u3bt0Kb29v2NnZwdfXFzt37qylkdZv1szzp59+it69e6NJkyZo0qQJgoKCHvn/hf5k7c+z2aZNm6BQKBASElKzA5QRa+c6Pz8f4eHhcHd3h1qtRrt27fjvRyVYO88rVqxA+/btYW9vD09PT0RERODu3bu1NNr66cCBA3jxxRfh4eEBhUKBHTt2PHKbffv2oWvXrlCr1Wjbti0SEhJqdpCCrLZp0yahUqnE559/Lk6dOiUmTZokHB0dRW5uboX1P/zwg1AqlWLJkiXi9OnTYu7cucLW1lZkZWXV8sjrF2vnedSoUWLVqlXi+PHj4ueffxbjxo0TWq1W/P7777U88vrF2nk2y8nJEU899ZTo3bu3ePnll2tnsPWctXNdVFQkAgICxODBg8XBgwdFTk6O2Ldvn8jMzKzlkdcv1s7zhg0bhFqtFhs2bBA5OTli165dwt3dXURERNTyyOuXnTt3ijlz5oht27YJAGL79u0Prb9w4YJo2LChiIyMFKdPnxYfffSRUCqVIjk5ucbGyJBTBd27dxfh4eHS67KyMuHh4SFiY2MrrH/ttddEcHCwRVtgYKD4+9//XqPjrO+snef7lZaWisaNG4v169fX1BBloSrzXFpaKnr27CnWrl0rQkNDGXIqydq5XrNmjWjdurUoLi6urSHKgrXzHB4eLp577jmLtsjISPHss8/W6DjlpDIhZ9asWeKZZ56xaBs+fLjQ6/U1Ni5+XGWl4uJiZGRkICgoSGqzsbFBUFAQ0tPTK9wmPT3doh4A9Hr9A+upavN8v9u3b6OkpAROTk41Ncx6r6rzvHDhQri4uCAsLKw2hikLVZnrb775BjqdDuHh4XB1dUXHjh3x3nvvoaysrLaGXe9UZZ579uyJjIwM6SOtCxcuYOfOnRg8eHCtjPlJURfvhfX6ax3qwrVr11BWVlbuqyNcXV1x5syZCrcxGAwV1hsMhhobZ31XlXm+X1RUFDw8PMr9paL/U5V5PnjwID777DNkZmbWwgjloypzfeHCBezduxejR4/Gzp07ce7cObz++usoKSnBvHnzamPY9U5V5nnUqFG4du0aevXqBSEESktLMWXKFLz11lu1MeQnxoPeC41GI+7cuQN7e/tq3yfP5JAsLV68GJs2bcL27dthZ2dX18ORjZs3b2LMmDH49NNP0axZs7oejuyZTCa4uLjgk08+gb+/P4YPH445c+YgPj6+rocmK/v27cN7772H1atX49ixY9i2bRuSkpKwaNGiuh4aPSaeybFSs2bNoFQqkZuba9Gem5sLNze3Crdxc3Ozqp6qNs9m77//PhYvXow9e/agU6dONTnMes/aeT5//jx+/fVXvPjii1KbyWQCADRo0ADZ2dlo06ZNzQ66nqrKz7S7uztsbW2hVCqltg4dOsBgMKC4uBgqlapGx1wfVWWe3377bYwZMwYTJ04EAPj6+qKwsBCTJ0/GnDlzYGPD8wHV4UHvhRqNpkbO4gA8k2M1lUoFf39/pKamSm0mkwmpqanQ6XQVbqPT6SzqASAlJeWB9VS1eQaAJUuWYNGiRUhOTkZAQEBtDLVes3aevb29kZWVhczMTGl56aWX0L9/f2RmZsLT07M2h1+vVOVn+tlnn8W5c+ekIAkAv/zyC9zd3RlwHqAq83z79u1yQcYcLAW/w7ra1Ml7YY1d0ixjmzZtEmq1WiQkJIjTp0+LyZMnC0dHR2EwGIQQQowZM0bMnj1bqv/hhx9EgwYNxPvvvy9+/vlnMW/ePN5CXgnWzvPixYuFSqUSX331lbhy5Yq03Lx5s64OoV6wdp7vx7urKs/aub548aJo3LixmDZtmsjOzhaJiYnCxcVFvPPOO3V1CPWCtfM8b9480bhxY/Hvf/9bXLhwQezevVu0adNGvPbaa3V1CPXCzZs3xfHjx8Xx48cFALFs2TJx/Phx8dtvvwkhhJg9e7YYM2aMVG++hXzmzJni559/FqtWreIt5H9VH330kWjRooVQqVSie/fu4tChQ9K6vn37itDQUIv6LVu2iHbt2gmVSiWeeeYZkZSUVMsjrp+smWcvLy8BoNwyb9682h94PWPtz/O9GHKsY+1cp6WlicDAQKFWq0Xr1q3Fu+++K0pLS2t51PWPNfNcUlIi5s+fL9q0aSPs7OyEp6eneP3118WNGzdqf+D1yPfff1/hv7nmuQ0NDRV9+/Ytt42fn59QqVSidevWYt26dTU6RoUQPBdHRERE8sNrcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlv4/IWS8qmYxgkUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARw1JREFUeJzt3X1cVGX+P/4XIDMgOoPIvSLe5Q2JkiA45m2SY2IbaRuWq6ioq6HfhLwjDVArXO1GyxsqS9xdXW8qbQNDCVNXwTuUFVHJFMNWBzCFUVTu5vr90W/OxxFUBrmR4+v5eJxHznXe5zrXuRqdF2fOOVgIIQSIiIiIZMaysQdAREREVB8YcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiGRu7969sLCwwN69e+u0XwsLC8TGxtZpn3IzYcIEtG/fvrGH8Vho3749JkyY8NC6hIQEWFhY4OLFi/U+JpI/hhxqUtLS0hAbG4uioqLGHsoTYefOnQwyAG7duoXY2Ng6D4rUsDZv3ozevXvDxsYGTk5OCAsLw9WrVxt7WFSPGHKoSUlLS8OiRYsYchrIzp07sWjRomrX3b59GwsXLmzgETWOW7duYdGiRWaHnC+++AI5OTn1M6gmJicnB1988UWj7X/t2rV47bXX4ODggI8++ghTpkzB5s2bMXToUNy5c6fRxkX1q1ljD4CIqnfr1i00b968SntFRQUMBgMUCkUjjOr/2NjYNOr+H2clJSWws7ODtbV1Yw/lsaFUKhtt32VlZXj77bcxcOBApKSkwMLCAgDQr18/vPjii/jiiy8wc+bMRhsf1R+eyaEmIzY2FnPmzAEAdOjQARYWFtJ39xUVFViyZAk6deoEpVKJ9u3b4+2330ZpaalJH+3bt8fIkSOxe/du+Pj4wMbGBl5eXvj2229rNaZ//vOf8Pf3R/PmzdGqVSsMHDgQu3fvNqlZs2YNnn76aSiVSri7uyM8PLzKmajBgwejR48eyMjIwMCBA9G8eXO8/fbbuHjxIiwsLPDBBx9gxYoV0vGdPn0aAHD27Fm88sorcHBwgI2NDfz8/PDvf//7oeP+z3/+gz//+c9o164dlEolPDw8EBERgdu3b0s1EyZMwOrVqwFAmmvjh4Ox7d6vsk6cOIEXXngBKpUKLVq0wNChQ3Ho0CGTGuM1FwcPHkRkZCScnJxgZ2eHl19+GYWFhQ8d+91iY2NhYWGBn3/+GX/5y1+gVqvh5OSEd955B0IIXLp0CS+99BJUKhVcXV3x4YcfmmxfVlaG6Oho+Pr6Qq1Ww87ODgMGDMBPP/0k1Vy8eBFOTk4AgEWLFknzYDz2CRMmoEWLFjh//jxGjBiBli1bYuzYsdK6u6/JiYmJgaWlJVJTU03GMXXqVCgUCvz3v/+t8bHX9L1cXl6ORYsW4amnnoKNjQ1at26N/v37IyUlRaoxHkNeXh5GjhyJFi1aoE2bNtL//6ysLDz33HOws7ODp6cnNm3aVONx3j3ee6/Jyc7OxnPPPQdbW1u0bdsW7777LgwGQ5Vtjx07Bq1WC0dHR9ja2qJDhw6YNGlSjfd96tQpFBUVISQkxOQ9bDzWzZs3m3081DTwTA41GaNGjcLPP/+Mf/3rX/j444/h6OgIAHBycsLkyZOxYcMGvPLKK3jrrbdw+PBhxMXF4cyZM9i+fbtJP+fOnUNISAimTZuG0NBQrF+/Hn/+85+RnJyM559/vsbjWbRoEWJjY9GvXz8sXrwYCoUChw8fxp49ezBs2DAAf3wIL1q0CIGBgZg+fTpycnKwdu1aHD16FAcPHjT5Sf/333/HCy+8gDFjxuAvf/kLXFxcpHXr16/HnTt3MHXqVCiVSjg4OCA7OxvPPvss2rRpg/nz58POzg5bt25FcHAwvvnmG7z88sv3Hfu2bdtw69YtTJ8+Ha1bt8aRI0fw6aef4rfffsO2bdsAAH/9619x+fJlpKSk4B//+MdD5yM7OxsDBgyASqXC3LlzYW1tjc8++wyDBw/Gvn37EBAQYFI/c+ZMtGrVCjExMbh48SJWrFiBGTNmYMuWLTX+f2AUEhKC7t27Y+nSpUhKSsK7774LBwcHfPbZZ3juuefwt7/9DRs3bsTs2bPRp08fDBw4EACg1+uxbt06vPbaa5gyZQpu3LiBL7/8ElqtFkeOHIGPjw+cnJywdu1aTJ8+HS+//DJGjRoFAOjZs6e0/4qKCmi1WvTv3x8ffPBBtWfgAGDhwoX4/vvvERYWhqysLLRs2RK7du3CF198gSVLlqBXr15mHXdN3suxsbGIi4vD5MmT4e/vD71ej2PHjuH48eMm7/fKykq88MILGDhwIJYtW4aNGzdixowZsLOzw4IFCzB27FiMGjUK8fHxGD9+PDQaDTp06GDWeO+m0+kwZMgQVFRUSO/fzz//HLa2tiZ1BQUFGDZsGJycnDB//nzY29vj4sWLZv1gYvxh596+jW0nTpyAwWCApSV/7pcdQdSELF++XAAQubm5UltmZqYAICZPnmxSO3v2bAFA7NmzR2rz9PQUAMQ333wjtRUXFws3NzfxzDPP1Hgc586dE5aWluLll18WlZWVJusMBoMQQoiCggKhUCjEsGHDTGpWrVolAIivvvpKahs0aJAAIOLj4036ys3NFQCESqUSBQUFJuuGDh0qvL29xZ07d0z23a9fP/HUU09JbT/99JMAIH766Sep7datW1WOKS4uTlhYWIhff/1VagsPDxf3+2cCgIiJiZFeBwcHC4VCIc6fPy+1Xb58WbRs2VIMHDhQalu/fr0AIAIDA6W5EkKIiIgIYWVlJYqKiqrdX3ViYmIEADF16lSpraKiQrRt21ZYWFiIpUuXSu3Xr18Xtra2IjQ01KS2tLTUpM/r168LFxcXMWnSJKmtsLCwyvEahYaGCgBi/vz51a7z9PQ0acvKyhIKhUJMnjxZXL9+XbRp00b4+fmJ8vLyGh+3EDV/L/fq1UsEBQU9sC/jMbz//vtSm3G+LCwsxObNm6X2s2fP3ncuHjbeu+d+1qxZAoA4fPiw1FZQUCDUarXJ3/Ht27cLAOLo0aNm7e9uhYWFwsLCQoSFhZm0G48FgLh69Wqt+6fHF2MrNXk7d+4EAERGRpq0v/XWWwCApKQkk3Z3d3eTsxwqlQrjx4/HiRMnoNPparTPHTt2wGAwIDo6uspPf8bT4T/++CPKysowa9Ysk5opU6ZApVJVGZdSqcTEiROr3d/o0aOlr0wA4Nq1a9izZw9effVV3LhxA1evXsXVq1fx+++/Q6vV4ty5c/jf//533/Hf/RNtSUkJrl69in79+kEIgRMnTtRoDu5WWVmJ3bt3Izg4GB07dpTa3dzc8Prrr+PAgQPQ6/Um20ydOtXkq4MBAwagsrISv/76q9n7nzx5svRnKysr+Pn5QQiBsLAwqd3e3h5du3bFhQsXTGqN1zYZDAZcu3YNFRUV8PPzw/Hjx80aw/Tp02tU16NHDyxatAjr1q2DVqvF1atXsWHDBjRrZv6J9Zq8l+3t7ZGdnY1z5849tL+759E4X3Z2dnj11Vel9q5du8Le3t5kHmtj586d6Nu3L/z9/aU2Jycn6au+u8cBAImJiSgvL6/VvhwdHfHqq69iw4YN+PDDD3HhwgX85z//QUhIiHQ29e6vakk+GHKoyfv1119haWmJzp07m7S7urrC3t6+yodm586dTT5cAaBLly4AUONnc5w/fx6Wlpbw8vJ64LiAPz4U7qZQKNCxY8cq42rTps19Lya+92uBX375BUIIvPPOO3BycjJZYmJiAPxxmv9+8vLyMGHCBDg4OKBFixZwcnLCoEGDAADFxcX33e5+CgsLcevWrSrHCgDdu3eHwWDApUuXTNrbtWtn8rpVq1YAgOvXr5u9/3v7UqvVsLGxkb7SvLv93v43bNiAnj17SterODk5ISkpyax5aNasGdq2bVvj+jlz5qBXr144cuQIYmJiHvg+epCavJcXL16MoqIidOnSBd7e3pgzZw5OnjxZpS/jbdV3U6vVaNu2bZV9VDeP5vr111/x1FNPVWm/9z00aNAgjB49GosWLYKjoyNeeuklrF+/vsr1dg/z2WefYcSIEZg9ezY6deqEgQMHwtvbGy+++CIAoEWLFrU/GHps8Zocko17/yFuaqq7XuB+64wXZ86ePRtarbbabe4NfUaVlZV4/vnnce3aNcybNw/dunWDnZ0d/ve//2HChAnVXvhZH6ysrKptF0LUSV816f+f//wnJkyYgODgYMyZMwfOzs6wsrJCXFwczp8/X+P9K5VKs67nuHDhgnRmJSsrq8bb1cbAgQNx/vx5fPfdd9i9ezfWrVuHjz/+GPHx8VXOgFWnLv8/1YaFhQW+/vprHDp0CN9//z127dqFSZMm4cMPP8ShQ4dqHE7UajW+++475OXl4eLFi/D09ISnpyf69esHJycn6YwRyQtDDjUp1QUZT09PGAwGnDt3Dt27d5fa8/PzUVRUBE9PT5N641mQu/v6+eefAaDGT6ft1KkTDAYDTp8+DR8fn2prjPvNyckx+QqnrKwMubm5CAwMrNG+qmPsz9ra2ux+srKy8PPPP2PDhg0YP3681H733TZGNQ2OTk5OaN68ebXPhDl79iwsLS3h4eFh1jgbwtdff42OHTvi22+/NTlW49kwo7oM0AaDARMmTIBKpcKsWbPw/vvv45VXXpEuaDZHTd/LDg4OmDhxIiZOnIibN29i4MCBiI2NNQk5Dc3T07Par9Du91yhvn37om/fvnjvvfewadMmjB07Fps3bzb7GNq1ayed+SsqKkJGRgZGjx5t/gFQk8Cvq6hJsbOzAwCTW7BHjBgBAFixYoVJ7UcffQQACAoKMmm/fPmyyR1Xer0ef//73+Hj4wNXV9cajSM4OBiWlpZYvHhxlTMfxp9wAwMDoVAo8Mknn5j81Pvll1+iuLi4yrjM4ezsjMGDB+Ozzz7DlStXqqx/0K3Yxp/M7x6TEAIrV66sUlvdfN+vz2HDhuG7774z+covPz8fmzZtQv/+/aFSqR7YR2Oobi4OHz6M9PR0kzrj3VJ18RDKjz76CGlpafj888+xZMkS9OvXD9OnT6/Vk3dr8l7+/fffTbZp0aIFOnfubPbXPXVtxIgROHToEI4cOSK1FRYWYuPGjSZ1169fr3LWyPiDxaMeQ1RUFCoqKhAREfFI/dDji2dyqEnx9fUFACxYsABjxoyBtbU1XnzxRYSGhuLzzz9HUVERBg0ahCNHjmDDhg0IDg7GkCFDTPro0qULwsLCcPToUbi4uOCrr75Cfn4+1q9fX+NxdO7cGQsWLMCSJUswYMAAjBo1CkqlEkePHoW7uzvi4uLg5OSEqKgoLFq0CMOHD8ef/vQn5OTkYM2aNejTpw/+8pe/PNJcrF69Gv3794e3tzemTJmCjh07Ij8/H+np6fjtt9/u+8yVbt26oVOnTpg9ezb+97//QaVS4Ztvvqn2GgvjfP+///f/oNVqYWVlhTFjxlTb77vvvouUlBT0798fb7zxBpo1a4bPPvsMpaWlWLZs2SMda30ZOXIkvv32W7z88ssICgpCbm4u4uPj4eXlhZs3b0p1tra28PLywpYtW9ClSxc4ODigR48e6NGjh1n7O3PmDN555x1MmDBBuhYkISEBPj4+eOONN7B161az+qvJe9nLywuDBw+Gr68vHBwccOzYMXz99deYMWOGWfuqa3PnzsU//vEPDB8+HG+++aZ0C7mnp6fJNUMbNmzAmjVr8PLLL6NTp064ceMGvvjiC6hUKukHnJpYunQpTp06hYCAADRr1gw7duzA7t278e6776JPnz71cYj0OGiMW7qIHsWSJUtEmzZthKWlpXSraXl5uVi0aJHo0KGDsLa2Fh4eHiIqKsrk9moh/riNNSgoSOzatUv07NlTKJVK0a1bN7Ft27ZajeWrr74SzzzzjFAqlaJVq1Zi0KBBIiUlxaRm1apVolu3bsLa2lq4uLiI6dOni+vXr5vUDBo0SDz99NNV+jfeQr58+fJq93/+/Hkxfvx44erqKqytrUWbNm3EyJEjxddffy3VVHcL+enTp0VgYKBo0aKFcHR0FFOmTBH//e9/BQCxfv16qa6iokLMnDlTODk5CQsLC5PbyVHNbcTHjx8XWq1WtGjRQjRv3lwMGTJEpKWlmdQYbyG/95bg6sb5MMZbyAsLC03aQ0NDhZ2dXZX6e+fZYDCI999/X3h6egqlUimeeeYZkZiYWO2t32lpacLX11coFAqTY7/fvozrjP1UVFSIPn36iLZt21a5TX7lypUCgNiyZUuNj72m7+V3331X+Pv7C3t7e2Frayu6desm3nvvPVFWVmYyzprM1737Nse9t5ALIcTJkyfFoEGDhI2NjWjTpo1YsmSJ+PLLL01uIT9+/Lh47bXXRLt27YRSqRTOzs5i5MiR4tixY2btPzExUfj7+4uWLVuK5s2bi759+4qtW7ea1Qc1PRZCNNDVY0SPgfbt26NHjx5ITExs7KEQPRK+l4kejtfkEBERkSzxmhyiezzsgYC2trZQq9UNNJon082bN02uiamOk5PTfW9vbsoKCwtRWVl53/UKhQIODg4NOKIHa+y/L9euXUNZWdl911tZWVV5/g89ORhyiO7h5ub2wPWhoaFISEhomME8oT744AMsWrTogTW5ubk1vuW/KenTp88Dn/o8aNAg7N27t+EG9BCN/fdl1KhR2Ldv333Xe3p61vghnyQ/vCaH6B4//vjjA9e7u7vX+gm1VDMXLlx46K8N6N+/P2xsbBpoRA3n4MGDD/wVA61atZLuenscNPbfl4yMjAc+fdnW1hbPPvtsve2fHm8MOURERCRLvPCYiIiIZOmJvibHYDDg8uXLaNmyZZP/vUdERERPCiEEbty4AXd39wf/3rhHechOXFycACDefPNNqe327dvijTfeEA4ODsLOzk6MGjVK6HQ6k+1+/fVXMWLECGFrayucnJzE7NmzRXl5uUnNTz/9JJ555hmhUChEp06dTB5QZrRq1SrpIV7+/v7i8OHDZo3/0qVLAgAXLly4cOHCpQkuly5deuDnfK3P5Bw9ehSfffYZevbsadIeERGBpKQkbNu2DWq1GjNmzMCoUaNw8OBBAH/8BuSgoCC4uroiLS0NV65cwfjx42FtbY33338fwB93TQQFBWHatGnYuHEjUlNTMXnyZLi5uUm/cXnLli2IjIxEfHw8AgICsGLFCmi1WuTk5MDZ2blGx9CyZUsAwKVLlx7L36tDREREVen1enh4eEif4/dl1qmP/9+NGzfEU089JVJSUsSgQYOkMzlFRUXC2tra5LHiZ86cEQBEenq6EEKInTt3CktLS5OzO2vXrhUqlUqUlpYKIYSYO3dulUeJh4SECK1WK7329/cX4eHh0uvKykrh7u4u4uLianwcxcXFAoAoLi6u+cETERFRo6rp53etLjwODw9HUFAQAgMDTdozMjJQXl5u0t6tWze0a9dO+q2+6enp8Pb2houLi1Sj1Wqh1+uRnZ0t1dzbt1arlfooKytDRkaGSY2lpSUCAwOr/Pbgu5WWlkKv15ssREREJE9mf121efNmHD9+HEePHq2yTqfTQaFQwN7e3qTdxcVFeiqmTqczCTjG9cZ1D6rR6/W4ffs2rl+/jsrKymprzp49e9+xx8XFPfQBY0RERCQPZp3JuXTpEt58801s3LixST6EKyoqCsXFxdJy6dKlxh4SERER1ROzQk5GRgYKCgrQu3dvNGvWDM2aNcO+ffvwySefoFmzZnBxcUFZWRmKiopMtsvPz4erqysAwNXVFfn5+VXWG9c9qEalUsHW1haOjo6wsrKqtsbYR3WUSiVUKpXJQkRERPJkVsgZOnQosrKykJmZKS1+fn4YO3as9Gdra2ukpqZK2+Tk5CAvLw8ajQYAoNFokJWVhYKCAqkmJSUFKpVKevS3RqMx6cNYY+xDoVDA19fXpMZgMCA1NVWqISIioiebWdfktGzZEj169DBps7OzQ+vWraX2sLAwREZGwsHBASqVCjNnzoRGo0Hfvn0BAMOGDYOXlxfGjRuHZcuWQafTYeHChQgPD4dSqQQATJs2DatWrcLcuXMxadIk7NmzB1u3bkVSUpK038jISISGhsLPzw/+/v5YsWIFSkpKMHHixEeaECIiIpKHOn/i8ccffwxLS0uMHj0apaWl0Gq1WLNmjbTeysoKiYmJmD59OjQaDezs7BAaGorFixdLNR06dEBSUhIiIiKwcuVKtG3bFuvWrZOekQMAISEhKCwsRHR0NHQ6HXx8fJCcnFzlYmQiIiJ6Mj3Rv6BTr9dDrVajuLiY1+cQERE1ETX9/OYv6CQiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlmq8+fk0B/Kkw9UabMe3r8RRkJERPRk4pkcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWzQs7atWvRs2dPqFQqqFQqaDQa/PDDD9L6wYMHw8LCwmSZNm2aSR95eXkICgpC8+bN4ezsjDlz5qCiosKkZu/evejduzeUSiU6d+6MhISEKmNZvXo12rdvDxsbGwQEBODIkSPmHAoRERHJnFkhp23btli6dCkyMjJw7NgxPPfcc3jppZeQnZ0t1UyZMgVXrlyRlmXLlknrKisrERQUhLKyMqSlpWHDhg1ISEhAdHS0VJObm4ugoCAMGTIEmZmZmDVrFiZPnoxdu3ZJNVu2bEFkZCRiYmJw/Phx9OrVC1qtFgUFBY8yF0RERCQjFkII8SgdODg4YPny5QgLC8PgwYPh4+ODFStWVFv7ww8/YOTIkbh8+TJcXFwAAPHx8Zg3bx4KCwuhUCgwb948JCUl4dSpU9J2Y8aMQVFREZKTkwEAAQEB6NOnD1atWgUAMBgM8PDwwMyZMzF//vz7jrW0tBSlpaXSa71eDw8PDxQXF0OlUj3KNFRRnnygSpv18P51ug8iIqInkV6vh1qtfujnd62vyamsrMTmzZtRUlICjUYjtW/cuBGOjo7o0aMHoqKicOvWLWldeno6vL29pYADAFqtFnq9XjoblJ6ejsDAQJN9abVapKenAwDKysqQkZFhUmNpaYnAwECp5n7i4uKgVqulxcPDo7aHT0RERI+5ZuZukJWVBY1Ggzt37qBFixbYvn07vLy8AACvv/46PD094e7ujpMnT2LevHnIycnBt99+CwDQ6XQmAQeA9Fqn0z2wRq/X4/bt27h+/ToqKyurrTl79uwDxx4VFYXIyEjptfFMDhEREcmP2SGna9euyMzMRHFxMb7++muEhoZi37598PLywtSpU6U6b29vuLm5YejQoTh//jw6depUpwOvDaVSCaVS2djDICIiogZg9tdVCoUCnTt3hq+vL+Li4tCrVy+sXLmy2tqAgAAAwC+//AIAcHV1RX5+vkmN8bWrq+sDa1QqFWxtbeHo6AgrK6tqa4x9EBERET3yc3IMBoPJxbx3y8zMBAC4ubkBADQaDbKyskzugkpJSYFKpZK+8tJoNEhNTTXpJyUlRbruR6FQwNfX16TGYDAgNTXV5NogIiIierKZ9XVVVFQUXnjhBbRr1w43btzApk2bsHfvXuzatQvnz5/Hpk2bMGLECLRu3RonT55EREQEBg4ciJ49ewIAhg0bBi8vL4wbNw7Lli2DTqfDwoULER4eLn2NNG3aNKxatQpz587FpEmTsGfPHmzduhVJSUnSOCIjIxEaGgo/Pz/4+/tjxYoVKCkpwcSJE+twaoiIiKgpMyvkFBQUYPz48bhy5QrUajV69uyJXbt24fnnn8elS5fw448/SoHDw8MDo0ePxsKFC6XtrayskJiYiOnTp0Oj0cDOzg6hoaFYvHixVNOhQwckJSUhIiICK1euRNu2bbFu3TpotVqpJiQkBIWFhYiOjoZOp4OPjw+Sk5OrXIxMRERET65Hfk5OU1bT++xrg8/JISIiqh/1/pwcIiIioscZQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJktm/1oFq5mLRD1XangLvriIiImooPJNDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREsmRWyFm7di169uwJlUoFlUoFjUaDH374QVp/584dhIeHo3Xr1mjRogVGjx6N/Px8kz7y8vIQFBSE5s2bw9nZGXPmzEFFRYVJzd69e9G7d28olUp07twZCQkJVcayevVqtG/fHjY2NggICMCRI0fMORQiIiKSObNCTtu2bbF06VJkZGTg2LFjeO655/DSSy8hOzsbABAREYHvv/8e27Ztw759+3D58mWMGjVK2r6yshJBQUEoKytDWloaNmzYgISEBERHR0s1ubm5CAoKwpAhQ5CZmYlZs2Zh8uTJ2LVrl1SzZcsWREZGIiYmBsePH0evXr2g1WpRUFDwqPNBREREMmEhhBCP0oGDgwOWL1+OV155BU5OTti0aRNeeeUVAMDZs2fRvXt3pKeno2/fvvjhhx8wcuRIXL58GS4uLgCA+Ph4zJs3D4WFhVAoFJg3bx6SkpJw6tQpaR9jxoxBUVERkpOTAQABAQHo06cPVq1aBQAwGAzw8PDAzJkzMX/+/BqPXa/XQ61Wo7i4GCqV6lGmoYpzmxdUaXtqzHt1ug8iIqInUU0/v2t9TU5lZSU2b96MkpISaDQaZGRkoLy8HIGBgVJNt27d0K5dO6SnpwMA0tPT4e3tLQUcANBqtdDr9dLZoPT0dJM+jDXGPsrKypCRkWFSY2lpicDAQKnmfkpLS6HX600WIiIikiezQ05WVhZatGgBpVKJadOmYfv27fDy8oJOp4NCoYC9vb1JvYuLC3Q6HQBAp9OZBBzjeuO6B9Xo9Xrcvn0bV69eRWVlZbU1xj7uJy4uDmq1Wlo8PDzMPXwiIiJqIswOOV27dkVmZiYOHz6M6dOnIzQ0FKdPn66PsdW5qKgoFBcXS8ulS5cae0hERERUT5qZu4FCoUDnzp0BAL6+vjh69ChWrlyJkJAQlJWVoaioyORsTn5+PlxdXQEArq6uVe6CMt59dXfNvXdk5efnQ6VSwdbWFlZWVrCysqq2xtjH/SiVSiiVSnMPmYiIiJqgR35OjsFgQGlpKXx9fWFtbY3U1FRpXU5ODvLy8qDRaAAAGo0GWVlZJndBpaSkQKVSwcvLS6q5uw9jjbEPhUIBX19fkxqDwYDU1FSphoiIiMisMzlRUVF44YUX0K5dO9y4cQObNm3C3r17sWvXLqjVaoSFhSEyMhIODg5QqVSYOXMmNBoN+vbtCwAYNmwYvLy8MG7cOCxbtgw6nQ4LFy5EeHi4dIZl2rRpWLVqFebOnYtJkyZhz5492Lp1K5KSkqRxREZGIjQ0FH5+fvD398eKFStQUlKCiRMn1uHUEBERUVNmVsgpKCjA+PHjceXKFajVavTs2RO7du3C888/DwD4+OOPYWlpidGjR6O0tBRarRZr1qyRtreyskJiYiKmT58OjUYDOzs7hIaGYvHixVJNhw4dkJSUhIiICKxcuRJt27bFunXroNVqpZqQkBAUFhYiOjoaOp0OPj4+SE5OrnIxMhERET25Hvk5OU0Zn5NDRETU9NT7c3KIiIiIHmcMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLZoWcuLg49OnTBy1btoSzszOCg4ORk5NjUjN48GBYWFiYLNOmTTOpycvLQ1BQEJo3bw5nZ2fMmTMHFRUVJjV79+5F7969oVQq0blzZyQkJFQZz+rVq9G+fXvY2NggICAAR44cMedwiIiISMbMCjn79u1DeHg4Dh06hJSUFJSXl2PYsGEoKSkxqZsyZQquXLkiLcuWLZPWVVZWIigoCGVlZUhLS8OGDRuQkJCA6OhoqSY3NxdBQUEYMmQIMjMzMWvWLEyePBm7du2SarZs2YLIyEjExMTg+PHj6NWrF7RaLQoKCmo7F0RERCQjFkIIUduNCwsL4ezsjH379mHgwIEA/jiT4+PjgxUrVlS7zQ8//ICRI0fi8uXLcHFxAQDEx8dj3rx5KCwshEKhwLx585CUlIRTp05J240ZMwZFRUVITk4GAAQEBKBPnz5YtWoVAMBgMMDDwwMzZ87E/PnzazR+vV4PtVqN4uJiqFSq2k5Dtc5tXlCl7akx79XpPoiIiJ5ENf38fqRrcoqLiwEADg4OJu0bN26Eo6MjevTogaioKNy6dUtal56eDm9vbyngAIBWq4Ver0d2drZUExgYaNKnVqtFeno6AKCsrAwZGRkmNZaWlggMDJRqqlNaWgq9Xm+yEBERkTw1q+2GBoMBs2bNwrPPPosePXpI7a+//jo8PT3h7u6OkydPYt68ecjJycG3334LANDpdCYBB4D0WqfTPbBGr9fj9u3buH79OiorK6utOXv27H3HHBcXh0WLFtX2kImIiKgJqXXICQ8Px6lTp3DgwAGT9qlTp0p/9vb2hpubG4YOHYrz58+jU6dOtR9pHYiKikJkZKT0Wq/Xw8PDoxFHRERERPWlViFnxowZSExMxP79+9G2bdsH1gYEBAAAfvnlF3Tq1Amurq5V7oLKz88HALi6ukr/NbbdXaNSqWBrawsrKytYWVlVW2PsozpKpRJKpbJmB0lERERNmlnX5AghMGPGDGzfvh179uxBhw4dHrpNZmYmAMDNzQ0AoNFokJWVZXIXVEpKClQqFby8vKSa1NRUk35SUlKg0WgAAAqFAr6+viY1BoMBqampUg0RERE92cw6kxMeHo5Nmzbhu+++Q8uWLaVraNRqNWxtbXH+/Hls2rQJI0aMQOvWrXHy5ElERERg4MCB6NmzJwBg2LBh8PLywrhx47Bs2TLodDosXLgQ4eHh0lmWadOmYdWqVZg7dy4mTZqEPXv2YOvWrUhKSpLGEhkZidDQUPj5+cHf3x8rVqxASUkJJk6cWFdzQ0RERE2YWSFn7dq1AP64Tfxu69evx4QJE6BQKPDjjz9KgcPDwwOjR4/GwoULpVorKyskJiZi+vTp0Gg0sLOzQ2hoKBYvXizVdOjQAUlJSYiIiMDKlSvRtm1brFu3DlqtVqoJCQlBYWEhoqOjodPp4OPjg+Tk5CoXIxMREdGT6ZGek9PU8Tk5RERETU+DPCeHiIiI6HHFkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyZFbIiYuLQ58+fdCyZUs4OzsjODgYOTk5JjV37txBeHg4WrdujRYtWmD06NHIz883qcnLy0NQUBCaN28OZ2dnzJkzBxUVFSY1e/fuRe/evaFUKtG5c2ckJCRUGc/q1avRvn172NjYICAgAEeOHDHncIiIiEjGzAo5+/btQ3h4OA4dOoSUlBSUl5dj2LBhKCkpkWoiIiLw/fffY9u2bdi3bx8uX76MUaNGSesrKysRFBSEsrIypKWlYcOGDUhISEB0dLRUk5ubi6CgIAwZMgSZmZmYNWsWJk+ejF27dkk1W7ZsQWRkJGJiYnD8+HH06tULWq0WBQUFjzIfREREJBMWQghR240LCwvh7OyMffv2YeDAgSguLoaTkxM2bdqEV155BQBw9uxZdO/eHenp6ejbty9++OEHjBw5EpcvX4aLiwsAID4+HvPmzUNhYSEUCgXmzZuHpKQknDp1StrXmDFjUFRUhOTkZABAQEAA+vTpg1WrVgEADAYDPDw8MHPmTMyfP7/a8ZaWlqK0tFR6rdfr4eHhgeLiYqhUqtpOQ7XObV5Qpe2pMe/V6T6IiIieRHq9Hmq1+qGf3490TU5xcTEAwMHBAQCQkZGB8vJyBAYGSjXdunVDu3btkJ6eDgBIT0+Ht7e3FHAAQKvVQq/XIzs7W6q5uw9jjbGPsrIyZGRkmNRYWloiMDBQqqlOXFwc1Gq1tHh4eDzK4RMREdFjrNYhx2AwYNasWXj22WfRo0cPAIBOp4NCoYC9vb1JrYuLC3Q6nVRzd8Axrjeue1CNXq/H7du3cfXqVVRWVlZbY+yjOlFRUSguLpaWS5cumX/gRERE1CQ0q+2G4eHhOHXqFA4cOFCX46lXSqUSSqWysYdBREREDaBWZ3JmzJiBxMRE/PTTT2jbtq3U7urqirKyMhQVFZnU5+fnw9XVVaq5924r4+uH1ahUKtja2sLR0RFWVlbV1hj7ICIioiebWSFHCIEZM2Zg+/bt2LNnDzp06GCy3tfXF9bW1khNTZXacnJykJeXB41GAwDQaDTIysoyuQsqJSUFKpUKXl5eUs3dfRhrjH0oFAr4+vqa1BgMBqSmpko1RERE9GQz6+uq8PBwbNq0Cd999x1atmwpXf+iVqtha2sLtVqNsLAwREZGwsHBASqVCjNnzoRGo0Hfvn0BAMOGDYOXlxfGjRuHZcuWQafTYeHChQgPD5e+Spo2bRpWrVqFuXPnYtKkSdizZw+2bt2KpKQkaSyRkZEIDQ2Fn58f/P39sWLFCpSUlGDixIl1NTdERETUhJkVctauXQsAGDx4sEn7+vXrMWHCBADAxx9/DEtLS4wePRqlpaXQarVYs2aNVGtlZYXExERMnz4dGo0GdnZ2CA0NxeLFi6WaDh06ICkpCREREVi5ciXatm2LdevWQavVSjUhISEoLCxEdHQ0dDodfHx8kJycXOViZCIiInoyPdJzcpq6mt5nXxt8Tg4REVH9aJDn5BARERE9rhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlswOOfv378eLL74Id3d3WFhYYMeOHSbrJ0yYAAsLC5Nl+PDhJjXXrl3D2LFjoVKpYG9vj7CwMNy8edOk5uTJkxgwYABsbGzg4eGBZcuWVRnLtm3b0K1bN9jY2MDb2xs7d+4093CIiIhIpswOOSUlJejVqxdWr15935rhw4fjypUr0vKvf/3LZP3YsWORnZ2NlJQUJCYmYv/+/Zg6daq0Xq/XY9iwYfD09ERGRgaWL1+O2NhYfP7551JNWloaXnvtNYSFheHEiRMIDg5GcHAwTp06Ze4hERERkQxZCCFErTe2sMD27dsRHBwstU2YMAFFRUVVzvAYnTlzBl5eXjh69Cj8/PwAAMnJyRgxYgR+++03uLu7Y+3atViwYAF0Oh0UCgUAYP78+dixYwfOnj0LAAgJCUFJSQkSExOlvvv27QsfHx/Ex8fXaPx6vR5qtRrFxcVQqVS1mIH7O7d5QZW2p8a8V6f7ICIiehLV9PO7Xq7J2bt3L5ydndG1a1dMnz4dv//+u7QuPT0d9vb2UsABgMDAQFhaWuLw4cNSzcCBA6WAAwBarRY5OTm4fv26VBMYGGiyX61Wi/T09PuOq7S0FHq93mQhIiIiearzkDN8+HD8/e9/R2pqKv72t79h3759eOGFF1BZWQkA0Ol0cHZ2NtmmWbNmcHBwgE6nk2pcXFxMaoyvH1ZjXF+duLg4qNVqafHw8Hi0gyUiIqLHVrO67nDMmDHSn729vdGzZ0906tQJe/fuxdChQ+t6d2aJiopCZGSk9Fqv1zPoEBERyVS930LesWNHODo64pdffgEAuLq6oqCgwKSmoqIC165dg6urq1STn59vUmN8/bAa4/rqKJVKqFQqk4WIiIjkqd5Dzm+//Ybff/8dbm5uAACNRoOioiJkZGRINXv27IHBYEBAQIBUs3//fpSXl0s1KSkp6Nq1K1q1aiXVpKammuwrJSUFGo2mvg+JiIiImgCzQ87NmzeRmZmJzMxMAEBubi4yMzORl5eHmzdvYs6cOTh06BAuXryI1NRUvPTSS+jcuTO0Wi0AoHv37hg+fDimTJmCI0eO4ODBg5gxYwbGjBkDd3d3AMDrr78OhUKBsLAwZGdnY8uWLVi5cqXJV01vvvkmkpOT8eGHH+Ls2bOIjY3FsWPHMGPGjDqYFiIiImrqzA45x44dwzPPPINnnnkGABAZGYlnnnkG0dHRsLKywsmTJ/GnP/0JXbp0QVhYGHx9ffGf//wHSqVS6mPjxo3o1q0bhg4dihEjRqB///4mz8BRq9XYvXs3cnNz4evri7feegvR0dEmz9Lp168fNm3ahM8//xy9evXC119/jR07dqBHjx6PMh9EREQkE4/0nJymjs/JISIianoa9Tk5RERERI2NIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkyeyQs3//frz44otwd3eHhYUFduzYYbJeCIHo6Gi4ubnB1tYWgYGBOHfunEnNtWvXMHbsWKhUKtjb2yMsLAw3b940qTl58iQGDBgAGxsbeHh4YNmyZVXGsm3bNnTr1g02Njbw9vbGzp07zT0cIiIikimzQ05JSQl69eqF1atXV7t+2bJl+OSTTxAfH4/Dhw/Dzs4OWq0Wd+7ckWrGjh2L7OxspKSkIDExEfv378fUqVOl9Xq9HsOGDYOnpycyMjKwfPlyxMbG4vPPP5dq0tLS8NprryEsLAwnTpxAcHAwgoODcerUKXMPiYiIiGTIQgghar2xhQW2b9+O4OBgAH+cxXF3d8dbb72F2bNnAwCKi4vh4uKChIQEjBkzBmfOnIGXlxeOHj0KPz8/AEBycjJGjBiB3377De7u7li7di0WLFgAnU4HhUIBAJg/fz527NiBs2fPAgBCQkJQUlKCxMREaTx9+/aFj48P4uPjazR+vV4PtVqN4uJiqFSq2k5Dtc5tXlCl7akx79XpPoiIiJ5ENf38rtNrcnJzc6HT6RAYGCi1qdVqBAQEID09HQCQnp4Oe3t7KeAAQGBgICwtLXH48GGpZuDAgVLAAQCtVoucnBxcv35dqrl7P8Ya436qU1paCr1eb7IQERGRPNVpyNHpdAAAFxcXk3YXFxdpnU6ng7Ozs8n6Zs2awcHBwaSmuj7u3sf9aozrqxMXFwe1Wi0tHh4e5h4iERERNRFP1N1VUVFRKC4ulpZLly419pCIiIiontRpyHF1dQUA5Ofnm7Tn5+dL61xdXVFQUGCyvqKiAteuXTOpqa6Pu/dxvxrj+uoolUqoVCqThYiIiOSpTkNOhw4d4OrqitTUVKlNr9fj8OHD0Gg0AACNRoOioiJkZGRINXv27IHBYEBAQIBUs3//fpSXl0s1KSkp6Nq1K1q1aiXV3L0fY41xP0RERPRkMzvk3Lx5E5mZmcjMzATwx8XGmZmZyMvLg4WFBWbNmoV3330X//73v5GVlYXx48fD3d1dugOre/fuGD58OKZMmYIjR47g4MGDmDFjBsaMGQN3d3cAwOuvvw6FQoGwsDBkZ2djy5YtWLlyJSIjI6VxvPnmm0hOTsaHH36Is2fPIjY2FseOHcOMGTMefVaIiIioyWtm7gbHjh3DkCFDpNfG4BEaGoqEhATMnTsXJSUlmDp1KoqKitC/f38kJyfDxsZG2mbjxo2YMWMGhg4dCktLS4wePRqffPKJtF6tVmP37t0IDw+Hr68vHB0dER0dbfIsnX79+mHTpk1YuHAh3n77bTz11FPYsWMHevToUauJICIiInl5pOfkNHV8Tg4REVHT0yjPySEiIiJ6XDDkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSzVeciJjY2FhYWFydKtWzdp/Z07dxAeHo7WrVujRYsWGD16NPLz8036yMvLQ1BQEJo3bw5nZ2fMmTMHFRUVJjV79+5F7969oVQq0blzZyQkJNT1oRAREVETVi9ncp5++mlcuXJFWg4cOCCti4iIwPfff49t27Zh3759uHz5MkaNGiWtr6ysRFBQEMrKypCWloYNGzYgISEB0dHRUk1ubi6CgoIwZMgQZGZmYtasWZg8eTJ27dpVH4dDRERETVCzeum0WTO4urpWaS8uLsaXX36JTZs24bnnngMArF+/Ht27d8ehQ4fQt29f7N69G6dPn8aPP/4IFxcX+Pj4YMmSJZg3bx5iY2OhUCgQHx+PDh064MMPPwQAdO/eHQcOHMDHH38MrVZbH4dERERETUy9nMk5d+4c3N3d0bFjR4wdOxZ5eXkAgIyMDJSXlyMwMFCq7datG9q1a4f09HQAQHp6Ory9veHi4iLVaLVa6PV6ZGdnSzV392GsMfZxP6WlpdDr9SYLERERyVOdh5yAgAAkJCQgOTkZa9euRW5uLgYMGIAbN25Ap9NBoVDA3t7eZBsXFxfodDoAgE6nMwk4xvXGdQ+q0ev1uH379n3HFhcXB7VaLS0eHh6PerhERET0mKrzr6teeOEF6c89e/ZEQEAAPD09sXXrVtja2tb17swSFRWFyMhI6bVer2fQISIikql6v4Xc3t4eXbp0wS+//AJXV1eUlZWhqKjIpCY/P1+6hsfV1bXK3VbG1w+rUalUDwxSSqUSKpXKZCEiIiJ5qveQc/PmTZw/fx5ubm7w9fWFtbU1UlNTpfU5OTnIy8uDRqMBAGg0GmRlZaGgoECqSUlJgUqlgpeXl1Rzdx/GGmMfRERERHUecmbPno19+/bh4sWLSEtLw8svvwwrKyu89tprUKvVCAsLQ2RkJH766SdkZGRg4sSJ0Gg06Nu3LwBg2LBh8PLywrhx4/Df//4Xu3btwsKFCxEeHg6lUgkAmDZtGi5cuIC5c+fi7NmzWLNmDbZu3YqIiIi6PhwiIiJqour8mpzffvsNr732Gn7//Xc4OTmhf//+OHToEJycnAAAH3/8MSwtLTF69GiUlpZCq9VizZo10vZWVlZITEzE9OnTodFoYGdnh9DQUCxevFiq6dChA5KSkhAREYGVK1eibdu2WLduHW8fJyIiIomFEEI09iAai16vh1qtRnFxcZ1fn3Nu84IqbU+Nea9O90FERPQkqunnN393FREREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyVKd/1oHIiIiejKVJx8weW09vH8jjeQPPJNDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLUrLEHQERERPdXKSpx5vcTuH7nKlrZOKJ762dgZWHV2MNCefKBatsrDZU4cyML1yuuo/V/i/F0j2FoZmXdwKP7Q5MPOatXr8by5cuh0+nQq1cvfPrpp/D392/sYRERET2y9Mup+PLUcvx+p0Bqa23jjLAec6BxH9qII6veoWsHkGCdiGu2t/5o+HU7HM4txaQ2f8Wzmr80+Hia9NdVW7ZsQWRkJGJiYnD8+HH06tULWq0WBQUFD9+YiIjoMZZ+ORXLjs01CTgA8PudQiw7Nhfpl1MbdDzlyQdMlnsdunYAH9ltxTXFLZP2a9Yl+KDgIxxM/2dDDVXSpM/kfPTRR5gyZQomTpwIAIiPj0dSUhK++uorzJ8/v5FHR0REVDuVohJfnloOQFSzVgCwwFenPoC/22Czv7q639dMj6LSUIkE68Q/Xljcs9ICgADW/+8zBFSGNOhXV0025JSVlSEjIwNRUVFSm6WlJQIDA5Genl7tNqWlpSgtLZVeFxcXAwD0en2dj+/mrdIqbb9/s8vktfXzmjrfLxER1Y3yFNPPkpr8m33vNrV1RpyHruLKA2uu3LqM9G8+Q3eLTnWyz0dxWn8S+bY3gNv3r9FBj8OHdsDbW/vI+zN+bgtRXQj8P0025Fy9ehWVlZVwcXExaXdxccHZs2er3SYuLg6LFi2q0u7h4VEvY6zqwwbaDxERPQmSEN7YQzBLEl6t0/5u3LgBtVp93/VNNuTURlRUFCIjI6XXBoMB165dQ+vWrWFhce/5tdrT6/Xw8PDApUuXoFKp6qxfMsV5bjic64bBeW4YnOeGUZ/zLITAjRs34O7u/sC6JhtyHB0dYWVlhfz8fJP2/Px8uLq6VruNUqmEUqk0abO3t6+vIUKlUvEvUAPgPDccznXD4Dw3DM5zw6iveX7QGRyjJnt3lUKhgK+vL1JT/+/qcoPBgNTUVGg0vNaFiIjoSddkz+QAQGRkJEJDQ+Hn5wd/f3+sWLECJSUl0t1WRERE9ORq0iEnJCQEhYWFiI6Ohk6ng4+PD5KTk6tcjNzQlEolYmJiqnw1RnWL89xwONcNg/PcMDjPDeNxmGcL8bD7r4iIiIiaoCZ7TQ4RERHRgzDkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5NTS6tWr0b59e9jY2CAgIABHjhx5YP22bdvQrVs32NjYwNvbGzt37mygkTZt5szzF198gQEDBqBVq1Zo1aoVAgMDH/r/hf5g7vvZaPPmzbCwsEBwcHD9DlBGzJ3roqIihIeHw83NDUqlEl26dOG/HzVg7jyvWLECXbt2ha2tLTw8PBAREYE7d+400Gibpv379+PFF1+Eu7s7LCwssGPHjodus3fvXvTu3RtKpRKdO3dGQkJC/Q5SkNk2b94sFAqF+Oqrr0R2draYMmWKsLe3F/n5+dXWHzx4UFhZWYlly5aJ06dPi4ULFwpra2uRlZXVwCNvWsyd59dff12sXr1anDhxQpw5c0ZMmDBBqNVq8dtvvzXwyJsWc+fZKDc3V7Rp00YMGDBAvPTSSw0z2CbO3LkuLS0Vfn5+YsSIEeLAgQMiNzdX7N27V2RmZjbwyJsWc+d548aNQqlUio0bN4rc3Fyxa9cu4ebmJiIiIhp45E3Lzp07xYIFC8S3334rAIjt27c/sP7ChQuiefPmIjIyUpw+fVp8+umnwsrKSiQnJ9fbGBlyasHf31+Eh4dLrysrK4W7u7uIi4urtv7VV18VQUFBJm0BAQHir3/9a72Os6kzd57vVVFRIVq2bCk2bNhQX0OUhdrMc0VFhejXr59Yt26dCA0NZcipIXPneu3ataJjx46irKysoYYoC+bOc3h4uHjuuedM2iIjI8Wzzz5br+OUk5qEnLlz54qnn37apC0kJERotdp6Gxe/rjJTWVkZMjIyEBgYKLVZWloiMDAQ6enp1W6Tnp5uUg8AWq32vvVUu3m+161bt1BeXg4HB4f6GmaTV9t5Xrx4MZydnREWFtYQw5SF2sz1v//9b2g0GoSHh8PFxQU9evTA+++/j8rKyoYadpNTm3nu168fMjIypK+0Lly4gJ07d2LEiBENMuYnRWN8FjbpX+vQGK5evYrKysoqvzrCxcUFZ8+erXYbnU5Xbb1Op6u3cTZ1tZnne82bNw/u7u5V/lLR/6nNPB84cABffvklMjMzG2CE8lGbub5w4QL27NmDsWPHYufOnfjll1/wxhtvoLy8HDExMQ0x7CanNvP8+uuv4+rVq+jfvz+EEKioqMC0adPw9ttvN8SQnxj3+yzU6/W4ffs2bG1t63yfPJNDsrR06VJs3rwZ27dvh42NTWMPRzZu3LiBcePG4YsvvoCjo2NjD0f2DAYDnJ2d8fnnn8PX1xchISFYsGAB4uPjG3tosrJ37168//77WLNmDY4fP45vv/0WSUlJWLJkSWMPjR4Rz+SYydHREVZWVsjPzzdpz8/Ph6ura7XbuLq6mlVPtZtnow8++ABLly7Fjz/+iJ49e9bnMJs8c+f5/PnzuHjxIl588UWpzWAwAACaNWuGnJwcdOrUqX4H3UTV5j3t5uYGa2trWFlZSW3du3eHTqdDWVkZFApFvY65KarNPL/zzjsYN24cJk+eDADw9vZGSUkJpk6digULFsDSkucD6sL9PgtVKlW9nMUBeCbHbAqFAr6+vkhNTZXaDAYDUlNTodFoqt1Go9GY1ANASkrKfeupdvMMAMuWLcOSJUuQnJwMPz+/hhhqk2buPHfr1g1ZWVnIzMyUlj/96U8YMmQIMjMz4eHh0ZDDb1Jq855+9tln8csvv0hBEgB+/vlnuLm5MeDcR23m+datW1WCjDFYCv4O6zrTKJ+F9XZJs4xt3rxZKJVKkZCQIE6fPi2mTp0q7O3thU6nE0IIMW7cODF//nyp/uDBg6JZs2bigw8+EGfOnBExMTG8hbwGzJ3npUuXCoVCIb7++mtx5coVablx40ZjHUKTYO4834t3V9WcuXOdl5cnWrZsKWbMmCFycnJEYmKicHZ2Fu+++25jHUKTYO48x8TEiJYtW4p//etf4sKFC2L37t2iU6dO4tVXX22sQ2gSbty4IU6cOCFOnDghAIiPPvpInDhxQvz6669CCCHmz58vxo0bJ9UbbyGfM2eOOHPmjFi9ejVvIX9cffrpp6Jdu3ZCoVAIf39/cejQIWndoEGDRGhoqEn91q1bRZcuXYRCoRBPP/20SEpKauARN03mzLOnp6cAUGWJiYlp+IE3Mea+n+/GkGMec+c6LS1NBAQECKVSKTp27Cjee+89UVFR0cCjbnrMmefy8nIRGxsrOnXqJGxsbISHh4d44403xPXr1xt+4E3ITz/9VO2/uca5DQ0NFYMGDaqyjY+Pj1AoFKJjx45i/fr19TpGCyF4Lo6IiIjkh9fkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEs/X+xzSgiRfR08AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR0RJREFUeJzt3XlcVeXe//83oHuD6AZRBkkc0krJqVBxl2kWx13SYNp9tDqG5XBr6Dfl5JQepwa6rU5amlaWet9Hc+hk5ySGEabdJmqiHKe0Mks7uhFT2OYAAuv3Rz/W7Q40QERZvp6Px3rkvtZnrXWtqw37zZq2j2EYhgAAACzG90p3AAAA4HIg5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAWsm7dOvn4+GjdunVVul4fHx9NnTq1StdpNQMHDlSzZs2udDeuCs2aNdPAgQN/t27hwoXy8fHRDz/8cNn7hGsTIQdXrY0bN2rq1KnKzc290l25JqxevZogI+n06dOaOnVqlQdFVJ99+/Zp9OjRuu222+Tv7/+7Qeqf//ynbr31Vvn7+6tJkyaaMmWKCgsLq6/DuGwIObhqbdy4UdOmTSPkVJPVq1dr2rRpZc47c+aMJk2aVM09ujJOnz6tadOmVTjkvPPOO9q3b9/l6VQNs2/fPr3zzjtXbPsZGRl6/fXXdfLkSbVu3fqitZ988ol69+6t4OBgvfHGG+rdu7eef/55jRw5spp6i8up1pXuAIBfP1jr1KlTqr2wsFDFxcWy2WxXoFf/x9/f/4pu/2p26tQpBQYGqnbt2le6K1cNu91+Rbf/wAMPKDc3V/Xq1dMrr7yirKysC9Y+88wzateunT799FPVqvXrR6LD4dCLL76op59+Wq1ataqmXuNy4EgOrkpTp07VmDFjJEnNmzeXj4+Peci5sLBQzz33nFq0aCG73a5mzZrp2WefVX5+vtc6mjVrpvvuu0+ffvqpOnToIH9/f0VHR+vDDz+sVJ/+9re/qXPnzqpTp47q16+vbt266dNPP/WqefPNN3XzzTfLbrcrMjJSiYmJpY5E3XnnnWrTpo0yMzPVrVs31alTR88++6x++OEH+fj46JVXXtHMmTPN/duzZ48kae/evXr44YcVEhIif39/dezYUf/85z9/t9//+7//q//4j/9QkyZNZLfbFRUVpdGjR+vMmTNmzcCBAzVnzhxJMsfax8fHnF/WNTnbt2/XvffeK4fDobp16+ruu+/Wpk2bvGpKrrn48ssvlZSUpNDQUAUGBuqhhx5STk7O7/b9fFOnTpWPj4+++eYb/elPf1JQUJBCQ0P1l7/8RYZh6NChQ3rwwQflcDgUERGhV1991Wv5goICTZ48WTExMQoKClJgYKDuuOMOff7552bNDz/8oNDQUEnStGnTzHEo2feBAweqbt262r9/v3r16qV69erpscceM+edf03OlClT5Ovrq/T0dK9+DB06VDabTf/617/Kve/lfS+fO3dO06ZN0w033CB/f381aNBAXbt2VVpamllTsg8HDx7Ufffdp7p16+q6664z///v3LlTd911lwIDA9W0aVMtWbKk3P08v7+/vSZn9+7duuuuuxQQEKDGjRvr+eefV3Fxcallt27dKpfLpYYNGyogIEDNmzfXk08+WaHth4SEqF69er9bt2fPHu3Zs0dDhw41A44kPfXUUzIMQx988EGFtourD0dycFXq06ePvvnmG73//vt67bXX1LBhQ0lSaGioBg8erEWLFunhhx/Wn//8Z23evFnJycn6+uuvtXLlSq/1fPvtt+rXr5+GDRumhIQELViwQP/xH/+h1NRU/eEPfyh3f6ZNm6apU6fqtttu0/Tp02Wz2bR582atXbtWPXv2lPTrh/C0adMUFxen4cOHa9++fZo7d66++uorffnll15/6f/888+699571b9/f/3pT39SeHi4OW/BggU6e/ashg4dKrvdrpCQEO3evVu33367rrvuOo0fP16BgYFavny5evfurb///e966KGHLtj3FStW6PTp0xo+fLgaNGigLVu26I033tBPP/2kFStWSJL+8z//U4cPH1ZaWpr+53/+53fHY/fu3brjjjvkcDg0duxY1a5dW2+99ZbuvPNOrV+/XrGxsV71I0eOVP369TVlyhT98MMPmjlzpkaMGKFly5aV+/9BiX79+ql169Z66aWXlJKSoueff14hISF66623dNddd+m//uu/tHjxYj3zzDPq1KmTunXrJknyeDyaP3++HnnkEQ0ZMkQnT57Uu+++K5fLpS1btqhDhw4KDQ3V3LlzNXz4cD300EPq06ePJKldu3bm9gsLC+VyudS1a1e98sorZR6Bk6RJkybp448/1qBBg7Rz507Vq1dPa9as0TvvvKPnnntO7du3r9B+l+e9PHXqVCUnJ2vw4MHq3LmzPB6Ptm7dqm3btnm934uKinTvvfeqW7dumjFjhhYvXqwRI0YoMDBQEydO1GOPPaY+ffpo3rx5evzxx+V0OtW8efMK9fd8brdbPXr0UGFhofn+ffvttxUQEOBVd/ToUfXs2VOhoaEaP368goOD9cMPP1T6D5Pfs337dklSx44dvdojIyPVuHFjcz5qMAO4Sr388suGJOPAgQNmW1ZWliHJGDx4sFftM888Y0gy1q5da7Y1bdrUkGT8/e9/N9vy8vKMRo0aGbfccku5+/Htt98avr6+xkMPPWQUFRV5zSsuLjYMwzCOHj1q2Gw2o2fPnl41s2fPNiQZ7733ntnWvXt3Q5Ixb948r3UdOHDAkGQ4HA7j6NGjXvPuvvtuo23btsbZs2e9tn3bbbcZN9xwg9n2+eefG5KMzz//3Gw7ffp0qX1KTk42fHx8jB9//NFsS0xMNC70K0GSMWXKFPN17969DZvNZuzfv99sO3z4sFGvXj2jW7duZtuCBQsMSUZcXJw5VoZhGKNHjzb8/PyM3NzcMrdXlilTphiSjKFDh5pthYWFRuPGjQ0fHx/jpZdeMttPnDhhBAQEGAkJCV61+fn5Xus8ceKEER4ebjz55JNmW05OTqn9LZGQkGBIMsaPH1/mvKZNm3q17dy507DZbMbgwYONEydOGNddd53RsWNH49y5c+Xeb8Mo/3u5ffv2Rnx8/EXXVbIPL774otlWMl4+Pj7G0qVLzfa9e/decCx+r7/nj/2oUaMMScbmzZvNtqNHjxpBQUFeP+MrV640JBlfffVVhbZ3MWX9HvntvIMHD5aa16lTJ6NLly5V1g9cGZyuQo2yevVqSVJSUpJX+5///GdJUkpKild7ZGSk11EOh8Ohxx9/XNu3b5fb7S7XNj/66CMVFxdr8uTJ8vX1/pEpOaXz2WefqaCgQKNGjfKqGTJkiBwOR6l+2e12PfHEE2Vur2/fvuYpE0k6fvy41q5dqz/+8Y86efKkjh07pmPHjunnn3+Wy+XSt99+q3//+98X7P/5fy2fOnVKx44d02233SbDMCr1l2pRUZE+/fRT9e7dW9dff73Z3qhRIz366KPasGGDPB6P1zJDhw71Ov11xx13qKioSD/++GOFtz948GDz335+furYsaMMw9CgQYPM9uDgYN100036/vvvvWpLrm0qLi7W8ePHVVhYqI4dO2rbtm0V6sPw4cPLVdemTRtNmzZN8+fPl8vl0rFjx7Ro0SKvUyPlVZ73cnBwsHbv3q1vv/32d9d3/jiWjFdgYKD++Mc/mu033XSTgoODvcaxMlavXq0uXbqoc+fOZltoaKh5qu/8fkjSqlWrdO7cuUvaZnmUnLIt6xoif39/r1O6qJkIOahRfvzxR/n6+qply5Ze7REREQoODi71odmyZUuvD1dJuvHGGyWp3M/m2L9/v3x9fRUdHX3Rfkm/fiicz2az6frrry/Vr+uuu+6CFxP/9rTAd999J8Mw9Je//EWhoaFe05QpUyT9epj/Qg4ePKiBAwcqJCREdevWVWhoqLp37y5JysvLu+ByF5KTk6PTp0+X2ldJat26tYqLi3Xo0CGv9iZNmni9rl+/viTpxIkTFd7+b9cVFBQkf39/85Tm+e2/Xf+iRYvUrl0783qV0NBQpaSkVGgcatWqpcaNG5e7fsyYMWrfvr22bNmiKVOmXPR9dDHleS9Pnz5dubm5uvHGG9W2bVuNGTNGO3bsKLUuf39/ryAt/TpejRs3LrWNssaxon788UfdcMMNpdp/+x7q3r27+vbtq2nTpqlhw4Z68MEHtWDBglLX21WVkj8Aylr/2bNnS51OQ83DNTmokX77i7imudgvz9/OK7k485lnnpHL5Spzmd+GvhJFRUX6wx/+oOPHj2vcuHFq1aqVAgMD9e9//1sDBw4s88LPy8HPz6/MdsMwqmRd5Vn/3/72Nw0cOFC9e/fWmDFjFBYWJj8/PyUnJ2v//v3l3r7dbi91RO9ivv/+e/PIys6dO8u9XGV069ZN+/fv1z/+8Q99+umnmj9/vl577TXNmzev1BGwslTl/6fK8PHx0QcffKBNmzbp448/1po1a/Tkk0/q1Vdf1aZNm1S3bt0q3V6jRo0kSUeOHFFUVJTXvCNHjngdeULNxJEcXLXKCjJNmzZVcXFxqcPx2dnZys3NVdOmTb3aS46CnO+bb76RpHI/nbZFixYqLi4273IqS8l2f/uclIKCAh04cKBUvyqi5JRQ7dq1FRcXV+Z0oTtJdu7cqW+++Uavvvqqxo0bpwcffFBxcXGKjIwsVVve4BgaGqo6deqU+UyYvXv3ytfXt9QHxtXggw8+0PXXX68PP/xQAwYMkMvlUlxcnM6ePetVV5UBuri4WAMHDpTD4dCzzz6r999/v9IX0Zb3vRwSEqInnnhC77//vg4dOqR27dpd8Yc8Nm3atMxTaBd6rlCXLl30wgsvaOvWrVq8eLF2796tpUuXVnm/OnToIOnXO7rOd/jwYf3000/mfNRchBxctQIDAyXJ6xbsXr16SZJmzpzpVfvXv/5VkhQfH+/VfvjwYa87rjwej/77v/9bHTp0UERERLn60bt3b/n6+mr69OmljnyUfOjExcXJZrPp9ddf9/ogevfdd5WXl1eqXxURFhamO++8U2+99ZaOHDlSav7FbsUu+cv8/D4ZhqFZs2aVqi1rvC+0zp49e+of//iH1ym/7OxsLVmyRF27dpXD4bjoOq6EssZi8+bNysjI8KoruVuqKh5C+de//lUbN27U22+/reeee0633Xabhg8frmPHjlV4XeV5L//8889ey9StW1ctW7a8bKd7yqtXr17atGmTtmzZYrbl5ORo8eLFXnUnTpwoFeRKgsbl2Iebb75ZrVq10ttvv62ioiKzfe7cufLx8dHDDz9c5dtE9eJ0Fa5aMTExkqSJEyeqf//+ql27tu6//34lJCTo7bffVm5urrp3764tW7Zo0aJF6t27t3r06OG1jhtvvFGDBg3SV199pfDwcL333nvKzs7WggULyt2Pli1bauLEiXruued0xx13qE+fPrLb7frqq68UGRmp5ORkhYaGasKECZo2bZruuecePfDAA9q3b5/efPNNderUSX/6058uaSzmzJmjrl27qm3bthoyZIiuv/56ZWdnKyMjQz/99NMFn7nSqlUrtWjRQs8884z+/e9/y+Fw6O9//3uZ11iUjPf/+3//Ty6XS35+furfv3+Z633++eeVlpamrl276qmnnlKtWrX01ltvKT8/XzNmzLikfb1c7rvvPn344Yd66KGHFB8frwMHDmjevHmKjo7WL7/8YtYFBAQoOjpay5Yt04033qiQkBC1adNGbdq0qdD2vv76a/3lL3/RwIEDdf/990v69blBHTp00FNPPaXly5dXaH3leS9HR0frzjvvVExMjEJCQrR161Z98MEHGjFiRIW2VdXGjh2r//mf/9E999yjp59+2ryFvGnTpl7XDC1atEhvvvmmHnroIbVo0UInT57UO++8I4fDYf6BUx55eXl64403JElffvmlJGn27NkKDg5WcHCw13i8/PLLeuCBB9SzZ0/1799fu3bt0uzZszV48ODffVoyaoArcUsXUF7PPfeccd111xm+vr7mbaDnzp0zpk2bZjRv3tyoXbu2ERUVZUyYMMHr9mrD+PU21vj4eGPNmjVGu3btDLvdbrRq1cpYsWJFpfry3nvvGbfccotht9uN+vXrG927dzfS0tK8ambPnm20atXKqF27thEeHm4MHz7cOHHihFdN9+7djZtvvrnU+ktuIX/55ZfL3P7+/fuNxx9/3IiIiDBq165tXHfddcZ9991nfPDBB2ZNWbeQ79mzx4iLizPq1q1rNGzY0BgyZIjxr3/9y5BkLFiwwKwrLCw0Ro4caYSGhho+Pj5et5OrjNuIt23bZrhcLqNu3bpGnTp1jB49ehgbN270qim5hfy3twSX1c/fU3ILeU5Ojld7QkKCERgYWKr+t+NcXFxsvPjii0bTpk0Nu91u3HLLLcaqVavKvPV748aNRkxMjGGz2bz2/ULbKplXsp7CwkKjU6dORuPGjUvdJj9r1ixDkrFs2bJy73t538vPP/+80blzZyM4ONgICAgwWrVqZbzwwgtGQUGBVz/LM16/3XZF/PYWcsMwjB07dhjdu3c3/P39jeuuu8547rnnjHfffdfr9u5t27YZjzzyiNGkSRPDbrcbYWFhxn333Wds3bq1Qtsv+Vkqa/rt/2vD+PXW9Q4dOhh2u91o3LixMWnSJK8xQ83lYxjVdEUZUM2aNWumNm3aaNWqVVe6K8Al4b0MVA7X5AAAAEvimhxc037vgYABAQEKCgqqpt5cm3755Reva2LKEhoaesHbm2uynJwcrwtef8tmsykkJKQae3RxV/rn5fjx4yooKLjgfD8/v1LP/8G1jZCDa1rJczIuJCEhQQsXLqyezlyjXnnlFU2bNu2iNQcOHCj3Lf81SadOnS761Ofu3btr3bp11deh33Glf1769Omj9evXX3B+06ZNy/2QT1wbuCYH17TPPvvsovMjIyMr/YRalM/333//u18b0LVrV/n7+1dTj6rPl19+edGvDqhfv75519vV4Er/vGRmZl706csBAQG6/fbbL9v2UfMQcgAAgCVx4TEAALCka/qanOLiYh0+fFj16tWr8d+FBADAtcIwDJ08eVKRkZEX/y65S3nITnJysiHJePrpp822M2fOGE899ZQREhJiBAYGGn369DHcbrfXcj/++KPRq1cvIyAgwAgNDTWeeeYZ49y5c141n3/+uXHLLbcYNpvNaNGihddDy0rMnj3bfLBX586djc2bN1eo/4cOHbrgA6OYmJiYmJiYru7p0KFDF/2cr/SRnK+++kpvvfWW2rVr59U+evRopaSkaMWKFQoKCtKIESPUp08f89HaRUVFio+PV0REhDZu3KgjR47o8ccfV+3atfXiiy9K+vVOivj4eA0bNkyLFy9Wenq6Bg8erEaNGpnfwrxs2TIlJSVp3rx5io2N1cyZM+VyubRv3z6FhYWVax9KvtTw0KFDV+V37QAAgNI8Ho+ioqIu+OXEpgod+vj/nTx50rjhhhuMtLQ0o3v37uaRnNzcXKN27dpejxr/+uuvDUlGRkaGYRiGsXr1asPX19fr6M7cuXMNh8Nh5OfnG4ZhGGPHji31ePF+/foZLpfLfN25c2cjMTHRfF1UVGRERkYaycnJ5d6PvLw8Q5KRl5dX/p0HAABXVHk/vyt14XFiYqLi4+MVFxfn1Z6Zmalz5855tbdq1UpNmjQxv+k3IyNDbdu2VXh4uFnjcrnk8Xi0e/dus+a363a5XOY6CgoKlJmZ6VXj6+uruLi4Ut8ofL78/Hx5PB6vCQAAWFOFT1ctXbpU27Zt01dffVVqntvtls1mU3BwsFd7eHi4+aRMt9vtFXBK5pfMu1iNx+PRmTNndOLECRUVFZVZs3fv3gv2PTk5+XcfOgYAAKyhQkdyDh06pKefflqLFy+ukQ/mmjBhgvLy8szp0KFDV7pLAADgMqlQyMnMzNTRo0d16623qlatWqpVq5bWr1+v119/XbVq1VJ4eLgKCgqUm5vrtVx2drYiIiIkSREREcrOzi41v2TexWocDocCAgLUsGFD+fn5lVlTso6y2O12ORwOrwkAAFhThULO3XffrZ07dyorK8ucOnbsqMcee8z8d+3atZWenm4us2/fPh08eFBOp1OS5HQ6tXPnTh09etSsSUtLk8PhMB8H7nQ6vdZRUlOyDpvNppiYGK+a4uJipaenmzUAAODaVqFrcurVq6c2bdp4tQUGBqpBgwZm+6BBg5SUlKSQkBA5HA6NHDlSTqdTXbp0kST17NlT0dHRGjBggGbMmCG3261JkyYpMTFRdrtdkjRs2DDNnj1bY8eO1ZNPPqm1a9dq+fLlSklJMbeblJSkhIQEdezYUZ07d9bMmTN16tQpPfHEE5c0IAAAwBqq/InHr732mnx9fdW3b1/l5+fL5XLpzTffNOf7+flp1apVGj58uJxOpwIDA5WQkKDp06ebNc2bN1dKSopGjx6tWbNmqXHjxpo/f775jBxJ6tevn3JycjR58mS53W516NBBqamppS5GBgAA16Zr+gs6PR6PgoKClJeXx/U5AADUEOX9/OYLOgEAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCURcgAAgCVV+XNy8KtzqRtKtdW+p+sV6AkAANcmjuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLqlDImTt3rtq1ayeHwyGHwyGn06lPPvnEnH/nnXfKx8fHaxo2bJjXOg4ePKj4+HjVqVNHYWFhGjNmjAoLC71q1q1bp1tvvVV2u10tW7bUwoULS/Vlzpw5atasmfz9/RUbG6stW7ZUZFcAAIDFVSjkNG7cWC+99JIyMzO1detW3XXXXXrwwQe1e/dus2bIkCE6cuSIOc2YMcOcV1RUpPj4eBUUFGjjxo1atGiRFi5cqMmTJ5s1Bw4cUHx8vHr06KGsrCyNGjVKgwcP1po1a8yaZcuWKSkpSVOmTNG2bdvUvn17uVwuHT169FLGAgAAWIiPYRjGpawgJCREL7/8sgYNGqQ777xTHTp00MyZM8us/eSTT3Tffffp8OHDCg8PlyTNmzdP48aNU05Ojmw2m8aNG6eUlBTt2rXLXK5///7Kzc1VamqqJCk2NladOnXS7NmzJUnFxcWKiorSyJEjNX78+Av2NT8/X/n5+eZrj8ejqKgo5eXlyeFwXMowlHIudUOpttr3dK3SbQAAcC3yeDwKCgr63c/vSl+TU1RUpKVLl+rUqVNyOp1m++LFi9WwYUO1adNGEyZM0OnTp815GRkZatu2rRlwJMnlcsnj8ZhHgzIyMhQXF+e1LZfLpYyMDElSQUGBMjMzvWp8fX0VFxdn1lxIcnKygoKCzCkqKqqyuw8AAK5ytSq6wM6dO+V0OnX27FnVrVtXK1euVHR0tCTp0UcfVdOmTRUZGakdO3Zo3Lhx2rdvnz788ENJktvt9go4kszXbrf7ojUej0dnzpzRiRMnVFRUVGbN3r17L9r3CRMmKCkpyXxdciQHAABYT4VDzk033aSsrCzl5eXpgw8+UEJCgtavX6/o6GgNHTrUrGvbtq0aNWqku+++W/v371eLFi2qtOOVYbfbZbfbr3Q3AABANajw6SqbzaaWLVsqJiZGycnJat++vWbNmlVmbWxsrCTpu+++kyRFREQoOzvbq6bkdURExEVrHA6HAgIC1LBhQ/n5+ZVZU7IOAACAS35OTnFxsdfFvOfLysqSJDVq1EiS5HQ6tXPnTq+7oNLS0uRwOMxTXk6nU+np6V7rSUtLM6/7sdlsiomJ8aopLi5Wenq617VBAADg2lah01UTJkzQvffeqyZNmujkyZNasmSJ1q1bpzVr1mj//v1asmSJevXqpQYNGmjHjh0aPXq0unXrpnbt2kmSevbsqejoaA0YMEAzZsyQ2+3WpEmTlJiYaJ5GGjZsmGbPnq2xY8fqySef1Nq1a7V8+XKlpKSY/UhKSlJCQoI6duyozp07a+bMmTp16pSeeOKJKhwaAABQk1Uo5Bw9elSPP/64jhw5oqCgILVr105r1qzRH/7wBx06dEifffaZGTiioqLUt29fTZo0yVzez89Pq1at0vDhw+V0OhUYGKiEhARNnz7drGnevLlSUlI0evRozZo1S40bN9b8+fPlcrnMmn79+iknJ0eTJ0+W2+1Whw4dlJqaWupiZAAAcO265Ofk1GTlvc++MnhODgAAl8dlf04OAADA1YyQAwAALImQAwAALImQAwAALImQAwAALKnCX+uA8vkh95NSbTeIu6sAAKguHMkBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWRMgBAACWVKGQM3fuXLVr104Oh0MOh0NOp1OffPKJOf/s2bNKTExUgwYNVLduXfXt21fZ2dle6zh48KDi4+NVp04dhYWFacyYMSosLPSqWbdunW699VbZ7Xa1bNlSCxcuLNWXOXPmqFmzZvL391dsbKy2bNlSkV0BAAAWV6GQ07hxY7300kvKzMzU1q1bddddd+nBBx/U7t27JUmjR4/Wxx9/rBUrVmj9+vU6fPiw+vTpYy5fVFSk+Ph4FRQUaOPGjVq0aJEWLlyoyZMnmzUHDhxQfHy8evTooaysLI0aNUqDBw/WmjVrzJply5YpKSlJU6ZM0bZt29S+fXu5XC4dPXr0UscDAABYhI9hGMalrCAkJEQvv/yyHn74YYWGhmrJkiV6+OGHJUl79+5V69atlZGRoS5duuiTTz7Rfffdp8OHDys8PFySNG/ePI0bN045OTmy2WwaN26cUlJStGvXLnMb/fv3V25urlJTUyVJsbGx6tSpk2bPni1JKi4uVlRUlEaOHKnx48eXu+8ej0dBQUHKy8uTw+G4lGEo5dulE0u13dD/hSrdBgAA16Lyfn5X+pqcoqIiLV26VKdOnZLT6VRmZqbOnTunuLg4s6ZVq1Zq0qSJMjIyJEkZGRlq27atGXAkyeVyyePxmEeDMjIyvNZRUlOyjoKCAmVmZnrV+Pr6Ki4uzqy5kPz8fHk8Hq8JAABYU4VDzs6dO1W3bl3Z7XYNGzZMK1euVHR0tNxut2w2m4KDg73qw8PD5Xa7JUlut9sr4JTML5l3sRqPx6MzZ87o2LFjKioqKrOmZB0XkpycrKCgIHOKioqq6O4DAIAaosIh56abblJWVpY2b96s4cOHKyEhQXv27LkcfatyEyZMUF5enjkdOnToSncJAABcJrUquoDNZlPLli0lSTExMfrqq680a9Ys9evXTwUFBcrNzfU6mpOdna2IiAhJUkRERKm7oEruvjq/5rd3ZGVnZ8vhcCggIEB+fn7y8/Mrs6ZkHRdit9tlt9srussAAKAGuuTn5BQXFys/P18xMTGqXbu20tPTzXn79u3TwYMH5XQ6JUlOp1M7d+70ugsqLS1NDodD0dHRZs356yipKVmHzWZTTEyMV01xcbHS09PNGgAAgAodyZkwYYLuvfdeNWnSRCdPntSSJUu0bt06rVmzRkFBQRo0aJCSkpIUEhIih8OhkSNHyul0qkuXLpKknj17Kjo6WgMGDNCMGTPkdrs1adIkJSYmmkdYhg0bptmzZ2vs2LF68skntXbtWi1fvlwpKSlmP5KSkpSQkKCOHTuqc+fOmjlzpk6dOqUnnniiCocGAADUZBUKOUePHtXjjz+uI0eOKCgoSO3atdOaNWv0hz/8QZL02muvydfXV3379lV+fr5cLpfefPNNc3k/Pz+tWrVKw4cPl9PpVGBgoBISEjR9+nSzpnnz5kpJSdHo0aM1a9YsNW7cWPPnz5fL5TJr+vXrp5ycHE2ePFlut1sdOnRQampqqYuRAQDAteuSn5NTk/GcHAAAap7L/pwcAACAqxkhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKFQk5ycrI6deqkevXqKSwsTL1799a+ffu8au688075+Ph4TcOGDfOqOXjwoOLj41WnTh2FhYVpzJgxKiws9KpZt26dbr31VtntdrVs2VILFy4s1Z85c+aoWbNm8vf3V2xsrLZs2VKR3QEAABZWoZCzfv16JSYmatOmTUpLS9O5c+fUs2dPnTp1yqtuyJAhOnLkiDnNmDHDnFdUVKT4+HgVFBRo48aNWrRokRYuXKjJkyebNQcOHFB8fLx69OihrKwsjRo1SoMHD9aaNWvMmmXLlikpKUlTpkzRtm3b1L59e7lcLh09erSyYwEAACzExzAMo7IL5+TkKCwsTOvXr1e3bt0k/Xokp0OHDpo5c2aZy3zyySe67777dPjwYYWHh0uS5s2bp3HjxiknJ0c2m03jxo1TSkqKdu3aZS7Xv39/5ebmKjU1VZIUGxurTp06afbs2ZKk4uJiRUVFaeTIkRo/fny5+u/xeBQUFKS8vDw5HI7KDkOZvl06sVTbDf1fqNJtAABwLSrv5/clXZOTl5cnSQoJCfFqX7x4sRo2bKg2bdpowoQJOn36tDkvIyNDbdu2NQOOJLlcLnk8Hu3evdusiYuL81qny+VSRkaGJKmgoECZmZleNb6+voqLizNrypKfny+Px+M1AQAAa6pV2QWLi4s1atQo3X777WrTpo3Z/uijj6pp06aKjIzUjh07NG7cOO3bt08ffvihJMntdnsFHEnma7fbfdEaj8ejM2fO6MSJEyoqKiqzZu/evRfsc3JysqZNm1bZXQYAADVIpUNOYmKidu3apQ0bNni1Dx061Px327Zt1ahRI919993av3+/WrRoUfmeVoEJEyYoKSnJfO3xeBQVFXUFewQAAC6XSoWcESNGaNWqVfriiy/UuHHji9bGxsZKkr777ju1aNFCERERpe6Cys7OliRFRESY/y1pO7/G4XAoICBAfn5+8vPzK7OmZB1lsdvtstvt5dtJAABQo1XomhzDMDRixAitXLlSa9euVfPmzX93maysLElSo0aNJElOp1M7d+70ugsqLS1NDodD0dHRZk16errXetLS0uR0OiVJNptNMTExXjXFxcVKT083awAAwLWtQkdyEhMTtWTJEv3jH/9QvXr1zGtogoKCFBAQoP3792vJkiXq1auXGjRooB07dmj06NHq1q2b2rVrJ0nq2bOnoqOjNWDAAM2YMUNut1uTJk1SYmKieZRl2LBhmj17tsaOHasnn3xSa9eu1fLly5WSkmL2JSkpSQkJCerYsaM6d+6smTNn6tSpU3riiSeqamwAAEANVqGQM3fuXEm/3iZ+vgULFmjgwIGy2Wz67LPPzMARFRWlvn37atKkSWatn5+fVq1apeHDh8vpdCowMFAJCQmaPn26WdO8eXOlpKRo9OjRmjVrlho3bqz58+fL5XKZNf369VNOTo4mT54st9utDh06KDU1tdTFyAAA4Np0Sc/Jqel4Tg4AADVPtTwnBwAA4GpFyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZUoZCTnJysTp06qV69egoLC1Pv3r21b98+r5qzZ88qMTFRDRo0UN26ddW3b19lZ2d71Rw8eFDx8fGqU6eOwsLCNGbMGBUWFnrVrFu3TrfeeqvsdrtatmyphQsXlurPnDlz1KxZM/n7+ys2NlZbtmypyO4AAAALq1DIWb9+vRITE7Vp0yalpaXp3Llz6tmzp06dOmXWjB49Wh9//LFWrFih9evX6/Dhw+rTp485v6ioSPHx8SooKNDGjRu1aNEiLVy4UJMnTzZrDhw4oPj4ePXo0UNZWVkaNWqUBg8erDVr1pg1y5YtU1JSkqZMmaJt27apffv2crlcOnr06KWMBwAAsAgfwzCMyi6ck5OjsLAwrV+/Xt26dVNeXp5CQ0O1ZMkSPfzww5KkvXv3qnXr1srIyFCXLl30ySef6L777tPhw4cVHh4uSZo3b57GjRunnJwc2Ww2jRs3TikpKdq1a5e5rf79+ys3N1epqamSpNjYWHXq1EmzZ8+WJBUXFysqKkojR47U+PHjy+xvfn6+8vPzzdcej0dRUVHKy8uTw+Go7DCU6dulE0u13dD/hSrdBgAA1yKPx6OgoKDf/fy+pGty8vLyJEkhISGSpMzMTJ07d05xcXFmTatWrdSkSRNlZGRIkjIyMtS2bVsz4EiSy+WSx+PR7t27zZrz11FSU7KOgoICZWZmetX4+voqLi7OrClLcnKygoKCzCkqKupSdh8AAFzFKh1yiouLNWrUKN1+++1q06aNJMntdstmsyk4ONirNjw8XG6326w5P+CUzC+Zd7Eaj8ejM2fO6NixYyoqKiqzpmQdZZkwYYLy8vLM6dChQxXfcQAAUCPUquyCiYmJ2rVrlzZs2FCV/bms7Ha77Hb7le4GAACoBpU6kjNixAitWrVKn3/+uRo3bmy2R0REqKCgQLm5uV712dnZioiIMGt+e7dVyevfq3E4HAoICFDDhg3l5+dXZk3JOgAAwLWtQiHHMAyNGDFCK1eu1Nq1a9W8eXOv+TExMapdu7bS09PNtn379ungwYNyOp2SJKfTqZ07d3rdBZWWliaHw6Ho6Giz5vx1lNSUrMNmsykmJsarpri4WOnp6WYNAAC4tlXodFViYqKWLFmif/zjH6pXr555/UtQUJACAgIUFBSkQYMGKSkpSSEhIXI4HBo5cqScTqe6dOkiSerZs6eio6M1YMAAzZgxQ263W5MmTVJiYqJ5KmnYsGGaPXu2xo4dqyeffFJr167V8uXLlZKSYvYlKSlJCQkJ6tixozp37qyZM2fq1KlTeuKJJ6pqbAAAQA1WoZAzd+5cSdKdd97p1b5gwQINHDhQkvTaa6/J19dXffv2VX5+vlwul958802z1s/PT6tWrdLw4cPldDoVGBiohIQETZ8+3axp3ry5UlJSNHr0aM2aNUuNGzfW/Pnz5XK5zJp+/fopJydHkydPltvtVocOHZSamlrqYmQAAHBtuqTn5NR05b3PvjJ4Tg4AAJdHtTwnBwAA4GpFyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZEyAEAAJZU4ZDzxRdf6P7771dkZKR8fHz00Ucfec0fOHCgfHx8vKZ77rnHq+b48eN67LHH5HA4FBwcrEGDBumXX37xqtmxY4fuuOMO+fv7KyoqSjNmzCjVlxUrVqhVq1by9/dX27ZttXr16oruDgAAsKgKh5xTp06pffv2mjNnzgVr7rnnHh05csSc3n//fa/5jz32mHbv3q20tDStWrVKX3zxhYYOHWrO93g86tmzp5o2barMzEy9/PLLmjp1qt5++22zZuPGjXrkkUc0aNAgbd++Xb1791bv3r21a9euiu4SAACwIB/DMIxKL+zjo5UrV6p3795m28CBA5Wbm1vqCE+Jr7/+WtHR0frqq6/UsWNHSVJqaqp69eqln376SZGRkZo7d64mTpwot9stm80mSRo/frw++ugj7d27V5LUr18/nTp1SqtWrTLX3aVLF3Xo0EHz5s0rV/89Ho+CgoKUl5cnh8NRiRG4sG+XTizVdkP/F6p0GwAAXIvK+/l9Wa7JWbduncLCwnTTTTdp+PDh+vnnn815GRkZCg4ONgOOJMXFxcnX11ebN282a7p162YGHElyuVzat2+fTpw4YdbExcV5bdflcikjI+OC/crPz5fH4/GaAACANVV5yLnnnnv03//930pPT9d//dd/af369br33ntVVFQkSXK73QoLC/NaplatWgoJCZHb7TZrwsPDvWpKXv9eTcn8siQnJysoKMicoqKiLm1nAQDAVatWVa+wf//+5r/btm2rdu3aqUWLFlq3bp3uvvvuqt5chUyYMEFJSUnma4/HQ9ABAMCiLvst5Ndff70aNmyo7777TpIUERGho0ePetUUFhbq+PHjioiIMGuys7O9akpe/15Nyfyy2O12ORwOrwkAAFjTZQ85P/30k37++Wc1atRIkuR0OpWbm6vMzEyzZu3atSouLlZsbKxZ88UXX+jcuXNmTVpamm666SbVr1/frElPT/faVlpampxO5+XeJQAAUANUOOT88ssvysrKUlZWliTpwIEDysrK0sGDB/XLL79ozJgx2rRpk3744Qelp6frwQcfVMuWLeVyuSRJrVu31j333KMhQ4Zoy5Yt+vLLLzVixAj1799fkZGRkqRHH31UNptNgwYN0u7du7Vs2TLNmjXL61TT008/rdTUVL366qvau3evpk6dqq1bt2rEiBFVMCwAAKCmq3DI2bp1q2655RbdcsstkqSkpCTdcsstmjx5svz8/LRjxw498MADuvHGGzVo0CDFxMTof//3f2W32811LF68WK1atdLdd9+tXr16qWvXrl7PwAkKCtKnn36qAwcOKCYmRn/+8581efJkr2fp3HbbbVqyZInefvtttW/fXh988IE++ugjtWnT5lLGAwAAWMQlPSenpuM5OQAA1DxX9Dk5AAAAVxohBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWFKFQ84XX3yh+++/X5GRkfLx8dFHH33kNd8wDE2ePFmNGjVSQECA4uLi9O2333rVHD9+XI899pgcDoeCg4M1aNAg/fLLL141O3bs0B133CF/f39FRUVpxowZpfqyYsUKtWrVSv7+/mrbtq1Wr15d0d0BAAAWVeGQc+rUKbVv315z5swpc/6MGTP0+uuva968edq8ebMCAwPlcrl09uxZs+axxx7T7t27lZaWplWrVumLL77Q0KFDzfkej0c9e/ZU06ZNlZmZqZdffllTp07V22+/bdZs3LhRjzzyiAYNGqTt27erd+/e6t27t3bt2lXRXQIAABbkYxiGUemFfXy0cuVK9e7dW9KvR3EiIyP15z//Wc8884wkKS8vT+Hh4Vq4cKH69++vr7/+WtHR0frqq6/UsWNHSVJqaqp69eqln376SZGRkZo7d64mTpwot9stm80mSRo/frw++ugj7d27V5LUr18/nTp1SqtWrTL706VLF3Xo0EHz5s0rV/89Ho+CgoKUl5cnh8NR2WEo07dLJ5Zqu6H/C1W6DQAArkXl/fyu0mtyDhw4ILfbrbi4OLMtKChIsbGxysjIkCRlZGQoODjYDDiSFBcXJ19fX23evNms6datmxlwJMnlcmnfvn06ceKEWXP+dkpqSrZTlvz8fHk8Hq8JAABYU5WGHLfbLUkKDw/3ag8PDzfnud1uhYWFec2vVauWQkJCvGrKWsf527hQTcn8siQnJysoKMicoqKiKrqLAACghrim7q6aMGGC8vLyzOnQoUNXuksAAOAyqdKQExERIUnKzs72as/OzjbnRURE6OjRo17zCwsLdfz4ca+astZx/jYuVFMyvyx2u10Oh8NrAgAA1lSlIad58+aKiIhQenq62ebxeLR582Y5nU5JktPpVG5urjIzM82atWvXqri4WLGxsWbNF198oXPnzpk1aWlpuummm1S/fn2z5vztlNSUbAcAAFzbKhxyfvnlF2VlZSkrK0vSrxcbZ2Vl6eDBg/Lx8dGoUaP0/PPP65///Kd27typxx9/XJGRkeYdWK1bt9Y999yjIUOGaMuWLfryyy81YsQI9e/fX5GRkZKkRx99VDabTYMGDdLu3bu1bNkyzZo1S0lJSWY/nn76aaWmpurVV1/V3r17NXXqVG3dulUjRoy49FEBAAA1Xq2KLrB161b16NHDfF0SPBISErRw4UKNHTtWp06d0tChQ5Wbm6uuXbsqNTVV/v7+5jKLFy/WiBEjdPfdd8vX11d9+/bV66+/bs4PCgrSp59+qsTERMXExKhhw4aaPHmy17N0brvtNi1ZskSTJk3Ss88+qxtuuEEfffSR2rRpU6mBAAAA1nJJz8mp6XhODgAANc8VeU4OAADA1YKQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALKnKQ87UqVPl4+PjNbVq1cqcf/bsWSUmJqpBgwaqW7eu+vbtq+zsbK91HDx4UPHx8apTp47CwsI0ZswYFRYWetWsW7dOt956q+x2u1q2bKmFCxdW9a4AAIAa7LIcybn55pt15MgRc9qwYYM5b/To0fr444+1YsUKrV+/XocPH1afPn3M+UVFRYqPj1dBQYE2btyoRYsWaeHChZo8ebJZc+DAAcXHx6tHjx7KysrSqFGjNHjwYK1Zs+Zy7A4AAKiBal2WldaqpYiIiFLteXl5evfdd7VkyRLdddddkqQFCxaodevW2rRpk7p06aJPP/1Ue/bs0Weffabw8HB16NBBzz33nMaNG6epU6fKZrNp3rx5at68uV599VVJUuvWrbVhwwa99tprcrlcl2OXAABADXNZjuR8++23ioyM1PXXX6/HHntMBw8elCRlZmbq3LlziouLM2tbtWqlJk2aKCMjQ5KUkZGhtm3bKjw83KxxuVzyeDzavXu3WXP+OkpqStZxIfn5+fJ4PF4TAACwpioPObGxsVq4cKFSU1M1d+5cHThwQHfccYdOnjwpt9stm82m4OBgr2XCw8PldrslSW632yvglMwvmXexGo/HozNnzlywb8nJyQoKCjKnqKioS91dAABwlary01X33nuv+e927dopNjZWTZs21fLlyxUQEFDVm6uQCRMmKCkpyXzt8XgIOgAAWNRlv4U8ODhYN954o7777jtFRESooKBAubm5XjXZ2dnmNTwRERGl7rYqef17NQ6H46JBym63y+FweE0AAMCaLnvI+eWXX7R//341atRIMTExql27ttLT0835+/bt08GDB+V0OiVJTqdTO3fu1NGjR82atLQ0ORwORUdHmzXnr6OkpmQdAAAAVR5ynnnmGa1fv14//PCDNm7cqIceekh+fn565JFHFBQUpEGDBikpKUmff/65MjMz9cQTT8jpdKpLly6SpJ49eyo6OloDBgzQv/71L61Zs0aTJk1SYmKi7Ha7JGnYsGH6/vvvNXbsWO3du1dvvvmmli9frtGjR1f17gAAgBqqyq/J+emnn/TII4/o559/VmhoqLp27apNmzYpNDRUkvTaa6/J19dXffv2VX5+vlwul958801zeT8/P61atUrDhw+X0+lUYGCgEhISNH36dLOmefPmSklJ0ejRozVr1iw1btxY8+fP5/ZxAABg8jEMw7jSnbhSPB6PgoKClJeXV+XX53y7dGKpthv6v1Cl2wAA4FpU3s9vvrsKAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUpV/rQMAALg2nUvd4PW69j1dr1BPfsWRHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEm1rnQHAADAhRUZRfr65+06cfaY6vs3VOsGt8jPx+9Kd0vnUjeU2V5UXKSvT+7UicITavCvPN3cpqdq+dWu5t79qsaHnDlz5ujll1+W2+1W+/bt9cYbb6hz585XulsAAFyyjMPpenfXy/r57FGzrYF/mAa1GSNn5N1XsGdl23R8gxbWXqXjAad/bfhxpUK+fUlPXvefut35p2rvT40+XbVs2TIlJSVpypQp2rZtm9q3by+Xy6WjR4/+/sIAAFzFMg6na8bWsV4BR5J+PpujGVvHKuNwerX251zqBq/ptzYd36C/Bi7Xcdtpr/bjtU/plaN/1ZcZf6uurppq9JGcv/71rxoyZIieeOIJSdK8efOUkpKi9957T+PHj7/CvQMAoHKKjCK9u+tlSUYZcw1JPnpv1yvq3OjOCp+6utBppktRVFykhbVX/frC5zczfSQZ0oJ/v6XYon7VeuqqxoacgoICZWZmasKECWabr6+v4uLilJGRUeYy+fn5ys/PN1/n5eVJkjweT5X375fT+aXafv77Gq/Xtf/grPLtAgCqxrk078+S8vzO/u0ylfW1sV/uwiMXrTly+rAy/v6WWvu0qJJtXoo9nh3KDjgpnblwjVsebd70kdq2dV3y9ko+tw2jrBD4f2psyDl27JiKiooUHh7u1R4eHq69e/eWuUxycrKmTZtWqj0qKuqy9LG0V6tpOwCAa0GKEq90FyokRX+s0vWdPHlSQUFBF5xfY0NOZUyYMEFJSUnm6+LiYh0/flwNGjSQj89vj69VnsfjUVRUlA4dOiSHw1Fl64U3xrn6MNbVg3GuHoxz9bic42wYhk6ePKnIyMiL1tXYkNOwYUP5+fkpOzvbqz07O1sRERFlLmO322W3273agoODL1cX5XA4+AGqBoxz9WGsqwfjXD0Y5+pxucb5YkdwStTYu6tsNptiYmKUnv5/V5cXFxcrPT1dTifXugAAcK2rsUdyJCkpKUkJCQnq2LGjOnfurJkzZ+rUqVPm3VYAAODaVaNDTr9+/ZSTk6PJkyfL7XarQ4cOSk1NLXUxcnWz2+2aMmVKqVNjqFqMc/VhrKsH41w9GOfqcTWMs4/xe/dfAQAA1EA19pocAACAiyHkAAAASyLkAAAASyLkAAAASyLkAAAASyLkVNKcOXPUrFkz+fv7KzY2Vlu2bLlo/YoVK9SqVSv5+/urbdu2Wr16dTX1tGaryDi/8847uuOOO1S/fn3Vr19fcXFxv/v/Bb+q6Pu5xNKlS+Xj46PevXtf3g5aSEXHOjc3V4mJiWrUqJHsdrtuvPFGfn+UQ0XHeebMmbrpppsUEBCgqKgojR49WmfPnq2m3tZMX3zxhe6//35FRkbKx8dHH3300e8us27dOt16662y2+1q2bKlFi5ceHk7aaDCli5dathsNuO9994zdu/ebQwZMsQIDg42srOzy6z/8ssvDT8/P2PGjBnGnj17jEmTJhm1a9c2du7cWc09r1kqOs6PPvqoMWfOHGP79u3G119/bQwcONAICgoyfvrpp2ruec1S0XEuceDAAeO6664z7rjjDuPBBx+sns7WcBUd6/z8fKNjx45Gr169jA0bNhgHDhww1q1bZ2RlZVVzz2uWio7z4sWLDbvdbixevNg4cOCAsWbNGqNRo0bG6NGjq7nnNcvq1auNiRMnGh9++KEhyVi5cuVF67///nujTp06RlJSkrFnzx7jjTfeMPz8/IzU1NTL1kdCTiV07tzZSExMNF8XFRUZkZGRRnJycpn1f/zjH434+HivttjYWOM///M/L2s/a7qKjvNvFRYWGvXq1TMWLVp0ubpoCZUZ58LCQuO2224z5s+fbyQkJBByyqmiYz137lzj+uuvNwoKCqqri5ZQ0XFOTEw07rrrLq+2pKQk4/bbb7+s/bSS8oScsWPHGjfffLNXW79+/QyXy3XZ+sXpqgoqKChQZmam4uLizDZfX1/FxcUpIyOjzGUyMjK86iXJ5XJdsB6VG+ffOn36tM6dO6eQkJDL1c0ar7LjPH36dIWFhWnQoEHV0U1LqMxY//Of/5TT6VRiYqLCw8PVpk0bvfjiiyoqKqqubtc4lRnn2267TZmZmeYpre+//16rV69Wr169qqXP14or8VlYo7/W4Uo4duyYioqKSn11RHh4uPbu3VvmMm63u8x6t9t92fpZ01VmnH9r3LhxioyMLPVDhf9TmXHesGGD3n33XWVlZVVDD62jMmP9/fffa+3atXrssce0evVqfffdd3rqqad07tw5TZkypTq6XeNUZpwfffRRHTt2TF27dpVhGCosLNSwYcP07LPPVkeXrxkX+iz0eDw6c+aMAgICqnybHMmBJb300ktaunSpVq5cKX9//yvdHcs4efKkBgwYoHfeeUcNGza80t2xvOLiYoWFhentt99WTEyM+vXrp4kTJ2revHlXumuWsm7dOr344ot68803tW3bNn344YdKSUnRc889d6W7hkvEkZwKatiwofz8/JSdne3Vnp2drYiIiDKXiYiIqFA9KjfOJV555RW99NJL+uyzz9SuXbvL2c0ar6LjvH//fv3www+6//77zbbi4mJJUq1atbRv3z61aNHi8na6hqrMe7pRo0aqXbu2/Pz8zLbWrVvL7XaroKBANpvtsva5JqrMOP/lL3/RgAEDNHjwYElS27ZtderUKQ0dOlQTJ06Ury/HA6rChT4LHQ7HZTmKI3Ekp8JsNptiYmKUnp5uthUXFys9PV1Op7PMZZxOp1e9JKWlpV2wHpUbZ0maMWOGnnvuOaWmpqpjx47V0dUaraLj3KpVK+3cuVNZWVnm9MADD6hHjx7KyspSVFRUdXa/RqnMe/r222/Xd999ZwZJSfrmm2/UqFEjAs4FVGacT58+XSrIlARLg++wrjJX5LPwsl3SbGFLly417Ha7sXDhQmPPnj3G0KFDjeDgYMPtdhuGYRgDBgwwxo8fb9Z/+eWXRq1atYxXXnnF+Prrr40pU6ZwC3k5VHScX3rpJcNmsxkffPCBceTIEXM6efLkldqFGqGi4/xb3F1VfhUd64MHDxr16tUzRowYYezbt89YtWqVERYWZjz//PNXahdqhIqO85QpU4x69eoZ77//vvH9998bn376qdGiRQvjj3/845XahRrh5MmTxvbt243t27cbkoy//vWvxvbt240ff/zRMAzDGD9+vDFgwACzvuQW8jFjxhhff/21MWfOHG4hv1q98cYbRpMmTQybzWZ07tzZ2LRpkzmve/fuRkJCglf98uXLjRtvvNGw2WzGzTffbKSkpFRzj2umioxz06ZNDUmlpilTplR/x2uYir6fz0fIqZiKjvXGjRuN2NhYw263G9dff73xwgsvGIWFhdXc65qnIuN87tw5Y+rUqUaLFi0Mf39/IyoqynjqqaeMEydOVH/Ha5DPP/+8zN+5JWObkJBgdO/evdQyHTp0MGw2m3H99dcbCxYsuKx99DEMjsUBAADr4ZocAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSf8f3KUvAbItuHgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANa1JREFUeJzt3Xl4VOX9//9XEjKTQJiEQEgMhE0UjGzKGmRxSRltUKPYAlIMCFIx0ELcwIUA9iMUrUIFREWBb1s/LFqsEghS1iopYJAW2UQEQTEBBBJkSUhy//7wl/NhSMAECCE3z8d1zXU593mfc97ndmBenDlnxs8YYwQAAGAZ/8puAAAAoCIQcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFygKvAqlWr5Ofnp1WrVl3S7fr5+Wns2LGXdJu2GTBggBo1alRh23/ppZfUpEkTBQQEqE2bNhW2n4tR1tfJ2LFj5efnV/EN4apByEGVs3btWo0dO1ZHjx6t7FauCosXLybISDpx4oTGjh17yYPixfj444/11FNP6ZZbbtGsWbP04osvVnZLV6T169frscceU9u2bRUYGEiQuopUq+wGgPJau3atxo0bpwEDBigsLKyy27He4sWLNW3atFKDzsmTJ1Wt2tXx18iJEyc0btw4SdKtt95a5vXeeustFRUVVUhPK1askL+/v95++225XK4K2celUNmvk8WLF2vmzJlq1aqVmjRpoi+//LLSesHlxZkc4Ap24sSJUscLCgqUn59/mbspKSgo6KoJOeV1/PhxSVJgYKDcbneF7OPAgQMKDg7+2YBTVFSkU6dOVUgPZVHZr5OhQ4cqJydHn332mX7xi19UWh+4/Ag5qFLGjh2rJ598UpLUuHFj+fn5yc/PT3v27FFBQYFeeOEFXXvttXK73WrUqJGeeeYZ5eXl+WyjUaNG6tmzpz7++GO1adNGQUFBio2N1d///vcL6umvf/2rOnTooOrVq6tWrVrq1q2bPv74Y5+a6dOn68Ybb5Tb7VZ0dLSSk5NLfNx26623qkWLFsrMzFS3bt1UvXp1PfPMM9qzZ4/8/Pz08ssva/Lkyc7xbd26VZK0fft2PfDAAwoPD1dQUJDatWunDz/88Gf7/te//qVf/epXatCggdxut2JiYjRy5EidPHnSqRkwYICmTZsmSc5cn3mqv7RrLT7//HPddddd8ng8CgkJ0R133KF///vfPjWzZ8+Wn5+fPv30U6WkpCgiIkI1atTQfffdp4MHD/5s72cqvo7jyy+/1G9+8xuFhoYqIiJCzz//vIwx2rdvn+699155PB5FRUXpT3/6k8/6+fn5GjNmjNq2bavQ0FDVqFFDXbt21cqVK52aPXv2KCIiQpI0btw4Zx6Kj33AgAEKCQnRrl279Mtf/lI1a9ZUv379nGVnXpOTmpoqf39/LV++3KePIUOGyOVy6T//+U+ZjtvPz0+zZs3S8ePHnX5mz57tLBs2bJj+9re/Oa+79PR0SdLLL7+szp07q3bt2goODlbbtm313nvvldj+yZMn9bvf/U516tRRzZo1dc899+i77767oOuwSlvnk08+Ufv27RUUFKRrr71Wb7zxRqnrLlu2TF26dFFYWJhCQkLUrFkzPfPMM+Xaf2RkpIKDg8u1DuzAP8FQpdx///368ssv9b//+7969dVXVadOHUlSRESEBg8erDlz5uiBBx7Q448/rnXr1mnChAnatm2bFi5c6LOdnTt3qnfv3nr00UeVlJSkWbNm6Ve/+pXS09PL9S+9cePGaezYsercubPGjx8vl8uldevWacWKFerRo4ekn96Ex40bp/j4eA0dOlQ7duzQ66+/rg0bNujTTz9VYGCgs70ffvhBd911l/r06aPf/OY3ioyMdJbNmjVLp06d0pAhQ+R2uxUeHq4tW7bolltuUb169TRq1CjVqFFD8+fPV2Jiot5//33dd9995+x9wYIFOnHihIYOHaratWtr/fr1eu211/Ttt99qwYIFkqTf/va32r9/v5YtW6a//OUvPzsfW7ZsUdeuXeXxePTUU08pMDBQb7zxhm699VatXr1aHTt29KkfPny4atWqpdTUVO3Zs0eTJ0/WsGHDNG/evDL/PyjWu3dv3XDDDZo4caLS0tL0hz/8QeHh4XrjjTd0++23649//KP+9re/6YknnlD79u3VrVs3SVJubq5mzpypvn376pFHHtGxY8f09ttvy+v1av369WrTpo0iIiL0+uuva+jQobrvvvt0//33S5JatWrl7L+goEBer1ddunTRyy+/rOrVq5fa53PPPaePPvpIgwYN0ubNm1WzZk0tXbpUb731ll544QW1bt26TMf7l7/8RW+++abWr1+vmTNnSpI6d+7sLF+xYoXmz5+vYcOGqU6dOk7QmjJliu655x7169dP+fn5mjt3rn71q19p0aJFSkhIcNYfMGCA5s+fr/79+6tTp05avXq1z/KLsXnzZvXo0UMREREaO3asCgoKlJqa6vN6l356PfXs2VOtWrXS+PHj5Xa79dVXX+nTTz+9JH3gKmCAKuall14ykszu3budsU2bNhlJZvDgwT61TzzxhJFkVqxY4Yw1bNjQSDLvv/++M5aTk2OuueYac9NNN5W5j507dxp/f39z3333mcLCQp9lRUVFxhhjDhw4YFwul+nRo4dPzdSpU40k88477zhj3bt3N5LMjBkzfLa1e/duI8l4PB5z4MABn2V33HGHadmypTl16pTPvjt37myuu+46Z2zlypVGklm5cqUzduLEiRLHNGHCBOPn52e++eYbZyw5Odmc668KSSY1NdV5npiYaFwul9m1a5cztn//flOzZk3TrVs3Z2zWrFlGkomPj3fmyhhjRo4caQICAszRo0dL3V9pUlNTjSQzZMgQZ6ygoMDUr1/f+Pn5mYkTJzrjR44cMcHBwSYpKcmnNi8vz2ebR44cMZGRkebhhx92xg4ePFjieIslJSUZSWbUqFGlLmvYsKHP2ObNm43L5TKDBw82R44cMfXq1TPt2rUzp0+fLvNxF2+7Ro0aJcYlGX9/f7Nly5YSy87+/56fn29atGhhbr/9dmcsMzPTSDIjRozwqR0wYMA55+B8SnudBAUF+bzOtm7dagICAnxea6+++qqRZA4ePFiu/Z3P+V7PsA8fV8EKixcvliSlpKT4jD/++OOSpLS0NJ/x6Ohon7McHo9HDz30kD7//HNlZWWVaZ8ffPCBioqKNGbMGPn7+/5RKv5I55///Kfy8/M1YsQIn5pHHnlEHo+nRF9ut1sDBw4sdX+9evVyPjKRpMOHD2vFihX69a9/rWPHjunQoUM6dOiQfvjhB3m9Xu3cuVPffffdOfs/8/T98ePHdejQIXXu3FnGGH3++edlmoMzFRYW6uOPP1ZiYqKaNGnijF9zzTV68MEH9cknnyg3N9dnnSFDhvh8/NW1a1cVFhbqm2++Kff+Bw8e7Px3QECA2rVrJ2OMBg0a5IyHhYWpWbNm+vrrr31qi69pKSoq0uHDh1VQUKB27dpp48aN5eph6NChZapr0aKFxo0bp5kzZ8rr9erQoUOaM2fOJb1upXv37oqNjS0xfub/9yNHjignJ0ddu3b1Odbij7Yee+wxn3WHDx9+0X0VFhZq6dKlSkxMVIMGDZzxG264QV6v16e2+MaCf/zjHxV28TbsRsiBFb755hv5+/uradOmPuNRUVEKCwsr8abZtGnTEreRXn/99ZJ+uv6iLHbt2iV/f/9S30jO7EuSmjVr5jPucrnUpEmTEn3Vq1fvnBeRNm7c2Of5V199JWOMnn/+eUVERPg8UlNTJf10Yeq57N27VwMGDFB4eLhCQkIUERGh7t27S5JycnLOud65HDx4UCdOnChxrNJPb2BFRUXat2+fz/iZb3KSVKtWLUk/vfmW19nbCg0NVVBQkPOR5pnjZ29/zpw5atWqlYKCglS7dm1FREQoLS2tXPNQrVo11a9fv8z1Tz75pFq3bq3169crNTX1vK+jC3H266XYokWL1KlTJwUFBSk8PNz5KO7MYy3+83T2Ns7+83UhDh48qJMnT+q6664rsezs107v3r11yy23aPDgwYqMjFSfPn00f/58Ag/KjGtyYJWq/v0X57s48uxlxX/RP/HEEyX+BVzsXG9KhYWF+sUvfqHDhw/r6aefVvPmzVWjRg199913GjBgwGV7EwkICCh13BhzSbZVlu3/9a9/1YABA5SYmKgnn3xSdevWVUBAgCZMmKBdu3aVef9ut7vEGb3z+frrr7Vz505JP12jcqmV9lr617/+pXvuuUfdunXT9OnTdc011ygwMFCzZs3Su+++e8l7uFjBwcFas2aNVq5cqbS0NKWnp2vevHm6/fbb9fHHH5/z/y9QjJCDKqe0INOwYUMVFRVp586duuGGG5zx7OxsHT16VA0bNvSpLz4Lcua2ir87o6zfTnvttdeqqKhIW7duPec3zRbvd8eOHT4f4eTn52v37t2Kj48v075KU7y9wMDAcm9n8+bN+vLLLzVnzhw99NBDzviyZctK1JY1OEZERKh69erasWNHiWXbt2+Xv7+/YmJiytXn5fDee++pSZMm+vvf/+5zrMVnw4pdygBdVFSkAQMGyOPxaMSIEXrxxRf1wAMPOBc0V5T3339fQUFBWrp0qc9t7bNmzfKpK/7ztHv3bp8zLl999dVF9xAREaHg4GAn4J2ptNeOv7+/7rjjDt1xxx165ZVX9OKLL+rZZ5/VypUrL+rPD64OfFyFKqdGjRqS5HML9i9/+UtJ0uTJk31qX3nlFUkqcVfI/v37fe64ys3N1f/7f/9Pbdq0UVRUVJn6SExMlL+/v8aPH1/izEfxmYL4+Hi5XC79+c9/9jl78PbbbysnJ+ei7lapW7eubr31Vr3xxhv6/vvvSyw/363Yxf8CPrMnY4ymTJlSora0+T7XNnv06KF//OMfPh/5ZWdn691331WXLl3k8XjOu43KUNpcrFu3ThkZGT51xXdLXYpv2n7llVe0du1avfnmm3rhhRfUuXNnDR06VIcOHbrobZ9PQECA/Pz8VFhY6Izt2bNHH3zwgU9d8ZnB6dOn+4y/9tprl6QHr9erDz74QHv37nXGt23bpqVLl/rUHj58uMT6xf+gOPurIYDScCYHVU7btm0lSc8++6z69OmjwMBA3X333UpKStKbb76po0ePqnv37lq/fr3mzJmjxMRE3XbbbT7buP766zVo0CBt2LBBkZGReuedd5SdnV3iX7Tn07RpUz377LN64YUX1LVrV91///1yu93asGGDoqOjNWHCBEVERGj06NEaN26c7rzzTt1zzz3asWOHpk+frvbt2+s3v/nNRc3FtGnT1KVLF7Vs2VKPPPKImjRpouzsbGVkZOjbb78953euNG/eXNdee62eeOIJfffdd/J4PHr//fdLvRameL5/97vfyev1KiAgQH369Cl1u3/4wx+c7zV57LHHVK1aNb3xxhvKy8vTpEmTLupYK0rPnj3197//Xffdd58SEhK0e/duzZgxQ7Gxsfrxxx+duuDgYMXGxmrevHm6/vrrFR4erhYtWqhFixbl2t+2bdv0/PPPa8CAAbr77rsl/fS9QW3atNFjjz2m+fPnX9LjO1NCQoJeeeUV3XnnnXrwwQd14MABTZs2TU2bNtV///tfp65t27bq1auXJk+erB9++MG5hbz4bOfFntUaN26c0tPT1bVrVz322GMqKCjQa6+9phtvvNGnj/Hjx2vNmjVKSEhQw4YNdeDAAU2fPl3169dXly5dyry/b775xvkKhM8++0zST69V6aezVv3797+o48EVrJLu6gIuygsvvGDq1atn/P39ndvJT58+bcaNG2caN25sAgMDTUxMjBk9erTP7dXG/HQLeUJCglm6dKlp1aqVcbvdpnnz5mbBggUX1Ms777xjbrrpJuN2u02tWrVM9+7dzbJly3xqpk6dapo3b24CAwNNZGSkGTp0qDly5IhPTffu3c2NN95YYvvFt5C/9NJLpe5/165d5qGHHjJRUVEmMDDQ1KtXz/Ts2dO89957Tk1pt5Bv3brVxMfHm5CQEFOnTh3zyCOPmP/85z9Gkpk1a5ZTV1BQYIYPH24iIiKMn5+fz+23KuV24o0bNxqv12tCQkJM9erVzW233WbWrl3rU1N8C/mGDRt8xkvr8+cU30J+9m3G57q9+ux5LioqMi+++KJp2LChcbvd5qabbjKLFi0q9dbvtWvXmrZt2xqXy+Vz7OfaV/Gy4u0UFBSY9u3bm/r165e4TX7KlClGkpk3b16Zj/18t5AnJyeXus7bb79trrvuOud1P2vWLGcOz3T8+HGTnJxswsPDTUhIiElMTDQ7duwwknxuyy+L0l4nq1evduaySZMmZsaMGSX6WL58ubn33ntNdHS0cblcJjo62vTt29d8+eWX5dp/8euqtEf37t3LtS1ULX7GXMAVfkAV1qhRI7Vo0UKLFi2q7FaAKmXTpk266aab9Ne//tX5RmfgSsY1OQCAEs78eY9ikydPlr+/v/Nt0cCVjmtygFL83BcCBgcHKzQ09DJ1c3X68ccffa6JKU1ERISVtxEfPHjQ5+Lgs7lcLoWHh1doD5MmTVJmZqZuu+02VatWTUuWLNGSJUs0ZMgQxcTEqLCw8Gd/ZywkJEQhISEV1uOVME+4wlX252XA5VZ8Tc756Byf3xc/zvxZAFSM4uszzvc486c9bFL80yPnelyO60g+/vhjc8stt5hatWqZwMBAc+2115qxY8c6Pz1RfK3Y+R7l/fmH8roS5glXNq7JAUrxz3/+87zLo6OjL/k31MLX119/7fPzC6Xp0qWLgoKCLlNHl8+nn35a6sdFxWrVquXc9VZZTp06pU8++eS8NU2aNPH5fqhLrSrMEyoXIQcAAFiJC48BAICVruoLj4uKirR//37VrFmzyv/mEQAAVwtjjI4dO6bo6Ojz/mbcVR1y9u/ff0X+lg4AAPh5+/btU/369c+5/KoOOTVr1pT00yRdib+pAwAASsrNzVVMTIzzPn4uV3XIKf6IyuPxEHIAAKhifu5SEy48BgAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBStcpuAAAqyun0T3yeB97ZpZI6AVAZOJMDAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArXVTImThxovz8/DRixAhn7NSpU0pOTlbt2rUVEhKiXr16KTs722e9vXv3KiEhQdWrV1fdunX15JNPqqCgwKdm1apVuvnmm+V2u9W0aVPNnj27xP6nTZumRo0aKSgoSB07dtT69esv5nAAAIBFLjjkbNiwQW+88YZatWrlMz5y5Eh99NFHWrBggVavXq39+/fr/vvvd5YXFhYqISFB+fn5Wrt2rebMmaPZs2drzJgxTs3u3buVkJCg2267TZs2bdKIESM0ePBgLV261KmZN2+eUlJSlJqaqo0bN6p169byer06cODAhR4SAACwibkAx44dM9ddd51ZtmyZ6d69u/n9739vjDHm6NGjJjAw0CxYsMCp3bZtm5FkMjIyjDHGLF682Pj7+5usrCyn5vXXXzcej8fk5eUZY4x56qmnzI033uizz969exuv1+s879Chg0lOTnaeFxYWmujoaDNhwoQyH0dOTo6RZHJycsp+8ACqjPwl//J5ALBDWd+/L+hMTnJyshISEhQfH+8znpmZqdOnT/uMN2/eXA0aNFBGRoYkKSMjQy1btlRkZKRT4/V6lZubqy1btjg1Z2/b6/U628jPz1dmZqZPjb+/v+Lj452a0uTl5Sk3N9fnAQAA7FStvCvMnTtXGzdu1IYNG0osy8rKksvlUlhYmM94ZGSksrKynJozA07x8uJl56vJzc3VyZMndeTIERUWFpZas3379nP2PmHCBI0bN65sBwoAAKq0cp3J2bdvn37/+9/rb3/7m4KCgiqqpwozevRo5eTkOI99+/ZVdksAAKCClCvkZGZm6sCBA7r55ptVrVo1VatWTatXr9af//xnVatWTZGRkcrPz9fRo0d91svOzlZUVJQkKSoqqsTdVsXPf67G4/EoODhYderUUUBAQKk1xdsojdvtlsfj8XkAAAA7lSvk3HHHHdq8ebM2bdrkPNq1a6d+/fo5/x0YGKjly5c76+zYsUN79+5VXFycJCkuLk6bN2/2uQtq2bJl8ng8io2NdWrO3EZxTfE2XC6X2rZt61NTVFSk5cuXOzUAAODqVq5rcmrWrKkWLVr4jNWoUUO1a9d2xgcNGqSUlBSFh4fL4/Fo+PDhiouLU6dOnSRJPXr0UGxsrPr3769JkyYpKytLzz33nJKTk+V2uyVJjz76qKZOnaqnnnpKDz/8sFasWKH58+crLS3N2W9KSoqSkpLUrl07dejQQZMnT9bx48c1cODAi5oQAABgh3JfePxzXn31Vfn7+6tXr17Ky8uT1+vV9OnTneUBAQFatGiRhg4dqri4ONWoUUNJSUkaP368U9O4cWOlpaVp5MiRmjJliurXr6+ZM2fK6/U6Nb1799bBgwc1ZswYZWVlqU2bNkpPTy9xMTIAALg6+RljTGU3UVlyc3MVGhqqnJwcrs8BLHQ6/ROf54F3dqmkTgBcSmV9/+a3qwAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKVqld0AAFSUPUeX+Dy/Tl0qqRMAlYEzOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwUrlCzuuvv65WrVrJ4/HI4/EoLi5OS5YscZafOnVKycnJql27tkJCQtSrVy9lZ2f7bGPv3r1KSEhQ9erVVbduXT355JMqKCjwqVm1apVuvvlmud1uNW3aVLNnzy7Ry7Rp09SoUSMFBQWpY8eOWr9+fXkOBQAAWK5cIad+/fqaOHGiMjMz9dlnn+n222/Xvffeqy1btkiSRo4cqY8++kgLFizQ6tWrtX//ft1///3O+oWFhUpISFB+fr7Wrl2rOXPmaPbs2RozZoxTs3v3biUkJOi2227Tpk2bNGLECA0ePFhLly51aubNm6eUlBSlpqZq48aNat26tbxerw4cOHCx8wEAACzhZ4wxF7OB8PBwvfTSS3rggQcUERGhd999Vw888IAkafv27brhhhuUkZGhTp06acmSJerZs6f279+vyMhISdKMGTP09NNP6+DBg3K5XHr66aeVlpamL774wtlHnz59dPToUaWnp0uSOnbsqPbt22vq1KmSpKKiIsXExGj48OEaNWpUmXvPzc1VaGiocnJy5PF4LmYaAFyBds591uf5dX3+p5I6AXAplfX9+4KvySksLNTcuXN1/PhxxcXFKTMzU6dPn1Z8fLxT07x5czVo0EAZGRmSpIyMDLVs2dIJOJLk9XqVm5vrnA3KyMjw2UZxTfE28vPzlZmZ6VPj7++v+Ph4p+Zc8vLylJub6/MAAAB2KnfI2bx5s0JCQuR2u/Xoo49q4cKFio2NVVZWllwul8LCwnzqIyMjlZWVJUnKysryCTjFy4uXna8mNzdXJ0+e1KFDh1RYWFhqTfE2zmXChAkKDQ11HjExMeU9fAAAUEWUO+Q0a9ZMmzZt0rp16zR06FAlJSVp69atFdHbJTd69Gjl5OQ4j3379lV2SwAAoIJUK+8KLpdLTZs2lSS1bdtWGzZs0JQpU9S7d2/l5+fr6NGjPmdzsrOzFRUVJUmKiooqcRdU8d1XZ9acfUdWdna2PB6PgoODFRAQoICAgFJrirdxLm63W263u7yHDAAAqqCL/p6coqIi5eXlqW3btgoMDNTy5cudZTt27NDevXsVFxcnSYqLi9PmzZt97oJatmyZPB6PYmNjnZozt1FcU7wNl8ultm3b+tQUFRVp+fLlTg0AAEC5zuSMHj1ad911lxo0aKBjx47p3Xff1apVq7R06VKFhoZq0KBBSklJUXh4uDwej4YPH664uDh16tRJktSjRw/Fxsaqf//+mjRpkrKysvTcc88pOTnZOcPy6KOPaurUqXrqqaf08MMPa8WKFZo/f77S0tKcPlJSUpSUlKR27dqpQ4cOmjx5so4fP66BAwdewqkBAABVWblCzoEDB/TQQw/p+++/V2hoqFq1aqWlS5fqF7/4hSTp1Vdflb+/v3r16qW8vDx5vV5Nnz7dWT8gIECLFi3S0KFDFRcXpxo1aigpKUnjx493aho3bqy0tDSNHDlSU6ZMUf369TVz5kx5vV6npnfv3jp48KDGjBmjrKwstWnTRunp6SUuRgYAAFevi/6enKqM78kB7Mb35AB2qvDvyQEAALiSEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArFSukDNhwgS1b99eNWvWVN26dZWYmKgdO3b41Jw6dUrJycmqXbu2QkJC1KtXL2VnZ/vU7N27VwkJCapevbrq1q2rJ598UgUFBT41q1at0s033yy3262mTZtq9uzZJfqZNm2aGjVqpKCgIHXs2FHr168vz+EAAACLlSvkrF69WsnJyfr3v/+tZcuW6fTp0+rRo4eOHz/u1IwcOVIfffSRFixYoNWrV2v//v26//77neWFhYVKSEhQfn6+1q5dqzlz5mj27NkaM2aMU7N7924lJCTotttu06ZNmzRixAgNHjxYS5cudWrmzZunlJQUpaamauPGjWrdurW8Xq8OHDhwMfMBAAAs4WeMMRe68sGDB1W3bl2tXr1a3bp1U05OjiIiIvTuu+/qgQcekCRt375dN9xwgzIyMtSpUyctWbJEPXv21P79+xUZGSlJmjFjhp5++mkdPHhQLpdLTz/9tNLS0vTFF184++rTp4+OHj2q9PR0SVLHjh3Vvn17TZ06VZJUVFSkmJgYDR8+XKNGjSpT/7m5uQoNDVVOTo48Hs+FTgOAK9TOuc/6PL+uz/9UUicALqWyvn9f1DU5OTk5kqTw8HBJUmZmpk6fPq34+Hinpnnz5mrQoIEyMjIkSRkZGWrZsqUTcCTJ6/UqNzdXW7ZscWrO3EZxTfE28vPzlZmZ6VPj7++v+Ph4p6Y0eXl5ys3N9XkAAAA7XXDIKSoq0ogRI3TLLbeoRYsWkqSsrCy5XC6FhYX51EZGRiorK8upOTPgFC8vXna+mtzcXJ08eVKHDh1SYWFhqTXF2yjNhAkTFBoa6jxiYmLKf+AAAKBKuOCQk5ycrC+++EJz5869lP1UqNGjRysnJ8d57Nu3r7JbAgAAFaTahaw0bNgwLVq0SGvWrFH9+vWd8aioKOXn5+vo0aM+Z3Oys7MVFRXl1Jx9F1Tx3Vdn1px9R1Z2drY8Ho+Cg4MVEBCggICAUmuKt1Eat9stt9td/gMGAABVTrnO5BhjNGzYMC1cuFArVqxQ48aNfZa3bdtWgYGBWr58uTO2Y8cO7d27V3FxcZKkuLg4bd682ecuqGXLlsnj8Sg2NtapOXMbxTXF23C5XGrbtq1PTVFRkZYvX+7UAACAq1u5zuQkJyfr3Xff1T/+8Q/VrFnTuf4lNDRUwcHBCg0N1aBBg5SSkqLw8HB5PB4NHz5ccXFx6tSpkySpR48eio2NVf/+/TVp0iRlZWXpueeeU3JysnOW5dFHH9XUqVP11FNP6eGHH9aKFSs0f/58paWlOb2kpKQoKSlJ7dq1U4cOHTR58mQdP35cAwcOvFRzAwAAqrByhZzXX39dknTrrbf6jM+aNUsDBgyQJL366qvy9/dXr169lJeXJ6/Xq+nTpzu1AQEBWrRokYYOHaq4uDjVqFFDSUlJGj9+vFPTuHFjpaWlaeTIkZoyZYrq16+vmTNnyuv1OjW9e/fWwYMHNWbMGGVlZalNmzZKT08vcTEyAAC4Ol3U9+RUdXxPDmA3vicHsNNl+Z4cAACAKxUhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBK5Q45a9as0d13363o6Gj5+fnpgw8+8FlujNGYMWN0zTXXKDg4WPHx8dq5c6dPzeHDh9WvXz95PB6FhYVp0KBB+vHHH31q/vvf/6pr164KCgpSTEyMJk2aVKKXBQsWqHnz5goKClLLli21ePHi8h4OAACwVLlDzvHjx9W6dWtNmzat1OWTJk3Sn//8Z82YMUPr1q1TjRo15PV6derUKaemX79+2rJli5YtW6ZFixZpzZo1GjJkiLM8NzdXPXr0UMOGDZWZmamXXnpJY8eO1ZtvvunUrF27Vn379tWgQYP0+eefKzExUYmJifriiy/Ke0gAAMBCfsYYc8Er+/lp4cKFSkxMlPTTWZzo6Gg9/vjjeuKJJyRJOTk5ioyM1OzZs9WnTx9t27ZNsbGx2rBhg9q1aydJSk9P1y9/+Ut9++23io6O1uuvv65nn31WWVlZcrlckqRRo0bpgw8+0Pbt2yVJvXv31vHjx7Vo0SKnn06dOqlNmzaaMWNGmfrPzc1VaGiocnJy5PF4LnQaAFyhds591uf5dX3+p5I6AXAplfX9+5Jek7N7925lZWUpPj7eGQsNDVXHjh2VkZEhScrIyFBYWJgTcCQpPj5e/v7+WrdunVPTrVs3J+BIktfr1Y4dO3TkyBGn5sz9FNcU76c0eXl5ys3N9XkAAAA7XdKQk5WVJUmKjIz0GY+MjHSWZWVlqW7duj7Lq1WrpvDwcJ+a0rZx5j7OVVO8vDQTJkxQaGio84iJiSnvIQIAgCriqrq7avTo0crJyXEe+/btq+yWAABABbmkIScqKkqSlJ2d7TOenZ3tLIuKitKBAwd8lhcUFOjw4cM+NaVt48x9nKumeHlp3G63PB6PzwMAANjpkoacxo0bKyoqSsuXL3fGcnNztW7dOsXFxUmS4uLidPToUWVmZjo1K1asUFFRkTp27OjUrFmzRqdPn3Zqli1bpmbNmqlWrVpOzZn7Ka4p3g8AALi6lTvk/Pjjj9q0aZM2bdok6aeLjTdt2qS9e/fKz89PI0aM0B/+8Ad9+OGH2rx5sx566CFFR0c7d2DdcMMNuvPOO/XII49o/fr1+vTTTzVs2DD16dNH0dHRkqQHH3xQLpdLgwYN0pYtWzRv3jxNmTJFKSkpTh+///3vlZ6erj/96U/avn27xo4dq88++0zDhg27+FkBAABVnymnlStXGkklHklJScYYY4qKiszzzz9vIiMjjdvtNnfccYfZsWOHzzZ++OEH07dvXxMSEmI8Ho8ZOHCgOXbsmE/Nf/7zH9OlSxfjdrtNvXr1zMSJE0v0Mn/+fHP99dcbl8tlbrzxRpOWllauY8nJyTGSTE5OTvkmAUCV8OX/PuPzAGCHsr5/X9T35FR1fE8OYDe+JwewU6V8Tw4AAMCVgpADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwErVKrsBALjU8gpOaUnmTO0u3KZwE6wOAQ1UzY9/0wFXmyr/p37atGlq1KiRgoKC1LFjR61fv76yWwJQiWatSlXftFs0J/sdram5Rx94tunZ6ku1tODLym4NwGVWpUPOvHnzlJKSotTUVG3cuFGtW7eW1+vVgQMHKrs1AJVg1qpUfZjzkYyMz7iRtLzmLs1alVo5jQGoFFU65Lzyyit65JFHNHDgQMXGxmrGjBmqXr263nnnncpuDcBllldwSh/lLPrpid9ZC///54tyFimv4NRl7QtA5amy1+Tk5+crMzNTo0ePdsb8/f0VHx+vjIyMUtfJy8tTXl6e8zwnJ0eSlJubW7HNAqhwiz57Q/knC3627v01r6lnu99eho4AVJTi921jzHnrqmzIOXTokAoLCxUZGekzHhkZqe3bt5e6zoQJEzRu3LgS4zExMRXSI4ArT5qekvRUZbcB4BI4duyYQkNDz7m8yoacCzF69GilpKQ4z4uKinT48GHVrl1bfn5nn9++uuTm5iomJkb79u2Tx+Op7HasxTxfPsz15cE8Xx7Msy9jjI4dO6bo6Ojz1lXZkFOnTh0FBAQoOzvbZzw7O1tRUVGlruN2u+V2u33GwsLCKqrFKsnj8fAH6DJgni8f5vryYJ4vD+b5/5zvDE6xKnvhscvlUtu2bbV8+XJnrKioSMuXL1dcXFwldgYAAK4EVfZMjiSlpKQoKSlJ7dq1U4cOHTR58mQdP35cAwcOrOzWAABAJavSIad37946ePCgxowZo6ysLLVp00bp6eklLkbGz3O73UpNTS3xcR4uLeb58mGuLw/m+fJgni+Mn/m5+68AAACqoCp7TQ4AAMD5EHIAAICVCDkAAMBKhBwAAGAlQg4AALASIecqdvjwYfXr108ej0dhYWEaNGiQfvzxxzKta4zRXXfdJT8/P33wwQcV22gVV955Pnz4sIYPH65mzZopODhYDRo00O9+9zvnB2Xxf6ZNm6ZGjRopKChIHTt21Pr1689bv2DBAjVv3lxBQUFq2bKlFi9efJk6rdrKM89vvfWWunbtqlq1aqlWrVqKj4//2f8v+El5X8/F5s6dKz8/PyUmJlZsg1UQIecq1q9fP23ZskXLli3TokWLtGbNGg0ZMqRM606ePPmq/72vsirvPO/fv1/79+/Xyy+/rC+++EKzZ89Wenq6Bg0adBm7vvLNmzdPKSkpSk1N1caNG9W6dWt5vV4dOHCg1Pq1a9eqb9++GjRokD7//HMlJiYqMTFRX3zxxWXuvGop7zyvWrVKffv21cqVK5WRkaGYmBj16NFD33333WXuvGop7zwX27Nnj5544gl17dr1MnVaxRhclbZu3WokmQ0bNjhjS5YsMX5+fua7774777qff/65qVevnvn++++NJLNw4cIK7rbquph5PtP8+fONy+Uyp0+frog2q6QOHTqY5ORk53lhYaGJjo42EyZMKLX+17/+tUlISPAZ69ixo/ntb39boX1WdeWd57MVFBSYmjVrmjlz5lRUi1a4kHkuKCgwnTt3NjNnzjRJSUnm3nvvvQydVi2cyblKZWRkKCwsTO3atXPG4uPj5e/vr3Xr1p1zvRMnTujBBx/UtGnTzvlDqPg/FzrPZ8vJyZHH41G1alX6S8ovmfz8fGVmZio+Pt4Z8/f3V3x8vDIyMkpdJyMjw6dekrxe7znrcWHzfLYTJ07o9OnTCg8Pr6g2q7wLnefx48erbt26nOU9D/7GvEplZWWpbt26PmPVqlVTeHi4srKyzrneyJEj1blzZ917770V3aIVLnSez3To0CG98MILZf4o8Wpw6NAhFRYWlvgJl8jISG3fvr3UdbKyskqtL+v/h6vRhczz2Z5++mlFR0eXCJj4Pxcyz5988onefvttbdq06TJ0WHVxJscyo0aNkp+f33kfZf3L6WwffvihVqxYocmTJ1/apqugipznM+Xm5iohIUGxsbEaO3bsxTcOXEYTJ07U3LlztXDhQgUFBVV2O9Y4duyY+vfvr7feekt16tSp7HauaJzJsczjjz+uAQMGnLemSZMmioqKKnFBW0FBgQ4fPnzOj6FWrFihXbt2KSwszGe8V69e6tq1q1atWnURnVctFTnPxY4dO6Y777xTNWvW1MKFCxUYGHixbVujTp06CggIUHZ2ts94dnb2Oec1KiqqXPW4sHku9vLLL2vixIn65z//qVatWlVkm1Veeed5165d2rNnj+6++25nrKioSNJPZ4p37Niha6+9tmKbrioq+6IgVI7iC2I/++wzZ2zp0qXnvSD2+++/N5s3b/Z5SDJTpkwxX3/99eVqvUq5kHk2xpicnBzTqVMn0717d3P8+PHL0WqV06FDBzNs2DDneWFhoalXr955Lzzu2bOnz1hcXBwXHv+M8s6zMcb88Y9/NB6Px2RkZFyOFq1Qnnk+efJkib+L7733XnP77bebzZs3m7y8vMvZ+hWNkHMVu/POO81NN91k1q1bZz755BNz3XXXmb59+zrLv/32W9OsWTOzbt26c25D3F31s8o7zzk5OaZjx46mZcuW5quvvjLff/+98ygoKKisw7jizJ0717jdbjN79myzdetWM2TIEBMWFmaysrKMMcb079/fjBo1yqn/9NNPTbVq1czLL79stm3bZlJTU01gYKDZvHlzZR1ClVDeeZ44caJxuVzmvffe83ntHjt2rLIOoUoo7zyfjburSkfIuYr98MMPpm/fviYkJMR4PB4zcOBAn7+Idu/ebSSZlStXnnMbhJyfV955XrlypZFU6mP37t2VcxBXqNdee800aNDAuFwu06FDB/Pvf//bWda9e3eTlJTkUz9//nxz/fXXG5fLZW688UaTlpZ2mTuumsozzw0bNiz1tZuamnr5G69iyvt6PhMhp3R+xhhzuT8iAwAAqGjcXQUAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK/1/Dn10ohy2dfkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANkFJREFUeJzt3Xl4VOX9//9XEjKTQJiEQEgMhF3ByKasQRaXlNEGNYotINWALBUDLURRqEoA/QhFq1ABUVHg29YPixZbiYDIWiEFGqRFNhGhoJgAAgmyJCS5f3/4y/kwJEAChJCb5+O65rqY+7zPmfe5mWReOXPOjJ8xxggAAMAy/hXdAAAAQHkg5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkANeBVatWyc/PT6tWrbqi2/Xz89PYsWOv6DZt069fPzVo0KDctv/KK6+oUaNGCggIUOvWrcvtcS5HaZ8nY8eOlZ+fX/k3hOsGIQeVzrp16zR27FgdO3asolu5LnzyyScEGUknT57U2LFjr3hQvByffvqpnnnmGd1+++2aNWuWXn755Ypu6ZpTWFio2bNn6/7771dMTIyqVaum5s2b66WXXtLp06cruj2UsyoV3QBQVuvWrdO4cePUr18/hYWFVXQ71vvkk080bdq0EoPOqVOnVKXK9fFr5OTJkxo3bpwk6Y477ij1eu+8844KCwvLpacVK1bI399f7777rlwuV7k8xpVQkc+TkydPqn///urYsaOeeOIJ1a5dW+np6UpNTdXy5cu1YsUKjh5Z7Pr47QRUUidPnlTVqlWLjefn56uwsLDCX9iCgoIq9PGvZSdOnFC1atUUGBhYbo9x8OBBBQcHX/R5UFhYqLy8vAr7/6rI54nL5dLatWvVqVMnZ2zQoEFq0KCBE3Ti4+MrrD+UL96uQqUyduxYjRw5UpLUsGFD+fn5yc/PT3v37lV+fr5efPFFNW7cWG63Ww0aNNDvfvc75ebm+myjQYMG6tGjhz799FO1bt1aQUFBio2N1V//+tdL6unPf/6z2rdvr6pVq6pGjRrq2rWrPv30U5+a6dOn65ZbbpHb7VZ0dLSSk5OLvd12xx13qHnz5srIyFDXrl1VtWpV/e53v9PevXvl5+enV199VZMnT3b2b9u2bZKkHTt26OGHH1Z4eLiCgoLUtm1b/f3vf79o3//4xz/0i1/8QvXq1ZPb7VZMTIxGjBihU6dOOTX9+vXTtGnTJMmZ67P/6i3pXIsvvvhC9957rzwej0JCQnT33Xfrn//8p0/N7Nmz5efnp7Vr1yolJUURERGqVq2aHnzwQR06dOiivZ+t6DyOr776Sr/61a8UGhqqiIgIvfDCCzLGaP/+/XrggQfk8XgUFRWlP/zhDz7r5+XlacyYMWrTpo1CQ0NVrVo1denSRStXrnRq9u7dq4iICEnSuHHjnHko2vd+/fopJCREu3fv1s9//nNVr15dffv2dZadfU5Oamqq/P39tXz5cp8+Bg8eLJfLpX//+9+l2m8/Pz/NmjVLJ06ccPqZPXu2s2zo0KH6y1/+4jzvlixZIkl69dVX1alTJ9WsWVPBwcFq06aNPvjgg2LbP3XqlH7zm9+oVq1aql69uu6//3599913l3QeVknrfP7552rXrp2CgoLUuHFjvfXWWyWuu2zZMnXu3FlhYWEKCQlR06ZN9bvf/a7Uj+1yuXwCTpEHH3xQkrR9+/bS7wgqHY7koFJ56KGH9NVXX+l///d/9frrr6tWrVqSpIiICA0cOFBz5szRww8/rKeeekrr16/XhAkTtH37di1cuNBnO7t27VKvXr30xBNPKCkpSbNmzdIvfvELLVmyRD/72c9K3c+4ceM0duxYderUSePHj5fL5dL69eu1YsUKde/eXdJPL8Ljxo1TfHy8hgwZop07d+rNN9/Uxo0btXbtWp+/9H/44Qfde++96t27t371q18pMjLSWTZr1iydPn1agwcPltvtVnh4uLZu3arbb79dderU0ahRo1StWjXNnz9fiYmJ+vDDD51f5CVZsGCBTp48qSFDhqhmzZrasGGD3njjDX377bdasGCBJOnXv/61Dhw4oGXLlulPf/rTRedj69at6tKlizwej5555hkFBgbqrbfe0h133KHVq1erQ4cOPvXDhg1TjRo1lJqaqr1792ry5MkaOnSo5s2bV+r/gyK9evXSzTffrIkTJyotLU0vvfSSwsPD9dZbb+muu+7S73//e/3lL3/R008/rXbt2qlr166SpJycHM2cOVN9+vTRoEGDdPz4cb377rvyer3asGGDWrdurYiICL355psaMmSIHnzwQT300EOSpJYtWzqPn5+fL6/Xq86dO+vVV18t8QicJD3//PP6+OOPNWDAAG3ZskXVq1fX0qVL9c477+jFF19Uq1atSrW/f/rTn/T2229rw4YNmjlzpiT5vJivWLFC8+fP19ChQ1WrVi0naE2ZMkX333+/+vbtq7y8PM2dO1e/+MUvtGjRIiUkJDjr9+vXT/Pnz9ejjz6qjh07avXq1T7LL8eWLVvUvXt3RUREaOzYscrPz1dqaqrP81366fnUo0cPtWzZUuPHj5fb7dbXX3+ttWvXXnYPmZmZkuT8DoGlDFDJvPLKK0aS2bNnjzO2efNmI8kMHDjQp/bpp582ksyKFSucsfr16xtJ5sMPP3TGsrOzzQ033GBuvfXWUvexa9cu4+/vbx588EFTUFDgs6ywsNAYY8zBgweNy+Uy3bt396mZOnWqkWTee+89Z6xbt25GkpkxY4bPtvbs2WMkGY/HYw4ePOiz7O677zYtWrQwp0+f9nnsTp06mRtvvNEZW7lypZFkVq5c6YydPHmy2D5NmDDB+Pn5mf/+97/OWHJysjnfrwpJJjU11bmfmJhoXC6X2b17tzN24MABU716ddO1a1dnbNasWUaSiY+Pd+bKGGNGjBhhAgICzLFjx0p8vJKkpqYaSWbw4MHOWH5+vqlbt67x8/MzEydOdMaPHj1qgoODTVJSkk9tbm6uzzaPHj1qIiMjzeOPP+6MHTp0qNj+FklKSjKSzKhRo0pcVr9+fZ+xLVu2GJfLZQYOHGiOHj1q6tSpY9q2bWvOnDlT6v0u2na1atWKjUsy/v7+ZuvWrcWWnfv/npeXZ5o3b27uuusuZywjI8NIMsOHD/ep7dev33nn4EJKep4EBQX5PM+2bdtmAgICfJ5rr7/+upFkDh06VKbHK434+Hjj8XjM0aNHr/i2ce3g7SpY4ZNPPpEkpaSk+Iw/9dRTkqS0tDSf8ejoaJ+jHB6PR4899pi++OIL5y+8i/noo49UWFioMWPGyN/f90ep6C2dzz77THl5eRo+fLhPzaBBg+TxeIr15Xa71b9//xIfr2fPns5bJpJ05MgRrVixQr/85S91/PhxHT58WIcPH9YPP/wgr9erXbt26bvvvjtv/8HBwc6/T5w4ocOHD6tTp04yxuiLL74o1RycraCgQJ9++qkSExPVqFEjZ/yGG27QI488os8//1w5OTk+6wwePNjn7a8uXbqooKBA//3vf8v8+AMHDnT+HRAQoLZt28oYowEDBjjjYWFhatq0qb755huf2qJzWgoLC3XkyBHl5+erbdu22rRpU5l6GDJkSKnqmjdvrnHjxmnmzJnyer06fPiw5syZc0VPzu3WrZtiY2OLjZ/9/3706FFlZ2erS5cuPvta9NbWk08+6bPusGHDLruvgoICLV26VImJiapXr54zfvPNN8vr9frUFl1Y8Le//e2Knrz98ssv67PPPtPEiRO5eMFyhBxY4b///a/8/f3VpEkTn/GoqCiFhYUVe9Fs0qRJsSsqbrrpJkk/nX9RGrt375a/v3+JLyRn9yVJTZs29Rl3uVxq1KhRsb7q1Klz3pNIGzZs6HP/66+/ljFGL7zwgiIiInxuqampkn46MfV89u3bp379+ik8PFwhISGKiIhQt27dJEnZ2dnnXe98Dh06pJMnTxbbV+mnF7DCwkLt37/fZ/zsFzlJqlGjhqSfXnzL6txthYaGKigoqNjbEaGhocW2P2fOHLVs2VJBQUGqWbOmIiIilJaWVqZ5qFKliurWrVvq+pEjR6pVq1basGGDUlNTL/g8uhTnPl+KLFq0SB07dlRQUJDCw8Odt+LO3tein6dzt3Huz9elOHTokE6dOqUbb7yx2LJznzu9evXS7bffroEDByoyMlK9e/fW/PnzLyvwzJs3T88//7wGDBhQ6lCKyotzcmCVyn4p6Nl/ZV9sWdEv+qeffrrYX8BFzveiVFBQoJ/97Gc6cuSInn32WTVr1kzVqlXTd999p379+pXbJc/nCggIKHHcGHNFtlWa7f/5z39Wv379lJiYqJEjR6p27doKCAjQhAkTtHv37lI/vtvtLnZE70K++eYb7dq1S9JP56hcaSU9l/7xj3/o/vvvV9euXTV9+nTdcMMNCgwM1KxZs/T+++9f8R4uV3BwsNasWaOVK1cqLS1NS5Ys0bx583TXXXfp008/Pe//7/ksW7ZMjz32mBISEjRjxoxy6hrXEkIOKp2Sgkz9+vVVWFioXbt26eabb3bGs7KydOzYMdWvX9+nvugoyNnb+uqrrySp1J9O27hxYxUWFmrbtm3n/aTZosfduXOnz1s4eXl52rNnz2Vdulq0vcDAwDJvZ8uWLfrqq680Z84cPfbYY874smXLitWWNjhGRESoatWq2rlzZ7FlO3bskL+/v2JiYsrU59XwwQcfqFGjRvrrX//qs69FR8OKXMkAXVhYqH79+snj8Wj48OF6+eWX9fDDDzsnNJeXDz/8UEFBQVq6dKncbrczPmvWLJ+6op+nPXv2+Bxx+frrry+7h4iICAUHBzsB72wlPXf8/f1199136+6779Zrr72ml19+Wc8995xWrlxZpuf9+vXr9eCDD6pt27aaP3/+dfP5Ttc73q5CpVOtWjVJ8rkE++c//7kkafLkyT61r732miQVuyrkwIEDPldc5eTk6P/9v/+n1q1bKyoqqlR9JCYmyt/fX+PHjy925KPoSEF8fLxcLpf++Mc/+hw9ePfdd5WdnX1ZV6vUrl1bd9xxh9566y19//33xZZf6FLsor+Az+7JGKMpU6YUqy1pvs+3ze7du+tvf/ubz1t+WVlZev/999W5c2d5PJ4LbqMilDQX69evV3p6uk9d0dVSV+KTtl977TWtW7dOb7/9tl588UV16tRJQ4YM0eHDhy972xcSEBAgPz8/FRQUOGN79+7VRx995FNXdGRw+vTpPuNvvPHGFenB6/Xqo48+0r59+5zx7du3a+nSpT61R44cKbZ+0R8U5340xIVs375dCQkJatCggRYtWnTBI6awC1EWlU6bNm0kSc8995x69+6twMBA3XfffUpKStLbb7+tY8eOqVu3btqwYYPmzJmjxMRE3XnnnT7buOmmmzRgwABt3LhRkZGReu+995SVlVXsL9oLadKkiZ577jm9+OKL6tKlix566CG53W5t3LhR0dHRmjBhgiIiIjR69GiNGzdO99xzj+6//37t3LlT06dPV7t27fSrX/3qsuZi2rRp6ty5s1q0aKFBgwapUaNGysrKUnp6ur799tvzfuZKs2bN1LhxYz399NP67rvv5PF49OGHH5Z4LkzRfP/mN7+R1+tVQECAevfuXeJ2X3rpJedzTZ588klVqVJFb731lnJzczVp0qTL2tfy0qNHD/31r3/Vgw8+qISEBO3Zs0czZsxQbGysfvzxR6cuODhYsbGxmjdvnm666SaFh4erefPmat68eZkeb/v27XrhhRfUr18/3XfffZJ++tyg1q1b68knn9T8+fOv6P6dLSEhQa+99pruuecePfLIIzp48KCmTZumJk2a6D//+Y9T16ZNG/Xs2VOTJ0/WDz/84FxCXnS083KPao0bN05LlixRly5d9OSTTyo/P19vvPGGbrnlFp8+xo8frzVr1ighIUH169fXwYMHNX36dNWtW1edO3cu1WMdP35cXq9XR48e1ciRI4ud7N+4cWPFxcVd1v7gGlZBV3UBl+XFF180derUMf7+/s7l5GfOnDHjxo0zDRs2NIGBgSYmJsaMHj3a5/JqY366hDwhIcEsXbrUtGzZ0rjdbtOsWTOzYMGCS+rlvffeM7feeqtxu92mRo0aplu3bmbZsmU+NVOnTjXNmjUzgYGBJjIy0gwZMqTYpavdunUzt9xyS7HtF11C/sorr5T4+Lt37zaPPfaYiYqKMoGBgaZOnTqmR48e5oMPPnBqSrqEfNu2bSY+Pt6EhISYWrVqmUGDBpl///vfRpKZNWuWU5efn2+GDRtmIiIijJ+fn88lvirhcuJNmzYZr9drQkJCTNWqVc2dd95p1q1b51NTdAn5xo0bfcZL6vNiii4hP/cy4/NdXn3uPBcWFpqXX37Z1K9f37jdbnPrrbeaRYsWlXjp97p160ybNm2My+Xy2ffzPVbRsqLt5Ofnm3bt2pm6desWu0x+ypQpRpKZN29eqff9QpeQJycnl7jOu+++a2688UbneT9r1ixnDs924sQJk5ycbMLDw01ISIhJTEw0O3fuNJJ8LssvjZKeJ6tXr3bmslGjRmbGjBnF+li+fLl54IEHTHR0tHG5XCY6Otr06dPHfPXVV6V+7KKfn/Pdzv44AdjHz5hLOMMPqMQaNGig5s2ba9GiRRXdClCpbN68Wbfeeqv+/Oc/O5/oDFzLOCcHAFDM2V/vUWTy5Mny9/d3Pi0auNZxTg5Qgot9IGBwcLBCQ0OvUjfXpx9//NHnnJiSRERElPky4srg0KFDPicHn8vlcik8PLxce5g0aZIyMjJ05513qkqVKlq8eLEWL16swYMHKyYmRgUFBRf9nrGQkBCFhISUW4/XwjzhGlfR75cBV1vROTkXogu8hy/ex78qis7PuNDt7K/2sEnRV4+c79atW7dy7+HTTz81t99+u6lRo4YJDAw0jRs3NmPHjnW+euJi57roEr7+oayuhXnCtY1zcoASfPbZZxdcHh0dfcU/oRa+vvnmG5+vXyhJ586dFRQUdJU6unrWrl1b4ttFRWrUqOFc9VZRTp8+rc8///yCNY0aNfL5fKgrrTLMEyoWIQcAAFiJE48BAICVrusTjwsLC3XgwAFVr1690n/nEQAA1wtjjI4fP67o6OgLfmfcdR1yDhw4cE1+lw4AALi4/fv3q27duuddfl2HnOrVq0v6aZKuxe/UAQAAxeXk5CgmJsZ5HT+f6zrkFL1F5fF4CDkAAFQyFzvVhBOPAQCAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxUpaIbAIDycmbJ5z73A+/pXEGdAKgIHMkBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVLivkTJw4UX5+fho+fLgzdvr0aSUnJ6tmzZoKCQlRz549lZWV5bPevn37lJCQoKpVq6p27doaOXKk8vPzfWpWrVql2267TW63W02aNNHs2bOLPf60adPUoEEDBQUFqUOHDtqwYcPl7A4AALDIJYecjRs36q233lLLli19xkeMGKGPP/5YCxYs0OrVq3XgwAE99NBDzvKCggIlJCQoLy9P69at05w5czR79myNGTPGqdmzZ48SEhJ05513avPmzRo+fLgGDhyopUuXOjXz5s1TSkqKUlNTtWnTJrVq1Uper1cHDx681F0CAAA2MZfg+PHj5sYbbzTLli0z3bp1M7/97W+NMcYcO3bMBAYGmgULFji127dvN5JMenq6McaYTz75xPj7+5vMzEyn5s033zQej8fk5uYaY4x55plnzC233OLzmL169TJer9e53759e5OcnOzcLygoMNHR0WbChAml3o/s7GwjyWRnZ5d+5wFUGnmL/+FzA2CH0r5+X9KRnOTkZCUkJCg+Pt5nPCMjQ2fOnPEZb9asmerVq6f09HRJUnp6ulq0aKHIyEinxuv1KicnR1u3bnVqzt221+t1tpGXl6eMjAyfGn9/f8XHxzs1JcnNzVVOTo7PDQAA2KlKWVeYO3euNm3apI0bNxZblpmZKZfLpbCwMJ/xyMhIZWZmOjVnB5yi5UXLLlSTk5OjU6dO6ejRoyooKCixZseOHeftfcKECRo3blzpdhQAAFRqZTqSs3//fv32t7/VX/7yFwUFBZVXT+Vm9OjRys7Odm779++v6JYAAEA5KVPIycjI0MGDB3XbbbepSpUqqlKlilavXq0//vGPqlKliiIjI5WXl6djx475rJeVlaWoqChJUlRUVLGrrYruX6zG4/EoODhYtWrVUkBAQIk1Rdsoidvtlsfj8bkBAAA7lSnk3H333dqyZYs2b97s3Nq2bau+ffs6/w4MDNTy5cuddXbu3Kl9+/YpLi5OkhQXF6ctW7b4XAW1bNkyeTwexcbGOjVnb6OopmgbLpdLbdq08akpLCzU8uXLnRoAAHB9K9M5OdWrV1fz5s19xqpVq6aaNWs64wMGDFBKSorCw8Pl8Xg0bNgwxcXFqWPHjpKk7t27KzY2Vo8++qgmTZqkzMxMPf/880pOTpbb7ZYkPfHEE5o6daqeeeYZPf7441qxYoXmz5+vtLQ053FTUlKUlJSktm3bqn379po8ebJOnDih/v37X9aEAAAAO5T5xOOLef311+Xv76+ePXsqNzdXXq9X06dPd5YHBARo0aJFGjJkiOLi4lStWjUlJSVp/PjxTk3Dhg2VlpamESNGaMqUKapbt65mzpwpr9fr1PTq1UuHDh3SmDFjlJmZqdatW2vJkiXFTkYGAADXJz9jjKnoJipKTk6OQkNDlZ2dzfk5gIXOLPnc537gPZ0rqBMAV1JpX7/57ioAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipSkU3AADlZe+xxT73b1TnCuoEQEXgSA4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArFSmkPPmm2+qZcuW8ng88ng8iouL0+LFi53lp0+fVnJysmrWrKmQkBD17NlTWVlZPtvYt2+fEhISVLVqVdWuXVsjR45Ufn6+T82qVat02223ye12q0mTJpo9e3axXqZNm6YGDRooKChIHTp00IYNG8qyKwAAwHJlCjl169bVxIkTlZGRoX/961+666679MADD2jr1q2SpBEjRujjjz/WggULtHr1ah04cEAPPfSQs35BQYESEhKUl5endevWac6cOZo9e7bGjBnj1OzZs0cJCQm68847tXnzZg0fPlwDBw7U0qVLnZp58+YpJSVFqamp2rRpk1q1aiWv16uDBw9e7nwAAABL+BljzOVsIDw8XK+88ooefvhhRURE6P3339fDDz8sSdqxY4duvvlmpaenq2PHjlq8eLF69OihAwcOKDIyUpI0Y8YMPfvsszp06JBcLpeeffZZpaWl6csvv3Qeo3fv3jp27JiWLFkiSerQoYPatWunqVOnSpIKCwsVExOjYcOGadSoUaXuPScnR6GhocrOzpbH47mcaQBwDdo19zmf+zf2/p8K6gTAlVTa1+9LPienoKBAc+fO1YkTJxQXF6eMjAydOXNG8fHxTk2zZs1Ur149paenS5LS09PVokULJ+BIktfrVU5OjnM0KD093WcbRTVF28jLy1NGRoZPjb+/v+Lj452a88nNzVVOTo7PDQAA2KnMIWfLli0KCQmR2+3WE088oYULFyo2NlaZmZlyuVwKCwvzqY+MjFRmZqYkKTMz0yfgFC0vWnahmpycHJ06dUqHDx9WQUFBiTVF2zifCRMmKDQ01LnFxMSUdfcBAEAlUeaQ07RpU23evFnr16/XkCFDlJSUpG3btpVHb1fc6NGjlZ2d7dz2799f0S0BAIByUqWsK7hcLjVp0kSS1KZNG23cuFFTpkxRr169lJeXp2PHjvkczcnKylJUVJQkKSoqqthVUEVXX51dc+4VWVlZWfJ4PAoODlZAQIACAgJKrCnaxvm43W653e6y7jIAAKiELvtzcgoLC5Wbm6s2bdooMDBQy5cvd5bt3LlT+/btU1xcnCQpLi5OW7Zs8bkKatmyZfJ4PIqNjXVqzt5GUU3RNlwul9q0aeNTU1hYqOXLlzs1AAAAZTqSM3r0aN17772qV6+ejh8/rvfff1+rVq3S0qVLFRoaqgEDBiglJUXh4eHyeDwaNmyY4uLi1LFjR0lS9+7dFRsbq0cffVSTJk1SZmamnn/+eSUnJztHWJ544glNnTpVzzzzjB5//HGtWLFC8+fPV1pamtNHSkqKkpKS1LZtW7Vv316TJ0/WiRMn1L9//ys4NQAAoDIrU8g5ePCgHnvsMX3//fcKDQ1Vy5YttXTpUv3sZz+TJL3++uvy9/dXz549lZubK6/Xq+nTpzvrBwQEaNGiRRoyZIji4uJUrVo1JSUlafz48U5Nw4YNlZaWphEjRmjKlCmqW7euZs6cKa/X69T06tVLhw4d0pgxY5SZmanWrVtryZIlxU5GBgAA16/L/pycyozPyQHsxufkAHYq98/JAQAAuJYRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsVKaQM2HCBLVr107Vq1dX7dq1lZiYqJ07d/rUnD59WsnJyapZs6ZCQkLUs2dPZWVl+dTs27dPCQkJqlq1qmrXrq2RI0cqPz/fp2bVqlW67bbb5Ha71aRJE82ePbtYP9OmTVODBg0UFBSkDh06aMOGDWXZHQAAYLEyhZzVq1crOTlZ//znP7Vs2TKdOXNG3bt314kTJ5yaESNG6OOPP9aCBQu0evVqHThwQA899JCzvKCgQAkJCcrLy9O6des0Z84czZ49W2PGjHFq9uzZo4SEBN15553avHmzhg8froEDB2rp0qVOzbx585SSkqLU1FRt2rRJrVq1ktfr1cGDBy9nPgAAgCX8jDHmUlc+dOiQateurdWrV6tr167Kzs5WRESE3n//fT388MOSpB07dujmm29Wenq6OnbsqMWLF6tHjx46cOCAIiMjJUkzZszQs88+q0OHDsnlcunZZ59VWlqavvzyS+exevfurWPHjmnJkiWSpA4dOqhdu3aaOnWqJKmwsFAxMTEaNmyYRo0aVar+c3JyFBoaquzsbHk8nkudBgDXqF1zn/O5f2Pv/6mgTgBcSaV9/b6sc3Kys7MlSeHh4ZKkjIwMnTlzRvHx8U5Ns2bNVK9ePaWnp0uS0tPT1aJFCyfgSJLX61VOTo62bt3q1Jy9jaKaom3k5eUpIyPDp8bf31/x8fFOTUlyc3OVk5PjcwMAAHa65JBTWFio4cOH6/bbb1fz5s0lSZmZmXK5XAoLC/OpjYyMVGZmplNzdsApWl607EI1OTk5OnXqlA4fPqyCgoISa4q2UZIJEyYoNDTUucXExJR9xwEAQKVwySEnOTlZX375pebOnXsl+ylXo0ePVnZ2tnPbv39/RbcEAADKSZVLWWno0KFatGiR1qxZo7p16zrjUVFRysvL07Fjx3yO5mRlZSkqKsqpOfcqqKKrr86uOfeKrKysLHk8HgUHBysgIEABAQEl1hRtoyRut1tut7vsOwwAACqdMh3JMcZo6NChWrhwoVasWKGGDRv6LG/Tpo0CAwO1fPlyZ2znzp3at2+f4uLiJElxcXHasmWLz1VQy5Ytk8fjUWxsrFNz9jaKaoq24XK51KZNG5+awsJCLV++3KkBAADXtzIdyUlOTtb777+vv/3tb6pevbpz/ktoaKiCg4MVGhqqAQMGKCUlReHh4fJ4PBo2bJji4uLUsWNHSVL37t0VGxurRx99VJMmTVJmZqaef/55JScnO0dZnnjiCU2dOlXPPPOMHn/8ca1YsULz589XWlqa00tKSoqSkpLUtm1btW/fXpMnT9aJEyfUv3//KzU3AACgEitTyHnzzTclSXfccYfP+KxZs9SvXz9J0uuvvy5/f3/17NlTubm58nq9mj59ulMbEBCgRYsWaciQIYqLi1O1atWUlJSk8ePHOzUNGzZUWlqaRowYoSlTpqhu3bqaOXOmvF6vU9OrVy8dOnRIY8aMUWZmplq3bq0lS5YUOxkZAABcny7rc3IqOz4nB7Abn5MD2OmqfE4OAADAtYqQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClMoecNWvW6L777lN0dLT8/Pz00Ucf+Sw3xmjMmDG64YYbFBwcrPj4eO3atcun5siRI+rbt688Ho/CwsI0YMAA/fjjjz41//nPf9SlSxcFBQUpJiZGkyZNKtbLggUL1KxZMwUFBalFixb65JNPyro7AADAUmUOOSdOnFCrVq00bdq0EpdPmjRJf/zjHzVjxgytX79e1apVk9fr1enTp52avn37auvWrVq2bJkWLVqkNWvWaPDgwc7ynJwcde/eXfXr11dGRoZeeeUVjR07Vm+//bZTs27dOvXp00cDBgzQF198ocTERCUmJurLL78s6y4BAAAL+RljzCWv7OenhQsXKjExUdJPR3Gio6P11FNP6emnn5YkZWdnKzIyUrNnz1bv3r21fft2xcbGauPGjWrbtq0kacmSJfr5z3+ub7/9VtHR0XrzzTf13HPPKTMzUy6XS5I0atQoffTRR9qxY4ckqVevXjpx4oQWLVrk9NOxY0e1bt1aM2bMKFX/OTk5Cg0NVXZ2tjwez6VOA4Br1K65z/ncv7H3/1RQJwCupNK+fl/Rc3L27NmjzMxMxcfHO2OhoaHq0KGD0tPTJUnp6ekKCwtzAo4kxcfHy9/fX+vXr3dqunbt6gQcSfJ6vdq5c6eOHj3q1Jz9OEU1RY9TktzcXOXk5PjcAACAna5oyMnMzJQkRUZG+oxHRkY6yzIzM1W7dm2f5VWqVFF4eLhPTUnbOPsxzldTtLwkEyZMUGhoqHOLiYkp6y4CAIBK4rq6umr06NHKzs52bvv376/olgAAQDm5oiEnKipKkpSVleUznpWV5SyLiorSwYMHfZbn5+fryJEjPjUlbePsxzhfTdHykrjdbnk8Hp8bAACw0xUNOQ0bNlRUVJSWL1/ujOXk5Gj9+vWKi4uTJMXFxenYsWPKyMhwalasWKHCwkJ16NDBqVmzZo3OnDnj1CxbtkxNmzZVjRo1nJqzH6eopuhxAADA9a3MIefHH3/U5s2btXnzZkk/nWy8efNm7du3T35+fho+fLheeukl/f3vf9eWLVv02GOPKTo62rkC6+abb9Y999yjQYMGacOGDVq7dq2GDh2q3r17Kzo6WpL0yCOPyOVyacCAAdq6davmzZunKVOmKCUlxenjt7/9rZYsWaI//OEP2rFjh8aOHat//etfGjp06OXPCgAAqPxMGa1cudJIKnZLSkoyxhhTWFhoXnjhBRMZGWncbre5++67zc6dO3228cMPP5g+ffqYkJAQ4/F4TP/+/c3x48d9av7973+bzp07G7fbberUqWMmTpxYrJf58+ebm266ybhcLnPLLbeYtLS0Mu1Ldna2kWSys7PLNgkAKoWv/vd3PjcAdijt6/dlfU5OZcfn5AB243NyADtVyOfkAAAAXCsIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsVKWiGwCAKy03/7QWZ8zUnoLtCjfBah9QT1X8+JsOuN5U+p/6adOmqUGDBgoKClKHDh20YcOGim4JQAWatSpVfdJu15ys97Sm+l595Nmu56ou1dL8ryq6NQBXWaUOOfPmzVNKSopSU1O1adMmtWrVSl6vVwcPHqzo1gBUgFmrUvX37I9lZHzGjaTl1Xdr1qrUimkMQIWo1CHntdde06BBg9S/f3/FxsZqxowZqlq1qt57772Kbg3AVZabf1ofZy/66Y7fOQv///uLshcpN//0Ve0LQMWptOfk5OXlKSMjQ6NHj3bG/P39FR8fr/T09BLXyc3NVW5urnM/OztbkpSTk1O+zQIod4v+9ZbyTuVftO7DNW+oR9tfX4WOAJSXotdtY8wF6yptyDl8+LAKCgoUGRnpMx4ZGakdO3aUuM6ECRM0bty4YuMxMTHl0iOAa0+anpH0TEW3AeAKOH78uEJDQ8+7vNKGnEsxevRopaSkOPcLCwt15MgR1axZU35+5x7fvr7k5OQoJiZG+/fvl8fjqeh2rMU8Xz3M9dXBPF8dzLMvY4yOHz+u6OjoC9ZV2pBTq1YtBQQEKCsry2c8KytLUVFRJa7jdrvldrt9xsLCwsqrxUrJ4/HwA3QVMM9XD3N9dTDPVwfz/H8udASnSKU98djlcqlNmzZavny5M1ZYWKjly5crLi6uAjsDAADXgkp7JEeSUlJSlJSUpLZt26p9+/aaPHmyTpw4of79+1d0awAAoIJV6pDTq1cvHTp0SGPGjFFmZqZat26tJUuWFDsZGRfndruVmppa7O08XFnM89XDXF8dzPPVwTxfGj9zseuvAAAAKqFKe04OAADAhRByAACAlQg5AADASoQcAABgJUIOAACwEiHnOnbkyBH17dtXHo9HYWFhGjBggH788cdSrWuM0b333is/Pz999NFH5dtoJVfWeT5y5IiGDRumpk2bKjg4WPXq1dNvfvMb5wtl8X+mTZumBg0aKCgoSB06dNCGDRsuWL9gwQI1a9ZMQUFBatGihT755JOr1GnlVpZ5fuedd9SlSxfVqFFDNWrUUHx8/EX/X/CTsj6fi8ydO1d+fn5KTEws3wYrIULOdaxv377aunWrli1bpkWLFmnNmjUaPHhwqdadPHnydf99X6VV1nk+cOCADhw4oFdffVVffvmlZs+erSVLlmjAgAFXsetr37x585SSkqLU1FRt2rRJrVq1ktfr1cGDB0usX7dunfr06aMBAwboiy++UGJiohITE/Xll19e5c4rl7LO86pVq9SnTx+tXLlS6enpiomJUffu3fXdd99d5c4rl7LOc5G9e/fq6aefVpcuXa5Sp5WMwXVp27ZtRpLZuHGjM7Z48WLj5+dnvvvuuwuu+8UXX5g6deqY77//3kgyCxcuLOduK6/LmeezzZ8/37hcLnPmzJnyaLNSat++vUlOTnbuFxQUmOjoaDNhwoQS63/5y1+ahIQEn7EOHTqYX//61+XaZ2VX1nk+V35+vqlevbqZM2dOebVohUuZ5/z8fNOpUyczc+ZMk5SUZB544IGr0GnlwpGc61R6errCwsLUtm1bZyw+Pl7+/v5av379edc7efKkHnnkEU2bNu28X4SK/3Op83yu7OxseTweValSqT+k/IrJy8tTRkaG4uPjnTF/f3/Fx8crPT29xHXS09N96iXJ6/Wetx6XNs/nOnnypM6cOaPw8PDyarPSu9R5Hj9+vGrXrs1R3gvgN+Z1KjMzU7Vr1/YZq1KlisLDw5WZmXne9UaMGKFOnTrpgQceKO8WrXCp83y2w4cP68UXXyz1W4nXg8OHD6ugoKDYV7hERkZqx44dJa6TmZlZYn1p/x+uR5cyz+d69tlnFR0dXSxg4v9cyjx//vnnevfdd7V58+ar0GHlxZEcy4waNUp+fn4XvJX2l9O5/v73v2vFihWaPHnylW26EirPeT5bTk6OEhISFBsbq7Fjx15+48BVNHHiRM2dO1cLFy5UUFBQRbdjjePHj+vRRx/VO++8o1q1alV0O9c0juRY5qmnnlK/fv0uWNOoUSNFRUUVO6EtPz9fR44cOe/bUCtWrNDu3bsVFhbmM96zZ0916dJFq1atuozOK5fynOcix48f1z333KPq1atr4cKFCgwMvNy2rVGrVi0FBAQoKyvLZzwrK+u88xoVFVWmelzaPBd59dVXNXHiRH322Wdq2bJlebZZ6ZV1nnfv3q29e/fqvvvuc8YKCwsl/XSkeOfOnWrcuHH5Nl1ZVPRJQagYRSfE/utf/3LGli5desETYr///nuzZcsWn5skM2XKFPPNN99crdYrlUuZZ2OMyc7ONh07djTdunUzJ06cuBqtVjrt27c3Q4cOde4XFBSYOnXqXPDE4x49eviMxcXFceLxRZR1no0x5ve//73xeDwmPT39arRohbLM86lTp4r9Ln7ggQfMXXfdZbZs2WJyc3OvZuvXNELOdeyee+4xt956q1m/fr35/PPPzY033mj69OnjLP/2229N06ZNzfr168+7DXF11UWVdZ6zs7NNhw4dTIsWLczXX39tvv/+e+eWn59fUbtxzZk7d65xu91m9uzZZtu2bWbw4MEmLCzMZGZmGmOMefTRR82oUaOc+rVr15oqVaqYV1991Wzfvt2kpqaawMBAs2XLlorahUqhrPM8ceJE43K5zAcffODz3D1+/HhF7UKlUNZ5PhdXV5WMkHMd++GHH0yfPn1MSEiI8Xg8pn///j6/iPbs2WMkmZUrV553G4SciyvrPK9cudJIKvG2Z8+eitmJa9Qbb7xh6tWrZ1wul2nfvr355z//6Szr1q2bSUpK8qmfP3++uemmm4zL5TK33HKLSUtLu8odV05lmef69euX+NxNTU29+o1XMmV9Pp+NkFMyP2OMudpvkQEAAJQ3rq4CAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJX+P5dApyzmz5P/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANndJREFUeJzt3X1cVGX+//E3IDOgOCCKEIr3peFteYt5k8k6tVhRtqvmFprmZuimdKdbidp+07W2tNSsLHV36+tNrW2JYq63W7LqorakaWa6WgZqKhgqCFy/P/oxX0fQQEXk8vV8PObxcK7zmXM+52Jg3p45Z8bHGGMEAABgGd/KbgAAAKAiEHIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcoBrwNq1a+Xj46O1a9de1vX6+PhowoQJl3Wdthk8eLAaNWpUYet/8cUX1aRJE/n5+aldu3YVtp1LUdbnyYQJE+Tj41PxDeGaQchBlbNhwwZNmDBBx48fr+xWrgnLli0jyEg6efKkJkyYcNmD4qX45JNP9NRTT+mWW27R3Llz9cILL1R2S1elt956Sz179lR4eLicTqcaN26sIUOGaN++fZXdGipYtcpuACivDRs2aOLEiRo8eLBCQkIqux3rLVu2TDNnziw16Jw6dUrVql0bf0ZOnjypiRMnSpJuvfXWMj/urbfeUlFRUYX0tHr1avn6+urtt9+Ww+GokG1cDpX9PNm6dasaN26su+66S7Vq1dLevXv11ltvaenSpfr8888VGRlZab2hYl0bf52AKurkyZOqXr16ifGCggIVFRVV+gtbQEBApW7/apabm6saNWrI39+/wrZx6NAhBQYG/uzzoKioSPn5+ZX286rs58msWbNKjMXHx6tDhw7685//rLFjx1ZCV7gSeLsKVcqECRP05JNPSpIaN24sHx8f+fj4aN++fSooKNDzzz+vpk2byul0qlGjRvr973+vvLw8r3U0atRIffv21SeffKJ27dopICBA0dHR+tvf/nZRPf31r39Vp06dVL16ddWqVUs9evTQJ5984lUza9YstWzZUk6nU5GRkUpMTCzxdtutt96qVq1aKT09XT169FD16tX1+9//Xvv27ZOPj49eeuklTZs2zbN/O3bskCTt3LlT9913n0JDQxUQEKAOHTroo48++tm+//nPf+pXv/qVGjRoIKfTqaioKI0ZM0anTp3y1AwePFgzZ86UJM9cn33ORGnnWmzdulV33HGHXC6XgoKC1Lt3b/3rX//yqpk3b558fHz02WefKSkpSWFhYapRo4buueceHT58+Gd7P1vxeRxfffWVfvOb3yg4OFhhYWF67rnnZIzRgQMHdPfdd8vlcikiIkJ/+tOfvB6fn5+v8ePHq3379goODlaNGjXUvXt3rVmzxlOzb98+hYWFSZImTpzomYfifR88eLCCgoK0Z88e/fKXv1TNmjU1aNAgz7Kzz8lJTk6Wr6+vVq1a5dXH8OHD5XA49Pnnn5dpv318fDR37lzl5uZ6+pk3b55n2ciRI/Xuu+96nnepqamSpJdeekldu3ZV7dq1FRgYqPbt2+v9998vsf5Tp07pd7/7nerUqaOaNWvqrrvu0nfffXdR52GV9phPP/1UHTt2VEBAgJo2bao33nij1MeuXLlS3bp1U0hIiIKCgtS8eXP9/ve/L9f2S1P8M+Ftb7txJAdVyr333quvvvpK//u//6tXXnlFderUkSSFhYVp2LBhmj9/vu677z49/vjj2rhxoyZPnqwvv/xSS5Ys8VrP7t271b9/fz3yyCNKSEjQ3Llz9atf/Uqpqan6xS9+UeZ+Jk6cqAkTJqhr166aNGmSHA6HNm7cqNWrV6tPnz6SfnoRnjhxomJjYzVixAjt2rVLr7/+ujZv3qzPPvvM63/6P/zwg+644w4NGDBAv/nNbxQeHu5ZNnfuXJ0+fVrDhw+X0+lUaGiotm/frltuuUX16tXT2LFjVaNGDS1atEjx8fH64IMPdM8995y398WLF+vkyZMaMWKEateurU2bNum1117Tt99+q8WLF0uSfvvb3+rgwYNauXKl/vKXv/zsfGzfvl3du3eXy+XSU089JX9/f73xxhu69dZbtW7dOnXu3NmrftSoUapVq5aSk5O1b98+TZs2TSNHjtTChQvL/DMo1r9/f914442aMmWKUlJS9Ic//EGhoaF64403dNttt+mPf/yj3n33XT3xxBPq2LGjevToIUnKycnRnDlzNHDgQD388MM6ceKE3n77bbndbm3atEnt2rVTWFiYXn/9dY0YMUL33HOP7r33XklSmzZtPNsvKCiQ2+1Wt27d9NJLL5V6BE6Snn32WX388ccaOnSoMjIyVLNmTa1YsUJvvfWWnn/+ebVt27ZM+/uXv/xFb775pjZt2qQ5c+ZIkrp27epZvnr1ai1atEgjR45UnTp1PC/q06dP11133aVBgwYpPz9fCxYs0K9+9SstXbpUcXFxnscPHjxYixYt0gMPPKAuXbpo3bp1XssvRUZGhvr06aOwsDBNmDBBBQUFSk5O9nq+Sz89n/r27as2bdpo0qRJcjqd+vrrr/XZZ59d1HZ/+OEHFRYWav/+/Zo0aZIkqXfv3pe8P7iKGaCKefHFF40ks3fvXs/Ytm3bjCQzbNgwr9onnnjCSDKrV6/2jDVs2NBIMh988IFnLDs721x33XXmpptuKnMfu3fvNr6+vuaee+4xhYWFXsuKioqMMcYcOnTIOBwO06dPH6+aGTNmGEnmnXfe8Yz17NnTSDKzZ8/2WtfevXuNJONyucyhQ4e8lvXu3du0bt3anD592mvbXbt2Nddff71nbM2aNUaSWbNmjWfs5MmTJfZp8uTJxsfHx/z3v//1jCUmJprz/amQZJKTkz334+PjjcPhMHv27PGMHTx40NSsWdP06NHDMzZ37lwjycTGxnrmyhhjxowZY/z8/Mzx48dL3V5pkpOTjSQzfPhwz1hBQYGpX7++8fHxMVOmTPGMHzt2zAQGBpqEhASv2ry8PK91Hjt2zISHh5uHHnrIM3b48OES+1ssISHBSDJjx44tdVnDhg29xjIyMozD4TDDhg0zx44dM/Xq1TMdOnQwZ86cKfN+F6+7Ro0aJcYlGV9fX7N9+/YSy879uefn55tWrVqZ2267zTOWnp5uJJnRo0d71Q4ePPi8c3AhpT1PAgICvJ5nO3bsMH5+fl7PtVdeecVIMocPHy7X9s7H6XQaSUaSqV27tnn11Vcvy3px9eLtKlhh2bJlkqSkpCSv8ccff1ySlJKS4jUeGRnpdZTD5XLpwQcf1NatW5WZmVmmbX744YcqKirS+PHj5evr/atU/JbOP/7xD+Xn52v06NFeNQ8//LBcLleJvpxOp4YMGVLq9vr16+d5y0SSjh49qtWrV+vXv/61Tpw4oSNHjujIkSP64Ycf5Ha7tXv3bn333Xfn7T8wMNDz79zcXB05ckRdu3aVMUZbt24t0xycrbCwUJ988oni4+PVpEkTz/h1112n+++/X59++qlycnK8HjN8+HCvt7+6d++uwsJC/fe//y339ocNG+b5t5+fnzp06CBjjIYOHeoZDwkJUfPmzfXNN9941Raf01JUVKSjR4+qoKBAHTp00JYtW8rVw4gRI8pU16pVK02cOFFz5syR2+3WkSNHNH/+/Mt6cm7Pnj0VHR1dYvzsn/uxY8eUnZ2t7t27e+1r8Vtbjz76qNdjR40adcl9FRYWasWKFYqPj1eDBg084zfeeKPcbrdXbfGFBX//+98vy8nby5cv17Jly/SnP/1JDRo0UG5u7iWvE1c3Qg6s8N///le+vr5q1qyZ13hERIRCQkJKvGg2a9asxOdx3HDDDZJU5stK9+zZI19f31JfSM7uS5KaN2/uNe5wONSkSZMSfdWrV++8J5E2btzY6/7XX38tY4yee+45hYWFed2Sk5Ml/XRi6vns379fgwcPVmhoqIKCghQWFqaePXtKkrKzs8/7uPM5fPiwTp48WWJfpZ9ewIqKinTgwAGv8bNf5CSpVq1akn568S2vc9cVHBysgIAAz1uaZ4+fu/758+erTZs2CggIUO3atRUWFqaUlJRyzUO1atVUv379Mtc/+eSTatu2rTZt2qTk5OQLPo8uxrnPl2JLly5Vly5dFBAQoNDQUM9bcWfva/Hv07nrOPf362IcPnxYp06d0vXXX19i2bnPnf79++uWW27RsGHDFB4ergEDBmjRokUXHXh69eqlO+64Q0lJSVq8eLEmTpyoGTNmXNS6UDVwTg6sUtU/SOzs/2X/3LLiP/RPPPFEif8BFzvfi1JhYaF+8Ytf6OjRo3r66afVokUL1ahRQ999950GDx5cYZc8n8vPz6/UcWPMZVlXWdb/17/+VYMHD1Z8fLyefPJJ1a1bV35+fpo8ebL27NlT5u07nc4SR/Qu5JtvvtHu3bsl/XSOyuVW2nPpn//8p+666y716NFDs2bN0nXXXSd/f3/NnTtX77333mXv4VIFBgZq/fr1WrNmjVJSUpSamqqFCxfqtttu0yeffHLen29ZNG3aVDfddJPeffddjRw58jJ2jasJIQdVTmlBpmHDhioqKtLu3bt14403esazsrJ0/PhxNWzY0Ku++CjI2ev66quvJKnMn07btGlTFRUVaceOHef9pNni7e7atcvrLZz8/Hzt3btXsbGxZdpWaYrX5+/vX+71ZGRk6KuvvtL8+fP14IMPesZXrlxZoraswTEsLEzVq1fXrl27SizbuXOnfH19FRUVVa4+r4T3339fTZo00d/+9jevfS0+GlbscgbooqIiDR48WC6XS6NHj9YLL7yg++67z3NCc0X54IMPFBAQoBUrVsjpdHrG586d61VX/Pu0d+9eryMuX3/99SX3EBYWpsDAQE/AO1tpzx1fX1/17t1bvXv31ssvv6wXXnhBzzzzjNasWXNJvz/ST1eQnXv1JezC21WocmrUqCHJ+9LPX/7yl5KkadOmedW+/PLLklTiqpCDBw96XXGVk5OjP//5z2rXrp0iIiLK1Ed8fLx8fX01adKkEkc+io8UxMbGyuFw6NVXX/U6evD2228rOzv7kq5WqVu3rm699Va98cYb+v7770ssv9Cl2MX/Az67J2OMpk+fXqK2tPk+3zr79Omjv//9715v+WVlZem9995Tt27d5HK5LriOylDaXGzcuFFpaWledcVXS12OS45ffvllbdiwQW+++aaef/55de3aVSNGjNCRI0cued0X4ufnJx8fHxUWFnrG9u3bpw8//NCrrvjI4LmfL/Paa69dlh7cbrc+/PBD7d+/3zP+5ZdfasWKFV61R48eLfH44v9QlDWcFBQUlPr256ZNm5SRkaEOHTqUo3tUNRzJQZXTvn17SdIzzzyjAQMGyN/fX3feeacSEhL05ptv6vjx4+rZs6c2bdqk+fPnKz4+Xr169fJaxw033KChQ4dq8+bNCg8P1zvvvKOsrKwS/6O9kGbNmumZZ57R888/r+7du+vee++V0+nU5s2bFRkZqcmTJyssLEzjxo3TxIkTdfvtt+uuu+7Srl27NGvWLHXs2FG/+c1vLmkuZs6cqW7duql169Z6+OGH1aRJE2VlZSktLU3ffvvteT9zpUWLFmratKmeeOIJfffdd3K5XPrggw9KfTEonu/f/e53crvd8vPz04ABA0pd7x/+8AfP55o8+uijqlatmt544w3l5eVp6tSpl7SvFaVv377629/+pnvuuUdxcXHau3evZs+erejoaP3444+eusDAQEVHR2vhwoW64YYbFBoaqlatWqlVq1bl2t6XX36p5557ToMHD9add94p6afPDWrXrp0effRRLVq06LLu39ni4uL08ssv6/bbb9f999+vQ4cOaebMmWrWrJn+85//eOrat2+vfv36adq0afrhhx88l5AXH+281KNaEydOVGpqqrp3765HH31UBQUFeu2119SyZUuvPiZNmqT169crLi5ODRs21KFDhzRr1izVr19f3bp1K9O2fvzxR0VFRal///5q2bKlatSooYyMDM2dO1fBwcF67rnnLmlfcJWrpKu6gEvy/PPPm3r16hlfX1/P5eRnzpwxEydONI0bNzb+/v4mKirKjBs3zuvyamN+uoQ8Li7OrFixwrRp08Y4nU7TokULs3jx4ovq5Z133jE33XSTcTqdplatWqZnz55m5cqVXjUzZswwLVq0MP7+/iY8PNyMGDHCHDt2zKumZ8+epmXLliXWX3wJ+Ysvvljq9vfs2WMefPBBExERYfz9/U29evVM3759zfvvv++pKe0S8h07dpjY2FgTFBRk6tSpYx5++GHz+eefG0lm7ty5nrqCggIzatQoExYWZnx8fLwu8VUplxNv2bLFuN1uExQUZKpXr2569eplNmzY4FVTfAn55s2bvcZL6/PnFF9Cfu5lxue7vPrceS4qKjIvvPCCadiwoXE6neamm24yS5cuLfXS7w0bNpj27dsbh8Phte/n21bxsuL1FBQUmI4dO5r69euXuEx++vTpRpJZuHBhmff9QpeQJyYmlvqYt99+21x//fWe5/3cuXM9c3i23Nxck5iYaEJDQ01QUJCJj483u3btMpK8Lssvi9KeJ+vWrfPMZZMmTczs2bNL9LFq1Spz9913m8jISONwOExkZKQZOHCg+eqrr8q87by8PPPYY4+ZNm3aGJfLZfz9/U3Dhg3N0KFDvT6GAnbyMeYizvADqrBGjRqpVatWWrp0aWW3AlQp27Zt00033aS//vWvnk90Bq5mnJMDACjh7K/3KDZt2jT5+vp6Pi0auNpxTg5Qip/7QMDAwEAFBwdfoW6uTT/++KPXOTGlCQsLu6TLiK9Whw8f9jo5+FwOh0OhoaEV2sPUqVOVnp6uXr16qVq1alq+fLmWL1+u4cOHKyoqSoWFhT/7PWNBQUEKCgqqsB6vhnnCVa6y3y8DrrTic3IuRP//o9/Pdzv7awFQMYrPz7jQzdZzKoq/euR8t549e1Z4D5988om55ZZbTK1atYy/v79p2rSpmTBhguerJ4rPFbvQrbxf/1BeV8M84erGOTlAKf7xj39ccHlkZORl/4RaePvmm2+8vn6hNN26dVNAQMAV6ujK+eyzz0p9u6hYrVq1PFe9VZbTp0/r008/vWBNkyZNvD4f6nKrCvOEykXIAQAAVuLEYwAAYKVr+sTjoqIiHTx4UDVr1qzy33kEAMC1whijEydOKDIy8oLfGXdNh5yDBw9eld+lAwAAft6BAwdUv3798y6/pkNOzZo1Jf00SVfjd+oAAICScnJyFBUV5XkdP59rOuQUv0XlcrkIOQAAVDE/d6oJJx4DAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWKlaZTcAABXlTOqnXvf9b+9WSZ0AqAwcyQEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUuKeRMmTJFPj4+Gj16tGfs9OnTSkxMVO3atRUUFKR+/fopKyvL63H79+9XXFycqlevrrp16+rJJ59UQUGBV83atWt18803y+l0qlmzZpo3b16J7c+cOVONGjVSQECAOnfurE2bNl3K7gAAAItcdMjZvHmz3njjDbVp08ZrfMyYMfr444+1ePFirVu3TgcPHtS9997rWV5YWKi4uDjl5+drw4YNmj9/vubNm6fx48d7avbu3au4uDj16tVL27Zt0+jRozVs2DCtWLHCU7Nw4UIlJSUpOTlZW7ZsUdu2beV2u3Xo0KGL3SUAAGATcxFOnDhhrr/+erNy5UrTs2dP89hjjxljjDl+/Ljx9/c3ixcv9tR++eWXRpJJS0szxhizbNky4+vrazIzMz01r7/+unG5XCYvL88YY8xTTz1lWrZs6bXN/v37G7fb7bnfqVMnk5iY6LlfWFhoIiMjzeTJk8u8H9nZ2UaSyc7OLvvOA6gy8pf/0+sGwA5lff2+qCM5iYmJiouLU2xsrNd4enq6zpw54zXeokULNWjQQGlpaZKktLQ0tW7dWuHh4Z4at9utnJwcbd++3VNz7rrdbrdnHfn5+UpPT/eq8fX1VWxsrKemNHl5ecrJyfG6AQAAO1Ur7wMWLFigLVu2aPPmzSWWZWZmyuFwKCQkxGs8PDxcmZmZnpqzA07x8uJlF6rJycnRqVOndOzYMRUWFpZas3PnzvP2PnnyZE2cOLFsOwoAAKq0ch3JOXDggB577DG9++67CggIqKieKsy4ceOUnZ3tuR04cKCyWwIAABWkXCEnPT1dhw4d0s0336xq1aqpWrVqWrdunV599VVVq1ZN4eHhys/P1/Hjx70el5WVpYiICElSREREiautiu//XI3L5VJgYKDq1KkjPz+/UmuK11Eap9Mpl8vldQMAAHYqV8jp3bu3MjIytG3bNs+tQ4cOGjRokOff/v7+WrVqlecxu3bt0v79+xUTEyNJiomJUUZGhtdVUCtXrpTL5VJ0dLSn5ux1FNcUr8PhcKh9+/ZeNUVFRVq1apWnBgAAXNvKdU5OzZo11apVK6+xGjVqqHbt2p7xoUOHKikpSaGhoXK5XBo1apRiYmLUpUsXSVKfPn0UHR2tBx54QFOnTlVmZqaeffZZJSYmyul0SpIeeeQRzZgxQ0899ZQeeughrV69WosWLVJKSopnu0lJSUpISFCHDh3UqVMnTZs2Tbm5uRoyZMglTQgAALBDuU88/jmvvPKKfH191a9fP+Xl5cntdmvWrFme5X5+flq6dKlGjBihmJgY1ahRQwkJCZo0aZKnpnHjxkpJSdGYMWM0ffp01a9fX3PmzJHb7fbU9O/fX4cPH9b48eOVmZmpdu3aKTU1tcTJyAAA4NrkY4wxld1EZcnJyVFwcLCys7M5Pwew0JnUT73u+9/erZI6AXA5lfX1m++uAgAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlapVdgMAUFH2HV/udf96daukTgBUBo7kAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBK5Qo5r7/+utq0aSOXyyWXy6WYmBgtX77cs/z06dNKTExU7dq1FRQUpH79+ikrK8trHfv371dcXJyqV6+uunXr6sknn1RBQYFXzdq1a3XzzTfL6XSqWbNmmjdvXoleZs6cqUaNGikgIECdO3fWpk2byrMrAADAcuUKOfXr19eUKVOUnp6uf//737rtttt09913a/v27ZKkMWPG6OOPP9bixYu1bt06HTx4UPfee6/n8YWFhYqLi1N+fr42bNig+fPna968eRo/frynZu/evYqLi1OvXr20bds2jR49WsOGDdOKFSs8NQsXLlRSUpKSk5O1ZcsWtW3bVm63W4cOHbrU+QAAAJbwMcaYS1lBaGioXnzxRd13330KCwvTe++9p/vuu0+StHPnTt14441KS0tTly5dtHz5cvXt21cHDx5UeHi4JGn27Nl6+umndfjwYTkcDj399NNKSUnRF1984dnGgAEDdPz4caWmpkqSOnfurI4dO2rGjBmSpKKiIkVFRWnUqFEaO3ZsmXvPyclRcHCwsrOz5XK5LmUaAFyFdi94xuv+9QP+p5I6AXA5lfX1+6LPySksLNSCBQuUm5urmJgYpaen68yZM4qNjfXUtGjRQg0aNFBaWpokKS0tTa1bt/YEHElyu93KycnxHA1KS0vzWkdxTfE68vPzlZ6e7lXj6+ur2NhYT8355OXlKScnx+sGAADsVO6Qk5GRoaCgIDmdTj3yyCNasmSJoqOjlZmZKYfDoZCQEK/68PBwZWZmSpIyMzO9Ak7x8uJlF6rJycnRqVOndOTIERUWFpZaU7yO85k8ebKCg4M9t6ioqPLuPgAAqCLKHXKaN2+ubdu2aePGjRoxYoQSEhK0Y8eOiujtshs3bpyys7M9twMHDlR2SwAAoIJUK+8DHA6HmjVrJklq3769Nm/erOnTp6t///7Kz8/X8ePHvY7mZGVlKSIiQpIUERFR4iqo4quvzq4594qsrKwsuVwuBQYGys/PT35+fqXWFK/jfJxOp5xOZ3l3GQAAVEGX/Dk5RUVFysvLU/v27eXv769Vq1Z5lu3atUv79+9XTEyMJCkmJkYZGRleV0GtXLlSLpdL0dHRnpqz11FcU7wOh8Oh9u3be9UUFRVp1apVnhoAAIByHckZN26c7rjjDjVo0EAnTpzQe++9p7Vr12rFihUKDg7W0KFDlZSUpNDQULlcLo0aNUoxMTHq0qWLJKlPnz6Kjo7WAw88oKlTpyozM1PPPvusEhMTPUdYHnnkEc2YMUNPPfWUHnroIa1evVqLFi1SSkqKp4+kpCQlJCSoQ4cO6tSpk6ZNm6bc3FwNGTLkMk4NAACoysoVcg4dOqQHH3xQ33//vYKDg9WmTRutWLFCv/jFLyRJr7zyinx9fdWvXz/l5eXJ7XZr1qxZnsf7+flp6dKlGjFihGJiYlSjRg0lJCRo0qRJnprGjRsrJSVFY8aM0fTp01W/fn3NmTNHbrfbU9O/f38dPnxY48ePV2Zmptq1a6fU1NQSJyMDAIBr1yV/Tk5VxufkAHbjc3IAO1X45+QAAABczQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYqV8iZPHmyOnbsqJo1a6pu3bqKj4/Xrl27vGpOnz6txMRE1a5dW0FBQerXr5+ysrK8avbv36+4uDhVr15ddevW1ZNPPqmCggKvmrVr1+rmm2+W0+lUs2bNNG/evBL9zJw5U40aNVJAQIA6d+6sTZs2lWd3AACAxcoVctatW6fExET961//0sqVK3XmzBn16dNHubm5npoxY8bo448/1uLFi7Vu3TodPHhQ9957r2d5YWGh4uLilJ+frw0bNmj+/PmaN2+exo8f76nZu3ev4uLi1KtXL23btk2jR4/WsGHDtGLFCk/NwoULlZSUpOTkZG3ZskVt27aV2+3WoUOHLmU+AACAJXyMMeZiH3z48GHVrVtX69atU48ePZSdna2wsDC99957uu+++yRJO3fu1I033qi0tDR16dJFy5cvV9++fXXw4EGFh4dLkmbPnq2nn35ahw8flsPh0NNPP62UlBR98cUXnm0NGDBAx48fV2pqqiSpc+fO6tixo2bMmCFJKioqUlRUlEaNGqWxY8eWqf+cnBwFBwcrOztbLpfrYqcBwFVq94JnvO5fP+B/KqkTAJdTWV+/L+mcnOzsbElSaGioJCk9PV1nzpxRbGysp6ZFixZq0KCB0tLSJElpaWlq3bq1J+BIktvtVk5OjrZv3+6pOXsdxTXF68jPz1d6erpXja+vr2JjYz01pcnLy1NOTo7XDQAA2OmiQ05RUZFGjx6tW265Ra1atZIkZWZmyuFwKCQkxKs2PDxcmZmZnpqzA07x8uJlF6rJycnRqVOndOTIERUWFpZaU7yO0kyePFnBwcGeW1RUVPl3HAAAVAkXHXISExP1xRdfaMGCBZeznwo1btw4ZWdne24HDhyo7JYAAEAFqXYxDxo5cqSWLl2q9evXq379+p7xiIgI5efn6/jx415Hc7KyshQREeGpOfcqqOKrr86uOfeKrKysLLlcLgUGBsrPz09+fn6l1hSvozROp1NOp7P8OwwAAKqcch3JMcZo5MiRWrJkiVavXq3GjRt7LW/fvr38/f21atUqz9iuXbu0f/9+xcTESJJiYmKUkZHhdRXUypUr5XK5FB0d7ak5ex3FNcXrcDgcat++vVdNUVGRVq1a5akBAADXtnIdyUlMTNR7772nv//976pZs6bn/Jfg4GAFBgYqODhYQ4cOVVJSkkJDQ+VyuTRq1CjFxMSoS5cukqQ+ffooOjpaDzzwgKZOnarMzEw9++yzSkxM9BxleeSRRzRjxgw99dRTeuihh7R69WotWrRIKSkpnl6SkpKUkJCgDh06qFOnTpo2bZpyc3M1ZMiQyzU3AACgCitXyHn99dclSbfeeqvX+Ny5czV48GBJ0iuvvCJfX1/169dPeXl5crvdmjVrlqfWz89PS5cu1YgRIxQTE6MaNWooISFBkyZN8tQ0btxYKSkpGjNmjKZPn6769etrzpw5crvdnpr+/fvr8OHDGj9+vDIzM9WuXTulpqaWOBkZAABcmy7pc3KqOj4nB7Abn5MD2OmKfE4OAADA1YqQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClcoec9evX684771RkZKR8fHz04Ycfei03xmj8+PG67rrrFBgYqNjYWO3evdur5ujRoxo0aJBcLpdCQkI0dOhQ/fjjj141//nPf9S9e3cFBAQoKipKU6dOLdHL4sWL1aJFCwUEBKh169ZatmxZeXcHAABYqtwhJzc3V23bttXMmTNLXT516lS9+uqrmj17tjZu3KgaNWrI7Xbr9OnTnppBgwZp+/btWrlypZYuXar169dr+PDhnuU5OTnq06ePGjZsqPT0dL344ouaMGGC3nzzTU/Nhg0bNHDgQA0dOlRbt25VfHy84uPj9cUXX5R3lwAAgIV8jDHmoh/s46MlS5YoPj5e0k9HcSIjI/X444/riSeekCRlZ2crPDxc8+bN04ABA/Tll18qOjpamzdvVocOHSRJqamp+uUvf6lvv/1WkZGRev311/XMM88oMzNTDodDkjR27Fh9+OGH2rlzpySpf//+ys3N1dKlSz39dOnSRe3atdPs2bPL1H9OTo6Cg4OVnZ0tl8t1sdMA4Cq1e8EzXvevH/A/ldQJgMuprK/fl/WcnL179yozM1OxsbGeseDgYHXu3FlpaWmSpLS0NIWEhHgCjiTFxsbK19dXGzdu9NT06NHDE3Akye12a9euXTp27Jin5uztFNcUb6c0eXl5ysnJ8boBAAA7XdaQk5mZKUkKDw/3Gg8PD/csy8zMVN26db2WV6tWTaGhoV41pa3j7G2cr6Z4eWkmT56s4OBgzy0qKqq8uwgAAKqIa+rqqnHjxik7O9tzO3DgQGW3BAAAKshlDTkRERGSpKysLK/xrKwsz7KIiAgdOnTIa3lBQYGOHj3qVVPaOs7exvlqipeXxul0yuVyed0AAICdLmvIady4sSIiIrRq1SrPWE5OjjZu3KiYmBhJUkxMjI4fP6709HRPzerVq1VUVKTOnTt7atavX68zZ854alauXKnmzZurVq1anpqzt1NcU7wdAABwbSt3yPnxxx+1bds2bdu2TdJPJxtv27ZN+/fvl4+Pj0aPHq0//OEP+uijj5SRkaEHH3xQkZGRniuwbrzxRt1+++16+OGHtWnTJn322WcaOXKkBgwYoMjISEnS/fffL4fDoaFDh2r79u1auHChpk+frqSkJE8fjz32mFJTU/WnP/1JO3fu1IQJE/Tvf/9bI0eOvPRZAQAAVZ8ppzVr1hhJJW4JCQnGGGOKiorMc889Z8LDw43T6TS9e/c2u3bt8lrHDz/8YAYOHGiCgoKMy+UyQ4YMMSdOnPCq+fzzz023bt2M0+k09erVM1OmTCnRy6JFi8wNN9xgHA6HadmypUlJSSnXvmRnZxtJJjs7u3yTAKBK+Op/f+91A2CHsr5+X9Ln5FR1fE4OYDc+JwewU6V8Tg4AAMDVgpADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwErVKrsBALjc8gpOa3n6HO0t/FKhJlCd/Bqomg//pwOuNVX+t37mzJlq1KiRAgIC1LlzZ23atKmyWwJQieauTdbAlFs0P+sdra+5Tx+6vtQz1VdoRcFXld0agCusSoechQsXKikpScnJydqyZYvatm0rt9utQ4cOVXZrACrB3LXJ+ij7YxkZr3EjaVXNPZq7NrlyGgNQKap0yHn55Zf18MMPa8iQIYqOjtbs2bNVvXp1vfPOO5XdGoArLK/gtD7OXvrTHZ9zFv7/+0uzlyqv4PQV7QtA5amy5+Tk5+crPT1d48aN84z5+voqNjZWaWlppT4mLy9PeXl5nvvZ2dmSpJycnIptFkCFW/rvN5R/quBn6z5Y/5r6dvjtFegIQEUpft02xlywrsqGnCNHjqiwsFDh4eFe4+Hh4dq5c2epj5k8ebImTpxYYjwqKqpCegRw9UnRU5Kequw2AFwGJ06cUHBw8HmXV9mQczHGjRunpKQkz/2ioiIdPXpUtWvXlo/Puce3ry05OTmKiorSgQMH5HK5KrsdazHPVw5zfWUwz1cG8+zNGKMTJ04oMjLygnVVNuTUqVNHfn5+ysrK8hrPyspSREREqY9xOp1yOp1eYyEhIRXVYpXkcrn4BboCmOcrh7m+MpjnK4N5/j8XOoJTrMqeeOxwONS+fXutWrXKM1ZUVKRVq1YpJiamEjsDAABXgyp7JEeSkpKSlJCQoA4dOqhTp06aNm2acnNzNWTIkMpuDQAAVLIqHXL69++vw4cPa/z48crMzFS7du2Umppa4mRk/Dyn06nk5OQSb+fh8mKerxzm+spgnq8M5vni+Jifu/4KAACgCqqy5+QAAABcCCEHAABYiZADAACsRMgBAABWIuQAAAArEXKuYUePHtWgQYPkcrkUEhKioUOH6scffyzTY40xuuOOO+Tj46MPP/ywYhut4so7z0ePHtWoUaPUvHlzBQYGqkGDBvrd737n+UJZ/J+ZM2eqUaNGCggIUOfOnbVp06YL1i9evFgtWrRQQECAWrdurWXLll2hTqu28szzW2+9pe7du6tWrVqqVauWYmNjf/bngp+U9/lcbMGCBfLx8VF8fHzFNlgFEXKuYYMGDdL27du1cuVKLV26VOvXr9fw4cPL9Nhp06Zd89/3VVblneeDBw/q4MGDeumll/TFF19o3rx5Sk1N1dChQ69g11e/hQsXKikpScnJydqyZYvatm0rt9utQ4cOlVq/YcMGDRw4UEOHDtXWrVsVHx+v+Ph4ffHFF1e486qlvPO8du1aDRw4UGvWrFFaWpqioqLUp08ffffdd1e486qlvPNcbN++fXriiSfUvXv3K9RpFWNwTdqxY4eRZDZv3uwZW758ufHx8THffffdBR+7detWU69ePfP9998bSWbJkiUV3G3VdSnzfLZFixYZh8Nhzpw5UxFtVkmdOnUyiYmJnvuFhYUmMjLSTJ48udT6X//61yYuLs5rrHPnzua3v/1thfZZ1ZV3ns9VUFBgatasaebPn19RLVrhYua5oKDAdO3a1cyZM8ckJCSYu++++wp0WrVwJOcalZaWppCQEHXo0MEzFhsbK19fX23cuPG8jzt58qTuv/9+zZw587xfhIr/c7HzfK7s7Gy5XC5Vq1alP6T8ssnPz1d6erpiY2M9Y76+voqNjVVaWlqpj0lLS/OqlyS3233eelzcPJ/r5MmTOnPmjEJDQyuqzSrvYud50qRJqlu3Lkd5L4C/mNeozMxM1a1b12usWrVqCg0NVWZm5nkfN2bMGHXt2lV33313RbdohYud57MdOXJEzz//fJnfSrwWHDlyRIWFhSW+wiU8PFw7d+4s9TGZmZml1pf153Atuph5PtfTTz+tyMjIEgET/+di5vnTTz/V22+/rW3btl2BDqsujuRYZuzYsfLx8bngrax/nM710UcfafXq1Zo2bdrlbboKqsh5PltOTo7i4uIUHR2tCRMmXHrjwBU0ZcoULViwQEuWLFFAQEBlt2ONEydO6IEHHtBbb72lOnXqVHY7VzWO5Fjm8ccf1+DBgy9Y06RJE0VERJQ4oa2goEBHjx4979tQq1ev1p49exQSEuI13q9fP3Xv3l1r1669hM6rloqc52InTpzQ7bffrpo1a2rJkiXy9/e/1LatUadOHfn5+SkrK8trPCsr67zzGhERUa56XNw8F3vppZc0ZcoU/eMf/1CbNm0qss0qr7zzvGfPHu3bt0933nmnZ6yoqEjST0eKd+3apaZNm1Zs01VFZZ8UhMpRfELsv//9b8/YihUrLnhC7Pfff28yMjK8bpLM9OnTzTfffHOlWq9SLmaejTEmOzvbdOnSxfTs2dPk5uZeiVarnE6dOpmRI0d67hcWFpp69epd8MTjvn37eo3FxMRw4vHPKO88G2PMH//4R+NyuUxaWtqVaNEK5ZnnU6dOlfhbfPfdd5vbbrvNZGRkmLy8vCvZ+lWNkHMNu/32281NN91kNm7caD799FNz/fXXm4EDB3qWf/vtt6Z58+Zm48aN512HuLrqZ5V3nrOzs03nzp1N69atzddff22+//57z62goKCyduOqs2DBAuN0Os28efPMjh07zPDhw01ISIjJzMw0xhjzwAMPmLFjx3rqP/vsM1OtWjXz0ksvmS+//NIkJycbf39/k5GRUVm7UCWUd56nTJliHA6Hef/9972euydOnKisXagSyjvP5+LqqtIRcq5hP/zwgxk4cKAJCgoyLpfLDBkyxOsP0d69e40ks2bNmvOug5Dz88o7z2vWrDGSSr3t3bu3cnbiKvXaa6+ZBg0aGIfDYTp16mT+9a9/eZb17NnTJCQkeNUvWrTI3HDDDcbhcJiWLVualJSUK9xx1VSeeW7YsGGpz93k5OQr33gVU97n89kIOaXzMcaYK/0WGQAAQEXj6ioAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWOn/ASMkr708XAdRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANiZJREFUeJzt3XtclGX+//E3IDOgOCCKEIqnLA2P5RHz0IF1arGibFfNLTDNzdBWKVO3ErX9pmtu6aZmZanf3e3roda2JDHX45asGuouaZqZrpYBmgrmAQSu3x/9mHUEDVRELl/Px2MeD+e6P/c9n/tyYN7cc98zPsYYIwAAAMv4VnUDAAAAlYGQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADXAPWrl0rHx8frV279rJu18fHRxMmTLis27RNYmKimjRpUmnbf+mll9SsWTP5+fmpffv2lfY4l6K8z5MJEybIx8en8hvCNYOQg2pnw4YNmjBhgo4dO1bVrVwTPvroI4KMpJMnT2rChAmXPSheio8//ljPPPOMbr31Vs2bN08vvvhiVbd01Ttz5oyio6Pl4+OjadOmVXU7qGQ1qroBoKI2bNigiRMnKjExUSEhIVXdjvU++ugjzZo1q8ygc+rUKdWocW38Gjl58qQmTpwoSbrtttvKvd6bb76p4uLiSulp9erV8vX11VtvvSWHw1Epj3E5XE3Pk1dffVX79++v6jZwhXAkB7iKnTx5sszxwsJCFRQUXOFuSgsICLhqXryuNidOnJAk+fv7y+l0Vspj5OTkKDAw8CcDTnFxsU6fPl0pPZTH1fI8ycnJ0aRJkzRmzJiqbgVXCCEH1cqECRM0evRoSVLTpk3l4+MjHx8f7du3T4WFhXrhhRd0/fXXy+l0qkmTJvrtb3+r/Px8r200adJEffr00ccff6z27dsrICBA0dHR+utf/3pRPf35z39W586dVbNmTdWpU0c9e/bUxx9/7FUze/ZstWrVSk6nU5GRkUpKSir1dtttt92m1q1bKyMjQz179lTNmjX129/+Vvv27fMcWp8+fbpn/3bs2CFJ2rlzpx588EGFhoYqICBAHTt21AcffPCTff/jH//QL37xCzVq1EhOp1NRUVEaNWqUTp065alJTEzUrFmzJMkz12efM1HWuRZbt27V3XffLZfLpaCgIN1555365z//6VUzf/58+fj46NNPP1VycrLCwsJUq1Yt3X///Tp06NBP9n62kvM4vvzyS/3qV79ScHCwwsLC9Pzzz8sYowMHDui+++6Ty+VSRESE/vCHP3itX1BQoPHjx6tDhw4KDg5WrVq11KNHD61Zs8ZTs2/fPoWFhUmSJk6c6JmHkn1PTExUUFCQ9uzZo5///OeqXbu2Bg4c6Fl29jk5KSkp8vX11apVq7z6GDp0qBwOh/71r3+Va799fHw0b948nThxwtPP/PnzPcuGDx+uv/zlL57nXVpamiRp2rRp6tatm+rWravAwEB16NBB7777bqntnzp1Sk8++aTq1aun2rVr695779W33357UedhlbXOJ598ok6dOikgIEDXX3+9Xn/99TLXXblypbp3766QkBAFBQWpRYsW+u1vf1uhxy8xduxYtWjRQr/61a8uan1UP1UfrYEKeOCBB/Tll1/q//7v//TKK6+oXr16kqSwsDANGTJECxYs0IMPPqinnnpKGzdu1OTJk/XFF19o6dKlXtvZvXu3+vXrp8cff1wJCQmaN2+efvGLXygtLU0/+9nPyt3PxIkTNWHCBHXr1k2TJk2Sw+HQxo0btXr1avXu3VvSjy/CEydOVGxsrIYNG6Zdu3bptdde0+bNm/Xpp5/K39/fs73vv/9ed999t/r3769f/epXCg8P9yybN2+eTp8+raFDh8rpdCo0NFTbt2/XrbfeqgYNGmjs2LGqVauWFi9erPj4eL333nu6//77z9v7kiVLdPLkSQ0bNkx169bVpk2b9Oqrr+qbb77RkiVLJEm//vWvdfDgQa1cuVJ/+tOffnI+tm/frh49esjlcumZZ56Rv7+/Xn/9dd12221at26dunTp4lU/YsQI1alTRykpKdq3b5+mT5+u4cOHa9GiReX+PyjRr18/3XTTTZoyZYpSU1P1u9/9TqGhoXr99dd1xx136Pe//73+8pe/6Omnn1anTp3Us2dPSVJeXp7mzp2rAQMG6LHHHtPx48f11ltvye12a9OmTWrfvr3CwsL02muvadiwYbr//vv1wAMPSJLatm3refzCwkK53W51795d06ZNU82aNcvs87nnntOHH36owYMHKzMzU7Vr19aKFSv05ptv6oUXXlC7du3Ktb9/+tOf9MYbb2jTpk2aO3euJKlbt26e5atXr9bixYs1fPhw1atXzxO0ZsyYoXvvvVcDBw5UQUGBFi5cqF/84hdatmyZ4uLiPOsnJiZq8eLFevjhh9W1a1etW7fOa/mlyMzMVO/evRUWFqYJEyaosLBQKSkpXs936cfnU58+fdS2bVtNmjRJTqdTX331lT799NMKP+amTZu0YMECffLJJ5zcfC0xQDXz0ksvGUlm7969nrFt27YZSWbIkCFetU8//bSRZFavXu0Za9y4sZFk3nvvPc9Ybm6uue6668zNN99c7j52795tfH19zf3332+Kioq8lhUXFxtjjMnJyTEOh8P07t3bq2bmzJlGknn77bc9Y7169TKSzJw5c7y2tXfvXiPJuFwuk5OT47XszjvvNG3atDGnT5/2euxu3bqZG264wTO2Zs0aI8msWbPGM3by5MlS+zR58mTj4+Nj/vOf/3jGkpKSzPl+VUgyKSkpnvvx8fHG4XCYPXv2eMYOHjxoateubXr27OkZmzdvnpFkYmNjPXNljDGjRo0yfn5+5tixY2U+XllSUlKMJDN06FDPWGFhoWnYsKHx8fExU6ZM8YwfPXrUBAYGmoSEBK/a/Px8r20ePXrUhIeHm0cffdQzdujQoVL7WyIhIcFIMmPHji1zWePGjb3GMjMzjcPhMEOGDDFHjx41DRo0MB07djRnzpwp936XbLtWrVqlxiUZX19fs3379lLLzv1/LygoMK1btzZ33HGHZywjI8NIMiNHjvSqTUxMPO8cXEhZz5OAgACv59mOHTuMn5+f13PtlVdeMZLMoUOHKvR45youLjadO3c2AwYMMMb892fqpZdeuqTt4urH21WwwkcffSRJSk5O9hp/6qmnJEmpqale45GRkV5HOVwulx555BFt3bpVWVlZ5XrM999/X8XFxRo/frx8fb1/lEr+Uvz73/+ugoICjRw50qvmsccek8vlKtWX0+nUoEGDyny8vn37et4ykaQjR45o9erV+uUvf6njx4/r8OHDOnz4sL7//nu53W7t3r1b33777Xn7DwwM9Pz7xIkTOnz4sLp16yZjjLZu3VquOThbUVGRPv74Y8XHx6tZs2ae8euuu04PPfSQPvnkE+Xl5XmtM3ToUK+/qnv06KGioiL95z//qfDjDxkyxPNvPz8/dezYUcYYDR482DMeEhKiFi1a6Ouvv/aqLTmnpbi4WEeOHFFhYaE6duyoLVu2VKiHYcOGlauudevWmjhxoubOnSu3263Dhw9rwYIFl/W8lV69eik6OrrU+Nn/70ePHlVubq569Ojhta8lb2098cQTXuuOGDHikvsqKirSihUrFB8fr0aNGnnGb7rpJrndbq/akgsL/va3v13Sydvz589XZmamfv/731/0NlA9EXJghf/85z/y9fVV8+bNvcYjIiIUEhJS6kWzefPmpQ5Z33jjjZJ+PP+iPPbs2SNfX98yX0jO7kuSWrRo4TXucDjUrFmzUn01aNDgvCeRNm3a1Ov+V199JWOMnn/+eYWFhXndUlJSJP14ouX57N+/X4mJiQoNDVVQUJDCwsLUq1cvSVJubu551zufQ4cO6eTJk6X2VfrxBay4uFgHDhzwGj/7RU6S6tSpI+nHF9+KOndbwcHBCggI8Lylefb4udtfsGCB2rZtq4CAANWtW1dhYWFKTU2t0DzUqFFDDRs2LHf96NGj1a5dO23atEkpKSkXfB5djHOfLyWWLVumrl27KiAgQKGhoZ634s7e15Kfp3O3ce7P18U4dOiQTp06pRtuuKHUsnOfO/369dOtt96qIUOGKDw8XP3799fixYsrFHjy8vI0btw4jR49WlFRUZfcP6oXzsmBVar7e+1n/5X9U8tKftE//fTTpf4CLnG+F6WioiL97Gc/05EjRzRmzBi1bNlStWrV0rfffqvExMRKu+T5XH5+fmWOG2Muy7bKs/0///nPSkxMVHx8vEaPHq369evLz89PkydP1p49e8r9+E6ns9QRvQv5+uuvtXv3bkk/nqNyuZX1XPrHP/6he++9Vz179tTs2bN13XXXyd/fX/PmzdM777xz2Xu4VIGBgVq/fr3WrFmj1NRUpaWladGiRbrjjjv08ccfn/f/92zTpk1TQUGB+vXr5/kD5ptvvpH0Y5jet2+fIiMjr+pL8HHxCDmodsoKMo0bN1ZxcbF2796tm266yTOenZ2tY8eOqXHjxl71JUdBzt7Wl19+KUnl/nTa66+/XsXFxdqxY8d5P2m25HF37drl9RZOQUGB9u7dq9jY2HI9VllKtufv71/h7WRmZurLL7/UggUL9Mgjj3jGV65cWaq2vMExLCxMNWvW1K5du0ot27lzp3x9fa/Kv6TfffddNWvWTH/961+99rXkaFiJyxmgi4uLlZiYKJfLpZEjR+rFF1/Ugw8+6DmhubK89957CggI0IoVK7wua583b55XXcnP0969e72OuHz11VeX3ENYWJgCAwM9Ae9sZT13fH19deedd+rOO+/Uyy+/rBdffFHPPvus1qxZU67n/f79+3X06FG1atWq1LIXX3xRL774orZu3XrVflo0Lg1vV6HaqVWrliR5XYL985//XJI0ffp0r9qXX35ZkkpdFXLw4EGvK67y8vL0v//7v2rfvr0iIiLK1Ud8fLx8fX01adKkUkc+So4UxMbGyuFw6I9//KPX0YO33npLubm5l3S1Sv369XXbbbfp9ddf13fffVdq+YUuxS75C/jsnowxmjFjRqnasub7fNvs3bu3/va3v3m95Zedna133nlH3bt3l8vluuA2qkJZc7Fx40alp6d71ZVcLXU5Pmn75Zdf1oYNG/TGG2/ohRdeULdu3TRs2DAdPnz4krd9IX5+fvLx8VFRUZFnbN++fXr//fe96kqODM6ePdtr/NVXX70sPbjdbr3//vteH8r3xRdfaMWKFV61R44cKbV+SRg596MhzufJJ5/U0qVLvW4ll6snJiZq6dKl531rD9UfR3JQ7XTo0EGS9Oyzz6p///7y9/fXPffco4SEBL3xxhs6duyYevXq5blkND4+XrfffrvXNm688UYNHjxYmzdvVnh4uN5++21lZ2eX+ov2Qpo3b65nn31WL7zwgnr06KEHHnhATqdTmzdvVmRkpCZPnqywsDCNGzdOEydO1F133aV7771Xu3bt0uzZs9WpU6dL/ryOWbNmqXv37mrTpo0ee+wxNWvWTNnZ2UpPT9c333xz3s9cadmypa6//no9/fTT+vbbb+VyufTee++VeS5MyXw/+eSTcrvd8vPzU//+/cvc7u9+9zvP55o88cQTqlGjhl5//XXl5+dr6tSpl7SvlaVPnz7661//qvvvv19xcXHau3ev5syZo+joaP3www+eusDAQEVHR2vRokW68cYbFRoaqtatW6t169YVerwvvvhCzz//vBITE3XPPfdI+vHE2Pbt2+uJJ57Q4sWLL+v+nS0uLk4vv/yy7rrrLj300EPKycnRrFmz1Lx5c/373//21HXo0EF9+/bV9OnT9f3333suIS852nmpR7UmTpyotLQ09ejRQ0888YQKCwv16quvqlWrVl59TJo0SevXr1dcXJwaN26snJwczZ49Ww0bNlT37t3L9Vi33HKLbrnlFq+xkhDeqlUrxcfHX9K+4CpXRVd1AZfkhRdeMA0aNDC+vr6ey8nPnDljJk6caJo2bWr8/f1NVFSUGTdunNfl1cb8eAl5XFycWbFihWnbtq1xOp2mZcuWZsmSJRfVy9tvv21uvvlm43Q6TZ06dUyvXr3MypUrvWpmzpxpWrZsafz9/U14eLgZNmyYOXr0qFdNr169TKtWrUpt/6cud92zZ4955JFHTEREhPH39zcNGjQwffr0Me+++66npqxLyHfs2GFiY2NNUFCQqVevnnnsscfMv/71LyPJzJs3z1NXWFhoRowYYcLCwoyPj4/XJb4q43LiLVu2GLfbbYKCgkzNmjXN7bffbjZs2OBVU3IJ+ebNm73Gy+rzp5RcQn7uZcbnu7z63HkuLi42L774omncuLFxOp3m5ptvNsuWLSvz0u8NGzaYDh06GIfD4bXv53uskmUl2yksLDSdOnUyDRs2LHWZ/IwZM4wks2jRonLv+4UuIU9KSipznbfeesvccMMNnuf9vHnzPHN4thMnTpikpCQTGhpqgoKCTHx8vNm1a5eR5HVZfnmU9TxZt26dZy6bNWtm5syZU6qPVatWmfvuu89ERkYah8NhIiMjzYABA8yXX35Zocc/F5eQXzt8jLmIM/yAaqxJkyZq3bq1li1bVtWtANXKtm3bdPPNN+vPf/6z5xOdgasZ5+QAAEo5++s9SkyfPl2+vr6eT4sGrnackwOU4ac+EDAwMFDBwcFXqJtr0w8//OB1TkxZwsLCynUZcXVz6NAhr5ODz+VwOBQaGlqpPUydOlUZGRm6/fbbVaNGDS1fvlzLly/X0KFDFRUVpaKiop/8nrGgoCAFBQVVWo9XwzzhKlfV75cBV1rJOTkXIumCt7O/FgCVo+T8jAvdzv5qD5uUfPXI+W69evWq9B4+/vhjc+utt5o6deoYf39/c/3115sJEyZ4vnqi5LyWC90q+vUPFXU1zBOubpyTA5Th73//+wWXR0ZGXvZPqIW3r7/+2uvrF8rSvXt3BQQEXKGOrpxPP/20zLeLStSpU8dz1VtVOX36tD755JML1jRr1szr86Eut+owT6hahBwAAGAlTjwGAABWuqZPPC4uLtbBgwdVu3btav+dRwAAXCuMMTp+/LgiIyMv+J1x13TIOXjw4FX5XToAAOCnHThwQA0bNjzv8ms65NSuXVvSj5N0NX6nDgAAKC0vL09RUVGe1/HzuaZDTslbVC6Xi5ADAEA181OnmnDiMQAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICValR1AwBQWc6kfeJ13/+u7lXUCYCqwJEcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABY6ZJCzpQpU+Tj46ORI0d6xk6fPq2kpCTVrVtXQUFB6tu3r7Kzs73W279/v+Li4lSzZk3Vr19fo0ePVmFhoVfN2rVrdcstt8jpdKp58+aaP39+qcefNWuWmjRpooCAAHXp0kWbNm26lN0BAAAWueiQs3nzZr3++utq27at1/ioUaP04YcfasmSJVq3bp0OHjyoBx54wLO8qKhIcXFxKigo0IYNG7RgwQLNnz9f48eP99Ts3btXcXFxuv3227Vt2zaNHDlSQ4YM0YoVKzw1ixYtUnJyslJSUrRlyxa1a9dObrdbOTk5F7tLAADAJuYiHD9+3Nxwww1m5cqVplevXuY3v/mNMcaYY8eOGX9/f7NkyRJP7RdffGEkmfT0dGOMMR999JHx9fU1WVlZnprXXnvNuFwuk5+fb4wx5plnnjGtWrXyesx+/foZt9vtud+5c2eTlJTkuV9UVGQiIyPN5MmTy70fubm5RpLJzc0t/84DqDYKlv/D6wbADuV9/b6oIzlJSUmKi4tTbGys13hGRobOnDnjNd6yZUs1atRI6enpkqT09HS1adNG4eHhnhq32628vDxt377dU3Putt1ut2cbBQUFysjI8Krx9fVVbGysp6Ys+fn5ysvL87oBAAA71ajoCgsXLtSWLVu0efPmUsuysrLkcDgUEhLiNR4eHq6srCxPzdkBp2R5ybIL1eTl5enUqVM6evSoioqKyqzZuXPneXufPHmyJk6cWL4dBQAA1VqFjuQcOHBAv/nNb/SXv/xFAQEBldVTpRk3bpxyc3M9twMHDlR1SwAAoJJUKORkZGQoJydHt9xyi2rUqKEaNWpo3bp1+uMf/6gaNWooPDxcBQUFOnbsmNd62dnZioiIkCRFRESUutqq5P5P1bhcLgUGBqpevXry8/Mrs6ZkG2VxOp1yuVxeNwAAYKcKhZw777xTmZmZ2rZtm+fWsWNHDRw40PNvf39/rVq1yrPOrl27tH//fsXExEiSYmJilJmZ6XUV1MqVK+VyuRQdHe2pOXsbJTUl23A4HOrQoYNXTXFxsVatWuWpAQAA17YKnZNTu3ZttW7d2musVq1aqlu3rmd88ODBSk5OVmhoqFwul0aMGKGYmBh17dpVktS7d29FR0fr4Ycf1tSpU5WVlaXnnntOSUlJcjqdkqTHH39cM2fO1DPPPKNHH31Uq1ev1uLFi5Wamup53OTkZCUkJKhjx47q3Lmzpk+frhMnTmjQoEGXNCEAAMAOFT7x+Ke88sor8vX1Vd++fZWfny+3263Zs2d7lvv5+WnZsmUaNmyYYmJiVKtWLSUkJGjSpEmemqZNmyo1NVWjRo3SjBkz1LBhQ82dO1dut9tT069fPx06dEjjx49XVlaW2rdvr7S0tFInIwMAgGuTjzHGVHUTVSUvL0/BwcHKzc3l/BzAQmfSPvG6739X9yrqBMDlVN7Xb767CgAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVqpR1Q0AQGXZd2y51/0b1L2KOgFQFTiSAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArVSjkvPbaa2rbtq1cLpdcLpdiYmK0fPlyz/LTp08rKSlJdevWVVBQkPr27avs7Gyvbezfv19xcXGqWbOm6tevr9GjR6uwsNCrZu3atbrlllvkdDrVvHlzzZ8/v1Qvs2bNUpMmTRQQEKAuXbpo06ZNFdkVAABguQqFnIYNG2rKlCnKyMjQZ599pjvuuEP33Xeftm/fLkkaNWqUPvzwQy1ZskTr1q3TwYMH9cADD3jWLyoqUlxcnAoKCrRhwwYtWLBA8+fP1/jx4z01e/fuVVxcnG6//XZt27ZNI0eO1JAhQ7RixQpPzaJFi5ScnKyUlBRt2bJF7dq1k9vtVk5OzqXOBwAAsISPMcZcygZCQ0P10ksv6cEHH1RYWJjeeecdPfjgg5KknTt36qabblJ6erq6du2q5cuXq0+fPjp48KDCw8MlSXPmzNGYMWN06NAhORwOjRkzRqmpqfr88889j9G/f38dO3ZMaWlpkqQuXbqoU6dOmjlzpiSpuLhYUVFRGjFihMaOHVvu3vPy8hQcHKzc3Fy5XK5LmQYAV6HdC5/1un9D//+pok4AXE7lff2+6HNyioqKtHDhQp04cUIxMTHKyMjQmTNnFBsb66lp2bKlGjVqpPT0dElSenq62rRp4wk4kuR2u5WXl+c5GpSenu61jZKakm0UFBQoIyPDq8bX11exsbGemvPJz89XXl6e1w0AANipwiEnMzNTQUFBcjqdevzxx7V06VJFR0crKytLDodDISEhXvXh4eHKysqSJGVlZXkFnJLlJcsuVJOXl6dTp07p8OHDKioqKrOmZBvnM3nyZAUHB3tuUVFRFd19AABQTVQ45LRo0ULbtm3Txo0bNWzYMCUkJGjHjh2V0dtlN27cOOXm5npuBw4cqOqWAABAJalR0RUcDoeaN28uSerQoYM2b96sGTNmqF+/fiooKNCxY8e8juZkZ2crIiJCkhQREVHqKqiSq6/Orjn3iqzs7Gy5XC4FBgbKz89Pfn5+ZdaUbON8nE6nnE5nRXcZAABUQ5f8OTnFxcXKz89Xhw4d5O/vr1WrVnmW7dq1S/v371dMTIwkKSYmRpmZmV5XQa1cuVIul0vR0dGemrO3UVJTsg2Hw6EOHTp41RQXF2vVqlWeGgAAgAodyRk3bpzuvvtuNWrUSMePH9c777yjtWvXasWKFQoODtbgwYOVnJys0NBQuVwujRgxQjExMerataskqXfv3oqOjtbDDz+sqVOnKisrS88995ySkpI8R1gef/xxzZw5U88884weffRRrV69WosXL1Zqaqqnj+TkZCUkJKhjx47q3Lmzpk+frhMnTmjQoEGXcWoAAEB1VqGQk5OTo0ceeUTfffedgoOD1bZtW61YsUI/+9nPJEmvvPKKfH191bdvX+Xn58vtdmv27Nme9f38/LRs2TINGzZMMTExqlWrlhISEjRp0iRPTdOmTZWamqpRo0ZpxowZatiwoebOnSu32+2p6devnw4dOqTx48crKytL7du3V1paWqmTkQEAwLXrkj8npzrjc3IAu/E5OYCdKv1zcgAAAK5mhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK1Uo5EyePFmdOnVS7dq1Vb9+fcXHx2vXrl1eNadPn1ZSUpLq1q2roKAg9e3bV9nZ2V41+/fvV1xcnGrWrKn69etr9OjRKiws9KpZu3atbrnlFjmdTjVv3lzz588v1c+sWbPUpEkTBQQEqEuXLtq0aVNFdgcAAFisQiFn3bp1SkpK0j//+U+tXLlSZ86cUe/evXXixAlPzahRo/Thhx9qyZIlWrdunQ4ePKgHHnjAs7yoqEhxcXEqKCjQhg0btGDBAs2fP1/jx4/31Ozdu1dxcXG6/fbbtW3bNo0cOVJDhgzRihUrPDWLFi1ScnKyUlJStGXLFrVr105ut1s5OTmXMh8AAMASPsYYc7ErHzp0SPXr19e6devUs2dP5ebmKiwsTO+8844efPBBSdLOnTt10003KT09XV27dtXy5cvVp08fHTx4UOHh4ZKkOXPmaMyYMTp06JAcDofGjBmj1NRUff75557H6t+/v44dO6a0tDRJUpcuXdSpUyfNnDlTklRcXKyoqCiNGDFCY8eOLVf/eXl5Cg4OVm5urlwu18VOA4Cr1O6Fz3rdv6H//1RRJwAup/K+fl/SOTm5ubmSpNDQUElSRkaGzpw5o9jYWE9Ny5Yt1ahRI6Wnp0uS0tPT1aZNG0/AkSS32628vDxt377dU3P2NkpqSrZRUFCgjIwMrxpfX1/FxsZ6asqSn5+vvLw8rxsAALDTRYec4uJijRw5Urfeeqtat24tScrKypLD4VBISIhXbXh4uLKysjw1ZweckuUlyy5Uk5eXp1OnTunw4cMqKioqs6ZkG2WZPHmygoODPbeoqKiK7zgAAKgWLjrkJCUl6fPPP9fChQsvZz+Vaty4ccrNzfXcDhw4UNUtAQCASlLjYlYaPny4li1bpvXr16thw4ae8YiICBUUFOjYsWNeR3Oys7MVERHhqTn3KqiSq6/Orjn3iqzs7Gy5XC4FBgbKz89Pfn5+ZdaUbKMsTqdTTqez4jsMAACqnQodyTHGaPjw4Vq6dKlWr16tpk2bei3v0KGD/P39tWrVKs/Yrl27tH//fsXExEiSYmJilJmZ6XUV1MqVK+VyuRQdHe2pOXsbJTUl23A4HOrQoYNXTXFxsVatWuWpAQAA17YKHclJSkrSO++8o7/97W+qXbu25/yX4OBgBQYGKjg4WIMHD1ZycrJCQ0Plcrk0YsQIxcTEqGvXrpKk3r17Kzo6Wg8//LCmTp2qrKwsPffcc0pKSvIcZXn88cc1c+ZMPfPMM3r00Ue1evVqLV68WKmpqZ5ekpOTlZCQoI4dO6pz586aPn26Tpw4oUGDBl2uuQEAANVYhULOa6+9Jkm67bbbvMbnzZunxMRESdIrr7wiX19f9e3bV/n5+XK73Zo9e7an1s/PT8uWLdOwYcMUExOjWrVqKSEhQZMmTfLUNG3aVKmpqRo1apRmzJihhg0bau7cuXK73Z6afv366dChQxo/fryysrLUvn17paWllToZGQAAXJsu6XNyqjs+JwewG5+TA9jpinxODgAAwNWKkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpQqHnPXr1+uee+5RZGSkfHx89P7773stN8Zo/Pjxuu666xQYGKjY2Fjt3r3bq+bIkSMaOHCgXC6XQkJCNHjwYP3www9eNf/+97/Vo0cPBQQEKCoqSlOnTi3Vy5IlS9SyZUsFBASoTZs2+uijjyq6OwAAwFIVDjknTpxQu3btNGvWrDKXT506VX/84x81Z84cbdy4UbVq1ZLb7dbp06c9NQMHDtT27du1cuVKLVu2TOvXr9fQoUM9y/Py8tS7d281btxYGRkZeumllzRhwgS98cYbnpoNGzZowIABGjx4sLZu3ar4+HjFx8fr888/r+guAQAAC/kYY8xFr+zjo6VLlyo+Pl7Sj0dxIiMj9dRTT+npp5+WJOXm5io8PFzz589X//799cUXXyg6OlqbN29Wx44dJUlpaWn6+c9/rm+++UaRkZF67bXX9OyzzyorK0sOh0OSNHbsWL3//vvauXOnJKlfv346ceKEli1b5umna9euat++vebMmVOu/vPy8hQcHKzc3Fy5XK6LnQYAV6ndC5/1un9D//+pok4AXE7lff2+rOfk7N27V1lZWYqNjfWMBQcHq0uXLkpPT5ckpaenKyQkxBNwJCk2Nla+vr7auHGjp6Znz56egCNJbrdbu3bt0tGjRz01Zz9OSU3J45QlPz9feXl5XjcAAGCnyxpysrKyJEnh4eFe4+Hh4Z5lWVlZql+/vtfyGjVqKDQ01KumrG2c/RjnqylZXpbJkycrODjYc4uKiqroLgIAgGrimrq6aty4ccrNzfXcDhw4UNUtAQCASnJZQ05ERIQkKTs722s8OzvbsywiIkI5OTleywsLC3XkyBGvmrK2cfZjnK+mZHlZnE6nXC6X1w0AANjpsoacpk2bKiIiQqtWrfKM5eXlaePGjYqJiZEkxcTE6NixY8rIyPDUrF69WsXFxerSpYunZv369Tpz5oynZuXKlWrRooXq1KnjqTn7cUpqSh4HAABc2yoccn744Qdt27ZN27Ztk/Tjycbbtm3T/v375ePjo5EjR+p3v/udPvjgA2VmZuqRRx5RZGSk5wqsm266SXfddZcee+wxbdq0SZ9++qmGDx+u/v37KzIyUpL00EMPyeFwaPDgwdq+fbsWLVqkGTNmKDk52dPHb37zG6WlpekPf/iDdu7cqQkTJuizzz7T8OHDL31WAABA9WcqaM2aNUZSqVtCQoIxxpji4mLz/PPPm/DwcON0Os2dd95pdu3a5bWN77//3gwYMMAEBQUZl8tlBg0aZI4fP+5V869//ct0797dOJ1O06BBAzNlypRSvSxevNjceOONxuFwmFatWpnU1NQK7Utubq6RZHJzcys2CQCqhS//77deNwB2KO/r9yV9Tk51x+fkAHbjc3IAO1XJ5+QAAABcLQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxUo6obAIDLLb/wtJZnzNXeoi8UagLV2a+RavjwNx1wran2P/WzZs1SkyZNFBAQoC5dumjTpk1V3RKAKjRvbYoGpN6qBdlva33tfXrf9YWerblCKwq/rOrWAFxh1TrkLFq0SMnJyUpJSdGWLVvUrl07ud1u5eTkVHVrAKrAvLUp+iD3QxkZr3EjaVXtPZq3NqVqGgNQJap1yHn55Zf12GOPadCgQYqOjtacOXNUs2ZNvf3221XdGoArLL/wtD7MXfbjHZ9zFv7/+8tylym/8PQV7QtA1am25+QUFBQoIyND48aN84z5+voqNjZW6enpZa6Tn5+v/Px8z/3c3FxJUl5eXuU2C6DSLfvsdRWcKvzJuvfWv6o+HX99BToCUFlKXreNMResq7Yh5/DhwyoqKlJ4eLjXeHh4uHbu3FnmOpMnT9bEiRNLjUdFRVVKjwCuPql6RtIzVd0GgMvg+PHjCg4OPu/yahtyLsa4ceOUnJzsuV9cXKwjR46obt268vE59/j2tSUvL09RUVE6cOCAXC5XVbdjLeb5ymGurwzm+cpgnr0ZY3T8+HFFRkZesK7ahpx69erJz89P2dnZXuPZ2dmKiIgocx2n0ymn0+k1FhISUlktVksul4sfoCuAeb5ymOsrg3m+Mpjn/7rQEZwS1fbEY4fDoQ4dOmjVqlWeseLiYq1atUoxMTFV2BkAALgaVNsjOZKUnJyshIQEdezYUZ07d9b06dN14sQJDRo0qKpbAwAAVaxah5x+/frp0KFDGj9+vLKystS+fXulpaWVOhkZP83pdColJaXU23m4vJjnK4e5vjKY5yuDeb44Puanrr8CAACohqrtOTkAAAAXQsgBAABWIuQAAAArEXIAAICVCDkAAMBKhJxr2JEjRzRw4EC5XC6FhIRo8ODB+uGHH8q1rjFGd999t3x8fPT+++9XbqPVXEXn+ciRIxoxYoRatGihwMBANWrUSE8++aTnC2XxX7NmzVKTJk0UEBCgLl26aNOmTResX7JkiVq2bKmAgAC1adNGH3300RXqtHqryDy/+eab6tGjh+rUqaM6deooNjb2J/9f8KOKPp9LLFy4UD4+PoqPj6/cBqshQs41bODAgdq+fbtWrlypZcuWaf369Ro6dGi51p0+ffo1/31f5VXReT548KAOHjyoadOm6fPPP9f8+fOVlpamwYMHX8Gur36LFi1ScnKyUlJStGXLFrVr105ut1s5OTll1m/YsEEDBgzQ4MGDtXXrVsXHxys+Pl6ff/75Fe68eqnoPK9du1YDBgzQmjVrlJ6erqioKPXu3VvffvvtFe68eqnoPJfYt2+fnn76afXo0eMKdVrNGFyTduzYYSSZzZs3e8aWL19ufHx8zLfffnvBdbdu3WoaNGhgvvvuOyPJLF26tJK7rb4uZZ7PtnjxYuNwOMyZM2cqo81qqXPnziYpKclzv6ioyERGRprJkyeXWf/LX/7SxMXFeY116dLF/PrXv67UPqu7is7zuQoLC03t2rXNggULKqtFK1zMPBcWFppu3bqZuXPnmoSEBHPfffddgU6rF47kXKPS09MVEhKijh07esZiY2Pl6+urjRs3nne9kydP6qGHHtKsWbPO+0Wo+K+Lnedz5ebmyuVyqUaNav0h5ZdNQUGBMjIyFBsb6xnz9fVVbGys0tPTy1wnPT3dq16S3G73eetxcfN8rpMnT+rMmTMKDQ2trDarvYud50mTJql+/foc5b0AfmNeo7KyslS/fn2vsRo1aig0NFRZWVnnXW/UqFHq1q2b7rvvvspu0QoXO89nO3z4sF544YVyv5V4LTh8+LCKiopKfYVLeHi4du7cWeY6WVlZZdaX9//hWnQx83yuMWPGKDIyslTAxH9dzDx/8skneuutt7Rt27Yr0GH1xZEcy4wdO1Y+Pj4XvJX3l9O5PvjgA61evVrTp0+/vE1XQ5U5z2fLy8tTXFycoqOjNWHChEtvHLiCpkyZooULF2rp0qUKCAio6nascfz4cT388MN68803Va9evapu56rGkRzLPPXUU0pMTLxgTbNmzRQREVHqhLbCwkIdOXLkvG9DrV69Wnv27FFISIjXeN++fdWjRw+tXbv2EjqvXipznkscP35cd911l2rXrq2lS5fK39//Utu2Rr169eTn56fs7Gyv8ezs7PPOa0RERIXqcXHzXGLatGmaMmWK/v73v6tt27aV2Wa1V9F53rNnj/bt26d77rnHM1ZcXCzpxyPFu3bt0vXXX1+5TVcXVX1SEKpGyQmxn332mWdsxYoVFzwh9rvvvjOZmZleN0lmxowZ5uuvv75SrVcrFzPPxhiTm5trunbtanr16mVOnDhxJVqtdjp37myGDx/uuV9UVGQaNGhwwROP+/Tp4zUWExPDicc/oaLzbIwxv//9743L5TLp6elXokUrVGSeT506Vep38X333WfuuOMOk5mZafLz869k61c1Qs417K677jI333yz2bhxo/nkk0/MDTfcYAYMGOBZ/s0335gWLVqYjRs3nncb4uqqn1TRec7NzTVdunQxbdq0MV999ZX57rvvPLfCwsKq2o2rzsKFC43T6TTz5883O3bsMEOHDjUhISEmKyvLGGPMww8/bMaOHeup//TTT02NGjXMtGnTzBdffGFSUlKMv7+/yczMrKpdqBYqOs9TpkwxDofDvPvuu17P3ePHj1fVLlQLFZ3nc3F1VdkIOdew77//3gwYMMAEBQUZl8tlBg0a5PWLaO/evUaSWbNmzXm3Qcj5aRWd5zVr1hhJZd727t1bNTtxlXr11VdNo0aNjMPhMJ07dzb//Oc/Pct69eplEhISvOoXL15sbrzxRuNwOEyrVq1MamrqFe64eqrIPDdu3LjM525KSsqVb7yaqejz+WyEnLL5GGPMlX6LDAAAoLJxdRUAALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArPT/ALG4uKBC1lO5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANjxJREFUeJzt3Xl4VOX9//9XtpkEwiQEQmIgbKJgWJU1COKSEmxQotgCoiYIUjHQQlyAqoSlFYpWoQKiosC3rWXRYithkbJWSIEGaREEEaGgmAACCbIkJLl/f/jL+TAkYAKEkJvn47rmupj7vOec97kzybw4c86MjzHGCAAAwDK+ld0AAABARSDkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQA14E1a9bIx8dHa9asuaLr9fHx0dixY6/oOm2TnJyshg0bVtj6X375ZTVu3Fh+fn5q06ZNhW3ncpT1eTJ27Fj5+PhUfEO4bhByUOVs2LBBY8eO1fHjxyu7levCkiVLCDKSTp06pbFjx17xoHg5Pv74Yz333HO6/fbbNXv2bL300kuV3dI1KTk5WT4+PiVuzZo1q+zWUMH8K7sBoLw2bNigcePGKTk5WaGhoZXdjvWWLFmi6dOnlxp0Tp8+LX//6+PPyKlTpzRu3DhJ0p133lnmx7399tsqKiqqkJ5WrVolX19fvfPOO3K5XBWyjSvhWnieuN1uzZo1y2ssJCSkkrrB1XJ9/HUCqqhTp06pWrVqJcYLCgpUVFRU6S9sgYGBlbr9a9nJkydVvXp1BQQEVNg2Dh06pKCgoB99HhQVFSk/P7/Sfl7XwvPE399fjzzySGW3gauMt6tQpYwdO1bPPvusJKlRo0bOYed9+/apoKBAEyZM0I033ii3262GDRvq17/+tfLy8rzW0bBhQ/Xs2VMff/yx2rRpo8DAQMXExOivf/3rJfX0pz/9SR06dFC1atVUs2ZN3XHHHfr444+9ambMmKHmzZvL7XYrKipKKSkpJd5uu/POO9WiRQtlZmbqjjvuULVq1fTrX/9a+/btk4+Pj1555RVNmTLF2b8dO3ZIknbu3KmHHnpIYWFhCgwMVLt27fT3v//9R/v+5z//qZ/97GeqX7++3G63oqOjNWLECJ0+fdqpSU5O1vTp0yXJ6zB/sdLOtfj000917733yuPxKDg4WPfcc4/+9a9/edXMmTNHPj4+Wr9+vVJTUxUeHq7q1avrgQce0OHDh3+093MVn8fxxRdf6JFHHlFISIjCw8P14osvyhijAwcOqFevXvJ4PIqMjNTvf/97r8fn5+drzJgxatu2rUJCQlS9enV17dpVq1evdmr27dun8PBwSdK4ceOceSje9+TkZAUHB2vPnj366U9/qho1aqh///7OsnPPyUlLS5Ovr69Wrlzp1cfgwYPlcrn0n//8p0z77ePjo9mzZ+vkyZNOP3PmzHGWDR06VH/+85+d592yZcskSa+88oo6d+6sWrVqKSgoSG3bttX7779fYv2nT5/WL3/5S9WuXVs1atTQ/fffr2+++eaSzsMq7TGffPKJ2rdvr8DAQN1444168803S33sihUr1KVLF4WGhio4OFhNmzbVr3/963Jtv1hhYaFyc3Mv6bGomjiSgyrlwQcf1BdffKG//OUveu2111S7dm1JUnh4uAYNGqS5c+fqoYce0tNPP62NGzdq4sSJ+vzzz7Vo0SKv9ezevVt9+vTRk08+qaSkJM2ePVs/+9nPtGzZMv3kJz8pcz/jxo3T2LFj1blzZ40fP14ul0sbN27UqlWr1L17d0k/vAiPGzdOcXFxGjJkiHbt2qU33nhDmzdv1vr1673+p//dd9/p3nvvVd++ffXII48oIiLCWTZ79mydOXNGgwcPltvtVlhYmLZv367bb79ddevW1ahRo1S9enUtWLBAiYmJ+uCDD/TAAw9csPeFCxfq1KlTGjJkiGrVqqVNmzbp9ddf19dff62FCxdKkn7xi1/o4MGDWrFihf74xz/+6Hxs375dXbt2lcfj0XPPPaeAgAC9+eabuvPOO7V27Vp17NjRq37YsGGqWbOm0tLStG/fPk2ZMkVDhw7V/Pnzy/wzKNanTx/dcsstmjRpktLT0/Wb3/xGYWFhevPNN3X33Xfrd7/7nf785z/rmWeeUfv27XXHHXdIknJzczVr1iz169dPTzzxhE6cOKF33nlH8fHx2rRpk9q0aaPw8HC98cYbGjJkiB544AE9+OCDkqRWrVo52y8oKFB8fLy6dOmiV155pdQjcJL0wgsv6KOPPtLAgQO1bds21ahRQ8uXL9fbb7+tCRMmqHXr1mXa3z/+8Y966623tGnTJudtmM6dOzvLV61apQULFmjo0KGqXbu2E7SmTp2q+++/X/3791d+fr7mzZunn/3sZ1q8eLESEhKcxycnJ2vBggV69NFH1alTJ61du9Zr+eXYtm2bunfvrvDwcI0dO1YFBQVKS0vzer5LPzyfevbsqVatWmn8+PFyu9368ssvtX79+nJv89SpU/J4PDp16pRq1qypfv366Xe/+52Cg4OvyD7hGmWAKubll182kszevXudsa1btxpJZtCgQV61zzzzjJFkVq1a5Yw1aNDASDIffPCBM5aTk2NuuOEGc+utt5a5j927dxtfX1/zwAMPmMLCQq9lRUVFxhhjDh06ZFwul+nevbtXzbRp04wk8+677zpj3bp1M5LMzJkzvda1d+9eI8l4PB5z6NAhr2X33HOPadmypTlz5ozXtjt37mxuuukmZ2z16tVGklm9erUzdurUqRL7NHHiROPj42P+97//OWMpKSnmQn8qJJm0tDTnfmJionG5XGbPnj3O2MGDB02NGjXMHXfc4YzNnj3bSDJxcXHOXBljzIgRI4yfn585fvx4qdsrTVpampFkBg8e7IwVFBSYevXqGR8fHzNp0iRn/NixYyYoKMgkJSV51ebl5Xmt89ixYyYiIsI8/vjjztjhw4dL7G+xpKQkI8mMGjWq1GUNGjTwGtu2bZtxuVxm0KBB5tixY6Zu3bqmXbt25uzZs2Xe7+J1V69evcS4JOPr62u2b99eYtn5P/f8/HzTokULc/fddztjmZmZRpIZPny4V21ycvIF5+BiSnueBAYGej3PduzYYfz8/Lyea6+99pqRZA4fPlyu7Z1v1KhRZuTIkWb+/PnmL3/5i/Pzuv3228s956haeLsKVliyZIkkKTU11Wv86aefliSlp6d7jUdFRXkd5fB4PHrsscf06aefKisrq0zb/PDDD1VUVKQxY8bI19f7V6n4LZ1//OMfys/P1/Dhw71qnnjiCXk8nhJ9ud1uDRgwoNTt9e7d23nLRJKOHj2qVatW6ec//7lOnDihI0eO6MiRI/ruu+8UHx+v3bt365tvvrlg/0FBQc6/T548qSNHjqhz584yxujTTz8t0xycq7CwUB9//LESExPVuHFjZ/yGG27Qww8/rE8++aTEWwWDBw/2evura9euKiws1P/+979yb3/QoEHOv/38/NSuXTsZYzRw4EBnPDQ0VE2bNtVXX33lVVt8TktRUZGOHj2qgoICtWvXTlu2bClXD0OGDClTXYsWLTRu3DjNmjVL8fHxOnLkiObOnXtFT87t1q2bYmJiSoyf+3M/duyYcnJy1LVrV699LX5r66mnnvJ67LBhwy67r8LCQi1fvlyJiYmqX7++M37LLbcoPj7eq7b4woK//e1vl3Xy9sSJEzVp0iT9/Oc/V9++fTVnzhz99re/1fr160t9qw72IOTACv/73//k6+urJk2aeI1HRkYqNDS0xItmkyZNSnwex8033yzph/MvymLPnj3y9fUt9YXk3L4kqWnTpl7jLpdLjRs3LtFX3bp1L3gSaaNGjbzuf/nllzLG6MUXX1R4eLjXLS0tTdIPJ6ZeyP79+5WcnKywsDAFBwcrPDxc3bp1kyTl5ORc8HEXcvjwYZ06darEvko/vIAVFRXpwIEDXuPnvshJUs2aNSX98OJbXuevKyQkRIGBgc5bmueOn7/+uXPnqlWrVgoMDFStWrUUHh6u9PT0cs2Dv7+/6tWrV+b6Z599Vq1bt9amTZuUlpZ20efRpTj/+VJs8eLF6tSpkwIDAxUWFua8FXfuvhb/Pp2/jvN/vy7F4cOHdfr0ad10000llp3/3OnTp49uv/12DRo0SBEREerbt68WLFhwRa5WGzFihHx9ffWPf/zjsteFaxfn5MAqVf2DxM79X/aPLSv+Q//MM8+U+B9wsQu9KBUWFuonP/mJjh49qpEjR6pZs2aqXr26vvnmGyUnJ1fYJc/n8/PzK3XcGHNF1lWW9f/pT39ScnKyEhMT9eyzz6pOnTry8/PTxIkTtWfPnjJv3+12lziidzFfffWVdu/eLemHc1SutNKeS//85z91//3364477tCMGTN0ww03KCAgQLNnz9Z77713xXu4XEFBQVq3bp1Wr16t9PR0LVu2TPPnz9fdd9+tjz/++II/37Kuu1atWjp69OgV7BjXGkIOqpzSgkyDBg1UVFSk3bt365ZbbnHGs7Ozdfz4cTVo0MCrvvgoyLnr+uKLLySpzJ9Oe+ONN6qoqEg7duy44CfNFm93165dXm/h5Ofna+/evYqLiyvTtkpTvL6AgIByr2fbtm364osvNHfuXD322GPO+IoVK0rUljU4hoeHq1q1atq1a1eJZTt37pSvr6+io6PL1efV8P7776tx48b661//6rWvxUfDil3JAF1UVKTk5GR5PB4NHz5cL730kh566CHnhOaK8sEHHygwMFDLly+X2+12xmfPnu1VV/z7tHfvXq8jLl9++eVl9xAeHq6goCAn4J2rtOeOr6+v7rnnHt1zzz169dVX9dJLL+n555/X6tWrL+v3p/gt3nPfAoZ9eLsKVU716tUlyesS7J/+9KeSpClTpnjVvvrqq5JU4qqQgwcPel1xlZubq//3//6f2rRpo8jIyDL1kZiYKF9fX40fP77EkY/iIwVxcXFyuVz6wx/+4HX04J133lFOTs5lXa1Sp04d3XnnnXrzzTf17bffllh+sUuxi/8HfG5PxhhNnTq1RG1p832hdXbv3l1/+9vfvN7yy87O1nvvvacuXbrI4/FcdB2VobS52LhxozIyMrzqiq+WuhKftP3qq69qw4YNeuuttzRhwgR17txZQ4YM0ZEjRy573Rfj5+cnHx8fFRYWOmP79u3Thx9+6FVXfGRwxowZXuOvv/76FekhPj5eH374ofbv3++Mf/7551q+fLlXbWlHWYr/Q3H+R0NcyJkzZ3TixIkS4xMmTJAxRj169ChH96hqOJKDKqdt27aSpOeff159+/ZVQECA7rvvPiUlJemtt97S8ePH1a1bN23atElz585VYmKi7rrrLq913HzzzRo4cKA2b96siIgIvfvuu8rOzi7xP9qLadKkiZ5//nlNmDBBXbt21YMPPii3263NmzcrKipKEydOVHh4uEaPHq1x48apR48euv/++7Vr1y7NmDFD7du3v+wPJ5s+fbq6dOmili1b6oknnlDjxo2VnZ2tjIwMff311xf8zJVmzZrpxhtv1DPPPKNvvvlGHo9HH3zwQannwhTP9y9/+UvFx8fLz89Pffv2LXW9v/nNb5zPNXnqqafk7++vN998U3l5eZo8efJl7WtF6dmzp/7617/qgQceUEJCgvbu3auZM2cqJiZG33//vVMXFBSkmJgYzZ8/XzfffLPCwsLUokULtWjRolzb+/zzz/Xiiy8qOTlZ9913n6QfPjeoTZs2euqpp7RgwYIrun/nSkhI0KuvvqoePXro4Ycf1qFDhzR9+nQ1adJE//3vf526tm3bqnfv3poyZYq+++475xLy4qOdl3tUa9y4cVq2bJm6du2qp556SgUFBXr99dfVvHlzrz7Gjx+vdevWKSEhQQ0aNNChQ4c0Y8YM1atXT126dCnTtrKysnTrrbeqX79+ztc4LF++XEuWLFGPHj3Uq1evy9oXXOMq56Iu4PJMmDDB1K1b1/j6+jqXk589e9aMGzfONGrUyAQEBJjo6GgzevRor8urjfnhEvKEhASzfPly06pVK+N2u02zZs3MwoULL6mXd99919x6663G7XabmjVrmm7dupkVK1Z41UybNs00a9bMBAQEmIiICDNkyBBz7Ngxr5pu3bqZ5s2bl1h/8SXkL7/8cqnb37Nnj3nsscdMZGSkCQgIMHXr1jU9e/Y077//vlNT2iXkO3bsMHFxcSY4ONjUrl3bPPHEE+Y///mPkWRmz57t1BUUFJhhw4aZ8PBw4+Pj43WJr0q5nHjLli0mPj7eBAcHm2rVqpm77rrLbNiwwaum+BLyzZs3e42X1uePKb6E/PzLjC90efX581xUVGReeukl06BBA+N2u82tt95qFi9eXOql3xs2bDBt27Y1LpfLa98vtK3iZcXrKSgoMO3btzf16tUrcZn81KlTjSQzf/78Mu/7xS4hT0lJKfUx77zzjrnpppuc5/3s2bOdOTzXyZMnTUpKigkLCzPBwcEmMTHR7Nq1y0jyuiy/LEp7nqxdu9aZy8aNG5uZM2eW6GPlypWmV69eJioqyrhcLhMVFWX69etnvvjiizJv+9ixY+aRRx4xTZo0MdWqVTNut9s0b97cvPTSSyY/P79c+4Gqx8eYSzjDD6jCGjZsqBYtWmjx4sWV3QpQpWzdulW33nqr/vSnPzmf6AxcyzgnBwBQwrlf71FsypQp8vX1dT4tGrjWcU4OUIof+0DAoKAgvsG4gn3//fde58SUJjw8/LIuI75WHT582Ovk4PO5XC6FhYVVaA+TJ09WZmam7rrrLvn7+2vp0qVaunSpBg8erOjoaBUWFv7o94wFBwdX6NcmXAvzhGtcZb9fBlxtxefkXIyki97O/VoAVIzi8zMudjv3qz1sUvzVIxe6devWrcJ7+Pjjj83tt99uatasaQICAsyNN95oxo4d63wNQvG5Yhe7lffrH8rrWpgnXNs4JwcoxY99CmpUVNQV/4RaePvqq6+8vn6hNF26dFFgYOBV6ujqWb9+falvFxWrWbOmc9VbZTlz5ow++eSTi9Y0btzY6/OhrrSqME+oXIQcAABgJU48BgAAVrquTzwuKirSwYMHVaNGjSr/nUcAAFwvjDE6ceKEoqKiLvqdcdd1yDl48OA1+V06AADgxx04cED16tW74PLrOuTUqFFD0g+TdC1+pw4AACgpNzdX0dHRzuv4hVzXIaf4LSqPx0PIAQCgivmxU0048RgAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASv6V3QAAVJSzyz7xuh/Qo0sldQKgMnAkBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVrqskDNp0iT5+Pho+PDhztiZM2eUkpKiWrVqKTg4WL1791Z2drbX4/bv36+EhARVq1ZNderU0bPPPquCggKvmjVr1ui2226T2+1WkyZNNGfOnBLbnz59uho2bKjAwEB17NhRmzZtupzdAQAAFrnkkLN582a9+eabatWqldf4iBEj9NFHH2nhwoVau3atDh48qAcffNBZXlhYqISEBOXn52vDhg2aO3eu5syZozFjxjg1e/fuVUJCgu666y5t3bpVw4cP16BBg7R8+XKnZv78+UpNTVVaWpq2bNmi1q1bKz4+XocOHbrUXQIAADYxl+DEiRPmpptuMitWrDDdunUzv/rVr4wxxhw/ftwEBASYhQsXOrWff/65kWQyMjKMMcYsWbLE+Pr6mqysLKfmjTfeMB6Px+Tl5RljjHnuuedM8+bNvbbZp08fEx8f79zv0KGDSUlJce4XFhaaqKgoM3HixDLvR05OjpFkcnJyyr7zAKqM/KX/9LoBsENZX78v6UhOSkqKEhISFBcX5zWemZmps2fPeo03a9ZM9evXV0ZGhiQpIyNDLVu2VEREhFMTHx+v3Nxcbd++3ak5f93x8fHOOvLz85WZmelV4+vrq7i4OKemNHl5ecrNzfW6AQAAO/mX9wHz5s3Tli1btHnz5hLLsrKy5HK5FBoa6jUeERGhrKwsp+bcgFO8vHjZxWpyc3N1+vRpHTt2TIWFhaXW7Ny584K9T5w4UePGjSvbjgIAgCqtXEdyDhw4oF/96lf685//rMDAwIrqqcKMHj1aOTk5zu3AgQOV3RIAAKgg5Qo5mZmZOnTokG677Tb5+/vL399fa9eu1R/+8Af5+/srIiJC+fn5On78uNfjsrOzFRkZKUmKjIwscbVV8f0fq/F4PAoKClLt2rXl5+dXak3xOkrjdrvl8Xi8bgAAwE7lCjn33HOPtm3bpq1btzq3du3aqX///s6/AwICtHLlSucxu3bt0v79+xUbGytJio2N1bZt27yuglqxYoU8Ho9iYmKcmnPXUVxTvA6Xy6W2bdt61RQVFWnlypVODQAAuL6V65ycGjVqqEWLFl5j1atXV61atZzxgQMHKjU1VWFhYfJ4PBo2bJhiY2PVqVMnSVL37t0VExOjRx99VJMnT1ZWVpZeeOEFpaSkyO12S5KefPJJTZs2Tc8995wef/xxrVq1SgsWLFB6erqz3dTUVCUlJaldu3bq0KGDpkyZopMnT2rAgAGXNSEAAMAO5T7x+Me89tpr8vX1Ve/evZWXl6f4+HjNmDHDWe7n56fFixdryJAhio2NVfXq1ZWUlKTx48c7NY0aNVJ6erpGjBihqVOnql69epo1a5bi4+Odmj59+ujw4cMaM2aMsrKy1KZNGy1btqzEycgAAOD65GOMMZXdRGXJzc1VSEiIcnJyOD8HsNDZZZ943Q/o0aWSOgFwJZX19ZvvrgIAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJX8K7sBAKgo+44v9bp/k7pUUicAKgNHcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpXKFnDfeeEOtWrWSx+ORx+NRbGysli5d6iw/c+aMUlJSVKtWLQUHB6t3797Kzs72Wsf+/fuVkJCgatWqqU6dOnr22WdVUFDgVbNmzRrddtttcrvdatKkiebMmVOil+nTp6thw4YKDAxUx44dtWnTpvLsCgAAsFy5Qk69evU0adIkZWZm6t///rfuvvtu9erVS9u3b5ckjRgxQh999JEWLlyotWvX6uDBg3rwwQedxxcWFiohIUH5+fnasGGD5s6dqzlz5mjMmDFOzd69e5WQkKC77rpLW7du1fDhwzVo0CAtX77cqZk/f75SU1OVlpamLVu2qHXr1oqPj9ehQ4cudz4AAIAlfIwx5nJWEBYWppdfflkPPfSQwsPD9d577+mhhx6SJO3cuVO33HKLMjIy1KlTJy1dulQ9e/bUwYMHFRERIUmaOXOmRo4cqcOHD8vlcmnkyJFKT0/XZ5995myjb9++On78uJYtWyZJ6tixo9q3b69p06ZJkoqKihQdHa1hw4Zp1KhRZe49NzdXISEhysnJkcfjuZxpAHAN2j3vea/7N/X9bSV1AuBKKuvr9yWfk1NYWKh58+bp5MmTio2NVWZmps6ePau4uDinplmzZqpfv74yMjIkSRkZGWrZsqUTcCQpPj5eubm5ztGgjIwMr3UU1xSvIz8/X5mZmV41vr6+iouLc2ouJC8vT7m5uV43AABgp3KHnG3btik4OFhut1tPPvmkFi1apJiYGGVlZcnlcik0NNSrPiIiQllZWZKkrKwsr4BTvLx42cVqcnNzdfr0aR05ckSFhYWl1hSv40ImTpyokJAQ5xYdHV3e3QcAAFVEuUNO06ZNtXXrVm3cuFFDhgxRUlKSduzYURG9XXGjR49WTk6Ocztw4EBltwQAACqIf3kf4HK51KRJE0lS27ZttXnzZk2dOlV9+vRRfn6+jh8/7nU0Jzs7W5GRkZKkyMjIEldBFV99dW7N+VdkZWdny+PxKCgoSH5+fvLz8yu1pngdF+J2u+V2u8u7ywAAoAq67M/JKSoqUl5entq2bauAgACtXLnSWbZr1y7t379fsbGxkqTY2Fht27bN6yqoFStWyOPxKCYmxqk5dx3FNcXrcLlcatu2rVdNUVGRVq5c6dQAAACU60jO6NGjde+996p+/fo6ceKE3nvvPa1Zs0bLly9XSEiIBg4cqNTUVIWFhcnj8WjYsGGKjY1Vp06dJEndu3dXTEyMHn30UU2ePFlZWVl64YUXlJKS4hxhefLJJzVt2jQ999xzevzxx7Vq1SotWLBA6enpTh+pqalKSkpSu3bt1KFDB02ZMkUnT57UgAEDruDUAACAqqxcIefQoUN67LHH9O233yokJEStWrXS8uXL9ZOf/ESS9Nprr8nX11e9e/dWXl6e4uPjNWPGDOfxfn5+Wrx4sYYMGaLY2FhVr15dSUlJGj9+vFPTqFEjpaena8SIEZo6darq1aunWbNmKT4+3qnp06ePDh8+rDFjxigrK0tt2rTRsmXLSpyMDAAArl+X/Tk5VRmfkwPYjc/JAexU4Z+TAwAAcC0j5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYqVwhZ+LEiWrfvr1q1KihOnXqKDExUbt27fKqOXPmjFJSUlSrVi0FBwerd+/eys7O9qrZv3+/EhISVK1aNdWpU0fPPvusCgoKvGrWrFmj2267TW63W02aNNGcOXNK9DN9+nQ1bNhQgYGB6tixozZt2lSe3QEAABYrV8hZu3atUlJS9K9//UsrVqzQ2bNn1b17d508edKpGTFihD766CMtXLhQa9eu1cGDB/Xggw86ywsLC5WQkKD8/Hxt2LBBc+fO1Zw5czRmzBinZu/evUpISNBdd92lrVu3avjw4Ro0aJCWL1/u1MyfP1+pqalKS0vTli1b1Lp1a8XHx+vQoUOXMx8AAMASPsYYc6kPPnz4sOrUqaO1a9fqjjvuUE5OjsLDw/Xee+/poYcekiTt3LlTt9xyizIyMtSpUyctXbpUPXv21MGDBxURESFJmjlzpkaOHKnDhw/L5XJp5MiRSk9P12effeZsq2/fvjp+/LiWLVsmSerYsaPat2+vadOmSZKKiooUHR2tYcOGadSoUWXqPzc3VyEhIcrJyZHH47nUaQBwjdo973mv+zf1/W0ldQLgSirr6/dlnZOTk5MjSQoLC5MkZWZm6uzZs4qLi3NqmjVrpvr16ysjI0OSlJGRoZYtWzoBR5Li4+OVm5ur7du3OzXnrqO4pngd+fn5yszM9Krx9fVVXFycU1OavLw85ebmet0AAICdLjnkFBUVafjw4br99tvVokULSVJWVpZcLpdCQ0O9aiMiIpSVleXUnBtwipcXL7tYTW5urk6fPq0jR46osLCw1JridZRm4sSJCgkJcW7R0dHl33EAAFAlXHLISUlJ0WeffaZ58+ZdyX4q1OjRo5WTk+PcDhw4UNktAQCACuJ/KQ8aOnSoFi9erHXr1qlevXrOeGRkpPLz83X8+HGvoznZ2dmKjIx0as6/Cqr46qtza86/Iis7O1sej0dBQUHy8/OTn59fqTXF6yiN2+2W2+0u/w4DAIAqp1xHcowxGjp0qBYtWqRVq1apUaNGXsvbtm2rgIAArVy50hnbtWuX9u/fr9jYWElSbGystm3b5nUV1IoVK+TxeBQTE+PUnLuO4pridbhcLrVt29arpqioSCtXrnRqAADA9a1cR3JSUlL03nvv6W9/+5tq1KjhnP8SEhKioKAghYSEaODAgUpNTVVYWJg8Ho+GDRum2NhYderUSZLUvXt3xcTE6NFHH9XkyZOVlZWlF154QSkpKc5RlieffFLTpk3Tc889p8cff1yrVq3SggULlJ6e7vSSmpqqpKQktWvXTh06dNCUKVN08uRJDRgw4ErNDQAAqMLKFXLeeOMNSdKdd97pNT579mwlJydLkl577TX5+vqqd+/eysvLU3x8vGbMmOHU+vn5afHixRoyZIhiY2NVvXp1JSUlafz48U5No0aNlJ6erhEjRmjq1KmqV6+eZs2apfj4eKemT58+Onz4sMaMGaOsrCy1adNGy5YtK3EyMgAAuD5d1ufkVHV8Tg5gNz4nB7DTVfmcHAAAgGsVIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASuUOOevWrdN9992nqKgo+fj46MMPP/RabozRmDFjdMMNNygoKEhxcXHavXu3V83Ro0fVv39/eTwehYaGauDAgfr++++9av773/+qa9euCgwMVHR0tCZPnlyil4ULF6pZs2YKDAxUy5YttWTJkvLuDgAAsFS5Q87JkyfVunVrTZ8+vdTlkydP1h/+8AfNnDlTGzduVPXq1RUfH68zZ844Nf3799f27du1YsUKLV68WOvWrdPgwYOd5bm5uerevbsaNGigzMxMvfzyyxo7dqzeeustp2bDhg3q16+fBg4cqE8//VSJiYlKTEzUZ599Vt5dAgAAFvIxxphLfrCPjxYtWqTExERJPxzFiYqK0tNPP61nnnlGkpSTk6OIiAjNmTNHffv21eeff66YmBht3rxZ7dq1kyQtW7ZMP/3pT/X1118rKipKb7zxhp5//nllZWXJ5XJJkkaNGqUPP/xQO3fulCT16dNHJ0+e1OLFi51+OnXqpDZt2mjmzJll6j83N1chISHKycmRx+O51GkAcI3aPe95r/s39f1tJXUC4Eoq6+v3FT0nZ+/evcrKylJcXJwzFhISoo4dOyojI0OSlJGRodDQUCfgSFJcXJx8fX21ceNGp+aOO+5wAo4kxcfHa9euXTp27JhTc+52imuKt1OavLw85ebmet0AAICdrmjIycrKkiRFRER4jUdERDjLsrKyVKdOHa/l/v7+CgsL86opbR3nbuNCNcXLSzNx4kSFhIQ4t+jo6PLuIgAAqCKuq6urRo8erZycHOd24MCBym4JAABUkCsaciIjIyVJ2dnZXuPZ2dnOssjISB06dMhreUFBgY4ePepVU9o6zt3GhWqKl5fG7XbL4/F43QAAgJ2uaMhp1KiRIiMjtXLlSmcsNzdXGzduVGxsrCQpNjZWx48fV2ZmplOzatUqFRUVqWPHjk7NunXrdPbsWadmxYoVatq0qWrWrOnUnLud4pri7QAAgOtbuUPO999/r61bt2rr1q2SfjjZeOvWrdq/f798fHw0fPhw/eY3v9Hf//53bdu2TY899piioqKcK7BuueUW9ejRQ0888YQ2bdqk9evXa+jQoerbt6+ioqIkSQ8//LBcLpcGDhyo7du3a/78+Zo6dapSU1OdPn71q19p2bJl+v3vf6+dO3dq7Nix+ve//62hQ4de/qwAAICqz5TT6tWrjaQSt6SkJGOMMUVFRebFF180ERERxu12m3vuucfs2rXLax3fffed6devnwkODjYej8cMGDDAnDhxwqvmP//5j+nSpYtxu92mbt26ZtKkSSV6WbBggbn55puNy+UyzZs3N+np6eXal5ycHCPJ5OTklG8SAFQJX/zl1143AHYo6+v3ZX1OTlXH5+QAduNzcgA7Vcrn5AAAAFwrCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArORf2Q0AwJWWV3BGSzNnaW/h5wozQergV1/+PvyfDrjeVPnf+unTp6thw4YKDAxUx44dtWnTpspuCUAlmr0mTf3Sb9fc7He1rsY+fej5XM9XW67lBV9UdmsArrIqHXLmz5+v1NRUpaWlacuWLWrdurXi4+N16NChym4NQCWYvSZNf8/5SEbGa9xIWlljj2avSaucxgBUiiodcl599VU98cQTGjBggGJiYjRz5kxVq1ZN7777bmW3BuAqyys4o49yFv9wx+e8hf///cU5i5VXcOaq9gWg8lTZc3Ly8/OVmZmp0aNHO2O+vr6Ki4tTRkZGqY/Jy8tTXl6ecz8nJ0eSlJubW7HNAqhwi//9pvJPF/xo3QfrXlfPdr+4Ch0BqCjFr9vGmIvWVdmQc+TIERUWFioiIsJrPCIiQjt37iz1MRMnTtS4ceNKjEdHR1dIjwCuPel6TtJzld0GgCvgxIkTCgkJueDyKhtyLsXo0aOVmprq3C8qKtLRo0dVq1Yt+ficf3z7+pKbm6vo6GgdOHBAHo+nstuxFvN89TDXVwfzfHUwz96MMTpx4oSioqIuWldlQ07t2rXl5+en7Oxsr/Hs7GxFRkaW+hi32y232+01FhoaWlEtVkkej4dfoKuAeb56mOurg3m+Opjn/3OxIzjFquyJxy6XS23bttXKlSudsaKiIq1cuVKxsbGV2BkAALgWVNkjOZKUmpqqpKQktWvXTh06dNCUKVN08uRJDRgwoLJbAwAAlaxKh5w+ffro8OHDGjNmjLKystSmTRstW7asxMnI+HFut1tpaWkl3s7DlcU8Xz3M9dXBPF8dzPOl8TE/dv0VAABAFVRlz8kBAAC4GEIOAACwEiEHAABYiZADAACsRMgBAABWIuRcx44ePar+/fvL4/EoNDRUAwcO1Pfff1+mxxpjdO+998rHx0cffvhhxTZaxZV3no8ePaphw4apadOmCgoKUv369fXLX/7S+UJZ/J/p06erYcOGCgwMVMeOHbVp06aL1i9cuFDNmjVTYGCgWrZsqSVLllylTqu28szz22+/ra5du6pmzZqqWbOm4uLifvTngh+U9/lcbN68efLx8VFiYmLFNlgFEXKuY/3799f27du1YsUKLV68WOvWrdPgwYPL9NgpU6Zc99/3VVblneeDBw/q4MGDeuWVV/TZZ59pzpw5WrZsmQYOHHgVu772zZ8/X6mpqUpLS9OWLVvUunVrxcfH69ChQ6XWb9iwQf369dPAgQP16aefKjExUYmJifrss8+ucudVS3nnec2aNerXr59Wr16tjIwMRUdHq3v37vrmm2+ucudVS3nnudi+ffv0zDPPqGvXrlep0yrG4Lq0Y8cOI8ls3rzZGVu6dKnx8fEx33zzzUUf++mnn5q6deuab7/91kgyixYtquBuq67LmedzLViwwLhcLnP27NmKaLNK6tChg0lJSXHuFxYWmqioKDNx4sRS63/+85+bhIQEr7GOHTuaX/ziFxXaZ1VX3nk+X0FBgalRo4aZO3duRbVohUuZ54KCAtO5c2cza9Ysk5SUZHr16nUVOq1aOJJzncrIyFBoaKjatWvnjMXFxcnX11cbN2684ONOnTqlhx9+WNOnT7/gF6Hi/1zqPJ8vJydHHo9H/v5V+kPKr5j8/HxlZmYqLi7OGfP19VVcXJwyMjJKfUxGRoZXvSTFx8dfsB6XNs/nO3XqlM6ePauwsLCKarPKu9R5Hj9+vOrUqcNR3ovgL+Z1KisrS3Xq1PEa8/f3V1hYmLKysi74uBEjRqhz587q1atXRbdohUud53MdOXJEEyZMKPNbideDI0eOqLCwsMRXuERERGjnzp2lPiYrK6vU+rL+HK5HlzLP5xs5cqSioqJKBEz8n0uZ508++UTvvPOOtm7dehU6rLo4kmOZUaNGycfH56K3sv5xOt/f//53rVq1SlOmTLmyTVdBFTnP58rNzVVCQoJiYmI0duzYy28cuIomTZqkefPmadGiRQoMDKzsdqxx4sQJPfroo3r77bdVu3btym7nmsaRHMs8/fTTSk5OvmhN48aNFRkZWeKEtoKCAh09evSCb0OtWrVKe/bsUWhoqNd479691bVrV61Zs+YyOq9aKnKei504cUI9evRQjRo1tGjRIgUEBFxu29aoXbu2/Pz8lJ2d7TWenZ19wXmNjIwsVz0ubZ6LvfLKK5o0aZL+8Y9/qFWrVhXZZpVX3nnes2eP9u3bp/vuu88ZKyoqkvTDkeJdu3bpxhtvrNimq4rKPikIlaP4hNh///vfztjy5csvekLst99+a7Zt2+Z1k2SmTp1qvvrqq6vVepVyKfNsjDE5OTmmU6dOplu3bubkyZNXo9Uqp0OHDmbo0KHO/cLCQlO3bt2Lnnjcs2dPr7HY2FhOPP4R5Z1nY4z53e9+Zzwej8nIyLgaLVqhPPN8+vTpEn+Le/XqZe6++26zbds2k5eXdzVbv6YRcq5jPXr0MLfeeqvZuHGj+eSTT8xNN91k+vXr5yz/+uuvTdOmTc3GjRsvuA5xddWPKu885+TkmI4dO5qWLVuaL7/80nz77bfOraCgoLJ245ozb94843a7zZw5c8yOHTvM4MGDTWhoqMnKyjLGGPPoo4+aUaNGOfXr1683/v7+5pVXXjGff/65SUtLMwEBAWbbtm2VtQtVQnnnedKkScblcpn333/f67l74sSJytqFKqG883w+rq4qHSHnOvbdd9+Zfv36meDgYOPxeMyAAQO8/hDt3bvXSDKrV6++4DoIOT+uvPO8evVqI6nU2969eytnJ65Rr7/+uqlfv75xuVymQ4cO5l//+pezrFu3biYpKcmrfsGCBebmm282LpfLNG/e3KSnp1/ljqum8sxzgwYNSn3upqWlXf3Gq5jyPp/PRcgpnY8xxlztt8gAAAAqGldXAQAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBK/x8HzJmO7o4WUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANrNJREFUeJzt3XtcVWXe//83IHuD4gZRhFA8l0Ye84h5KGOkiZoovVPrTjTNO0NnlA7qNInm3OlYYzqJ2kylTlM/D03apHkaj1OSOqiNh7TGLJ0MxFRQNBC4vn/0Y91uQQMVkcvX8/HYj4f7Wp91rWtdbNhv115rbR9jjBEAAIBlfCt7AAAAABWBkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQA9wANmzYIB8fH23YsOGq9uvj46MJEyZc1T5tM2jQIDVq1KjC+n/55ZfVpEkT+fn5qW3bthW2nStR1tfJhAkT5OPjU/EDwg2DkIMqZ/PmzZowYYJOnjxZ2UO5IXz00UcEGUlnzpzRhAkTrnpQvBKrV6/Wc889pzvuuENz587VSy+9VNlDum4VFRVp9uzZatu2rQIDA1W7dm316tVLn332WWUPDRWoWmUPACivzZs3a+LEiRo0aJBCQkIqezjW++ijj5Samlpq0Dl79qyqVbsx/oycOXNGEydOlCTdeeedZV7vT3/6k4qKiipkTOvWrZOvr6/efPNNuVyuCtnG1XA9vE4ef/xxvfPOOxo4cKBGjBih3Nxc7dixQ0ePHq3UcaFi3Rh/nYAq6syZM6pevXqJ9oKCAhUVFVX6G1tAQEClbv96lpubqxo1asjf37/CtnH06FEFBgb+5OugqKhI+fn5lfbzquzXyaJFizR//ny9//77evDBByt1LLi2+LgKVcqECRP07LPPSpIaN24sHx8f+fj46Ouvv1ZBQYEmTZqkpk2byu12q1GjRvr1r3+tvLw8rz4aNWqk++67T6tXr1bbtm0VEBCg6Ohovf/++5c1pr/85S/q1KmTqlevrlq1aqlHjx5avXq1V82sWbN02223ye12KzIyUklJSSU+brvzzjvVsmVLpaenq0ePHqpevbp+/etf6+uvv5aPj49eeeUVTZ8+3dm/vXv3SpL27dunvn37KjQ0VAEBAerQoYP+9re//eS4//GPf+i//uu/1KBBA7ndbkVFRWn06NE6e/asUzNo0CClpqZKkjPX558zUdq5Fjt27NDPf/5zeTweBQUF6e6779ann37qVTNv3jz5+Pjok08+UXJyssLCwlSjRg09+OCDysrK+smxn6/4PI4vvvhC//3f/63g4GCFhYXphRdekDFGhw8f1gMPPCCPx6OIiAj9/ve/91o/Pz9f48ePV/v27RUcHKwaNWqoe/fuWr9+vVPz9ddfKywsTJI0ceJEZx6K933QoEEKCgrSgQMHdO+996pmzZp69NFHnWXnn5OTkpIiX19frV271mscw4YNk8vlKvPHJz4+Ppo7d65yc3Od8cybN89ZNmLECL3zzjvO627lypWSpFdeeUVdu3ZV7dq1FRgYqPbt2+u9994r0f/Zs2f1y1/+UnXq1FHNmjX1i1/8Qt9+++1lnYdV2joff/yxOnbsqICAADVt2lSvv/56qeuuWbNG3bp1U0hIiIKCgtS8eXP9+te/Ltf2p02bpk6dOunBBx9UUVGRcnNzy7U+qjADVCGfffaZGTBggJFkXn31VfP222+bt99+25w+fdokJiYaSaZv374mNTXVDBw40EgyCQkJXn00bNjQ3HLLLSYkJMSMHTvWTJs2zbRq1cr4+vqa1atXl2s8EyZMMJJM165dzcsvv2xmzJhhHnnkETNmzBinJiUlxUgysbGx5rXXXjMjRowwfn5+pmPHjiY/P9+p69mzp4mIiDBhYWFm5MiR5vXXXzdLly41Bw8eNJJMdHS0adKkiZkyZYp59dVXzTfffGN2795tgoODTXR0tPnd735nZs6caXr06GF8fHzM+++/7/S9fv16I8msX7/eaRs5cqS59957zUsvvWRef/11M2TIEOPn52f69u3r1GzevNn87Gc/M5KcuX777bed5ZJMSkqK83z37t2mRo0a5qabbjKTJk0yU6ZMMY0bNzZut9t8+umnTt3cuXONJNOuXTvTq1cv89prr5mnn37a+Pn5mYcffrhcP4Pi+W3btq0ZMGCAmTVrlomPjzeSzLRp00zz5s3N8OHDzaxZs8wdd9xhJJmNGzc662dlZZmbbrrJJCcnm9mzZ5upU6ea5s2bG39/f7Njxw5jjDGnT582s2fPNpLMgw8+6MzDZ599ZowxJjEx0bjdbtO0aVOTmJho5syZY/785z87yxo2bOhsLz8/37Rr1840bNjQ5OTkGGOMWblypZFkJk2aVOb9fvvtt0337t2N2+12xnPgwAHn53LrrbeasLAwM3HiRJOamursS/369c1TTz1lZs6caaZNm2Y6depkJJlly5Z59f/www8bSeaxxx4zqamp5uGHHzZt2rQp8TMviwvX+de//mUCAwNNgwYNzOTJk82kSZNMeHi4ad26tTn/bWn37t3G5XKZDh06mBkzZpg5c+aYZ555xvTo0aPM287OzjY+Pj4mKSnJjBs3zgQFBRlJpnHjxmbhwoXl2g9UPYQcVDkvv/yykWQOHjzotO3cudNIMkOHDvWqfeaZZ4wks27dOqetYcOGRpL561//6rRlZ2ebm266ybRr167M4/jyyy+Nr6+vefDBB01hYaHXsqKiImOMMUePHjUul8v07t3bq2bmzJlGknnrrbectp49expJZs6cOV59FYccj8djjh496rXs7rvvNq1atTI//PCD17a7du1qbr75ZqettJBz5syZEvs0efJk4+PjY7755hunLSkpyVzs/0MXvnklJCQYl8vlvNkaY8yRI0dMzZo1vd6YikNObGysM1fGGDN69Gjj5+dnTp48Wer2SlMccoYNG+a0FRQUmPr16xsfHx8zZcoUp/3EiRMmMDDQJCYmetXm5eV59XnixAkTHh5uHn/8cactKyvrom/wxQF77NixpS47P+QYY8yuXbuMy+UyQ4cONSdOnDD16tUzHTp0MOfOnSvzfhf3XaNGjRLtkoyvr6/Zs2dPiWUX/tzz8/NNy5YtTa9evZy29PR0I8mMGjXKq3bQoEFXJeQkJCSYgIAAr9fZ3r17jZ+fn9dr7dVXXzWSTFZWVrm2d77t27cbSaZ27domPDzczJo1y7zzzjumU6dOxsfHx6xYseKy+8b1j4+rYIWPPvpIkpScnOzV/vTTT0uSli9f7tUeGRnp9dm8x+PRwIEDtWPHDmVkZJRpm0uXLlVRUZHGjx8vX1/vX6Xij3T+/ve/Kz8/X6NGjfKqeeKJJ+TxeEqMy+12a/DgwaVur0+fPs5HJpJ0/PhxrVu3Tg8//LBOnTqlY8eO6dixY/r+++8VFxenL7/8Ut9+++1Fxx8YGOj8Ozc3V8eOHVPXrl1ljNGOHTvKNAfnKyws1OrVq5WQkKAmTZo47TfddJMeeeQRffzxx8rJyfFaZ9iwYV4ff3Xv3l2FhYX65ptvyr39oUOHOv/28/NThw4dZIzRkCFDnPaQkBA1b95cX331lVdt8TktRUVFOn78uAoKCtShQwdt3769XGMYPnx4mepatmypiRMn6o033lBcXJyOHTum+fPnX9WTc3v27Kno6OgS7ef/3E+cOKHs7Gx1797da1+LP9p66qmnvNYdOXLkFY+rsLBQq1atUkJCgho0aOC033rrrYqLi/OqLb6w4IMPPrjsk7dPnz4tSfr+++/1wQcfaPjw4XrkkUe0du1a1a5dW7/97W8vb0dQJRByYIVvvvlGvr6+atasmVd7RESEQkJCSrxpNmvWrMT9OG655RZJP55/URYHDhyQr69vqW8k549Lkpo3b+7V7nK51KRJkxLjqlev3kVPIm3cuLHX83//+98yxuiFF15QWFiY1yMlJUWSLnnlyKFDhzRo0CCFhoYqKChIYWFh6tmzpyQpOzv7outdTFZWls6cOVNiX6Uf38CKiop0+PBhr/bz3+QkqVatWpJ+fPMtrwv7Cg4OVkBAgOrUqVOi/cL+58+fr9atWysgIEC1a9dWWFiYli9fXq55qFatmurXr1/m+meffVZt2rTR1q1blZKScsnX0eW48PVSbNmyZerSpYsCAgIUGhqqsLAwzZ4922tfi3+fLuzjwt+vy5GVlaWzZ8/q5ptvLrHswtdOv379dMcdd2jo0KEKDw9X//79tWjRonIFnuJQ17hxY3Xu3NlpDwoK0v3336+tW7eqoKDgMvcG1zuuroJVqvqNxM7/X/ZPLSv+Q//MM8+U+B9wsYu9KRUWFupnP/uZjh8/rjFjxqhFixaqUaOGvv32Ww0aNKjCLnm+kJ+fX6ntxpir0ldZ+v/LX/6iQYMGKSEhQc8++6zq1q0rPz8/TZ48WQcOHCjz9t1ud4kjepfy1Vdf6csvv5Qk7dq1q8zrlVVpr6V//OMf+sUvfqEePXpo1qxZuummm+Tv76+5c+fq3XffvepjuFKBgYHatGmT1q9fr+XLl2vlypVauHChevXqpdWrV1/053u+yMhISVJ4eHiJZXXr1tW5c+eUm5ur4ODgqz5+VD5CDqqc0oJMw4YNVVRUpC+//FK33nqr056ZmamTJ0+qYcOGXvXFR0HO7+uLL76QpDLfnbZp06YqKirS3r17L3qn2eLt7t+/3+sjnPz8fB08eFCxsbFl2lZpivvz9/cvdz+7du3SF198ofnz52vgwIFO+5o1a0rUljU4hoWFqXr16tq/f3+JZfv27ZOvr6+ioqLKNc5r4b333lOTJk30/vvve+1r8dGwYlczQBcVFWnQoEHyeDwaNWqUXnrpJfXt21cPPfTQVdtGaf76178qICBAq1atktvtdtrnzp3rVVf8+3Tw4EGvIy7//ve/r3gMYWFhCgwMdALe+Up77fj6+uruu+/W3XffrWnTpumll17S888/r/Xr15fpdR8ZGamIiIhSP7o9cuSIAgICVLNmzcvbGVz3+LgKVU6NGjUkyesS7HvvvVeSNH36dK/aadOmSZLi4+O92o8cOaIlS5Y4z3NycvTnP/9Zbdu2VURERJnGkZCQIF9fX7344osljnwUHymIjY2Vy+XSH/7wB6+jB2+++aays7NLjKs86tatqzvvvFOvv/66vvvuuxLLL3UpdvH/gM8fkzFGM2bMKFFb2nxfrM/evXvrgw8+8PrILzMzU++++666desmj8dzyT4qQ2lzsWXLFqWlpXnVFd+v6GrcaXvatGnavHmz/vjHP2rSpEnq2rWrhg8frmPHjl1x35fi5+cnHx8fFRYWOm1ff/21li5d6lVXfGRw1qxZXu2vvfbaVRlDXFycli5dqkOHDjntn3/+uVatWuVVe/z48RLrF/+H4sJbQ1xKv379dPjwYa8Qf+zYMX3wwQfq1atXuY7AoWrhSA6qnPbt20uSnn/+efXv31/+/v66//77lZiYqD/+8Y86efKkevbsqa1bt2r+/PlKSEjQXXfd5dXHLbfcoiFDhmjbtm0KDw/XW2+9pczMzBL/o72UZs2a6fnnn9ekSZPUvXt3PfTQQ3K73dq2bZsiIyM1efJkhYWFady4cZo4caLuuece/eIXv9D+/fs1a9YsdezYUf/93/99RXORmpqqbt26qVWrVnriiSfUpEkTZWZmKi0tTf/5z38ues+VFi1aqGnTpnrmmWf07bffyuPx6K9//Wup58IUz/cvf/lLxcXFyc/PT/379y+139/+9rfOfU2eeuopVatWTa+//rry8vI0derUK9rXinLfffc5N4mLj4/XwYMHNWfOHEVHRzsnrUo/fnQSHR2thQsX6pZbblFoaKhatmypli1blmt7n3/+uV544QUNGjRI999/v6Qf7xvUtm1bPfXUU1q0aNFV3b/zxcfHa9q0abrnnnv0yCOP6OjRo0pNTVWzZs30r3/9y6lr3769+vTpo+nTp+v7779Xly5dtHHjRudo55Ue1Zo4caJWrlyp7t2766mnnlJBQYFee+013XbbbV7jePHFF7Vp0ybFx8erYcOGOnr0qGbNmqX69eurW7duZd7euHHjtGjRIvXp00fJyckKDg7WnDlzdO7cOb4Kw3aVdFUXcEUmTZpk6tWrZ3x9fZ3Lyc+dO2cmTpxoGjdubPz9/U1UVJQZN26c1+XVxvx4CXl8fLxZtWqVad26tXG73aZFixZm8eLFlzWWt956y7Rr18643W5Tq1Yt07NnT7NmzRqvmpkzZ5oWLVoYf39/Ex4eboYPH25OnDjhVdOzZ09z2223lei/+BLyl19+udTtHzhwwAwcONBEREQYf39/U69ePXPfffeZ9957z6kp7RLyvXv3mtjYWBMUFGTq1KljnnjiCfPZZ58ZSWbu3LlOXUFBgRk5cqQJCwszPj4+Xpf4qpTLibdv327i4uJMUFCQqV69urnrrrvM5s2bvWqKLyHftm2bV3tp4/wpxZeQX3iZ8cUur75wnouKisxLL71kGjZsaNxut2nXrp1ZtmxZqZd+b9682bRv3964XC6vfb/YtoqXFfdTUFBgOnbsaOrXr1/iMvkZM2YYSeW6d8ulLiFPSkoqdZ0333zT3Hzzzc7rfu7cuc4cni83N9ckJSWZ0NBQExQUZBISEsz+/fuNJK/L8suitNfJxo0bnbls0qSJmTNnTolxrF271jzwwAMmMjLSuFwuExkZaQYMGGC++OKLcm3fmB9/Tx588EHj8XhMYGCg6dWrl9m6dWu5+0HV4mPMZZzhB1RhjRo1UsuWLbVs2bLKHgpQpezcuVPt2rXTX/7yF+eOzsD1jA8iAQAlnP/1HsWmT58uX19f9ejRoxJGBJQf5+QApfipGwIGBgZyyWkFO336tNc5MaUJCwsr02XEVU1WVpbXycEXcrlcCg0NrdAxTJ06Venp6brrrrtUrVo1rVixQitWrNCwYcMUFRWlwsLCn/yesaCgIAUFBVXYGK+HecJ1rrI/LwOuteJzci5F0iUf538tACpG8fkZl3qc/9UeNin+6pGLPXr27FnhY1i9erW54447TK1atYy/v79p2rSpmTBhgvPVE8Xnil3qUd6vfyiv62GecH3jnBygFH//+98vuTwyMvKq36EW3r766iuvr18oTbdu3RQQEHCNRnTtfPLJJ6V+XFSsVq1azlVvleWHH37Qxx9/fMmaJk2aeN0f6mqrCvOEykXIAQAAVuLEYwAAYKUb+sTjoqIiHTlyRDVr1qzy33kEAMCNwhijU6dOKTIy8pJ3rL6hQ86RI0euy+/SAQAAP+3w4cOqX7/+RZff0CGn+EvZDh8+fF1+pw4AACgpJydHUVFRP/nlqjd0yCn+iMrj8RByAACoYn7qVBNOPAYAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwUrXKHgAAVJRzKz/2eu5/T7dKGgmAysCRHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWOmKQs6UKVPk4+OjUaNGOW0//PCDkpKSVLt2bQUFBalPnz7KzMz0Wu/QoUOKj49X9erVVbduXT377LMqKCjwqtmwYYNuv/12ud1uNWvWTPPmzSux/dTUVDVq1EgBAQHq3Lmztm7deiW7AwAALHLZIWfbtm16/fXX1bp1a6/20aNH68MPP9TixYu1ceNGHTlyRA899JCzvLCwUPHx8crPz9fmzZs1f/58zZs3T+PHj3dqDh48qPj4eN11113auXOnRo0apaFDh2rVqlVOzcKFC5WcnKyUlBRt375dbdq0UVxcnI4ePXq5uwQAAGxiLsOpU6fMzTffbNasWWN69uxpfvWrXxljjDl58qTx9/c3ixcvdmo///xzI8mkpaUZY4z56KOPjK+vr8nIyHBqZs+ebTwej8nLyzPGGPPcc8+Z2267zWub/fr1M3Fxcc7zTp06maSkJOd5YWGhiYyMNJMnTy7zfmRnZxtJJjs7u+w7D6DKyF/xD68HADuU9f37so7kJCUlKT4+XrGxsV7t6enpOnfunFd7ixYt1KBBA6WlpUmS0tLS1KpVK4WHhzs1cXFxysnJ0Z49e5yaC/uOi4tz+sjPz1d6erpXja+vr2JjY52a0uTl5SknJ8frAQAA7FStvCssWLBA27dv17Zt20osy8jIkMvlUkhIiFd7eHi4MjIynJrzA07x8uJll6rJycnR2bNndeLECRUWFpZas2/fvouOffLkyZo4cWLZdhQAAFRp5TqSc/jwYf3qV7/SO++8o4CAgIoaU4UZN26csrOzncfhw4cre0gAAKCClCvkpKen6+jRo7r99ttVrVo1VatWTRs3btQf/vAHVatWTeHh4crPz9fJkye91svMzFRERIQkKSIiosTVVsXPf6rG4/EoMDBQderUkZ+fX6k1xX2Uxu12y+PxeD0AAICdyhVy7r77bu3atUs7d+50Hh06dNCjjz7q/Nvf319r16511tm/f78OHTqkmJgYSVJMTIx27drldRXUmjVr5PF4FB0d7dSc30dxTXEfLpdL7du396opKirS2rVrnRoAAHBjK9c5OTVr1lTLli292mrUqKHatWs77UOGDFFycrJCQ0Pl8Xg0cuRIxcTEqEuXLpKk3r17Kzo6Wo899pimTp2qjIwM/eY3v1FSUpLcbrck6cknn9TMmTP13HPP6fHHH9e6deu0aNEiLV++3NlucnKyEhMT1aFDB3Xq1EnTp09Xbm6uBg8efEUTAgAA7FDuE49/yquvvipfX1/16dNHeXl5iouL06xZs5zlfn5+WrZsmYYPH66YmBjVqFFDiYmJevHFF52axo0ba/ny5Ro9erRmzJih+vXr64033lBcXJxT069fP2VlZWn8+PHKyMhQ27ZttXLlyhInIwMAgBuTjzHGVPYgKktOTo6Cg4OVnZ3N+TmAhc6t/Njruf893SppJACuprK+f/PdVQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFK1yh4AAFSUr0+u8Hp+s7pV0kgAVAaO5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASuUKObNnz1br1q3l8Xjk8XgUExOjFStWOMt/+OEHJSUlqXbt2goKClKfPn2UmZnp1cehQ4cUHx+v6tWrq27dunr22WdVUFDgVbNhwwbdfvvtcrvdatasmebNm1diLKmpqWrUqJECAgLUuXNnbd26tTy7AgAALFeukFO/fn1NmTJF6enp+uc//6levXrpgQce0J49eyRJo0eP1ocffqjFixdr48aNOnLkiB566CFn/cLCQsXHxys/P1+bN2/W/PnzNW/ePI0fP96pOXjwoOLj43XXXXdp586dGjVqlIYOHapVq1Y5NQsXLlRycrJSUlK0fft2tWnTRnFxcTp69OiVzgcAALCEjzHGXEkHoaGhevnll9W3b1+FhYXp3XffVd++fSVJ+/bt06233qq0tDR16dJFK1as0H333acjR44oPDxckjRnzhyNGTNGWVlZcrlcGjNmjJYvX67du3c72+jfv79OnjyplStXSpI6d+6sjh07aubMmZKkoqIiRUVFaeTIkRo7dmyZx56Tk6Pg4GBlZ2fL4/FcyTQAuA59ueB5r+c39//fShoJgKuprO/fl31OTmFhoRYsWKDc3FzFxMQoPT1d586dU2xsrFPTokULNWjQQGlpaZKktLQ0tWrVygk4khQXF6ecnBznaFBaWppXH8U1xX3k5+crPT3dq8bX11exsbFOzcXk5eUpJyfH6wEAAOxU7pCza9cuBQUFye1268knn9SSJUsUHR2tjIwMuVwuhYSEeNWHh4crIyNDkpSRkeEVcIqXFy+7VE1OTo7Onj2rY8eOqbCwsNSa4j4uZvLkyQoODnYeUVFR5d19AABQRZQ75DRv3lw7d+7Uli1bNHz4cCUmJmrv3r0VMbarbty4ccrOznYehw8fruwhAQCAClKtvCu4XC41a9ZMktS+fXtt27ZNM2bMUL9+/ZSfn6+TJ096Hc3JzMxURESEJCkiIqLEVVDFV1+dX3PhFVmZmZnyeDwKDAyUn5+f/Pz8Sq0p7uNi3G633G53eXcZAABUQVd8n5yioiLl5eWpffv28vf319q1a51l+/fv16FDhxQTEyNJiomJ0a5du7yuglqzZo08Ho+io6OdmvP7KK4p7sPlcql9+/ZeNUVFRVq7dq1TAwAAUK4jOePGjdPPf/5zNWjQQKdOndK7776rDRs2aNWqVQoODtaQIUOUnJys0NBQeTwejRw5UjExMerSpYskqXfv3oqOjtZjjz2mqVOnKiMjQ7/5zW+UlJTkHGF58sknNXPmTD333HN6/PHHtW7dOi1atEjLly93xpGcnKzExER16NBBnTp10vTp05Wbm6vBgwdfxakBAABVWblCztGjRzVw4EB99913Cg4OVuvWrbVq1Sr97Gc/kyS9+uqr8vX1VZ8+fZSXl6e4uDjNmjXLWd/Pz0/Lli3T8OHDFRMToxo1aigxMVEvvviiU9O4cWMtX75co0eP1owZM1S/fn298cYbiouLc2r69eunrKwsjR8/XhkZGWrbtq1WrlxZ4mRkAABw47ri++RUZdwnB7Ab98kB7FTh98kBAAC4nhFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxUrpAzefJkdezYUTVr1lTdunWVkJCg/fv3e9X88MMPSkpKUu3atRUUFKQ+ffooMzPTq+bQoUOKj49X9erVVbduXT377LMqKCjwqtmwYYNuv/12ud1uNWvWTPPmzSsxntTUVDVq1EgBAQHq3Lmztm7dWp7dAQAAFitXyNm4caOSkpL06aefas2aNTp37px69+6t3Nxcp2b06NH68MMPtXjxYm3cuFFHjhzRQw895CwvLCxUfHy88vPztXnzZs2fP1/z5s3T+PHjnZqDBw8qPj5ed911l3bu3KlRo0Zp6NChWrVqlVOzcOFCJScnKyUlRdu3b1ebNm0UFxeno0ePXsl8AAAAS/gYY8zlrpyVlaW6detq48aN6tGjh7KzsxUWFqZ3331Xffv2lSTt27dPt956q9LS0tSlSxetWLFC9913n44cOaLw8HBJ0pw5czRmzBhlZWXJ5XJpzJgxWr58uXbv3u1sq3///jp58qRWrlwpSercubM6duyomTNnSpKKiooUFRWlkSNHauzYsWUaf05OjoKDg5WdnS2Px3O50wDgOvXlgue9nt/c/38raSQArqayvn9f0Tk52dnZkqTQ0FBJUnp6us6dO6fY2FinpkWLFmrQoIHS0tIkSWlpaWrVqpUTcCQpLi5OOTk52rNnj1Nzfh/FNcV95OfnKz093avG19dXsbGxTk1p8vLylJOT4/UAAAB2uuyQU1RUpFGjRumOO+5Qy5YtJUkZGRlyuVwKCQnxqg0PD1dGRoZTc37AKV5evOxSNTk5OTp79qyOHTumwsLCUmuK+yjN5MmTFRwc7DyioqLKv+MAAKBKuOyQk5SUpN27d2vBggVXczwVaty4ccrOznYehw8fruwhAQCAClLtclYaMWKEli1bpk2bNql+/fpOe0REhPLz83Xy5EmvozmZmZmKiIhwai68Cqr46qvzay68IiszM1Mej0eBgYHy8/OTn59fqTXFfZTG7XbL7XaXf4cBAECVU64jOcYYjRgxQkuWLNG6devUuHFjr+Xt27eXv7+/1q5d67Tt379fhw4dUkxMjCQpJiZGu3bt8roKas2aNfJ4PIqOjnZqzu+juKa4D5fLpfbt23vVFBUVae3atU4NAAC4sZXrSE5SUpLeffddffDBB6pZs6Zz/ktwcLACAwMVHBysIUOGKDk5WaGhofJ4PBo5cqRiYmLUpUsXSVLv3r0VHR2txx57TFOnTlVGRoZ+85vfKCkpyTnK8uSTT2rmzJl67rnn9Pjjj2vdunVatGiRli9f7owlOTlZiYmJ6tChgzp16qTp06crNzdXgwcPvlpzAwAAqrByhZzZs2dLku68806v9rlz52rQoEGSpFdffVW+vr7q06eP8vLyFBcXp1mzZjm1fn5+WrZsmYYPH66YmBjVqFFDiYmJevHFF52axo0ba/ny5Ro9erRmzJih+vXr64033lBcXJxT069fP2VlZWn8+PHKyMhQ27ZttXLlyhInIwMAgBvTFd0np6rjPjmA3bhPDmCna3KfHAAAgOsVIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASuUOOZs2bdL999+vyMhI+fj4aOnSpV7LjTEaP368brrpJgUGBio2NlZffvmlV83x48f16KOPyuPxKCQkREOGDNHp06e9av71r3+pe/fuCggIUFRUlKZOnVpiLIsXL1aLFi0UEBCgVq1a6aOPPirv7gAAAEuVO+Tk5uaqTZs2Sk1NLXX51KlT9Yc//EFz5szRli1bVKNGDcXFxemHH35wah599FHt2bNHa9as0bJly7Rp0yYNGzbMWZ6Tk6PevXurYcOGSk9P18svv6wJEyboj3/8o1OzefNmDRgwQEOGDNGOHTuUkJCghIQE7d69u7y7BAAALORjjDGXvbKPj5YsWaKEhARJPx7FiYyM1NNPP61nnnlGkpSdna3w8HDNmzdP/fv31+eff67o6Ght27ZNHTp0kCStXLlS9957r/7zn/8oMjJSs2fP1vPPP6+MjAy5XC5J0tixY7V06VLt27dPktSvXz/l5uZq2bJlzni6dOmitm3bas6cOWUaf05OjoKDg5WdnS2Px3O50wDgOvXlgue9nt/c/38raSQArqayvn9f1XNyDh48qIyMDMXGxjptwcHB6ty5s9LS0iRJaWlpCgkJcQKOJMXGxsrX11dbtmxxanr06OEEHEmKi4vT/v37deLECafm/O0U1xRvpzR5eXnKycnxegAAADtd1ZCTkZEhSQoPD/dqDw8Pd5ZlZGSobt26XsurVaum0NBQr5rS+jh/GxerKV5emsmTJys4ONh5REVFlXcXAQBAFXFDXV01btw4ZWdnO4/Dhw9X9pAAAEAFuaohJyIiQpKUmZnp1Z6Zmeksi4iI0NGjR72WFxQU6Pjx4141pfVx/jYuVlO8vDRut1sej8frAQAA7HRVQ07jxo0VERGhtWvXOm05OTnasmWLYmJiJEkxMTE6efKk0tPTnZp169apqKhInTt3dmo2bdqkc+fOOTVr1qxR8+bNVatWLafm/O0U1xRvBwAA3NjKHXJOnz6tnTt3aufOnZJ+PNl4586dOnTokHx8fDRq1Cj99re/1d/+9jft2rVLAwcOVGRkpHMF1q233qp77rlHTzzxhLZu3apPPvlEI0aMUP/+/RUZGSlJeuSRR+RyuTRkyBDt2bNHCxcu1IwZM5ScnOyM41e/+pVWrlyp3//+99q3b58mTJigf/7znxoxYsSVzwoAAKj6TDmtX7/eSCrxSExMNMYYU1RUZF544QUTHh5u3G63ufvuu83+/fu9+vj+++/NgAEDTFBQkPF4PGbw4MHm1KlTXjWfffaZ6datm3G73aZevXpmypQpJcayaNEic8sttxiXy2Vuu+02s3z58nLtS3Z2tpFksrOzyzcJAKqEL/6/X3s9ANihrO/fV3SfnKqO++QAduM+OYCdKuU+OQAAANcLQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK1Wr7AEAwNWWV/CDVqS/oYOFnyvUBKqTXwNV8+H/dMCNpsr/1qempqpRo0YKCAhQ586dtXXr1soeEoBKNHdDigYsv0PzM9/Spppfa6nncz1ffZVWFXxR2UMDcI1V6ZCzcOFCJScnKyUlRdu3b1ebNm0UFxeno0ePVvbQAFSCuRtS9LfsD2VkvNqNpLU1D2juhpTKGRiASlGlQ860adP0xBNPaPDgwYqOjtacOXNUvXp1vfXWW5U9NADXWF7BD/owe9mPT3wuWPj/P1+WvUx5BT9c03EBqDxV9pyc/Px8paena9y4cU6br6+vYmNjlZaWVuo6eXl5ysvLc55nZ2dLknJycip2sAAq3LJ/vq78swU/WffXTa/pvg7/cw1GBKCiFL9vG2MuWVdlQ86xY8dUWFio8PBwr/bw8HDt27ev1HUmT56siRMnlmiPioqqkDECuP4s13OSnqvsYQC4Ck6dOqXg4OCLLq+yIedyjBs3TsnJyc7zoqIiHT9+XLVr15aPz4XHt28sOTk5ioqK0uHDh+XxeCp7ONZinq8d5vraYJ6vDebZmzFGp06dUmRk5CXrqmzIqVOnjvz8/JSZmenVnpmZqYiIiFLXcbvdcrvdXm0hISEVNcQqyePx8At0DTDP1w5zfW0wz9cG8/x/LnUEp1iVPfHY5XKpffv2Wrt2rdNWVFSktWvXKiYmphJHBgAArgdV9kiOJCUnJysxMVEdOnRQp06dNH36dOXm5mrw4MGVPTQAAFDJqnTI6devn7KysjR+/HhlZGSobdu2WrlyZYmTkfHT3G63UlJSSnych6uLeb52mOtrg3m+Npjny+Njfur6KwAAgCqoyp6TAwAAcCmEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIuYEdP35cjz76qDwej0JCQjRkyBCdPn26TOsaY/Tzn/9cPj4+Wrp0acUOtIor7zwfP35cI0eOVPPmzRUYGKgGDRrol7/8pfOFsvg/qampatSokQICAtS5c2dt3br1kvWLFy9WixYtFBAQoFatWumjjz66RiOt2sozz3/605/UvXt31apVS7Vq1VJsbOxP/lzwo/K+nostWLBAPj4+SkhIqNgBVkGEnBvYo48+qj179mjNmjVatmyZNm3apGHDhpVp3enTp9/w3/dVVuWd5yNHjujIkSN65ZVXtHv3bs2bN08rV67UkCFDruGor38LFy5UcnKyUlJStH37drVp00ZxcXE6evRoqfWbN2/WgAEDNGTIEO3YsUMJCQlKSEjQ7t27r/HIq5byzvOGDRs0YMAArV+/XmlpaYqKilLv3r317bffXuORVy3lnediX3/9tZ555hl17979Go20ijG4Ie3du9dIMtu2bXPaVqxYYXx8fMy33357yXV37Nhh6tWrZ7777jsjySxZsqSCR1t1Xck8n2/RokXG5XKZc+fOVcQwq6ROnTqZpKQk53lhYaGJjIw0kydPLrX+4YcfNvHx8V5tnTt3Nv/zP/9ToeOs6so7zxcqKCgwNWvWNPPnz6+oIVrhcua5oKDAdO3a1bzxxhsmMTHRPPDAA9dgpFULR3JuUGlpaQoJCVGHDh2cttjYWPn6+mrLli0XXe/MmTN65JFHlJqaetEvQsX/udx5vlB2drY8Ho+qVavSNym/avLz85Wenq7Y2FinzdfXV7GxsUpLSyt1nbS0NK96SYqLi7toPS5vni905swZnTt3TqGhoRU1zCrvcuf5xRdfVN26dTnKewn8xbxBZWRkqG7dul5t1apVU2hoqDIyMi663ujRo9W1a1c98MADFT1EK1zuPJ/v2LFjmjRpUpk/SrwRHDt2TIWFhSW+wiU8PFz79u0rdZ2MjIxS68v6c7gRXc48X2jMmDGKjIwsETDxfy5nnj/++GO9+eab2rlz5zUYYdXFkRzLjB07Vj4+Ppd8lPWP04X+9re/ad26dZo+ffrVHXQVVJHzfL6cnBzFx8crOjpaEyZMuPKBA9fQlClTtGDBAi1ZskQBAQGVPRxrnDp1So899pj+9Kc/qU6dOpU9nOsaR3Is8/TTT2vQoEGXrGnSpIkiIiJKnNBWUFCg48ePX/RjqHXr1unAgQMKCQnxau/Tp4+6d++uDRs2XMHIq5aKnOdip06d0j333KOaNWtqyZIl8vf3v9JhW6NOnTry8/NTZmamV3tmZuZF5zUiIqJc9bi8eS72yiuvaMqUKfr73/+u1q1bV+Qwq7zyzvOBAwf09ddf6/7773faioqKJP14pHj//v1q2rRpxQ66qqjsk4JQOYpPiP3nP//ptK1ateqSJ8R+9913ZteuXV4PSWbGjBnmq6++ulZDr1IuZ56NMSY7O9t06dLF9OzZ0+Tm5l6LoVY5nTp1MiNGjHCeFxYWmnr16l3yxOP77rvPqy0mJoYTj39CeefZGGN+97vfGY/HY9LS0q7FEK1Qnnk+e/Zsib/FDzzwgOnVq5fZtWuXycvLu5ZDv64Rcm5g99xzj2nXrp3ZsmWL+fjjj83NN99sBgwY4Cz/z3/+Y5o3b262bNly0T7E1VU/qbzznJ2dbTp37mxatWpl/v3vf5vvvvvOeRQUFFTWblx3FixYYNxut5k3b57Zu3evGTZsmAkJCTEZGRnGGGMee+wxM3bsWKf+k08+MdWqVTOvvPKK+fzzz01KSorx9/c3u3btqqxdqBLKO89TpkwxLpfLvPfee16v3VOnTlXWLlQJ5Z3nC3F1VekIOTew77//3gwYMMAEBQUZj8djBg8e7PWH6ODBg0aSWb9+/UX7IOT8tPLO8/r1642kUh8HDx6snJ24Tr322mumQYMGxuVymU6dOplPP/3UWdazZ0+TmJjoVb9o0SJzyy23GJfLZW677TazfPnyazziqqk889ywYcNSX7spKSnXfuBVTHlfz+cj5JTOxxhjrvVHZAAAABWNq6sAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKX/B1lrSOmofHvlAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANexJREFUeJzt3XtYVWX+//8XIHuD4gZRhFA8ZWnkqTxiHjow7gorymbUnALTnAydUSrTqURtPulYUzqpWVnqd6Y+HmpsShRzPE7JqGHOmKfMdLQM1FQwDyBw//7ox/q4BU1URG6fj+va1+W+13ut9V63W3i59lp7+xljjAAAACzjX9kNAAAAVARCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOcBVYuXKl/Pz8tHLlyku6XT8/P40ZM+aSbtM2ycnJatSoUYVt/6WXXlKTJk0UEBCgNm3aVNh+Lsb5vk7GjBkjPz+/im8IVw1CDqqcNWvWaMyYMTpy5Ehlt3JVWLRoEUFG0vHjxzVmzJhLHhQvxieffKIRI0bolltu0cyZM/Xiiy9WdktXJD8/v7M+fvGLX1R2e6hA1Sq7AaC81qxZo7Fjxyo5OVlhYWGV3Y71Fi1apKlTp5YZdE6cOKFq1a6OHyPHjx/X2LFjJUm33nrrea/31ltvqbi4uEJ6Wr58ufz9/fX222/L5XJVyD4uhcp+nfzlL38pNfb5559r8uTJ6tGjRyV0hMvl6vjpBFRRx48fV/Xq1UuNFxYWqri4uNJ/sQUFBVXq/q9kx44dU40aNRQYGFhh+9i/f7+Cg4N/9nVQXFysgoKCSvv7quzXya9//etSYyVv4fbt27cSOsLlwttVqFLGjBmjp59+WpLUuHFj55Tz7t27VVhYqBdeeEHXXnut3G63GjVqpN///vfKz8/32UajRo3Us2dPffLJJ2rTpo2CgoIUGxurv/3tbxfU01//+ld16NBB1atXV61atdStWzd98sknPjXTpk3TjTfeKLfbrejoaKWkpJR6u+3WW29VixYtlJWVpW7duql69er6/e9/r927d8vPz08vv/yyJk2a5Bzfli1bJEnbtm3Tgw8+qPDwcAUFBaldu3b66KOPfrbvf/7zn/rlL3+pBg0ayO12KyYmRsOHD9eJEyecmuTkZE2dOlWS7yn/EmVda/HFF1/orrvuksfjUUhIiO644w7961//8qmZNWuW/Pz89Nlnnyk1NVURERGqUaOG7r//fh04cOBnez9dyXUcX331lX79618rNDRUERERev7552WM0d69e3XffffJ4/EoKipKf/rTn3zWLygo0OjRo9W2bVuFhoaqRo0a6tq1q1asWOHU7N69WxEREZKksWPHOvNQcuzJyckKCQnRzp07dffdd6tmzZrq16+fs+z0a3LS0tLk7++vZcuW+fQxaNAguVwu/fvf/z6v4/bz89PMmTN17Ngxp59Zs2Y5y4YMGaJ3333Xed1lZGRIkl5++WV17txZtWvXVnBwsNq2bav333+/1PZPnDih3/72t6pTp45q1qype++9V999990FXYdV1jqffvqp2rdvr6CgIF177bV64403ylx36dKl6tKli8LCwhQSEqJmzZrp97//fbn2f6b8/Hx98MEH6t69u+rXr39R28KVjTM5qFIeeOABffXVV/rf//1fvfrqq6pTp44kKSIiQgMHDtTs2bP14IMP6sknn9TatWs1fvx4bd26VQsWLPDZzo4dO9S7d289/vjjSkpK0syZM/XLX/5SGRkZ5XqPfuzYsRozZow6d+6scePGyeVyae3atVq+fLlzGnzMmDEaO3as4uPjNXjwYG3fvl2vv/661q9fr88++8znf/o//PCD7rrrLvXp00e//vWvFRkZ6SybOXOmTp48qUGDBsntdis8PFybN2/WLbfconr16mnkyJGqUaOG5s2bp8TERH3wwQe6//77z9r7/Pnzdfz4cQ0ePFi1a9fWunXr9Nprr+nbb7/V/PnzJUm/+c1vtG/fPi1durTMU/5n2rx5s7p27SqPx6MRI0YoMDBQb7zxhm699VatWrVKHTt29KkfOnSoatWqpbS0NO3evVuTJk3SkCFDNHfu3PP+OyjRu3dv3XDDDZowYYLS09P1hz/8QeHh4XrjjTd0++23649//KPeffddPfXUU2rfvr26desmScrLy9OMGTPUt29fPfbYYzp69Kjefvtteb1erVu3Tm3atFFERIRef/11DR48WPfff78eeOABSVKrVq2c/RcWFsrr9apLly56+eWXyzwDJ0nPPfecPv74Yw0YMECbNm1SzZo1tWTJEr311lt64YUX1Lp16/M63r/85S968803tW7dOs2YMUOS1LlzZ2f58uXLNW/ePA0ZMkR16tRxgtbkyZN17733ql+/fiooKNCcOXP0y1/+UgsXLlRCQoKzfnJysubNm6eHH35YnTp10qpVq3yWX4xNmzapR48eioiI0JgxY1RYWKi0tDSf17v00+upZ8+eatWqlcaNGye3262vv/5an3322UXtf9GiRTpy5IgTRGExA1QxL730kpFkdu3a5Yxt3LjRSDIDBw70qX3qqaeMJLN8+XJnrGHDhkaS+eCDD5yx3Nxcc80115ibbrrpvPvYsWOH8ff3N/fff78pKiryWVZcXGyMMWb//v3G5XKZHj16+NRMmTLFSDLvvPOOM9a9e3cjyUyfPt1nW7t27TKSjMfjMfv37/dZdscdd5iWLVuakydP+uy7c+fO5rrrrnPGVqxYYSSZFStWOGPHjx8vdUzjx483fn5+5r///a8zlpKSYs72o0KSSUtLc54nJiYal8tldu7c6Yzt27fP1KxZ03Tr1s0ZmzlzppFk4uPjnbkyxpjhw4ebgIAAc+TIkTL3V5a0tDQjyQwaNMgZKywsNPXr1zd+fn5mwoQJzvjhw4dNcHCwSUpK8qnNz8/32ebhw4dNZGSkefTRR52xAwcOlDreEklJSUaSGTlyZJnLGjZs6DO2adMm43K5zMCBA83hw4dNvXr1TLt27cypU6fO+7hLtl2jRo1S45KMv7+/2bx5c6llZ/69FxQUmBYtWpjbb7/dGcvKyjKSzLBhw3xqk5OTzzoH51LW6yQoKMjndbZlyxYTEBDg81p79dVXjSRz4MCBcu3v5/Tq1cu43W5z+PDhS7pdXHl4uwpWWLRokSQpNTXVZ/zJJ5+UJKWnp/uMR0dH+5zl8Hg8euSRR/TFF18oOzv7vPb54Ycfqri4WKNHj5a/v+8/pZK3dP7xj3+ooKBAw4YN86l57LHH5PF4SvXldrvVv3//MvfXq1cv5y0TSTp06JCWL1+uX/3qVzp69KgOHjyogwcP6ocffpDX69WOHTv03XffnbX/4OBg58/Hjh3TwYMH1blzZxlj9MUXX5zXHJyuqKhIn3zyiRITE9WkSRNn/JprrtFDDz2kTz/9VHl5eT7rDBo0yOftr65du6qoqEj//e9/y73/gQMHOn8OCAhQu3btZIzRgAEDnPGwsDA1a9ZM33zzjU9tyTUtxcXFOnTokAoLC9WuXTtt2LChXD0MHjz4vOpatGihsWPHasaMGfJ6vTp48KBmz559SS/O7d69u2JjY0uNn/73fvjwYeXm5qpr164+x1ry1tYTTzzhs+7QoUMvuq+ioiItWbJEiYmJatCggTN+ww03yOv1+tSW3Fjw97///ZJdvJ2Xl6f09HTdfffd3LhwFSDkwAr//e9/5e/vr6ZNm/qMR0VFKSwsrNQvzaZNm5b6PI7rr79e0k/XX5yPnTt3yt/fv8xfJKf3JUnNmjXzGXe5XGrSpEmpvurVq3fWi0gbN27s8/zrr7+WMUbPP/+8IiIifB5paWmSfrow9Wz27Nmj5ORkhYeHKyQkRBEREerevbskKTc396zrnc2BAwd0/PjxUscq/fQLrLi4WHv37vUZP/2XnCTVqlVL0k+/fMvrzG2FhoYqKCjIeUvz9PEztz979my1atVKQUFBql27tiIiIpSenl6ueahWrVq5ru94+umn1bp1a61bt05paWnnfB1diDNfLyUWLlyoTp06KSgoSOHh4c5bcacfa8m/pzO3cea/rwtx4MABnThxQtddd12pZWe+dnr37q1bbrlFAwcOVGRkpPr06aN58+ZdVOD54IMPdPLkSd6qukpwTQ6sUtU/SOz0/2X/3LKSH/RPPfVUqf8BlzjbL6WioiL94he/0KFDh/TMM8+oefPmqlGjhr777jslJydX2C3PZwoICChz3BhzSbZ1Ptv/61//quTkZCUmJurpp59W3bp1FRAQoPHjx2vnzp3nvX+3213qjN65fPPNN9qxY4ekn65RudTKei3985//1L333qtu3bpp2rRpuuaaaxQYGKiZM2fqvffeu+Q9XKzg4GCtXr1aK1asUHp6ujIyMjR37lzdfvvt+uSTT87693su7777rkJDQ9WzZ88K6BhXGkIOqpyygkzDhg1VXFysHTt26IYbbnDGc3JydOTIETVs2NCnvuQsyOnb+uqrryTpvD+d9tprr1VxcbG2bNly1k+aLdnv9u3bfd7CKSgo0K5duxQfH39e+ypLyfYCAwPLvZ1Nmzbpq6++0uzZs/XII48440uXLi1Ve77BMSIiQtWrV9f27dtLLdu2bZv8/f0VExNTrj4vh/fff19NmjTR3/72N59jLTkbVuJSBuji4mIlJyfL4/Fo2LBhevHFF/Xggw86FzRXlA8++EBBQUFasmSJ3G63Mz5z5kyfupJ/T7t27fI54/L1119fdA8REREKDg52At7pynrt+Pv764477tAdd9yhV155RS+++KKeffZZrVixotyv+++//14rVqxQcnKyz/HDXrxdhSqnRo0akuRzC/bdd98tSZo0aZJP7SuvvCJJpe4K2bdvn88dV3l5efp//+//qU2bNoqKijqvPhITE+Xv769x48aVOvNRcqYgPj5eLpdLf/7zn33OHrz99tvKzc29qLtV6tatq1tvvVVvvPGGvv/++1LLz3Urdsn/gE/vyRijyZMnl6ota77Pts0ePXro73//u89bfjk5OXrvvffUpUsXeTyec26jMpQ1F2vXrlVmZqZPXcndUpfik7ZfeeUVrVmzRm+++aZeeOEFde7cWYMHD9bBgwcvetvnEhAQID8/PxUVFTlju3fv1ocffuhTV3JmcNq0aT7jr7322iXpwev16sMPP9SePXuc8a1bt2rJkiU+tYcOHSq1fsl/KM78aIjzMWfOHBUXF/NW1VWEMzmoctq2bStJevbZZ9WnTx8FBgbqnnvuUVJSkt58800dOXJE3bt317p16zR79mwlJibqtttu89nG9ddfrwEDBmj9+vWKjIzUO++8o5ycnFL/oz2Xpk2b6tlnn9ULL7ygrl276oEHHpDb7db69esVHR2t8ePHKyIiQqNGjdLYsWN155136t5779X27ds1bdo0tW/fvswPKSuPqVOnqkuXLmrZsqUee+wxNWnSRDk5OcrMzNS333571s9cad68ua699lo99dRT+u677+TxePTBBx+UeS1MyXz/9re/ldfrVUBAgPr06VPmdv/whz84n2vyxBNPqFq1anrjjTeUn5+viRMnXtSxVpSePXvqb3/7m+6//34lJCRo165dmj59umJjY/Xjjz86dcHBwYqNjdXcuXN1/fXXKzw8XC1atFCLFi3Ktb+tW7fq+eefV3Jysu655x5JP31uUJs2bfTEE09o3rx5l/T4TpeQkKBXXnlFd955px566CHt379fU6dOVdOmTfWf//zHqWvbtq169eqlSZMm6YcffnBuIS8523mxZ7XGjh2rjIwMde3aVU888YQKCwv12muv6cYbb/TpY9y4cVq9erUSEhLUsGFD7d+/X9OmTVP9+vXVpUuXcu/33XffVXR0dLk+sRpVXCXd1QVclBdeeMHUq1fP+Pv7O7eTnzp1yowdO9Y0btzYBAYGmpiYGDNq1Cif26uN+ekW8oSEBLNkyRLTqlUr43a7TfPmzc38+fMvqJd33nnH3HTTTcbtdptatWqZ7t27m6VLl/rUTJkyxTRv3twEBgaayMhIM3jw4FK3r3bv3t3ceOONpbZfcgv5Sy+9VOb+d+7caR555BETFRVlAgMDTb169UzPnj3N+++/79SUdQv5li1bTHx8vAkJCTF16tQxjz32mPn3v/9tJJmZM2c6dYWFhWbo0KEmIiLC+Pn5+dziqzJuJ96wYYPxer0mJCTEVK9e3dx2221mzZo1PjUlt5CvX7/eZ7ysPn9OyS3kZ95mfLbbq8+c5+LiYvPiiy+ahg0bGrfbbW666SazcOHCMm/9XrNmjWnbtq1xuVw+x362fZUsK9lOYWGhad++valfv36p2+QnT55sJJm5c+ee97Gf6xbylJSUMtd5++23zXXXXee87mfOnOnM4emOHTtmUlJSTHh4uAkJCTGJiYlm+/btRpLPbfnno6zXyapVq5y5bNKkiZk+fXqpPpYtW2buu+8+Ex0dbVwul4mOjjZ9+/Y1X331Vbn2b4wx27ZtM5JMampquddF1eVnzAVc4QdUYY0aNVKLFi20cOHCym4FqFI2btyom266SX/96195ywdVAtfkAABKOf3rPUpMmjRJ/v7+zqdFA1c6rskByvBzHwgYHBys0NDQy9TN1enHH3/0uSamLBERERd0G/GV7sCBAz4XB5/J5XIpPDy8QnuYOHGisrKydNttt6latWpavHixFi9erEGDBikmJkZFRUU/+z1jISEhCgkJqbAer4R5whWust8vAy63kmtyzkXSOR+nfy0AKkbJ9Rnnepz+1R42KfnqkbM9unfvXuE9fPLJJ+aWW24xtWrVMoGBgebaa681Y8aMcb56ouRasXM9yvv1D+V1JcwTrmxckwOU4R//+Mc5l0dHR1/yT6iFr2+++cbn6xfK0qVLFwUFBV2mji6fzz77rMy3i0rUqlXLueutspw8eVKffvrpOWuaNGni8/lQl1pVmCdULkIOAACwEhceAwAAK13VFx4XFxdr3759qlmzZpX/ziMAAK4WxhgdPXpU0dHR5/zOuKs65Ozbt++K/C4dAADw8/bu3av69eufdflVHXJq1qwp6adJuhK/UwcAAJSWl5enmJgY5/f42VzVIafkLSqPx0PIAQCgivm5S0248BgAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADAStUquwEAqCinMj71eR54Z5dK6gRAZeBMDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArHRRIWfChAny8/PTsGHDnLGTJ08qJSVFtWvXVkhIiHr16qWcnByf9fbs2aOEhARVr15ddevW1dNPP63CwkKfmpUrV+rmm2+W2+1W06ZNNWvWrFL7nzp1qho1aqSgoCB17NhR69atu5jDAQAAFrngkLN+/Xq98cYbatWqlc/48OHD9fHHH2v+/PlatWqV9u3bpwceeMBZXlRUpISEBBUUFGjNmjWaPXu2Zs2apdGjRzs1u3btUkJCgm677TZt3LhRw4YN08CBA7VkyRKnZu7cuUpNTVVaWpo2bNig1q1by+v1av/+/Rd6SAAAwCbmAhw9etRcd911ZunSpaZ79+7md7/7nTHGmCNHjpjAwEAzf/58p3br1q1GksnMzDTGGLNo0SLj7+9vsrOznZrXX3/deDwek5+fb4wxZsSIEebGG2/02Wfv3r2N1+t1nnfo0MGkpKQ4z4uKikx0dLQZP378eR9Hbm6ukWRyc3PP/+ABVBkFi//p8wBgh/P9/X1BZ3JSUlKUkJCg+Ph4n/GsrCydOnXKZ7x58+Zq0KCBMjMzJUmZmZlq2bKlIiMjnRqv16u8vDxt3rzZqTlz216v19lGQUGBsrKyfGr8/f0VHx/v1JQlPz9feXl5Pg8AAGCnauVdYc6cOdqwYYPWr19fall2drZcLpfCwsJ8xiMjI5Wdne3UnB5wSpaXLDtXTV5enk6cOKHDhw+rqKiozJpt27adtffx48dr7Nix53egAACgSivXmZy9e/fqd7/7nd59910FBQVVVE8VZtSoUcrNzXUee/fureyWAABABSlXyMnKytL+/ft18803q1q1aqpWrZpWrVqlP//5z6pWrZoiIyNVUFCgI0eO+KyXk5OjqKgoSVJUVFSpu61Knv9cjcfjUXBwsOrUqaOAgIAya0q2URa32y2Px+PzAAAAdipXyLnjjju0adMmbdy40Xm0a9dO/fr1c/4cGBioZcuWOets375de/bsUVxcnCQpLi5OmzZt8rkLaunSpfJ4PIqNjXVqTt9GSU3JNlwul9q2betTU1xcrGXLljk1AADg6laua3Jq1qypFi1a+IzVqFFDtWvXdsYHDBig1NRUhYeHy+PxaOjQoYqLi1OnTp0kST169FBsbKwefvhhTZw4UdnZ2XruueeUkpIit9stSXr88cc1ZcoUjRgxQo8++qiWL1+uefPmKT093dlvamqqkpKS1K5dO3Xo0EGTJk3SsWPH1L9//4uaEAAAYIdyX3j8c1599VX5+/urV69eys/Pl9fr1bRp05zlAQEBWrhwoQYPHqy4uDjVqFFDSUlJGjdunFPTuHFjpaena/jw4Zo8ebLq16+vGTNmyOv1OjW9e/fWgQMHNHr0aGVnZ6tNmzbKyMgodTEyAAC4OvkZY0xlN1FZ8vLyFBoaqtzcXK7PASx0KuNTn+eBd3appE4AXErn+/ub764CAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVqlV2AwBQUXYfWezz/Dp1qaROAFQGzuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwErlCjmvv/66WrVqJY/HI4/Ho7i4OC1evNhZfvLkSaWkpKh27doKCQlRr169lJOT47ONPXv2KCEhQdWrV1fdunX19NNPq7Cw0Kdm5cqVuvnmm+V2u9W0aVPNmjWrVC9Tp05Vo0aNFBQUpI4dO2rdunXlORQAAGC5coWc+vXra8KECcrKytLnn3+u22+/Xffdd582b94sSRo+fLg+/vhjzZ8/X6tWrdK+ffv0wAMPOOsXFRUpISFBBQUFWrNmjWbPnq1Zs2Zp9OjRTs2uXbuUkJCg2267TRs3btSwYcM0cOBALVmyxKmZO3euUlNTlZaWpg0bNqh169byer3av3//xc4HAACwhJ8xxlzMBsLDw/XSSy/pwQcfVEREhN577z09+OCDkqRt27bphhtuUGZmpjp16qTFixerZ8+e2rdvnyIjIyVJ06dP1zPPPKMDBw7I5XLpmWeeUXp6ur788ktnH3369NGRI0eUkZEhSerYsaPat2+vKVOmSJKKi4sVExOjoUOHauTIkefde15enkJDQ5WbmyuPx3Mx0wDgCrRjzrM+z6/r8z+V1AmAS+l8f39f8DU5RUVFmjNnjo4dO6a4uDhlZWXp1KlTio+Pd2qaN2+uBg0aKDMzU5KUmZmpli1bOgFHkrxer/Ly8pyzQZmZmT7bKKkp2UZBQYGysrJ8avz9/RUfH+/UnE1+fr7y8vJ8HgAAwE7lDjmbNm1SSEiI3G63Hn/8cS1YsECxsbHKzs6Wy+VSWFiYT31kZKSys7MlSdnZ2T4Bp2R5ybJz1eTl5enEiRM6ePCgioqKyqwp2cbZjB8/XqGhoc4jJiamvIcPAACqiHKHnGbNmmnjxo1au3atBg8erKSkJG3ZsqUiervkRo0apdzcXOexd+/eym4JAABUkGrlXcHlcqlp06aSpLZt22r9+vWaPHmyevfurYKCAh05csTnbE5OTo6ioqIkSVFRUaXugiq5++r0mjPvyMrJyZHH41FwcLACAgIUEBBQZk3JNs7G7XbL7XaX95ABAEAVdNGfk1NcXKz8/Hy1bdtWgYGBWrZsmbNs+/bt2rNnj+Li4iRJcXFx2rRpk89dUEuXLpXH41FsbKxTc/o2SmpKtuFyudS2bVufmuLiYi1btsypAQAAKNeZnFGjRumuu+5SgwYNdPToUb333ntauXKllixZotDQUA0YMECpqakKDw+Xx+PR0KFDFRcXp06dOkmSevToodjYWD388MOaOHGisrOz9dxzzyklJcU5w/L4449rypQpGjFihB599FEtX75c8+bNU3p6utNHamqqkpKS1K5dO3Xo0EGTJk3SsWPH1L9//0s4NQAAoCorV8jZv3+/HnnkEX3//fcKDQ1Vq1attGTJEv3iF7+QJL366qvy9/dXr169lJ+fL6/Xq2nTpjnrBwQEaOHChRo8eLDi4uJUo0YNJSUlady4cU5N48aNlZ6eruHDh2vy5MmqX7++ZsyYIa/X69T07t1bBw4c0OjRo5Wdna02bdooIyOj1MXIAADg6nXRn5NTlfE5OYDd+JwcwE4V/jk5AAAAVzJCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVyhVyxo8fr/bt26tmzZqqW7euEhMTtX37dp+akydPKiUlRbVr11ZISIh69eqlnJwcn5o9e/YoISFB1atXV926dfX000+rsLDQp2blypW6+eab5Xa71bRpU82aNatUP1OnTlWjRo0UFBSkjh07at26deU5HAAAYLFyhZxVq1YpJSVF//rXv7R06VKdOnVKPXr00LFjx5ya4cOH6+OPP9b8+fO1atUq7du3Tw888ICzvKioSAkJCSooKNCaNWs0e/ZszZo1S6NHj3Zqdu3apYSEBN12223auHGjhg0bpoEDB2rJkiVOzdy5c5Wamqq0tDRt2LBBrVu3ltfr1f79+y9mPgAAgCX8jDHmQlc+cOCA6tatq1WrVqlbt27Kzc1VRESE3nvvPT344IOSpG3btumGG25QZmamOnXqpMWLF6tnz57at2+fIiMjJUnTp0/XM888owMHDsjlcumZZ55Renq6vvzyS2dfffr00ZEjR5SRkSFJ6tixo9q3b68pU6ZIkoqLixUTE6OhQ4dq5MiR59V/Xl6eQkNDlZubK4/Hc6HTAOAKtWPOsz7Pr+vzP5XUCYBL6Xx/f1/UNTm5ubmSpPDwcElSVlaWTp06pfj4eKemefPmatCggTIzMyVJmZmZatmypRNwJMnr9SovL0+bN292ak7fRklNyTYKCgqUlZXlU+Pv76/4+Hinpiz5+fnKy8vzeQAAADtdcMgpLi7WsGHDdMstt6hFixaSpOzsbLlcLoWFhfnURkZGKjs726k5PeCULC9Zdq6avLw8nThxQgcPHlRRUVGZNSXbKMv48eMVGhrqPGJiYsp/4AAAoEq44JCTkpKiL7/8UnPmzLmU/VSoUaNGKTc313ns3bu3slsCAAAVpNqFrDRkyBAtXLhQq1evVv369Z3xqKgoFRQU6MiRIz5nc3JychQVFeXUnHkXVMndV6fXnHlHVk5Ojjwej4KDgxUQEKCAgIAya0q2URa32y23213+AwYAAFVOuc7kGGM0ZMgQLViwQMuXL1fjxo19lrdt21aBgYFatmyZM7Z9+3bt2bNHcXFxkqS4uDht2rTJ5y6opUuXyuPxKDY21qk5fRslNSXbcLlcatu2rU9NcXGxli1b5tQAAICrW7nO5KSkpOi9997T3//+d9WsWdO5/iU0NFTBwcEKDQ3VgAEDlJqaqvDwcHk8Hg0dOlRxcXHq1KmTJKlHjx6KjY3Vww8/rIkTJyo7O1vPPfecUlJSnLMsjz/+uKZMmaIRI0bo0Ucf1fLlyzVv3jylp6c7vaSmpiopKUnt2rVThw4dNGnSJB07dkz9+/e/VHMDAACqsHKFnNdff12SdOutt/qMz5w5U8nJyZKkV199Vf7+/urVq5fy8/Pl9Xo1bdo0pzYgIEALFy7U4MGDFRcXpxo1aigpKUnjxo1zaho3bqz09HQNHz5ckydPVv369TVjxgx5vV6npnfv3jpw4IBGjx6t7OxstWnTRhkZGaUuRgYAAFeni/qcnKqOz8kB7Mbn5AB2uiyfkwMAAHClIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWKncIWf16tW65557FB0dLT8/P3344Yc+y40xGj16tK655hoFBwcrPj5eO3bs8Kk5dOiQ+vXrJ4/Ho7CwMA0YMEA//vijT81//vMfde3aVUFBQYqJidHEiRNL9TJ//nw1b95cQUFBatmypRYtWlTewwEAAJYqd8g5duyYWrduralTp5a5fOLEifrzn/+s6dOna+3atapRo4a8Xq9Onjzp1PTr10+bN2/W0qVLtXDhQq1evVqDBg1ylufl5alHjx5q2LChsrKy9NJLL2nMmDF68803nZo1a9aob9++GjBggL744gslJiYqMTFRX375ZXkPCQAAWMjPGGMueGU/Py1YsECJiYmSfjqLEx0drSeffFJPPfWUJCk3N1eRkZGaNWuW+vTpo61btyo2Nlbr169Xu3btJEkZGRm6++679e233yo6Olqvv/66nn32WWVnZ8vlckmSRo4cqQ8//FDbtm2TJPXu3VvHjh3TwoULnX46deqkNm3aaPr06efVf15enkJDQ5WbmyuPx3Oh0wDgCrVjzrM+z6/r8z+V1AmAS+l8f39f0mtydu3apezsbMXHxztjoaGh6tixozIzMyVJmZmZCgsLcwKOJMXHx8vf319r1651arp16+YEHEnyer3avn27Dh8+7NScvp+SmpL9lCU/P195eXk+DwAAYKdLGnKys7MlSZGRkT7jkZGRzrLs7GzVrVvXZ3m1atUUHh7uU1PWNk7fx9lqSpaXZfz48QoNDXUeMTEx5T1EAABQRVxVd1eNGjVKubm5zmPv3r2V3RIAAKgglzTkREVFSZJycnJ8xnNycpxlUVFR2r9/v8/ywsJCHTp0yKemrG2cvo+z1ZQsL4vb7ZbH4/F5AAAAO13SkNO4cWNFRUVp2bJlzlheXp7Wrl2ruLg4SVJcXJyOHDmirKwsp2b58uUqLi5Wx44dnZrVq1fr1KlTTs3SpUvVrFkz1apVy6k5fT8lNSX7AQAAV7dyh5wff/xRGzdu1MaNGyX9dLHxxo0btWfPHvn5+WnYsGH6wx/+oI8++kibNm3SI488oujoaOcOrBtuuEF33nmnHnvsMa1bt06fffaZhgwZoj59+ig6OlqS9NBDD8nlcmnAgAHavHmz5s6dq8mTJys1NdXp43e/+50yMjL0pz/9Sdu2bdOYMWP0+eefa8iQIRc/KwAAoOoz5bRixQojqdQjKSnJGGNMcXGxef75501kZKRxu93mjjvuMNu3b/fZxg8//GD69u1rQkJCjMfjMf379zdHjx71qfn3v/9tunTpYtxut6lXr56ZMGFCqV7mzZtnrr/+euNyucyNN95o0tPTy3Usubm5RpLJzc0t3yQAqBK++t/f+zwA2OF8f39f1OfkVHV8Tg5gNz4nB7BTpXxODgAAwJWCkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADAStUquwEAuNTyC09qcdYM7SraqnATrA4BDVTNj//TAVebKv+vfurUqWrUqJGCgoLUsWNHrVu3rrJbAlCJZq5MU9/0WzQ75x2trrlbH3q26tnqS7Sk8KvKbg3AZValQ87cuXOVmpqqtLQ0bdiwQa1bt5bX69X+/fsruzUAlWDmyjR9lPuxjIzPuJG0rOZOzVyZVjmNAagUVTrkvPLKK3rsscfUv39/xcbGavr06apevbreeeedym4NwGWWX3hSH+cu/OmJ3xkL///nC3MXKr/w5GXtC0DlqbLX5BQUFCgrK0ujRo1yxvz9/RUfH6/MzMwy18nPz1d+fr7zPDc3V5KUl5dXsc0CqHALP39DBScKf7bug9WvqWe731yGjgBUlJLf28aYc9ZV2ZBz8OBBFRUVKTIy0mc8MjJS27ZtK3Od8ePHa+zYsaXGY2JiKqRHAFeedI2QNKKy2wBwCRw9elShoaFnXV5lQ86FGDVqlFJTU53nxcXFOnTokGrXri0/vzPPb19d8vLyFBMTo71798rj8VR2O9Zini8f5vryYJ4vD+bZlzFGR48eVXR09DnrqmzIqVOnjgICApSTk+MznpOTo6ioqDLXcbvdcrvdPmNhYWEV1WKV5PF4+Ad0GTDPlw9zfXkwz5cH8/x/znUGp0SVvfDY5XKpbdu2WrZsmTNWXFysZcuWKS4urhI7AwAAV4IqeyZHklJTU5WUlKR27dqpQ4cOmjRpko4dO6b+/ftXdmsAAKCSVemQ07t3bx04cECjR49Wdna22rRpo4yMjFIXI+Pnud1upaWllXo7D5cW83z5MNeXB/N8eTDPF8bP/Nz9VwAAAFVQlb0mBwAA4FwIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQcxU7dOiQ+vXrJ4/Ho7CwMA0YMEA//vjjea1rjNFdd90lPz8/ffjhhxXbaBVX3nk+dOiQhg4dqmbNmik4OFgNGjTQb3/7W+cLZfF/pk6dqkaNGikoKEgdO3bUunXrzlk/f/58NW/eXEFBQWrZsqUWLVp0mTqt2sozz2+99Za6du2qWrVqqVatWoqPj//Zvxf8pLyv5xJz5syRn5+fEhMTK7bBKoiQcxXr16+fNm/erKVLl2rhwoVavXq1Bg0adF7rTpo06ar/vq/zVd553rdvn/bt26eXX35ZX375pWbNmqWMjAwNGDDgMnZ95Zs7d65SU1OVlpamDRs2qHXr1vJ6vdq/f3+Z9WvWrFHfvn01YMAAffHFF0pMTFRiYqK+/PLLy9x51VLeeV65cqX69u2rFStWKDMzUzExMerRo4e+++67y9x51VLeeS6xe/duPfXUU+ratetl6rSKMbgqbdmyxUgy69evd8YWL15s/Pz8zHfffXfOdb/44gtTr1498/333xtJZsGCBRXcbdV1MfN8unnz5hmXy2VOnTpVEW1WSR06dDApKSnO86KiIhMdHW3Gjx9fZv2vfvUrk5CQ4DPWsWNH85vf/KZC+6zqyjvPZyosLDQ1a9Y0s2fPrqgWrXAh81xYWGg6d+5sZsyYYZKSksx99913GTqtWjiTc5XKzMxUWFiY2rVr54zFx8fL399fa9euPet6x48f10MPPaSpU6ee9YtQ8X8udJ7PlJubK4/Ho2rVqvSHlF8yBQUFysrKUnx8vDPm7++v+Ph4ZWZmlrlOZmamT70keb3es9bjwub5TMePH9epU6cUHh5eUW1WeRc6z+PGjVPdunU5y3sO/MS8SmVnZ6tu3bo+Y9WqVVN4eLiys7PPut7w4cPVuXNn3XfffRXdohUudJ5Pd/DgQb3wwgvn/Vbi1eDgwYMqKioq9RUukZGR2rZtW5nrZGdnl1l/vn8PV6MLmeczPfPMM4qOji4VMPF/LmSeP/30U7399tvauHHjZeiw6uJMjmVGjhwpPz+/cz7O94fTmT766CMtX75ckyZNurRNV0EVOc+ny8vLU0JCgmJjYzVmzJiLbxy4jCZMmKA5c+ZowYIFCgoKqux2rHH06FE9/PDDeuutt1SnTp3KbueKxpkcyzz55JNKTk4+Z02TJk0UFRVV6oK2wsJCHTp06KxvQy1fvlw7d+5UWFiYz3ivXr3UtWtXrVy58iI6r1oqcp5LHD16VHfeeadq1qypBQsWKDAw8GLbtkadOnUUEBCgnJwcn/GcnJyzzmtUVFS56nFh81zi5Zdf1oQJE/SPf/xDrVq1qsg2q7zyzvPOnTu1e/du3XPPPc5YcXGxpJ/OFG/fvl3XXnttxTZdVVT2RUGoHCUXxH7++efO2JIlS855Qez3339vNm3a5POQZCZPnmy++eaby9V6lXIh82yMMbm5uaZTp06me/fu5tixY5ej1SqnQ4cOZsiQIc7zoqIiU69evXNeeNyzZ0+fsbi4OC48/hnlnWdjjPnjH/9oPB6PyczMvBwtWqE883zixIlSP4vvu+8+c/vtt5tNmzaZ/Pz8y9n6FY2QcxW78847zU033WTWrl1rPv30U3PdddeZvn37Osu//fZb06xZM7N27dqzbkPcXfWzyjvPubm5pmPHjqZly5bm66+/Nt9//73zKCwsrKzDuOLMmTPHuN1uM2vWLLNlyxYzaNAgExYWZrKzs40xxjz88MNm5MiRTv1nn31mqlWrZl5++WWzdetWk5aWZgIDA82mTZsq6xCqhPLO84QJE4zL5TLvv/++z2v36NGjlXUIVUJ55/lM3F1VNkLOVeyHH34wffv2NSEhIcbj8Zj+/fv7/CDatWuXkWRWrFhx1m0Qcn5eeed5xYoVRlKZj127dlXOQVyhXnvtNdOgQQPjcrlMhw4dzL/+9S9nWffu3U1SUpJP/bx588z1119vXC6XufHGG016evpl7rhqKs88N2zYsMzXblpa2uVvvIop7+v5dIScsvkZY8zlfosMAACgonF3FQAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACs9P8Bi06dYIdVEa0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANrBJREFUeJzt3XtYVWX+//8XIHuD4gZRhFA8ZWnkqTxiHjIZqcGK1EbNKTTNydBSOulUojafdKwpHQ9ZWep3Zvp4qLEpSczxWMmoYc6Yp8x0tAzUVDAPIHD//ujH+rgFDVREbp+P61rX5b7Xe611r5sl+8Xaa63tY4wxAgAAsIxvRXcAAACgPBByAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXKAa8Dq1avl4+Oj1atXX9b1+vj4aNy4cZd1nbYZOHCgGjRoUG7rf/nll9WoUSP5+fmpVatW5badS1Ha42TcuHHy8fEp/w7hmkHIQaWzbt06jRs3TseOHavorlwTPv74Y4KMpJMnT2rcuHGXPSheik8++UTPPPOMbrvtNs2ZM0cvvfRSRXfpqrVw4UJ16NBBISEhqlmzprp27arU1NSK7hbKWZWK7gBQVuvWrdP48eM1cOBAhYSEVHR3rPfxxx9rxowZJQadU6dOqUqVa+PXyMmTJzV+/HhJ0u23317q5d566y0VFhaWS59WrlwpX19fvf3223K5XOWyjcuhoo+TadOm6fHHH1d8fLwmTZqk06dPa+7cuerZs6fef/999erVq8L6hvJ1bfx2AiqpkydPqmrVqsXa8/PzVVhYWOFvbAEBARW6/avZiRMnVK1aNfn7+5fbNg4ePKjAwMBfPA4KCwuVl5dXYT+vij5Opk2bprZt2+qjjz5yPg57+OGHVadOHc2bN4+QYzE+rkKlMm7cOD399NOSpIYNG8rHx0c+Pj7au3ev8vPz9eKLL+r666+X2+1WgwYN9Pvf/165uble62jQoIF69uypTz75RK1atVJAQICio6P197///aL69Ne//lXt2rVT1apVVaNGDXXp0kWffPKJV83MmTN18803y+12KzIyUklJScU+brv99tvVrFkzZWRkqEuXLqpatap+//vfa+/evfLx8dErr7yiKVOmOPu3bds2SdKOHTvUp08fhYaGKiAgQG3atNGHH374i/3+9NNPdf/996tevXpyu92KiorSqFGjdOrUKadm4MCBmjFjhiQ5Y332NRMlXWvx5Zdf6q677pLH41FQUJC6d++uf/3rX141c+fOlY+Pjz7//HMlJycrLCxM1apV03333adDhw79Yt/PVnQdx9dff63f/va3Cg4OVlhYmF544QUZY7R//37de++98ng8ioiI0J/+9Cev5fPy8jR27Fi1bt1awcHBqlatmjp37qxVq1Y5NXv37lVYWJgkafz48c44FO37wIEDFRQUpN27d+vXv/61qlevrgEDBjjzzr4mJyUlRb6+vlqxYoVXP4YOHSqXy6V///vfpdpvHx8fzZkzRydOnHD6M3fuXGfe8OHD9be//c057tLS0iRJr7zyijp27KiaNWsqMDBQrVu31nvvvVds/adOndLjjz+uWrVqqXr16rrnnnv0/fffX9R1WCUt89lnn6lt27YKCAjQ9ddfrzfeeKPEZZcvX65OnTopJCREQUFBatKkiX7/+9+Xafs5OTmqXbu217FbdHwGBgaWaV2oXDiTg0qlV69e+vrrr/W///u/eu2111SrVi1JUlhYmIYMGaJ58+apT58+evLJJ7V+/XpNnDhR27dv1+LFi73Ws2vXLvXt21ePPvqoEhMTNWfOHN1///1KS0vTr371q1L3Z/z48Ro3bpw6duyoCRMmyOVyaf369Vq5cqV69Ogh6ec34fHjxys2NlbDhg3Tzp079frrr2vjxo36/PPPvf7S//HHH3XXXXepX79++u1vf6vw8HBn3pw5c3T69GkNHTpUbrdboaGh2rp1q2677TbVqVNHo0ePVrVq1bRw4UIlJCTo/fff13333Xfevi9atEgnT57UsGHDVLNmTW3YsEHTpk3Td999p0WLFkmSfve73+nAgQNavny5/vKXv/zieGzdulWdO3eWx+PRM888I39/f73xxhu6/fbbtWbNGrVv396rfsSIEapRo4ZSUlK0d+9eTZkyRcOHD9eCBQtK/TMo0rdvX910002aNGmSUlNT9Yc//EGhoaF64403dMcdd+iPf/yj/va3v+mpp55S27Zt1aVLF0k/vwHOnj1b/fv31yOPPKLjx4/r7bffVlxcnDZs2KBWrVopLCxMr7/+uoYNG6b77rvP+cu/RYsWzvbz8/MVFxenTp066ZVXXinxDJwkPf/88/roo480ePBgbdmyRdWrV9eyZcv01ltv6cUXX1TLli1Ltb9/+ctf9Oabb2rDhg2aPXu2JKljx47O/JUrV2rhwoUaPny4atWq5QStqVOn6p577tGAAQOUl5en+fPn6/7779eSJUsUHx/vLD9w4EAtXLhQDz74oDp06KA1a9Z4zb8UW7ZsUY8ePRQWFqZx48YpPz9fKSkpXse79PPx1LNnT7Vo0UITJkyQ2+3WN998o88//7xM27v99tv13nvvadq0abr77rt1+vRpTZs2TdnZ2XriiScuyz7hKmWASubll182ksyePXucts2bNxtJZsiQIV61Tz31lJFkVq5c6bTVr1/fSDLvv/++05adnW2uu+46c8stt5S6H7t27TK+vr7mvvvuMwUFBV7zCgsLjTHGHDx40LhcLtOjRw+vmunTpxtJ5p133nHaunbtaiSZWbNmea1rz549RpLxeDzm4MGDXvO6d+9umjdvbk6fPu217Y4dO5obbrjBaVu1apWRZFatWuW0nTx5stg+TZw40fj4+Jj//ve/TltSUpI5368KSSYlJcV5nZCQYFwul9m9e7fTduDAAVO9enXTpUsXp23OnDlGkomNjXXGyhhjRo0aZfz8/MyxY8dK3F5JUlJSjCQzdOhQpy0/P9/UrVvX+Pj4mEmTJjntR48eNYGBgSYxMdGrNjc312udR48eNeHh4ebhhx922g4dOlRsf4skJiYaSWb06NElzqtfv75X25YtW4zL5TJDhgwxR48eNXXq1DFt2rQxZ86cKfV+F627WrVqxdolGV9fX7N169Zi8879uefl5ZlmzZqZO+64w2nLyMgwkszIkSO9agcOHHjeMbiQko6TgIAAr+Ns27Ztxs/Pz+tYe+2114wkc+jQoTJt71xZWVmme/fuRpIz1apVy6xbt+6S1ourHx9XwQoff/yxJCk5Odmr/cknn5SkYndRREZGep3l8Hg8euihh/Tll18qMzOzVNv84IMPVFhYqLFjx8rX1/u/UtFp8X/+85/Ky8vTyJEjvWoeeeQReTyeYv1yu90aNGhQidvr3bu385GJJB05ckQrV67Ub37zGx0/flyHDx/W4cOH9eOPPyouLk67du3S999/f97+n32a/sSJEzp8+LA6duwoY4y+/PLLUo3B2QoKCvTJJ58oISFBjRo1ctqvu+46PfDAA/rss8+Uk5PjtczQoUO9PkLo3LmzCgoK9N///rfM2x8yZIjzbz8/P7Vp00bGGA0ePNhpDwkJUZMmTfTtt9961RZd01JYWKgjR44oPz9fbdq00aZNm8rUh2HDhpWqrlmzZho/frxmz56tuLg4HT58WPPmzbusF+d27dpV0dHRxdrP/rkfPXpU2dnZ6ty5s9e+Fn209dhjj3ktO2LEiEvuV0FBgZYtW6aEhATVq1fPab/pppsUFxfnVVt0Y8E//vGPS7p4u2rVqmrSpIkSExO1aNEivfPOO7ruuuvUq1cvffPNNxe9Xlz9CDmwwn//+1/5+vqqcePGXu0REREKCQkp9qbZuHHjYs/juPHGGyX9fP1FaezevVu+vr4lvpGc3S9JatKkiVe7y+VSo0aNivWrTp06572ItGHDhl6vv/nmGxlj9MILLygsLMxrSklJkfTzhanns2/fPg0cOFChoaEKCgpSWFiYunbtKknKzs4+73Lnc+jQIZ08ebLYvko/v4EVFhZq//79Xu1nv8lJUo0aNST9/OZbVueuKzg4WAEBAc5Hmme3n7v+efPmqUWLFgoICFDNmjUVFham1NTUMo1DlSpVVLdu3VLXP/3002rZsqU2bNiglJSUCx5HF+Pc46XIkiVL1KFDBwUEBCg0NNT5KO7sfS36/3TuOs79/3UxDh06pFOnTumGG24oNu/cY6dv37667bbbNGTIEIWHh6tfv35auHBhmQPP/fffr3379mnu3Lnq06ePBg0apNWrVysvL0/PPffcJe0Prm5ckwOrVPYHiV3oIshz5xX9on/qqaeK/QVc5HxvSgUFBfrVr36lI0eO6Nlnn1XTpk1VrVo1ff/99xo4cGC53fJ8Lj8/vxLbjTGXZV2lWf9f//pXDRw4UAkJCXr66adVu3Zt+fn5aeLEidq9e3ept+92u4ud0buQb7/9Vrt27ZL08zUql1tJx9Knn36qe+65R126dNHMmTN13XXXyd/fX3PmzNG777572ftwqQIDA7V27VqtWrVKqampSktL04IFC3THHXfok08+Oe/P92zffvut0tLS9Oabb3q1h4aGqlOnTmW+vgeVCyEHlU5JQaZ+/foqLCzUrl27dNNNNzntWVlZOnbsmOrXr+9VX3QW5Ox1ff3115JU6qfTXn/99SosLNS2bdvO+6TZou3u3LnT6yOcvLw87dmzR7GxsaXaVkmK1ufv71/m9WzZskVff/215s2bp4ceeshpX758ebHa0gbHsLAwVa1aVTt37iw2b8eOHfL19VVUVFSZ+nklvPfee2rUqJH+/ve/e+1r0dmwIpczQBcWFmrgwIHyeDwaOXKkXnrpJfXp06fcb2V+//33FRAQoGXLlsntdjvtc+bM8aor+v+0Z88erzMul+OjnbCwMAUGBjoB72wlHTu+vr7q3r27unfvrldffVUvvfSSnnvuOa1atapUx31WVpakn4P9uc6cOaP8/PyL2AtUFnxchUqnWrVqkuR1C/avf/1rSdKUKVO8al999VVJKnZXyIEDB7zuuMrJydH/+3//T61atVJERESp+pGQkCBfX19NmDCh2JmPojMFsbGxcrlc+vOf/+x19uDtt99Wdnb2Jd2tUrt2bd1+++1644039MMPPxSbf6FbsYv+Aj67T8YYTZ06tVhtSeN9vnX26NFD//jHP7w+8svKytK7776rTp06yePxXHAdFaGksVi/fr3S09O96orulrocT9p+9dVXtW7dOr355pt68cUX1bFjRw0bNkyHDx++5HVfiJ+fn3x8fLze8Pfu3asPPvjAq67ozODMmTO92qdNm3ZZ+hAXF6cPPvhA+/btc9q3b9+uZcuWedUeOXKk2PJFf1Cc+2iI82ncuLF8fX21YMECr5/xd999p08//VS33HLLRewFKgvO5KDSad26tSTpueeeU79+/eTv76+7775biYmJevPNN3Xs2DF17dpVGzZs0Lx585SQkKBu3bp5rePGG2/U4MGDtXHjRoWHh+udd95RVlZWsb9oL6Rx48Z67rnn9OKLL6pz587q1auX3G63Nm7cqMjISE2cOFFhYWEaM2aMxo8frzvvvFP33HOPdu7cqZkzZ6pt27b67W9/e0ljMWPGDHXq1EnNmzfXI488okaNGikrK0vp6en67rvvzvvMlaZNm+r666/XU089pe+//14ej0fvv/9+idfCFI33448/rri4OPn5+alfv34lrvcPf/iD81yTxx57TFWqVNEbb7yh3NxcTZ48+ZL2tbz07NlTf//733XfffcpPj5ee/bs0axZsxQdHa2ffvrJqQsMDFR0dLQWLFigG2+8UaGhoWrWrJmaNWtWpu1t375dL7zwggYOHKi7775b0s/PDWrVqpUee+wxLVy48LLu39ni4+P16quv6s4779QDDzyggwcPasaMGWrcuLH+85//OHWtW7dW7969NWXKFP3444/OLeRFZzsv9azW+PHjlZaWps6dO+uxxx5Tfn6+pk2bpptvvtmrHxMmTNDatWsVHx+v+vXr6+DBg5o5c6bq1q2rTp06lWpbYWFhevjhhzV79mx1795dvXr10vHjxzVz5kydOnVKY8aMuaR9wVWuYm7qAi7Niy++aOrUqWN8fX2d28nPnDljxo8fbxo2bGj8/f1NVFSUGTNmjNft1cb8fAt5fHy8WbZsmWnRooVxu92madOmZtGiRRfVl3feecfccsstxu12mxo1apiuXbua5cuXe9VMnz7dNG3a1Pj7+5vw8HAzbNgwc/ToUa+arl27mptvvrnY+otuIX/55ZdL3P7u3bvNQw89ZCIiIoy/v7+pU6eO6dmzp3nvvfecmpJuId+2bZuJjY01QUFBplatWuaRRx4x//73v40kM2fOHKcuPz/fjBgxwoSFhRkfHx+vW3xVwu3EmzZtMnFxcSYoKMhUrVrVdOvWrditukW3kG/cuNGrvaR+/pKiW8jPvc34fLdXnzvOhYWF5qWXXjL169c3brfb3HLLLWbJkiUl3vq9bt0607p1a+Nyubz2/XzbKppXtJ78/HzTtm1bU7du3WK3yU+dOtVIMgsWLCj1vl/oFvKkpKQSl3n77bfNDTfc4Bz3c+bMccbwbCdOnDBJSUkmNDTUBAUFmYSEBLNz504jyeu2/NIo6ThZs2aNM5aNGjUys2bNKtaPFStWmHvvvddERkYal8tlIiMjTf/+/c3XX39dpu2fOXPGTJs2zbRq1coEBQWZoKAg061bN69HS8BOPsZcxBV+QCXWoEEDNWvWTEuWLKnorgCVyubNm3XLLbfor3/9q/NEZ+BqxjU5AIBizv56jyJTpkyRr6+v87Ro4GrHNTlACX7pgYCBgYEKDg6+Qr25Nv30009e18SUJCwsrFS3EVc2hw4dKvFuoCIul0uhoaHl2ofJkycrIyND3bp1U5UqVbR06VItXbpUQ4cOVVRUlAoKCn7xe8aCgoIUFBRUbn28GsYJV7mK/rwMuNKKrsm5EJ31+PeSprO/FgDlo+j6jAtNZ3+1h02KvnrkfFPXrl3LvQ+ffPKJue2220yNGjWMv7+/uf766824ceOcr54oulbsQlNZv/6hrK6GccLVjWtygBL885//vOD8yMjIy/6EWnj79ttvvb5+oSSdOnVSQEDAFerRlfP555+X+HFRkRo1ajh3vVWU06dP67PPPrtgTaNGjbyeD3W5VYZxQsUi5AAAACtx4TEAALDSNX3hcWFhoQ4cOKDq1atX+u88AgDgWmGM0fHjxxUZGXnB74y7pkPOgQMHrsrv0gEAAL9s//79qlu37nnnX9Mhp3r16pJ+HqSr8Tt1AABAcTk5OYqKinLex8/nmg45RR9ReTweQg4AAJXML11qwoXHAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFaqUtEdAIDycibtM6/X/nd2qqCeAKgInMkBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVLinkTJo0ST4+Pho5cqTTdvr0aSUlJalmzZoKCgpS7969lZWV5bXcvn37FB8fr6pVq6p27dp6+umnlZ+f71WzevVq3XrrrXK73WrcuLHmzp1bbPszZsxQgwYNFBAQoPbt22vDhg2XsjsAAMAiFx1yNm7cqDfeeEMtWrTwah81apQ++ugjLVq0SGvWrNGBAwfUq1cvZ35BQYHi4+OVl5endevWad68eZo7d67Gjh3r1OzZs0fx8fHq1q2bNm/erJEjR2rIkCFatmyZU7NgwQIlJycrJSVFmzZtUsuWLRUXF6eDBw9e7C4BAACbmItw/Phxc8MNN5jly5ebrl27mieeeMIYY8yxY8eMv7+/WbRokVO7fft2I8mkp6cbY4z5+OOPja+vr8nMzHRqXn/9dePxeExubq4xxphnnnnG3HzzzV7b7Nu3r4mLi3Net2vXziQlJTmvCwoKTGRkpJk4cWKp9yM7O9tIMtnZ2aXfeQCVRt7ST70mAHYo7fv3RZ3JSUpKUnx8vGJjY73aMzIydObMGa/2pk2bql69ekpPT5ckpaenq3nz5goPD3dq4uLilJOTo61btzo15647Li7OWUdeXp4yMjK8anx9fRUbG+vUlCQ3N1c5OTleEwAAsFOVsi4wf/58bdq0SRs3biw2LzMzUy6XSyEhIV7t4eHhyszMdGrODjhF84vmXagmJydHp06d0tGjR1VQUFBizY4dO87b94kTJ2r8+PGl21EAAFCplelMzv79+/XEE0/ob3/7mwICAsqrT+VmzJgxys7Odqb9+/dXdJcAAEA5KVPIycjI0MGDB3XrrbeqSpUqqlKlitasWaM///nPqlKlisLDw5WXl6djx455LZeVlaWIiAhJUkRERLG7rYpe/1KNx+NRYGCgatWqJT8/vxJritZRErfbLY/H4zUBAAA7lSnkdO/eXVu2bNHmzZudqU2bNhowYIDzb39/f61YscJZZufOndq3b59iYmIkSTExMdqyZYvXXVDLly+Xx+NRdHS0U3P2OopqitbhcrnUunVrr5rCwkKtWLHCqQEAANe2Ml2TU716dTVr1syrrVq1aqpZs6bTPnjwYCUnJys0NFQej0cjRoxQTEyMOnToIEnq0aOHoqOj9eCDD2ry5MnKzMzU888/r6SkJLndbknSo48+qunTp+uZZ57Rww8/rJUrV2rhwoVKTU11tpucnKzExES1adNG7dq105QpU3TixAkNGjTokgYEAADYocwXHv+S1157Tb6+vurdu7dyc3MVFxenmTNnOvP9/Py0ZMkSDRs2TDExMapWrZoSExM1YcIEp6Zhw4ZKTU3VqFGjNHXqVNWtW1ezZ89WXFycU9O3b18dOnRIY8eOVWZmplq1aqW0tLRiFyMDAIBrk48xxlR0JypKTk6OgoODlZ2dzfU5gIXOpH3m9dr/zk4V1BMAl1Np37/57ioAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipSkV3AADKy95jS71e36BOFdQTABWBMzkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFKZQs7rr7+uFi1ayOPxyOPxKCYmRkuXLnXmnz59WklJSapZs6aCgoLUu3dvZWVlea1j3759io+PV9WqVVW7dm09/fTTys/P96pZvXq1br31VrndbjVu3Fhz584t1pcZM2aoQYMGCggIUPv27bVhw4ay7AoAALBcmUJO3bp1NWnSJGVkZOiLL77QHXfcoXvvvVdbt26VJI0aNUofffSRFi1apDVr1ujAgQPq1auXs3xBQYHi4+OVl5endevWad68eZo7d67Gjh3r1OzZs0fx8fHq1q2bNm/erJEjR2rIkCFatmyZU7NgwQIlJycrJSVFmzZtUsuWLRUXF6eDBw9e6ngAAABL+BhjzKWsIDQ0VC+//LL69OmjsLAwvfvuu+rTp48kaceOHbrpppuUnp6uDh06aOnSperZs6cOHDig8PBwSdKsWbP07LPP6tChQ3K5XHr22WeVmpqqr776ytlGv379dOzYMaWlpUmS2rdvr7Zt22r69OmSpMLCQkVFRWnEiBEaPXp0qfuek5Oj4OBgZWdny+PxXMowALgK7Zr/nNfrG/r9TwX1BMDlVNr374u+JqegoEDz58/XiRMnFBMTo4yMDJ05c0axsbFOTdOmTVWvXj2lp6dLktLT09W8eXMn4EhSXFyccnJynLNB6enpXusoqilaR15enjIyMrxqfH19FRsb69ScT25urnJycrwmAABgpzKHnC1btigoKEhut1uPPvqoFi9erOjoaGVmZsrlcikkJMSrPjw8XJmZmZKkzMxMr4BTNL9o3oVqcnJydOrUKR0+fFgFBQUl1hSt43wmTpyo4OBgZ4qKiirr7gMAgEqizCGnSZMm2rx5s9avX69hw4YpMTFR27ZtK4++XXZjxoxRdna2M+3fv7+iuwQAAMpJlbIu4HK51LhxY0lS69attXHjRk2dOlV9+/ZVXl6ejh075nU2JysrSxEREZKkiIiIYndBFd19dXbNuXdkZWVlyePxKDAwUH5+fvLz8yuxpmgd5+N2u+V2u8u6ywAAoBK65OfkFBYWKjc3V61bt5a/v79WrFjhzNu5c6f27dunmJgYSVJMTIy2bNnidRfU8uXL5fF4FB0d7dScvY6imqJ1uFwutW7d2qumsLBQK1ascGoAAADKdCZnzJgxuuuuu1SvXj0dP35c7777rlavXq1ly5YpODhYgwcPVnJyskJDQ+XxeDRixAjFxMSoQ4cOkqQePXooOjpaDz74oCZPnqzMzEw9//zzSkpKcs6wPProo5o+fbqeeeYZPfzww1q5cqUWLlyo1NRUpx/JyclKTExUmzZt1K5dO02ZMkUnTpzQoEGDLuPQAACAyqxMIefgwYN66KGH9MMPPyg4OFgtWrTQsmXL9Ktf/UqS9Nprr8nX11e9e/dWbm6u4uLiNHPmTGd5Pz8/LVmyRMOGDVNMTIyqVaumxMRETZgwwalp2LChUlNTNWrUKE2dOlV169bV7NmzFRcX59T07dtXhw4d0tixY5WZmalWrVopLS2t2MXIAADg2nXJz8mpzHhODmA3npMD2Kncn5MDAABwNSPkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipTCFn4sSJatu2rapXr67atWsrISFBO3fu9Ko5ffq0kpKSVLNmTQUFBal3797Kysryqtm3b5/i4+NVtWpV1a5dW08//bTy8/O9alavXq1bb71VbrdbjRs31ty5c4v1Z8aMGWrQoIECAgLUvn17bdiwoSy7AwAALFamkLNmzRolJSXpX//6l5YvX64zZ86oR48eOnHihFMzatQoffTRR1q0aJHWrFmjAwcOqFevXs78goICxcfHKy8vT+vWrdO8efM0d+5cjR071qnZs2eP4uPj1a1bN23evFkjR47UkCFDtGzZMqdmwYIFSk5OVkpKijZt2qSWLVsqLi5OBw8evJTxAAAAlvAxxpiLXfjQoUOqXbu21qxZoy5duig7O1thYWF699131adPH0nSjh07dNNNNyk9PV0dOnTQ0qVL1bNnTx04cEDh4eGSpFmzZunZZ5/VoUOH5HK59Oyzzyo1NVVfffWVs61+/frp2LFjSktLkyS1b99ebdu21fTp0yVJhYWFioqK0ogRIzR69OhS9T8nJ0fBwcHKzs6Wx+O52GEAcJXaNf85r9c39PufCuoJgMuptO/fl3RNTnZ2tiQpNDRUkpSRkaEzZ84oNjbWqWnatKnq1aun9PR0SVJ6erqaN2/uBBxJiouLU05OjrZu3erUnL2OopqideTl5SkjI8OrxtfXV7GxsU5NSXJzc5WTk+M1AQAAO110yCksLNTIkSN12223qVmzZpKkzMxMuVwuhYSEeNWGh4crMzPTqTk74BTNL5p3oZqcnBydOnVKhw8fVkFBQYk1ResoycSJExUcHOxMUVFRZd9xAABQKVx0yElKStJXX32l+fPnX87+lKsxY8YoOzvbmfbv31/RXQIAAOWkysUsNHz4cC1ZskRr165V3bp1nfaIiAjl5eXp2LFjXmdzsrKyFBER4dScexdU0d1XZ9ece0dWVlaWPB6PAgMD5efnJz8/vxJritZRErfbLbfbXfYdBgAAlU6ZzuQYYzR8+HAtXrxYK1euVMOGDb3mt27dWv7+/lqxYoXTtnPnTu3bt08xMTGSpJiYGG3ZssXrLqjly5fL4/EoOjraqTl7HUU1RetwuVxq3bq1V01hYaFWrFjh1AAAgGtbmc7kJCUl6d1339U//vEPVa9e3bn+JTg4WIGBgQoODtbgwYOVnJys0NBQeTwejRgxQjExMerQoYMkqUePHoqOjtaDDz6oyZMnKzMzU88//7ySkpKcsyyPPvqopk+frmeeeUYPP/ywVq5cqYULFyo1NdXpS3JyshITE9WmTRu1a9dOU6ZM0YkTJzRo0KDLNTYAAKASK1PIef311yVJt99+u1f7nDlzNHDgQEnSa6+9Jl9fX/Xu3Vu5ubmKi4vTzJkznVo/Pz8tWbJEw4YNU0xMjKpVq6bExERNmDDBqWnYsKFSU1M1atQoTZ06VXXr1tXs2bMVFxfn1PTt21eHDh3S2LFjlZmZqVatWiktLa3YxcgAAODadEnPyanseE4OYDeekwPY6Yo8JwcAAOBqRcgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsFKZQ87atWt19913KzIyUj4+Pvrggw+85htjNHbsWF133XUKDAxUbGysdu3a5VVz5MgRDRgwQB6PRyEhIRo8eLB++uknr5r//Oc/6ty5swICAhQVFaXJkycX68uiRYvUtGlTBQQEqHnz5vr444/LujsAAMBSZQ45J06cUMuWLTVjxowS50+ePFl//vOfNWvWLK1fv17VqlVTXFycTp8+7dQMGDBAW7du1fLly7VkyRKtXbtWQ4cOdebn5OSoR48eql+/vjIyMvTyyy9r3LhxevPNN52adevWqX///ho8eLC+/PJLJSQkKCEhQV999VVZdwkAAFjIxxhjLnphHx8tXrxYCQkJkn4+ixMZGaknn3xSTz31lCQpOztb4eHhmjt3rvr166ft27crOjpaGzduVJs2bSRJaWlp+vWvf63vvvtOkZGRev311/Xcc88pMzNTLpdLkjR69Gh98MEH2rFjhySpb9++OnHihJYsWeL0p0OHDmrVqpVmzZpVqv7n5OQoODhY2dnZ8ng8FzsMAK5Su+Y/5/X6hn7/U0E9AXA5lfb9+7Jek7Nnzx5lZmYqNjbWaQsODlb79u2Vnp4uSUpPT1dISIgTcCQpNjZWvr6+Wr9+vVPTpUsXJ+BIUlxcnHbu3KmjR486NWdvp6imaDslyc3NVU5OjtcEAADsdFlDTmZmpiQpPDzcqz08PNyZl5mZqdq1a3vNr1KlikJDQ71qSlrH2ds4X03R/JJMnDhRwcHBzhQVFVXWXQQAAJXENXV31ZgxY5Sdne1M+/fvr+guAQCAcnJZQ05ERIQkKSsry6s9KyvLmRcREaGDBw96zc/Pz9eRI0e8akpax9nbOF9N0fySuN1ueTwerwkAANjpsoachg0bKiIiQitWrHDacnJytH79esXExEiSYmJidOzYMWVkZDg1K1euVGFhodq3b+/UrF27VmfOnHFqli9friZNmqhGjRpOzdnbKaop2g4AALi2lTnk/PTTT9q8ebM2b94s6eeLjTdv3qx9+/bJx8dHI0eO1B/+8Ad9+OGH2rJlix566CFFRkY6d2DddNNNuvPOO/XII49ow4YN+vzzzzV8+HD169dPkZGRkqQHHnhALpdLgwcP1tatW7VgwQJNnTpVycnJTj+eeOIJpaWl6U9/+pN27NihcePG6YsvvtDw4cMvfVQAAEDlZ8po1apVRlKxKTEx0RhjTGFhoXnhhRdMeHi4cbvdpnv37mbnzp1e6/jxxx9N//79TVBQkPF4PGbQoEHm+PHjXjX//ve/TadOnYzb7TZ16tQxkyZNKtaXhQsXmhtvvNG4XC5z8803m9TU1DLtS3Z2tpFksrOzyzYIACqFr//3914TADuU9v37kp6TU9nxnBzAbjwnB7BThTwnBwAA4GpByAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpSoV3QEAuNxy809racZs7SnYrlATqHZ+9VTFh7/pgGtNpf9fP2PGDDVo0EABAQFq3769NmzYUNFdAlCB5qxOUf/U2zQv6x2trb5XH3i267mqy7Qs/+uK7hqAK6xSh5wFCxYoOTlZKSkp2rRpk1q2bKm4uDgdPHiworsGoALMWZ2iD7M/kpHxajeSVlTfrTmrUyqmYwAqRKUOOa+++qoeeeQRDRo0SNHR0Zo1a5aqVq2qd955p6K7BuAKy80/rY+yl/z8wuecmf//6yXZS5Sbf/qK9gtAxam01+Tk5eUpIyNDY8aMcdp8fX0VGxur9PT0EpfJzc1Vbm6u8zo7O1uSlJOTU76dBVDulnzxhvJO5f9i3ftrp6lnm99dgR4BKC9F79vGmAvWVdqQc/jwYRUUFCg8PNyrPTw8XDt27ChxmYkTJ2r8+PHF2qOiosqljwCuPql6RtIzFd0NAJfB8ePHFRwcfN75lTbkXIwxY8YoOTnZeV1YWKgjR46oZs2a8vE59/z2tSUnJ0dRUVHav3+/PB5PRXfHWozzlcNYXxmM85XBOHszxuj48eOKjIy8YF2lDTm1atWSn5+fsrKyvNqzsrIUERFR4jJut1tut9urLSQkpLy6WCl5PB7+A10BjPOVw1hfGYzzlcE4/58LncEpUmkvPHa5XGrdurVWrFjhtBUWFmrFihWKiYmpwJ4BAICrQaU9kyNJycnJSkxMVJs2bdSuXTtNmTJFJ06c0KBBgyq6awAAoIJV6pDTt29fHTp0SGPHjlVmZqZatWqltLS0Yhcj45e53W6lpKQU+zgPlxfjfOUw1lcG43xlMM4Xx8f80v1XAAAAlVClvSYHAADgQgg5AADASoQcAABgJUIOAACwEiEHAABYiZBzDTty5IgGDBggj8ejkJAQDR48WD/99FOpljXG6K677pKPj48++OCD8u1oJVfWcT5y5IhGjBihJk2aKDAwUPXq1dPjjz/ufKEs/s+MGTPUoEEDBQQEqH379tqwYcMF6xctWqSmTZsqICBAzZs318cff3yFelq5lWWc33rrLXXu3Fk1atRQjRo1FBsb+4s/F/ysrMdzkfnz58vHx0cJCQnl28FKiJBzDRswYIC2bt2q5cuXa8mSJVq7dq2GDh1aqmWnTJlyzX/fV2mVdZwPHDigAwcO6JVXXtFXX32luXPnKi0tTYMHD76Cvb76LViwQMnJyUpJSdGmTZvUsmVLxcXF6eDBgyXWr1u3Tv3799fgwYP15ZdfKiEhQQkJCfrqq6+ucM8rl7KO8+rVq9W/f3+tWrVK6enpioqKUo8ePfT9999f4Z5XLmUd5yJ79+7VU089pc6dO1+hnlYyBtekbdu2GUlm48aNTtvSpUuNj4+P+f777y+47Jdffmnq1KljfvjhByPJLF68uJx7W3ldyjifbeHChcblcpkzZ86URzcrpXbt2pmkpCTndUFBgYmMjDQTJ04ssf43v/mNiY+P92pr3769+d3vfleu/azsyjrO58rPzzfVq1c38+bNK68uWuFixjk/P9907NjRzJ492yQmJpp77733CvS0cuFMzjUqPT1dISEhatOmjdMWGxsrX19frV+//rzLnTx5Ug888IBmzJhx3i9Cxf+52HE+V3Z2tjwej6pUqdQPKb9s8vLylJGRodjYWKfN19dXsbGxSk9PL3GZ9PR0r3pJiouLO289Lm6cz3Xy5EmdOXNGoaGh5dXNSu9ix3nChAmqXbs2Z3kvgN+Y16jMzEzVrl3bq61KlSoKDQ1VZmbmeZcbNWqUOnbsqHvvvbe8u2iFix3nsx0+fFgvvvhiqT9KvBYcPnxYBQUFxb7CJTw8XDt27ChxmczMzBLrS/tzuBZdzDif69lnn1VkZGSxgIn/czHj/Nlnn+ntt9/W5s2br0APKy/O5Fhm9OjR8vHxueBU2l9O5/rwww+1cuVKTZky5fJ2uhIqz3E+W05OjuLj4xUdHa1x48ZdeseBK2jSpEmaP3++Fi9erICAgIrujjWOHz+uBx98UG+99ZZq1apV0d25qnEmxzJPPvmkBg4ceMGaRo0aKSIiotgFbfn5+Tpy5Mh5P4ZauXKldu/erZCQEK/23r17q3Pnzlq9evUl9LxyKc9xLnL8+HHdeeedql69uhYvXix/f/9L7bY1atWqJT8/P2VlZXm1Z2VlnXdcIyIiylSPixvnIq+88oomTZqkf/7zn2rRokV5drPSK+s47969W3v37tXdd9/ttBUWFkr6+Uzxzp07df3115dvpyuLir4oCBWj6ILYL774wmlbtmzZBS+I/eGHH8yWLVu8Jklm6tSp5ttvv71SXa9ULmacjTEmOzvbdOjQwXTt2tWcOHHiSnS10mnXrp0ZPny487qgoMDUqVPnghce9+zZ06stJiaGC49/QVnH2Rhj/vjHPxqPx2PS09OvRBetUJZxPnXqVLHfxffee6+54447zJYtW0xubu6V7PpVjZBzDbvzzjvNLbfcYtavX28+++wzc8MNN5j+/fs787/77jvTpEkTs379+vOuQ9xd9YvKOs7Z2dmmffv2pnnz5uabb74xP/zwgzPl5+dX1G5cdebPn2/cbreZO3eu2bZtmxk6dKgJCQkxmZmZxhhjHnzwQTN69Gin/vPPPzdVqlQxr7zyitm+fbtJSUkx/v7+ZsuWLRW1C5VCWcd50qRJxuVymffee8/r2D1+/HhF7UKlUNZxPhd3V5WMkHMN+/HHH03//v1NUFCQ8Xg8ZtCgQV6/iPbs2WMkmVWrVp13HYScX1bWcV61apWRVOK0Z8+eitmJq9S0adNMvXr1jMvlMu3atTP/+te/nHldu3Y1iYmJXvULFy40N954o3G5XObmm282qampV7jHlVNZxrl+/folHrspKSlXvuOVTFmP57MRckrmY4wxV/ojMgAAgPLG3VUAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsNL/B7vEyl0EGysRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANpRJREFUeJzt3XtcVVX+//E3IOeA4gFRhFC8pankrbxiXioZqcGK0hk1x8A0y9BJqbx0ES/zTcea0knNylLn4tdLjU1JYo7XKRk1zBnTNDMdLQU1FQwVBNbvj36cr0fQQEVk+Xo+Hufx8Kz92XuvvThy3uyz9j5exhgjAAAAy3hXdAcAAADKAyEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQe4Aaxbt05eXl5at27dVd2ul5eXJkyYcFW3aZuEhAQ1aNCg3Lb/8ssvq1GjRvLx8VGbNm3KbT9XorSvkwkTJsjLy6v8O4QbBiEHlc7GjRs1YcIEnTx5sqK7ckP4+OOPCTKSTp8+rQkTJlz1oHglPvnkE40ePVp33HGH5s2bp5deeqmiu3Tdmjlzppo3by6n06k6deooKSlJOTk5Fd0tlLMqFd0BoKw2btyoiRMnKiEhQUFBQRXdHet9/PHHmjVrVolB58yZM6pS5cb4NXL69GlNnDhRknTnnXeWer23335bhYWF5dKnNWvWyNvbW++8844cDke57ONqqOjXyZgxYzRt2jT16dNHTz31lHbu3KnXX39dO3bs0MqVKyusXyh/N8ZvJ6CSOn36tKpWrVqsPT8/X4WFhRX+xubn51eh+7+e5eTkqFq1avL19S23fRw5ckT+/v4/+zooLCxUXl5ehf28KvJ1cvjwYb366qsaOHCg/vSnP7nbb7nlFo0YMUIfffSR7rvvvgrrH8oXH1ehUpkwYYKeffZZSVLDhg3l5eUlLy8v7d+/X/n5+Zo8ebJuvvlmOZ1ONWjQQM8995xyc3M9ttGgQQP16tVLn3zyidq0aSM/Pz9FRkbqb3/722X16S9/+Ys6dOigqlWrqkaNGurWrZs++eQTj5rZs2fr1ltvldPpVHh4uBITE4t93HbnnXeqRYsWSk9PV7du3VS1alU999xz2r9/v7y8vPTKK69o+vTp7uPbuXOnJGnXrl3q06ePgoOD5efnp3bt2unDDz/82X7/85//1K9+9SvVq1dPTqdTERERGjVqlM6cOeOuSUhI0KxZsyTJPdbnz5koaa7FF198oXvvvVcul0sBAQHq0aOH/vWvf3nUzJ8/X15eXvrss8+UlJSkkJAQVatWTQ8++KCOHj36s30/X9E8jq+//lq/+c1vFBgYqJCQEL344osyxujgwYN64IEH5HK5FBYWpj/84Q8e6+fl5Wn8+PFq27atAgMDVa1aNXXt2lVr16511+zfv18hISGSpIkTJ7rHoejYExISFBAQoL179+qXv/ylqlevrgEDBriXnT8nJzk5Wd7e3lq9erVHP4YOHSqHw6F///vfpTpuLy8vzZs3Tzk5Oe7+zJ8/371s+PDh+utf/+p+3aWmpkqSXnnlFXXu3Fk1a9aUv7+/2rZtq/fee6/Y9s+cOaPf/va3qlWrlqpXr677779f33///WXNwyppnU8//VTt27eXn5+fbr75Zr355pslrrtq1Sp16dJFQUFBCggIUNOmTfXcc8+Vet9paWnKz89Xv379PNqLni9atKhMx4LKhTM5qFQeeughff311/rf//1fvfbaa6pVq5YkKSQkREOGDNGCBQvUp08fPf3009q0aZOmTJmir776SsuWLfPYzp49e9S3b1898cQTio+P17x58/SrX/1Kqamp+sUvflHq/kycOFETJkxQ586dNWnSJDkcDm3atElr1qxRz549Jf30Jjxx4kRFR0dr2LBh2r17t9544w1t2bJFn332mcdf+j/88IPuvfde9evXT7/5zW8UGhrqXjZv3jydPXtWQ4cOldPpVHBwsHbs2KE77rhDderU0dixY1WtWjUtWbJEcXFxev/99/Xggw9etO9Lly7V6dOnNWzYMNWsWVObN2/W66+/ru+++05Lly6VJD3++OM6dOiQVq1apT//+c8/Ox47duxQ165d5XK5NHr0aPn6+urNN9/UnXfeqfXr16tjx44e9SNGjFCNGjWUnJys/fv3a/r06Ro+fLgWL15c6p9Bkb59+6p58+aaOnWqUlJS9Lvf/U7BwcF68803dffdd+v3v/+9/vrXv+qZZ55R+/bt1a1bN0lSdna25s6dq/79++uxxx7TqVOn9M477ygmJkabN29WmzZtFBISojfeeEPDhg3Tgw8+qIceekiS1KpVK/f+8/PzFRMToy5duuiVV14p8QycJL3wwgv66KOPNHjwYG3fvl3Vq1fXypUr9fbbb2vy5Mlq3bp1qY73z3/+s9566y1t3rxZc+fOlSR17tzZvXzNmjVasmSJhg8frlq1armD1owZM3T//fdrwIABysvL06JFi/SrX/1Ky5cvV2xsrHv9hIQELVmyRAMHDlSnTp20fv16j+VXYvv27erZs6dCQkI0YcIE5efnKzk52eP1Lv30eurVq5datWqlSZMmyel06ptvvtFnn31W6n0V/ZHj7+/v0V7080lPT7/Co8F1zQCVzMsvv2wkmX379rnbtm3bZiSZIUOGeNQ+88wzRpJZs2aNu61+/fpGknn//ffdbVlZWeamm24yt912W6n7sWfPHuPt7W0efPBBU1BQ4LGssLDQGGPMkSNHjMPhMD179vSomTlzppFk3n33XXdb9+7djSQzZ84cj23t27fPSDIul8scOXLEY1mPHj1My5YtzdmzZz323blzZ9OkSRN329q1a40ks3btWnfb6dOnix3TlClTjJeXl/nvf//rbktMTDQX+1UhySQnJ7ufx8XFGYfDYfbu3etuO3TokKlevbrp1q2bu23evHlGkomOjnaPlTHGjBo1yvj4+JiTJ0+WuL+SJCcnG0lm6NCh7rb8/HxTt25d4+XlZaZOnepuP3HihPH39zfx8fEetbm5uR7bPHHihAkNDTWPPvqou+3o0aPFjrdIfHy8kWTGjh1b4rL69et7tG3fvt04HA4zZMgQc+LECVOnTh3Trl07c+7cuVIfd9G2q1WrVqxdkvH29jY7duwotuzCn3teXp5p0aKFufvuu91t6enpRpIZOXKkR21CQsJFx+BSSnqd+Pn5ebzOdu7caXx8fDxea6+99pqRZI4ePVqm/Z2v6FgmT57s0Z6ammokmYCAgMveNq5/fFwFK3z88ceSpKSkJI/2p59+WpKUkpLi0R4eHu5xlsPlcumRRx7RF198oYyMjFLt84MPPlBhYaHGjx8vb2/P/0pFH+n84x//UF5enkaOHOlR89hjj8nlchXrl9Pp1KBBg0rcX+/evd0fmUjS8ePHtWbNGv3617/WqVOndOzYMR07dkw//PCDYmJitGfPHn3//fcX7f/5f9nm5OTo2LFj6ty5s4wx+uKLL0o1BucrKCjQJ598ori4ODVq1MjdftNNN+nhhx/Wp59+quzsbI91hg4d6vHxV9euXVVQUKD//ve/Zd7/kCFD3P/28fFRu3btZIzR4MGD3e1BQUFq2rSpvv32W4/aojkthYWFOn78uPLz89WuXTtt3bq1TH0YNmxYqepatGihiRMnau7cuYqJidGxY8e0YMGCqzo5t3v37oqMjCzWfv7P/cSJE8rKylLXrl09jrXoo60nn3zSY90RI0Zccb8KCgq0cuVKxcXFqV69eu725s2bKyYmxqO26MKCv//975c9efv2229Xx44d9fvf/17z5s3T/v37tWLFCj3++OPy9fX1+HgW9iHkwAr//e9/5e3trcaNG3u0h4WFKSgoqNibZuPGjYvdj+OWW26R9NP8i9LYu3evvL29S3wjOb9fktS0aVOPdofDoUaNGhXrV506dS46ibRhw4Yez7/55hsZY/Tiiy8qJCTE45GcnCzpp4mpF3PgwAElJCQoODhYAQEBCgkJUffu3SVJWVlZF13vYo4eParTp08XO1bppzewwsJCHTx40KP9/Dc5SapRo4akn958y+rCbQUGBsrPz8/9keb57Rduf8GCBWrVqpX8/PxUs2ZNhYSEKCUlpUzjUKVKFdWtW7fU9c8++6xat26tzZs3Kzk5+ZKvo8tx4eulyPLly9WpUyf5+fkpODjY/VHc+cda9P/pwm1c+P/rchw9elRnzpxRkyZNii278LXTt29f3XHHHRoyZIhCQ0PVr18/LVmypMyB5/3331fr1q316KOPqmHDhrrvvvv061//WrfddpsCAgKu6HhwfWNODqxS2W8kduG8gUstK/pF/8wzzxT7C7jIxd6UCgoK9Itf/ELHjx/XmDFj1KxZM1WrVk3ff/+9EhISyu2S5wv5+PiU2G6MuSrbKs32//KXvyghIUFxcXF69tlnVbt2bfn4+GjKlCnau3dvqffvdDqLndG7lG+//VZ79uyR9NMclautpNfSP//5T91///3q1q2bZs+erZtuukm+vr6aN2+eFi5ceNX7cKX8/f21YcMGrV27VikpKUpNTdXixYt1991365NPPrnoz/dCderU0aeffqo9e/YoIyNDTZo0UVhYmMLDw91/3MBOhBxUOiUFmfr166uwsFB79uxR8+bN3e2ZmZk6efKk6tev71FfdBbk/G19/fXXklTqu9PefPPNKiws1M6dOy96p9mi/e7evdvjI5y8vDzt27dP0dHRpdpXSYq25+vrW+btbN++XV9//bUWLFigRx55xN2+atWqYrWlDY4hISGqWrWqdu/eXWzZrl275O3trYiIiDL181p477331KhRI/3tb3/zONais2FFrmaALiwsVEJCglwul0aOHKmXXnpJffr0cU9oLi/vv/++/Pz8tHLlSjmdTnf7vHnzPOqK/j/t27fP44zLN998c8V9CAkJkb+/vzvgna+k1463t7d69OihHj166NVXX9VLL72k559/XmvXri3z675Jkybu49m5c6cOHz6shISEyzoOVA58XIVKp1q1apLkcQn2L3/5S0nS9OnTPWpfffVVSSp2VcihQ4c8rrjKzs7Wn/70J7Vp00ZhYWGl6kdcXJy8vb01adKkYmc+is4UREdHy+Fw6I9//KPH2YN33nlHWVlZV3S1Su3atXXnnXfqzTff1OHDh4stv9Sl2EV/AZ/fJ2OMZsyYUay2pPG+2DZ79uypv//97x4f+WVmZmrhwoXq0qWLXC7XJbdREUoai02bNiktLc2jruhqnKtxp+1XX31VGzdu1FtvvaXJkyerc+fOGjZsmI4dO3bF274UHx8feXl5qaCgwN22f/9+ffDBBx51RWcGZ8+e7dH++uuvX5U+xMTE6IMPPtCBAwfc7V999VWxG/MdP3682PpFf1BceGuIsigsLNTo0aNVtWpVPfHEE5e9HVz/OJODSqdt27aSpOeff179+vWTr6+v7rvvPsXHx+utt97SyZMn1b17d23evFkLFixQXFyc7rrrLo9t3HLLLRo8eLC2bNmi0NBQvfvuu8rMzCz2F+2lNG7cWM8//7wmT56srl276qGHHpLT6dSWLVsUHh6uKVOmKCQkROPGjdPEiRN1zz336P7779fu3bs1e/ZstW/fXr/5zW+uaCxmzZqlLl26qGXLlnrsscfUqFEjZWZmKi0tTd99991F77nSrFkz3XzzzXrmmWf0/fffy+Vy6f333y9xLkzReP/2t79VTEyMfHx8it1zpMjvfvc7931NnnzySVWpUkVvvvmmcnNzNW3atCs61vLSq1cv/e1vf9ODDz6o2NhY7du3T3PmzFFkZKR+/PFHd52/v78iIyO1ePFi3XLLLQoODlaLFi3UokWLMu3vq6++0osvvqiEhAT3Tejmz5+vNm3a6Mknn9SSJUuu6vGdLzY2Vq+++qruuecePfzwwzpy5IhmzZqlxo0b6z//+Y+7rm3bturdu7emT5+uH374wX0JedHZzis9qzVx4kSlpqaqa9euevLJJ5Wfn6/XX39dt956q0c/Jk2apA0bNig2Nlb169fXkSNHNHv2bNWtW1ddunQp9f6eeuopnT17Vm3atNG5c+e0cOFC9++HC+dywTIVdFUXcEUmT55s6tSpY7y9vd2Xk587d85MnDjRNGzY0Pj6+pqIiAgzbtw4j8urjfnpEvLY2FizcuVK06pVK+N0Ok2zZs3M0qVLL6sv7777rrntttuM0+k0NWrUMN27dzerVq3yqJk5c6Zp1qyZ8fX1NaGhoWbYsGHmxIkTHjXdu3c3t956a7HtF11C/vLLL5e4/71795pHHnnEhIWFGV9fX1OnTh3Tq1cv895777lrSrqEfOfOnSY6OtoEBASYWrVqmccee8z8+9//NpLMvHnz3HX5+flmxIgRJiQkxHh5eXlc4qsSLifeunWriYmJMQEBAaZq1armrrvuMhs3bvSoKbqEfMuWLR7tJfXz5xRdQn7hZcYXu7z6wnEuLCw0L730kqlfv75xOp3mtttuM8uXLy/x0u+NGzeatm3bGofD4XHsF9tX0bKi7eTn55v27dubunXrFrtMfsaMGUaSWbx4camP/VKXkCcmJpa4zjvvvGOaNGnift3PmzfPPYbny8nJMYmJiSY4ONgEBASYuLg4s3v3biPJ47L80ijpdbJ+/Xr3WDZq1MjMmTOnWD9Wr15tHnjgARMeHm4cDocJDw83/fv3N19//XWZ9j9v3jzTunVrU61aNVO9enXTo0cPj9tKwF5exlzGDD+gEmvQoIFatGih5cuXV3RXgEpl27Ztuu222/SXv/zFfUdn4HrGnBwAQDEl3T9m+vTp8vb2dt8tGrjeMScHKMHP3RDQ399fgYGB16g3N6Yff/zRY05MSUJCQkp9GXFlcvToUY/JwRdyOBwKDg4u1z5MmzZN6enpuuuuu1SlShWtWLFCK1as0NChQxUREaGCgoKf/Z6xgICAcr0PzfUwTrjOVfTnZcC1VjQn51IkXfJx/tcCoHwUzc+41OP8r/awSdFXj1zs0b1793LvwyeffGLuuOMOU6NGDePr62tuvvlmM2HCBPdXTxTNFbvUo6xf/1BW18M44frGnBygBP/4xz8uuTw8PPyq36EWnr799luPr18oSZcuXeTn53eNenTtfPbZZ5f8uoEaNWq4r3qrKGfPntWnn356yZpGjRp53B/qaqsM44SKRcgBAABWYuIxAACw0g098biwsFCHDh1S9erVK/13HgEAcKMwxujUqVMKDw+/5HfG3dAh59ChQ9fld+kAAICfd/DgQdWtW/eiy2/okFO9enVJPw3S9fidOgAAoLjs7GxFRES438cv5oYOOUUfUblcLkIOAACVzM9NNWHiMQAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVqlR0BwCgvJxL/dTjue89XSqoJwAqAmdyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpSsKOVOnTpWXl5dGjhzpbjt79qwSExNVs2ZNBQQEqHfv3srMzPRY78CBA4qNjVXVqlVVu3ZtPfvss8rPz/eoWbdunW6//XY5nU41btxY8+fPL7b/WbNmqUGDBvLz81PHjh21efPmKzkcAABgkcsOOVu2bNGbb76pVq1aebSPGjVKH330kZYuXar169fr0KFDeuihh9zLCwoKFBsbq7y8PG3cuFELFizQ/PnzNX78eHfNvn37FBsbq7vuukvbtm3TyJEjNWTIEK1cudJds3jxYiUlJSk5OVlbt25V69atFRMToyNHjlzuIQEAAJuYy3Dq1CnTpEkTs2rVKtO9e3fz1FNPGWOMOXnypPH19TVLly5113711VdGkklLSzPGGPPxxx8bb29vk5GR4a554403jMvlMrm5ucYYY0aPHm1uvfVWj3327dvXxMTEuJ936NDBJCYmup8XFBSY8PBwM2XKlFIfR1ZWlpFksrKySn/wACqNvBX/9HgAsENp378v60xOYmKiYmNjFR0d7dGenp6uc+fOebQ3a9ZM9erVU1pamiQpLS1NLVu2VGhoqLsmJiZG2dnZ2rFjh7vmwm3HxMS4t5GXl6f09HSPGm9vb0VHR7trSpKbm6vs7GyPBwAAsFOVsq6waNEibd26VVu2bCm2LCMjQw6HQ0FBQR7toaGhysjIcNecH3CKlhctu1RNdna2zpw5oxMnTqigoKDEml27dl2071OmTNHEiRNLd6AAAKBSK9OZnIMHD+qpp57SX//6V/n5+ZVXn8rNuHHjlJWV5X4cPHiworsEAADKSZlCTnp6uo4cOaLbb79dVapUUZUqVbR+/Xr98Y9/VJUqVRQaGqq8vDydPHnSY73MzEyFhYVJksLCwopdbVX0/OdqXC6X/P39VatWLfn4+JRYU7SNkjidTrlcLo8HAACwU5lCTo8ePbR9+3Zt27bN/WjXrp0GDBjg/revr69Wr17tXmf37t06cOCAoqKiJElRUVHavn27x1VQq1atksvlUmRkpLvm/G0U1RRtw+FwqG3bth41hYWFWr16tbsGAADc2Mo0J6d69epq0aKFR1u1atVUs2ZNd/vgwYOVlJSk4OBguVwujRgxQlFRUerUqZMkqWfPnoqMjNTAgQM1bdo0ZWRk6IUXXlBiYqKcTqck6YknntDMmTM1evRoPfroo1qzZo2WLFmilJQU936TkpIUHx+vdu3aqUOHDpo+fbpycnI0aNCgKxoQAABghzJPPP45r732mry9vdW7d2/l5uYqJiZGs2fPdi/38fHR8uXLNWzYMEVFRalatWqKj4/XpEmT3DUNGzZUSkqKRo0apRkzZqhu3bqaO3euYmJi3DV9+/bV0aNHNX78eGVkZKhNmzZKTU0tNhkZAADcmLyMMaaiO1FRsrOzFRgYqKysLObnABY6l/qpx3Pfe7pUUE8AXE2lff/mu6sAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGClKhXdAQAoL/tPrvB43kRdKqgnACoCZ3IAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKUyhZw33nhDrVq1ksvlksvlUlRUlFasWOFefvbsWSUmJqpmzZoKCAhQ7969lZmZ6bGNAwcOKDY2VlWrVlXt2rX17LPPKj8/36Nm3bp1uv322+V0OtW4cWPNnz+/WF9mzZqlBg0ayM/PTx07dtTmzZvLcigAAMByZQo5devW1dSpU5Wenq7PP/9cd999tx544AHt2LFDkjRq1Ch99NFHWrp0qdavX69Dhw7poYcecq9fUFCg2NhY5eXlaePGjVqwYIHmz5+v8ePHu2v27dun2NhY3XXXXdq2bZtGjhypIUOGaOXKle6axYsXKykpScnJydq6datat26tmJgYHTly5ErHAwAAWMLLGGOuZAPBwcF6+eWX1adPH4WEhGjhwoXq06ePJGnXrl1q3ry50tLS1KlTJ61YsUK9evXSoUOHFBoaKkmaM2eOxowZo6NHj8rhcGjMmDFKSUnRl19+6d5Hv379dPLkSaWmpkqSOnbsqPbt22vmzJmSpMLCQkVERGjEiBEaO3ZsqfuenZ2twMBAZWVlyeVyXckwALgO7Vn0vMfzJv3+p4J6AuBqKu3792XPySkoKNCiRYuUk5OjqKgopaen69y5c4qOjnbXNGvWTPXq1VNaWpokKS0tTS1btnQHHEmKiYlRdna2+2xQWlqaxzaKaoq2kZeXp/T0dI8ab29vRUdHu2suJjc3V9nZ2R4PAABgpzKHnO3btysgIEBOp1NPPPGEli1bpsjISGVkZMjhcCgoKMijPjQ0VBkZGZKkjIwMj4BTtLxo2aVqsrOzdebMGR07dkwFBQUl1hRt42KmTJmiwMBA9yMiIqKshw8AACqJMoecpk2batu2bdq0aZOGDRum+Ph47dy5szz6dtWNGzdOWVlZ7sfBgwcruksAAKCcVCnrCg6HQ40bN5YktW3bVlu2bNGMGTPUt29f5eXl6eTJkx5nczIzMxUWFiZJCgsLK3YVVNHVV+fXXHhFVmZmplwul/z9/eXj4yMfH58Sa4q2cTFOp1NOp7OshwwAACqhK75PTmFhoXJzc9W2bVv5+vpq9erV7mW7d+/WgQMHFBUVJUmKiorS9u3bPa6CWrVqlVwulyIjI90152+jqKZoGw6HQ23btvWoKSws1OrVq901AAAAZTqTM27cON17772qV6+eTp06pYULF2rdunVauXKlAgMDNXjwYCUlJSk4OFgul0sjRoxQVFSUOnXqJEnq2bOnIiMjNXDgQE2bNk0ZGRl64YUXlJiY6D7D8sQTT2jmzJkaPXq0Hn30Ua1Zs0ZLlixRSkqKux9JSUmKj49Xu3bt1KFDB02fPl05OTkaNGjQVRwaAABQmZUp5Bw5ckSPPPKIDh8+rMDAQLVq1UorV67UL37xC0nSa6+9Jm9vb/Xu3Vu5ubmKiYnR7Nmz3ev7+Pho+fLlGjZsmKKiolStWjXFx8dr0qRJ7pqGDRsqJSVFo0aN0owZM1S3bl3NnTtXMTEx7pq+ffvq6NGjGj9+vDIyMtSmTRulpqYWm4wMAABuXFd8n5zKjPvkAHbjPjmAncr9PjkAAADXM0IOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJXKFHKmTJmi9u3bq3r16qpdu7bi4uK0e/duj5qzZ88qMTFRNWvWVEBAgHr37q3MzEyPmgMHDig2NlZVq1ZV7dq19eyzzyo/P9+jZt26dbr99tvldDrVuHFjzZ8/v1h/Zs2apQYNGsjPz08dO3bU5s2by3I4AADAYmUKOevXr1diYqL+9a9/adWqVTp37px69uypnJwcd82oUaP00UcfaenSpVq/fr0OHTqkhx56yL28oKBAsbGxysvL08aNG7VgwQLNnz9f48ePd9fs27dPsbGxuuuuu7Rt2zaNHDlSQ4YM0cqVK901ixcvVlJSkpKTk7V161a1bt1aMTExOnLkyJWMBwAAsISXMcZc7spHjx5V7dq1tX79enXr1k1ZWVkKCQnRwoUL1adPH0nSrl271Lx5c6WlpalTp05asWKFevXqpUOHDik0NFSSNGfOHI0ZM0ZHjx6Vw+HQmDFjlJKSoi+//NK9r379+unkyZNKTU2VJHXs2FHt27fXzJkzJUmFhYWKiIjQiBEjNHbs2FL1Pzs7W4GBgcrKypLL5brcYQBwndqz6HmP5036/U8F9QTA1VTa9+8rmpOTlZUlSQoODpYkpaen69y5c4qOjnbXNGvWTPXq1VNaWpokKS0tTS1btnQHHEmKiYlRdna2duzY4a45fxtFNUXbyMvLU3p6ukeNt7e3oqOj3TUlyc3NVXZ2tscDAADY6bJDTmFhoUaOHKk77rhDLVq0kCRlZGTI4XAoKCjIozY0NFQZGRnumvMDTtHyomWXqsnOztaZM2d07NgxFRQUlFhTtI2STJkyRYGBge5HRERE2Q8cAABUCpcdchITE/Xll19q0aJFV7M/5WrcuHHKyspyPw4ePFjRXQIAAOWkyuWsNHz4cC1fvlwbNmxQ3bp13e1hYWHKy8vTyZMnPc7mZGZmKiwszF1z4VVQRVdfnV9z4RVZmZmZcrlc8vf3l4+Pj3x8fEqsKdpGSZxOp5xOZ9kPGAAAVDplOpNjjNHw4cO1bNkyrVmzRg0bNvRY3rZtW/n6+mr16tXutt27d+vAgQOKioqSJEVFRWn79u0eV0GtWrVKLpdLkZGR7przt1FUU7QNh8Ohtm3betQUFhZq9erV7hoAAHBjK9OZnMTERC1cuFB///vfVb16dff8l8DAQPn7+yswMFCDBw9WUlKSgoOD5XK5NGLECEVFRalTp06SpJ49eyoyMlIDBw7UtGnTlJGRoRdeeEGJiYnusyxPPPGEZs6cqdGjR+vRRx/VmjVrtGTJEqWkpLj7kpSUpPj4eLVr104dOnTQ9OnTlZOTo0GDBl2tsQEAAJVYmULOG2+8IUm68847PdrnzZunhIQESdJrr70mb29v9e7dW7m5uYqJidHs2bPdtT4+Plq+fLmGDRumqKgoVatWTfHx8Zo0aZK7pmHDhkpJSdGoUaM0Y8YM1a1bV3PnzlVMTIy7pm/fvjp69KjGjx+vjIwMtWnTRqmpqcUmIwMAgBvTFd0np7LjPjmA3bhPDmCna3KfHAAAgOsVIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASmUOORs2bNB9992n8PBweXl56YMPPvBYbozR+PHjddNNN8nf31/R0dHas2ePR83x48c1YMAAuVwuBQUFafDgwfrxxx89av7zn/+oa9eu8vPzU0REhKZNm1asL0uXLlWzZs3k5+enli1b6uOPPy7r4QAAAEuVOeTk5OSodevWmjVrVonLp02bpj/+8Y+aM2eONm3apGrVqikmJkZnz5511wwYMEA7duzQqlWrtHz5cm3YsEFDhw51L8/OzlbPnj1Vv359paen6+WXX9aECRP01ltvuWs2btyo/v37a/Dgwfriiy8UFxenuLg4ffnll2U9JAAAYCEvY4y57JW9vLRs2TLFxcVJ+uksTnh4uJ5++mk988wzkqSsrCyFhoZq/vz56tevn7766itFRkZqy5YtateunSQpNTVVv/zlL/Xdd98pPDxcb7zxhp5//nllZGTI4XBIksaOHasPPvhAu3btkiT17dtXOTk5Wr58ubs/nTp1Ups2bTRnzpxS9T87O1uBgYHKysqSy+W63GEAcJ3as+h5j+dN+v1PBfUEwNVU2vfvqzonZ9++fcrIyFB0dLS7LTAwUB07dlRaWpokKS0tTUFBQe6AI0nR0dHy9vbWpk2b3DXdunVzBxxJiomJ0e7du3XixAl3zfn7Kaop2k9JcnNzlZ2d7fEAAAB2uqohJyMjQ5IUGhrq0R4aGupelpGRodq1a3ssr1KlioKDgz1qStrG+fu4WE3R8pJMmTJFgYGB7kdERERZDxEAAFQSN9TVVePGjVNWVpb7cfDgwYruEgAAKCdXNeSEhYVJkjIzMz3aMzMz3cvCwsJ05MgRj+X5+fk6fvy4R01J2zh/HxerKVpeEqfTKZfL5fEAAAB2uqohp2HDhgoLC9Pq1avdbdnZ2dq0aZOioqIkSVFRUTp58qTS09PdNWvWrFFhYaE6duzortmwYYPOnTvnrlm1apWaNm2qGjVquGvO309RTdF+AADAja3MIefHH3/Utm3btG3bNkk/TTbetm2bDhw4IC8vL40cOVK/+93v9OGHH2r79u165JFHFB4e7r4Cq3nz5rrnnnv02GOPafPmzfrss880fPhw9evXT+Hh4ZKkhx9+WA6HQ4MHD9aOHTu0ePFizZgxQ0lJSe5+PPXUU0pNTdUf/vAH7dq1SxMmTNDnn3+u4cOHX/moAACAys+U0dq1a42kYo/4+HhjjDGFhYXmxRdfNKGhocbpdJoePXqY3bt3e2zjhx9+MP379zcBAQHG5XKZQYMGmVOnTnnU/Pvf/zZdunQxTqfT1KlTx0ydOrVYX5YsWWJuueUW43A4zK233mpSUlLKdCxZWVlGksnKyirbIACoFL7+3+c8HgDsUNr37yu6T05lx31yALtxnxzAThVynxwAAIDrBSEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJWqVHQHAOBqy80/qxXpc7Wv4CsFG3918KmnKl78TQfcaCr9//pZs2apQYMG8vPzU8eOHbV58+aK7hKACjRvXbL6p9yhBZnvakP1/frA9ZWer7pSK/O/ruiuAbjGKnXIWbx4sZKSkpScnKytW7eqdevWiomJ0ZEjRyq6awAqwLx1yfow6yMZGY92I2l19b2aty65YjoGoEJU6pDz6quv6rHHHtOgQYMUGRmpOXPmqGrVqnr33XcrumsArrHc/LP6KGv5T0+8Llj4/58vz1qu3Pyz17RfACpOpZ2Tk5eXp/T0dI0bN87d5u3trejoaKWlpZW4Tm5urnJzc93Ps7KyJEnZ2dnl21kA5W75528q70z+z9a9v+F19Wr3+DXoEYDyUvS+bYy5ZF2lDTnHjh1TQUGBQkNDPdpDQ0O1a9euEteZMmWKJk6cWKw9IiKiXPoI4PqTotGSRld0NwBcBadOnVJgYOBFl1fakHM5xo0bp6SkJPfzwsJCHT9+XDVr1pSX14Xnt28s2dnZioiI0MGDB+VyuSq6O9ZinK8dxvraYJyvDcbZkzFGp06dUnh4+CXrKm3IqVWrlnx8fJSZmenRnpmZqbCwsBLXcTqdcjqdHm1BQUHl1cVKyeVy8R/oGmCcrx3G+tpgnK8Nxvn/XOoMTpFKO/HY4XCobdu2Wr16tbutsLBQq1evVlRUVAX2DAAAXA8q7ZkcSUpKSlJ8fLzatWunDh06aPr06crJydGgQYMqumsAAKCCVeqQ07dvXx09elTjx49XRkaG2rRpo9TU1GKTkfHznE6nkpOTi32ch6uLcb52GOtrg3G+Nhjny+Nlfu76KwAAgEqo0s7JAQAAuBRCDgAAsBIhBwAAWImQAwAArETIAQAAViLk3MCOHz+uAQMGyOVyKSgoSIMHD9aPP/5YqnWNMbr33nvl5eWlDz74oHw7WsmVdZyPHz+uESNGqGnTpvL391e9evX029/+1v2Fsvg/s2bNUoMGDeTn56eOHTtq8+bNl6xfunSpmjVrJj8/P7Vs2VIff/zxNepp5VaWcX777bfVtWtX1ahRQzVq1FB0dPTP/lzwk7K+nossWrRIXl5eiouLK98OVkKEnBvYgAEDtGPHDq1atUrLly/Xhg0bNHTo0FKtO3369Bv++75Kq6zjfOjQIR06dEivvPKKvvzyS82fP1+pqakaPHjwNez19W/x4sVKSkpScnKytm7dqtatWysmJkZHjhwpsX7jxo3q37+/Bg8erC+++EJxcXGKi4vTl19+eY17XrmUdZzXrVun/v37a+3atUpLS1NERIR69uyp77///hr3vHIp6zgX2b9/v5555hl17dr1GvW0kjG4Ie3cudNIMlu2bHG3rVixwnh5eZnvv//+kut+8cUXpk6dOubw4cNGklm2bFk597byupJxPt+SJUuMw+Ew586dK49uVkodOnQwiYmJ7ucFBQUmPDzcTJkypcT6X//61yY2NtajrWPHjubxxx8v135WdmUd5wvl5+eb6tWrmwULFpRXF61wOeOcn59vOnfubObOnWvi4+PNAw88cA16WrlwJucGlZaWpqCgILVr187dFh0dLW9vb23atOmi650+fVoPP/ywZs2addEvQsX/udxxvlBWVpZcLpeqVKnUNym/avLy8pSenq7o6Gh3m7e3t6Kjo5WWllbiOmlpaR71khQTE3PRelzeOF/o9OnTOnfunIKDg8urm5Xe5Y7zpEmTVLt2bc7yXgK/MW9QGRkZql27tkdblSpVFBwcrIyMjIuuN2rUKHXu3FkPPPBAeXfRCpc7zuc7duyYJk+eXOqPEm8Ex44dU0FBQbGvcAkNDdWuXbtKXCcjI6PE+tL+HG5ElzPOFxozZozCw8OLBUz8n8sZ508//VTvvPOOtm3bdg16WHlxJscyY8eOlZeX1yUfpf3ldKEPP/xQa9as0fTp069upyuh8hzn82VnZys2NlaRkZGaMGHClXccuIamTp2qRYsWadmyZfLz86vo7ljj1KlTGjhwoN5++23VqlWrortzXeNMjmWefvppJSQkXLKmUaNGCgsLKzahLT8/X8ePH7/ox1Br1qzR3r17FRQU5NHeu3dvde3aVevWrbuCnlcu5TnORU6dOqV77rlH1atX17Jly+Tr63ul3bZGrVq15OPjo8zMTI/2zMzMi45rWFhYmepxeeNc5JVXXtHUqVP1j3/8Q61atSrPblZ6ZR3nvXv3av/+/brvvvvcbYWFhZJ+OlO8e/du3XzzzeXb6cqioicFoWIUTYj9/PPP3W0rV6685ITYw4cPm+3bt3s8JJkZM2aYb7/99lp1vVK5nHE2xpisrCzTqVMn0717d5OTk3MtulrpdOjQwQwfPtz9vKCgwNSpU+eSE4979erl0RYVFcXE459R1nE2xpjf//73xuVymbS0tGvRRSuUZZzPnDlT7HfxAw88YO6++26zfft2k5ubey27fl0j5NzA7rnnHnPbbbeZTZs2mU8//dQ0adLE9O/f3738u+++M02bNjWbNm266DbE1VU/q6zjnJWVZTp27GhatmxpvvnmG3P48GH3Iz8/v6IO47qzaNEi43Q6zfz5883OnTvN0KFDTVBQkMnIyDDGGDNw4EAzduxYd/1nn31mqlSpYl555RXz1VdfmeTkZOPr62u2b99eUYdQKZR1nKdOnWocDod57733PF67p06dqqhDqBTKOs4X4uqqkhFybmA//PCD6d+/vwkICDAul8sMGjTI4xfRvn37jCSzdu3ai26DkPPzyjrOa9euNZJKfOzbt69iDuI69frrr5t69eoZh8NhOnToYP71r3+5l3Xv3t3Ex8d71C9ZssTccsstxuFwmFtvvdWkpKRc4x5XTmUZ5/r165f42k1OTr72Ha9kyvp6Ph8hp2RexhhzrT8iAwAAKG9cXQUAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAK/0/qujCOxzZ5b0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANvNJREFUeJzt3XlYlXX+//EXIOeA4gFRhHDfUsmtcMNcWhipwYqyRs0xNJfJ0EZpUacSl5l0rCmdXMtSZ5q+LjU2k7jkuFYyLqgzpmlmmpYBrmCoIPD5/dGPMx5BExWRj8/HdZ3r8nzu97nv9/3xCC/vc9/38TLGGAEAAFjGu6wbAAAAKA2EHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcwDJr166Vl5eX1q5de03X6+XlpTFjxlzTddqmb9++qlu3bqmt/9VXX1X9+vXl4+OjVq1aldp2rsblvk/GjBkjLy+v0m8INzVCDm5oGzZs0JgxY3Ty5MmybuWmsHTpUoKMpNOnT2vMmDHXPChejU8++UQvvPCC7rzzTs2ZM0evvPJKWbd0Q9q0aZOefvppRUZGytfX92eD1DvvvKOmTZvKz89PjRo10ptvvnmdOsX1UKGsGwAuZcOGDRo7dqz69u2roKCgsm7HekuXLtW0adOKDTpnzpxRhQo3x4+M06dPa+zYsZKku+6667Jf9/bbb6ugoKBUelq9erW8vb31zjvvyOFwlMo2roWyfp8sXbpUs2fPVosWLVS/fn199dVXF62dNWuWnnrqKXXv3l2JiYn69NNP9cwzz+j06dMaMWLEdewapYUjOcAN4vTp08WO5+XlKTc39zp3U5Sfn99NE3JKKjs7W5Lk6+srp9NZKtvIyMiQv7//zwacgoICnT17tlR6uBxl/T4ZPHiwMjMztWXLFv3iF7+4aN2ZM2f04osvKjY2Vh988IEGDhyov/zlL+rdu7fGjx+vEydOXMeuUVoIObhhjRkzRs8//7wkqV69evLy8pKXl5cOHDigvLw8jR8/Xg0aNJDT6VTdunX1u9/9Tjk5OR7rqFu3rrp166ZPPvlErVq1kp+fnyIiIvT3v//9inp677331LZtW1WsWFFVqlRR586d9cknn3jUTJ8+XbfddpucTqfCw8OVkJBQ5OO2u+66S82aNVNqaqo6d+6sihUr6ne/+50OHDggLy8vvfbaa5o8ebJ7/3bt2iVJ2r17tx599FEFBwfLz89PrVu31j//+c+f7fvTTz/VY489ptq1a8vpdKpWrVoaPny4zpw5467p27evpk2bJknuuT7/UH9x51ps27ZN999/v1wulwICAnTvvffq3//+t0fN3Llz5eXlpc8//1yJiYkKCQlRpUqV9PDDD+vIkSM/2/v5Cs/j+Oqrr/TrX/9agYGBCgkJ0csvvyxjjA4dOqSHHnpILpdLYWFh+tOf/uTx+tzcXI0ePVqRkZEKDAxUpUqV1KlTJ61Zs8Zdc+DAAYWEhEiSxo4d656Hwn3v27evAgICtG/fPv3yl79U5cqV1bt3b/ey88/JSUpKkre3t1atWuXRx6BBg+RwOPSf//znsvbby8tLc+bMUXZ2trufuXPnupcNGTJEf/vb39zvu+XLl0uSXnvtNXXo0EFVq1aVv7+/IiMj9cEHHxRZ/5kzZ/TMM8+oWrVqqly5sh588EF9//33V3QeVnGv+eyzz9SmTRv5+fmpQYMGmjVrVrGvXblypTp27KigoCAFBASocePG+t3vflei7YeGhsrf3/9n69asWaNjx47p6aef9hhPSEhQdna2kpOTS7Rd3Jj4bxluWI888oi++uor/d///Z/eeOMNVatWTZIUEhKiAQMGaN68eXr00Uf17LPPauPGjZowYYK+/PJLLV682GM9e/fuVY8ePfTUU08pPj5ec+bM0WOPPably5df8n96Fxo7dqzGjBmjDh06aNy4cXI4HNq4caNWr16trl27Svrpl/DYsWMVHR2twYMHa8+ePZoxY4Y2b96szz//XL6+vu71HTt2TPfff7969uypX//61woNDXUvmzNnjs6ePatBgwbJ6XQqODhYO3fu1J133qkaNWpo5MiRqlSpkhYuXKi4uDh9+OGHevjhhy/a+6JFi3T69GkNHjxYVatW1aZNm/Tmm2/qu+++06JFiyRJv/nNb3T48GGtXLlSf/3rX392Pnbu3KlOnTrJ5XLphRdekK+vr2bNmqW77rpL69atU7t27Tzqhw4dqipVqigpKUkHDhzQ5MmTNWTIEC1YsOCy/w4K9ejRQ02bNtXEiROVnJys3//+9woODtasWbN0zz336I9//KP+9re/6bnnnlObNm3UuXNnSVJWVpZmz56tXr16aeDAgTp16pTeeecdxcTEaNOmTWrVqpVCQkI0Y8YMDR48WA8//LAeeeQRSVKLFi3c28/Ly1NMTIw6duyo1157TRUrViy2z5deekkff/yx+vfvrx07dqhy5cpasWKF3n77bY0fP14tW7a8rP3961//qrfeekubNm3S7NmzJUkdOnRwL1+9erUWLlyoIUOGqFq1au6gNWXKFD344IPq3bu3cnNzNX/+fD322GNasmSJYmNj3a/v27evFi5cqD59+qh9+/Zat26dx/KrsWPHDnXt2lUhISEaM2aM8vLylJSU5PF+l356P3Xr1k0tWrTQuHHj5HQ69fXXX+vzzz+/Jn1caNu2bZKk1q1be4xHRkbK29tb27Zt069//etS2TauIwPcwF599VUjyezfv989tn37diPJDBgwwKP2ueeeM5LM6tWr3WN16tQxksyHH37oHsvMzDS33HKLuf322y+7j7179xpvb2/z8MMPm/z8fI9lBQUFxhhjMjIyjMPhMF27dvWomTp1qpFk3n33XfdYly5djCQzc+ZMj3Xt37/fSDIul8tkZGR4LLv33ntN8+bNzdmzZz223aFDB9OoUSP32Jo1a4wks2bNGvfY6dOni+zThAkTjJeXl/n222/dYwkJCeZiPxYkmaSkJPfzuLg443A4zL59+9xjhw8fNpUrVzadO3d2j82ZM8dIMtHR0e65MsaY4cOHGx8fH3Py5Mlit1ecpKQkI8kMGjTIPZaXl2dq1qxpvLy8zMSJE93jJ06cMP7+/iY+Pt6jNicnx2OdJ06cMKGhoebJJ590jx05cqTI/haKj483kszIkSOLXVanTh2PsR07dhiHw2EGDBhgTpw4YWrUqGFat25tzp07d9n7XbjuSpUqFRmXZLy9vc3OnTuLLLvw7z03N9c0a9bM3HPPPe6x1NRUI8kMGzbMo7Zv374XnYNLKe594ufn5/E+27Vrl/Hx8fF4r73xxhtGkjly5EiJtncpl3o/JyQkGB8fn2KXhYSEmJ49e16zPlB2+LgK5c7SpUslSYmJiR7jzz77rCQVOcwcHh7ucZTD5XLpiSee0LZt25SWlnZZ2/zoo49UUFCg0aNHy9vb859N4Uc6//rXv5Sbm6thw4Z51AwcOFAul6tIX06nU/369St2e927d3d/ZCJJx48f1+rVq/WrX/1Kp06d0tGjR3X06FEdO3ZMMTEx2rt3r77//vuL9n/+4fvs7GwdPXpUHTp0kDHG/T/aksjPz9cnn3yiuLg41a9f3z1+yy236PHHH9dnn32mrKwsj9cMGjTI4+OvTp06KT8/X99++22Jtz9gwAD3n318fNS6dWsZY9S/f3/3eFBQkBo3bqxvvvnGo7bwnJaCggIdP35ceXl5at26tbZu3VqiHgYPHnxZdc2aNdPYsWM1e/ZsxcTE6OjRo5o3b941PW+lS5cuioiIKDJ+/t/7iRMnlJmZqU6dOnnsa+FHWxd+bDN06NCr7is/P18rVqxQXFycateu7R5v2rSpYmJiPGoLLyz4xz/+UWonb5/vzJkzFz2/yc/Pz+OjXJRfhByUO99++628vb3VsGFDj/GwsDAFBQUV+aXZsGHDIpeR3nrrrZJ+Ov/icuzbt0/e3t7F/iI5vy9Jaty4sce4w+FQ/fr1i/RVo0aNi/6QrVevnsfzr7/+WsYYvfzyywoJCfF4JCUlSfrpxNSLOXjwoPr27avg4GAFBAQoJCREXbp0kSRlZmZe9HUXc+TIEZ0+fbrIvko//QIrKCjQoUOHPMbP/yUnSVWqVJGkKzrB88J1BQYGys/Pz/2R5vnjF65/3rx5atGihfz8/FS1alWFhIQoOTm5RPNQoUIF1axZ87Lrn3/+ebVs2VKbNm1SUlLSJd9HV+LC90uhJUuWqH379vLz81NwcLD7o7jz97Xw39OF67jw39eVOHLkiM6cOaNGjRoVWXbhe6dHjx668847NWDAAIWGhqpnz55auHBhqQUef3//i57Qf/bs2cs6rwc3Ps7JQblV3m8kdqkfohcuK/xB/9xzzxX5H3Chi/1Sys/P1y9+8QsdP35cI0aMUJMmTVSpUiV9//336tu373X5X7P001GU4hhjrsm6Lmf97733nvr27au4uDg9//zzql69unx8fDRhwgTt27fvsrfvdDqLHNG7lG+++UZ79+6V9NM5Ktdace+lTz/9VA8++KA6d+6s6dOn65ZbbpGvr6/mzJmj999//5r3cLX8/f21fv16rVmzRsnJyVq+fLkWLFige+65R5988slF/36v1C233KL8/HxlZGSoevXq7vHc3FwdO3ZM4eHh13R7KBuEHNzQigsyderUUUFBgfbu3aumTZu6x9PT03Xy5EnVqVPHo77wKMj56yq8d8bl3p22QYMGKigo0K5duy56p9nC7e7Zs8fjI5zc3Fzt379f0dHRl7Wt4hSuz9fXt8Tr2bFjh7766ivNmzdPTzzxhHt85cqVRWovNziGhISoYsWK2rNnT5Flu3fvlre3t2rVqlWiPq+HDz74QPXr19ff//53j30tPBpW6FoG6IKCAvXt21cul0vDhg3TK6+8okcffdR9QnNp+fDDD+Xn56cVK1Z4XNY+Z84cj7rCf0/79+/3OOLy9ddfX3UPISEh8vf3dwe88xX33vH29ta9996re++9V6+//rpeeeUVvfjii1qzZs1V/fspTuG/4y1btuiXv/yle3zLli0qKCi4Ye8ojZLh4yrc0CpVqiRJHpdgF/5Amjx5skft66+/LklFrgo5fPiwxxVXWVlZ+stf/qJWrVopLCzssvqIi4uTt7e3xo0bV+TIR+GRgujoaDkcDv35z3/2OHrwzjvvKDMz86quVqlevbruuusuzZo1Sz/88EOR5Ze6FLvwf8Dn92SM0ZQpU4rUFjffF1tn165d9Y9//MPjI7/09HS9//776tixo1wu1yXXURaKm4uNGzcqJSXFo67waqlrcaft119/XRs2bNBbb72l8ePHq0OHDho8eLCOHj161eu+FB8fH3l5eSk/P989duDAAX300UcedYVHBqdPn+4xfi3u/Ovj46OYmBh99NFHOnjwoHv8yy+/1IoVKzxqjx8/XuT1hUHjwltDXAv33HOPgoODNWPGDI/xGTNmqGLFitfs6jKULY7k4IYWGRkpSXrxxRfVs2dP+fr66oEHHlB8fLzeeustnTx5Ul26dNGmTZs0b948xcXF6e677/ZYx6233qr+/ftr8+bNCg0N1bvvvqv09PQi/6O9lIYNG+rFF1/U+PHj1alTJz3yyCNyOp3avHmzwsPDNWHCBIWEhGjUqFEaO3as7rvvPj344IPas2ePpk+frjZt2lz15ajTpk1Tx44d1bx5cw0cOFD169dXenq6UlJS9N133130nitNmjRRgwYN9Nxzz+n777+Xy+XShx9+WOy5MIXz/cwzzygmJkY+Pj7q2bNnsev9/e9/776vydNPP60KFSpo1qxZysnJ0aRJk65qX0tLt27d9Pe//10PP/ywYmNjtX//fs2cOVMRERH68ccf3XX+/v6KiIjQggULdOuttyo4OFjNmjVTs2bNSrS9L7/8Ui+//LL69u2rBx54QNJP9w1q1aqVnn76aS1cuPCa7t/5YmNj9frrr+u+++7T448/royMDE2bNk0NGzbUf//7X3ddZGSkunfvrsmTJ+vYsWPuS8gLj3Ze7VGtsWPHavny5erUqZOefvpp5eXl6c0339Rtt93m0ce4ceO0fv16xcbGqk6dOsrIyND06dNVs2ZNdezY8bK39+2337pvgbBlyxZJP71XpZ+OWvXp00fST3/H48ePV0JCgh577DHFxMTo008/1Xvvvac//OEPCg4Ovqr9xg2ijK7qAi7b+PHjTY0aNYy3t7f7cvJz586ZsWPHmnr16hlfX19Tq1YtM2rUKI/Lq4356RLy2NhYs2LFCtOiRQvjdDpNkyZNzKJFi66ol3fffdfcfvvtxul0mipVqpguXbqYlStXetRMnTrVNGnSxPj6+prQ0FAzePBgc+LECY+aLl26mNtuu63I+gsvIX/11VeL3f6+ffvME088YcLCwoyvr6+pUaOG6datm/nggw/cNcVdQr5r1y4THR1tAgICTLVq1czAgQPNf/7zHyPJzJkzx12Xl5dnhg4dakJCQoyXl5fH5bcq5nLirVu3mpiYGBMQEGAqVqxo7r77brNhwwaPmsJLyDdv3uwxXlyfP6fwEvILLzO+2OXVF85zQUGBeeWVV0ydOnWM0+k0t99+u1myZEmxl35v2LDBREZGGofD4bHvF9tW4bLC9eTl5Zk2bdqYmjVrFrlMfsqUKUaSWbBgwWXv+6UuIU9ISCj2Ne+8845p1KiR+30/Z84c9xyeLzs72yQkJJjg4GATEBBg4uLizJ49e4wkj8vyL0dx75N169a557J+/fpm5syZRfpYtWqVeeihh0x4eLhxOBwmPDzc9OrVy3z11Vcl2n7h+6q4R5cuXYrUv/XWW6Zx48bG4XCYBg0amDfeeMPjVgco37yMuYKz/oByom7dumrWrJmWLFlS1q0A5cr27dt1++2367333nPf0RkobzgnBwBucsXdE2by5Mny9vZ23y0aKI84Jwc3vZ+7IaC/v78CAwOvUzc3px9//NHjnJjihISEXPPLiG8ER44c8Tg5+EIOh6PUzw+ZNGmSUlNTdffdd6tChQpatmyZli1bpkGDBqlWrVrKz8//2e8ZCwgIUEBAQKn1eCPME8qhsv68DChNhefkXIou8vl94eP8rwVA6Sg8P+NSj/O/2sMmhV89crFHceeRXGuffPKJufPOO02VKlWMr6+vadCggRkzZoz7qycKzxW71KOkX/9QUjfCPKH84Zwc3PT+9a9/XXJ5eHj4Nb9DLTx98803Hl+/UJyOHTvKz8/vOnV0/Xz++eeX/AqBKlWquK96Kytnz57VZ599dsma+vXre9wf6lorD/OEGw8hBwAAWIkTjwEAgJVu6hOPCwoKdPjwYVWuXLncfw8SAAA3C2OMTp06pfDw8Et+j9xNHXIOHz58Q36/DgAA+HmHDh1SzZo1L7r8pg45lStXlvTTJN2I37MDAACKysrKUq1atdy/xy/mpg45hR9RuVwuQg4AAOXMz51qwonHAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFaqUNYNAEBpObf8M4/nvvd1LKNOAJQFjuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKVxVyJk6cKC8vLw0bNsw9dvbsWSUkJKhq1aoKCAhQ9+7dlZ6e7vG6gwcPKjY2VhUrVlT16tX1/PPPKy8vz6Nm7dq1uuOOO+R0OtWwYUPNnTu3yPanTZumunXrys/PT+3atdOmTZuuZncAAIBFrjjkbN68WbNmzVKLFi08xocPH66PP/5YixYt0rp163T48GE98sgj7uX5+fmKjY1Vbm6uNmzYoHnz5mnu3LkaPXq0u2b//v2KjY3V3Xffre3bt2vYsGEaMGCAVqxY4a5ZsGCBEhMTlZSUpK1bt6ply5aKiYlRRkbGle4SAACwibkCp06dMo0aNTIrV640Xbp0Mb/97W+NMcacPHnS+Pr6mkWLFrlrv/zySyPJpKSkGGOMWbp0qfH29jZpaWnumhkzZhiXy2VycnKMMca88MIL5rbbbvPYZo8ePUxMTIz7edu2bU1CQoL7eX5+vgkPDzcTJky47P3IzMw0kkxmZubl7zyAciN32aceDwB2uNzf31d0JCchIUGxsbGKjo72GE9NTdW5c+c8xps0aaLatWsrJSVFkpSSkqLmzZsrNDTUXRMTE6OsrCzt3LnTXXPhumNiYtzryM3NVWpqqkeNt7e3oqOj3TXFycnJUVZWlscDAADYqUJJXzB//nxt3bpVmzdvLrIsLS1NDodDQUFBHuOhoaFKS0tz15wfcAqXFy67VE1WVpbOnDmjEydOKD8/v9ia3bt3X7T3CRMmaOzYsZe3owAAoFwr0ZGcQ4cO6be//a3+9re/yc/Pr7R6KjWjRo1SZmam+3Ho0KGybgkAAJSSEoWc1NRUZWRk6I477lCFChVUoUIFrVu3Tn/+859VoUIFhYaGKjc3VydPnvR4XXp6usLCwiRJYWFhRa62Knz+czUul0v+/v6qVq2afHx8iq0pXEdxnE6nXC6XxwMAANipRCHn3nvv1Y4dO7R9+3b3o3Xr1urdu7f7z76+vlq1apX7NXv27NHBgwcVFRUlSYqKitKOHTs8roJauXKlXC6XIiIi3DXnr6OwpnAdDodDkZGRHjUFBQVatWqVuwYAANzcSnROTuXKldWsWTOPsUqVKqlq1aru8f79+ysxMVHBwcFyuVwaOnSooqKi1L59e0lS165dFRERoT59+mjSpElKS0vTSy+9pISEBDmdTknSU089palTp+qFF17Qk08+qdWrV2vhwoVKTk52bzcxMVHx8fFq3bq12rZtq8mTJys7O1v9+vW7qgkBAAB2KPGJxz/njTfekLe3t7p3766cnBzFxMRo+vTp7uU+Pj5asmSJBg8erKioKFWqVEnx8fEaN26cu6ZevXpKTk7W8OHDNWXKFNWsWVOzZ89WTEyMu6ZHjx46cuSIRo8erbS0NLVq1UrLly8vcjIyAAC4OXkZY0xZN1FWsrKyFBgYqMzMTM7PASx0bvlnHs997+tYRp0AuJYu9/c3310FAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArVSjrBgCgtBw4uczjeSN1LKNOAJQFjuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEolCjkzZsxQixYt5HK55HK5FBUVpWXLlrmXnz17VgkJCapataoCAgLUvXt3paene6zj4MGDio2NVcWKFVW9enU9//zzysvL86hZu3at7rjjDjmdTjVs2FBz584t0su0adNUt25d+fn5qV27dtq0aVNJdgUAAFiuRCGnZs2amjhxolJTU7Vlyxbdc889euihh7Rz505J0vDhw/Xxxx9r0aJFWrdunQ4fPqxHHnnE/fr8/HzFxsYqNzdXGzZs0Lx58zR37lyNHj3aXbN//37Fxsbq7rvv1vbt2zVs2DANGDBAK1ascNcsWLBAiYmJSkpK0tatW9WyZUvFxMQoIyPjaucDAABYwssYY65mBcHBwXr11Vf16KOPKiQkRO+//74effRRSdLu3bvVtGlTpaSkqH379lq2bJm6deumw4cPKzQ0VJI0c+ZMjRgxQkeOHJHD4dCIESOUnJysL774wr2Nnj176uTJk1q+fLkkqV27dmrTpo2mTp0qSSooKFCtWrU0dOhQjRw58rJ7z8rKUmBgoDIzM+Vyua5mGgDcgPbOf9HjeaOefyijTgBcS5f7+/uKz8nJz8/X/PnzlZ2draioKKWmpurcuXOKjo521zRp0kS1a9dWSkqKJCklJUXNmzd3BxxJiomJUVZWlvtoUEpKisc6CmsK15Gbm6vU1FSPGm9vb0VHR7trLiYnJ0dZWVkeDwAAYKcSh5wdO3YoICBATqdTTz31lBYvXqyIiAilpaXJ4XAoKCjIoz40NFRpaWmSpLS0NI+AU7i8cNmlarKysnTmzBkdPXpU+fn5xdYUruNiJkyYoMDAQPejVq1aJd19AABQTpQ45DRu3Fjbt2/Xxo0bNXjwYMXHx2vXrl2l0ds1N2rUKGVmZrofhw4dKuuWAABAKalQ0hc4HA41bNhQkhQZGanNmzdrypQp6tGjh3Jzc3Xy5EmPoznp6ekKCwuTJIWFhRW5Cqrw6qvzay68Iis9PV0ul0v+/v7y8fGRj49PsTWF67gYp9Mpp9NZ0l0GAADl0FXfJ6egoEA5OTmKjIyUr6+vVq1a5V62Z88eHTx4UFFRUZKkqKgo7dixw+MqqJUrV8rlcikiIsJdc/46CmsK1+FwOBQZGelRU1BQoFWrVrlrAAAASnQkZ9SoUbr//vtVu3ZtnTp1Su+//77Wrl2rFStWKDAwUP3791diYqKCg4Plcrk0dOhQRUVFqX379pKkrl27KiIiQn369NGkSZOUlpaml156SQkJCe4jLE899ZSmTp2qF154QU8++aRWr16thQsXKjk52d1HYmKi4uPj1bp1a7Vt21aTJ09Wdna2+vXrdw2nBgAAlGclCjkZGRl64okn9MMPPygwMFAtWrTQihUr9Itf/EKS9MYbb8jb21vdu3dXTk6OYmJiNH36dPfrfXx8tGTJEg0ePFhRUVGqVKmS4uPjNW7cOHdNvXr1lJycrOHDh2vKlCmqWbOmZs+erZiYGHdNjx49dOTIEY0ePVppaWlq1aqVli9fXuRkZAAAcPO66vvklGfcJwewG/fJAexU6vfJAQAAuJERcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsVKKQM2HCBLVp00aVK1dW9erVFRcXpz179njUnD17VgkJCapataoCAgLUvXt3paene9QcPHhQsbGxqlixoqpXr67nn39eeXl5HjVr167VHXfcIafTqYYNG2ru3LlF+pk2bZrq1q0rPz8/tWvXTps2bSrJ7gAAAIuVKOSsW7dOCQkJ+ve//62VK1fq3Llz6tq1q7Kzs901w4cP18cff6xFixZp3bp1Onz4sB555BH38vz8fMXGxio3N1cbNmzQvHnzNHfuXI0ePdpds3//fsXGxuruu+/W9u3bNWzYMA0YMEArVqxw1yxYsECJiYlKSkrS1q1b1bJlS8XExCgjI+Nq5gMAAFjCyxhjrvTFR44cUfXq1bVu3Tp17txZmZmZCgkJ0fvvv69HH31UkrR79241bdpUKSkpat++vZYtW6Zu3brp8OHDCg0NlSTNnDlTI0aM0JEjR+RwODRixAglJyfriy++cG+rZ8+eOnnypJYvXy5Jateundq0aaOpU6dKkgoKClSrVi0NHTpUI0eOvKz+s7KyFBgYqMzMTLlcriudBgA3qL3zX/R43qjnH8qoEwDX0uX+/r6qc3IyMzMlScHBwZKk1NRUnTt3TtHR0e6aJk2aqHbt2kpJSZEkpaSkqHnz5u6AI0kxMTHKysrSzp073TXnr6OwpnAdubm5Sk1N9ajx9vZWdHS0u6Y4OTk5ysrK8ngAAAA7XXHIKSgo0LBhw3TnnXeqWbNmkqS0tDQ5HA4FBQV51IaGhiotLc1dc37AKVxeuOxSNVlZWTpz5oyOHj2q/Pz8YmsK11GcCRMmKDAw0P2oVatWyXccAACUC1ccchISEvTFF19o/vz517KfUjVq1ChlZma6H4cOHSrrlgAAQCmpcCUvGjJkiJYsWaL169erZs2a7vGwsDDl5ubq5MmTHkdz0tPTFRYW5q658Cqowquvzq+58Iqs9PR0uVwu+fv7y8fHRz4+PsXWFK6jOE6nU06ns+Q7DAAAyp0SHckxxmjIkCFavHixVq9erXr16nksj4yMlK+vr1atWuUe27Nnjw4ePKioqChJUlRUlHbs2OFxFdTKlSvlcrkUERHhrjl/HYU1hetwOByKjIz0qCkoKNCqVavcNQAA4OZWoiM5CQkJev/99/WPf/xDlStXdp//EhgYKH9/fwUGBqp///5KTExUcHCwXC6Xhg4dqqioKLVv316S1LVrV0VERKhPnz6aNGmS0tLS9NJLLykhIcF9lOWpp57S1KlT9cILL+jJJ5/U6tWrtXDhQiUnJ7t7SUxMVHx8vFq3bq22bdtq8uTJys7OVr9+/a7V3AAAgHKsRCFnxowZkqS77rrLY3zOnDnq27evJOmNN96Qt7e3unfvrpycHMXExGj69OnuWh8fHy1ZskSDBw9WVFSUKlWqpPj4eI0bN85dU69ePSUnJ2v48OGaMmWKatasqdmzZysmJsZd06NHDx05ckSjR49WWlqaWrVqpeXLlxc5GRkAANycruo+OeUd98kB7MZ9cgA7XZf75AAAANyoCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVipxyFm/fr0eeOABhYeHy8vLSx999JHHcmOMRo8erVtuuUX+/v6Kjo7W3r17PWqOHz+u3r17y+VyKSgoSP3799ePP/7oUfPf//5XnTp1kp+fn2rVqqVJkyYV6WXRokVq0qSJ/Pz81Lx5cy1durSkuwMAACxV4pCTnZ2tli1batq0acUunzRpkv785z9r5syZ2rhxoypVqqSYmBidPXvWXdO7d2/t3LlTK1eu1JIlS7R+/XoNGjTIvTwrK0tdu3ZVnTp1lJqaqldffVVjxozRW2+95a7ZsGGDevXqpf79+2vbtm2Ki4tTXFycvvjii5LuEgAAsJCXMcZc8Yu9vLR48WLFxcVJ+ukoTnh4uJ599lk999xzkqTMzEyFhoZq7ty56tmzp7788ktFRERo8+bNat26tSRp+fLl+uUvf6nvvvtO4eHhmjFjhl588UWlpaXJ4XBIkkaOHKmPPvpIu3fvliT16NFD2dnZWrJkibuf9u3bq1WrVpo5c+Zl9Z+VlaXAwEBlZmbK5XJd6TQAuEHtnf+ix/NGPf9QRp0AuJYu9/f3NT0nZ//+/UpLS1N0dLR7LDAwUO3atVNKSookKSUlRUFBQe6AI0nR0dHy9vbWxo0b3TWdO3d2BxxJiomJ0Z49e3TixAl3zfnbKawp3E5xcnJylJWV5fEAAAB2uqYhJy0tTZIUGhrqMR4aGupelpaWpurVq3ssr1ChgoKDgz1qilvH+du4WE3h8uJMmDBBgYGB7ketWrVKuosAAKCcuKmurho1apQyMzPdj0OHDpV1SwAAoJRc05ATFhYmSUpPT/cYT09Pdy8LCwtTRkaGx/K8vDwdP37co6a4dZy/jYvVFC4vjtPplMvl8ngAAAA7XdOQU69ePYWFhWnVqlXusaysLG3cuFFRUVGSpKioKJ08eVKpqanumtWrV6ugoEDt2rVz16xfv17nzp1z16xcuVKNGzdWlSpV3DXnb6ewpnA7AADg5lbikPPjjz9q+/bt2r59u6SfTjbevn27Dh48KC8vLw0bNky///3v9c9//lM7duzQE088ofDwcPcVWE2bNtV9992ngQMHatOmTfr88881ZMgQ9ezZU+Hh4ZKkxx9/XA6HQ/3799fOnTu1YMECTZkyRYmJie4+fvvb32r58uX605/+pN27d2vMmDHasmWLhgwZcvWzAgAAyj9TQmvWrDGSijzi4+ONMcYUFBSYl19+2YSGhhqn02nuvfdes2fPHo91HDt2zPTq1csEBAQYl8tl+vXrZ06dOuVR85///Md07NjROJ1OU6NGDTNx4sQivSxcuNDceuutxuFwmNtuu80kJyeXaF8yMzONJJOZmVmySQBQLnz1f7/zeACww+X+/r6q++SUd9wnB7Ab98kB7FQm98kBAAC4URByAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipQlk3AADXWk7eWS1Lna39+V8q2PirrU9tVfDi/3TAzabc/6ufNm2a6tatKz8/P7Vr106bNm0q65YAlKE5a5PUK/lOzUt/V+srH9BHri/1YsUVWpH3VVm3BuA6K9chZ8GCBUpMTFRSUpK2bt2qli1bKiYmRhkZGWXdGoAyMGdtkv6Z+bGMjMe4kbSq8j7NWZtUNo0BKBPlOuS8/vrrGjhwoPr166eIiAjNnDlTFStW1LvvvlvWrQG4znLyzurjzCU/PfG6YOH/f74kc4ly8s5e174AlJ1ye05Obm6uUlNTNWrUKPeYt7e3oqOjlZKSUuxrcnJylJOT436emZkpScrKyirdZgGUuiVbZin3TN7P1n24/k11a/2b69ARgNJS+HvbGHPJunIbco4ePar8/HyFhoZ6jIeGhmr37t3FvmbChAkaO3ZskfFatWqVSo8AbjzJekHSC2XdBoBr4NSpUwoMDLzo8nIbcq7EqFGjlJiY6H5eUFCg48ePq2rVqvLyuvD49s0lKytLtWrV0qFDh+Ryucq6HWsxz9cPc319MM/XB/PsyRijU6dOKTw8/JJ15TbkVKtWTT4+PkpPT/cYT09PV1hYWLGvcTqdcjqdHmNBQUGl1WK55HK5+Ad0HTDP1w9zfX0wz9cH8/w/lzqCU6jcnnjscDgUGRmpVatWuccKCgq0atUqRUVFlWFnAADgRlBuj+RIUmJiouLj49W6dWu1bdtWkydPVnZ2tvr161fWrQEAgDJWrkNOjx49dOTIEY0ePVppaWlq1aqVli9fXuRkZPw8p9OppKSkIh/n4dpinq8f5vr6YJ6vD+b5yniZn7v+CgAAoBwqt+fkAAAAXAohBwAAWImQAwAArETIAQAAViLkAAAAKxFybmLHjx9X79695XK5FBQUpP79++vHH3+8rNcaY3T//ffLy8tLH330Uek2Ws6VdJ6PHz+uoUOHqnHjxvL391ft2rX1zDPPuL9QFv8zbdo01a1bV35+fmrXrp02bdp0yfpFixapSZMm8vPzU/PmzbV06dLr1Gn5VpJ5fvvtt9WpUydVqVJFVapUUXR09M/+veAnJX0/F5o/f768vLwUFxdXug2WQ4Scm1jv3r21c+dOrVy5UkuWLNH69es1aNCgy3rt5MmTb/rv+7pcJZ3nw4cP6/Dhw3rttdf0xRdfaO7cuVq+fLn69+9/Hbu+8S1YsECJiYlKSkrS1q1b1bJlS8XExCgjI6PY+g0bNqhXr17q37+/tm3bpri4OMXFxemLL764zp2XLyWd57Vr16pXr15as2aNUlJSVKtWLXXt2lXff//9de68fCnpPBc6cOCAnnvuOXXq1Ok6dVrOGNyUdu3aZSSZzZs3u8eWLVtmvLy8zPfff3/J127bts3UqFHD/PDDD0aSWbx4cSl3W35dzTyfb+HChcbhcJhz586VRpvlUtu2bU1CQoL7eX5+vgkPDzcTJkwotv5Xv/qViY2N9Rhr166d+c1vflOqfZZ3JZ3nC+Xl5ZnKlSubefPmlVaLVriSec7LyzMdOnQws2fPNvHx8eahhx66Dp2WLxzJuUmlpKQoKChIrVu3do9FR0fL29tbGzduvOjrTp8+rccff1zTpk276Beh4n+udJ4vlJmZKZfLpQoVyvVNyq+Z3NxcpaamKjo62j3m7e2t6OhopaSkFPualJQUj3pJiomJuWg9rmyeL3T69GmdO3dOwcHBpdVmuXel8zxu3DhVr16do7yXwE/Mm1RaWpqqV6/uMVahQgUFBwcrLS3toq8bPny4OnTooIceeqi0W7TClc7z+Y4eParx48df9keJN4OjR48qPz+/yFe4hIaGavfu3cW+Ji0trdj6y/17uBldyTxfaMSIEQoPDy8SMPE/VzLPn332md555x1t3779OnRYfnEkxzIjR46Ul5fXJR+X+8PpQv/85z+1evVqTZ48+do2XQ6V5jyfLysrS7GxsYqIiNCYMWOuvnHgOpo4caLmz5+vxYsXy8/Pr6zbscapU6fUp08fvf3226pWrVpZt3ND40iOZZ599ln17dv3kjX169dXWFhYkRPa8vLydPz48Yt+DLV69Wrt27dPQUFBHuPdu3dXp06dtHbt2qvovHwpzXkudOrUKd13332qXLmyFi9eLF9f36tt2xrVqlWTj4+P0tPTPcbT09MvOq9hYWElqseVzXOh1157TRMnTtS//vUvtWjRojTbLPdKOs/79u3TgQMH9MADD7jHCgoKJP10pHjPnj1q0KBB6TZdXpT1SUEoG4UnxG7ZssU9tmLFikueEPvDDz+YHTt2eDwkmSlTpphvvvnmerVerlzJPBtjTGZmpmnfvr3p0qWLyc7Ovh6tljtt27Y1Q4YMcT/Pz883NWrUuOSJx926dfMYi4qK4sTjn1HSeTbGmD/+8Y/G5XKZlJSU69GiFUoyz2fOnCnys/ihhx4y99xzj9mxY4fJycm5nq3f0Ag5N7H77rvP3H777Wbjxo3ms88+M40aNTK9evVyL//uu+9M48aNzcaNGy+6DnF11c8q6TxnZmaadu3amebNm5uvv/7a/PDDD+5HXl5eWe3GDWf+/PnG6XSauXPnml27dplBgwaZoKAgk5aWZowxpk+fPmbkyJHu+s8//9xUqFDBvPbaa+bLL780SUlJxtfX1+zYsaOsdqFcKOk8T5w40TgcDvPBBx94vHdPnTpVVrtQLpR0ni/E1VXFI+TcxI4dO2Z69eplAgICjMvlMv369fP4QbR//34jyaxZs+ai6yDk/LySzvOaNWuMpGIf+/fvL5uduEG9+eabpnbt2sbhcJi2bduaf//73+5lXbp0MfHx8R71CxcuNLfeeqtxOBzmtttuM8nJyde54/KpJPNcp06dYt+7SUlJ17/xcqak7+fzEXKK52WMMdf7IzIAAIDSxtVVAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALDS/wNbYcgS/MBi/wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPhxJREFUeJzt3XtclGX+//E3IAyeBsQDiEuGhzyXlSthnlpZsexg2cFDaS1ptViZZepWHms1taOZVuvpu1t5qDRXzSTNTCU00jRU0sJDuuAqMuMROVy/P1runyOogIPI7ev5eMzj0VzXZ677uuZ2Zt7dc9+DjzHGCAAAwGZ8y3sCAAAAZYGQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQAwAAbImQA6DCWL16tXx8fLR69Wqvjuvj46PRo0d7dUwA5Y+QA5ST9evXa/To0crKyirvqVwRli1bRpApoXnz5unBBx9U48aN5ePjo86dO5f3lIASIeQA5WT9+vUaM2YMIecSWbZsmcaMGVNk38mTJ/Xiiy9e4hld/qZNm6bPP/9cERERqlGjRnlPByixSuU9AQD2d+LECVWpUqVQe25urvLz8xUQEFAOs/r/AgMDy3X7l6t//vOfqlevnnx9fdWyZcvyng5QYhzJAcrB6NGjNXToUElSZGSkfHx85OPjo927dys3N1fjxo1Tw4YN5XA4dPXVV+tvf/ubsrOzPca4+uqrdfvtt2vFihVq3bq1AgMD1bx5c3322WelmtO//vUvtW3bVlWqVFGNGjXUsWNHrVixwqPm3XffVYsWLeRwOBQeHq74+PhCR6I6d+6sli1bKjk5WR07dlSVKlX0t7/9Tbt375aPj48mT56sN99801rftm3bJEk7duzQvffeq5CQEAUGBqpNmzZavHjxBef97bff6r777tNVV10lh8OhiIgIPfPMMzp58qRV8/DDD2vq1KmSZD3XPj4+Vn9R5+Rs2rRJt956q5xOp6pVq6YuXbrou+++86iZPXu2fHx8tG7dOg0ZMkS1a9dW1apVdffdd+u///3vBed+tv379ysuLk7h4eFyOByKjIzUE088odOnT1s1v/76q+677z6FhISoSpUquummm7R06dJCY02ZMkUtWrSw9mebNm300UcflWg+ERER8vXlYwIVF0dygHJwzz336Oeff9bHH3+sN954Q7Vq1ZIk1a5dW48++qjmzJmje++9V88++6ySkpI0fvx4bd++XQsXLvQYZ+fOnXrggQf0+OOPq3///po1a5buu+8+LV++XH/+85+LPZ8xY8Zo9OjRateuncaOHauAgAAlJSVp1apV6tq1q6Tfg9mYMWMUExOjJ554QqmpqZo2bZo2btyodevWyd/f3xrv8OHDuvXWW9WrVy89+OCDCg0NtfpmzZqlU6dOaeDAgXI4HAoJCVFKSopuvvlm1atXT8OHD1fVqlU1f/589ejRQ59++qnuvvvuc859wYIFOnHihJ544gnVrFlTGzZs0JQpU/Tbb79pwYIFkqTHHntMBw4cUEJCgv75z39e8PlISUlRhw4d5HQ69fzzz8vf31/vvfeeOnfurG+++UZRUVEe9U8++aRq1KihUaNGaffu3XrzzTc1aNAgzZs3r9j74MCBA2rbtq2ysrI0cOBANW3aVPv379cnn3yiEydOKCAgQBkZGWrXrp1OnDihp556SjVr1tScOXN055136pNPPrGepw8++EBPPfWU7r33Xj399NM6deqUtmzZoqSkJPXp06fYcwIqPAOgXEyaNMlIMmlpaVbb5s2bjSTz6KOPetQ+99xzRpJZtWqV1Va/fn0jyXz66adWm8vlMnXr1jXXX399seexc+dO4+vra+6++26Tl5fn0Zefn2+MMebgwYMmICDAdO3a1aPmnXfeMZLMzJkzrbZOnToZSWb69OkeY6WlpRlJxul0moMHD3r0denSxbRq1cqcOnXKY9vt2rUzjRs3ttq+/vprI8l8/fXXVtuJEycKrWn8+PHGx8fH7Nmzx2qLj48353rLk2RGjRpl3e/Ro4cJCAgwv/zyi9V24MABU716ddOxY0erbdasWUaSiYmJsZ4rY4x55plnjJ+fn8nKyipye0Xp16+f8fX1NRs3bizUVzD24MGDjSTz7bffWn1Hjx41kZGR5uqrr7b2zV133WVatGhR7G0XR4sWLUynTp28OiZQ1jgOCVxGli1bJkkaMmSIR/uzzz4rSYW+lggPD/c4yuF0OtWvXz9t2rRJ6enpxdrmokWLlJ+fr5EjRxb6aqLgK52vvvpKp0+f1uDBgz1qBgwYIKfTWWheDodDjzzySJHb69mzp2rXrm3dz8zM1KpVq3T//ffr6NGjOnTokA4dOqTDhw8rNjZWO3fu1P79+885/8qVK1v/ffz4cR06dEjt2rWTMUabNm0q1nNwpry8PK1YsUI9evRQgwYNrPa6deuqT58+Wrt2rdxut8djBg4c6PH1V4cOHZSXl6c9e/YUa5v5+flatGiR7rjjDrVp06ZQf8HYy5YtU9u2bdW+fXurr1q1aho4cKB2795tffUXHBys3377TRs3biz+wgEbIuQAl5E9e/bI19dXjRo18mgPCwtTcHBwoQ/NRo0aeXy4StI111wjSdq9e3extvnLL7/I19dXzZs3P++8JKlJkyYe7QEBAWrQoEGhedWrV++cJxNHRkZ63N+1a5eMMXrppZdUu3Ztj9uoUaMkSQcPHjzn3Pbu3auHH35YISEhqlatmmrXrq1OnTpJklwu1zkfdy7//e9/deLEiUJrlaRmzZopPz9f+/bt82i/6qqrPO4XXIl05MiRYm/T7XZf8OTePXv2nHNeBf2SNGzYMFWrVk1t27ZV48aNFR8fr3Xr1hVrLoCdcE4OcBk6O7hUNGceXblQX35+viTpueeeU2xsbJGPOTv0FcjLy9Of//xnZWZmatiwYWratKmqVq2q/fv36+GHH7bGLmt+fn5FthtjLsn2z9asWTOlpqZqyZIlWr58uT799FO9++67Gjly5DkvowfsiJADlJOigkz9+vWVn5+vnTt3Wv93LkkZGRnKyspS/fr1PeoLjoKcOdbPP/8s6ferr4qjYcOGys/P17Zt29S6desiawq2m5qa6vEVzunTp5WWlqaYmJhibasoBeP5+/uXeJytW7fq559/1pw5c9SvXz+rPSEhoVBtcYNj7dq1VaVKFaWmphbq27Fjh3x9fRUREVGieRZnm06nUz/99NN56+rXr3/OeRX0F6hataoeeOABPfDAAzp9+rTuuecevfLKKxoxYgSXzOOKwddVQDmpWrWqJHlcgn3bbbdJkt58802P2tdff12S1L17d4/2AwcOeFxx5Xa79X//939q3bq1wsLCijWPHj16yNfXV2PHji105KPgSERMTIwCAgL09ttvexydmDFjhlwuV6F5lUSdOnXUuXNnvffee/rPf/5TqP98l2IXHEE5c07GGL311luFaot6vs81ZteuXfX55597fOWXkZGhjz76SO3bt5fT6TzvGCXl6+urHj166N///re+//77Qv0F67vtttu0YcMGJSYmWn3Hjx/X+++/r6uvvtr6yvHw4cMejw8ICFDz5s1ljFFOTo5X5w5czjiSA5STG2+8UZL0wgsvqFevXvL399cdd9yh/v376/3331dWVpY6deqkDRs2aM6cOerRo4duueUWjzGuueYaxcXFaePGjQoNDdXMmTOVkZGhWbNmFXsejRo10gsvvKBx48apQ4cOuueee+RwOLRx40aFh4dr/Pjxql27tkaMGKExY8aoW7duuvPOO5Wamqp3331Xf/zjH/Xggw9e1HMxdepUtW/fXq1atdKAAQPUoEEDZWRkKDExUb/99pt+/PHHIh/XtGlTNWzYUM8995z2798vp9OpTz/9tMhzYQqe76eeekqxsbHy8/NTr169ihz35ZdfVkJCgtq3b6+//vWvqlSpkt577z1lZ2dr4sSJF7XWc/n73/+uFStWqFOnTho4cKCaNWum//znP1qwYIHWrl2r4OBgDR8+XB9//LFuvfVWPfXUUwoJCdGcOXOUlpamTz/91DopvGvXrgoLC9PNN9+s0NBQbd++Xe+88466d++u6tWrF3tOa9as0Zo1ayT9HjaPHz+ul19+WZLUsWNHdezY0ftPBOBN5XVZFwBjxo0bZ+rVq2d8fX2ty8lzcnLMmDFjTGRkpPH39zcRERFmxIgRHpdXG/P7JeTdu3c3X375pbn22muNw+EwTZs2NQsWLCjVXGbOnGmuv/5643A4TI0aNUynTp1MQkKCR80777xjmjZtavz9/U1oaKh54oknzJEjRzxqOnXqVOTlywWXkE+aNKnI7f/yyy+mX79+JiwszPj7+5t69eqZ22+/3XzyySdWTVGXkG/bts3ExMSYatWqmVq1apkBAwaYH3/80Ugys2bNsupyc3PNk08+aWrXrm18fHw8LifXWZeQG2PMDz/8YGJjY021atVMlSpVzC233GLWr1/vUVNwCfnZl30XNc/i2LNnj+nXr5+pXbu2cTgcpkGDBiY+Pt5kZ2d7PE/33nuvCQ4ONoGBgaZt27ZmyZIlHuO89957pmPHjqZmzZrG4XCYhg0bmqFDhxqXy1Wi+YwaNcpIKvJ29vMFXI58jCmnM+MAXJSrr75aLVu21JIlS8p7KgBwWeKcHAAAYEuckwPY2IV+ELBy5coKCgq6RLO5Mh07dkzHjh07b03t2rXPeRm6t+Xl5V3w72pVq1ZN1apVuyTzAcoSIQewsbp16563v3///po9e/almcwVavLkyRf8bZq0tLRiX/J/sfbt21foBxnPNmrUqEJ/sBSoiDgnB7Cxr7766rz94eHh5/2lY1y8X3/9Vb/++ut5a9q3b3/Jfrvm1KlTWrt27XlrGjRo4PF7SEBFRcgBAAC2xInHAADAlq7oc3Ly8/N14MABVa9evcL/rSAAAK4UxhgdPXpU4eHh1o9gFuWKDjkHDhzw+t+gAQAAl8a+ffv0hz/84Zz9V3TIKfh583379nn9b9EAAICy4Xa7FRERccE/U3JFh5yCr6icTichBwCACuZCp5pw4jEAALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALAlQg4AALClEoecNWvW6I477lB4eLh8fHy0aNEiqy8nJ0fDhg1Tq1atVLVqVYWHh6tfv346cOCAxxiZmZnq27evnE6ngoODFRcXp2PHjnnUbNmyRR06dFBgYKAiIiI0ceLEQnNZsGCBmjZtqsDAQLVq1UrLli0r6XIAAIBNlTjkHD9+XNddd52mTp1aqO/EiRP64Ycf9NJLL+mHH37QZ599ptTUVN15550edX379lVKSooSEhK0ZMkSrVmzRgMHDrT63W63unbtqvr16ys5OVmTJk3S6NGj9f7771s169evV+/evRUXF6dNmzapR48e6tGjh3766aeSLgkAANiQjzHGlPrBPj5auHChevTocc6ajRs3qm3bttqzZ4+uuuoqbd++Xc2bN9fGjRvVpk0bSdLy5ct122236bffflN4eLimTZumF154Qenp6QoICJAkDR8+XIsWLdKOHTskSQ888ICOHz+uJUuWWNu66aab1Lp1a02fPr1Y83e73QoKCpLL5ZLT6SzlswDgcpWzfK3Hff9u7ctpJgC8qbif32V+To7L5ZKPj4+Cg4MlSYmJiQoODrYCjiTFxMTI19dXSUlJVk3Hjh2tgCNJsbGxSk1N1ZEjR6yamJgYj23FxsYqMTHxnHPJzs6W2+32uAEAAHsq05Bz6tQpDRs2TL1797aSVnp6uurUqeNRV6lSJYWEhCg9Pd2qCQ0N9agpuH+hmoL+oowfP15BQUHWLSIi4uIWCAAALltlFnJycnJ0//33yxijadOmldVmSmTEiBFyuVzWbd++feU9JQAAUEYqlcWgBQFnz549WrVqlcf3ZWFhYTp48KBHfW5urjIzMxUWFmbVZGRkeNQU3L9QTUF/URwOhxwOR+kXBgAAKgyvH8kpCDg7d+7UV199pZo1a3r0R0dHKysrS8nJyVbbqlWrlJ+fr6ioKKtmzZo1ysnJsWoSEhLUpEkT1ahRw6pZuXKlx9gJCQmKjo729pIAAEAFVOKQc+zYMW3evFmbN2+WJKWlpWnz5s3au3evcnJydO+99+r777/Xhx9+qLy8PKWnpys9PV2nT5+WJDVr1kzdunXTgAEDtGHDBq1bt06DBg1Sr169FB4eLknq06ePAgICFBcXp5SUFM2bN09vvfWWhgwZYs3j6aef1vLly/Xaa69px44dGj16tL7//nsNGjTIC08LAACo8EwJff3110ZSoVv//v1NWlpakX2SzNdff22NcfjwYdO7d29TrVo143Q6zSOPPGKOHj3qsZ0ff/zRtG/f3jgcDlOvXj0zYcKEQnOZP3++ueaaa0xAQIBp0aKFWbp0aYnW4nK5jCTjcrlK+jQAqABOf/Gtxw2APRT38/uifienouN3cgB743dyAHu6bH4nBwAAoDwQcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC0RcgAAgC2VOOSsWbNGd9xxh8LDw+Xj46NFixZ59BtjNHLkSNWtW1eVK1dWTEyMdu7c6VGTmZmpvn37yul0Kjg4WHFxcTp27JhHzZYtW9ShQwcFBgYqIiJCEydOLDSXBQsWqGnTpgoMDFSrVq20bNmyki4HAADYVIlDzvHjx3Xddddp6tSpRfZPnDhRb7/9tqZPn66kpCRVrVpVsbGxOnXqlFXTt29fpaSkKCEhQUuWLNGaNWs0cOBAq9/tdqtr166qX7++kpOTNWnSJI0ePVrvv/++VbN+/Xr17t1bcXFx2rRpk3r06KEePXrop59+KumSAACAHZmLIMksXLjQup+fn2/CwsLMpEmTrLasrCzjcDjMxx9/bIwxZtu2bUaS2bhxo1XzxRdfGB8fH7N//35jjDHvvvuuqVGjhsnOzrZqhg0bZpo0aWLdv//++0337t095hMVFWUee+yxYs/f5XIZScblchX7MQAqjtNffOtxA2APxf389uo5OWlpaUpPT1dMTIzVFhQUpKioKCUmJkqSEhMTFRwcrDZt2lg1MTEx8vX1VVJSklXTsWNHBQQEWDWxsbFKTU3VkSNHrJozt1NQU7CdomRnZ8vtdnvcAACAPXk15KSnp0uSQkNDPdpDQ0OtvvT0dNWpU8ejv1KlSgoJCfGoKWqMM7dxrpqC/qKMHz9eQUFB1i0iIqKkSwQAABXEFXV11YgRI+Ryuazbvn37yntKAACgjHg15ISFhUmSMjIyPNozMjKsvrCwMB08eNCjPzc3V5mZmR41RY1x5jbOVVPQXxSHwyGn0+lxAwAA9uTVkBMZGamwsDCtXLnSanO73UpKSlJ0dLQkKTo6WllZWUpOTrZqVq1apfz8fEVFRVk1a9asUU5OjlWTkJCgJk2aqEaNGlbNmdspqCnYDgAAuLKVOOQcO3ZMmzdv1ubNmyX9frLx5s2btXfvXvn4+Gjw4MF6+eWXtXjxYm3dulX9+vVTeHi4evToIUlq1qyZunXrpgEDBmjDhg1at26dBg0apF69eik8PFyS1KdPHwUEBCguLk4pKSmaN2+e3nrrLQ0ZMsSax9NPP63ly5frtdde044dOzR69Gh9//33GjRo0MU/KwAAoOIr6WVbX3/9tZFU6Na/f39jzO+Xkb/00ksmNDTUOBwO06VLF5OamuoxxuHDh03v3r1NtWrVjNPpNI888og5evSoR82PP/5o2rdvbxwOh6lXr56ZMGFCobnMnz/fXHPNNSYgIMC0aNHCLF26tERr4RJywN64hBywp+J+fvsYY0w5Zqxy5Xa7FRQUJJfLxfk5gA3lLF/rcd+/W/tymgkAbyru5/cVdXUVAAC4chByAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALXk95OTl5emll15SZGSkKleurIYNG2rcuHEyxlg1xhiNHDlSdevWVeXKlRUTE6OdO3d6jJOZmam+ffvK6XQqODhYcXFxOnbsmEfNli1b1KFDBwUGBioiIkITJ0709nIAAEAF5fWQ8+qrr2ratGl65513tH37dr366quaOHGipkyZYtVMnDhRb7/9tqZPn66kpCRVrVpVsbGxOnXqlFXTt29fpaSkKCEhQUuWLNGaNWs0cOBAq9/tdqtr166qX7++kpOTNWnSJI0ePVrvv/++t5cEAAAqIB9z5iEWL7j99tsVGhqqGTNmWG09e/ZU5cqV9a9//UvGGIWHh+vZZ5/Vc889J0lyuVwKDQ3V7Nmz1atXL23fvl3NmzfXxo0b1aZNG0nS8uXLddttt+m3335TeHi4pk2bphdeeEHp6ekKCAiQJA0fPlyLFi3Sjh07ijVXt9utoKAguVwuOZ1Obz4NAC4DO+e+4HG/ca9XymkmALypuJ/fXj+S065dO61cuVI///yzJOnHH3/U2rVrdeutt0qS0tLSlJ6erpiYGOsxQUFBioqKUmJioiQpMTFRwcHBVsCRpJiYGPn6+iopKcmq6dixoxVwJCk2Nlapqak6cuRIkXPLzs6W2+32uAEAAHuq5O0Bhw8fLrfbraZNm8rPz095eXl65ZVX1LdvX0lSenq6JCk0NNTjcaGhoVZfenq66tSp4znRSpUUEhLiURMZGVlojIK+GjVqFJrb+PHjNWbMGC+sEgAAXO68fiRn/vz5+vDDD/XRRx/phx9+0Jw5czR58mTNmTPH25sqsREjRsjlclm3ffv2lfeUAABAGfH6kZyhQ4dq+PDh6tWrlySpVatW2rNnj8aPH6/+/fsrLCxMkpSRkaG6detaj8vIyFDr1q0lSWFhYTp48KDHuLm5ucrMzLQeHxYWpoyMDI+agvsFNWdzOBxyOBwXv0gAAHDZ8/qRnBMnTsjX13NYPz8/5efnS5IiIyMVFhamlStXWv1ut1tJSUmKjo6WJEVHRysrK0vJyclWzapVq5Sfn6+oqCirZs2aNcrJybFqEhIS1KRJkyK/qgIAAFcWr4ecO+64Q6+88oqWLl2q3bt3a+HChXr99dd19913S5J8fHw0ePBgvfzyy1q8eLG2bt2qfv36KTw8XD169JAkNWvWTN26ddOAAQO0YcMGrVu3ToMGDVKvXr0UHh4uSerTp48CAgIUFxenlJQUzZs3T2+99ZaGDBni7SUBAIAKyOtfV02ZMkUvvfSS/vrXv+rgwYMKDw/XY489ppEjR1o1zz//vI4fP66BAwcqKytL7du31/LlyxUYGGjVfPjhhxo0aJC6dOkiX19f9ezZU2+//bbVHxQUpBUrVig+Pl433nijatWqpZEjR3r8lg4AALhyef13cioSficHsDd+Jwewp3L7nRwAAIDLASEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYEiEHAADYUqXyngAAALCHnOVrPe77d2tfTjP5HUdyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALZVJyNm/f78efPBB1axZU5UrV1arVq30/fffW/3GGI0cOVJ169ZV5cqVFRMTo507d3qMkZmZqb59+8rpdCo4OFhxcXE6duyYR82WLVvUoUMHBQYGKiIiQhMnTiyL5QAAgArI6yHnyJEjuvnmm+Xv768vvvhC27Zt02uvvaYaNWpYNRMnTtTbb7+t6dOnKykpSVWrVlVsbKxOnTpl1fTt21cpKSlKSEjQkiVLtGbNGg0cONDqd7vd6tq1q+rXr6/k5GRNmjRJo0eP1vvvv+/tJQEAgAqokrcHfPXVVxUREaFZs2ZZbZGRkdZ/G2P05ptv6sUXX9Rdd90lSfq///s/hYaGatGiRerVq5e2b9+u5cuXa+PGjWrTpo0kacqUKbrttts0efJkhYeH68MPP9Tp06c1c+ZMBQQEqEWLFtq8ebNef/11jzAEAACuTF4/krN48WK1adNG9913n+rUqaPrr79eH3zwgdWflpam9PR0xcTEWG1BQUGKiopSYmKiJCkxMVHBwcFWwJGkmJgY+fr6Kikpyarp2LGjAgICrJrY2FilpqbqyJEjRc4tOztbbrfb4wYAAOzJ6yHn119/1bRp09S4cWN9+eWXeuKJJ/TUU09pzpw5kqT09HRJUmhoqMfjQkNDrb709HTVqVPHo79SpUoKCQnxqClqjDO3cbbx48crKCjIukVERFzkagEAwOXK619X5efnq02bNvr73/8uSbr++uv1008/afr06erfv7+3N1ciI0aM0JAhQ6z7bre7zIJOzvK1hdr8u7Uvk20BAIDCvH4kp27dumrevLlHW7NmzbR3715JUlhYmCQpIyPDoyYjI8PqCwsL08GDBz36c3NzlZmZ6VFT1BhnbuNsDodDTqfT4wYAAOzJ6yHn5ptvVmpqqkfbzz//rPr160v6/STksLAwrVy50up3u91KSkpSdHS0JCk6OlpZWVlKTk62alatWqX8/HxFRUVZNWvWrFFOTo5Vk5CQoCZNmnhcyQUAAK5MXg85zzzzjL777jv9/e9/165du/TRRx/p/fffV3x8vCTJx8dHgwcP1ssvv6zFixdr69at6tevn8LDw9WjRw9Jvx/56datmwYMGKANGzZo3bp1GjRokHr16qXw8HBJUp8+fRQQEKC4uDilpKRo3rx5euuttzy+jgIAAFcur5+T88c//lELFy7UiBEjNHbsWEVGRurNN99U3759rZrnn39ex48f18CBA5WVlaX27dtr+fLlCgwMtGo+/PBDDRo0SF26dJGvr6969uypt99+2+oPCgrSihUrFB8frxtvvFG1atXSyJEjuXwcAABIknyMMaa8J1Fe3G63goKC5HK5vH5+DiceA+Vv59wXPO437vVKOc0EuDKc/dlXVp97xf385m9XAQAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAW6pU3hMAAAD2sDvrC4/7jdW+nGbyO47kAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAWyLkAAAAW6pU3hOwq91ZXxRqa6z25TATAACuTBzJAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtkTIAQAAtlTmIWfChAny8fHR4MGDrbZTp04pPj5eNWvWVLVq1dSzZ09lZGR4PG7v3r3q3r27qlSpojp16mjo0KHKzc31qFm9erVuuOEGORwONWrUSLNnzy7r5QAAgAqiTEPOxo0b9d577+naa6/1aH/mmWf073//WwsWLNA333yjAwcO6J577rH68/Ly1L17d50+fVrr16/XnDlzNHv2bI0cOdKqSUtLU/fu3XXLLbdo8+bNGjx4sB599FF9+eWXZbkkAABQQZRZyDl27Jj69u2rDz74QDVq1LDaXS6XZsyYoddff11/+tOfdOONN2rWrFlav369vvvuO0nSihUrtG3bNv3rX/9S69atdeutt2rcuHGaOnWqTp8+LUmaPn26IiMj9dprr6lZs2YaNGiQ7r33Xr3xxhvnnFN2drbcbrfHDQAA2FOZhZz4+Hh1795dMTExHu3JycnKycnxaG/atKmuuuoqJSYmSpISExPVqlUrhYaGWjWxsbFyu91KSUmxas4eOzY21hqjKOPHj1dQUJB1i4iIuOh1AgCAy1OZhJy5c+fqhx9+0Pjx4wv1paenKyAgQMHBwR7toaGhSk9Pt2rODDgF/QV956txu906efJkkfMaMWKEXC6Xddu3b1+p1gcAAC5/lbw94L59+/T0008rISFBgYGB3h7+ojgcDjkcjvKeBgAAuAS8fiQnOTlZBw8e1A033KBKlSqpUqVK+uabb/T222+rUqVKCg0N1enTp5WVleXxuIyMDIWFhUmSwsLCCl1tVXD/QjVOp1OVK1f29rIAAEAF4/WQ06VLF23dulWbN2+2bm3atFHfvn2t//b399fKlSutx6Smpmrv3r2Kjo6WJEVHR2vr1q06ePCgVZOQkCCn06nmzZtbNWeOUVBTMAYAALiyef3rqurVq6tly5YebVWrVlXNmjWt9ri4OA0ZMkQhISFyOp168sknFR0drZtuukmS1LVrVzVv3lwPPfSQJk6cqPT0dL344ouKj4+3vm56/PHH9c477+j555/XX/7yF61atUrz58/X0qVLvb0kAABQAXk95BTHG2+8IV9fX/Xs2VPZ2dmKjY3Vu+++a/X7+flpyZIleuKJJxQdHa2qVauqf//+Gjt2rFUTGRmppUuX6plnntFbb72lP/zhD/rHP/6h2NjY8lgSAAC4zFySkLN69WqP+4GBgZo6daqmTp16zsfUr19fy5YtO++4nTt31qZNm7wxRQAAYDP87SoAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLhBwAAGBLXg8548eP1x//+EdVr15dderUUY8ePZSamupRc+rUKcXHx6tmzZqqVq2aevbsqYyMDI+avXv3qnv37qpSpYrq1KmjoUOHKjc316Nm9erVuuGGG+RwONSoUSPNnj3b28sBAAAVlNdDzjfffKP4+Hh99913SkhIUE5Ojrp27arjx49bNc8884z+/e9/a8GCBfrmm2904MAB3XPPPVZ/Xl6eunfvrtOnT2v9+vWaM2eOZs+erZEjR1o1aWlp6t69u2655RZt3rxZgwcP1qOPPqovv/zS20sCAAAVUCVvD7h8+XKP+7Nnz1adOnWUnJysjh07yuVyacaMGfroo4/0pz/9SZI0a9YsNWvWTN99951uuukmrVixQtu2bdNXX32l0NBQtW7dWuPGjdOwYcM0evRoBQQEaPr06YqMjNRrr70mSWrWrJnWrl2rN954Q7Gxsd5eFgAAqGDK/Jwcl8slSQoJCZEkJScnKycnRzExMVZN06ZNddVVVykxMVGSlJiYqFatWik0NNSqiY2NldvtVkpKilVz5hgFNQVjFCU7O1tut9vjBgAA7KlMQ05+fr4GDx6sm2++WS1btpQkpaenKyAgQMHBwR61oaGhSk9Pt2rODDgF/QV956txu906efJkkfMZP368goKCrFtERMRFrxEAAFyeyjTkxMfH66efftLcuXPLcjPFNmLECLlcLuu2b9++8p4SAAAoI14/J6fAoEGDtGTJEq1Zs0Z/+MMfrPawsDCdPn1aWVlZHkdzMjIyFBYWZtVs2LDBY7yCq6/OrDn7iqyMjAw5nU5Vrly5yDk5HA45HI6LXhsAALj8ef1IjjFGgwYN0sKFC7Vq1SpFRkZ69N94443y9/fXypUrrbbU1FTt3btX0dHRkqTo6Ght3bpVBw8etGoSEhLkdDrVvHlzq+bMMQpqCsYAAABXNq8fyYmPj9dHH32kzz//XNWrV7fOoQkKClLlypUVFBSkuLg4DRkyRCEhIXI6nXryyScVHR2tm266SZLUtWtXNW/eXA899JAmTpyo9PR0vfjii4qPj7eOxDz++ON655139Pzzz+svf/mLVq1apfnz52vp0qXeXhIAAKiAvH4kZ9q0aXK5XOrcubPq1q1r3ebNm2fVvPHGG7r99tvVs2dPdezYUWFhYfrss8+sfj8/Py1ZskR+fn6Kjo7Wgw8+qH79+mns2LFWTWRkpJYuXaqEhARdd911eu211/SPf/yDy8cBAICkMjiSY4y5YE1gYKCmTp2qqVOnnrOmfv36WrZs2XnH6dy5szZt2lTiOQIAAPvjb1cBAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbIuQAAABbqlTeEwAAABVPzvK15T2FC+JIDgAAsCVCDgAAsCW+rgIAABd09tdTu7O+KKeZFB8hB1Dxvlv279a+VOOc/bjSbuvsxxVnPgBwJSPkAMVU2pPsds59weP+1cG3emVbpZ0P4QjAhVSEk4qLg5AD2/HWi/PsQ7FFhZPi1ADA5a4475sV4eupsxFyUKGUVYDx1mO8VVMcxQlURW3r6uWl2x5HgABUNIScS4hzKs7PW89PRfy/jdIo7TpLe/SpNAHTW+cxAXZXlucFFodd3zcJObhoZfXdrV0Pn15uivscnh2GijxKdFbN2ecjFVVTlOIEXm+FYv7nA97krbBS2rGL40p63/QxxpjynkR5cbvdCgoKksvlktPp9MqYJj9f+b/+pvQvZyrPP1/Z1fMkn6Jri/NmX5ZX9JTmqp/ifLAVx5X0IkPZON+/u3yTr+3mF/18fI2cxqHI/BD5yqdMz5kqzeupNOOWdmxvjeMtl9t7W2mV1ftocd4ji3OeYHnJl1Gab6aqtuuhGoG11Kzm9fLz8fPa+MX9/K7wIWfq1KmaNGmS0tPTdd1112nKlClq27ZtsR7r7ZCTt+Vn5SxcKbmOWm25AfnKuuqkTobkXvT4F6O0528AFc1Wv3Qt9t8ul+8pqy0oP1B35jRTq7wwr2yjtB8u3nodlmacS/mBWJbPT3niPbJ4inoN1gyso7iWQxUd3sUr27giQs68efPUr18/TZ8+XVFRUXrzzTe1YMECpaamqk6dOhd8vDdDTt6Wn5Uze1GhdqPfn97DjU6Ue9AB7G6rX7r+GbDp9ztnHkH937vcQ6ev91rQAVDYOV+D/7vzfJuJXgk6xf38rtB/1uH111/XgAED9Mgjj6h58+aaPn26qlSpopkzZ17SeZj8/N+P4BTB5387NnhvZeuNFoD35ctosf/23++c/RXx/+4v9t+ufF6IQJk472vwf6+7mT9NVp7Ju2RzqrAnHp8+fVrJyckaMWKE1ebr66uYmBglJiYW+Zjs7GxlZ2db910ul6TfE+HFyPtln3IO/vf8RdnS6YO5Ol390u1c4Eryq2+mDun4eWsO6bh+OpWuBvkhl2hWwJWjOK/B/5w4oI27v1Xzmjdc1LYKPrcv9GVUhQ05hw4dUl5enkJDQz3aQ0NDtWPHjiIfM378eI0ZM6ZQe0RERJnMEcDlZ6m2lPcUgCvaUt3itbGOHj2qoKCgc/ZX2JBTGiNGjNCQIUOs+/n5+crMzFTNmjXl43OOS6BKwe12KyIiQvv27fPaVVuXG7uvkfVVfHZfI+ur+Oy+xrJcnzFGR48eVXh4+HnrKmzIqVWrlvz8/JSRkeHRnpGRobCwok8sdDgccjgcHm3BwcFlNUU5nU5b/sM9k93XyPoqPruvkfVVfHZfY1mt73xHcApU2BOPAwICdOONN2rlyv9/wm9+fr5Wrlyp6OjocpwZAAC4HFTYIzmSNGTIEPXv319t2rRR27Zt9eabb+r48eN65JFHyntqAACgnFXokPPAAw/ov//9r0aOHKn09HS1bt1ay5cvL3Qy8qXmcDg0atSoQl+N2Ynd18j6Kj67r5H1VXx2X+PlsL4K/WOAAAAA51Jhz8kBAAA4H0IOAACwJUIOAACwJUIOAACwJUIOAACwJUJOKbzyyitq166dqlSpUuxfTDbGaOTIkapbt64qV66smJgY7dy506MmMzNTffv2ldPpVHBwsOLi4nTs2LEyWMGFlXQuu3fvlo+PT5G3BQsWWHVF9c+dO/dSLMlDaZ7rzp07F5r7448/7lGzd+9ede/eXVWqVFGdOnU0dOhQ5ebmluVSzqmka8zMzNSTTz6pJk2aqHLlyrrqqqv01FNPWX/ItkB57cOpU6fq6quvVmBgoKKiorRhw4bz1i9YsEBNmzZVYGCgWrVqpWXLlnn0F+c1eamVZI0ffPCBOnTooBo1aqhGjRqKiYkpVP/www8X2lfdunUr62WcU0nWN3v27EJzDwwM9Ki53PZhSdZX1PuJj4+PunfvbtVcTvtvzZo1uuOOOxQeHi4fHx8tWrTogo9ZvXq1brjhBjkcDjVq1EizZ88uVFPS13WJGZTYyJEjzeuvv26GDBligoKCivWYCRMmmKCgILNo0SLz448/mjvvvNNERkaakydPWjXdunUz1113nfnuu+/Mt99+axo1amR69+5dRqs4v5LOJTc31/znP//xuI0ZM8ZUq1bNHD161KqTZGbNmuVRd+ZzcKmU5rnu1KmTGTBggMfcXS6X1Z+bm2tatmxpYmJizKZNm8yyZctMrVq1zIgRI8p6OUUq6Rq3bt1q7rnnHrN48WKza9cus3LlStO4cWPTs2dPj7ry2Idz5841AQEBZubMmSYlJcUMGDDABAcHm4yMjCLr161bZ/z8/MzEiRPNtm3bzIsvvmj8/f3N1q1brZrivCYvpZKusU+fPmbq1Klm06ZNZvv27ebhhx82QUFB5rfffrNq+vfvb7p16+axrzIzMy/VkjyUdH2zZs0yTqfTY+7p6ekeNZfTPizp+g4fPuyxtp9++sn4+fmZWbNmWTWX0/5btmyZeeGFF8xnn31mJJmFCxeet/7XX381VapUMUOGDDHbtm0zU6ZMMX5+fmb58uVWTUmfs9Ig5FyEWbNmFSvk5Ofnm7CwMDNp0iSrLSsryzgcDvPxxx8bY4zZtm2bkWQ2btxo1XzxxRfGx8fH7N+/3+tzPx9vzaV169bmL3/5i0dbcV4cZa206+vUqZN5+umnz9m/bNky4+vr6/FGPG3aNON0Ok12drZX5l5c3tqH8+fPNwEBASYnJ8dqK4992LZtWxMfH2/dz8vLM+Hh4Wb8+PFF1t9///2me/fuHm1RUVHmscceM8YU7zV5qZV0jWfLzc011atXN3PmzLHa+vfvb+666y5vT7VUSrq+C72/Xm778GL33xtvvGGqV69ujh07ZrVdTvvvTMV5D3j++edNixYtPNoeeOABExsba92/2OesOPi66hJIS0tTenq6YmJirLagoCBFRUUpMTFRkpSYmKjg4GC1adPGqomJiZGvr6+SkpIu6Xy9MZfk5GRt3rxZcXFxhfri4+NVq1YttW3bVjNnzpS5xL9HeTHr+/DDD1WrVi21bNlSI0aM0IkTJzzGbdWqlccvbsfGxsrtdislJcX7CzkPb/17crlccjqdqlTJ88fRL+U+PH36tJKTkz1eP76+voqJibFeP2dLTEz0qJd+3xcF9cV5TV5KpVnj2U6cOKGcnByFhIR4tK9evVp16tRRkyZN9MQTT+jw4cNenXtxlHZ9x44dU/369RUREaG77rrL43V0Oe1Db+y/GTNmqFevXqpatapH++Ww/0rjQq9BbzxnxVGh/6xDRZGeni5Jhf7cRGhoqNWXnp6uOnXqePRXqlRJISEhVs2l4o25zJgxQ82aNVO7du082seOHas//elPqlKlilasWKG//vWvOnbsmJ566imvzf9CSru+Pn36qH79+goPD9eWLVs0bNgwpaam6rPPPrPGLWofF/RdSt7Yh4cOHdK4ceM0cOBAj/ZLvQ8PHTqkvLy8Ip/bHTt2FPmYc+2LM19vBW3nqrmUSrPGsw0bNkzh4eEeHxrdunXTPffco8jISP3yyy/629/+pltvvVWJiYny8/Pz6hrOpzTra9KkiWbOnKlrr71WLpdLkydPVrt27ZSSkqI//OEPl9U+vNj9t2HDBv3000+aMWOGR/vlsv9K41yvQbfbrZMnT+rIkSMX/W++OAg5/zN8+HC9+uqr563Zvn27mjZteolm5H3FXePFOnnypD766CO99NJLhfrObLv++ut1/PhxTZo0ySsfkGW9vjM/7Fu1aqW6deuqS5cu+uWXX9SwYcNSj1sSl2ofut1ude/eXc2bN9fo0aM9+spyH6J0JkyYoLlz52r16tUeJ+f26tXL+u9WrVrp2muvVcOGDbV69Wp16dKlPKZabNHR0YqOjrbut2vXTs2aNdN7772ncePGlePMvG/GjBlq1aqV2rZt69Fekfff5YKQ8z/PPvusHn744fPWNGjQoFRjh4WFSZIyMjJUt25dqz0jI0OtW7e2ag4ePOjxuNzcXGVmZlqPv1jFXePFzuWTTz7RiRMn1K9fvwvWRkVFady4ccrOzr7oP+J2qdZXICoqSpK0a9cuNWzYUGFhYYWuDMjIyJCkCrUPjx49qm7duql69epauHCh/P39z1vvzX1YlFq1asnPz896LgtkZGSccy1hYWHnrS/Oa/JSKs0aC0yePFkTJkzQV199pWuvvfa8tQ0aNFCtWrW0a9euS/oheTHrK+Dv76/rr79eu3btknR57cOLWd/x48c1d+5cjR079oLbKa/9Vxrneg06nU5VrlxZfn5+F/1voli8dnbPFaikJx5PnjzZanO5XEWeePz9999bNV9++WW5nnhc2rl06tSp0BU55/Lyyy+bGjVqlHqupeGt53rt2rVGkvnxxx+NMf//xOMzrwx47733jNPpNKdOnfLeAoqhtGt0uVzmpptuMp06dTLHjx8v1rYuxT5s27atGTRokHU/Ly/P1KtX77wnHt9+++0ebdHR0YVOPD7fa/JSK+kajTHm1VdfNU6n0yQmJhZrG/v27TM+Pj7m888/v+j5llRp1nem3Nxc06RJE/PMM88YYy6/fVja9c2aNcs4HA5z6NChC26jPPffmVTME49btmzp0da7d+9CJx5fzL+JYs3VayNdQfbs2WM2bdpkXSK9adMms2nTJo9LpZs0aWI+++wz6/6ECRNMcHCw+fzzz82WLVvMXXfdVeQl5Ndff71JSkoya9euNY0bNy7XS8jPN5fffvvNNGnSxCQlJXk8bufOncbHx8d88cUXhcZcvHix+eCDD8zWrVvNzp07zbvvvmuqVKliRo4cWebrOVtJ17dr1y4zduxY8/3335u0tDTz+eefmwYNGpiOHTtajym4hLxr165m8+bNZvny5aZ27drlegl5SdbocrlMVFSUadWqldm1a5fHZau5ubnGmPLbh3PnzjUOh8PMnj3bbNu2zQwcONAEBwdbV7I99NBDZvjw4Vb9unXrTKVKlczkyZPN9u3bzahRo4q8hPxCr8lLqaRrnDBhggkICDCffPKJx74qeB86evSoee6550xiYqJJS0szX331lbnhhhtM48aNL3noLs36xowZY7788kvzyy+/mOTkZNOrVy8TGBhoUlJSrJrLaR+WdH0F2rdvbx544IFC7Zfb/jt69Kj1WSfJvP7662bTpk1mz549xhhjhg8fbh566CGrvuAS8qFDh5rt27ebqVOnFnkJ+fmeM28g5JRC//79jaRCt6+//tqq0f9+S6RAfn6+eemll0xoaKhxOBymS5cuJjU11WPcw4cPm969e5tq1aoZp9NpHnnkEY/gdCldaC5paWmF1myMMSNGjDAREREmLy+v0JhffPGFad26talWrZqpWrWque6668z06dOLrC1rJV3f3r17TceOHU1ISIhxOBymUaNGZujQoR6/k2OMMbt37za33nqrqVy5sqlVq5Z59tlnPS6/vpRKusavv/66yH/XkkxaWpoxpnz34ZQpU8xVV11lAgICTNu2bc13331n9XXq1Mn079/fo37+/PnmmmuuMQEBAaZFixZm6dKlHv3FeU1eaiVZY/369YvcV6NGjTLGGHPixAnTtWtXU7t2bePv72/q169vBgwY4NUPkJIqyfoGDx5s1YaGhprbbrvN/PDDDx7jXW77sKT/Rnfs2GEkmRUrVhQa63Lbf+d6fyhYU//+/U2nTp0KPaZ169YmICDANGjQwOMzscD5njNv8DHmEl+/CwAAcAnwOzkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCW/h+DJ0UDi7p7MwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMGJJREFUeJzt3XtcVHX+x/H3gDCiyCAqjCReQvNW2oapbGpbsoD5My1LTWuxpewCtcavy89HedtsLd3tZprrPrasVlv1V1npSpo3Vhe17GeZmWlLYWvgLRjxAgjn94fLWQdQAcHhC6/n4zGPPOd8Z87nzDDx5nu+53sclmVZAgAAMIifrwsAAACoLgIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgyARusXv/iFfvGLX9T5cwDUPgIMAFwiixcv1osvvujrMqrlmWee0c0336yIiAg5HA5NmzbN1yUBkggwAFAtq1ev1urVq2v0XBMDzFNPPaVPPvlEP/vZz3xdCuClia8LAIDqOn78uJo3b+6TfQcGBvpkv76SlZWljh076vDhw2rTpo2vywFs9MAA1TRt2jQ5HA598803uvPOO+VyudSmTRtNnjxZlmVp//79Gj58uEJCQuR2u/WHP/zB6/lz5sxRz5491axZM7Vs2VJ9+vTR4sWLvdr861//0q9//WtFRETI6XSqZ8+eeu2116pd6/vvv6+hQ4cqMjJSTqdT0dHRevrpp1VSUmK3SU1NVXBwsE6cOFHh+XfccYfcbrfdvrS0VNOmTVNkZKSaNWumG264QV999ZU6duyo8ePHV6s2h8Oh1NRULVq0SF27dlXTpk0VExOjjIwMr3Zl7/dXX32lsWPHqmXLlhowYIC9/S9/+YtiYmIUFBSksLAwjRkzRvv376+wvwULFig6OlpBQUHq27ev/v73v1er3jLlx8Bs2LBBDodDS5cu1TPPPKN27dqpadOmGjx4sPbt2+f1vJUrV+r777+Xw+GQw+FQx44d7e2FhYWaOnWqOnfuLKfTqaioKD3++OMqLCys9H1bvny5rrzySvvnIz093avdsWPHNHHiRHXs2FFOp1Ph4eH65S9/qc8++6xax3t2jUB9Qg8MUEOjR49W9+7d9eyzz2rlypWaMWOGwsLC9Mc//lE33nijnnvuOS1atEiPPvqorr32Wg0aNEh/+tOf9PDDD+u2227Tb37zG506dUpffPGFtm7dqrFjx0qScnNz1b9/f/sXVZs2bbRq1SolJyfL4/Fo4sSJVa5x4cKFCg4OVlpamoKDg7Vu3TpNmTJFHo9Hs2fPto9j7ty5WrlypW6//Xb7uSdOnNCHH36o8ePHy9/fX5I0adIkzZo1S8OGDVNCQoI+//xzJSQk6NSpUzV6Dzdu3KglS5bo4YcfltPp1Lx585SYmKht27bpyiuv9Gp7++23q0uXLvrd734ny7IknRmfMXnyZI0aNUr33HOPDh06pDlz5mjQoEH6v//7P4WGhkqS/vznP+u+++7Tz3/+c02cOFH//Oc/dfPNNyssLExRUVE1qr28Z599Vn5+fnr00UeVn5+vWbNmady4cdq6dask6cknn1R+fr5++OEHvfDCC5Kk4OBgSWeC4c0336xNmzZpwoQJ6t69u3bu3KkXXnhB33zzjZYvX+61r02bNundd9/Vgw8+qBYtWujll1/WyJEjlZ2drVatWkmS7r//fv3v//6vUlNT1aNHDx05ckSbNm3S7t27dc0119TKMQM+ZQGolqlTp1qSrAkTJtjrTp8+bbVr185yOBzWs88+a6//6aefrKCgICspKcmyLMsaPny41bNnz/O+fnJystW2bVvr8OHDXuvHjBljuVwu68SJE1WutbK29913n9WsWTPr1KlTlmVZVmlpqXXZZZdZI0eO9Gq3dOlSS5KVkZFhWZZl5eTkWE2aNLFGjBjh1W7atGmWJPsYq0qSJcn69NNP7XXff/+91bRpU+uWW26x15W933fccYfX87/77jvL39/feuaZZ7zW79y502rSpIm9vqioyAoPD7euvvpqq7Cw0G63YMECS5J1/fXXV6vu66+/3us569evtyRZ3bt393r9l156yZJk7dy50143dOhQq0OHDhVe86233rL8/Pysv//9717r58+fb0myNm/ebK+TZAUGBlr79u2z133++eeWJGvOnDn2OpfLZaWkpFTr2M7n0KFDliRr6tSptfaawMXgFBJQQ/fcc4/9b39/f/Xp00eWZSk5OdleHxoaqq5du+qf//ynvfzDDz/ok08+qfQ1LcvSO++8o2HDhsmyLB0+fNh+JCQkKD8/v1qnAIKCgux/Hzt2TIcPH9bAgQN14sQJff3115LOnJK4/fbb9be//U0FBQV2+yVLluiyyy6zT9esXbtWp0+f1oMPPui1j4ceeqjK9ZQXGxurmJgYe7l9+/YaPny4PvroI6/TXNKZHoWzvfvuuyotLdWoUaO83ie3260uXbpo/fr1kqRPP/1UBw8e1P333+81fmX8+PFyuVw1rr28u+++2+v1Bw4cKEn2Z38+y5YtU/fu3dWtWzevY7nxxhslyT6WMnFxcYqOjraXe/XqpZCQEK99hYaGauvWrTpw4MBFHRdQXxFggBpq376917LL5VLTpk3VunXrCut/+uknSdITTzyh4OBg9e3bV126dFFKSoo2b95stz106JDy8vK0YMECtWnTxutx9913S5IOHjxY5Rp37dqlW265RS6XSyEhIWrTpo3uvPNOSVJ+fr7dbvTo0Tp58qQ++OADSVJBQYH+9re/6fbbb5fD4ZAkff/995Kkzp07e+0jLCxMLVu2rHJNZ+vSpUuFdVdccYVOnDihQ4cOea3v1KmT1/LevXtlWZa6dOlS4b3avXu3/T6V1V1+XwEBAbr88strVHdlyv88lL0nZZ/9+ezdu1e7du2qcBxXXHGFpIqfefl9le3v7H3NmjVLX375paKiotS3b19NmzatSmEKMAVjYIAaKhsXcqF1kuwxG927d9eePXu0YsUKpaen65133tG8efM0ZcoUTZ8+XaWlpZKkO++8U0lJSZW+Vq9evapUX15enq6//nqFhITot7/9raKjo9W0aVN99tlneuKJJ+x9SVL//v3VsWNHLV26VGPHjtWHH36okydPavTo0VXa16Vwdm+SdGbciMPh0KpVqyp938vGl1wqF/rsz6e0tFRXXXWVnn/++Uq3lx+nU5V9jRo1SgMHDtR7772n1atXa/bs2Xruuef07rvvasiQIResCajvCDDAJda8eXONHj1ao0ePVlFRkW699VY988wzmjRpktq0aaMWLVqopKREcXFxF7WfDRs26MiRI3r33Xc1aNAge31WVlal7UeNGqWXXnpJHo9HS5YsUceOHdW/f397e4cOHSRJ+/bt8+oNOXLkSJV6GSqzd+/eCuu++eYbNWvW7IKX7EZHR8uyLHXq1MnuqahMWd179+61T8lIUnFxsbKystS7d+8a1V4TZb1Z5UVHR+vzzz/X4MGDz9mmJtq2basHH3xQDz74oA4ePKhrrrlGzzzzDAEGDQKnkIBL6MiRI17LgYGB6tGjhyzLUnFxsfz9/TVy5Ei98847+vLLLys8v/xplfMp+yv97L/Ki4qKNG/evErbjx49WoWFhXrjjTeUnp6uUaNGeW0fPHiwmjRpoldffdVr/SuvvFLlmsrLzMz0GtOzf/9+vf/++4qPjz9nL0OZW2+9Vf7+/po+fXqFXg7Lsuz3uk+fPmrTpo3mz5+voqIiu83ChQuVl5dX49pronnz5l6n7sqMGjVK//rXv/SnP/2pwraTJ0/q+PHj1dpPSUlJhf2Eh4crMjKywmXZgKnogQEuofj4eLndbl133XWKiIjQ7t279corr2jo0KFq0aKFpDOX465fv179+vXTvffeqx49eujo0aP67LPP9PHHH+vo0aNV2tfPf/5ztWzZUklJSXr44YflcDj01ltvnfOUxjXXXKPOnTvrySefVGFhYYXTRxEREfrNb36jP/zhD7r55puVmJiozz//XKtWrVLr1q1r1HNw5ZVXKiEhwesyakmaPn36BZ8bHR2tGTNmaNKkSfruu+80YsQItWjRQllZWXrvvfc0YcIEPfroowoICNCMGTN033336cYbb9To0aOVlZWl119/vVbHwFRFTEyMlixZorS0NF177bUKDg7WsGHDdNddd2np0qW6//77tX79el133XUqKSnR119/raVLl+qjjz5Snz59qryfY8eOqV27drrtttvUu3dvBQcH6+OPP9Ynn3xSYV6iC3nrrbf0/fff2/MEZWRkaMaMGZKku+66y+7hAi45n1z7BBis7LLeQ4cOea1PSkqymjdvXqH99ddfb186/cc//tEaNGiQ1apVK8vpdFrR0dHWY489ZuXn53s9Jzc310pJSbGioqKsgIAAy+12W4MHD7YWLFhQrVo3b95s9e/f3woKCrIiIyOtxx9/3Proo48sSdb69esrtH/yySctSVbnzp0rfb3Tp09bkydPttxutxUUFGTdeOON1u7du61WrVpZ999/f7Vqk2SlpKRYf/nLX6wuXbpYTqfT+tnPflahrnO932Xeeecda8CAAVbz5s2t5s2bW926dbNSUlKsPXv2eLWbN2+e1alTJ8vpdFp9+vSxMjIyKlwSXRXnuox62bJlXu2ysrIsSdbrr79urysoKLDGjh1rhYaGWpK8LqkuKiqynnvuOatnz56W0+m0WrZsacXExFjTp0/3+vkoe9/K69Chg30pe2FhofXYY49ZvXv3tlq0aGE1b97c6t27tzVv3rxqHWvZ8erfl7yXf1T2MwRcKg7LqsIIMwA4h7y8PLVs2VIzZszQk08+WeXnORwOpaSkXNQpKACNF2NgAFTZyZMnK6wruznh2dPrA0BdYwwMYKBDhw5VmOjtbIGBgQoLC6v1/S5ZskQLFy7UTTfdpODgYG3atElvv/224uPjdd1110mScnJyzvsaQUFBtTqBXG3x1XvqCydPnqx0MPHZwsLCGt2NK2EWAgxgoGuvvdaeoK0y119/vTZs2FDr++3Vq5eaNGmiWbNmyePx2AN7ywZ1Smcu3T2fpKQkLVy4sNZru1i+ek99YcmSJfbEiOeyfv16etVQrzEGBjDQ5s2bKz2dU6Zly5ZeU/RfSh9//PF5t0dGRqpHjx6XqJqqq8/vaW378ccftWvXrvO2iYmJqfEMy8ClQIABAADGYRAvAAAwToMdA1NaWqoDBw6oRYsWtTo1NwAAqDuWZenYsWOKjIyUn9+5+1kabIA5cOBAhRugAQAAM+zfv1/t2rU75/YGG2DKpmXfv3+/QkJCfFwNAACoCo/Ho6ioKPv3+Lk02ABTdtooJCSEAAMAgGEuNPyDQbwAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxmni6wKA8orTN3ktByQO8FElAID6ih4YAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxmni6wKACylO3+S1HJA4wEeVAADqC3pgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGYR4YXHLM6wIAuFj0wAAAAOMQYAAAgHE4hQTjcAoKAEAPDAAAMA4BBgAAGIdTSPC58qeEAAC4EHpgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjMJEdjFeVifC4XxIANCz0wAAAAOMQYAAAgHE4hYQ6xX2OAAB1gR4YAABgHAIMAAAwDgEGAAAYp1oBZubMmbr22mvVokULhYeHa8SIEdqzZ49Xm1OnTiklJUWtWrVScHCwRo4cqdzcXK822dnZGjp0qJo1a6bw8HA99thjOn36tFebDRs26JprrpHT6VTnzp21cOHCmh0hAABocKoVYDZu3KiUlBRt2bJFa9asUXFxseLj43X8+HG7zSOPPKIPP/xQy5Yt08aNG3XgwAHdeuut9vaSkhINHTpURUVF+sc//qE33nhDCxcu1JQpU+w2WVlZGjp0qG644Qbt2LFDEydO1D333KOPPvqoFg4ZAACYzmFZllXTJx86dEjh4eHauHGjBg0apPz8fLVp00aLFy/WbbfdJkn6+uuv1b17d2VmZqp///5atWqV/uu//ksHDhxQRESEJGn+/Pl64okndOjQIQUGBuqJJ57QypUr9eWXX9r7GjNmjPLy8pSenl6l2jwej1wul/Lz8xUSElLTQ8RFqi9XITGRHQCYoaq/vy9qDEx+fr4kKSwsTJK0fft2FRcXKy4uzm7TrVs3tW/fXpmZmZKkzMxMXXXVVXZ4kaSEhAR5PB7t2rXLbnP2a5S1KXuNyhQWFsrj8Xg9AABAw1TjAFNaWqqJEyfquuuu05VXXilJysnJUWBgoEJDQ73aRkREKCcnx25zdngp21627XxtPB6PTp48WWk9M2fOlMvlsh9RUVE1PTQAAFDP1TjApKSk6Msvv9Rf//rX2qynxiZNmqT8/Hz7sX//fl+XBAAA6kiNZuJNTU3VihUrlJGRoXbt2tnr3W63ioqKlJeX59ULk5ubK7fbbbfZtm2b1+uVXaV0dpvyVy7l5uYqJCREQUFBldbkdDrldDprcjgAAMAw1eqBsSxLqampeu+997Ru3Tp16tTJa3tMTIwCAgK0du1ae92ePXuUnZ2t2NhYSVJsbKx27typgwcP2m3WrFmjkJAQ9ejRw25z9muUtSl7DQAA0LhVqwcmJSVFixcv1vvvv68WLVrYY1ZcLpeCgoLkcrmUnJystLQ0hYWFKSQkRA899JBiY2PVv39/SVJ8fLx69Oihu+66S7NmzVJOTo6eeuoppaSk2D0o999/v1555RU9/vjj+vWvf61169Zp6dKlWrlyZS0fPgAAMFG1LqN2OByVrn/99dc1fvx4SWcmsvvv//5vvf322yosLFRCQoLmzZtnnx6SpO+//14PPPCANmzYoObNmyspKUnPPvusmjT5T57asGGDHnnkEX311Vdq166dJk+ebO+jKriMun7gMmoAQHVU9ff3Rc0DU58RYOoHAgwAoDouyTwwAAAAvkCAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMU6O7UQOmKT8jMDPzAoDZ6IEBAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAME4TXxeAhqU4fZOvSwAANAL0wAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIfLqNEolb/cOyBxgI8qAQDUBD0wAADAOPTAoN76Lm+V13LH0CE+qgQAUN/QAwMAAIxDDwzqjfI9LgAAnAs9MAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjMNVSDAac8UAQONEDwwAADAOAQYAABiHAAMAAIzDGBgYoyoz9VbWhnExANDwEGAAScXpm7yWAxIH+KgSAEBVcAoJAAAYhwADAACMwykk+AR3ngYAXAwCDC5K+bEjAABcCpxCAgAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHK5CwiXBZdMAgNpEDwwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHGqHWAyMjI0bNgwRUZGyuFwaPny5V7bx48fL4fD4fVITEz0anP06FGNGzdOISEhCg0NVXJysgoKCrzafPHFFxo4cKCaNm2qqKgozZo1q/pHB+jMJdxnPwAA5qt2gDl+/Lh69+6tuXPnnrNNYmKifvzxR/vx9ttve20fN26cdu3apTVr1mjFihXKyMjQhAkT7O0ej0fx8fHq0KGDtm/frtmzZ2vatGlasGBBdcsFAAANULUnshsyZIiGDBly3jZOp1Nut7vSbbt371Z6ero++eQT9enTR5I0Z84c3XTTTfr973+vyMhILVq0SEVFRXrttdcUGBionj17aseOHXr++ee9gg4AAGic6mQMzIYNGxQeHq6uXbvqgQce0JEjR+xtmZmZCg0NtcOLJMXFxcnPz09bt2612wwaNEiBgYF2m4SEBO3Zs0c//fRTpfssLCyUx+PxegAAgIap1gNMYmKi3nzzTa1du1bPPfecNm7cqCFDhqikpESSlJOTo/DwcK/nNGnSRGFhYcrJybHbREREeLUpWy5rU97MmTPlcrnsR1RUVG0fGgAAqCdq/V5IY8aMsf991VVXqVevXoqOjtaGDRs0ePDg2t6dbdKkSUpLS7OXPR4PIQYAgAaqzi+jvvzyy9W6dWvt27dPkuR2u3Xw4EGvNqdPn9bRo0ftcTNut1u5ublebcqWzzW2xul0KiQkxOsBAAAapjoPMD/88IOOHDmitm3bSpJiY2OVl5en7du3223WrVun0tJS9evXz26TkZGh4uJiu82aNWvUtWtXtWzZsq5LBgAA9Vy1A0xBQYF27NihHTt2SJKysrK0Y8cOZWdnq6CgQI899pi2bNmi7777TmvXrtXw4cPVuXNnJSQkSJK6d++uxMRE3Xvvvdq2bZs2b96s1NRUjRkzRpGRkZKksWPHKjAwUMnJydq1a5eWLFmil156yesUEVCXitM3eT0AAPVLtcfAfPrpp7rhhhvs5bJQkZSUpFdffVVffPGF3njjDeXl5SkyMlLx8fF6+umn5XQ67ecsWrRIqampGjx4sPz8/DRy5Ei9/PLL9naXy6XVq1crJSVFMTExat26taZMmcIl1KgVlU1m1zH0/FMDAADqF4dlWZavi6gLHo9HLpdL+fn5jIepQ1XtnajvM+BeKMAEJA64RJUAQONW1d/f3AsJAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4tX4vJDRsjXVSt8qOm0urAcB36IEBAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHeWBQ677LW+XrEgAADRw9MAAAwDj0wACq2GvUMXSIjyoBAFQFPTAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA73QsJFa6x3ny5O3+S1HJA4wEeVAEDjQw8MAAAwDj0wQCUq61XiDtUAUH/QAwMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA43AvJJxX+TsuAwBQH9ADAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDvPAAFX0Xd4qr+WOoUN8VAkAgB4YAABgHHpggFpSftbigMQBPqoEABo+emAAAIBxCDAAAMA4BBgAAGAcAgwAADAOg3iBGip/WbXEpdUAcKnQAwMAAIxDgAEAAMbhFBKqpbLTJgAAXGoEGKCOMLEdANQdTiEBAADjVDvAZGRkaNiwYYqMjJTD4dDy5cu9tluWpSlTpqht27YKCgpSXFyc9u7d69Xm6NGjGjdunEJCQhQaGqrk5GQVFBR4tfniiy80cOBANW3aVFFRUZo1a1b1jw4AADRI1Q4wx48fV+/evTV37txKt8+aNUsvv/yy5s+fr61bt6p58+ZKSEjQqVOn7Dbjxo3Trl27tGbNGq1YsUIZGRmaMGGCvd3j8Sg+Pl4dOnTQ9u3bNXv2bE2bNk0LFiyowSECAICGptpjYIYMGaIhQyqf68KyLL344ot66qmnNHz4cEnSm2++qYiICC1fvlxjxozR7t27lZ6erk8++UR9+vSRJM2ZM0c33XSTfv/73ysyMlKLFi1SUVGRXnvtNQUGBqpnz57asWOHnn/+ea+gAwAAGqdaHQOTlZWlnJwcxcXF2etcLpf69eunzMxMSVJmZqZCQ0Pt8CJJcXFx8vPz09atW+02gwYNUmBgoN0mISFBe/bs0U8//VTpvgsLC+XxeLweAACgYarVq5BycnIkSREREV7rIyIi7G05OTkKDw/3LqJJE4WFhXm16dSpU4XXKNvWsmXLCvueOXOmpk+fXjsHAtRQ+cvMmZkXAOpGg7kKadKkScrPz7cf+/fv93VJAACgjtRqgHG73ZKk3Nxcr/W5ubn2NrfbrYMHD3ptP336tI4ePerVprLXOHsf5TmdToWEhHg9AABAw1SrAaZTp05yu91au3atvc7j8Wjr1q2KjY2VJMXGxiovL0/bt2+326xbt06lpaXq16+f3SYjI0PFxcV2mzVr1qhr166Vnj4CAACNS7UDTEFBgXbs2KEdO3ZIOjNwd8eOHcrOzpbD4dDEiRM1Y8YMffDBB9q5c6d+9atfKTIyUiNGjJAkde/eXYmJibr33nu1bds2bd68WampqRozZowiIyMlSWPHjlVgYKCSk5O1a9cuLVmyRC+99JLS0tJq7cABAIC5qj2I99NPP9UNN9xgL5eFiqSkJC1cuFCPP/64jh8/rgkTJigvL08DBgxQenq6mjZtaj9n0aJFSk1N1eDBg+Xn56eRI0fq5Zdftre7XC6tXr1aKSkpiomJUevWrTVlyhQuoQYAAJIkh2VZlq+LqAsej0cul0v5+fmMh7kI5e/nw80cq+fsq5C4FxIAXFhVf39zM0fgEuHmjgBQexrMZdQAAKDxIMAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIzDRHbwUn6yNVycymYuPnt2XgBAzdADAwAAjEOAAQAAxiHAAAAA4xBgAACAcRjEC/gId6cGgJqjBwYAABiHHhicV2WXAQMA4Gv0wAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjMM8MMAlVn5unY6hQyRVnJlXYnZeADgXemAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBzuhQT42LnujQQAODd6YAAAgHEIMAAAwDgEGAAAYBzGwMD27ad/VGletq/LaPTOHhPj9+kuSVJ0n/t8VQ4A1EsEGKAeK913JlAWH94kSQpIHODLcgCg3uAUEgAAMA4BBgAAGIcAAwAAjMMYGMAgxembvJYZEwOgsaIHBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcbgKqRErf0ULtxEAAJiCHhgAAGAcAgwAADAOAQYAABiHAAMAAIzDIF7AYNxaAEBjRYABDPBd3iqv5Y6hQ3xUCQDUD5xCAgAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgnFoPMNOmTZPD4fB6dOvWzd5+6tQppaSkqFWrVgoODtbIkSOVm5vr9RrZ2dkaOnSomjVrpvDwcD322GM6ffp0bZcKGOu7vFUVHgDQmNTJZdQ9e/bUxx9//J+dNPnPbh555BGtXLlSy5Ytk8vlUmpqqm699VZt3rxZklRSUqKhQ4fK7XbrH//4h3788Uf96le/UkBAgH73u9/VRblAg8G8MAAaizoJME2aNJHb7a6wPj8/X3/+85+1ePFi3XjjjZKk119/Xd27d9eWLVvUv39/rV69Wl999ZU+/vhjRURE6Oqrr9bTTz+tJ554QtOmTVNgYGBdlAwAAAxSJ2Ng9u7dq8jISF1++eUaN26csrOzJUnbt29XcXGx4uLi7LbdunVT+/btlZmZKUnKzMzUVVddpYiICLtNQkKCPB6Pdu3adc59FhYWyuPxeD0AAEDDVOsBpl+/flq4cKHS09P16quvKisrSwMHDtSxY8eUk5OjwMBAhYaGej0nIiJCOTk5kqScnByv8FK2vWzbucycOVMul8t+REVF1e6BAQCAeqPWTyENGfKfKc579eqlfv36qUOHDlq6dKmCgoJqe3e2SZMmKS0tzV72eDyEmHLKj48AAMBUdX4vpNDQUF1xxRXat2+ffvnLX6qoqEh5eXlevTC5ubn2mBm3261t27Z5vUbZVUqVjasp43Q65XQ6a/8AGjCuXAEAmKrO54EpKCjQt99+q7Zt2yomJkYBAQFau3atvX3Pnj3Kzs5WbGysJCk2NlY7d+7UwYMH7TZr1qxRSEiIevToUdflAg1KcfomrwcANBS13gPz6KOPatiwYerQoYMOHDigqVOnyt/fX3fccYdcLpeSk5OVlpamsLAwhYSE6KGHHlJsbKz69+8vSYqPj1ePHj101113adasWcrJydFTTz2llJQUelgAAICkOggwP/zwg+644w4dOXJEbdq00YABA7Rlyxa1adNGkvTCCy/Iz89PI0eOVGFhoRISEjRv3jz7+f7+/lqxYoUeeOABxcbGqnnz5kpKStJvf/vb2i4VaFDKnxLsGDrkHC0BwHwOy7IsXxdRFzwej1wul/Lz8xUSEuLrcuqF8qcQGAPTsFU1wDDZHYD6pKq/v7kXEgAAMA4BBgAAGIcAAwAAjEOAAQAAxqnziewA+EZlg7S5MglAQ0EPDAAAMA4BBgAAGIdTSEAjwmR3ABoKemAAAIBxCDAAAMA4nEICGrnyt5jg1gIATEAPDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA43AVUgNW/uoSAAAaCnpgAACAcQgwAADAOJxCAhqx8vdGkqQuYiI7APUfAaaRqOwXFVAZZuYFYAJOIQEAAOMQYAAAgHE4hQTgvDilBKA+IsAAqBYCDYD6gFNIAADAOPTAAPBS/oq1jqFDfFQJAJwbAQZArarsFhacZgJQ2ziFBAAAjEOAAQAAxiHAAAAA4zAGBsB5VXYbirMH9lY25gUA6hoBpgHhFwkAoLHgFBIAADAOAQYAABiHU0gA6hy3HwBQ2wgwAKrtQrP1XmjgLwBcLAIMgEuOHhkAF4sA00BV9hcwUFf4eQNwqTGIFwAAGIcAAwAAjMMpJACXxIUG/gJAddADAwAAjEMPDACf46okANVFgAHgE8wVA+BiEGAMxs0bAQCNFQEGQL1h98r89cx/y3pkOKUEoDwG8QIAAOPQAwOg3irrkfH7dJe9LrrPfZWePqWXBmhcCDANANO4o6Er3Zdt/7v4MGO/ABBgABjmXIG9fC8NgIaNMTAAAMA49MAAaBAudJqJMTJAw0KAAdDgcN8loOEjwBiEiesAADiDAGMgrjoCqo/7LQENCwGmnqK3BahbBBrAbAQYA9DjAgCANwIMgAavKn8EdBE9MIBJCDAAIOnbT/94wTZMkAfUHwQYH2GMC1C/nD2PzLns3fek13KXMc/UVTkALoAAg4bJkpzH/OVf7KeSgFIVtiiRHLW7i1JZyvI7Ko+jUCGWU51Kw+RXyzu5FPtAzVU2ELh8Tw69NkDdIMCgwQk62kSh2UFqUvSfO2WcDixVXvuTOhl2ulb2sdM/Rx8E7Fa+3yl7nau0qW4u7q6rStzG7AMATOWwLMvydRHnMnfuXM2ePVs5OTnq3bu35syZo759+1bpuR6PRy6XS/n5+QoJCanjSquv7C83rjCqXUFHm6jVvmaSJMdZPRWWzvyYH+l84qJDzE7/HL0V+H/6907+49/fpLuKfnbRAeNS7AN1z69ze6/lstNU55sZmMu50dhV9fd3ve2BWbJkidLS0jR//nz169dPL774ohISErRnzx6Fh4f7urwLYoyLD1hSaHaQJO/wUrZsyVJodpBOtjxW49NJpbL0QcDushf15jhTwwcBu9WzJKLGp3ouxT5waZxrXM35/nApu6t22amn6v6/hACExqLeBpjnn39e9957r+6++25J0vz587Vy5Uq99tpr+p//+R8fV4f6yHnM3+u0UXkOOdSkyCHnMX8VhpTUaB9Zfke9TulUshPlO04py++ooktb1dt9oP4qCz3lBwxX9X5ONfnjqXzoYRwPTFAvA0xRUZG2b9+uSZMm2ev8/PwUFxenzMzMSp9TWFiowsJCezk/P1/Sma6o2la8pmIN2flran0/qJ4ST4A8hef5xf9vJzzFOtmkuEb7yPE/puLSC4efnMJjiigJrrf7gHm+PLG8Rs9r7/ql13Jl/6+K9vTyWvZ8sddreUfBixWec/k1v65RPcCFlP3evtAIl3oZYA4fPqySkhJFRER4rY+IiNDXX39d6XNmzpyp6dOnV1gfFRVVJzUC57NSXzSIfaAh+MOFmyRXoU0Fj9TgOUDVHTt2TC6X65zb62WAqYlJkyYpLS3NXi4tLdXRo0fVqlUrORwXHifg8XgUFRWl/fv318tBv40Bn4Hv8Rn4Hp+B7/EZ+JZlWTp27JgiIyPP265eBpjWrVvL399fubm5Xutzc3Pldld+5YXT6ZTT6fRaFxoaWu19h4SE8APrY3wGvsdn4Ht8Br7HZ+A75+t5KXPuEY8+FBgYqJiYGK1du9ZeV1paqrVr1yo2NtaHlQEAgPqgXvbASFJaWpqSkpLUp08f9e3bVy+++KKOHz9uX5UEAAAar3obYEaPHq1Dhw5pypQpysnJ0dVXX6309PQKA3tri9Pp1NSpUyuchsKlw2fge3wGvsdn4Ht8Bmao1zPxAgAAVKZejoEBAAA4HwIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcBImjt3rjp27KimTZuqX79+2rZtm69LalSmTZsmh8Ph9ejWrZuvy2rQMjIyNGzYMEVGRsrhcGj58uVe2y3L0pQpU9S2bVsFBQUpLi5Oe/furfzFUCMX+gzGjx9f4XuRmJjom2IbqJkzZ+raa69VixYtFB4erhEjRmjPnj1ebU6dOqWUlBS1atVKwcHBGjlyZIVZ4uEbjT7ALFmyRGlpaZo6dao+++wz9e7dWwkJCTp48KCvS2tUevbsqR9//NF+bNq0ydclNWjHjx9X7969NXfu3Eq3z5o1Sy+//LLmz5+vrVu3qnnz5kpISNCpUxe+2zeq5kKfgSQlJiZ6fS/efvvtS1hhw7dx40alpKRoy5YtWrNmjYqLixUfH6/jx4/bbR555BF9+OGHWrZsmTZu3KgDBw7o1ltv9WHVsFmNXN++fa2UlBR7uaSkxIqMjLRmzpzpw6oal6lTp1q9e/f2dRmNliTrvffes5dLS0stt9ttzZ49216Xl5dnOZ1O6+233/ZBhQ1f+c/AsiwrKSnJGj58uE/qaawOHjxoSbI2btxoWdaZn/uAgABr2bJldpvdu3dbkqzMzExflYl/a9Q9MEVFRdq+fbvi4uLsdX5+foqLi1NmZqYPK2t89u7dq8jISF1++eUaN26csrOzfV1So5WVlaWcnByv74XL5VK/fv34XlxiGzZsUHh4uLp27aoHHnhAR44c8XVJDVp+fr4kKSwsTJK0fft2FRcXe30XunXrpvbt2/NdqAcadYA5fPiwSkpKKtyeICIiQjk5OT6qqvHp16+fFi5cqPT0dL366qvKysrSwIEDdezYMV+X1iiV/ezzvfCtxMREvfnmm1q7dq2ee+45bdy4UUOGDFFJSYmvS2uQSktLNXHiRF133XW68sorJZ35LgQGBio0NNSrLd+F+qHe3gsJjceQIUPsf/fq1Uv9+vVThw4dtHTpUiUnJ/uwMsB3xowZY//7qquuUq9evRQdHa0NGzZo8ODBPqysYUpJSdGXX37J+DuDNOoemNatW8vf37/CiPLc3Fy53W4fVYXQ0FBdccUV2rdvn69LaZTKfvb5XtQvl19+uVq3bs33og6kpqZqxYoVWr9+vdq1a2evd7vdKioqUl5enld7vgv1Q6MOMIGBgYqJidHatWvtdaWlpVq7dq1iY2N9WFnjVlBQoG+//VZt27b1dSmNUqdOneR2u72+Fx6PR1u3buV74UM//PCDjhw5wveiFlmWpdTUVL333ntat26dOnXq5LU9JiZGAQEBXt+FPXv2KDs7m+9CPdDoTyGlpaUpKSlJffr0Ud++ffXiiy/q+PHjuvvuu31dWqPx6KOPatiwYerQoYMOHDigqVOnyt/fX3fccYevS2uwCgoKvP6Sz8rK0o4dOxQWFqb27dtr4sSJmjFjhrp06aJOnTpp8uTJioyM1IgRI3xXdANzvs8gLCxM06dP18iRI+V2u/Xtt9/q8ccfV+fOnZWQkODDqhuWlJQULV68WO+//75atGhhj2txuVwKCgqSy+VScnKy0tLSFBYWppCQED300EOKjY1V//79fVw9Gv1l1JZlWXPmzLHat29vBQYGWn379rW2bNni65IaldGjR1tt27a1AgMDrcsuu8waPXq0tW/fPl+X1aCtX7/eklThkZSUZFnWmUupJ0+ebEVERFhOp9MaPHiwtWfPHt8W3cCc7zM4ceKEFR8fb7Vp08YKCAiwOnToYN17771WTk6Or8tuUCp7/yVZr7/+ut3m5MmT1oMPPmi1bNnSatasmXXLLbdYP/74o++Khs1hWZZ16WMTAABAzTXqMTAAAMBMBBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMM7/A+CMbFAZIfEmAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM2VJREFUeJzt3XtcVVXC//Hv4XZEkIOogCTezVtpT5jKpDYpj2COZVlpWUNld6yMp8vPqbxMlmYzXTTNbCp7KkvtYqWjaeZldMjUHkrNSBtKGwNNg6OmgLB+fzTsOoAKBB4WfN6v13nFXnvts9c++xBf115rb5cxxggAAMAiAf5uAAAAQFURYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgANRpv//97/X73/++1rfBb+NyuTRp0iR/NwMNCAEGAH5l/vz5euqpp/zdjEr74osvNGnSJH3zzTfVfg9/HfOCBQt0zTXXqFOnTnK5XIROVAkBBkC9s2LFCq1YsaJa29oYYCZPnmxlgHn22Wf17rvvKj4+Xk2bNj3t+4fdgvzdAAD105EjRxQWFuaXfYeEhPhlv6iaV155RWeccYYCAgJ01lln+bs5sAw9MKiXJk2aJJfLpa+++krXXHONPB6PWrRooYceekjGGO3Zs0eXXHKJIiIiFBsbq7/+9a8+28+cOVPdu3dX48aN1bRpU/Xq1Uvz58/3qfPvf/9bN9xwg2JiYuR2u9W9e3e9+OKLVW7ru+++q6FDhyouLk5ut1sdOnTQww8/rOLiYqfO2LFjFR4erp9++qnc9ldddZViY2Od+iUlJZo0aZLi4uLUuHFjXXjhhfriiy/Utm1bXXfddVVqm8vl0tixY/Xaa6+pc+fOatSokRISErRu3TqfeqWf9xdffKGrr75aTZs2Vb9+/Zz1r776qhISEhQaGqqoqCiNGjVKe/bsKbe/uXPnqkOHDgoNDVXv3r31j3/8o0rtLVV2DMyaNWvkcrm0cOFCPfLII2rVqpUaNWqkQYMGadeuXT7bLV26VN9++61cLpdcLpfatm3rrC8oKNDEiRPVsWNHud1uxcfH67777lNBQUGFn9vixYt11llnOd+P5cuX+9Q7dOiQxo0bp7Zt28rtdis6Olr//d//rU8//bRSxzlv3jxdccUVkqQLL7zQafOaNWucOrNnz1b37t3ldrsVFxentLQ05eXlVeqYCwsLNWHCBCUkJMjj8SgsLEz9+/fX6tWrK9W+U4mPj1dAAH+GUD30wKBeGzlypLp27app06Zp6dKlmjJliqKiovTcc89p4MCBeuyxx/Taa6/pnnvu0XnnnacBAwbo+eef15133qnLL79cd911l44dO6bPP/9cGzdu1NVXXy1Jys3NVd++fZ0/VC1atNCyZcs0ZswYeb1ejRs3rtJtnDdvnsLDw5Wenq7w8HB99NFHmjBhgrxerx5//HHnOGbNmqWlS5c6f7Ak6aefftL777+v6667ToGBgZKk8ePHa/r06Ro2bJiSk5P12WefKTk5WceOHavWZ7h27VotWLBAd955p9xut2bPnq2UlBR98skn5f7VfMUVV6hTp0569NFHZYyRJD3yyCN66KGHdOWVV+rGG2/U/v37NXPmTA0YMED/93//p8jISEnSCy+8oFtuuUW/+93vNG7cOP3rX//SxRdfrKioKMXHx1er7WVNmzZNAQEBuueee5Sfn6/p06dr9OjR2rhxoyTpgQceUH5+vr777js9+eSTkqTw8HBJPwfDiy++WOvXr9fNN9+srl27auvWrXryySf11VdfafHixT77Wr9+vd5++23dfvvtatKkiWbMmKERI0Zo9+7datasmSTp1ltv1ZtvvqmxY8eqW7duOnDggNavX68dO3bo3HPPPeXxDBgwQHfeeadmzJihP/3pT+rataskOf+dNGmSJk+erKSkJN12223KysrSs88+q02bNmnDhg0KDg4+6TF7vV797W9/01VXXaWbbrpJhw4d0gsvvKDk5GR98sknOuecc37bCQF+CwPUQxMnTjSSzM033+yUHT9+3LRq1cq4XC4zbdo0p/zHH380oaGhJjU11RhjzCWXXGK6d+9+0vcfM2aMadmypfnhhx98ykeNGmU8Ho/56aefKt3WiurecsstpnHjxubYsWPGGGNKSkrMGWecYUaMGOFTb+HChUaSWbdunTHGmJycHBMUFGSGDx/uU2/SpElGknOMlSXJSDKbN292yr799lvTqFEjc+mllzplpZ/3VVdd5bP9N998YwIDA80jjzziU75161YTFBTklBcWFpro6GhzzjnnmIKCAqfe3LlzjSRzwQUXVKndF1xwgc82q1evNpJM165dfd7/6aefNpLM1q1bnbKhQ4eaNm3alHvPV155xQQEBJh//OMfPuVz5swxksyGDRucMkkmJCTE7Nq1yyn77LPPjCQzc+ZMp8zj8Zi0tLQqHVtZixYtMpLM6tWrfcr37dtnQkJCzODBg01xcbFT/swzzxhJ5sUXX3TKTnTMx48f9/m8jPn59yUmJsbccMMNPuWSzMSJE6t9HN27d6/yeUbDRt8d6rUbb7zR+TkwMFC9evWSMUZjxoxxyiMjI9W5c2f961//cpa/++47bdq0qcL3NMborbfe0rBhw2SM0Q8//OC8kpOTlZ+fX+lLAJIUGhrq/Hzo0CH98MMP6t+/v3766Sd9+eWXkn6+JHHFFVfo73//uw4fPuzUX7Bggc444wzncs2qVat0/Phx3X777T77uOOOOyrdnrISExOVkJDgLLdu3VqXXHKJPvjgA5/LXNLPPQq/9vbbb6ukpERXXnmlz+cUGxurTp06OZciNm/erH379unWW2/1Gb9y3XXXyePxVLvtZV1//fU+79+/f39Jcs79ySxatEhdu3ZVly5dfI5l4MCBklTuskpSUpI6dOjgLPfo0UMRERE++4qMjNTGjRu1d+/e33RcFfnwww9VWFiocePG+VymuemmmxQREaGlS5ee8j0CAwOdz6ukpEQHDx7U8ePH1atXryp9x4HaQIBBvda6dWufZY/Ho0aNGql58+blyn/88UdJ0v3336/w8HD17t1bnTp1UlpamjZs2ODU3b9/v/Ly8jR37ly1aNHC53X99ddLkvbt21fpNm7fvl2XXnqpPB6PIiIi1KJFC11zzTWSpPz8fKfeyJEjdfToUb333nuSpMOHD+vvf/+7rrjiCrlcLknSt99+K0nq2LGjzz6ioqKqPcujU6dO5crOPPNM/fTTT9q/f79Pebt27XyWd+7cKWOMOnXqVO6z2rFjh/M5lba77L6Cg4PVvn37arW7ImW/D6WfSem5P5mdO3dq+/bt5Y7jzDPPlFT+nJfdV+n+fr2v6dOna9u2bYqPj1fv3r01adKkSoWpyij9TDt37uxTHhISovbt2zvrT+Xll19Wjx491KhRIzVr1kwtWrTQ0qVLfb6bgD8wBgb1Wum4kFOVSXLGbHTt2lVZWVlasmSJli9frrfeekuzZ8/WhAkTNHnyZJWUlEiSrrnmGqWmplb4Xj169KhU+/Ly8nTBBRcoIiJCf/7zn9WhQwc1atRIn376qe6//35nX5LUt29ftW3bVgsXLtTVV1+t999/X0ePHtXIkSMrta/T4de9SdLP/2p3uVxatmxZhZ976ViL0+VU5/5kSkpKdPbZZ+uJJ56ocH3ZcTqV2deVV16p/v3765133tGKFSv0+OOP67HHHtPbb7+tIUOGnLJNte3VV1/Vddddp+HDh+vee+9VdHS0AgMDNXXqVH399df+bh4aOAIMUIGwsDCNHDlSI0eOVGFhoS677DI98sgjGj9+vFq0aKEmTZqouLhYSUlJv2k/a9as0YEDB/T2229rwIABTnl2dnaF9a+88ko9/fTT8nq9WrBggdq2bau+ffs669u0aSNJ2rVrl09vyIEDByrVy1CRnTt3liv76quv1LhxY7Vo0eKk23bo0EHGGLVr187pqahIabt37tzpXJKRpKKiImVnZ6tnz57Vant1lPZmldWhQwd99tlnGjRo0AnrVEfLli11++236/bbb9e+fft07rnn6pFHHql0gDlRW0o/06ysLJ9erMLCQmVnZ/t8d0/0Hm+++abat2+vt99+26fOxIkTK9U2oDZxCQko48CBAz7LISEh6tatm4wxKioqUmBgoEaMGKG33npL27ZtK7d92csqJ1P6r/Rf/6u8sLBQs2fPrrD+yJEjVVBQoJdfflnLly/XlVde6bN+0KBBCgoK0rPPPutT/swzz1S6TWVlZGT4jHfYs2eP3n33XQ0ePPiEvQylLrvsMgUGBmry5MnlejmMMc5n3atXL7Vo0UJz5sxRYWGhU2fevHk+U35Ph7CwsAovj1x55ZX697//reeff77cuqNHj+rIkSNV2k9xcXG5/URHRysuLq7ctOxTtVdSuc8pKSlJISEhmjFjhs9n/8ILLyg/P19Dhw71eY+Kjrmi7+fGjRuVkZFR6fYBtYUeGKCMwYMHKzY2Vueff75iYmK0Y8cOPfPMMxo6dKiaNGki6efpuKtXr1afPn100003qVu3bjp48KA+/fRTffjhhzp48GCl9vW73/1OTZs2VWpqqu688065XC698sorJ7ykce6556pjx4564IEHVFBQUO7yUUxMjO666y799a9/1cUXX6yUlBR99tlnWrZsmZo3b16tnoOzzjpLycnJPtOoJWny5Mmn3LZDhw6aMmWKxo8fr2+++UbDhw9XkyZNlJ2drXfeeUc333yz7rnnHgUHB2vKlCm65ZZbNHDgQI0cOVLZ2dl66aWXanQMTGUkJCRowYIFSk9P13nnnafw8HANGzZM1157rRYuXKhbb71Vq1ev1vnnn6/i4mJ9+eWXWrhwoT744AP16tWr0vs5dOiQWrVqpcsvv1w9e/ZUeHi4PvzwQ23atKncfYlO5pxzzlFgYKAee+wx5efny+12a+DAgYqOjtb48eM1efJkpaSk6OKLL1ZWVpZmz56t8847zxlndbJj/sMf/qC3335bl156qYYOHars7GzNmTNH3bp18xlMXl3r1q1z7im0f/9+HTlyRFOmTJH08xTxX/dKAuX4YeYTUOtKp/Xu37/fpzw1NdWEhYWVq3/BBRc4U6efe+45M2DAANOsWTPjdrtNhw4dzL333mvy8/N9tsnNzTVpaWkmPj7eBAcHm9jYWDNo0CAzd+7cKrV1w4YNpm/fviY0NNTExcWZ++67z3zwwQcVTo01xpgHHnjASDIdO3as8P2OHz9uHnroIRMbG2tCQ0PNwIEDzY4dO0yzZs3MrbfeWqW2STJpaWnm1VdfNZ06dTJut9v813/9V7l2nejzLvXWW2+Zfv36mbCwMBMWFma6dOli0tLSTFZWlk+92bNnm3bt2hm322169epl1q1bV25KdGWcaBr1okWLfOplZ2cbSeall15yyg4fPmyuvvpqExkZaST5TC8uLCw0jz32mOnevbtxu92madOmJiEhwUyePNnn+1H6uZXVpk0bZyp7QUGBuffee03Pnj1NkyZNTFhYmOnZs6eZPXt2lY7VGGOef/550759exMYGFjue/PMM8+YLl26mODgYBMTE2Nuu+028+OPP/psf6JjLikpMY8++qhp06aNc+6XLFliUlNTy027VjWmUZd+byp6/ZYp2WgYXMZUYvQaAKvl5eWpadOmmjJlih544IFKb+dyuZSWlvabLkEBQG1gDAxQzxw9erRcWemD+njaL4D6gjEwQC3Zv39/uRu9/VpISIiioqJqfL8LFizQvHnzdNFFFyk8PFzr16/X66+/rsGDB+v888+XJOXk5Jz0PUJDQ2v0BnI1xV+fqT8cPXr0lPdaiYqKqnMPriwuLj7lQPbw8PDTPoUe9ZC/r2EB9VWbNm1OeH1f1bg9fmVt2bLFDBo0yDRr1swEBwebVq1ambvuusscOnTIqXOydulXjxzQCcZy+Iu/PlN/eOmll055nioaI+VvpeOKTvZifAtqAmNggFqyYcOGCi/nlGratKnPLfpPpw8//PCk6+Pi4tStW7fT1JrKq8ufaU37/vvvtX379pPWSUhIqPYdlmvLsWPHtH79+pPWad++/WmfXYb6hwADAACswyBeAABgnXo7iLekpER79+5VkyZNavS23wAAoPYYY3To0CHFxcX5PEm9rHobYPbu3Vvu4WoAAMAOe/bsUatWrU64vt4GmNJbvu/Zs0cRERF+bg0AAKgMr9er+Ph45+/4idTbAFN62SgiIoIAAwCAZU41/INBvAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWCfJ3A2CnouXrfZaDU/r5qSUAgIaIHhgAAGAdemBQKWV7XCqznl4ZAEBtoQcGAABYhwADAACsQ4ABAADWIcAAAADrMIgXFTrVoF0AAPyJHhgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA6PEgCPDQAAWIceGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdaoUYKZOnarzzjtPTZo0UXR0tIYPH66srCyfOseOHVNaWpqaNWum8PBwjRgxQrm5uT51du/eraFDh6px48aKjo7Wvffeq+PHj/vUWbNmjc4991y53W517NhR8+bNq94RAgCAeqdKAWbt2rVKS0vTxx9/rJUrV6qoqEiDBw/WkSNHnDp333233n//fS1atEhr167V3r17ddlllznri4uLNXToUBUWFuqf//ynXn75Zc2bN08TJkxw6mRnZ2vo0KG68MILlZmZqXHjxunGG2/UBx98UAOHDAAAbOcyxpjqbrx//35FR0dr7dq1GjBggPLz89WiRQvNnz9fl19+uSTpyy+/VNeuXZWRkaG+fftq2bJl+sMf/qC9e/cqJiZGkjRnzhzdf//92r9/v0JCQnT//fdr6dKl2rZtm7OvUaNGKS8vT8uXL69U27xerzwej/Lz8xUREVHdQ2wQautOvMEp/WrlfQEA9Vdl/37/pjEw+fn5kqSoqChJ0pYtW1RUVKSkpCSnTpcuXdS6dWtlZGRIkjIyMnT22Wc74UWSkpOT5fV6tX37dqfOr9+jtE7pe1SkoKBAXq/X5wUAAOqnaj8LqaSkROPGjdP555+vs846S5KUk5OjkJAQRUZG+tSNiYlRTk6OU+fX4aV0fem6k9Xxer06evSoQkNDy7Vn6tSpmjx5cnUPB7WgbM8OPTIAgJpS7QCTlpambdu2af36uvEgwPHjxys9Pd1Z9nq9io+P92OLUBaBBgBQU6oVYMaOHaslS5Zo3bp1atWqlVMeGxurwsJC5eXl+fTC5ObmKjY21qnzySef+Lxf6SylX9cpO3MpNzdXERERFfa+SJLb7Zbb7a7O4QAAAMtUaQyMMUZjx47VO++8o48++kjt2rXzWZ+QkKDg4GCtWrXKKcvKytLu3buVmJgoSUpMTNTWrVu1b98+p87KlSsVERGhbt26OXV+/R6ldUrfAwAANGxV6oFJS0vT/Pnz9e6776pJkybOmBWPx6PQ0FB5PB6NGTNG6enpioqKUkREhO644w4lJiaqb9++kqTBgwerW7duuvbaazV9+nTl5OTowQcfVFpamtODcuutt+qZZ57RfffdpxtuuEEfffSRFi5cqKVLl9bw4QMAABtVaRq1y+WqsPyll17SddddJ+nnG9n9z//8j15//XUVFBQoOTlZs2fPdi4PSdK3336r2267TWvWrFFYWJhSU1M1bdo0BQX9kqfWrFmju+++W1988YVatWqlhx56yNlHZTCNuvJqaxr1qTAGBgBQVmX/fv+m+8DUZQSYyiPAAADqitNyHxgAAAB/IMAAAADrEGAAAIB1qn0jO9jLX2NeAACoKQQY+E1FQYqBvQCAyuASEgAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6zALCXVK2ZlJzEoCAFSEHhgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDrcyK4BKHtzOAAAbEcPDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHQIMAACwDnfixWn1Td4yn+W2kUNOWr/sXYSDU/rVeJsAAPahBwYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIc78aJWlb3zLgAANYEeGAAAYB0CDAAAsA4BBgAAWIcAAwAArMMgXtQYBuwCAE4XemAAAIB1CDAAAMA6BBgAAGAdxsCg2hjzAgDwF3pgAACAdeiBgVWKlq8vVxac0s8PLQEA+BM9MAAAwDoEGAAAYB0uIaHOKTs4uG3kED+1BABQV9EDAwAArEOAAQAA1iHAAAAA6xBgAACAdQgwAADAOgQYAABgHaZRw694nhIAoDrogQEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIf7wMB6RcvX+ywHp/TzU0sAAKcLAQaVwg3nAAB1SZUvIa1bt07Dhg1TXFycXC6XFi9e7LP+uuuuk8vl8nmlpKT41Dl48KBGjx6tiIgIRUZGasyYMTp8+LBPnc8//1z9+/dXo0aNFB8fr+nTp1f96AAAQL1U5QBz5MgR9ezZU7NmzTphnZSUFH3//ffO6/XXX/dZP3r0aG3fvl0rV67UkiVLtG7dOt18883Oeq/Xq8GDB6tNmzbasmWLHn/8cU2aNElz586tanMBAEA9VOVLSEOGDNGQIUNOWsftdis2NrbCdTt27NDy5cu1adMm9erVS5I0c+ZMXXTRRfrLX/6iuLg4vfbaayosLNSLL76okJAQde/eXZmZmXriiSd8gg4AAGiYamUW0po1axQdHa3OnTvrtttu04EDB5x1GRkZioyMdMKLJCUlJSkgIEAbN2506gwYMEAhISFOneTkZGVlZenHH3+scJ8FBQXyer0+LwAAUD/V+CDelJQUXXbZZWrXrp2+/vpr/elPf9KQIUOUkZGhwMBA5eTkKDo62rcRQUGKiopSTk6OJCknJ0ft2rXzqRMTE+Osa9q0abn9Tp06VZMnT67pw0EdUNEA4raRJ+8FBADUbzUeYEaNGuX8fPbZZ6tHjx7q0KGD1qxZo0GDBtX07hzjx49Xenq6s+z1ehUfH19r+wMAAP5T6zeya9++vZo3b65du3ZJkmJjY7Vv3z6fOsePH9fBgwedcTOxsbHKzc31qVO6fKKxNW63WxERET4vAABQP9V6gPnuu+904MABtWzZUpKUmJiovLw8bdmyxanz0UcfqaSkRH369HHqrFu3TkVFRU6dlStXqnPnzhVePgIAAA1LlQPM4cOHlZmZqczMTElSdna2MjMztXv3bh0+fFj33nuvPv74Y33zzTdatWqVLrnkEnXs2FHJycmSpK5duyolJUU33XSTPvnkE23YsEFjx47VqFGjFBcXJ0m6+uqrFRISojFjxmj79u1asGCBnn76aZ9LRAAAoOGq8hiYzZs368ILL3SWS0NFamqqnn32WX3++ed6+eWXlZeXp7i4OA0ePFgPP/yw3G63s81rr72msWPHatCgQQoICNCIESM0Y8YMZ73H49GKFSuUlpamhIQENW/eXBMmTGAKNRxlB/YyqBcAGhaXMcb4uxG1wev1yuPxKD8/v0GNhyn7XKCaUtcfJfDrAMOzkADAXpX9+83TqAEAgHUIMAAAwDo8jRr1TtnLaFxSAoD6hx4YAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAd7sSLeqGih03yhGoAqL/ogQEAANYhwAAAAOsQYAAAgHUYA4MKVTSmBACAuoIeGAAAYB0CDAAAsA6XkFDvFS1fX64sOKWfH1oCAKgp9MAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArBPk7wYAteWbvGU+y20jh/ipJQCAmkYPDAAAsA4BBgAAWIdLSCh3qQUAgLqOHhgAAGAdAgwAALAOl5DQIBUtX++zHJzSz08tAQBUBz0wAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOz0JCg/FN3jKf5baRQ/zUEgDAb0UPDAAAsA49MJYr+1RlAAAaAgIMoPJBMDiln59aAgCoDAJMA1R2LAgAALZhDAwAALAOAQYAAFiHS0hosCq6lMbUagCwAz0wAADAOgQYAABgHQIMAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1qhxg1q1bp2HDhikuLk4ul0uLFy/2WW+M0YQJE9SyZUuFhoYqKSlJO3fu9Klz8OBBjR49WhEREYqMjNSYMWN0+PBhnzqff/65+vfvr0aNGik+Pl7Tp0+v+tEBAIB6qcoB5siRI+rZs6dmzZpV4frp06drxowZmjNnjjZu3KiwsDAlJyfr2LFjTp3Ro0dr+/btWrlypZYsWaJ169bp5ptvdtZ7vV4NHjxYbdq00ZYtW/T4449r0qRJmjt3bjUOEai6ouXry70AAHVHlR8lMGTIEA0ZUvHt1o0xeuqpp/Tggw/qkksukST97//+r2JiYrR48WKNGjVKO3bs0PLly7Vp0yb16tVLkjRz5kxddNFF+stf/qK4uDi99tprKiws1IsvvqiQkBB1795dmZmZeuKJJ3yCDgAAaJhqdAxMdna2cnJylJSU5JR5PB716dNHGRkZkqSMjAxFRkY64UWSkpKSFBAQoI0bNzp1BgwYoJCQEKdOcnKysrKy9OOPP1a474KCAnm9Xp8XAACon2o0wOTk5EiSYmJifMpjYmKcdTk5OYqOjvZZHxQUpKioKJ86Fb3Hr/dR1tSpU+XxeJxXfHz8bz8gAABQJ9Wbp1GPHz9e6enpzrLX6yXEoEaVHQcTnNLPTy0BANRogImNjZUk5ebmqmXLlk55bm6uzjnnHKfOvn37fLY7fvy4Dh486GwfGxur3Nxcnzqly6V1ynK73XK73TVyHGi4vslb5rPcNrLi8V4AAP+q0UtI7dq1U2xsrFatWuWUeb1ebdy4UYmJiZKkxMRE5eXlacuWLU6djz76SCUlJerTp49TZ926dSoqKnLqrFy5Up07d1bTpk1rsskAAMBCVQ4whw8fVmZmpjIzMyX9PHA3MzNTu3fvlsvl0rhx4zRlyhS999572rp1q/74xz8qLi5Ow4cPlyR17dpVKSkpuummm/TJJ59ow4YNGjt2rEaNGqW4uDhJ0tVXX62QkBCNGTNG27dv14IFC/T000/7XCICAAANV5UvIW3evFkXXnihs1waKlJTUzVv3jzdd999OnLkiG6++Wbl5eWpX79+Wr58uRo1auRs89prr2ns2LEaNGiQAgICNGLECM2YMcNZ7/F4tGLFCqWlpSkhIUHNmzfXhAkTmEINAAAkSS5jjPF3I2qD1+uVx+NRfn6+IiIi/N2cWlOdG6yVHeeBEzvZGBgG8QJAzavs32+ehQQAAKxDgAEAANYhwAAAAOvUmxvZAbWhovFC3BsGAPyPHhgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6wT5uwGArYqWr/dZDk7p56eWAEDDQw8MAACwDgEGAABYhwADAACsQ4ABAADWIcAAAADrMAupnvsmb5m/mwAAQI2jBwYAAFiHHhigisr2arWNHOKnlgBAw0UPDAAAsA4BBgAAWIcAAwAArEOAAQAA1iHAAAAA6zALCfiNSmclBWze7pR16HWLv5oDAA0CPTAAAMA69MBYpmj5en83AQAAv6MHBgAAWIcAAwAArEOAAQAA1mEMDFBDSnbtdn4u+uHnsUrBKf381RwAqNfogQEAANahBwaoRWVnjdEjAwA1gx4YAABgHQIMAACwDgEGAABYhwADAACswyBe4DRiUC8A1AwCDFALSp9QXapt5BA/tQQA6icuIQEAAOsQYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA4BBgAAWIdp1MBpwLRqAKhZ9MAAAADrEGAAAIB1CDAAAMA6jIGpZ8qOtQAAoD6iBwYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHWYhQT4gTNb7I1fZo2V3p03OKWfP5oEAFahBwYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDo1HmAmTZokl8vl8+rSpYuz/tixY0pLS1OzZs0UHh6uESNGKDc31+c9du/eraFDh6px48aKjo7Wvffeq+PHj9d0U4E6qWj5ep8XAKC8WrkPTPfu3fXhhx/+spOgX3Zz9913a+nSpVq0aJE8Ho/Gjh2ryy67TBs2bJAkFRcXa+jQoYqNjdU///lPff/99/rjH/+o4OBgPfroo7XRXAAAYJlaCTBBQUGKjY0tV56fn68XXnhB8+fP18CBAyVJL730krp27aqPP/5Yffv21YoVK/TFF1/oww8/VExMjM455xw9/PDDuv/++zVp0iSFhITURpMBAIBFamUMzM6dOxUXF6f27dtr9OjR2r17tyRpy5YtKioqUlJSklO3S5cuat26tTIyMiRJGRkZOvvssxUTE+PUSU5Oltfr1fbt20+4z4KCAnm9Xp8XAACon2q8B6ZPnz6aN2+eOnfurO+//16TJ09W//79tW3bNuXk5CgkJESRkZE+28TExCgnJ0eSlJOT4xNeSteXrjuRqVOnavLkyTV7MMBp5Dxe4D9KHy0AACivxgPMkCG//E+3R48e6tOnj9q0aaOFCxcqNDS0pnfnGD9+vNLT051lr9er+Pj4WtsfAADwn1qfRh0ZGakzzzxTu3btUmxsrAoLC5WXl+dTJzc31xkzExsbW25WUulyReNqSrndbkVERPi8AABA/VTrAebw4cP6+uuv1bJlSyUkJCg4OFirVq1y1mdlZWn37t1KTEyUJCUmJmrr1q3at2+fU2flypWKiIhQt27daru5AADAAjV+Cemee+7RsGHD1KZNG+3du1cTJ05UYGCgrrrqKnk8Ho0ZM0bp6emKiopSRESE7rjjDiUmJqpv376SpMGDB6tbt2669tprNX36dOXk5OjBBx9UWlqa3G53TTcXAABYqMYDzHfffaerrrpKBw4cUIsWLdSvXz99/PHHatGihSTpySefVEBAgEaMGKGCggIlJydr9uzZzvaBgYFasmSJbrvtNiUmJiosLEypqan685//XNNNBQAAlnIZY4y/G1EbvF6vPB6P8vPz69V4mFPdmbXsTBbYq3QWUnBKPz+3BABOn8r+/eZZSAAAwDq1cideADWnbK8bPTIAQA8MAACwED0wdRhPIm7YKhrPxN15AeBn9MAAAADr0AMDWK6injrGyQCo7wgwgEW+yVumgM2/PJW9Q69b/NgaAPAfAgxgmZJdu52fi35gnBSAhokxMAAAwDoEGAAAYB0uIVmORwcAABoiemAAAIB1CDAAAMA6BBgAAGAdxsAA9RAPgARQ39EDAwAArEMPDGAxHvgIoKGiBwYAAFiHAAMAAKxDgAEAANYhwAAAAOsQYAAAgHUIMAAAwDpMowbqmbJTq5lWDaA+IsAADQB35gVQ3xBggHquoh6ZsoFGItQAsAtjYAAAgHUIMAAAwDoEGAAAYB0CDAAAsA6DeIEGhidYA6gPCDAAJDHVGoBduIQEAACsQw8MAO7eC8A69MAAAADr0ANTh1R0d1QAAFAeAQZAhRjUC6Au4xISAACwDj0wACqFB0ACqEvogQEAANahB8YiFd1BFQCAhogeGAAAYB0CDAAAsA6XkADUGKZeAzhdCDAAqu1UN19k5hKA2kKAAVBORQPGeT4SgLqEAAOgUnjgI4C6hEG8AADAOvTAAKiWytyXiF4aALWFAFOHceM61EfMVAJQE7iEBAAArEOAAQAA1uESEgC/4pISgOogwPjRqW4CBtQ33F8GQE0hwACoNZUZiF62TifRAwPg1AgwAOqUnW88UK6s06hH/NASAHUZg3gBAIB16IEBUOcx0BdAWfTAAAAA69ADA8A6ZcfJBHRsrQ69bvEpo9cGqN8IMADqvOo8VqPsNgGbt5cLOQDsRYABYL2SXbtV9AP3VQIaEgLMaXKqm9bx4Ebgt+F3CGhYCDAAGoTK9NIwTgawBwEGQINRtpeGxxgA9iLAAGiweIwBYC8CDAD8B1OvAXsQYPykzg44NJL7UKACiwJUHFyigibFkqvym5fIKDvgoLyuAkUYt9qVRCmggjeobD3gdCr3e/lGmanYHVtXuB3Ts4HTjwBTS04166guCj0YpMjdoQoq/OUGzcdDSpTX+qiORh0/5fZbA3P0XvAO5Qccc8o8JY10cVFXnV0cW+V6QF1Tsmt3ubIThRoAtctljDH+bsSJzJo1S48//rhycnLUs2dPzZw5U717967Utl6vVx6PR/n5+YqIiKjllpZn27Tp0INBararsSTJ9aueEKOfvx4HOv500hCzNTBHr4T8n/7zBr/4z7fr2sL/0tnFsZWuB9QXpQGntJemov83lL1UxaUsNGSV/ftdZ3tgFixYoPT0dM2ZM0d9+vTRU089peTkZGVlZSk6OtrfzSvHxh4Xh5Eid4dK8g0vpctGRpG7Q3W06aEKLyeVyOi94B2lG/hy/fz+7wXvUNfi6ErV614cw+Uk1Dtfb35OklSSV0EvzubtPsuldaoyS4rQg4amzvbA9OnTR+edd56eeeYZSVJJSYni4+N1xx136P/9v/93yu1Pdw/MyQJMXettKcvtDVT0l+GnrLevy2EVRBSXK/864ICea/TJKbcfVthF74d8ecp6txzrrQ4lzU5ZD2hofh1oTtVrU5FThZrK9A4Btc3qHpjCwkJt2bJF48ePd8oCAgKUlJSkjIyMCrcpKChQQUGBs5yfny/p5w+iphWtrLgNpXbnr6zxfdamYm+wvAXHTlnvJ2+RjgYVlSvPCTykopLywaas74ryVXT81PVyCg4ppvjUgQpoaLb9tPiXhRcXV1intee/y5U5/0/6zzYV1Tmhtz7weQ9X+1aV31ZS+3NvqFJ9oPTv9qn6V+pkgPnhhx9UXFysmJgYn/KYmBh9+WXF/4KfOnWqJk+eXK48Pj6+VtqIqluqz2u0HoCK/LWG6tSUu0/jvlCfHDp0SB6P54Tr62SAqY7x48crPT3dWS4pKdHBgwfVrFkzuVxVH0/h9XoVHx+vPXv2+GUQMMrjnNQ9nJO6h3NSt3A+qs4Yo0OHDikuLu6k9epkgGnevLkCAwOVm5vrU56bm6vY2IpnqLjdbrndbp+yyMjI39yWiIgIvnR1DOek7uGc1D2ck7qF81E1J+t5KRVwyhp+EBISooSEBK1atcopKykp0apVq5SYmOjHlgEAgLqgTvbASFJ6erpSU1PVq1cv9e7dW0899ZSOHDmi66+/3t9NAwAAflZnA8zIkSO1f/9+TZgwQTk5OTrnnHO0fPnycgN7a4vb7dbEiRPLXZaC/3BO6h7OSd3DOalbOB+1p87eBwYAAOBE6uQYGAAAgJMhwAAAAOsQYAAAgHUIMAAAwDoEGAAAYB0CzAnMmjVLbdu2VaNGjdSnTx998smpn7aMmrFu3ToNGzZMcXFxcrlcWrx4sc96Y4wmTJigli1bKjQ0VElJSdq5c6d/GtsATJ06Veedd56aNGmi6OhoDR8+XFlZWT51jh07prS0NDVr1kzh4eEaMWJEuTtpo+Y8++yz6tGjh3N318TERC1b9stT7zkf/jVt2jS5XC6NGzfOKeOc1DwCTAUWLFig9PR0TZw4UZ9++ql69uyp5ORk7du3z99NaxCOHDminj17atasWRWunz59umbMmKE5c+Zo48aNCgsLU3Jyso4dO/UTtVF1a9euVVpamj7++GOtXLlSRUVFGjx4sI4cOeLUufvuu/X+++9r0aJFWrt2rfbu3avLLrvMj62u31q1aqVp06Zpy5Yt2rx5swYOHKhLLrlE27dvl8T58KdNmzbpueeeU48ePXzKOSe1wKCc3r17m7S0NGe5uLjYxMXFmalTp/qxVQ2TJPPOO+84yyUlJSY2NtY8/vjjTlleXp5xu93m9ddf90MLG559+/YZSWbt2rXGmJ8//+DgYLNo0SKnzo4dO4wkk5GR4a9mNjhNmzY1f/vb3zgffnTo0CHTqVMns3LlSnPBBReYu+66yxjD70htoQemjMLCQm3ZskVJSUlOWUBAgJKSkpSRkeHHlkGSsrOzlZOT43N+PB6P+vTpw/k5TfLz8yVJUVFRkqQtW7aoqKjI55x06dJFrVu35pycBsXFxXrjjTd05MgRJSYmcj78KC0tTUOHDvX57CV+R2pLnX2UgL/88MMPKi4uLvfIgpiYGH355Zd+ahVK5eTkSFKF56d0HWpPSUmJxo0bp/PPP19nnXWWpJ/PSUhISLmnv3NOatfWrVuVmJioY8eOKTw8XO+88466deumzMxMzocfvPHGG/r000+1adOmcuv4HakdBBgAlZaWlqZt27Zp/fr1/m5Kg9e5c2dlZmYqPz9fb775plJTU7V27Vp/N6tB2rNnj+666y6tXLlSjRo18ndzGgwuIZXRvHlzBQYGlhsdnpubq9jYWD+1CqVKzwHn5/QbO3aslixZotWrV6tVq1ZOeWxsrAoLC5WXl+dTn3NSu0JCQtSxY0clJCRo6tSp6tmzp55++mnOhx9s2bJF+/bt07nnnqugoCAFBQVp7dq1mjFjhoKCghQTE8M5qQUEmDJCQkKUkJCgVatWOWUlJSVatWqVEhMT/dgySFK7du0UGxvrc368Xq82btzI+aklxhiNHTtW77zzjj766CO1a9fOZ31CQoKCg4N9zklWVpZ2797NOTmNSkpKVFBQwPnwg0GDBmnr1q3KzMx0Xr169dLo0aOdnzknNY9LSBVIT09XamqqevXqpd69e+upp57SkSNHdP311/u7aQ3C4cOHtWvXLmc5OztbmZmZioqKUuvWrTVu3DhNmTJFnTp1Urt27fTQQw8pLi5Ow4cP91+j67G0tDTNnz9f7777rpo0aeJcs/d4PAoNDZXH49GYMWOUnp6uqKgoRURE6I477lBiYqL69u3r59bXT+PHj9eQIUPUunVrHTp0SPPnz9eaNWv0wQcfcD78oEmTJs6YsFJhYWFq1qyZU845qQX+ngZVV82cOdO0bt3ahISEmN69e5uPP/7Y301qMFavXm0klXulpqYaY36eSv3QQw+ZmJgY43a7zaBBg0xWVpZ/G12PVXQuJJmXXnrJqXP06FFz++23m6ZNm5rGjRubSy+91Hz//ff+a3Q9d8MNN5g2bdqYkJAQ06JFCzNo0CCzYsUKZz3nw/9+PY3aGM5JbXAZY4yfshMAAEC1MAYGAABYhwADAACsQ4ABAADWIcAAAADrEGAAAIB1CDAAAMA6BBgAAGAdAgwAALAOAQYAAFiHAAMAAKxDgAEAANb5/w+8StSTiq+VAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANlpJREFUeJzt3Xl4VNXBx/FftpmwTUIkC8HIqmyiUCgxyKKQEpZqKdiCUgRfBLXBFnADpSxii0UexSoU6SugFkVoq+UVRCKIiARECpXNsEVBIUHAJKxZz/uHzZRJJpAZMpm5yffzPPM8zrln7j1nBmd+Ofece4OMMUYAAAAWEuzvBgAAAHiKAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAMAACyHAAPgsjZs2KCgoCBt2LChSvcbFBSk6dOnV+k+PbVkyRIFBQXpq6++8uk+b7vtNt12220e78uT997bY3hi+vTpCgoK8ukxgMoiwKBW2bx5s6ZPn66cnBx/N6VWWL16td9DCvzr+PHjmjRpkm6//XY1aNDAJ2EYtRMBBrXK5s2bNWPGDAJMNVm9erVmzJjhdtuFCxc0ZcqUam6RqxEjRujChQtq2rSpT4+zdu1arV271uPX9ezZUxcuXFDPnj190KrqkZGRoT/+8Y/69ttv1aFDB383BzUIAQaooc6fP++2vKioSAUFBdXcmvLCw8MVGhrq1zaEhIQoPDzc56dFbDabbDabx68LDg5WeHi4goOt+1XduXNnnTp1Svv379fEiRP93RzUINb9vwLw0PTp0/XYY49Jkpo3b66goCDnXIWioiLNnDlTLVu2lN1uV7NmzfTkk08qPz/fZR/NmjXTT3/6U61du1YdO3ZUeHi42rVrp3/84x9etemvf/2runbtqrp166phw4bq2bNnub/U58+fr/bt28tutys+Pl6pqanlRpBuu+023Xjjjdq+fbt69uypunXr6sknn9RXX32loKAgzZkzR3PnznX2b+/evZKkL7/8UnfddZeioqIUHh6uLl26aOXKlVds9yeffKJf/OIXuu6662S325WQkKAJEybowoULzjqjRo3SvHnzJMn5Xl8aFNzNgdmxY4f69+8vh8Oh+vXrq0+fPtqyZYtLndI5Jp9++qkmTpyo6Oho1atXTz//+c/13XffXbHt7vZ16XyV0s9406ZN6tq1q8LDw9WiRQu9/vrr5V6/Z88e9e7dW3Xq1NG1116rZ555RiUlJeXqXTo/JTs7W6GhoW5HpjIyMhQUFKSXX35ZUsVzYBYuXKiWLVuqTp066tq1qz755JNK9a2ifVbm8/RWgwYNFBUVddX7Acry758/QDUaPHiw9u/fr7feeksvvPCCGjVqJEmKjo7W/fffr9dee0133XWXHnnkEW3dulWzZs3Svn379M4777js58CBAxo6dKgefPBBjRw5UosXL9YvfvELrVmzRj/5yU8q3Z4ZM2Zo+vTp6tatm55++mnZbDZt3bpV69evV9++fSX9ELpmzJih5ORkPfTQQ8rIyNCf//xnbdu2TZ9++qnCwsKc+zt16pT69++vYcOG6Ve/+pViY2Od2xYvXqyLFy9q7NixstvtioqK0p49e3TrrbeqSZMmmjRpkurVq6fly5dr0KBB+vvf/66f//znFbZ9xYoVOn/+vB566CFdc801+uyzz/TSSy/pm2++0YoVKyRJDzzwgI4dO6a0tDS98cYbV3w/9uzZox49esjhcOjxxx9XWFiYXnnlFd122236+OOPlZiY6FL/4YcfVsOGDTVt2jR99dVXmjt3rsaNG6e333670p9BRQ4ePKi77rpLo0eP1siRI7Vo0SKNGjVKnTt3Vvv27SVJWVlZuv3221VUVOR8/xYuXKg6depcdt+xsbHq1auXli9frmnTprlse/vttxUSEqJf/OIXFb7+1Vdf1QMPPKBu3bpp/PjxOnz4sO68805FRUUpISHBq/5W5vMEAo4BapHnnnvOSDKZmZnOsp07dxpJ5v7773ep++ijjxpJZv369c6ypk2bGknm73//u7MsNzfXNG7c2HTq1KnS7Thw4IAJDg42P//5z01xcbHLtpKSEmOMMSdOnDA2m8307dvXpc7LL79sJJlFixY5y3r16mUkmQULFrjsKzMz00gyDofDnDhxwmVbnz59TIcOHczFixddjt2tWzdz/fXXO8s++ugjI8l89NFHzrLz58+X69OsWbNMUFCQ+frrr51lqamppqKvGUlm2rRpzueDBg0yNpvNHDp0yFl27Ngx06BBA9OzZ09n2eLFi40kk5yc7HyvjDFmwoQJJiQkxOTk5Lg9njul+7r030PpZ7xx40Zn2YkTJ4zdbjePPPKIs2z8+PFGktm6datLvYiIiHL77NWrl+nVq5fz+SuvvGIkmV27drm0p127dqZ3797O52Xf+4KCAhMTE2M6duxo8vPznfUWLlxoJLkcw13f3O3TmMp/ntOmTavw86yMFStWlDs24C1OIaHWW716tSSVOz//yCOPSJJWrVrlUh4fH+8yOuFwOHTvvfdqx44dysrKqtQx3333XZWUlGjq1Knl5jeUnmb58MMPVVBQoPHjx7vUGTNmjBwOR7l22e123XfffW6PN2TIEEVHRzufnz59WuvXr9cvf/lLnTlzRidPntTJkyd16tQppaSk6MCBA/r2228rbP+lowznzp3TyZMn1a1bNxljtGPHjkq9B5cqLi7W2rVrNWjQILVo0cJZ3rhxY91zzz3atGmT8vLyXF4zduxYl1NSPXr0UHFxsb7++muPj19Wu3bt1KNHD+fz6OhotW7dWocPH3aWrV69Wrfccou6du3qUm/48OFX3P/gwYMVGhrqMlq0e/du7d27V0OHDq3wdZ9//rlOnDihBx980GVOzahRoxQREVHp/pVV1Z8nUB0IMKj1vv76awUHB6tVq1Yu5XFxcYqMjCz3g9iqVatykz5vuOEGSar09UQOHTqk4OBgtWvX7rLtkqTWrVu7lNtsNrVo0aJcu5o0aVLhRNHmzZu7PD948KCMMfrd736n6Ohol0fpaY0TJ05U2LYjR45o1KhRioqKUv369RUdHa1evXpJknJzcyt8XUW+++47nT9/vlxfJalt27YqKSnR0aNHXcqvu+46l+cNGzaUJH3//fceH7+ssvsu3f+l+/766691/fXXl6vnrg9lNWrUSH369NHy5cudZW+//bZCQ0M1ePDgCl9X+pmXPW5YWJhL8PNUVX+eQHVgDgzwH1a/QNfl5l6U3VY60fTRRx9VSkqK29eUDXSliouL9ZOf/ESnT5/WE088oTZt2qhevXr69ttvNWrUKLeTWH0hJCTEbbkxJqD3XWrYsGG67777tHPnTnXs2FHLly9Xnz59nHOzrlZF/56Li4vLPQ+EzxPwFAEGtYq7L/WmTZuqpKREBw4cUNu2bZ3l2dnZysnJKXeNkNLRi0v3tX//fkk/rGCpjJYtW6qkpER79+5Vx44d3dYpPW5GRobLX9cFBQXKzMxUcnJypY7lTun+wsLCPN7Prl27tH//fr322mu69957neVpaWnl6lY2FEZHR6tu3brKyMgot+3LL79UcHCw1xNUfaVp06Y6cOBAuXJ3fXBn0KBBeuCBB5ynkfbv36/Jkydf8ZjSDxPJe/fu7SwvLCxUZmambr75ZmdZ6YhU2RVrZUfuPPk8gUDCKSTUKvXq1ZPk+qU+YMAASdLcuXNd6j7//POSpIEDB7qUHzt2zGVlUl5enl5//XV17NhRcXFxlWrHoEGDFBwcrKeffrrcX7ilf+UnJyfLZrPpT3/6k8tf/q+++qpyc3PLtcsTMTExuu222/TKK6/o+PHj5bZfbjly6ejEpW0yxujFF18sV9fd+13RPvv27at//vOfLqfhsrOz9eabb6p79+5yOByX3Ud1GzBggLZs2aLPPvvMWfbdd99p6dKllXp9ZGSkUlJStHz5ci1btkw2m02DBg267Gu6dOmi6OhoLViwwOVaPkuWLCn3Hrds2VKStHHjRmdZcXGxFi5c6FLPk88TCCSMwKBW6dy5syTpqaee0rBhwxQWFqY77rhDI0eO1MKFC5WTk6NevXrps88+02uvvaZBgwbp9ttvd9nHDTfcoNGjR2vbtm2KjY3VokWLlJ2drcWLF1e6Ha1atdJTTz2lmTNnqkePHho8eLDsdru2bdum+Ph4zZo1S9HR0Zo8ebJmzJihfv366c4771RGRobmz5+vH//4x/rVr351Ve/FvHnz1L17d3Xo0EFjxoxRixYtlJ2drfT0dH3zzTf697//7fZ1bdq0UcuWLfXoo4/q22+/lcPh0N///ne3c09K3+/f/OY3SklJUUhIiIYNG+Z2v88884zS0tLUvXt3/frXv1ZoaKheeeUV5efna/bs2VfVV194/PHH9cYbb6hfv3767W9/61xG3bRpU33xxReV2sfQoUP1q1/9SvPnz1dKSooiIyMvWz8sLEzPPPOMHnjgAfXu3VtDhw5VZmamFi9eXG4OTPv27XXLLbdo8uTJOn36tKKiorRs2TIVFRW51PPk8/TWM888I+mHpfKS9MYbb2jTpk2S5PerMcPC/LP4CfCfmTNnmiZNmpjg4GDnMtPCwkIzY8YM07x5cxMWFmYSEhLM5MmTXZYYG/PDEtuBAweaDz74wNx0003GbrebNm3amBUrVnjVlkWLFplOnToZu91uGjZsaHr16mXS0tJc6rz88sumTZs2JiwszMTGxpqHHnrIfP/99y51evXqZdq3b19u/6XLqJ977jm3xz906JC59957TVxcnAkLCzNNmjQxP/3pT83f/vY3Zx13y2737t1rkpOTTf369U2jRo3MmDFjzL///W8jySxevNhZr6ioyDz88MMmOjraBAUFuSzBVZll1MYY869//cukpKSY+vXrm7p165rbb7/dbN682aVO6fLgbdu2uZS7a+eVVLSMeuDAgeXqll0KbYwxX3zxhenVq5cJDw83TZo0MTNnzjSvvvrqFZdRl8rLyzN16tQxksxf//rXctsr6tP8+fNN8+bNjd1uN126dDEbN250e4xDhw6Z5ORkY7fbTWxsrHnyySdNWlqa15+nt8uoJVX4ALwVZEwVzkoDarhmzZrpxhtv1HvvvefvpgBArcYcGAAAYDnMgQGq2JUuZlenTp2ruugYruzs2bM6e/bsZetER0dXuFwaV5abm3vFeyVVdlI74A0CDFDFGjdufNntI0eO1JIlS6qnMbXUnDlz3N4s8VKZmZmVXvaO8n7729/qtddeu2wdZijAl5gDA1SxDz/88LLb4+PjL3sFXly9w4cPu1z2353u3bsrPDy8mlpU8+zdu1fHjh27bJ2ruVYRcCUEGAAAYDlM4gUAAJZTY+fAlJSU6NixY2rQoIHl73EDAEBtYYzRmTNnFB8fr+DgisdZamyAOXbsWMDdOwUAAFTO0aNHde2111a4vcYGmAYNGkj64Q0ItHuoAAAA9/Ly8pSQkOD8Ha9IjQ0wpaeNHA4HAQYAAIu50vQPJvECAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLCfV3A4DaqHDNJpfnYf26+6klAGBNjMAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLIcAAAADLCfV3A4CarnDNJn83AQBqHEZgAACA5RBgAACA5RBgAACA5RBgAACA5RBgAACA5bAKCQgA7lYqhfXr7oeWAIA1MAIDAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAshwADAAAsx6MAM2vWLP34xz9WgwYNFBMTo0GDBikjI8OlzsWLF5WamqprrrlG9evX15AhQ5Sdne1S58iRIxo4cKDq1q2rmJgYPfbYYyoqKnKps2HDBv3oRz+S3W5Xq1attGTJEu96CAAAahyPAszHH3+s1NRUbdmyRWlpaSosLFTfvn117tw5Z50JEybo//7v/7RixQp9/PHHOnbsmAYPHuzcXlxcrIEDB6qgoECbN2/Wa6+9piVLlmjq1KnOOpmZmRo4cKBuv/127dy5U+PHj9f999+vDz74oAq6DAAArC7IGGO8ffF3332nmJgYffzxx+rZs6dyc3MVHR2tN998U3fddZck6csvv1Tbtm2Vnp6uW265Re+//75++tOf6tixY4qNjZUkLViwQE888YS+++472Ww2PfHEE1q1apV2797tPNawYcOUk5OjNWvWVKpteXl5ioiIUG5urhwOh7ddBK5a4ZpNXr0urF/3Km4JAAS+yv5+X9UcmNzcXElSVFSUJGn79u0qLCxUcnKys06bNm103XXXKT09XZKUnp6uDh06OMOLJKWkpCgvL0979uxx1rl0H6V1SvfhTn5+vvLy8lweAACgZvI6wJSUlGj8+PG69dZbdeONN0qSsrKyZLPZFBkZ6VI3NjZWWVlZzjqXhpfS7aXbLlcnLy9PFy5ccNueWbNmKSIiwvlISEjwtmsAACDAeR1gUlNTtXv3bi1btqwq2+O1yZMnKzc31/k4evSov5sEAAB8JNSbF40bN07vvfeeNm7cqGuvvdZZHhcXp4KCAuXk5LiMwmRnZysuLs5Z57PPPnPZX+kqpUvrlF25lJ2dLYfDoTp16rhtk91ul91u96Y7AADAYjwagTHGaNy4cXrnnXe0fv16NW/e3GV7586dFRYWpnXr1jnLMjIydOTIESUlJUmSkpKStGvXLp04ccJZJy0tTQ6HQ+3atXPWuXQfpXVK9wEAAGo3j0ZgUlNT9eabb+qf//ynGjRo4JyzEhERoTp16igiIkKjR4/WxIkTFRUVJYfDoYcfflhJSUm65ZZbJEl9+/ZVu3btNGLECM2ePVtZWVmaMmWKUlNTnSMoDz74oF5++WU9/vjj+p//+R+tX79ey5cv16pVq6q4+wAAwIo8WkYdFBTktnzx4sUaNWqUpB8uZPfII4/orbfeUn5+vlJSUjR//nzn6SFJ+vrrr/XQQw9pw4YNqlevnkaOHKlnn31WoaH/zVMbNmzQhAkTtHfvXl177bX63e9+5zxGZbCMGoGCZdQAUHmV/f2+quvABDICDAIFAQYAKq9argMDAADgDwQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOQQYAABgOV7dCwmAd77Ked/lebPI/n5qCQBYGyMwAADAcggwAADAcggwAADAcpgDA1Qxb+99BACoPEZgAACA5RBgAACA5RBgAACA5TAHBghQZefShPXr7qeWAEDgIcAAflT2wnYSF7cDgMrgFBIAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALCcUH83AKjJvsp5399NAIAaiREYAABgOQQYAABgOQQYAABgOcyBASyicM2mcmVh/br7oSUA4H+MwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMthFRIQYMpevbdZZH8/tQQAAhcjMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHK4DgxgYWXvUM3dqQHUFozAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy/E4wGzcuFF33HGH4uPjFRQUpHfffddl+6hRoxQUFOTy6Nevn0ud06dPa/jw4XI4HIqMjNTo0aN19uxZlzpffPGFevToofDwcCUkJGj27Nme9w4AANRIHgeYc+fO6eabb9a8efMqrNOvXz8dP37c+Xjrrbdctg8fPlx79uxRWlqa3nvvPW3cuFFjx451bs/Ly1Pfvn3VtGlTbd++Xc8995ymT5+uhQsXetpcAABQA3m8jLp///7q37//ZevY7XbFxcW53bZv3z6tWbNG27ZtU5cuXSRJL730kgYMGKA5c+YoPj5eS5cuVUFBgRYtWiSbzab27dtr586dev75512CzqXy8/OVn5/vfJ6Xl+dp1wCPlV3GDACoHj6ZA7NhwwbFxMSodevWeuihh3Tq1CnntvT0dEVGRjrDiyQlJycrODhYW7duddbp2bOnbDabs05KSooyMjL0/fffuz3mrFmzFBER4XwkJCT4omsAACAAVHmA6devn15//XWtW7dOf/zjH/Xxxx+rf//+Ki4uliRlZWUpJibG5TWhoaGKiopSVlaWs05sbKxLndLnpXXKmjx5snJzc52Po0ePVnXXAABAgKjyK/EOGzbM+d8dOnTQTTfdpJYtW2rDhg3q06dPVR/OyW63y263+2z/AAAgcPh8GXWLFi3UqFEjHTx4UJIUFxenEydOuNQpKirS6dOnnfNm4uLilJ2d7VKn9HlFc2sAAEDt4fMA88033+jUqVNq3LixJCkpKUk5OTnavn27s8769etVUlKixMREZ52NGzeqsLDQWSctLU2tW7dWw4YNfd1kAAAQ4Dw+hXT27FnnaIokZWZmaufOnYqKilJUVJRmzJihIUOGKC4uTocOHdLjjz+uVq1aKSUlRZLUtm1b9evXT2PGjNGCBQtUWFiocePGadiwYYqPj5ck3XPPPZoxY4ZGjx6tJ554Qrt379aLL76oF154oYq6DVS9r3Le93cTAKDW8HgE5vPPP1enTp3UqVMnSdLEiRPVqVMnTZ06VSEhIfriiy9055136oYbbtDo0aPVuXNnffLJJy7zU5YuXao2bdqoT58+GjBggLp37+5yjZeIiAitXbtWmZmZ6ty5sx555BFNnTq1wiXUAACgdgkyxhh/N8IX8vLyFBERodzcXDkcDn83BzXUpdeB8dUITLPIy1936VJh/br7pA0AUF0q+/vNvZAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDleHwzRwCB69JbG5Ti9gIAaiJGYAAAgOUQYAAAgOUQYAAAgOUwBwYIcF/lvF+urFlkfz+0BAACBwEGqOHKTuxlUi+AmoBTSAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHIIMAAAwHJC/d0AAJ77Kud9l+fNIvv7qSUA4B+MwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMshwAAAAMvhOjCABwrXbPJ3EwAAYgQGAABYEAEGAABYDgEGAABYDnNggFrG3TyesH7d/dASAPAeIzAAAMByGIEBvFT2jtAAgOrDCAwAALAcAgwAALAcAgwAALAcAgwAALAcJvECNYC7CcXNIvv7oSUAUD0YgQEAAJbDCAyAche348J2AAIdIzAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByWEYNoFJYag0gkDACAwAALIcRGKCGKnt7AU9uLVB2tAUAAo3HIzAbN27UHXfcofj4eAUFBendd9912W6M0dSpU9W4cWPVqVNHycnJOnDggEud06dPa/jw4XI4HIqMjNTo0aN19uxZlzpffPGFevToofDwcCUkJGj27Nme9w4AANRIHgeYc+fO6eabb9a8efPcbp89e7b+9Kc/acGCBdq6davq1aunlJQUXbx40Vln+PDh2rNnj9LS0vTee+9p48aNGjt2rHN7Xl6e+vbtq6ZNm2r79u167rnnNH36dC1cuNCLLgIAgJrG41NI/fv3V//+7oeijTGaO3eupkyZop/97GeSpNdff12xsbF69913NWzYMO3bt09r1qzRtm3b1KVLF0nSSy+9pAEDBmjOnDmKj4/X0qVLVVBQoEWLFslms6l9+/bauXOnnn/+eZegAwAAaqcqncSbmZmprKwsJScnO8siIiKUmJio9PR0SVJ6eroiIyOd4UWSkpOTFRwcrK1btzrr9OzZUzabzVknJSVFGRkZ+v77790eOz8/X3l5eS4PAABQM1XpJN6srCxJUmxsrEt5bGysc1tWVpZiYmJcGxEaqqioKJc6zZs3L7eP0m0NGzYsd+xZs2ZpxowZVdMRQExkBYBAVmOWUU+ePFm5ubnOx9GjR/3dJAAA4CNVGmDi4uIkSdnZ2S7l2dnZzm1xcXE6ceKEy/aioiKdPn3apY67fVx6jLLsdrscDofLAwAA1ExVGmCaN2+uuLg4rVu3zlmWl5enrVu3KikpSZKUlJSknJwcbd++3Vln/fr1KikpUWJiorPOxo0bVVhY6KyTlpam1q1buz19BAAAahePA8zZs2e1c+dO7dy5U9IPE3d37typI0eOKCgoSOPHj9czzzyjlStXateuXbr33nsVHx+vQYMGSZLatm2rfv36acyYMfrss8/06aefaty4cRo2bJji4+MlSffcc49sNptGjx6tPXv26O2339aLL76oiRMnVlnHAQCAdXk8iffzzz/X7bff7nxeGipGjhypJUuW6PHHH9e5c+c0duxY5eTkqHv37lqzZo3Cw8Odr1m6dKnGjRunPn36KDg4WEOGDNGf/vQn5/aIiAitXbtWqamp6ty5sxo1aqSpU6eyhBq4CmWvzCt5dnVeAAgkQcYY4+9G+EJeXp4iIiKUm5vLfBh45UqrkNwFAqu5mgDDzRwB+EJlf79rzCokAABQexBgAACA5RBgAACA5RBgAACA5VTprQSAmqomTNgFgJqEERgAAGA5jMAA8EplbnbJUmsAvsIIDAAAsBxGYAD4jLtRGkZlAFQFRmAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlEGAAAIDlsAoJqMXKXmG4WWR/P7UEADzDCAwAALAcAgwAALAcTiEB/1GZS+MDAAIDIzAAAMByGIEBUK3KjnRxawEA3iDAAHBiVRIAq+AUEgAAsBwCDAAAsBwCDAAAsBzmwAAIOEz0BXAljMAAAADLYQQGgF9xAUEA3mAEBgAAWA4BBgAAWA4BBgAAWA4BBgAAWA6TeAE3yl5SHwAQWBiBAQAAlsMIDICA526pNRe3A2o3RmAAAIDlEGAAAIDlcAoJgEfKTnBuFtnfTy0BUJsxAgMAACyHERgAFWI5OYBAxQgMAACwHAIMAACwHAIMAACwHObAoFZyd2E0AIB1MAIDAAAshwADAAAsh1NIAK6Ku6XW/ri4HfdLAmoXAgwAS2IeE1C7EWAAVDluNwDA15gDAwAALIcAAwAALIdTSABqrLLzZJjUC9QcjMAAAADLYQQGtR53XPY9lloDqGoEGAC1GqeZAGviFBIAALAcAgwAALAcAgwAALAcAgwAALAcAgwAALAcViEBwBWwUgkIPIzAAAAAyyHAAAAAy+EUEgC/KHt1Xn9cmReAdTECAwAALKfKA8z06dMVFBTk8mjTpo1z+8WLF5WamqprrrlG9evX15AhQ5Sdne2yjyNHjmjgwIGqW7euYmJi9Nhjj6moqKiqmwoAACzKJ6eQ2rdvrw8//PC/Bwn972EmTJigVatWacWKFYqIiNC4ceM0ePBgffrpp5Kk4uJiDRw4UHFxcdq8ebOOHz+ue++9V2FhYfrDH/7gi+YCCACVualmdZxmcnfDx6raD6uXgKrjkwATGhqquLi4cuW5ubl69dVX9eabb6p3796SpMWLF6tt27basmWLbrnlFq1du1Z79+7Vhx9+qNjYWHXs2FEzZ87UE088oenTp8tms/miyahFDn3+ikpyjvi7GfAC82YAlPLJHJgDBw4oPj5eLVq00PDhw3XkyA8/Ftu3b1dhYaGSk5Odddu0aaPrrrtO6enpkqT09HR16NBBsbGxzjopKSnKy8vTnj17Kjxmfn6+8vLyXB5AqcI1m5yPkoOEFwCwuiofgUlMTNSSJUvUunVrHT9+XDNmzFCPHj20e/duZWVlyWazKTIy0uU1sbGxysrKkiRlZWW5hJfS7aXbKjJr1izNmDGjajsDAG5wegjwvyoPMP37/3dI96abblJiYqKaNm2q5cuXq06dOlV9OKfJkydr4sSJzud5eXlKSEjw2fEAAID/+HwZdWRkpG644QYdPHhQcXFxKigoUE5Ojkud7Oxs55yZuLi4cquSSp+7m1dTym63y+FwuDwAAEDN5PMAc/bsWR06dEiNGzdW586dFRYWpnXr1jm3Z2Rk6MiRI0pKSpIkJSUladeuXTpx4oSzTlpamhwOh9q1a+fr5gIAAAuo8lNIjz76qO644w41bdpUx44d07Rp0xQSEqK7775bERERGj16tCZOnKioqCg5HA49/PDDSkpK0i233CJJ6tu3r9q1a6cRI0Zo9uzZysrK0pQpU5Samiq73V7VzQWAKlFVy68BVE6VB5hvvvlGd999t06dOqXo6Gh1795dW7ZsUXR0tCTphRdeUHBwsIYMGaL8/HylpKRo/vz5zteHhITovffe00MPPaSkpCTVq1dPI0eO1NNPP13VTQUAABYVZIwx/m6EL+Tl5SkiIkK5ubnMh4HLX8eVuWAarMFq14FhpRJwZZX9/eZeSAAAwHK4GzUAy3I3mma1URkA3mEEBgAAWA4jMABqFO6XBNQOBBjUOCxnBYCajwADAH7CPZUA7xFgANRoTPQFaiYCDGo0rvkCADUTq5AAAIDlMAIDANWkMhPMy9ZhTgzgHiMwAADAchiBAVDrVGZuVKBM9GWlEuAeIzAAAMByCDAAAMByOIUEAG4E8i0JmOgLMAIDAAAsiBEYAKgEK43ISIzKoOZjBAYAAFgOIzAAUEUCeZQGqGkIMLC8ylzdFKhtOK2Emo4AAwBe4EahgH8RYFCj8KMCVJ63ozQs40YgIMAAgI+4C9SVmRfjq7k0nG5FTUKAAYAA520Q8gajK7AKAgwA+BGnPQHvEGBgKQyBAwAkAgwA4DL4owGBiivxAgAAyyHAAAAAy+EUEgDgqnDVX/gDAQYALIj7LqG2I8AAQA1AoEFtQ4CBpXENDVgN/2aBqkGAAQBUOa7oC18jwAAA/IKQg6tBgAEABCxCDipCgAGAWoKJvqhJCDAAUAMF2mRhbkmAqkaAgWUc+vwVleQc8XczAAABgAADALWUu1Eaf55WYpQGniDAAACcAn2eTGVuW8CtDWoHAgwC2qVfRJw+AgJToI3koHbgbtQAAMByGIEBAFQo0FYzAaUIMAgYTOAD4I3KfHdwQbyah1NIAADAchiBQcBi6BpAdWKUxloIMACAasfKJVwtAgwAoMpVxQiqL0MOc+6sjwADAIAbXBAvsBFgAACopMqM3BByqgcBBgAQEGrKxH0mA1cPAgwCAneaBlAZgX6vJncYtfENAgwAwLJYzVR7EWDgN9yoEQB+wIRhzxFgUC1YsgigulRmLo0VRmmYS3N5BBgAQK1zpZBjhYBT2xFg4Bc1ZbUBAMA/CDAAAJQRiJODmSfjigADn2DOCwD4Xm2eJ0OAwVW7UljhdBGAmsCbycHVPaG4Nl1zhgCDKkdgAVBb8f1XfQgwgFUZyX4mRCGFwSoOK1F+g2IpyDeHKpFRZvBp5QXly2Hsal4SpWBfHQw+wWeImoYAg8uqzKQx/uKofnVOhyrySB2FFgQ7y4psJcq57oIuRBVV6bF2hWRpZdg+5QZfdJZFlITrzsK26lAcV6XHgm/wGQY2b75Dr+a0U02ZDBxkjDH+bkRF5s2bp+eee05ZWVm6+eab9dJLL6lr166Vem1eXp4iIiKUm5srh8Ph45bWXJU5n0qAqV51TofqmoN1JUlBl/wFbfTD/8qnWp2vshCzKyRLb9h26D8H+6//fGuMKOjED2CA4zOsPapyLo0/A01lf78DdgTm7bff1sSJE7VgwQIlJiZq7ty5SklJUUZGhmJiYvzdvFqLsOJnRoo8UkeSa3gpfW5kFHmkji40PHPVp5NKZLQybF/pzl0F/dCWlWH71L44llMRAYrPsHapyhtdWmGUJmADzPPPP68xY8bovvvukyQtWLBAq1at0qJFizRp0iQ/ty7wVWZpXdk6hJPAZz8T4nLaqKwgBSm0IEj2MyHKdxRf1bEyg0+7nHJwczDlBl1UZvBptSy55qqOBd/gM6zdvP1O9/f1biorIANMQUGBtm/frsmTJzvLgoODlZycrPT0dLevyc/PV35+vvN5bm6upB+GomqawjTX9+DoNfvK1THHvnEtWPSuD1uE6lKcF6a8/Mv8IP3H+bxCXQgtvKpjZYWcUWHJlUNQVv4ZxRbXv6pjwTf4DOGN3effdVsetOFzSVKLH/2PT49f+rt9pRkuARlgTp48qeLiYsXGxrqUx8bG6ssvv3T7mlmzZmnGjBnlyhMSEnzSRgA/WKUv/N0EXCU+Q3hmQrUc5cyZM4qIiKhwe0AGGG9MnjxZEydOdD4vKSnR6dOndc011ygo6PLndvPy8pSQkKCjR4/W6Am/9LNmoZ81C/2sWein94wxOnPmjOLj4y9bLyADTKNGjRQSEqLs7GyX8uzsbMXFuZ8tb7fbZbfbXcoiIyM9Oq7D4ajR/9BK0c+ahX7WLPSzZqGf3rncyEupimcD+pHNZlPnzp21bt06Z1lJSYnWrVunpKQkP7YMAAAEgoAcgZGkiRMnauTIkerSpYu6du2quXPn6ty5c85VSQAAoPYK2AAzdOhQfffdd5o6daqysrLUsWNHrVmzptzE3qpgt9s1bdq0cqegahr6WbPQz5qFftYs9NP3AvpKvAAAAO4E5BwYAACAyyHAAAAAyyHAAAAAyyHAAAAAyyHAAAAAy6m1Aeb06dMaPny4HA6HIiMjNXr0aJ09e/aKr0tPT1fv3r1Vr149ORwO9ezZUxcuXKiGFnvH235KP1zOuX///goKCtK7777r24ZeJU/7efr0aT388MNq3bq16tSpo+uuu06/+c1vnDcBDRTz5s1Ts2bNFB4ersTERH322WeXrb9ixQq1adNG4eHh6tChg1avXl1NLb06nvTzL3/5i3r06KGGDRuqYcOGSk5OvuL7Eig8/TxLLVu2TEFBQRo0aJBvG1hFPO1nTk6OUlNT1bhxY9ntdt1www2W+LfraT/nzp3r/M5JSEjQhAkTdPHilW/O6k8bN27UHXfcofj4+Er/FmzYsEE/+tGPZLfb1apVKy1ZssQ3jTO1VL9+/czNN99stmzZYj755BPTqlUrc/fdd1/2NZs3bzYOh8PMmjXL7N6923z55Zfm7bffNhcvXqymVnvOm36Wev75503//v2NJPPOO+/4tqFXydN+7tq1ywwePNisXLnSHDx40Kxbt85cf/31ZsiQIdXY6stbtmyZsdlsZtGiRWbPnj1mzJgxJjIy0mRnZ7ut/+mnn5qQkBAze/Zss3fvXjNlyhQTFhZmdu3aVc0t94yn/bznnnvMvHnzzI4dO8y+ffvMqFGjTEREhPnmm2+queWe8bSfpTIzM02TJk1Mjx49zM9+9rPqaexV8LSf+fn5pkuXLmbAgAFm06ZNJjMz02zYsMHs3LmzmlvuGU/7uXTpUmO3283SpUtNZmam+eCDD0zjxo3NhAkTqrnlnlm9erV56qmnzD/+8Y9K/RYcPnzY1K1b10ycONHs3bvXvPTSSyYkJMSsWbOmyttWKwPM3r17jSSzbds2Z9n7779vgoKCzLffflvh6xITE82UKVOqo4lVwtt+GmPMjh07TJMmTczx48cDPsBcTT8vtXz5cmOz2UxhYaEvmumxrl27mtTUVOfz4uJiEx8fb2bNmuW2/i9/+UszcOBAl7LExETzwAMP+LSdV8vTfpZVVFRkGjRoYF577TVfNbFKeNPPoqIi061bN/O///u/ZuTIkZYIMJ72889//rNp0aKFKSgoqK4mVglP+5mammp69+7tUjZx4kRz6623+rSdVakyvwWPP/64ad++vUvZ0KFDTUpKSpW3p1aeQkpPT1dkZKS6dOniLEtOTlZwcLC2bt3q9jUnTpzQ1q1bFRMTo27duik2Nla9evXSpk2bqqvZHvOmn5J0/vx53XPPPZo3b16FN88MJN72s6zc3Fw5HA6Fhvr/AtUFBQXavn27kpOTnWXBwcFKTk5Wenq629ekp6e71JeklJSUCusHAm/6Wdb58+dVWFioqKgoXzXzqnnbz6effloxMTEaPXp0dTTzqnnTz5UrVyopKUmpqamKjY3VjTfeqD/84Q8qLi6urmZ7zJt+duvWTdu3b3eeZjp8+LBWr16tAQMGVEubq0t1fg/5/5vaD7KyshQTE+NSFhoaqqioKGVlZbl9zeHDhyVJ06dP15w5c9SxY0e9/vrr6tOnj3bv3q3rr7/e5+32lDf9lKQJEyaoW7du+tnPfubrJlYJb/t5qZMnT2rmzJkaO3asL5rosZMnT6q4uLjcrTNiY2P15Zdfun1NVlaW2/qVfQ/8wZt+lvXEE08oPj6+3JdmIPGmn5s2bdKrr76qnTt3VkMLq4Y3/Tx8+LDWr1+v4cOHa/Xq1Tp48KB+/etfq7CwUNOmTauOZnvMm37ec889OnnypLp37y5jjIqKivTggw/qySefrI4mV5uKvofy8vJ04cIF1alTp8qOVaNGYCZNmqSgoKDLPir7pVhWSUmJJOmBBx7Qfffdp06dOumFF15Q69attWjRoqrsxhX5sp8rV67U+vXrNXfu3KpttBd82c9L5eXlaeDAgWrXrp2mT59+9Q1HtXn22We1bNkyvfPOOwoPD/d3c6rMmTNnNGLECP3lL39Ro0aN/N0cnyopKVFMTIwWLlyozp07a+jQoXrqqae0YMECfzetSm3YsEF/+MMfNH/+fP3rX//SP/7xD61atUozZ870d9Msq0aNwDzyyCMaNWrUZeu0aNFCcXFxOnHihEt5UVGRTp8+XeEpk8aNG0uS2rVr51Letm1bHTlyxPtGe8GX/Vy/fr0OHTqkyMhIl/IhQ4aoR48e2rBhw1W03DO+7GepM2fOqF+/fmrQoIHeeecdhYWFXW2zq0SjRo0UEhKi7Oxsl/Ls7OwK+xQXF+dR/UDgTT9LzZkzR88++6w+/PBD3XTTTb5s5lXztJ+HDh3SV199pTvuuMNZVvpHVGhoqDIyMtSyZUvfNtoL3nyejRs3VlhYmEJCQpxlbdu2VVZWlgoKCmSz2XzaZm9408/f/e53GjFihO6//35JUocOHXTu3DmNHTtWTz31lIKDa8Z4QkXfQw6Ho0pHX6QaFmCio6MVHR19xXpJSUnKycnR9u3b1blzZ0k//HCXlJQoMTHR7WuaNWum+Ph4ZWRkuJTv379f/fv3v/rGe8CX/Zw0aZLzf7BSHTp00AsvvODyZVodfNlP6YeRl5SUFNntdq1cuTKg/oK32Wzq3Lmz1q1b51w6W1JSonXr1mncuHFuX5OUlKR169Zp/PjxzrK0tDQlJSVVQ4u9400/JWn27Nn6/e9/rw8++MBl7lOg8rSfbdq00a5du1zKpkyZojNnzujFF19UQkJCdTTbY958nrfeeqvefPNNlZSUOH/E9+/fr8aNGwdkeJG86+f58+fLhZTS0GZq0D2Vk5KSyi2B99n3UJVPC7aIfv36mU6dOpmtW7eaTZs2meuvv95l2e0333xjWrdubbZu3eose+GFF4zD4TArVqwwBw4cMFOmTDHh4eHm4MGD/uhCpXjTz7IU4KuQjPG8n7m5uSYxMdF06NDBHDx40Bw/ftz5KCoq8lc3XCxbtszY7XazZMkSs3fvXjN27FgTGRlpsrKyjDHGjBgxwkyaNMlZ/9NPPzWhoaFmzpw5Zt++fWbatGmWWUbtST+fffZZY7PZzN/+9jeXz+3MmTP+6kKleNrPsqyyCsnTfh45csQ0aNDAjBs3zmRkZJj33nvPxMTEmGeeecZfXagUT/s5bdo006BBA/PWW2+Zw4cPm7Vr15qWLVuaX/7yl/7qQqWcOXPG7Nixw+zYscNIMs8//7zZsWOH+frrr40xxkyaNMmMGDHCWb90GfVjjz1m9u3bZ+bNm8cy6qp26tQpc/fdd5v69esbh8Nh7rvvPpcvwMzMTCPJfPTRRy6vmzVrlrn22mtN3bp1TVJSkvnkk0+queWe8bafl7JCgPG0nx999JGR5PaRmZnpn0648dJLL5nrrrvO2Gw207VrV7Nlyxbntl69epmRI0e61F++fLm54YYbjM1mM+3btzerVq2q5hZ7x5N+Nm3a1O3nNm3atOpvuIc8/TwvZZUAY4zn/dy8ebNJTEw0drvdtGjRwvz+978PmD8kLseTfhYWFprp06ebli1bmvDwcJOQkGB+/etfm++//776G+6Bir4rS/s2cuRI06tXr3Kv6dixo7HZbKZFixZm8eLFPmlbkDE1aOwKAADUCjVj1hAAAKhVCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMByCDAAAMBy/h8eJEM7s/FPcgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP6FJREFUeJzt3Xl8VNX9//F3EjITtklAshAJuwIRBAUJQRaVlACpLYoWlCIgithgC1FZlC+L2KY/tBUrCFIVsJUK1EItIBCDgEjYIqmsUSCKCgmbybAmJDm/P/zmfhkSIBMSQi6v5+MxD51zP/fcc+7AzJs7997xMcYYAQAA2IxvZQ8AAACgIhByAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAACALRFyAFy1tWvXysfHR2vXri3Xfn18fDR58uRy7dNb8+bNk4+Pj7755psK7fOee+7RPffc43Vf3uz7sm7DG5MnT5aPj0+FbgMoLUIOcJGNGzdq8uTJys7Oruyh3BBWrFhR6UEGlSs5OVmPP/64br31VtWoUUNNmzbVE088ocOHD1f20FDFVavsAQDXm40bN2rKlCkaMmSIgoKCKns4trdixQrNnDmzxKBz9uxZVatWuW9TgwYN0oABA+R0Oit0O6tXry7Tet26ddPZs2flcDjKeUTXztixY3XixAk9/PDDuuWWW3TgwAHNmDFDy5YtU1pamsLCwip7iKiiCDnADezMmTOqUaNGsfb8/HwVFhZW+gdnQEBApW5fkvz8/OTn51fh2ynrvvb19b0u9tPV+POf/6wuXbrI1/f/vlzo1auXunfvrhkzZujll1+uxNGhKuPrKuACkydP1vPPPy9JatKkiXx8fKxzJ/Lz8zV16lQ1a9ZMTqdTjRs31gsvvKDc3FyPPho3bqyf//znWr16tdq1a6eAgABFRkbqX//6V5nG9Pe//10dO3ZUjRo1VKdOHXXr1q3Yv/rffPNN3XbbbXI6nQoPD1d8fHyxr9vuuecetW7dWqmpqerWrZtq1KihF154Qd988418fHz06quvavr06db8du/eLUnau3evHnroIdWtW1cBAQHq0KGDPvrooyuO+7PPPtPDDz+shg0byul0KiIiQqNHj9bZs2etmiFDhmjmzJmSZO3rC8/nKOmcnO3bt6t3795yuVyqVauWevTooU2bNnnUFJ3z8vnnnyshIUHBwcGqWbOmHnjgAR09evSKYy+prwvPnyl6jTds2KCOHTsqICBATZs21XvvvVds/V27dum+++5T9erV1aBBA7388ssqLCwsVnfh+TJZWVmqVq2apkyZUqwuPT1dPj4+mjFjhqRLn5MzZ84cNWvWTNWrV1fHjh312WeflWpul+qzNK9nWXXr1s0j4BS11a1bV3v27Lnq/nHj4kgOcIEHH3xQX331lf7xj3/otddeU7169SRJwcHBeuKJJzR//nw99NBDevbZZ7V582YlJiZqz549WrJkiUc/X3/9tfr3768RI0Zo8ODBmjt3rh5++GGtXLlSP/vZz0o9nilTpmjy5Mnq3LmzXnrpJTkcDm3evFlr1qxRz549Jf0UzKZMmaKYmBg9/fTTSk9P16xZs7R161Z9/vnn8vf3t/o7fvy4evfurQEDBujXv/61QkNDrWVz587VuXPnNHz4cDmdTtWtW1e7du3S3XffrZtvvlnjxo1TzZo1tWjRIvXt21cffvihHnjggUuOffHixTpz5oyefvpp3XTTTdqyZYveeOMNff/991q8eLEk6amnntKhQ4eUlJSkv/3tb1fcH7t27VLXrl3lcrk0ZswY+fv766233tI999yjdevWKSoqyqP+mWeeUZ06dTRp0iR98803mj59ukaOHKmFCxeW+jW4lH379umhhx7SsGHDNHjwYL377rsaMmSI2rdvr9tuu02SlJmZqXvvvVf5+fnW/pszZ46qV69+2b5DQ0PVvXt3LVq0SJMmTfJYtnDhQvn5+enhhx++5PrvvPOOnnrqKXXu3FmjRo3SgQMH9Itf/EJ169ZVREREmeZbmtezPJ06dUqnTp2y/g4CZWIAeHjllVeMJJORkWG1paWlGUnmiSee8Kh97rnnjCSzZs0aq61Ro0ZGkvnwww+ttpycHFO/fn1zxx13lHocX3/9tfH19TUPPPCAKSgo8FhWWFhojDHmyJEjxuFwmJ49e3rUzJgxw0gy7777rtXWvXt3I8nMnj3bo6+MjAwjybhcLnPkyBGPZT169DBt2rQx586d89h2586dzS233GK1ffrpp0aS+fTTT622M2fOFJtTYmKi8fHxMd9++63VFh8fby71ViTJTJo0yXret29f43A4zP79+622Q4cOmdq1a5tu3bpZbXPnzjWSTExMjLWvjDFm9OjRxs/Pz2RnZ5e4vZIU9XXhn4ei13j9+vVW25EjR4zT6TTPPvus1TZq1CgjyWzevNmjLjAwsFif3bt3N927d7eev/XWW0aS2bFjh8d4IiMjzX333Wc9v3jf5+XlmZCQENOuXTuTm5tr1c2ZM8dI8thGSXMrqU9jSv96Tpo06ZKvpzemTp1qJJnk5OSr7gs3Lr6uAkphxYoVkqSEhASP9meffVaStHz5co/28PBwj6McLpdLjz32mLZv367MzMxSbXPp0qUqLCzUxIkTix3KL/pK55NPPlFeXp5GjRrlUfPkk0/K5XIVG5fT6dTQoUNL3F6/fv0UHBxsPT9x4oTWrFmjX/3qVzp58qSOHTumY8eO6fjx44qNjdXXX3+tH3744ZLjv/BoxenTp3Xs2DF17txZxhht3769VPvgQgUFBVq9erX69u2rpk2bWu3169fXo48+qg0bNsjtdnusM3z4cI+vv7p27aqCggJ9++23Xm//YpGRkeratav1PDg4WC1atNCBAwesthUrVqhTp07q2LGjR93AgQOv2P+DDz6oatWqeRx12rlzp3bv3q3+/ftfcr1t27bpyJEjGjFihMd5PkOGDFFgYGCp53ex8n49L2f9+vWaMmWKfvWrX+m+++4r175xYyHkAKXw7bffytfXV82bN/doDwsLU1BQULEPzebNmxe7V8itt94qSaW+38r+/fvl6+uryMjIy45Lklq0aOHR7nA41LRp02Ljuvnmmy95gmuTJk08nu/bt0/GGP3P//yPgoODPR5FX6EcOXLkkmM7ePCghgwZorp166pWrVoKDg5W9+7dJUk5OTmXXO9Sjh49qjNnzhSbqyS1atVKhYWF+u677zzaGzZs6PG8Tp06kqQff/zR6+1f7OK+i/q/sO9vv/1Wt9xyS7G6kuZwsXr16qlHjx5atGiR1bZw4UJVq1ZNDz744CXXK3rNL96uv7+/Rzj0Vnm/npeyd+9ePfDAA2rdurXefvvtcusXNybOyQG8UNVvcna5c0EuXlZ0cuxzzz2n2NjYEte5OPQVKSgo0M9+9jOdOHFCY8eOVcuWLVWzZk398MMPGjJkSIkn3laES10VZYy5rvsuMmDAAA0dOlRpaWlq166dFi1apB49epTbeSqX+vNcUFBQ7Pm1eD2/++479ezZU4GBgVqxYoVq165dLv3ixkXIAS5S0ht/o0aNVFhYqK+//lqtWrWy2rOyspSdna1GjRp51BcdBbmwr6+++krST1fmlEazZs1UWFio3bt3q127diXWFG03PT3d41/peXl5ysjIUExMTKm2VZKi/vz9/b3uZ8eOHfrqq680f/58PfbYY1Z7UlJSsdrSBsfg4GDVqFFD6enpxZbt3btXvr6+ZT6ptqI0atRIX3/9dbH2kuZQkr59++qpp56yvrL66quvNH78+CtuU/rp5PcLv+o5f/68MjIy1LZtW6ut6MjWxVfiXXwE0JvXs6yOHz+unj17Kjc3V8nJyapfv3659Y0bF19XARepWbOmJM83/j59+kiSpk+f7lH75z//WZIUFxfn0X7o0CGPK67cbrfee+89tWvXrtQ3Nuvbt698fX310ksvFfuXctHRgpiYGDkcDv3lL3/xOILwzjvvKCcnp9i4vBESEqJ77rlHb731Vol3nr3cpdhFRzkuHJMxRq+//nqx2pL296X67Nmzp/797397fOWXlZWlBQsWqEuXLnK5XJft41rr06ePNm3apC1btlhtR48e1fvvv1+q9YOCghQbG6tFixbpgw8+kMPhUN++fS+7TocOHRQcHKzZs2crLy/Pap83b16xfdysWTNJP50DU6SgoEBz5szxqPPm9SyL06dPq0+fPvrhhx+0YsWKEr/iA8qCIznARdq3by9JevHFFzVgwAD5+/vr/vvv1+DBgzVnzhxlZ2ere/fu2rJli+bPn6++ffvq3nvv9ejj1ltv1bBhw7R161aFhobq3XffVVZWlubOnVvqcTRv3lwvvviipk6dqq5du+rBBx+U0+nU1q1bFR4ersTERAUHB2v8+PGaMmWKevXqpV/84hdKT0/Xm2++qbvuuku//vWvr2pfzJw5U126dFGbNm305JNPqmnTpsrKylJKSoq+//57/fe//y1xvZYtW6pZs2Z67rnn9MMPP8jlcunDDz8s8VyYov3929/+VrGxsfLz89OAAQNK7Pfll19WUlKSunTpot/85jeqVq2a3nrrLeXm5mratGlXNdeKMGbMGP3tb39Tr1699Lvf/c66hLxRo0b68ssvS9VH//799etf/1pvvvmmYmNjr3gXbn9/f7388st66qmndN9996l///7KyMjQ3Llzi52Tc9ttt6lTp04aP368Tpw4obp16+qDDz5Qfn6+R503r2dZDBw4UFu2bNHjjz+uPXv2eNwbp1atWlcMdsAlVc5FXcD1berUqebmm282vr6+1iW258+fN1OmTDFNmjQx/v7+JiIiwowfP97j8mpjfrq8OC4uzqxatcrcfvvtxul0mpYtW5rFixeXaSzvvvuuueOOO4zT6TR16tQx3bt3N0lJSR41M2bMMC1btjT+/v4mNDTUPP300+bHH3/0qOnevbu57bbbivVfdAn5K6+8UuL29+/fbx577DETFhZm/P39zc0332x+/vOfm3/+859WTUmXHO/evdvExMSYWrVqmXr16pknn3zS/Pe//zWSzNy5c626/Px888wzz5jg4GDj4+PjcfmxLrqE3BhjvvjiCxMbG2tq1aplatSoYe69916zceNGj5qiS6O3bt3q0V7SOK/kUpeQx8XFFau9+DJwY4z58ssvTffu3U1AQIC5+eabzdSpU80777xzxUvIi7jdblO9enUjyfz9738vtvxSc3rzzTdNkyZNjNPpNB06dDDr168vcRv79+83MTExxul0mtDQUPPCCy+YpKSkMr+eZbmEvOiS/JIejRo18qov4EI+xpTjWXIA1LhxY7Vu3VrLli2r7KEAwA2Nc3IAAIAtcU4OUAmudEPA6tWrX9WN23BlRT8bcDnBwcHX5Mc57SonJ+eKv23FL4yjIhFygEpwpctjBw8erHnz5l2bwdygXn311RJ/APNCGRkZpb7kH8X97ne/0/z58y9bwxkTqEickwNUgk8++eSyy8PDwy97p2NcvQMHDnj8BENJunTpooCAgGs0IvvZvXu3Dh06dNmaq7mXE3AlhBwAAGBLnHgMAABs6YY+J6ewsFCHDh1S7dq1q/xvEgEAcKMwxujkyZMKDw+Xr++lj9fc0CHn0KFD191v3QAAgNL57rvv1KBBg0suv6FDTtEv3H733XfX3W/eAACAkrndbkVERFzxl+pv6JBT9BWVy+Ui5AAAUMVc6VQTTjwGAAC25FXImTVrlm6//XbryEd0dLQ+/vhja/m5c+cUHx+vm266SbVq1VK/fv2UlZXl0cfBgwcVFxenGjVqKCQkRM8//3yxX7xdu3at7rzzTjmdTjVv3rzEm6LNnDlTjRs3VkBAgKKiorRlyxZvpgIAAGzOq5DToEED/fGPf1Rqaqq2bdum++67T7/85S+1a9cuSdLo0aP1n//8R4sXL9a6det06NAhPfjgg9b6BQUFiouLU15enjZu3Kj58+dr3rx5mjhxolWTkZGhuLg43XvvvUpLS9OoUaP0xBNPaNWqVVbNwoULlZCQoEmTJumLL75Q27ZtFRsbqyNHjlzt/gAAAHZxtT9jXqdOHfP222+b7Oxs4+/vbxYvXmwt27Nnj5FkUlJSjDHGrFixwvj6+prMzEyrZtasWcblcpnc3FxjjDFjxowxt912m8c2+vfvb2JjY63nHTt2NPHx8dbzgoICEx4ebhITE70ae05OjpFkcnJyvFoPAABUntJ+fpf5nJyCggJ98MEHOn36tKKjo5Wamqrz58973KK7ZcuWatiwoVJSUiRJKSkpatOmjUJDQ62a2NhYud1u62hQSkpKsdt8x8bGWn3k5eUpNTXVo8bX11cxMTFWzaXk5ubK7XZ7PAAAgD15HXJ27NihWrVqyel0asSIEVqyZIkiIyOVmZkph8OhoKAgj/rQ0FDrF5czMzM9Ak7R8qJll6txu906e/asjh07poKCghJrrvTLzomJiQoMDLQe3CMHAAD78jrktGjRQmlpadq8ebOefvppDR48WLt3766IsZW78ePHKycnx3p89913lT0kAABQQby+T47D4VDz5s0lSe3bt9fWrVv1+uuvq3///srLy1N2drbH0ZysrCyFhYVJksLCwopdBVV09dWFNRdfkZWVlSWXy6Xq1avLz89Pfn5+JdYU9XEpTqdTTqfT2ykDAIAq6Krvk1NYWKjc3Fy1b99e/v7+Sk5Otpalp6fr4MGDio6OliRFR0drx44dHldBJSUlyeVyKTIy0qq5sI+imqI+HA6H2rdv71FTWFio5ORkqwYAAMCrIznjx49X79691bBhQ508eVILFizQ2rVrtWrVKgUGBmrYsGFKSEhQ3bp15XK59Mwzzyg6OlqdOnWSJPXs2VORkZEaNGiQpk2bpszMTE2YMEHx8fHWEZYRI0ZoxowZGjNmjB5//HGtWbNGixYt0vLly61xJCQkaPDgwerQoYM6duyo6dOn6/Tp0xo6dGg57hoAAFCleXPJ1uOPP24aNWpkHA6HCQ4ONj169DCrV6+2lp89e9b85je/MXXq1DE1atQwDzzwgDl8+LBHH998843p3bu3qV69uqlXr5559tlnzfnz5z1qPv30U9OuXTvjcDhM06ZNzdy5c4uN5Y033jANGzY0DofDdOzY0WzatMmbqRhjuIQcAICqqLSf3z7GGFPZQauyuN1uBQYGKicnh9+uAgCgiijt5ze/XQUAAGyJkAMAAGzJ60vIAVR951du8Hju36tLJY0EACoOR3IAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtVavsAQC4dvZve0uSVJh90GprHNS7soYDABWKIzkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWCDkAAMCWvAo5iYmJuuuuu1S7dm2FhISob9++Sk9P96i555575OPj4/EYMWKER83BgwcVFxenGjVqKCQkRM8//7zy8/M9atauXas777xTTqdTzZs317x584qNZ+bMmWrcuLECAgIUFRWlLVu2eDMdAABgY16FnHXr1ik+Pl6bNm1SUlKSzp8/r549e+r06dMedU8++aQOHz5sPaZNm2YtKygoUFxcnPLy8rRx40bNnz9f8+bN08SJE62ajIwMxcXF6d5771VaWppGjRqlJ554QqtWrbJqFi5cqISEBE2aNElffPGF2rZtq9jYWB05cqSs+wIAANiIjzHGlHXlo0ePKiQkROvWrVO3bt0k/XQkp127dpo+fXqJ63z88cf6+c9/rkOHDik0NFSSNHv2bI0dO1ZHjx6Vw+HQ2LFjtXz5cu3cudNab8CAAcrOztbKlSslSVFRUbrrrrs0Y8YMSVJhYaEiIiL0zDPPaNy4caUav9vtVmBgoHJycuRyucq6G4Aqw/qBzn2eP9Dp36tLZQ0JALxW2s/vqzonJycnR5JUt25dj/b3339f9erVU+vWrTV+/HidOXPGWpaSkqI2bdpYAUeSYmNj5Xa7tWvXLqsmJibGo8/Y2FilpKRIkvLy8pSamupR4+vrq5iYGKumJLm5uXK73R4PAABgT9XKumJhYaFGjRqlu+++W61bt7baH330UTVq1Ejh4eH68ssvNXbsWKWnp+tf//qXJCkzM9Mj4EiynmdmZl62xu126+zZs/rxxx9VUFBQYs3evXsvOebExERNmTKlrFMGAABVSJlDTnx8vHbu3KkNGzZ4tA8fPtz6/zZt2qh+/frq0aOH9u/fr2bNmpV9pOVg/PjxSkhIsJ673W5FRERU4ogAAEBFKVPIGTlypJYtW6b169erQYMGl62NioqSJO3bt0/NmjVTWFhYsaugsrKyJElhYWHWf4vaLqxxuVyqXr26/Pz85OfnV2JNUR8lcTqdcjqdpZskAACo0rw6J8cYo5EjR2rJkiVas2aNmjRpcsV10tLSJEn169eXJEVHR2vHjh0eV0ElJSXJ5XIpMjLSqklOTvboJykpSdHR0ZIkh8Oh9u3be9QUFhYqOTnZqgEAADc2r47kxMfHa8GCBfr3v/+t2rVrW+fQBAYGqnr16tq/f78WLFigPn366KabbtKXX36p0aNHq1u3brr99tslST179lRkZKQGDRqkadOmKTMzUxMmTFB8fLx1lGXEiBGaMWOGxowZo8cff1xr1qzRokWLtHz5cmssCQkJGjx4sDp06KCOHTtq+vTpOn36tIYOHVpe+wYAAFRhXoWcWbNmSfrpMvELzZ07V0OGDJHD4dAnn3xiBY6IiAj169dPEyZMsGr9/Py0bNkyPf3004qOjlbNmjU1ePBgvfTSS1ZNkyZNtHz5co0ePVqvv/66GjRooLfffluxsbFWTf/+/XX06FFNnDhRmZmZateunVauXFnsZGQAAHBjuqr75FR13CcHNxrukwPADq7JfXIAAACuV4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS16FnMTERN11112qXbu2QkJC1LdvX6Wnp3vUnDt3TvHx8brppptUq1Yt9evXT1lZWR41Bw8eVFxcnGrUqKGQkBA9//zzys/P96hZu3at7rzzTjmdTjVv3lzz5s0rNp6ZM2eqcePGCggIUFRUlLZs2eLNdAAAgI15FXLWrVun+Ph4bdq0SUlJSTp//rx69uyp06dPWzWjR4/Wf/7zHy1evFjr1q3ToUOH9OCDD1rLCwoKFBcXp7y8PG3cuFHz58/XvHnzNHHiRKsmIyNDcXFxuvfee5WWlqZRo0bpiSee0KpVq6yahQsXKiEhQZMmTdIXX3yhtm3bKjY2VkeOHLma/QEAAGzCxxhjyrry0aNHFRISonXr1qlbt27KyclRcHCwFixYoIceekiStHfvXrVq1UopKSnq1KmTPv74Y/385z/XoUOHFBoaKkmaPXu2xo4dq6NHj8rhcGjs2LFavny5du7caW1rwIABys7O1sqVKyVJUVFRuuuuuzRjxgxJUmFhoSIiIvTMM89o3LhxpRq/2+1WYGCgcnJy5HK5yrobgCpj/7a3JEmF+w5abY2Desu/V5fKGhIAeK20n99XdU5OTk6OJKlu3bqSpNTUVJ0/f14xMTFWTcuWLdWwYUOlpKRIklJSUtSmTRsr4EhSbGys3G63du3aZdVc2EdRTVEfeXl5Sk1N9ajx9fVVTEyMVVOS3Nxcud1ujwcAALCnMoecwsJCjRo1Snfffbdat24tScrMzJTD4VBQUJBHbWhoqDIzM62aCwNO0fKiZZercbvdOnv2rI4dO6aCgoISa4r6KEliYqICAwOtR0REhPcTBwAAVUKZQ058fLx27typDz74oDzHU6HGjx+vnJwc6/Hdd99V9pAAAEAFqVaWlUaOHKlly5Zp/fr1atCggdUeFhamvLw8ZWdnexzNycrKUlhYmFVz8VVQRVdfXVhz8RVZWVlZcrlcql69uvz8/OTn51diTVEfJXE6nXI6nd5PGAAAVDleHckxxmjkyJFasmSJ1qxZoyZNmngsb9++vfz9/ZWcnGy1paen6+DBg4qOjpYkRUdHa8eOHR5XQSUlJcnlcikyMtKqubCPopqiPhwOh9q3b+9RU1hYqOTkZKsGAADc2Lw6khMfH68FCxbo3//+t2rXrm2d/xIYGKjq1asrMDBQw4YNU0JCgurWrSuXy6VnnnlG0dHR6tSpkySpZ8+eioyM1KBBgzRt2jRlZmZqwoQJio+Pt46yjBgxQjNmzNCYMWP0+OOPa82aNVq0aJGWL19ujSUhIUGDBw9Whw4d1LFjR02fPl2nT5/W0KFDy2vfAACAKsyrkDNr1ixJ0j333OPRPnfuXA0ZMkSS9Nprr8nX11f9+vVTbm6uYmNj9eabb1q1fn5+WrZsmZ5++mlFR0erZs2aGjx4sF566SWrpkmTJlq+fLlGjx6t119/XQ0aNNDbb7+t2NhYq6Z///46evSoJk6cqMzMTLVr104rV64sdjIyAAC4MV3VfXKqOu6TgxsN98kBYAfX5D45AAAA1ytCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCVCDgAAsCWvQ8769et1//33Kzw8XD4+Plq6dKnH8iFDhsjHx8fj0atXL4+aEydOaODAgXK5XAoKCtKwYcN06tQpj5ovv/xSXbt2VUBAgCIiIjRt2rRiY1m8eLFatmypgIAAtWnTRitWrPB2OgAAwKa8DjmnT59W27ZtNXPmzEvW9OrVS4cPH7Ye//jHPzyWDxw4ULt27VJSUpKWLVum9evXa/jw4dZyt9utnj17qlGjRkpNTdUrr7yiyZMna86cOVbNxo0b9cgjj2jYsGHavn27+vbtq759+2rnzp3eTgkAANiQjzHGlHllHx8tWbJEffv2tdqGDBmi7OzsYkd4iuzZs0eRkZHaunWrOnToIElauXKl+vTpo++//17h4eGaNWuWXnzxRWVmZsrhcEiSxo0bp6VLl2rv3r2SpP79++v06dNatmyZ1XenTp3Url07zZ49u1Tjd7vdCgwMVE5OjlwuVxn2AFC17N/2liSpcN9Bq61xUG/59+pSWUMCAK+V9vO7Qs7JWbt2rUJCQtSiRQs9/fTTOn78uLUsJSVFQUFBVsCRpJiYGPn6+mrz5s1WTbdu3ayAI0mxsbFKT0/Xjz/+aNXExMR4bDc2NlYpKSmXHFdubq7cbrfHAwAA2FO5h5xevXrpvffeU3Jysv7f//t/WrdunXr37q2CggJJUmZmpkJCQjzWqVatmurWravMzEyrJjQ01KOm6PmVaoqWlyQxMVGBgYHWIyIi4uomCwAArlvVyrvDAQMGWP/fpk0b3X777WrWrJnWrl2rHj16lPfmvDJ+/HglJCRYz91uN0EHAACbqvBLyJs2bap69epp3759kqSwsDAdOXLEoyY/P18nTpxQWFiYVZOVleVRU/T8SjVFy0vidDrlcrk8HgAAwJ4qPOR8//33On78uOrXry9Jio6OVnZ2tlJTU62aNWvWqLCwUFFRUVbN+vXrdf78easmKSlJLVq0UJ06daya5ORkj20lJSUpOjq6oqcEAACqAK9DzqlTp5SWlqa0tDRJUkZGhtLS0nTw4EGdOnVKzz//vDZt2qRvvvlGycnJ+uUvf6nmzZsrNjZWktSqVSv16tVLTz75pLZs2aLPP/9cI0eO1IABAxQeHi5JevTRR+VwODRs2DDt2rVLCxcu1Ouvv+7xVdPvfvc7rVy5Un/605+0d+9eTZ48Wdu2bdPIkSPLYbcAAICqzuuQs23bNt1xxx264447JEkJCQm64447NHHiRPn5+enLL7/UL37xC916660aNmyY2rdvr88++0xOp9Pq4/3331fLli3Vo0cP9enTR126dPG4B05gYKBWr16tjIwMtW/fXs8++6wmTpzocS+dzp07a8GCBZozZ47atm2rf/7zn1q6dKlat259NfsDAADYxFXdJ6eq4z45uNFwnxwAdlCp98kBAACobIQcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS4QcAABgS16HnPXr1+v+++9XeHi4fHx8tHTpUo/lxhhNnDhR9evXV/Xq1RUTE6Ovv/7ao+bEiRMaOHCgXC6XgoKCNGzYMJ06dcqj5ssvv1TXrl0VEBCgiIgITZs2rdhYFi9erJYtWyogIEBt2rTRihUrvJ0OAACwKa9DzunTp9W2bVvNnDmzxOXTpk3TX/7yF82ePVubN29WzZo1FRsbq3Pnzlk1AwcO1K5du5SUlKRly5Zp/fr1Gj58uLXc7XarZ8+eatSokVJTU/XKK69o8uTJmjNnjlWzceNGPfLIIxo2bJi2b9+uvn37qm/fvtq5c6e3UwIAADbkY4wxZV7Zx0dLlixR3759Jf10FCc8PFzPPvusnnvuOUlSTk6OQkNDNW/ePA0YMEB79uxRZGSktm7dqg4dOkiSVq5cqT59+uj7779XeHi4Zs2apRdffFGZmZlyOBySpHHjxmnp0qXau3evJKl///46ffq0li1bZo2nU6dOateunWbPnl2q8bvdbgUGBionJ0cul6usuwGoMvZve0uSVLjvoNXWOKi3/Ht1qawhAYDXSvv5Xa7n5GRkZCgzM1MxMTFWW2BgoKKiopSSkiJJSklJUVBQkBVwJCkmJka+vr7avHmzVdOtWzcr4EhSbGys0tPT9eOPP1o1F26nqKZoOyXJzc2V2+32eAAAAHsq15CTmZkpSQoNDfVoDw0NtZZlZmYqJCTEY3m1atVUt25dj5qS+rhwG5eqKVpeksTERAUGBlqPiIgIb6cIAACqiBvq6qrx48crJyfHenz33XeVPSQAAFBByjXkhIWFSZKysrI82rOysqxlYWFhOnLkiMfy/Px8nThxwqOmpD4u3MalaoqWl8TpdMrlcnk8AACAPZVryGnSpInCwsKUnJxstbndbm3evFnR0dGSpOjoaGVnZys1NdWqWbNmjQoLCxUVFWXVrF+/XufPn7dqkpKS1KJFC9WpU8equXA7RTVF2wEAADc2r0POqVOnlJaWprS0NEk/nWyclpamgwcPysfHR6NGjdLLL7+sjz76SDt27NBjjz2m8PBw6wqsVq1aqVevXnryySe1ZcsWff755xo5cqQGDBig8PBwSdKjjz4qh8OhYcOGadeuXVq4cKFef/11JSQkWOP43e9+p5UrV+pPf/qT9u7dq8mTJ2vbtm0aOXLk1e8VAABQ5VXzdoVt27bp3nvvtZ4XBY/Bgwdr3rx5GjNmjE6fPq3hw4crOztbXbp00cqVKxUQEGCt8/7772vkyJHq0aOHfH191a9fP/3lL3+xlgcGBmr16tWKj49X+/btVa9ePU2cONHjXjqdO3fWggULNGHCBL3wwgu65ZZbtHTpUrVu3bpMOwIAANjLVd0np6rjPjm40XCfHAB2UCn3yQEAALheEHIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtEXIAAIAtlXvImTx5snx8fDweLVu2tJafO3dO8fHxuummm1SrVi3169dPWVlZHn0cPHhQcXFxqlGjhkJCQvT8888rPz/fo2bt2rW688475XQ61bx5c82bN6+8pwIAAKqwCjmSc9ttt+nw4cPWY8OGDday0aNH6z//+Y8WL16sdevW6dChQ3rwwQet5QUFBYqLi1NeXp42btyo+fPna968eZo4caJVk5GRobi4ON17771KS0vTqFGj9MQTT2jVqlUVMR0AAFAFVauQTqtVU1hYWLH2nJwcvfPOO1qwYIHuu+8+SdLcuXPVqlUrbdq0SZ06ddLq1au1e/duffLJJwoNDVW7du00depUjR07VpMnT5bD4dDs2bPVpEkT/elPf5IktWrVShs2bNBrr72m2NjYipgSAACoYirkSM7XX3+t8PBwNW3aVAMHDtTBgwclSampqTp//rxiYmKs2pYtW6phw4ZKSUmRJKWkpKhNmzYKDQ21amJjY+V2u7Vr1y6r5sI+imqK+riU3Nxcud1ujwcAALCncg85UVFRmjdvnlauXKlZs2YpIyNDXbt21cmTJ5WZmSmHw6GgoCCPdUJDQ5WZmSlJyszM9Ag4RcuLll2uxu126+zZs5ccW2JiogIDA61HRETE1U4XAABcp8r966revXtb/3/77bcrKipKjRo10qJFi1S9evXy3pxXxo8fr4SEBOu52+0m6AAAYFMVfgl5UFCQbr31Vu3bt09hYWHKy8tTdna2R01WVpZ1Dk9YWFixq62Knl+pxuVyXTZIOZ1OuVwujwcAALCnCg85p06d0v79+1W/fn21b99e/v7+Sk5Otpanp6fr4MGDio6OliRFR0drx44dOnLkiFWTlJQkl8ulyMhIq+bCPopqivoAAAAo95Dz3HPPad26dfrmm2+0ceNGPfDAA/Lz89MjjzyiwMBADRs2TAkJCfr000+VmpqqoUOHKjo6Wp06dZIk9ezZU5GRkRo0aJD++9//atWqVZowYYLi4+PldDolSSNGjNCBAwc0ZswY7d27V2+++aYWLVqk0aNHl/d0AABAFVXu5+R8//33euSRR3T8+HEFBwerS5cu2rRpk4KDgyVJr732mnx9fdWvXz/l5uYqNjZWb775prW+n5+fli1bpqefflrR0dGqWbOmBg8erJdeesmqadKkiZYvX67Ro0fr9ddfV4MGDfT2229z+TgAALD4GGNMZQ+isrjdbgUGBionJ4fzc3BD2L/tLUlS4b6DVlvjoN7y79WlsoYEAF4r7ec3v10FAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsiZADAABsqVplDwBAyc6v3FCszb9Xl0oYCQBUTYQc4DpRUqi5Ug2hBwAujZADVGEc7QGASyPkAJWgNEdtyqtvQg+AGxUhB7gGrjbUfJP9cbG2xkG9vd52YfbBqxoHAFQlhBygnJXHUZqSQs2VakobekrC114A7IiQA1ylijhK4zUjHT64Wn7nfVXgX6jc2gWST/kFn0JTqD1mv340btXxcamVTzP5+hS/AwXByF4KTIH2HN+uH88dU52Aemp10x3y8/Gr7GEBpVblQ87MmTP1yiuvKDMzU23bttUbb7yhjh07VvawYBMVce5MuYSaC1Q/UU1BB6urWt7/hY58R6GyG57VN7r6bW0u/K/m5X+o48q22m5SkIZU66co37YetRV5rhEB6tpKOZSsd3a+ouPnjlhtNwWEaFjr5xUd3qMSRwaUno8xxlT2IMpq4cKFeuyxxzR79mxFRUVp+vTpWrx4sdLT0xUSEnLF9d1utwIDA5WTkyOXy3UNRozrmbcf0KU5T6a8A83Fqp+oppv21ZAk+cjHajf66a/18eZndLZufpn73+GXqb85tut/N/B//vddY1DeHWpTECbp6o4aXUulCUs3+snbKYeSNW3bGFkvtOWnPwRjOkwj6KBSlfbzu0qHnKioKN11112aMWOGJKmwsFARERF65plnNG7cuCuuT8i5sZVHqKlURqr/39ryy/PxCDj/t9iowGF0uO1JlbD4igpllBiwVjk+50pe30iBJkDjz90j37JsoJSqSni6lioydBWYAj2VFOdxBMeTj+oFhGj2z5bx1RUqTWk/v6vs11V5eXlKTU3V+PHjrTZfX1/FxMQoJSWlxHVyc3OVm5trPc/JyZH0087C9el8Usmv5aUczEmqoJFcfxwn/XTmZN7li3KlvCP5yqtd4HX/B3xP6JhOX7bmmE5r57lMNS2s63X/pbXzzNIK6/t60zDwZ6Ur/HBVhY1hj9mvzPzDl605fOaQUj58S618mlXYOIr4/yza47m37wml7RdVS9Hn9pWO01TZkHPs2DEVFBQoNDTUoz00NFR79+4tcZ3ExERNmTKlWHtERESFjBG4ESzXl5U9BBv5U2UPoNSWK76yhwDo5MmTCgwMvOTyKhtyymL8+PFKSEiwnhcWFurEiRO66aab5ONTtsPtbrdbERER+u6772z7ldeNMEeJedrNjTDPG2GOEvO0k/KaozFGJ0+eVHh4+GXrqmzIqVevnvz8/JSVleXRnpWVpbCwsBLXcTqdcjqdHm1BQUHlMh6Xy2XbP5RFboQ5SszTbm6Eed4Ic5SYp52UxxwvdwSnSPEbXVQRDodD7du3V3JystVWWFio5ORkRUfzXSsAADe6KnskR5ISEhI0ePBgdejQQR07dtT06dN1+vRpDR06tLKHBgAAKlmVDjn9+/fX0aNHNXHiRGVmZqpdu3ZauXJlsZORK5LT6dSkSZOKfQ1mJzfCHCXmaTc3wjxvhDlKzNNOrvUcq/R9cgAAAC6lyp6TAwAAcDmEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHC+dOHFCAwcOlMvlUlBQkIYNG6ZTp05dcb2UlBTdd999qlmzplwul7p166azZ89egxGXTVnnKf10u+3evXvLx8dHS5curdiBXiVv53nixAk988wzatGihapXr66GDRvqt7/9rfVjr9eLmTNnqnHjxgoICFBUVJS2bNly2frFixerZcuWCggIUJs2bbRixYprNNKy82aOf/3rX9W1a1fVqVNHderUUUxMzBX3yfXC29eyyAcffCAfHx/17du3YgdYTrydZ3Z2tuLj41W/fn05nU7deuut1/2fW2/nOH36dOu9JiIiQqNHj9a5c+eu0WjLZv369br//vsVHh5e6s+AtWvX6s4775TT6VTz5s01b9688huQgVd69epl2rZtazZt2mQ+++wz07x5c/PII49cdp2NGzcal8tlEhMTzc6dO83evXvNwoULzblz567RqL1XlnkW+fOf/2x69+5tJJklS5ZU7ECvkrfz3LFjh3nwwQfNRx99ZPbt22eSk5PNLbfcYvr163cNR315H3zwgXE4HObdd981u3btMk8++aQJCgoyWVlZJdZ//vnnxs/Pz0ybNs3s3r3bTJgwwfj7+5sdO3Zc45GXnrdzfPTRR83MmTPN9u3bzZ49e8yQIUNMYGCg+f7776/xyL3j7TyLZGRkmJtvvtl07drV/PKXv7w2g70K3s4zNzfXdOjQwfTp08ds2LDBZGRkmLVr15q0tLRrPPLS83aO77//vnE6neb99983GRkZZtWqVaZ+/fpm9OjR13jk3lmxYoV58cUXzb/+9a9SfQYcOHDA1KhRwyQkJJjdu3ebN954w/j5+ZmVK1eWy3gIOV7YvXu3kWS2bt1qtX388cfGx8fH/PDDD5dcLyoqykyYMOFaDLFclHWexhizfft2c/PNN5vDhw9f9yHnauZ5oUWLFhmHw2HOnz9fEcP0WseOHU18fLz1vKCgwISHh5vExMQS63/1q1+ZuLg4j7aoqCjz1FNPVeg4r4a3c7xYfn6+qV27tpk/f35FDbFclGWe+fn5pnPnzubtt982gwcPrhIhx9t5zpo1yzRt2tTk5eVdqyFeNW/nGB8fb+677z6PtoSEBHP33XdX6DjLU2k+A8aMGWNuu+02j7b+/fub2NjYchkDX1d5ISUlRUFBQerQoYPVFhMTI19fX23evLnEdY4cOaLNmzcrJCREnTt3VmhoqLp3764NGzZcq2F7rSzzlKQzZ87o0Ucf1cyZMy/5I6nXk7LO82I5OTlyuVyqVq3ybyCel5en1NRUxcTEWG2+vr6KiYlRSkpKieukpKR41EtSbGzsJesrW1nmeLEzZ87o/Pnzqlu3bkUN86qVdZ4vvfSSQkJCNGzYsGsxzKtWlnl+9NFHio6OVnx8vEJDQ9W6dWv94Q9/UEFBwbUatlfKMsfOnTsrNTXV+krrwIEDWrFihfr06XNNxnytVPT7T+W/K1chmZmZCgkJ8WirVq2a6tatq8zMzBLXOXDggCRp8uTJevXVV9WuXTu999576tGjh3bu3KlbbrmlwsftrbLMU5JGjx6tzp0765e//GVFD7FclHWeFzp27JimTp2q4cOHV8QQvXbs2DEVFBQU+2mT0NBQ7d27t8R1MjMzS6wv7T641soyx4uNHTtW4eHhxd5crydlmeeGDRv0zjvvKC0t7RqMsHyUZZ4HDhzQmjVrNHDgQK1YsUL79u3Tb37zG50/f16TJk26FsP2Slnm+Oijj+rYsWPq0qWLjDHKz8/XiBEj9MILL1yLIV8zl3r/cbvdOnv2rKpXr35V/XMkR9K4cePk4+Nz2Udp3zwvVlhYKEl66qmnNHToUN1xxx167bXX1KJFC7377rvlOY0rqsh5fvTRR1qzZo2mT59evoMug4qc54Xcbrfi4uIUGRmpyZMnX/3AcU388Y9/1AcffKAlS5YoICCgsodTbk6ePKlBgwbpr3/9q+rVq1fZw6lQhYWFCgkJ0Zw5c9S+fXv1799fL774ombPnl3ZQys3a9eu1R/+8Ae9+eab+uKLL/Svf/1Ly5cv19SpUyt7aFUKR3IkPfvssxoyZMhla5o2baqwsDAdOXLEoz0/P18nTpy45Ncz9evXlyRFRkZ6tLdq1UoHDx4s+6DLoCLnuWbNGu3fv19BQUEe7f369VPXrl21du3aqxi5dypynkVOnjypXr16qXbt2lqyZIn8/f2vdtjlol69evLz81NWVpZHe1ZW1iXnFBYW5lV9ZSvLHIu8+uqr+uMf/6hPPvlEt99+e0UO86p5O8/9+/frm2++0f3332+1Ff0jq1q1akpPT1ezZs0qdtBlUJbXs379+vL395efn5/V1qpVK2VmZiovL08Oh6NCx+ytsszxf/7nfzRo0CA98cQTkqQ2bdro9OnTGj58uF588UX5+trjGMWl3n9cLtdVH8WRCDmSpODgYAUHB1+xLjo6WtnZ2UpNTVX79u0l/fThXlhYqKioqBLXady4scLDw5Wenu7R/tVXX6l3795XP3gvVOQ8x40bZ/1lLNKmTRu99tprHm+610JFzlP66QhObGysnE6nPvroo+vqaIDD4VD79u2VnJxsXTpcWFio5ORkjRw5ssR1oqOjlZycrFGjRlltSUlJio6OvgYj9l5Z5ihJ06ZN0+9//3utWrXK4zys65W382zZsqV27Njh0TZhwgSdPHlSr7/+uiIiIq7FsL1Wltfz7rvv1oIFC1RYWGh92H/11VeqX7/+dRdwpLLN8cyZM8WCTFGoMzb6Xe3o6Ohil/6X6/tPuZy+fAPp1auXueOOO8zmzZvNhg0bzC233OJxyfH3339vWrRoYTZv3my1vfbaa8blcpnFixebr7/+2kyYMMEEBASYffv2VcYUSqUs87yYrvOrq4zxfp45OTkmKirKtGnTxuzbt88cPnzYeuTn51fWNDx88MEHxul0mnnz5pndu3eb4cOHm6CgIJOZmWmMMWbQoEFm3LhxVv3nn39uqlWrZl599VWzZ88eM2nSpCpxCbk3c/zjH/9oHA6H+ec//+nxmp08ebKyplAq3s7zYlXl6ipv53nw4EFTu3ZtM3LkSJOenm6WLVtmQkJCzMsvv1xZU7gib+c4adIkU7t2bfOPf/zDHDhwwKxevdo0a9bM/OpXv6qsKZTKyZMnzfbt28327duNJPPnP//ZbN++3Xz77bfGGGPGjRtnBg0aZNUXXUL+/PPPmz179piZM2dyCXllOn78uHnkkUdMrVq1jMvlMkOHDvV4o8zIyDCSzKeffuqxXmJiomnQoIGpUaOGiY6ONp999tk1Hrl3yjrPC1WFkOPtPD/99FMjqcRHRkZG5UyiBG+88YZp2LChcTgcpmPHjmbTpk3Wsu7du5vBgwd71C9atMjceuutxuFwmNtuu80sX778Go/Ye97MsVGjRiW+ZpMmTbr2A/eSt6/lhapKyDHG+3lu3LjRREVFGafTaZo2bWp+//vfXzf/0LgUb+Z4/vx5M3nyZNOsWTMTEBBgIiIizG9+8xvz448/XvuBe+FS75FFcxs8eLDp3r17sXXatWtnHA6Hadq0qZk7d265jcfHGBsd9wIAAPhf9jhzCQAA4CKEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEuEHAAAYEv/HxdekBuB8C5gAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ79JREFUeJzt3Xl4FGW+9vE7CXSHrYNIFiJhVyCyRIOEIDuRAHFhxBlQBwOCLBM4A1FZhMOinoMvOiPMsMlRCZ6RYVFxHMBgDAIiYTGSYZPIEkUHOoCYNGtCknr/8E29NAmQzkJI8f1cV19aT/3qqeephs5NdVXFyzAMQwAAABbjXdkDAAAAqAiEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHAAAYEmEHABltmnTJnl5eWnTpk3l2q+Xl5dmzpxZrn16KiEhQV5eXvr+++8rtM8ePXqoR48eHvflybEv7T48MXPmTHl5eVXoPoCSIuQAV9m2bZtmzpyprKysyh7KbWH9+vWVHmRQubZs2aJHH31UISEh8vX1VVBQkPr27auvvvqqsoeGKq5aZQ8AuNVs27ZNs2bN0tChQ1W3bt3KHo7lrV+/XgsWLCg26Fy8eFHVqlXux9SQIUM0ePBg2e32Ct3PZ599VqrtunXrposXL8pms5XziG6e7777Tt7e3ho9erSCgoL0yy+/6G9/+5u6deumdevWqW/fvpU9RFRRhBzgNnbhwgXVrFmzSHteXp4KCgoq/Qenr69vpe5fknx8fOTj41Ph+yntsfb29r4ljlNZjBgxQiNGjHBr+8Mf/qBmzZpp7ty5hByUGl9XAVeYOXOmXnzxRUlS06ZN5eXlZV47kZeXp1deeUXNmzeX3W5XkyZN9NJLLyknJ8etjyZNmujhhx/WZ599prCwMPn6+io0NFQfffRRqcb0t7/9TR07dlTNmjV1xx13qFu3bkX+1b9w4ULde++9stvtCg4OVlxcXJGv23r06KE2bdooNTVV3bp1U82aNfXSSy/p+++/l5eXl9544w3NnTvXnN+BAwckSQcPHtQTTzyhevXqydfXVx06dNAnn3xyw3F/+eWX+u1vf6tGjRrJbrcrJCREEyZM0MWLF82aoUOHasGCBZJkHusrr+co7pqc3bt3q1+/fnI4HKpdu7Z69+6t7du3u9UUXvPy1VdfKT4+Xv7+/qpVq5Z+85vf6NSpUzcce3F9XXn9TOF7vHXrVnXs2FG+vr5q1qyZ3nvvvSLb79+/X7169VKNGjXUsGFDvfrqqyooKChSd+X1MpmZmapWrZpmzZpVpC49PV1eXl6aP3++pGtfk7NkyRI1b95cNWrUUMeOHfXll1+WaG7X6rMk72d5qlmzpvz9/fnaGGXCmRzgCo8//ri+++47/f3vf9ebb76p+vXrS5L8/f01YsQILVu2TE888YSef/557dixQ7Nnz9a3336rNWvWuPVz6NAhDRo0SKNHj1ZsbKyWLl2q3/72t0pMTNRDDz1U4vHMmjVLM2fOVOfOnfXyyy/LZrNpx44d2rhxo/r06SPp12A2a9YsRUVFacyYMUpPT9eiRYu0a9cuffXVV6pevbrZ388//6x+/fpp8ODB+v3vf6/AwEBz3dKlS3Xp0iWNHDlSdrtd9erV0/79+/Xggw/qrrvu0uTJk1WrVi2tWrVKAwYM0Icffqjf/OY31xz76tWrdeHCBY0ZM0Z33nmndu7cqb/+9a/66aeftHr1aknSqFGjdPz4cSUlJel///d/b3g89u/fr65du8rhcGjixImqXr263nrrLfXo0UObN29WRESEW/24ceN0xx13aMaMGfr+++81d+5cjR07VitXrizxe3Athw8f1hNPPKHhw4crNjZW7777roYOHarw8HDde++9kiSn06mePXsqLy/PPH5LlixRjRo1rtt3YGCgunfvrlWrVmnGjBlu61auXCkfHx/99re/veb277zzjkaNGqXOnTtr/PjxOnr0qB599FHVq1dPISEhpZpvSd7PsnK5XMrNzdXp06f13nvvad++fXrppZfKpW/cpgwAbl5//XVDkpGRkWG2paWlGZKMESNGuNW+8MILhiRj48aNZlvjxo0NScaHH35otmVnZxsNGjQw7rvvvhKP49ChQ4a3t7fxm9/8xsjPz3dbV1BQYBiGYZw8edKw2WxGnz593Grmz59vSDLeffdds6179+6GJGPx4sVufWVkZBiSDIfDYZw8edJtXe/evY22bdsaly5dctt3586djbvvvtts++KLLwxJxhdffGG2XbhwocicZs+ebXh5eRk//PCD2RYXF2dc66NIkjFjxgxzecCAAYbNZjOOHDlith0/ftyoU6eO0a1bN7Nt6dKlhiQjKirKPFaGYRgTJkwwfHx8jKysrGL3V5zCvq7881D4Hm/ZssVsO3nypGG3243nn3/ebBs/frwhydixY4dbnZ+fX5E+u3fvbnTv3t1cfuuttwxJxt69e93GExoaavTq1ctcvvrY5+bmGgEBAUZYWJiRk5Nj1i1ZssSQ5LaP4uZWXJ+GUfL3c8aMGdd8P28kOjrakGRIMmw2mzFq1Cjj4sWLpeoLMAzD4OsqoATWr18vSYqPj3drf/755yVJ69atc2sPDg52O8vhcDj0zDPPaPfu3XI6nSXa58cff6yCggJNnz5d3t7uf1ULv9L5/PPPlZubq/Hjx7vVPPfcc3I4HEXGZbfbNWzYsGL3N3DgQPn7+5vLZ86c0caNG/W73/1OZ8+e1enTp3X69Gn9/PPPio6O1qFDh/Tvf//7muO/8mzF+fPndfr0aXXu3FmGYWj37t0lOgZXys/P12effaYBAwaoWbNmZnuDBg301FNPaevWrXK5XG7bjBw50u3rr65duyo/P18//PCDx/u/WmhoqLp27Wou+/v7q2XLljp69KjZtn79enXq1EkdO3Z0q3v66adv2P/jjz+uatWquZ112rdvnw4cOKBBgwZdc7uvv/5aJ0+e1OjRo92u8xk6dKj8/PxKPL+rlff7WZzXXntNn332md555x116tRJubm5ysvLK5e+cXsi5AAl8MMPP8jb21stWrRwaw8KClLdunWL/NBs0aJFkWeF3HPPPZJU4uetHDlyRN7e3goNDb3uuCSpZcuWbu02m03NmjUrMq677rrrmhe4Nm3a1G358OHDMgxD//mf/yl/f3+3V+FXKCdPnrzm2I4dO6ahQ4eqXr16ql27tvz9/dW9e3dJUnZ29jW3u5ZTp07pwoULReYqSa1bt1ZBQYF+/PFHt/ZGjRq5Ld9xxx2SpF9++cXj/V/t6r4L+7+y7x9++EF33313kbri5nC1+vXrq3fv3lq1apXZtnLlSlWrVk2PP/74NbcrfM+v3m/16tXdwqGnyvv9LE5YWJgeeughPfvss0pKStLOnTs1dOjQcukbtyeuyQE8UNUfcna9a0GuXld4cewLL7yg6OjoYre5OvQVys/P10MPPaQzZ85o0qRJatWqlWrVqqV///vfGjp0aLEX3laEa90VZRjGLd13ocGDB2vYsGFKS0tTWFiYVq1apd69e5vXipXVtf485+fnF1m+2e+nzWbTo48+qtdee00XL1684XVMQHEIOcBVivvgb9y4sQoKCnTo0CG1bt3abM/MzFRWVpYaN27sVl94FuTKvr777jtJv96ZUxLNmzdXQUGBDhw4oLCwsGJrCvebnp7u9q/03NxcZWRkKCoqqkT7Kk5hf9WrV/e4n7179+q7777TsmXL9Mwzz5jtSUlJRWpLGhz9/f1Vs2ZNpaenF1l38OBBeXt7l/qi2orSuHFjHTp0qEh7cXMozoABAzRq1CjzK6vvvvtOU6ZMueE+pV8vfu/Vq5fZfvnyZWVkZKh9+/ZmW+GZravvYLr6DKAn72d5unjxogzD0NmzZwk5KBW+rgKuUqtWLUnuH/z9+/eXJM2dO9et9s9//rMkKSYmxq39+PHjbndcuVwuvffeewoLC1NQUFCJxjFgwAB5e3vr5ZdfLvIv5cKzBVFRUbLZbPrLX/7idgbhnXfeUXZ2dpFxeSIgIEA9evTQW2+9pRMnThRZf71bsQvPclw5JsMwNG/evCK1xR3va/XZp08f/eMf/3D7yi8zM1PLly9Xly5d5HA4rtvHzda/f39t375dO3fuNNtOnTql999/v0Tb161bV9HR0Vq1apVWrFghm82mAQMGXHebDh06yN/fX4sXL1Zubq7ZnpCQUOQYN2/eXNKvTxwulJ+fryVLlrjVefJ+lkZxX3tmZWXpww8/VEhIiAICAsplP7j9cCYHuEp4eLgkaerUqRo8eLCqV6+uRx55RLGxsVqyZImysrLUvXt37dy5U8uWLdOAAQPUs2dPtz7uueceDR8+XLt27VJgYKDeffddZWZmaunSpSUeR4sWLTR16lS98sor6tq1qx5//HHZ7Xbt2rVLwcHBmj17tvz9/TVlyhTNmjVLffv21aOPPqr09HQtXLhQDzzwgH7/+9+X6VgsWLBAXbp0Udu2bfXcc8+pWbNmyszMVEpKin766Sf961//Kna7Vq1aqXnz5nrhhRf073//Ww6HQx9++GGx18IUHu//+I//UHR0tHx8fDR48OBi+3311VeVlJSkLl266A9/+IOqVaumt956Szk5OZozZ06Z5loRJk6cqP/93/9V37599cc//tG8hbxx48bas2dPifoYNGiQfv/732vhwoWKjo6+4VO4q1evrldffVWjRo1Sr169NGjQIGVkZGjp0qVFrsm599571alTJ02ZMkVnzpxRvXr1tGLFiiIX+3ryfpZGv3791LBhQ0VERCggIEDHjh3T0qVLdfz48XK53R+3sUq5pwu4xb3yyivGXXfdZXh7e5u32F6+fNmYNWuW0bRpU6N69epGSEiIMWXKFLfbqw3j19uLY2JijA0bNhjt2rUz7Ha70apVK2P16tWlGsu7775r3HfffYbdbjfuuOMOo3v37kZSUpJbzfz5841WrVoZ1atXNwIDA40xY8YYv/zyi1tN9+7djXvvvbdI/4W3kL/++uvF7v/IkSPGM888YwQFBRnVq1c37rrrLuPhhx82PvjgA7OmuFuODxw4YERFRRm1a9c26tevbzz33HPGv/71L0OSsXTpUrMuLy/PGDdunOHv7294eXm53X6sq24hNwzD+Oabb4zo6Gijdu3aRs2aNY2ePXsa27Ztc6spvDV6165dbu3FjfNGrnULeUxMTJHaq28DNwzD2LNnj9G9e3fD19fXuOuuu4xXXnnFeOedd254C3khl8tl1KhRw5Bk/O1vfyuy/lpzWrhwodG0aVPDbrcbHTp0MLZs2VLsPo4cOWJERUUZdrvdCAwMNF566SUjKSmp1O9naW4hnz9/vtGlSxejfv36RrVq1Qx/f3/jkUcecbtFHygNL8Mox6vkAKhJkyZq06aN1q5dW9lDAYDbGtfkAAAAS+KaHKAS3OiBgDVq1CjTg9twY+fOndO5c+euW+Pv739TfjmnVWVnZ9/wd1uV9EJ8oDQIOUAlaNCgwXXXx8bGKiEh4eYM5jb1xhtvFPsLMK+UkZFR4lv+UdQf//hHLVu27Lo1XDGBisQ1OUAl+Pzzz6+7Pjg4+LpPOkbZHT161O1XMBSnS5cu8vX1vUkjsp4DBw7o+PHj160py7OcgBsh5AAAAEviwmMAAGBJt/U1OQUFBTp+/Ljq1KlT5X8nEQAAtwvj//26j+DgYHl7X/t8zW0dco4fP37L/a4bAABQMj/++KMaNmx4zfW3dcipU6eOpF8P0q32O28AAEDxXC6XQkJCzJ/j13Jbh5zCr6gcDgchBwCAKuZGl5pw4TEAALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALCkapU9AAA31+XErW7L1ft2qaSRAEDF8uhMzqJFi9SuXTs5HA45HA5FRkbq008/Ndf36NFDXl5ebq/Ro0e79XHs2DHFxMSoZs2aCggI0Isvvqi8vDy3mk2bNun++++X3W5XixYtlJCQUGQsCxYsUJMmTeTr66uIiAjt3LnTk6kAAACL8yjkNGzYUK+99ppSU1P19ddfq1evXnrssce0f/9+s+a5557TiRMnzNecOXPMdfn5+YqJiVFubq62bdumZcuWKSEhQdOnTzdrMjIyFBMTo549eyotLU3jx4/XiBEjtGHDBrNm5cqVio+P14wZM/TNN9+offv2io6O1smTJ8tyLAAAgIV4GYZhlKWDevXq6fXXX9fw4cPVo0cPhYWFae7cucXWfvrpp3r44Yd1/PhxBQYGSpIWL16sSZMm6dSpU7LZbJo0aZLWrVunffv2mdsNHjxYWVlZSkxMlCRFRETogQce0Pz58yVJBQUFCgkJ0bhx4zR58uQSj93lcsnPz0/Z2dlyOBylPAJA1cLXVQCqupL+/C71hcf5+flasWKFzp8/r8jISLP9/fffV/369dWmTRtNmTJFFy5cMNelpKSobdu2ZsCRpOjoaLlcLvNsUEpKiqKiotz2FR0drZSUFElSbm6uUlNT3Wq8vb0VFRVl1lxLTk6OXC6X2wsAAFiTxxce7927V5GRkbp06ZJq166tNWvWKDQ0VJL01FNPqXHjxgoODtaePXs0adIkpaen66OPPpIkOZ1Ot4AjyVx2Op3XrXG5XLp48aJ++eUX5efnF1tz8ODB64599uzZmjVrlqdTBgAAVZDHIadly5ZKS0tTdna2PvjgA8XGxmrz5s0KDQ3VyJEjzbq2bduqQYMG6t27t44cOaLmzZuX68BLY8qUKYqPjzeXXS6XQkJCKnFEAACgongccmw2m1q0aCFJCg8P165duzRv3jy99dZbRWojIiIkSYcPH1bz5s0VFBRU5C6ozMxMSVJQUJD538K2K2scDodq1KghHx8f+fj4FFtT2Me12O122e12D2YLAACqqjI/DLCgoEA5OTnFrktLS5MkNWjQQJIUGRmpvXv3ut0FlZSUJIfDYX7lFRkZqeTkZLd+kpKSzOt+bDabwsPD3WoKCgqUnJzsdm0QAAC4vXl0JmfKlCnq16+fGjVqpLNnz2r58uXatGmTNmzYoCNHjmj58uXq37+/7rzzTu3Zs0cTJkxQt27d1K5dO0lSnz59FBoaqiFDhmjOnDlyOp2aNm2a4uLizDMso0eP1vz58zVx4kQ9++yz2rhxo1atWqV169aZ44iPj1dsbKw6dOigjh07au7cuTp//ryGDRtWjocGAABUZR6FnJMnT+qZZ57RiRMn5Ofnp3bt2mnDhg166KGH9OOPP+rzzz83A0dISIgGDhyoadOmmdv7+Pho7dq1GjNmjCIjI1WrVi3Fxsbq5ZdfNmuaNm2qdevWacKECZo3b54aNmyot99+W9HR0WbNoEGDdOrUKU2fPl1Op1NhYWFKTEwscjEyAAC4fZX5OTlVGc/Jwe2I5+QAqOoq/Dk5AAAAtzJCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKRqlT0AADfX91mfui17f71fzTuMqqTRAEDF4UwOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJEIOAACwJI9CzqJFi9SuXTs5HA45HA5FRkbq00///yPiL126pLi4ON15552qXbu2Bg4cqMzMTLc+jh07ppiYGNWsWVMBAQF68cUXlZeX51azadMm3X///bLb7WrRooUSEhKKjGXBggVq0qSJfH19FRERoZ07d3oyFQAAYHEehZyGDRvqtddeU2pqqr7++mv16tVLjz32mPbv3y9JmjBhgv75z39q9erV2rx5s44fP67HH3/c3D4/P18xMTHKzc3Vtm3btGzZMiUkJGj69OlmTUZGhmJiYtSzZ0+lpaVp/PjxGjFihDZs2GDWrFy5UvHx8ZoxY4a++eYbtW/fXtHR0Tp58mRZjwcAALAIL8MwjLJ0UK9ePb3++ut64okn5O/vr+XLl+uJJ56QJB08eFCtW7dWSkqKOnXqpE8//VQPP/ywjh8/rsDAQEnS4sWLNWnSJJ06dUo2m02TJk3SunXrtG/fPnMfgwcPVlZWlhITEyVJEREReuCBBzR//nxJUkFBgUJCQjRu3DhNnjz5mmPNyclRTk6OuexyuRQSEqLs7Gw5HI6yHAagyji0YqrbsneLRvyCTgBVisvlkp+f3w1/fpf6mpz8/HytWLFC58+fV2RkpFJTU3X58mVFRUWZNa1atVKjRo2UkpIiSUpJSVHbtm3NgCNJ0dHRcrlc5tmglJQUtz4Kawr7yM3NVWpqqluNt7e3oqKizJprmT17tvz8/MxXSEhIaacPAABucR6HnL1796p27dqy2+0aPXq01qxZo9DQUDmdTtlsNtWtW9etPjAwUE6nU5LkdDrdAk7h+sJ116txuVy6ePGiTp8+rfz8/GJrCvu4lilTpig7O9t8/fjjj55OHwAAVBHVPN2gZcuWSktLU3Z2tj744APFxsZq8+bNFTG2cme322W32yt7GAAA4CbwOOTYbDa1aNFCkhQeHq5du3Zp3rx5GjRokHJzc5WVleV2NiczM1NBQUGSpKCgoCJ3QRXefXVlzdV3ZGVmZsrhcKhGjRry8fGRj49PsTWFfQAAAJT5OTkFBQXKyclReHi4qlevruTkZHNdenq6jh07psjISElSZGSk9u7d63YXVFJSkhwOh0JDQ82aK/sorCnsw2azKTw83K2moKBAycnJZg0AAIBHZ3KmTJmifv36qVGjRjp79qyWL1+uTZs2acOGDfLz89Pw4cMVHx+vevXqyeFwaNy4cYqMjFSnTp0kSX369FFoaKiGDBmiOXPmyOl0atq0aYqLizO/Rho9erTmz5+viRMn6tlnn9XGjRu1atUqrVu3zhxHfHy8YmNj1aFDB3Xs2FFz587V+fPnNWzYsHI8NAAAoCrzKOScPHlSzzzzjE6cOCE/Pz+1a9dOGzZs0EMPPSRJevPNN+Xt7a2BAwcqJydH0dHRWrhwobm9j4+P1q5dqzFjxigyMlK1atVSbGysXn75ZbOmadOmWrdunSZMmKB58+apYcOGevvttxUdHW3WDBo0SKdOndL06dPldDoVFhamxMTEIhcjAwCA21eZn5NTlZX0PnvASnhODoCqrsKfkwMAAHArI+QAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABL8ijkzJ49Ww888IDq1KmjgIAADRgwQOnp6W41PXr0kJeXl9tr9OjRbjXHjh1TTEyMatasqYCAAL344ovKy8tzq9m0aZPuv/9+2e12tWjRQgkJCUXGs2DBAjVp0kS+vr6KiIjQzp07PZkOAACwMI9CzubNmxUXF6ft27crKSlJly9fVp8+fXT+/Hm3uueee04nTpwwX3PmzDHX5efnKyYmRrm5udq2bZuWLVumhIQETZ8+3azJyMhQTEyMevbsqbS0NI0fP14jRozQhg0bzJqVK1cqPj5eM2bM0DfffKP27dsrOjpaJ0+eLO2xAAAAFuJlGIZR2o1PnTqlgIAAbd68Wd26dZP065mcsLAwzZ07t9htPv30Uz388MM6fvy4AgMDJUmLFy/WpEmTdOrUKdlsNk2aNEnr1q3Tvn37zO0GDx6srKwsJSYmSpIiIiL0wAMPaP78+ZKkgoIChYSEaNy4cZo8eXKJxu9yueTn56fs7Gw5HI7SHgagSjm0YqrbsneLRmreYVQljQYAPFfSn99luiYnOztbklSvXj239vfff1/169dXmzZtNGXKFF24cMFcl5KSorZt25oBR5Kio6Plcrm0f/9+syYqKsqtz+joaKWkpEiScnNzlZqa6lbj7e2tqKgos6Y4OTk5crlcbi8AAGBN1Uq7YUFBgcaPH68HH3xQbdq0MdufeuopNW7cWMHBwdqzZ48mTZqk9PR0ffTRR5Ikp9PpFnAkmctOp/O6NS6XSxcvXtQvv/yi/Pz8YmsOHjx4zTHPnj1bs2bNKu2UAQBAFVLqkBMXF6d9+/Zp69atbu0jR440/79t27Zq0KCBevfurSNHjqh58+alH2k5mDJliuLj481ll8ulkJCQShwRAACoKKUKOWPHjtXatWu1ZcsWNWzY8Lq1ERERkqTDhw+refPmCgoKKnIXVGZmpiQpKCjI/G9h25U1DodDNWrUkI+Pj3x8fIqtKeyjOHa7XXa7vWSTBAAAVZpH1+QYhqGxY8dqzZo12rhxo5o2bXrDbdLS0iRJDRo0kCRFRkZq7969bndBJSUlyeFwKDQ01KxJTk526ycpKUmRkZGSJJvNpvDwcLeagoICJScnmzUAAOD25tGZnLi4OC1fvlz/+Mc/VKdOHfMaGj8/P9WoUUNHjhzR8uXL1b9/f915553as2ePJkyYoG7duqldu3aSpD59+ig0NFRDhgzRnDlz5HQ6NW3aNMXFxZlnWUaPHq358+dr4sSJevbZZ7Vx40atWrVK69atM8cSHx+v2NhYdejQQR07dtTcuXN1/vx5DRs2rLyODQAAqMI8CjmLFi2S9Ott4ldaunSphg4dKpvNps8//9wMHCEhIRo4cKCmTZtm1vr4+Gjt2rUaM2aMIiMjVatWLcXGxurll182a5o2bap169ZpwoQJmjdvnho2bKi3335b0dHRZs2gQYN06tQpTZ8+XU6nU2FhYUpMTCxyMTIAALg9lek5OVUdz8nB7Yjn5ACo6m7Kc3IAAABuVYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSR6FnNmzZ+uBBx5QnTp1FBAQoAEDBig9Pd2t5tKlS4qLi9Odd96p2rVra+DAgcrMzHSrOXbsmGJiYlSzZk0FBAToxRdfVF5enlvNpk2bdP/998tut6tFixZKSEgoMp4FCxaoSZMm8vX1VUREhHbu3OnJdAAAgIV5FHI2b96suLg4bd++XUlJSbp8+bL69Omj8+fPmzUTJkzQP//5T61evVqbN2/W8ePH9fjjj5vr8/PzFRMTo9zcXG3btk3Lli1TQkKCpk+fbtZkZGQoJiZGPXv2VFpamsaPH68RI0Zow4YNZs3KlSsVHx+vGTNm6JtvvlH79u0VHR2tkydPluV4AAAAi/AyDMMo7canTp1SQECANm/erG7duik7O1v+/v5avny5nnjiCUnSwYMH1bp1a6WkpKhTp0769NNP9fDDD+v48eMKDAyUJC1evFiTJk3SqVOnZLPZNGnSJK1bt0779u0z9zV48GBlZWUpMTFRkhQREaEHHnhA8+fPlyQVFBQoJCRE48aN0+TJk0s0fpfLJT8/P2VnZ8vhcJT2MABVyqEVU92WvVs0UvMOoyppNADguZL+/C7TNTnZ2dmSpHr16kmSUlNTdfnyZUVFRZk1rVq1UqNGjZSSkiJJSklJUdu2bc2AI0nR0dFyuVzav3+/WXNlH4U1hX3k5uYqNTXVrcbb21tRUVFmTXFycnLkcrncXgAAwJpKHXIKCgo0fvx4Pfjgg2rTpo0kyel0ymazqW7dum61gYGBcjqdZs2VAadwfeG669W4XC5dvHhRp0+fVn5+frE1hX0UZ/bs2fLz8zNfISEhnk8cAABUCaUOOXFxcdq3b59WrFhRnuOpUFOmTFF2drb5+vHHHyt7SAAAoIJUK81GY8eO1dq1a7VlyxY1bNjQbA8KClJubq6ysrLczuZkZmYqKCjIrLn6LqjCu6+urLn6jqzMzEw5HA7VqFFDPj4+8vHxKbamsI/i2O122e12zycMAACqHI/O5BiGobFjx2rNmjXauHGjmjZt6rY+PDxc1atXV3JystmWnp6uY8eOKTIyUpIUGRmpvXv3ut0FlZSUJIfDodDQULPmyj4Kawr7sNlsCg8Pd6spKChQcnKyWQMAAG5vHp3JiYuL0/Lly/WPf/xDderUMa9/8fPzU40aNeTn56fhw4crPj5e9erVk8Ph0Lhx4xQZGalOnTpJkvr06aPQ0FANGTJEc+bMkdPp1LRp0xQXF2eeZRk9erTmz5+viRMn6tlnn9XGjRu1atUqrVu3zhxLfHy8YmNj1aFDB3Xs2FFz587V+fPnNWzYsPI6NgAAoArzKOQsWrRIktSjRw+39qVLl2ro0KGSpDfffFPe3t4aOHCgcnJyFB0drYULF5q1Pj4+Wrt2rcaMGaPIyEjVqlVLsbGxevnll82apk2bat26dZowYYLmzZunhg0b6u2331Z0dLRZM2jQIJ06dUrTp0+X0+lUWFiYEhMTi1yMDAAAbk9lek5OVcdzcnA74jk5AKq6m/KcHAAAgFsVIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFiSxyFny5YteuSRRxQcHCwvLy99/PHHbuuHDh0qLy8vt1ffvn3das6cOaOnn35aDodDdevW1fDhw3Xu3Dm3mj179qhr167y9fVVSEiI5syZU2Qsq1evVqtWreTr66u2bdtq/fr1nk4HAABYlMch5/z582rfvr0WLFhwzZq+ffvqxIkT5uvvf/+72/qnn35a+/fvV1JSktauXastW7Zo5MiR5nqXy6U+ffqocePGSk1N1euvv66ZM2dqyZIlZs22bdv05JNPavjw4dq9e7cGDBigAQMGaN++fZ5OCQAAWJCXYRhGqTf28tKaNWs0YMAAs23o0KHKysoqcoan0LfffqvQ0FDt2rVLHTp0kCQlJiaqf//++umnnxQcHKxFixZp6tSpcjqdstlskqTJkyfr448/1sGDByVJgwYN0vnz57V27Vqz706dOiksLEyLFy8udt85OTnKyckxl10ul0JCQpSdnS2Hw1HawwBUKYdWTHVb9m7RSM07jKqk0QCA51wul/z8/G7487tCrsnZtGmTAgIC1LJlS40ZM0Y///yzuS4lJUV169Y1A44kRUVFydvbWzt27DBrunXrZgYcSYqOjlZ6erp++eUXsyYqKsptv9HR0UpJSbnmuGbPni0/Pz/zFRISUi7zBQAAt55yDzl9+/bVe++9p+TkZP2f//N/tHnzZvXr10/5+fmSJKfTqYCAALdtqlWrpnr16snpdJo1gYGBbjWFyzeqKVxfnClTpig7O9t8/fjjj2WbLAAAuGVVK+8OBw8ebP5/27Zt1a5dOzVv3lybNm1S7969y3t3HrHb7bLb7ZU6BgAAcHNU+C3kzZo1U/369XX48GFJUlBQkE6ePOlWk5eXpzNnzigoKMisyczMdKspXL5RTeF6AABwe6vwkPPTTz/p559/VoMGDSRJkZGRysrKUmpqqlmzceNGFRQUKCIiwqzZsmWLLl++bNYkJSWpZcuWuuOOO8ya5ORkt30lJSUpMjKyoqcEAACqAI9Dzrlz55SWlqa0tDRJUkZGhtLS0nTs2DGdO3dOL774orZv367vv/9eycnJeuyxx9SiRQtFR0dLklq3bq2+ffvqueee086dO/XVV19p7NixGjx4sIKDgyVJTz31lGw2m4YPH679+/dr5cqVmjdvnuLj481x/PGPf1RiYqL+9Kc/6eDBg5o5c6a+/vprjR07thwOCwAAqOo8Djlff/217rvvPt13332SpPj4eN13332aPn26fHx8tGfPHj366KO65557NHz4cIWHh+vLL790uxbm/fffV6tWrdS7d2/1799fXbp0cXsGjp+fnz777DNlZGQoPDxczz//vKZPn+72LJ3OnTtr+fLlWrJkidq3b68PPvhAH3/8sdq0aVOW4wEAACyiTM/JqepKep89YCU8JwdAVVepz8kBAACobIQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSYQcAABgSR6HnC1btuiRRx5RcHCwvLy89PHHH7utNwxD06dPV4MGDVSjRg1FRUXp0KFDbjVnzpzR008/LYfDobp162r48OE6d+6cW82ePXvUtWtX+fr6KiQkRHPmzCkyltWrV6tVq1by9fVV27ZttX79ek+nAwAALMrjkHP+/Hm1b99eCxYsKHb9nDlz9Je//EWLFy/Wjh07VKtWLUVHR+vSpUtmzdNPP639+/crKSlJa9eu1ZYtWzRy5EhzvcvlUp8+fdS4cWOlpqbq9ddf18yZM7VkyRKzZtu2bXryySc1fPhw7d69WwMGDNCAAQO0b98+T6cEAAAsyMswDKPUG3t5ac2aNRowYICkX8/iBAcH6/nnn9cLL7wgScrOzlZgYKASEhI0ePBgffvttwoNDdWuXbvUoUMHSVJiYqL69++vn376ScHBwVq0aJGmTp0qp9Mpm80mSZo8ebI+/vhjHTx4UJI0aNAgnT9/XmvXrjXH06lTJ4WFhWnx4sUlGr/L5ZKfn5+ys7PlcDhKexiAKuXQiqluy94tGql5h1GVNBoA8FxJf36X6zU5GRkZcjqdioqKMtv8/PwUERGhlJQUSVJKSorq1q1rBhxJioqKkre3t3bs2GHWdOvWzQw4khQdHa309HT98ssvZs2V+ymsKdxPcXJycuRyudxeAADAmso15DidTklSYGCgW3tgYKC5zul0KiAgwG19tWrVVK9ePbea4vq4ch/XqilcX5zZs2fLz8/PfIWEhHg6RQAAUEXcVndXTZkyRdnZ2ebrxx9/rOwhAQCAClKuIScoKEiSlJmZ6daemZlprgsKCtLJkyfd1ufl5enMmTNuNcX1ceU+rlVTuL44drtdDofD7QUAAKypXENO06ZNFRQUpOTkZLPN5XJpx44dioyMlCRFRkYqKytLqampZs3GjRtVUFCgiIgIs2bLli26fPmyWZOUlKSWLVvqjjvuMGuu3E9hTeF+AADA7c3jkHPu3DmlpaUpLS1N0q8XG6elpenYsWPy8vLS+PHj9eqrr+qTTz7R3r179cwzzyg4ONi8A6t169bq27evnnvuOe3cuVNfffWVxo4dq8GDBys4OFiS9NRTT8lms2n48OHav3+/Vq5cqXnz5ik+Pt4cxx//+EclJibqT3/6kw4ePKiZM2fq66+/1tixY8t+VAAAQJVXzdMNvv76a/Xs2dNcLgwesbGxSkhI0MSJE3X+/HmNHDlSWVlZ6tKlixITE+Xr62tu8/7772vs2LHq3bu3vL29NXDgQP3lL38x1/v5+emzzz5TXFycwsPDVb9+fU2fPt3tWTqdO3fW8uXLNW3aNL300ku6++679fHHH6tNmzalOhAAAMBayvScnKqO5+TgdsRzcgBUdZXynBwAAIBbBSEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYEiEHAABYUrmHnJkzZ8rLy8vt1apVK3P9pUuXFBcXpzvvvFO1a9fWwIEDlZmZ6dbHsWPHFBMTo5o1ayogIEAvvvii8vLy3Go2bdqk+++/X3a7XS1atFBCQkJ5TwUAAFRhFXIm595779WJEyfM19atW811EyZM0D//+U+tXr1amzdv1vHjx/X444+b6/Pz8xUTE6Pc3Fxt27ZNy5YtU0JCgqZPn27WZGRkKCYmRj179lRaWprGjx+vESNGaMOGDRUxHQAAUAVVq5BOq1VTUFBQkfbs7Gy98847Wr58uXr16iVJWrp0qVq3bq3t27erU6dO+uyzz3TgwAF9/vnnCgwMVFhYmF555RVNmjRJM2fOlM1m0+LFi9W0aVP96U9/kiS1bt1aW7du1Ztvvqno6OiKmBIAAKhiKuRMzqFDhxQcHKxmzZrp6aef1rFjxyRJqampunz5sqKioszaVq1aqVGjRkpJSZEkpaSkqG3btgoMDDRroqOj5XK5tH//frPmyj4Kawr7uJacnBy5XC63FwAAsKZyDzkRERFKSEhQYmKiFi1apIyMDHXt2lVnz56V0+mUzWZT3bp13bYJDAyU0+mUJDmdTreAU7i+cN31alwuly5evHjNsc2ePVt+fn7mKyQkpKzTBQAAt6hy/7qqX79+5v+3a9dOERERaty4sVatWqUaNWqU9+48MmXKFMXHx5vLLpeLoAMAgEVV+C3kdevW1T333KPDhw8rKChIubm5ysrKcqvJzMw0r+EJCgoqcrdV4fKNahwOx3WDlN1ul8PhcHsBAABrqvCQc+7cOR05ckQNGjRQeHi4qlevruTkZHN9enq6jh07psjISElSZGSk9u7dq5MnT5o1SUlJcjgcCg0NNWuu7KOwprAPAACAcg85L7zwgjZv3qzvv/9e27Zt029+8xv5+PjoySeflJ+fn4YPH674+Hh98cUXSk1N1bBhwxQZGalOnTpJkvr06aPQ0FANGTJE//rXv7RhwwZNmzZNcXFxstvtkqTRo0fr6NGjmjhxog4ePKiFCxdq1apVmjBhQnlPBwAAVFHlfk3OTz/9pCeffFI///yz/P391aVLF23fvl3+/v6SpDfffFPe3t4aOHCgcnJyFB0drYULF5rb+/j4aO3atRozZowiIyNVq1YtxcbG6uWXXzZrmjZtqnXr1mnChAmaN2+eGjZsqLfffpvbxwEAgMnLMAyjsgdRWVwul/z8/JSdnc31ObhtHFox1W3Zu0UjNe8wqpJGAwCeK+nPb353FQAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsCRCDgAAsKRqlT0AANLlxK1l7sMwDPnc3VhynZMcteXdrKG8vMv+75h8I1/f/rxbv1w6rTt866v1nffJx8unzP2i/PFeAe6qfMhZsGCBXn/9dTmdTrVv315//etf1bFjx8oeFm5j5RFYPGVk/qyCgxkqSEr5/412m7xbNZVX4J2l7jfleLLe2fe6fr500my70zdAw9u8qMjg3mUZMsoZ7xVQlJdhGEZlD6K0Vq5cqWeeeUaLFy9WRESE5s6dq9WrVys9PV0BAQE33N7lcsnPz0/Z2dlyOBw3YcSo6iojwNyIkfmzCv6Vfs313u1bugWd77M+LVLTpG6/Im07Cv6lP+W9c81+n682XBHe7c3l6n27lHTIKGcpx5M15+uJkq7+OPeSJE3sMIegA0sp6c/vKh1yIiIi9MADD2j+/PmSpIKCAoWEhGjcuHGaPHnyDbcn5OB6bnagKS583JAhNfhXHfnkesnr//1AK8Juk3e3cHl5eV1zP1eHnAKjQHGXZ+pnZV1z13eqrhZUnylvr4q9tK8k4am49+p2CV35Rr5GJcW4ncFx56X6vgFa/NBavrqCZZT053eV/boqNzdXqampmjJlitnm7e2tqKgopaSkFLtNTk6OcnJyzOXs7GxJvx4sWMvlpOL/DFSEY9lJN21fV7Od9dGFs7nXL8q5pFPfrVVunfxrluy78LHb8lHvM3L6/nzdbp36WWsvJahZQb2SDleN/B4qca3pww2eb1OW7aqYb40jcuaduG7NiQvHlfLhW2rt1VySVP2hSLf1V/99uXo9cKsp/Ll9o/M0VTbknD59Wvn5+QoMDHRrDwwM1MGDB4vdZvbs2Zo1a1aR9pCQkAoZI2B167THwy3+VCHjwI2tU1xlDwEod2fPnpWfn98111fZkFMaU6ZMUXx8vLlcUFCgM2fO6M477zRP5ZeFy+VSSEiIfvzxR8t+/XU7zFG6PeZ5O8xRuj3meTvMUbo95skcS8YwDJ09e1bBwcHXrauyIad+/fry8fFRZmamW3tmZqaCgoKK3cZut8tut7u11a1bt9zH5nA4LPuHs9DtMEfp9pjn7TBH6faY5+0wR+n2mCdzvLHrncEpVGUfBmiz2RQeHq7k5GSzraCgQMnJyYqM5PtkAABud1X2TI4kxcfHKzY2Vh06dFDHjh01d+5cnT9/XsOGDavsoQEAgEpWpUPOoEGDdOrUKU2fPl1Op1NhYWFKTEwscjHyzWK32zVjxowiX4lZye0wR+n2mOftMEfp9pjn7TBH6faYJ3MsX1X6OTkAAADXUmWvyQEAALgeQg4AALAkQg4AALAkQg4AALAkQg4AALAkQk4ZnTlzRk8//bQcDofq1q2r4cOH69y5czfcLiUlRb169VKtWrXkcDjUrVs3Xbx48SaM2HOlnaP066O3+/XrJy8vL3388ccVO9Ay8HSOZ86c0bhx49SyZUvVqFFDjRo10n/8x3+Yv/T1VrFgwQI1adJEvr6+ioiI0M6dO69bv3r1arVq1Uq+vr5q27at1q9ff5NGWjaezPN//ud/1LVrV91xxx264447FBUVdcPjcivw9L0stGLFCnl5eWnAgAEVO8By4Okcs7KyFBcXpwYNGshut+uee+6pEn9mPZ3n3Llzzc+akJAQTZgwQZcuXbpJo/Xcli1b9Mgjjyg4OLjEn/2bNm3S/fffL7vdrhYtWighIaF8BmOgTPr27Wu0b9/e2L59u/Hll18aLVq0MJ588snrbrNt2zbD4XAYs2fPNvbt22ccPHjQWLlypXHp0qWbNGrPlGaOhf785z8b/fr1MyQZa9asqdiBloGnc9y7d6/x+OOPG5988olx+PBhIzk52bj77ruNgQMH3sRRX9+KFSsMm81mvPvuu8b+/fuN5557zqhbt66RmZlZbP1XX31l+Pj4GHPmzDEOHDhgTJs2zahevbqxd+/emzxyz3g6z6eeespYsGCBsXv3buPbb781hg4davj5+Rk//fTTTR55yXk6x0IZGRnGXXfdZXTt2tV47LHHbs5gS8nTOebk5BgdOnQw+vfvb2zdutXIyMgwNm3aZKSlpd3kkXvG03m+//77ht1uN95//30jIyPD2LBhg9GgQQNjwoQJN3nkJbd+/Xpj6tSpxkcffVSiz/6jR48aNWvWNOLj440DBw4Yf/3rXw0fHx8jMTGxzGMh5JTBgQMHDEnGrl27zLZPP/3U8PLyMv79739fc7uIiAhj2rRpN2OIZVbaORqGYezevdu46667jBMnTtzSIacsc7zSqlWrDJvNZly+fLkihumxjh07GnFxceZyfn6+ERwcbMyePbvY+t/97ndGTEyMW1tERIQxatSoCh1nWXk6z6vl5eUZderUMZYtW1ZRQyyz0swxLy/P6Ny5s/H2228bsbGxt3zI8XSOixYtMpo1a2bk5uberCGWC0/nGRcXZ/Tq1cutLT4+3njwwQcrdJzlpSSf/RMnTjTuvfdet7ZBgwYZ0dHRZd4/X1eVQUpKiurWrasOHTqYbVFRUfL29taOHTuK3ebkyZPasWOHAgIC1LlzZwUGBqp79+7aunXrzRq2R0ozR0m6cOGCnnrqKS1YsOCavzD1VlHaOV4tOztbDodD1apV/oPEc3NzlZqaqqioKLPN29tbUVFRSklJKXablJQUt3pJio6Ovmb9raA087zahQsXdPnyZdWrV6+ihlkmpZ3jyy+/rICAAA0fPvxmDLNMSjPHTz75RJGRkYqLi1NgYKDatGmj//7v/1Z+fv7NGrbHSjPPzp07KzU11fxK6+jRo1q/fr369+9/U8Z8M1TkZ0/lfxpXYU6nUwEBAW5t1apVU7169eR0Oovd5ujRo5KkmTNn6o033lBYWJjee+899e7dW/v27dPdd99d4eP2RGnmKEkTJkxQ586d9dhjj1X0EMustHO80unTp/XKK69o5MiRFTFEj50+fVr5+flFfsVJYGCgDh48WOw2Tqez2PqSHoPKUJp5Xm3SpEkKDg4u8iF7qyjNHLdu3ap33nlHaWlpN2GEZVeaOR49elQbN27U008/rfXr1+vw4cP6wx/+oMuXL2vGjBk3Y9geK808n3rqKZ0+fVpdunSRYRjKy8vT6NGj9dJLL92MId8U1/rscblcunjxomrUqFHqvjmTU4zJkyfLy8vruq+SfoBeraCgQJI0atQoDRs2TPfdd5/efPNNtWzZUu+++255TuO6KnKOn3zyiTZu3Ki5c+eW76A9VJFzvJLL5VJMTIxCQ0M1c+bMsg8cN81rr72mFStWaM2aNfL19a3s4ZSLs2fPasiQIfqf//kf1a9fv7KHU2EKCgoUEBCgJUuWKDw8XIMGDdLUqVO1ePHiyh5audq0aZP++7//WwsXLtQ333yjjz76SOvWrdMrr7xS2UOrEjiTU4znn39eQ4cOvW5Ns2bNFBQUpJMnT7q15+Xl6cyZM9f8iqZBgwaSpNDQULf21q1b69ixY6UftIcqco4bN27UkSNHVLduXbf2gQMHqmvXrtq0aVMZRl5yFTnHQmfPnlXfvn1Vp04drVmzRtWrVy/rsMtF/fr15ePjo8zMTLf2zMzMa84pKCjIo/pbQWnmWeiNN97Qa6+9ps8//1zt2rWryGGWiadzPHLkiL7//ns98sgjZlvhP66qVaum9PR0NW/evGIH7aHSvI8NGjRQ9erV5ePjY7a1bt1aTqdTubm5stlsFTrm0ijNPP/zP/9TQ4YM0YgRIyRJbdu21fnz5zVy5EhNnTpV3t5V/1zFtT57HA5Hmc7iSIScYvn7+8vf3/+GdZGRkcrKylJqaqrCw8Ml/foDvqCgQBEREcVu06RJEwUHBys9Pd2t/bvvvlO/fv3KPvgSqsg5Tp482fwLWaht27Z688033T54K1pFzlH69QxOdHS07Ha7Pvnkk1vqTIDNZlN4eLiSk5PNW4cLCgqUnJyssWPHFrtNZGSkkpOTNX78eLMtKSlJkZGRN2HEpVOaeUrSnDlz9F//9V/asGGD27VYtyJP59iqVSvt3bvXrW3atGk6e/as5s2bp5CQkJsxbI+U5n188MEHtXz5chUUFJg/6L/77js1aNDglgw4UunmeeHChSJBpjDYGRb5/dqRkZFFbv0vt8+eMl+6fJvr27evcd999xk7duwwtm7datx9991utx7/9NNPRsuWLY0dO3aYbW+++abhcDiM1atXG4cOHTKmTZtm+Pr6GocPH66MKdxQaeZ4Nd3Cd1cZhudzzM7ONiIiIoy2bdsahw8fNk6cOGG+8vLyKmsablasWGHY7XYjISHBOHDggDFy5Eijbt26htPpNAzDMIYMGWJMnjzZrP/qq6+MatWqGW+88Ybx7bffGjNmzKgyt5B7Ms/XXnvNsNlsxgcffOD2vp09e7aypnBDns7xalXh7ipP53js2DGjTp06xtixY4309HRj7dq1RkBAgPHqq69W1hRKxNN5zpgxw6hTp47x97//3Th69Kjx2WefGc2bNzd+97vfVdYUbujs2bPG7t27jd27dxuSjD//+c/G7t27jR9++MEwDMOYPHmyMWTIELO+8BbyF1980fj222+NBQsWcAv5reLnn382nnzySaN27dqGw+Ewhg0b5vZhmZGRYUgyvvjiC7ftZs+ebTRs2NCoWbOmERkZaXz55Zc3eeQlV9o5XulWDzmezvGLL74wJBX7ysjIqJxJFOOvf/2r0ahRI8NmsxkdO3Y0tm/fbq7r3r27ERsb61a/atUq45577jFsNptx7733GuvWrbvJIy4dT+bZuHHjYt+3GTNm3PyBe8DT9/JKVSHkGIbnc9y2bZsRERFh2O12o1mzZsZ//dd/3TL/yLgeT+Z5+fJlY+bMmUbz5s0NX19fIyQkxPjDH/5g/PLLLzd/4CV0rc/HwnnFxsYa3bt3L7JNWFiYYbPZjGbNmhlLly4tl7F4GYZFzncBAABcoepfsQQAAFAMQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALCk/wuUHRkcydf1EwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARvRJREFUeJzt3XtclHXe//E3IDN4GswDIIlnU8lTYeJYaik5GrW52a5Wa2im6aKbUqmUt9rppp+2q26etrsSd+9cD222rQeMMDWTNEnWU1IqZqWDmsF4BIHr98c+uG5H8DAgKpev5+Mxj5zv9bm+1/d7DQ1vrrmua/wMwzAEAABgMf7XewAAAACVgZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADoMLWrVsnPz8/rVu37qr26+fnp6lTp17VPn2VnJwsPz8/HThwoFL7vPfee3Xvvff63Jcv+7682/DF1KlT5efnV6nbAK4UIQe4wKZNmzR16lTl5uZe76HcFFatWnXdgwxuLMOHD5efn58efPDB6z0UVHGEHOACmzZt0ssvv0zIuUZWrVqll19+ucxlZ86c0aRJk67xiLwNHjxYZ86cUZMmTSp1O5988ok++eQTn9fr0aOHzpw5ox49elTCqK69rVu3Kjk5WUFBQdd7KLAAQg5wEzt9+nSZ7YWFhSooKLjGoyktKChI1apVu65jCAgIUFBQUKV/BGOz2WSz2Xxez9/fX0FBQfL3r/pv54Zh6A9/+IOefPJJhYaGXu/hwAKq/v8VwFU0depUvfDCC5KkZs2ayc/Pzzx3orCwUK+++qpatGghu92upk2b6sUXX1R+fr5XH02bNtWDDz6oTz75RJ06dVJQUJAiIyP14YcflmtM//u//6suXbqoRo0auuWWW9SjR49Sf/HPnTtXt99+u+x2u8LDwxUfH1/qSNS9996rdu3aKSMjQz169FCNGjX04osv6sCBA/Lz89Obb76pmTNnmvPbvXu3JGnPnj169NFHVbduXQUFBalz5876+OOPLzvuzz//XL/5zW/UuHFj2e12RUREaNy4cTpz5oxZM2TIEM2ZM0eSzH19fpgo65ycbdu2qV+/fnI4HKpVq5Z69+6tL7/80qum5JyXL774QgkJCWrQoIFq1qypX//61zp69Ohlx15WX+efP1PyGm/cuFFdunRRUFCQmjdvrr/+9a+l1t+1a5d69eql6tWrq1GjRnrttddUXFxcqu7882VycnJUrVq1Mo9wZWVlyc/PT7Nnz5Z08XNy3n77bbVo0ULVq1dXly5d9Pnnn1/R3C7W55W8nhX1t7/9TTt37tTrr79+1frEze36/okE3GAeeeQRffvtt/r73/+uGTNmqH79+pKkBg0a6Omnn9bChQv16KOP6rnnntPmzZuVlJSkb775RsuXL/fq57vvvtPAgQM1cuRIxcXFacGCBfrNb36jlJQU3X///Vc8npdffllTp05Vt27d9Morr8hms2nz5s1au3at+vTpI+k/wezll19WTEyMRo0apaysLM2bN09fffWVvvjiCwUGBpr9/fzzz+rXr58GDRqk3/3ud15/LS9YsEBnz57ViBEjZLfbVbduXe3atUt33323br31Vk2cOFE1a9bU0qVL1b9/f/3jH//Qr3/964uOfdmyZTp9+rRGjRqlevXqacuWLXrrrbf0448/atmyZZKkZ555RocOHVJqaqr+9re/XXZ/7Nq1S927d5fD4dD48eMVGBiov/zlL7r33nu1fv16RUdHe9WPGTNGt9xyi6ZMmaIDBw5o5syZGj16tJYsWXLFr8HF7N27V48++qiGDRumuLg4vffeexoyZIiioqJ0++23S5Lcbrfuu+8+FRYWmvvv7bffVvXq1S/Zd2hoqHr27KmlS5dqypQpXsuWLFmigIAA/eY3v7no+u+++66eeeYZdevWTWPHjtX+/fv1q1/9SnXr1lVERES55nslr2dFnDhxQhMmTNCLL76osLCwCvcHSJIMAF6mT59uSDKys7PNtszMTEOS8fTTT3vVPv/884YkY+3atWZbkyZNDEnGP/7xD7MtLy/PaNiwoXHHHXdc8Ti+++47w9/f3/j1r39tFBUVeS0rLi42DMMwjhw5YthsNqNPnz5eNbNnzzYkGe+9957Z1rNnT0OSMX/+fK++srOzDUmGw+Ewjhw54rWsd+/eRvv27Y2zZ896bbtbt25Gq1atzLbPPvvMkGR89tlnZtvp06dLzSkpKcnw8/Mzvv/+e7MtPj7euNhbkSRjypQp5vP+/fsbNpvN2Ldvn9l26NAho3bt2kaPHj3MtgULFhiSjJiYGHNfGYZhjBs3zggICDByc3PL3F5ZSvo6/+eh5DXesGGD2XbkyBHDbrcbzz33nNk2duxYQ5KxefNmr7rg4OBSffbs2dPo2bOn+fwvf/mLIcnYsWOH13giIyONXr16mc8v3PcFBQVGSEiI0alTJyM/P9+se/vttw1JXtsoa25l9WkYV/56Tpky5aKv56U8//zzRrNmzcyftSZNmhixsbE+9wOcj4+rgCuwatUqSVJCQoJX+3PPPSdJWrlypVd7eHi411EOh8OhJ598Utu2bZPb7b6ibX700UcqLi7W5MmTS51vUfKRzqeffqqCggKNHTvWq2b48OFyOBylxmW32zV06NAytzdgwAA1aNDAfH78+HGtXbtWv/3tb3XixAkdO3ZMx44d088//yyXy6XvvvtOP/3000XHf/7RilOnTunYsWPq1q2bDMPQtm3brmgfnK+oqEiffPKJ+vfvr+bNm5vtDRs21OOPP66NGzfK4/F4rTNixAivj7+6d++uoqIiff/99z5v/0KRkZHq3r27+bxBgwZq3bq19u/fb7atWrVKXbt2VZcuXbzqnnjiicv2/8gjj6hatWpeR5127typ3bt3a+DAgRddb+vWrTpy5IhGjhzpdY7PkCFDFBwcfMXzu9DVfj3P9+2332rWrFmaPn267HZ7hfoCzkfIAa7A999/L39/f7Vs2dKrPSwsTHXq1Cn1S7Nly5alTlS97bbbJOmK77eyb98++fv7KzIy8pLjkqTWrVt7tdtsNjVv3rzUuG699daLntzarFkzr+d79+6VYRj6r//6LzVo0MDrUfIRypEjRy46toMHD2rIkCGqW7euatWqpQYNGqhnz56SpLy8vIuudzFHjx7V6dOnS81Vktq2bavi4mL98MMPXu2NGzf2en7LLbdIkn755Reft3+hC/su6f/8vr///nu1atWqVF1Zc7hQ/fr11bt3by1dutRsW7JkiapVq6ZHHnnkouuVvOYXbjcwMNArHPrqar+e53v22WfVrVs3DRgwoEL9ABfinBzAB1X9JmeXOhfkwmUlJ8c+//zzcrlcZa5zYegrUVRUpPvvv1/Hjx/XhAkT1KZNG9WsWVM//fSThgwZUuaJt5UhICCgzHbDMG7ovksMGjRIQ4cOVWZmpjp16qSlS5eqd+/e5rliFXWxn+eioqJSzyvr9Vy7dq1SUlL04Ycfev0BUFhYqDNnzujAgQOqW7euHA5HubeBmxchB7hAWW/8TZo0UXFxsb777ju1bdvWbM/JyVFubm6pe6iUHAU5v69vv/1W0n+uzLkSLVq0UHFxsXbv3q1OnTqVWVOy3aysLK+/0gsKCpSdna2YmJgr2lZZSvoLDAz0uZ8dO3bo22+/1cKFC/Xkk0+a7ampqaVqrzQ4NmjQQDVq1FBWVlapZXv27JG/v3+5T6qtLE2aNNF3331Xqr2sOZSlf//+euaZZ8yPrL799lslJiZedpvSf05+79Wrl9l+7tw5ZWdnq2PHjmZbyZGtC6/Eu/AIoC+vp68OHjwoSWUenfrpp5/UrFkzzZgxQ2PHjq3wtnDz4eMq4AI1a9aU5P3G/8ADD0iSZs6c6VX7pz/9SZIUGxvr1X7o0CGvK648Ho/++te/qlOnTld85Uj//v3l7++vV155pdRfyiVHC2JiYmSz2fTnP//Z6wjCu+++q7y8vFLj8kVISIjuvfde/eUvf9Hhw4dLLb/UpdglRznOH5NhGJo1a1ap2rL298X67NOnj/75z396/cWfk5OjRYsW6Z577rnh/tp/4IEH9OWXX2rLli1m29GjR/X+++9f0fp16tSRy+XS0qVLtXjxYtlsNvXv3/+S63Tu3FkNGjTQ/Pnzve51lJycXGoft2jRQpK0YcMGs62oqEhvv/22V50vr6evevXqpeXLl5d6NGjQQJ07d9by5cv10EMPVXg7uDlxJAe4QFRUlCTppZde0qBBgxQYGKiHHnpIcXFxevvtt5Wbm6uePXtqy5YtWrhwofr376/77rvPq4/bbrtNw4YN01dffaXQ0FC99957ysnJ0YIFC654HC1bttRLL72kV199Vd27d9cjjzwiu92ur776SuHh4UpKSlKDBg2UmJiol19+WX379tWvfvUrZWVlae7cubrrrrv0u9/9rkL7Ys6cObrnnnvUvn17DR8+XM2bN1dOTo7S09P1448/6t///neZ67Vp00YtWrTQ888/r59++kkOh0P/+Mc/yjwXpmR//+EPf5DL5VJAQIAGDRpUZr+vvfaaUlNTdc899+j3v/+9qlWrpr/85S/Kz8/XtGnTKjTXyjB+/Hj97W9/U9++ffXss8+al5A3adJE27dvv6I+Bg4cqN/97neaO3euXC6X6tSpc8n6wMBAvfbaa3rmmWfUq1cvDRw4UNnZ2VqwYEGpc3Juv/12de3aVYmJiTp+/Ljq1q2rxYsXq7Cw0KvOl9fTV40bNy7z/KaxY8cqNDT0sqEOuKTrc1EXcGN79dVXjVtvvdXw9/c3L7E9d+6c8fLLLxvNmjUzAgMDjYiICCMxMdHr8mrD+L9LX9esWWN06NDBsNvtRps2bYxly5aVayzvvfeecccddxh2u9245ZZbjJ49exqpqaleNbNnzzbatGljBAYGGqGhocaoUaOMX375xaumZ8+exu23316q/5JLyKdPn17m9vft22c8+eSTRlhYmBEYGGjceuutxoMPPmh88MEHZk1Zlxzv3r3biImJMWrVqmXUr1/fGD58uPHvf//bkGQsWLDArCssLDTGjBljNGjQwPDz8/O6/FgXXEJuGIbx9ddfGy6Xy6hVq5ZRo0YN47777jM2bdrkVVNyafRXX33l1V7WOC/nYpeQl3V584WXgRuGYWzfvt3o2bOnERQUZNx6663Gq6++arz77ruXvYS8hMfjMapXr25IMv73f/+31PKLzWnu3LlGs2bNDLvdbnTu3NnYsGFDmdvYt2+fERMTY9jtdiM0NNR48cUXjdTU1HK/nuW9hPxCXEKOq8HPMK7iWXIA1LRpU7Vr104rVqy43kMBgJsa5+QAAABL4pwc4Dq43A0Bq1evXqEbt+HyTp48qZMnT16ypkGDBhe9VByXl5eXd9nvtuIrHFCZCDnAddCwYcNLLo+Li1NycvK1GcxN6s033yzzCzDPl52dfcWX/KO0Z599VgsXLrxkDWdMoDJV6JycN954Q4mJiXr22WfNS2vPnj2r5557TosXL1Z+fr5cLpfmzp3r9UWABw8e1KhRo/TZZ5+pVq1aiouLU1JSkqpV+7/MtW7dOiUkJGjXrl2KiIjQpEmTNGTIEK/tz5kzR9OnT5fb7VbHjh311ltved0+HbhRffrpp5dcHh4efsk7HaPi9u/f7/UVDGW55557FBQUdI1GZD27d+/WoUOHLllTkXs5AZdV3jOWt2zZYjRt2tTo0KGD8eyzz5rtI0eONCIiIoy0tDRj69atRteuXY1u3bqZywsLC4127doZMTExxrZt24xVq1YZ9evXNxITE82a/fv3GzVq1DASEhKM3bt3G2+99ZYREBBgpKSkmDWLFy82bDab8d577xm7du0yhg8fbtSpU8fIyckp75QAAICFlCvknDhxwmjVqpWRmppq9OzZ0ww5ubm5RmBgoNelst98840hyUhPTzcMwzBWrVpl+Pv7G26326yZN2+e4XA4zG/MHT9+fKlLXQcOHGi4XC7zeZcuXYz4+HjzeVFRkREeHm4kJSWVZ0oAAMBiynVOTnx8vGJjYxUTE6PXXnvNbM/IyNC5c+e8Dj+2adNGjRs3Vnp6urp27ar09HS1b9/e6+Mrl8ulUaNGadeuXbrjjjuUnp5e6hCmy+Uyb+tdUFCgjIwMr9ub+/v7KyYmRunp6Rcdd35+vvLz883nxcXFOn78uOrVq1flv5MIAICbhWEYOnHihMLDw+Xvf/ELxX0OOYsXL9bXX3+tr776qtQyt9stm81W6o6coaGh5tUkbrfbK+CULC9Zdqkaj8ejM2fO6JdfflFRUVGZNXv27Lno2JOSki57oiEAAKgafvjhBzVq1Oiiy30KOT/88IOeffZZpaamVsmT8RITE5WQkGA+z8vLU+PGjfXDDz/ccN95AwAAyubxeBQREaHatWtfss6nkJORkaEjR47ozjvvNNuKioq0YcMGzZ49W2vWrFFBQYFyc3O9jubk5OSY90IICwvz+rK6kuUly0r+W9J2fo3D4VD16tUVEBCggICAMmsudc8Fu90uu91eqt3hcBByAACoYi53qolPdzzu3bu3duzYoczMTPPRuXNnPfHEE+a/AwMDlZaWZq6TlZWlgwcPyul0SpKcTqd27NihI0eOmDWpqalyOBzmJbNOp9Orj5Kakj5sNpuioqK8aoqLi5WWlmbWAACAm5tPR3Jq166tdu3aebXVrFlT9erVM9uHDRumhIQE1a1bVw6HQ2PGjJHT6VTXrl0lSX369FFkZKQGDx6sadOmye12a9KkSYqPjzePsowcOVKzZ8/W+PHj9dRTT2nt2rVaunSpVq5caW43ISFBcXFx6ty5s7p06aKZM2fq1KlTGjp0aIV2CAAAsIarfsfjGTNmyN/fXwMGDPC6GWCJgIAArVixQqNGjZLT6VTNmjUVFxenV155xaxp1qyZVq5cqXHjxmnWrFlq1KiR3nnnHblcLrNm4MCBOnr0qCZPniy3261OnTopJSWl1MnIAADg5nRTfwu5x+NRcHCw8vLyOCcHAIAq4kp/f/Mt5AAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJKu+ndXAbixnUvZWKotsO8912EkAFC5OJIDAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsiZADAAAsyaeQM2/ePHXo0EEOh0MOh0NOp1OrV682l997773y8/PzeowcOdKrj4MHDyo2NlY1atRQSEiIXnjhBRUWFnrVrFu3Tnfeeafsdrtatmyp5OTkUmOZM2eOmjZtqqCgIEVHR2vLli2+TAUAAFicTyGnUaNGeuONN5SRkaGtW7eqV69eevjhh7Vr1y6zZvjw4Tp8+LD5mDZtmrmsqKhIsbGxKigo0KZNm7Rw4UIlJydr8uTJZk12drZiY2N13333KTMzU2PHjtXTTz+tNWvWmDVLlixRQkKCpkyZoq+//lodO3aUy+XSkSNHKrIvAACAhfgZhmFUpIO6detq+vTpGjZsmO6991516tRJM2fOLLN29erVevDBB3Xo0CGFhoZKkubPn68JEybo6NGjstlsmjBhglauXKmdO3ea6w0aNEi5ublKSUmRJEVHR+uuu+7S7NmzJUnFxcWKiIjQmDFjNHHixIuONT8/X/n5+eZzj8ejiIgI5eXlyeFwVGQ3AFXGuZSNpdoC+95zHUYCAOXj8XgUHBx82d/f5T4np6ioSIsXL9apU6fkdDrN9vfff1/169dXu3btlJiYqNOnT5vL0tPT1b59ezPgSJLL5ZLH4zGPBqWnpysmJsZrWy6XS+np6ZKkgoICZWRkeNX4+/srJibGrLmYpKQkBQcHm4+IiIjyTh8AANzgqvm6wo4dO+R0OnX27FnVqlVLy5cvV2RkpCTp8ccfV5MmTRQeHq7t27drwoQJysrK0ocffihJcrvdXgFHkvnc7XZfssbj8ejMmTP65ZdfVFRUVGbNnj17Ljn2xMREJSQkmM9LjuQAAADr8TnktG7dWpmZmcrLy9MHH3yguLg4rV+/XpGRkRoxYoRZ1759ezVs2FC9e/fWvn371KJFi6s68PKw2+2y2+3XexgAAOAa8PnjKpvNppYtWyoqKkpJSUnq2LGjZs2aVWZtdHS0JGnv3r2SpLCwMOXk5HjVlDwPCwu7ZI3D4VD16tVVv359BQQElFlT0gcAAECF75NTXFzsdTLv+TIzMyVJDRs2lCQ5nU7t2LHD6yqo1NRUORwO8yMvp9OptLQ0r35SU1PN835sNpuioqK8aoqLi5WWluZ1bhAAALi5+fRxVWJiovr166fGjRvrxIkTWrRokdatW6c1a9Zo3759WrRokR544AHVq1dP27dv17hx49SjRw916NBBktSnTx9FRkZq8ODBmjZtmtxutyZNmqT4+HjzY6SRI0dq9uzZGj9+vJ566imtXbtWS5cu1cqVK81xJCQkKC4uTp07d1aXLl00c+ZMnTp1SkOHDr2KuwYAAFRlPoWcI0eO6Mknn9Thw4cVHBysDh06aM2aNbr//vv1ww8/6NNPPzUDR0REhAYMGKBJkyaZ6wcEBGjFihUaNWqUnE6natasqbi4OL3yyitmTbNmzbRy5UqNGzdOs2bNUqNGjfTOO+/I5XKZNQMHDtTRo0c1efJkud1uderUSSkpKaVORgYAADevCt8npyq70uvsASvhPjkAqrpKv08OAADAjYyQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALImQAwAALMnnbyEHUPUdyF3t9byVuBkgAOvhSA4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkn0LOvHnz1KFDBzkcDjkcDjmdTq1evdpcfvbsWcXHx6tevXqqVauWBgwYoJycHK8+Dh48qNjYWNWoUUMhISF64YUXVFhY6FWzbt063XnnnbLb7WrZsqWSk5NLjWXOnDlq2rSpgoKCFB0drS1btvgyFQAAYHE+hZxGjRrpjTfeUEZGhrZu3apevXrp4Ycf1q5duyRJ48aN07/+9S8tW7ZM69ev16FDh/TII4+Y6xcVFSk2NlYFBQXatGmTFi5cqOTkZE2ePNmsyc7OVmxsrO677z5lZmZq7Nixevrpp7VmzRqzZsmSJUpISNCUKVP09ddfq2PHjnK5XDpy5EhF9wcAALAIP8MwjIp0ULduXU2fPl2PPvqoGjRooEWLFunRRx+VJO3Zs0dt27ZVenq6unbtqtWrV+vBBx/UoUOHFBoaKkmaP3++JkyYoKNHj8pms2nChAlauXKldu7caW5j0KBBys3NVUpKiiQpOjpad911l2bPni1JKi4uVkREhMaMGaOJEydedKz5+fnKz883n3s8HkVERCgvL08Oh6MiuwGoMs6lbNSB3NVeba0GvX6dRgMAvvN4PAoODr7s7+9yn5NTVFSkxYsX69SpU3I6ncrIyNC5c+cUExNj1rRp00aNGzdWenq6JCk9PV3t27c3A44kuVwueTwe82hQenq6Vx8lNSV9FBQUKCMjw6vG399fMTExZs3FJCUlKTg42HxERESUd/oAAOAG53PI2bFjh2rVqiW73a6RI0dq+fLlioyMlNvtls1mU506dbzqQ0ND5Xa7JUlut9sr4JQsL1l2qRqPx6MzZ87o2LFjKioqKrOmpI+LSUxMVF5envn44YcffJ0+AACoIqr5ukLr1q2VmZmpvLw8ffDBB4qLi9P69esrY2xXnd1ul91uv97DAAAA14DPIcdms6lly5aSpKioKH311VeaNWuWBg4cqIKCAuXm5nodzcnJyVFYWJgkKSwsrNRVUCVXX51fc+EVWTk5OXI4HKpevboCAgIUEBBQZk1JHwAAABW+T05xcbHy8/MVFRWlwMBApaWlmcuysrJ08OBBOZ1OSZLT6dSOHTu8roJKTU2Vw+FQZGSkWXN+HyU1JX3YbDZFRUV51RQXFystLc2sAQAA8OlITmJiovr166fGjRvrxIkTWrRokdatW6c1a9YoODhYw4YNU0JCgurWrSuHw6ExY8bI6XSqa9eukqQ+ffooMjJSgwcP1rRp0+R2uzVp0iTFx8ebHyONHDlSs2fP1vjx4/XUU09p7dq1Wrp0qVauXGmOIyEhQXFxcercubO6dOmimTNn6tSpUxo6dOhV3DUAAKAq8ynkHDlyRE8++aQOHz6s4OBgdejQQWvWrNH9998vSZoxY4b8/f01YMAA5efny+Vyae7cueb6AQEBWrFihUaNGiWn06maNWsqLi5Or7zyilnTrFkzrVy5UuPGjdOsWbPUqFEjvfPOO3K5XGbNwIEDdfToUU2ePFlut1udOnVSSkpKqZORAQDAzavC98mpyq70OnvASrhPDoCqrtLvkwMAAHAjI+QAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABLIuQAAABL8inkJCUl6a677lLt2rUVEhKi/v37Kysry6vm3nvvlZ+fn9dj5MiRXjUHDx5UbGysatSooZCQEL3wwgsqLCz0qlm3bp3uvPNO2e12tWzZUsnJyaXGM2fOHDVt2lRBQUGKjo7Wli1bfJkOAACwMJ9Czvr16xUfH68vv/xSqampOnfunPr06aNTp0551Q0fPlyHDx82H9OmTTOXFRUVKTY2VgUFBdq0aZMWLlyo5ORkTZ482azJzs5WbGys7rvvPmVmZmrs2LF6+umntWbNGrNmyZIlSkhI0JQpU/T111+rY8eOcrlcOnLkSHn3BQAAsBA/wzCM8q589OhRhYSEaP369erRo4ek/xzJ6dSpk2bOnFnmOqtXr9aDDz6oQ4cOKTQ0VJI0f/58TZgwQUePHpXNZtOECRO0cuVK7dy501xv0KBBys3NVUpKiiQpOjpad911l2bPni1JKi4uVkREhMaMGaOJEyde0fg9Ho+Cg4OVl5cnh8NR3t0AVCnnUjbqQO5qr7ZWg16/TqMBAN9d6e/vCp2Tk5eXJ0mqW7euV/v777+v+vXrq127dkpMTNTp06fNZenp6Wrfvr0ZcCTJ5XLJ4/Fo165dZk1MTIxXny6XS+np6ZKkgoICZWRkeNX4+/srJibGrClLfn6+PB6P1wMAAFhTtfKuWFxcrLFjx+ruu+9Wu3btzPbHH39cTZo0UXh4uLZv364JEyYoKytLH374oSTJ7XZ7BRxJ5nO3233JGo/HozNnzuiXX35RUVFRmTV79uy56JiTkpL08ssvl3fKAACgCil3yImPj9fOnTu1ceNGr/YRI0aY/27fvr0aNmyo3r17a9++fWrRokX5R3oVJCYmKiEhwXzu8XgUERFxHUcEAAAqS7lCzujRo7VixQpt2LBBjRo1umRtdHS0JGnv3r1q0aKFwsLCSl0FlZOTI0kKCwsz/1vSdn6Nw+FQ9erVFRAQoICAgDJrSvooi91ul91uv7JJAgCAKs2nc3IMw9Do0aO1fPlyrV27Vs2aNbvsOpmZmZKkhg0bSpKcTqd27NjhdRVUamqqHA6HIiMjzZq0tDSvflJTU+V0OiVJNptNUVFRXjXFxcVKS0szawAAwM3NpyM58fHxWrRokf75z3+qdu3a5jk0wcHBql69uvbt26dFixbpgQceUL169bR9+3aNGzdOPXr0UIcOHSRJffr0UWRkpAYPHqxp06bJ7XZr0qRJio+PN4+yjBw5UrNnz9b48eP11FNPae3atVq6dKlWrlxpjiUhIUFxcXHq3LmzunTpopkzZ+rUqVMaOnTo1do3AACgCvMp5MybN0/Sfy4TP9+CBQs0ZMgQ2Ww2ffrpp2bgiIiI0IABAzRp0iSzNiAgQCtWrNCoUaPkdDpVs2ZNxcXF6ZVXXjFrmjVrppUrV2rcuHGaNWuWGjVqpHfeeUcul8usGThwoI4eParJkyfL7XarU6dOSklJKXUyMgAAuDlV6D45VR33ycHNiPvkAKjqrsl9cgAAAG5UhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJhBwAAGBJPoWcpKQk3XXXXapdu7ZCQkLUv39/ZWVledWcPXtW8fHxqlevnmrVqqUBAwYoJyfHq+bgwYOKjY1VjRo1FBISohdeeEGFhYVeNevWrdOdd94pu92uli1bKjk5udR45syZo6ZNmyooKEjR0dHasmWLL9MBAAAW5lPIWb9+veLj4/Xll18qNTVV586dU58+fXTq1CmzZty4cfrXv/6lZcuWaf369Tp06JAeeeQRc3lRUZFiY2NVUFCgTZs2aeHChUpOTtbkyZPNmuzsbMXGxuq+++5TZmamxo4dq6efflpr1qwxa5YsWaKEhARNmTJFX3/9tTp27CiXy6UjR45UZH8AAACL8DMMwyjvykePHlVISIjWr1+vHj16KC8vTw0aNNCiRYv06KOPSpL27Nmjtm3bKj09XV27dtXq1av14IMP6tChQwoNDZUkzZ8/XxMmTNDRo0dls9k0YcIErVy5Ujt37jS3NWjQIOXm5iolJUWSFB0drbvuukuzZ8+WJBUXFysiIkJjxozRxIkTr2j8Ho9HwcHBysvLk8PhKO9uAKqUcykbdSB3tVdbq0GvX6fRAIDvrvT3d4XOycnLy5Mk1a1bV5KUkZGhc+fOKSYmxqxp06aNGjdurPT0dElSenq62rdvbwYcSXK5XPJ4PNq1a5dZc34fJTUlfRQUFCgjI8Orxt/fXzExMWZNWfLz8+XxeLweAADAmsodcoqLizV27FjdfffdateunSTJ7XbLZrOpTp06XrWhoaFyu91mzfkBp2R5ybJL1Xg8Hp05c0bHjh1TUVFRmTUlfZQlKSlJwcHB5iMiIsL3iQMAgCqh3CEnPj5eO3fu1OLFi6/meCpVYmKi8vLyzMcPP/xwvYcEAAAqSbXyrDR69GitWLFCGzZsUKNGjcz2sLAwFRQUKDc31+toTk5OjsLCwsyaC6+CKrn66vyaC6/IysnJkcPhUPXq1RUQEKCAgIAya0r6KIvdbpfdbvd9wgAAoMrx6UiOYRgaPXq0li9frrVr16pZs2Zey6OiohQYGKi0tDSzLSsrSwcPHpTT6ZQkOZ1O7dixw+sqqNTUVDkcDkVGRpo15/dRUlPSh81mU1RUlFdNcXGx0tLSzBoAAHBz8+lITnx8vBYtWqR//vOfql27tnn+S3BwsKpXr67g4GANGzZMCQkJqlu3rhwOh8aMGSOn06muXbtKkvr06aPIyEgNHjxY06ZNk9vt1qRJkxQfH28eZRk5cqRmz56t8ePH66mnntLatWu1dOlSrVy50hxLQkKC4uLi1LlzZ3Xp0kUzZ87UqVOnNHTo0Ku1bwAAQBXmU8iZN2+eJOnee+/1al+wYIGGDBkiSZoxY4b8/f01YMAA5efny+Vyae7cuWZtQECAVqxYoVGjRsnpdKpmzZqKi4vTK6+8YtY0a9ZMK1eu1Lhx4zRr1iw1atRI77zzjlwul1kzcOBAHT16VJMnT5bb7VanTp2UkpJS6mRkAABwc6rQfXKqOu6Tg5sR98kBUNVdk/vkAAAA3KgIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJJ8DjkbNmzQQw89pPDwcPn5+emjjz7yWj5kyBD5+fl5Pfr27etVc/z4cT3xxBNyOByqU6eOhg0bppMnT3rVbN++Xd27d1dQUJAiIiI0bdq0UmNZtmyZ2rRpo6CgILVv316rVq3ydToAAMCifA45p06dUseOHTVnzpyL1vTt21eHDx82H3//+9+9lj/xxBPatWuXUlNTtWLFCm3YsEEjRowwl3s8HvXp00dNmjRRRkaGpk+frqlTp+rtt982azZt2qTHHntMw4YN07Zt29S/f3/1799fO3fu9HVKAADAgvwMwzDKvbKfn5YvX67+/fubbUOGDFFubm6pIzwlvvnmG0VGRuqrr75S586dJUkpKSl64IEH9OOPPyo8PFzz5s3TSy+9JLfbLZvNJkmaOHGiPvroI+3Zs0eSNHDgQJ06dUorVqww++7atas6deqk+fPnX9H4PR6PgoODlZeXJ4fDUY49AFQ951I26kDuaq+2VoNev06jAQDfXenv70o5J2fdunUKCQlR69atNWrUKP3888/msvT0dNWpU8cMOJIUExMjf39/bd682azp0aOHGXAkyeVyKSsrS7/88otZExMT47Vdl8ul9PT0i44rPz9fHo/H6wEAAKzpqoecvn376q9//avS0tL0//7f/9P69evVr18/FRUVSZLcbrdCQkK81qlWrZrq1q0rt9tt1oSGhnrVlDy/XE3J8rIkJSUpODjYfERERFRssgAA4IZV7Wp3OGjQIPPf7du3V4cOHdSiRQutW7dOvXv3vtqb80liYqISEhLM5x6Ph6ADAIBFVfol5M2bN1f9+vW1d+9eSVJYWJiOHDniVVNYWKjjx48rLCzMrMnJyfGqKXl+uZqS5WWx2+1yOBxeDwAAYE2VHnJ+/PFH/fzzz2rYsKEkyel0Kjc3VxkZGWbN2rVrVVxcrOjoaLNmw4YNOnfunFmTmpqq1q1b65ZbbjFr0tLSvLaVmpoqp9NZ2VMCAABVgM8h5+TJk8rMzFRmZqYkKTs7W5mZmTp48KBOnjypF154QV9++aUOHDigtLQ0Pfzww2rZsqVcLpckqW3bturbt6+GDx+uLVu26IsvvtDo0aM1aNAghYeHS5Ief/xx2Ww2DRs2TLt27dKSJUs0a9Ysr4+ann32WaWkpOiPf/yj9uzZo6lTp2rr1q0aPXr0VdgtAACgqvM55GzdulV33HGH7rjjDklSQkKC7rjjDk2ePFkBAQHavn27fvWrX+m2227TsGHDFBUVpc8//1x2u93s4/3331ebNm3Uu3dvPfDAA7rnnnu87oETHBysTz75RNnZ2YqKitJzzz2nyZMne91Lp1u3blq0aJHefvttdezYUR988IE++ugjtWvXriL7AwAAWESF7pNT1XGfHNyMuE8OgKruut4nBwAA4Hoj5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEsi5AAAAEvyOeRs2LBBDz30kMLDw+Xn56ePPvrIa7lhGJo8ebIaNmyo6tWrKyYmRt99951XzfHjx/XEE0/I4XCoTp06GjZsmE6ePOlVs337dnXv3l1BQUGKiIjQtGnTSo1l2bJlatOmjYKCgtS+fXutWrXK1+kAAACL8jnknDp1Sh07dtScOXPKXD5t2jT9+c9/1vz587V582bVrFlTLpdLZ8+eNWueeOIJ7dq1S6mpqVqxYoU2bNigESNGmMs9Ho/69OmjJk2aKCMjQ9OnT9fUqVP19ttvmzWbNm3SY489pmHDhmnbtm3q37+/+vfvr507d/o6JQAAYEF+hmEY5V7Zz0/Lly9X//79Jf3nKE54eLiee+45Pf/885KkvLw8hYaGKjk5WYMGDdI333yjyMhIffXVV+rcubMkKSUlRQ888IB+/PFHhYeHa968eXrppZfkdrtls9kkSRMnTtRHH32kPXv2SJIGDhyoU6dOacWKFeZ4unbtqk6dOmn+/PlXNH6Px6Pg4GDl5eXJ4XCUdzcAVcq5lI06kLvaq63VoNev02gAwHdX+vv7qp6Tk52dLbfbrZiYGLMtODhY0dHRSk9PlySlp6erTp06ZsCRpJiYGPn7+2vz5s1mTY8ePcyAI0kul0tZWVn65ZdfzJrzt1NSU7KdsuTn58vj8Xg9AACANV3VkON2uyVJoaGhXu2hoaHmMrfbrZCQEK/l1apVU926db1qyurj/G1crKZkeVmSkpIUHBxsPiIiInydIgAAqCJuqqurEhMTlZeXZz5++OGH6z0kAABQSa5qyAkLC5Mk5eTkeLXn5OSYy8LCwnTkyBGv5YWFhTp+/LhXTVl9nL+Ni9WULC+L3W6Xw+HwegAAAGu6qiGnWbNmCgsLU1pamtnm8Xi0efNmOZ1OSZLT6VRubq4yMjLMmrVr16q4uFjR0dFmzYYNG3Tu3DmzJjU1Va1bt9Ytt9xi1py/nZKaku0AAICbm88h5+TJk8rMzFRmZqak/5xsnJmZqYMHD8rPz09jx47Va6+9po8//lg7duzQk08+qfDwcPMKrLZt26pv374aPny4tmzZoi+++EKjR4/WoEGDFB4eLkl6/PHHZbPZNGzYMO3atUtLlizRrFmzlJCQYI7j2WefVUpKiv74xz9qz549mjp1qrZu3arRo0dXfK8AAIAqr5qvK2zdulX33Xef+bwkeMTFxSk5OVnjx4/XqVOnNGLECOXm5uqee+5RSkqKgoKCzHXef/99jR49Wr1795a/v78GDBigP//5z+by4OBgffLJJ4qPj1dUVJTq16+vyZMne91Lp1u3blq0aJEmTZqkF198Ua1atdJHH32kdu3alWtHAAAAa6nQfXKqOu6Tg5sR98kBUNVdl/vkAAAA3CgIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJIIOQAAwJKuesiZOnWq/Pz8vB5t2rQxl589e1bx8fGqV6+eatWqpQEDBignJ8erj4MHDyo2NlY1atRQSEiIXnjhBRUWFnrVrFu3Tnfeeafsdrtatmyp5OTkqz0VAABQhVXKkZzbb79dhw8fNh8bN240l40bN07/+te/tGzZMq1fv16HDh3SI488Yi4vKipSbGysCgoKtGnTJi1cuFDJycmaPHmyWZOdna3Y2Fjdd999yszM1NixY/X0009rzZo1lTEdAABQBVWrlE6rVVNYWFip9ry8PL377rtatGiRevXqJUlasGCB2rZtqy+//FJdu3bVJ598ot27d+vTTz9VaGioOnXqpFdffVUTJkzQ1KlTZbPZNH/+fDVr1kx//OMfJUlt27bVxo0bNWPGDLlcrsqYEgAAqGIq5UjOd999p/DwcDVv3lxPPPGEDh48KEnKyMjQuXPnFBMTY9a2adNGjRs3Vnp6uiQpPT1d7du3V2hoqFnjcrnk8Xi0a9cus+b8PkpqSvq4mPz8fHk8Hq8HAACwpqsecqKjo5WcnKyUlBTNmzdP2dnZ6t69u06cOCG32y2bzaY6dep4rRMaGiq32y1JcrvdXgGnZHnJskvVeDwenTlz5qJjS0pKUnBwsPmIiIio6HQBAMAN6qp/XNWvXz/z3x06dFB0dLSaNGmipUuXqnr16ld7cz5JTExUQkKC+dzj8RB0AACwqEq/hLxOnTq67bbbtHfvXoWFhamgoEC5ubleNTk5OeY5PGFhYaWutip5frkah8NxySBlt9vlcDi8HgAAwJoqPeScPHlS+/btU8OGDRUVFaXAwEClpaWZy7OysnTw4EE5nU5JktPp1I4dO3TkyBGzJjU1VQ6HQ5GRkWbN+X2U1JT0AQAAcNVDzvPPP6/169frwIED2rRpk379618rICBAjz32mIKDgzVs2DAlJCTos88+U0ZGhoYOHSqn06muXbtKkvr06aPIyEgNHjxY//73v7VmzRpNmjRJ8fHxstvtkqSRI0dq//79Gj9+vPbs2aO5c+dq6dKlGjdu3NWeDgAAqKKu+jk5P/74ox577DH9/PPPatCgge655x59+eWXatCggSRpxowZ8vf314ABA5Sfny+Xy6W5c+ea6wcEBGjFihUaNWqUnE6natasqbi4OL3yyitmTbNmzbRy5UqNGzdOs2bNUqNGjfTOO+9w+TgAADD5GYZhXO9BXC8ej0fBwcHKy8vj/BzcNM6lbNSB3NVeba0GvX6dRgMAvrvS3998dxUAALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALAkQg4AALCkatd7AACuDqO4WMX7f5Q8JyVHLfk3byQ//4r9HVNkFOmbn7fpl7PHdEtQfbWtd4cC/AKu0oirHvYHULVU+ZAzZ84cTZ8+XW63Wx07dtRbb72lLl26XO9hAddU0fZvdW55mpR34v8ag2sr8Ne9FdDhtnL1mX4oTe/unK6fzx4x2+oFhWhYuxfkDO9d0SFXOewPoOrxMwzDuN6DKK8lS5boySef1Pz58xUdHa2ZM2dq2bJlysrKUkhIyGXX93g8Cg4OVl5enhwOxzUYMW4G51I2XtPtGTk/q/jfWRdd7t+xtfxC63m1Hchd7fW81aDXvZ6nH0rTtK3jJV349uAnSRrfedpN9Yud/QHcWK7093eVDjnR0dG66667NHv2bElScXGxIiIiNGbMGE2cOPGy6xNycDnXOrD4yjAMFW/IkPILLl5kt8m/R5T8/PzMpgtDTtM6/cx/FxvFij83VT8r96Jd1lMd/eWh1Mt+VHPh/gvse88l629ERUaRnkmN9TqC481P9YNCNP/+FXx0BVwjV/r7u8p+XFVQUKCMjAwlJiaabf7+/oqJiVF6enqZ6+Tn5ys/P998npeXJ+k/OwvWci617J+BG8nBvNQK92E7EaAGnpqXLso/q6PfrlBB7aKLlngCT5n//sbYJ3fhz5fs0q2flf6Pv6itXwufxqt/rPGt/gbwn/1x+JI1h08fuuT+CLzfWRlDA25aJb+3L3ecpsqGnGPHjqmoqEihoaFe7aGhodqzZ0+Z6yQlJenll18u1R4REVEpYwSqjj/6vMZKxVfCOKou9gdw7Z04cULBwcEXXV5lQ055JCYmKiEhwXxeXFys48ePq169el6H8ivC4/EoIiJCP/zwg2U/ArsZ5ijdHPNkjtZxM8zzZpijdHPMs6JzNAxDJ06cUHh4+CXrqmzIqV+/vgICApSTk+PVnpOTo7CwsDLXsdvtstvtXm116tSplPE5HA7L/nCWuBnmKN0c82SO1nEzzPNmmKN0c8yzInO81BGcElX2ZoA2m01RUVFKS0sz24qLi5WWliank8+/AQC42VXZIzmSlJCQoLi4OHXu3FldunTRzJkzderUKQ0dOvR6Dw0AAFxnVTrkDBw4UEePHtXkyZPldrvVqVMnpaSklDoZ+Vqy2+2aMmVKqY/FrORmmKN0c8yTOVrHzTDPm2GO0s0xz2s1xyp9nxwAAICLqbLn5AAAAFwKIQcAAFgSIQcAAFgSIQcAAFgSIQcAAFgSIecqOH78uJ544gk5HA7VqVNHw4YN08mTJy+7Xnp6unr16qWaNWvK4XCoR48eOnPmzDUYse/KO0fpP7ff7tevn/z8/PTRRx9V7kArwNc5Hj9+XGPGjFHr1q1VvXp1NW7cWH/4wx/ML369UcyZM0dNmzZVUFCQoqOjtWXLlkvWL1u2TG3atFFQUJDat2+vVatWXaORlp8vc/yf//kfde/eXbfccotuueUWxcTEXHaf3Ch8fS1LLF68WH5+furfv3/lDvAq8HWOubm5io+PV8OGDWW323Xbbbfd8D+zvs5x5syZ5vtMRESExo0bp7Nnz16j0fpuw4YNeuihhxQeHn7F7/vr1q3TnXfeKbvdrpYtWyo5OfnqDMZAhfXt29fo2LGj8eWXXxqff/650bJlS+Oxxx675DqbNm0yHA6HkZSUZOzcudPYs2ePsWTJEuPs2bPXaNS+Kc8cS/zpT38y+vXrZ0gyli9fXrkDrQBf57hjxw7jkUceMT7++GNj7969RlpamtGqVStjwIAB13DUl7Z48WLDZrMZ7733nrFr1y5j+PDhRp06dYycnJwy67/44gsjICDAmDZtmrF7925j0qRJRmBgoLFjx45rPPIr5+scH3/8cWPOnDnGtm3bjG+++cYYMmSIERwcbPz444/XeOS+8XWeJbKzs41bb73V6N69u/Hwww9fm8GWk69zzM/PNzp37mw88MADxsaNG43s7Gxj3bp1RmZm5jUe+ZXzdY7vv/++Ybfbjffff9/Izs421qxZYzRs2NAYN27cNR75lVu1apXx0ksvGR9++OEVve/v37/fqFGjhpGQkGDs3r3beOutt4yAgAAjJSWlwmMh5FTQ7t27DUnGV199ZbatXr3a8PPzM3766aeLrhcdHW1MmjTpWgyxwso7R8MwjG3bthm33nqrcfjw4Rs65FRkjudbunSpYbPZjHPnzlXGMH3WpUsXIz4+3nxeVFRkhIeHG0lJSWXW//a3vzViY2O92qKjo41nnnmmUsdZEb7O8UKFhYVG7dq1jYULF1bWEK+K8syzsLDQ6Natm/HOO+8YcXFxN3zI8XWO8+bNM5o3b24UFBRcqyFWmK9zjI+PN3r16uXVlpCQYNx9992VOs6r5Ure98ePH2/cfvvtXm0DBw40XC5XhbfPx1UVlJ6erjp16qhz585mW0xMjPz9/bV58+Yy1zly5Ig2b96skJAQdevWTaGhoerZs6c2btx4rYbtk/LMUZJOnz6txx9/XHPmzLnol6beKMo7xwvl5eXJ4XCoWrXrfzPxgoICZWRkKCYmxmzz9/dXTEyM0tPTy1wnPT3dq16SXC7XReuvt/LM8UKnT5/WuXPnVLdu3coaZoWVd56vvPKKQkJCNGzYsGsxzAopzxw//vhjOZ1OxcfHKzQ0VO3atdN///d/q6io6FoN2yflmWO3bt2UkZFhfqS1f/9+rVq1Sg888MA1GfO1UJnvO9f/nbiKc7vdCgkJ8WqrVq2a6tatK7fbXeY6+/fvlyRNnTpVb775pjp16qS//vWv6t27t3bu3KlWrVpV+rh9UZ45StK4cePUrVs3Pfzww5U9xAor7xzPd+zYMb366qsaMWJEZQzRZ8eOHVNRUVGprzkJDQ3Vnj17ylzH7XaXWX+l++BaK88cLzRhwgSFh4eXepO9kZRnnhs3btS7776rzMzMazDCiivPHPfv36+1a9fqiSee0KpVq7R37179/ve/17lz5zRlypRrMWyflGeOjz/+uI4dO6Z77rlHhmGosLBQI0eO1IsvvngthnxNXOx9x+Px6MyZM6pevXq5++ZIzkVMnDhRfn5+l3xc6ZvohYqLiyVJzzzzjIYOHao77rhDM2bMUOvWrfXee+9dzWlcUmXO8eOPP9batWs1c+bMqztoH1XmHM/n8XgUGxuryMhITZ06teIDxzXxxhtvaPHixVq+fLmCgoKu93CumhMnTmjw4MH6n//5H9WvX/96D6fSFBcXKyQkRG+//baioqI0cOBAvfTSS5o/f/71HtpVs27dOv33f/+35s6dq6+//loffvihVq5cqVdfffV6D61K4EjORTz33HMaMmTIJWuaN2+usLAwHTlyxKu9sLBQx48fv+hHNA0bNpQkRUZGerW3bdtWBw8eLP+gfVSZc1y7dq327dunOnXqeLUPGDBA3bt317p16yow8itXmXMsceLECfXt21e1a9fW8uXLFRgYWNFhXxX169dXQECAcnJyvNpzcnIuOqewsDCf6q+38syxxJtvvqk33nhDn376qTp06FCZw6wwX+e5b98+HThwQA899JDZVvLHVbVq1ZSVlaUWLVpU7qB9VJ7XsmHDhgoMDFRAQIDZ1rZtW7ndbhUUFMhms1XqmH1Vnjn+13/9lwYPHqynn35aktS+fXudOnVKI0aM0EsvvSR//6p/rOJi7zsOh6NCR3EkQs5FNWjQQA0aNLhsndPpVG5urjIyMhQVFSXpP7/gi4uLFR0dXeY6TZs2VXh4uLKysrzav/32W/Xr16/ig79ClTnHiRMnmv9Tlmjfvr1mzJjh9cZb2SpzjtJ/juC4XC7Z7XZ9/PHHN9TRAJvNpqioKKWlpZmXDhcXFystLU2jR48ucx2n06m0tDSNHTvWbEtNTZXT6bwGI/ZdeeYoSdOmTdPrr7+uNWvWeJ2HdaPydZ5t2rTRjh07vNomTZqkEydOaNasWYqIiLgWw/ZJeV7Lu+++W4sWLVJxcbH5y/7bb79Vw4YNb7iAI5VvjqdPny4VZEpCnWGR79d2Op2lLvu/au87FT51GUbfvn2NO+64w9i8ebOxceNGo1WrVl6XHv/4449G69atjc2bN5ttM2bMMBwOh7Fs2TLju+++MyZNmmQEBQUZe/fuvR5TuKzyzPFCuoGvrjIM3+eYl5dnREdHG+3btzf27t1rHD582HwUFhZer2l4Wbx4sWG3243k5GRj9+7dxogRI4w6deoYbrfbMAzDGDx4sDFx4kSz/osvvjCqVatmvPnmm8Y333xjTJkypUpcQu7LHN944w3DZrMZH3zwgddrduLEies1hSvi6zwvVBWurvJ1jgcPHjRq165tjB492sjKyjJWrFhhhISEGK+99tr1msJl+TrHKVOmGLVr1zb+/ve/G/v37zc++eQTo0WLFsZvf/vb6zWFyzpx4oSxbds2Y9u2bYYk409/+pOxbds24/vvvzcMwzAmTpxoDB482KwvuYT8hRdeML755htjzpw5XEJ+I/n555+Nxx57zKhVq5bhcDiMoUOHer1hZmdnG5KMzz77zGu9pKQko1GjRkaNGjUMp9NpfP7559d45FeuvHM8340ecnyd42effWZIKvORnZ19fSZRhrfeesto3LixYbPZjC5duhhffvmluaxnz55GXFycV/3SpUuN2267zbDZbMbtt99urFy58hqP2He+zLFJkyZlvmZTpky59gP3ka+v5fmqQsgxDN/nuGnTJiM6Otqw2+1G8+bNjddff/2G+SPjYnyZ47lz54ypU6caLVq0MIKCgoyIiAjj97//vfHLL79c+4FfoYu9N5bMKy4uzujZs2epdTp16mTYbDajefPmxoIFC67KWPwMwyLHuwAAAM5T9c9YAgAAKAMhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWBIhBwAAWNL/B4R1vQwg59eOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARytJREFUeJzt3XlUFFf+NvAHkG5w6UaUNeIGRkVRFBTbuEtslWRCNBOMjqLBddCJkLgQHdwyQ15NRp2IGieJmBkdl0x0ElEIgaAx4oYy4gJxwaDBBlzoVlS2vu8fOdTPFlCaRaR8Puf0CX3rW7furSbdj9VVhYUQQoCIiIhIZiwbegBERERE9YEhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiGotOTkZFhYWSE5OrtN+LSwssHTp0jrt01wxMTGwsLDAlStX6rXPIUOGYMiQIWb3Zc6+r+k2zLF06VJYWFjU6zaIqoshh+gRhw8fxtKlS1FQUNDQQ3ku7Nu3r8GDDDWs8tBX2UOn0zX08KgRa9LQAyB61hw+fBjLli3D5MmTYWdn19DDkb19+/YhOjq60qBz//59NGnSsG9TEydOxLhx46BUKut1O999912N1hs0aBDu378PhUJRxyN6+pYvX44OHTqYtPH/QaoNhhyi59i9e/fQtGnTCu2lpaUwGo0N/sFpY2PToNsHACsrK1hZWdX7dmq6ry0tLZ+J/VQXRo0aBV9f34YeBskIv64iesjSpUsxb948AECHDh2kQ+ZXrlxBaWkpVqxYAXd3dyiVSrRv3x7vv/8+ioqKTPpo3749XnnlFXz33Xfw9vaGjY0NPD098fXXX9doTP/617/Qt29fNG3aFC1btsSgQYMq/Kt//fr16NatG5RKJVxdXREaGlrh67YhQ4age/fuSE1NxaBBg9C0aVO8//77uHLlCiwsLPDRRx9hzZo10vzOnTsHAMjIyMAbb7wBe3t72NjYwNfXF998880Tx/3jjz/i97//Pdq2bQulUgk3NzeEhYXh/v37Us3kyZMRHR0NACZfUZSr7JycU6dOYdSoUVCpVGjevDmGDx+OI0eOmNSUf/3x008/ITw8HA4ODmjWrBlef/115OfnP3HslfX18Pkz5a/xoUOH0LdvX9jY2KBjx4748ssvK6x/9uxZDBs2DLa2tmjTpg0++OADGI3GCnUPny+Tm5uLJk2aYNmyZRXqMjMzYWFhgXXr1gGo+pycTZs2wd3dHba2tujbty9+/PHHas2tqj6r83rWhTt37qCsrKxO+6TnF4/kED1kzJgx+Pnnn/Hvf/8bq1evRuvWrQEADg4OmDp1KrZs2YI33ngD7777Lo4ePYqoqCicP38eu3fvNunnwoULCAoKwsyZMxEcHIzNmzfj97//PeLi4vDyyy9XezzLli3D0qVL0b9/fyxfvhwKhQJHjx5FUlISRowYAeC3YLZs2TL4+/tj1qxZyMzMxIYNG3D8+HH89NNPsLa2lvq7efMmRo0ahXHjxuEPf/gDnJycpGWbN2/GgwcPMH36dCiVStjb2+Ps2bN46aWX8MILL2DhwoVo1qwZdu7cicDAQPznP//B66+/XuXYd+3ahXv37mHWrFlo1aoVjh07hk8++QTXrl3Drl27AAAzZsxATk4OEhIS8M9//vOJ++Ps2bMYOHAgVCoV5s+fD2tra3z66acYMmQIDhw4AD8/P5P6OXPmoGXLlliyZAmuXLmCNWvWYPbs2dixY0e1X4OqXLx4EW+88QZCQkIQHByML774ApMnT4aPjw+6desGANDpdBg6dChKS0ul/bdp0ybY2to+tm8nJycMHjwYO3fuxJIlS0yW7dixA1ZWVvj9739f5fqff/45ZsyYgf79+2Pu3Lm4fPkyfve738He3h5ubm41mm91Xs/aGjp0KO7evQuFQgGtVouPP/4YnTp1qpO+6TkliMjEqlWrBACRlZUltaWlpQkAYurUqSa17733ngAgkpKSpLZ27doJAOI///mP1KbX64WLi4vo1atXtcdx4cIFYWlpKV5//XVRVlZmssxoNAohhMjLyxMKhUKMGDHCpGbdunUCgPjiiy+ktsGDBwsAYuPGjSZ9ZWVlCQBCpVKJvLw8k2XDhw8XXl5e4sGDBybb7t+/v+jUqZPU9sMPPwgA4ocffpDa7t27V2FOUVFRwsLCQvzyyy9SW2hoqKjqrQiAWLJkifQ8MDBQKBQKcenSJaktJydHtGjRQgwaNEhq27x5swAg/P39pX0lhBBhYWHCyspKFBQUVLq9ypT39fDvQ/lrfPDgQaktLy9PKJVK8e6770ptc+fOFQDE0aNHTerUanWFPgcPHiwGDx4sPf/0008FAJGenm4yHk9PTzFs2DDp+aP7vri4WDg6Ogpvb29RVFQk1W3atEkAMNlGZXOrrE8hqv96LlmypMrXsyo7duwQkydPFlu2bBG7d+8WixcvFk2bNhWtW7cW2dnZZvVF9DB+XUVUDfv27QMAhIeHm7S/++67AIDY2FiTdldXV5OjHCqVCpMmTcKpU6eqfbXInj17YDQaERkZCUtL0/9Vy7/S+f7771FcXIy5c+ea1EybNg0qlarCuJRKJaZMmVLp9saOHQsHBwfp+a1bt5CUlIQ333wTd+7cwY0bN3Djxg3cvHkTWq0WFy5cwK+//lrl+B8+WlFYWIgbN26gf//+EELg1KlT1doHDysrK8N3332HwMBAdOzYUWp3cXHB+PHjcejQIRgMBpN1pk+fbvL118CBA1FWVoZffvnF7O0/ytPTEwMHDpSeOzg4oHPnzrh8+bLUtm/fPvTr1w99+/Y1qZswYcIT+x8zZgyaNGlictTpzJkzOHfuHIKCgqpc78SJE8jLy8PMmTNNzvOZPHky1Gp1tef3qLp+PR/25ptvYvPmzZg0aRICAwOxYsUKxMfH4+bNm/jLX/5Sq77p+caQQ1QNv/zyCywtLeHh4WHS7uzsDDs7uwofmh4eHhXuFfLiiy8CQLXvt3Lp0iVYWlrC09PzseMCgM6dO5u0KxQKdOzYscK4XnjhhSpPcH30qpaLFy9CCIE///nPcHBwMHmUf4WSl5dX5diys7MxefJk2Nvbo3nz5nBwcMDgwYMBAHq9vsr1qpKfn4979+5VmCsAdO3aFUajEVevXjVpb9u2rcnzli1bAgBu375t9vYf9Wjf5f0/3Pcvv/xS6dctlc3hUa1bt8bw4cOxc+dOqW3Hjh1o0qQJxowZU+V65a/5o9u1trY2CYfmquvX80kGDBgAPz8/fP/993XeNz0/eE4OkRka+03OHncuyKPLyk+Ofe+996DVaitd59HQV66srAwvv/wybt26hQULFqBLly5o1qwZfv31V0yePLnSE2/rQ1VXRQkhnum+y40bNw5TpkxBWloavL29sXPnTgwfPlw6V6y2qvp9fvTE34Z6Pd3c3JCZmVkvfdPzgSGH6BGVvfG3a9cORqMRFy5cQNeuXaX23NxcFBQUoF27dib15UdBHu7r559/BvDblTnV4e7uDqPRiHPnzsHb27vSmvLtZmZmmvwrvbi4GFlZWfD396/WtipT3p+1tbXZ/aSnp+Pnn3/Gli1bMGnSJKk9ISGhQm11g6ODgwOaNm1a6YdeRkYGLC0ta3xSbX1p164dLly4UKG9uh/cgYGBmDFjhvSV1c8//4yIiIgnbhP47eT3YcOGSe0lJSXIyspCz549pbbyI1uPXon36BFAc17PunT58mWTr1CJzMWvq4ge0axZMwCmb/yjR48GAKxZs8ak9m9/+xsAICAgwKQ9JyfH5Iorg8GAL7/8Et7e3nB2dq7WOAIDA2FpaYnly5dX+Jdy+dECf39/KBQK/P3vfzc5gvD5559Dr9dXGJc5HB0dMWTIEHz66ae4fv16heWPuxS7/CjHw2MSQmDt2rUVaivb31X1OWLECPz3v/81+covNzcX27Ztw4ABA6BSqR7bx9M2evRoHDlyBMeOHZPa8vPzsXXr1mqtb2dnB61Wi507d2L79u1QKBQIDAx87Dq+vr5wcHDAxo0bUVxcLLXHxMRU2Mfu7u4AgIMHD0ptZWVl2LRpk0mdOa9nTVT2u7Rv3z6kpqZi5MiRdbINej7xSA7RI3x8fAAAixYtwrhx42BtbY1XX30VwcHB2LRpEwoKCjB48GAcO3YMW7ZsQWBgIIYOHWrSx4svvoiQkBAcP34cTk5O+OKLL5Cbm4vNmzdXexweHh5YtGgRVqxYgYEDB2LMmDFQKpU4fvw4XF1dERUVBQcHB0RERGDZsmUYOXIkfve73yEzMxPr169Hnz598Ic//KFW+yI6OhoDBgyAl5cXpk2bho4dOyI3NxcpKSm4du0a/ve//1W6XpcuXeDu7o733nsPv/76K1QqFf7zn/9Uei5M+f7+05/+BK1WCysrK4wbN67Sfj/44AMkJCRgwIAB+OMf/4gmTZrg008/RVFREVauXFmrudaH+fPn45///CdGjhyJd955R7qEvF27djh9+nS1+ggKCsIf/vAHrF+/Hlqt9ol3ALa2tsYHH3yAGTNmYNiwYQgKCkJWVhY2b95c4Zycbt26oV+/foiIiMCtW7dgb2+P7du3o7S01KTOnNezJvr3749evXrB19cXarUaJ0+exBdffAE3Nze8//77dbINek41zEVdRM+2FStWiBdeeEFYWlpKl9iWlJSIZcuWiQ4dOghra2vh5uYmIiIiTC6vFuK3y4sDAgJEfHy86NGjh1AqlaJLly5i165dNRrLF198IXr16iWUSqVo2bKlGDx4sEhISDCpWbdunejSpYuwtrYWTk5OYtasWeL27dsmNYMHDxbdunWr0H/5JeSrVq2qdPuXLl0SkyZNEs7OzsLa2lq88MIL4pVXXhFfffWVVFPZJcfnzp0T/v7+onnz5qJ169Zi2rRp4n//+58AIDZv3izVlZaWijlz5ggHBwdhYWFhcvkxHrmEXAghTp48KbRarWjevLlo2rSpGDp0qDh8+LBJTfml0cePHzdpr2ycT1LVJeQBAQEVah+9DFwIIU6fPi0GDx4sbGxsxAsvvCBWrFghPv/88ydeQl7OYDAIW1tbAUD861//qrC8qjmtX79edOjQQSiVSuHr6ysOHjxY6TYuXbok/P39hVKpFE5OTuL9998XCQkJNX49a3IJ+aJFi4S3t7dQq9XC2tpatG3bVsyaNUvodDqz+iF6lIUQdXiWHBGhffv26N69O/bu3dvQQyEieq7xnBwiIiKSJZ6TQ9QAnnRDQFtb21rduI2e7O7du7h79+5jaxwcHJ7KH+eUK71e/8S/bVXdE/GJaoIhh6gBuLi4PHZ5cHAwYmJins5gnlMfffRRpX8A82FZWVnVvuSfKnrnnXewZcuWx9bwjAmqTzwnh6gBPOkurq6uro+90zHV3uXLl03+BENlBgwYABsbm6c0Ivk5d+4ccnJyHltTm3s5ET0JQw4RERHJEk88JiIiIll6rs/JMRqNyMnJQYsWLRr93yQiIiJ6XgghcOfOHbi6usLSsurjNc91yMnJyXnm/tYNERERVc/Vq1fRpk2bKpc/1yGnRYsWAH7bSc/a37whIiKiyhkMBri5uUmf41V5rkNO+VdUKpWKIYeIiKiRedKpJjzxmIiIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkqVYh58MPP4SFhQXmzp0rtT148AChoaFo1aoVmjdvjrFjxyI3N9dkvezsbAQEBKBp06ZwdHTEvHnzUFpaalKTnJyM3r17Q6lUwsPDAzExMRW2Hx0djfbt28PGxgZ+fn44duxYbaZDREREMlLjkHP8+HF8+umn6NGjh0l7WFgYvv32W+zatQsHDhxATk4OxowZIy0vKytDQEAAiouLcfjwYWzZsgUxMTGIjIyUarKyshAQEIChQ4ciLS0Nc+fOxdSpUxEfHy/V7NixA+Hh4ViyZAlOnjyJnj17QqvVIi8vr6ZTIiIiIjkRNXDnzh3RqVMnkZCQIAYPHizeeecdIYQQBQUFwtraWuzatUuqPX/+vAAgUlJShBBC7Nu3T1haWgqdTifVbNiwQahUKlFUVCSEEGL+/PmiW7duJtsMCgoSWq1Wet63b18RGhoqPS8rKxOurq4iKiqq2vPQ6/UCgNDr9dWfPBERETWo6n5+1+hITmhoKAICAuDv72/SnpqaipKSEpP2Ll26oG3btkhJSQEApKSkwMvLC05OTlKNVquFwWDA2bNnpZpH+9ZqtVIfxcXFSE1NNamxtLSEv7+/VFOZoqIiGAwGkwcRERHJk9l/oHP79u04efIkjh8/XmGZTqeDQqGAnZ2dSbuTkxN0Op1U83DAKV9evuxxNQaDAffv38ft27dRVlZWaU1GRkaVY4+KisKyZcuqN1EiIiJq1Mw6knP16lW888472Lp1K2xsbOprTPUmIiICer1eely9erWhh0RERET1xKwjOampqcjLy0Pv3r2ltrKyMhw8eBDr1q1DfHw8iouLUVBQYHI0Jzc3F87OzgAAZ2fnCldBlV999XDNo1dk5ebmQqVSwdbWFlZWVrCysqq0pryPyiiVSiiVSnOmTCRbJXGHTJ5bjxzQQCMhIqofZh3JGT58ONLT05GWliY9fH19MWHCBOlna2trJCYmSutkZmYiOzsbGo0GAKDRaJCenm5yFVRCQgJUKhU8PT2lmof7KK8p70OhUMDHx8ekxmg0IjExUaohIiKi55tZR3JatGiB7t27m7Q1a9YMrVq1ktpDQkIQHh4Oe3t7qFQqzJkzBxqNBv369QMAjBgxAp6enpg4cSJWrlwJnU6HxYsXIzQ0VDrKMnPmTKxbtw7z58/H22+/jaSkJOzcuROxsbHSdsPDwxEcHAxfX1/07dsXa9asQWFhIaZMmVKrHUJERETyYPaJx0+yevVqWFpaYuzYsSgqKoJWq8X69eul5VZWVti7dy9mzZoFjUaDZs2aITg4GMuXL5dqOnTogNjYWISFhWHt2rVo06YNPvvsM2i1WqkmKCgI+fn5iIyMhE6ng7e3N+Li4iqcjExERETPJwshhGjoQTQUg8EAtVoNvV4PlUrV0MMheqp4Tg4RNVbV/fzm364iIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMivkbNiwAT169IBKpYJKpYJGo8H+/ful5UOGDIGFhYXJY+bMmSZ9ZGdnIyAgAE2bNoWjoyPmzZuH0tJSk5rk5GT07t0bSqUSHh4eiImJqTCW6OhotG/fHjY2NvDz88OxY8fMmQoRERHJnFkhp02bNvjwww+RmpqKEydOYNiwYXjttddw9uxZqWbatGm4fv269Fi5cqW0rKysDAEBASguLsbhw4exZcsWxMTEIDIyUqrJyspCQEAAhg4dirS0NMydOxdTp05FfHy8VLNjxw6Eh4djyZIlOHnyJHr27AmtVou8vLza7AsiIiKSEQshhKhNB/b29li1ahVCQkIwZMgQeHt7Y82aNZXW7t+/H6+88gpycnLg5OQEANi4cSMWLFiA/Px8KBQKLFiwALGxsThz5oy03rhx41BQUIC4uDgAgJ+fH/r06YN169YBAIxGI9zc3DBnzhwsXLiw2mM3GAxQq9XQ6/VQqVQ13ANEjVNJ3CGT59YjBzTQSIiIzFPdz+8an5NTVlaG7du3o7CwEBqNRmrfunUrWrduje7duyMiIgL37t2TlqWkpMDLy0sKOACg1WphMBiko0EpKSnw9/c32ZZWq0VKSgoAoLi4GKmpqSY1lpaW8Pf3l2qqUlRUBIPBYPIgIiIieWpi7grp6enQaDR48OABmjdvjt27d8PT0xMAMH78eLRr1w6urq44ffo0FixYgMzMTHz99dcAAJ1OZxJwAEjPdTrdY2sMBgPu37+P27dvo6ysrNKajIyMx449KioKy5YtM3fKRERE1AiZHXI6d+6MtLQ06PV6fPXVVwgODsaBAwfg6emJ6dOnS3VeXl5wcXHB8OHDcenSJbi7u9fpwGsiIiIC4eHh0nODwQA3N7cGHBERERHVF7NDjkKhgIeHBwDAx8cHx48fx9q1a/Hpp59WqPXz8wMAXLx4Ee7u7nB2dq5wFVRubi4AwNnZWfpvedvDNSqVCra2trCysoKVlVWlNeV9VEWpVEKpVJoxWyIiImqsan2fHKPRiKKiokqXpaWlAQBcXFwAABqNBunp6SZXQSUkJEClUklfeWk0GiQmJpr0k5CQIJ33o1Ao4OPjY1JjNBqRmJhocm4QERERPd/MOpITERGBUaNGoW3btrhz5w62bduG5ORkxMfH49KlS9i2bRtGjx6NVq1a4fTp0wgLC8OgQYPQo0cPAMCIESPg6emJiRMnYuXKldDpdFi8eDFCQ0OlIywzZ87EunXrMH/+fLz99ttISkrCzp07ERsbK40jPDwcwcHB8PX1Rd++fbFmzRoUFhZiypQpdbhriIiIqDEzK+Tk5eVh0qRJuH79OtRqNXr06IH4+Hi8/PLLuHr1Kr7//nspcLi5uWHs2LFYvHixtL6VlRX27t2LWbNmQaPRoFmzZggODsby5culmg4dOiA2NhZhYWFYu3Yt2rRpg88++wxarVaqCQoKQn5+PiIjI6HT6eDt7Y24uLgKJyMTERHR86vW98lpzHifHHqe8T45RNRYVffz2+wTj4lIfq4U7Iflif+7c7m774wGHA0RUd3gH+gkIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMivkbNiwAT169IBKpYJKpYJGo8H+/ful5Q8ePEBoaChatWqF5s2bY+zYscjNzTXpIzs7GwEBAWjatCkcHR0xb948lJaWmtQkJyejd+/eUCqV8PDwQExMTIWxREdHo3379rCxsYGfnx+OHTtmzlSIiIhI5swKOW3atMGHH36I1NRUnDhxAsOGDcNrr72Gs2fPAgDCwsLw7bffYteuXThw4ABycnIwZswYaf2ysjIEBASguLgYhw8fxpYtWxATE4PIyEipJisrCwEBARg6dCjS0tIwd+5cTJ06FfHx8VLNjh07EB4ejiVLluDkyZPo2bMntFot8vLyars/iIiISCYshBCiNh3Y29tj1apVeOONN+Dg4IBt27bhjTfeAABkZGSga9euSElJQb9+/bB//3688soryMnJgZOTEwBg48aNWLBgAfLz86FQKLBgwQLExsbizJkz0jbGjRuHgoICxMXFAQD8/PzQp08frFu3DgBgNBrh5uaGOXPmYOHChVWOtaioCEVFRdJzg8EANzc36PV6qFSq2uwGokanJO6Q9POVgv2w9GgrPXf3ndEQQyIiqhaDwQC1Wv3Ez+8an5NTVlaG7du3o7CwEBqNBqmpqSgpKYG/v79U06VLF7Rt2xYpKSkAgJSUFHh5eUkBBwC0Wi0MBoN0NCglJcWkj/Ka8j6Ki4uRmppqUmNpaQl/f3+ppipRUVFQq9XSw83NrabTJyIiomec2SEnPT0dzZs3h1KpxMyZM7F79254enpCp9NBoVDAzs7OpN7JyQk6nQ4AoNPpTAJO+fLyZY+rMRgMuH//Pm7cuIGysrJKa8r7qEpERAT0er30uHr1qrnTJyIiokaiibkrdO7cGWlpadDr9fjqq68QHByMAwcO1MfY6pxSqYRSqWzoYRAREdFTYHbIUSgU8PDwAAD4+Pjg+PHjWLt2LYKCglBcXIyCggKTozm5ublwdnYGADg7O1e4Cqr86quHax69Iis3NxcqlQq2trawsrKClZVVpTXlfRARERHV+j45RqMRRUVF8PHxgbW1NRITE6VlmZmZyM7OhkajAQBoNBqkp6ebXAWVkJAAlUoFT09PqebhPspryvtQKBTw8fExqTEajUhMTJRqiIiIiMw6khMREYFRo0ahbdu2uHPnDrZt24bk5GTEx8dDrVYjJCQE4eHhsLe3h0qlwpw5c6DRaNCvXz8AwIgRI+Dp6YmJEydi5cqV0Ol0WLx4MUJDQ6WvkWbOnIl169Zh/vz5ePvtt5GUlISdO3ciNjZWGkd4eDiCg4Ph6+uLvn37Ys2aNSgsLMSUKVPqcNcQERFRY2ZWyMnLy8OkSZNw/fp1qNVq9OjRA/Hx8Xj55ZcBAKtXr4alpSXGjh2LoqIiaLVarF+/XlrfysoKe/fuxaxZs6DRaNCsWTMEBwdj+fLlUk2HDh0QGxuLsLAwrF27Fm3atMFnn30GrVYr1QQFBSE/Px+RkZHQ6XTw9vZGXFxchZORiYiI6PlV6/vkNGbVvc6eSI54nxwiaqzq/T45RERERM8yhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWGHCIiIpIlhhwiIiKSJYYcIiIikiWzQk5UVBT69OmDFi1awNHREYGBgcjMzDSpGTJkCCwsLEweM2fONKnJzs5GQEAAmjZtCkdHR8ybNw+lpaUmNcnJyejduzeUSiU8PDwQExNTYTzR0dFo3749bGxs4Ofnh2PHjpkzHSIiIpIxs0LOgQMHEBoaiiNHjiAhIQElJSUYMWIECgsLTeqmTZuG69evS4+VK1dKy8rKyhAQEIDi4mIcPnwYW7ZsQUxMDCIjI6WarKwsBAQEYOjQoUhLS8PcuXMxdepUxMfHSzU7duxAeHg4lixZgpMnT6Jnz57QarXIy8ur6b4gIiIiGbEQQoiarpyfnw9HR0ccOHAAgwYNAvDbkRxvb2+sWbOm0nX279+PV155BTk5OXBycgIAbNy4EQsWLEB+fj4UCgUWLFiA2NhYnDlzRlpv3LhxKCgoQFxcHADAz88Pffr0wbp16wAARqMRbm5umDNnDhYuXFit8RsMBqjVauj1eqhUqpruBqJGqSTukPTzlYL9sPRoKz13953REEMiIqqW6n5+1+qcHL1eDwCwt7c3ad+6dStat26N7t27IyIiAvfu3ZOWpaSkwMvLSwo4AKDVamEwGHD27Fmpxt/f36RPrVaLlJQUAEBxcTFSU1NNaiwtLeHv7y/VVKaoqAgGg8HkQURERPLUpKYrGo1GzJ07Fy+99BK6d+8utY8fPx7t2rWDq6srTp8+jQULFiAzMxNff/01AECn05kEHADSc51O99gag8GA+/fv4/bt2ygrK6u0JiMjo8oxR0VFYdmyZTWdMhERETUiNQ45oaGhOHPmDA4dOmTSPn36dOlnLy8vuLi4YPjw4bh06RLc3d1rPtI6EBERgfDwcOm5wWCAm5tbA46IiIiI6kuNQs7s2bOxd+9eHDx4EG3atHlsrZ+fHwDg4sWLcHd3h7Ozc4WroHJzcwEAzs7O0n/L2x6uUalUsLW1hZWVFaysrCqtKe+jMkqlEkqlsnqTJCIiokbNrHNyhBCYPXs2du/ejaSkJHTo0OGJ66SlpQEAXFxcAAAajQbp6ekmV0ElJCRApVLB09NTqklMTDTpJyEhARqNBgCgUCjg4+NjUmM0GpGYmCjVEBER0fPNrCM5oaGh2LZtG/773/+iRYsW0jk0arUatra2uHTpErZt24bRo0ejVatWOH36NMLCwjBo0CD06NEDADBixAh4enpi4sSJWLlyJXQ6HRYvXozQ0FDpKMvMmTOxbt06zJ8/H2+//TaSkpKwc+dOxMbGSmMJDw9HcHAwfH190bdvX6xZswaFhYWYMmVKXe0bIiIiasTMCjkbNmwA8Ntl4g/bvHkzJk+eDIVCge+//14KHG5ubhg7diwWL14s1VpZWWHv3r2YNWsWNBoNmjVrhuDgYCxfvlyq6dChA2JjYxEWFoa1a9eiTZs2+Oyzz6DVaqWaoKAg5OfnIzIyEjqdDt7e3oiLi6twMjIRERE9n2p1n5zGjvfJoecZ75NDRI3VU7lPDhEREdGziiGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJrJATFRWFPn36oEWLFnB0dERgYCAyMzNNah48eIDQ0FC0atUKzZs3x9ixY5Gbm2tSk52djYCAADRt2hSOjo6YN28eSktLTWqSk5PRu3dvKJVKeHh4ICYmpsJ4oqOj0b59e9jY2MDPzw/Hjh0zZzpEREQkY2aFnAMHDiA0NBRHjhxBQkICSkpKMGLECBQWFko1YWFh+Pbbb7Fr1y4cOHAAOTk5GDNmjLS8rKwMAQEBKC4uxuHDh7FlyxbExMQgMjJSqsnKykJAQACGDh2KtLQ0zJ07F1OnTkV8fLxUs2PHDoSHh2PJkiU4efIkevbsCa1Wi7y8vNrsDyIiIpIJCyGEqOnK+fn5cHR0xIEDBzBo0CDo9Xo4ODhg27ZteOONNwAAGRkZ6Nq1K1JSUtCvXz/s378fr7zyCnJycuDk5AQA2LhxIxYsWID8/HwoFAosWLAAsbGxOHPmjLStcePGoaCgAHFxcQAAPz8/9OnTB+vWrQMAGI1GuLm5Yc6cOVi4cGG1xm8wGKBWq6HX66FSqWq6G4gapZK4Q9LPVwr2w9KjrfTc3XdGQwyJiKhaqvv5XatzcvR6PQDA3t4eAJCamoqSkhL4+/tLNV26dEHbtm2RkpICAEhJSYGXl5cUcABAq9XCYDDg7NmzUs3DfZTXlPdRXFyM1NRUkxpLS0v4+/tLNZUpKiqCwWAweRAREZE81TjkGI1GzJ07Fy+99BK6d+8OANDpdFAoFLCzszOpdXJygk6nk2oeDjjly8uXPa7GYDDg/v37uHHjBsrKyiqtKe+jMlFRUVCr1dLDzc3N/IkTERFRo1DjkBMaGoozZ85g+/btdTmeehUREQG9Xi89rl692tBDIiIionrSpCYrzZ49G3v37sXBgwfRpk0bqd3Z2RnFxcUoKCgwOZqTm5sLZ2dnqebRq6DKr756uObRK7Jyc3OhUqlga2sLKysrWFlZVVpT3kdllEollEql+RMmIiKiRsesIzlCCMyePRu7d+9GUlISOnToYLLcx8cH1tbWSExMlNoyMzORnZ0NjUYDANBoNEhPTze5CiohIQEqlQqenp5SzcN9lNeU96FQKODj42NSYzQakZiYKNUQERHR882sIzmhoaHYtm0b/vvf/6JFixbS+S9qtRq2trZQq9UICQlBeHg47O3toVKpMGfOHGg0GvTr1w8AMGLECHh6emLixIlYuXIldDodFi9ejNDQUOkoy8yZM7Fu3TrMnz8fb7/9NpKSkrBz507ExsZKYwkPD0dwcDB8fX3Rt29frFmzBoWFhZgyZUpd7RsiIiJqxMwKORs2bAAADBkyxKR98+bNmDx5MgBg9erVsLS0xNixY1FUVAStVov169dLtVZWVti7dy9mzZoFjUaDZs2aITg4GMuXL5dqOnTogNjYWISFhWHt2rVo06YNPvvsM2i1WqkmKCgI+fn5iIyMhE6ng7e3N+Li4iqcjExERETPp1rdJ6ex431y6HnG++QQUWP1VO6TQ0RERPSsYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZMjvkHDx4EK+++ipcXV1hYWGBPXv2mCyfPHkyLCwsTB4jR440qbl16xYmTJgAlUoFOzs7hISE4O7duyY1p0+fxsCBA2FjYwM3NzesXLmywlh27dqFLl26wMbGBl5eXti3b5+50yEiIiKZMjvkFBYWomfPnoiOjq6yZuTIkbh+/br0+Pe//22yfMKECTh79iwSEhKwd+9eHDx4ENOnT5eWGwwGjBgxAu3atUNqaipWrVqFpUuXYtOmTVLN4cOH8dZbbyEkJASnTp1CYGAgAgMDcebMGXOnRERERDJkIYQQNV7ZwgK7d+9GYGCg1DZ58mQUFBRUOMJT7vz58/D09MTx48fh6+sLAIiLi8Po0aNx7do1uLq6YsOGDVi0aBF0Oh0UCgUAYOHChdizZw8yMjIAAEFBQSgsLMTevXulvvv16wdvb29s3Lix0m0XFRWhqKhIem4wGODm5ga9Xg+VSlXT3UDUKJXEHZJ+vlKwH5YebaXn7r4zGmJIRETVYjAYoFarn/j5XS/n5CQnJ8PR0RGdO3fGrFmzcPPmTWlZSkoK7OzspIADAP7+/rC0tMTRo0elmkGDBkkBBwC0Wi0yMzNx+/Ztqcbf399ku1qtFikpKVWOKyoqCmq1Wnq4ubnVyXyJiIjo2VPnIWfkyJH48ssvkZiYiP/3//4fDhw4gFGjRqGsrAwAoNPp4OjoaLJOkyZNYG9vD51OJ9U4OTmZ1JQ/f1JN+fLKREREQK/XS4+rV6/WbrJERET0zGpS1x2OGzdO+tnLyws9evSAu7s7kpOTMXz48LrenFmUSiWUSmWDjoGIiIiejnq/hLxjx45o3bo1Ll68CABwdnZGXl6eSU1paSlu3boFZ2dnqSY3N9ekpvz5k2rKlxMREdHzrd5DzrVr13Dz5k24uLgAADQaDQoKCpCamirVJCUlwWg0ws/PT6o5ePAgSkpKpJqEhAR07twZLVu2lGoSExNNtpWQkACNRlPfUyIiIqJGwOyQc/fuXaSlpSEtLQ0AkJWVhbS0NGRnZ+Pu3buYN28ejhw5gitXriAxMRGvvfYaPDw8oNVqAQBdu3bFyJEjMW3aNBw7dgw//fQTZs+ejXHjxsHV1RUAMH78eCgUCoSEhODs2bPYsWMH1q5di/DwcGkc77zzDuLi4vDxxx8jIyMDS5cuxYkTJzB79uw62C1ERETU2Jkdck6cOIFevXqhV69eAIDw8HD06tULkZGRsLKywunTp/G73/0OL774IkJCQuDj44Mff/zR5FyYrVu3okuXLhg+fDhGjx6NAQMGmNwDR61W47vvvkNWVhZ8fHzw7rvvIjIy0uReOv3798e2bduwadMm9OzZE1999RX27NmD7t2712Z/EBERkUzU6j45jV11r7MnkiPeJ4eIGqsGvU8OERERUUNjyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWTI75Bw8eBCvvvoqXF1dYWFhgT179pgsF0IgMjISLi4usLW1hb+/Py5cuGBSc+vWLUyYMAEqlQp2dnYICQnB3bt3TWpOnz6NgQMHwsbGBm5ubli5cmWFsezatQtdunSBjY0NvLy8sG/fPnOnQ0RERDJldsgpLCxEz549ER0dXenylStX4u9//zs2btyIo0ePolmzZtBqtXjw4IFUM2HCBJw9exYJCQnYu3cvDh48iOnTp0vLDQYDRowYgXbt2iE1NRWrVq3C0qVLsWnTJqnm8OHDeOuttxASEoJTp04hMDAQgYGBOHPmjLlTIiIiIhmyEEKIGq9sYYHdu3cjMDAQwG9HcVxdXfHuu+/ivffeAwDo9Xo4OTkhJiYG48aNw/nz5+Hp6Ynjx4/D19cXABAXF4fRo0fj2rVrcHV1xYYNG7Bo0SLodDooFAoAwMKFC7Fnzx5kZGQAAIKCglBYWIi9e/dK4+nXrx+8vb2xcePGao3fYDBArVZDr9dDpVLVdDcQNUolcYekn68U7IelR1vpubvvjIYYEhFRtVT387tOz8nJysqCTqeDv7+/1KZWq+Hn54eUlBQAQEpKCuzs7KSAAwD+/v6wtLTE0aNHpZpBgwZJAQcAtFotMjMzcfv2banm4e2U15RvpzJFRUUwGAwmDyIiIpKnOg05Op0OAODk5GTS7uTkJC3T6XRwdHQ0Wd6kSRPY29ub1FTWx8PbqKqmfHlloqKioFarpYebm5u5UyQiIqJG4rm6uioiIgJ6vV56XL16taGHRERERPWkTkOOs7MzACA3N9ekPTc3V1rm7OyMvLw8k+WlpaW4deuWSU1lfTy8japqypdXRqlUQqVSmTyIiIhInuo05HTo0AHOzs5ITEyU2gwGA44ePQqNRgMA0Gg0KCgoQGpqqlSTlJQEo9EIPz8/qebgwYMoKSmRahISEtC5c2e0bNlSqnl4O+U15dshIiKi55vZIefu3btIS0tDWloagN9ONk5LS0N2djYsLCwwd+5cfPDBB/jmm2+Qnp6OSZMmwdXVVboCq2vXrhg5ciSmTZuGY8eO4aeffsLs2bMxbtw4uLq6AgDGjx8PhUKBkJAQnD17Fjt27MDatWsRHh4ujeOdd95BXFwcPv74Y2RkZGDp0qU4ceIEZs+eXfu9QkRERI1eE3NXOHHiBIYOHSo9Lw8ewcHBiImJwfz581FYWIjp06ejoKAAAwYMQFxcHGxsbKR1tm7ditmzZ2P48OGwtLTE2LFj8fe//11arlar8d133yE0NBQ+Pj5o3bo1IiMjTe6l079/f2zbtg2LFy/G+++/j06dOmHPnj3o3r17jXYEERERyUut7pPT2PE+OfQ8431yiKixapD75BARERE9KxhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiW6jzkLF26FBYWFiaPLl26SMsfPHiA0NBQtGrVCs2bN8fYsWORm5tr0kd2djYCAgLQtGlTODo6Yt68eSgtLTWpSU5ORu/evaFUKuHh4YGYmJi6ngoRERE1YvVyJKdbt264fv269Dh06JC0LCwsDN9++y127dqFAwcOICcnB2PGjJGWl5WVISAgAMXFxTh8+DC2bNmCmJgYREZGSjVZWVkICAjA0KFDkZaWhrlz52Lq1KmIj4+vj+kQERFRI9SkXjpt0gTOzs4V2vV6PT7//HNs27YNw4YNAwBs3rwZXbt2xZEjR9CvXz989913OHfuHL7//ns4OTnB29sbK1aswIIFC7B06VIoFAps3LgRHTp0wMcffwwA6Nq1Kw4dOoTVq1dDq9XWx5SIiIiokamXIzkXLlyAq6srOnbsiAkTJiA7OxsAkJqaipKSEvj7+0u1Xbp0Qdu2bZGSkgIASElJgZeXF5ycnKQarVYLg8GAs2fPSjUP91FeU95HVYqKimAwGEweREREJE91HnL8/PwQExODuLg4bNiwAVlZWRg4cCDu3LkDnU4HhUIBOzs7k3WcnJyg0+kAADqdziTglC8vX/a4GoPBgPv371c5tqioKKjVaunh5uZW2+kSERHRM6rOv64aNWqU9HOPHj3g5+eHdu3aYefOnbC1ta3rzZklIiIC4eHh0nODwcCgQ0REJFP1fgm5nZ0dXnzxRVy8eBHOzs4oLi5GQUGBSU1ubq50Do+zs3OFq63Knz+pRqVSPTZIKZVKqFQqkwcRERHJU72HnLt37+LSpUtwcXGBj48PrK2tkZiYKC3PzMxEdnY2NBoNAECj0SA9PR15eXlSTUJCAlQqFTw9PaWah/sorynvg4iIiKjOQ857772HAwcO4MqVKzh8+DBef/11WFlZ4a233oJarUZISAjCw8Pxww8/IDU1FVOmTIFGo0G/fv0AACNGjICnpycmTpyI//3vf4iPj8fixYsRGhoKpVIJAJg5cyYuX76M+fPnIyMjA+vXr8fOnTsRFhZW19MhIiKiRqrOz8m5du0a3nrrLdy8eRMODg4YMGAAjhw5AgcHBwDA6tWrYWlpibFjx6KoqAharRbr16+X1reyssLevXsxa9YsaDQaNGvWDMHBwVi+fLlU06FDB8TGxiIsLAxr165FmzZt8Nlnn/HycSIiIpJYCCFEQw+ioRgMBqjVauj1ep6fQ8+dkrj/u0nnlYL9sPRoKz13953REEMiIqqW6n5+829XERERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsNWnoARBR3RFGI4yXrwGGu4CqOSw7toGFZe3+LVMmynD+5incfnADLW1ao2urXrCysKqjETce3A9EjU+jDznR0dFYtWoVdDodevbsiU8++QR9+/Zt6GERPXVlp39Gye5EQH/n/xrVLWD9+nBY9XixRn2m5CTi8zOrcPNBntTWysYRId3nQeM6vLZDbjS4H4gaJwshhGjoQdTUjh07MGnSJGzcuBF+fn5Ys2YNdu3ahczMTDg6Oj5xfYPBALVaDb1eD5VK9RRGTM+zkrhDFdqsRw54Ys2TWI8c8FvAidlTdc3kwApB5+FtXSnYD0uPttJzd98ZSMlJxMoT8wE8+hZhAQCY77vyufiA534gevZU9/O7UYccPz8/9OnTB+vWrQMAGI1GuLm5Yc6cOVi4cOET12fIoZqqSRipL0IIGA+mAkXFVRcpFbAc5AMLC4tKF18p2G/yvK1ai1Crv5ocuTBlgdY2jtj48l5Zf2VTJsowIyHgud8PRM+a6n5+N9qvq4qLi5GamoqIiAipzdLSEv7+/khJSal0naKiIhQVFUnP9Xo9gN92Fj0fShIq/914VmXrE0yet1W/XKFG3DbA+KTf4aIHsPxVB4uWlb8Z3L1XZPL8eJMz0JVef2yX1+/lIOU/n6Krhfvjt92InReXqrUfjl/5EZ6tej+lURFR+ef2k47TNNqQc+PGDZSVlcHJycmk3cnJCRkZGZWuExUVhWXLllVod3Nzq5cxEtW9jxt6ACZiEdrQQ3gmxGJoQw+B6Ll0584dqNXqKpc32pBTExEREQgPD5eeG41G3Lp1C61ataryMH5NGQwGuLm54erVq7L+Kux5mCfnKA+cozxwjvJQ2zkKIXDnzh24uro+tq7RhpzWrVvDysoKubm5Ju25ublwdnaudB2lUgmlUmnSZmdnV19DBACoVCrZ/pI+7HmYJ+coD5yjPHCO8lCbOT7uCE65RnszQIVCAR8fHyQmJkptRqMRiYmJ0Gg0DTgyIiIiehY02iM5ABAeHo7g4GD4+vqib9++WLNmDQoLCzFlypSGHhoRERE1sEYdcoKCgpCfn4/IyEjodDp4e3sjLi6uwsnIDUGpVGLJkiUVvh6Tm+dhnpyjPHCO8sA5ysPTmmOjvk8OERERUVUa7Tk5RERERI/DkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBTh27duoUJEyZApVLBzs4OISEhuHv37hPXS0lJwbBhw9CsWTOoVCoMGjQI9+/ffwojNl9N5wj8dhvuUaNGwcLCAnv27KnfgdaCuXO8desW5syZg86dO8PW1hZt27bFn/70J+kPwD4roqOj0b59e9jY2MDPzw/Hjh17bP2uXbvQpUsX2NjYwMvLC/v27XtKI605c+b4j3/8AwMHDkTLli3RsmVL+Pv7P3GfPAvMfR3Lbd++HRYWFggMDKzfAdYBc+dYUFCA0NBQuLi4QKlU4sUXX3zmf1/NneOaNWuk9xg3NzeEhYXhwYMHT2m05jt48CBeffVVuLq6Vvs9Pzk5Gb1794ZSqYSHhwdiYmJqPxBBdWbkyJGiZ8+e4siRI+LHH38UHh4e4q233nrsOocPHxYqlUpERUWJM2fOiIyMDLFjxw7x4MGDpzRq89RkjuX+9re/iVGjRgkAYvfu3fU70Fowd47p6elizJgx4ptvvhEXL14UiYmJolOnTmLs2LFPcdSPt337dqFQKMQXX3whzp49K6ZNmybs7OxEbm5upfU//fSTsLKyEitXrhTnzp0TixcvFtbW1iI9Pf0pj7z6zJ3j+PHjRXR0tDh16pQ4f/68mDx5slCr1eLatWtPeeTVZ+4cy2VlZYkXXnhBDBw4ULz22mtPZ7A1ZO4ci4qKhK+vrxg9erQ4dOiQyMrKEsnJySItLe0pj7z6zJ3j1q1bhVKpFFu3bhVZWVkiPj5euLi4iLCwsKc88urbt2+fWLRokfj666+r9Z5/+fJl0bRpUxEeHi7OnTsnPvnkE2FlZSXi4uJqNQ6GnDpy7tw5AUAcP35catu/f7+wsLAQv/76a5Xr+fn5icWLFz+NIdZaTecohBCnTp0SL7zwgrh+/fozHXJqM8eH7dy5UygUClFSUlIfwzRb3759RWhoqPS8rKxMuLq6iqioqErr33zzTREQEGDS5ufnJ2bMmFGv46wNc+f4qNLSUtGiRQuxZcuW+hpirdVkjqWlpaJ///7is88+E8HBwc98yDF3jhs2bBAdO3YUxcXFT2uItWbuHENDQ8WwYcNM2sLDw8VLL71Ur+OsK9V5z58/f77o1q2bSVtQUJDQarW12ja/rqojKSkpsLOzg6+vr9Tm7+8PS0tLHD16tNJ18vLycPToUTg6OqJ///5wcnLC4MGDcejQoac1bLPUZI4AcO/ePYwfPx7R0dFV/vHUZ0VN5/govV4PlUqFJk0a/qbixcXFSE1Nhb+/v9RmaWkJf39/pKSkVLpOSkqKST0AaLXaKusbWk3m+Kh79+6hpKQE9vb29TXMWqnpHJcvXw5HR0eEhIQ8jWHWSk3m+M0330Cj0SA0NBROTk7o3r07/vrXv6KsrOxpDdssNZlj//79kZqaKn2ldfnyZezbtw+jR49+KmN+GurrPafh34FlQqfTwdHR0aStSZMmsLe3h06nq3Sdy5cvAwCWLl2Kjz76CN7e3vjyyy8xfPhwnDlzBp06dar3cZujJnMEgLCwMPTv3x+vvfZafQ+x1mo6x4fduHEDK1aswPTp0+tjiGa7ceMGysrKKvy5EycnJ2RkZFS6jk6nq7S+uvvgaavJHB+1YMECuLq6VnijfVbUZI6HDh3C559/jrS0tKcwwtqryRwvX76MpKQkTJgwAfv27cPFixfxxz/+ESUlJViyZMnTGLZZajLH8ePH48aNGxgwYACEECgtLcXMmTPx/vvvP40hPxVVvecYDAbcv38ftra2NeqXR3KeYOHChbCwsHjso7pvoo8yGo0AgBkzZmDKlCno1asXVq9ejc6dO+OLL76oy2k8Vn3O8ZtvvkFSUhLWrFlTt4M2U33O8WEGgwEBAQHw9PTE0qVLaz9weio+/PBDbN++Hbt374aNjU1DD6dO3LlzBxMnTsQ//vEPtG7duqGHU2+MRiMcHR2xadMm+Pj4ICgoCIsWLcLGjRsbemh1Jjk5GX/961+xfv16nDx5El9//TViY2OxYsWKhh7aM49Hcp7g3XffxeTJkx9b07FjRzg7OyMvL8+kvbS0FLdu3aryKxoXFxcAgKenp0l7165dkZ2dXfNBm6k+55iUlIRLly7Bzs7OpH3s2LEYOHAgkpOTazHy6qvPOZa7c+cORo4ciRYtWmD37t2wtrau7bDrROvWrWFlZYXc3FyT9tzc3Crn5OzsbFZ9Q6vJHMt99NFH+PDDD/H999+jR48e9TnMWjF3jpcuXcKVK1fw6quvSm3l/7Bq0qQJMjMz4e7uXr+DNlNNXkcXFxdYW1vDyspKauvatSt0Oh2Ki4uhUCjqdczmqskc//znP2PixImYOnUqAMDLywuFhYWYPn06Fi1aBEvLxn+8oqr3HJVKVeOjOABDzhM5ODjAwcHhiXUajQYFBQVITU2Fj48PgN8+4I1GI/z8/Cpdp3379nB1dUVmZqZJ+88//4xRo0bVfvDVVJ9zXLhwofQ/ZjkvLy+sXr3a5M23vtXnHIHfjuBotVoolUp88803z9TRAIVCAR8fHyQmJkqXDxuNRiQmJmL27NmVrqPRaJCYmIi5c+dKbQkJCdBoNE9hxOaryRwBYOXKlfjLX/6C+Ph4k/OwnkXmzrFLly5IT083aVu8eDHu3LmDtWvXws3N7WkM2yw1eR1feuklbNu2DUajUfqw//nnn+Hi4vLMBRygZnO8d+9ehSBTHuqETP7GtkajqXDZf52859TqtGUyMXLkSNGrVy9x9OhRcejQIdGpUyeTS4+vXbsmOnfuLI4ePSq1rV69WqhUKrFr1y5x4cIFsXjxYmFjYyMuXrzYEFN4oprM8VF4hq+uEsL8Oer1euHn5ye8vLzExYsXxfXr16VHaWlpQ03DxPbt24VSqRQxMTHi3LlzYvr06cLOzk7odDohhBATJ04UCxculOp/+ukn0aRJE/HRRx+J8+fPiyVLljSKS8jNmeOHH34oFAqF+Oqrr0xeszt37jTUFJ7I3Dk+qjFcXWXuHLOzs0WLFi3E7NmzRWZmpti7d69wdHQUH3zwQUNN4YnMneOSJUtEixYtxL///W9x+fJl8d133wl3d3fx5ptvNtQUnujOnTvi1KlT4tSpUwKA+Nvf/iZOnTolfvnlFyGEEAsXLhQTJ06U6ssvIZ83b544f/68iI6O5iXkz5qbN2+Kt956SzRv3lyoVCoxZcoUkzfMrKwsAUD88MMPJutFRUWJNm3aiKZNmwqNRiN+/PHHpzzy6qvpHB/2rIccc+f4ww8/CACVPrKyshpmEpX45JNPRNu2bYVCoRB9+/YVR44ckZYNHjxYBAcHm9Tv3LlTvPjii0KhUIhu3bqJ2NjYpzxi85kzx3bt2lX6mi1ZsuTpD9wM5r6OD2sMIUcI8+d4+PBh4efnJ5RKpejYsaP4y1/+8sz8A6Mq5syxpKRELF26VLi7uwsbGxvh5uYm/vjHP4rbt28//YFXU1Xvi+XzCg4OFoMHD66wjre3t1AoFKJjx45i8+bNtR6HhRAyOdZFRERE9JDGf7YSERERUSUYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiW/j9oiS68/d6qgAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR35JREFUeJzt3XtcVHX+P/DXcJkBLzOIck28l4iiJCqOeZccldpI2sXLGhpquugmlBfKBbV26WftqiXethLb1fVS6ZYohhCaiTeUFTXIC4aGA5gyg6jc5vP7owfn6wgow0Xk+Ho+Huexzee8z+d8Pmfc4cWZcw4KIYQAERERkcxYNfUAiIiIiBoDQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhHVW0pKChQKBVJSUhq0X4VCgSVLljRon5aKi4uDQqHA5cuXG7XP4cOHY/jw4Rb3Zcmxr+s+LLFkyRIoFIpG3QdRbTHkEN3n8OHDWLJkCQoLC5t6KE+EPXv2NHmQocfD/v37MXLkSGg0GrRu3Rq+vr7Ytm1bUw+LmjGbph4A0ePm8OHDWLp0KaZOnQoHB4emHo7s7dmzB7GxsdUGnTt37sDGpmk/pqZMmYIJEyZApVI16n6+/fbbOm03dOhQ3LlzB0qlsoFH9Ght3LgRoaGheP755/G3v/0N1tbWyMrKwpUrV5p6aNSMMeQQPcFu376NFi1aVGkvLy+HyWRq8h+cdnZ2Tbp/ALC2toa1tXWj76eux9rKyuqxOE71cfnyZYSFhWHu3LlYtWpVUw+HZIRfVxHdY8mSJZg/fz4AoHPnzlAoFNK1E+Xl5Xj33XfRtWtXqFQqdOrUCW+//TZKSkrM+ujUqRNeeOEFfPvtt/Dx8YGdnR28vLzw1Vdf1WlM//73vzFgwAC0aNECbdq0wdChQ6v81r9mzRr07NkTKpUK7u7uCAsLq/J12/Dhw9GrVy+kpaVh6NChaNGiBd5++21cvnwZCoUCH374IVauXCnN79y5cwCAzMxMvPLKK3B0dISdnR369euHr7/++qHj/v777/H73/8eHTp0gEqlgoeHB8LDw3Hnzh2pZurUqYiNjQUA6Vjfez1HddfknDp1CmPHjoVarUarVq0watQoHDlyxKym8pqXH374AREREXByckLLli3x8ssvo6Cg4KFjr66ve6+fqXyPDx06hAEDBsDOzg5dunTB559/XmX7s2fPYuTIkbC3t0f79u3x3nvvwWQyVam793qZvLw82NjYYOnSpVXqsrKyoFAosHr1agA1X5OzYcMGdO3aFfb29hgwYAC+//77Ws2tpj5r837W1bp161BRUYFly5YBAG7dugUhRL37JeKZHKJ7jB8/Hj/99BP+85//YMWKFWjXrh0AwMnJCdOnT8emTZvwyiuv4M0338TRo0cRExODH3/8ETt37jTr5/z58wgODsasWbMQEhKCjRs34ve//z0SEhLw/PPP13o8S5cuxZIlSzBo0CAsW7YMSqUSR48eRXJyMkaPHg3gt2C2dOlS+Pv7Y/bs2cjKysLatWtx/Phx/PDDD7C1tZX6+/XXXzF27FhMmDABf/zjH+Hi4iKt27hxI+7evYuZM2dCpVLB0dERZ8+exXPPPYennnoKixYtQsuWLbF9+3YEBgbiyy+/xMsvv1zj2Hfs2IHbt29j9uzZaNu2LY4dO4aPP/4YV69exY4dOwAAr7/+OnJzc5GYmIh//etfDz0eZ8+exZAhQ6BWq7FgwQLY2tpi/fr1GD58OA4cOAA/Pz+z+rlz56JNmzaIjo7G5cuXsXLlSsyZM6dBrvO4cOECXnnlFYSGhiIkJASfffYZpk6dCl9fX/Ts2RMAoNfrMWLECJSXl0vHb8OGDbC3t39g3y4uLhg2bBi2b9+O6Ohos3Xbtm2DtbU1fv/739e4/aefforXX38dgwYNwrx583Dp0iX87ne/g6OjIzw8POo039q8n3W1f/9+eHp6Ys+ePZg/fz5++eUXtGnTBmFhYVi6dCmsrPj7ONWRICIzH3zwgQAgsrOzpbb09HQBQEyfPt2s9q233hIARHJystTWsWNHAUB8+eWXUpvBYBBubm7i2WefrfU4zp8/L6ysrMTLL78sKioqzNaZTCYhhBD5+flCqVSK0aNHm9WsXr1aABCfffaZ1DZs2DABQKxbt86sr+zsbAFAqNVqkZ+fb7Zu1KhRwtvbW9y9e9ds34MGDRJPP/201Pbdd98JAOK7776T2m7fvl1lTjExMUKhUIiff/5ZagsLCxM1fRQBENHR0dLrwMBAoVQqxcWLF6W23Nxc0bp1azF06FCpbePGjQKA8Pf3l46VEEKEh4cLa2trUVhYWO3+qlPZ173/Hirf44MHD0pt+fn5QqVSiTfffFNqmzdvngAgjh49alan0Wiq9Dls2DAxbNgw6fX69esFAJGRkWE2Hi8vLzFy5Ejp9f3HvrS0VDg7OwsfHx9RUlIi1W3YsEEAMNtHdXOrrk8hav9+RkdH1/h+1kStVos2bdoIlUol/vKXv4gvvvhCTJo0SQAQixYtsqgvonsxHhPVwp49ewAAERERZu1vvvkmACA+Pt6s3d3d3ewsh1qtxquvvopTp05Br9fXap+7du2CyWRCVFRUld9kK7/S2b9/P0pLSzFv3jyzmhkzZkCtVlcZl0qlwrRp06rdX1BQEJycnKTXN27cQHJyMv7whz+gqKgI169fx/Xr1/Hrr79Cp9Ph/Pnz+OWXX2oc/71nK4qLi3H9+nUMGjQIQgicOnWqVsfgXhUVFfj2228RGBiILl26SO1ubm6YNGkSDh06BKPRaLbNzJkzzb7+GjJkCCoqKvDzzz9bvP/7eXl5YciQIdJrJycndO/eHZcuXZLa9uzZg4EDB2LAgAFmdZMnT35o/+PHj4eNjY3ZWaczZ87g3LlzCA4OrnG7EydOID8/H7NmzTK7zmfq1KnQaDS1nt/9Gvr9vNetW7dw8+ZNLF26FMuWLUNQUBA2b96MMWPGYNWqVSgqKqpX//TkYsghqoWff/4ZVlZW6Natm1m7q6srHBwcqvzQ7NatW5VnhTzzzDMAUOvnrVy8eBFWVlbw8vJ64LgAoHv37mbtSqUSXbp0qTKup556qsYLXDt37mz2+sKFCxBC4C9/+QucnJzMlsqvUPLz82scW05ODqZOnQpHR0e0atUKTk5OGDZsGADAYDDUuF1NCgoKcPv27SpzBYAePXrAZDJVuROnQ4cOZq/btGkDALh586bF+7/f/X1X9n9v3z///DOefvrpKnXVzeF+7dq1w6hRo7B9+3apbdu2bbCxscH48eNr3K7yPb9/v7a2tmbh0FIN/X7eqzJATZw40ax94sSJuHPnTr1DFD25eE0OkQWa+0POHnQtyP3rKi+Ofeutt6DT6ard5v7QV6miogLPP/88bty4gYULF8LT0xMtW7bEL7/8gqlTp1Z74W1jqOmuKNEAF7U2Zt+VJkyYgGnTpiE9PR0+Pj7Yvn07Ro0aJV0rVl81/XuuqKio8rox3093d3ecP3/e7BoxAHB2dgbQMKGUnkwMOUT3qe6Dv2PHjjCZTDh//jx69Oghtefl5aGwsBAdO3Y0q688C3JvXz/99BOA3+7MqY2uXbvCZDLh3Llz8PHxqbamcr9ZWVlmv6WXlpYiOzsb/v7+tdpXdSr7s7W1tbifjIwM/PTTT9i0aRNeffVVqT0xMbFKbW2Do5OTE1q0aIGsrKwq6zIzM2FlZVXni2obS8eOHXH+/Pkq7dXNoTqBgYF4/fXXpa+sfvrpJ0RGRj50n8BvF7+PHDlSai8rK0N2djb69OkjtVWe2br/Trz7zwBa8n7Wha+vr/T1573/jnNzcwHA7GtUIkvw6yqi+7Rs2RKA+Qf/uHHjAAArV640q/3HP/4BAAgICDBrz83NNbvjymg04vPPP4ePjw9cXV1rNY7AwEBYWVlh2bJlVX5Trjxb4O/vD6VSiY8++sjsDMKnn34Kg8FQZVyWcHZ2xvDhw7F+/Xpcu3atyvoH3YpdeZbj3jEJIap9Bkp1x7umPkePHo3//ve/Zl/55eXlYcuWLRg8eDDUavUD+3jUxo0bhyNHjuDYsWNSW0FBATZv3lyr7R0cHKDT6bB9+3Zs3boVSqUSgYGBD9ymX79+cHJywrp161BaWiq1x8XFVTnGXbt2BQAcPHhQaquoqMCGDRvM6ix5P+ui8hqjTz/9VGozmUzYuHEjHB0d4evr2yD7oScPz+QQ3afyA/Wdd97BhAkTYGtrixdffBEhISHYsGEDCgsLMWzYMBw7dgybNm1CYGAgRowYYdbHM888g9DQUBw/fhwuLi747LPPkJeXh40bN9Z6HN26dcM777yDd999F0OGDMH48eOhUqlw/PhxuLu7IyYmBk5OToiMjMTSpUsxZswY/O53v0NWVhbWrFmD/v37449//GO9jkVsbCwGDx4Mb29vzJgxA126dEFeXh5SU1Nx9epV/O9//6t2O09PT3Tt2hVvvfUWfvnlF6jVanz55ZfVfu1Qebz//Oc/Q6fTwdraGhMmTKi23/feew+JiYkYPHgw/vSnP8HGxgbr169HSUkJli9fXq+5NoYFCxbgX//6F8aMGYM33nhDuoW8Y8eOOH36dK36CA4Oxh//+EesWbMGOp3uoU/htrW1xXvvvYfXX38dI0eORHBwMLKzs7Fx48Yq1+T07NkTAwcORGRkJG7cuAFHR0ds3boV5eXlZnWWvJ918dJLL2HUqFGIiYnB9evX0adPH+zatQuHDh3C+vXrG/1p0yRjTXNTF9Hj7d133xVPPfWUsLKykm6xLSsrE0uXLhWdO3cWtra2wsPDQ0RGRprdXi3Eb7cXBwQEiH379onevXsLlUolPD09xY4dO+o0ls8++0w8++yzQqVSiTZt2ohhw4aJxMREs5rVq1cLT09PYWtrK1xcXMTs2bPFzZs3zWqGDRsmevbsWaX/ylvIP/jgg2r3f/HiRfHqq68KV1dXYWtrK5566inxwgsviC+++EKqqe6W43Pnzgl/f3/RqlUr0a5dOzFjxgzxv//9TwAQGzdulOrKy8vF3LlzhZOTk1AoFGa3H+O+W8iFEOLkyZNCp9OJVq1aiRYtWogRI0aIw4cPm9VU3hp9/Phxs/bqxvkwNd1CHhAQUKX2/tvAhRDi9OnTYtiwYcLOzk489dRT4t133xWffvrpQ28hr2Q0GoW9vb0AIP79739XWV/TnNasWSM6d+4sVCqV6Nevnzh48GC1+7h48aLw9/cXKpVKuLi4iLffflskJibW+f2syy3kQghRVFQk3njjDeHq6iqUSqXw9vaudr5EllAIwcdKEjWkTp06oVevXti9e3dTD4WI6InGa3KIiIhIlnhNDlETeNgDAe3t7ev14DZ6uFu3buHWrVsPrHFycnokf5xTrgwGw0P/tlVtL8QnqguGHKIm4Obm9sD1ISEhiIuLezSDeUJ9+OGH1f4BzHtlZ2fX+pZ/quqNN97Apk2bHljDKyaoMfGaHKImsH///geud3d3f+CTjqn+Ll26ZPYnGKozePBg2NnZPaIRyc+5c+ekZ93UpD7PciJ6GIYcIiIikiVeeExERESy9ERfk2MymZCbm4vWrVs3+79JRERE9KQQQqCoqAju7u6wsqr5fM0THXJyc3Mfu791Q0RERLVz5coVtG/fvsb1T3TIad26NYDfDtLj9jdviIiIqHpGoxEeHh7Sz/GaPNEhp/IrKrVazZBDRETUzDzsUhNeeExERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkENERESyxJBDREREsmTT1AMgosdDWcIhs9e2YwY30UiIiBoGz+QQERGRLDHkEBERkSzVK+S8//77UCgUmDdvntR29+5dhIWFoW3btmjVqhWCgoKQl5dntl1OTg4CAgLQokULODs7Y/78+SgvLzerSUlJQd++faFSqdCtWzfExcVV2X9sbCw6deoEOzs7+Pn54dixY/WZDhEREclInUPO8ePHsX79evTu3dusPTw8HN988w127NiBAwcOIDc3F+PHj5fWV1RUICAgAKWlpTh8+DA2bdqEuLg4REVFSTXZ2dkICAjAiBEjkJ6ejnnz5mH69OnYt2+fVLNt2zZEREQgOjoaJ0+eRJ8+faDT6ZCfn1/XKREREZGciDooKioSTz/9tEhMTBTDhg0Tb7zxhhBCiMLCQmFrayt27Ngh1f74448CgEhNTRVCCLFnzx5hZWUl9Hq9VLN27VqhVqtFSUmJEEKIBQsWiJ49e5rtMzg4WOh0Oun1gAEDRFhYmPS6oqJCuLu7i5iYmFrPw2AwCADCYDDUfvJEMlW693uzhYjocVXbn991OpMTFhaGgIAA+Pv7m7WnpaWhrKzMrN3T0xMdOnRAamoqACA1NRXe3t5wcXGRanQ6HYxGI86ePSvV3N+3TqeT+igtLUVaWppZjZWVFfz9/aWa6pSUlMBoNJotREREJE8W30K+detWnDx5EsePH6+yTq/XQ6lUwsHBwazdxcUFer1eqrk34FSur1z3oBqj0Yg7d+7g5s2bqKioqLYmMzOzxrHHxMRg6dKltZsoERERNWsWncm5cuUK3njjDWzevBl2dnaNNaZGExkZCYPBIC1Xrlxp6iERERFRI7Eo5KSlpSE/Px99+/aFjY0NbGxscODAAXz00UewsbGBi4sLSktLUVhYaLZdXl4eXF1dAQCurq5V7raqfP2wGrVaDXt7e7Rr1w7W1tbV1lT2UR2VSgW1Wm22EBERkTxZFHJGjRqFjIwMpKenS0u/fv0wefJk6b9tbW2RlJQkbZOVlYWcnBxotVoAgFarRUZGhtldUImJiVCr1fDy8pJq7u2jsqayD6VSCV9fX7Mak8mEpKQkqYaIiIiebBZdk9O6dWv06tXLrK1ly5Zo27at1B4aGoqIiAg4OjpCrVZj7ty50Gq1GDhwIABg9OjR8PLywpQpU7B8+XLo9XosXrwYYWFhUKlUAIBZs2Zh9erVWLBgAV577TUkJydj+/btiI+Pl/YbERGBkJAQ9OvXDwMGDMDKlStRXFyMadOm1euAEBERkTw0+N+uWrFiBaysrBAUFISSkhLodDqsWbNGWm9tbY3du3dj9uzZ0Gq1aNmyJUJCQrBs2TKppnPnzoiPj0d4eDhWrVqF9u3b45NPPoFOp5NqgoODUVBQgKioKOj1evj4+CAhIaHKxchERET0ZFIIIURTD6KpGI1GaDQaGAwGXp9DTzz+gU4iai5q+/Obf7uKiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJopCzdu1a9O7dG2q1Gmq1GlqtFnv37pXWDx8+HAqFwmyZNWuWWR85OTkICAhAixYt4OzsjPnz56O8vNysJiUlBX379oVKpUK3bt0QFxdXZSyxsbHo1KkT7Ozs4Ofnh2PHjlkyFSIiIpI5i0JO+/bt8f777yMtLQ0nTpzAyJEj8dJLL+Hs2bNSzYwZM3Dt2jVpWb58ubSuoqICAQEBKC0txeHDh7Fp0ybExcUhKipKqsnOzkZAQABGjBiB9PR0zJs3D9OnT8e+ffukmm3btiEiIgLR0dE4efIk+vTpA51Oh/z8/PocCyIiIpIRhRBC1KcDR0dHfPDBBwgNDcXw4cPh4+ODlStXVlu7d+9evPDCC8jNzYWLiwsAYN26dVi4cCEKCgqgVCqxcOFCxMfH48yZM9J2EyZMQGFhIRISEgAAfn5+6N+/P1avXg0AMJlM8PDwwNy5c7Fo0aJaj91oNEKj0cBgMECtVtfxCBDJQ1nCIbPXtmMGN9FIiIgerLY/v+t8TU5FRQW2bt2K4uJiaLVaqX3z5s1o164devXqhcjISNy+fVtal5qaCm9vbyngAIBOp4PRaJTOBqWmpsLf399sXzqdDqmpqQCA0tJSpKWlmdVYWVnB399fqqlJSUkJjEaj2UJERETyZGPpBhkZGdBqtbh79y5atWqFnTt3wsvLCwAwadIkdOzYEe7u7jh9+jQWLlyIrKwsfPXVVwAAvV5vFnAASK/1ev0Da4xGI+7cuYObN2+ioqKi2prMzMwHjj0mJgZLly61dMpERETUDFkccrp374709HQYDAZ88cUXCAkJwYEDB+Dl5YWZM2dKdd7e3nBzc8OoUaNw8eJFdO3atUEHXheRkZGIiIiQXhuNRnh4eDThiIiIiKixWBxylEolunXrBgDw9fXF8ePHsWrVKqxfv75KrZ+fHwDgwoUL6Nq1K1xdXavcBZWXlwcAcHV1lf63su3eGrVaDXt7e1hbW8Pa2rramso+aqJSqaBSqSyYLRERETVX9X5OjslkQklJSbXr0tPTAQBubm4AAK1Wi4yMDLO7oBITE6FWq6WvvLRaLZKSksz6SUxMlK77USqV8PX1NasxmUxISkoyuzaIiGrn4on1uHhiPS4X7pUWIiI5sOhMTmRkJMaOHYsOHTqgqKgIW7ZsQUpKCvbt24eLFy9iy5YtGDduHNq2bYvTp08jPDwcQ4cORe/evQEAo0ePhpeXF6ZMmYLly5dDr9dj8eLFCAsLk86wzJo1C6tXr8aCBQvw2muvITk5Gdu3b0d8fLw0joiICISEhKBfv34YMGAAVq5cieLiYkybNq0BDw0RERE1ZxaFnPz8fLz66qu4du0aNBoNevfujX379uH555/HlStXsH//filweHh4ICgoCIsXL5a2t7a2xu7duzF79mxotVq0bNkSISEhWLZsmVTTuXNnxMfHIzw8HKtWrUL79u3xySefQKfTSTXBwcEoKChAVFQU9Ho9fHx8kJCQUOViZCIiInpy1fs5Oc0Zn5ND9NvXVQBgupAjtXVyGMvn5BDRY6vRn5NDRERE9DhjyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWbIo5Kxduxa9e/eGWq2GWq2GVqvF3r17pfV3795FWFgY2rZti1atWiEoKAh5eXlmfeTk5CAgIAAtWrSAs7Mz5s+fj/LycrOalJQU9O3bFyqVCt26dUNcXFyVscTGxqJTp06ws7ODn58fjh07ZslUiIiISOYsCjnt27fH+++/j7S0NJw4cQIjR47ESy+9hLNnzwIAwsPD8c0332DHjh04cOAAcnNzMX78eGn7iooKBAQEoLS0FIcPH8amTZsQFxeHqKgoqSY7OxsBAQEYMWIE0tPTMW/ePEyfPh379u2TarZt24aIiAhER0fj5MmT6NOnD3Q6HfLz8+t7PIiIiEgmFEIIUZ8OHB0d8cEHH+CVV16Bk5MTtmzZgldeeQUAkJmZiR49eiA1NRUDBw7E3r178cILLyA3NxcuLi4AgHXr1mHhwoUoKCiAUqnEwoULER8fjzNnzkj7mDBhAgoLC5GQkAAA8PPzQ//+/bF69WoAgMlkgoeHB+bOnYtFixbVONaSkhKUlJRIr41GIzw8PGAwGKBWq+tzGIiarYsn1gMATBdypLZODmNhO2ZwUw2JiOiBjEYjNBrNQ39+1/manIqKCmzduhXFxcXQarVIS0tDWVkZ/P39pRpPT0906NABqampAIDU1FR4e3tLAQcAdDodjEajdDYoNTXVrI/Kmso+SktLkZaWZlZjZWUFf39/qaYmMTEx0Gg00uLh4VHX6RMREdFjzuKQk5GRgVatWkGlUmHWrFnYuXMnvLy8oNfroVQq4eDgYFbv4uICvV4PANDr9WYBp3J95boH1RiNRty5cwfXr19HRUVFtTWVfdQkMjISBoNBWq5cuWLp9ImIiKiZsLF0g+7duyM9PR0GgwFffPEFQkJCcODAgcYYW4NTqVRQqVRNPQwiIiJ6BCwOOUqlEt26dQMA+Pr64vjx41i1ahWCg4NRWlqKwsJCs7M5eXl5cHV1BQC4urpWuQuq8u6re2vuvyMrLy8ParUa9vb2sLa2hrW1dbU1lX0QERER1fs5OSaTCSUlJfD19YWtrS2SkpKkdVlZWcjJyYFWqwUAaLVaZGRkmN0FlZiYCLVaDS8vL6nm3j4qayr7UCqV8PX1NasxmUxISkqSaoiIiIgsOpMTGRmJsWPHokOHDigqKsKWLVuQkpKCffv2QaPRIDQ0FBEREXB0dIRarcbcuXOh1WoxcOBAAMDo0aPh5eWFKVOmYPny5dDr9Vi8eDHCwsKkr5FmzZqF1atXY8GCBXjttdeQnJyM7du3Iz4+XhpHREQEQkJC0K9fPwwYMAArV65EcXExpk2b1oCHhoiIiJozi0JOfn4+Xn31VVy7dg0ajQa9e/fGvn378PzzzwMAVqxYASsrKwQFBaGkpAQ6nQ5r1qyRtre2tsbu3bsxe/ZsaLVatGzZEiEhIVi2bJlU07lzZ8THxyM8PByrVq1C+/bt8cknn0Cn00k1wcHBKCgoQFRUFPR6PXx8fJCQkFDlYmQiIiJ6ctX7OTnNWW3vsyeSMz4nh4iam0Z/Tg4RERHR44whh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJopATExOD/v37o3Xr1nB2dkZgYCCysrLMaoYPHw6FQmG2zJo1y6wmJycHAQEBaNGiBZydnTF//nyUl5eb1aSkpKBv375QqVTo1q0b4uLiqownNjYWnTp1gp2dHfz8/HDs2DFLpkNEREQyZlHIOXDgAMLCwnDkyBEkJiairKwMo0ePRnFxsVndjBkzcO3aNWlZvny5tK6iogIBAQEoLS3F4cOHsWnTJsTFxSEqKkqqyc7ORkBAAEaMGIH09HTMmzcP06dPx759+6Sabdu2ISIiAtHR0Th58iT69OkDnU6H/Pz8uh4LIiIikhGFEELUdeOCggI4OzvjwIEDGDp0KIDfzuT4+Phg5cqV1W6zd+9evPDCC8jNzYWLiwsAYN26dVi4cCEKCgqgVCqxcOFCxMfH48yZM9J2EyZMQGFhIRISEgAAfn5+6N+/P1avXg0AMJlM8PDwwNy5c7Fo0aJajd9oNEKj0cBgMECtVtf1MBA1axdPrAcAmC7kSG2dHMbCdszgphoSEdED1fbnd72uyTEYDAAAR0dHs/bNmzejXbt26NWrFyIjI3H79m1pXWpqKry9vaWAAwA6nQ5GoxFnz56Vavz9/c361Ol0SE1NBQCUlpYiLS3NrMbKygr+/v5STXVKSkpgNBrNFiIiIpInm7puaDKZMG/ePDz33HPo1auX1D5p0iR07NgR7u7uOH36NBYuXIisrCx89dVXAAC9Xm8WcABIr/V6/QNrjEYj7ty5g5s3b6KioqLamszMzBrHHBMTg6VLl9Z1ykRERNSM1DnkhIWF4cyZMzh06JBZ+8yZM6X/9vb2hpubG0aNGoWLFy+ia9eudR9pA4iMjERERIT02mg0wsPDowlHRERERI2lTiFnzpw52L17Nw4ePIj27ds/sNbPzw8AcOHCBXTt2hWurq5V7oLKy8sDALi6ukr/W9l2b41arYa9vT2sra1hbW1dbU1lH9VRqVRQqVS1myQRERE1axZdkyOEwJw5c7Bz504kJyejc+fOD90mPT0dAODm5gYA0Gq1yMjIMLsLKjExEWq1Gl5eXlJNUlKSWT+JiYnQarUAAKVSCV9fX7Mak8mEpKQkqYaIiIiebBadyQkLC8OWLVvw3//+F61bt5auodFoNLC3t8fFixexZcsWjBs3Dm3btsXp06cRHh6OoUOHonfv3gCA0aNHw8vLC1OmTMHy5cuh1+uxePFihIWFSWdZZs2ahdWrV2PBggV47bXXkJycjO3btyM+Pl4aS0REBEJCQtCvXz8MGDAAK1euRHFxMaZNm9ZQx4aIiIiaMYtCztq1awH8dpv4vTZu3IipU6dCqVRi//79UuDw8PBAUFAQFi9eLNVaW1tj9+7dmD17NrRaLVq2bImQkBAsW7ZMquncuTPi4+MRHh6OVatWoX379vjkk0+g0+mkmuDgYBQUFCAqKgp6vR4+Pj5ISEiocjEyERERPZnq9Zyc5o7PySHic3KIqPl5JM/JISIiInpcMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLFkUcmJiYtC/f3+0bt0azs7OCAwMRFZWllnN3bt3ERYWhrZt26JVq1YICgpCXl6eWU1OTg4CAgLQokULODs7Y/78+SgvLzerSUlJQd++faFSqdCtWzfExcVVGU9sbCw6deoEOzs7+Pn54dixY5ZMh4iIiGTMopBz4MABhIWF4ciRI0hMTERZWRlGjx6N4uJiqSY8PBzffPMNduzYgQMHDiA3Nxfjx4+X1ldUVCAgIAClpaU4fPgwNm3ahLi4OERFRUk12dnZCAgIwIgRI5Ceno558+Zh+vTp2Ldvn1Szbds2REREIDo6GidPnkSfPn2g0+mQn59fn+NBREREMqEQQoi6blxQUABnZ2ccOHAAQ4cOhcFggJOTE7Zs2YJXXnkFAJCZmYkePXogNTUVAwcOxN69e/HCCy8gNzcXLi4uAIB169Zh4cKFKCgogFKpxMKFCxEfH48zZ85I+5owYQIKCwuRkJAAAPDz80P//v2xevVqAIDJZIKHhwfmzp2LRYsW1Wr8RqMRGo0GBoMBarW6roeBqFm7eGI9AMB0IUdq6+QwFrZjBjfVkIiIHqi2P7/rdU2OwWAAADg6OgIA0tLSUFZWBn9/f6nG09MTHTp0QGpqKgAgNTUV3t7eUsABAJ1OB6PRiLNnz0o19/ZRWVPZR2lpKdLS0sxqrKys4O/vL9VUp6SkBEaj0WwhIiIieapzyDGZTJg3bx6ee+459OrVCwCg1+uhVCrh4OBgVuvi4gK9Xi/V3BtwKtdXrntQjdFoxJ07d3D9+nVUVFRUW1PZR3ViYmKg0WikxcPDw/KJExERUbNQ55ATFhaGM2fOYOvWrQ05nkYVGRkJg8EgLVeuXGnqIREREVEjsanLRnPmzMHu3btx8OBBtG/fXmp3dXVFaWkpCgsLzc7m5OXlwdXVVaq5/y6oyruv7q25/46svLw8qNVq2Nvbw9raGtbW1tXWVPZRHZVKBZVKZfmEiYiIqNmx6EyOEAJz5szBzp07kZycjM6dO5ut9/X1ha2tLZKSkqS2rKws5OTkQKvVAgC0Wi0yMjLM7oJKTEyEWq2Gl5eXVHNvH5U1lX0olUr4+vqa1ZhMJiQlJUk1RERE9GSz6ExOWFgYtmzZgv/+979o3bq1dP2LRqOBvb09NBoNQkNDERERAUdHR6jVasydOxdarRYDBw4EAIwePRpeXl6YMmUKli9fDr1ej8WLFyMsLEw6yzJr1iysXr0aCxYswGuvvYbk5GRs374d8fHx0lgiIiIQEhKCfv36YcCAAVi5ciWKi4sxbdq0hjo2RERE1IxZFHLWrl0LABg+fLhZ+8aNGzF16lQAwIoVK2BlZYWgoCCUlJRAp9NhzZo1Uq21tTV2796N2bNnQ6vVomXLlggJCcGyZcukms6dOyM+Ph7h4eFYtWoV2rdvj08++QQ6nU6qCQ4ORkFBAaKioqDX6+Hj44OEhIQqFyMTERHRk6lez8lp7vicHCI+J4eImp9H8pwcIiIioscVQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJksUh5+DBg3jxxRfh7u4OhUKBXbt2ma2fOnUqFAqF2TJmzBizmhs3bmDy5MlQq9VwcHBAaGgobt26ZVZz+vRpDBkyBHZ2dvDw8MDy5curjGXHjh3w9PSEnZ0dvL29sWfPHkunQ0RERDJlccgpLi5Gnz59EBsbW2PNmDFjcO3aNWn5z3/+Y7Z+8uTJOHv2LBITE7F7924cPHgQM2fOlNYbjUaMHj0aHTt2RFpaGj744AMsWbIEGzZskGoOHz6MiRMnIjQ0FKdOnUJgYCACAwNx5swZS6dEREREMqQQQog6b6xQYOfOnQgMDJTapk6disLCwipneCr9+OOP8PLywvHjx9GvXz8AQEJCAsaNG4erV6/C3d0da9euxTvvvAO9Xg+lUgkAWLRoEXbt2oXMzEwAQHBwMIqLi7F7926p74EDB8LHxwfr1q2r1fiNRiM0Gg0MBgPUanUdjgBR83fxxHoAgOlCjtTWyWEsbMcMbqohERE9UG1/fjfKNTkpKSlwdnZG9+7dMXv2bPz666/SutTUVDg4OEgBBwD8/f1hZWWFo0ePSjVDhw6VAg4A6HQ6ZGVl4ebNm1KNv7+/2X51Oh1SU1NrHFdJSQmMRqPZQkRERPLU4CFnzJgx+Pzzz5GUlIT/9//+Hw4cOICxY8eioqICAKDX6+Hs7Gy2jY2NDRwdHaHX66UaFxcXs5rK1w+rqVxfnZiYGGg0Gmnx8PCo32SJiIjosWXT0B1OmDBB+m9vb2/07t0bXbt2RUpKCkaNGtXQu7NIZGQkIiIipNdGo5FBh4iISKYa/RbyLl26oF27drhw4QIAwNXVFfn5+WY15eXluHHjBlxdXaWavLw8s5rK1w+rqVxfHZVKBbVabbYQERGRPDV6yLl69Sp+/fVXuLm5AQC0Wi0KCwuRlpYm1SQnJ8NkMsHPz0+qOXjwIMrKyqSaxMREdO/eHW3atJFqkpKSzPaVmJgIrVbb2FMiIiKiZsDikHPr1i2kp6cjPT0dAJCdnY309HTk5OTg1q1bmD9/Po4cOYLLly8jKSkJL730Erp16wadTgcA6NGjB8aMGYMZM2bg2LFj+OGHHzBnzhxMmDAB7u7uAIBJkyZBqVQiNDQUZ8+exbZt27Bq1Sqzr5reeOMNJCQk4O9//zsyMzOxZMkSnDhxAnPmzGmAw0JERETNncUh58SJE3j22Wfx7LPPAgAiIiLw7LPPIioqCtbW1jh9+jR+97vf4ZlnnkFoaCh8fX3x/fffQ6VSSX1s3rwZnp6eGDVqFMaNG4fBgwebPQNHo9Hg22+/RXZ2Nnx9ffHmm28iKirK7Fk6gwYNwpYtW7Bhwwb06dMHX3zxBXbt2oVevXrV53gQERGRTNTrOTnNHZ+TQ8Tn5BBR89Okz8khIiIiamoMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLFoecgwcP4sUXX4S7uzsUCgV27dpltl4IgaioKLi5ucHe3h7+/v44f/68Wc2NGzcwefJkqNVqODg4IDQ0FLdu3TKrOX36NIYMGQI7Ozt4eHhg+fLlVcayY8cOeHp6ws7ODt7e3tizZ4+l0yEiIiKZsjjkFBcXo0+fPoiNja12/fLly/HRRx9h3bp1OHr0KFq2bAmdToe7d+9KNZMnT8bZs2eRmJiI3bt34+DBg5g5c6a03mg0YvTo0ejYsSPS0tLwwQcfYMmSJdiwYYNUc/jwYUycOBGhoaE4deoUAgMDERgYiDNnzlg6JSIiIpIhhRBC1HljhQI7d+5EYGAggN/O4ri7u+PNN9/EW2+9BQAwGAxwcXFBXFwcJkyYgB9//BFeXl44fvw4+vXrBwBISEjAuHHjcPXqVbi7u2Pt2rV45513oNfroVQqAQCLFi3Crl27kJmZCQAIDg5GcXExdu/eLY1n4MCB8PHxwbp162o1fqPRCI1GA4PBALVaXdfDQNSsXTyxHgBgupAjtXVyGAvbMYObakhERA9U25/fDXpNTnZ2NvR6Pfz9/aU2jUYDPz8/pKamAgBSU1Ph4OAgBRwA8Pf3h5WVFY4ePSrVDB06VAo4AKDT6ZCVlYWbN29KNffup7Kmcj/VKSkpgdFoNFuIiIhInho05Oj1egCAi4uLWbuLi4u0Tq/Xw9nZ2Wy9jY0NHB0dzWqq6+PefdRUU7m+OjExMdBoNNLi4eFh6RSJiIiomXii7q6KjIyEwWCQlitXrjT1kIiIiKiRNGjIcXV1BQDk5eWZtefl5UnrXF1dkZ+fb7a+vLwcN27cMKupro9791FTTeX66qhUKqjVarOFiIiI5KlBQ07nzp3h6uqKpKQkqc1oNOLo0aPQarUAAK1Wi8LCQqSlpUk1ycnJMJlM8PPzk2oOHjyIsrIyqSYxMRHdu3dHmzZtpJp791NZU7kfIiIierJZHHJu3bqF9PR0pKenA/jtYuP09HTk5ORAoVBg3rx5eO+99/D1118jIyMDr776Ktzd3aU7sHr06IExY8ZgxowZOHbsGH744QfMmTMHEyZMgLu7OwBg0qRJUCqVCA0NxdmzZ7Ft2zasWrUKERER0jjeeOMNJCQk4O9//zsyMzOxZMkSnDhxAnPmzKn/USEiIqJmz8bSDU6cOIERI0ZIryuDR0hICOLi4rBgwQIUFxdj5syZKCwsxODBg5GQkAA7Oztpm82bN2POnDkYNWoUrKysEBQUhI8++khar9Fo8O233yIsLAy+vr5o164doqKizJ6lM2jQIGzZsgWLFy/G22+/jaeffhq7du1Cr1696nQgiIiISF7q9Zyc5o7PySHic3KIqPlpkufkEBERET0uGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlho85CxZsgQKhcJs8fT0lNbfvXsXYWFhaNu2LVq1aoWgoCDk5eWZ9ZGTk4OAgAC0aNECzs7OmD9/PsrLy81qUlJS0LdvX6hUKnTr1g1xcXENPRUiIiJqxhrlTE7Pnj1x7do1aTl06JC0Ljw8HN988w127NiBAwcOIDc3F+PHj5fWV1RUICAgAKWlpTh8+DA2bdqEuLg4REVFSTXZ2dkICAjAiBEjkJ6ejnnz5mH69OnYt29fY0yHiIiImiGbRunUxgaurq5V2g0GAz799FNs2bIFI0eOBABs3LgRPXr0wJEjRzBw4EB8++23OHfuHPbv3w8XFxf4+Pjg3XffxcKFC7FkyRIolUqsW7cOnTt3xt///ncAQI8ePXDo0CGsWLECOp2uMaZEREREzUyjnMk5f/483N3d0aVLF0yePBk5OTkAgLS0NJSVlcHf31+q9fT0RIcOHZCamgoASE1Nhbe3N1xcXKQanU4Ho9GIs2fPSjX39lFZU9lHTUpKSmA0Gs0WIiIikqcGDzl+fn6Ii4tDQkIC1q5di+zsbAwZMgRFRUXQ6/VQKpVwcHAw28bFxQV6vR4AoNfrzQJO5frKdQ+qMRqNuHPnTo1ji4mJgUajkRYPD4/6TpeIiIgeUw3+ddXYsWOl/+7duzf8/PzQsWNHbN++Hfb29g29O4tERkYiIiJCem00Ghl0iIiIZKrRbyF3cHDAM888gwsXLsDV1RWlpaUoLCw0q8nLy5Ou4XF1da1yt1Xl64fVqNXqBwYplUoFtVptthAREZE8NXrIuXXrFi5evAg3Nzf4+vrC1tYWSUlJ0vqsrCzk5ORAq9UCALRaLTIyMpCfny/VJCYmQq1Ww8vLS6q5t4/Kmso+iIiIiBo85Lz11ls4cOAALl++jMOHD+Pll1+GtbU1Jk6cCI1Gg9DQUEREROC7775DWloapk2bBq1Wi4EDBwIARo8eDS8vL0yZMgX/+9//sG/fPixevBhhYWFQqVQAgFmzZuHSpUtYsGABMjMzsWbNGmzfvh3h4eENPR0iIiJqphr8mpyrV69i4sSJ+PXXX+Hk5ITBgwfjyJEjcHJyAgCsWLECVlZWCAoKQklJCXQ6HdasWSNtb21tjd27d2P27NnQarVo2bIlQkJCsGzZMqmmc+fOiI+PR3h4OFatWoX27dvjk08+4e3jREREJFEIIURTD6KpGI1GaDQaGAwGXp9DT6yLJ9YDAEwXcqS2Tg5jYTtmcFMNiYjogWr785t/u4qIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkyaapB0BE9SNMJpguXQWMtwB1K1h1aQ+FVcP9/lIhKvDjr6dw8+51tLFrhx5tn4W1wrrB+m9qcp8f0ZOs2Yec2NhYfPDBB9Dr9ejTpw8+/vhjDBgwoKmHRfRIVJz+CWU7kwBD0f81alrD9uVRsO79TL37T81NwqdnPsCvd/OltrZ2zgjtNR9a91H17r+pyX1+RE+6Zv111bZt2xAREYHo6GicPHkSffr0gU6nQ35+/sM3JmrmKk7/hLK4XeYBBwAMRSiL24WK0z/Vq//U3CQsP7HALAAAwK93C7D8xAKk5ibVq/+mJvf5ERGgEEKIph5EXfn5+aF///5YvXo1AMBkMsHDwwNz587FokWLHrq90WiERqOBwWCAWq1u7OGSjJUlHHqk+xNCwHQwDSgprblIpYTVUF8oFArYjhlcY9nFE+sBAKYLOVJbB40OYdZ/qxIA/o8C7eycse753c3yq50KUYHXEwNkOz8iuavtz+9m+3VVaWkp0tLSEBkZKbVZWVnB398fqamp1W5TUlKCkpIS6bXBYADw28GiJ0NZYvX/NpobcdMI08P+3ZbchdUveijaqIEv99VYZjScr9J23OYM9OXXHtj9tdu5SP1yPXooutZqzI+C7fNas9f3v9+V68/9ehL6Gw+f3/HL38Orbd+GHSQR1Vvlz+2HnadptiHn+vXrqKiogIuLi1m7i4sLMjMzq90mJiYGS5curdLu4eHRKGMkkrt4hDX1EBpVPEY09RCI6AGKioqg0WhqXN9sQ05dREZGIiIiQnptMplw48YNtG3bFgqFokH3ZTQa4eHhgStXrsj6q7AnYZ6co3w8CfPkHOXhSZgjUPd5CiFQVFQEd3f3B9Y125DTrl07WFtbIy8vz6w9Ly8Prq6u1W6jUqmgUqnM2hwcHBpriAAAtVot63+glZ6EeXKO8vEkzJNzlIcnYY5A3eb5oDM4lZrt3VVKpRK+vr5ISvq/OyBMJhOSkpKg1WofsCURERE9CZrtmRwAiIiIQEhICPr164cBAwZg5cqVKC4uxrRp05p6aERERNTEmnXICQ4ORkFBAaKioqDX6+Hj44OEhIQqFyM3BZVKhejo6Cpfj8nNkzBPzlE+noR5co7y8CTMEWj8eTbr5+QQERER1aTZXpNDRERE9CAMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDkN6MaNG5g8eTLUajUcHBwQGhqKW7duPXS71NRUjBw5Ei1btoRarcbQoUNx586dRzBiy9V1jsBvj+EeO3YsFAoFdu3a1bgDrSdL53njxg3MnTsX3bt3h729PTp06IA///nP0h+BfRzExsaiU6dOsLOzg5+fH44dO/bA+h07dsDT0xN2dnbw9vbGnj17HtFI68eSef7zn//EkCFD0KZNG7Rp0wb+/v4PPS6PA0vfy0pbt26FQqFAYGBg4w6wAVg6x8LCQoSFhcHNzQ0qlQrPPPPMY/9v1tI5rly5UvqM8fDwQHh4OO7evfuIRmu5gwcP4sUXX4S7u3utP/dTUlLQt29fqFQqdOvWDXFxcfUbhKAGM2bMGNGnTx9x5MgR8f3334tu3bqJiRMnPnCbw4cPC7VaLWJiYsSZM2dEZmam2LZtm7h79+4jGrVl6jLHSv/4xz/E2LFjBQCxc+fOxh1oPVk6z4yMDDF+/Hjx9ddfiwsXLoikpCTx9NNPi6CgoEc46ppt3bpVKJVK8dlnn4mzZ8+KGTNmCAcHB5GXl1dt/Q8//CCsra3F8uXLxblz58TixYuFra2tyMjIeMQjt4yl85w0aZKIjY0Vp06dEj/++KOYOnWq0Gg04urVq4945LVn6RwrZWdni6eeekoMGTJEvPTSS49msHVk6RxLSkpEv379xLhx48ShQ4dEdna2SElJEenp6Y945LVn6Rw3b94sVCqV2Lx5s8jOzhb79u0Tbm5uIjw8/BGPvPb27Nkj3nnnHfHVV1/V6nP/0qVLokWLFiIiIkKcO3dOfPzxx8La2lokJCTUeQwMOQ3k3LlzAoA4fvy41LZ3716hUCjEL7/8UuN2fn5+YvHixY9iiPVW1zkKIcSpU6fEU089Ja5du/bYh5z6zPNe27dvF0qlUpSVlTXGMC0yYMAAERYWJr2uqKgQ7u7uIiYmptr6P/zhDyIgIMCszc/PT7z++uuNOs76snSe9ysvLxetW7cWmzZtaqwh1ltd5lheXi4GDRokPvnkExESEvLYhxxL57h27VrRpUsXUVpa+qiGWG+WzjEsLEyMHDnSrC0iIkI899xzjTrOhlKbz/0FCxaInj17mrUFBwcLnU5X5/3y66oGkpqaCgcHB/Tr109q8/f3h5WVFY4ePVrtNvn5+Th69CicnZ0xaNAguLi4YNiwYTh06NCjGrZF6jJHALh9+zYmTZqE2NjYGv946uOkrvO8n8FggFqtho1N0z5YvLS0FGlpafD395farKys4O/vj9TU1Gq3SU1NNasHAJ1OV2P946Au87zf7du3UVZWBkdHx8YaZr3UdY7Lli2Ds7MzQkNDH8Uw66Uuc/z666+h1WoRFhYGFxcX9OrVC3/7299QUVHxqIZtkbrMcdCgQUhLS5O+0rp06RL27NmDcePGPZIxPwqN8bnTrP+sw+NEr9fD2dnZrM3GxgaOjo7Q6/XVbnPp0iUAwJIlS/Dhhx/Cx8cHn3/+OUaNGoUzZ87g6aefbvRxW6IucwSA8PBwDBo0CC+99FJjD7FB1HWe97p+/TreffddzJw5szGGaJHr16+joqKiyp87cXFxQWZmZrXb6PX6autrO/+mUJd53m/hwoVwd3ev8kH7uKjLHA8dOoRPP/0U6enpj2CE9VeXOV66dAnJycmYPHky9uzZgwsXLuBPf/oTysrKEB0d/SiGbZG6zHHSpEm4fv06Bg8eDCEEysvLMWvWLLz99tuPYsiPRE2fO0ajEXfu3IG9vb3FffJMzkMsWrQICoXigUttP0DvZzKZAACvv/46pk2bhmeffRYrVqxA9+7d8dlnnzXkNB6oMef49ddfIzk5GStXrmzYQddBY87zXkajEQEBAfDy8sKSJUvqP3B6JN5//31s3boVO3fuhJ2dXVMPp0EUFRVhypQp+Oc//4l27do19XAajclkgrOzMzZs2ABfX18EBwfjnXfewbp165p6aA0mJSUFf/vb37BmzRqcPHkSX331FeLj4/Huu+829dAeazyT8xBvvvkmpk6d+sCaLl26wNXVFfn5+Wbt5eXluHHjRo1f0bi5uQEAvLy8zNp79OiBnJycug/aQo05x+TkZFy8eBEODg5m7UFBQRgyZAhSUlLqMXLLNOY8KxUVFWHMmDFo3bo1du7cCVtb2/oOu97atWsHa2tr5OXlmbXn5eXVOB9XV1eL6h8HdZlnpQ8//BDvv/8+9u/fj969ezfmMOvF0jlevHgRly9fxosvvii1Vf5yZWNjg6ysLHTt2rVxB22huryPbm5usLW1hbW1tdTWo0cP6PV6lJaWQqlUNuqYLVWXOf7lL3/BlClTMH36dACAt7c3iouLMXPmTLzzzjuwsmr+5yxq+txRq9V1OosDMOQ8lJOTE5ycnB5ap9VqUVhYiLS0NPj6+gL47Qe8yWSCn59ftdt06tQJ7u7uyMrKMmv/6aefMHbs2PoPvpYac46LFi2S/k9ZydvbGytWrDD74H0UGnOewG9ncHQ6HVQqFb7++uvH5myAUqmEr68vkpKSpFuHTSYTkpKSMGfOnGq30Wq1SEpKwrx586S2xMREaLXaRzDiuqnLPAFg+fLl+Otf/4p9+/aZXYf1OLJ0jp6ensjIyDBrW7x4MYqKirBq1Sp4eHg8imFbpC7v43PPPYctW7bAZDJJP+x/+uknuLm5PXYBB6jbHG/fvl0lyFSGOiGTv7Ot1Wqr3PZf78+dOl+yTFWMGTNGPPvss+Lo0aPi0KFD4umnnza77fjq1auie/fu4ujRo1LbihUrhFqtFjt27BDnz58XixcvFnZ2duLChQtNMYWHqssc74fH/O4qISyfp8FgEH5+fsLb21tcuHBBXLt2TVrKy8ubahqSrVu3CpVKJeLi4sS5c+fEzJkzhYODg9Dr9UIIIaZMmSIWLVok1f/www/CxsZGfPjhh+LHH38U0dHRzeYWckvm+f777wulUim++OILs/esqKioqabwUJbO8X7N4e4qS+eYk5MjWrduLebMmSOysrLE7t27hbOzs3jvvfeaagoPZekco6OjRevWrcV//vMfcenSJfHtt9+Krl27ij/84Q9NNYWHKioqEqdOnRKnTp0SAMQ//vEPcerUKfHzzz8LIYRYtGiRmDJlilRfeQv5/PnzxY8//ihiY2N5C/nj5NdffxUTJ04UrVq1Emq1WkybNs3swzI7O1sAEN99953ZdjExMaJ9+/aiRYsWQqvViu+///4Rj7z26jrHezWHkGPpPL/77jsBoNolOzu7aSZxn48//lh06NBBKJVKMWDAAHHkyBFp3bBhw0RISIhZ/fbt28UzzzwjlEql6Nmzp4iPj3/EI64bS+bZsWPHat+z6OjoRz9wC1j6Xt6rOYQcISyf4+HDh4Wfn59QqVSiS5cu4q9//etj8QvGg1gyx7KyMrFkyRLRtWtXYWdnJzw8PMSf/vQncfPmzUc/8Fqq6XOxcl4hISFi2LBhVbbx8fERSqVSdOnSRWzcuLFeY1AIIZPzXERERET3aP5XKhERERFVgyGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZOn/A0TcYiO7SOh8AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARuBJREFUeJzt3XlUFFf+NvCHrRtcGkRZFfe4oCiKim3cJbZKMiGaGYyOQYMaHXQiJC4kDqDJDHk1M+pE3CaJmJkwikl0ElEMgaAxthtKxAXcMGiwARe6FZWt7/tHDvWzBZRmESmfzzl1Yt361q17u03zWF1VWAghBIiIiIhkxrKxB0BERETUEBhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIqM5SU1NhYWGB1NTUeu3XwsICUVFR9dqnuWJjY2FhYYHLly83aJ8jR47EyJEjze7LnNe+tscwR1RUFCwsLBr0GEQ1xZBD9JCDBw8iKioKhYWFjT2UZ8Lu3bsbPchQ4xo5ciQsLCyqXGxsbBp7eNSEWTf2AIieNgcPHsSyZcswffp0ODg4NPZwZG/37t2IiYmpMujcu3cP1taN+zE1bdo0TJ48GUqlskGP891339Vqv+HDh+PevXtQKBT1PKIn57333sPMmTNN2oqKijBnzhyMHTu2kUZFcsCQQ/QMu3v3Lpo1a1apvaysDEajsdF/cNra2jbq8QHAysoKVlZWDX6c2r7WlpaWT8XrVBcvvPBCpbb//Oc/AICpU6c+6eGQjPDrKqIHREVFYeHChQCATp06SafML1++jLKyMrz//vvo0qULlEolOnbsiHfffRfFxcUmfXTs2BEvvvgivvvuO3h7e8PW1haenp74+uuvazWm//znPxg0aBCaNWuGVq1aYfjw4ZX+1b9u3Tr06tULSqUS7u7uCAkJqfR128iRI9G7d2+kpaVh+PDhaNasGd59911cvnwZFhYW+Oijj7B69WppfmfOnAEAZGZm4tVXX4WjoyNsbW0xYMAAfPPNN48d948//ojf//73aN++PZRKJTw8PBAaGop79+5JNdOnT0dMTAwAmHxFUaGqa3JOnDiB8ePHQ6VSoUWLFhgzZgwOHTpkUlNxzctPP/2EsLAwODk5oXnz5njllVdQUFDw2LFX1deD189UvMcHDhzAoEGDYGtri86dO+Pzzz+vtP/p06cxevRo2NnZoV27dvjggw9gNBor1T14vUxeXh6sra2xbNmySnVZWVmwsLDA2rVrAVR/Tc6mTZvQpUsX2NnZYdCgQfjxxx9rNLfq+qzJ+1mf4uLi0Lx5c7z88ssN0j89G3gmh+gBEydOxLlz5/Df//4Xq1atQps2bQAATk5OmDlzJrZs2YJXX30Vb7/9Ng4fPozo6GicPXsWO3bsMOnn/PnzCAwMxJw5cxAUFITNmzfj97//PRITE6v8V2t1li1bhqioKAwZMgTLly+HQqHA4cOHkZKSIp3Gj4qKwrJly+Dn54e5c+ciKysL69evx9GjR/HTTz+ZXNNw48YNjB8/HpMnT8Yf//hHuLi4SNs2b96M+/fvY/bs2VAqlXB0dMTp06fx/PPPo23btliyZAmaN2+O+Ph4BAQE4KuvvsIrr7xS7di3b9+Ou3fvYu7cuWjdujWOHDmCjz/+GFevXsX27dsBAG+++SZyc3ORlJSEf//73499PU6fPo1hw4ZBpVJh0aJFsLGxwcaNGzFy5Ejs27cPvr6+JvXz589Hq1atEBkZicuXL2P16tWYN28etm3bVuP3oDoXLlzAq6++iuDgYAQFBeGzzz7D9OnT4ePjg169egEAdDodRo0ahbKyMun127RpE+zs7B7Zt4uLC0aMGIH4+HhERkaabNu2bRusrKzw+9//vtr9P/30U7z55psYMmQIFixYgEuXLuF3v/sdHB0d4eHhUav51uT9rC8FBQVISkpCYGAgmjdvXq990zNGEJGJlStXCgAiOztbaktPTxcAxMyZM01q33nnHQFApKSkSG0dOnQQAMRXX30lten1euHm5ib69etX43GcP39eWFpaildeeUWUl5ebbDMajUIIIfLz84VCoRBjx441qVm7dq0AID777DOpbcSIEQKA2LBhg0lf2dnZAoBQqVQiPz/fZNuYMWOEl5eXuH//vsmxhwwZIp577jmp7YcffhAAxA8//CC13b17t9KcoqOjhYWFhfjll1+ktpCQEFHdRxEAERkZKa0HBAQIhUIhLl68KLXl5uaKli1biuHDh0ttmzdvFgCEn5+f9FoJIURoaKiwsrIShYWFVR6vKhV9Pfj3oeI93r9/v9SWn58vlEqlePvtt6W2BQsWCADi8OHDJnX29vaV+hwxYoQYMWKEtL5x40YBQGRkZJiMx9PTU4wePVpaf/i1LykpEc7OzsLb21sUFxdLdZs2bRIATI5R1dyq6lOImr+fkZGR1b6fNfXxxx8LAGL37t116oeIX1cR1cDu3bsBAGFhYSbtb7/9NgAgISHBpN3d3d3kLIdKpcLrr7+OEydOQKfT1eiYO3fuhNFoREREBCwtTf9XrfhK5/vvv0dJSQkWLFhgUjNr1iyoVKpK41IqlZgxY0aVx5s0aRKcnJyk9Zs3byIlJQV/+MMfcPv2bVy/fh3Xr1/HjRs3oNFocP78efz666/Vjv/BsxVFRUW4fv06hgwZAiEETpw4UaPX4EHl5eX47rvvEBAQgM6dO0vtbm5umDJlCg4cOACDwWCyz+zZs02+/ho2bBjKy8vxyy+/mH38h3l6emLYsGHSupOTE7p3745Lly5Jbbt378bgwYMxaNAgk7qaXGcyceJEWFtbm5x1OnXqFM6cOYPAwMBq9zt27Bjy8/MxZ84ck+t8pk+fDnt7+xrP72H1/X4+SlxcHJycnMw660lUFYYcohr45ZdfYGlpia5du5q0u7q6wsHBodIPza5du1Z6Vki3bt0AoMbPW7l48SIsLS3h6en5yHEBQPfu3U3aFQoFOnfuXGlcbdu2rfYC106dOpmsX7hwAUII/OUvf4GTk5PJUvEVSn5+frVjy8nJwfTp0+Ho6IgWLVrAyckJI0aMAADo9fpq96tOQUEB7t69W2muANCzZ08YjUZcuXLFpL19+/Ym661atQIA3Lp1y+zjP+zhviv6f7DvX375Bc8991yluqrm8LA2bdpgzJgxiI+Pl9q2bdsGa2trTJw4sdr9Kt7zh49rY2NjEg7NVd/vZ3UuXboErVaLwMDARr+zjpo+/g0iMkNTf8jZo64FeXhbxcWx77zzDjQaTZX7PBz6KpSXl+OFF17AzZs3sXjxYvTo0QPNmzfHr7/+iunTp1d54W1DqO6uKCHEU913hcmTJ2PGjBlIT0+Ht7c34uPjMWbMGOlasbqq7u9zeXl5pfUn9X7GxcUB4F1VVD8YcogeUtUHf4cOHWA0GnH+/Hn07NlTas/Ly0NhYSE6dOhgUl9xFuTBvs6dOwfgtztzaqJLly4wGo04c+YMvL29q6ypOG5WVpbJv9JLSkqQnZ0NPz+/Gh2rKhX92djYmN1PRkYGzp07hy1btuD111+X2pOSkirV1jQ4Ojk5oVmzZsjKyqq0LTMzE5aWlrW+qLahdOjQAefPn6/UXtUcqhIQEIA333xT+srq3LlzCA8Pf+wxgd8ufh89erTUXlpaiuzsbPTt21dqqziz9fCdeA+fATTn/ayruLg4dOnSBYMHD673vunZw6+riB5ScTfHgx/8EyZMAACsXr3apPYf//gHAMDf39+kPTc31+SOK4PBgM8//xze3t5wdXWt0TgCAgJgaWmJ5cuXV/qXcsXZAj8/PygUCvzzn/80OYPw6aefQq/XVxqXOZydnTFy5Ehs3LgR165dq7T9UbdiV5zleHBMQgisWbOmUm1Vr3d1fY4dOxb/+9//TL7yy8vLQ1xcHIYOHQqVSvXIPp60CRMm4NChQzhy5IjUVlBQgC+++KJG+zs4OECj0SA+Ph5bt26FQqFAQEDAI/cZMGAAnJycsGHDBpSUlEjtsbGxlV7jLl26AAD2798vtZWXl2PTpk0mdea8n3Vx4sQJnD17FlOmTKnXfunZxTM5RA/x8fEB8NtTWCdPngwbGxu89NJLCAoKwqZNm1BYWIgRI0bgyJEj2LJlCwICAjBq1CiTPrp164bg4GAcPXoULi4u+Oyzz5CXl4fNmzfXeBxdu3bFe++9h/fffx/Dhg3DxIkToVQqcfToUbi7uyM6OhpOTk4IDw/HsmXLMG7cOPzud79DVlYW1q1bh4EDB+KPf/xjnV6LmJgYDB06FF5eXpg1axY6d+6MvLw8aLVaXL16FT///HOV+/Xo0QNdunTBO++8g19//RUqlQpfffVVldfCVLzef/7zn6HRaGBlZYXJkydX2e8HH3yApKQkDB06FH/6059gbW2NjRs3ori4GCtWrKjTXBvCokWL8O9//xvjxo3DW2+9Jd1C3qFDB5w8ebJGfQQGBuKPf/wj1q1bB41G89incNvY2OCDDz7Am2++idGjRyMwMBDZ2dnYvHlzpWtyevXqhcGDByM8PBw3b96Eo6Mjtm7dirKyMpM6c97PuqgIf/yqiupN49zURfR0e//990Xbtm2FpaWldIttaWmpWLZsmejUqZOwsbERHh4eIjw83OT2aiF+u73Y399f7N27V/Tp00colUrRo0cPsX379lqN5bPPPhP9+vUTSqVStGrVSowYMUIkJSWZ1Kxdu1b06NFD2NjYCBcXFzF37lxx69Ytk5oRI0aIXr16Veq/4hbylStXVnn8ixcvitdff124uroKGxsb0bZtW/Hiiy+KL7/8Uqqp6pbjM2fOCD8/P9GiRQvRpk0bMWvWLPHzzz8LAGLz5s1SXVlZmZg/f75wcnISFhYWJrcf46FbyIUQ4vjx40Kj0YgWLVqIZs2aiVGjRomDBw+a1FTcGn306FGT9qrG+TjV3ULu7+9fqfbh28CFEOLkyZNixIgRwtbWVrRt21a8//774tNPP33sLeQVDAaDsLOzEwDEf/7zn0rbq5vTunXrRKdOnYRSqRQDBgwQ+/fvr/IYFy9eFH5+fkKpVAoXFxfx7rvviqSkpFq/n7W9hby8vFy0bdtW9O/f3+x9iapjIUQ9XiVHROjYsSN69+6NXbt2NfZQiIieabwmh4iIiGSJ1+QQNYLHPRDQzs6uTg9uo8e7c+cO7ty588gaJyenJ/LLOeVKr9c/9ndb1fRCfKLaYMghagRubm6P3B4UFITY2NgnM5hn1EcffVTlL8B8UHZ2do1v+afK3nrrLWzZsuWRNbxighoSr8khagTff//9I7e7u7s/8knHVHeXLl0y+RUMVRk6dChsbW2f0Ijk58yZM8jNzX1kTV2e5UT0OAw5REREJEu88JiIiIhk6Zm+JsdoNCI3NxctW7Zs8r+TiIiI6FkhhMDt27fh7u4OS8vqz9c80yEnNzf3qftdN0RERFQzV65cQbt27ard/kyHnJYtWwL47UV62n7nDREREVXNYDDAw8ND+jlenWc65FR8RaVSqRhyiIiImpjHXWrCC4+JiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJasG3sARPR0KE08YLJuM25oI42EiKh+8EwOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJUp1CzocffggLCwssWLBAart//z5CQkLQunVrtGjRApMmTUJeXp7Jfjk5OfD390ezZs3g7OyMhQsXoqyszKQmNTUV/fv3h1KpRNeuXREbG1vp+DExMejYsSNsbW3h6+uLI0eO1GU6REREJCO1DjlHjx7Fxo0b0adPH5P20NBQfPvtt9i+fTv27duH3NxcTJw4UdpeXl4Of39/lJSU4ODBg9iyZQtiY2MREREh1WRnZ8Pf3x+jRo1Ceno6FixYgJkzZ2Lv3r1SzbZt2xAWFobIyEgcP34cffv2hUajQX5+fm2nRERERHIiauH27dviueeeE0lJSWLEiBHirbfeEkIIUVhYKGxsbMT27dul2rNnzwoAQqvVCiGE2L17t7C0tBQ6nU6qWb9+vVCpVKK4uFgIIcSiRYtEr169TI4ZGBgoNBqNtD5o0CAREhIirZeXlwt3d3cRHR1d43no9XoBQOj1+ppPnkimSvb8aLIQET2tavrzu1ZnckJCQuDv7w8/Pz+T9rS0NJSWlpq09+jRA+3bt4dWqwUAaLVaeHl5wcXFRarRaDQwGAw4ffq0VPNw3xqNRuqjpKQEaWlpJjWWlpbw8/OTaqpSXFwMg8FgshAREZE8mf1byLdu3Yrjx4/j6NGjlbbpdDooFAo4ODiYtLu4uECn00k1Dwaciu0V2x5VYzAYcO/ePdy6dQvl5eVV1mRmZlY79ujoaCxbtqxmEyUiIqImzawzOVeuXMFbb72FL774Ara2tg01pgYTHh4OvV4vLVeuXGnsIREREVEDMSvkpKWlIT8/H/3794e1tTWsra2xb98+/POf/4S1tTVcXFxQUlKCwsJCk/3y8vLg6uoKAHB1da10t1XF+uNqVCoV7Ozs0KZNG1hZWVVZU9FHVZRKJVQqlclCRERE8mRWyBkzZgwyMjKQnp4uLQMGDMDUqVOlP9vY2CA5OVnaJysrCzk5OVCr1QAAtVqNjIwMk7ugkpKSoFKp4OnpKdU82EdFTUUfCoUCPj4+JjVGoxHJyclSDRERET3bzLomp2XLlujdu7dJW/PmzdG6dWupPTg4GGFhYXB0dIRKpcL8+fOhVqsxePBgAMDYsWPh6emJadOmYcWKFdDpdFi6dClCQkKgVCoBAHPmzMHatWuxaNEivPHGG0hJSUF8fDwSEhKk44aFhSEoKAgDBgzAoEGDsHr1ahQVFWHGjBl1ekGIiIhIHsy+8PhxVq1aBUtLS0yaNAnFxcXQaDRYt26dtN3Kygq7du3C3LlzoVar0bx5cwQFBWH58uVSTadOnZCQkIDQ0FCsWbMG7dq1wyeffAKNRiPVBAYGoqCgABEREdDpdPD29kZiYmKli5GJiIjo2WQhhBCNPYjGYjAYYG9vD71ez+tz6JlXmnjAZN1m3NBGGgkR0aPV9Oc3f3cVERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyRJDDhEREckSQw4RERHJEkMOERERyZJZIWf9+vXo06cPVCoVVCoV1Go19uzZI20fOXIkLCwsTJY5c+aY9JGTkwN/f380a9YMzs7OWLhwIcrKykxqUlNT0b9/fyiVSnTt2hWxsbGVxhITE4OOHTvC1tYWvr6+OHLkiDlTISIiIpkzK+S0a9cOH374IdLS0nDs2DGMHj0aL7/8Mk6fPi3VzJo1C9euXZOWFStWSNvKy8vh7++PkpISHDx4EFu2bEFsbCwiIiKkmuzsbPj7+2PUqFFIT0/HggULMHPmTOzdu1eq2bZtG8LCwhAZGYnjx4+jb9++0Gg0yM/Pr8trQURERDJiIYQQdenA0dERK1euRHBwMEaOHAlvb2+sXr26yto9e/bgxRdfRG5uLlxcXAAAGzZswOLFi1FQUACFQoHFixcjISEBp06dkvabPHkyCgsLkZiYCADw9fXFwIEDsXbtWgCA0WiEh4cH5s+fjyVLltR47AaDAfb29tDr9VCpVLV8BYjkoTTxgMm6zbihjTQSIqJHq+nP71pfk1NeXo6tW7eiqKgIarVaav/iiy/Qpk0b9O7dG+Hh4bh79660TavVwsvLSwo4AKDRaGAwGKSzQVqtFn5+fibH0mg00Gq1AICSkhKkpaWZ1FhaWsLPz0+qqU5xcTEMBoPJQkRERPJkbe4OGRkZUKvVuH//Plq0aIEdO3bA09MTADBlyhR06NAB7u7uOHnyJBYvXoysrCx8/fXXAACdTmcScABI6zqd7pE1BoMB9+7dw61bt1BeXl5lTWZm5iPHHh0djWXLlpk7ZSIiImqCzA453bt3R3p6OvR6Pb788ksEBQVh37598PT0xOzZs6U6Ly8vuLm5YcyYMbh48SK6dOlSrwOvjfDwcISFhUnrBoMBHh4ejTgioqfDxWMbYSzMkdY7OoxvxNEQEdUPs0OOQqFA165dAQA+Pj44evQo1qxZg40bN1aq9fX1BQBcuHABXbp0gaura6W7oPLy8gAArq6u0n8r2h6sUalUsLOzg5WVFaysrKqsqeijOkqlEkql0ozZEhERUVNV5+fkGI1GFBcXV7ktPT0dAODm5gYAUKvVyMjIMLkLKikpCSqVSvrKS61WIzk52aSfpKQk6bofhUIBHx8fkxqj0Yjk5GSTa4OIiIjo2WbWmZzw8HCMHz8e7du3x+3btxEXF4fU1FTs3bsXFy9eRFxcHCZMmIDWrVvj5MmTCA0NxfDhw9GnTx8AwNixY+Hp6Ylp06ZhxYoV0Ol0WLp0KUJCQqQzLHPmzMHatWuxaNEivPHGG0hJSUF8fDwSEhKkcYSFhSEoKAgDBgzAoEGDsHr1ahQVFWHGjBn1+NIQERFRU2ZWyMnPz8frr7+Oa9euwd7eHn369MHevXvxwgsv4MqVK/j++++lwOHh4YFJkyZh6dKl0v5WVlbYtWsX5s6dC7VajebNmyMoKAjLly+Xajp16oSEhASEhoZizZo1aNeuHT755BNoNBqpJjAwEAUFBYiIiIBOp4O3tzcSExMrXYxMREREz646PyenKeNzcoh+c/HYRhgvmF54zOfkENHTqsGfk0NERET0NGPIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyK+SsX78effr0gUqlgkqlglqtxp49e6Tt9+/fR0hICFq3bo0WLVpg0qRJyMvLM+kjJycH/v7+aNasGZydnbFw4UKUlZWZ1KSmpqJ///5QKpXo2rUrYmNjK40lJiYGHTt2hK2tLXx9fXHkyBFzpkJEREQyZ1bIadeuHT788EOkpaXh2LFjGD16NF5++WWcPn0aABAaGopvv/0W27dvx759+5Cbm4uJEydK+5eXl8Pf3x8lJSU4ePAgtmzZgtjYWEREREg12dnZ8Pf3x6hRo5Ceno4FCxZg5syZ2Lt3r1Szbds2hIWFITIyEsePH0ffvn2h0WiQn59f19eDiIiIZMJCCCHq0oGjoyNWrlyJV199FU5OToiLi8Orr74KAMjMzETPnj2h1WoxePBg7NmzBy+++CJyc3Ph4uICANiwYQMWL16MgoICKBQKLF68GAkJCTh16pR0jMmTJ6OwsBCJiYkAAF9fXwwcOBBr164FABiNRnh4eGD+/PlYsmRJjcduMBhgb28PvV4PlUpVl5eBqEm7eGwjjBdypPWODuNhM25oI46IiKh6Nf35XetrcsrLy7F161YUFRVBrVYjLS0NpaWl8PPzk2p69OiB9u3bQ6vVAgC0Wi28vLykgAMAGo0GBoNBOhuk1WpN+qioqeijpKQEaWlpJjWWlpbw8/OTaqpTXFwMg8FgshAREZE8mR1yMjIy0KJFCyiVSsyZMwc7duyAp6cndDodFAoFHBwcTOpdXFyg0+kAADqdziTgVGyv2PaoGoPBgHv37uH69esoLy+vsqaij+pER0fD3t5eWjw8PMydPhERETURZoec7t27Iz09HYcPH8bcuXMRFBSEM2fONMTY6l14eDj0er20XLlypbGHRERERA3E2twdFAoFunbtCgDw8fHB0aNHsWbNGgQGBqKkpASFhYUmZ3Py8vLg6uoKAHB1da10F1TF3VcP1jx8R1ZeXh5UKhXs7OxgZWUFKyurKmsq+qiOUqmEUqk0d8pERETUBNX5OTlGoxHFxcXw8fGBjY0NkpOTpW1ZWVnIycmBWq0GAKjVamRkZJjcBZWUlASVSgVPT0+p5sE+Kmoq+lAoFPDx8TGpMRqNSE5OlmqIiIiIzDqTEx4ejvHjx6N9+/a4ffs24uLikJqair1798Le3h7BwcEICwuDo6MjVCoV5s+fD7VajcGDBwMAxo4dC09PT0ybNg0rVqyATqfD0qVLERISIp1hmTNnDtauXYtFixbhjTfeQEpKCuLj45GQkCCNIywsDEFBQRgwYAAGDRqE1atXo6ioCDNmzKjHl4aIiIiaMrNCTn5+Pl5//XVcu3YN9vb26NOnD/bu3YsXXngBALBq1SpYWlpi0qRJKC4uhkajwbp166T9rayssGvXLsydOxdqtRrNmzdHUFAQli9fLtV06tQJCQkJCA0NxZo1a9CuXTt88skn0Gg0Uk1gYCAKCgoQEREBnU4Hb29vJCYmVroYmYiIiJ5ddX5OTlPG5+QQ/YbPySGipqTBn5NDRERE9DRjyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlliyCEiIiJZYsghIiIiWWLIISIiIlkyK+RER0dj4MCBaNmyJZydnREQEICsrCyTmpEjR8LCwsJkmTNnjklNTk4O/P390axZMzg7O2PhwoUoKyszqUlNTUX//v2hVCrRtWtXxMbGVhpPTEwMOnbsCFtbW/j6+uLIkSPmTIeIiIhkzKyQs2/fPoSEhODQoUNISkpCaWkpxo4di6KiIpO6WbNm4dq1a9KyYsUKaVt5eTn8/f1RUlKCgwcPYsuWLYiNjUVERIRUk52dDX9/f4waNQrp6elYsGABZs6cib1790o127ZtQ1hYGCIjI3H8+HH07dsXGo0G+fn5tX0tiIiISEYshBCitjsXFBTA2dkZ+/btw/DhwwH8dibH29sbq1evrnKfPXv24MUXX0Rubi5cXFwAABs2bMDixYtRUFAAhUKBxYsXIyEhAadOnZL2mzx5MgoLC5GYmAgA8PX1xcCBA7F27VoAgNFohIeHB+bPn48lS5bUaPwGgwH29vbQ6/VQqVS1fRmImryLxzbCeCFHWu/oMB4244Y24oiIiKpX05/fdbomR6/XAwAcHR1N2r/44gu0adMGvXv3Rnh4OO7evStt02q18PLykgIOAGg0GhgMBpw+fVqq8fPzM+lTo9FAq9UCAEpKSpCWlmZSY2lpCT8/P6mmKsXFxTAYDCYLERERyZN1bXc0Go1YsGABnn/+efTu3VtqnzJlCjp06AB3d3ecPHkSixcvRlZWFr7++msAgE6nMwk4AKR1nU73yBqDwYB79+7h1q1bKC8vr7ImMzOz2jFHR0dj2bJltZ0yERERNSG1DjkhISE4deoUDhw4YNI+e/Zs6c9eXl5wc3PDmDFjcPHiRXTp0qX2I60H4eHhCAsLk9YNBgM8PDwacURERETUUGoVcubNm4ddu3Zh//79aNeu3SNrfX19AQAXLlxAly5d4OrqWukuqLy8PACAq6ur9N+KtgdrVCoV7OzsYGVlBSsrqyprKvqoilKphFKprNkkiYiIqEkz65ocIQTmzZuHHTt2ICUlBZ06dXrsPunp6QAANzc3AIBarUZGRobJXVBJSUlQqVTw9PSUapKTk036SUpKglqtBgAoFAr4+PiY1BiNRiQnJ0s1RERE9Gwz60xOSEgI4uLi8L///Q8tW7aUrqGxt7eHnZ0dLl68iLi4OEyYMAGtW7fGyZMnERoaiuHDh6NPnz4AgLFjx8LT0xPTpk3DihUroNPpsHTpUoSEhEhnWebMmYO1a9di0aJFeOONN5CSkoL4+HgkJCRIYwkLC0NQUBAGDBiAQYMGYfXq1SgqKsKMGTPq67UhIiKiJsyskLN+/XoAv90m/qDNmzdj+vTpUCgU+P7776XA4eHhgUmTJmHp0qVSrZWVFXbt2oW5c+dCrVajefPmCAoKwvLly6WaTp06ISEhAaGhoVizZg3atWuHTz75BBqNRqoJDAxEQUEBIiIioNPp4O3tjcTExEoXIxMREdGzqU7PyWnq+Jwcot/wOTlE1JQ8kefkEBERET2tGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWGHKIiIhIlhhyiIiISJYYcoiIiEiWzAo50dHRGDhwIFq2bAlnZ2cEBAQgKyvLpOb+/fsICQlB69at0aJFC0yaNAl5eXkmNTk5OfD390ezZs3g7OyMhQsXoqyszKQmNTUV/fv3h1KpRNeuXREbG1tpPDExMejYsSNsbW3h6+uLI0eOmDMdIiIikjGzQs6+ffsQEhKCQ4cOISkpCaWlpRg7diyKioqkmtDQUHz77bfYvn079u3bh9zcXEycOFHaXl5eDn9/f5SUlODgwYPYsmULYmNjERERIdVkZ2fD398fo0aNQnp6OhYsWICZM2di7969Us22bdsQFhaGyMhIHD9+HH379oVGo0F+fn5dXg8iIiKSCQshhKjtzgUFBXB2dsa+ffswfPhw6PV6ODk5IS4uDq+++ioAIDMzEz179oRWq8XgwYOxZ88evPjii8jNzYWLiwsAYMOGDVi8eDEKCgqgUCiwePFiJCQk4NSpU9KxJk+ejMLCQiQmJgIAfH19MXDgQKxduxYAYDQa4eHhgfnz52PJkiU1Gr/BYIC9vT30ej1UKlVtXwaiJu/isY0wXsiR1js6jIfNuKGNOCIiourV9Od3na7J0ev1AABHR0cAQFpaGkpLS+Hn5yfV9OjRA+3bt4dWqwUAaLVaeHl5SQEHADQaDQwGA06fPi3VPNhHRU1FHyUlJUhLSzOpsbS0hJ+fn1RTleLiYhgMBpOFiIiI5KnWIcdoNGLBggV4/vnn0bt3bwCATqeDQqGAg4ODSa2Liwt0Op1U82DAqdhese1RNQaDAffu3cP169dRXl5eZU1FH1WJjo6Gvb29tHh4eJg/cSIiImoSah1yQkJCcOrUKWzdurU+x9OgwsPDodfrpeXKlSuNPSQiIiJqINa12WnevHnYtWsX9u/fj3bt2kntrq6uKCkpQWFhocnZnLy8PLi6uko1D98FVXH31YM1D9+RlZeXB5VKBTs7O1hZWcHKyqrKmoo+qqJUKqFUKs2fMBERETU5Zp3JEUJg3rx52LFjB1JSUtCpUyeT7T4+PrCxsUFycrLUlpWVhZycHKjVagCAWq1GRkaGyV1QSUlJUKlU8PT0lGoe7KOipqIPhUIBHx8fkxqj0Yjk5GSphoiIiJ5tZp3JCQkJQVxcHP73v/+hZcuW0vUv9vb2sLOzg729PYKDgxEWFgZHR0eoVCrMnz8farUagwcPBgCMHTsWnp6emDZtGlasWAGdToelS5ciJCREOssyZ84crF27FosWLcIbb7yBlJQUxMfHIyEhQRpLWFgYgoKCMGDAAAwaNAirV69GUVERZsyYUV+vDRERETVhZoWc9evXAwBGjhxp0r5582ZMnz4dALBq1SpYWlpi0qRJKC4uhkajwbp166RaKysr7Nq1C3PnzoVarUbz5s0RFBSE5cuXSzWdOnVCQkICQkNDsWbNGrRr1w6ffPIJNBqNVBMYGIiCggJERERAp9PB29sbiYmJlS5GJiIiomdTnZ6T09TxOTlEv+FzcoioKXkiz8khIiIielox5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsmR1y9u/fj5deegnu7u6wsLDAzp07TbZPnz4dFhYWJsu4ceNMam7evImpU6dCpVLBwcEBwcHBuHPnjknNyZMnMWzYMNja2sLDwwMrVqyoNJbt27ejR48esLW1hZeXF3bv3m3udIiIiEimzA45RUVF6Nu3L2JiYqqtGTduHK5duyYt//3vf022T506FadPn0ZSUhJ27dqF/fv3Y/bs2dJ2g8GAsWPHokOHDkhLS8PKlSsRFRWFTZs2STUHDx7Ea6+9huDgYJw4cQIBAQEICAjAqVOnzJ0SERERyZCFEELUemcLC+zYsQMBAQFS2/Tp01FYWFjpDE+Fs2fPwtPTE0ePHsWAAQMAAImJiZgwYQKuXr0Kd3d3rF+/Hu+99x50Oh0UCgUAYMmSJdi5cycyMzMBAIGBgSgqKsKuXbukvgcPHgxvb29s2LChymMXFxejuLhYWjcYDPDw8IBer4dKparty0DU5F08thHGCznSekeH8bAZN7QRR0REVD2DwQB7e/vH/vxukGtyUlNT4ezsjO7du2Pu3Lm4ceOGtE2r1cLBwUEKOADg5+cHS0tLHD58WKoZPny4FHAAQKPRICsrC7du3ZJq/Pz8TI6r0Wig1WqrHVd0dDTs7e2lxcPDo17mS0RERE+feg8548aNw+eff47k5GT8v//3/7Bv3z6MHz8e5eXlAACdTgdnZ2eTfaytreHo6AidTifVuLi4mNRUrD+upmJ7VcLDw6HX66XlypUrdZssERERPbWs67vDyZMnS3/28vJCnz590KVLF6SmpmLMmDH1fTizKJVKKJXKRh0DERERPRkNfgt5586d0aZNG1y4cAEA4Orqivz8fJOasrIy3Lx5E66urlJNXl6eSU3F+uNqKrYTERHRs63BQ87Vq1dx48YNuLm5AQDUajUKCwuRlpYm1aSkpMBoNMLX11eq2b9/P0pLS6WapKQkdO/eHa1atZJqkpOTTY6VlJQEtVrd0FMiIiKiJsDskHPnzh2kp6cjPT0dAJCdnY309HTk5OTgzp07WLhwIQ4dOoTLly8jOTkZL7/8Mrp27QqNRgMA6NmzJ8aNG4dZs2bhyJEj+OmnnzBv3jxMnjwZ7u7uAIApU6ZAoVAgODgYp0+fxrZt27BmzRqEhYVJ43jrrbeQmJiIv//978jMzERUVBSOHTuGefPm1cPLQkRERE2d2SHn2LFj6NevH/r16wcACAsLQ79+/RAREQErKyucPHkSv/vd79CtWzcEBwfDx8cHP/74o8m1MF988QV69OiBMWPGYMKECRg6dKjJM3Ds7e3x3XffITs7Gz4+Pnj77bcRERFh8iydIUOGIC4uDps2bULfvn3x5ZdfYufOnejdu3ddXg8iIiKSiTo9J6epq+l99kRyx+fkEFFT0qjPySEiIiJqbAw5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkSww5REREJEsMOURERCRLDDlEREQkS2aHnP379+Oll16Cu7s7LCwssHPnTpPtQghERETAzc0NdnZ28PPzw/nz501qbt68ialTp0KlUsHBwQHBwcG4c+eOSc3JkycxbNgw2NrawsPDAytWrKg0lu3bt6NHjx6wtbWFl5cXdu/ebe50iIiISKbMDjlFRUXo27cvYmJiqty+YsUK/POf/8SGDRtw+PBhNG/eHBqNBvfv35dqpk6ditOnTyMpKQm7du3C/v37MXv2bGm7wWDA2LFj0aFDB6SlpWHlypWIiorCpk2bpJqDBw/itddeQ3BwME6cOIGAgAAEBATg1KlT5k6JiIiIZMhCCCFqvbOFBXbs2IGAgAAAv53FcXd3x9tvv4133nkHAKDX6+Hi4oLY2FhMnjwZZ8+ehaenJ44ePYoBAwYAABITEzFhwgRcvXoV7u7uWL9+Pd577z3odDooFAoAwJIlS7Bz505kZmYCAAIDA1FUVIRdu3ZJ4xk8eDC8vb2xYcOGGo3fYDDA3t4eer0eKpWqti8DUZN38dhGGC/kSOsdHcbDZtzQRhwREVH1avrzu16vycnOzoZOp4Ofn5/UZm9vD19fX2i1WgCAVquFg4ODFHAAwM/PD5aWljh8+LBUM3z4cCngAIBGo0FWVhZu3bol1Tx4nIqaiuNUpbi4GAaDwWQhIiIiearXkKPT6QAALi4uJu0uLi7SNp1OB2dnZ5Pt1tbWcHR0NKmpqo8Hj1FdTcX2qkRHR8Pe3l5aPDw8zJ0iERERNRHP1N1V4eHh0Ov10nLlypXGHhIRERE1kHoNOa6urgCAvLw8k/a8vDxpm6urK/Lz8022l5WV4ebNmyY1VfXx4DGqq6nYXhWlUgmVSmWyEBERkTzVa8jp1KkTXF1dkZycLLUZDAYcPnwYarUaAKBWq1FYWIi0tDSpJiUlBUajEb6+vlLN/v37UVpaKtUkJSWhe/fuaNWqlVTz4HEqaiqOQ0RERM82s0POnTt3kJ6ejvT0dAC/XWycnp6OnJwcWFhYYMGCBfjggw/wzTffICMjA6+//jrc3d2lO7B69uyJcePGYdasWThy5Ah++uknzJs3D5MnT4a7uzsAYMqUKVAoFAgODsbp06exbds2rFmzBmFhYdI43nrrLSQmJuLvf/87MjMzERUVhWPHjmHevHl1f1WIiIio6RNm+uGHHwSASktQUJAQQgij0Sj+8pe/CBcXF6FUKsWYMWNEVlaWSR83btwQr732mmjRooVQqVRixowZ4vbt2yY1P//8sxg6dKhQKpWibdu24sMPP6w0lvj4eNGtWzehUChEr169REJCgllz0ev1AoDQ6/XmvQhEMnPh6AZx7r/vSkvJnh8be0hERNWq6c/vOj0np6njc3KIfsPn5BBRU9Ioz8khIiIielow5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSwx5BAREZEsMeQQERGRLDHkEBERkSzVe8iJioqChYWFydKjRw9p+/379xESEoLWrVujRYsWmDRpEvLy8kz6yMnJgb+/P5o1awZnZ2csXLgQZWVlJjWpqano378/lEolunbtitjY2PqeChERETVhDXImp1evXrh27Zq0HDhwQNoWGhqKb7/9Ftu3b8e+ffuQm5uLiRMnStvLy8vh7++PkpISHDx4EFu2bEFsbCwiIiKkmuzsbPj7+2PUqFFIT0/HggULMHPmTOzdu7chpkNERERNkHWDdGptDVdX10rter0en376KeLi4jB69GgAwObNm9GzZ08cOnQIgwcPxnfffYczZ87g+++/h4uLC7y9vfH+++9j8eLFiIqKgkKhwIYNG9CpUyf8/e9/BwD07NkTBw4cwKpVq6DRaBpiSkRERNTENMiZnPPnz8Pd3R2dO3fG1KlTkZOTAwBIS0tDaWkp/Pz8pNoePXqgffv20Gq1AACtVgsvLy+4uLhINRqNBgaDAadPn5ZqHuyjoqaij+oUFxfDYDCYLERERCRP9R5yfH19ERsbi8TERKxfvx7Z2dkYNmwYbt++DZ1OB4VCAQcHB5N9XFxcoNPpAAA6nc4k4FRsr9j2qBqDwYB79+5VO7bo6GjY29tLi4eHR12nS0RERE+pev+6avz48dKf+/TpA19fX3To0AHx8fGws7Or78OZJTw8HGFhYdK6wWBg0CEiIpKpBr+F3MHBAd26dcOFCxfg6uqKkpISFBYWmtTk5eVJ1/C4urpWutuqYv1xNSqV6pFBSqlUQqVSmSxEREQkTw0ecu7cuYOLFy/Czc0NPj4+sLGxQXJysrQ9KysLOTk5UKvVAAC1Wo2MjAzk5+dLNUlJSVCpVPD09JRqHuyjoqaiDyIiIqJ6DznvvPMO9u3bh8uXL+PgwYN45ZVXYGVlhddeew329vYIDg5GWFgYfvjhB6SlpWHGjBlQq9UYPHgwAGDs2LHw9PTEtGnT8PPPP2Pv3r1YunQpQkJCoFQqAQBz5szBpUuXsGjRImRmZmLdunWIj49HaGhofU+HiIiImqh6vybn6tWreO2113Djxg04OTlh6NChOHToEJycnAAAq1atgqWlJSZNmoTi4mJoNBqsW7dO2t/Kygq7du3C3LlzoVar0bx5cwQFBWH58uVSTadOnZCQkIDQ0FCsWbMG7dq1wyeffMLbx4mIiEhiIYQQjT2IxmIwGGBvbw+9Xs/rc+iZdvHYRhgv5EjrHR3Gw2bc0EYcERFR9Wr685u/u4qIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTJurEHQES1J4xGGC9dBQx3AFULWHZuBwvL+v23S7kox9kbJ3Dr/nW0sm2Dnq37wcrCql6P8TQck4jkp8mHnJiYGKxcuRI6nQ59+/bFxx9/jEGDBjX2sIgaXPnJcyjdkQzob/9fo31L2LwyBlZ9utXLMbS5yfj01ErcuJ8vtbW2dUZw74VQu4+pl2M8DcckInlq0l9Xbdu2DWFhYYiMjMTx48fRt29faDQa5OfnP35noias/OQ5lMbuNA04AKC/jdLYnSg/ea7Ox9DmJmPFsUUmYQMAbtwvwIpji6DNTa7zMZ6GYxKRfFkIIURjD6K2fH19MXDgQKxduxYAYDQa4eHhgfnz52PJkiWP3d9gMMDe3h56vR4qlaqhh0vPkNLEAw3WtxACxv1pQHFJ9UUOLaFc+maNv7q6eGwjjBdypPX29hqEWP2tUtj4PxZoY+uMDS/sqrevkcpFOd5M8n+ixySipqmmP7+b7NdVJSUlSEtLQ3h4uNRmaWkJPz8/aLXaKvcpLi5GcXGxtK7X6wH89mIRVShNqvrvz9NC3DLA+Li/s3n3YfnZV7BoVbPwbtCfN1k/an0KurJrj9zn2t1caL/aiJ4WXWp0jMc5Ky7W6JhHL/8Iz9b96+WYRNQ0Vfzcftx5miYbcq5fv47y8nK4uLiYtLu4uCAzM7PKfaKjo7Fs2bJK7R4eHg0yRiK5S0BIIxxz1BM/JhE9nW7fvg17e/tqtzfZkFMb4eHhCAsLk9aNRiNu3ryJ1q1bw8LCot6PZzAY4OHhgStXrsj667BnYZ6cozw8C3MEno15co7yUZt5CiFw+/ZtuLu7P7KuyYacNm3awMrKCnl5eSbteXl5cHV1rXIfpVIJpVJp0ubg4NBQQ5SoVCpZ/wWt8CzMk3OUh2dhjsCzMU/OUT7MneejzuBUaLJ3VykUCvj4+CA5+f/utjAajUhOToZarW7EkREREdHToMmeyQGAsLAwBAUFYcCAARg0aBBWr16NoqIizJgxo7GHRkRERI2sSYecwMBAFBQUICIiAjqdDt7e3khMTKx0MXJjUSqViIyMrPQVmdw8C/PkHOXhWZgj8GzMk3OUj4acZ5N+Tg4RERFRdZrsNTlEREREj8KQQ0RERLLEkENERESyxJBDREREssSQQ0RERLLEkFPPbt68ialTp0KlUsHBwQHBwcG4c+fOY/fTarUYPXo0mjdvDpVKheHDh+PevXtPYMTmq+0cgd8exT1+/HhYWFhg586dDTvQOjJ3njdv3sT8+fPRvXt32NnZoX379vjzn/8s/SLYp0FMTAw6duwIW1tb+Pr64siRI4+s3759O3r06AFbW1t4eXlh9+7dT2iktWfOHP/1r39h2LBhaNWqFVq1agU/P7/HviZPC3Pfywpbt26FhYUFAgICGnaA9cDcORYWFiIkJARubm5QKpXo1q3bU/931tw5rl69WvqM8fDwQGhoKO7fv/+ERmu+/fv346WXXoK7u3uNP/dTU1PRv39/KJVKdO3aFbGxsbUfgKB6NW7cONG3b19x6NAh8eOPP4quXbuK11577ZH7HDx4UKhUKhEdHS1OnTolMjMzxbZt28T9+/ef0KjNU5s5VvjHP/4hxo8fLwCIHTt2NOxA68jceWZkZIiJEyeKb775Rly4cEEkJyeL5557TkyaNOkJjrp6W7duFQqFQnz22Wfi9OnTYtasWcLBwUHk5eVVWf/TTz8JKysrsWLFCnHmzBmxdOlSYWNjIzIyMp7wyGvO3DlOmTJFxMTEiBMnToizZ8+K6dOnC3t7e3H16tUnPHLzmDvPCtnZ2aJt27Zi2LBh4uWXX34yg60lc+dYXFwsBgwYICZMmCAOHDggsrOzRWpqqkhPT3/CI685c+f4xRdfCKVSKb744guRnZ0t9u7dK9zc3ERoaOgTHnnN7d69W7z33nvi66+/rtHn/qVLl0SzZs1EWFiYOHPmjPj444+FlZWVSExMrNXxGXLq0ZkzZwQAcfToUaltz549wsLCQvz666/V7ufr6yuWLl36JIZYZ7WdoxBCnDhxQrRt21Zcu3btqQ85dZnng+Lj44VCoRClpaUNMUyzDBo0SISEhEjr5eXlwt3dXURHR1dZ/4c//EH4+/ubtPn6+oo333yzQcdZF+bO8WFlZWWiZcuWYsuWLQ01xHpRm3mWlZWJIUOGiE8++UQEBQU99SHH3DmuX79edO7cWZSUlDypIdaZuXMMCQkRo0ePNmkLCwsTzz//fIOOs77U5HN/0aJFolevXiZtgYGBQqPR1OqY/LqqHmm1Wjg4OGDAgAFSm5+fHywtLXH48OEq98nPz8fhw4fh7OyMIUOGwMXFBSNGjMCBAwee1LDNUps5AsDdu3cxZcoUxMTEVPsLVJ8mtZ3nw/R6PVQqFaytG/fh4iUlJUhLS4Ofn5/UZmlpCT8/P2i12ir30Wq1JvUAoNFoqq1vbLWZ48Pu3r2L0tJSODo6NtQw66y281y+fDmcnZ0RHBz8JIZZJ7WZ4zfffAO1Wo2QkBC4uLigd+/e+Nvf/oby8vInNWyz1GaOQ4YMQVpamvSV1qVLl7B7925MmDDhiYz5Sajvz50m/WsdnjY6nQ7Ozs4mbdbW1nB0dIROp6tyn0uXLgEAoqKi8NFHH8Hb2xuff/45xowZg1OnTuG5555r8HGbozZzBIDQ0FAMGTIEL7/8ckMPsV7Udp4Pun79Ot5//33Mnj27IYZoluvXr6O8vLzSrzxxcXFBZmZmlfvodLoq62s6/yetNnN82OLFi+Hu7l7pQ/ZpUpt5HjhwAJ9++inS09OfwAjrrjZzvHTpElJSUjB16lTs3r0bFy5cwJ/+9CeUlpYiMjLySQzbLLWZ45QpU3D9+nUMHToUQgiUlZVhzpw5ePfdd5/EkJ+I6j53DAYD7t27Bzs7O7P645mcGliyZAksLCweudT0Q/RhRqMRAPDmm29ixowZ6NevH1atWoXu3bvjs88+q89pPFJDzvGbb75BSkoKVq9eXb+DroWGnOeDDAYD/P394enpiaioqLoPnBrchx9+iK1bt2LHjh2wtbVt7OHUm9u3b2PatGn417/+hTZt2jT2cBqM0WiEs7MzNm3aBB8fHwQGBuK9997Dhg0bGnto9SY1NRV/+9vfsG7dOhw/fhxff/01EhIS8P777zf20J5aPJNTA2+//TamT5/+yJrOnTvD1dUV+fn5Ju1lZWW4efNmtV/RuLm5AQA8PT1N2nv27ImcnJzaD9pMDTnHlJQUXLx4EQ4ODibtkyZNwrBhw5CamlqHkZunIedZ4fbt2xg3bhxatmyJHTt2wMbGpq7DrrM2bdrAysoKeXl5Ju15eXnVzsfV1dWs+sZWmzlW+Oijj/Dhhx/i+++/R58+fRpymHVm7jwvXryIy5cv46WXXpLaKv5xZW1tjaysLHTp0qVhB22m2ryXbm5usLGxgZWVldTWs2dP6HQ6lJSUQKFQNOiYzVWbOf7lL3/BtGnTMHPmTACAl5cXioqKMHv2bLz33nuwtGz65y2q+9xRqVRmn8UBGHJqxMnJCU5OTo+tU6vVKCwsRFpaGnx8fAD89gPeaDTC19e3yn06duwId3d3ZGVlmbSfO3cO48ePr/vga6gh57hkyRLpf8oKXl5eWLVqlckH75PQkPMEfjuDo9FooFQq8c033zw1ZwQUCgV8fHyQnJws3TpsNBqRnJyMefPmVbmPWq1GcnIyFixYILUlJSVBrVY/gRGbrzZzBIAVK1bgr3/9K/bu3WtyDdbTytx59ujRAxkZGSZtS5cuxe3bt7FmzRp4eHg8iWGbpTbv5fPPP4+4uDgYjUbph/25c+fg5ub21AUcoHZzvHv3bqUgUxHqhEx+17Zara5023+dPndqdbkyVWvcuHGiX79+4vDhw+LAgQPiueeeM7nt+OrVq6J79+7i8OHDUtuqVauESqUS27dvF+fPnxdLly4Vtra24sKFC40xhceqzRwfhqf87iohzJ+nXq8Xvr6+wsvLS1y4cEFcu3ZNWsrKyhprGpKtW7cKpVIpYmNjxZkzZ8Ts2bOFg4OD0Ol0Qgghpk2bJpYsWSLV//TTT8La2lp89NFH4uzZsyIyMrJJ3EJuzhw//PBDoVAoxJdffmnyft2+fbuxplAj5s7zYU3h7ipz55iTkyNatmwp5s2bJ7KyssSuXbuEs7Oz+OCDDxprCo9l7hwjIyNFy5YtxX//+19x6dIl8d1334kuXbqIP/zhD401hce6ffu2OHHihDhx4oQAIP7xj3+IEydOiF9++UUIIcSSJUvEtGnTpPqKW8gXLlwozp49K2JiYngL+dPkxo0b4rXXXhMtWrQQKpVKzJgxw+QDMzs7WwAQP/zwg8l+0dHRol27dqJZs2ZCrVaLH3/88QmPvOZqO8cHNYWQY+48f/jhBwGgyiU7O7txJvGQjz/+WLRv314oFAoxaNAgcejQIWnbiBEjRFBQkEl9fHy86Natm1AoFKJXr14iISHhCY/YfObMsUOHDlW+X5GRkU9+4GYy9718UFMIOUKYP8eDBw8KX19foVQqRefOncVf//rXp+IfGI9izhxLS0tFVFSU6NKli7C1tRUeHh7iT3/6k7h169aTH3gNVfe5WDGvoKAgMWLEiEr7eHt7C4VCITp37iw2b95c6+NbCCGTc1xERERED2j6VykRERERVYEhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGSJIYeIiIhkiSGHiIiIZIkhh4iIiGTp/wNO/50o1nptbAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR0xJREFUeJzt3XlcVPX+P/AX2wy4DIiyKu4ripKoOOYuOSotpN0gzdBwvehNKBfSi0t18Wr3quV+K7F7M8VKb4lihKGZuISSW5ILhV4cwIUZRWWbz++PfpyvR0CZAUQOr+fjcR45n/M+n/P5nDHm5ZlzDlZCCAEiIiIihbGu7QEQERER1QSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIqqy5ORkWFlZITk5uVr7tbKywqJFi6q1T3PFxsbCysoKv/32W432OXjwYAwePNjsvsw59pbuwxyLFi2ClZVVje6DqLIYcogecOjQISxatAh5eXm1PZR6Yffu3bUeZKj2paam4tlnn4W7uzsaNWqE7t2744MPPkBJSUltD43qMNvaHgDRk+bQoUNYvHgxJkyYACcnp9oejuLt3r0ba9asKTfo3L17F7a2tftjavz48QgJCYFara7R/Xz77bcWbTdw4EDcvXsXKpWqmkf0+KSmpqJfv37o0KED5s6diwYNGmDPnj144403cPHiRaxataq2h0h1FEMOUT12584dNGjQoEx7cXExTCZTrX9w2tvb1+r+AcDGxgY2NjY1vh9Lj7W1tfUTcZyqYsOGDQCAAwcOwNnZGQAwdepUDBo0CLGxsQw5ZDF+XUV0n0WLFmH27NkAgDZt2sDKykq6dqK4uBjvvPMO2rVrB7VajdatW+Ptt99GQUGBrI/WrVvj2WefxbfffgtfX1/Y29vD29sbX331lUVj+s9//oM+ffqgQYMGaNKkCQYOHFjmX/1r165F165doVar4enpifDw8DJftw0ePBjdunVDamoqBg4ciAYNGuDtt9/Gb7/9BisrK7z//vtYuXKlNL+zZ88CAM6dO4eXXnoJzs7OsLe3R69evfD1118/ctw//PAD/vSnP6Fly5ZQq9Xw8vJCREQE7t69K9VMmDABa9asAQDpWN9/PUd51+ScOHECI0eOhEajQaNGjTBs2DAcPnxYVlN6zcuPP/6IyMhIuLi4oGHDhnjxxReRm5v7yLGX19f918+UvscHDx5Enz59YG9vj7Zt2+LTTz8ts/2ZM2cwdOhQODg4oEWLFnj33XdhMpnK1N1/vUx2djZsbW2xePHiMnXp6emwsrLC6tWrAVR8Tc7GjRvRrl07ODg4oE+fPvjhhx8qNbeK+qzM+2kpo9EIe3v7MmdOPTw84ODgUOX+qf7imRyi+4wePRq//vorPv/8c6xYsQLNmjUDALi4uGDSpEnYvHkzXnrpJbz55ps4cuQIYmJi8Msvv2DHjh2yfs6fP4/g4GBMmzYNoaGh2LRpE/70pz8hISEBzzzzTKXHs3jxYixatAj9+vXDkiVLoFKpcOTIEezbtw/Dhw8H8EcwW7x4MQICAjB9+nSkp6dj3bp1OHbsGH788UfY2dlJ/V2/fh0jR45ESEgIXn31Vbi5uUnrNm3ahHv37mHKlClQq9VwdnbGmTNn8PTTT6N58+aYN28eGjZsiLi4OAQFBeHLL7/Eiy++WOHYt2/fjjt37mD69Olo2rQpjh49ig8//BBXrlzB9u3bAfzxr/WsrCwkJibi3//+9yOPx5kzZzBgwABoNBrMmTMHdnZ22LBhAwYPHoz9+/fD399fVj9z5kw0adIECxcuxG+//YaVK1dixowZ2LZtW6Xfg4pcuHABL730EsLCwhAaGopPPvkEEyZMgJ+fH7p27QoA0Ov1GDJkCIqLi6Xjt3Hjxkd+cLu5uWHQoEGIi4vDwoULZeu2bdsGGxsb/OlPf6pw+48//hhTp05Fv379MGvWLFy6dAnPP/88nJ2d4eXlZdF8K/N+Wmrw4MHYtm0bpk6disjISOnrqq+++grLly+vUt9Uzwkiklm+fLkAIDIyMqS2tLQ0AUBMmjRJVvvWW28JAGLfvn1SW6tWrQQA8eWXX0ptBoNBeHh4iKeeeqrS4zh//rywtrYWL774oigpKZGtM5lMQgghcnJyhEqlEsOHD5fVrF69WgAQn3zyidQ2aNAgAUCsX79e1ldGRoYAIDQajcjJyZGtGzZsmPDx8RH37t2T7btfv36iQ4cOUtv3338vAIjvv/9eartz506ZOcXExAgrKyvx+++/S23h4eGioh9FAMTChQul10FBQUKlUomLFy9KbVlZWaJx48Zi4MCBUtumTZsEABEQECAdKyGEiIiIEDY2NiIvL6/c/ZWntK/7/z6UvscHDhyQ2nJycoRarRZvvvmm1DZr1iwBQBw5ckRW5+joWKbPQYMGiUGDBkmvN2zYIACIU6dOycbj7e0thg4dKr1+8NgXFhYKV1dX4evrKwoKCqS6jRs3CgCyfZQ3t/L6FKLy7+fChQsrfD8rUlxcLGbMmCHs7OwEAAFA2NjYiHXr1pnVD9GD+HUVUSXs3r0bABAZGSlrf/PNNwEA8fHxsnZPT0/ZWQ6NRoPXXnsNJ06cgF6vr9Q+d+7cCZPJhOjoaFhby/9XLf1K57vvvkNhYSFmzZolq5k8eTI0Gk2ZcanVakycOLHc/Y0ZMwYuLi7S6xs3bmDfvn14+eWXcevWLVy7dg3Xrl3D9evXodPpcP78efzvf/+rcPz3n63Iz8/HtWvX0K9fPwghcOLEiUodg/uVlJTg22+/RVBQENq2bSu1e3h4YOzYsTh48CCMRqNsmylTpsi+/howYABKSkrw+++/m73/B3l7e2PAgAHSaxcXF3Tq1AmXLl2S2nbv3o2+ffuiT58+srpx48Y9sv/Ro0fD1tZWdtbp9OnTOHv2LIKDgyvc7qeffkJOTg6mTZsmu85nwoQJcHR0rPT8HlTd7+f9bGxs0K5dO+h0OmzevBnbtm3Dc889h5kzZ2Lnzp1V6pvqN4Ycokr4/fffYW1tjfbt28va3d3d4eTkVOZDs3379mWeFdKxY0cAqPTzVi5evAhra2t4e3s/dFwA0KlTJ1m7SqVC27Zty4yrefPmFV7g2qZNG9nrCxcuQAiBv/71r3BxcZEtpV+h5OTkVDi2zMxMTJgwAc7OzmjUqBFcXFwwaNAgAIDBYKhwu4rk5ubizp07ZeYKAF26dIHJZMLly5dl7S1btpS9btKkCQDg5s2bZu//QQ/2Xdr//X3//vvv6NChQ5m68ubwoGbNmmHYsGGIi4uT2rZt2wZbW1uMHj26wu1K3/MH92tnZycLh+aq7vfzfkuXLsXf//53fP7553jttdfw8ssvY8eOHejfvz/Cw8NRXFxcpf6p/uI1OURmqOsPOXvYtSAPriu9OPatt96CTqcrd5sHQ1+pkpISPPPMM7hx4wbmzp2Lzp07o2HDhvjf//6HCRMmlHvhbU2o6K4oIcQT3XepkJAQTJw4EWlpafD19UVcXByGDRsmXStWVRX9fX7w2TQ1/X6uXbsWQ4cORaNGjWTtzz//PCIjI/Hbb79V+HeN6GEYcogeUN4P/latWsFkMuH8+fPo0qWL1J6dnY28vDy0atVKVl96FuT+vn799VcAf9yZUxnt2rWDyWTC2bNn4evrW25N6X7T09Nl/0ovLCxERkYGAgICKrWv8pT2Z2dnZ3Y/p06dwq+//orNmzfjtddek9oTExPL1FY2OLq4uKBBgwZIT08vs+7cuXOwtra2+KLamtKqVSucP3++THt5cyhPUFAQpk6dKn1l9euvvyIqKuqR+wT+uPh96NChUntRUREyMjLQo0cPqa30zNaDd+I9eAbQnPfTEtnZ2eU+9K+oqAgAeCaHLMavq4ge0LBhQwDyH/yjRo0CAKxcuVJW+89//hMAEBgYKGvPysqS3XFlNBrx6aefwtfXF+7u7pUaR1BQEKytrbFkyZIy/1IuPVsQEBAAlUqFDz74QHYG4eOPP4bBYCgzLnO4urpi8ODB2LBhA65evVpm/cNuxS49y3H/mIQQ5T7vpLzjXVGfw4cPx3//+1/ZV37Z2dnYsmUL+vfvD41G89A+HrdRo0bh8OHDOHr0qNSWm5uLzz77rFLbOzk5QafTIS4uDlu3boVKpUJQUNBDt+nVqxdcXFywfv16FBYWSu2xsbFljnG7du0A/PF8mlIlJSXYuHGjrM6c99MSHTt2RGJiIq5fvy4bR1xcHBo3biyNk8hcPJND9AA/Pz8AwPz58xESEgI7Ozs899xzCA0NxcaNG5GXl4dBgwbh6NGj2Lx5M4KCgjBkyBBZHx07dkRYWBiOHTsGNzc3fPLJJ8jOzsamTZsqPY727dtj/vz5eOeddzBgwACMHj0aarUax44dg6enJ2JiYuDi4oKoqCgsXrwYI0aMwPPPP4/09HSsXbsWvXv3xquvvlqlY7FmzRr0798fPj4+mDx5Mtq2bYvs7GykpKTgypUr+Pnnn8vdrnPnzmjXrh3eeust/O9//4NGo8GXX35Z7rUwpcf7L3/5C3Q6HWxsbBASElJuv++++y4SExPRv39//PnPf4atrS02bNiAgoICLFu2rEpzrQlz5szBv//9b4wYMQJvvPGGdAt5q1atcPLkyUr1ERwcjFdffRVr166FTqd75FO47ezs8O6772Lq1KkYOnQogoODkZGRgU2bNpW5Jqdr167o27cvoqKicOPGDTg7O2Pr1q1lzpyY835aYt68eXj11Vfh7++PKVOmwMHBAZ9//jlSU1Px7rvvyh6DQGSW2rmpi+jJ9s4774jmzZsLa2tr6RbboqIisXjxYtGmTRthZ2cnvLy8RFRUlOz2aiH+uL04MDBQ7N27V3Tv3l2o1WrRuXNnsX37dovG8sknn4innnpKqNVq0aRJEzFo0CCRmJgoq1m9erXo3LmzsLOzE25ubmL69Oni5s2bsppBgwaJrl27lum/9Bby5cuXl7v/ixcvitdee024u7sLOzs70bx5c/Hss8+KL774Qqop75bjs2fPioCAANGoUSPRrFkzMXnyZPHzzz8LAGLTpk1SXXFxsZg5c6ZwcXERVlZWstuP8cAt5EIIcfz4caHT6USjRo1EgwYNxJAhQ8ShQ4dkNaW3Rh87dkzWXt44H6WiW8gDAwPL1D54G7gQQpw8eVIMGjRI2Nvbi+bNm4t33nlHfPzxx4+8hbyU0WgUDg4OAoD4z3/+U2Z9RXNau3ataNOmjVCr1aJXr17iwIED5e7j4sWLIiAgQKjVauHm5ibefvttkZiYaPH7ackt5EIIkZCQIAYNGiSaNWsmVCqV8PHxKfO4AyJzWQlRjVfJERFat26Nbt26YdeuXbU9FCKieo3X5BAREZEi8ZocolrwqAcCOjg4VOnBbfRot2/fxu3btx9a4+Li8lh+OadSGQyGR/5uq8peiE9kCYYcolrg4eHx0PWhoaGIjY19PIOpp95///1yfwHm/TIyMip9yz+V9cYbb2Dz5s0PreEVE1STeE0OUS347rvvHrre09PzoU86pqq7dOmS7FcwlKd///6wt7d/TCNSnrNnzyIrK+uhNVV5lhPRozDkEBERkSLxwmMiIiJSpHp9TY7JZEJWVhYaN25c538nERERUX0hhMCtW7fg6ekJa+uKz9fU65CTlZX1xP2uGyIiIqqcy5cvo0WLFhWur9chp3HjxgD+OEhP2u+8ISIiovIZjUZ4eXlJn+MVqdchp/QrKo1Gw5BDRERUxzzqUhNeeExERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREimRb2wMgoserKOGg7LXdiP61NBIioprFMzlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIDDlERESkSAw5REREpEgMOURERKRIVQo5S5cuhZWVFWbNmiW13bt3D+Hh4WjatCkaNWqEMWPGIDs7W7ZdZmYmAgMD0aBBA7i6umL27NkoLi6W1SQnJ6Nnz55Qq9Vo3749YmNjy+x/zZo1aN26Nezt7eHv74+jR49WZTpERESkIBaHnGPHjmHDhg3o3r27rD0iIgLffPMNtm/fjv379yMrKwujR4+W1peUlCAwMBCFhYU4dOgQNm/ejNjYWERHR0s1GRkZCAwMxJAhQ5CWloZZs2Zh0qRJ2Lt3r1Szbds2REZGYuHChTh+/Dh69OgBnU6HnJwcS6dERERESiIscOvWLdGhQweRmJgoBg0aJN544w0hhBB5eXnCzs5ObN++Xar95ZdfBACRkpIihBBi9+7dwtraWuj1eqlm3bp1QqPRiIKCAiGEEHPmzBFdu3aV7TM4OFjodDrpdZ8+fUR4eLj0uqSkRHh6eoqYmJhKz8NgMAgAwmAwVH7yRHVc4Z4fZAsRUV1T2c9vi87khIeHIzAwEAEBAbL21NRUFBUVydo7d+6Mli1bIiUlBQCQkpICHx8fuLm5STU6nQ5GoxFnzpyRah7sW6fTSX0UFhYiNTVVVmNtbY2AgACppjwFBQUwGo2yhYiIiJTJ1twNtm7diuPHj+PYsWNl1un1eqhUKjg5Ocna3dzcoNfrpZr7A07p+tJ1D6sxGo24e/cubt68iZKSknJrzp07V+HYY2JisHjx4spNlIiIiOo0s87kXL58GW+88QY+++wz2Nvb19SYakxUVBQMBoO0XL58ubaHRERERDXErJCTmpqKnJwc9OzZE7a2trC1tcX+/fvxwQcfwNbWFm5ubigsLEReXp5su+zsbLi7uwMA3N3dy9xtVfr6UTUajQYODg5o1qwZbGxsyq0p7aM8arUaGo1GthAREZEymRVyhg0bhlOnTiEtLU1aevXqhXHjxkl/trOzQ1JSkrRNeno6MjMzodVqAQBarRanTp2S3QWVmJgIjUYDb29vqeb+PkprSvtQqVTw8/OT1ZhMJiQlJUk1REREVL+ZdU1O48aN0a1bN1lbw4YN0bRpU6k9LCwMkZGRcHZ2hkajwcyZM6HVatG3b18AwPDhw+Ht7Y3x48dj2bJl0Ov1WLBgAcLDw6FWqwEA06ZNw+rVqzFnzhy8/vrr2LdvH+Li4hAfHy/tNzIyEqGhoejVqxf69OmDlStXIj8/HxMnTqzSASEiIiJlMPvC40dZsWIFrK2tMWbMGBQUFECn02Ht2rXSehsbG+zatQvTp0+HVqtFw4YNERoaiiVLlkg1bdq0QXx8PCIiIrBq1Sq0aNECH330EXQ6nVQTHByM3NxcREdHQ6/Xw9fXFwkJCWUuRiYiIqL6yUoIIWp7ELXFaDTC0dERBoOB1+dQvVGUcFD22m5E/1oaCRGRZSr7+c3fXUVERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBDREREisSQQ0RERIpkVshZt24dunfvDo1GA41GA61Wiz179kjrBw8eDCsrK9kybdo0WR+ZmZkIDAxEgwYN4OrqitmzZ6O4uFhWk5ycjJ49e0KtVqN9+/aIjY0tM5Y1a9agdevWsLe3h7+/P44ePWrOVIiIiEjhzAo5LVq0wNKlS5GamoqffvoJQ4cOxQsvvIAzZ85INZMnT8bVq1elZdmyZdK6kpISBAYGorCwEIcOHcLmzZsRGxuL6OhoqSYjIwOBgYEYMmQI0tLSMGvWLEyaNAl79+6VarZt24bIyEgsXLgQx48fR48ePaDT6ZCTk1OVY0FEREQKYiWEEFXpwNnZGcuXL0dYWBgGDx4MX19frFy5stzaPXv24Nlnn0VWVhbc3NwAAOvXr8fcuXORm5sLlUqFuXPnIj4+HqdPn5a2CwkJQV5eHhISEgAA/v7+6N27N1avXg0AMJlM8PLywsyZMzFv3rxKj91oNMLR0REGgwEajcbCI0BUtxQlHJS9thvRv5ZGQkRkmcp+flt8TU5JSQm2bt2K/Px8aLVaqf2zzz5Ds2bN0K1bN0RFReHOnTvSupSUFPj4+EgBBwB0Oh2MRqN0NiglJQUBAQGyfel0OqSkpAAACgsLkZqaKquxtrZGQECAVFORgoICGI1G2UJU3/yWt0e2EBEpla25G5w6dQparRb37t1Do0aNsGPHDnh7ewMAxo4di1atWsHT0xMnT57E3LlzkZ6ejq+++goAoNfrZQEHgPRar9c/tMZoNOLu3bu4efMmSkpKyq05d+7cQ8ceExODxYsXmztlIiIiqoPMDjmdOnVCWloaDAYDvvjiC4SGhmL//v3w9vbGlClTpDofHx94eHhg2LBhuHjxItq1a1etA7dEVFQUIiMjpddGoxFeXl61OCIiIiKqKWaHHJVKhfbt2wMA/Pz8cOzYMaxatQobNmwoU+vv7w8AuHDhAtq1awd3d/cyd0FlZ2cDANzd3aX/lrbdX6PRaODg4AAbGxvY2NiUW1PaR0XUajXUarUZsyUiIqK6qsrPyTGZTCgoKCh3XVpaGgDAw8MDAKDVanHq1CnZXVCJiYnQaDTSV15arRZJSUmyfhITE6XrflQqFfz8/GQ1JpMJSUlJsmuDiIiIqH4z60xOVFQURo4ciZYtW+LWrVvYsmULkpOTsXfvXly8eBFbtmzBqFGj0LRpU5w8eRIREREYOHAgunfvDgAYPnw4vL29MX78eCxbtgx6vR4LFixAeHi4dIZl2rRpWL16NebMmYPXX38d+/btQ1xcHOLj46VxREZGIjQ0FL169UKfPn2wcuVK5OfnY+LEidV4aIiIiKguMyvk5OTk4LXXXsPVq1fh6OiI7t27Y+/evXjmmWdw+fJlfPfdd1Lg8PLywpgxY7BgwQJpexsbG+zatQvTp0+HVqtFw4YNERoaiiVLlkg1bdq0QXx8PCIiIrBq1Sq0aNECH330EXQ6nVQTHByM3NxcREdHQ6/Xw9fXFwkJCWUuRiYiIqL6q8rPyanL+Jwcqo/Ob50ve90h5L1aGgkRkWVq/Dk5RERERE8yhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIks0LOunXr0L17d2g0Gmg0Gmi1WuzZs0daf+/ePYSHh6Np06Zo1KgRxowZg+zsbFkfmZmZCAwMRIMGDeDq6orZs2ejuLhYVpOcnIyePXtCrVajffv2iI2NLTOWNWvWoHXr1rC3t4e/vz+OHj1qzlSIiIhI4cwKOS1atMDSpUuRmpqKn376CUOHDsULL7yAM2fOAAAiIiLwzTffYPv27di/fz+ysrIwevRoafuSkhIEBgaisLAQhw4dwubNmxEbG4vo6GipJiMjA4GBgRgyZAjS0tIwa9YsTJo0CXv37pVqtm3bhsjISCxcuBDHjx9Hjx49oNPpkJOTU9XjQURERAphJYQQVenA2dkZy5cvx0svvQQXFxds2bIFL730EgDg3Llz6NKlC1JSUtC3b1/s2bMHzz77LLKysuDm5gYAWL9+PebOnYvc3FyoVCrMnTsX8fHxOH36tLSPkJAQ5OXlISEhAQDg7++P3r17Y/Xq1QAAk8kELy8vzJw5E/Pmzav02I1GIxwdHWEwGKDRaKpyGIjqjPNb58tedwh5r5ZGQkRkmcp+flt8TU5JSQm2bt2K/Px8aLVapKamoqioCAEBAVJN586d0bJlS6SkpAAAUlJS4OPjIwUcANDpdDAajdLZoJSUFFkfpTWlfRQWFiI1NVVWY21tjYCAAKmmIgUFBTAajbKFiIiIlMnskHPq1Ck0atQIarUa06ZNw44dO+Dt7Q29Xg+VSgUnJydZvZubG/R6PQBAr9fLAk7p+tJ1D6sxGo24e/curl27hpKSknJrSvuoSExMDBwdHaXFy8vL3OkTERFRHWF2yOnUqRPS0tJw5MgRTJ8+HaGhoTh79mxNjK3aRUVFwWAwSMvly5dre0hERERUQ2zN3UClUqF9+/YAAD8/Pxw7dgyrVq1CcHAwCgsLkZeXJzubk52dDXd3dwCAu7t7mbugSu++ur/mwTuysrOzodFo4ODgABsbG9jY2JRbU9pHRdRqNdRqtblTJiIiojqoys/JMZlMKCgogJ+fH+zs7JCUlCStS09PR2ZmJrRaLQBAq9Xi1KlTsrugEhMTodFo4O3tLdXc30dpTWkfKpUKfn5+shqTyYSkpCSphoiIiMisMzlRUVEYOXIkWrZsiVu3bmHLli1ITk7G3r174ejoiLCwMERGRsLZ2RkajQYzZ86EVqtF3759AQDDhw+Ht7c3xo8fj2XLlkGv12PBggUIDw+XzrBMmzYNq1evxpw5c/D6669j3759iIuLQ3x8vDSOyMhIhIaGolevXujTpw9WrlyJ/Px8TJw4sRoPDREREdVlZoWcnJwcvPbaa7h69SocHR3RvXt37N27F8888wwAYMWKFbC2tsaYMWNQUFAAnU6HtWvXStvb2Nhg165dmD59OrRaLRo2bIjQ0FAsWbJEqmnTpg3i4+MRERGBVatWoUWLFvjoo4+g0+mkmuDgYOTm5iI6Ohp6vR6+vr5ISEgoczEyERER1V9Vfk5OXcbn5FB9xOfkEFFdV+PPySEiIiJ6kjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIpkVcmJiYtC7d280btwYrq6uCAoKQnp6uqxm8ODBsLKyki3Tpk2T1WRmZiIwMBANGjSAq6srZs+ejeLiYllNcnIyevbsCbVajfbt2yM2NrbMeNasWYPWrVvD3t4e/v7+OHr0qDnTISIiIgUzK+Ts378f4eHhOHz4MBITE1FUVIThw4cjPz9fVjd58mRcvXpVWpYtWyatKykpQWBgIAoLC3Ho0CFs3rwZsbGxiI6OlmoyMjIQGBiIIUOGIC0tDbNmzcKkSZOwd+9eqWbbtm2IjIzEwoULcfz4cfTo0QM6nQ45OTmWHgsiIiJSECshhLB049zcXLi6umL//v0YOHAggD/O5Pj6+mLlypXlbrNnzx48++yzyMrKgpubGwBg/fr1mDt3LnJzc6FSqTB37lzEx8fj9OnT0nYhISHIy8tDQkICAMDf3x+9e/fG6tWrAQAmkwleXl6YOXMm5s2bV+6+CwoKUFBQIL02Go3w8vKCwWCARqOx9DAQ1Snnt86Xve4Q8l4tjYSIyDJGoxGOjo6P/Pyu0jU5BoMBAODs7Cxr/+yzz9CsWTN069YNUVFRuHPnjrQuJSUFPj4+UsABAJ1OB6PRiDNnzkg1AQEBsj51Oh1SUlIAAIWFhUhNTZXVWFtbIyAgQKopT0xMDBwdHaXFy8vLwpkTERHRk87W0g1NJhNmzZqFp59+Gt26dZPax44di1atWsHT0xMnT57E3LlzkZ6ejq+++goAoNfrZQEHgPRar9c/tMZoNOLu3bu4efMmSkpKyq05d+5chWOOiopCZGSk9Lr0TA4REREpj8UhJzw8HKdPn8bBgwdl7VOmTJH+7OPjAw8PDwwbNgwXL15Eu3btLB9pNVCr1VCr1bU6BiIiIno8LPq6asaMGdi1axe+//57tGjR4qG1/v7+AIALFy4AANzd3ZGdnS2rKX3t7u7+0BqNRgMHBwc0a9YMNjY25daU9kFERET1m1khRwiBGTNmYMeOHdi3bx/atGnzyG3S0tIAAB4eHgAArVaLU6dOye6CSkxMhEajgbe3t1STlJQk6ycxMRFarRYAoFKp4OfnJ6sxmUxISkqSaoiIiKh+M+vrqvDwcGzZsgX//e9/0bhxY+kaGkdHRzg4OODixYvYsmULRo0ahaZNm+LkyZOIiIjAwIED0b17dwDA8OHD4e3tjfHjx2PZsmXQ6/VYsGABwsPDpa+Spk2bhtWrV2POnDl4/fXXsW/fPsTFxSE+Pl4aS2RkJEJDQ9GrVy/06dMHK1euRH5+PiZOnFhdx4aIiIjqMLNCzrp16wD8cZv4/TZt2oQJEyZApVLhu+++kwKHl5cXxowZgwULFki1NjY22LVrF6ZPnw6tVouGDRsiNDQUS5YskWratGmD+Ph4REREYNWqVWjRogU++ugj6HQ6qSY4OBi5ubmIjo6GXq+Hr68vEhISylyMTERERPVTlZ6TU9dV9j57IiXhc3KIqK57LM/JISIiInpSMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSIx5BAREZEiMeQQERGRIjHkEBERkSKZFXJiYmLQu3dvNG7cGK6urggKCkJ6erqs5t69ewgPD0fTpk3RqFEjjBkzBtnZ2bKazMxMBAYGokGDBnB1dcXs2bNRXFwsq0lOTkbPnj2hVqvRvn17xMbGlhnPmjVr0Lp1a9jb28Pf3x9Hjx41ZzpERESkYGaFnP379yM8PByHDx9GYmIiioqKMHz4cOTn50s1ERER+Oabb7B9+3bs378fWVlZGD16tLS+pKQEgYGBKCwsxKFDh7B582bExsYiOjpaqsnIyEBgYCCGDBmCtLQ0zJo1C5MmTcLevXulmm3btiEyMhILFy7E8ePH0aNHD+h0OuTk5FTleBAREZFCWAkhhKUb5+bmwtXVFfv378fAgQNhMBjg4uKCLVu24KWXXgIAnDt3Dl26dEFKSgr69u2LPXv24Nlnn0VWVhbc3NwAAOvXr8fcuXORm5sLlUqFuXPnIj4+HqdPn5b2FRISgry8PCQkJAAA/P390bt3b6xevRoAYDKZ4OXlhZkzZ2LevHmVGr/RaISjoyMMBgM0Go2lh4GoTjm/db7sdYeQ92ppJERElqns53eVrskxGAwAAGdnZwBAamoqioqKEBAQINV07twZLVu2REpKCgAgJSUFPj4+UsABAJ1OB6PRiDNnzkg19/dRWlPaR2FhIVJTU2U11tbWCAgIkGrKU1BQAKPRKFuIiIhImSwOOSaTCbNmzcLTTz+Nbt26AQD0ej1UKhWcnJxktW5ubtDr9VLN/QGndH3puofVGI1G3L17F9euXUNJSUm5NaV9lCcmJgaOjo7S4uXlZf7EiYiIqE6wOOSEh4fj9OnT2Lp1a3WOp0ZFRUXBYDBIy+XLl2t7SERERFRDbC3ZaMaMGdi1axcOHDiAFi1aSO3u7u4oLCxEXl6e7GxOdnY23N3dpZoH74Iqvfvq/poH78jKzs6GRqOBg4MDbGxsYGNjU25NaR/lUavVUKvV5k+YiIiI6hyzzuQIITBjxgzs2LED+/btQ5s2bWTr/fz8YGdnh6SkJKktPT0dmZmZ0Gq1AACtVotTp07J7oJKTEyERqOBt7e3VHN/H6U1pX2oVCr4+fnJakwmE5KSkqQaIiIiqt/MOpMTHh6OLVu24L///S8aN24sXf/i6OgIBwcHODo6IiwsDJGRkXB2doZGo8HMmTOh1WrRt29fAMDw4cPh7e2N8ePHY9myZdDr9ViwYAHCw8OlsyzTpk3D6tWrMWfOHLz++uvYt28f4uLiEB8fL40lMjISoaGh6NWrF/r06YOVK1ciPz8fEydOrK5jQ0RERHWYWSFn3bp1AIDBgwfL2jdt2oQJEyYAAFasWAFra2uMGTMGBQUF0Ol0WLt2rVRrY2ODXbt2Yfr06dBqtWjYsCFCQ0OxZMkSqaZNmzaIj49HREQEVq1ahRYtWuCjjz6CTqeTaoKDg5Gbm4vo6Gjo9Xr4+voiISGhzMXIREREVD9V6Tk5dR2fk0P1EZ+TQ0R13WN5Tg4RERHRk4ohh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFMnskHPgwAE899xz8PT0hJWVFXbu3ClbP2HCBFhZWcmWESNGyGpu3LiBcePGQaPRwMnJCWFhYbh9+7as5uTJkxgwYADs7e3h5eWFZcuWlRnL9u3b0blzZ9jb28PHxwe7d+82dzpERESkUGaHnPz8fPTo0QNr1qypsGbEiBG4evWqtHz++eey9ePGjcOZM2eQmJiIXbt24cCBA5gyZYq03mg0Yvjw4WjVqhVSU1OxfPlyLFq0CBs3bpRqDh06hFdeeQVhYWE4ceIEgoKCEBQUhNOnT5s7JSIiIlIgKyGEsHhjKyvs2LEDQUFBUtuECROQl5dX5gxPqV9++QXe3t44duwYevXqBQBISEjAqFGjcOXKFXh6emLdunWYP38+9Ho9VCoVAGDevHnYuXMnzp07BwAIDg5Gfn4+du3aJfXdt29f+Pr6Yv369ZUav9FohKOjIwwGAzQajQVHgKjuOb91vux1h5D3amkkRESWqeznd41ck5OcnAxXV1d06tQJ06dPx/Xr16V1KSkpcHJykgIOAAQEBMDa2hpHjhyRagYOHCgFHADQ6XRIT0/HzZs3pZqAgADZfnU6HVJSUiocV0FBAYxGo2whIiIiZar2kDNixAh8+umnSEpKwt///nfs378fI0eORElJCQBAr9fD1dVVto2trS2cnZ2h1+ulGjc3N1lN6etH1ZSuL09MTAwcHR2lxcvLq2qTJSIioieWbXV3GBISIv3Zx8cH3bt3R7t27ZCcnIxhw4ZV9+7MEhUVhcjISOm10Whk0CEiIlKoGr+FvG3btmjWrBkuXLgAAHB3d0dOTo6spri4GDdu3IC7u7tUk52dLaspff2omtL15VGr1dBoNLKFiIiIlKnGQ86VK1dw/fp1eHh4AAC0Wi3y8vKQmpoq1ezbtw8mkwn+/v5SzYEDB1BUVCTVJCYmolOnTmjSpIlUk5SUJNtXYmIitFptTU+JiIiI6gCzQ87t27eRlpaGtLQ0AEBGRgbS0tKQmZmJ27dvY/bs2Th8+DB+++03JCUl4YUXXkD79u2h0+kAAF26dMGIESMwefJkHD16FD/++CNmzJiBkJAQeHp6AgDGjh0LlUqFsLAwnDlzBtu2bcOqVatkXzW98cYbSEhIwD/+8Q+cO3cOixYtwk8//YQZM2ZUw2EhIiKius7skPPTTz/hqaeewlNPPQUAiIyMxFNPPYXo6GjY2Njg5MmTeP7559GxY0eEhYXBz88PP/zwA9RqtdTHZ599hs6dO2PYsGEYNWoU+vfvL3sGjqOjI7799ltkZGTAz88Pb775JqKjo2XP0unXrx+2bNmCjRs3okePHvjiiy+wc+dOdOvWrSrHg4iIiBSiSs/Jqev4nByqj/icHCKq62r1OTlEREREtY0hh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUiSGHiIiIFIkhh4iIiBSJIYeIiIgUyeyQc+DAATz33HPw9PSElZUVdu7cKVsvhEB0dDQ8PDzg4OCAgIAAnD9/XlZz48YNjBs3DhqNBk5OTggLC8Pt27dlNSdPnsSAAQNgb28PLy8vLFu2rMxYtm/fjs6dO8Pe3h4+Pj7YvXu3udMhIiIihTI75OTn56NHjx5Ys2ZNueuXLVuGDz74AOvXr8eRI0fQsGFD6HQ63Lt3T6oZN24czpw5g8TEROzatQsHDhzAlClTpPVGoxHDhw9Hq1atkJqaiuXLl2PRokXYuHGjVHPo0CG88sorCAsLw4kTJxAUFISgoCCcPn3a3CkRERGRAlkJIYTFG1tZYceOHQgKCgLwx1kcT09PvPnmm3jrrbcAAAaDAW5uboiNjUVISAh++eUXeHt749ixY+jVqxcAICEhAaNGjcKVK1fg6emJdevWYf78+dDr9VCpVACAefPmYefOnTh37hwAIDg4GPn5+di1a5c0nr59+8LX1xfr16+v1PiNRiMcHR1hMBig0WgsPQxEdcr5rfNlrzuEvFdLIyEiskxlP7+r9ZqcjIwM6PV6BAQESG2Ojo7w9/dHSkoKACAlJQVOTk5SwAGAgIAAWFtb48iRI1LNwIEDpYADADqdDunp6bh586ZUc/9+SmtK91OegoICGI1G2UJERETKVK0hR6/XAwDc3Nxk7W5ubtI6vV4PV1dX2XpbW1s4OzvLasrr4/59VFRTur48MTExcHR0lBYvLy9zp0hERER1RL26uyoqKgoGg0FaLl++XNtDIiIiohpSrSHH3d0dAJCdnS1rz87Olta5u7sjJydHtr64uBg3btyQ1ZTXx/37qKimdH151Go1NBqNbCEiIiJlqtaQ06ZNG7i7uyMpKUlqMxqNOHLkCLRaLQBAq9UiLy8PqampUs2+fftgMpng7+8v1Rw4cABFRUVSTWJiIjp16oQmTZpINffvp7SmdD9ERERUv5kdcm7fvo20tDSkpaUB+ONi47S0NGRmZsLKygqzZs3Cu+++i6+//hqnTp3Ca6+9Bk9PT+kOrC5dumDEiBGYPHkyjh49ih9//BEzZsxASEgIPD09AQBjx46FSqVCWFgYzpw5g23btmHVqlWIjIyUxvHGG28gISEB//jHP3Du3DksWrQIP/30E2bMmFH1o0JERER1nzDT999/LwCUWUJDQ4UQQphMJvHXv/5VuLm5CbVaLYYNGybS09NlfVy/fl288sorolGjRkKj0YiJEyeKW7duyWp+/vln0b9/f6FWq0Xz5s3F0qVLy4wlLi5OdOzYUahUKtG1a1cRHx9v1lwMBoMAIAwGg3kHgagO+/Xzt2ULEVFdU9nP7yo9J6eu43NyqD7ic3KIqK6rlefkEBERET0pGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRGHKIiIhIkRhyiIiISJEYcoiIiEiRqj3kLFq0CFZWVrKlc+fO0vp79+4hPDwcTZs2RaNGjTBmzBhkZ2fL+sjMzERgYCAaNGgAV1dXzJ49G8XFxbKa5ORk9OzZE2q1Gu3bt0dsbGx1T4WIiIjqsBo5k9O1a1dcvXpVWg4ePCiti4iIwDfffIPt27dj//79yMrKwujRo6X1JSUlCAwMRGFhIQ4dOoTNmzcjNjYW0dHRUk1GRgYCAwMxZMgQpKWlYdasWZg0aRL27t1bE9MhIiKiOsi2Rjq1tYW7u3uZdoPBgI8//hhbtmzB0KFDAQCbNm1Cly5dcPjwYfTt2xfffvstzp49i++++w5ubm7w9fXFO++8g7lz52LRokVQqVRYv3492rRpg3/84x8AgC5duuDgwYNYsWIFdDpdTUyJiIiI6pgaOZNz/vx5eHp6om3bthg3bhwyMzMBAKmpqSgqKkJAQIBU27lzZ7Rs2RIpKSkAgJSUFPj4+MDNzU2q0el0MBqNOHPmjFRzfx+lNaV9VKSgoABGo1G2EBERkTJVe8jx9/dHbGwsEhISsG7dOmRkZGDAgAG4desW9Ho9VCoVnJycZNu4ublBr9cDAPR6vSzglK4vXfewGqPRiLt371Y4tpiYGDg6OkqLl5dXVadLRERET6hq/7pq5MiR0p+7d+8Of39/tGrVCnFxcXBwcKju3ZklKioKkZGR0muj0cigQ0REpFA1fgu5k5MTOnbsiAsXLsDd3R2FhYXIy8uT1WRnZ0vX8Li7u5e526r09aNqNBrNQ4OUWq2GRqORLURERKRMNR5ybt++jYsXL8LDwwN+fn6ws7NDUlKStD49PR2ZmZnQarUAAK1Wi1OnTiEnJ0eqSUxMhEajgbe3t1Rzfx+lNaV9EBEREVV7yHnrrbewf/9+/Pbbbzh06BBefPFF2NjY4JVXXoGjoyPCwsIQGRmJ77//HqmpqZg4cSK0Wi369u0LABg+fDi8vb0xfvx4/Pzzz9i7dy8WLFiA8PBwqNVqAMC0adNw6dIlzJkzB+fOncPatWsRFxeHiIiI6p4OERER1VHVfk3OlStX8Morr+D69etwcXFB//79cfjwYbi4uAAAVqxYAWtra4wZMwYFBQXQ6XRYu3attL2NjQ127dqF6dOnQ6vVomHDhggNDcWSJUukmjZt2iA+Ph4RERFYtWoVWrRogY8++oi3jxMREZHESgghansQtcVoNMLR0REGg4HX51C9cX7rfNnrDiHv1dJIiIgsU9nPb/7uKiIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJIYcIiIiUiSGHCIiIlIkhhwiIiJSJNvaHgARyQmTCaZLVwDjbUDTCNZtW8DKuub/PVIiSvDL9RO4ee8amtg3Q5emT8HGykYx+yOi+qfOh5w1a9Zg+fLl0Ov16NGjBz788EP06dOntodFZJGSk7+iaEcSYLj1f42OjWH34jDYdO9YY/tNyUrCx6eX4/q9HKmtqb0rwrrNhtZzWJ3fHxHVT3X666pt27YhMjISCxcuxPHjx9GjRw/odDrk5OQ8emOiJ0zJyV9RFLtTHnAAwHALRbE7UXLy1xrZb0pWEpb9NEcWOADg+r1cLPtpDlKykur0/oio/rISQojaHoSl/P390bt3b6xevRoAYDKZ4OXlhZkzZ2LevHmP3N5oNMLR0REGgwEajaamh0v1QFHCQYu2sx3eDwXvbCgbcO7n1BjqBVOr/NXV+a3zpT+bILDc+XiZwPF/rNDM3hXrn9lVLV8llYgSTE0MfGz7IyJlquznd539uqqwsBCpqamIioqS2qytrREQEICUlJRytykoKEBBQYH02mAwAPjjYFH9UpRY/t+R2iI++RKmnNyHF2Xfg/UnX8KqSdUC+e07//f/wCXrG9DfuPrQ+qt3spDy5QZ0sWpn9r7sntHKXp+9frxS+zv22w/wbtrT7P0RUf1Q+rn9qPM0dTbkXLt2DSUlJXBzc5O1u7m54dy5c+VuExMTg8WLF5dp9/LyqpExEilFPMIf8/6GPNb9EVHddOvWLTg6Ola4vs6GHEtERUUhMjJSem0ymXDjxg00bdoUVlZWZvVlNBrh5eWFy5cvK/6rrvoy1/oyT6D+zJXzVJ76Mtf6Mk/AsrkKIXDr1i14eno+tK7OhpxmzZrBxsYG2dnZsvbs7Gy4u7uXu41arYZarZa1OTk5VWkcGo1G8X8BS9WXudaXeQL1Z66cp/LUl7nWl3kC5s/1YWdwStXZu6tUKhX8/PyQlPR/d2KYTCYkJSVBq9U+ZEsiIiKqD+rsmRwAiIyMRGhoKHr16oU+ffpg5cqVyM/Px8SJE2t7aERERFTL6nTICQ4ORm5uLqKjo6HX6+Hr64uEhIQyFyPXBLVajYULF5b5+kuJ6stc68s8gfozV85TeerLXOvLPIGanWudfk4OERERUUXq7DU5RERERA/DkENERESKxJBDREREisSQQ0RERIrEkENERESKxJBjhhs3bmDcuHHQaDRwcnJCWFgYbt++/cjtUlJSMHToUDRs2BAajQYDBw7E3bt3H8OILWPpPIE/HrU9cuRIWFlZYefOnTU70Gpg7lxv3LiBmTNnolOnTnBwcEDLli3xl7/8Rfplr0+SNWvWoHXr1rC3t4e/vz+OHj360Prt27ejc+fOsLe3h4+PD3bv3v2YRlo15szzX//6FwYMGIAmTZqgSZMmCAgIeORxeVKY+36W2rp1K6ysrBAUFFSzA6xG5s41Ly8P4eHh8PDwgFqtRseOHevE319z57ly5UrpZ4+XlxciIiJw7969xzRayxw4cADPPfccPD09K/25kJycjJ49e0KtVqN9+/aIjY21fACCKm3EiBGiR48e4vDhw+KHH34Q7du3F6+88spDtzl06JDQaDQiJiZGnD59Wpw7d05s27ZN3Lt37zGN2nyWzLPUP//5TzFy5EgBQOzYsaNmB1oNzJ3rqVOnxOjRo8XXX38tLly4IJKSkkSHDh3EmDFjHuOoH23r1q1CpVKJTz75RJw5c0ZMnjxZODk5iezs7HLrf/zxR2FjYyOWLVsmzp49KxYsWCDs7OzEqVOnHvPIzWPuPMeOHSvWrFkjTpw4IX755RcxYcIE4ejoKK5cufKYR24ec+dZKiMjQzRv3lwMGDBAvPDCC49nsFVk7lwLCgpEr169xKhRo8TBgwdFRkaGSE5OFmlpaY955OYxd56fffaZUKvV4rPPPhMZGRli7969wsPDQ0RERDzmkZtn9+7dYv78+eKrr76q1OfCpUuXRIMGDURkZKQ4e/as+PDDD4WNjY1ISEiwaP8MOZV09uxZAUAcO3ZMatuzZ4+wsrIS//vf/yrczt/fXyxYsOBxDLFaWDpPIYQ4ceKEaN68ubh69WqdCDlVmev94uLihEqlEkVFRTUxTIv06dNHhIeHS69LSkqEp6eniImJKbf+5ZdfFoGBgbI2f39/MXXq1BodZ1WZO88HFRcXi8aNG4vNmzfX1BCrhSXzLC4uFv369RMfffSRCA0NrTMhx9y5rlu3TrRt21YUFhY+riFWC3PnGR4eLoYOHSpri4yMFE8//XSNjrM6VeZzYc6cOaJr166ytuDgYKHT6SzaJ7+uqqSUlBQ4OTmhV69eUltAQACsra1x5MiRcrfJycnBkSNH4Orqin79+sHNzQ2DBg3CwYMHH9ewzWbJPAHgzp07GDt2LNasWVPhL0h90lg61wcZDAZoNBrY2j4ZDxAvLCxEamoqAgICpDZra2sEBAQgJSWl3G1SUlJk9QCg0+kqrH8SWDLPB925cwdFRUVwdnauqWFWmaXzXLJkCVxdXREWFvY4hlktLJnr119/Da1Wi/DwcLi5uaFbt27429/+hpKSksc1bLNZMs9+/fohNTVV+krr0qVL2L17N0aNGvVYxvy4VPfPoifjp3IdoNfr4erqKmuztbWFs7Mz9Hp9udtcunQJALBo0SK8//778PX1xaeffophw4bh9OnT6NChQ42P21yWzBMAIiIi0K9fP7zwwgs1PcRqY+lc73ft2jW88847mDJlSk0M0SLXrl1DSUlJmV9v4ubmhnPnzpW7jV6vL7e+ssehNlgyzwfNnTsXnp6eZX6oPkksmefBgwfx8ccfIy0t7TGMsPpYMtdLly5h3759GDduHHbv3o0LFy7gz3/+M4qKirBw4cLHMWyzWTLPsWPH4tq1a+jfvz+EECguLsa0adPw9ttvP44hPzYV/SwyGo24e/cuHBwczOqv3p/JmTdvHqysrB66VPYH5oNMJhMAYOrUqZg4cSKeeuoprFixAp06dcInn3xSndN4pJqc59dff419+/Zh5cqV1TtoC9XkXO9nNBoRGBgIb29vLFq0qOoDp8dq6dKl2Lp1K3bs2AF7e/vaHk61uXXrFsaPH49//etfaNasWW0Pp8aZTCa4urpi48aN8PPzQ3BwMObPn4/169fX9tCqVXJyMv72t79h7dq1OH78OL766ivEx8fjnXfeqe2hPdHq/ZmcN998ExMmTHhoTdu2beHu7o6cnBxZe3FxMW7cuFHh1zMeHh4AAG9vb1l7ly5dkJmZafmgLVCT89y3bx8uXrwIJycnWfuYMWMwYMAAJCcnV2Hk5qvJuZa6desWRowYgcaNG2PHjh2ws7Or6rCrTbNmzWBjY4Ps7GxZe3Z2doXzcnd3N6v+SWDJPEu9//77WLp0Kb777jt07969JodZZebO8+LFi/jtt9/w3HPPSW2l/+CytbVFeno62rVrV7ODtpAl76mHhwfs7OxgY2MjtXXp0gV6vR6FhYVQqVQ1OmZLWDLPv/71rxg/fjwmTZoEAPDx8UF+fj6mTJmC+fPnw9paGecsKvpZpNFozD6LAzDkwMXFBS4uLo+s02q1yMvLQ2pqKvz8/AD88eFuMpng7+9f7jatW7eGp6cn0tPTZe2//vorRo4cWfXBm6Em5zlv3jzpf7xSPj4+WLFihewH7eNSk3MF/jiDo9PpoFar8fXXXz9xZwFUKhX8/PyQlJQk3TZsMpmQlJSEGTNmlLuNVqtFUlISZs2aJbUlJiZCq9U+hhFbxpJ5AsCyZcvw3nvvYe/evbLrsZ5U5s6zc+fOOHXqlKxtwYIFuHXrFlatWgUvL6/HMWyLWPKePv3009iyZQtMJpP0Qf/rr7/Cw8PjiQw4gGXzvHPnTpkgUxrshIJ+z7ZWqy1z+3+VfhZZdLlyPTVixAjx1FNPiSNHjoiDBw+KDh06yG43vnLliujUqZM4cuSI1LZixQqh0WjE9u3bxfnz58WCBQuEvb29uHDhQm1MoVIsmeeDUAfurhLC/LkaDAbh7+8vfHx8xIULF8TVq1elpbi4uLamUcbWrVuFWq0WsbGx4uzZs2LKlCnCyclJ6PV6IYQQ48ePF/PmzZPqf/zxR2Frayvef/998csvv4iFCxfWmVvIzZnn0qVLhUqlEl988YXsvbt161ZtTaFSzJ3ng+rS3VXmzjUzM1M0btxYzJgxQ6Snp4tdu3YJV1dX8e6779bWFCrF3HkuXLhQNG7cWHz++efi0qVL4ttvvxXt2rUTL7/8cm1NoVJu3bolTpw4IU6cOCEAiH/+85/ixIkT4vfffxdCCDFv3jwxfvx4qb70FvLZs2eLX375RaxZs4a3kD8u169fF6+88opo1KiR0Gg0YuLEibIfjhkZGQKA+P7772XbxcTEiBYtWogGDRoIrVYrfvjhh8c8cvNYOs/71ZWQY+5cv//+ewGg3CUjI6N2JlGBDz/8ULRs2VKoVCrRp08fcfjwYWndoEGDRGhoqKw+Li5OdOzYUahUKtG1a1cRHx//mEdsGXPm2apVq3Lfu4ULFz7+gZvJ3PfzfnUp5Ahh/lwPHTok/P39hVqtFm3bthXvvffeE/WPjoqYM8+ioiKxaNEi0a5dO2Fvby+8vLzEn//8Z3Hz5s3HP3AzVPQzs3RuoaGhYtCgQWW28fX1FSqVSrRt21Zs2rTJ4v1bCaGg81xERERE/58yrlQiIiIiegBDDhERESkSQw4REREpEkMOERERKRJDDhERESkSQw4REREpEkMOERERKRJDDhERESkSQw4REREpEkMOERERKRJDDhERESnS/wN7fqOwKBmbiQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN4dJREFUeJzt3Xl4VOX9//9XtpmwTQISEiJhVyCIoCAhyCKQEjDaIlChWgwU3BqoEBVBKZu28EMrqIBIlaWtlqUWawFBDAIiETBCZZFFiYLiJCAmQZYEkvv7h7/MhyEBMglJ4Ob5uK65Luc+73PO+z6Dk1fOnDPxM8YYAQAAWMa/shsAAAAoD4QcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAZbZu3Tr5+flp3bp1l3W7fn5+mjhx4mXdpq8WLFggPz8/ff311+W6zTvuuEN33HGHz9vy5diXdh++mDhxovz8/Mp1H0BJEXKA82zatEkTJ05UVlZWZbdyTVi5cmWlBxlUvjVr1qhTp06qWrWqatasqf79+1/WYIlrEyEHOM+mTZs0adIkQk4FWblypSZNmlTsslOnTmncuHEV3JG3QYMG6dSpU2rQoEG57uf999/X+++/7/N6Xbp00alTp9SlS5dy6KpiLF++XL169VJubq6mTp2qxx9/XOvXr1enTp105MiRym4PV7HAym4AQOU5efKkqlatWmT87NmzKigokMPhqISu/k9wcHCl7l+SAgICFBAQUO77Ke2x9vf3vyKOU1k89dRTaty4sT7++GPPcbj77rt16623aurUqfrLX/5SyR3iasWZHOAcEydO1JNPPilJatSokfz8/DzXTpw9e1bPPvusmjRpIqfTqYYNG+rpp59Wbm6u1zYaNmyou+66S++//77atGmj4OBgRUdH69///nepevrHP/6h9u3be07jd+nSpchv/LNnz1bLli3ldDoVGRmppKSkImei7rjjDt10001KS0tTly5dVLVqVT399NP6+uuv5efnpxdeeEEzZszwzG/37t2SpD179qh///6qVauWgoOD1a5dO7377ruX7Pujjz7Sr3/9a9WvX19Op1NRUVEaNWqUTp065akZPHiwZs2aJUmeY33u9RzFXZOzbds29e7dWy6XS9WrV1ePHj30ySefeNUUXvPy8ccfKzk5WWFhYapWrZruuecen88MFHf9TOFrvHHjRrVv317BwcFq3Lix/va3vxVZf9euXerevbuqVKmievXq6bnnnlNBQUGRunOvl8nIyFBgYGCxZ7j27t0rPz8/zZw5U9KFr8mZO3eumjRpoipVqqh9+/b66KOPSjS3C22zJK9naRw7dky7d+/WPffc4xX0WrdurRYtWmjRokVl2j6ubZzJAc7Rt29f7du3T//85z81ffp01a5dW5IUFhamYcOGaeHCherfv78ef/xxbd68WVOmTNEXX3yhZcuWeW1n//79GjBggB555BElJiZq/vz5+vWvf61Vq1bpF7/4RYn7mTRpkiZOnKiOHTtq8uTJcjgc2rx5s9auXauePXtK+jmYTZo0SXFxcXr00Ue1d+9evfrqq9q6das+/vhjBQUFebb3ww8/qHfv3ho4cKB++9vfKjw83LNs/vz5On36tB566CE5nU7VqlVLu3bt0u23367rr79eY8aMUbVq1bRkyRL16dNHb7/9tu65554L9r506VKdPHlSjz76qK677jpt2bJFr7zyir799lstXbpUkvTwww/r8OHDWrNmjf7+979f8njs2rVLnTt3lsvl0ujRoxUUFKTXXntNd9xxh9avX6+YmBiv+hEjRqhmzZqaMGGCvv76a82YMUPDhw/X4sWLS/waXMiXX36p/v37a+jQoUpMTNS8efM0ePBgtW3bVi1btpQkud1udevWTWfPnvUcv7lz56pKlSoX3XZ4eLi6du2qJUuWaMKECV7LFi9erICAAP3617++4PpvvPGGHn74YXXs2FEjR47UgQMH9Mtf/lK1atVSVFRUqeZbktezNAp/SSjumFStWlW7du2S2+1WREREqfeBa5gB4OX55583kkx6erpnbPv27UaSGTZsmFftE088YSSZtWvXesYaNGhgJJm3337bM5adnW3q1q1rbrnllhL3sX//fuPv72/uuecek5+f77WsoKDAGGNMZmamcTgcpmfPnl41M2fONJLMvHnzPGNdu3Y1ksycOXO8tpWenm4kGZfLZTIzM72W9ejRw7Rq1cqcPn3aa98dO3Y0N9xwg2fsww8/NJLMhx9+6Bk7efJkkTlNmTLF+Pn5mW+++cYzlpSUZC70ViTJTJgwwfO8T58+xuFwmK+++sozdvjwYVOjRg3TpUsXz9j8+fONJBMXF+c5VsYYM2rUKBMQEGCysrKK3V9xCrd17r+Hwtd4w4YNnrHMzEzjdDrN448/7hkbOXKkkWQ2b97sVRcSElJkm127djVdu3b1PH/ttdeMJLNjxw6vfqKjo0337t09z88/9nl5eaZOnTqmTZs2Jjc311M3d+5cI8lrH8XNrbhtGlPy13PChAkXfD2Lk5+fb0JDQ02PHj28xo8ePWqqVatmJJlPP/20xNsDzsXHVUAJrFy5UpKUnJzsNf74449LklasWOE1HhkZ6XWWw+Vy6YEHHtC2bdvkdrtLtM933nlHBQUFGj9+vPz9vf9XLfxI54MPPlBeXp5GjhzpVfPggw/K5XIV6cvpdGrIkCHF7q9fv34KCwvzPD927JjWrl2re++9V8ePH9fRo0d19OhR/fDDD4qPj9f+/fv13XffXbD/c38zP3HihI4ePaqOHTvKGKNt27aV6BicKz8/X++//7769Omjxo0be8br1q2r++67Txs3blROTo7XOg899JDXx1+dO3dWfn6+vvnmG5/3f77o6Gh17tzZ8zwsLEzNmjXTgQMHPGMrV65Uhw4d1L59e6+6+++//5Lb79u3rwIDA73OOu3cuVO7d+/WgAEDLrjep59+qszMTD3yyCNeH/8MHjxYISEhJZ7f+S7361nI399fDz/8sFJSUjR27Fjt379faWlpuvfee5WXlydJZf5IDNcuQg5QAt988438/f3VtGlTr/GIiAiFhoYW+aHZtGnTIt8VcuONN0pSiW+L/eqrr+Tv76/o6OiL9iVJzZo18xp3OBxq3Lhxkb6uv/76C17g2qhRI6/nX375pYwx+uMf/6iwsDCvR+FHKJmZmRfs7eDBgxo8eLBq1aql6tWrKywsTF27dpUkZWdnX3C9Czly5IhOnjxZZK6S1KJFCxUUFOjQoUNe4/Xr1/d6XrNmTUnSjz/+6PP+z3f+tgu3f+62v/nmG91www1F6oqbw/lq166tHj16aMmSJZ6xxYsXKzAwUH379r3geoWv+fn7DQoK8gqHvrrcr+e5Jk+erKFDh2ratGm68cYb1a5dOwUGBmro0KGSpOrVq5dp+7h2cU0O4IOr/UvOLnYtyPnLCi+OfeKJJxQfH1/sOueHvkL5+fn6xS9+oWPHjumpp55S8+bNVa1aNX333XcaPHhwsRfelocL3RVljLmit11o4MCBGjJkiLZv3642bdpoyZIl6tGjh+dasbK60L/n/Pz8Is/L8/V0OBx6/fXX9ac//Un79u1TeHi4brzxRt13333F/nIBlBQhBzhPcW/8DRo0UEFBgfbv368WLVp4xjMyMpSVlVXkO1QKz4Kcu619+/ZJ+vnOnJJo0qSJCgoKtHv3brVp06bYmsL97t271+u39Ly8PKWnpysuLq5E+ypO4faCgoJ83s6OHTu0b98+LVy4UA888IBnfM2aNUVqSxocw8LCVLVqVe3du7fIsj179sjf37/UF9WWlwYNGmj//v1FxoubQ3H69Omjhx9+2POR1b59+zR27NhL7lP6+eL37t27e8bPnDmj9PR0tW7d2jNWeGbr/Dvxzj8D6MvrWRbh4eGei+Hz8/O1bt06xcTEcCYHpcbHVcB5qlWrJsn7jf/OO++UJM2YMcOr9sUXX5QkJSQkeI0fPnzY646rnJwc/e1vf1ObNm1KfJdInz595O/vr8mTJxf5TbnwbEFcXJwcDodefvllrzMIb7zxhrKzs4v05Ys6derojjvu0Guvvabvv/++yPKL3YpdeJbj3J6MMXrppZeK1BZ3vC+0zZ49e+o///mP10d+GRkZeuutt9SpUye5XK6LbqOi3Xnnnfrkk0+0ZcsWz9iRI0f05ptvlmj90NBQxcfHa8mSJVq0aJEcDof69Olz0XXatWunsLAwzZkzx3NNi/Tz7eLnH+MmTZpIkjZs2OAZy8/P19y5c73qfHk9L5cXXnhB33//vee6N6A0OJMDnKdt27aSpGeeeUYDBw5UUFCQ7r77biUmJmru3LnKyspS165dtWXLFi1cuFB9+vRRt27dvLZx4403aujQodq6davCw8M1b948ZWRkaP78+SXuo2nTpnrmmWf07LPPqnPnzurbt6+cTqe2bt2qyMhITZkyRWFhYRo7dqwmTZqkXr166Ze//KX27t2r2bNn67bbbtNvf/vbMh2LWbNmqVOnTmrVqpUefPBBNW7cWBkZGUpNTdW3336r//3vf8Wu17x5czVp0kRPPPGEvvvuO7lcLr399tvFXgtTeLz/8Ic/KD4+XgEBARo4cGCx233uuec8X///+9//XoGBgXrttdeUm5uradOmlWmu5WH06NH6+9//rl69eumxxx7z3ELeoEEDff755yXaxoABA/Tb3/5Ws2fPVnx8vEJDQy9aHxQUpOeee04PP/ywunfvrgEDBig9PV3z588vck1Oy5Yt1aFDB40dO1bHjh1TrVq1tGjRIp09e9arzpfXszT+8Y9/6O2331aXLl1UvXp1ffDBB1qyZImGDRumfv36XZZ94BpVOTd1AVe2Z5991lx//fXG39/fc4vtmTNnzKRJk0yjRo1MUFCQiYqKMmPHjvW6vdqYn28vTkhIMKtXrzY333yzcTqdpnnz5mbp0qWl6mXevHnmlltuMU6n09SsWdN07drVrFmzxqtm5syZpnnz5iYoKMiEh4ebRx991Pz4449eNV27djUtW7Yssv3CW8iff/75Yvf/1VdfmQceeMBERESYoKAgc/3115u77rrL/Otf//LUFHfL8e7du01cXJypXr26qV27tnnwwQfN//73PyPJzJ8/31N39uxZM2LECBMWFmb8/Py8bj/WebeQG2PMZ599ZuLj40316tVN1apVTbdu3cymTZu8agpvjd66davXeHF9XsqFbiFPSEgoUnv+beDGGPP555+brl27muDgYHP99debZ5991rzxxhuXvIW8UE5OjqlSpYqRZP7xj38UWX6hOc2ePds0atTIOJ1O065dO7Nhw4Zi9/HVV1+ZuLg443Q6TXh4uHn66afNmjVrSv16+noLuTHGbN682XTp0sXUrFnTBAcHm9atW5s5c+Z43f4PlIafMZfxKjkAatiwoW666SYtX768slsBgGsa1+QAAAArcU0OUAku9YWAVapUKdMXt+HSfvrpJ/30008XrQkLC6uQP85pq+zs7Et+kR9/rgHliZADVIK6detedHliYqIWLFhQMc1co1544YVi/wDmudLT00t8yz+Keuyxx7Rw4cKL1nDFBMoT1+QAleCDDz646PLIyMiLftMxyu7AgQNef4KhOJ06dVJwcHAFdWSf3bt36/DhwxetKct3OQGXQsgBAABW4sJjAABgpWv6mpyCggIdPnxYNWrUuOr/JhEAANcKY4yOHz+uyMhI+ftf+HzNNR1yDh8+fMX9rRsAAFAyhw4dUr169S64/JoOOTVq1JD080G60v7mDQAAKF5OTo6ioqI8P8cv5JoOOYUfUblcLkIOAABXmUtdasKFxwAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWCqzsBgBUrjOrNhYZC+rVqRI6AYDLizM5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWKlMIWfq1Kny8/PTyJEjPWOnT59WUlKSrrvuOlWvXl39+vVTRkaG13oHDx5UQkKCqlatqjp16ujJJ5/U2bNnvWrWrVunW2+9VU6nU02bNtWCBQuK7H/WrFlq2LChgoODFRMToy1btpRlOgAAwCKlDjlbt27Va6+9pptvvtlrfNSoUfrvf/+rpUuXav369Tp8+LD69u3rWZ6fn6+EhATl5eVp06ZNWrhwoRYsWKDx48d7atLT05WQkKBu3bpp+/btGjlypIYNG6bVq1d7ahYvXqzk5GRNmDBBn332mVq3bq34+HhlZmaWdkoAAMAmphSOHz9ubrjhBrNmzRrTtWtX89hjjxljjMnKyjJBQUFm6dKlntovvvjCSDKpqanGGGNWrlxp/P39jdvt9tS8+uqrxuVymdzcXGOMMaNHjzYtW7b02ueAAQNMfHy853n79u1NUlKS53l+fr6JjIw0U6ZMKfE8srOzjSSTnZ1d8skDlsl776MiDwC4kpX053epzuQkJSUpISFBcXFxXuNpaWk6c+aM13jz5s1Vv359paamSpJSU1PVqlUrhYeHe2ri4+OVk5OjXbt2eWrO33Z8fLxnG3l5eUpLS/Oq8ff3V1xcnKemOLm5ucrJyfF6AAAAOwX6usKiRYv02WefaevWrUWWud1uORwOhYaGeo2Hh4fL7XZ7as4NOIXLC5ddrCYnJ0enTp3Sjz/+qPz8/GJr9uzZc8Hep0yZokmTJpVsogAA4Krm05mcQ4cO6bHHHtObb76p4ODg8uqp3IwdO1bZ2dmex6FDhyq7JQAAUE58CjlpaWnKzMzUrbfeqsDAQAUGBmr9+vV6+eWXFRgYqPDwcOXl5SkrK8trvYyMDEVEREiSIiIiitxtVfj8UjUul0tVqlRR7dq1FRAQUGxN4TaK43Q65XK5vB4AAMBOPoWcHj16aMeOHdq+fbvn0a5dO91///2e/w4KClJKSopnnb179+rgwYOKjY2VJMXGxmrHjh1ed0GtWbNGLpdL0dHRnppzt1FYU7gNh8Ohtm3betUUFBQoJSXFUwMAAK5tPl2TU6NGDd10001eY9WqVdN1113nGR86dKiSk5NVq1YtuVwujRgxQrGxserQoYMkqWfPnoqOjtagQYM0bdo0ud1ujRs3TklJSXI6nZKkRx55RDNnztTo0aP1u9/9TmvXrtWSJUu0YsUKz36Tk5OVmJiodu3aqX379poxY4ZOnDihIUOGlOmAAAAAO/h84fGlTJ8+Xf7+/urXr59yc3MVHx+v2bNne5YHBARo+fLlevTRRxUbG6tq1aopMTFRkydP9tQ0atRIK1as0KhRo/TSSy+pXr16ev311xUfH++pGTBggI4cOaLx48fL7XarTZs2WrVqVZGLkQEAwLXJzxhjKruJypKTk6OQkBBlZ2dzfQ6uWWdWbSwyFtSrUyV0AgAlU9Kf3/ztKgAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoGV3QCAyvV11ntezxuG9q6kTgDg8uJMDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVfAo5r776qm6++Wa5XC65XC7Fxsbqvffe8yw/ffq0kpKSdN1116l69erq16+fMjIyvLZx8OBBJSQkqGrVqqpTp46efPJJnT171qtm3bp1uvXWW+V0OtW0aVMtWLCgSC+zZs1Sw4YNFRwcrJiYGG3ZssWXqQAAAMv5FHLq1aunqVOnKi0tTZ9++qm6d++uX/3qV9q1a5ckadSoUfrvf/+rpUuXav369Tp8+LD69u3rWT8/P18JCQnKy8vTpk2btHDhQi1YsEDjx4/31KSnpyshIUHdunXT9u3bNXLkSA0bNkyrV6/21CxevFjJycmaMGGCPvvsM7Vu3Vrx8fHKzMws6/EAAACW8DPGmLJsoFatWnr++efVv39/hYWF6a233lL//v0lSXv27FGLFi2UmpqqDh066L333tNdd92lw4cPKzw8XJI0Z84cPfXUUzpy5IgcDoeeeuoprVixQjt37vTsY+DAgcrKytKqVaskSTExMbrttts0c+ZMSVJBQYGioqI0YsQIjRkzpsS95+TkKCQkRNnZ2XK5XGU5DMBVa/+iZ7yeNwztraBenSqpGwC4tJL+/C71NTn5+flatGiRTpw4odjYWKWlpenMmTOKi4vz1DRv3lz169dXamqqJCk1NVWtWrXyBBxJio+PV05OjudsUGpqqtc2CmsKt5GXl6e0tDSvGn9/f8XFxXlqLiQ3N1c5OTleDwAAYCefQ86OHTtUvXp1OZ1OPfLII1q2bJmio6PldrvlcDgUGhrqVR8eHi632y1JcrvdXgGncHnhsovV5OTk6NSpUzp69Kjy8/OLrSncxoVMmTJFISEhnkdUVJSv0wcAAFcJn0NOs2bNtH37dm3evFmPPvqoEhMTtXv37vLo7bIbO3assrOzPY9Dhw5VdksAAKCcBPq6gsPhUNOmTSVJbdu21datW/XSSy9pwIABysvLU1ZWltfZnIyMDEVEREiSIiIiitwFVXj31bk159+RlZGRIZfLpSpVqiggIEABAQHF1hRu40KcTqecTqevUwYAAFehMn9PTkFBgXJzc9W2bVsFBQUpJSXFs2zv3r06ePCgYmNjJUmxsbHasWOH111Qa9askcvlUnR0tKfm3G0U1hRuw+FwqG3btl41BQUFSklJ8dQAAAD4dCZn7Nix6t27t+rXr6/jx4/rrbfe0rp167R69WqFhIRo6NChSk5OVq1ateRyuTRixAjFxsaqQ4cOkqSePXsqOjpagwYN0rRp0+R2uzVu3DglJSV5zrA88sgjmjlzpkaPHq3f/e53Wrt2rZYsWaIVK1Z4+khOTlZiYqLatWun9u3ba8aMGTpx4oSGDBlyGQ8NAAC4mvkUcjIzM/XAAw/o+++/V0hIiG6++WatXr1av/jFLyRJ06dPl7+/v/r166fc3FzFx8dr9uzZnvUDAgK0fPlyPfroo4qNjVW1atWUmJioyZMne2oaNWqkFStWaNSoUXrppZdUr149vf7664qPj/fUDBgwQEeOHNH48ePldrvVpk0brVq1qsjFyAAA4NpV5u/JuZrxPTkA35MD4OpT7t+TAwAAcCUj5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFjJp5AzZcoU3XbbbapRo4bq1KmjPn36aO/evV41p0+fVlJSkq677jpVr15d/fr1U0ZGhlfNwYMHlZCQoKpVq6pOnTp68skndfbsWa+adevW6dZbb5XT6VTTpk21YMGCIv3MmjVLDRs2VHBwsGJiYrRlyxZfpgMAACzmU8hZv369kpKS9Mknn2jNmjU6c+aMevbsqRMnTnhqRo0apf/+979aunSp1q9fr8OHD6tv376e5fn5+UpISFBeXp42bdqkhQsXasGCBRo/frynJj09XQkJCerWrZu2b9+ukSNHatiwYVq9erWnZvHixUpOTtaECRP02WefqXXr1oqPj1dmZmZZjgcAALCEnzHGlHblI0eOqE6dOlq/fr26dOmi7OxshYWF6a233lL//v0lSXv27FGLFi2UmpqqDh066L333tNdd92lw4cPKzw8XJI0Z84cPfXUUzpy5IgcDoeeeuoprVixQjt37vTsa+DAgcrKytKqVaskSTExMbrttts0c+ZMSVJBQYGioqI0YsQIjRkzpth+c3NzlZub63mek5OjqKgoZWdny+VylfYwAFe1/Yue8XreMLS3gnp1qqRuAODScnJyFBIScsmf32W6Jic7O1uSVKtWLUlSWlqazpw5o7i4OE9N8+bNVb9+faWmpkqSUlNT1apVK0/AkaT4+Hjl5ORo165dnppzt1FYU7iNvLw8paWledX4+/srLi7OU1OcKVOmKCQkxPOIiooqy/QBAMAVrNQhp6CgQCNHjtTtt9+um266SZLkdrvlcDgUGhrqVRseHi632+2pOTfgFC4vXHaxmpycHJ06dUpHjx5Vfn5+sTWF2yjO2LFjlZ2d7XkcOnTI94kDAICrQmBpV0xKStLOnTu1cePGy9lPuXI6nXI6nZXdBgAAqAClOpMzfPhwLV++XB9++KHq1avnGY+IiFBeXp6ysrK86jMyMhQREeGpOf9uq8Lnl6pxuVyqUqWKateurYCAgGJrCrcBAACubT6FHGOMhg8frmXLlmnt2rVq1KiR1/K2bdsqKChIKSkpnrG9e/fq4MGDio2NlSTFxsZqx44dXndBrVmzRi6XS9HR0Z6ac7dRWFO4DYfDobZt23rVFBQUKCUlxVMDAACubT59XJWUlKS33npL//nPf1SjRg3P9S8hISGqUqWKQkJCNHToUCUnJ6tWrVpyuVwaMWKEYmNj1aFDB0lSz549FR0drUGDBmnatGlyu90aN26ckpKSPB8lPfLII5o5c6ZGjx6t3/3ud1q7dq2WLFmiFStWeHpJTk5WYmKi2rVrp/bt22vGjBk6ceKEhgwZcrmODQAAuIr5FHJeffVVSdIdd9zhNT5//nwNHjxYkjR9+nT5+/urX79+ys3NVXx8vGbPnu2pDQgI0PLly/Xoo48qNjZW1apVU2JioiZPnuypadSokVasWKFRo0bppZdeUr169fT6668rPj7eUzNgwAAdOXJE48ePl9vtVps2bbRq1aoiFyMDAIBrU5m+J+dqV9L77AGb8T05AK42FfI9OQAAAFcqQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVfA45GzZs0N13363IyEj5+fnpnXfe8VpujNH48eNVt25dValSRXFxcdq/f79XzbFjx3T//ffL5XIpNDRUQ4cO1U8//eRV8/nnn6tz584KDg5WVFSUpk2bVqSXpUuXqnnz5goODlarVq20cuVKX6cDAAAs5XPIOXHihFq3bq1Zs2YVu3zatGl6+eWXNWfOHG3evFnVqlVTfHy8Tp8+7am5//77tWvXLq1Zs0bLly/Xhg0b9NBDD3mW5+TkqGfPnmrQoIHS0tL0/PPPa+LEiZo7d66nZtOmTfrNb36joUOHatu2berTp4/69OmjnTt3+jolAABgIT9jjCn1yn5+WrZsmfr06SPp57M4kZGRevzxx/XEE09IkrKzsxUeHq4FCxZo4MCB+uKLLxQdHa2tW7eqXbt2kqRVq1bpzjvv1LfffqvIyEi9+uqreuaZZ+R2u+VwOCRJY8aM0TvvvKM9e/ZIkgYMGKATJ05o+fLlnn46dOigNm3aaM6cOcX2m5ubq9zcXM/znJwcRUVFKTs7Wy6Xq7SHAbiq7V/0jNfzhqG9FdSrUyV1AwCXlpOTo5CQkEv+/L6s1+Skp6fL7XYrLi7OMxYSEqKYmBilpqZKklJTUxUaGuoJOJIUFxcnf39/bd682VPTpUsXT8CRpPj4eO3du1c//vijp+bc/RTWFO6nOFOmTFFISIjnERUVVfZJAwCAK9JlDTlut1uSFB4e7jUeHh7uWeZ2u1WnTh2v5YGBgapVq5ZXTXHbOHcfF6opXF6csWPHKjs72/M4dOiQr1MEAABXicDKbqAiOZ1OOZ3Oym4DAABUgMt6JiciIkKSlJGR4TWekZHhWRYREaHMzEyv5WfPntWxY8e8aorbxrn7uFBN4XIAAHBtu6whp1GjRoqIiFBKSopnLCcnR5s3b1ZsbKwkKTY2VllZWUpLS/PUrF27VgUFBYqJifHUbNiwQWfOnPHUrFmzRs2aNVPNmjU9Nefup7CmcD8AAODa5nPI+emnn7R9+3Zt375d0s8XG2/fvl0HDx6Un5+fRo4cqeeee07vvvuuduzYoQceeECRkZGeO7BatGihXr166cEHH9SWLVv08ccfa/jw4Ro4cKAiIyMlSffdd58cDoeGDh2qXbt2afHixXrppZeUnJzs6eOxxx7TqlWr9Je//EV79uzRxIkT9emnn2r48OFlPyoAAOCq5/M1OZ9++qm6devmeV4YPBITE7VgwQKNHj1aJ06c0EMPPaSsrCx16tRJq1atUnBwsGedN998U8OHD1ePHj3k7++vfv366eWXX/YsDwkJ0fvvv6+kpCS1bdtWtWvX1vjx472+S6djx4566623NG7cOD399NO64YYb9M477+imm24q1YEAAAB2KdP35FztSnqfPWAzvicHwNWmUr4nBwAA4EpByAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKgZXdAADJFBSo4MC3Us5Pkqu6/BvXk59/5fwOUmAKtPPop/rx9FHVDK6tFtfdogC/gGJr802+vvhhW4lqAaCiXfUhZ9asWXr++efldrvVunVrvfLKK2rfvn1ltwWUWP7n+3RmWYqUffz/BkNqKOieHgq4+cYK7WVHgFv/35mJ+mFTlmfsuuA6GnrTk4qN7OFVm3o4RW/sfF4/nM68ZC0AVIar+uOqxYsXKzk5WRMmTNBnn32m1q1bKz4+XpmZmZdeGbgC5H++T2cWvOMdcCQp+7jOLHhH+Z/vq7BedgS49XfHNv2gLK/xH04f0bRPRyv1cIpnLPVwiqZ9Otor4FyoFgAqy1Udcl588UU9+OCDGjJkiKKjozVnzhxVrVpV8+bNq+zWcI04s2qj18OXGlNQ8PMZnItt/50UmYKCy9pzcQpk9G7QFxdYaiRJ83a+oHyTr3yTrzd2Pu8Zv1gtAFSmq/bjqry8PKWlpWns2LGeMX9/f8XFxSk1NbXYdXJzc5Wbm+t5np2dLUnKyckp32ZxxTmzpvh/I2X29uoS15gfc1SQeeTitRmn5T/vbfnVdF2G5or308lcHfA/pqM6cdG6708e1tavP5IkuY99X6La6OtuvWx9AkChwp/bxhT3y9b/uWpDztGjR5Wfn6/w8HCv8fDwcO3Zs6fYdaZMmaJJkyYVGY+KiiqXHgHbrFC3cqkFgNI4fvy4QkJCLrj8qg05pTF27FglJyd7nhcUFOjYsWO67rrr5OfnV+bt5+TkKCoqSocOHZLLVX6/eVc25mmXa2Ge18IcJeZpG+Z5YcYYHT9+XJGRkRetu2pDTu3atRUQEKCMjAyv8YyMDEVERBS7jtPplNPp9BoLDQ297L25XC6r/0EWYp52uRbmeS3MUWKetmGexbvYGZxCV+2Fxw6HQ23btlVKyv9duFlQUKCUlBTFxsZWYmcAAOBKcNWeyZGk5ORkJSYmql27dmrfvr1mzJihEydOaMiQIZXdGgAAqGRXdcgZMGCAjhw5ovHjx8vtdqtNmzZatWpVkYuRK4rT6dSECROKfCRmG+Zpl2thntfCHCXmaRvmWXZ+5lL3XwEAAFyFrtprcgAAAC6GkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOWVw7Ngx3X///XK5XAoNDdXQoUP1008/XXK91NRUde/eXdWqVZPL5VKXLl106tSpCui4dEo7T+nnr97u3bu3/Pz89M4775Rvo2Xk6zyPHTumESNGqFmzZqpSpYrq16+vP/zhD54//HqlmDVrlho2bKjg4GDFxMRoy5YtF61funSpmjdvruDgYLVq1UorV66soE7Lxpd5/vWvf1Xnzp1Vs2ZN1axZU3FxcZc8LlcKX1/PQosWLZKfn5/69OlTvg1eJr7OMysrS0lJSapbt66cTqduvPHGq+Lfrq/znDFjhuc9JyoqSqNGjdLp06crqNvS2bBhg+6++25FRkaW+GfBunXrdOutt8rpdKpp06ZasGBB6XZuUGq9evUyrVu3Np988on56KOPTNOmTc1vfvObi66zadMm43K5zJQpU8zOnTvNnj17zOLFi83p06crqGvflWaehV588UXTu3dvI8ksW7asfBstI1/nuWPHDtO3b1/z7rvvmi+//NKkpKSYG264wfTr168Cu764RYsWGYfDYebNm2d27dplHnzwQRMaGmoyMjKKrf/4449NQECAmTZtmtm9e7cZN26cCQoKMjt27Kjgzn3j6zzvu+8+M2vWLLNt2zbzxRdfmMGDB5uQkBDz7bffVnDnvvF1noXS09PN9ddfbzp37mx+9atfVUyzZeDrPHNzc027du3MnXfeaTZu3GjS09PNunXrzPbt2yu4c9/4Os8333zTOJ1O8+abb5r09HSzevVqU7duXTNq1KgK7tw3K1euNM8884z597//XaKfBQcOHDBVq1Y1ycnJZvfu3eaVV14xAQEBZtWqVT7vm5BTSrt37zaSzNatWz1j7733nvHz8zPffffdBdeLiYkx48aNq4gWL4vSztMYY7Zt22auv/568/3331/xIacs8zzXkiVLjMPhMGfOnCmPNn3Wvn17k5SU5Hmen59vIiMjzZQpU4qtv/fee01CQoLXWExMjHn44YfLtc+y8nWe5zt79qypUaOGWbhwYXm1eFmUZp5nz541HTt2NK+//rpJTEy8KkKOr/N89dVXTePGjU1eXl5FtXhZ+DrPpKQk0717d6+x5ORkc/vtt5drn5dTSX4WjB492rRs2dJrbMCAASY+Pt7n/fFxVSmlpqYqNDRU7dq184zFxcXJ399fmzdvLnadzMxMbd68WXXq1FHHjh0VHh6url27auPGjRXVts9KM09JOnnypO677z7NmjXrgn8w9UpS2nmeLzs7Wy6XS4GBlf9l4nl5eUpLS1NcXJxnzN/fX3FxcUpNTS12ndTUVK96SYqPj79g/ZWgNPM838mTJ3XmzBnVqlWrvNoss9LOc/LkyapTp46GDh1aEW2WWWnm+e677yo2NlZJSUkKDw/XTTfdpD//+c/Kz8+vqLZ9Vpp5duzYUWlpaZ6PtA4cOKCVK1fqzjvvrJCeK8rlfB+q/Hfiq5Tb7VadOnW8xgIDA1WrVi253e5i1zlw4IAkaeLEiXrhhRfUpk0b/e1vf1OPHj20c+dO3XDDDeXet69KM09JGjVqlDp27Khf/epX5d3iZVHaeZ7r6NGjevbZZ/XQQw+VR4s+O3r0qPLz84v8mZPw8HDt2bOn2HXcbnex9SU9BpWhNPM831NPPaXIyMgib6xXktLMc+PGjXrjjTe0ffv2Cujw8ijNPA8cOKC1a9fq/vvv18qVK/Xll1/q97//vc6cOaMJEyZURNs+K80877vvPh09elSdOnWSMUZnz57VI488oqeffroiWq4wF3ofysnJ0alTp1SlSpUSb4szOecZM2aM/Pz8Lvoo6Rvn+QoKCiRJDz/8sIYMGaJbbrlF06dPV7NmzTRv3rzLOY1LKs95vvvuu1q7dq1mzJhxeZsuhfKc57lycnKUkJCg6OhoTZw4seyNo8JMnTpVixYt0rJlyxQcHFzZ7Vw2x48f16BBg/TXv/5VtWvXrux2ylVBQYHq1KmjuXPnqm3bthowYICeeeYZzZkzp7Jbu6zWrVunP//5z5o9e7Y+++wz/fvf/9aKFSv07LPPVnZrVyzO5Jzn8ccf1+DBgy9a07hxY0VERCgzM9Nr/OzZszp27NgFP56pW7euJCk6OtprvEWLFjp48GDpmy6F8pzn2rVr9dVXXyk0NNRrvF+/furcubPWrVtXhs59U57zLHT8+HH16tVLNWrU0LJlyxQUFFTWti+L2rVrKyAgQBkZGV7jGRkZF5xTRESET/VXgtLMs9ALL7ygqVOn6oMPPtDNN99cnm2Wma/z/Oqrr/T111/r7rvv9owV/qIVGBiovXv3qkmTJuXbdCmU5vWsW7eugoKCFBAQ4Blr0aKF3G638vLy5HA4yrXn0ijNPP/4xz9q0KBBGjZsmCSpVatWOnHihB566CE988wz8ve347zFhd6HXC6XT2dxJEJOEWFhYQoLC7tkXWxsrLKyspSWlqa2bdtK+vmHe0FBgWJiYopdp2HDhoqMjNTevXu9xvft26fevXuXvXkflOc8x4wZ4/mfsFCrVq00ffp0rzfcilCe85R+PoMTHx8vp9Opd99994o6E+BwONS2bVulpKR4bhsuKChQSkqKhg8fXuw6sbGxSklJ0ciRIz1ja9asUWxsbAV0XDqlmackTZs2TX/605+0evVqr2uxrlS+zrN58+basWOH19i4ceN0/PhxvfTSS4qKiqqItn1Wmtfz9ttv11tvvaWCggLPD/p9+/apbt26V2TAkUo3z5MnTxYJMoXBzlj0t7ZjY2OL3P5f6vchny9VhkevXr3MLbfcYjZv3mw2btxobrjhBq9bjr/99lvTrFkzs3nzZs/Y9OnTjcvlMkuXLjX79+8348aNM8HBwebLL7+sjCmUSGnmeT5d4XdXGeP7PLOzs01MTIxp1aqV+fLLL83333/veZw9e7aypuFl0aJFxul0mgULFpjdu3ebhx56yISGhhq3222MMWbQoEFmzJgxnvqPP/7YBAYGmhdeeMF88cUXZsKECVfNLeS+zHPq1KnG4XCYf/3rX16v2/HjxytrCiXi6zzPd7XcXeXrPA8ePGhq1Khhhg8fbvbu3WuWL19u6tSpY5577rnKmkKJ+DrPCRMmmBo1aph//vOf5sCBA+b99983TZo0Mffee29lTaFEjh8/brZt22a2bdtmJJkXX3zRbNu2zXzzzTfGGGPGjBljBg0a5KkvvIX8ySefNF988YWZNWsWt5BXhh9++MH85je/MdWrVzcul8sMGTLE600yPT3dSDIffvih13pTpkwx9erVM1WrVjWxsbHmo48+quDOfVPaeZ7ragg5vs7zww8/NJKKfaSnp1fOJIrxyiuvmPr16xuHw2Hat29vPvnkE8+yrl27msTERK/6JUuWmBtvvNE4HA7TsmVLs2LFigruuHR8mWeDBg2Kfd0mTJhQ8Y37yNfX81xXS8gxxvd5btq0ycTExBin02kaN25s/vSnP10xv2xcjC/zPHPmjJk4caJp0qSJCQ4ONlFRUeb3v/+9+fHHHyu+cR9c6L2ycG6JiYmma9euRdZp06aNcTgcpnHjxmb+/Pml2refMRad4wIAAPj/2XGVEgAAwHkIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpf8HixjMr2m0lPMAAAAASUVORK5CYII=", + "application/vnd.microsoft.datawrangler.viewer.v0+json": { + "columns": [ + { + "name": "index", + "rawType": "int64", + "type": "integer" + }, + { + "name": "ScanNr", + "rawType": "float64", + "type": "float" + }, + { + "name": "filename", + "rawType": "object", + "type": "string" + }, + { + "name": "Peptide", + "rawType": "object", + "type": "string" + }, + { + "name": "num_proteins", + "rawType": "float64", + "type": "float" + }, + { + "name": "Proteins", + "rawType": "object", + "type": "string" + }, + { + "name": "ExpMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "CalcMass", + "rawType": "float64", + "type": "float" + }, + { + "name": "Label", + "rawType": "float64", + "type": "float" + }, + { + "name": "charge", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_len", + "rawType": "float64", + "type": "float" + }, + { + "name": "missed_cleavages", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_ppm_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "rank_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_next_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_rt_model_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_peaks_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "longest_b_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "longest_y_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_intensity_pct_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt_prediction_error_abs_relative_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_ppm_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "hyperscore_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M+1_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M-1_max", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_ppm_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "rank_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_next_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_rt_model_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_peaks_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "longest_b_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "longest_y_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "matched_intensity_pct_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "fragment_intensity_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "poisson_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt_predictions_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt_prediction_error_abs_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "rt_prediction_error_abs_relative_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_ppm_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "hyperscore_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "delta_best_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M+1_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M-1_min", + "rawType": "float64", + "type": "float" + }, + { + "name": "spectrum_q_mean", + "rawType": "float64", + "type": "float" + }, + { + "name": "peptide_q_mean", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M_mean", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M+1_mean", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M-1_mean", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M_sum", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M+1_sum", + "rawType": "float64", + "type": "float" + }, + { + "name": "precursor_intensity_M-1_sum", + "rawType": "float64", + "type": "float" + }, + { + "name": "SpecId", + "rawType": "object", + "type": "string" + }, + { + "name": "distribution_correlation_matrix_psm_ids_0", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_psm_ids_25", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_psm_ids_50", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_psm_ids_75", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_psm_ids_100", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_frag_ids_0", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_frag_ids_25", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_frag_ids_50", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_frag_ids_75", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_matrix_frag_ids_100", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_0", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_25", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_50", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_75", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_100", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_0_idx", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_25_idx", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_50_idx", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_75_idx", + "rawType": "float64", + "type": "float" + }, + { + "name": "distribution_correlation_individual_100_idx", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_2", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_3", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_4", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_5", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_6", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_7", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_8", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_9", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_psm_ids_10", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_2", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_3", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_4", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_5", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_6", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_7", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_8", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_9", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_matrix_frag_ids_10", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_cos_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "mse_avg_pred_intens_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "mse_avg_pred_intens_total_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_1", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_2", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_3", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_4", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_5", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_6", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_7", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_8", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_9", + "rawType": "float64", + "type": "float" + }, + { + "name": "top_correlation_individual_10", + "rawType": "float64", + "type": "float" + } + ], + "ref": "54613b65-480a-4780-8aee-50be86b88ef8", + "rows": [ + [ + "6", + "23520.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "QRTM[Oxidation]EVLR", + "1.0", + "sp|P29018|CYDD_ECOLI|236|244", + "1038.9584", + "1047.5494", + "1.0", + "2.0", + "8.0", + "0.0", + "4.822646", + "4.0", + "1.0161484", + "0.999", + "5.0", + "2.0", + "1.0", + "2.1778286", + "0.33560398", + "0.7497177", + "0.12235445", + "7269.627", + "24.98777", + "297958.78125", + "0.0", + "305455.28125", + "4.822646", + "4.0", + "1.0161484", + "0.999", + "5.0", + "2.0", + "1.0", + "2.1778286", + "26240.213", + "-2.584405", + "0.33560398", + "0.7497177", + "52.039253", + "35.408226", + "16.631027", + "0.12235445", + "7269.627", + "24.98777", + "0.0", + "297958.78125", + "0.0", + "305455.28125", + "0.33560398", + "0.7497177", + "297958.78125", + "0.0", + "305455.28125", + "297958.78125", + "0.0", + "305455.28125", + "23520|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=81802", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "0.7554337984232143", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9667567493307392", + "2.2117435932159424", + "3.405139923095703", + "0.7554337984232143", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "11", + "285502.0", + "part_7449.805755615226_8514.063720703116.mzml", + "TLFTVSAGGQPAYSQDFAPLPADIR", + "1.0", + "sp|P77581|ASTC_ECOLI|141|166", + "2638.1716", + "2621.3123", + "1.0", + "4.0", + "25.0", + "0.0", + "3.9591477", + "1.0", + "24.73595", + "0.999", + "5.0", + "1.0", + "2.0", + "3.7164536", + "0.16158165", + "0.005581803", + "0.0051012686", + "6030.649", + "25.41591", + "0.0", + "0.0", + "0.0", + "0.618294", + "1.0", + "0.5666895", + "0.999", + "5.0", + "1.0", + "2.0", + "2.610265", + "27453.066", + "-2.8216617", + "0.14300151", + "0.005581803", + "125.51219", + "125.11013", + "0.40206146", + "0.0029579657", + "6030.649", + "24.053574", + "0.0", + "0.0", + "0.0", + "0.0", + "0.15261048", + "0.005581803", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "285502|part_7449.805755615226_8514.063720703116.mzml|controllerType=0 controllerNumber=1 scan=197574", + "0.9051679794349488", + "0.9255928712095144", + "0.9319788292206388", + "0.958737027928529", + "0.990631181584674", + "-0.8909122489275533", + "0.0", + "0.0", + "0.0", + "0.0", + "0.8999250557711711", + "0.8668623089312884", + "0.8734776924185351", + "0.8970645778201675", + "0.9149163367234412", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.990631181584674", + "0.990631181584674", + "0.9587370279285292", + "0.958737027928529", + "0.9377029221132764", + "0.9377029221132762", + "0.9262547363280016", + "0.9262547363280016", + "0.9255928712095144", + "0.925592871209514", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0455117357442563", + "3.0623550415039062", + "3.547491312026977", + "0.9149163367234412", + "0.8999250557711711", + "0.8911139915190762", + "0.855841393317994", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "13", + "11947.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "STRSIGLTEAGR", + "1.0", + "sp|P67662|AAER_ECOLI|51|63", + "1234.2903", + "1246.6628", + "1.0", + "3.0", + "12.0", + "0.0", + "2.8620002", + "2.0", + "0.27390906", + "0.999", + "7.0", + "2.0", + "3.0", + "6.7626624", + "0.09895363", + "0.24962433", + "0.065371804", + "9161.488", + "31.310156", + "0.0", + "0.0", + "95338.0390625", + "1.9001437", + "2.0", + "0.19569208", + "0.999", + "7.0", + "1.0", + "3.0", + "5.1133623", + "85714.64", + "-4.210421", + "0.05156608", + "0.24962433", + "37.02647", + "45.912132", + "8.691555", + "0.06394376", + "9161.488", + "29.20403", + "0.0", + "0.0", + "0.0", + "92017.5234375", + "0.07525985", + "0.24962433", + "0.0", + "0.0", + "93677.78125", + "0.0", + "0.0", + "187355.5625", + "11947|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=58148", + "0.3127687021535408", + "0.3127687021535409", + "0.3127687021535409", + "0.3127687021535409", + "0.3127687021535409", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4568282810239495", + "0.4383655944056002", + "0.419902907787251", + "0.4014402211689016", + "0.3829775345505524", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.3127687021535409", + "0.3127687021535408", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.564523335537644", + "4.070645332336426", + "5.263789176940918", + "0.4568282810239495", + "0.3829775345505524", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "14", + "204229.0", + "part_5321.289825439448_6385.547790527337.mzml", + "CVLIFM[Oxidation]AEGNPRIAK", + "1.0", + "sp|Q46911|YGCU_ECOLI|280|295", + "1679.2494", + "1676.8743", + "1.0", + "2.0", + "15.0", + "0.0", + "9.360578", + "2.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.4568202", + "0.22560073", + "0.7039341", + "0.0007736322", + "1415.396", + "24.888275", + "0.0", + "0.0", + "0.0", + "9.360578", + "2.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.4568202", + "53189.14", + "-2.4673588", + "0.22560073", + "0.7039341", + "91.48733", + "91.38217", + "0.105155945", + "0.0007736322", + "1415.396", + "24.888275", + "0.0", + "0.0", + "0.0", + "0.0", + "0.22560073", + "0.7039341", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "204229|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=143966", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "-0.1561832565459499", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.2838186685881903", + "9.581235885620115", + "15.731224060058594", + "-0.1561832565459499", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "15", + "251054.0", + "part_6385.547790527337_7449.805755615227.mzml", + "ADIQKLLTSLPAHHFQIVLEITER", + "1.0", + "sp|P76446|PDEN_ECOLI|367|391", + "2782.9941", + "2771.533", + "1.0", + "3.0", + "24.0", + "0.0", + "7.321646", + "4.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "3.4354742", + "0.22954912", + "0.6831453", + "0.067024454", + "4126.789", + "24.120636", + "0.0", + "0.0", + "0.0", + "7.321646", + "4.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "3.4354742", + "36961.43", + "-2.3926244", + "0.22954912", + "0.6831453", + "113.63396", + "122.744255", + "9.110298", + "0.067024454", + "4126.789", + "24.120636", + "0.0", + "0.0", + "0.0", + "0.0", + "0.22954912", + "0.6831453", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "251054|part_6385.547790527337_7449.805755615227.mzml|controllerType=0 controllerNumber=1 scan=178864", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "0.20728950638246", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.4094288383646628", + "15.66102409362793", + "28.41988754272461", + "0.20728950638246", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "16", + "93693.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "SAGGAFANINRPVSGPTHEK", + "1.0", + "sp|Q46845|YGHU_ECOLI|16|36", + "2014.645", + "2009.0078", + "1.0", + "3.0", + "20.0", + "0.0", + "4.664632", + "5.0", + "0.0", + "0.999", + "18.0", + "6.0", + "5.0", + "22.965616", + "0.31361607", + "0.03589086", + "0.061405614", + "3676.0364", + "55.81527", + "1947785.375", + "2648281.5", + "161824.3125", + "0.8943784", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "0.0", + "0.6617282", + "72343.336", + "-14.998201", + "0.0064655175", + "0.03589086", + "54.28342", + "62.62998", + "1.5108147", + "0.011115062", + "2303.883", + "18.438213", + "0.0", + "0.0", + "0.0", + "0.0", + "0.10576877", + "0.03589086", + "788413.8564453125", + "928057.2467447916", + "6742.6796875", + "18921932.5546875", + "22273373.921875", + "161824.3125", + "93693|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=85340", + "5.748650394038419e-06", + "0.0159293182134143", + "0.3469285736853298", + "0.7072246584894327", + "0.9970829697535114", + "-0.6835654746893005", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6271450796400465", + "0.3231787102394361", + "0.2319865353070588", + "0.5042616472289165", + "0.2755900644740843", + "11.0", + "8.0", + "9.0", + "11.0", + "6.0", + "0.9970829697535114", + "0.9970829697535112", + "0.9963006993937806", + "0.9963006993937804", + "0.995620372231419", + "0.9956203722314184", + "0.9954456626239964", + "0.9954456626239964", + "0.9954332626269023", + "0.995433262626902", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0503769205452887", + "7.935176849365234", + "8.037552833557129", + "0.6271450796400465", + "0.5734918169524175", + "0.5131931736243014", + "0.5002945266133941", + "0.4350314775054156", + "0.4338146823501339", + "0.3553755947216243", + "0.3531348284641697", + "0.2935487777058922", + "0.2909818257572479" + ], + [ + "17", + "157816.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LWSAQASSEINLGK", + "1.0", + "sp|P0AC86|PHSG_ECOLI|232|246", + "1511.173", + "1502.7731", + "1.0", + "2.0", + "14.0", + "0.0", + "6.33891", + "2.0", + "24.328756", + "0.999", + "5.0", + "1.0", + "3.0", + "1.2167597", + "0.15988843", + "0.5923994", + "0.06442774", + "4909.852", + "24.328756", + "0.0", + "0.0", + "0.0", + "6.33891", + "2.0", + "24.328756", + "0.999", + "5.0", + "1.0", + "3.0", + "1.2167597", + "50361.445", + "-2.4316764", + "0.15988843", + "0.5923994", + "74.924576", + "83.681915", + "8.7573395", + "0.06442774", + "4909.852", + "24.328756", + "0.0", + "0.0", + "0.0", + "0.0", + "0.15988843", + "0.5923994", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "157816|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=117866", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "-0.0311867352424763", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.006827678351725", + "5.298679351806641", + "9.366759300231934", + "-0.0311867352424763", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "18", + "48368.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "LASTWEGIR", + "1.0", + "sp|P0A867|TALA_ECOLI|131|140", + "1038.9584", + "1031.54", + "1.0", + "2.0", + "9.0", + "0.0", + "2.4121234", + "4.0", + "0.31020713", + "0.999", + "7.0", + "2.0", + "5.0", + "7.1508794", + "0.1574908", + "0.35076302", + "0.13178357", + "7380.7217", + "30.09131", + "750904.1875", + "380320.625", + "1267502.625", + "0.68476397", + "1.0", + "0.0", + "0.999", + "6.0", + "1.0", + "1.0", + "1.8144103", + "36189.33", + "-3.92095", + "0.014932929", + "0.0823586", + "54.660133", + "72.572815", + "11.799568", + "0.08680941", + "1541.2891", + "26.392544", + "0.0", + "0.0", + "0.0", + "0.0", + "0.07565303", + "0.18972036", + "288586.04375", + "199541.703125", + "404493.696875", + "1442930.21875", + "997708.515625", + "2022468.484375", + "48368|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=85933", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "0.0004504807954812", + "-1.0", + "1.0", + "0.0", + "0.0", + "0.0", + "0.0610552466484414", + "0.0706098204779472", + "0.0801643943074529", + "0.0897189681369587", + "0.0992735419664644", + "10.0", + "10.0", + "10.0", + "10.0", + "9.0", + "0.0004504807954812", + "0.0004504807954812", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.1068700382987017", + "3.8287253379821777", + "3.9618453979492183", + "0.0992735419664644", + "0.0610552466484414", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "20", + "7816.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "KEAKDHGEGGNLVGSALQGR", + "1.0", + "sp|P0A7E3|PYRE_ECOLI|99|119", + "2013.8877", + "2022.0243", + "1.0", + "4.0", + "20.0", + "0.0", + "3.3530765", + "3.0", + "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "15.399476", + "0.3410791", + "0.5613428", + "0.10750229", + "4379.1006", + "32.22772", + "0.0", + "190464.484375", + "6557002.0", + "1.540391", + "1.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "4.1314244", + "101108.67", + "-3.971963", + "0.11093484", + "0.4459703", + "36.110878", + "50.723125", + "5.240814", + "0.038556665", + "3390.5308", + "26.58992", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2457615", + "0.53826827", + "0.0", + "78696.0359375", + "2165642.9765625", + "0.0", + "786960.359375", + "21656429.765625", + "7816|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=56706", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "0.9778831608493486", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0532104900695284", + "0.0550105593831948", + "0.0568106286968612", + "0.0586106980105276", + "0.060410767324194", + "9.0", + "9.0", + "9.0", + "9.0", + "10.0", + "0.9778831608493486", + "0.9778831608493486", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.1366638502674765", + "3.63826060295105", + "4.2001824378967285", + "0.060410767324194", + "0.0532104900695284", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "23", + "177785.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TSIAWTRIFPK", + "1.0", + "sp|Q46829|BGLA_ECOLI|89|100", + "1318.3284", + "1318.7397", + "1.0", + "3.0", + "11.0", + "0.0", + "0.27163425", + "2.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "14.164303", + "0.24549083", + "0.7041309", + "0.053973682", + "311.9957", + "29.051332", + "0.0", + "0.0", + "208869.171875", + "0.27163425", + "2.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "14.164303", + "1266842.6", + "-2.574599", + "0.24549083", + "0.7041309", + "79.02608", + "86.36245", + "7.3363724", + "0.053973682", + "311.9957", + "29.051332", + "0.0", + "0.0", + "0.0", + "208869.171875", + "0.24549083", + "0.7041309", + "0.0", + "0.0", + "208869.171875", + "0.0", + "0.0", + "208869.171875", + "177785|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=124329", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "0.6584260087567085", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.8676853712632717", + "3.0883049964904785", + "5.445067882537842", + "0.6584260087567085", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "24", + "122624.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AEYVVILAGDHIYKQDYSR", + "1.0", + "sp|P0A6V1|GLGC_ECOLI|132|151", + "2230.7432", + "2239.1274", + "1.0", + "3.0", + "19.0", + "0.0", + "2.1238773", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "1.0803207", + "0.391743", + "0.82884425", + "0.08892223", + "3301.7825", + "25.323765", + "0.0", + "0.0", + "0.0", + "2.1238773", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "1.0803207", + "106216.164", + "-2.336702", + "0.391743", + "0.82884425", + "82.060356", + "94.14711", + "12.086754", + "0.08892223", + "3301.7825", + "25.323765", + "0.0", + "0.0", + "0.0", + "0.0", + "0.391743", + "0.82884425", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "122624|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=129111", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "0.4319024617232978", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.2348528444012632", + "5.183135032653809", + "7.693346977233887", + "0.4319024617232978", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "25", + "231510.0", + "part_5321.289825439448_6385.547790527337.mzml", + "GLLEEDAFIER", + "1.0", + "sp|P0AES6|GYRB_ECOLI|698|709", + "1287.0712", + "1290.6455", + "1.0", + "2.0", + "11.0", + "0.0", + "6.270882", + "3.0", + "0.0", + "0.999", + "13.0", + "3.0", + "9.0", + "24.349955", + "0.0052191513", + "0.0010586072", + "0.01035521", + "4200.427", + "44.336926", + "3959757.0", + "2330834.5", + "0.0", + "1.0757456", + "1.0", + "0.0", + "0.999", + "7.0", + "2.0", + "4.0", + "4.16987", + "41205.992", + "-9.846194", + "9.100009e-05", + "0.0010586072", + "99.57998", + "98.755066", + "0.824913", + "0.0060688844", + "1994.0054", + "28.731152", + "0.0", + "176697.59375", + "146799.875", + "0.0", + "0.000664132", + "0.0010586072", + "1914080.307692308", + "1186463.2884615385", + "0.0", + "24883044.0", + "15424022.75", + "0.0", + "231510|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=156718", + "0.3356253483606851", + "0.626960440479478", + "0.9091821970581768", + "0.974146074845666", + "0.9958121597238304", + "-0.8937843199448986", + "-0.0833333333333333", + "0.6716871596225247", + "0.0", + "0.0", + "0.9398820980045384", + "0.919266838180414", + "0.8683267847753137", + "0.9529727628887918", + "0.9022067650144044", + "14.0", + "14.0", + "10.0", + "13.0", + "10.0", + "0.9958121597238304", + "0.9958121597238302", + "0.994369132142708", + "0.994369132142708", + "0.9933443743487164", + "0.993344374348716", + "0.9931699253738582", + "0.993169925373858", + "0.9918813192308248", + "0.9918813192308246", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.8999056954441649", + "1.398106813430786", + "1.4080055952072144", + "0.975482313418766", + "0.9639714921811154", + "0.9546100470808137", + "0.9529727628887918", + "0.9504998553140668", + "0.9488389288081138", + "0.9400973641206776", + "0.9398820980045384", + "0.937124756358362", + "0.919266838180414" + ], + [ + "26", + "136051.0", + "part_4257.031860351558_5321.289825439448.mzml", + "QILSMVDDAAARAERLHQGEAGELR", + "1.0", + "sp|P77559|YNFL_ECOLI|71|96", + "2750.2224", + "2735.377", + "1.0", + "4.0", + "25.0", + "0.0", + "7.580179", + "3.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "2.3099697", + "0.3510844", + "0.8092784", + "0.06846159", + "5777.2764", + "25.274868", + "0.0", + "0.0", + "0.0", + "6.8953724", + "3.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "1.8211807", + "26625.19", + "-2.5669336", + "0.35007116", + "0.7970183", + "75.646645", + "84.952286", + "4.628319", + "0.034050535", + "791.8735", + "24.314678", + "0.0", + "0.0", + "0.0", + "0.0", + "0.35057777", + "0.8031484", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "136051|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=119005", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "0.6525830769218091", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6205423162277438", + "7.5862507820129395", + "13.82431411743164", + "0.6525830769218091", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "28", + "157110.0", + "part_4257.031860351558_5321.289825439448.mzml", + "LAGFFVR", + "1.0", + "sp|P30130|FIMD_ECOLI|22|29", + "806.8529", + "808.4596", + "1.0", + "2.0", + "7.0", + "0.0", + "3.5563796", + "1.0", + "0.0", + "0.999", + "6.0", + "2.0", + "3.0", + "4.7249894", + "0.03319206", + "0.1997989", + "0.051892854", + "1989.3235", + "28.054283", + "0.0", + "0.0", + "0.0", + "3.5563796", + "1.0", + "0.0", + "0.999", + "6.0", + "2.0", + "3.0", + "4.7249894", + "97333.664", + "-3.4001343", + "0.03319206", + "0.1997989", + "79.557396", + "86.61093", + "7.0535355", + "0.051892854", + "1989.3235", + "28.054283", + "0.0", + "0.0", + "0.0", + "0.0", + "0.03319206", + "0.1997989", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "157110|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=125166", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "0.1353955789987978", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9335644895719798", + "3.2228660583496094", + "5.267693519592285", + "0.1353955789987978", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "29", + "210291.0", + "part_5321.289825439448_6385.547790527337.mzml", + "YLVGHSDAMIGTAVCNARCWEQLR", + "1.0", + "sp|P06721|METC_ECOLI|210|234", + "2686.9507", + "2692.267", + "1.0", + "3.0", + "24.0", + "0.0", + "7.4291463", + "6.0", + "0.0", + "0.999", + "6.0", + "3.0", + "2.0", + "1.9411244", + "0.42325065", + "0.80256176", + "0.021655358", + "2481.4277", + "28.443684", + "0.0", + "0.0", + "0.0", + "6.8722963", + "2.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "1.3154922", + "32077.148", + "-2.7992935", + "0.3411748", + "0.80256176", + "103.14213", + "100.63814", + "2.5039902", + "0.018421853", + "1603.3007", + "25.108564", + "0.0", + "0.0", + "0.0", + "0.0", + "0.37230745", + "0.80256176", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "210291|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=162334", + "0.3406615165737066", + "0.4108486695150803", + "0.621410128339201", + "0.6362211161767432", + "0.6411581121225906", + "-0.9945253316862755", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1742823761642495", + "0.1447235075529693", + "0.1151646389416891", + "0.0768250857119871", + "0.0384855324822851", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.6411581121225906", + "0.6411581121225906", + "0.621410128339201", + "0.621410128339201", + "0.3406615165737068", + "0.3406615165737066", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3997198821837781", + "7.379419326782227", + "8.76906681060791", + "0.1742823761642495", + "0.1151646389416891", + "0.0384855324822851", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "30", + "39943.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "TFIIGELHPDDRPK", + "1.0", + "sp|CYB5_HUMAN||76|90", + "1629.7131", + "1636.8573", + "1.0", + "4.0", + "14.0", + "0.0", + "0.5249128", + "2.0", + "0.0", + "0.999", + "6.0", + "1.0", + "2.0", + "7.4111595", + "0.31865823", + "0.7145035", + "0.09717473", + "4374.1074", + "30.062466", + "0.0", + "0.0", + "0.0", + "0.3512695", + "2.0", + "0.0", + "0.999", + "5.0", + "0.0", + "2.0", + "6.9581933", + "693236.9", + "-3.2771332", + "0.2689862", + "0.7145035", + "66.597084", + "79.80556", + "12.82032", + "0.09431908", + "4374.1074", + "28.08629", + "0.0", + "0.0", + "0.0", + "0.0", + "0.29382223", + "0.7145035", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "39943|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=104740", + "0.9892535668711286", + "0.9892535668711288", + "0.9892535668711288", + "0.9892535668711288", + "0.9892535668711288", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0180595331184826", + "-0.0190714565026843", + "-0.020083379886886", + "-0.0210953032710877", + "-0.0221072266552894", + "6.0", + "6.0", + "6.0", + "6.0", + "5.0", + "0.9892535668711288", + "0.9892535668711286", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.2012545964913474", + "2.995500326156616", + "3.879430294036865", + "-0.0180595331184826", + "-0.0221072266552894", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "31", + "122029.0", + "part_4257.031860351558_5321.289825439448.mzml", + "ISELSEGQIDTLR", + "1.0", + "sp|P0A7S9|RS13_ECOLI|44|57", + "1463.1512", + "1459.752", + "1.0", + "2.0", + "13.0", + "0.0", + "8.640141", + "6.0", + "0.0", + "0.999", + "21.0", + "9.0", + "11.0", + "53.00814", + "0.20615247", + "0.0010413406", + "0.040726855", + "3848.95", + "67.70814", + "29428814.0", + "19875272.0", + "1021189.4375", + "0.50753397", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "1.2058405", + "28312.188", + "-17.641708", + "0.00010917031", + "0.0010413406", + "79.87546", + "80.45761", + "0.5821533", + "0.0042829015", + "1639.9891", + "24.335352", + "0.0", + "0.0", + "0.0", + "0.0", + "0.03078641", + "0.0010413406", + "4376840.936356708", + "4061964.298018293", + "60606.02896341463", + "179450478.390625", + "166540536.21875", + "2484847.1875", + "122029|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=125667", + "2.745095504216046e-07", + "0.1148613949359562", + "0.5721364925309571", + "0.90409163006167", + "0.9993168168180032", + "-0.6848471857464447", + "-0.1556236715583981", + "0.1539957969530274", + "0.5471747014645454", + "0.0", + "0.955535071481612", + "0.9616484301759546", + "0.9288304483248226", + "0.9069104367940908", + "-0.0326052214400996", + "23.0", + "18.0", + "8.0", + "11.0", + "7.0", + "0.9993168168180032", + "0.9993168168180032", + "0.9992986469740248", + "0.9992986469740248", + "0.9992574121739414", + "0.9992574121739414", + "0.9990233221308584", + "0.9990233221308584", + "0.9989876421597972", + "0.9989876421597972", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9448358355519474", + "2.1283769607543945", + "2.1294877529144287", + "0.9723533019009984", + "0.9693509330264009", + "0.965775862170542", + "0.9655931703601556", + "0.9638025573573704", + "0.9628049594743118", + "0.9609303877821492", + "0.9593715700830592", + "0.9573289790596394", + "0.9568719152347652" + ], + [ + "32", + "112955.0", + "part_4257.031860351558_5321.289825439448.mzml", + "TLCSKAENARLVVEIDNAK", + "1.0", + "sp|K1H5_HUMAN||127|146", + "2062.6667", + "2073.0889", + "1.0", + "3.0", + "19.0", + "0.0", + "10.907735", + "3.0", + "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "9.409461", + "0.22172989", + "0.6774789", + "0.079055354", + "5040.007", + "28.952919", + "0.0", + "0.0", + "0.0", + "10.907735", + "3.0", + "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "9.409461", + "285745.25", + "-3.1518502", + "0.22172989", + "0.6774789", + "80.50322", + "69.75762", + "10.745598", + "0.079055354", + "5040.007", + "28.952919", + "0.0", + "0.0", + "0.0", + "0.0", + "0.22172989", + "0.6774789", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "112955|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=126656", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "0.143526153205937", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.3362984532059553", + "5.537032127380371", + "8.524388313293457", + "0.143526153205937", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "33", + "9457.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "LPEAVER", + "1.0", + "sp|P14900|MURD_ECOLI|46|53", + "814.85657", + "812.4392", + "1.0", + "2.0", + "7.0", + "0.0", + "1.3785683", + "4.0", + "0.0", + "0.999", + "6.0", + "1.0", + "4.0", + "10.772103", + "0.15608811", + "0.13701165", + "0.0112278825", + "8143.9775", + "28.855324", + "1057578.75", + "444102.65625", + "0.0", + "0.72140837", + "3.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "5.5927606", + "215688.17", + "-3.2070084", + "0.028362548", + "0.13701165", + "44.84406", + "43.463226", + "1.3808327", + "0.010158785", + "1738.9349", + "26.207117", + "0.0", + "882760.25", + "270820.40625", + "0.0", + "0.11183809", + "0.13701165", + "944957.234375", + "380932.125", + "0.0", + "3779828.9375", + "1523728.5", + "0.0", + "9457|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=70465", + "0.7345894082876098", + "0.7439185688276747", + "0.7829892185981385", + "0.790842175458083", + "0.981037306729222", + "-0.9723938646622632", + "0.9114257496040864", + "0.0", + "0.0", + "0.0", + "0.6907098261707837", + "0.6524065858363536", + "0.5009194669100215", + "0.4039785612223142", + "0.5293139606037586", + "8.0", + "8.0", + "8.0", + "6.0", + "8.0", + "0.981037306729222", + "0.9810373067292218", + "0.790842175458083", + "0.790842175458083", + "0.7853204050151591", + "0.7853204050151591", + "0.780658032181118", + "0.780658032181118", + "0.7439185688276747", + "0.7439185688276745", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4455744221600669", + "2.5770065784454346", + "2.5935096740722656", + "0.6907098261707837", + "0.6396388390582102", + "0.5293139606037586", + "0.3622000947618328", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "35", + "248083.0", + "part_5321.289825439448_6385.547790527337.mzml", + "SVVIAAPADVSPLLR", + "1.0", + "sp|P52612|FLII_ECOLI|231|246", + "1503.1694", + "1506.877", + "1.0", + "2.0", + "15.0", + "0.0", + "6.9037623", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "1.6532007", + "0.18237886", + "0.6464154", + "0.03405525", + "1796.164", + "23.495623", + "0.0", + "0.0", + "0.0", + "6.9037623", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "1.6532007", + "10885.389", + "-2.4317892", + "0.18237886", + "0.6464154", + "99.73361", + "104.36257", + "4.6289597", + "0.03405525", + "1796.164", + "23.495623", + "0.0", + "0.0", + "0.0", + "0.0", + "0.18237886", + "0.6464154", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "248083|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=156961", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "0.0877017469966689", + "9.0", + "9.0", + "9.0", + "9.0", + "9.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0882945982550413", + "5.952083587646484", + "8.60254955291748", + "0.0877017469966689", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "36", + "32480.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "EGVVAVDDR", + "1.0", + "sp|P0AEC8|DCUS_ECOLI|232|241", + "958.922", + "958.4719", + "1.0", + "2.0", + "9.0", + "0.0", + "4.8657017", + "7.0", + "0.8148736", + "0.999", + "6.0", + "4.0", + "1.0", + "3.7271273", + "0.2004817", + "0.6087048", + "0.14892611", + "7743.096", + "28.456139", + "1630126.0", + "0.0", + "59494.58984375", + "2.2239091", + "2.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.0525029", + "38485.793", + "-3.340232", + "0.18942055", + "0.59275585", + "49.510006", + "50.096455", + "0.48937607", + "0.0036003392", + "469.46353", + "24.7977", + "0.0", + "0.0", + "0.0", + "0.0", + "0.19569486", + "0.5980722", + "543375.3333333334", + "0.0", + "19831.529947916668", + "1630126.0", + "0.0", + "59494.58984375", + "32480|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=77818", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "0.9720810434559228", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0228824181143598", + "-0.0182164597916278", + "-0.0135505014688958", + "-0.0088845431461638", + "-0.0042185848234318", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.9720810434559228", + "0.9720810434559228", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.887796968939024", + "4.4763593673706055", + "5.899420261383057", + "-0.0042185848234318", + "-0.0228824181143598", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "37", + "215025.0", + "part_5321.289825439448_6385.547790527337.mzml", + "TVNALEIELQAQHNLRDSLENTLTESEAR", + "2.0", + "sp|K1H1_HUMAN||277|306;sp|K1HA_HUMAN||277|306", + "3278.4626", + "3293.6482", + "1.0", + "4.0", + "29.0", + "0.0", + "6.219235", + "5.0", + "0.0", + "0.999", + "7.0", + "2.0", + "1.0", + "3.9431853", + "0.39700723", + "0.64141905", + "0.040704403", + "4621.2085", + "28.18651", + "241282.15625", + "0.0", + "0.0", + "5.9631824", + "2.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "1.6348354", + "34545.484", + "-4.0031734", + "0.17874396", + "0.64141905", + "89.49363", + "95.026375", + "3.686142", + "0.027118942", + "4315.214", + "24.647186", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2878756", + "0.64141905", + "120641.078125", + "0.0", + "0.0", + "241282.15625", + "0.0", + "0.0", + "215025|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=140826", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "0.1186113756512692", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2323461735019996", + "0.2617027649843468", + "0.2910593564666941", + "0.3204159479490412", + "0.3497725394313885", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.1186113756512692", + "0.1186113756512692", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.4919965634306641", + "8.244368553161621", + "10.506301879882812", + "0.3497725394313885", + "0.2323461735019996", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "38", + "9939.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "HSLRDDIPGAARAIR", + "1.0", + "sp|P23883|PUUC_ECOLI|114|129", + "1654.4813", + "1646.8964", + "1.0", + "3.0", + "15.0", + "0.0", + "1.6736827", + "4.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "1.3069619", + "0.19474629", + "0.589364", + "0.01890552", + "3988.402", + "24.53814", + "0.0", + "0.0", + "0.0", + "1.6736827", + "4.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "1.3069619", + "34858.945", + "-2.5227091", + "0.19474629", + "0.589364", + "46.019997", + "48.58973", + "2.5697327", + "0.01890552", + "3988.402", + "24.53814", + "0.0", + "0.0", + "0.0", + "0.0", + "0.19474629", + "0.589364", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "9939|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=72319", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "0.5932493045968158", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4747323886735439", + "5.078237056732178", + "8.039066314697266", + "0.5932493045968158", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "40", + "26357.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "LGSHNDMTFGEGTSSR", + "1.0", + "sp|P39180|AG43_ECOLI|923|939", + "1677.7349", + "1694.7318", + "1.0", + "4.0", + "16.0", + "0.0", + "8.207473", + "4.0", + "24.09396", + "0.999", + "6.0", + "3.0", + "2.0", + "4.899028", + "0.2441044", + "0.5742633", + "0.08941808", + "9481.986", + "27.70132", + "0.0", + "0.0", + "0.0", + "1.7930894", + "2.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "2.5977843", + "46359.918", + "-3.484535", + "0.18448275", + "0.5742633", + "42.94928", + "55.10343", + "8.219971", + "0.060474318", + "8.099181", + "24.09396", + "0.0", + "0.0", + "0.0", + "0.0", + "0.21429357", + "0.5742633", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "26357|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=67482", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "0.3769490110272505", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.8914224609386383", + "4.601738929748535", + "8.48290729522705", + "0.3769490110272505", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "41", + "30647.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "VDSASEFK", + "1.0", + "sp|P00957|SYA_ECOLI|451|459", + "878.8856", + "881.4131", + "1.0", + "2.0", + "8.0", + "0.0", + "3.8597157", + "5.0", + "0.0", + "0.999", + "8.0", + "2.0", + "6.0", + "12.47615", + "0.042404808", + "0.003751498", + "0.024253562", + "6193.733", + "34.620735", + "2968045.0", + "1289721.125", + "343625.96875", + "0.7741194", + "1.0", + "0.0", + "0.999", + "6.0", + "1.0", + "3.0", + "1.7010813", + "61501.24", + "-5.1006613", + "0.0005165289", + "0.003751498", + "38.629963", + "35.866943", + "2.7630196", + "0.020327533", + "1730.6694", + "27.367315", + "0.0", + "728181.6875", + "241664.140625", + "0.0", + "0.017650766", + "0.003751498", + "1854062.5260416667", + "816106.0846354166", + "165790.45703125", + "22248750.3125", + "9793273.015625", + "1989485.484375", + "30647|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=60676", + "0.1411692022589294", + "0.4359466489130041", + "0.6676413505963248", + "0.8855480663379337", + "0.9950728511938836", + "-0.6831288949401837", + "0.524746056574557", + "0.0", + "0.0", + "0.0", + "0.5301606884054385", + "0.8055809909875556", + "0.8656578082706889", + "0.678623106211655", + "0.8075758013690787", + "10.0", + "9.0", + "10.0", + "10.0", + "9.0", + "0.9950728511938836", + "0.9950728511938834", + "0.9908005112497292", + "0.9908005112497292", + "0.9864490857598333", + "0.986449085759833", + "0.9837904126374328", + "0.9837904126374326", + "0.958494924274348", + "0.9584949242743478", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3668923692060918", + "2.972084045410156", + "2.9820563793182373", + "0.9307035383591576", + "0.8903559928461758", + "0.8775854403712238", + "0.840959623695202", + "0.8075758013690787", + "0.7945707456719922", + "0.7249328690218036", + "0.6509677352113843", + "0.5895676428365512", + "0.5428247064984331" + ], + [ + "45", + "160620.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GLDITITTTAK", + "1.0", + "sp|P62399|RL5_ECOLI|150|161", + "1126.9984", + "1132.6339", + "1.0", + "2.0", + "11.0", + "0.0", + "4.026516", + "7.0", + "0.0", + "0.999", + "13.0", + "4.0", + "9.0", + "36.867283", + "0.25997618", + "0.6514103", + "0.06841298", + "5878.654", + "47.806087", + "12348173.0", + "7064066.0", + "6379593.5", + "0.79964834", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.0837524", + "41460.105", + "-9.382425", + "0.00010917031", + "0.0010413406", + "81.1247", + "81.38907", + "0.02155304", + "0.00015856569", + "1204.2656", + "25.867928", + "0.0", + "0.0", + "0.0", + "0.0", + "0.03930444", + "0.06950123", + "4224256.458881579", + "2305131.9259868423", + "457714.65789473685", + "80260872.71875", + "43797506.59375", + "8696578.5", + "160620|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=127635", + "0.121459652507608", + "0.3748117704088688", + "0.8286331712567507", + "0.9410943674755792", + "0.9971838255082944", + "-0.7164321981422632", + "0.1068660047089721", + "0.8613958099023558", + "0.0", + "0.0", + "0.93433202166157", + "0.724492890042858", + "0.931254479644724", + "0.8890869824276486", + "0.9204328901940032", + "14.0", + "11.0", + "15.0", + "13.0", + "15.0", + "0.9971838255082944", + "0.9971838255082944", + "0.9968249489075768", + "0.9968249489075768", + "0.9943991098143647", + "0.9943991098143646", + "0.994319818309276", + "0.9943198183092758", + "0.993613231223938", + "0.9936132312239376", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9080921414511418", + "2.020193576812744", + "2.025226831436157", + "0.9409351494516024", + "0.9358287952638892", + "0.93433202166157", + "0.931254479644724", + "0.922673794350692", + "0.9209258901383006", + "0.9204328901940032", + "0.8910301609797785", + "0.8890869824276486", + "0.8886052287159995" + ], + [ + "46", + "4411.0", + "part_1064.2579650878895_2128.515930175779.mzml", + "NKDTPVEQGK", + "1.0", + "sp|P0A7E1|PYRD_ECOLI|142|152", + "1110.9911", + "1114.5619", + "1.0", + "2.0", + "10.0", + "0.0", + "2.3837795", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "3.998721", + "0.15881884", + "0.5627713", + "0.068357095", + "3208.9111", + "25.672306", + "93512.453125", + "0.0", + "0.0", + "2.3837795", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "3.998721", + "88877.516", + "-2.617387", + "0.15881884", + "0.5627713", + "34.314766", + "25.023329", + "9.291437", + "0.068357095", + "3208.9111", + "25.672306", + "0.0", + "93512.453125", + "0.0", + "0.0", + "0.15881884", + "0.5627713", + "93512.453125", + "0.0", + "0.0", + "93512.453125", + "0.0", + "0.0", + "4411|part_1064.2579650878895_2128.515930175779.mzml|controllerType=0 controllerNumber=1 scan=53881", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "-0.0807682988889901", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.672467930861916", + "6.034455299377441", + "10.068220138549805", + "-0.0807682988889901", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "48", + "5419.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "IPAGVGNGQRIRLK", + "1.0", + "sp|P36659|CBPA_ECOLI|163|177", + "1486.4049", + "1477.8842", + "1.0", + "3.0", + "14.0", + "0.0", + "8.021836", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "5.025356", + "0.2941758", + "0.66710716", + "0.055408914", + "6423.7183", + "25.706236", + "0.0", + "0.0", + "0.0", + "2.024987", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "3.3286414", + "55896.332", + "-2.665486", + "0.2514575", + "0.66710716", + "41.158157", + "48.689613", + "6.754566", + "0.049693335", + "5073.6934", + "25.635231", + "0.0", + "0.0", + "0.0", + "0.0", + "0.27281666", + "0.66710716", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "5419|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=64661", + "0.8241605099513897", + "0.8241605099513898", + "0.8241605099513898", + "0.8241605099513898", + "0.8241605099513899", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6744826444073867", + "0.6707469212401043", + "0.6670111980728219", + "0.6632754749055396", + "0.6595397517382573", + "7.0", + "7.0", + "7.0", + "7.0", + "6.0", + "0.8241605099513899", + "0.8241605099513897", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6141578606777409", + "7.264311790466309", + "9.702486038208008", + "0.6744826444073867", + "0.6595397517382573", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "49", + "249514.0", + "part_5321.289825439448_6385.547790527337.mzml", + "EAIVLCGRPVSTHVLPPASPLDEPR", + "1.0", + "sp|P75682|YAGE_ECOLI|263|288", + "2654.1787", + "2652.4053", + "1.0", + "4.0", + "25.0", + "0.0", + "8.547572", + "4.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "2.9616358", + "0.42359", + "0.7856295", + "0.0931636", + "1046.3464", + "31.399834", + "0.0", + "0.0", + "784868.8125", + "8.221856", + "2.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "2.389653", + "1362693.1", + "-2.5565898", + "0.41778108", + "0.7856295", + "97.39491", + "85.02281", + "12.372101", + "0.09102153", + "290.2934", + "29.350292", + "0.0", + "0.0", + "0.0", + "473827.90625", + "0.42102647", + "0.7856295", + "0.0", + "0.0", + "647489.6015625", + "0.0", + "0.0", + "2589958.40625", + "249514|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=153277", + "0.989457556090147", + "0.989787005225373", + "0.9967485015758726", + "0.9971773414334346", + "0.9984883111313476", + "-0.9508702293321732", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1799042406923086", + "0.1907081867573599", + "0.1880673894937396", + "0.1903939057060127", + "0.2160997921987444", + "7.0", + "7.0", + "7.0", + "8.0", + "7.0", + "0.9984883111313476", + "0.9984883111313474", + "0.9971773414334348", + "0.9971773414334346", + "0.9971744312939044", + "0.9971744312939044", + "0.9963225718578406", + "0.9963225718578406", + "0.9897870052253732", + "0.9897870052253728", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1873917101055393", + "5.434152603149414", + "6.334392070770264", + "0.2160997921987444", + "0.194309502112377", + "0.1818252768751022", + "0.1799042406923086", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "50", + "9425.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "ETPPGPKRGGFESYQER", + "1.0", + "sp|P21179|CATE_ECOLI|471|488", + "1917.844", + "1933.9282", + "1.0", + "4.0", + "17.0", + "0.0", + "4.7597833", + "5.0", + "0.128657", + "0.999", + "5.0", + "3.0", + "1.0", + "1.6871233", + "0.35814905", + "0.7655373", + "0.07364798", + "7828.579", + "24.483099", + "0.0", + "430655.6875", + "90732.90625", + "4.7597833", + "5.0", + "0.128657", + "0.999", + "5.0", + "3.0", + "1.0", + "1.6871233", + "39929.223", + "-2.4962318", + "0.35814905", + "0.7655373", + "42.71088", + "52.72148", + "10.010601", + "0.07364798", + "7828.579", + "24.483099", + "0.0", + "0.0", + "430655.6875", + "90732.90625", + "0.35814905", + "0.7655373", + "0.0", + "430655.6875", + "90732.90625", + "0.0", + "430655.6875", + "90732.90625", + "9425|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=67107", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3338182404340978", + "0.3338182404340978", + "0.3338182404340978", + "0.3338182404340978", + "0.3338182404340978", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1712848136575158", + "6.158304691314697", + "9.220414161682127", + "0.3338182404340978", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "51", + "74858.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "ALFSGGEETKPTEQPAPK", + "1.0", + "sp|P21513|RNE_ECOLI|579|597", + "1885.8296", + "1885.9421", + "1.0", + "4.0", + "18.0", + "0.0", + "7.3512626", + "5.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "1.4239955", + "0.3795022", + "0.27042404", + "0.036389984", + "59.679554", + "25.271837", + "0.0", + "0.0", + "0.0", + "7.3512626", + "5.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "1.4239955", + "47060.99", + "-2.4961848", + "0.3795022", + "0.27042404", + "57.86309", + "62.8094", + "4.946308", + "0.036389984", + "59.679554", + "25.271837", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3795022", + "0.27042404", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "74858|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=90977", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2028984374704912", + "0.2028984374704912", + "0.2028984374704912", + "0.2028984374704912", + "0.2028984374704912", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0748853159187387", + "4.548398017883301", + "7.098147392272949", + "0.2028984374704912", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "52", + "123527.0", + "part_4257.031860351558_5321.289825439448.mzml", + "GLTTVDMIPHGEHR", + "1.0", + "sp|P24240|ASCB_ECOLI|28|42", + "1559.195", + "1561.7671", + "1.0", + "2.0", + "14.0", + "0.0", + "4.660934", + "1.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "2.5261564", + "0.085459605", + "0.42253974", + "0.09875303", + "2292.0134", + "23.591166", + "0.0", + "0.0", + "0.0", + "4.660934", + "1.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "2.5261564", + "19979.705", + "-2.6725569", + "0.085459605", + "0.42253974", + "77.645996", + "64.22299", + "13.423004", + "0.09875303", + "2292.0134", + "23.591166", + "0.0", + "0.0", + "0.0", + "0.0", + "0.085459605", + "0.42253974", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "123527|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=122154", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3738711742465757", + "0.3738711742465757", + "0.3738711742465757", + "0.3738711742465757", + "0.3738711742465757", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.3214931624685369", + "3.5008466243743896", + "4.496323108673096", + "0.3738711742465757", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "54", + "75321.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "IGVGGTITYPR", + "1.0", + "sp|P39408|YJJV_ECOLI|175|186", + "1126.9984", + "1132.6239", + "1.0", + "2.0", + "11.0", + "0.0", + "3.8737273", + "8.0", + "0.0", + "0.999", + "7.0", + "3.0", + "2.0", + "2.25101", + "0.24338965", + "0.4583405", + "0.11200398", + "5869.8154", + "29.812466", + "9954350.0", + "6497928.5", + "367589.34375", + "2.0160239", + "5.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "0.7371871", + "29939.39", + "-3.730772", + "0.033473134", + "0.20115721", + "59.37428", + "74.59842", + "1.5728302", + "0.01157131", + "1213.1034", + "24.393084", + "0.0", + "0.0", + "0.0", + "0.0", + "0.13089551", + "0.28688496", + "3448857.6354166665", + "2212213.828125", + "122529.78125", + "10346572.90625", + "6636641.484375", + "367589.34375", + "75321|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=93360", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.28695256764712", + "0.28695256764712", + "0.28695256764712", + "0.28695256764712", + "0.28695256764712", + "9.0", + "9.0", + "9.0", + "9.0", + "9.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0197073688070483", + "3.6501786708831783", + "4.494678497314453", + "0.28695256764712", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "55", + "154655.0", + "part_4257.031860351558_5321.289825439448.mzml", + "KDVDNAYM[Oxidation]IKVELQSK", + "1.0", + "sp|K22E_HUMAN||292|308", + "1901.8368", + "1895.9663", + "1.0", + "4.0", + "16.0", + "0.0", + "0.6562049", + "1.0", + "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "10.967659", + "0.14383923", + "0.56523836", + "0.038541846", + "3618.9438", + "30.386185", + "0.0", + "0.0", + "0.0", + "0.6562049", + "1.0", + "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "10.967659", + "132607.08", + "-4.2191277", + "0.14383923", + "0.56523836", + "85.29215", + "80.05335", + "5.2388", + "0.038541846", + "3618.9438", + "30.386185", + "0.0", + "0.0", + "0.0", + "0.0", + "0.14383923", + "0.56523836", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "154655|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=134203", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2984695006571387", + "0.2984695006571387", + "0.2984695006571387", + "0.2984695006571387", + "0.2984695006571387", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.3697856905036698", + "7.485276222229004", + "12.678672790527344", + "0.2984695006571387", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "56", + "161652.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AVIYSNKPLPELAK", + "1.0", + "sp|P05458|PTRA_ECOLI|232|246", + "1546.4321", + "1541.8817", + "1.0", + "3.0", + "14.0", + "0.0", + "3.9043527", + "3.0", + "0.0", + "0.999", + "6.0", + "2.0", + "3.0", + "2.271199", + "0.08428087", + "0.41823798", + "0.043868814", + "2946.8604", + "26.988085", + "0.0", + "306523.3125", + "0.0", + "3.9043527", + "3.0", + "0.0", + "0.999", + "6.0", + "2.0", + "3.0", + "2.271199", + "58668.145", + "-3.311285", + "0.08428087", + "0.41823798", + "83.54781", + "77.584946", + "5.9628677", + "0.043868814", + "2946.8604", + "26.988085", + "0.0", + "0.0", + "306523.3125", + "0.0", + "0.08428087", + "0.41823798", + "0.0", + "306523.3125", + "0.0", + "0.0", + "306523.3125", + "0.0", + "161652|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=131454", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4708045534220434", + "0.4708045534220434", + "0.4708045534220434", + "0.4708045534220434", + "0.4708045534220434", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6353427436181341", + "3.966175079345703", + "6.704771995544434", + "0.4708045534220434", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "57", + "233927.0", + "part_5321.289825439448_6385.547790527337.mzml", + "TNLFM[Oxidation]KPIFSQAR", + "1.0", + "sp|P76558|MAO2_ECOLI|426|439", + "1559.195", + "1567.818", + "1.0", + "2.0", + "13.0", + "0.0", + "5.62375", + "7.0", + "0.6259481", + "0.999", + "5.0", + "2.0", + "2.0", + "1.7154613", + "0.25932547", + "0.74223274", + "0.116229326", + "4871.904", + "24.771654", + "242701.765625", + "0.0", + "0.0", + "3.0614982", + "4.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "1.2735213", + "38180.91", + "-2.3608477", + "0.09299731", + "0.41889778", + "103.472916", + "91.31732", + "12.155594", + "0.08942869", + "395.21756", + "24.634998", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1761614", + "0.5805653", + "121350.8828125", + "0.0", + "0.0", + "242701.765625", + "0.0", + "0.0", + "233927|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=162855", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0409856387385591", + "0.0409856387385591", + "0.0409856387385591", + "0.0409856387385591", + "0.0409856387385591", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2368544681572312", + "4.7927961349487305", + "7.724693298339844", + "0.0409856387385591", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "60", + "254830.0", + "part_6385.547790527337_7449.805755615227.mzml", + "HLPLPTYLVVQVR", + "1.0", + "sp|P0A7Y0|RNC_ECOLI|167|180", + "1527.1803", + "1533.903", + "1.0", + "2.0", + "13.0", + "0.0", + "4.685066", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "1.9572129", + "0.09021861", + "0.40844557", + "0.110961236", + "4392.338", + "23.421274", + "0.0", + "0.0", + "0.0", + "4.685066", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "1.0", + "1.9572129", + "25871.242", + "-2.5646584", + "0.09021861", + "0.40844557", + "116.97237", + "101.88996", + "15.082405", + "0.110961236", + "4392.338", + "23.421274", + "0.0", + "0.0", + "0.0", + "0.0", + "0.09021861", + "0.40844557", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "254830|part_6385.547790527337_7449.805755615227.mzml|controllerType=0 controllerNumber=1 scan=184122", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.1284073395253561", + "-0.1284073395253561", + "-0.1284073395253561", + "-0.1284073395253561", + "-0.1284073395253561", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.4527317342534552", + "5.073082447052002", + "7.426265239715576", + "-0.1284073395253561", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "62", + "44753.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "TGVRVFHDYLREK", + "1.0", + "sp|P36566|CMOM_ECOLI|205|218", + "1630.4703", + "1618.8579", + "1.0", + "3.0", + "13.0", + "0.0", + "2.976984", + "2.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "4.2321615", + "0.36252284", + "0.79227465", + "0.0058002486", + "6532.029", + "25.011602", + "0.0", + "0.0", + "0.0", + "2.976984", + "2.0", + "0.0", + "0.999", + "5.0", + "3.0", + "1.0", + "4.2321615", + "58317.664", + "-2.614506", + "0.36252284", + "0.79227465", + "53.497627", + "52.70923", + "0.78839874", + "0.0058002486", + "6532.029", + "25.011602", + "0.0", + "0.0", + "0.0", + "0.0", + "0.36252284", + "0.79227465", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "44753|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=84100", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.1147810670559272", + "0.1147810670559272", + "0.1147810670559272", + "0.1147810670559272", + "0.1147810670559272", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.3307135304752645", + "6.4187726974487305", + "10.04473114013672", + "0.1147810670559272", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "64", + "210271.0", + "part_5321.289825439448_6385.547790527337.mzml", + "FNLQDGFPLVTTKRCHLR", + "1.0", + "sp|P0A884|TYSY_ECOLI|35|53", + "2146.7048", + "2144.1313", + "1.0", + "3.0", + "18.0", + "0.0", + "4.298537", + "2.0", + "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "4.99104", + "0.13686903", + "0.56125546", + "0.116251945", + "732.02673", + "27.683111", + "0.0", + "0.0", + "0.0", + "4.298537", + "2.0", + "0.0", + "0.999", + "6.0", + "2.0", + "2.0", + "4.99104", + "136508.28", + "-3.1706991", + "0.13686903", + "0.56125546", + "91.04133", + "106.84287", + "15.801544", + "0.116251945", + "732.02673", + "27.683111", + "0.0", + "0.0", + "0.0", + "0.0", + "0.13686903", + "0.56125546", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "210271|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=143262", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.057834520972928", + "0.057834520972928", + "0.057834520972928", + "0.057834520972928", + "0.057834520972928", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0009580223934779", + "3.7712109088897705", + "6.014612197875977", + "0.057834520972928", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "66", + "283945.0", + "part_6385.547790527337_7449.805755615227.mzml", + "VAFGGKAVEGKGYYYPPTLLLDVR", + "1.0", + "sp|P25553|ALDA_ECOLI|350|374", + "2606.157", + "2612.4001", + "1.0", + "4.0", + "24.0", + "0.0", + "7.0588484", + "2.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "8.706748", + "0.32129553", + "0.7765661", + "0.06735422", + "2007.7606", + "23.532091", + "0.0", + "0.0", + "0.0", + "7.0588484", + "2.0", + "0.0", + "0.999", + "5.0", + "1.0", + "1.0", + "8.706748", + "23336.934", + "-2.7388937", + "0.32129553", + "0.7765661", + "124.15132", + "114.9962", + "9.155121", + "0.06735422", + "2007.7606", + "23.532091", + "0.0", + "0.0", + "0.0", + "0.0", + "0.32129553", + "0.7765661", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "283945|part_6385.547790527337_7449.805755615227.mzml|controllerType=0 controllerNumber=1 scan=195431", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0840566345723569", + "0.0840566345723569", + "0.0840566345723569", + "0.0840566345723569", + "0.0840566345723569", + "6.0", + "6.0", + "6.0", + "6.0", + "6.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.26230517688509", + "5.247867107391357", + "8.977747917175293", + "0.0840566345723569", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "69", + "94381.0", + "part_3192.7738952636682_4257.031860351558.mzml", + "GEVPVMITKHCLR", + "1.0", + "sp|P76104|RLHA_ECOLI|561|574", + "1474.3994", + "1481.7847", + "1.0", + "3.0", + "13.0", + "0.0", + "5.327468", + "4.0", + "0.0", + "0.999", + "6.0", + "3.0", + "2.0", + "1.7473532", + "0.35945946", + "0.53634226", + "0.0401522", + "4996.4775", + "25.619627", + "0.0", + "265309.0", + "0.0", + "4.6735024", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "0.0", + "1.5358903", + "20707.379", + "-3.3664808", + "0.14583871", + "0.5276559", + "63.4455", + "67.74931", + "4.303814", + "0.031663153", + "3113.1702", + "17.998198", + "0.0", + "0.0", + "0.0", + "0.0", + "0.25264907", + "0.5319991", + "0.0", + "132654.5", + "0.0", + "0.0", + "265309.0", + "0.0", + "94381|part_3192.7738952636682_4257.031860351558.mzml|controllerType=0 controllerNumber=1 scan=99777", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.444664813916699", + "0.444664813916699", + "0.444664813916699", + "0.444664813916699", + "0.444664813916699", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3509409507695926", + "3.2867238521575928", + "4.665278434753418", + "0.444664813916699", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "71", + "225697.0", + "part_5321.289825439448_6385.547790527337.mzml", + "QVERDDTIRCLLLTGAGR", + "1.0", + "sp|P77467|PAAG_ECOLI|40|58", + "2013.8877", + "2015.0582", + "1.0", + "4.0", + "18.0", + "0.0", + "6.0533996", + "1.0", + "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "5.952198", + "0.15380704", + "0.59746957", + "0.08359639", + "1079.4008", + "29.622644", + "168069.546875", + "0.0", + "0.0", + "6.0533996", + "1.0", + "0.0", + "0.999", + "7.0", + "2.0", + "2.0", + "5.952198", + "94327.75", + "-4.1058292", + "0.15380704", + "0.59746957", + "91.26568", + "79.90284", + "11.362839", + "0.08359639", + "1079.4008", + "29.622644", + "0.0", + "168069.546875", + "0.0", + "0.0", + "0.15380704", + "0.59746957", + "168069.546875", + "0.0", + "0.0", + "168069.546875", + "0.0", + "0.0", + "225697|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=143617", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.0200886462214963", + "-0.0200886462214963", + "-0.0200886462214963", + "-0.0200886462214963", + "-0.0200886462214963", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.3694825920972228", + "6.202720642089844", + "9.264814376831056", + "-0.0200886462214963", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "72", + "195178.0", + "part_5321.289825439448_6385.547790527337.mzml", + "DVIPFPR", + "1.0", + "sp|P0A8M0|SYN_ECOLI|452|459", + "838.86743", + "842.46497", + "1.0", + "2.0", + "7.0", + "0.0", + "2.4595466", + "2.0", + "0.0", + "0.999", + "7.0", + "2.0", + "5.0", + "43.669205", + "0.0040554614", + "0.002814555", + "0.0262399", + "5476.171", + "35.24729", + "6205663.0", + "2774031.0", + "95479.015625", + "0.43763086", + "1.0", + "0.0", + "0.999", + "6.0", + "1.0", + "5.0", + "6.7104883", + "170117.16", + "-4.338967", + "0.0013137879", + "0.002814555", + "90.530815", + "87.69314", + "2.837677", + "0.020876788", + "4030.9329", + "28.702263", + "0.0", + "231189.6875", + "0.0", + "0.0", + "0.0024231079", + "0.002814555", + "2704879.94921875", + "1323927.8828125", + "5967.4384765625", + "43278079.1875", + "21182846.125", + "95479.015625", + "195178|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=142459", + "0.899455643376564", + "0.961651770465507", + "0.9862391482524242", + "0.9967627738235412", + "0.9999018995194824", + "-0.3210629565957882", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9871770597695856", + "0.9836988996268942", + "0.9784177332871582", + "0.9697030669359348", + "0.9731064940788076", + "8.0", + "8.0", + "8.0", + "7.0", + "8.0", + "0.9999018995194824", + "0.9999018995194824", + "0.9998636221887304", + "0.9998636221887304", + "0.9997791175780466", + "0.9997791175780464", + "0.9994477109846576", + "0.9994477109846576", + "0.9993186661028404", + "0.9993186661028404", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9856631009847092", + "0.3459833264350891", + "0.3477230668067932", + "0.9930239833724992", + "0.992435399973668", + "0.9908911858351764", + "0.9906451966984788", + "0.9895915982603644", + "0.9892317090890818", + "0.9884813932910048", + "0.9871770597695856", + "0.9869342329488204", + "0.9863695661157798" + ], + [ + "74", + "9573.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "KDVDGAYMTK", + "1.0", + "sp|K2C1_HUMAN||287|297", + "1118.9948", + "1126.5328", + "1.0", + "2.0", + "10.0", + "0.0", + "2.8120558", + "2.0", + "0.0", + "0.999", + "6.0", + "1.0", + "3.0", + "2.7918556", + "0.12578617", + "0.46420425", + "0.023595894", + "6713.866", + "29.724043", + "0.0", + "267025.625", + "0.0", + "2.8120558", + "2.0", + "0.0", + "0.999", + "6.0", + "1.0", + "3.0", + "2.7918556", + "456300.6", + "-3.071383", + "0.12578617", + "0.46420425", + "41.357136", + "38.149864", + "3.2072716", + "0.023595894", + "6713.866", + "29.724043", + "0.0", + "0.0", + "267025.625", + "0.0", + "0.12578617", + "0.46420425", + "0.0", + "267025.625", + "0.0", + "0.0", + "267025.625", + "0.0", + "9573|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=64975", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6823441103199486", + "0.6823441103199486", + "0.6823441103199486", + "0.6823441103199486", + "0.6823441103199486", + "8.0", + "8.0", + "8.0", + "8.0", + "8.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6612600468360926", + "2.48130464553833", + "3.5993754863739014", + "0.6823441103199486", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "76", + "32999.0", + "part_2128.5159301757785_3192.7738952636682.mzml", + "M[Oxidation]GSEVFHHLAK", + "1.0", + "sp|P0A6P9|ENO_ECOLI|184|195", + "1270.3066", + "1270.6128", + "1.0", + "3.0", + "11.0", + "0.0", + "4.236463", + "5.0", + "0.0", + "0.999", + "12.0", + "2.0", + "9.0", + "9.130894", + "0.21761632", + "0.0032147816", + "0.059300005", + "9165.441", + "41.323353", + "6554251.5", + "4710502.5", + "143211.421875", + "1.075083", + "1.0", + "0.0", + "0.999", + "5.0", + "0.0", + "3.0", + "1.9081098", + "113382.9", + "-8.664315", + "0.00038080732", + "0.0032147816", + "39.890213", + "47.950565", + "6.943096", + "0.05108035", + "240.97762", + "19.352026", + "0.0", + "669056.3125", + "543664.625", + "0.0", + "0.039332844", + "0.0032147816", + "3680831.105769231", + "2642278.0096153845", + "18654.84435096154", + "47850804.375", + "34349614.125", + "242512.9765625", + "32999|part_2128.5159301757785_3192.7738952636682.mzml|controllerType=0 controllerNumber=1 scan=62663", + "0.6965713417407942", + "0.9171049574140324", + "0.9625322126045216", + "0.9804261267056682", + "0.9966538196621196", + "-0.6227153715769151", + "0.7712605994975079", + "0.0", + "0.0", + "0.0", + "0.8388947123052499", + "0.7944160978148249", + "0.829883114549236", + "0.8292173869327099", + "0.7909525191488987", + "13.0", + "8.0", + "13.0", + "14.0", + "8.0", + "0.9966538196621196", + "0.9966538196621196", + "0.995921938300268", + "0.995921938300268", + "0.9945434035567278", + "0.9945434035567275", + "0.9941554578532228", + "0.9941554578532228", + "0.9936892247411347", + "0.9936892247411346", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.7857198330775892", + "2.17556095123291", + "2.197460412979126", + "0.8422800076273532", + "0.8388947123052499", + "0.829883114549236", + "0.8292173869327099", + "0.8179383321875153", + "0.8124780964862257", + "0.8113951671719283", + "0.8109825685620949", + "0.8064678415219195", + "0.7944160978148249" + ], + [ + "78", + "121803.0", + "part_4257.031860351558_5321.289825439448.mzml", + "AAVFHEGMSIIERDR", + "1.0", + "sp|P60240|RAPA_ECOLI|530|545", + "1738.5195", + "1729.857", + "1.0", + "3.0", + "15.0", + "0.0", + "4.786938", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "2.2093544", + "0.36848462", + "0.80970407", + "0.020772947", + "5572.077", + "26.099894", + "0.0", + "0.0", + "0.0", + "4.786938", + "3.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "2.2093544", + "154718.69", + "-2.3404005", + "0.36848462", + "0.80970407", + "74.13506", + "76.958626", + "2.8235626", + "0.020772947", + "5572.077", + "26.099894", + "0.0", + "0.0", + "0.0", + "0.0", + "0.36848462", + "0.80970407", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "121803|part_4257.031860351558_5321.289825439448.mzml|controllerType=0 controllerNumber=1 scan=116620", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.613517844883925", + "0.613517844883925", + "0.613517844883925", + "0.613517844883925", + "0.613517844883925", + "7.0", + "7.0", + "7.0", + "7.0", + "7.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.3732991592910107", + "2.9444422721862797", + "3.84782600402832", + "0.613517844883925", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "79", + "230681.0", + "part_5321.289825439448_6385.547790527337.mzml", + "EALAEVGITGM[Oxidation]TVTEVK", + "1.0", + "sp|P0A9Z1|GLNB_ECOLI|17|34", + "1759.2858", + "1762.9022", + "1.0", + "2.0", + "17.0", + "0.0", + "6.680573", + "1.0", + "0.0", + "0.999", + "16.0", + "7.0", + "6.0", + "30.738695", + "0.05817313", + "0.0010586072", + "0.00907877", + "3053.107", + "48.799175", + "803675.0625", + "603222.375", + "0.0", + "2.5458653", + "1.0", + "0.0", + "0.999", + "5.0", + "2.0", + "2.0", + "10.623284", + "42571.047", + "-13.1537485", + "9.100009e-05", + "0.0010586072", + "90.713936", + "89.96516", + "0.7487793", + "0.0055087684", + "1483.3739", + "24.978838", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0056663197", + "0.0010586072", + "403208.5568181818", + "257154.6747159091", + "0.0", + "4435294.125", + "2828701.421875", + "0.0", + "230681|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=142747", + "0.0005407891091269", + "0.1716310767137447", + "0.8104251344853056", + "0.8792031749176711", + "0.9665008464440444", + "-0.940243482785624", + "0.5011012184019878", + "0.0", + "0.0", + "0.0", + "0.8941351308233486", + "0.8578082371577642", + "0.9102311067164682", + "0.8428343698020788", + "-0.0568514963155316", + "19.0", + "16.0", + "13.0", + "8.0", + "5.0", + "0.9665008464440444", + "0.9665008464440444", + "0.960521381787894", + "0.960521381787894", + "0.9457407672221068", + "0.9457407672221064", + "0.9385623868037714", + "0.9385623868037714", + "0.9365430292924928", + "0.9365430292924928", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.9053471480537112", + "4.3234710693359375", + "4.425494194030762", + "0.9102311067164682", + "0.8941351308233486", + "0.8868361329363569", + "0.885829828258298", + "0.8827469270230504", + "0.8392454755883231", + "0.8287803413791716", + "0.8097499650889032", + "0.8029218125811073", + "0.3729450622144258" + ], + [ + "80", + "238619.0", + "part_5321.289825439448_6385.547790527337.mzml", + "SALINFLK", + "1.0", + "sp|P27833|WECE_ECOLI|303|311", + "910.9002", + "904.53815", + "1.0", + "2.0", + "8.0", + "0.0", + "3.9568172", + "2.0", + "0.0", + "0.999", + "7.0", + "2.0", + "3.0", + "8.177028", + "0.08377549", + "0.009694608", + "0.039229546", + "8109.714", + "28.314348", + "267536.1875", + "192962.578125", + "0.0", + "3.11151", + "1.0", + "0.0", + "0.999", + "5.0", + "1.0", + "2.0", + "4.534002", + "20838.441", + "-4.4315033", + "0.00253463", + "0.009694608", + "97.96109", + "103.293365", + "4.9920654", + "0.03672662", + "1816.4312", + "24.136847", + "0.0", + "0.0", + "0.0", + "0.0", + "0.017912334", + "0.009694608", + "171759.09895833334", + "69958.36328125", + "0.0", + "1030554.59375", + "419750.1796875", + "0.0", + "238619|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=154169", + "0.4800437069313649", + "0.7269758624713313", + "0.8102152862404761", + "0.8864455526730819", + "0.9551743540348476", + "-0.9596495655517326", + "0.7218741719627868", + "0.0", + "0.0", + "0.0", + "0.7400397692990736", + "0.720270877549264", + "0.858225409022949", + "0.6994036294437532", + "0.6135335608633475", + "8.0", + "8.0", + "8.0", + "7.0", + "6.0", + "0.9551743540348476", + "0.9551743540348474", + "0.9243936140108662", + "0.9243936140108662", + "0.9087399593478864", + "0.9087399593478864", + "0.903923360404138", + "0.903923360404138", + "0.8340121294799135", + "0.8340121294799135", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.6330544433630699", + "3.1833484172821045", + "3.291223287582397", + "0.8819411301071244", + "0.8345096879387736", + "0.7400397692990736", + "0.682191274086094", + "0.6385577958892962", + "0.6135335608633475", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "84", + "182001.0", + "part_5321.289825439448_6385.547790527337.mzml", + "LASELDHVQEVLEGYKK", + "1.0", + "sp|K2M3_SHEEP||191|208", + "1966.6233", + "1957.0156", + "1.0", + "3.0", + "17.0", + "0.0", + "5.293186", + "9.0", + "0.0", + "0.999", + "6.0", + "5.0", + "0.0", + "1.6231235", + "0.32029718", + "0.69158834", + "0.03427932", + "5407.3804", + "20.601599", + "229140.375", + "0.0", + "0.0", + "5.252308", + "5.0", + "0.0", + "0.999", + "5.0", + "5.0", + "0.0", + "1.0431366", + "13094.672", + "-2.805023", + "0.21520306", + "0.69158834", + "91.66509", + "87.78511", + "3.879982", + "0.028545024", + "4387.0073", + "17.51834", + "0.0", + "0.0", + "0.0", + "0.0", + "0.2677501", + "0.69158834", + "114570.1875", + "0.0", + "0.0", + "229140.375", + "0.0", + "0.0", + "182001|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=144248", + "0.5821197734486651", + "0.5821197734486651", + "0.5821197734486651", + "0.5821197734486651", + "0.5821197734486651", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.215073608982469", + "0.2621487367070492", + "0.3092238644316293", + "0.3562989921562094", + "0.4033741198807895", + "7.0", + "7.0", + "7.0", + "7.0", + "10.0", + "0.5821197734486651", + "0.5821197734486651", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4719464976129011", + "6.503999710083008", + "8.28451156616211", + "0.4033741198807895", + "0.215073608982469", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ], + [ + "85", + "206610.0", + "part_5321.289825439448_6385.547790527337.mzml", + "SINIAPSANAYVARATIYR", + "1.0", + "sp|P31600|NFRA_ECOLI|604|623", + "2050.6614", + "2050.096", + "1.0", + "3.0", + "19.0", + "0.0", + "2.3172426", + "2.0", + "0.0", + "0.999", + "6.0", + "2.0", + "1.0", + "9.645014", + "0.14915287", + "0.5866297", + "0.09534911", + "764.92993", + "28.132862", + "0.0", + "0.0", + "0.0", + "1.8674126", + "2.0", + "0.0", + "0.999", + "6.0", + "2.0", + "1.0", + "8.924076", + "144747.77", + "-3.2468534", + "0.1487089", + "0.5866297", + "99.00044", + "86.33138", + "12.66906", + "0.09320626", + "275.76843", + "27.938673", + "0.0", + "0.0", + "0.0", + "0.0", + "0.14893088", + "0.5866297", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "206610|part_5321.289825439448_6385.547790527337.mzml|controllerType=0 controllerNumber=1 scan=155805", + "0.9394008538328852", + "0.9394008538328852", + "0.9394008538328852", + "0.9394008538328854", + "0.9394008538328854", + "-1.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.4157945262723346", + "0.4426857814957647", + "0.4695770367191949", + "0.4964682919426251", + "0.5233595471660553", + "7.0", + "7.0", + "7.0", + "7.0", + "8.0", + "0.9394008538328854", + "0.9394008538328852", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "-0.1346875858208664", + "5.412604808807373", + "6.771699905395508", + "0.5233595471660553", + "0.4157945262723346", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0", + "0.0" + ] + ], + "shape": { + "columns": 111, + "rows": 46355 + } + }, + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ScanNrfilenamePeptidenum_proteinsProteinsExpMassCalcMassLabelchargepeptide_len...top_correlation_individual_1top_correlation_individual_2top_correlation_individual_3top_correlation_individual_4top_correlation_individual_5top_correlation_individual_6top_correlation_individual_7top_correlation_individual_8top_correlation_individual_9top_correlation_individual_10
623520.0part_2128.5159301757785_3192.7738952636682.mzmlQRTM[Oxidation]EVLR1.0sp|P29018|CYDD_ECOLI|236|2441038.95841047.54941.02.08.0...0.7554340.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
11285502.0part_7449.805755615226_8514.063720703116.mzmlTLFTVSAGGQPAYSQDFAPLPADIR1.0sp|P77581|ASTC_ECOLI|141|1662638.17162621.31231.04.025.0...0.9149160.8999250.8911140.8558410.0000000.0000000.0000000.0000000.0000000.000000
1311947.0part_2128.5159301757785_3192.7738952636682.mzmlSTRSIGLTEAGR1.0sp|P67662|AAER_ECOLI|51|631234.29031246.66281.03.012.0...0.4568280.3829780.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
14204229.0part_5321.289825439448_6385.547790527337.mzmlCVLIFM[Oxidation]AEGNPRIAK1.0sp|Q46911|YGCU_ECOLI|280|2951679.24941676.87431.02.015.0...-0.1561830.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
15251054.0part_6385.547790527337_7449.805755615227.mzmlADIQKLLTSLPAHHFQIVLEITER1.0sp|P76446|PDEN_ECOLI|367|3912782.99412771.53301.03.024.0...0.2072900.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
..................................................................
81119268843.0part_6385.547790527337_7449.805755615227.mzmlAEQLEENVQALNNLTFSTK1.0sp|Q46851|GPR_ECOLI|304|3232158.71042148.07001.03.019.0...0.8979860.8907940.8854280.8735900.8659230.8645300.8368180.8357460.8029080.794334
8112013391.0part_2128.5159301757785_3192.7738952636682.mzmlGVHEGHVAAEVIAGK1.0sp|P0A9P0|DLDH_ECOLI|323|3381471.15491472.77371.02.015.0...0.7995580.7898560.7804870.7630800.7526970.7093810.7067390.7066950.6968610.692283
8112234906.0part_2128.5159301757785_3192.7738952636682.mzmlYHLDDISMHR1.0sp|P18392|RSTB_ECOLI|84|941287.07121285.58731.02.010.0...0.5763230.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
81124284901.0part_6385.547790527337_7449.805755615227.mzmlYPQCQRVDSKLIETWFNNLNWGPDK1.0sp|Q46911|YGCU_ECOLI|307|3323054.36063050.47101.04.025.0...0.5757400.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
8112552608.0part_3192.7738952636682_4257.031860351558.mzmlAKQSPNTM[Oxidation]SDM[Oxidation]AAFEK1.0sp|P0ABJ1|CYOA_ECOLI|237|2531786.54131786.78651.03.016.0...0.3469990.3450730.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
\n", + "

46355 rows × 111 columns

\n", + "
" + ], "text/plain": [ - "
" + " ScanNr filename \\\n", + "6 23520.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "11 285502.0 part_7449.805755615226_8514.063720703116.mzml \n", + "13 11947.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "14 204229.0 part_5321.289825439448_6385.547790527337.mzml \n", + "15 251054.0 part_6385.547790527337_7449.805755615227.mzml \n", + "... ... ... \n", + "81119 268843.0 part_6385.547790527337_7449.805755615227.mzml \n", + "81120 13391.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "81122 34906.0 part_2128.5159301757785_3192.7738952636682.mzml \n", + "81124 284901.0 part_6385.547790527337_7449.805755615227.mzml \n", + "81125 52608.0 part_3192.7738952636682_4257.031860351558.mzml \n", + "\n", + " Peptide num_proteins \\\n", + "6 QRTM[Oxidation]EVLR 1.0 \n", + "11 TLFTVSAGGQPAYSQDFAPLPADIR 1.0 \n", + "13 STRSIGLTEAGR 1.0 \n", + "14 CVLIFM[Oxidation]AEGNPRIAK 1.0 \n", + "15 ADIQKLLTSLPAHHFQIVLEITER 1.0 \n", + "... ... ... \n", + "81119 AEQLEENVQALNNLTFSTK 1.0 \n", + "81120 GVHEGHVAAEVIAGK 1.0 \n", + "81122 YHLDDISMHR 1.0 \n", + "81124 YPQCQRVDSKLIETWFNNLNWGPDK 1.0 \n", + "81125 AKQSPNTM[Oxidation]SDM[Oxidation]AAFEK 1.0 \n", + "\n", + " Proteins ExpMass CalcMass Label charge \\\n", + "6 sp|P29018|CYDD_ECOLI|236|244 1038.9584 1047.5494 1.0 2.0 \n", + "11 sp|P77581|ASTC_ECOLI|141|166 2638.1716 2621.3123 1.0 4.0 \n", + "13 sp|P67662|AAER_ECOLI|51|63 1234.2903 1246.6628 1.0 3.0 \n", + "14 sp|Q46911|YGCU_ECOLI|280|295 1679.2494 1676.8743 1.0 2.0 \n", + "15 sp|P76446|PDEN_ECOLI|367|391 2782.9941 2771.5330 1.0 3.0 \n", + "... ... ... ... ... ... \n", + "81119 sp|Q46851|GPR_ECOLI|304|323 2158.7104 2148.0700 1.0 3.0 \n", + "81120 sp|P0A9P0|DLDH_ECOLI|323|338 1471.1549 1472.7737 1.0 2.0 \n", + "81122 sp|P18392|RSTB_ECOLI|84|94 1287.0712 1285.5873 1.0 2.0 \n", + "81124 sp|Q46911|YGCU_ECOLI|307|332 3054.3606 3050.4710 1.0 4.0 \n", + "81125 sp|P0ABJ1|CYOA_ECOLI|237|253 1786.5413 1786.7865 1.0 3.0 \n", + "\n", + " peptide_len ... top_correlation_individual_1 \\\n", + "6 8.0 ... 0.755434 \n", + "11 25.0 ... 0.914916 \n", + "13 12.0 ... 0.456828 \n", + "14 15.0 ... -0.156183 \n", + "15 24.0 ... 0.207290 \n", + "... ... ... ... \n", + "81119 19.0 ... 0.897986 \n", + "81120 15.0 ... 0.799558 \n", + "81122 10.0 ... 0.576323 \n", + "81124 25.0 ... 0.575740 \n", + "81125 16.0 ... 0.346999 \n", + "\n", + " top_correlation_individual_2 top_correlation_individual_3 \\\n", + "6 0.000000 0.000000 \n", + "11 0.899925 0.891114 \n", + "13 0.382978 0.000000 \n", + "14 0.000000 0.000000 \n", + "15 0.000000 0.000000 \n", + "... ... ... \n", + "81119 0.890794 0.885428 \n", + "81120 0.789856 0.780487 \n", + "81122 0.000000 0.000000 \n", + "81124 0.000000 0.000000 \n", + "81125 0.345073 0.000000 \n", + "\n", + " top_correlation_individual_4 top_correlation_individual_5 \\\n", + "6 0.000000 0.000000 \n", + "11 0.855841 0.000000 \n", + "13 0.000000 0.000000 \n", + "14 0.000000 0.000000 \n", + "15 0.000000 0.000000 \n", + "... ... ... \n", + "81119 0.873590 0.865923 \n", + "81120 0.763080 0.752697 \n", + "81122 0.000000 0.000000 \n", + "81124 0.000000 0.000000 \n", + "81125 0.000000 0.000000 \n", + "\n", + " top_correlation_individual_6 top_correlation_individual_7 \\\n", + "6 0.000000 0.000000 \n", + "11 0.000000 0.000000 \n", + "13 0.000000 0.000000 \n", + "14 0.000000 0.000000 \n", + "15 0.000000 0.000000 \n", + "... ... ... \n", + "81119 0.864530 0.836818 \n", + "81120 0.709381 0.706739 \n", + "81122 0.000000 0.000000 \n", + "81124 0.000000 0.000000 \n", + "81125 0.000000 0.000000 \n", + "\n", + " top_correlation_individual_8 top_correlation_individual_9 \\\n", + "6 0.000000 0.000000 \n", + "11 0.000000 0.000000 \n", + "13 0.000000 0.000000 \n", + "14 0.000000 0.000000 \n", + "15 0.000000 0.000000 \n", + "... ... ... \n", + "81119 0.835746 0.802908 \n", + "81120 0.706695 0.696861 \n", + "81122 0.000000 0.000000 \n", + "81124 0.000000 0.000000 \n", + "81125 0.000000 0.000000 \n", + "\n", + " top_correlation_individual_10 \n", + "6 0.000000 \n", + "11 0.000000 \n", + "13 0.000000 \n", + "14 0.000000 \n", + "15 0.000000 \n", + "... ... \n", + "81119 0.794334 \n", + "81120 0.692283 \n", + "81122 0.000000 \n", + "81124 0.000000 \n", + "81125 0.000000 \n", + "\n", + "[46355 rows x 111 columns]" ] }, + "execution_count": 16, "metadata": {}, - "output_type": "display_data" - }, + "output_type": "execute_result" + } + ], + "source": [ + "df_targets" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def compare_feature_distributions_side_by_side(\n", + " df_targets1, df_decoys1, df_targets2, df_decoys2, selected_peptides=None, bins=100\n", + "):\n", + " \"\"\"\n", + " Compare feature distributions for two sets of target/decoy dataframes.\n", + " For each feature, show df1 (targets/decoys) on the left and df2 (targets/decoys) on the right.\n", + " \"\"\"\n", + " import matplotlib.pyplot as plt\n", + " import pandas as pd\n", + "\n", + " numeric_cols = [\n", + " c for c in df_targets1.columns if pd.api.types.is_numeric_dtype(df_targets1[c])\n", + " ]\n", + " n_features = len(numeric_cols)\n", + " fig, axes = plt.subplots(n_features, 2, figsize=(12, 4 * n_features), squeeze=False)\n", + "\n", + " for idx, c in enumerate(numeric_cols):\n", + " # Left: df1\n", + " ax1 = axes[idx, 0]\n", + " ax1.hist(df_targets1[c].dropna(), alpha=0.5, bins=bins, label=\"Targets 1\")\n", + " ax1.hist(df_decoys1[c].dropna(), alpha=0.5, bins=bins, label=\"Decoys 1\")\n", + " ax1.set_title(f\"{c} (df1)\")\n", + " ax1.legend()\n", + "\n", + " # Right: df2\n", + " ax2 = axes[idx, 1]\n", + " ax2.hist(df_targets2[c].dropna(), alpha=0.5, bins=bins, label=\"Targets 2\")\n", + " ax2.hist(df_decoys2[c].dropna(), alpha=0.5, bins=bins, label=\"Decoys 2\")\n", + " ax2.set_title(f\"{c} (df2)\")\n", + " ax2.legend()\n", + "\n", + " # Optionally highlight selected peptides\n", + " if selected_peptides is not None and \"Peptide\" in df_targets1.columns:\n", + " for pep in selected_peptides:\n", + " vals1 = df_targets1[df_targets1[\"Peptide\"] == pep][c]\n", + " vals2 = df_targets2[df_targets2[\"Peptide\"] == pep][c]\n", + " ax1.scatter(\n", + " vals1,\n", + " [ax1.get_ylim()[1] * 0.9] * len(vals1),\n", + " color=\"blue\",\n", + " marker=\"x\",\n", + " )\n", + " ax2.scatter(\n", + " vals2,\n", + " [ax2.get_ylim()[1] * 0.9] * len(vals2),\n", + " color=\"green\",\n", + " marker=\"x\",\n", + " )\n", + "\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN55JREFUeJzt3XtclHX+//8npxk8DYoiiGIeUzHT0lTMQyYrFrXraqUdDF3LbMlNqUzL9dBh7Wtt6qZmbnnY3VoPu2vbqmkspmWSGunmIdGS0jJAM8EjCLx/f/RjPo6AMiggbx73221ut+Z9va7rer1nbHhyzXVd+BhjjAAAACzjW9kNAAAAlAdCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAK9s2LBBPj4+2rBhwxXdro+Pj6ZOnXpFt+mtxYsXy8fHR9988025bvOWW27RLbfc4vW2vHnty7oPb0ydOlU+Pj7lug/gchByUK1t3rxZU6dO1fHjxyu7lWphzZo1lR5kULl++OEHTZgwQX379lWdOnUuGdo2b96snj17qmbNmgoLC9Pvfvc7nTx5suIaRpVGyEG1tnnzZk2bNo2QU0HWrFmjadOmFbvszJkzmjRpUgV35GnYsGE6c+aMrrnmmnLdzwcffKAPPvjA6/V69+6tM2fOqHfv3uXQVcVITU3V//t//0/ff/+9OnTocNHaHTt2qF+/fjp9+rReffVVPfTQQ1qwYIHuvvvuCuoWVZ1/ZTcAoGKcPn1aNWvWLDKel5engoICORyOSujq/wQGBlbq/iXJz89Pfn5+5b6fsr7Wvr6+V8XrdDk6d+6sH3/8UcHBwfrHP/5x0cDyzDPPqF69etqwYYNcLpckqVmzZnr44Yf1wQcfqH///hXVNqoojuSg2po6daqeeuopSVLz5s3l4+PjPnciLy9Pzz//vFq2bCmn06lmzZrpmWeeUU5Ojsc2mjVrpjvuuEMffPCBOnXqpMDAQEVGRupf//pXmXr629/+pq5du6pmzZqqV6+eevfuXeQ3/nnz5ql9+/ZyOp0KDw9XfHx8kSNRt9xyi6677jqlpKSod+/eqlmzpp555hl988038vHx0SuvvKJZs2a557dnzx5J0t69e3XXXXcpODhYgYGB6tKli957771L9v3xxx/r7rvvVtOmTeV0OhUREaFx48bpzJkz7prhw4dr7ty5kuR+rc8/n6O4c3K2b9+u2267TS6XS7Vr11a/fv306aefetQUnvPyySefKCEhQSEhIapVq5Z+/etf68iRI5fsvbhtnX/+TOF7vGnTJnXt2lWBgYFq0aKF/vKXvxRZf/fu3br11ltVo0YNNWnSRC+88IIKCgqK1J1/vkxGRob8/f2LPcKVmpoqHx8fzZkzR1LJ5+QsWLBALVu2VI0aNdS1a1d9/PHHpZpbSdsszftZVnXq1FFwcPAl67Kzs5WYmKgHHnjAHXAk6cEHH1Tt2rW1fPnyy+4F9uNIDqqtQYMGad++ffr73/+umTNnqkGDBpKkkJAQPfTQQ1qyZInuuusuPfHEE9qyZYumT5+uL7/8UitXrvTYzv79+zVkyBCNHj1acXFxWrRoke6++26tXbtWv/jFL0rdz7Rp0zR16lT16NFDzz33nBwOh7Zs2aL169e7f2OdOnWqpk2bpujoaD366KNKTU3V66+/rm3btumTTz5RQECAe3s//vijbrvtNg0dOlQPPPCAQkND3csWLVqks2fPatSoUXI6nQoODtbu3bt18803q3HjxpowYYJq1aql5cuXa+DAgfrnP/+pX//61yX2vmLFCp0+fVqPPvqo6tevr61bt+q1117Td999pxUrVkiSHnnkER0+fFiJiYn661//esnXY/fu3erVq5dcLpfGjx+vgIAAvfHGG7rlllu0ceNGdevWzaN+zJgxqlevnqZMmaJvvvlGs2bN0mOPPaZly5aV+j0oyVdffaW77rpLI0eOVFxcnBYuXKjhw4erc+fOat++vSQpPT1dffv2VV5envv1W7BggWrUqHHRbYeGhqpPnz5avny5pkyZ4rFs2bJl8vPzu+jRjrfeekuPPPKIevToobFjx+rAgQP65S9/qeDgYEVERJRpvqV5P8vbzp07lZeXpy5duniMOxwOderUSdu3b6+QPlDFGaAae/nll40kk5aW5h7bsWOHkWQeeughj9onn3zSSDLr1693j11zzTVGkvnnP//pHsvKyjKNGjUyN9xwQ6n72L9/v/H19TW//vWvTX5+vseygoICY4wxmZmZxuFwmP79+3vUzJkzx0gyCxcudI/16dPHSDLz58/32FZaWpqRZFwul8nMzPRY1q9fP9OhQwdz9uxZj3336NHDtG7d2j324YcfGknmww8/dI+dPn26yJymT59ufHx8zLfffusei4+PNyV97EgyU6ZMcT8fOHCgcTgc5uuvv3aPHT582NSpU8f07t3bPbZo0SIjyURHR7tfK2OMGTdunPHz8zPHjx8vdn/FKdzW+f8eCt/jjz76yD2WmZlpnE6neeKJJ9xjY8eONZLMli1bPOqCgoKKbLNPnz6mT58+7udvvPGGkWR27tzp0U9kZKS59dZb3c8vfO1zc3NNw4YNTadOnUxOTo67bsGCBUaSxz6Km1tx2zSm9O/nlClTSnw/S2PFihVF9n3hsvNf90J33323CQsLK/N+UX3wdRVwgTVr1kiSEhISPMafeOIJSdLq1as9xsPDwz2OcrhcLj344IPavn270tPTS7XPd999VwUFBZo8ebJ8fT3/tyz8Sue///2vcnNzNXbsWI+ahx9+WC6Xq0hfTqdTI0aMKHZ/gwcPVkhIiPv5sWPHtH79et1zzz06ceKEjh49qqNHj+rHH39UTEyM9u/fr++//77E/s8/WnHq1CkdPXpUPXr0kDGmTL9x5+fn64MPPtDAgQPVokUL93ijRo103333adOmTcrOzvZYZ9SoUR5ff/Xq1Uv5+fn69ttvvd7/hSIjI9WrVy/385CQELVp00YHDhxwj61Zs0bdu3dX165dPeruv//+S25/0KBB8vf39zjqtGvXLu3Zs0dDhgwpcb3PPvtMmZmZGj16tMd5PsOHD1dQUFCp53ehK/1+lkXhV2NOp7PIssDAwCvy1RnsR8gBLvDtt9/K19dXrVq18hgPCwtT3bp1i/zQbNWqVZF7hVx77bWSVOr7rXz99dfy9fVVZGTkRfuSpDZt2niMOxwOtWjRokhfjRs3LvEE1+bNm3s8/+qrr2SM0e9//3uFhIR4PAq/QsnMzCyxt4MHD2r48OEKDg5W7dq1FRISoj59+kiSsrKySlyvJEeOHNHp06eLzFWS2rVrp4KCAh06dMhjvGnTph7P69WrJ0n66aefvN7/hS7cduH2z9/2t99+q9atWxepK24OF2rQoIH69evncZ7JsmXL5O/vr0GDBpW4XuF7fuF+AwICPMKht670+1kWhUHrwvPgJOns2bOX/BoQkDgnByhRVb/J2cV+CFy4rPDk2CeffFIxMTHFrnNh6CuUn5+vX/ziFzp27JiefvpptW3bVrVq1dL333+v4cOHF3vibXko6aooY8xVve1CQ4cO1YgRI7Rjxw516tRJy5cvV79+/dznil2ukv495+fnF3l+NbyfjRo1kvTzfXUu9MMPPyg8PLxC+kDVRshBtVbcB/8111yjgoIC7d+/X+3atXOPZ2Rk6Pjx40XuoVJ4FOT8be3bt0/Sz1fmlEbLli1VUFCgPXv2qFOnTsXWFO43NTXV47f03NxcpaWlKTo6ulT7Kk7h9gICArzezs6dO7Vv3z4tWbJEDz74oHs8MTGxSG1pg2NISIhq1qyp1NTUIsv27t0rX1/fMp9UW16uueYa7d+/v8h4cXMozsCBA/XII4+4v7Lat2+fJk6ceMl9Sj+f/H7rrbe6x8+dO6e0tDR17NjRPVZ4ZOvCK/EuPALozftZnq677jr5+/vrs88+0z333OMez83N1Y4dOzzGgJLwdRWqtVq1akny/OC//fbbJUmzZs3yqH311VclSbGxsR7jhw8f9rjiKjs7W3/5y1/UqVMnhYWFlaqPgQMHytfXV88991yR35QLjxZER0fL4XDoT3/6k8cRhLfeektZWVlF+vJGw4YNdcstt+iNN94o9jfni12KXXiU4/yejDGaPXt2kdriXu+Sttm/f3/9+9//9vjKLyMjQ++884569uzpcVnx1eD222/Xp59+qq1bt7rHjhw5orfffrtU69etW1cxMTFavny5li5dKofDoYEDB150nS5duigkJETz589Xbm6ue3zx4sVFXuOWLVtKkj766CP3WH5+vhYsWOBR5837WZ6CgoIUHR2tv/3tbzpx4oR7/K9//atOnjzJDQFRKhzJQbXWuXNnSdKzzz6roUOHKiAgQHfeeafi4uK0YMECHT9+XH369NHWrVu1ZMkSDRw4UH379vXYxrXXXquRI0dq27ZtCg0N1cKFC5WRkaFFixaVuo9WrVrp2Wef1fPPP69evXpp0KBBcjqd2rZtm8LDwzV9+nSFhIRo4sSJmjZtmgYMGKBf/vKXSk1N1bx583TTTTfpgQceuKzXYu7cuerZs6c6dOighx9+WC1atFBGRoaSk5P13Xff6X//+1+x67Vt21YtW7bUk08+qe+//14ul0v//Oc/iz0XpvD1/t3vfqeYmBj5+flp6NChxW73hRdeUGJionr27Knf/va38vf31xtvvKGcnBzNmDHjsuZaHsaPH6+//vWvGjBggB5//HH3JeTXXHONvvjii1JtY8iQIXrggQc0b948xcTEqG7duhetDwgI0AsvvKBHHnlEt956q4YMGaK0tDQtWrSoyDk57du3V/fu3TVx4kQdO3ZMwcHBWrp0qfLy8jzqvHk/y+qFF16Q9PNtAqSfg8umTZskyeOu1y+++KJ69OihPn36aNSoUfruu+/0xz/+Uf3799eAAQOuWD+wWOVc1AVcPZ5//nnTuHFj4+vr677E9ty5c2batGmmefPmJiAgwERERJiJEyd6XF5tzM+XF8fGxpp169aZ66+/3jidTtO2bVuzYsWKMvWycOFCc8MNNxin02nq1atn+vTpYxITEz1q5syZY9q2bWsCAgJMaGioefTRR81PP/3kUdOnTx/Tvn37ItsvvIT85ZdfLnb/X3/9tXnwwQdNWFiYCQgIMI0bNzZ33HGH+cc//uGuKe6S4z179pjo6GhTu3Zt06BBA/Pwww+b//3vf0aSWbRokbsuLy/PjBkzxoSEhBgfHx+Py491wSXkxhjz+eefm5iYGFO7dm1Ts2ZN07dvX7N582aPmsJLo7dt2+YxXlyfl1LSJeSxsbFFai+8DNwYY7744gvTp08fExgYaBo3bmyef/5589Zbb13yEvJC2dnZpkaNGkaS+dvf/lZkeUlzmjdvnmnevLlxOp2mS5cu5qOPPip2H19//bWJjo42TqfThIaGmmeeecYkJiaW+f0s6yXkkkp8XOjjjz82PXr0MIGBgSYkJMTEx8eb7Oxsr/eJ6snHmCt45hxQzTRr1kzXXXedVq1aVdmtAAAuwDk5AADASpyTA5SzS90QsEaNGpd14zZc2smTJ3Xy5MmL1oSEhFTIH+e0VVZW1iVv0FfaE/GBK4WQA5Szwvt9lCQuLk6LFy+umGaqqVdeeaXYP4B5vrS0tFJf8o+iHn/8cS1ZsuSiNZwdgYrGOTlAOfvvf/970eXh4eEXvdMxLt+BAwc8/gRDcXr27KnAwMAK6sg+e/bs0eHDhy9aczn3cgLKgpADAACsxInHAADAStX6nJyCggIdPnxYderUqfJ/pwgAgOrCGKMTJ04oPDxcvr4lH6+p1iHn8OHDV93fvwEAAKVz6NAhNWnSpMTl1Trk1KlTR9LPL9LV9ndwAABA8bKzsxUREeH+OV6Sah1yCr+icrlchBwAAKqYS51qwonHAADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFbyr+wGAFSsc2s3eTwPGNCzkjoBgPLFkRwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKlxVyXnrpJfn4+Gjs2LHusbNnzyo+Pl7169dX7dq1NXjwYGVkZHisd/DgQcXGxqpmzZpq2LChnnrqKeXl5XnUbNiwQTfeeKOcTqdatWqlxYsXF9n/3Llz1axZMwUGBqpbt27aunXr5UwHAABYpMwhZ9u2bXrjjTd0/fXXe4yPGzdO//nPf7RixQpt3LhRhw8f1qBBg9zL8/PzFRsbq9zcXG3evFlLlizR4sWLNXnyZHdNWlqaYmNj1bdvX+3YsUNjx47VQw89pHXr1rlrli1bpoSEBE2ZMkWff/65OnbsqJiYGGVmZpZ1SgAAwCamDE6cOGFat25tEhMTTZ8+fczjjz9ujDHm+PHjJiAgwKxYscJd++WXXxpJJjk52RhjzJo1a4yvr69JT09317z++uvG5XKZnJwcY4wx48ePN+3bt/fY55AhQ0xMTIz7edeuXU18fLz7eX5+vgkPDzfTp08v9TyysrKMJJOVlVX6yQNVXO77H3s8AKCqKe3P7zIdyYmPj1dsbKyio6M9xlNSUnTu3DmP8bZt26pp06ZKTk6WJCUnJ6tDhw4KDQ1118TExCg7O1u7d+9211y47ZiYGPc2cnNzlZKS4lHj6+ur6Ohod01xcnJylJ2d7fEAAAB28vd2haVLl+rzzz/Xtm3biixLT0+Xw+FQ3bp1PcZDQ0OVnp7urjk/4BQuL1x2sZrs7GydOXNGP/30k/Lz84ut2bt3b4m9T58+XdOmTSvdRAEAQJXm1ZGcQ4cO6fHHH9fbb7+twMDA8uqp3EycOFFZWVnux6FDhyq7JQAAUE68CjkpKSnKzMzUjTfeKH9/f/n7+2vjxo3605/+JH9/f4WGhio3N1fHjx/3WC8jI0NhYWGSpLCwsCJXWxU+v1SNy+VSjRo11KBBA/n5+RVbU7iN4jidTrlcLo8HAACwk1chp1+/ftq5c6d27NjhfnTp0kX333+/+78DAgKUlJTkXic1NVUHDx5UVFSUJCkqKko7d+70uAoqMTFRLpdLkZGR7przt1FYU7gNh8Ohzp07e9QUFBQoKSnJXQMAAKo3r87JqVOnjq677jqPsVq1aql+/fru8ZEjRyohIUHBwcFyuVwaM2aMoqKi1L17d0lS//79FRkZqWHDhmnGjBlKT0/XpEmTFB8fL6fTKUkaPXq05syZo/Hjx+s3v/mN1q9fr+XLl2v16tXu/SYkJCguLk5dunRR165dNWvWLJ06dUojRoy4rBcEAADYwesTjy9l5syZ8vX11eDBg5WTk6OYmBjNmzfPvdzPz0+rVq3So48+qqioKNWqVUtxcXF67rnn3DXNmzfX6tWrNW7cOM2ePVtNmjTRm2++qZiYGHfNkCFDdOTIEU2ePFnp6enq1KmT1q5dW+RkZAAAUD35GGNMZTdRWbKzsxUUFKSsrCzOz0G1cW7tJo/nAQN6VlInAFA2pf35zd+uAgAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYyb+yGwBQsb45/r7H89bqWUmdAED54kgOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJW8Cjmvv/66rr/+erlcLrlcLkVFRen99993Lz979qzi4+NVv3591a5dW4MHD1ZGRobHNg4ePKjY2FjVrFlTDRs21FNPPaW8vDyPmg0bNujGG2+U0+lUq1attHjx4iK9zJ07V82aNVNgYKC6deumrVu3ejMVAABgOa9CTpMmTfTSSy8pJSVFn332mW699Vb96le/0u7duyVJ48aN03/+8x+tWLFCGzdu1OHDhzVo0CD3+vn5+YqNjVVubq42b96sJUuWaPHixZo8ebK7Ji0tTbGxserbt6927NihsWPH6qGHHtK6devcNcuWLVNCQoKmTJmizz//XB07dlRMTIwyMzMv9/UAAACW8DHGmMvZQHBwsF5++WXdddddCgkJ0TvvvKO77rpLkrR37161a9dOycnJ6t69u95//33dcccdOnz4sEJDQyVJ8+fP19NPP60jR47I4XDo6aef1urVq7Vr1y73PoYOHarjx49r7dq1kqRu3brppptu0pw5cyRJBQUFioiI0JgxYzRhwoRS956dna2goCBlZWXJ5XJdzssAVBn7lz7r8bz10BcrqRMAKJvS/vwu8zk5+fn5Wrp0qU6dOqWoqCilpKTo3Llzio6Odte0bdtWTZs2VXJysiQpOTlZHTp0cAccSYqJiVF2drb7aFBycrLHNgprCreRm5urlJQUjxpfX19FR0e7a0qSk5Oj7OxsjwcAALCT1yFn586dql27tpxOp0aPHq2VK1cqMjJS6enpcjgcqlu3rkd9aGio0tPTJUnp6ekeAadweeGyi9VkZ2frzJkzOnr0qPLz84utKdxGSaZPn66goCD3IyIiwtvpAwCAKsLrkNOmTRvt2LFDW7Zs0aOPPqq4uDjt2bOnPHq74iZOnKisrCz349ChQ5XdEgAAKCf+3q7gcDjUqlUrSVLnzp21bds2zZ49W0OGDFFubq6OHz/ucTQnIyNDYWFhkqSwsLAiV0EVXn11fs2FV2RlZGTI5XKpRo0a8vPzk5+fX7E1hdsoidPplNPp9HbKAACgCrrs++QUFBQoJydHnTt3VkBAgJKSktzLUlNTdfDgQUVFRUmSoqKitHPnTo+roBITE+VyuRQZGemuOX8bhTWF23A4HOrcubNHTUFBgZKSktw1AAAAXh3JmThxom677TY1bdpUJ06c0DvvvKMNGzZo3bp1CgoK0siRI5WQkKDg4GC5XC6NGTNGUVFR6t69uySpf//+ioyM1LBhwzRjxgylp6dr0qRJio+Pdx9hGT16tObMmaPx48frN7/5jdavX6/ly5dr9erV7j4SEhIUFxenLl26qGvXrpo1a5ZOnTqlESNGXMGXBgAAVGVehZzMzEw9+OCD+uGHHxQUFKTrr79e69at0y9+8QtJ0syZM+Xr66vBgwcrJydHMTExmjdvnnt9Pz8/rVq1So8++qiioqJUq1YtxcXF6bnnnnPXNG/eXKtXr9a4ceM0e/ZsNWnSRG+++aZiYmLcNUOGDNGRI0c0efJkpaenq1OnTlq7dm2Rk5EBAED1ddn3yanKuE8OqiPukwOgqiv3++QAAABczQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArORVyJk+fbpuuukm1alTRw0bNtTAgQOVmprqUXP27FnFx8erfv36ql27tgYPHqyMjAyPmoMHDyo2NlY1a9ZUw4YN9dRTTykvL8+jZsOGDbrxxhvldDrVqlUrLV68uEg/c+fOVbNmzRQYGKhu3bpp69at3kwHAABYzKuQs3HjRsXHx+vTTz9VYmKizp07p/79++vUqVPumnHjxuk///mPVqxYoY0bN+rw4cMaNGiQe3l+fr5iY2OVm5urzZs3a8mSJVq8eLEmT57srklLS1NsbKz69u2rHTt2aOzYsXrooYe0bt06d82yZcuUkJCgKVOm6PPPP1fHjh0VExOjzMzMy3k9AACAJXyMMaasKx85ckQNGzbUxo0b1bt3b2VlZSkkJETvvPOO7rrrLknS3r171a5dOyUnJ6t79+56//33dccdd+jw4cMKDQ2VJM2fP19PP/20jhw5IofDoaefflqrV6/Wrl273PsaOnSojh8/rrVr10qSunXrpptuuklz5syRJBUUFCgiIkJjxozRhAkTiu03JydHOTk57ufZ2dmKiIhQVlaWXC5XWV8GoErZv/RZj+eth75YSZ0AQNlkZ2crKCjokj+/L+ucnKysLElScHCwJCklJUXnzp1TdHS0u6Zt27Zq2rSpkpOTJUnJycnq0KGDO+BIUkxMjLKzs7V79253zfnbKKwp3EZubq5SUlI8anx9fRUdHe2uKc706dMVFBTkfkRERFzO9AEAwFWszCGnoKBAY8eO1c0336zrrrtOkpSeni6Hw6G6det61IaGhio9Pd1dc37AKVxeuOxiNdnZ2Tpz5oyOHj2q/Pz8YmsKt1GciRMnKisry/04dOiQ9xMHAABVgn9ZV4yPj9euXbu0adOmK9lPuXI6nXI6nZXdBgAAqABlOpLz2GOPadWqVfrwww/VpEkT93hYWJhyc3N1/Phxj/qMjAyFhYW5ay682qrw+aVqXC6XatSooQYNGsjPz6/YmsJtAACA6s2rkGOM0WOPPaaVK1dq/fr1at68ucfyzp07KyAgQElJSe6x1NRUHTx4UFFRUZKkqKgo7dy50+MqqMTERLlcLkVGRrprzt9GYU3hNhwOhzp37uxRU1BQoKSkJHcNAACo3rz6uio+Pl7vvPOO/v3vf6tOnTru81+CgoJUo0YNBQUFaeTIkUpISFBwcLBcLpfGjBmjqKgode/eXZLUv39/RUZGatiwYZoxY4bS09M1adIkxcfHu79KGj16tObMmaPx48frN7/5jdavX6/ly5dr9erV7l4SEhIUFxenLl26qGvXrpo1a5ZOnTqlESNGXKnXBgAAVGFehZzXX39dknTLLbd4jC9atEjDhw+XJM2cOVO+vr4aPHiwcnJyFBMTo3nz5rlr/fz8tGrVKj366KOKiopSrVq1FBcXp+eee85d07x5c61evVrjxo3T7Nmz1aRJE7355puKiYlx1wwZMkRHjhzR5MmTlZ6erk6dOmnt2rVFTkYGAADV02XdJ6eqK+119oBNuE8OgKquQu6TAwAAcLUi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALCS1yHno48+0p133qnw8HD5+Pjo3Xff9VhujNHkyZPVqFEj1ahRQ9HR0dq/f79HzbFjx3T//ffL5XKpbt26GjlypE6ePOlR88UXX6hXr14KDAxURESEZsyYUaSXFStWqG3btgoMDFSHDh20Zs0ab6cDAAAs5XXIOXXqlDp27Ki5c+cWu3zGjBn605/+pPnz52vLli2qVauWYmJidPbsWXfN/fffr927dysxMVGrVq3SRx99pFGjRrmXZ2dnq3///rrmmmuUkpKil19+WVOnTtWCBQvcNZs3b9a9996rkSNHavv27Ro4cKAGDhyoXbt2eTslAABgIR9jjCnzyj4+WrlypQYOHCjp56M44eHheuKJJ/Tkk09KkrKyshQaGqrFixdr6NCh+vLLLxUZGalt27apS5cukqS1a9fq9ttv13fffafw8HC9/vrrevbZZ5Weni6HwyFJmjBhgt59913t3btXkjRkyBCdOnVKq1atcvfTvXt3derUSfPnzy+235ycHOXk5LifZ2dnKyIiQllZWXK5XGV9GYAqZf/SZz2etx76YiV1AgBlk52draCgoEv+/L6i5+SkpaUpPT1d0dHR7rGgoCB169ZNycnJkqTk5GTVrVvXHXAkKTo6Wr6+vtqyZYu7pnfv3u6AI0kxMTFKTU3VTz/95K45fz+FNYX7Kc706dMVFBTkfkRERFz+pAEAwFXpioac9PR0SVJoaKjHeGhoqHtZenq6GjZs6LHc399fwcHBHjXFbeP8fZRUU7i8OBMnTlRWVpb7cejQIW+nCAAAqgj/ym6gIjmdTjmdzspuAwAAVIAreiQnLCxMkpSRkeExnpGR4V4WFhamzMxMj+V5eXk6duyYR01x2zh/HyXVFC4HAADV2xUNOc2bN1dYWJiSkpLcY9nZ2dqyZYuioqIkSVFRUTp+/LhSUlLcNevXr1dBQYG6devmrvnoo4907tw5d01iYqLatGmjevXquWvO309hTeF+AABA9eZ1yDl58qR27NihHTt2SPr5ZOMdO3bo4MGD8vHx0dixY/XCCy/ovffe086dO/Xggw8qPDzcfQVWu3btNGDAAD388MPaunWrPvnkEz322GMaOnSowsPDJUn33XefHA6HRo4cqd27d2vZsmWaPXu2EhIS3H08/vjjWrt2rf74xz9q7969mjp1qj777DM99thjl/+qAACAqs946cMPPzSSijzi4uKMMcYUFBSY3//+9yY0NNQ4nU7Tr18/k5qa6rGNH3/80dx7772mdu3axuVymREjRpgTJ0541Pzvf/8zPXv2NE6n0zRu3Ni89NJLRXpZvny5ufbaa43D4TDt27c3q1ev9mouWVlZRpLJysry7kUAqrB9f3/G4wEAVU1pf35f1n1yqrrSXmcP2IT75ACo6irlPjkAAABXC0IOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArORf2Q0A1ZkpKFDBge+k7JOSq7Z8WzSRj2/l/O6Rb/L15Y/b9eOZTGXn/iSXs57qBzZUu/o3yM/Hr1J6AoDLUeVDzty5c/Xyyy8rPT1dHTt21GuvvaauXbtWdlvAJeV/sU/nViZJWSf+bzCojgJ+3U9+119bob0kH07SW7te1o9nM4ssqx/YUCOve0pR4f0qtCcAuFxV+uuqZcuWKSEhQVOmTNHnn3+ujh07KiYmRpmZRT+ogatJ/hf7dG7xu54BR5KyTujc4neV/8W+Cusl+XCSZnw2vtiAI0k/ns3UjM/GK/lwUoX1BABXQpUOOa+++qoefvhhjRgxQpGRkZo/f75q1qyphQsXVnZrQIlMQcHPR3Au4ty7STIFBeXeS4GM3tr1siRziUqjhbteUb7JL/eeAOBKqbJfV+Xm5iolJUUTJ050j/n6+io6OlrJycnFrpOTk6OcnBz386ysLElSdnZ2+TaLq865xOL/jVQE81O2CjKPXLwo46x8F/5TPvVcV3z/J0//3/8DB3yPKf3YD6Va74fTh7Xtm48VWf/GK94TAHij8Oe2MRf/Ba3KhpyjR48qPz9foaGhHuOhoaHau3dvsetMnz5d06ZNKzIeERFRLj0CtlmtvpXdAgC4nThxQkFBQSUur7IhpywmTpyohIQE9/OCggIdO3ZM9evXl4+Pj9fby87OVkREhA4dOiSX68r/xn01qS5zrS7zlKrPXJmnfarLXKvLPCXv52qM0YkTJxQeHn7Ruiobcho0aCA/Pz9lZGR4jGdkZCgsLKzYdZxOp5xOp8dY3bp1L7sXl8tl/T/AQtVlrtVlnlL1mSvztE91mWt1mafk3VwvdgSnUJU98djhcKhz585KSvq/EzgLCgqUlJSkqKioSuwMAABcDarskRxJSkhIUFxcnLp06aKuXbtq1qxZOnXqlEaMGFHZrQEAgEpWpUPOkCFDdOTIEU2ePFnp6enq1KmT1q5dW+Rk5PLidDo1ZcqUIl+B2ai6zLW6zFOqPnNlnvapLnOtLvOUym+uPuZS118BAABUQVX2nBwAAICLIeQAAAArEXIAAICVCDkAAMBKhBwAAGAlQo6Xjh07pvvvv18ul0t169bVyJEjdfLkyUuul5ycrFtvvVW1atWSy+VS7969debMmQrouOzKOlfp51tu33bbbfLx8dG7775bvo1eJm/neezYMY0ZM0Zt2rRRjRo11LRpU/3ud79z/8HXq8ncuXPVrFkzBQYGqlu3btq6detF61esWKG2bdsqMDBQHTp00Jo1ayqo08vjzTz//Oc/q1evXqpXr57q1aun6OjoS74uVwtv389CS5culY+PjwYOHFi+DV5B3s71+PHjio+PV6NGjeR0OnXttddWiX+/3s5z1qxZ7s+eiIgIjRs3TmfPnq2gbsvmo48+0p133qnw8PBS/0zYsGGDbrzxRjmdTrVq1UqLFy8u284NvDJgwADTsWNH8+mnn5qPP/7YtGrVytx7770XXWfz5s3G5XKZ6dOnm127dpm9e/eaZcuWmbNnz1ZQ12VTlrkWevXVV81tt91mJJmVK1eWb6OXydt57ty50wwaNMi899575quvvjJJSUmmdevWZvDgwRXY9aUtXbrUOBwOs3DhQrN7927z8MMPm7p165qMjIxi6z/55BPj5+dnZsyYYfbs2WMmTZpkAgICzM6dOyu4c+94O8/77rvPzJ0712zfvt18+eWXZvjw4SYoKMh89913Fdy5d7ydZ6G0tDTTuHFj06tXL/OrX/2qYpq9TN7ONScnx3Tp0sXcfvvtZtOmTSYtLc1s2LDB7Nixo4I7946383z77beN0+k0b7/9tklLSzPr1q0zjRo1MuPGjavgzr2zZs0a8+yzz5p//etfpfqZcODAAVOzZk2TkJBg9uzZY1577TXj5+dn1q5d6/W+CTle2LNnj5Fktm3b5h57//33jY+Pj/n+++9LXK9bt25m0qRJFdHiFVPWuRpjzPbt203jxo3NDz/8cNWHnMuZ5/mWL19uHA6HOXfuXHm0WSZdu3Y18fHx7uf5+fkmPDzcTJ8+vdj6e+65x8TGxnqMdevWzTzyyCPl2ufl8naeF8rLyzN16tQxS5YsKa8Wr4iyzDMvL8/06NHDvPnmmyYuLq7KhBxv5/r666+bFi1amNzc3Ipq8Yrwdp7x8fHm1ltv9RhLSEgwN998c7n2eSWV5mfC+PHjTfv27T3GhgwZYmJiYrzeH19XeSE5OVl169ZVly5d3GPR0dHy9fXVli1bil0nMzNTW7ZsUcOGDdWjRw+FhoaqT58+2rRpU0W1XSZlmasknT59Wvfdd5/mzp1b4h9KvZqUdZ4XysrKksvlkr//1XET8dzcXKWkpCg6Oto95uvrq+joaCUnJxe7TnJyske9JMXExJRYfzUoyzwvdPr0aZ07d07BwcHl1eZlK+s8n3vuOTVs2FAjR46siDaviLLM9b333lNUVJTi4+MVGhqq6667Tn/4wx+Un59fUW17rSzz7NGjh1JSUtxfaR04cEBr1qzR7bffXiE9V5Qr+Vl0dXwiVxHp6elq2LChx5i/v7+Cg4OVnp5e7DoHDhyQJE2dOlWvvPKKOnXqpL/85S/q16+fdu3apdatW5d732VRlrlK0rhx49SjRw/96le/Ku8Wr4iyzvN8R48e1fPPP69Ro0aVR4tlcvToUeXn5xf5EyehoaHau3dvseukp6cXW1/a16EylGWeF3r66acVHh5e5EP1alKWeW7atElvvfWWduzYUQEdXjllmeuBAwe0fv163X///VqzZo2++uor/fa3v9W5c+c0ZcqUimjba2WZ53333aejR4+qZ8+eMsYoLy9Po0eP1jPPPFMRLVeYkj6LsrOzdebMGdWoUaPU2+JIjqQJEybIx8fnoo/SfmBeqKCgQJL0yCOPaMSIEbrhhhs0c+ZMtWnTRgsXLryS0yiV8pzre++9p/Xr12vWrFlXtukyKM95ni87O1uxsbGKjIzU1KlTL79xVKiXXnpJS5cu1cqVKxUYGFjZ7VwxJ06c0LBhw/TnP/9ZDRo0qOx2yl1BQYEaNmyoBQsWqHPnzhoyZIieffZZzZ8/v7Jbu6I2bNigP/zhD5o3b54+//xz/etf/9Lq1av1/PPPV3ZrVy2O5Eh64oknNHz48IvWtGjRQmFhYcrMzPQYz8vL07Fjx0r8aqZRo0aSpMjISI/xdu3a6eDBg2VvuozKc67r16/X119/rbp163qMDx48WL169dKGDRsuo3PvlOc8C504cUIDBgxQnTp1tHLlSgUEBFxu21dMgwYN5Ofnp4yMDI/xjIyMEucVFhbmVf3VoCzzLPTKK6/opZde0n//+19df/315dnmZfN2nl9//bW++eYb3Xnnne6xwl+4/P39lZqaqpYtW5Zv02VUlve0UaNGCggIkJ+fn3usXbt2Sk9PV25urhwOR7n2XBZlmefvf/97DRs2TA899JAkqUOHDjp16pRGjRqlZ599Vr6+dhy3KOmzyOVyeXUURyLkSJJCQkIUEhJyybqoqCgdP35cKSkp6ty5s6Sff7AXFBSoW7duxa7TrFkzhYeHKzU11WN83759uu222y6/eS+V51wnTJjg/p+vUIcOHTRz5kyPD9uKUJ7zlH4+ghMTEyOn06n33nvvqjsK4HA41LlzZyUlJbkvGy4oKFBSUpIee+yxYteJiopSUlKSxo4d6x5LTExUVFRUBXRcNmWZpyTNmDFDL774otatW+dxPtbVytt5tm3bVjt37vQYmzRpkk6cOKHZs2crIiKiItouk7K8pzfffLPeeecdFRQUuH/Q79u3T40aNboqA45UtnmePn26SJApDHbGor+1HRUVVeTy/zJ/Fnl9qnI1N2DAAHPDDTeYLVu2mE2bNpnWrVt7XG783XffmTZt2pgtW7a4x2bOnGlcLpdZsWKF2b9/v5k0aZIJDAw0X331VWVModTKMtcL6Sq/usoY7+eZlZVlunXrZjp06GC++uor88MPP7gfeXl5lTWNIpYuXWqcTqdZvHix2bNnjxk1apSpW7euSU9PN8YYM2zYMDNhwgR3/SeffGL8/f3NK6+8Yr788kszZcqUKnMJuTfzfOmll4zD4TD/+Mc/PN67EydOVNYUSsXbeV6oKl1d5e1cDx48aOrUqWMee+wxk5qaalatWmUaNmxoXnjhhcqaQql4O88pU6aYOnXqmL///e/mwIED5oMPPjAtW7Y099xzT2VNoVROnDhhtm/fbrZv324kmVdffdVs377dfPvtt8YYYyZMmGCGDRvmri+8hPypp54yX375pZk7dy6XkFeUH3/80dx7772mdu3axuVymREjRnh8OKalpRlJ5sMPP/RYb/r06aZJkyamZs2aJioqynz88ccV3Ln3yjrX81WFkOPtPD/88EMjqdhHWlpa5UyiBK+99ppp2rSpcTgcpmvXrubTTz91L+vTp4+Ji4vzqF++fLm59tprjcPhMO3btzerV6+u4I7Lxpt5XnPNNcW+d1OmTKn4xr3k7ft5vqoUcozxfq6bN2823bp1M06n07Ro0cK8+OKLV9UvHSXxZp7nzp0zU6dONS1btjSBgYEmIiLC/Pa3vzU//fRTxTfuhZI+MwvnFhcXZ/r06VNknU6dOhmHw2FatGhhFi1aVKZ9+xhj0TEuAACA/58dZykBAABcgJADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFb6/wA3g/vqpYoXBQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAKcmCAYAAAB4GK7wAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlcVnX+///nxS7iBS4ImrivuIsbLVZKoqGTW2VfSy2X0dBxmUydyiUrHXO0LM2mZtSa/Lg0aaaiKaaVkhqluTLWqNggYibgCgjn90c/rrwElfVcXBeP++123W5e57zPOe/z5oLz9HXOdY7FMAxDAAAAAAAAgEncHN0BAAAAAAAAlC8UpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAoAieffZZPfTQQ3dst2PHDlksFu3YscNu+ocffqimTZvK09NTAQEBhdr2kSNH5OHhoUOHDhVqOQAAADOQkwAUBAUpAIVy8OBBDRgwQHXq1JGPj4/uuusuPfTQQ3rrrbcc3TWdPHlSFotFFotF//73v/PMnzFjhiwWi3755ZdibefEiRN6//339Ze//KVIyx87dkxDhw5VgwYN9N577+nvf/+7JGnv3r169tlnFRYWJk9PT1kslnyXDw0NVVRUlKZNm1bkfQAAACWPnFQ6OSknJ0fLli3TH/7wB4WEhKhixYpq0aKFXnnlFV27ds1ueXIS4DwoSAEosN27d6t9+/Y6cOCARowYobffflvDhw+Xm5ub3nzzTUd3z87LL78swzBKZd1vvvmm6tWrpwcffLBIy+/YsUM5OTl68803NXToUD322GOSpE2bNun999+XxWJR/fr1b7uOUaNGae3atfrpp5+K1AcAAFCyyEm/KY2cdOXKFT399NM6d+6cRo0apTfeeEMdO3bU9OnT1bNnzzz7Qk4CnIOHozsAwHm8+uqr8vf31759+/JcPp2SkuKYTuWjTZs22r9/v9auXat+/foVevkrV67I19c333lZWVn66KOPNGrUqCL3L3esbh7D0aNHa/LkyapQoYLGjBmj//znP7dcR0REhCpXrqzly5fr5ZdfLnJfAABAySAnlV5O8vLy0q5du3T33Xfbpo0YMUJ169bV9OnTFRsbq4iICNs8chLgHLhCCkCB/fTTT2revHm+3+WvXr16nmn/+te/1LFjR/n6+qpy5crq0qWLPv/8c9v8Tz/9VFFRUapZs6a8vb3VoEEDzZo1S9nZ2XbreeCBB9SiRQsdOXJEDz74oHx9fXXXXXdp7ty5+fZz4MCBaty4cYHO/uWuOz4+Xl26dJGvr+9tLzH/+uuv9csvv9iFnlw///yz+vTpo4oVK6p69eqaMGGCMjIy7NrkBidJCgwMlMVi0YwZMyRJQUFBqlChwm37m8vT01MPPPCAPv300wK1BwAApYucVHo5ycvLy64Ylatv376SpKNHj9pNJycBzoGCFIACq1OnjuLj4wt0k8iZM2fqqaeekqenp15++WXNnDlTISEh2r59u63NsmXL5Ofnp4kTJ+rNN99UWFiYpk2bpilTpuRZ34ULF9SjRw+1bt1af/vb39S0aVNNnjxZMTExedq6u7vrxRdf1IEDB7R27do79vX8+fPq2bOn2rRpozfeeOO2l5jv3r1bFotFbdu2tZt+9epVdevWTVu2bNGYMWP0wgsv6KuvvtLzzz9v1+6NN96whad33nlHH374YZHOTkpSWFiYDh06pPT09CItDwAASg45yfyclJycLEmqVq1annnkJMAJGABQQJ9//rnh7u5uuLu7G+Hh4cbzzz9vbNmyxcjMzLRrd/z4ccPNzc3o27evkZ2dbTcvJyfH9u8rV67k2cYf//hHw9fX17h27Zpt2v33329IMj744APbtIyMDCM4ONjo37+/bdqJEycMScbrr79uXL9+3WjUqJHRunVr2zanT59uSDLOnTuXZ91Lliwp0Bg8+eSTRtWqVfNMf+ONNwxJxurVq23TLl++bDRs2NCQZHzxxRe26fn142bR0dHGnf5Er1ixwpBk7Nmzp0B9BwAApYecZF5OyhUREWFYrVbjwoULeeaRk4CyjyukABTYQw89pLi4OP3hD3/QgQMHNHfuXEVGRuquu+7S+vXrbe3WrVunnJwcTZs2TW5u9n9mbnxy3I1fT7t48aJ++eUX3Xfffbpy5YqOHTtmt5yfn5+efPJJ23svLy917NhR//3vf/Pt641n/9atW3fb/fL29tbTTz99x/2XfjtLWLly5TzTN23apBo1amjAgAG2ab6+vho5cmSB1lsUuf0o7tNwAABA8ZGTzM1Jr732mrZt26Y5c+bk+zVJchJQ9lGQAlAoHTp00CeffKILFy5o7969mjp1qi5evKgBAwboyJEjkn67h4Kbm5tCQ0Nvu67Dhw+rb9++8vf3l9VqVWBgoC1MpaWl2bWtVauWXUiTfgsaFy5cuOX6Bw0apIYNG97xHgl33XWXvLy8btvXG+W3rlOnTqlhw4Z5+tikSZMCr7ewcvtx8zYBAIBjkJPMyUmrVq3Siy++qGHDhmn06NG37Qc5CSi7KEgBKBIvLy916NBBr732mt555x1lZWVpzZo1BV4+NTVV999/vw4cOKCXX35Zn332mbZu3aq//vWvkqScnBy79u7u7vmu53YBKvfs3/79+297U8uC3khckqpWrXrbcGem3H7kd98EAADgOOSk0rN161YNHjxYUVFRWrJkyS3bkZOAso+CFIBia9++vSTpzJkzkqQGDRooJyfHdiYwPzt27ND58+e1bNkyjRs3Tr169bI9orckPfnkk2rYsKFmzpx5xyfJFETTpk114cKFPGcm69Spo59++inPNhISEoq9zVs5ceKE3Nzc1Lhx41LbBgAAKB5yUsnlpD179qhv375q3769Vq9eLQ8Pj1u2JScBZR8FKQAF9sUXX+QbVjZt2iTp98uu+/TpIzc3N7388st5zuDlLp97Ju/G9WVmZmrx4sUl2ucbz/7deP+GogoPD5dhGIqPj7eb/vDDDyspKUkff/yxbdqVK1f097//vdjbvJX4+Hg1b95c/v7+pbYNAABQMOSk0s1JR48eVVRUlOrWrasNGzbc8cotchJQ9t26pAwANxk7dqyuXLmivn37qmnTpsrMzNTu3bu1atUq1a1b13bDy4YNG+qFF17QrFmzdN9996lfv37y9vbWvn37VLNmTc2ePVt33323KleurCFDhuhPf/qTLBaLPvzwwxI5O3ezQYMGadasWdq/f3+x13XvvfeqatWq2rZtm7p27WqbPmLECL399tsaPHiw4uPjVaNGDX344Yfy9fUt8LpPnTqlDz/8UJL07bffSpJeeeUVSb+dWXzqqadsbbOysrRz5049++yzxd4nAABQfOSk0stJFy9eVGRkpC5cuKBJkyZp48aNdvMbNGig8PBw23tyEuAkzHykHwDnFhMTYzzzzDNG06ZNDT8/P8PLy8to2LChMXbsWOPs2bN52v/zn/802rZta3h7exuVK1c27r//fmPr1q22+bt27TI6d+5sVKhQwahZs6bt8ci66fG/999/v9G8efM86x8yZIhRp04d2/sbH2d8s6VLlxqS8n2ccX7rvp0//elPRsOGDfNMP3XqlPGHP/zB8PX1NapVq2aMGzfO2Lx5c4EfZ/zFF1/Y+njz6/7777drGxMTY0gyjh8/Xqi+AwCA0kFO+k1p5KTcvt/qNWTIELttkZMA52AxjFIoswOAC/vvf/+rpk2bKiYmRt26dXNIH/r06SOLxaK1a9c6ZPsAAAD5IScBKCgKUgBQBKNHj9aPP/6orVu3mr7to0ePqmXLltq/f79atGhh+vYBAABuh5wEoCAoSAEAAAAAAMBUPGUPAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVB6O7oAj5eTkKCkpSZUqVZLFYnF0dwAAgAkMw9DFixdVs2ZNublxbi4/ZCQAAMofszNSuS5IJSUlKSQkxNHdAAAADnD69GnVqlXL0d0ok8hIAACUX2ZlpHJdkKpUqZKk3wbbarU6uDcAAMAM6enpCgkJseUA5EVGAgCg/DE7I5XrglTuJehWq5WwBQBAOcNX0W6NjAQAQPllVkbixgkAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExVru8hBQDA7WRnZysrK8vR3UAheXp6yt3d3dHdAADAZZGRnFNZy0gUpAAAuIlhGEpOTlZqaqqju4IiCggIUHBwMDcuBwCgBJGRnF9ZykgUpAAAuElu0Kpevbp8fX3LxAEbBWMYhq5cuaKUlBRJUo0aNRzcIwAAXAcZyXmVxYxEQQoAgBtkZ2fbglbVqlUd3R0UQYUKFSRJKSkpql69epm6NB0AAGdFRnJ+ZS0jcVNzAABukHs/BF9fXwf3BMWR+/Pj/hYAAJQMMpJrKEsZiYIUAAD54BJ058bPDwCA0sEx1rmVpZ8fBSkAAAAAAACYioIUAAAAAAAATMVNzQEAKKCszV+bti3PHvcWuO2dLr2ePn26ZsyYUcweFY3FYtHatWvVp0+fIq/j73//u1asWKHvvvtOFy9e1IULFxQQEFBifQQAAMVjZkaSyEm5fv31V02fPl2ff/65EhMTFRgYqD59+mjWrFny9/cv2c6WAgpSAAA4uTNnztj+vWrVKk2bNk0JCQm2aX5+foVaX2Zmpry8vEqsf8V15coV9ejRQz169NDUqVMd3R0AAOBEXDknJSUlKSkpSfPmzVNoaKhOnTqlUaNGKSkpSR9//LGju3dHfGUPZULW5q/tXgCAggsODra9/P39ZbFYbO8vX76sQYMGKSgoSH5+furQoYO2bdtmt3zdunU1a9YsDR48WFarVSNHjpQkvffeewoJCZGvr6/69u2r+fPn57ky6dNPP1W7du3k4+Oj+vXra+bMmbp+/bptvZLUt29fWSwW2/sDBw7owQcfVKVKlWS1WhUWFqZvv/32lvs3fvx4TZkyRZ07dy6ZAQOcCBkJAIrHlXNSixYt9O9//1u9e/dWgwYN1LVrV7366qv67LPPbNspyyhIAQDgwi5duqSHH35YsbGx+v7779WjRw/17t1biYmJdu3mzZun1q1b6/vvv9dLL72kXbt2adSoURo3bpz279+vhx56SK+++qrdMl999ZUGDx6scePG6ciRI3r33Xe1bNkyW7t9+/ZJkpYuXaozZ87Y3g8aNEi1atXSvn37FB8frylTpsjT09OE0QAAAPidK+aktLQ0Wa1WeXiU/S/Elf0eAihTbj47W5jvbwMwX+vWrdW6dWvb+1mzZmnt2rVav369xowZY5vetWtX/fnPf7a9f+GFF9SzZ08999xzkqTGjRtr9+7d2rBhg63NzJkzNWXKFA0ZMkSSVL9+fc2aNUvPP/+8pk+frsDAQElSQECAgoODbcslJiZq0qRJatq0qSSpUaNGpbDnAGAuMhLgfFwtJ/3yyy+aNWuW7Squso6ClAvJ7zJuDoQAUL5dunRJM2bM0MaNG3XmzBldv35dV69ezXPmr3379nbvExIS1LdvX7tpHTt2tAtaBw4c0K5du+zOCGZnZ+vatWu6cuWKfH198+3TxIkTNXz4cH344YeKiIjQo48+qgYNGhR3V4FbIiMBAPLjSjkpPT1dUVFRCg0NddhN2guLghSAYiHkA2Xbc889p61bt2revHlq2LChKlSooAEDBigzM9OuXcWKFQu97kuXLmnmzJnq169fnnk+Pj63XG7GjBn6f//v/2njxo2KiYnR9OnTtXLlyjzBDgCcGRkJKPtcJSddvHhRPXr0UKVKlbR27VqnuRUCBSkAAFzYrl27NHToUFuIuXTpkk6ePHnH5Zo0aWK7l0Gum9+3a9dOCQkJatiw4S3X4+npqezs7DzTGzdurMaNG2vChAl64okntHTpUgpSAADAVK6Qk9LT0xUZGSlvb2+tX7/+tsWusoaCFAAALqxRo0b65JNP1Lt3b1ksFr300kvKycm543Jjx45Vly5dNH/+fPXu3Vvbt29XTEyMLBaLrc20adPUq1cv1a5dWwMGDJCbm5sOHDigQ4cO6ZVXXpH02xNkYmNjdc8998jb21s+Pj6aNGmSBgwYoHr16unnn3/Wvn371L9//1v2JTk5WcnJyfrxxx8lSQcPHlSlSpVUu3ZtValSpZgjBAAAyitnz0np6enq3r27rly5on/9619KT09Xenq6JCkwMFDu7u4lMEqlh6fsody5+fHJjniEclnoA4DyYf78+apcubLuvvtu9e7dW5GRkWrXrt0dl7vnnnu0ZMkSzZ8/X61bt9bmzZs1YcIEu7NukZGR2rBhgz7//HN16NBBnTt31oIFC1SnTh1bm7/97W/aunWrQkJC1LZtW7m7u+v8+fMaPHiwGjdurMcee0w9e/bUzJkzb9mXJUuWqG3bthoxYoQkqUuXLmrbtq3Wr19fjJEBkB9H5xMyEgAzOXtO+u6777Rnzx4dPHhQDRs2VI0aNWyv06dPF3+ASpnFMAzD0Z1wlPT0dPn7+9sei+jsnPl76mY+laQsjFNZ6ENRFSQYOsu+APm5du2aTpw4oXr16jnVJc9mGDFihI4dO6avvvrK0V25o9v9HF3t+F8aXG2MXOm4W9r9dvST4lzpZ5UfZ9kXID9kpNtzlpxUljISX9kDAAD5mjdvnh566CFVrFhRMTExWr58uRYvXuzobgEAADgcOan4KEgBAIB87d27V3PnztXFixdVv359LVy4UMOHD3d0twAAAByOnFR8DrmH1IwZM2SxWOxeTZs2tc2/du2aoqOjVbVqVfn5+al///46e/as3ToSExMVFRUlX19fVa9eXZMmTdL169fN3hXcAfcBAIA7y0m7aPcqK1avXq2UlBRdvXpVhw8f1qhRoxzdJZdHRio/yEgAcGc3ZyRykmtx2BVSzZs317Zt237viMfvXZkwYYI2btyoNWvWyN/fX2PGjFG/fv20a9cuSVJ2draioqIUHBys3bt368yZMxo8eLA8PT312muvmb4vAOyV5P0fHH0vCwAwGxkJcF1kJAD4ncMKUh4eHgoODs4zPS0tTf/4xz+0YsUKde3aVZK0dOlSNWvWTN988406d+6szz//XEeOHNG2bdsUFBSkNm3aaNasWZo8ebJmzJghLy8vs3cHAACgRJCRAABAeeCQr+xJ0vHjx1WzZk3Vr19fgwYNUmJioiQpPj5eWVlZioiIsLVt2rSpateurbi4OElSXFycWrZsqaCgIFubyMhIpaen6/Dhw7fcZkZGhtLT0+1eAJwfX3kA4ErISABKCl8NBVCWOaQg1alTJy1btkybN2/WO++8oxMnTui+++7TxYsXlZycLC8vLwUEBNgtExQUpOTkZElScnKyXdDKnZ8771Zmz54tf39/2yskJKRkdwwAAKAYyEgAAKC8cMhX9nr27Gn7d6tWrdSpUyfVqVNHq1evVoUKFUptu1OnTtXEiRNt79PT0wlcKth32Uvy++5AWcG9FwCUNWSksoWMhPKKzzUAMzjsHlI3CggIUOPGjfXjjz/qoYceUmZmplJTU+3OAJ49e9Z2P4Xg4GDt3bvXbh25T5jJ754Luby9veXt7V3yO2AC/uMMAED5Q0a6MzISAADOyWH3kLrRpUuX9NNPP6lGjRoKCwuTp6enYmNjbfMTEhKUmJio8PBwSVJ4eLgOHjyolJQUW5utW7fKarUqNDTU9P4DJYHv9wMAbkZGAshIAOCqHHKF1HPPPafevXurTp06SkpK0vTp0+Xu7q4nnnhC/v7+GjZsmCZOnKgqVarIarVq7NixCg8PV+fOnSVJ3bt3V2hoqJ566inNnTtXycnJevHFFxUdHV2mzu5xqWv5xJlawHX99O27pbJe41qG3XuLj7catP9jodYxdOhQLV++XNJvT2mrUqWKWrVqpSeeeEJDhw6Vm1uZOAdVJIcPH9a0adMUHx+vU6dOacGCBRo/fryju1UqyEhwZWQkwHWZlZEkctLN3nvvPX3wwQc6dOiQJCksLEyvvfaaOnbs6OCe3ZlDClI///yznnjiCZ0/f16BgYG699579c033ygwMFCStGDBArm5ual///7KyMhQZGSkFi9ebFve3d1dGzZs0OjRoxUeHq6KFStqyJAhevnllx2xOyhDCLhll5khlM8ByqsePXpo6dKlys7O1tmzZ7V582aNGzdOH3/8sdavXy8PjzLxTf1Cu3LliurXr69HH31UEyZMcHR3ShUZCaWFY2PZZXahjsIgyitXzUk7duzQE088obvvvls+Pj7661//qu7du+vw4cO66667HN2923JIGXDlypVKSkpSRkaGfv75Z61cuVINGjSwzffx8dGiRYv066+/6vLly/rkk0/y3PegTp062rRpk65cuaJz585p3rx5TvsBuhmPZy0YxgkA7Hl7eys4OFh33XWX2rVrp7/85S/69NNPFRMTo2XLltnapaamavjw4QoMDJTValXXrl114MABu3V99tln6tChg3x8fFStWjX17dvXNu/ChQsaPHiwKleuLF9fX/Xs2VPHjx+XJF2+fFlWq1Uff/yx3frWrVunihUr6uLFi8rMzNSYMWNUo0YN+fj4qE6dOpo9e/Yt96tDhw56/fXXNXDgwDJ1lU9pICPdHsf+gmOcAMCeq+akjz76SM8++6zatGmjpk2b6v3331dOTo7dV/zLKue9Lg2AU+M/FYA5unbtqtatW+uTTz6xTXv00UeVkpKimJgYxcfHq127durWrZt+/fVXSdLGjRvVt29fPfzww/r+++8VGxtrd9n30KFD9e2332r9+vWKi4uTYRh6+OGHlZWVpYoVK2rgwIFaunSpXT+WLl2qAQMGqFKlSlq4cKHWr1+v1atXKyEhQR999JHq1q1ryngAQFlHRgLM44o56cqVK8rKylKVKlWKNzgmcI3TZShxHPgAwHU0bdpUP/zwgyTp66+/1t69e5WSkmK72mjevHlat26dPv74Y40cOVKvvvqqBg4cqJkzZ9rW0bp1a0nS8ePHtX79eu3atUt33323pN/OzIWEhGjdunV69NFHNXz4cN199906c+aMatSooZSUFG3atEnbtm2TJCUmJqpRo0a69957ZbFYVKdOHTOHAygWMhIAuBZXy0mTJ09WzZo1FRERUeyxKW0UpADcEqEbcA2GYchisUiSDhw4oEuXLqlq1ap2ba5evaqffvpJkrR//36NGDEi33UdPXpUHh4e6tSpk21a1apV1aRJEx09elSS1LFjRzVv3lzLly/XlClT9K9//Ut16tRRly5dJP125vChhx5SkyZN1KNHD/Xq1Uvdu3cv8f0GgNJCRgJchyvlpDlz5mjlypXasWOHfHx8CjcQDkBBysE4mAGAucrjzVyPHj2qevXqSZIuXbqkGjVqaMeOHXnaBQQESJIqVKhQ7G0OHz5cixYt0pQpU7R06VI9/fTTtrDXrl07nThxQjExMdq2bZsee+wxRURE5LmfAso3MhIAmKs8ZiTJdXLSvHnzNGfOHG3btk2tWrUqdh/NQEHKxZXXPyqlgWCMsoynJ+FWtm/froMHD9qeTteuXTslJyfLw8PjlvcjaNWqlWJjY/X000/nmdesWTNdv35de/bssV2Kfv78eSUkJCg0NNTW7sknn9Tzzz+vhQsX6siRIxoyZIjdeqxWqx5//HE9/vjjGjBggHr06KFff/3VKe53ANdARio5ZCSUZWQk3I6r5KS5c+fq1Vdf1ZYtW9S+ffuiDIVDUJAqZ8pCYCgLfQAAV5SRkaHk5GS7xxnPnj1bvXr10uDBgyVJERERCg8PV58+fTR37lw1btxYSUlJtht0tm/fXtOnT1e3bt3UoEEDDRw4UNevX9emTZs0efJkNWrUSI888ohGjBihd999V5UqVdKUKVN011136ZFHHrH1pXLlyurXr58mTZqk7t27q1atWrZ58+fPV40aNdS2bVu5ublpzZo1Cg4Otp15vFlmZqaOHDli+/f//vc/7d+/X35+fmrYsGHpDSjKlbKQT8pCHwDAVblqTvrrX/+qadOmacWKFapbt66Sk5MlSX5+fvLz8yu9AS0BPGUPAGCHJ/s4r82bN6tGjRqqW7euevTooS+++EILFy7Up59+Knd3d0mSxWLRpk2b1KVLFz399NNq3LixBg4cqFOnTikoKEiS9MADD2jNmjVav3692rRpo65du2rv3r227SxdulRhYWHq1auXwsPDZRiGNm3aJE9PT7v+DBs2TJmZmXrmmWfspleqVElz585V+/bt1aFDB508eVKbNm2Sm1v+sSQpKUlt27ZV27ZtdebMGc2bN09t27bV8OHDS3L4AAC4LTKSc3PVnPTOO+8oMzNTAwYMUI0aNWyvefPmleTwlQqukEKROcvlrwU5WDjLvqDoCA0oCQ3a/7FU1puTdtHuvZt/pUKvY9myZVq2bFmB2uY+UnjhwoW3bNOvXz/169cv33mVK1fWBx98cMft/O9//1PVqlXtzghK0ogRI255M9D81K1bV4ZhFLg94GjOkivISJDISCgZZmUkiZx0s5MnTxa4bVlDQcpJceAAgNJjXL2mnIuXlZORJalowedW8gtWrubKlSs6c+aM5syZoz/+8Y/y8vJydJdQjpCRAKD03JyRpJLLSeUhI0nkpBtRkAIAkxTkP0mcdYYryL2xZpcuXTR16lRHdwcAUMaRkVCekJN+xz2kAABAiZoxY4aysrIUGxtb5m+mCQAAYCZy0u+4Qgpwcjy22nyMecliPAEApYHji/m451jJ4jMMV0dBCrgFR9+DggO6+ZxlzB392QQAlG+OPg45y/Ha1ThDccTRn00AhUNBCgBgmpIMiqUdjHOMnBJdH8yVk8PPDwDgPMhIMEtZykgUpExG1R4oH/hdd15eXl5yu56tM+fOKbByFXl6eMj9mmeJrT8nM/OObdyuXSux7ZU3hmEoMzNT586dk5ubW7l+co2z4e8mUD7wu+688stIFoulxHJLQTKSRE4qqrKYkShIAcBtFCQ0EazKhpL6Coebm5tqp17T2awcJV27JlksslTwKYkuSvrtccl3UpLbK6r8+lkW+lVQvr6+ql27ttzceH4LAJSGguYfcpLjlWZGkkouHxQkI5Xk9oqKjFRyKEgBTqQ0D+jOEhacpZ8oWWb/3D1zpLsuZir7Uqay3SzyuK9Zia0766v4O2+/BLdXVPn1syz0qyDc3d3l8f+ftQVQPpCRnKefKFmOzkiGSi4fFCQjqQS3V1RkpJJDQQpOw1kPss7ab6C8s0jyMCSPbEOePiV31ss927hjm5LcXlHl18+y0C8AeTlr1nDWfgPl3Y0ZSSq5fFCQjFSS2ysqMlLJoSAFACgRzvD0nfKIp1EBAOBYZKSyiYzkeBSkgHKKs5IAAAB5kZEAwBwUpAAAKCX8pwYAACB/5CRQkAIAoJwjEAIAAORFRipdFKQAAECBcA8MAACAvMhIRUNBCmUSlWgAAIC8yEgAAFdBQQoAcFs8gQQAACAvMhJQPBSkAJQZnPUFAADIi4wEwBVRkAIAlArCMwqDs8wAgPKCjITCcOWMREEKAFCuEQoBAADyIiOhtLk5ugMAAAAAAAAoXyhIAQAAAAAAwFR8ZQ8AUKY48+Xhpdl3V75/AAAAuDMyUsHXTUZyDlwhBQAAAAAAAFNRkAIAAAAAAICp+MoeSpQzX0YKlFVF/b26eTkuXQYAxyEjASWPjAQ4NwpSgIvhO9QA7oT/GAMoj8hIAO6EjGQuClIAADgpzvACAADkRUZyDhSkAJRpJ1Nj7N7XDejpoJ4AAACUHWQkAM6Om5oDAAAAAADAVFwhBQBliLN8b91Z+lmaGAMAAMzjLMddZ+lnaWIMUFAUpAAALotABAAAkBcZCWUBX9kDAAAAAACAqbhCCgDKCR537fo42wkAQOGRkVwfGals4gopAAAAAAAAmIorpAAAuAPOquWPM8oAAICclBcZqWC4QgoAAAAAAACm4gopoBzgrAUAAEBeZCQAcBwKUgDw/zuZGpNnWt2Ang7oCQAAQNlyc04iIwEoLod/ZW/OnDmyWCwaP368bdq1a9cUHR2tqlWrys/PT/3799fZs2ftlktMTFRUVJR8fX1VvXp1TZo0SdevXze594C5TqbG5HnB8fi5oKRlbf46zwvlEzkJKBiOxWUXPxeUNDKS63BoQWrfvn1699131apVK7vpEyZM0GeffaY1a9Zo586dSkpKUr9+/Wzzs7OzFRUVpczMTO3evVvLly/XsmXLNG3aNLN3AQAAoFSQkwAAgCtzWEHq0qVLGjRokN577z1VrlzZNj0tLU3/+Mc/NH/+fHXt2lVhYWFaunSpdu/erW+++UaS9Pnnn+vIkSP617/+pTZt2qhnz56aNWuWFi1apMzMTEftEoAygrOkAJwdOQlAaSEjASgrHFaQio6OVlRUlCIiIuymx8fHKysry25606ZNVbt2bcXFxUmS4uLi1LJlSwUFBdnaREZGKj09XYcPH77lNjMyMpSenm73AoDyjK+GAWWT2TmJjAQA9shIQOlzyE3NV65cqe+++0779u3LMy85OVleXl4KCAiwmx4UFKTk5GRbmxtDVu783Hm3Mnv2bM2cObOYvQcAACg9jshJZCQAAGA206+QOn36tMaNG6ePPvpIPj4+pm576tSpSktLs71Onz5t6vYBAABux1E5iYwEAADMZnpBKj4+XikpKWrXrp08PDzk4eGhnTt3auHChfLw8FBQUJAyMzOVmppqt9zZs2cVHBwsSQoODs7zNJnc97lt8uPt7S2r1Wr3AgAAKCsclZPISAAAwGymF6S6deumgwcPav/+/bZX+/btNWjQINu/PT09FRsba1smISFBiYmJCg8PlySFh4fr4MGDSklJsbXZunWrrFarQkNDzd4lAACAEkFOAgAA5YXp95CqVKmSWrRoYTetYsWKqlq1qm36sGHDNHHiRFWpUkVWq1Vjx45VeHi4OnfuLEnq3r27QkND9dRTT2nu3LlKTk7Wiy++qOjoaHl7e5u9SwAAACWCnAQAAMoLh9zU/E4WLFggNzc39e/fXxkZGYqMjNTixYtt893d3bVhwwaNHj1a4eHhqlixooYMGaKXX37Zgb0GAAD5PYXIs8e9DuiJ6yInAQDgfMhIeZWJgtSOHTvs3vv4+GjRokVatGjRLZepU6eONm3aVMo9AwAAcCxyEgAAcEVloiAFlEUnU2Ps3tcN6Fki6ynOugCJzxQAwLFK6jjE8Qwljc8U4FxMv6k5AAAAAAAAyjcKUgAAAAAAADAVX9kDlP/lvTAfPwcAAMoWjs1lAz8HAK6IghSAWyrN7+ETrAAAgLMiIwFA8VGQAhyAGy4CAADkRUYCgPKDghSAcoszkAAAAHmRkQCYgYIUSlVBD2ac+QIAAOUJGQkAUN5RkALKKM5MAeXHzb/v/AcUAG6NjASUH3yN17VRkALgVDgoAQAA5EVGAuBs3BzdAQAAAAAAAJQvXCGFIuMsDGMAoOzj7xRgPn7vGAMAZR9/pxyPgpST4pcH+J2z3kuC32MAKHn8bQV+R0YCUJZRkEK546wHZqA8I5gCgDnISYBzISPBmVGQAlAo5e1pYBzkzWf2f4b4GQMASgIZyfX32dHISHA1FKQcjF/ygnOWgzxnFgEAKD4yUsE5y1iRkQAAN6IgBZQRzhrSnCUEOzNn/WwAAFASnPU4SEYqfc762QDwGwpSLs5Zriq6GQcX50YAg6vhMw24HjISHIHjCVyRs/49heNRkHIShA/cCgcAwLnw9xwoWfxO4VbISIBz4e95+UNBCi6PP2z5I6QBAFC+kZHyR0YCAHNQkEKZQCCCq+GSfODWsjZ/7eguAE6DjARXQ0YCbq28ZSQ3R3cAAAAAAAAA5QtXSMFpz1I4a7/LK1c6w1vUfXGlMQB/g4DywJl/z/namfNwpXxARoLk3H87YS4KUgCAQiNoFAwB+zfl7fJzAED5RUYqOHISGYmCFACgXCH8AAAA5EVGgtkoSCFfXOYNwCyEHwDOhIwEwCxkJLg6ClJwKfzRBoqP/2wBgOshIwHFR0YCShYFKQAoQ/gPAwAAQF5kJMD1uDm6AwAAAAAAAChfuEKqDKL6D5Q8fq9QHhT0c85XDuCs+FsOlDx+r1AekJHKJgpSAOACeMQwAABAXmQkoOyiIAW4GA66KK/47AMAbofjBMorPvsoqyhIoURxyS/gXJz5d9aZ+w6g/OFvFuBcnPl31pn7jvKFghRQQPxhR3nFZx8AcCccK1Ae8bkHioeCFAAAKDF8LQAAACAvMlJeFKTKGar4AAAAeZGRAAAwFwUpkxF2AKDs4281YD5+7wCg7ONvNUqSm6M7AAAAAAAAgPKFK6RQIFTCnRs/P5QVZn8WXX17AByP33vnxs8PZYWrZxZ+15AfClIAgBJxc9Ao7zdpBAAAkMhIwK1QkAKAcoIzUygMngQDACgvyEgoDDJSyaEg5UL4QwoAAJAXGQkAgLKHghQAACgQvnIAAACQFxmpaHjKHgAAAAAAAEzFFVIAJPF1BpQ8PlMAAFfA8Qwljc8U8BsKUgDgogg7rs9ZfsZcxg4AKEuc5fiJonOWn3F5z0h8ZQ8AAAAAAACmckhB6p133lGrVq1ktVpltVoVHh6umJjfK4PXrl1TdHS0qlatKj8/P/Xv319nz561W0diYqKioqLk6+ur6tWra9KkSbp+/brZuwIAQLl1MjUmzwvFQ0YCAMD5kZEKxiEFqVq1amnOnDmKj4/Xt99+q65du+qRRx7R4cOHJUkTJkzQZ599pjVr1mjnzp1KSkpSv379bMtnZ2crKipKmZmZ2r17t5YvX65ly5Zp2rRpjtgdAACAEkFGAgAA5YXFMAzD0Z2QpCpVquj111/XgAEDFBgYqBUrVmjAgAGSpGPHjqlZs2aKi4tT586dFRMTo169eikpKUlBQUGSpCVLlmjy5Mk6d+6cvLy8CrTN9PR0+fv7Ky0tTVartcT3KWvz13mmURkFANxJQe8f4KzHlILun2ePe0tl+6V9/C9pZCQAAH5XkBzhrMeU8paRHH4PqezsbK1cuVKXL19WeHi44uPjlZWVpYiICFubpk2bqnbt2oqLi5MkxcXFqWXLlragJUmRkZFKT0+3nUHMT0ZGhtLT0+1eAAAAZREZCQAAuDKHFaQOHjwoPz8/eXt7a9SoUVq7dq1CQ0OVnJwsLy8vBQQE2LUPCgpScnKyJCk5OdkuaOXOz513K7Nnz5a/v7/tFRISUrI7BQAAUExkJAAAUB44rCDVpEkT7d+/X3v27NHo0aM1ZMgQHTlypFS3OXXqVKWlpdlep0+fLtXtAQAAFBYZCQAAlAcejtqwl5eXGjZsKEkKCwvTvn379Oabb+rxxx9XZmamUlNT7c4Anj17VsHBwZKk4OBg7d271259uU+YyW2TH29vb3l7e5fwngAAAJQcMhIAACgPHH4PqVw5OTnKyMhQWFiYPD09FRsba5uXkJCgxMREhYeHS5LCw8N18OBBpaSk2Nps3bpVVqtVoaGhpvcdAICSxKOCcSMyEgAAvyMjuQ6HXCE1depU9ezZU7Vr19bFixe1YsUK7dixQ1u2bJG/v7+GDRumiRMnqkqVKrJarRo7dqzCw8PVuXNnSVL37t0VGhqqp556SnPnzlVycrJefPFFRUdHc3YPAAA4LTISAAAoLxxSkEpJSdHgwYN15swZ+fv7q1WrVtqyZYseeughSdKCBQvk5uam/v37KyMjQ5GRkVq8eLFteXd3d23YsEGjR49WeHi4KlasqCFDhujll192xO4AAIBiyu8MZyOVziONyzIyEgAAuJErZySHFKT+8Y9/3Ha+j4+PFi1apEWLFt2yTZ06dbRp06aS7hoAAIDDkJEAAEB54bCbmgMAgILjHgkAAAB5kZGcV5m5qTkAAAAAAADKBwpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpPBzdAVd2MjXG0V0AAAAoc8hIAACAK6QAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTOaQgNXv2bHXo0EGVKlVS9erV1adPHyUkJNi1uXbtmqKjo1W1alX5+fmpf//+Onv2rF2bxMRERUVFydfXV9WrV9ekSZN0/fp1M3cFAACgxJCRAABAeeGQgtTOnTsVHR2tb775Rlu3blVWVpa6d++uy5cv29pMmDBBn332mdasWaOdO3cqKSlJ/fr1s83Pzs5WVFSUMjMztXv3bi1fvlzLli3TtGnTHLFLAAAAxUZGAgAA5YXFMAzD0Z04d+6cqlevrp07d6pLly5KS0tTYGCgVqxYoQEDBkiSjh07pmbNmikuLk6dO3dWTEyMevXqpaSkJAUFBUmSlixZosmTJ+vcuXPy8vK643bT09Pl7++vtLQ0Wa3WEt+v4ytfKPF1AgDg7OoG9Mwz7WRqTJ5pjQa+WirbL+3jf0kiIwEAUH6Ut4xUJu4hlZaWJkmqUqWKJCk+Pl5ZWVmKiIiwtWnatKlq166tuLg4SVJcXJxatmxpC1qSFBkZqfT0dB0+fDjf7WRkZCg9Pd3uBQAAUFaRkQAAgKtyeEEqJydH48eP1z333KMWLVpIkpKTk+Xl5aWAgAC7tkFBQUpOTra1uTFo5c7PnZef2bNny9/f3/YKCQkp4b0BAAAoGWQkAADgyhxekIqOjtahQ4e0cuXKUt/W1KlTlZaWZnudPn261LcJAABQFGQkAADgyjwcufExY8Zow4YN+vLLL1WrVi3b9ODgYGVmZio1NdXuDODZs2cVHBxsa7N371679eU+YSa3zc28vb3l7e1dwnsBAABQsshIAADA1TnkCinDMDRmzBitXbtW27dvV7169ezmh4WFydPTU7GxsbZpCQkJSkxMVHh4uCQpPDxcBw8eVEpKiq3N1q1bZbVaFRoaas6OAAAAlCAyEgAAKC8ccoVUdHS0VqxYoU8//VSVKlWy3c/A399fFSpUkL+/v4YNG6aJEyeqSpUqslqtGjt2rMLDw9W5c2dJUvfu3RUaGqqnnnpKc+fOVXJysl588UVFR0dzhg8AADglMhIAACgvHFKQeueddyRJDzzwgN30pUuXaujQoZKkBQsWyM3NTf3791dGRoYiIyO1ePFiW1t3d3dt2LBBo0ePVnh4uCpWrKghQ4bo5ZdfNms3AAAAShQZCQAAlBcOKUgZhnHHNj4+Plq0aJEWLVp0yzZ16tTRpk2bSrJrAAAADkNGAgAA5YXDn7IHAAAAAACA8oWCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKg9HdwAAAJQvJ1NjHN0FAACAMqe8ZSSukAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmckhB6ssvv1Tv3r1Vs2ZNWSwWrVu3zm6+YRiaNm2aatSooQoVKigiIkLHjx+3a/Prr79q0KBBslqtCggI0LBhw3Tp0iUT9wIAAKBkkZEAAEB54ZCC1OXLl9W6dWstWrQo3/lz587VwoULtWTJEu3Zs0cVK1ZUZGSkrl27ZmszaNAgHT58WFu3btWGDRv05ZdfauTIkWbtAgAAQIkjIwEAgPLCwxEb7dmzp3r27JnvPMMw9MYbb+jFF1/UI488Ikn64IMPFBQUpHXr1mngwIE6evSoNm/erH379ql9+/aSpLfeeksPP/yw5s2bp5o1a5q2LwAAACWFjAQAAMqLMncPqRMnTig5OVkRERG2af7+/urUqZPi4uIkSXFxcQoICLAFLUmKiIiQm5ub9uzZc8t1Z2RkKD093e4FAADgDMhIAADAlZS5glRycrIkKSgoyG56UFCQbV5ycrKqV69uN9/Dw0NVqlSxtcnP7Nmz5e/vb3uFhISUcO8BAABKBxkJAAC4kjJXkCpNU6dOVVpamu11+vRpR3cJAADA4chIAADAbGWuIBUcHCxJOnv2rN30s2fP2uYFBwcrJSXFbv7169f166+/2trkx9vbW1ar1e4FAADgDMhIAADAlZS5glS9evUUHBys2NhY27T09HTt2bNH4eHhkqTw8HClpqYqPj7e1mb79u3KyclRp06dTO8zAABAaSMjAQAAV+KQp+xdunRJP/74o+39iRMntH//flWpUkW1a9fW+PHj9corr6hRo0aqV6+eXnrpJdWsWVN9+vSRJDVr1kw9evTQiBEjtGTJEmVlZWnMmDEaOHAgT48BAABOi4wEAADKC4cUpL799ls9+OCDtvcTJ06UJA0ZMkTLli3T888/r8uXL2vkyJFKTU3Vvffeq82bN8vHx8e2zEcffaQxY8aoW7ducnNzU//+/bVw4ULT9wUAAKCkkJEAAEB5YTEMw3B0JxwlPT1d/v7+SktLK5V7JRxf+UKJrxMAgPKi0cBXS2W9pX38dwVkJAAAyi5XyUhl7h5SAAAAAAAAcG0UpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTOX1BatGiRapbt658fHzUqVMn7d2719FdAgAAcDgyEgAAKMucuiC1atUqTZw4UdOnT9d3332n1q1bKzIyUikpKY7uGgAAgMOQkQAAQFnn1AWp+fPna8SIEXr66acVGhqqJUuWyNfXV//85z8d3TUAAACHISMBAICyzsPRHSiqzMxMxcfHa+rUqbZpbm5uioiIUFxcXL7LZGRkKCMjw/Y+LS1NkpSenl4qfbx0JePOjQAAQL5K6/icu17DMEpl/Y5GRgIAwLW5SkZy2oLUL7/8ouzsbAUFBdlNDwoK0rFjx/JdZvbs2Zo5c2ae6SEhIaXSRwAAUAzD/laqq7948aL8/f1LdRuOQEYCAMDFuUhGctqCVFFMnTpVEydOtL3PycnRr7/+qqpVq8pisZTottLT0xUSEqLTp0/LarWW6LrLA8aveBi/4mH8iofxKx7Gr3gKMn6GYejixYuqWbOmyb0ru8hIzoPxKx7Gr3gYv+Jh/IqH8SuespiRnLYgVa1aNbm7u+vs2bN208+ePavg4OB8l/H29pa3t7fdtICAgNLqoiTJarXyy1IMjF/xMH7Fw/gVD+NXPIxf8dxp/FzxyqhcZKTygfErHsaveBi/4mH8iofxK56ylJGc9qbmXl5eCgsLU2xsrG1aTk6OYmNjFR4e7sCeAQAAOA4ZCQAAOAOnvUJKkiZOnKghQ4aoffv26tixo9544w1dvnxZTz/9tKO7BgAA4DBkJAAAUNY5dUHq8ccf17lz5zRt2jQlJyerTZs22rx5c56beDqCt7e3pk+fnufydxQM41c8jF/xMH7Fw/gVD+NXPIzfb8hIrovxKx7Gr3gYv+Jh/IqH8Suesjh+FsNVn3kMAAAAAACAMslp7yEFAAAAAAAA50RBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIlZJFixapbt268vHxUadOnbR3715Hd6lUzZgxQxaLxe7VtGlT2/xr164pOjpaVatWlZ+fn/r376+zZ8/arSMxMVFRUVHy9fVV9erVNWnSJF2/ft2uzY4dO9SuXTt5e3urYcOGWrZsWZ6+OMPYf/nll+rdu7dq1qwpi8WidevW2c03DEPTpk1TjRo1VKFCBUVEROj48eN2bX799VcNGjRIVqtVAQEBGjZsmC5dumTX5ocfftB9990nHx8fhYSEaO7cuXn6smbNGjVt2lQ+Pj5q2bKlNm3aVOi+mO1O4zd06NA8n8cePXrYtSnP4zd79mx16NBBlSpVUvXq1dWnTx8lJCTYtSlLv7MF6YuZCjJ+DzzwQJ7P4KhRo+zalNfxe+edd9SqVStZrVZZrVaFh4crJiamUP0tr2PnKpzhOF2SyEiFQ0YqHjJS8ZCRioeMVDzlMiMZKHErV640vLy8jH/+85/G4cOHjREjRhgBAQHG2bNnHd21UjN9+nSjefPmxpkzZ2yvc+fO2eaPGjXKCAkJMWJjY41vv/3W6Ny5s3H33Xfb5l+/ft1o0aKFERERYXz//ffGpk2bjGrVqhlTp061tfnvf/9r+Pr6GhMnTjSOHDlivPXWW4a7u7uxefNmWxtnGftNmzYZL7zwgvHJJ58Ykoy1a9fazZ8zZ47h7+9vrFu3zjhw4IDxhz/8wahXr55x9epVW5sePXoYrVu3Nr755hvjq6++Mho2bGg88cQTtvlpaWlGUFCQMWjQIOPQoUPG//3f/xkVKlQw3n33XVubXbt2Ge7u7sbcuXONI0eOGC+++KLh6elpHDx4sFB9Mdudxm/IkCFGjx497D6Pv/76q12b8jx+kZGRxtKlS41Dhw4Z+/fvNx5++GGjdu3axqVLl2xtytLv7J36YraCjN/9999vjBgxwu4zmJaWZptfnsdv/fr1xsaNG43//Oc/RkJCgvGXv/zF8PT0NA4dOlSg/pbnsXMFznKcLklkpMIhIxUPGal4yEjFQ0YqnvKYkShIlYKOHTsa0dHRtvfZ2dlGzZo1jdmzZzuwV6Vr+vTpRuvWrfOdl5qaanh6ehpr1qyxTTt69KghyYiLizMM47eDp5ubm5GcnGxr88477xhWq9XIyMgwDMMwnn/+eaN58+Z263788ceNyMhI23tnHPubw0JOTo4RHBxsvP7667Zpqamphre3t/F///d/hmEYxpEjRwxJxr59+2xtYmJiDIvFYvzvf/8zDMMwFi9ebFSuXNk2foZhGJMnTzaaNGlie//YY48ZUVFRdv3p1KmT8cc//rHAfXG0W4WtRx555JbLMH72UlJSDEnGzp07DcMoW7+zBemLo908fobxW9gaN27cLZdh/OxVrlzZeP/99/nslQPOeJwuLjJS0ZGRioeMVHxkpOIhIxWfq2ckvrJXwjIzMxUfH6+IiAjbNDc3N0VERCguLs6BPSt9x48fV82aNVW/fn0NGjRIiYmJkqT4+HhlZWXZjUnTpk1Vu3Zt25jExcWpZcuWCgoKsrWJjIxUenq6Dh8+bGtz4zpy2+Suw1XG/sSJE0pOTrbbD39/f3Xq1MluvAICAtS+fXtbm4iICLm5uWnPnj22Nl26dJGXl5etTWRkpBISEnThwgVbm9uNaUH6Ulbt2LFD1atXV5MmTTR69GidP3/eNo/xs5eWliZJqlKliqSy9TtbkL442s3jl+ujjz5StWrV1KJFC02dOlVXrlyxzWP8fpOdna2VK1fq8uXLCg8P57Pn4lzlOF0UZKSSQUYqGWSkgiMjFQ8ZqejKS0byKFRr3NEvv/yi7Oxsuw+BJAUFBenYsWMO6lXp69Spk5YtW6YmTZrozJkzmjlzpu677z4dOnRIycnJ8vLyUkBAgN0yQUFBSk5OliQlJyfnO2a5827XJj09XVevXtWFCxdcYuxz9ze//bhxLKpXr24338PDQ1WqVLFrU69evTzryJ1XuXLlW47pjeu4U1/Koh49eqhfv36qV6+efvrpJ/3lL39Rz549FRcXJ3d3d8bvBjk5ORo/frzuuecetWjRQpLK1O9sQfriSPmNnyT9v//3/1SnTh3VrFlTP/zwgyZPnqyEhAR98sknkhi/gwcPKjw8XNeuXZOfn5/Wrl2r0NBQ7d+/n8+eCyMjkZGKi4xUfGSkgiMjFQ8ZqWjKW0aiIIUS0bNnT9u/W7VqpU6dOqlOnTpavXq1KlSo4MCeoTwaOHCg7d8tW7ZUq1at1KBBA+3YsUPdunVzYM/KnujoaB06dEhff/21o7vilG41fiNHjrT9u2XLlqpRo4a6deumn376SQ0aNDC7m2VOkyZNtH//fqWlpenjjz/WkCFDtHPnTkd3CygVZCSUJWSkgiMjFQ8ZqWjKW0biK3slrFq1anJ3d89zh/mzZ88qODjYQb0yX0BAgBo3bqwff/xRwcHByszMVGpqql2bG8ckODg43zHLnXe7NlarVRUqVHCZsc/t6+32Izg4WCkpKXbzr1+/rl9//bVExvTG+XfqizOoX7++qlWrph9//FES45drzJgx2rBhg7744gvVqlXLNr0s/c4WpC+Ocqvxy0+nTp0kye4zWJ7Hz8vLSw0bNlRYWJhmz56t1q1b68033+Sz5+Jc5ThdXGSkoiMjlTwyUv7ISMVDRiq68paRKEiVMC8vL4WFhSk2NtY2LScnR7GxsQoPD3dgz8x16dIl/fTTT6pRo4bCwsLk6elpNyYJCQlKTEy0jUl4eLgOHjxodwDcunWrrFarQkNDbW1uXEdum9x1uMrY16tXT8HBwXb7kZ6erj179tiNV2pqquLj421ttm/frpycHNsf9fDwcH355ZfKysqytdm6dauaNGmiypUr29rcbkwL0hdn8PPPP+v8+fOqUaOGJMbPMAyNGTNGa9eu1fbt2/Ncdl+WfmcL0hez3Wn88rN//35JsvsMltfxy09OTo4yMjL47Lk4VzlOFxcZqejISCWPjGSPjFQ8ZKSS5/IZqVC3QEeBrFy50vD29jaWLVtmHDlyxBg5cqQREBBgd7d7V/PnP//Z2LFjh3HixAlj165dRkREhFGtWjUjJSXFMIzfHgtZu3ZtY/v27ca3335rhIeHG+Hh4bblcx9R2b17d2P//v3G5s2bjcDAwHwfUTlp0iTj6NGjxqJFi/J9RKUzjP3FixeN77//3vj+++8NScb8+fON77//3jh16pRhGL89BjcgIMD49NNPjR9++MF45JFH8n2kcdu2bY09e/YYX3/9tdGoUSO7R/KmpqYaQUFBxlNPPWUcOnTIWLlypeHr65vnkbweHh7GvHnzjKNHjxrTp0/P95G8d+qL2W43fhcvXjSee+45Iy4uzjhx4oSxbds2o127dkajRo2Ma9eu2dZRnsdv9OjRhr+/v7Fjxw67R+5euXLF1qYs/c7eqS9mu9P4/fjjj8bLL79sfPvtt8aJEyeMTz/91Khfv77RpUsX2zrK8/hNmTLF2Llzp3HixAnjhx9+MKZMmWJYLBbj888/L1B/y/PYuQJnOU6XJDJS4ZCRioeMVDxkpOIhIxVPecxIFKRKyVtvvWXUrl3b8PLyMjp27Gh88803ju5SqXr88ceNGjVqGF5eXsZdd91lPP7448aPP/5om3/16lXj2WefNSpXrmz4+voaffv2Nc6cOWO3jpMnTxo9e/Y0KlSoYFSrVs3485//bGRlZdm1+eKLL4w2bdoYXl5eRv369Y2lS5fm6YszjP0XX3xhSMrzGjJkiGEYvz0K96WXXjKCgoIMb29vo1u3bkZCQoLdOs6fP2888cQThp+fn2G1Wo2nn37auHjxol2bAwcOGPfee6/h7e1t3HXXXcacOXPy9GX16tVG48aNDS8vL6N58+bGxo0b7eYXpC9mu934XblyxejevbsRGBhoeHp6GnXq1DFGjBiRJ3CX5/HLb+wk2f0+laXf2YL0xUx3Gr/ExESjS5cuRpUqVQxvb2+jYcOGxqRJk4y0tDS79ZTX8XvmmWeMOnXqGF5eXkZgYKDRrVs3W9AqaH/L69i5Cmc4TpckMlLhkJGKh4xUPGSk4iEjFU95zEgWwzCMwl1TBQAAAAAAABQd95ACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAFBAdevW1dChQ03fbk5Ojlq0aKFXX331jm1nzJghi8ViN+369et6/vnnFRISIjc3N/Xp06dQ21+yZIlq166tjIyMQi0HAADKBzISGQkoCgpSAMqFFStW6I033nB0N4rk//7v/3T69GmNGTOmSMv/85//1Ouvv64BAwZo+fLlmjBhgiRp1apVevLJJ9WoUSNZLBY98MAD+S4/dOhQZWZm6t133y3qLgAAgDKKjGSfkc6fP6/XX39dXbp0UWBgoAICAtS5c2etWrUqz/JkJKB4PBzdAQAww4oVK3To0CGNHz++yOtISEiQm5v5dfzXX39dAwcOlL+/f5GW3759u+666y4tWLDAbvo777yj+Ph4dejQQefPn7/l8j4+PhoyZIjmz5+vsWPH5jm7CAAAnBcZyT4jbdiwQS+88IIefvhhvfjii/Lw8NC///1vDRw4UEeOHNHMmTNtbclIQPFwhRQAp3T58mXTt+nt7S1PT09Tt/n999/rwIEDeuyxx4q8jpSUFAUEBOSZ/uGHHyotLU3bt29XzZo1b7uOxx57TKdOndIXX3xR5H4AAIDSR0YquPwyUvPmzXX8+HGtW7dO48aNU3R0tGJjY9W1a1f99a9/zTO+ZCSg6ChIAS4g9zvxP/74o4YOHaqAgAD5+/vr6aef1pUrV2ztTp48KYvFomXLluVZh8Vi0YwZM/Ks8z//+Y+efPJJ+fv7KzAwUC+99JIMw9Dp06f1yCOPyGq1Kjg4WH/7298K3e+6deuqV69e+vzzz9WmTRv5+PgoNDRUn3zyiV27ZcuWyWKxaOfOnXr22WdVvXp11apVyzZ/8eLFat68uby9vVWzZk1FR0crNTXVNv+BBx7Qxo0bderUKVksFlksFtWtW9c2PyMjQ9OnT1fDhg3l7e2tkJAQPf/883nuB3Dz/RFy+7Vr1y5NnDhRgYGBqlixovr27atz587ZLfvtt98qMjJS1apVU4UKFVSvXj0988wzdxyjdevWycvLS126dMkz7+uvv1aHDh3k4+OjBg0a5LlcPPfn/cUXX+jw4cO2fd+xY4ck2e6XUBBhYWGqUqWKPv300wK1BwCgLCAjkZEKm5Hq1aunOnXq2LW3WCzq06ePMjIy9N///tduHhkJKDq+sge4kMcee0z16tXT7Nmz9d133+n9999X9erV9de//rXI63z88cfVrFkzzZkzRxs3btQrr7yiKlWq6N1337WdKfroo4/03HPPqUOHDvmGgts5fvy4Hn/8cY0aNUpDhgzR0qVL9eijj2rz5s166KGH7No+++yzCgwM1LRp02xnp2bMmKGZM2cqIiJCo0ePVkJCgt555x3t27dPu3btkqenp1544QWlpaXp559/tl2S7efnJ+m3m2H+4Q9/0Ndff62RI0eqWbNmOnjwoBYsWKD//Oc/Wrdu3R33YezYsapcubKmT5+ukydP6o033tCYMWNs9xpISUlR9+7dFRgYqClTpiggIEAnT57MEyrzs3v3brVo0SLPWceDBw/a1jljxgxdv35d06dPV1BQkK1NYGCgPvzwQ7366qu6dOmSZs+eLUlq1qzZHbebn3bt2mnXrl1FWhYAAEciI5GRipuRkpOTJUnVqlXLM4+MBBSRAcDpTZ8+3ZBkPPPMM3bT+/bta1StWtX2/sSJE4YkY+nSpXnWIcmYPn16nnWOHDnSNu369etGrVq1DIvFYsyZM8c2/cKFC0aFChWMIUOGFKrfderUMSQZ//73v23T0tLSjBo1ahht27a1TVu6dKkhybj33nuN69ev26anpKQYXl5eRvfu3Y3s7Gzb9LffftuQZPzzn/+0TYuKijLq1KmTpw8ffvih4ebmZnz11Vd205csWWJIMnbt2mXX3xv3MbdfERERRk5Ojm36hAkTDHd3dyM1NdUwDMNYu3atIcnYt29fIUbnN7Vq1TL69++fZ3qfPn0MHx8f49SpU7ZpR44cMdzd3Y2b/7Tff//9RvPmzW+7nebNmxv333//bduMHDnSqFChQsE7DwCAg5GRyEiGUbyMZBiGcf78eaN69erGfffdl+98MhJQNHxlD3Aho0aNsnt/33336fz580pPTy/yOocPH277t7u7u9q3by/DMDRs2DDb9ICAADVp0iTPJcwFUbNmTfXt29f23mq1avDgwfr+++9tZ6JyjRgxQu7u7rb327ZtU2ZmpsaPH2/31bMRI0bIarVq48aNd9z+mjVr1KxZMzVt2lS//PKL7dW1a1dJKtD9AEaOHGl3E8v77rtP2dnZOnXqlCTZ7k2wYcMGZWVl3XF9Nzp//rwqV65sNy07O1tbtmxRnz59VLt2bdv0Zs2aKTIyslDrL4zKlSvr6tWrdl9xAADAGZCRfm9HRiqcnJwcDRo0SKmpqXrrrbfybUNGAoqGghTgQm488EqyHaQvXLhQYuv09/eXj49PnsuV/f39i7Sdhg0b5nkiSePGjSX99v3+G9WrV8/ufW6YadKkid10Ly8v1a9f3zb/do4fP67Dhw8rMDDQ7pXbh5SUlDuu407jfv/996t///6aOXOmqlWrpkceeURLly7Nc/+FWzEMw+79uXPndPXqVTVq1ChP25vHoiTl9oMnyAAAnA0Z6TdkpMIbO3asNm/erPfff1+tW7e+bT/ISEDhcA8pwIXceGbsRnc6SGZnZxdqnXfaTmmpUKFCia8zJydHLVu21Pz58/OdHxIScsd1FGTcP/74Y33zzTf67LPPtGXLFj3zzDP629/+pm+++cZ2r4b8VK1atVhhuSRduHBBvr6+pfJzAACgNJGRCo+MJM2cOVOLFy/WnDlz9NRTT92yHRkJKBoKUkA5kntW6sanq0gq0Fmy0vLjjz/KMAy7IPif//xHkuye8pKf3CegJCQkqH79+rbpmZmZOnHihCIiImzTbhU0GzRooAMHDqhbt26lflarc+fO6ty5s1599VWtWLFCgwYN0sqVK+0u+b9Z06ZNdeLECbtpgYGBqlChgo4fP56nfUJCQon3O9eJEyeKfEN0AADKMjJSXuU9Iy1atEgzZszQ+PHjNXny5Nu2JSMBRcNX9oByxGq1qlq1avryyy/tpi9evNhBPZKSkpK0du1a2/v09HR98MEHatOmjYKDg2+7bEREhLy8vLRw4UK7M4//+Mc/lJaWpqioKNu0ihUrKi0tLc86HnvsMf3vf//Te++9l2fe1atXbU+qKY4LFy7kOTPapk0bSbrjJenh4eE6dOiQXTt3d3dFRkZq3bp1SkxMtE0/evSotmzZUuz+3sp3332nu+++u9TWDwCAo5CRyEg3WrVqlf70pz9p0KBBt7xC7EZkJKBouEIKKGeGDx+uOXPmaPjw4Wrfvr2+/PJL29k2R2jcuLGGDRumffv2KSgoSP/85z919uxZLV269I7LBgYGaurUqZo5c6Z69OihP/zhD0pISNDixYvVoUMHPfnkk7a2YWFhWrVqlSZOnKgOHTrIz89PvXv31lNPPaXVq1dr1KhR+uKLL3TPPfcoOztbx44d0+rVq7Vlyxa1b9++WPu4fPlyLV68WH379lWDBg108eJFvffee7JarXr44Ydvu+wjjzyiWbNmaefOnerevbtt+syZM7V582bdd999evbZZ3X9+nW99dZbat68uX744YcC9evLL7+0Be9z587p8uXLeuWVVyRJXbp0sXs8dXx8vH799Vc98sgjhd19AACcAhmJjCRJe/fu1eDBg1W1alV169ZNH330kd38u+++2+6qMzISUHQUpIByZtq0aTp37pw+/vhjrV69Wj179lRMTIyqV6/ukP40atRIb731liZNmqSEhATVq1dPq1atKvCTUGbMmKHAwEC9/fbbmjBhgqpUqaKRI0fqtddek6enp63ds88+q/3792vp0qVasGCB6tSpo969e8vNzU3r1q3TggUL9MEHH2jt2rXy9fVV/fr1NW7cONuNO4vj/vvv1969e7Vy5UqdPXtW/v7+6tixoz766KM8NyG9WVhYmFq1aqXVq1fbha1WrVppy5YtmjhxoqZNm6ZatWpp5syZOnPmTIELUtu3b9fMmTPtpr300kuSpOnTp9sVpNasWaPatWvbnqwDAICrISORkSTpyJEjyszM1Llz5/TMM8/kmb906VK7ghQZCSg6i1Had9gDgFuoW7euWrRooQ0bNji6K2Xahx9+qOjoaCUmJtoej2ymjIwM1a1bV1OmTNG4ceNM3z4AAOUNGalgyEiAc+MeUgBQxg0aNEi1a9fWokWLHLL9pUuXytPTU6NGjXLI9gEAAPJDRgKcG1dIAShx586du+1jkr28vFSlShXO/gEAgHKFjAQAv+MeUgBKXIcOHW77mOT7779fO3bsMK9DAAAAZQAZCQB+xxVSAErcrl27dPXq1VvOr1y5ssLCwkzsEQAAgOORkQDgdxSkAAAAAAAAYCpuag4AAAAAAABTlet7SOXk5CgpKUmVKlWSxWJxdHcAAIAJDMPQxYsXVbNmTbm5cW4uP2QkAADKH7MzUrkuSCUlJSkkJMTR3QAAAA5w+vRp1apVy9HdKJPISAAAlF9mZaRyXZCqVKmSpN8G22q1Org3AADADOnp6QoJCbHlAORFRgIAoPwxOyOV64JU7iXoVquVsAUAQDnDV9FujYwEAED5ZVZG4sYJAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMVa7vIQUAwO1kZ2crKyvL0d1AIXl6esrd3d3R3QAAwGWRkZxTWctIFKQAALiJYRhKTk5Wamqqo7uCIgoICFBwcDA3LgcAoASRkZxfWcpIFKQAALhJbtCqXr26fH19y8QBGwVjGIauXLmilJQUSVKNGjUc3CMAAFwHGcl5lcWMREEKAIAbZGdn24JW1apVHd0dFEGFChUkSSkpKapevXqZujQdAABnRUZyfmUtI3FTcwAAbpB7PwRfX18H9wTFkfvz4/4WAACUDDKSayhLGYmCFAAA+eASdOfGzw8AgNLBMda5laWfHwUpAAAAAAAAmIqCFAAAAAAAAEzFTc0BACigrM1fm7Ytzx73FrjtnS69nj59umbMmFHMHhWNxWLR2rVr1adPnyKv4+9//7tWrFih7777ThcvXtSFCxcUEBBQYn0EAADFY2ZGkshJuX799VdNnz5dn3/+uRITExUYGKg+ffpo1qxZ8vf3L9nOlgIKUgAAOLkzZ87Y/r1q1SpNmzZNCQkJtml+fn6FWl9mZqa8vLxKrH/FdeXKFfXo0UM9evTQ1KlTHd0dAADgRFw5JyUlJSkpKUnz5s1TaGioTp06pVGjRikpKUkff/yxo7t3R3xlrxRlbf46zwsAgJIWHBxse/n7+8tisdjeX758WYMGDVJQUJD8/PzUoUMHbdu2zW75unXratasWRo8eLCsVqtGjhwpSXrvvfcUEhIiX19f9e3bV/Pnz89zZdKnn36qdu3aycfHR/Xr19fMmTN1/fp123olqW/fvrJYLLb3Bw4c0IMPPqhKlSrJarUqLCxM33777S33b/z48ZoyZYo6d+5cMgMGhyMjAQDM4so5qUWLFvr3v/+t3r17q0GDBuratateffVVffbZZ7btlGUUpAAAcGGXLl3Sww8/rNjYWH3//ffq0aOHevfurcTERLt28+bNU+vWrfX999/rpZde0q5duzRq1CiNGzdO+/fv10MPPaRXX33VbpmvvvpKgwcP1rhx43TkyBG9++67WrZsma3dvn37JElLly7VmTNnbO8HDRqkWrVqad++fYqPj9eUKVPk6elpwmgAAAD8zhVzUlpamqxWqzw8yv4X4sp+DwEAQJG1bt1arVu3tr2fNWuW1q5dq/Xr12vMmDG26V27dtWf//xn2/sXXnhBPXv21HPPPSdJaty4sXbv3q0NGzbY2sycOVNTpkzRkCFDJEn169fXrFmz9Pzzz2v69OkKDAyUJAUEBCg4ONi2XGJioiZNmqSmTZtKkho1alQKew4AAHB7rpaTfvnlF82aNct2FVdZxxVSAAC4sEuXLum5555Ts2bNFBAQID8/Px09ejTPmb/27dvbvU9ISFDHjh3tpt38/sCBA3r55Zfl5+dne40YMUJnzpzRlStXbtmniRMnavjw4YqIiNCcOXP0008/FXMvAQAACs+VclJ6erqioqIUGhrqsJu0FxYFKQAAXNhzzz2ntWvX6rXXXtNXX32l/fv3q2XLlsrMzLRrV7FixUKv+9KlS5o5c6b2799vex08eFDHjx+Xj4/PLZebMWOGDh8+rKioKG3fvl2hoaFau3ZtobcPAABQHK6Sky5evKgePXqoUqVKWrt2rdPcCoGv7AEA4MJ27dqloUOHqm/fvpJ+C0cnT56843JNmjSx3csg183v27Vrp4SEBDVs2PCW6/H09FR2dnae6Y0bN1bjxo01YcIEPfHEE1q6dKmtjwAAAGZwhZyUnp6uyMhIeXt7a/369bctdpU1FKQAAHBhjRo10ieffKLevXvLYrHopZdeUk5Ozh2XGzt2rLp06aL58+erd+/e2r59u2JiYmSxWGxtpk2bpl69eql27doaMGCA3NzcdODAAR06dEivvPKKpN+eIBMbG6t77rlH3t7e8vHx0aRJkzRgwADVq1dPP//8s/bt26f+/fvfsi/JyclKTk7Wjz/+KEk6ePCgKlWqpNq1a6tKlSrFHCEAAFBeOXtOSk9PV/fu3XXlyhX961//Unp6utLT0yVJgYGBcnd3L4FRKj18ZQ8AABc2f/58Va5cWXfffbd69+6tyMhItWvX7o7L3XPPPVqyZInmz5+v1q1ba/PmzZowYYLdWbfIyEht2LBBn3/+uTp06KDOnTtrwYIFqlOnjq3N3/72N23dulUhISFq27at3N3ddf78eQ0ePFiNGzfWY489pp49e2rmzJm37MuSJUvUtm1bjRgxQpLUpUsXtW3bVuvXry/GyAAAgPLO2XPSd999pz179ujgwYNq2LChatSoYXudPn26+ANUyiyGYRiO7oSjpKeny9/f3/ZYxJKWtfnrPNM8e9xb4tsBAJSca9eu6cSJE6pXr55TXfJshhEjRujYsWP66quvHN2VO7rdz7G0j/+ugIwEALgZGen2nCUnlaWMxFf2AABAvubNm6eHHnpIFStWVExMjJYvX67Fixc7ulsAAAAOR04qPgpSAAAgX3v37tXcuXN18eJF1a9fXwsXLtTw4cMd3S0AAACHIycVHwUpAACQr9WrVzu6CwAAAGUSOan4uKk5AAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwlYejOwAAgLP46dt3TdtWg/Z/LFT7oUOHavny5ZIkDw8PValSRa1atdITTzyhoUOHys3Nec9BHT58WNOmTVN8fLxOnTqlBQsWaPz48Y7uFgAA+P+ZmZEkctKN3nvvPX3wwQc6dOiQJCksLEyvvfaaOnbs6OCe3ZnzjjoAALDTo0cPnTlzRidPnlRMTIwefPBBjRs3Tr169dL169cd3b0iu3LliurXr685c+YoODjY0d0BAABOyFVz0o4dO/TEE0/oiy++UFxcnEJCQtS9e3f973//c3TX7oiCFAAALsLb21vBwcG666671K5dO/3lL3/Rp59+qpiYGC1btszWLjU1VcOHD1dgYKCsVqu6du2qAwcO2K3rs88+U4cOHeTj46Nq1aqpb9++tnkXLlzQ4MGDVblyZfn6+qpnz546fvy4JOny5cuyWq36+OOP7da3bt06VaxYURcvXlRmZqbGjBmjGjVqyMfHR3Xq1NHs2bNvuV8dOnTQ66+/roEDB8rb27sERgoAAJQ3rpqTPvroIz377LNq06aNmjZtqvfff185OTmKjY0tgVErXRSkAABwYV27dlXr1q31ySef2KY9+uijSklJUUxMjOLj49WuXTt169ZNv/76qyRp48aN6tu3rx5++GF9//33io2Ntbvse+jQofr222+1fv16xcXFyTAMPfzww8rKylLFihU1cOBALV261K4fS5cu1YABA1SpUiUtXLhQ69ev1+rVq5WQkKCPPvpIdevWNWU8AAAAcrliTrpy5YqysrJUpUqV4g2OCbiHFAAALq5p06b64YcfJElff/219u7dq5SUFNvVRvPmzdO6dev08ccfa+TIkXr11Vc1cOBAzZw507aO1q1bS5KOHz+u9evXa9euXbr77rsl/XZmLiQkROvWrdOjjz6q4cOH6+6779aZM2dUo0YNpaSkaNOmTdq2bZskKTExUY0aNdK9994ri8WiOnXqmDkcAAAANq6WkyZPnqyaNWsqIiKi2GNT2rhCCgAAF2cYhiwWiyTpwIEDunTpkqpWrSo/Pz/b68SJE/rpp58kSfv371e3bt3yXdfRo0fl4eGhTp062aZVrVpVTZo00dGjRyVJHTt2VPPmzW03D/3Xv/6lOnXqqEuXLpJ+O3O4f/9+NWnSRH/605/0+eefl9q+AwAA3I4r5aQ5c+Zo5cqVWrt2rXx8fAo/GCbjCikAAFzc0aNHVa9ePUnSpUuXVKNGDe3YsSNPu4CAAElShQoVir3N4cOHa9GiRZoyZYqWLl2qp59+2hb22rVrpxMnTigmJkbbtm3TY489poiIiDz3UwAAAChtrpKT5s2bpzlz5mjbtm1q1apVsftoBq6QAgDAhW3fvl0HDx5U//79Jf0WcpKTk+Xh4aGGDRvavapVqyZJatWq1S1vhNmsWTNdv35de/bssU07f/68EhISFBoaapv25JNP6tSpU1q4cKGOHDmiIUOG2K3HarXq8ccf13vvvadVq1bp3//+t+3eDAAAAGZwlZw0d+5czZo1S5s3b1b79u2LPB5m4wopAABcREZGhpKTk5Wdna2zZ89q8+bNmj17tnr16qXBgwdLkiIiIhQeHq4+ffpo7ty5aty4sZKSkmw36Gzfvr2mT5+ubt26qUGDBho4cKCuX7+uTZs2afLkyWrUqJEeeeQRjRgxQu+++64qVaqkKVOm6K677tIjjzxi60vlypXVr18/TZo0Sd27d1etWrVs8+bPn68aNWqobdu2cnNz05o1axQcHGw783izzMxMHTlyxPbv//3vf9q/f7/8/PzUsGHD0htQAADgMlw1J/31r3/VtGnTtGLFCtWtW1fJycmSZPu6YVnGFVIAALiIzZs3q0aNGqpbt6569OihL774QgsXLtSnn34qd3d3SZLFYtGmTZvUpUsXPf3002rcuLEGDhyoU6dOKSgoSJL0wAMPaM2aNVq/fr3atGmjrl27au/evbbtLF26VGFhYerVq5fCw8NlGIY2bdokT09Pu/4MGzZMmZmZeuaZZ+ymV6pUSXPnzlX79u3VoUMHnTx5Ups2bZKbW/6xJCkpSW3btlXbtm115swZzZs3T23bttXw4cNLcvgAAIALc9Wc9M477ygzM1MDBgxQjRo1bK958+aV5PCVCothGIajO+Eo6enp8vf3V1pamqxWa4mvP2vz13mmefa4t8S3AwAoOdeuXdOJEydUr149p7gZZFn24YcfasKECUpKSpKXl5ep277dz7G0j/+ugIwEALgZGalkOSonlaWMxFf2AABAibpy5YrOnDmjOXPm6I9//KPpxSgAAICyipz0O76yBwAAStTcuXPVtGlTBQcHa+rUqY7uDgAAQJlBTvodBSkAAFCiZsyYoaysLMXGxpb5m2kCAACYiZz0OwpSAAAAAAAAMFWxClJz5syRxWLR+PHjbdOuXbum6OhoVa1aVX5+furfv7/Onj1rt1xiYqKioqLk6+ur6tWra9KkSbp+/bpdmx07dqhdu3by9vZWw4YNtWzZsjzbX7RokerWrSsfHx916tTJ7s72AAAAjkJGAgAAuL0iF6T27dund999V61atbKbPmHCBH322Wdas2aNdu7cqaSkJPXr1882Pzs7W1FRUcrMzNTu3bu1fPlyLVu2TNOmTbO1OXHihKKiovTggw9q//79Gj9+vIYPH64tW7bY2qxatUoTJ07U9OnT9d1336l169aKjIxUSkpKUXcJAACbnJwcR3cBxeDInx8ZCQDgyshIzq0s/fwshmEYhV3o0qVLateunRYvXqxXXnlFbdq00RtvvKG0tDQFBgZqxYoVGjBggCTp2LFjatasmeLi4tS5c2fFxMSoV69eSkpKUlBQkCRpyZIlmjx5ss6dOycvLy9NnjxZGzdu1KFDh2zbHDhwoFJTU7V582ZJUqdOndShQwe9/fbbkn4b1JCQEI0dO1ZTpkwp0H7wSGMAwM1ycnJ0/Phxubu7KzAwUF5eXrJYLI7uFgrIMAxlZmbq3Llzys7OVqNGjeTmZn/+rTSP/2SkgiEjAYDzISM5N0dnpPx4FGWh6OhoRUVFKSIiQq+88optenx8vLKyshQREWGb1rRpU9WuXdsWtuLi4tSyZUtb0JKkyMhIjR49WocPH1bbtm0VFxdnt47cNrmXvWdmZio+Pt7ujvRubm6KiIhQXFxcUXYJAABJvx1P6tWrpzNnzigpKcnR3UER+fr6qnbt2nmCVmkjIwEAXBUZyTU4KiPlp9AFqZUrV+q7777Tvn378sxLTk6Wl5eXAgIC7KYHBQUpOTnZ1ubGoJU7P3fe7dqkp6fr6tWrunDhgrKzs/Ntc+zYsVv2PSMjQxkZGbb36enpd9hbAEB55OXlpdq1a+v69evKzs52dHdQSO7u7vLw8DD9rC0ZCQDg6shIzs1RGelWClWQOn36tMaNG6etW7fKx8entPpUambPnq2ZM2c6uhsAACdgsVjk6ekpT09PR3cFToCMBAAoL8hIKCmFukYrPj5eKSkpateunTw8POTh4aGdO3dq4cKF8vDwUFBQkDIzM5Wammq33NmzZxUcHCxJCg4OzvNEmdz3d2pjtVpVoUIFVatWTe7u7vm2yV1HfqZOnaq0tDTb6/Tp04XZfQAAgHyRkQAAAAqnUAWpbt266eDBg9q/f7/t1b59ew0aNMj2b09PT8XGxtqWSUhIUGJiosLDwyVJ4eHhOnjwoN2TXrZu3Sqr1arQ0FBbmxvXkdsmdx1eXl4KCwuza5OTk6PY2Fhbm/x4e3vLarXavQAAAIqLjAQAAFA4hfrKXqVKldSiRQu7aRUrVlTVqlVt04cNG6aJEyeqSpUqslqtGjt2rMLDw9W5c2dJUvfu3RUaGqqnnnpKc+fOVXJysl588UVFR0fL29tbkjRq1Ci9/fbbev755/XMM89o+/btWr16tTZu3Gjb7sSJEzVkyBC1b99eHTt21BtvvKHLly/r6aefLtaAAAAAFBYZCQAAoHCK9JS921mwYIHc3NzUv39/ZWRkKDIyUosXL7bNd3d314YNGzR69GiFh4erYsWKGjJkiF5++WVbm3r16mnjxo2aMGGC3nzzTdWqVUvvv/++IiMjbW0ef/xxnTt3TtOmTVNycrLatGmjzZs357mJJwAAQFlARgIAAPidxTAMw9GdcJT09HT5+/srLS2tVC5Nz9r8dZ5pnj3uLfHtAACAgivt478rICMBAFD+mJ2RCnUPKQAAAAAAAKC4KEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKbycHQHXNnJ1Jg80xrpXgf0BAAAoOwgIwEAAK6QAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAUxWqIPXOO++oVatWslqtslqtCg8PV0xMjG3+tWvXFB0drapVq8rPz0/9+/fX2bNn7daRmJioqKgo+fr6qnr16po0aZKuX79u12bHjh1q166dvL291bBhQy1btixPXxYtWqS6devKx8dHnTp10t69ewuzKwAAACWGjAQAAFA4hSpI1apVS3PmzFF8fLy+/fZbde3aVY888ogOHz4sSZowYYI+++wzrVmzRjt37lRSUpL69etnWz47O1tRUVHKzMzU7t27tXz5ci1btkzTpk2ztTlx4oSioqL04IMPav/+/Ro/fryGDx+uLVu22NqsWrVKEydO1PTp0/Xdd9+pdevWioyMVEpKSnHHAwAAoNDISAAAAIVjMQzDKM4KqlSpotdff10DBgxQYGCgVqxYoQEDBkiSjh07pmbNmikuLk6dO3dWTEyMevXqpaSkJAUFBUmSlixZosmTJ+vcuXPy8vLS5MmTtXHjRh06dMi2jYEDByo1NVWbN2+WJHXq1EkdOnTQ22+/LUnKyclRSEiIxo4dqylTphS47+np6fL391daWpqsVmtxhiFfx1e+kGdao4Gvlvh2AABAwZX28T8XGenWyEgAAJQ9ZmWkXEW+h1R2drZWrlypy5cvKzw8XPHx8crKylJERIStTdOmTVW7dm3FxcVJkuLi4tSyZUtb0JKkyMhIpaen284gxsXF2a0jt03uOjIzMxUfH2/Xxs3NTREREbY2t5KRkaH09HS7FwAAQEkiIwEAANxZoQtSBw8elJ+fn7y9vTVq1CitXbtWoaGhSk5OlpeXlwICAuzaBwUFKTk5WZKUnJxsF7Ry5+fOu12b9PR0Xb16Vb/88ouys7PzbZO7jluZPXu2/P39ba+QkJDC7j4AAEC+yEgAAAAFV+iCVJMmTbR//37t2bNHo0eP1pAhQ3TkyJHS6FuJmzp1qtLS0myv06dPO7pLAADARZCRAAAACs6jsAt4eXmpYcOGkqSwsDDt27dPb775ph5//HFlZmYqNTXV7gzg2bNnFRwcLEkKDg7O86SX3CfM3Njm5qfOnD17VlarVRUqVJC7u7vc3d3zbZO7jlvx9vaWt7d3YXcZAADgjshIAAAABVfke0jlysnJUUZGhsLCwuTp6anY2FjbvISEBCUmJio8PFySFB4eroMHD9o96WXr1q2yWq0KDQ21tblxHbltctfh5eWlsLAwuzY5OTmKjY21tQEAAHA0MhIAAMCtFeoKqalTp6pnz56qXbu2Ll68qBUrVmjHjh3asmWL/P39NWzYME2cOFFVqlSR1WrV2LFjFR4ers6dO0uSunfvrtDQUD311FOaO3eukpOT9eKLLyo6Otp2Vm7UqFF6++239fzzz+uZZ57R9u3btXr1am3cuNHWj4kTJ2rIkCFq3769OnbsqDfeeEOXL1/W008/XYJDAwAAUDBkJAAAgMIpVEEqJSVFgwcP1pkzZ+Tv769WrVppy5YteuihhyRJCxYskJubm/r376+MjAxFRkZq8eLFtuXd3d21YcMGjR49WuHh4apYsaKGDBmil19+2damXr162rhxoyZMmKA333xTtWrV0vvvv6/IyEhbm8cff1znzp3TtGnTlJycrDZt2mjz5s15buIJAABgBjISAABA4VgMwzAc3QlHSU9Pl7+/v9LS0mS1Wkt8/cdXvpBnWqOBr5b4dgAAQMGV9vHfFZCRAAAof8zOSMW+hxQAAAAAAABQGBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTFaogNXv2bHXo0EGVKlVS9erV1adPHyUkJNi1uXbtmqKjo1W1alX5+fmpf//+Onv2rF2bxMRERUVFydfXV9WrV9ekSZN0/fp1uzY7duxQu3bt5O3trYYNG2rZsmV5+rNo0SLVrVtXPj4+6tSpk/bu3VuY3QEAACgRZCQAAIDCKVRBaufOnYqOjtY333yjrVu3KisrS927d9fly5dtbSZMmKDPPvtMa9as0c6dO5WUlKR+/frZ5mdnZysqKkqZmZnavXu3li9frmXLlmnatGm2NidOnFBUVJQefPBB7d+/X+PHj9fw4cO1ZcsWW5tVq1Zp4sSJmj59ur777ju1bt1akZGRSklJKc54AAAAFBoZCQAAoHAshmEYRV343Llzql69unbu3KkuXbooLS1NgYGBWrFihQYMGCBJOnbsmJo1a6a4uDh17txZMTEx6tWrl5KSkhQUFCRJWrJkiSZPnqxz587Jy8tLkydP1saNG3Xo0CHbtgYOHKjU1FRt3rxZktSpUyd16NBBb7/9tiQpJydHISEhGjt2rKZMmVKg/qenp8vf319paWmyWq1FHYZbOr7yhTzTGg18tcS3AwAACq60j/8SGelOyEgAAJQ9ZmSkGxXrHlJpaWmSpCpVqkiS4uPjlZWVpYiICFubpk2bqnbt2oqLi5MkxcXFqWXLlragJUmRkZFKT0/X4cOHbW1uXEdum9x1ZGZmKj4+3q6Nm5ubIiIibG0AAAAchYwEAABwex5FXTAnJ0fjx4/XPffcoxYtWkiSkpOT5eXlpYCAALu2QUFBSk5OtrW5MWjlzs+dd7s26enpunr1qi5cuKDs7Ox82xw7duyWfc7IyFBGRobtfXp6eiH2GAAA4M7ISAAAAHdW5CukoqOjdejQIa1cubIk+1OqZs+eLX9/f9srJCTE0V0CAAAuhowEAABwZ0UqSI0ZM0YbNmzQF198oVq1atmmBwcHKzMzU6mpqXbtz549q+DgYFubm58ok/v+Tm2sVqsqVKigatWqyd3dPd82uevIz9SpU5WWlmZ7nT59unA7DgAAcBtkJAAAgIIpVEHKMAyNGTNGa9eu1fbt21WvXj27+WFhYfL09FRsbKxtWkJCghITExUeHi5JCg8P18GDB+2e9LJ161ZZrVaFhoba2ty4jtw2uevw8vJSWFiYXZucnBzFxsba2uTH29tbVqvV7gUAAFBcZCQAAIDCKdQ9pKKjo7VixQp9+umnqlSpku1+Bv7+/qpQoYL8/f01bNgwTZw4UVWqVJHVatXYsWMVHh6uzp076/9j777jo6ry/4+/J4QUIIWWppSASBekiAHEQiQBRFBQUVaqYAGlKE2liyiyqCCCurvg+gW7ICKgFEXRLB2kGQGDQSFhKUkISEg5vz/8ZZZhEggwuTOTvJ6PxzwezL1n7j33MCRvPnPmXEnq0KGDGjRooIcffljTp09XSkqKnn/+eQ0ePFj+/v6SpMcee0xvvPGGRo0apf79+2vt2rX66KOP9OWXX9r7MmLECPXp00ctWrTQTTfdpNdee02nT59Wv379XDU2AAAARUJGAgAAuDyXVZCaO3euJOm2225z2D5//nz17dtXkvTqq6/Kx8dH3bt3V1ZWluLi4vTmm2/a25YpU0bLli3T448/rpiYGJUvX159+vTR5MmT7W2io6P15Zdfavjw4Xr99dd17bXX6h//+Ifi4uLsbR544AH997//1fjx45WSkqKmTZtq5cqVTot4AgAAFDcyEgAAwOWxGWOMuzvhLhkZGQoJCVF6enqxTE3f98FzTtvq9Jzq8vMAAICiK+7f/yUBGQkAgNLH6ox0xXfZAwAAAAAAAK4EBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpyy5Ifffdd+rSpYuioqJks9m0ZMkSh/3GGI0fP16RkZEKDAxUbGys9u3b59DmxIkT6tWrl4KDgxUaGqoBAwYoMzPToc1PP/2kW265RQEBAapWrZqmT5/u1JePP/5Y9erVU0BAgBo3bqzly5df7uUAAAC4BBkJAACg6C67IHX69Gk1adJEc+bMKXD/9OnTNWvWLM2bN08bNmxQ+fLlFRcXp7Nnz9rb9OrVS7t379aqVau0bNkyfffddxo0aJB9f0ZGhjp06KAaNWpoy5YteuWVVzRx4kS9/fbb9jY//vijHnzwQQ0YMEDbtm1Tt27d1K1bN+3atetyLwkAAOCqkZEAAACKzmaMMVf8YptNixcvVrdu3ST99clfVFSUnn76aT3zzDOSpPT0dIWHh2vBggXq2bOn9u7dqwYNGmjTpk1q0aKFJGnlypXq1KmTfv/9d0VFRWnu3Ll67rnnlJKSIj8/P0nSmDFjtGTJEv3888+SpAceeECnT5/WsmXL7P25+eab1bRpU82bN69I/c/IyFBISIjS09MVHBx8pcNQqH0fPOe0rU7PqS4/DwAAKLri/v0vkZEuhYwEAIDnsSIjnc+la0glJSUpJSVFsbGx9m0hISFq1aqVEhISJEkJCQkKDQ21By1Jio2NlY+PjzZs2GBv065dO3vQkqS4uDglJibq5MmT9jbnnye/Tf55AAAAPAUZCQAAwJGvKw+WkpIiSQoPD3fYHh4ebt+XkpKisLAwx074+qpSpUoObaKjo52Okb+vYsWKSklJueh5CpKVlaWsrCz784yMjMu5PAAAgCtCRgIAAHBUqu6yN23aNIWEhNgf1apVc3eXAAAA3I6MBAAArObSglRERIQkKTU11WF7amqqfV9ERISOHj3qsD8nJ0cnTpxwaFPQMc4/R2Ft8vcXZOzYsUpPT7c/Dh06dLmXCAAAcNnISAAAAI5cWpCKjo5WRESE1qxZY9+WkZGhDRs2KCYmRpIUExOjtLQ0bdmyxd5m7dq1ysvLU6tWrextvvvuO2VnZ9vbrFq1SnXr1lXFihXtbc4/T36b/PMUxN/fX8HBwQ4PAACA4kZGAgAAcHTZBanMzExt375d27dvl/TXIp3bt29XcnKybDabhg0bphdeeEFLly7Vzp071bt3b0VFRdnvMlO/fn3Fx8dr4MCB2rhxo3744QcNGTJEPXv2VFRUlCTpoYcekp+fnwYMGKDdu3frww8/1Ouvv64RI0bY+zF06FCtXLlSf//73/Xzzz9r4sSJ2rx5s4YMGXL1owIAAHCZyEgAAABFd9mLmm/evFm33367/Xl+AOrTp48WLFigUaNG6fTp0xo0aJDS0tLUtm1brVy5UgEBAfbXLFy4UEOGDFH79u3l4+Oj7t27a9asWfb9ISEh+vrrrzV48GA1b95cVapU0fjx4zVo0CB7m9atW2vRokV6/vnn9eyzz6pOnTpasmSJGjVqdEUDAQAAcDXISAAAAEVnM8YYd3fCXTIyMhQSEqL09PRimZq+74PnnLbV6TnV5ecBAABFV9y//0sCMhIAAKWP1RmpVN1lDwAAAAAAAO5HQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjK6wtSc+bMUc2aNRUQEKBWrVpp48aN7u4SAACA25GRAACAJ/PqgtSHH36oESNGaMKECdq6dauaNGmiuLg4HT161N1dAwAAcBsyEgAA8HReXZCaOXOmBg4cqH79+qlBgwaaN2+eypUrp3/961/u7ppXyV653ukBAAC8FxnJNchIAAAUH193d+BKnTt3Tlu2bNHYsWPt23x8fBQbG6uEhIQCX5OVlaWsrCz78/T0dElSRkZGsfQx80yW07biOtfVOHB4idO22hk3WN8RAAAskP+72Bjj5p4UDzKS65CRAAClidUZyWsLUseOHVNubq7Cw8MdtoeHh+vnn38u8DXTpk3TpEmTnLZXq1atWPpYoAF/t+5cV8Nb+gkAwBU6deqUQkJC3N0NlyMjFTNv6ScAAFfIqozktQWpKzF27FiNGDHC/jwvL08nTpxQ5cqVZbPZ3Ngz98nIyFC1atV06NAhBQcHu7s7JQJj6nqMqWsxnq7HmLpecY6pMUanTp1SVFSUS4/rzchIzvh37XqMqesxpq7FeLoeY+p6JSkjeW1BqkqVKipTpoxSU1MdtqempioiIqLA1/j7+8vf399hW2hoaHF10asEBwfzA8LFGFPXY0xdi/F0PcbU9YprTEvizKh8ZCTX4t+16zGmrseYuhbj6XqMqeuVhIzktYua+/n5qXnz5lqzZo19W15entasWaOYmBg39gwAAMB9yEgAAMAbeO0MKUkaMWKE+vTpoxYtWuimm27Sa6+9ptOnT6tfv37u7hoAAIDbkJEAAICn8+qC1AMPPKD//ve/Gj9+vFJSUtS0aVOtXLnSaRFPFM7f318TJkxwmqaPK8eYuh5j6lqMp+sxpq7HmF4dMtLV4z3oeoyp6zGmrsV4uh5j6nolaUxtpqTe8xgAAAAAAAAeyWvXkAIAAAAAAIB3oiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKRKqWnTpqlly5YKCgpSWFiYunXrpsTERHd3q8R46aWXZLPZNGzYMHd3xav98ccf+tvf/qbKlSsrMDBQjRs31ubNm93dLa+Vm5urcePGKTo6WoGBgapdu7amTJki7m1RdN999526dOmiqKgo2Ww2LVmyxGG/MUbjx49XZGSkAgMDFRsbq3379rmns17gYuOZnZ2t0aNHq3HjxipfvryioqLUu3dvHT582H0dRqlARipeZCTXICO5Fhnp6pGRXKu0ZCQKUqXUunXrNHjwYP3nP//RqlWrlJ2drQ4dOuj06dPu7prX27Rpk9566y3dcMMN7u6KVzt58qTatGmjsmXLasWKFdqzZ4/+/ve/q2LFiu7umtd6+eWXNXfuXL3xxhvau3evXn75ZU2fPl2zZ892d9e8xunTp9WkSRPNmTOnwP3Tp0/XrFmzNG/ePG3YsEHly5dXXFyczp49a3FPvcPFxvPMmTPaunWrxo0bp61bt+qzzz5TYmKi7r77bjf0FKUJGan4kJFcg4zkemSkq0dGcq1Sk5EMYIw5evSokWTWrVvn7q54tVOnTpk6deqYVatWmVtvvdUMHTrU3V3yWqNHjzZt27Z1dzdKlM6dO5v+/fs7bLv33ntNr1693NQj7ybJLF682P48Ly/PREREmFdeecW+LS0tzfj7+5v333/fDT30LheOZ0E2btxoJJnffvvNmk4BhozkKmQk1yEjuR4ZybXISK5VkjMSM6QgSUpPT5ckVapUyc098W6DBw9W586dFRsb6+6ueL2lS5eqRYsWuu+++xQWFqYbb7xR77zzjru75dVat26tNWvW6JdffpEk7dixQ+vXr1fHjh3d3LOSISkpSSkpKQ7//kNCQtSqVSslJCS4sWclR3p6umw2m0JDQ93dFZQiZCTXICO5DhnJ9chIxYuMVPy8NSP5ursDcL+8vDwNGzZMbdq0UaNGjdzdHa/1wQcfaOvWrdq0aZO7u1Ii/Prrr5o7d65GjBihZ599Vps2bdJTTz0lPz8/9enTx93d80pjxoxRRkaG6tWrpzJlyig3N1dTp05Vr1693N21EiElJUWSFB4e7rA9PDzcvg9X7uzZsxo9erQefPBBBQcHu7s7KCXISK5BRnItMpLrkZGKFxmpeHlzRqIgBQ0ePFi7du3S+vXr3d0Vr3Xo0CENHTpUq1atUkBAgLu7UyLk5eWpRYsWevHFFyVJN954o3bt2qV58+YRtq7QRx99pIULF2rRokVq2LChtm/frmHDhikqKooxhUfLzs7W/fffL2OM5s6d6+7uoBQhI109MpLrkZFcj4wEb+XtGYmv7JVyQ4YM0bJly/TNN9/o2muvdXd3vNaWLVt09OhRNWvWTL6+vvL19dW6des0a9Ys+fr6Kjc3191d9DqRkZFq0KCBw7b69esrOTnZTT3yfiNHjtSYMWPUs2dPNW7cWA8//LCGDx+uadOmubtrJUJERIQkKTU11WF7amqqfR8uX37Q+u2337Rq1Sqv++QP3ouM5BpkJNcjI7keGal4kZGKR0nISBSkSiljjIYMGaLFixdr7dq1io6OdneXvFr79u21c+dObd++3f5o0aKFevXqpe3bt6tMmTLu7qLXadOmjdNttn/55RfVqFHDTT3yfmfOnJGPj+OP/TJlyigvL89NPSpZoqOjFRERoTVr1ti3ZWRkaMOGDYqJiXFjz7xXftDat2+fVq9ercqVK7u7SygFyEiuRUZyPTKS65GRihcZyfVKSkbiK3ul1ODBg7Vo0SJ9/vnnCgoKsn93NyQkRIGBgW7unfcJCgpyWluifPnyqly5MmtOXKHhw4erdevWevHFF3X//fdr48aNevvtt/X222+7u2teq0uXLpo6daqqV6+uhg0batu2bZo5c6b69+/v7q55jczMTO3fv9/+PCkpSdu3b1elSpVUvXp1DRs2TC+88ILq1Kmj6OhojRs3TlFRUerWrZv7Ou3BLjaekZGR6tGjh7Zu3aply5YpNzfX/ruqUqVK8vPzc1e3UcKRkVyLjOR6ZCTXIyNdPTKSa5WajOTem/zBXSQV+Jg/f767u1ZicEvjq/fFF1+YRo0aGX9/f1OvXj3z9ttvu7tLXi0jI8MMHTrUVK9e3QQEBJhatWqZ5557zmRlZbm7a17jm2++KfBnZ58+fYwxf93WeNy4cSY8PNz4+/ub9u3bm8TERPd22oNdbDyTkpIK/V31zTffuLvrKMHISMWPjHT1yEiuRUa6emQk1yotGclmjDHFU+oCAAAAAAAAnLGGFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAF5s+fbrq1aunvLy8i7Y7ePCgbDabFixY4LB95cqVatq0qQICAmSz2ZSWllbkcx8/flzly5fX8uXLr6DnAAAAxYeMBOB8FKQAOFmwYIFsNluhj//85z/Fdu6+ffvKZrMpODhYf/75p9P+ffv22fsxY8aMYuvHlcrIyNDLL7+s0aNHy8fn8n/EHj9+XPfff78CAwM1Z84cvffeeypfvrwSExM1fPhwtW7d2h7CDh486PT6ypUr65FHHtG4ceNccDUAAOB8ZKQrV1wZ6bPPPtMDDzygWrVqqVy5cqpbt66efvppp2IVGQnwPL7u7gAAzzV58mRFR0c7bb/uuuuK9by+vr46c+aMvvjiC91///0O+xYuXKiAgACdPXu2WPtwpf71r38pJydHDz744BW9ftOmTTp16pSmTJmi2NhY+/aEhATNmjVLDRo0UP369bV9+/ZCj/HYY49p1qxZWrt2re64444r6gcAACgcGenyFVdGGjRokKKiovS3v/1N1atX186dO/XGG29o+fLl2rp1qwIDA+1tyUiAZ6EgBaBQHTt2VIsWLSw/r7+/v9q0aaP333/fKWwtWrRInTt31qeffmp5v4pi/vz5uvvuuxUQEHBFrz969KgkKTQ01GH73XffrbS0NAUFBWnGjBkXLUjVr19fjRo10oIFCwhbAAAUAzLS5SuujPTJJ5/otttuc9jWvHlz9enTRwsXLtQjjzxi305GAjwLX9kDcMUmTJggHx8frVmzxmH7oEGD5Ofnpx07dkiSvv32W9lsNn344Yd69tlnFRERofLly+vuu+/WoUOHCjz2Qw89pBUrVjhMt960aZP27dunhx56yKn9iRMn9Mwzz6hx48aqUKGCgoOD1bFjR3sfzjd79mw1bNhQ5cqVU8WKFdWiRQstWrTIvv/UqVMaNmyYatasKX9/f4WFhenOO+/U1q1bLzoeSUlJ+umnnxw+tcuXlpamvn37KiQkRKGhoerTp4/TVPLbbrtNffr0kSS1bNlSNptNffv2lSRVqlRJQUFBFz3/+e6880598cUXMsYU+TUAAMA1yEiOijMjXViMkqR77rlHkrR3716nfWQkwHNQkAJQqPT0dB07dszhcfz4cfv+559/Xk2bNtWAAQN06tQpSdJXX32ld955R+PHj1eTJk0cjjd16lR9+eWXGj16tJ566imtWrVKsbGxBa6DcO+998pms+mzzz6zb1u0aJHq1aunZs2aObX/9ddftWTJEt11112aOXOmRo4cqZ07d+rWW2/V4cOH7e3eeecdPfXUU2rQoIFee+01TZo0SU2bNtWGDRvsbR577DHNnTtX3bt315tvvqlnnnlGgYGBBYaa8/3444+S5NQ/Y4y6du2q9957T3/729/0wgsv6Pfff7cHq3zPPfecBg0aJOmvrwK89957evTRRy96zsI0b95caWlp2r179xW9HgAAFI6M5NkZKSUlRZJUpUoVp31kJMCDGAC4wPz5842kAh/+/v4ObXfu3Gn8/PzMI488Yk6ePGmuueYa06JFC5OdnW1v88033xhJ5pprrjEZGRn27R999JGRZF5//XX7tj59+pjy5csbY4zp0aOHad++vTHGmNzcXBMREWEmTZpkkpKSjCTzyiuv2F939uxZk5ub69C3pKQk4+/vbyZPnmzf1rVrV9OwYcOLXn9ISIgZPHhwUYfL7vnnnzeSzKlTpxy2L1myxEgy06dPt2/Lyckxt9xyi5Fk5s+fb9+eP/abNm0q9DyvvPKKkWSSkpIKbfPjjz8aSebDDz+87OsAAAAFIyN5dkbKN2DAAFOmTBnzyy+/OO0jIwGegzWkABRqzpw5uv766x22lSlTxuF5o0aNNGnSJI0dO1Y//fSTjh07pq+//lq+vs4/Xnr37u3wtbMePXooMjJSy5cv11NPPeXU/qGHHtJ9992nlJQU7dq1SykpKQVORZf+WlMhX25urtLS0lShQgXVrVvXYRp5aGiofv/9d23atEktW7Ys8FihoaHasGGDDh8+rKioqALbFOT48ePy9fVVhQoVHLYvX75cvr6+evzxx+3bypQpoyeffFLff/99kY9/OSpWrChJOnbsWLEcHwCA0oyM5LkZadGiRfrnP/+pUaNGqU6dOk77yUiA56AgBaBQN910U5EW7Bw5cqQ++OADbdy4US+++KIaNGhQYLsLQ4HNZtN1112ngwcPFti+U6dOCgoK0ocffqjt27erZcuWhbbPy8vT66+/rjfffFNJSUnKzc2176tcubL9z6NHj9bq1at100036brrrlOHDh300EMPqU2bNvY206dPV58+fVStWjU1b95cnTp1Uu/evVWrVq1LjkVBfvvtN0VGRjqFsLp1617R8YrC/P91EWw2W7GdAwCA0oqM5JkZ6fvvv9eAAQMUFxenqVOnFtiGjAR4DtaQAnDVfv31V+3bt0+StHPnTpcd19/fX/fee6/effddLV68uNBP/iTpxRdf1IgRI9SuXTv93//9n7766iutWrVKDRs2VF5enr1d/fr1lZiYqA8++EBt27bVp59+qrZt22rChAn2Nvfff79+/fVXzZ49W1FRUXrllVfUsGFDrVix4qL9rVy5snJycuxrRbjTyZMnJRW8dgIAALAGGekvVmSkHTt26O6771ajRo30ySefFDgTTSIjAZ6EghSAq5KXl6e+ffsqODhYzz77rN5//32HRTbPlx/I8hljtH//ftWsWbPQ4z/00EPatm2bTp06pZ49exba7pNPPtHtt9+uf/7zn+rZs6c6dOig2NhYp7u0SFL58uX1wAMPaP78+UpOTlbnzp01depUnT171t4mMjJSTzzxhJYsWaKkpCRVrly50E/a8tWrV0/SX3eSOV+NGjV05MgRZWZmOmxPTEy86PGuRn4f6tevX2znAAAAhSMj/U9xZ6QDBw4oPj5eYWFhWr58udOMq/ORkQDPQUEKwFWZOXOmfvzxR7399tuaMmWKWrdurccff7zA7+X/+9//dvhk7JNPPtGRI0fUsWPHQo9/++23a8qUKXrjjTcUERFRaLsyZco43b73448/1h9//OGw7fw74EiSn5+fGjRoIGOMsrOzlZubq/T0dIc2YWFhioqKUlZWVqHnl6SYmBhJ0ubNmx22d+rUSTk5OZo7d659W25urmbPnn3R412NLVu2KCQkRA0bNiy2cwAAgMKRkf6nODNSSkqKOnToIB8fH3311VeqWrXqRduTkQDPwRpSAAq1YsUK/fzzz07bW7durVq1amnv3r0aN26c+vbtqy5dukiSFixYoKZNm+qJJ57QRx995PC6SpUqqW3bturXr59SU1P12muv6brrrtPAgQML7YOPj4+ef/75S/b1rrvu0uTJk9WvXz+1bt1aO3fu1MKFC53WNOjQoYMiIiLUpk0bhYeHa+/evXrjjTfUuXNnBQUFKS0tTddee6169OihJk2aqEKFClq9erU2bdqkv//97xftQ61atdSoUSOtXr1a/fv3t2/v0qWL2rRpozFjxujgwYNq0KCBPvvsM6dQdzHp6en2cPbDDz9Ikt544w2FhoYqNDRUQ4YMcWi/atUqdenShfURAAAoBmQkz8lI8fHx+vXXXzVq1CitX79e69evt+8LDw/XnXfe6dCejAR4EPfd4A+Ap7rYLY31/2/Bm5OTY1q2bGmuvfZak5aW5vD6119/3eF2uvm3NH7//ffN2LFjTVhYmAkMDDSdO3c2v/32m8Nrz7+lcWEKu6Xx008/bSIjI01gYKBp06aNSUhIMLfeequ59dZb7e3eeust065dO1O5cmXj7+9vateubUaOHGnS09ONMcZkZWWZkSNHmiZNmpigoCBTvnx506RJE/Pmm28WaexmzpxpKlSoYM6cOeOw/fjx4+bhhx82wcHBJiQkxDz88MNm27ZtRb6lcf41F/SoUaOGQ9u9e/caSWb16tVF6jMAACgaMpLnZaSL/X2cf33GkJEAT2Mz5oL5mwDgYt9++61uv/12ffzxx+rRo4e7u1Os0tPTVatWLU2fPl0DBgxwSx+GDRum7777Tlu2bOHTPwAAPBgZyVpkJMCzsIYUALhQSEiIRo0apVdeecXhzjVWOX78uP7xj3/ohRdeIGgBAACPQUYCcCEKUgDgYqNHj9bPP/8sHx/rf8RWrlxZmZmZ6tSpk+XnBgAAuBgyEoDzUZACAAAAAACApVhDCgAAAAAAAJZihhQAAAAAAAAsRUEKAAAAAAAAlvJ1dwfcKS8vT4cPH1ZQUBB3WgAAoJQwxujUqVOKiopyy8K63oCMBABA6WN1RirVBanDhw+rWrVq7u4GAABwg0OHDunaa691dzc8EhkJAIDSy6qMVKoLUkFBQZL+Guzg4GA39wYAAFghIyND1apVs+cAOCMjAQBQ+lidkUp1QSp/CnpwcDBhCwCAUoavohWOjAQAQOllVUZi4QQAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYq1WtIAQBwMbm5ucrOznZ3N3CZypYtqzJlyri7GwAAlFhkJO/kaRmJghQAABcwxiglJUVpaWnu7gquUGhoqCIiIli4HAAAFyIjeT9PykgUpAAAuEB+0AoLC1O5cuU84hc2isYYozNnzujo0aOSpMjISDf3CACAkoOM5L08MSNRkAIA4Dy5ubn2oFW5cmV3dwdXIDAwUJJ09OhRhYWFedTUdAAAvBUZyft5WkZiUXMAAM6Tvx5CuXLl3NwTXI38vz/WtwAAwDXISCWDJ2UkClIAABSAKejejb8/AACKB79jvZsn/f1RkAIAAAAAAIClXF6Q+u6779SlSxdFRUXJZrNpyZIlDvuNMRo/frwiIyMVGBio2NhY7du3z6HNiRMn1KtXLwUHBys0NFQDBgxQZmamQ5uffvpJt9xyiwICAlStWjVNnz7d1ZcCAADgUuQkAACAv7h8UfPTp0+rSZMm6t+/v+69916n/dOnT9esWbP07rvvKjo6WuPGjVNcXJz27NmjgIAASVKvXr105MgRrVq1StnZ2erXr58GDRqkRYsWSZIyMjLUoUMHxcbGat68edq5c6f69++v0NBQDRo0yNWXBACAJCl75XrLzlU2vm2R215q6vWECRM0ceLEq+zRlbHZbFq8eLG6det2xcd4++23tWjRIm3dulWnTp3SyZMnFRoa6rI+WomcBAAoiazMSBI5Kd+JEyc0YcIEff3110pOTlbVqlXVrVs3TZkyRSEhIa7tbDFweUGqY8eO6tixY4H7jDF67bXX9Pzzz6tr166SpH//+98KDw/XkiVL1LNnT+3du1crV67Upk2b1KJFC0nS7Nmz1alTJ82YMUNRUVFauHChzp07p3/961/y8/NTw4YNtX37ds2cOZOgBQAodY4cOWL/84cffqjx48crMTHRvq1ChQqXdbxz587Jz8/PZf27WmfOnFF8fLzi4+M1duxYd3fnqpCTAACwVknOSYcPH9bhw4c1Y8YMNWjQQL/99psee+wxHT58WJ988om7u3dJlq4hlZSUpJSUFMXGxtq3hYSEqFWrVkpISJAkJSQkKDQ01B6yJCk2NlY+Pj7asGGDvU27du0c3gRxcXFKTEzUyZMnCz1/VlaWMjIyHB6At8teud7pAaB0iYiIsD9CQkJks9nsz0+fPq1evXopPDxcFSpUUMuWLbV69WqH19esWVNTpkxR7969FRwcbC9avPPOO6pWrZrKlSune+65RzNnznSamfT555+rWbNmCggIUK1atTRp0iTl5OTYjytJ99xzj2w2m/35jh07dPvttysoKEjBwcFq3ry5Nm/eXOj1DRs2TGPGjNHNN9/smgHzUO7MSWQklFRkJAAlOSc1atRIn376qbp06aLatWvrjjvu0NSpU/XFF1/Yz+PJLC1IpaSkSJLCw8MdtoeHh9v3paSkKCwszGG/r6+vKlWq5NCmoGOcf46CTJs2TSEhIfZHtWrVru6CAADwcJmZmerUqZPWrFmjbdu2KT4+Xl26dFFycrJDuxkzZqhJkybatm2bxo0bpx9++EGPPfaYhg4dqu3bt+vOO+/U1KlTHV7z/fffq3fv3ho6dKj27Nmjt956SwsWLLC327RpkyRp/vz5OnLkiP15r169dO2112rTpk3asmWLxowZo7Jly1owGp7NnTmJjAQAKI1KYk5KT09XcHCwfH1d/oU4l/P8HrrQ2LFjNWLECPvzjIwMAhcAoERr0qSJmjRpYn8+ZcoULV68WEuXLtWQIUPs2++44w49/fTT9ufPPfecOnbsqGeeeUaSdP311+vHH3/UsmXL7G0mTZqkMWPGqE+fPpKkWrVqacqUKRo1apQmTJigqlWrSpJCQ0MVERFhf11ycrJGjhypevXqSZLq1KlTDFeOy0FGAgCURiUtJx07dkxTpkzxmq/oW1qQyh/k1NRURUZG2renpqaqadOm9jZHjx51eF1OTo5OnDhhf31ERIRSU1Md2uQ/P/8v8kL+/v7y9/e/6usA3Inp5gAuR2ZmpiZOnKgvv/xSR44cUU5Ojv7880+nT/7O/wqYJCUmJuqee+5x2HbTTTc5BK0dO3bohx9+cPhEMDc3V2fPntWZM2dUrly5Avs0YsQIPfLII3rvvfcUGxur++67T7Vr177aS/V67sxJZCSUBGQkAJerJOWkjIwMde7cWQ0aNHDbIu2Xy9Kv7EVHRysiIkJr1qyxb8vIyNCGDRsUExMjSYqJiVFaWpq2bNlib7N27Vrl5eWpVatW9jbfffedsrOz7W1WrVqlunXrqmLFihZdDeDdWFMBKB2eeeYZLV68WC+++KK+//57bd++XY0bN9a5c+cc2pUvX/6yj52ZmalJkyZp+/bt9sfOnTu1b98++x3hCjJx4kTt3r1bnTt31tq1a9WgQQMtXrz4ss9f0pCTAM9ARgJKj5KSk06dOqX4+HgFBQVp8eLFXrMUgstnSGVmZmr//v3250lJSdq+fbsqVaqk6tWra9iwYXrhhRdUp04d++2Mo6Ki7Lc5rF+/vuLj4zVw4EDNmzdP2dnZGjJkiHr27KmoqChJ0kMPPaRJkyZpwIABGj16tHbt2qXXX39dr776qqsvBwAAr/bDDz+ob9++9k/xMjMzdfDgwUu+rm7duva1DPJd+LxZs2ZKTEzUddddV+hxypYtq9zcXKft119/va6//noNHz5cDz74oObPn+/0SWNJRE4CAMBzlISclJGRobi4OPn7+2vp0qUXLXZ5GpcXpDZv3qzbb7/d/jx/PYI+ffpowYIFGjVqlE6fPq1BgwYpLS1Nbdu21cqVKx0GbeHChRoyZIjat28vHx8fde/eXbNmzbLvDwkJ0ddff63BgwerefPmqlKlisaPH+8135MEAMAqderU0WeffaYuXbrIZrNp3LhxysvLu+TrnnzySbVr104zZ85Uly5dtHbtWq1YsUI2m83eZvz48brrrrtUvXp19ejRQz4+PtqxY4d27dqlF154QdJfd5BZs2aN2rRpI39/fwUEBGjkyJHq0aOHoqOj9fvvv2vTpk3q3r17oX1JSUlRSkqKvZCzc+dOBQUFqXr16qpUqdJVjpC1yEkAAHgOb89JGRkZ6tChg86cOaP/+7//c7hTbtWqVVWmTBkXjFLxcXlB6rbbbpMxptD9NptNkydP1uTJkwttU6lSJS1atOii57nhhhv0/fffX3E/AQAoDWbOnKn+/furdevWqlKlikaPHm0PKhfTpk0bzZs3T5MmTdLzzz+vuLg4DR8+XG+88Ya9TVxcnJYtW6bJkyfr5ZdfVtmyZVWvXj098sgj9jZ///vfNWLECL3zzju65ppr9Msvv+j48ePq3bu3UlNTVaVKFd17772aNGlSoX3J70e+du3aSfrrrjR9+/a9glFxH3ISAACew9tz0tatW7VhwwZJcpqJlZSUpJo1a17BqFjHZi6Wikq4jIwMhYSE2G+LCHiDoqxlUDa+7WUfpyivKYriOi5glbNnzyopKUnR0dFeNeXZCgMHDtTPP//sFYWOi/098vv/0hgjeCMyElC8yEgX5y05yZMykqV32QMAAN5jxowZuvPOO1W+fHmtWLFC7777rt588013dwsAAMDtyElXj4IUAAAo0MaNGzV9+nSdOnVKtWrV0qxZsxymmQMAAJRW5KSrR0EKAAAU6KOPPnJ3FwAAADwSOenq+bi7AwAAAAAAAChdKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJbydXcHAADwFgc2v2XZuWq3ePSy2vft21fvvvuuJMnX11eVKlXSDTfcoAcffFB9+/aVj4/3fga1e/dujR8/Xlu2bNFvv/2mV199VcOGDXN3twAAwP9nZUaSyEnne+edd/Tvf/9bu3btkiQ1b95cL774om666SY39+zSvHfUAQCAg/j4eB05ckQHDx7UihUrdPvtt2vo0KG66667lJOT4+7uXbEzZ86oVq1aeumllxQREeHu7gAAAC9UUnPSt99+qwcffFDffPONEhISVK1aNXXo0EF//PGHu7t2SRSkAAAoIfz9/RUREaFrrrlGzZo107PPPqvPP/9cK1as0IIFC+zt0tLS9Mgjj6hq1aoKDg7WHXfcoR07djgc64svvlDLli0VEBCgKlWq6J577rHvO3nypHr37q2KFSuqXLly6tixo/bt2ydJOn36tIKDg/XJJ584HG/JkiUqX768Tp06pXPnzmnIkCGKjIxUQECAatSooWnTphV6XS1bttQrr7yinj17yt/f3wUjBQAASpuSmpMWLlyoJ554Qk2bNlW9evX0j3/8Q3l5eVqzZo0LRq14UZACAKAEu+OOO9SkSRN99tln9m333Xefjh49qhUrVmjLli1q1qyZ2rdvrxMnTkiSvvzyS91zzz3q1KmTtm3bpjVr1jhM++7bt682b96spUuXKiEhQcYYderUSdnZ2Spfvrx69uyp+fPnO/Rj/vz56tGjh4KCgjRr1iwtXbpUH330kRITE7Vw4ULVrFnTkvEAAADIVxJz0pkzZ5Sdna1KlSpd3eBYgDWkAAAo4erVq6effvpJkrR+/Xpt3LhRR48etc82mjFjhpYsWaJPPvlEgwYN0tSpU9WzZ09NmjTJfowmTZpIkvbt26elS5fqhx9+UOvWrSX99clctWrVtGTJEt1333165JFH1Lp1ax05ckSRkZE6evSoli9frtWrV0uSkpOTVadOHbVt21Y2m001atSwcjgAAADsSlpOGj16tKKiohQbG3vVY1PcmCEFAEAJZ4yRzWaTJO3YsUOZmZmqXLmyKlSoYH8kJSXpwIEDkqTt27erffv2BR5r79698vX1VatWrezbKleurLp162rv3r2SpJtuukkNGza0Lx76f//3f6pRo4batWsn6a9PDrdv3666devqqaee0tdff11s1w4AAHAxJSknvfTSS/rggw+0ePFiBQQEXP5gWIwZUgAAlHB79+5VdHS0JCkzM1ORkZH69ttvndqFhoZKkgIDA6/6nI888ojmzJmjMWPGaP78+erXr5897DVr1kxJSUlasWKFVq9erfvvv1+xsbFO6ykAAAAUt5KSk2bMmKGXXnpJq1ev1g033HDVfbQCBSkAxSp75XqnbWXj27qhJ0DptHbtWu3cuVPDhw+X9FfISUlJka+vb6HrEdxwww1as2aN+vXr57Svfv36ysnJ0YYNG+xT0Y8fP67ExEQ1aNDA3u5vf/ubRo0apVmzZmnPnj3q06ePw3GCg4P1wAMP6IEHHlCPHj0UHx+vEydOeMV6BwDgCmQkwP1KSk6aPn26pk6dqq+++kotWrS4kqFwCwpSAACUEFlZWUpJSVFubq5SU1O1cuVKTZs2TXfddZd69+4tSYqNjVVMTIy6deum6dOn6/rrr9fhw4ftC3S2aNFCEyZMUPv27VW7dm317NlTOTk5Wr58uUaPHq06deqoa9euGjhwoN566y0FBQVpzJgxuuaaa9S1a1d7XypWrKh7771XI0eOVIcOHXTttdfa982cOVORkZG68cYb5ePjo48//lgRERH2Tx4vdO7cOe3Zs8f+5z/++EPbt29XhQoVdN111xXfgAIAgBKjpOakl19+WePHj9eiRYtUs2ZNpaSkSJL964aejDWkUOplr1zv8AAAb7Vy5UpFRkaqZs2aio+P1zfffKNZs2bp888/V5kyZSRJNptNy5cvV7t27dSvXz9df/316tmzp3777TeFh4dLkm677TZ9/PHHWrp0qZo2bao77rhDGzdutJ9n/vz5at68ue666y7FxMTIGKPly5erbNmyDv0ZMGCAzp07p/79+ztsDwoK0vTp09WiRQu1bNlSBw8e1PLly+XjU3AsOXz4sG688UbdeOONOnLkiGbMmKEbb7xRjzzyiCuHD8AFyEgASpKSmpPmzp2rc+fOqUePHoqMjLQ/ZsyY4crhKxY2Y4xxdyfcJSMjQyEhIUpPT1dwcLC7uwM3uTBgefpU6aIEwqJcQ3Fdt6v6B7jL2bNnlZSUpOjoaK9YDNKTvffeexo+fLgOHz4sPz8/S899sb9Hfv9fGmMEiYx0Oa8pCjISvB0ZybXclZM8KSPxlT2gFOBTTQBWOnPmjI4cOaKXXnpJjz76qOXFKAAoKjISAKuRk/6Hr+wBKNCF0/QJbACKavr06apXr54iIiI0duxYd3cHAFyOjATgSpGT/oeCFAAAcKmJEycqOztba9as8fjFNAEAAKxETvofvrIHeKGDaSscntcM7eimngAAAHgOMhIAeA9mSAEAAAAAAMBSFKQAAChAXl6eu7uAq8DfHwAAxYPfsd7Nk/7++MoeShUWnQRwKX5+fvLx8dHhw4dVtWpV+fn5yWazubtbKCJjjM6dO6f//ve/8vHxKdV3rgEuFzkJwMWQkbybJ2YkClIAAJzHx8dH0dHROnLkiA4fPuzu7uAKlStXTtWrV5ePD5PBAQBwBTJSyeBJGYmCFAAAF/Dz81P16tWVk5Oj3Nxcd3cHl6lMmTLy9fXlU1sAAFyMjOTdPC0jUZACAKAANptNZcuWVdmyZd3dFQAAAI9BRoKrUJACiuDCNRXKxrd1U0/ci3EAAADnIxv8hXEAgMtHQQoogViUFAAAwBkZCQA8h/tXsQIAAAAAAECpQkEKAAAAAAAAluIre0AxYS0BAAAAZ2QkAIDEDCkAAAAAAABYjBlSwBUoaEFMPt0DAAClHRkJAFBUzJACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGAp1pAC4HbcbQcAAMAZGQlASUZBCsAVK2jhUgAAgNKOjAQAl8ZX9gAAAAAAAGApClIAAAAAAACwFF/ZA9yIdQEAAACckZEAoORjhhQAAAAAAAAsxQwpoIQ6mLbC4XnN0I5u6gkAAIDnuDAjSeQkAHAHt8yQys3N1bhx4xQdHa3AwEDVrl1bU6ZMkTHG3sYYo/HjxysyMlKBgYGKjY3Vvn37HI5z4sQJ9erVS8HBwQoNDdWAAQOUmZlp9eUAAAC4BBkJAACUFm4pSL388suaO3eu3njjDe3du1cvv/yypk+frtmzZ9vbTJ8+XbNmzdK8efO0YcMGlS9fXnFxcTp79qy9Ta9evbR7926tWrVKy5Yt03fffadBgwa545IAAACuGhkJAACUFm75yt6PP/6orl27qnPnzpKkmjVr6v3339fGjRsl/fXJ32uvvabnn39eXbt2lST9+9//Vnh4uJYsWaKePXtq7969WrlypTZt2qQWLVpIkmbPnq1OnTppxowZioqKcselAQAAXDEyEgAAKC3cMkOqdevWWrNmjX755RdJ0o4dO7R+/Xp17PjXd7eTkpKUkpKi2NhY+2tCQkLUqlUrJSQkSJISEhIUGhpqD1qSFBsbKx8fH23YsMHCqwFwpQ5sfksHNr+lg2kr7A8AKM3ISADykZEAlHRumSE1ZswYZWRkqF69eipTpoxyc3M1depU9erVS5KUkpIiSQoPD3d4XXh4uH1fSkqKwsLCHPb7+vqqUqVK9jYXysrKUlZWlv15RkaGy64J8HQs4AkAno+MBLgHN4MBAOu5ZYbURx99pIULF2rRokXaunWr3n33Xc2YMUPvvvtusZ532rRpCgkJsT+qVatWrOcDAAC4HGQkAABQWrilIDVy5EiNGTNGPXv2VOPGjfXwww9r+PDhmjZtmiQpIiJCkpSamurwutTUVPu+iIgIHT161GF/Tk6OTpw4YW9zobFjxyo9Pd3+OHTokKsvDQAA4IqRkQAAQGnhloLUmTNn5OPjeOoyZcooLy9PkhQdHa2IiAitWbPGvj8jI0MbNmxQTEyMJCkmJkZpaWnasmWLvc3atWuVl5enVq1aFXhef39/BQcHOzwAWC975Xplr1yvvP3Jytuf7O7uAIDHICMBpVt+RsrPSQBQkrllDakuXbpo6tSpql69uho2bKht27Zp5syZ6t+/vyTJZrNp2LBheuGFF1SnTh1FR0dr3LhxioqKUrdu3SRJ9evXV3x8vAYOHKh58+YpOztbQ4YMUc+ePbl7DAAA8EpkJAAAUFq4pSA1e/ZsjRs3Tk888YSOHj2qqKgoPfrooxo/fry9zahRo3T69GkNGjRIaWlpatu2rVauXKmAgAB7m4ULF2rIkCFq3769fHx81L17d82aNcsdlwQAAHDVyEgAAKC0cEtBKigoSK+99ppee+21QtvYbDZNnjxZkydPLrRNpUqVtGjRomLoIQAAgPXISAAAoLRwyxpSAAAAAAAAKL0oSAEAAAAAAMBSbvnKHmCV7JXr3d0FAAAAj0NGAgC4GzOkAAAAAAAAYClmSAGQdPWflB5MW+HwvGZox6s6HgAAgCcgIwFA8aAgBXiQggJP2fi2bugJAACA5yAjAUDJQ0EKwEVd+KmexCd7AAAAZCQAuDqsIQUAAAAAAABLMUMKgMdhWj4AAIAzMhKAkoSCFFCKlbap5oQ4AABQFKUtI0nOOYmMBKC4UZACUCyKO8hRXAIAAN6IjAQAf2ENKQAAAAAAAFiKGVIALltBn+wBAACUdmQkACg6ZkgBAAAAAADAUsyQQolS0HfmAQAASjsyEgDA01CQAlBicHcYAAAAZ2QkAJ6Ir+wBAAAAAADAUsyQAlyEqfAAAADOyEgAgIIwQwoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKe6yB1yAO8HgShzY/JbTttotHnVDTwAAKB5kJFypC3MSGQmAxAwpAAAAAAAAWIwZUgBwnqJ8+ls2vq0FPQEAAPAcZCQArsYMKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlmINKcAi3JkGAADAGRkJAEonZkgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUa0gB8CgH01Y4basZ2tENPQEAAPAcZCQAJQ0zpAAAAAAAAGApClIAAAAAAACwFF/ZA+AVuCU0AACAMzISAG9FQQqAx7twzQTWSwAAACAjAfBufGUPAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCnusodS68K7kkjcmQQAAICMBACwAgUpAPAQ2SvXO20rG9/WDT0BAADwHGQkoGTiK3sAAAAAAACwFDOkAFimoK8AlATZK9crLy3ZYZvPddXd1BsAAOBtSmpGkpxzEhkJQD4KUkAJUJJDDAAAwJUiIwGA56IgBcDrsNgqAACAMzISAG9CQQooBoQBAAAAZ2QkAEA+ty1q/scff+hvf/ubKleurMDAQDVu3FibN2+27zfGaPz48YqMjFRgYKBiY2O1b98+h2OcOHFCvXr1UnBwsEJDQzVgwABlZmZafSlAiXIwbYXDw5sd2PyWwwMAvAEZCfBMZCQAcC23zJA6efKk2rRpo9tvv10rVqxQ1apVtW/fPlWsWNHeZvr06Zo1a5beffddRUdHa9y4cYqLi9OePXsUEBAgSerVq5eOHDmiVatWKTs7W/369dOgQYO0aNEid1wWSrHiDCUF3eYWAFAykZFQ0pCRAACFcUtB6uWXX1a1atU0f/58+7bo6Gj7n40xeu211/T888+ra9eukqR///vfCg8P15IlS9SzZ0/t3btXK1eu1KZNm9SiRQtJ0uzZs9WpUyfNmDFDUVFR1l4UAADAVSIjAQCA0sItX9lbunSpWrRoofvuu09hYWG68cYb9c4779j3JyUlKSUlRbGxsfZtISEhatWqlRISEiRJCQkJCg0NtQctSYqNjZWPj482bNhg3cUA8BoXTrX39un2AEoeMhIAdziw+S0yEgDLuaUg9euvv2ru3LmqU6eOvvrqKz3++ON66qmn9O6770qSUlJSJEnh4eEOrwsPD7fvS0lJUVhYmMN+X19fVapUyd7mQllZWcrIyHB4AAAAeAoyEgAAKC3c8pW9vLw8tWjRQi+++KIk6cYbb9SuXbs0b9489enTp9jOO23aNE2aNKnYjg/Pxic98DSsfQHgQmQkuAMZCZ6GjASUDm6ZIRUZGakGDRo4bKtfv76Sk5MlSREREZKk1NRUhzapqan2fRERETp69KjD/pycHJ04ccLe5kJjx45Venq6/XHo0CGXXA/gKnylDABKNzISUDAyEgCUPG6ZIdWmTRslJiY6bPvll19Uo0YNSX8t3hkREaE1a9aoadOmkqSMjAxt2LBBjz/+uCQpJiZGaWlp2rJli5o3by5JWrt2rfLy8tSqVasCz+vv7y9/f/9iuip4EkIKAMAbkZFQ3MhIAABP4ZaC1PDhw9W6dWu9+OKLuv/++7Vx40a9/fbbevvttyVJNptNw4YN0wsvvKA6derYb2kcFRWlbt26Sfrr08L4+HgNHDhQ8+bNU3Z2toYMGaKePXty9xgAbpe3P1nZx/433bxsfFs39gaAtyAjASjpyEgA8rmlINWyZUstXrxYY8eO1eTJkxUdHa3XXntNvXr1srcZNWqUTp8+rUGDBiktLU1t27bVypUrFRAQYG+zcOFCDRkyRO3bt5ePj4+6d++uWbNmueOSAAAArhoZCQAAlBZuKUhJ0l133aW77rqr0P02m02TJ0/W5MmTC21TqVIlLVq0qDi6BwAA4BZkJAAAUBq4rSAFXExBd9bwlOm8rL0AAADc6cKcREYCAHgjt9xlDwAAAAAAAKUXM6QAlGr7PnjOaVvN0I5u6AkAAIDnICMBKG4UpACUWHn7k93dBQAAAI9DRgLgCfjKHgAAAAAAACzFDCngIlicE5Lz+8Bn827VbvGom3oDAIBnICeBjATgalCQAgALFHTnSAAAgNKOjASUXhSk4HKeeitiwBMV9OkyC4YCQMlERgKKjowElHwUpHBRrghOBX3qQQCDq/G1AQCAlchI8BZkJACeikXNAQAAAAAAYCkKUgAAAAAAALAUX9nDVWERQgAAAGdkJAAALo6CFAAUExbjBAAAcEZGAiBRkAIAr1KUT9xZEBcAAJQ2ZCTA+1CQgltw2+Oi484onidvf7Kyj/FVDACA65GRio6M5HnISAAuBwUpeA0CGgAAgDMyEgDAG3GXPQAAAAAAAFiKGVIA4AUObH5LkpSXliyJhT8BAAAkMhLgzShI4bJwC2MAAABnZCQAAC4PX9kDAAAAAACApZghBQClEAvgAgAAOCMjAdahIAUAHub821j7bN7txp4AAAB4DjISULJQkILXYq0GAAAAZ2QkAIA3oCAFAFfg/E/oPB3/MQEAAFYhIwEoKgpS8Ail9ZeBN/3CBgAA1iMjAQBKKu6yBwAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUqwhBZyH9Qog8T4AAOBC/G6ExPsAgGtRkIJdaV00EwAA4GLISAAAuB5f2QMAAAAAAIClmCFVivFpHwAAgDMyEgAAxY8ZUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALMUaUgDgwfL2J7u7CwAAAB6HjAR4P2ZIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIpFzQGgBDuw+S3lpf1v0c+aoR3d2BsAAADPQEYC3I8ZUgAAAAAAALAUM6QAwEIH01a4uwsAAAAeh4wElD7MkAIAAAAAAIClKEgBAAAAAADAUnxlDwBKmOyV6+1/Pn+xTgAAgNKMjAR4FmZIAQAAAAAAwFIUpAAAAAAAAGApvrIHACUEd6cBAABwRkYCPBMzpAAAAAAAAGAptxekXnrpJdlsNg0bNsy+7ezZsxo8eLAqV66sChUqqHv37kpNTXV4XXJysjp37qxy5copLCxMI0eOVE5OjsW9BwAAKD7kJAAAUFK5tSC1adMmvfXWW7rhhhsctg8fPlxffPGFPv74Y61bt06HDx/Wvffea9+fm5urzp0769y5c/rxxx/17rvvasGCBRo/frzVlwAAAFAsyEkAAKAkc9saUpmZmerVq5feeecdvfDCC/bt6enp+uc//6lFixbpjjvukCTNnz9f9evX13/+8x/dfPPN+vrrr7Vnzx6tXr1a4eHhatq0qaZMmaLRo0dr4sSJ8vPzc9dlAYBHK2gNhZqhHZ22nX9b5Hxl49sWS58AOCMnAYC1ipqRJOecREYCrozbZkgNHjxYnTt3VmxsrMP2LVu2KDs722F7vXr1VL16dSUkJEiSEhIS1LhxY4WHh9vbxMXFKSMjQ7t377bmAgAAAIoJOQkAAJR0bpkh9cEHH2jr1q3atGmT076UlBT5+fkpNDTUYXt4eLhSUlLsbc4PWfn78/cVJisrS1lZWfbnGRkZV3oJAAAAxcIdOYmMBAAArGZ5QerQoUMaOnSoVq1apYCAAEvPPW3aNE2aNMnScwL5uN0sAOBS3JWTyEhwJzISAJROln9lb8uWLTp69KiaNWsmX19f+fr6at26dZo1a5Z8fX0VHh6uc+fOKS0tzeF1qampioiIkCRFREQ43U0m/3l+m4KMHTtW6enp9sehQ4dce3EAAABXwV05iYwEAACsZvkMqfbt22vnzp0O2/r166d69epp9OjRqlatmsqWLas1a9aoe/fukqTExEQlJycrJiZGkhQTE6OpU6fq6NGjCgsLkyStWrVKwcHBatCgQaHn9vf3l7+/fzFdGQCUXAfTVshns+PaM7VbPOqm3gAll7tyEhkJAK4MGQm4cpYXpIKCgtSoUSOHbeXLl1flypXt2wcMGKARI0aoUqVKCg4O1pNPPqmYmBjdfPPNkqQOHTqoQYMGevjhhzV9+nSlpKTo+eef1+DBgwlTAHAFCrqrHgDrkZMAwLOQkYDi45ZFzS/l1VdflY+Pj7p3766srCzFxcXpzTfftO8vU6aMli1bpscff1wxMTEqX768+vTpo8mTJ7ux1wAAAMWPnAQAAEoCjyhIffvttw7PAwICNGfOHM2ZM6fQ19SoUUPLly8v5p4BAAC4FzkJAACURJYvag4AAAAAAIDSzSNmSAEA3OfC223XDO3opp4AAAB4jgszkkROAlyJGVIAAAAAAACwFDOk4DH4BAIAAMAZGQkAUBIxQwoAAAAAAACWYoYUAHihgj4tBwAAKO3ISID3YIYUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFLcZQ+WKOhuFzVDO7qhJwAAAJ6DjAQAKK0oSAEAiiRvf7Ljhhbu6QcAAIAnISMBV4aCFNymoE8EAQAASjsyEgCgNKAgBQBwq+yV6x2el41v66aeAAAAeA4yEko6FjUHAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFIua46pdeCeYmqEdi+3Yrj4+gCu374PnHJ7XDO3IYpsAcJ7izDFkJMBzkZGAomGGFAAAAAAAACzFDClcVHHOfgIAAPBWZCQAAK4OBSl4HQIg4LmyV653eM70dACwDhkJ8FxkJMAZX9kDAAAAAACApZghBQDwKBd+gijxKSIAAAAZCSUNM6QAAAAAAABgKWZIweUKug0xABSGW5cDKE3ISQCKioyEko4ZUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALMUaUgAAj3Phmgl1xB1kAAAALsxIPpt3q3aLR93UG+DqUJACALhEQQtvUkgCAAClHRkJKBgFKQCAg+K8A1T2yvXFdmwAAIDiRk4CXIeCFLwet08GAABwRkYCAHgyFjUHAAAAAACApZghBTs+RQPgakw9B1ASkJEAuBoZCWCGFAAAAAAAACzGDCkAQKlyYPNbTtu4XTIAACjtyEiwGjOkAAAAAAAAYClmSOGysIYCAACAMzISAACXhxlSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtxlz0AgMc7sPktp221Wzzqhp4AAAB4lgtzEhkJ3oKCFACg2BR0G/SaoR3d0BMAAADPQUYCKEiVWgc2v6W8tGR3dwMAiiRvv+PPK5/rqrupJwBKOjISAG9CRoI3Yw0pAAAAAAAAWIoZUgCAEiF75XqH52Xj27qpJwAAAJ6DjARP5ZYZUtOmTVPLli0VFBSksLAwdevWTYmJiQ5tzp49q8GDB6ty5cqqUKGCunfvrtTUVIc2ycnJ6ty5s8qVK6ewsDCNHDlSOTk5Vl4KAACAy5CRAABAaeGWgtS6des0ePBg/ec//9GqVauUnZ2tDh066PTp0/Y2w4cP1xdffKGPP/5Y69at0+HDh3Xvvffa9+fm5qpz5846d+6cfvzxR7377rtasGCBxo8f745LAgAAuGpkJAAAUFq45St7K1eudHi+YMEChYWFacuWLWrXrp3S09P1z3/+U4sWLdIdd9whSZo/f77q16+v//znP7r55pv19ddfa8+ePVq9erXCw8PVtGlTTZkyRaNHj9bEiRPl5+fnjksDALjR+Xes8dm8m9sew+uQkQAAxYGMBE/kEYuap6enS5IqVaokSdqyZYuys7MVGxtrb1OvXj1Vr15dCQkJkqSEhAQ1btxY4eHh9jZxcXHKyMjQ7t27CzxPVlaWMjIyHB4AgNIhe+V6Za9cr7z9yfYH4OnISACA4kZGgru4vSCVl5enYcOGqU2bNmrUqJEkKSUlRX5+fgoNDXVoGx4erpSUFHub84NW/v78fQWZNm2aQkJC7I9q1aq5+GoAAABcg4wEAABKMrcXpAYPHqxdu3bpgw8+KPZzjR07Vunp6fbHoUOHiv2cAAAAV4KMBAAASjK3rCGVb8iQIVq2bJm+++47XXvttfbtEREROnfunNLS0hw+AUxNTVVERIS9zcaNGx2Ol3+Hmfw2F/L395e/v7+LrwIAcDnOX8MAQMHISABQ+pCRUNq4ZYaUMUZDhgzR4sWLtXbtWkVHRzvsb968ucqWLas1a9bYtyUmJio5OVkxMTGSpJiYGO3cuVNHjx61t1m1apWCg4PVoEEDay4EAADAhchIAACgtHDLDKnBgwdr0aJF+vzzzxUUFGRfzyAkJESBgYEKCQnRgAEDNGLECFWqVEnBwcF68sknFRMTo5tvvlmS1KFDBzVo0EAPP/ywpk+frpSUFD3//PMaPHgwn/ABQAmXtz9Z2cfWu7sbgMuRkQAAV4OMBG/iloLU3LlzJUm33Xabw/b58+erb9++kqRXX31VPj4+6t69u7KyshQXF6c333zT3rZMmTJatmyZHn/8ccXExKh8+fLq06ePJk+ebNVlAAAAuBQZCQAAlBZuKUgZYy7ZJiAgQHPmzNGcOXMKbVOjRg0tX77clV0DAABwGzISAAAoLdx+lz0AAAAAAACULhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYyi2LmgMA4C2yVzreOrlsfFs39QQAAMBzkJFwtShIAQBwgQOb37L/OS8tWZJUM7SjJMIXAAAovS4nI0nkJFwcBSkAgFc6mLbiovvz9icr+5hzMAIAACjJyEjwFqwhBQAAAAAAAEtRkAIAAAAAAICl+MoeAKDEutSU9Qvlr32QvyYCAABASURGgiegIAUAKLXy9v8VqoqyjkJBwS1/EU8AAICShIwEK/CVPQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlmINKQAArkL+Ip/nKxvf1g09AQAA8CwX5iQyEs7HDCkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLsag5AABX6GDaCofnNUM7uqknAAAAnoOMhKJghhQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEuxhhQAoNS7cJ0DAAAAkJFQvJghBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYytfdHQAAoKTIvzWyz+bd9m21WzxaYNvslesdnpeNb1t8HQMAAHAjMhIKQkHKC/EPFAA8W97+ZPufs4+t5+c0YJELM5JETgIAT0JGwvn4yh4AAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClWNS8BGABTwDwbAX9nAZgDW4GAwCei4xUulGQ8gL8IwUAAHBGRgIAwHtRkAIAoBgdTFvh8LxmaMcC2/hs3u2wrXaLR4u1XwAAAO50YUaSnHMSGalkYw0pAAAAAAAAWIoZUqXEhVPa89KS3dQTAEBRHNj8lsNzPg0EigcZCQC8Cxmp5GCGFAAAAAAAACzFDCkPc/6ndEX5Ti0AwLsU9LNdkvL2O8/K8LmuenF3B/AaZCQAKPkK+vlORiq5KEgBAOAluH09AACAMzKSd6Ig5WaXe7viotyt6UqOCwDwPOd/Iph9zPnn+oVrKEiso4CSg4wEACgMGalkoCDl5ZiyDgClV0FT2NXC+n4AnoiMBAClFxnJO7CoOQAAAAAAACzFDKkSiE8EAQAAnJGRAADwHBSkPERhd10CAEDi9wRKN97/AIDC8DvCe1GQcpP8Rdby0gr4bisAAFeIu8zA25GRAADFgYzkeby+IDVnzhy98sorSklJUZMmTTR79mzddNNN7u6Wg4JW+AcAoDhc+ClhHRG2SisyEgAA/0NG8jxeXZD68MMPNWLECM2bN0+tWrXSa6+9pri4OCUmJiosLMzd3bNXYPM/4fO5rrrb+sI0RgAonfZ98JzTtjo9p7qhJ7CSt2UkyX05iYwEAKUTGcn9vPouezNnztTAgQPVr18/NWjQQPPmzVO5cuX0r3/9y91dK1De/mSnBwAAgKt5W0aSnHMSAAAo2bx2htS5c+e0ZcsWjR071r7Nx8dHsbGxSkhIKPA1WVlZysrKsj9PT0+XJGVkZBRLH7NPn5YkZZ7JukRLAACsc/zTr5y2Jaevsv/ZVuvaAl9Xq1n/YuuTlfJ/7xtj3NyT4kFGAgDgypCRrM1IXluQOnbsmHJzcxUeHu6wPTw8XD///HOBr5k2bZomTZrktL1atWrF0kcAADzT36/wdcNd2gt3O3XqlEJCQtzdDZcjIwEAcKXISJJ1GclrC1JXYuzYsRoxYoT9eV5enk6cOKHKlSvLZrO55BwZGRmqVq2aDh06pODgYJccsyRgXJwxJs4Yk4IxLs4YE2eMScEKGhdjjE6dOqWoqCg3985zWJGRJN6nBWFMnDEmzhiTgjEuzhgTZ4xJwTwhI3ltQapKlSoqU6aMUlNTHbanpqYqIiKiwNf4+/vL39/fYVtoaGix9C84OJg3ewEYF2eMiTPGpGCMizPGxBljUrALx6UkzozK5+kZSeJ9WhDGxBlj4owxKRjj4owxccaYFMydGclrFzX38/NT8+bNtWbNGvu2vLw8rVmzRjExMW7sGQAAgPuQkQAAgDfw2hlSkjRixAj16dNHLVq00E033aTXXntNp0+fVr9+/dzdNQAAALchIwEAAE/n1QWpBx54QP/97381fvx4paSkqGnTplq5cqXTIp5W8vf314QJE5ymvZd2jIszxsQZY1IwxsUZY+KMMSlYaR0XT8xIUun9+7gYxsQZY+KMMSkY4+KMMXHGmBTME8bFZkrqPY8BAAAAAADgkbx2DSkAAAAAAAB4JwpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUGqCCZOnCibzebwqFevnn3/2bNnNXjwYFWuXFkVKlRQ9+7dlZqa6nCM5ORkde7cWeXKlVNYWJhGjhypnJwcqy/lqnz33Xfq0qWLoqKiZLPZtGTJEof9xhiNHz9ekZGRCgwMVGxsrPbt2+fQ5sSJE+rVq5eCg4MVGhqqAQMGKDMz06HNTz/9pFtuuUUBAQGqVq2apk+fXtyXdsUuNSZ9+/Z1eu/Ex8c7tClpYzJt2jS1bNlSQUFBCgsLU7du3ZSYmOjQxlX/Zr799ls1a9ZM/v7+uu6667RgwYLivrwrUpQxue2225zeK4899phDm5I0JnPnztUNN9yg4OBgBQcHKyYmRitWrLDvL23vkXyXGpfS9j4pyEsvvSSbzaZhw4bZt5XW94snICP9hYzkjIzkjIzkjIxUMHKSMzLSpXllRjK4pAkTJpiGDRuaI0eO2B///e9/7fsfe+wxU61aNbNmzRqzefNmc/PNN5vWrVvb9+fk5JhGjRqZ2NhYs23bNrN8+XJTpUoVM3bsWHdczhVbvny5ee6558xnn31mJJnFixc77H/ppZdMSEiIWbJkidmxY4e5++67TXR0tPnzzz/tbeLj402TJk3Mf/7zH/P999+b6667zjz44IP2/enp6SY8PNz06tXL7Nq1y7z//vsmMDDQvPXWW1Zd5mW51Jj06dPHxMfHO7x3Tpw44dCmpI1JXFycmT9/vtm1a5fZvn276dSpk6levbrJzMy0t3HFv5lff/3VlCtXzowYMcLs2bPHzJ4925QpU8asXLnS0ustiqKMya233moGDhzo8F5JT0+37y9pY7J06VLz5Zdfml9++cUkJiaaZ5991pQtW9bs2rXLGFP63iP5LjUupe19cqGNGzeamjVrmhtuuMEMHTrUvr20vl88ARnpL2QkZ2QkZ2QkZ2SkgpGTnJGRLs5bMxIFqSKYMGGCadKkSYH70tLSTNmyZc3HH39s37Z3714jySQkJBhj/vqF7OPjY1JSUuxt5s6da4KDg01WVlax9r24XBgs8vLyTEREhHnllVfs29LS0oy/v795//33jTHG7Nmzx0gymzZtsrdZsWKFsdls5o8//jDGGPPmm2+aihUrOozL6NGjTd26dYv5iq5eYWGra9euhb6mpI+JMcYcPXrUSDLr1q0zxrju38yoUaNMw4YNHc71wAMPmLi4uOK+pKt24ZgY89cv0fN/eVyopI+JMcZUrFjR/OMf/+A9coH8cTGmdL9PTp06ZerUqWNWrVrlMA68X9yLjOSMjOSMjFQwMpIzMlLhyEnOyEh/8eaMxFf2imjfvn2KiopSrVq11KtXLyUnJ0uStmzZouzsbMXGxtrb1qtXT9WrV1dCQoIkKSEhQY0bN1Z4eLi9TVxcnDIyMrR7925rL6SYJCUlKSUlxWEcQkJC1KpVK4dxCA0NVYsWLextYmNj5ePjow0bNtjbtGvXTn5+fvY2cXFxSkxM1MmTJy26Gtf69ttvFRYWprp16+rxxx/X8ePH7ftKw5ikp6dLkipVqiTJdf9mEhISHI6R3yb/GJ7swjHJt3DhQlWpUkWNGjXS2LFjdebMGfu+kjwmubm5+uCDD3T69GnFxMTwHvn/LhyXfKX1fTJ48GB17tzZqe+8X9yPjHRxZKTCkZHISBciIzkjJzkjIzny5ozke9VHKAVatWqlBQsWqG7dujpy5IgmTZqkW265Rbt27VJKSor8/PwUGhrq8Jrw8HClpKRIklJSUhz+gvP35+8rCfKvo6DrPH8cwsLCHPb7+vqqUqVKDm2io6OdjpG/r2LFisXS/+ISHx+ve++9V9HR0Tpw4ICeffZZdezYUQkJCSpTpkyJH5O8vDwNGzZMbdq0UaNGjSTJZf9mCmuTkZGhP//8U4GBgcVxSVetoDGRpIceekg1atRQVFSUfvrpJ40ePVqJiYn67LPPJJXMMdm5c6diYmJ09uxZVahQQYsXL1aDBg20ffv2Uv0eKWxcpNL5PpGkDz74QFu3btWmTZuc9pX2nynuRka6NDJSwchIZKQLkZEckZOckZGceXtGoiBVBB07drT/+YYbblCrVq1Uo0YNffTRRx75poTn6Nmzp/3PjRs31g033KDatWvr22+/Vfv27d3YM2sMHjxYu3bt0vr1693dFY9R2JgMGjTI/ufGjRsrMjJS7du314EDB1S7dm2ru2mJunXravv27UpPT9cnn3yiPn36aN26de7ultsVNi4NGjQole+TQ4cOaejQoVq1apUCAgLc3R1cgIyEK0VGIiNdiIzkiJzkjIzkqCRkJL6ydwVCQ0N1/fXXa//+/YqIiNC5c+eUlpbm0CY1NVURERGSpIiICKeV7POf57fxdvnXUdB1nj8OR48eddifk5OjEydOlJqxqlWrlqpUqaL9+/dLKtljMmTIEC1btkzffPONrr32Wvt2V/2bKaxNcHCwx/4nqLAxKUirVq0kyeG9UtLGxM/PT9ddd52aN2+uadOmqUmTJnr99ddL9XtEKnxcClIa3idbtmzR0aNH1axZM/n6+srX11fr1q3TrFmz5Ovrq/Dw8FL9fvE0ZCRnZKSiISORkchIjshJzshIjkpCRqIgdQUyMzN14MABRUZGqnnz5ipbtqzWrFlj35+YmKjk5GT791ljYmK0c+dOh1+qq1atUnBwsH2KobeLjo5WRESEwzhkZGRow4YNDuOQlpamLVu22NusXbtWeXl59h8YMTEx+u6775SdnW1vs2rVKtWtW9ejp10X1e+//67jx48rMjJSUskcE2OMhgwZosWLF2vt2rVOU+ld9W8mJibG4Rj5bc7/HrmnuNSYFGT79u2S5PBeKUljUpC8vDxlZWWVyvfIxeSPS0FKw/ukffv22rlzp7Zv325/tGjRQr169bL/mfeL5yAjOSMjFQ0ZiYxERro4cpIzMlIJyEhXvSx6KfD000+bb7/91iQlJZkffvjBxMbGmipVqpijR48aY/66lWL16tXN2rVrzebNm01MTIyJiYmxvz7/VoodOnQw27dvNytXrjRVq1b1ulsanzp1ymzbts1s27bNSDIzZ84027ZtM7/99psx5q9bGoeGhprPP//c/PTTT6Zr164F3tL4xhtvNBs2bDDr1683derUcbh9b1pamgkPDzcPP/yw2bVrl/nggw9MuXLlPPb2vRcbk1OnTplnnnnGJCQkmKSkJLN69WrTrFkzU6dOHXP27Fn7MUramDz++OMmJCTEfPvttw63XT1z5oy9jSv+zeTffnTkyJFm7969Zs6cOR57W9ZLjcn+/fvN5MmTzebNm01SUpL5/PPPTa1atUy7du3sxyhpYzJmzBizbt06k5SUZH766SczZswYY7PZzNdff22MKX3vkXwXG5fS+D4pzIV30imt7xdPQEb6CxnJGRnJGRnJGRmpYOQkZ2SkovG2jERBqggeeOABExkZafz8/Mw111xjHnjgAbN//377/j///NM88cQTpmLFiqZcuXLmnnvuMUeOHHE4xsGDB03Hjh1NYGCgqVKlinn66adNdna21ZdyVb755hsjyenRp08fY8xftzUeN26cCQ8PN/7+/qZ9+/YmMTHR4RjHjx83Dz74oKlQoYIJDg42/fr1M6dOnXJos2PHDtO2bVvj7+9vrrnmGvPSSy9ZdYmX7WJjcubMGdOhQwdTtWpVU7ZsWVOjRg0zcOBAh1tqGlPyxqSg8ZBk5s+fb2/jqn8z33zzjWnatKnx8/MztWrVcjiHJ7nUmCQnJ5t27dqZSpUqGX9/f3PdddeZkSNHmvT0dIfjlKQx6d+/v6lRo4bx8/MzVatWNe3bt7eHLGNK33sk38XGpTS+TwpzYdgqre8XT0BG+gsZyRkZyRkZyRkZqWDkJGdkpKLxtoxkM8aYq59nBQAAAAAAABQNa0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAMXutttu02233ebublguLy9PjRo10tSpUy/ZduLEibLZbA7bcnJyNGrUKFWrVk0+Pj7q1q3bZZ1/3rx5ql69urKysi7rdQAAwBpkJDISUJpRkALg5MCBA3r00UdVq1YtBQQEKDg4WG3atNHrr7+uP//807J+2Gw22Ww2PfLIIwXuf+655+xtjh07Zlm/iur999/XoUOHNGTIkCt6/b/+9S+98sor6tGjh959910NHz5ckvThhx/qb3/7m+rUqSObzVZokO3bt6/OnTunt95660ovAQAAnIeM5BrFkZGOHz+uV155Re3atVPVqlUVGhqqm2++WR9++KHT68lIgGfwdXcHAHiWL7/8Uvfdd5/8/f3Vu3dvNWrUSOfOndP69es1cuRI7d69W2+//bZl/QkICNCnn36qN998U35+fg773n//fQUEBOjs2bOW9edyvPLKK+rZs6dCQkKu6PVr167VNddco1dffdVh+9y5c7Vlyxa1bNlSx48fL/T1AQEB6tOnj2bOnKknn3zS6dNFAABQdGQk1ymOjLRs2TI999xz6tSpk55//nn5+vrq008/Vc+ePbVnzx5NmjTJ3paMBHgGZkgBsEtKSlLPnj1Vo0YN7dmzR6+//roGDhyowYMH6/3339eePXvUsGFDS/sUHx+vjIwMrVixwmH7jz/+qKSkJHXu3NnS/hTVtm3btGPHDt1///1XfIyjR48qNDTUaft7772n9PR0rV27VlFRURc9xv3336/ffvtN33zzzRX3AwCA0o6M5DrFlZEaNmyoffv2acmSJRo6dKgGDx6sNWvW6I477tDLL7+s06dPO7QnIwHuR0EKgN306dOVmZmpf/7zn4qMjHTaf91112no0KH25/Pnz9cdd9yhsLAw+fv7q0GDBpo7d26RznX27FlNnDhR119/vQICAhQZGal7771XBw4ccGh3zTXXqF27dlq0aJHD9oULF6px48Zq1KiR07G///573Xfffapevbr8/f1VrVo1DR8+3GkqfUpKivr166drr71W/v7+ioyMVNeuXXXw4EF7m82bNysuLk5VqlRRYGCgoqOj1b9//0te35IlS+Tn56d27do57Vu/fr1atmypgIAA1a5d22m6+MGDB2Wz2fTNN99o9+7d9in33377rSTZ10soiubNm6tSpUr6/PPPi9QeAAA4IyN5fkaKjo5WjRo1HNrbbDZ169ZNWVlZ+vXXXx32kZEA9+MrewDsvvjiC9WqVUutW7cuUvu5c+eqYcOGuvvuu+Xr66svvvhCTzzxhPLy8jR48OBCX5ebm6u77rpLa9asUc+ePTV06FCdOnVKq1at0q5du1S7dm2H9g899JCGDh2qzMxMVahQQTk5Ofr44481YsSIAqeif/zxxzpz5owef/xxVa5cWRs3btTs2bP1+++/6+OPP7a36969u3bv3q0nn3xSNWvW1NGjR7Vq1SolJyfbn3fo0EFVq1bVmDFjFBoaqoMHD+qzzz675Nj8+OOPatSokcqWLeuwfefOnfZjTpw4UTk5OZowYYLCw8PtbapWrar33ntPU6dOVWZmpqZNmyZJql+//iXPW5BmzZrphx9+uKLXAgAAMpI3Z6SUlBRJUpUqVZz2kZEANzMAYIxJT083kkzXrl2L/JozZ844bYuLizO1atVy2HbrrbeaW2+91f78X//6l5FkZs6c6fT6vLw8+58lmcGDB5sTJ04YPz8/89577xljjPnyyy+NzWYzBw8eNBMmTDCSzH//+9+L9mvatGnGZrOZ3377zRhjzMmTJ40k88orrxR6fYsXLzaSzKZNmwptU5hrr73WdO/e3Wl7t27dTEBAgL0fxhizZ88eU6ZMGXPhj+Rbb73VNGzY8KLnadiwocPYFmTQoEEmMDCw6J0HAAB2ZCRn3pCRjDHm+PHjJiwszNxyyy0F7icjAe7FV/YASJIyMjIkSUFBQUV+TWBgoP3P6enpOnbsmG699Vb9+uuvSk9PL/R1n376qapUqaInn3zSaV9Bi0pWrFhR8fHxev/99yVJixYtUuvWrZ2mZRfUr9OnT+vYsWNq3bq1jDHatm2bvY2fn5++/fZbnTx5ssDj5K9NsGzZMmVnZxd6PQU5fvy4Klas6LAtNzdXX331lbp166bq1avbt9evX19xcXGXdfzLUbFiRf355586c+ZMsZ0DAICSiozkzBsyUl5ennr16qW0tDTNnj27wDZkJMC9KEgBkCQFBwdLkk6dOlXk1/zwww+KjY1V+fLlFRoaqqpVq+rZZ5+VpIuGrQMHDqhu3bry9S36t4Yfeugh+1TxJUuW6KGHHiq0bXJysvr27atKlSqpQoUKqlq1qm699VaHfvn7++vll1/WihUrFB4ernbt2mn69On2ad2SdOutt6p79+6aNGmSqlSpoq5du2r+/PnKysoqUp+NMQ7P//vf/+rPP/9UnTp1nNrWrVu3SMe8Evn94A4yAABcPjKSd2akJ598UitXrtQ//vEPNWnS5KL9ICMB7kFBCoCkv8JWVFSUdu3aVaT2Bw4cUPv27XXs2DHNnDlTX375pVatWqXhw4dL+utTKVe6++675e/vrz59+igrK6vQO7Pk5ubqzjvv1JdffqnRo0dryZIlWrVqlRYsWODUr2HDhumXX37RtGnTFBAQoHHjxql+/fr2TwhtNps++eQTJSQkaMiQIfrjjz/Uv39/NW/eXJmZmRftb+XKlQv9VNFqJ0+eVLly5Rw+FQUAAEVDRvK+jDRp0iS9+eabeumll/Twww8X2o6MBLgXBSkAdnfddZcOHDighISES7b94osvlJWVpaVLl+rRRx9Vp06dFBsbW6Rf6LVr11ZiYuJlTfEODAxUt27d9O233+rOO+8scGFK6a8FMX/55Rf9/e9/1+jRo9W1a1fFxsYqKiqq0L48/fTT+vrrr7Vr1y6dO3dOf//73x3a3HzzzZo6dao2b96shQsXavfu3frggw8u2t969eopKSnJYVvVqlUVGBioffv2ObVPTEy86PGuRlJS0hUviA4AAMhI3pSR5syZo4kTJ2rYsGEaPXr0RduSkQD3oiAFwG7UqFEqX768HnnkEaWmpjrtP3DggF5//XVJUpkyZSQ5TrlOT0/X/PnzL3me7t2769ixY3rjjTec9l04hft8zzzzjCZMmKBx48YV2qagfhlj7P3Od+bMGae7z9SuXVtBQUH26eYnT5506k/Tpk0l6ZJT0mNiYrRr1y6HdmXKlFFcXJyWLFmi5ORk+/a9e/fqq6++uujxrsbWrVuLfFcgAADgjIzkHRnpww8/1FNPPaVevXpp5syZl2xPRgLcq+hfTgZQ4tWuXVuLFi3SAw88oPr166t3795q1KiRzp07px9//FEff/yx+vbtK0nq0KGD/Pz81KVLFz366KPKzMzUO++8o7CwMB05cuSi5+ndu7f+/e9/a8SIEdq4caNuueUWnT59WqtXr9YTTzyhrl27Fvi6Jk2aFLoGQL569eqpdu3aeuaZZ/THH38oODhYn376qdPU8F9++UXt27fX/fffrwYNGsjX11eLFy9WamqqevbsKUl699139eabb+qee+5R7dq1derUKb3zzjsKDg5Wp06dLtqPrl27asqUKVq3bp06dOhg3z5p0iStXLlSt9xyi5544gnl5ORo9uzZatiwoX766aeLHjPfd999p++++07SX2sunD59Wi+88IIkqV27dmrXrp297ZYtW3TixIlCxxQAAFwaGcnzM9LGjRvVu3dvVa5cWe3bt9fChQsd9rdu3Vq1atWyPycjAR7A+hv7AfB0v/zyixk4cKCpWbOm8fPzM0FBQaZNmzZm9uzZ5uzZs/Z2S5cuNTfccIMJCAgwNWvWNC+//LL9dsVJSUn2dhfe0tiYv247/Nxzz5no6GhTtmxZExERYXr06GEOHDhgb6P/f0vjiynolsZ79uwxsbGxpkKFCqZKlSpm4MCBZseOHUaSmT9/vjHGmGPHjpnBgwebevXqmfLly5uQkBDTqlUr89FHH9mPs3XrVvPggw+a6tWrG39/fxMWFmbuuusus3nz5iKN4w033GAGDBjgtH3dunWmefPmxs/Pz9SqVcvMmzfPfh3nK+yWxvltC3pMmDDBoe3o0aNN9erVHW4VDQAArgwZ6S+emJHmz59faD46//rykZEA97MZc5G5nwCAK/bee+9p8ODBSk5Ott8e2UpZWVmqWbOmxowZo6FDh1p+fgAAgIKQkQBIrCEFAMWmV69eql69uubMmeOW88+fP19ly5bVY4895pbzAwAAFISMBECSmCEFAAAAAAAASzFDCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFK+7u6AO+Xl5enw4cMKCgqSzWZzd3cAAIAFjDE6deqUoqKi5OPDZ3MFISMBAFD6WJ6RjIutW7fO3HXXXSYyMtJIMosXL3bYn5eXZ8aNG2ciIiJMQECAad++vfnll18c2hw/ftw89NBDJigoyISEhJj+/fubU6dOObTZsWOHadu2rfH39zfXXnutefnlly+7r4cOHTKSePDgwYMHDx6l8HHo0KHLzg5Xy1tyEhmJBw8ePHjwKL0PqzKSy2dInT59Wk2aNFH//v117733Ou2fPn26Zs2apXfffVfR0dEaN26c4uLitGfPHgUEBEiSevXqpSNHjmjVqlXKzs5Wv379NGjQIC1atEiSlJGRoQ4dOig2Nlbz5s3Tzp071b9/f4WGhmrQoEFF7mtQUJAk6dChQwoODnbB1QMAAE+XkZGhatWq2XOAlbwlJ5GRAAAofazOSDZjjCm2g9tsWrx4sbp16yZJMsYoKipKTz/9tJ555hlJUnp6usLDw7VgwQL17NlTe/fuVYMGDbRp0ya1aNFCkrRy5Up16tRJv//+u6KiojR37lw999xzSklJkZ+fnyRpzJgxWrJkiX7++eci9y8jI0MhISFKT08nbAEAUEp4yu9/T85JnjJGAADAOlb//rd04YSkpCSlpKQoNjbWvi0kJEStWrVSQkKCJCkhIUGhoaH2kCVJsbGx8vHx0YYNG+xt2rVrZw9ZkhQXF6fExESdPHmy0PNnZWUpIyPD4QEAAOAJ3JmTyEgAAMBqlhakUlJSJEnh4eEO28PDw+37UlJSFBYW5rDf19dXlSpVcmhT0DHOP0dBpk2bppCQEPujWrVqV3dBAAAALuLOnERGAgAAVitVt5YZO3as0tPT7Y9Dhw65u0sAAABuR0YCAABWc/mi5hcTEREhSUpNTVVkZKR9e2pqqpo2bWpvc/ToUYfX5eTk6MSJE/bXR0REKDU11aFN/vP8NgXx9/eXv7//VV8HAKB0yM3NVXZ2tru7gctUtmxZlSlTxt3duGzuzElkJADA5SAjeSdPy0iWFqSio6MVERGhNWvW2INVRkaGNmzYoMcff1ySFBMTo7S0NG3ZskXNmzeXJK1du1Z5eXlq1aqVvc1zzz2n7OxslS1bVpK0atUq1a1bVxUrVrTykgAAJZAxRikpKUpLS3N3V3CFQkNDFRERIZvN5u6uFBk5CQDg6chI3s+TMpLLC1KZmZnav3+//XlSUpK2b9+uSpUqqXr16ho2bJheeOEF1alTx34746ioKPsdZurXr6/4+HgNHDhQ8+bNU3Z2toYMGaKePXsqKipKkvTQQw9p0qRJGjBggEaPHq1du3bp9ddf16uvvurqywEAlEL5QSssLEzlypXziF/YKBpjjM6cOWOfRXT+TCNPQE4CAHgzMpL38siMZFzsm2++MZKcHn369DHGGJOXl2fGjRtnwsPDjb+/v2nfvr1JTEx0OMbx48fNgw8+aCpUqGCCg4NNv379zKlTpxza7Nixw7Rt29b4+/uba665xrz00kuX3df09HQjyaSnp1/x9QIASpacnByzZ88ec+zYMXd3BVfh2LFjZs+ePSYnJ8dpnzt//3tLTiIjAQAuREYqGTwpI9mMMcYdhTBPkJGRoZCQEKWnpys4ONjd3QEAeICzZ88qKSlJNWvWVGBgoLu7gyv0559/6uDBg4qOjlZAQIDDPn7/XxpjBAC4EBmpZPCkjFSq7rIHAEBRMQXdu/H3BwBA8eB3rHfzpL8/ClIAAAAAAACwFAUpAAAAAAAAWMrld9kDAKCkyl653rJzlY1vW+S2l5p6PWHCBE2cOPEqe3RlbDabFi9ebL9L3JV4++23tWjRIm3dulWnTp3SyZMnFRoa6rI+AgCAq2NlRpLISflOnDihCRMm6Ouvv1ZycrKqVq2qbt26acqUKQoJCXFtZ4sBBSkAALzckSNH7H/+8MMPNX78eCUmJtq3VahQ4bKOd+7cOfn5+bmsf1frzJkzio+PV3x8vMaOHevu7gAAAC9SknPS4cOHdfjwYc2YMUMNGjTQb7/9pscee0yHDx/WJ5984u7uXRJf2QNKqOyV6x0eAEquiIgI+yMkJEQ2m83+/PTp0+rVq5fCw8NVoUIFtWzZUqtXr3Z4fc2aNTVlyhT17t1bwcHBGjRokCTpnXfeUbVq1VSuXDndc889mjlzptPMpM8//1zNmjVTQECAatWqpUmTJiknJ8d+XEm65557ZLPZ7M937Nih22+/XUFBQQoODlbz5s21efPmQq9v2LBhGjNmjG6++WbXDBiAUo2MBJQuJTknNWrUSJ9++qm6dOmi2rVr64477tDUqVP1xRdf2M/jyShIAQBQgmVmZqpTp05as2aNtm3bpvj4eHXp0kXJyckO7WbMmKEmTZpo27ZtGjdunH744Qc99thjGjp0qLZv364777xTU6dOdXjN999/r969e2vo0KHas2eP3nrrLS1YsMDebtOmTZKk+fPn68iRI/bnvXr10rXXXqtNmzZpy5YtGjNmjMqWLWvBaAAAAPxPScxJ6enpCg4Olq+v538hzvN7CAAArliTJk3UpEkT+/MpU6Zo8eLFWrp0qYYMGWLffscdd+jpp5+2P3/uuefUsWNHPfPMM5Kk66+/Xj/++KOWLVtmbzNp0iSNGTNGffr0kSTVqlVLU6ZM0ahRozRhwgRVrVpVkhQaGqqIiAj765KTkzVy5EjVq1dPklSnTp1iuHIAAICLK2k56dixY5oyZYp9FpenY4YUAAAlWGZmpp555hnVr19foaGhqlChgvbu3ev0yV+LFi0cnicmJuqmm25y2Hbh8x07dmjy5MmqUKGC/TFw4EAdOXJEZ86cKbRPI0aM0COPPKLY2Fi99NJLOnDgwFVeJQAAwOUrSTkpIyNDnTt3VoMGDdy2SPvloiAFAEAJ9swzz2jx4sV68cUX9f3332v79u1q3Lixzp0759CufPnyl33szMxMTZo0Sdu3b7c/du7cqX379ikgIKDQ102cOFG7d+9W586dtXbtWjVo0ECLFy++7PMDAABcjZKSk06dOqX4+HgFBQVp8eLFXrMUAl/ZA7zQhQtwXs5tTwGULj/88IP69u2re+65R9Jf4ejgwYOXfF3dunXtaxnku/B5s2bNlJiYqOuuu67Q45QtW1a5ublO26+//npdf/31Gj58uB588EHNnz/f3kcAuFJkJACXoyTkpIyMDMXFxcnf319Lly69aLHL01CQAgCgBKtTp44+++wzdenSRTabTePGjVNeXt4lX/fkk0+qXbt2mjlzprp06aK1a9dqxYoVstls9jbjx4/XXXfdperVq6tHjx7y8fHRjh07tGvXLr3wwguS/rqDzJo1a9SmTRv5+/srICBAI0eOVI8ePRQdHa3ff/9dmzZtUvfu3QvtS0pKilJSUrR//35J0s7/x96dx0dV3f8ff2cP2ySsSdAAQRBkXwIYpNZKJEG0oFjBL1VAQKVgWSwI/SqIVoNI0WJRbP0WbItV8SuICFEMi6IpSzTIZop8g1BhEgWTCSBZz+8Pf7l1SIAkJHcmM6/n4zGPB3PvmTvnnkwybz5z5ty9e9WkSRO1adNGzZo1u8wRAgAA/qq+5ySXy6UhQ4bo7Nmz+vvf/y6XyyWXyyVJatmypYKCgmphlOoOX9kDAMCHLVmyRE2bNtXAgQN16623KikpSX369Lnk46677jotX75cS5YsUc+ePZWamqoZM2a4feqWlJSk9evX6/3331e/fv107bXX6tlnn1Xbtm2tNr///e+1adMmxcbGqnfv3goKCtLJkyd1zz336Oqrr9add96poUOHasGCBRfsy/Lly9W7d29NmjRJknT99derd+/eWrdu3WWMDAAA8Hf1PSd9+umn2rFjh/bu3asOHTooJibGuh07duzyB6iOBRhjjKc74Skul0sRERHWZRGB+qIq09GZsg7UzLlz55Sdna24uLh6NeXZDpMmTdIXX3yhjz76yNNduaSL/Rx5/780xgj1FRkJqDtkpIurLznJmzISX9kDAACVWrx4sW666SY1atRIGzdu1CuvvKIXXnjB090CAADwOHLS5aMgBQAAKrVz504tWrRIBQUFat++vZYuXaqJEyd6ulsAAAAeR066fBSkAABApd544w1PdwEAAMArkZMuHwUpAJfl/HUYJNZiAAAAICMBwMVRkAL8FCEJAACgIjISANiDghTgAyoLTgAAAP6OjAQA3ivQ0x0AAAAAAACAf6EgBQAAAAAAAFvxlT0Ade786fKswwAAAMB6VQD8GzOkAAAAAAAAYCtmSAEAUEWHd79k23NdFX9/tdqPGzdOr7zyiiQpODhYzZo1U48ePXTXXXdp3LhxCgysv59B7d+/X/PmzVNGRoa++uorPfvss5o+fbqnuwUAAP4/OzOSRE76sT//+c/661//qn379kmS+vbtq6eeekr9+/f3cM8urf6OOgAAcJOcnKwTJ07oyJEj2rhxo372s59p2rRpuuWWW1RSUuLp7tXY2bNn1b59ey1cuFDR0dGe7g4AAKiHfDUnbd26VXfddZe2bNmi9PR0xcbGasiQIfr666893bVLoiAFAICPCAsLU3R0tK644gr16dNHv/3tb/X2229r48aNWrlypdUuLy9PEydOVMuWLeVwOHTjjTdqz549bsd655131K9fP4WHh6tFixa67bbbrH3fffed7rnnHjVt2lQNGzbU0KFDdejQIUnSmTNn5HA49Oabb7odb+3atWrUqJEKCgpUVFSkqVOnKiYmRuHh4Wrbtq1SUlIueF79+vXTM888o9GjRyssLKwWRgoAAPgbX81Jq1at0q9+9Sv16tVLnTt31ssvv6yysjKlpaXVwqjVLQpSAAD4sBtvvFE9e/bUW2+9ZW37xS9+odzcXG3cuFEZGRnq06ePBg8erFOnTkmS3n33Xd122226+eab9dlnnyktLc1t2ve4ceO0e/durVu3Tunp6TLG6Oabb1ZxcbEaNWqk0aNHa8WKFW79WLFihe644w41adJES5cu1bp16/TGG28oKytLq1atUrt27WwZDwAAgHK+mJPOnj2r4uJiNWvW7PIGxwasIQWg1lV2xRgAntO5c2d9/vnnkqTt27dr586dys3NtWYbLV68WGvXrtWbb76p++67T08++aRGjx6tBQsWWMfo2bOnJOnQoUNat26dPv74Yw0cOFDSD5/MxcbGau3atfrFL36hiRMnauDAgTpx4oRiYmKUm5urDRs26IMPPpAkHT16VB07dtSgQYMUEBCgtm3b2jkcAOAxZCTA+/haTnr44YfVunVrJSYmXvbY1DVmSMHvFadur3ADAF9ijFFAQIAkac+ePTp9+rSaN2+uxo0bW7fs7GwdPnxYkpSZmanBgwdXeqyDBw8qODhYAwYMsLY1b95cnTp10sGDByVJ/fv3V9euXa3FQ//+97+rbdu2uv766yX98MlhZmamOnXqpF//+td6//336+zcAdQcGQmAP/ClnLRw4UK99tprWrNmjcLDw6s/GDZjhhQAAD7u4MGDiouLkySdPn1aMTEx2rp1a4V2kZGRkqQGDRpc9nNOnDhRy5Yt05w5c7RixQqNHz/eCnt9+vRRdna2Nm7cqA8++EB33nmnEhMTK6ynAAAAUNd8JSctXrxYCxcu1AcffKAePXpcdh/tQEEK8BN8qgn4p82bN2vv3r2aMWOGpB9CjtPpVHBw8AXXI+jRo4fS0tI0fvz4CvuuueYalZSUaMeOHdZU9JMnTyorK0tdunSx2v3yl7/U7NmztXTpUh04cEBjx451O47D4dCoUaM0atQo3XHHHUpOTtapU6fqxXoHAHwLGQnwX76SkxYtWqQnn3xS7733nuLj42syFB5BQQoAAB9RWFgop9Op0tJS5eTkKDU1VSkpKbrlllt0zz33SJISExOVkJCgESNGaNGiRbr66qt1/Phxa4HO+Ph4zZ8/X4MHD9ZVV12l0aNHq6SkRBs2bNDDDz+sjh07avjw4Zo0aZJeeuklNWnSRHPmzNEVV1yh4cOHW31p2rSpbr/9ds2aNUtDhgzRlVdeae1bsmSJYmJi1Lt3bwUGBmr16tWKjo62Pnk8X1FRkQ4cOGD9++uvv1ZmZqYaN26sDh061N2AAgAAn+GrOenpp5/WvHnz9Oqrr6pdu3ZyOp2SZH3d0JuxhhQAAD4iNTVVMTExateunZKTk7VlyxYtXbpUb7/9toKCgiRJAQEB2rBhg66//nqNHz9eV199tUaPHq2vvvpKUVFRkqQbbrhBq1ev1rp169SrVy/deOON2rlzp/U8K1asUN++fXXLLbcoISFBxhht2LBBISEhbv2ZMGGCioqKdO+997ptb9KkiRYtWqT4+Hj169dPR44c0YYNGxQYWHksOX78uHr37q3evXvrxIkTWrx4sXr37q2JEyfW5vABAAAf5qs56cUXX1RRUZHuuOMOxcTEWLfFixfX5vDViQBjjPF0JzzF5XIpIiJC+fn5cjgcnu4OPKSyadohyYM80JOqq6up5TU575r0xdvHF/7t3Llzys7OVlxcXL1YDNKb/e1vf9OMGTN0/PhxhYaG2vrcF/s58v5/aYwRJDLSj9mVkWr6XIAdyEi1y1M5yZsyEl/ZA1AtrLMA4FLOnj2rEydOaOHChbr//vttL0YBgCeQkQBUBTnpP/jKHgAAqFWLFi1S586dFR0drblz53q6OwAAAF6DnPQfFKQAAECteuyxx1RcXKy0tDSvX0wTAADATuSk/+ArewAs5081Zw0DAAAAMhIA1AVmSAEAAAAAAMBWzJACcEEszgl/VlZW5uku4DLw8wNQl8hI8Ge8x9Zv3vTzoyAF1JL6eGlkABWFhoYqMDBQx48fV8uWLRUaGqqAgABPdwtVZIxRUVGRvvnmGwUGBvr1lWsAb0FGAnwDGal+88aMREEKPo0ABKC6AgMDFRcXpxMnTuj48eOe7g5qqGHDhmrTpo0CA1mdALgQ1kUCUB1kJN/gTRmJghQAAOcJDQ1VmzZtVFJSotLSUk93B9UUFBSk4OBgPrUFAKCWkZHqN2/LSBSkAACoREBAgEJCQhQSEuLprgAAAHgNMhJqi+fnaAEAAAAAAMCvUJACAAAAAACArfjKHvwOl+kFAACoiIwEALATBSkAtuPqhwAAAJXj6ocA/AVf2QMAAAAAAICtKEgBAAAAAADAVnxlD6hEVdZQYPo0AADwN2QkAEBt8cgMqdLSUj366KOKi4tTgwYNdNVVV+mJJ56QMcZqY4zRvHnzFBMTowYNGigxMVGHDh1yO86pU6c0ZswYORwORUZGasKECTp9+rTdpwMAAFAryEgAAMBfeGSG1NNPP60XX3xRr7zyirp27ardu3dr/PjxioiI0K9//WtJ0qJFi7R06VK98soriouL06OPPqqkpCQdOHBA4eHhkqQxY8boxIkT2rRpk4qLizV+/Hjdd999evXVVz1xWkAFLEoJAKgOMhL8BRkJAOCRgtQnn3yi4cOHa9iwYZKkdu3a6R//+Id27twp6YdP/p577jk98sgjGj58uCTpr3/9q6KiorR27VqNHj1aBw8eVGpqqnbt2qX4+HhJ0vPPP6+bb75ZixcvVuvWrT1xakCt4xLMAOA/yEhA1ZGRAKB+88hX9gYOHKi0tDT961//kiTt2bNH27dv19ChQyVJ2dnZcjqdSkxMtB4TERGhAQMGKD09XZKUnp6uyMhIK2hJUmJiogIDA7Vjxw4bzwYAAKB2kJEAAIC/8MgMqTlz5sjlcqlz584KCgpSaWmpnnzySY0ZM0aS5HQ6JUlRUVFuj4uKirL2OZ1OtWrVym1/cHCwmjVrZrU5X2FhoQoLC637Lper1s4JwOVh6j4AkJEAVERGAuCrPFKQeuONN7Rq1Sq9+uqr6tq1qzIzMzV9+nS1bt1aY8eOrbPnTUlJ0YIFC+rs+IC/OpK3scK2dpFDPdATAKjfyEiA7zk/J5GRAOAHHvnK3qxZszRnzhyNHj1a3bt31913360ZM2YoJSVFkhQdHS1JysnJcXtcTk6OtS86Olq5ublu+0tKSnTq1CmrzfnmzvuKkyMAAQAASURBVJ2r/Px863bs2LHaPjUAAIAaIyMBAAB/4ZGC1NmzZxUY6P7UQUFBKisrkyTFxcUpOjpaaWlp1n6Xy6UdO3YoISFBkpSQkKC8vDxlZGRYbTZv3qyysjINGDCg0ucNCwuTw+FwuwEAAHgLMhIAAPAXHvnK3q233qonn3xSbdq0UdeuXfXZZ59pyZIluvfeeyVJAQEBmj59un73u9+pY8eO1iWNW7durREjRkiSrrnmGiUnJ2vSpElavny5iouLNXXqVI0ePZqrxwAAgHqJjAQAAPyFRwpSzz//vB599FH96le/Um5urlq3bq37779f8+bNs9rMnj1bZ86c0X333ae8vDwNGjRIqampCg8Pt9qsWrVKU6dO1eDBgxUYGKiRI0dq6dKlnjglAACAy0ZGAgAA/iLAGGM83QlPcblcioiIUH5+PlPTfdT5VyWpTedf4aQmz1WVq6TU5TnUlrpY1JwryACoK7z/Xxpj5B/qKmOQkdzV9qLmZCQAdcXu93+PzJACUPe4ogsAAEBFZCQA8A4UpAA/URezmAAAAOo7MhIAeAYFKfiU+jJ1GwAAwE5kJACAtwm8dBMAAAAAAACg9jBDCqhnanNaOVPUAQCAryAjAUD9wgwpAAAAAAAA2IoZUkANsRaD/c4fcy57DACA9yEj2Y+MBKA+YoYUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFZcZQ/woMquQsNVUQAAgL8jIwGA72OGFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW7GGFAA3R/I2XrJNu8ihtXLsmh4HAADAbmQkAKhdzJACAAAAAACArShIAQAAAAAAwFZ8ZQ/wAVWZQl6fnw8AAKAmyEgA4L2YIQUAAAAAAABbMUMKgFcqTt3u6S4AAAB4HTISAF/BDCkAAAAAAADYihlSgJfhUy8AAICKyEgA4FuYIQUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArFjUHUCeO5G30dBcAAAC8DhkJAH7ADCkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbsag5AI+pbFHPdpFDa/U5ilO3V/sxIcmDarUPAAAA1UFGAuAPmCEFAAAAAAAAW1GQAgAAAAAAgK34yh6Aequyqea1MZW8ro4LAABgBzISgPqAGVIAAAAAAACwFTOkAHiVy13EsyYLdAIAAHg7MhIAX8MMKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtuMoeAJ9wuVeeAQAA8EVkJADeihlSAAAAAAAAsBUFKQAAAAAAANiKr+wB8HrnTzVnmjkAAAAZCUD9RkEKqAWEgfqLnx0AAHWH99n6i7WnANQ1ClIAUAXFqdvd7ockD/JQTwAAALwHGQlATbGGFAAAAAAAAGzFDCkA8CLnf8oo8UkjAAAAGQnwPcyQAgAAAAAAgK08VpD6+uuv9ctf/lLNmzdXgwYN1L17d+3evdvab4zRvHnzFBMTowYNGigxMVGHDh1yO8apU6c0ZswYORwORUZGasKECTp9+rTdpwLAZkfyNla4AYCvICMBqCkyEoD6xCMFqe+++07XXXedQkJCtHHjRh04cEC///3v1bRpU6vNokWLtHTpUi1fvlw7duxQo0aNlJSUpHPnzlltxowZo/3792vTpk1av369PvzwQ913332eOCUAAIDLRkYCAAD+wiNrSD399NOKjY3VihUrrG1xcXHWv40xeu655/TII49o+PDhkqS//vWvioqK0tq1azV69GgdPHhQqamp2rVrl+Lj4yVJzz//vG6++WYtXrxYrVu3tvek4NW4bK1/svtS05e6ygxrHwC4FDIS7EZG8k/elpGq2gaAb/HIDKl169YpPj5ev/jFL9SqVSv17t1bf/7zn6392dnZcjqdSkxMtLZFRERowIABSk9PlySlp6crMjLSClqSlJiYqMDAQO3YsaPS5y0sLJTL5XK7AQAAeAsyEgAA8BceKUj93//9n1588UV17NhR7733niZPnqxf//rXeuWVVyRJTqdTkhQVFeX2uKioKGuf0+lUq1at3PYHBwerWbNmVpvzpaSkKCIiwrrFxsbW9qkBtY51AADAf5CRgKojIwFA/eaRglRZWZn69Omjp556Sr1799Z9992nSZMmafny5XX6vHPnzlV+fr51O3bsWJ0+HwAAQHWQkQAAgL/wSEEqJiZGXbp0cdt2zTXX6OjRo5Kk6OhoSVJOTo5bm5ycHGtfdHS0cnNz3faXlJTo1KlTVpvzhYWFyeFwuN0AAAC8BRkJAAD4C48san7dddcpKyvLbdu//vUvtW3bVtIPi3dGR0crLS1NvXr1kiS5XC7t2LFDkydPliQlJCQoLy9PGRkZ6tu3ryRp8+bNKisr04ABA+w7GQB+qbIFygHgcpGRANR3ZCQAVeWRgtSMGTM0cOBAPfXUU7rzzju1c+dO/elPf9Kf/vQnSVJAQICmT5+u3/3ud+rYsaPi4uL06KOPqnXr1hoxYoSkHz4tTE5OtqaxFxcXa+rUqRo9ejRXjwEAAPUSGQkAAPgLjxSk+vXrpzVr1mju3Ll6/PHHFRcXp+eee05jxoyx2syePVtnzpzRfffdp7y8PA0aNEipqakKDw+32qxatUpTp07V4MGDFRgYqJEjR2rp0qWeOCXUAU9c+tXuS+ACAPBjZCRUBRkJAOALPFKQkqRbbrlFt9xyywX3BwQE6PHHH9fjjz9+wTbNmjXTq6++WhfdAwBLZVfuIYgDqCtkJAD1BRkJwOXwWEEKqEtc+hcAAKAiMhIAwFt45Cp7AAAAAAAA8F/MkAK8CJ9aAgAAVERGAgDfQ0EKAOoIlz0GAACoiIwEQOIrewAAAAAAALAZM6QA+I26nO5f06vM8AkhAADwNDISAE9ghhQAAAAAAABsxQwp4CJq+okOUFW8xgAA9RHvX6hrvMYA38cMKQAAAAAAANiKGVKolsq+yx2SPMgDPQEAAPAeZCQAAKqHGVIAAAAAAACwFTOkcNkudQWMyj4dPP8x9ekTxLq8CgkAAPAdVblK2PkZiIwEAPAXzJACAAAAAACArZghBdjk/E8NuUoIAAAAV1MDAH9FQQp+i2nlqGsEbABAfURGQl0jIwGQKEgBgBtCOAAAQOXISQBqEwUpXFRVFuMEAADwN2QkAAAuDwUp1LnaCmyVHcdbrzzDp0eoS/XpdwEAcHG1kZPq0/sCGQl1qT79LgDgKnsAAAAAAACwGQUpAAAAAAAA2IqCFAAAAAAAAGzFGlIAYCPWzgAAAKiIjAT4HwpSAOBlzg9kgbv366r4+z3UGwAAAO9ARgJ8C1/ZAwAAAAAAgK2YIQWvUBuXPAYAAPA1ZCQAgK9ihhQAAAAAAABsxQwpAPADlX3CHpI8yAM9AQAA8C7n5yQyEmAPClIA4OXKvjyq4m/5ygYAAMCPkZGA+o2CFADUA+dfVaZd5FAP9QQAAMB7kJGA+ouCFAD4AKaaAwAAVERGArwXBSnUa1x5BgAAoCIyEgDA21GQgoXgAlTd+dPDAQC+i4wEVB0ZCUBVBXq6AwAAAAAAAPAvzJACAD/FmgoAAAAVkZEAezBDCgAAAAAAALZihpQfYz0EAACAishIAADUPQpSAOCD+M8UAABARWQkwHvwlT0AAAAAAADYioIUAAAAAAAAbMVX9gAPOZK30dNdAAAA8ErkJADwfRSkAKAeqiyot4sc6oGeAAAAeA8yElB/8JU9AAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2Yg0pAPBRrKEAAABQufNzEhkJsB8zpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC24ip7AOAjKruqHgAAgL8jIwHeiRlSAAAAAAAAsJXHC1ILFy5UQECApk+fbm07d+6cpkyZoubNm6tx48YaOXKkcnJy3B539OhRDRs2TA0bNlSrVq00a9YslZSU2Nx7AKhfjuRtrHAD4L3ISQBgDzISYD+PFqR27dqll156ST169HDbPmPGDL3zzjtavXq1tm3bpuPHj+v222+39peWlmrYsGEqKirSJ598oldeeUUrV67UvHnz7D4FAACAOkFOAgAAvsxjBanTp09rzJgx+vOf/6ymTZta2/Pz8/U///M/WrJkiW688Ub17dtXK1as0CeffKJ//vOfkqT3339fBw4c0N///nf16tVLQ4cO1RNPPKFly5apqKjIU6cEAABQK8hJAADA13msIDVlyhQNGzZMiYmJbtszMjJUXFzstr1z585q06aN0tPTJUnp6enq3r27oqKirDZJSUlyuVzav3//BZ+zsLBQLpfL7QYAAOBt7M5JZCQAAGA3j1xl77XXXtOnn36qXbt2VdjndDoVGhqqyMhIt+1RUVFyOp1Wmx+HrPL95fsuJCUlRQsWLLjM3gMAANQdT+QkMhIAALCb7TOkjh07pmnTpmnVqlUKDw+39bnnzp2r/Px863bs2DFbnx8AAOBiPJWTyEgAAMButhekMjIylJubqz59+ig4OFjBwcHatm2bli5dquDgYEVFRamoqEh5eXluj8vJyVF0dLQkKTo6usLVZMrvl7epTFhYmBwOh9sNAADAW3gqJ5GRAACA3WwvSA0ePFh79+5VZmamdYuPj9eYMWOsf4eEhCgtLc16TFZWlo4ePaqEhARJUkJCgvbu3avc3FyrzaZNm+RwONSlSxe7TwkAAKBWkJMAAIC/sH0NqSZNmqhbt25u2xo1aqTmzZtb2ydMmKCZM2eqWbNmcjgcevDBB5WQkKBrr71WkjRkyBB16dJFd999txYtWiSn06lHHnlEU6ZMUVhYmN2nBAAAUCvISQAAwF94ZFHzS3n22WcVGBiokSNHqrCwUElJSXrhhRes/UFBQVq/fr0mT56shIQENWrUSGPHjtXjjz/uwV4DQP1WnLq9wraQ5EEe6AmAiyEnAYC9yEhA3QgwxhhPd8JTXC6XIiIilJ+f75drJVT2h7WuHMnbWGFbu8ihtj4fgMpd7HeRsAVf5O/v/1Xh72NERgIgkZHgf+x+//fKGVIAAPuc/5+TuvyPEAAAQH1BRgLqFgUpAMAFnT9LgE8DAQAAyEhAbbD9KnsAAAAAAADwbxSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArYI93QEAQP1RnLq9wraQ5EEe6AkAAID3ICMB1ccMKQAAAAAAANiKGVLwmCN5G93ut4scWqM2AAAAvqQmGelC7QAA8FbMkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYiqvsoV7hijIAAACV4+rEAID6hIIU6r3KilQA6pfi1O0VtoUkD/JATwDAd5CRgPqPjARfxlf2AAAAAAAAYCsKUgAAAAAAALAVX9kDANSq86eWM60cAACAr98B56MghcvGApqAf6ssXAEAyEiAvyMjARdHQQoA4KaqV7PkP1oAAMCfkJGA2kVBCl6DK8EAAABUREYCAPgiFjUHAAAAAACArZghhWqpyid0fIoHAAD8DRkJAIDqYYYUAAAAAAAAbMUMKQDAJV3Op/qXusTx4d0vqSzvqNt+Fv8EAAD1weXOfDw/J5GR4E+YIQUAAAAAAABbMUMKAOCVLvaJIQAAgL8iI8FXMEMKAAAAAAAAtmKGFACgVlS2hgLrHAAAAH9HRgIqR0EKlvP/UPJHEgAAgIwEAEBdoCAFALDdj9c+OP/qMQAAAP6KjAR/QkEKAOB1mI0AAABQUWVf/+soFjVH/cSi5gAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbcZU9AECdqexKMFwxDwAA+DsyEsAMKQAAAAAAANiMGVJ+6vDul1SWd/SibSqr2gMAAPgyMhIAAPZghhQAAAAAAABsxQwpAICtmFkAAABQERkJ/oYZUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbMUaUgAAr3ckb6MCd+9323ZV/P0e6g0AAID3OLz7Jbf7ZCTUF8yQAgAAAAAAgK08UpBKSUlRv3791KRJE7Vq1UojRoxQVlaWW5tz585pypQpat68uRo3bqyRI0cqJyfHrc3Ro0c1bNgwNWzYUK1atdKsWbNUUlJi56kAAADUGjISAADwFx4pSG3btk1TpkzRP//5T23atEnFxcUaMmSIzpw5Y7WZMWOG3nnnHa1evVrbtm3T8ePHdfvtt1v7S0tLNWzYMBUVFemTTz7RK6+8opUrV2revHmeOCUAAIDLRkYCAAD+IsAYYzzdiW+++UatWrXStm3bdP311ys/P18tW7bUq6++qjvuuEOS9MUXX+iaa65Renq6rr32Wm3cuFG33HKLjh8/rqioKEnS8uXL9fDDD+ubb75RaGjoJZ/X5XIpIiJC+fn5cjgcdXqO3ubw7pdU9uVRT3cDAKossEMbt/uVrY/AGgqoivr0/k9Gsh8ZCUB9Q0ZCbbH7/d8r1pDKz8+XJDVr1kySlJGRoeLiYiUmJlptOnfurDZt2ig9PV2SlJ6eru7du1tBS5KSkpLkcrm0f7/7wrcAAAD1ERkJAAD4Ko9fZa+srEzTp0/Xddddp27dukmSnE6nQkNDFRkZ6dY2KipKTqfTavPjoFW+v3xfZQoLC1VYWGjdd7lctXUaAIA6dv6MheJvt1ds1MKmzgA2ICMBAKqCjIT6yuMFqSlTpmjfvn3avr2SX5palpKSogULFtT58wAAvFdxqvv7TUjyIA/1BLg4MhIAwE5kJNjNowWpqVOnav369frwww915ZVXWtujo6NVVFSkvLw8t08Ac3JyFB0dbbXZuXOn2/HKrzBT3uZ8c+fO1cyZM637LpdLsbGxtXU6AAAbHcnbWGFbYIs2lbQE6h8yEgCgpshIqC88soaUMUZTp07VmjVrtHnzZsXFxbnt79u3r0JCQpSWlmZty8rK0tGjR5WQkCBJSkhI0N69e5Wbm2u12bRpkxwOh7p06VLp84aFhcnhcLjdAAAAvAUZCQAA+AuPzJCaMmWKXn31Vb399ttq0qSJtZ5BRESEGjRooIiICE2YMEEzZ85Us2bN5HA49OCDDyohIUHXXnutJGnIkCHq0qWL7r77bi1atEhOp1OPPPKIpkyZorCwME+cFgAAwGUhIwEAAH/hkYLUiy++KEm64YYb3LavWLFC48aNkyQ9++yzCgwM1MiRI1VYWKikpCS98MILVtugoCCtX79ekydPVkJCgho1aqSxY8fq8ccft+s06pXzvw9clsfljAEA8DZkJM/4cU4iIwEAYI8AY4zxdCc8xeVyKSIiQvn5+T4/Nf38glRl3ysGAF/TLnJohQU5WbAT/vT+X1P+NkY//rtARgLgD8hIqIzd7/8ev8oeAADe7vyAJhHSAAAAyEi4HBSkAAA+7VIzRAN379dV8ffb2SUAAACPIyPB0zxylT0AAAAAAAD4L2ZIAQB8FmvBAAAAVERGgjdghhQAAAAAAABsRUEKAAAAAAAAtuIrewAAnOfQa/9dYVu7yKEe6AkAAID3ICOhNjFDCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArVhDCgCAKjj/8siBu/frqvj7PdQbAAAA70BGQk0xQwoAAAAAAAC2YoYUAAA1UPblURV/u926H5I8yIO9AQAA8A5kJFQVM6QAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtuIqewAAv3b+lWAAAABARkLdoyAFAEAtKE6tGNi4zDEAAPB3ZCRcCAUpAABq6EjeRrf77SKHeqgnAAAA3oOMhKpgDSkAAAAAAADYihlSAAC/d/6neAAAACAjoW4xQwoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANgq2NMdAADAVxzJ2+h2P3D3fl0Vf7+HegMAAOAdyEioDDOkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYijWkAADwkOLU7RW2hSQP8kBPAAAAvAcZyT9QkKqH+OUEgPqh7MujKv72P3+z+VsN1C0yEgDUD2QkSHxlDwAAAAAAADZjhlQ9UNmnfQAAAP6OjAQAQP3FDCkAAAAAAADYihlSAADUoSN5G/9z57WNahc51HOdAQAA8BLnZyRJ5CQ/Q0HKR5w/ZZ1F4QAAAMhIAAB4KwpSAAB42I8/IQzcvV+SdFX8/Z7qDgAAgFcgI/k2ClJehsU5AcC3uU1Pv4jDu19yu0/4gr8jIwGA76tKTiIj+Q4WNQcAAAAAAICtKEgBAAAAAADAVnxlz4udP12RKw4AgO8r+/Ko2/3ADm0qtGGRZvi7yr7SQU4CAN9GRvI9FKTqkeqEL9ZZAAAA/qSqH+SRkQAA8A4UpOo5PiEEAN9W/mlg8bf8JxqoDjISAPg2MlL9xxpSAAAAAAAAsBUzpDzMjmnjVb3EOACgfin/+x64e7+1jUsfw1fY9dU6chIA+B4yUv1AQcpLEIYAAAAqIiMBAOCbKEj5IIIbAPiei/1t//FVZ8rXUeCqMkBFZCQA8D1kpPqLgpSHHN79kiSpLO/oJVoCAFB9XPYY9RUZCQBQl8hI3qPeF6SWLVumZ555Rk6nUz179tTzzz+v/v37e7pbbqxg9SXBCgBgL9ZQ8F/1KSNJ5CQAgL3ISJ5XrwtSr7/+umbOnKnly5drwIABeu6555SUlKSsrCy1atXK092zKq98wgcAsAtfSYJERgIA4HxkJO8T6OkOXI4lS5Zo0qRJGj9+vLp06aLly5erYcOG+stf/uLprgEAUK8c3v2S2w31GxkJAIDaQUaqO/V2hlRRUZEyMjI0d+5ca1tgYKASExOVnp5e6WMKCwtVWFho3c/Pz5ckuVyuOulj8ZkzkqTTZwsv0RIAgDr2+SHrnye/eq/Cblf+IQW0v/I/9+vovdEblJ+bMcbDPakbZCQAAKqBjGSxOyPV24LUt99+q9LSUkVFRbltj4qK0hdffFHpY1JSUrRgwYIK22NjY+ukjwAAeKffV6HNjDrvhacVFBQoIiLC092odWQkAABqiowk2ZeR6m1Bqibmzp2rmTNnWvfLysp06tQpNW/eXAEBAbXyHC6XS7GxsTp27JgcDketHLO+Y0wqx7hUxJhUxJhUjnGpiDGp6EJjYoxRQUGBWrdu7cHeeRcykmcwJpVjXCpiTCpiTCrHuFTEmFTkLRmp3hakWrRooaCgIOXk5Lhtz8nJUXR0dKWPCQsLU1hYmNu2yMjIOumfw+HgxX4exqRyjEtFjElFjEnlGJeKGJOKKhsTX5wZVY6MVP8wJpVjXCpiTCpiTCrHuFTEmFTk6YxUbxc1Dw0NVd++fZWWlmZtKysrU1pamhISEjzYMwAAAM8hIwEAgPqg3s6QkqSZM2dq7Nixio+PV//+/fXcc8/pzJkzGj9+vKe7BgAA4DFkJAAA4O3qdUFq1KhR+uabbzRv3jw5nU716tVLqampFRbxtFNYWJjmz59fYdq7P2NMKse4VMSYVMSYVI5xqYgxqcifx4SMVD8wJpVjXCpiTCpiTCrHuFTEmFTkLWMSYHz1mscAAAAAAADwSvV2DSkAAAAAAADUTxSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioJUFTz22GMKCAhwu3Xu3Nnaf+7cOU2ZMkXNmzdX48aNNXLkSOXk5Lgd4+jRoxo2bJgaNmyoVq1aadasWSopKbH7VGrsww8/1K233qrWrVsrICBAa9euddtvjNG8efMUExOjBg0aKDExUYcOHXJrc+rUKY0ZM0YOh0ORkZGaMGGCTp8+7dbm888/109+8hOFh4crNjZWixYtqutTuyyXGpdx48ZVeO0kJye7tfGlcUlJSVG/fv3UpEkTtWrVSiNGjFBWVpZbm9r6fdm6dav69OmjsLAwdejQQStXrqzr06uxqozLDTfcUOG18sADD7i18aVxefHFF9WjRw85HA45HA4lJCRo48aN1n5/fJ1cakz87TVSmYULFyogIEDTp0+3tvnja8WbkJHISBdCRnJHRqocGakiMlLlyEmXVi9zksElzZ8/33Tt2tWcOHHCun3zzTfW/gceeMDExsaatLQ0s3v3bnPttdeagQMHWvtLSkpMt27dTGJiovnss8/Mhg0bTIsWLczcuXM9cTo1smHDBvPf//3f5q233jKSzJo1a9z2L1y40ERERJi1a9eaPXv2mJ///OcmLi7OfP/991ab5ORk07NnT/PPf/7TfPTRR6ZDhw7mrrvusvbn5+ebqKgoM2bMGLNv3z7zj3/8wzRo0MC89NJLdp1mtV1qXMaOHWuSk5PdXjunTp1ya+NL45KUlGRWrFhh9u3bZzIzM83NN99s2rRpY06fPm21qY3fl//7v/8zDRs2NDNnzjQHDhwwzz//vAkKCjKpqam2nm9VVWVcfvrTn5pJkya5vVby8/Ot/b42LuvWrTPvvvuu+de//mWysrLMb3/7WxMSEmL27dtnjPHP18mlxsTfXiPn27lzp2nXrp3p0aOHmTZtmrXdH18r3oSMREa6EDKSOzJS5chIFZGRKkdOurj6mpMoSFXB/PnzTc+ePSvdl5eXZ0JCQszq1autbQcPHjSSTHp6ujHmhzfkwMBA43Q6rTYvvviicTgcprCwsE77XhfODxVlZWUmOjraPPPMM9a2vLw8ExYWZv7xj38YY4w5cOCAkWR27dpltdm4caMJCAgwX3/9tTHGmBdeeME0bdrUbUwefvhh06lTpzo+o9pxobA1fPjwCz7G18clNzfXSDLbtm0zxtTe78vs2bNN165d3Z5r1KhRJikpqa5PqVacPy7G/PAm+uM3j/P5w7g0bdrUvPzyy7xOfqR8TIzx79dIQUGB6dixo9m0aZPbOPBa8TwykjsyUuXISBWRkSpHRqocGaly5KQf1OecxFf2qujQoUNq3bq12rdvrzFjxujo0aOSpIyMDBUXFysxMdFq27lzZ7Vp00bp6emSpPT0dHXv3l1RUVFWm6SkJLlcLu3fv9/eE6kD2dnZcjqdbmMQERGhAQMGuI1BZGSk4uPjrTaJiYkKDAzUjh07rDbXX3+9QkNDrTZJSUnKysrSd999Z9PZ1L6tW7eqVatW6tSpkyZPnqyTJ09a+3x9XPLz8yVJzZo1k1R7vy/p6eluxyhvU34Mb3f+uJRbtWqVWrRooW7dumnu3Lk6e/astc+Xx6W0tFSvvfaazpw5o4SEBF4nqjgm5fz1NTJlyhQNGzasQt95rXgHMtKFkZEujoxERjofGckdGaly5CR39TknBV/2EfzAgAEDtHLlSnXq1EknTpzQggUL9JOf/ET79u2T0+lUaGioIiMj3R4TFRUlp9MpSXI6nW4/4PL95fvqu/JzqOwcfzwGrVq1ctsfHBysZs2aubWJi4urcIzyfU2bNq2T/tel5ORk3X777YqLi9Phw4f129/+VkOHDlV6erqCgoJ8elzKyso0ffp0XXfdderWrZsk1drvy4XauFwuff/992rQoEFdnFKtqGxcJOm//uu/1LZtW7Vu3Vqff/65Hn74YWVlZemtt96S5JvjsnfvXiUkJOjcuXNq3Lix1qxZoy5duigzM9NvXycXGhPJP18jkvTaa6/p008/1a5duyrs42+K55GRLo6MdGFkJDLS+chI/0FGqhw5qaL6npMoSFXB0KFDrX/36NFDAwYMUNu2bfXGG2945YsS3mP06NHWv7t3764ePXroqquu0tatWzV48GAP9qzuTZkyRfv27dP27ds93RWvcqFxue+++6x/d+/eXTExMRo8eLAOHz6sq666yu5u2qJTp07KzMxUfn6+3nzzTY0dO1bbtm3zdLc86kJj0qVLF798jRw7dkzTpk3Tpk2bFB4e7unuoBJkJNQUGYmMdD4y0n+QkSpHTnLnCzmJr+zVQGRkpK6++mp9+eWXio6OVlFRkfLy8tza5OTkKDo6WpIUHR1dYSX78vvlbeqz8nOo7Bx/PAa5ublu+0tKSnTq1Cm/GSdJat++vVq0aKEvv/xSku+Oy9SpU7V+/Xpt2bJFV155pbW9tn5fLtTG4XB49X+ALjQulRkwYIAkub1WfG1cQkND1aFDB/Xt21cpKSnq2bOn/vCHP/j16+RCY1IZf3iNZGRkKDc3V3369FFwcLCCg4O1bds2LV26VMHBwYqKivLb14q3IiO5IyNVHRnJf9/7JDLS+chIlSMnufOFnERBqgZOnz6tw4cPKyYmRn379lVISIjS0tKs/VlZWTp69Kj1fdaEhATt3bvX7U1106ZNcjgc1hTD+iwuLk7R0dFuY+ByubRjxw63McjLy1NGRobVZvPmzSorK7P+WCQkJOjDDz9UcXGx1WbTpk3q1KmT1065rq5///vfOnnypGJiYiT53rgYYzR16lStWbNGmzdvrjCNvrZ+XxISEtyOUd7mx98h9yaXGpfKZGZmSpLba8XXxuV8ZWVlKiws9NvXSWXKx6Qy/vAaGTx4sPbu3avMzEzrFh8frzFjxlj/5rXiXchI7shIVUdG8s/3PjJS1ZCRKkdO8oGcdNnLovuBhx56yGzdutVkZ2ebjz/+2CQmJpoWLVqY3NxcY8wPl1Js06aN2bx5s9m9e7dJSEgwCQkJ1uPLL6U4ZMgQk5mZaVJTU03Lli3r1SWNCwoKzGeffWY+++wzI8ksWbLEfPbZZ+arr74yxvxwSePIyEjz9ttvm88//9wMHz680ksa9+7d2+zYscNs377ddOzY0e3SvXl5eSYqKsrcfffdZt++fea1114zDRs29MpL95a72LgUFBSY3/zmNyY9Pd1kZ2ebDz74wPTp08d07NjRnDt3zjqGL43L5MmTTUREhNm6davbJVfPnj1rtamN35fyS4/OmjXLHDx40CxbtsyrL8l6qXH58ssvzeOPP252795tsrOzzdtvv23at29vrr/+eusYvjYuc+bMMdu2bTPZ2dnm888/N3PmzDEBAQHm/fffN8b45+vkYmPij6+RCzn/Kjr++FrxJmQkMtKFkJHckZEqR0aqiIxUOXJS1dS3nERBqgpGjRplYmJiTGhoqLniiivMqFGjzJdffmnt//77782vfvUr07RpU9OwYUNz2223mRMnTrgd48iRI2bo0KGmQYMGpkWLFuahhx4yxcXFdp9KjW3ZssVIqnAbO3asMeaHyxo/+uijJioqyoSFhZnBgwebrKwst2OcPHnS3HXXXaZx48bG4XCY8ePHm4KCArc2e/bsMYMGDTJhYWHmiiuuMAsXLrTrFGvkYuNy9uxZM2TIENOyZUsTEhJi2rZtayZNmuR2SU1jfGtcKhsLSWbFihVWm9r6fdmyZYvp1auXCQ0NNe3bt3d7Dm9zqXE5evSouf76602zZs1MWFiY6dChg5k1a5bJz893O44vjcu9995r2rZta0JDQ03Lli3N4MGDraBljH++Ti42Jv74GrmQ84OWP75WvAkZiYx0IWQkd2SkypGRKiIjVY6cVDX1LScFGGPM5c+zAgAAAAAAAKqGNaQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAK905MgRBQQEaPHixbV2zK1btyogIEBbt26tUvtFixapc+fOKisru2i78r6uXLnSbXtqaqp69eql8PBwBQQEKC8vr8p9PXnypBo1aqQNGzZU+TEAAMD3kZHISICvoCAFoNasXLlSAQEB2r17t6e7ctlcLpeefvppPfzwwwoMrP6fypMnT+rOO+9UgwYNtGzZMv3tb39To0aNlJWVpRkzZmjgwIFWCDty5EiFxzdv3lwTJ07Uo48+WgtnAwAAPImM9B8XykhvvfWWRo0apfbt26thw4bq1KmTHnrooQrFKjIS4DsoSAFAJf7yl7+opKREd911V40ev2vXLhUUFOiJJ57QhAkT9Mtf/lIhISFKT0/X0qVLVVBQoGuuueaix3jggQf06aefavPmzTXqAwAAQG2rq4x033336eDBg/rlL3+ppUuXKjk5WX/84x+VkJCg77//3u0YZCTANwR7ugMA4I1WrFihn//85woPD6/R43NzcyVJkZGRbtt//vOfKy8vT02aNNHixYuVmZl5wWNcc8016tatm1auXKkbb7yxRv0AAACoTXWVkd58803dcMMNbtv69u2rsWPHatWqVZo4caK1nYwE+AZmSAGwVVFRkebNm6e+ffsqIiJCjRo10k9+8hNt2bLlgo959tln1bZtWzVo0EA//elPtW/fvgptvvjiC91xxx1q1qyZwsPDFR8fr3Xr1tWoj9nZ2fr888+VmJhYYV9eXp7GjRuniIgIRUZGauzYsRWmkt9www0aO3asJKlfv34KCAjQuHHjJEnNmjVTkyZNqtyXm266Se+8846MMTU6FwAAUD/4e0Y6vxglSbfddpsk6eDBgxX2kZGA+o8ZUgBs5XK59PLLL+uuu+7SpEmTVFBQoP/5n/9RUlKSdu7cqV69erm1/+tf/6qCggJNmTJF586d0x/+8AfdeOON2rt3r6KioiRJ+/fv13XXXacrrrhCc+bMUaNGjfTGG29oxIgR+t///V8rzFTVJ598Iknq06eP23ZjjIYPH67t27frgQce0DXXXKM1a9ZYwarcf//3f6tTp07605/+pMcff1xxcXG66qqrqjlSP+jbt6+effZZ7d+/X926davRMQAAgPcjI1XkdDolSS1atKiwj4wE+AADALVkxYoVRpLZtWvXBduUlJSYwsJCt23fffediYqKMvfee6+1LTs720gyDRo0MP/+97+t7Tt27DCSzIwZM6xtgwcPNt27dzfnzp2ztpWVlZmBAweajh07Wtu2bNliJJktW7Zc9DweeeQRI8kUFBS4bV+7dq2RZBYtWuR2Pj/5yU+MJLNixYpqjcUzzzxjJJns7OwLtvnkk0+MJPP6669ftM8AAMB7kZFWVGssyk2YMMEEBQWZf/3rXxX2kZGA+o+v7AGwVVBQkEJDQyVJZWVlOnXqlEpKShQfH69PP/20QvsRI0boiiuusO73799fAwYMsC71e+rUKW3evFl33nmnCgoK9O233+rbb7/VyZMnlZSUpEOHDunrr7+uVh9Pnjyp4OBgNW7c2G37hg0bFBwcrMmTJ7udz4MPPlit41dH06ZNJUnffvttnT0HAADwPDKSu1dffVX/8z//o4ceekgdO3assJ+MBNR/FKQA2O6VV15Rjx49FB4erubNm6tly5Z69913lZ+fX6FtZQHk6quv1pEjRyRJX375pYwxevTRR9WyZUu32/z58yX9Z/HMy/XVV18pJiamQgjr1KlTrRy/Mub/r4sQEBBQZ88BAAC8AxnpBx999JEmTJigpKQkPfnkk5W2ISMB9R9rSAGw1d///neNGzdOI0aM0KxZs9SqVSsFBQUpJSVFhw8frvbxysrKJEm/+c1vlJSUVGmbDh06VOuYzZs3V0lJiQoKCqq1AHld+O677yRVvnYCAADwHWSkH+zZs0c///nP1a1bN7355psKDq78v6xkJKD+oyAFwFZvvvmm2rdvr7feesvtE63yT+rOd+jQoQrb/vWvf6ldu3aSpPbt20uSQkJCKr3iS0107txZ0g9XkunRo4e1vW3btkpLS9Pp06fdPgHMysqqleetTHZ2tqQfLm8MAAB8FxlJOnz4sJKTk9WqVStt2LChwoyrHyMjAfUfX9kDYKugoCBJcrtE744dO5Senl5p+7Vr17qtb7Bz507t2LFDQ4cOlSS1atVKN9xwg1566SWdOHGiwuO/+eabavcxISFBkrR792637TfffLNKSkr04osvWttKS0v1/PPPV/s5qiojI0MRERHq2rVrnT0HAADwPH/PSE6nU0OGDFFgYKDee+89tWzZ8qLtyUhA/ccMKQC17i9/+YtSU1MrbJ82bZpuueUWvfXWW7rttts0bNgwZWdna/ny5erSpYtOnz5d4TEdOnTQoEGDNHnyZBUWFuq5555T8+bNNXv2bKvNsmXLNGjQIHXv3l2TJk1S+/btlZOTo/T0dP373//Wnj17qtX/9u3bq1u3bvrggw907733WttvvfVWXXfddZozZ46OHDmiLl266K233qp0XYcLyc/Pt8LZxx9/LEn64x//qMjISEVGRmrq1Klu7Tdt2qRbb72V9REAAPABZKQLS05O1v/93/9p9uzZ2r59u7Zv327ti4qK0k033eTWnowE+ABPXuIPgG8pv4zvhW7Hjh0zZWVl5qmnnjJt27Y1YWFhpnfv3mb9+vVm7Nixpm3bttaxyi9p/Mwzz5jf//73JjY21oSFhZmf/OQnZs+ePRWe+/Dhw+aee+4x0dHRJiQkxFxxxRXmlltuMW+++abVpqqXNDbGmCVLlpjGjRubs2fPum0/efKkufvuu43D4TARERHm7rvvNp999lmVL2lcfl6V3X58/sYYc/DgQSPJfPDBB5fsLwAA8F5kpBUVxuL8jHSx8fnpT3/q1paMBPiGAGN+NCcUACDph5lM7du316JFizRhwgSP9GH69On68MMPlZGRwad/AADAK5CRANQWClIAcAFPP/20VqxYoQMHDigw0N4l906ePKm2bdvqjTfe0M0332zrcwMAAFwMGQlAbaAgBQAAAAAAAFtxlT0AAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbBXu6A55UVlam48ePq0mTJlwuFAAAP2GMUUFBgVq3bm371aHqCzISAAD+x+6M5NcFqePHjys2NtbT3QAAAB5w7NgxXXnllZ7uhlciIwEA4L/sykh+XZBq0qSJpB8G2+FweLg3AADADi6XS7GxsVYOQEVkJAAA/I/dGcmvC1LlU9AdDgdhCwAAP8NX0S6MjAQAgP+yKyOxcAIAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFv59RpSVVFWVqaioiJPdwM1EBISoqCgIE93AwAAn1VaWqri4mJPdwPVREYCAHgDClIXUVRUpOzsbJWVlXm6K6ihyMhIRUdHs3AtAAC1yBgjp9OpvLw8T3cFNURGAgB4GgWpCzDG6MSJEwoKClJsbKwCA/l2Y31ijNHZs2eVm5srSYqJifFwjwAA8B3lxahWrVqpYcOGFDXqETISAMBbUJC6gJKSEp09e1atW7dWw4YNPd0d1ECDBg0kSbm5uWrVqhVT0wEAqAWlpaVWMap58+ae7g5qgIwEAPAGTPu5gNLSUklSaGioh3uCy1FeTGR9CwAAakf5eyof2NVvZCQAgKdRkLoEpqDXb/z8AACoG7zH1m/8/AAAnkZBCgAAAAAAALaiIAUAAAAAAABbsah5NRWnbrf1+UKSB1W57aWmXs+fP1+PPfbYZfaoZgICArRmzRqNGDGixsf405/+pFdffVWffvqpCgoK9N133ykyMrLW+ggAAGqOjFQzl5uRTp06pfnz5+v999/X0aNH1bJlS40YMUJPPPGEIiIiarezAADUIgpSPuTEiRPWv19//XXNmzdPWVlZ1rbGjRtX63hFRUVetaj72bNnlZycrOTkZM2dO9fT3QEAAPWEL2ek48eP6/jx41q8eLG6dOmir776Sg888ICOHz+uN99809PdAwDggvjKng+Jjo62bhEREQoICLDunzlzRmPGjFFUVJQaN26sfv366YMPPnB7fLt27fTEE0/onnvukcPh0H333SdJ+vOf/6zY2Fg1bNhQt912m5YsWVJhZtLbb7+tPn36KDw8XO3bt9eCBQtUUlJiHVeSbrvtNgUEBFj39+zZo5/97Gdq0qSJHA6H+vbtq927d1/w/KZPn645c+bo2muvrZ0BAwCbFKdut332CID/8OWM1K1bN/3v//6vbr31Vl111VW68cYb9eSTT+qdd96xngcAvBUZyb9RkPITp0+f1s0336y0tDR99tlnSk5O1q233qqjR4+6tVu8eLF69uypzz77TI8++qg+/vhjPfDAA5o2bZoyMzN100036cknn3R7zEcffaR77rlH06ZN04EDB/TSSy9p5cqVVrtdu3ZJklasWKETJ05Y98eMGaMrr7xSu3btUkZGhubMmaOQkBAbRgMAAOAHvpiR8vPz5XA4FBzMlyEAAN6Ldyk/0bNnT/Xs2dO6/8QTT2jNmjVat26dpk6dam2/8cYb9dBDD1n3//u//1tDhw7Vb37zG0nS1VdfrU8++UTr16+32ixYsEBz5szR2LFjJUnt27fXE088odmzZ2v+/Plq2bKlJCkyMlLR0dHW444ePapZs2apc+fOkqSOHTvWwZkDAABcmK9lpG+//VZPPPGENYsLAABvxQwpP3H69Gn95je/0TXXXKPIyEg1btxYBw8erPDpX3x8vNv9rKws9e/f323b+ff37Nmjxx9/XI0bN7ZukyZN0okTJ3T27NkL9mnmzJmaOHGiEhMTtXDhQh0+fPgyzxIAAKB6fCkjuVwuDRs2TF26dPHYIu0AAFQVBSk/8Zvf/EZr1qzRU089pY8++kiZmZnq3r27ioqK3No1atSo2sc+ffq0FixYoMzMTOu2d+9eHTp0SOHh4Rd83GOPPab9+/dr2LBh2rx5s7p06aI1a9ZU+/kBAABqylcyUkFBgZKTk9WkSROtWbOGZRAAAF6Pr+z5iY8//ljjxo3TbbfdJumHgHTkyJFLPq5Tp07Wegblzr/fp08fZWVlqUOHDhc8TkhIiEpLSytsv/rqq3X11VdrxowZuuuuu7RixQqrjwAAAHXNFzKSy+VSUlKSwsLCtG7duosWuwAA8BYUpPxEx44d9dZbb+nWW29VQECAHn30UZWVlV3ycQ8++KCuv/56LVmyRLfeeqs2b96sjRs3KiAgwGozb9483XLLLWrTpo3uuOMOBQYGas+ePdq3b59+97vfSfrhKjJpaWm67rrrFBYWpvDwcM2aNUt33HGH4uLi9O9//1u7du3SyJEjL9gXp9Mpp9OpL7/8UpK0d+9eNWnSRG3atFGzZs0uc4QAAIA/qu8ZyeVyaciQITp79qz+/ve/y+VyyeVySZJatmypoKCgWhglAABqH1/Z8xNLlixR06ZNNXDgQN16661KSkpSnz59Lvm46667TsuXL9eSJUvUs2dPpaamasaMGW6fvCUlJWn9+vV6//331a9fP1177bV69tln1bZtW6vN73//e23atEmxsbHq3bu3goKCdPLkSd1zzz26+uqrdeedd2ro0KFasGDBBfuyfPly9e7dW5MmTZIkXX/99erdu7fWrVt3GSMDAAD8WX3PSJ9++ql27NihvXv3qkOHDoqJibFux44du/wBAgCgjgQYY4ynO+EpLpdLERER1qVxf+zcuXPKzs5WXFwc057PM2nSJH3xxRf66KOPPN2VS+LnCMAbFKdulySFJA/ycE8gXfz9Hz8gI9UMGQkAqoeM5F3szkh8ZQ+XtHjxYt10001q1KiRNm7cqFdeeUUvvPCCp7sFAADgUWQkAABqjoIULmnnzp1atGiRCgoK1L59ey1dulQTJ070dLcAAAA8iowEAEDNUZDCJb3xxhue7gIAAIDXISMBAFBzLGoOAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsFezpDtQ3h3e/ZOvzXRV/f7Xajxs3Tq+88ookKTg4WM2aNVOPHj101113ady4cQoMrL81yP3792vevHnKyMjQV199pWeffVbTp0/3dLcAAIDISJ705z//WX/961+1b98+SVLfvn311FNPqX///h7uGQAAF1Z/33lxQcnJyTpx4oSOHDmijRs36mc/+5mmTZumW265RSUlJZ7uXo2dPXtW7du318KFCxUdHe3p7gAAgHrGVzPS1q1bddddd2nLli1KT09XbGyshgwZoq+//trTXQMA4IIoSPmgsLAwRUdH64orrlCfPn3029/+Vm+//bY2btyolStXWu3y8vI0ceJEtWzZUg6HQzfeeKP27Nnjdqx33nlH/fr1U3h4uFq0aKHbbrvN2vfdd9/pnnvuUdOmTdWwYUMNHTpUhw4dkiSdOXNGDodDb775ptvx1q5dq0aNGqmgoEBFRUWaOnWqYmJiFB4errZt2yolJeWC59WvXz8988wzGj16tMLCwmphpAAAgD/x1Yy0atUq/epXv1KvXr3UuXNnvfzyyyorK1NaWlotjBoAAHWDgpSfuPHGG9WzZ0+99dZb1rZf/OIXys3N1caNG5WRkaE+ffpo8ODBOnXqlCTp3Xff1W233aabb75Zn332mdLS0tymfo8bN067d+/WunXrlJ6eLmOMbr75ZhUXF6tRo0YaPXq0VqxY4daPFStW6I477lCTJk20dOlSrVu3Tm+88YaysrK0atUqtWvXzpbxAAAAkHwzI509e1bFxcVq1qzZ5Q0OAAB1iDWk/Ejnzp31+eefS5K2b9+unTt3Kjc315pttHjxYq1du1Zvvvmm7rvvPj355JMaPXq0FixYYB2jZ8+ekqRDhw5p3bp1+vjjjzVw4EBJP3w6Fxsbq7Vr1+oXv/iFJk6cqIEDB+rEiROKiYlRbm6uNmzYoA8++ECSdPToUXXs2FGDBg1SQECA2rZta+dwAAAASPK9jPTwww+rdevWSkxMvOyxAQCgrjBDyo8YYxQQECBJ2rNnj06fPq3mzZurcePG1i07O1uHDx+WJGVmZmrw4MGVHuvgwYMKDg7WgAEDrG3NmzdXp06ddPDgQUlS//791bVrV2sB0b///e9q27atrr/+ekk/fHqYmZmpTp066de//rXef//9Ojt3AACAC/GljLRw4UK99tprWrNmjcLDw6s/GAAA2IQZUn7k4MGDiouLkySdPn1aMTEx2rp1a4V2kZGRkqQGDRpc9nNOnDhRy5Yt05w5c7RixQqNHz/eCnx9+vRRdna2Nm7cqA8++EB33nmnEhMTK6ypAAAAUJd8JSMtXrxYCxcu1AcffKAePXpcdh8BAKhLzJDyE5s3b9bevXs1cuRIST8EHafTqeDgYHXo0MHt1qJFC0lSjx49LrgY5jXXXKOSkhLt2LHD2nby5EllZWWpS5cu1rZf/vKX+uqrr7R06VIdOHBAY8eOdTuOw+HQqFGj9Oc//1mvv/66/vd//9danwEAAKCu+UpGWrRokZ544gmlpqYqPj6+xuMBAIBdmCHlgwoLC+V0OlVaWqqcnBylpqYqJSVFt9xyi+655x5JUmJiohISEjRixAgtWrRIV199tY4fP24t0hkfH6/58+dr8ODBuuqqqzR69GiVlJRow4YNevjhh9WxY0cNHz5ckyZN0ksvvaQmTZpozpw5uuKKKzR8+HCrL02bNtXtt9+uWbNmaciQIbryyiutfUuWLFFMTIx69+6twMBArV69WtHR0danj+crKirSgQMHrH9//fXXyszMVOPGjdWhQ4e6G1AAAOATfDUjPf3005o3b55effVVtWvXTk6nU5KsrxsCAOCNmCHlg1JTUxUTE6N27dopOTlZW7Zs0dKlS/X2228rKChIkhQQEKANGzbo+uuv1/jx43X11Vdr9OjR+uqrrxQVFSVJuuGGG7R69WqtW7dOvXr10o033qidO3daz7NixQr17dtXt9xyixISEmSM0YYNGxQSEuLWnwkTJqioqEj33nuv2/YmTZpo0aJFio+PV79+/XTkyBFt2LBBgYGVvyyPHz+u3r17q3fv3jpx4oQWL16s3r17a+LEibU5fAAAwEf5akZ68cUXVVRUpDvuuEMxMTHWbfHixbU5fAAA1KoAY4zxdCc8xeVyKSIiQvn5+XI4HG77zp07p+zsbMXFxbEg5GX629/+phkzZuj48eMKDQ219bn5OQLwBsWp2yVJIcmDPNwTSBd//8cPyEj2ICMB8HdkJO9id0biK3uoM2fPntWJEye0cOFC3X///bYHLQAAAG9ERgIAgK/soQ4tWrRInTt3VnR0tObOnevp7gAAAHgFMhIAABSkUIcee+wxFRcXKy0tjQU1AQAA/j8yEgAAFKQAAAAAAABgMwpSAAAAAAAAsBUFqUvw44sQ+oSysjJPdwEAAJ/Ee2z9xs8PAOBpXGXvAkJCQhQQEKBvvvlGLVu2VEBAgKe7hGowxqioqEjffPONAgMDuXoNAAC1JDQ0VIGBgTp+/Lhatmyp0NBQclI9QkYCAHiLyypILVy4UHPnztW0adP03HPPSZLOnTunhx56SK+99poKCwuVlJSkF154QVFRUdbjjh49qsmTJ2vLli1q3Lixxo4dq5SUFAUH/6c7W7du1cyZM7V//37FxsbqkUce0bhx49yef9myZXrmmWfkdDrVs2dPPf/88+rfv//lnJIlKChIV155pf7973/ryJEjtXJM2K9hw4Zq06aNAgOZDAgAsI8vZ6TAwEDFxcXpxIkTOn78eK0cE/YjIwEAPK3GBaldu3bppZdeUo8ePdy2z5gxQ++++65Wr16tiIgITZ06Vbfffrs+/vhjSVJpaamGDRum6OhoffLJJzpx4oTuuecehYSE6KmnnpIkZWdna9iwYXrggQe0atUqpaWlaeLEiYqJiVFSUpIk6fXXX9fMmTO1fPlyDRgwQM8995ySkpKUlZWlVq1a1fS03DRu3FgdO3ZUcXFxrRwP9goKClJwcDCf2gIAbOUPGSk0NFRt2rRRSUmJSktLa+WYsA8ZCQDgFUwNFBQUmI4dO5pNmzaZn/70p2batGnGGGPy8vJMSEiIWb16tdX24MGDRpJJT083xhizYcMGExgYaJxOp9XmxRdfNA6HwxQWFhpjjJk9e7bp2rWr23OOGjXKJCUlWff79+9vpkyZYt0vLS01rVu3NikpKVU+j/z8fCPJ5OfnV/3kAQCopqKNH5mijR95uhv4/+ry/Z+MBABA1ZGRvIvd7/81mqM7ZcoUDRs2TImJiW7bMzIyVFxc7La9c+fOatOmjdLT0yVJ6enp6t69u9v09KSkJLlcLu3fv99qc/6xk5KSrGMUFRUpIyPDrU1gYKASExOtNgAAAHYjIwEAAFRNtb+y99prr+nTTz/Vrl27KuxzOp0KDQ1VZGSk2/aoqCg5nU6rzY+DVvn+8n0Xa+NyufT999/ru+++U2lpaaVtvvjiiwv2vbCwUIWFhdZ9l8t1ibMFAACoGjISAABA1VVrhtSxY8c0bdo0rVq1SuHh4XXVpzqTkpKiiIgI6xYbG+vpLgEAAB9ARgIAAKieahWkMjIylJubqz59+ig4OFjBwcHatm2bli5dquDgYEVFRamoqEh5eXluj8vJyVF0dLQkKTo6Wjk5ORX2l++7WBuHw6EGDRqoRYsWCgoKqrRN+TEqM3fuXOXn51u3Y8eOVef0AQAAKkVGAgAAqJ5qFaQGDx6svXv3KjMz07rFx8drzJgx1r9DQkKUlpZmPSYrK0tHjx5VQkKCJCkhIUF79+5Vbm6u1WbTpk1yOBzq0qWL1ebHxyhvU36M0NBQ9e3b161NWVmZ0tLSrDaVCQsLk8PhcLsBAABcLjISAABA9VRrDakmTZqoW7dubtsaNWqk5s2bW9snTJigmTNnqlmzZnI4HHrwwQeVkJCga6+9VpI0ZMgQdenSRXfffbcWLVokp9OpRx55RFOmTFFYWJgk6YEHHtAf//hHzZ49W/fee682b96sN954Q++++671vDNnztTYsWMVHx+v/v3767nnntOZM2c0fvz4yxoQAACA6iIjAQAAVE+1FzW/lGeffVaBgYEaOXKkCgsLlZSUpBdeeMHaHxQUpPXr12vy5MlKSEhQo0aNNHbsWD3++ONWm7i4OL377ruaMWOG/vCHP+jKK6/Uyy+/rKSkJKvNqFGj9M0332jevHlyOp3q1auXUlNTKyziCQAA4A3ISAAAAP8RYIwxnu6Ep7hcLkVERCg/P5+p6QCAOlOcul2SFJI8yMM9gcT7f1UwRgAAO5CRvIvd7//VWkMKAAAAAAAAuFwUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFLzO4d0veboLAAAAXoeMBADwJRSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALBVtQpSL774onr06CGHwyGHw6GEhARt3LjR2n/u3DlNmTJFzZs3V+PGjTVy5Ejl5OS4HePo0aMaNmyYGjZsqFatWmnWrFkqKSlxa7N161b16dNHYWFh6tChg1auXFmhL8uWLVO7du0UHh6uAQMGaOfOndU5FQAAgFpDRgIAAKieahWkrrzySi1cuFAZGRnavXu3brzxRg0fPlz79++XJM2YMUPvvPOOVq9erW3btun48eO6/fbbrceXlpZq2LBhKioq0ieffKJXXnlFK1eu1Lx586w22dnZGjZsmH72s58pMzNT06dP18SJE/Xee+9ZbV5//XXNnDlT8+fP16effqqePXsqKSlJubm5lzseAAAA1UZGAgAAqCZzmZo2bWpefvllk5eXZ0JCQszq1autfQcPHjSSTHp6ujHGmA0bNpjAwEDjdDqtNi+++KJxOBymsLDQGGPM7NmzTdeuXd2eY9SoUSYpKcm6379/fzNlyhTrfmlpqWndurVJSUmpVt/z8/ONJJOfn1+tx6Fufblruae7AAC1qmjjR6Zo40ee7gb+P7ve/8lIqG1kJAC+hozkXex+/6/xGlKlpaV67bXXdObMGSUkJCgjI0PFxcVKTEy02nTu3Flt2rRRenq6JCk9PV3du3dXVFSU1SYpKUkul8v6BDE9Pd3tGOVtyo9RVFSkjIwMtzaBgYFKTEy02gAAAHgKGQkAAODSgqv7gL179yohIUHnzp1T48aNtWbNGnXp0kWZmZkKDQ1VZGSkW/uoqCg5nU5JktPpdAta5fvL912sjcvl0vfff6/vvvtOpaWllbb54osvLtr3wsJCFRYWWvddLlfVTxwAAOAiyEgAAABVV+0ZUp06dVJmZqZ27NihyZMna+zYsTpw4EBd9K3WpaSkKCIiwrrFxsZ6uksAAMBHkJEAAACqrtoFqdDQUHXo0EF9+/ZVSkqKevbsqT/84Q+Kjo5WUVGR8vLy3Nrn5OQoOjpakhQdHV3hijLl9y/VxuFwqEGDBmrRooWCgoIqbVN+jAuZO3eu8vPzrduxY8eqe/oAAACVIiMBAABUXY3XkCpXVlamwsJC9e3bVyEhIUpLS7P2ZWVl6ejRo0pISJAkJSQkaO/evW5Xetm0aZMcDoe6dOlitfnxMcrblB8jNDRUffv2dWtTVlamtLQ0q82FhIWFWZdjLr8BAADUBTISAADAhVVrDam5c+dq6NChatOmjQoKCvTqq69q69ateu+99xQREaEJEyZo5syZatasmRwOhx588EElJCTo2muvlSQNGTJEXbp00d13361FixbJ6XTqkUce0ZQpUxQWFiZJeuCBB/THP/5Rs2fP1r333qvNmzfrjTfe0Lvvvmv1Y+bMmRo7dqzi4+PVv39/Pffcczpz5ozGjx9fi0MDAABQNWQkAACA6qlWQSo3N1f33HOPTpw4oYiICPXo0UPvvfeebrrpJknSs88+q8DAQI0cOVKFhYVKSkrSCy+8YD0+KChI69ev1+TJk5WQkKBGjRpp7Nixevzxx602cXFxevfddzVjxgz94Q9/0JVXXqmXX35ZSUlJVptRo0bpm2++0bx58+R0OtWrVy+lpqZWWMQTAADADmQkAACA6gkwxhhPd8JTXC6XIiIilJ+fz9R0L3J490u6Kv5+T3cDAGpNcep2SVJI8iAP9wQS7/9VwRh5JzISAF9DRvIudr//X/YaUgAAAAAAAEB1UJACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxVrYJUSkqK+vXrpyZNmqhVq1YaMWKEsrKy3NqcO3dOU6ZMUfPmzdW4cWONHDlSOTk5bm2OHj2qYcOGqWHDhmrVqpVmzZqlkpIStzZbt25Vnz59FBYWpg4dOmjlypUV+rNs2TK1a9dO4eHhGjBggHbu3Fmd0wEAAKgVZCQAAIDqqVZBatu2bZoyZYr++c9/atOmTSouLtaQIUN05swZq82MGTP0zjvvaPXq1dq2bZuOHz+u22+/3dpfWlqqYcOGqaioSJ988oleeeUVrVy5UvPmzbPaZGdna9iwYfrZz36mzMxMTZ8+XRMnTtR7771ntXn99dc1c+ZMzZ8/X59++ql69uyppKQk5ebmXs54AAAAVBsZCQAAoJrMZcjNzTWSzLZt24wxxuTl5ZmQkBCzevVqq83BgweNJJOenm6MMWbDhg0mMDDQOJ1Oq82LL75oHA6HKSwsNMYYM3v2bNO1a1e35xo1apRJSkqy7vfv399MmTLFul9aWmpat25tUlJSqtz//Px8I8nk5+dX46xR177ctdzTXQCAWlW08SNTtPEjT3cD/58d7/9kJNQFMhIAX0NG8i52v/9f1hpS+fn5kqRmzZpJkjIyMlRcXKzExESrTefOndWmTRulp6dLktLT09W9e3dFRUVZbZKSkuRyubR//36rzY+PUd6m/BhFRUXKyMhwaxMYGKjExESrTWUKCwvlcrncbgAAALWNjAQAAHBxNS5IlZWVafr06bruuuvUrVs3SZLT6VRoaKgiIyPd2kZFRcnpdFptfhy0yveX77tYG5fLpe+//17ffvutSktLK21TfozKpKSkKCIiwrrFxsZW/8QBAAAugowEAABwaTUuSE2ZMkX79u3Ta6+9Vpv9qVNz585Vfn6+dTt27JinuwQAAHwMGQkAAODSgmvyoKlTp2r9+vX68MMPdeWVV1rbo6OjVVRUpLy8PLdPAHNychQdHW21Of9KL+VXmPlxm/OvOpOTkyOHw6EGDRooKChIQUFBlbYpP0ZlwsLCFBYWVv0TBgAAqAIyEgAAQNVUa4aUMUZTp07VmjVrtHnzZsXFxbnt79u3r0JCQpSWlmZty8rK0tGjR5WQkCBJSkhI0N69e92u9LJp0yY5HA516dLFavPjY5S3KT9GaGio+vbt69amrKxMaWlpVhsAAAC7kJEAAACqp1ozpKZMmaJXX31Vb7/9tpo0aWKtRRAREaEGDRooIiJCEyZM0MyZM9WsWTM5HA49+OCDSkhI0LXXXitJGjJkiLp06aK7775bixYtktPp1COPPKIpU6ZYn8w98MAD+uMf/6jZs2fr3nvv1ebNm/XGG2/o3Xfftfoyc+ZMjR07VvHx8erfv7+ee+45nTlzRuPHj6+tsQEAAKgSMhIAAEA1VeeSfJIqva1YscJq8/3335tf/epXpmnTpqZhw4bmtttuMydOnHA7zpEjR8zQoUNNgwYNTIsWLcxDDz1kiouL3dps2bLF9OrVy4SGhpr27du7PUe5559/3rRp08aEhoaa/v37m3/+85/VOR0uaeyluKQxAF/DJY29S128/5ORYAcyEgBfQ0byLna//wcYY4z9ZTDv4HK5FBERofz8fDkcDk93B//f4d0v6ar4+z3dDQCoNcWp2yVJIcmDPNwTSLz/VwVj5J3ISAB8DRnJu9j9/l/jq+wBAAAAAAAANUFBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwVbULUh9++KFuvfVWtW7dWgEBAVq7dq3bfmOM5s2bp5iYGDVo0ECJiYk6dOiQW5tTp05pzJgxcjgcioyM1IQJE3T69Gm3Np9//rl+8pOfKDw8XLGxsVq0aFGFvqxevVqdO3dWeHi4unfvrg0bNlT3dAAAAGoFGQkAAKDqql2QOnPmjHr27Klly5ZVun/RokVaunSpli9frh07dqhRo0ZKSkrSuXPnrDZjxozR/v37tWnTJq1fv14ffvih7rvvPmu/y+XSkCFD1LZtW2VkZOiZZ57RY489pj/96U9Wm08++UR33XWXJkyYoM8++0wjRozQiBEjtG/fvuqeEgAAwGUjIwEAAFSDuQySzJo1a6z7ZWVlJjo62jzzzDPWtry8PBMWFmb+8Y9/GGOMOXDggJFkdu3aZbXZuHGjCQgIMF9//bUxxpgXXnjBNG3a1BQWFlptHn74YdOpUyfr/p133mmGDRvm1p8BAwaY+++/v8r9z8/PN5JMfn5+lR+DuvflruWe7gIA1KqijR+Zoo0febob+P/seP8nI6EukJEA+Boyknex+/2/VteQys7OltPpVGJiorUtIiJCAwYMUHp6uiQpPT1dkZGRio+Pt9okJiYqMDBQO3bssNpcf/31Cg0NtdokJSUpKytL3333ndXmx89T3qb8eSpTWFgol8vldgMAAKhrZCQAAAB3tVqQcjqdkqSoqCi37VFRUdY+p9OpVq1aue0PDg5Ws2bN3NpUdowfP8eF2pTvr0xKSooiIiKsW2xsbHVPEQAAoNrISAAAAO786ip7c+fOVX5+vnU7duyYp7sEAADgcWQkAABgt1otSEVHR0uScnJy3Lbn5ORY+6Kjo5Wbm+u2v6SkRKdOnXJrU9kxfvwcF2pTvr8yYWFhcjgcbjcAAIC6RkYCAABwV6sFqbi4OEVHRystLc3a5nK5tGPHDiUkJEiSEhISlJeXp4yMDKvN5s2bVVZWpgEDBlhtPvzwQxUXF1ttNm3apE6dOqlp06ZWmx8/T3mb8ucBAADwFmQkAAAAd9UuSJ0+fVqZmZnKzMyU9MMinZmZmTp69KgCAgI0ffp0/e53v9O6deu0d+9e3XPPPWrdurVGjBghSbrmmmuUnJysSZMmaefOnfr44481depUjR49Wq1bt5Yk/dd//ZdCQ0M1YcIE7d+/X6+//rr+8Ic/aObMmVY/pk2bptTUVP3+97/XF198occee0y7d+/W1KlTL39UAAAAqomMBAAAUA3VvSzfli1bjKQKt7Fjxxpjfris8aOPPmqioqJMWFiYGTx4sMnKynI7xsmTJ81dd91lGjdubBwOhxk/frwpKChwa7Nnzx4zaNAgExYWZq644gqzcOHCCn154403zNVXX21CQ0NN165dzbvvvlutc+GSxt6JSxoD8DVc0ti71NX7PxkJdY2MBMDXkJG8i93v/wHGGOOJQpg3cLlcioiIUH5+PmsleJHDu1/SVfH3e7obAFBrilO3S5JCkgd5uCeQeP+vCsbIO5GRAPgaMpJ3sfv936+usgcAAAAAAADPoyAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiq3hekli1bpnbt2ik8PFwDBgzQzp07Pd0lAAAAjyMjAQAAb1avC1Kvv/66Zs6cqfnz5+vTTz9Vz549lZSUpNzcXE93DQAAwGPISAAAwNvV64LUkiVLNGnSJI0fP15dunTR8uXL1bBhQ/3lL3/xdNcAAAA8howEAAC8XbCnO1BTRUVFysjI0Ny5c61tgYGBSkxMVHp6eqWPKSwsVGFhoXU/Pz9fkuRyueq2s6iWgtPf8zMB4FOKz5yRJIXwt80rlL/HGGM83JO6QUbyXWQkAL6GjORd7M5I9bYg9e2336q0tFRRUVFu26OiovTFF19U+piUlBQtWLCgwvbY2Ng66SMuxwxPdwAA4OMKCgoUERHh6W7UOjKSryMjAQDqll0Zqd4WpGpi7ty5mjlzpnW/rKxMp06dUvPmzRUQEFCrz+VyuRQbG6tjx47J4XDU6rF9GeNWfYxZzTBu1ceY1QzjVjN1OW7GGBUUFKh169a1etz6jIzk/Ri36mPMaoZxqxnGrfoYs5rxpYxUbwtSLVq0UFBQkHJycty25+TkKDo6utLHhIWFKSwszG1bZGRkXXVRkuRwOPjlqgHGrfoYs5ph3KqPMasZxq1m6mrcfHFmVDkykm9j3KqPMasZxq1mGLfqY8xqxhcyUr1d1Dw0NFR9+/ZVWlqata2srExpaWlKSEjwYM8AAAA8h4wEAADqg3o7Q0qSZs6cqbFjxyo+Pl79+/fXc889pzNnzmj8+PGe7hoAAIDHkJEAAIC3q9cFqVGjRumbb77RvHnz5HQ61atXL6WmplZYxNMTwsLCNH/+/ArT33FxjFv1MWY1w7hVH2NWM4xbzTBul4eM5HsYt+pjzGqGcasZxq36GLOa8aVxCzC+es1jAAAAAAAAeKV6u4YUAAAAAAAA6icKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBqhY9+eSTGjhwoBo2bKjIyMgqPWbcuHEKCAhwuyUnJ9dtR71ITcbMGKN58+YpJiZGDRo0UGJiog4dOlS3HfUyp06d0pgxY+RwOBQZGakJEybo9OnTF33MDTfcUOG19sADD9jUY89YtmyZ2rVrp/DwcA0YMEA7d+68aPvVq1erc+fOCg8PV/fu3bVhwwabeuo9qjNmK1eurPCaCg8Pt7G33uHDDz/UrbfeqtatWysgIEBr16695GO2bt2qPn36KCwsTB06dNDKlSvrvJ/epLpjtnXr1gqvtYCAADmdTns6jMtGRqo+MlLNkJGqhoxUfWSk6iMjVZ+/ZSQKUrWoqKhIv/jFLzR58uRqPS45OVknTpywbv/4xz/qqIfepyZjtmjRIi1dulTLly/Xjh071KhRIyUlJencuXN12FPvMmbMGO3fv1+bNm3S+vXr9eGHH+q+++675OMmTZrk9lpbtGiRDb31jNdff10zZ87U/Pnz9emnn6pnz55KSkpSbm5upe0/+eQT3XXXXZowYYI+++wzjRgxQiNGjNC+ffts7rnnVHfMJMnhcLi9pr766isbe+wdzpw5o549e2rZsmVVap+dna1hw4bpZz/7mTIzMzV9+nRNnDhR7733Xh331HtUd8zKZWVlub3eWrVqVUc9RG0jI1UfGalmyEiXRkaqPjJSzZCRqs/vMpJBrVuxYoWJiIioUtuxY8ea4cOH12l/6oOqjllZWZmJjo42zzzzjLUtLy/PhIWFmX/84x912EPvceDAASPJ7Nq1y9q2ceNGExAQYL7++usLPu6nP/2pmTZtmg099A79+/c3U6ZMse6Xlpaa1q1bm5SUlErb33nnnWbYsGFu2wYMGGDuv//+Ou2nN6numFXnb52/kGTWrFlz0TazZ882Xbt2dds2atQok5SUVIc9815VGbMtW7YYSea7776zpU+oO2Sk6iMjVR0ZqWrISNVHRrp8ZKTq84eMxAwpL7B161a1atVKnTp10uTJk3Xy5ElPd8lrZWdny+l0KjEx0doWERGhAQMGKD093YM9s096eroiIyMVHx9vbUtMTFRgYKB27Nhx0ceuWrVKLVq0ULdu3TR37lydPXu2rrvrEUVFRcrIyHB7nQQGBioxMfGCr5P09HS39pKUlJTkN6+rmoyZJJ0+fVpt27ZVbGyshg8frv3799vR3XrN319rl6NXr16KiYnRTTfdpI8//tjT3YENyEhVR0YiI1UFGan6yEj28ffX2uWorxkp2NMd8HfJycm6/fbbFRcXp8OHD+u3v/2thg4dqvT0dAUFBXm6e16n/LuwUVFRbtujoqLqzfdkL5fT6awwBTM4OFjNmjW76Bj813/9l9q2bavWrVvr888/18MPP6ysrCy99dZbdd1l23377bcqLS2t9HXyxRdfVPoYp9Pp16+rmoxZp06d9Je//EU9evRQfn6+Fi9erIEDB2r//v268sor7eh2vXSh15rL5dL333+vBg0aeKhn3ismJkbLly9XfHy8CgsL9fLLL+uGG27Qjh071KdPH093D3WEjFQ9ZCQyUlWQkaqPjGQfMlL11feMREHqEubMmaOnn376om0OHjyozp071+j4o0ePtv7dvXt39ejRQ1dddZW2bt2qwYMH1+iYnlbXY+arqjpuNfXj9RO6d++umJgYDR48WIcPH9ZVV11V4+PCfyUkJCghIcG6P3DgQF1zzTV66aWX9MQTT3iwZ/A1nTp1UqdOnaz7AwcO1OHDh/Xss8/qb3/7mwd75t/ISNVHRqoZMhLqGzIS7FLfMxIFqUt46KGHNG7cuIu2ad++fa09X/v27dWiRQt9+eWX9TZs1eWYRUdHS5JycnIUExNjbc/JyVGvXr1qdExvUdVxi46OrrCAYklJiU6dOmWNT1UMGDBAkvTll1/6XNhq0aKFgoKClJOT47Y9JyfngmMUHR1drfa+piZjdr6QkBD17t1bX375ZV100Wdc6LXmcDj45K8a+vfvr+3bt3u6G36NjFR9ZKSaISPVHjJS9ZGR7ENGqh31KSNRkLqEli1bqmXLlrY937///W+dPHnSLUjUN3U5ZnFxcYqOjlZaWpoVrlwul3bs2FHtK/d4m6qOW0JCgvLy8pSRkaG+fftKkjZv3qyysjIrQFVFZmamJNXr19qFhIaGqm/fvkpLS9OIESMkSWVlZUpL+3/s3Xd4FOX+///XplOyCUFIkRY6KNKFIAJCJEhREEQQKUoRDyjliMBH6SKIFEVRRM8Bj8pXQQWREghBRCBSIkGkRNBQBEKUklCEhGR+f/DL4BJawmY25fm4rrkuduaee+65d495nffOzkRr8ODB190nLCxM0dHRGjp0qLkuKirK4dutgiwnc3at9PR07dq1S23bts3FkeZ/YWFhWR6XXZg+a84SFxdXIP/7lZ+QkbKPjJQzZCTnISNlHxnJOmQk58hXGcnVd1UvSA4dOmTs2LHDmDBhglG8eHFjx44dxo4dO4yzZ8+abapVq2Z8/fXXhmEYxtmzZ42XXnrJiImJMRISEoy1a9ca9erVM6pUqWJcvHjRVadhqezOmWEYxtSpUw1/f3/jm2++MX7++WfjscceM0JDQ42///7bFafgEm3atDHq1q1rbNmyxdi4caNRpUoVo3v37ub2P/74w6hWrZqxZcsWwzAM48CBA8bEiRON7du3GwkJCcY333xjVKxY0WjWrJmrTiHXff7554a3t7exYMECY8+ePcaAAQMMf39/IzEx0TAMw+jZs6cxatQos/2mTZsMDw8PY/r06cbevXuNcePGGZ6ensauXbtcdQqWy+6cTZgwwVi9erXx22+/GbGxsUa3bt0MHx8fY/fu3a46BZc4e/as+d8uScbMmTONHTt2GIcOHTIMwzBGjRpl9OzZ02z/+++/G0WLFjVGjBhh7N2715gzZ47h7u5uREZGuuoULJfdOZs1a5axdOlSY//+/cauXbuMIUOGGG5ubsbatWtddQrIJjJS9pGRcoaMdGtkpOwjI+UMGSn7CltGoiDlRL179zYkZVm+++47s40kY/78+YZhGMaFCxeM1q1bG6VKlTI8PT2N8uXLG/379zf/w1YYZHfODOPKY43HjBljBAYGGt7e3karVq2M+Ph46wfvQidPnjS6d+9uFC9e3LDb7cYzzzzjEFATEhIc5vHw4cNGs2bNjICAAMPb29uoXLmyMWLECCM5OdlFZ2CNd955xyhXrpzh5eVl3H///caPP/5obmvevLnRu3dvh/aLFi0yqlatanh5eRn33HOPsWLFCotH7HrZmbOhQ4eabQMDA422bdsaP/30kwtG7VqZj9u9dsmcq969exvNmzfPsk+dOnUMLy8vo2LFig7/jSsMsjtnb7zxhlGpUiXDx8fHCAgIMFq0aGGsW7fONYNHjpCRso+MlDNkpNtDRso+MlL2kZGyr7BlJJthGIazr7oCAAAAAAAAbsTN1QMAAAAAAABA4UJBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQApArFixYIJvNpu3bt7t6KE535MgR+fj4aNOmTbds26JFC7Vo0cJh3YkTJ9SlSxeVLFlSNptNb731VraO361bN3Xt2jVb+wAAgLyBjHQFGQkABSkAyKaJEyeqUaNGeuCBB3K0/7Bhw7R69WqNHj1an3zyidq0aSNJmjx5sh599FEFBgbKZrNp/Pjx191/5MiR+uqrr7Rz586cngIAAIDT5UZG2rdvn15++WXVqVNHvr6+Cg4OVrt27a5b0CMjAfkLBSkAyIY///xTH3/8sQYOHJjjPtatW6fHHntML730kp5++mlVr15dkvTqq69q27Ztqlu37k33r1u3rho0aKAZM2bkeAwAAADOlFsZ6aOPPtKHH35oZp/hw4crPj5ejRs31tq1ax32JyMB+QsFKQD52oULFyw93qeffioPDw916NAhx30kJSXJ398/y/qEhAQdP35cn3766S376Nq1q77++mudO3cux+MAAAAFV0HJSN27d9eRI0f00UcfacCAARoxYoS2bNmigICA615NTkYC8g8KUgBy5OjRo+rbt69CQkLk7e2t0NBQPf/880pNTXVod+nSJQ0fPlylSpVSsWLF1KlTJ/35558Obb755hu1a9fO7KtSpUqaNGmS0tPTHdq1aNFC9957r2JjY9WsWTMVLVpU//d//ydJOnnypHr27Cm73S5/f3/17t1bO3fulM1m04IFCxz62bdvn7p06aKAgAD5+PioQYMGWrZs2W2d99KlS9WoUSMVL148y7Z58+apUqVKKlKkiO6//3798MMPDtsz7xlhGIbmzJkjm80mm81mbq9QocJtjUGSHn74YZ0/f15RUVG3vQ8AAMh9ZCTnZqT69etn6bNkyZJ68MEHtXfv3izHIiMB+YeHqwcAIP85duyY7r//fp05c0YDBgxQ9erVdfToUX355Ze6cOGCvLy8zLYvvPCCSpQooXHjxungwYN66623NHjwYH3xxRdmmwULFqh48eIaPny4ihcvrnXr1mns2LFKSUnRm2++6XDskydP6pFHHlG3bt309NNPKzAwUBkZGerQoYO2bt2q559/XtWrV9c333yj3r17Zxn77t279cADD+juu+/WqFGjVKxYMS1atEgdO3bUV199pU6dOt3wvNPS0rRt2zY9//zzWbb95z//0XPPPacmTZpo6NCh+v333/Xoo48qICBAZcuWlSQ1a9ZMn3zyiXr27KmHH35YvXr1yvbcZ6pZs6aKFCmiTZs23XTMAADAOmQk6zJSYmKi7rrrrizryUhAPmIAQDb16tXLcHNzM7Zt25ZlW0ZGhmEYhjF//nxDkhEeHm6uMwzDGDZsmOHu7m6cOXPGXHfhwoUs/Tz33HNG0aJFjYsXL5rrmjdvbkgy5s6d69D2q6++MiQZb731lrkuPT3daNmypSHJmD9/vrm+VatWRq1atRz6zcjIMJo0aWJUqVLlpud94MABQ5LxzjvvOKxPTU01SpcubdSpU8e4dOmSuX7evHmGJKN58+YO7SUZgwYNuuFx/vzzT0OSMW7cuJuOp2rVqsYjjzxy0zYAAMA6ZKTczUiZNmzYYNhsNmPMmDHX3U5GAvIHfrIHIFsyMjK0dOlSdejQQQ0aNMiy/Z8/QZOkAQMGOKx78MEHlZ6erkOHDpnrihQpYv777Nmz+uuvv/Tggw/qwoUL2rdvn0N/3t7eeuaZZxzWRUZGytPTU/379zfXubm5adCgQQ7tTp06pXXr1qlr167mcf766y+dPHlSERER2r9/v44ePXrDcz958qQkqUSJEg7rt2/frqSkJA0cONDhm88+ffrIz8/vhv3dqRIlSuivv/7Ktf4BAMDtIyNZk5GSkpL01FNPKTQ0VC+//PJ125CRgPyBn+wByJY///xTKSkpuvfee2+rfbly5RxeZwaV06dPm+t2796tV199VevWrVNKSopD++TkZIfXd999t0OgkaRDhw4pODhYRYsWdVhfuXJlh9cHDhyQYRgaM2aMxowZc93xJiUl6e67777pORmGkeX4klSlShWH9Z6enqpYseJN+7oThmFkCbcAAMA1yEi5n5HOnz+v9u3b6+zZs9q4ceN171eVOQ4yEpD3UZACkKvc3d2vuz4zsJw5c0bNmzeX3W7XxIkTValSJfn4+Oinn37SyJEjlZGR4bDfP78pzK7Mvl566SVFRERct821Ae2fSpYsKckxKLrS6dOnswQ8AACQP5CRsic1NVWPP/64fv75Z61evfqmhT8yEpA/UJACkC2lSpWS3W7XL7/84pT+1q9fr5MnT+rrr79Ws2bNzPUJCQm33Uf58uX13Xff6cKFCw7fAB44cMChXeY3cZ6engoPD8/2WMuVK6ciRYpkGVv58uUlSfv371fLli3N9WlpaUpISFDt2rWzfaxbuXz5so4cOaJHH33U6X0DAIDsIyPlXkbKyMhQr169FB0drUWLFql58+Y3bEtGAvIP7iEFIFvc3NzUsWNHffvtt9q+fXuW7ddeqn0rmd8O/nO/1NRUvffee7fdR0REhNLS0vThhx+a6zIyMjRnzhyHdqVLl1aLFi30wQcf6Pjx41n6ufZRy9fy9PRUgwYNspx3gwYNVKpUKc2dO9fhkc4LFizQmTNnbvs8smPPnj26ePGimjRpkiv9AwCA7CEj5V5GeuGFF/TFF1/ovffe0+OPP37TtmQkIP/gCikA2fb6669rzZo1at68uQYMGKAaNWro+PHjWrx4sTZu3Ch/f//b7qtJkyYqUaKEevfurRdffFE2m02ffPJJtkJbx44ddf/99+vf//63Dhw4oOrVq2vZsmU6deqUJMebiM6ZM0dNmzZVrVq11L9/f1WsWFEnTpxQTEyM/vjjD+3cufOmx3rsscf0yiuvKCUlRXa7XdKVEPbaa6/pueeeU8uWLfXkk08qISFB8+fPz9b9ET755BMdOnRIFy5ckCRt2LBBr732miSpZ8+e5reMkhQVFaWiRYvq4Ycfvu3+AQBA7iIjOT8jvfXWW3rvvfcUFhamokWL6tNPP3XY3qlTJxUrVsx8TUYC8hFXPNoPQP536NAho1evXkapUqUMb29vo2LFisagQYPMR/pmPtL42scef/fdd4Yk47vvvjPXbdq0yWjcuLFRpEgRIyQkxHj55ZeN1atXZ2nXvHlz45577rnueP7880/jqaeeMnx9fQ0/Pz+jT58+xqZNmwxJxueff+7Q9rfffjN69eplBAUFGZ6ensbdd99ttG/f3vjyyy9ved4nTpwwPDw8jE8++STLtvfee88IDQ01vL29jQYNGhgbNmwwmjdvftuPNM58ZPP1ln/Og2EYRqNGjYynn376luMFAADWIiM5NyP17t37hvlIkpGQkODQnowE5B82w8jmtaMAkE8sXbpUnTp10saNG/XAAw84rd++ffvq119/1Q8//OC0PrMjLi5O9erV008//aQ6deq4ZAwAACD/IiMByAsoSAEoEP7++2+Hp8ukp6erdevW2r59uxITE+/oyTPXOnz4sKpWraro6Ginhrjb1a1bN2VkZGjRokWWHxsAAOQvZCQAeRUFKQAFQr9+/fT3338rLCxMly5d0tdff63Nmzfr9ddf1+jRo109PAAAAJcgIwHIqyhIASgQFi5cqBkzZujAgQO6ePGiKleurOeff16DBw929dAAAABchowEIK+iIAUAAAAAAABLubl6AAAAAAAAAChcKEgBAAAAAADAUh6uHoArZWRk6NixY/L19ZXNZnP1cAAAgAUMw9DZs2cVEhIiNze+m7seMhIAAIWP1RmpUBekjh07prJly7p6GAAAwAWOHDmiMmXKuHoYeRIZCQCAwsuqjFSoC1K+vr6Srky23W538WgAAIAVUlJSVLZsWTMHICsyEgAAhY/VGalQF6QyL0G32+2ELQAAChl+inZjZCQAAAovqzISN04AAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpQn0PqduRkZGh1NRUVw8DOeDp6Sl3d3dXDwMAgAIrPT1daWlprh4GsomMBADICyhI3URqaqoSEhKUkZHh6qEgh/z9/RUUFMSNawEAcCLDMJSYmKgzZ864eijIITISAMDVKEjdgGEYOn78uNzd3VW2bFm5ufHrxvzEMAxduHBBSUlJkqTg4GAXjwgAgIIjsxhVunRpFS1alKJGPkJGAgDkFRSkbuDy5cu6cOGCQkJCVLRoUVcPBzlQpEgRSVJSUpJKly7NpekAADhBenq6WYwqWbKkq4eDHCAjAQDyAi77uYH09HRJkpeXl4tHgjuRWUzk/hYAADhH5t9UvrDL38hIAABXoyB1C1yCnr/x/gEAkDv4G5u/8f4BAFyNghQAAAAAAAAsRUEKAAAAAAAAluKm5tmUFrnR0uN5tml6221vden1uHHjNH78+DscUc7YbDYtWbJEHTt2zHEf8+bN08KFC/XTTz/p7NmzOn36tPz9/Z02RgAAkHNkpJy504x06tQpjRs3TmvWrNHhw4dVqlQpdezYUZMmTZKfn59zBwsAgBNRkCpAjh8/bv77iy++0NixYxUfH2+uK168eLb6S01NzVM3db9w4YLatGmjNm3aaPTo0a4eDgAAyCcKckY6duyYjh07punTp6tmzZo6dOiQBg4cqGPHjunLL7909fAAALghfrJXgAQFBZmLn5+fbDab+fr8+fPq0aOHAgMDVbx4cTVs2FBr16512L9ChQqaNGmSevXqJbvdrgEDBkiSPvzwQ5UtW1ZFixZVp06dNHPmzCxXJn3zzTeqV6+efHx8VLFiRU2YMEGXL182+5WkTp06yWazma937typhx56SL6+vrLb7apfv762b99+w/MbOnSoRo0apcaNGztnwgDclrTIjVkWAMhPCnJGuvfee/XVV1+pQ4cOqlSpklq2bKnJkyfr22+/NY8DIHeQkYA7Q0GqkDh37pzatm2r6Oho7dixQ23atFGHDh10+PBhh3bTp09X7dq1tWPHDo0ZM0abNm3SwIEDNWTIEMXFxenhhx/W5MmTHfb54Ycf1KtXLw0ZMkR79uzRBx98oAULFpjttm3bJkmaP3++jh8/br7u0aOHypQpo23btik2NlajRo2Sp6enBbMBAABwRUHMSMnJybLb7fLw4McQAIC8i79ShUTt2rVVu3Zt8/WkSZO0ZMkSLVu2TIMHDzbXt2zZUv/+97/N16+88ooeeeQRvfTSS5KkqlWravPmzVq+fLnZZsKECRo1apR69+4tSapYsaImTZqkl19+WePGjVOpUqUkSf7+/goKCjL3O3z4sEaMGKHq1atLkqpUqZILZw4AAHBjBS0j/fXXX5o0aZJ5FRcAAHkVV0gVEufOndNLL72kGjVqyN/fX8WLF9fevXuzfPvXoEEDh9fx8fG6//77HdZd+3rnzp2aOHGiihcvbi79+/fX8ePHdeHChRuOafjw4erXr5/Cw8M1depU/fbbb3d4lgAAANlTkDJSSkqK2rVrp5o1a7rsJu0AANwuClKFxEsvvaQlS5bo9ddf1w8//KC4uDjVqlVLqampDu2KFSuW7b7PnTunCRMmKC4uzlx27dql/fv3y8fH54b7jR8/Xrt371a7du20bt061axZU0uWLMn28QEAAHKqoGSks2fPqk2bNvL19dWSJUu4DQIAIM/jJ3uFxKZNm9SnTx916tRJ0pWAdPDgwVvuV61aNfN+BpmufV2vXj3Fx8ercuXKN+zH09NT6enpWdZXrVpVVatW1bBhw9S9e3fNnz/fHCMAAEBuKwgZKSUlRREREfL29tayZctuWuwCACCvoCBVSFSpUkVff/21OnToIJvNpjFjxigjI+OW+73wwgtq1qyZZs6cqQ4dOmjdunVatWqVbDab2Wbs2LFq3769ypUrpy5dusjNzU07d+7UL7/8otdee03SlafIREdH64EHHpC3t7d8fHw0YsQIdenSRaGhofrjjz+0bds2de7c+YZjSUxMVGJiog4cOCBJ2rVrl3x9fVWuXDkFBATc4QwBAIDCKL9npJSUFLVu3VoXLlzQp59+qpSUFKWkpEiSSpUqJXd3dyfMEgAAzsdP9gqJmTNnqkSJEmrSpIk6dOigiIgI1atX75b7PfDAA5o7d65mzpyp2rVrKzIyUsOGDXP45i0iIkLLly/XmjVr1LBhQzVu3FizZs1S+fLlzTYzZsxQVFSUypYtq7p168rd3V0nT55Ur169VLVqVXXt2lWPPPKIJkyYcMOxzJ07V3Xr1lX//v0lSc2aNVPdunW1bNmyO5gZAABQmOX3jPTTTz9py5Yt2rVrlypXrqzg4GBzOXLkyJ1PEAAAucRmGIbh6kG4SkpKivz8/MxH4/7TxYsXlZCQoNDQUC57vkb//v21b98+/fDDD64eyi3xPgJ3Li1yY5Z1nm2aumAkgHPc7O8/riAj5QwZCShcyEgoaKzOSPxkD7c0ffp0PfzwwypWrJhWrVqljz/+WO+9956rhwUAAOBSZCQAAHKOghRuaevWrZo2bZrOnj2rihUravbs2erXr5+rhwUAAOBSZCQAAHKOghRuadGiRa4eAgAAQJ5DRgIAIOeyfVPzDRs2qEOHDgoJCZHNZtPSpUuztNm7d68effRR+fn5qVixYmrYsKEOHz5sbr948aIGDRqkkiVLqnjx4urcubNOnDjh0Mfhw4fVrl07FS1aVKVLl9aIESN0+fJlhzbr169XvXr15O3trcqVK2vBggXZPR0AAACnICMBAADcvmwXpM6fP6/atWtrzpw5193+22+/qWnTpqpevbrWr1+vn3/+WWPGjHG4WeKwYcP07bffavHixfr+++917NgxPf744+b29PR0tWvXTqmpqdq8ebM+/vhjLViwQGPHjjXbJCQkqF27dnrooYcUFxenoUOHql+/flq9enV2TwkAAOCOkZEAAABu3x09Zc9ms2nJkiXq2LGjua5bt27y9PTUJ598ct19kpOTVapUKS1cuFBdunSRJO3bt081atRQTEyMGjdurFWrVql9+/Y6duyYAgMDJUlz587VyJEj9eeff8rLy0sjR47UihUr9Msvvzgc+8yZM4qMjLyt8fMEmYKP9xG4czxBBgWNFU+QISMhr+N9BO4cGQkFjdVP2cv2FVI3k5GRoRUrVqhq1aqKiIhQ6dKl1ahRI4dL1mNjY5WWlqbw8HBzXfXq1VWuXDnFxMRIkmJiYlSrVi0zaElSRESEUlJStHv3brPNP/vIbJPZx/VcunRJKSkpDgsAAEBuIyMBAAA4cmpBKikpSefOndPUqVPVpk0brVmzRp06ddLjjz+u77//XpKUmJgoLy8v+fv7O+wbGBioxMREs80/g1bm9sxtN2uTkpKiv//++7rjmzJlivz8/MylbNmyd3zOAAAAt0JGAgAAcOT0K6Qk6bHHHtOwYcNUp04djRo1Su3bt9fcuXOdeagcGT16tJKTk83lyJEjrh4SAAAoBMhIAAAAjpxakLrrrrvk4eGhmjVrOqyvUaOG+QSZoKAgpaam6syZMw5tTpw4oaCgILPNtU+UyXx9qzZ2u11FihS57vi8vb1lt9sdFgAAgNxGRgIAAHDk4czOvLy81LBhQ8XHxzus//XXX1W+fHlJUv369eXp6ano6Gh17txZkhQfH6/Dhw8rLCxMkhQWFqbJkycrKSlJpUuXliRFRUXJbrebQS4sLEwrV650OE5UVJTZR275bfsHudr/tSo1eC5b7fv06aOPP/5YkuTh4aGAgADdd9996t69u/r06SM3N6fWIC21e/dujR07VrGxsTp06JBmzZqloUOHunpYAADcEhnJ+chIV3344Yf63//+Z97Ivn79+nr99dd1//33u3hkAADcWLb/8p47d05xcXGKi4uTdOXRwnFxcea3eyNGjNAXX3yhDz/8UAcOHNC7776rb7/9Vv/6178kSX5+furbt6+GDx+u7777TrGxsXrmmWcUFhamxo0bS5Jat26tmjVrqmfPntq5c6dWr16tV199VYMGDZK3t7ckaeDAgfr999/18ssva9++fXrvvfe0aNEiDRs2zBnzkq+1adNGx48f18GDB7Vq1So99NBDGjJkiNq3b6/Lly+7eng5duHCBVWsWFFTp041vwUGACCvICPlfQU1I61fv17du3fXd999p5iYGJUtW1atW7fW0aNHXT00AABuKNsFqe3bt6tu3bqqW7euJGn48OGqW7euxo4dK0nq1KmT5s6dq2nTpqlWrVr66KOP9NVXX6lp06uPv5w1a5bat2+vzp07q1mzZgoKCtLXX39tbnd3d9fy5cvl7u6usLAwPf300+rVq5cmTpxotgkNDdWKFSsUFRWl2rVra8aMGfroo48UERGR48koKLy9vRUUFKS7775b9erV0//93//pm2++0apVq7RgwQKz3ZkzZ9SvXz+VKlVKdrtdLVu21M6dOx36+vbbb9WwYUP5+PjorrvuUqdOncxtp0+fVq9evVSiRAkVLVpUjzzyiPbv3y9JOn/+vOx2u7788kuH/pYuXapixYrp7NmzSk1N1eDBgxUcHCwfHx+VL19eU6ZMueF5NWzYUG+++aa6detmhm4AAPIKMlLeV1Az0meffaZ//etfqlOnjqpXr66PPvpIGRkZio6OdsKsAQCQO7L9k70WLVrIMIybtnn22Wf17LPP3nC7j4+P5syZozlz5tywTfny5bNcbn69sezYsePmA4YkqWXLlqpdu7a+/vpr9evXT5L0xBNPqEiRIlq1apX8/Pz0wQcfqFWrVvr1118VEBCgFStWqFOnTnrllVf0v//9T6mpqQ7vSZ8+fbR//34tW7ZMdrtdI0eOVNu2bbVnzx4VK1ZM3bp10/z589WlSxdzn8zXvr6+mj59upYtW6ZFixapXLlyOnLkCDdRBQDkW2Sk/KkgZqQLFy4oLS1NAQEBzpsoAACczKn3kELeVr16df3888+SpI0bN2rr1q1KSkoyrzaaPn26li5dqi+//FIDBgzQ5MmT1a1bN02YMMHso3bt2pJkhqxNmzapSZMmkq58O1e2bFktXbpUTzzxhPr166cmTZro+PHjCg4OVlJSklauXKm1a9dKkg4fPqwqVaqoadOmstls5j00AAAArFTQMtLIkSMVEhKi8PDwO54bAAByS/69eyOyzTAM2Ww2SdLOnTt17tw5lSxZUsWLFzeXhIQE/fbbb5KkuLg4tWrV6rp97d27Vx4eHmrUqJG5rmTJkqpWrZr27t0rSbr//vt1zz33mDcQ/fTTT1W+fHk1a9ZM0pVvD+Pi4lStWjW9+OKLWrNmTa6dOwAAwI0UpIw0depUff7551qyZIl8fHyyPxkAAFiEK6QKkb179yo0NFTSlRuvBgcHa/369Vna+fv7S9INHw2dHf369dOcOXM0atQozZ8/X88884wZ+OrVq6eEhAStWrVKa9euVdeuXRUeHp7lngoAAAC5qaBkpOnTp2vq1Klau3at7rvvvjseIwAAuYkrpAqJdevWadeuXeZjpOvVq6fExER5eHiocuXKDstdd90lSbrvvvtueDPMGjVq6PLly9qyZYu57uTJk4qPjzcfOy1JTz/9tA4dOqTZs2drz5496t27t0M/drtdTz75pD788EN98cUX+uqrr3Tq1Clnnz4AAMB1FZSMNG3aNE2aNEmRkZFq0KBBjucDAACrcIVUAXTp0iUlJiYqPT1dJ06cUGRkpKZMmaL27durV69ekqTw8HCFhYWpY8eOmjZtmqpWrapjx46ZN+ls0KCBxo0bp1atWqlSpUrq1q2bLl++rJUrV2rkyJGqUqWKHnvsMfXv318ffPCBfH19NWrUKN1999167LHHzLGUKFFCjz/+uEaMGKHWrVurTJky5raZM2cqODhYdevWlZubmxYvXqygoCDz28drpaamas+ePea/jx49qri4OBUvXlyVK1fOvQkFAAAFQkHNSG+88YbGjh2rhQsXqkKFCkpMTJQk8+eGAADkRVwhVQBFRkYqODhYFSpUUJs2bfTdd99p9uzZ+uabb+Tu7i5JstlsWrlypZo1a6ZnnnlGVatWVbdu3XTo0CEFBgZKuvKEnsWLF2vZsmWqU6eOWrZsqa1bt5rHmT9/vurXr6/27dsrLCxMhmFo5cqV8vT0dBhP3759lZqamuWpQr6+vpo2bZoaNGighg0b6uDBg1q5cqXc3K7/sTx27Jj5OO3jx49r+vTpqlu3rvlEHAAAgJspqBnp/fffV2pqqrp06aLg4GBzmT59ujOnDwAAp7IZt3o+cQGWkpIiPz8/JScny263O2y7ePGiEhISFBoayg0h79Ann3yiYcOG6dixY/Ly8rL02LyPwJ1Li9yYZZ1nm6YuGAngHDf7+48ryEjWICMB+RsZCQWN1RmJn+wh11y4cEHHjx/X1KlT9dxzz1ketAAA+QehHoUJGQkAcLsKckbiJ3vINdOmTVP16tUVFBSk0aNHu3o4AAAAeQIZCQAAClLIRePHj1daWpqio6O5oSYAAMD/j4wEAAAFKQAAAAAAAFiMghQAAAAAAAAsRUHqFgrxQwgLhIyMDFcPAQCAAom/sfkb7x8AwNV4yt4NeHp6ymaz6c8//1SpUqVks9lcPSRkg2EYSk1N1Z9//ik3NzeeXgMAgJN4eXnJzc1Nx44dU6lSpeTl5UVOykfISACAvIKC1A24u7urTJky+uOPP3Tw4EFXDwc5VLRoUZUrV05ublwMCACAM7i5uSk0NFTHjx/XsWPHXD0c5BAZCQDgahSkbqJ48eKqUqWK0tLSXD0U5IC7u7s8PDz41hYAACfz8vJSuXLldPnyZaWnp7t6OMgmMhIAIC+gIHUL7u7ucnd3d/UwAAAA8hSbzSZPT095enq6eigAACAf4hpdAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsFS2C1IbNmxQhw4dFBISIpvNpqVLl96w7cCBA2Wz2fTWW285rD916pR69Oghu90uf39/9e3bV+fOnXNo8/PPP+vBBx+Uj4+PypYtq2nTpmXpf/Hixapevbp8fHxUq1YtrVy5MrunAwAA4BRkJAAAgNuX7YLU+fPnVbt2bc2ZM+em7ZYsWaIff/xRISEhWbb16NFDu3fvVlRUlJYvX64NGzZowIAB5vaUlBS1bt1a5cuXV2xsrN58802NHz9e8+bNM9ts3rxZ3bt3V9++fbVjxw517NhRHTt21C+//JLdUwIAALhjZCQAAIDbZzMMw8jxzjablixZoo4dOzqsP3r0qBo1aqTVq1erXbt2Gjp0qIYOHSpJ2rt3r2rWrKlt27apQYMGkqTIyEi1bdtWf/zxh0JCQvT+++/rlVdeUWJiory8vCRJo0aN0tKlS7Vv3z5J0pNPPqnz589r+fLl5nEbN26sOnXqaO7cubc1/pSUFPn5+Sk5OVl2uz2n0wAABVpa5MYs6zzbNHXBSFCQWfk5s+LvPxkJAAo+MhKsUNAy0j85/R5SGRkZ6tmzp0aMGKF77rkny/aYmBj5+/ubQUuSwsPD5ebmpi1btphtmjVrZgYtSYqIiFB8fLxOnz5ttgkPD3foOyIiQjExMTcc26VLl5SSkuKwAAAAWIGMBAAAcJXTC1JvvPGGPDw89OKLL153e2JiokqXLu2wzsPDQwEBAUpMTDTbBAYGOrTJfH2rNpnbr2fKlCny8/Mzl7Jly2bv5AAAAHKIjAQAAHCVUwtSsbGxevvtt7VgwQLZbDZndu0Uo0ePVnJysrkcOXLE1UMCAACFABkJAADAkVMLUj/88IOSkpJUrlw5eXh4yMPDQ4cOHdK///1vVahQQZIUFBSkpKQkh/0uX76sU6dOKSgoyGxz4sQJhzaZr2/VJnP79Xh7e8tutzssAAAAuY2MBAAA4MipBamePXvq559/VlxcnLmEhIRoxIgRWr16tSQpLCxMZ86cUWxsrLnfunXrlJGRoUaNGpltNmzYoLS0NLNNVFSUqlWrphIlSphtoqOjHY4fFRWlsLAwZ54SAADAHSMjAQAAOPLI7g7nzp3TgQMHzNcJCQmKi4tTQECAypUrp5IlSzq09/T0VFBQkKpVqyZJqlGjhtq0aaP+/ftr7ty5SktL0+DBg9WtWzfz8cdPPfWUJkyYoL59+2rkyJH65Zdf9Pbbb2vWrFlmv0OGDFHz5s01Y8YMtWvXTp9//rm2b9/u8NhjAAAAq5CRAAAAbl+2r5Davn276tatq7p160qShg8frrp162rs2LG33cdnn32m6tWrq1WrVmrbtq2aNm3qEJL8/Py0Zs0aJSQkqH79+vr3v/+tsWPHasCAAWabJk2aaOHChZo3b55q166tL7/8UkuXLtW9996b3VMCAAC4Y2QkAACA22czDMNw9SBcJSUlRX5+fkpOTuZeCQBwA2mRG7Os82zT1AUjQUFm5eeMv/+3xhwBwK2RkWCFgpyRsv2TPQAAAGc7eGZVlnVVRKgHAACFW0HOSBSkgHzu2oo538oAAACQkQAgr3PqU/YAAAAAAACAW6EgBQAAAAAAAEvxkz0AwE0V5N+tAwAA5BQZCbgzXCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpbBekNmzYoA4dOigkJEQ2m01Lly41t6WlpWnkyJGqVauWihUrppCQEPXq1UvHjh1z6OPUqVPq0aOH7Ha7/P391bdvX507d86hzc8//6wHH3xQPj4+Klu2rKZNm5ZlLIsXL1b16tXl4+OjWrVqaeXKldk9HQAAAKcgIwEAANy+bBekzp8/r9q1a2vOnDlZtl24cEE//fSTxowZo59++klff/214uPj9eijjzq069Gjh3bv3q2oqCgtX75cGzZs0IABA8ztKSkpat26tcqXL6/Y2Fi9+eabGj9+vObNm2e22bx5s7p3766+fftqx44d6tixozp27Khffvklu6cEAABwx8hIAAAAt89mGIaR451tNi1ZskQdO3a8YZtt27bp/vvv16FDh1SuXDnt3btXNWvW1LZt29SgQQNJUmRkpNq2bas//vhDISEhev/99/XKK68oMTFRXl5ekqRRo0Zp6dKl2rdvnyTpySef1Pnz57V8+XLzWI0bN1adOnU0d+7c2xp/SkqK/Pz8lJycLLvdnsNZAFwrLXKjw2vPNk1dNBIUVPs/fyXLuirdJrtgJCjIrPycWfH3n4wEuB4ZCbmNjAQrFLSM9E+5fg+p5ORk2Ww2+fv7S5JiYmLk7+9vBi1JCg8Pl5ubm7Zs2WK2adasmRm0JCkiIkLx8fE6ffq02SY8PNzhWBEREYqJibnhWC5duqSUlBSHBQAAwBXISAAAoDDL1YLUxYsXNXLkSHXv3t2sriUmJqp06dIO7Tw8PBQQEKDExESzTWBgoEObzNe3apO5/XqmTJkiPz8/cylbtuydnSAAAEAOkJEAAEBhl2sFqbS0NHXt2lWGYej999/PrcNky+jRo5WcnGwuR44ccfWQAABAIUNGAgAAkDxyo9PMoHXo0CGtW7fO4beHQUFBSkpKcmh/+fJlnTp1SkFBQWabEydOOLTJfH2rNpnbr8fb21ve3t45PzEAAIA7QEYCAAC4wulXSGUGrf3792vt2rUqWbKkw/awsDCdOXNGsbGx5rp169YpIyNDjRo1Mtts2LBBaWlpZpuoqChVq1ZNJUqUMNtER0c79B0VFaWwsDBnnxIAAMAdIyMBAABcle2C1Llz5xQXF6e4uDhJUkJCguLi4nT48GGlpaWpS5cu2r59uz777DOlp6crMTFRiYmJSk1NlSTVqFFDbdq0Uf/+/bV161Zt2rRJgwcPVrdu3RQSEiJJeuqpp+Tl5aW+fftq9+7d+uKLL/T2229r+PDh5jiGDBmiyMhIzZgxQ/v27dP48eO1fft2DR482AnTAgAAkD1kJAAAgNuX7YLU9u3bVbduXdWtW1eSNHz4cNWtW1djx47V0aNHtWzZMv3xxx+qU6eOgoODzWXz5s1mH5999pmqV6+uVq1aqW3btmratKnmzZtnbvfz89OaNWuUkJCg+vXr69///rfGjh2rAQMGmG2aNGmihQsXat68eapdu7a+/PJLLV26VPfee++dzAcAAECOkJEAAABuX7bvIdWiRQsZhnHD7TfblikgIEALFy68aZv77rtPP/zww03bPPHEE3riiSdueTwAAIDcRkYCAAC4fbn2lD0AAAAAAADgeihIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApbJdkNqwYYM6dOigkJAQ2Ww2LV261GG7YRgaO3asgoODVaRIEYWHh2v//v0ObU6dOqUePXrIbrfL399fffv21blz5xza/Pzzz3rwwQfl4+OjsmXLatq0aVnGsnjxYlWvXl0+Pj6qVauWVq5cmd3TAQAAcAoyEgAAwO3LdkHq/Pnzql27tubMmXPd7dOmTdPs2bM1d+5cbdmyRcWKFVNERIQuXrxotunRo4d2796tqKgoLV++XBs2bNCAAQPM7SkpKWrdurXKly+v2NhYvfnmmxo/frzmzZtnttm8ebO6d++uvn37aseOHerYsaM6duyoX375JbunBAAAcMfISAAAALfPZhiGkeOdbTYtWbJEHTt2lHTlm7+QkBD9+9//1ksvvSRJSk5OVmBgoBYsWKBu3bpp7969qlmzprZt26YGDRpIkiIjI9W2bVv98ccfCgkJ0fvvv69XXnlFiYmJ8vLykiSNGjVKS5cu1b59+yRJTz75pM6fP6/ly5eb42ncuLHq1KmjuXPn3tb4U1JS5Ofnp+TkZNnt9pxOA+BSaZEbHV57tmnqopGgoNr/+StZ1lXpNtkFI0FBZuXnzIq//2QkwPXISMhtZCRYoaBlpH9y6j2kEhISlJiYqPDwcHOdn5+fGjVqpJiYGElSTEyM/P39zaAlSeHh4XJzc9OWLVvMNs2aNTODliRFREQoPj5ep0+fNtv88ziZbTKPAwAAkFeQkQAAABx5OLOzxMRESVJgYKDD+sDAQHNbYmKiSpcu7TgIDw8FBAQ4tAkNDc3SR+a2EiVKKDEx8abHuZ5Lly7p0qVL5uuUlJTsnB4AAECOkJEAAAAcFaqn7E2ZMkV+fn7mUrZsWVcPCQAAwOXISAAAwGpOLUgFBQVJkk6cOOGw/sSJE+a2oKAgJSUlOWy/fPmyTp065dDmen388xg3apO5/XpGjx6t5ORkczly5Eh2TxEAACDbyEgAAACOnFqQCg0NVVBQkKKjo811KSkp2rJli8LCwiRJYWFhOnPmjGJjY80269atU0ZGhho1amS22bBhg9LS0sw2UVFRqlatmkqUKGG2+edxMttkHud6vL29ZbfbHRYAAIDcRkYCAABwlO2C1Llz5xQXF6e4uDhJV27SGRcXp8OHD8tms2no0KF67bXXtGzZMu3atUu9evVSSEiI+ZSZGjVqqE2bNurfv7+2bt2qTZs2afDgwerWrZtCQkIkSU899ZS8vLzUt29f7d69W1988YXefvttDR8+3BzHkCFDFBkZqRkzZmjfvn0aP368tm/frsGDB9/5rAAAAGQTGQkAAOD2Zfum5tu3b9dDDz1kvs4MQL1799aCBQv08ssv6/z58xowYIDOnDmjpk2bKjIyUj4+PuY+n332mQYPHqxWrVrJzc1NnTt31uzZs83tfn5+WrNmjQYNGqT69evrrrvu0tixYzVgwACzTZMmTbRw4UK9+uqr+r//+z9VqVJFS5cu1b333pujiQAAALgTZCQAAIDbZzMMw3D1IFwlJSVFfn5+Sk5O5tJ05FtpkRsdXnu2aeqikaCg2v/5K1nWVek22QUjQUFm5eeMv/+3xhyhICAjIbeRkWCFgpyRCtVT9gAAAAAAAOB6FKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSTi9Ipaena8yYMQoNDVWRIkVUqVIlTZo0SYZhmG0Mw9DYsWMVHBysIkWKKDw8XPv373fo59SpU+rRo4fsdrv8/f3Vt29fnTt3zqHNzz//rAcffFA+Pj4qW7aspk2b5uzTAQAAcAoyEgAAwFVOL0i98cYbev/99/Xuu+9q7969euONNzRt2jS98847Zptp06Zp9uzZmjt3rrZs2aJixYopIiJCFy9eNNv06NFDu3fvVlRUlJYvX64NGzZowIAB5vaUlBS1bt1a5cuXV2xsrN58802NHz9e8+bNc/YpAQAA3DEyEgAAwFUezu5w8+bNeuyxx9SuXTtJUoUKFfT//t//09atWyVd+ebvrbfe0quvvqrHHntMkvS///1PgYGBWrp0qbp166a9e/cqMjJS27ZtU4MGDSRJ77zzjtq2bavp06crJCREn332mVJTU/Xf//5XXl5euueeexQXF6eZM2c6hDIAAIC8gIwEAABwldOvkGrSpImio6P166+/SpJ27typjRs36pFHHpEkJSQkKDExUeHh4eY+fn5+atSokWJiYiRJMTEx8vf3N4OWJIWHh8vNzU1btmwx2zRr1kxeXl5mm4iICMXHx+v06dPOPi0AAIA7QkYCAAC4yulXSI0aNUopKSmqXr263N3dlZ6ersmTJ6tHjx6SpMTERElSYGCgw36BgYHmtsTERJUuXdpxoB4eCggIcGgTGhqapY/MbSVKlMgytkuXLunSpUvm65SUlDs5VQAAgNtGRgIAALjK6VdILVq0SJ999pkWLlyon376SR9//LGmT5+ujz/+2NmHyrYpU6bIz8/PXMqWLevqIQEAgEKCjAQAAHCV0wtSI0aM0KhRo9StWzfVqlVLPXv21LBhwzRlyhRJUlBQkCTpxIkTDvudOHHC3BYUFKSkpCSH7ZcvX9apU6cc2lyvj38e41qjR49WcnKyuRw5cuQOzxYAAOD2kJEAAACucnpB6sKFC3Jzc+zW3d1dGRkZkqTQ0FAFBQUpOjra3J6SkqItW7YoLCxMkhQWFqYzZ84oNjbWbLNu3TplZGSoUaNGZpsNGzYoLS3NbBMVFaVq1apd91J0SfL29pbdbndYAAAArEBGAgAAuMrpBakOHTpo8uTJWrFihQ4ePKglS5Zo5syZ6tSpkyTJZrNp6NCheu2117Rs2TLt2rVLvXr1UkhIiDp27ChJqlGjhtq0aaP+/ftr69at2rRpkwYPHqxu3bopJCREkvTUU0/Jy8tLffv21e7du/XFF1/o7bff1vDhw519SgAAAHeMjAQAAHCV029q/s4772jMmDH617/+paSkJIWEhOi5557T2LFjzTYvv/yyzp8/rwEDBujMmTNq2rSpIiMj5ePjY7b57LPPNHjwYLVq1Upubm7q3LmzZs+ebW738/PTmjVrNGjQINWvX1933XWXxo4dy+OMAQBAnkRGAgAAuMpmGIbh6kG4SkpKivz8/JScnMyl6ci30iI3Orz2bNPURSNBQbX/81eyrKvSbbILRoKCzMrPGX//b405QkFARkJuIyPBCgU5Izn9J3sAAAAAAADAzVCQAgAAAAAAgKUoSAEAAAAAAMBSTr+pOQBrHTyzyuF1FXF/BAAAADISAORtXCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVK4UpI4ePaqnn35aJUuWVJEiRVSrVi1t377d3G4YhsaOHavg4GAVKVJE4eHh2r9/v0Mfp06dUo8ePWS32+Xv76++ffvq3LlzDm1+/vlnPfjgg/Lx8VHZsmU1bdq03DgdAAAApyAjAQAAXOH0gtTp06f1wAMPyNPTU6tWrdKePXs0Y8YMlShRwmwzbdo0zZ49W3PnztWWLVtUrFgxRURE6OLFi2abHj16aPfu3YqKitLy5cu1YcMGDRgwwNyekpKi1q1bq3z58oqNjdWbb76p8ePHa968ec4+JQAAgDtGRgIAALjKw9kdvvHGGypbtqzmz59vrgsNDTX/bRiG3nrrLb366qt67LHHJEn/+9//FBgYqKVLl6pbt27au3evIiMjtW3bNjVo0ECS9M4776ht27aaPn26QkJC9Nlnnyk1NVX//e9/5eXlpXvuuUdxcXGaOXOmQygDAADIC8hIAAAAVzn9Cqlly5apQYMGeuKJJ1S6dGnVrVtXH374obk9ISFBiYmJCg8PN9f5+fmpUaNGiomJkSTFxMTI39/fDFqSFB4eLjc3N23ZssVs06xZM3l5eZltIiIiFB8fr9OnTzv7tAAAAO4IGQkAAOAqpxekfv/9d73//vuqUqWKVq9ereeff14vvviiPv74Y0lSYmKiJCkwMNBhv8DAQHNbYmKiSpcu7bDdw8NDAQEBDm2u18c/j3GtS5cuKSUlxWEBAACwAhkJAADgKqf/ZC8jI0MNGjTQ66+/LkmqW7eufvnlF82dO1e9e/d29uGyZcqUKZowYYJLxwAAAAonMhIAAMBVTr9CKjg4WDVr1nRYV6NGDR0+fFiSFBQUJEk6ceKEQ5sTJ06Y24KCgpSUlOSw/fLlyzp16pRDm+v18c9jXGv06NFKTk42lyNHjuTkFAEAALKNjAQAAHCV0wtSDzzwgOLj4x3W/frrrypfvrykKzfvDAoKUnR0tLk9JSVFW7ZsUVhYmCQpLCxMZ86cUWxsrNlm3bp1ysjIUKNGjcw2GzZsUFpamtkmKipK1apVc3hazT95e3vLbrc7LAAAAFYgIwEAAFzl9ILUsGHD9OOPP+r111/XgQMHtHDhQs2bN0+DBg2SJNlsNg0dOlSvvfaali1bpl27dqlXr14KCQlRx44dJV35trBNmzbq37+/tm7dqk2bNmnw4MHq1q2bQkJCJElPPfWUvLy81LdvX+3evVtffPGF3n77bQ0fPtzZpwQAAHDHyEgAAABXOf0eUg0bNtSSJUs0evRoTZw4UaGhoXrrrbfUo0cPs83LL7+s8+fPa8CAATpz5oyaNm2qyMhI+fj4mG0+++wzDR48WK1atZKbm5s6d+6s2bNnm9v9/Py0Zs0aDRo0SPXr19ddd92lsWPH8jhjAACQJ5GRAAAArrIZhmG4ehCukpKSIj8/PyUnJ3NpOvKt/Z+/4vC6SrfJLhoJCqprP2MSnzM4n5WfM/7+3xpzhIKAjITcRkaCFQpyRnL6T/YAAAAAAACAm6EgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvlekFq6tSpstlsGjp0qLnu4sWLGjRokEqWLKnixYurc+fOOnHihMN+hw8fVrt27VS0aFGVLl1aI0aM0OXLlx3arF+/XvXq1ZO3t7cqV66sBQsW5PbpAAAAOAUZCQAAFGa5WpDatm2bPvjgA913330O64cNG6Zvv/1Wixcv1vfff69jx47p8ccfN7enp6erXbt2Sk1N1ebNm/Xxxx9rwYIFGjt2rNkmISFB7dq100MPPaS4uDgNHTpU/fr10+rVq3PzlAAAAO4YGQkAABR2uVaQOnfunHr06KEPP/xQJUqUMNcnJyfrP//5j2bOnKmWLVuqfv36mj9/vjZv3qwff/xRkrRmzRrt2bNHn376qerUqaNHHnlEkyZN0pw5c5SamipJmjt3rkJDQzVjxgzVqFFDgwcPVpcuXTRr1qzcOiUAAIA7RkYCAADIxYLUoEGD1K5dO4WHhzusj42NVVpamsP66tWrq1y5coqJiZEkxcTEqFatWgoMDDTbREREKCUlRbt37zbbXNt3RESE2cf1XLp0SSkpKQ4LAACAlchIAAAAkkdudPr555/rp59+0rZt27JsS0xMlJeXl/z9/R3WBwYGKjEx0Wzzz6CVuT1z283apKSk6O+//1aRIkWyHHvKlCmaMGFCjs8LAADgTpCRAAAArnD6FVJHjhzRkCFD9Nlnn8nHx8fZ3d+R0aNHKzk52VyOHDni6iEBAIBCgowEAABwldMLUrGxsUpKSlK9evXk4eEhDw8Pff/995o9e7Y8PDwUGBio1NRUnTlzxmG/EydOKCgoSJIUFBSU5Ykyma9v1cZut1/3mz9J8vb2lt1ud1gAAACsQEYCAAC4yukFqVatWmnXrl2Ki4szlwYNGqhHjx7mvz09PRUdHW3uEx8fr8OHDyssLEySFBYWpl27dikpKclsExUVJbvdrpo1a5pt/tlHZpvMPgAAAPISMhIAAMBVTr+HlK+vr+69916HdcWKFVPJkiXN9X379tXw4cMVEBAgu92uF154QWFhYWrcuLEkqXXr1qpZs6Z69uypadOmKTExUa+++qoGDRokb29vSdLAgQP17rvv6uWXX9azzz6rdevWadGiRVqxYoWzTwkAAOCOkZEAAACuypWbmt/KrFmz5Obmps6dO+vSpUuKiIjQe++9Z253d3fX8uXL9fzzzyssLEzFihVT7969NXHiRLNNaGioVqxYoWHDhuntt99WmTJl9NFHHykiIsIVpwQAAHDHyEgAAKCwsKQgtX79eofXPj4+mjNnjubMmXPDfcqXL6+VK1fetN8WLVpox44dzhgiAACA5chIAACgsHL6PaQAAAAAAACAm6EgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlnJ6QWrKlClq2LChfH19Vbp0aXXs2FHx8fEObS5evKhBgwapZMmSKl68uDp37qwTJ044tDl8+LDatWunokWLqnTp0hoxYoQuX77s0Gb9+vWqV6+evL29VblyZS1YsMDZpwMAAOAUZCQAAICrnF6Q+v777zVo0CD9+OOPioqKUlpamlq3bq3z58+bbYYNG6Zvv/1Wixcv1vfff69jx47p8ccfN7enp6erXbt2Sk1N1ebNm/Xxxx9rwYIFGjt2rNkmISFB7dq100MPPaS4uDgNHTpU/fr10+rVq519SgAAAHeMjAQAAHCVh7M7jIyMdHi9YMEClS5dWrGxsWrWrJmSk5P1n//8RwsXLlTLli0lSfPnz1eNGjX0448/qnHjxlqzZo327NmjtWvXKjAwUHXq1NGkSZM0cuRIjR8/Xl5eXpo7d65CQ0M1Y8YMSVKNGjW0ceNGzZo1SxEREc4+LQAAgDtCRgIAALgq1+8hlZycLEkKCAiQJMXGxiotLU3h4eFmm+rVq6tcuXKKiYmRJMXExKhWrVoKDAw020RERCglJUW7d+822/yzj8w2mX1cz6VLl5SSkuKwAAAAuAIZCQAAFGa5WpDKyMjQ0KFD9cADD+jee++VJCUmJsrLy0v+/v4ObQMDA5WYmGi2+WfQytyeue1mbVJSUvT3339fdzxTpkyRn5+fuZQtW/aOzxEAACC7yEgAAKCwy9WC1KBBg/TLL7/o888/z83D3LbRo0crOTnZXI4cOeLqIQEAgEKIjAQAAAo7p99DKtPgwYO1fPlybdiwQWXKlDHXBwUFKTU1VWfOnHH4BvDEiRMKCgoy22zdutWhv8wnzPyzzbVPnTlx4oTsdruKFCly3TF5e3vL29v7js8NAAAgp8hIAAAAuXCFlGEYGjx4sJYsWaJ169YpNDTUYXv9+vXl6emp6Ohoc118fLwOHz6ssLAwSVJYWJh27dqlpKQks01UVJTsdrtq1qxptvlnH5ltMvsAAADIS8hIAAAAVzn9CqlBgwZp4cKF+uabb+Tr62vez8DPz09FihSRn5+f+vbtq+HDhysgIEB2u10vvPCCwsLC1LhxY0lS69atVbNmTfXs2VPTpk1TYmKiXn31VQ0aNMj89m7gwIF699139fLLL+vZZ5/VunXrtGjRIq1YscLZpwQAAHDHyEgAAABXOf0Kqffff1/Jyclq0aKFgoODzeWLL74w28yaNUvt27dX586d1axZMwUFBenrr782t7u7u2v58uVyd3dXWFiYnn76afXq1UsTJ04024SGhmrFihWKiopS7dq1NWPGDH300Uc8zhgAAORJZCQAAICrnH6FlGEYt2zj4+OjOXPmaM6cOTdsU758ea1cufKm/bRo0UI7duzI9hgBAACsRkYCAAC4KlefsgcAAAAAAABci4IUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlvJw9QAKsrTIjVnWebZp6oKRAAAA5B1kJAAAwBVSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvl+4LUnDlzVKFCBfn4+KhRo0baunWrq4dkOnhmVZYFAADACmQkAACQl+XrgtQXX3yh4cOHa9y4cfrpp59Uu3ZtRUREKCkpydVDAwAAcBkyEgAAyOvydUFq5syZ6t+/v5555hnVrFlTc+fOVdGiRfXf//7X1UMDAABwGTISAADI6zxcPYCcSk1NVWxsrEaPHm2uc3NzU3h4uGJiYq67z6VLl3Tp0iXzdXJysiQpJSUlV8Z47sKlLOty61govK79nPEZg7Px3zJYwcrPWWa/hmHkSv+uRkYCriAjIbfx3zJYoUBnJCOfOnr0qCHJ2Lx5s8P6ESNGGPfff/919xk3bpwhiYWFhYWFhYXFOHLkiBWRxXJkJBYWFhYWFpY7WazKSPn2CqmcGD16tIYPH26+zsjI0KlTp1SyZEnZbDanHislJUVly5bVkSNHZLfbndp3Qca8ZR9zljPMW/YxZznDvOVMbs6bYRg6e/asQkJCnNpvfkZGyvuYt+xjznKGecsZ5i37mLOcKUgZKd8WpO666y65u7vrxIkTDutPnDihoKCg6+7j7e0tb29vh3X+/v65NURJkt1u539cOcC8ZR9zljPMW/YxZznDvOVMbs2bn5+f0/vMK8hIBRvzln3MWc4wbznDvGUfc5YzBSEj5dubmnt5eal+/fqKjo4212VkZCg6OlphYWEuHBkAAIDrkJEAAEB+kG+vkJKk4cOHq3fv3mrQoIHuv/9+vfXWWzp//ryeeeYZVw8NAADAZchIAAAgr8vXBaknn3xSf/75p8aOHavExETVqVNHkZGRCgwMdPXQ5O3trXHjxmW5/B03x7xlH3OWM8xb9jFnOcO85QzzdmfISAUP85Z9zFnOMG85w7xlH3OWMwVp3myGUUCfeQwAAAAAAIA8Kd/eQwoAAAAAAAD5EwUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiCVQxs2bFCHDh0UEhIim82mpUuX3nKf9evXq169evL29lblypW1YMGCXB9nXpLdOVu/fr1sNluWJTEx0ZoB5wFTpkxRw4YN5evrq9KlS6tjx46Kj4+/5X6LFy9W9erV5ePjo1q1amnlypUWjDbvyMm8LViwIMtnzcfHx6IR5w3vv/++7rvvPtntdtntdoWFhWnVqlU33aewf9ayO2d8zrKaOnWqbDabhg4detN2hf2zlp+QkbKPjJR9ZKScISPlDBkp+8hId64wZCQKUjl0/vx51a5dW3PmzLmt9gkJCWrXrp0eeughxcXFaejQoerXr59Wr16dyyPNO7I7Z5ni4+N1/PhxcyldunQujTDv+f777zVo0CD9+OOPioqKUlpamlq3bq3z58/fcJ/Nmzere/fu6tu3r3bs2KGOHTuqY8eO+uWXXywcuWvlZN4kyW63O3zWDh06ZNGI84YyZcpo6tSpio2N1fbt29WyZUs99thj2r1793Xb81nL/pxJfM7+adu2bfrggw9033333bQdn7X8hYyUfWSk7CMj5QwZKWfISNlHRrozhSYjGbhjkowlS5bctM3LL79s3HPPPQ7rnnzySSMiIiIXR5Z33c6cfffdd4Yk4/Tp05aMKT9ISkoyJBnff//9Ddt07drVaNeuncO6Ro0aGc8991xuDy/Pup15mz9/vuHn52fdoPKJEiVKGB999NF1t/FZu76bzRmfs6vOnj1rVKlSxYiKijKaN29uDBky5IZt+azlX2Sk7CMj5QwZKWfISDlHRso+MtLtKUwZiSukLBITE6Pw8HCHdREREYqJiXHRiPKPOnXqKDg4WA8//LA2bdrk6uG4VHJysiQpICDghm34rGV1O/MmSefOnVP58uVVtmzZW36DU9Clp6fr888/1/nz5xUWFnbdNnzWHN3OnEl8zjINGjRI7dq1y/IZuh4+awUb72/OkZGuIiPlDBkp+8hI2UdGyp7ClJE8XD2AwiIxMVGBgYEO6wIDA5WSkqK///5bRYoUcdHI8q7g4GDNnTtXDRo00KVLl/TRRx+pRYsW2rJli+rVq+fq4VkuIyNDQ4cO1QMPPKB77733hu1u9FkrTPeV+Kfbnbdq1arpv//9r+677z4lJydr+vTpatKkiXbv3q0yZcpYOGLX2rVrl8LCwnTx4kUVL15cS5YsUc2aNa/bls/aFdmZMz5nV3z++ef66aeftG3btttqz2etYCMjZR8ZyREZKWfISNlDRso+MlL2FbaMREEKeVa1atVUrVo183WTJk3022+/adasWfrkk09cODLXGDRokH755Rdt3LjR1UPJV2533sLCwhy+sWnSpIlq1KihDz74QJMmTcrtYeYZ1apVU1xcnJKTk/Xll1+qd+/e+v77728YHpC9OeNzJh05ckRDhgxRVFRUob9ZKZBTZCRHZKScISNlDxkp+8hI2VMYMxIFKYsEBQXpxIkTDutOnDghu93ON3/ZcP/99xfKsDF48GAtX75cGzZsuOU3BDf6rAUFBeXmEPOk7MzbtTw9PVW3bl0dOHAgl0aXN3l5ealy5cqSpPr162vbtm16++239cEHH2Rpy2ftiuzM2bUK4+csNjZWSUlJDldxpKena8OGDXr33Xd16dIlubu7O+zDZ61gIyM5BxmJjJQdZKTsIyNlHxkpewpjRuIeUhYJCwtTdHS0w7qoqKib/oYWWcXFxSk4ONjVw7CMYRgaPHiwlixZonXr1ik0NPSW+/BZy9m8XSs9PV27du0qVJ+368nIyNClS5euu43P2vXdbM6uVRg/Z61atdKuXbsUFxdnLg0aNFCPHj0UFxeXJWhJfNYKOt5f5yAjkZFuBxnJechI2UdGurlCmZFce0/1/Ovs2bPGjh07jB07dhiSjJkzZxo7duwwDh06ZBiGYYwaNcro2bOn2f733383ihYtaowYMcLYu3evMWfOHMPd3d2IjIx01SlYLrtzNmvWLGPp0qXG/v37jV27dhlDhgwx3NzcjLVr17rqFCz3/PPPG35+fsb69euN48ePm8uFCxfMNj179jRGjRplvt60aZPh4eFhTJ8+3di7d68xbtw4w9PT09i1a5crTsElcjJvEyZMMFavXm389ttvRmxsrNGtWzfDx8fH2L17tytOwSVGjRplfP/990ZCQoLx888/G6NGjTJsNpuxZs0awzD4rF1PdueMz9n1XfsEGT5r+RsZKfvISNlHRsoZMlLOkJGyj4zkHAU9I1GQyqHMx+1eu/Tu3dswDMPo3bu30bx58yz71KlTx/Dy8jIqVqxozJ8/3/Jxu1J25+yNN94wKlWqZPj4+BgBAQFGixYtjHXr1rlm8C5yvfmS5PDZad68uTmHmRYtWmRUrVrV8PLyMu655x5jxYoV1g7cxXIyb0OHDjXKlStneHl5GYGBgUbbtm2Nn376yfrBu9Czzz5rlC9f3vDy8jJKlSpltGrVygwNhsFn7XqyO2d8zq7v2rDFZy1/IyNlHxkp+8hIOUNGyhkyUvaRkZyjoGckm2EYhvOvuwIAAAAAAACuj3tIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAu06dPH1WoUOGW7Q4ePCibzaYFCxbkyjgqVKigPn365Erft2PRokUKCAjQuXPnbtnWZrNp/PjxDuu2bdumJk2aqFixYrLZbIqLi7vtY6elpals2bJ67733sjlqAACQW8hIV5CRgIKNghSAXHXs2DGNHz8+WwGgMElPT9e4ceP0wgsvqHjx4tnePy0tTU888YROnTqlWbNm6ZNPPlH58uV1/PhxjRo1Sg899JB8fX1ls9m0fv36LPt7enpq+PDhmjx5si5evOiEMwIAALeDjHRzuZWRoqOj9eyzz6pq1aoqWrSoKlasqH79+un48eMO+5ORgNxHQQpArjp27JgmTJhw3bD14YcfKj4+3vpB5SHffvut4uPjNWDAgBzt/9tvv+nQoUN66aWXNGDAAD399NMqUaKE4uPj9cYbb+jo0aOqVavWTft45pln9Ndff2nhwoU5GgMAAMg+MtLN5VZGGjlypNavX69OnTpp9uzZ6tatmxYtWqS6desqMTHRoQ8yEpC7KEgBcBlPT095e3u7ehguNX/+fD3wwAO6++67c7R/UlKSJMnf399hff369XXy5En9+uuvGj58+E378Pf3V+vWrXPtcn8AAJA9ZKTcy0gzZ87UgQMH9MYbb6hfv356/fXXtXz5cp04cULvvvuuQ1syEpC7KEgBhcD48eNls9m0b98+de3aVXa7XSVLltSQIUOuewnyp59+qvr166tIkSIKCAhQt27ddOTIEYc2LVq00L333qvY2Fg1adJERYoUUWhoqObOnWu2Wb9+vRo2bCjpyjdMNpvN4T4H17s/wpkzZ9SnTx/5+fnJ399fvXv31pkzZ657Xvv27VOXLl0UEBAgHx8fNWjQQMuWLcv5RF0zjqFDh6ps2bLy9vZW5cqV9cYbbygjI8Nsk3nfhunTp2vevHmqVKmSvL291bBhQ23btu2Wx7h48aIiIyMVHh6eZdulS5c0bNgwlSpVSr6+vnr00Uf1xx9/OLTp06ePmjdvLkl64oknZLPZ1KJFC0mSr6+vAgICbvt8H374YW3cuFGnTp267X0AAMjvyEjZl98zUrNmzeTm5vh/g5s1a6aAgADt3bs3y/HISEDu8XD1AABYp2vXrqpQoYKmTJmiH3/8UbNnz9bp06f1v//9z2wzefJkjRkzRl27dlW/fv30559/6p133lGzZs20Y8cOh2+ZTp8+rbZt26pr167q3r27Fi1apOeff15eXl569tlnVaNGDU2cOFFjx47VgAED9OCDD0qSmjRpct3xGYahxx57TBs3btTAgQNVo0YNLVmyRL17987Sdvfu3ea3ZqNGjVKxYsW0aNEidezYUV999ZU6deqU43m6cOGCmjdvrqNHj+q5555TuXLltHnzZo0ePVrHjx/XW2+95dB+4cKFOnv2rJ577jnZbDZNmzZNjz/+uH7//Xd5enre8DixsbFKTU1VvXr1smzr16+fPv30Uz311FNq0qSJ1q1bp3bt2jm0ee6553T33Xfr9ddf14svvqiGDRsqMDAwR+dcv359GYahzZs3q3379jnqAwCA/IqMdHsKakY6d+6czp07p7vuuivLNjISkIsMAAXeuHHjDEnGo48+6rD+X//6lyHJ2Llzp2EYhnHw4EHD3d3dmDx5skO7Xbt2GR4eHg7rmzdvbkgyZsyYYa67dOmSUadOHaN06dJGamqqYRiGsW3bNkOSMX/+/Czj6t27t1G+fHnz9dKlSw1JxrRp08x1ly9fNh588MEsfbRq1cqoVauWcfHiRXNdRkaG0aRJE6NKlSq3PzmGYZQvX97o3bu3+XrSpElGsWLFjF9//dWh3ahRowx3d3fj8OHDhmEYRkJCgiHJKFmypHHq1Cmz3TfffGNIMr799tubHvejjz4yJBm7du1yWB8XF2dIMv71r385rH/qqacMSca4cePMdd99950hyVi8ePENj7N48WJDkvHdd9/dsM2xY8cMScYbb7xx0zEDAFCQkJFurqBnpH+elyQjOjo6yzYyEpB7+MkeUIgMGjTI4fULL7wgSVq5cqUk6euvv1ZGRoa6du2qv/76y1yCgoJUpUoVfffddw77e3h46LnnnjNfe3l56bnnnlNSUpJiY2OzPb6VK1fKw8NDzz//vLnO3d3dHGemU6dOad26deratavOnj1rjvPkyZOKiIjQ/v37dfTo0WwfP9PixYv14IMPqkSJEg7zEB4ervT0dG3YsMGh/ZNPPqkSJUqYrzO/5fz9999vepyTJ09KksO+0tX348UXX3RYP3To0Bydz+3IHMNff/2Va8cAACCvIiPdnoKYkTZs2KAJEyaoa9euatmyZZbtZCQg9/CTPaAQqVKlisPrSpUqyc3NTQcPHpQk7d+/X4ZhZGmX6dpLq0NCQlSsWDGHdVWrVpV05d4BjRs3ztb4Dh06pODg4CyP9q1WrZrD6wMHDsgwDI0ZM0Zjxoy5bl9JSUk5vgnm/v379fPPP6tUqVI37PufypUr5/A6M7icPn36to5nGIbD60OHDsnNzU2VKlVyWH/tPDhT5hhsNluuHQMAgLyKjHR7ClpG2rdvnzp16qR7771XH3300U3HQEYCnI+CFFCIXfuHNSMjQzabTatWrZK7u3uW9teGIFfJvGnmSy+9pIiIiOu2qVy58h31//DDD+vll1++7vbMQJnpenMlZQ1R1ypZsqSkK6GsTJkyORip82QGw+vdOwEAgMKGjHTj/gtKRjpy5Ihat24tPz8/rVy5Ur6+vtdtR0YCcg8FKaAQ2b9/v0JDQ83XBw4cUEZGhvkUl0qVKskwDIWGhmYJFNdz7NgxnT9/3uEbwF9//VWSzD6z821S+fLlFR0drXPnzjkEu/j4eId2FStWlHTl28jrPX3lTlWqVEnnzp3Llb7/qXr16pKkhIQE1apVy1xfvnx5ZWRk6LfffnP4xu/aeXCmhIQESVKNGjVy7RgAAORVZKTbU1Ay0smTJ9W6dWtdunRJ0dHRCg4OvmFbMhKQe7iHFFCIzJkzx+H1O++8I0l65JFHJEmPP/643N3dNWHChCzfXBmGYf6eP9Ply5f1wQcfmK9TU1P1wQcfqFSpUqpfv74kmUHsRo8l/qe2bdvq8uXLev/998116enp5jgzlS5dWi1atNAHH3yg48ePZ+nnzz//vOWxbqZr166KiYnR6tWrs2w7c+aMLl++fEf9Z6pfv768vLy0fft2h/WZ78fs2bMd1l/75Bpnio2Nlc1mU1hYWK4dAwCAvIqMdHsKQkY6f/682rZtq6NHj2rlypU3/BlmJjISkHu4QgooRBISEvToo4+qTZs2iomJMR+ZW7t2bUlXvvV67bXXNHr0aB08eFAdO3aUr6+vEhIStGTJEg0YMEAvvfSS2V9ISIjeeOMNHTx4UFWrVtUXX3yhuLg4zZs3z7yXQqVKleTv76+5c+fK19dXxYoVU6NGjRy+hczUoUMHPfDAAxo1apQOHjyomjVr6uuvv1ZycnKWtnPmzFHTpk1Vq1Yt9e/fXxUrVtSJEycUExOjP/74Qzt37szxPI0YMULLli1T+/bt1adPH9WvX1/nz5/Xrl279OWXX+rgwYNOuWzbx8dHrVu31tq1azVx4kRzfZ06ddS9e3e99957Sk5OVpMmTRQdHa0DBw5kq//XXntN0pXHP0vSJ598oo0bN0qSXn31VYe2UVFReuCBB8xL5AEAKEzISLenIGSkHj16aOvWrXr22We1d+9e7d2719xWvHhxdezY0aE9GQnIRdY/2A+A1TIfabxnzx6jS5cuhq+vr1GiRAlj8ODBxt9//52l/VdffWU0bdrUKFasmFGsWDGjevXqxqBBg4z4+HizTfPmzY177rnH2L59uxEWFmb4+PgY5cuXN959990s/X3zzTdGzZo1DQ8PD4dHE1/7SGPDMIyTJ08aPXv2NOx2u+Hn52f07NnT2LFjx3Ufi/zbb78ZvXr1MoKCggxPT0/j7rvvNtq3b298+eWX2Zqfax9pbBiGcfbsWWP06NFG5cqVDS8vL+Ouu+4ymjRpYkyfPt18XHPmI43ffPPNLH3qmkcP38jXX39t2Gw28zHJmf7++2/jxRdfNEqWLGkUK1bM6NChg3HkyJFsPdJY0g2Xfzpz5ozh5eVlfPTRR7ccLwAABQkZ6eYKYkYqX778DfPRtXNORgJyl80wbnFHOQD53vjx4zVhwgT9+eefTrshY4sWLfTXX3/pl19+cUp/hVV6erpq1qyprl27atKkSS4Zw1tvvaVp06bpt99+U5EiRVwyBgAAXIGMlHeRkYCCj3tIAYALubu7a+LEiZozZ47OnTtn+fHT0tI0c+ZMvfrqqwQtAACQZ5CRgIKPe0gBKLASExNvur1IkSLy8/OzaDQ39uSTT+rJJ590ybE9PT11+PBhlxwbAAC4Bhnp1shIQO6jIAWgwLrZI3wlqXfv3lqwYIE1gwEAAMgjyEgA8gLuIQWgwFq7du1Nt4eEhKhmzZoWjQYAACBvICMByAsoSAEAAAAAAMBS3NQcAAAAAAAAlqIgBQAAAAAAAEsV6puaZ2Rk6NixY/L19ZXNZnP1cAAAgAUMw9DZs2cVEhIiNze+m7seMhIAAIWP1RmpUBekjh07prJly7p6GAAAwAWOHDmiMmXKuHoYeRIZCQCAwsuqjFSoC1K+vr6Srky23W538WgAAIAVUlJSVLZsWTMHICsyEgAAhY/VGalQF6QyL0G32+2ELQAAChl+inZjZCQAAAovqzISN04AAAAAAACApShIAQAAAAAAwFKF+id7AADcTHp6utLS0lw9DGSTp6en3N3dXT0MAAAKLDJS/pTXMhIFKQAArmEYhhITE3XmzBlXDwU55O/vr6CgIO4TBQCAE5GR8r+8lJEoSAEAcI3MoFW6dGkVLVo0T/zBxu0xDEMXLlxQUlKSJCk4ONjFIwIAoOAgI+VfeTEjUZACAOAf0tPTzaBVsmRJVw8HOVCkSBFJUlJSkkqXLp2nLk0HACC/IiPlf3ktI3FTcwAA/iHzfghFixZ18UhwJzLfP+5vAQCAc5CRCoa8lJEoSAEAcB1cgp6/8f4BAJA7+Bubv+Wl94+CFAAAAAAAACzl9ILU+++/r/vuu092u112u11hYWFatWqVuf3ixYsaNGiQSpYsqeLFi6tz5846ceKEQx+HDx9Wu3btVLRoUZUuXVojRozQ5cuXHdqsX79e9erVk7e3typXrqwFCxY4+1QAAACchowEAABwldNval6mTBlNnTpVVapUkWEY+vjjj/XYY49px44duueeezRs2DCtWLFCixcvlp+fnwYPHqzHH39cmzZtknTlRmnt2rVTUFCQNm/erOPHj6tXr17y9PTU66+/LklKSEhQu3btNHDgQH322WeKjo5Wv379FBwcrIiICGefEgAAkqS0yI2WHcuzTdPbbnurS6/HjRun8ePH3+GIcsZms2nJkiXq2LFjjvuYN2+eFi5cqJ9++klnz57V6dOn5e/v77QxWoWMBAAoqKzMSBI5KdOpU6c0btw4rVmzRocPH1apUqXUsWNHTZo0SX5+fs4dbC5wekGqQ4cODq8nT56s999/Xz/++KPKlCmj//znP1q4cKFatmwpSZo/f75q1KihH3/8UY0bN9aaNWu0Z88erV27VoGBgapTp44mTZqkkSNHavz48fLy8tLcuXMVGhqqGTNmSJJq1KihjRs3atasWYQtAEChc/z4cfPfX3zxhcaOHav4+HhzXfHixbPVX2pqqry8vJw2vjt14cIFtWnTRm3atNHo0aNdPZwcIyMBAGC9gpyTjh07pmPHjmn69OmqWbOmDh06pIEDB+rYsWP68ssvXT28W8rVe0ilp6fr888/1/nz5xUWFqbY2FilpaUpPDzcbFO9enWVK1dOMTExkqSYmBjVqlVLgYGBZpuIiAilpKRo9+7dZpt/9pHZJrMPAAVHWuRGhwVAVkFBQebi5+cnm81mvj5//rx69OihwMBAFS9eXA0bNtTatWsd9q9QoYImTZqkXr16yW63a8CAAZKkDz/8UGXLllXRokXVqVMnzZw5M8uVSd98843q1asnHx8fVaxYURMmTDB/QlahQgVJUqdOnWSz2czXO3fu1EMPPSRfX1/Z7XbVr19f27dvv+H5DR06VKNGjVLjxo2dM2F5ABkJwJ0iIwG3pyDnpHvvvVdfffWVOnTooEqVKqlly5aaPHmyvv322yw/6c+LcqUgtWvXLhUvXlze3t4aOHCglixZopo1ayoxMVFeXl5Z3qTAwEAlJiZKkhITEx2CVub2zG03a5OSkqK///77huO6dOmSUlJSHBYAAAqyc+fOqW3btoqOjtaOHTvUpk0bdejQQYcPH3ZoN336dNWuXVs7duzQmDFjtGnTJg0cOFBDhgxRXFycHn74YU2ePNlhnx9++EG9evXSkCFDtGfPHn3wwQdasGCB2W7btm2Srlzpc/z4cfN1jx49VKZMGW3btk2xsbEaNWqUPD09LZgN1yMjAQCQdxTEnJScnCy73S4PD6f/IM7pcmWE1apVU1xcnJKTk/Xll1+qd+/e+v7773PjUNkyZcoUTZgwwdXDAADAMrVr11bt2rXN15MmTdKSJUu0bNkyDR482FzfsmVL/fvf/zZfv/LKK3rkkUf00ksvSZKqVq2qzZs3a/ny5WabCRMmaNSoUerdu7ckqWLFipo0aZJefvlljRs3TqVKlZIk+fv7KygoyNzv8OHDGjFihKpXry5JqlKlSi6ced5ERgIAIO8oaDnpr7/+0qRJk8yruPK6XLlCysvLS5UrV1b9+vU1ZcoU1a5dW2+//baCgoKUmpqqM2fOOLQ/ceKE+QYEBQVleaJM5utbtbHb7SpSpMgNxzV69GglJyeby5EjR+70VAEAyNPOnTunl156STVq1JC/v7+KFy+uvXv3Zvnmr0GDBg6v4+Pjdf/99zusu/b1zp07NXHiRBUvXtxc+vfvr+PHj+vChQs3HNPw4cPVr18/hYeHa+rUqfrtt9/u8CzzDzISAAB5R0HKSSkpKWrXrp1q1qzpspu0Z1eu3kMqU0ZGhi5duqT69evL09NT0dHR5rb4+HgdPnxYYWFhkqSwsDDt2rVLSUlJZpuoqCjZ7XbVrFnTbPPPPjLbZPZxI97e3uajljMXAFdcex8C7kUAFAwvvfSSlixZotdff10//PCD4uLiVKtWLaWmpjq0K1asWLb7PnfunCZMmKC4uDhz2bVrl/bv3y8fH58b7jd+/Hjt3r1b7dq107p161SzZk0tWbIk28cvCMhIQN5HRgIKroKSk86ePas2bdrI19dXS5YsyTe3QnD6T/ZGjx6tRx55ROXKldPZs2e1cOFCrV+/XqtXr5afn5/69u2r4cOHKyAgQHa7XS+88ILCwsLMG5W2bt1aNWvWVM+ePTVt2jQlJibq1Vdf1aBBg+Tt7S1JGjhwoN599129/PLLevbZZ7Vu3TotWrRIK1ascPbpAACQr23atEl9+vRRp06dJF0JRwcPHrzlftWqVTPvZZDp2tf16tVTfHy8KleufMN+PD09lZ6enmV91apVVbVqVQ0bNkzdu3fX/PnzzTEWVGQkAADyloKQk1JSUhQRESFvb28tW7bspsWuvMbpBamkpCT16tVLx48fl5+fn+677z6tXr1aDz/8sCRp1qxZcnNzU+fOnXXp0iVFRETovffeM/d3d3fX8uXL9fzzzyssLEzFihVT7969NXHiRLNNaGioVqxYoWHDhuntt99WmTJl9NFHH/E4YwAArlGlShV9/fXX6tChg2w2m8aMGaOMjIxb7vfCCy+oWbNmmjlzpjp06KB169Zp1apVstlsZpuxY8eqffv2KleunLp06SI3Nzft3LlTv/zyi1577TVJV54gEx0drQceeEDe3t7y8fHRiBEj1KVLF4WGhuqPP/7Qtm3b1Llz5xuOJTExUYmJiTpw4ICkKzcG9/X1Vbly5RQQEHCHM2QdMhIAAHlLfs9JKSkpat26tS5cuKBPP/3U4cEkpUqVkru7uxNmKfc4vSD1n//856bbfXx8NGfOHM2ZM+eGbcqXL6+VK1fetJ8WLVpox44dORojAACFxcyZM/Xss8+qSZMmuuuuuzRy5MjbeoLaAw88oLlz52rChAl69dVXFRERoWHDhundd98120RERGj58uWaOHGi3njjDXl6eqp69erq16+f2WbGjBkaPny4PvzwQ91999369ddfdfLkSfXq1UsnTpzQXXfdpccff/ymN9TOHEemZs2aSbryVJo+ffrkYFZcg4wEAEDekt9z0k8//aQtW7ZIUpYrsRISElShQoUczIp1bIZhGK4ehKukpKTIz8/PfCwiUJhd734Inm2aumAkjq4dV14YEwq2ixcvKiEhQaGhofnqkmcr9O/fX/v27dMPP/zg6qHc0s3eR/7+3xpzBFxFRgKuICPdXH7JSXkpIzn9CikAyKvBDUD2TJ8+XQ8//LCKFSumVatW6eOPP3b4CRkAIHvISEDBQU66cxSkAADAdW3dulXTpk3T2bNnVbFiRc2ePdvhMnMAAIDCipx05yhIAQCA61q0aJGrhwAAAJAnkZPuHAUpIJ/j/gEAAABZkZEAIG9zc/UAAAAAAAAAULhQkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYysPVAwAAIL/4bfsHlh2rUoPnstW+T58++vjjjyVJHh4eCggI0H333afu3burT58+cnPLv99B7d69W2PHjlVsbKwOHTqkWbNmaejQoa4eFgAA+P9ZmZEkctI/ffjhh/rf//6nX375RZJUv359vf7667r//vtdPLJby7+zDgAAHLRp00bHjx/XwYMHtWrVKj300EMaMmSI2rdvr8uXL7t6eDl24cIFVaxYUVOnTlVQUJCrhwMAAPKhgpqT1q9fr+7du+u7775TTEyMypYtq9atW+vo0aOuHtotUZACAKCA8Pb2VlBQkO6++27Vq1dP//d//6dvvvlGq1at0oIFC8x2Z86cUb9+/VSqVCnZ7Xa1bNlSO3fudOjr22+/VcOGDeXj46O77rpLnTp1MredPn1avXr1UokSJVS0aFE98sgj2r9/vyTp/Pnzstvt+vLLLx36W7p0qYoVK6azZ88qNTVVgwcPVnBwsHx8fFS+fHlNmTLlhufVsGFDvfnmm+rWrZu8vb2dMFMAAKCwKag56bPPPtO//vUv1alTR9WrV9dHH32kjIwMRUdHO2HWchcFKQAACrCWLVuqdu3a+vrrr811TzzxhJKSkrRq1SrFxsaqXr16atWqlU6dOiVJWrFihTp16qS2bdtqx44dio6Odrjsu0+fPtq+fbuWLVummJgYGYahtm3bKi0tTcWKFVO3bt00f/58h3HMnz9fXbp0ka+vr2bPnq1ly5Zp0aJFio+P12effaYKFSpYMh8AAACZCmJOunDhgtLS0hQQEHBnk2MB7iEFAEABV716df3888+SpI0bN2rr1q1KSkoyrzaaPn26li5dqi+//FIDBgzQ5MmT1a1bN02YMMHso3bt2pKk/fv3a9myZdq0aZOaNGki6co3c2XLltXSpUv1xBNPqF+/fmrSpImOHz+u4OBgJSUlaeXKlVq7dq0k6fDhw6pSpYqaNm0qm82m8uXLWzkdAAAApoKWk0aOHKmQkBCFh4ff8dzkNq6QAm5TWuTGLAsA5AeGYchms0mSdu7cqXPnzqlkyZIqXry4uSQkJOi3336TJMXFxalVq1bX7Wvv3r3y8PBQo0aNzHUlS5ZUtWrVtHfvXknS/fffr3vuuce8eeinn36q8uXLq1mzZpKufHMYFxenatWq6cUXX9SaNWty7dwB5D4yEoD8rCDlpKlTp+rzzz/XkiVL5OPjk/3JsBhXSAEAUMDt3btXoaGhkqRz584pODhY69evz9LO399fklSkSJE7Pma/fv00Z84cjRo1SvPnz9czzzxjhr169eopISFBq1at0tq1a9W1a1eFh4dnuZ8CAABAbisoOWn69OmaOnWq1q5dq/vuu++Ox2gFrpACAKAAW7dunXbt2qXOnTtLuhJyEhMT5eHhocqVKzssd911lyTpvvvuu+GNMGvUqKHLly9ry5Yt5rqTJ08qPj5eNWvWNNc9/fTTOnTokGbPnq09e/aod+/eDv3Y7XY9+eST+vDDD/XFF1/oq6++Mu/NAAAAYIWCkpOmTZumSZMmKTIyUg0aNMjxfFiNK6QAACggLl26pMTERKWnp+vEiROKjIzUlClT1L59e/Xq1UuSFB4errCwMHXs2FHTpk1T1apVdezYMfMGnQ0aNNC4cePUqlUrVapUSd26ddPly5e1cuVKjRw5UlWqVNFjjz2m/v3764MPPpCvr69GjRqlu+++W4899pg5lhIlSujxxx/XiBEj1Lp1a5UpU8bcNnPmTAUHB6tu3bpyc3PT4sWLFRQUZH7zeK3U1FTt2bPH/PfRo0cVFxen4sWLq3Llyrk3oQAAoMAoqDnpjTfe0NixY7Vw4UJVqFBBiYmJkmT+3DAv4wopwAW41wKA3BAZGang4GBVqFBBbdq00XfffafZs2frm2++kbu7uyTJZrNp5cqVatasmZ555hlVrVpV3bp106FDhxQYGChJatGihRYvXqxly5apTp06atmypbZu3WoeZ/78+apfv77at2+vsLAwGYahlStXytPT02E8ffv2VWpqqp599lmH9b6+vpo2bZoaNGighg0b6uDBg1q5cqXc3K4fS44dO6a6deuqbt26On78uKZPn666deuqX79+zpw+AHkAGQlAbimoOen9999XamqqunTpouDgYHOZPn26M6cvV9gMwzBcPQhXSUlJkZ+fn5KTk2W32109HORx1wtEnm2a5rm+8uKYnNlXTvsBbtfFixeVkJCg0NDQfHEzyLzsk08+0bBhw3Ts2DF5eXlZeuybvY/8/b815gjZUdAzREE/P+B2kZGcy1U5KS9lJH6yBwAAnOrChQs6fvy4pk6dqueee87yYhQAAEBeRU66ip/sAQAAp5o2bZqqV6+uoKAgjR492tXDAQAAyDPISVdRkAIAAE41fvx4paWlKTo6Os/fTBMAAMBK5KSr+MkegEKLey8AAABk5cx7XQHAjXCFFAAAAAAAACxFQQoAgOsoxA+hLRB4/wAAyB38jc3f8tL7R0EKAIB/8PT0lHTlCSjIvzLfv8z3EwAA3BkyUsGQlzIS95ACAOAf3N3d5e/vr6SkJElS0aJFZbPZXDwq3C7DMHThwgUlJSXJ399f7u7urh4SAAAFAhkpf8uLGYmCFAAA1wgKCpIkM3Ah//H39zffRwAA4BxkpPwvL2UkClIAAFzDZrMpODhYpUuXVlpamquHg2zy9PTME9/6AQBQ0JCR8re8lpEoSAEAcAPu7u556o82AABAXkBGgjNwU3MAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGAppxekpkyZooYNG8rX11elS5dWx44dFR8f79CmRYsWstlsDsvAgQMd2hw+fFjt2rVT0aJFVbp0aY0YMUKXL192aLN+/XrVq1dP3t7eqly5shYsWODs0wEAAHAKMhIAAMBVTi9Iff/99xo0aJB+/PFHRUVFKS0tTa1bt9b58+cd2vXv31/Hjx83l2nTppnb0tPT1a5dO6Wmpmrz5s36+OOPtWDBAo0dO9Zsk5CQoHbt2umhhx5SXFychg4dqn79+mn16tXOPiUAAIA7RkYCAAC4ysPZHUZGRjq8XrBggUqXLq3Y2Fg1a9bMXF+0aFEFBQVdt481a9Zoz549Wrt2rQIDA1WnTh1NmjRJI0eO1Pjx4+Xl5aW5c+cqNDRUM2bMkCTVqFFDGzdu1KxZsxQREeHs0wIAALgj/x97dx6WVZ3/f/zFDio3iMo24pI75b4gLWZKgFtaNqk5aaXZgn5Tc2Mqt2o0s7LFsmVGm9JxadJMEzNMTSMXilJLxxxNJ73BMsAlAeH8/ujHnbfggsLnZnk+rutcl/c5n3Pu9zkn4N3rPvc59EgAAAB/KPN7SGVlZUmSgoKCnOYvXLhQtWvX1nXXXafExESdPn3asSwlJUUtW7ZUSEiIY15cXJyys7O1e/dux5iYmBinbcbFxSklJeWCteTk5Cg7O9tpAgAAcAV6JAAAUJWV+hVS5yooKNDo0aN1ww036LrrrnPMv/vuu1W/fn2Fh4fr22+/1cSJE7V371598MEHkiS73e7UaElyvLbb7Rcdk52drd9++01+fn5F6pkxY4amTZtWqvsIAABQUvRIAACgqivTQCohIUG7du3S5s2bneaPGDHC8e+WLVsqLCxM3bt31/79+9WoUaMyqycxMVFjx451vM7OzlZERESZvR8AAEBx6JEAAEBVV2aB1MiRI7Vq1Spt2rRJdevWvejYqKgoSdIPP/ygRo0aKTQ0VNu2bXMak56eLkmOeyqEhoY65p07xmazFfvJnyT5+PjIx8fnivYHFUNe0uYi87zib3RBJQAAFI8eCa5AjwQAKG9K/R5SlmVp5MiRWr58udavX6+GDRtecp20tDRJUlhYmCQpOjpaO3fuVEZGhmPMunXrZLPZFBkZ6RiTnJzstJ1169YpOjq6lPYEAACg9NAjAQAA/KHUr5BKSEjQokWL9OGHH8rf399xP4OAgAD5+flp//79WrRokXr27KlatWrp22+/1ZgxY9SlSxe1atVKkhQbG6vIyEjdc889mjVrlux2u5544gklJCQ4Pr176KGH9Oqrr2rChAm6//77tX79ei1dulSrV68u7V0CgIviU2cAl4MeCUBVdH6fRI8EoFCpXyH1+uuvKysrS127dlVYWJhjWrJkiSTJ29tbn376qWJjY9W8eXM99thj6t+/vz766CPHNjw8PLRq1Sp5eHgoOjpaf/nLXzRkyBBNnz7dMaZhw4ZavXq11q1bp9atW+v555/X22+/zeOMAQBAuUSPBAAA8IdSv0LKsqyLLo+IiNDGjRsvuZ369evr448/vuiYrl276uuvvy5RfQAAAK5AjwQAAPCHUr9CCgAAAAAAALgYAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwytPVBQAA/pCXtLnIPK/4G11QCQAAQPlBjwRUPgRSACRJBzPXFJnXRFf2R74st3Wl2wEAALgS9EgAUDb4yh4AAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwytPVBQCAqxzMXOP0uoludFElAAAA5cf5PZJEnwSg9HGFFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFGeri4AwNU5mLnG6XUT3eiiSgAAAMoPeiQAKN+4QgoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUaUeSM2YMUMdO3aUv7+/goOD1a9fP+3du9dpzJkzZ5SQkKBatWqpRo0a6t+/v9LT053GHDp0SL169VK1atUUHBys8ePH6+zZs05jNmzYoHbt2snHx0eNGzfWggULSnt3AKDCykva7DQBcC16JAAoH+iRgPKh1AOpjRs3KiEhQV9++aXWrVunvLw8xcbG6tSpU44xY8aM0UcffaRly5Zp48aNOnLkiO644w7H8vz8fPXq1Uu5ubn64osv9M4772jBggWaPHmyY8yBAwfUq1cv3XLLLUpLS9Po0aM1fPhwrV27trR3CQAA4KrRIwEAAPzBs7Q3mJSU5PR6wYIFCg4OVmpqqrp06aKsrCz9/e9/16JFi9StWzdJ0vz589WiRQt9+eWX6ty5sz755BN99913+vTTTxUSEqI2bdroqaee0sSJEzV16lR5e3tr3rx5atiwoZ5//nlJUosWLbR582a9+OKLiouLK+3dAgAAuCr0SAAAAH8o83tIZWVlSZKCgoIkSampqcrLy1NMTIxjTPPmzVWvXj2lpKRIklJSUtSyZUuFhIQ4xsTFxSk7O1u7d+92jDl3G4VjCrcBAABQntEjAQCAqqzUr5A6V0FBgUaPHq0bbrhB1113nSTJbrfL29tbgYGBTmNDQkJkt9sdY85ttAqXFy672Jjs7Gz99ttv8vPzK1JPTk6OcnJyHK+zs7OvbgcBAACuAD0SAACo6so0kEpISNCuXbu0eXP5uFHcjBkzNG3aNFeXAaCSOZi5psi8JrrRBZUAqCjokQBUFef3SfRIAAqV2Vf2Ro4cqVWrVumzzz5T3bp1HfNDQ0OVm5urzMxMp/Hp6ekKDQ11jDn/iTKFry81xmazFfvJnyQlJiYqKyvLMR0+fPiq9hGlhyddAACqCnoklAQ9EgCgsir1QMqyLI0cOVLLly/X+vXr1bBhQ6fl7du3l5eXl5KTkx3z9u7dq0OHDik6OlqSFB0drZ07dyojI8MxZt26dbLZbIqMjHSMOXcbhWMKt1EcHx8f2Ww2pwkAAMAEeiQAAIA/lPpX9hISErRo0SJ9+OGH8vf3d9zPICAgQH5+fgoICNCwYcM0duxYBQUFyWazadSoUYqOjlbnzp0lSbGxsYqMjNQ999yjWbNmyW6364knnlBCQoJ8fHwkSQ899JBeffVVTZgwQffff7/Wr1+vpUuXavXq1aW9SwBQpRX3ibxXPJfbAyVFjwQAlQs9EnB1Sv0Kqddff11ZWVnq2rWrwsLCHNOSJUscY1588UX17t1b/fv3V5cuXRQaGqoPPvjAsdzDw0OrVq2Sh4eHoqOj9Ze//EVDhgzR9OnTHWMaNmyo1atXa926dWrdurWef/55vf322zzOGAAAlEv0SAAAAH8o9SukLMu65BhfX1/NnTtXc+fOveCY+vXr6+OPP77odrp27aqvv/66xDUCAACYRo8EAADwhzK7qTkAAAAAAABQHAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMMrT1QUAAP5wMHNNkXlNdKMLKgEAACg/6JGAyodACnAB/qACAAAURY8EAFUHX9kDAAAAAACAUQRSAAAAAAAAMIqv7AFAJXX+1x74ygMAAAA9ElBecIUUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGcVNzXLG8pM1F5nnFV94bAp5/80OJGyACAICi6JHokQAAl8YVUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGCUp6sLgFlV7THEAAAAl4MeCQAAswikAADG8D98AAAARdEjoSriK3sAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABglKerCwBK08HMNUXmNRGPSwUAAFUbPRIAoLzhCikAAAAAAAAYxRVSAICL4lN1AACAouiRgKvDFVIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjeMoeAMAYnkYDAABQFD0SqqJSv0Jq06ZN6tOnj8LDw+Xm5qYVK1Y4Lb/33nvl5ubmNMXHxzuNOX78uAYPHiybzabAwEANGzZMJ0+edBrz7bff6qabbpKvr68iIiI0a9as0t4VAACAUkWfBAAA8LtSD6ROnTql1q1ba+7cuRccEx8fr6NHjzqmf/3rX07LBw8erN27d2vdunVatWqVNm3apBEjRjiWZ2dnKzY2VvXr11dqaqqee+45TZ06VW+++WZp7w4AAECpoU8CAAD4Xal/Za9Hjx7q0aPHRcf4+PgoNDS02GXff/+9kpKStH37dnXo0EGS9Morr6hnz56aPXu2wsPDtXDhQuXm5uof//iHvL29de211yotLU0vvPCCU0MGAABQntAnAQAA/M4lNzXfsGGDgoOD1axZMz388MP65ZdfHMtSUlIUGBjoaLIkKSYmRu7u7tq6datjTJcuXeTt7e0YExcXp7179+rXX3+94Pvm5OQoOzvbaQIAAChPXNEn0SMBAADTjAdS8fHx+uc//6nk5GQ9++yz2rhxo3r06KH8/HxJkt1uV3BwsNM6np6eCgoKkt1ud4wJCQlxGlP4unBMcWbMmKGAgADHFBERUZq7BgAAcFVc1SfRIwEAANOMP2Vv4MCBjn+3bNlSrVq1UqNGjbRhwwZ17969TN87MTFRY8eOdbzOzs6m4QIAAOWGq/okeiQAAGCa8UDqfNdcc41q166tH374Qd27d1doaKgyMjKcxpw9e1bHjx933E8hNDRU6enpTmMKX1/ongvS7/dk8PHxKeU9AACUB3lJm4vM84rnccmo2Ez1SfRIAFB50SOhvHLJPaTO9b///U+//PKLwsLCJEnR0dHKzMxUamqqY8z69etVUFCgqKgox5hNmzYpLy/PMWbdunVq1qyZatasaXYHAAAAygh9EgAAqKxKPZA6efKk0tLSlJaWJkk6cOCA0tLSdOjQIZ08eVLjx4/Xl19+qYMHDyo5OVl9+/ZV48aNFRcXJ0lq0aKF4uPj9cADD2jbtm3asmWLRo4cqYEDByo8PFySdPfdd8vb21vDhg3T7t27tWTJEr300ktOl5oDAACUN/RJAAAAvyv1QGrHjh1q27at2rZtK0kaO3as2rZtq8mTJ8vDw0PffvutbrvtNjVt2lTDhg1T+/bt9fnnnztdJr5w4UI1b95c3bt3V8+ePXXjjTfqzTffdCwPCAjQJ598ogMHDqh9+/Z67LHHNHnyZB5lDAAAyjX6JAAAgN+V+j2kunbtKsuyLrh87dq1l9xGUFCQFi1adNExrVq10ueff17i+gAAAFyFPgkAAOB3Lr+HFAAAAAAAAKoWAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjPF1dAAAA5U1e0man117xN7qoEgAAgPLj/B5Jok/CleMKKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKM8XV0AAACl4WDmmiLzmuhGF1QCAABQftAjobziCikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwytPVBQBS0UeR8hhSAK7E7yQA5QW/jwCUJ+f/TpL4vYQrxxVSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRnq4uAACAyiovaXOReV7xN7qgEgAAgPLl/D6JHqnq4QopAAAAAAAAGFXqgdSmTZvUp08fhYeHy83NTStWrHBablmWJk+erLCwMPn5+SkmJkb79u1zGnP8+HENHjxYNptNgYGBGjZsmE6ePOk05ttvv9VNN90kX19fRUREaNasWaW9K7iEg5lrikwAAODC6JOqBnokAAAurdQDqVOnTql169aaO3dusctnzZqll19+WfPmzdPWrVtVvXp1xcXF6cyZM44xgwcP1u7du7Vu3TqtWrVKmzZt0ogRIxzLs7OzFRsbq/r16ys1NVXPPfecpk6dqjfffLO0dwcAAKDU0CcBAAD8rtTvIdWjRw/16NGj2GWWZWnOnDl64okn1LdvX0nSP//5T4WEhGjFihUaOHCgvv/+eyUlJWn79u3q0KGDJOmVV15Rz549NXv2bIWHh2vhwoXKzc3VP/7xD3l7e+vaa69VWlqaXnjhBaeGDAAAoDyhTwIAAPid0XtIHThwQHa7XTExMY55AQEBioqKUkpKiiQpJSVFgYGBjiZLkmJiYuTu7q6tW7c6xnTp0kXe3t6OMXFxcdq7d69+/fXXC75/Tk6OsrOznSYAAIDywJV9Ej0SAAAwzWggZbfbJUkhISFO80NCQhzL7Ha7goODnZZ7enoqKCjIaUxx2zj3PYozY8YMBQQEOKaIiIir2yEAAIBS4so+iR4JAACYVqWespeYmKisrCzHdPjwYVeXBAAA4HL0SAAAwDSjgVRoaKgkKT093Wl+enq6Y1loaKgyMjKclp89e1bHjx93GlPcNs59j+L4+PjIZrM5TQAAAOWBK/skeiQAAGCa0UCqYcOGCg0NVXJysmNedna2tm7dqujoaElSdHS0MjMzlZqa6hizfv16FRQUKCoqyjFm06ZNysvLc4xZt26dmjVrppo1axraGwAAgNJDnwQAAKqSUg+kTp48qbS0NKWlpUn6/QadaWlpOnTokNzc3DR69Gg9/fTTWrlypXbu3KkhQ4YoPDxc/fr1kyS1aNFC8fHxeuCBB7Rt2zZt2bJFI0eO1MCBAxUeHi5Juvvuu+Xt7a1hw4Zp9+7dWrJkiV566SWNHTu2tHcHAACg1NAnAQAA/M6ztDe4Y8cO3XLLLY7Xhc3P0KFDtWDBAk2YMEGnTp3SiBEjlJmZqRtvvFFJSUny9fV1rLNw4UKNHDlS3bt3l7u7u/r376+XX37ZsTwgIECffPKJEhIS1L59e9WuXVuTJ0/mUcYAAKBco08CAAD4XakHUl27dpVlWRdc7ubmpunTp2v69OkXHBMUFKRFixZd9H1atWqlzz///IrrBAAAMI0+CQAA4HdV6il7AAAAAAAAcD0CKQAAAAAAABhV6l/ZAwAApS8vaXOReV7xN7qgEgAAgPKDHqni4gopAAAAAAAAGEUgBQAAAAAAAKP4yh4AAGXkYOaaIvOaiEvIAQAAzu+T6JGqHq6QAgAAAAAAgFEEUgAAAAAAADCKr+xVEOc/OYCnBgAAANAjAQBQUXGFFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARnFT8yrmYOaaIvOaiJt/AgCAqo0eCQAAs7hCCgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAo7ipOQAAFQA3XAYAACiKHqni4gopAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAU95ACAKCKyUva7PTaK577LAAAANAjmcUVUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKO4hBQAArsj591mQuNcCAAAAPdLl4QopAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACM4qbmAABUMQcz1zi9biJusgkAAECPZBZXSAEAAAAAAMAorpACAABX5PxPESU+SQQAAKBHujxcIQUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADDKJYHU1KlT5ebm5jQ1b97csfzMmTNKSEhQrVq1VKNGDfXv31/p6elO2zh06JB69eqlatWqKTg4WOPHj9fZs2dN7woAAECpoUcCAABVhaer3vjaa6/Vp59++kchnn+UMmbMGK1evVrLli1TQECARo4cqTvuuENbtmyRJOXn56tXr14KDQ3VF198oaNHj2rIkCHy8vLS3/72N+P7AgAAUFrokQAAQFXgskDK09NToaGhReZnZWXp73//uxYtWqRu3bpJkubPn68WLVroyy+/VOfOnfXJJ5/ou+++06effqqQkBC1adNGTz31lCZOnKipU6fK29vb9O4AAACUCnokAABQFbjsHlL79u1TeHi4rrnmGg0ePFiHDh2SJKWmpiovL08xMTGOsc2bN1e9evWUkpIiSUpJSVHLli0VEhLiGBMXF6fs7Gzt3r3b7I4AAICrlpe0uchUVdEjAQCAQpW5R3LJFVJRUVFasGCBmjVrpqNHj2ratGm66aabtGvXLtntdnl7eyswMNBpnZCQENntdkmS3W53arQKlxcuu5CcnBzl5OQ4XmdnZ5fSHgEAAFw9eiQAAFBVuCSQ6tGjh+PfrVq1UlRUlOrXr6+lS5fKz8+vzN53xowZmjZtWpltHwAA4GrQIwEAgKrCZV/ZO1dgYKCaNm2qH374QaGhocrNzVVmZqbTmPT0dMf9FEJDQ4s8UabwdXH3XCiUmJiorKwsx3T48OHS3REAAHBFDmauKTKBHgkAgKquMvdI5SKQOnnypPbv36+wsDC1b99eXl5eSk5Odizfu3evDh06pOjoaElSdHS0du7cqYyMDMeYdevWyWazKTIy8oLv4+PjI5vN5jQBAACUV/RIAACgsnLJV/bGjRunPn36qH79+jpy5IimTJkiDw8PDRo0SAEBARo2bJjGjh2roKAg2Ww2jRo1StHR0ercubMkKTY2VpGRkbrnnns0a9Ys2e12PfHEE0pISJCPj48rdgkAAOCq0SMBAICqwiWB1P/+9z8NGjRIv/zyi+rUqaMbb7xRX375perUqSNJevHFF+Xu7q7+/fsrJydHcXFxeu211xzre3h4aNWqVXr44YcVHR2t6tWra+jQoZo+fbordgcAAKBU0CMBAICqwiWB1OLFiy+63NfXV3PnztXcuXMvOKZ+/fr6+OOPS7s0AAAAl6FHAgAAVUW5uIcUAAAAAAAAqg4CKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFGeri4Al+dg5hqn1010o4sqAQAAKD/okQAAqJi4QgoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMMrT1QVUZnlJm4vM84q/0QWVAAAAlB/0SAAAgCukAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKE9XF1CZHcxcU2ReE93ogkoAAADKD3okAADAFVIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCqwgdSc+fOVYMGDeTr66uoqCht27bN1SUBAAC4HD0SAAAozyp0ILVkyRKNHTtWU6ZM0VdffaXWrVsrLi5OGRkZri4NAADAZeiRAABAeVehA6kXXnhBDzzwgO677z5FRkZq3rx5qlatmv7xj3+4ujQAAACXoUcCAADlnaerC7hSubm5Sk1NVWJiomOeu7u7YmJilJKSUuw6OTk5ysnJcbzOysqSJGVnZ5dJjSdP5xSZd6Xvdf62Sms75XVb5aGmstx2ZT925XH/ynLblf3Yldf9K8ttV/ZjV9n371IKt2tZVpls39XokVz/32Bl37+y3HZlP3blcf8uZ9tXs/2KcB7KY01Xs62y3HZVOw/lsaar2dalGO+RrArqp59+siRZX3zxhdP88ePHW506dSp2nSlTpliSmJiYmJiYmJisw4cPm2hZjKNHYmJiYmJiYrqayVSPVGGvkLoSiYmJGjt2rON1QUGBjh8/rlq1asnNzU3Z2dmKiIjQ4cOHZbPZXFhp1cU5cD3OgetxDlyPc+B6ZXkOLMvSiRMnFB4eXqrbrcjokco/zoHrcQ5cj3PgepwD16tMPVKFDaRq164tDw8PpaenO81PT09XaGhosev4+PjIx8fHaV5gYGCRcTabjR8uF+McuB7nwPU4B67HOXC9sjoHAQEBpb7N8oIeqXLjHLge58D1OAeuxzlwvcrQI1XYm5p7e3urffv2Sk5OdswrKChQcnKyoqOjXVgZAACA69AjAQCAiqDCXiElSWPHjtXQoUPVoUMHderUSXPmzNGpU6d03333ubo0AAAAl6FHAgAA5V2FDqQGDBigY8eOafLkybLb7WrTpo2SkpIUEhJyRdvz8fHRlClTilyyDnM4B67HOXA9zoHrcQ5cj3NwdeiRKh/OgetxDlyPc+B6nAPXq0znwM2yKukzjwEAAAAAAFAuVdh7SAEAAAAAAKBiIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEZV+UBq6tSpcnNzc5qaN2/u6rIqtU2bNqlPnz4KDw+Xm5ubVqxY4bTcsixNnjxZYWEUVBBUAAEAAElEQVRh8vPzU0xMjPbt2+eaYiupS52De++9t8jPRXx8vGuKraRmzJihjh07yt/fX8HBwerXr5/27t3rNObMmTNKSEhQrVq1VKNGDfXv31/p6ekuqrjyuZxz0LVr1yI/Cw899JCLKq58Xn/9dbVq1Uo2m002m03R0dFas2aNYzk/A65Fj2QePZLr0SO5Hj2S69EjuV5V6ZGqfCAlSddee62OHj3qmDZv3uzqkiq1U6dOqXXr1po7d26xy2fNmqWXX35Z8+bN09atW1W9enXFxcXpzJkzhiutvC51DiQpPj7e6efiX//6l8EKK7+NGzcqISFBX375pdatW6e8vDzFxsbq1KlTjjFjxozRRx99pGXLlmnjxo06cuSI7rjjDhdWXblczjmQpAceeMDpZ2HWrFkuqrjyqVu3rmbOnKnU1FTt2LFD3bp1U9++fbV7925J/AyUB/RIZtEjuR49kuvRI7kePZLrVZkeyaripkyZYrVu3drVZVRZkqzly5c7XhcUFFihoaHWc88955iXmZlp+fj4WP/6179cUGHld/45sCzLGjp0qNW3b1+X1FNVZWRkWJKsjRs3Wpb1+3/3Xl5e1rJlyxxjvv/+e0uSlZKS4qoyK7Xzz4FlWdbNN99sPfroo64rqgqqWbOm9fbbb/MzUA7QI7kWPZLr0SOVD/RIrkePVD5Uxh6JK6Qk7du3T+Hh4brmmms0ePBgHTp0yNUlVVkHDhyQ3W5XTEyMY15AQICioqKUkpLiwsqqng0bNig4OFjNmjXTww8/rF9++cXVJVVqWVlZkqSgoCBJUmpqqvLy8px+Fpo3b6569erxs1BGzj8HhRYuXKjatWvruuuuU2Jiok6fPu2K8iq9/Px8LV68WKdOnVJ0dDQ/A+UEPVL5QY9UftAjmUWP5Hr0SK5VmXskT1cX4GpRUVFasGCBmjVrpqNHj2ratGm66aabtGvXLvn7+7u6vCrHbrdLkkJCQpzmh4SEOJah7MXHx+uOO+5Qw4YNtX//fv31r39Vjx49lJKSIg8PD1eXV+kUFBRo9OjRuuGGG3TddddJ+v1nwdvbW4GBgU5j+VkoG8WdA0m6++67Vb9+fYWHh+vbb7/VxIkTtXfvXn3wwQcurLZy2blzp6Kjo3XmzBnVqFFDy5cvV2RkpNLS0vgZcDF6pPKFHql8oEcyix7J9eiRXKcq9EhVPpDq0aOH49+tWrVSVFSU6tevr6VLl2rYsGEurAxwnYEDBzr+3bJlS7Vq1UqNGjXShg0b1L17dxdWVjklJCRo165d3JvFhS50DkaMGOH4d8uWLRUWFqbu3btr//79atSokekyK6VmzZopLS1NWVlZev/99zV06FBt3LjR1WVB9EhAceiRzKJHcj16JNepCj0SX9k7T2BgoJo2baoffvjB1aVUSaGhoZJU5AkB6enpjmUw75prrlHt2rX5uSgDI0eO1KpVq/TZZ5+pbt26jvmhoaHKzc1VZmam03h+Fkrfhc5BcaKioiSJn4VS5O3trcaNG6t9+/aaMWOGWrdurZdeeomfgXKIHsm16JHKJ3qkskOP5Hr0SK5VFXokAqnznDx5Uvv371dYWJirS6mSGjZsqNDQUCUnJzvmZWdna+vWrYqOjnZhZVXb//73P/3yyy/8XJQiy7I0cuRILV++XOvXr1fDhg2dlrdv315eXl5OPwt79+7VoUOH+FkoJZc6B8VJS0uTJH4WylBBQYFycnL4GSiH6JFcix6pfKJHKn30SK5Hj1Q+VcYeqcp/ZW/cuHHq06eP6tevryNHjmjKlCny8PDQoEGDXF1apXXy5Emn5PzAgQNKS0tTUFCQ6tWrp9GjR+vpp59WkyZN1LBhQz355JMKDw9Xv379XFd0JXOxcxAUFKRp06apf//+Cg0N1f79+zVhwgQ1btxYcXFxLqy6cklISNCiRYv04Ycfyt/f3/F974CAAPn5+SkgIEDDhg3T2LFjFRQUJJvNplGjRik6OlqdO3d2cfWVw6XOwf79+7Vo0SL17NlTtWrV0rfffqsxY8aoS5cuatWqlYurrxwSExPVo0cP1atXTydOnNCiRYu0YcMGrV27lp+BcoAeyTx6JNejR3I9eiTXo0dyvSrTI7n2IX+uN2DAACssLMzy9va2/vSnP1kDBgywfvjhB1eXVal99tlnlqQi09ChQy3L+v2xxk8++aQVEhJi+fj4WN27d7f27t3r2qIrmYudg9OnT1uxsbFWnTp1LC8vL6t+/frWAw88YNntdleXXakUd/wlWfPnz3eM+e2336xHHnnEqlmzplWtWjXr9ttvt44ePeq6oiuZS52DQ4cOWV26dLGCgoIsHx8fq3Hjxtb48eOtrKws1xZeidx///1W/fr1LW9vb6tOnTpW9+7drU8++cSxnJ8B16JHMo8eyfXokVyPHsn16JFcr6r0SG6WZVllE3UBAAAAAAAARXEPKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRRQQR08eFBubm5asGCBq0spokGDBrr33ntLfbtdu3ZV165dS327Vcnhw4fl6+urLVu2XHJsccc7PT1dd955p2rVqiU3NzfNmTOnRO8/cOBA3XXXXSVaBwCAkqBHwpWgRwLMI5ACgCpk+vTpioqK0g033HBF648ZM0Zr165VYmKi3n33XcXHx0uSnnnmGd12220KCQmRm5ubpk6dWuz6EydO1L///W998803V7oLAAAApa4seqQ9e/ZowoQJatOmjfz9/RUWFqZevXppx44dRdanR0JV5OnqAgBcmfr16+u3336Tl5eXq0tBBXHs2DG98847euedd654G+vXr1ffvn01btw4p/lPPPGEQkND1bZtW61du/aC67dt21YdOnTQ888/r3/+859XXAcAABdCj4SSKqseady4cfr73/+u/v3765FHHlFWVpbeeOMNde7cWUlJSYqJiXGMpUdCVcQVUkAF5ebmJl9fX3l4eLi6FFQQ7733njw9PdWnT58r3kZGRoYCAwOLzD9w4ICOHj2q995775LbuOuuu/TBBx/o5MmTV1wHAAAXQo+EkiqrHmnQoEE6fPiw3n77bY0YMULjx4/X1q1bFRQUVOzV5PRIqGoIpAAXmTp1qtzc3PSf//xHf/nLXxQQEKA6deroySeflGVZOnz4sPr27SubzabQ0FA9//zzTusXd38Eu92u++67T3Xr1pWPj4/CwsLUt29fHTx40DFmx44diouLU+3ateXn56eGDRvq/vvvd9p2QUGB5syZo2uvvVa+vr4KCQnRgw8+qF9//dVpnGVZevrpp1W3bl1Vq1ZNt9xyi3bv3n3Fx+S9995Tp06dVK1aNdWsWVNdunTRJ598ctF1cnJyNGXKFDVu3Fg+Pj6KiIjQhAkTlJOT4zRu/vz56tatm4KDg+Xj46PIyEi9/vrrTmN69+6ta665ptj3iY6OVocOHUq0Pen3Yzl16lSFh4c7jtF3331X7D0kMjMzNXr0aEVERMjHx0eNGzfWs88+q4KCAqdxixcvVvv27eXv7y+bzaaWLVvqpZdeuuhxkqQVK1YoKipKNWrUKLLszTffVKNGjeTn56dOnTrp888/d1q+YMECubm5ybIszZ07V25ubnJzc3Msb9CgwSXfv9Ctt96qU6dOad26dZe9DgCg6qBHKooeqWL2SO3bty+yzVq1aummm27S999/X+S96JFQ1fCVPcDFBgwYoBYtWmjmzJlavXq1nn76aQUFBemNN95Qt27d9Oyzz2rhwoUaN26cOnbsqC5dulxwW/3799fu3bs1atQoNWjQQBkZGVq3bp0OHTrkeB0bG6s6depo0qRJCgwM1MGDB/XBBx84befBBx/UggULdN999+n//u//dODAAb366qv6+uuvtWXLFscl8JMnT9bTTz+tnj17qmfPnvrqq68UGxur3NzcEh+HadOmaerUqbr++us1ffp0eXt7a+vWrVq/fr1iY2OLXaegoEC33XabNm/erBEjRqhFixbauXOnXnzxRf3nP//RihUrHGNff/11XXvttbrtttvk6empjz76SI888ogKCgqUkJDgOBdDhgzR9u3b1bFjR8e6P/74o7788ks999xzJdqeJCUmJmrWrFnq06eP4uLi9M033yguLk5nzpxx2pfTp0/r5ptv1k8//aQHH3xQ9erV0xdffKHExEQdPXrUcWPMdevWadCgQerevbueffZZSdL333+vLVu26NFHH73g8c3Ly9P27dv18MMPF1n297//XQ8++KCuv/56jR49Wv/973912223KSgoSBEREZKkLl266N1339U999yjW2+9VUOGDLnge11KZGSk/Pz8tGXLFt1+++1XvB0AQOVGj/Q7eqTK1yPZ7XbVrl27yHx6JFQ5FgCXmDJliiXJGjFihGPe2bNnrbp161pubm7WzJkzHfN//fVXy8/Pzxo6dKhj3oEDByxJ1vz58x1jJFnPPffcBd9z+fLlliRr+/btFxzz+eefW5KshQsXOs1PSkpymp+RkWF5e3tbvXr1sgoKChzj/vrXv1qSnGq9lH379lnu7u7W7bffbuXn5zstO3fbN998s3XzzTc7Xr/77ruWu7u79fnnnzutM2/ePEuStWXLFse806dPF3nfuLg465prrnG8zsrKsnx8fKzHHnvMadysWbMsNzc368cffyzR9ux2u+Xp6Wn169fPadzUqVOLHKOnnnrKql69uvWf//zHaeykSZMsDw8P69ChQ5ZlWdajjz5q2Ww26+zZs0Xe/2J++OEHS5L1yiuvOM3Pzc21goODrTZt2lg5OTmO+W+++aYlyel4W5ZlSbISEhIu+D7Hjh2zJFlTpky5aD1Nmza1evToUaJ9AABUDfRIf6BHqjw9UqFNmzZZbm5u1pNPPlnscnokVCV8ZQ9wseHDhzv+7eHhoQ4dOsiyLA0bNswxPzAwUM2aNdN///vfC27Hz89P3t7e2rBhQ5HLxs/djiStWrVKeXl5xY5ZtmyZAgICdOutt+rnn392TIWXHH/22WeSpE8//VS5ubkaNWqU01e3Ro8efbm77rBixQoVFBRo8uTJcnd3/rV07raLq7VFixZq3ry5U63dunWTJEet0u/Hp1BWVpZ+/vln3Xzzzfrvf/+rrKwsSZLNZlOPHj20dOlSWZblGL9kyRJ17txZ9erVK9H2kpOTdfbsWT3yyCNOdY8aNarYfbnppptUs2ZNp32JiYlRfn6+Nm3aJOn3c3gll3L/8ssvkqSaNWs6zd+xY4cyMjL00EMPydvb2zH/3nvvVUBAQIneoyQK9xMAgAuhR6JHKtyXytIjZWRk6O6771bDhg01YcKEYsfQI6EqIZACXOzcP+CSFBAQIF9f3yKX8QYEBFywiZIkHx8fPfvss1qzZo1CQkLUpUsXzZo1S3a73THm5ptvVv/+/TVt2jTVrl1bffv21fz5853uJbBv3z5lZWUpODhYderUcZpOnjypjIwMSb9foi1JTZo0caqjTp06Rf6gX8r+/fvl7u6uyMjIEq23b98+7d69u0idTZs2lSRHrZK0ZcsWxcTEqHr16goMDFSdOnX017/+VZIczZH0+yXphw8fVkpKiqO21NRUDRgwwOm9L2d7hceocePGTusGBQUVOUb79u1TUlJSkX0pfPpK4b488sgjatq0qXr06KG6devq/vvvV1JS0mUfs3ObyHNrPP88enl5XfBeEaXBsqyLNtIAANAj0SMV7ktl6JFOnTql3r1768SJE/rwww+LvV9VYR30SKgquIcU4GLFPQHmQk+FOf8P5flGjx6tPn36aMWKFVq7dq2efPJJzZgxQ+vXr1fbtm3l5uam999/X19++aU++ugjrV27Vvfff7+ef/55ffnll6pRo4YKCgoUHByshQsXFvsederUKflOlpGCggK1bNlSL7zwQrHLC7/bv3//fnXv3l3NmzfXCy+8oIiICHl7e+vjjz/Wiy++6HRDzD59+qhatWpaunSprr/+ei1dulTu7u7685//7BhTku2VZF9uvfXWC35aVthABgcHKy0tTWvXrtWaNWu0Zs0azZ8/X0OGDLnoo4pr1aolSRdt2E369ddfizR4AACcix7pytEjla8eKTc3V3fccYe+/fZbrV27Vtddd90Fx9IjoSohkAIqmUaNGumxxx7TY489pn379qlNmzZ6/vnn9d577znGdO7cWZ07d9YzzzyjRYsWafDgwVq8eLGGDx+uRo0a6dNPP9UNN9zgdMn1+erXry/p90+tzv2U6NixYyX+g96oUSMVFBTou+++U5s2bUq03jfffKPu3btf9JOkjz76SDk5OVq5cqXTp63nXq5eqHr16urdu7eWLVumF154QUuWLNFNN92k8PDwEm+v8Bj98MMPatiwoWP+L7/8UuQYNWrUSCdPnnR82ncx3t7e6tOnj/r06aOCggI98sgjeuONN/Tkk08W+aSxUL169eTn56cDBw4UW+O+ffscl/FLv9/g88CBA2rduvUl6ymps2fP6vDhw7rttttKfdsAAFwIPVJR9Ehl3yMVFBRoyJAhSk5O1tKlS3XzzTdfcCw9EqoavrIHVBKnT58u8lSSRo0ayd/f33G5+a+//lrkE8TC5qZwzF133aX8/Hw99dRTRd7j7NmzyszMlCTFxMTIy8tLr7zyitM2C590UhL9+vWTu7u7pk+fXuSTs4t94nnXXXfpp59+0ltvvVVk2W+//aZTp05J+uPT1HO3lZWVpfnz5xe73QEDBujIkSN6++239c033xS5FP1yt9e9e3d5enoWedTxq6++Wuy+pKSkaO3atUWWZWZm6uzZs5L+uM9BIXd3d7Vq1UqSijzG+VxeXl7q0KGDduzY4TS/Q4cOqlOnjubNm+f05J8FCxY4znVp++6773TmzBldf/31ZbJ9AADORY/kjB7JWVn3SKNGjdKSJUv02muv6Y477rjoWHokVDVcIQVUEv/5z3/UvXt33XXXXYqMjJSnp6eWL1+u9PR0DRw4UJL0zjvv6LXXXtPtt9+uRo0a6cSJE3rrrbdks9nUs2dPSb/fQ+HBBx/UjBkzlJaWptjYWHl5eWnfvn1atmyZXnrpJd15552qU6eOxo0bpxkzZqh3797q2bOnvv76a61Zs6bYx9heTOPGjfX444/rqaee0k033aQ77rhDPj4+2r59u8LDwzVjxoxi17vnnnu0dOlSPfTQQ/rss890ww03KD8/X3v27NHSpUu1du1adejQQbGxsY5PzB588EGdPHlSb731loKDg3X06NEi2+3Zs6f8/f01btw4eXh4qH///k7LL3d7ISEhevTRR/X888/rtttuU3x8vL755hvHMTr3E8vx48dr5cqV6t27t+699161b99ep06d0s6dO/X+++/r4MGDql27toYPH67jx4+rW7duqlu3rn788Ue98soratOmjVq0aHHR49y3b189/vjjys7Ols1mk/R7E/b000/rwQcfVLdu3TRgwAAdOHBA8+fPL9H9Ed599139+OOPOn36tCRp06ZNevrppx3nqfBTRun3xzJXq1ZNt95662VvHwCAK0WPRI/kqh5pzpw5eu211xQdHa1q1ao5XY0nSbfffruqV6/ueE2PhCrH7EP9ABQqfKTxsWPHnOYPHTrUql69epHxN998s3Xttdc6Xp//SOOff/7ZSkhIsJo3b25Vr17dCggIsKKioqylS5c61vnqq6+sQYMGWfXq1bN8fHys4OBgq3fv3taOHTuKvN+bb75ptW/f3vLz87P8/f2tli1bWhMmTLCOHDniGJOfn29NmzbNCgsLs/z8/KyuXbtau3btsurXr1+iRxoX+sc//mG1bdvW8vHxsWrWrGndfPPN1rp165yOwfmP2M3NzbWeffZZ69prr3Ws1759e2vatGlWVlaWY9zKlSutVq1aWb6+vlaDBg2sZ5991vrHP/5hSbIOHDhQpJbBgwdbkqyYmJhia73c7Z09e9Z68sknrdDQUMvPz8/q1q2b9f3331u1atWyHnroIadtnjhxwkpMTLQaN25seXt7W7Vr17auv/56a/bs2VZubq5lWZb1/vvvW7GxsVZwcLDl7e1t1atXz3rwwQeto0ePXvL4pqenW56enta7775bZNlrr71mNWzY0PLx8bE6dOhgbdq0qdjjrQs80vjmm2+2JBU7ffbZZ05jo6KirL/85S+XrBcAUDXRIxVFj1Qxe6ShQ4desD8q7vjSI6GqcbOsS9wBEABQqjIzM1WzZk09/fTTevzxx42+97Bhw/Sf//xHn3/+udH3LZSWlqZ27drpq6++KtG9MAAAQOVHj0SPhKqFe0gBQBn67bffiswrvIdE165dzRYjacqUKdq+fbu2bNli/L0laebMmbrzzjtptAAAqOLokZzRI6Eq4gopAGXKbrdfdLmfn58CAgIMVWPeggULtGDBAvXs2VM1atTQ5s2b9a9//UuxsbHF3pwTAABUDfRI9EhAVcdNzQGUqbCwsIsuHzp0qBYsWGCmGBdo1aqVPD09NWvWLGVnZztu4ll4w28AAFA10SPRIwFVHVdIAShTn3766UWXh4eHKzIy0lA1AAAA5QM9EoCqjkAKAAAAAAAARnFTcwAAAAAAABhFIAUAAAAAAACjqvRNzQsKCnTkyBH5+/vLzc3N1eUAAAADLMvSiRMnFB4eLnd3PpsrDj0SAABVj+keqUoHUkeOHFFERISrywAAAC5w+PBh1a1b19VllEv0SAAAVF2meqQqHUj5+/tL+v1g22w2F1cDAABMyM7OVkREhKMPQFH0SAAAVD2me6QqHUgVXoJus9lotgAAqGL4KtqF0SMBAFB1meqRuHECAAAAAAAAjCKQAgAAAAAAgFFV+it7AABcTH5+vvLy8lxdBkrIy8tLHh4eri4DAIBKix6pYipvPRKBFAAA57EsS3a7XZmZma4uBVcoMDBQoaGh3CcKAIBSRI9U8ZWnHolACgCA8xQ2WsHBwapWrVq5+IONy2NZlk6fPq2MjAxJUlhYmIsrAgCg8qBHqrjKY49EIAUAwDny8/MdjVatWrVcXQ6ugJ+fnyQpIyNDwcHB5erSdAAAKip6pIqvvPVI3NQcAIBzFN4PoVq1ai6uBFej8PxxfwsAAEoHPVLlUJ56JAIpAACKwSXoFRvnDwCAssHf2IqtPJ0/AikAAAAAAAAYRSAFAAAAAAAAo7ipOQAAlykvabOx9/KKv/Gyx17q0uspU6Zo6tSpV1nRlXFzc9Py5cvVr1+/K97Gm2++qUWLFumrr77SiRMn9OuvvyowMLDUagQAAFfHZI8k0ScVOn78uKZMmaJPPvlEhw4dUp06ddSvXz899dRTCggIKN1iywCBFAAAFdzRo0cd/16yZIkmT56svXv3OubVqFGjRNvLzc2Vt7d3qdV3tU6fPq34+HjFx8crMTHR1eUAAIAKpDL3SUeOHNGRI0c0e/ZsRUZG6scff9RDDz2kI0eO6P3333d1eZfEV/YAVFl5SZudJqCiCg0NdUwBAQFyc3NzvD516pQGDx6skJAQ1ahRQx07dtSnn37qtH6DBg301FNPaciQIbLZbBoxYoQk6a233lJERISqVaum22+/XS+88EKRK5M+/PBDtWvXTr6+vrrmmms0bdo0nT171rFdSbr99tvl5ubmeP3NN9/olltukb+/v2w2m9q3b68dO3ZccP9Gjx6tSZMmqXPnzqVzwAAAF3V+j0SfhIqsMvdJ1113nf7973+rT58+atSokbp166ZnnnlGH330keN9yjMCKQAAKrGTJ0+qZ8+eSk5O1tdff634+Hj16dNHhw4dcho3e/ZstW7dWl9//bWefPJJbdmyRQ899JAeffRRpaWl6dZbb9UzzzzjtM7nn3+uIUOG6NFHH9V3332nN954QwsWLHCM2759uyRp/vz5Onr0qOP14MGDVbduXW3fvl2pqamaNGmSvLy8DBwNAACAP1TGPikrK0s2m02enuX/C3Hlv0IAAHDFWrdurdatWzteP/XUU1q+fLlWrlypkSNHOuZ369ZNjz32mOP1448/rh49emjcuHGSpKZNm+qLL77QqlWrHGOmTZumSZMmaejQoZKka665Rk899ZQmTJigKVOmqE6dOpKkwMBAhYaGOtY7dOiQxo8fr+bNm0uSmjRpUgZ7DgAAcHGVrU/6+eef9dRTTzmu4irvuEIKAIBK7OTJkxo3bpxatGihwMBA1ahRQ99//32RT/46dOjg9Hrv3r3q1KmT07zzX3/zzTeaPn26atSo4ZgeeOABHT16VKdPn75gTWPHjtXw4cMVExOjmTNnav/+/Ve5lwAAACVXmfqk7Oxs9erVS5GRkS67SXtJEUgBAFCJjRs3TsuXL9ff/vY3ff7550pLS1PLli2Vm5vrNK569eol3vbJkyc1bdo0paWlOaadO3dq37598vX1veB6U6dO1e7du9WrVy+tX79ekZGRWr58eYnfHwAA4GpUlj7pxIkTio+Pl7+/v5YvX15hboXAV/YAAKjEtmzZonvvvVe33367pN+bo4MHD15yvWbNmjnuZVDo/Nft2rXT3r171bhx4wtux8vLS/n5+UXmN23aVE2bNtWYMWM0aNAgzZ8/31EjAACACZWhT8rOzlZcXJx8fHy0cuXKi4Zd5Q2BFAAAlViTJk30wQcfqE+fPnJzc9OTTz6pgoKCS643atQodenSRS+88IL69Omj9evXa82aNXJzc3OMmTx5snr37q169erpzjvvlLu7u7755hvt2rVLTz/9tKTfnyCTnJysG264QT4+PvL19dX48eN15513qmHDhvrf//6n7du3q3///hesxW63y26364cffpAk7dy5U/7+/qpXr56CgoKu8ggBAICqqqL3SdnZ2YqNjdXp06f13nvvKTs7W9nZ2ZKkOnXqyMPDoxSOUtnhK3sAAFRiL7zwgmrWrKnrr79effr0UVxcnNq1a3fJ9W644QbNmzdPL7zwglq3bq2kpCSNGTPG6VO3uLg4rVq1Sp988ok6duyozp0768UXX1T9+vUdY55//nmtW7dOERERatu2rTw8PPTLL79oyJAhatq0qe666y716NFD06ZNu2At8+bNU9u2bfXAAw9Ikrp06aK2bdtq5cqVV3FkAABAVVfR+6SvvvpKW7du1c6dO9W4cWOFhYU5psOHD1/9ASpjbpZlWa4uwlWys7MVEBDgeCwigKolL2mz02uv+BtdVAnKkzNnzujAgQNq2LBhhbrk2YQHHnhAe/bs0eeff+7qUi7pYueRv/+XxjECqrbzeySJPgn0SJdSUfqk8tQj8ZU9AABQrNmzZ+vWW29V9erVtWbNGr3zzjt67bXXXF0WAACAy9EnXT0CKQAAUKxt27Zp1qxZOnHihK655hq9/PLLGj58uKvLAgAAcDn6pKtHIAUAAIq1dOlSV5cAAABQLtEnXT1uag4AAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKE9XFwAAQEWxf8cbxt6rUYcHSzT+3nvv1TvvvCNJ8vT0VFBQkFq1aqVBgwbp3nvvlbt7xf0Mavfu3Zo8ebJSU1P1448/6sUXX9To0aNdXRYAAPj/TPZIEn3Sud566y3985//1K5duyRJ7du319/+9jd16tTJxZVdWsU96gAAwEl8fLyOHj2qgwcPas2aNbrlllv06KOPqnfv3jp79qyry7tip0+f1jXXXKOZM2cqNDTU1eUAAIAKqLL2SRs2bNCgQYP02WefKSUlRREREYqNjdVPP/3k6tIuiUAKAIBKwsfHR6GhofrTn/6kdu3a6a9//as+/PBDrVmzRgsWLHCMy8zM1PDhw1WnTh3ZbDZ169ZN33zzjdO2PvroI3Xs2FG+vr6qXbu2br/9dseyX3/9VUOGDFHNmjVVrVo19ejRQ/v27ZMknTp1SjabTe+//77T9lasWKHq1avrxIkTys3N1ciRIxUWFiZfX1/Vr19fM2bMuOB+dezYUc8995wGDhwoHx+fUjhSAACgqqmsfdLChQv1yCOPqE2bNmrevLnefvttFRQUKDk5uRSOWtkikAIAoBLr1q2bWrdurQ8++MAx789//rMyMjK0Zs0apaamql27durevbuOHz8uSVq9erVuv/129ezZU19//bWSk5OdLvu+9957tWPHDq1cuVIpKSmyLEs9e/ZUXl6eqlevroEDB2r+/PlOdcyfP1933nmn/P399fLLL2vlypVaunSp9u7dq4ULF6pBgwZGjgcAAEChytgnnT59Wnl5eQoKCrq6g2MA95ACAKCSa968ub799ltJ0ubNm7Vt2zZlZGQ4rjaaPXu2VqxYoffff18jRozQM888o4EDB2ratGmObbRu3VqStG/fPq1cuVJbtmzR9ddfL+n3T+YiIiK0YsUK/fnPf9bw4cN1/fXX6+jRowoLC1NGRoY+/vhjffrpp5KkQ4cOqUmTJrrxxhvl5uam+vXrmzwcAAAADpWtT5o4caLCw8MVExNz1cemrHGFFAAAlZxlWXJzc5MkffPNNzp58qRq1aqlGjVqOKYDBw5o//79kqS0tDR179692G19//338vT0VFRUlGNerVq11KxZM33//feSpE6dOunaa6913Dz0vffeU/369dWlSxdJv39ymJaWpmbNmun//u//9Mknn5TZvgMAAFxMZeqTZs6cqcWLF2v58uXy9fUt+cEwjCukAACo5L7//ns1bNhQknTy5EmFhYVpw4YNRcYFBgZKkvz8/K76PYcPH665c+dq0qRJmj9/vu677z5Hs9euXTsdOHBAa9as0aeffqq77rpLMTExRe6nAAAAUNYqS580e/ZszZw5U59++qlatWp11TWawBVSAABUYuvXr9fOnTvVv39/Sb83OXa7XZ6enmrcuLHTVLt2bUlSq1atLngjzBYtWujs2bPaunWrY94vv/yivXv3KjIy0jHvL3/5i3788Ue9/PLL+u677zR06FCn7dhsNg0YMEBvvfWWlixZon//+9+OezMAAACYUFn6pFmzZumpp55SUlKSOnTocMXHwzSukAIAoJLIycmR3W5Xfn6+0tPTlZSUpBkzZqh3794aMmSIJCkmJkbR0dHq16+fZs2apaZNm+rIkSOOG3R26NBBU6ZMUffu3dWoUSMNHDhQZ8+e1ccff6yJEyeqSZMm6tu3rx544AG98cYb8vf316RJk/SnP/1Jffv2ddRSs2ZN3XHHHRo/frxiY2NVt25dx7IXXnhBYWFhatu2rdzd3bVs2TKFhoY6Pnk8X25urr777jvHv3/66SelpaWpRo0aaty4cdkdUAAAUGlU1j7p2Wef1eTJk7Vo0SI1aNBAdrtdkhxfNyzPuEIKAIBKIikpSWFhYWrQoIHi4+P12Wef6eWXX9aHH34oDw8PSZKbm5s+/vhjdenSRffdd5+aNm2qgQMH6scff1RISIgkqWvXrlq2bJlWrlypNm3aqFu3btq2bZvjfebPn6/27durd+/eio6OlmVZ+vjjj+Xl5eVUz7Bhw5Sbm6v777/fab6/v79mzZqlDh06qGPHjjp48KA+/vhjubsX35YcOXJEbdu2Vdu2bXX06FHNnj1bbdu21fDhw0vz8AEAgEqssvZJr7/+unJzc3XnnXcqLCzMMc2ePbs0D1+ZcLMsy3J1Ea6SnZ2tgIAAZWVlyWazubocAIblJW12eu0Vf6OLKkF5cubMGR04cEANGzasEDeDLM/effddjRkzRkeOHJG3t7fR977YeeTv/6VxjICq7fweSaJPAj1SaXNVn1SeeiS+sgcAAErV6dOndfToUc2cOVMPPvig8TAKAACgvKJP+gNf2QMAAKVq1qxZat68uUJDQ5WYmOjqcgAAAMoN+qQ/EEgBAIBSNXXqVOXl5Sk5Obnc30wTAADAJPqkPxBIAQAAAAAAwCgCKQAAAAAAABhFIAUAQDGq8ENoKwXOHwAAZYO/sRVbeTp/BFIAAJzDy8tL0u9PQEHFVXj+Cs8nAAC4OvRIlUN56pGuKpCaOXOm3NzcNHr0aMe8M2fOKCEhQbVq1VKNGjXUv39/paenO6136NAh9erVS9WqVVNwcLDGjx+vs2fPOo3ZsGGD2rVrJx8fHzVu3FgLFiwo8v5z585VgwYN5Ovrq6ioKG3btu1qdgcAAHl4eCgwMFAZGRn65Zdf9Ntvv+nMmTNMFWT67bff9MsvvygjI0OBgYHy8PBwyX9H9EgAgMqGHqliT+WlRzqX55WuuH37dr3xxhtq1aqV0/wxY8Zo9erVWrZsmQICAjRy5Ejdcccd2rJliyQpPz9fvXr1UmhoqL744gsdPXpUQ4YMkZeXl/72t79Jkg4cOKBevXrpoYce0sKFC5WcnKzhw4crLCxMcXFxkqQlS5Zo7NixmjdvnqKiojRnzhzFxcVp7969Cg4OvtLdAgBAoaGhkqSMjAwXV4IrFRgY6DiPptEjAQAqK3qkis+VPdL53Kwr+ALhyZMn1a5dO7322mt6+umn1aZNG82ZM0dZWVmqU6eOFi1apDvvvFOStGfPHrVo0UIpKSnq3Lmz1qxZo969e+vIkSMKCQmRJM2bN08TJ07UsWPH5O3trYkTJ2r16tXatWuX4z0HDhyozMxMJSUlSZKioqLUsWNHvfrqq5KkgoICRUREaNSoUZo0adJl7Ud2drYCAgKUlZUlm81W0sMAoILLS9rs9Nor/kYXVYLyKj8/X3l5ea4uAyXk5eV10U/9yvLvPz0SgMrg/B5Jok+CM3qkismVPVJxrugKqYSEBPXq1UsxMTF6+umnHfNTU1OVl5enmJgYx7zmzZurXr16jmYrJSVFLVu2dDRakhQXF6eHH35Yu3fvVtu2bZWSkuK0jcIxhZe95+bmKjU1VYmJiY7l7u7uiomJUUpKypXsEgAARXh4eJSLy5lRcdAjAQCqAnoklIYSB1KLFy/WV199pe3btxdZZrfb5e3trcDAQKf5ISEhstvtjjHnNlqFywuXXWxMdna2fvvtN/3666/Kz88vdsyePXsuWHtOTo5ycnIcr7Ozsy+xtwAAAJeHHgkAAODyleim5ocPH9ajjz6qhQsXytfXt6xqKjMzZsxQQECAY4qIiHB1SQAAoBKgRwIAACiZEgVSqampysjIULt27eTp6SlPT09t3LhRL7/8sjw9PRUSEqLc3FxlZmY6rZeenu64aVZoaGiRJ8oUvr7UGJvNJj8/P9WuXVseHh7FjrnYzbkSExOVlZXlmA4fPlyS3QcAACgWPRIAAEDJlCiQ6t69u3bu3Km0tDTH1KFDBw0ePNjxby8vLyUnJzvW2bt3rw4dOqTo6GhJUnR0tHbu3Ol0V/5169bJZrMpMjLSMebcbRSOKdyGt7e32rdv7zSmoKBAycnJjjHF8fHxkc1mc5oAAACuFj0SAABAyZToHlL+/v667rrrnOZVr15dtWrVcswfNmyYxo4dq6CgINlsNo0aNUrR0dHq3LmzJCk2NlaRkZG65557NGvWLNntdj3xxBNKSEiQj4+PJOmhhx7Sq6++qgkTJuj+++/X+vXrtXTpUq1evdrxvmPHjtXQoUPVoUMHderUSXPmzNGpU6d03333XdUBAQAAKCl6JAAAgJK5oqfsXcyLL74od3d39e/fXzk5OYqLi9Nrr73mWO7h4aFVq1bp4YcfVnR0tKpXr66hQ4dq+vTpjjENGzbU6tWrNWbMGL300kuqW7eu3n77bcXFxTnGDBgwQMeOHdPkyZNlt9vVpk0bJSUlFbmJJwAAQHlAjwQAAPAHN8uyLFcX4SrZ2dkKCAhQVlYWl6YDVVBe0man117xN7qoEgAm8ff/0jhGQNV2fo8k0ScBVYHpv/8luocUAAAAAAAAcLUIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUZ6uLgAAXOVg5hqn1010o4sqAQAAKD/O75Ek+iQApY8rpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMKlEg9frrr6tVq1ay2Wyy2WyKjo7WmjVrHMvPnDmjhIQE1apVSzVq1FD//v2Vnp7utI1Dhw6pV69eqlatmoKDgzV+/HidPXvWacyGDRvUrl07+fj4qHHjxlqwYEGRWubOnasGDRrI19dXUVFR2rZtW0l2BQAAoNTQIwEAAJRMiQKpunXraubMmUpNTdWOHTvUrVs39e3bV7t375YkjRkzRh999JGWLVumjRs36siRI7rjjjsc6+fn56tXr17Kzc3VF198oXfeeUcLFizQ5MmTHWMOHDigXr166ZZbblFaWppGjx6t4cOHa+3atY4xS5Ys0dixYzVlyhR99dVXat26teLi4pSRkXG1xwMAAKDE6JEAAABKxs2yLOtqNhAUFKTnnntOd955p+rUqaNFixbpzjvvlCTt2bNHLVq0UEpKijp37qw1a9aod+/eOnLkiEJCQiRJ8+bN08SJE3Xs2DF5e3tr4sSJWr16tXbt2uV4j4EDByozM1NJSUmSpKioKHXs2FGvvvqqJKmgoEAREREaNWqUJk2adNm1Z2dnKyAgQFlZWbLZbFdzGABUQPsWP+70usnAZ1xUCQCTTP39p0cCUFGd3yNJ9ElAVWD67/8V30MqPz9fixcv1qlTpxQdHa3U1FTl5eUpJibGMaZ58+aqV6+eUlJSJEkpKSlq2bKlo9GSpLi4OGVnZzs+QUxJSXHaRuGYwm3k5uYqNTXVaYy7u7tiYmIcYwAAAFyFHgkAAODSPEu6ws6dOxUdHa0zZ86oRo0aWr58uSIjI5WWliZvb28FBgY6jQ8JCZHdbpck2e12p0arcHnhsouNyc7O1m+//aZff/1V+fn5xY7Zs2fPRWvPyclRTk6O43V2dvbl7zgAAMBF0CMBAABcvhJfIdWsWTOlpaVp69atevjhhzV06FB99913ZVFbqZsxY4YCAgIcU0REhKtLAgAAlQQ9EgAAwOUrcSDl7e2txo0bq3379poxY4Zat26tl156SaGhocrNzVVmZqbT+PT0dIWGhkqSQkNDizxRpvD1pcbYbDb5+fmpdu3a8vDwKHZM4TYuJDExUVlZWY7p8OHDJd19AACAYtEjAQAAXL4rvodUoYKCAuXk5Kh9+/by8vJScnKyY9nevXt16NAhRUdHS5Kio6O1c+dOpye9rFu3TjabTZGRkY4x526jcEzhNry9vdW+fXunMQUFBUpOTnaMuRAfHx/H45gLJwAAgLJAjwQAAHBhJbqHVGJionr06KF69erpxIkTWrRokTZs2KC1a9cqICBAw4YN09ixYxUUFCSbzaZRo0YpOjpanTt3liTFxsYqMjJS99xzj2bNmiW73a4nnnhCCQkJ8vHxkSQ99NBDevXVVzVhwgTdf//9Wr9+vZYuXarVq1c76hg7dqyGDh2qDh06qFOnTpozZ45OnTql++67rxQPDQAAwOWhRwIAACiZEgVSGRkZGjJkiI4ePaqAgAC1atVKa9eu1a233ipJevHFF+Xu7q7+/fsrJydHcXFxeu211xzre3h4aNWqVXr44YcVHR2t6tWra+jQoZo+fbpjTMOGDbV69WqNGTNGL730kurWrau3335bcXFxjjEDBgzQsWPHNHnyZNntdrVp00ZJSUlFbuIJAABgAj0SAABAybhZlmW5ughXyc7OVkBAgLKysrg0HaiC9i1+3Ol1k4HPuKgSACbx9//SOEZA1XZ+jyTRJwFVgem//1d9DykAAAAAAACgJAikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwKgSBVIzZsxQx44d5e/vr+DgYPXr10979+51GnPmzBklJCSoVq1aqlGjhvr376/09HSnMYcOHVKvXr1UrVo1BQcHa/z48Tp79qzTmA0bNqhdu3by8fFR48aNtWDBgiL1zJ07Vw0aNJCvr6+ioqK0bdu2kuwOAABAqaBHAgAAKJkSBVIbN25UQkKCvvzyS61bt055eXmKjY3VqVOnHGPGjBmjjz76SMuWLdPGjRt15MgR3XHHHY7l+fn56tWrl3Jzc/XFF1/onXfe0YIFCzR58mTHmAMHDqhXr1665ZZblJaWptGjR2v48OFau3atY8ySJUs0duxYTZkyRV999ZVat26tuLg4ZWRkXM3xAAAAKDF6JAAAgJJxsyzLutKVjx07puDgYG3cuFFdunRRVlaW6tSpo0WLFunOO++UJO3Zs0ctWrRQSkqKOnfurDVr1qh37946cuSIQkJCJEnz5s3TxIkTdezYMXl7e2vixIlavXq1du3a5XivgQMHKjMzU0lJSZKkqKgodezYUa+++qokqaCgQBERERo1apQmTZp0WfVnZ2crICBAWVlZstlsV3oYAFRQ+xY/7vS6ycBnXFQJAJNM/P2nRwJQkZ3fI0n0SUBVYPrv/1XdQyorK0uSFBQUJElKTU1VXl6eYmJiHGOaN2+uevXqKSUlRZKUkpKili1bOhotSYqLi1N2drZ2797tGHPuNgrHFG4jNzdXqampTmPc3d0VExPjGAMAAOAq9EgAAAAX53mlKxYUFGj06NG64YYbdN1110mS7Ha7vL29FRgY6DQ2JCREdrvdMebcRqtweeGyi43Jzs7Wb7/9pl9//VX5+fnFjtmzZ88Fa87JyVFOTo7jdXZ2dgn2GAAA4NLokQAAAC7tiq+QSkhI0K5du7R48eLSrKdMzZgxQwEBAY4pIiLC1SUBAIBKhh4JAADg0q4okBo5cqRWrVqlzz77THXr1nXMDw0NVW5urjIzM53Gp6enKzQ01DHm/CfKFL6+1BibzSY/Pz/Vrl1bHh4exY4p3EZxEhMTlZWV5ZgOHz5csh0HAAC4CHokAACAy1OiQMqyLI0cOVLLly/X+vXr1bBhQ6fl7du3l5eXl5KTkx3z9u7dq0OHDik6OlqSFB0drZ07dzo96WXdunWy2WyKjIx0jDl3G4VjCrfh7e2t9u3bO40pKChQcnKyY0xxfHx8ZLPZnCYAAICrRY8EAABQMiW6h1RCQoIWLVqkDz/8UP7+/o77GQQEBMjPz08BAQEaNmyYxo4dq6CgINlsNo0aNUrR0dHq3LmzJCk2NlaRkZG65557NGvWLNntdj3xxBNKSEiQj4+PJOmhhx7Sq6++qgkTJuj+++/X+vXrtXTpUq1evdpRy9ixYzV06FB16NBBnTp10pw5c3Tq1Cndd999pXVsAAAALgs9EgAAQMmUKJB6/fXXJUldu3Z1mj9//nzde++9kqQXX3xR7u7u6t+/v3JychQXF6fXXnvNMdbDw0OrVq3Sww8/rOjoaFWvXl1Dhw7V9OnTHWMaNmyo1atXa8yYMXrppZdUt25dvf3224qLi3OMGTBggI4dO6bJkyfLbrerTZs2SkpKKnITTwAAgLJGjwQAAFAybpZlWa4uwlWys7MVEBCgrKwsLk0HqqB9ix93et1k4DMuqgSASfz9vzSOEVC1nd8jSfRJQFVg+u//FT9lDwAAAAAAALgSBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgVIkDqU2bNqlPnz4KDw+Xm5ubVqxY4bTcsixNnjxZYWFh8vPzU0xMjPbt2+c05vjx4xo8eLBsNpsCAwM1bNgwnTx50mnMt99+q5tuukm+vr6KiIjQrFmzitSybNkyNW/eXL6+vmrZsqU+/vjjku4OAABAqaBHAgAAuHwlDqROnTql1q1ba+7cucUunzVrll5++WXNmzdPW7duVfXq1RUXF6czZ844xgwePFi7d+/WunXrtGrVKm3atEkjRoxwLM/OzlZsbKzq16+v1NRUPffcc5o6darefPNNx5gvvvhCgwYN0rBhw/T111+rX79+6tevn3bt2lXSXQIAALhq9EgAAACXz82yLOuKV3Zz0/Lly9WvXz9Jv3/yFx4erscee0zjxo2TJGVlZSkkJEQLFizQwIED9f333ysyMlLbt29Xhw4dJElJSUnq2bOn/ve//yk8PFyvv/66Hn/8cdntdnl7e0uSJk2apBUrVmjPnj2SpAEDBujUqVNatWqVo57OnTurTZs2mjdv3mXVn52drYCAAGVlZclms13pYQBQQe1b/LjT6yYDn3FRJQBMMvH3nx4JQEV2fo8k0ScBVYHpv/+leg+pAwcOyG63KyYmxjEvICBAUVFRSklJkSSlpKQoMDDQ0WhJUkxMjNzd3bV161bHmC5dujgaLUmKi4vT3r179euvvzrGnPs+hWMK36c4OTk5ys7OdpoAAADKGj0SAACAs1INpOx2uyQpJCTEaX5ISIhjmd1uV3BwsNNyT09PBQUFOY0pbhvnvseFxhQuL86MGTMUEBDgmCIiIkq6iwAAACVGjwQAAOCsSj1lLzExUVlZWY7p8OHDri4JAADA5eiRAACAaaUaSIWGhkqS0tPTneanp6c7loWGhiojI8Np+dmzZ3X8+HGnMcVt49z3uNCYwuXF8fHxkc1mc5oAAADKGj0SAACAs1INpBo2bKjQ0FAlJyc75mVnZ2vr1q2Kjo6WJEVHRyszM1OpqamOMevXr1dBQYGioqIcYzZt2qS8vDzHmHXr1qlZs2aqWbOmY8y571M4pvB9AAAAygt6JAAAAGclDqROnjyptLQ0paWlSfr9Jp1paWk6dOiQ3NzcNHr0aD399NNauXKldu7cqSFDhig8PNzxlJkWLVooPj5eDzzwgLZt26YtW7Zo5MiRGjhwoMLDwyVJd999t7y9vTVs2DDt3r1bS5Ys0UsvvaSxY8c66nj00UeVlJSk559/Xnv27NHUqVO1Y8cOjRw58uqPCgAAQAnRIwEAAFw+z5KusGPHDt1yyy2O14UN0NChQ7VgwQJNmDBBp06d0ogRI5SZmakbb7xRSUlJ8vX1dayzcOFCjRw5Ut27d5e7u7v69++vl19+2bE8ICBAn3zyiRISEtS+fXvVrl1bkydP1ogRIxxjrr/+ei1atEhPPPGE/vrXv6pJkyZasWKFrrvuuis6EAAAAFeDHgkAAODyuVmWZbm6CFfJzs5WQECAsrKyuFcCUAXtW/y40+smA59xUSUATOLv/6VxjICq7fweSaJPAqoC03//q9RT9gAAAAAAAOB6BFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgVIUPpObOnasGDRrI19dXUVFR2rZtm6tLAgAAcDl6JAAAUJ5V6EBqyZIlGjt2rKZMmaKvvvpKrVu3VlxcnDIyMlxdGgAAgMvQIwEAgPKuQgdSL7zwgh544AHdd999ioyM1Lx581StWjX94x//cHVpAAAALkOPBAAAyjtPVxdwpXJzc5WamqrExETHPHd3d8XExCglJaXYdXJycpSTk+N4nZWVJUnKzs4u22IBlEsnT+c4veZ3AVA1FP6sW5bl4krKBj0SgKt1fo8k8fsAqApM90gVNpD6+eeflZ+fr5CQEKf5ISEh2rNnT7HrzJgxQ9OmTSsyPyIiokxqBFDBDHve1RUAMOjEiRMKCAhwdRmljh4JQJmgTwKqDFM9UoUNpK5EYmKixo4d63hdUFCg48ePq1atWnJzc3NhZeVLdna2IiIidPjwYdlsNleXUyVwzM3jmJvHMTePY148y7J04sQJhYeHu7qUcoMe6fLwM2Uex9w8jrl5HHPzOObFM90jVdhAqnbt2vLw8FB6errT/PT0dIWGhha7jo+Pj3x8fJzmBQYGllWJFZ7NZuOH0zCOuXkcc/M45uZxzIuqjFdGFaJHKnv8TJnHMTePY24ex9w8jnlRJnukCntTc29vb7Vv317JycmOeQUFBUpOTlZ0dLQLKwMAAHAdeiQAAFARVNgrpCRp7NixGjp0qDp06KBOnTppzpw5OnXqlO677z5XlwYAAOAy9EgAAKC8q9CB1IABA3Ts2DFNnjxZdrtdbdq0UVJSUpGbeKJkfHx8NGXKlCKX7qPscMzN45ibxzE3j2NeddEjlQ1+pszjmJvHMTePY24ex7x8cLMq6zOPAQAAAAAAUC5V2HtIAQAAAAAAoGIikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIQcePH9fgwYNls9kUGBioYcOG6eTJk5e1rmVZ6tGjh9zc3LRixYqyLbQSKekxP378uEaNGqVmzZrJz89P9erV0//93/8pKyvLYNUVz9y5c9WgQQP5+voqKipK27Ztu+j4ZcuWqXnz5vL19VXLli318ccfG6q08ijJMX/rrbd00003qWbNmqpZs6ZiYmIueY5QVEn/Oy+0ePFiubm5qV+/fmVbIFCB0SOZR49kBj2SefRI5tEjlX8EUtDgwYO1e/durVu3TqtWrdKmTZs0YsSIy1p3zpw5cnNzK+MKK5+SHvMjR47oyJEjmj17tnbt2qUFCxYoKSlJw4YNM1h1xbJkyRKNHTtWU6ZM0VdffaXWrVsrLi5OGRkZxY7/4osvNGjQIA0bNkxff/21+vXrp379+mnXrl2GK6+4SnrMN2zYoEGDBumzzz5TSkqKIiIiFBsbq59++slw5RVXSY95oYMHD2rcuHG66aabDFUKVEz0SObRI5U9eiTz6JHMo0eqICxUad99950lydq+fbtj3po1ayw3Nzfrp59+uui6X3/9tfWnP/3JOnr0qCXJWr58eRlXWzlczTE/19KlSy1vb28rLy+vLMqs8Dp16mQlJCQ4Xufn51vh4eHWjBkzih1/1113Wb169XKaFxUVZT344INlWmdlUtJjfr6zZ89a/v7+1jvvvFNWJVY6V3LMz549a11//fXW22+/bQ0dOtTq27evgUqBioceyTx6JDPokcyjRzKPHqli4AqpKi4lJUWBgYHq0KGDY15MTIzc3d21devWC653+vRp3X333Zo7d65CQ0NNlFppXOkxP19WVpZsNps8PT3LoswKLTc3V6mpqYqJiXHMc3d3V0xMjFJSUopdJyUlxWm8JMXFxV1wPJxdyTE/3+nTp5WXl6egoKCyKrNSudJjPn36dAUHB3P1AHAJ9Ejm0SOVPXok8+iRzKNHqjj4LV3F2e12BQcHO83z9PRUUFCQ7Hb7BdcbM2aMrr/+evXt27esS6x0rvSYn+vnn3/WU089ddlfG6hqfv75Z+Xn5yskJMRpfkhIiPbs2VPsOna7vdjxl3tOqrorOebnmzhxosLDw4s0vSjelRzzzZs36+9//7vS0tIMVAhUbPRI5tEjlT16JPPokcyjR6o4uEKqkpo0aZLc3NwuOl3uL8DzrVy5UuvXr9ecOXNKt+gKriyP+bmys7PVq1cvRUZGaurUqVdfOFAOzJw5U4sXL9by5cvl6+vr6nIqpRMnTuiee+7RW2+9pdq1a7u6HMBl6JHMo0cCrhw9UtmjR3IdrpCqpB577DHde++9Fx1zzTXXKDQ0tMiN3c6ePavjx49f8DLz9evXa//+/QoMDHSa379/f910003asGHDVVRecZXlMS904sQJxcfHy9/fX8uXL5eXl9fVll0p1a5dWx4eHkpPT3ean56efsFjHBoaWqLxcHYlx7zQ7NmzNXPmTH366adq1apVWZZZqZT0mO/fv18HDx5Unz59HPMKCgok/X4Fwt69e9WoUaOyLRooB+iRzKNHKj/okcyjRzKPHqkCcfVNrOBahTeP3LFjh2Pe2rVrL3rzyKNHj1o7d+50miRZL730kvXf//7XVOkV1pUcc8uyrKysLKtz587WzTffbJ06dcpEqRVap06drJEjRzpe5+fnW3/6058uesPO3r17O82Ljo7mhp0lUNJjblmW9eyzz1o2m81KSUkxUWKlU5Jj/ttvvxX53d23b1+rW7du1s6dO62cnByTpQPlHj2SefRIZtAjmUePZB49UsVAIAUrPj7eatu2rbV161Zr8+bNVpMmTaxBgwY5lv/vf/+zmjVrZm3duvWC2xBPkCmRkh7zrKwsKyoqymrZsqX1ww8/WEePHnVMZ8+eddVulGuLFy+2fHx8rAULFljfffedNWLECCswMNCy2+2WZVnWPffcY02aNMkxfsuWLZanp6c1e/Zs6/vvv7emTJlieXl5WTt37nTVLlQ4JT3mM2fOtLy9va3333/f6b/pEydOuGoXKpySHvPz8QQZ4OLokcyjRyp79Ejm0SOZR49UMRBIwfrll1+sQYMGWTVq1LBsNpt13333Of2yO3DggCXJ+uyzzy64DZqtkinpMf/ss88sScVOBw4ccM1OVACvvPKKVa9ePcvb29vq1KmT9eWXXzqW3XzzzdbQoUOdxi9dutRq2rSp5e3tbV177bXW6tWrDVdc8ZXkmNevX7/Y/6anTJlivvAKrKT/nZ+LZgu4OHok8+iRzKBHMo8eyTx6pPLPzbIsq2y/FAgAAAAAAAD8gafsAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRRQhrZv367rr79e1atXl5ubm9LS0lxdEnBRhw8flq+vr7Zs2XLJsV27dlXXrl2d5qWnp+vOO+9UrVq15Obmpjlz5pTo/QcOHKi77rqrROsAACoeeiRUNPRIQOkjkALKSF5env785z/r+PHjevHFF/Xuu++qfv36ri7L5U6fPq2pU6dqw4YNri4FxZg+fbqioqJ0ww03XNH6Y8aM0dq1a5WYmKh3331X8fHxkqRnnnlGt912m0JCQuTm5qapU6cWu/7EiRP173//W998882V7gIAoJyjRyoePVL5VhY90p49ezRhwgS1adNG/v7+CgsLU69evbRjx44i69MjoTLydHUBQGW1f/9+/fjjj3rrrbc0fPhwV5dTbpw+fVrTpk2TpCKfHMG1jh07pnfeeUfvvPPOFW9j/fr16tu3r8aNG+c0/4knnlBoaKjatm2rtWvXXnD9tm3bqkOHDnr++ef1z3/+84rrAACUX/RIxaNHKr/KqkcaN26c/v73v6t///565JFHlJWVpTfeeEOdO3dWUlKSYmJiHGPpkVAZcYUUUEYyMjIkSYGBgZcce+rUqTKuBri09957T56enurTp88VbyMjI6PY/+YPHDigo0eP6r333rvkNu666y79P/buPb7H+v/j+POz8+xoYgfHlVMi5zSkYtmcvpHDl1bOdKAcSqiQs5YkUqhvqPgWfSOJRZNCcmwSEjWHL2YVNoevbbbr94ffPvnY2MZ2fT777HG/3T632z7X9f5c1/u6pn2eva739b4+++wznT9//qb7AQBwXGQkFDdFlZF69OihY8eO6b333tPAgQM1YsQIbd26VUFBQbmOJicjwdlQkAKKQO/evXX//fdLkrp27SqLxWK90tW7d2/5+vrqt99+U9u2beXn56eYmBhJ0saNG9W1a1dVqlRJnp6eqlixooYNG6b//e9/OfaxbNky1apVS15eXqpdu7aWL1+u3r17q0qVKtY2hw8flsVi0fTp0zVnzhzdfvvtKlWqlFq3bq1jx47JMAxNnDhRFSpUkLe3tx5++GGdPn06x77WrFmj++67Tz4+PvLz81O7du20d+/eHMfs6+ur48ePq2PHjvL19VXZsmX1/PPPKzMz09qfsmXLSpLGjx8vi8Vyw9u3rrVhwwZZLBZ98sknevHFFxUSEiIfHx/94x//0LFjx2zaPvDAA6pdu7Z27typpk2bytvbW+Hh4Zo7d26u21y6dKnGjx+v8uXLy8/PT126dFFKSorS0tI0dOhQlStXTr6+vurTp4/S0tLy1d9rz83Ro0fVvn17+fr6qnz58pozZ44kac+ePWrZsqV8fHxUuXJlLVmyxObzp0+f1vPPP686derI19dX/v7+atOmTY4h27169ZKXl5f2799vszwqKkqlS5fWiRMnbtjPFStWqEmTJvL19c2xbv78+brjjjvk7e2te+65Rxs3brRZv3DhQlksFhmGoTlz5lh/t9mu/neZl4ceekgXLlzQunXr8v0ZAEDxQEYiI+V2bkpqRmrYsGGObZYpU0b33Xdfjr5KZCQ4H27ZA4rAE088ofLly2vKlCl69tln1bhxYwUHB1vXX758WVFRUWrevLmmT5+uUqVKSboSoC5evKinnnpKZcqU0bZt2zR79mz997//1bJly6yf//LLL/XPf/5TderU0dSpU3XmzBn169dP5cuXz7U/ixcvVnp6up555hmdPn1asbGx6tatm1q2bKkNGzZo5MiROnTokGbPnq3nn39e77//vvWzH374oXr16qWoqCi9+uqrunjxot555x01b95cP/74o024y8zMVFRUlJo0aaLp06fr66+/1uuvv6477rhDTz31lMqWLat33nlHTz31lDp16qRHHnlEknT33XcX6PxOnjxZFotFI0eOVHJysmbOnKnIyEglJCTI29vb2u7MmTNq27atunXrph49emjp0qV66qmn5OHhob59+9psc+rUqfL29taoUaOs58Ld3V0uLi46c+aMXnnlFf3www9auHChwsPDNXbs2AL1OTMzU23atFGLFi0UGxurxYsXa/DgwfLx8dFLL72kmJgYPfLII5o7d6569uypiIgIhYeHS5J+//13rVixQl27dlV4eLhOnTqlefPm6f7779e+ffsUFhYmSXrzzTe1fv169erVS1u2bJGrq6vmzZuntWvX6sMPP7S2y01GRoa2b9+up556Kse6f/3rX3riiSfUtGlTDR06VL///rv+8Y9/KCgoSBUrVpQktWjRQh9++KEef/xxPfTQQ+rZs2eBzs/VatWqJW9vb23evFmdOnW66e0AABwPGYmMdC0yUk5JSUm67bbbciwnI8HpGACKxDfffGNIMpYtW2azvFevXoYkY9SoUTk+c/HixRzLpk6dalgsFuPIkSPWZXXq1DEqVKhgnDt3zrpsw4YNhiSjcuXK1mWJiYmGJKNs2bLG2bNnrctHjx5tSDLq1q1rZGRkWJf36NHD8PDwMC5dumQYhmGcO3fOCAwMNAYMGGDTp6SkJCMgIMBmefZxTZgwwaZt/fr1jYYNG1rf//HHH4YkY9y4cTmONS/Z57R8+fJGamqqdfnSpUsNScabb75pXXb//fcbkozXX3/duiwtLc2oV6+eUa5cOSM9Pd1mm7Vr17Yuyz4XFovFaNOmjU0fIiIibM5xfmSfmylTpliXnTlzxvD29jYsFovx8ccfW5f/8ssvOc7PpUuXjMzMTJttJiYmGp6enjnO91dffWVIMiZNmmT8/vvvhq+vr9GxY8c8+3jo0CFDkjF79myb5enp6Ua5cuWMevXqGWlpadbl8+fPNyQZ999/v017ScagQYOuu5/8/v6rV6+e49wDAJwDGekKMhIZKTffffedYbFYjDFjxuS6nowEZ8Ite4Cd5HaV5eorVxcuXNCff/6ppk2byjAM/fjjj5KkEydOaM+ePerZs6fNEN/7779fderUyXVfXbt2VUBAgPV9kyZNJEmPPfaY3NzcbJanp6fr+PHjkqR169bp7Nmz6tGjh/7880/ry9XVVU2aNNE333yTY19PPvmkzfv77rtPv//+e57noyB69uwpPz8/6/suXbooNDRUq1evtmnn5uamJ554wvrew8NDTzzxhJKTk7Vz584c23R3d7e+b9KkiQzDyHGVsEmTJjp27JguX75c4H5fPXFrYGCgatSoIR8fH5tH+NaoUUOBgYE258zT01MuLlf+XGdmZuqvv/6Sr6+vatSooV27dtnso3Xr1nriiSc0YcIEPfLII/Ly8tK8efPy7Ntff/0lSSpdurTN8h07dig5OVlPPvmkPDw8rMt79+5t82+qsJUuXVp//vlnkW0fAOC4yEg3j4xUvDNScnKyHn30UYWHh+uFF17ItQ0ZCc6EghRgB25ubqpQoUKO5UePHlXv3r0VFBRknV8ge56FlJQUSdKRI0ckSVWrVs3x+dyWSVKlSpVs3md/SWYPJb52+ZkzZyRJBw8elCS1bNlSZcuWtXmtXbvWOilpNi8vL+v8B9lKly5t3V5hqVatms17i8WiqlWr6vDhwzbLw8LC5OPjY7OsevXqkpSjbUHOUVZWlvX3kV+5nZuAgABVqFDBZq6l7OVXn7OsrCy98cYbqlatmjw9PXXbbbepbNmy+umnn3Ltx/Tp0xUUFKSEhATNmjVL5cqVy3c/DcOweZ/97+3ac+7u7q7bb78939stKMMwcpwXAIDzIyPdGjJS8c1IFy5cUPv27XXu3Dl9/vnnuc5Xld0PMhKcBXNIAXZw9dWcbJmZmXrooYd0+vRpjRw5UjVr1pSPj4+OHz+u3r17Kysr66b35+rqWqDl2V+42fv88MMPFRISkqPd1VcOb7S94uBmz5EZ258yZYrGjBmjvn37auLEiQoKCpKLi4uGDh2a67+LH3/80RqE9+zZox49euTZvzJlykhSoQfjm3XmzJkcAQ8A4PzISI6HjFT0GSk9PV2PPPKIfvrpJ3311VeqXbv2dduSkeBMKEgBDmLPnj369ddftWjRIpvJDq99ikblypUlSYcOHcqxjdyW3Yo77rhDklSuXDlFRkYWyjYL44pO9lXJbIZh6NChQzkm/jxx4oQuXLhgcwXw119/lVSwp77Z26effqoHH3xQ//rXv2yWnz17NseElxcuXFCfPn1Uq1YtNW3aVLGxserUqZMaN258w31UqlRJ3t7eSkxMtFme/e/t4MGDatmypXV5RkaGEhMTVbdu3Vs5tFxdvnxZx44d0z/+8Y9C3zYAoPghI+UfGemK4pSRsrKy1LNnT8XHx2vp0qXWkX+5ISPB2XDLHuAgsq8CXX3VxzAMvfnmmzbtwsLCVLt2bX3wwQc6f/68dfm3336rPXv2FGqfoqKi5O/vrylTpigjIyPH+j/++KPA28x+Ws7Zs2dvul8ffPCBzp07Z33/6aef6uTJk2rTpo1Nu8uXL9vMDZCenq558+apbNmyatiw4U3v32yurq45rjYuW7bMOo/F1UaOHKmjR49q0aJFmjFjhqpUqaJevXrl+Rhmd3d3NWrUSDt27LBZ3qhRI5UtW1Zz585Venq6dfnChQtv6Xd4I/v27dOlS5fUtGnTItk+AKB4ISPlHxmp+GWkZ555Rp988onefvtt69MVr4eMBGfDCCnAQdSsWVN33HGHnn/+eR0/flz+/v76z3/+k+vw4ClTpujhhx9Ws2bN1KdPH505c0ZvvfWWateubRPAbpW/v7/eeecdPf7442rQoIG6d++usmXL6ujRo/ryyy/VrFkzvfXWWwXapre3t2rVqqVPPvlE1atXV1BQkGrXrn3DocnXCgoKUvPmzdWnTx+dOnVKM2fOVNWqVTVgwACbdmFhYXr11Vd1+PBhVa9eXZ988okSEhI0f/58m8k5HV379u01YcIE9enTR02bNtWePXu0ePHiHPMTrF+/Xm+//bbGjRunBg0aSJIWLFigBx54QGPGjFFsbOwN9/Pwww/rpZdeUmpqqvz9/SVdCWGTJk3SE088oZYtW+qf//ynEhMTtWDBggLNj/Dhhx/qyJEjunjxoiTpu+++06RJkyRJjz/+uPUqo3TlinepUqX00EMP5Xv7AADnRUYiI11Pcc9IM2fO1Ntvv62IiAiVKlVKH330kc36Tp062YxiIyPB2TBCCnAQ7u7u+uKLL1SvXj1NnTpV48ePV7Vq1fTBBx/kaNuhQwf9+9//Vnp6ukaNGqXPPvtMCxcuVI0aNeTl5VWo/Xr00UcVHx+v8uXL67XXXtOQIUP08ccfq169eurTp89NbfO9995T+fLlNWzYMPXo0UOffvppgT7/4osvql27dpo6darefPNNtWrVSvHx8dYri9lKly6t1atXa8eOHRoxYoSOHTumt956K0coc3QvvviinnvuOX311VcaMmSIdu3apS+//NJmMtFz586pb9++ql+/vl566SXr8vvuu09DhgzR66+/rh9++OGG+3n88ceVmZmplStX2iwfOHCg3n77bZ04cUIjRozQxo0btXLlyhyTmd7Iv/71L40ZM0ZTp06VJH3zzTcaM2aMxowZk2MI/LJly/TII4/YPCUIAFBykZHyj4xUvDJSQkKCJGnLli16/PHHc7yuHWlHRoKzsRgFnXUOgMOqV6+eypYtm2NOBWexYcMGPfjgg1q2bJm6dOlyw7YPPPCA/vzzT/38888m9c459OvXT7/++qs2btxol/0nJCSoQYMG2rVrl+rVq2eXPgAAnA8Z6W9kpJtDRgIKHyOkgGIoIyNDly9ftlm2YcMG7d69Ww888IB9OgWnMG7cOG3fvl2bN2+2y/6nTZumLl26ELQAADeFjISiQkYCCh9zSAHF0PHjxxUZGanHHntMYWFh+uWXXzR37lyFhIToySeftHf3Ciw9PV2nT5++YZuAgACTepN/KSkp+t///nfDNrk9CtqRVapUSZcuXbLb/j/++GO77RsAUPyRkRwDGanwkZHgjChIAcVQ6dKl1bBhQ7333nv6448/5OPjo3bt2mnatGkqU6aMvbtXYN9//70efPDBG7ZZsGCBwz2GeMiQIVq0aNEN23BXNAAA5iEjOQYyEoD8YA4pAHZ35swZ7dy584Zt7rrrLoWGhprUo/zZt2+fTpw4ccM2kZGRJvUGAAA4GzISAGdGQQoAAAAAAACmYlJzAAAAAAAAmKpEzyGVlZWlEydOyM/PTxaLxd7dAQAAJjAMQ+fOnVNYWJhcXLg2lxsyEgAAJY/ZGalEF6ROnDihihUr2rsbAADADo4dO6YKFSrYuxsOiYwEAEDJZVZGKtEFKT8/P0lXTra/v7+dewMAAMyQmpqqihUrWnMAciIjAQBQ8pidkUp0QSp7CLq/vz9hCwCAEoZb0a6PjAQAQMllVkZi4gQAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKYq0XNIAQBwPYZh6PLly8rMzLR3V1BArq6ucnNzY44oAACKABmp+HK0jERBCgCAa6Snp+vkyZO6ePGivbuCm1SqVCmFhobKw8PD3l0BAMBpkJGKP0fKSBSkAAC4SlZWlhITE+Xq6qqwsDB5eHg4zFUk5M0wDKWnp+uPP/5QYmKiqlWrJhcXZigAAOBWkZGKN0fMSBSkAAC4Snp6urKyslSxYkWVKlXK3t3BTfD29pa7u7uOHDmi9PR0eXl52btLAAAUe2Sk4s/RMhKXDAEAyIW9rxjh1vD7AwCgaPAdW7w50u/PcXoCAAAAAACAEoGCFAAAAAAAAEzFHFIAAORTRtwm0/blHt08323zmlB03LhxeuWVV26xRzfHYrFo+fLl6tix401vY/78+VqyZIl27dqlc+fO6cyZMwoMDCy0PgIAgFtjZkaSyEnZTp8+rXHjxmnt2rU6evSoypYtq44dO2rixIkKCAgo3M4WAQpSAAAUcydPnrT+/Mknn2js2LE6cOCAdZmvr2+Btpeenu4QjwLOdvHiRUVHRys6OlqjR4+2d3cAAEAx4sw56cSJEzpx4oSmT5+uWrVq6ciRI3ryySd14sQJffrpp/buXp64ZQ8oQTLiNtm8isu2AdxYSEiI9RUQECCLxWJ9f+HCBcXExCg4OFi+vr5q3Lixvv76a5vPV6lSRRMnTlTPnj3l7++vgQMHSpLeffdd65N0OnXqpBkzZuQYmfT555+rQYMG8vLy0u23367x48fr8uXL1u1KUqdOnWSxWKzvd+/erQcffFB+fn7y9/dXw4YNtWPHjuse39ChQzVq1Cjde++9hXPCAOAaZCTAeTlzTqpdu7b+85//qEOHDrrjjjvUsmVLTZ48WV988YV1P46MghQAAE7s/Pnzatu2reLj4/Xjjz8qOjpaHTp00NGjR23aTZ8+XXXr1tWPP/6oMWPGaPPmzXryySc1ZMgQJSQk6KGHHtLkyZNtPrNx40b17NlTQ4YM0b59+zRv3jwtXLjQ2m779u2SpAULFujkyZPW9zExMapQoYK2b9+unTt3atSoUXJ3dzfhbAAAAPzNGXNSSkqK/P395ebm+DfEOX4PAQDATatbt67q1q1rfT9x4kQtX75cK1eu1ODBg63LW7Zsqeeee876/qWXXlKbNm30/PPPS5KqV6+u77//XqtWrbK2GT9+vEaNGqVevXpJkm6//XZNnDhRL7zwgsaNG6eyZctKkgIDAxUSEmL93NGjRzVixAjVrFlTklStWrUiOHIAAIAbc7ac9Oeff2rixInWUVyOjhFSAAA4sfPnz+v555/XnXfeqcDAQPn6+mr//v05rvw1atTI5v2BAwd0zz332Cy79v3u3bs1YcIE+fr6Wl8DBgzQyZMndfHixev2afjw4erfv78iIyM1bdo0/fbbb7d4lAAAAAXnTDkpNTVV7dq1U61atew2SXtBUZACAMCJPf/881q+fLmmTJmijRs3KiEhQXXq1FF6erpNOx8fnwJv+/z58xo/frwSEhKsrz179ujgwYPy8vK67udeeeUV7d27V+3atdP69etVq1YtLV++vMD7BwAAuBXOkpPOnTun6Oho+fn5afny5cVmKgRu2QMAwIlt3rxZvXv3VqdOnSRdCUeHDx/O83M1atSwzmWQ7dr3DRo00IEDB1S1atXrbsfd3V2ZmZk5llevXl3Vq1fXsGHD1KNHDy1YsMDaRwAAADM4Q05KTU1VVFSUPD09tXLlyhsWuxwNBSkAAJxYtWrV9Nlnn6lDhw6yWCwaM2aMsrKy8vzcM888oxYtWmjGjBnq0KGD1q9frzVr1shisVjbjB07Vu3bt1elSpXUpUsXubi4aPfu3fr55581adIkSVeeIBMfH69mzZrJ09NTXl5eGjFihLp06aLw8HD997//1fbt29W5c+fr9iUpKUlJSUk6dOiQJGnPnj3y8/NTpUqVFBQUdItnCAAAlFTFPSelpqaqdevWunjxoj766COlpqYqNTVVklS2bFm5uroWwlkqOtyyB9jRtY8B5lHAAArbjBkzVLp0aTVt2lQdOnRQVFSUGjRokOfnmjVrprlz52rGjBmqW7eu4uLiNGzYMJurblFRUVq1apXWrl2rxo0b695779Ubb7yhypUrW9u8/vrrWrdunSpWrKj69evL1dVVf/31l3r27Knq1aurW7duatOmjcaPH3/dvsydO1f169fXgAEDJEktWrRQ/fr1tXLlyls4MwAcHRkJQFEr7jlp165d2rp1q/bs2aOqVasqNDTU+jp27Nitn6AiZjEMw7B3J+wlNTVVAQEB1sciAmbLLVy5Rzc3bX+Fua+i3DZgpkuXLikxMVHh4eHFasizGQYMGKBffvlFGzdutHdX8nSj3yPf/3njHMERmJktyEhA3shIN1ZccpIjZSRu2QMAALmaPn26HnroIfn4+GjNmjVatGiR3n77bXt3CwAAwO7ISbeOghRQDHBlDYA9bNu2TbGxsTp37pxuv/12zZo1S/3797d3twDAiowEwF7ISbeOghTgYG52jgQCGYDCtnTpUnt3AQCsyEgAHAk56dYV+qTm3333nTp06KCwsDBZLBatWLHCZr1hGBo7dqxCQ0Pl7e2tyMhIHTx40KbN6dOnFRMTI39/fwUGBqpfv346f/68TZuffvpJ9913n7y8vFSxYkXFxsYW9qEADquwJkPPbTtMtA4ARYecBBQtMhIAFB+FXpC6cOGC6tatqzlz5uS6PjY2VrNmzdLcuXO1detW+fj4KCoqSpcuXbK2iYmJ0d69e7Vu3TqtWrVK3333nQYOHGhdn/1ow8qVK2vnzp167bXX9Morr2j+/PmFfTjATSO0AACuRU4CyEgAgCsK/Za9Nm3aqE2bNrmuMwxDM2fO1Msvv6yHH35YkvTBBx8oODhYK1asUPfu3bV//37FxcVp+/btatSokSRp9uzZatu2raZPn66wsDAtXrxY6enpev/99+Xh4aG77rpLCQkJmjFjhk0gA0oywh0AOB5yEmB/ZCQAcAyFPkLqRhITE5WUlKTIyEjrsoCAADVp0kRbtmyRJG3ZskWBgYHWkCVJkZGRcnFx0datW61tWrRoIQ8PD2ubqKgoHThwQGfOnLnu/tPS0pSammrzAgAAcAT2zElkJAAAYDZTJzVPSkqSJAUHB9ssDw4Otq5LSkpSuXLlbNa7ubkpKCjIpk14eHiObWSvK126dK77nzp1qsaPH3/rBwKUMEwGCgBFz545iYwE3BwyEgDcPFNHSNnb6NGjlZKSYn0dO3bM3l0CAACwOzISAAAwm6kjpEJCQiRJp06dUmhoqHX5qVOnVK9ePWub5ORkm89dvnxZp0+ftn4+JCREp06dsmmT/T67TW48PT3l6el5y8cB5Ib5CGzldj64aggA12fPnERGQlEiI9kiIwHAFaYWpMLDwxUSEqL4+HhrsEpNTdXWrVv11FNPSZIiIiJ09uxZ7dy5Uw0bNpQkrV+/XllZWWrSpIm1zUsvvaSMjAy5u7tLktatW6caNWpc93Y9AABu1W875pm2rzsaPVGg9r1799aiRYsk/X0L1913360ePXqod+/ecnEpvoOi9+7dq7Fjx2rnzp06cuSI3njjDQ0dOtTe3Sp05CQAQHFlZkaSyElXe/fdd/XBBx/o559/liQ1bNhQU6ZM0T333GPnnuWt0M/6+fPnlZCQoISEBElXJuhMSEjQ0aNHZbFYNHToUE2aNEkrV67Unj171LNnT4WFhaljx46SpDvvvFPR0dEaMGCAtm3bps2bN2vw4MHq3r27wsLCJEmPPvqoPDw81K9fP+3du1effPKJ3nzzTQ0fPrywDwcAgGIjOjpaJ0+e1OHDh7VmzRo9+OCDGjJkiNq3b6/Lly/bu3s37eLFi7r99ts1bdq0G46ELg7ISQAA2Iez5qQNGzaoR48e+uabb7RlyxZVrFhRrVu31vHjx+3dtTwVekFqx44dql+/vurXry9JGj58uOrXr6+xY8dKkl544QU988wzGjhwoBo3bqzz588rLi5OXl5e1m0sXrxYNWvWVKtWrdS2bVs1b95c8+fPt64PCAjQ2rVrlZiYqIYNG+q5557T2LFjeZQxAKBE8/T0VEhIiMqXL68GDRroxRdf1Oeff641a9Zo4cKF1nZnz55V//79VbZsWfn7+6tly5bavXu3zba++OILNW7cWF5eXrrtttvUqVMn67ozZ86oZ8+eKl26tEqVKqU2bdro4MGDkqQLFy7I399fn376qc32VqxYIR8fH507d07p6ekaPHiwQkND5eXlpcqVK2vq1KnXPa7GjRvrtddeU/fu3Yv9bWXkJAAA7MNZc9LixYv19NNPq169eqpZs6bee+89ZWVlKT4+vhDOWtEq9Fv2HnjgARmGcd31FotFEyZM0IQJE67bJigoSEuWLLnhfu6++25t3LjxpvsJAEBJ0LJlS9WtW1efffaZ+vfvL0nq2rWrvL29tWbNGgUEBGjevHlq1aqVfv31VwUFBenLL79Up06d9NJLL+mDDz5Qenq6Vq9ebd1m7969dfDgQa1cuVL+/v4aOXKk2rZtq3379snHx0fdu3fXggUL1KVLF+tnst/7+flp+vTpWrlypZYuXapKlSrp2LFjJWYSbXISAACOwxlz0sWLF5WRkaGgoKDCO1FFxNQ5pAAAgPlq1qypn376SZK0adMmbdu2TcnJydbRRtOnT9eKFSv06aefauDAgZo8ebK6d++u8ePHW7dRt25dSbIGrM2bN6tp06aSrlyZq1ixolasWKGuXbuqf//+atq0qU6ePKnQ0FAlJydr9erV+vrrryVJR48eVbVq1dS8eXNZLBZVrlzZzNMBAABg5Ww5aeTIkQoLC1NkZOQtn5uiVnxn7gIAAPliGIYsFoskaffu3Tp//rzKlCkjX19f6ysxMVG//fabJCkhIUGtWrXKdVv79++Xm5ubdQJtSSpTpoxq1Kih/fv3S5Luuece3XXXXdbJQz/66CNVrlxZLVq0kHTlymFCQoJq1KihZ599VmvXri2yYwcAALgRZ8pJ06ZN08cff6zly5fb3O7vqBghBZiIxx4DsIf9+/crPDxc0pVJtUNDQ7Vhw4Yc7QIDAyVJ3t7et7zP/v37a86cORo1apQWLFigPn36WMNegwYNlJiYqDVr1ujrr79Wt27dFBkZmWM+BQAlBxkJgL04S06aPn26pk2bpq+//lp33333LffRDIyQAgDAia1fv1579uxR586dJV0JOUlJSXJzc1PVqlVtXrfddpukK/MPXW8izDvvvFOXL1/W1q1brcv++usvHThwQLVq1bIue+yxx3TkyBHNmjVL+/btU69evWy24+/vr3/+859699139cknn+g///mPTp8+XdiHDwAAcF3OkpNiY2M1ceJExcXFqVGjRjd9PszGCCkAAJxEWlqakpKSlJmZqVOnTikuLk5Tp05V+/bt1bNnT0lSZGSkIiIi1LFjR8XGxqp69eo6ceKEdYLORo0aady4cWrVqpXuuOMOde/eXZcvX9bq1as1cuRIVatWTQ8//LAGDBigefPmyc/PT6NGjVL58uX18MMPW/tSunRpPfLIIxoxYoRat26tChUqWNfNmDFDoaGhql+/vlxcXLRs2TKFhIRYrzxeKz09Xfv27bP+fPz4cSUkJMjX11dVq1YtuhMKAACchrPmpFdffVVjx47VkiVLVKVKFSUlJUmS9XZDR8YIKQAAnERcXJxCQ0NVpUoVRUdH65tvvtGsWbP0+eefy9XVVdKVp7itXr1aLVq0UJ8+fVS9enV1795dR44cUXBwsKQrT4JbtmyZVq5cqXr16qlly5batm2bdT8LFixQw4YN1b59e0VERMgwDK1evVru7u42/enXr5/S09PVt29fm+V+fn6KjY1Vo0aN1LhxYx0+fFirV6+Wi0vuseTEiROqX7++6tevr5MnT2r69OmqX7++9Wk4AAAAeXHWnPTOO+8oPT1dXbp0UWhoqPU1ffr0wjx9RcJi3OjZw04uNTVVAQEBSklJkb+/v727g2KuJM194B7dPMey/Bx/bp8DHM2lS5eUmJio8PDwYjEZpCP78MMPNWzYMJ04cUIeHh6m7vtGv0e+//PGOUJhIiORkeAcyEiFy145yZEyErfsATDNtYGM8AU4p4sXL+rkyZOaNm2annjiCdOLUQBQ3JCRgJKDnPQ3ClIACqwkXekEUHCxsbGaPHmyWrRoodGjR9u7OwBgGjISgLyQk/7GHFIAAKBQvfLKK8rIyFB8fLzDT6YJAABgJnLS3yhIAQAAAAAAwFQUpAAAAAAAAGAqClIAAOSiBD+E1inw+wMAoGjwHVu8OdLvj4IUAABXcXd3l3TlCSgovrJ/f9m/TwAAcGvISM7BkTIST9kDAOAqrq6uCgwMVHJysiSpVKlSslgsdu4V8sswDF28eFHJyckKDAyUq6urvbsEAIBTICMVb46YkShIAdfIz+N63aObm9ATAPYSEhIiSdbAheInMDDQ+nsEUDjISADISMWfI2UkClIAAFzDYrEoNDRU5cqVU0ZGhr27gwJyd3d3iKt+AAA4GzJS8eZoGYmCFHAT8nOFEEDx5+rq6lBf2gDg6MhIQMlARkJhYFJzAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKl4yh4Ah5Lb03nco5vboScAAACOg4wEwNkwQgoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMJWbvTsAoOTK7fHF+WnHI44BAIAzIyMBKAkoSKFEy++XPQAAQElDTgIAFCVu2QMAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVk5oDKHZym2SVp8oAAICSjowEoDhhhBQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATGWXglRmZqbGjBmj8PBweXt764477tDEiRNlGIa1jWEYGjt2rEJDQ+Xt7a3IyEgdPHjQZjunT59WTEyM/P39FRgYqH79+un8+fNmHw4AAEChICMBAICSwi4FqVdffVXvvPOO3nrrLe3fv1+vvvqqYmNjNXv2bGub2NhYzZo1S3PnztXWrVvl4+OjqKgoXbp0ydomJiZGe/fu1bp167Rq1Sp99913GjhwoD0OCQAA4JaRkQAAQElhMa6+5GaS9u3bKzg4WP/617+syzp37ixvb2999NFHMgxDYWFheu655/T8889LklJSUhQcHKyFCxeqe/fu2r9/v2rVqqXt27erUaNGkqS4uDi1bdtW//3vfxUWFpZnP1JTUxUQEKCUlBT5+/sXzcHCoWXEbbJ3F1BI3KOb27sLAIoJR/7+JyPBkZCTnAMZCUB+mf39b5cRUk2bNlV8fLx+/fVXSdLu3bu1adMmtWnTRpKUmJiopKQkRUZGWj8TEBCgJk2aaMuWLZKkLVu2KDAw0Bq0JCkyMlIuLi7aunWriUcDAABQOMhIAACgpHCzx05HjRql1NRU1axZU66ursrMzNTkyZMVExMjSUpKSpIkBQcH23wuODjYui4pKUnlypWzWe/m5qagoCBrm2ulpaUpLS3N+j41NbXQjgmOJ7erelwhAgA4MjISzEBGAgA4AruMkFq6dKkWL16sJUuWaNeuXVq0aJGmT5+uRYsWFel+p06dqoCAAOurYsWKRbo/AACAgiAjAQCAksIuBakRI0Zo1KhR6t69u+rUqaPHH39cw4YN09SpUyVJISEhkqRTp07ZfO7UqVPWdSEhIUpOTrZZf/nyZZ0+fdra5lqjR49WSkqK9XXs2LHCPjQAAICbRkYCAAAlhV0KUhcvXpSLi+2uXV1dlZWVJUkKDw9XSEiI4uPjretTU1O1detWRURESJIiIiJ09uxZ7dy509pm/fr1ysrKUpMmTXLdr6enp/z9/W1eAAAAjoKMBAAASgq7zCHVoUMHTZ48WZUqVdJdd92lH3/8UTNmzFDfvn0lSRaLRUOHDtWkSZNUrVo1hYeHa8yYMQoLC1PHjh0lSXfeeaeio6M1YMAAzZ07VxkZGRo8eLC6d++er6fHAAAAOBoyEgAAKCnsUpCaPXu2xowZo6efflrJyckKCwvTE088obFjx1rbvPDCC7pw4YIGDhyos2fPqnnz5oqLi5OXl5e1zeLFizV48GC1atVKLi4u6ty5s2bNmmWPQwIAALhlZCQAAFBSWAzDMOzdCXtJTU1VQECAUlJSGJruhHJ7ggycF08HApBffP/njXPk3MhIJQsZCUB+mf39b5c5pAAAAAAAAFByUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAquzxlDwAK27UTtDKBJwAAABkJgOOiIAWgxCCQAQAA5ERGAmAP3LIHAAAAAAAAU1GQAgAAAAAAgKm4ZQ9O49qhxs7o8Nk1OZZVCWxjh54AAIDigowEAHBEjJACAAAAAACAqRghBVzHtVfauMoGAABARgIAFA4KUoCDym3oOfKvJNyeAABASURGujVkJACOgoIUUMSY0wAAACAnMhIAlGwUpFAscWXn+gh3AACUXGSk6yMjAYBjoSAFFDKGkQMAAORERgIAXI2n7AEAAAAAAMBUjJAClL8rdo46zLsorzY66jEDAABzkJHyv21HOGYAKE4oSAElAKEJAAAgJzISANgPt+wBAAAAAADAVIyQAhwEE30CAADkREYCAOfECCkAAAAAAACYihFSgB1wpQ8AACAnMhIAlByMkAIAAAAAAICpGCEF3AKu4gEAAORERgIA5IURUgAAAAAAADAVBSkAAAAAAACYilv2UOIwhBwAACB35CQAgFkYIQUAAAAAAABTMUIKQImVEbcpxzL36OZ26AkAAIDjICMBMAMFKQAFcu1Q/iqBbezUEwAAAMdBRgKAgqEghWIrtzkO+OIHAACgOAIAcHwUpOBUKFIBAADkREYCADgaClJwejwtJn84T1dcO2cC8yUAAJwV3/35w3m6gnmlABQ2nrIHAAAAAAAAU1GQAgAAAAAAgKm4ZQ8ooRh+fvMYsg4AgPMiI908MhKAgmCEFAAAAAAAAEzFCCkUC7ldbQEAACjpyEgAgOKKghSKDYZPAwAA5ERGAgAUR9yyBwAAAAAAAFMxQgrALcntqmyVwDZ26AkAAIDjICMBwI0xQgoAAAAAAACmYoQU7IpHwwIAAOTu2pxERgIAOBMKUgAKHUPUAQAAciIjAcDfKEgBwA3wOG0AAIDckZMA3ArmkAIAAAAAAICpKEgBAAAAAADAVHYrSB0/flyPPfaYypQpI29vb9WpU0c7duywrjcMQ2PHjlVoaKi8vb0VGRmpgwcP2mzj9OnTiomJkb+/vwIDA9WvXz+dP3/e7ENBIcuI25TjheLv8Nk1Ni8AQO7ISLgeMpJzIiMBKKnsUpA6c+aMmjVrJnd3d61Zs0b79u3T66+/rtKlS1vbxMbGatasWZo7d662bt0qHx8fRUVF6dKlS9Y2MTEx2rt3r9atW6dVq1bpu+++08CBA+1xSAAAALeMjAQAAEoKi2EYhtk7HTVqlDZv3qyNGzfmut4wDIWFhem5557T888/L0lKSUlRcHCwFi5cqO7du2v//v2qVauWtm/frkaNGkmS4uLi1LZtW/33v/9VWFhYnv1ITU1VQECAUlJS5O/vX3gHiHwryJU9rhg5F2d7ogyP4gaKD0f+/icj4Wr5zUlkJOdCRgJgL2Z//9tlhNTKlSvVqFEjde3aVeXKlVP9+vX17rvvWtcnJiYqKSlJkZGR1mUBAQFq0qSJtmzZIknasmWLAgMDrUFLkiIjI+Xi4qKtW7eadzAoEtcOXSZolQz83gGUdGQk5IXvypKJ3zsAZ2SXgtTvv/+ud955R9WqVdNXX32lp556Ss8++6wWLVokSUpKSpIkBQcH23wuODjYui4pKUnlypWzWe/m5qagoCBrm2ulpaUpNTXV5gUAAOAoyEgAAKCkcLPHTrOystSoUSNNmTJFklS/fn39/PPPmjt3rnr16lVk+506darGjx9fZNsHUPRyuyLobEPbAZRcZCQAN4uMBKC4scsIqdDQUNWqVctm2Z133qmjR49KkkJCQiRJp06dsmlz6tQp67qQkBAlJyfbrL98+bJOnz5tbXOt0aNHKyUlxfo6duxYoRwPgIJj6DkA5ERGAkBGAlBS2KUg1axZMx04cMBm2a+//qrKlStLksLDwxUSEqL4+Hjr+tTUVG3dulURERGSpIiICJ09e1Y7d+60tlm/fr2ysrLUpEmTXPfr6ekpf39/mxcAAICjICMBAICSwi637A0bNkxNmzbVlClT1K1bN23btk3z58/X/PnzJUkWi0VDhw7VpEmTVK1aNYWHh2vMmDEKCwtTx44dJV25WhgdHa0BAwZo7ty5ysjI0ODBg9W9e/d8PT0GAADA0ZCRAABASWGXglTjxo21fPlyjR49WhMmTFB4eLhmzpypmJgYa5sXXnhBFy5c0MCBA3X27Fk1b95ccXFx8vLysrZZvHixBg8erFatWsnFxUWdO3fWrFmz7HFIAAAAt4yMBAAASgqLYRiGvTthL6mpqQoICFBKSgpD0+0kI25Trsu5Vx7Zrp2Ms7hM2Oke3dzeXQBwHXz/541z5Bhyy0lkJGQjIwEobGZ//9tlDikAAAAAAACUXHa5ZQ8A8osrwQAAADmRkQAUd4yQAgAAAAAAgKkYIQVTXW/OKAAAgJKMjAQAKGkoSAEo9q4dsu4IE3jm9j8WTOIJAADM5IgTnZORAGTjlj0AAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKZiDikATscR50sAAABwBI449yaAkokRUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwlZu9OwAAZjh8dk2OZVUC29ihJ3/LiNuUY5l7dHM79AQAAJRUZCQA9kJBCg4hty9CAACAko6MBABwVhSkAMCBcYUQAAAgd9fmJDISULwwhxQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFMxhxQAOJDc5owCAAAo6chIgPNhhBQAAAAAAABMxQgpFJnrXcXg8cVwFNf+W6wS2KZI98eVPQCAREaC48vt32JR5iQyElAyUZACgP9ndvgCAAAoLsy+kAfA+VGQAoACIpABAADkxMU9AAXBHFIAAAAAAAAwFQUpAAAAAAAAmIpb9lCkmJwTAAAgJzISAKCkY4QUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTMYcUANwAc3wAAADkREYCcKsYIQUAAAAAAABTUZACAAAAAACAqbhlD4UmI24TQ3cBAACuQUYCACAnRkgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYiknNAaAI5DZ5bZXANnboCQAAgOMgIwHIxggpAAAAAAAAmIqCFAAAAAAAAEzFLXsA4AQy4jbZvHePbm6nngAAADgOMhLguOw+QmratGmyWCwaOnSoddmlS5c0aNAglSlTRr6+vurcubNOnTpl87mjR4+qXbt2KlWqlMqVK6cRI0bo8uXLJvceAK7MhXDtCwAKAzkJQHFHRgJwPXYdIbV9+3bNmzdPd999t83yYcOG6csvv9SyZcsUEBCgwYMH65FHHtHmzZslSZmZmWrXrp1CQkL0/fff6+TJk+rZs6fc3d01ZcoUexwKAJjm2it9AJwTOQkACoaMBBQvdhshdf78ecXExOjdd99V6dKlrctTUlL0r3/9SzNmzFDLli3VsGFDLViwQN9//71++OEHSdLatWu1b98+ffTRR6pXr57atGmjiRMnas6cOUpPT7fXIQEAABQKchIAAHB2ditIDRo0SO3atVNkZKTN8p07dyojI8Nmec2aNVWpUiVt2bJFkrRlyxbVqVNHwcHB1jZRUVFKTU3V3r17zTkAAACAIkJOAgAAzs4ut+x9/PHH2rVrl7Zv355jXVJSkjw8PBQYGGizPDg4WElJSdY2V4es7PXZ664nLS1NaWlp1vepqak3ewgAAABFwh45iYwEAADMZnpB6tixYxoyZIjWrVsnLy8vU/c9depUjR8/3tR9OrPfdsyzeZ919qidegIAgHOwV04iIxUuMhIAAHkz/Za9nTt3Kjk5WQ0aNJCbm5vc3Nz07bffatasWXJzc1NwcLDS09N19uxZm8+dOnVKISEhkqSQkJAcT5PJfp/dJjejR49WSkqK9XXs2LHCPTgAAIBbYK+cREYCAABmM70g1apVK+3Zs0cJCQnWV6NGjRQTE2P92d3dXfHx8dbPHDhwQEePHlVERIQkKSIiQnv27FFycrK1zbp16+Tv769atWpdd9+enp7y9/e3eQEAADgKe+UkMhIAADCb6bfs+fn5qXbt2jbLfHx8VKZMGevyfv36afjw4QoKCpK/v7+eeeYZRURE6N5775UktW7dWrVq1dLjjz+u2NhYJSUl6eWXX9agQYPk6elp9iEBAAAUCnISAAAoKewyqXle3njjDbm4uKhz585KS0tTVFSU3n77bet6V1dXrVq1Sk899ZQiIiLk4+OjXr16acKECXbsNQAAQNEjJwEAAGdgMQzDsHcn7CU1NVUBAQFKSUlhaPpNyDFh5yEm7ARupEpgG9P25R7d3LR9AcUN3/954xzdGjISUDBkJMAxmP39b/ocUgAAAAAAACjZHPKWPTiejLhNNu+5sgA4tmv/m5X47xYAigIZCSheyEiA42CEFAAAAAAAAEzFCCnclIy4Tco6y3wIAAAAVyMjAQCQPxSkAKCE4LYSAACAnMhIgH1QkAIAOzl8dk2OZWY+ZQYAAMARkZGAkoE5pAAAAAAAAGAqClIAAAAAAAAwFbfsAYADYYg6AABATmQkwPkwQgoAAAAAAACmYoQU8iW3KxIACob/jgDA+fC3Hbh1/HcElEyMkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVk5oDgIO7dqJPHnEMAABARgKKOwpSyNVvO+bZuwsAriO3J9EQwADAHGQkwHGRkYDihVv2AAAAAAAAYCpGSAGAE+CKIAAAQE5kJMBxUZACgBIqI25Tnm3co5ub0BMAAADHkZ+MJJGTgFtFQQoAnBQTfQIAAORERgIcA3NIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFXNIIYeMuE3KOnvU3t0AAABwKGQkAAAKDyOkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKbiKXsAUEIcPrsmx7IqgW0KvJ2MuE05lrlHN7+pPgEAANgbGQmwD0ZIAQAAAAAAwFQUpAAAAAAAAGAqbtkDANiwGbb+8ZqbGrIOAADgbK69ta9KnJ06AjgJRkgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVc0gBQAmW22OO89OGeaUAAIAzIyMBRY8RUgAAAAAAADAVBSkAAAAAAACYilv2AACFLiNuU45l7tHN7dATAAAAx0FGAv5GQaqEy4jblK/7owEgL7/tmGf9OevsUeZQAFDsHfz4JXt3AYATICMBueOWPQAAAAAAAJiKEVIAgFuWEbdJWWeP2rsbAAAADoWMBFwfI6QAAAAAAABgKkZIlTC5TaIHAABQ0pGRAAAwFyOkAAAAAAAAYCq7FKSmTp2qxo0by8/PT+XKlVPHjh114MABmzaXLl3SoEGDVKZMGfn6+qpz5846deqUTZujR4+qXbt2KlWqlMqVK6cRI0bo8uXLZh4KACCfMuI22bwA5ERGAoCSh4yEksout+x9++23GjRokBo3bqzLly/rxRdfVOvWrbVv3z75+PhIkoYNG6Yvv/xSy5YtU0BAgAYPHqxHHnlEmzdvliRlZmaqXbt2CgkJ0ffff6+TJ0+qZ8+ecnd315QpU+xxWABQYhw+u8beXQCcEhkJAIo3MhKQfxbDMAx7d+KPP/5QuXLl9O2336pFixZKSUlR2bJltWTJEnXp0kWS9Msvv+jOO+/Uli1bdO+992rNmjVq3769Tpw4oeDgYEnS3LlzNXLkSP3xxx/y8PDIc7+pqakKCAhQSkqK/P39i/QYHUVuFXf+aAIoClUC29xwvXt0c5N6AtgqTt//ZCTzkJEAmIWMBEdl9ve/Q8whlZKSIkkKCgqSJO3cuVMZGRmKjIy0tqlZs6YqVaqkLVu2SJK2bNmiOnXqWIOWJEVFRSk1NVV79+41sfcAAABFg4wEAACcld2fspeVlaWhQ4eqWbNmql27tiQpKSlJHh4eCgwMtGkbHByspKQka5urg1b2+ux1uUlLS1NaWpr1fWpqamEdRrHBlT4AAIoHMpK5yEgAAJjL7gWpQYMG6eeff9amTUU/edvUqVM1fvz4It8PACBvud0ewxB14G9kJAAomchIKCnsesve4MGDtWrVKn3zzTeqUKGCdXlISIjS09N19uxZm/anTp1SSEiItc21T5TJfp/d5lqjR49WSkqK9XXs2LFCPBoAAIDCQUYCAADOzi4FKcMwNHjwYC1fvlzr169XeHi4zfqGDRvK3d1d8fHx1mUHDhzQ0aNHFRERIUmKiIjQnj17lJycbG2zbt06+fv7q1atWrnu19PTU/7+/jYvAEDROHx2TY4XgBsjIwGA8yMjAVfY5Za9QYMGacmSJfr888/l5+dnnc8gICBA3t7eCggIUL9+/TR8+HAFBQXJ399fzzzzjCIiInTvvfdKklq3bq1atWrp8ccfV2xsrJKSkvTyyy9r0KBB8vT0tMdhAQBu0bVD1BmejpKGjAQAyA238cEZ2aUg9c4770iSHnjgAZvlCxYsUO/evSVJb7zxhlxcXNS5c2elpaUpKipKb7/9trWtq6urVq1apaeeekoRERHy8fFRr169NGHCBLMOAwAAoFCRkQAAQElhMQzDsHcn7CU1NVUBAQFKSUlx2qHpv+2YZ/M+69BRO/UEAKQqgW0K1J4rfygKJeH7/1aVhHNERgLgSAqakSRyEgqf2d//dn/KHgAAV7t6HgWXHXslSXc0esJe3QEAAHAI18415bJjLxkJxRoFKSeWEbdJWWe52gcAAHA1MhIAAPZHQQoAYFc3erJM9i00GX/+PZEnw9MBAEBJkNfT97IOHSUjoVijIAUAMA2PNQYAAMiJjISSyMXeHQAAAAAAAEDJwggpAECxkhG3KccyhqgDAICSjoyE4oaCFACg2Ls2gBG+AAAAyEhwbNyyBwAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVMwhBQBwOkzqCQAAkBMZCY6EghQAwCkcPrsmx7IqgW3s0BMAAADHQUaCo+KWPQAAAAAAAJiKEVIAAIdXGFf2eOwxAABwNmQkFGcUpJzIwY9fsncXAMA0uQUwAMgNGQlASUJGQnHBLXsAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAEzFHFIAgBIle14Flx17JUl3NHrCnt0BAABwCGQkmI2CVDH124559u4CAACAwyEjAQBQPFCQAgA4rRs9ZSbr0FFJUsafm67bhsceAwAAZ3SrGUkiJ+HWMYcUAAAAAAAATMUIqWIqu2oNAACAv5GRAAAoHhghBQAAAAAAAFMxQgoAUKLlNodClcA2dugJAACA4yAjoahRkComeGIMAJiHxx4DxQcZCQDMc3WRipyEW0VBCgCA68jtKTM8UQYAACBnTiIjoaAoSAEAUAAZcTkfgUwAAwAAJR0ZCQVFQQoAgEJy7a1DDGEHAADI/fZqchIoSAEAcIuyrwhmnb0ydN2laiV7dgcAAMAhkJFwIxSkAADIA0+ZAQAAyN21OYmMhPyiIAUAgAmunVeBORUAAADISCUZBaliIvsJBgAAx5DbqKlsuT2dD0DRICMBgGPJT0aSyEmQXOzdAQAAAAAAAJQsjJACAMBE1quGH/999TB7rgWGqAMAgJKKjFTyUJACAKCI3GjIem7tXHbslcRjkAEAgPPLT066NiNJ5CRnwi17AAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxRxSAAA4iOxHIRf0MchM9AkAAJxZdkaSCpaTyEiOjYKUAzr48Uv27gIAAIDDISMBAOA8KEgBAFAM3OhJNDydDwAAlFRkpOKLghQAAA4mP49BvpGMuJxD2RmyDgAAnMGt5CQykmOhIGVnuf0HAQBAQdzs3FOAoyMnAQBuBRnJsVGQAgCghPltxzyb9wxjBwAAICOZjYKUnd3qbRkAANyI9XvmY9vvG5eqlezQGyD/ftsxT1lnj+bdEACAm0BGsj8KUiZj6DkAoKgU5CLH1Y9PPngo55PLqgS2YU4FmOrajEQxCgBQWMhIjqnYF6TmzJmj1157TUlJSapbt65mz56te+65x97dui5GRAEAioPDZ9dYn0yTjWHrxQsZCQCAwkdGKjzFuiD1ySefaPjw4Zo7d66aNGmimTNnKioqSgcOHFC5cuXs3T0AAIq1q68QSlcmBL36iuC18yxIBDJHQUYCAKDokJEKh8UwDMPenbhZTZo0UePGjfXWW29JkrKyslSxYkU988wzGjVqVJ6fT01NVUBAgFJSUuTv71/U3ZUkHfw455A/AACKgyqBbWzeZ49oKehcC/YOZPb4/jcbGQkAAPOQkW5OsR0hlZ6erp07d2r06NHWZS4uLoqMjNSWLVty/UxaWprS0tKs71NSUiRdOelF4fdd7+dYZlxMy6UlAACO7+eLK3Jf8dPBPD9rub2C9eei+t7Nr+z9F+NrcjdERgIAwFxkpJtTbAtSf/75pzIzMxUcHGyzPDg4WL/88kuun5k6darGjx+fY3nFihWLpI8AACA3w+zdAUnSuXPnFBAQYO9uFDoyEgAAxVXJykjFtiB1M0aPHq3hw4db32dlZen06dMqU6aMLBZLoewjNTVVFStW1LFjx5z2NoBbxTnKG+cofzhPeeMc5Y1zlDdnO0eGYejcuXMKCwuzd1ccBhnJMXCO8sY5yh/OU944R3njHOXN2c6R2Rmp2BakbrvtNrm6uurUqVM2y0+dOqWQkJBcP+Pp6SlPT0+bZYGBgUXSP39/f6f4B1mUOEd54xzlD+cpb5yjvHGO8uZM58gZR0ZlIyMVf5yjvHGO8ofzlDfOUd44R3lzpnNkZkZyMW1PhczDw0MNGzZUfHy8dVlWVpbi4+MVERFhx54BAADYDxkJAAAUB8V2hJQkDR8+XL169VKjRo10zz33aObMmbpw4YL69Olj764BAADYDRkJAAA4umJdkPrnP/+pP/74Q2PHjlVSUpLq1aunuLi4HJN4msnT01Pjxo3LMewdf+Mc5Y1zlD+cp7xxjvLGOcob56j4ISMVT5yjvHGO8ofzlDfOUd44R3njHN0ai+GszzwGAAAAAACAQyq2c0gBAAAAAACgeKIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkCtGcOXNUpUoVeXl5qUmTJtq2bZu9u+RQpk6dqsaNG8vPz0/lypVTx44ddeDAAXt3y6FNmzZNFotFQ4cOtXdXHMrx48f12GOPqUyZMvL29ladOnW0Y8cOe3fLYWRmZmrMmDEKDw+Xt7e37rjjDk2cOFEl/RkW3333nTp06KCwsDBZLBatWLHCZr1hGBo7dqxCQ0Pl7e2tyMhIHTx40D6dtZMbnaOMjAyNHDlSderUkY+Pj8LCwtSzZ0+dOHHCfh1GsUFGujEyUsGRkXJHRroxMlLuyEh5IyMVDQpSheSTTz7R8OHDNW7cOO3atUt169ZVVFSUkpOT7d01h/Htt99q0KBB+uGHH7Ru3TplZGSodevWunDhgr275pC2b9+uefPm6e6777Z3VxzKmTNn1KxZM7m7u2vNmjXat2+fXn/9dZUuXdreXXMYr776qt555x299dZb2r9/v1599VXFxsZq9uzZ9u6aXV24cEF169bVnDlzcl0fGxurWbNmae7cudq6dat8fHwUFRWlS5cumdxT+7nRObp48aJ27dqlMWPGaNeuXfrss8904MAB/eMf/7BDT1GckJHyRkYqGDJS7shIeSMj5Y6MlDcyUhExUCjuueceY9CgQdb3mZmZRlhYmDF16lQ79sqxJScnG5KMb7/91t5dcTjnzp0zqlWrZqxbt864//77jSFDhti7Sw5j5MiRRvPmze3dDYfWrl07o2/fvjbLHnnkESMmJsZOPXI8kozly5db32dlZRkhISHGa6+9Zl129uxZw9PT0/j3v/9thx7a37XnKDfbtm0zJBlHjhwxp1MolshIBUdGuj4y0vWRkfJGRsobGSlvZKTCwwipQpCenq6dO3cqMjLSuszFxUWRkZHasmWLHXvm2FJSUiRJQUFBdu6J4xk0aJDatWtn828KV6xcuVKNGjVS165dVa5cOdWvX1/vvvuuvbvlUJo2bar4+Hj9+uuvkqTdu3dr06ZNatOmjZ175rgSExOVlJRk899cQECAmjRpwt/xG0hJSZHFYlFgYKC9uwIHRUa6OWSk6yMjXR8ZKW9kpIIjI90cMlL+uNm7A87gzz//VGZmpoKDg22WBwcH65dffrFTrxxbVlaWhg4dqmbNmql27dr27o5D+fjjj7Vr1y5t377d3l1xSL///rveeecdDR8+XC+++KK2b9+uZ599Vh4eHurVq5e9u+cQRo0apdTUVNWsWVOurq7KzMzU5MmTFRMTY++uOaykpCRJyvXvePY62Lp06ZJGjhypHj16yN/f397dgYMiIxUcGen6yEg3RkbKGxmp4MhIBUdGyj8KUrCLQYMG6eeff9amTZvs3RWHcuzYMQ0ZMkTr1q2Tl5eXvbvjkLKystSoUSNNmTJFklS/fn39/PPPmjt3LmHr/y1dulSLFy/WkiVLdNdddykhIUFDhw5VWFgY5wiFIiMjQ926dZNhGHrnnXfs3R3AqZCRckdGyhsZKW9kJBQ1MlLBcMteIbjtttvk6uqqU6dO2Sw/deqUQkJC7NQrxzV48GCtWrVK33zzjSpUqGDv7jiUnTt3Kjk5WQ0aNJCbm5vc3Nz07bffatasWXJzc1NmZqa9u2h3oaGhqlWrls2yO++8U0ePHrVTjxzPiBEjNGrUKHXv3l116tTR448/rmHDhmnq1Kn27prDyv5bzd/xvGUHrSNHjmjdunVc+cMNkZEKhox0fWSkvJGR8kZGKjgyUv6RkQqOglQh8PDwUMOGDRUfH29dlpWVpfj4eEVERNixZ47FMAwNHjxYy5cv1/r16xUeHm7vLjmcVq1aac+ePUpISLC+GjVqpJiYGCUkJMjV1dXeXbS7Zs2a5XgU9q+//qrKlSvbqUeO5+LFi3Jxsf3z7urqqqysLDv1yPGFh4crJCTE5u94amqqtm7dyt/xq2QHrYMHD+rrr79WmTJl7N0lODgyUv6QkfJGRsobGSlvZKSCIyPlDxnp5nDLXiEZPny4evXqpUaNGumee+7RzJkzdeHCBfXp08feXXMYgwYN0pIlS/T555/Lz8/Pes9xQECAvL297dw7x+Dn55djvggfHx+VKVOGeST+37Bhw9S0aVNNmTJF3bp107Zt2zR//nzNnz/f3l1zGB06dNDkyZNVqVIl3XXXXfrxxx81Y8YM9e3b195ds6vz58/r0KFD1veJiYlKSEhQUFCQKlWqpKFDh2rSpEmqVq2awsPDNWbMGIWFhaljx47267TJbnSOQkND1aVLF+3atUurVq1SZmam9e94UFCQPDw87NVtODgyUt7ISHkjI+WNjJQ3MlLuyEh5IyMVEfs+5M+5zJ4926hUqZLh4eFh3HPPPcYPP/xg7y45FEm5vhYsWGDvrjk0Hmmc0xdffGHUrl3b8PT0NGrWrGnMnz/f3l1yKKmpqcaQIUOMSpUqGV5eXsbtt99uvPTSS0ZaWpq9u2ZX33zzTa5/g3r16mUYxpXHGo8ZM8YIDg42PD09jVatWhkHDhywb6dNdqNzlJiYeN2/49988429uw4HR0a6MTLSzSEj5URGujEyUu7ISHkjIxUNi2EYRtGUugAAAAAAAICcmEMKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpACYymKxaPDgwfbuhqmWLl2qoKAgnT9/Ps+2FotFr7zyis2y7du3q2nTpvLx8ZHFYlFCQkK+952RkaGKFSvq7bffLmCvAQCAmchIN0ZGApwPBSkAKEKZmZkaN26cnnnmGfn6+hb48xkZGeratatOnz6tN954Qx9++KEqV66skydPatSoUXrwwQfl5+cni8WiDRs25Pi8u7u7hg8frsmTJ+vSpUuFcEQAAAC3rqgyUnx8vPr27avq1aurVKlSuv3229W/f3+dPHnS5vNkJMD+KEgBQBH64osvdODAAQ0cOPCmPv/bb7/pyJEjev755zVw4EA99thjKl26tA4cOKBXX31Vx48fV506dW64jT59+ujPP//UkiVLbqoPAAAAha2oMtLIkSO1YcMGderUSbNmzVL37t21dOlS1a9fX0lJSTbbICMB9kVBCkAOFy5csHcXnMaCBQvUrFkzlS9f/qY+n5ycLEkKDAy0Wd6wYUP99ddf+vXXXzV8+PAbbiMwMFCtW7fWwoULb6oPAADgCjJS4SmqjDRjxgwdOnRIr776qvr3768pU6Zo1apVOnXqlN566y2btmQkwL4oSAEl3CuvvCKLxaJ9+/bp0UcfVenSpdW8eXNJ0k8//aTevXvr9ttvl5eXl0JCQtS3b1/99ddfuW7j0KFD6t27twIDAxUQEKA+ffro4sWLefZh0qRJcnFx0ezZs/Pd7ypVqqh9+/basGGDGjVqJG9vb9WpU8d629pnn32mOnXqyMvLSw0bNtSPP/5o8/n8HNv//vc/1axZUzVr1tT//vc/6/LTp08rNDRUTZs2VWZm5nX7eOnSJcXFxSkyMjLHurS0NA0bNkxly5aVn5+f/vGPf+i///2vTZvevXvr/vvvlyR17dpVFotFDzzwgCTJz89PQUFB+T5fDz30kDZt2qTTp0/n+zMAAJRkZKTimZFatGghFxfb/81t0aKFgoKCtH///hz7IyMB9uNm7w4AcAxdu3ZVtWrVNGXKFBmGIUlat26dfv/9d/Xp00chISHau3ev5s+fr7179+qHH36QxWKx2Ua3bt0UHh6uqVOnateuXXrvvfdUrlw5vfrqq9fd78svv6wpU6Zo3rx5GjBgQIH6fOjQIT366KN64okn9Nhjj2n69Onq0KGD5s6dqxdffFFPP/20JGnq1Knq1q2bDhw4YA0o+Tk2b29vLVq0SM2aNdNLL72kGTNmSJIGDRqklJQULVy4UK6urtft386dO5Wenq4GDRrkWNe/f3999NFHevTRR9W0aVOtX79e7dq1s2nzxBNPqHz58poyZYqeffZZNW7cWMHBwQU6R9kaNmwowzD0/fffq3379je1DQAASiIyUvHPSOfPn9f58+d122235VhHRgLsyABQoo0bN86QZPTo0SPHuosXL+ZY9u9//9uQZHz33Xc5ttG3b1+btp06dTLKlCljs0ySMWjQIMMwDOO5554zXFxcjIULFxa435UrVzYkGd9//7112VdffWVIMry9vY0jR45Yl8+bN8+QZHzzzTcFPjbDMIzRo0cbLi4uxnfffWcsW7bMkGTMnDkzzz6+9957hiRjz549NssTEhIMScbTTz9ts/zRRx81JBnjxo2zLvvmm28MScayZcuuu5/sPl19fNc6ceKEIcl49dVX8+w3AAAgI+V1bIbh+Bkp28SJEw1JRnx8fI51ZCTAfrhlD4Ak6cknn8yxzNvb2/rzpUuX9Oeff+ree++VJO3atSvPbdx3333666+/lJqaarPcMAwNHjxYb775pj766CP16tXrpvpcq1YtRUREWN83adJEktSyZUtVqlQpx/Lff//9po7tlVde0V133aVevXrp6aef1v33369nn302z/5lD20vXbq0zfLVq1dLUo5tDB06NM9t3qzsPvz5559Ftg8AAJwRGal4Z6TvvvtO48ePV7du3dSyZcsc68lIgP1QkAIgSQoPD8+x7PTp0xoyZIiCg4Pl7e2tsmXLWtulpKTkaH91wJH+/oI/c+aMzfIPPvhAc+bM0ezZs9WjR4+b7vO1+wsICJAkVaxYMdflV/ejIMfm4eGh999/X4mJiTp37pwWLFiQYyj+jRj/P7w/25EjR+Ti4qI77rjDZnmNGjXyvc2Cyu5DQfoNAADISMU5I/3yyy/q1KmTateurffee++GfSAjAeZjDikAkmyvhmXr1q2bvv/+e40YMUL16tWTr6+vsrKyFB0draysrBztrzdXwLVho1mzZkpISNBbb72lbt26FWhy7vzsLz/9KOixffXVV5KuXCk8ePBgruH0WmXKlJF0JeRVqFAhz/ZFKTto5jZ3AgAAuD4yUvHMSMeOHVPr1q0VEBCg1atXy8/PL9d2ZCTAfihIAcjVmTNnFB8fr/Hjx2vs2LHW5QcPHrzlbVetWlWxsbF64IEHFB0drfj4+OuGhKJQ0GP76aefNGHCBPXp00cJCQnq37+/9uzZY72qeD01a9aUJCUmJqpOnTrW5ZUrV1ZWVpZ+++03myt+Bw4cuJXDuqHExERJ0p133llk+wAAoCQgI/3NUTPSX3/9pdatWystLU3x8fEKDQ29blsyEmA/3LIHIFfZV9CuvXI3c+bMQtn+3XffrdWrV2v//v3q0KGDzSODi1pBji0jI0O9e/dWWFiY3nzzTS1cuFCnTp3SsGHD8txPw4YN5eHhoR07dtgsb9OmjSRp1qxZee6/sOzcuVMWi8VmPgkAAFBwZKQrHDUjXbhwQW3bttXx48e1evVqVatW7YbtyUiA/TBCCkCu/P391aJFC8XGxiojI0Ply5fX2rVrrVeRCsO9996rzz//XG3btlWXLl20YsUKubu7F9r2r6cgxzZp0iQlJCRYr1DefffdGjt2rF5++WV16dJFbdu2ve5+vLy81Lp1a3399deaMGGCdXm9evXUo0cPvf3220pJSVHTpk0VHx+vQ4cOFeg4Jk2aJEnau3evJOnDDz/Upk2bJF15VPTV1q1bp2bNmlmHyAMAgJtDRrrCUTNSTEyMtm3bpr59+2r//v3av3+/dZ2vr686duxo056MBNgPBSkA17VkyRI988wzmjNnjgzDUOvWrbVmzRqFhYUV2j5atmyppUuXqnPnznr88ce1ZMkSubgU/eDN/Bzbrl27NGXKFA0ePFgPPvigdfmoUaP0+eefa8CAAdq7d68CAwOvu5++ffuqc+fOOnbsmM1Eou+//77Kli2rxYsXa8WKFWrZsqW+/PLLHJON3siYMWNs3r///vvWn68uSKWkpGjt2rV6++23871tAABwfWQkx81ICQkJ1u1cnY2kK7cEXl2QIiMB9mUxrh2PCQAoNJmZmapVq5a6deumiRMn2qUPM2fOVGxsrH777bdcJ2YFAAAwGxkJAHNIAUARcnV11YQJEzRnzhydP3/e9P1nZGRoxowZevnllwlaAADAYZCRADBCCoBD+eOPP5SZmXnd9R4eHjf9CGQAAIDiiowEwNlQkALgUKpUqaIjR45cd/3999+vDRs2mNchAAAAB0BGAuBsmNQcgENZvHjxDR9vXLp0aRN7AwAA4BjISACcDSOkAAAAAAAAYComNQcAAAAAAICpSvQte1lZWTpx4oT8/PxksVjs3R0AAGACwzB07tw5hYWFycWFa3O5ISMBAFDymJ2RSnRB6sSJE6pYsaK9uwEAAOzg2LFjqlChgr274ZDISAAAlFxmZaQSXZDy8/OTdOVk+/v727k3AADADKmpqapYsaI1ByAnMhIAACWP2RmpRBeksoeg+/v7E7YAAChhuBXt+shIAACUXGZlJCZOAAAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgqhI9hxQAANdjGIYuX76szMxMe3cFBeTq6io3NzfmiAIAoAiQkYovR8tIFKQAALhGenq6Tp48qYsXL9q7K7hJpUqVUmhoqDw8POzdFQAAnAYZqfhzpIxEQQoAgKtkZWUpMTFRrq6uCgsLk4eHh8NcRULeDMNQenq6/vjjDyUmJqpatWpycWGGAgAAbhUZqXhzxIxEQQoAgKukp6crKytLFStWVKlSpezdHdwEb29vubu768iRI0pPT5eXl5e9uwQAQLFHRir+HC0jcckQAIBc2PuKEW4Nvz8AAIoG37HFmyP9/hynJwAAAAAAACgRKEgBAAAAAADAVMwhBQBAPmXEbTJtX+7RzfPdNq8JRceNG6dXXnnlFnt0cywWi5YvX66OHTve9Dbmz5+vJUuWaNeuXTp37pzOnDmjwMDAQusjAAC4NWZmJImclO306dMaN26c1q5dq6NHj6ps2bLq2LGjJk6cqICAgMLtbBGgIAUAQDF38uRJ68+ffPKJxo4dqwMHDliX+fr6Fmh76enpDvEo4GwXL15UdHS0oqOjNXr0aHt3BwAAFCPOnJNOnDihEydOaPr06apVq5aOHDmiJ598UidOnNCnn35q7+7liVv2oIy4TTleAIDiIyQkxPoKCAiQxWKxvr9w4YJiYmIUHBwsX19fNW7cWF9//bXN56tUqaKJEyeqZ8+e8vf318CBAyVJ7777rvVJOp06ddKMGTNyjEz6/PPP1aBBA3l5een222/X+PHjdfnyZet2JalTp06yWCzW97t379aDDz4oPz8/+fv7q2HDhtqxY8d1j2/o0KEaNWqU7r333sI5YUA+kZEAoPhz5pxUu3Zt/ec//1GHDh10xx13qGXLlpo8ebK++OIL634cGQUpAACc2Pnz59W2bVvFx8frxx9/VHR0tDp06KCjR4/atJs+fbrq1q2rH3/8UWPGjNHmzZv15JNPasiQIUpISNBDDz2kyZMn23xm48aN6tmzp4YMGaJ9+/Zp3rx5WrhwobXd9u3bJUkLFizQyZMnre9jYmJUoUIFbd++XTt37tSoUaPk7u5uwtkAAAD4mzPmpJSUFPn7+8vNzfFviHP8HgIAgJtWt25d1a1b1/p+4sSJWr58uVauXKnBgwdbl7ds2VLPPfec9f1LL72kNm3a6Pnnn5ckVa9eXd9//71WrVplbTN+/HiNGjVKvXr1kiTdfvvtmjhxol544QWNGzdOZcuWlSQFBgYqJCTE+rmjR49qxIgRqlmzpiSpWrVqRXDkAAAAN+ZsOenPP//UxIkTraO4HB0jpAAAcGLnz5/X888/rzvvvFOBgYHy9fXV/v37c1z5a9Sokc37AwcO6J577rFZdu373bt3a8KECfL19bW+BgwYoJMnT+rixYvX7dPw4cPVv39/RUZGatq0afrtt99u8SgBAAAKzplyUmpqqtq1a6datWrZbZL2gqIgBQCAE3v++ee1fPlyTZkyRRs3blRCQoLq1Kmj9PR0m3Y+Pj4F3vb58+c1fvx4JSQkWF979uzRwYMH5eXldd3PvfLKK9q7d6/atWun9evXq1atWlq+fHmB9w8AAHArnCUnnTt3TtHR0fLz89Py5cuLzVQI3LIHAIAT27x5s3r37q1OnTpJuhKODh8+nOfnatSoYZ3LINu17xs0aKADBw6oatWq192Ou7u7MjMzcyyvXr26qlevrmHDhqlHjx5asGCBtY8AAABmcIaclJqaqqioKHl6emrlypU3LHY5GgpSAAA4sWrVqumzzz5Thw4dZLFYNGbMGGVlZeX5uWeeeUYtWrTQjBkz1KFDB61fv15r1qyRxWKxthk7dqzat2+vSpUqqUuXLnJxcdHu3bv1888/a9KkSZKuPEEmPj5ezZo1k6enp7y8vDRixAh16dJF4eHh+u9//6vt27erc+fO1+1LUlKSkpKSdOjQIUnSnj175Ofnp0qVKikoKOgWzxAAACipintOSk1NVevWrXXx4kV99NFHSk1NVWpqqiSpbNmycnV1LYSzVHS4ZQ8AACc2Y8YMlS5dWk2bNlWHDh0UFRWlBg0a5Pm5Zs2aae7cuZoxY4bq1q2ruLg4DRs2zOaqW1RUlFatWqW1a9eqcePGuvfee/XGG2+ocuXK1javv/661q1bp4oVK6p+/fpydXXVX3/9pZ49e6p69erq1q2b2rRpo/Hjx1+3L3PnzlX9+vU1YMAASVKLFi1Uv359rVy58hbODAAAKOmKe07atWuXtm7dqj179qhq1aoKDQ21vo4dO3brJ6iIWQzDMOzdCXtJTU1VQECA9bGIJVVG3KYcy9yjm9uhJwBgf5cuXVJiYqLCw8OL1ZBnMwwYMEC//PKLNm7caO+u5OlGv0e+//PGObqCjAQAfyMj3VhxyUmOlJG4ZQ8AAORq+vTpeuihh+Tj46M1a9Zo0aJFevvtt+3dLQAAALsjJ906ClIAACBX27ZtU2xsrM6dO6fbb79ds2bNUv/+/e3dLQAAALsjJ906ClIAACBXS5cutXcXAAAAHBI56dYxqTkAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFMxhxSKjWsfvcxjlwEAAHJmJImcBABwfIyQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKuaQAgAgn37bMc+0fd3R6IkCte/du7cWLVokSXJzc1NQUJDuvvtu9ejRQ71795aLS/G9BrV3716NHTtWO3fu1JEjR/TGG29o6NCh9u4WAAD4f2ZmJImcdLV3331XH3zwgX7++WdJUsOGDTVlyhTdc889du5Z3orvWQcAADaio6N18uRJHT58WGvWrNGDDz6oIUOGqH379rp8+bK9u3fTLl68qNtvv13Tpk1TSEiIvbsDAACKIWfNSRs2bFCPHj30zTffaMuWLapYsaJat26t48eP27treaIgBQCAk/D09FRISIjKly+vBg0a6MUXX9Tnn3+uNWvWaOHChdZ2Z8+eVf/+/VW2bFn5+/urZcuW2r17t822vvjiCzVu3FheXl667bbb1KlTJ+u6M2fOqGfPnipdurRKlSqlNm3a6ODBg5KkCxcuyN/fX59++qnN9lasWCEfHx+dO3dO6enpGjx4sEJDQ+Xl5aXKlStr6tSp1z2uxo0b67XXXlP37t3l6elZCGcKAACUNM6akxYvXqynn35a9erVU82aNfXee+8pKytL8fHxhXDWihYFKQAAnFjLli1Vt25dffbZZ9ZlXbt2VXJystasWaOdO3eqQYMGatWqlU6fPi1J+vLLL9WpUye1bdtWP/74o+Lj422Gfffu3Vs7duzQypUrtWXLFhmGobZt2yojI0M+Pj7q3r27FixYYNOPBQsWqEuXLvLz89OsWbO0cuVKLV26VAcOHNDixYtVpUoVU84HAABANmfMSRcvXlRGRoaCgoJu7eSYgDmkAABwcjVr1tRPP/0kSdq0aZO2bdum5ORk62ij6dOna8WKFfr00081cOBATZ48Wd27d9f48eOt26hbt64k6eDBg1q5cqU2b96spk2bSrpyZa5ixYpasWKFunbtqv79+6tp06Y6efKkQkNDlZycrNWrV+vrr7+WJB09elTVqlVT8+bNZbFYVLlyZTNPBwAAgJWz5aSRI0cqLCxMkZGRt3xuihojpAAAcHKGYchisUiSdu/erfPnz6tMmTLy9fW1vhITE/Xbb79JkhISEtSqVatct7V//365ubmpSZMm1mVlypRRjRo1tH//fknSPffco7vuuss6eehHH32kypUrq0WLFpKuXDlMSEhQjRo19Oyzz2rt2rVFduwAAAA34kw5adq0afr444+1fPlyeXl5FfxkmIwRUgAAOLn9+/crPDxcknT+/HmFhoZqw4YNOdoFBgZKkry9vW95n/3799ecOXM0atQoLViwQH369LGGvQYNGigxMVFr1qzR119/rW7duikyMjLHfAoAAABFzVly0vTp0zVt2jR9/fXXuvvuu2+5j2ZghBQAAE5s/fr12rNnjzp37izpSshJSkqSm5ubqlatavO67bbbJEl33333dSfCvPPOO3X58mVt3brVuuyvv/7SgQMHVKtWLeuyxx57TEeOHNGsWbO0b98+9erVy2Y7/v7++uc//6l3331Xn3zyif7zn/9Y52YAAAAwg7PkpNjYWE2cOFFxcXFq1KjRTZ8PszFCCgAAJ5GWlqakpCRlZmbq1KlTiouL09SpU9W+fXv17NlTkhQZGamIiAh17NhRsbGxql69uk6cOGGdoLNRo0YaN26cWrVqpTvuuEPdu3fX5cuXtXr1ao0cOVLVqlXTww8/rAEDBmjevHny8/PTqFGjVL58eT388MPWvpQuXVqPPPKIRowYodatW6tChQrWdTNmzFBoaKjq168vFxcXLVu2TCEhIdYrj9dKT0/Xvn37rD8fP35cCQkJ8vX1VdWqVYvuhAIAAKfhrDnp1Vdf1dixY7VkyRJVqVJFSUlJkmS93dCRFfoIqczMTI0ZM0bh4eHy9vbWHXfcoYkTJ8owDGsbwzA0duxYhYaGytvbW5GRkdbHIGY7ffq0YmJi5O/vr8DAQPXr10/nz5+3afPTTz/pvvvuk5eXlypWrKjY2NjCPhwAAIqNuLg4hYaGqkqVKoqOjtY333yjWbNm6fPPP5erq6skyWKxaPXq1WrRooX69Omj6tWrq3v37jpy5IiCg4MlSQ888ICWLVumlStXql69emrZsqW2bdtm3c+CBQvUsGFDtW/fXhERETIMQ6tXr5a7u7tNf/r166f09HT17dvXZrmfn59iY2PVqFEjNW7cWIcPH9bq1avl4pJ7LDlx4oTq16+v+vXr6+TJk5o+fbrq16+v/v37F+bpK3JkJAAA7MdZc9I777yj9PR0denSRaGhodbX9OnTC/P0FQ2jkE2ePNkoU6aMsWrVKiMxMdFYtmyZ4evra7z55pvWNtOmTTMCAgKMFStWGLt37zb+8Y9/GOHh4cb//vc/a5vo6Gijbt26xg8//GBs3LjRqFq1qtGjRw/r+pSUFCM4ONiIiYkxfv75Z+Pf//634e3tbcybNy/ffU1JSTEkGSkpKYVz8MVU+pqNOV6OqDj0EUDx97///c/Yt2+fzXcSbs4HH3xglClTxkhLSzN93zf6Pdrr+5+MVPwU14zkqP0EULyRkQqXvXKSI2WkQr9l7/vvv9fDDz+sdu3aSZKqVKmif//739aKoWEYmjlzpl5++WXrkLUPPvhAwcHBWrFihbp37679+/crLi5O27dvt97/OHv2bLVt21bTp09XWFiYFi9erPT0dL3//vvy8PDQXXfdpYSEBM2YMUMDBw4s7MMCAAD5dPHiRZ08eVLTpk3TE088IQ8PD3t3ySGQkQAAADnpb4V+y17Tpk0VHx+vX3/9VdKVxyZu2rRJbdq0kSQlJiYqKSlJkZGR1s8EBASoSZMm2rJliyRpy5YtCgwMtJmMKzIyUi4uLtbJwbZs2aIWLVrY/PKioqJ04MABnTlzprAPCwAA5FNsbKxq1qypkJAQjR492t7dcRhkJAAAQE76W6GPkBo1apRSU1NVs2ZNubq6KjMzU5MnT1ZMTIwkWSfYyr7/MltwcLB1XVJSksqVK2fbUTc3BQUF2bTJfjTj1dvIXle6dOkcfUtLS1NaWpr1fWpq6q0cKgAAyMUrr7yiV155xd7dcDhkJAAAQE76W6GPkFq6dKkWL16sJUuWaNeuXVq0aJGmT5+uRYsWFfauCmzq1KkKCAiwvipWrGjvLgEAgBKCjAQAAPC3Qi9IjRgxQqNGjVL37t1Vp04dPf744xo2bJimTp0qSQoJCZEknTp1yuZzp06dsq4LCQlRcnKyzfrLly/r9OnTNm1y28bV+7jW6NGjlZKSYn0dO3bsFo8WAAAgf8hIAAAAfyv0gtTFixdzPI7Q1dVVWVlZkqTw8HCFhIQoPj7euj41NVVbt25VRESEJCkiIkJnz57Vzp07rW3Wr1+vrKwsNWnSxNrmu+++U0ZGhrXNunXrVKNGjVyHokuSp6en/P39bV4AAOTGMAx7dwG3wBF/f2QkAIAzcMTvWOSfI/3+Cr0g1aFDB02ePFlffvmlDh8+rOXLl2vGjBnq1KmTJMlisWjo0KGaNGmSVq5cqT179qhnz54KCwtTx44dJUl33nmnoqOjNWDAAG3btk2bN2/W4MGD1b17d4WFhUmSHn30UXl4eKhfv37au3evPvnkE7355psaPnx4YR8SAKAEcXd3l3SleIDiK/v3l/37dARkJABAcUZGcg6OlJEKfVLz2bNna8yYMXr66aeVnJyssLAwPfHEExo7dqy1zQsvvKALFy5o4MCBOnv2rJo3b664uDh5eXlZ2yxevFiDBw9Wq1at5OLios6dO2vWrFnW9QEBAVq7dq0GDRqkhg0b6rbbbtPYsWN5nDEA4Ja4uroqMDDQeltUqVKlZLFY7Nwr5JdhGLp48aKSk5MVGBgoV1dXe3fJiowEACjOyEjFmyNmJIvhSOO1TJaamqqAgAClpKSU6KHpGXGbcixzj25uh57c2LX9dMQ+SsWnnwCuzzAMJSUl6ezZs/buCm5SYGCgQkJCcg3KfP/njXN0RXHNSFLx6Kcj9hHAjZGRij9HykiFPkIKAIDizmKxKDQ0VOXKlbOZhwfFg7u7u0Nc9QMAwNmQkYo3R8tIFKQAALgOV1dXh/rSBgAAcARkJBSGQp/UHAAAAAAAALgRClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATOVm7w4A+XX47Bqb99XU3E49AQAAcBzXZiSJnAQAcHyMkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCrmkALzDgAAAOSCjAQAQNFhhBQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpmNQcKKEy4jbZvHePZpJWAAAAMhIAmIMRUgAAAAAAADAVBSkAAAAAAACYqkgKUsePH9djjz2mMmXKyNvbW3Xq1NGOHTus6w3D0NixYxUaGipvb29FRkbq4MGDNts4ffq0YmJi5O/vr8DAQPXr10/nz5+3afPTTz/pvvvuk5eXlypWrKjY2NiiOBwAAIBCQUYCAAC4otALUmfOnFGzZs3k7u6uNWvWaN++fXr99ddVunRpa5vY2FjNmjVLc+fO1datW+Xj46OoqChdunTJ2iYmJkZ79+7VunXrtGrVKn333XcaOHCgdX1qaqpat26typUra+fOnXrttdf0yiuvaP78+YV9SAAAALeMjAQAAPC3Qp/U/NVXX1XFihW1YMEC67Lw8HDrz4ZhaObMmXr55Zf18MMPS5I++OADBQcHa8WKFerevbv279+vuLg4bd++XY0aNZIkzZ49W23bttX06dMVFhamxYsXKz09Xe+//748PDx01113KSEhQTNmzLAJZQAAAI6AjAQAAPC3Qh8htXLlSjVq1Ehdu3ZVuXLlVL9+fb377rvW9YmJiUpKSlJkZKR1WUBAgJo0aaItW7ZIkrZs2aLAwEBr0JKkyMhIubi4aOvWrdY2LVq0kIeHh7VNVFSUDhw4oDNnzuTat7S0NKWmptq8AAAAzEBGAgAA+FuhF6R+//13vfPOO6pWrZq++uorPfXUU3r22We1aNEiSVJSUpIkKTg42OZzwcHB1nVJSUkqV66czXo3NzcFBQXZtMltG1fv41pTp05VQECA9VWxYsVbPFoAAID8ISMBAAD8rdALUllZWWrQoIGmTJmi+vXra+DAgRowYIDmzp1b2LsqsNGjRyslJcX6OnbsmL27BAAASggyEgAAwN8KvSAVGhqqWrVq2Sy78847dfToUUlSSEiIJOnUqVM2bU6dOmVdFxISouTkZJv1ly9f1unTp23a5LaNq/dxLU9PT/n7+9u8AAAAzEBGAgAA+FuhF6SaNWumAwcO2Cz79ddfVblyZUlXJu8MCQlRfHy8dX1qaqq2bt2qiIgISVJERITOnj2rnTt3WtusX79eWVlZatKkibXNd999p4yMDGubdevWqUaNGjZPqwEAAHAEZCQAAIC/FXpBatiwYfrhhx80ZcoUHTp0SEuWLNH8+fM1aNAgSZLFYtHQoUM1adIkrVy5Unv27FHPnj0VFhamjh07SrpytTA6OloDBgzQtm3btHnzZg0ePFjdu3dXWFiYJOnRRx+Vh4eH+vXrp7179+qTTz7Rm2++qeHDhxf2IQEAANwyMhIAAMDf3Ap7g40bN9by5cs1evRoTZgwQeHh4Zo5c6ZiYmKsbV544QVduHBBAwcO1NmzZ9W8eXPFxcXJy8vL2mbx4sUaPHiwWrVqJRcXF3Xu3FmzZs2yrg8ICNDatWs1aNAgNWzYULfddpvGjh3L44wBAIBDIiMBAAD8rdALUpLUvn17tW/f/rrrLRaLJkyYoAkTJly3TVBQkJYsWXLD/dx9993auHHjTfcTAADATGQkAACAK4qkIAWUZIfPrrF5X03N7dQTAAAAx0FGAgBcrdDnkAIAAAAAAABuhIIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADCVm7074Mwy4jblWOYe3dwOPQEAAHAcZCQAAMAIKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADCVm707AMA+Dp9dY/O+mprbqScAAACOg4wEAOZghBQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmMrN3h0AgBvJiNtk8949urmdegIAAOA4yEgAijtGSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMVeQFqWnTpslisWjo0KHWZZcuXdKgQYNUpkwZ+fr6qnPnzjp16pTN544ePap27dqpVKlSKleunEaMGKHLly/btNmwYYMaNGggT09PVa1aVQsXLizqwwEAACgUZCQAAFCSFWlBavv27Zo3b57uvvtum+XDhg3TF198oWXLlunbb7/ViRMn9Mgjj1jXZ2Zmql27dkpPT9f333+vRYsWaeHChRo7dqy1TWJiotq1a6cHH3xQCQkJGjp0qPr376+vvvqqKA8JAADglpGRAABASVdkBanz588rJiZG7777rkqXLm1dnpKSon/961+aMWOGWrZsqYYNG2rBggX6/vvv9cMPP0iS1q5dq3379umjjz5SvXr11KZNG02cOFFz5sxRenq6JGnu3LkKDw/X66+/rjvvvFODBw9Wly5d9MYbbxTVIQEAANwyMhIAAEARFqQGDRqkdu3aKTIy0mb5zp07lZGRYbO8Zs2aqlSpkrZs2SJJ2rJli+rUqaPg4GBrm6ioKKWmpmrv3r3WNtduOyoqyrqN3KSlpSk1NdXmBQAAYCYyEgAAgORWFBv9+OOPtWvXLm3fvj3HuqSkJHl4eCgwMNBmeXBwsJKSkqxtrg5a2euz192oTWpqqv73v//J29s7x76nTp2q8ePH3/RxAQAA3AoyEgAAwBWFPkLq2LFjGjJkiBYvXiwvL6/C3vwtGT16tFJSUqyvY8eO2btLAACghCAjAQAA/K3QC1I7d+5UcnKyGjRoIDc3N7m5uenbb7/VrFmz5ObmpuDgYKWnp+vs2bM2nzt16pRCQkIkSSEhITmeKJP9Pq82/v7+uV75kyRPT0/5+/vbvAAAAMxARgIAAPhboRekWrVqpT179ighIcH6atSokWJiYqw/u7u7Kz4+3vqZAwcO6OjRo4qIiJAkRUREaM+ePUpOTra2Wbdunfz9/VWrVi1rm6u3kd0mexsAAACOhIwEAADwt0KfQ8rPz0+1a9e2Webj46MyZcpYl/fr10/Dhw9XUFCQ/P399cwzzygiIkL33nuvJKl169aqVauWHn/8ccXGxiopKUkvv/yyBg0aJE9PT0nSk08+qbfeeksvvPCC+vbtq/Xr12vp0qX68ssvC/uQAAAAbhkZCQAA4G9FMql5Xt544w25uLioc+fOSktLU1RUlN5++23reldXV61atUpPPfWUIiIi5OPjo169emnChAnWNuHh4fryyy81bNgwvfnmm6pQoYLee+89RUVF2eOQAAAAbhkZCQAAlBSmFKQ2bNhg897Ly0tz5szRnDlzrvuZypUra/Xq1Tfc7gMPPKAff/yxMLoIAABgOjISAAAoqQp9DikAAAAA/8fenYdlVef/H3/dgiwqiytgbrikkjsqkmaljGjUpGlpWe45FprKZOpULm2aLVqjaY4z2rdyXJq0csEItzExDSOXlNHCpRTQVG5XQDi/P/px8g5U0JtzAz4f13WuvM/53Od+nw/o/ep9n/scAABwLTSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApd1cXAADXcujMWofHjdTJRZUAAACUHGQkAKUdZ0gBAAAAAADAUpwhVYz++KmFxCcXAAAAZCQAAMAZUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALCUu6sLAIDSLjt2S7515bt3ckElAAAAJcsfcxIZCUAezpACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAICl3F1dAACUdofOrM23rpE6uaASAACAkuWPOYmMBCCP08+QmjZtmtq1aycfHx/VqFFDPXv2VHJyssOYS5cuKTo6WlWrVlWlSpXUu3dvpaWlOYw5cuSIoqKiVKFCBdWoUUPjxo3T5cuXHcZs3LhRbdq0kaenpxo2bKhFixY5+3AAAACcgowEAADwO6c3pDZt2qTo6Ght27ZNcXFxys7OVrdu3XT+/HlzzNixY/XFF19o+fLl2rRpk44dO6aHHnrI3J6Tk6OoqChlZWVp69at+uCDD7Ro0SJNmjTJHJOSkqKoqCjde++9SkpK0pgxYzRs2DCtW7fO2YcEAABw08hIAAAAv3P6V/ZiY2MdHi9atEg1atRQYmKiOnfurIyMDP3zn//U4sWL1aVLF0nSwoUL1bRpU23btk0dOnTQl19+qR9++EFfffWVAgIC1KpVK7388ssaP368pkyZIg8PD82bN0/BwcF66623JElNmzbVli1bNHPmTEVGRjr7sAAAAG4KGQkAAOB3xX5R84yMDElSlSpVJEmJiYnKzs5WRESEOaZJkyaqU6eOEhISJEkJCQlq3ry5AgICzDGRkZGy2+3au3evOebKfeSNydtHQTIzM2W32x0WAAAAVyAjAQCAW1mxNqRyc3M1ZswYdezYUc2aNZMkpaamysPDQ/7+/g5jAwIClJqaao65Mmjlbc/bdq0xdrtdFy9eLLCeadOmyc/Pz1xq165908cIAABQVGQkAABwqyvWhlR0dLT27NmjJUuWFOfLFNrEiROVkZFhLkePHnV1SQAA4BZERgIAALc6p19DKs/IkSO1atUqbd68WbVq1TLXBwYGKisrS2fOnHH4BDAtLU2BgYHmmO3btzvsL+8OM1eO+eNdZ9LS0uTr6ytvb+8Ca/L09JSnp+dNHxsAAMCNIiMBAAAUwxlShmFo5MiRWrFihdavX6/g4GCH7aGhoSpfvrzi4+PNdcnJyTpy5IjCw8MlSeHh4dq9e7fS09PNMXFxcfL19VVISIg55sp95I3J2wcAAEBJQkYCAAD4ndPPkIqOjtbixYv12WefycfHx7yegZ+fn7y9veXn56ehQ4cqJiZGVapUka+vr0aNGqXw8HB16NBBktStWzeFhIToiSee0IwZM5SamqoXXnhB0dHR5qd3I0aM0OzZs/Xcc89pyJAhWr9+vZYtW6bVq1c7+5AAAABuGhkJAADgd04/Q2ru3LnKyMjQPffco6CgIHNZunSpOWbmzJm6//771bt3b3Xu3FmBgYH69NNPze1ubm5atWqV3NzcFB4erscff1wDBgzQSy+9ZI4JDg7W6tWrFRcXp5YtW+qtt97SggULuJ0xAAAokchIAAAAv3P6GVKGYVx3jJeXl+bMmaM5c+ZcdUzdunW1Zs2aa+7nnnvu0XfffVfkGgEAAKxGRgIAAPhdsd5lDwAAAAAAAPgjGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAs5e7qAgAA1siO3ZJvXfnunVxQCQAAQMlBRgJcgzOkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApdxdXQAAwBqHzqzNt66ROrmgEgAAgJKDjAS4BmdIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAICl3F1dAAAAV8qO3ZJvXfnunVxQCQAAQMlBRkJZwxlSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAluKi5gCAEuXQmbX51jUSF+wEAAC3NjISyhrOkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALOXu6gIAACiNsmO35FtXvju3XgYAALc2MhIKizOkAAAAAAAAYCkaUgAAAAAAALAUX9kDAOAGHDqzNt+6RuJ0dAAAcGsjI6GwOEMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAICluIYUAABlGLdeBgAAyI+M5Hql/gypOXPmqF69evLy8lJYWJi2b9/u6pIAACgxDp1Zm2/BrYGMBADA1ZGRXK9UN6SWLl2qmJgYTZ48WTt37lTLli0VGRmp9PR0V5cGAADgMmQkAABQ0pXqhtTbb7+tJ598UoMHD1ZISIjmzZunChUq6F//+perSwMAAHAZMhIAACjpSu01pLKyspSYmKiJEyea68qVK6eIiAglJCQU+JzMzExlZmaajzMyMiRJdru9WGo8dyEz37rieq2bUVrrLIk1StTpbKWhztL6d0iizptBnc714ycv5VvXoM+kYnmtvOM3DKNY9u9qZCTnoU7nKg3v6RJ1OltpqLO0/h2SqPNmlJY6y3RGMkqpX375xZBkbN261WH9uHHjjPbt2xf4nMmTJxuSWFhYWFhYWFiMo0ePWhFZLEdGYmFhYWFhYbmZxaqMVGrPkLoREydOVExMjPk4NzdXp06dUtWqVWWz2VxYmevY7XbVrl1bR48ela+vr6vLKROYU+djTp2L+XQ+5tT5inNODcPQ2bNnVbNmTafutzQjI+XH32vnY06djzl1LubT+ZhT5ytLGanUNqSqVasmNzc3paWlOaxPS0tTYGBggc/x9PSUp6enwzp/f//iKrFU8fX15R8IJ2NOnY85dS7m0/mYU+crrjn18/Nz+j5LCjKSc/H32vmYU+djTp2L+XQ+5tT5ykJGKrUXNffw8FBoaKji4+PNdbm5uYqPj1d4eLgLKwMAAHAdMhIAACgNSu0ZUpIUExOjgQMHqm3btmrfvr1mzZql8+fPa/Dgwa4uDQAAwGXISAAAoKQr1Q2pvn376sSJE5o0aZJSU1PVqlUrxcbGKiAgwNWllRqenp6aPHlyvtP0ceOYU+djTp2L+XQ+5tT5mNObQ0a6efwOOh9z6nzMqXMxn87HnDpfWZpTm2GU0XseAwAAAAAAoEQqtdeQAgAAAAAAQOlEQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSN2ipk2bpnbt2snHx0c1atRQz549lZyc7Oqyyozp06fLZrNpzJgxri6lVPvll1/0+OOPq2rVqvL29lbz5s317bffurqsUisnJ0cvvviigoOD5e3trQYNGujll18W97YovM2bN+uBBx5QzZo1ZbPZtHLlSofthmFo0qRJCgoKkre3tyIiInTgwAHXFFsKXGs+s7OzNX78eDVv3lwVK1ZUzZo1NWDAAB07dsx1BeOWQEYqXmQk5yAjORcZ6eaRkZzrVslINKRuUZs2bVJ0dLS2bdumuLg4ZWdnq1u3bjp//ryrSyv1duzYoffff18tWrRwdSml2unTp9WxY0eVL19ea9eu1Q8//KC33npLlStXdnVppdbrr7+uuXPnavbs2dq3b59ef/11zZgxQ3//+99dXVqpcf78ebVs2VJz5swpcPuMGTP07rvvat68efrmm29UsWJFRUZG6tKlSxZXWjpcaz4vXLignTt36sUXX9TOnTv16aefKjk5WX/+859dUCluJWSk4kNGcg4ykvORkW4eGcm5bpmMZACGYaSnpxuSjE2bNrm6lFLt7NmzRqNGjYy4uDjj7rvvNkaPHu3qkkqt8ePHG506dXJ1GWVKVFSUMWTIEId1Dz30kNG/f38XVVS6STJWrFhhPs7NzTUCAwONN954w1x35swZw9PT0/j3v//tggpLlz/OZ0G2b99uSDIOHz5sTVGAQUZyFjKS85CRnI+M5FxkJOcqyxmJM6QgScrIyJAkValSxcWVlG7R0dGKiopSRESEq0sp9T7//HO1bdtWDz/8sGrUqKHWrVvrH//4h6vLKtXuvPNOxcfH63//+58k6fvvv9eWLVvUo0cPF1dWNqSkpCg1NdXh77+fn5/CwsKUkJDgwsrKjoyMDNlsNvn7+7u6FNxCyEjOQUZyHjKS85GRihcZqfiV1ozk7uoC4Hq5ubkaM2aMOnbsqGbNmrm6nFJryZIl2rlzp3bs2OHqUsqEn376SXPnzlVMTIz+9re/aceOHXrmmWfk4eGhgQMHurq8UmnChAmy2+1q0qSJ3NzclJOTo1dffVX9+/d3dWllQmpqqiQpICDAYX1AQIC5DTfu0qVLGj9+vB599FH5+vq6uhzcIshIzkFGci4ykvORkYoXGal4leaMREMKio6O1p49e7RlyxZXl1JqHT16VKNHj1ZcXJy8vLxcXU6ZkJubq7Zt2+q1116TJLVu3Vp79uzRvHnzCFs3aNmyZfr444+1ePFi3XHHHUpKStKYMWNUs2ZN5hQlWnZ2th555BEZhqG5c+e6uhzcQshIN4+M5HxkJOcjI6G0Ku0Zia/s3eJGjhypVatWacOGDapVq5aryym1EhMTlZ6erjZt2sjd3V3u7u7atGmT3n33Xbm7uysnJ8fVJZY6QUFBCgkJcVjXtGlTHTlyxEUVlX7jxo3ThAkT1K9fPzVv3lxPPPGExo4dq2nTprm6tDIhMDBQkpSWluawPi0tzdyGossLWocPH1ZcXFyp++QPpRcZyTnISM5HRnI+MlLxIiMVj7KQkWhI3aIMw9DIkSO1YsUKrV+/XsHBwa4uqVTr2rWrdu/eraSkJHNp27at+vfvr6SkJLm5ubm6xFKnY8eO+W6z/b///U9169Z1UUWl34ULF1SunOM/+25ubsrNzXVRRWVLcHCwAgMDFR8fb66z2+365ptvFB4e7sLKSq+8oHXgwAF99dVXqlq1qqtLwi2AjORcZCTnIyM5HxmpeJGRnK+sZCS+sneLio6O1uLFi/XZZ5/Jx8fH/O6un5+fvL29XVxd6ePj45Pv2hIVK1ZU1apVuebEDRo7dqzuvPNOvfbaa3rkkUe0fft2zZ8/X/Pnz3d1aaXWAw88oFdffVV16tTRHXfcoe+++05vv/22hgwZ4urSSo1z587p4MGD5uOUlBQlJSWpSpUqqlOnjsaMGaNXXnlFjRo1UnBwsF588UXVrFlTPXv2dF3RJdi15jMoKEh9+vTRzp07tWrVKuXk5JjvVVWqVJGHh4erykYZR0ZyLjKS85GRnI+MdPPISM51y2Qk197kD64iqcBl4cKFri6tzOCWxjfviy++MJo1a2Z4enoaTZo0MebPn+/qkko1u91ujB492qhTp47h5eVl1K9f33j++eeNzMxMV5dWamzYsKHAfzsHDhxoGMZvtzV+8cUXjYCAAMPT09Po2rWrkZyc7NqiS7BrzWdKSspV36s2bNjg6tJRhpGRih8Z6eaRkZyLjHTzyEjOdatkJJthGEbxtLoAAAAAAACA/LiGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBpdCUKVNks9lu6LmDBg1SvXr1nFsQXG7ZsmWqUqWKzp07d92xNptNU6ZMcVi3Y8cO3XnnnapYsaJsNpuSkpIK/drZ2dmqXbu23nvvvSJWDQCAc5GR8EdkJKDkoiEF3OIuXLigKVOmaOPGja4upVgsXrxYs2bNcnUZxSonJ0eTJ0/WqFGjVKlSpSI/Pzs7Ww8//LBOnTqlmTNn6sMPP1TdunV1/PhxTZgwQffee698fHxks9kK/D0pX768YmJi9Oqrr+rSpUtOOCIAAFyPjFT6FVdGio+P15AhQ3T77berQoUKql+/voYNG6bjx487PJ+MBFwbDSngFnfhwgVNnTqVsFWKffHFF0pOTtbw4cNv6Pk//vijDh8+rGeffVbDhw/X448/rsqVKys5OVmvv/66fvnlFzVv3vya+xg8eLBOnjypxYsX31ANAACUNGSk0q+4MtL48eO1ceNG9erVS++++6769eunZcuWqXXr1kpNTXXYBxkJuDoaUgBQyi1cuFAdO3bUbbfddkPPT09PlyT5+/s7rA8NDdWvv/6q//3vf4qJibnmPvz9/dWtWzctWrTohmoAAABwtuLKSG+//bYOHjyo119/XcOGDdNrr72mVatWKS0tTbNnz3YYS0YCro6GFFDCbdmyRe3atZOXl5caNGig999//6pjP/roI4WGhsrb21tVqlRRv379dPTo0auOP3TokKpXry5Jmjp1qmw2m8N353ft2qVBgwapfv368vLyUmBgoIYMGaJff/21SMdw6NAh2Ww2vfnmm5o/f74aNGggT09PtWvXTjt27Mg3fv/+/erTp4+qVKkiLy8vtW3bVp9//rm5PT09XdWrV9c999wjwzDM9QcPHlTFihXVt29fSdI999yj1atX6/Dhw+axFeXaEPXq1dP999+vjRs3qm3btvL29lbz5s3NT0o//fRTNW/eXF5eXgoNDdV3333n8PzCzN/FixfVpEkTNWnSRBcvXjTXnzp1SkFBQbrzzjuVk5Nz1RovXbqk2NhYRURE5NuWmZmpsWPHqnr16vLx8dGf//xn/fzzzw5jBg0apLvvvluS9PDDD8tms+mee+6RJPn4+KhKlSqFnq8//elP2rJli06dOlXo5wAAcKPISGQkV2Wkzp07q1w5x/+V7ty5s6pUqaJ9+/blez0yEnAVBoASa9euXYa3t7dRp04dY9q0acbLL79sBAQEGC1atDD++Nf3lVdeMWw2m9G3b1/jvffeM6ZOnWpUq1bNqFevnnH69Glz3MCBA426desahmEY586dM+bOnWtIMnr16mV8+OGHxocffmh8//33hmEYxptvvmncddddxksvvWTMnz/fGD16tOHt7W20b9/eyM3NLfRxpKSkGJKM1q1bGw0bNjRef/11Y8aMGUa1atWMWrVqGVlZWebYPXv2GH5+fkZISIjx+uuvG7NnzzY6d+5s2Gw249NPPzXHLV++3JBkvPPOO4ZhGEZOTo7RsWNHIyAgwDh58qRhGIbx5ZdfGq1atTKqVatmHtuKFSsKXXfdunWNxo0bG0FBQcaUKVOMmTNnGrfddptRqVIl46OPPjLq1KljTJ8+3Zg+fbrh5+dnNGzY0MjJyTGfX9j527Ztm+Hm5maMHTvWXNevXz/D29vbSE5OvmaNW7ZsMSQZn3/+eb5tjz/+uCHJeOyxx4zZs2cbDz30kPm7M3nyZMMwDGPr1q3G3/72N0OS8cwzzxgffvih8eWXX+bbV958b9iw4bq1fPHFF9esGQCAm0VGIiOVlIyU5+zZs4aHh4cxfPjwq9ZCRgIc0ZACSrCePXsaXl5exuHDh811P/zwg+Hm5uYQtg4dOmS4ubkZr776qsPzd+/ebbi7uzusvzJsGYZhnDhxwuHN90oXLlzIt+7f//63IcnYvHlzoY8jL2xVrVrVOHXqlLn+s88+y/fm3LVrV6N58+bGpUuXzHW5ubnGnXfeaTRq1Mhhv48++qhRoUIF43//+5/xxhtvGJKMlStXOoyJiopyON6iqFu3riHJ2Lp1q7lu3bp1hiTD29vb4efy/vvv52vYFGX+Jk6caJQrV87YvHmzGSRnzZp13RoXLFhgSDJ2797tsD4pKcmQZDz99NMO6x977LF8P+8NGzYYkozly5df9XUK05A6duyYIcl4/fXXr1s3AAA3g4z0GzLS1VmVkfK8/PLLhiQjPj4+3zYyElAwvrIHlFA5OTlat26devbsqTp16pjrmzZtqsjISIexn376qXJzc/XII4/o5MmT5hIYGKhGjRppw4YNN1SDt7e3+edLly7p5MmT6tChgyRp586dRd5f3759VblyZfPxXXfdJUn66aefJP12Cvb69ev1yCOP6OzZs+Zx/Prrr4qMjNSBAwf0yy+/mM+fPXu2/Pz81KdPH7344ot64okn9OCDD97QsV5NSEiIwsPDzcdhYWGSpC5dujj8XPLW5x2LVLT5mzJliu644w4NHDhQTz/9tO6++24988wz160v79T2K+dVktasWSNJ+fYxZsyY6+7zRuXVcPLkyWJ7DQAAyEhkpJKWkTZv3qypU6fqkUceUZcuXfJtJyMBBaMhBZRQJ06c0MWLF9WoUaN82xo3buzw+MCBAzIMQ40aNVL16tUdln379pkXZCyqU6dOafTo0QoICJC3t7eqV6+u4OBgSVJGRkaR93dlOJF+f3M+ffq0pN+ub2AYhl588cV8xzF58mRJcjiWKlWq6N1339WuXbvk5+end99994aOsyg1+/n5SZJq165d4Pq8Y5GKNn8eHh7617/+pZSUFJ09e1YLFy6UzWYrdJ3GFdeJkKTDhw+rXLlyatCggcP6P/7uOFNeDUWpGwCAoiIjkZFKUkbav3+/evXqpWbNmmnBggXXrIGMBDhyd3UBAG5ebm6ubDab1q5dKzc3t3zbK1WqdEP7feSRR7R161aNGzdOrVq1UqVKlZSbm6vu3bsrNze3yPsrqDbp9zfpvH0+++yz+T7hzNOwYUOHx+vWrZP0W8j5+eef890F5WZdrebrHYtU9PnLO5ZLly7pwIEDZjC7lqpVq0r67fhr1ap13fHFKS9oVqtWzaV1AACQh4xERirOjHT06FF169ZNfn5+WrNmjXx8fAocR0YCCkZDCiihqlevLm9vbx04cCDftuTkZIfHDRo0kGEYCg4O1u23316k17naJzWnT59WfHy8pk6dqkmTJpnrC6rHWerXry9JKl++fIF3RPmj2NhYLViwQM8995w+/vhjDRw4UN98843c3X//p81Vn0QVdf527dqll156SYMHD1ZSUpKGDRum3bt3m58qXk2TJk0kSSkpKWrevLm5vm7dusrNzdWPP/7o8InfH393nCklJUXSb1+ZAACguJCRyEglISP9+uuv6tatmzIzMxUfH6+goKCrjiUjAQXjK3tACeXm5qbIyEitXLlSR44cMdfv27fP/JQoz0MPPSQ3NzdNnTo132nJhmFc8xbEFSpUkCSdOXMm3+vnPf9Ks2bNKuqhFFqNGjV0zz336P3339fx48fzbT9x4oT55zNnzmjYsGFq3769XnvtNS1YsEA7d+7Ua6+95vCcihUr3tCp8zerKPOXnZ2tQYMGqWbNmnrnnXe0aNEipaWlaezYsdd9ndDQUHl4eOjbb791WN+jRw9JyneKfnH+/BITE2Wz2RyuJwEAgLORkchIrs5I58+f13333adffvlFa9asKfDro1ciIwEF4wwpoASbOnWqYmNjddddd+npp5/W5cuX9fe//1133HGHdu3aZY5r0KCBXnnlFU2cOFGHDh1Sz5495ePjo5SUFK1YsULDhw/Xs88+W+BreHt7KyQkREuXLtXtt9+uKlWqqFmzZmrWrJk6d+6sGTNmKDs7W7fddpu+/PJL8xOe4jJnzhx16tRJzZs315NPPqn69esrLS1NCQkJ+vnnn/X9999LkkaPHq1ff/1VX331ldzc3NS9e3cNGzZMr7zyih588EG1bNlS0m9hZOnSpYqJiVG7du1UqVIlPfDAA8V6DJLk6+tb6Pl75ZVXlJSUpPj4ePn4+KhFixaaNGmSXnjhBfXp00f33XffVV/Hy8tL3bp101dffaWXXnrJXN+qVSs9+uijeu+995SRkaE777xT8fHxOnjwYJGO45VXXpEk7d27V5L04YcfasuWLZKkF154wWFsXFycOnbsaJ4iDwBAcSEjkZFcmZH69++v7du3a8iQIdq3b5/27dtnbqtUqZJ69uzpMJ6MBFyFlbf0A1B0mzZtMkJDQw0PDw+jfv36xrx584zJkycbBf31/c9//mN06tTJqFixolGxYkWjSZMmRnR0tJGcnGyO+eMtjQ3DMLZu3Wq+hq643e3PP/9s9OrVy/D39zf8/PyMhx9+2LxtbUG3QL6avFsav/HGG/m2FbSvH3/80RgwYIARGBholC9f3rjtttuM+++/3/jkk08Mw/j9VshvvfWWw/PsdrtRt25do2XLlkZWVpZhGIZx7tw547HHHjP8/f0NSUW6vXHdunWNqKioAmuOjo6+7jEWZv4SExMNd3d3Y9SoUQ77u3z5stGuXTujZs2axunTp69Z56effmrYbDbjyJEjDusvXrxoPPPMM0bVqlWNihUrGg888IBx9OjRIt3SWNJVlyudOXPG8PDwMBYsWHDNWgEAcBYyEhnJVRmpbt26V81Hf5xHMhJwdTbD+MO5kgCAUiUnJ0chISF65JFH9PLLL7ukhlmzZmnGjBn68ccfHW7lDAAA4CpkJKBk4xpSAFDKubm56aWXXtKcOXN07tw5y18/Oztbb7/9tl544QWCFgAAKDHISEDJxhlSAG5YTk6Ow0U0C1KpUqUbvqVycTlx4oRycnKuut3Dw0NVqlSxsCIAAFCWkJEA4PpoSAG4YYcOHVJwcPA1x0yePFlTpkyxpqBCqlevng4fPnzV7Xfffbc2btxoXUEAAKBMISMBwPVxlz0ANywwMFBxcXHXHFO/fn2Lqim8jz/+WBcvXrzq9sqVK1tYDQAAKGvISABwfZwhBQAAAAAAAEtxUXMAAAAAAABY6pb+yl5ubq6OHTsmHx8f2Ww2V5cDAAAsYBiGzp49q5o1a6pcOT6bKwgZCQCAW4/VGemWbkgdO3ZMtWvXdnUZAADABY4ePapatWq5uowSiYwEAMCty6qMdEs3pHx8fCT9Ntm+vr4urgYAAFjBbrerdu3aZg5AfmQkAABuPVZnpFu6IZV3Crqvry9hCwCAWwxfRbs6MhIAALcuqzISF04AAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpW/oaUgAAXI1hGLp8+bJycnJcXQqKyM3NTe7u7lwjCgCAYkBGKr1KWkaiIQUAwB9kZWXp+PHjunDhgqtLwQ2qUKGCgoKC5OHh4epSAAAoM8hIpV9Jykg0pAAAuEJubq5SUlLk5uammjVrysPDo8R8ioTrMwxDWVlZOnHihFJSUtSoUSOVK8cVCgAAuFlkpNKtJGYkGlIAAFwhKytLubm5ql27tipUqODqcnADvL29Vb58eR0+fFhZWVny8vJydUkAAJR6ZKTSr6RlJD4yBACgAK7+xAg3h58fAADFg/fY0q0k/fxKTiUAAAAAAAC4JdCQAgAAAAAAgKW4hhQAAIWUHbvFstcq371Tocde74KikydP1pQpU26yohtjs9m0YsUK9ezZ84b3MX/+fC1evFg7d+7U2bNndfr0afn7+zutRgAAcHOszEgSOSnPqVOnNHnyZH355Zc6cuSIqlevrp49e+rll1+Wn5+fc4stBjSkAAAo5Y4fP27+eenSpZo0aZKSk5PNdZUqVSrS/rKyskrErYDzXLhwQd27d1f37t01ceJEV5cDAABKkbKck44dO6Zjx47pzTffVEhIiA4fPqwRI0bo2LFj+uSTT1xd3nXxlb1ilB27Jd8CAICzBQYGmoufn59sNpv5+Pz58+rfv78CAgJUqVIltWvXTl999ZXD8+vVq6eXX35ZAwYMkK+vr4YPHy5J+sc//mHeSadXr156++23852Z9Nlnn6lNmzby8vJS/fr1NXXqVF2+fNncryT16tVLNpvNfPz999/r3nvvlY+Pj3x9fRUaGqpvv/32qsc3ZswYTZgwQR06dHDOhMHlyEgAAKuU5ZzUrFkz/ec//9EDDzygBg0aqEuXLnr11Vf1xRdfmK9TktGQAgCgDDt37pzuu+8+xcfH67vvvlP37t31wAMP6MiRIw7j3nzzTbVs2VLfffedXnzxRX399dcaMWKERo8eraSkJP3pT3/Sq6++6vCc//73vxowYIBGjx6tH374Qe+//74WLVpkjtuxY4ckaeHChTp+/Lj5uH///qpVq5Z27NihxMRETZgwQeXLl7dgNgAAAH5XFnNSRkaGfH195e5e8r8QV/IrBAAAN6xly5Zq2bKl+fjll1/WihUr9Pnnn2vkyJHm+i5duuivf/2r+fj5559Xjx499Oyzz0qSbr/9dm3dulWrVq0yx0ydOlUTJkzQwIEDJUn169fXyy+/rOeee06TJ09W9erVJUn+/v4KDAw0n3fkyBGNGzdOTZo0kSQ1atSoGI4cAADg2spaTjp58qRefvll8yyuko4zpAAAKMPOnTunZ599Vk2bNpW/v78qVaqkffv25fvkr23btg6Pk5OT1b59e4d1f3z8/fff66WXXlKlSpXM5cknn9Tx48d14cKFq9YUExOjYcOGKSIiQtOnT9ePP/54k0cJAABQdGUpJ9ntdkVFRSkkJMRlF2kvKhpSAACUYc8++6xWrFih1157Tf/973+VlJSk5s2bKysry2FcxYoVi7zvc+fOaerUqUpKSjKX3bt368CBA/Ly8rrq86ZMmaK9e/cqKipK69evV0hIiFasWFHk1wcAALgZZSUnnT17Vt27d5ePj49WrFhRai6FwFf2AAAow77++msNGjRIvXr1kvRbODp06NB1n9e4cWPzWgZ5/vi4TZs2Sk5OVsOGDa+6n/LlyysnJyff+ttvv1233367xo4dq0cffVQLFy40awQAALBCWchJdrtdkZGR8vT01Oeff37NZldJQ0MKAIAyrFGjRvr000/1wAMPyGaz6cUXX1Rubu51nzdq1Ch17txZb7/9th544AGtX79ea9eulc1mM8dMmjRJ999/v+rUqaM+ffqoXLly+v7777Vnzx698sorkn67g0x8fLw6duwoT09PeXl5ady4cerTp4+Cg4P1888/a8eOHerdu/dVa0lNTVVqaqoOHjwoSdq9e7d8fHxUp04dValS5SZnCAAA3KpKe06y2+3q1q2bLly4oI8++kh2u112u12SVL16dbm5uTlhlooPX9kDAKAMe/vtt1W5cmXdeeedeuCBBxQZGak2bdpc93kdO3bUvHnz9Pbbb6tly5aKjY3V2LFjHT51i4yM1KpVq/Tll1+qXbt26tChg2bOnKm6deuaY9566y3FxcWpdu3aat26tdzc3PTrr79qwIABuv322/XII4+oR48emjp16lVrmTdvnlq3bq0nn3xSktS5c2e1bt1an3/++U3MDAAAuNWV9py0c+dOffPNN9q9e7caNmyooKAgczl69OjNT1AxsxmGYbi6CFex2+3y8/Mzb4vobNmxW/KtK9+9k9NfBwDgPJcuXVJKSoqCg4NL1SnPVnjyySe1f/9+/fe//3V1Kdd1rZ9jcb//lwVkJADAH5GRrq205KSSlJH4yh4AACjQm2++qT/96U+qWLGi1q5dqw8++EDvvfeeq8sCAABwOXLSzaMhBQAACrR9+3bNmDFDZ8+eVf369fXuu+9q2LBhri4LAADA5chJN4+GFAAAKNCyZctcXQIAAECJRE66eVzUHAAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApW6qITV9+nTZbDaNGTPGXHfp0iVFR0eratWqqlSpknr37q20tDSH5x05ckRRUVGqUKGCatSooXHjxuny5csOYzZu3Kg2bdrI09NTDRs21KJFi/K9/pw5c1SvXj15eXkpLCxM27dvv5nDAQAAcAoyEgAAwLXdcENqx44dev/999WiRQuH9WPHjtUXX3yh5cuXa9OmTTp27Jgeeughc3tOTo6ioqKUlZWlrVu36oMPPtCiRYs0adIkc0xKSoqioqJ07733KikpSWPGjNGwYcO0bt06c8zSpUsVExOjyZMna+fOnWrZsqUiIyOVnp5+o4cEAABw08hIAAAA13dDDalz586pf//++sc//qHKlSub6zMyMvTPf/5Tb7/9trp06aLQ0FAtXLhQW7du1bZt2yRJX375pX744Qd99NFHatWqlXr06KGXX35Zc+bMUVZWliRp3rx5Cg4O1ltvvaWmTZtq5MiR6tOnj2bOnGm+1ttvv60nn3xSgwcPVkhIiObNm6cKFSroX//6183MBwAAwA0jIwEAABTODTWkoqOjFRUVpYiICIf1iYmJys7OdljfpEkT1alTRwkJCZKkhIQENW/eXAEBAeaYyMhI2e127d271xzzx31HRkaa+8jKylJiYqLDmHLlyikiIsIcU5DMzEzZ7XaHBQAAwFnISAAAAIXjXtQnLFmyRDt37tSOHTvybUtNTZWHh4f8/f0d1gcEBCg1NdUcc2XQytuet+1aY+x2uy5evKjTp08rJyenwDH79++/au3Tpk3T1KlTC3egAAD8wY/fvm/ZazVo+5cijR80aJA++OADSZK7u7uqVKmiFi1a6NFHH9WgQYNUrlzpvY/J3r17NWnSJCUmJurw4cOaOXOmw7WZSgoyEgDgVmVlRpLISVf6xz/+of/7v//Tnj17JEmhoaF67bXX1L59exdXdn1FmvWjR49q9OjR+vjjj+Xl5VVcNRWbiRMnKiMjw1yOHj3q6pIAAHCa7t276/jx4zp06JDWrl2re++9V6NHj9b999+f78LYpcmFCxdUv359TZ8+XYGBga4up0BkJAAASraympM2btyoRx99VBs2bFBCQoJq166tbt266ZdffnF1addVpIZUYmKi0tPT1aZNG7m7u8vd3V2bNm3Su+++K3d3dwUEBCgrK0tnzpxxeF5aWpoZIAMDA/PdUSbv8fXG+Pr6ytvbW9WqVZObm1uBY64VVD09PeXr6+uwAABQVnh6eiowMFC33Xab2rRpo7/97W/67LPPtHbtWoc7sZ05c0bDhg1T9erV5evrqy5duuj777932NcXX3yhdu3aycvLS9WqVVOvXr3MbadPn9aAAQNUuXJlVahQQT169NCBAwckSefPn5evr68++eQTh/2tXLlSFStW1NmzZ5WVlaWRI0cqKChIXl5eqlu3rqZNm3bV42rXrp3eeOMN9evXT56enk6YKecjIwEAULKV1Zz08ccf6+mnn1arVq3UpEkTLViwQLm5uYqPj3fCrBWvIjWkunbtqt27dyspKclc2rZtq/79+5t/Ll++vMOBJycn68iRIwoPD5ckhYeHa/fu3Q53eomLi5Ovr69CQkLMMX+cvLi4OHMfHh4eCg0NdRiTN+F5YwAAgNSlSxe1bNlSn376qbnu4YcfVnp6utauXavExES1adNGXbt21alTpyRJq1evVq9evXTffffpu+++U3x8vMNp34MGDdK3336rzz//XAkJCTIMQ/fdd5+ys7NVsWJF9evXTwsXLnSoY+HCherTp498fHz07rvv6vPPP9eyZcuUnJysjz/+WPXq1bNkPooLGQkAgNKnLOakCxcuKDs7W1WqVLm5ybFAka4h5ePjo2bNmjmsq1ixoqpWrWquHzp0qGJiYlSlShX5+vpq1KhRCg8PV4cOHSRJ3bp1U0hIiJ544gnNmDFDqampeuGFFxQdHW1+6jlixAjNnj1bzz33nIYMGaL169dr2bJlWr16tfm6MTExGjhwoNq2bav27dtr1qxZOn/+vAYPHnxTEwIAQFnTpEkT7dq1S5K0ZcsWbd++Xenp6eb77ptvvqmVK1fqk08+0fDhw/Xqq6+qX79+DtcUatmypSTpwIED+vzzz/X111/rzjvvlPTbJ3O1a9fWypUr9fDDD2vYsGG68847dfz4cQUFBSk9PV1r1qzRV199JUk6cuSIGjVqpE6dOslms6lu3bpWTkexICMBAFA6lbWcNH78eNWsWTPfTVBKIqdfuWvmzJm6//771bt3b3Xu3FmBgYEO3UY3NzetWrVKbm5uCg8P1+OPP64BAwbopZdeMscEBwdr9erViouLU8uWLfXWW29pwYIFioyMNMf07dtXb775piZNmqRWrVopKSlJsbGx+S7iCQDArc4wDNlsNknS999/r3Pnzqlq1aqqVKmSuaSkpOjHH3+UJCUlJalr164F7mvfvn1yd3dXWFiYua5q1apq3Lix9u3bJ0lq37697rjjDvPioR999JHq1q2rzp07S/rtk8OkpCQ1btxYzzzzjL788stiO/aShIwEAEDJU5Zy0vTp07VkyRKtWLGiVFzTssh32fujjRs3Ojz28vLSnDlzNGfOnKs+p27dulqzZs0193vPPffou+++u+aYkSNHauTIkYWuFQCAW9G+ffsUHBwsSTp37pyCgoLyvX9LMu8A5+3tfdOvOWzYMM2ZM0cTJkzQwoULNXjwYDPstWnTRikpKVq7dq2++uorPfLII4qIiMh3PYXSjowEAEDJV1Zy0ptvvqnp06frq6++UosWLW66RiuU3nsbAgCA61q/fr12796t3r17S/ot5KSmpsrd3V0NGzZ0Pq8bpAABAABJREFUWKpVqyZJatGixVUvhNm0aVNdvnxZ33zzjbnu119/VXJysnmdI0l6/PHHdfjwYb377rv64YcfNHDgQIf9+Pr6qm/fvvrHP/6hpUuX6j//+Y95bQYAAAArlJWcNGPGDL388suKjY1V27Ztb3g+rHbTZ0gBAICSITMzU6mpqcrJyVFaWppiY2M1bdo03X///RowYIAkKSIiQuHh4erZs6dmzJih22+/XceOHTMv0Nm2bVtNnjxZXbt2VYMGDdSvXz9dvnxZa9as0fjx49WoUSM9+OCDevLJJ/X+++/Lx8dHEyZM0G233aYHH3zQrKVy5cp66KGHNG7cOHXr1k21atUyt7399tsKCgpS69atVa5cOS1fvlyBgYHmJ49/lJWVpR9++MH88y+//KKkpCRVqlRJDRs2LL4JBQAAZUZZzUmvv/66Jk2apMWLF6tevXpKTU2VJPPrhiUZZ0gBAFBGxMbGKigoSPXq1VP37t21YcMGvfvuu/rss8/k5uYmSbLZbFqzZo06d+6swYMH6/bbb1e/fv10+PBh8xpD99xzj5YvX67PP/9crVq1UpcuXbR9+3bzdRYuXKjQ0FDdf//9Cg8Pl2EYWrNmjcqXL+9Qz9ChQ5WVlaUhQ4Y4rPfx8dGMGTPUtm1btWvXTocOHdKaNWtUrlzBseTYsWNq3bq1WrdurePHj+vNN99U69atNWzYMGdOHwAAKMPKak6aO3eusrKy1KdPHwUFBZnLm2++6czpKxY2wzAMVxfhKna7XX5+fsrIyJCvr6/T958duyXfuvLdOzn9dQAAznPp0iWlpKQoODi4VFwMsiT78MMPNXbsWB07dkweHh6Wvva1fo7F/f5fFpCRAAB/REZyLlflpJKUkfjKHgAAcKoLFy7o+PHjmj59uv7yl79Y3owCAAAoqchJv+MrewAAwKlmzJihJk2aKDAwUBMnTnR1OQAAACUGOel3NKQAAIBTTZkyRdnZ2YqPjy/xF9MEAACwEjnpdzSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAApwC9+Etkzg5wcAQPHgPbZ0K0k/PxpSAABcoXz58pJ+uwMKSq+8n1/ezxMAANwcMlLZUJIykrurCwAAoCRxc3OTv7+/0tPTJUkVKlSQzWZzcVUoLMMwdOHCBaWnp8vf319ubm6uLgkAgDKBjFS6lcSMREMKAIA/CAwMlCQzcKH08ff3N3+OAADAOchIpV9Jykg0pAAA+AObzaagoCDVqFFD2dnZri4HRVS+fPkS8akfAABlDRmpdCtpGYmGFAAAV+Hm5lai3rQBAABKAjISnIGLmgMAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUkVqSM2dO1ctWrSQr6+vfH19FR4errVr15rb77nnHtlsNodlxIgRDvs4cuSIoqKiVKFCBdWoUUPjxo3T5cuXHcZs3LhRbdq0kaenpxo2bKhFixblq2XOnDmqV6+evLy8FBYWpu3btxflUAAAAJyGjAQAAFA0RWpI1apVS9OnT1diYqK+/fZbdenSRQ8++KD27t1rjnnyySd1/Phxc5kxY4a5LScnR1FRUcrKytLWrVv1wQcfaNGiRZo0aZI5JiUlRVFRUbr33nuVlJSkMWPGaNiwYVq3bp05ZunSpYqJidHkyZO1c+dOtWzZUpGRkUpPT7+ZuQAAALghZCQAAICisRmGYdzMDqpUqaI33nhDQ4cO1T333KNWrVpp1qxZBY5du3at7r//fh07dkwBAQGSpHnz5mn8+PE6ceKEPDw8NH78eK1evVp79uwxn9evXz+dOXNGsbGxkqSwsDC1a9dOs2fPliTl5uaqdu3aGjVqlCZMmFDo2u12u/z8/JSRkSFfX98bnIGry47dkm9d+e6dnP46AACg8Ir7/T8PGenqyEgAAJQ8VmWkPDd8DamcnBwtWbJE58+fV3h4uLn+448/VrVq1dSsWTNNnDhRFy5cMLclJCSoefPmZtCSpMjISNntdvMTxISEBEVERDi8VmRkpBISEiRJWVlZSkxMdBhTrlw5RUREmGMAAABchYwEAABwfe5FfcLu3bsVHh6uS5cuqVKlSlqxYoVCQkIkSY899pjq1q2rmjVrateuXRo/frySk5P16aefSpJSU1MdgpYk83Fqauo1x9jtdl28eFGnT59WTk5OgWP2799/zdozMzOVmZlpPrbb7UU9fAAAgAKRkQAAAAqvyA2pxo0bKykpSRkZGfrkk080cOBAbdq0SSEhIRo+fLg5rnnz5goKClLXrl31448/qkGDBk4t/EZMmzZNU6dOdXUZAACgDCIjAQAAFF6Rv7Ln4eGhhg0bKjQ0VNOmTVPLli31zjvvFDg2LCxMknTw4EFJUmBgoNLS0hzG5D0ODAy85hhfX195e3urWrVqcnNzK3BM3j6uZuLEicrIyDCXo0ePFvKoAQAAro2MBAAAUHg3fA2pPLm5uQ6neF8pKSlJkhQUFCRJCg8P1+7dux3u9BIXFydfX1/zlPbw8HDFx8c77CcuLs68BoOHh4dCQ0MdxuTm5io+Pt7hOg0F8fT0NG/HnLcAAAAUBzISAADA1RXpK3sTJ05Ujx49VKdOHZ09e1aLFy/Wxo0btW7dOv34449avHix7rvvPlWtWlW7du3S2LFj1blzZ7Vo0UKS1K1bN4WEhOiJJ57QjBkzlJqaqhdeeEHR0dHy9PSUJI0YMUKzZ8/Wc889pyFDhmj9+vVatmyZVq9ebdYRExOjgQMHqm3btmrfvr1mzZql8+fPa/DgwU6cGgAAgMIhIwEAABRNkRpS6enpGjBggI4fPy4/Pz+1aNFC69at05/+9CcdPXpUX331lRl8ateurd69e+uFF14wn+/m5qZVq1bpqaeeUnh4uCpWrKiBAwfqpZdeMscEBwdr9erVGjt2rN555x3VqlVLCxYsUGRkpDmmb9++OnHihCZNmqTU1FS1atVKsbGx+S7iCQAAYAUyEgAAQNHYDMMwXF2Eq9jtdvn5+SkjI6NYTk3Pjt2Sb1357p2c/joAAKDwivv9vywgIwEAcOuxOiPd9DWkAAAAAAAAgKKgIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkCpGh86s1aEza11dBgAAQIlCRgIAADSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLFakhNXfuXLVo0UK+vr7y9fVVeHi41q79/Za9ly5dUnR0tKpWrapKlSqpd+/eSktLc9jHkSNHFBUVpQoVKqhGjRoaN26cLl++7DBm48aNatOmjTw9PdWwYUMtWrQoXy1z5sxRvXr15OXlpbCwMG3fvr0ohwIAAOA0ZCQAAICiKVJDqlatWpo+fboSExP17bffqkuXLnrwwQe1d+9eSdLYsWP1xRdfaPny5dq0aZOOHTumhx56yHx+Tk6OoqKilJWVpa1bt+qDDz7QokWLNGnSJHNMSkqKoqKidO+99yopKUljxozRsGHDtG7dOnPM0qVLFRMTo8mTJ2vnzp1q2bKlIiMjlZ6efrPzAQAAUGRkJAAAgKKxGYZh3MwOqlSpojfeeEN9+vRR9erVtXjxYvXp00eStH//fjVt2lQJCQnq0KGD1q5dq/vvv1/Hjh1TQECAJGnevHkaP368Tpw4IQ8PD40fP16rV6/Wnj17zNfo16+fzpw5o9jYWElSWFiY2rVrp9mzZ0uScnNzVbt2bY0aNUoTJkwodO12u11+fn7KyMiQr6/vzUxDgQ4seV6SVM+/h7mufPdOTn8dAABQeMX9/p+HjHR1ZCQAAEoeqzJSnhu+hlROTo6WLFmi8+fPKzw8XImJicrOzlZERIQ5pkmTJqpTp44SEhIkSQkJCWrevLkZtCQpMjJSdrvd/AQxISHBYR95Y/L2kZWVpcTERIcx5cqVU0REhDkGAADAVchIAAAA1+de1Cfs3r1b4eHhunTpkipVqqQVK1YoJCRESUlJ8vDwkL+/v8P4gIAApaamSpJSU1Mdglbe9rxt1xpjt9t18eJFnT59Wjk5OQWO2b9//zVrz8zMVGZmpvnYbrcX/sABAACugYwEAABQeEU+Q6px48ZKSkrSN998o6eeekoDBw7UDz/8UBy1Od20adPk5+dnLrVr13Z1SQAAoIwgIwEAABRekRtSHh4eatiwoUJDQzVt2jS1bNlS77zzjgIDA5WVlaUzZ844jE9LS1NgYKAkKTAwMN8dZfIeX2+Mr6+vvL29Va1aNbm5uRU4Jm8fVzNx4kRlZGSYy9GjR4t6+AAAAAUiIwEAABTeDV9DKk9ubq4yMzMVGhqq8uXLKz4+3tyWnJysI0eOKDw8XJIUHh6u3bt3O9zpJS4uTr6+vgoJCTHHXLmPvDF5+/Dw8FBoaKjDmNzcXMXHx5tjrsbT09O8HXPeAgAAUBzISAAAAFdXpGtITZw4UT169FCdOnV09uxZLV68WBs3btS6devk5+enoUOHKiYmRlWqVJGvr69GjRql8PBwdejQQZLUrVs3hYSE6IknntCMGTOUmpqqF154QdHR0fL09JQkjRgxQrNnz9Zzzz2nIUOGaP369Vq2bJlWr15t1hETE6OBAweqbdu2at++vWbNmqXz589r8ODBTpwaAACAwiEjAQAAFE2RGlLp6ekaMGCAjh8/Lj8/P7Vo0ULr1q3Tn/70J0nSzJkzVa5cOfXu3VuZmZmKjIzUe++9Zz7fzc1Nq1at0lNPPaXw8HBVrFhRAwcO1EsvvWSOCQ4O1urVqzV27Fi98847qlWrlhYsWKDIyEhzTN++fXXixAlNmjRJqampatWqlWJjY/NdxBMAAMAKZCQAAICisRmGYbi6CFex2+3y8/NTRkZGsZyafmDJ85Kkev49zHXlu3dy+usAAIDCK+73/7KAjAQAwK3H6ox009eQAgAAAAAAAIqChhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiqSA2padOmqV27dvLx8VGNGjXUs2dPJScnO4y55557ZLPZHJYRI0Y4jDly5IiioqJUoUIF1ahRQ+PGjdPly5cdxmzcuFFt2rSRp6enGjZsqEWLFuWrZ86cOapXr568vLwUFham7du3F+VwAAAAnIKMBAAAUDRFakht2rRJ0dHR2rZtm+Li4pSdna1u3brp/PnzDuOefPJJHT9+3FxmzJhhbsvJyVFUVJSysrK0detWffDBB1q0aJEmTZpkjklJSVFUVJTuvfdeJSUlacyYMRo2bJjWrVtnjlm6dKliYmI0efJk7dy5Uy1btlRkZKTS09NvdC4AAABuCBkJAACgaGyGYRg3+uQTJ06oRo0a2rRpkzp37izpt0//WrVqpVmzZhX4nLVr1+r+++/XsWPHFBAQIEmaN2+exo8frxMnTsjDw0Pjx4/X6tWrtWfPHvN5/fr105kzZxQbGytJCgsLU7t27TR79mxJUm5urmrXrq1Ro0ZpwoQJharfbrfLz89PGRkZ8vX1vdFpuKoDS56XJNXz72GuK9+9k9NfBwAAFF5xv/9LZKTrISMBAFDyWJGRrnRT15DKyMiQJFWpUsVh/ccff6xq1aqpWbNmmjhxoi5cuGBuS0hIUPPmzc2gJUmRkZGy2+3au3evOSYiIsJhn5GRkUpISJAkZWVlKTEx0WFMuXLlFBERYY4pSGZmpux2u8MCAADgbGQkAACAa3O/0Sfm5uZqzJgx6tixo5o1a2auf+yxx1S3bl3VrFlTu3bt0vjx45WcnKxPP/1UkpSamuoQtCSZj1NTU685xm636+LFizp9+rRycnIKHLN///6r1jxt2jRNnTr1Rg8ZAADgushIAAAA13fDDano6Gjt2bNHW7ZscVg/fPhw88/NmzdXUFCQunbtqh9//FENGjS48UqdYOLEiYqJiTEf2+121a5d24UVAQCAsoaMBAAAcH031JAaOXKkVq1apc2bN6tWrVrXHBsWFiZJOnjwoBo0aKDAwMB8d3pJS0uTJAUGBpr/zVt35RhfX195e3vLzc1Nbm5uBY7J20dBPD095enpWbiDBAAAKCIyEgAAQOEU6RpShmFo5MiRWrFihdavX6/g4ODrPicpKUmSFBQUJEkKDw/X7t27He70EhcXJ19fX4WEhJhj4uPjHfYTFxen8PBwSZKHh4dCQ0MdxuTm5io+Pt4cAwAAYBUyEgAAQNEU6Qyp6OhoLV68WJ999pl8fHzM6xn4+fnJ29tbP/74oxYvXqz77rtPVatW1a5duzR27Fh17txZLVq0kCR169ZNISEheuKJJzRjxgylpqbqhRdeUHR0tPnJ3IgRIzR79mw999xzGjJkiNavX69ly5Zp9erVZi0xMTEaOHCg2rZtq/bt22vWrFk6f/68Bg8e7Ky5AQAAKBQyEgAAQNEUqSE1d+5cSb/dtvhKCxcu1KBBg+Th4aGvvvrKDD61a9dW79699cILL5hj3dzctGrVKj311FMKDw9XxYoVNXDgQL300kvmmODgYK1evVpjx47VO++8o1q1amnBggWKjIw0x/Tt21cnTpzQpEmTlJqaqlatWik2NjbfRTwBAACKGxkJAACgaGyGYRiuLsJV7Ha7/Pz8lJGRIV9fX6fv/8CS5yVJ9fx7mOvKd+/k9NcBAACFV9zv/2UBGQkAgFuP1RmpSNeQAgAAAAAAAG4WDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALBUkRpS06ZNU7t27eTj46MaNWqoZ8+eSk5Odhhz6dIlRUdHq2rVqqpUqZJ69+6ttLQ0hzFHjhxRVFSUKlSooBo1amjcuHG6fPmyw5iNGzeqTZs28vT0VMOGDbVo0aJ89cyZM0f16tWTl5eXwsLCtH379qIcDgAAgFOQkQAAAIqmSA2pTZs2KTo6Wtu2bVNcXJyys7PVrVs3nT9/3hwzduxYffHFF1q+fLk2bdqkY8eO6aGHHjK35+TkKCoqSllZWdq6das++OADLVq0SJMmTTLHpKSkKCoqSvfee6+SkpI0ZswYDRs2TOvWrTPHLF26VDExMZo8ebJ27typli1bKjIyUunp6TczHwAAAEVGRgIAACgam2EYxo0++cSJE6pRo4Y2bdqkzp07KyMjQ9WrV9fixYvVp08fSdL+/fvVtGlTJSQkqEOHDlq7dq3uv/9+HTt2TAEBAZKkefPmafz48Tpx4oQ8PDw0fvx4rV69Wnv27DFfq1+/fjpz5oxiY2MlSWFhYWrXrp1mz54tScrNzVXt2rU1atQoTZgwoVD12+12+fn5KSMjQ76+vjc6DVd1YMnzkqR6/j3MdeW7d3L66wAAgMIr7vd/iYx0PWQkAABKHisy0pVu6hpSGRkZkqQqVapIkhITE5Wdna2IiAhzTJMmTVSnTh0lJCRIkhISEtS8eXMzaElSZGSk7Ha79u7da465ch95Y/L2kZWVpcTERIcx5cqVU0REhDmmIJmZmbLb7Q4LAACAs5GRAAAAru2GG1K5ubkaM2aMOnbsqGbNmkmSUlNT5eHhIX9/f4exAQEBSk1NNcdcGbTytudtu9YYu92uixcv6uTJk8rJySlwTN4+CjJt2jT5+fmZS+3atYt+4AAAANdARgIAALi+G25IRUdHa8+ePVqyZIkz6ylWEydOVEZGhrkcPXrU1SUBAIAyhowEAABwfe438qSRI0dq1apV2rx5s2rVqmWuDwwMVFZWls6cOePwCWBaWpoCAwPNMX+800veHWauHPPHu86kpaXJ19dX3t7ecnNzk5ubW4Fj8vZREE9PT3l6ehb9gAEAAAqBjAQAAFA4RTpDyjAMjRw5UitWrND69esVHBzssD00NFTly5dXfHy8uS45OVlHjhxReHi4JCk8PFy7d+92uNNLXFycfH19FRISYo65ch95Y/L24eHhodDQUIcxubm5io+PN8cAAABYhYwEAABQNEU6Qyo6OlqLFy/WZ599Jh8fH/NaBH5+fvL29pafn5+GDh2qmJgYValSRb6+vho1apTCw8PVoUMHSVK3bt0UEhKiJ554QjNmzFBqaqpeeOEFRUdHm5/MjRgxQrNnz9Zzzz2nIUOGaP369Vq2bJlWr15t1hITE6OBAweqbdu2at++vWbNmqXz589r8ODBzpobAACAQiEjAQAAFE2RGlJz586VJN1zzz0O6xcuXKhBgwZJkmbOnKly5cqpd+/eyszMVGRkpN577z1zrJubm1atWqWnnnpK4eHhqlixogYOHKiXXnrJHBMcHKzVq1dr7Nixeuedd1SrVi0tWLBAkZGR5pi+ffvqxIkTmjRpklJTU9WqVSvFxsbmu4gnAABAcSMjAQAAFI3NMAzD1UW4it1ul5+fnzIyMuTr6+v0/R9Y8rwkqZ5/D3Nd+e6dnP46AACg8Ir7/b8sICMBAHDrsToj3fBd9gAAAAAAAIAbQUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsVeSG1ObNm/XAAw+oZs2astlsWrlypcP2QYMGyWazOSzdu3d3GHPq1Cn1799fvr6+8vf319ChQ3Xu3DmHMbt27dJdd90lLy8v1a5dWzNmzMhXy/Lly9WkSRN5eXmpefPmWrNmTVEPBwAAwCnISAAAAIVX5IbU+fPn1bJlS82ZM+eqY7p3767jx4+by7///W+H7f3799fevXsVFxenVatWafPmzRo+fLi53W63q1u3bqpbt64SExP1xhtvaMqUKZo/f745ZuvWrXr00Uc1dOhQfffdd+rZs6d69uypPXv2FPWQAAAAbhoZCQAAoPBshmEYN/xkm00rVqxQz549zXWDBg3SmTNn8n0qmGffvn0KCQnRjh071LZtW0lSbGys7rvvPv3888+qWbOm5s6dq+eff16pqany8PCQJE2YMEErV67U/v37JUl9+/bV+fPntWrVKnPfHTp0UKtWrTRv3rxC1W+32+Xn56eMjAz5+vrewAxc24Elz0uS6vn3MNeV797J6a8DAAAKr7jf/yUy0vWQkQAAKHmsyEhXKpZrSG3cuFE1atRQ48aN9dRTT+nXX381tyUkJMjf398MWpIUERGhcuXK6ZtvvjHHdO7c2QxakhQZGank5GSdPn3aHBMREeHwupGRkUpISLhqXZmZmbLb7Q4LAACAVchIAAAAv3F6Q6p79+76v//7P8XHx+v111/Xpk2b1KNHD+Xk5EiSUlNTVaNGDYfnuLu7q0qVKkpNTTXHBAQEOIzJe3y9MXnbCzJt2jT5+fmZS+3atW/uYAEAAAqJjAQAAPA7d2fvsF+/fuafmzdvrhYtWqhBgwbauHGjunbt6uyXK5KJEycqJibGfGy32wlcAADAEmQkAACA3xXLV/auVL9+fVWrVk0HDx6UJAUGBio9Pd1hzOXLl3Xq1CkFBgaaY9LS0hzG5D2+3pi87QXx9PSUr6+vwwIAAOAKZCQAAHArK/aG1M8//6xff/1VQUFBkqTw8HCdOXNGiYmJ5pj169crNzdXYWFh5pjNmzcrOzvbHBMXF6fGjRurcuXK5pj4+HiH14qLi1N4eHhxHxIAAMBNIyMBAIBbWZEbUufOnVNSUpKSkpIkSSkpKUpKStKRI0d07tw5jRs3Ttu2bdOhQ4cUHx+vBx98UA0bNlRkZKQkqWnTpurevbuefPJJbd++XV9//bVGjhypfv36qWbNmpKkxx57TB4eHho6dKj27t2rpUuX6p133nE4lXz06NGKjY3VW2+9pf3792vKlCn69ttvNXLkSCdMCwAAQNGQkQAAAAqvyA2pb7/9Vq1bt1br1q0lSTExMWrdurUmTZokNzc37dq1S3/+8591++23a+jQoQoNDdV///tfeXp6mvv4+OOP1aRJE3Xt2lX33XefOnXqpPnz55vb/fz89OWXXyolJUWhoaH661//qkmTJmn48OHmmDvvvFOLFy/W/Pnz1bJlS33yySdauXKlmjVrdjPzAQAAcEPISAAAAIVnMwzDcHURrmK32+Xn56eMjIxiuVbCgSXPS5Lq+fcw15Xv3snprwMAAAqvuN//ywIyEgAAtx6rM1KxX0MKAAAAAAAAuBINKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgqSI3pDZv3qwHHnhANWvWlM1m08qVKx22G4ahSZMmKSgoSN7e3oqIiNCBAwccxpw6dUr9+/eXr6+v/P39NXToUJ07d85hzK5du3TXXXfJy8tLtWvX1owZM/LVsnz5cjVp0kReXl5q3ry51qxZU9TDAQAAcAoyEgAAQOEVuSF1/vx5tWzZUnPmzClw+4wZM/Tuu+9q3rx5+uabb1SxYkVFRkbq0qVL5pj+/ftr7969iouL06pVq7R582YNHz7c3G6329WtWzfVrVtXiYmJeuONNzRlyhTNnz/fHLN161Y9+uijGjp0qL777jv17NlTPXv21J49e4p6SAAAADeNjAQAAFB4NsMwjBt+ss2mFStWqGfPnpJ+++SvZs2a+utf/6pnn31WkpSRkaGAgAAtWrRI/fr10759+xQSEqIdO3aobdu2kqTY2Fjdd999+vnnn1WzZk3NnTtXzz//vFJTU+Xh4SFJmjBhglauXKn9+/dLkvr27avz589r1apVZj0dOnRQq1atNG/evELVb7fb5efnp4yMDPn6+t7oNFzVgSXPS5Lq+fcw15Xv3snprwMAAAqvuN//JTLS9ZCRAAAoeazISFdy6jWkUlJSlJqaqoiICHOdn5+fwsLClJCQIElKSEiQv7+/GbQkKSIiQuXKldM333xjjuncubMZtCQpMjJSycnJOn36tDnmytfJG5P3OgAAACUFGQkAAMCRuzN3lpqaKkkKCAhwWB8QEGBuS01NVY0aNRyLcHdXlSpVHMYEBwfn20fetsqVKys1NfWar1OQzMxMZWZmmo/tdntRDg8AAOCGkJEAAAAc3VJ32Zs2bZr8/PzMpXbt2q4uCQAAwOXISAAAwGpObUgFBgZKktLS0hzWp6WlmdsCAwOVnp7usP3y5cs6deqUw5iC9nHla1xtTN72gkycOFEZGRnmcvTo0aIeIgAAQJGRkQAAABw5tSEVHByswMBAxcfHm+vsdru++eYbhYeHS5LCw8N15swZJSYmmmPWr1+v3NxchYWFmWM2b96s7Oxsc0xcXJwaN26sypUrm2OufJ28MXmvUxBPT0/5+vo6LAAAAMWNjAQAAOCoyA2pc+fOKSkpSUlJSZJ+u0hnUlKSjhw5IpvNpjFjxuiVV17R559/rt27d2vAgAGqWbOmeZeZpk2bqnv37nryySe1fft2ff311xo5cqT69eunmjVrSpIee+wxeXh4aOjQodq7d6+WLl2qd955RzExMWYdo0ePVmxsrN566y3t379fU6ZM0bfffquRI0fe/KwAAAAUERkJAACgCIwi2rBhgyEp3zJw4EDDMAwjNzfXePHFF42AgADD09PT6Nq1q5GcnOywj19//dV49NFHjUqVKhm+vr7G4MGDjbNnzzqM+f77741OnToZnp6exm233WZMnz49Xy3Lli0zbr/9dsPDw8O44447jNWrVxfpWDIyMgxJRkZGRtEmoZD+9++/Gf/799+MrLX/NRcAAOBaxfX+T0YqPDISAAAlT3G///+RzTAMwxWNsJLAbrfLz89PGRkZxXJq+oElz0uS6vn3MNeV797J6a8DAAAKr7jf/8sCMhIAALceqzPSLXWXPQAAAAAAALgeDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALCU0xtSU6ZMkc1mc1iaNGlibr906ZKio6NVtWpVVapUSb1791ZaWprDPo4cOaKoqChVqFBBNWrU0Lhx43T58mWHMRs3blSbNm3k6emphg0batGiRc4+FAAAAKchIwEAAPyuWM6QuuOOO3T8+HFz2bJli7lt7Nix+uKLL7R8+XJt2rRJx44d00MPPWRuz8nJUVRUlLKysrR161Z98MEHWrRokSZNmmSOSUlJUVRUlO69914lJSVpzJgxGjZsmNatW1cchwMAAOAUZCQAAIDfuBfLTt3dFRgYmG99RkaG/vnPf2rx4sXq0qWLJGnhwoVq2rSptm3bpg4dOujLL7/UDz/8oK+++koBAQFq1aqVXn75ZY0fP15TpkyRh4eH5s2bp+DgYL311luSpKZNm2rLli2aOXOmIiMji+OQAAAAbhoZCQAA4DfFcobUgQMHVLNmTdWvX1/9+/fXkSNHJEmJiYnKzs5WRESEObZJkyaqU6eOEhISJEkJCQlq3ry5AgICzDGRkZGy2+3au3evOebKfeSNydsHAABASURGAgAA+I3Tz5AKCwvTokWL1LhxYx0/flxTp07VXXfdpT179ig1NVUeHh7y9/d3eE5AQIBSU1MlSampqQ5BK2973rZrjbHb7bp48aK8vb0LrC0zM1OZmZnmY7vdflPHCgAAUFhkJAAAgN85vSHVo0cP888tWrRQWFiY6tatq2XLll01BFll2rRpmjp1qktrAAAAtyYyEgAAwO+K5St7V/L399ftt9+ugwcPKjAwUFlZWTpz5ozDmLS0NPN6CoGBgfnuKJP3+HpjfH19rxnoJk6cqIyMDHM5evTozR4eAADADSEjAQCAW1mxN6TOnTunH3/8UUFBQQoNDVX58uUVHx9vbk9OTtaRI0cUHh4uSQoPD9fu3buVnp5ujomLi5Ovr69CQkLMMVfuI29M3j6uxtPTU76+vg4LAACAK5CRAADArczpDalnn31WmzZt0qFDh7R161b16tVLbm5uevTRR+Xn56ehQ4cqJiZGGzZsUGJiogYPHqzw8HB16NBBktStWzeFhIToiSee0Pfff69169bphRdeUHR0tDw9PSVJI0aM0E8//aTnnntO+/fv13vvvadly5Zp7Nixzj4cAAAApyAjAQAA/M7p15D6+eef9eijj+rXX39V9erV1alTJ23btk3Vq1eXJM2cOVPlypVT7969lZmZqcjISL333nvm893c3LRq1So99dRTCg8PV8WKFTVw4EC99NJL5pjg4GCtXr1aY8eO1TvvvKNatWppwYIF3M4YAACUWGQkAACA39kMwzBcXYSr2O12+fn5KSMjo1hOTT+w5HlJUj3/3y9iWr57J6e/DgAAKLzifv8vC8hIAADceqzOSMV+DSkAAAAAAADgSjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAICl3F1dwK0mO3aLw+Py3Tu5qBIAAICSg4wEAMCtpdSfITVnzhzVq1dPXl5eCgsL0/bt211dEgAAgMuRkQAAQElWqs+QWrp0qWJiYjRv3jyFhYVp1qxZioyMVHJysmrUqOHq8kyHzqw1/1zPv4fDtj9+GijxiSAAALg5ZCQAAFDS2QzDMFxdxI0KCwtTu3btNHv2bElSbm6uateurVGjRmnChAnXfb7dbpefn58yMjLk6+vr9PoOLHn+qtv+GLquRNhCScH/DAAoi4r7/b8kICMBxYuMBKAssjojldozpLKyspSYmKiJEyea68qVK6eIiAglJCQU+JzMzExlZmaajzMyMiT9NunF4dyFzKtu23Nh5VW31fnP+Xzryv8p3BklAVeVHff735sjGXH5ttfx+9Nvf/jPuuvui99XACVZ3vt+Kf5M7prISIBzkZEA3CqszkiltiF18uRJ5eTkKCAgwGF9QECA9u/fX+Bzpk2bpqlTp+ZbX7t27WKp8ca95eoCgALwewmgbDl79qz8/PxcXYbTkZEAq/F7CaBssSojldqG1I2YOHGiYmJizMe5ubk6deqUqlatKpvN5tTXstvtql27to4ePVpmvw5ws5ij62OOro85ujbm5/qYo+sra3NkGIbOnj2rmjVrurqUEoOMVLIwR9fHHF0fc3R9zNG1MT/XV9bmyOqMVGobUtWqVZObm5vS0tIc1qelpSkwMLDA53h6esrT09Nhnb+/f3GVKEny9fUtE7+YxYk5uj7m6PqYo2tjfq6PObq+sjRHZfHMqDxkpLKDObo+5uj6mKPrY46ujfm5vrI0R1ZmpHKWvZKTeXh4KDQ0VPHx8ea63NxcxcfHKzyc72YDAIBbExkJAACUBqX2DClJiomJ0cCBA9W2bVu1b99es2bN0vnz5zV48GBXlwYAAOAyZCQAAFDSleqGVN++fXXixAlNmjRJqampatWqlWJjY/NdxNMVPD09NXny5Hynv+N3zNH1MUfXxxxdG/NzfczR9TFHpQ8ZqXRjjq6PObo+5uj6mKNrY36ujzm6OTajrN7zGAAAAAAAACVSqb2GFAAAAAAAAEonGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQ6qYzJkzR/Xq1ZOXl5fCwsK0fft2V5fkMps3b9YDDzygmjVrymazaeXKlQ7bDcPQpEmTFBQUJG9vb0VEROjAgQOuKdYFpk2bpnbt2snHx0c1atRQz549lZyc7DDm0qVLio6OVtWqVVWpUiX17t1baWlpLqrYenPnzlWLFi3k6+srX19fhYeHa+3ateb2W31+/mj69Omy2WwaM2aMuY45kqZMmSKbzeawNGnSxNzOHEm//PKLHn/8cVWtWlXe3t5q3ry5vv32W3P7rf7vNZyDjPQ7MtK1kZGuj4xUNGSkgpGRro+MVDxoSBWDpUuXKiYmRpMnT9bOnTvVsmVLRUZGKj093dWlucT58+fVsmVLzZkzp8DtM2bM0Lvvvqt58+bpm2++UcWKFRUZGalLly5ZXKlrbNq0SdHR0dq2bZvi4uKUnZ2tbt266fz58+aYsWPH6osvvtDy5cu1adMmHTt2TA899JALq7ZWrVq1NH36dCUmJurbb79Vly5d9OCDD2rv3r2SmJ8r7dixQ++//75atGjhsJ45+s0dd9yh48ePm8uWLVvMbbf6HJ0+fVodO3ZU+fLltXbtWv3www966623VLlyZXPMrf7vNW4eGckRGenayEjXR0YqPDLStZGRro6MVIwMOF379u2N6Oho83FOTo5Rs2ZNY9q0aS6sqmSQZKxYscJ8nJubawQGBhpvvPGGue7MmTOGp6en8e9//9sFFbpeenq6IcnYtGmTYRi/zUf58uWN5cuXm2P27dtnSDISEhJcVabLVa5c2ViwYAHzc4WzZ88ajRo1MuLi4oy7777bGD16tGEY/A7lmTx5stGyZcsCtzFHhjF+/HijU6dOV93Ov9dwBjLS1ZGRro+MVDhkpPzISNdGRro2MlLx4QwpJ8vKylJiYqIiIiLMdeXKlVNERIQSEhJcWFnJlJKSotTUVIf58vPzU1hY2C07XxkZGZKkKlWqSJISExOVnZ3tMEdNmjRRnTp1bsk5ysnJ0ZIlS3T+/HmFh4czP1eIjo5WVFSUw1xI/A5d6cCBA6pZs6bq16+v/v3768iRI5KYI0n6/PPP1bZtWz388MOqUaOGWrdurX/84x/mdv69xs0iIxUNf+fyIyNdGxnp6shI10dGujoyUvGhIeVkJ0+eVE5OjgICAhzWBwQEKDU11UVVlVx5c8J8/SY3N1djxoxRx44d1axZM0m/zZGHh4f8/f0dxt5qc7R7925VqlRJnp6eGjFihFasWKGQkBDm5/9bsmSJdu7cqWnTpuXbxhz9JiwsTIsWLVJsbKzmzp2rlJQU3XXXXTp79ixzJOmnn37S3Llz1ahRI61bt05PPfWUnnnmGX3wwQeS+PcaN4+MVDT8nXNERro6MtK1kZGuj4x0bWSk4uPu6gIA/C46Olp79uxx+M42ftO4cWMlJSUpIyNDn3zyiQYOHKhNmza5uqwS4ejRoxo9erTi4uLk5eXl6nJKrB49eph/btGihcLCwlS3bl0tW7ZM3t7eLqysZMjNzVXbtm312muvSZJat26tPXv2aN68eRo4cKCLqwNwqyMjXR0Z6erISIVDRro2MlLx4QwpJ6tWrZrc3Nzy3XUgLS1NgYGBLqqq5MqbE+ZLGjlypFatWqUNGzaoVq1a5vrAwEBlZWXpzJkzDuNvtTny8PBQw4YNFRoaqmnTpqlly5Z65513mB/9dip1enq62rRpI3d3d7m7u2vTpk1699135e7uroCAgFt+jgri7++v22+/XQcPHuT3SFJQUJBCQkIc1jVt2tQ8ZZ9/r3GzyEhFw9+535GRro2MdHVkpBtDRnJERio+NKSczMPDQ6GhoYqPjzfX5ebmKj4+XuHh4S6srGQKDg5WYGCgw3zZ7XZ98803t8x8GYahkSNHasWKFVq/fr2Cg4MdtoeGhqp8+fIOc5ScnKwjR47cMnNUkNzcXGVmZjI/krp27ardu3crKSnJXNq2bav+/fubf77V56gg586d048//qigoCB+jyR17Ngx3+3U//e//6lu3bqS+PcaN4+MVDT8nSMj3Sgy0u/ISDeGjOSIjFSMXH1V9bJoyZIlhqenp7Fo0SLjhx9+MIYPH274+/sbqampri7NJc6ePWt89913xnfffWdIMt5++23ju+++Mw4fPmwYhmFMnz7d8Pf3Nz777DNj165dxoMPPmgEBwcbFy9edHHl1njqqacMPz8/Y+PGjcbx48fN5cKFC+aYESNGGHXq1DHWr19vfPvtt0Z4eLgRHh7uwqqtNWHCBGPTpk1GSkqKsWvXLmPChAmGzWYzvvzyS8MwmJ+CXHkHGcNgjgzDMP76178aGzduNFJSUoyvv/7aiIiIMKpVq2akp6cbhsEcbd++3XB3dzdeffVV48CBA8bHH39sVKhQwfjoo4/MMbf6v9e4eWQkR2SkayMjXR8ZqejISPmRka6NjFR8aEgVk7///e9GnTp1DA8PD6N9+/bGtm3bXF2Sy2zYsMGQlG8ZOHCgYRi/3SbzxRdfNAICAgxPT0+ja9euRnJysmuLtlBBcyPJWLhwoTnm4sWLxtNPP21UrlzZqFChgtGrVy/j+PHjrivaYkOGDDHq1q1reHh4GNWrVze6du1qBi3DYH4K8sewxRwZRt++fY2goCDDw8PDuO2224y+ffsaBw8eNLczR4bxxRdfGM2aNTM8PT2NJk2aGPPnz3fYfqv/ew3nICP9jox0bWSk6yMjFR0ZKT8y0vWRkYqHzTAMw7rzsQAAAAAAAHCr4xpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQVYaMqUKbLZbDf03EGDBqlevXrOLegWZrPZNGXKlCI/79ChQ7LZbFq0aJHTayop7rvvPj355JPXHbdo0SLZbDYdOnTIYf0bb7yh+vXry83NTa1atSrSa8fGxqpSpUo6ceJEkZ4HACjdyEglBxnp6shIgHPRkAJKqQsXLmjKlCnauHGjS17/2LFjmjJlipKSklzy+igeX3/9tb788kuNHz/+hp7/5Zdf6rnnnlPHjh21cOFCvfbaa+b6oUOHqlmzZnJzc7vq/zh0795dDRs21LRp0270EAAAtzgyEopDcWSkCxcuaM6cOerWrZuCgoLk4+Oj1q1ba+7cucrJyXF4PhkJZRENKaCUunDhgqZOnerSsDV16lTCVhnzxhtvqGvXrmrYsOENPX/9+vUqV66c/vnPf2rAgAG67777JEmLFy/W4sWL5efnp5o1a15zH3/5y1/0/vvv6+zZszdUAwDg1kZGQnEojoz0008/adSoUTIMQzExMXrzzTcVHBysp59+WkOGDMm3DzISyhoaUgCK5PLly8rKynJ1GSgG6enpWr16tR555JGb2oe3t7c8PDwc1r/22muy2+36+uuv1bJly2vuo3fv3srMzNTy5ctvuA4AAKxGRiq7iisjBQYGavfu3YqLi9O4ceP0l7/8RZ9++qkGDx6s//u//9PBgwcd9kFGQllDQwooJlu2bFG7du3k5eWlBg0a6P3337/q2I8++kihoaHy9vZWlSpV1K9fPx09evSq4w8dOqTq1atLkqZOnSqbzebwff9du3Zp0KBBql+/vry8vBQYGKghQ4bo119/LdIx5F0L4M0339SsWbPUoEEDeXp66r333lO7du0kSYMHDzZfv7DXDMj7Xv2WLVv0zDPPqHr16vL399df/vIXZWVl6cyZMxowYIAqV66sypUr67nnnpNhGA77OH/+vP7617+qdu3a8vT0VOPGjfXmm2/mG5eZmamxY8eqevXq8vHx0Z///Gf9/PPPBdb1yy+/aMiQIQoICJCnp6fuuOMO/etf/yrSnBVk48aNstlsWrZsmaZOnarbbrtNPj4+6tOnjzIyMpSZmakxY8aoRo0aqlSpkgYPHqzMzEyHfSxcuFBdunRRjRo15OnpqZCQEM2dO9dhTN4nb5MmTXJYv3jxYtlstnzj/2j16tW6fPmyIiIi8m3bu3evunTpIm9vb9WqVUuvvPKKcnNzHcbYbDYtXLhQ58+fz/c7UbNmTZUvX75Q81WjRg21aNFCn332WaHGAwBKFzLS1ZGRbq2MVK1aNd1xxx359tmrVy9J0r59+xzWk5FQ1ri7ugCgLNq9e7e6deum6tWra8qUKbp8+bImT56sgICAfGNfffVVvfjii3rkkUc0bNgwnThxQn//+9/VuXNnfffdd/L398/3nOrVq2vu3Ll66qmn1KtXLz300EOSpBYtWkiS4uLi9NNPP2nw4MEKDAzU3r17NX/+fO3du1fbtm0r8kVDFy5cqEuXLmn48OHy9PRUr169dPbsWU2aNEnDhw/XXXfdJUm68847i7TfUaNGKTAwUFOnTtW2bds0f/58+fv7a+vWrapTp45ee+01rVmzRm+88YaaNWumAQMGSJIMw9Cf//xnbdiwQUOHDlWrVq20bt06jRs3Tr/88otmzpxpvsawYcP00Ucf6bHHHtOdd96p9evXKyoqKl8taWlp6tChg2w2m0aOHKnq1atr7dq1Gjp0qOx2u8aMGVOkYyvItGnT5O3trQkTJujgwYP6+9//rvLly6tcuXI6ffq0pkyZom3btmnRokUKDg52CE1z587VHXfcoT//+c9yd3fXF198oaefflq5ubmKjo6WJHXp0kVPP/20pk2bpp49e6pNmzY6fvy4Ro0apYiICI0YMeKa9W3dulVVq1ZV3bp1Hdanpqbq3nvv1eXLlzVhwgRVrFhR8+fPl7e3t8O4Dz/8UPPnz9f27du1YMECSUX/ncgTGhqqlStX3tBzAQAlFxmpcMhIt3ZGSk1NlSRVq1Yt3zYyEsoUA4DT9ezZ0/Dy8jIOHz5srvvhhx8MNzc348q/docOHTLc3NyMV1991eH5u3fvNtzd3R3WDxw40Khbt675+MSJE4YkY/Lkyfle/8KFC/nW/fvf/zYkGZs3by70caSkpBiSDF9fXyM9Pd1h244dOwxJxsKFCwu9vzwLFy40JBmRkZFGbm6uuT48PNyw2WzGiBEjzHWXL182atWqZdx9993mupUrVxqSjFdeecVhv3369DFsNptx8OBBwzAMIykpyZBkPP300w7jHnvssXxzN3ToUCMoKMg4efKkw9h+/foZfn5+5pzmzUlRjnvDhg2GJKNZs2ZGVlaWuf7RRx81bDab0aNHD4fx4eHhDj9rwyj4ZxoZGWnUr1/fYd358+eNhg0bGnfccYdx6dIlIyoqyvD19XX4XbyaTp06GaGhofnWjxkzxpBkfPPNN+a69PR0w8/Pz5BkpKSkmOsHDhxoVKxY8ZqvExUVle/4/ui1114zJBlpaWnXrRsAUHqQka6NjPSbWzUjGYZhZGZmGiEhIUZwcLCRnZ2dbzsZCWUJX9kDnCwnJ0fr1q1Tz549VadOHXN906ZNFRkZ6TD2008/VW5urh555BGdPHnSXAIDA9WoUSNt2LDhhmq48lOZS5cu6eTJk+rQoYMkaefOnUXeX+/evc3T351p6NChDp9EhoWFyTAMDR061Fzn5uamtm3b6qeffjLXrVmzRm5ubnrmmWcc9vfXv/5VhmFo7dq15jhJ+cb98ZM8wzD0n//8Rw888IAMw3D4WURGRiojI+OG5u2PBgwY4PC1tbzj/eNFK8PCwnT06FFdvnzZXHflzzQjI0MnT57U3XffrZ9++kkZGRnmtgoVKmjRokXat2+fOnfurNWrV2vmzJkOv4tX8+uvv6py5cr51q9Zs0YdOnRQ+/btzXXVq1dX//79C3fgNyCvjpMnTxbbawAArEVGKjwy0q2bkUaOHKkffvhBs2fPlrt7/i80kZFQlvCVPcDJTpw4oYsXL6pRo0b5tjVu3NgMAJJ04MABGYZR4FhJhb7mzh+dOnVKU6dO1ZIlS5Senu6w7co35sIKDg6+oTqu548BwM/PT5L0/9i77+io6vz/469Jp2QSahIkQuhEpIUWRBSIBAisIEhRlyJFFJTyFQELRVBYQBSXJrqCq7AgKkVKBIKISlYgEASELGoobgigQgaIkJDc3x/+cpchoQSSOynPxzlzlrn3M/e+72dg5+V77twbHBycbfnZs2fN58eOHVOlSpXk6+vrNK5u3brm+qz/dXNzU/Xq1Z3G1a5d2+n5mTNndO7cOS1atEiLFi3KsdZr5/F25OZ4MzMzlZKSonLlykn681bDEydOVGxsrFJTU53Gp6SkmNuSpPvuu09PP/205s2bp8jIyBzv0nI9xjXXl5D+nMfmzZtnW37tPOalrDpy+9MJAEDBRUa6dWSk4pmRZs6cqXfffVdTpkwx71R8vTrISCgKaEgBLpSZmSmbzaaNGzfK3d092/rSpUvf1nZ79uypHTt2aMyYMWrYsKFKly6tzMxMdejQIdtFFm/Ftb+Dzys5HfP1lucUAvJK1pw88cQT6tevX45jsq49cSdyc7zS/475p59+Urt27VSnTh3Nnj1bwcHB8vLy0oYNG/Tmm29me08vX75s3ur6p59+UmpqqkqWLHnT+sqVK+cUal0pq46crp0AACj6yEhkpBstL4oZacmSJRo7dqyGDh2ql19++brjyEgoSmhIAXmsQoUKKlGihI4cOZJtXUJCgtPz6tWryzAMhYSEqFatWrnaz/W+FTl79qxiYmI0efJkpws+5lTPnXDltzJVqlTRli1bdP78eadvAA8fPmyuz/rfzMxM/fTTT07fVF37PmTdXSYjIyPHu6e42ueff67Lly9r7dq1Tt8gXu/nChMnTtShQ4c0a9YsjR07VuPGjdPbb7990/3UqVNHn376abblVapUuaW/z3kpMTFR5cuXz5efQQAAXIOMlP/ISH8qbBlpzZo1GjRokB555BHNmzfvhmPJSChKuIYUkMfc3d0VGRmp1atX6/jx4+byQ4cO6YsvvnAa+8gjj8jd3V2TJ0/O9u2WYRg3vAVx1rc5586dy7b/rNdf7a233srtodxQqVKlcty/FTp16qSMjAzNnTvXafmbb74pm82mjh07SpL5v9cGjWvnwt3dXd27d9enn36qAwcOZNvfmTNn8rD63MvpPU1JSdHixYuzjf3uu+80a9YsjRw5Uv/3f/+nMWPGaO7cufrqq69uup/w8HCdPXvW6VoU0p/z/e9//1s7d+40l505c0ZLly693UO6qbi4OIWHh+fb9gEA1iMj5T8yUuHLSNu3b1fv3r3VunVrLV26VG5uN/5PdDISihLOkALyweTJkxUdHa37779fzzzzjK5cuaK///3vuueee/T999+b46pXr66pU6dq/PjxOnr0qLp27SpfX18lJiZq1apVGjJkiJ5//vkc91GiRAmFhoZqxYoVqlWrlsqWLat69eqpXr16at26tWbMmKH09HTddddd2rRpkxITE/P0GKtXry5/f38tXLhQvr6+KlWqlJo3b55v11K4WpcuXdSmTRu99NJLOnr0qBo0aKBNmzZpzZo1GjlypHk9hIYNG6pPnz6aP3++UlJS1LJlS8XExOjHH3/Mts3p06fryy+/VPPmzTV48GCFhobq999/1549e7Rlyxb9/vvv+X5c19O+fXt5eXmpS5cueuqpp3ThwgW9++67qlixok6ePGmOu3Tpkvr166eaNWvqtddek/Tn38XPP/9cAwYM0P79+82QnJOoqCh5eHhoy5YtGjJkiLn8hRde0IcffqgOHTpoxIgR5i2Nq1Sp4vT3+Ua+//57rV27VpL0448/KiUlRVOnTpUkNWjQQF26dDHHnj59Wt9//715q2YAQNFBRspfZKTClZGOHTumv/zlL7LZbOrRo4dWrlzptL5+/fpOP4kkI6HIseJWfkBx9NVXXxlhYWGGl5eXUa1aNWPhwoXGxIkTjZz+2X366adGq1atjFKlShmlSpUy6tSpYwwbNsxISEgwx1x7S2PDMIwdO3aY+9BVt+j95ZdfjG7duhn+/v6Gn5+f8eijjxpJSUnXvQXy9WTdvnfmzJk5rl+zZo0RGhpqeHh45Oo2v1m3NN61a5fT8qz5OXPmjNPynG6Te/78eWPUqFFGpUqVDE9PT6NmzZrGzJkznW6RbBiG8ccffxjPPfecUa5cOaNUqVJGly5djBMnTuQ4F6dOnTKGDRtmBAcHG56enkZgYKDRrl07Y9GiRdnm5HZuabxy5crbnoe1a9ca9evXN3x8fIyqVasaf/vb34z333/f6ZbCo0aNMtzd3Z1uPWwYhrF7927Dw8PDePrpp29a61/+8hejXbt22ZZ///33xgMPPGD4+PgYd911lzFlyhTjH//4xy3f0jjrWHN69OvXz2nsggULjJIlSxoOh+Om9QIACh8y0vWRkXI/D4U5I2Ud//Ue174PZCQUNTbDyMer4AEACpWvv/5aDz74oA4fPnzdOxvlt0aNGunBBx/Um2++6ZL9AwAAXIuMBOQ9GlIAACcdO3ZU5cqV9e6771q+7+joaPXo0UM///yzKlasaPn+AQAAroeMBOQtGlJAMZSRkXHTi1CWLl0617dU/uOPP5SSknLDMWXLlpWXl1eutltQpaWl3fS6CX5+fvl2S2gAAJC3yEh5g4wE4FZwUXOgGDpx4sRNL6w5ceJETZo0KVfbXbFihQYMGHDDMV9++aUefPDBXG23oNqxY4fatGlzwzGLFy9W//79rSkIAADcETJS3iAjAbgVnCEFFEOXLl3SN998c8Mx1apVU7Vq1XK13ZMnT+rgwYM3HBMWFqYyZcrkarsF1dmzZxUXF3fDMffcc4+CgoIsqggAANwJMlLeICMBuBU0pAAAAAAAAGApN1cXAAAAAAAAgOKlWF9DKjMzU0lJSfL19ZXNZnN1OQAAwAKGYej8+fOqVKmS3Nz4bi4nZCQAAIofqzNSsW5IJSUlKTg42NVlAAAAFzhx4oQqV67s6jIKJDISAADFl1UZqVg3pHx9fSX9Odl2u93F1QAAACs4HA4FBwebOQDZkZEAACh+rM5IxbohlXUKut1uJ2wBAFDM8FO06yMjAQBQfFmVkbhwAgAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAASxXra0gBAHA9hmHoypUrysjIcHUpyCV3d3d5eHhwjSgAAPIBGanwKmgZiYYUAADXSEtL08mTJ5WamurqUnCbSpYsqaCgIHl5ebm6FAAAigwyUuFXkDISDSkAAK6SmZmpxMREubu7q1KlSvLy8iow3yLh5gzDUFpams6cOaPExETVrFlTbm5coQAAgDtFRircCmJGoiEFAMBV0tLSlJmZqeDgYJUsWdLV5eA2lChRQp6enjp27JjS0tLk4+Pj6pIAACj0yEiFX0HLSHxlCABADlz9jRHuDO8fAAD5g8/Ywq0gvX8FpxIAAAAAAAAUCzSkAAAAAAAAYCmuIQUAwC1Kj/7Gsn15dmh1y2NvdkHRiRMnatKkSXdY0e2x2WxatWqVunbtetvbWLRokZYtW6Y9e/bo/PnzOnv2rPz9/fOsRgAAcGeszEgSOSnL77//rokTJ2rTpk06fvy4KlSooK5du2rKlCny8/PL22LzAQ0pAAAKuZMnT5p/XrFihSZMmKCEhARzWenSpXO1vbS0tAJxK+Asqamp6tChgzp06KDx48e7uhwAAFCIFOWclJSUpKSkJM2aNUuhoaE6duyYhg4dqqSkJH3yySeuLu+m+MkegGIrPfobpwdQWAUGBpoPPz8/2Ww28/nFixf1+OOPKyAgQKVLl1bTpk21ZcsWp9dXrVpVU6ZMUd++fWW32zVkyBBJ0rvvvmveSadbt26aPXt2tjOT1qxZo8aNG8vHx0fVqlXT5MmTdeXKFXO7ktStWzfZbDbz+b59+9SmTRv5+vrKbrcrLCxMu3fvvu7xjRw5UuPGjVOLFi3yZsIAADd0bUYiJ6EwK8o5qV69evr000/VpUsXVa9eXW3bttVrr72mzz//3NxPQUZDCgCAIuzChQvq1KmTYmJitHfvXnXo0EFdunTR8ePHncbNmjVLDRo00N69e/XKK6/o22+/1dChQzVixAjFx8froYce0muvveb0mq+//lp9+/bViBEj9MMPP+idd97RkiVLzHG7du2SJC1evFgnT540nz/++OOqXLmydu3apbi4OI0bN06enp4WzAYAAMD/FMWclJKSIrvdLg+Pgv+DuIJfIQAAuG0NGjRQgwYNzOdTpkzRqlWrtHbtWg0fPtxc3rZtW/3f//2f+fyll15Sx44d9fzzz0uSatWqpR07dmjdunXmmMmTJ2vcuHHq16+fJKlatWqaMmWKXnjhBU2cOFEVKlSQJPn7+yswMNB83fHjxzVmzBjVqVNHklSzZs18OHIAAIAbK2o56ddff9WUKVPMs7gKOs6QAgCgCLtw4YKef/551a1bV/7+/ipdurQOHTqU7Zu/Jk2aOD1PSEhQs2bNnJZd+3zfvn169dVXVbp0afMxePBgnTx5UqmpqdetafTo0Ro0aJAiIiI0ffp0/fTTT3d4lAAAALlXlHKSw+FQVFSUQkNDXXaR9tyiIQUAQBH2/PPPa9WqVXr99df19ddfKz4+Xvfee6/S0tKcxpUqVSrX275w4YImT56s+Ph487F//34dOXJEPj4+133dpEmTdPDgQUVFRWnr1q0KDQ3VqlWrcr1/AACAO1FUctL58+fVoUMH+fr6atWqVYXmUgj8ZA8AgCLs22+/Vf/+/dWtWzdJf4ajo0eP3vR1tWvXNq9lkOXa540bN1ZCQoJq1Khx3e14enoqIyMj2/JatWqpVq1aGjVqlPr06aPFixebNQIAAFihKOQkh8OhyMhIeXt7a+3atTdsdhU0NKQAACjCatasqc8++0xdunSRzWbTK6+8oszMzJu+7tlnn1Xr1q01e/ZsdenSRVu3btXGjRtls9nMMRMmTFDnzp119913q0ePHnJzc9O+fft04MABTZ06VdKfd5CJiYnRfffdJ29vb/n4+GjMmDHq0aOHQkJC9Msvv2jXrl3q3r37dWtJTk5WcnKyfvzxR0nS/v375evrq7vvvltly5a9wxkCAADFVWHPSQ6HQ+3bt1dqaqo++ugjORwOORwOSVKFChXk7u6eB7OUf/jJHgAARdjs2bNVpkwZtWzZUl26dFFkZKQaN25809fdd999WrhwoWbPnq0GDRooOjpao0aNcvrWLTIyUuvWrdOmTZvUtGlTtWjRQm+++aaqVKlijnnjjTe0efNmBQcHq1GjRnJ3d9dvv/2mvn37qlatWurZs6c6duyoyZMnX7eWhQsXqlGjRho8eLAkqXXr1mrUqJHWrl17BzMDAACKu8Kek/bs2aPvvvtO+/fvV40aNRQUFGQ+Tpw4cecTlM9shmEYri7CVRwOh/z8/MzbIgIoXtKjv3F67tmhlYsqQUFy6dIlJSYmKiQkpFCd8myFwYMH6/Dhw/r6669dXcpN3eh95PP/5pgjoHi7NiNJ5CSQkW6msOSkgpSR+MkeAADI0axZs/TQQw+pVKlS2rhxoz744APNnz/f1WUBAAC4HDnpztGQAgAAOdq5c6dmzJih8+fPq1q1anr77bc1aNAgV5cFAADgcuSkO0dDCgAA5Ojjjz92dQkAAAAFEjnpznFRcwAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkPVxcAAEBh8dPudyzbV/UmT+VqfP/+/fXBBx9Ikjw8PFS2bFnVr19fffr0Uf/+/eXmVni/gzp48KAmTJiguLg4HTt2TG+++aZGjhzp6rIAAMD/Z2VGkshJV3v33Xf1z3/+UwcOHJAkhYWF6fXXX1ezZs1cXNnNFd5ZBwAATjp06KCTJ0/q6NGj2rhxo9q0aaMRI0aoc+fOunLliqvLu22pqamqVq2apk+frsDAQFeXAwAACqGimpO2bdumPn366Msvv1RsbKyCg4PVvn17/fe//3V1aTdFQwoAgCLC29tbgYGBuuuuu9S4cWO9+OKLWrNmjTZu3KglS5aY486dO6dBgwapQoUKstvtatu2rfbt2+e0rc8//1xNmzaVj4+Pypcvr27dupnrzp49q759+6pMmTIqWbKkOnbsqCNHjkiSLl68KLvdrk8++cRpe6tXr1apUqV0/vx5paWlafjw4QoKCpKPj4+qVKmiadOmXfe4mjZtqpkzZ6p3797y9vbOg5kCAADFTVHNSUuXLtUzzzyjhg0bqk6dOnrvvfeUmZmpmJiYPJi1/EVDCgCAIqxt27Zq0KCBPvvsM3PZo48+qtOnT2vjxo2Ki4tT48aN1a5dO/3++++SpPXr16tbt27q1KmT9u7dq5iYGKfTvvv376/du3dr7dq1io2NlWEY6tSpk9LT01WqVCn17t1bixcvdqpj8eLF6tGjh3x9ffX2229r7dq1+vjjj5WQkKClS5eqatWqlswHAABAlqKYk1JTU5Wenq6yZcve2eRYgGtIAQBQxNWpU0fff/+9JOmbb77Rzp07dfr0afNso1mzZmn16tX65JNPNGTIEL322mvq3bu3Jk+ebG6jQYMGkqQjR45o7dq1+vbbb9WyZUtJf34zFxwcrNWrV+vRRx/VoEGD1LJlS508eVJBQUE6ffq0NmzYoC1btkiSjh8/rpo1a6pVq1ay2WyqUqWKldMBAABgKmo5aezYsapUqZIiIiLueG7yG2dIAQBQxBmGIZvNJknat2+fLly4oHLlyql06dLmIzExUT/99JMkKT4+Xu3atctxW4cOHZKHh4eaN29uLitXrpxq166tQ4cOSZKaNWume+65x7x46EcffaQqVaqodevWkv785jA+Pl61a9fWc889p02bNuXbsQMAANxIUcpJ06dP1/Lly7Vq1Sr5+PjkfjIsxhlSAAAUcYcOHVJISIgk6cKFCwoKCtK2bduyjfP395cklShR4o73OWjQIM2bN0/jxo3T4sWLNWDAADPsNW7cWImJidq4caO2bNminj17KiIiItv1FAAAAPJbUclJs2bN0vTp07VlyxbVr1//jmu0AmdIAQBQhG3dulX79+9X9+7dJf0ZcpKTk+Xh4aEaNWo4PcqXLy9Jql+//nUvhFm3bl1duXJF3333nbnst99+U0JCgkJDQ81lTzzxhI4dO6a3335bP/zwg/r16+e0Hbvdrl69eundd9/VihUr9Omnn5rXZgAAALBCUclJM2bM0JQpUxQdHa0mTZrc9nxYjTOkAAAoIi5fvqzk5GRlZGTo1KlTio6O1rRp09S5c2f17dtXkhQREaHw8HB17dpVM2bMUK1atZSUlGReoLNJkyaaOHGi2rVrp+rVq6t37966cuWKNmzYoLFjx6pmzZp6+OGHNXjwYL3zzjvy9fXVuHHjdNddd+nhhx82aylTpoweeeQRjRkzRu3bt1flypXNdbNnz1ZQUJAaNWokNzc3rVy5UoGBgeY3j9dKS0vTDz/8YP75v//9r+Lj41W6dGnVqFEj/yYUAAAUGUU1J/3tb3/ThAkTtGzZMlWtWlXJycmSZP7csCDjDCkAAIqI6OhoBQUFqWrVqurQoYO+/PJLvf3221qzZo3c3d0lSTabTRs2bFDr1q01YMAA1apVS71799axY8cUEBAgSXrwwQe1cuVKrV27Vg0bNlTbtm21c+dOcz+LFy9WWFiYOnfurPDwcBmGoQ0bNsjT09OpnoEDByotLU1PPvmk03JfX1/NmDFDTZo0UdOmTXX06FFt2LBBbm45x5KkpCQ1atRIjRo10smTJzVr1iw1atRIgwYNysvpAwAARVhRzUkLFixQWlqaevTooaCgIPMxa9asvJy+fGEzDMNwdRGu4nA45Ofnp5SUFNntdleXA8Bi6dHfOD337NDKRZWgILl06ZISExMVEhJSKC4GWZB9+OGHGjVqlJKSkuTl5WXpvm/0PvL5f3PMEVC8XZuRJHISyEh5zVU5qSBlJH6yBwAA8lRqaqpOnjyp6dOn66mnnrK8GQUAAFBQkZP+h5/sAQCAPDVjxgzVqVNHgYGBGj9+vKvLAQAAKDDISf9DQwoAAOSpSZMmKT09XTExMQX+YpoAAABWIif9Dw0pAAAAAAAAWIqGFAAAAAAAACxFQwoAgBwU45vQFgm8fwAA5A8+Ywu3gvT+0ZACAOAqnp6ekv68AwoKr6z3L+v9BAAAd4aMVDQUpIx0Rw2p6dOny2azaeTIkeayS5cuadiwYSpXrpxKly6t7t2769SpU06vO378uKKiolSyZElVrFhRY8aM0ZUrV5zGbNu2TY0bN5a3t7dq1KihJUuWZNv/vHnzVLVqVfn4+Kh58+bauXPnnRwOAAByd3eXv7+/Tp8+rd9++01//PGHLl26xKOQPP744w/99ttvOn36tPz9/eXu7u6Sv0dkJABAUUNGKtyPgpKRruZxuy/ctWuX3nnnHdWvX99p+ahRo7R+/XqtXLlSfn5+Gj58uB555BF9++23kqSMjAxFRUUpMDBQO3bs0MmTJ9W3b195enrq9ddflyQlJiYqKipKQ4cO1dKlSxUTE6NBgwYpKChIkZGRkqQVK1Zo9OjRWrhwoZo3b6633npLkZGRSkhIUMWKFW/3sAAAUGBgoCTp9OnTLq4Et8vf3998H61GRgIAFFVkpMLPlRnpWjbjNn5AeOHCBTVu3Fjz58/X1KlT1bBhQ7311ltKSUlRhQoVtGzZMvXo0UOSdPjwYdWtW1exsbFq0aKFNm7cqM6dOyspKUkBAQGSpIULF2rs2LE6c+aMvLy8NHbsWK1fv14HDhww99m7d2+dO3dO0dHRkqTmzZuradOmmjt3riQpMzNTwcHBevbZZzVu3LhbOg6HwyE/Pz+lpKTIbrfndhoAFHLp0d84Pffs0MpFlaCgysjIUHp6uqvLQC55enre8Fu//Pz8JyMBKAquzUgSOQnOyEiFkyszUk5u6wypYcOGKSoqShEREZo6daq5PC4uTunp6YqIiDCX1alTR3fffbcZtmJjY3XvvfeaQUuSIiMj9fTTT+vgwYNq1KiRYmNjnbaRNSbrtPe0tDTFxcVp/Pjx5no3NzdFREQoNjb2dg4JAIBs3N3dC8TpzCg8yEgAgOKAjIS8kOuG1PLly7Vnzx7t2rUr27rk5GR5eXnJ39/faXlAQICSk5PNMVcHraz1WetuNMbhcOiPP/7Q2bNnlZGRkeOYw4cPX7f2y5cv6/Lly+Zzh8Nxk6MFAAC4NWQkAACAW5eri5qfOHFCI0aM0NKlS+Xj45NfNeWbadOmyc/Pz3wEBwe7uiQAAFAEkJEAAAByJ1cNqbi4OJ0+fVqNGzeWh4eHPDw89NVXX+ntt9+Wh4eHAgIClJaWpnPnzjm97tSpU+ZFswIDA7PdUSbr+c3G2O12lShRQuXLl5e7u3uOY250ca7x48crJSXFfJw4cSI3hw8AAJAjMhIAAEDu5Koh1a5dO+3fv1/x8fHmo0mTJnr88cfNP3t6eiomJsZ8TUJCgo4fP67w8HBJUnh4uPbv3+90Vf7NmzfLbrcrNDTUHHP1NrLGZG3Dy8tLYWFhTmMyMzMVExNjjsmJt7e37Ha70wMAAOBOkZEAAAByJ1fXkPL19VW9evWclpUqVUrlypUzlw8cOFCjR49W2bJlZbfb9eyzzyo8PFwtWrSQJLVv316hoaH661//qhkzZig5OVkvv/yyhg0bJm9vb0nS0KFDNXfuXL3wwgt68skntXXrVn388cdav369ud/Ro0erX79+atKkiZo1a6a33npLFy9e1IABA+5oQgAAAHKLjAQAAJA7t3WXvRt588035ebmpu7du+vy5cuKjIzU/PnzzfXu7u5at26dnn76aYWHh6tUqVLq16+fXn31VXNMSEiI1q9fr1GjRmnOnDmqXLmy3nvvPUVGRppjevXqpTNnzmjChAlKTk5Ww4YNFR0dne0ingAAAAUBGQkAAOB/bIZhGK4uwlUcDof8/PyUkpLCqelAMZQe/Y3Tc88OrVxUCQAr8fl/c8wRULxdm5EkchJQHFj9+Z+ra0gBAAAAAAAAd4qGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS3m4ugAAcJWj5zY6Pa+pVi6qBAAAoOC4NiNJ5CQAeY8zpAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVK4aUgsWLFD9+vVlt9tlt9sVHh6ujRs3musvXbqkYcOGqVy5cipdurS6d++uU6dOOW3j+PHjioqKUsmSJVWxYkWNGTNGV65ccRqzbds2NW7cWN7e3qpRo4aWLFmSrZZ58+apatWq8vHxUfPmzbVz587cHAoAAECeISMBAADkTq4aUpUrV9b06dMVFxen3bt3q23btnr44Yd18OBBSdKoUaP0+eefa+XKlfrqq6+UlJSkRx55xHx9RkaGoqKilJaWph07duiDDz7QkiVLNGHCBHNMYmKioqKi1KZNG8XHx2vkyJEaNGiQvvjiC3PMihUrNHr0aE2cOFF79uxRgwYNFBkZqdOnT9/pfAAAAOQaGQkAACB3bIZhGHeygbJly2rmzJnq0aOHKlSooGXLlqlHjx6SpMOHD6tu3bqKjY1VixYttHHjRnXu3FlJSUkKCAiQJC1cuFBjx47VmTNn5OXlpbFjx2r9+vU6cOCAuY/evXvr3Llzio6OliQ1b95cTZs21dy5cyVJmZmZCg4O1rPPPqtx48bdcu0Oh0N+fn5KSUmR3W6/k2kAUAgdWf6S0/OavV9zUSUArGTV5z8ZCUBhdW1GkshJQHFg9ef/bV9DKiMjQ8uXL9fFixcVHh6uuLg4paenKyIiwhxTp04d3X333YqNjZUkxcbG6t577zWDliRFRkbK4XCY3yDGxsY6bSNrTNY20tLSFBcX5zTGzc1NERER5hgAAABXISMBAADcnEduX7B//36Fh4fr0qVLKl26tFatWqXQ0FDFx8fLy8tL/v7+TuMDAgKUnJwsSUpOTnYKWlnrs9bdaIzD4dAff/yhs2fPKiMjI8cxhw8fvmHtly9f1uXLl83nDofj1g8cAADgBshIAAAAty7XZ0jVrl1b8fHx+u677/T000+rX79++uGHH/Kjtjw3bdo0+fn5mY/g4GBXlwQAAIoIMhIAAMCty3VDysvLSzVq1FBYWJimTZumBg0aaM6cOQoMDFRaWprOnTvnNP7UqVMKDAyUJAUGBma7o0zW85uNsdvtKlGihMqXLy93d/ccx2Rt43rGjx+vlJQU83HixIncHj4AAECOyEgAAAC37ravIZUlMzNTly9fVlhYmDw9PRUTE2OuS0hI0PHjxxUeHi5JCg8P1/79+53u9LJ582bZ7XaFhoaaY67eRtaYrG14eXkpLCzMaUxmZqZiYmLMMdfj7e1t3o456wEAAJAfyEgAAADXl6trSI0fP14dO3bU3XffrfPnz2vZsmXatm2bvvjiC/n5+WngwIEaPXq0ypYtK7vdrmeffVbh4eFq0aKFJKl9+/YKDQ3VX//6V82YMUPJycl6+eWXNWzYMHl7e0uShg4dqrlz5+qFF17Qk08+qa1bt+rjjz/W+vXrzTpGjx6tfv36qUmTJmrWrJneeustXbx4UQMGDMjDqQEAALg1ZCQAAIDcyVVD6vTp0+rbt69OnjwpPz8/1a9fX1988YUeeughSdKbb74pNzc3de/eXZcvX1ZkZKTmz59vvt7d3V3r1q3T008/rfDwcJUqVUr9+vXTq6++ao4JCQnR+vXrNWrUKM2ZM0eVK1fWe++9p8jISHNMr169dObMGU2YMEHJyclq2LChoqOjs13EEwAAwApkJAAAgNyxGYZhuLoIV3E4HPLz81NKSgqnpgPF0JHlLzk9r9n7NRdVAsBKfP7fHHMEFG/XZiSJnAQUB1Z//t/xNaQAAAAAAACA3KAhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYKlcNqWnTpqlp06by9fVVxYoV1bVrVyUkJDiNuXTpkoYNG6Zy5cqpdOnS6t69u06dOuU05vjx44qKilLJkiVVsWJFjRkzRleuXHEas23bNjVu3Fje3t6qUaOGlixZkq2eefPmqWrVqvLx8VHz5s21c+fO3BwOAABAniAjAQAA5E6uGlJfffWVhg0bpn//+9/avHmz0tPT1b59e128eNEcM2rUKH3++edauXKlvvrqKyUlJemRRx4x12dkZCgqKkppaWnasWOHPvjgAy1ZskQTJkwwxyQmJioqKkpt2rRRfHy8Ro4cqUGDBumLL74wx6xYsUKjR4/WxIkTtWfPHjVo0ECRkZE6ffr0ncwHAABArpGRAAAAcsdmGIZxuy8+c+aMKlasqK+++kqtW7dWSkqKKlSooGXLlqlHjx6SpMOHD6tu3bqKjY1VixYttHHjRnXu3FlJSUkKCAiQJC1cuFBjx47VmTNn5OXlpbFjx2r9+vU6cOCAua/evXvr3Llzio6OliQ1b95cTZs21dy5cyVJmZmZCg4O1rPPPqtx48bdUv0Oh0N+fn5KSUmR3W6/3WkAUEgdWf6S0/OavV9zUSUArGTF5z8ZCUBhdm1GkshJQHFg9ef/HV1DKiUlRZJUtmxZSVJcXJzS09MVERFhjqlTp47uvvtuxcbGSpJiY2N17733mkFLkiIjI+VwOHTw4EFzzNXbyBqTtY20tDTFxcU5jXFzc1NERIQ5BgAAwFXISAAAADfmcbsvzMzM1MiRI3XfffepXr16kqTk5GR5eXnJ39/faWxAQICSk5PNMVcHraz1WetuNMbhcOiPP/7Q2bNnlZGRkeOYw4cPX7fmy5cv6/Lly+Zzh8ORiyMGAAC4OTISAADAzd32GVLDhg3TgQMHtHz58rysJ19NmzZNfn5+5iM4ONjVJQEAgCKGjAQAAHBzt9WQGj58uNatW6cvv/xSlStXNpcHBgYqLS1N586dcxp/6tQpBQYGmmOuvaNM1vObjbHb7SpRooTKly8vd3f3HMdkbSMn48ePV0pKivk4ceJE7g4cAADgBshIAAAAtyZXDSnDMDR8+HCtWrVKW7duVUhIiNP6sLAweXp6KiYmxlyWkJCg48ePKzw8XJIUHh6u/fv3O93pZfPmzbLb7QoNDTXHXL2NrDFZ2/Dy8lJYWJjTmMzMTMXExJhjcuLt7S273e70AAAAuFNkJAAAgNzJ1TWkhg0bpmXLlmnNmjXy9fU1r2fg5+enEiVKyM/PTwMHDtTo0aNVtmxZ2e12PfvsswoPD1eLFi0kSe3bt1doaKj++te/asaMGUpOTtbLL7+sYcOGydvbW5I0dOhQzZ07Vy+88IKefPJJbd26VR9//LHWr19v1jJ69Gj169dPTZo0UbNmzfTWW2/p4sWLGjBgQF7NDQAAwC0hIwEAAOROrhpSCxYskCQ9+OCDTssXL16s/v37S5LefPNNubm5qXv37rp8+bIiIyM1f/58c6y7u7vWrVunp59+WuHh4SpVqpT69eunV1991RwTEhKi9evXa9SoUZozZ44qV66s9957T5GRkeaYXr166cyZM5owYYKSk5PVsGFDRUdHZ7uIJwAAQH4jIwEAAOSOzTAMw9VFuIrD4ZCfn59SUlI4NR0oho4sf8npec3er7moEgBW4vP/5pgjoHi7NiNJ5CSgOLD68/+277IHAAAAAAAA3A4aUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApXLdkNq+fbu6dOmiSpUqyWazafXq1U7rDcPQhAkTFBQUpBIlSigiIkJHjhxxGvP777/r8ccfl91ul7+/vwYOHKgLFy44jfn+++91//33y8fHR8HBwZoxY0a2WlauXKk6derIx8dH9957rzZs2JDbwwEAAMgTZCQAAIBbl+uG1MWLF9WgQQPNmzcvx/UzZszQ22+/rYULF+q7775TqVKlFBkZqUuXLpljHn/8cR08eFCbN2/WunXrtH37dg0ZMsRc73A41L59e1WpUkVxcXGaOXOmJk2apEWLFpljduzYoT59+mjgwIHau3evunbtqq5du+rAgQO5PSQAAIA7RkYCAAC4dTbDMIzbfrHNplWrVqlr166S/vzmr1KlSvq///s/Pf/885KklJQUBQQEaMmSJerdu7cOHTqk0NBQ7dq1S02aNJEkRUdHq1OnTvrll19UqVIlLViwQC+99JKSk5Pl5eUlSRo3bpxWr16tw4cPS5J69eqlixcvat26dWY9LVq0UMOGDbVw4cJbqt/hcMjPz08pKSmy2+23Ow0ACqkjy19yel6z92suqgSAlaz4/CcjASjMrs1IEjkJKA6s/vzP02tIJSYmKjk5WREREeYyPz8/NW/eXLGxsZKk2NhY+fv7m0FLkiIiIuTm5qbvvvvOHNO6dWszaElSZGSkEhISdPbsWXPM1fvJGpO1HwAAgIKCjAQAAODMIy83lpycLEkKCAhwWh4QEGCuS05OVsWKFZ2L8PBQ2bJlncaEhIRk20bWujJlyig5OfmG+8nJ5cuXdfnyZfO5w+HIzeEBAADcFjISAACAs2J1l71p06bJz8/PfAQHB7u6JAAAAJcjIwEAAKvlaUMqMDBQknTq1Cmn5adOnTLXBQYG6vTp007rr1y5ot9//91pTE7buHof1xuTtT4n48ePV0pKivk4ceJEbg8RAAAg18hIAAAAzvK0IRUSEqLAwEDFxMSYyxwOh7777juFh4dLksLDw3Xu3DnFxcWZY7Zu3arMzEw1b97cHLN9+3alp6ebYzZv3qzatWurTJky5pir95M1Jms/OfH29pbdbnd6AAAA5DcyEgAAgLNcN6QuXLig+Ph4xcfHS/rzIp3x8fE6fvy4bDabRo4cqalTp2rt2rXav3+/+vbtq0qVKpl3malbt646dOigwYMHa+fOnfr22281fPhw9e7dW5UqVZIkPfbYY/Ly8tLAgQN18OBBrVixQnPmzNHo0aPNOkaMGKHo6Gi98cYbOnz4sCZNmqTdu3dr+PDhdz4rAAAAuURGAgAAuHW5vqj57t271aZNG/N5VgDq16+flixZohdeeEEXL17UkCFDdO7cObVq1UrR0dHy8fExX7N06VINHz5c7dq1k5ubm7p37663337bXO/n56dNmzZp2LBhCgsLU/ny5TVhwgQNGTLEHNOyZUstW7ZML7/8sl588UXVrFlTq1evVr169W5rIgAAAO4EGQkAAODW2QzDMFxdhKs4HA75+fkpJSWFU9OBYujI8pecntfs/ZqLKgFgJT7/b445Aoq3azOSRE4CigOrP/+L1V32AAAAAAAA4Ho0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAASxX6htS8efNUtWpV+fj4qHnz5tq5c6erSwIAAHA5MhIAACjICnVDasWKFRo9erQmTpyoPXv2qEGDBoqMjNTp06ddXRoAAIDLkJEAAEBBV6gbUrNnz9bgwYM1YMAAhYaGauHChSpZsqTef/99V5cGAADgMmQkAABQ0Hm4uoDblZaWpri4OI0fP95c5ubmpoiICMXGxub4msuXL+vy5cvm85SUFEmSw+HI32IBFEgXUi87Pef/C4DiIevfumEYLq4kf5CRANypazOSxP8fAMWB1Rmp0Dakfv31V2VkZCggIMBpeUBAgA4fPpzja6ZNm6bJkydnWx4cHJwvNQIoZAa+4eoKAFjo/Pnz8vPzc3UZeY6MBCBfkJOAYsOqjFRoG1K3Y/z48Ro9erT5PDMzU7///rvKlSsnm83mwsoKFofDoeDgYJ04cUJ2u93V5RQLzLn1mHPrMeeuwbxnZxiGzp8/r0qVKrm6lAKDjHRr+PdkPebcesy59Zhz12Des7M6IxXahlT58uXl7u6uU6dOOS0/deqUAgMDc3yNt7e3vL29nZb5+/vnV4mFnt1u5x+mxZhz6zHn1mPOXYN5d1YUz4zKQkbKf/x7sh5zbj3m3HrMuWsw786szEiF9qLmXl5eCgsLU0xMjLksMzNTMTExCg8Pd2FlAAAArkNGAgAAhUGhPUNKkkaPHq1+/fqpSZMmatasmd566y1dvHhRAwYMcHVpAAAALkNGAgAABV2hbkj16tVLZ86c0YQJE5ScnKyGDRsqOjo620U8kTve3t6aOHFitlP3kX+Yc+sx59Zjzl2DeS+eyEj5g39P1mPOrcecW485dw3m3fVsRlG95zEAAAAAAAAKpEJ7DSkAAAAAAAAUTjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioZUMTVv3jxVrVpVPj4+at68uXbu3HnD8efOndOwYcMUFBQkb29v1apVSxs2bLCo2qIht3P+1ltvqXbt2ipRooSCg4M1atQoXbp0yaJqC7/t27erS5cuqlSpkmw2m1avXn3T12zbtk2NGzeWt7e3atSooSVLluR7nUVJbuf8s88+00MPPaQKFSrIbrcrPDxcX3zxhTXFFhG38/c8y7fffisPDw81bNgw3+oDCiMykvXISNYiI1mPjGQ9MlLhQEOqGFqxYoVGjx6tiRMnas+ePWrQoIEiIyN1+vTpHMenpaXpoYce0tGjR/XJJ58oISFB7777ru666y6LKy+8cjvny5Yt07hx4zRx4kQdOnRI//jHP7RixQq9+OKLFldeeF28eFENGjTQvHnzbml8YmKioqKi1KZNG8XHx2vkyJEaNGgQH/65kNs53759ux566CFt2LBBcXFxatOmjbp06aK9e/fmc6VFR27nPMu5c+fUt29ftWvXLp8qAwonMpL1yEjWIyNZj4xkPTJSIWGg2GnWrJkxbNgw83lGRoZRqVIlY9q0aTmOX7BggVGtWjUjLS3NqhKLnNzO+bBhw4y2bds6LRs9erRx33335WudRZUkY9WqVTcc88ILLxj33HOP07JevXoZkZGR+VhZ0XUrc56T0NBQY/LkyXlfUDGQmznv1auX8fLLLxsTJ040GjRokK91AYUJGcl6ZCTXIiNZj4xkPTJSwcUZUsVMWlqa4uLiFBERYS5zc3NTRESEYmNjc3zN2rVrFR4ermHDhikgIED16tXT66+/royMDKvKLtRuZ85btmypuLg485T1n3/+WRs2bFCnTp0sqbk4io2NdXqPJCkyMvK67xHyXmZmps6fP6+yZcu6upQibfHixfr55581ceJEV5cCFChkJOuRkQoHMpLrkZGsQUaynoerC4C1fv31V2VkZCggIMBpeUBAgA4fPpzja37++Wdt3bpVjz/+uDZs2KAff/xRzzzzjNLT0/nHegtuZ84fe+wx/frrr2rVqpUMw9CVK1c0dOhQTkfPR8nJyTm+Rw6HQ3/88YdKlCjhosqKj1mzZunChQvq2bOnq0spso4cOaJx48bp66+/locHEQC4GhnJemSkwoGM5HpkpPxHRnINzpDCTWVmZqpixYpatGiRwsLC1KtXL7300ktauHChq0srsrZt26bXX39d8+fP1549e/TZZ59p/fr1mjJliqtLA/LFsmXLNHnyZH388ceqWLGiq8spkjIyMvTYY49p8uTJqlWrlqvLAYoEMpL1yEgobshI+Y+M5Dq0/oqZ8uXLy93dXadOnXJafurUKQUGBub4mqCgIHl6esrd3d1cVrduXSUnJystLU1eXl75WnNhdztz/sorr+ivf/2rBg0aJEm69957dfHiRQ0ZMkQvvfSS3NzoJee1wMDAHN8ju93ON3/5bPny5Ro0aJBWrlyZ7ScByDvnz5/X7t27tXfvXg0fPlzSn/8xbRiGPDw8tGnTJrVt29bFVQKuQ0ayHhmpcCAjuQ4ZyRpkJNfh/7GLGS8vL4WFhSkmJsZclpmZqZiYGIWHh+f4mvvuu08//vijMjMzzWX/+c9/FBQURNC6Bbcz56mpqdkCVVbYNQwj/4otxsLDw53eI0navHnzdd8j5I1//etfGjBggP71r38pKirK1eUUaXa7Xfv371d8fLz5GDp0qGrXrq34+Hg1b97c1SUCLkVGsh4ZqXAgI7kGGck6ZCQXcuUV1eEay5cvN7y9vY0lS5YYP/zwgzFkyBDD39/fSE5ONgzDMP76178a48aNM8cfP37c8PX1NYYPH24kJCQY69atMypWrGhMnTrVVYdQ6OR2zidOnGj4+voa//rXv4yff/7Z2LRpk1G9enWjZ8+erjqEQuf8+fPG3r17jb179xqSjNmzZxt79+41jh07ZhiGYYwbN87461//ao7/+eefjZIlSxpjxowxDh06ZMybN89wd3c3oqOjXXUIhU5u53zp0qWGh4eHMW/ePOPkyZPm49y5c646hEInt3N+Le4gAzgjI1mPjGQ9MpL1yEjWIyMVDjSkiqm///3vxt133214eXkZzZo1M/7973+b6x544AGjX79+TuN37NhhNG/e3PD29jaqVatmvPbaa8aVK1csrrpwy82cp6enG5MmTTKqV69u+Pj4GMHBwcYzzzxjnD171vrCC6kvv/zSkJTtkTXP/fr1Mx544IFsr2nYsKHh5eVlVKtWzVi8eLHldRdmuZ3zBx544IbjcXO38/f8aoQtIDsykvXISNYiI1mPjGQ9MlLhYDMMzm0FAAAAAACAdbiGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBxcikSZNks9n066+/5vu+HnzwQT344IP5vp+8YrPZNHz4cFeXUeA888wzeuihh246btu2bbLZbNq2bZvT8g8//FB16tSRp6en/P39c7XvH374QR4eHjpw4ECuXgcAwO0gJ10fOSln5CTgztCQAgqR1NRUTZo0KduHGZAfEhMT9d577+nFF1+8rdcfPnxY/fv3V/Xq1fXuu+9q0aJFkqSdO3fqmWeeUVhYmDw9PWWz2XJ8fWhoqKKiojRhwoTbPgYAQPFBToKV8iMnZWZmasmSJfrLX/6i4OBglSpVSvXq1dPUqVN16dIlp9eTk1AUeLi6AAC3LjU1VZMnT5akQvWtGgqnOXPmKCQkRG3atLmt12/btk2ZmZmaM2eOatSoYS7fsGGD3nvvPdWvX1/VqlXTf/7zn+tuY+jQoerUqZN++uknVa9e/bbqAAAUD+QkWCk/ctKFCxc0YMAAtWjRQkOHDlXFihUVGxuriRMnKiYmRlu3bnX6Io+chMKOM6QAANmkp6dr6dKl6tmz521v4/Tp05KU7RT0p59+WikpKdq9e/dNT3OPiIhQmTJl9MEHH9x2HQAAAHkpv3KSl5eXvv32W8XGxuqll17S4MGD9f7772vixInatm2bYmJinLZBTkJhR0MKyANZ1xz4z3/+oyeeeEJ+fn6qUKGCXnnlFRmGoRMnTujhhx+W3W5XYGCg3njjDafXp6WlacKECQoLC5Ofn59KlSql+++/X19++aU55ujRo6pQoYIkafLkybLZbLLZbJo0aZI55vDhw+rZs6cqVKigEiVKqHbt2nrppZey1Xvu3Dn1799f/v7+8vPz04ABA5Samppt3EcffaSwsDCVKFFCZcuWVe/evXXixIls4xYtWqTq1aurRIkSatasmb7++uvbmseqVauqc+fO2rRpkxo2bCgfHx+Fhobqs88+y/EYRo4cqeDgYHl7e6tGjRr629/+pszMTKdxs2bNUsuWLVWuXDmVKFFCYWFh+uSTT26pnqlTp8rNzU1///vfzWV///vfdc8996hkyZIqU6aMmjRpomXLlt3yMR49elQ2m02zZs3SvHnzVK1aNZUsWVLt27fXiRMnZBiGpkyZosqVK6tEiRJ6+OGH9fvvvzttY82aNYqKilKlSpXk7e2t6tWra8qUKcrIyDDHHDp0SCVKlFDfvn2dXvvNN9/I3d1dY8eOvWGd33zzjX799VdFRERkW/fLL7+oa9euKlWqlCpWrKhRo0bp8uXLTmOqVq2qiRMnSpIqVKjg9Hc1ICBAJUqUuKX58vT01IMPPqg1a9bc0ngAQMFDTiIn3arinpO8vLzUsmXLbNvs1q2bWffVyEko9AwAd2zixImGJKNhw4ZGnz59jPnz5xtRUVGGJGP27NlG7dq1jaefftqYP3++cd999xmSjK+++sp8/ZkzZ4ygoCBj9OjRxoIFC4wZM2YYtWvXNjw9PY29e/cahmEYFy5cMBYsWGBIMrp162Z8+OGHxocffmjs27fPMAzD2Ldvn2G3241y5coZ48ePN9555x3jhRdeMO69995sdTZq1Mh45JFHjPnz5xuDBg0yJBkvvPCC0zFNnTrVsNlsRq9evYz58+cbkydPNsqXL29UrVrVOHv2rDnuvffeMyQZLVu2NN5++21j5MiRhr+/v1GtWjXjgQceyNU8VqlSxahVq5bh7+9vjBs3zpg9e7Zx7733Gm5ubsamTZvMcRcvXjTq169vlCtXznjxxReNhQsXGn379jVsNpsxYsQIp21WrlzZeOaZZ4y5c+cas2fPNpo1a2ZIMtatW+c0TpIxbNgw8/lLL71k2Gw2Y9GiReayRYsWGZKMHj16GO+8844xZ84cY+DAgcZzzz13y8eYmJho/l0JDQ01Zs+ebbz88suGl5eX0aJFC+PFF1805/K5554zbDabMWDAAKdtdO3a1ejZs6cxc+ZMY8GCBcajjz5qSDKef/55p3EzZ840JBlr1qwxDOPPv0PVq1c3QkNDjUuXLt2wzqz3PyUlxWl5amqqUatWLcPHx8d44YUXjLfeessICwsz6tevb0gyvvzyS8MwDGPVqlVGt27dDEnGggULnP6uXm3YsGHGzT6Kpk6dari5uWWrBQBQOJCTyEm3ipyUs02bNhmSjGXLluVYCzkJhRUNKSAPZAWYIUOGmMuuXLliVK5c2bDZbMb06dPN5WfPnjVKlChh9OvXz2ns5cuXnbZ59uxZIyAgwHjyySfNZWfOnDEkGRMnTsxWQ+vWrQ1fX1/j2LFjTsszMzOz1Xn1Ng3DMLp162aUK1fOfH706FHD3d3deO2115zG7d+/3/Dw8DCXp6WlGRUrVjQaNmzoVH9WILmdoCXJ+PTTT81lKSkpRlBQkNGoUSNz2ZQpU4xSpUoZ//nPf5xeP27cOMPd3d04fvy4uSw1NdVpTFpamlGvXj2jbdu2TsuvDlr/93//Z7i5uRlLlixxGvPwww8b99xzT66O6VpZQatChQrGuXPnzOXjx483JBkNGjQw0tPTzeV9+vQxvLy8nILRtcdkGIbx1FNPGSVLlnQal5GRYbRq1coICAgwfv31V2PYsGGGh4eHsWvXrpvW+cQTTzj9ncjy1ltvGZKMjz/+2Fx28eJFo0aNGk5ByzD+9/ftzJkz193PrTSkli1bZkgyvvvuu5vWDQAoeMhJ5KRbRU7KWUREhGG3252anVnISSjM+MkekIcGDRpk/tnd3V1NmjSRYRgaOHCgudzf31+1a9fWzz//7DTWy8tLkpSZmanff/9dV65cUZMmTbRnz56b7vfMmTPavn27nnzySd19991O63K6g9nQoUOdnt9///367bff5HA4JEmfffaZMjMz1bNnT/3666/mIzAwUDVr1jRPkd+9e7dOnz6toUOHmvVLUv/+/eXn53fTunNSqVIl87RkSbLb7erbt6/27t2r5ORkSdLKlSt1//33q0yZMk71RUREKCMjQ9u3bzdff/VPw86ePauUlBTdf//9Oc6rYRgaPny45syZo48++kj9+vVzWu/v769ffvlFu3btuq1ju9qjjz7qNEfNmzeXJD3xxBPy8PBwWp6Wlqb//ve/OR7T+fPn9euvv+r+++9XamqqDh8+bK5zc3PTkiVLdOHCBXXs2FHz58/X+PHj1aRJk5vW99tvv6lMmTLZlm/YsEFBQUHq0aOHuaxkyZIaMmTILR557mXVYcVtuAEA+Yec9Cdy0s2Rk/7n9ddf15YtWzR9+vRs1+WUyEko3LjLHpCHrg05fn5+8vHxUfny5bMt/+2335yWffDBB3rjjTd0+PBhpaenm8tDQkJuut+s0FavXr3bqjPrg+zs2bOy2+06cuSIDMNQzZo1c3y9p6enJOnYsWOSlG2cp6enqlWrdku1XKtGjRrZwmGtWrUk/XldgcDAQB05ckTff/+9ea2Ia2VdJFKS1q1bp6lTpyo+Pt7p9/s5BdB//vOfunDhghYsWKA+ffpkWz927Fht2bJFzZo1U40aNdS+fXs99thjuu+++3J9nDn9XZGk4ODgHJefPXvWXHbw4EG9/PLL2rp1qxmOs6SkpDg9r169uiZNmqQxY8aoXr16euWVV265RsMwsi07duxYju9R7dq1b3m7uZVVR07vGQCg8CAn/W89OenGyEl/WrFihV5++WUNHDhQTz/99A3rICehMKIhBeQhd3f3W1omOX+IffTRR+rfv7+6du2qMWPGqGLFinJ3d9e0adP0008/WVLn1TVlZmbKZrNp48aNOY4tXbp0nteUG5mZmXrooYf0wgsv5Lg+K5h9/fXX+stf/qLWrVtr/vz5CgoKkqenpxYvXpzjBTbvu+8+xcfHa+7cuerZs6fKli3rtL5u3bpKSEjQunXrFB0drU8//VTz58/XhAkTzNtM36rrvQc3e2/OnTunBx54QHa7Xa+++qqqV68uHx8f7dmzR2PHjs12sVJJ2rRpkyQpKSlJv/32mwIDA29aX7ly5ZzCnStl1XHtf7AAAAoXcpI1yElFIydt3rxZffv2VVRUlBYuXHjdceQkFGY0pIAC4JNPPlG1atX02WefOX27kXX3jSzX++Yj61u2AwcO5Ek91atXl2EYCgkJMUNLTqpUqSJJOnLkiNq2bWsuT09PV2Jioho0aJDrff/4448yDMPpWP/zn/9I+vOOJFn1XbhwIcc7m1zt008/lY+Pj7744gt5e3ubyxcvXpzj+Bo1amjGjBl68MEH1aFDB8XExMjX19dpTKlSpdSrVy/16tVLaWlpeuSRR/Taa69p/Pjx8vHxyfXx5ta2bdv022+/6bPPPlPr1q3N5YmJiTmOX7hwoTZv3qzXXntN06ZN01NPPXVLd2KpU6eOli5dqpSUFKdT5qtUqaIDBw5ke48SEhLu4KhuLDExUW5ubjf8uwgAKLrISf9DTrqxopKTvvvuO3Xr1k1NmjTRxx9/7PQzxWuRk1CYcQ0poADI+rbn6m8Dv/vuO8XGxjqNK1mypKQ/v/25WoUKFdS6dWu9//77On78uNO6nE4nvplHHnlE7u7umjx5crbXG4ZhnkbfpEkTVahQQQsXLlRaWpo5ZsmSJdlqvFVJSUlatWqV+dzhcOif//ynGjZsaH5j1bNnT8XGxuqLL77I9vpz587pypUrkv6cV5vN5nSb36NHj2r16tXX3X/9+vW1YcMGHTp0SF26dNEff/xhrrv25wNeXl4KDQ2VYRhOPx/ITzn9XUlLS9P8+fOzjU1MTNSYMWPUvXt3vfjii5o1a5bWrl2rf/7znzfdT3h4uAzDUFxcnNPyTp06KSkpyemW0KmpqVq0aNHtHtJNxcXF6Z577rnt620AAAo3ctL/kJNurCjkpEOHDikqKkpVq1bVunXrnK6JlRNyEgozzpACCoDOnTvrs88+U7du3RQVFaXExEQtXLhQoaGhunDhgjmuRIkSCg0N1YoVK1SrVi2VLVtW9erVU7169fT222+rVatWaty4sYYMGaKQkBAdPXpU69evV3x8fK7qqV69uqZOnarx48fr6NGj6tq1q3x9fZWYmKhVq1ZpyJAhev755+Xp6ampU6fqqaeeUtu2bdWrVy8lJiZq8eLFt31thFq1amngwIHatWuXAgIC9P777+vUqVNO39aNGTNGa9euVefOndW/f3+FhYXp4sWL2r9/vz755BMdPXpU5cuXV1RUlGbPnq0OHTroscce0+nTpzVv3jzVqFFD33///XVraNGihdasWaNOnTqpR48eWr16tTw9PdW+fXsFBgbqvvvuU0BAgA4dOqS5c+cqKioq2zeE+aVly5YqU6aM+vXrp+eee042m00ffvhhjoH4ySefVIkSJbRgwQJJ0lNPPaVPP/1UI0aMUEREhCpVqnTd/bRq1UrlypXTli1bnL7VHTx4sObOnau+ffsqLi5OQUFB+vDDD83/CLgVx44d04cffijpzwu+StLUqVMl/fnN4l//+ldzbHp6ur766is988wzt7x9AEDRQk76H3LSjRX2nHT+/HlFRkbq7NmzGjNmjNavX++0vnr16goPDzefk5NQ6OXfDfyA4uN6t23t16+fUapUqWzjH3jgAafb4mZmZhqvv/66UaVKFcPb29to1KiRsW7dOqNfv35GlSpVnF67Y8cOIywszPDy8sp2a+MDBw4Y3bp1M/z9/Q0fHx+jdu3axiuvvHLTOhcvXmxIMhITE52Wf/rpp0arVq2MUqVKGaVKlTLq1KljDBs2zEhISHAaN3/+fCMkJMTw9vY2mjRpYmzfvt144IEHbut2xlFRUcYXX3xh1K9f3/D29jbq1KljrFy5MtvY8+fPG+PHjzdq1KhheHl5GeXLlzdatmxpzJo1y0hLSzPH/eMf/zBq1qxpbmvx4sXmPFxNV93OOMuaNWsMDw8Po1evXkZGRobxzjvvGK1btzbKlStneHt7G9WrVzfGjBljpKSk3PIxZt3OeObMmU7Lv/zyS0NStmPNem+uvgXxt99+a7Ro0cIoUaKEUalSJeOFF14wvvjiC6fbCc+ZMyfbraENwzCOHz9u2O12o1OnTjet9bnnnjNq1KiRbfmxY8eMv/zlL0bJkiWN8uXLGyNGjDCio6Nv+XbGWcea0+PavzMbN240JBlHjhy5ab0AgIKJnEROulXFPSdlHf/1Hv369XPaFzkJhZ3NMG7jPFUAyAdVq1ZVvXr1tG7dOleXAv15V6I6depo48aNateunUtq6Nq1q2w2m9PPEwAAKI7ISQULOQm4c/xkDwCQo2rVqmngwIGaPn26S4LWoUOHtG7dulz/lAIAACC/kZOAO0dDCkC+O3PmjNMFM6/l5eWV7dbBhU1GRobOnDlzwzGlS5d2+a2gcyvrugquULduXfPCqwAAFFXkpD+Rk3KHnISigIYUgHzXtGlTHTt27LrrH3jgAW3bts26gvLBiRMnFBIScsMxEydO1KRJk6wpCAAAFArkpD+Rk4Dih2tIAch33377rdNtga9VpkwZhYWFWVhR3rt06ZK++eabG46pVq3abd9VBwAAFE3kpD+Rk4Dih4YUAAAAAAAALOXm6gIAAAAAAABQvBTra0hlZmYqKSlJvr6+stlsri4HAABYwDAMnT9/XpUqVZKbG9/N5YSMBABA8WN1RirWDamkpCQFBwe7ugwAAOACJ06cUOXKlV1dRoFERgIAoPiyKiMV64aUr6+vpD8n2263u7gaAABgBYfDoeDgYDMHIDsyEgAAxY/VGalYN6SyTkG32+2ELQAAihl+inZ9ZCQAAIovqzISF04AAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpYn0NKQAArscwDF25ckUZGRmuLgW55O7uLg8PD64RBQBAPiAjFV4FLSPRkAIA4BppaWk6efKkUlNTXV0KblPJkiUVFBQkLy8vV5cCAECRQUYq/ApSRqIhBQDAVTIzM5WYmCh3d3dVqlRJXl5eBeZbJNycYRhKS0vTmTNnlJiYqJo1a8rNjSsUAABwp8hIhVtBzEg0pAAAuEpaWpoyMzMVHByskiVLuroc3IYSJUrI09NTx44dU1pamnx8fFxdEgAAhR4ZqfAraBmJrwwBAMiBq78xwp3h/QMAIH/wGVu4FaT3r+BUAgAAAAAAgGKBhhQAAAAAAAAsxTWkAAC4RenR31i2L88OrW557M0uKDpx4kRNmjTpDiu6PTabTatWrVLXrl1vexuLFi3SsmXLtGfPHp0/f15nz56Vv79/ntUIAADujJUZSSInZfn99981ceJEbdq0ScePH1eFChXUtWtXTZkyRX5+fnlbbD6gIQUAQCF38uRJ888rVqzQhAkTlJCQYC4rXbp0rraXlpZWIG4FnCU1NVUdOnRQhw4dNH78eFeXAwAACpGinJOSkpKUlJSkWbNmKTQ0VMeOHdPQoUOVlJSkTz75xNXl3VSufrI3bdo0NW3aVL6+vqpYsaK6du3q9EZK0qVLlzRs2DCVK1dOpUuXVvfu3XXq1CmnMcePH1dUVJRKliypihUrasyYMbpy5YrTmG3btqlx48by9vZWjRo1tGTJkmz1zJs3T1WrVpWPj4+aN2+unTt35uZw8l169DfZHgAA5LXAwEDz4efnJ5vNZj6/ePGiHn/8cQUEBKh06dJq2rSptmzZ4vT6qlWrasqUKerbt6/sdruGDBkiSXr33XfNO+l069ZNs2fPznZm0po1a9S4cWP5+PioWrVqmjx5svmZXrVqVUlSt27dZLPZzOf79u1TmzZt5OvrK7vdrrCwMO3evfu6xzdy5EiNGzdOLVq0yJsJywdkpNwhIwEArFKUc1K9evX06aefqkuXLqpevbratm2r1157TZ9//nm2/FAQ5aoh9dVXX2nYsGH697//rc2bNys9PV3t27fXxYsXzTGjRo3S559/rpUrV+qrr75SUlKSHnnkEXN9RkaGoqKilJaWph07duiDDz7QkiVLNGHCBHNMYmKioqKi1KZNG8XHx2vkyJEaNGiQvvjiC3PMihUrNHr0aE2cOFF79uxRgwYNFBkZqdOnT9/JfAAAUKRcuHBBnTp1UkxMjPbu3asOHTqoS5cuOn78uNO4WbNmqUGDBtq7d69eeeUVffvttxo6dKhGjBih+Ph4PfTQQ3rttdecXvP111+rb9++GjFihH744Qe98847WrJkiTlu165dkqTFixfr5MmT5vPHH39clStX1q5duxQXF6dx48bJ09PTgtnIP2QkAAAKn6KYk1JSUmS32+XhUfB/EGczDMO43RefOXNGFStW1FdffaXWrVsrJSVFFSpU0LJly9SjRw9J0uHDh1W3bl3FxsaqRYsW2rhxozp37qykpCQFBARIkhYuXKixY8fqzJkz8vLy0tixY7V+/XodOHDA3Ffv3r117tw5RUdHS5KaN2+upk2bau7cuZKkzMxMBQcH69lnn9W4ceNuqX6HwyE/Pz/zDctrOX3bl5vfugIArHfp0iUlJiYqJCREPj4+TusK6jWkrrZkyRKNHDlS586du+6YevXqaejQoRo+fLikP7+ha9SokVatWmWO6d27ty5cuKB169aZy5544gmtW7fO3HZERITatWvn9DO6jz76SC+88IKSkpIk5XxtBLvdrr///e/q169fro5t27ZtatOmzS1dQ+pG72N+f/5LZKSbISMBQOFTUDKSRE66nl9//VVhYWF64oknsjXIsrg6I13tju6yl5KSIkkqW7asJCkuLk7p6emKiIgwx9SpU0d33323YmNjJUmxsbG69957zaAlSZGRkXI4HDp48KA55uptZI3J2kZaWpri4uKcxri5uSkiIsIck5PLly/L4XA4PQAAKMouXLig559/XnXr1pW/v79Kly6tQ4cOZfvmr0mTJk7PExIS1KxZM6dl1z7ft2+fXn31VZUuXdp8DB48WCdPnlRqaup1axo9erQGDRqkiIgITZ8+XT/99NMdHmXBQ0YCAKDgK0o5yeFwKCoqSqGhoS67SHtu3XZDKjMzUyNHjtR9992nevXqSZKSk5Pl5eWV7VvLgIAAJScnm2OuDlpZ67PW3WiMw+HQH3/8oV9//VUZGRk5jsnaRk6mTZsmPz8/8xEcHJz7AwcAoBB5/vnntWrVKr3++uv6+uuvFR8fr3vvvVdpaWlO40qVKpXrbV+4cEGTJ09WfHy8+di/f7+OHDmS7Ru3q02aNEkHDx5UVFSUtm7dqtDQUKdvHQs7MhIAAIVDUclJ58+fV4cOHeTr66tVq1YVmksh3PaPCocNG6YDBw7om28Kz0Uox48fr9GjR5vPHQ4HgQsAUKR9++236t+/v7p16ybpz3B09OjRm76udu3a5rUMslz7vHHjxkpISFCNGjWuux1PT09lZGRkW16rVi3VqlVLo0aNUp8+fbR48WKzxsKOjAQAQOFQFHKSw+FQZGSkvL29tXbt2hs2uwqa22pIDR8+XOvWrdP27dtVuXJlc3lgYKDS0tJ07tw5p28AT506pcDAQHPMtXd6ybrDzNVjrr3rzKlTp2S321WiRAm5u7vL3d09xzFZ28iJt7e3vL29c3/AAAAUUjVr1tRnn32mLl26yGaz6ZVXXlFmZuZNX/fss8+qdevWmj17trp06aKtW7dq48aNstls5pgJEyaoc+fOuvvuu9WjRw+5ublp3759OnDggKZOnSrpz+suxMTE6L777pO3t7d8fHw0ZswY9ejRQyEhIfrll1+0a9cude/e/bq1JCcnKzk5WT/++KMkaf/+/fL19dXdd99t/iSuoCAjAQBQeBT2nORwONS+fXulpqbqo48+cvrZfYUKFeTu7p4Hs5R/cvWTPcMwNHz4cK1atUpbt25VSEiI0/qwsDB5enoqJibGXJaQkKDjx48rPDxckhQeHq79+/c73ell8+bNstvtCg0NNcdcvY2sMVnb8PLyUlhYmNOYzMxMxcTEmGMAAIA0e/ZslSlTRi1btlSXLl0UGRmpxo0b3/R19913nxYuXKjZs2erQYMGio6O1qhRo5y+dYuMjNS6deu0adMmNW3aVC1atNCbb76pKlWqmGPeeOMNbd68WcHBwWrUqJHc3d3122+/qW/fvqpVq5Z69uypjh07avLkydetZeHChWrUqJEGDx4sSWrdurUaNWqktWvX3sHM5C0yEgAAhU9hz0l79uzRd999p/3796tGjRoKCgoyHydOnLjzCcpvRi48/fTThp+fn7Ft2zbj5MmT5iM1NdUcM3ToUOPuu+82tm7dauzevdsIDw83wsPDzfVXrlwx6tWrZ7Rv396Ij483oqOjjQoVKhjjx483x/z8889GyZIljTFjxhiHDh0y5s2bZ7i7uxvR0dHmmOXLlxve3t7GkiVLjB9++MEYMmSI4e/vbyQnJ9/y8aSkpBiSjJSUlNxMwy1L2/h1tgcAoGD7448/jB9++MH4448/XF1KgTNo0CCjVatWri7jltzofcyPz38yUu6QkQCg8CEj3VhhyUlWZ6QbydVP9hYsWCBJevDBB52WL168WP3795ckvfnmm3Jzc1P37t11+fJlRUZGav78+eZYd3d3rVu3Tk8//bTCw8NVqlQp9evXT6+++qo5JiQkROvXr9eoUaM0Z84cVa5cWe+9954iIyPNMb169dKZM2c0YcIEJScnq2HDhoqOjs52EU8AAHB7Zs2apYceekilSpXSxo0b9cEHHzh9puN/yEgAABQv5KQ7ZzMMw3B1Ea7icDjk5+enlJQU2e32PN9+enT2i5l6dmiV5/sBAOSdS5cuKTExUSEhIYXqopD5oWfPntq2bZvOnz+vatWq6dlnn9XQoUNdXdYtudH7mN+f/0UBGQkAcC0ykrPCmpMKUka67bvsAQCAou3jjz92dQkAAAAFEjnpzuXqouYAAAAAAADAnaIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYysPVBQAAUFj8tPsdy/ZVvclTuRrfv39/ffDBB5IkDw8PlS1bVvXr11efPn3Uv39/ubkV3u+gDh48qAkTJiguLk7Hjh3Tm2++qZEjR7q6LAAA8P9ZmZEkctLV3n33Xf3zn//UgQMHJElhYWF6/fXX1axZMxdXdnOFd9YBAICTDh066OTJkzp69Kg2btyoNm3aaMSIEercubOuXLni6vJuW2pqqqpVq6bp06crMDDQ1eUAAIBCqKjmpG3btqlPnz768ssvFRsbq+DgYLVv317//e9/XV3aTdGQAgCgiPD29lZgYKDuuusuNW7cWC+++KLWrFmjjRs3asmSJea4c+fOadCgQapQoYLsdrvatm2rffv2OW3r888/V9OmTeXj46Py5curW7du5rqzZ8+qb9++KlOmjEqWLKmOHTvqyJEjkqSLFy/Kbrfrk08+cdre6tWrVapUKZ0/f15paWkaPny4goKC5OPjoypVqmjatGnXPa6mTZtq5syZ6t27t7y9vfNgpgAAQHFTVHPS0qVL9cwzz6hhw4aqU6eO3nvvPWVmZiomJiYPZi1/0ZACAKAIa9u2rRo0aKDPPvvMXPboo4/q9OnT2rhxo+Li4tS4cWO1a9dOv//+uyRp/fr16tatmzp16qS9e/cqJibG6bTv/v37a/fu3Vq7dq1iY2NlGIY6deqk9PR0lSpVSr1799bixYud6li8eLF69OghX19fvf3221q7dq0+/vhjJSQkaOnSpapataol8wEAAJClKOak1NRUpaenq2zZsnc2ORbgGlL56Oi5jarq39HVZQAAirk6dero+++/lyR988032rlzp06fPm2ebTRr1iytXr1an3zyiYYMGaLXXntNvXv31uTJk81tNGjQQJJ05MgRrV27Vt9++61atmwp6c9v5oKDg7V69Wo9+uijGjRokFq2bKmTJ08qKChIp0+f1oYNG7RlyxZJ0vHjx1WzZk21atVKNptNVapUsXI6UACQkQAABUVRy0ljx45VpUqVFBERccdzk984QwoAgCLOMAzZbDZJ0r59+3ThwgWVK1dOpUuXNh+JiYn66aefJEnx8fFq165djts6dOiQPDw81Lx5c3NZuXLlVLt2bR06dEiS1KxZM91zzz3mxUM/+ugjValSRa1bt5b05zeH8fHxql27tp577jlt2rQp344dAADgRopSTpo+fbqWL1+uVatWycfHJ/eTYTHOkAIAoIg7dOiQQkJCJEkXLlxQUFCQtm3blm2cv7+/JKlEiRJ3vM9BgwZp3rx5GjdunBYvXqwBAwaYYa9x48ZKTEzUxo0btWXLFvXs2VMRERHZrqcAAACQ34pKTpo1a5amT5+uLVu2qH79+ndcoxU4QwoAgCJs69at2r9/v7p37y7pz5CTnJwsDw8P1ahRw+lRvnx5SVL9+vWveyHMunXr6sqVK/ruu+/MZb/99psSEhIUGhpqLnviiSd07Ngxvf322/rhhx/Ur18/p+3Y7Xb16tVL7777rlasWKFPP/3UvDYDAACAFYpKTpoxY4amTJmi6OhoNWnS5Lbnw2qcIQUAQBFx+fJlJScnKyMjQ6dOnVJ0dLSmTZumzp07q2/fvpKkiIgIhYeHq2vXrpoxY4Zq1aqlpKQk8wKdTZo00cSJE9WuXTtVr15dvXv31pUrV7RhwwaNHTtWNWvW1MMPP6zBgwfrnXfeka+vr8aNG6e77rpLDz/8sFlLmTJl9Mgjj2jMmDFq3769KleubK6bPXu2goKC1KhRI7m5uWnlypUKDAw0v3m8Vlpamn744Qfzz//9738VHx+v0qVLq0aNGvk3oQAAoMgoqjnpb3/7myZMmKBly5apatWqSk5OliTz54YFGWdIAQBQRERHRysoKEhVq1ZVhw4d9OWXX+rtt9/WmjVr5O7uLkmy2WzasGGDWrdurQEDBqhWrVrq3bu3jh07poCAAEnSgw8+qJUrV2rt2rVq2LCh2rZtq507d5r7Wbx4scLCwtS5c2eFh4fLMAxt2LBBnp6eTvUMHDhQaWlpevLJJ52W+/r6asaMGWrSpImaNm2qo0ePasOGDXJzyzmWJCUlqVGjRmrUqJFOnjypWbNmqVGjRho0aFBeTh8AACjCimpOWrBggdLS0tSjRw8FBQWZj1mzZuXl9OULm2EYhquLcBWHwyE/Pz+lpKTIbrfn+faPLH8p2x1kPDu0yvP9AADyzqVLl5SYmKiQkJBCcTHIguzDDz/UqFGjlJSUJC8vL0v3faP3Mb8//4sCMhIA4FpkpLzlqpxUkDISP9kDAAB5KjU1VSdPntT06dP11FNPWd6MAgAAKKjISf/DT/YAAECemjFjhurUqaPAwECNHz/e1eUAAAAUGOSk/6EhBQAA8tSkSZOUnp6umJiYAn8xTQAAACuRk/6HhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQBADorxTWiLBN4/AADyB5+xhVtBev9oSAEAcBVPT09Jf94BBYVX1vuX9X4CAIA7Q0YqGgpSRvJwdQEAABQk7u7u8vf31+nTpyVJJUuWlM1mc3FVuFWGYSg1NVWnT5+Wv7+/3N3dXV0SAABFAhmpcCuIGSnXDant27dr5syZiouL08mTJ7Vq1Sp17drVXH+9v5AzZszQmDFjJElVq1bVsWPHnNZPmzZN48aNM59///33GjZsmHbt2qUKFSro2Wef1QsvvOD0mpUrV+qVV17R0aNHVbNmTf3tb39Tp06dcntIAAA4CQwMlCQzcKHw8ff3N99Hq5CRAABFHRmp8HNFRrqeXDekLl68qAYNGujJJ5/UI488km39yZMnnZ5v3LhRAwcOVPfu3Z2Wv/rqqxo8eLD53NfX1/yzw+FQ+/btFRERoYULF2r//v168skn5e/vryFDhkiSduzYoT59+mjatGnq3Lmzli1bpq5du2rPnj2qV69ebg8LAACTzWZTUFCQKlasqPT0dFeXg1zy9PR0ybd+ZCQAQFFHRircXJWRrifXDamOHTuqY8eO111/badtzZo1atOmjapVq+a03NfX97pduaVLlyotLU3vv/++vLy8dM899yg+Pl6zZ882w9acOXPUoUMH8xvFKVOmaPPmzZo7d64WLlyY28MCACAbd3f3AvWhjYKNjAQAKC7ISMgL+XpR81OnTmn9+vUaOHBgtnXTp09XuXLl1KhRI82cOVNXrlwx18XGxqp169by8vIyl0VGRiohIUFnz541x0RERDhtMzIyUrGxsdet5/Lly3I4HE4PAAAAq5GRAABAcZevFzX/4IMP5Ovrm+209eeee06NGzdW2bJltWPHDo0fP14nT57U7NmzJUnJyckKCQlxek1AQIC5rkyZMkpOTjaXXT0mOTn5uvVMmzZNkydPzotDAwAAuG1kJAAAUNzla0Pq/fff1+OPPy4fHx+n5aNHjzb/XL9+fXl5eempp57StGnT5O3tnW/1jB8/3mnfDodDwcHB+bY/AACAnJCRAABAcZdvDamvv/5aCQkJWrFixU3HNm/eXFeuXNHRo0dVu3ZtBQYG6tSpU05jsp5nXVPhemNudLV4b2/vfA1zAAAAN0NGAgAAyMdrSP3jH/9QWFiYGjRocNOx8fHxcnNzU8WKFSVJ4eHh2r59u9NV+zdv3qzatWurTJky5piYmBin7WzevFnh4eF5eBQAAAB5i4wEAABwGw2pCxcuKD4+XvHx8ZKkxMRExcfH6/jx4+YYh8OhlStXatCgQdleHxsbq7feekv79u3Tzz//rKVLl2rUqFF64oknzCD12GOPycvLSwMHDtTBgwe1YsUKzZkzx+lU8hEjRig6OlpvvPGGDh8+rEmTJmn37t0aPnx4bg8JAADgjpGRAAAAbl2uf7K3e/dutWnTxnyeFYD69eunJUuWSJKWL18uwzDUp0+fbK/39vbW8uXLNWnSJF2+fFkhISEaNWqUU5Dy8/PTpk2bNGzYMIWFhal8+fKaMGGCeTtjSWrZsqWWLVuml19+WS+++KJq1qyp1atXq169erk9JAAAgDtGRgIAALh1NsMwDFcX4SoOh0N+fn5KSUmR3W7P8+0fWf6Sqvp3dFrm2aFVnu8HAADcuvz+/C8KyEgAABQ/VmekfLuGFAAAAAAAAJATGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVK4bUtu3b1eXLl1UqVIl2Ww2rV692ml9//79ZbPZnB4dOnRwGvP777/r8ccfl91ul7+/vwYOHKgLFy44jfn+++91//33y8fHR8HBwZoxY0a2WlauXKk6derIx8dH9957rzZs2JDbwwEAAMgTZCQAAIBbl+uG1MWLF9WgQQPNmzfvumM6dOigkydPmo9//etfTusff/xxHTx4UJs3b9a6deu0fft2DRkyxFzvcDjUvn17ValSRXFxcZo5c6YmTZqkRYsWmWN27NihPn36aODAgdq7d6+6du2qrl276sCBA7k9JAAAgDtGRgIAALh1NsMwjNt+sc2mVatWqWvXruay/v3769y5c9m+Fcxy6NAhhYaGateuXWrSpIkkKTo6Wp06ddIvv/yiSpUqacGCBXrppZeUnJwsLy8vSdK4ceO0evVqHT58WJLUq1cvXbx4UevWrTO33aJFCzVs2FALFy68pfodDof8/PyUkpIiu91+GzNwY0eWv6Sq/h2dlnl2aJXn+wEAALcuvz//JTLSzZCRAAAoeKzISFfLl2tIbdu2TRUrVlTt2rX19NNP67fffjPXxcbGyt/f3wxakhQRESE3Nzd999135pjWrVubQUuSIiMjlZCQoLNnz5pjIiIinPYbGRmp2NjY/DgkAACAO0ZGAgAA+JNHXm+wQ4cOeuSRRxQSEqKffvpJL774ojp27KjY2Fi5u7srOTlZFStWdC7Cw0Nly5ZVcnKyJCk5OVkhISFOYwICAsx1ZcqUUXJysrns6jFZ28jJ5cuXdfnyZfO5w+G4o2MFAAC4VWQkAACA/8nzhlTv3r3NP997772qX7++qlevrm3btqldu3Z5vbtcmTZtmiZPnuzSGgAAQPFERgIAAPiffPnJ3tWqVaum8uXL68cff5QkBQYG6vTp005jrly5ot9//12BgYHmmFOnTjmNyXp+szFZ63Myfvx4paSkmI8TJ07c2cEBAADcJjISAAAozvK9IfXLL7/ot99+U1BQkCQpPDxc586dU1xcnDlm69atyszMVPPmzc0x27dvV3p6ujlm8+bNql27tsqUKWOOiYmJcdrX5s2bFR4eft1avL29ZbfbnR4AAACuQEYCAADFWa4bUhcuXFB8fLzi4+MlSYmJiYqPj9fx48d14cIFjRkzRv/+97919OhRxcTE6OGHH1aNGjUUGRkpSapbt646dOigwYMHa+fOnfr22281fPhw9e7dW5UqVZIkPfbYY/Ly8tLAgQN18OBBrVixQnPmzNHo0aPNOkaMGKHo6Gi98cYbOnz4sCZNmqTdu3dr+PDheTAtAAAAuUNGAgAAyAUjl7788ktDUrZHv379jNTUVKN9+/ZGhQoVDE9PT6NKlSrG4MGDjeTkZKdt/Pbbb0afPn2M0qVLG3a73RgwYIBx/vx5pzH79u0zWrVqZXh7ext33XWXMX369Gy1fPzxx0atWrUMLy8v45577jHWr1+fq2NJSUkxJBkpKSm5nYZb8p9/vWikbfza6QEAAFwrvz7/yUi3jowEAEDBk9+f/9eyGYZhuKIRVhA4HA75+fkpJSUlX05NP7L8JVX17+i0zLNDqzzfDwAAuHX5/flfFJCRAAAofqzOSPl+DSkAAAAAAADgajSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALBUrhtS27dvV5cuXVSpUiXZbDatXr3aXJeenq6xY8fq3nvvValSpVSpUiX17dtXSUlJTtuoWrWqbDab02P69OlOY77//nvdf//98vHxUXBwsGbMmJGtlpUrV6pOnTry8fHRvffeqw0bNuT2cAAAAPIEGQkAAODW5bohdfHiRTVo0EDz5s3Lti41NVV79uzRK6+8oj179uizzz5TQkKC/vKXv2Qb++qrr+rkyZPm49lnnzXXORwOtW/fXlWqVFFcXJxmzpypSZMmadGiReaYHTt2qE+fPho4cKD27t2rrl27qmvXrjpw4EBuDwkAAOCOkZEAAABunUduX9CxY0d17Ngxx3V+fn7avHmz07K5c+eqWbNmOn78uO6++25zua+vrwIDA3PcztKlS5WWlqb3339fXl5euueeexQfH6/Zs2dryJAhkqQ5c+aoQ4cOGjNmjCRpypQp2rx5s+bOnauFCxfm9rAAAADuCBkJAADg1uX7NaRSUlJks9nk7+/vtHz69OkqV66cGjVqpJkzZ+rKlSvmutjYWLVu3VpeXl7mssjISCUkJOjs2bPmmIiICKdtRkZGKjY29rq1XL58WQ6Hw+kBAADgCmQkAABQnOX6DKncuHTpksaOHas+ffrIbreby5977jk1btxYZcuW1Y4dOzR+/HidPHlSs2fPliQlJycrJCTEaVsBAQHmujJlyig5OdlcdvWY5OTk69Yzbdo0TZ48Oa8ODwAA4LaQkQAAQHGXbw2p9PR09ezZU4ZhaMGCBU7rRo8ebf65fv368vLy0lNPPaVp06bJ29s7v0rS+PHjnfbtcDgUHBycb/sDAAC4FhkJAAAgnxpSWUHr2LFj2rp1q9M3fzlp3ry5rly5oqNHj6p27doKDAzUqVOnnMZkPc+6psL1xlzvmguS5O3tna9hDgAA4EbISAAAAH/K82tIZQWtI0eOaMuWLSpXrtxNXxMfHy83NzdVrFhRkhQeHq7t27crPT3dHLN582bVrl1bZcqUMcfExMQ4bWfz5s0KDw/Pw6MBAADIG2QkAACA/8n1GVIXLlzQjz/+aD5PTExUfHy8ypYtq6CgIPXo0UN79uzRunXrlJGRYV6voGzZsvLy8lJsbKy+++47tWnTRr6+voqNjdWoUaP0xBNPmEHqscce0+TJkzVw4ECNHTtWBw4c0Jw5c/Tmm2+a+x0xYoQeeOABvfHGG4qKitLy5cu1e/dup9seAwAAWIWMBAAAkAtGLn355ZeGpGyPfv36GYmJiTmuk2R8+eWXhmEYRlxcnNG8eXPDz8/P8PHxMerWrWu8/vrrxqVLl5z2s2/fPqNVq1aGt7e3cddddxnTp0/PVsvHH39s1KpVy/Dy8jLuueceY/369bk6lpSUFEOSkZKSkttpuCX/+deLRtrGr50eAADAtfLr85+MdOvISAAAFDz5/fl/LZthGIZVza+CxuFwyM/PTykpKTe9hsPtOLL8JVX17+i0zLNDqzzfDwAAuHX5/flfFJCRAAAofqzOSHl+DSkAAAAAAADgRmhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlvJwdQHILj36m2zLPDu0ckElAAAABQcZCQCAooMzpAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqG1P9j797Dsqjz/4+/kLOHG0TlVIikppLnQ0aZWZJoZFm2pZlaoX7dhd3U8rRbZllZlh0s09p2td10K3fTNQ8oYmomeUDJM1nhoRTYMrgVFRDm94c/Ru/whN733Byej+ua62JmPvfMe4b7kpfve+4ZAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgqQo3pNatW6e+ffsqPDxcHh4eWrRokcN6wzA0adIkhYWFyd/fX7Gxsdq3b5/DmKNHj2rQoEGy2WwKDAxUQkKCjh8/7jBm+/btuvXWW+Xn56eIiAhNmzatXC0LFixQy5Yt5efnpzZt2mjZsmUVPRwAAACnICMBAABcvgo3pAoKCtSuXTvNnDnzvOunTZumGTNmaPbs2dq4caPq1KmjuLg4nTp1yhwzaNAg7dq1SykpKVqyZInWrVunESNGmOvtdrt69eqlyMhIpaen69VXX9XkyZP1/vvvm2M2bNiggQMHKiEhQdu2bVO/fv3Ur18/7dy5s6KHBAAAcNXISAAAAJfPwzAM44pf7OGhhQsXql+/fpLOfPIXHh6uJ598Uk899ZQkKT8/XyEhIZo7d64GDBigPXv2KDo6Wps3b1bnzp0lScnJybrrrrv0448/Kjw8XLNmzdJf/vIXZWdny8fHR5I0YcIELVq0SHv37pUkPfTQQyooKNCSJUvMem666Sa1b99es2fPvqz67Xa7AgIClJ+fL5vNdqWn4YL2ffwXNQns47DMu3e3S76uOHl9uWWX8zoAAHBprv77L5GRLoWMBABA5WNFRjqXU+8hlZWVpezsbMXGxprLAgIC1LVrV6WlpUmS0tLSFBgYaAYtSYqNjVWtWrW0ceNGc0z37t3NoCVJcXFxyszM1K+//mqOOXc/ZWPK9lNd7M9b7u4SAADAVSIjOR8ZCQCAqs3LmRvLzs6WJIWEhDgsDwkJMddlZ2crODjYsQgvLwUFBTmMiYqKKreNsnX169dXdnb2RfdzPoWFhSosLDTn7XZ7RQ4PAADgipCRAAAAHNWop+xNnTpVAQEB5hQREeHukgAAANyOjAQAAKzm1IZUaGioJCknJ8dheU5OjrkuNDRUubm5DutPnz6to0ePOow53zbO3ceFxpStP5+JEycqPz/fnA4dOlTRQwQAAKgwMhIAAIAjpzakoqKiFBoaqtTUVHOZ3W7Xxo0bFRMTI0mKiYlRXl6e0tPTzTGrV69WaWmpunbtao5Zt26diouLzTEpKSlq0aKF6tevb445dz9lY8r2cz6+vr6y2WwOEwAAgKuRkQAAABxVuCF1/PhxZWRkKCMjQ9KZm3RmZGTo4MGD8vDw0KhRo/TCCy9o8eLF2rFjh4YMGaLw8HDzKTOtWrVS7969NXz4cG3atElfffWVkpKSNGDAAIWHh0uSHn74Yfn4+CghIUG7du3SJ598orfeektjxowx63jiiSeUnJys6dOna+/evZo8ebK2bNmipKSkqz8rAAAAFURGAgAAuHwVvqn5li1bdPvtt5vzZQFo6NChmjt3rsaNG6eCggKNGDFCeXl56tatm5KTk+Xn52e+Zt68eUpKSlLPnj1Vq1Yt9e/fXzNmzDDXBwQEaOXKlUpMTFSnTp3UsGFDTZo0SSNGjDDH3HzzzZo/f76efvpp/fnPf1bz5s21aNEitW7d+opOBAAAwNUgIwEAAFw+D8MwDHcX4S52u10BAQHKz893yaXp+z7+i5oE9nFY5t272yVfV5y83vx5f95yNQnsc1mvAwAAl+bqv//VARkJAICax+qMVKOesgcAAAAAAAD3oyEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKWc3pBq0qSJPDw8yk2JiYmSpB49epRbN3LkSIdtHDx4UPHx8apdu7aCg4M1duxYnT592mHMmjVr1LFjR/n6+qpZs2aaO3eusw8FAADAachIAAAAZ3k5e4ObN29WSUmJOb9z507deeed+t3vfmcuGz58uJ5//nlzvnbt2ubPJSUlio+PV2hoqDZs2KAjR45oyJAh8vb21ksvvSRJysrKUnx8vEaOHKl58+YpNTVVw4YNU1hYmOLi4px9SAAAAFeNjAQAAHCW0xtSjRo1cph/+eWX1bRpU912223mstq1ays0NPS8r1+5cqV2796tVatWKSQkRO3bt9eUKVM0fvx4TZ48WT4+Ppo9e7aioqI0ffp0SVKrVq20fv16vfHGG4QtAABQKZGRAAAAznLpPaSKior00Ucf6fHHH5eHh4e5fN68eWrYsKFat26tiRMn6sSJE+a6tLQ0tWnTRiEhIeayuLg42e127dq1yxwTGxvrsK+4uDilpaW58nAAAACcgowEAABqOqdfIXWuRYsWKS8vT48++qi57OGHH1ZkZKTCw8O1fft2jR8/XpmZmfrss88kSdnZ2Q5BS5I5n52dfdExdrtdJ0+elL+//3nrKSwsVGFhoTlvt9uv+hgBAAAqiowEAABqOpc2pP72t7+pT58+Cg8PN5eNGDHC/LlNmzYKCwtTz5499f3336tp06auLEdTp07Vc88959J9AAAAXAoZCQAA1HQu+8regQMHtGrVKg0bNuyi47p27SpJ+u677yRJoaGhysnJcRhTNl92T4ULjbHZbBf85E+SJk6cqPz8fHM6dOhQxQ4KAADgKpGRAAAAXNiQmjNnjoKDgxUfH3/RcRkZGZKksLAwSVJMTIx27Nih3Nxcc0xKSopsNpuio6PNMampqQ7bSUlJUUxMzEX35evrK5vN5jABAABYiYwEAADgooZUaWmp5syZo6FDh8rL6+y3Ar///ntNmTJF6enp2r9/vxYvXqwhQ4aoe/fuatu2rSSpV69eio6O1uDBg/XNN99oxYoVevrpp5WYmChfX19J0siRI/XDDz9o3Lhx2rt3r9599119+umnGj16tCsOBwAAwCnISAAAAGe4pCG1atUqHTx4UI8//rjDch8fH61atUq9evVSy5Yt9eSTT6p///76/PPPzTGenp5asmSJPD09FRMTo0ceeURDhgzR888/b46JiorS0qVLlZKSonbt2mn69On64IMPeJwxAACo1MhIAAAAZ7jkpua9evWSYRjllkdERGjt2rWXfH1kZKSWLVt20TE9evTQtm3brrhGAAAAq5GRAAAAznDZPaQAAAAAAACA86EhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAs5eXuAuBaxcnrHea9e3dzUyUAAACVBxkJAAD34gopAAAAAAAAWIqGFAAAAAAAACzl9IbU5MmT5eHh4TC1bNnSXH/q1CklJiaqQYMGqlu3rvr376+cnByHbRw8eFDx8fGqXbu2goODNXbsWJ0+fdphzJo1a9SxY0f5+vqqWbNmmjt3rrMPBQAAwGnISAAAAGe55AqpG264QUeOHDGn9evPfkd/9OjR+vzzz7VgwQKtXbtWhw8f1v3332+uLykpUXx8vIqKirRhwwZ9+OGHmjt3riZNmmSOycrKUnx8vG6//XZlZGRo1KhRGjZsmFasWOGKwwEAAHAKMhIAAMAZLrmpuZeXl0JDQ8stz8/P19/+9jfNnz9fd9xxhyRpzpw5atWqlb7++mvddNNNWrlypXbv3q1Vq1YpJCRE7du315QpUzR+/HhNnjxZPj4+mj17tqKiojR9+nRJUqtWrbR+/Xq98cYbiouLc8UhAQAAXDUyEgAAwBkuuUJq3759Cg8P13XXXadBgwbp4MGDkqT09HQVFxcrNjbWHNuyZUs1btxYaWlpkqS0tDS1adNGISEh5pi4uDjZ7Xbt2rXLHHPuNsrGlG3jQgoLC2W32x0mAAAAq5CRAAAAznB6Q6pr166aO3eukpOTNWvWLGVlZenWW2/VsWPHlJ2dLR8fHwUGBjq8JiQkRNnZ2ZKk7Oxsh6BVtr5s3cXG2O12nTx58oK1TZ06VQEBAeYUERFxtYcLAABwWchIAAAAZzn9K3t9+vQxf27btq26du2qyMhIffrpp/L393f27ipk4sSJGjNmjDlvt9sJXAAAwBJkJAAAgLNc8pW9cwUGBur666/Xd999p9DQUBUVFSkvL89hTE5Ojnk/hdDQ0HJPlCmbv9QYm8120UDn6+srm83mMAEAALgDGQkAANRkLm9IHT9+XN9//73CwsLUqVMneXt7KzU11VyfmZmpgwcPKiYmRpIUExOjHTt2KDc31xyTkpIim82m6Ohoc8y52ygbU7YNAACAyo6MBAAAajKnN6SeeuoprV27Vvv379eGDRt03333ydPTUwMHDlRAQIASEhI0ZswYffHFF0pPT9djjz2mmJgY3XTTTZKkXr16KTo6WoMHD9Y333yjFStW6Omnn1ZiYqJ8fX0lSSNHjtQPP/ygcePGae/evXr33Xf16aefavTo0c4+HAAAAKcgIwEAAJzl9HtI/fjjjxo4cKB++eUXNWrUSN26ddPXX3+tRo0aSZLeeOMN1apVS/3791dhYaHi4uL07rvvmq/39PTUkiVL9Pvf/14xMTGqU6eOhg4dqueff94cExUVpaVLl2r06NF66623dO211+qDDz7gccYAAKDSIiMBAACc5fSG1Mcff3zR9X5+fpo5c6Zmzpx5wTGRkZFatmzZRbfTo0cPbdu27YpqBAAAsBoZCQAA4CyX30MKAAAAAAAAOBcNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhVQPsz1vu7hIAAAAqHTISAADuQ0MKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKac3pKZOnaouXbqoXr16Cg4OVr9+/ZSZmekwpkePHvLw8HCYRo4c6TDm4MGDio+PV+3atRUcHKyxY8fq9OnTDmPWrFmjjh07ytfXV82aNdPcuXOdfTgAAABOQUYCAAA4y+kNqbVr1yoxMVFff/21UlJSVFxcrF69eqmgoMBh3PDhw3XkyBFzmjZtmrmupKRE8fHxKioq0oYNG/Thhx9q7ty5mjRpkjkmKytL8fHxuv3225WRkaFRo0Zp2LBhWrFihbMPCQAA4KqRkQAAAM7ycvYGk5OTHebnzp2r4OBgpaenq3v37uby2rVrKzQ09LzbWLlypXbv3q1Vq1YpJCRE7du315QpUzR+/HhNnjxZPj4+mj17tqKiojR9+nRJUqtWrbR+/Xq98cYbiouLc/ZhAQAAXBUyEgAAwFkuv4dUfn6+JCkoKMhh+bx589SwYUO1bt1aEydO1IkTJ8x1aWlpatOmjUJCQsxlcXFxstvt2rVrlzkmNjbWYZtxcXFKS0tz1aEAAAA4DRkJAADUZE6/QupcpaWlGjVqlG655Ra1bt3aXP7www8rMjJS4eHh2r59u8aPH6/MzEx99tlnkqTs7GyHoCXJnM/Ozr7oGLvdrpMnT8rf379cPYWFhSosLDTn7Xa7cw60BihOXl9umXfvbm6oBACAqo+MVH2QkQAAuDIubUglJiZq586dWr/e8Q/1iBEjzJ/btGmjsLAw9ezZU99//72aNm3qsnqmTp2q5557zmXbBwAAuBxkJAAAUNO57Ct7SUlJWrJkib744gtde+21Fx3btWtXSdJ3330nSQoNDVVOTo7DmLL5snsqXGiMzWY77yd/kjRx4kTl5+eb06FDhyp+YAAAAFeBjAQAAOCChpRhGEpKStLChQu1evVqRUVFXfI1GRkZkqSwsDBJUkxMjHbs2KHc3FxzTEpKimw2m6Kjo80xqampDttJSUlRTEzMBffj6+srm83mMAEAAFiBjAQAAHCW0xtSiYmJ+uijjzR//nzVq1dP2dnZys7O1smTJyVJ33//vaZMmaL09HTt379fixcv1pAhQ9S9e3e1bdtWktSrVy9FR0dr8ODB+uabb7RixQo9/fTTSkxMlK+vryRp5MiR+uGHHzRu3Djt3btX7777rj799FONHj3a2YcEAABw1chIAAAAZzm9ITVr1izl5+erR48eCgsLM6dPPvlEkuTj46NVq1apV69eatmypZ588kn1799fn3/+ubkNT09PLVmyRJ6enoqJidEjjzyiIUOG6PnnnzfHREVFaenSpUpJSVG7du00ffp0ffDBBzzOGAAAVEpkJAAAgLOcflNzwzAuuj4iIkJr16695HYiIyO1bNmyi47p0aOHtm3bVqH6AAAA3IGMBAAAcJbLbmoOAAAAAAAAnA8NKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYysvdBaB6K05eX26Zd+9ubqgEAACg8iAjAQBqOq6QAgAAAAAAgKVoSOGy7M9b7u4SAAAAKh0yEgAAV4aGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS/GUPVQZv30aDU+iAQAA4Il9AICqiSukAAAAAAAAYCkaUgAAAAAAALAUX9lDjcNl7QAAAOfHLRIAAFbhCikAAAAAAABYiiukgMvElVUAAADlkZEAAFeCK6QAAAAAAABgKa6QAtyATxIBAADKIyMBQM3BFVIAAAAAAACwFFdIAVUcT8MBAAAoj4wEAJUbDSkAkrhEHgAA4HzISADgGlX+K3szZ85UkyZN5Ofnp65du2rTpk3uLgmoUYqT15ebAADuR0YC3IuMBAAXV6WvkPrkk080ZswYzZ49W127dtWbb76puLg4ZWZmKjg42N3l4Tz25y1Xc/GJEs7PWZ9A8kkmgJqOjFT1kJFwMc7MNnyVEUBlUaWvkHr99dc1fPhwPfbYY4qOjtbs2bNVu3Zt/f3vf3d3aQCqID7JBFBdkJEAOBsZCYCzVdkrpIqKipSenq6JEyeay2rVqqXY2FilpaWd9zWFhYUqLCw05/Pz8yVJdrvdJTUeP1Eou3eBwzLvy9hXccHZ15Rt43Jed6FtnVvHlW7HGcdibucqjqWi+7+c7Vzutq70dVZvi/NSSY4lpfy/Q953xjhlW5e7nSt93aW2czXbAiqDsr9DhmG4uRLXICNdnuqckS63hsvZVlXNAufbFhnp/Nu63O047XySkYBKy+qMVGUbUj///LNKSkoUEhLisDwkJER79+4972umTp2q5557rtzyiIgIl9R4xnS28VsJTtoOAABX4dixYwoICHB3GU5HRqqq2xAZCQBQKViVkapsQ+pKTJw4UWPGjDHnS0tLdfToUTVo0EAeHh5O3ZfdbldERIQOHTokm83m1G3XZJxX1+C8ug7n1jU4r65RU86rYRg6duyYwsPD3V1KpUFGqvo4r67DuXUNzqtrcF5do6acV6szUpVtSDVs2FCenp7KyclxWJ6Tk6PQ0NDzvsbX11e+vr4OywIDA11VoiTJZrNV6zesu3BeXYPz6jqcW9fgvLpGTTiv1fHKqDJkpJqN8+o6nFvX4Ly6BufVNWrCebUyI1XZm5r7+PioU6dOSk1NNZeVlpYqNTVVMTF8bxcAANRMZCQAAFAVVNkrpCRpzJgxGjp0qDp37qwbb7xRb775pgoKCvTYY4+5uzQAAAC3ISMBAIDKrko3pB566CH973//06RJk5Sdna327dsrOTm53E083cHX11fPPvtsucvfcXU4r67BeXUdzq1rcF5dg/NafZCRah7Oq+twbl2D8+oanFfX4Ly6hodRXZ95DAAAAAAAgEqpyt5DCgAAAAAAAFUTDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIeVkkydPloeHh8PUsmVLd5dV5axbt059+/ZVeHi4PDw8tGjRIof1hmFo0qRJCgsLk7+/v2JjY7Vv3z73FFuFXOq8Pvroo+Xev71793ZPsVXI1KlT1aVLF9WrV0/BwcHq16+fMjMzHcacOnVKiYmJatCggerWrav+/fsrJyfHTRVXDZdzXnv06FHuPTty5Eg3VVw1zJo1S23btpXNZpPNZlNMTIyWL19urue9ClchIzkHGck1yEiuQUZyDTKS65CTrEVDygVuuOEGHTlyxJzWr1/v7pKqnIKCArVr104zZ8487/pp06ZpxowZmj17tjZu3Kg6deooLi5Op06dsrjSquVS51WSevfu7fD+/de//mVhhVXT2rVrlZiYqK+//lopKSkqLi5Wr169VFBQYI4ZPXq0Pv/8cy1YsEBr167V4cOHdf/997ux6srvcs6rJA0fPtzhPTtt2jQ3VVw1XHvttXr55ZeVnp6uLVu26I477tC9996rXbt2SeK9CtciI109MpJrkJFcg4zkGmQk1yEnWcyAUz377LNGu3bt3F1GtSLJWLhwoTlfWlpqhIaGGq+++qq5LC8vz/D19TX+9a9/uaHCqum359UwDGPo0KHGvffe65Z6qpPc3FxDkrF27VrDMM68P729vY0FCxaYY/bs2WNIMtLS0txVZpXz2/NqGIZx2223GU888YT7iqom6tevb3zwwQe8V+FSZCTnIyO5BhnJdchIrkFGci1ykutwhZQL7Nu3T+Hh4bruuus0aNAgHTx40N0lVStZWVnKzs5WbGysuSwgIEBdu3ZVWlqaGyurHtasWaPg4GC1aNFCv//97/XLL7+4u6QqJz8/X5IUFBQkSUpPT1dxcbHDe7Zly5Zq3Lgx79kK+O15LTNv3jw1bNhQrVu31sSJE3XixAl3lFcllZSU6OOPP1ZBQYFiYmJ4r8LlyEiuRUZyLTLS1SMjuQYZyTXISa7n5e4CqpuuXbtq7ty5atGihY4cOaLnnntOt956q3bu3Kl69eq5u7xqITs7W5IUEhLisDwkJMRchyvTu3dv3X///YqKitL333+vP//5z+rTp4/S0tLk6enp7vKqhNLSUo0aNUq33HKLWrduLenMe9bHx0eBgYEOY3nPXr7znVdJevjhhxUZGanw8HBt375d48ePV2Zmpj777DM3Vlv57dixQzExMTp16pTq1q2rhQsXKjo6WhkZGbxX4TJkJNcjI7kOGenqkZFcg4zkfOQk69CQcrI+ffqYP7dt21Zdu3ZVZGSkPv30UyUkJLixMuDSBgwYYP7cpk0btW3bVk2bNtWaNWvUs2dPN1ZWdSQmJmrnzp3cF8XJLnReR4wYYf7cpk0bhYWFqWfPnvr+++/VtGlTq8usMlq0aKGMjAzl5+fr3//+t4YOHaq1a9e6uyxUc2QkVGVkpKtHRnINMpLzkZOsw1f2XCwwMFDXX3+9vvvuO3eXUm2EhoZKUrmnGeTk5Jjr4BzXXXedGjZsyPv3MiUlJWnJkiX64osvdO2115rLQ0NDVVRUpLy8PIfxvGcvz4XO6/l07dpVknjPXoKPj4+aNWumTp06aerUqWrXrp3eeust3quwFBnJ+chI1iEjVQwZyTXISK5BTrIODSkXO378uL7//nuFhYW5u5RqIyoqSqGhoUpNTTWX2e12bdy4UTExMW6srPr58ccf9csvv/D+vQTDMJSUlKSFCxdq9erVioqKcljfqVMneXt7O7xnMzMzdfDgQd6zF3Gp83o+GRkZksR7toJKS0tVWFjIexWWIiM5HxnJOmSky0NGcg0ykrXISa7DV/ac7KmnnlLfvn0VGRmpw4cP69lnn5Wnp6cGDhzo7tKqlOPHjzt077OyspSRkaGgoCA1btxYo0aN0gsvvKDmzZsrKipKzzzzjMLDw9WvXz/3FV0FXOy8BgUF6bnnnlP//v0VGhqq77//XuPGjVOzZs0UFxfnxqorv8TERM2fP1///e9/Va9ePfM75AEBAfL391dAQIASEhI0ZswYBQUFyWaz6Y9//KNiYmJ00003ubn6yutS5/X777/X/Pnzddddd6lBgwbavn27Ro8ere7du6tt27Zurr7ymjhxovr06aPGjRvr2LFjmj9/vtasWaMVK1bwXoVLkZGcg4zkGmQk1yAjuQYZyXXISRZz70P+qp+HHnrICAsLM3x8fIxrrrnGeOihh4zvvvvO3WVVOV988YUhqdw0dOhQwzDOPNb4mWeeMUJCQgxfX1+jZ8+eRmZmpnuLrgIudl5PnDhh9OrVy2jUqJHh7e1tREZGGsOHDzeys7PdXXald75zKsmYM2eOOebkyZPGH/7wB6N+/fpG7dq1jfvuu884cuSI+4quAi51Xg8ePGh0797dCAoKMnx9fY1mzZoZY8eONfLz891beCX3+OOPG5GRkYaPj4/RqFEjo2fPnsbKlSvN9bxX4SpkJOcgI7kGGck1yEiuQUZyHXKStTwMwzBc0+oCAAAAAAAAyuMeUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFVCFz586Vh4eH9u/f7+5SKpUmTZro7rvvdncZlps2bZpatmyp0tLSi47bv3+/PDw8NHfuXIflycnJat++vfz8/OTh4aG8vLzL3vcvv/yiOnXqaNmyZVdQOQAAzkVGOj8yEhkJqMxoSAGoFObPn68333zT3WVUGXa7Xa+88orGjx+vWrUq/k/5L7/8ogcffFD+/v6aOXOm/vnPf6pOnTrKzMzU6NGjdfPNN5sh7HzhvkGDBho2bJieeeYZJxwNAAC4EDJSxbgqI3322Wd66KGHdN1116l27dpq0aKFnnzyyXLNKjIScPloSAGoFAhbFfP3v/9dp0+f1sCBA6/o9Zs3b9axY8c0ZcoUJSQk6JFHHpG3t7fS0tI0Y8YMHTt2TK1atbroNkaOHKmtW7dq9erVV1QDAAC4NDJSxbgqI40YMUJ79uzRI488ohkzZqh379565513FBMTo5MnTzpsg4wEXB4vdxcAAKi4OXPm6J577pGfn98VvT43N1eSFBgY6LD8nnvuUV5enurVq6fXXntNGRkZF9xGq1at1Lp1a82dO1d33HHHFdUBAADgTK7KSP/+97/Vo0cPh2WdOnXS0KFDNW/ePA0bNsxcTkYCLg9XSAHVwLvvvqsbbrhBvr6+Cg8PV2JiYrnLh3v06KHWrVtr9+7duv3221W7dm1dc801mjZtWrntHThwQPfcc4/q1Kmj4OBgjR49WitWrJCHh4fWrFnjMHbjxo3q3bu3AgICVLt2bd1222366quvHMYcO3ZMo0aNUpMmTeTr66vg4GDdeeed2rp1q1nb0qVLdeDAAXl4eMjDw0NNmjSp8HlYuXKl+X3/6OhoffbZZxXehoeHh5KSkrRgwQJFR0fL399fMTEx2rFjhyTpvffeU7NmzeTn56cePXqU+zrbl19+qd/97ndq3LixfH19FRERodGjRzt8cpabm6tGjRqpR48eMgzDXP7dd9+pTp06euihhy5aY1ZWlrZv367Y2Nhy6/Ly8vToo48qICBAgYGBGjp06HnfC0OHDpUkdenSRR4eHnr00UclSUFBQapXr97lni7deeed+vzzzx2OAwCAyoKMdAYZ6eoz0m+bUZJ03333SZL27NlTbh0ZCbgMBoAqY86cOYYkIysry1z27LPPGpKM2NhY4+233zaSkpIMT09Po0uXLkZRUZE57rbbbjPCw8ONiIgI44knnjDeffdd44477jAkGcuWLTPHHT9+3LjuuusMf39/Y8KECcabb75p3HjjjUa7du0MScYXX3xhjk1NTTV8fHyMmJgYY/r06cYbb7xhtG3b1vDx8TE2btxojnv44YcNHx8fY8yYMcYHH3xgvPLKK0bfvn2Njz76yDAMw1i5cqXRvn17o2HDhsY///lP45///KexcOHCyz4vkZGRxvXXX28EBgYaEyZMMF5//XWjTZs2Rq1atYyVK1dW6BxLMtq2bWtEREQYL7/8svHyyy8bAQEBRuPGjY133nnHiI6ONqZPn248/fTTho+Pj3H77bc7vP6Pf/yjcddddxkvvfSS8d577xkJCQmGp6en8cADDziMW7BggSHJeOuttwzDMIySkhLjlltuMUJCQoyff/75ojV+9NFHhiRj+/btDstLS0uN7t27G7Vq1TL+8Ic/GG+//bZxxx13GG3btjUkGXPmzDEM48z5HjFihCHJeP75541//vOfxoYNG8rt59VXXy33frtQLTt27LhozQAAuBIZ6fzISGc4OyOV+fbbbw1JxksvvXTBWshIwIXRkAKqkN+GrdzcXMPHx8fo1auXUVJSYo575513DEnG3//+d3PZbbfdZkgy/vGPf5jLCgsLjdDQUKN///7msunTpxuSjEWLFpnLTp48abRs2dIhbJWWlhrNmzc34uLijNLSUnPsiRMnjKioKOPOO+80lwUEBBiJiYkXPbb4+HgjMjKyQuejTGRkpCHJ+M9//mMuy8/PN8LCwowOHTpUaFuSDF9fX4dA+9577xmSjNDQUMNut5vLJ06cWC78njhxotw2p06danh4eBgHDhxwWD5w4ECjdu3axrfffms2f8497xfy9NNPG5KMY8eOOSxftGiRIcmYNm2auez06dPGrbfe6hC2DOPse2nz5s0X3M/lNKQ2bNhgSDI++eSTS9YNAICrkJHOj4x0hrMzUpmyptq3335bbh0ZCbg0vrIHVGGrVq1SUVGRRo0a5fAUkeHDh8tms2np0qUO4+vWratHHnnEnPfx8dGNN96oH374wVyWnJysa665Rvfcc4+5zM/PT8OHD3fYVkZGhvbt26eHH35Yv/zyi37++Wf9/PPPKigoUM+ePbVu3TrzUbuBgYHauHGjDh8+7NTjP1d4eLh52bQk2Ww2DRkyRNu2bVN2dnaFttWzZ0+Hy+G7du0qSerfv7/D19nKlp97/vz9/c2fCwoK9PPPP+vmm2+WYRjatm2bw37eeecdBQQE6IEHHtAzzzyjwYMH6957771kfb/88ou8vLxUt25dh+XLli2Tl5eXfv/735vLPD099cc//vEyjvrK1K9fX5L0888/u2wfAABUFBnpLDKSazLS/Pnz9be//U1PPvmkmjdvXm49GQm4NBpSQBV24MABSVKLFi0clvv4+Oi6664z15e59tpr5eHh4bCsfv36+vXXXx222bRp03LjmjVr5jC/b98+SdLQoUPVqFEjh+mDDz5QYWGh8vPzJUnTpk3Tzp07FRERoRtvvFGTJ092CCjO0KxZs3I1X3/99ZJU7h4Gl9K4cWOH+YCAAElSRETEeZefe/4OHjyoRx99VEFBQapbt64aNWqk2267TZLM81EmKChIM2bM0Pbt2xUQEKAZM2ZUqM7fOnDggMLCwsqFsN++P5zJ+P/3RfjtuQcAwJ3ISI71kZGcm5G+/PJLJSQkKC4uTi+++OJ5x5CRgEvjKXtADeLp6Xne5cYV3Gyx7JO9V199Ve3btz/vmLI/+g8++KBuvfVWLVy4UCtXrtSrr76qV155RZ999pn69OlT4X272oXO06XOX0lJie68804dPXpU48ePV8uWLVWnTh399NNPevTRR81zdq4VK1ZIOhPYfvzxx3JPdDmfBg0a6PTp0zp27FiFbkDuCmVBs2HDhm6tAwCAq0FGujxkJOmbb77RPffco9atW+vf//63vLzO/19qMhJwaTSkgCosMjJSkpSZmanrrrvOXF5UVKSsrKzzPmHkcra5e/duGYbh8InOd9995zCuadOmks5c9n05+wkLC9Mf/vAH/eEPf1Bubq46duyoF1980QxbV/vp0XfffVeu5m+//VaSruhpNFdix44d+vbbb/Xhhx9qyJAh5vKUlJTzjk9OTtYHH3ygcePGad68eRo6dKg2btx4wWBTpmXLlpLOPEmmbdu25vLIyEilpqbq+PHjDp8AZmZmXs1hXVRWVpakM483BgCgsiAjnUVGcl5G+v7779W7d28FBwdr2bJl5a64OhcZCbg0vrIHVGGxsbHy8fHRjBkzHD7B+9vf/qb8/HzFx8dXeJtxcXH66aeftHjxYnPZqVOn9Ne//tVhXKdOndS0aVO99tprOn78eLnt/O9//5N05hOx316GHRwcrPDwcBUWFprL6tSpU25cRRw+fFgLFy405+12u/7xj3+offv2Cg0NveLtVkTZp4Pn/i4Mw9Bbb71VbmxeXp6GDRumG2+8US+99JI++OADbd26VS+99NIl9xMTEyNJ2rJli8Pyu+66S6dPn9asWbPMZSUlJXr77bev6HguR3p6ugICAnTDDTe4bB8AAFQUGeksMpJzMlJ2drZ69eqlWrVqacWKFWrUqNFFx5ORgEvjCimgCmvUqJEmTpyo5557Tr1799Y999yjzMxMvfvuu+rSpYvDzTkv1//93//pnXfe0cCBA/XEE08oLCxM8+bNk5+fn6Szn9LVqlVLH3zwgfr06aMbbrhBjz32mK655hr99NNP+uKLL2Sz2fT555/r2LFjuvbaa/XAAw+oXbt2qlu3rlatWqXNmzdr+vTp5n47deqkTz75RGPGjFGXLl1Ut25d9e3b97Lrvv7665WQkKDNmzcrJCREf//735WTk6M5c+ZU+BxcqZYtW6pp06Z66qmn9NNPP8lms+k///mPw/0TyjzxxBP65ZdftGrVKnl6eqp3794aNmyYXnjhBd17771q167dBfdz3XXXqXXr1lq1apUef/xxc3nfvn11yy23aMKECdq/f7+io6P12WefVSjE5ufnm+Hsq6++knTmxqKBgYEKDAxUUlKSw/iUlBT17duX+yMAACoVMtJZZCTnZKTevXvrhx9+0Lhx47R+/XqtX7/eXBcSEqI777zTYTwZCbgMVj/WD8CV++0jjcu88847RsuWLQ1vb28jJCTE+P3vf2/8+uuvDmNuu+0244Ybbii3zaFDh5Z7lPAPP/xgxMfHG/7+/kajRo2MJ5980vjPf/5jSDK+/vprh7Hbtm0z7r//fqNBgwaGr6+vERkZaTz44INGamqqYRhnHps8duxYo127dka9evWMOnXqGO3atTPeffddh+0cP37cePjhh43AwEBDUoUebxwZGWnEx8cbK1asMNq2bWv4+voaLVu2NBYsWHDZ2ygjqdzjl7OysgxJxquvvuqw/IsvvjAkOexn9+7dRmxsrFG3bl2jYcOGxvDhw41vvvnG4ZHC//3vfw1JxvTp0x22Z7fbjcjISKNdu3ZGUVHRRet8/fXXjbp165Z7hPIvv/xiDB482LDZbEZAQIAxePBgY9u2bZf9SOOyYz3f9NvfyZ49ewxJxqpVqy5aKwAArkZGOj8y0llXm5EulI8kGbfddpvDWDIScHk8DOMK7tQHoMZ58803NXr0aP3444+65ppr3F1OjZefn6/rrrtO06ZNU0JCgltqGDVqlNatW6f09HQ+/QMA1FhkpMqFjARUHTSkAJRz8uRJ+fv7m/OnTp1Shw4dVFJSYt4EE+73yiuvaM6cOdq9e7dq1bL2loC//PKLIiMj9emnn+quu+6ydN8AALgLGalqICMBVQMNKQDl9OnTR40bN1b79u2Vn5+vjz76SLt27dK8efP08MMPW1bH//73P5WUlFxwvY+Pj4KCgi5rW9nZ2Rdd7+/vr4CAgArVBwAAahYyEgA4Dw0pAOW8+eab+uCDD7R//36VlJQoOjpa48aN00MPPWRpHU2aNNGBAwcuuP62227TmjVrLmtbl7pceujQoZo7d24FqgMAADUNGQkAnIeGFIBK66uvvtLJkycvuL5+/frq1KnTZW1r1apVF10fHh6u6OjoCtUHAADgDmQkANUBDSkAAAAAAABYyto7vAEAAAAAAKDG83J3Ae5UWlqqw4cPq169ejyOEwCAGsIwDB07dkzh4eGWP32pqiAjAQBQ81idkWp0Q+rw4cOKiIhwdxkAAMANDh06pGuvvdbdZVRKZCQAAGouqzJSjW5I1atXT9KZk22z2dxcDQAAsILdbldERISZA1AeGQkAgJrH6oxUoxtSZZeg22w2whYAADUMX0W7MDISAAA1l1UZiRsnAAAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVI2+hxQAABdiGIZOnz6tkpISd5eCCvL09JSXlxf3iAIAwAXISFVXZctINKQAAPiNoqIiHTlyRCdOnHB3KbhCtWvXVlhYmHx8fNxdCgAA1QYZqeqrTBmJhhQAAOcoLS1VVlaWPD09FR4eLh8fn0rzKRIuzTAMFRUV6X//+5+ysrLUvHlz1arFHQoAALhaZKSqrTJmJBpSAACco6ioSKWlpYqIiFDt2rXdXQ6ugL+/v7y9vXXgwAEVFRXJz8/P3SUBAFDlkZGqvsqWkfjIEACA83D3J0a4Ovz+AABwDf7GVm2V6fdXeSoBAAAAAABAjUBDCgAAAAAAAJbiHlIAAFym4uT1lu3Lu3e3yx57qRuKPvvss5o8efJVVnRlPDw8tHDhQvXr1++Kt/H+++9r/vz52rp1q44dO6Zff/1VgYGBTqsRAABcHSszkkROKnP06FE9++yzWrlypQ4ePKhGjRqpX79+mjJligICApxbrAvQkAIAoIo7cuSI+fMnn3yiSZMmKTMz01xWt27dCm2vqKioUjwKuMyJEyfUu3dv9e7dWxMnTnR3OQAAoAqpzjnp8OHDOnz4sF577TVFR0frwIEDGjlypA4fPqx///vf7i7vkvjKHpyqOHm9wwQAcL3Q0FBzCggIkIeHhzlfUFCgQYMGKSQkRHXr1lWXLl20atUqh9c3adJEU6ZM0ZAhQ2Sz2TRixAhJ0l//+lfzSTr33XefXn/99XJXJv33v/9Vx44d5efnp+uuu07PPfecTp8+bW5Xku677z55eHiY8998841uv/121atXTzabTZ06ddKWLVsueHyjRo3ShAkTdNNNNznnhAFuQEYCAPeozjmpdevW+s9//qO+ffuqadOmuuOOO/Tiiy/q888/N/dTmdGQAgCgGjt+/Ljuuusupaamatu2berdu7f69u2rgwcPOox77bXX1K5dO23btk3PPPOMvvrqK40cOVJPPPGEMjIydOedd+rFF190eM2XX36pIUOG6IknntDu3bv13nvvae7cuea4zZs3S5LmzJmjI0eOmPODBg3Stddeq82bNys9PV0TJkyQt7e3BWcDAADgrOqYk/Lz82Wz2eTlVfm/EFf5KwQAAFesXbt2ateunTk/ZcoULVy4UIsXL1ZSUpK5/I477tCTTz5pzv/lL39Rnz599NRTT0mSrr/+em3YsEFLliwxxzz33HOaMGGChg4dKkm67rrrNGXKFI0bN07PPvusGjVqJEkKDAxUaGio+bqDBw9q7NixatmypSSpefPmLjhyAACAi6tuOennn3/WlClTzKu4KjuukAIAoBo7fvy4nnrqKbVq1UqBgYGqW7eu9uzZU+6Tv86dOzvMZ2Zm6sYbb3RY9tv5b775Rs8//7zq1q1rTsOHD9eRI0d04sSJC9Y0ZswYDRs2TLGxsXr55Zf1/fffX+VRAgAAVFx1ykl2u13x8fGKjo52203aK4qGFAAA1dhTTz2lhQsX6qWXXtKXX36pjIwMtWnTRkVFRQ7j6tSpU+FtHz9+XM8995wyMjLMaceOHdq3b5/8/Pwu+LrJkydr165dio+P1+rVqxUdHa2FCxdWeP8AAABXo7rkpGPHjql3796qV6+eFi5cWGVuhcBX9gAAqMa++uorPfroo7rvvvsknQlH+/fvv+TrWrRoYd7LoMxv5zt27KjMzEw1a9bsgtvx9vZWSUlJueXXX3+9rr/+eo0ePVoDBw7UnDlzzBoBAACsUB1ykt1uV1xcnHx9fbV48eKLNrsqGxpSAABUY82bN9dnn32mvn37ysPDQ88884xKS0sv+bo//vGP6t69u15//XX17dtXq1ev1vLly+Xh4WGOmTRpku6++241btxYDzzwgGrVqqVvvvlGO3fu1AsvvCDpzBNkUlNTdcstt8jX11d+fn4aO3asHnjgAUVFRenHH3/U5s2b1b9//wvWkp2drezsbH333XeSpB07dqhevXpq3LixgoKCrvIMAQCAmqqq5yS73a5evXrpxIkT+uijj2S322W32yVJjRo1kqenpxPOkuvwlT0AAKqx119/XfXr19fNN9+svn37Ki4uTh07drzk62655RbNnj1br7/+utq1a6fk5GSNHj3a4VO3uLg4LVmyRCtXrlSXLl1000036Y033lBkZKQ5Zvr06UpJSVFERIQ6dOggT09P/fLLLxoyZIiuv/56Pfjgg+rTp4+ee+65C9Yye/ZsdejQQcOHD5ckde/eXR06dNDixYuv4swAAICarqrnpK1bt2rjxo3asWOHmjVrprCwMHM6dOjQ1Z8gF/MwDMNwdxHuYrfbFRAQYD4WEVevOHm9w7x3725uqgQArsypU6eUlZWlqKioKnXJsxWGDx+uvXv36ssvv3R3KZd0sd8jf/8vjXPkfGQkAFUdGeniqkpOqkwZqcJXSK1bt059+/ZVeHi4PDw8tGjRonJj9uzZo3vuuUcBAQGqU6eOunTp4nCX+lOnTikxMVENGjRQ3bp11b9/f+Xk5Dhs4+DBg4qPj1ft2rUVHByssWPH6vTp0w5j1qxZo44dO8rX11fNmjXT3LlzK3o4AADgAl577TV98803+u677/T222/rww8/NB9djPLISAAA1BzkpKtX4YZUQUGB2rVrp5kzZ553/ffff69u3bqpZcuWWrNmjbZv365nnnnGofM2evRoff7551qwYIHWrl2rw4cP6/777zfXl5SUKD4+XkVFRdqwYYM+/PBDzZ07V5MmTTLHZGVlKT4+XrfffrsyMjI0atQoDRs2TCtWrKjoIQEAgPPYtGmT7rzzTrVp00azZ8/WjBkzNGzYMHeXVWmRkQAAqDnISVfvqr6y5+HhoYULF6pfv37msgEDBsjb21v//Oc/z/ua/Px8NWrUSPPnz9cDDzwgSdq7d69atWqltLQ03XTTTVq+fLnuvvtuHT58WCEhIZLO3D9i/Pjx+t///icfHx+NHz9eS5cu1c6dOx32nZeXp+Tk5Muqn8vRnY/L0QFUdVyOXj24+3J0MhJ+i4wEoKojI1UP7s5I53LqTc1LS0u1dOlSXX/99YqLi1NwcLC6du3qcMl6enq6iouLFRsbay5r2bKlGjdurLS0NElSWlqa2rRpYwYt6cwNwex2u3bt2mWOOXcbZWPKtgEAAFBZkJEAAAAcObUhlZubq+PHj+vll19W7969tXLlSt133326//77tXbtWklnHt3s4+OjwMBAh9eGhIQoOzvbHHNu0CpbX7buYmPsdrtOnjx53voKCwvNxyCe+zhEAAAAVyIjAQAAOPJy5sZKS0slSffee69Gjx4tSWrfvr02bNig2bNn67bbbnPm7ips6tSpF32sNAAAgCuQkQAAABw59Qqphg0bysvLS9HR0Q7LW7VqZT5BJjQ0VEVFRcrLy3MYk5OTo9DQUHPMb58oUzZ/qTE2m03+/v7nrW/ixInKz883p0OHDl3ZgQIAAFQAGQkAAMCRUxtSPj4+6tKlizIzMx2Wf/vtt4qMjJQkderUSd7e3kpNTTXXZ2Zm6uDBg4qJiZEkxcTEaMeOHcrNzTXHpKSkyGazmUEuJibGYRtlY8q2cT6+vr6y2WwOEwAAgKuRkQAAABxV+Ct7x48f13fffWfOZ2VlKSMjQ0FBQWrcuLHGjh2rhx56SN27d9ftt9+u5ORkff7551qzZo0kKSAgQAkJCRozZoyCgoJks9n0xz/+UTExMbrpppskSb169VJ0dLQGDx6sadOmKTs7W08//bQSExPl6+srSRo5cqTeeecdjRs3To8//rhWr16tTz/9VEuXLnXCaQEAAKgYMhIAAEAFGBX0xRdfGJLKTUOHDjXH/O1vfzOaNWtm+Pn5Ge3atTMWLVrksI2TJ08af/jDH4z69esbtWvXNu677z7jyJEjDmP2799v9OnTx/D39zcaNmxoPPnkk0ZxcXG5Wtq3b2/4+PgY1113nTFnzpwKHUt+fr4hycjPz6/Q63BhRcu/dJgAoKo5efKksXv3buPkyZPuLgVX4WK/R1f9/Scj4WLISACqOjJS9eCOjHQhHoZhGO5ohFUGdrtdAQEBys/P59J0JylOXu8w7927m5sqAYArc+rUKWVlZSkqKkp+fn4O677f8p5ldTTt/H8VGv/oo4/qww8/lCR5eXkpKChIbdu21cCBA/Xoo4+qVi2nfkvfUrt27dKkSZOUnp6uAwcO6I033tCoUaMu+pqL/R75+39pnCPnIyMBqOoqS0aSyEnn+utf/6p//OMf2rlzp6QztwB46aWXdOONN553fGXKSFX3rAMAAAe9e/fWkSNHtH//fi1fvly33367nnjiCd199906ffq0u8u7YidOnNB1112nl19+2bxxNwAAQEVU15y0Zs0aDRw4UF988YXS0tIUERGhXr166aeffnJ3aZdEQwoAgGrC19dXoaGhuuaaa9SxY0f9+c9/1n//+18tX75cc+fONcfl5eVp2LBhatSokWw2m+644w598803Dtv6/PPP1aVLF/n5+alhw4a67777zHW//vqrhgwZovr166t27drq06eP9u3bJ0kqKCiQzWbTv//9b4ftLVq0SHXq1NGxY8dUVFSkpKQkhYWFyc/PT5GRkZo6deoFj6tLly569dVXNWDAAPM+SQAAABVRXXPSvHnz9Ic//EHt27dXy5Yt9cEHH6i0tLTcA04qIxpSAABUY3fccYfatWunzz77zFz2u9/9Trm5uVq+fLnS09PVsWNH9ezZU0ePHpUkLV26VPfdd5/uuusubdu2TampqQ6XfT/66KPasmWLFi9erLS0NBmGobvuukvFxcWqU6eOBgwYoDlz5jjUMWfOHD3wwAOqV6+eZsyYocWLF+vTTz9VZmam5s2bpyZNmlhyPgAAAMpUx5x04sQJFRcXKygo6OpOjgUq/JQ9AABQtbRs2VLbt2+XJK1fv16bNm1Sbm6uebXRa6+9pkWLFunf//63RowYoRdffFEDBgzQc889Z26jXbt2kqR9+/Zp8eLF+uqrr3TzzTdLOvPJXEREhBYtWqTf/e53GjZsmG6++WYdOXJEYWFhys3N1bJly7Rq1SpJ0sGDB9W8eXN169ZNHh4eioyMtPJ0AAAAmKpbTho/frzCw8MVGxt71efG1bhCCgCAas4wDHl4eEiSvvnmGx0/flwNGjRQ3bp1zSkrK0vff/+9JCkjI0M9e/Y877b27NkjLy8vde3a1VzWoEEDtWjRQnv27JEk3XjjjbrhhhvMm4d+9NFHioyMVPfu3SWd+eQwIyNDLVq00J/+9CetXLnSZccOAABwMdUpJ7388sv6+OOPtXDhwnI3LK+MuEIKAIBqbs+ePYqKipIkHT9+XGFhYVqzZk25cYGBgZIkf3//q97nsGHDNHPmTE2YMEFz5szRY489Zoa9jh07KisrS8uXL9eqVav04IMPKjY2ttz9FAAAAFytuuSk1157TS+//LJWrVqltm3bXnWNVuAKKQAAqrHVq1drx44d6t+/v6QzISc7O1teXl5q1qyZw9SwYUNJUtu2bS94I8xWrVrp9OnT2rhxo7nsl19+UWZmpqKjo81ljzzyiA4cOKAZM2Zo9+7dGjp0qMN2bDabHnroIf31r3/VJ598ov/85z/mvRkAAACsUF1y0rRp0zRlyhQlJyerc+fOV3w+rMYVUgAAVBOFhYXKzs5WSUmJcnJylJycrKlTp+ruu+/WkCFDJEmxsbGKiYlRv379NG3aNF1//fU6fPiweYPOzp0769lnn1XPnj3VtGlTDRgwQKdPn9ayZcs0fvx4NW/eXPfee6+GDx+u9957T/Xq1dOECRN0zTXX6N577zVrqV+/vu6//36NHTtWvXr10rXXXmuue/311xUWFqYOHTqoVq1aWrBggUJDQ81PHn+rqKhIu3fvNn/+6aeflJGRobp166pZs2auO6EAAKDaqK456ZVXXtGkSZM0f/58NWnSRNnZ2ZJkft2wMuMKKQAAqonk5GSFhYWpSZMm6t27t7744gvNmDFD//3vf+Xp6SlJ8vDw0LJly9S9e3c99thjuv766zVgwAAdOHBAISEhkqQePXpowYIFWrx4sdq3b6877rhDmzZtMvczZ84cderUSXfffbdiYmJkGIaWLVsmb29vh3oSEhJUVFSkxx9/3GF5vXr1NG3aNHXu3FldunTR/v37tWzZMtWqdf5YcvjwYXXo0EEdOnTQkSNH9Nprr6lDhw4aNmyYM08fAACoxqprTpo1a5aKior0wAMPKCwszJxee+01Z54+l/AwDMNwdxHuYrfbFRAQoPz8fNlsNneXUy0UJ693mPfu3c1NlQDAlTl16pSysrIUFRVVJW4GWZn985//1OjRo3X48GH5+PhYuu+L/R75+39pnCPnIyMBqOrISM7lrpxUmTISX9kDAABOdeLECR05ckQvv/yy/u///s/yZhQAAEBlRU46i6/sAQAAp5o2bZpatmyp0NBQTZw40d3lAAAAVBrkpLNoSAEAAKeaPHmyiouLlZqaWulvpgkAAGAlctJZNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAzqMGP4S2WuD3BwCAa/A3tmqrTL8/GlIAAJzD29tb0pknoKDqKvv9lf0+AQDA1SEjVQ+VKSN5ubsAAAAqE09PTwUGBio3N1eSVLt2bXl4eLi5KlwuwzB04sQJ5ebmKjAwUJ6enu4uCQCAaoGMVLVVxoxEQwoAgN8IDQ2VJDNwoeoJDAw0f48AAMA5yEhVX2XKSDSkAAD4DQ8PD4WFhSk4OFjFxcXuLgcV5O3tXSk+9QMAoLohI1VtlS0j0ZACAOACPD09K9UfbQAAgMqAjARn4KbmAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEtVuCG1bt069e3bV+Hh4fLw8NCiRYsuOHbkyJHy8PDQm2++6bD86NGjGjRokGw2mwIDA5WQkKDjx487jNm+fbtuvfVW+fn5KSIiQtOmTSu3/QULFqhly5by8/NTmzZttGzZsooeDgAAgFOQkQAAAC5fhRtSBQUFateunWbOnHnRcQsXLtTXX3+t8PDwcusGDRqkXUVWqywAAQAASURBVLt2KSUlRUuWLNG6des0YsQIc73dblevXr0UGRmp9PR0vfrqq5o8ebLef/99c8yGDRs0cOBAJSQkaNu2berXr5/69eunnTt3VvSQAAAArhoZCQAA4PJ5GIZhXPGLPTy0cOFC9evXz2H5Tz/9pK5du2rFihWKj4/XqFGjNGrUKEnSnj17FB0drc2bN6tz586SpOTkZN1111368ccfFR4erlmzZukvf/mLsrOz5ePjI0maMGGCFi1apL1790qSHnroIRUUFGjJkiXmfm+66Sa1b99es2fPvqz67Xa7AgIClJ+fL5vNdqWnAecoTl7vMO/du5ubKgEA4Pys+PtPRsJvkZEAAJWd1X//nX4PqdLSUg0ePFhjx47VDTfcUG59WlqaAgMDzaAlSbGxsapVq5Y2btxojunevbsZtCQpLi5OmZmZ+vXXX80xsbGxDtuOi4tTWlraBWsrLCyU3W53mAAAAKxARgIAADjL6Q2pV155RV5eXvrTn/503vXZ2dkKDg52WObl5aWgoCBlZ2ebY0JCQhzGlM1fakzZ+vOZOnWqAgICzCkiIqJiBwcAAHCFyEgAAABnObUhlZ6errfeektz586Vh4eHMzftFBMnTlR+fr45HTp0yN0lAQCAGoCMBAAA4MipDakvv/xSubm5aty4sby8vOTl5aUDBw7oySefVJMmTSRJoaGhys3NdXjd6dOndfToUYWGhppjcnJyHMaUzV9qTNn68/H19ZXNZnOYAAAAXI2MBAAA4MipDanBgwdr+/btysjIMKfw8HCNHTtWK1askCTFxMQoLy9P6enp5utWr16t0tJSde3a1Ryzbt06FRcXm2NSUlLUokUL1a9f3xyTmprqsP+UlBTFxMQ485AAAACuGhkJAADAkVdFX3D8+HF999135nxWVpYyMjIUFBSkxo0bq0GDBg7jvb29FRoaqhYtWkiSWrVqpd69e2v48OGaPXu2iouLlZSUpAEDBpiPP3744Yf13HPPKSEhQePHj9fOnTv11ltv6Y033jC3+8QTT+i2227T9OnTFR8fr48//lhbtmxxeOwxAACAVchIAAAAl6/CV0ht2bJFHTp0UIcOHSRJY8aMUYcOHTRp0qTL3sa8efPUsmVL9ezZU3fddZe6devmEJICAgK0cuVKZWVlqVOnTnryySc1adIkjRgxwhxz8803a/78+Xr//ffVrl07/fvf/9aiRYvUunXrih4SAADAVSMjAQAAXD4PwzAMdxfhLna7XQEBAcrPz+deCU5SnLzeYd67dzc3VQIAwPnx9//SOEfOR0YCAFR2Vv/9d+o9pAAAAAAAAIBLoSEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKS93F4DqZ3/ecvPn5uIJMgAAABIZCQCAc3GFFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLVbghtW7dOvXt21fh4eHy8PDQokWLzHXFxcUaP3682rRpozp16ig8PFxDhgzR4cOHHbZx9OhRDRo0SDabTYGBgUpISNDx48cdxmzfvl233nqr/Pz8FBERoWnTppWrZcGCBWrZsqX8/PzUpk0bLVu2rKKHAwAA4BRkJAAAgMtX4YZUQUGB2rVrp5kzZ5Zbd+LECW3dulXPPPOMtm7dqs8++0yZmZm65557HMYNGjRIu3btUkpKipYsWaJ169ZpxIgR5nq73a5evXopMjJS6enpevXVVzV58mS9//775pgNGzZo4MCBSkhI0LZt29SvXz/169dPO3furOghAQAAXDUyEgAAwOXzMAzDuOIXe3ho4cKF6tev3wXHbN68WTfeeKMOHDigxo0ba8+ePYqOjtbmzZvVuXNnSVJycrLuuusu/fjjjwoPD9esWbP0l7/8RdnZ2fLx8ZEkTZgwQYsWLdLevXslSQ899JAKCgq0ZMkSc1833XST2rdvr9mzZ19W/Xa7XQEBAcrPz5fNZrvCs4BzFSev1/685eZ88wEvurEaAADKs+LvPxkJv0VGAgBUdlb//Xf5PaTy8/Pl4eGhwMBASVJaWpoCAwPNoCVJsbGxqlWrljZu3GiO6d69uxm0JCkuLk6ZmZn69ddfzTGxsbEO+4qLi1NaWpqLjwgAAODqkZEAAEBN5uXKjZ86dUrjx4/XwIEDze5adna2goODHYvw8lJQUJCys7PNMVFRUQ5jQkJCzHX169dXdna2uezcMWXbOJ/CwkIVFhaa83a7/coPDgAA4AqRkQAAQE3nsiukiouL9eCDD8owDM2aNctVu6mQqVOnKiAgwJwiIiLcXRIAAKhhyEgAAAAuakiVBa0DBw4oJSXF4buHoaGhys3NdRh/+vRpHT16VKGhoeaYnJwchzFl85caU7b+fCZOnKj8/HxzOnTo0JUfJAAAQAWRkQAAAM5wekOqLGjt27dPq1atUoMGDRzWx8TEKC8vT+np6eay1atXq7S0VF27djXHrFu3TsXFxeaYlJQUtWjRQvXr1zfHpKamOmw7JSVFMTExF6zN19dXNpvNYQIAALACGQkAAOCsCjekjh8/royMDGVkZEiSsrKylJGRoYMHD6q4uFgPPPCAtmzZonnz5qmkpETZ2dnKzs5WUVGRJKlVq1bq3bu3hg8frk2bNumrr75SUlKSBgwYoPDwcEnSww8/LB8fHyUkJGjXrl365JNP9NZbb2nMmDFmHU888YSSk5M1ffp07d27V5MnT9aWLVuUlJTkhNMCAABQMWQkAACACjAq6IsvvjAklZuGDh1qZGVlnXedJOOLL74wt/HLL78YAwcONOrWrWvYbDbjscceM44dO+awn2+++cbo1q2b4evra1xzzTXGyy+/XK6WTz/91Lj++usNHx8f44YbbjCWLl1aoWPJz883JBn5+fkVPQ24gKLlXxrf/uvP5gQAQGXjqr//ZCRcDBkJAFDZWf3338MwDMOq5ldlY7fbFRAQoPz8fC5Nd5Li5PXan7fcnG8+4EU3VgMAQHn8/b80zpHzkZEAAJWd1X//XfaUPQAAAAAAAOB8aEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWMrL3QXAeYqT15db5t27mxsqAQAAqDzISAAAVD5cIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKW83F0A4EzFyevLLfPu3c0NlQAAAFQeZCQAQGXDFVIAAAAAAACwVIUbUuvWrVPfvn0VHh4uDw8PLVq0yGG9YRiaNGmSwsLC5O/vr9jYWO3bt89hzNGjRzVo0CDZbDYFBgYqISFBx48fdxizfft23XrrrfLz81NERISmTZtWrpYFCxaoZcuW8vPzU5s2bbRs2bKKHg4AAIBTkJEAAAAuX4UbUgUFBWrXrp1mzpx53vXTpk3TjBkzNHv2bG3cuFF16tRRXFycTp06ZY4ZNGiQdu3apZSUFC1ZskTr1q3TiBEjzPV2u129evVSZGSk0tPT9eqrr2ry5Ml6//33zTEbNmzQwIEDlZCQoG3btqlfv37q16+fdu7cWdFDAgAAuGpkJAAAgMvnYRiGccUv9vDQwoUL1a9fP0lnPvkLDw/Xk08+qaeeekqSlJ+fr5CQEM2dO1cDBgzQnj17FB0drc2bN6tz586SpOTkZN1111368ccfFR4erlmzZukvf/mLsrOz5ePjI0maMGGCFi1apL1790qSHnroIRUUFGjJkiVmPTfddJPat2+v2bNnX1b9drtdAQEBys/Pl81mu9LTUGlUhnsDFCev1/685eZ88wEvWr7/3+L+CACAc1nx95+MVLlUhnxARgIAVHZW//136j2ksrKylJ2drdjYWHNZQECAunbtqrS0NElSWlqaAgMDzaAlSbGxsapVq5Y2btxojunevbsZtCQpLi5OmZmZ+vXXX80x5+6nbEzZfs6nsLBQdrvdYQIAAHA1MhIAAIAjpzaksrOzJUkhISEOy0NCQsx12dnZCg4Odljv5eWloKAghzHn28a5+7jQmLL15zN16lQFBASYU0REREUPEQAAoMLISAAAAI5q1FP2Jk6cqPz8fHM6dOiQu0sCAABwOzISAACwmlMbUqGhoZKknJwch+U5OTnmutDQUOXm5jqsP336tI4ePeow5nzbOHcfFxpTtv58fH19ZbPZHCYAAABXIyMBAAA4cmpDKioqSqGhoUpNTTWX2e12bdy4UTExMZKkmJgY5eXlKT093RyzevVqlZaWqmvXruaYdevWqbi42ByTkpKiFi1aqH79+uaYc/dTNqZsPwAAAJUFGQkAAMBRhRtSx48fV0ZGhjIyMiSduUlnRkaGDh48KA8PD40aNUovvPCCFi9erB07dmjIkCEKDw83nzLTqlUr9e7dW8OHD9emTZv01VdfKSkpSQMGDFB4eLgk6eGHH5aPj48SEhK0a9cuffLJJ3rrrbc0ZswYs44nnnhCycnJmj59uvbu3avJkydry5YtSkpKuvqzAgAAUEFkJAAAgMvnVdEXbNmyRbfffrs5XxaAhg4dqrlz52rcuHEqKCjQiBEjlJeXp27duik5OVl+fn7ma+bNm6ekpCT17NlTtWrVUv/+/TVjxgxzfUBAgFauXKnExER16tRJDRs21KRJkzRixAhzzM0336z58+fr6aef1p///Gc1b95cixYtUuvWra/oRAAAAFwNMhIAAMDl8zAMw3B3Ee5it9sVEBCg/Pz8anGvhOLk9eWWeffuZnkN+/OWm/PNB7xo+f5/y+pzAACo3Krb339XqG7nqDLkAzISAKCys/rvf416yh4AAAAAAADcj4YUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUl7uLgCusT9vuSSp1pZdatr5/9xcDQAAQOVARgIAoHLgCikAAAAAAABYioYUAAAAAAAALOX0hlRJSYmeeeYZRUVFyd/fX02bNtWUKVNkGIY5xjAMTZo0SWFhYfL391dsbKz27dvnsJ2jR49q0KBBstlsCgwMVEJCgo4fP+4wZvv27br11lvl5+eniIgITZs2zdmHAwAA4BRkJAAAgLOc3pB65ZVXNGvWLL3zzjvas2ePXnnlFU2bNk1vv/22OWbatGmaMWOGZs+erY0bN6pOnTqKi4vTqVOnzDGDBg3Srl27lJKSoiVLlmjdunUaMWKEud5ut6tXr16KjIxUenq6Xn31VU2ePFnvv/++sw8JAADgqpGRAAAAznL6Tc03bNige++9V/Hx8ZKkJk2a6F//+pc2bdok6cwnf2+++aaefvpp3XvvvZKkf/zjHwoJCdGiRYs0YMAA7dmzR8nJydq8ebM6d+4sSXr77bd111136bXXXlN4eLjmzZunoqIi/f3vf5ePj49uuOEGZWRk6PXXX3cIZQAAAJUBGQkAAOAsp18hdfPNNys1NVXffvutJOmbb77R+vXr1adPH0lSVlaWsrOzFRsba74mICBAXbt2VVpamiQpLS1NgYGBZtCSpNjYWNWqVUsbN240x3Tv3l0+Pj7mmLi4OGVmZurXX3919mGhitift9ycAACoTMhIcCcyEgCgsnH6FVITJkyQ3W5Xy5Yt5enpqZKSEr344osaNGiQJCk7O1uSFBIS4vC6kJAQc112draCg4MdC/XyUlBQkMOYqKioctsoW1e/fv1ytRUWFqqwsNCct9vtV3OoAAAAl42MBAAAcJbTr5D69NNPNW/ePM2fP19bt27Vhx9+qNdee00ffvihs3dVYVOnTlVAQIA5RUREuLskAABQQ5CRAAAAznJ6Q2rs2LGaMGGCBgwYoDZt2mjw4MEaPXq0pk6dKkkKDQ2VJOXk5Di8Licnx1wXGhqq3Nxch/WnT5/W0aNHHcacbxvn7uO3Jk6cqPz8fHM6dOjQVR4tAADA5SEjAQAAnOX0htSJEydUq5bjZj09PVVaWipJioqKUmhoqFJTU831drtdGzduVExMjCQpJiZGeXl5Sk9PN8esXr1apaWl6tq1qzlm3bp1Ki4uNsekpKSoRYsW570UXZJ8fX1ls9kcJgAAACuQkQAAAM5yekOqb9++evHFF7V06VLt379fCxcu1Ouvv6777rtPkuTh4aFRo0bphRde0OLFi7Vjxw4NGTJE4eHh6tevnySpVatW6t27t4YPH65Nmzbpq6++UlJSkgYMGKDw8HBJ0sMPPywfHx8lJCRo165d+uSTT/TWW29pzJgxzj4kAACAq0ZGAgAAOMvpNzV/++239cwzz+gPf/iDcnNzFR4erv/7v//TpEmTzDHjxo1TQUGBRowYoby8PHXr1k3Jycny8/Mzx8ybN09JSUnq2bOnatWqpf79+2vGjBnm+oCAAK1cuVKJiYnq1KmTGjZsqEmTJvE4YwAAUCmRkQAAAM7yMAzDcHcR7mK32xUQEKD8/PxqcWl6cfJ68+eyR/rWatZYTTv/n6U1nPs44eYDXrRs35K07+O/mD83CTzzGG3v3t0srQEAULlVt7//rlDdzhEZiYwEALg0q//+O/0rewAAAAAAAMDF0JACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApVzSkPrpp5/0yCOPqEGDBvL391ebNm20ZcsWc71hGJo0aZLCwsLk7++v2NhY7du3z2EbR48e1aBBg2Sz2RQYGKiEhAQdP37cYcz27dt16623ys/PTxEREZo2bZorDgcAAMApyEgAAABnOL0h9euvv+qWW26Rt7e3li9frt27d2v69OmqX7++OWbatGmaMWOGZs+erY0bN6pOnTqKi4vTqVOnzDGDBg3Srl27lJKSoiVLlmjdunUaMWKEud5ut6tXr16KjIxUenq6Xn31VU2ePFnvv/++sw8JAADgqpGRAAAAzvJy9gZfeeUVRUREaM6cOeayqKgo82fDMPTmm2/q6aef1r333itJ+sc//qGQkBAtWrRIAwYM0J49e5ScnKzNmzerc+fOkqS3335bd911l1577TWFh4dr3rx5Kioq0t///nf5+PjohhtuUEZGhl5//XWHUAYAAFAZkJEAAADOcvoVUosXL1bnzp31u9/9TsHBwerQoYP++te/muuzsrKUnZ2t2NhYc1lAQIC6du2qtLQ0SVJaWpoCAwPNoCVJsbGxqlWrljZu3GiO6d69u3x8fMwxcXFxyszM1K+//nre2goLC2W32x0mAAAAK5CRAAAAznJ6Q+qHH37QrFmz1Lx5c61YsUK///3v9ac//UkffvihJCk7O1uSFBIS4vC6kJAQc112draCg4Md1nt5eSkoKMhhzPm2ce4+fmvq1KkKCAgwp4iIiKs8WgAAgMtDRgIAADjL6Q2p0tJSdezYUS+99JI6dOigESNGaPjw4Zo9e7azd1VhEydOVH5+vjkdOnTI3SUBAIAagowEAABwltMbUmFhYYqOjnZY1qpVKx08eFCSFBoaKknKyclxGJOTk2OuCw0NVW5ursP606dP6+jRow5jzreNc/fxW76+vrLZbA4TAACAFchIAAAAZzm9IXXLLbcoMzPTYdm3336ryMhISWdu3hkaGqrU1FRzvd1u18aNGxUTEyNJiomJUV5entLT080xq1evVmlpqbp27WqOWbdunYqLi80xKSkpatGihcPTagAAACoDMhIAAMBZTm9IjR49Wl9//bVeeuklfffdd5o/f77ef/99JSYmSpI8PDw0atQovfDCC1q8eLF27NihIUOGKDw8XP369ZN05tPC3r17a/jw4dq0aZO++uorJSUlacCAAQoPD5ckPfzww/Lx8VFCQoJ27dqlTz75RG+99ZbGjBnj7EMCAAC4amQkAACAs7ycvcEuXbpo4cKFmjhxop5//nlFRUXpzTff1KBBg8wx48aNU0FBgUaMGKG8vDx169ZNycnJ8vPzM8fMmzdPSUlJ6tmzp2rVqqX+/ftrxowZ5vqAgACtXLlSiYmJ6tSpkxo2bKhJkybxOGMAAFApkZEAAADOcnpDSpLuvvtu3X333Rdc7+Hhoeeff17PP//8BccEBQVp/vz5F91P27Zt9eWXX15xnQAAAFYiIwEAAJzh9K/sAQAAAAAAABdDQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJbycncBQFVWnLy+3DLv3t3cUAkAAEDlQUYCAFwKV0gBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJZyeUPq5ZdfloeHh0aNGmUuO3XqlBITE9WgQQPVrVtX/fv3V05OjsPrDh48qPj4eNWuXVvBwcEaO3asTp8+7TBmzZo16tixo3x9fdWsWTPNnTvX1YcDAADgFGQkAABQk7m0IbV582a99957atu2rcPy0aNH6/PPP9eCBQu0du1aHT58WPfff7+5vqSkRPHx8SoqKtKGDRv04Ycfau7cuZo0aZI5JisrS/Hx8br99tuVkZGhUaNGadiwYVqxYoUrDwkAAOCqkZEAAEBN57KG1PHjxzVo0CD99a9/Vf369c3l+fn5+tvf/qbXX39dd9xxhzp16qQ5c+Zow4YN+vrrryVJK1eu1O7du/XRRx+pffv26tOnj6ZMmaKZM2eqqKhIkjR79mxFRUVp+vTpatWqlZKSkvTAAw/ojTfecNUhAQAAXDUyEgAAgAsbUomJiYqPj1dsbKzD8vT0dBUXFzssb9mypRo3bqy0tDRJUlpamtq0aaOQkBBzTFxcnOx2u3bt2mWO+e224+LizG0AAABURmQkAAAAycsVG/3444+1detWbd68udy67Oxs+fj4KDAw0GF5SEiIsrOzzTHnBq2y9WXrLjbGbrfr5MmT8vf3L7fvwsJCFRYWmvN2u73iBwcAAHCFyEgAAABnOP0KqUOHDumJJ57QvHnz5Ofn5+zNX5WpU6cqICDAnCIiItxdEgAAqCHISAAAAGc5vSGVnp6u3NxcdezYUV5eXvLy8tLatWs1Y8YMeXl5KSQkREVFRcrLy3N4XU5OjkJDQyVJoaGh5Z4oUzZ/qTE2m+28n/xJ0sSJE5Wfn29Ohw4dcsYhAwAAXBIZCQAA4CynN6R69uypHTt2KCMjw5w6d+6sQYMGmT97e3srNTXVfE1mZqYOHjyomJgYSVJMTIx27Nih3Nxcc0xKSopsNpuio6PNMeduo2xM2TbOx9fXVzabzWECAACwAhkJAADgLKffQ6pevXpq3bq1w7I6deqoQYMG5vKEhASNGTNGQUFBstls+uMf/6iYmBjddNNNkqRevXopOjpagwcP1rRp05Sdna2nn35aiYmJ8vX1lSSNHDlS77zzjsaNG6fHH39cq1ev1qeffqqlS5c6+5AAAACuGhkJAADgLJfc1PxS3njjDdWqVUv9+/dXYWGh4uLi9O6775rrPT09tWTJEv3+979XTEyM6tSpo6FDh+r55583x0RFRWnp0qUaPXq03nrrLV177bX64IMPFBcX545DAgAAuGpkJAAAUFNY0pBas2aNw7yfn59mzpypmTNnXvA1kZGRWrZs2UW326NHD23bts0ZJQIAAFiOjAQAAGoqp99DCgAAAAAAALgYGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWsuQpe0BNsD9vuSSp1pZdatr5/9xcDQAAQOVARgIAnA9XSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWMrpDampU6eqS5cuqlevnoKDg9WvXz9lZmY6jDl16pQSExPVoEED1a1bV/3791dOTo7DmIMHDyo+Pl61a9dWcHCwxo4dq9OnTzuMWbNmjTp27ChfX181a9ZMc+fOdfbhAAAAOAUZCQAA4CynN6TWrl2rxMREff3110pJSVFxcbF69eqlgoICc8zo0aP1+eefa8GCBVq7dq0OHz6s+++/31xfUlKi+Ph4FRUVacOGDfrwww81d+5cTZo0yRyTlZWl+Ph43X777crIyNCoUaM0bNgwrVixwtmHBAAAcNXISAAAAGd5OXuDycnJDvNz585VcHCw0tPT1b17d+Xn5+tvf/ub5s+frzvuuEOSNGfOHLVq1Upff/21brrpJq1cuVK7d+/WqlWrFBISovbt22vKlCkaP368Jk+eLB8fH82ePVtRUVGaPn26JKlVq1Zav3693njjDcXFxTn7sAAAAK4KGQkAAOAsl99DKj8/X5IUFBQkSUpPT1dxcbFiY2PNMS1btlTjxo2VlpYmSUpLS1ObNm0UEhJijomLi5PdbteuXbvMMeduo2xM2TbOp7CwUHa73WECAABwBzISAACoyVzakCotLdWoUaN0yy23qHXr1pKk7Oxs+fj4KDAw0GFsSEiIsrOzzTHnBq2y9WXrLjbGbrfr5MmT561n6tSpCggIMKeIiIirPkYAAICKIiMBAICazqUNqcTERO3cuVMff/yxK3dz2SZOnKj8/HxzOnTokLtLAgAANRAZCQAA1HROv4dUmaSkJC1ZskTr1q3Ttddeay4PDQ1VUVGR8vLyHD4BzMnJUWhoqDlm06ZNDtsre8LMuWN++9SZnJwc2Ww2+fv7n7cmX19f+fr6XvWxAQAAXCkyEgAAgAuukDIMQ0lJSVq4cKFWr16tqKgoh/WdOnWSt7e3UlNTzWWZmZk6ePCgYmJiJEkxMTHasWOHcnNzzTEpKSmy2WyKjo42x5y7jbIxZdsAAACoTMhIAAAAZzn9CqnExETNnz9f//3vf1WvXj3zfgYBAQHy9/dXQECAEhISNGbMGAUFBclms+mPf/yjYmJidNNNN0mSevXqpejoaA0ePFjTpk1Tdna2nn76aSUmJpqf3o0cOVLvvPOOxo0bp8cff1yrV6/Wp59+qqVLlzr7kAAAAK4aGQkAAOAsp18hNWvWLOXn56tHjx4KCwszp08++cQc88Ybb+juu+9W//791b17d4WGhuqzzz4z13t6emrJkiXy9PRUTEyMHnnkEQ0ZMkTPP/+8OSYqKkpLly5VSkqK2rVrp+nTp+uDDz7gccYAAKBSIiMBAACc5fQrpAzDuOQYPz8/zZw5UzNnzrzgmMjISC1btuyi2+nRo4e2bdtW4RoBAACsRkYCAAA4y2U3NQdgjeLk9Q7z3r27uakSAACAyoOMBACVm9O/sgcAAAAAAABcDA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlvJydwEArt7+vOXmz83VzY2VAAAAVB5kJACovLhCCgAAAAAAAJbiCikXKk5eX26Zd28+mQEAADUbGQkAAHCFFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS3EPKQBXhfuAAAAAlEdGAoCLoyHlQuc+ZrZJYB83VgIAAFB5kJEAAABf2QMAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCnuIQWgSuEGoQAAAOWRkQBUNVX+CqmZM2eqSZMm8vPzU9euXbVp0yZ3lwQAAOB2ZCQAAFCZVemG1CeffKIxY8bo2Wef1datW9WuXTvFxcUpNzfX3aUBAAC4DRkJAABUdlX6K3uvv/66hg8frscee0ySNHv2bC1dulR///vfNWHCBDdXB9QMNfHR3b+9JN7qy+G5JB/ApZCRAPcjI51hZUZx9/4BVEyVbUgVFRUpPT1dEydONJfVqlVLsbGxSktLc2NlAFC9EO6AqoWMBADWICMBV6fKNqR+/vlnlZSUKCQkxGF5SEiI9u7de97XFBYWqrCw0JzPz8+XJNntdpfUePzE2X3ZvQskSd4u2pckFRcUlNu3x/GTLju+C9XgcNwW7lvinEs165wfzE+RJHms2aLrOj7usn1erAbJtcd7Oft3dQ1W7++8NaSU/0+0950x1Xb/7j7eylKDq5T9O2kYhpsrcQ0yUnn8veacSzXrnFeWjCRZmxnISP+/BjdnBlfv3+r9XWr/7qjBVazOSFW2IXUlpk6dqueee67c8oiICAv2Pt2CfVzIaPftOsGdx805t14NPecAqqRjx44pICDA3WVUCmQkN+DvtfU45wBwWazKSFW2IdWwYUN5enoqJyfHYXlOTo5CQ0PP+5qJEydqzJgx5nxpaamOHj2qBg0ayMPDw6n12e12RURE6NChQ7LZbE7ddmXGcXPcNQHHzXHXFNX12A3D0LFjxxQeHu7uUlyCjFQ5cdwcd01QU49bqrnHznFXr+O2OiNV2YaUj4+POnXqpNTUVPXr10/SmfCUmpqqpKSk877G19dXvr6+DssCAwNdWqfNZqtWb9DLxXHXLBx3zcJx1zzV8dir85VRZKTKjeOuWTjumqemHjvHXX1YmZGqbENKksaMGaOhQ4eqc+fOuvHGG/Xmm2+qoKDAfKIMAABATURGAgAAlV2Vbkg99NBD+t///qdJkyYpOztb7du3V3JycrmbeAIAANQkZCQAAFDZVemGlCQlJSVd8PJzd/L19dWzzz5b7vL36o7j5rhrAo6b464pavKxVwdkpMqF4+a4a4KaetxSzT12jrtmHbezeRjV9ZnHAAAAAAAAqJRqubsAAAAAAAAA1Cw0pAAAAAAAAGApGlIAAAAAAACwFA0pF5k5c6aaNGkiPz8/de3aVZs2bXJ3SS41depUdenSRfXq1VNwcLD69eunzMxMd5dlqZdfflkeHh4aNWqUu0uxxE8//aRHHnlEDRo0kL+/v9q0aaMtW7a4uyyXKikp0TPPPKOoqCj5+/uradOmmjJliqrbrfjWrVunvn37Kjw8XB4eHlq0aJHDesMwNGnSJIWFhcnf31+xsbHat2+fe4p1oosdd3FxscaPH682bdqoTp06Cg8P15AhQ3T48GH3Fewkl/p9n2vkyJHy8PDQm2++aVl9qH7ISDUvI0k1KyeRkchIZCQyEi4PDSkX+OSTTzRmzBg9++yz2rp1q9q1a6e4uDjl5ua6uzSXWbt2rRITE/X1118rJSVFxcXF6tWrlwoKCtxdmiU2b96s9957T23btnV3KZb49ddfdcstt8jb21vLly/X7t27NX36dNWvX9/dpbnUK6+8olmzZumdd97Rnj179Morr2jatGl6++233V2aUxUUFKhdu3aaOXPmeddPmzZNM2bM0OzZs7Vx40bVqVNHcXFxOnXqlMWVOtfFjvvEiRPaunWrnnnmGW3dulWfffaZMjMzdc8997ihUue61O+7zMKFC/X1118rPDzcospQHZGRal5GkmpWTiIjkZHISGQkVIABp7vxxhuNxMREc76kpMQIDw83pk6d6saqrJWbm2tIMtauXevuUlzu2LFjRvPmzY2UlBTjtttuM5544gl3l+Ry48ePN7p16+buMiwXHx9vPP744w7L7r//fmPQoEFuqsj1JBkLFy4050tLS43Q0FDj1VdfNZfl5eUZvr6+xr/+9S83VOgavz3u89m0aZMhyThw4IA1RVngQsf9448/Gtdcc42xc+dOIzIy0njjjTcsrw3VAxmpZmUkw6h5OYmMdBYZiYxERsKlcIWUkxUVFSk9PV2xsbHmslq1aik2NlZpaWlurMxa+fn5kqSgoCA3V+J6iYmJio+Pd/idV3eLFy9W586d9bvf/U7BwcHq0KGD/vrXv7q7LJe7+eablZqaqm+//VaS9M0332j9+vXq06ePmyuzTlZWlrKzsx3e7wEBAeratWuN+jdOOvPvnIeHhwIDA91dikuVlpZq8ODBGjt2rG644QZ3l4MqjIx0Rk3KSFLNy0lkJDISGYmMhMvn5e4Cqpuff/5ZJSUlCgkJcVgeEhKivXv3uqkqa5WWlmrUqFG65ZZb1Lp1a3eX41Iff/yxtm7dqs2bN7u7FEv98MMPmjVrlsaMGaM///nP2rx5s/70pz/Jx8dHQ4cOdXd5LjNhwgTZ7Xa1bNlSnp6eKikp0YsvvqhBgwa5uzTLZGdnS9J5/40rW1cTnDp1SuPHj9fAgQNls9ncXY5LvfLKK/Ly8tKf/vQnd5eCKo6MVLMyklQzcxIZiYxERiIj4fLRkILTJSYmaufOnVq/fr27S3GpQ4cO6YknnlBKSor8/PzcXY6lSktL1blzZ7300kuSpA4dOmjnzp2aPXt2tQ5bn376qebNm6f58+frhhtuUEZGhkaNGqXw8PBqfdxwVFxcrAcffFCGYWjWrFnuLsel0tPT9dZbb2nr1q3y8PBwdzlAlVdTMpJUc3MSGYmMVJORkVBRfGXPyRo2bChPT0/l5OQ4LM/JyVFoaKibqrJOUlKSlixZoi+++ELXXnutu8txqfT0dOXm5qpjx47y8vKSl5eX1q5dqxkzZsjLy0slJSXuLtFlwsLCFB0d7bCsVatWOnjwoJsqssbYsWM1YcIEDRgwQG3atNHgwYM1evRoTZ061d2lWabs37Ga+m9cWdA6cOCAUlJSqv0nf19++aVyc3PVuHFj89+5AwcO6Mknn1STJk3cXR6qGDJSzclIUs3NSWQkMlJN/TeOjERGuhI0pJzMx8dHnTp1UmpqqrmstLRUqampiomJcWNlrmUYhpKSkrRw4UKtXr1aUVFR7i7J5Xr27KkdO3YoIyPDnDp37qxBgwYpIyNDnp6e7i7RZW655ZZyj6z+9ttvFRkZ6aaKrHHixAnVquX4z6anp6dKS0vdVJH1oqKiFBoa6vBvnN1u18aNG6v1v3HS2aC1b98+rVq1Sg0aNHB3SS43ePBgbd++3eHfufDwcI0dO1YrVqxwd3moYshINScjSTU3J5GRziIjkZGqMzKSc/CVPRcYM2aMhg4dqs6dO+vGG2/Um2++qYKCAj322GPuLs1lEhMTNX/+fP33v/9VvXr1zO9JBwQEyN/f383VuUa9evXK3f+hTp06atCgQbW/L8To0aN1880366WXXtKDDz6oTZs26f3339f777/v7tJcqm/fvnrxxRfVuHFj3XDDDdq2bZtef/11Pf744+4uzamOHz+u7777zpzPyspSRkaGgoKC1LhxY40aNUovvPCCmjdvrqioKD3zzDMKDw9Xv3793Fe0E1zsuMPCwvTAAw9o69atWrJkiUpKSsx/54KCguTj4+Ousq/apX7fvw2V3t7eCg0NVYsWLawuFdUAGalmZCSp5uYkMhIZiYxERiIjVYB7H/L3/9i787Aq6v7/46/DjqzuQCKiuS+ouOSSlpJgarm0uJRLLnWn5VKafsstNYvUzMrMvNPu1Dtt0cySNMwsNbfEzIXbCpdUpFxA3ECY3x/+mDzihh7mAD4f1zXX5Zn5zGc+MwOdV+8ZZoqut956yyhfvrzh4eFhNGrUyPjpp5+cPaR8JemK09y5c509NEvdDq8zzvHll18atWrVMjw9PY1q1aoZs2fPdvaQ8l1aWpoxePBgo3z58oaXl5dRsWJF48UXXzTOnz/v7KE51HfffXfF3+devXoZhnHxtcajR482ypYta3h6ehqtW7c2EhMTnTtoB7jWficlJV31v3Pfffeds4d+S653vi/HK41xq8hIt2dGMozbJyeRkchIZCQyEm6MzTAMw5EFLgAAAAAAAOBaeIYUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAGFyLx582Sz2bRv3z5nDwVOdvDgQXl5eWndunXXbXvPPffonnvusZt39OhRPfTQQypZsqRsNpumT5+ep+137dpVjzzySJ7WAQAgv5CRkIOMBBQeFKQAFAgLFy7M8xf+7ezll19W48aN1axZs5taf+jQofrmm280atQoffTRR4qJiZEkTZo0SQ888IDKli0rm82mcePGXXH9F154QZ999pm2b99+s7sAAABuABkpb/IjI+3Zs0cjRoxQ3bp15efnp+DgYLVr105btmzJtT4ZCbhxFKQAFAiErRv3119/6cMPP9RTTz11032sXr1aDz74oJ5//nk99thjqlatmiTppZde0ubNm1WvXr1rrl+vXj01aNBAU6dOvekxAACA6yMj3bj8ykhz5szR+++/b2afYcOGKTExUXfddZe+/fZbu/XJSMCNoyAFAIXM/Pnz5ebmpg4dOtx0HykpKQoMDMw1PykpSUeOHNH8+fOv28cjjzyizz//XOnp6Tc9DgAAAEfJr4zUrVs3HTx4UHPmzNGAAQM0fPhwbdy4USVKlLji3eRkJODGUJACioCZM2eqZs2a8vT0VEhIiAYOHKiTJ0/atbnnnntUq1Yt7dq1S/fee6+KFSumO+64Q7Gxsbn6279/vx544AH5+PioTJky5q3LNptNa9assWu7ceNGxcTEKCAgQMWKFVPLli1z/c3+qVOnNGTIEFWoUEGenp4qU6aM7rvvPv3888/m2L766ivt379fNptNNptNFSpUuKF979Wrl0qVKqXMzMxcy9q0aaOqVaveUD+S1Lt3b/n6+urAgQNq3769fH19dccdd+idd96RJO3YsUOtWrWSj4+PwsLCtHDhQrv1jx8/rueff161a9eWr6+v/P391bZt21y3bPfq1UteXl7avXu33fzo6GgVL15chw8fvuY4ly5dqsaNG8vX1zfXstmzZ6tSpUry9vZWo0aN9MMPP9gtz3nGhmEYeuedd8zjneNGj7sk3XfffTp9+rRWrVp1w+sAAGAlMhIZKcetZKTIyMhcfZYsWVJ33313rrFKZCTgRlGQAgq5cePGaeDAgQoJCdHUqVPVpUsXvffee2rTpk2uAHLixAnFxMQoIiJCU6dOVbVq1fTCCy9oxYoVZpvTp0+rVatW+vbbb/Xss8/qxRdf1Pr16/XCCy/k2vbq1avVokULpaWlaezYsXrllVd08uRJtWrVSps2bTLbPfXUU3r33XfVpUsXzZw5U88//7y8vb3NL/AXX3xRdevWValSpfTRRx/po48+uuFb0x9//HEdO3ZM33zzjd385ORkrV69Wo899tiNHkpJUlZWltq2bavQ0FDFxsaqQoUKGjRokObNm6eYmBg1aNBAr732mvz8/NSzZ08lJSWZ6/7xxx9aunSp2rdvr2nTpmn48OHasWOHWrZsaReg3nzzTZUuXVq9evVSVlaWJOm9997TypUr9dZbbykkJOSq48vMzNTmzZtVv379XMv+/e9/68knn1RQUJBiY2PVrFkzPfDAAzp48KDZpkWLFvroo48kXQxLOcf7ZtSoUUPe3t439NBQAACsRkYiI+XIr4yUnJysUqVK5ZpPRgJukAGg0Jg7d64hyUhKSjIMwzBSUlIMDw8Po02bNkZWVpbZ7u233zYkGR988IE5r2XLloYk4z//+Y857/z580ZQUJDRpUsXc97UqVMNScbSpUvNeWfPnjWqVatmSDK+++47wzAMIzs726hcubIRHR1tZGdnm23PnDljhIeHG/fdd585LyAgwBg4cOA1961du3ZGWFhYno6HYRhGVlaWUa5cOePRRx+1mz9t2jTDZrMZf/zxxw331atXL0OS8corr5jzTpw4YXh7exs2m834+OOPzfl79uwxJBljx4415507d87uPBiGYSQlJRmenp7Gyy+/bDf/m2++MSQZEydONP744w/D19fX6Nix43XH+NtvvxmSjLfeestufkZGhlGmTBmjbt26xvnz5835s2fPNiQZLVu2tGsv6Zrn5K+//sq1f1dSpUoVo23bttcdNwAA+YmMlBsZ6SJHZ6Qca9euNWw2mzF69OgrLicjAdfHHVJAIfbtt98qIyNDQ4YMkYvLP7/O/fv3l7+/v7766iu79r6+vnZXwzw8PNSoUSP98ccf5ry4uDjdcccdeuCBB8x5Xl5e6t+/v11fCQkJ2rt3r7p3765jx47p77//1t9//63Tp0+rdevWWrt2rbKzsyVJgYGB2rhx43Vvs74ZLi4u6tGjh5YtW6ZTp06Z8xcsWKCmTZsqPDw8z33269fP/HdgYKCqVq0qHx8fu1f4Vq1aVYGBgXbHztPT0zwPWVlZOnbsmHx9fVW1alXz1vscbdq00ZNPPqmXX35ZnTt3lpeXl957773rju3YsWOSpOLFi9vN37Jli1JSUvTUU0/Jw8PDnN+7d28FBATkYe/zpnjx4vr777/zrX8AAG4GGYmMlCM/MlJKSoq6d++u8PBwjRgx4optyEjA9VGQAgqx/fv3S1KuZwB4eHioYsWK5vIc5cqVs3tekHTxy/LEiRN2fVaqVClXuzvvvNPu8969eyVd/Fv/0qVL201z5szR+fPnlZqaKkmKjY3Vr7/+qtDQUDVq1Ejjxo2zCym3qmfPnjp79qyWLFkiSUpMTNTWrVv1+OOP57kvLy8vlS5d2m5eQEDAFY9dQECA3bHLzs7WG2+8ocqVK8vT01OlSpVS6dKl9csvv5jH4lJTpkxRiRIllJCQoBkzZqhMmTI3PE7DMOw+55zrypUr2813d3dXxYoVb7jfvDIMI9dxAQDA2chIF5GRHJ+RTp8+rfbt2+vUqVP64osvrvi8qpxxkJGAa6MgBdxGXF1drzj/8i/uG5FzZe/111/XqlWrrjjlfEE/8sgj+uOPP8y//X/99ddVs2ZNu+cy3IoaNWooMjLSfDPc/Pnz5eHhYXe17kZd7RjdyLF75ZVXNGzYMLVo0ULz58/XN998o1WrVqlmzZrm8brUtm3blJKSIuniw0BvRMmSJSXJLuQ504kTJ6747AQAAAoTMtL1kZGkjIwMde7cWb/88ou++OIL1apV66ptyUjA9bk5ewAAbl5YWJiki1e7Lr3Ck5GRoaSkJEVFRd1Un7t27cp1Vee3336za1epUiVJkr+//w1tJzg4WE8//bSefvpppaSkqH79+po0aZLatm0rSbd8Balnz54aNmyYjhw5ooULF6pdu3a5btnOb59++qnuvfde/fvf/7abf/LkyVyB5PTp0+rTp49q1Kihpk2bKjY2Vp06dVLDhg2vuY3y5cvL29vb7kGh0j8/C3v37lWrVq3M+ZmZmUpKSlJERMSt7NoVXbhwQQcPHrT70wUAAAoCMtI/yEiOyUjZ2dnq2bOn4uPjtXjxYrVs2fKqbclIwI3hDimgEIuKipKHh4dmzJhhdxXq3//+t1JTU9WuXbs89xkdHa1Dhw5p2bJl5rxz587p/ffft2sXGRmpSpUqacqUKUpPT8/Vz19//SXp4nMCLr8Vu0yZMgoJCdH58+fNeT4+Ple8ZftGdevWTTabTYMHD9Yff/yR5zfHOIKrq2uuK6mffPKJDh06lKvtCy+8oAMHDujDDz/UtGnTVKFCBfXq1cvumFyJu7u7GjRooC1bttjNb9CggUqXLq1Zs2YpIyPDnD9v3rxcr7d2lF27duncuXNq2rRpvvQPAMDNIiP9g4zkmIz0zDPPaNGiRZo5c6Y6d+58zbZkJODGcIcUUIiVLl1ao0aN0vjx4xUTE6MHHnhAiYmJmjlzpho2bHhTgePJJ5/U22+/rW7dumnw4MEKDg7WggUL5OXlJemfq3QuLi6aM2eO2rZtq5o1a6pPnz664447dOjQIX333Xfy9/fXl19+qVOnTqlcuXJ66KGHFBERIV9fX3377bfavHmzpk6dam43MjJSixYt0rBhw9SwYUP5+vqqQ4cOeToWMTEx+uSTTxQYGHhTQfNWtW/fXi+//LL69Omjpk2baseOHVqwYEGu5xOsXr1aM2fO1NixY81XE8+dO1f33HOPRo8erdjY2Gtu58EHH9SLL76otLQ0+fv7S7oYwiZOnKgnn3xSrVq10qOPPqqkpCTNnTs3T89H+Oijj7R//36dOXNGkrR27VpNnDhR0sXXR+dcZZSkVatWqVixYrrvvvtuuH8AAKxARrI/FmSkW8tI06dP18yZM9WkSRMVK1bM/BPIHJ06dZKPj4/5mYwE3CBnvNoPwM25/JXGOd5++22jWrVqhru7u1G2bFnjX//6l3HixAm7Ni1btjRq1qyZq89evXrlepXwH3/8YbRr187w9vY2SpcubTz33HPGZ599ZkgyfvrpJ7u227ZtMzp37myULFnS8PT0NMLCwoxHHnnEiI+PNwzj4muThw8fbkRERBh+fn6Gj4+PERERYcycOdOun/T0dKN79+5GYGCgIemmXm+8ePFiQ5IxYMCAPK9rGBePhY+PT675Vzt2YWFhRrt27czP586dM5577jkjODjY8Pb2Npo1a2Zs2LDBaNmypflK4bS0NCMsLMyoX7++kZmZadff0KFDDRcXF2PDhg3XHOfRo0cNNzc346OPPsq1bObMmUZ4eLjh6elpNGjQwFi7dq3d9nPoKq80znn19ZWmnNdZ52jcuLHx2GOPXXOsAABYgYx0bWSkW8tIvXr1umo+utLPHRkJuDE2w7iJJ/UBuO1Mnz5dQ4cO1Z9//qk77rjD2cO5oi+++EIdO3bU2rVrdffddzt7OPmqb9+++t///qcffvjBKdtPSEhQ/fr19fPPP6tu3bpOGQMAAAUBGalgISMBhQcFKQC5nD17Vt7e3ubnc+fOqV69esrKytL//vc/J47s2tq3b6/du3frt99+K/Kv2T1w4ICqVKmi+Ph4NWvWzPLtd+3aVdnZ2Vq8eLHl2wYAwFnISAUfGQkoPHiGFIBcOnfurPLly6tu3bpKTU3V/PnztWfPHi1YsMDScfz111/Kysq66nIPDw+VKFFCH3/8sX755Rd99dVXevPNN3MFrdTUVJ09e/aa2woKCnLImK1Svnx5nTt3zmnb//jjj522bQAAnIWMVPCRkYDCgzukAOQyffp0zZkzR/v27VNWVpZq1KihESNG6NFHH7V0HBUqVND+/fuvurxly5Zas2aNbDabfH199eijj2rWrFlyc7Ovtffu3VsffvjhNbfFfwoBAMD1kJEAwHEoSAEosNatW3fNq3bFixdXZGTkdfvZtWuXDh8+fM02UVFReR4fAACAM5CRABQFFKQAAAAAAABgKRdnDwAAAAAAAAC3l9v6oebZ2dk6fPiw/Pz8ivzbJgAAwEWGYejUqVMKCQmRiwvX5q6EjAQAwO3H6ox0WxekDh8+rNDQUGcPAwAAOMHBgwdVrlw5Zw+jQCIjAQBw+7IqI93WBSk/Pz9JFw+2v7+/k0cDAACskJaWptDQUDMHIDcyEgAAtx+rM9JtXZDKuQXd39+fsAUAwG2GP0W7OjISAAC3L6syEg9OAAAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgqdv6GVIAAFyNYRi6cOGCsrKynD0U5JGrq6vc3Nx4RhQAAPmAjFR4FbSMREEKAIDLZGRk6MiRIzpz5oyzh4KbVKxYMQUHB8vDw8PZQwEAoMggIxV+BSkjUZACAOAS2dnZSkpKkqurq0JCQuTh4VFgriLh+gzDUEZGhv766y8lJSWpcuXKcnHhCQUAANwqMlLhVhAzEgUpAAAukZGRoezsbIWGhqpYsWLOHg5ugre3t9zd3bV//35lZGTIy8vL2UMCAKDQIyMVfgUtI3HJEACAK3D2FSPcGs4fAAD5g+/Ywq0gnb+CMxIAAAAAAADcFihIAQAAAAAAwFIUpAAAKORsNts1p3Hjxjl1bEuXLr2lPmbPnq177rlH/v7+stlsOnnypEPGBgAAir6inJOOHz+uZ555RlWrVpW3t7fKly+vZ599VqmpqY4bZD7ioeYAANygzLgfLduWe0zzG2575MgR89+LFi3SmDFjlJiYaM7z9fXN07YzMjIKxKuAc5w5c0YxMTGKiYnRqFGjnD0cAABwGSszkkROynH48GEdPnxYU6ZMUY0aNbR//3499dRTOnz4sD799FNnD++6uEOqkMiM+9FuAgAgR1BQkDkFBATIZrOZn0+fPq0ePXqobNmy8vX1VcOGDfXtt9/arV+hQgVNmDBBPXv2lL+/vwYMGCBJev/998036XTq1EnTpk1TYGCg3bpffPGF6tevLy8vL1WsWFHjx4/XhQsXzH4lqVOnTrLZbObn7du3695775Wfn5/8/f0VGRmpLVu2XHX/hgwZopEjR+quu+5yzAFDkUJGAgBcS1HOSbVq1dJnn32mDh06qFKlSmrVqpUmTZqkL7/80txOQUZBCgCAIiw9PV3333+/4uPjtW3bNsXExKhDhw46cOCAXbspU6YoIiJC27Zt0+jRo7Vu3To99dRTGjx4sBISEnTfffdp0qRJduv88MMP6tmzpwYPHqxdu3bpvffe07x588x2mzdvliTNnTtXR44cMT/36NFD5cqV0+bNm7V161aNHDlS7u7uFhwNAACAfxTFnJSamip/f3+5uRX8P4gr+CMEAAA3LSIiQhEREebnCRMmaMmSJVq2bJkGDRpkzm/VqpWee+458/OLL76otm3b6vnnn5ckValSRevXr9fy5cvNNuPHj9fIkSPVq1cvSVLFihU1YcIEjRgxQmPHjlXp0qUlSYGBgQoKCjLXO3DggIYPH65q1apJkipXrpwPew4AAHBtRS0n/f3335owYYJ5F1dBxx1SAAAUYenp6Xr++edVvXp1BQYGytfXV7t378515a9BgwZ2nxMTE9WoUSO7eZd/3r59u15++WX5+vqaU//+/XXkyBGdOXPmqmMaNmyY+vXrp6ioKL366qv6/fffb3EvAQAA8q4o5aS0tDS1a9dONWrUcOqD2vOCghQAAEXY888/ryVLluiVV17RDz/8oISEBNWuXVsZGRl27Xx8fPLcd3p6usaPH6+EhARz2rFjh/bu3SsvL6+rrjdu3Djt3LlT7dq10+rVq1WjRg0tWbIkz9sHAAC4FUUlJ506dUoxMTHy8/PTkiVLCs2jEPiTPQAAirB169apd+/e6tSpk6SL4Wjfvn3XXa9q1armswxyXP65fv36SkxM1J133nnVftzd3ZWVlZVrfpUqVVSlShUNHTpU3bp109y5c80xAgAAWKEo5KS0tDRFR0fL09NTy5Ytu2axq6ChIAUAQBFWuXJlff755+rQoYNsNptGjx6t7Ozs6673zDPPqEWLFpo2bZo6dOig1atXa8WKFbLZbGabMWPGqH379ipfvrweeughubi4aPv27fr11181ceJESRffIBMfH69mzZrJ09NTXl5eGj58uB566CGFh4frzz//1ObNm9WlS5erjiU5OVnJycn67bffJEk7duyQn5+fypcvrxIlStziEQIAALerwp6T0tLS1KZNG505c0bz589XWlqa0tLSJEmlS5eWq6urA45S/uFP9gAAKMKmTZum4sWLq2nTpurQoYOio6NVv379667XrFkzzZo1S9OmTVNERITi4uI0dOhQu6tu0dHRWr58uVauXKmGDRvqrrvu0htvvKGwsDCzzdSpU7Vq1SqFhoaqXr16cnV11bFjx9SzZ09VqVJFjzzyiNq2bavx48dfdSyzZs1SvXr11L9/f0lSixYtVK9ePS1btuwWjgwAALjdFfac9PPPP2vjxo3asWOH7rzzTgUHB5vTwYMHb/0A5TObYRiGswfhLGlpaQoICDBfi1iQZcb9aPfZPaa5k0YCAEXbuXPnlJSUpPDw8EJ1y7MV+vfvrz179uiHH35w9lCu61rnsTB9/ztLYTpGZCQAsAYZ6doKS04qSBmJP9kDAABXNGXKFN13333y8fHRihUr9OGHH2rmzJnOHhYAAIDTkZNuHQUpAABwRZs2bVJsbKxOnTqlihUrasaMGerXr5+zhwUAAOB05KRbR0EKAABc0eLFi509BAAAgAKJnHTreKg5AAAAAAAALEVBCgAAAAAAAJbiT/YKmX0nV0iSKos3yAAAAOQgIwEAULhwhxQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvluSC1du1adejQQSEhIbLZbFq6dOlV2z711FOy2WyaPn263fzjx4+rR48e8vf3V2BgoPr27av09HS7Nr/88ovuvvtueXl5KTQ0VLGxsbn6/+STT1StWjV5eXmpdu3a+vrrr/O6OwAAAA5BRgIAALhxeX6o+enTpxUREaEnnnhCnTt3vmq7JUuW6KefflJISEiuZT169NCRI0e0atUqZWZmqk+fPhowYIAWLlwoSUpLS1ObNm0UFRWlWbNmaceOHXriiScUGBioAQMGSJLWr1+vbt26afLkyWrfvr0WLlyojh076ueff1atWrXyulsAAFzX71ves2xblRo8maf2vXv31ocffihJcnNzU4kSJVSnTh1169ZNvXv3lotL4b0peufOnRozZoy2bt2q/fv364033tCQIUOcPaxcyEgAgNuVlRlJIidd6v3339d//vMf/frrr5KkyMhIvfLKK2rUqJGTR3Z9eT7qbdu21cSJE9WpU6ertjl06JCeeeYZLViwQO7u7nbLdu/erbi4OM2ZM0eNGzdW8+bN9dZbb+njjz/W4cOHJUkLFixQRkaGPvjgA9WsWVNdu3bVs88+q2nTppn9vPnmm4qJidHw4cNVvXp1TZgwQfXr19fbb7+d110CAKBIiImJ0ZEjR7Rv3z6tWLFC9957rwYPHqz27dvrwoULzh7eTTtz5owqVqyoV199VUFBQc4ezlWRkQAAKLiKak5as2aNunXrpu+++04bNmxQaGio2rRpo0OHDjl7aNfl8DJgdna2Hn/8cQ0fPlw1a9bMtXzDhg0KDAxUgwYNzHlRUVFycXHRxo0bzTYtWrSQh4eH2SY6OlqJiYk6ceKE2SYqKsqu7+joaG3YsOGqYzt//rzS0tLsJgAAigpPT08FBQXpjjvuUP369fV///d/+uKLL7RixQrNmzfPbHfy5En169dPpUuXlr+/v1q1aqXt27fb9fXll1+qYcOG8vLyUqlSpeyKLCdOnFDPnj1VvHhxFStWTG3bttXevXslXbxLyN/fX59++qldf0uXLpWPj49OnTqljIwMDRo0SMHBwfLy8lJYWJgmT5581f1q2LChXn/9dXXt2lWenp4OOFLOQUYCAMB5impOWrBggZ5++mnVrVtX1apV05w5c5Sdna34+HgHHLX85fCC1GuvvSY3Nzc9++yzV1yenJysMmXK2M3LuWUuOTnZbFO2bFm7Njmfr9cmZ/mVTJ48WQEBAeYUGhqat50DAKCQadWqlSIiIvT555+b8x5++GGlpKRoxYoV2rp1q+rXr6/WrVvr+PHjkqSvvvpKnTp10v33369t27YpPj7e7rbv3r17a8uWLVq2bJk2bNggwzB0//33KzMzUz4+Puratavmzp1rN465c+fqoYcekp+fn2bMmKFly5Zp8eLFSkxM1IIFC1ShQgVLjoczkZEAAChYimJOOnPmjDIzM1WiRIlbOzgWyPMzpK5l69atevPNN/Xzzz/LZrM5smuHGDVqlIYNG2Z+TktLI3ABAIq8atWq6ZdffpEk/fjjj9q0aZNSUlLMu42mTJmipUuX6tNPP9WAAQM0adIkde3aVePHjzf7iIiIkCTt3btXy5Yt07p169S0aVNJF6/MhYaGaunSpXr44YfVr18/NW3aVEeOHFFwcLBSUlL09ddf69tvv5UkHThwQJUrV1bz5s1ls9kUFhZm5eFwCjISAAAFU1HLSS+88IJCQkJy3S1dEDn0DqkffvhBKSkpKl++vNzc3OTm5qb9+/frueeeMyt6QUFBSklJsVvvwoULOn78uPlciKCgIB09etSuTc7n67W51rMlPD095e/vbzcBAFDUGYZhFkG2b9+u9PR0lSxZUr6+vuaUlJSk33//XZKUkJCg1q1bX7Gv3bt3y83NTY0bNzbnlSxZUlWrVtXu3bslSY0aNVLNmjXNh4fOnz9fYWFhatGihaSLVw4TEhJUtWpVPfvss1q5cmW+7XtBQUYCAKBgKko56dVXX9XHH3+sJUuWyMvLK+8Hw2IOLUg9/vjj+uWXX5SQkGBOISEhGj58uL755htJUpMmTXTy5Elt3brVXG/16tXKzs42T1qTJk20du1aZWZmmm1WrVqlqlWrqnjx4maby/8mctWqVWrSpIkjdwkAgEJv9+7dCg8PlySlp6crODjY7rs6ISFBiYmJGj58uCTJ29v7lrfZr18/83kMc+fOVZ8+fcywV79+fSUlJWnChAk6e/asHnnkET300EO3vM2CjIwEAEDBVFRy0pQpU/Tqq69q5cqVqlOnzi2P0Qp5Lkilp6ebJ0WSkpKSlJCQoAMHDqhkyZKqVauW3eTu7q6goCBVrVpVklS9enXFxMSof//+2rRpk9atW6dBgwapa9eu5uuPu3fvLg8PD/Xt21c7d+7UokWL9Oabb9rdSj548GDFxcVp6tSp2rNnj8aNG6ctW7Zo0KBBDjgsAAAUDatXr9aOHTvUpUsXSRdDTnJystzc3HTnnXfaTaVKlZIk1alT56oPwqxevbouXLhgPmRbko4dO6bExETVqFHDnPfYY49p//79mjFjhnbt2qVevXrZ9ePv769HH31U77//vhYtWqTPPvvMfDZDYUVGAgCgcCkqOSk2NlYTJkxQXFyc3ctRCro8P0Nqy5Ytuvfee83POQGoV69edk+mv5YFCxZo0KBBat26tVxcXNSlSxfNmDHDXB4QEKCVK1dq4MCBioyMVKlSpTRmzBgNGDDAbNO0aVMtXLhQL730kv7v//5PlStX1tKlS1WrVq287hIAAEXC+fPnlZycrKysLB09elRxcXGaPHmy2rdvr549e0q6+Na2Jk2aqGPHjoqNjVWVKlV0+PBh8wGdDRo00NixY9W6dWtVqlRJXbt21YULF/T111/rhRdeUOXKlfXggw+qf//+eu+99+Tn56eRI0fqjjvu0IMPPmiOpXjx4urcubOGDx+uNm3aqFy5cuayadOmKTg4WPXq1ZOLi4s++eQTBQUFKTAw8Ir7lZGRoV27dpn/PnTokBISEuTr66s777wz/w5oHpGRAAAouIpqTnrttdc0ZswYLVy4UBUqVDBfYpLz54YFWZ4LUvfcc48Mw7jh9vv27cs1r0SJElq4cOE116tTp45++OGHa7Z5+OGH9fDDD9/wWAAAKMri4uIUHBwsNzc3FS9eXBEREZoxY4Z69eolF5eLN0XbbDZ9/fXXevHFF9WnTx/99ddfCgoKUosWLcw3s91zzz365JNPNGHCBL366qvy9/c3n2sgXby1fPDgwWrfvr0yMjLUokULff3113J3d7cbT9++fbVw4UI98cQTdvP9/PwUGxurvXv3ytXVVQ0bNtTXX39tjvFyhw8fVr169czPU6ZM0ZQpU9SyZUutWbPGEYfOIchIAAAUXEU1J7377rvKyMjI9Wd9Y8eO1bhx4271sOUrm5GX5FTEpKWlKSAgQKmpqQX+4Z2ZcT9KkvadXCFJqtx1kjOHAwBF1rlz55SUlKTw8PBC8TDIguyjjz7S0KFDdfjwYXl4eFi67Wudx8L0/e8shekYkZEAwBpkJMdyVk4qSBkpz3dIAQAAXMuZM2d05MgRvfrqq3ryySctL0YBAAAUVOSkfzj0LXsAAACxsbGqVq2agoKCNGrUKGcPBwAAoMAgJ/2DghQAAHCocePGKTMzU/Hx8QX+YZoAAABWIif9g4IUAAAAAAAALEVBCgAAAAAAAJaiIAUAwBXcxi+hLRI4fwAA5A++Ywu3gnT+KEgBAHAJd3d3SRffgILCK+f85ZxPAABwa8hIRUNBykhuzh4AAAAFiaurqwIDA5WSkiJJKlasmGw2m5NHhRtlGIbOnDmjlJQUBQYGytXV1dlDAgCgSCAjFW4FMSNRkAIA4DJBQUGSZAYuFD6BgYHmeQQAAI5BRir8ClJGoiAFAMBlbDabgoODVaZMGWVmZjp7OMgjd3f3AnHVDwCAooaMVLgVtIxEQQoAgKtwdXUtUF/aAAAABQEZCY5AQQrKjPsx1zz3mOZOGAkAAEDBQUYCACD/8JY9AAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALBUngtSa9euVYcOHRQSEiKbzaalS5eayzIzM/XCCy+odu3a8vHxUUhIiHr27KnDhw/b9XH8+HH16NFD/v7+CgwMVN++fZWenm7X5pdfftHdd98tLy8vhYaGKjY2NtdYPvnkE1WrVk1eXl6qXbu2vv7667zuDgAAgEOQkQAAAG5cngtSp0+fVkREhN55551cy86cOaOff/5Zo0eP1s8//6zPP/9ciYmJeuCBB+za9ejRQzt37tSqVau0fPlyrV27VgMGDDCXp6WlqU2bNgoLC9PWrVv1+uuva9y4cZo9e7bZZv369erWrZv69u2rbdu2qWPHjurYsaN+/fXXvO4SAADALSMjAQAA3DibYRjGTa9ss2nJkiXq2LHjVdts3rxZjRo10v79+1W+fHnt3r1bNWrU0ObNm9WgQQNJUlxcnO6//379+eefCgkJ0bvvvqsXX3xRycnJ8vDwkCSNHDlSS5cu1Z49eyRJjz76qE6fPq3ly5eb27rrrrtUt25dzZo164bGn5aWpoCAAKWmpsrf3/8mj4I1MuN+lCTtO7lCklS56ySH930p95jmDusfAICCxIrvfzKSdchIAAA4htXf//n+DKnU1FTZbDYFBgZKkjZs2KDAwEAzaElSVFSUXFxctHHjRrNNixYtzKAlSdHR0UpMTNSJEyfMNlFRUXbbio6O1oYNG/J5j4qufSdXmGEOAADkLzJS4UFGAgDA8dzys/Nz587phRdeULdu3czqWnJyssqUKWM/CDc3lShRQsnJyWab8PBwuzZly5Y1lxUvXlzJycnmvEvb5PRxJefPn9f58+fNz2lpaTe/cwAAADeJjAQAAG53+XaHVGZmph555BEZhqF33303vzaTJ5MnT1ZAQIA5hYaGOntIAADgNkNGAgAAyKeCVE7Q2r9/v1atWmX3t4dBQUFKSUmxa3/hwgUdP35cQUFBZpujR4/atcn5fL02OcuvZNSoUUpNTTWngwcP3vxOAgAA5BEZCQAA4CKHF6RygtbevXv17bffqmTJknbLmzRpopMnT2rr1q3mvNWrVys7O1uNGzc226xdu1aZmZlmm1WrVqlq1aoqXry42SY+Pt6u71WrVqlJkyZXHZunp6f8/f3tJgAAACuQkQAAAP6R54JUenq6EhISlJCQIElKSkpSQkKCDhw4oMzMTD300EPasmWLFixYoKysLCUnJys5OVkZGRmSpOrVqysmJkb9+/fXpk2btG7dOg0aNEhdu3ZVSEiIJKl79+7y8PBQ3759tXPnTi1atEhvvvmmhg0bZo5j8ODBiouL09SpU7Vnzx6NGzdOW7Zs0aBBgxxwWAAAAPKGjAQAAHDj8lyQ2rJli+rVq6d69epJkoYNG6Z69eppzJgxOnTokJYtW6Y///xTdevWVXBwsDmtX7/e7GPBggWqVq2aWrdurfvvv1/NmzfX7NmzzeUBAQFauXKlkpKSFBkZqeeee05jxozRgAEDzDZNmzbVwoULNXv2bEVEROjTTz/V0qVLVatWrVs5HgAAADeFjAQAAHDj8vyWvXvuuUeGYVx1+bWW5ShRooQWLlx4zTZ16tTRDz/8cM02Dz/8sB5++OHrbg8AACC/kZEAAABuXL69ZQ8AAAAAAAC4EgpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvluSC1du1adejQQSEhIbLZbFq6dKndcsMwNGbMGAUHB8vb21tRUVHau3evXZvjx4+rR48e8vf3V2BgoPr27av09HS7Nr/88ovuvvtueXl5KTQ0VLGxsbnG8sknn6hatWry8vJS7dq19fXXX+d1dwAAAByCjAQAAHDj8lyQOn36tCIiIvTOO+9ccXlsbKxmzJihWbNmaePGjfLx8VF0dLTOnTtntunRo4d27typVatWafny5Vq7dq0GDBhgLk9LS1ObNm0UFhamrVu36vXXX9e4ceM0e/Zss8369evVrVs39e3bV9u2bVPHjh3VsWNH/frrr3ndJQAAgFtGRgIAALhxNsMwjJte2WbTkiVL1LFjR0kXr/yFhIToueee0/PPPy9JSk1NVdmyZTVv3jx17dpVu3fvVo0aNbR582Y1aNBAkhQXF6f7779ff/75p0JCQvTuu+/qxRdfVHJysjw8PCRJI0eO1NKlS7Vnzx5J0qOPPqrTp09r+fLl5njuuusu1a1bV7Nmzbqh8aelpSkgIECpqany9/e/2cNgicy4HyVJ+06ukCRV7jop3/quENhW7jHNHdY/AAAFiRXf/2Qk65CRAABwDKu//x36DKmkpCQlJycrKirKnBcQEKDGjRtrw4YNkqQNGzYoMDDQDFqSFBUVJRcXF23cuNFs06JFCzNoSVJ0dLQSExN14sQJs82l28lpk7OdKzl//rzS0tLsJgAAgPxGRgIAALDn0IJUcnKyJKls2bJ288uWLWsuS05OVpkyZeyWu7m5qUSJEnZtrtTHpdu4Wpuc5VcyefJkBQQEmFNoaGhedxEAACDPyEgAAAD2bqu37I0aNUqpqanmdPDgQWcPCQAAwOnISAAAwGoOLUgFBQVJko4ePWo3/+jRo+ayoKAgpaSk2C2/cOGCjh8/btfmSn1cuo2rtclZfiWenp7y9/e3mwAAAPIbGQkAAMCeQwtS4eHhCgoKUnx8vDkvLS1NGzduVJMmTSRJTZo00cmTJ7V161azzerVq5Wdna3GjRubbdauXavMzEyzzapVq1S1alUVL17cbHPpdnLa5GwHAACgoCAjAQAA2MtzQSo9PV0JCQlKSEiQdPEhnQkJCTpw4IBsNpuGDBmiiRMnatmyZdqxY4d69uypkJAQ8y0z1atXV0xMjPr3769NmzZp3bp1GjRokLp27aqQkBBJUvfu3eXh4aG+fftq586dWrRokd58800NGzbMHMfgwYMVFxenqVOnas+ePRo3bpy2bNmiQYMG3fpRAQAAyCMyEgAAwI1zy+sKW7Zs0b333mt+zglAvXr10rx58zRixAidPn1aAwYM0MmTJ9W8eXPFxcXJy8vLXGfBggUaNGiQWrduLRcXF3Xp0kUzZswwlwcEBGjlypUaOHCgIiMjVapUKY0ZM0YDBgww2zRt2lQLFy7USy+9pP/7v/9T5cqVtXTpUtWqVeumDgQAAMCtICMBAADcOJthGIazB+EsaWlpCggIUGpqaoF/VkJm3I+SpH0nV0iSKnedlG99VwhsK/eY5g7rHwCAgqQwff87S2E6RmQkAAAcw+rv/9vqLXsAAAAAAABwPgpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlnJ4QSorK0ujR49WeHi4vL29ValSJU2YMEGGYZhtDMPQmDFjFBwcLG9vb0VFRWnv3r12/Rw/flw9evSQv7+/AgMD1bdvX6Wnp9u1+eWXX3T33XfLy8tLoaGhio2NdfTuAAAAOAQZCQAA4B8OL0i99tprevfdd/X2229r9+7deu211xQbG6u33nrLbBMbG6sZM2Zo1qxZ2rhxo3x8fBQdHa1z586ZbXr06KGdO3dq1apVWr58udauXasBAwaYy9PS0tSmTRuFhYVp69atev311zVu3DjNnj3b0bsEAABwy8hIAAAA/3BzdIfr16/Xgw8+qHbt2kmSKlSooP/+97/atGmTpItX/qZPn66XXnpJDz74oCTpP//5j8qWLaulS5eqa9eu2r17t+Li4rR582Y1aNBAkvTWW2/p/vvv15QpUxQSEqIFCxYoIyNDH3zwgTw8PFSzZk0lJCRo2rRpdqEMAACgICAjAQAA/MPhd0g1bdpU8fHx+t///idJ2r59u3788Ue1bdtWkpSUlKTk5GRFRUWZ6wQEBKhx48basGGDJGnDhg0KDAw0g5YkRUVFycXFRRs3bjTbtGjRQh4eHmab6OhoJSYm6sSJE47eLQAAgFtCRgIAAPiHw++QGjlypNLS0lStWjW5uroqKytLkyZNUo8ePSRJycnJkqSyZcvarVe2bFlzWXJyssqUKWM/UDc3lShRwq5NeHh4rj5ylhUvXjzX2M6fP6/z58+bn9PS0m5lVwEAAG4YGQkAAOAfDr9DavHixVqwYIEWLlyon3/+WR9++KGmTJmiDz/80NGbyrPJkycrICDAnEJDQ509JAAAcJsgIwEAAPzD4QWp4cOHa+TIkeratatq166txx9/XEOHDtXkyZMlSUFBQZKko0eP2q139OhRc1lQUJBSUlLsll+4cEHHjx+3a3OlPi7dxuVGjRql1NRUczp48OAt7i0AAMCNISMBAAD8w+EFqTNnzsjFxb5bV1dXZWdnS5LCw8MVFBSk+Ph4c3laWpo2btyoJk2aSJKaNGmikydPauvWrWab1atXKzs7W40bNzbbrF27VpmZmWabVatWqWrVqle8FV2SPD095e/vbzcBAABYgYwEAADwD4cXpDp06KBJkybpq6++0r59+7RkyRJNmzZNnTp1kiTZbDYNGTJEEydO1LJly7Rjxw717NlTISEh6tixoySpevXqiomJUf/+/bVp0yatW7dOgwYNUteuXRUSEiJJ6t69uzw8PNS3b1/t3LlTixYt0ptvvqlhw4Y5epcAAABuGRkJAADgHw5/qPlbb72l0aNH6+mnn1ZKSopCQkL05JNPasyYMWabESNG6PTp0xowYIBOnjyp5s2bKy4uTl5eXmabBQsWaNCgQWrdurVcXFzUpUsXzZgxw1weEBCglStXauDAgYqMjFSpUqU0ZswYXmcMAAAKJDISAADAP2yGYRjOHoSzpKWlKSAgQKmpqQX+1vTMuB8lSftOrpAkVe46Kd/6rhDYVu4xzR3WPwAABUlh+v53lsJ0jMhIAAA4htXf/w7/kz0AAAAAAADgWihIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApN2cPAEVbZtyPuea5xzR3wkgAAAAKDjISAOB2xx1SAAAAAAAAsBQFKQAAAAAAAFgqXwpShw4d0mOPPaaSJUvK29tbtWvX1pYtW8zlhmFozJgxCg4Olre3t6KiorR37167Po4fP64ePXrI399fgYGB6tu3r9LT0+3a/PLLL7r77rvl5eWl0NBQxcbG5sfuAAAAOAQZCQAA4CKHF6ROnDihZs2ayd3dXStWrNCuXbs0depUFS9e3GwTGxurGTNmaNasWdq4caN8fHwUHR2tc+fOmW169OihnTt3atWqVVq+fLnWrl2rAQMGmMvT0tLUpk0bhYWFaevWrXr99dc1btw4zZ4929G7BAAAcMvISAAAAP9w+EPNX3vtNYWGhmru3LnmvPDwcPPfhmFo+vTpeumll/Tggw9Kkv7zn/+obNmyWrp0qbp27ardu3crLi5OmzdvVoMGDSRJb731lu6//35NmTJFISEhWrBggTIyMvTBBx/Iw8NDNWvWVEJCgqZNm2YXygAAAAoCMhIAAMA/HH6H1LJly9SgQQM9/PDDKlOmjOrVq6f333/fXJ6UlKTk5GRFRUWZ8wICAtS4cWNt2LBBkrRhwwYFBgaaQUuSoqKi5OLioo0bN5ptWrRoIQ8PD7NNdHS0EhMTdeLEiSuO7fz580pLS7ObAAAArEBGAgAA+IfDC1J//PGH3n33XVWuXFnffPON/vWvf+nZZ5/Vhx9+KElKTk6WJJUtW9ZuvbJly5rLkpOTVaZMGbvlbm5uKlGihF2bK/Vx6TYuN3nyZAUEBJhTaGjoLe4tAADAjSEjAQAA/MPhBans7GzVr19fr7zyiurVq6cBAwaof//+mjVrlqM3lWejRo1SamqqOR08eNDZQwIAALcJMhIAAMA/HF6QCg4OVo0aNezmVa9eXQcOHJAkBQUFSZKOHj1q1+bo0aPmsqCgIKWkpNgtv3Dhgo4fP27X5kp9XLqNy3l6esrf399uAgAAsAIZCQAA4B8OL0g1a9ZMiYmJdvP+97//KSwsTNLFh3cGBQUpPj7eXJ6WlqaNGzeqSZMmkqQmTZro5MmT2rp1q9lm9erVys7OVuPGjc02a9euVWZmptlm1apVqlq1qt3bagAAAAoCMhIAAMA/HF6QGjp0qH766Se98sor+u2337Rw4ULNnj1bAwcOlCTZbDYNGTJEEydO1LJly7Rjxw717NlTISEh6tixo6SLVwtjYmLUv39/bdq0SevWrdOgQYPUtWtXhYSESJK6d+8uDw8P9e3bVzt37tSiRYv05ptvatiwYY7eJQAAgFtGRgIAAPiHm6M7bNiwoZYsWaJRo0bp5ZdfVnh4uKZPn64ePXqYbUaMGKHTp09rwIABOnnypJo3b664uDh5eXmZbRYsWKBBgwapdevWcnFxUZcuXTRjxgxzeUBAgFauXKmBAwcqMjJSpUqV0pgxY3idMQAAKJDISAAAAP+wGYZhOHsQzpKWlqaAgAClpqYW+GclZMb9KEnad3KFJKly10n51neFwLZyj2nu0L4v5ai+AQC4GYXp+99ZCtMxIiMBAOAYVn//O/xP9gAAAAAAAIBroSAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZBCvtt3coWzhwAAAFDgkJEAALczClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFgq3wtSr776qmw2m4YMGWLOO3funAYOHKiSJUvK19dXXbp00dGjR+3WO3DggNq1a6dixYqpTJkyGj58uC5cuGDXZs2aNapfv748PT115513at68efm9OwAAAA5BRgIAALezfC1Ibd68We+9957q1KljN3/o0KH68ssv9cknn+j777/X4cOH1blzZ3N5VlaW2rVrp4yMDK1fv14ffvih5s2bpzFjxphtkpKS1K5dO917771KSEjQkCFD1K9fP33zzTf5uUsAAAC3jIwEAABud/lWkEpPT1ePHj30/vvvq3jx4ub81NRU/fvf/9a0adPUqlUrRUZGau7cuVq/fr1++uknSdLKlSu1a9cuzZ8/X3Xr1lXbtm01YcIEvfPOO8rIyJAkzZo1S+Hh4Zo6daqqV6+uQYMG6aGHHtIbb7yRX7sEAABwy8hIAAAA+ViQGjhwoNq1a6eoqCi7+Vu3blVmZqbd/GrVqql8+fLasGGDJGnDhg2qXbu2ypYta7aJjo5WWlqadu7caba5vO/o6GizDwAAgIKIjAQAACC55UenH3/8sX7++Wdt3rw517Lk5GR5eHgoMDDQbn7ZsmWVnJxstrk0aOUsz1l2rTZpaWk6e/asvL29c237/PnzOn/+vPk5LS0t7zsHAABwk8hIAAAAFzn8DqmDBw9q8ODBWrBggby8vBzd/S2ZPHmyAgICzCk0NNTZQwIAALcJMhIAAMA/HF6Q2rp1q1JSUlS/fn25ubnJzc1N33//vWbMmCE3NzeVLVtWGRkZOnnypN16R48eVVBQkCQpKCgo1xtlcj5fr42/v/8Vr/xJ0qhRo5SammpOBw8edMQuAwAAXBcZCQAA4B8OL0i1bt1aO3bsUEJCgjk1aNBAPXr0MP/t7u6u+Ph4c53ExEQdOHBATZo0kSQ1adJEO3bsUEpKitlm1apV8vf3V40aNcw2l/aR0yanjyvx9PSUv7+/3QQAAGAFMhIAAMA/HP4MKT8/P9WqVctuno+Pj0qWLGnO79u3r4YNG6YSJUrI399fzzzzjJo0aaK77rpLktSmTRvVqFFDjz/+uGJjY5WcnKyXXnpJAwcOlKenpyTpqaee0ttvv60RI0boiSee0OrVq7V48WJ99dVXjt4lAACAW0ZGAgAA+Ee+PNT8et544w25uLioS5cuOn/+vKKjozVz5kxzuaurq5YvX65//etfatKkiXx8fNSrVy+9/PLLZpvw8HB99dVXGjp0qN58802VK1dOc+bMUXR0tDN2CQAA4JaRkQAAwO3CkoLUmjVr7D57eXnpnXfe0TvvvHPVdcLCwvT1119fs9977rlH27Ztc8QQAQAALEdGAgAAtyuHP0MKAAAAAAAAuBYKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzl5uwBADcrM+7HXPPcY5o7YSQAAAAFy+U5iYwEAChouEMKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWcnhBavLkyWrYsKH8/PxUpkwZdezYUYmJiXZtzp07p4EDB6pkyZLy9fVVly5ddPToUbs2Bw4cULt27VSsWDGVKVNGw4cP14ULF+zarFmzRvXr15enp6fuvPNOzZs3z9G7AwAA4BBkJAAAgH84vCD1/fffa+DAgfrpp5+0atUqZWZmqk2bNjp9+rTZZujQofryyy/1ySef6Pvvv9fhw4fVuXNnc3lWVpbatWunjIwMrV+/Xh9++KHmzZunMWPGmG2SkpLUrl073XvvvUpISNCQIUPUr18/ffPNN47eJQAAgFtGRgIAAPiHm6M7jIuLs/s8b948lSlTRlu3blWLFi2Umpqqf//731q4cKFatWolSZo7d66qV6+un376SXfddZdWrlypXbt26dtvv1XZsmVVt25dTZgwQS+88ILGjRsnDw8PzZo1S+Hh4Zo6daokqXr16vrxxx/1xhtvKDo62tG7BQAAcEvISAAAAP/I92dIpaamSpJKlCghSdq6dasyMzMVFRVltqlWrZrKly+vDRs2SJI2bNig2rVrq2zZsmab6OhopaWlaefOnWabS/vIaZPTx5WcP39eaWlpdhMAAIAzkJEAAMDtLF8LUtnZ2RoyZIiaNWumWrVqSZKSk5Pl4eGhwMBAu7Zly5ZVcnKy2ebSoJWzPGfZtdqkpaXp7NmzVxzP5MmTFRAQYE6hoaG3vI8AAAB5RUYCAAC3u3wtSA0cOFC//vqrPv744/zczA0bNWqUUlNTzengwYPOHhIAALgNkZEAAMDtzuHPkMoxaNAgLV++XGvXrlW5cuXM+UFBQcrIyNDJkyftrgAePXpUQUFBZptNmzbZ9ZfzhplL21z+1pmjR4/K399f3t7eVxyTp6enPD09b3nfAAAAbhYZCQAAIB/ukDIMQ4MGDdKSJUu0evVqhYeH2y2PjIyUu7u74uPjzXmJiYk6cOCAmjRpIklq0qSJduzYoZSUFLPNqlWr5O/vrxo1aphtLu0jp01OH0BeZMb9mGsCAMCRyEgojMhIAID84vA7pAYOHKiFCxfqiy++kJ+fn/k8g4CAAHl7eysgIEB9+/bVsGHDVKJECfn7++uZZ55RkyZNdNddd0mS2rRpoxo1aujxxx9XbGyskpOT9dJLL2ngwIHm1bunnnpKb7/9tkaMGKEnnnhCq1ev1uLFi/XVV185epcAAABuGRkJAADgHw6/Q+rdd99Vamqq7rnnHgUHB5vTokWLzDZvvPGG2rdvry5duqhFixYKCgrS559/bi53dXXV8uXL5erqqiZNmuixxx5Tz5499fLLL5ttwsPD9dVXX2nVqlWKiIjQ1KlTNWfOHF5nDAAACiQyEgAAwD8cfoeUYRjXbePl5aV33nlH77zzzlXbhIWF6euvv75mP/fcc4+2bduW5zECAABYjYwEAADwj3x9yx4AAAAAAABwOQpSKNT2nVzh7CEAAAAUOPtOriAnAQAKNApSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlnJz9gCKsr0fvyhJqhDY1pznHtPcWcOBk2TG/ZhrHj8HAIDbGRkJEhkJAG533CEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjKzdkDAHBrLn9lMq9LBgAAICMBQEHHHVIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzFM6QAXNXlz16QeP4CAAAAGQkAbh13SAEAAAAAAMBSFKQAAAAAAABgKf5kD4AlePUyAABAbmQkALcr7pACAAAAAACApShIAQAAAAAAwFL8yR6AQo9b3QEAAHLjbYAACjLukAIAAAAAAICluEMKuMy+kyskSZXF1SMAAIAcZCQAgCNRkAKAa+BWdwAAgNzISABuFX+yBwAAAAAAAEtxhxQAOAlXFgEAAHIjIwG3h0J/h9Q777yjChUqyMvLS40bN9amTZucPSQAAACnIyMBAICCrFDfIbVo0SINGzZMs2bNUuPGjTV9+nRFR0crMTFRZcqUcfbwAMAyXEkEcCkyEgBcREYCCq5CfYfUtGnT1L9/f/Xp00c1atTQrFmzVKxYMX3wwQfOHhoAFBmZcT/mmgAUbGQkAMh/ZCTg1hTaO6QyMjK0detWjRo1ypzn4uKiqKgobdiwwYkjA66O1yUDuV0e3rhqCdwaMhIKIzISkBsZCUVdoS1I/f3338rKylLZsmXt5pctW1Z79uy54jrnz5/X+fPnzc+pqamSpLS0tHwZY/qZi9tKcz9tznO/yW1lnj5t36cDx5yrb/fTNz3OK/Wdfua8Q45Bfvadcwwkxx/j/Oxbkn4/vFSSVD7gPkmOO76S/dhzOOIY30o/zu7bkf3n5/G9lb6s7PtK/Tu071W5/+fb/b4mTuvnRvt3ZN/ILee/wYZhOHkk+YOMREaSch9jMlLBzQfkmPztu7CM80b6L4gZ6Up95WdGcnT/sGd5RjIKqUOHDhmSjPXr19vNHz58uNGoUaMrrjN27FhDEhMTExMTExOTcfDgQSsii+XISExMTExMTEy3MlmVkQrtHVKlSpWSq6urjh49ajf/6NGjCgoKuuI6o0aN0rBhw8zP2dnZOn78uEqWLCmbzebQ8aWlpSk0NFQHDx6Uv7+/Q/tG/uLcFV6cu8KLc1c4FdbzZhiGTp06pZCQEGcPJV+QkZBfOHeFF+eu8OLcFV6F8dxZnZEKbUHKw8NDkZGRio+PV8eOHSVdDE/x8fEaNGjQFdfx9PSUp6en3bzAwMB8Hae/v3+h+eGDPc5d4cW5K7w4d4VTYTxvAQEBzh5CviEjIb9x7govzl3hxbkrvArbubMyIxXagpQkDRs2TL169VKDBg3UqFEjTZ8+XadPn1afPn2cPTQAAACnISMBAICCrlAXpB599FH99ddfGjNmjJKTk1W3bl3FxcXleognAADA7YSMBAAACrpCXZCSpEGDBl319nNn8vT01NixY3Pd/o6Cj3NXeHHuCi/OXeHEeSvYyEhwNM5d4cW5K7w4d4UX5+76bIZRRN95DAAAAAAAgALJxdkDAAAAAAAAwO2FghQAAAAAAAAsRUEKAAAAAAAAlqIglU/eeecdVahQQV5eXmrcuLE2bdrk7CHhOsaNGyebzWY3VatWzdnDwmXWrl2rDh06KCQkRDabTUuXLrVbbhiGxowZo+DgYHl7eysqKkp79+51zmBh53rnrnfv3rl+B2NiYpwzWNiZPHmyGjZsKD8/P5UpU0YdO3ZUYmKiXZtz585p4MCBKlmypHx9fdWlSxcdPXrUSSNGQUZGKnzISIUHOalwIiMVXmSkW0NBKh8sWrRIw4YN09ixY/Xzzz8rIiJC0dHRSklJcfbQcB01a9bUkSNHzOnHH3909pBwmdOnTysiIkLvvPPOFZfHxsZqxowZmjVrljZu3CgfHx9FR0fr3LlzFo8Ul7veuZOkmJgYu9/B//73vxaOEFfz/fffa+DAgfrpp5+0atUqZWZmqk2bNjp9+rTZZujQofryyy/1ySef6Pvvv9fhw4fVuXNnJ44aBREZqfAiIxUO5KTCiYxUeJGRbpEBh2vUqJExcOBA83NWVpYREhJiTJ482YmjwvWMHTvWiIiIcPYwkAeSjCVLlpifs7OzjaCgIOP111835508edLw9PQ0/vvf/zphhLiay8+dYRhGr169jAcffNAp40HepKSkGJKM77//3jCMi79n7u7uxieffGK22b17tyHJ2LBhg7OGiQKIjFQ4kZEKJ3JS4URGKtzISHnDHVIOlpGRoa1btyoqKsqc5+LioqioKG3YsMGJI8ON2Lt3r0JCQlSxYkX16NFDBw4ccPaQkAdJSUlKTk62+/0LCAhQ48aN+f0rJNasWaMyZcqoatWq+te//qVjx445e0i4gtTUVElSiRIlJElbt25VZmam3e9etWrVVL58eX73YCIjFW5kpMKPnFS4kZEKBzJS3lCQcrC///5bWVlZKlu2rN38smXLKjk52Umjwo1o3Lix5s2bp7i4OL377rtKSkrS3XffrVOnTjl7aLhBOb9j/P4VTjExMfrPf/6j+Ph4vfbaa/r+++/Vtm1bZWVlOXtouER2draGDBmiZs2aqVatWpIu/u55eHgoMDDQri2/e7gUGanwIiMVDeSkwouMVDiQkfLOzdkDAAqKtm3bmv+uU6eOGjdurLCwMC1evFh9+/Z14siA20PXrl3Nf9euXVt16tRRpUqVtGbNGrVu3dqJI8OlBg4cqF9//ZXnxwC3ETIS4FxkpMKBjJR33CHlYKVKlZKrq2uup+YfPXpUQUFBThoVbkZgYKCqVKmi3377zdlDwQ3K+R3j969oqFixokqVKsXvYAEyaNAgLV++XN99953KlStnzg8KClJGRoZOnjxp157fPVyKjFR0kJEKJ3JS0UFGKnjISDeHgpSDeXh4KDIyUvHx8ea87OxsxcfHq0mTJk4cGfIqPT1dv//+u4KDg509FNyg8PBwBQUF2f3+paWlaePGjfz+FUJ//vmnjh07xu9gAWAYhgYNGqQlS5Zo9erVCg8Pt1seGRkpd3d3u9+9xMREHThwgN89mMhIRQcZqXAiJxUdZKSCg4x0a/iTvXwwbNgw9erVSw0aNFCjRo00ffp0nT59Wn369HH20HANzz//vDp06KCwsDAdPnxYY8eOlaurq7p16+bsoeES6enpdleDkpKSlJCQoBIlSqh8+fIaMmSIJk6cqMqVKys8PFyjR49WSEiIOnbs6LxBQ9K1z12JEiU0fvx4denSRUFBQfr99981YsQI3XnnnYqOjnbiqCFdvAV94cKF+uKLL+Tn52c+8yAgIEDe3t4KCAhQ3759NWzYMJUoUUL+/v565pln1KRJE911111OHj0KEjJS4URGKjzISYUTGanwIiPdIme/5q+oeuutt4zy5csbHh4eRqNGjYyffvrJ2UPCdTz66KNGcHCw4eHhYdxxxx3Go48+avz222/OHhYu89133xmSck29evUyDOPiK41Hjx5tlC1b1vD09DRat25tJCYmOnfQMAzj2ufuzJkzRps2bYzSpUsb7u7uRlhYmNG/f38jOTnZ2cOGYVzxvEky5s6da7Y5e/as8fTTTxvFixc3ihUrZnTq1Mk4cuSI8waNAouMVPiQkQoPclLhREYqvMhIt8ZmGIaR/2UvAAAAAAAA4CKeIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSgBONGzdONptNf//9d75v65577tE999yT7+sUVL1791aFChWcPQzcgMWLF6tEiRJKT0+/blubzaZx48bZzdu8ebOaNm0qHx8f2Ww2JSQk3PC2MzMzFRoaqpkzZ+Zx1AAARyIjWYeMVHiQkVDUUJACbsGZM2c0btw4rVmzxtlDKXAWLlyo6dOnO3sYV1UYz11BP6aOkJWVpbFjx+qZZ56Rr69vntfPzMzUww8/rOPHj+uNN97QRx99pLCwMB05ckQjR47UvffeKz8/P9lstiuee3d3dw0bNkyTJk3SuXPnHLBHAHB7Kozfs1Yp6N/nhfHcFfRj6gj5lZHi4+P1xBNPqEqVKipWrJgqVqyofv366ciRI3brk5GQHyhIAbfgzJkzGj9+fKH6ws6LlStXauXKlTe1bkELBu+//74SExPNz4Xx3BW0Y5ofvvzySyUmJmrAgAE3tf7vv/+u/fv36/nnn9eAAQP02GOPqXjx4kpMTNRrr72mQ4cOqXbt2tfso0+fPvr777+1cOHCmxoDAKBwfs/mBRmpYCloxzQ/5FdGeuGFF7RmzRp16tRJM2bMUNeuXbV48WLVq1dPycnJdn2QkeBoFKQAXJWHh4c8PDycPQyHcHd3l6enp7OHgeuYO3eumjVrpjvuuOOm1k9JSZEkBQYG2s2PjIzUsWPH9L///U/Dhg27Zh+BgYFq06aN5s2bd1NjAAAUfWQkWC2/MtK0adP022+/6bXXXlO/fv30yiuvaPny5Tp69Kjefvttu7ZkJDgaBSkUSTnPHfjf//6nxx57TAEBASpdurRGjx4twzB08OBBPfjgg/L391dQUJCmTp1qt35GRobGjBmjyMhIBQQEyMfHR3fffbe+++47s82+fftUunRpSdL48eNls9ly/a32nj179Mgjj6h06dLy9vZW1apV9eKLL+Ya78mTJ9W7d28FBgYqICBAffr00ZkzZ3K1mz9/viIjI+Xt7a0SJUqoa9euOnjwYK52s2fPVqVKleTt7a1GjRrphx9+uKnjePnzEdasWSObzabFixdr0qRJKleunLy8vNS6dWv99ttvdut99dVX2r9/v3lcLn02wfnz5zV27Fjdeeed8vT0VGhoqEaMGKHz58/bbd9ms2nQoEFaunSpatWqJU9PT9WsWVNxcXF27U6dOqUhQ4aoQoUK8vT0VJkyZXTffffp559/Nttc+nyEa527uXPnymazadu2bbmOxyuvvCJXV1cdOnToho7fvHnzZLPZtHbtWj355JMqWbKk/P391bNnT504cSJX+xUrVqhly5by8/OTv7+/GjZsaF6But4xvZ4KFSqoffv2WrNmjRo0aCBvb2/Vrl3bvPr5+eefq3bt2vLy8lJkZGSu/f/ll1/Uu3dvVaxYUV5eXgoKCtITTzyhY8eOmW3Onj2ratWqqVq1ajp79qw5//jx4woODlbTpk2VlZV11TGeO3dOcXFxioqKyrXs/PnzGjp0qEqXLi0/Pz898MAD+vPPP+3a9O7dWy1btpQkPfzww7LZbObPr5+fn0qUKHHDx+u+++7Tjz/+qOPHj9/wOgBQGJCRyEhkJHu3e0Zq0aKFXFzsywItWrRQiRIltHv37lzbIyPBoQygCBo7dqwhyahbt67RrVs3Y+bMmUa7du0MSca0adOMqlWrGv/617+MmTNnGs2aNTMkGd9//725/l9//WUEBwcbw4YNM959910jNjbWqFq1quHu7m5s27bNMAzDSE9PN959911DktGpUyfjo48+Mj766CNj+/bthmEYxvbt2w1/f3+jZMmSxqhRo4z33nvPGDFihFG7du1c46xXr57RuXNnY+bMmUa/fv0MScaIESPs9mnixImGzWYzHn30UWPmzJnG+PHjjVKlShkVKlQwTpw4YbabM2eOIclo2rSpMWPGDGPIkCFGYGCgUbFiRaNly5Z5Oo4tW7a0W+e7774zxxsZGWm88cYbxrhx44xixYoZjRo1MtutXLnSqFu3rlGqVCnzuCxZssQwDMPIysoy2rRpYxQrVswYMmSI8d577xmDBg0y3NzcjAcffNBu+5KMiIgIIzg42JgwYYIxffp0o2LFikaxYsWMv//+22zXvXt3w8PDwxg2bJgxZ84c47XXXjM6dOhgzJ8/32zTq1cvIyws7LrnLi0tzfD29jaee+65XMejRo0aRqtWrW74+M2dO9eQZNSuXdu4++67jRkzZhgDBw40XFxcjBYtWhjZ2dl2bW02m1GrVi1j0qRJxjvvvGP069fPePzxx697TG9EWFiYUbVqVSM4ONgYN26c8cYbbxh33HGH4evra8yfP98oX7688eqrrxqvvvqqERAQYNx5551GVlaWuf6UKVOMu+++23j55ZeN2bNnG4MHDza8vb2NRo0a2e3HTz/9ZLi6uhpDhw4153Xt2tXw9vY2EhMTrznGH3/80ZBkLFu2LNeyxx57zJBkdO/e3Xj77beNzp07G3Xq1DEkGWPHjjUMwzDWr19v/N///Z8hyXj22WeNjz76yFi5cmWuvj755BNDkvHdd99ddyxffvnlNccMAIUNGYmMREayR0bK7dSpU4aHh4cxYMCAq46FjARHoCCFIiknxFz6H9ELFy4Y5cqVM2w2m/Hqq6+a80+cOGF4e3sbvXr1smt7/vx5uz5PnDhhlC1b1njiiSfMeX/99Zfdf+wv1aJFC8PPz8/Yv3+/3fxLv5hyxnlpn4ZhGJ06dTJKlixpft63b5/h6upqTJo0ya7djh07DDc3N3N+RkaGUaZMGaNu3bp24589e7YhyWFhq3r16nb9v/nmm4YkY8eOHea8du3ameHmUh999JHh4uJi/PDDD3bzZ82aZUgy1q1bZ86TZHh4eBi//fabOW/79u2GJOOtt94y5wUEBBgDBw685r5cGrYM49rnrlu3bkZISIhd2Pj5558NScbcuXOvuZ1L5YStyMhIIyMjw5wfGxtrSDK++OILwzAM4+TJk4afn5/RuHFj4+zZs3Z9XPrzcrVjeiPCwsIMScb69evNed98840hyfD29rb7OX3vvfdyFWzOnDmTq8///ve/hiRj7dq1dvNHjRpluLi4GGvXrjWLP9OnT7/uGHP+R+HSnyPDMIyEhARDkvH000/bze/evXuuc5jzM/rJJ59cdTs3UpA6fPiwIcl47bXXrjtuAChMyEhkpMuRkchIl5swYYIhyYiPj8+1jIwER+JP9lCk9evXz/y3q6urGjRoIMMw1LdvX3N+YGCgqlatqj/++MOubc5zAbKzs3X8+HFduHBBDRo0sLvF+Wr++usvrV27Vk888YTKly9vt8xms+Vq/9RTT9l9vvvuu3Xs2DGlpaVJunircHZ2th555BH9/fff5hQUFKTKlSubt8lv2bJFKSkpeuqpp+yea9C7d28FBARcd9w3qk+fPnb933333ZJkdwyv5pNPPlH16tVVrVo1u31p1aqVJNnd8i9JUVFRqlSpkvm5Tp068vf3t9tWYGCgNm7cqMOHD9/SfuXo2bOnDh8+bDeWBQsWyNvbW126dMlzfwMGDJC7u7v5+V//+pfc3Nz09ddfS5JWrVqlU6dOaeTIkfLy8rJb90o/LzerRo0aatKkifm5cePGkqRWrVrZ/ZzmzL/0GHt7e5v/PnfunP7++2/dddddkpTrd2LcuHGqWbOmevXqpaefflotW7bUs88+e93x5dzaXrx4cbv5Ocfp8j6GDBly3T5vVs4YrHjdOAA4AxnpIjJS3pCRin5GWrt2rcaPH69HHnnE/Nm7FBkJjuTm7AEA+enyoBMQECAvLy+VKlUq1/xL/85bkj788ENNnTpVe/bsUWZmpjk/PDz8utvN+ZKqVavWTY0z5z/0J06ckL+/v/bu3SvDMFS5cuUrrp/zRb5//35JytXO3d1dFStWvKGx3Op4r2fv3r3avXu3+XyCy+U8cPFq28rZ3qXbio2NVa9evRQaGqrIyEjdf//96tmz503v83333afg4GAtWLBArVu3VnZ2tv773//qwQcflJ+fX577u/x8+Pr6Kjg4WPv27ZN08a0n0o3/vNysK/0+SFJoaOgV5196jI8fP67x48fr448/znWOUlNT7T57eHjogw8+UMOGDeXl5WU+c+JGGYZh93n//v1ycXGxC92SVLVq1RvuM69yxuDIsAsABQkZ6Z/lZKQbR0Yq2hlpz5496tSpk2rVqqU5c+ZccwxkJDgCBSkUaa6urjc0T7L/D/z8+fPVu3dvdezYUcOHD1eZMmXk6uqqyZMnm1+M+T3OS8eUnZ0tm82mFStWXLGtr6+vw8d0LTdyDK8mOztbtWvX1rRp0664/PIv/hvZ1iOPPKK7775bS5Ys0cqVK/X666/rtdde0+eff662bdted0yXc3V1Vffu3fX+++9r5syZWrdunQ4fPqzHHnssz30VJFc7ljd6jNevX6/hw4erbt268vX1VXZ2tmJiYpSdnZ1r3W+++UbSxSuFe/fuvaH/SSlZsqSkiyGvXLly122fn3KC5uX/YwYARQUZKX+QkQonMpJ08OBBtWnTRgEBAfr666+vWmAkI8GRKEgBV/Dpp5+qYsWK+vzzz+2q/2PHjrVrd7UrAzlXnX799VeHjKdSpUoyDEPh4eGqUqXKVduFhYVJuniF7dJbbDMzM5WUlKSIiAiHjOdGXO3YVKpUSdu3b1fr1q0demUlODhYTz/9tJ5++mmlpKSofv36mjRp0lXD1vW23bNnT02dOlVffvmlVqxYodKlSys6OvqmxrZ3717de++95uf09HQdOXJE999/vySZV7V+/fVX3XnnnVftx1lXok6cOKH4+HiNHz9eY8aMMefv3bv3iu1/+eUXvfzyy+rTp48SEhLUr18/7dix47p/ElGtWjVJUlJSkmrXrm3ODwsLU3Z2tn7//Xe7K36JiYm3slvXlJSUJEmqXr16vm0DAAojMtKtIyP9g4xUMDLSsWPH1KZNG50/f17x8fEKDg6+alsyEhyJZ0gBV5BzNeTSqx8bN27Uhg0b7NoVK1ZM0sVXEl+qdOnSatGihT744AMdOHDAbtmNXCG7XOfOneXq6qrx48fnWt8wDPNW+gYNGqh06dKaNWuWMjIyzDbz5s3LNcb85uPjk+s2ZeniVaRDhw7p/fffz7Xs7NmzOn36dJ62k5WVlWs7ZcqUUUhISK5XJF/qaucuR506dVSnTh3NmTNHn332mbp27So3t5ur4c+ePdvuTxreffddXbhwwQyCbdq0kZ+fnyZPnqxz587ZrXvp+b7aMc1vV/p9kKTp06fnapuZmanevXsrJCREb775pubNm6ejR49q6NCh191OZGSkPDw8tGXLFrv5OcdpxowZ192+o2zdulU2m83ueRIAADKSI5CR/kFGcn5GOn36tO6//34dOnRIX3/99VX//DUHGQmOxB1SwBW0b99en3/+uTp16qR27dopKSlJs2bNUo0aNZSenm628/b2Vo0aNbRo0SJVqVJFJUqUUK1atVSrVi3NmDFDzZs3V/369TVgwACFh4dr3759+uqrr5SQkJCn8VSqVEkTJ07UqFGjtG/fPnXs2FF+fn5KSkrSkiVLNGDAAD3//PNyd3fXxIkT9eSTT6pVq1Z69NFHlZSUpLlz5zr0+Qg3IjIyUosWLdKwYcPUsGFD+fr6qkOHDnr88ce1ePFiPfXUU/ruu+/UrFkzZWVlac+ePVq8eLG++eYbNWjQ4Ia3c+rUKZUrV04PPfSQIiIi5Ovrq2+//VabN2/W1KlTr7retc5djp49e+r555+XpFu6FT0jI0OtW7fWI488osTERM2cOVPNmzfXAw88IEny9/fXG2+8oX79+qlhw4bq3r27ihcvru3bt+vMmTP68MMPJV39mOY3f39/tWjRQrGxscrMzNQdd9yhlStXmlfILjVx4kQlJCQoPj5efn5+qlOnjsaMGaOXXnpJDz30kHnF80q8vLzUpk0bffvtt3r55ZfN+XXr1lW3bt00c+ZMpaamqmnTpoqPj9dvv/2Wp/2YOHGiJGnnzp2SpI8++kg//vijJOmll16ya7tq1So1a9bMvEUeAHARGenWkZH+QUZyfkbq0aOHNm3apCeeeEK7d+/W7t27zWW+vr7q2LGjXXsyEhwq/1/kB1gv51XBf/31l938Xr16GT4+Prnat2zZ0qhZs6b5OTs723jllVeMsLAww9PT06hXr56xfPnyXK/FNQzDWL9+vREZGWl4eHjker3qr7/+anTq1MkIDAw0vLy8jKpVqxqjR4++7jhzXoWblJRkN/+zzz4zmjdvbvj4+Bg+Pj5GtWrVjIEDBxqJiYl27WbOnGmEh4cbnp6eRoMGDYy1a9fmej3xjbjaK40vf11sUlJSrtf9pqenG927dzcCAwMNSXbHLSMjw3jttdeMmjVrGp6enkbx4sWNyMhIY/z48UZqaqrZTtIVX1UcFhZmvoL6/PnzxvDhw42IiAjDz8/P8PHxMSIiIoyZM2farZPXc2cYhnHkyBHD1dXVqFKlyvUP1hXknMfvv//eGDBggFG8eHHD19fX6NGjh3Hs2LFc7ZctW2Y0bdrU8Pb2Nvz9/Y1GjRoZ//3vf83l1zqm1xMWFma0a9cu1/wrHeOc8/n666+b8/7880/zZzkgIMB4+OGHzdf+5hy3rVu3Gm5ubsYzzzxj19+FCxeMhg0bGiEhIcaJEyeuOc7PP//csNlsxoEDB+zmnz171nj22WeNkiVLGj4+PkaHDh2MgwcP5umVxpKuOl3q5MmThoeHhzFnzpxrjhUACiMyEhmJjGTvds9IYWFhV81Hlx9HMhIczWYYN3FvLADcBv7++28FBwdrzJgxGj16dJ7Xnzdvnvr06aPNmzfn6Yrm7SwrK0s1atTQI488ogkTJjhlDNOnT1dsbKx+//13u1c5AwCAi8hI1iMjoSjiGVIAcBXz5s1TVlaWHn/8cWcP5bbh6uqql19+We+8847dn35YJTMzU9OmTdNLL71E0AIA4CrISNYjI6Eo4hlSwG3or7/+UlZW1lWXe3h4qESJEhaOqGBZvXq1du3apUmTJqljx46qUKGC3fKzZ89e98GZVh2/onguH330UT366KNO2ba7u3uuh+wCAG4fRfF71ZHISM5FRkJRQ0EKuA01bNhQ+/fvv+ryli1bas2aNdYNqIB5+eWXtX79ejVr1kxvvfVWruWLFi1Snz59rtnHd999l1/Ds8O5BADAcfhevTYyEgBH4hlSwG1o3bp1Onv27FWXFy9eXJGRkRaOqHA5cuSI+aa2q4mMjFTx4sXzfSycSwAAHIfv1VtDRgKQFxSkAAAAAAAAYCkeag4AAAAAAABL3dbPkMrOztbhw4fl5+cnm83m7OEAAAALGIahU6dOKSQkRC4uXJu7EjISAAC3H6sz0m1dkDp8+LBCQ0OdPQwAAOAEBw8eVLly5Zw9jAKJjAQAwO3Lqox0Wxek/Pz8JF082P7+/k4eDQAAsEJaWppCQ0PNHIDcyEgAANx+rM5It3VBKucWdH9/f8IWAAC3Gf4U7erISAAA3L6sykg8OAEAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKVu62dIAQBwNYZh6MKFC8rKynL2UJBHrq6ucnNz4xlRAADkAzJS4VXQMhIFKQAALpORkaEjR47ozJkzzh4KblKxYsUUHBwsDw8PZw8FAIAig4xU+BWkjERBCgCAS2RnZyspKUmurq4KCQmRh4dHgbmKhOszDEMZGRn666+/lJSUpMqVK8vFhScUAABwq8hIhVtBzEgOL0hlZWVp3Lhxmj9/vpKTkxUSEqLevXvrpZdeMn9YDcPQ2LFj9f777+vkyZNq1qyZ3n33XVWuXNns5/jx43rmmWf05ZdfysXFRV26dNGbb74pX19fs80vv/yigQMHavPmzSpdurSeeeYZjRgxwtG7BAC4jWRkZCg7O1uhoaEqVqyYs4eDm+Dt7S13d3ft379fGRkZ8vLycvaQJJGRAACFGxmp8CtoGcnh5bDXXntN7777rt5++23t3r1br732mmJjY/XWW2+ZbWJjYzVjxgzNmjVLGzdulI+Pj6Kjo3Xu3DmzTY8ePbRz506tWrVKy5cv19q1azVgwABzeVpamtq0aaOwsDBt3bpVr7/+usaNG6fZs2c7epcAALchZ18xwq0piOePjAQAKAoK4ncsblyBOn+Gg7Vr18544okn7OZ17tzZ6NGjh2EYhpGdnW0EBQUZr7/+urn85MmThqenp/Hf//7XMAzD2LVrlyHJ2Lx5s9lmxYoVhs1mMw4dOmQYhmHMnDnTKF68uHH+/HmzzQsvvGBUrVr1hseamppqSDJSU1PzvqMAgCLp7Nmzxq5du4yzZ886eyi4Bdc6j876/icjAQAKMzJS0VCQMpLDS2NNmzZVfHy8/ve//0mStm/frh9//FFt27aVJCUlJSk5OVlRUVHmOgEBAWrcuLE2bNggSdqwYYMCAwPVoEEDs01UVJRcXFy0ceNGs02LFi3sHsQVHR2txMREnThxwtG7BQAAcEvISAAAAP9weEFq5MiR6tq1q6pVqyZ3d3fVq1dPQ4YMUY8ePSRJycnJkqSyZcvarVe2bFlzWXJyssqUKWO33M3NTSVKlLBrc6U+Lt3G5c6fP6+0tDS7CQCAws5ms11zGjdunFPHtnTp0lvqY/bs2brnnnvk7+8vm82mkydPOmRsViMjAQBgvaKck3KeK1m1alV5e3urfPnyevbZZ5Wamuq4QeYjhz/UfPHixVqwYIEWLlyomjVrKiEhQUOGDFFISIh69erl6M3lyeTJkzV+/HinjgEAUHhlxv1o2bbcY5rfcNsjR46Y/160aJHGjBmjxMREc96lD7u+ERkZGQXiVcA5zpw5o5iYGMXExGjUqFHOHs5NIyMBAIoqKzOSRE7KcfjwYR0+fFhTpkxRjRo1tH//fj311FM6fPiwPv30U2cP77ocfofU8OHDzSuAtWvX1uOPP66hQ4dq8uTJkqSgoCBJ0tGjR+3WO3r0qLksKChIKSkpdssvXLig48eP27W5Uh+XbuNyo0aNUmpqqjkdPHjwFvc2737f8p7dBADArQoKCjKngIAA2Ww28/Pp06fVo0cPlS1bVr6+vmrYsKG+/fZbu/UrVKigCRMmqGfPnvL39zcfkP3++++bb9Lp1KmTpk2bpsDAQLt1v/jiC9WvX19eXl6qWLGixo8frwsXLpj9SlKnTp1ks9nMz9u3b9e9994rPz8/+fv7KzIyUlu2bLnq/g0ZMkQjR47UXXfd5ZgD5iRkpGsjIwEA8kNRzkm1atXSZ599pg4dOqhSpUpq1aqVJk2apC+//NLcTkHm8ILUmTNncj213dXVVdnZ2ZKk8PBwBQUFKT4+3lyelpamjRs3qkmTJpKkJk2a6OTJk9q6davZZvXq1crOzlbjxo3NNmvXrlVmZqbZZtWqVapataqKFy9+xbF5enrK39/fbgIAoChLT0/X/fffr/j4eG3btk0xMTHq0KGDDhw4YNduypQpioiI0LZt2zR69GitW7dOTz31lAYPHqyEhATdd999mjRpkt06P/zwg3r27KnBgwdr165deu+99zRv3jyz3ebNmyVJc+fO1ZEjR8zPPXr0ULly5bR582Zt3bpVI0eOlLu7uwVHw7nISAAAFCxFMSelpqbK399fbm4O/4M4h3P4CDt06KBJkyapfPnyqlmzprZt26Zp06bpiSeekHTxbySHDBmiiRMnqnLlygoPD9fo0aMVEhKijh07SpKqV6+umJgY9e/fX7NmzVJmZqYGDRqkrl27KiQkRJLUvXt3jR8/Xn379tULL7ygX3/9VW+++abeeOMNR+8SAACFVkREhCIiIszPEyZM0JIlS7Rs2TINGjTInN+qVSs999xz5ucXX3xRbdu21fPPPy9JqlKlitavX6/ly5ebbcaPH6+RI0eaf25WsWJFTZgwQSNGjNDYsWNVunRpSVJgYKDdnTkHDhzQ8OHDVa1aNUlS5cqV82HPCx4yEgAABUtRy0l///23JkyYYN7FVdA5vCD11ltvafTo0Xr66aeVkpKikJAQPfnkkxozZozZZsSIETp9+rQGDBigkydPqnnz5oqLi5OXl5fZZsGCBRo0aJBat24tFxcXdenSRTNmzDCXBwQEaOXKlRo4cKAiIyNVqlQpjRkzptAceAAArJCenq5x48bpq6++0pEjR3ThwgWdPXs215W/S9/aJkmJiYnq1KmT3bxGjRrZBa3t27dr3bp1dlcEs7KydO7cOZ05c0bFihW74piGDRumfv366aOPPlJUVJQefvhhVapU6VZ3tcAjIwEAULAUpZyUlpamdu3aqUaNGk59UHteOLwg5efnp+nTp2v69OlXbWOz2fTyyy/r5ZdfvmqbEiVKaOHChdfcVp06dfTDDz/c7FABACjynn/+ea1atUpTpkzRnXfeKW9vbz300EPKyMiwa+fj45PnvtPT0zV+/Hh17tw517JLCyiXGzdunLp3766vvvpKK1as0NixY/Xxxx/nCnZFDRkJAICCpajkpFOnTikmJkZ+fn5asmRJoXkUQsH/o0IAAHDT1q1bp969e5shJj09Xfv27bvuelWrVjWfZZDj8s/169dXYmKi7rzzzqv24+7urqysrFzzq1SpoipVqmjo0KHq1q2b5s6dW+QLUgAAoGApCjkpLS1N0dHR8vT01LJly65Z7CpoKEgBAFCEVa5cWZ9//rk6dOggm82m0aNHmw/RvpZnnnlGLVq00LRp09ShQwetXr1aK1askM1mM9uMGTNG7du3V/ny5fXQQw/JxcVF27dv16+//qqJEydKuvgGmfj4eDVr1kyenp7y8vLS8OHD9dBDDyk8PFx//vmnNm/erC5dulx1LMnJyUpOTtZvv/0mSdqxY4f8/PxUvnx5lShR4haPEAAAuF0V9pyUlpamNm3a6MyZM5o/f77S0tKUlpYmSSpdurRcXV0dcJTyj8PfsgcAAAqOadOmqXjx4mratKk6dOig6Oho1a9f/7rrNWvWTLNmzdK0adMUERGhuLg4DR061O6qW3R0tJYvX66VK1eqYcOGuuuuu/TGG28oLCzMbDN16lStWrVKoaGhqlevnlxdXXXs2DH17NlTVapU0SOPPKK2bdtq/PjxVx3LrFmzVK9ePfXv31+S1KJFC9WrV0/Lli27hSMDAABud4U9J/3888/auHGjduzYoTvvvFPBwcHmdPDgwVs/QPnMZhiG4exBOEtaWpoCAgLM1yJa4fct79l9rtTgSUu2CwC4MefOnVNSUpLCw8ML1S3PVujfv7/27NlTKJ5NdK3z6Izv/8KGjAQAuBwZ6doKS04qSBmJP9kDAABXNGXKFN13333y8fHRihUr9OGHH2rmzJnOHhYAAIDTkZNuHQUpAABwRZs2bVJsbKxOnTqlihUrasaMGerXr5+zhwUAAOB05KRbR0EKAABc0eLFi509BAAAgAKJnHTreKg5AAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwlJuzBwAAQGHx+5b3LNtWpQZP5ql979699eGHH0qS3NzcVKJECdWpU0fdunVT79695eJSeK9B7dy5U2PGjNHWrVu1f/9+vfHGGxoyZIizhwUAAP4/KzOSRE661Pvvv6///Oc/+vXXXyVJkZGReuWVV9SoUSMnj+z6Cu9RBwAAdmJiYnTkyBHt27dPK1as0L333qvBgwerffv2unDhgrOHd9POnDmjihUr6tVXX1VQUJCzhwMAAAqhopqT1qxZo27duum7777Thg0bFBoaqjZt2ujQoUPOHtp1UZACAKCI8PT0VFBQkO644w7Vr19f//d//6cvvvhCK1as0Lx588x2J0+eVL9+/VS6dGn5+/urVatW2r59u11fX375pRo2bCgvLy+VKlVKnTp1MpedOHFCPXv2VPHixVWsWDG1bdtWe/fulSSdPn1a/v7++vTTT+36W7p0qXx8fHTq1CllZGRo0KBBCg4OlpeXl8LCwjR58uSr7lfDhg31+uuvq2vXrvL09HTAkQIAALebopqTFixYoKefflp169ZVtWrVNGfOHGVnZys+Pt4BRy1/UZACAKAIa9WqlSIiIvT555+b8x5++GGlpKRoxYoV2rp1q+rXr6/WrVvr+PHjkqSvvvpKnTp10v33369t27YpPj7e7rbv3r17a8uWLVq2bJk2bNggwzB0//33KzMzUz4+Puratavmzp1rN465c+fqoYcekp+fn2bMmKFly5Zp8eLFSkxM1IIFC1ShQgVLjgcAAECOopiTzpw5o8zMTJUoUeLWDo4FeIYUAABFXLVq1fTLL79Ikn788Udt2rRJKSkp5t1GU6ZM0dKlS/Xpp59qwIABmjRpkrp27arx48ebfUREREiS9u7dq2XLlmndunVq2rSppItX5kJDQ7V06VI9/PDD6tevn5o2baojR44oODhYKSkp+vrrr/Xtt99Kkg4cOKDKlSurefPmstlsCgsLs/JwAAAAmIpaTnrhhRcUEhKiqKioWz42+Y07pAAAKOIMw5DNZpMkbd++Xenp6SpZsqR8fX3NKSkpSb///rskKSEhQa1bt75iX7t375abm5saN25szitZsqSqVq2q3bt3S5IaNWqkmjVrmg8PnT9/vsLCwtSiRQtJF68cJiQkqGrVqnr22We1cuXKfNt3AACAaylKOenVV1/Vxx9/rCVLlsjLyyvvB8Ni3CEFAEARt3v3boWHh0uS0tPTFRwcrDVr1uRqFxgYKEny9va+5W3269dP77zzjkaOHKm5c+eqT58+ZtirX7++kpKStGLFCn377bd65JFHFBUVlet5CgAAAPmtqOSkKVOm6NVXX9W3336rOnXq3PIYrcAdUgAAFGGrV6/Wjh071KVLF0kXQ05ycrLc3Nx055132k2lSpWSJNWpU+eqD8KsXr26Lly4oI0bN5rzjh07psTERNWoUcOc99hjj2n//v2aMWOGdu3apV69etn14+/vr0cffVTvv/++Fi1apM8++8x8NgMAAIAVikpOio2N1YQJExQXF6cGDRrc9PGwGndIAQBQRJw/f17JycnKysrS0aNHFRcXp8mTJ6t9+/bq2bOnJCkqKkpNmjRRx44dFRsbqypVqujw4cPmAzobNGigsWPHqnXr1qpUqZK6du2qCxcu6Ouvv9YLL7ygypUr68EHH1T//v313nvvyc/PTyNHjtQdd9yhBx980BxL8eLF1blzZw0fPlxt2rRRuXLlzGXTpk1TcHCw6tWrJxcXF33yyScKCgoyrzxeLiPj/7F35+FRlPn6/+/sYesOIEmIbBFQiCK70IobRgJGj0pQ8TCILKIYHAkjIDOILCqIKIoi4DLAqHwRPIIIsgQQHCRscVAERVQ0jNCJCkmzSBKS+v3BLyVNAgTSXd1Jv1/XVddFVz1d9VRljn2fTz31VIF2795t/vuXX37Rjh07VLNmTTVr1sx7FxQAAFQZVTUnPf/88xo7dqzmz5+vJk2ayOl0SpL5uKE/Y4QUAABVxMqVK1W/fn01adJE3bt316effqrp06fro48+UkhIiCQpKChIn3zyiW644Qb1799fl19+uXr37q2ff/5ZMTExkqSbbrpJixYt0tKlS9WmTRt17dpVW7duNY8zZ84ctW/fXrfffrscDocMw9Ann3yisLAwt/4MHDhQBQUFGjBggNv6WrVqacqUKerQoYM6duyon376SZ988omCg8uOJQcOHFDbtm3Vtm1bHTx4UFOnTlXbtm01aNAgT14+AABQhVXVnDRz5kwVFBSoV69eql+/vrlMnTrVk5fPK4IMwzB83QlfcblcstvtysvLk81ms+SYP2yf7fa5aYeHLTkuAKB8Tpw4oX379ik+Pr5STAbpz9555x2lpaXpwIEDCg8Pt/TY5/o7+uL3v7IhIwEAzkRG8ixf5SR/ykg8sgcAADzq+PHjOnjwoCZPnqyHH37Y8mIUAACAvyIn/YlH9gAAgEdNmTJFLVq0UGxsrEaPHu3r7gAAAPgNctKfPF6QatKkiYKCgkotqampkk4ND0tNTVXdunVVs2ZNpaSkKDs7220fWVlZSk5OVvXq1RUdHa0RI0bo5MmTbm3Wr1+vdu3aKSIiQs2aNdPcuXM9fSoAAOAijBs3ToWFhVq7dq3fT6ZpJTISAAAgJ/3J4wWpbdu26eDBg+aSnp4uSbrnnnskSWlpafr444+1aNEibdiwQQcOHFDPnj3N7xcVFSk5OVkFBQXatGmT5s2bp7lz52rs2LFmm3379ik5OVk333yzduzYoWHDhmnQoEFatWqVp08HAADAI8hIAAAAf/L6pObDhg3TsmXLtHfvXrlcLtWrV0/z589Xr169JEnffvutWrZsqYyMDHXu3FkrVqzQ7bffrgMHDpiz2M+aNUujRo3Sr7/+qvDwcI0aNUrLly/X119/bR6nd+/eys3N1cqVK8vdNybsBACciQk7qwZ/mrDzbMhI7shIAODfyEhVgz9lJK/OIVVQUKB3331XAwYMUFBQkDIzM1VYWKjExESzTYsWLdSoUSNlZGRIkjIyMtSqVSszaElSUlKSXC6Xdu3aZbY5fR8lbUr2AQBARQXwS2irBH//+5GRAACVlb//xuLc/Onv59W37C1ZskS5ubl68MEHJUlOp1Ph4eGKiopyaxcTEyOn02m2OT1olWwv2XauNi6XS3/88YeqVatWZn/y8/OVn59vfna5XBd9bgCAqiksLEzSqTegnO33BP7v+PHjkv78e/obMhIAoLIhI1UN/pSRvFqQevvtt9WjRw/FxcV58zDlNmnSJI0fP97X3QAA+LGQkBBFRUUpJydHklS9enUFBQX5uFcoL8MwdPz4ceXk5CgqKkohISG+7lKZyEgAgMqGjFS5+WNG8lpB6ueff9aaNWv04YcfmutiY2NVUFCg3NxctzuA2dnZio2NNdts3brVbV8lb5g5vc2Zb53Jzs6WzWY7Z6V29OjRGj58uPnZ5XKpYcOGF3eCAIAqq+T3piRwofKJiooy/47+howEAKisyEiVnz9lJK8VpObMmaPo6GglJyeb69q3b6+wsDCtXbtWKSkpkqQ9e/YoKytLDodDkuRwOPTss88qJydH0dHRkqT09HTZbDYlJCSYbT755BO346Wnp5v7OJuIiAhFRER47BwBAFVTUFCQ6tevr+joaBUWFvq6O7hAYWFhfnHX72zISACAyoqMVLn5W0bySkGquLhYc+bMUb9+/RQa+uch7Ha7Bg4cqOHDh6tOnTqy2Wx67LHH5HA41LlzZ0lSt27dlJCQoL59+2rKlClyOp0aM2aMUlNTzaD0yCOP6LXXXtPIkSM1YMAArVu3TgsXLtTy5cu9cToAgAAVEhLiVz/aqPzISACAqoCMBE/wSkFqzZo1ysrK0oABA0ptmzZtmoKDg5WSkqL8/HwlJSXp9ddfN7eHhIRo2bJlGjJkiBwOh2rUqKF+/fppwoQJZpv4+HgtX75caWlpeuWVV9SgQQO99dZbSkpK8sbpAAAAeAQZCQAA4JQgw5/e+Wcxl8slu92uvLw82Ww2S475w/bZbp+bdnjYkuMCAIBTfPH7X9mQkQAACDxW//4He/0IAAAAAAAAwGkoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVKivOxDoftg+u9S6ph0e9kFPAAAA/AcZCQCAqo0RUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL8ZY9CxWu3Kji3CxJUnCzRj7uDQAAgH8gIwEAEHgYIQUAAAAAAABLeaUg9csvv+gvf/mL6tatq2rVqqlVq1bavn27ud0wDI0dO1b169dXtWrVlJiYqL1797rt49ChQ+rTp49sNpuioqI0cOBAHT161K3NV199peuvv16RkZFq2LChpkyZ4o3TAQAA8AgyEgAAwCkeL0gdPnxY1113ncLCwrRixQrt3r1bL774omrXrm22mTJliqZPn65Zs2Zpy5YtqlGjhpKSknTixAmzTZ8+fbRr1y6lp6dr2bJl+uyzzzR48GBzu8vlUrdu3dS4cWNlZmbqhRde0Lhx4/TGG294+pQAAAAqjIwEAADwpyDDMAxP7vDJJ5/U559/rn//+99lbjcMQ3Fxcfrb3/6mJ554QpKUl5enmJgYzZ07V71799Y333yjhIQEbdu2TR06dJAkrVy5Urfddpv++9//Ki4uTjNnztQ//vEPOZ1OhYeHm8desmSJvv3223L11eVyyW63Ky8vTzabzQNnf26FKzfqp9wVks49P0LTDg97vS8AAAQqq3//S5CRzo6MBACA71n9++/xEVJLly5Vhw4ddM899yg6Olpt27bVm2++aW7ft2+fnE6nEhMTzXV2u12dOnVSRkaGJCkjI0NRUVFm0JKkxMREBQcHa8uWLWabG264wQxakpSUlKQ9e/bo8OHDZfYtPz9fLpfLbQEAALACGQkAAOBPHi9I/fjjj5o5c6aaN2+uVatWaciQIfrrX/+qefPmSZKcTqckKSYmxu17MTEx5jan06no6Gi37aGhoapTp45bm7L2cfoxzjRp0iTZ7XZzadiwYQXPFgAAoHzISAAAAH/yeEGquLhY7dq103PPPae2bdtq8ODBeuihhzRr1ixPH+qCjR49Wnl5eeayf/9+X3cJAAAECDISAADAnzxekKpfv74SEhLc1rVs2VJZWVmSpNjYWElSdna2W5vs7GxzW2xsrHJycty2nzx5UocOHXJrU9Y+Tj/GmSIiImSz2dwWAAAAK5CRAAAA/uTxgtR1112nPXv2uK377rvv1LhxY0lSfHy8YmNjtXbtWnO7y+XSli1b5HA4JEkOh0O5ubnKzMw026xbt07FxcXq1KmT2eazzz5TYWGh2SY9PV1XXHGF29tqAAAA/AEZCQAA4E8eL0ilpaVp8+bNeu655/T9999r/vz5euONN5SamipJCgoK0rBhw/TMM89o6dKl2rlzpx544AHFxcXprrvuknTqbmH37t310EMPaevWrfr88881dOhQ9e7dW3FxcZKk//3f/1V4eLgGDhyoXbt26f3339crr7yi4cOHe/qUAAAAKoyMBAAA8KdQT++wY8eOWrx4sUaPHq0JEyYoPj5eL7/8svr06WO2GTlypI4dO6bBgwcrNzdXXbp00cqVKxUZGWm2ee+99zR06FDdcsstCg4OVkpKiqZPn25ut9vtWr16tVJTU9W+fXtdcsklGjt2rAYPHuzpUwIAAKgwMhIAAMCfggzDMHzdCV9xuVyy2+3Ky8uzZK6EwpUb9VPuCklScLNGZ23XtMPDXu8LAACByurf/8qIjAQAQOCx+vff44/sAQAAAAAAAOdCQQoAAAAAAACW8vgcUiif4u+zzH+fa2g6AABAICEjAQAQGBghBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlvJ4QWrcuHEKCgpyW1q0aGFuP3HihFJTU1W3bl3VrFlTKSkpys7OdttHVlaWkpOTVb16dUVHR2vEiBE6efKkW5v169erXbt2ioiIULNmzTR37lxPnwoAAIDHkJEAAAD+5JURUldeeaUOHjxoLhs3bjS3paWl6eOPP9aiRYu0YcMGHThwQD179jS3FxUVKTk5WQUFBdq0aZPmzZunuXPnauzYsWabffv2KTk5WTfffLN27NihYcOGadCgQVq1apU3TgcAAMAjyEgAAACnhHplp6Ghio2NLbU+Ly9Pb7/9tubPn6+uXbtKkubMmaOWLVtq8+bN6ty5s1avXq3du3drzZo1iomJUZs2bTRx4kSNGjVK48aNU3h4uGbNmqX4+Hi9+OKLkqSWLVtq48aNmjZtmpKSkrxxSgAAABVGRgIAADjFKyOk9u7dq7i4OF122WXq06ePsrKyJEmZmZkqLCxUYmKi2bZFixZq1KiRMjIyJEkZGRlq1aqVYmJizDZJSUlyuVzatWuX2eb0fZS0KdkHAACAPyIjAQAAnOLxEVKdOnXS3LlzdcUVV+jgwYMaP368rr/+en399ddyOp0KDw9XVFSU23diYmLkdDolSU6n0y1olWwv2XauNi6XS3/88YeqVatWZt/y8/OVn59vfna5XBU6VwAAgPIiIwEAAPzJ4wWpHj16mP+++uqr1alTJzVu3FgLFy48awiyyqRJkzR+/Hif9gEAAAQmMhIAAMCfvPLI3umioqJ0+eWX6/vvv1dsbKwKCgqUm5vr1iY7O9ucTyE2NrbUG2VKPp+vjc1mO2egGz16tPLy8sxl//79FT09jyj+PsttAQAAVR8Z6fzISAAAVF1eL0gdPXpUP/zwg+rXr6/27dsrLCxMa9euNbfv2bNHWVlZcjgckiSHw6GdO3cqJyfHbJOeni6bzaaEhASzzen7KGlTso+ziYiIkM1mc1sAAAB8gYwEAAACmccLUk888YQ2bNign376SZs2bdLdd9+tkJAQ3X///bLb7Ro4cKCGDx+uTz/9VJmZmerfv78cDoc6d+4sSerWrZsSEhLUt29fffnll1q1apXGjBmj1NRURURESJIeeeQR/fjjjxo5cqS+/fZbvf7661q4cKHS0tI8fToAAAAeQUYCAAD4k8fnkPrvf/+r+++/X7///rvq1aunLl26aPPmzapXr54kadq0aQoODlZKSory8/OVlJSk119/3fx+SEiIli1bpiFDhsjhcKhGjRrq16+fJkyYYLaJj4/X8uXLlZaWpldeeUUNGjTQW2+9xeuMAQCA3yIjAQAA/CnIMAzD153wFZfLJbvdrry8PEuGpheu3Kifclect13z3s96vS8AAAQqq3//KyMyEgAAgcfq33+vzyEFAAAAAAAAnI6CFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFgq1NcdQGk/bJ9dal3TDg/7oCcAAAD+g4wEAEDVwQgpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYKtTXHUBpxd9nmf8ObtbIhz0BAADwH2QkAACqDq+PkJo8ebKCgoI0bNgwc92JEyeUmpqqunXrqmbNmkpJSVF2drbb97KyspScnKzq1asrOjpaI0aM0MmTJ93arF+/Xu3atVNERISaNWumuXPnevt0LsgP22e7LT/lrvB1lwAAgJ8gI5GRAAAIZF4tSG3btk2zZ8/W1Vdf7bY+LS1NH3/8sRYtWqQNGzbowIED6tmzp7m9qKhIycnJKigo0KZNmzRv3jzNnTtXY8eONdvs27dPycnJuvnmm7Vjxw4NGzZMgwYN0qpVq7x5SgAAABVGRgIAAIHOawWpo0ePqk+fPnrzzTdVu3Ztc31eXp7efvttvfTSS+ratavat2+vOXPmaNOmTdq8ebMkafXq1dq9e7feffddtWnTRj169NDEiRM1Y8YMFRQUSJJmzZql+Ph4vfjii2rZsqWGDh2qXr16adq0ad46JQAAgAojIwEAAHixIJWamqrk5GQlJia6rc/MzFRhYaHb+hYtWqhRo0bKyMiQJGVkZKhVq1aKiYkx2yQlJcnlcmnXrl1mmzP3nZSUZO6jLPn5+XK5XG4LAACAlchIAAAAXprUfMGCBfriiy+0bdu2UtucTqfCw8MVFRXltj4mJkZOp9Nsc3rQKtlesu1cbVwul/744w9Vq1at1LEnTZqk8ePHX/R5AQAAVAQZCQAA4BSPj5Dav3+/Hn/8cb333nuKjIz09O4rZPTo0crLyzOX/fv3+7pLAAAgQJCRAAAA/uTxglRmZqZycnLUrl07hYaGKjQ0VBs2bND06dMVGhqqmJgYFRQUKDc31+172dnZio2NlSTFxsaWeqNMyefztbHZbGXe+ZOkiIgI2Ww2twUAAMAKZCQAAIA/ebwgdcstt2jnzp3asWOHuXTo0EF9+vQx/x0WFqa1a9ea39mzZ4+ysrLkcDgkSQ6HQzt37lROTo7ZJj09XTabTQkJCWab0/dR0qZkHwAAAP6EjAQAAPAnj88hVatWLV111VVu62rUqKG6deua6wcOHKjhw4erTp06stlseuyxx+RwONS5c2dJUrdu3ZSQkKC+fftqypQpcjqdGjNmjFJTUxURESFJeuSRR/Taa69p5MiRGjBggNatW6eFCxdq+fLlnj4lAACACiMjAQAA/Mkrk5qfz7Rp0xQcHKyUlBTl5+crKSlJr7/+urk9JCREy5Yt05AhQ+RwOFSjRg3169dPEyZMMNvEx8dr+fLlSktL0yuvvKIGDRrorbfeUlJSki9OCQAAoMLISAAAIFAEGYZh+LoTvuJyuWS325WXl+eVuRJ+2D7b7XPx91kXvI/gZo0kSU07POyRPgEAEOi8/ftfFZCRAAAIPFZnJI/PIQUAAAAAAACcCwUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUqG+7gDOrfj7LElS4W8bJUlh3bv4sjsAAAB+gYwEAEDlxggpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgqVBfdwDl81PuCklS8PZdkqSmHR72ZXcAAAD8AhkJAIDKiRFSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAs5fGC1MyZM3X11VfLZrPJZrPJ4XBoxYoV5vYTJ04oNTVVdevWVc2aNZWSkqLs7Gy3fWRlZSk5OVnVq1dXdHS0RowYoZMnT7q1Wb9+vdq1a6eIiAg1a9ZMc+fO9fSpAAAAeAwZCQAA4E8eL0g1aNBAkydPVmZmprZv366uXbvqzjvv1K5dpyaaTEtL08cff6xFixZpw4YNOnDggHr27Gl+v6ioSMnJySooKNCmTZs0b948zZ07V2PHjjXb7Nu3T8nJybr55pu1Y8cODRs2TIMGDdKqVas8fToAAAAeQUYCAAD4U5BhGIa3D1KnTh298MIL6tWrl+rVq6f58+erV69ekqRvv/1WLVu2VEZGhjp37qwVK1bo9ttv14EDBxQTEyNJmjVrlkaNGqVff/1V4eHhGjVqlJYvX66vv/7aPEbv3r2Vm5urlStXlrtfLpdLdrtdeXl5stlsnj1pST9sn+32ufj7rArvM7hZI0m8QQYAgIvl7d//C0FGOoWMBACA71mdkbw6h1RRUZEWLFigY8eOyeFwKDMzU4WFhUpMTDTbtGjRQo0aNVJGRoYkKSMjQ61atTKDliQlJSXJ5XKZdxAzMjLc9lHSpmQfZ5Ofny+Xy+W2AAAAWI2MBAAAAp1XClI7d+5UzZo1FRERoUceeUSLFy9WQkKCnE6nwsPDFRUV5dY+JiZGTqdTkuR0Ot2CVsn2km3nauNyufTHH3+ctV+TJk2S3W43l4YNG1b0VAEAAMqNjAQAAHCKVwpSV1xxhXbs2KEtW7ZoyJAh6tevn3bv3u2NQ12Q0aNHKy8vz1z279/v6y4BAIAAQkYCAAA4JdQbOw0PD1ezZs0kSe3bt9e2bdv0yiuv6L777lNBQYFyc3Pd7gBmZ2crNjZWkhQbG6utW7e67a/kDTOntznzrTPZ2dmy2WyqVq3aWfsVERGhiIiICp8fAADAxSAjAQAAnOLVOaRKFBcXKz8/X+3bt1dYWJjWrl1rbtuzZ4+ysrLkcDgkSQ6HQzt37lROTo7ZJj09XTabTQkJCWab0/dR0qZkHwAAAJUBGQkAAAQqj4+QGj16tHr06KFGjRrpyJEjmj9/vtavX69Vq1bJbrdr4MCBGj58uOrUqSObzabHHntMDodDnTt3liR169ZNCQkJ6tu3r6ZMmSKn06kxY8YoNTXVvHP3yCOP6LXXXtPIkSM1YMAArVu3TgsXLtTy5cs9fToAAAAeQUYCAAD4k8cLUjk5OXrggQd08OBB2e12XX311Vq1apVuvfVWSdK0adMUHByslJQU5efnKykpSa+//rr5/ZCQEC1btkxDhgyRw+FQjRo11K9fP02YMMFsEx8fr+XLlystLU2vvPKKGjRooLfeektJSUmePh0AAACPICMBAAD8KcgwDMPXnfAVl8slu92uvLw82Ww2j+//h+2z3T4Xf59V4X0GN2skSWra4eEK7wsAgEDk7d//qoCMBABA4LE6I1kyhxQAAAAAAABQgoIUAAAAAAAALEVBqpIp/j5Lxd9nqXDlRl93BQAAwG+QkQAAqFwoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLhfq6A1VZ8fdZvu4CAACA3yEjAQAARkgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALMVb9iqpn3JXKHj7Lrd1TTs87KPeAAAA+AcyEgAAlQMjpAAAAAAAAGApClIAAAAAAACwlMcLUpMmTVLHjh1Vq1YtRUdH66677tKePXvc2pw4cUKpqamqW7euatasqZSUFGVnZ7u1ycrKUnJysqpXr67o6GiNGDFCJ0+edGuzfv16tWvXThEREWrWrJnmzp3r6dPxa8XfZ5kLAADwb2Qk65yekchJAAD4J48XpDZs2KDU1FRt3rxZ6enpKiwsVLdu3XTs2DGzTVpamj7++GMtWrRIGzZs0IEDB9SzZ09ze1FRkZKTk1VQUKBNmzZp3rx5mjt3rsaOHWu22bdvn5KTk3XzzTdrx44dGjZsmAYNGqRVq1Z5+pQAAAAqjIwEAADwpyDDMAxvHuDXX39VdHS0NmzYoBtuuEF5eXmqV6+e5s+fr169ekmSvv32W7Vs2VIZGRnq3LmzVqxYodtvv10HDhxQTEyMJGnWrFkaNWqUfv31V4WHh2vUqFFavny5vv76a/NYvXv3Vm5urlauXFmuvrlcLtntduXl5clms3n83Pcu+IfH93k2wc0aMWEnAADl4O3f//IiI1mnee9nLT0eAACVkdUZyetzSOXl5UmS6tSpI0nKzMxUYWGhEhMTzTYtWrRQo0aNlJGRIUnKyMhQq1atzKAlSUlJSXK5XNq1a5fZ5vR9lLQp2QcAAIA/IyMBAIBAFurNnRcXF2vYsGG67rrrdNVVV0mSnE6nwsPDFRUV5dY2JiZGTqfTbHN60CrZXrLtXG1cLpf++OMPVatWrVR/8vPzlZ+fb352uVwVO0EAAICLQEYCAACBzqsjpFJTU/X1119rwYIF3jxMuU2aNEl2u91cGjZs6OsuAQCAAERGAgAAgc5rBamhQ4dq2bJl+vTTT9WgQQNzfWxsrAoKCpSbm+vWPjs7W7GxsWabM98oU/L5fG1sNluZd/4kafTo0crLyzOX/fv3V+gcAQAALhQZCQAAwAsFKcMwNHToUC1evFjr1q1TfHy82/b27dsrLCxMa9euNdft2bNHWVlZcjgckiSHw6GdO3cqJyfHbJOeni6bzaaEhASzzen7KGlTso+yREREyGazuS0AAABWICMBAAD8yeNzSKWmpmr+/Pn66KOPVKtWLXM+A7vdrmrVqslut2vgwIEaPny46tSpI5vNpscee0wOh0OdO3eWJHXr1k0JCQnq27evpkyZIqfTqTFjxig1NVURERGSpEceeUSvvfaaRo4cqQEDBmjdunVauHChli9f7ulTAgAAqDAyEgAAwJ88PkJq5syZysvL00033aT69euby/vvv2+2mTZtmm6//XalpKTohhtuUGxsrD788ENze0hIiJYtW6aQkBA5HA795S9/0QMPPKAJEyaYbeLj47V8+XKlp6erdevWevHFF/XWW28pKSnJ06cEAABQYWQkAACAPwUZhmH4uhO+4nK5ZLfblZeX55Wh6XsX/MPj+zyb4GaN1LTDw5YdDwCAysrbv/9VQVXKSJLUvPezlh4PAIDKyOqM5NW37AEAAAAAAABnoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgqVBfdwCeUfx9lgp/22h+DuvexYe9AQAA8B+FK8lIAAD4G0ZIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzFW/aqkJ9yV5j/Dt6+S5LUtMPDvuoOAACAXyAjAQDgfxghBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBakqqvj7LBV/n6XClRt93RUAAAC/QUYCAMA/UJACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS4X6ugPwvsKVG90+h3Xv4qOeAAAA+A8yEgAAvkNBqor7KXeF2+cmUT181BMAAAD/QUYCAMC3PP7I3meffaY77rhDcXFxCgoK0pIlS9y2G4ahsWPHqn79+qpWrZoSExO1d+9etzaHDh1Snz59ZLPZFBUVpYEDB+ro0aNubb766itdf/31ioyMVMOGDTVlyhRPnwoAAIBHkZMAAABO8XhB6tixY2rdurVmzJhR5vYpU6Zo+vTpmjVrlrZs2aIaNWooKSlJJ06cMNv06dNHu3btUnp6upYtW6bPPvtMgwcPNre7XC5169ZNjRs3VmZmpl544QWNGzdOb7zxhqdPBwAAwGPISQAAAKd4/JG9Hj16qEePsoc8G4ahl19+WWPGjNGdd94pSfrXv/6lmJgYLVmyRL1799Y333yjlStXatu2berQoYMk6dVXX9Vtt92mqVOnKi4uTu+9954KCgr0z3/+U+Hh4bryyiu1Y8cOvfTSS26BDAAAwJ+QkwAAAE6x9C17+/btk9PpVGJiornObrerU6dOysjIkCRlZGQoKirKDFmSlJiYqODgYG3ZssVsc8MNNyg8PNxsk5SUpD179ujw4cNnPX5+fr5cLpfbAgAA4A98mZPISAAAwGqWFqScTqckKSYmxm19TEyMuc3pdCo6Otpte2hoqOrUqePWpqx9nH6MskyaNEl2u91cGjZsWLETAgAA8BBf5iQyEgAAsJqlBSlfGz16tPLy8sxl//79vu4SAACAz5GRAACA1Tw+h9S5xMbGSpKys7NVv359c312drbatGljtsnJyXH73smTJ3Xo0CHz+7GxscrOznZrU/K5pE1ZIiIiFBERUeHzqOwKV240/x3WvYsPewIAAEr4MieRkU4hIwEAYB1LR0jFx8crNjZWa9euNde5XC5t2bJFDodDkuRwOJSbm6vMzEyzzbp161RcXKxOnTqZbT777DMVFhaabdLT03XFFVeodu3aFp0NAACA55CTAABAIPF4Qero0aPasWOHduzYIenUBJ07duxQVlaWgoKCNGzYMD3zzDNaunSpdu7cqQceeEBxcXG66667JEktW7ZU9+7d9dBDD2nr1q36/PPPNXToUPXu3VtxcXGSpP/93/9VeHi4Bg4cqF27dun999/XK6+8ouHDh3v6dAAAADyGnAQAAHCKxx/Z2759u26++Wbzc0n46devn+bOnauRI0fq2LFjGjx4sHJzc9WlSxetXLlSkZGR5nfee+89DR06VLfccouCg4OVkpKi6dOnm9vtdrtWr16t1NRUtW/fXpdcconGjh3Lq4wBAIBfIycBAACcEmQYhuHrTviKy+WS3W5XXl6ebDabx/e/d8E/PL7PimoS1cPtM/MjAAACjbd//6sCMhIZCQAQeKzOSJZOag7/c/rknRLhCwAAQCIjAQDgbRSkAsxPuStKrTvzjiAAAECgISMBAGAtS9+yBwAAAAAAAFCQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBRv2YOb019xzOuNAQAATiEjAQDgWYyQAgAAAAAAgKUYIYWz4k4gAABAaWQkAAAqjoIU9FPuilLrmkT18EFPAAAA/AcZCQAA7+GRPQAAAAAAAFiKghQAAAAAAAAsxSN7KJfT50qQmC8BAABAIiMBAHCxKEihTGfOmXDmfAlM5gkAAAIRGQkAAM/gkT0AAAAAAABYihFSqDCGqgMAAJRGRgIA4OwYIQUAAAAAAABLMUIKHsfcCQAAAKWRkQAA+BMFKZTLmRN4SqUn8QQAAAg0ZCQAAC4OBSl4FXcCAQAASmN+KQBAoKMgBcucGbzOhVAGAAACSXlzEhkJAFBVMKk5AAAAAAAALMUIKVy0suZMOBNzKAAAgEBDRgIA4PwoSMEvMWwdAACgNDISAKCqoCAFr/L2m2fOFcoIYgAAwF+RkQAAgY6CFAICdxMBAABK46UzAABfqfQFqRkzZuiFF16Q0+lU69at9eqrr+qaa67xdbdwDv48r4KnQtnp+yG8AQB8gYxU+fhzRpI8c4OPjAQAKFGpC1Lvv/++hg8frlmzZqlTp056+eWXlZSUpD179ig6OtrX3UMFeGIY+4UUly5Geffv6X6UN+Sdry0AoOoiI1VdZKRzO1v2ISMBgP8JMgzD8HUnLlanTp3UsWNHvfbaa5Kk4uJiNWzYUI899piefPLJ837f5XLJbrcrLy9PNpvN4/3bu+AfHt8n/lRW+PL2fAy4ONwpBeBPvP377w/ISDgz/5CR/BMZCYA/sTojVdoRUgUFBcrMzNTo0aPNdcHBwUpMTFRGRoYPewarlGdY+4W0Ox9C28XzlzulVt6JBQBfISNBKl/+ISP5HhkJQCCrtAWp3377TUVFRYqJiXFbHxMTo2+//bbM7+Tn5ys/P9/8nJeXJ+lUFdAbjh7PP38jVBpfH1/i6y74hUb2W90+Z+Wle2Q/ntyX237+ueTivneWNmXtv6w2ZfHktfKGsFsdZa7/8Yt/llp3WbsB3u4O4DUlv/uVeJD4OZGRYDUy0imVISO57esCMlJZfShPRjpbu/Ptu7zISIBnWZ2RKm1B6mJMmjRJ48ePL7W+YcOGPugNUFm96Gf7qci+yvM9T7WpCG/v/2Kk+boDQIUdOXJEdrvd193wC2QkwBPISJ7tg6/3fbHISKj8rMpIlbYgdckllygkJETZ2dlu67OzsxUbG1vmd0aPHq3hw4ebn4uLi3Xo0CHVrVtXQUFBHuuby+VSw4YNtX///io7N4WVuJ6exfX0LK6nZ3E9PYdreXaGYejIkSOKi4vzdVe8gowUOLiensX19Cyup2dxPT2Ha3l2VmekSluQCg8PV/v27bV27Vrdddddkk6Fp7Vr12ro0KFlficiIkIRERFu66KiorzWR5vNxv/APYjr6VlcT8/ienoW19NzuJZlq8ojo8hIgYfr6VlcT8/ienoW19NzuJZlszIjVdqClCQNHz5c/fr1U4cOHXTNNdfo5Zdf1rFjx9S/f39fdw0AAMBnyEgAAMDfVeqC1H333adff/1VY8eOldPpVJs2bbRy5cpSk3gCAAAEEjISAADwd5W6ICVJQ4cOPevwc1+JiIjQ008/XWroOy4O19OzuJ6exfX0LK6n53AtQUaq+riensX19Cyup2dxPT2Ha+k/goyq+s5jAAAAAAAA+KVgX3cAAAAAAAAAgYWCFAAAAAAAACxFQQoAAAAAAACWoiDlBTNmzFCTJk0UGRmpTp06aevWrb7ukt+bNGmSOnbsqFq1aik6Olp33XWX9uzZ49bmxIkTSk1NVd26dVWzZk2lpKQoOzvbRz2uXCZPnqygoCANGzbMXMf1vDC//PKL/vKXv6hu3bqqVq2aWrVqpe3bt5vbDcPQ2LFjVb9+fVWrVk2JiYnau3evD3vsv4qKivTUU08pPj5e1apVU9OmTTVx4kSdPqUh1/PsPvvsM91xxx2Ki4tTUFCQlixZ4ra9PNfu0KFD6tOnj2w2m6KiojRw4EAdPXrUwrNAoCIjXRxykveQkSqOjOQ5ZKSKISNVPhSkPOz999/X8OHD9fTTT+uLL75Q69atlZSUpJycHF93za9t2LBBqamp2rx5s9LT01VYWKhu3brp2LFjZpu0tDR9/PHHWrRokTZs2KADBw6oZ8+ePux15bBt2zbNnj1bV199tdt6rmf5HT58WNddd53CwsK0YsUK7d69Wy+++KJq165ttpkyZYqmT5+uWbNmacuWLapRo4aSkpJ04sQJH/bcPz3//POaOXOmXnvtNX3zzTd6/vnnNWXKFL366qtmG67n2R07dkytW7fWjBkzytxenmvXp08f7dq1S+np6Vq2bJk+++wzDR482KpTQIAiI108cpJ3kJEqjozkWWSkiiEjVUIGPOqaa64xUlNTzc9FRUVGXFycMWnSJB/2qvLJyckxJBkbNmwwDMMwcnNzjbCwMGPRokVmm2+++caQZGRkZPiqm37vyJEjRvPmzY309HTjxhtvNB5//HHDMLieF2rUqFFGly5dzrq9uLjYiI2NNV544QVzXW5urhEREWH8v//3/6zoYqWSnJxsDBgwwG1dz549jT59+hiGwfW8EJKMxYsXm5/Lc+12795tSDK2bdtmtlmxYoURFBRk/PLLL5b1HYGHjOQ55KSKIyN5BhnJs8hInkNGqhwYIeVBBQUFyszMVGJiorkuODhYiYmJysjI8GHPKp+8vDxJUp06dSRJmZmZKiwsdLu2LVq0UKNGjbi255Camqrk5GS36yZxPS/U0qVL1aFDB91zzz2Kjo5W27Zt9eabb5rb9+3bJ6fT6XY97Xa7OnXqxPUsw7XXXqu1a9fqu+++kyR9+eWX2rhxo3r06CGJ61kR5bl2GRkZioqKUocOHcw2iYmJCg4O1pYtWyzvMwIDGcmzyEkVR0byDDKSZ5GRvIeM5J9Cfd2BquS3335TUVGRYmJi3NbHxMTo22+/9VGvKp/i4mINGzZM1113na666ipJktPpVHh4uKKiotzaxsTEyOl0+qCX/m/BggX64osvtG3btlLbuJ4X5scff9TMmTM1fPhw/f3vf9e2bdv017/+VeHh4erXr595zcr6v32uZ2lPPvmkXC6XWrRooZCQEBUVFenZZ59Vnz59JInrWQHluXZOp1PR0dFu20NDQ1WnTh2uL7yGjOQ55KSKIyN5DhnJs8hI3kNG8k8UpOB3UlNT9fXXX2vjxo2+7kqltX//fj3++ONKT09XZGSkr7tT6RUXF6tDhw567rnnJElt27bV119/rVmzZqlfv34+7l3ls3DhQr333nuaP3++rrzySu3YsUPDhg1TXFwc1xMAzoOcVDFkJM8iI3kWGQmBhkf2POiSSy5RSEhIqbdwZGdnKzY21ke9qlyGDh2qZcuW6dNPP1WDBg3M9bGxsSooKFBubq5be65t2TIzM5WTk6N27dopNDRUoaGh2rBhg6ZPn67Q0FDFxMRwPS9A/fr1lZCQ4LauZcuWysrKkiTzmvF/++UzYsQIPfnkk+rdu7datWqlvn37Ki0tTZMmTZLE9ayI8ly72NjYUpNInzx5UocOHeL6wmvISJ5BTqo4MpJnkZE8i4zkPWQk/0RByoPCw8PVvn17rV271lxXXFystWvXyuFw+LBn/s8wDA0dOlSLFy/WunXrFB8f77a9ffv2CgsLc7u2e/bsUVZWFte2DLfccot27typHTt2mEuHDh3Up08f899cz/K77rrrSr1e+7vvvlPjxo0lSfHx8YqNjXW7ni6XS1u2bOF6luH48eMKDnb/+QkJCVFxcbEkrmdFlOfaORwO5ebmKjMz02yzbt06FRcXq1OnTpb3GYGBjFQx5CTPISN5FhnJs8hI3kNG8lO+nlW9qlmwYIERERFhzJ0719i9e7cxePBgIyoqynA6nb7uml8bMmSIYbfbjfXr1xsHDx40l+PHj5ttHnnkEaNRo0bGunXrjO3btxsOh8NwOBw+7HXlcvobZAyD63khtm7daoSGhhrPPvussXfvXuO9994zqlevbrz77rtmm8mTJxtRUVHGRx99ZHz11VfGnXfeacTHxxt//PGHD3vun/r162dceumlxrJly4x9+/YZH374oXHJJZcYI0eONNtwPc/uyJEjxn/+8x/jP//5jyHJeOmll4z//Oc/xs8//2wYRvmuXffu3Y22bdsaW7ZsMTZu3Gg0b97cuP/++311SggQZKSLR07yLjLSxSMjeRYZqWLISJUPBSkvePXVV41GjRoZ4eHhxjXXXGNs3rzZ113ye5LKXObMmWO2+eOPP4xHH33UqF27tlG9enXj7rvvNg4ePOi7TlcyZ4YtrueF+fjjj42rrrrKiIiIMFq0aGG88cYbbtuLi4uNp556yoiJiTEiIiKMW265xdizZ4+PeuvfXC6X8fjjjxuNGjUyIiMjjcsuu8z4xz/+YeTn55ttuJ5n9+mnn5b538t+/foZhlG+a/f7778b999/v1GzZk3DZrMZ/fv3N44cOeKDs0GgISNdHHKSd5GRKoaM5DlkpIohI1U+QYZhGNaNxwIAAAAAAECgYw4pAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAKAKuro0aOKjo7We++9d962Dz74oJo0aVLq+4MGDVJsbKyCgoI0bNiwCzr+k08+qU6dOl3QdwAAALyNjAT4BwpSAM7r9ddf19y5c33dDVygV155RbVq1VLv3r0v6vvPPfec5s6dqyFDhuidd95R3759JUkzZ87UPffco0aNGikoKEgPPvhgmd8fNmyYvvzySy1duvRiTwEAAL9GRqqcvJGR9u/fr/Hjx+uaa65R7dq1dckll+imm27SmjVrSn2fjAScEmQYhuHrTgDwb1dddZUuueQSrV+/3tddQTkVFhbq0ksvVVpamkaPHn3e9g8++KDWr1+vn376yVzXuXNnhYaGauPGjW5tmzRpoiNHjuiaa67RmjVr1KdPn7OG8fvuu08HDx7UZ599VpHTAQDAL5GRKh9vZaTXXntNI0eO1F133aXrrrtOJ0+e1L/+9S998cUX+uc//6n+/fu77ZeMBEihvu4AgKrl2LFjqlGjhq+7EfCWLVumX3/9Vffee+9F7yMnJ0cJCQml1m/YsMEcHVWzZs1z7uPee+/VPffcox9//FGXXXbZRfcFAIDKjozkH7yVkW6++WZlZWXpkksuMdc98sgjatOmjcaOHVuqIEVGAnhkD/AbR44c0bBhw9SkSRNFREQoOjpat956q7744guzzU033aSrrrpKmZmZuvbaa1WtWjXFx8dr1qxZpfaXn5+vp59+Ws2aNVNERIQaNmyokSNHKj8/v1Tbd999V9dcc42qV6+u2rVr64YbbtDq1aslnRoNs2vXLm3YsEFBQUEKCgrSTTfdJEmaO3eugoKCtGHDBj366KOKjo5WgwYNJJX9vL0kjRs3TkFBQW7rgoKCNHToUC1atEgJCQmqVq2aHA6Hdu7cKUmaPXu2mjVrpsjISN10001ud6jKa9euXeratauqVaumBg0a6JlnntE///lPBQUFXdD+Svr/3Xff6S9/+Yvsdrvq1aunp556SoZhaP/+/brzzjtls9kUGxurF1980e37BQUFGjt2rNq3by+73a4aNWro+uuv16effurW7umnn1ZwcLDWrl3rtn7w4MEKDw/Xl19+ec5+LlmyRE2aNFHTpk3L3HbVVVcpMjJSV111lRYvXuy2ff369QoKCtK+ffu0fPly8+9ecp0aN25c6m94NomJiZKkjz76qFztAQA4ExmJjHQ6f81IV155pVsxSpIiIiJ022236b///a+OHDnito2MBDBCCvAbjzzyiD744AMNHTpUCQkJ+v3337Vx40Z98803ateundnu8OHDuu2223Tvvffq/vvv18KFCzVkyBCFh4drwIABkqTi4mL9z//8jzZu3KjBgwerZcuW2rlzp6ZNm6bvvvtOS5YsMfc3fvx4jRs3Ttdee60mTJig8PBwbdmyRevWrVO3bt308ssv67HHHlPNmjX1j3/8Q5IUExPj1vdHH31U9erV09ixY3Xs2LGLOv9///vfWrp0qVJTUyVJkyZN0u23366RI0fq9ddf16OPPqrDhw9rypQpGjBggNatW1fufTudTt188806efKknnzySdWoUUNvvPGGqlWrdlF9lU4Ns27ZsqUmT56s5cuX65lnnlGdOnU0e/Zsde3aVc8//7zee+89PfHEE+rYsaNuuOEGSZLL5dJbb72l+++/Xw899JCOHDmit99+W0lJSdq6davatGkjSRozZow+/vhjDRw4UDt37lStWrW0atUqvfnmm5o4caJat259zv5t2rTJ7X83JVavXq2UlBQlJCRo0qRJ+v3339W/f38zJEtSy5Yt9c477ygtLU0NGjTQ3/72N0lSvXr1Lvg62e12NW3aVJ9//rnS0tIu+PsAAJCRyEiVOSM5nU5Vr15d1atXd1tPRgIkGQD8gt1uN1JTU8/Z5sYbbzQkGS+++KK5Lj8/32jTpo0RHR1tFBQUGIZhGO+8844RHBxs/Pvf/3b7/qxZswxJxueff24YhmHs3bvXCA4ONu6++26jqKjIrW1xcbH57yuvvNK48cYbS/Vnzpw5hiSjS5cuxsmTJ9229evXz2jcuHGp7zz99NPGmf/pkWREREQY+/btM9fNnj3bkGTExsYaLpfLXD969GhDklvb8xk2bJghydiyZYu5Licnx7Db7Re8r5L+Dx482Fx38uRJo0GDBkZQUJAxefJkc/3hw4eNatWqGf369XNrm5+f77bPw4cPGzExMcaAAQPc1u/cudMIDw83Bg0aZBw+fNi49NJLjQ4dOhiFhYXn7GNhYaERFBRk/O1vfyu1rU2bNkb9+vWN3Nxcc93q1asNSaX+Xo0bNzaSk5PPeawaNWq4nV9ZunXrZrRs2fKcbQAAOBsyEhmpMmYkwzj1v6PIyEijb9++ZW4nIyHQ8cge4CeioqK0ZcsWHThw4JztQkND9fDDD5ufw8PD9fDDDysnJ0eZmZmSpEWLFqlly5Zq0aKFfvvtN3Pp2rWrJJlDn5csWaLi4mKNHTtWwcHu/zko7yNZkvTQQw8pJCSk3O3Lcsstt7gNXy95FW5KSopq1apVav2PP/5Y7n1/8skn6ty5s6655hpzXb169dSnT5+L7u+gQYPMf4eEhKhDhw4yDEMDBw4010dFRemKK65w62tISIjCw8MlnbpLe+jQIZ08eVIdOnRwe/RAOjVR6vjx4/XWW28pKSlJv/32m+bNm6fQ0HMPbj106JAMw1Dt2rXd1h88eFA7duxQv379ZLfbzfW33nprmXNFeUrt2rX122+/eW3/AICqjYxERqqMGen48eO65557VK1aNU2ePLnMNmQkBDoKUoCfmDJlir7++ms1bNhQ11xzjcaNG1dmoIiLiys1Iebll18uSeZz/nv37tWuXbtUr149t6WkXU5OjiTphx9+UHBwcIWLEfHx8RX6viQ1atTI7XNJGGjYsGGZ6w8fPlzuff/8889q3rx5qfVXXHHFhXbTVFZ/IyMjS80dYLfbS/V13rx5uvrqqxUZGam6deuqXr16Wr58ufLy8kodZ8SIEWrdurW2bt2qp59++oL+VsYZL1H9+eefJcnj16I8/biQ8A4AwOnISGSkypaRioqK1Lt3b+3evVsffPCB4uLiztoPMhICGXNIAX7i3nvv1fXXX6/Fixdr9erVeuGFF/T888/rww8/VI8ePS5oX8XFxWrVqpVeeumlMrefGWAqqqx5Bs7241pUVFTm+rPdPTzb+jODhNXK6ld5+vruu+/qwQcf1F133aURI0YoOjpaISEhmjRpkn744YdS3/3xxx+1d+9eSTInMD2fOnXqKCgo6IICqTcdPny4VAgFAKC8yEhkpMqWkR566CEtW7ZM7733njn6rixkJAQ6ClKAH6lfv74effRRPfroo8rJyVG7du307LPPuoWtAwcOlHpt8HfffSdJ5nDupk2b6ssvv9Qtt9xyzrsuTZs2VXFxsXbv3m1OFFmWi7lzU7t2beXm5pZaX3IHykqNGzc2A8vp9uzZY3lfPvjgA1122WX68MMP3a7r008/XaptcXGxHnzwQdlsNg0bNkzPPfecevXqpZ49e57zGKGhoWratKn27dvntr5x48aSZPm12Ldv33knGAUA4FzISN5BRjrFkxlpxIgRmjNnjl5++WXdf//952xLRkKg45E9wA8UFRWVGoocHR2tuLi4Uq8gPnnypGbPnm1+Ligo0OzZs1WvXj21b99e0qk7ib/88ovefPPNUsf6448/zLe83HXXXQoODtaECRNUXFzs1u70O1Y1atQoMzidS9OmTZWXl6evvvrKXHfw4MFSr8+1wm233abNmzdr69at5rpff/1V7733nuV9KblDePr13bJlizIyMkq1femll7Rp0ya98cYbmjhxoq699loNGTKkXHMNOBwObd++3W1d/fr11aZNG82bN8/tf2/p6enavXv3xZ7SOeXl5emHH37Qtdde65X9AwCqNjKSd5GRTvFURnrhhRc0depU/f3vf9fjjz9+zrZkJIARUoBfOHLkiBo0aKBevXqpdevWqlmzptasWaNt27bpxRdfdGsbFxen559/Xj/99JMuv/xyvf/++9qxY4feeOMNhYWFSZL69u2rhQsX6pFHHtGnn36q6667TkVFRfr222+1cOFCrVq1Sh06dFCzZs30j3/8QxMnTtT111+vnj17KiIiQtu2bVNcXJwmTZokSWrfvr1mzpypZ555Rs2aNVN0dPQ5hx9LUu/evTVq1Cjdfffd+utf/6rjx49r5syZuvzyy0tNTOltI0eO1DvvvKPu3bvr8ccfN19p3LhxY7cwaIXbb79dH374oe6++24lJydr3759mjVrlhISEnT06FGz3TfffKOnnnpKDz74oO644w5J0ty5c9WmTRs9+uijWrhw4TmPc+edd+qdd97Rd999Z86LIZ16VXRycrK6dOmiAQMG6NChQ3r11Vd15ZVXuh3/XD7++GN9+eWXkqTCwkJ99dVXeuaZZyRJ//M//6Orr77abLtmzRoZhqE777yzfBcIAIDTkJG8i4zkuYy0ePFijRw5Us2bN1fLli317rvvum2/9dZbFRMTY34mIwE6472iAHwiPz/fGDFihNG6dWujVq1aRo0aNYzWrVsbr7/+ulu7G2+80bjyyiuN7du3Gw6Hw4iMjDQaN25svPbaa6X2WVBQYDz//PPGlVdeaURERBi1a9c22rdvb4wfP97Iy8tza/vPf/7TaNu2rdnuxhtvNNLT083tTqfTSE5ONmrVqmVIMl9vXPJK423btpV5XqtXrzauuuoqIzw83LjiiiuMd99996yvND7zdc779u0zJBkvvPCC2/pPP/3UkGQsWrTo3Bf1DF999ZVx4403GpGRkcall15qTJw40Xj77bcv+pXGv/76q9v6fv36GTVq1CjVvuRvVqK4uNh47rnnjMaNGxsRERFG27ZtjWXLlrm9AvrkyZNGx44djQYNGri9etgwDOOVV14xJBnvv//+OfuZn59vXHLJJcbEiRNLbfu///s/o2XLlkZERISRkJBgfPjhh2W+gvpsrzTu16+fIanMZc6cOW5t77vvPqNLly7n7CsAAGdDRiIjVZaMVHL+Z1s+/fRTt/ZkJMAwggzDx7PeASi3m266Sb/99pu+/vprX3elSpg7d6769++vffv2ub1OuaqYOHGi5syZo71791b4ldMXw+l0Kj4+XgsWLODuHwDAq8hInkVG8i4yEnAKc0gBQBWVlpamo0ePasGCBT45/ssvv6xWrVoRtAAAgF8hIwH+gTmkAFRaf/zxR6mJTs9Up04dhYeHn3dfR48ePe/8APXq1fPJXbSLVbNmTeXk5Pjs+JMnT/bZsQEACGRkpHMjIwH+gYIUgErr/fffV//+/c/Z5tNPP9VNN9103n1NnTpV48ePP2ebqjpsHQAAVC1kJACVAXNIAai0Dh48qF27dp2zTfv27VW7du3z7uvHH3/Ujz/+eM42Xbp0UWRk5AX1EQAAwGpkJACVAQUpAAAAAAAAWIpJzQEAAAAAAGCpgJ5Dqri4WAcOHFCtWrUUFBTk6+4AAAALGIahI0eOKC4uTsHB3JsrCxkJAIDAY3VGCuiC1IEDB9SwYUNfdwMAAPjA/v371aBBA193wy+RkQAACFxWZaSALkjVqlVL0qmLbbPZfNwbAABgBZfLpYYNG5o5AKWRkQAACDxWZ6SALkiVDEG32WyELQAAAgyPop0dGQkAgMBlVUZi4gQAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYK6DmkyqO4uFgFBQW+7gYuQlhYmEJCQnzdDQAAqqyioiIVFhb6uhu4QGQkAIA/oCB1DgUFBdq3b5+Ki4t93RVcpKioKMXGxjJxLQAAHmQYhpxOp3Jzc33dFVwkMhIAwNcoSJ2FYRg6ePCgQkJC1LBhQwUH83RjZWIYho4fP66cnBxJUv369X3cIwAAqo6SYlR0dLSqV69OUaMSISMBAPwFBamzOHnypI4fP664uDhVr17d193BRahWrZokKScnR9HR0QxNBwDAA4qKisxiVN26dX3dHVwEMhIAwB8w7OcsioqKJEnh4eE+7gkqoqSYyPwWAAB4RslvKjfsKjcyEgDA1yhInQdD0Cs3/n4AAHgHv7GVG38/AICvUZACAAAAAACApShIVSFBQUHnXMaNG+fTvi1ZsqRC+3jjjTd00003yWazKSgoiDf7AACAcqnKGenQoUN67LHHdMUVV6hatWpq1KiR/vrXvyovL89znQQAwAuY1PwCFa7caOnxwrp3KXfbgwcPmv9+//33NXbsWO3Zs8dcV7NmzQs6dkFBgV/NoXX8+HF1795d3bt31+jRo33dHQAAcBoykm8cOHBABw4c0NSpU5WQkKCff/5ZjzzyiA4cOKAPPvjA190DAOCsGCFVhcTGxpqL3W5XUFCQ+fnYsWPq06ePYmJiVLNmTXXs2FFr1qxx+36TJk00ceJEPfDAA7LZbBo8eLAk6c0331TDhg1VvXp13X333XrppZcUFRXl9t2PPvpI7dq1U2RkpC677DKNHz9eJ0+eNPcrSXfffbeCgoLMz19++aVuvvlm1apVSzabTe3bt9f27dvPen7Dhg3Tk08+qc6dO3vmggEALkjhyo1uC1BZVOWMdNVVV+n//u//dMcdd6hp06bq2rWrnn32WX388cfmcQAA3kVGujgUpALE0aNHddttt2nt2rX6z3/+o+7du+uOO+5QVlaWW7upU6eqdevW+s9//qOnnnpKn3/+uR555BE9/vjj2rFjh2699VY9++yzbt/597//rQceeECPP/64du/erdmzZ2vu3Llmu23btkmS5syZo4MHD5qf+/TpowYNGmjbtm3KzMzUk08+qbCwMAuuBgAAwClVMSPl5eXJZrMpNJSHIQAA/otfqQDRunVrtW7d2vw8ceJELV68WEuXLtXQoUPN9V27dtXf/vY38/M//vEP9ejRQ0888YQk6fLLL9emTZu0bNkys8348eP15JNPql+/fpKkyy67TBMnTtTIkSP19NNPq169epKkqKgoxcbGmt/LysrSiBEj1KJFC0lS8+bNvXDmAAAAZ1fVMtJvv/2miRMnmqO4AADwV4yQChBHjx7VE088oZYtWyoqKko1a9bUN998U+ruX4cOHdw+79mzR9dcc43bujM/f/nll5owYYJq1qxpLg899JAOHjyo48ePn7VPw4cP16BBg5SYmKjJkyfrhx9+qOBZAgAAXJiqlJFcLpeSk5OVkJDg04naAQAoDwpSAeKJJ57Q4sWL9dxzz+nf//63duzYoVatWqmgoMCtXY0aNS5430ePHtX48eO1Y8cOc9m5c6f27t2ryMjIs35v3Lhx2rVrl5KTk7Vu3TolJCRo8eLFF3x8AACAi1VVMtKRI0fUvXt31apVS4sXL2YaBACA3/NJQapJkyZlvnI3NTVVknTixAmlpqaqbt26qlmzplJSUpSdne22j6ysLCUnJ6t69eqKjo7WiBEjmLjxHD7//HM9+OCDuvvuu9WqVSvFxsbqp59+Ou/3rrjiCnM+gxJnfm7Xrp327NmjZs2alVqCg0/9TywsLExFRUWl9n/55ZcrLS1Nq1evVs+ePTVnzpyLP0kAACo5MpL1qkJGcrlc6tatm8LDw7V06dJzFrsAAPAXPplDatu2bW4/vF9//bVuvfVW3XPPPZKktLQ0LV++XIsWLZLdbtfQoUPVs2dPff7555KkoqIiJScnKzY2Vps2bdLBgwf1wAMPKCwsTM8995wvTsnvNW/eXB9++KHuuOMOBQUF6amnnlJxcfF5v/fYY4/phhtu0EsvvaQ77rhD69at04oVKxQUFGS2GTt2rG6//XY1atRIvXr1UnBwsL788kt9/fXXeuaZZySdCthr167Vddddp4iICEVGRmrEiBHq1auX4uPj9d///lfbtm1TSkrKWfvidDrldDr1/fffS5J27typWrVqqVGjRqpTp04FrxAAAL5HRrJeZc9IJcWo48eP691335XL5ZLL5ZIk1atXTyEhIR64SgAAeJ5PRkjVq1fP7fW7y5YtU9OmTXXjjTcqLy9Pb7/9tl566SV17dpV7du315w5c7Rp0yZt3rxZkrR69Wrt3r1b7777rtq0aaMePXpo4sSJmjFjRqnh1TjlpZdeUu3atXXttdfqjjvuUFJSktq1a3fe71133XWaNWuWXnrpJbVu3VorV65UWlqa2523pKQkLVu2TKtXr1bHjh3VuXNnTZs2TY0bNzbbvPjii0pPT1fDhg3Vtm1bhYSE6Pfff9cDDzygyy+/XPfee6969Oih8ePHn7Uvs2bNUtu2bfXQQw9Jkm644Qa1bdtWS5curcCVAQDAf5CRrFfZM9IXX3yhLVu2aOfOnWrWrJnq169vLvv376/4BQIAwEuCDMMwfNmBgoICxcXFafjw4fr73/+udevW6ZZbbtHhw4cVFRVltmvcuLGGDRumtLQ0jR07VkuXLtWOHTvM7fv27dNll12mL774Qm3bti3XsV0ul+x2u/lq3NOdOHFC+/btU3x8PMOez/DQQw/p22+/1b///W9fd+W8+DsCgOcUrtzo9jmsexcf9aRizvX770/ISJUPGQkAAhMZ6eL45JG90y1ZskS5ubl68MEHJZ16LCs8PNwtaElSTEyMnE6n2SYmJqbU9pJtZ5Ofn6/8/Hzzc8lwZpzb1KlTdeutt6pGjRpasWKF5s2bp9dff93X3QIAoEojI/k/MhIAABfP52/Ze/vtt9WjRw/FxcV5/ViTJk2S3W43l4YNG3r9mFXB1q1bdeutt6pVq1aaNWuWpk+frkGDBvm6WwAAVGlkJP9HRgIA4OL5dITUzz//rDVr1ujDDz8018XGxqqgoEC5ubludwCzs7MVGxtrttm6davbvkreMFPSpiyjR4/W8OHDzc8ul4vAVQ4LFy70dRcAAAgoZKTKgYwEAMDF8+kIqTlz5ig6OlrJycnmuvbt2yssLExr16411+3Zs0dZWVlyOBySJIfDoZ07dyonJ8dsk56eLpvNpoSEhLMeLyIiQjabzW0BAADwN2QkAABQ1flshFRxcbHmzJmjfv36KTT0z27Y7XYNHDhQw4cPV506dWSz2fTYY4/J4XCoc+fOkqRu3bopISFBffv21ZQpU+R0OjVmzBilpqYqIiLCV6cEAABQYWQkAAAQCHxWkFqzZo2ysrI0YMCAUtumTZum4OBgpaSkKD8/X0lJSW4TRIaEhGjZsmUaMmSIHA6HatSooX79+mnChAlWngIAAIDHkZEAAEAgCDIMw/B1J3yFVxpXffwdAcBzeKVx4CAjVX38HQHAc8hIF8fnb9kDAAAAAABAYKEgBQAAAAAAAEtRkAIAAAAAAIClKEhVMQ8++KCCgoIUFBSksLAwxcTE6NZbb9U///lPFRcX+7p7FbJr1y6lpKSoSZMmCgoK0ssvv+zrLgEIEIUrN5ZaAFQuVTkjvfnmm7r++utVu3Zt1a5dW4mJidq6dauvuwUgQJCRcLF89pa9yuqH7bMtPV7TDg9f8He6d++uOXPmqKioSNnZ2Vq5cqUef/xxffDBB1q6dKnbK6Qrk+PHj+uyyy7TPffco7S0NF93BwBKqSoTWgIXg4zkO+vXr9f999+va6+9VpGRkXr++efVrVs37dq1S5deeqmvuwcAZRaqyElghFQVFBERodjYWF166aVq166d/v73v+ujjz7SihUrNHfuXLNdbm6uBg0apHr16slms6lr16768ssv3fb18ccfq2PHjoqMjNQll1yiu+++29x2+PBhPfDAA6pdu7aqV6+uHj16aO/evZKkY8eOyWaz6YMPPnDb35IlS1SjRg0dOXJEBQUFGjp0qOrXr6/IyEg1btxYkyZNOut5dezYUS+88IJ69+6tiIgID1wpAAAQSKpqRnrvvff06KOPqk2bNmrRooXeeustFRcXa+3atR64agAAeAcFqQDRtWtXtW7dWh9++KG57p577lFOTo5WrFihzMxMtWvXTrfccosOHTokSVq+fLnuvvtu3XbbbfrPf/6jtWvX6pprrjG//+CDD2r79u1aunSpMjIyZBiGbrvtNhUWFqpGjRrq3bu35syZ49aPOXPmqFevXqpVq5amT5+upUuXauHChdqzZ4/ee+89NWnSxJLrAQAAIFXNjHT8+HEVFhaqTp06Fbs4AAB4UeUcl4yL0qJFC3311VeSpI0bN2rr1q3KyckxRxtNnTpVS5Ys0QcffKDBgwfr2WefVe/evTV+/HhzH61bt5Yk7d27V0uXLtXnn3+ua6+9VtKpu3MNGzbUkiVLdM8992jQoEG69tprdfDgQdWvX185OTn65JNPtGbNGklSVlaWmjdvri5duigoKEiNGze28nIAAABIqnoZadSoUYqLi1NiYmKFrw0AAN7CCKkAYhiGgoKCJElffvmljh49qrp166pmzZrmsm/fPv3www+SpB07duiWW24pc1/ffPONQkND1alTJ3Nd3bp1dcUVV+ibb76RJF1zzTW68sorNW/ePEnSu+++q8aNG+uGG26QdOru4Y4dO3TFFVfor3/9q1avXu21cweAyo6J1QHvqUoZafLkyVqwYIEWL16syMjIC78YAFDJkJEqL0ZIBZBvvvlG8fHxkqSjR4+qfv36Wr9+fal2UVFRkqRq1apV+JiDBg3SjBkz9OSTT2rOnDl7E5GZAAEAAElEQVTq37+/GfjatWunffv2acWKFVqzZo3uvfdeJSYmlppTAQAAwJuqSkaaOnWqJk+erDVr1ujqq6+ucB8BAPAmClIBYt26ddq5c6f5drp27drJ6XQqNDT0rHMSXH311Vq7dq369+9falvLli118uRJbdmyxRyO/vvvv2vPnj1KSEgw2/3lL3/RyJEjNX36dO3evVv9+vVz24/NZtN9992n++67T7169VL37t116NAh5jwA4FPcWQMCR1XJSFOmTNGzzz6rVatWqUOHDhdzKQDgvMhI8CQKUlVQfn6+nE6n2yuNJ02apNtvv10PPPCAJCkxMVEOh0N33XWXpkyZossvv1wHDhwwJ+ns0KGDnn76ad1yyy1q2rSpevfurZMnT+qTTz7RqFGj1Lx5c91555166KGHNHv2bNWqVUtPPvmkLr30Ut15551mX2rXrq2ePXtqxIgR6tatmxo0aGBue+mll1S/fn21bdtWwcHBWrRokWJjY827j2cqKCjQ7t27zX//8ssv2rFjh2rWrKlmzZp574ICAIAqoapmpOeff15jx47V/Pnz1aRJEzmdTkkyHzcEAMAfMYdUFbRy5UrVr19fTZo0Uffu3fXpp59q+vTp+uijjxQSEiJJCgoK0ieffKIbbrhB/fv31+WXX67evXvr559/VkxMjCTppptu0qJFi7R06VK1adNGXbt21datW83jzJkzR+3bt9ftt98uh8MhwzD0ySefKCwszK0/AwcOVEFBgQYMGOC2vlatWpoyZYo6dOigjh076qefftInn3yi4OCy/2d54MABtW3bVm3bttXBgwc1depUtW3bVoMGDfLk5QMAAFVUVc1IM2fOVEFBgXr16qX69euby9SpUz15+QAA8KggwzAMX3fCV1wul+x2u/Ly8mSz2dy2nThxQvv27VN8fDwTQlbQO++8o7S0NB04cEDh4eGWHpu/I4CLUZ7h6GHdu5z3e2W18WSfPLn/i+mD1cf3lHP9/uMUMpI1yEgAKhtPZaSztfNUn8hIF8fqjMQje/Ca48eP6+DBg5o8ebIefvhhy4MWAACAPyIjAQBAQQpeVDK55g033KDRo0f7ujsAgAtQ1t3Gn3JXuH1ursp59w/wNTISAFReZCTPYQ4peM24ceNUWFiotWvXMqEmAADA/4+MBAAABSkAAAAAAABYjIIUAAAAAAAALMUcUucRwC8hrBL4+wGoDKrKm1kQWPiNrdz4+wGoDPzhDXrwHgpSZxESEiJJKigoULVq1XzcG1ys48ePS5LCwsJ83BMAgehiQ1R5XqkM+ErJb+rx48fJSJUYGQmAr13sDTlyUtVBQeosQkNDVb16df36668KCwtTcDBPN1YmhmHo+PHjysnJUVRUlFlgBAAAFRMSEqKoqCjl5ORIkqpXr66goCAf9wrlRUYCAPgLClJnERQUpPr162vfvn36+eeffd0dXKSoqCjFxsb6uhsAAFQpJb+tJUUpVD5kJACAr1GQOofw8HA1b95cBQUFvu4KLkJYWBh3/QAA8IKSG3fR0dEqLCz0dXdwgchIAAB/QEHqPIKDgxUZGenrbgAAvIR5CC7eD9tnl1rXtMPDPugJfCUkJITCBgBUUWSki0dGKh8KUgAAeNFPuSvcPjeX594Mw9v5AABAZUVGAgUpAACqCF6NDAAAUBoZyT/x6jgAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJZiDikAACzEG2sAAABKIyMFHkZIAQAAAAAAwFI+K0j98ssv+stf/qK6deuqWrVqatWqlbZv325uNwxDY8eOVf369VWtWjUlJiZq7969bvs4dOiQ+vTpI5vNpqioKA0cOFBHjx61+lQAAAA8howEAAACgU8e2Tt8+LCuu+463XzzzVqxYoXq1aunvXv3qnbt2mabKVOmaPr06Zo3b57i4+P11FNPKSkpSbt371ZkZKQkqU+fPjp48KDS09NVWFio/v37a/DgwZo/f74vTgsAgErpYofIF3+fVXplhwp2JsCRkQAA8B9kJO/ySUHq+eefV8OGDTVnzhxzXXx8vPlvwzD08ssva8yYMbrzzjslSf/6178UExOjJUuWqHfv3vrmm2+0cuVKbdu2TR06nPrLvvrqq7rttts0depUxcXFWXtSABDgzvzBDuvexUc9sQbzHMAbyEgAUPWQkYCy+eSRvaVLl6pDhw665557FB0drbZt2+rNN980t+/bt09Op1OJiYnmOrvdrk6dOikjI0OSlJGRoaioKDNoSVJiYqKCg4O1ZcuWMo+bn58vl8vltgAAEOh+yl1RaoFvkJEAAPAfZCTv8skIqR9//FEzZ87U8OHD9fe//13btm3TX//6V4WHh6tfv35yOp2SpJiYGLfvxcTEmNucTqeio6PdtoeGhqpOnTpmmzNNmjRJ48eP98IZAQCgShNSynPnsrKcS1VDRgIAVEWVJVeQkazlkxFSxcXFateunZ577jm1bdtWgwcP1kMPPaRZs2Z59bijR49WXl6euezfv9+rxwMAALgQZCQAABAofFKQql+/vhISEtzWtWzZUllZpyb+io2NlSRlZ2e7tcnOzja3xcbGKicnx237yZMndejQIbPNmSIiImSz2dwWAAAAf0FGAgAAgcInBanrrrtOe/bscVv33XffqXHjxpJOTd4ZGxurtWvXmttdLpe2bNkih8MhSXI4HMrNzVVmZqbZZt26dSouLlanTp0sOAsAAADPIiMBAIBA4ZM5pNLS0nTttdfqueee07333qutW7fqjTfe0BtvvCFJCgoK0rBhw/TMM8+oefPm5iuN4+LidNddd0k6dbewe/fu5jD2wsJCDR06VL179+btMQBQiZX17H5VfxsNUIKMBAA4GzISqhqfFKQ6duyoxYsXa/To0ZowYYLi4+P18ssvq0+fPmabkSNH6tixYxo8eLByc3PVpUsXrVy5UpGRkWab9957T0OHDtUtt9yi4OBgpaSkaPr06b44JQAAgAojIwEAgEDhk4KUJN1+++26/fbbz7o9KChIEyZM0IQJE87apk6dOpo/f743ugcAwDl58w0rZe27SVQPrx0P/oWMBACozLz9Froz909Gqrx8VpACAMBfURACAAAojYwET6IgBQCosphrAQAAoDQyEvwBBSkAAMrB28PPAQAAKiMyEi4WBSkAACzEUHcAAIDSyEiBJ9jXHQAAAAAAAEBgYYQUAACVFG+ZAQAAKI3RVpUDBSkAAKqIssJXczFBKQAAwJk5iYzkexSkAAABZe+Cf/i6CxeFCUMBAIA3kZFgNeaQAgAAAAAAgKUoSAEAAAAAAMBSPLIHAKgSCldu9HUXAAAA/A4ZCf6KEVIAAAAAAACwFCOkAAA+xV07AACA0shIqOooSAEA4GO8HQYAAKA0MlLVxiN7AAAAAAAAsBQjpAAAlVJ5hrFzVw0AAAQaMhIqC0ZIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFHNIAYCfO3MegLDuXXzUEwAAAP9BRgIqN0ZIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWCvV1BwAAVdOZr2KWyn4d80+5K9w+N4nqUa59AQAAVEZkJOAUClIAUEWdGVDKCjoAAACBhowE+Ace2QMAAAAAAIClGCEFAAA8pryPIQAAAAQSMlJpFKQAAAgwZ85JAQAAADKS1XzyyN64ceMUFBTktrRo0cLcfuLECaWmpqpu3bqqWbOmUlJSlJ2d7baPrKwsJScnq3r16oqOjtaIESN08uRJq08FAADAY8hIAAAgUPhshNSVV16pNWvW/NmR0D+7kpaWpuXLl2vRokWy2+0aOnSoevbsqc8//1ySVFRUpOTkZMXGxmrTpk06ePCgHnjgAYWFhem5556z/FwAAAA8hYwEAAACgc8KUqGhoYqNjS21Pi8vT2+//bbmz5+vrl27SpLmzJmjli1bavPmzercubNWr16t3bt3a82aNYqJiVGbNm00ceJEjRo1SuPGjVN4eLjVpwMAAOARZCQAABAIfFaQ2rt3r+Li4hQZGSmHw6FJkyapUaNGyszMVGFhoRITE822LVq0UKNGjZSRkaHOnTsrIyNDrVq1UkxMjNkmKSlJQ4YM0a5du9S2bdsyj5mfn6/8/Hzzs8vl8t4JAkAVVtakjPBPexf8w9ddwAUiIwFA5UVGqjzISL7nkzmkOnXqpLlz52rlypWaOXOm9u3bp+uvv15HjhyR0+lUeHi4oqKi3L4TExMjp9MpSXI6nW5Bq2R7ybazmTRpkux2u7k0bNjQsycGAABQAWQkAAAQKHwyQqpHjx7mv6+++mp16tRJjRs31sKFC1WtWjWvHXf06NEaPny4+dnlchG4AMDPlPV2kyZRPcpoef7vAZUNGQkAcDZkJFQ1Pntk73RRUVG6/PLL9f333+vWW29VQUGBcnNz3e4AZmdnm/MpxMbGauvWrW77KHnDTFlzLpSIiIhQRESE508AACxU1lDwsO5dfNATAN5GRgKA8iMjAZWLTx7ZO9PRo0f1ww8/qH79+mrfvr3CwsK0du1ac/uePXuUlZUlh8MhSXI4HNq5c6dycnLMNunp6bLZbEpISLC8/wAAAN5ARgIAAFWVT0ZIPfHEE7rjjjvUuHFjHThwQE8//bRCQkJ0//33y263a+DAgRo+fLjq1Kkjm82mxx57TA6HQ507d5YkdevWTQkJCerbt6+mTJkip9OpMWPGKDU1lbt7AMqtPJNOclcNgJXISAD8ARkJgBV8UpD673//q/vvv1+///676tWrpy5dumjz5s2qV6+eJGnatGkKDg5WSkqK8vPzlZSUpNdff938fkhIiJYtW6YhQ4bI4XCoRo0a6tevnyZMmOCL0wEAlBNvngHOjYwEAIGJjIRA5JOC1IIFC865PTIyUjNmzNCMGTPO2qZx48b65JNPPN01AKiymFcB8H9kJACwHhkJ8A2/mNQcQNXCj7r1qvpdNd4OAwCoCshI1iMjAf7LLyY1BwAAAAAAQOCgIAUAAAAAAABL8cgegIBQ1YdrVxYMKwcAwL+QkfwDGQmBiBFSAAAAAAAAsBQFKQAAAAAAAFiKR/YA4AKdObSdt+OccuZQ8yZRPXzUEwAA4Au8RbBsZCSgbBSkAOAcmFcBAACgNDISgIqiIAUAFqksI6s81U8m5wQAAOVBRgICEwUpAKigqj48vazzI0gBAIDyqCzFpotBRgIqhknNAQAAAAAAYCkKUgAAAAAAALAUj+wBQABjQlIAAIDSyEiA91GQAnBBqvI8AAAAABeLjAQAF4ZH9gAAAAAAAGApClIAAAAAAACwFI/sAaj0qtIQeeYrAAAAnlJWrqisOYmMBFQ9jJACAAAAAACApShIAQAAAAAAwFI8sgfAJ6rSEHIAAABPISMBCBQUpADAC5jnAAAAoDQyEoASFKQqiao0aTOAyuWn3BW+7gIAnBUZCYAvkZOAi0dByg9x1wCAN5QVmJpE9ShXOwDwB2QkAN5yZv4hIwHex6TmAAAAAAAAsBQFKQAAAAAAAFiKR/YAoIpiWDkAAEBpZCTAP1CQquKY6BMAAKA0MhIAAL5FQQqAX+P/YfAu7hACAFA5kZG8i4wEeB8FKQBVDm9hAnynrADfXPw/SQDgL8hJgG+QkUpjUnMAAAAAAABYihFSAFAFMKwcAACgNDIS4L98PkJq8uTJCgoK0rBhw8x1J06cUGpqqurWrauaNWsqJSVF2dnZbt/LyspScnKyqlevrujoaI0YMUInT560uPeojApXbiy1+AN/7BO874fts90WADgdOQlW88c84o99gveRkYCqz6cjpLZt26bZs2fr6quvdluflpam5cuXa9GiRbLb7Ro6dKh69uypzz//XJJUVFSk5ORkxcbGatOmTTp48KAeeOABhYWF6bnnnvPFqQA+w4SWAFA1kZOAiiEjAYB/89kIqaNHj6pPnz568803Vbt2bXN9Xl6e3n77bb300kvq2rWr2rdvrzlz5mjTpk3avHmzJGn16tXavXu33n33XbVp00Y9evTQxIkTNWPGDBUUFPjqlAAAADyCnAQAAKo6nxWkUlNTlZycrMTERLf1mZmZKiwsdFvfokULNWrUSBkZGZKkjIwMtWrVSjExMWabpKQkuVwu7dq1y5oTAAKAvz7eCABVHTkJ8G9kJACoOJ88srdgwQJ98cUX2rZtW6ltTqdT4eHhioqKclsfExMjp9Nptjk9ZJVsL9l2Nvn5+crPzzc/u1yuiz0F+ADDrqu+8oQ5Ah+Aqs4XOYmMVLmV9dtITqpayEgAqiLLC1L79+/X448/rvT0dEVGRlp67EmTJmn8+PGWHtPfEFhQggKf9c58y0vwdkYqAHDnq5xERiIj4U9kJOuRkYDAZHlBKjMzUzk5OWrXrp25rqioSJ999plee+01rVq1SgUFBcrNzXW7+5edna3Y2FhJUmxsrLZu3eq235K3y5S0Kcvo0aM1fPhw87PL5VLDhg09cVqoAAJgYOCuHQCcn69yEhnJf1EcqfrISAACleUFqVtuuUU7d+50W9e/f3+1aNFCo0aNUsOGDRUWFqa1a9cqJSVFkrRnzx5lZWXJ4XBIkhwOh5599lnl5OQoOjpakpSeni6bzaaEhISzHjsiIkIRERFeOjNUZv5YFPPHPgEAvMtXOYmMhLPxxzzij30CAFw4ywtStWrV0lVXXeW2rkaNGqpbt665fuDAgRo+fLjq1Kkjm82mxx57TA6HQ507d5YkdevWTQkJCerbt6+mTJkip9OpMWPGKDU1lTAFXKSLvTtX1e/qnTmEXJKaRPXwQU8ABAJyEuB/yEhlIyMBqCifTGp+PtOmTVNwcLBSUlKUn5+vpKQkvf766+b2kJAQLVu2TEOGDJHD4VCNGjXUr18/TZgwwYe9Lh+GXQP+raxw5WsEPgCnq6o5iYwE+DcyEgBP84uC1Pr1690+R0ZGasaMGZoxY8ZZv9O4cWN98sknXu4ZvKGq3y0Cyqv4+6zSK6OutL4jAPwaOSlwkJGAU8hIQGDwi4IUUJVwhxcAAKA0MhIA4HQUpADAC7w9rN0fh80DAACcDxkJQIlgX3cAAAAAAAAAgYURUkAlwtwSAAAApZGRAKDyoSBVhXjzh7isffvjc/+VpZ+wHm9hAYDARUaqPP2E9chIAHyFgpQXcacG8G/MMQAAvkFGAvwbGQmAFShIwaP88e0phF5YgeAGADgXMhICFRkJwNkwqTkAAAAAAAAsxQipSoo7WgAAAKWRkQAAqBwYIQUAAAAAAABLMUIKXsVdSv94qw1/BwAA/Au/zWQkAAh0FKRQaREgysZ1AQAA5IHSuCYA4F8oSAHl5A938VD18SYaAEBlQ0aCFchIQNVDQQpl4g6Sd68B17dyIxABQODiN5yMhLMjIwG4EBSkfIwfXQAAgNLISAAAVG0UpHDRCIoAAAClkZEAADi/YF93AAAAAAAAAIGFEVLgLh4AAEAZyEgAAHgPI6QAAAAAAABgKUZIwS9xRxIAAKA0MhIAoKqgIAVUAKHQf/HaYQAAfIeM5L/ISAD8BY/sAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWCvV1BwAEhvK8YrhJVA+v7RsAAMAfkZEABCoKUgDOqqwQU55ARPgBcKEKV24stS6sexcf9AQAzo+MBMAqVTkj8cgeAAAAAAAALMUIKQCVCncWAQAASiMjAahsfDJCaubMmbr66qtls9lks9nkcDi0YsWf/wE9ceKEUlNTVbduXdWsWVMpKSnKzs5220dWVpaSk5NVvXp1RUdHa8SIETp58qTVpwLAg37KXVFqAYBAQkYCUBYyEoCqyCcFqQYNGmjy5MnKzMzU9u3b1bVrV915553atWuXJCktLU0ff/yxFi1apA0bNujAgQPq2bOn+f2ioiIlJyeroKBAmzZt0rx58zR37lyNHTvWF6cDAADgEWQkAAAQKIIMwzB83QlJqlOnjl544QX16tVL9erV0/z589WrVy9J0rfffquWLVsqIyNDnTt31ooVK3T77bfrwIEDiomJkSTNmjVLo0aN0q+//qrw8PByHdPlcslutysvL082m83j51TW5GNAZcKEnQA8oXnvZ8/bxsoJO739++9pZCTA/5CRAHhCoGckn09qXlRUpAULFujYsWNyOBzKzMxUYWGhEhMTzTYtWrRQo0aNlJGRIUnKyMhQq1atzKAlSUlJSXK5XOYdRAAAgMqMjAQAAKoyn01qvnPnTjkcDp04cUI1a9bU4sWLlZCQoB07dig8PFxRUVFu7WNiYuR0OiVJTqfTLWiVbC/Zdjb5+fnKz883P7tcLg+dDQAAgGeQkQAAQCDw2QipK664Qjt27NCWLVs0ZMgQ9evXT7t37/bqMSdNmiS73W4uDRs29OrxAAAALhQZCQAABAKfjZAKDw9Xs2bNJEnt27fXtm3b9Morr+i+++5TQUGBcnNz3e4AZmdnKzY2VpIUGxurrVu3uu2v5A0zJW3KMnr0aA0fPtz87HK5CFzABTpz7oPyzJcAACg/MhJQOV3svFIAEKh8PodUieLiYuXn56t9+/YKCwvT2rVrzW179uxRVlaWHA6HJMnhcGjnzp3Kyckx26Snp8tmsykhIeGsx4iIiDBfo1yyAAAA+DMyEgAAqIp8MkJq9OjR6tGjhxo1aqQjR45o/vz5Wr9+vVatWiW73a6BAwdq+PDhqlOnjmw2mx577DE5HA517txZktStWzclJCSob9++mjJlipxOp8aMGaPU1FRFRET44pQAAAAqjIwEAAAChU8KUjk5OXrggQd08OBB2e12XX311Vq1apVuvfVWSdK0adMUHByslJQU5efnKykpSa+//rr5/ZCQEC1btkxDhgyRw+FQjRo11K9fP02YMMEXpwMENF5fDACeQ0YCqhZyEgCcXZBhGIavO+ErLpdLdrtdeXl5XhmaXrhyo8f3CViJEAXAE5r3fva8bcr6zQzr3sUb3fH6739VQEYCzo2MBMATAj0j+c0cUgAAAAAAAAgMPnvLHgDf4m15APxJWaMNmss7d/8A4Fx4Wx4Af1KVMxIjpAAAAAAAAGApClIAAAAAAACwFI/sAQAArzpzMs6sS3b5qCcAAAD+I9AzEgUpAJJ4WwwAAMDZkJMAwPN4ZA8AAAAAAACWYoQUAACwVPH3Wb7uAgAAgN8JtIxEQQqoRC72NcQMMwcAAFUZGQkAKh8e2QMAAAAAAIClGCEFVEHc7QMAACiNjAQA/oMRUgAAAAAAALAUI6QAP3Gxcx8AAABUZWQkAKiaKEgBAACv4hEZAACA0gI9I1GQAixw5n9oyntXL9D/AwUAAKo2MhIABC7mkAIAAAAAAIClGCEFVHLcIQQAACiNjAQA/o0RUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApUJ93QGgqinPK4Z5DTEAAAg0ZCQAwOkYIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApJjUHLsCZE202ierho54AAAD4DzISAOBCMUIKAAAAAAAAlqIgBQAAAAAAAEvxyB4CEsPKAQAASiMjAQCs4pMRUpMmTVLHjh1Vq1YtRUdH66677tKePXvc2pw4cUKpqamqW7euatasqZSUFGVnZ7u1ycrKUnJysqpXr67o6GiNGDFCJ0+etPJUAAAAPIaMBAAAAoVPClIbNmxQamqqNm/erPT0dBUWFqpbt246duyY2SYtLU0ff/yxFi1apA0bNujAgQPq2bOnub2oqEjJyckqKCjQpk2bNG/ePM2dO1djx471xSkBAABUGBkJAAAECp88srdy5Uq3z3PnzlV0dLQyMzN1ww03KC8vT2+//bbmz5+vrl27SpLmzJmjli1bavPmzercubNWr16t3bt3a82aNYqJiVGbNm00ceJEjRo1SuPGjVN4eLgvTg0+duYwc4mh5gCAyoOMBG8hIwEA/I1fzCGVl5cnSapTp44kKTMzU4WFhUpMTDTbtGjRQo0aNVJGRoY6d+6sjIwMtWrVSjExMWabpKQkDRkyRLt27VLbtm1LHSc/P1/5+fnmZ5fL5a1TQoAoK9wBAOApZCRUVmQkAMD5+LwgVVxcrGHDhum6667TVVddJUlyOp0KDw9XVFSUW9uYmBg5nU6zzelBq2R7ybayTJo0SePHj/fwGcAq3ryzx11DAIC/ISOhvMhIAIDKyCdzSJ0uNTVVX3/9tRYsWOD1Y40ePVp5eXnmsn//fq8fEwAA4GKQkQAAQFXm0xFSQ4cO1bJly/TZZ5+pQYMG5vrY2FgVFBQoNzfX7Q5gdna2YmNjzTZbt25121/JG2ZK2pwpIiJCERERHj4LXCir77QxZBwAUNmQkQITGQkAEEh8MkLKMAwNHTpUixcv1rp16xQfH++2vX379goLC9PatWvNdXv27FFWVpYcDockyeFwaOfOncrJyTHbpKeny2azKSEhwZoTQZX2U+6KUgsAAN5ERkJlQEYCAHiCT0ZIpaamav78+froo49Uq1Ytcz4Du92uatWqyW63a+DAgRo+fLjq1Kkjm82mxx57TA6HQ507d5YkdevWTQkJCerbt6+mTJkip9OpMWPGKDU1lTt8ldCZQYa5CQAAgYiMhDMxhxMAoKrySUFq5syZkqSbbrrJbf2cOXP04IMPSpKmTZum4OBgpaSkKD8/X0lJSXr99dfNtiEhIVq2bJmGDBkih8OhGjVqqF+/fpowYYJVpwEAAOBRZCQAABAofFKQMgzjvG0iIyM1Y8YMzZgx46xtGjdurE8++cSTXQMAAPAZMhIAAAgUPn/LHgAAAAAAAAILBSkAAAAAAABYioIUAAAAAAAALOWTOaQQOHgNMAAAQNnISQCAQEZBCn6JgAYAAFA2chIAoCqgIIVKjUAGAABQGhkJAODvmEMKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCnesoeLVtbbW5pE9fBBTwAAAPwHGQkAgPNjhBQAAAAAAAAsRUEKAAAAAAAAluKRPZQ5rLwsDDUHAACBhIwEAID3UJAKQOUNV576HgAAQGVARgIAwDo8sgcAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApJjWvQsqaUNPqt74wqScAAPA3ZCQAAPwPI6QAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKOaSqOOYrAAAAKI2MBACAbzFCCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwlE8KUp999pnuuOMOxcXFKSgoSEuWLHHbbhiGxo4dq/r166tatWpKTEzU3r173docOnRIffr0kc1mU1RUlAYOHKijR49aeBYAAACeRUYCAACBItQXBz127Jhat26tAQMGqGfPnqW2T5kyRdOnT9e8efMUHx+vp556SklJSdq9e7ciIyMlSX369NHBgweVnp6uwsJC9e/fX4MHD9b8+fOtPh1L/JS7wtddAAAAXkZGunBkJAAAKiefFKR69OihHj16lLnNMAy9/PLLGjNmjO68805J0r/+9S/FxMRoyZIl6t27t7755hutXLlS27ZtU4cOHSRJr776qm677TZN/f/Yu+/oKOr9/+OvTQ+QQkuTAKFX6UIoUgwEiCgKIuiVXlRQAUHgKk1UEFHBiuIVuF68NEWRKgTxe4HYkHARMBcwCBqSgEBCkdT5/cEvK0sSSEIyu5s8H+fsOe7sZ2bfM5+EvHzv7MyCBQoJCTFtXwAAAIoLGQkAAJQVDncNqfj4eCUmJioiIsK6zM/PT23btlVMTIwkKSYmRv7+/tagJUkRERFycXHRt99+m++209LSlJqaavMAAABwBmQkAABQmjhcQyoxMVGSFBgYaLM8MDDQ+lpiYqICAgJsXndzc1OlSpWsY/Iyd+5c+fn5WR+hoaHFXD0AAEDJICMBAIDSxOEaUiVp2rRpSklJsT5Onjxp75IAAADsjowEAADMZpdrSN1IUFCQJCkpKUnBwcHW5UlJSWrevLl1THJyss16mZmZOnv2rHX9vHh6esrT07P4iy5mXJwTAABcj4xERgIAoDRxuDOkwsLCFBQUpOjoaOuy1NRUffvttwoPD5ckhYeH6/z589q7d691zI4dO5Sdna22bduaXjMAAEBJIyMBAIDSxC5nSF28eFFHjx61Po+Pj1dsbKwqVaqk6tWra/z48XrhhRdUt25d6y2NQ0JC1LdvX0lSw4YN1bNnT40aNUqLFy9WRkaGxo0bp4EDB3L3GAAA4LTISAAAoKywS0Pqhx9+UNeuXa3PJ06cKEkaMmSIli1bpmeeeUaXLl3S6NGjdf78eXXs2FFbtmyRl5eXdZ0VK1Zo3Lhxuuuuu+Ti4qJ+/frpjTfeMH1fAAAAigsZCQAAlBUWwzAMexdhL6mpqfLz81NKSop8fX2LffsZW3YVaT2ujwAAgFR34Islst2S/vtfGpCRAABwXKUlIzncNaQAAAAAAABQutGQAgAAAAAAgKnscg0p2OL0cwAAgNzISAAAlF40pExGsAIAAMiNjAQAQNnCV/YAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqN3sXUJodP7/Z3iUAAAA4HDISAADgDCkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmMrpG1Jvv/22atasKS8vL7Vt21bfffedvUsCAACwOzISAABwZE7dkFq1apUmTpyomTNn6scff1SzZs0UGRmp5ORke5cGAABgN2QkAADg6Jy6IfXaa69p1KhRGjZsmBo1aqTFixerXLly+vDDD+1dGgAAgN2QkQAAgKNz2oZUenq69u7dq4iICOsyFxcXRUREKCYmxo6VAQAA2A8ZCQAAOAM3exdQVGfOnFFWVpYCAwNtlgcGBurnn3/Oc520tDSlpaVZn6ekpEiSUlNTS6TGi5fTbj4IAADkqaT+Puds1zCMEtm+vZGRAAAo3UpLRnLahlRRzJ07V7Nnz861PDQ01A7VAACAGxrxaolu/sKFC/Lz8yvR93AWZCQAAJxIKclITtuQqlKlilxdXZWUlGSzPCkpSUFBQXmuM23aNE2cONH6PDs7W2fPnlXlypVlsViKtb7U1FSFhobq5MmT8vX1LdZto3gwR86BeXIOzJPjY47+YhiGLly4oJCQEHuXUiLISCgOzJPjY46cA/Pk+Jijv5idkZy2IeXh4aFWrVopOjpaffv2lXQ1PEVHR2vcuHF5ruPp6SlPT0+bZf7+/iVap6+vb5n/oXZ0zJFzYJ6cA/Pk+Jijq0rzmVFkJBQn5snxMUfOgXlyfMzRVWZmJKdtSEnSxIkTNWTIELVu3Vp33HGHFi5cqEuXLmnYsGH2Lg0AAMBuyEgAAMDROXVD6sEHH9Tp06c1Y8YMJSYmqnnz5tqyZUuui3gCAACUJWQkAADg6Jy6ISVJ48aNy/f0c3vy9PTUzJkzc53+DsfBHDkH5sk5ME+Ojzkqe8hIuBXMk+NjjpwD8+T4mCP7sRil9Z7HAAAAAAAAcEgu9i4AAAAAAAAAZQsNKQAAAAAAAJiKhhQAAAAAAABMRUPqFrz99tuqWbOmvLy81LZtW3333Xc3HL9mzRo1aNBAXl5eatq0qTZt2mRSpWVXYebo4MGD6tevn2rWrCmLxaKFCxeaV2gZV5h5WrJkiTp16qSKFSuqYsWKioiIuOnvHopHYebp008/VevWreXv76/y5curefPm+uijj0ystmwq7N+lHCtXrpTFYlHfvn1LtkCUGWQkx0dGcg5kJOdARnJ8ZCTHREOqiFatWqWJEydq5syZ+vHHH9WsWTNFRkYqOTk5z/F79uzRoEGDNGLECO3bt099+/ZV37599dNPP5lcedlR2Dm6fPmyatWqpXnz5ikoKMjkasuuws7Tzp07NWjQIH311VeKiYlRaGioevTood9//93kysuWws5TpUqV9OyzzyomJkb//e9/NWzYMA0bNkxbt241ufKyo7BzlOP48eOaNGmSOnXqZFKlKO3ISI6PjOQcyEjOgYzk+MhIDsxAkdxxxx3G2LFjrc+zsrKMkJAQY+7cuXmOHzBggBEVFWWzrG3btsaYMWNKtM6yrLBzdK0aNWoYr7/+eglWhxy3Mk+GYRiZmZmGj4+PsXz58pIqEcatz5NhGEaLFi2M5557riTKg1G0OcrMzDTat29vfPDBB8aQIUOMe++914RKUdqRkRwfGck5kJGcAxnJ8ZGRHBdnSBVBenq69u7dq4iICOsyFxcXRUREKCYmJs91YmJibMZLUmRkZL7jcWuKMkcwX3HM0+XLl5WRkaFKlSqVVJll3q3Ok2EYio6OVlxcnO68886SLLXMKuocPf/88woICNCIESPMKBNlABnJ8ZGRnAMZyTmQkRwfGcmxudm7AGd05swZZWVlKTAw0GZ5YGCgfv755zzXSUxMzHN8YmJiidVZlhVljmC+4pinKVOmKCQkJNf/zKD4FHWeUlJSdNtttyktLU2urq5655131L1795Iut0wqyhzt2rVL//jHPxQbG2tChSgryEiOj4zkHMhIzoGM5PjISI6NhhQApzVv3jytXLlSO3fulJeXl73LwXV8fHwUGxurixcvKjo6WhMnTlStWrXUpUsXe5dW5l24cEGPPPKIlixZoipVqti7HABAMSMjOTYykuMiI5mLhlQRVKlSRa6urkpKSrJZnpSUlO+FHoOCggo1HremKHME893KPC1YsEDz5s3T9u3bdfvtt5dkmWVeUefJxcVFderUkSQ1b95chw8f1ty5cwlbJaCwc3Ts2DEdP35cffr0sS7Lzs6WJLm5uSkuLk61a9cu2aJRKpGRHB8ZyTmQkZwDGcnxkZEcG9eQKgIPDw+1atVK0dHR1mXZ2dmKjo5WeHh4nuuEh4fbjJekbdu25Tset6YocwTzFXWe5s+frzlz5mjLli1q3bq1GaWWacX1+5Sdna20tLSSKLHMK+wcNWjQQAcOHFBsbKz1cc8996hr166KjY1VaGiomeWjFCEjOT4yknMgIzkHMpLjIyM5OHtfVd1ZrVy50vD09DSWLVtmHDp0yBg9erTh7+9vJCYmGoZhGI888ogxdepU6/jdu3cbbm5uxoIFC4zDhw8bM2fONNzd3Y0DBw7YaxdKvcLOUVpamrFv3z5j3759RnBwsDFp0iRj3759xpEjR+y1C2VCYedp3rx5hoeHh7F27Vrj1KlT1seFCxfstQtlQmHn6aWXXjK+/PJL49ixY8ahQ4eMBQsWGG5ubsaSJUvstQulXmHn6HrcQQbFhYzk+MhIzoGM5BzISI6PjOS4aEjdgjfffNOoXr264eHhYdxxxx3GN998Y32tc+fOxpAhQ2zGr1692qhXr57h4eFhNG7c2Ni4caPJFZc9hZmj+Ph4Q1KuR+fOnc0vvIwpzDzVqFEjz3maOXOm+YWXMYWZp2effdaoU6eO4eXlZVSsWNEIDw83Vq5caYeqy5bC/l26FmELxYmM5PjISM6BjOQcyEiOj4zkmCyGYRjmnpMFAAAAAACAsoxrSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUgFsydOhQ1axZ86bjjh8/LovFomXLlpV4TWXJ448/ru7du9903M6dO2WxWLRz506b5R999JEaNGggd3d3+fv7F+q9Dx06JDc3N/3000+FWg8AgLKAjGRfZCTA8dGQAnBTCQkJmjVrlmJjY+1dCq4RHx+vDz74QH//+9+LtP7PP/+soUOHqnbt2lqyZInef/99SdJ3332nxx9/XK1atZK7u7ssFkue6zdq1EhRUVGaMWNGkfcBAABnRkZyTCWRkbKzs7Vs2TLdc889Cg0NVfny5dWkSRO98MILunLlis36ZCSgYNzsXQAAx5eQkKDZs2erZs2aat68uc1rS5YsUXZ2tn0KK+MWLVqksLAwde3atUjr79y5U9nZ2Vq0aJHq1KljXb5p0yZ98MEHuv3221WrVi3973//y3cbjz76qHr37q1jx46pdu3aRaoDAABnRUZyTCWRkS5evKhhw4apXbt2evTRRxUQEKCYmBjNnDlT0dHR2rFjh82HeGQk4OY4QwrALXF3d5enp6e9yyhzMjIytGLFCg0YMKDI20hOTpakXKehP/bYY0pJSdEPP/xw01PdIyIiVLFiRS1fvrzIdQAAUBqRkeyjpDKSh4eHdu/erZiYGD377LMaNWqUPvzwQ82cOVM7d+5UdHS0zTbISMDN0ZACnMSsWbNksVj0888/a8CAAfL19VXlypX11FNP5TpNWJL+9a9/qVWrVvL29lalSpU0cOBAnTx50mZMly5d1KRJE+3du1ft27eXt7e3wsLCtHjxYuuYnTt3qk2bNpKkYcOGyWKx2FznIK/rI5w/f15Dhw6Vn5+f/P39NWTIEJ0/fz7P/fr555/Vv39/VapUSV5eXmrdurXWr19f6OOTlpamCRMmqGrVqvLx8dE999yj3377TRaLRbNmzSrwdnKu47BgwQK9/fbbqlWrlsqVK6cePXro5MmTMgxDc+bMUbVq1eTt7a17771XZ8+etdnG559/rqioKIWEhMjT01O1a9fWnDlzlJWVZR1z+PBheXt7a/DgwTbr7tq1S66urpoyZcoN69y1a5fOnDmjiIiIXK/99ttv6tu3r8qXL6+AgABNmDBBaWlpNmNq1qypmTNnSpKqVq1qc5wCAwPl7e1doOPl7u6uLl266PPPPy/QeAAAihsZ6cbISH+5lYzk4eGh9u3b59rmfffdZ637WmQk4Ob4yh7gZAYMGKCaNWtq7ty5+uabb/TGG2/o3Llz+uc//2kd8+KLL2r69OkaMGCARo4cqdOnT+vNN9/UnXfeqX379tl82nPu3Dn17t1bAwYM0KBBg7R69Wo99thj8vDw0PDhw9WwYUM9//zzmjFjhkaPHq1OnTpJUp5/kCXJMAzde++92rVrlx599FE1bNhQ69at05AhQ3KNPXjwoDp06KDbbrtNU6dOVfny5bV69Wr17dtXn3zyifUPfEGMHDlS//rXv/TQQw+pffv22rFjh6Kiogq8/vVWrFih9PR0PfHEEzp79qzmz5+vAQMGqFu3btq5c6emTJmio0eP6s0339SkSZP04YcfWtddtmyZKlSooIkTJ6pChQrasWOHZsyYodTUVL3yyiuSpIYNG2rOnDmaPHmy+vfvr3vuuUeXLl3S0KFD1aBBAz3//PM3rG/Pnj2yWCxq0aKFzfI///xTd911l06cOKEnn3xSISEh+uijj7Rjxw6bcQsXLtQ///lPrVu3Tu+++64qVKig22+/vUjHqlWrVvr888+VmpoqX1/fIm0DAIBbRUbKGxnpqpLKSImJiZKkKlWq5HqNjATchAHAKcycOdOQZNxzzz02yx9//HFDkrF//37DMAzj+PHjhqurq/Hiiy/ajDtw4IDh5uZms7xz586GJOPVV1+1LktLSzOaN29uBAQEGOnp6YZhGMb3339vSDKWLl2aq64hQ4YYNWrUsD7/7LPPDEnG/PnzrcsyMzONTp065drGXXfdZTRt2tS4cuWKdVl2drbRvn17o27dugU+NrGxsYYk4/HHH7dZ/tBDDxmSjJkzZxZ4W/Hx8YYko2rVqsb58+ety6dNm2ZIMpo1a2ZkZGRYlw8aNMjw8PCw2YfLly/n2u6YMWOMcuXK2YzLysoyOnbsaAQGBhpnzpwxxo4da7i5uRnff//9Tev829/+ZlSuXDnX8oULFxqSjNWrV1uXXbp0yahTp44hyfjqq6+sy3N+pk6fPp3v+4wdO9a42Z+Kjz/+2JBkfPvttzetGwCA4kZGyh8Z6S/FnZFyREREGL6+vsa5c+dyvUZGAm6Mr+wBTmbs2LE2z5944glJVy9ELUmffvqpsrOzNWDAAJ05c8b6CAoKUt26dfXVV1/ZrO/m5qYxY8ZYn3t4eGjMmDFKTk7W3r17C13fpk2b5Obmpscee8y6zNXV1VpnjrNnz2rHjh0aMGCALly4YK3zjz/+UGRkpI4cOaLff/+9wO8pSU8++aTN8vHjxxe6/hwPPPCA/Pz8rM/btm0rSfrb3/4mNzc3m+Xp6ek2tV77dbecfevUqZMuX76sn3/+2fqai4uLli1bposXL6pXr1565513NG3aNLVu3fqm9f3xxx+qWLFiruWbNm1ScHCw+vfvb11Wrlw5jR49uoB7Xng5dZw5c6bE3gMAgJshI+X9nhIZSSqZjPTSSy9p+/btmjdvXq5rckpkJOBm+Moe4GTq1q1r87x27dpycXHR8ePHJUlHjhyRYRi5xuVwd3e3eR4SEqLy5cvbLKtXr56kq9cKaNeuXaHq+/XXXxUcHKwKFSrYLK9fv77N86NHj8owDE2fPl3Tp0/Pc1vJycm67bbbCvSeLi4uue5gcv17Fkb16tVtnucEr9DQ0DyXnzt3zrrs4MGDeu6557Rjxw6lpqbajE9JSbF5Xrt2bc2aNUuTJ09WkyZN8j0WeTEMI9eyX3/9VXXq1LG5y4t0a8eioHVc/54AAJiJjJT3e5KRrirujLRq1So999xzGjFihE2TMa86yEhA3mhIAU7u+j9w2dnZslgs2rx5s1xdXXONvz4E2UvObZAnTZqkyMjIPMfk3GbXHvI6djdanhM4zp8/r86dO8vX11fPP/+8ateuLS8vL/3444+aMmVKnrd//vLLLyVdvXX0H3/8oaCgoJvWV7lyZZuAZ085deR17QQAAOyFjFQyyEjStm3bNHjwYEVFRdlc6P56ZCTgxmhIAU7myJEjCgsLsz4/evSosrOzrXdxqV27tgzDUFhYmPVTvBtJSEjQpUuXbD4B/N///idJ1m0W5lOdGjVqKDo6WhcvXrQJdnFxcTbjatWqJenqp5F53QWlMGrUqKHs7GwdO3bM5lOu69/TDDt37tQff/yhTz/9VHfeead1eXx8fJ7jFy9erG3btunFF1/U3LlzNWbMmALdjaVBgwZasWKFUlJSbE6br1Gjhn766ScZhmEzbyV5LOLj4+Xi4lKgnzcAAEoKGSnv9yQjXVVcGenbb7/Vfffdp9atW2v16tU2X1O8HhkJuDGuIQU4mbffftvm+ZtvvilJ6tWrlyTp/vvvl6urq2bPnp3rdGXDMPTHH3/YLMvMzNR7771nfZ6enq733ntPVatWVatWrSTJGsTyuy3xtXr37q3MzEy9++671mVZWVnWOnMEBASoS5cueu+993Tq1Klc2zl9+vRN3ytHzr6/8cYbNssXLlxY4G0Ul5xPB6899unp6XrnnXdyjY2Pj9fkyZPVr18//f3vf9eCBQu0fv16m7sB5Sc8PFyGYeS6hkXv3r2VkJCgtWvXWpddvnxZ77//flF36ab27t2rxo0b24Q+AADMRkbKjYz0l+LISIcPH1ZUVJRq1qypDRs22FwTKy9kJODGOEMKcDLx8fG655571LNnT8XExFhv49usWTNJVz/9e+GFFzRt2jQdP35cffv2lY+Pj+Lj47Vu3TqNHj1akyZNsm4vJCREL7/8so4fP6569epp1apVio2N1fvvv2+9lkLt2rXl7++vxYsXy8fHR+XLl1fbtm1tPoXM0adPH3Xo0EFTp07V8ePH1ahRI3366ae5rgsgXQ2OHTt2VNOmTTVq1CjVqlVLSUlJiomJ0W+//ab9+/cX6Jg0b95cgwYN0jvvvKOUlBS1b99e0dHROnr0aFEO8S1p3769KlasqCFDhujJJ5+UxWLRRx99lGfwHT58uLy9va3BdMyYMfrkk0/01FNPKSIiQiEhIfm+T8eOHVW5cmVt375d3bp1sy4fNWqU3nrrLQ0ePFh79+5VcHCwPvroI5UrV67A+/Drr7/qo48+kiT98MMPkqQXXnhB0tVPFx955BHr2IyMDH399dd6/PHHC7x9AABKAhkpNzJS8WWkCxcuKDIyUufOndPkyZO1ceNGm9dr166t8PBw63MyElAAZt3OD8Ctybn97KFDh4z+/fsbPj4+RsWKFY1x48YZf/75Z67xn3zyidGxY0ejfPnyRvny5Y0GDRoYY8eONeLi4qxjOnfubDRu3Nj44YcfjPDwcMPLy8uoUaOG8dZbb+Xa3ueff240atTIcHNzs7k18fW3NDYMw/jjjz+MRx55xPD19TX8/PyMRx55xNi3b1+et0U+duyYMXjwYCMoKMhwd3c3brvtNuPuu+821q5dW6jj8+effxpPPvmkUblyZaN8+fJGnz59jJMnTxb5lsavvPKKzfKvvvrKkGSsWbPGZvnSpUsNSTa3Id69e7fRrl07w9vb2wgJCTGeeeYZY+vWrTa3FF60aJEhyfjkk09stnfixAnD19fX6N27901rffLJJ406derkWv7rr78a99xzj1GuXDmjSpUqxlNPPWVs2bKlwLc0ztnXvB6dO3e2Gbt582ZDknHkyJGb1gsAQEkgI90YGekvt5KRcvY/v8eQIUNs3ouMBNycxTDyuAUBAIcza9YszZ49W6dPny62CyN26dJFZ86c0U8//VQs23NEFotFM2fO1KxZs+xdSrH75Zdf1KBBA23evFl33XWXXWro27evLBaL1q1bZ5f3BwCAjFQ0ZKSSRUYCbo6v7AGAk6pVq5ZGjBihefPm2SVsHT58WBs2bFBsbKzp7w0AAJAfMhLgHGhIAXBoiYmJN3zd29u7QBeKzMrKuulFQCtUqOAwt3wuqGsvjGq2hg0bKjMz027vDwBAWUZGujEyEuD4aEgBcGjBwcE3fH3IkCFatmzZTbdz8uTJPC8weq3Seto6AAAofchIAJwd15AC4NC2b99+w9dDQkLUqFGjm27nypUr2rVr1w3H1KpVS7Vq1SpUfQAAAPZARgLg7GhIAQAAAAAAwFQu9i4AAAAAAAAAZUuZvoZUdna2EhIS5OPjI4vFYu9yAACACQzD0IULFxQSEiIXFz6bywsZCQCAssfsjFSmG1IJCQkKDQ21dxkAAMAOTp48qWrVqtm7DIdERgIAoOwyKyOV6YaUj4+PpKsH29fX187VAAAAM6Smpio0NNSaA5AbGQkAgLLH7IxUphtSOaeg+/r6ErYAAChj+Cpa/shIAACUXWZlJC6cAAAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVGX6GlIAANxIVlaWMjIy7F0GCsnd3V2urq72LgMAgFKLjOScHC0j0ZACAOA6hmEoMTFR58+ft3cpKCJ/f38FBQVx4XIAAIoRGcn5OVJGoiEFAMB1coJWQECAypUr5xB/sFEwhmHo8uXLSk5OliQFBwfbuSIAAEoPMpLzcsSMREMKAIBrZGVlWYNW5cqV7V0OisDb21uSlJycrICAAIc6NR0AAGdFRnJ+jpaRuKg5AADXyLkeQrly5excCW5FzvxxfQsAAIoHGal0cKSMREMKAIA8cAq6c2P+AAAoGfyNdW6ONH80pAAAAAAAAGAqGlIAADg5i8Vyw8esWbPsWttnn312S9t4//331aVLF/n6+spisXBnHwAAUGClOSedPXtWTzzxhOrXry9vb29Vr15dTz75pFJSUoqvyBLERc0BACigjC27THsv954dCzz21KlT1v9etWqVZsyYobi4OOuyChUqFOq909PT5eHhUah1StLly5fVs2dP9ezZU9OmTbN3OQAA4DpmZiSJnJQjISFBCQkJWrBggRo1aqRff/1Vjz76qBISErR27Vp7l3dTnCFVgjK27Mr1AACguAUFBVkffn5+slgs1ueXLl3Sww8/rMDAQFWoUEFt2rTR9u3bbdavWbOm5syZo8GDB8vX11ejR4+WJC1ZskShoaEqV66c7rvvPr322mvy9/e3Wffzzz9Xy5Yt5eXlpVq1amn27NnKzMy0bleS7rvvPlksFuvz/fv3q2vXrvLx8ZGvr69atWqlH374Id/9Gz9+vKZOnap27doVzwGD3ZGRAABmKc05qUmTJvrkk0/Up08f1a5dW926ddOLL76oL774wvo+joyGFAAApdjFixfVu3dvRUdHa9++ferZs6f69OmjEydO2IxbsGCBmjVrpn379mn69OnavXu3Hn30UT311FOKjY1V9+7d9eKLL9qs85///EeDBw/WU089pUOHDum9997TsmXLrOO+//57SdLSpUt16tQp6/OHH35Y1apV0/fff6+9e/dq6tSpcnd3N+FoAAAA/KU05qSUlBT5+vrKzc3xvxDn+BUCAIAia9asmZo1a2Z9PmfOHK1bt07r16/XuHHjrMu7deump59+2vr82WefVa9evTRp0iRJUr169bRnzx5t2LDBOmb27NmaOnWqhgwZIkmqVauW5syZo2eeeUYzZ85U1apVJUn+/v4KCgqyrnfixAlNnjxZDRo0kCTVrVu3BPYcAADgxkpbTjpz5ozmzJljPYvL0XGGFAAApdjFixc1adIkNWzYUP7+/qpQoYIOHz6c65O/1q1b2zyPi4vTHXfcYbPs+uf79+/X888/rwoVKlgfo0aN0qlTp3T58uV8a5o4caJGjhypiIgIzZs3T8eOHbvFvQQAACi80pSTUlNTFRUVpUaNGtn1Qu2FUSINqd9//11/+9vfVLlyZXl7e6tp06Y233k0DEMzZsxQcHCwvL29FRERoSNHjths4+zZs3r44Yfl6+srf39/jRgxQhcvXrQZ89///ledOnWSl5eXQkNDNX/+/JLYHQAAnNakSZO0bt06vfTSS/rPf/6j2NhYNW3aVOnp6TbjypcvX+htX7x4UbNnz1ZsbKz1ceDAAR05ckReXl75rjdr1iwdPHhQUVFR2rFjhxo1aqR169YV+v2dERkJAADHUVpy0oULF9SzZ0/5+Pho3bp1TnMphGL/yt65c+fUoUMHde3aVZs3b1bVqlV15MgRVaxY0Tpm/vz5euONN7R8+XKFhYVp+vTpioyM1KFDh6wT8/DDD+vUqVPatm2bMjIyNGzYMI0ePVoff/yxpKvdvx49eigiIkKLFy/WgQMHNHz4cPn7+zvN6WkAAJS03bt3a+jQobrvvvskXQ1Hx48fv+l69evXt17LIMf1z1u2bKm4uDjVqVMn3+24u7srKysr1/J69eqpXr16mjBhggYNGqSlS5daayytyEgAADiW0pCTUlNTFRkZKU9PT61fv/6GzS5HU+wNqZdfflmhoaFaunSpdVlYWJj1vw3D0MKFC/Xcc8/p3nvvlST985//VGBgoD777DMNHDhQhw8f1pYtW/T9999bT41788031bt3by1YsEAhISFasWKF0tPT9eGHH8rDw0ONGzdWbGysXnvtNcIWAAD/X926dfXpp5+qT58+slgsmj59urKzs2+63hNPPKE777xTr732mvr06aMdO3Zo8+bNslgs1jEzZszQ3XffrerVq6t///5ycXHR/v379dNPP+mFF16QdPUOMtHR0erQoYM8PT3l5eWlyZMnq3///goLC9Nvv/2m77//Xv369cu3lsTERCUmJuro0aOSpAMHDsjHx0fVq1dXpUqVbvEImYeMBACAY3H2nJTzIdTly5f1r3/9S6mpqUpNTZUkVa1aVa6ursVwlEpOsX9lb/369WrdurUeeOABBQQEqEWLFlqyZIn19fj4eCUmJioiIsK6zM/PT23btlVMTIwkKSYmRv7+/jbf04yIiJCLi4u+/fZb65g777xTHh4e1jGRkZGKi4vTuXPn8qwtLS3NOkHXThQAAKXVa6+9pooVK6p9+/bq06ePIiMj1bJly5uu16FDBy1evFivvfaamjVrpi1btmjChAk2n7pFRkZqw4YN+vLLL9WmTRu1a9dOr7/+umrUqGEd8+qrr2rbtm0KDQ1VixYt5Orqqj/++EODBw9WvXr1NGDAAPXq1UuzZ8/Ot5bFixerRYsWGjVqlCTpzjvvVIsWLbR+/fpbODLmIyMBAOBYnD0n/fjjj/r222914MAB1alTR8HBwdbHyZMnb/0AlbBiP0Pql19+0bvvvquJEyfq73//u77//ns9+eST8vDw0JAhQ5SYmChJCgwMtFkvMDDQ+lpiYqICAgJsC3VzU6VKlWzGXPup4rXbTExMtDn9PcfcuXNvGHgBALgR954d7V3CTQ0dOlRDhw61Pq9Zs6Z27NhhM2bs2LE2z/M7NX3UqFHWJlDO8+tPO4+MjFRkZGS+9fTp00d9+vSxWfbvf//7RruQy6xZs5zm4pw3QkYCAJRWzpCRpNKXk7p06SLDMAo83tEUe0MqOztbrVu31ksvvSRJatGihX766SctXrzYertDe5k2bZomTpxofZ6amqrQ0FA7VgQAgONasGCBunfvrvLly2vz5s1avny53nnnHXuX5bTISAAAlB7kpFtX7F/ZCw4OVqNGjWyWNWzY0HrbxKCgIElSUlKSzZikpCTra0FBQUpOTrZ5PTMzU2fPnrUZk9c2rn2P63l6esrX19fmAQAA8vbdd9+pe/fuatq0qRYvXqw33nhDI0eOtHdZTouMBABA6UFOunXF3pDq0KGD4uLibJb973//s35PMiwsTEFBQYqOjra+npqaqm+//Vbh4eGSpPDwcJ0/f1579+61jtmxY4eys7PVtm1b65j/+7//U0ZGhnXMtm3bVL9+/TxPRQcAAIWzevVqJScn688//9TBgwf16KOP2rskp0ZGAgCg9CAn3bpib0hNmDBB33zzjV566SUdPXpUH3/8sd5//33r9zAtFovGjx+vF154QevXr9eBAwc0ePBghYSEqG/fvpKuflrYs2dPjRo1St999512796tcePGaeDAgQoJCZEkPfTQQ/Lw8NCIESN08OBBrVq1SosWLbI53RwAAMBRkJEAAAD+UuzXkGrTpo3WrVunadOm6fnnn1dYWJgWLlyohx9+2DrmmWee0aVLlzR69GidP39eHTt21JYtW2yuSL9ixQqNGzdOd911l1xcXNSvXz+98cYb1tf9/Pz05ZdfauzYsWrVqpWqVKmiGTNmcDtjAADgkMhIAAAAf7EYznxJ9luUmpoqPz8/paSklMi1EjK27Mq1zFnuPgAAZdWVK1cUHx+vsLAwmyYAnMuN5rGk//6XBmQkAMD1yEilgyNlpGL/yh4AAAAAAABwIzSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAClwNChQ2WxWGSxWOTu7q7AwEB1795dH374obKzs+1d3i05ePCg+vXrp5o1a8pisWjhwoX2LgkAADiR0pyTlixZok6dOqlixYqqWLGiIiIi9N1339m7rAJxs3cBAAA4i2M/vGfae9VuPabQ6/Ts2VNLly5VVlaWkpKStGXLFj311FNau3at1q9fLzc35/yzf/nyZdWqVUsPPPCAJkyYYO9yAADAdczMSBI56Vo7d+7UoEGD1L59e3l5eenll19Wjx49dPDgQd122232Lu+GOEMKAIBSwtPTU0FBQbrtttvUsmVL/f3vf9fnn3+uzZs3a9myZdZx58+f18iRI1W1alX5+vqqW7du2r9/v822vvjiC7Vp00ZeXl6qUqWK7rvvPutr586d0+DBg1WxYkWVK1dOvXr10pEjRyRJly5dkq+vr9auXWuzvc8++0zly5fXhQsXlJ6ernHjxik4OFheXl6qUaOG5s6dm+9+tWnTRq+88ooGDhwoT0/PYjhSAACgrCmtOWnFihV6/PHH1bx5czVo0EAffPCBsrOzFR0dXQxHrWTRkAIAoBTr1q2bmjVrpk8//dS67IEHHlBycrI2b96svXv3qmXLlrrrrrt09uxZSdLGjRt13333qXfv3tq3b5+io6N1xx13WNcfOnSofvjhB61fv14xMTEyDEO9e/dWRkaGypcvr4EDB2rp0qU2dSxdulT9+/eXj4+P3njjDa1fv16rV69WXFycVqxYoZo1a5pyPAAAAHKUxpx0+fJlZWRkqFKlSrd2cEzgnOekAQCAAmvQoIH++9//SpJ27dql7777TsnJydazjRYsWKDPPvtMa9eu1ejRo/Xiiy9q4MCBmj17tnUbzZo1kyQdOXJE69ev1+7du9W+fXtJVz+ZCw0N1WeffaYHHnhAI0eOVPv27XXq1CkFBwcrOTlZmzZt0vbt2yVJJ06cUN26ddWxY0dZLBbVqFHDzMMBAABgVdpy0pQpUxQSEqKIiIhbPjYljTOkAAAo5QzDkMVikSTt379fFy9eVOXKlVWhQgXrIz4+XseOHZMkxcbG6q677spzW4cPH5abm5vatm1rXVa5cmXVr19fhw8fliTdcccdaty4sZYvXy5J+te//qUaNWrozjvvlHT1k8PY2FjVr19fTz75pL788ssS23cAAIAbKU05ad68eVq5cqXWrVsnLy+vwh8Mk3GGFAAApdzhw4cVFhYmSbp48aKCg4O1c+fOXOP8/f0lSd7e3rf8niNHjtTbb7+tqVOnaunSpRo2bJg17LVs2VLx8fHavHmztm/frgEDBigiIiLX9RQAAABKWmnJSQsWLNC8efO0fft23X777bdcoxk4QwoAgFJsx44dOnDggPr16yfpashJTEyUm5ub6tSpY/OoUqWKJOn222/P90KYDRs2VGZmpr799lvrsj/++ENxcXFq1KiRddnf/vY3/frrr3rjjTd06NAhDRkyxGY7vr6+evDBB7VkyRKtWrVKn3zyifXaDAAAAGYoLTlp/vz5mjNnjrZs2aLWrVsX+XiYjTOkAAAoJdLS0pSYmGhzO+O5c+fq7rvv1uDBgyVJERERCg8PV9++fTV//nzVq1dPCQkJ1gt0tm7dWjNnztRdd92l2rVra+DAgcrMzNSmTZs0ZcoU1a1bV/fee69GjRql9957Tz4+Ppo6dapuu+023XvvvdZaKlasqPvvv1+TJ09Wjx49VK1aNetrr732moKDg9WiRQu5uLhozZo1CgoKsn7yeL309HQdOnTI+t+///67YmNjVaFCBdWpU6fkDigAACg1SmtOevnllzVjxgx9/PHHqlmzphITEyXJ+nVDR8YZUgAAlBJbtmxRcHCwatasqZ49e+qrr77SG2+8oc8//1yurq6SJIvFok2bNunOO+/UsGHDVK9ePQ0cOFC//vqrAgMDJUldunTRmjVrtH79ejVv3lzdunXTd999Z32fpUuXqlWrVrr77rsVHh4uwzC0adMmubu729QzYsQIpaena/jw4TbLfXx8NH/+fLVu3Vpt2rTR8ePHtWnTJrm45B1LEhIS1KJFC7Vo0UKnTp3SggUL1KJFC40cObI4Dx8AACjFSmtOevfdd5Wenq7+/fsrODjY+liwYEFxHr4SYTEMw7B3EfaSmpoqPz8/paSkyNfXt9i3n7FlV65l7j07Fvv7AACKz5UrVxQfH6+wsDCnuBikI/voo480YcIEJSQkyMPDw9T3vtE8lvTf/9KAjAQAuB4ZqXjZKyc5UkbiK3sAAKBYXb58WadOndK8efM0ZswY05tRAAAAjoqc9Be+sgcAAIrV/Pnz1aBBAwUFBWnatGn2LgcAAMBhkJP+QkMKAAAUq1mzZikjI0PR0dEOfzFNAAAAM5GT/kJDCgAAAAAAAKaiIQUAAAAAAABT0ZACACAPZfgmtKUC8wcAQMngb6xzc6T5oyEFAMA13N3dJV29AwqcV8785cwnAAC4NWSk0sGRMpKbvQsAAMCRuLq6yt/fX8nJyZKkcuXKyWKx2LkqFJRhGLp8+bKSk5Pl7+8vV1dXe5cEAECpQEZybo6YkWhIAQBwnaCgIEmyBi44H39/f+s8AgCA4kFGcn6OlJFoSAEAcB2LxaLg4GAFBAQoIyPD3uWgkNzd3R3iUz8AAEobMpJzc7SMREMKAIB8uLq6OtQfbQAAAEdARkJx4KLmAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKYq9obUrFmzZLFYbB4NGjSwvn7lyhWNHTtWlStXVoUKFdSvXz8lJSXZbOPEiROKiopSuXLlFBAQoMmTJyszM9NmzM6dO9WyZUt5enqqTp06WrZsWXHvCgAAQLEhIwEAAPylRM6Qaty4sU6dOmV97Nq1y/rahAkT9MUXX2jNmjX6+uuvlZCQoPvvv9/6elZWlqKiopSenq49e/Zo+fLlWrZsmWbMmGEdEx8fr6ioKHXt2lWxsbEaP368Ro4cqa1bt5bE7gAAABQLMhIAAMBVbiWyUTc3BQUF5VqekpKif/zjH/r444/VrVs3SdLSpUvVsGFDffPNN2rXrp2+/PJLHTp0SNu3b1dgYKCaN2+uOXPmaMqUKZo1a5Y8PDy0ePFihYWF6dVXX5UkNWzYULt27dLrr7+uyMjIktglAACAW0ZGAgAAuKpEzpA6cuSIQkJCVKtWLT388MM6ceKEJGnv3r3KyMhQRESEdWyDBg1UvXp1xcTESJJiYmLUtGlTBQYGWsdERkYqNTVVBw8etI65dhs5Y3K2AQAA4IjISAAAAFcV+xlSbdu21bJly1S/fn2dOnVKs2fPVqdOnfTTTz8pMTFRHh4e8vf3t1knMDBQiYmJkqTExESboJXzes5rNxqTmpqqP//8U97e3nnWlpaWprS0NOvz1NTUW9pXAACAgiIjAQAA/KXYG1K9evWy/vftt9+utm3bqkaNGlq9enW+Icgsc+fO1ezZs+1aAwAAKJvISAAAAH8pka/sXcvf31/16tXT0aNHFRQUpPT0dJ0/f95mTFJSkvV6CkFBQbnuKJPz/GZjfH19bxjopk2bppSUFOvj5MmTt7p7AAAARUJGAgAAZVmJN6QuXryoY8eOKTg4WK1atZK7u7uio6Otr8fFxenEiRMKDw+XJIWHh+vAgQNKTk62jtm2bZt8fX3VqFEj65hrt5EzJmcb+fH09JSvr6/NAwAAwB7ISAAAoCwr9obUpEmT9PXXX+v48ePas2eP7rvvPrm6umrQoEHy8/PTiBEjNHHiRH311Vfau3evhg0bpvDwcLVr106S1KNHDzVq1EiPPPKI9u/fr61bt+q5557T2LFj5enpKUl69NFH9csvv+iZZ57Rzz//rHfeeUerV6/WhAkTint3AAAAigUZCQAA4C/Ffg2p3377TYMGDdIff/yhqlWrqmPHjvrmm29UtWpVSdLrr78uFxcX9evXT2lpaYqMjNQ777xjXd/V1VUbNmzQY489pvDwcJUvX15DhgzR888/bx0TFhamjRs3asKECVq0aJGqVaumDz74gNsZAwAAh0VGAgAA+IvFMAzD3kXYS2pqqvz8/JSSklIip6ZnbNmVa5l7z47F/j4AAKDgSvrvf2lARgIAoOwxOyOV+DWkAAAAAAAAgGvRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExV4g2pefPmyWKxaPz48dZlV65c0dixY1W5cmVVqFBB/fr1U1JSks16J06cUFRUlMqVK6eAgABNnjxZmZmZNmN27typli1bytPTU3Xq1NGyZctKencAAACKBRkJAACUZSXakPr+++/13nvv6fbbb7dZPmHCBH3xxRdas2aNvv76ayUkJOj++++3vp6VlaWoqCilp6drz549Wr58uZYtW6YZM2ZYx8THxysqKkpdu3ZVbGysxo8fr5EjR2rr1q0luUsAAAC3jIwEAADKOothGEZJbPjixYtq2bKl3nnnHb3wwgtq3ry5Fi5cqJSUFFWtWlUff/yx+vfvL0n6+eef1bBhQ8XExKhdu3bavHmz7r77biUkJCgwMFCStHjxYk2ZMkWnT5+Wh4eHpkyZoo0bN+qnn36yvufAgQN1/vx5bdmypUA1pqamys/PTykpKfL19S32Y5CxZVeuZe49Oxb7+wAAgIIr6b//N0NGIiMBAOCIzM5IJXaG1NixYxUVFaWIiAib5Xv37lVGRobN8gYNGqh69eqKiYmRJMXExKhp06bWoCVJkZGRSk1N1cGDB61jrt92ZGSkdRt5SUtLU2pqqs0DAADATGQkAAAAya0kNrpy5Ur9+OOP+v7773O9lpiYKA8PD/n7+9ssDwwMVGJionXMtUEr5/Wc1240JjU1VX/++ae8vb1zvffcuXM1e/bsIu8XAADArSAjAQAAXFXsZ0idPHlSTz31lFasWCEvL6/i3vwtmTZtmlJSUqyPkydP2rskAABQRpCRAAAA/lLsDam9e/cqOTlZLVu2lJubm9zc3PT111/rjTfekJubmwIDA5Wenq7z58/brJeUlKSgoCBJUlBQUK47yuQ8v9kYX1/fPD/5kyRPT0/5+vraPAAAAMxARgIAAPhLsTek7rrrLh04cECxsbHWR+vWrfXwww9b/9vd3V3R0dHWdeLi4nTixAmFh4dLksLDw3XgwAElJydbx2zbtk2+vr5q1KiRdcy128gZk7MNAAAAR0JGAgAA+EuxX0PKx8dHTZo0sVlWvnx5Va5c2bp8xIgRmjhxoipVqiRfX1898cQTCg8PV7t27SRJPXr0UKNGjfTII49o/vz5SkxM1HPPPaexY8fK09NTkvToo4/qrbfe0jPPPKPhw4drx44dWr16tTZu3FjcuwQAAHDLyEgAAAB/KZGLmt/M66+/LhcXF/Xr109paWmKjIzUO++8Y33d1dVVGzZs0GOPPabw8HCVL19eQ4YM0fPPP28dExYWpo0bN2rChAlatGiRqlWrpg8++ECRkZH22CUAAIBbRkYCAABlhcUwDMPeRdhLamqq/Pz8lJKSUiLXSsjYsivXMveeHYv9fQAAQMGV9N//0oCMBABA2WN2Rir2a0gBAAAAAAAAN0JDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgqmJvSL377ru6/fbb5evrK19fX4WHh2vz5s3W169cuaKxY8eqcuXKqlChgvr166ekpCSbbZw4cUJRUVEqV66cAgICNHnyZGVmZtqM2blzp1q2bClPT0/VqVNHy5YtK+5dAQAAKDZkJAAAgL8Ue0OqWrVqmjdvnvbu3asffvhB3bp107333quDBw9KkiZMmKAvvvhCa9as0ddff62EhATdf//91vWzsrIUFRWl9PR07dmzR8uXL9eyZcs0Y8YM65j4+HhFRUWpa9euio2N1fjx4zVy5Eht3bq1uHcHAACgWJCRAAAA/mIxDMMo6TepVKmSXnnlFfXv319Vq1bVxx9/rP79+0uSfv75ZzVs2FAxMTFq166dNm/erLvvvlsJCQkKDAyUJC1evFhTpkzR6dOn5eHhoSlTpmjjxo366aefrO8xcOBAnT9/Xlu2bClwXampqfLz81NKSop8fX2Ld6clZWzZlWuZe8+Oxf4+AACg4Er6739hkJH+QkYCAMC+zM5IJXoNqaysLK1cuVKXLl1SeHi49u7dq4yMDEVERFjHNGjQQNWrV1dMTIwkKSYmRk2bNrUGLUmKjIxUamqq9RPEmJgYm23kjMnZBgAAgCMjIwEAgLLOrSQ2euDAAYWHh+vKlSuqUKGC1q1bp0aNGik2NlYeHh7y9/e3GR8YGKjExERJUmJiok3Qynk957UbjUlNTdWff/4pb2/vPOtKS0tTWlqa9Xlqauot7ScAAEBhkJEAAACuKpEzpOrXr6/Y2Fh9++23euyxxzRkyBAdOnSoJN6qUObOnSs/Pz/rIzQ01N4lAQCAMoSMBAAAcFWJNKQ8PDxUp04dtWrVSnPnzlWzZs20aNEiBQUFKT09XefPn7cZn5SUpKCgIElSUFBQrjvK5Dy/2RhfX998P/mTpGnTpiklJcX6OHny5K3uKgAAQIGRkQAAAK4q0WtI5cjOzlZaWppatWold3d3RUdHW1+Li4vTiRMnFB4eLkkKDw/XgQMHlJycbB2zbds2+fr6qlGjRtYx124jZ0zONvLj6elpvdVyzgMAAMBeyEgAAKCsKvZrSE2bNk29evVS9erVdeHCBX388cfauXOntm7dKj8/P40YMUITJ05UpUqV5OvrqyeeeELh4eFq166dJKlHjx5q1KiRHnnkEc2fP1+JiYl67rnnNHbsWHl6ekqSHn30Ub311lt65plnNHz4cO3YsUOrV6/Wxo0bi3t3AAAAigUZCQAA4C/F3pBKTk7W4MGDderUKfn5+en222/X1q1b1b17d0nS66+/LhcXF/Xr109paWmKjIzUO++8Y13f1dVVGzZs0GOPPabw8HCVL19eQ4YM0fPPP28dExYWpo0bN2rChAlatGiRqlWrpg8++ECRkZHFvTsAAADFgowEAADwF4thGIa9i7CX1NRU+fn5KSUlpUROTc/YsivXMveeHYv9fQAAQMGV9N//0oCMBABA2WN2RjLlGlIAAAAAAABADhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqYq9ITV37ly1adNGPj4+CggIUN++fRUXF2cz5sqVKxo7dqwqV66sChUqqF+/fkpKSrIZc+LECUVFRalcuXIKCAjQ5MmTlZmZaTNm586datmypTw9PVWnTh0tW7asuHcHAACgWJCRAAAA/lLsDamvv/5aY8eO1TfffKNt27YpIyNDPXr00KVLl6xjJkyYoC+++EJr1qzR119/rYSEBN1///3W17OyshQVFaX09HTt2bNHy5cv17JlyzRjxgzrmPj4eEVFRalr166KjY3V+PHjNXLkSG3durW4dwkAAOCWkZEAAAD+YjEMwyjJNzh9+rQCAgL09ddf684771RKSoqqVq2qjz/+WP3795ck/fzzz2rYsKFiYmLUrl07bd68WXfffbcSEhIUGBgoSVq8eLGmTJmi06dPy8PDQ1OmTNHGjRv1008/Wd9r4MCBOn/+vLZs2VKg2lJTU+Xn56eUlBT5+voW+75nbNmVa5l7z47F/j4AAKDgSvrvf0GRkWyRkQAAsC+zM1KJX0MqJSVFklSpUiVJ0t69e5WRkaGIiAjrmAYNGqh69eqKiYmRJMXExKhp06bWoCVJkZGRSk1N1cGDB61jrt1GzpicbQAAADgyMhIAACjL3Epy49nZ2Ro/frw6dOigJk2aSJISExPl4eEhf39/m7GBgYFKTEy0jrk2aOW8nvPajcakpqbqzz//lLe3d6560tLSlJaWZn2empp6azsIAABQBGQkAABQ1pXoGVJjx47VTz/9pJUrV5bk2xTY3Llz5efnZ32EhobauyQAAFAGkZEAAEBZV2INqXHjxmnDhg366quvVK1aNevyoKAgpaen6/z58zbjk5KSFBQUZB1z/R1lcp7fbIyvr2+en/xJ0rRp05SSkmJ9nDx58pb2EQAAoLDISAAAACXQkDIMQ+PGjdO6deu0Y8cOhYWF2bzeqlUrubu7Kzo62rosLi5OJ06cUHh4uCQpPDxcBw4cUHJysnXMtm3b5Ovrq0aNGlnHXLuNnDE528iLp6enfH19bR4AAABmICMBAAD8pdivITV27Fh9/PHH+vzzz+Xj42O9noGfn5+8vb3l5+enESNGaOLEiapUqZJ8fX31xBNPKDw8XO3atZMk9ejRQ40aNdIjjzyi+fPnKzExUc8995zGjh0rT09PSdKjjz6qt956S88884yGDx+uHTt2aPXq1dq4cWNx7xIAAMAtIyMBAAD8xWIYhlGsG7RY8ly+dOlSDR06VJJ05coVPf300/r3v/+ttLQ0RUZG6p133rGeai5Jv/76qx577DHt3LlT5cuX15AhQzRv3jy5uf3VQ9u5c6cmTJigQ4cOqVq1apo+fbr1PQqCWxoDAFD2mH1L4xxkpL+QkQAAcDxmZ6Rib0g5E8IWAABlj70aUs6EjAQAQNljdkYq0bvsAQAAAAAAANejIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAEzlZu8CAABA0WRs2WXz3L1nx1L1fgAAAEVBRnIOnCEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUXEMKAAAUyfXXS5C4ZgIAAAAZqWBoSAEAgAI5fn6zzfOa/r3sVAkAAIDjICMVDQ0pAADKmOs/tbs+RElS3YEvmlUOAACAQyAjmavYryH1f//3f+rTp49CQkJksVj02Wef2bxuGIZmzJih4OBgeXt7KyIiQkeOHLEZc/bsWT388MPy9fWVv7+/RowYoYsXL9qM+e9//6tOnTrJy8tLoaGhmj9/fnHvCgAAZVbGll25Htc7fn5zrgdujJwEAIBzIyMVn2I/Q+rSpUtq1qyZhg8frvvvvz/X6/Pnz9cbb7yh5cuXKywsTNOnT1dkZKQOHTokLy8vSdLDDz+sU6dOadu2bcrIyNCwYcM0evRoffzxx5Kk1NRU9ejRQxEREVq8eLEOHDig4cOHy9/fX6NHjy7uXQIAwCHlOj18S+4xXK/AsZCTAAAoebkaQCs35/oaHRnJ/oq9IdWrVy/16pX39yUNw9DChQv13HPP6d5775Uk/fOf/1RgYKA+++wzDRw4UIcPH9aWLVv0/fffq3Xr1pKkN998U71799aCBQsUEhKiFStWKD09XR9++KE8PDzUuHFjxcbG6rXXXiNoAQDKrDxPKxdhy5GQkwAAsI/rcxIZyf6K/St7NxIfH6/ExERFRERYl/n5+alt27aKiYmRJMXExMjf398asiQpIiJCLi4u+vbbb61j7rzzTnl4eFjHREZGKi4uTufOncv3/dPS0pSammrzAAAAuXGqufnsmZPISAAAFAwZqfiYelHzxMRESVJgYKDN8sDAQOtriYmJCggIsHndzc1NlSpVshkTFhaWaxs5r1WsWDHP9587d65mz5596zsCAIATIzg5JnvmJDISAABkJLOZeoaUvU2bNk0pKSnWx8mTJ+1dEgAAgN2RkQAAgNlMPUMqKChIkpSUlKTg4GDr8qSkJDVv3tw6Jjk52Wa9zMxMnT171rp+UFCQkpKSbMbkPM8ZkxdPT095enre8n4AAOAs8rrzCxyTPXMSGQkAUNaQkezP1DOkwsLCFBQUpOjoaOuy1NRUffvttwoPD5ckhYeH6/z589q7d691zI4dO5Sdna22bdtax/zf//2fMjIyrGO2bdum+vXr5/t1PQAAUPIKcitk5I2cBABA6UVGyq3Yz5C6ePGijh49an0eHx+v2NhYVapUSdWrV9f48eP1wgsvqG7dutbbGYeEhKhv376SpIYNG6pnz54aNWqUFi9erIyMDI0bN04DBw5USEiIJOmhhx7S7NmzNWLECE2ZMkU//fSTFi1apNdff724dwcAAIdAaCkdyEkAABQvMpLzKvaG1A8//KCuXbtan0+cOFGSNGTIEC1btkzPPPOMLl26pNGjR+v8+fPq2LGjtmzZIi8vL+s6K1as0Lhx43TXXXfJxcVF/fr10xtvvGF93c/PT19++aXGjh2rVq1aqUqVKpoxYwa3MgYAOKXrg1ReF9Ss6d+rSNs2++Kceb0ft1X+CzkJAICCy6vZdH3WICM5L4thGIa9i7CX1NRU+fn5KSUlRb6+vsW+/bx+edx7lu0fOAAo6wryKV5pu8NL3YEv3nSMmX8zS/rvf2lARgIAmK2gZzqVppxU1jOSqRc1BwAA4NR6AACA3MpaRqIhBQCAnZWmT/oAAACKCxmpdKMhBQBAMbn+Uy2+gnRVQa6RlZeyfl0FAABKC76qnbeynpFoSAEAYKKy+ElfWdxnAABQOGUxL5TFfb4WDSkAAIrJ9aHC5YeDqt16jJ2qAQAAcAzcYQ55cbF3AQAAAAAAAChbOEMKAIASkn30hDLOlK27pQAAABREWbujHHKjIQUAQAkq69cGAAAAyAsZCTSkAAAoAj7VAwAAyI2MhIKiIQUAKNMKEpryui0xn+oBAIDSrKCNpetzEhkJBUVDymTX/1Ln9T85AICSw6d2gGMiIwGAfZGRYDYaUgAAXOf6T/Zcfjio2q3H2KkaAAAAx5DX2U91xQcIKBoaUgAAFMCxH96zdwkAAAAOh4yEoqIhBQBwKHmdLp7XV3fMvPZT9tEThV4HAACgODliRpLISSg6F3sXAAAAAAAAgLKFM6QAAKUWF+cEAADIjYwER0BDCgDglLilMAAAQG5kJDgLvrIHAAAAAAAAU3GGFADAoXA7YQAAgNzISChtaEgBAIrF9dciyOvuLQAAAGUNGQnIGw0pAECJKOitiQviyMpnb7UcAAAAh0BGAq6iIQUAKBEFPa382A/vmVEOAACAw7g+J5GRUBbRkAKAMqwgt/zN6xO7ot4qOK9glX30RJG2BQAAUFLISEDJoyEFACi0ot5OmGAFAABKMzISUHA0pACgDCtIaHL54aAJlQAAADgOMhJQ8mhI2VlxXtAOAG6kqKeQ84kdAHsgIwEwCxkJsA8aUgBQChQ1SAEAAJRmZCTAcdGQAoBSoKjXKwAAACjNyEiA46Ih5YA4RR1wfsX5e3z9XVc4PRxAWUVGApwfGQlADhpSTuL6f7gJX4DzKfL1Cc4TrgAgP2QkwPmRkYCyiYYUAIdm5v9oFPUTu4KGKE4ZBwAAxcXsZmxR368gOYmMBJRNNKQAlFkFCUh5jSE0AQCA0oyMBMAMNKScFNdQgKMo6NlB1/98mn02Uk3/XkVaDwDgXMhIcBRkJAC4MRpSACSZf0vcPEPNypILOoQoAABQFGZnJCmP3EJGAlAK0ZAqRYr6xzKvT1yKc1soPgX5xMweoel6ZjebAAC4ETJS6UdGAgDnQ0MKxfrHuSgXOyzpU+vtffedkg4/Jbl9PjEDAJRl9s5It7JeUbZd3Nsvyvs7y/bJSABw62hIoUQVNQiU5KePjvDpWEEV5Dv+BCIAAJyPI2akW9m+2chIAOD8aEihVCnOizk6YohxxJoAAIDjK2pGknLnJEfMI45YEwDgxpy+IfX222/rlVdeUWJiopo1a6Y333xTd9xxh73LKrOKGmKK2hAqroBEiAEAlDZkJMdi74xU0PXyQk4CAJQEp25IrVq1ShMnTtTixYvVtm1bLVy4UJGRkYqLi1NAQIC9yyuygoYRs9cryRBDQAIAoPiU1owkFe2W9WQkAAAcj8UwDMPeRRRV27Zt1aZNG7311luSpOzsbIWGhuqJJ57Q1KlTb7p+amqq/Pz8lJKSIl9f32Kv78jKZ3Mtc5avhgEAYG91B75YItst6b//jsDRM1LGll1O+/V5AADsrbRkJKc9Qyo9PV179+7VtGnTrMtcXFwUERGhmJgYO1Z2YwQrAABQkshIAADAGThtQ+rMmTPKyspSYGCgzfLAwED9/PPPea6TlpamtLQ06/OUlBRJV7uAJeHi5bSbDwIAAHkqqb/POdt14pPEb8gZMlLGpUvkJAAAiqi0ZCSnbUgVxdy5czV79uxcy0NDQ+1QDQAAuKERr5bo5i9cuCA/P78SfQ9nQUYCAMCJlJKM5LQNqSpVqsjV1VVJSUk2y5OSkhQUFJTnOtOmTdPEiROtz7Ozs3X27FlVrlxZFoul2GpLTU1VaGioTp48WWqvTVHaMGfOhzlzPsyZ8ymtc2YYhi5cuKCQkBB7l1IiHDkjSaX356q0Yr6cD3PmfJgz51Na58zsjOS0DSkPDw+1atVK0dHR6tu3r6Sr4Sk6Olrjxo3Lcx1PT095enraLPP39y+xGn19fUvVD2dZwJw5H+bM+TBnzqc0zllpPjPKGTKSVDp/rkoz5sv5MGfOhzlzPqVxzszMSE7bkJKkiRMnasiQIWrdurXuuOMOLVy4UJcuXdKwYcPsXRoAAIDdkJEAAICjc+qG1IMPPqjTp09rxowZSkxMVPPmzbVly5ZcF/EEAAAoS8hIAADA0Tl1Q0qSxo0bl+/p5/bi6empmTNn5jr1HY6LOXM+zJnzYc6cD3Pm3BwxI0n8XDkb5sv5MGfOhzlzPsxZ8bAYpfWexwAAAAAAAHBILvYuAAAAAAAAAGULDSkAAAAAAACYioYUAAAAAAAATEVDqojefvtt1axZU15eXmrbtq2+++67G45fs2aNGjRoIC8vLzVt2lSbNm0yqVLkKMycLVmyRJ06dVLFihVVsWJFRURE3HSOUfwK+3uWY+XKlbJYLOrbt2/JFohcCjtn58+f19ixYxUcHCxPT0/Vq1ePfx9NVtg5W7hwoerXry9vb2+FhoZqwoQJunLliknVwhmQkZwPGcn5kJGcDxnJ+ZCRTGCg0FauXGl4eHgYH374oXHw4EFj1KhRhr+/v5GUlJTn+N27dxuurq7G/PnzjUOHDhnPPfec4e7ubhw4cMDkysuuws7ZQw89ZLz99tvGvn37jMOHDxtDhw41/Pz8jN9++83kysuuws5Zjvj4eOO2224zOnXqZNx7773mFAvDMAo/Z2lpaUbr1q2N3r17G7t27TLi4+ONnTt3GrGxsSZXXnYVds5WrFhheHp6GitWrDDi4+ONrVu3GsHBwcaECRNMrhyOiozkfMhIzoeM5HzISM6HjGQOGlJFcMcddxhjx461Ps/KyjJCQkKMuXPn5jl+wIABRlRUlM2ytm3bGmPGjCnROvGXws7Z9TIzMw0fHx9j+fLlJVUirlOUOcvMzDTat29vfPDBB8aQIUMIWyYr7Jy9++67Rq1atYz09HSzSsR1CjtnY8eONbp162azbOLEiUaHDh1KtE44DzKS8yEjOR8ykvMhIzkfMpI5+MpeIaWnp2vv3r2KiIiwLnNxcVFERIRiYmLyXCcmJsZmvCRFRkbmOx7Fqyhzdr3Lly8rIyNDlSpVKqkycY2iztnzzz+vgIAAjRgxwowycY2izNn69esVHh6usWPHKjAwUE2aNNFLL72krKwss8ou04oyZ+3bt9fevXutp6z/8ssv2rRpk3r37m1KzXBsZCTnQ0ZyPmQk50NGcj5kJPO42bsAZ3PmzBllZWUpMDDQZnlgYKB+/vnnPNdJTEzMc3xiYmKJ1Ym/FGXOrjdlyhSFhITkCs0oGUWZs127dukf//iHYmNjTagQ1yvKnP3yyy/asWOHHn74YW3atElHjx7V448/royMDM2cOdOMssu0oszZQw89pDNnzqhjx44yDEOZmZl69NFH9fe//92MkuHgyEjOh4zkfMhIzoeM5HzISObhDCngJubNm6eVK1dq3bp18vLysnc5yMOFCxf0yCOPaMmSJapSpYq9y0EBZWdnKyAgQO+//75atWqlBx98UM8++6wWL15s79KQj507d+qll17SO++8ox9//FGffvqpNm7cqDlz5ti7NAB2QEZyfGQk50RGcj5kpKLhDKlCqlKlilxdXZWUlGSzPCkpSUFBQXmuExQUVKjxKF5FmbMcCxYs0Lx587R9+3bdfvvtJVkmrlHYOTt27JiOHz+uPn36WJdlZ2dLktzc3BQXF6fatWuXbNFlXFF+z4KDg+Xu7i5XV1frsoYNGyoxMVHp6eny8PAo0ZrLuqLM2fTp0/XII49o5MiRkqSmTZvq0qVLGj16tJ599lm5uPA5V1lGRnI+ZCTnQ0ZyPmQk50NGMg9HpZA8PDzUqlUrRUdHW5dlZ2crOjpa4eHhea4THh5uM16Stm3blu94FK+izJkkzZ8/X3PmzNGWLVvUunVrM0rF/1fYOWvQoIEOHDig2NhY6+Oee+5R165dFRsbq9DQUDPLL5OK8nvWoUMHHT161BqMJel///ufgoODCVomKMqcXb58OVegygnLhmGUXLFwCmQk50NGcj5kJOdDRnI+ZCQT2fea6s5p5cqVhqenp7Fs2TLj0KFDxujRow1/f38jMTHRMAzDeOSRR4ypU6dax+/evdtwc3MzFixYYBw+fNiYOXMmtzQ2WWHnbN68eYaHh4exdu1a49SpU9bHhQsX7LULZU5h5+x63EHGfIWdsxMnThg+Pj7GuHHjjLi4OGPDhg1GQECA8cILL9hrF8qcws7ZzJkzDR8fH+Pf//638csvvxhffvmlUbt2bWPAgAH22gU4GDKS8yEjOR8ykvMhIzkfMpI5aEgV0ZtvvmlUr17d8PDwMO644w7jm2++sb7WuXNnY8iQITbjV69ebdSrV8/w8PAwGjdubGzcuNHkilGYOatRo4YhKddj5syZ5hdehhX29+xahC37KOyc7dmzx2jbtq3h6elp1KpVy3jxxReNzMxMk6su2wozZxkZGcasWbOM2rVrG15eXkZoaKjx+OOPG+fOnTO/cDgsMpLzISM5HzKS8yEjOR8yUsmzGAbnjwEAAAAAAMA8XEMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pIAbmDVrliwWi82ymjVraujQocX2HkOHDlXNmjWLbXu4sZ07d8pisWjt2rX2LqXAunTpoi5duhTrNvP62Ub+Ll68qICAAK1YseKmY/P6nb548aJGjhypoKAgWSwWjR8/vlDvP3XqVLVt27ZQ6wBASSIjlT5kpKvISIVDRsKtoCGFErVp0ybNmjXL3mXYXUJCgmbNmqXY2Fh7l4Iy5PLly5o1a5Z27txp71Kc3qJFi+Tj46OBAwcWaf2XXnpJy5Yt02OPPaaPPvpIjzzyiCTp3Xff1QMPPKDq1avLYrHk+z9y48eP1/79+7V+/fqi7gIAB0NGuoqMBHsgIxWfkshIJ0+e1OzZs3XHHXeoYsWKqlKlirp06aLt27fnWp+M5NxoSKFEbdq0SbNnz7Z3GcUqLi5OS5YsKdQ6CQkJmj17dp5ha8mSJYqLiyum6oC/XL58WbNnz84zbD333HP6888/zS/KCWVkZGjRokUaOXKkXF1di7SNHTt2qF27dpo5c6b+9re/qVWrVpKkl19+WTt27FDjxo3l5uaW7/pBQUG69957tWDBgiK9PwDHQ0a6iowEeyAjFY+Sykiff/65Xn75ZdWpU0cvvPCCpk+frgsXLqh79+5aunSpzfpkJOdGQwol4tKlS3Z9/ytXrig7O7tEtu3p6Sl3d/di2567u7s8PT2LbXtmMwwj3z/axTEP9v5ZKgmOsE9ubm7y8vKydxlOYcOGDTp9+rQGDBhQ5G0kJyfL398/1/Kvv/5aZ86c0ebNm2/678CAAQO0a9cu/fLLL0WuA4D92ftvABnJPGSkwnOEfSIjFVxJZaSuXbvqxIkT+vjjjzV27Fg99dRT2rNnjxo0aKAZM2bk2gYZyXnRkMIty/me9aFDh/TQQw+pYsWK6tixo4YOHaq3335bkmSxWKyPgurSpYuaNGmivXv3qn379vL29lZYWJgWL15sMy7n++4rV67Uc889p9tuu03lypVTamqqJOnbb79Vz5495efnp3Llyqlz587avXt3rvfbtWuX2rRpIy8vL9WuXVvvvfdennXldX2E8+fPa8KECapZs6Y8PT1VrVo1DR48WGfOnNHOnTvVpk0bSdKwYcOsx2HZsmWS8v4u9aVLl/T0008rNDRUnp6eql+/vhYsWCDDMGzGWSwWjRs3Tp999pmaNGkiT09PNW7cWFu2bCnoYbbKzs7WwoUL1bhxY3l5eSkwMFBjxozRuXPncu3/3Xffra1bt6p169by9vbWe++9d9N5WLNmjVq1aiVvb29VqVJFf/vb3/T777/bbHvo0KGqUKGCjh07pt69e8vHx0cPP/xwgeo/e/asJk2apKZNm6pChQry9fVVr169tH///jzHZ2Vl6e9//7uCgoJUvnx53XPPPTp58qTNmCNHjqhfv34KCgqSl5eXqlWrpoEDByolJaWgh/WG+1TQY3699PR0zZgxQ61atZKfn5/Kly+vTp066auvvrKOOX78uKpWrSpJmj17tvXnLufrIddfH6FJkybq2rVrrvfKzs7Wbbfdpv79+9ssK0rd18up4X//+5/+9re/yc/PT1WrVtX06dNlGIZOnjype++9V76+vgoKCtKrr75a6OMgSTNnzpSLi4uio6Ntlo8ePVoeHh75/ozk+Oyzz1SzZk3Vrl07z9eaNGkiLy8vNWnSROvWrbN5Pef3Ij4+Xhs3brTOw/HjxyVJNWrUKPC/ixEREZKkzz//vEDjAdgfGYmMREbKHxkpf2U9IzVu3FhVqlSxGe/p6anevXvrt99+04ULF2xeIyM5r/y/HwAU0gMPPKC6devqpZdekmEYatGihRISErRt2zZ99NFHRdrmuXPn1Lt3bw0YMECDBg3S6tWr9dhjj8nDw0PDhw+3GTtnzhx5eHho0qRJSktLk4eHh3bs2KFevXqpVatW1n9wly5dqm7duuk///mP7rjjDknSgQMH1KNHD1WtWlWzZs1SZmamZs6cqcDAwJvWePHiRXXq1EmHDx/W8OHD1bJlS505c0br16/Xb7/9poYNG+r555/XjBkzNHr0aHXq1EmS1L59+zy3ZxiG7rnnHn311VcaMWKEmjdvrq1bt2ry5Mn6/fff9frrr9uM37Vrlz799FM9/vjj8vHx0RtvvKF+/frpxIkTqly5coGP9ZgxY7Rs2TINGzZMTz75pOLj4/XWW29p37592r17t80nnnFxcRo0aJDGjBmjUaNGqX79+jech5zttmnTRnPnzlVSUpIWLVqk3bt3a9++fTafimRmZioyMlIdO3bUggULVK5cuQLV/8svv+izzz7TAw88oLCwMCUlJem9995T586ddejQIYWEhNiMf/HFF2WxWDRlyhQlJydr4cKFioiIUGxsrLy9vZWenq7IyEilpaXpiSeeUFBQkH7//Xdt2LBB58+fl5+fX4GPbX77VJhjfq3U1FR98MEHGjRokEaNGqULFy7oH//4hyIjI/Xdd9+pefPmqlq1qt5991099thjuu+++3T//fdLkm6//fY8t/nggw9q1qxZSkxMVFBQkHX5rl27lJCQYHNdgKLWnZ8HH3xQDRs21Lx587Rx40a98MILqlSpkt577z1169ZNL7/8slasWKFJkyapTZs2uvPOOwt8HKSrp95/8cUXGjFihA4cOCAfHx9t3bpVS5Ys0Zw5c9SsWbMb1rdnzx61bNky1/Ivv/xS/fr1U6NGjTR37lz98ccfGjZsmKpVq2Yd07BhQ3300UeaMGGCqlWrpqefflqSrEG4MPz8/FS7dm3t3r1bEyZMKPT6AOyHjERGym8eyEhkpBshI9lKTExUuXLlcv3sk5GcmAHcopkzZxqSjEGDBuV6bezYsUZRf8w6d+5sSDJeffVV67K0tDSjefPmRkBAgJGenm4YhmF89dVXhiSjVq1axuXLl61js7Ozjbp16xqRkZFGdna2dfnly5eNsLAwo3v37tZlffv2Nby8vIxff/3VuuzQoUOGq6trrvpr1KhhDBkyxPp8xowZhiTj008/zbUPOe/7/fffG5KMpUuX5hozZMgQo0aNGtbnn332mSHJeOGFF2zG9e/f37BYLMbRo0etyyQZHh4eNsv2799vSDLefPPNXO+Vn//85z+GJGPFihU2y7ds2ZJreY0aNQxJxpYtW2zG5jcP6enpRkBAgNGkSRPjzz//tC7fsGGDIcmYMWOGzbGQZEydOrXAtee4cuWKkZWVZbMsPj7e8PT0NJ5//vlcdd52221Gamqqdfnq1asNScaiRYsMwzCMffv2GZKMNWvWFLqWa+W3T4U55p07dzY6d+5sfZ6ZmWmkpaXZrHfu3DkjMDDQGD58uHXZ6dOnDUnGzJkzc9WV83ubIy4uLs+fm8cff9yoUKGCdU4LU/fN5NQwevRom32rVq2aYbFYjHnz5tnsn7e3t83vXkGPg2EYxoEDBwwPDw9j5MiRxrlz54zbbrvNaN26tZGRkXHDGjMyMgyLxWI8/fTTuV5r3ry5ERwcbJw/f9667MsvvzQk2fxOG8bV35uoqKgbvlf58uVt9i8vPXr0MBo2bHjDMQAcBxmJjGQYZKT8kJHyR0bK7ciRI4aXl5fxyCOP5Pk6Gck58ZU9FJtHH3202Lfp5uamMWPGWJ97eHhozJgxSk5O1t69e23GDhkyRN7e3tbnsbGxOnLkiB566CH98ccfOnPmjM6cOaNLly7prrvu0v/93/8pOztbWVlZ2rp1q/r27avq1atb12/YsKEiIyNvWuMnn3yiZs2a6b777sv1WlFuGbtp0ya5urrqySeftFn+9NNPyzAMbd682WZ5RESEzWmyt99+u3x9fQv1Heo1a9bIz89P3bt3tx6nM2fOqFWrVqpQoUKu03vDwsLyPTbXz8MPP/yg5ORkPf744zbfx4+KilKDBg20cePGXNt47LHHClx7Dk9PT7m4XP0nLSsrS3/88YcqVKig+vXr68cff8w1fvDgwfLx8bE+79+/v4KDg7Vp0yZJsn66t3XrVl2+fLnQ9Vzv+n0q7DG/lqurqzw8PCRdPTX87NmzyszMVOvWrfPc14KoV6+emjdvrlWrVlmXZWVlae3aterTp491Tm+l7vyMHDnSZt9at24twzA0YsQI63J/f3/Vr1/f5ue6MMehSZMmmj17tj744ANFRkbqzJkzWr58+Q0vJC5d/ZqDYRiqWLGizfJTp04pNjZWQ4YMsfkkuHv37mrUqFGhj0FBVaxYUWfOnCmx7QMoGWQkMpJERsoPGSl/ZKSrLl++rAceeEDe3t6aN29enmPISM6JhhSKTVhYWLFvMyQkROXLl7dZVq9ePUmyXoMlv/c/cuSIpKt//KtWrWrz+OCDD5SWlqaUlBSdPn1af/75p+rWrZvr/a89zTo/x44dU5MmTQqzWzf066+/KiQkxCYISFfDX87r17o2IOaoWLFiob6rfuTIEaWkpCggICDXsbp48aKSk5Ntxt9orq9/LafevI5lgwYNcu2Pm5ubzem8BZWdna3XX39ddevWlaenp6pUqaKqVavqv//9b57XM7h+vi0Wi+rUqWP9uQoLC9PEiRP1wQcfqEqVKoqMjNTbb79dqGsj3GifCnvMr7d8+XLdfvvt8vLyUuXKlVW1alVt3LixSPXlePDBB7V7927rdSt27typ5ORkPfjgg8VWd16u/xn28/OTl5dXrmsH+Pn55fq5LsxxmDx5spo1a6bvvvtOM2fOLFQoMq67NknOz21R/90oKsMwivQ/cQDsi4xUPMhIZCQyUtnLSFlZWRo4cKAOHTqktWvX5vqK6bV1kJGcD9eQQrG59hMfR3j/nDuXvPLKK9bvSV+vQoUKSktLK+nSSlR+t1i9/o/DjWRnZysgIEArVqzI8/Xrv8t9o7m+1Z+Daz/FK4yXXnpJ06dP1/DhwzVnzhxVqlRJLi4uGj9+fJHvYvPqq69q6NCh+vzzz/Xll1/qySef1Ny5c/XNN98UKhDmtU+FPebX+te//qWhQ4eqb9++mjx5sgICAuTq6qq5c+fq2LFjBa7reg8++KCmTZumNWvWaPz48Vq9erX8/PzUs2fPYqk7P3n9DBfk57qwx+GXX36x/k/YgQMHClRbpUqVZLFYCn0x0pJy7ty5XCEUgOMjI9kHGekqMhIZyZkz0qhRo7RhwwatWLFC3bp1y3ccGck50ZBCibrVLnVCQoIuXbpk8wng//73P0nKddeV6+Wcou3r62u980JeqlatKm9vb+s/wteKi4u7aY21a9fWTz/9dMMxhTkONWrU0Pbt23XhwgWbTwB//vln6+vFrXbt2tq+fbs6dOhQ7KE5p964uLhcf0Ti4uKKbX/Wrl2rrl276h//+IfN8vPnz+f5x+n6+TYMQ0ePHs11QcumTZuqadOmeu6557Rnzx516NBBixcv1gsvvHBL9d7KMV+7dq1q1aqlTz/91OZna+bMmTbjCvv7FxYWpjvuuEOrVq3SuHHj9Omnn6pv3742t9wuyZ+VwirocZCuhsShQ4fK19dX48eP10svvaT+/ftbL2SaHzc3N9WuXVvx8fE2y3N+bov670ZRxcfH3/QCowCcAxnpKjISGel6ZKRbV1oy0uTJk7V06VItXLhQgwYNuuFYMpJz4it7KFE5Ien8+fNFWj8zM9Pm1sLp6el67733VLVqVbVq1eqG67Zq1Uq1a9fWggULdPHixVyvnz59WtLVTxkiIyP12Wef6cSJE9bXDx8+rK1bt960xn79+mn//v25bmUq/fVJRWGOQ+/evZWVlaW33nrLZvnrr78ui8WiXr163XQbhTVgwABlZWVpzpw5uV7LzMws8vxJUuvWrRUQEKDFixfbfNK6efNmHT58WFFRUUXe9rVcXV1zfeK5Zs2aXLdNzvHPf/7T5paxa9eu1alTp6zHNzU1VZmZmTbrNG3aVC4uLsXyifGtHPOcT8au3d9vv/1WMTExNuNy7kBSmPl78MEH9c033+jDDz/UmTNnbE5Fv9W6i1tBj4Mkvfbaa9qzZ4/ef/99zZkzR+3bt9djjz1WoGsNhIeH64cffrBZFhwcrObNm2v58uU2p75v27ZNhw4dKuou3VBKSoqOHTuW792nADgXMhIZiYyUNzLSrSsNGemVV17RggUL9Pe//11PPfXUDceSkZwXZ0ihROUEoieffFKRkZFydXW1uTXqzYSEhOjll1/W8ePHVa9ePa1atUqxsbF6//33b3rbVBcXF33wwQfq1auXGjdurGHDhum2227T77//rq+++kq+vr764osvJEmzZ8/Wli1b1KlTJz3++OPKzMzUm2++qcaNG+u///3vDd9n8uTJWrt2rR544AENHz5crVq10tmzZ7V+/XotXrxYzZo1U+3ateXv76/FixfLx8dH5cuXV9u2bfO8zkCfPn3UtWtXPfvsszp+/LiaNWumL7/8Up9//rnGjx9vc3HO4tK5c2eNGTNGc+fOVWxsrHr06CF3d3cdOXJEa9as0aJFi9S/f/8ibdvd3V0vv/yyhg0bps6dO2vQoEHWWxrXrFmz2G7Nevfdd+v555/XsGHD1L59ex04cEArVqxQrVq18hxfqVIldezYUcOGDVNSUpIWLlyoOnXqaNSoUZKkHTt2aNy4cXrggQdUr149ZWZm6qOPPpKrq6v69et3y/XeyjG/++679emnn+q+++5TVFSU4uPjtXjxYjVq1Mjmfyy8vb3VqFEjrVq1SvXq1VOlSpXUpEmTG17PY8CAAZo0aZImTZqkSpUq5frkvCR/VgqroMfh8OHDmj59uoYOHao+ffpIkpYtW6bmzZvr8ccf1+rVq2/4Pvfee68++ugj/e9//7Nen0WS5s6dq6ioKHXs2FHDhw/X2bNnrf9u5PU/eHn54osvtH//fklSRkaG/vvf/1o/Wb7nnntsPo3evn27DMPQvffeW7ADBMChkZHISGSkvJGRbp2zZ6R169bpmWeeUd26ddWwYUP961//snm9e/fuCgwMtD4nIzkxs27nh9Ir57akp0+fzvVaZmam8cQTTxhVq1Y1LBZLoW5v3LlzZ6Nx48bGDz/8YISHhxteXl5GjRo1jLfeestmXM4tavO79ey+ffuM+++/36hcubLh6elp1KhRwxgwYIARHR1tM+7rr782WrVqZXh4eBi1atUyFi9enOu2r4aR+5bGhmEYf/zxhzFu3DjjtttuMzw8PIxq1aoZQ4YMMc6cOWMd8/nnnxuNGjUy3NzcbG5vfP0tjQ3DMC5cuGBMmDDBCAkJMdzd3Y26desar7zyis2tmQ3j6i2Nx44dm2uf86qxIN5//32jVatWhre3t+Hj42M0bdrUeOaZZ4yEhASbbed1a9abzcOqVauMFi1aGJ6enkalSpWMhx9+2Pjtt99sxgwZMsQoX758oes2jKu3NH766aeN4OBgw9vb2+jQoYMRExOT63bAOXX++9//NqZNm2YEBAQY3t7eRlRUlM0trX/55Rdj+PDhRu3atQ0vLy+jUqVKRteuXY3t27cXqq6b7VNBjvn1+5CdnW289NJLRo0aNQxPT0+jRYsWxoYNG/L8WdqzZ4/151rX3N44r5/tHB06dDAkGSNHjrylum8mv3878jtmOf8m5CjIccjMzDTatGljVKtWzebWw4ZhGIsWLTIkGatWrbphnWlpaUaVKlWMOXPm5Hrtk08+MRo2bGh4enoajRo1Mj799NM85yG/35ucW17n9bj+FugPPvig0bFjxxvWCsCxkJHISIZBRsoPGSl/ZT0j5ex/fo+vvvrKZjwZyXlZDKMQV/UDTNSlSxedOXPmptceAICSNmfOHC1dulRHjhzJ92KiJSkxMVFhYWFauXIln/4BICMBcBhkJNwKriEFAMBNTJgwQRcvXtTKlSvt8v4LFy5U06ZNCVoAAMChkJFwKzhDCqY7e/as0tPT833d1dVVVatW5dO/YpCVlWW9MGl+KlSooAoVKphUUeH9+eefNhdEzEulSpXk4eFhUkVXpaSk6M8//7zhmKCgIJOqcSwXL1686fUBqlatapdP0QDAkZGRzENGKjlkpPyRkQBbXNQcprv//vv19ddf5/t6jRo1dPz4cfMKKsVOnjyZ50VBrzVz5kzNmjXLnIKKYNWqVRo2bNgNx3z11Vfq0qWLOQX9f0899ZSWL19+wzFltd+/YMECzZ49+4Zj4uPjb3pbcgAoa8hI5iEjlRwyUv7ISIAtzpCC6fbu3atz587l+7q3t7c6dOhgYkWl15UrV7Rr164bjqlVq1a+d1lxBKdOndLBgwdvOKZVq1aqWLGiSRVddejQISUkJNxwzPV3XykrfvnlF/3yyy83HNOxY0d5eXmZVBEAOAcyknnISCWHjJQ/MhJgi4YUAAAAAAAATMVFzQEAAAAAAGCqMn0NqezsbCUkJMjHx0cWi8Xe5QAAABMYhqELFy4oJCRELi58NpcXMhIAAGWP2RmpTDekEhISFBoaau8yAACAHZw8eVLVqlWzdxkOiYwEAEDZZVZGKtMNKR8fH0lXD7avr6+dqwEAAGZITU1VaGioNQcgNzISAABlj9kZqUw3pHJOQff19SVsAQBQxvBVtPyRkQAAKLvMykhcOAEAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKnK9DWkAAC4kaysLGVkZNi7DBSSu7u7XF1d7V0GAAClFhnJOTlaRqIhBQDAdQzDUGJios6fP2/vUlBE/v7+CgoK4sLlAAAUIzKS83OkjERDCgCA6+QErYCAAJUrV84h/mCjYAzD0OXLl5WcnCxJCg4OtnNFAACUHmQk5+WIGYmGFAAA18jKyrIGrcqVK9u7HBSBt7e3JCk5OVkBAQEOdWo6AADOiozk/BwtI3FRcwAArpFzPYRy5crZuRLcipz54/oWAAAUDzJS6eBIGYmGFAAAeeAUdOfG/AEAUDL4G+vcHGn+aEgBAAAAAADAVDSkAABwchaL5YaPWbNm2bW2zz777Ja28f7776tLly7y9fWVxWLhzj4AAKDASnNOOnv2rJ544gnVr19f3t7eql69up588kmlpKQUX5EliIuaAwBQQBlbdpn2Xu49OxZ47KlTp6z/vWrVKs2YMUNxcXHWZRUqVCjUe6enp8vDw6NQ65Sky5cvq2fPnurZs6emTZtm73IAAMB1zMxIEjkpR0JCghISErRgwQI1atRIv/76qx599FElJCRo7dq19i7vpjhDygFlbNmV6wEAQH6CgoKsDz8/P1ksFuvzS5cu6eGHH1ZgYKAqVKigNm3aaPv27Tbr16xZU3PmzNHgwYPl6+ur0aNHS5KWLFmi0NBQlStXTvfdd59ee+01+fv726z7+eefq2XLlvLy8lKtWrU0e/ZsZWZmWrcrSffdd58sFov1+f79+9W1a1f5+PjI19dXrVq10g8//JDv/o0fP15Tp05Vu3btiueAwWmRkQAAhVWac1KTJk30ySefqE+fPqpdu7a6deumF198UV988YX1fRwZDSkAAEqxixcvqnfv3oqOjta+ffvUs2dP9enTRydOnLAZt2DBAjVr1kz79u3T9OnTtXv3bj366KN66qmnFBsbq+7du+vFF1+0Wec///mPBg8erKeeekqHDh3Se++9p2XLllnHff/995KkpUuX6tSpU9bnDz/8sKpVq6bvv/9ee/fu1dSpU+Xu7m7C0QAAAPhLacxJKSkp8vX1lZub438hzvErBAAARdasWTM1a9bM+nzOnDlat26d1q9fr3HjxlmXd+vWTU8//bT1+bPPPqtevXpp0qRJkqR69eppz5492rBhg3XM7NmzNXXqVA0ZMkSSVKtWLc2ZM0fPPPOMZs6cqapVq0qS/P39FRQUZF3vxIkTmjx5sho0aCBJqlu3bgnsOQAAwI2Vtpx05swZzZkzx3oWl6PjDCkAAEqxixcvatKkSWrYsKH8/f1VoUIFHT58ONcnf61bt7Z5HhcXpzvuuMNm2fXP9+/fr+eff14VKlSwPkaNGqVTp07p8uXL+dY0ceJEjRw5UhEREZo3b56OHTt2i3sJAABQeKUpJ6WmpioqKkqNGjWy64XaC4MzpJzE9ddIKMxF3AAAZdekSZO0bds2LViwQHXq1JG3t7f69++v9PR0m3Hly5cv9LYvXryo2bNn6/7778/1mpeXV77rzZo1Sw899JA2btyozZs3a+bMmVq5cqXuu+++QtcAkJEAAEVVWnLShQsX1LNnT/n4+GjdunVOcykEGlIAAJRiu3fv1tChQ60h5uLFizp+/PhN16tfv771WgY5rn/esmVLxcXFqU6dOvlux93dXVlZWbmW16tXT/Xq1dOECRM0aNAgLV26lIYUAAAwVWnISampqYqMjJSnp6fWr19/w2aXo6EhBQBAKVa3bl19+umn6tOnjywWi6ZPn67s7OybrvfEE0/ozjvv1GuvvaY+ffpox44d2rx5sywWi3XMjBkzdPfdd6t69erq37+/XFxctH//fv3000964YUXJF29g0x0dLQ6dOggT09PeXl5afLkyerfv7/CwsL022+/6fvvv1e/fv3yrSUxMVGJiYk6evSoJOnAgQPy8fFR9erVValSpVs8QgAAoKxy9pyUmpqqHj166PLly/rXv/6l1NRUpaamSpKqVq0qV1fXYjhKJYdrSAEAUIq99tprqlixotq3b68+ffooMjJSLVu2vOl6HTp00OLFi/Xaa6+pWbNm2rJliyZMmGDzqVtkZKQ2bNigL7/8Um3atFG7du30+uuvq0aNGtYxr776qrZt26bQ0FC1aNFCrq6u+uOPPzR48GDVq1dPAwYMUK9evTR79ux8a1m8eLFatGihUaNGSZLuvPNOtWjRQuvXr7+FIwMAAMo6Z89JP/74o7799lsdOHBAderUUXBwsPVx8uTJWz9AJcxiGIZh7yLsJTU1VX5+ftbbIjqK66+FkBeujwAAJePKlSuKj49XWFiYU53ybIZRo0bp559/1n/+8x97l3JTN5pHR/3770gc9RiRkQDAfshIN+YsOcmRMhJf2QMAAHlasGCBunfvrvLly2vz5s1avny53nnnHXuXBQAAYHfkpFtHQwoAAOTpu+++0/z583XhwgXVqlVLb7zxhkaOHGnvsgAAAOyOnHTraEgBAIA8rV692t4lAAAAOCRy0q3jouYAAAAAAAAwFWdIlTF5XQyUi38CAICyjowEAIC5OEMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVFzUvJTL6wKdAAAAZR0ZCQAA++IMKQAASoGhQ4fKYrHIYrHI3d1dgYGB6t69uz788ENlZ2fbu7xbcvDgQfXr1081a9aUxWLRwoUL7V0SAABwIqU5Jy1ZskSdOnVSxYoVVbFiRUVE/D/27jwuynr///+TTUAUcGNLRXLXzDSXME92kgS1xbLFvpZaLh0PlEuZeirNrDAyK820OifzfNJjWWlmSrm0qaRmaW6ZlWVlQGWAZgLC9fvDH5PDjAo4c12zPO6329xOXPOea97va5B5ntf1vt5XirZs2WJ1t6qEGVIAAFTRN58+b9p7Ne9yZ7Vfk5aWpgULFqisrEx5eXnKzs7WmDFj9Prrr2vFihUKDvbOr/1jx47p/PPP14033qhx48ZZ3R0AAFCJmRlJIied6oMPPtAtt9yiHj16KCwsTI8//rj69Omj3bt367zzzrO6e2fEDCkAAHxEaGio4uLidN5556lz587617/+pbfeekurV6/Wyy+/bGtXUFCgESNGqFGjRoqMjNQVV1yhHTt22O3r7bffVteuXRUWFqaGDRvquuuusz33+++/a8iQIapXr55q166tvn37av/+/ZKkP/74Q5GRkXr99dft9rd8+XJFREToyJEjKikpUUZGhuLj4xUWFqbExERlZmaedlxdu3bVE088oUGDBik0NNQFRwoAAPgbX81JixYt0j//+U9ddNFFatOmjf7973+rvLxc69atc8FRcy8KUgAA+LArrrhCHTt21JtvvmnbduONNyo/P1+rV6/Wtm3b1LlzZ/Xu3VuHDx+WJL3zzju67rrr1K9fP33++edat26dunXrZnv9sGHD9Omnn2rFihXKycmRYRjq16+fSktLFRERoUGDBmnBggV2/ViwYIFuuOEG1a1bV7Nnz9aKFSv02muvad++fVq0aJGaNWtmyvEAAACo4Is56dixYyotLVX9+vXP7eCYwJI5aWVlZXrooYf0yiuvKDc3VwkJCRo2bJgeeOABBQQESJIMw9DUqVP14osvqqCgQJdeeqnmzZunli1b2vZz+PBh3XXXXXr77bcVGBiogQMH6plnnlGdOnWsGFaNuHJBTRbnBAA406ZNG33xxReSpA0bNmjLli3Kz8+3zTaaOXOmli9frtdff12jRo3So48+qkGDBmnatGm2fXTs2FGStH//fq1YsUIbN25Ujx49JJ08M9ekSRMtX75cN954o0aMGKEePXro559/Vnx8vPLz87Vq1SqtXbtWknTw4EG1bNlSPXv2VEBAgBITE808HB6NjPQXMhIAwAy+lpMmTpyohIQEpaSknPOxcTdLZkg9/vjjmjdvnp599lnt3btXjz/+uLKysjRnzhxbm6ysLM2ePVvz58/X5s2bFRERodTUVB0/ftzWZvDgwdq9e7fWrFmjlStX6qOPPtKoUaOsGBIAAB7LMAxbMWPHjh06evSoGjRooDp16tgeBw4c0DfffCNJ2r59u3r37u10X3v37lVwcLC6d+9u29agQQO1bt1ae/fulSR169ZN7du318KFCyVJr7zyihITE3XZZZdJOnnmcPv27WrdurXuvvtuvffee24bu7chIwEAYC5fykkzZszQkiVLtGzZMoWFhVX/YJjMkhlSmzZt0rXXXqv+/ftLkpo1a6b//e9/tpXgDcPQ008/rQceeEDXXnutJOm///2vYmNjtXz5cg0aNEh79+5Vdna2tm7dqi5dukiS5syZo379+mnmzJlKSEiwYmgAAHicvXv3KikpSZJ09OhRxcfH64MPPnBoFx0dLUkKDw8/5/ccMWKE5s6dq0mTJmnBggW6/fbbbWGvc+fOOnDggFavXq21a9fqpptuUkpKisN6Cv6IjAQAgLl8JSfNnDlTM2bM0Nq1a3XhhReecx/NYMkMqR49emjdunX66quvJJ2sQm7YsEF9+/aVJB04cEC5ubl2U8yioqLUvXt35eTkSJJycnIUHR1tC1qSlJKSosDAQG3evNnE0QAA4LnWr1+vnTt3auDAgZJOhpzc3FwFBwerRYsWdo+GDRtKki688MLTLoTZtm1bnThxwu679rffftO+ffvUrl0727Zbb71V33//vWbPnq09e/Zo6NChdvuJjIzUzTffrBdffFGvvvqq3njjDdvaDP6MjAQAgHl8JSdlZWVp+vTpys7Otvv+93SWzJCaNGmSioqK1KZNGwUFBamsrEyPPvqoBg8eLEnKzc2VJMXGxtq9LjY21vZcbm6uYmJi7J4PDg5W/fr1bW0qKy4uVnFxse3noqIil40JAACrFRcXKzc31+52xpmZmbrqqqs0ZMgQSScLE8nJyRowYICysrLUqlUrHTp0yLZAZ5cuXTR16lT17t1bzZs316BBg3TixAmtWrVKEydOVMuWLXXttddq5MiRev7551W3bl1NmjRJ5513nm3GjiTVq1dP119/vSZMmKA+ffqocePGtudmzZql+Ph4derUSYGBgVq6dKni4uJsZx4rKykp0Z49e2z//dNPP2n79u2qU6eOWrRo4b4DagEyEgAA7uGrOenxxx/XlClTtHjxYjVr1sz2XV9xuaEns6Qg9dprr2nRokVavHix2rdvr+3bt2vs2LFKSEhwqAy6UmZmpt3CY96MxTkBAJVlZ2crPj5ewcHBqlevnjp27KjZs2dr6NChCgw8OSk6ICBAq1at0v3336/bb79dv/zyi+Li4nTZZZfZihyXX365li5dqunTp2vGjBmKjIy0rWsgnbwTzJgxY3TVVVeppKREl112mVatWqWQkBC7/gwfPlyLFy/WHXfcYbe9bt26ysrK0v79+xUUFKSuXbtq1apVtj5WdujQIXXq1Mn288yZMzVz5kz16tXL6ZR6b0ZGOndkJACAM76ak+bNm6eSkhLdcMMNdtunTp2qhx566FwPm1sFGIZhmP2mTZo00aRJk5Senm7b9sgjj+iVV17Rl19+qW+//VbNmzfX559/rosuusjWplevXrrooov0zDPP6KWXXtI999yj33//3fb8iRMnFBYWpqVLl+q6665zeF9nZ/+aNGmiwsJCRUZGumewZ+EJoSkkrafVXQAAj3H8+HEdOHBASUlJXrEYpCf7v//7P40bN06HDh1SrVq1TH3vM32ORUVFioqKsvT7/3TISH8hIwGAZyEjuZZVOcmTMpIla0gdO3bMoboXFBSk8vJySVJSUpLi4uLsrsssKirS5s2blZycLElKTk5WQUGBtm3bZmuzfv16lZeX261of6rQ0FBFRkbaPQAAgGsdO3ZM33zzjWbMmKE777zT9GKUNyMjAQDg28hJf7GkIHX11Vfr0Ucf1TvvvKPvvvtOy5Yt06xZs2xn7AICAjR27Fg98sgjWrFihXbu3KkhQ4YoISFBAwYMkHRysbC0tDSNHDlSW7Zs0caNG5WRkaFBgwZx9xgAACyUlZWlNm3aKC4uTpMnT7a6O16FjAQAgG8jJ/3Fkkv2jhw5ogcffFDLli1Tfn6+EhISdMstt2jKlCm26qBhGJo6dapeeOEFFRQUqGfPnnruuefUqlUr234OHz6sjIwMvf322woMDNTAgQM1e/bsKi/c5QlT9pmODgCehenovsGTpqNXBxnpL2QkAPAsZCTf4EkZyZKClKcgbJ1E2AKAvxC2fIMnhS1v5AnHiIwEAJ6FjOQbPCkjWXLJHgAAAAAAAPxXsNUdgPWcnYHkjCAAf+fHE4h9Ap8fXIGMBACO+I71bp70+TFDCgCAU4SEhEg6eQcUeK+Kz6/i8wQAAOeGjOQbPCkjMUMKAIBTBAUFKTo6Wvn5+ZKk2rVrKyAgwOJeoaoMw9CxY8eUn5+v6OhoBQUFWd0lAAB8AhnJu3liRqIghRpjGjsAXxUXFydJtsAF7xMdHW37HAGzkZEA+CoykvfzpIxEQQpOVQ5ShCgA/iQgIEDx8fGKiYlRaWmp1d1BNYWEhHjEWT/4JjISAH9GRvJunpaRKEgBAHAaQUFBHvWlDQAA4AnISHAFFjUHAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmCra6A/Atpdkb7H4OSetpUU8AAAA8BxkJAAB7zJACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAq1pBClVRe9wAAAABkJAAAaoqClMkILQAAAI7ISAAA+Bcu2QMAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVbDVHYBvK83e4LAtJK2nBT0BAADwHGQkAIC/Y4YUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVbDVHQAkqTR7g93PIWk9LeoJAACA5yAjAQB8FTOkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGCqYKs7AP9Tmr3B6i4AAAB4HDISAMCfMEMKAAAAAAAApqIgBQAAAAAAAFNxyR68lrNp7SFpPS3oCQAAgGepnJPISAAAT8MMKQAAAAAAAJiKGVLwGiz0CQAA4IiMBADwRsyQAgAAAAAAgKmYIQWP5Aln+lh7AQAAeBpPzEgSOQkAUH3MkAIAAAAAAICpLCtI/fTTT7r11lvVoEEDhYeHq0OHDvr0009tzxuGoSlTpig+Pl7h4eFKSUnR/v377fZx+PBhDR48WJGRkYqOjtbw4cN19OhRs4cCH1CavcHhAQCAFchI8CRkJACAu1hyyd7vv/+uSy+9VH//+9+1evVqNWrUSPv371e9evVsbbKysjR79mwtXLhQSUlJevDBB5Wamqo9e/YoLCxMkjR48GD9/PPPWrNmjUpLS3X77bdr1KhRWrx4sRXDggeoSkhiSjkAwFORkeAuVS0kkZMAAGYJMAzDMPtNJ02apI0bN+rjjz92+rxhGEpISNA999yje++9V5JUWFio2NhYvfzyyxo0aJD27t2rdu3aaevWrerSpYskKTs7W/369dOPP/6ohISEs/ajqKhIUVFRKiwsVGRkpOsGeAacVfJeBDQA8A1WfP9XFRkJ3oqcBADez+zvf0su2VuxYoW6dOmiG2+8UTExMerUqZNefPFF2/MHDhxQbm6uUlJSbNuioqLUvXt35eTkSJJycnIUHR1tC1qSlJKSosDAQG3evNnp+xYXF6uoqMjuAQAA4CnISAAAwF9YUpD69ttvNW/ePLVs2VLvvvuuRo8erbvvvlsLFy6UJOXm5kqSYmNj7V4XGxtrey43N1cxMTF2zwcHB6t+/fq2NpVlZmYqKirK9mjSpImrhwYAAFBjZCQAAOAvLClIlZeXq3PnznrsscfUqVMnjRo1SiNHjtT8+fPd+r6TJ09WYWGh7fHDDz+49f0AAACqg4wEAAD8hSUFqfj4eLVr185uW9u2bXXw4EFJUlxcnCQpLy/Prk1eXp7tubi4OOXn59s9f+LECR0+fNjWprLQ0FBFRkbaPQAAADwFGQkAAPgLSwpSl156qfbt22e37auvvlJiYqIkKSkpSXFxcVq3bp3t+aKiIm3evFnJycmSpOTkZBUUFGjbtm22NuvXr1d5ebm6d+9uwigAAABci4wEAAD8RbAVbzpu3Dj16NFDjz32mG666SZt2bJFL7zwgl544QVJUkBAgMaOHatHHnlELVu2tN3SOCEhQQMGDJB08mxhWlqabRp7aWmpMjIyNGjQoCrdPQYAAMDTkJEAAIC/sKQg1bVrVy1btkyTJ0/Www8/rKSkJD399NMaPHiwrc19992nP/74Q6NGjVJBQYF69uyp7OxshYWF2dosWrRIGRkZ6t27twIDAzVw4EDNnj3biiEBAACcMzISAADwFwGGYRhWd8IqRUVFioqKUmFhoWlrJZRmbzDlfeB6IWk9re4CAMAFrPj+9zZkJFQXOQkAvJ/Z3/+WrCEFAAAAAAAA/2XJJXsAHFU+M8yZRgAAADISAPgqZkgBAAAAAADAVBSkAAAAAAAAYCou2QPczNkirUw1BwAA/o6MBAD+jYIU4GLcJQgAAMARGQkAcCou2QMAAAAAAICpmCEFVBHTygEAAJzjTngAgOqiIAXAoxFwAQAAHJGRAHg7ClIAJDEDDAAAwBkyEgC4B2tIAQAAAAAAwFTMkALOAXeLAQAAcERGAgCcDQUpwMuxfgAAAIAjMhIAeDYu2QMAAAAAAICpmCEFeCgW0AQAAHBERgIA30BBCoDLERQBAAAckZEA4C8UpAA/QPgBAABwREYCAOuwhhQAAAAAAABMxQwpAKfFWUMAAABHZCQAOHcUpACYglsvAwAAOCIjAfBXFKQACzg7qwYAAODvyEgA4D8oSAFehJAGAADgiIwEAN6HRc0BAAAAAABgKmZIAagWd56B5OwmAADwVmQkAKgeZkgBAAAAAADAVMyQciPOZAAAADgiIwEAAGZIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFWtIAT6GdTkAAAAckZEAwLMwQwoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKu6yB/gp7jQDAADgiIwEAOagIAXAEp4Y9pz1KSStpwU9AQAA/soTM5Lk2C8yEoBzRUEKAKqJQAYAAOCIk3sAqoM1pAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAEzFouYAvAqLZQIAADgiIwHwNsyQAgAAAAAAgKkoSAEAAAAAAMBUXLIHAG7AtHkAAABHZCQAFShIAfB6BBsAAABHZCQAnoyCFIBz8l3BaodtzaL7WtCTM3MWyAAAANyFjAQAZ0ZBCvAi3hJsPAHhCgAA/0FGqjoyEgBPwaLmAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxRpSACzBWg8AAACOyEgA/AUFKeAcEBhghsqLj3K7ZgCApyMjwQxkJMC7cckeAAAAAAAATMUMKfi8ymfoODsHAADALCYAgLUoSMEjEZDgKSpPBa9pG1e+HwDAf5GR4CmqmllclW3ISIDvoSAFr+HOmU5VCXfO2ngigioAAP7Fnd/9ZCQAgLtYvobUjBkzFBAQoLFjx9q2HT9+XOnp6WrQoIHq1KmjgQMHKi8vz+51Bw8eVP/+/VW7dm3FxMRowoQJOnHihMm9Bxx9V7Da7uGq/XhL2PMmHF8Ano6cBF9CRvIeHGMAZrB0htTWrVv1/PPP68ILL7TbPm7cOL3zzjtaunSpoqKilJGRoeuvv14bN26UJJWVlal///6Ki4vTpk2b9PPPP2vIkCEKCQnRY489ZsVQTOepZ3hYr8l8BAQA8E3kpJohI6ECGQkAPJtlM6SOHj2qwYMH68UXX1S9evVs2wsLC/Wf//xHs2bN0hVXXKGLL75YCxYs0KZNm/TJJ59Ikt577z3t2bNHr7zyii666CL17dtX06dP19y5c1VSUmLVkACnOMMEAKguchL8ARkJAPybZTOk0tPT1b9/f6WkpOiRRx6xbd+2bZtKS0uVkpJi29amTRs1bdpUOTk5uuSSS5STk6MOHTooNjbW1iY1NVWjR4/W7t271alTJ1PH4u089Uyiv7E6hPF7UHOeeuwqL/4ZktbTop4AqC5ykmfw1L/v/oaM5N08cXYgGQnwDJYUpJYsWaLPPvtMW7dudXguNzdXtWrVUnR0tN322NhY5ebm2tqcGrIqnq947nSKi4tVXFxs+7moqKimQzCd1V/EwLmqyu+w1YHP6vevKmd3mSFIAb7DipxERgKs4w0ZyVkfyEgAzpXpl+z98MMPGjNmjBYtWqSwsDBT3zszM1NRUVG2R5MmTUx9fwAAgDOxKieRkQAAgNlMnyG1bds25efnq3PnzrZtZWVl+uijj/Tss8/q3XffVUlJiQoKCuzO/uXl5SkuLk6SFBcXpy1bttjtt+LuMhVtnJk8ebLGjx9v+7moqIjAZQFvOLvibpzNNZ8nHHNnZ+0A4FRW5SQykmfwhFkwVvOE72t/4wnHnIwE+CfTC1K9e/fWzp077bbdfvvtatOmjSZOnKgmTZooJCRE69at08CBAyVJ+/bt08GDB5WcnCxJSk5O1qOPPqr8/HzFxMRIktasWaPIyEi1a9futO8dGhqq0NBQN40M8D3eEox9vcjp6+MD8BerchIZCageb81Ikmf2s6bISIB3M70gVbduXV1wwQV22yIiItSgQQPb9uHDh2v8+PGqX7++IiMjdddddyk5OVmXXHKJJKlPnz5q166dbrvtNmVlZSk3N1cPPPCA0tPTCVMm8oSzKQAA+BJykm8gIwEAcHaW3WXvTJ566ikFBgZq4MCBKi4uVmpqqp577jnb80FBQVq5cqVGjx6t5ORkRUREaOjQoXr44Yct7LVn8oazBmaHNkIiqsNbfl+++fR5h21N1d6CngBwN3KSa3hDRpLISfBc3vK7QkYCPJdHFKQ++OADu5/DwsI0d+5czZ0797SvSUxM1KpVq9zcM3gbb/li9GYcYwAwFzkJrsD3t/txjAGgejyiIAV4IkIFAACAIzISAMAVKEjBaxGGcDr8bgAA/B3fhTgdfjcAeAoKUhbztztfwD/wufs+Z7dnDknraUFPAPgqMhJ8EZ+77yMjAVVHQQpO8WXp+/iM/Q8BCQDOHd+fvo/P2P+QkQBrUJDyQHwJAvBGlcMcQQ6Aq5GRAHgjMhLgHAUpALBITS9Hcfa6wIZNXdInAAAAq5GRAP9AQQoA3MCVQcpqzqaxAwAA1AQZCUAFClImc+cfUk/8Iw2cq8q/1760oC0A4C9kJKB6yEgAvB0FKT9DIAMAAHBERgIAwFwUpAA/QMj2DJ74OTiban6w4W67n5uqvVndAQDAVJ743eyPPPFzICMB7kdBCoBX8cTA4mvKvz5ovyGasAUAgKcjI7kfGQlwrUCrOwAAAAAAAAD/wgwpAPABDmfspCqdtXPn2VRnU91D0nq67f0AAAAqIyMBnosZUgAAAAAAADAVM6QAAGfk7Awht5YGAAD+jowEnBsKUgDgoyqHJAISAAAAGQnwFBSkAAAe5ZtPn3fY1rzLnRb0BAAAwHOQkeBrKEgBgJ9w5eKcNZ2i7ixINf3VfmHR8gLHxUdLf2XxTwAA4B5kJMAaLGoOAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBV32QMAeDxnd6xpqbPfQWb/kvvtfm4W3Zc7zwAAAJ/hqowkSS0HPeqSPgFVRUHKjVx5+1AA8DZO/wYWOGkY3d7JxuorzXa87TEAz0RGAuDPyEjASRSkAAB+7ZtPnz9rm+Zd7jShJwAAAJ6jKhlJIieh5ihIAQBcwuwZD1af7XP2/lwOCAAAKiMjkZHgHAUpAIBfqRySygsOOrQJbNHUrO4AAAB4BDISzEZBCgCAs3A2Zb2pXLOuAwAAgDernJPISKgqClIAAJ9QlenwLKQMAAD8TVXzDzkJZqMgBQDwSoQmAAAAR2QkeAsKUgAAS3lDaCr/2nENBVfdihkAAMAZb8hIkpOcREZCFQVa3QEAAAAAAAD4FwpSAAAAAAAAMBWX7AEA4CLO7sZXWfMud5rQEwAAAM9BRoIzFKQAAKjE6ZpRAAAAfo6MBFeiIAUAgMUqnzXkDCEAAAAZydexhhQAAAAAAABMRUEKAAAAAAAApuKSPQAAvBTT2AEAAByRkbwDBSkAAFyk8kKfgS2a1mg/pdkbHLaFpPWs0b4AAACs5mwxdFflJDKS96IgBQBADXxXsNrU96vK7ZIBAACsRkZCVVGQAgDATZzeGrmLuX1wFtKYtg4AAKzmkJPISH6HghQAACZydjmeGprfDwAAAE9CRvI/FKQAADCR02nsBZV+jm7v1j6w0CcAAPA0VclIpb86KVq5EBnJXIFWdwAAAAAAAAD+hYIUAAAAAAAATMUlewAAeBhnU9YDG9bs1sgAAAC+gozkW5ghBQAAAAAAAFMxQwoAAB/h7PbFAAAA/o6M5JkoSAEA4AXKvz7osC2wBVPUAQCAfyMjeS8KUgAAeKnKAYzwBQAAQEbyFqwhBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVd9kDAMDPlWZvcNgWktbTgp4AAAB4DjKSezFDCgAAAAAAAKaypCCVmZmprl27qm7duoqJidGAAQO0b98+uzbHjx9Xenq6GjRooDp16mjgwIHKy8uza3Pw4EH1799ftWvXVkxMjCZMmKATJ06YORQAAHzSN58+7/CA+5GRAADwbGQk17Hkkr0PP/xQ6enp6tq1q06cOKF//etf6tOnj/bs2aOIiAhJ0rhx4/TOO+9o6dKlioqKUkZGhq6//npt3LhRklRWVqb+/fsrLi5OmzZt0s8//6whQ4YoJCREjz32mBXDAgDA45R/ffCsbb6TY5vAhk3d0R2cBRkJAABzkJGsF2AYhmF1J3755RfFxMToww8/1GWXXabCwkI1atRIixcv1g033CBJ+vLLL9W2bVvl5OTokksu0erVq3XVVVfp0KFDio2NlSTNnz9fEydO1C+//KJatWqd9X2LiooUFRWlwsJCRUZGunxc+5fc7/J9AgBwOoEtHANSVcJWVffVvMudNdqXp3H3978rkZEAADh3ZKSqMTsjecQaUoWFhZKk+vXrS5K2bdum0tJSpaSk2Nq0adNGTZs2VU5OjiQpJydHHTp0sAUtSUpNTVVRUZF2797t9H2Ki4tVVFRk9wAAAPBUZCQAAOCrLC9IlZeXa+zYsbr00kt1wQUXSJJyc3NVq1YtRUdH27WNjY1Vbm6urc2pQavi+YrnnMnMzFRUVJTt0aRJExePBgAAwDXISAAAwJdZXpBKT0/Xrl27tGTJEre/1+TJk1VYWGh7/PDDD25/TwAAgJogIwEAAF9myaLmFTIyMrRy5Up99NFHaty4sW17XFycSkpKVFBQYHcGMC8vT3FxcbY2W7ZssdtfxR1mKtpUFhoaqtDQUBePAgAAwLXISAAAwNdZUpAyDEN33XWXli1bpg8++EBJSUl2z1988cUKCQnRunXrNHDgQEnSvn37dPDgQSUnJ0uSkpOT9eijjyo/P18xMTGSpDVr1igyMlLt2rUzd0AAAHiAmi7OWVWVb2vsKwt4ehIyEgAArkdG8kyWFKTS09O1ePFivfXWW6pbt65tPYOoqCiFh4crKipKw4cP1/jx41W/fn1FRkbqrrvuUnJysi655BJJUp8+fdSuXTvddtttysrKUm5urh544AGlp6dzhg8AgHPkLLg5u6uMqzi761rLQY+67f08FRkJAADPRkZyHUsKUvPmzZMkXX755XbbFyxYoGHDhkmSnnrqKQUGBmrgwIEqLi5WamqqnnvuOVvboKAgrVy5UqNHj1ZycrIiIiI0dOhQPfzww2YNAwAAVFL5DKHEWcLqICMBAOCbyEiOLLtk72zCwsI0d+5czZ0797RtEhMTtWrVKld2DQAAwDJkJAAA4C8sXdQcAAB4L2dTyN05ZR0AAMAbkJGqJtDqDgAAAAAAAMC/UJACAAAAAACAqShIAQAAAAAAwFSsIQUAANzK2V1lAAAA/J2/ZyRmSAEAAAAAAMBUzJACAABVUv71Qau7AAAA4HHISDVDQQoAALiMs0BW+TbHhDYAAOBvyEiOuGQPAAAAAAAApqIgBQAAAAAAAFNxyR4AAHArf5t+DgAAUBX+npGYIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATOX1Bam5c+eqWbNmCgsLU/fu3bVlyxaruwQAAGA5MhIAAPBkXl2QevXVVzV+/HhNnTpVn332mTp27KjU1FTl5+db3TUAAADLkJEAAICn8+qC1KxZszRy5EjdfvvtateunebPn6/atWvrpZdesrprAAAAliEjAQAAT+e1BamSkhJt27ZNKSkptm2BgYFKSUlRTk6OhT0DAACwDhkJAAB4g2CrO1BTv/76q8rKyhQbG2u3PTY2Vl9++aXT1xQXF6u4uNj2c2FhoSSpqKjILX08eqz47I0AAIBT7vp+rtivYRhu2b/VyEgAAPg2X8lIXluQqonMzExNmzbNYXuTJk0s6A0AADij4U+6dfdHjhxRVFSUW9/DW5CRAADwIj6Skby2INWwYUMFBQUpLy/PbnteXp7i4uKcvmby5MkaP3687efy8nIdPnxYDRo0UEBAgEv7V1RUpCZNmuiHH35QZGSkS/ftyRg34/YHjJtx+wtfHbthGDpy5IgSEhKs7opbkJE8E+Nm3P7AX8ct+e/YGbdvjdvsjOS1BalatWrp4osv1rp16zRgwABJJ8PTunXrlJGR4fQ1oaGhCg0NtdsWHR3t1n5GRkb61C9oVTFu/8K4/Qvj9j++OHZfnhlFRvJsjNu/MG7/469jZ9y+w8yM5LUFKUkaP368hg4dqi5duqhbt256+umn9ccff+j222+3umsAAACWISMBAABP59UFqZtvvlm//PKLpkyZotzcXF100UXKzs52WMQTAADAn5CRAACAp/PqgpQkZWRknHb6uZVCQ0M1depUh+nvvo5xM25/wLgZt7/w57H7AjKSZ2HcjNsf+Ou4Jf8dO+P2r3G7WoDhq/c8BgAAAAAAgEcKtLoDAAAAAAAA8C8UpAAAAAAAAGAqClIAAAAAAAAwFQWpapg7d66aNWumsLAwde/eXVu2bDlj+6VLl6pNmzYKCwtThw4dtGrVKrvnDcPQlClTFB8fr/DwcKWkpGj//v3uHEKNuHLcpaWlmjhxojp06KCIiAglJCRoyJAhOnTokLuHUW2u/rxP9Y9//EMBAQF6+umnXdzrc+eOce/du1fXXHONoqKiFBERoa5du+rgwYPuGkKNuHrcR48eVUZGhho3bqzw8HC1a9dO8+fPd+cQaqQ64969e7cGDhyoZs2anfH3t7rH0gquHndmZqa6du2qunXrKiYmRgMGDNC+ffvcOIKaccfnXWHGjBkKCAjQ2LFjXdtpeAUyEhnpTMhIZKRTkZHISGQk2BiokiVLlhi1atUyXnrpJWP37t3GyJEjjejoaCMvL89p+40bNxpBQUFGVlaWsWfPHuOBBx4wQkJCjJ07d9razJgxw4iKijKWL19u7Nixw7jmmmuMpKQk488//zRrWGfl6nEXFBQYKSkpxquvvmp8+eWXRk5OjtGtWzfj4osvNnNYZ+WOz7vCm2++aXTs2NFISEgwnnrqKTePpHrcMe6vv/7aqF+/vjFhwgTjs88+M77++mvjrbfeOu0+reCOcY8cOdJo3ry58f777xsHDhwwnn/+eSMoKMh46623zBrWWVV33Fu2bDHuvfde43//+58RFxfn9Pe3uvu0gjvGnZqaaixYsMDYtWuXsX37dqNfv35G06ZNjaNHj7p5NFXnjnGf2rZZs2bGhRdeaIwZM8Y9A4DHIiORkchIjshIZKRz3acVyEhkJLNRkKqibt26Genp6bafy8rKjISEBCMzM9Np+5tuusno37+/3bbu3bsbd955p2EYhlFeXm7ExcUZTzzxhO35goICIzQ01Pjf//7nhhHUjKvH7cyWLVsMScb333/vmk67gLvG/eOPPxrnnXeesWvXLiMxMdHjwpY7xn3zzTcbt956q3s67CLuGHf79u2Nhx9+2K5N586djfvvv9+FPT831R33qU73+3su+zSLO8ZdWX5+viHJ+PDDD8+lqy7lrnEfOXLEaNmypbFmzRqjV69ehC0/REY6iYxERjoVGekvZKRz36dZyEgnkZHMwyV7VVBSUqJt27YpJSXFti0wMFApKSnKyclx+pqcnBy79pKUmppqa3/gwAHl5ubatYmKilL37t1Pu0+zuWPczhQWFiogIEDR0dEu6fe5cte4y8vLddttt2nChAlq3769ezp/Dtwx7vLycr3zzjtq1aqVUlNTFRMTo+7du2v58uVuG0d1uevz7tGjh1asWKGffvpJhmHo/fff11dffaU+ffq4ZyDVVJNxW7FPVzOrj4WFhZKk+vXru2yf58Kd405PT1f//v0d/k3AP5CRyEhkJDLSqchI5u3T1chIZCQrUJCqgl9//VVlZWWKjY212x4bG6vc3Fynr8nNzT1j+4r/rc4+zeaOcVd2/PhxTZw4UbfccosiIyNd0/Fz5K5xP/744woODtbdd9/t+k67gDvGnZ+fr6NHj2rGjBlKS0vTe++9p+uuu07XX3+9PvzwQ/cMpJrc9XnPmTNH7dq1U+PGjVWrVi2lpaVp7ty5uuyyy1w/iBqoybit2KermdHH8vJyjR07VpdeeqkuuOACl+zzXLlr3EuWLNFnn32mzMzMc+0ivBQZiYwkkZGcISOdvj0ZyTX7dDUyEhnJCsFWdwD+q7S0VDfddJMMw9C8efOs7o5bbdu2Tc8884w+++wzBQQEWN0d05SXl0uSrr32Wo0bN06SdNFFF2nTpk2aP3++evXqZWX33GrOnDn65JNPtGLFCiUmJuqjjz5Senq6EhISOEvi49LT07Vr1y5t2LDB6q641Q8//KAxY8ZozZo1CgsLs7o7gE8hI/k+MhIZyR+RkVAZM6SqoGHDhgoKClJeXp7d9ry8PMXFxTl9TVxc3BnbV/xvdfZpNneMu0JF0Pr++++1Zs0ajznzJ7ln3B9//LHy8/PVtGlTBQcHKzg4WN9//73uueceNWvWzC3jqC53jLthw4YKDg5Wu3bt7Nq0bdvWY+4g445x//nnn/rXv/6lWbNm6eqrr9aFF16ojIwM3XzzzZo5c6Z7BlJNNRm3Fft0NXf3MSMjQytXrtT777+vxo0bn/P+XMUd4962bZvy8/PVuXNn29+1Dz/8ULNnz1ZwcLDKyspc0XV4ODISGUkiIzlDRnLenozkW3/XqoOMREZyhoJUFdSqVUsXX3yx1q1bZ9tWXl6udevWKTk52elrkpOT7dpL0po1a2ztk5KSFBcXZ9emqKhImzdvPu0+zeaOcUt/Ba39+/dr7dq1atCggXsGUEPuGPdtt92mL774Qtu3b7c9EhISNGHCBL377rvuG0w1uGPctWrVUteuXR1u7frVV18pMTHRxSOoGXeMu7S0VKWlpQoMtP8TGxQUZDsjarWajNuKfbqau/poGIYyMjK0bNkyrV+/XklJSa7orsu4Y9y9e/fWzp077f6udenSRYMHD9b27dsVFBTkqu7Dg5GRyEhkJDLSqchI5u3T1chIZCRLWLmiujdZsmSJERoaarz88svGnj17jFGjRhnR0dFGbm6uYRiGcdtttxmTJk2ytd+4caMRHBxszJw509i7d68xdepUp7c0jo6ONt566y3jiy++MK699lqPvKWxK8ddUlJiXHPNNUbjxo2N7du3Gz///LPtUVxcbMkYnXHH512ZJ95Bxh3jfvPNN42QkBDjhRdeMPbv32/MmTPHCAoKMj7++GPTx3c67hh3r169jPbt2xvvv/++8e233xoLFiwwwsLCjOeee8708Z1OdcddXFxsfP7558bnn39uxMfHG/fee6/x+eefG/v376/yPj2BO8Y9evRoIyoqyvjggw/s/q4dO3bM9PGdjjvGXRl3kPFPZCQyEhmJjFSBjERGIiM5R0ZyjoJUNcyZM8do2rSpUatWLaNbt27GJ598YnuuV69extChQ+3av/baa0arVq2MWrVqGe3btzfeeecdu+fLy8uNBx980IiNjTVCQ0ON3r17G/v27TNjKNXiynEfOHDAkOT08f7775s0oqpx9eddmSeGLcNwz7j/85//GC1atDDCwsKMjh07GsuXL3f3MKrN1eP++eefjWHDhhkJCQlGWFiY0bp1a+PJJ580ysvLzRhOlVVn3Kf799urV68q79NTuHrcp/u7tmDBAvMGVQXu+LxPRdjyX2QkMlIFMtJfyEhkJDISGenUfZCRHAUYhmG4csYVAAAAAAAAcCasIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAA7WVlZatOmjcrLy8/Y7rvvvlNAQIBefvllu+3Z2dm66KKLFBYWpoCAABUUFFT5vX/77TdFRERo1apVNeg5AACA+5CRANeiIAUAsCkqKtLjjz+uiRMnKjCw+l8Rv/32m2666SaFh4dr7ty5+r//+z9FRERo3759GjdunHr06GELYd99953D6xs0aKARI0bowQcfdMFoAAAAXMNdGenNN9/UzTffrPPPP1+1a9dW69atdc899zgUq8hI8EUUpAAANi+99JJOnDihW265pUav37p1q44cOaLp06dr+PDhuvXWWxUSEqKcnBzNnj1bR44cUdu2bc+4j3/84x/67LPPtH79+hr1AQAAwNXclZFGjRqlvXv36tZbb9Xs2bOVlpamZ599VsnJyfrzzz/t9kFGgq+hIAV4kPLych0/ftzqbtj5448/3P4ehmE4fOHCGgsWLNA111yjsLCwGr0+Pz9fkhQdHW23/ZprrlFBQYF27typwYMHn3Efbdu21QUXXOAwzR0A4L/ISLCauzLS66+/ri+++EIPP/ywRowYoWeeeUYvvviivvzySy1atMiuLRkJvoaCFOBiDz30kAICAvTll1/qpptuUmRkpBo0aKAxY8Y4BKmAgABlZGRo0aJFat++vUJDQ5WdnS1J+umnn3THHXcoNjZWoaGhat++vV566SWH9zt+/LgeeughtWrVSmFhYYqPj9f111+vb775RpL0wQcfKCAgQB988IHd65xd2z5s2DDVqVNH33zzjfr166e6devaigf79+/XwIEDFRcXp7CwMDVu3FiDBg1SYWGh7fUnTpzQ9OnT1bx5c4WGhqpZs2b617/+peLiYrv3btasma666iq9++676tKli8LDw/X8889X6fhW9PHbb79VamqqIiIilJCQoIcffliGYTiMb+bMmXrqqaeUmJio8PBw9erVS7t27XK6z4MHD+qqq65SnTp1dN5552nu3LmSpJ07d+qKK65QRESEEhMTtXjx4ir19VQVn/XSpUvVrl07hYeHKzk5WTt37pQkPf/882rRooXCwsJ0+eWXO1zO9vHHH+vGG29U06ZNFRoaqiZNmmjcuHF2ITU/P1+NGjXS5Zdfbncsvv76a0VEROjmm28+Yx8PHDigL774QikpKQ7PFRQUaNiwYYqKilJ0dLSGDh3qMJX88ssv19ChQyVJXbt2VUBAgIYNGyZJql+/vurWrVvVw6Urr7xSb7/9tt04AADejYxERnLG3zPS5Zdf7rDP6667TpK0d+9eh+fISPAlwVZ3APBVN910k5o1a6bMzEx98sknmj17tn7//Xf997//tWu3fv16vfbaa8rIyFDDhg3VrFkz5eXl6ZJLLrF9QTdq1EirV6/W8OHDVVRUpLFjx0qSysrKdNVVV2ndunUaNGiQxowZoyNHjmjNmjXatWuXmjdvXu1+nzhxQqmpqerZs6dmzpyp2rVrq6SkRKmpqSouLtZdd92luLg4/fTTT1q5cqUKCgoUFRUlSRoxYoQWLlyoG264Qffcc482b96szMxM7d27V8uWLbN7n3379umWW27RnXfeqZEjR6p169ZV7mNZWZnS0tJ0ySWXKCsrS9nZ2Zo6dapOnDihhx9+2K7tf//7Xx05ckTp6ek6fvy4nnnmGV1xxRXauXOnYmNj7fbZt29fXXbZZcrKytKiRYuUkZGhiIgI3X///Ro8eLCuv/56zZ8/X0OGDFFycrKSkpKqdWw//vhjrVixQunp6ZKkzMxMXXXVVbrvvvv03HPP6Z///Kd+//13ZWVl6Y477rCbjr106VIdO3ZMo0ePVoMGDbRlyxbNmTNHP/74o5YuXSpJiomJ0bx583TjjTdqzpw5uvvuu1VeXq5hw4apbt26eu65587Yv02bNkmSOnfubLfdMAxde+212rBhg/7xj3+obdu2WrZsmS1YVbj//vvVunVrvfDCC3r44YeVlJRUo99BSbr44ov11FNPaffu3brgggtqtA8AgGciI5GRKiMj2cvNzZUkNWzY0OE5MhJ8igHApaZOnWpIMq655hq77f/85z8NScaOHTts2yQZgYGBxu7du+3aDh8+3IiPjzd+/fVXu+2DBg0yoqKijGPHjhmGYRgvvfSSIcmYNWuWQz/Ky8sNwzCM999/35BkvP/++3bPHzhwwJBkLFiwwLZt6NChhiRj0qRJdm0///xzQ5KxdOnS0457+/bthiRjxIgRdtvvvfdeQ5Kxfv1627bExERDkpGdnX3a/Z1ORR/vuusu27by8nKjf//+Rq1atYxffvnFbnzh4eHGjz/+aGu7efNmQ5Ixbtw4h30+9thjtm2///67ER4ebgQEBBhLliyxbf/yyy8NScbUqVOr1W9JRmhoqHHgwAHbtueff96QZMTFxRlFRUW27ZMnTzYk2bWt+MxPlZmZaQQEBBjff/+93fZbbrnFqF27tvHVV18ZTzzxhCHJWL58+Vn7+MADDxiSjCNHjthtX758uSHJyMrKsm07ceKE8be//c3hd2jBggWGJGPr1q2nfZ+KPp06vso2bdpkSDJeffXVs/YbAOAdyEhkJGfISI6GDx9uBAUFGV999ZXDc2Qk+BIu2QPcpOIMT4W77rpLkhxu1dqrVy+1a9fO9rNhGHrjjTd09dVXyzAM/frrr7ZHamqqCgsL9dlnn0mS3njjDTVs2NC271MFBATUuO+jR4+2+7ni7N67776rY8eOOX1NxbjGjx9vt/2ee+6RJL3zzjt225OSkpSamlrjPmZkZNj+u+IsaUlJidauXWvXbsCAATrvvPNsP3fr1k3du3d3esvcESNG2P47OjparVu3VkREhG666Sbb9tatWys6Olrffvtttfvcu3dvNWvWzPZz9+7dJUkDBw60u5ytYvup7xEeHm777z/++EO//vqrevToIcMw9Pnnn9u9z7PPPquoqCjdcMMNevDBB3Xbbbfp2muvPWv/fvvtNwUHB6tOnTp221etWqXg4GC734ugoCCnv3euUq9ePUnSr7/+6rb3AABYg4x0EhnpL2SkvyxevFj/+c9/dM8996hly5YOz5OR4EsoSAFuUvkLpHnz5goMDHS47r3ylOZffvlFBQUFeuGFF9SoUSO7x+233y7pr0URv/nmG7Vu3VrBwa67+jY4OFiNGzd26OP48eP173//Ww0bNlRqaqrmzp1rtzbC999/r8DAQLVo0cLutXFxcYqOjtb3339/xnFXR2BgoM4//3y7ba1atZIkh+Pr7Iu8VatWDu3CwsLUqFEju21RUVFq3LixQ3CNiorS77//Xu1+N23a1GE/ktSkSROn2099j4MHD2rYsGGqX7++6tSpo0aNGqlXr16SZPc5SCfXa5o9e7a++OILRUVFafbs2dXu66m+//57xcfHO4Sw6lxCUF3G/78uwrn8nwYAgGciI51ERvoLGemkjz/+WMOHD1dqaqoeffRRp23ISPAlrCEFmOR0XxqnntWRTt5FRpJuvfVWh+vPK1x44YXn/L5lZWVOt4eGhiow0LFW/eSTT2rYsGF666239N577+nuu++2rf1wajir6pdj5XFbLSgoqFrbK8KAGe9RVlamK6+8UocPH9bEiRPVpk0bRURE6KefftKwYcNsvzOnevfddyWdDGw//vijwx1dnGnQoIFOnDihI0eOVGsBcneoCJrO1k4AAPgWMpI9MlLV38OXMtKOHTt0zTXX6IILLtDrr79+2mIqGQm+hIIU4Cb79++3O8P19ddfq7y83G46sjONGjVS3bp1VVZW5vROHqdq3ry5Nm/erNLSUoWEhDhtUzGtt/LdPiqfjauKDh06qEOHDnrggQe0adMmXXrppZo/f74eeeQRJSYmqry8XPv371fbtm1tr8nLy1NBQYESExOr/X6nU15erm+//dZ2xk+SvvrqK0lyOL779+93eP1XX3111s/Bk+zcuVNfffWVFi5cqCFDhti2r1mzxmn77Oxs/fvf/9Z9992nRYsWaejQodq8efNZzxK3adNG0sk7yZwa6BMTE7Vu3TodPXrU7gzgvn37zmVYZ3TgwAFJsvtdAgD4BjLSSWSkc+crGembb75RWlqaYmJitGrVKocZV6ciI8GXcMke4CYVt8OtMGfOHElS3759z/i6oKAgDRw4UG+88YbDrXelk9PVKwwcOFC//vqrnn32WYd2FWeOEhMTFRQUpI8++sju+bPdTeRURUVFOnHihN22Dh06KDAw0Ha74n79+kmSnn76abt2s2bNkiT179+/yu9XFaeO2TAMPfvsswoJCVHv3r3t2i1fvlw//fST7ectW7Zo8+bNZ/0cPEnF2cFTzzgahqFnnnnGoW1BQYFGjBihbt266bHHHtO///1vffbZZ3rsscfO+j7JycmSpE8//dRue79+/XTixAnNmzfPtq2srMz2O+0O27ZtU1RUlNq3b++29wAAWIOMdBIZ6dz5QkbKzc1Vnz59FBgYqHfffdfh8sjKyEjwJcyQAtzkwIEDuuaaa5SWlqacnBy98sor+n//7/+pY8eOZ33tjBkz9P7776t79+4aOXKk2rVrp8OHD+uzzz7T2rVrdfjwYUnSkCFD9N///lfjx4/Xli1b9Le//U1//PGH1q5dq3/+85+69tprFRUVZbvFbUBAgJo3b66VK1fa1lioivXr1ysjI0M33nijWrVqpRMnTuj//u//bMFQkjp27KihQ4fqhRdeUEFBgXr16qUtW7Zo4cKFGjBggP7+97/X7EA6ERYWpuzsbA0dOlTdu3fX6tWr9c477+hf//qXw5d4ixYt1LNnT40ePVrFxcV6+umn1aBBA913330u64+7tWnTRs2bN9e9996rn376SZGRkXrjjTecrtEwZswY/fbbb1q7dq2CgoKUlpamESNG6JFHHtG11157xt+/888/XxdccIHWrl2rO+64w7b96quv1qWXXqpJkybpu+++U7t27fTmm286rMtwJoWFhbZwtnHjRkknA3N0dLSio6PtFmCVTp7ZvPrqq1kfAQB8EBmJjOQqvpCR0tLS9O233+q+++7Thg0btGHDBttzsbGxuvLKK+3ak5HgU8y9qR/g+ypuabxnzx7jhhtuMOrWrWvUq1fPyMjIMP7880+7tpKM9PR0p/vJy8sz0tPTjSZNmhghISFGXFyc0bt3b+OFF16wa3fs2DHj/vvvN5KSkmztbrjhBuObb76xtfnll1+MgQMHGrVr1zbq1atn3HnnncauXbuc3tI4IiLCoS/ffvutcccddxjNmzc3wsLCjPr16xt///vfjbVr19q1Ky0tNaZNm2brS5MmTYzJkycbx48ft2uXmJho9O/fv0rHs7KKPn7zzTdGnz59jNq1axuxsbHG1KlTjbKyMlu7ilsaP/HEE8aTTz5pNGnSxAgNDTX+9re/2d1W+kzj7tWrl9G+fXuH7TXpv7PP+tQ+nqriNtSn3kJ6z549RkpKilGnTh2jYcOGxsiRI40dO3bYfYZvvfWWIcl48skn7fZXVFRkJCYmGh07djRKSkrO2M9Zs2YZderUcbiF8m+//WbcdtttRmRkpBEVFWXcdttttltdV+WWxhVjdfZITEy0a7t3715DksPvFwDAu5GRyEjO+HtGOl0+kmT06tXLri0ZCb4mwDBqsOocgNN66KGHNG3aNP3yyy8sNugGw4YN0+uvv66jR4+esd13332npKQkPfHEE7r33ntN6p33Kyws1Pnnn6+srCwNHz7ckj6MHTtWH330kbZt28bZPwDwIWQk9yIjuRcZCXA91pACANhERUXpvvvu0xNPPOH0zjTu9ttvv+nf//63HnnkEYIWAADwGGQkwPVYQwqARygsLNSff/55xjZxcXEm9abqcnNzz/h8eHi4oqKiTOqNa0ycOFETJ0605L0bNGhw1jO7AAD4EzKS5yAjAa5FQQqARxgzZowWLlx4xjaeeIVxfHz8GZ8fOnSoXn75ZXM6AwAAfA4ZCYCvYg0pAB5hz549OnTo0BnbpKSkmNSbqlu7du0Zn09ISFC7du1M6g0AAPA1ZCQAvoqCFAAAAAAAAEzFouYAAAAAAAAwlV+vIVVeXq5Dhw6pbt263KkAAAA/YRiGjhw5ooSEBAUGcm7OGTISAAD+x+yM5NcFqUOHDqlJkyZWdwMAAFjghx9+UOPGja3uhkciIwEA4L/Mykh+XZCqW7eupJMHOzIy0uLeAAAAMxQVFalJkya2HABHZCQAAPyP2RnJrwtSFVPQIyMjCVsAAPgZLkU7PTISAAD+y6yMxMIJAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABM5ddrSAEAcCZlZWUqLS21uhuoppCQEAUFBVndDQAAfBYZyTt5WkaiIAUAQCWGYSg3N1cFBQVWdwU1FB0drbi4OBYuBwDAhchI3s+TMhIFKQAAKqkIWjExMapdu7ZHfGGjagzD0LFjx5Sfny9Jio+Pt7hHAAD4DjKS9/LEjERBCgCAU5SVldmCVoMGDazuDmogPDxckpSfn6+YmBiPmpoOAIC3IiN5P0/LSCxqDgDAKSrWQ6hdu7bFPcG5qPj8WN8CAADXICP5Bk/KSBSkAABwgino3o3PDwAA9+A71rt50udHQQoAAAAAAACmoiAFAICXCwgIOOPjoYcesrRvy5cvP6d9vPDCC7r88ssVGRmpgIAA7uwDAACqzJdz0uHDh3XXXXepdevWCg8PV9OmTXX33XersLDQdZ10IxY1BwCgikqzN5j2XiFpPavc9ueff7b996uvvqopU6Zo3759tm116tSp1nuXlJSoVq1a1XqNOx07dkxpaWlKS0vT5MmTre4OAACoxMyMJJGTKhw6dEiHDh3SzJkz1a5dO33//ff6xz/+oUOHDun111+3untnxQwpAJYozd7g8ABQM3FxcbZHVFSUAgICbD//8ccfGjx4sGJjY1WnTh117dpVa9eutXt9s2bNNH36dA0ZMkSRkZEaNWqUJOnFF19UkyZNVLt2bV133XWaNWuWoqOj7V771ltvqXPnzgoLC9P555+vadOm6cSJE7b9StJ1112ngIAA2887duzQ3//+d9WtW1eRkZG6+OKL9emnn552fGPHjtWkSZN0ySWXuOaAAYAHIyMBruXLOemCCy7QG2+8oauvvlrNmzfXFVdcoUcffVRvv/227X08GQUpAAB82NGjR9WvXz+tW7dOn3/+udLS0nT11Vfr4MGDdu1mzpypjh076vPPP9eDDz6ojRs36h//+IfGjBmj7du368orr9Sjjz5q95qPP/5YQ4YM0ZgxY7Rnzx49//zzevnll23ttm7dKklasGCBfv75Z9vPgwcPVuPGjbV161Zt27ZNkyZNUkhIiAlHAwAA4C++mJMKCwsVGRmp4GDPvyDO83sIwG84OwNYnem4ABx17NhRHTt2tP08ffp0LVu2TCtWrFBGRoZt+xVXXKF77rnH9vP999+vvn376t5775UktWrVSps2bdLKlSttbaZNm6ZJkyZp6NChkqTzzz9f06dP13333aepU6eqUaNGkqTo6GjFxcXZXnfw4EFNmDBBbdq0kSS1bNnSDSMHAN9BRgLcw9dy0q+//qrp06fbZnF5OmZIAQDgw44ePap7771Xbdu2VXR0tOrUqaO9e/c6nPnr0qWL3c/79u1Tt27d7LZV/nnHjh16+OGHVadOHdtj5MiR+vnnn3Xs2LHT9mn8+PEaMWKEUlJSNGPGDH3zzTfnOEoAAIDq86WcVFRUpP79+6tdu3aWLtReHRSkAADwYffee6+WLVumxx57TB9//LG2b9+uDh06qKSkxK5dREREtfd99OhRTZs2Tdu3b7c9du7cqf379yssLOy0r3vooYe0e/du9e/fX+vXr1e7du20bNmyar8/AADAufCVnHTkyBGlpaWpbt26WrZsmdcshcAlewC8ClPWgerZuHGjhg0bpuuuu07SyXD03XffnfV1rVu3tq1lUKHyz507d9a+ffvUokWL0+4nJCREZWVlDttbtWqlVq1aady4cbrlllu0YMECWx8BANVHRgKqzxdyUlFRkVJTUxUaGqoVK1acsdjlaShIAQDgw1q2bKk333xTV199tQICAvTggw+qvLz8rK+76667dNlll2nWrFm6+uqrtX79eq1evVoBAQG2NlOmTNFVV12lpk2b6oYbblBgYKB27NihXbt26ZFHHpF08g4y69at06WXXqrQ0FCFhYVpwoQJuuGGG5SUlKQff/xRW7du1cCBA0/bl9zcXOXm5urrr7+WJO3cuVN169ZV06ZNVb9+/XM8QgAAwF95e04qKipSnz59dOzYMb3yyisqKipSUVGRJKlRo0YKCgpywVFyHy7ZAwDAh82aNUv16tVTjx49dPXVVys1NVWdO3c+6+suvfRSzZ8/X7NmzVLHjh2VnZ2tcePG2Z11S01N1cqVK/Xee++pa9euuuSSS/TUU08pMTHR1ubJJ5/UmjVr1KRJE3Xq1ElBQUH67bffNGTIELVq1Uo33XST+vbtq2nTpp22L/Pnz1enTp00cuRISdJll12mTp06acWKFedwZAAAgL/z9pz02WefafPmzdq5c6datGih+Ph42+OHH3449wPkZgGGYRhWd8IqRUVFioqKst0WEYB5nE0rd6byVHOmo8Pdjh8/rgMHDigpKcmrpjybYeTIkfryyy/18ccfW92VszrT58j3/9lxjADrkJHgqchIZ+YtOcmTMhKX7AEAAKdmzpypK6+8UhEREVq9erUWLlyo5557zupuAQAAWI6cdO4oSAEAAKe2bNmirKwsHTlyROeff75mz56tESNGWN0tAAAAy5GTzh0FKQAA4NRrr71mdRcAAAA8Ejnp3FGQAlAtldcnYG0CAAAAMhIAVBd32QMAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAHzBs2DAFBAQoICBAISEhio2N1ZVXXqmXXnpJ5eXlVnfvnOzevVsDBw5Us2bNFBAQoKefftrqLgEAAC/iyznpxRdf1N/+9jfVq1dP9erVU0pKirZs2WJ1t6ok2OoOAPA9pdkbHLaFpPW0oCeAa33z6fOmvVfzLndW+zVpaWlasGCBysrKlJeXp+zsbI0ZM0avv/66VqxYoeBg7/zaP3bsmM4//3zdeOONGjdunNXdAYAaIyPBV5mZkSRy0qk++OAD3XLLLerRo4fCwsL0+OOPq0+fPtq9e7fOO+88q7t3RsyQAuCTSrM32D0AfxAaGqq4uDidd9556ty5s/71r3/prbfe0urVq/Xyyy/b2hUUFGjEiBFq1KiRIiMjdcUVV2jHjh12+3r77bfVtWtXhYWFqWHDhrruuutsz/3+++8aMmSI6tWrp9q1a6tv377av3+/JOmPP/5QZGSkXn/9dbv9LV++XBERETpy5IhKSkqUkZGh+Ph4hYWFKTExUZmZmacdV9euXfXEE09o0KBBCg0NdcGRAgD/RUaCv/LVnLRo0SL985//1EUXXaQ2bdro3//+t8rLy7Vu3ToXHDX3oiAFAIAPu+KKK9SxY0e9+eabtm033nij8vPztXr1am3btk2dO3dW7969dfjwYUnSO++8o+uuu079+vXT559/rnXr1qlbt2621w8bNkyffvqpVqxYoZycHBmGoX79+qm0tFQREREaNGiQFixYYNePBQsW6IYbblDdunU1e/ZsrVixQq+99pr27dunRYsWqVmzZqYcDwAAgAq+mJOOHTum0tJS1a9f/9wOjgm8c04aAACosjZt2uiLL76QJG3YsEFbtmxRfn6+bbbRzJkztXz5cr3++usaNWqUHn30UQ0aNEjTpk2z7aNjx46SpP3792vFihXauHGjevToIenkmbkmTZpo+fLluvHGGzVixAj16NFDP//8s+Lj45Wfn69Vq1Zp7dq1kqSDBw+qZcuW6tmzpwICApSYmGjm4QAAALDxtZw0ceJEJSQkKCUl5ZyPjbsxQwoAAB9nGIYCAgIkSTt27NDRo0fVoEED1alTx/Y4cOCAvvnmG0nS9u3b1bt3b6f72rt3r4KDg9W9e3fbtgYNGqh169bau3evJKlbt25q3769Fi5cKEl65ZVXlJiYqMsuu0zSyTOH27dvV+vWrXX33Xfrvffec9vYAQAAzsSXctKMGTO0ZMkSLVu2TGFhYdU/GCZjhhQAAD5u7969SkpKkiQdPXpU8fHx+uCDDxzaRUdHS5LCw8PP+T1HjBihuXPnatKkSVqwYIFuv/12W9jr3LmzDhw4oNWrV2vt2rW66aablJKS4rCeAgAAgLv5Sk6aOXOmZsyYobVr1+rCCy885z6agRlSAAD4sPXr12vnzp0aOHCgpJMhJzc3V8HBwWrRooXdo2HDhpKkCy+88LQLYbZt21YnTpzQ5s2bbdt+++037du3T+3atbNtu/XWW/X9999r9uzZ2rNnj4YOHWq3n8jISN1888168cUX9eqrr+qNN96wrc0AAABgBl/JSVlZWZo+fbqys7PVpUuXGh8PszFDCgAAH1FcXKzc3Fy72xlnZmbqqquu0pAhQyRJKSkpSk5O1oABA5SVlaVWrVrp0KFDtgU6u3TpoqlTp6p3795q3ry5Bg0apBMnTmjVqlWaOHGiWrZsqWuvvVYjR47U888/r7p162rSpEk677zzdO2119r6Uq9ePV1//fWaMGGC+vTpo8aNG9uemzVrluLj49WpUycFBgZq6dKliouLs515rKykpER79uyx/fdPP/2k7du3q06dOmrRooX7DigAAPAZvpqTHn/8cU2ZMkWLFy9Ws2bNlJubK0m2yw09GTOkAADwEdnZ2YqPj1ezZs2Ulpam999/X7Nnz9Zbb72loKAgSVJAQIBWrVqlyy67TLfffrtatWqlQYMG6fvvv1dsbKwk6fLLL9fSpUu1YsUKXXTRRbriiiu0ZcsW2/ssWLBAF198sa666iolJyfLMAytWrVKISEhdv0ZPny4SkpKdMcdd9htr1u3rrKystSlSxd17dpV3333nVatWqXAQOex5NChQ+rUqZM6deqkn3/+WTNnzlSnTp00YsQIVx4+AADgw3w1J82bN08lJSW64YYbFB8fb3vMnDnTlYfPLQIMwzCs7oRVioqKFBUVpcLCQkVGRlrdHcArlGZvsPs5JK3nWds4a+esjTM1fd3Z9uNMVfoN33f8+HEdOHBASUlJXrEYpCf7v//7P40bN06HDh1SrVq1TH3vM32OfP+fHccIqD5fzkjO9k9G8j9kJNeyKid5Ukbikj0AAOBSx44d088//6wZM2bozjvvNL0YBQAA4KnISX/hkj0AAOBSWVlZatOmjeLi4jR58mSruwMAAOAxyEl/saQgVVZWpgcffFBJSUkKDw9X8+bNNX36dJ169aBhGJoyZYri4+MVHh6ulJQU7d+/324/hw8f1uDBgxUZGano6GgNHz5cR48eNXs4AKqgNHuD3QOA73rooYdUWlqqdevWefximp6GjAT4HzIS4F/ISX+xpCD1+OOPa968eXr22We1d+9ePf7448rKytKcOXNsbbKysjR79mzNnz9fmzdvVkREhFJTU3X8+HFbm8GDB2v37t1as2aNVq5cqY8++kijRo2yYkgAAADnjIwEAAD8hSVrSG3atEnXXnut+vfvL0lq1qyZ/ve//9lWpjcMQ08//bQeeOAB260R//vf/yo2NlbLly/XoEGDtHfvXmVnZ2vr1q3q0qWLJGnOnDnq16+fZs6cqYSEBCuGBgAAUGNkJAAA4C8smSHVo0cPrVu3Tl999ZUkaceOHdqwYYP69u0rSTpw4IByc3OVkpJie01UVJS6d++unJwcSVJOTo6io6NtQUuSUlJSFBgYqM2bN5s4GgCAL/Ljm9D6BG/9/MhIAABP563fsTjJkz4/S2ZITZo0SUVFRWrTpo2CgoJUVlamRx99VIMHD5Yk5ebmSpJiY2PtXhcbG2t7Ljc3VzExMXbPBwcHq379+rY2lRUXF6u4uNj2c1FRkcvGBPgrX1/roCq3Z4ZvCQkJkXTyDijh4eEW9wY1dezYMUl/fZ7egowE+A4yEnwNGck3eFJGsqQg9dprr2nRokVavHix2rdvr+3bt2vs2LFKSEjQ0KFD3fa+mZmZmjZtmtv2D8D1fD3MwfMEBQUpOjpa+fn5kqTatWsrICDA4l6hqgzD0LFjx5Sfn6/o6GgFBQVZ3aVqISMBqCoyEsxGRvJunpiRLClITZgwQZMmTdKgQYMkSR06dND333+vzMxMDR06VHFxcZKkvLw8xcfH216Xl5eniy66SJIUFxdn+4dQ4cSJEzp8+LDt9ZVNnjxZ48ePt/1cVFSkJk2auHJoALwIQQ6nU/E9Uvl7Bt4jOjr6tHnAk5GRAHgCMhJOh4zk/TwpI1lSkDp27JgCA+2XrwoKClJ5ebkkKSkpSXFxcVq3bp0tXBUVFWnz5s0aPXq0JCk5OVkFBQXatm2bLr74YknS+vXrVV5eru7duzt939DQUIWGhrppVAA8GcEK1REQEKD4+HjFxMSotLTU6u6gmkJCQjzirF9NkJEAmI2MhOogI3k3T8tIlhSkrr76aj366KNq2rSp2rdvr88//1yzZs3SHXfcIenkL/nYsWP1yCOPqGXLlkpKStKDDz6ohIQEDRgwQJLUtm1bpaWlaeTIkZo/f75KS0uVkZGhQYMGcfcYAIBLBAUFedSXNnwfGQkA4A3ISHAFSwpSc+bM0YMPPqh//vOfys/PV0JCgu68805NmTLF1ua+++7TH3/8oVGjRqmgoEA9e/ZUdna2wsLCbG0WLVqkjIwM9e7dW4GBgRo4cKBmz55txZAAn8QZMwAwFxkJ8A5kJAA4dwGGJ93zz2RFRUWKiopSYWGhIiMjre4O4HEIW85xBxnAu/H9f3YcI+DMyEjOkZEA72b2978lM6QAeB6CFQAAgCMyEgC4R+DZmwAAAAAAAACuwwwpADhHzs6cMmUdAADAMSeRkQBUYIYUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVbDVHQAAf1GavcHu55C0nhb1BAAAwHNUzkgSOQnwBxSkAD/l7IsfAADA35GRAMAcXLIHAAAAAAAAU1GQAgAAAAAAgKm4ZA8Aqomp/AAAAI7ISACqgxlSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVMFWdwAAfFFp9garuwAAAOBxyEgAKlCQAnyMsy/5kLSeFvQEAADAc5CRAMCzcMkeAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVbDVHQDgfqXZG6zuAgAAgMchIwGAdZghBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTBVvdAQDnpjR7g9VdQA05++xC0npa0BMAAHwPGcm7Vf78yEiA72GGFAAAAAAAAEzFDCkAXuO7gtUO25pF97WgJwAAAJ6DjATAGzFDCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQsag54KG5VDAAA4IiMBAC+gRlSAAAAAAAAMBUFKQAAAAAAAJiKS/YAD8H0cwAAAEdkJADwTRSkAMDDVQ7iIWk9LeoJAACA5yAjAd6NS/YAAAAAAABgKgpSAAAAAAAAMBWX7AGAB2GdDAAAAEdkJMD3WDZD6qefftKtt96qBg0aKDw8XB06dNCnn35qe94wDE2ZMkXx8fEKDw9XSkqK9u/fb7ePw4cPa/DgwYqMjFR0dLSGDx+uo0ePmj0UAAAAlyEjAQAAf2BJQer333/XpZdeqpCQEK1evVp79uzRk08+qXr16tnaZGVlafbs2Zo/f742b96siIgIpaam6vjx47Y2gwcP1u7du7VmzRqtXLlSH330kUaNGmXFkAAAAM4ZGQkAAPiLAMMwDLPfdNKkSdq4caM+/vhjp88bhqGEhATdc889uvfeeyVJhYWFio2N1csvv6xBgwZp7969ateunbZu3aouXbpIkrKzs9WvXz/9+OOPSkhIOGs/ioqKFBUVpcLCQkVGRrpugEANeOM05O8KVjtsaxbd19T3M/P9PQV3kAHOjSd//5ORAEdkpJq9nzO+npPISMC5Mfv735IZUitWrFCXLl104403KiYmRp06ddKLL75oe/7AgQPKzc1VSkqKbVtUVJS6d++unJwcSVJOTo6io6NtQUuSUlJSFBgYqM2bN5s3GAAAABchIwEAAH9hSUHq22+/1bx589SyZUu9++67Gj16tO6++24tXLhQkpSbmytJio2NtXtdbGys7bnc3FzFxMTYPR8cHKz69evb2lRWXFysoqIiuwcAAICnICMBAAB/Ycld9srLy9WlSxc99thjkqROnTpp165dmj9/voYOHeq2983MzNS0adPctn+gqrxx6rm7mT213Zs5+/1hijrgG8hI8HdkJEdkpKojIwHexZIZUvHx8WrXrp3dtrZt2+rgwYOSpLi4OElSXl6eXZu8vDzbc3FxccrPz7d7/sSJEzp8+LCtTWWTJ09WYWGh7fHDDz+4ZDwAAACuQEYCAAD+wpKC1KWXXqp9+/bZbfvqq6+UmJgoSUpKSlJcXJzWrVtne76oqEibN29WcnKyJCk5OVkFBQXatm2brc369etVXl6u7t27O33f0NBQRUZG2j0AAAA8BRkJAAD4C0su2Rs3bpx69Oihxx57TDfddJO2bNmiF154QS+88IIkKSAgQGPHjtUjjzyili1bKikpSQ8++KASEhI0YMAASSfPFqalpWnkyJGaP3++SktLlZGRoUGDBlXp7jEAAACehowEAAD8hSUFqa5du2rZsmWaPHmyHn74YSUlJenpp5/W4MGDbW3uu+8+/fHHHxo1apQKCgrUs2dPZWdnKywszNZm0aJFysjIUO/evRUYGKiBAwdq9uzZVgwJQDVU9dbEAOBvyEiAfyMjAfAnAYZhGFZ3wipFRUWKiopSYWEhU9NhKl9ZsLOmi2xWNWxV3ldVXuevi3yyYCdQdXz/nx3HCFYhI7kvI1W1D76GjARUndnf/5bMkAL8ia8EKwAAAFciIwGAf7NkUXMAAAAAAAD4L2ZIAfB5NZ02DwAA4MvISACsxAwpAAAAAAAAmIqCFAAAAAAAAEzFJXsA/FLlKepMTwcAACAjATAPBSkAEGsoAAAAOENGAuAuFKQAeGzQcNYvAAAAM3nijCEyEgBfQEEKAHxAafYGh20haT0t6AkAAIDnICMBnouCFACX8tTZVgAAAFYiIwGAPQpSANyOaeUAAACOyEgA/BkFKQCoBk9cRwIAAMBqZCQA1UVBCoBP4UwjAACAc+QkAJ6EghSAKiPEAAAAOCIjAUD1UZACAD/BXWYAAAAckZEAa1CQAlzM2ReaN+JMH8cAAABXIiP5Do4BAFegIOWBqNADAAA4IiMBAOA7KEgBgI/ylTPRAAAArkRGAjxDoNUdAAAAAAAAgH+hIAUAAAAAAABTcckeUEWsWwEAAOBc5ZxERgIAnA0zpAAAAAAAAGAqZkgBfohb9QIAADgiIwGAeShIAV7CWUBqFt3Xgp4AAAB4DjISAHgnLtkDAAAAAACAqZghBZwDZwudAwAA+DsyEgDgbJghBQAAAAAAAFNRkAIAAAAAAICpuGQPfsfZFPKQtJ4W9MQ9uDsMAACoqco5iYwEAHAXClIA4GK+drcfXy/iAgAAc5CRAJyKghTgxTjTBwAA4IiMBACej4IU3IqzBlXja2eL/AmBFwBQE2SkqiEjeS8yEoCzoSBlsareEteXr+cHAACojIwE3Z1tAQABAABJREFUAIBvoyAFnEZVgzDga/jdBwCcCd8T8Ff87gOuRUEKpmOKOgAAgCMyEgDAn1CQAuHHhVjnAAAA30FGch0yEgCgMgpS8BruXCOC6bfwV/zuA4D3c2fhjO8J+Ct+9wH3oyCFGnNn+Nm/5H67n33pDBp3HAEAwLeZmZEk38lJZCQA8C+BVncAAAAAAAAA/oUZUoCbcbYPkuPvga+czQYAoKbISJDISIA/oyAFl6rptdZcow0AAHwZGQkAAHsUpOCUOxcQd9VZEF+/8w1nDQEA8DzekJEk9/bTamQkAPANrCEFAAAAAAAAUzFDClXCdHEAAABHZCQAAGqGgpQHcjYNmcX9AN/Cv3MAqD7+dgK+j3/ngP/gkj0AAAAAAACYihlSFmNRRgAAAEdkJAAAfBsFKfg81nYAAABwREYCAFiJghSgmt9mmbO3AADAl5GRAADuQkEKXoHFDQEAAJyradEIAAArUZCC5TiDBlQdxVkA8B9kJKDqyEiA96EgBa/l7EunpXpa0BMAAADPQUYCAHiDQKs7AAAAAAAAAP/CDClUCVNgmTYPAAAckZHISACAmqEgBZ/C7YvhzVx1JyMz/o+Qs39rIWlcDgIAnoqMBG9W08IvGQnwbBSk4FacMQMAAHBERgIA+DsKUnBAQAIAAHBERgIAwHUsX9R8xowZCggI0NixY23bjh8/rvT0dDVo0EB16tTRwIEDlZeXZ/e6gwcPqn///qpdu7ZiYmI0YcIEnThxwuTew9N8V7Da7uGq/RBAYQV+DwGQk+AqZCT4Gn4PAe9naUFq69atev7553XhhRfabR83bpzefvttLV26VB9++KEOHTqk66+/3vZ8WVmZ+vfvr5KSEm3atEkLFy7Uyy+/rClTppg9BAAAALcgJwEAAF9mWUHq6NGjGjx4sF588UXVq1fPtr2wsFD/+c9/NGvWLF1xxRW6+OKLtWDBAm3atEmffPKJJOm9997Tnj179Morr+iiiy5S3759NX36dM2dO1clJSVWDQkAAMAlyEkAAMDXWVaQSk9PV//+/ZWSkmK3fdu2bSotLbXb3qZNGzVt2lQ5OTmSpJycHHXo0EGxsbG2NqmpqSoqKtLu3btP+57FxcUqKiqyewAAAHgas3MSGQkAAJjNkkXNlyxZos8++0xbt251eC43N1e1atVSdHS03fbY2Fjl5uba2pwasiqer3judDIzMzVt2rRz7L01Kl8X3VLcOrSmuMYccI/KtznmFsdAzViRk8hIkMhIgLuQkQDnTC9I/fDDDxozZozWrFmjsLAwU9978uTJGj9+vO3noqIiNWnSxNQ++DJCDAAA58aqnERGci8yEgAAjkwvSG3btk35+fnq3LmzbVtZWZk++ugjPfvss3r33XdVUlKigoICu7N/eXl5iouLkyTFxcVpy5YtdvutuLtMRRtnQkNDFRoa6sLR+DfCFQAArmVVTiIjuRYZCQCAszN9DanevXtr586d2r59u+3RpUsXDR482PbfISEhWrdune01+/bt08GDB5WcnCxJSk5O1s6dO5Wfn29rs2bNGkVGRqpdu3ZmDwkAAMAlyEkAAMBfmD5Dqm7durrgggvstkVERKhBgwa27cOHD9f48eNVv359RUZG6q677lJycrIuueQSSVKfPn3Url073XbbbcrKylJubq4eeOABpaenc3YPAAB4LXISAADwF5Ysan42Tz31lAIDAzVw4EAVFxcrNTVVzz33nO35oKAgrVy5UqNHj1ZycrIiIiI0dOhQPfzwwxb2GgC8S+VLSppF97WoJwCqg5wEAO5FRgLM4REFqQ8++MDu57CwMM2dO1dz58497WsSExO1atUqN/cMAADAWuQkAADgizyiIAXzVL7lqMTCmwAAAGQkAADMRUHKhzgLUiFpPS3oCQAAgOcgIwEA4HkoSAEA3IL/AwgAAOCIjAScREEKPo2p9gAAAI7ISAAAq1GQ8nHOqu8AAAD+jowEAIC1KEj5EG5PCkByftabvwcA/Bl/FwFI/C0APE2g1R0AAAAAAACAf6EgBQAAAAAAAFNRkAIAAAAAAICpWEPKz3BHFQAAAEdkJAAAzEVByktxZxgA1eEp/0fL2d+ukLSeFvQEgK8iIwGoDjISYB0u2QMAAAAAAICpmCEFADgtbo8MAADgiIwEnDsKUgAAS1Weos70dAAAADISfB+X7AEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBVrSAEAJHnObY8BAAA8CRkJcA9mSAEAAAAAAMBUFKQAAAAAAABgKi7ZAwB4lMq3OJa4zTEAAAAZCb6GghQAwOMRwAAAAByRkeDNKEh5KRbWAwAAcERGAgDAO1CQAgB4pcpnBDkbCAAAQEaC96AgBQColsqzD5pF97WoJwAAAJ6DjARUD3fZAwAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBWLmgMAzomzW6yziCcAAPB3ZCTgzChI+TBnfwABAABATgIAwGpcsgcAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFSsIQUA8Cul2Rvsfg5J62lRTwAAADwHGQlmY4YUAAAAAAAATMUMKQCAz6p8pg8AAABkJHgGZkgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVa0gBAHwCayEAAAA4IiPBU1GQAgB4rO8KVjtsaxbd14KeAAAAeA4yEnwBl+wBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVa0gBAFyu8roG3ramQeXFP0PSelrUEwAA4Eu8fe0nZwukk5NQUxSkTMYdDgAAAByRkQAA8C9csgcAAAAAAABTMUMKAGAJb5+yDgAA4A5kJPgLZkgBAAAAAADAVMyQMpmzajcAAIC/IyMBAOBfmCEFAAAAAAAAUzFDCgDg17izFwAAgCMyEtyNghQAwGNwyQ4AAIAjMhJ8EQUpAIDbEaIAAACcIyfBX7GGFAAAAAAAAExlSUEqMzNTXbt2Vd26dRUTE6MBAwZo3759dm2OHz+u9PR0NWjQQHXq1NHAgQOVl5dn1+bgwYPq37+/ateurZiYGE2YMEEnTpwwcygAAAAuQ0YCAAD+wpKC1Icffqj09HR98sknWrNmjUpLS9WnTx/98ccftjbjxo3T22+/raVLl+rDDz/UoUOHdP3119ueLysrU//+/VVSUqJNmzZp4cKFevnllzVlyhQrhgQA8GGl2RscHoA7kJEAAN6GjISaCjAMw7C6E7/88otiYmL04Ycf6rLLLlNhYaEaNWqkxYsX64YbbpAkffnll2rbtq1ycnJ0ySWXaPXq1brqqqt06NAhxcbGSpLmz5+viRMn6pdfflGtWrXO+r5FRUWKiopSYWGhIiMjXT4uZ/8YuT4YAM5Ns+i+VndBkhSS1tPqLqCG3P3970pkJABAVZGRcK7MzkgesYZUYWGhJKl+/fqSpG3btqm0tFQpKSm2Nm3atFHTpk2Vk5MjScrJyVGHDh1sQUuSUlNTVVRUpN27dzt9n+LiYhUVFdk9AAAAPBUZCQAA+CrL77JXXl6usWPH6tJLL9UFF1wgScrNzVWtWrUUHR1t1zY2Nla5ubm2NqcGrYrnK55zJjMzU9OmTXPxCAAA/qgqU9I5Q4hzQUYCAHijql62R06C5TOk0tPTtWvXLi1ZssTt7zV58mQVFhbaHj/88IPb3xMAAKAmyEgAAMCXWTpDKiMjQytXrtRHH32kxo0b27bHxcWppKREBQUFdmcA8/LyFBcXZ2uzZcsWu/1V3GGmok1loaGhCg0NdfEoAABWq7z2jKesoQDUFBkJAOAKZCR4MktmSBmGoYyMDC1btkzr169XUlKS3fMXX3yxQkJCtG7dOtu2ffv26eDBg0pOTpYkJScna+fOncrPz7e1WbNmjSIjI9WuXTtzBgIAAOBCZCQAAOAvLJkhlZ6ersWLF+utt95S3bp1besZREVFKTw8XFFRURo+fLjGjx+v+vXrKzIyUnfddZeSk5N1ySWXSJL69Omjdu3a6bbbblNWVpZyc3P1wAMPKD09nTN8AADAK5GRAACAv7CkIDVv3jxJ0uWXX263fcGCBRo2bJgk6amnnlJgYKAGDhyo4uJipaam6rnnnrO1DQoK0sqVKzV69GglJycrIiJCQ4cO1cMPP2zWMAAAFnDVreGd7Ydp7LAaGQkAUFOuykjO9kVGgjtYUpAyDOOsbcLCwjR37lzNnTv3tG0SExO1atUqV3YNAADAMmQkAADgLyy/yx4AAAAAAAD8CwUpAAAAAAAAmMqSS/b8hSuv4QUAVB3rQwGejYwEANYgI8GTMEMKAAAAAAAApmKGFADALzAjAwAAwBEZCVahIAUAwP+PaewAAACOyEhwBwpSAAC4SWn2BodtIWk9LegJAACAZ6mck8hI/oeCFAAAJqJIBQAA4IiM5H8oSAEAUA1MWQcAAHBERkJ1UZACAMBiTFkHAABwxKwp3xZodQcAAAAAAADgXyhIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIq77AEAcAbObmFclTbc5hgAAPgyMhLOFTOkAAAAAAAAYCoKUgAAAAAAADAVl+wBAOAFSrM3OGwLSetpQU8AAAA8BxnJe1GQAgDADSqvmcB6CQAAAGQk/IWCFAAAfqbymUTOIgIAAJCRzMYaUgAAAAAAADAVBSkAAAAAAACYikv2AADwESzqCQAA4IiM5JkoSAEA4GGchSYAAACQk3wJl+wBAAAAAADAVMyQAgDAS3GGEAAAwBEZyTswQwoAAAAAAACmYoYUAAAm+K5gdZXaNYvu6+aeAAAAeA4ykv9ihhQAAAAAAABMRUEKAAAAAAAApuKSPQAAPEhVpq0zZR0AAPgbMpLvoSAFAAAcOLs7TUhaTwt6AgAA4DnISK5DQQoAAB9Wldsec2tkAADgb8hI1qMgBQCAl6k8ZZ3p6QAAAM4v6yMneS4WNQcAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCrWkAIAwE+w9hQAAIAjMpI1mCEFAAAAAAAAUzFDCgAAH+TsLjM1fR1nCQEAgK8gI3kOClIAAHi5mgYrAAAAX0dO8lxcsgcAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqFjUHAMBPscgnAACAIzKSOZghBQAAAAAAAFMxQwoAAJxRxVnCwE93S5Kad7nTyu4AAAB4BDLSuWGGFAAAAAAAAExFQQoAAAAAAACm4pI9AABQJeVfH5Qklf66QZIUktbTyu4AAAB4BDJSzTBDCgAAAAAAAKZihhQAAKiR0uwNDts4IwgAAPwdGalqmCEFAAAAAAAAUzFDCgAAVEvFLY5P1Sy6ryT7M4K2WyG3aCqJWyEDAADfRkaqHq+fITV37lw1a9ZMYWFh6t69u7Zs2WJ1lwAAwCnKvz6o8q8PqjR7g9Mp7HAPMhIAAJ7N3zOSV8+QevXVVzV+/HjNnz9f3bt319NPP63U1FTt27dPMTExVncPAAC/4eyMIKxDRgIAwDOQkU4vwDAMw+pO1FT37t3VtWtXPfvss5Kk8vJyNWnSRHfddZcmTZp01tcXFRUpKipKhYWFioyMdHn/9i+53+X7BADAW1VMWa8qdy3+6e7vf09ARgIAwHv4a0by2hlSJSUl2rZtmyZPnmzbFhgYqJSUFOXk5FjYMwAA4MyZ1lWA65CRAADwLv6akby2IPXrr7+qrKxMsbGxdttjY2P15ZdfOn1NcXGxiouLbT8XFhZKOlkFdIejx4rP3ggAAD+269hyu5+bRl1p++8QN30/V3zve/Ek8TMiIwEA4P0qZyTpr5zkKxnJawtSNZGZmalp06Y5bG/SpIkFvQEAAI6eNO2djhw5oqioKNPez5ORkQAA8Abm5CSzMpLXFqQaNmyooKAg5eXl2W3Py8tTXFyc09dMnjxZ48ePt/1cXl6uw4cPq0GDBgoICHBp/4qKitSkSRP98MMPPrs+hafhmJuL420+jrn5OObmMut4G4ahI0eOKCEhwW3vYSUyEirjmJuL420+jrn5OObm8tWM5LUFqVq1auniiy/WunXrNGDAAEknw9O6deuUkZHh9DWhoaEKDQ212xYdHe3WfkZGRvIP1GQcc3NxvM3HMTcfx9xcZhxvX54ZRUbC6XDMzcXxNh/H3Hwcc3P5Wkby2oKUJI0fP15Dhw5Vly5d1K1bNz399NP6448/dPvtt1vdNQAAAMuQkQAAgKfz6oLUzTffrF9++UVTpkxRbm6uLrroImVnZzss4gkAAOBPyEgAAMDTeXVBSpIyMjJOO/3cSqGhoZo6darD9He4D8fcXBxv83HMzccxNxfH27XISKjAMTcXx9t8HHPzcczN5avHO8Dw1XseAwAAAAAAwCMFWt0BAAAAAAAA+BcKUgAAAAAAADAVBSkAAAAAAACYioKUG8ydO1fNmjVTWFiYunfvri1btljdJa+QmZmprl27qm7duoqJidGAAQO0b98+uzbHjx9Xenq6GjRooDp16mjgwIHKy8uza3Pw4EH1799ftWvXVkxMjCZMmKATJ07Ytfnggw/UuXNnhYaGqkWLFnr55ZfdPTyPN2PGDAUEBGjs2LG2bRxv1/vpp5906623qkGDBgoPD1eHDh306aef2p43DENTpkxRfHy8wsPDlZKSov3799vt4/Dhwxo8eLAiIyMVHR2t4cOH6+jRo3ZtvvjiC/3tb39TWFiYmjRpoqysLFPG52nKysr04IMPKikpSeHh4WrevLmmT5+uU5dP5Jifm48++khXX321EhISFBAQoOXLl9s9b+bxXbp0qdq0aaOwsDB16NBBq1atcvl4ce7ISdVHRrIeOcn9yEjmIiO5HxmpCgy41JIlS4xatWoZL730krF7925j5MiRRnR0tJGXl2d11zxeamqqsWDBAmPXrl3G9u3bjX79+hlNmzY1jh49amvzj3/8w2jSpImxbt0649NPPzUuueQSo0ePHrbnT5w4YVxwwQVGSkqK8fnnnxurVq0yGjZsaEyePNnW5ttvvzVq165tjB8/3tizZ48xZ84cIygoyMjOzjZ1vJ5ky5YtRrNmzYwLL7zQGDNmjG07x9u1Dh8+bCQmJhrDhg0zNm/ebHz77bfGu+++a3z99de2NjNmzDCioqKM5cuXGzt27DCuueYaIykpyfjzzz9tbdLS0oyOHTsan3zyifHxxx8bLVq0MG655Rbb84WFhUZsbKwxePBgY9euXcb//vc/Izw83Hj++edNHa8nePTRR40GDRoYK1euNA4cOGAsXbrUqFOnjvHMM8/Y2nDMz82qVauM+++/33jzzTcNScayZcvsnjfr+G7cuNEICgoysrKyjD179hgPPPCAERISYuzcudPtxwBVR06qGTKStchJ7kdGMh8Zyf3ISGdHQcrFunXrZqSnp9t+LisrMxISEozMzEwLe+Wd8vPzDUnGhx9+aBiGYRQUFBghISHG0qVLbW327t1rSDJycnIMwzj5jz4wMNDIzc21tZk3b54RGRlpFBcXG4ZhGPfdd5/Rvn17u/e6+eabjdTUVHcPySMdOXLEaNmypbFmzRqjV69etqDF8Xa9iRMnGj179jzt8+Xl5UZcXJzxxBNP2LYVFBQYoaGhxv/+9z/DMAxjz549hiRj69attjarV682AgICjJ9++skwDMN47rnnjHr16tk+g4r3bt26tauH5PH69+9v3HHHHXbbrr/+emPw4MGGYXDMXa1y2DLz+N50001G//797frTvXt3484773TpGHFuyEmuQUYyDznJHGQk85GRzEVGco5L9lyopKRE27ZtU0pKim1bYGCgUlJSlJOTY2HPvFNhYaEkqX79+pKkbdu2qbS01O74tmnTRk2bNrUd35ycHHXo0EGxsbG2NqmpqSoqKtLu3bttbU7dR0Ubf/2M0tPT1b9/f4djwvF2vRUrVqhLly668cYbFRMTo06dOunFF1+0PX/gwAHl5ubaHa+oqCh1797d7phHR0erS5cutjYpKSkKDAzU5s2bbW0uu+wy1apVy9YmNTVV+/bt0++//+7uYXqUHj16aN26dfrqq68kSTt27NCGDRvUt29fSRxzdzPz+PK3xvORk1yHjGQecpI5yEjmIyNZi4x0EgUpF/r1119VVlZm96UjSbGxscrNzbWoV96pvLxcY8eO1aWXXqoLLrhAkpSbm6tatWopOjraru2pxzc3N9fp8a947kxtioqK9Oeff7pjOB5ryZIl+uyzz5SZmenwHMfb9b799lvNmzdPLVu21LvvvqvRo0fr7rvv1sKFCyX9dczO9DckNzdXMTExds8HBwerfv361fpc/MWkSZM0aNAgtWnTRiEhIerUqZPGjh2rwYMHS+KYu5uZx/d0bfz5+HsacpJrkJHMQ04yDxnJfGQka5GRTgq2ugOAM+np6dq1a5c2bNhgdVd81g8//KAxY8ZozZo1CgsLs7o7fqG8vFxdunTRY489Jknq1KmTdu3apfnz52vo0KEW9843vfbaa1q0aJEWL16s9u3ba/v27Ro7dqwSEhI45gC8EhnJHOQkc5GRzEdGgidghpQLNWzYUEFBQQ5318jLy1NcXJxFvfI+GRkZWrlypd5//301btzYtj0uLk4lJSUqKCiwa3/q8Y2Li3N6/CueO1ObyMhIhYeHu3o4Hmvb/8fefcdHUe3/H38v6UAaLaEkEHpHmhAEVEACAoKAiKKAAl40KEVp1wJcRKqoKIjlGvgKKopSpATpinBpEqSJqKEohCCQhJoAOb8/+GVlSYBAktlk83o+Hvt4sGfOzJwzG+++72dmZ7ZvV3x8vOrVqyd3d3e5u7tr/fr1mjZtmtzd3RUUFMTxzmYlS5ZU9erVHdqqVaumw4cPS/rnmN3sf0OCg4MVHx/vsPzy5cs6derUbX0u+cXQoUPtZwBr1aqlJ598UoMHD7af7eaY5ywrj++N+uTn45/bkJOyjoxkHXKStchI1iMjORcZ6SoKUtnI09NT9evX1+rVq+1tqampWr16tcLDw504srzBGKMBAwZowYIFWrNmjcLCwhyW169fXx4eHg7Hd//+/Tp8+LD9+IaHh2vXrl0O/+GuXLlSfn5+9i+58PBwh22k9clvn1HLli21a9cuxcTE2F8NGjRQjx497P/meGeve+65J91jun/99VeVLVtWkhQWFqbg4GCH45WUlKTNmzc7HPOEhARt377d3mfNmjVKTU1Vo0aN7H2+//57Xbp0yd5n5cqVqlKligIDA3NsfrnR+fPnVaCA41edm5ubUlNTJXHMc5qVx5f/rcn9yEl3joxkPXKStchI1iMjORcZ6f9z9l3VXc0XX3xhvLy8zKxZs8zevXvNM888YwICAhyeroGMPfvss8bf39+sW7fOHDt2zP46f/68vU///v1NaGioWbNmjdm2bZsJDw834eHh9uVpj9dt3bq1iYmJMdHR0aZ48eIZPl536NChZt++fWb69On58vG6Gbn26THGcLyz25YtW4y7u7sZN26cOXDggJk7d64pWLCgmTNnjr3PhAkTTEBAgFm0aJH5+eefTceOHTN8/GvdunXN5s2bzYYNG0ylSpUcHv+akJBggoKCzJNPPml2795tvvjiC1OwYMF88Xjd6/Xq1cuULl3a/kjjb775xhQrVswMGzbM3odjnjVnzpwxO3bsMDt27DCSzNSpU82OHTvMoUOHjDHWHd8ff/zRuLu7mylTpph9+/aZUaNG5ZpHGuMf5KQ7Q0bKHchJOYeMZD0yUs4jI90aBakc8O6775rQ0FDj6elp7r77bvO///3P2UPKEyRl+IqKirL3uXDhgnnuuedMYGCgKViwoHn44YfNsWPHHLZz8OBB07ZtW+Pj42OKFStmXnzxRXPp0iWHPmvXrjV33XWX8fT0NOXLl3fYR352fdDieGe/b7/91tSsWdN4eXmZqlWrmg8//NBheWpqqnn11VdNUFCQ8fLyMi1btjT79+936HPy5Enz2GOPmcKFCxs/Pz/z1FNPmTNnzjj02blzp2natKnx8vIypUuXNhMmTMjxueVGSUlJZuDAgSY0NNR4e3ub8uXLm5dfftnh0bgc86xZu3Zthv/b3atXL2OMtcf3yy+/NJUrVzaenp6mRo0aZunSpTk2b9w5ctLtIyPlDuSknEVGshYZKeeRkW7NZowx1l2PBQAAAAAAgPyOe0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFJALjR49WjabTX///bezh4I8KDU1VTVr1tS4ceNu2Tftb+1aly9f1rBhwxQSEqICBQqoU6dOt7X/mTNnKjQ0VMnJybe1HgAAt0JGQlaQkYDchYIUALiYzz//XEeOHNGAAQPuaP1PPvlEkydPVteuXTV79mwNHjxYkjRv3jw98cQTqlSpkmw2m+67774M1+/du7dSUlL0wQcf3OkUAAAAsl1OZKSTJ09q8uTJat68uYoXL66AgAA1btxY8+bNS7c+GQlw5O7sAQAAstfkyZPVvXt3+fv739H6a9asUenSpfXWW285tL///vvavn27GjZsqJMnT95wfW9vb/Xq1UtTp07V888/n+7sIgAAgDPkREZasmSJXn75ZT344IN65ZVX5O7urq+//lrdu3fX3r17NWbMGHtfMhLgiCukAGSbc+fOOXsIdrlpLFbasWOHdu7cqW7dut3xNuLj4xUQEJCu/dNPP1ViYqLWrFmjUqVK3XQb3bp106FDh7R27do7HgcAAK4iN+WS3DQWK+VURqpRo4YOHDighQsXauDAgYqMjNTq1avVokULTZw4Md3xJiMB/6AgBeRiCQkJ6t27twICAuTv76+nnnpK58+fty+/9957VadOnQzXrVKliiIiIiRJBw8elM1m05QpU/TWW2+pbNmy8vHx0b333qvdu3enW/eXX35R165dVaRIEXl7e6tBgwZavHixQ59Zs2bJZrNp/fr1eu6551SiRAmVKVNGknTmzBkNGjRI5cqVk5eXl0qUKKEHHnhAP/30k8M2Nm/erAcffFCBgYEqVKiQateurXfeecehz5o1a9SsWTMVKlRIAQEB6tixo/bt2+fQJ+03/nv37tXjjz+uwMBANW3a1L58zpw5ql+/vnx8fFSkSBF1795dR44cudXhz3C+GzZs0AsvvGC/JPtf//qXUlJSlJCQoJ49eyowMFCBgYEaNmyYjDEO25gyZYqaNGmiokWLysfHR/Xr19f8+fMd+kRFRclms+mTTz5xaH/jjTdks9m0bNmym45z4cKF8vT0VPPmzdMt27Bhgxo2bChvb29VqFAh3eXiaX8na9eu1Z49e2Sz2WSz2bRu3TpJst8vITPq16+vIkWKaNGiRZnqDwDA7SAjkZHSODsjhYWFqWzZsg79bTabOnXqpOTkZP3xxx8Oy8hIwDUMgFxn1KhRRpKpW7eu6dy5s5kxY4bp27evkWSGDRtm7/fRRx8ZSWbXrl0O62/ZssVIMv/3f/9njDEmNjbWSDK1atUy5cqVMxMnTjRjxowxRYoUMcWLFzdxcXH2dXfv3m38/f1N9erVzcSJE817771nmjdvbmw2m/nmm2/s/aKioowkU716dXPvvfead99910yYMMEYY8zjjz9uPD09zZAhQ8zHH39sJk6caDp06GDmzJljX/+7774znp6epmzZsmbUqFHm/fffNy+88IJp1aqVvc/KlSuNu7u7qVy5spk0aZIZM2aMKVasmAkMDDSxsbHpjlf16tVNx44dzYwZM8z06dONMca8/vrrxmazmUcffdTMmDHDvo1y5cqZ06dPZ/ozSZvvXXfdZdq0aWOmT59unnzySftn0rRpU/P444+bGTNmmPbt2xtJZvbs2Q7bKFOmjHnuuefMe++9Z6ZOnWruvvtuI8ksWbLEoV/79u2Nv7+/OXz4sDHGmJ9//tl4enqaPn363HKcrVq1MvXq1UvX/vPPPxsfHx8TGhpqxo8fb8aOHWuCgoJM7dq1TdpXwdmzZ82nn35qqlatasqUKWM+/fRT8+mnnzr8faSpUaOGuffee285lvr1699yzAAAZBYZ6SoyUu7NSGn+/e9/G0nm6NGjGY6FjAQYQ0EKyIXSwsPTTz/t0P7www+bokWL2t8nJCQYb29vM3z4cId+L7zwgilUqJA5e/asMeafsOXj42P+/PNPe7/NmzcbSWbw4MH2tpYtW5patWqZixcv2ttSU1NNkyZNTKVKlextaeGjadOm5vLlyw779/f3N5GRkTec3+XLl01YWJgpW7ZsusCTmppq//ddd91lSpQoYU6ePGlv27lzpylQoIDp2bNnuuP12GOPOWzr4MGDxs3NzYwbN86hfdeuXcbd3T1d+82kzTciIsJhjOHh4cZms5n+/fs7zK9MmTLpCjbnz593eJ+SkmJq1qxpWrRo4dB+7NgxU6RIEfPAAw+Y5ORkU7duXRMaGmoSExNvOc4yZcqYLl26pGvv1KmT8fb2NocOHbK37d2717i5uZnrz03ce++9pkaNGjfdT2YKUs8884zx8fG55ZgBAMgsMtJVZKTcm5GMMebkyZOmRIkSplmzZhkuJyMBV/GTPSAX69+/v8P7Zs2a6eTJk0pKSpIk+fv7q2PHjvr888/tlz5fuXJF8+bNU6dOnVSoUCGH9Tt16qTSpUvb3999991q1KiR/RLnU6dOac2aNerWrZvOnDmjv//+W3///bdOnjypiIgIHThwQH/99ZfDNvv16yc3NzeHtoCAAG3evFlHjx7NcF47duxQbGysBg0alO53+Gk3dzx27JhiYmLUu3dvFSlSxL68du3aeuCBBzK8LPv64/XNN98oNTVV3bp1s8/l77//VnBwsCpVqnRHv93v06ePww0oGzVqJGOM+vTpY29zc3NTgwYN0l2i7ePjY//36dOnlZiYqGbNmqW7TD84OFjTp0/XypUr1axZM8XExOiTTz6Rn5/fLcd38uRJBQYGOrRduXJFK1asUKdOnRQaGmpvr1atmv0nCzkhMDBQFy5ccPgJBQAA2YGMREbKrRkpNTVVPXr0UEJCgt59990M+5CRgKsoSAG52LVfjJLsX6KnT5+2t/Xs2VOHDx/WDz/8IElatWqVjh8/rieffDLd9ipVqpSurXLlyjp48KAk6bfffpMxRq+++qqKFy/u8Bo1apSkqzdzvFZYWFi6bU6aNEm7d+9WSEiI7r77bo0ePdohePz++++SpJo1a95w7ocOHZJ09T4P16tWrZr+/vvvdDeJvH4sBw4ckDFGlSpVSjefffv2pZtLZlz/maQ9pSUkJCRd+7Wfk3T1KSyNGzeWt7e3ihQpouLFi+v9999XYmJiuv10795d7dq105YtW9SvXz+1bNky02M0192X4cSJE7pw4UKGn39Gxze7pI2DJ8gAALIbGYmMlFsz0vPPP6/o6Gh9/PHHN7yPGRkJuMrd2QMAcGPXn1VLc+2XaUREhIKCgjRnzhw1b95cc+bMUXBwsFq1anXb+0tNTZUkvfTSSzc8K1SxYkWH99ee0UrTrVs3NWvWTAsWLNB3332nyZMna+LEifrmm2/Utm3b2x5XZl0/ltTUVNlsNi1fvjzDY1m4cOHb3seNPpOM2q/9nH744Qc99NBDat68uWbMmKGSJUvKw8NDUVFR+uyzz9Kte/LkSW3btk2StHfvXqWmpmbqhuJFixZNF/Kc5fTp0ypYsGCGfyMAAGQFGen2kJGsyUhjxozRjBkzNGHChAwLn2nISMBVFKSAPM7NzU2PP/64Zs2apYkTJ2rhwoUZXiIuXT0bdr1ff/1V5cqVkySVL19ekuTh4XFHYe1aJUuW1HPPPafnnntO8fHxqlevnsaNG6e2bduqQoUKkqTdu3ffcD9pTyvZv39/umW//PKLihUrlu5y++tVqFBBxhiFhYWpcuXKWZpPVn399dfy9vbWihUr5OXlZW+PiorKsH9kZKTOnDmj8ePHa+TIkXr77bc1ZMiQW+6natWqio2NdWgrXry4fHx8Mvz8Mzq+2SU2NlbVqlXLse0DAHAzZKQbIyNdlZ0Zafr06Ro9erQGDRqk4cOH37QvGQm4ip/sAS7gySef1OnTp/Wvf/1LZ8+e1RNPPJFhv4ULFzrc32DLli3avHmz/YxciRIldN999+mDDz7QsWPH0q1/4sSJW47lypUr6S6vLlGihEqVKqXk5GRJUr169RQWFqa3335bCQkJDn3TzpiVLFlSd911l2bPnu3QZ/fu3fruu+/04IMP3nIsnTt3lpubm8aMGZPuEm1jjE6ePHnLbWQXNzc32Ww2Xblyxd528OBBLVy4MF3f+fPna968eZowYYJGjBih7t2765VXXtGvv/56y/2Eh4dr9+7d9mOdtu+IiAgtXLhQhw8ftrfv27dPK1asyNrEbuKnn35SkyZNcmz7AADcChkpY2Skf/adHRlp3rx5euGFF9SjRw9NnTr1lv3JSMBVXCEFuIC6deuqZs2a+uqrr1StWjXVq1cvw34VK1ZU06ZN9eyzzyo5OVlvv/22ihYtqmHDhtn7TJ8+XU2bNlWtWrXUr18/lS9fXsePH9emTZv0559/aufOnTcdy5kzZ1SmTBl17dpVderUUeHChbVq1Spt3bpVb775piSpQIECev/999WhQwfdddddeuqpp1SyZEn98ssv2rNnjz0ATJ48WW3btlV4eLj69OmjCxcu6N1335W/v79Gjx59y+NSoUIFvf766xo5cqQOHjyoTp06ydfXV7GxsVqwYIGeeeYZvfTSS5k8ylnTrl07TZ06VW3atNHjjz+u+Ph4TZ8+XRUrVtTPP/9s7xcfH69nn31W999/vwYMGCBJeu+997R27Vr17t1bGzZsuOll6R07dtTYsWO1fv16tW7d2t4+ZswYRUdHq1mzZnruued0+fJlvfvuu6pRo4bD/m/m+++/1/fffy/pavA+d+6cXn/9dUlS8+bN1bx5c3vf7du369SpU+rYsWPmDxIAANmMjJQxMlL2ZaQtW7aoZ8+eKlq0qFq2bKm5c+c6LG/SpIn9CjuJjAQ4sO6BfgAyK+0RvSdOnHBoT3usbmxsbLp1Jk2aZCSZN954I92ytEcaT5482bz55psmJCTEeHl5mWbNmpmdO3em6//777+bnj17muDgYOPh4WFKly5t2rdvb+bPn59uLFu3bnVYNzk52QwdOtTUqVPH+Pr6mkKFCpk6deqYGTNmpNvPhg0bzAMPPGDvV7t2bfPuu+869Fm1apW55557jI+Pj/Hz8zMdOnQwe/fuzdTxSvP111+bpk2bmkKFCplChQqZqlWrmsjISLN///4M+2fkRvO90b579eplChUq5ND23//+11SqVMl4eXmZqlWrmqioKPv6aTp37mx8fX3NwYMHHdZdtGiRkWQmTpx4y7HWrl3b9OnTJ137+vXrTf369Y2np6cpX768mTlzZrr9G3PjRxqn9c3oNWrUKIe+w4cPN6GhoQ6PfwYAIKvISP8gI13l7IyUNv8bvaKiohz6k5GAf9iMue4aTQB50jvvvKPBgwfr4MGD6Z5ycvDgQYWFhWny5MmWne2C83z66aeKjIzU4cOH0z0y2grJyckqV66cRowYoYEDB1q+fwAArkVGQhoyEpC7cA8pwAUYY/Tf//5X9957b7qghfynR48eCg0N1fTp052y/6ioKHl4eKh///5O2T8AAGnISLgWGQnIXbiHFJCHnTt3TosXL9batWu1a9cuLVq0yNlDynMuXLiQ7gaj1ytSpIg8PT0tGlHWFShQQLt373ba/vv370/QAgA4FRkp68hI2Y+MBDiiIAXkYSdOnNDjjz+ugIAA/fvf/9ZDDz3k7CHlOfPmzdNTTz110z5r167VfffdZ82AAABAlpGRso6MBCCncQ8pAPnasWPHtGfPnpv2qV+/vgIDAy0aEQAAgPORkQDkNApSAAAAAAAAsBQ3NQcAAAAAAIClsv0eUqNHj9aYMWMc2qpUqaJffvlFknTx4kW9+OKL+uKLL5ScnKyIiAjNmDFDQUFB9v6HDx/Ws88+q7Vr16pw4cLq1auXxo8fL3f3f4a7bt06DRkyRHv27FFISIheeeUV9e7d+7bGmpqaqqNHj8rX11c2m+3OJw0AAPIMY4zOnDmjUqVKqUAB687NkZEAAEBuZnlGMtls1KhRpkaNGubYsWP214kTJ+zL+/fvb0JCQszq1avNtm3bTOPGjU2TJk3syy9fvmxq1qxpWrVqZXbs2GGWLVtmihUrZkaOHGnv88cff5iCBQuaIUOGmL1795p3333XuLm5mejo6Nsa65EjR4wkXrx48eLFi1c+fB05ciTrwec2kJF48eLFixcvXnnhZVVGyvZ7SI0ePVoLFy5UTExMumWJiYkqXry4PvvsM3Xt2lWS9Msvv6hatWratGmTGjdurOXLl6t9+/Y6evSo/YzgzJkzNXz4cJ04cUKenp4aPny4li5d6vDIzu7duyshIUHR0dGZHmtiYqICAgJ05MgR+fn5ZW3iAAAgT0hKSlJISIgSEhLk7+9v2X7JSAAAIDezOiNl+0/2JOnAgQMqVaqUvL29FR4ervHjxys0NFTbt2/XpUuX1KpVK3vfqlWrKjQ01B62Nm3apFq1ajlcnh4REaFnn31We/bsUd26dbVp0yaHbaT1GTRo0E3HlZycrOTkZPv7M2fOSJL8/PwIWwAA5DPO+CkaGQkAAOR2VmWkbP9RYKNGjTRr1ixFR0fr/fffV2xsrJo1a6YzZ84oLi5Onp6eCggIcFgnKChIcXFxkqS4uDiHoJW2PG3ZzfokJSXpwoULNxzb+PHj5e/vb3+FhIRkdboAAACZQkYCAAD4R7ZfIdW2bVv7v2vXrq1GjRqpbNmy+vLLL+Xj45Pdu7stI0eO1JAhQ+zv0y5HAwAAyGlkJAAAgH/k+G3TAwICVLlyZf32228KDg5WSkqKEhISHPocP35cwcHBkqTg4GAdP3483fK0ZTfr4+fnd9NA5+XlZb/0nEvQAQCAM5GRAABAfpYj95C61tmzZ/X777/rySefVP369eXh4aHVq1erS5cukqT9+/fr8OHDCg8PlySFh4dr3Lhxio+PV4kSJSRJK1eulJ+fn6pXr27vs2zZMof9rFy50r4NAACyw5UrV3Tp0iVnDwO3ycPDQ25ubs4exi2RkQAAeRUZKW/KbRkp2wtSL730kjp06KCyZcvq6NGjGjVqlNzc3PTYY4/J399fffr00ZAhQ1SkSBH5+fnp+eefV3h4uBo3bixJat26tapXr64nn3xSkyZNUlxcnF555RVFRkbKy8tLktS/f3+99957GjZsmJ5++mmtWbNGX375pZYuXZrd0wEA5EPGGMXFxaW7WgV5R0BAgIKDg51y4/IbISMBAPI6MlLel5syUrYXpP7880899thjOnnypIoXL66mTZvqf//7n4oXLy5Jeuutt1SgQAF16dJFycnJioiI0IwZM+zru7m5acmSJXr22WcVHh6uQoUKqVevXvrPf/5j7xMWFqalS5dq8ODBeuedd1SmTBl9/PHHioiIyO7pAADyobSgVaJECRUsWDBXfGEjc4wxOn/+vOLj4yVJJUuWdPKI/kFGAgDkdWSkvCs3ZiSbMcY4exDOkpSUJH9/fyUmJnKvBACApKuXoP/6668qUaKEihYt6uzh4A6dPHlS8fHxqly5crpL0/n+vzWOEQDgemQk15CbMlKO39QcAIC8JO1+CAULFnTySJAVaZ8f97cAACB7kJFcQ27KSBSkAADIAJeg5218fgAA5Ay+Y/O23PT5UZACAAAAAACApShIAQCQx9lstpu+Ro8e7dSxLVy4MEvb+PDDD3XffffJz89PNpuNJ/sAAIBMc+WcdOrUKT3//POqUqWKfHx8FBoaqhdeeEGJiYnZN8gclO1P2QMAwFVdit5g2b482jTNdN9jx47Z/z1v3jy99tpr2r9/v72tcOHCt7XvlJQUeXp63tY6Oen8+fNq06aN2rRpo5EjRzp7OAAA4DpWZiSJnJTm6NGjOnr0qKZMmaLq1avr0KFD6t+/v44ePar58+c7e3i3xBVSyJRL0RvSvQAAuUNwcLD95e/vL5vNZn9/7tw59ejRQ0FBQSpcuLAaNmyoVatWOaxfrlw5jR07Vj179pSfn5+eeeYZSdJHH32kkJAQFSxYUA8//LCmTp2qgIAAh3UXLVqkevXqydvbW+XLl9eYMWN0+fJl+3Yl6eGHH5bNZrO/37lzp+6//375+vrKz89P9evX17Zt2244v0GDBmnEiBFq3Lhx9hwwIBuRkQAgd3PlnFSzZk19/fXX6tChgypUqKAWLVpo3Lhx+vbbb+37yc0oSAEA4MLOnj2rBx98UKtXr9aOHTvUpk0bdejQQYcPH3boN2XKFNWpU0c7duzQq6++qh9//FH9+/fXwIEDFRMTowceeEDjxo1zWOeHH35Qz549NXDgQO3du1cffPCBZs2aZe+3detWSVJUVJSOHTtmf9+jRw+VKVNGW7du1fbt2zVixAh5eHhYcDQAAAD+4Yo5KTExUX5+fnJ3z/0/iMv9IwQAAHesTp06qlOnjv392LFjtWDBAi1evFgDBgywt7do0UIvvvii/f3LL7+stm3b6qWXXpIkVa5cWRs3btSSJUvsfcaMGaMRI0aoV69ekqTy5ctr7NixGjZsmEaNGqXixYtLkgICAhQcHGxf7/Dhwxo6dKiqVq0qSapUqVIOzBwAAODmXC0n/f333xo7dqz9Kq7cjiukAABwYWfPntVLL72katWqKSAgQIULF9a+ffvSnflr0KCBw/v9+/fr7rvvdmi7/v3OnTv1n//8R4ULF7a/+vXrp2PHjun8+fM3HNOQIUPUt29ftWrVShMmTNDvv/+exVkCAADcPlfKSUlJSWrXrp2qV6/u1Bu13w4KUgAAuLCXXnpJCxYs0BtvvKEffvhBMTExqlWrllJSUhz6FSpU6La3ffbsWY0ZM0YxMTH2165du3TgwAF5e3vfcL3Ro0drz549ateundasWaPq1atrwYIFt71/AACArHCVnHTmzBm1adNGvr6+WrBgQZ65FQI/2UOGuCEnALiGH3/8Ub1799bDDz8s6Wo4Onjw4C3Xq1Kliv1eBmmuf1+vXj3t379fFStWvOF2PDw8dOXKlXTtlStXVuXKlTV48GA99thjioqKso8RyM3ISADgOlwhJyUlJSkiIkJeXl5avHjxTYtduQ0FKQAAXFilSpX0zTffqEOHDrLZbHr11VeVmpp6y/Wef/55NW/eXFOnTlWHDh20Zs0aLV++XDabzd7ntddeU/v27RUaGqquXbuqQIEC2rlzp3bv3q3XX39d0tUnyKxevVr33HOPvLy85O3traFDh6pr164KCwvTn3/+qa1bt6pLly43HEtcXJzi4uL022+/SZJ27dolX19fhYaGqkiRIlk8QgAAIL/K6zkpKSlJrVu31vnz5zVnzhwlJSUpKSlJklS8eHG5ubllw1HKOfxkDwAAFzZ16lQFBgaqSZMm6tChgyIiIlSvXr1brnfPPfdo5syZmjp1qurUqaPo6GgNHjzY4axbRESElixZou+++04NGzZU48aN9dZbb6ls2bL2Pm+++aZWrlypkJAQ1a1bV25ubjp58qR69uypypUrq1u3bmrbtq3GjBlzw7HMnDlTdevWVb9+/SRJzZs3V926dbV48eIsHBkAAJDf5fWc9NNPP2nz5s3atWuXKlasqJIlS9pfR44cyfoBymE2Y4xx9iCcJSkpSf7+/vbHIuIfmbkc3aNNUwtGAgDWunjxomJjYxUWFpanLnm2Qr9+/fTLL7/ohx9+cPZQbulmnyPf/7fGMboxMhKA/IqMdHN5JSflpozET/YAAECGpkyZogceeECFChXS8uXLNXv2bM2YMcPZwwIAAHA6clLWUZACAAAZ2rJliyZNmqQzZ86ofPnymjZtmvr27evsYQEAADgdOSnrKEgBAIAMffnll84eAgAAQK5ETso6bmoOAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAX0Lt3b9lsNtlsNnl4eCgoKEgPPPCAPvnkE6Wmpjp7eFmyZ88edenSReXKlZPNZtPbb7/t7CEBAIA8xJVz0kcffaRmzZopMDBQgYGBatWqlbZs2eLsYWWKu7MHAABAXvH7tg8s21eFBv+67XXatGmjqKgoXblyRcePH1d0dLQGDhyo+fPna/HixXJ3z5tf++fPn1f58uX1yCOPaPDgwc4eDgAAuI6VGUkiJ11r3bp1euyxx9SkSRN5e3tr4sSJat26tfbs2aPSpUs7e3g3xRVSAAC4CC8vLwUHB6t06dKqV6+e/v3vf2vRokVavny5Zs2aZe+XkJCgvn37qnjx4vLz81OLFi20c+dOh219++23atiwoby9vVWsWDE9/PDD9mWnT59Wz549FRgYqIIFC6pt27Y6cOCAJOncuXPy8/PT/PnzHba3cOFCFSpUSGfOnFFKSooGDBigkiVLytvbW2XLltX48eNvOK+GDRtq8uTJ6t69u7y8vLLhSAEAgPzGVXPS3Llz9dxzz+muu+5S1apV9fHHHys1NVWrV6/OhqOWsyhIQZeiN6R7AQBcQ4sWLVSnTh1988039rZHHnlE8fHxWr58ubZv36569eqpZcuWOnXqlCRp6dKlevjhh/Xggw9qx44dWr16te6++277+r1799a2bdu0ePFibdq0ScYYPfjgg7p06ZIKFSqk7t27KyoqymEcUVFR6tq1q3x9fTVt2jQtXrxYX375pfbv36+5c+eqXLlylhwP4HaQkQDAtbliTjp//rwuXbqkIkWKZO3gWCBvXpOGXCGjUObRpqkTRgIAuJmqVavq559/liRt2LBBW7ZsUXx8vP1qoylTpmjhwoWaP3++nnnmGY0bN07du3fXmDFj7NuoU6eOJOnAgQNavHixfvzxRzVp0kTS1TNzISEhWrhwoR555BH17dtXTZo00bFjx1SyZEnFx8dr2bJlWrVqlSTp8OHDqlSpkpo2bSqbzaayZctaeTiAHEdGAoC8w9Vy0vDhw1WqVCm1atUqy8cmp3GFFAAALs4YI5vNJknauXOnzp49q6JFi6pw4cL2V2xsrH7//XdJUkxMjFq2bJnhtvbt2yd3d3c1atTI3la0aFFVqVJF+/btkyTdfffdqlGjhmbPni1JmjNnjsqWLavmzZtLunrmMCYmRlWqVNELL7yg7777LsfmDgAAcDOulJMmTJigL774QgsWLJC3t/ftHwyLcYUUAAAubt++fQoLC5MknT17ViVLltS6devS9QsICJAk+fj4ZHmfffv21fTp0zVixAhFRUXpqaeesoe9evXqKTY2VsuXL9eqVavUrVs3tWrVKt39FAAAAHKaq+SkKVOmaMKECVq1apVq166d5TFagSukAABwYWvWrNGuXbvUpUsXSVdDTlxcnNzd3VWxYkWHV7FixSRJtWvXvuGNMKtVq6bLly9r8+bN9raTJ09q//79ql69ur3tiSee0KFDhzRt2jTt3btXvXr1ctiOn5+fHn30UX300UeaN2+evv76a/u9GQAAAKzgKjlp0qRJGjt2rKKjo9WgQYM7Ph5W4wopAABcRHJysuLi4hweZzx+/Hi1b99ePXv2lCS1atVK4eHh6tSpkyZNmqTKlSvr6NGj9ht0NmjQQKNGjVLLli1VoUIFde/eXZcvX9ayZcs0fPhwVapUSR07dlS/fv30wQcfyNfXVyNGjFDp0qXVsWNH+1gCAwPVuXNnDR06VK1bt1aZMmXsy6ZOnaqSJUuqbt26KlCggL766isFBwfbzzxeLyUlRXv37rX/+6+//lJMTIwKFy6sihUr5twBBQAALsNVc9LEiRP12muv6bPPPlO5cuUUFxcnSfafG+ZmXCEFAICLiI6OVsmSJVWuXDm1adNGa9eu1bRp07Ro0SK5ublJkmw2m5YtW6bmzZvrqaeeUuXKldW9e3cdOnRIQUFBkqT77rtPX331lRYvXqy77rpLLVq00JYtW+z7iYqKUv369dW+fXuFh4fLGKNly5bJw8PDYTx9+vRRSkqKnn76aYd2X19fTZo0SQ0aNFDDhg118OBBLVu2TAUKZBxLjh49qrp166pu3bo6duyYpkyZorp166pv377ZefgAAIALc9Wc9P777yslJUVdu3ZVyZIl7a8pU6Zk5+HLETZjjHH2IJwlKSlJ/v7+SkxMlJ+fn7OH4zTZ+QhjniADIK+7ePGiYmNjFRYWliduBpmbffrppxo8eLCOHj0qT09PS/d9s8+R7/9b4xhdRUYCgH+QkbKXs3JSbspI/GQPAABkq/Pnz+vYsWOaMGGC/vWvf1lejAIAAMityEn/4Cd7AAAgW02aNElVq1ZVcHCwRo4c6ezhAAAA5BrkpH9QkAIAANlq9OjRunTpklavXp3rb6YJAABgJXLSPyhIAQAAAAAAwFIUpAAAAAAAAGApClIAAGQgHz+E1iXw+QEAkDP4js3bctPnR0EKAIBreHh4SLr6BBTkXWmfX9rnCQAAsoaM5BpyU0Zyd/YAAADITdzc3BQQEKD4+HhJUsGCBWWz2Zw8KmSWMUbnz59XfHy8AgIC5Obm5uwhAQDgEshIeVtuzEgUpAAAuE5wcLAk2QMX8p6AgAD75wgAALIHGSnvy00ZiYIUAADXsdlsKlmypEqUKKFLly45ezi4TR4eHrnirB8AAK6GjJS35baMREEKAIAbcHNzy1Vf2gAAALkBGQnZgZuaAwAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWyvGC1IQJE2Sz2TRo0CB728WLFxUZGamiRYuqcOHC6tKli44fP+6w3uHDh9WuXTsVLFhQJUqU0NChQ3X58mWHPuvWrVO9evXk5eWlihUratasWTk9HQAAgGxBRgIAAPlZjhaktm7dqg8++EC1a9d2aB88eLC+/fZbffXVV1q/fr2OHj2qzp0725dfuXJF7dq1U0pKijZu3KjZs2dr1qxZeu211+x9YmNj1a5dO91///2KiYnRoEGD1LdvX61YsSInpwQAAJBlZCQAAJDf2YwxJic2fPbsWdWrV08zZszQ66+/rrvuuktvv/22EhMTVbx4cX322Wfq2rWrJOmXX35RtWrVtGnTJjVu3FjLly9X+/btdfToUQUFBUmSZs6cqeHDh+vEiRPy9PTU8OHDtXTpUu3evdu+z+7duyshIUHR0dGZGmNSUpL8/f2VmJgoPz+/7D8IecSl6A3Zti2PNk2zbVsAAOQEZ3//k5HyDjISACA/sfr7P8eukIqMjFS7du3UqlUrh/bt27fr0qVLDu1Vq1ZVaGioNm3aJEnatGmTatWqZQ9akhQREaGkpCTt2bPH3uf6bUdERNi3AQAAkBuRkQAAACT3nNjoF198oZ9++klbt25NtywuLk6enp4KCAhwaA8KClJcXJy9z7VBK2152rKb9UlKStKFCxfk4+OTbt/JyclKTk62v09KSrr9yQEAANwhMhIAAMBV2X6F1JEjRzRw4EDNnTtX3t7e2b35LBk/frz8/f3tr5CQEGcPCQAA5BNkJAAAgH9ke0Fq+/btio+PV7169eTu7i53d3etX79e06ZNk7u7u4KCgpSSkqKEhASH9Y4fP67g4GBJUnBwcLonyqS9v1UfPz+/DM/8SdLIkSOVmJhofx05ciQ7pgwAAHBLZCQAAIB/ZHtBqmXLltq1a5diYmLsrwYNGqhHjx72f3t4eGj16tX2dfbv36/Dhw8rPDxckhQeHq5du3YpPj7e3mflypXy8/NT9erV7X2u3UZan7RtZMTLy0t+fn4OLwAAACuQkQAAAP6R7feQ8vX1Vc2aNR3aChUqpKJFi9rb+/TpoyFDhqhIkSLy8/PT888/r/DwcDVu3FiS1Lp1a1WvXl1PPvmkJk2apLi4OL3yyiuKjIyUl5eXJKl///567733NGzYMD399NNas2aNvvzySy1dujS7pwQAAJBlZCQAAIB/5MhNzW/lrbfeUoECBdSlSxclJycrIiJCM2bMsC93c3PTkiVL9Oyzzyo8PFyFChVSr1699J///MfeJywsTEuXLtXgwYP1zjvvqEyZMvr4448VERHhjCkBAABkGRkJAADkFzZjjHH2IJwlKSlJ/v7+SkxMzNeXpl+K3pBt2/Jo0zTbtgUAQE7g+//WOEZXkZEAAPmJ1d//2X4PKQAAAAAAAOBmKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwlLuzBwDXcil6g8N7jzZNnTQSAACA3IOMBACAI66QAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCl3Zw8Aru1S9IZ0bR5tmjphJAAAALkHGQkAkN9xhRQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClsr0g9f7776t27dry8/OTn5+fwsPDtXz5cvvyixcvKjIyUkWLFlXhwoXVpUsXHT9+3GEbhw8fVrt27VSwYEGVKFFCQ4cO1eXLlx36rFu3TvXq1ZOXl5cqVqyoWbNmZfdUAAAAsg0ZCQAA4B/ZXpAqU6aMJkyYoO3bt2vbtm1q0aKFOnbsqD179kiSBg8erG+//VZfffWV1q9fr6NHj6pz58729a9cuaJ27dopJSVFGzdu1OzZszVr1iy99tpr9j6xsbFq166d7r//fsXExGjQoEHq27evVqxYkd3TAQAAyBZkJAAAgH/YjDEmp3dSpEgRTZ48WV27dlXx4sX12WefqWvXrpKkX375RdWqVdOmTZvUuHFjLV++XO3bt9fRo0cVFBQkSZo5c6aGDx+uEydOyNPTU8OHD9fSpUu1e/du+z66d++uhIQERUdHZ3pcSUlJ8vf3V2Jiovz8/LJ30nlIRo8dzkk80hgA4Ey56fufjJS7kZEAAPmJ1d//OXoPqStXruiLL77QuXPnFB4eru3bt+vSpUtq1aqVvU/VqlUVGhqqTZs2SZI2bdqkWrVq2YOWJEVERCgpKcl+BnHTpk0O20jrk7aNG0lOTlZSUpLDCwAAwGpkJAAAkN/lSEFq165dKly4sLy8vNS/f38tWLBA1atXV1xcnDw9PRUQEODQPygoSHFxcZKkuLg4h6CVtjxt2c36JCUl6cKFCzcc1/jx4+Xv729/hYSEZHWqAAAAmUZGAgAAuCpHClJVqlRRTEyMNm/erGeffVa9evXS3r17c2JXt2XkyJFKTEy0v44cOeLsIQEAgHyEjAQAAHCVe05s1NPTUxUrVpQk1a9fX1u3btU777yjRx99VCkpKUpISHA4A3j8+HEFBwdLkoKDg7VlyxaH7aU9YebaPtc/deb48ePy8/OTj4/PDcfl5eUlLy+vLM8PAADgTpCRAAAArsrRe0ilSU1NVXJysurXry8PDw+tXr3avmz//v06fPiwwsPDJUnh4eHatWuX4uPj7X1WrlwpPz8/Va9e3d7n2m2k9UnbBgAAQF5ARgIAAPlVtl8hNXLkSLVt21ahoaE6c+aMPvvsM61bt04rVqyQv7+/+vTpoyFDhqhIkSLy8/PT888/r/DwcDVu3FiS1Lp1a1WvXl1PPvmkJk2apLi4OL3yyiuKjIy0n7nr37+/3nvvPQ0bNkxPP/201qxZoy+//FJLly7N7ukAAABkCzISAADAP7K9IBUfH6+ePXvq2LFj8vf3V+3atbVixQo98MADkqS33npLBQoUUJcuXZScnKyIiAjNmDHDvr6bm5uWLFmiZ599VuHh4SpUqJB69eql//znP/Y+YWFhWrp0qQYPHqx33nlHZcqU0ccff6yIiIjsng4AAEC2ICMBAAD8w2aMMc4ehLMkJSXJ399fiYmJ8vPzc/ZwnOZS9AZL9+fRpqml+wMA4Fp8/98ax+gqMhIAID+x+vvfkntIAQAAAAAAAGkoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwlLuzB4D851L0hnRtHm2aOmEkAAAAuQcZCQCQn1CQymcyCjoAAAD5HRkJAABr8ZM9AAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKXcnT0AQJIuRW9weO/RpqmTRgIAAJB7kJEAAK4q26+QGj9+vBo2bChfX1+VKFFCnTp10v79+x36XLx4UZGRkSpatKgKFy6sLl266Pjx4w59Dh8+rHbt2qlgwYIqUaKEhg4dqsuXLzv0WbdunerVqycvLy9VrFhRs2bNyu7pAAAAZAsyEgAAwD+yvSC1fv16RUZG6n//+59WrlypS5cuqXXr1jp37py9z+DBg/Xtt9/qq6++0vr163X06FF17tzZvvzKlStq166dUlJStHHjRs2ePVuzZs3Sa6+9Zu8TGxurdu3a6f7771dMTIwGDRqkvn37asWKFdk9JQAAgCwjIwEAAPzDZowxObmDEydOqESJElq/fr2aN2+uxMREFS9eXJ999pm6du0qSfrll19UrVo1bdq0SY0bN9by5cvVvn17HT16VEFBQZKkmTNnavjw4Tpx4oQ8PT01fPhwLV26VLt377bvq3v37kpISFB0dHSmxpaUlCR/f38lJibKz88v+yefC11/2XduxeXoAICcklu+/8lIuQsZCQCQ31n9/Z/jNzVPTEyUJBUpUkSStH37dl26dEmtWrWy96latapCQ0O1adMmSdKmTZtUq1Yte9CSpIiICCUlJWnPnj32PtduI61P2jYAAAByMzISAADIz3L0puapqakaNGiQ7rnnHtWsWVOSFBcXJ09PTwUEBDj0DQoKUlxcnL3PtUErbXnaspv1SUpK0oULF+Tj45NuPMnJyUpOTra/T0pKytoEAQAA7gAZCQAA5Hc5eoVUZGSkdu/erS+++CInd5Np48ePl7+/v/0VEhLi7CEBAIB8iIwEAADyuxwrSA0YMEBLlizR2rVrVaZMGXt7cHCwUlJSlJCQ4ND/+PHjCg4Otve5/okyae9v1cfPzy/DM3+SNHLkSCUmJtpfR44cydIcAQAAbhcZCQAAIAcKUsYYDRgwQAsWLNCaNWsUFhbmsLx+/fry8PDQ6tWr7W379+/X4cOHFR4eLkkKDw/Xrl27FB8fb++zcuVK+fn5qXr16vY+124jrU/aNjLi5eUlPz8/hxcAAIAVyEgAAAD/yPZ7SEVGRuqzzz7TokWL5Ovra7+fgb+/v3x8fOTv768+ffpoyJAhKlKkiPz8/PT8888rPDxcjRs3liS1bt1a1atX15NPPqlJkyYpLi5Or7zyiiIjI+Xl5SVJ6t+/v9577z0NGzZMTz/9tNasWaMvv/xSS5cuze4pAQAAZBkZCQAA4B82Y4zJ1g3abBm2R0VFqXfv3pKkixcv6sUXX9Tnn3+u5ORkRUREaMaMGfZLzSXp0KFDevbZZ7Vu3ToVKlRIvXr10oQJE+Tu/k8Nbd26dRo8eLD27t2rMmXK6NVXX7XvIzN4pHHuxSONAQA5xVnf/2Sk3I2MBADI76z+/s/2glReQtjKvQhbAICckh+//29XfjxGZCQAQH5n9fd/jj5lDwAAAAAAALgeBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjK3dkDADJyKXpDujaPNk2dMBIAAIDcg4wEAHAVXCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCukcTFiugwnL07UBAADkd2QkAACyBwUp3NCNAhbBCwAA5GdkJAAAss7d2QNA7nKzs34Z/btcQFtrBgYAAOBEZCQAALIXV0jBjrN6AAAA6ZGRAADIfhSkAAAAAAAAYCkKUsgSzhgCAACkR0YCAODmKEgBAAAAAADAUhSkAAAAAAAAYCmesoc841L0Bof3Hm2aOmkkAAAAucf1GUkiJwEAcj+ukAIAAAAAAICluEIKWb7pZtr65QLaZsdwAAAAcgUyEgAAOYcrpAAAAAAAAGApClLINjzeGAAAID0yEgAA6VGQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKWQrbtoJAACQ3sGE5eQkAACuQUEqnyMYAQAApEdGAgAgZ2V7Qer7779Xhw4dVKpUKdlsNi1cuNBhuTFGr732mkqWLCkfHx+1atVKBw4ccOhz6tQp9ejRQ35+fgoICFCfPn109uxZhz4///yzmjVrJm9vb4WEhGjSpEnZPRXcIc4AAgCQMXISyEgAAFyV7QWpc+fOqU6dOpo+fXqGyydNmqRp06Zp5syZ2rx5swoVKqSIiAhdvHjR3qdHjx7as2ePVq5cqSVLluj777/XM888Y1+elJSk1q1bq2zZstq+fbsmT56s0aNH68MPP8zu6QAAAGQbchIAAMBVNmOMybGN22xasGCBOnXqJOnqWb9SpUrpxRdf1EsvvSRJSkxMVFBQkGbNmqXu3btr3759ql69urZu3aoGDRpIkqKjo/Xggw/qzz//VKlSpfT+++/r5ZdfVlxcnDw9PSVJI0aM0MKFC/XLL79kenxJSUny9/dXYmKi/Pz8snfyudSl6A0O73PyLF25gLY5tu0b8WjT1PJ9AgDyltzy/Z+bc1JuOUZWIiMBAPI7q7//Lb2HVGxsrOLi4tSqVSt7m7+/vxo1aqRNmzZJkjZt2qSAgAB7yJKkVq1aqUCBAtq8ebO9T/Pmze0hS5IiIiK0f/9+nT59+ob7T05OVlJSksMLAAAgN3BmTiIjAQAAq1lakIqLi5MkBQUFObQHBQXZl8XFxalEiRIOy93d3VWkSBGHPhlt49p9ZGT8+PHy9/e3v0JCQrI2IQAAgGzizJxERgIAAFbLV0/ZGzlypBITE+2vI0eOOHtIAAAATkdGAgAAVrO0IBUcHCxJOn78uEP78ePH7cuCg4MVHx/vsPzy5cs6deqUQ5+MtnHtPjLi5eUlPz8/hxdyDk+RAQAg85yZk8hI1iIjAQBgcUEqLCxMwcHBWr16tb0tKSlJmzdvVnh4uCQpPDxcCQkJ2r59u73PmjVrlJqaqkaNGtn7fP/997p06ZK9z8qVK1WlShUFBgZaNBtkxsGE5YQuAAAygZyUv5CRAAD5XbYXpM6ePauYmBjFxMRIunqDzpiYGB0+fFg2m02DBg3S66+/rsWLF2vXrl3q2bOnSpUqZX/CTLVq1dSmTRv169dPW7Zs0Y8//qgBAwaoe/fuKlWqlCTp8ccfl6enp/r06aM9e/Zo3rx5eueddzRkyJDsng4AAEC2IScBAABc5Z7dG9y2bZvuv/9++/u08NOrVy/NmjVLw4YN07lz5/TMM88oISFBTZs2VXR0tLy9ve3rzJ07VwMGDFDLli1VoEABdenSRdOmTbMv9/f313fffafIyEjVr19fxYoV02uvvaZnnnkmu6cDAACQbchJAAAAV9mMMcbZg3CWpKQk+fv7KzExMd/cK+FS9AaH91ZdKl4uoK0l+/Fo09SS/QAA8q78+P1/u/LjMSIjAQDyO6u///PVU/YAAAAAAADgfBSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBKp86mLDcsqfHpO0PAAAgtyMjAQBgDQpSAAAAAAAAsBQFKVjG6jOOAAAAeQEZCQCQH1GQAgAAAAAAgKXcnT0AIDtdit6Qrs2jTVMnjAQAACD3ICMBAHIbrpACAAAAAACApShIwSm4VwIAAEB6ZCQAQH5BQQqWI2QBAACkR0YCAOQnFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjK3dkDQP52MGG5ygW0zdF9XP+YYx5xDAAAcjtnZCSJnAQAsA5XSAEAAAAAAMBSXCFlMa7WSS/tiTI5fRYQAADkXmSk9MhIAABXxhVSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKuUbafRIAAADwDzISAMAVUZDKhwg1AAAA6ZGRAACwDk/ZQ65yMGF5jj9J5vqn+Eg8yQcAAORuVj1xj6cdAgCswhVSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIghVznYMJynnIDAACQATISAMBV8JQ9F5fRE+WQHk/eAwAgfyEjZQ4ZCQCQU7hCCrkWZwABAADSIyMBAFwBBSnkavx8DwAAID0yEgAgr6MgBQAAAAAAAEtRkAIAAAAAAICluKm5k3GjSAAAgPTISAAAuDYKUjmIp7dkn2vvkVAuoK0l+7z+8yMEAwCQPchI2YeMBADIqyhI5SPc+DJrOFMLAIBrIiNlDRkJAHAnKEgB2YyzhgAAAOmRkQAA16IghTznYMJyyy5Jv5XM/OQgsz9LIJQBAICsICMBAPISnrIHAAAAAAAAS1GQQp50MGE593sAAAC4DhkJAJBXUJACAAAAAACApbiHFPK03HSvhKzKzH0UuIcCAADIDDISACC3oyCVC/HoXNwIgQwAkJ+RkXAjZCQAyHsoSFko7ff8rnK2KrdwpTOA2YGwDgDIa8hIOYPj6oiMBAC5CwUpJ6CAAqsRwAAAeQEZCVYjIwGA81CQcjKCF5zlTi9tv349QhsAICeQkeAsZCQAsAYFKYtc//hdHsebva49noTX7JOZQAYAQFaQkXIeP93LfmQkAMg6ClJ5BGdcMo/Q5Xxc/g4AsAoZKfPISM5HRgKAf1CQygWsCAf58WwjV01ZI7NnCHn6DQDgdpGRcgYZyRpkJAC4OQpSuQj3Ssg5HNu8gbOGAICM8D2eczi2eQMZCYAryvMFqenTp2vy5MmKi4tTnTp19O677+ruu+929rDsbvesW2bPWPGldPu4TD1vysl7NPDfDABXltszknR7OYmMlHPISHkTGQlAXpenC1Lz5s3TkCFDNHPmTDVq1Ehvv/22IiIitH//fpUoUcLZw8syzljlDC5TRxqCHABXlR8yksT3eHYjIyENGQmAFfJ0QWrq1Knq16+fnnrqKUnSzJkztXTpUn3yyScaMWKEk0eXPQgGOYuiH6x0p+GO4AbgduWHjCRRmMpJZCRYiYwE5E95tiCVkpKi7du3a+TIkfa2AgUKqFWrVtq0aZMTR5ZzMrqsvVxA23/CWHTm1oGjGx0jQhiyIjvPLObGR0tnFAB50hWQO5CRrrpVRrrRevgHGQk5gYxERgLS5NmC1N9//60rV64oKCjIoT0oKEi//PJLhuskJycrOTnZ/j4xMVGSlJSUlCNj/P3owhzZ7rV2n1+Y4b+RdVk9nqH+Dzi8P5y4MsN2IE/6ekX29MmlPB4Id3h/aWX6/xN/fZ8b9XP2/jKzXkZ9XFna974xxskjyRlkpKvISDmHjATcRD7LSFLmckV2ZaTs3B8ZKT2rM1KeLUjdifHjx2vMmDHp2kNCQpwwGri+N2+zHQBgpTNnzsjf39/Zw8gVyEiwFhkJAHIzqzJSni1IFStWTG5ubjp+/LhD+/HjxxUcHJzhOiNHjtSQIUPs71NTU3Xq1CkVLVpUNpstR8d7J5KSkhQSEqIjR47Iz8/P2cPJMfllnhJzdUX5ZZ5S/plrfpmnlH/mev08jTE6c+aMSpUq5eyh5QgykmvJL3PNL/OU8s9c88s8pfwz1/wyTyn/zNXZGSnPFqQ8PT1Vv359rV69Wp06dZJ0NTytXr1aAwYMyHAdLy8veXl5ObQFBATk8Eizzs/Pz6X/I0iTX+YpMVdXlF/mKeWfueaXeUr5Z67XztOVr4wiI7mm/DLX/DJPKf/MNb/MU8o/c80v85Tyz1ydlZHybEFKkoYMGaJevXqpQYMGuvvuu/X222/r3Llz9ifKAAAA5EdkJAAAkNvl6YLUo48+qhMnTui1115TXFyc7rrrLkVHR6e7iScAAEB+QkYCAAC5XZ4uSEnSgAEDbnj5eV7n5eWlUaNGpbuE3tXkl3lKzNUV5Zd5SvlnrvllnlL+mWt+mef1yEiuIb/MNb/MU8o/c80v85Tyz1zzyzyl/DNXZ8/TZlz1mccAAAAAAADIlQo4ewAAAAAAAADIXyhIAQAAAAAAwFIUpAAAAAAAAGApClJONn78eDVs2FC+vr4qUaKEOnXqpP379zv0uXjxoiIjI1W0aFEVLlxYXbp00fHjx5004jv3/vvvq3bt2vLz85Ofn5/Cw8O1fPly+3JXmef1JkyYIJvNpkGDBtnbXGWuo0ePls1mc3hVrVrVvtxV5ilJf/31l5544gkVLVpUPj4+qlWrlrZt22ZfbozRa6+9ppIlS8rHx0etWrXSgQMHnDjiO1OuXLl0n6nNZlNkZKQk1/lMr1y5oldffVVhYWHy8fFRhQoVNHbsWF17W0VX+Uwl6cyZMxo0aJDKli0rHx8fNWnSRFu3brUvz6tz/f7779WhQweVKlVKNptNCxcudFiemXmdOnVKPXr0kJ+fnwICAtSnTx+dPXvWwlngRshIZKS8PFcyEhkpL3+m+SknkZGcnJEMnCoiIsJERUWZ3bt3m5iYGPPggw+a0NBQc/bsWXuf/v37m5CQELN69Wqzbds207hxY9OkSRMnjvrOLF682CxdutT8+uuvZv/+/ebf//638fDwMLt37zbGuM48r7VlyxZTrlw5U7t2bTNw4EB7u6vMddSoUaZGjRrm2LFj9teJEyfsy11lnqdOnTJly5Y1vXv3Nps3bzZ//PGHWbFihfntt9/sfSZMmGD8/f3NwoULzc6dO81DDz1kwsLCzIULF5w48tsXHx/v8HmuXLnSSDJr1641xrjOZzpu3DhTtGhRs2TJEhMbG2u++uorU7hwYfPOO+/Y+7jKZ2qMMd26dTPVq1c369evNwcOHDCjRo0yfn5+5s8//zTG5N25Llu2zLz88svmm2++MZLMggULHJZnZl5t2rQxderUMf/73//MDz/8YCpWrGgee+wxi2eCjJCRyEh5ea5kJDJSXv1MjclfOYmM5NyMREEql4mPjzeSzPr1640xxiQkJBgPDw/z1Vdf2fvs27fPSDKbNm1y1jCzTWBgoPn4449dcp5nzpwxlSpVMitXrjT33nuvPWy50lxHjRpl6tSpk+EyV5rn8OHDTdOmTW+4PDU11QQHB5vJkyfb2xISEoyXl5f5/PPPrRhijhk4cKCpUKGCSU1NdanPtF27dubpp592aOvcubPp0aOHMca1PtPz588bNzc3s2TJEof2evXqmZdfftll5np92MrMvPbu3Wskma1bt9r7LF++3NhsNvPXX39ZNnZkDhnJdeZJRnKdeZKRXC8jGZN/chIZyfkZiZ/s5TKJiYmSpCJFikiStm/frkuXLqlVq1b2PlWrVlVoaKg2bdrklDFmhytXruiLL77QuXPnFB4e7pLzjIyMVLt27RzmJLneZ3rgwAGVKlVK5cuXV48ePXT48GFJrjXPxYsXq0GDBnrkkUdUokQJ1a1bVx999JF9eWxsrOLi4hzm6u/vr0aNGuW5uV4rJSVFc+bM0dNPPy2bzeZSn2mTJk20evVq/frrr5KknTt3asOGDWrbtq0k1/pML1++rCtXrsjb29uh3cfHRxs2bHCpuV4rM/PatGmTAgIC1KBBA3ufVq1aqUCBAtq8ebPlY8bNkZFcZ55kJNeZJxnJ9TKSlH9yEhnJ+RnJPdu2hCxLTU3VoEGDdM8996hmzZqSpLi4OHl6eiogIMChb1BQkOLi4pwwyqzZtWuXwsPDdfHiRRUuXFgLFixQ9erVFRMT41Lz/OKLL/TTTz85/P44jSt9po0aNdKsWbNUpUoVHTt2TGPGjFGzZs20e/dul5rnH3/8offff19DhgzRv//9b23dulUvvPCCPD091atXL/t8goKCHNbLi3O91sKFC5WQkKDevXtLcq2/3REjRigpKUlVq1aVm5ubrly5onHjxqlHjx6S5FKfqa+vr8LDwzV27FhVq1ZNQUFB+vzzz7Vp0yZVrFjRpeZ6rczMKy4uTiVKlHBY7u7uriJFiuTpubsiMpLrzJOMREZKe5/X5notV85IUv7JSWQk52ckClK5SGRkpHbv3q0NGzY4eyg5pkqVKoqJiVFiYqLmz5+vXr16af369c4eVrY6cuSIBg4cqJUrV6artruatLMkklS7dm01atRIZcuW1ZdffikfHx8njix7paamqkGDBnrjjTckSXXr1tXu3bs1c+ZM9erVy8mjyzn//e9/1bZtW5UqVcrZQ8l2X375pebOnavPPvtMNWrUUExMjAYNGqRSpUq55Gf66aef6umnn1bp0qXl5uamevXq6bHHHtP27dudPTQgU8hIroGMREZyFa6ckaT8lZPISM7FT/ZyiQEDBmjJkiVau3atypQpY28PDg5WSkqKEhISHPofP35cwcHBFo8y6zw9PVWxYkXVr19f48ePV506dfTOO++41Dy3b9+u+Ph41atXT+7u7nJ3d9f69es1bdo0ubu7KygoyGXmer2AgABVrlxZv/32m0t9piVLllT16tUd2qpVq2a/9D5tPtc/SSUvzjXNoUOHtGrVKvXt29fe5kqf6dChQzVixAh1795dtWrV0pNPPqnBgwdr/PjxklzvM61QoYLWr1+vs2fP6siRI9qyZYsuXbqk8uXLu9xc02RmXsHBwYqPj3dYfvnyZZ06dSpPz93VkJFcZ55kJDJSmrw41zSunpGk/JWTyEj/cEZGoiDlZMYYDRgwQAsWLNCaNWsUFhbmsLx+/fry8PDQ6tWr7W379+/X4cOHFR4ebvVws11qaqqSk5Ndap4tW7bUrl27FBMTY381aNBAPXr0sP/bVeZ6vbNnz+r3339XyZIlXeozveeee9I9avzXX39V2bJlJUlhYWEKDg52mGtSUpI2b96c5+aaJioqSiVKlFC7du3sba70mZ4/f14FCjh+Bbq5uSk1NVWSa36mklSoUCGVLFlSp0+f1ooVK9SxY0eXnWtm5hUeHq6EhASHs6Br1qxRamqqGjVqZPmY4YiMREaS8u5cr0dGcp3vGFfPSFL+zElkJCdlpGy7PTruyLPPPmv8/f3NunXrHB4jev78eXuf/v37m9DQULNmzRqzbds2Ex4ebsLDw5046jszYsQIs379ehMbG2t+/vlnM2LECGOz2cx3331njHGdeWbk2ifIGOM6c33xxRfNunXrTGxsrPnxxx9Nq1atTLFixUx8fLwxxnXmuWXLFuPu7m7GjRtnDhw4YObOnWsKFixo5syZY+8zYcIEExAQYBYtWmR+/vln07FjxzzxSNiMXLlyxYSGhprhw4enW+Yqn2mvXr1M6dKl7Y8z/uabb0yxYsXMsGHD7H1c6TONjo42y5cvN3/88Yf57rvvTJ06dUyjRo1MSkqKMSbvzvXMmTNmx44dZseOHUaSmTp1qtmxY4c5dOiQMSZz82rTpo2pW7eu2bx5s9mwYYOpVKlStj/SGHeGjERGystzJSORkfLqZ2pM/spJZCTnZiQKUk4mKcNXVFSUvc+FCxfMc889ZwIDA03BggXNww8/bI4dO+a8Qd+hp59+2pQtW9Z4enqa4sWLm5YtW9qDljGuM8+MXB+2XGWujz76qClZsqTx9PQ0pUuXNo8++qj57bff7MtdZZ7GGPPtt9+amjVrGi8vL1O1alXz4YcfOixPTU01r776qgkKCjJeXl6mZcuWZv/+/U4abdasWLHCSMpw/K7ymSYlJZmBAwea0NBQ4+3tbcqXL29efvllk5ycbO/jSp/pvHnzTPny5Y2np6cJDg42kZGRJiEhwb48r8517dq1GX6H9urVyxiTuXmdPHnSPPbYY6Zw4cLGz8/PPPXUU+bMmTNOmA2uR0YiI+XluZKR/pFXv2Mykh8ykjH5KyeRkZybkWzGGJN911sBAAAAAAAAN8c9pAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKQJaMHj1aNpvN2cPIFrNmzZLNZtPBgwedPZR8JzU1VTVr1tS4ceNu2Tejv7nLly9r2LBhCgkJUYECBdSpU6fb2v/MmTMVGhqq5OTk21oPAIAbISMhO5CR4MooSAFwmo0bN2r06NFKSEhw9lBuaMaMGZo1a1aO7sNms8lms6lv374ZLn/55Zftff7+++8cHYuzfP755zpy5IgGDBhwR+t/8sknmjx5srp27arZs2dr8ODBkqR58+bpiSeeUKVKlWSz2XTfffdluH7v3r2VkpKiDz744E6nAABAtiEjXUVGypmMdPLkSU2ePFnNmzdX8eLFFRAQoMaNG2vevHnp1icjISfZjDHG2YMAkHddvnxZly9flre3922vO2XKFA0dOlSxsbEqV65c9g/uNl25ckWXLl2Sl5eX/exSzZo1VaxYMa1bty7H9muz2eTt7S1vb28dP35cnp6eDsvLly+vY8eO6eLFizpx4oSKFSuWY2NxlrvuukuNGjXKVNgZPXq0xowZo2u/vrp3764NGzbozz//dOh73333afv27WrYsKFiYmJUu3btG36Ww4cP17x58xQbG+syZ7QBAM5DRso6MlLOZKQlS5aoc+fOevDBB3X//ffL3d1dX3/9tdauXavXXntNY8aMcdguGQk5hSukgJtITU3VxYsXnT0MB+fOncvxfRhjdOHChUz1dXd3v6OglRu5ubnJ29vbKV+0bdq0UVJSkpYvX+7QvnHjRsXGxqpdu3aWj8kqO3bs0M6dO9WtW7c73kZ8fLwCAgLStX/66adKTEzUmjVrVKpUqZtuo1u3bjp06JDWrl17x+MAgPyCjHRrZKTsQUbK/oxUo0YNHThwQAsXLtTAgQMVGRmp1atXq0WLFpo4cWK6/5bISMgpFKTg8tJ+S/3LL7+oW7du8vPzU9GiRTVw4MB0Qcpms2nAgAGaO3euatSoIS8vL0VHR0uS/vrrLz399NMKCgqSl5eXatSooU8++STd/i5evKjRo0ercuXK8vb2VsmSJdW5c2f9/vvvkqR169bJZrOlO5t08OBB2Ww2h0ufe/furcKFC+v333/Xgw8+KF9fX/Xo0UOSdODAAXXp0kXBwcHy9vZWmTJl1L17dyUmJtrXv3z5ssaOHasKFSrIy8tL5cqV07///e90vwEvV66c2rdvrxUrVqhBgwby8fHJ9GW5Gf1WPe04Lly4UDVr1rQfr7Rjmbbe0KFDJUlhYWH2y62vvTfBnDlzVL9+ffn4+KhIkSLq3r27jhw54rCv++67TzVr1tTevXt1//33q2DBgipdurQmTZqUbqzvvvuuatSooYIFCyowMFANGjTQZ599Zl9+/f0RypUrpz179mj9+vX28d133336448/ZLPZ9NZbb6Xbx8aNG2Wz2fT5559n6vilKV26tJo3b+4wHkmaO3euatWqpZo1a97W9q6dz4YNG/TCCy/YL8n+17/+pZSUFCUkJKhnz54KDAxUYGCghg0bpusvmp0yZYqaNGmiokWLysfHR/Xr19f8+fMd+kRFRclms6X77+GNN96QzWbTsmXLbjrOhQsXytPTU82bN0+3bMOGDWrYsKG8vb1VoUKFdH+Xaf/drF27Vnv27LF/Tmn/faXdLyEz6tevryJFimjRokWZ6g8AeR0ZiYyUhoyUvzJSWFiYypYt69DfZrOpU6dOSk5O1h9//OGwjIyEnOLu7AEAVunWrZvKlSun8ePH63//+5+mTZum06dP6//+7/8c+q1Zs0ZffvmlBgwYoGLFiqlcuXI6fvy4GjdubA8RxYsX1/Lly9WnTx8lJSVp0KBBkq5ezty+fXutXr1a3bt318CBA3XmzBmtXLlSu3fvVoUKFW573JcvX1ZERISaNm2qKVOmqGDBgkpJSVFERISSk5P1/PPPKzg4WH/99ZeWLFmihIQE+fv7S5L69u2r2bNnq2vXrnrxxRe1efNmjR8/Xvv27dOCBQsc9rN//3499thj+te//qV+/fqpSpUqd3ag/78NGzbom2++0XPPPSdfX19NmzZNXbp00eHDh1W0aFF17txZv/76qz7//HO99dZb9kusixcvLkkaN26cXn31VXXr1k19+/bViRMn9O6776p58+basWOHw5me06dPq02bNurcubO6deum+fPna/jw4apVq5batm0rSfroo4/0wgsvqGvXrvag/fPPP2vz5s16/PHHM5zD22+/reeff16FCxfWyy+/LEkKCgpS+fLldc8992ju3Ln2exWlmTt3rnx9fdWxY8fbPmaPP/64Bg4cqLNnz6pw4cK6fPmyvvrqKw0ZMiRLZ6HT/kbGjBmj//3vf/rwww8VEBCgjRs3KjQ0VG+88YaWLVumyZMnq2bNmurZs6d93XfeeUcPPfSQevTooZSUFH3xxRd65JFHtGTJEvsZyaeeekrffPONhgwZogceeEAhISHatWuXxowZoz59+ujBBx+86fg2btyomjVrysPDw6F9165dat26tYoXL67Ro0fr8uXLGjVqlIKCgux9ihcvrk8//VTjxo3T2bNnNX78eElStWrV7uhY1atXTz/++OMdrQsAeRUZiYxERiIjSVJcXJwkZfjTRzIScoQBXNyoUaOMJPPQQw85tD/33HNGktm5c6e9TZIpUKCA2bNnj0PfPn36mJIlS5q///7bob179+7G39/fnD9/3hhjzCeffGIkmalTp6YbR2pqqjHGmLVr1xpJZu3atQ7LY2NjjSQTFRVlb+vVq5eRZEaMGOHQd8eOHUaS+eqrr24475iYGCPJ9O3b16H9pZdeMpLMmjVr7G1ly5Y1kkx0dPQNt3cjacf3WpKMp6en+e233+xtO3fuNJLMu+++a2+bPHmykWRiY2Md1j948KBxc3Mz48aNc2jftWuXcXd3d2i/9957jSTzf//3f/a25ORkExwcbLp06WJv69ixo6lRo8ZN5xIVFZVuPDVq1DD33ntvur4ffPCBkWT27dtnb0tJSTHFihUzvXr1uul+rifJREZGmlOnThlPT0/z6aefGmOMWbp0qbHZbObgwYP243zixIlMbzdtPhEREfa/P2OMCQ8PNzabzfTv39/edvnyZVOmTJl0c0372752jjVr1jQtWrRwaD927JgpUqSIeeCBB0xycrKpW7euCQ0NNYmJibccZ5kyZRw+qzSdOnUy3t7e5tChQ/a2vXv3Gjc3t3R/c/fee+8tP98bfZbXeuaZZ4yPj88txwwAroCMREYyhoxERrrq5MmTpkSJEqZZs2YZLicjISfwkz3kG5GRkQ7vn3/+eUlKd6nsvffeq+rVq9vfG2P09ddfq0OHDjLG6O+//7a/IiIilJiYqJ9++kmS9PXXX6tYsWL2bV8rK7+5f/bZZx3ep53dW7Fihc6fP5/hOmnzGjJkiEP7iy++KElaunSpQ3tYWJgiIiLueIzXa9WqlcPZztq1a8vPzy/dJcAZ+eabb5Samqpu3bo5HO/g4GBVqlQp3e/XCxcurCeeeML+3tPTU3fffbfDvgICAvTnn39q69at2TC7q2eTvb29NXfuXHvbihUr9PfffzuM5XYEBgaqTZs29kvZP/vsMzVp0iTdJdW3q0+fPg5/f40aNZIxRn369LG3ubm5qUGDBuk+Hx8fH/u/T58+rcTERDVr1sz+N58mODhY06dP18qVK9WsWTPFxMTok08+kZ+f3y3Hd/LkSQUGBjq0XblyRStWrFCnTp0UGhpqb69WrVq2/p1eLzAwUBcuXLjhf1cA4IrISFeRkchI+TUjpaamqkePHkpISNC7776bYR8yEnICBSnkG5UqVXJ4X6FCBRUoUMDh9/jS1dBxrRMnTighIUEffvihihcv7vB66qmnJF29WaAk/f7776pSpYrc3bPv17Du7u4qU6ZMujEOGTJEH3/8sYoVK6aIiAhNnz7d4d4Ihw4dUoECBVSxYkWHdYODgxUQEKBDhw7ddN5Zde0XZJrAwECdPn36luseOHBAxhhVqlQp3THft2+f/XinKVOmTLowe/2+hg8frsKFC+vuu+9WpUqVFBkZmaXLjgMCAtShQweH+xnMnTtXpUuXVosWLe54u48//rhWrlypw4cPa+HChTe8VP52XP9ZpIX1kJCQdO3Xfz5LlixR48aN5e3trSJFiqh48eJ6//33Hf7W0nTv3l3t2rXTli1b1K9fP7Vs2TLTYzTX3ZfhxIkTunDhQrr/biVl+acSmRkHT5ABkJ+Qka4iI5GR8mtGev755xUdHa2PP/5YderUuek4yEjITtxDCvnWjf7H9NqzHdLVMwaS9MQTT6hXr14ZrlO7du0s7/fKlSsZtnt5eWV4U+Y333xTvXv31qJFi/Tdd9/phRdesN/74dpwltkvjevnnVVubm4Ztl//pZqR1NRU2Ww2LV++PMPtFC5c+Lb3Va1aNe3fv19LlixRdHS0vv76a82YMSPDR9tmVs+ePfXVV19p48aNqlWrlhYvXqznnnsu0zfRzshDDz0kLy8v9erVS8nJyVl6qkqaGx2fjNqvPWY//PCDHnroITVv3lwzZsxQyZIl5eHhoaioqHQ3FpWunsXbtm2bJGnv3r1KTU3N1LEoWrRopkK4FU6fPq2CBQtm+38PAJCXkJEckZFuHxnJUW7OSGPGjNGMGTM0YcIEPfnkkzfsR0ZCTqAghXzjwIEDDme4fvvtN6WmpqpcuXI3Xa948eLy9fXVlStX1KpVq5v2rVChgjZv3qxLly6lu/lgmrTLbhMSEhzarz8blxm1atVSrVq19Morr2jjxo265557NHPmTL3++usqW7asUlNTdeDAAYebFx4/flwJCQlZvsQ5O9woCFaoUEHGGIWFhaly5crZtr9ChQrp0Ucf1aOPPqqUlBR17txZ48aN08iRI2/4WOabhdU2bdqoePHimjt3rho1aqTz58/f9Is8M3x8fNSpUyfNmTNHbdu2zfCmklb5+uuv5e3trRUrVsjLy8veHhUVlWH/yMhInTlzRuPHj9fIkSP19ttvp/s5REaqVq2q2NhYh7bixYvLx8dHBw4cSNd///79tzmTzIuNjb3jG6IDQF5FRrqKjERGyixXyUjTp0/X6NGjNWjQIA0fPvymfclIyAn8ZA/5xvTp0x3ep/0+Ou0JIzfi5uamLl266Ouvv9bu3bvTLT9x4oT93126dNHff/+t9957L12/tLMqZcuWlZubm77//nuH5TNmzMjcRCQlJSXp8uXLDm21atVSgQIF7I8rTntqx9tvv+3Qb+rUqZJkf/qHMxUqVEhS+uDZuXNnubm5acyYMenOFhpjdPLkydve1/XreHp6qnr16jLG6NKlSzcd4/XjS+Pu7q7HHntMX375pWbNmqVatWrd1pngG3nppZc0atQovfrqq1neVla4ubnJZrM5nJk+ePCgFi5cmK7v/PnzNW/ePE2YMEEjRoxQ9+7d9corr+jXX3+95X7Cw8O1e/duh0dtu7m5KSIiQgsXLtThw4ft7fv27dOKFSuyNrGb+Omnn9SkSZMc2z4A5EZkpKvISFeRkW7NFTLSvHnz9MILL6hHjx72v/2bISMhJ3CFFPKN2NhYPfTQQ2rTpo02bdqkOXPm6PHHH7/h76SvNWHCBK1du1aNGjVSv379VL16dZ06dUo//fSTVq1apVOnTkm6enny//3f/2nIkCHasmWLmjVrpnPnzmnVqlV67rnn1LFjR/n7++uRRx7Ru+++K5vNpgoVKmjJkiXpfvN/M2vWrNGAAQP0yCOPqHLlyrp8+bI+/fRTezCUpDp16qhXr1768MMPlZCQoHvvvVdbtmzR7Nmz1alTJ91///13diCzUf369SVJL7/8srp37y4PDw916NBBFSpU0Ouvv66RI0fq4MGD6tSpk3x9fRUbG6sFCxbomWee0UsvvXRb+2rdurWCg4N1zz33KCgoSPv27dN7772ndu3aydfX96ZjfP/99/X666+rYsWKKlGihMP9D3r27Klp06Zp7dq1mjhx4p0diOvUqVMnU3+XOa1du3aaOnWq2rRpo8cff1zx8fGaPn26KlasqJ9//tneLz4+Xs8++6zuv/9+DRgwQJL03nvvae3aterdu7c2bNhw08vSO3bsqLFjx2r9+vVq3bq1vX3MmDGKjo5Ws2bN9Nxzz+ny5ct69913VaNGDYf938z3339v/z82J06c0Llz5/T6669Lkpo3b67mzZvb+27fvl2nTp26o8dRA0BeRkYiI5GRbk9ez0hbtmxRz549VbRoUbVs2dLhBvSS1KRJE5UvX97+noyEHGPNw/wA50l7FOzevXtN165dja+vrwkMDDQDBgwwFy5ccOir//9o2YwcP37cREZGmpCQEOPh4WGCg4NNy5YtzYcffujQ7/z58+bll182YWFh9n5du3Y1v//+u73PiRMnTJcuXUzBggVNYGCg+de//mV2796d4SONCxUqlG4sf/zxh3n66adNhQoVjLe3tylSpIi5//77zapVqxz6Xbp0yYwZM8Y+lpCQEDNy5Ehz8eJFh35ly5Y17dq1y9TxvN6NHmmc0XEsW7Zsusf9jh071pQuXdoUKFAg3eOEv/76a9O0aVNTqFAhU6hQIVO1alUTGRlp9u/fb+9zo0fZ9urVy5QtW9b+/oMPPjDNmzc3RYsWNV5eXqZChQpm6NChDo/czeiRxnFxcaZdu3bG19fXSMrw8cY1atQwBQoUMH/++ecNjtLN3ezvLk1WHmm8devWTG0ro7+3//73v6ZSpUrGy8vLVK1a1URFRaX7zDt37mx8fX3NwYMHHdZdtGiRkWQmTpx4y7HWrl3b9OnTJ137+vXrTf369Y2np6cpX768mTlzZoZ/czf6O0jrm9Fr1KhRDn2HDx9uQkNDHR7/DACujIxERjKGjJSZbblaRkqb/41e1/63ZgwZCTnHZkwm7p4H5GGjR4/WmDFjdOLECaf+1hyuq27duipSpIhWr17t7KHkWZ9++qkiIyN1+PBhBQQEWL7/5ORklStXTiNGjNDAgQMt3z8AOAMZCTmNjJR1ZCS4Mu4hBQBZsG3bNsXExKhnz57OHkqe1qNHD4WGhqa7j4lVoqKi5OHhof79+ztl/wAAuBoyUvYgI8GVcYUUXB5n/+5MYmKiLly4cNM+wcHBFo0m99m9e7e2b9+uN998U3///bf++OMPh6fQXLlyxeFmrhkpXLhwusczZ8aFCxeUmJh40z5FihSRp6fnbW8bAJB/kJHuDBnp5shIADKLm5oDyNDAgQM1e/bsm/bJz/Xs+fPn6z//+Y+qVKmizz//PN0jkY8cOeLwCO2MjBo1SqNHj77tfc+bN09PPfXUTfusXbtW9913321vGwAA3BwZ6ebISAAyiyukAGRo7969Onr06E37tGrVyqLR5D0XL17Uhg0bbtqnfPnyDk8wyaxjx45pz549N+1Tv359BQYG3va2AQDAzZGRsoaMBCANBSkAAAAAAABYipuaAwAAAAAAwFL5+h5SqampOnr0qHx9fWWz2Zw9HAAAYAFjjM6cOaNSpUqpQAHOzWWEjAQAQP5jdUbK1wWpo0ePKiQkxNnDAAAATnDkyBGVKVPG2cPIlchIAADkX1ZlpHxdkPL19ZV09WD7+fk5eTQAAMAKSUlJCgkJsecApEdGAgAg/7E6I+XrglTaJeh+fn6ELQAA8hl+inZjZCQAAPIvqzISN04AAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpfH0PKQAAbubKlSu6dOmSs4eB2+Th4SE3NzdnDwMAAJdFRsqbcltGoiAFAMB1jDGKi4tTQkKCs4eCOxQQEKDg4GBuXA4AQDYiI+V9uSkjUZACAOA6aUGrRIkSKliwYK74wkbmGGN0/vx5xcfHS5JKlizp5BEBAOA6yEh5V27MSBSkAAC4xpUrV+xBq2jRos4eDu6Aj4+PJCk+Pl4lSpTIVZemAwCQV5GR8r7clpG4qTkAANdIux9CwYIFnTwSZEXa58f9LQAAyB5kJNeQmzISBSkAADLAJeh5G58fAAA5g+/YvC03fX4UpAAAAAAAAGApClIAAORxNpvtpq/Ro0c7dWwLFy7M0jY+/PBD3XffffLz85PNZuPJPgAAINNcOSedOnVKzz//vKpUqSIfHx+FhobqhRdeUGJiYvYNMgdxU3MAADLpUvQGy/bl0aZppvseO3bM/u958+bptdde0/79++1thQsXvq19p6SkyNPT87bWyUnnz59XmzZt1KZNG40cOdLZwwEAANexMiNJ5KQ0R48e1dGjRzVlyhRVr15dhw4dUv/+/XX06FHNnz/f2cO7Ja6QykGXojekewEAkN2Cg4PtL39/f9lsNvv7c+fOqUePHgoKClLhwoXVsGFDrVq1ymH9cuXKaezYserZs6f8/Pz0zDPPSJI++ugjhYSEqGDBgnr44Yc1depUBQQEOKy7aNEi1atXT97e3ipfvrzGjBmjy5cv27crSQ8//LBsNpv9/c6dO3X//ffL19dXfn5+ql+/vrZt23bD+Q0aNEgjRoxQ48aNs+eAwenISAAAq7hyTqpZs6a+/vprdejQQRUqVFCLFi00btw4ffvtt/b95GYUpAAAcGFnz57Vgw8+qNWrV2vHjh1q06aNOnTooMOHDzv0mzJliurUqaMdO3bo1Vdf1Y8//qj+/ftr4MCBiomJ0QMPPKBx48Y5rPPDDz+oZ8+eGjhwoPbu3asPPvhAs2bNsvfbunWrJCkqKkrHjh2zv+/Ro4fKlCmjrVu3avv27RoxYoQ8PDwsOBoAAAD/cMWclJiYKD8/P7m75/4fxOX+EQIAgDtWp04d1alTx/5+7NixWrBggRYvXqwBAwbY21u0aKEXX3zR/v7ll19W27Zt9dJLL0mSKleurI0bN2rJkiX2PmPGjNGIESPUq1cvSVL58uU1duxYDRs2TKNGjVLx4sUlSQEBAQoODravd/jwYQ0dOlRVq1aVJFWqVCkHZg4AAHBzrpaT/v77b40dO9Z+FVduxxVSAAC4sLNnz+qll15StWrVFBAQoMKFC2vfvn3pzvw1aNDA4f3+/ft19913O7Rd/37nzp36z3/+o8KFC9tf/fr107Fjx3T+/PkbjmnIkCHq27evWrVqpQkTJuj333/P4iwBAABunyvlpKSkJLVr107Vq1d36o3abwcFKQAAXNhLL72kBQsW6I033tAPP/ygmJgY1apVSykpKQ79ChUqdNvbPnv2rMaMGaOYmBj7a9euXTpw4IC8vb1vuN7o0aO1Z88etWvXTmvWrFH16tW1YMGC294/AABAVrhKTjpz5ozatGkjX19fLViwIM/cCoGf7AEA4MJ+/PFH9e7dWw8//LCkq+Ho4MGDt1yvSpUq9nsZpLn+fb169bR//35VrFjxhtvx8PDQlStX0rVXrlxZlStX1uDBg/XYY48pKirKPkYAAAAruEJOSkpKUkREhLy8vLR48eKbFrtyGwpSAAC4sEqVKumbb75Rhw4dZLPZ9Oqrryo1NfWW6z3//PNq3ry5pk6dqg4dOmjNmjVavny5bDabvc9rr72m9u3bKzQ0VF27dlWBAgW0c+dO7d69W6+//rqkq0+QWb16te655x55eXnJ29tbQ4cOVdeuXRUWFqY///xTW7duVZcuXW44lri4OMXFxem3336TJO3atUu+vr4KDQ1VkSJFsniEAABAfpXXc1JSUpJat26t8+fPa86cOUpKSlJSUpIkqXjx4nJzc8uGo5Rz+MkeAAAubOrUqQoMDFSTJk3UoUMHRUREqF69erdc75577tHMmTM1depU1alTR9HR0Ro8eLDDWbeIiAgtWbJE3333nRo2bKjGjRvrrbfeUtmyZe193nzzTa1cuVIhISGqW7eu3NzcdPLkSfXs2VOVK1dWt27d1LZtW40ZM+aGY5k5c6bq1q2rfv36SZKaN2+uunXravHixVk4MgAAIL/L6znpp59+0ubNm7Vr1y5VrFhRJUuWtL+OHDmS9QOUw2zGGOPsQThLUlKS/P397Y9FzG6Xojeka/No0zTb9wMAyD4XL15UbGyswsLC8tQlz1bo16+ffvnlF/3www/OHsot3exzzOnvf1dARgIAXI+MdHN5JSflpozET/YAAECGpkyZogceeECFChXS8uXLNXv2bM2YMcPZwwIAAHA6clLWUZACAAAZ2rJliyZNmqQzZ86ofPnymjZtmvr27evsYQEAADgdOSnrKEgBAIAMffnll84eAgAAQK5ETso6bmoOAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAX0Lt3b9lsNtlsNnl4eCgoKEgPPPCAPvnkE6Wmpjp7eFmyZ88edenSReXKlZPNZtPbb7/t7CEBAIA8xJVz0kcffaRmzZopMDBQgYGBatWqlbZs2eLsYWWKu7MHAABAXvH7tg8s21eFBv+67XXatGmjqKgoXblyRcePH1d0dLQGDhyo+fPna/HixXJ3z5tf++fPn1f58uX1yCOPaPDgwc4eDgAAuI6VGUkiJ11r3bp1euyxx9SkSRN5e3tr4sSJat26tfbs2aPSpUs7e3g3xRVSAAC4CC8vLwUHB6t06dKqV6+e/v3vf2vRokVavny5Zs2aZe+XkJCgvn37qnjx4vLz81OLFi20c+dOh219++23atiwoby9vVWsWDE9/PDD9mWnT59Wz549FRgYqIIFC6pt27Y6cOCAJOncuXPy8/PT/PnzHba3cOFCFSpUSGfOnFFKSooGDBigkiVLytvbW2XLltX48eNvOK+GDRtq8uTJ6t69u7y8vLLhSAEAgPzGVXPS3Llz9dxzz+muu+5S1apV9fHHHys1NVWrV6/OhqOWsyhIAQDgwlq0aKE6derom2++sbc98sgjio+P1/Lly7V9+3bVq1dPLVu21KlTpyRJS5cu1cMPP6wHH3xQO3bs0OrVq3X33Xfb1+/du7e2bdumxYsXa9OmTTLG6MEHH9SlS5dUqFAhde/eXVFRUQ7jiIqKUteuXeXr66tp06Zp8eLF+vLLL7V//37NnTtX5cqVs+R4AAAApHHFnHT+/HldunRJRYoUydrBsUDevCYNAABkWtWqVfXzzz9LkjZs2KAtW7YoPj7efrXRlClTtHDhQs2fP1/PPPOMxo0bp+7du2vMmDH2bdSpU0eSdODAAS1evFg//vijmjRpIunqmbmQkBAtXLhQjzzyiPr27asmTZro2LFjKlmypOLj47Vs2TKtWrVKknT48GFVqlRJTZs2lc1mU9myZa08HAAAAHaulpOGDx+uUqVKqVWrVlk+NjmNK6QAAHBxxhjZbDZJ0s6dO3X27FkVLVpUhQsXtr9iY2P1+++/S5JiYmLUsmXLDLe1b98+ubu7q1GjRva2okWLqkqVKtq3b58k6e6771aNGjU0e/ZsSdKcOXNUtmxZNW/eXNLVM4cxMTGqUqWKXnjhBX333Xc5NncAAICbcaWcNGHCBH3xxRdasGCBvL29b/9gWIwrpAAAcHH79u1TWFiYJOns2bMqWbKk1q1bl65fQECAJMnHxyfL++zbt6+mT5+uESNGKCoqSk899ZQ97NWrV0+xsbFavny5Vq1apW7duqlVq1bp7qcAAACQ01wlJ02ZMkUTJkzQqlWrVLt27SyP0QpZukJqwoQJstlsGjRokL3t4sWLioyMtFcUu3TpouPHjzusd/jwYbVr104FCxZUiRIlNHToUF2+fNmhz7p161SvXj15eXmpYsWKDjcZSzN9+nSVK1dO3t7eatSoUZ55tCEAAFZZs2aNdu3apS5duki6GnLi4uLk7u6uihUrOryKFSsmSapdu/YNb4RZrVo1Xb58WZs3b7a3nTx5Uvv371f16tXtbU888YQOHTqkadOmae/everVq5fDdvz8/PToo4/qo48+0rx58/T111/b783gCshIAADkfq6SkyZNmqSxY8cqOjpaDRo0uOPjYbU7Lkht3bpVH3zwQbrK2+DBg/Xtt9/qq6++0vr163X06FF17tzZvvzKlStq166dUlJStHHjRs2ePVuzZs3Sa6+9Zu8TGxurdu3a6f7771dMTIwGDRqkvn37asWKFfY+8+bN05AhQzRq1Cj99NNPqlOnjiIiIhQfH3+nUwIAIE9LTk5WXFyc/vrrL/30009644031LFjR7Vv3149e/aUJLVq1Urh4eHq1KmTvvvuOx08eFAbN27Uyy+/rG3btkmSRo0apc8//1yjRo3Svn37tGvXLk2cOFGSVKlSJXXs2FH9+vXThg0btHPnTj3xxBMqXbq0OnbsaB9LYGCgOnfurKFDh6p169YqU6aMfdnUqVP1+eef65dfftGvv/6qr776SsHBwfYzj9dLSUlRTEyMYmJilJKSor/++ksxMTH67bffcuhIZg0ZCQCA3MdVc9LEiRP16quv6pNPPlG5cuUUFxenuLg4nT17NoeOZPa5o4LU2bNn1aNHD3300UcKDAy0tycmJuq///2vpk6dqhYtWqh+/fqKiorSxo0b9b///U+S9N1332nv3r2aM2eO7rrrLrVt21Zjx47V9OnTlZKSIkmaOXOmwsLC9Oabb6patWoaMGCAunbtqrfeesu+r6lTp6pfv3566qmnVL16dc2cOVMFCxbUJ598kpXjAQBAnhUdHa2SJUuqXLlyatOmjdauXatp06Zp0aJFcnNzkyTZbDYtW7ZMzZs311NPPaXKlSure/fuOnTokIKCgiRJ9913n7766istXrxYd911l1q0aOFwhU1UVJTq16+v9u3bKzw8XMYYLVu2TB4eHg7j6dOnj1JSUvT00087tPv6+mrSpElq0KCBGjZsqIMHD2rZsmUqUCDjWHL06FHVrVtXdevW1bFjxzRlyhTVrVtXffv2zc7Dly3ISAAA5E6umpPef/99paSkqGvXripZsqT9NWXKlOw8fDnCZowxt7tSr169VKRIEb311lu67777dNddd+ntt9/WmjVr1LJlS50+fdqhele2bFkNGjRIgwcP1muvvabFixcrJibGvjw2Nlbly5fXTz/9pLp166p58+aqV6+e3n77bXufqKgoDRo0SImJiUpJSVHBggU1f/58derUyWFcCQkJWrRoUYbjTk5OVnJysv19UlKSQkJClJiYKD8/v9s9DLd0KXpDujaPNk2zfT8AgOxz8eLF/8fevcdlUef//39eIAcVLvAImiiaeSDPqEiWpZFo5GZqarlJHtoOaCrbQdfWQyfNTuaqWfldbUvXQ6WVJuZi6pbkAaNVU9daS0sBTeVSVECY3x/+mI+XgHIhzMXhcb/drtuNa+Y9M6+ZC7xePq+5ZnTo0CE1bdq0QlwMsjz74IMPNGHCBB09elTe3t6Wbvtqr6PD4VBAQECZvP/TIxUPPRIAVDz0SKXLXX2Su3qkwrh8UfNly5Zp165d2rFjR4F5qamp8vb2LnAqWVBQkFJTU80x+cni5fPz511tjMPh0Pnz53Xq1Cnl5uYWOmb//v1F1j5jxgynWzMCAIDSd+7cOR07dkwzZ87Uo48+ankY5S70SAAA4Fqqap9UGJe+snfkyBGNGzdOS5YsqZCJ6KRJk5SRkWE+jhw54u6SAACodGbNmqVWrVopODhYkyZNcnc5lqBHAgAAxVEV+6SiuBRIJScnKz09XZ06dVK1atVUrVo1bd68WXPmzFG1atUUFBSk7OxsnT592mm5tLQ0BQcHS5KCg4ML3FEm//m1xtjtdlWvXl1169aVp6dnoWPy11EYHx8f2e12pwcAAChd06ZNU05OjhITE+Xn5+fucixBjwQAAIqjKvZJRXEpkLrzzju1e/du8043KSkp6ty5s4YNG2b+7OXl5XQLxAMHDujw4cOKjIyUJEVGRmr37t1Od3rZsGGD7Ha7eRvEyMjIArdR3LBhg7kOb29vhYeHO43Jy8tTYmKiOQYAAMAq9EgAAACucekaUv7+/mrTpo3TtJo1a6pOnTrm9FGjRik+Pl61a9eW3W7X2LFjFRkZqW7dukmSevfurbCwMD300EOaNWuWUlNT9dxzzykuLk4+Pj6SpMcee0xz587VM888o5EjR2rjxo1asWKF1q5da243Pj5esbGx6ty5s7p27arZs2crMzNTI0aMuK4DAgAA4Cp6JAAAANe4fFHza3nzzTfl4eGhgQMHKisrS9HR0Zo/f74539PTU2vWrNHjjz+uyMhI1axZU7GxsXr++efNMU2bNtXatWs1YcIEvfXWW2rUqJEWLlyo6Ohoc8yQIUN0/PhxTZkyRampqerQoYMSEhIKXMQTAICSKMFNaFGOlMfXjx4JAFAZlMf3WBRfeXr9bEZ5qsZiZX1LQ25pDAAVT25urv773/+qfv36qlOnjrvLQQn9/vvvSk9PV4sWLeTp6ek0z+pbGldE9EgAgCvRI1UO5alHKvUzpAAAqMg8PT0VGBhoXsenRo0astlsbq4KxWUYhs6dO6f09HQFBgYWaLQAAEDJ0CNVbOWxRyKQAgDgCvl3I7v84tKoWAIDA696VzkAAOA6eqSKrzz1SARSAABcwWazqUGDBqpfv75ycnLcXQ5c5OXlVS4+9QMAoLKhR6rYyluPRCAFAEARPD09y9WbNgAAQHlAj4TS4OHuAgAAAAAAAFC1EEgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIFWGfj69Tj+fXufuMgAAAMoVeiQAAEAgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOVSIPX222+rXbt2stvtstvtioyM1Lp168z5Fy5cUFxcnOrUqSM/Pz8NHDhQaWlpTus4fPiwYmJiVKNGDdWvX19PP/20Ll686DRm06ZN6tSpk3x8fNS8eXMtXry4QC3z5s1TaGiofH19FRERoe3bt7uyKwAAAKWGHgkAAMA1LgVSjRo10syZM5WcnKydO3eqV69euvfee7V3715J0oQJE/T5559r5cqV2rx5s44ePaoBAwaYy+fm5iomJkbZ2dnaunWr3n//fS1evFhTpkwxxxw6dEgxMTHq2bOnUlJSNH78eI0ePVrr1683xyxfvlzx8fGaOnWqdu3apfbt2ys6Olrp6enXezwAAABcRo8EAADgGpthGMb1rKB27dp69dVXNWjQINWrV09Lly7VoEGDJEn79+9X69atlZSUpG7dumndunW65557dPToUQUFBUmSFixYoGeffVbHjx+Xt7e3nn32Wa1du1Z79uwxtzF06FCdPn1aCQkJkqSIiAh16dJFc+fOlSTl5eUpJCREY8eO1cSJE4tdu8PhUEBAgDIyMmS326/nMBTq4LLJkqTQwL7mNK8+t5b6dgAAQPGV9ft/PnqkotEjAQBQ/ljVI+Ur8TWkcnNztWzZMmVmZioyMlLJycnKyclRVFSUOaZVq1Zq3LixkpKSJElJSUlq27at2WhJUnR0tBwOh/kJYlJSktM68sfkryM7O1vJyclOYzw8PBQVFWWOAQAAcBd6JAAAgGur5uoCu3fvVmRkpC5cuCA/Pz+tWrVKYWFhSklJkbe3twIDA53GBwUFKTU1VZKUmprq1Gjlz8+fd7UxDodD58+f16lTp5Sbm1vomP3791+19qysLGVlZZnPHQ5H8XccAADgKuiRAAAAis/lM6RatmyplJQUbdu2TY8//rhiY2P1ww8/lEVtpW7GjBkKCAgwHyEhIe4uCQAAVBL0SAAAAMXnciDl7e2t5s2bKzw8XDNmzFD79u311ltvKTg4WNnZ2Tp9+rTT+LS0NAUHB0uSgoODC9xRJv/5tcbY7XZVr15ddevWlaenZ6Fj8tdRlEmTJikjI8N8HDlyxNXdBwAAKBQ9EgAAQPGV+BpS+fLy8pSVlaXw8HB5eXkpMTHRnHfgwAEdPnxYkZGRkqTIyEjt3r3b6U4vGzZskN1uV1hYmDnm8nXkj8lfh7e3t8LDw53G5OXlKTEx0RxTFB8fH/N2zPkPAACAskCPBAAAUDSXriE1adIk9e3bV40bN9aZM2e0dOlSbdq0SevXr1dAQIBGjRql+Ph41a5dW3a7XWPHjlVkZKS6desmSerdu7fCwsL00EMPadasWUpNTdVzzz2nuLg4+fj4SJIee+wxzZ07V88884xGjhypjRs3asWKFVq7dq1ZR3x8vGJjY9W5c2d17dpVs2fPVmZmpkaMGFGKhwYAAKB46JEAAABc41IglZ6eruHDh+vYsWMKCAhQu3bttH79et11112SpDfffFMeHh4aOHCgsrKyFB0drfnz55vLe3p6as2aNXr88ccVGRmpmjVrKjY2Vs8//7w5pmnTplq7dq0mTJigt956S40aNdLChQsVHR1tjhkyZIiOHz+uKVOmKDU1VR06dFBCQkKBi3gCAABYgR4JAADANTbDMAx3F+EuDodDAQEBysjIKJNT0w8umyxJCg3sa07z6nNrqW8HAAAUX1m//1cG9EgAAFQ9VvdI130NKQAAAAAAAMAVBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwlEuB1IwZM9SlSxf5+/urfv366t+/vw4cOOA05sKFC4qLi1OdOnXk5+engQMHKi0tzWnM4cOHFRMToxo1aqh+/fp6+umndfHiRacxmzZtUqdOneTj46PmzZtr8eLFBeqZN2+eQkND5evrq4iICG3fvt2V3QEAACgV9EgAAACucSmQ2rx5s+Li4vTtt99qw4YNysnJUe/evZWZmWmOmTBhgj7//HOtXLlSmzdv1tGjRzVgwABzfm5urmJiYpSdna2tW7fq/fff1+LFizVlyhRzzKFDhxQTE6OePXsqJSVF48eP1+jRo7V+/XpzzPLlyxUfH6+pU6dq165dat++vaKjo5Wenn49xwMAAMBl9EgAAACusRmGYZR04ePHj6t+/fravHmzevTooYyMDNWrV09Lly7VoEGDJEn79+9X69atlZSUpG7dumndunW65557dPToUQUFBUmSFixYoGeffVbHjx+Xt7e3nn32Wa1du1Z79uwxtzV06FCdPn1aCQkJkqSIiAh16dJFc+fOlSTl5eUpJCREY8eO1cSJE4tVv8PhUEBAgDIyMmS320t6GIp0cNlkSVJoYF9zmlefW0t9OwAAoPjK+v1foke6FnokAADKHyt6pMtd1zWkMjIyJEm1a9eWJCUnJysnJ0dRUVHmmFatWqlx48ZKSkqSJCUlJalt27ZmoyVJ0dHRcjgc2rt3rznm8nXkj8lfR3Z2tpKTk53GeHh4KCoqyhwDAADgLvRIAAAAV1etpAvm5eVp/Pjx6t69u9q0aSNJSk1Nlbe3twIDA53GBgUFKTU11RxzeaOVPz9/3tXGOBwOnT9/XqdOnVJubm6hY/bv319kzVlZWcrKyjKfOxwOF/YYAADg2uiRAAAArq3EZ0jFxcVpz549WrZsWWnWU6ZmzJihgIAA8xESEuLukgAAQCVDjwQAAHBtJQqkxowZozVr1uirr75So0aNzOnBwcHKzs7W6dOnncanpaUpODjYHHPlHWXyn19rjN1uV/Xq1VW3bl15enoWOiZ/HYWZNGmSMjIyzMeRI0dc23EAAICroEcCAAAoHpcCKcMwNGbMGK1atUobN25U06ZNneaHh4fLy8tLiYmJ5rQDBw7o8OHDioyMlCRFRkZq9+7dTnd62bBhg+x2u8LCwswxl68jf0z+Ory9vRUeHu40Ji8vT4mJieaYwvj4+Mhutzs9AAAArhc9EgAAgGtcuoZUXFycli5dqk8//VT+/v7m9QwCAgJUvXp1BQQEaNSoUYqPj1ft2rVlt9s1duxYRUZGqlu3bpKk3r17KywsTA899JBmzZql1NRUPffcc4qLi5OPj48k6bHHHtPcuXP1zDPPaOTIkdq4caNWrFihtWvXmrXEx8crNjZWnTt3VteuXTV79mxlZmZqxIgRpXVsAAAAioUeCQAAwDUuBVJvv/22JOmOO+5wmr5o0SI9/PDDkqQ333xTHh4eGjhwoLKyshQdHa358+ebYz09PbVmzRo9/vjjioyMVM2aNRUbG6vnn3/eHNO0aVOtXbtWEyZM0FtvvaVGjRpp4cKFio6ONscMGTJEx48f15QpU5SamqoOHTooISGhwEU8AQAAyho9EgAAgGtshmEY7i7CXRwOhwICApSRkVEmp6YfXDZZkhQa2Nec5tXn1lLfDgAAKL6yfv+vDOiRAACoeqzukUp8lz0AAAAAAACgJAikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCmXA6ktW7aoX79+atiwoWw2m1avXu003zAMTZkyRQ0aNFD16tUVFRWlgwcPOo05efKkhg0bJrvdrsDAQI0aNUpnz551GvOf//xHt912m3x9fRUSEqJZs2YVqGXlypVq1aqVfH191bZtW33xxReu7g4AAECpoEcCAAAoPpcDqczMTLVv317z5s0rdP6sWbM0Z84cLViwQNu2bVPNmjUVHR2tCxcumGOGDRumvXv3asOGDVqzZo22bNmiP/3pT+Z8h8Oh3r17q0mTJkpOTtarr76qadOm6d133zXHbN26VQ888IBGjRql7777Tv3791f//v21Z88eV3cJAADgutEjAQAAFJ/NMAyjxAvbbFq1apX69+8v6dInfw0bNtSf//xnPfXUU5KkjIwMBQUFafHixRo6dKj27dunsLAw7dixQ507d5YkJSQk6O6779avv/6qhg0b6u2339bkyZOVmpoqb29vSdLEiRO1evVq7d+/X5I0ZMgQZWZmas2aNWY93bp1U4cOHbRgwYJi1e9wOBQQEKCMjAzZ7faSHoYiHVw2WZIUGtjXnObV59ZS3w4AACi+sn7/l+iRroUeCQCA8seKHulypXoNqUOHDik1NVVRUVHmtICAAEVERCgpKUmSlJSUpMDAQLPRkqSoqCh5eHho27Zt5pgePXqYjZYkRUdH68CBAzp16pQ55vLt5I/J3w4AAEB5QY8EAADgrFppriw1NVWSFBQU5DQ9KCjInJeamqr69es7F1GtmmrXru00pmnTpgXWkT+vVq1aSk1Nvep2CpOVlaWsrCzzucPhcGX3AAAASoQeCQAAwFmVusvejBkzFBAQYD5CQkLcXRIAAIDb0SMBAACrlWogFRwcLElKS0tzmp6WlmbOCw4OVnp6utP8ixcv6uTJk05jClvH5dsoakz+/MJMmjRJGRkZ5uPIkSOu7iIAAIDL6JEAAACclWog1bRpUwUHBysxMdGc5nA4tG3bNkVGRkqSIiMjdfr0aSUnJ5tjNm7cqLy8PEVERJhjtmzZopycHHPMhg0b1LJlS9WqVcscc/l28sfkb6cwPj4+stvtTg8AAICyRo8EAADgzOVA6uzZs0pJSVFKSoqkSxfpTElJ0eHDh2Wz2TR+/Hi9+OKL+uyzz7R7924NHz5cDRs2NO8y07p1a/Xp00ePPPKItm/frm+++UZjxozR0KFD1bBhQ0nSgw8+KG9vb40aNUp79+7V8uXL9dZbbyk+Pt6sY9y4cUpISNDrr7+u/fv3a9q0adq5c6fGjBlz/UcFAADARfRIAAAALjBc9NVXXxmSCjxiY2MNwzCMvLw8469//asRFBRk+Pj4GHfeeadx4MABp3X8/vvvxgMPPGD4+fkZdrvdGDFihHHmzBmnMd9//71x6623Gj4+PsYNN9xgzJw5s0AtK1asMFq0aGF4e3sbN998s7F27VqX9iUjI8OQZGRkZLh2EIrpv//8i/Hff/7FyF73b/MBAADcq6ze/+mRio8eCQCA8qes3/+vZDMMw3BHEFYeOBwOBQQEKCMjo0xOTT+4bLIkKTSwrznNq8+tpb4dAABQfGX9/l8Z0CMBAFD1WN0jVam77AEAAAAAAMD9CKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJaq5u4CqpqchK+dnnv1udVNlQAAAJQf9EgAAFQtnCEFAAAAAAAAS1X4QGrevHkKDQ2Vr6+vIiIitH37dneXBAAA4Hb0SAAAoDyr0IHU8uXLFR8fr6lTp2rXrl1q3769oqOjlZ6e7u7SAAAA3IYeCQAAlHc2wzAMdxdRUhEREerSpYvmzp0rScrLy1NISIjGjh2riRMnXnN5h8OhgIAAZWRkyG63l3p9B5dNdnoeGti3WMtxzQQAAMpOWb//lwf0SAAAwFVW90gV9qLm2dnZSk5O1qRJk8xpHh4eioqKUlJSkhsrK9rPp9dJunbTdeVFPSUaMAAAUDz0SAAAoCKosIHUiRMnlJubq6CgIKfpQUFB2r9/f6HLZGVlKSsry3yekZEh6VIKWBbOnssqdPqec6sLnd444K6iV/bx+lKoSPK6K7JU1gMAQEWV/75fgU8Svyp6pJKhRwIAVHVW90gVNpAqiRkzZmj69OkFpoeEhLihmsK87u4CAACoMs6cOaOAgAB3l1Eu0CMBAIB8VvVIFTaQqlu3rjw9PZWWluY0PS0tTcHBwYUuM2nSJMXHx5vP8/LydPLkSdWpU0c2m61U63M4HAoJCdGRI0cq7fUpygLHreQ4diXDcSsZjlvJcNxKrjSPnWEYOnPmjBo2bFhK1ZUv9EiVE8et5Dh2JcNxKxmOW8lx7EqmIvdIFTaQ8vb2Vnh4uBITE9W/f39Jl5qnxMREjRkzptBlfHx85OPj4zQtMDCwTOu02+38MZUAx63kOHYlw3ErGY5byXDcSq60jl1lPjOKHqly47iVHMeuZDhuJcNxKzmOXclUxB6pwgZSkhQfH6/Y2Fh17txZXbt21ezZs5WZmakRI0a4uzQAAAC3oUcCAADlXYUOpIYMGaLjx49rypQpSk1NVYcOHZSQkFDgIp4AAABVCT0SAAAo7yp0ICVJY8aMKfL0c3fy8fHR1KlTC5z+jqvjuJUcx65kOG4lw3ErGY5byXHsXEePVLlw3EqOY1cyHLeS4biVHMeuZCrycbMZlfWexwAAAAAAACiXPNxdAAAAAAAAAKoWAikAAAAAAABYikAKAAAAAAAAliKQKiPz5s1TaGiofH19FRERoe3bt7u7pHJty5Yt6tevnxo2bCibzabVq1e7u6QKYcaMGerSpYv8/f1Vv3599e/fXwcOHHB3WRXC22+/rXbt2slut8tutysyMlLr1q1zd1kVysyZM2Wz2TR+/Hh3l1LuTZs2TTabzenRqlUrd5dVIfz222/64x//qDp16qh69epq27atdu7c6e6ycB3okVxHn+Q6eqSSo0cqHfRJxUOPVHKVoUcikCoDy5cvV3x8vKZOnapdu3apffv2io6OVnp6urtLK7cyMzPVvn17zZs3z92lVCibN29WXFycvv32W23YsEE5OTnq3bu3MjMz3V1audeoUSPNnDlTycnJ2rlzp3r16qV7771Xe/fudXdpFcKOHTv0zjvvqF27du4upcK4+eabdezYMfPx9ddfu7ukcu/UqVPq3r27vLy8tG7dOv3www96/fXXVatWLXeXhhKiRyoZ+iTX0SOVHD3S9aNPcg09kusqS4/EXfbKQEREhLp06aK5c+dKkvLy8hQSEqKxY8dq4sSJbq6u/LPZbFq1apX69+/v7lIqnOPHj6t+/fravHmzevTo4e5yKpzatWvr1Vdf1ahRo9xdSrl29uxZderUSfPnz9eLL76oDh06aPbs2e4uq1ybNm2aVq9erZSUFHeXUqFMnDhR33zzjf7973+7uxSUEnqk60efVDL0SNeHHqn46JNcQ49UMpWlR+IMqVKWnZ2t5ORkRUVFmdM8PDwUFRWlpKQkN1aGqiAjI0PSpaYBxZebm6tly5YpMzNTkZGR7i6n3IuLi1NMTIzTv3O4toMHD6phw4Zq1qyZhg0bpsOHD7u7pHLvs88+U+fOnXX//ferfv366tixo9577z13l4USokeCO9EjlQw9kuvok1xHj+S6ytIjEUiVshMnTig3N1dBQUFO04OCgpSamuqmqlAV5OXlafz48erevbvatGnj7nIqhN27d8vPz08+Pj567LHHtGrVKoWFhbm7rHJt2bJl2rVrl2bMmOHuUiqUiIgILV68WAkJCXr77bd16NAh3XbbbTpz5oy7SyvX/ve//+ntt9/WTTfdpPXr1+vxxx/Xk08+qffff9/dpaEE6JHgLvRIrqNHKhn6JNfRI5VMZemRqrm7AAClIy4uTnv27OE71y5o2bKlUlJSlJGRoY8++kixsbHavHkzDVcRjhw5onHjxmnDhg3y9fV1dzkVSt++fc2f27Vrp4iICDVp0kQrVqzg6w9XkZeXp86dO+vll1+WJHXs2FF79uzRggULFBsb6+bqAFQU9Eiuo0dyHX1SydAjlUxl6ZE4Q6qU1a1bV56enkpLS3OanpaWpuDgYDdVhcpuzJgxWrNmjb766is1atTI3eVUGN7e3mrevLnCw8M1Y8YMtW/fXm+99Za7yyq3kpOTlZ6erk6dOqlatWqqVq2aNm/erDlz5qhatWrKzc11d4kVRmBgoFq0aKEff/zR3aWUaw0aNCjwn5/WrVtzKn8FRY8Ed6BHKhl6JNfRJ5UOeqTiqSw9EoFUKfP29lZ4eLgSExPNaXl5eUpMTOR71yh1hmFozJgxWrVqlTZu3KimTZu6u6QKLS8vT1lZWe4uo9y68847tXv3bqWkpJiPzp07a9iwYUpJSZGnp6e7S6wwzp49q59++kkNGjRwdynlWvfu3Qvcpv2///2vmjRp4qaKcD3okWAleqTSRY90bfRJpYMeqXgqS4/EV/bKQHx8vGJjY9W5c2d17dpVs2fPVmZmpkaMGOHu0sqts2fPOqXghw4dUkpKimrXrq3GjRu7sbLyLS4uTkuXLtWnn34qf39/8xocAQEBql69upurK98mTZqkvn37qnHjxjpz5oyWLl2qTZs2af369e4urdzy9/cvcO2NmjVrqk6dOlyT4xqeeuop9evXT02aNNHRo0c1depUeXp66oEHHnB3aeXahAkTdMstt+jll1/W4MGDtX37dr377rt699133V0aSogeqWTok1xHj1Ry9EglQ59UMvRIJVNpeiQDZeJvf/ub0bhxY8Pb29vo2rWr8e2337q7pHLtq6++MiQVeMTGxrq7tHKtsGMmyVi0aJG7Syv3Ro4caTRp0sTw9vY26tWrZ9x5553Gl19+6e6yKpzbb7/dGDdunLvLKPeGDBliNGjQwPD29jZuuOEGY8iQIcaPP/7o7rIqhM8//9xo06aN4ePjY7Rq1cp499133V0SrhM9kuvok1xHj1Ry9Eilhz7p2uiRSq4y9Eg2wzAMKwMwAAAAAAAAVG1cQwoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAJQrW7ZsUb9+/dSwYUPZbDatXr3a5XWsX79e3bp1k7+/v+rVq6eBAwfq559/LvVaAQAArFLZeiQCKQAAUK5kZmaqffv2mjdvXomWP3TokO6991716tVLKSkpWr9+vU6cOKEBAwaUcqUAAADWqWw9ks0wDMMtWwYAALgGm82mVatWqX///ua0rKwsTZ48Wf/85z91+vRptWnTRq+88oruuOMOSdJHH32kBx54QFlZWfLwuPTZ2+eff657771XWVlZ8vLycsOeAAAAlJ7K0CNxhhQAAKhQxowZo6SkJC1btkz/+c9/dP/996tPnz46ePCgJCk8PFweHh5atGiRcnNzlZGRoQ8++EBRUVGEUQAAoNKqaD0SZ0gBAIBy68pP/w4fPqxmzZrp8OHDatiwoTkuKipKXbt21csvvyxJ2rx5swYPHqzff/9dubm5ioyM1BdffKHAwEA37AUAAEDpqgw9EmdIAQCACmP37t3Kzc1VixYt5OfnZz42b96sn376SZKUmpqqRx55RLGxsdqxY4c2b94sb29vDRo0SHwOBwAAKqOK2CNVs3yLAAAAJXT27Fl5enoqOTlZnp6eTvP8/PwkSfPmzVNAQIBmzZplzvvwww8VEhKibdu2qVu3bpbWDAAAUNYqYo9EIAUAACqMjh07Kjc3V+np6brtttsKHXPu3DnzQp358huzvLy8Mq8RAADAahWxR+IrewAAoFw5e/asUlJSlJKSIunSLYpTUlJ0+PBhtWjRQsOGDdPw4cP1ySef6NChQ9q+fbtmzJihtWvXSpJiYmK0Y8cOPf/88zp48KB27dqlESNGqEmTJurYsaMb9wwAAKDkKluPxEXNAQBAubJp0yb17NmzwPTY2FgtXrxYOTk5evHFF/WPf/xDv/32m+rWratu3bpp+vTpatu2rSRp2bJlmjVrlv773/+qRo0aioyM1CuvvKJWrVpZvTsAAAClorL1SARSAAAAAAAAsBRf2QMAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAmKZNmyabzebuMkrF4sWLZbPZ9PPPP7u7FJSBFStWqHbt2jp79uw1x9psNk2bNs1p2o4dO3TLLbeoZs2astlsSklJKfa2c3JyFBISovnz57tYNQCgoqJHQkVBj4SKhEAKQKnYunWrpk2bptOnT7u7lCLNnz9fixcvLtNt2Gw22Ww2jR49utD5kydPNsecOHHiure3fft2PfHEEwoPD5eXl1elaZavJjc3V1OnTtXYsWPl5+fn8vI5OTm6//77dfLkSb355pv64IMP1KRJEx07dkwTJ05Uz5495e/vL5vNpk2bNhVY3svLS/Hx8XrppZd04cKFUtgjAEBlRo90CT1S2SurHikxMVEjR45UixYtVKNGDTVr1kyjR4/WsWPHnJanR4LLDAD4/+Xk5Bjnz58v0bKvvvqqIck4dOhQ6RZVQhcvXjTOnz9v5OXlmdNuvvlm4/bbby/T7UoyfH19jcDAQCMrK6vA/KZNmxq+vr6GJOP48ePXvb2pU6caXl5eRnh4uNGiRQujKvyzvmrVKsNmsxm//vprscZLMqZOnWo+37dvnyHJeO+995zGffXVV4Yk46abbjIiIyMNScZXX31V6DpPnTpleHt7G//v//2/ku4GAKACoUe6fvRIZa+seqTw8HCjadOmxjPPPGO89957xqRJkwx/f38jKCjIOHbsmNNYeiS4gjOkUGXk5eWVu6Q+MzOzzLdhGIbOnz9frLHVqlWTr69vGVdkDU9PT/n6+rrl07A+ffrI4XBo3bp1TtO3bt2qQ4cOKSYmpljrsdls1/y08vHHH1dGRoZ27typu+66q6QlVyiLFi1S9+7ddcMNN5Ro+fT0dElSYGCg0/Tw8HD9/vvv+u9//6v4+PirriMwMFC9e/cu80+TAcAK9EjXRo9UOuiRylZZ9UhvvPGGfvzxR73yyisaPXq0Xn75Za1Zs0ZpaWmaO3eu01h6JLiCQAoVSv739/fv36/BgwfLbrerTp06GjduXIFGymazacyYMVqyZIluvvlm+fj4KCEhQZL022+/aeTIkQoKCpKPj49uvvlm/f3vfy+wvQsXLmjatGlq0aKFfH191aBBAw0YMEA//fSTJGnTpk2Ffq3n559/LvBG+fDDD8vPz08//fST7r77bvn7+2vYsGGSpIMHD2rgwIEKDg6Wr6+vGjVqpKFDhyojI8Nc/uLFi3rhhRd04403ysfHR6GhofrLX/6irKwsp22Hhobqnnvu0fr169W5c2dVr15d77zzjkvHt7DjuHr1arVp08Y8XvnHMn+5p59+WpLUtGlT83Try69N8OGHHyo8PFzVq1dX7dq1NXToUB05csRpW3fccYfatGmjH374QT179lSNGjV0ww03aNasWQVq/dvf/qabb75ZNWrUUK1atdS5c2ctXbrUnH/l9RFCQ0O1d+9ebd682azvjjvu0P/+9z/ZbDa9+eabBbaxdetW2Ww2/fOf/yzW8ct3ww03qEePHk71SNKSJUvUtm1btWnTxqX1XU1QUJCqV69eKuvK/93ZtGmT+bvTtm1b8/f7k08+Udu2beXr66vw8HB99913Tsv/5z//0cMPP6xmzZrJ19dXwcHBGjlypH7//XdzzPnz59WqVSu1atXK6T8BJ0+eVIMGDXTLLbcoNze3yBovXLighIQERUVFFZiXlZWlCRMmqF69evL399cf/vAH/frrr05jHn74Yd1+++2SpPvvv9/8PZAkf39/1a5du9jH66677tLXX3+tkydPFnsZACgr9Ej0SPnokS6hR/o/19sj9ejRQx4eztFBjx49VLt2be3bt6/A9uiRUFzV3F0AUBKDBw9WaGioZsyYoW+//VZz5szRqVOn9I9//MNp3MaNG7VixQqNGTNGdevWVWhoqNLS0tStWzeziahXr57WrVunUaNGyeFwaPz48ZIufQf7nnvuUWJiooYOHapx48bpzJkz2rBhg/bs2aMbb7zR5bovXryo6Oho3XrrrXrttddUo0YNZWdnKzo6WllZWRo7dqyCg4P122+/ac2aNTp9+rQCAgIkSaNHj9b777+vQYMG6c9//rO2bdumGTNmaN++fVq1apXTdg4cOKAHHnhAjz76qB555BG1bNmyZAf6//f111/rk08+0RNPPCF/f3/NmTNHAwcO1OHDh1WnTh0NGDBA//3vf/XPf/5Tb775purWrStJqlevniTppZde0l//+lcNHjxYo0eP1vHjx/W3v/1NPXr00Hfffef0KcypU6fUp08fDRgwQIMHD9ZHH32kZ599Vm3btlXfvn0lSe+9956efPJJDRo0yGy0//Of/2jbtm168MEHC92H2bNnm9+nnzx5sqRLjUqzZs3UvXt3LVmyRBMmTHBaZsmSJfL399e9997r8jF78MEHNW7cOJ09e1Z+fn66ePGiVq5cqfj4+HL3KfTlfvzxRz344IN69NFH9cc//lGvvfaa+vXrpwULFugvf/mLnnjiCUnSjBkzNHjwYB04cMBsUDZs2KD//e9/GjFihIKDg7V37169++672rt3r7799lvZbDZVr15d77//vrp3767JkyfrjTfekCTFxcUpIyNDixcvlqenZ5H1JScnKzs7W506dSowb/To0frwww/14IMP6pZbbtHGjRsLfNL66KOP6oYbbtDLL7+sJ598Ul26dFFQUFCJjlV4eLgMw9DWrVt1zz33lGgdAFDa6JHokeiRygY9krOzZ8/q7Nmz5u/05eiRUGzu/cYg4JqpU6cakow//OEPTtOfeOIJQ5Lx/fffm9MkGR4eHsbevXudxo4aNcpo0KCBceLECafpQ4cONQICAoxz584ZhmEYf//73w1JxhtvvFGgjvzv3Odfc+bK68wcOnTIkGQsWrTInBYbG2tIMiZOnOg09rvvvjMkGStXrixyv1NSUgxJxujRo52mP/XUU4YkY+PGjea0Jk2aGJKMhISEItdXlPzjezlJhre3t/Hjjz+a077//ntDkvG3v/3NnFbU9RF+/vlnw9PT03jppZecpu/evduoVq2a0/Tbb7/dkGT84x//MKdlZWUZwcHBxsCBA81p9957r3HzzTdfdV8WLVpUoJ6iro/wzjvvGJKMffv2mdOys7ONunXrGrGxsVfdzpUkGXFxccbJkycNb29v44MPPjAMwzDWrl1r2Gw24+effzaP87Wuj3Dl79C1xMXFXdf1EfJ/d7Zu3WpOW79+vSHJqF69uvHLL7+Y0/OP2eW/+/l/O5f75z//aUgytmzZ4jR90qRJhoeHh7FlyxZj5cqVhiRj9uzZ16xx4cKFhiRj9+7dTtPz/0aeeOIJp+kPPvhggesj5P/dXu1vLr+moq4hZRiGcfToUUOS8corr1yzbgAoa/RI9EiGQY9UFHqk0uuR8r3wwguGJCMxMbHAPHokFBdf2UOFFBcX5/R87NixkqQvvvjCafrtt9+usLAw87lhGPr444/Vr18/GYahEydOmI/o6GhlZGRo165dkqSPP/5YdevWNdd9uev5zv3jjz/u9Dz/073169fr3LlzhS6Tv19XXtfmz3/+syRp7dq1TtObNm2q6OjoEtd4paioKKdPO9u1aye73a7//e9/11z2k08+UV5engYPHux0vIODg3XTTTfpq6++chrv5+enP/7xj+Zzb29vde3a1WlbgYGB+vXXX7Vjx45S2LtLnyb7+vpqyZIl5rT169frxIkTTrW4olatWurTp495KvvSpUt1yy23qEmTJoWOP3funNPxyb+7zNmzZ52mnTp1qkT1FFdYWJgiIyPN5xEREZKkXr16qXHjxgWmX/66XH5a/IULF3TixAl169ZNksy/q3zTpk3TzTffrNjYWD3xxBO6/fbb9eSTT16zvvxT22vVquU0Pf9v5Mp15H+aXxbyayiNOwEBQGmhR7qEHokeqbTRI/2fLVu2aPr06Ro8eLB69epVYD49EoqLQAoV0k033eT0/MYbb5SHh4fT9/GlS03H5Y4fP67Tp0/r3XffVb169ZweI0aMkPR/F/P76aef1LJlS1WrVnrfbK1WrZoaNWpUoMb4+HgtXLhQdevWVXR0tObNm+d0bYRffvlFHh4eat68udOywcHBCgwM1C+//HLV/b5el7/J5qtVq1ax3vgPHjwowzB00003FTjm+/btM493vkaNGhVoZq/c1rPPPis/Pz917dpVN910k+Li4vTNN9+UcO8uNW/9+vVzup7BkiVLdMMNNxT6JltcDz74oDZs2KDDhw9r9erVRZ4qL0mzZs0qcHykS/+RuHxax44dS1xPcVz5Wuf/ZyAkJKTQ6Ze/LidPntS4cePMazbUq1fP/F28/PdZutRE//3vf9ehQ4d05swZLVq0yKX/xBiG4fQ8/2/kyq+JXO9XMYpTQ1W4jTSAioMe6RJ6JHqk0kaPdMn+/ft13333qU2bNlq4cOFVa6BHwrVwDSlUCkX9Y3flhQzz8vIkSX/84x8VGxtb6DLt2rW77u0WdcFBHx+fAhcElKTXX39dDz/8sD799FN9+eWXevLJJ81rP1zenBX3H/XSuoBjvqK+r37lG15h8vLyZLPZtG7dukLX4+fn5/K2WrdurQMHDmjNmjVKSEjQxx9/rPnz52vKlCmaPn36NWsqzPDhw7Vy5Upt3bpVbdu21WeffaYnnnii0NeruP7whz/Ix8dHsbGxysrK0uDBg6+6/VtvvdVp2l133aWnn35avXv3NqeV9mt7paKOf3Fel8GDB2vr1q16+umn1aFDB/n5+SkvL099+vQx//Yut379ekmXPik8ePBgsf6TUKdOHUmXmrwr/+NitfxGs7BrJwBAeUGP5IweyXX0SJfQI0lHjhxR7969FRAQoC+++EL+/v6FjqNHQnERSKFCuvIf5h9//FF5eXkKDQ296nL5d5bIzc0t9A4Ul7vxxhu1bds25eTkyMvLq9Ax+aejnj592mn6lZ/GFUfbtm3Vtm1bPffcc9q6dau6d++uBQsW6MUXX1STJk2Ul5engwcPqnXr1uYyaWlpOn36dJGnOFupqEbwxhtvlGEYatq0qVq0aFFq26tZs6aGDBmiIUOGKDs7WwMGDNBLL72kSZMmFXlb5qs1q3369FG9evW0ZMkSRURE6Ny5c3rooYeuq8bq1aurf//++vDDD9W3b9+rvik3a9ZMzZo1KzA9LCzsmr+r5cGpU6eUmJio6dOna8qUKeb0gwcPFjr+P//5j55//nmNGDFCKSkpGj16tHbv3m1+qliUVq1aSZIOHTqktm3bmtPz/0byP7XPd+DAgevZras6dOiQJDn9TQKAu9EjXUKPRI9UXlSWHun3339X7969lZWVpcTERDVo0KDIsfRIKC6+socKad68eU7P//a3v0mSeYeRonh6emrgwIH6+OOPtWfPngLzjx8/bv48cOBAnThxQnPnzi0wLv8TjyZNmsjT01Nbtmxxmj9//vzi7Ygkh8OhixcvOk1r27atPDw8zNsV33333ZIu3QXlcvl337jyLhnuULNmTUkFG88BAwbI09NT06dPL/BpoWEYTre7La4rl/H29lZYWJgMw1BOTs5Va7yyvnzVqlXTAw88oBUrVmjx4sVq27atS58EF+Wpp57S1KlT9de//vW611We5X86eOVrfOXvrCTl5OTo4YcfVsOGDfXWW29p8eLFSktLK3AHn8KEh4fL29tbO3fudJqe/7c/Z86ca26/tCQnJ8tmszldTwIA3I0e6RJ6pEvokdyvMvRImZmZuvvuu/Xbb7/piy++KPDV4CvRI6G4OEMKFdKhQ4f0hz/8QX369FFSUpJ5G9P27dtfc9mZM2fqq6++UkREhB555BGFhYXp5MmT2rVrl/71r3/p5MmTki6dHvyPf/xD8fHx2r59u2677TZlZmbqX//6l5544gnde++9CggI0P3336+//e1vstlsuvHGG7VmzZoC3/m/mo0bN2rMmDG6//771aJFC128eFEffPCB2RhKUvv27RUbG6t3331Xp0+f1u23367t27fr/fffV//+/dWzZ8+SHchSFB4eLkmaPHmyhg4dKi8vL/Xr10833nijXnzxRU2aNEk///yz+vfvL39/fx06dEirVq3Sn/70Jz311FMubat3794KDg5W9+7dFRQUpH379mnu3LmKiYkp8tTh/Brffvttvfjii2revLnq16/vdP2D4cOHa86cOfrqq6/0yiuvlOxAXKF9+/bF+r0sqV9++UUffPCBJJkNyIsvvijp0n8GrvcTzOKy2+3q0aOHZs2apZycHN1www368ssvzU/ILvfiiy8qJSVFiYmJ8vf3V7t27TRlyhQ999xzGjRokPmfi8L4+vqqd+/e+te//qXnn3/enN6hQwc98MADmj9/vjIyMnTLLbcoMTFRP/74o0v7kX/s9u7dK0n64IMP9PXXX0uSnnvuOaexGzZsUPfu3c1T5AGgPKBHokeiR7qEHumS0uiRhg0bpu3bt2vkyJHat2+f9u3bZ87z8/NT//79ncbTI6HYrLmZH1A68m8F+8MPPxiDBg0y/P39jVq1ahljxowxzp8/7zRW//+tZQuTlpZmxMXFGSEhIYaXl5cRHBxs3Hnnnca7777rNO7cuXPG5MmTjaZNm5rjBg0aZPz000/mmOPHjxsDBw40atSoYdSqVct49NFHjT179hR6S+OaNWsWqOV///ufMXLkSOPGG280fH19jdq1axs9e/Y0/vWvfzmNy8nJMaZPn27WEhISYkyaNMm4cOGC07gmTZoYMTExxTqeVyrqlsaFHccmTZoUuN3vCy+8YNxwww2Gh4dHgdsJf/zxx8att95q1KxZ06hZs6bRqlUrIy4uzjhw4IA55vbbby/0VsWxsbFGkyZNzOfvvPOO0aNHD6NOnTqGj4+PceONNxpPP/20kZGRYY4p7JbGqampRkxMjOHv729IKvT2xjfffLPh4eFh/Prrr0Ucpau72u9dvtK8pXH+7XkLexS2f1dT1O9OYfuUf9vuV1991Zz266+/Gvfdd58RGBhoBAQEGPfff79529/8WwonJycb1apVM8aOHeu0vosXLxpdunQxGjZsaJw6deqqdX7yySeGzWYzDh8+7DT9/PnzxpNPPmnUqVPHqFmzptGvXz/jyJEjLt3SuKhjeeXfxenTpw1vb29j4cKFV60VAKxCj0SPZBj0SJejR/o/19sjNWnSpMhjefnvn2HQI8E1NsMoxhX3gHJi2rRpmj59uo4fP85F8lAmOnbsqNq1aysxMdHdpaAIubm5CgsL0+DBg/XCCy+4pYbZs2dr1qxZ+umnn8r8IqoAUBz0SChr9EjlHz0SKhquIQUA/7+dO3cqJSVFw4cPd3cpuApPT089//zzmjdvns6ePWv59nNycvTGG2/oueeeo9ECAFQJ9EgVAz0SKhquIQVUARkZGTp//vxVxwQHB1tUTfmzZ88eJScn6/XXX1eDBg00ZMgQp/m5ublOF3MtjJ+fX4HbM5cXx48fL/I229KlC57Wrl3bwoquX/7dg9zBy8tLhw8fdsu2AQClix7p6uiR6JFcQY8EVxFIAVXAuHHj9P777191TFX+9u5HH32k559/Xi1bttQ///nPArdEPnLkiNMttAszdepUTZs2rQyrLLkuXbpc9Tbbt99+uzZt2mRdQQAAlBP0SFdHj0SPBJQlriEFVAE//PCDjh49etUxUVFRFlVT8Vy4cMG801pRmjVrpmbNmllUkWu++eabq376W6tWLfMOQAAAVCX0SNeHHgnA9SCQAgAAAAAAgKW4qDkAAAAAAAAsVaWvIZWXl6ejR4/K399fNpvN3eUAAAALGIahM2fOqGHDhvLw4LO5wtAjAQBQ9VjdI1XpQOro0aMKCQlxdxkAAMANjhw5okaNGrm7jHKJHgkAgKrLqh6pSgdS/v7+ki4dbLvd7uZqAACAFRwOh0JCQsw+AAXRIwEAUPVY3SNV6UAq/xR0u91OswUAQBXDV9GKRo8EAEDVZVWPxIUTAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWqtLXkAIA4Gpyc3OVk5Pj7jLgIi8vL3l6erq7DAAAKi16pIqpvPVIBFIAAFzBMAylpqbq9OnT7i4FJRQYGKjg4GAuXA4AQCmiR6r4ylOPRCAFAMAV8hut+vXrq0aNGuXiDRvFYxiGzp07p/T0dElSgwYN3FwRAACVBz1SxVUeeyQCKQAALpObm2s2WnXq1HF3OSiB6tWrS5LS09NVv379cnVqOgAAFRU9UsVX3nokLmoOAMBl8q+HUKNGDTdXguuR//pxfQsAAEoHPVLlUJ56JAIpAAAKwSnoFRuvHwAAZYP32IqtPL1+BFIAAAAAAACwFIEUAAAVnM1mu+pj2rRpbq1t9erV17WOd999V3fccYfsdrtsNht39gEAAMVWmfukkydPauzYsWrZsqWqV6+uxo0b68knn1RGRkbpFVmGuKg5AADFlJPwtWXb8upza7HHHjt2zPx5+fLlmjJlig4cOGBO8/Pzc2nb2dnZ8vb2dmmZsnTu3Dn16dNHffr00aRJk9xdDgAAuIKVPZJEn5Tv6NGjOnr0qF577TWFhYXpl19+0WOPPaajR4/qo48+cnd518QZUmUoJ+HrAg8AAEpbcHCw+QgICJDNZjOfZ2ZmatiwYQoKCpKfn5+6dOmif/3rX07Lh4aG6oUXXtDw4cNlt9v1pz/9SZL03nvvKSQkRDVq1NB9992nN954Q4GBgU7Lfvrpp+rUqZN8fX3VrFkzTZ8+XRcvXjTXK0n33XefbDab+fz7779Xz5495e/vL7vdrvDwcO3cubPI/Rs/frwmTpyobt26lc4Bg9vRIwEArFKZ+6Q2bdro448/Vr9+/XTjjTeqV69eeumll/T555+b2ynPCKQAAKjEzp49q7vvvluJiYn67rvv1KdPH/Xr10+HDx92Gvfaa6+pffv2+u677/TXv/5V33zzjR577DGNGzdOKSkpuuuuu/TSSy85LfPvf/9bw4cP17hx4/TDDz/onXfe0eLFi81xO3bskCQtWrRIx44dM58PGzZMjRo10o4dO5ScnKyJEyfKy8vLgqMBAADwfypjn5SRkSG73a5q1cr/F+LKf4UAAKDE2rdvr/bt25vPX3jhBa1atUqfffaZxowZY07v1auX/vznP5vPJ0+erL59++qpp56SJLVo0UJbt27VmjVrzDHTp0/XxIkTFRsbK0lq1qyZXnjhBT3zzDOaOnWq6tWrJ0kKDAxUcHCwudzhw4f19NNPq1WrVpKkm266qQz2HAAA4OoqW5904sQJvfDCC+ZZXOUdZ0gBAFCJnT17Vk899ZRat26twMBA+fn5ad++fQU++evcubPT8wMHDqhr165O0658/v333+v555+Xn5+f+XjkkUd07NgxnTt3rsia4uPjNXr0aEVFRWnmzJn66aefrnMvAQAAXFeZ+iSHw6GYmBiFhYW59ULtriCQAgCgEnvqqae0atUqvfzyy/r3v/+tlJQUtW3bVtnZ2U7jatas6fK6z549q+nTpyslJcV87N69WwcPHpSvr2+Ry02bNk179+5VTEyMNm7cqLCwMK1atcrl7QMAAFyPytInnTlzRn369JG/v79WrVpVYS6FwFf2AACoxL755hs9/PDDuu+++yRdao5+/vnnay7XsmVL81oG+a583qlTJx04cEDNmzcvcj1eXl7Kzc0tML1FixZq0aKFJkyYoAceeECLFi0yawQAALBCZeiTHA6HoqOj5ePjo88+++yqYVd5QyAFAEAldtNNN+mTTz5Rv379ZLPZ9Ne//lV5eXnXXG7s2LHq0aOH3njjDfXr108bN27UunXrZLPZzDFTpkzRPffco8aNG2vQoEHy8PDQ999/rz179ujFF1+UdOkOMomJierevbt8fHzk6+urp59+WoMGDVLTpk3166+/aseOHRo4cGCRtaSmpio1NVU//vijJGn37t3y9/dX48aNVbt27es8QgAAoKqq6H2Sw+FQ7969de7cOX344YdyOBxyOBySpHr16snT07MUjlLZ4St7AABUYm+88YZq1aqlW265Rf369VN0dLQ6dep0zeW6d++uBQsW6I033lD79u2VkJCgCRMmOH3qFh0drTVr1ujLL79Uly5d1K1bN7355ptq0qSJOeb111/Xhg0bFBISoo4dO8rT01O///67hg8frhYtWmjw4MHq27evpk+fXmQtCxYsUMeOHfXII49Iknr06KGOHTvqs88+u44jAwAAqrqK3ift2rVL27Zt0+7du9W8eXM1aNDAfBw5cuT6D1AZsxmGYbi7CHdxOBwKCAgwb4tY2nISvi4wzavPraW+HQBA6blw4YIOHTqkpk2bVqhTnq3wyCOPaP/+/fr3v//t7lKu6WqvY1m//1cG9EgAgCvRI11dRemTylOPxFf2AABAoV577TXdddddqlmzptatW6f3339f8+fPd3dZAAAAbkefdP0IpAAAQKG2b9+uWbNm6cyZM2rWrJnmzJmj0aNHu7ssAAAAt6NPun4EUgAAoFArVqxwdwkAAADlEn3S9eOi5gAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQBQCTz88MOy2Wyy2Wzy8vJSUFCQ7rrrLv39739XXl6eu8u7Lnv37tXAgQMVGhoqm82m2bNnu7skAABQgVTmPum9997Tbbfdplq1aqlWrVqKiorS9u3b3V1WsVRzdwEAAFQUP+18x7Jt3dj5UZeX6dOnjxYtWqTc3FylpaUpISFB48aN00cffaTPPvtM1apVzLf9c+fOqVmzZrr//vs1YcIEd5cDAACuYGWPJNEnXW7Tpk164IEHdMstt8jX11evvPKKevfurb179+qGG25wd3lXxRlSAABUEj4+PgoODtYNN9ygTp066S9/+Ys+/fRTrVu3TosXLzbHnT59WqNHj1a9evVkt9vVq1cvff/9907r+vzzz9WlSxf5+vqqbt26uu+++8x5p06d0vDhw1WrVi3VqFFDffv21cGDByVJmZmZstvt+uijj5zWt3r1atWsWVNnzpxRdna2xowZowYNGsjX11dNmjTRjBkzityvLl266NVXX9XQoUPl4+NTCkcKAABUNZW1T1qyZImeeOIJdejQQa1atdLChQuVl5enxMTEUjhqZYtACgCASqxXr15q3769PvnkE3Pa/fffr/T0dK1bt07Jycnq1KmT7rzzTp08eVKStHbtWt133326++679d133ykxMVFdu3Y1l3/44Ye1c+dOffbZZ0pKSpJhGLr77ruVk5OjmjVraujQoVq0aJFTHYsWLdKgQYPk7++vOXPm6LPPPtOKFSt04MABLVmyRKGhoZYcDwAAgHyVsU86d+6ccnJyVLt27es7OBa4rkBq5syZstlsGj9+vDntwoULiouLU506deTn56eBAwcqLS3NabnDhw8rJiZGNWrUUP369fX000/r4sWLTmM2bdqkTp06ycfHR82bN3dKLPPNmzdPoaGh8vX1VURERIX5niQAAFZq1aqVfv75Z0nS119/re3bt2vlypXq3LmzbrrpJr322msKDAw0P6176aWXNHToUE2fPl2tW7dW+/btNWnSJEnSwYMH9dlnn2nhwoW67bbb1L59ey1ZskS//fabVq9eLUkaPXq01q9fr2PHjkmS0tPT9cUXX2jkyJGSLvUBN910k2699VY1adJEt956qx544AFrD0oZo0cCAKBiqGx90rPPPquGDRsqKiqqlI5Q2SlxILVjxw698847ateundP0CRMm6PPPP9fKlSu1efNmHT16VAMGDDDn5+bmKiYmRtnZ2dq6davef/99LV68WFOmTDHHHDp0SDExMerZs6dSUlI0fvx480XLt3z5csXHx2vq1KnatWuX2rdvr+joaKWnp5d0lwAAqJQMw5DNZpMkff/99zp79qwZiuQ/Dh06pJ9++kmSlJKSojvvvLPQde3bt0/VqlVTRESEOa1OnTpq2bKl9u3bJ0nq2rWrbr75Zr3//vuSpA8//FBNmjRRjx49JF365DAlJUUtW7bUk08+qS+//LLM9t0d6JEAAKg4KlOfNHPmTC1btkyrVq2Sr6+v6wfDYiUKpM6ePathw4bpvffeU61atczpGRkZ+n//7//pjTfeUK9evRQeHq5FixZp69at+vbbbyVJX375pX744Qd9+OGH6tChg/r27asXXnhB8+bNU3Z2tiRpwYIFatq0qV5//XW1bt1aY8aM0aBBg/Tmm2+a23rjjTf0yCOPaMSIEQoLC9OCBQtUo0YN/f3vf7+e4wEAQKWzb98+NW3aVNKl9/AGDRooJSXF6XHgwAE9/fTTkqTq1atf9zZHjx5tnrmzaNEijRgxwmz2OnXqpEOHDumFF17Q+fPnNXjwYA0aNOi6t1ke0CMBAFCxVJY+6bXXXtPMmTP15ZdfFvhQrLwqUSAVFxenmJiYAqeAJScnKycnx2l6q1at1LhxYyUlJUmSkpKS1LZtWwUFBZljoqOj5XA4tHfvXnPMleuOjo4215Gdna3k5GSnMR4eHoqKijLHAAAAaePGjdq9e7cGDhwo6VKTk5qaqmrVqql58+ZOj7p160qS2rVrV+SFMFu3bq2LFy9q27Zt5rTff/9dBw4cUFhYmDntj3/8o3755RfNmTNHP/zwg2JjY53WY7fbNWTIEL333ntavny5Pv74Y/PaDBUZPRIAABVHZemTZs2apRdeeEEJCQnq3LlziY+H1Vy+r+GyZcu0a9cu7dixo8C81NRUeXt7KzAw0Gl6UFCQUlNTzTGXN1r58/PnXW2Mw+HQ+fPnderUKeXm5hY6Zv/+/UXWnpWVpaysLPO5w+G4xt4CAFBxZGVlKTU11el2xjNmzNA999yj4cOHS5KioqIUGRmp/v37a9asWWrRooWOHj1qXqCzc+fOmjp1qu68807deOONGjp0qC5evKgvvvhCzz77rG666Sbde++9euSRR/TOO+/I399fEydO1A033KB7773XrKVWrVoaMGCAnn76afXu3VuNGjUy573xxhtq0KCBOnbsKA8PD61cuVLBwcEF+od82dnZ+uGHH8yff/vtN6WkpMjPz0/NmzcvuwPqInokAADKr8raJ73yyiuaMmWKli5dqtDQULNnyP+6YXnm0hlSR44c0bhx47RkyZIK8X3EK82YMUMBAQHmIyQkxN0lAQBQahISEtSgQQOFhoaqT58++uqrrzRnzhx9+umn8vT0lCTZbDZ98cUX6tGjh0aMGKEWLVpo6NCh+uWXX8wQ44477tDKlSv12WefqUOHDurVq5fTRbEXLVqk8PBw3XPPPYqMjJRhGPriiy/k5eXlVM+oUaOUnZ1tXqQzn7+/v2bNmqXOnTurS5cu+vnnn/XFF1/Iw6PwtuTo0aPq2LGjOnbsqGPHjum1115Tx44dNXr06NI8fNeFHgkAgPKtsvZJb7/9trKzszVo0CA1aNDAfLz22mulefjKhEtnSCUnJys9PV2dOnUyp+Xm5mrLli2aO3eu1q9fr+zsbJ0+fdopvUtLS1NwcLAkKTg4uMCdXvLvMHP5mCvvOpOWlia73a7q1avL09NTnp6ehY7JX0dhJk2apPj4ePO5w+Gg4QIAFNuNnR91dwlFWrx4caF3WytM/i2F58yZU+SYAQMGOF1w+3K1atXSP/7xj2tu57ffflOdOnWcPhGUpEceeUSPPPJIsWqVpNDQUBmGUezx7kCPBACoyspzjyRV7j4p/w6BFZFLZ0jdeeed2r17t9PFvTp37qxhw4aZP3t5eTl9n/LAgQM6fPiwIiMjJUmRkZHavXu3051eNmzYILvdbn6nMjIyssB3Mjds2GCuw9vbW+Hh4U5j8vLylJiYaI4pjI+Pj+x2u9MDAACUrnPnzumnn37SzJkz9eijj8rb29vdJZU5eiQAAFAcVbFPKopLZ0j5+/urTZs2TtNq1qypOnXqmNNHjRql+Ph41a5dW3a7XWPHjlVkZKS6desmSerdu7fCwsL00EMPadasWUpNTdVzzz2nuLg4+fj4SJIee+wxzZ07V88884xGjhypjRs3asWKFVq7dq253fj4eMXGxqpz587q2rWrZs+erczMTI0YMeK6DggAALg+s2bN0ksvvaQePXpo0qRJ7i7HEvRIAACgOKpin1QUly9qfi1vvvmmPDw8NHDgQGVlZSk6Olrz588353t6emrNmjV6/PHHFRkZqZo1ayo2NlbPP/+8OaZp06Zau3atJkyYoLfeekuNGjXSwoULFR0dbY4ZMmSIjh8/rilTpig1NVUdOnRQQkJCgYt4AgAAa02bNk3Tpk1zdxnlDj0SAACgT/o/NqO8X5ShDDkcDgUEBCgjI6NMTk3PSfi6wDSvPreW+nYAAKXnwoULOnTokJo2bVohL06NS672Opb1+39lQI8EALgSPVLlUJ56JJeuIQUAAAAAAABcLwIpAAAKUYVPIK4UeP0AACgbvMdWbOXp9SOQAgDgMl5eXpIu3QEFFVf+65f/egIAgOtDj1Q5lKceqdQvag4AQEXm6empwMBApaenS5Jq1Kghm83m5qpQXIZh6Ny5c0pPT1dgYKA8PT3dXRIAAJUCPVLFVh57JAIpAACuEBwcLElmw4WKJzAw0HwdAQBA6aBHqvjKU49EIAUAwBVsNpsaNGig+vXrKycnx93lwEVeXl7l4lM/AAAqG3qkiq289UgEUgAAFMHT07NcvWkDAACUB/RIKA1c1BwAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWqubuAiqzn0+vM38ODezrxkoAAADKD3okAADAGVIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOVSIPX222+rXbt2stvtstvtioyM1Lp168z5Fy5cUFxcnOrUqSM/Pz8NHDhQaWlpTus4fPiwYmJiVKNGDdWvX19PP/20Ll686DRm06ZN6tSpk3x8fNS8eXMtXry4QC3z5s1TaGiofH19FRERoe3bt7uyKwAAAKWGHgkAAMA1LgVSjRo10syZM5WcnKydO3eqV69euvfee7V3715J0oQJE/T5559r5cqV2rx5s44ePaoBAwaYy+fm5iomJkbZ2dnaunWr3n//fS1evFhTpkwxxxw6dEgxMTHq2bOnUlJSNH78eI0ePVrr1683xyxfvlzx8fGaOnWqdu3apfbt2ys6Olrp6enXezwAAABcRo8EAADgGpthGMb1rKB27dp69dVXNWjQINWrV09Lly7VoEGDJEn79+9X69atlZSUpG7dumndunW65557dPToUQUFBUmSFixYoGeffVbHjx+Xt7e3nn32Wa1du1Z79uwxtzF06FCdPn1aCQkJkqSIiAh16dJFc+fOlSTl5eUpJCREY8eO1cSJE4tdu8PhUEBAgDIyMmS326/nMBTq4LLJ5s+hgX0lSV59bi317QAAgOIr6/f/fPRIRaNHAgCg/LGqR8pX4mtI5ebmatmyZcrMzFRkZKSSk5OVk5OjqKgoc0yrVq3UuHFjJSUlSZKSkpLUtm1bs9GSpOjoaDkcDvMTxKSkJKd15I/JX0d2draSk5Odxnh4eCgqKsocU5SsrCw5HA6nBwAAQGmiRwIAALg2lwOp3bt3y8/PTz4+Pnrssce0atUqhYWFKTU1Vd7e3goMDHQaHxQUpNTUVElSamqqU6OVPz9/3tXGOBwOnT9/XidOnFBubm6hY/LXUZQZM2YoICDAfISEhLi6+wAAAIWiRwIAACg+lwOpli1bKiUlRdu2bdPjjz+u2NhY/fDDD2VRW6mbNGmSMjIyzMeRI0fcXRIAAKgk6JEAAACKr5qrC3h7e6t58+aSpPDwcO3YsUNvvfWWhgwZouzsbJ0+fdrpE8C0tDQFBwdLkoKDgwvc6SX/DjOXj7nyrjNpaWmy2+2qXr26PD095enpWeiY/HUUxcfHRz4+Pq7uMgAAwDXRIwEAABRfia8hlS8vL09ZWVkKDw+Xl5eXEhMTzXkHDhzQ4cOHFRkZKUmKjIzU7t27ne70smHDBtntdoWFhZljLl9H/pj8dXh7eys8PNxpTF5enhITE80xAAAA7kaPBAAAUDSXzpCaNGmS+vbtq8aNG+vMmTNaunSpNm3apPXr1ysgIECjRo1SfHy8ateuLbvdrrFjxyoyMlLdunWTJPXu3VthYWF66KGHNGvWLKWmpuq5555TXFyc+ancY489prlz5+qZZ57RyJEjtXHjRq1YsUJr164164iPj1dsbKw6d+6srl27avbs2crMzNSIESNK8dAAAAAUDz0SAACAa1wKpNLT0zV8+HAdO3ZMAQEBateundavX6+77rpLkvTmm2/Kw8NDAwcOVFZWlqKjozV//nxzeU9PT61Zs0aPP/64IiMjVbNmTcXGxur55583xzRt2lRr167VhAkT9NZbb6lRo0ZauHChoqOjzTFDhgzR8ePHNWXKFKWmpqpDhw5KSEgocBFPAAAAK9AjAQAAuMZmGIbh7iLcxeFwKCAgQBkZGbLb7aW+/oPLJps/hwb2lSR59bm11LcDAACKr6zf/ysDeiQAAKoeq3uk676GFAAAAAAAAOAKAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYyqVAasaMGerSpYv8/f1Vv3599e/fXwcOHHAac+HCBcXFxalOnTry8/PTwIEDlZaW5jTm8OHDiomJUY0aNVS/fn09/fTTunjxotOYTZs2qVOnTvLx8VHz5s21ePHiAvXMmzdPoaGh8vX1VUREhLZv3+7K7gAAAJQKeiQAAADXuBRIbd68WXFxcfr222+1YcMG5eTkqHfv3srMzDTHTJgwQZ9//rlWrlypzZs36+jRoxowYIA5Pzc3VzExMcrOztbWrVv1/vvva/HixZoyZYo55tChQ4qJiVHPnj2VkpKi8ePHa/To0Vq/fr05Zvny5YqPj9fUqVO1a9cutW/fXtHR0UpPT7+e4wEAAOAyeiQAAADX2AzDMEq68PHjx1W/fn1t3rxZPXr0UEZGhurVq6elS5dq0KBBkqT9+/erdevWSkpKUrdu3bRu3Trdc889Onr0qIKCgiRJCxYs0LPPPqvjx4/L29tbzz77rNauXas9e/aY2xo6dKhOnz6thIQESVJERIS6dOmiuXPnSpLy8vIUEhKisWPHauLEicWq3+FwKCAgQBkZGbLb7SU9DEU6uGyy+XNoYF9JklefW0t9OwAAoPjK+v1foke6FnokAADKHyt6pMtd1zWkMjIyJEm1a9eWJCUnJysnJ0dRUVHmmFatWqlx48ZKSkqSJCUlJalt27ZmoyVJ0dHRcjgc2rt3rznm8nXkj8lfR3Z2tpKTk53GeHh4KCoqyhwDAADgLvRIAAAAV1etpAvm5eVp/Pjx6t69u9q0aSNJSk1Nlbe3twIDA53GBgUFKTU11RxzeaOVPz9/3tXGOBwOnT9/XqdOnVJubm6hY/bv319kzVlZWcrKyjKfOxwOF/YYAADg2uiRAAAArq3EZ0jFxcVpz549WrZsWWnWU6ZmzJihgIAA8xESEuLukgAAQCVDjwQAAHBtJQqkxowZozVr1uirr75So0aNzOnBwcHKzs7W6dOnncanpaUpODjYHHPlHWXyn19rjN1uV/Xq1VW3bl15enoWOiZ/HYWZNGmSMjIyzMeRI0dc23EAAICroEcCAAAoHpcCKcMwNGbMGK1atUobN25U06ZNneaHh4fLy8tLiYmJ5rQDBw7o8OHDioyMlCRFRkZq9+7dTnd62bBhg+x2u8LCwswxl68jf0z+Ory9vRUeHu40Ji8vT4mJieaYwvj4+Mhutzs9AAAArhc9EgAAgGtcuoZUXFycli5dqk8//VT+/v7m9QwCAgJUvXp1BQQEaNSoUYqPj1ft2rVlt9s1duxYRUZGqlu3bpKk3r17KywsTA899JBmzZql1NRUPffcc4qLi5OPj48k6bHHHtPcuXP1zDPPaOTIkdq4caNWrFihtWvXmrXEx8crNjZWnTt3VteuXTV79mxlZmZqxIgRpXVsAAAAioUeCQAAwDUuBVJvv/22JOmOO+5wmr5o0SI9/PDDkqQ333xTHh4eGjhwoLKyshQdHa358+ebYz09PbVmzRo9/vjjioyMVM2aNRUbG6vnn3/eHNO0aVOtXbtWEyZM0FtvvaVGjRpp4cKFio6ONscMGTJEx48f15QpU5SamqoOHTooISGhwEU8AQAAyho9EgAAgGtshmEY7i7CXRwOhwICApSRkVEmp6YfXDbZ/Dk0sK8kyavPraW+HQAAUHxl/f5fGdAjAQBQ9VjdI5X4LnsAAAAAAABASRBIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALCUy4HUli1b1K9fPzVs2FA2m02rV692mm8YhqZMmaIGDRqoevXqioqK0sGDB53GnDx5UsOGDZPdbldgYKBGjRqls2fPOo35z3/+o9tuu02+vr4KCQnRrFmzCtSycuVKtWrVSr6+vmrbtq2++OILV3cHAACgVNAjAQAAFJ/LgVRmZqbat2+vefPmFTp/1qxZmjNnjhYsWKBt27apZs2aio6O1oULF8wxw4YN0969e7VhwwatWbNGW7Zs0Z/+9CdzvsPhUO/evdWkSRMlJyfr1Vdf1bRp0/Tuu++aY7Zu3aoHHnhAo0aN0nfffaf+/furf//+2rNnj6u7BAAAcN3okQAAAIrPZhiGUeKFbTatWrVK/fv3l3Tpk7+GDRvqz3/+s5566ilJUkZGhoKCgrR48WINHTpU+/btU1hYmHbs2KHOnTtLkhISEnT33Xfr119/VcOGDfX2229r8uTJSk1Nlbe3tyRp4sSJWr16tfbv3y9JGjJkiDIzM7VmzRqznm7duqlDhw5asGBBsep3OBwKCAhQRkaG7HZ7SQ9DkQ4um2z+HBrYV5Lk1efWUt8OAAAovrJ+/5foka6FHgkAgPLHih7pcqV6DalDhw4pNTVVUVFR5rSAgABFREQoKSlJkpSUlKTAwECz0ZKkqKgoeXh4aNu2beaYHj16mI2WJEVHR+vAgQM6deqUOeby7eSPyd9OYbKysuRwOJweAAAAZY0eCQAAwFmpBlKpqamSpKCgIKfpQUFB5rzU1FTVr1/faX61atVUu3ZtpzGFrePybRQ1Jn9+YWbMmKGAgADzERIS4uouAgAAuIweCQAAwFmVusvepEmTlJGRYT6OHDni7pIAAADcjh4JAABYrVQDqeDgYElSWlqa0/S0tDRzXnBwsNLT053mX7x4USdPnnQaU9g6Lt9GUWPy5xfGx8dHdrvd6QEAAFDW6JEAAACclWog1bRpUwUHBysxMdGc5nA4tG3bNkVGRkqSIiMjdfr0aSUnJ5tjNm7cqLy8PEVERJhjtmzZopycHHPMhg0b1LJlS9WqVcscc/l28sfkbwcAAKC8oEcCAABw5nIgdfbsWaWkpCglJUXSpYt0pqSk6PDhw7LZbBo/frxefPFFffbZZ9q9e7eGDx+uhg0bmneZad26tfr06aNHHnlE27dv1zfffKMxY8Zo6NChatiwoSTpwQcflLe3t0aNGqW9e/dq+fLleuuttxQfH2/WMW7cOCUkJOj111/X/v37NW3aNO3cuVNjxoy5/qMCAADgInokAACA4qvm6gI7d+5Uz549zef5DVBsbKwWL16sZ555RpmZmfrTn/6k06dP69Zbb1VCQoJ8fX3NZZYsWaIxY8bozjvvlIeHhwYOHKg5c+aY8wMCAvTll18qLi5O4eHhqlu3rqZMmaI//elP5phbbrlFS5cu1XPPPae//OUvuummm7R69Wq1adOmRAcCAADgetAjAQAAFJ/NMAzD3UW4i8PhUEBAgDIyMsrkWgkHl002fw4N7CtJ8upza6lvBwAAFF9Zv/9XBvRIAABUPVb3SFXqLnsAAAAAAABwPwIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAMgsOoIAAQAASURBVAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJaq5u4CqpqchK+dnnv1udVNlQAAAJQf9EgAAFQtnCEFAAAAAAAASxFIAQAAAAAAwFIVPpCaN2+eQkND5evrq4iICG3fvt3dJQEAALgdPRIAACjPKnQgtXz5csXHx2vq1KnatWuX2rdvr+joaKWnp7u7NAAAALehRwIAAOWdzTAMw91FlFRERIS6dOmiuXPnSpLy8vIUEhKisWPHauLEiddc3uFwKCAgQBkZGbLb7aVe38Flk4ucFxrYt8h5XMQTAICyU9bv/+UBPRIAAHCV1T1Shb3LXnZ2tpKTkzVp0iRzmoeHh6KiopSUlOTGyq7flXeZkWjAAABA8dAjAQCAiqDCBlInTpxQbm6ugoKCnKYHBQVp//79hS6TlZWlrKws83lGRoakSylgWTh7LqvIeXvOrS7WOhoH3HXph4/Xl0JFhfO6K7LM1g0AQHmT/75fgU8Svyp6pNJDjwQAqEqs7pEqbCBVEjNmzND06dMLTA8JCXFDNcX1ursLAACgUjpz5owCAgLcXUa5QI8EAADyWdUjVdhAqm7duvL09FRaWprT9LS0NAUHBxe6zKRJkxQfH28+z8vL08mTJ1WnTh3ZbLZSrc/hcCgkJERHjhyptNenKAz7XbX2W6q6+85+s99VQWXdb8MwdObMGTVs2NDdpZQJeqTyif2uWvstVd19Z7/Z76qgsu631T1ShQ2kvL29FR4ersTERPXv31/SpeYpMTFRY8aMKXQZHx8f+fj4OE0LDAws0zrtdnul+gUtLva76qmq+85+Vy3sd+VRmc+Mokcq39jvqqeq7jv7XbWw35WHlT1ShQ2kJCk+Pl6xsbHq3LmzunbtqtmzZyszM1MjRoxwd2kAAABuQ48EAADKuwodSA0ZMkTHjx/XlClTlJqaqg4dOighIaHARTwBAACqEnokAABQ3lXoQEqSxowZU+Tp5+7k4+OjqVOnFjj9vbJjv6vWfktVd9/Zb/a7Kqiq+11Z0COVL+x31dpvqeruO/vNflcFVXW/S5vNqKz3PAYAAAAAAEC55OHuAgAAAAAAAFC1EEgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIHUd5s2bp9DQUPn6+ioiIkLbt2+/6viVK1eqVatW8vX1Vdu2bfXFF19YVGnpcmW/Fy9eLJvN5vTw9fW1sNrSsWXLFvXr108NGzaUzWbT6tWrr7nMpk2b1KlTJ/n4+Kh58+ZavHhxmddZ2lzd702bNhV4vW02m1JTU60puJTMmDFDXbp0kb+/v+rXr6/+/fvrwIED11yuov+Nl2S/K8Pf+Ntvv6127drJbrfLbrcrMjJS69atu+oyFf21llzf78rwWsM69Ej0SFdDj0SPVNH+xumRqlaPJNEnWYVAqoSWL1+u+Ph4TZ06Vbt27VL79u0VHR2t9PT0Qsdv3bpVDzzwgEaNGqXvvvtO/fv3V//+/bVnzx6LK78+ru63JNntdh07dsx8/PLLLxZWXDoyMzPVvn17zZs3r1jjDx06pJiYGPXs2VMpKSkaP368Ro8erfXr15dxpaXL1f3Od+DAAafXvH79+mVUYdnYvHmz4uLi9O2332rDhg3KyclR7969lZmZWeQyleFvvCT7LVX8v/FGjRpp5syZSk5O1s6dO9WrVy/de++92rt3b6HjK8NrLbm+31LFf61hDXokeqSroUeiR6qIf+P0SFWrR5LokyxjoES6du1qxMXFmc9zc3ONhg0bGjNmzCh0/ODBg42YmBinaREREcajjz5apnWWNlf3e9GiRUZAQIBF1VlDkrFq1aqrjnnmmWeMm2++2WnakCFDjOjo6DKsrGwVZ7+/+uorQ5Jx6tQpS2qySnp6uiHJ2Lx5c5FjKsvf+OWKs9+V8W/cMAyjVq1axsKFCwudVxlf63xX2+/K+lqj9NEjXUKPVDh6pFOW1GQVeiR6pMtVxtf6cvRJpY8zpEogOztbycnJioqKMqd5eHgoKipKSUlJhS6TlJTkNF6SoqOjixxfHpVkvyXp7NmzatKkiUJCQq6ZKlcWleH1vh4dOnRQgwYNdNddd+mbb75xdznXLSMjQ5JUu3btIsdUxte8OPstVa6/8dzcXC1btkyZmZmKjIwsdExlfK2Ls99S5XqtUTbokeiRrqUyvN7Xgx7pkor+mtMjVZ0eSaJPKksEUiVw4sQJ5ebmKigoyGl6UFBQkd8DT01NdWl8eVSS/W7ZsqX+/ve/69NPP9WHH36ovLw83XLLLfr111+tKNltinq9HQ6Hzp8/76aqyl6DBg20YMECffzxx/r4448VEhKiO+64Q7t27XJ3aSWWl5en8ePHq3v37mrTpk2R4yrD3/jlirvfleVvfPfu3fLz85OPj48ee+wxrVq1SmFhYYWOrUyvtSv7XVlea5QteiR6pGuhR6JHkire3/jl6JGqRo8k0SdZoZq7C0DlFhkZ6ZQi33LLLWrdurXeeecdvfDCC26sDGWhZcuWavn/sXfn4TXc////HyeRhaz2xBb7rpbYQmtrKkq9qa20JSjdUEurqNZSbS1VSqvV5Vta1beipWonShdahGgs9VYN0RKhSBCSSOb3h1/Ox5FF1jlZ7rfrOtdl5rxm5jWvc5I8PM+c19SpY11u06aNTp48qfnz52vZsmV27Fn2jRgxQocPH9bPP/9s766YKrPnXVh+xuvUqaOwsDDFxMRo9erVCg4O1q5du9INHYVFVs67sLzWQH7Bz1TRQkYqPMhIRSMjSeQkM1CQyoYyZcrI0dFR58+ft1l//vx5+fj4pLmNj49PltrnR9k577s5OTmpadOm+vPPP/Oii/lGeq+3p6enihcvbqde2UfLli0LbFAZOXKk1q9frx9//FGVKlXKsG1h+BlPkZXzvltB/Rl3dnZWzZo1JUn+/v7at2+fFixYoI8++ihV28L0WmflvO9WUF9r5C0yEhnpXshI/4eMVHB+xlOQkYpORpLISWbgK3vZ4OzsLH9/f4WEhFjXJScnKyQkJN3vlAYEBNi0l6Rt27Zl+B3U/CY75323pKQkhYeHy9fXN6+6mS8Uhtc7t4SFhRW419swDI0cOVJr1qzRjh07VK1atXtuUxhe8+yc990Ky894cnKy4uPj03yuMLzW6cnovO9WWF5r5C4yEhnpXgrD651byEgF5zUnI/2fopqRJHJSnrDvnOoF14oVKwwXFxdj6dKlxtGjR42nn37a8Pb2NqKiogzDMIyBAwcaEydOtLb/5ZdfjGLFihlz5841jh07ZkydOtVwcnIywsPD7XUK2ZLV854+fbqxZcsW4+TJk0ZoaKjRv39/w9XV1Thy5Ii9TiFbrl69ahw8eNA4ePCgIcmYN2+ecfDgQeP06dOGYRjGxIkTjYEDB1rb//XXX0aJEiWM8ePHG8eOHTMWLVpkODo6Gps3b7bXKWRLVs97/vz5xtq1a40TJ04Y4eHhxujRow0HBwdj+/bt9jqFbHnuuecMLy8vY+fOnca5c+esj7i4OGubwvgznp3zLgw/4xMnTjR27dplREREGL///rsxceJEw2KxGFu3bjUMo3C+1oaR9fMuDK81zEFGIiORkchIhe1nnIxUtDKSYZCTzEJBKgfee+89o0qVKoazs7PRsmVL49dff7U+1759eyM4ONim/cqVK43atWsbzs7ORoMGDYwNGzaY3OPckZXzHjNmjLVt+fLlja5duxoHDhywQ69zJuVWvXc/Us41ODjYaN++faptmjRpYjg7OxvVq1c3lixZYnq/cyqr5z179myjRo0ahqurq1GqVCmjQ4cOxo4dO+zT+RxI65wl2byGhfFnPDvnXRh+xocOHWr4+fkZzs7ORtmyZY0HH3zQGjYMo3C+1oaR9fMuDK81zENGIiORkchIdyroP+NkpKKVkQyDnGQWi2EYRu5fdwUAAAAAAACkjTmkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQCAfOXHH39U9+7dVaFCBVksFq1duzbL+9iyZYtat24tDw8PlS1bVr1799apU6dyva8AAABmKWwZiYIUAADIV65fv67GjRtr0aJF2do+IiJCPXr0UKdOnRQWFqYtW7bo4sWL6tWrVy73FAAAwDyFLSNZDMMw7HJkAACAe7BYLFqzZo169uxpXRcfH6/Jkyfrv//9r65cuaKGDRtq9uzZ6tChgyRp9erVGjBggOLj4+XgcPuzt++//149evRQfHy8nJyc7HAmAAAAuacwZCSukAIAAAXKyJEjtWfPHq1YsUK///67+vbtqy5duujEiROSJH9/fzk4OGjJkiVKSkpSTEyMli1bpsDAQIpRAACg0CpoGYkrpAAAQL5196d/kZGRql69uiIjI1WhQgVru8DAQLVs2VJvvfWWJGnXrl3q16+f/v33XyUlJSkgIEAbN26Ut7e3Hc4CAAAgdxWGjMQVUgAAoMAIDw9XUlKSateuLXd3d+tj165dOnnypCQpKipKw4cPV3BwsPbt26ddu3bJ2dlZffr0EZ/DAQCAwqggZqRiph8RAAAgm65duyZHR0eFhobK0dHR5jl3d3dJ0qJFi+Tl5aU5c+ZYn/vyyy9VuXJl/fbbb2rdurWpfQYAAMhrBTEjUZACAAAFRtOmTZWUlKTo6Gg98MADabaJi4uzTtSZIiWYJScn53kfAQAAzFYQMxJf2QMAAPnKtWvXFBYWprCwMEm3b1EcFhamyMhI1a5dW0888YQGDRqkb7/9VhEREdq7d69mzpypDRs2SJK6deumffv26fXXX9eJEyd04MABDRkyRH5+fmratKkdzwwAACD7CltGYlJzAACQr+zcuVMdO3ZMtT44OFhLly5VYmKi3njjDX3xxRf6559/VKZMGbVu3VrTp09Xo0aNJEkrVqzQnDlz9L///U8lSpRQQECAZs+erbp165p9OgAAALmisGUkClIAAAAAAAAwFV/ZAwAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAUjXtGnTZLFY7N2NXLF06VJZLBadOnXK3l1BNqxcuVKlSpXStWvX7tnWYrFo2rRpNuv27dunNm3ayM3NTRaLRWFhYZk+dmJioipXrqwPPvggi70GABRWZCTkF2QkFGQUpADkid27d2vatGm6cuWKvbuSrg8++EBLly7N02NYLBZZLBYNGzYszecnT55sbXPx4sV77m/v3r16/vnn5e/vLycnp0IThjOSlJSkqVOnatSoUXJ3d8/y9omJierbt68uXbqk+fPna9myZfLz89O5c+c0ceJEdezYUR4eHrJYLNq5c2eq7Z2cnDRu3Di9+eabunnzZi6cEQCgKCMj3UZGyrm8ykghISEaOnSoateurRIlSqh69eoaNmyYzp07Z7M9GQk5ZgBAOhITE40bN25ka9u3337bkGRERETkbqey6datW8aNGzeM5ORk67oGDRoY7du3z9PjSjJcXV0Nb29vIz4+PtXz1apVM1xdXQ1JxoULF+65v6lTpxpOTk6Gv7+/Ubt2baMo/Bpfs2aNYbFYjL///jtT7SUZU6dOtS4fO3bMkGR88sknNu1++OEHQ5JRq1YtIyAgwJBk/PDDD2nu8/Lly4azs7Px//7f/8vuaQAAChEyUs6RkXIurzKSv7+/Ua1aNePll182PvnkE2PSpEmGh4eHUb58eePcuXM2bclIyAmukEKRlZycnO8q+devX8/zYxiGoRs3bmSqbbFixeTq6prHPTKHo6OjXF1d7fJpWZcuXRQbG6tNmzbZrN+9e7ciIiLUrVu3TO/rueeeU0xMjPbv36+HHnoot7uaLy1ZskRt27ZVxYoVs7V9dHS0JMnb29tmvb+/v/7991/973//07hx4zLch7e3tzp37pznnxYDQH5ARro3MlLuICPlTF5lpHnz5unPP//U7NmzNWzYML311ltav369zp8/r/fff9+mLRkJOUFBCgVayvf3//jjD/Xr10+enp4qXbq0Ro8enSpIWSwWjRw5UsuXL1eDBg3k4uKizZs3S5L++ecfDR06VOXLl5eLi4saNGigzz77LNXxbt68qWnTpql27dpydXWVr6+vevXqpZMnT0qSdu7cmebXfk6dOiWLxWLzi3rw4MFyd3fXyZMn1bVrV3l4eOiJJ56QJJ04cUK9e/eWj4+PXF1dValSJfXv318xMTHW7W/duqUZM2aoRo0acnFxUdWqVfXKK68oPj7e5thVq1bVI488oi1btqh58+YqXry4PvrooyyNb1rjuHbtWjVs2NA6XiljmbLd+PHjJUnVqlWzXm5959wEX375pfz9/VW8eHGVKlVK/fv315kzZ2yO1aFDBzVs2FBHjx5Vx44dVaJECVWsWFFz5sxJ1df33ntPDRo0UIkSJVSyZEk1b95cX331lfX5u+dHqFq1qo4cOaJdu3ZZ+9ehQwf99ddfslgsmj9/fqpj7N69WxaLRf/9738zNX4pKlasqHbt2tn0R5KWL1+uRo0aqWHDhpneV/ny5VW8ePEsHT89Ke+NnTt3Wt8bjRo1sr5/v/32WzVq1Eiurq7y9/fXwYMHbbb//fffNXjwYFWvXl2urq7y8fHR0KFD9e+//1rb3LhxQ3Xr1lXdunVtQv6lS5fk6+urNm3aKCkpKd0+3rx5U5s3b1ZgYGCq5+Lj4zV27FiVLVtWHh4e+s9//qO///7bps3gwYPVvn17SVLfvn2tr7MkeXh4qFSpUpker4ceekg///yzLl26lOltAMBeyEhkpBRkpKwr6hmpXbt2cnCwLRW0a9dOpUqV0rFjx1Idj4yE7Cpm7w4AuaFfv36qWrWqZs6cqV9//VULFy7U5cuX9cUXX9i027Fjh1auXKmRI0eqTJkyqlq1qs6fP6/WrVtbQ0TZsmW1adMmPfXUU4qNjdWYMWMk3f6O9iOPPKKQkBD1799fo0eP1tWrV7Vt2zYdPnxYNWrUyHK/b926paCgIN1///2aO3euSpQooYSEBAUFBSk+Pl6jRo2Sj4+P/vnnH61fv15XrlyRl5eXJGnYsGH6/PPP1adPH7344ov67bffNHPmTB07dkxr1qyxOc7x48c1YMAAPfPMMxo+fLjq1KmTvYH+//3888/69ttv9fzzz8vDw0MLFy5U7969FRkZqdKlS6tXr1763//+p//+97+aP3++ypQpI0kqW7asJOnNN9/Ua6+9pn79+mnYsGG6cOGC3nvvPbVr104HDx60+ZTm8uXL6tKli3r16qV+/fpp9erVmjBhgho1aqSHH35YkvTJJ5/ohRdeUJ8+faxB+/fff9dvv/2mxx9/PM1zePfdd63ft588ebKk20GmevXqatu2rZYvX66xY8fabLN8+XJ5eHioR48eWR6zxx9/XKNHj9a1a9fk7u6uW7duadWqVRo3bpxdP4X+888/9fjjj+uZZ57Rk08+qblz56p79+5avHixXnnlFT3//POSpJkzZ6pfv346fvy4NaBs27ZNf/31l4YMGSIfHx8dOXJEH3/8sY4cOaJff/1VFotFxYsX1+eff662bdtq8uTJmjdvniRpxIgRiomJ0dKlS+Xo6Jhu/0JDQ5WQkKBmzZqlem7YsGH68ssv9fjjj6tNmzbasWNHqk9Sn3nmGVWsWFFvvfWWXnjhBbVo0ULly5fP1lj5+/vLMAzt3r1bjzzySLb2AQBmIyORkchI2UNGsnXt2jVdu3bN+p69ExkJ2WbfbwwCOTN16lRDkvGf//zHZv3zzz9vSDIOHTpkXSfJcHBwMI4cOWLT9qmnnjJ8fX2Nixcv2qzv37+/4eXlZcTFxRmGYRifffaZIcmYN29eqn6kfOc+ZU6au+ehiYiIMCQZS5Yssa4LDg42JBkTJ060aXvw4EFDkrFq1ap0zzssLMyQZAwbNsxm/UsvvWRIMnbs2GFd5+fnZ0gyNm/enO7+0pMyvneSZDg7Oxt//vmndd2hQ4cMScZ7771nXZfe/AinTp0yHB0djTfffNNmfXh4uFGsWDGb9e3btzckGV988YV1XXx8vOHj42P07t3buq5Hjx5GgwYNMjyXJUuWpOpPevMjfPTRR4Yk49ixY9Z1CQkJRpkyZYzg4OAMj3M3ScaIESOMS5cuGc7OzsayZcsMwzCMDRs2GBaLxTh16pR1nDMzP8KdRowYkaP5EVLeG7t377au27JliyHJKF68uHH69Gnr+pQxufO9nfKzcaf//ve/hiTjxx9/tFk/adIkw8HBwfjxxx+NVatWGZKMd9999559/PTTTw1JRnh4uM36lJ+B559/3mb9448/nmp+hJSfy4x+plL6lN4cUoZhGGfPnjUkGbNnz75nvwHA3shIZCTDICNlFxkptRkzZhiSjJCQkFTPkZGQXXxlD4XCiBEjbJZHjRolSdq4caPN+vbt26t+/frWZcMw9M0336h79+4yDEMXL160PoKCghQTE6MDBw5Ikr755huVKVPGuu875eQ7988995zNcsqne1u2bFFcXFya26Sc193z3rz44ouSpA0bNtisr1atmoKCgrLdx7sFBgbafNp53333ydPTU3/99dc9t/3222+VnJysfv362Yy3j4+PatWqpR9++MGmvbu7u5588knrsrOzs1q2bGlzLG9vb/3999/at29fLpzd7U+TXV1dtXz5cuu6LVu26OLFizZ9yYqSJUuqS5cu1kvZv/rqK7Vp00Z+fn650ufsql+/vgICAqzLrVq1kiR16tRJVapUSbX+znG/87L4mzdv6uLFi2rdurUkWX9uUkybNk0NGjRQcHCwnn/+ebVv314vvPDCPfuXcml7yZIlbdan/AzcvY+UT+vzQkofMnOnHwDIL8hIt5GRyEhZRUb6Pz/++KOmT5+ufv36qVOnTqmeJyMhuyhIoVCoVauWzXKNGjXk4OBg83186XbouNOFCxd05coVffzxxypbtqzNY8iQIZL+b7K/kydPqk6dOipWLPe+6VqsWDFVqlQpVR/HjRunTz/9VGXKlFFQUJAWLVpkMzfC6dOn5eDgoJo1a9ps6+PjI29vb50+fTrD886pO/8IpyhZsqQuX758z21PnDghwzBUq1atVGN+7Ngx63inqFSpUqowe/exJkyYIHd3d7Vs2VK1atXSiBEj9Msvv2Tz7G6Ht+7du9vMZ7B8+XJVrFgxzT/CmfX4449r27ZtioyM1Nq1a9O9VP7atWuKioqyPi5cuJDtY97L3a9lStivXLlymuvvHPdLly5p9OjR1jkbypYta32v3fl+lW6H5M8++0wRERG6evWqlixZkqX/pBiGYbOc8jNw99dAcvpVi8z0oSjcRhpA4UFGuo2MREbKKjLSbX/88YceffRRNWzYUJ9++mmGfSAjIauYQwqFUnq/DO+e6DA5OVmS9OSTTyo4ODjNbe67774cHze9CQldXFxSTRgoSe+8844GDx6s7777Tlu3btULL7xgnfvhznCW2V/6uTXBY4r0vs9+9x/EtCQnJ8tisWjTpk1p7sfd3T3Lx6pXr56OHz+u9evXa/Pmzfrmm2/0wQcfaMqUKZo+ffo9+5SWQYMGadWqVdq9e7caNWqkdevW6fnnn0/z9cqs//znP3JxcVFwcLDi4+PVr1+/NNvNnTvXpt9+fn6p/uOQW9Ib38yMe79+/bR7926NHz9eTZo0kbu7u5KTk9WlSxfrz9adtmzZIun2J4UnTpzI1H8CSpcuLel2yLv7PyZmSwmaac2dAAAFBRnJFhkp68hIRScjnTlzRp07d5aXl5c2btwoDw+PNNuRkZBdFKRQKNz9i/vPP/9UcnKyqlatmuF2KXeeSEpKSvMOFXeqUaOGfvvtNyUmJsrJySnNNimXq165csVm/d2fxmVGo0aN1KhRI7366qvavXu32rZtq8WLF+uNN96Qn5+fkpOTdeLECdWrV8+6zfnz53XlyhW7X+IspR8Ea9SoIcMwVK1aNdWuXTvXjufm5qbHHntMjz32mBISEtSrVy+9+eabmjRpUrq3Zc4orHbp0kVly5bV8uXL1apVK8XFxWngwIE56mPx4sXVs2dPffnll3r44YfT/aM9aNAg3X///Tbb5TeXL19WSEiIpk+frilTpljXnzhxIs32v//+u15//XUNGTJEYWFhGjZsmMLDw62fKqanbt26kqSIiAg1atTIuj7lZyDlU/kUx48fz8lpZSgiIkKSbH7mACC/IyPdRkYiI5mlsGSkf//9V507d1Z8fLxCQkLk6+ubblsyErKLr+yhUFi0aJHN8nvvvSdJ1juMpMfR0VG9e/fWN998o8OHD6d6/s7LgHv37q2LFy/q/fffT9Uu5RMRPz8/OTo66scff7R5/oMPPsjciUiKjY3VrVu3bNY1atRIDg4O1tsVd+3aVdLtu6DcKeXuHHffRcMe3NzcJKUOnr169ZKjo6OmT5+e6tNCwzBsboebWXdv4+zsrPr168swDCUmJmbYx7v7l6JYsWIaMGCAVq5cqaVLl6pRo0ZZ+iQ4PS+99JKmTp2q1157Ld021atXV2BgoPXRtm3bHB83t6V8Onj3a3j3e1KSEhMTNXjwYFWoUEELFizQ0qVLdf78+VR36EmLv7+/nJ2dtX//fpv1KT/bCxcuvOfxc0toaKgsFovNfBIAkN+RkW4jI91GRsp7hSEjXb9+XV27dtU///yjjRs3pvrq793ISMgurpBCoRAREaH//Oc/6tKli/bs2WO9zWnjxo3vue2sWbP0ww8/qFWrVho+fLjq16+vS5cu6cCBA9q+fbsuXbok6fYnMl988YXGjRunvXv36oEHHtD169e1fft2Pf/88+rRo4e8vLzUt29fvffee7JYLKpRo4bWr1+f6jv/GdmxY4dGjhypvn37qnbt2rp165aWLVtmDYaS1LhxYwUHB+vjjz/WlStX1L59e+3du1eff/65evbsqY4dO2ZvIHORv7+/JGny5Mnq37+/nJyc1L17d9WoUUNvvPGGJk2apFOnTqlnz57y8PBQRESE1qxZo6efflovvfRSlo7VuXNn+fj4qG3btipfvryOHTum999/X926dUv30uKUPn744Yd64403VLNmTZUrV85m/oNBgwZp4cKF+uGHHzR79uzsDcRdGjdunKn3ZXpOnz6tZcuWSZI1gLzxxhuSbof9nH5CmVmenp5q166d5syZo8TERFWsWFFbt261fkJ2pzfeeENhYWEKCQmRh4eH7rvvPk2ZMkWvvvqq+vTpY/3PQ1pcXV3VuXNnbd++Xa+//rp1fZMmTTRgwAB98MEHiomJUZs2bRQSEqI///wzS+eRMnZHjhyRJC1btkw///yzJOnVV1+1abtt2za1bdvWeok8ABQEZCQyEhmJjJTVjPTEE09o7969Gjp0qI4dO6Zjx45Zn3N3d1fPnj1t2pORkG3m3MwPyBspt4I9evSo0adPH8PDw8MoWbKkMXLkSOPGjRs2bfX/31o2LefPnzdGjBhhVK5c2XBycjJ8fHyMBx980Pj4449t2sXFxRmTJ082qlWrZm3Xp08f4+TJk9Y2Fy5cMHr37m2UKFHCKFmypPHMM88Yhw8fTvOWxm5ubqn68tdffxlDhw41atSoYbi6uhqlSpUyOnbsaGzfvt2mXWJiojF9+nRrXypXrmxMmjTJuHnzpk07Pz8/o1u3bpkaz7uld0vjtMbRz88v1e1+Z8yYYVSsWNFwcHBIdTvhb775xrj//vsNNzc3w83Nzahbt64xYsQI4/jx49Y27du3T/NWxcHBwYafn591+aOPPjLatWtnlC5d2nBxcTFq1KhhjB8/3oiJibG2SeuWxlFRUUa3bt0MDw8PQ1Katzdu0KCB4eDgYPz999/pjFLGMnrfpcjKLY1Tbs+b1iOt/mckvfdGWn1OuS3322+/bV33999/G48++qjh7e1teHl5GX379rXe9jfllsKhoaFGsWLFjFGjRtns79atW0aLFi2MChUqGJcvX86wn99++61hsViMyMhIm/U3btwwXnjhBaN06dKGm5ub0b17d+PMmTNZuqVxemN59/v+ypUrhrOzs/Hpp59m2FcAyC/ISGQkwyAjkZGyl5H8/PzSHcs731+GQUZCzlgMIxMz7AH51LRp0zR9+nRduHCBSfSQJ5o2bapSpUopJCTE3l0pspKSklS/fn3169dPM2bMsEsf3n33Xc2ZM0cnT57Ml/NVAMDdyEjIa2Qk+yMjoaBjDikASMf+/fsVFhamQYMG2bsrRZqjo6Nef/11LVq0SNeuXTP9+ImJiZo3b55effVVghYAACIj5RdkJBR0zCEFFEExMTG6ceNGhm18fHxM6k3+c/jwYYWGhuqdd96Rr6+vHnvsMZvnk5KSbCZzTYu7u3uq2zOb5cKFC+neRlu6PaFpqVKlTOxRzqXcHcgenJycFBkZaZdjAwDMRUbKGBkp/yEjoSCjIAUUQaNHj9bnn3+eYZui/G3e1atX6/XXX1edOnX03//+N9Utkc+cOWNzC+20TJ06VdOmTcvDXqavRYsWGd5Gu3379tq5c6d5HQIAoIAgI2WMjAQgNzGHFFAEHT16VGfPns2wTWBgoEm9KXhu3rxpvRNbeqpXr67q1aub1CNbv/zyS4af7pYsWdJ6hx8AAPB/yEg5Q0YCkBUUpAAAAAAAAGAqJjUHAAAAAACAqYr0HFLJyck6e/asPDw8ZLFY7N0dAABgAsMwdPXqVVWoUEEODnw2lxYyEgAARY/ZGalIF6TOnj2rypUr27sbAADADs6cOaNKlSrZuxv5EhkJAICiy6yMVKQLUh4eHpJuD7anp6edewMAAMwQGxurypUrW3MAUiMjAQBQ9JidkYp0QSrlEnRPT0/CFgAARQxfRUsfGQkAgKLLrIzExAkAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExVpOeQAgAgI0lJSUpMTLR3N5BFTk5OcnR0tHc3AAAotMhIBVN+y0gUpAAAuIthGIqKitKVK1fs3RVkk7e3t3x8fJi4HACAXERGKvjyU0aiIAUAwF1Sgla5cuVUokSJfPEHG5ljGIbi4uIUHR0tSfL19bVzjwAAKDzISAVXfsxIFKQAALhDUlKSNWiVLl3a3t1BNhQvXlySFB0drXLlyuWrS9MBACioyEgFX37LSExqDgDAHVLmQyhRooSde4KcSHn9mN8CAIDcQUYqHPJTRqIgBQBAGrgEvWDj9QMAIG/wN7Zgy0+vHwUpAAAAAAAAmIqCFAAAAAAAAEzFpOYAAGRS4uafTTuWU5f7M932XpdeT506VdOmTcthj7LHYrFozZo16tmzZ7b38fHHH+urr77SgQMHdPXqVV2+fFne3t651kcAAJAzZmYkiZyU4tKlS5o6daq2bt2qyMhIlS1bVj179tSMGTPk5eWVu53NAxSk8tDdP5RZ+aEBACCzzp07Z/33119/rSlTpuj48ePWde7u7lnaX0JCgpydnXOtfzkVFxenLl26qEuXLpo0aZK9u4NcQEYCAJilMOeks2fP6uzZs5o7d67q16+v06dP69lnn9XZs2e1evVqe3fvnvjKHgAABZyPj4/14eXlJYvFYl2+fv26nnjiCZUvX17u7u5q0aKFtm/fbrN91apVNWPGDA0aNEienp56+umnJUmffPKJKleurBIlSujRRx/VvHnzUl2Z9N1336lZs2ZydXVV9erVNX36dN26dcu6X0l69NFHZbFYrMuHDh1Sx44d5eHhIU9PT/n7+2v//v3pnt+YMWM0ceJEtW7dOncGDAAAFBmFOSc1bNhQ33zzjbp3764aNWqoU6dOevPNN/X9999bj5OfUZACAKAQu3btmrp27aqQkBAdPHhQXbp0Uffu3RUZGWnTbu7cuWrcuLEOHjyo1157Tb/88oueffZZjR49WmFhYXrooYf05ptv2mzz008/adCgQRo9erSOHj2qjz76SEuXLrW227dvnyRpyZIlOnfunHX5iSeeUKVKlbRv3z6FhoZq4sSJcnJyMmE0AAAA/k9hzEkxMTHy9PRUsWL5/wtx+b+HAAAg2xo3bqzGjRtbl2fMmKE1a9Zo3bp1GjlypHV9p06d9OKLL1qXJ0+erIcfflgvvfSSJKl27dravXu31q9fb20zffp0TZw4UcHBwZKk6tWra8aMGXr55Zc1depUlS1bVpLk7e0tHx8f63aRkZEaP3686tatK0mqVatWHpw5AABAxgpbTrp48aJmzJhhvYorv+MKKQAACrFr167ppZdeUr169eTt7S13d3cdO3Ys1Sd/zZs3t1k+fvy4WrZsabPu7uVDhw7p9ddfl7u7u/UxfPhwnTt3TnFxcen2ady4cRo2bJgCAwM1a9YsnTx5ModnCQAAkHWFKSfFxsaqW7duql+/vt0mac8qClIAABRiL730ktasWaO33npLP/30k8LCwtSoUSMlJCTYtHNzc8vyvq9du6bp06crLCzM+ggPD9eJEyfk6uqa7nbTpk3TkSNH1K1bN+3YsUP169fXmjVrsnx8AACAnCgsOenq1avq0qWLPDw8tGbNmgIzFQJf2QMAoBD75ZdfNHjwYD366KOSboejU6dO3XO7OnXqWOcySHH3crNmzXT8+HHVrFkz3f04OTkpKSkp1fratWurdu3aGjt2rAYMGKAlS5ZY+wgAAGCGwpCTYmNjFRQUJBcXF61bty7DYld+Q0EKAIBCrFatWvr222/VvXt3WSwWvfbaa0pOTr7ndqNGjVK7du00b948de/eXTt27NCmTZtksVisbaZMmaJHHnlEVapUUZ8+feTg4KBDhw7p8OHDeuONNyTdvoNMSEiI2rZtKxcXF7m6umr8+PHq06ePqlWrpr///lv79u1T79690+1LVFSUoqKi9Oeff0qSwsPD5eHhoSpVqqhUqVI5HCEAAFBUFfScFBsbq86dOysuLk5ffvmlYmNjFRsbK0kqW7asHB0dc2GU8g5f2QMAoBCbN2+eSpYsqTZt2qh79+4KCgpSs2bN7rld27ZttXjxYs2bN0+NGzfW5s2bNXbsWJtP3YKCgrR+/Xpt3bpVLVq0UOvWrTV//nz5+flZ27zzzjvatm2bKleurKZNm8rR0VH//vuvBg0apNq1a6tfv356+OGHNX369HT7snjxYjVt2lTDhw+XJLVr105NmzbVunXrcjAyAACgqCvoOenAgQP67bffFB4erpo1a8rX19f6OHPmTM4HKI9ZDMMw7N0Je4mNjZWXl5f1toi5LXHzzzbLTl3uz/VjAABy182bNxUREaFq1aoVqEuezTB8+HD98ccf+umnn+zdlXvK6HXM67//hQEZCQBwNzJSxgpKTspPGYmv7AEAgDTNnTtXDz30kNzc3LRp0yZ9/vnn+uCDD+zdLQAAALsjJ+UcBSkAAJCmvXv3as6cObp69aqqV6+uhQsXatiwYfbuFgAAgN2Rk3KOghQAAEjTypUr7d0FAACAfImclHNMag4AAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAhcDgwYNlsVhksVjk5OSk8uXL66GHHtJnn32m5ORke3cvR44cOaLevXuratWqslgsevfdd+3dJQAAUIAU5pz0ySef6IEHHlDJkiVVsmRJBQYGau/evfbuVqYUs3cHAAAoKE7u/8i0Y9Vo/kyWt+nSpYuWLFmipKQknT9/Xps3b9bo0aO1evVqrVu3TsWKFcw/+3Fxcapevbr69u2rsWPH2rs7AADgLmZmJImcdKedO3dqwIABatOmjVxdXTV79mx17txZR44cUcWKFe3dvQxxhRQAAIWEi4uLfHx8VLFiRTVr1kyvvPKKvvvuO23atElLly61trty5YqGDRumsmXLytPTU506ddKhQ4ds9vX999+rRYsWcnV1VZkyZfToo49an7t8+bIGDRqkkiVLqkSJEnr44Yd14sQJSdL169fl6emp1atX2+xv7dq1cnNz09WrV5WQkKCRI0fK19dXrq6u8vPz08yZM9M9rxYtWujtt99W//795eLikgsjBQAAiprCmpOWL1+u559/Xk2aNFHdunX16aefKjk5WSEhIbkwanmLghQAAIVYp06d1LhxY3377bfWdX379lV0dLQ2bdqk0NBQNWvWTA8++KAuXbokSdqwYYMeffRRde3aVQcPHlRISIhatmxp3X7w4MHav3+/1q1bpz179sgwDHXt2lWJiYlyc3NT//79tWTJEpt+LFmyRH369JGHh4cWLlyodevWaeXKlTp+/LiWL1+uqlWrmjIeAAAAKQpjToqLi1NiYqJKlSqVs8ExQcG8Jg0AAGRa3bp19fvvv0uSfv75Z+3du1fR0dHWq43mzp2rtWvXavXq1Xr66af15ptvqn///po+fbp1H40bN5YknThxQuvWrdMvv/yiNm3aSLr9yVzlypW1du1a9e3bV8OGDVObNm107tw5+fr6Kjo6Whs3btT27dslSZGRkapVq5buv/9+WSwW+fn5mTkcAAAAVoUtJ02YMEEVKlRQYGBgjscmr3GFFAAAhZxhGLJYLJKkQ4cO6dq1aypdurTc3d2tj4iICJ08eVKSFBYWpgcffDDNfR07dkzFihVTq1atrOtKly6tOnXq6NixY5Kkli1bqkGDBvr8888lSV9++aX8/PzUrl07Sbc/OQwLC1OdOnX0wgsvaOvWrXl27gAAABkpTDlp1qxZWrFihdasWSNXV9esD4bJuEIKAIBC7tixY6pWrZok6dq1a/L19dXOnTtTtfP29pYkFS9ePMfHHDZsmBYtWqSJEydqyZIlGjJkiDXsNWvWTBEREdq0aZO2b9+ufv36KTAwMNV8CgAAAHmtsOSkuXPnatasWdq+fbvuu+++HPfRDFwhBQBAIbZjxw6Fh4erd+/ekm6HnKioKBUrVkw1a9a0eZQpU0aSdN9996U7EWa9evV069Yt/fbbb9Z1//77r44fP6769etb1z355JM6ffq0Fi5cqKNHjyo4ONhmP56ennrsscf0ySef6Ouvv9Y333xjnZsBAADADIUlJ82ZM0czZszQ5s2b1bx582yPh9m4QgoAgEIiPj5eUVFRNrcznjlzph555BENGjRIkhQYGKiAgAD17NlTc+bMUe3atXX27FnrBJ3NmzfX1KlT9eCDD6pGjRrq37+/bt26pY0bN2rChAmqVauWevTooeHDh+ujjz6Sh4eHJk6cqIoVK6pHjx7WvpQsWVK9evXS+PHj1blzZ1WqVMn63Lx58+Tr66umTZvKwcFBq1atko+Pj/WTx7slJCTo6NGj1n//888/CgsLk7u7u2rWrJl3AwoAAAqNwpqTZs+erSlTpuirr75S1apVFRUVJUnWrxvmZ1whBQBAIbF582b5+vqqatWq6tKli3744QctXLhQ3333nRwdHSVJFotFGzduVLt27TRkyBDVrl1b/fv31+nTp1W+fHlJUocOHbRq1SqtW7dOTZo0UadOnbR3717rcZYsWSJ/f3898sgjCggIkGEY2rhxo5ycnGz689RTTykhIUFDhw61We/h4aE5c+aoefPmatGihU6dOqWNGzfKwSHtWHL27Fk1bdpUTZs21blz5zR37lw1bdpUw4YNy83hAwAAhVhhzUkffvihEhIS1KdPH/n6+lofc+fOzc3hyxMWwzAMe3fCXmJjY+Xl5aWYmBh5enrm+v4TN/9ss+zU5f5cPwYAIHfdvHlTERERqlatWoGYDDI/W7ZsmcaOHauzZ8/K2dnZ1GNn9Drm9d//woCMBAC4Gxkpd9krJ+WnjMRX9gAAQK6Ki4vTuXPnNGvWLD3zzDOmF6MAAADyK3LS/8nRV/ZmzZoli8WiMWPGWNfdvHlTI0aMsN4msXfv3jp//rzNdpGRkerWrZtKlCihcuXKafz48bp165ZNm507d6pZs2ZycXFRzZo1tXTp0lTHX7RokapWrSpXV1e1atXK5jI5AABgH3PmzFHdunXl4+OjSZMm2bs7dkFGAgAAaSEn/Z9sF6T27dunjz76KNXtBMeOHavvv/9eq1at0q5du3T27Fn16tXL+nxSUpK6deumhIQE7d69W59//rmWLl2qKVOmWNtERESoW7du6tixo8LCwjRmzBgNGzZMW7Zssbb5+uuvNW7cOE2dOlUHDhxQ48aNFRQUpOjo6OyeEgAAyAXTpk1TYmKiQkJC8v1kmnmBjAQAANJT1HOSDSMbrl69atSqVcvYtm2b0b59e2P06NGGYRjGlStXDCcnJ2PVqlXWtseOHTMkGXv27DEMwzA2btxoODg4GFFRUdY2H374oeHp6WnEx8cbhmEYL7/8stGgQQObYz722GNGUFCQdblly5bGiBEjrMtJSUlGhQoVjJkzZ2b6PGJiYgxJRkxMTOZPPgsSNv1k8wAA5H83btwwjh49aty4ccPeXUEOZPQ65uXffzJS5pCRAKDgISMVDvbKSGnJ1hVSI0aMULdu3RQYGGizPjQ0VImJiTbr69atqypVqmjPnj2SpD179qhRo0bWGeolKSgoSLGxsTpy5Ii1zd37DgoKsu4jISFBoaGhNm0cHBwUGBhobZOW+Ph4xcbG2jwAAAByCxkJAAAgc7I8qfmKFSt04MAB7du3L9VzUVFRcnZ2lre3t8368uXLKyoqytrmzqCV8nzKcxm1iY2N1Y0bN3T58mUlJSWl2eaPP/5It+8zZ87U9OnTM3eiAIAizSi6N6EtFOzx+pGRAABFARmpYMtPr1+WrpA6c+aMRo8ereXLlxfI2zxOmjRJMTEx1seZM2fs3SUAQD7j5OQk6fYdUFBwpbx+Ka9nXiMjAQAKOzJS4WB2RspIlq6QCg0NVXR0tJo1a2Zdl5SUpB9//FHvv/++tmzZooSEBF25csXmE8Dz58/Lx8dHkuTj45PqTi8pd5i5s83dd505f/68PD09Vbx4cTk6OsrR0THNNin7SIuLi4tcXFyycsoAgCLG0dFR3t7e1gmgS5QoIYvFYudeIbMMw1BcXJyio6Pl7e0tR0dHU45LRgIAFHZkpILNXhkpI1kqSD344IMKDw+3WTdkyBDVrVtXEyZMUOXKleXk5KSQkBD17t1bknT8+HFFRkYqICBAkhQQEKA333xT0dHRKleunCRp27Zt8vT0VP369a1tNm7caHOcbdu2Wffh7Owsf39/hYSEqGfPnpKk5ORkhYSEaOTIkVkcAgAAbKX8x527khVc3t7eGRZgchsZCQBQFJCRCj6zM1JGslSQ8vDwUMOGDW3Wubm5qXTp0tb1Tz31lMaNG6dSpUrJ09NTo0aNUkBAgFq3bi1J6ty5s+rXr6+BAwdqzpw5ioqK0quvvqoRI0ZYP5l79tln9f777+vll1/W0KFDtWPHDq1cuVIbNmywHnfcuHEKDg5W8+bN1bJlS7377ru6fv26hgwZkqMBAQDAYrHI19dX5cqVU2Jior27gyxycnIy/VM/MhIAoCggIxVs9shIGcnypOb3Mn/+fDk4OKh3796Kj49XUFCQPvjgA+vzjo6OWr9+vZ577jkFBATIzc1NwcHBev31161tqlWrpg0bNmjs2LFasGCBKlWqpE8//VRBQUHWNo899pguXLigKVOmKCoqSk2aNNHmzZtTTeIJAEB2pXz9CcgNZCQAQGFBRkJusBj5aYp1k8XGxsrLy0sxMTHy9PTM9f0nbv7ZZtmpy/25fgwAAJA1ef33vzAgIwEAUPSYnZGydJc9AAAAAAAAIKcoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpitm7A4XZqSubbJYd9h9RjebP2Kk3AAAA+QMZCQAAcIUUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYKosFaQ+/PBD3XffffL09JSnp6cCAgK0adMm6/M3b97UiBEjVLp0abm7u6t37946f/68zT4iIyPVrVs3lShRQuXKldP48eN169YtmzY7d+5Us2bN5OLiopo1a2rp0qWp+rJo0SJVrVpVrq6uatWqlfbu3ZuVUwEAAMg1ZCQAAICsyVJBqlKlSpo1a5ZCQ0O1f/9+derUST169NCRI0ckSWPHjtX333+vVatWadeuXTp79qx69epl3T4pKUndunVTQkKCdu/erc8//1xLly7VlClTrG0iIiLUrVs3dezYUWFhYRozZoyGDRumLVu2WNt8/fXXGjdunKZOnaoDBw6ocePGCgoKUnR0dE7HAwAAIMvISAAAAFljMQzDyMkOSpUqpbffflt9+vRR2bJl9dVXX6lPnz6SpD/++EP16tXTnj171Lp1a23atEmPPPKIzp49q/Lly0uSFi9erAkTJujChQtydnbWhAkTtGHDBh0+fNh6jP79++vKlSvavHmzJKlVq1Zq0aKF3n//fUlScnKyKleurFGjRmnixImZ7ntsbKy8vLwUExMjT0/PnAxDmk6smGyz7FCzimo0fybXjwMAADIvr//+pyAjpY+MBABA/mNWRkqR7TmkkpKStGLFCl2/fl0BAQEKDQ1VYmKiAgMDrW3q1q2rKlWqaM+ePZKkPXv2qFGjRtagJUlBQUGKjY21foK4Z88em32ktEnZR0JCgkJDQ23aODg4KDAw0NoGAADAXshIAAAA91YsqxuEh4crICBAN2/elLu7u9asWaP69esrLCxMzs7O8vb2tmlfvnx5RUVFSZKioqJsglbK8ynPZdQmNjZWN27c0OXLl5WUlJRmmz/++CPDvsfHxys+Pt66HBsbm/kTBwAAyAAZCQAAIPOyfIVUnTp1FBYWpt9++03PPfecgoODdfTo0bzoW66bOXOmvLy8rI/KlSvbu0sAAKCQICMBAABkXpYLUs7OzqpZs6b8/f01c+ZMNW7cWAsWLJCPj48SEhJ05coVm/bnz5+Xj4+PJMnHxyfVHWVSlu/VxtPTU8WLF1eZMmXk6OiYZpuUfaRn0qRJiomJsT7OnDmT1dMHAABIExkJAAAg87I9h1SK5ORkxcfHy9/fX05OTgoJCbE+d/z4cUVGRiogIECSFBAQoPDwcJs7vWzbtk2enp6qX7++tc2d+0hpk7IPZ2dn+fv727RJTk5WSEiItU16XFxcrLdjTnkAAADkBTISAABA+rI0h9SkSZP08MMPq0qVKrp69aq++uor7dy5U1u2bJGXl5eeeuopjRs3TqVKlZKnp6dGjRqlgIAAtW7dWpLUuXNn1a9fXwMHDtScOXMUFRWlV199VSNGjJCLi4sk6dlnn9X777+vl19+WUOHDtWOHTu0cuVKbdiwwdqPcePGKTg4WM2bN1fLli317rvv6vr16xoyZEguDg0AAEDmkJEAAACyJksFqejoaA0aNEjnzp2Tl5eX7rvvPm3ZskUPPfSQJGn+/PlycHBQ7969FR8fr6CgIH3wwQfW7R0dHbV+/Xo999xzCggIkJubm4KDg/X6669b21SrVk0bNmzQ2LFjtWDBAlWqVEmffvqpgoKCrG0ee+wxXbhwQVOmTFFUVJSaNGmizZs3p5rEEwAAwAxkJAAAgKyxGIZh2LsT9hIbGysvLy/FxMTkyaXpJ1ZMtll2qFlFNZo/k+vHAQAAmZfXf/8LAzISAABFj9kZKcdzSAEAAAAAAABZQUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATJWlgtTMmTPVokULeXh4qFy5curZs6eOHz9u0+bmzZsaMWKESpcuLXd3d/Xu3Vvnz5+3aRMZGalu3bqpRIkSKleunMaPH69bt27ZtNm5c6eaNWsmFxcX1axZU0uXLk3Vn0WLFqlq1apydXVVq1attHfv3qycDgAAQK4gIwEAAGRNlgpSu3bt0ogRI/Trr79q27ZtSkxMVOfOnXX9+nVrm7Fjx+r777/XqlWrtGvXLp09e1a9evWyPp+UlKRu3bopISFBu3fv1ueff66lS5dqypQp1jYRERHq1q2bOnbsqLCwMI0ZM0bDhg3Tli1brG2+/vprjRs3TlOnTtWBAwfUuHFjBQUFKTo6OifjAQAAkGVkJAAAgKyxGIZhZHfjCxcuqFy5ctq1a5fatWunmJgYlS1bVl999ZX69OkjSfrjjz9Ur1497dmzR61bt9amTZv0yCOP6OzZsypfvrwkafHixZowYYIuXLggZ2dnTZgwQRs2bNDhw4etx+rfv7+uXLmizZs3S5JatWqlFi1a6P3335ckJScnq3Llyho1apQmTpyYqf7HxsbKy8tLMTEx8vT0zO4wpOvEisk2yw41q6hG82dy/TgAACDz8vrvv0RGuhcyEgAA+Y8ZGelOOZpDKiYmRpJUqlQpSVJoaKgSExMVGBhobVO3bl1VqVJFe/bskSTt2bNHjRo1sgYtSQoKClJsbKyOHDlibXPnPlLapOwjISFBoaGhNm0cHBwUGBhobZOW+Ph4xcbG2jwAAAByGxkJAAAgY9kuSCUnJ2vMmDFq27atGjZsKEmKioqSs7OzvL29bdqWL19eUVFR1jZ3Bq2U51Oey6hNbGysbty4oYsXLyopKSnNNin7SMvMmTPl5eVlfVSuXDnrJw4AAJABMhIAAMC9ZbsgNWLECB0+fFgrVqzIzf7kqUmTJikmJsb6OHPmjL27BAAAChkyEgAAwL0Vy85GI0eO1Pr16/Xjjz+qUqVK1vU+Pj5KSEjQlStXbD4BPH/+vHx8fKxt7r7TS8odZu5sc/ddZ86fPy9PT08VL15cjo6OcnR0TLNNyj7S4uLiIhcXl6yfMAAAQCaQkQAAADInS1dIGYahkSNHas2aNdqxY4eqVatm87y/v7+cnJwUEhJiXXf8+HFFRkYqICBAkhQQEKDw8HCbO71s27ZNnp6eql+/vrXNnftIaZOyD2dnZ/n7+9u0SU5OVkhIiLUNAACAWchIAAAAWZOlK6RGjBihr776St999508PDyscxF4eXmpePHi8vLy0lNPPaVx48apVKlS8vT01KhRoxQQEKDWrVtLkjp37qz69etr4MCBmjNnjqKiovTqq69qxIgR1k/mnn32Wb3//vt6+eWXNXToUO3YsUMrV67Uhg0brH0ZN26cgoOD1bx5c7Vs2VLvvvuurl+/riFDhuTW2AAAAGQKGQkAACBrslSQ+vDDDyVJHTp0sFm/ZMkSDR48WJI0f/58OTg4qHfv3oqPj1dQUJA++OADa1tHR0etX79ezz33nAICAuTm5qbg4GC9/vrr1jbVqlXThg0bNHbsWC1YsECVKlXSp59+qqCgIGubxx57TBcuXNCUKVMUFRWlJk2aaPPmzakm8QQAAMhrZCQAAICssRiGYdi7E/YSGxsrLy8vxcTEyNPTM9f3f2LFZJtlh5pVVKP5M7l+HAAAkHl5/fe/MCAjAQBQ9JidkbJ9lz0AAAAAAAAgOyhIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKmyXJD68ccf1b17d1WoUEEWi0Vr1661ed4wDE2ZMkW+vr4qXry4AgMDdeLECZs2ly5d0hNPPCFPT095e3vrqaee0rVr12za/P7773rggQfk6uqqypUra86cOan6smrVKtWtW1eurq5q1KiRNm7cmNXTAQAAyBVkJAAAgMzLckHq+vXraty4sRYtWpTm83PmzNHChQu1ePFi/fbbb3Jzc1NQUJBu3rxpbfPEE0/oyJEj2rZtm9avX68ff/xRTz/9tPX52NhYde7cWX5+fgoNDdXbb7+tadOm6eOPP7a22b17twYMGKCnnnpKBw8eVM+ePdWzZ08dPnw4q6cEAACQY2QkAACAzLMYhmFke2OLRWvWrFHPnj0l3f7kr0KFCnrxxRf10ksvSZJiYmJUvnx5LV26VP3799exY8dUv3597du3T82bN5ckbd68WV27dtXff/+tChUq6MMPP9TkyZMVFRUlZ2dnSdLEiRO1du1a/fHHH5Kkxx57TNevX9f69eut/WndurWaNGmixYsXZ6r/sbGx8vLyUkxMjDw9PbM7DOk6sWKyzbJDzSqq0fyZXD8OAADIvLz++y+Rke6FjAQAQP5jRka6U67OIRUREaGoqCgFBgZa13l5ealVq1bas2ePJGnPnj3y9va2Bi1JCgwMlIODg3777Tdrm3bt2lmDliQFBQXp+PHjunz5srXNncdJaZNynLTEx8crNjbW5gEAAJDXyEgAAAC2crUgFRUVJUkqX768zfry5ctbn4uKilK5cuVsni9WrJhKlSpl0yatfdx5jPTapDyflpkzZ8rLy8v6qFy5clZPEQAAIMvISAAAALaK1F32Jk2apJiYGOvjzJkz9u4SAACA3ZGRAACA2XK1IOXj4yNJOn/+vM368+fPW5/z8fFRdHS0zfO3bt3SpUuXbNqktY87j5Fem5Tn0+Li4iJPT0+bBwAAQF4jIwEAANjK1YJUtWrV5OPjo5CQEOu62NhY/fbbbwoICJAkBQQE6MqVKwoNDbW22bFjh5KTk9WqVStrmx9//FGJiYnWNtu2bVOdOnVUsmRJa5s7j5PSJuU4AAAA+QUZCQAAwFaWC1LXrl1TWFiYwsLCJN2epDMsLEyRkZGyWCwaM2aM3njjDa1bt07h4eEaNGiQKlSoYL3LTL169dSlSxcNHz5ce/fu1S+//KKRI0eqf//+qlChgiTp8ccfl7Ozs5566ikdOXJEX3/9tRYsWKBx48ZZ+zF69Ght3rxZ77zzjv744w9NmzZN+/fv18iRI3M+KgAAAFlERgIAAMi8YlndYP/+/erYsaN1OSUABQcHa+nSpXr55Zd1/fp1Pf3007py5Yruv/9+bd68Wa6urtZtli9frpEjR+rBBx+Ug4ODevfurYULF1qf9/Ly0tatWzVixAj5+/urTJkymjJlip5++mlrmzZt2uirr77Sq6++qldeeUW1atXS2rVr1bBhw2wNBAAAQE6QkQAAADLPYhiGYe9O2EtsbKy8vLwUExOTJ3MlnFgx2WbZoWYV1Wj+TK4fBwAAZF5e//0vDMhIAAAUPWZnpCJ1lz0AAAAAAADYHwUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgqgJfkFq0aJGqVq0qV1dXtWrVSnv37rV3lwAAAOyOjAQAAPKzAl2Q+vrrrzVu3DhNnTpVBw4cUOPGjRUUFKTo6Gh7dy1NyX9GKnHzz9YHAABAXiAjAQCA/K5AF6TmzZun4cOHa8iQIapfv74WL16sEiVK6LPPPrN31wAAAOyGjAQAAPK7YvbuQHYlJCQoNDRUkyZNsq5zcHBQYGCg9uzZY8eeZezUlU3/t7Bik6p6PyxJcupyv516BAAAChMyEgAAKAgKbEHq4sWLSkpKUvny5W3Wly9fXn/88Uea28THxys+Pt66HBMTI0mKjY3Nkz5ei4u/Z5vDcWtv/+OztRm2q9FnSs47BAAArH/3DcOwc0/yBhkJAABkh9kZqcAWpLJj5syZmj59eqr1lStXtkNvsuipd+zdAwAACpWrV6/Ky8vL3t3IF8hIAAAghVkZqcAWpMqUKSNHR0edP3/eZv358+fl4+OT5jaTJk3SuHHjrMvJycm6dOmSSpcuLYvFkqv9i42NVeXKlXXmzBl5enrm6r4LA8YnY4xPxhif9DE2GWN8MlZUxscwDF29elUVKlSwd1fyBBmpYGN8Msb4ZIzxyRjjkz7GJmNFZXzMzkgFtiDl7Owsf39/hYSEqGfPnpJuh6eQkBCNHDkyzW1cXFzk4uJis87b2ztP++np6Vmo37A5xfhkjPHJGOOTPsYmY4xPxorC+BTmK6PISIUD45MxxidjjE/GGJ/0MTYZKwrjY2ZGKrAFKUkaN26cgoOD1bx5c7Vs2VLvvvuurl+/riFDhti7awAAAHZDRgIAAPldgS5IPfbYY7pw4YKmTJmiqKgoNWnSRJs3b041iScAAEBRQkYCAAD5XYEuSEnSyJEj07383J5cXFw0derUVJe/4zbGJ2OMT8YYn/QxNhljfDLG+BQuZKSCifHJGOOTMcYnY4xP+hibjDE+ecNiFNZ7HgMAAAAAACBfcrB3BwAAAAAAAFC0UJACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClI5sGjRIlWtWlWurq5q1aqV9u7dm2H7VatWqW7dunJ1dVWjRo20ceNGk3pqH1kZn6VLl8pisdg8XF1dTeyteX788Ud1795dFSpUkMVi0dq1a++5zc6dO9WsWTO5uLioZs2aWrp0aZ73016yOj47d+5M9d6xWCyKiooyp8Mmmzlzplq0aCEPDw+VK1dOPXv21PHjx++5XVH4/ZOdsSlKv3s+/PBD3XffffL09JSnp6cCAgK0adOmDLcpCu8b5A0yUsbISGkjI2WMjJQxMlL6yEgZIyPZDwWpbPr66681btw4TZ06VQcOHFDjxo0VFBSk6OjoNNvv3r1bAwYM0FNPPaWDBw+qZ8+e6tmzpw4fPmxyz82R1fGRJE9PT507d876OH36tIk9Ns/169fVuHFjLVq0KFPtIyIi1K1bN3Xs2FFhYWEaM2aMhg0bpi1btuRxT+0jq+OT4vjx4zbvn3LlyuVRD+1r165dGjFihH799Vdt27ZNiYmJ6ty5s65fv57uNkXl9092xkYqOr97KlWqpFmzZik0NFT79+9Xp06d1KNHDx05ciTN9kXlfYPcR0bKGBkpfWSkjJGRMkZGSh8ZKWNkJDsykC0tW7Y0RowYYV1OSkoyKlSoYMycOTPN9v369TO6detms65Vq1bGM888k6f9tJesjs+SJUsMLy8vk3qXf0gy1qxZk2Gbl19+2WjQoIHNuscee8wICgrKw57lD5kZnx9++MGQZFy+fNmUPuU30dHRhiRj165d6bYpar9/UmRmbIrq754UJUuWND799NM0nyuq7xvkHBkpY2SkzCEjZYyMdG9kpPSRke6NjGQOrpDKhoSEBIWGhiowMNC6zsHBQYGBgdqzZ0+a2+zZs8emvSQFBQWl274gy874SNK1a9fk5+enypUrZ1iRLmqK0nsnJ5o0aSJfX1899NBD+uWXX+zdHdPExMRIkkqVKpVum6L6HsrM2EhF83dPUlKSVqxYoevXrysgICDNNkX1fYOcISNljIyUu4rSeycnyEhkpLuRkdJHRjIXBalsuHjxopKSklS+fHmb9eXLl0/3O9lRUVFZal+QZWd86tSpo88++0zfffedvvzySyUnJ6tNmzb6+++/zehyvpbeeyc2NlY3btywU6/yD19fXy1evFjffPONvvnmG1WuXFkdOnTQgQMH7N21PJecnKwxY8aobdu2atiwYbrtitLvnxSZHZui9rsnPDxc7u7ucnFx0bPPPqs1a9aofv36abYtiu8b5BwZKWNkpNxFRsoYGYmMlBYyUtrISPZRzN4dACQpICDApgLdpk0b1atXTx999JFmzJhhx54hv6tTp47q1KljXW7Tpo1Onjyp+fPna9myZXbsWd4bMWKEDh8+rJ9//tneXcl3Mjs2Re13T506dRQWFqaYmBitXr1awcHB2rVrV7qBC4D9FbXfU8g9ZCQyUlrISGkjI9kHV0hlQ5kyZeTo6Kjz58/brD9//rx8fHzS3MbHxydL7Quy7IzP3ZycnNS0aVP9+eefedHFAiW9946np6eKFy9up17lby1btiz0752RI0dq/fr1+uGHH1SpUqUM2xal3z9S1sbmboX9d4+zs7Nq1qwpf39/zZw5U40bN9aCBQvSbFvU3jfIHWSkjJGRchcZKevISLaK0u8fiYyUETKSfVCQygZnZ2f5+/srJCTEui45OVkhISHpfs80ICDApr0kbdu2Ld32BVl2xuduSUlJCg8Pl6+vb151s8AoSu+d3BIWFlZo3zuGYWjkyJFas2aNduzYoWrVqt1zm6LyHsrO2NytqP3uSU5OVnx8fJrPFZX3DXIXGSljZKTcVZTeO7mFjGSrqLyHyEhZR0YyiX3nVC+4VqxYYbi4uBhLly41jh49ajz99NOGt7e3ERUVZRiGYQwcONCYOHGitf0vv/xiFCtWzJg7d65x7NgxY+rUqYaTk5MRHh5ur1PIU1kdn+nTpxtbtmwxTp48aYSGhhr9+/c3XF1djSNHjtjrFPLM1atXjYMHDxoHDx40JBnz5s0zDh48aJw+fdowDMOYOHGiMXDgQGv7v/76yyhRooQxfvx449ixY8aiRYsMR0dHY/PmzfY6hTyV1fGZP3++sXbtWuPEiRNGeHi4MXr0aMPBwcHYvn27vU4hTz333HOGl5eXsXPnTuPcuXPWR1xcnLVNUf39k52xKUq/eyZOnGjs2rXLiIiIMH7//Xdj4sSJhsViMbZu3WoYRtF93yD3kZEyRkZKHxkpY2SkjJGR0kdGyhgZyX4oSOXAe++9Z1SpUsVwdnY2WrZsafz666/W59q3b28EBwfbtF+5cqVRu3Ztw9nZ2WjQoIGxYcMGk3tsrqyMz5gxY6xty5cvb3Tt2tU4cOCAHXqd91JuwXv3I2U8goODjfbt26fapkmTJoazs7NRvXp1Y8mSJab32yxZHZ/Zs2cbNWrUMFxdXY1SpUoZHTp0MHbs2GGfzpsgrbGRZPOeKKq/f7IzNkXpd8/QoUMNPz8/w9nZ2Shbtqzx4IMPWoOWYRTd9w3yBhkpY2SktJGRMkZGyhgZKX1kpIyRkezHYhiGkfvXXQEAAAAAAABpYw4pAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAgX/nxxx/VvXt3VahQQRaLRWvXrs3yPrZs2aLWrVvLw8NDZcuWVe/evXXq1Klc7ysAAIBZCltGoiAFAADylevXr6tx48ZatGhRtraPiIhQjx491KlTJ4WFhWnLli26ePGievXqlcs9BQAAME9hy0gWwzAMuxwZAADgHiwWi9asWaOePXta18XHx2vy5Mn673//qytXrqhhw4aaPXu2OnToIElavXq1BgwYoPj4eDk43P7s7fvvv1ePHj0UHx8vJycnO5wJAABA7ikMGYkrpAAAQIEycuRI7dmzRytWrNDvv/+uvn37qkuXLjpx4oQkyd/fXw4ODlqyZImSkpIUExOjZcuWKTAwkGIUAAAotApaRuIKKQAAkG/d/elfZGSkqlevrsjISFWoUMHaLjAwUC1bttRbb70lSdq1a5f69eunf//9V0lJSQoICNDGjRvl7e1th7MAAADIXYUhI3GFFAAAKDDCw8OVlJSk2rVry93d3frYtWuXTp48KUmKiorS8OHDFRwcrH379mnXrl1ydnZWnz59xOdwAACgMCqIGamY6UcEAADIpmvXrsnR0VGhoaFydHS0ec7d3V2StGjRInl5eWnOnDnW57788ktVrlxZv/32m1q3bm1qnwEAAPJaQcxIFKQAAECB0bRpUyUlJSk6OloPPPBAmm3i4uKsE3WmSAlmycnJed5HAAAAsxXEjMRX9gAAQL5y7do1hYWFKSwsTNLtWxSHhYUpMjJStWvX1hNPPKFBgwbp22+/VUREhPbu3auZM2dqw4YNkqRu3bpp3759ev3113XixAkdOHBAQ4YMkZ+fn5o2bWrHMwMAAMi+wpaRmNQcAADkKzt37lTHjh1TrQ8ODtbSpUuVmJioN954Q1988YX++ecflSlTRq1bt9b06dPVqFEjSdKKFSs0Z84c/e9//1OJEiUUEBCg2bNnq27dumafDgAAQK4obBmJghQAAAAAAABMxVf2AAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSgAn27dunNm3ayM3NTRaLRWFhYfbuEgqgnTt3ymKxaOfOnbm632vXrqlcuXJavnz5PdsOHjxYVatWTbX9sGHD5OPjI4vFojFjxmTp+BMnTlSrVq2ytA0AoHAgIyE3kJGAgomCFJDHEhMT1bdvX126dEnz58/XsmXL5OfnZ+9u2V1cXJymTZuW68EBWbdgwQJ5eHiof//+2dr+rbfe0tKlS/Xcc89p2bJlGjhwoCTpww8/VN++fVWlShVZLBYNHjw4ze3HjBmjQ4cOad26ddk9BQBAAURGShsZKf/Ii4x05swZTZ8+XS1btlTJkiVVpkwZdejQQdu3b0+1PRkJhV0xe3cAKOxOnjyp06dP65NPPtGwYcPs3Z18Iy4uTtOnT5ckdejQwb6dKSDatWunGzduyNnZOdf2mZiYqAULFmjs2LFydHTM1j527Nih1q1ba+rUqTbrZ8+eratXr6ply5Y6d+5cutv7+PioR48emjt3rv7zn/9kqw8AgIKHjJQ2MlLWFaSM9P7772v27Nnq2bOngoODdevWLX3xxRd66KGH9Nlnn2nIkCHWtmQkFHYUpIA8Fh0dLUny9va+Z9vr16/Lzc0tj3uEgsrBwUGurq65us/169frwoUL6tevX7b3ER0drfr166dav2vXLuvVUe7u7hnuo1+/furbt6/++usvVa9ePdt9AQAUHGQk5JaClJE6duyoyMhIlSlTxrru2WefVZMmTTRlyhSbgpRERkLhxlf2gDw0ePBgtW/fXpLUt29fWSwW6yddgwcPlru7u06ePKmuXbvKw8NDTzzxhCTpp59+sn7VycXFRZUrV9bYsWN148aNVMdYtWqV6tevL1dXVzVs2FBr1qxJ9R32U6dOyWKxaO7cuVq0aJGqV6+uEiVKqHPnzjpz5owMw9CMGTNUqVIlFS9eXD169NClS5dSHWvTpk164IEH5ObmJg8PD3Xr1k1HjhxJdc7u7u76559/1LNnT7m7u6ts2bJ66aWXlJSUZO1P2bJlJUnTp0+XxWKRxWLRtGnTMjWuKfMEfP3113rllVfk4+MjNzc3/ec//9GZM2ds2nbo0EENGzZUaGio2rRpo+LFi6tatWpavHhxmvtcuXKlpk+frooVK8rDw0N9+vRRTEyM4uPjNWbMGJUrV07u7u4aMmSI4uPjM9Xfu8cmMjJSjzzyiNzd3VWxYkUtWrRIkhQeHq5OnTrJzc1Nfn5++uqrr9Ls452X8Kec39GjR9WxY0eVKFFCFStW1Jw5czLVp7Vr16pq1aqqUaNGms81bNjQ5r2VVn8iIiK0YcMG6+t46tQpSZKfn58sFkum+hEYGChJ+u677zLVHgBQsJGRyEhpjU1RyEgNGjSwKUZJkouLi7p27aq///5bV69etXmOjITCjCukgDz0zDPPqGLFinrrrbf0wgsvqEWLFipfvrz1+Vu3bikoKEj333+/5s6dqxIlSki6HaDi4uL03HPPqXTp0tq7d6/ee+89/f3331q1apV1+w0bNuixxx5To0aNNHPmTF2+fFlPPfWUKlasmGZ/li9froSEBI0aNUqXLl3SnDlz1K9fP3Xq1Ek7d+7UhAkT9Oeff+q9997TSy+9pM8++8y67bJlyxQcHKygoCDNnj1bcXFx+vDDD3X//ffr4MGDNuEuKSlJQUFBatWqlebOnavt27frnXfeUY0aNfTcc8+pbNmy+vDDD/Xcc8/p0UcfVa9evSRJ9913X5bG980335TFYtGECRMUHR2td999V4GBgQoLC1Px4sWt7S5fvqyuXbuqX79+GjBggFauXKnnnntOzs7OGjp0qM0+Z86cqeLFi2vixInWsXBycpKDg4MuX76sadOm6ddff9XSpUtVrVo1TZkyJUt9TkpK0sMPP6x27dppzpw5Wr58uUaOHCk3NzdNnjxZTzzxhHr16qXFixdr0KBBCggIULVq1TLc5+XLl9WlSxf16tVL/fr10+rVqzVhwgQ1atRIDz/8cIbb7t69W82aNUu1fuvWrerdu7fq16+vmTNn6t9//9WQIUNUqVIla5t69epp2bJlGjt2rCpVqqQXX3xRkqxBOiu8vLxUo0YN/fLLLxo7dmyWtwcAFCxkJDLS3Yp6RoqKilKJEiWs7/UUZCQUagaAPPXDDz8YkoxVq1bZrA8ODjYkGRMnTky1TVxcXKp1M2fONCwWi3H69GnrukaNGhmVKlUyrl69al23c+dOQ5Lh5+dnXRcREWFIMsqWLWtcuXLFun7SpEmGJKNx48ZGYmKidf2AAQMMZ2dn4+bNm4ZhGMbVq1cNb29vY/jw4TZ9ioqKMry8vGzWp5zX66+/btO2adOmhr+/v3X5woULhiRj6tSpqc71XlLGtGLFikZsbKx1/cqVKw1JxoIFC6zr2rdvb0gy3nnnHeu6+Ph4o0mTJka5cuWMhIQEm302bNjQui5lLCwWi/Hwww/b9CEgIMBmjDMjZWzeeust67rLly8bxYsXNywWi7FixQrr+j/++CPV+KT08Ycffkh1fl988YXN+fn4+Bi9e/fOsD+JiYmGxWIxXnzxxVTPNWnSxPD19bV5v2zdujXVe8swDMPPz8/o1q1bhsdyc3MzgoODM2zTuXNno169ehm2AQAUHmSk28hIRTsjGYZhnDhxwnB1dTUGDhyY5vNkJBRWfGUPsLPnnnsu1bo7P7m6fv26Ll68qDZt2sgwDB08eFCSdPbsWYWHh2vQoEE28/O0b99ejRo1SvNYffv2lZeXl3U55TayTz75pIoVK2azPiEhQf/8848kadu2bbpy5YoGDBigixcvWh+Ojo5q1aqVfvjhh1THevbZZ22WH3jgAf3111/3HI+sGDRokDw8PKzLffr0ka+vrzZu3GjTrlixYnrmmWesy87OznrmmWcUHR2t0NDQVPt0cnKyLrdq1UqGYaT6lLBVq1Y6c+aMbt26leV+3zlxq7e3t+rUqSM3NzebOQrq1Kkjb2/vTI2Zu7u7nnzySZvza9my5T23vXTpkgzDUMmSJW3Wnzt3TmFhYQoODrZ5vzz00ENpzhWVW0qWLKmLFy/m2f4BAAULGSn7yEi3FYSMFBcXp759+6p48eKaNWtWmm3ISCisKEgBdlSsWDGby3tTREZGavDgwSpVqpR1foGUeRZiYmIkSadPn5Yk1axZM9X2aa2TpCpVqtgsp/whrVy5cprrL1++LEk6ceKEJKlTp04qW7aszWPr1q3WSUlTuLq6prokuWTJktb95ZZatWrZLFssFtWsWdM6h1GKChUqpJoItXbt2pKUqm1Wxig5Odn6emRWWmPj5eWlSpUqpZpvycvLK1Njlta2WRlvwzBsllPeW3ePr3Q7BOYVwzAyPecUAKBwIyPlDBnptvyekZKSktS/f38dPXpUq1evVoUKFdLtBxkJhRFzSAF25OLiIgcH27pwUlKSHnroIV26dEkTJkxQ3bp15ebmpn/++UeDBw9WcnJyto+X3i1r01uf8kc45ZjLli2Tj49PqnZ3fnKY0f4KguyOkT33n91tS5UqJYvFkushOLsuX76capJPAEDRREbKf8hIuW/48OFav369li9frk6dOqXbjoyEwoqCFJDPhIeH63//+58+//xzDRo0yLp+27ZtNu38/PwkSX/++WeqfaS1LidS7i5Srlw5650+cio3PuVJ+VQyhWEY+vPPP1NN/Hn27NlUt4v+3//+J0k2E40WNcWKFVONGjUUERFhsz7lvXX3+ErS8ePH86w/ERERaty4cZ7tHwBQsJGRMo+MlDNmZKTx48dryZIlevfddzVgwIAM25KRUFjxlT0gn0n5JOfOT24Mw9CCBQts2lWoUEENGzbUF198oWvXrlnX79q1S+Hh4bnap6CgIHl6euqtt95SYmJiqucvXLiQ5X2m3EHkypUr2e7XF198YXNr3NWrV+vcuXOp7ppy69YtffTRR9blhIQEffTRRypbtqz8/f2zffzCICAgQPv377dZ5+vrqyZNmujzzz+3udx+27ZtOnr0aJ70IyYmRidPnlSbNm3yZP8AgIKPjJR5ZKScy8uM9Pbbb2vu3Ll65ZVXNHr06AzbkpFQmHGFFJDP1K1bVzVq1NBLL72kf/75R56envrmm2/SvGT4rbfeUo8ePdS2bVsNGTJEly9f1vvvv6+GDRvaBLCc8vT01IcffqiBAweqWbNm6t+/v8qWLavIyEht2LBBbdu21fvvv5+lfRYvXlz169fX119/rdq1a6tUqVJq2LChGjZsmOl9lCpVSvfff7+GDBmi8+fP691331XNmjU1fPhwm3YVKlTQ7NmzderUKdWuXVtff/21wsLC9PHHH9tMzlkU9ejRQ8uWLdP//vc/65wR0u1bO3fr1k3333+/hg4dqkuXLum9995TgwYNMv3e+v7773Xo0CFJUmJion7//Xe98cYbkqT//Oc/Np/Sbt++XYZhqEePHrl4dgCAwoSMREYyU15lpDVr1ujll19WrVq1VK9ePX355Zc2zz/00EMqX768dZmMhMKMK6SAfMbJyUnff/+9mjRpopkzZ2r69OmqVauWvvjii1Rtu3fvrv/+979KSEjQxIkT9e2332rp0qWqU6eOXF1dc7Vfjz/+uEJCQlSxYkW9/fbbGj16tFasWKEmTZpoyJAh2drnp59+qooVK2rs2LEaMGCAVq9enaXtX3nlFXXr1k0zZ87UggUL9OCDDyokJMT6yWKKkiVLauPGjdq/f7/Gjx+vM2fO6P33308Vyoqi7t27q0yZMlq5cqXN+i5dumjVqlVKSkrSpEmT9O2332rJkiVq3rx5pvf9zTff6LXXXtNrr72mhIQEHTx40Lp84MABm7arVq3S/fffb/3qAwAAdyMjZR4ZKefyKiOlfFh34sQJDRw4MNXj2LFjNu3JSCjMLEZWZ5sDkO81adJEZcuWTTWnQmGxc+dOdezYUatWrVKfPn0ybNuhQwddvHhRhw8fNql3Bc+MGTO0ZMkSnThxwi6TrUZFRalatWpasWIFn/4BAPIUGen/kJHujYwE5C2ukAIKsMTERN26dctm3c6dO3Xo0CF16NDBPp1CgTN27Fhdu3ZNK1assMvx3333XTVq1IigBQDINWQk5AYyEpC3mEMKKMD++ecfBQYG6sknn1SFChX0xx9/aPHixfLx8dGzzz5r7+5lWUJCgi5dupRhGy8vL5N6k3kxMTG6ceNGhm3SuhV0fuHu7q7o6Gi7HX/WrFl2OzYAoHAiI+UPZKScISOhsKMgBRRgJUuWlL+/vz799FNduHBBbm5u6tatm2bNmqXSpUvbu3tZtnv3bnXs2DHDNkuWLMl3tyEePXq0Pv/88wzb8O1oAADMQ0bKH8hIADLCHFIA8o3Lly8rNDQ0wzYNGjSQr6+vST3KnKNHj+rs2bMZtgkMDDSpNwAAoLAhIwEojChIAQAAAAAAwFRMag4AAAAAAABTFek5pJKTk3X27Fl5eHjIYrHYuzsAAMAEhmHo6tWrqlChghwc+GwuLWQkAACKHrMzUpEuSJ09e1aVK1e2dzcAAIAdnDlzRpUqVbJ3N/IlMhIAAEWXWRmpSBekPDw8JN0ebE9PTzv3BgAAmCE2NlaVK1e25gCkRkYCAKDoMTsjFemCVMol6J6enoQtAACKGL6Klj4yEgAARZdZGYmJEwAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmCrX55D68ccf9fbbbys0NFTnzp3TmjVr1LNnzzTbPvvss/roo480f/58jRkzxrr+0qVLGjVqlL7//ns5ODiod+/eWrBggdzd3a1tfv/9d40YMUL79u1T2bJlNWrUKL388su5fToAgCIsKSlJiYmJ9u4GssjJyUmOjo727kaayEkAgMKAjFQw5beMlOsFqevXr6tx48YaOnSoevXqlW67NWvW6Ndff1WFChVSPffEE0/o3Llz2rZtmxITEzVkyBA9/fTT+uqrryTdnvm9c+fOCgwM1OLFixUeHq6hQ4fK29tbTz/9dG6fEgCgiDEMQ1FRUbpy5Yq9u4Js8vb2lo+PT76buJycBAAoyMhIBV9+yki5XpB6+OGH9fDDD2fY5p9//tGoUaO0ZcsWdevWzea5Y8eOafPmzdq3b5+aN28uSXrvvffUtWtXzZ07VxUqVNDy5cuVkJCgzz77TM7OzmrQoIHCwsI0b948ghYAIMdSgla5cuVUokSJfPEHG5ljGIbi4uIUHR0tSfL19bVzj2yRkwAABRkZqeDKjxkp1wtS95KcnKyBAwdq/PjxatCgQarn9+zZI29vb2vIkqTAwEA5ODjot99+06OPPqo9e/aoXbt2cnZ2trYJCgrS7NmzdfnyZZUsWdKUcwEAFD5JSUnWoFW6dGl7dwfZULx4cUlSdHS0ypUrl68uTb8XchIAIL8iIxV8+S0jmV6Qmj17tooVK6YXXnghzeejoqJUrlw5m3XFihVTqVKlFBUVZW1TrVo1mzbly5e3Ppde0IqPj1d8fLx1OTY2NtvnAQAonFLmQyhRooSde4KcSHn9EhMT7R62ssJeOYmMBAC4FzJS4ZCfMpKpd9kLDQ3VggULtHTpUrtc2jdz5kx5eXlZH5UrVza9DwCAgoFL0Au2gvj62TMnkZEAAJlVEP/G4v/kp9fP1ILUTz/9pOjoaFWpUkXFihVTsWLFdPr0ab344ouqWrWqJMnHx8f6ncYUt27d0qVLl+Tj42Ntc/78eZs2KcspbdIyadIkxcTEWB9nzpzJxbMDAADIPnvmJDISAAAwm6lf2Rs4cKACAwNt1gUFBWngwIEaMmSIJCkgIEBXrlxRaGio/P39JUk7duxQcnKyWrVqZW0zefJkJSYmysnJSZK0bds21alTJ8N5EVxcXOTi4pIXpwYAAJAj9sxJZCQAAGC2XC9IXbt2TX/++ad1OSIiQmFhYSpVqpSqVKmSavIzJycn+fj4qE6dOpKkevXqqUuXLho+fLgWL16sxMREjRw5Uv3797fe+vjxxx/X9OnT9dRTT2nChAk6fPiwFixYoPnz5+f26QAAYJW4+WfTjuXU5f5Mt73XpddTp07VtGnTctij7LFYLFqzZo169uyZ7X18/PHH+uqrr3TgwAFdvXpVly9flre3d6710UzkJABAYWRmRpLISSkuXbqkqVOnauvWrYqMjFTZsmXVs2dPzZgxQ15eXrnb2TyQ6wWp/fv3q2PHjtblcePGSZKCg4O1dOnSTO1j+fLlGjlypB588EE5ODiod+/eWrhwofV5Ly8vbd26VSNGjJC/v7/KlCmjKVOmcCvjAuruX15Z+eUCAJDOnTtn/ffXX3+tKVOm6Pjx49Z17u7uWdpfQkKCzR3a7C0uLk5dunRRly5dNGnSJHt3J0fIScgKMhIA5Fxhzklnz57V2bNnNXfuXNWvX1+nT5/Ws88+q7Nnz2r16tX27t495XpBqkOHDjIMI9PtT506lWpdqVKl9NVXX2W43X333aeffvopq92DnZldOQeAouDOeYG8vLxksVis606ePKlnnnlGv/76q65fv6569epp5syZNl8Nq1q1qp566imdOHFCa9euVa9evbR06VJ98sknev311/Xvv/8qKChIDzzwgF5//XVduXLFuu13332n6dOn6+jRo6pQoYKCg4M1efJkFStWzDrv0aOPPipJ8vPz06lTp3To0CGNGTNG+/fvl8ViUa1atfTRRx+pefPmaZ7fmDFjJEk7d+7MvUGzE3IS0kNGAoC8UZhzUsOGDfXNN99Yl2vUqKE333xTTz75pG7duqVixUydpSnLTJ3UHAAAmOvatWvq2rWrQkJCdPDgQXXp0kXdu3dXZGSkTbu5c+eqcePGOnjwoF577TX98ssvevbZZzV69GiFhYXpoYce0ptvvmmzzU8//aRBgwZp9OjROnr0qD766CMtXbrU2m7fvn2SpCVLlujcuXPW5SeeeEKVKlXSvn37FBoaqokTJ1rnOgIAADBLYcxJMTEx8vT0zPfFKMnkSc0BAIC5GjdurMaNG1uXZ8yYoTVr1mjdunUaOXKkdX2nTp304osvWpcnT56shx9+WC+99JIkqXbt2tq9e7fWr19vbTN9+nRNnDhRwcHBkqTq1atrxowZevnllzV16lSVLVtWkuTt7W3z6WRkZKTGjx+vunXrSpJq1aqVB2cOAACQscKWky5evKgZM2YUmK/pc4UUAACF2LVr1/TSSy+pXr168vb2lru7u44dO5bqk7+7LwM/fvy4WrZsabPu7uVDhw7p9ddfl7u7u/UxfPhwnTt3TnFxcen2ady4cRo2bJgCAwM1a9YsnTx5ModnCQAAkHWFKSfFxsaqW7duql+/vt0mac8qClIAABRiL730ktasWaO33npLP/30k8LCwtSoUSMlJCTYtHNzc8vyvq9du6bp06crLCzM+ggPD9eJEyfk6uqa7nbTpk3TkSNH1K1bN+3YsUP169fXmjVrsnx8AACAnCgsOenq1avq0qWLPDw8tGbNmgIzFQJf2UOuSWsyTu4GAwD29csvv2jw4MHWCTOvXbuW5kTZd6tTp451LoMUdy83a9ZMx48fV82aNdPdj5OTk5KSklKtr127tmrXrq2xY8dqwIABWrJkibWPQGFDRgKA/Kkw5KTY2FgFBQXJxcVF69aty7DYld9QkAIAoBCrVauWvv32W3Xv3l0Wi0WvvfaakpOT77ndqFGj1K5dO82bN0/du3fXjh07tGnTJlksFmubKVOm6JFHHlGVKlXUp08fOTg46NChQzp8+LDeeOMNSbfvTBMSEqK2bdvKxcVFrq6uGj9+vPr06aNq1arp77//1r59+9S7d+90+xIVFaWoqCj9+eefkqTw8HB5eHioSpUqKlWqVA5HCAAAFFUFPSfFxsaqc+fOiouL05dffqnY2FjFxsZKksqWLStHR8dcGKW8w1f2AAAoxObNm6eSJUuqTZs26t69u4KCgtSsWbN7bte2bVstXrxY8+bNU+PGjbV582aNHTvW5lO3oKAgrV+/Xlu3blWLFi3UunVrzZ8/X35+ftY277zzjrZt26bKlSuradOmcnR01L///qtBgwapdu3a6tevnx5++GFNnz493b4sXrxYTZs21fDhwyVJ7dq1U9OmTbVu3bocjAwAACjqCnpOOnDggH777TeFh4erZs2a8vX1tT7OnDmT8wHKYxbDMAx7d8JeYmNj5eXlZb0tIjIvrUvP03L35eiZ2Y5L2AHY082bNxUREaFq1aoVqEuezTB8+HD98ccf+umnn+zdlXvK6HXk7/+9MUbZR0YCUFiRkTJWUHJSfspIfGUPAACkae7cuXrooYfk5uamTZs26fPPP9cHH3xg724BAADYHTkp5yhIIVMy+2kfAKDw2Lt3r+bMmaOrV6+qevXqWrhwoYYNG2bvbgH5ChkJAIomclLOUZACAABpWrlypb27AAAAkC+Rk3KOSc0BAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxaTmyFPceQYAACA1MhIAoKjjCikAAAAAAACYioIUAACFwODBg2WxWGSxWOTk5KTy5cvroYce0meffabk5GR7dy9Hjhw5ot69e6tq1aqyWCx699137d0lAABQgBTmnPTJJ5/ogQceUMmSJVWyZEkFBgZq79699u5WpvCVPQAAMunk/o9MO1aN5s9keZsuXbpoyZIlSkpK0vnz57V582aNHj1aq1ev1rp161SsWMH8sx8XF6fq1aurb9++Gjt2rL27AwAA7mJmRpLISXfauXOnBgwYoDZt2sjV1VWzZ89W586ddeTIEVWsWNHe3csQV0gBAFBIuLi4yMfHRxUrVlSzZs30yiuv6LvvvtOmTZu0dOlSa7srV65o2LBhKlu2rDw9PdWpUycdOnTIZl/ff/+9WrRoIVdXV5UpU0aPPvqo9bnLly9r0KBBKlmypEqUKKGHH35YJ06ckCRdv35dnp6eWr16tc3+1q5dKzc3N129elUJCQkaOXKkfH195erqKj8/P82cOTPd82rRooXefvtt9e/fXy4uLrkwUgAAoKgprDlp+fLlev7559WkSRPVrVtXn376qZKTkxUSEpILo5a3KEgBAFCIderUSY0bN9a3335rXde3b19FR0dr06ZNCg0NVbNmzfTggw/q0qVLkqQNGzbo0UcfVdeuXXXw4EGFhISoZcuW1u0HDx6s/fv3a926ddqzZ48Mw1DXrl2VmJgoNzc39e/fX0uWLLHpx5IlS9SnTx95eHho4cKFWrdunVauXKnjx49r+fLlqlq1qinjAQAAkKIw5qS4uDglJiaqVKlSORscExTMa9IAAECm1a1bV7///rsk6eeff9bevXsVHR1tvdpo7ty5Wrt2rVavXq2nn35ab775pvr376/p06db99G4cWNJ0okTJ7Ru3Tr98ssvatOmjaTbn8xVrlxZa9euVd++fTVs2DC1adNG586dk6+vr6Kjo7Vx40Zt375dkhQZGalatWrp/vvvl8VikZ+fn5nDAQAAYFXYctKECRNUoUIFBQYG5nhs8hpXSAEAUMgZhiGLxSJJOnTokK5du6bSpUvL3d3d+oiIiNDJkyclSWFhYXrwwQfT3NexY8dUrFgxtWrVyrqudOnSqlOnjo4dOyZJatmypRo0aKDPP/9ckvTll1/Kz89P7dq1k3T7k8OwsDDVqVNHL7zwgrZu3Zpn5w4AAJCRwpSTZs2apRUrVmjNmjVydXXN+mCYjCukAAAo5I4dO6Zq1apJkq5duyZfX1/t3LkzVTtvb29JUvHixXN8zGHDhmnRokWaOHGilixZoiFDhljDXrNmzRQREaFNmzZp+/bt6tevnwIDA1PNpwAAAJDXCktOmjt3rmbNmqXt27frvvvuy3EfzcAVUgAAFGI7duxQeHi4evfuLel2yImKilKxYsVUs2ZNm0eZMmUkSffdd1+6E2HWq1dPt27d0m+//WZd9++//+r48eOqX7++dd2TTz6p06dPa+HChTp69KiCg4Nt9uPp6anHHntMn3zyib7++mt988031rkZAAAAzFBYctKcOXM0Y8YMbd68Wc2bN8/2eJiNK6QAACgk4uPjFRUVZXM745kzZ+qRRx7RoEGDJEmBgYEKCAhQz549NWfOHNWuXVtnz561TtDZvHlzTZ06VQ8++KBq1Kih/v3769atW9q4caMmTJigWrVqqUePHho+fLg++ugjeXh4aOLEiapYsaJ69Ohh7UvJkiXVq1cvjR8/Xp07d1alSpWsz82bN0++vr5q2rSpHBwctGrVKvn4+Fg/ebxbQkKCjh49av33P//8o7CwMLm7u6tmzZp5N6AAAKDQKKw5afbs2ZoyZYq++uorVa1aVVFRUZJk/bphfsYVUigQEjf/nOoBALC1efNm+fr6qmrVqurSpYt++OEHLVy4UN99950cHR0lSRaLRRs3blS7du00ZMgQ1a5dW/3799fp06dVvnx5SVKHDh20atUqrVu3Tk2aNFGnTp20d+9e63GWLFkif39/PfLIIwoICJBhGNq4caOcnJxs+vPUU08pISFBQ4cOtVnv4eGhOXPmqHnz5mrRooVOnTqljRs3ysEh7Vhy9uxZNW3aVE2bNtW5c+c0d+5cNW3aVMOGDcvN4QMKJDISAGROYc1JH374oRISEtSnTx/5+vpaH3Pnzs3N4csTFsMwDHt3wl5iY2Pl5eWlmJgYeXp62rs7+ZqZ4capy/2ZOn5a7QAgp27evKmIiAhVq1atQEwGmZ8tW7ZMY8eO1dmzZ+Xs7GzqsTN6Hfn7f2+MUeaRkQAUFWSk3GWvnJSfMhJf2QMAALkqLi5O586d06xZs/TMM8+YXowCAADIr8hJ/4ev7AEAgFw1Z84c1a1bVz4+Ppo0aZK9uwMAAJBvkJP+DwUpAACQq6ZNm6bExESFhITk+8k0AQAAzERO+j8UpAAAAAAAAGAq5pBCvpPZyUHvbscEngAAoDAjI+H/Y+/+w6Kq8///P/gNqTOoBSMbKpXlj8xUTCnzsyUrqPnOsh8apRVpuwttaplaaZoZSWaluZrtrrabvrfad5pZshJWphIiRpmp2a6pZQO1CJO6Isp8//DL0RFUkOGcGbjfrutcl3POa848z3FzHvs8Z14HABoT7pACAKAGTfghtI0Cf38AADQMvmP9my/9/Xm9IbVu3ToNGTJEMTExCggI0IoVK4xtFRUVmjhxorp27apmzZopJiZGI0eO1P79+z32UVJSopSUFNlsNkVGRio1NVUHDx70GPPll1/q+uuvV3h4uGJjY5WZmentQwEANEEhISGSTjwBBf6r6u+v6u/TV5CTAAD+iozUOPhSRvL6T/YOHTqkbt266f7779ett97qse3w4cPasmWLpkyZom7duunAgQN6+OGH9T//8z/avHmzMS4lJUU//vijsrOzVVFRofvuu09jxozRsmXLJEkul0sDBgxQYmKiFi5cqK1bt+r+++9XZGSkxowZ4+1DAgA0IUFBQYqMjFRxcbEk6YILLlBAQIDFVaG23G63Dh8+rOLiYkVGRiooKMjqkjyQkwAA/oqM5N98MSMFuBvwfq2AgAAtX75cQ4cOPeOY/Px8XXPNNdqzZ4/atm2r7du3q3PnzsrPz1d8fLwkKSsrS4MGDdL333+vmJgYLViwQE888YScTqdCQ0MlSZMmTdKKFSu0Y8eOWtfncrlkt9tVVlYmm81Wr2Nt7Go7Z4GVmB8BgLe43W45nU6VlpZaXQrOU2RkpBwOR41B2Ve+/305J/nKOfIHZCQATQkZyf/5UkayfFLzsrIyBQQEKDIyUpKUm5uryMhII2RJUmJiogIDA5WXl6dbbrlFubm56tevnxGyJCkpKUmzZs3SgQMH1LJlyxo/q7y8XOXl5cZrl8vVMAcFAPBrAQEBatOmjaKiolRRUWF1OaijkJAQn7jq5w1m5SQyEgCgNshI/s3XMpKlDakjR45o4sSJGjFihNF9czqdioqK8hgXHBysVq1ayel0GmPi4uI8xkRHRxvbztSQysjI0PTp0719GPARNV2h5IoggPoICgryqS9tNC1m5iQyUuNGRgLgbWQkeINlT9mrqKjQHXfcIbfbrQULFpjymZMnT1ZZWZmx7Nu3z5TPBQAAqAuzcxIZCQAAmM2SO6SqQtaePXu0du1aj98mOhwOY5K0KseOHVNJSYkcDocxpqioyGNM1euqMTUJCwtTWFiYtw6j0fKHuRAAAGisrMhJZKTaISMBAOA9pt8hVRWydu3apQ8//FCtW7f22J6QkKDS0lIVFBQY69auXavKykr17t3bGLNu3TqP36xmZ2friiuuOOPP9QAAAHwdOQkAADQVXm9IHTx4UIWFhSosLJQk7d69W4WFhdq7d68qKip02223afPmzVq6dKmOHz8up9Mpp9Opo0ePSpI6deqk5ORkjR49Wps2bdKGDRuUnp6u4cOHKyYmRpJ01113KTQ0VKmpqdq2bZvefPNNvfzyyxo/fry3DwcAAMBryEkAAAAnBLjdbrc3d/jxxx/rhhtuqLZ+1KhRmjZtWrVJNqt89NFH+vWvfy1JKikpUXp6ut577z0FBgZq2LBhmjt3rpo3b26M//LLL5WWlqb8/HxdeOGFeuihhzRx4sQ61cojjWvWmG5HZ8JOAMDprPz+95ecREaqGRkJANCYmf397/WGlD8hbNWMsAUAaMz4/j83zlHNyEgAgMbM7O9/y56yBwAAAAAAgKaJhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpgq0uANZqTE+Lqcnpx8cTZQAAQG015pxERgIAWI07pAAAAAAAAGAq7pBqYhrzlT4AAIDzRUYCAMBc3CEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADBVsNUFAGaqyFpfbV1Icl8LKgEAAPAdZCQAgNm4QwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKp6yhyaPp8oAAABUR0YCADQkGlJADU4PYIQvAAAAMhIAwHv4yR4AAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpvN6QWrdunYYMGaKYmBgFBARoxYoVHtvdbremTp2qNm3aKCIiQomJidq1a5fHmJKSEqWkpMhmsykyMlKpqak6ePCgx5gvv/xS119/vcLDwxUbG6vMzExvHwoAAIBXkZMAAABO8HpD6tChQ+rWrZvmz59f4/bMzEzNnTtXCxcuVF5enpo1a6akpCQdOXLEGJOSkqJt27YpOztbq1at0rp16zRmzBhju8vl0oABA9SuXTsVFBTo+eef17Rp07Ro0SJvHw4g6cQTZU5fAACoK3ISGhsyEgDgfAW43W53g+08IEDLly/X0KFDJZ246hcTE6NHHnlEjz76qCSprKxM0dHRWrJkiYYPH67t27erc+fOys/PV3x8vCQpKytLgwYN0vfff6+YmBgtWLBATzzxhJxOp0JDQyVJkyZN0ooVK7Rjx45a1+dyuWS321VWViabzebdg/dRhATv4THHAOCffOX735dzkq+cIzORkbyHjAQA/sns739T55DavXu3nE6nEhMTjXV2u129e/dWbm6uJCk3N1eRkZFGyJKkxMREBQYGKi8vzxjTr18/I2RJUlJSknbu3KkDBw6c8fPLy8vlcrk8FgAAAF9gZU4iIwEAALOZ2pByOp2SpOjoaI/10dHRxjan06moqCiP7cHBwWrVqpXHmJr2cepn1CQjI0N2u91YYmNj63dAAAAAXmJlTiIjAQAAszWpp+xNnjxZZWVlxrJv3z6rSwIAALAcGQkAAJjN1IaUw+GQJBUVFXmsLyoqMrY5HA4VFxd7bD927JhKSko8xtS0j1M/oyZhYWGy2WweCwAAgC+wMieRkQAAgNlMbUjFxcXJ4XAoJyfHWOdyuZSXl6eEhARJUkJCgkpLS1VQUGCMWbt2rSorK9W7d29jzLp161RRUWGMyc7O1hVXXKGWLVuadDQAAADeQ04CAABNidcbUgcPHlRhYaEKCwslnZigs7CwUHv37lVAQIDGjh2rZ555RitXrtTWrVs1cuRIxcTEGE+Y6dSpk5KTkzV69Ght2rRJGzZsUHp6uoYPH66YmBhJ0l133aXQ0FClpqZq27ZtevPNN/Xyyy9r/Pjx3j4cAAAAryEnAQAAnBDs7R1u3rxZN9xwg/G6KvyMGjVKS5Ys0WOPPaZDhw5pzJgxKi0tVd++fZWVlaXw8HDjPUuXLlV6err69++vwMBADRs2THPnzjW22+12rVmzRmlpaerZs6cuvPBCTZ06VWPGjPH24QAAAHgNOQkAAOCEALfb7ba6CKu4XC7Z7XaVlZU1mbkSKrLWW11CoxGS3NfqEgAA56Epfv/XVVM8R2Qk7yEjAYB/Mvv7v0k9ZQ8AAAAAAADWoyEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUXn/KHmCm70pXe7xuHznQokoAAAB8BxkJAODruEMKAAAAAAAApqIhBQAAAAAAAFPxkz34jdNvPQcAAAAZCQDgn2hINWIVWeutLgEAAMDnkJEAALAeP9kDAAAAAACAqbhDCg2qplvIecoLAABo6shIAICmjjukAAAAAAAAYCoaUgAAAAAAADAVP9mDT/KHp8WcPiFqSHJfiyoBAABNhT9mJImcBACojjukAAAAAAAAYCrukIJP8IerfQAAAGYjIwEAGisaUmhUeGINAABAdWQkAICvoSEF03GlDwAAoDoyEgCgKWEOKQAAAAAAAJiKO6QAL+GJMgAAADXj6cQAgNNxhxQAAAAAAABMxR1SjUhNd+gAAAA0dWQkAAB8Dw0pNEmnTxrKU2YAAADISAAA89CQAhoQ80oBAABUR0YCANCQAs6gpkcvc5UQAAA0dWQkAIA30JCCV9UUUAAAAJo6MhIAAJ54yh4AAAAAAABMRUMKAAAAAAAApuIne2j0uEUeAACgOjISAMBK3CEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKksaUsePH9eUKVMUFxeniIgIXXrppZoxY4bcbrcxxu12a+rUqWrTpo0iIiKUmJioXbt2eeynpKREKSkpstlsioyMVGpqqg4ePGj24aAJ+a50tcdyPiqy1nssAABUISPBX5GRAAB1ZUlDatasWVqwYIFeeeUVbd++XbNmzVJmZqbmzZtnjMnMzNTcuXO1cOFC5eXlqVmzZkpKStKRI0eMMSkpKdq2bZuys7O1atUqrVu3TmPGjLHikAAAAOqNjAQAAJqKAPepl9xMctNNNyk6Olp//vOfjXXDhg1TRESE3njjDbndbsXExOiRRx7Ro48+KkkqKytTdHS0lixZouHDh2v79u3q3Lmz8vPzFR8fL0nKysrSoEGD9P333ysmJuacdbhcLtntdpWVlclmszXMwZrIF64kNbXHB7ePHFjvfYQk9/VCJQCA2vLl738yUsMgI5mPjAQA/sfs739L7pC69tprlZOTo2+++UaS9MUXX2j9+vUaOPDEF9fu3bvldDqVmJhovMdut6t3797Kzc2VJOXm5ioyMtIIWpKUmJiowMBA5eXlmXg0aMpOvz29qYVNAIB3kZHQWJCRAADnEmzFh06aNEkul0sdO3ZUUFCQjh8/rpkzZyolJUWS5HQ6JUnR0dEe74uOjja2OZ1ORUVFeWwPDg5Wq1atjDGnKy8vV3l5ufHa5XJ57ZgAAADqi4wEAACaCkvukHrrrbe0dOlSLVu2TFu2bNHrr7+u2bNn6/XXX2/Qz83IyJDdbjeW2NjYBv08AACAuiAjAQCApsKShtSECRM0adIkDR8+XF27dtU999yjcePGKSMjQ5LkcDgkSUVFRR7vKyoqMrY5HA4VFxd7bD927JhKSkqMMaebPHmyysrKjGXfvn3ePjQAAIDzRkYCAABNhSUNqcOHDysw0POjg4KCVFlZKUmKi4uTw+FQTk6Osd3lcikvL08JCQmSpISEBJWWlqqgoMAYs3btWlVWVqp37941fm5YWJhsNpvHAgAA4CvISAAAoKmwZA6pIUOGaObMmWrbtq26dOmizz//XHPmzNH9998vSQoICNDYsWP1zDPPqEOHDoqLi9OUKVMUExOjoUOHSpI6deqk5ORkjR49WgsXLlRFRYXS09M1fPjwWj09xt+Z/bSYmiai9MbTU1Cz0/9+ecoMADQNZKT6IyM1bjX9/ZKTAMA/WdKQmjdvnqZMmaLf//73Ki4uVkxMjB588EFNnTrVGPPYY4/p0KFDGjNmjEpLS9W3b19lZWUpPDzcGLN06VKlp6erf//+CgwM1LBhwzR37lwrDgk4b77wKGoAgG8gIwEnkZEAoHELcLvdbquLsIrL5ZLdbldZWZnf3ZruC1f/ULOGuCrKlT8A8B5//v43iz+fIzKS72qoO8fISQDgHWZ//1syhxQAAAAAAACaLhpSAAAAAAAAMBUNKQAAAAAAAJjKkknNAdQNT5QBAACoGU8nBgD/xB1SAAAAAAAAMBV3SAENrKan7zTUU2YAAAD8yek5iYwEAE0Hd0gBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYiknNgUaExx4DAABUR0YCAN9DQwo1qunJcKgdzh0AAI0X3/Pnj3MHADgVP9kDAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAq5pAC/NTpk3MCAACAjAQA/oI7pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIo5pPwAv4NvfL4rXX3OMe0jB5pQCQAA/o2c1LjUJiNJ5CQAaAy4QwoAAAAAAACm4g4pwI/UdNWQK4QAAKCpIyMBgP/hDikAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKZiDinAR9X2KTMAAABNDTkJAPwfd0gBAAAAAADAVNwhBTQyp14xDNy8TZJ0afyDVpUDAADgE8hIAOBbaEgBTUxF1vpq60KS+1pQCQAAgO8gIwGAufjJHgAAAAAAAEzFHVJAI1b57V5JUsXP1a/4AQAANFVkJACwHg0p8JQSAACAGpCRAABoOPxkDwAAAAAAAKaiIQUAAAAAAABTWdaQ+uGHH3T33XerdevWioiIUNeuXbV582Zju9vt1tSpU9WmTRtFREQoMTFRu3bt8thHSUmJUlJSZLPZFBkZqdTUVB08eNDsQwEs9V3pao/FGyqy1ldbAADmICMB3kFGAgDfZklD6sCBA7ruuusUEhKi1atX6+uvv9YLL7ygli1bGmMyMzM1d+5cLVy4UHl5eWrWrJmSkpJ05MgRY0xKSoq2bdum7OxsrVq1SuvWrdOYMWOsOCTAp50eyJgTAwB8ExkJMBcZCQCsY8mk5rNmzVJsbKwWL15srIuLizP+7Ha79dJLL+nJJ5/UzTffLEn661//qujoaK1YsULDhw/X9u3blZWVpfz8fMXHx0uS5s2bp0GDBmn27NmKiYkx96AAAADqiYwEAACaCkvukFq5cqXi4+N1++23KyoqSt27d9drr71mbN+9e7ecTqcSExONdXa7Xb1791Zubq4kKTc3V5GRkUbQkqTExEQFBgYqLy+vxs8tLy+Xy+XyWAAAAHwFGQkAADQVltwh9e9//1sLFizQ+PHj9fjjjys/P19/+MMfFBoaqlGjRsnpdEqSoqOjPd4XHR1tbHM6nYqKivLYHhwcrFatWhljTpeRkaHp06c3wBEB/o35DwDAN5CRAN9CRgKAhmNJQ6qyslLx8fF69tlnJUndu3fXV199pYULF2rUqFEN9rmTJ0/W+PHjjdcul0uxsbEN9nlAY3J6IAtJ7mtRJQDQeJGRAP9DRgKA82PJT/batGmjzp07e6zr1KmT9u7dK0lyOBySpKKiIo8xRUVFxjaHw6Hi4mKP7ceOHVNJSYkx5nRhYWGy2WweCwAAgK8gIwEAgKbCkobUddddp507d3qs++abb9SuXTtJJybvdDgcysnJMba7XC7l5eUpISFBkpSQkKDS0lIVFBQYY9auXavKykr17t3bhKMAAADwLjISAABoKiz5yd64ceN07bXX6tlnn9Udd9yhTZs2adGiRVq0aJEkKSAgQGPHjtUzzzyjDh06KC4uTlOmTFFMTIyGDh0q6cTVwuTkZI0ePVoLFy5URUWF0tPTNXz4cJ4eAwAA/BIZCQAANBWWNKR69eql5cuXa/LkyXr66acVFxenl156SSkpKcaYxx57TIcOHdKYMWNUWlqqvn37KisrS+Hh4caYpUuXKj09Xf3791dgYKCGDRumuXPnWnFIAAAA9UZGAgAATUWA2+12W12EVVwul+x2u8rKynx6roSGfrrHd6WrG3T/8E3tIwfW6/1M2AnAX/nL97+V/OkcNWROIiM1TWQkAE2V2d//lswhBQAAAAAAgKbLkp/sAbDe6Vd963s1UKr5KjVXCQEAgD8hIwGAObhDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqZhDqonhaTEAAADVkZEAADAXd0gBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATMVT9gBIqvnpQu0jB57zff/a/Krx58rSvbV+HwAAgD8gIwFAw6AhBeCMzjeAAQAANGZkJACoP36yBwAAAAAAAFNxhxSABlWRtd7jdUhyX4sqAQAA8B1kJABNHQ2pRq6m24kBb6gKUVVzIgAA4E/ISGgoZCQAqB1+sgcAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFTMIeWDTp/gEAAAAGQkAAAaExpSAExV0/+Z4KkyAACgqSMjAWhqaEgBqBOeSgQAAFAdGQkA6oaGFABTnB7S2kcOtKgSAAAA30FGAtBUMak5AAAAAAAATEVDCgAAAAAAAKbiJ3sALHf6JJ5M4AkAAEBGAtC4cYcUAAAAAAAATEVDCgAAAAAAAKbiJ3sA/MLpt6xL3LYOAABARgLgr2hIAfAZVY89Dty8zVh3afyDVpUDAADgE8hIABojfrIHAAAAAAAAU3GHFACfU/ntXuPPFT9Xvw0dAACgKSIjAWhMaEgB8Lqq28oBAABwEhkJAE6y/Cd7zz33nAICAjR27Fhj3ZEjR5SWlqbWrVurefPmGjZsmIqKijzet3fvXg0ePFgXXHCBoqKiNGHCBB07dszk6gEAABoOOQkAADRWlt4hlZ+fr1dffVVXXXWVx/px48bp/fff19tvvy273a709HTdeuut2rBhgyTp+PHjGjx4sBwOhzZu3Kgff/xRI0eOVEhIiJ599lkrDsUncMUFAIDGg5zkPWQkAAB8j2V3SB08eFApKSl67bXX1LJlS2N9WVmZ/vznP2vOnDm68cYb1bNnTy1evFgbN27UZ599Jklas2aNvv76a73xxhu6+uqrNXDgQM2YMUPz58/X0aNHrTokAAAAryAnAQCAxs6yhlRaWpoGDx6sxMREj/UFBQWqqKjwWN+xY0e1bdtWubm5kqTc3Fx17dpV0dHRxpikpCS5XC5t27ZNZ1JeXi6Xy+WxALDGd6Wrqy0AgBPMzklkJMB3kJEANBWW/GTv73//u7Zs2aL8/Pxq25xOp0JDQxUZGemxPjo6Wk6n0xhzasiq2l617UwyMjI0ffr0elYPwEynh7D2kQONP1dkeT5dJiS5ryk1AUBDsiInkZEA/0NGAuDvTL9Dat++fXr44Ye1dOlShYeHm/rZkydPVllZmbHs27fP1M8HAAA4G6tyEhkJAACYzfSGVEFBgYqLi9WjRw8FBwcrODhYn3zyiebOnavg4GBFR0fr6NGjKi0t9XhfUVGRHA6HJMnhcFR7mkzV66oxNQkLC5PNZvNYAAAAfIVVOYmMBAAAzGZ6Q6p///7aunWrCgsLjSU+Pl4pKSnGn0NCQpSTk2O8Z+fOndq7d68SEhIkSQkJCdq6dauKi4uNMdnZ2bLZbOrcubPZhwQAAOAV5CQAANBUmD6HVIsWLXTllVd6rGvWrJlat25trE9NTdX48ePVqlUr2Ww2PfTQQ0pISFCfPn0kSQMGDFDnzp11zz33KDMzU06nU08++aTS0tIUFhZm9iEBAAB4BTkJAAA0FZZMan4uL774ogIDAzVs2DCVl5crKSlJf/zjH43tQUFBWrVqlX73u98pISFBzZo106hRo/T0009bWDUAAEDDIycBAIDGIMDtdrutLsIqLpdLdrtdZWVlPjVXwulPxagtHgmLpuDUJ8icjifIAKgNX/3+9yW+eo7ISMCZkZEA1JfZ3/+mzyEFAAAAAACApo2GFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKmCrS4AAOqipiclne2pMgAAAE0BGQmAv6EhZTEeXwx4z6n/PVX9NxJ4Wdszjr80/sEGrwkAcH7ISID3kJEA+CIaUgCalMpv9xp/rvj5RDgLSe5rVTkAAAA+oyonkZEAmIE5pAAAAAAAAGAq7pAC0KidekcUAAAATiAjAbAaDSkAfo/5QgAAAKojIwHwZTSkAKAGp0+myxwKAAAAZCQA3kNDCkCTV5snOdU0hgAGAAAaMzISgIbEpOYAAAAAAAAwFQ0pAAAAAAAAmIqf7AFosmqa6LN95EALKgEAAPAdZCQAZuAOKQAAAAAAAJiKO6QA4BSnXxHkaiAAAAAZCYD30ZACgDqqCmSBm7dJki6Nf9DKcgAAAHzC6RlJIicBODMaUgBwFjXNoXC6f21+tdo6whcAAGjMapORpOo5iYwEoApzSAEAAAAAAMBU3CEFAOep8tu9Hq8DL2trUSUAAAC+4/SMJJGTAFTHHVIAAAAAAAAwFXdIAYCXnHo1sOLn9ZKkkOS+VpUDAADgM6pyEhkJQBXukAIAAAAAAICpuEPKT9T2KRYAfAOPPQYAc5CRAP9CRgJQhYYUAPiJiqz1Hq+51R0AAICMBPgrGlIA0ICYVwoAAKA6MhIA5pACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAq5pACAJPU9FSZ0/GUGQAA0NSQkYCmiYYUAFiMST0BAACqIyMBjZslP9nLyMhQr1691KJFC0VFRWno0KHauXOnx5gjR44oLS1NrVu3VvPmzTVs2DAVFRV5jNm7d68GDx6sCy64QFFRUZowYYKOHTtm5qEAAAB4DRkJAAA0FZbcIfXJJ58oLS1NvXr10rFjx/T4449rwIAB+vrrr9WsWTNJ0rhx4/T+++/r7bfflt1uV3p6um699VZt2LBBknT8+HENHjxYDodDGzdu1I8//qiRI0cqJCREzz77rBWHBQC1curVvjOpyFpvQiUAfA0ZCUBTRkYCmpYAt9vttrqIn376SVFRUfrkk0/Ur18/lZWV6aKLLtKyZct02223SZJ27NihTp06KTc3V3369NHq1at10003af/+/YqOjpYkLVy4UBMnTtRPP/2k0NDQc36uy+WS3W5XWVmZbDZbgx7jmdT2H9Sq31UDaNzaRw6s9VhuWQfOjy98/9cWGencyEhA00BGAhqe2d//PvGUvbKyMklSq1atJEkFBQWqqKhQYmKiMaZjx45q27atcnNzJUm5ubnq2rWrEbQkKSkpSS6XS9u2nXkyPAAAAH9BRgIAAI2V5ZOaV1ZWauzYsbruuut05ZVXSpKcTqdCQ0MVGRnpMTY6OlpOp9MYc2rQqtpeta0m5eXlKi8vN167XC5vHQYA+ITT7yjgCiHgv8hIAOA9ZCTA91jekEpLS9NXX32l9esb/rfAGRkZmj59eoN/DgCYgTkUgMaNjAQA54eMBPgHS3+yl56erlWrVumjjz7SxRdfbKx3OBw6evSoSktLPcYXFRXJ4XAYY05/okzV66oxp5s8ebLKysqMZd++fV48GgAAAO8gIwEAgMbOkjuk3G63HnroIS1fvlwff/yx4uLiPLb37NlTISEhysnJ0bBhwyRJO3fu1N69e5WQkCBJSkhI0MyZM1VcXKyoqChJUnZ2tmw2mzp37lzj54aFhSksLKwBjwwA6qemyXnrMonn6fsK3HxyvphL4x8877oAmIOMBAA1IyMBjY8lDam0tDQtW7ZM7777rlq0aGHMZ2C32xURESG73a7U1FSNHz9erVq1ks1m00MPPaSEhAT16dNHkjRgwAB17txZ99xzjzIzM+V0OvXkk08qLS2NQAWgUanNE6TON5AB8C1kJACoPTIS4N8saUgtWLBAkvTrX//aY/3ixYt17733SpJefPFFBQYGatiwYSovL1dSUpL++Mc/GmODgoK0atUq/e53v1NCQoKaNWumUaNG6emnnzbrMADAL9U0rwITewK+gYwEANYhIwHmCnC73W6ri7CKy+WS3W5XWVmZbDabJTXUdsK92nT/ATRdNV39q8tVQ8IWmhJf+P73db5wjshIALyBjATUntnf/5Y/ZQ/VEawAAACqIyMBANB4WPqUPQAAAAAAADQ93CEFAI0Adw0AAABUR0YCfBcNKQBAtblamC8BAACAjAQ0JH6yBwAAAAAAAFPRkAIAAAAAAICp+MkeADRhNc2r0D5yYI2PWz/9FvXajAEAAPBHZCSg4dGQAgB4OD2AtY8caFElAAAAvoOMBHgXDSkAwFlVha/AzduMdZfGP2hVOQAAAD6BjATUDw0pAECtVH671/hzxc/Vb0U/3b82v1ptHSENAAA0NmQk4PwwqTkAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDxlz2JVjwoFAH9ypn+7Tn3scZXTnzwTkty3weoC0LiQkwD4GzISUHs0pAAAXnNqsKqLiizPRyQTyAAAQGPirYwkkZPQeNCQMllN/6AAQFNyrn8HvytdXe0q4qXxDzZkSQB8ABkJQFNXm4wked5tRUaCP6MhBQCwVG1/ksMVQgAA0JSQkdDY0ZACAPgtfuoHAABQHRkJ/oCn7AEAAAAAAMBU3CEFAPB5/9r8qipLPScDbR85sNo4blkHAABNCRkJ/oyGFADANDzCHQAAoDoyEpoiGlIAAJ9zvo9Grg2uEAIAAH9mZk4iI6Eh0ZACADQKZ7yy+HfP9TXdxg4AANBYkZHgq2hIAQD8UkPe2v6vza9WW3dp/IMN9nkAAADeQkaCv6AhBQBoUk4PaVwNBAAAICPBfDSkAACohdOvCHI1EAAAgIyE80dDymQ8PQEAfMt3pasVuHlbtfXnmjC04uf1TPQJeBEZCQB8CxkJDY2GFACgyfPW02q4QggAABqThspIEjkJNKQAADgv35WurvZ0GkkKvKztWd9HIAMAAI0ZGQm1RUMKAAAvOvVK4q5vnzhn+JK4swoAADR+p99t9S9Vb0CdjiZV40ZDCgCABnQ+t7rX1MgifAEAgMbkfH8OeHoji4zkvwKtLqC+5s+fr/bt2ys8PFy9e/fWpk2brC4JAIB6q/x2r8dSkbW+2piKrPXVFqAKGQkA0BiRkRoPv75D6s0339T48eO1cOFC9e7dWy+99JKSkpK0c+dORUVFWV0e/6MHADSo059K1j5yoEWVwNeQkQAATVlNT27tIJ7852sC3G632+oizlfv3r3Vq1cvvfLKK5KkyspKxcbG6qGHHtKkSZPO+X6XyyW73a6ysjLZbDav17fr7094fZ8AgKappmZTTWHr9J/6tf25S7Uxey/0fIRzU7vVvaG//30BGQkA0FScb0a6NP7BahdIyEjmZiS/vUPq6NGjKigo0OTJk411gYGBSkxMVG5uroWVAQDgfTUFq5qcPh/Dd6phfoZSz5c1zVlVUyPrdCHJXGn0RWQkAEBTcr4Zade3NVwcKVW1MeeTkSRyUm34bUPq559/1vHjxxUdHe2xPjo6Wjt27KjxPeXl5SovLzdel5WVSTrRBWwIBw+Xn3sQAAC+4MtdHi+/0q4zDDzFX1ZUWxVwycXV1rn//b3H67b231Qbs6/19mrrLulx/7lrOA9V3/t+fJP4WZGRAADwovPJSFK1nERGqs5vG1LnIyMjQ9OnT6+2PjY21oJqAABoql6o5bhxDVrFL7/8Irvd3qCf4S/ISAAA+IKmlZH8tiF14YUXKigoSEVFRR7ri4qK5HA4anzP5MmTNX78eON1ZWWlSkpK1Lp1awUEBHitNpfLpdjYWO3bt6/Rzk3hDZync+McnRvnqHY4T+fGOaqdxnCe3G63fvnlF8XExFhdSoMgI/k/ztO5cY5qh/N0bpyjc+Mc1U5jOE9mZyS/bUiFhoaqZ8+eysnJ0dChQyWdCE85OTlKT0+v8T1hYWEKCwvzWBcZGdlgNdpsNr/9H6KZOE/nxjk6N85R7XCezo1zVDv+fp4a851RZKTGg/N0bpyj2uE8nRvn6Nw4R7Xj7+fJzIzktw0pSRo/frxGjRql+Ph4XXPNNXrppZd06NAh3XfffVaXBgAAYBkyEgAA8HV+3ZC688479dNPP2nq1KlyOp26+uqrlZWVVW0STwAAgKaEjAQAAHydXzekJCk9Pf2Mt59bJSwsTE899VS1W9/hifN0bpyjc+Mc1Q7n6dw4R7XDefIfZCT/xXk6N85R7XCezo1zdG6co9rhPNVdgLuxPvMYAAAAAAAAPinQ6gIAAAAAAADQtNCQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSDWD+/Plq3769wsPD1bt3b23atMnqknxGRkaGevXqpRYtWigqKkpDhw7Vzp07rS7Lpz333HMKCAjQ2LFjrS7F5/zwww+6++671bp1a0VERKhr167avHmz1WX5jOPHj2vKlCmKi4tTRESELr30Us2YMUNN/VkW69at05AhQxQTE6OAgACtWLHCY7vb7dbUqVPVpk0bRUREKDExUbt27bKmWAud7TxVVFRo4sSJ6tq1q5o1a6aYmBiNHDlS+/fvt65g+AUy0pmRkeqOjHRmZKRzIydVR0aqHTKS99CQ8rI333xT48eP11NPPaUtW7aoW7duSkpKUnFxsdWl+YRPPvlEaWlp+uyzz5Sdna2KigoNGDBAhw4dsro0n5Sfn69XX31VV111ldWl+JwDBw7ouuuuU0hIiFavXq2vv/5aL7zwglq2bGl1aT5j1qxZWrBggV555RVt375ds2bNUmZmpubNm2d1aZY6dOiQunXrpvnz59e4PTMzU3PnztXChQuVl5enZs2aKSkpSUeOHDG5Umud7TwdPnxYW7Zs0ZQpU7Rlyxa988472rlzp/7nf/7HgkrhL8hIZ0dGqhsy0pmRkWqHnFQdGal2yEhe5IZXXXPNNe60tDTj9fHjx90xMTHujIwMC6vyXcXFxW5J7k8++cTqUnzOL7/84u7QoYM7Ozvb/f/+3/9zP/zww1aX5FMmTpzo7tu3r9Vl+LTBgwe777//fo91t956qzslJcWiinyPJPfy5cuN15WVlW6Hw+F+/vnnjXWlpaXusLAw9//+7/9aUKFvOP081WTTpk1uSe49e/aYUxT8DhmpbshIZ0ZGOjsyUu2Qk86OjFQ7ZKT64Q4pLzp69KgKCgqUmJhorAsMDFRiYqJyc3MtrMx3lZWVSZJatWplcSW+Jy0tTYMHD/b43xNOWrlypeLj43X77bcrKipK3bt312uvvWZ1WT7l2muvVU5Ojr755htJ0hdffKH169dr4MCBFlfmu3bv3i2n0+nx353dblfv3r35d/wcysrKFBAQoMjISKtLgQ8iI9UdGenMyEhnR0aqHXJS3ZCRzh8Z6cyCrS6gMfn55591/PhxRUdHe6yPjo7Wjh07LKrKd1VWVmrs2LG67rrrdOWVV1pdjk/5+9//ri1btig/P9/qUnzWv//9by1YsEDjx4/X448/rvz8fP3hD39QaGioRo0aZXV5PmHSpElyuVzq2LGjgoKCdPz4cc2cOVMpKSlWl+aznE6nJNX473jVNlR35MgRTZw4USNGjJDNZrO6HPggMlLdkJHOjIx0bmSk2iEn1Q0Z6fyQkc6OhhQsk5aWpq+++krr16+3uhSfsm/fPj388MPKzs5WeHi41eX4rMrKSsXHx+vZZ5+VJHXv3l1fffWVFi5cSNj6/7311ltaunSpli1bpi5duqiwsFBjx45VTEwM5wheU1FRoTvuuENut1sLFiywuhygUSAj1YyMVDtkpNohJ6GhkZHOjZ/sedGFF16ooKAgFRUVeawvKiqSw+GwqCrflJ6erlWrVumjjz7SxRdfbHU5PqWgoEDFxcXq0aOHgoODFRwcrE8++URz585VcHCwjh8/bnWJPqFNmzbq3Lmzx7pOnTpp7969FlXkeyZMmKBJkyZp+PDh6tq1q+655x6NGzdOGRkZVpfms6r+rebf8dqpClp79uxRdnY2V/5wRmSk2iMjnRkZqXbISLVDTqobMlLdkJFqh4aUF4WGhqpnz57Kyckx1lVWVionJ0cJCQkWVuY73G630tPTtXz5cq1du1ZxcXFWl+Rz+vfvr61bt6qwsNBY4uPjlZKSosLCQgUFBVldok+47rrrqj0O+5tvvlG7du0sqsj3HD58WIGBnv/MBwUFqbKy0qKKfF9cXJwcDofHv+Mul0t5eXn8O36aqqC1a9cuffjhh2rdurXVJcGHkZHOjYx0bmSk2iEj1Q45qW7ISLVHRqo9frLnZePHj9eoUaMUHx+va665Ri+99JIOHTqk++67z+rSfEJaWpqWLVumd999Vy1atDB+b2y32xUREWFxdb6hRYsW1eaLaNasmVq3bs08EqcYN26crr32Wj377LO64447tGnTJi1atEiLFi2yujSfMWTIEM2cOVNt27ZVly5d9Pnnn2vOnDm6//77rS7NUgcPHtS3335rvN69e7cKCwvVqlUrtW3bVmPHjtUzzzyjDh06KC4uTlOmTFFMTIyGDh1qXdEWONt5atOmjW677TZt2bJFq1at0vHjx41/z1u1aqXQ0FCryoYPIyOdHRnp3MhItUNGqh1yUnVkpNohI3mRtQ/5a5zmzZvnbtu2rTs0NNR9zTXXuD/77DOrS/IZkmpcFi9ebHVpPo1HGtfsvffec1955ZXusLAwd8eOHd2LFi2yuiSf4nK53A8//LC7bdu27vDwcPcll1zifuKJJ9zl5eVWl2apjz76qMZ/h0aNGuV2u0881njKlCnu6Ohod1hYmLt///7unTt3Wlu0Bc52nnbv3n3Gf88/+ugjq0uHDyMjnRkZ6fyQkWpGRjo3clJ1ZKTaISN5T4Db7XY3TKsLAAAAAAAAqI45pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAywQEBCg9Pd3qMjRt2jQFBAR4fb+bNm1SaGio9uzZc86x7du317333uuxbteuXRowYIDsdrsCAgK0YsWKOn1+nz599Nhjj9XpPQAAwHpkpJPISEDjRUMKABrIE088oREjRqhdu3bn9f5Ro0Zp69atmjlzpv72t78pPj5eBw8e1FNPPaXk5GS1atVKAQEBWrJkSY3vnzhxoubPny+n01mPowAAAPCuhshI+fn5Sk9PV5cuXdSsWTO1bdtWd9xxh7755ptq7ycjAb6BhhSAJu/JJ5/Uf//7X6/us7CwUB9++KF++9vfntf7//vf/yo3N1epqalKT0/X3XffrYsvvlg///yznn76aW3fvl3dunU76z5uvvlm2Ww2/fGPfzyvGgAAQNPmTxlp1qxZ+r//+z/1799fL7/8ssaMGaN169apR48e+uqrrzz2QUYCfAMNKQBndejQIatLaHDBwcEKDw/36j4XL16stm3bqk+fPuf1/p9++kmSFBkZ6bG+TZs2+vHHH7Vnzx49//zzZ91HYGCgbrvtNv31r3+V2+0+rzoAAEDNyEjnp6Ey0vjx47Vnzx7NnTtXDzzwgJ588kl9+umnOnbsmJ577jmPsWQkwDfQkAJgqJon4Ouvv9Zdd92lli1bqm/fvpKkL7/8Uvfee68uueQShYeHy+Fw6P7779d//vOfGvfx7bff6t5771VkZKTsdrvuu+8+HT58+Jw1PPPMMwoMDNS8efNqXXf79u1100036eOPP1Z8fLwiIiLUtWtXffzxx5Kkd955R127dlV4eLh69uypzz//vMaaT1U1d8OKFSt05ZVXKiwsTF26dFFWVlatalqxYoVuvPHGavt1u9165plndPHFF+uCCy7QDTfcoG3btlWrp+oW9gkTJiggIEDt27eXJIWFhcnhcNT21Og3v/mN9uzZo8LCwlq/BwAAeCIjneSrGenaa69VaGiox/gOHTqoS5cu2r59e7U6yEiA9YKtLgCA77n99tvVoUMHPfvss8ZVo+zsbP373//WfffdJ4fDoW3btmnRokXatm2bPvvss2qh4o477lBcXJwyMjK0ZcsW/elPf1JUVJRmzZp1xs998skn9eyzz+rVV1/V6NGj61Tzt99+q7vuuksPPvig7r77bs2ePVtDhgzRwoUL9fjjj+v3v/+9JCkjI0N33HGHdu7cqcDAs/fk169fr3feeUe///3v1aJFC82dO1fDhg3T3r171bp16zO+74cfftDevXvVo0ePatumTp2qZ555RoMGDdKgQYO0ZcsWDRgwQEePHjXG3HrrrYqMjNS4ceM0YsQIDRo0SM2bN6/T+ajSs2dPSdKGDRvUvXv389oHAAA4gYx0gr9kJLfbraKiInXp0qXaNjIS4APcAPD/e+qpp9yS3CNGjKi27fDhw9XW/e///q9bknvdunXV9nH//fd7jL3lllvcrVu39lgnyZ2WluZ2u93uRx55xB0YGOhesmRJnetu166dW5J748aNxrp//vOfbknuiIgI9549e4z1r776qluS+6OPPqpW8+m1hYaGur/99ltj3RdffOGW5J43b95Z6/nwww/dktzvvfeex/ri4mJ3aGioe/Dgwe7Kykpj/eOPP+6W5B41apSxbvfu3W5J7ueff/6Mn5Ofn++W5F68ePFZ6wkNDXX/7ne/O+sYAABwZmQkz9p8PSNV+dvf/uaW5P7zn/9c43YyEmAtfrIHoJqaJpmMiIgw/nzkyBH9/PPPxm//t2zZcs59XH/99frPf/4jl8vlsd7tdis9PV0vv/yy3njjDY0aNeq8au7cubMSEhKM171795Yk3XjjjWrbtm219f/+97/Puc/ExERdeumlxuurrrpKNpvtnO+tukW/ZcuWHus//PBDHT16VA899JDH1dKxY8ees5b6aNmypX7++ecG/QwAAJoCMtIJ/pCRduzYobS0NCUkJJzx3JGRAGvxkz0A1cTFxVVbV1JSounTp+vvf/+7iouLPbaVlZVVG39qwJFOBo8DBw7IZrMZ6//617/q4MGDWrBggUaMGHHeNZ/+eXa7XZIUGxtb4/oDBw7UeZ/SieOozXslVZskc8+ePZJOzGdwqosuuqhaMPMmt9td7ecCAACg7shINe9T8q2M5HQ6NXjwYNntdv3jH/9QUFDQGesgIwHWoSEFoJpTr/RVueOOO7Rx40ZNmDBBV199tZo3b67KykolJyersrKy2vizffGf6rrrrlNhYaFeeeUV3XHHHWrVqtV51Xymz6ttHd58b9XcCbUNZQ2ttLRUF154odVlAADg98hI9XuvGRmprKxMAwcOVGlpqT799FPFxMSccSwZCbAWP9kDcE4HDhxQTk6OJk2apOnTp+uWW27Rb37zG11yySX13vdll12mNWvWaP/+/UpOTtYvv/zihYqt1bFjR0nS7t27PdZXPRVm165dHut/+umnBgtmP/zwg44ePapOnTo1yP4BAGjKyEh109AZ6ciRIxoyZIi++eYbrVq1Sp07dz7jWDISYD0aUgDOqeoq2OlXvV566SWv7P+qq67SBx98oO3bt2vIkCH673//65X9WuVXv/qVYmNjtXnzZo/1iYmJCgkJ0bx58zzOpbfOY00KCgoknXgUMgAA8C4yUt00ZEY6fvy47rzzTuXm5urtt9/2mDerJmQkwHr8ZA/AOdlsNvXr10+ZmZmqqKjQr371K61Zs6ba1a366NOnj959910NGjRIt912m1asWKGQkBCv7d9sN998s5YvX+4xN8FFF12kRx99VBkZGbrppps0aNAgff7551q9enWdbhd/5ZVXVFpaqv3790uS3nvvPX3//feSpIceesiYA0I68Sjqtm3b8jhjAAAaABmp7hoqIz3yyCNauXKlhgwZopKSEr3xxhse2++++26P12QkwHo0pADUyrJly/TQQw9p/vz5crvdGjBggFavXn3W3+XX1Y033qi33npLw4YN0z333KNly5YpMNA/b+S8//779corr2jDhg3q27evsf6ZZ55ReHi4Fi5cqI8++ki9e/fWmjVrNHjw4Frve/bs2cbkn5L0zjvv6J133pF0ImxVNaQqKyv1f//3f0pNTWXCTgAAGggZqW4aKiMVFhZKOnGh7r333qu2/dSGFBkJ8A0B7trMWgcAqLP+/fsrJiZGf/vb3yz5/BUrVuiuu+7Sv/71L7Vp08aSGgAAAE5HRgIg0ZACgAaTl5en66+/Xrt27TIm6zRTQkKCrr/+emVmZpr+2QAAAGdCRgIg0ZAC4MN++uknHT9+/IzbQ0NDz/sRyAAAAP6KjASgMaAhBcBntW/f3mOupNP9v//3//Txxx+bVxAAAIAPICMBaAyY1ByAz1q6dOlZH2/csmVLE6sBAADwDWQkAI0Bd0gBAAAAAADAVP75rFAAAAAAAAD4rSb9k73Kykrt379fLVq0UEBAgNXlAAAAE7jdbv3yyy+KiYlRYCDX5mpCRgIAoOkxOyM16YbU/v37FRsba3UZAADAAvv27dPFF19sdRk+iYwEAEDTZVZGatINqRYtWkg6cbJtNpvF1QAAADO4XC7FxsYaOQDVkZEAAGh6zM5ITbohVXULus1mI2wBANDE8FO0MyMjAQDQdJmVkZg4AQAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqZr0HFIAAJzN8ePHVVFRYXUZqKOQkBAFBQVZXQYAAI0WGck/+VpGoiEFAMBp3G63nE6nSktLrS4F5ykyMlIOh4OJywEA8CIykv/zpYxEQwoAgNNUBa2oqChdcMEFPvGFjdpxu906fPiwiouLJUlt2rSxuCIAABoPMpL/8sWMREMKAIBTHD9+3AharVu3trocnIeIiAhJUnFxsaKionzq1nQAAPwVGcn/+VpGYlJzAABOUTUfwgUXXGBxJaiPqr8/5rcAAMA7yEiNgy9lJBpSAADUgFvQ/Rt/fwAANAy+Y/2bL/390ZACAAAAAACAqWhIAQAAAAAAwFRMag4AQC1VZK037bNCkvvWeuy5br1+6qmnNG3atHpWdH4CAgK0fPlyDR069Lz3sWjRIi1btkxbtmzRL7/8ogMHDigyMtJrNQIAgPoxMyNJ5KQqJSUleuqpp7RmzRrt3btXF110kYYOHaoZM2bIbrd7t9gGQEOqAdX0H2Vd/sMBAKA2fvzxR+PPb775pqZOnaqdO3ca65o3b16n/R09elShoaFeq6++Dh8+rOTkZCUnJ2vy5MlWlwMvICMBAMzSmHPS/v37tX//fs2ePVudO3fWnj179Nvf/lb79+/XP/7xD6vLOyd+sgcAgJ9zOBzGYrfbFRAQYLw+dOiQUlJSFB0drebNm6tXr1768MMPPd7fvn17zZgxQyNHjpTNZtOYMWMkSa+99ppiY2N1wQUX6JZbbtGcOXOq3Zn07rvvqkePHgoPD9cll1yi6dOn69ixY8Z+JemWW25RQECA8fqLL77QDTfcoBYtWshms6lnz57avHnzGY9v7NixmjRpkvr06eOdEwYAAJqMxpyTrrzySv3f//2fhgwZoksvvVQ33nijZs6cqffee8/4HF9GQwoAgEbs4MGDGjRokHJycvT5558rOTlZQ4YM0d69ez3GzZ49W926ddPnn3+uKVOmaMOGDfrtb3+rhx9+WIWFhfrNb36jmTNnerzn008/1ciRI/Xwww/r66+/1quvvqolS5YY4/Lz8yVJixcv1o8//mi8TklJ0cUXX6z8/HwVFBRo0qRJCgkJMeFsAAAAnNQYc1JZWZlsNpuCg33/B3G+XyEAADhv3bp1U7du3YzXM2bM0PLly7Vy5Uqlp6cb62+88UY98sgjxusnnnhCAwcO1KOPPipJuvzyy7Vx40atWrXKGDN9+nRNmjRJo0aNkiRdcsklmjFjhh577DE99dRTuuiiiyRJkZGRcjgcxvv27t2rCRMmqGPHjpKkDh06NMCRAwAAnF1jy0k///yzZsyYYdzF5eu4QwoAgEbs4MGDevTRR9WpUydFRkaqefPm2r59e7Urf/Hx8R6vd+7cqWuuucZj3emvv/jiCz399NNq3ry5sYwePVo//vijDh8+fMaaxo8frwceeECJiYl67rnn9K9//aueRwkAAFB3jSknuVwuDR48WJ07d7Zskva6oiEFAEAj9uijj2r58uV69tln9emnn6qwsFBdu3bV0aNHPcY1a9aszvs+ePCgpk+frsLCQmPZunWrdu3apfDw8DO+b9q0adq2bZsGDx6stWvXqnPnzlq+fHmdPx8AAKA+GktO+uWXX5ScnKwWLVpo+fLlfjMVAj/ZAwCgEduwYYPuvfde3XLLLZJOhKPvvvvunO+74oorjLkMqpz+ukePHtq5c6cuu+yyM+4nJCREx48fr7b+8ssv1+WXX65x48ZpxIgRWrx4sVEjAACAGRpDTnK5XEpKSlJYWJhWrlx51maXr6EhBQBAI9ahQwe98847GjJkiAICAjRlyhRVVlae830PPfSQ+vXrpzlz5mjIkCFau3atVq9erYCAAGPM1KlTddNNN6lt27a67bbbFBgYqC+++EJfffWVnnnmGUknniCTk5Oj6667TmFhYQoPD9eECRN02223KS4uTt9//73y8/M1bNiwM9bidDrldDr17bffSpK2bt2qFi1aqG3btmrVqlU9zxAAAGiq/D0nuVwuDRgwQIcPH9Ybb7whl8sll8slSbrooosUFBTkhbPUcPjJHgAAjdicOXPUsmVLXXvttRoyZIiSkpLUo0ePc77vuuuu08KFCzVnzhx169ZNWVlZGjdunMdVt6SkJK1atUpr1qxRr1691KdPH7344otq166dMeaFF15Qdna2YmNj1b17dwUFBek///mPRo4cqcsvv1x33HGHBg4cqOnTp5+xloULF6p79+4aPXq0JKlfv37q3r27Vq5cWY8zAwAAmjp/z0lbtmxRXl6etm7dqssuu0xt2rQxln379tX/BDWwALfb7ba6CKu4XC7Z7XbjsYjeVpG1vtq6kOS+Xv8cAID3HDlyRLt371ZcXJxf3fJshtGjR2vHjh369NNPrS7lnM7299jQ3/+NARkJAHA6MtLZ+UtO8qWMxE/2AABAjWbPnq3f/OY3atasmVavXq3XX39df/zjH60uCwAAwHLkpPqjIQUAAGq0adMmZWZm6pdfftEll1yiuXPn6oEHHrC6LAAAAMuRk+qPhhQAAKjRW2+9ZXUJAAAAPomcVH9Mag4AAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqOjek1q1bpyFDhigmJkYBAQFasWLFGcf+9re/VUBAgF566SWP9SUlJUpJSZHNZlNkZKRSU1N18OBBjzFffvmlrr/+eoWHhys2NlaZmZnV9v/222+rY8eOCg8PV9euXfXBBx/U9XAAAAC8gowEAABQe3VuSB06dEjdunXT/Pnzzzpu+fLl+uyzzxQTE1NtW0pKirZt26bs7GytWrVK69at05gxY4ztLpdLAwYMULt27VRQUKDnn39e06ZN06JFi4wxGzdu1IgRI5SamqrPP/9cQ4cO1dChQ/XVV1/V9ZAAAADqjYwEAABQe8F1fcPAgQM1cODAs4754Ycf9NBDD+mf//ynBg8e7LFt+/btysrKUn5+vuLj4yVJ8+bN06BBgzR79mzFxMRo6dKlOnr0qP7yl78oNDRUXbp0UWFhoebMmWOEspdfflnJycmaMGGCJGnGjBnKzs7WK6+8ooULF9b1sAAAAOqFjAQAAFB7dW5InUtlZaXuueceTZgwQV26dKm2PTc3V5GRkUbQkqTExEQFBgYqLy9Pt9xyi3Jzc9WvXz+FhoYaY5KSkjRr1iwdOHBALVu2VG5ursaPH++x76SkpLPeHg8AQH38a/Orpn3WpfEP1mn8vffeq9dff12SFBwcrFatWumqq67SiBEjdO+99yow0H+njdy2bZumTp2qgoIC7dmzRy+++KLGjh1rdVl1RkYCADRWZmYkiZx0qtdee01//etfjTuhe/bsqWeffVbXXHONxZWdm9fP+qxZsxQcHKw//OEPNW53Op2KioryWFf1Pwin02mMiY6O9hhT9fpcY6q216S8vFwul8tjAQCgsUhOTtaPP/6o7777TqtXr9YNN9yghx9+WDfddJOOHTtmdXnn7fDhw7rkkkv03HPPyeFwWF3OeSMjAQBgncaakz7++GONGDFCH330kXJzcxUbG6sBAwbohx9+sLq0c/JqQ6qgoEAvv/yylixZooCAAG/u2isyMjJkt9uNJTY21uqSAADwmrCwMDkcDv3qV79Sjx499Pjjj+vdd9/V6tWrtWTJEmNcaWmpHnjgAV100UWy2Wy68cYb9cUXX3js67333lOvXr0UHh6uCy+8ULfccoux7cCBAxo5cqRatmypCy64QAMHDtSuXbsknZhHyWaz6R//+IfH/lasWKFmzZrpl19+0dGjR5Wenq42bdooPDxc7dq1U0ZGxhmPq1evXnr++ec1fPhwhYWFeeFMmY+MBACAtRprTlq6dKl+//vf6+qrr1bHjh31pz/9SZWVlcrJyfHCWWtYXm1IffrppyouLlbbtm0VHBys4OBg7dmzR4888ojat28vSXI4HCouLvZ437Fjx1RSUmJc9XQ4HCoqKvIYU/X6XGPOduV08uTJKisrM5Z9+/bV63gBAPB1N954o7p166Z33nnHWHf77beruLhYq1evVkFBgXr06KH+/furpKREkvT+++/rlltu0aBBg/T5558rJyfH47bve++9V5s3b9bKlSuVm5srt9utQYMGqaKiQs2aNdPw4cO1ePFijzoWL16s2267TS1atNDcuXO1cuVKvfXWW9q5c6eWLl1q5ITGiowEAIDvaYw56fDhw6qoqFCrVq3qd3JM4NU5pO655x4lJiZ6rEtKStI999yj++67T5KUkJCg0tJSFRQUqGfPnpKktWvXqrKyUr179zbGPPHEE6qoqFBISIgkKTs7W1dccYVatmxpjMnJyfGYQyI7O1sJCQlnrC8sLMxvr6wCAHC+OnbsqC+//FKStH79em3atEnFxcXGd+Ls2bO1YsUK/eMf/9CYMWM0c+ZMDR8+XNOnTzf20a1bN0nSrl27tHLlSm3YsEHXXnutpBNX5mJjY7VixQrdfvvteuCBB3Tttdfqxx9/VJs2bVRcXKwPPvhAH374oSRp79696tChg/r27auAgAC1a9fOzNNhCTISAAC+qbHlpIkTJyomJqZa7vBFdb5D6uDBgyosLFRhYaEkaffu3SosLNTevXvVunVrXXnllR5LSEiIHA6HrrjiCklSp06dlJycrNGjR2vTpk3asGGD0tPTNXz4cOPxx3fddZdCQ0OVmpqqbdu26c0339TLL7/sMUHnww8/rKysLL3wwgvasWOHpk2bps2bNys9Pd0LpwUAgMbD7XYbPxP74osvdPDgQbVu3VrNmzc3lt27d+tf//qXJKmwsFD9+/evcV/bt29XcHCw0SCRpNatW+uKK67Q9u3bJUnXXHONunTpYkwe+sYbb6hdu3bq16+fpBNXDgsLC3XFFVfoD3/4g9asWdNgx24mMhIAAP6nMeWk5557Tn//+9+1fPlyhYeH1/1kmKzOd0ht3rxZN9xwg/G6KgCNGjXK43eXZ7N06VKlp6erf//+CgwM1LBhwzR37lxju91u15o1a5SWlqaePXvqwgsv1NSpU43HGUvStddeq2XLlunJJ5/U448/rg4dOmjFihW68sor63pIAAA0atu3b1dcXJykE02TNm3a6OOPP642LjIyUpIUERFR78984IEHNH/+fE2aNEmLFy/WfffdZ4S9Hj16aPfu3Vq9erU+/PBD3XHHHUpMTKw2n4K/ISMBAOB/GktOmj17tp577jl9+OGHuuqqq+pdoxnq3JD69a9/LbfbXevx3333XbV1rVq10rJly876vquuukqffvrpWcfcfvvtuv3222tdCwAATc3atWu1detWjRs3TtKJkON0OhUcHHzG+Qiuuuoq5eTkGD8lO1WnTp107Ngx5eXlGbei/+c//9HOnTvVuXNnY9zdd9+txx57THPnztXXX3+tUaNGeezHZrPpzjvv1J133qnbbrtNycnJKikp8Yv5Ds6EjAQAgH9pLDkpMzNTM2fO1D//+U/Fx8efz6mwhFfnkAIAANYpLy+X0+nU8ePHVVRUpKysLGVkZOimm27SyJEjJUmJiYlKSEjQ0KFDlZmZqcsvv1z79+83JuiMj4/XU089pf79++vSSy/V8OHDdezYMX3wwQeaOHGiOnTooJtvvlmjR4/Wq6++qhYtWmjSpEn61a9+pZtvvtmopWXLlrr11ls1YcIEDRgwQBdffLGxbc6cOWrTpo26d++uwMBAvf3223I4HMaVx9MdPXpUX3/9tfHnH374QYWFhWrevLkuu+yyhjuhAACg0WisOWnWrFmaOnWqli1bpvbt28vpdEqS8XNDX+bVp+wBAADrZGVlqU2bNmrfvr2Sk5P10Ucfae7cuXr33XcVFBQkSQoICNAHH3ygfv366b777tPll1+u4cOHa8+ePYqOjpZ04k6ft99+WytXrtTVV1+tG2+8UZs2bTI+Z/HixerZs6duuukmJSQkyO1264MPPjAm2a6Smpqqo0eP6v777/dY36JFC2VmZio+Pl69evXSd999pw8++ECBgTXHkv3796t79+7q3r27fvzxR82ePVvdu3fXAw884M3TBwAAGrHGmpMWLFigo0eP6rbbblObNm2MZfbs2d48fQ0iwF2Xe8sbGZfLJbvdrrKyMtlsNq/vvyJrfbV1Icl9vf45AADvOXLkiHbv3q24uDi/mAzSl/3tb3/TuHHjtH//foWGhpr62Wf7e2zo7//GgIwEADgdGcm7rMpJvpSR+MkeAADwqsOHD+vHH3/Uc889pwcffND0ZhQAAICvIiedxE/2AACAV2VmZqpjx45yOByaPHmy1eUAAAD4DHLSSTSkAACAV02bNk0VFRXKycnx+ck0AQAAzEROOomGFAAAAAAAAExFQwoAgBo04Wd+NAr8/QEA0DD4jvVvvvT3R0MKAIBTVD2S9/DhwxZXgvqo+vs7/RHLAADg/JCRGgdfykg8ZQ8AgFMEBQUpMjJSxcXFkqQLLrhAAQEBFleF2nK73Tp8+LCKi4sVGRmpoKAgq0sCAKBRICP5N1/MSDSkAAA4jcPhkCQjcMH/REZGGn+PAADAO8hI/s+XMhINKQAAThMQEKA2bdooKipKFRUVVpeDOgoJCfGJq34AADQ2ZCT/5msZiYYUAABnEBQU5FNf2gAAAL6AjARvYFJzAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYqs4NqXXr1mnIkCGKiYlRQECAVqxYYWyrqKjQxIkT1bVrVzVr1kwxMTEaOXKk9u/f77GPkpISpaSkyGazKTIyUqmpqTp48KDHmC+//FLXX3+9wsPDFRsbq8zMzGq1vP322+rYsaPCw8PVtWtXffDBB3U9HAAAAK8gIwEAANRenRtShw4dUrdu3TR//vxq2w4fPqwtW7ZoypQp2rJli9555x3t3LlT//M//+MxLiUlRdu2bVN2drZWrVqldevWacyYMcZ2l8ulAQMGqF27diooKNDzzz+vadOmadGiRcaYjRs3asSIEUpNTdXnn3+uoUOHaujQofrqq6/qekgAAAD1RkYCAACovQC32+0+7zcHBGj58uUaOnToGcfk5+frmmuu0Z49e9S2bVtt375dnTt3Vn5+vuLj4yVJWVlZGjRokL7//nvFxMRowYIFeuKJJ+R0OhUaGipJmjRpklasWKEdO3ZIku68804dOnRIq1atMj6rT58+uvrqq7Vw4cJa1e9yuWS321VWViabzXaeZ+HMKrLWV1sXktzX658DAABqr6G//yUy0rmQkQAA8D1mZKRTNfgcUmVlZQoICFBkZKQkKTc3V5GRkUbQkqTExEQFBgYqLy/PGNOvXz8jaElSUlKSdu7cqQMHDhhjEhMTPT4rKSlJubm5Z6ylvLxcLpfLYwEAALACGQkAADRlDdqQOnLkiCZOnKgRI0YY3TWn06moqCiPccHBwWrVqpWcTqcxJjo62mNM1etzjanaXpOMjAzZ7XZjiY2Nrd8BAgAAnAcyEgAAaOoarCFVUVGhO+64Q263WwsWLGioj6mTyZMnq6yszFj27dtndUkAAKCJISMBAABIwQ2x06qgtWfPHq1du9bjt4cOh0PFxcUe448dO6aSkhI5HA5jTFFRkceYqtfnGlO1vSZhYWEKCws7/wMDAACoBzISAADACV6/Q6oqaO3atUsffvihWrdu7bE9ISFBpaWlKigoMNatXbtWlZWV6t27tzFm3bp1qqioMMZkZ2friiuuUMuWLY0xOTk5HvvOzs5WQkKCtw8JAACg3shIAAAAJ9W5IXXw4EEVFhaqsLBQkrR7924VFhZq7969qqio0G233abNmzdr6dKlOn78uJxOp5xOp44ePSpJ6tSpk5KTkzV69Ght2rRJGzZsUHp6uoYPH66YmBhJ0l133aXQ0FClpqZq27ZtevPNN/Xyyy9r/PjxRh0PP/ywsrKy9MILL2jHjh2aNm2aNm/erPT0dC+cFgAAgLohIwEAANSBu44++ugjt6Rqy6hRo9y7d++ucZsk90cffWTs4z//+Y97xIgR7ubNm7ttNpv7vvvuc//yyy8en/PFF1+4+/bt6w4LC3P/6le/cj/33HPVannrrbfcl19+uTs0NNTdpUsX9/vvv1+nYykrK3NLcpeVldX1NNTK0dWfVlsAAIC1Gur7n4xUe2QkAAB8T0N//58uwO12u81qfvkal8slu92usrIyjzkcvKUia321dSHJfb3+OQAAoPYa+vu/MSAjAQDQ9JidkRrsKXsAAAAAAABATWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgqmCrC4D1KrLWV1sXktzXgkoAAAB8BxkJAICGwx1SAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwVZ0bUuvWrdOQIUMUExOjgIAArVixwmO72+3W1KlT1aZNG0VERCgxMVG7du3yGFNSUqKUlBTZbDZFRkYqNTVVBw8e9Bjz5Zdf6vrrr1d4eLhiY2OVmZlZrZa3335bHTt2VHh4uLp27aoPPvigrocDAADgFWQkAACA2qtzQ+rQoUPq1q2b5s+fX+P2zMxMzZ07VwsXLlReXp6aNWumpKQkHTlyxBiTkpKibdu2KTs7W6tWrdK6des0ZswYY7vL5dKAAQPUrl07FRQU6Pnnn9e0adO0aNEiY8zGjRs1YsQIpaam6vPPP9fQoUM1dOhQffXVV3U9JAAAgHojIwEAANRegNvtdp/3mwMCtHz5cg0dOlTSiSt/MTExeuSRR/Too49KksrKyhQdHa0lS5Zo+PDh2r59uzp37qz8/HzFx8dLkrKysjRo0CB9//33iomJ0YIFC/TEE0/I6XQqNDRUkjRp0iStWLFCO3bskCTdeeedOnTokFatWmXU06dPH1199dVauHBhrep3uVyy2+0qKyuTzWY739NwRhVZ66utC0nu6/XPqS9/qRMAAG9o6O9/iYx0Lv6SPfylTgAAvMGMjHQqr84htXv3bjmdTiUmJhrr7Ha7evfurdzcXElSbm6uIiMjjaAlSYmJiQoMDFReXp4xpl+/fkbQkqSkpCTt3LlTBw4cMMac+jlVY6o+BwAAwFeQkQAAADwFe3NnTqdTkhQdHe2xPjo62tjmdDoVFRXlWURwsFq1auUxJi4urto+qra1bNlSTqfzrJ9Tk/LycpWXlxuvXS5XXQ4PAADgvJCRAAAAPDWpp+xlZGTIbrcbS2xsrNUlAQAAWI6MBAAAzObVhpTD4ZAkFRUVeawvKioytjkcDhUXF3tsP3bsmEpKSjzG1LSPUz/jTGOqttdk8uTJKisrM5Z9+/bV9RABAADqjIwEAADgyasNqbi4ODkcDuXk5BjrXC6X8vLylJCQIElKSEhQaWmpCgoKjDFr165VZWWlevfubYxZt26dKioqjDHZ2dm64oor1LJlS2PMqZ9TNabqc2oSFhYmm83msQAAADQ0MhIAAICnOjekDh48qMLCQhUWFko6MUlnYWGh9u7dq4CAAI0dO1bPPPOMVq5cqa1bt2rkyJGKiYkxnjLTqVMnJScna/To0dq0aZM2bNig9PR0DR8+XDExMZKku+66S6GhoUpNTdW2bdv05ptv6uWXX9b48eONOh5++GFlZWXphRde0I4dOzRt2jRt3rxZ6enp9T8rAAAAdURGAgAAqL06T2q+efNm3XDDDcbrqgA0atQoLVmyRI899pgOHTqkMWPGqLS0VH379lVWVpbCw8ON9yxdulTp6enq37+/AgMDNWzYMM2dO9fYbrfbtWbNGqWlpalnz5668MILNXXqVI0ZM8YYc+2112rZsmV68skn9fjjj6tDhw5asWKFrrzyyvM6EQAAAPVBRgIAAKi9ALfb7ba6CKu4XC7Z7XaVlZU1yK3pFVnrq60LSe7r9c+pL3+pEwAAb2jo7//GgIx0gr/UCQCAN5idkZrUU/YAAAAAAABgPRpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYKtjqAmC970pXV1vXQX0tqAQAAMB3kJEAAGg43CEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqbzekDp+/LimTJmiuLg4RURE6NJLL9WMGTPkdruNMW63W1OnTlWbNm0UERGhxMRE7dq1y2M/JSUlSklJkc1mU2RkpFJTU3Xw4EGPMV9++aWuv/56hYeHKzY2VpmZmd4+HAAAAK8gIwEAAJzk9YbUrFmztGDBAr3yyivavn27Zs2apczMTM2bN88Yk5mZqblz52rhwoXKy8tTs2bNlJSUpCNHjhhjUlJStG3bNmVnZ2vVqlVat26dxowZY2x3uVwaMGCA2rVrp4KCAj3//POaNm2aFi1a5O1DAgAAqDcyEgAAwEnB3t7hxo0bdfPNN2vw4MGSpPbt2+t///d/tWnTJkknrvy99NJLevLJJ3XzzTdLkv76178qOjpaK1as0PDhw7V9+3ZlZWUpPz9f8fHxkqR58+Zp0KBBmj17tmJiYrR06VIdPXpUf/nLXxQaGqouXbqosLBQc+bM8QhlAAAAvoCMBAAAcJLX75C69tprlZOTo2+++UaS9MUXX2j9+vUaOHCgJGn37t1yOp1KTEw03mO329W7d2/l5uZKknJzcxUZGWkELUlKTExUYGCg8vLyjDH9+vVTaGioMSYpKUk7d+7UgQMHvH1YAAAA9UJGAgAAOMnrd0hNmjRJLpdLHTt2VFBQkI4fP66ZM2cqJSVFkuR0OiVJ0dHRHu+Ljo42tjmdTkVFRXkWGhysVq1aeYyJi4urto+qbS1btqxWW3l5ucrLy43XLperPocKAABQa2QkAACAk7x+h9Rbb72lpUuXatmyZdqyZYtef/11zZ49W6+//rq3P6rOMjIyZLfbjSU2NtbqkgAAQBNBRgIAADjJ6w2pCRMmaNKkSRo+fLi6du2qe+65R+PGjVNGRoYkyeFwSJKKioo83ldUVGRsczgcKi4u9th+7NgxlZSUeIypaR+nfsbpJk+erLKyMmPZt29fPY8WAACgdshIAAAAJ3m9IXX48GEFBnruNigoSJWVlZKkuLg4ORwO5eTkGNtdLpfy8vKUkJAgSUpISFBpaakKCgqMMWvXrlVlZaV69+5tjFm3bp0qKiqMMdnZ2briiitqvBVdksLCwmSz2TwWAAAAM5CRAAAATvJ6Q2rIkCGaOXOm3n//fX333Xdavny55syZo1tuuUWSFBAQoLFjx+qZZ57RypUrtXXrVo0cOVIxMTEaOnSoJKlTp05KTk7W6NGjtWnTJm3YsEHp6ekaPny4YmJiJEl33XWXQkNDlZqaqm3btunNN9/Uyy+/rPHjx3v7kAAAAOqNjAQAAHCS1yc1nzdvnqZMmaLf//73Ki4uVkxMjB588EFNnTrVGPPYY4/p0KFDGjNmjEpLS9W3b19lZWUpPDzcGLN06VKlp6erf//+CgwM1LBhwzR37lxju91u15o1a5SWlqaePXvqwgsv1NSpU3mcMQAA8ElkJAAAgJMC3G632+oirOJyuWS321VWVtYgt6ZXZK2vti4kua/XP6e+dv39iWrrOgyfaUElAAA0vIb+/m8MyEgnkJEAAE2J2RnJ6z/ZAwAAAAAAAM6GhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFN5/Sl7QEM5fQJUX5z8FAAAwGz+Mkk8AACn4g4pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVMFWF9CYfVe6utq6DuprQSWNw+nnk3MJAIB/IiN5F+cTAOCPuEMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABTNUhD6ocfftDdd9+t1q1bKyIiQl27dtXmzZuN7W63W1OnTlWbNm0UERGhxMRE7dq1y2MfJSUlSklJkc1mU2RkpFJTU3Xw4EGPMV9++aWuv/56hYeHKzY2VpmZmQ1xOAAAAF5BRgIAADjB6w2pAwcO6LrrrlNISIhWr16tr7/+Wi+88IJatmxpjMnMzNTcuXO1cOFC5eXlqVmzZkpKStKRI0eMMSkpKdq2bZuys7O1atUqrVu3TmPGjDG2u1wuDRgwQO3atVNBQYGef/55TZs2TYsWLfL2IQEAANQbGQkAAOCkYG/vcNasWYqNjdXixYuNdXFxccaf3W63XnrpJT355JO6+eabJUl//etfFR0drRUrVmj48OHavn27srKylJ+fr/j4eEnSvHnzNGjQIM2ePVsxMTFaunSpjh49qr/85S8KDQ1Vly5dVFhYqDlz5niEMgAAAF9ARgIAADjJ63dIrVy5UvHx8br99tsVFRWl7t2767XXXjO27969W06nU4mJicY6u92u3r17Kzc3V5KUm5uryMhII2hJUmJiogIDA5WXl2eM6devn0JDQ40xSUlJ2rlzpw4cOFBjbeXl5XK5XB4LAACAGchIAAAAJ3m9IfXvf/9bCxYsUIcOHfTPf/5Tv/vd7/SHP/xBr7/+uiTJ6XRKkqKjoz3eFx0dbWxzOp2Kiory2B4cHKxWrVp5jKlpH6d+xukyMjJkt9uNJTY2tp5HCwAAUDtkJAAAgJO83pCqrKxUjx499Oyzz6p79+4aM2aMRo8erYULF3r7o+ps8uTJKisrM5Z9+/ZZXRIAAGgiyEgAAAAneb0h1aZNG3Xu3NljXadOnbR3715JksPhkCQVFRV5jCkqKjK2ORwOFRcXe2w/duyYSkpKPMbUtI9TP+N0YWFhstlsHgsAAIAZyEgAAAAneb0hdd1112nnzp0e67755hu1a9dO0onJOx0Oh3JycoztLpdLeXl5SkhIkCQlJCSotLRUBQUFxpi1a9eqsrJSvXv3NsasW7dOFRUVxpjs7GxdccUVHk+rAQAA8AVkJAAAgJO83pAaN26cPvvsMz377LP69ttvtWzZMi1atEhpaWmSpICAAI0dO1bPPPOMVq5cqa1bt2rkyJGKiYnR0KFDJZ24WpicnKzRo0dr06ZN2rBhg9LT0zV8+HDFxMRIku666y6FhoYqNTVV27Zt05tvvqmXX35Z48eP9/YhAQAA1BsZCQAA4KRgb++wV69eWr58uSZPnqynn35acXFxeumll5SSkmKMeeyxx3To0CGNGTNGpaWl6tu3r7KyshQeHm6MWbp0qdLT09W/f38FBgZq2LBhmjt3rrHdbrdrzZo1SktLU8+ePXXhhRdq6tSpPM4YAAD4JDISAADASQFut9ttdRFWcblcstvtKisra5C5Enb9/Ylq6zoMn+n1z6kvf63TF2sEAPi+hv7+bwzISCdQJwCgKTE7I3n9J3sAAAAAAADA2dCQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpgq0uAGhsKrLWe7wOSe5rUSUAAAC+g4wEADgVd0gBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKYKtroAoLH5rnS1x+sO4pHGAAAAZCQAwKm4QwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpGrwh9dxzzykgIEBjx4411h05ckRpaWlq3bq1mjdvrmHDhqmoqMjjfXv37tXgwYN1wQUXKCoqShMmTNCxY8c8xnz88cfq0aOHwsLCdNlll2nJkiUNfTgAAABeQUYCAABNWYM2pPLz8/Xqq6/qqquu8lg/btw4vffee3r77bf1ySefaP/+/br11luN7cePH9fgwYN19OhRbdy4Ua+//rqWLFmiqVOnGmN2796twYMH64YbblBhYaHGjh2rBx54QP/85z8b8pAAAADqjYwEAACaugZrSB08eFApKSl67bXX1LJlS2N9WVmZ/vznP2vOnDm68cYb1bNnTy1evFgbN27UZ599Jklas2aNvv76a73xxhu6+uqrNXDgQM2YMUPz58/X0aNHJUkLFy5UXFycXnjhBXXq1Enp6em67bbb9OKLLzbUIQEAANQbGQkAAKABG1JpaWkaPHiwEhMTPdYXFBSooqLCY33Hjh3Vtm1b5ebmSpJyc3PVtWtXRUdHG2OSkpLkcrm0bds2Y8zp+05KSjL2AQAA4IvISAAAAFJwQ+z073//u7Zs2aL8/Pxq25xOp0JDQxUZGemxPjo6Wk6n0xhzatCq2l617WxjXC6X/vvf/yoiIqLaZ5eXl6u8vNx47XK56n5wAAAA54mMBAAAcILX75Dat2+fHn74YS1dulTh4eHe3n29ZGRkyG63G0tsbKzVJQEAgCaCjAQAAHCS1xtSBQUFKi4uVo8ePRQcHKzg4GB98sknmjt3roKDgxUdHa2jR4+qtLTU431FRUVyOBySJIfDUe2JMlWvzzXGZrPVeOVPkiZPnqyysjJj2bdvnzcOGQAA4JzISAAAACd5vSHVv39/bd26VYWFhcYSHx+vlJQU488hISHKyckx3rNz507t3btXCQkJkqSEhARt3bpVxcXFxpjs7GzZbDZ17tzZGHPqPqrGVO2jJmFhYbLZbB4LAACAGchIAAAAJ3l9DqkWLVroyiuv9FjXrFkztW7d2lifmpqq8ePHq1WrVrLZbHrooYeUkJCgPn36SJIGDBigzp0765577lFmZqacTqeefPJJpaWlKSwsTJL029/+Vq+88ooee+wx3X///Vq7dq3eeustvf/++94+JAAAgHojIwEAAJzUIJOan8uLL76owMBADRs2TOXl5UpKStIf//hHY3tQUJBWrVql3/3ud0pISFCzZs00atQoPf3008aYuLg4vf/++xo3bpxefvllXXzxxfrTn/6kpKQkKw4JAACg3shIAACgqTClIfXxxx97vA4PD9f8+fM1f/78M76nXbt2+uCDD86631//+tf6/PPPvVEiAACA6chIAACgqfL6HFIAAAAAAADA2dCQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMFWx1AQCsUZG13uN1SHJfiyoBAADwHWQkADAHd0gBAAAAAADAVDSkAAAAAAAAYCp+sgc0Ud+VrvZ43UHcjg4AAEBGAgBzcIcUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFN5vSGVkZGhXr16qUWLFoqKitLQoUO1c+dOjzFHjhxRWlqaWrdurebNm2vYsGEqKiryGLN3714NHjxYF1xwgaKiojRhwgQdO3bMY8zHH3+sHj16KCwsTJdddpmWLFni7cMBAADwCjISAADASV5vSH3yySdKS0vTZ599puzsbFVUVGjAgAE6dOiQMWbcuHF677339Pbbb+uTTz7R/v37deuttxrbjx8/rsGDB+vo0aPauHGjXn/9dS1ZskRTp041xuzevVuDBw/WDTfcoMLCQo0dO1YPPPCA/vnPf3r7kAAAAOqNjAQAAHBSsLd3mJWV5fF6yZIlioqKUkFBgfr166eysjL9+c9/1rJly3TjjTdKkhYvXqxOnTrps88+U58+fbRmzRp9/fXX+vDDDxUdHa2rr75aM2bM0MSJEzVt2jSFhoZq4cKFiouL0wsvvCBJ6tSpk9avX68XX3xRSUlJ3j4sAACAeiEjAQAAnNTgc0iVlZVJklq1aiVJKigoUEVFhRITE40xHTt2VNu2bZWbmytJys3NVdeuXRUdHW2MSUpKksvl0rZt24wxp+6jakzVPmpSXl4ul8vlsQAAAFiBjAQAAJoyr98hdarKykqNHTtW1113na688kpJktPpVGhoqCIjIz3GRkdHy+l0GmNODVpV26u2nW2My+XSf//7X0VERFSrJyMjQ9OnT/fKsQEwR0XWeo/XIcl9LaoEALyHjASgvshIAPxdgzak0tLS9NVXX2n9+vXnHmyCyZMna/z48cZrl8ul2NhYCysCcC7fla72eN1BhC0A/o+MBKC+yEgA/F2DNaTS09O1atUqrVu3ThdffLGx3uFw6OjRoyotLfW4AlhUVCSHw2GM2bRpk8f+qp4wc+qY0586U1RUJJvNVuOVP0kKCwtTWFhYvY8NAADgfJGRAAAAGmAOKbfbrfT0dC1fvlxr165VXFycx/aePXsqJCREOTk5xrqdO3dq7969SkhIkCQlJCRo69atKi4uNsZkZ2fLZrOpc+fOxphT91E1pmofAAAAvoSMBAAAcJLX75BKS0vTsmXL9O6776pFixbGfAZ2u10RERGy2+1KTU3V+PHj1apVK9lsNj300ENKSEhQnz59JEkDBgxQ586ddc899ygzM1NOp1NPPvmk0tLSjKt3v/3tb/XKK6/oscce0/3336+1a9fqrbfe0vvvv+/tQwIAAKg3MhIAAMBJXr9DasGCBSorK9Ovf/1rtWnTxljefPNNY8yLL76om266ScOGDVO/fv3kcDj0zjvvGNuDgoK0atUqBQUFKSEhQXfffbdGjhypp59+2hgTFxen999/X9nZ2erWrZteeOEF/elPf+JxxgAAwCeRkQAAAE7y+h1Sbrf7nGPCw8M1f/58zZ8//4xj2rVrpw8++OCs+/n1r3+tzz//vM41AgAAmI2MBAAAcJLX75ACAAAAAAAAzoaGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApgq2ugAA8HcVWeurrQtJ7mtBJQAAAL7l9JxERgJQhYYUANTTd6Wrq63rIMIWAADA6TmJjASgCj/ZAwAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpgq0uAABgjl1/f6Laug7DZ1pQCQAAgO8gIwHW4A4pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUwVYXUF/z58/X888/L6fTqW7dumnevHm65pprrC4LAHCeePQy4B1kJABoXMhIaGz8+g6pN998U+PHj9dTTz2lLVu2qFu3bkpKSlJxcbHVpQEAAFiGjAQAAHydXzek5syZo9GjR+u+++5T586dtXDhQl1wwQX6y1/+YnVpAIBGriJrfbUF8BVkJACAVchIqC2//cne0aNHVVBQoMmTJxvrAgMDlZiYqNzcXAsrAwA0Bd+Vrq62roP6WlAJ4ImMBACwEhkJteW3Damff/5Zx48fV3R0tMf66Oho7dixo8b3lJeXq7y83HhdVlYmSXK5XA1S48HD5dXWNdRn1Ye/1umLNUrU6W3+UKe//jckUWd9+Eud//rH09XWXXrbVAsqObt/b6l+584lPe5vkM+q+ntyu90Nsn+rkZG8hzq9yx++0yXq9DZ/qNNf/xuSqLM+yEjVmZ6R3H7qhx9+cEtyb9y40WP9hAkT3Ndcc02N73nqqafcklhYWFhYWFhY3Pv27TMjspiOjMTCwsLCwsJSn8WsjOS3d0hdeOGFCgoKUlFRkcf6oqIiORyOGt8zefJkjR8/3nhdWVmpkpIStW7dWgEBAQ1ar69yuVyKjY3Vvn37ZLPZrC6nUeCceh/n1Ls4n97HOfW+hjynbrdbv/zyi2JiYry6X19BRvIO/rv2Ps6p93FOvYvz6X2cU+9rTBnJbxtSoaGh6tmzp3JycjR06FBJJ8JTTk6O0tPTa3xPWFiYwsLCPNZFRkY2cKX+wWaz8Q+El3FOvY9z6l2cT+/jnHpfQ51Tu93u9X36CjKSd/HftfdxTr2Pc+pdnE/v45x6X2PISH7bkJKk8ePHa9SoUYqPj9c111yjl156SYcOHdJ9991ndWkAAACWISMBAABf59cNqTvvvFM//fSTpk6dKqfTqauvvlpZWVnVJvEEAABoSshIAADA1/l1Q0qS0tPTz3j7Oc4tLCxMTz31VLXb9HH+OKfexzn1Ls6n93FOvY9zWn9kpPrhf4Pexzn1Ps6pd3E+vY9z6n2N6ZwGuN2N9JnHAAAAAAAA8EmBVhcAAAAAAACApoWGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQaqIyMjLUq1cvtWjRQlFRURo6dKh27txpdVmNxnPPPaeAgACNHTvW6lL82g8//KC7775brVu3VkREhLp27arNmzdbXZbfOn78uKZMmaK4uDhFRETo0ksv1YwZM8SzLWpv3bp1GjJkiGJiYhQQEKAVK1Z4bHe73Zo6daratGmjiIgIJSYmateuXdYU6wfOdj4rKio0ceJEde3aVc2aNVNMTIxGjhyp/fv3W1cwmgQyUsMiI3kHGcm7yEj1R0byrqaSkWhINVGffPKJ0tLS9Nlnnyk7O1sVFRUaMGCADh06ZHVpfi8/P1+vvvqqrrrqKqtL8WsHDhzQdddd9/+xd+dxUdX9//+fA7IoMCCGgIn7lhvuipWVkqjolVsuWaK5XBaaSllaKVKZZl5llmnL79Ku0lwqzVxTXMokNQxTUzLDpRTRVFBJUTi/P/oyn0ZwYTsD+LjfbnP7OOe8zzmveTNd8/y85sw5cnFx0Zo1a/Tzzz/rP//5j8qXL+/o0kqs1157TXPmzNE777yj/fv367XXXtP06dP19ttvO7q0EuPixYsKDg7W7Nmzc10/ffp0zZo1S3PnztX27dvl4eGhsLAwXbp0yeRKS4YbzWd6erp27dqliRMnateuXfriiy+UmJiof/3rXw6oFLcTMlLRISMVDjJS4SMjFRwZqXDdNhnJAAzDSElJMSQZW7ZscXQpJdr58+eN2rVrG+vXrzfuu+8+Y/To0Y4uqcR67rnnjHvuucfRZZQq4eHhxuOPP263rGfPnsaAAQMcVFHJJslYtmyZ7XlWVpYREBBgvP7667Zl586dM9zc3IxPP/3UARWWLNfOZ2527NhhSDKOHDliTlGAQUYqLGSkwkNGKnxkpMJFRipcpTkjcYYUJEmpqamSJF9fXwdXUrJFRkYqPDxcoaGhji6lxFuxYoVatGihhx9+WBUrVlTTpk31wQcfOLqsEq1t27aKjY3VL7/8IknavXu3tm7dqs6dOzu4stIhKSlJycnJdv/9e3t7q3Xr1oqLi3NgZaVHamqqLBaLfHx8HF0KbiNkpMJBRio8ZKTCR0YqWmSkoldSM1IZRxcAx8vKytKYMWN09913q2HDho4up8RatGiRdu3apZ07dzq6lFLht99+05w5cxQVFaXnn39eO3fu1FNPPSVXV1dFREQ4urwSafz48UpLS1O9evXk7OyszMxMTZkyRQMGDHB0aaVCcnKyJMnf399uub+/v20d8u/SpUt67rnn1L9/f1mtVkeXg9sEGalwkJEKFxmp8JGRihYZqWiV5IxEQwqKjIzU3r17tXXrVkeXUmIdO3ZMo0eP1vr16+Xu7u7ockqFrKwstWjRQq+++qokqWnTptq7d6/mzp1L2MqnJUuWaMGCBVq4cKEaNGighIQEjRkzRpUqVWJOUaxduXJFffr0kWEYmjNnjqPLwW2EjFRwZKTCR0YqfGQklFQlPSPxk73b3MiRI7Vy5Upt2rRJlStXdnQ5JVZ8fLxSUlLUrFkzlSlTRmXKlNGWLVs0a9YslSlTRpmZmY4uscQJDAxU/fr17ZbdddddOnr0qIMqKvnGjRun8ePHq1+/fmrUqJEee+wxjR07VlOnTnV0aaVCQECAJOnkyZN2y0+ePGlbh7zLDlpHjhzR+vXrS9w3fyi5yEiFg4xU+MhIhY+MVLTISEWjNGQkGlK3KcMwNHLkSC1btkwbN25U9erVHV1SidahQwft2bNHCQkJtkeLFi00YMAAJSQkyNnZ2dElljh33313jtts//LLL6pataqDKir50tPT5eRk/z/7zs7OysrKclBFpUv16tUVEBCg2NhY27K0tDRt375dISEhDqys5MoOWgcPHtSGDRtUoUIFR5eE2wAZqXCRkQofGanwkZGKFhmp8JWWjMRP9m5TkZGRWrhwob788kt5eXnZfrvr7e2tsmXLOri6ksfLyyvHtSU8PDxUoUIFrjmRT2PHjlXbtm316quvqk+fPtqxY4fef/99vf/++44urcTq1q2bpkyZoipVqqhBgwb68ccf9cYbb+jxxx93dGklxoULF/Trr7/aniclJSkhIUG+vr6qUqWKxowZo1deeUW1a9dW9erVNXHiRFWqVEndu3d3XNHF2I3mMzAwUL1799auXbu0cuVKZWZm2j6rfH195erq6qiyUcqRkQoXGanwkZEKHxmp4MhIheu2yUiOvckfHEVSro958+Y5urRSg1saF9xXX31lNGzY0HBzczPq1atnvP/++44uqURLS0szRo8ebVSpUsVwd3c3atSoYbzwwgvG5cuXHV1aibFp06Zc/7czIiLCMIy/b2s8ceJEw9/f33BzczM6dOhgJCYmOrboYuxG85mdj5ixAAEAAElEQVSUlHTdz6pNmzY5unSUYmSkokdGKjgyUuEiIxUcGalw3S4ZyWIYhlE0rS4AAAAAAAAgJ64hBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pIASbvLkybJYLPnadtCgQapWrVrhFoRcFeTvdCM7duyQq6urjhw5ctOx1apV06BBg+yWHTx4UB07dpS3t7csFouWL1+ep+O3adNGzz77bJ62AQDADGSkkoGMBNy+aEgBsElPT9fkyZO1efNmR5dSJBYuXKiZM2c6uoxC9cILL6h///6qWrVqvraPiIjQnj17NGXKFH388cdq0aKFLly4oOjoaHXq1Em+vr6yWCyaP39+rts/99xzmj17tpKTkwvwKgAAKN7ISCVPUWSknTt3auTIkWrQoIE8PDxUpUoV9enTR7/88kuO7clIwM3RkAJgk56erpiYGMJWEXjxxRf1119/Feo+ExIStGHDBo0YMSJf2//111+Ki4vTkCFDNHLkSD366KOqXLmyTp8+rZdeekn79+9XcHDwDffx0EMPyWq16t13381XDQAAlARkpKJTkjLSa6+9ps8//1wdOnTQW2+9peHDh+ubb75Rs2bNtHfvXrt9kJGAm6MhBQAmKFOmjNzd3Qt1n/PmzVOVKlXUpk2bfG1/6tQpSZKPj4/d8sDAQJ04cUJHjhzR66+/fsN9ODk5qXfv3vrf//4nwzDyVQcAALh9laSMFBUVpSNHjmjWrFkaOnSoXnzxRX377be6evWqpk2bZjeWjATcHA0poATZunWrWrZsKXd3d9WsWVPvvffedcd+8sknat68ucqWLStfX1/169dPx44du+74w4cPy8/PT5IUExMji8Uii8WiyZMnS5J++uknDRo0SDVq1JC7u7sCAgL0+OOP688//8zTazh8+LAsFotmzJih999/XzVr1pSbm5tatmypnTt35hh/4MAB9e7dW76+vnJ3d1eLFi20YsUK2/qUlBT5+fnp/vvvt/uw//XXX+Xh4aG+fftKku6//36tWrVKR44csb22vFwbolq1auratas2b96sFi1aqGzZsmrUqJHtm9IvvvhCjRo1kru7u5o3b64ff/zRbvvcro9gsVg0cuRILV++XA0bNpSbm5saNGigtWvX3lJNy5cvV/v27XPs1zAMvfLKK6pcubLKlSunBx54QPv27ctRT/Yp7OPGjbObDzc3NwUEBNzq1OjBBx/UkSNHlJCQcMvbAABQmMhIZKR/KqqM1LZtW7m6utqNr127tho0aKD9+/fnqIOMBNxYGUcXAODW7NmzRx07dpSfn58mT56sq1evKjo6Wv7+/jnGTpkyRRMnTlSfPn00dOhQnTp1Sm+//bbatWunH3/8Mce3PZLk5+enOXPm6IknnlCPHj3Us2dPSVLjxo0lSevXr9dvv/2mwYMHKyAgQPv27dP777+vffv26fvvv8/zxSgXLlyo8+fP69///rcsFoumT5+unj176rfffpOLi4skad++fbr77rt15513avz48fLw8NCSJUvUvXt3ff755+rRo4cqVqyoOXPm6OGHH9bbb7+tp556SllZWRo0aJC8vLxsp0m/8MILSk1N1e+//64333xTkuTp6Zmnmn/99Vc98sgj+ve//61HH31UM2bMULdu3TR37lw9//zzevLJJyVJU6dOVZ8+fZSYmCgnpxv3/bdu3aovvvhCTz75pLy8vDRr1iz16tVLR48eVYUKFa673R9//KGjR4+qWbNmOdZNmjRJr7zyirp06aIuXbpo165d6tixozIyMmxjevbsKR8fH40dO1b9+/dXly5d8jwf2Zo3by5J+u6779S0adN87QMAgPwiI5GR/snsjGQYhk6ePKkGDRrkWEdGAm7CAFAidO/e3XB3dzeOHDliW/bzzz8bzs7Oxj//Uz58+LDh7OxsTJkyxW77PXv2GGXKlLFbHhERYVStWtX2/NSpU4YkIzo6Osfx09PTcyz79NNPDUnGN998c8uvIykpyZBkVKhQwThz5oxt+ZdffmlIMr766ivbsg4dOhiNGjUyLl26ZFuWlZVltG3b1qhdu7bdfvv372+UK1fO+OWXX4zXX3/dkGQsX77cbkx4eLjd682LqlWrGpKMbdu22ZatW7fOkGSULVvW7u/y3nvvGZKMTZs22ZZFR0cb1/5PriTD1dXV+PXXX23Ldu/ebUgy3n777RvWs2HDhhzzZRiGkZKSYri6uhrh4eFGVlaWbfnzzz9vSDIiIiJsy7L/Fq+//vp1j7Nz505DkjFv3rwb1uPq6mo88cQTNxwDAEBRICP9jYz0N7MyUraPP/7YkGT8f//f/5frejIScH38ZA8oATIzM7Vu3Tp1795dVapUsS2/6667FBYWZjf2iy++UFZWlvr06aPTp0/bHgEBAapdu7Y2bdqUrxrKli1r+/elS5d0+vRp2+/yd+3alef99e3bV+XLl7c9v/feeyVJv/32myTpzJkz2rhxo/r06aPz58/bXseff/6psLAwHTx4UH/88Ydt+3feeUfe3t7q3bu3Jk6cqMcee0wPPfRQvl7r9dSvX18hISG2561bt5YktW/f3u7vkr08+7XcSGhoqGrWrGl73rhxY1mt1ptum/0zgH/OoSRt2LBBGRkZGjVqlN03smPGjLlpLQVRvnx5nT59ukiPAQDAtchIZKRrmZmRDhw4oMjISIWEhCgiIiLXMWQk4Pr4yR5QApw6dUp//fWXateunWNd3bp1tXr1atvzgwcPyjCMXMdKsp3qnVdnzpxRTEyMFi1apJSUFLt1qamped7fP8OJ9H+h4ezZs5L+PvXbMAxNnDhREydOzHUfKSkpuvPOOyVJvr6+mjVrlh5++GH5+/tr1qxZea4przV7e3tLkoKCgnJdnv1a8rJP6e+5uJVtJeW4SOaRI0ckKcff38/PL0cwK0yGYeT5JwkAABQUGYmMdD1FnZGSk5MVHh4ub29vffbZZ3J2dr5uHWQkIHc0pIBSJisrSxaLRWvWrMn1gzG/1wnq06ePtm3bpnHjxqlJkyby9PRUVlaWOnXqpKysrDzv70Yf2pJs+3zmmWdyfMOZrVatWnbP161bJ+nvkPP777/neh2IgrhezTd7LfnZ5822zb52wq2GsqJ27tw53XHHHY4uAwCA6yIjkZEKS2pqqjp37qxz587p22+/VaVKla47lowEXB8NKaAE8PPzU9myZXXw4MEc6xITE+2e16xZU4ZhqHr16qpTp06ejnO9b2/Onj2r2NhYxcTEaNKkSbbludVTWGrUqCHp728rQ0NDbzp+7dq1+vDDD/Xss89qwYIFioiI0Pbt21WmzP/9z1xp+naqXr16kqSkpCS75dl3hTl48KBtDqW/v0EuqmD2xx9/KCMjQ3fddVeR7B8AgOshI5GRrlXUGenSpUvq1q2bfvnlF23YsEH169e/7lgyEnBjXEMKKAGcnZ0VFham5cuX6+jRo7bl+/fvt33jla1nz55ydnZWTExMjm+QDMO44S2Iy5UrJ+nvb3KuPX729v80c+bMvL6UW1axYkXdf//9eu+993TixIkc60+dOmX797lz5zR06FC1atVKr776qj788EPt2rVLr776qt02Hh4e+Tp1vji68847FRQUpB9++MFueWhoqFxcXPT222/b/b2K8m8VHx8v6e9bIQMAYCYyEhnpWkWZkTIzM9W3b1/FxcVp6dKldtfNyg0ZCbgxzpACSoiYmBitXbtW9957r5588kldvXpVb7/9tho0aKCffvrJNq5mzZp65ZVXNGHCBB0+fFjdu3eXl5eXkpKStGzZMg0fPlzPPPNMrscoW7as6tevr8WLF6tOnTry9fVVw4YN1bBhQ7Vr107Tp0/XlStXdOedd+rrr7/O8c1TYZs9e7buueceNWrUSMOGDVONGjV08uRJxcXF6ffff9fu3bslSaNHj9aff/6pDRs2yNnZWZ06ddLQoUP1yiuv6KGHHlJwcLCkv2+9u3jxYkVFRally5by9PRUt27divQ1FKWHHnpIy5Yts7s2gZ+fn5555hlNnTpVXbt2VZcuXfTjjz9qzZo1eTpd/J133tG5c+d0/PhxSdJXX32l33//XZI0atQo2zUgpL9vd12lShVuZwwAcAgyEhnpWkWVkZ5++mmtWLFC3bp105kzZ/TJJ5/YrX/00UftnpORgJsw63Z+AApuy5YtRvPmzQ1XV1ejRo0axty5c3O9Va5hGMbnn39u3HPPPYaHh4fh4eFh1KtXz4iMjDQSExNtY669pbFhGMa2bdtsx9A/bm/8+++/Gz169DB8fHwMb29v4+GHHzaOHz9+3VsgX8+NbqOb274OHTpkDBw40AgICDBcXFyMO++80+jatavx2WefGYbxf7dC/s9//mO3XVpamlG1alUjODjYyMjIMAzDMC5cuGA88sgjho+PjyEpT7c3rlq1qhEeHp5rzZGRkTd9jde7pfG122Yf65+3Hr6eXbt2GZKMb7/91m55ZmamERMTYwQGBhply5Y17r//fmPv3r059nujv0X2LZxzeyQlJdkdKzAw0HjxxRdvWi8AAEWFjERG+qeiykj33XffdfPRta+BjATcnMUwbuGKcgCAYqlDhw6qVKmSPv74Y4ccf/ny5XrkkUd06NAhBQYGOqQGAACAa5GRgOKPhhQAlGDbt2/Xvffeq4MHD9ou1mmmkJAQ3XvvvZo+fbrpxwYAALgeMhJQ/NGQAlAoMjMz7S6imRtPT89831K5qJw6dUqZmZnXXe/q6ipfX18TKwIAAKUJGQkAckdDCkChOHz4sKpXr37DMdHR0Zo8ebI5Bd2iatWq6ciRI9ddf99992nz5s3mFQQAAEoVMhIA5I677AEoFAEBAVq/fv0Nx9SoUcOkam7dggUL9Ndff113ffny5U2sBgAAlDZkJADIHWdIAQAAAAAAwFROji4AAAAAAAAAt5fb+id7WVlZOn78uLy8vGSxWBxdDgAAMIFhGDp//rwqVaokJye+m8sNGQkAgNuP2Rnptm5IHT9+XEFBQY4uAwAAOMCxY8dUuXJlR5dRLJGRAAC4fZmVkW7rhpSXl5ekvyfbarU6uBoAAGCGtLQ0BQUF2XIAciIjAQBw+zE7I93WDansU9CtVithCwCA2ww/Rbs+MhIAALcvszISF04AAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCq2/oaUgAA3EhmZqauXLni6DKQRy4uLnJ2dnZ0GQAAlFpkpJKpuGUkGlIAAFzDMAwlJyfr3Llzji4F+eTj46OAgAAuXA4AQCEiI5V8xSkj0ZACAOAa2UGrYsWKKleuXLH4wMatMQxD6enpSklJkSQFBgY6uCIAAEoPMlLJVRwzEg0pAAD+ITMz0xa0KlSo4OhykA9ly5aVJKWkpKhixYrF6tR0AABKKjJSyVfcMhIXNQcA4B+yr4dQrlw5B1eCgsj++3F9CwAACgcZqXQoThmJhhQAALngFPSSjb8fAABFg8/Ykq04/f1oSAEAAAAAAMBUNKQAAAAAAABgKi5qDgDALbqydqtpx3LpdM8tj73ZqdfR0dGaPHlyASvKH4vFomXLlql79+753sf777+vhQsXateuXTp//rzOnj0rHx+fQqsRAAAUjJkZSSInZTtz5oyio6P19ddf6+jRo/Lz81P37t318ssvy9vbu3CLLQI0pIpQbv9R5uU/HAAAbsWJEyds/168eLEmTZqkxMRE2zJPT8887S8jI0Ourq6FVl9Bpaenq1OnTurUqZMmTJjg6HJQCMhIAACzlOacdPz4cR0/flwzZsxQ/fr1deTIEY0YMULHjx/XZ5995ujyboqf7AEAUMIFBATYHt7e3rJYLLbnFy9e1IABA+Tv7y9PT0+1bNlSGzZssNu+WrVqevnllzVw4EBZrVYNHz5ckvTBBx8oKChI5cqVU48ePfTGG2/kODPpyy+/VLNmzeTu7q4aNWooJiZGV69ete1Xknr06CGLxWJ7vnv3bj3wwAPy8vKS1WpV8+bN9cMPP1z39Y0ZM0bjx49XmzZtCmfCAADAbaM056SGDRvq888/V7du3VSzZk21b99eU6ZM0VdffWU7TnFGQwoAgFLswoUL6tKli2JjY/Xjjz+qU6dO6tatm44ePWo3bsaMGQoODtaPP/6oiRMn6rvvvtOIESM0evRoJSQk6MEHH9SUKVPstvn22281cOBAjR49Wj///LPee+89zZ8/3zZu586dkqR58+bpxIkTtucDBgxQ5cqVtXPnTsXHx2v8+PFycXExYTYAAAD+T2nMSampqbJarSpTpvj/IK74VwgAAPItODhYwcHBtucvv/yyli1bphUrVmjkyJG25e3bt9fTTz9te/7CCy+oc+fOeuaZZyRJderU0bZt27Ry5UrbmJiYGI0fP14RERGSpBo1aujll1/Ws88+q+joaPn5+UmSfHx8FBAQYNvu6NGjGjdunOrVqydJql27dhG8cgAAgBsrbTnp9OnTevnll21ncRV3nCEFAEApduHCBT3zzDO666675OPjI09PT+3fvz/HN38tWrSwe56YmKhWrVrZLbv2+e7du/XSSy/J09PT9hg2bJhOnDih9PT069YUFRWloUOHKjQ0VNOmTdOhQ4cK+CoBAADyrjTlpLS0NIWHh6t+/foOu0h7XtGQAgCgFHvmmWe0bNkyvfrqq/r222+VkJCgRo0aKSMjw26ch4dHnvd94cIFxcTEKCEhwfbYs2ePDh48KHd39+tuN3nyZO3bt0/h4eHauHGj6tevr2XLluX5+AAAAAVRWnLS+fPn1alTJ3l5eWnZsmUl5lII/GQPAIBS7LvvvtOgQYPUo0cPSX+Ho8OHD990u7p169quZZDt2ufNmjVTYmKiatWqdd39uLi4KDMzM8fyOnXqqE6dOho7dqz69++vefPm2WoEAAAwQ2nISWlpaQoLC5Obm5tWrFhxw2ZXcUNDCgCAUqx27dr64osv1K1bN1ksFk2cOFFZWVk33W7UqFFq166d3njjDXXr1k0bN27UmjVrZLFYbGMmTZqkrl27qkqVKurdu7ecnJy0e/du7d27V6+88oqkv+8gExsbq7vvvltubm5yd3fXuHHj1Lt3b1WvXl2///67du7cqV69el23luTkZCUnJ+vXX3+VJO3Zs0deXl6qUqWKfH19CzhDAADgdlXSc1JaWpo6duyo9PR0ffLJJ0pLS1NaWpokyc/PT87OzoUwS0WHn+wBAFCKvfHGGypfvrzatm2rbt26KSwsTM2aNbvpdnfffbfmzp2rN954Q8HBwVq7dq3Gjh1r961bWFiYVq5cqa+//lotW7ZUmzZt9Oabb6pq1aq2Mf/5z3+0fv16BQUFqWnTpnJ2dtaff/6pgQMHqk6dOurTp486d+6smJiY69Yyd+5cNW3aVMOGDZMktWvXTk2bNtWKFSsKMDMAAOB2V9Jz0q5du7R9+3bt2bNHtWrVUmBgoO1x7Nixgk9QEbMYhmE4ughHSUtLk7e3t+22iIXtytqtOZa5dLqn0I8DACg8ly5dUlJSkqpXr16iTnk2w7Bhw3TgwAF9++23ji7lpm70dyzqz//SgIwEALgWGenGSkpOKk4ZiZ/sAQCAXM2YMUMPPvigPDw8tGbNGn300Ud69913HV0WAACAw5GTCo6GFAAAyNWOHTs0ffp0nT9/XjVq1NCsWbM0dOhQR5cFAADgcOSkgqMhBQAAcrVkyRJHlwAAAFAskZMKjouaAwAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU5VxdAEAAJQUh354z7Rj1Wzx7zyNHzRokD766CNJUpkyZeTr66vGjRurf//+GjRokJycSu53UPv27dOkSZMUHx+vI0eO6M0339SYMWMcXRYAAPh/zMxIEjnpnz744AP973//0969eyVJzZs316uvvqpWrVo5uLKbK7mzDgAA7HTq1EknTpzQ4cOHtWbNGj3wwAMaPXq0unbtqqtXrzq6vHxLT09XjRo1NG3aNAUEBDi6HAAAUAKV1py0efNm9e/fX5s2bVJcXJyCgoLUsWNH/fHHH44u7aZoSAEAUEq4ubkpICBAd955p5o1a6bnn39eX375pdasWaP58+fbxp07d05Dhw6Vn5+frFar2rdvr927d9vt66uvvlLLli3l7u6uO+64Qz169LCtO3v2rAYOHKjy5curXLly6ty5sw4ePChJunjxoqxWqz777DO7/S1fvlweHh46f/68MjIyNHLkSAUGBsrd3V1Vq1bV1KlTr/u6WrZsqddff139+vWTm5tbIcwUAAC43ZTWnLRgwQI9+eSTatKkierVq6cPP/xQWVlZio2NLYRZK1o0pAAAKMXat2+v4OBgffHFF7ZlDz/8sFJSUrRmzRrFx8erWbNm6tChg86cOSNJWrVqlXr06KEuXbroxx9/VGxsrN1p34MGDdIPP/ygFStWKC4uToZhqEuXLrpy5Yo8PDzUr18/zZs3z66OefPmqXfv3vLy8tKsWbO0YsUKLVmyRImJiVqwYIGqVatmynwAAABkK405KT09XVeuXJGvr2/BJscEXEMKAIBSrl69evrpp58kSVu3btWOHTuUkpJiO9toxowZWr58uT777DMNHz5cU6ZMUb9+/RQTE2PbR3BwsCTp4MGDWrFihb777ju1bdtW0t/fzAUFBWn58uV6+OGHNXToULVt21YnTpxQYGCgUlJStHr1am3YsEGSdPToUdWuXVv33HOPLBaLqlatauZ0AAAA2JS2nPTcc8+pUqVKCg0NLfDcFDXOkAIAoJQzDEMWi0WStHv3bl24cEEVKlSQp6en7ZGUlKRDhw5JkhISEtShQ4dc97V//36VKVNGrVu3ti2rUKGC6tatq/3790uSWrVqpQYNGtguHvrJJ5+oatWqateunaS/vzlMSEhQ3bp19dRTT+nrr78ustcOAABwI6UpJ02bNk2LFi3SsmXL5O7unvfJMBlnSAEAUMrt379f1atXlyRduHBBgYGB2rx5c45xPj4+kqSyZcsW+JhDhw7V7NmzNX78eM2bN0+DBw+2hb1mzZopKSlJa9as0YYNG9SnTx+FhobmuJ4CAABAUSstOWnGjBmaNm2aNmzYoMaNGxe4RjNwhhQAAKXYxo0btWfPHvXq1UvS3yEnOTlZZcqUUa1atewed9xxhySpcePG170Q5l133aWrV69q+/bttmV//vmnEhMTVb9+fduyRx99VEeOHNGsWbP0888/KyIiwm4/VqtVffv21QcffKDFixfr888/t12bAQAAwAylJSdNnz5dL7/8stauXasWLVrkez7MVqCG1LRp02SxWDRmzBjbskuXLikyMtJ2iluvXr108uRJu+2OHj2q8PBwlStXThUrVtS4ceNy3GZx8+bNatasmdzc3FSrVi27q95nmz17tqpVqyZ3d3e1bt1aO3bsKMjLAQCgRLt8+bKSk5P1xx9/aNeuXXr11Vf10EMPqWvXrho4cKAkKTQ0VCEhIerevbu+/vprHT58WNu2bdMLL7ygH374QZIUHR2tTz/9VNHR0dq/f7/27Nmj1157TZJUu3ZtPfTQQxo2bJi2bt2q3bt369FHH9Wdd96phx56yFZL+fLl1bNnT40bN04dO3ZU5cqVbeveeOMNffrppzpw4IB++eUXLV26VAEBAbZvHq+VkZGhhIQEJSQkKCMjQ3/88YcSEhL066+/FtFMFhwZCQCA4qW05qTXXntNEydO1H//+19Vq1ZNycnJSk5O1oULF4poJgtPvhtSO3fu1HvvvZfjVLCxY8fqq6++0tKlS7VlyxYdP35cPXv2tK3PzMxUeHi4MjIytG3bNn300UeaP3++Jk2aZBuTlJSk8PBwPfDAA0pISNCYMWM0dOhQrVu3zjZm8eLFioqKUnR0tHbt2qXg4GCFhYUpJSUlvy8JAIASbe3atQoMDFS1atXUqVMnbdq0SbNmzdKXX34pZ2dnSZLFYtHq1avVrl07DR48WHXq1FG/fv105MgR+fv7S5Luv/9+LV26VCtWrFCTJk3Uvn17u4bGvHnz1Lx5c3Xt2lUhISEyDEOrV6+Wi4uLXT1DhgxRRkaGHn/8cbvlXl5emj59ulq0aKGWLVvq8OHDWr16tZycco8lx48fV9OmTdW0aVOdOHFCM2bMUNOmTTV06NDCnL5CQ0YCAKD4Ka05ac6cOcrIyFDv3r0VGBhoe8yYMaMwp69oGPlw/vx5o3bt2sb69euN++67zxg9erRhGIZx7tw5w8XFxVi6dKlt7P79+w1JRlxcnGEYhrF69WrDycnJSE5Oto2ZM2eOYbVajcuXLxuGYRjPPvus0aBBA7tj9u3b1wgLC7M9b9WqlREZGWl7npmZaVSqVMmYOnXqLb+O1NRUQ5KRmpp66y8+DzLWfJvjAQAo3v766y/j559/Nv766y9Hl1Li/e9//zMqVKhg+3w3043+jkX5+U9GujVkJAAoechIhctROclRGSk3+TpDKjIyUuHh4TluIxgfH68rV67YLa9Xr56qVKmiuLg4SVJcXJwaNWpk6y5KUlhYmNLS0rRv3z7bmGv3HRYWZttHRkaG4uPj7cY4OTkpNDTUNgYAADhGenq6Dh06pGnTpunf//63XF1dHV2SachIAADgRm7nnHStPDekFi1apF27dmnq1Kk51iUnJ8vV1TXHbxv9/f2VnJxsG/PPoJW9PnvdjcakpaXpr7/+0unTp5WZmZnrmOx95Oby5ctKS0uzewAAgMI1ffp01atXTwEBAZowYYKjyzENGQkAANzM7ZqTcpOnhtSxY8c0evRoLViwQO7u7kVVU5GZOnWqvL29bY+goCBHlwQAQKkzefJkXblyRbGxsfL09HR0OaYgIwEAgFtxO+ak68lTQyo+Pl4pKSlq1qyZypQpozJlymjLli2aNWuWypQpI39/f2VkZOjcuXN22508eVIBAQGSpICAgBx3lMl+frMxVqtVZcuW1R133CFnZ+dcx2TvIzcTJkxQamqq7XHs2LG8vHwAAIBckZEAAADyJk8NqQ4dOmjPnj22Wy8nJCSoRYsWGjBggO3fLi4uio2NtW2TmJioo0ePKiQkRJIUEhKiPXv22N3pZf369bJarapfv75tzD/3kT0mex+urq5q3ry53ZisrCzFxsbaxuTGzc1NVqvV7gEAQG4Mw3B0CSgAs/9+ZCQAwO2CjFSyFae/X5m8DPby8lLDhg3tlnl4eKhChQq25UOGDFFUVJR8fX1ltVo1atQohYSEqE2bNpKkjh07qn79+nrsscc0ffp0JScn68UXX1RkZKTc3NwkSSNGjNA777yjZ599Vo8//rg2btyoJUuWaNWqVbbjRkVFKSIiQi1atFCrVq00c+ZMXbx4UYMHDy7QhAAAbm/Zt+RNT09X2bJlHVwN8is9PV2SctxiuaiQkQAApR0ZqXQwOyPdSJ4aUrfizTfflJOTk3r16qXLly8rLCxM7777rm29s7OzVq5cqSeeeEIhISHy8PBQRESEXnrpJduY6tWra9WqVRo7dqzeeustVa5cWR9++KHCwsJsY/r27atTp05p0qRJSk5OVpMmTbR27docF/EEACAvnJ2d5ePjYztLpVy5crJYLA6uCrfKMAylp6crJSVFPj4+cnZ2dnRJNmQkAEBJRkYq2YpjRrIYxel8LZOlpaXJ29tbqampRXJq+pW1W3Msc+l0T6EfBwBQuAzDUHJyco7r/aDk8PHxUUBAQK5Buag//0sDMhIAIDdkpJKvOGWkQj9DCgCAks5isSgwMFAVK1bUlStXHF0O8sjFxaVYfOsHAEBpQ0Yq2YpbRqIhBQDAdTg7OxerD20AAIDigIyEwpCnu+wBAAAAAAAABUVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgqjKOLqA0O3xuTY5ltXWPAyoBAAAoPshIAACAM6QAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqPDWk5syZo8aNG8tqtcpqtSokJERr1qyxrb906ZIiIyNVoUIFeXp6qlevXjp58qTdPo4eParw8HCVK1dOFStW1Lhx43T16lW7MZs3b1azZs3k5uamWrVqaf78+TlqmT17tqpVqyZ3d3e1bt1aO3bsyMtLAQAAKDRkJAAAgLzJU0OqcuXKmjZtmuLj4/XDDz+offv2euihh7Rv3z5J0tixY/XVV19p6dKl2rJli44fP66ePXvats/MzFR4eLgyMjK0bds2ffTRR5o/f74mTZpkG5OUlKTw8HA98MADSkhI0JgxYzR06FCtW7fONmbx4sWKiopSdHS0du3apeDgYIWFhSklJaWg8wEAAJBnZCQAAIC8sRiGYRRkB76+vnr99dfVu3dv+fn5aeHCherdu7ck6cCBA7rrrrsUFxenNm3aaM2aNeratauOHz8uf39/SdLcuXP13HPP6dSpU3J1ddVzzz2nVatWae/evbZj9OvXT+fOndPatWslSa1bt1bLli31zjvvSJKysrIUFBSkUaNGafz48bdce1pamry9vZWamiqr1VqQacjVwUUv5FhWu9+UQj8OAAC4dUX9+Z+NjHR9ZCQAAIofszJStnxfQyozM1OLFi3SxYsXFRISovj4eF25ckWhoaG2MfXq1VOVKlUUFxcnSYqLi1OjRo1sQUuSwsLClJaWZvsGMS4uzm4f2WOy95GRkaH4+Hi7MU5OTgoNDbWNuZ7Lly8rLS3N7gEAAFCYyEgAAAA3l+eG1J49e+Tp6Sk3NzeNGDFCy5YtU/369ZWcnCxXV1f5+PjYjff391dycrIkKTk52S5oZa/PXnejMWlpafrrr790+vRpZWZm5jomex/XM3XqVHl7e9seQUFBeX35AAAAuSIjAQAA3Lo8N6Tq1q2rhIQEbd++XU888YQiIiL0888/F0VthW7ChAlKTU21PY4dO+bokgAAQClBRgIAALh1ZfK6gaurq2rVqiVJat68uXbu3Km33npLffv2VUZGhs6dO2f3DeDJkycVEBAgSQoICMhxp5fsO8z8c8y1d505efKkrFarypYtK2dnZzk7O+c6Jnsf1+Pm5iY3N7e8vmQAAICbIiMBAADcunxfQypbVlaWLl++rObNm8vFxUWxsbG2dYmJiTp69KhCQkIkSSEhIdqzZ4/dnV7Wr18vq9Wq+vXr28b8cx/ZY7L34erqqubNm9uNycrKUmxsrG0MAACAo5GRAAAAri9PZ0hNmDBBnTt3VpUqVXT+/HktXLhQmzdv1rp16+Tt7a0hQ4YoKipKvr6+slqtGjVqlEJCQtSmTRtJUseOHVW/fn099thjmj59upKTk/Xiiy8qMjLS9q3ciBEj9M477+jZZ5/V448/ro0bN2rJkiVatWqVrY6oqChFRESoRYsWatWqlWbOnKmLFy9q8ODBhTg1AAAAt4aMBAAAkDd5akilpKRo4MCBOnHihLy9vdW4cWOtW7dODz74oCTpzTfflJOTk3r16qXLly8rLCxM7777rm17Z2dnrVy5Uk888YRCQkLk4eGhiIgIvfTSS7Yx1atX16pVqzR27Fi99dZbqly5sj788EOFhYXZxvTt21enTp3SpEmTlJycrCZNmmjt2rU5LuIJAABgBjISAABA3lgMwzAcXYSjpKWlydvbW6mpqbJarYW+/4OLXsixrHa/KYV+HAAAcOuK+vO/NCAjAQBw+zE7IxX4GlIAAAAAAABAXtCQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPlqSE1depUtWzZUl5eXqpYsaK6d++uxMREuzGXLl1SZGSkKlSoIE9PT/Xq1UsnT560G3P06FGFh4erXLlyqlixosaNG6erV6/ajdm8ebOaNWsmNzc31apVS/Pnz89Rz+zZs1WtWjW5u7urdevW2rFjR15eDgAAQKEgIwEAAORNnhpSW7ZsUWRkpL7//nutX79eV65cUceOHXXx4kXbmLFjx+qrr77S0qVLtWXLFh0/flw9e/a0rc/MzFR4eLgyMjK0bds2ffTRR5o/f74mTZpkG5OUlKTw8HA98MADSkhI0JgxYzR06FCtW7fONmbx4sWKiopSdHS0du3apeDgYIWFhSklJaUg8wEAAJBnZCQAAIC8sRiGYeR341OnTqlixYrasmWL2rVrp9TUVPn5+WnhwoXq3bu3JOnAgQO66667FBcXpzZt2mjNmjXq2rWrjh8/Ln9/f0nS3Llz9dxzz+nUqVNydXXVc889p1WrVmnv3r22Y/Xr10/nzp3T2rVrJUmtW7dWy5Yt9c4770iSsrKyFBQUpFGjRmn8+PG3VH9aWpq8vb2Vmpoqq9Wa32m4roOLXsixrHa/KYV+HAAAcOuK+vNfIiPdDBkJAIDix4yM9E8FuoZUamqqJMnX11eSFB8frytXrig0NNQ2pl69eqpSpYri4uIkSXFxcWrUqJEtaElSWFiY0tLStG/fPtuYf+4je0z2PjIyMhQfH283xsnJSaGhobYxubl8+bLS0tLsHgAAAIWNjAQAAHBj+W5IZWVlacyYMbr77rvVsGFDSVJycrJcXV3l4+NjN9bf31/Jycm2Mf8MWtnrs9fdaExaWpr++usvnT59WpmZmbmOyd5HbqZOnSpvb2/bIygoKO8vHAAA4AbISAAAADeX74ZUZGSk9u7dq0WLFhVmPUVqwoQJSk1NtT2OHTvm6JIAAEApQ0YCAAC4uTL52WjkyJFauXKlvvnmG1WuXNm2PCAgQBkZGTp37pzdN4AnT55UQECAbcy1d3rJvsPMP8dce9eZkydPymq1qmzZsnJ2dpazs3OuY7L3kRs3Nze5ubnl/QUDAADcAjISAADArcnTGVKGYWjkyJFatmyZNm7cqOrVq9utb968uVxcXBQbG2tblpiYqKNHjyokJESSFBISoj179tjd6WX9+vWyWq2qX7++bcw/95E9Jnsfrq6uat68ud2YrKwsxcbG2sYAAACYhYwEAACQN3k6QyoyMlILFy7Ul19+KS8vL9u1CLy9vVW2bFl5e3tryJAhioqKkq+vr6xWq0aNGqWQkBC1adNGktSxY0fVr19fjz32mKZPn67k5GS9+OKLioyMtH0zN2LECL3zzjt69tln9fjjj2vjxo1asmSJVq1aZaslKipKERERatGihVq1aqWZM2fq4sWLGjx4cGHNDQAAwC0hIwEAAORNnhpSc+bMkSTdf//9dsvnzZunQYMGSZLefPNNOTk5qVevXrp8+bLCwsL07rvv2sY6Oztr5cqVeuKJJxQSEiIPDw9FRETopZdeso2pXr26Vq1apbFjx+qtt95S5cqV9eGHHyosLMw2pm/fvjp16pQmTZqk5ORkNWnSRGvXrs1xEU8AAICiRkYCAADIG4thGIaji3CUtLQ0eXt7KzU1VVartdD3f3DRCzmW1e43pdCPAwAAbl1Rf/6XBmQkAABuP2ZnpHzfZQ8AAAAAAADIDxpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYKo8N6S++eYbdevWTZUqVZLFYtHy5cvt1huGoUmTJikwMFBly5ZVaGioDh48aDfmzJkzGjBggKxWq3x8fDRkyBBduHDBbsxPP/2ke++9V+7u7goKCtL06dNz1LJ06VLVq1dP7u7uatSokVavXp3XlwMAAFAoyEgAAAC3Ls8NqYsXLyo4OFizZ8/Odf306dM1a9YszZ07V9u3b5eHh4fCwsJ06dIl25gBAwZo3759Wr9+vVauXKlvvvlGw4cPt61PS0tTx44dVbVqVcXHx+v111/X5MmT9f7779vGbNu2Tf3799eQIUP0448/qnv37urevbv27t2b15cEAABQYGQkAACAW2cxDMPI98YWi5YtW6bu3btL+vubv0qVKunpp5/WM888I0lKTU2Vv7+/5s+fr379+mn//v2qX7++du7cqRYtWkiS1q5dqy5duuj3339XpUqVNGfOHL3wwgtKTk6Wq6urJGn8+PFavny5Dhw4IEnq27evLl68qJUrV9rqadOmjZo0aaK5c+feUv1paWny9vZWamqqrFZrfqfhug4ueiHHstr9phT6cQAAwK0r6s9/iYx0M2QkAACKHzMy0j8V6jWkkpKSlJycrNDQUNsyb29vtW7dWnFxcZKkuLg4+fj42IKWJIWGhsrJyUnbt2+3jWnXrp0taElSWFiYEhMTdfbsWduYfx4ne0z2cQAAAIoLMhIAAIC9MoW5s+TkZEmSv7+/3XJ/f3/buuTkZFWsWNG+iDJl5OvrazemevXqOfaRva58+fJKTk6+4XFyc/nyZV2+fNn2PC0tLS8vDwAAIF/ISAAAAPZuq7vsTZ06Vd7e3rZHUFCQo0sCAABwODISAAAwW6E2pAICAiRJJ0+etFt+8uRJ27qAgAClpKTYrb969arOnDljNya3ffzzGNcbk70+NxMmTFBqaqrtcezYsby+RAAAgDwjIwEAANgr1IZU9erVFRAQoNjYWNuytLQ0bd++XSEhIZKkkJAQnTt3TvHx8bYxGzduVFZWllq3bm0b88033+jKlSu2MevXr1fdunVVvnx525h/Hid7TPZxcuPm5iar1Wr3AAAAKGpkJAAAAHt5bkhduHBBCQkJSkhIkPT3RToTEhJ09OhRWSwWjRkzRq+88opWrFihPXv2aODAgapUqZLtLjN33XWXOnXqpGHDhmnHjh367rvvNHLkSPXr10+VKlWSJD3yyCNydXXVkCFDtG/fPi1evFhvvfWWoqKibHWMHj1aa9eu1X/+8x8dOHBAkydP1g8//KCRI0cWfFYAAADyiIwEAABw6/J8UfMffvhBDzzwgO15dgCKiIjQ/Pnz9eyzz+rixYsaPny4zp07p3vuuUdr166Vu7u7bZsFCxZo5MiR6tChg5ycnNSrVy/NmjXLtt7b21tff/21IiMj1bx5c91xxx2aNGmShg8fbhvTtm1bLVy4UC+++KKef/551a5dW8uXL1fDhg3zNREAAAAFQUYCAAC4dRbDMAxHF+EoaWlp8vb2VmpqapGcmn5w0Qs5ltXuN6XQjwMAAG5dUX/+lwZkJAAAbj9mZ6Tb6i57AAAAAAAAcDwaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqEt+Qmj17tqpVqyZ3d3e1bt1aO3bscHRJAAAADkdGAgAAxVmJbkgtXrxYUVFRio6O1q5duxQcHKywsDClpKQ4ujQAAACHISMBAIDirkQ3pN544w0NGzZMgwcPVv369TV37lyVK1dO//3vfx1dGgAAgMOQkQAAQHFXxtEF5FdGRobi4+M1YcIE2zInJyeFhoYqLi7OgZXd2MFFL9g9r+bTOccYl073mFUOAAAoZchIAACgJCixDanTp08rMzNT/v7+dsv9/f114MCBXLe5fPmyLl++bHuempoqSUpLSyuSGi+kX77pmL3py3Mu/G8uy25Bzd6T8rUdAAC3k+zPfcMwHFxJ0SAj5URGAgDg5szOSCW2IZUfU6dOVUxMTI7lQUFBDqimCAz5j6MrAACgxDh//ry8vb0dXUaxQEYCAADZzMpIJbYhdccdd8jZ2VknT560W37y5EkFBATkus2ECRMUFRVle56VlaUzZ86oQoUKslgshVpfWlqagoKCdOzYMVmt1kLdd2nH3OUfc5d/zF3+MXf5x9zlX0HmzjAMnT9/XpUqVSqi6hyLjFR6MXf5x9zlH3OXf8xd/jF3+VeSMlKJbUi5urqqefPmio2NVffu3SX9HZ5iY2M1cuTIXLdxc3OTm5ub3TIfH58irdNqtfIfUD4xd/nH3OUfc5d/zF3+MXf5l9+5K81nRpGRSj/mLv+Yu/xj7vKPucs/5i7/SkJGKrENKUmKiopSRESEWrRooVatWmnmzJm6ePGiBg8e7OjSAAAAHIaMBAAAirsS3ZDq27evTp06pUmTJik5OVlNmjTR2rVrc1zEEwAA4HZCRgIAAMVdiW5ISdLIkSOve/q5I7m5uSk6OjrH6e+4OeYu/5i7/GPu8o+5yz/mLv+Yu5sjI5U+zF3+MXf5x9zlH3OXf8xd/pWkubMYpfWexwAAAAAAACiWnBxdAAAAAAAAAG4vNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhlQRmT17tqpVqyZ3d3e1bt1aO3bscHRJxd7kyZNlsVjsHvXq1XN0WcXSN998o27duqlSpUqyWCxavny53XrDMDRp0iQFBgaqbNmyCg0N1cGDBx1TbDFzs7kbNGhQjvdhp06dHFNsMTJ16lS1bNlSXl5eqlixorp3767ExES7MZcuXVJkZKQqVKggT09P9erVSydPnnRQxcXHrczd/fffn+N9N2LECAdVXHzMmTNHjRs3ltVqldVqVUhIiNasWWNbz3uuZCIj5R0Z6daRkfKPjJQ/ZKT8IyPlX2nJSDSkisDixYsVFRWl6Oho7dq1S8HBwQoLC1NKSoqjSyv2GjRooBMnTtgeW7dudXRJxdLFixcVHBys2bNn57p++vTpmjVrlubOnavt27fLw8NDYWFhunTpksmVFj83mztJ6tSpk9378NNPPzWxwuJpy5YtioyM1Pfff6/169frypUr6tixoy5evGgbM3bsWH311VdaunSptmzZouPHj6tnz54OrLp4uJW5k6Rhw4bZve+mT5/uoIqLj8qVK2vatGmKj4/XDz/8oPbt2+uhhx7Svn37JPGeK4nISPlHRro1ZKT8IyPlDxkp/8hI+VdqMpKBQteqVSsjMjLS9jwzM9OoVKmSMXXqVAdWVfxFR0cbwcHBji6jxJFkLFu2zPY8KyvLCAgIMF5//XXbsnPnzhlubm7Gp59+6oAKi69r584wDCMiIsJ46KGHHFJPSZKSkmJIMrZs2WIYxt/vMRcXF2Pp0qW2Mfv37zckGXFxcY4qs1i6du4MwzDuu+8+Y/To0Y4rqgQpX7688eGHH/KeK6HISPlDRsofMlL+kZHyj4yUf2SkgimJGYkzpApZRkaG4uPjFRoaalvm5OSk0NBQxcXFObCykuHgwYOqVKmSatSooQEDBujo0aOOLqnESUpKUnJyst170NvbW61bt+Y9eIs2b96sihUrqm7dunriiSf0559/OrqkYic1NVWS5OvrK0mKj4/XlStX7N539erVU5UqVXjfXePaucu2YMEC3XHHHWrYsKEmTJig9PR0R5RXbGVmZmrRokW6ePGiQkJCeM+VQGSkgiEjFRwZqeDISDdHRso/MlL+lOSMVMbRBZQ2p0+fVmZmpvz9/e2W+/v768CBAw6qqmRo3bq15s+fr7p16+rEiROKiYnRvffeq71798rLy8vR5ZUYycnJkpTrezB7Ha6vU6dO6tmzp6pXr65Dhw7p+eefV+fOnRUXFydnZ2dHl1csZGVlacyYMbr77rvVsGFDSX+/71xdXeXj42M3lvedvdzmTpIeeeQRVa1aVZUqVdJPP/2k5557TomJifriiy8cWG3xsGfPHoWEhOjSpUvy9PTUsmXLVL9+fSUkJPCeK2HISPlHRiocZKSCISPdHBkp/8hIeVcaMhINKRQbnTt3tv27cePGat26tapWraolS5ZoyJAhDqwMt5N+/frZ/t2oUSM1btxYNWvW1ObNm9WhQwcHVlZ8REZGau/evVy/JB+uN3fDhw+3/btRo0YKDAxUhw4ddOjQIdWsWdPsMouVunXrKiEhQampqfrss88UERGhLVu2OLoswFRkJBQHZKSbIyPlHxkp70pDRuIne4XsjjvukLOzc44r2J88eVIBAQEOqqpk8vHxUZ06dfTrr786upQSJft9xnuwcNSoUUN33HEH78P/Z+TIkVq5cqU2bdqkypUr25YHBAQoIyND586dsxvP++7/XG/uctO6dWtJ4n0nydXVVbVq1VLz5s01depUBQcH66233uI9VwKRkQoPGSl/yEiFi4xkj4yUf2Sk/CkNGYmGVCFzdXVV8+bNFRsba1uWlZWl2NhYhYSEOLCykufChQs6dOiQAgMDHV1KiVK9enUFBATYvQfT0tK0fft23oP58Pvvv+vPP/+87d+HhmFo5MiRWrZsmTZu3Kjq1avbrW/evLlcXFzs3neJiYk6evTobf++u9nc5SYhIUGSbvv3XW6ysrJ0+fJl3nMlEBmp8JCR8oeMVLjISH8jI+UfGalwlcSMxE/2ikBUVJQiIiLUokULtWrVSjNnztTFixc1ePBgR5dWrD3zzDPq1q2bqlatquPHjys6OlrOzs7q37+/o0srdi5cuGD3rUBSUpISEhLk6+urKlWqaMyYMXrllVdUu3ZtVa9eXRMnTlSlSpXUvXt3xxVdTNxo7nx9fRUTE6NevXopICBAhw4d0rPPPqtatWopLCzMgVU7XmRkpBYuXKgvv/xSXl5ett+fe3t7q2zZsvL29taQIUMUFRUlX19fWa1WjRo1SiEhIWrTpo2Dq3esm83doUOHtHDhQnXp0kUVKlTQTz/9pLFjx6pdu3Zq3Lixg6t3rAkTJqhz586qUqWKzp8/r4ULF2rz5s1at24d77kSioyUP2SkW0dGyj8yUv6QkfKPjJR/pSYjOfYmf6XX22+/bVSpUsVwdXU1WrVqZXz//feOLqnY69u3rxEYGGi4uroad955p9G3b1/j119/dXRZxdKmTZsMSTkeERERhmH8fVvjiRMnGv7+/oabm5vRoUMHIzEx0bFFFxM3mrv09HSjY8eOhp+fn+Hi4mJUrVrVGDZsmJGcnOzosh0utzmTZMybN8825q+//jKefPJJo3z58ka5cuWMHj16GCdOnHBc0cXEzebu6NGjRrt27QxfX1/Dzc3NqFWrljFu3DgjNTXVsYUXA48//rhRtWpVw9XV1fDz8zM6dOhgfP3117b1vOdKJjJS3pGRbh0ZKf/ISPlDRso/MlL+lZaMZDEMwyiaVhcAAAAAAACQE9eQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUoADTJ48WRaLJV/bDho0SNWqVSvcgm5jFotFkydPzvN2hw8flsVi0fz58wu9phupVq2aBg0aVOj7ffLJJ/Xggw/edNzmzZtlsVi0efNmu+Uff/yx6tWrJxcXF/n4+OTp2D///LPKlCmjvXv35mk7AEDpRE4qPshJfyMnAUWDhhRQwqWnp2vy5Mk5PvjMcvz4cU2ePFkJCQkOOT4KLikpSR9++KGef/75fG1/4MABDRo0SDVr1tQHH3yg999/X5K0Y8cOPfnkk2revLlcXFyu+/9c1K9fX+Hh4Zo0aVK+XwMAALkhJ6GgiiInZWVlaf78+frXv/6loKAgeXh4qGHDhnrllVd06dIlu+3JSSjNyji6AAAFk56erpiYGEnS/fffb/rxjx8/rpiYGFWrVk1NmjQx/fi3m8TERDk5Fe53CW+99ZaqV6+uBx54IF/bb968WVlZWXrrrbdUq1Yt2/LVq1frww8/VOPGjVWjRg398ssv193HiBEj1KVLFx06dEg1a9bMVx0AAFyLnHR7KSk56cKFCxo8eLDatGmjESNGqGLFioqLi1N0dLRiY2O1ceNGuy/yyEkorThDCkC+XL16VRkZGY4u47bj5uYmFxeXQtvflStXtGDBAvXp0yff+0hJSZGkHKegP/HEE0pNTdUPP/xw09PcQ0NDVb58eX300Uf5rgMAgOKCnOQYJSUnubq66rvvvlNcXJxeeOEFDRs2TP/9738VHR2tzZs3KzY21m4f5CSUVjSkgCK2detWtWzZUu7u7qpZs6bee++964795JNP1Lx5c5UtW1a+vr7q16+fjh07dt3xhw8flp+fnyQpJiZGFovF7rf+P/30kwYNGqQaNWrI3d1dAQEBevzxx/Xnn3/m6TVkXwdgxowZmjlzpmrWrCk3Nze9++67atmypSRp8ODBtuPf6vUC5s+fL4vFoq1bt+qpp56Sn5+ffHx89O9//1sZGRk6d+6cBg4cqPLly6t8+fJ69tlnZRiG3T4uXryop59+WkFBQXJzc1PdunU1Y8aMHOMuX76ssWPHys/PT15eXvrXv/6l33//Pde6/vjjDz3++OPy9/eXm5ubGjRooP/+9795mrPcZF9XYMmSJYqJidGdd94pLy8v9e7dW6mpqbp8+bLGjBmjihUrytPTU4MHD9bly5ft9nHttRGy5/C7775TVFSU/Pz85OHhoR49eujUqVM3rWnr1q06ffq0QkNDc6z7/fff1b17d3l4eKhixYoaO3ZsrvVER0dLkvz8/Ozef/7+/ipbtuwtzY2Li4vuv/9+ffnll7c0HgBQOpCTro+cVHpzkqurq9q2bZtjnz169JAk7d+/3245OQmlFT/ZA4rQnj171LFjR/n5+Wny5Mm6evWqoqOj5e/vn2PslClTNHHiRPXp00dDhw7VqVOn9Pbbb6tdu3b68ccfc70Aop+fn+bMmaMnnnhCPXr0UM+ePSVJjRs3liStX79ev/32mwYPHqyAgADt27dP77//vvbt26fvv/8+zxcMnTdvni5duqThw4fLzc1NPXr00Pnz5zVp0iQNHz5c9957ryTl+gF7I6NGjVJAQIBiYmL0/fff6/3335ePj4+2bdumKlWq6NVXX9Xq1av1+uuvq2HDhho4cKAkyTAM/etf/9KmTZs0ZMgQNWnSROvWrdO4ceP0xx9/6M0337QdY+jQofrkk0/0yCOPqG3bttq4caPCw8Nz1HLy5Em1adNGFotFI0eOlJ+fn9asWaMhQ4YoLS1NY8aMydNry83UqVNVtmxZjR8/Xr/++qvefvttubi4yMnJSWfPntXkyZP1/fffa/78+apevfotXTNg1KhRKl++vKKjo3X48GHNnDlTI0eO1OLFi2+43bZt22SxWNS0aVO75X/99Zc6dOigo0eP6qmnnlKlSpX08ccfa+PGjXbjZs6cqf/9739atmyZ5syZI09PT9v7L6+aN2+uL7/8UmlpabJarfnaBwCg5CAn3Rpy0u2Tk5KTkyVJd9xxR4515CSUSgaAItO9e3fD3d3dOHLkiG3Zzz//bDg7Oxv//M/v8OHDhrOzszFlyhS77ffs2WOUKVPGbnlERIRRtWpV2/NTp04Zkozo6Ogcx09PT8+x7NNPPzUkGd98880tv46kpCRDkmG1Wo2UlBS7dTt37jQkGfPmzbvl/WWbN2+eIckICwszsrKybMtDQkIMi8VijBgxwrbs6tWrRuXKlY377rvPtmz58uWGJOOVV16x22/v3r0Ni8Vi/Prrr4ZhGEZCQoIhyXjyySftxj3yyCM55m7IkCFGYGCgcfr0abux/fr1M7y9vW1zmj0neXndmzZtMiQZDRs2NDIyMmzL+/fvb1gsFqNz585240NCQuz+1oZhGFWrVjUiIiJsz7PnMDQ01G4Ox44dazg7Oxvnzp27YU2PPvqoUaFChRzLZ86caUgylixZYlt28eJFo1atWoYkY9OmTbbl0dHRhiTj1KlT1z1OZGSkcbOPnIULFxqSjO3bt99wHACgdCAn3Rg56W+3Q07KFhoaalitVuPs2bM51pGTUBrxkz2giGRmZmrdunXq3r27qlSpYlt+1113KSwszG7sF198oaysLPXp00enT5+2PQICAlS7dm1t2rQpXzX88+dSly5d0unTp9WmTRtJ0q5du/K8v169etlOfS9MQ4YMsfsWsnXr1jIMQ0OGDLEtc3Z2VosWLfTbb7/Zlq1evVrOzs566qmn7Pb39NNPyzAMrVmzxjZOUo5x136LZxiGPv/8c3Xr1k2GYdj9LcLCwpSampqvebvWwIED7a5vkP16H3/8cbtxrVu31rFjx3T16tWb7nP48OF2c3jvvfcqMzNTR44cueF2f/75p8qXL59j+erVqxUYGKjevXvblpUrV07Dhw+/aS35lV3H6dOni+wYAIDigZx068hJt0dOevXVV7VhwwZNmzYt1zP+yEkojfjJHlBETp06pb/++ku1a9fOsa5u3bq2D39JOnjwoAzDyHWspHxfnPHMmTOKiYnRokWLbBdUzJaamprn/VWvXj1fddzMP4OoJHl7e0uSgoKCciw/e/as7fmRI0dUqVIleXl52Y276667bOuz/6+Tk1OOu5LUrVvX7vmpU6d07tw5vf/++3r//fdzrfXaecyPvLzerKwspaamqkKFCnnaZ3Zo+ed8XY9xzXUkpL/nrFatWjl+rnDtnBWm7Dry+hMJAEDJQ066deSk0p+TFi9erBdffFFDhgzRE088ccM6yEkoTWhIAcVAVlaWLBaL1qxZI2dn5xzrPT0987XfPn36aNu2bRo3bpyaNGkiT09PZWVlqVOnTsrKysrz/m71AtV5ldtrvt7y3EJBYcmek0cffVQRERG5jsnv9ZH+KS+vV7q115zfbStUqHBLYcwM2XXkdt0EAMDti5xETrrR8pKek9avX6+BAwcqPDxcc+fOve44chJKIxpSQBHx8/NT2bJldfDgwRzrEhMT7Z7XrFlThmGoevXqqlOnTp6Oc71vSc6ePavY2FjFxMTYXewxt3oKwpHf0lStWlUbNmzQ+fPn7b79O3DggG199v/NysrSoUOH7L65uvbvkH1nmczMzFzvplIa1atXTwsWLFBqaqrtG0jp7znbu3evDMOw+xtfO2eFKSkpSU5OTnn+bwAAUPKQk4oeOangijonbd++XT169FCLFi20ZMkSlSlz/f/3nJyE0ohrSAFFxNnZWWFhYVq+fLmOHj1qW75//36tW7fObmzPnj3l7OysmJiYHN/UGIZxw9sPlytXTpJ07ty5HMfP3v6fZs6cmdeXckMeHh65Ht8MXbp0UWZmpt555x275W+++aYsFos6d+4sSbb/O2vWLLtx186Fs7OzevXqpc8//1x79+7NcbxbuT1wSRMSEiLDMBQfH2+3vEuXLjp+/Lg+++wz27L09PTrnqJfGOLj49WgQQO7wAcAKJ3ISUWPnFRwRZmT9u/fr/DwcFWrVk0rV6686Rl25CSURpwhBRShmJgYrV27Vvfee6+efPJJXb16VW+//bYaNGign376yTauZs2aeuWVVzRhwgQdPnxY3bt3l5eXl5KSkrRs2TINHz5czzzzTK7HKFu2rOrXr6/FixerTp068vX1VcOGDdWwYUO1a9dO06dP15UrV3TnnXfq66+/VlJSUqG+xpo1a8rHx0dz586Vl5eXPDw81Lp16yK7jsI/devWTQ888IBeeOEFHT58WMHBwfr666/15ZdfasyYMbZrITRp0kT9+/fXu+++q9TUVLVt21axsbH69ddfc+xz2rRp2rRpk1q3bq1hw4apfv36OnPmjHbt2qUNGzbozJkzRf66zHTPPfeoQoUK2rBhg9q3b29bPmzYML3zzjsaOHCg4uPjFRgYqI8//tgW7G/FkSNH9PHHH0uSfvjhB0nSK6+8IunvbxYfe+wx29grV65oy5YtevLJJwvjZQEASgByUtEiJxVcUeWk8+fPKywsTGfPntW4ceO0atUqu/U1a9ZUSEiI7Tk5CaUVDSmgCDVu3Fjr1q1TVFSUJk2apMqVKysmJkYnTpywC1qSNH78eNWpU0dvvvmmYmJiJP198caOHTvqX//61w2P8+GHH2rUqFEaO3asMjIyFB0drYYNG2rhwoUaNWqUZs+eLcMw1LFjR61Zs0aVKlUqtNfo4uKijz76SBMmTNCIESN09epVzZs3z5Sg5eTkpBUrVmjSpElavHix5s2bp2rVqun111/X008/bTf2v//9r/z8/LRgwQItX75c7du316pVq3JcINPf3187duzQSy+9pC+++ELvvvuuKlSooAYNGui1114r8tdkNldXVw0YMEBLly7Vq6++alterlw5xcbGatSoUXr77bdVrlw5DRgwQJ07d1anTp1uad9JSUmaOHGi3bLs5/fdd59dQyo2NlZnzpy57jUpAAClDzmpaJGTCq6octKff/6pY8eOSfr7vX2tiIgIu4YUOQmllcUoyivfAQCKvd9++0316tXTmjVr1KFDB4fU0L17d1ksFi1btswhxwcAAMgNOQkoOjSkAAB64okn9Ouvv2r9+vWmH3v//v1q1KiREhIS1LBhQ9OPDwAAcCPkJKBo0JACbmOZmZk3vQClp6dnnm+n/Ndffyk1NfWGY3x9feXq6pqn/RZXGRkZN71mgre3d5HdDhoAABQ+clLhICcBuB6uIQXcxo4dO3bTaxhER0dr8uTJedrv4sWLNXjw4BuO2bRpk+6///487be42rZtmx544IEbjpk3b54GDRpkTkEAAKDAyEmFg5wE4Ho4Qwq4jV26dElbt2694ZgaNWqoRo0aedrviRMntG/fvhuOad68ucqXL5+n/RZXZ8+ezXE74Gs1aNBAgYGBJlUEAAAKipxUOMhJAK6HhhQAAAAAAABM5eToAgAAAAAAAHB7ua2vIZWVlaXjx4/Ly8tLFovF0eUAAAATGIah8+fPq1KlSnJy4ru53JCRAAC4/ZidkW7rhtTx48cVFBTk6DIAAIADHDt2TJUrV3Z0GcUSGQkAgNuXWRnptm5IeXl5Sfp7sq1Wq4OrAQAAZkhLS1NQUJAtByAnMhIAALcfszPSbd2Qyj4F3Wq1ErYAALjN8FO06yMjAQBw+zIrI3HhBAAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAAprqtryEFAMCNZGZm6sqVK44uA3nk4uIiZ2dnR5cBAECpRUYqmYpbRqIhBQDANQzDUHJyss6dO+foUpBPPj4+CggI4MLlAAAUIjJSyVecMhINKQAArpEdtCpWrKhy5coViw9s3BrDMJSenq6UlBRJUmBgoIMrAgCg9CAjlVzFMSPRkAIA4B8yMzNtQatChQqOLgf5ULZsWUlSSkqKKlasWKxOTQcAoKQiI5V8xS0jcVFzAAD+Ift6COXKlXNwJSiI7L8f17cAAKBwkJFKh+KUkWhIAQCQC05BL9n4+wEAUDT4jC3ZitPfj4YUAAAAAAAATEVDCgAAAAAAAKbiouYAANyiK2u3mnYsl0733PLYm516HR0drcmTJxewovyxWCxatmyZunfvnu99vP/++1q4cKF27dql8+fP6+zZs/Lx8Sm0GgEAQMGYmZEkclK2M2fOKDo6Wl9//bWOHj0qPz8/de/eXS+//LK8vb0Lt9giQEMKwG3r2g/OvHywAcXJiRMnbP9evHixJk2apMTERNsyT0/PPO0vIyNDrq6uhVZfQaWnp6tTp07q1KmTJkyY4OhyAKDUy625QE5CSVWac9Lx48d1/PhxzZgxQ/Xr19eRI0c0YsQIHT9+XJ999pmjy7spfrIHAEAJFxAQYHt4e3vLYrHYnl+8eFEDBgyQv7+/PD091bJlS23YsMFu+2rVqunll1/WwIEDZbVaNXz4cEnSBx98oKCgIJUrV049evTQG2+8kePMpC+//FLNmjWTu7u7atSooZiYGF29etW2X0nq0aOHLBaL7fnu3bv1wAMPyMvLS1arVc2bN9cPP/xw3dc3ZswYjR8/Xm3atCmcCQMAALeN0pyTGjZsqM8//1zdunVTzZo11b59e02ZMkVfffWV7TjFGQ0pAABKsQsXLqhLly6KjY3Vjz/+qE6dOqlbt246evSo3bgZM2YoODhYP/74oyZOnKjvvvtOI0aM0OjRo5WQkKAHH3xQU6ZMsdvm22+/1cCBAzV69Gj9/PPPeu+99zR//nzbuJ07d0qS5s2bpxMnTtieDxgwQJUrV9bOnTsVHx+v8ePHy8XFxYTZAAAA+D+lMSelpqbKarWqTJni/4O44l8hAADIt+DgYAUHB9uev/zyy1q2bJlWrFihkSNH2pa3b99eTz/9tO35Cy+8oM6dO+uZZ56RJNWpU0fbtm3TypUrbWNiYmI0fvx4RURESJJq1Kihl19+Wc8++6yio6Pl5+cnSfLx8VFAQIBtu6NHj2rcuHGqV6+eJKl27dpF8MoBAABurLTlpNOnT+vll1+2ncVV3HGGFAAApdiFCxf0zDPP6K677pKPj488PT21f//+HN/8tWjRwu55YmKiWrVqZbfs2ue7d+/WSy+9JE9PT9tj2LBhOnHihNLT069bU1RUlIYOHarQ0FBNmzZNhw4dKuCrBAAAyLvSlJPS0tIUHh6u+vXrO+wi7XlFQwoAgFLsmWee0bJly/Tqq6/q22+/VUJCgho1aqSMjAy7cR4eHnne94ULFxQTE6OEhATbY8+ePTp48KDc3d2vu93kyZO1b98+hYeHa+PGjapfv76WLVuW5+MDAAAURGnJSefPn1enTp3k5eWlZcuWlZhLIfCTPQAASrHvvvtOgwYNUo8ePST9HY4OHz580+3q1q1ru5ZBtmufN2vWTImJiapVq9Z19+Pi4qLMzMwcy+vUqaM6depo7Nix6t+/v+bNm2erEQAAwAylISelpaUpLCxMbm5uWrFixQ2bXcUNDSkAAEqx2rVr64svvlC3bt1ksVg0ceJEZWVl3XS7UaNGqV27dnrjjTfUrVs3bdy4UWvWrJHFYrGNmTRpkrp27aoqVaqod+/ecnJy0u7du7V371698sorkv6+g0xsbKzuvvtuubm5yd3dXePGjVPv3r1VvXp1/f7779q5c6d69ep13VqSk5OVnJysX3/9VZK0Z88eeXl5qUqVKvL19S3gDAEAgNtVSc9JaWlp6tixo9LT0/XJJ58oLS1NaWlpkiQ/Pz85OzsXwiwVHX6yBwBAKfbGG2+ofPnyatu2rbp166awsDA1a9bsptvdfffdmjt3rt544w0FBwdr7dq1Gjt2rN23bmFhYVq5cqW+/vprtWzZUm3atNGbb76pqlWr2sb85z//0fr16xUUFKSmTZvK2dlZf/75pwYOHKg6deqoT58+6ty5s2JiYq5by9y5c9W0aVMNGzZMktSuXTs1bdpUK1asKMDMAACA211Jz0m7du3S9u3btWfPHtWqVUuBgYG2x7Fjxwo+QUXMYhiG4egiHCUtLU3e3t622yICuL1cWbvV7rlLp3scVAmKk0uXLikpKUnVq1cvUac8m2HYsGE6cOCAvv32W0eXclM3+jvy+X9zzBFwe7s2I0nkJJCRbqak5KTilJH4yR4AAMjVjBkz9OCDD8rDw0Nr1qzRRx99pHfffdfRZQEAADgcOangaEgBAIBc7dixQ9OnT9f58+dVo0YNzZo1S0OHDnV0WQAAAA5HTio4GlIAACBXS5YscXQJAAAAxRI5qeC4qDkAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADBVGUcXAABASXHoh/dMO1bNFv/O0/hBgwbpo48+kiSVKVNGvr6+aty4sfr3769BgwbJyankfge1b98+TZo0SfHx8Tpy5IjefPNNjRkzxtFlAQCA/8fMjCSRk/7pgw8+0P/+9z/t3btXktS8eXO9+uqratWqlYMru7mSO+sAAMBOp06ddOLECR0+fFhr1qzRAw88oNGjR6tr1666evWqo8vLt/T0dNWoUUPTpk1TQECAo8sBAAAlUGnNSZs3b1b//v21adMmxcXFKSgoSB07dtQff/zh6NJuioYUAAClhJubmwICAnTnnXeqWbNmev755/Xll19qzZo1mj9/vm3cuXPnNHToUPn5+clqtap9+/bavXu33b6++uortWzZUu7u7rrjjjvUo0cP27qzZ89q4MCBKl++vMqVK6fOnTvr4MGDkqSLFy/KarXqs88+s9vf8uXL5eHhofPnzysjI0MjR45UYGCg3N3dVbVqVU2dOvW6r6tly5Z6/fXX1a9fP7m5uRXCTAEAgNtNac1JCxYs0JNPPqkmTZqoXr16+vDDD5WVlaXY2NhCmLWiRUMKAIBSrH379goODtYXX3xhW/bwww8rJSVFa9asUXx8vJo1a6YOHTrozJkzkqRVq1apR48e6tKli3788UfFxsbanfY9aNAg/fDDD1qxYoXi4uJkGIa6dOmiK1euyMPDQ/369dO8efPs6pg3b5569+4tLy8vzZo1SytWrNCSJUuUmJioBQsWqFq1aqbMBwAAQLbSmJPS09N15coV+fr6FmxyTMA1pAAAKOXq1aunn376SZK0detW7dixQykpKbazjWbMmKHly5frs88+0/DhwzVlyhT169dPMTExtn0EBwdLkg4ePKgVK1bou+++U9u2bSX9/c1cUFCQli9frocfflhDhw5V27ZtdeLECQUGBiolJUWrV6/Whg0bJElHjx5V7dq1dc8998hisahq1apmTgcAAIBNactJzz33nCpVqqTQ0NACz01R4wwpAABKOcMwZLFYJEm7d+/WhQsXVKFCBXl6etoeSUlJOnTokCQpISFBHTp0yHVf+/fvV5kyZdS6dWvbsgoVKqhu3brav3+/JKlVq1Zq0KCB7eKhn3zyiapWrap27dpJ+vubw4SEBNWtW1dPPfWUvv766yJ77QAAADdSmnLStGnTtGjRIi1btkzu7u55nwyTcYYUAACl3P79+1W9enVJ0oULFxQYGKjNmzfnGOfj4yNJKlu2bIGPOXToUM2ePVvjx4/XvHnzNHjwYFvYa9asmZKSkrRmzRpt2LBBffr0UWhoaI7rKQAAABS10pKTZsyYoWnTpmnDhg1q3LhxgWs0A2dIAQBQim3cuFF79uxRr169JP0dcpKTk1WmTBnVqlXL7nHHHXdIkho3bnzdC2Heddddunr1qrZv325b9ueffyoxMVH169e3LXv00Ud15MgRzZo1Sz///LMiIiLs9mO1WtW3b1998MEHWrx4sT7//HPbtRkAAADMUFpy0vTp0/Xyyy9r7dq1atGiRb7nw2ycIQUAQClx+fJlJScnKzMzUydPntTatWs1depUde3aVQMHDpQkhYaGKiQkRN27d9f06dNVp04dHT9+3HaBzhYtWig6OlodOnRQzZo11a9fP129elWrV6/Wc889p9q1a+uhhx7SsGHD9N5778nLy0vjx4/XnXfeqYceeshWS/ny5dWzZ0+NGzdOHTt2VOXKlW3r3njjDQUGBqpp06ZycnLS0qVLFRAQYPvm8VoZGRn6+eefbf/+448/lJCQIE9PT9WqVavoJhQAAJQapTUnvfbaa5o0aZIWLlyoatWqKTk5WZJsPzcszjhDCgCAUmLt2rUKDAxUtWrV1KlTJ23atEmzZs3Sl19+KWdnZ0mSxWLR6tWr1a5dOw0ePFh16tRRv379dOTIEfn7+0uS7r//fi1dulQrVqxQkyZN1L59e+3YscN2nHnz5ql58+bq2rWrQkJCZBiGVq9eLRcXF7t6hgwZooyMDD3++ON2y728vDR9+nS1aNFCLVu21OHDh7V69Wo5OeUeS44fP66mTZuqadOmOnHihGbMmKGmTZtq6NChhTl9AACgFCutOWnOnDnKyMhQ7969FRgYaHvMmDGjMKevSFgMwzAcXYSjpKWlydvbW6mpqbJarY4uB4DJrqzdavfcpdM9DqoExcmlS5eUlJSk6tWrl4iLQRZnH3/8scaOHavjx4/L1dXV1GPf6O/I5//NMUfA7e3ajCSRk0BGKmyOyknFKSPxkz0AAFCo0tPTdeLECU2bNk3//ve/TW9GAQAAFFfkpP/DT/YAAEChmj59uurVq6eAgABNmDDB0eUAAAAUG+Sk/0NDCgAAFKrJkyfrypUrio2NLfYX0wQAADATOen/0JACAAAAAACAqWhIAQCQi9v4nh+lAn8/AACKBp+xJVtx+vvRkAIA4B+yb8mbnp7u4EpQENl/v2tvsQwAAPKHjFQ6FKeMxF32AAD4B2dnZ/n4+CglJUWSVK5cOVksFgdXhVtlGIbS09OVkpIiHx8fOTs7O7okAABKBTJSyVYcM1KBGlLTpk3ThAkTNHr0aM2cOVOSdOnSJT399NNatGiRLl++rLCwML377rvy9/e3bXf06FE98cQT2rRpkzw9PRUREaGpU6eqTJn/K2fz5s2KiorSvn37FBQUpBdffFGDBg2yO/7s2bP1+uuvKzk5WcHBwXr77bfVqlWrgrwkAAAUEBAgSbbAhZLHx8fH9nd0BDISAKA0IiOVfI7OSP+U74bUzp079d5776lx48Z2y8eOHatVq1Zp6dKl8vb21siRI9WzZ0999913kqTMzEyFh4crICBA27Zt04kTJzRw4EC5uLjo1VdflSQlJSUpPDxcI0aM0IIFCxQbG6uhQ4cqMDBQYWFhkqTFixcrKipKc+fOVevWrTVz5kyFhYUpMTFRFStWzO/LAgBAFotFgYGBqlixoq5cueLocpBHLi4uDv3Wj4wEACityEglm6MzUg5GPpw/f96oXbu2sX79euO+++4zRo8ebRiGYZw7d85wcXExli5dahu7f/9+Q5IRFxdnGIZhrF692nBycjKSk5NtY+bMmWNYrVbj8uXLhmEYxrPPPms0aNDA7ph9+/Y1wsLCbM9btWplREZG2p5nZmYalSpVMqZOnXrLryM1NdWQZKSmpt76iwdQamSs+dbuAeD2UJSf/2QkAKXBtRmJnATcHsz+/M/XRc0jIyMVHh6u0NBQu+Xx8fG6cuWK3fJ69eqpSpUqiouLkyTFxcWpUaNGdqenh4WFKS0tTfv27bONuXbfYWFhtn1kZGQoPj7eboyTk5NCQ0NtY3Jz+fJlpaWl2T0AAAAKCxkJAADg1uT5J3uLFi3Srl27tHPnzhzrkpOT5erqKh8fH7vl/v7+Sk5Oto35Z9DKXp+97kZj0tLS9Ndff+ns2bPKzMzMdcyBAweuW/vUqVMVExNzay8UAAAgD8hIAAAAty5PZ0gdO3ZMo0eP1oIFC+Tu7l5UNRWZCRMmKDU11fY4duyYo0sCAAClABkJAAAgb/LUkIqPj1dKSoqaNWumMmXKqEyZMtqyZYtmzZqlMmXKyN/fXxkZGTp37pzddidPnrRdxT0gIEAnT57MsT573Y3GWK1WlS1bVnfccYecnZ1zHXOjq8W7ubnJarXaPQAAAAqKjAQAAJA3eWpIdejQQXv27FFCQoLt0aJFCw0YMMD2bxcXF8XGxtq2SUxM1NGjRxUSEiJJCgkJ0Z49e+xuE7l+/XpZrVbVr1/fNuaf+8gek70PV1dXNW/e3G5MVlaWYmNjbWMAAADMQkYCAADImzxdQ8rLy0sNGza0W+bh4aEKFSrYlg8ZMkRRUVHy9fWV1WrVqFGjFBISojZt2kiSOnbsqPr16+uxxx7T9OnTlZycrBdffFGRkZFyc3OTJI0YMULvvPOOnn32WT3++OPauHGjlixZolWrVtmOGxUVpYiICLVo0UKtWrXSzJkzdfHiRQ0ePLhAEwIAAJBXZCQAAIC8yfNFzW/mzTfflJOTk3r16qXLly8rLCxM7777rm29s7OzVq5cqSeeeEIhISHy8PBQRESEXnrpJduY6tWra9WqVRo7dqzeeustVa5cWR9++KHCwsJsY/r27atTp05p0qRJSk5OVpMmTbR27docF/EEAAAoDshIAAAA/8diGIbh6CIcJS0tTd7e3kpNTeVaCcBt6MrarXbPXTrd46BKAJiJz/+bY46A29u1GUkiJwG3A7M///N0DSkAAAAAAACgoGhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwVRlHFwAAjnL43Bq757V1j4MqAQAAKD6uzUgSOQlA4eMMKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMlaeG1Jw5c9S4cWNZrVZZrVaFhIRozZo1tvWXLl1SZGSkKlSoIE9PT/Xq1UsnT56028fRo0cVHh6ucuXKqWLFiho3bpyuXr1qN2bz5s1q1qyZ3NzcVKtWLc2fPz9HLbNnz1a1atXk7u6u1q1ba8eOHXl5KQAAAIWGjAQAAJA3eWpIVa5cWdOmTVN8fLx++OEHtW/fXg899JD27dsnSRo7dqy++uorLV26VFu2bNHx48fVs2dP2/aZmZkKDw9XRkaGtm3bpo8++kjz58/XpEmTbGOSkpIUHh6uBx54QAkJCRozZoyGDh2qdevW2cYsXrxYUVFRio6O1q5duxQcHKywsDClpKQUdD4AAADyjIwEAACQNxbDMIyC7MDX11evv/66evfuLT8/Py1cuFC9e/eWJB04cEB33XWX4uLi1KZNG61Zs0Zdu3bV8ePH5e/vL0maO3eunnvuOZ06dUqurq567rnntGrVKu3du9d2jH79+uncuXNau3atJKl169Zq2bKl3nnnHUlSVlaWgoKCNGrUKI0fP/6Wa09LS5O3t7dSU1NltVoLMg0ASqCDi16we1673xQHVQLATGZ9/pORAJRU12YkiZwE3A7M/vzP9zWkMjMztWjRIl28eFEhISGKj4/XlStXFBoaahtTr149ValSRXFxcZKkuLg4NWrUyBa0JCksLExpaWm2bxDj4uLs9pE9JnsfGRkZio+Ptxvj5OSk0NBQ25jruXz5stLS0uweAAAAhYmMBPz/7N15XJV1/v//J6AsLgdyYRtRMXMh11CRNNtILHKybNJqFE3za4NNSrllubTZWFk2btM0o32mnNQmrVwww9RKykLJJSUrTBs9aCYcxQSF6/dHP67xCCoovI/A4367ndunc12vc53XeYNzXp/nOVwXAAAXVu5Aavv27apXr578/Pw0cuRILVu2TFFRUXI6nfL19VVQUJBbfUhIiJxOpyTJ6XS6DVrF+4v3na/G5XLp119/1c8//6zCwsJSa4qPcS7Tp09XYGCgfYuIiCjvywcAACgVMxIAAEDZlTuQat26tTIyMvTFF1/ooYceUmJior755pvK6K3CTZw4Ubm5ufZt//79nm4JAABUE8xIAAAAZVervA/w9fVVy5YtJUnR0dH68ssvNWvWLA0YMEAFBQXKyclx+wQwOztboaGhkqTQ0NASV3opvsLMmTVnX3UmOztbDodDAQEB8vHxkY+PT6k1xcc4Fz8/P/n5+ZX3JQMAAFwQMxIAAEDZXfQ5pIoVFRUpPz9f0dHRql27tlJTU+19mZmZ2rdvn2JjYyVJsbGx2r59u9uVXtauXSuHw6GoqCi75sxjFNcUH8PX11fR0dFuNUVFRUpNTbVrAAAAPI0ZCQAA4NzK9Q2piRMn6tZbb1XTpk117NgxLVq0SOvXr9eaNWsUGBioYcOGKTk5WQ0aNJDD4dDDDz+s2NhYde/eXZLUu3dvRUVFadCgQZoxY4acTqeeeOIJJSUl2Z/KjRw5UrNnz9a4ceP0wAMPaN26dVqyZIlWrlxp95GcnKzExER16dJF3bp10yuvvKK8vDwNHTq0ApcGAACgbJiRAAAAyqdcgdShQ4c0ePBgHTx4UIGBgerQoYPWrFmjW265RZL08ssvy9vbW/3791d+fr7i4+M1d+5c+/E+Pj5asWKFHnroIcXGxqpu3bpKTEzUU089ZddERkZq5cqVGjNmjGbNmqUmTZro9ddfV3x8vF0zYMAAHT58WJMnT5bT6VSnTp2UkpJS4iSeAAAAJjAjAQAAlI+XZVmWp5vwFJfLpcDAQOXm5srhcHi6HQCG7Xl7ktv9qwY+66FOAJjE+/+FsUZAzXb2jCQxJwE1gen3/0s+hxQAAAAAAABQHgRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYFS5Aqnp06era9euql+/voKDg9WvXz9lZma61Zw8eVJJSUlq2LCh6tWrp/79+ys7O9utZt++fUpISFCdOnUUHByssWPH6vTp024169ev1zXXXCM/Pz+1bNlSCxcuLNHPnDlz1Lx5c/n7+ysmJkabN28uz8sBAACoEMxIAAAA5VOuQGrDhg1KSkrS559/rrVr1+rUqVPq3bu38vLy7JoxY8bogw8+0NKlS7VhwwYdOHBAd911l72/sLBQCQkJKigo0KZNm/TGG29o4cKFmjx5sl2TlZWlhIQE3XjjjcrIyNDo0aM1fPhwrVmzxq5ZvHixkpOTNWXKFG3ZskUdO3ZUfHy8Dh06dCnrAQAAUG7MSAAAAOXjZVmWdbEPPnz4sIKDg7Vhwwb16tVLubm5aty4sRYtWqS7775bkrR79261bdtWaWlp6t69u1avXq3bb79dBw4cUEhIiCRp/vz5Gj9+vA4fPixfX1+NHz9eK1eu1I4dO+znGjhwoHJycpSSkiJJiomJUdeuXTV79mxJUlFRkSIiIvTwww9rwoQJZerf5XIpMDBQubm5cjgcF7sMAKqoPW9Pcrt/1cBnPdQJAJNMvP8zIwGoys6ekSTmJKAmMP3+f0nnkMrNzZUkNWjQQJKUnp6uU6dOKS4uzq5p06aNmjZtqrS0NElSWlqa2rdvbw9akhQfHy+Xy6WdO3faNWceo7im+BgFBQVKT093q/H29lZcXJxdU5r8/Hy5XC63GwAAQEVjRgIAADi/iw6kioqKNHr0aPXo0UPt2rWTJDmdTvn6+iooKMitNiQkRE6n0645c9Aq3l+873w1LpdLv/76q37++WcVFhaWWlN8jNJMnz5dgYGB9i0iIqL8LxwAAOA8mJEAAAAu7KIDqaSkJO3YsUNvv/12RfZTqSZOnKjc3Fz7tn//fk+3BAAAqhlmJAAAgAurdTEPGjVqlFasWKGNGzeqSZMm9vbQ0FAVFBQoJyfH7RPA7OxshYaG2jVnX+ml+AozZ9acfdWZ7OxsORwOBQQEyMfHRz4+PqXWFB+jNH5+fvLz8yv/CwYAACgDZiQAAICyKdc3pCzL0qhRo7Rs2TKtW7dOkZGRbvujo6NVu3Ztpaam2tsyMzO1b98+xcbGSpJiY2O1fft2tyu9rF27Vg6HQ1FRUXbNmccorik+hq+vr6Kjo91qioqKlJqaatcAAACYwowEAABQPuX6hlRSUpIWLVqk9957T/Xr17fPRRAYGKiAgAAFBgZq2LBhSk5OVoMGDeRwOPTwww8rNjZW3bt3lyT17t1bUVFRGjRokGbMmCGn06knnnhCSUlJ9idzI0eO1OzZszVu3Dg98MADWrdunZYsWaKVK1favSQnJysxMVFdunRRt27d9MorrygvL09Dhw6tqLUBAAAoE2YkAACA8ilXIDVv3jxJ0g033OC2fcGCBRoyZIgk6eWXX5a3t7f69++v/Px8xcfHa+7cuXatj4+PVqxYoYceekixsbGqW7euEhMT9dRTT9k1kZGRWrlypcaMGaNZs2apSZMmev311xUfH2/XDBgwQIcPH9bkyZPldDrVqVMnpaSklDiJJwAAQGVjRgIAACgfL8uyLE834Skul0uBgYHKzc2Vw+HwdDsADNvz9iS3+1cNfNZDnQAwiff/C2ONgJrt7BlJYk4CagLT7/8XfZU9AAAAAAAA4GIQSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBR5Q6kNm7cqL59+yo8PFxeXl5avny5237LsjR58mSFhYUpICBAcXFx2rNnj1vNL7/8ovvvv18Oh0NBQUEaNmyYjh8/7lazbds2XXfddfL391dERIRmzJhRopelS5eqTZs28vf3V/v27bVq1aryvhwAAIAKwYwEAABQduUOpPLy8tSxY0fNmTOn1P0zZszQq6++qvnz5+uLL75Q3bp1FR8fr5MnT9o1999/v3bu3Km1a9dqxYoV2rhxo0aMGGHvd7lc6t27t5o1a6b09HS98MILmjp1ql577TW7ZtOmTbr33ns1bNgwbd26Vf369VO/fv20Y8eO8r4kAACAS8aMBAAAUHZelmVZF/1gLy8tW7ZM/fr1k/TbJ3/h4eF69NFH9dhjj0mScnNzFRISooULF2rgwIHatWuXoqKi9OWXX6pLly6SpJSUFN1222366aefFB4ernnz5mnSpElyOp3y9fWVJE2YMEHLly/X7t27JUkDBgxQXl6eVqxYYffTvXt3derUSfPnzy9T/y6XS4GBgcrNzZXD4bjYZQBQRe15e5Lb/asGPuuhTgCYZOL9nxkJQFV29owkMScBNYHp9/8KPYdUVlaWnE6n4uLi7G2BgYGKiYlRWlqaJCktLU1BQUH2oCVJcXFx8vb21hdffGHX9OrVyx60JCk+Pl6ZmZk6evSoXXPm8xTXFD9PafLz8+VyudxuAAAAlY0ZCQAAwF2FBlJOp1OSFBIS4rY9JCTE3ud0OhUcHOy2v1atWmrQoIFbTWnHOPM5zlVTvL8006dPV2BgoH2LiIgo70sEAAAoN2YkAAAAdzXqKnsTJ05Ubm6ufdu/f7+nWwIAAPA4ZiQAAGBahQZSoaGhkqTs7Gy37dnZ2fa+0NBQHTp0yG3/6dOn9csvv7jVlHaMM5/jXDXF+0vj5+cnh8PhdgMAAKhszEgAAADuKjSQioyMVGhoqFJTU+1tLpdLX3zxhWJjYyVJsbGxysnJUXp6ul2zbt06FRUVKSYmxq7ZuHGjTp06ZdesXbtWrVu31hVXXGHXnPk8xTXFzwMAAHC5YEYCAABwV+5A6vjx48rIyFBGRoak307SmZGRoX379snLy0ujR4/WM888o/fff1/bt2/X4MGDFR4ebl9lpm3bturTp48efPBBbd68WZ999plGjRqlgQMHKjw8XJJ03333ydfXV8OGDdPOnTu1ePFizZo1S8nJyXYfjzzyiFJSUvTSSy9p9+7dmjp1qr766iuNGjXq0lcFAACgnJiRAAAAyq5WeR/w1Vdf6cYbb7TvFw9AiYmJWrhwocaNG6e8vDyNGDFCOTk56tmzp1JSUuTv728/5q233tKoUaN08803y9vbW/3799err75q7w8MDNSHH36opKQkRUdHq1GjRpo8ebJGjBhh11x77bVatGiRnnjiCT3++OO66qqrtHz5crVr1+6iFgIAAOBSMCMBAACUnZdlWZanm/AUl8ulwMBA5ebmcq4EoAba8/Ykt/tXDXzWQ50AMIn3/wtjjYCa7ewZSWJOAmoC0+//NeoqewAAAAAAAPA8AikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRVT6QmjNnjpo3by5/f3/FxMRo8+bNnm4JAADA45iRAADA5axKB1KLFy9WcnKypkyZoi1btqhjx46Kj4/XoUOHPN0aAACAxzAjAQCAy12VDqRmzpypBx98UEOHDlVUVJTmz5+vOnXq6J///KenWwMAAPAYZiQAAHC5q7KBVEFBgdLT0xUXF2dv8/b2VlxcnNLS0jzYGQAAgOcwIwEAgKqglqcbuFg///yzCgsLFRIS4rY9JCREu3fvLvUx+fn5ys/Pt+/n5uZKklwuV+U1CuCydfxEvtt9/rcAqBmK/61bluXhTioHMxKAS3X2jCTxvwdATWB6RqqygdTFmD59uqZNm1Zie0REhAe6AXDZGfaSpzsAYNCxY8cUGBjo6TYuC8xIAC6IOQmoMUzNSFU2kGrUqJF8fHyUnZ3ttj07O1uhoaGlPmbixIlKTk627xcVFemXX35Rw4YN5eXlVan9ViUul0sRERHav3+/HA6Hp9upEVhz81hz81hzz2DdS7IsS8eOHVN4eLinW6kUzEiVh39P5rHm5rHm5rHmnsG6l2R6RqqygZSvr6+io6OVmpqqfv36SfpteEpNTdWoUaNKfYyfn5/8/PzctgUFBVVyp1WXw+HgH6ZhrLl5rLl5rLlnsO7uqvM3o5iRKh//nsxjzc1jzc1jzT2DdXdnckaqsoGUJCUnJysxMVFdunRRt27d9MorrygvL09Dhw71dGsAAAAew4wEAAAud1U6kBowYIAOHz6syZMny+l0qlOnTkpJSSlxEk8AAICahBkJAABc7qp0ICVJo0aNOufXz3Fx/Pz8NGXKlBJf3UflYc3NY83NY809g3WvuZiRKh7/nsxjzc1jzc1jzT2Ddfc8L6u6XvMYAAAAAAAAlyVvTzcAAAAAAACAmoVACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSBVQ82ZM0fNmzeXv7+/YmJitHnz5vPW5+TkKCkpSWFhYfLz81OrVq20atUqQ91WD+Vd81deeUWtW7dWQECAIiIiNGbMGJ08edJQt1Xfxo0b1bdvX4WHh8vLy0vLly+/4GPWr1+va665Rn5+fmrZsqUWLlxY6X1WJ+Vd83fffVe33HKLGjduLIfDodjYWK1Zs8ZMs9XExfyeF/vss89Uq1YtderUqdL6A6oiZiTzmJHMYkYyjxnJPGakqoFAqgZavHixkpOTNWXKFG3ZskUdO3ZUfHy8Dh06VGp9QUGBbrnlFu3du1fvvPOOMjMz9fe//12/+93vDHdedZV3zRctWqQJEyZoypQp2rVrl/7xj39o8eLFevzxxw13XnXl5eWpY8eOmjNnTpnqs7KylJCQoBtvvFEZGRkaPXq0hg8fzpt/OZR3zTdu3KhbbrlFq1atUnp6um688Ub17dtXW7dureROq4/yrnmxnJwcDR48WDfffHMldQZUTcxI5jEjmceMZB4zknnMSFWEhRqnW7duVlJSkn2/sLDQCg8Pt6ZPn15q/bx586wWLVpYBQUFplqsdsq75klJSdZNN93kti05Odnq0aNHpfZZXUmyli1bdt6acePGWVdffbXbtgEDBljx8fGV2Fn1VZY1L01UVJQ1bdq0im+oBijPmg8YMMB64oknrClTplgdO3as1L6AqoQZyTxmJM9iRjKPGck8ZqTLF9+QqmEKCgqUnp6uuLg4e5u3t7fi4uKUlpZW6mPef/99xcbGKikpSSEhIWrXrp2ee+45FRYWmmq7SruYNb/22muVnp5uf2X9hx9+0KpVq3TbbbcZ6bkmSktLc/sZSVJ8fPw5f0aoeEVFRTp27JgaNGjg6VaqtQULFuiHH37QlClTPN0KcFlhRjKPGalqYEbyPGYkM5iRzKvl6QZg1s8//6zCwkKFhIS4bQ8JCdHu3btLfcwPP/ygdevW6f7779eqVav03Xff6U9/+pNOnTrFP9YyuJg1v++++/Tzzz+rZ8+esixLp0+f1siRI/k6eiVyOp2l/oxcLpd+/fVXBQQEeKizmuPFF1/U8ePHdc8993i6lWprz549mjBhgj755BPVqsUIAJyJGck8ZqSqgRnJ85iRKh8zkmfwDSlcUFFRkYKDg/Xaa68pOjpaAwYM0KRJkzR//nxPt1ZtrV+/Xs8995zmzp2rLVu26N1339XKlSv19NNPe7o1oFIsWrRI06ZN05IlSxQcHOzpdqqlwsJC3XfffZo2bZpatWrl6XaAaoEZyTxmJNQ0zEiVjxnJc4j+aphGjRrJx8dH2dnZbtuzs7MVGhpa6mPCwsJUu3Zt+fj42Nvatm0rp9OpgoIC+fr6VmrPVd3FrPmTTz6pQYMGafjw4ZKk9u3bKy8vTyNGjNCkSZPk7U2WXNFCQ0NL/Rk5HA4++atkb7/9toYPH66lS5eW+JMAVJxjx47pq6++0tatWzVq1ChJv/0/05ZlqVatWvrwww910003ebhLwHOYkcxjRqoamJE8hxnJDGYkz+F/sWsYX19fRUdHKzU11d5WVFSk1NRUxcbGlvqYHj166LvvvlNRUZG97dtvv1VYWBiDVhlczJqfOHGixEBVPOxallV5zdZgsbGxbj8jSVq7du05f0aoGP/+9781dOhQ/fvf/1ZCQoKn26nWHA6Htm/froyMDPs2cuRItW7dWhkZGYqJifF0i4BHMSOZx4xUNTAjeQYzkjnMSB7kyTOqwzPefvtty8/Pz1q4cKH1zTffWCNGjLCCgoIsp9NpWZZlDRo0yJowYYJdv2/fPqt+/frWqFGjrMzMTGvFihVWcHCw9cwzz3jqJVQ55V3zKVOmWPXr17f+/e9/Wz/88IP14YcfWldeeaV1zz33eOolVDnHjh2ztm7dam3dutWSZM2cOdPaunWr9eOPP1qWZVkTJkywBg0aZNf/8MMPVp06dayxY8dau3btsubMmWP5+PhYKSkpnnoJVU551/ytt96yatWqZc2ZM8c6ePCgfcvJyfHUS6hyyrvmZ+MKMoA7ZiTzmJHMY0YyjxnJPGakqoFAqob661//ajVt2tTy9fW1unXrZn3++ef2vuuvv95KTEx0q9+0aZMVExNj+fn5WS1atLCeffZZ6/Tp04a7rtrKs+anTp2ypk6dal155ZWWv7+/FRERYf3pT3+yjh49ar7xKurjjz+2JJW4Fa9zYmKidf3115d4TKdOnSxfX1+rRYsW1oIFC4z3XZWVd82vv/7689bjwi7m9/xMDFtAScxI5jEjmcWMZB4zknnMSFWDl2Xx3VYAAAAAAACYwzmkAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUkANNXXqVHl5eennn3+u9Oe64YYbdMMNN1T681QULy8vjRo1ytNtlEllre2MGTPUpk0bFRUVnbdu79698vLy0sKFC922p6SkqFOnTvL395eXl5dycnLK/NxHjhxR3bp1tWrVqovoHACAS8OMdG7MSMxIQEUikAKqqBMnTmjq1Klav369p1tBNeNyufSXv/xF48ePl7d3+d8mjhw5onvuuUcBAQGaM2eO/vWvf6lu3brKzMzUmDFjdO2119pD2N69e0s8vmHDhho+fLiefPLJCng1AICahhkJlaWyZqR3331XAwYMUIsWLVSnTh21bt1ajz76aImwihkJ1U0tTzcA4OKcOHFC06ZNk6Qq9ckaKtaHH35Y4cf85z//qdOnT+vee++9qMd/+eWXOnbsmJ5++mnFxcXZ29PS0vTqq68qKipKbdu2VUZGxjmPMXLkSL366qtat26dbrrppovqAwBQMzEjQapaM9KIESMUHh6uP/7xj2ratKm2b9+u2bNna9WqVdqyZYsCAgLsWmYkVCcEUgBQhfn6+lb4MRcsWKDf//738vf3v6jHHzp0SJIUFBTktv33v/+9cnJyVL9+fb344ovnDaTatm2rdu3aaeHChQxbAACg3KrSjPTOO++UCE+jo6OVmJiot956S8OHD7e3MyOhOuFP9oAKVnzegW+//VZ//OMfFRgYqMaNG+vJJ5+UZVnav3+/7rjjDjkcDoWGhuqll15ye3xBQYEmT56s6OhoBQYGqm7durruuuv08ccf2zV79+5V48aNJUnTpk2Tl5eXvLy8NHXqVLtm9+7duueee9S4cWMFBASodevWmjRpUol+c3JyNGTIEAUFBSkwMFBDhw7ViRMnStS9+eabio6OVkBAgBo0aKCBAwdq//79Jepee+01XXnllQoICFC3bt30ySefXNQ6Nm/eXLfffrs+/PBD++/so6Ki9O6775b6GkaPHq2IiAj5+fmpZcuW+stf/lLib/tffPFFXXvttWrYsKECAgIUHR2td955p0z9PPPMM/L29tZf//pXe9tf//pXXX311apTp46uuOIKdenSRYsWLSrzayw+t8CLL76oOXPm2F/T7t27t/bv3y/LsvT000+rSZMmCggI0B133KFffvnF7Rhnnx9h/fr18vLy0pIlS/Tss8+qSZMm8vf3180336zvvvvugj1lZWVp27Ztbp/aFSv+XQkMDFRQUJASExNLfJX8hhtuUGJioiSpa9eu8vLy0pAhQyRJDRo0UP369cu8Prfccos++OADWZZV5scAAC5fzEjMSGVV02ak0r7Jd+edd0qSdu3aVWIfMxKqDQtAhZoyZYolyerUqZN17733WnPnzrUSEhIsSdbMmTOt1q1bWw899JA1d+5cq0ePHpYka8OGDfbjDx8+bIWFhVnJycnWvHnzrBkzZlitW7e2ateubW3dutWyLMs6fvy4NW/ePEuSdeedd1r/+te/rH/961/W119/bVmWZX399deWw+GwGjZsaE2cONH629/+Zo0bN85q3759iT47d+5s3XXXXdbcuXOt4cOHW5KscePGub2mZ555xvLy8rIGDBhgzZ0715o2bZrVqFEjq3nz5tbRo0ftutdff92SZF177bXWq6++ao0ePdoKCgqyWrRoYV1//fXlWsdmzZpZrVq1soKCgqwJEyZYM2fOtNq3b295e3tbH374oV2Xl5dndejQwWrYsKH1+OOPW/Pnz7cGDx5seXl5WY888ojbMZs0aWL96U9/smbPnm3NnDnT6tatmyXJWrFihVudJCspKcm+P2nSJMvLy8t67bXX7G2vvfaaJcm6++67rb/97W/WrFmzrGHDhll//vOfy/was7Ky7N+VqKgoa+bMmdYTTzxh+fr6Wt27d7cef/xxey3//Oc/W15eXtbQoUPdjnH99de7re3HH39s/1yjo6Otl19+2Zo6dapVp04dq1u3bhfs6c0337QkWdu2bXPbXlRUZPXq1cvy9va2/vSnP1l//etfrZtuusnq0KGDJclasGCBZVmW9eGHH1ojRoywJFlPPfWU9a9//cvatGlTied54YUXLElWVlbWBXvZvn37BfsGAFz+mJGYkcqqJs9Ixb799ltLkvXcc8+dsxdmJFR1BFJABSseYkaMGGFvO336tNWkSRPLy8vLev755+3tR48etQICAqzExES32vz8fLdjHj161AoJCbEeeOABe9vhw4ctSdaUKVNK9NCrVy+rfv361o8//ui2vaioqESfZx7TsizrzjvvtBo2bGjf37t3r+Xj42M9++yzbnXbt2+3atWqZW8vKCiwgoODrU6dOrn1XzyUXMywJcn6z3/+Y2/Lzc21wsLCrM6dO9vbnn76aatu3brWt99+6/b4CRMmWD4+Pta+ffvsbSdOnHCrKSgosNq1a2fddNNNbtvPHLYeffRRy9vb21q4cKFbzR133GFdffXV5XpNZysetho3bmzl5OTY2ydOnGhJsjp27GidOnXK3n7vvfdavr6+1smTJ+1t5xq22rZt6/ZzmDVrVpkGlyeeeMKSZB07dsxt+/Llyy1J1owZM+xtp0+ftq677jq3YcuyLGvBggWWJOvLL7885/OUJZDatGmTJclavHjxeXsGAFQNzEjMSGVVk2ekYsOGDbN8fHxK/PwsixkJ1Qd/sgdUkjP/1tvHx0ddunSRZVkaNmyYvT0oKEitW7fWDz/84FZb/DfvRUVF+uWXX3T69Gl16dJFW7ZsueDzHj58WBs3btQDDzygpk2buu3z8vIqUT9y5Ei3+9ddd52OHDkil8slSXr33XdVVFSke+65Rz///LN9Cw0N1VVXXWV/Tf6rr77SoUOHNHLkSLe/2S/++vLFCA8Pt7+uLEkOh0ODBw/W1q1b5XQ6JUlLly7VddddpyuuuMKtv7i4OBUWFmrjxo324888IeTRo0eVm5ur6667rtR1tSxLo0aN0qxZs/Tmm2/aX7EuFhQUpJ9++klffvnlRb22M/3hD39wW6OYmBhJ0h//+EfVqlXLbXtBQYH++9//XvCYQ4cOdfs5XHfddZLk9rtWmiNHjqhWrVqqV6+e2/ZVq1apVq1aeuihh+xtPj4+evjhhy/Yy8W64oorJMnIZbcBAOYwI/2GGenCauqMtGjRIv3jH//Qo48+qquuuqrEfmYkVBec1ByoJGcPOoGBgfL391ejRo1KbD9y5IjbtjfeeEMvvfSSdu/erVOnTtnbIyMjL/i8xW+m7dq1u6g+i9/gjh49KofDoT179siyrFLfDCWpdu3akqQff/xRkkrU1a5dWy1atChTL2dr2bJliQGxVatWkn47t0BoaKj27Nmjbdu22eeLOFvxySMlacWKFXrmmWeUkZGh/Px8e3tpQ+j//d//6fjx45o3b16pV1IZP368PvroI3Xr1k0tW7ZU7969dd9996lHjx7lfp2l/a5IUkRERKnbjx49Wu5jnvlzvRg//vijwsLCSgxhrVu3vqjjlYX1/58XobSfDwCg6mJG+t9+ZqTzq4kz0ieffKJhw4YpPj5ezz77bKk1zEioLgikgEri4+NTpm2S3E5I+Oabb2rIkCHq16+fxo4dq+DgYPn4+Gj69On6/vvvjfR5Zk9FRUXy8vLS6tWrS609+83XtKKiIt1yyy0aN25cqfuLh7NPPvlEv//979WrVy/NnTtXYWFhql27thYsWFDqSTZ79OihjIwMzZ49W/fcc48aNGjgtr9t27bKzMzUihUrlJKSov/85z+aO3euJk+ebF9quqzO9TMoy+9LeY95occ2bNhQp0+f1rFjx8p1AvLKUDwYnv3/oAAAqjZmJDOYkcp3zMthRvr666/1+9//Xu3atdM777zj9i2wMzEjobogkAIuM++8845atGihd9991+1TjylTprjVnesTkeJP2nbs2FEh/Vx55ZWyLEuRkZH24FKaZs2aSZL27NnjdgnaU6dOKSsrSx07diz3c3/33XeyLMvttX777beSfrvCTHF/x48fL/WKJ2f6z3/+I39/f61Zs0Z+fn729gULFpRa37JlS82YMUM33HCD+vTpo9TU1BLDR926dTVgwAANGDBABQUFuuuuu/Tss89q4sSJF305YE9r06aNpN+uJNOhQwd7e7NmzZSamqrjx4+7DdiZmZmV1ktWVpak3wZbAACYkf6HGcm8yp6Rvv/+e/Xp00fBwcFatWrVeQNNZiRUF5xDCrjMFH9qc+anNF988YXS0tLc6urUqSNJJS4p27hxY/Xq1Uv//Oc/tW/fPrd9ZfnU6Gx33XWXfHx8NG3atBKPtyzL/ip9ly5d1LhxY82fP18FBQV2zcKFC0v0WFYHDhzQsmXL7Psul0v/93//p06dOik0NFSSdM899ygtLU1r1qwp8ficnBydPn1a0m/r6uXlpcLCQnv/3r17tXz58nM+f4cOHbRq1Srt2rVLffv21a+//mrvO/tPCHx9fRUVFSXLstz+hKCqiY2NlfTb+S7OdNttt+n06dOaN2+eva2wsNDtEs8VLT09XYGBgbr66qsr7TkAAFUHM9L/MCOZV5kzktPpVO/eveXt7a01a9ac888sizEjobrgG1LAZeb222/Xu+++qzvvvFMJCQnKysrS/PnzFRUVpePHj9t1AQEBioqK0uLFi9WqVSs1aNBA7dq1U7t27fTqq6+qZ8+euuaaazRixAhFRkZq7969WrlypTIyMsrVz5VXXqlnnnlGEydO1N69e9WvXz/Vr19fWVlZWrZsmUaMGKHHHntMtWvX1jPPPKP/9//+n2666SYNGDBAWVlZWrBgwUWfH6FVq1YaNmyYvvzyS4WEhOif//ynsrOz3T6xGzt2rN5//33dfvvtGjJkiKKjo5WXl6ft27frnXfe0d69e9WoUSMlJCRo5syZ6tOnj+677z4dOnRIc+bMUcuWLbVt27Zz9tC9e3e99957uu2223T33Xdr+fLlql27tnr37q3Q0FD16NFDISEh2rVrl2bPnq2EhASP/6nbpWjRooXatWunjz76SA888IC9vW/fvurRo4cmTJigvXv3KioqSu+++65yc3PLfOzc3Fx7OPvss88kSbNnz1ZQUJCCgoI0atQot/q1a9eqb9++nB8BACCJGelMzEjmVeaM1KdPH/3www8aN26cPv30U3366af2vpCQEN1yyy1u9cxIqDZMXMoPqEmKLxV8+PBht+2JiYlW3bp1S9Rff/31bpfGLSoqsp577jmrWbNmlp+fn9W5c2drxYoVVmJiotWsWTO3x27atMmKjo62fH19S1zeeMeOHdadd95pBQUFWf7+/lbr1q2tJ5988oJ9Fl+ONisry237f/7zH6tnz55W3bp1rbp161pt2rSxkpKSrMzMTLe6uXPnWpGRkZafn5/VpUsXa+PGjSUuu1sWzZo1sxISEqw1a9ZYHTp0sPz8/Kw2bdpYS5cuLVF77Ngxa+LEiVbLli0tX19fq1GjRta1115rvfjii1ZBQYFd949//MO66qqr7GMtWLDAXocz6YxLGhd77733rFq1alkDBgywCgsLrb/97W9Wr169rIYNG1p+fn7WlVdeaY0dO9bKzc0t82ssvqTxCy+84La9+LLEZ7/W0i4VfK5LGp/92OLnOvPSw+cyc+ZMq169eiUuAX3kyBFr0KBBlsPhsAIDA61BgwZZW7duLfMljYt7KO129u/2rl27LEnWRx99dMF+AQBVAzMSM1JZ1bQZ6VzzkaQSvx/MSKhOvCzrIr6fCgCVrHnz5mrXrp1WrFjh6VZqnNzcXLVo0UIzZsxwuwS3SaNHj9bGjRuVnp7Op38AAJyBGclzmJGAisU5pAAAbgIDAzVu3Di98MILKioqMv78R44c0euvv65nnnmGQQsAAFw2mJGAisU3pAAYdfjwYbeTZp7N19dXDRo0qNKf/hUWFurw4cPnralXr57HLwcNAAAuH8xIv2FGAmoOTmoOwKiuXbvqxx9/POf+66+/XuvXrzfXUCXYv3+/IiMjz1szZcoUTZ061UxDAADgsseM9BtmJKDm4BtSAIz67LPP3C4NfLYrrrhC0dHRBjuqeCdPnnS7OkppWrRocdFX1gEAANUPM9JvmJGAmoNACgAAAAAAAEZxUnMAAAAAAAAYVaPPIVVUVKQDBw6ofv36XKUAAIAawrIsHTt2TOHh4fL25rO50jAjAQBQ85iekWp0IHXgwAFFRER4ug0AAOAB+/fvV5MmTTzdxmWJGQkAgJrL1IxUowOp+vXrS/ptsR0Oh4e7AQAAJrhcLkVERNhzAEpiRgIAoOYxPSPV6ECq+CvoDoeDYQsAgBqGP0U7N2YkAABqLlMzEidOAAAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGlSuQmjdvnjp06GCfTyA2NlarV6+2999www3y8vJyu40cOdLtGPv27VNCQoLq1Kmj4OBgjR07VqdPn3arWb9+va655hr5+fmpZcuWWrhwYYle5syZo+bNm8vf318xMTHavHlzeV4KAAAXVFhYqJMnT3KrYrfCwkLjvyvMSACAmoQZqWrePDEjnU+5TmrepEkTPf/887rqqqtkWZbeeOMN3XHHHdq6dauuvvpqSdKDDz6op556yn5MnTp17P8uLCxUQkKCQkNDtWnTJh08eFCDBw9W7dq19dxzz0mSsrKylJCQoJEjR+qtt95Samqqhg8frrCwMMXHx0uSFi9erOTkZM2fP18xMTF65ZVXFB8fr8zMTAUHB1/yogAAajbLsuR0OpWTk+PpVnCRgoKCFBoaauyknMxIAICagBmp6jM9I52Pl2VZ1qUcoEGDBnrhhRc0bNgw3XDDDerUqZNeeeWVUmtXr16t22+/XQcOHFBISIgkaf78+Ro/frwOHz4sX19fjR8/XitXrtSOHTvsxw0cOFA5OTlKSUmRJMXExKhr166aPXu2JKmoqEgRERF6+OGHNWHChDL37nK5FBgYqNzcXK4gAwCwHTx4UDk5OQoODladOnUuizdslI1lWTpx4oQOHTqkoKAghYWFlagx9f7PjAQAqG6Ykaquy2lGKlaub0idqbCwUEuXLlVeXp5iY2Pt7W+99ZbefPNNhYaGqm/fvnryySftTwDT0tLUvn17e9CSpPj4eD300EPauXOnOnfurLS0NMXFxbk9V3x8vEaPHi1JKigoUHp6uiZOnGjv9/b2VlxcnNLS0i725QAAIOm397fiQathw4aebgcXISAgQJJ06NAhBQcHy8fHx+jzMyMBAKojZqSqz9Mz0tnKHUht375dsbGxOnnypOrVq6dly5YpKipKknTfffepWbNmCg8P17Zt2zR+/HhlZmbq3XfflSQ5nU63QUuSfd/pdJ63xuVy6ddff9XRo0dVWFhYas3u3bvP23t+fr7y8/Pt+y6Xq7wvHwBQzZ06dUqS+59Toeop/vmdOnXK2LDFjAQAqM6YkaoHT8xI51LuQKp169bKyMhQbm6u3nnnHSUmJmrDhg2KiorSiBEj7Lr27dsrLCxMN998s77//ntdeeWVFdr4xZg+fbqmTZvm6TYAAFUAX0Gv2jzx82NGAgDUBMxIVdvl9PMr11X2JMnX11ctW7ZUdHS0pk+fro4dO2rWrFml1sbExEiSvvvuO0lSaGiosrOz3WqK74eGhp63xuFwKCAgQI0aNZKPj0+pNcXHOJeJEycqNzfXvu3fv7+MrxoAAOD8mJEAAADKrtyB1NmKiorcvuJ9poyMDEmyT5YVGxur7du369ChQ3bN2rVr5XA47K+0x8bGKjU11e04a9eutc/B4Ovrq+joaLeaoqIipaamup2noTR+fn725ZiLbwAAAJWBGQkAAODcyvUnexMnTtStt96qpk2b6tixY1q0aJHWr1+vNWvW6Pvvv9eiRYt02223qWHDhtq2bZvGjBmjXr16qUOHDpKk3r17KyoqSoMGDdKMGTPkdDr1xBNPKCkpSX5+fpKkkSNHavbs2Ro3bpweeOABrVu3TkuWLNHKlSvtPpKTk5WYmKguXbqoW7dueuWVV5SXl6ehQ4dW4NIAAODuVMqnxp6rdp+eZa690Fevp0yZoqlTp15iRxfHy8tLy5YtU79+/S76GK+99poWLVqkLVu26NixYzp69KiCgoIqrMeKwIwEAKjJTM5IEnNSsV9++UVTpkzRhx9+qH379qlx48bq16+fnn76aQUGBlZss5WgXIHUoUOHNHjwYB08eFCBgYHq0KGD1qxZo1tuuUX79+/XRx99ZA8+ERER6t+/v5544gn78T4+PlqxYoUeeughxcbGqm7dukpMTNRTTz1l10RGRmrlypUaM2aMZs2apSZNmuj1119XfHy8XTNgwAAdPnxYkydPltPpVKdOnZSSklLiJJ6eVto/yvL8wwEAoCwOHjxo//fixYs1efJkZWZm2tvq1atXruMVFBTI19e3wvq7VCdOnFCfPn3Up08ftyvIXU6YkcqHGQkAYEp1npMOHDigAwcO6MUXX1RUVJR+/PFHjRw5UgcOHNA777zj6fYuyMuyLMvTTXiKy+VSYGCgcnNzK+Wr6QxbAFD1nDx5UllZWYqMjJS/v7/bvsv1G1JnWrhwoUaPHq2cnBxJ0vfff6/k5GR9/vnnysvLU9u2bTV9+nTFxcXZj2nevLmGDRumPXv2aPny5brrrru0cOFC/f3vf9dTTz2lI0eOKD4+Xtddd52eeuop+9iS9N5772natGn65ptvFB4ersTERE2aNEm1atVS8+bN9eOPP9q1zZo10969e/X1119r9OjR+uqrr+Tl5aWrrrpKf/vb39SlS5fzvrb169frxhtvLNM3pM73c6zs9//qgBkJAHC2y2VGkpiTzmfp0qX64x//qLy8PNWqVfI7SJfTjHTJ55ACAACXr+PHj+u2225Tamqqtm7dqj59+qhv377at2+fW92LL76ojh07auvWrXryySf12WefaeTIkXrkkUeUkZGhW265Rc8++6zbYz755BMNHjxYjzzyiL755hv97W9/08KFC+26L7/8UpK0YMECHTx40L5///33q0mTJvryyy+Vnp6uCRMmqHbt2gZWAwAA4H+q45xUHCaVFkZdbi7/DgEAwEXr2LGjOnbsaN9/+umntWzZMr3//vsaNWqUvf2mm27So48+at+fNGmSbr31Vj322GOSpFatWmnTpk1asWKFXTNt2jRNmDBBiYmJkqQWLVro6aef1rhx4zRlyhQ1btxYkhQUFOR2lbd9+/Zp7NixatOmjSTpqquuqoRXDgAAcH7VbU76+eef9fTTT2vEiBHlWQaP4RtSAABUY8ePH9djjz2mtm3bKigoSPXq1dOuXbtKfPJ39tfAMzMz1a1bN7dtZ9//+uuv9dRTT6levXr27cEHH9TBgwd14sSJc/aUnJys4cOHKy4uTs8//7y+//77S3yVAAAA5Ved5iSXy6WEhARFRUV57CTt5UUgBQBANfbYY49p2bJleu655/TJJ58oIyND7du3V0FBgVtd3bp1y33s48ePa9q0acrIyLBv27dv1549e0qck+BMU6dO1c6dO5WQkKB169YpKipKy5YtK/fzAwAAXIrqMicdO3ZMffr0Uf369bVs2bIqcyoE/mQPAIBq7LPPPtOQIUN05513SvptONq7d+8FH9e6dWv7XAbFzr5/zTXXKDMzUy1btjzncWrXrq3CwsIS21u1aqVWrVppzJgxuvfee7VgwQK7RwAAABOqw5zkcrkUHx8vPz8/vf/+++cNuy43BFIAAFRjV111ld5991317dtXXl5eevLJJ1VUVHTBxz388MPq1auXZs6cqb59+2rdunVavXq1vLy87JrJkyfr9ttvV9OmTXX33XfL29tbX3/9tXbs2KFnnnlG0m9XpklNTVWPHj3k5+cnf39/jR07VnfffbciIyP1008/6csvv1T//v3P2YvT6ZTT6dR3330nSdq+fbvq16+vpk2bqkGDBpe4QgAAoKaq6nOSy+VS7969deLECb355ptyuVxyuVySpMaNG8vHx6cCVqny8Cd7AABUYzNnztQVV1yha6+9Vn379lV8fLyuueaaCz6uR48emj9/vmbOnKmOHTsqJSVFY8aMcfvULT4+XitWrNCHH36orl27qnv37nr55ZfVrFkzu+all17S2rVrFRERoc6dO8vHx0dHjhzR4MGD1apVK91zzz269dZbNW3atHP2Mn/+fHXu3FkPPvigJKlXr17q3Lmz3n///UtYGQAAUNNV9Tlpy5Yt+uKLL7R9+3a1bNlSYWFh9m3//v2XvkCVzMuyLMvTTXiKy+VSYGCgfVnEinYq5dMS22r36VnhzwMAqDgnT55UVlaWIiMjq9RXnk148MEHtXv3bn3yySeebuWCzvdzrOz3/+qAGQkAcDZmpPOrKnPS5TQj8Sd7AACgVC+++KJuueUW1a1bV6tXr9Ybb7yhuXPnerotAAAAj2NOunQEUgAAoFSbN2/WjBkzdOzYMbVo0UKvvvqqhg8f7um2AAAAPI456dIRSAEAgFItWbLE0y0AAABclpiTLh0nNQcAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgVC1PNwAAQFXx/Vd/M/ZcV3b5f+WqHzJkiN544w1JUq1atdSgQQN16NBB9957r4YMGSJv76r7GdTOnTs1efJkpaen68cff9TLL7+s0aNHe7otAADw/zM5I0nMSWf6+9//rv/7v//Tjh07JEnR0dF67rnn1K1bNw93dmFVd9UBAICbPn366ODBg9q7d69Wr16tG2+8UY888ohuv/12nT592tPtXbQTJ06oRYsWev755xUaGurpdgAAQBVUXeek9evX695779XHH3+stLQ0RUREqHfv3vrvf//r6dYuiEAKAIBqws/PT6Ghofrd736na665Ro8//rjee+89rV69WgsXLrTrcnJyNHz4cDVu3FgOh0M33XSTvv76a7djffDBB+ratav8/f3VqFEj3Xnnnfa+o0ePavDgwbriiitUp04d3XrrrdqzZ48kKS8vTw6HQ++8847b8ZYvX666devq2LFjKigo0KhRoxQWFiZ/f381a9ZM06dPP+fr6tq1q1544QUNHDhQfn5+FbBSAACgpqmuc9Jbb72lP/3pT+rUqZPatGmj119/XUVFRUpNTa2AVatcBFIAAFRjN910kzp27Kh3333X3vaHP/xBhw4d0urVq5Wenq5rrrlGN998s3755RdJ0sqVK3XnnXfqtttu09atW5Wamur2te8hQ4boq6++0vvvv6+0tDRZlqXbbrtNp06dUt26dTVw4EAtWLDArY8FCxbo7rvvVv369fXqq6/q/fff15IlS5SZmam33npLzZs3N7IeAAAAxarjnHTixAmdOnVKDRo0uLTFMYBzSAEAUM21adNG27ZtkyR9+umn2rx5sw4dOmR/2+jFF1/U8uXL9c4772jEiBF69tlnNXDgQE2bNs0+RseOHSVJe/bs0fvvv6/PPvtM1157raTfPpmLiIjQ8uXL9Yc//EHDhw/Xtddeq4MHDyosLEyHDh3SqlWr9NFHH0mS9u3bp6uuuko9e/aUl5eXmjVrZnI5AAAAbNVtTho/frzCw8MVFxd3yWtT2fiGFAAA1ZxlWfLy8pIkff311zp+/LgaNmyoevXq2besrCx9//33kqSMjAzdfPPNpR5r165dqlWrlmJiYuxtDRs2VOvWrbVr1y5JUrdu3XT11VfbJw9988031axZM/Xq1UvSb58cZmRkqHXr1vrzn/+sDz/8sNJeOwAAwPlUpznp+eef19tvv61ly5bJ39+//IthGN+QAgCgmtu1a5ciIyMlScePH1dYWJjWr19foi4oKEiSFBAQcMnPOXz4cM2ZM0cTJkzQggULNHToUHvYu+aaa5SVlaXVq1fro48+0j333KO4uLgS51MAAACobNVlTnrxxRf1/PPP66OPPlKHDh0uuUcT+IYUAADV2Lp167R9+3b1799f0m9DjtPpVK1atdSyZUu3W6NGjSRJHTp0OOeJMNu2bavTp0/riy++sLcdOXJEmZmZioqKsrf98Y9/1I8//qhXX31V33zzjRITE92O43A4NGDAAP3973/X4sWL9Z///Mc+NwMAAIAJ1WVOmjFjhp5++mmlpKSoS5cuF70epvENKQAAqon8/Hw5nU4VFhYqOztbKSkpmj59um6//XYNHjxYkhQXF6fY2Fj169dPM2bMUKtWrXTgwAH7BJ1dunTRlClTdPPNN+vKK6/UwIEDdfr0aa1atUrjx4/XVVddpTvuuEMPPvig/va3v6l+/fqaMGGCfve73+mOO+6we7niiit01113aezYserdu7eaNGli75s5c6bCwsLUuXNneXt7a+nSpQoNDbU/eTxbQUGBvvnmG/u///vf/yojI0P16tVTy5YtK29BAQBAtVFd56S//OUvmjx5shYtWqTmzZvL6XRKkv3nhpczviEFAEA1kZKSorCwMDVv3lx9+vTRxx9/rFdffVXvvfeefHx8JEleXl5atWqVevXqpaFDh6pVq1YaOHCgfvzxR4WEhEiSbrjhBi1dulTvv/++OnXqpJtuukmbN2+2n2fBggWKjo7W7bffrtjYWFmWpVWrVql27dpu/QwbNkwFBQV64IEH3LbXr19fM2bMUJcuXdS1a1ft3btXq1atkrd36WPJgQMH1LlzZ3Xu3FkHDx7Uiy++qM6dO2v48OEVuXwAAKAaq65z0rx581RQUKC7775bYWFh9u3FF1+syOWrFF6WZVmebsJTXC6XAgMDlZubK4fDUeHHP5XyaYlttfv0rPDnAQBUnJMnTyorK0uRkZFV4mSQl7N//etfGjNmjA4cOCBfX1+jz32+n2Nlv/9XB8xIAICzMSNVLE/NSZfTjMSf7AEAgAp14sQJHTx4UM8//7z+3//7f8bDKAAAgMsVc9L/8Cd7AACgQs2YMUNt2rRRaGioJk6c6Ol2AAAALhvMSf9DIAUAACrU1KlTderUKaWmpl72J9MEAAAwiTnpfwikAAAAAAAAYFS5Aql58+apQ4cOcjgccjgcio2N1erVq+39J0+eVFJSkho2bKh69eqpf//+ys7OdjvGvn37lJCQoDp16ig4OFhjx47V6dOn3WrWr1+va665Rn5+fmrZsqUWLlxYopc5c+aoefPm8vf3V0xMjNtZ7QEAuFQ1+Jof1YLpnx8zEgCgpmBGqtoup59fuQKpJk2a6Pnnn1d6erq++uor3XTTTbrjjju0c+dOSdKYMWP0wQcfaOnSpdqwYYMOHDigu+66y358YWGhEhISVFBQoE2bNumNN97QwoULNXnyZLsmKytLCQkJuvHGG5WRkaHRo0dr+PDhWrNmjV2zePFiJScna8qUKdqyZYs6duyo+Ph4HTp06FLXAwBQwxVfkvfEiRMe7gSXovjnd/YllisLMxIAoLpjRqoeTM9I5+NlXWI81qBBA73wwgu6++671bhxYy1atEh33323JGn37t1q27at0tLS1L17d61evVq33367Dhw4oJCQEEnS/PnzNX78eB0+fFi+vr4aP368Vq5cqR07dtjPMXDgQOXk5CglJUWSFBMTo65du2r27NmSpKKiIkVEROjhhx/WhAkTytw7lzQGAJTm4MGDysnJUXBwsOrUqSMvLy9Pt4QysixLJ06c0KFDhxQUFKSwsLASNaYuacyMdG7MSABQNTEjVV2X04xUrNbFPrCwsFBLly5VXl6eYmNjlZ6erlOnTikuLs6uadOmjZo2bWoPW2lpaWrfvr09aElSfHy8HnroIe3cuVOdO3dWWlqa2zGKa0aPHi1JKigoUHp6utvZ6L29vRUXF6e0tLSLfTkAANhCQ0MliW+VVGFBQUH2z9E0ZiQAQHXFjFT1eXJGOlu5A6nt27crNjZWJ0+eVL169bRs2TJFRUUpIyNDvr6+CgoKcqsPCQmR0+mUJDmdTrdBq3h/8b7z1bhcLv366686evSoCgsLS63ZvXv3eXvPz89Xfn6+fd/lcpX9hQMAagwvLy+FhYUpODhYp06d8nQ7KKfatWvLx8fH+PMyIwEAqjtmpKrNUzPSuZQ7kGrdurUyMjKUm5urd955R4mJidqwYUNl9Fbhpk+frmnTpnm6DQBAFeHj43NZvWnj8saMBACoKZiRUBHKdVJzSfL19VXLli0VHR2t6dOnq2PHjpo1a5ZCQ0NVUFCgnJwct/rs7Gz762ChoaElrihTfP9CNQ6HQwEBAWrUqJF8fHxKrbnQ184mTpyo3Nxc+7Z///7yvnwAAIBSMSMBAACUXbkDqbMVFRUpPz9f0dHRql27tlJTU+19mZmZ2rdvn2JjYyVJsbGx2r59u9vfm65du1YOh0NRUVF2zZnHKK4pPoavr6+io6PdaoqKipSammrXnIufn599OebiGwAAQGVgRgIAADi3cv3J3sSJE3XrrbeqadOmOnbsmBYtWqT169drzZo1CgwM1LBhw5ScnKwGDRrI4XDo4YcfVmxsrLp37y5J6t27t6KiojRo0CDNmDFDTqdTTzzxhJKSkuTn5ydJGjlypGbPnq1x48bpgQce0Lp167RkyRKtXLnS7iM5OVmJiYnq0qWLunXrpldeeUV5eXkaOnRoBS4NAABA2TAjAQAAlE+5AqlDhw5p8ODBOnjwoAIDA9WhQwetWbNGt9xyiyTp5Zdflre3t/r376/8/HzFx8dr7ty59uN9fHy0YsUKPfTQQ4qNjVXdunWVmJiop556yq6JjIzUypUrNWbMGM2aNUtNmjTR66+/rvj4eLtmwIABOnz4sCZPniyn06lOnTopJSWlxEk8AQAATGBGAgAAKB8vy7IsTzfhKS6XS4GBgcrNza2Ur6afSvm0xLbafXpW+PMAAICyq+z3/+qAGQkAgJrH9Ix0yeeQAgAAAAAAAMqDQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQKoS7c1Zrb05qz3dBgAAwGWFGQkAABBIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGlSuQmj59urp27ar69esrODhY/fr1U2ZmplvNDTfcIC8vL7fbyJEj3Wr27dunhIQE1alTR8HBwRo7dqxOnz7tVrN+/Xpdc8018vPzU8uWLbVw4cIS/cyZM0fNmzeXv7+/YmJitHnz5vK8HAAAgArBjAQAAFA+5QqkNmzYoKSkJH3++edau3atTp06pd69eysvL8+t7sEHH9TBgwft24wZM+x9hYWFSkhIUEFBgTZt2qQ33nhDCxcu1OTJk+2arKwsJSQk6MYbb1RGRoZGjx6t4cOHa82aNXbN4sWLlZycrClTpmjLli3q2LGj4uPjdejQoYtdCwAAgIvCjAQAAFA+XpZlWRf74MOHDys4OFgbNmxQr169JP326V+nTp30yiuvlPqY1atX6/bbb9eBAwcUEhIiSZo/f77Gjx+vw4cPy9fXV+PHj9fKlSu1Y8cO+3EDBw5UTk6OUlJSJEkxMTHq2rWrZs+eLUkqKipSRESEHn74YU2YMKFM/btcLgUGBio3N1cOh+Nil+Gc9rw9SZLUPOhWe1vtPj0r/HkAAEDZVfb7v8SMdCHMSAAAXH5MzEhnuqRzSOXm5kqSGjRo4Lb9rbfeUqNGjdSuXTtNnDhRJ06csPelpaWpffv29qAlSfHx8XK5XNq5c6ddExcX53bM+Ph4paWlSZIKCgqUnp7uVuPt7a24uDi7pjT5+flyuVxuNwAAgIrGjAQAAHB+tS72gUVFRRo9erR69Oihdu3a2dvvu+8+NWvWTOHh4dq2bZvGjx+vzMxMvfvuu5Ikp9PpNmhJsu87nc7z1rhcLv366686evSoCgsLS63ZvXv3OXuePn26pk2bdrEvGQAA4IKYkQAAAC7sogOppKQk7dixQ59++qnb9hEjRtj/3b59e4WFhenmm2/W999/ryuvvPLiO60AEydOVHJysn3f5XIpIiLCgx0BAIDqhhkJAADgwi4qkBo1apRWrFihjRs3qkmTJuetjYmJkSR99913uvLKKxUaGlriSi/Z2dmSpNDQUPv/Fm87s8bhcCggIEA+Pj7y8fEptab4GKXx8/OTn59f2V4kAABAOTEjAQAAlE25ziFlWZZGjRqlZcuWad26dYqMjLzgYzIyMiRJYWFhkqTY2Fht377d7Uova9eulcPhUFRUlF2Tmprqdpy1a9cqNjZWkuTr66vo6Gi3mqKiIqWmpto1AAAApjAjAQAAlE+5viGVlJSkRYsW6b333lP9+vXt8xkEBgYqICBA33//vRYtWqTbbrtNDRs21LZt2zRmzBj16tVLHTp0kCT17t1bUVFRGjRokGbMmCGn06knnnhCSUlJ9idzI0eO1OzZszVu3Dg98MADWrdunZYsWaKVK1favSQnJysxMVFdunRRt27d9MorrygvL09Dhw6tqLUBAAAoE2YkAACA8ilXIDVv3jxJv122+EwLFizQkCFD5Ovrq48++sgefCIiItS/f3898cQTdq2Pj49WrFihhx56SLGxsapbt64SExP11FNP2TWRkZFauXKlxowZo1mzZqlJkyZ6/fXXFR8fb9cMGDBAhw8f1uTJk+V0OtWpUyelpKSUOIknAABAZWNGAgAAKB8vy7IsTzfhKS6XS4GBgcrNzZXD4ajw4+95e5IkqXnQrfa22n16VvjzAACAsqvs9//qgBkJAICax/SMVK5zSAEAAAAAAACXikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCqXIHU9OnT1bVrV9WvX1/BwcHq16+fMjMz3WpOnjyppKQkNWzYUPXq1VP//v2VnZ3tVrNv3z4lJCSoTp06Cg4O1tixY3X69Gm3mvXr1+uaa66Rn5+fWrZsqYULF5boZ86cOWrevLn8/f0VExOjzZs3l+flAAAAVAhmJAAAgPIpVyC1YcMGJSUl6fPPP9fatWt16tQp9e7dW3l5eXbNmDFj9MEHH2jp0qXasGGDDhw4oLvuusveX1hYqISEBBUUFGjTpk164403tHDhQk2ePNmuycrKUkJCgm688UZlZGRo9OjRGj58uNasWWPXLF68WMnJyZoyZYq2bNmijh07Kj4+XocOHbqU9QAAACg3ZiQAAIDy8bIsy7rYBx8+fFjBwcHasGGDevXqpdzcXDVu3FiLFi3S3XffLUnavXu32rZtq7S0NHXv3l2rV6/W7bffrgMHDigkJESSNH/+fI0fP16HDx+Wr6+vxo8fr5UrV2rHjh32cw0cOFA5OTlKSUmRJMXExKhr166aPXu2JKmoqEgRERF6+OGHNWHChDL173K5FBgYqNzcXDkcjotdhnPa8/YkSVLzoFvtbbX79Kzw5wEAAGVX2e//EjPShTAjAQBw+TExI53pks4hlZubK0lq0KCBJCk9PV2nTp1SXFycXdOmTRs1bdpUaWlpkqS0tDS1b9/eHrQkKT4+Xi6XSzt37rRrzjxGcU3xMQoKCpSenu5W4+3trbi4OLsGAADAU5iRAAAAzq/WxT6wqKhIo0ePVo8ePdSuXTtJktPplK+vr4KCgtxqQ0JC5HQ67ZozB63i/cX7zlfjcrn066+/6ujRoyosLCy1Zvfu3efsOT8/X/n5+fZ9l8tVjlcMAABwYcxIAAAAF3bR35BKSkrSjh079Pbbb1dkP5Vq+vTpCgwMtG8RERGebgkAAFQzzEgAAAAXdlGB1KhRo7RixQp9/PHHatKkib09NDRUBQUFysnJcavPzs5WaGioXXP2FWWK71+oxuFwKCAgQI0aNZKPj0+pNcXHKM3EiROVm5tr3/bv31++Fw4AAHAezEgAAABlU65AyrIsjRo1SsuWLdO6desUGRnptj86Olq1a9dWamqqvS0zM1P79u1TbGysJCk2Nlbbt293u9LL2rVr5XA4FBUVZdeceYzimuJj+Pr6Kjo62q2mqKhIqampdk1p/Pz85HA43G4AAACXihkJAACgfMp1DqmkpCQtWrRI7733nurXr2+fzyAwMFABAQEKDAzUsGHDlJycrAYNGsjhcOjhhx9WbGysunfvLknq3bu3oqKiNGjQIM2YMUNOp1NPPPGEkpKS5OfnJ0kaOXKkZs+erXHjxumBBx7QunXrtGTJEq1cudLuJTk5WYmJierSpYu6deumV155RXl5eRo6dGhFrQ0AAECZMCMBAACUT7kCqXnz5kmSbrjhBrftCxYs0JAhQyRJL7/8sry9vdW/f3/l5+crPj5ec+fOtWt9fHy0YsUKPfTQQ4qNjVXdunWVmJiop556yq6JjIzUypUrNWbMGM2aNUtNmjTR66+/rvj4eLtmwIABOnz4sCZPniyn06lOnTopJSWlxEk8AQAAKhszEgAAQPl4WZZleboJT3G5XAoMDFRubm6lfDV9z9uTJEnNg261t9Xu07PCnwcAAJRdZb//VwfMSAAA1DymZ6SLvsoeAAAAAAAAcDEIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAo8odSG3cuFF9+/ZVeHi4vLy8tHz5crf9Q4YMkZeXl9utT58+bjW//PKL7r//fjkcDgUFBWnYsGE6fvy4W822bdt03XXXyd/fXxEREZoxY0aJXpYuXao2bdrI399f7du316pVq8r7cgAAACoEMxIAAEDZlTuQysvLU8eOHTVnzpxz1vTp00cHDx60b//+97/d9t9///3auXOn1q5dqxUrVmjjxo0aMWKEvd/lcql3795q1qyZ0tPT9cILL2jq1Kl67bXX7JpNmzbp3nvv1bBhw7R161b169dP/fr1044dO8r7kgAAAC4ZMxIAAEDZeVmWZV30g728tGzZMvXr18/eNmTIEOXk5JT4VLDYrl27FBUVpS+//FJdunSRJKWkpOi2227TTz/9pPDwcM2bN0+TJk2S0+mUr6+vJGnChAlavny5du/eLUkaMGCA8vLytGLFCvvY3bt3V6dOnTR//vwy9e9yuRQYGKjc3Fw5HI6LWIHz2/P2JElS86Bb7W21+/Ss8OcBAABlV9nv/xIz0oUwIwEAcPkxMSOdqVLOIbV+/XoFBwerdevWeuihh3TkyBF7X1pamoKCguxBS5Li4uLk7e2tL774wq7p1auXPWhJUnx8vDIzM3X06FG7Ji4uzu154+PjlZaWVhkvCQAA4JIxIwEAAPymVkUfsE+fPrrrrrsUGRmp77//Xo8//rhuvfVWpaWlycfHR06nU8HBwe5N1KqlBg0ayOl0SpKcTqciIyPdakJCQux9V1xxhZxOp73tzJriY5QmPz9f+fn59n2Xy3VJrxUAAKCsmJEAAAD+p8IDqYEDB9r/3b59e3Xo0EFXXnml1q9fr5tvvrmin65cpk+frmnTpnm0BwAAUDMxIwEAAPxPpfzJ3platGihRo0a6bvvvpMkhYaG6tChQ241p0+f1i+//KLQ0FC7Jjs7262m+P6Faor3l2bixInKzc21b/v377+0FwcAAHCRmJEAAEBNVumB1E8//aQjR44oLCxMkhQbG6ucnBylp6fbNevWrVNRUZFiYmLsmo0bN+rUqVN2zdq1a9W6dWtdccUVdk1qaqrbc61du1axsbHn7MXPz08Oh8PtBgAA4AnMSAAAoCYrdyB1/PhxZWRkKCMjQ5KUlZWljIwM7du3T8ePH9fYsWP1+eefa+/evUpNTdUdd9yhli1bKj4+XpLUtm1b9enTRw8++KA2b96szz77TKNGjdLAgQMVHh4uSbrvvvvk6+urYcOGaefOnVq8eLFmzZql5ORku49HHnlEKSkpeumll7R7925NnTpVX331lUaNGlUBywIAAFA+zEgAAABlV+5A6quvvlLnzp3VuXNnSVJycrI6d+6syZMny8fHR9u2bdPvf/97tWrVSsOGDVN0dLQ++eQT+fn52cd466231KZNG91888267bbb1LNnT7322mv2/sDAQH344YfKyspSdHS0Hn30UU2ePFkjRoywa6699lotWrRIr732mjp27Kh33nlHy5cvV7t27S5lPQAAAC4KMxIAAEDZeVmWZXm6CU9xuVwKDAxUbm5upXw1fc/bkyRJzYNutbfV7tOzwp8HAACUXWW//1cHzEgAANQ8pmekSj+HFAAAAAAAAHAmAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhV7kBq48aN6tu3r8LDw+Xl5aXly5e77bcsS5MnT1ZYWJgCAgIUFxenPXv2uNX88ssvuv/+++VwOBQUFKRhw4bp+PHjbjXbtm3TddddJ39/f0VERGjGjBklelm6dKnatGkjf39/tW/fXqtWrSrvywEAAKgQzEgAAABlV+5AKi8vTx07dtScOXNK3T9jxgy9+uqrmj9/vr744gvVrVtX8fHxOnnypF1z//33a+fOnVq7dq1WrFihjRs3asSIEfZ+l8ul3r17q1mzZkpPT9cLL7ygqVOn6rXXXrNrNm3apHvvvVfDhg3T1q1b1a9fP/Xr1087duwo70sCAAC4ZMxIAAAAZedlWZZ10Q/28tKyZcvUr18/Sb998hceHq5HH31Ujz32mCQpNzdXISEhWrhwoQYOHKhdu3YpKipKX375pbp06SJJSklJ0W233aaffvpJ4eHhmjdvniZNmiSn0ylfX19J0oQJE7R8+XLt3r1bkjRgwADl5eVpxYoVdj/du3dXp06dNH/+/DL173K5FBgYqNzcXDkcjotdhnPa8/YkSVLzoFvtbbX79Kzw5wEAAGVX2e//EjPShTAjAQBw+TExI52pQs8hlZWVJafTqbi4OHtbYGCgYmJilJaWJklKS0tTUFCQPWhJUlxcnLy9vfXFF1/YNb169bIHLUmKj49XZmamjh49atec+TzFNcXPU5r8/Hy5XC63GwAAQGVjRgIAAHBXoYGU0+mUJIWEhLhtDwkJsfc5nU4FBwe77a9Vq5YaNGjgVlPaMc58jnPVFO8vzfTp0xUYGGjfIiIiyvsSAQAAyo0ZCQAAwF2NusrexIkTlZuba9/279/v6ZYAAAA8jhkJAACYVqGBVGhoqCQpOzvbbXt2dra9LzQ0VIcOHXLbf/r0af3yyy9uNaUd48znOFdN8f7S+Pn5yeFwuN0AAAAqGzMSAACAuwoNpCIjIxUaGqrU1FR7m8vl0hdffKHY2FhJUmxsrHJycpSenm7XrFu3TkVFRYqJibFrNm7cqFOnTtk1a9euVevWrXXFFVfYNWc+T3FN8fMAAABcLpiRAAAA3JU7kDp+/LgyMjKUkZEh6beTdGZkZGjfvn3y8vLS6NGj9cwzz+j999/X9u3bNXjwYIWHh9tXmWnbtq369OmjBx98UJs3b9Znn32mUaNGaeDAgQoPD5ck3XffffL19dWwYcO0c+dOLV68WLNmzVJycrLdxyOPPKKUlBS99NJL2r17t6ZOnaqvvvpKo0aNuvRVAQAAKCdmJAAAgHKwyunjjz+2JJW4JSYmWpZlWUVFRdaTTz5phYSEWH5+ftbNN99sZWZmuh3jyJEj1r333mvVq1fPcjgc1tChQ61jx4651Xz99ddWz549LT8/P+t3v/ud9fzzz5foZcmSJVarVq0sX19f6+qrr7ZWrlxZrteSm5trSbJyc3PLtwhl9O2/H7e+/ffjVsHqT+wbAADwrMp6/2dGKjtmJAAALj+V/f5/Ni/LsixPBGGXA5fLpcDAQOXm5lbKuRL2vD1JktQ86FZ7W+0+PSv8eQAAQNlV9vt/dcCMBABAzWN6RqpRV9kDAAAAAACA5xFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjKrl6QZweTqV8qnbfS7FDAAAwIwEAEBF4RtSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIplGpvzmrtzVnt6TYAAAAuK8xIAABUDAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKrCA6mpU6fKy8vL7damTRt7/8mTJ5WUlKSGDRuqXr166t+/v7Kzs92OsW/fPiUkJKhOnToKDg7W2LFjdfr0abea9evX65prrpGfn59atmyphQsXVvRLAQAAqDDMSAAAAP9TKd+Quvrqq3Xw4EH79umnn9r7xowZow8++EBLly7Vhg0bdODAAd111132/sLCQiUkJKigoECbNm3SG2+8oYULF2ry5Ml2TVZWlhISEnTjjTcqIyNDo0eP1vDhw7VmzZrKeDkAAAAVghkJAADgN7Uq5aC1aik0NLTE9tzcXP3jH//QokWLdNNNN0mSFixYoLZt2+rzzz9X9+7d9eGHH+qbb77RRx99pJCQEHXq1ElPP/20xo8fr6lTp8rX11fz589XZGSkXnrpJUlS27Zt9emnn+rll19WfHx8ZbwkAACAS8aMBAAA8JtK+YbUnj17FB4erhYtWuj+++/Xvn37JEnp6ek6deqU4uLi7No2bdqoadOmSktLkySlpaWpffv2CgkJsWvi4+Plcrm0c+dOu+bMYxTXFB8DAADgcsSMBAAA8JsK/4ZUTEyMFi5cqNatW+vgwYOaNm2arrvuOu3YsUNOp1O+vr4KCgpye0xISIicTqckyel0ug1axfuL952vxuVy6ddff1VAQECpveXn5ys/P9++73K5Lum1AgAAlBUzEgAAwP9UeCB166232v/doUMHxcTEqFmzZlqyZMk5hyBTpk+frmnTpnm0BwAAUDMxIwEAAPxPpfzJ3pmCgoLUqlUrfffddwoNDVVBQYFycnLcarKzs+3zKYSGhpa4okzx/QvVOByO8w50EydOVG5urn3bv3//pb48AACAi8KMBAAAarJKD6SOHz+u77//XmFhYYqOjlbt2rWVmppq78/MzNS+ffsUGxsrSYqNjdX27dt16NAhu2bt2rVyOByKioqya848RnFN8THOxc/PTw6Hw+0GAADgCcxIAACgJqvwQOqxxx7Thg0btHfvXm3atEl33nmnfHx8dO+99yowMFDDhg1TcnKyPv74Y6Wnp2vo0KGKjY1V9+7dJUm9e/dWVFSUBg0apK+//lpr1qzRE088oaSkJPn5+UmSRo4cqR9++EHjxo3T7t27NXfuXC1ZskRjxoyp6JcDAABQIZiRAAAA/qfCzyH1008/6d5779WRI0fUuHFj9ezZU59//rkaN24sSXr55Zfl7e2t/v37Kz8/X/Hx8Zo7d679eB8fH61YsUIPPfSQYmNjVbduXSUmJuqpp56yayIjI7Vy5UqNGTNGs2bNUpMmTfT6669zOWMAAHDZYkYCAAD4Hy/LsixPN+EpLpdLgYGBys3NrZSvpu95e5IkqXnQ/05iWrtPzwp/nspwdu9VpW8AAC6kst//qwNmpHNjRgIAVFemZ6RKP4cUAAAAAAAAcCYCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKqWpxsAKtKplE9LbKvdp6cHOgEAALh8MCMBAC43fEMKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCqlqcbACrS3pzVkqTmQbd6uBMAAIDLR/GMJDEnAQAuD3xDCgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwqsoHUnPmzFHz5s3l7++vmJgYbd682dMtARflVMqnbjcAAC4FMxKqC2YkAKieqnQgtXjxYiUnJ2vKlCnasmWLOnbsqPj4eB06dMjTrQEAAHgMMxIAALjcVelAaubMmXrwwQc1dOhQRUVFaf78+apTp47++c9/ero1oNz25qzW3pzVnm4DAFANMCOhOmFGAoDqqcoGUgUFBUpPT1dcXJy9zdvbW3FxcUpLS/NgZwAAAJ7DjAQAAKqCWp5u4GL9/PPPKiwsVEhIiNv2kJAQ7d69u9TH5OfnKz8/376fm5srSXK5XJXS4/ETvz2Xq3aeva12JT1XRTu796rat1R1e68qfZ9aW/L/ual9S6wHOgGAsil+37csy8OdVA5mpMpVVd+vi/uWqm7vVa1vZiQAVY3pGanKBlIXY/r06Zo2bVqJ7REREZX8zC9V8vErU1Xtvar2LVXt3gGg6jh27JgCAwM93cZlgRnpYtC7eVW1bwCoWkzNSFU2kGrUqJF8fHyUnZ3ttj07O1uhoaGlPmbixIlKTk627xcVFemXX35Rw4YN5eXlVan9ViUul0sRERHav3+/HA6Hp9upEVhz81hz81hz81jz0lmWpWPHjik8PNzTrVQKZqTKw78p81hz81hz81hz81jz0pmekapsIOXr66vo6GilpqaqX79+kn4bnlJTUzVq1KhSH+Pn5yc/Pz+3bUFBQZXcadXlcDj4x2kYa24ea24ea24ea15Sdf5mFDNS5ePflHmsuXmsuXmsuXmseUkmZ6QqG0hJUnJyshITE9WlSxd169ZNr7zyivLy8jR06FBPtwYAAOAxzEgAAOByV6UDqQEDBujw4cOaPHmynE6nOnXqpJSUlBIn8QQAAKhJmJEAAMDlrkoHUpI0atSoc379HBfHz89PU6ZMKfHVfVQe1tw81tw81tw81rxmY0aqePybMo81N481N481N481vzx4WdX1mscAAAAAAAC4LHl7ugEAAAAAAADULARSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAinY/vvf/+qPf/yjGjZsqICAALVv315fffWVp9uqtgoLC/Xkk08qMjJSAQEBuvLKK/X000+L6wxUrI0bN6pv374KDw+Xl5eXli9f7rbfsixNnjxZYWFhCggIUFxcnPbs2eOZZquJ8635qVOnNH78eLVv315169ZVeHi4Bg8erAMHDniu4WrgQr/nZxo5cqS8vLz0yiuvGOsPqOqYkcxiRjKDGck8ZiTzmJEubwRSkCQdPXpUPXr0UO3atbV69Wp98803eumll3TFFVd4urVq6y9/+YvmzZun2bNna9euXfrLX/6iGTNm6K9//aunW6tW8vLy1LFjR82ZM6fU/TNmzNCrr76q+fPn64svvlDdunUVHx+vkydPGu60+jjfmp84cUJbtmzRk08+qS1btujdd99VZmamfv/733ug0+rjQr/nxZYtW6bPP/9c4eHhhjoDqj5mJPOYkcxgRjKPGck8ZqTLnAVYljV+/HirZ8+enm6jRklISLAeeOABt2133XWXdf/993uoo+pPkrVs2TL7flFRkRUaGmq98MIL9racnBzLz8/P+ve//+2BDqufs9e8NJs3b7YkWT/++KOZpqq5c635Tz/9ZP3ud7+zduzYYTVr1sx6+eWXjfcGVEXMSOYxI5nHjGQeM5J5zEiXH74hBUnS+++/ry5duugPf/iDgoOD1blzZ/3973/3dFvV2rXXXqvU1FR9++23kqSvv/5an376qW699VYPd1ZzZGVlyel0Ki4uzt4WGBiomJgYpaWlebCzmiU3N1deXl4KCgrydCvVVlFRkQYNGqSxY8fq6quv9nQ7QJXCjGQeM5LnMSNdHpiRKh8zkmfV8nQDuDz88MMPmjdvnpKTk/X444/ryy+/1J///Gf5+voqMTHR0+1VSxMmTJDL5VKbNm3k4+OjwsJCPfvss7r//vs93VqN4XQ6JUkhISFu20NCQux9qFwnT57U+PHjde+998rhcHi6nWrrL3/5i2rVqqU///nPnm4FqHKYkcxjRvI8ZiTPY0YygxnJswikIOm3ZLhLly567rnnJEmdO3fWjh07NH/+fIatSrJkyRK99dZbWrRoka6++mplZGRo9OjRCg8PZ81RI5w6dUr33HOPLMvSvHnzPN1OtZWenq5Zs2Zpy5Yt8vLy8nQ7QJXDjGQeMxJqOmYkM5iRPI8/2YMkKSwsTFFRUW7b2rZtq3379nmoo+pv7NixmjBhggYOHKj27dtr0KBBGjNmjKZPn+7p1mqM0NBQSVJ2drbb9uzsbHsfKkfxoPXjjz9q7dq1fPJXiT755BMdOnRITZs2Va1atVSrVi39+OOPevTRR9W8eXNPtwdc9piRzGNG8jxmJM9hRjKHGcnzCKQgSerRo4cyMzPdtn377bdq1qyZhzqq/k6cOCFvb/d/gj4+PioqKvJQRzVPZGSkQkNDlZqaam9zuVz64osvFBsb68HOqrfiQWvPnj366KOP1LBhQ0+3VK0NGjRI27ZtU0ZGhn0LDw/X2LFjtWbNGk+3B1z2mJHMY0byPGYkz2BGMosZyfP4kz1IksaMGaNrr71Wzz33nO655x5t3rxZr732ml577TVPt1Zt9e3bV88++6yaNm2qq6++Wlu3btXMmTP1wAMPeLq1auX48eP67rvv7PtZWVnKyMhQgwYN1LRpU40ePVrPPPOMrrrqKkVGRurJJ59UeHi4+vXr57mmq7jzrXlYWJjuvvtubdmyRStWrFBhYaF9LooGDRrI19fXU21XaRf6PT97oK1du7ZCQ0PVunVr060CVQ4zknnMSGYwI5nHjGQeM9JlztOX+cPl44MPPrDatWtn+fn5WW3atLFee+01T7dUrblcLuuRRx6xmjZtavn7+1stWrSwJk2aZOXn53u6tWrl448/tiSVuCUmJlqW9dtljZ988kkrJCTE8vPzs26++WYrMzPTs01Xcedb86ysrFL3SbI+/vhjT7deZV3o9/xsXNIYKB9mJLOYkcxgRjKPGck8ZqTLm5dlWVZlhV0AAAAAAADA2TiHFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAqoghYuXCgvLy/t3bvX061cVpo3b67bb7/d021IkoYMGaL/j707D6uq3N8/fm9RQGRyQkARcZZUVBzCyhwIMLM0KzXLWbOwHMrU6jjkKc0cymNqwwk7pV/NTpo5JaJmJuWQmFMcM6cSpFJBHABh/f7wx7IdTiisjfB+Xde6Lvaznr32Zz144j6fvfbaNWrUKPDjfvrpp6pQoYLS09OvO9dms2nChAl2Y9u2bVPr1q1Vrlw52Ww2JSQk3PBrZ2VlKSAgQHPmzMln1QAAWIOMdGVkJHtkJKBooCEFoEhZuHCh3nrrLUeXUSRlZ2dr/PjxevbZZ+Xu7p7v52dlZenRRx/VyZMnNXPmTH388ccKDAxUUlKSxowZo3bt2snDw0M2m00bN27M8/wyZcpo5MiReu2113ThwoUCOCMAAHCjyEhXV1gZKS4uTv3791fdunXl5uammjVrauDAgUpKSrJ7PhkJuDk0pAAUKcUlbL3//vtKTEws0GN++eWXSkxM1ODBg2/q+QcPHtSRI0f0wgsvaPDgwXriiSdUvnx5JSYm6o033tBvv/2mRo0aXfMY/fr10x9//KGFCxfeVA0AAODmkJGurrAy0ujRo7Vx40Z17dpVs2bNUo8ePfTpp5+qadOmSk5OtjsGGQnIPxpSAFAIypQpIxcXlwI9ZkxMjO666y5VrVr1pp6fkpIiSfL29rYbDw0N1Z9//qn//e9/Gjly5DWP4e3trYiICM2fP/+magAAACXb7ZSRZsyYoZ9//llvvPGGBg4cqNdff10rVqzQiRMnNHv2bLu5ZCQg/2hIAcXInDlzdMcdd8jFxUX+/v6Kjo7W6dOn7ea0bdtWDRs21L59+9SuXTu5ubmpatWqmjp1ap7jHTlyRA8++KDKlSsnHx8fjRgxQl999dUVP9L1/fffKyoqSl5eXnJzc9O9996rb7/91m7OmTNnNHz4cNWoUUMuLi7y8fHRfffdpx9++MGsbeXKlTpy5IhsNptsNttN3WNg7dq1atKkiVxdXRUcHKzPP/8838ew2WwaOnSolixZouDgYJUtW1ZhYWHavXu3JOndd99V7dq15erqqrZt2+a5V8Xf749w+PBh2Ww2TZs2Te+9955q1aolFxcXtWjRQtu2bbtuPRcuXNCaNWsUHh6eZ19GRoZGjBihypUry8PDQw8++KB+/fXXPPXce++9kqRHH31UNptNbdu2lSR5eHioQoUKN7w29913nzZv3qyTJ0/e8HMAAHAkMtIlZKT8ZaQ2bdqoVCn7/8vcpk0bVahQQfv378/zemQkIH9KO7oAAAVjwoQJmjhxosLDw/X0008rMTFRc+fO1bZt2/Ttt9+qTJky5txTp04pKipKDz/8sB577DF99tlnGj16tBo1aqSOHTtKks6ePav27dsrKSlJw4YNk6+vrxYuXKgNGzbkee3169erY8eOCg0N1fjx41WqVCnFxMSoffv2+uabb9SyZUtJ0pAhQ/TZZ59p6NChCg4O1p9//qnNmzdr//79atasmV5++WWlpqbq119/1cyZMyUp3/cBOHDggLp3764hQ4aoT58+iomJ0aOPPqo1a9bovvvuy9exvvnmGy1fvlzR0dGSpMmTJ+uBBx7Qiy++qDlz5uiZZ57RqVOnNHXqVPXv31/r16+/7jEXLlyoM2fO6KmnnpLNZtPUqVP18MMP65dffrH7Hf3djh07lJmZqWbNmuXZN3DgQH3yySd6/PHH1bp1a61fv16dOnWym/PUU0+patWqev311/Xcc8+pRYsWqlKlSr7WI1doaKgMw9CWLVuKzA1SAQC4GjLSJWSkgslI6enpSk9PV6VKlfLsIyMB+WQAuO3ExMQYkoxDhw4ZhmEYKSkphrOzsxEREWFkZ2eb82bPnm1IMj788ENz7N577zUkGf/5z3/MsYyMDMPX19fo1q2bOTZ9+nRDkrFs2TJz7Pz580b9+vUNScaGDRsMwzCMnJwco06dOkZkZKSRk5Njzj137pwRFBRk3HfffeaYl5eXER0dfc1z69SpkxEYGJiv9cgVGBhoSDL++9//mmOpqamGn5+f0bRp03wdS5Lh4uJirrFhGMa7775rSDJ8fX2NtLQ0c3zs2LF2vw/DMIw+ffrYncehQ4cMSUbFihWNkydPmuNffPGFIcn48ssvr1nPBx98YEgydu/ebTeekJBgSDKeeeYZu/HHH3/ckGSMHz/eHNuwYYMhyViyZMlVX2fJkiV2v98rOX78uCHJeOONN65ZMwAAViMjXRkZ6bKbzUi5Jk2aZEgy4uLi8uwjIwH5w0f2gGJg3bp1yszM1PDhw+0uKx40aJA8PT21cuVKu/nu7u564oknzMfOzs5q2bKlfvnlF3NszZo1qlq1qh588EFzzNXVVYMGDbI7VkJCgg4cOKDHH39cf/75p/744w/98ccfOnv2rDp06KBNmzYpJydH0qXP1n///fc6fvx4gZ7/X/n7+6tr167mY09PT/Xu3Vs7d+7Mc/PJ6+nQoYPdJeWtWrWSJHXr1k0eHh55xv+6flfTvXt3lS9f3nx8zz333NBz//zzT0mye64krVq1SpL03HPP2Y0PHz78urXcrNwa/vjjj0J7DQAACgIZ6TIy0iW3kpE2bdqkiRMn6rHHHlP79u3z7CcjAfnDR/aAYuDIkSOSpHr16tmNOzs7q2bNmub+XNWqVZPNZrMbK1++vH788Ue7Y9aqVSvPvNq1a9s9PnDggCSpT58+V60vNTVV5cuX19SpU9WnTx8FBAQoNDRU999/v3r37q2aNWve4JleX+3atfPUXLduXUmX7lHg6+t7w8eqXr263WMvLy9JUkBAwBXHT506le9j5gaXG3muJBmGYff4yJEjKlWqlGrVqmU3/vd/CwUpt4a/rzMAAEUNGcm+PjLSzWekn376SV27dlXDhg31wQcfXLMGMhJwY2hIASWQk5PTFcf//of8RuS+s/fmm2+qSZMmV5yTe4+Dxx57TPfcc4+WLl2qtWvX6s0339Qbb7yhzz//3LwvQ1FytXW6lfW72edWrFhR0qVQVq1ateu+TmHKDYZXuncCAAC3MzLSjSlpGenYsWOKiIiQl5eXVq1aZXcV2F+RkYD8oSEFFAOBgYGSpMTERLt30jIzM3Xo0KErfuvIjRxz3759MgzD7l2en3/+2W5e7rtOnp6eN/Q6fn5+euaZZ/TMM88oJSVFzZo102uvvWaGrVt9R+nnn3/OU/P//vc/Sbqpb6MpKurXry9JOnTokBo1amSOBwYGKicnRwcPHrR7xy8xMbHQajl06JAkqUGDBoX2GgAAFAQy0mVkpEvym5H+/PNPRUREKCMjQ3FxcfLz87vqXDISkD/cQwooBsLDw+Xs7KxZs2bZvYv073//W6mpqXm+TeRGREZG6rffftPy5cvNsQsXLuj999+3mxcaGqpatWpp2rRpSk9Pz3Oc33//XZKUnZ2t1NRUu30+Pj7y9/dXRkaGOVauXLk88/Lj+PHjWrp0qfk4LS1N//nPf9SkSZN8XYpe1ISGhsrZ2Vnbt2+3G88NqbNmzbIbf+uttwqtlh07dshmsyksLKzQXgMAgIJARrqMjHRJfjLS2bNndf/99+u3337TqlWrVKdOnWvOJyMB+cMVUkAxULlyZY0dO1YTJ05UVFSUHnzwQSUmJmrOnDlq0aKF3c05b9RTTz2l2bNnq2fPnho2bJj8/Py0YMECubq6Srr8Ll2pUqX0wQcfqGPHjrrjjjvUr18/Va1aVb/99ps2bNggT09Pffnllzpz5oyqVaumRx55RCEhIXJ3d9e6deu0bds2TZ8+3Xzd0NBQLV68WCNHjlSLFi3k7u6uzp0733DddevW1YABA7Rt2zZVqVJFH374oU6cOKGYmJh8r0FR4urqqoiICK1bt06vvvqqOd6kSRP17NlTc+bMUWpqqlq3bq24uLg879Jezz//+U9J0t69eyVJH3/8sTZv3ixJeuWVV+zmxsbG6q677jIvkQcAoKgiI11GRsp/RurVq5e2bt2q/v37a//+/dq/f7+5z93dXV26dLGbT0YC8oeGFFBMTJgwQZUrV9bs2bM1YsQIVahQQYMHD9brr7+uMmXK5Pt47u7uWr9+vZ599lm9/fbbcnd3V+/evdW6dWt169bNDF2S1LZtW8XHx2vSpEmaPXu20tPT5evrq1atWumpp56SJLm5uemZZ57R2rVr9fnnnysnJ0e1a9fWnDlz9PTTT5vHeuaZZ5SQkKCYmBjNnDlTgYGB+QpbderU0b/+9S+NGjVKiYmJCgoK0uLFixUZGZnvNShq+vfvr27duunYsWN2Nw398MMPVblyZS1YsEDLli1T+/bttXLlyjw3Fr2Wf/zjH3aPP/zwQ/PnvzakUlNTtXbtWs2ZM+cWzgQAAOuQkS4hI+U/IyUkJJjH+Ws2ki59JPCvDSkyEpB/NuNm7tAHoMR66623NGLECP3666+qWrWqo8spUbKzsxUcHKzHHntMkyZNckgNb731lqZOnaqDBw+qbNmyDqkBAICiiIzkOGQk4PZEQwrAVZ0/f97uD+qFCxfUtGlTZWdnmzfBhLUWL16sp59+WkePHjW/mccqWVlZqlWrlsaMGaNnnnnG0tcGAKAoISMVPWQk4PZDQwrAVXXs2FHVq1dXkyZNlJqaqk8++UR79+7VggUL9Pjjj1tWx++//67s7Oyr7nd2dlaFChVu6FjJycnX3F+2bFl5eXnlqz4AAFCykJEA4NbRkAJwVW+99ZY++OADHT582LwU+sUXX1T37t0traNGjRo6cuTIVfffe++92rhx4w0d63pfmdynTx/Nnz8/H9UBAICShowEALeOhhSAIu/bb7/V+fPnr7q/fPnyCg0NvaFjrVu37pr7/f39FRwcnK/6AAAAHIGMBOB2RkMKAAAAAAAAlirl6AIAAAAAAABQspR2dAGOlJOTo+PHj8vDw+O6n5kGAADFg2EYOnPmjPz9/VWqFO/NXQkZCQCAksfqjFSiG1LHjx9XQECAo8sAAAAOcOzYMVWrVs3RZRRJZCQAAEouqzJSiW5IeXh4SLq02J6eng6uBgAAWCEtLU0BAQFmDkBeZCQAAEoeqzNSiW5I5V6C7unpSdgCAKCE4aNoV0dGAgCg5LIqI+XrQ4GTJ09WixYt5OHhIR8fH3Xp0kWJiYl2cy5cuKDo6GhVrFhR7u7u6tatm06cOGE35+jRo+rUqZPc3Nzk4+OjUaNG6eLFi3ZzNm7cqGbNmsnFxUW1a9fW/Pnz89TzzjvvqEaNGnJ1dVWrVq20devW/JwOAABAgSAjAQAA5E++GlJff/21oqOj9d133yk2NlZZWVmKiIjQ2bNnzTkjRozQl19+qSVLlujrr7/W8ePH9fDDD5v7s7Oz1alTJ2VmZmrLli366KOPNH/+fI0bN86cc+jQIXXq1Ent2rVTQkKChg8froEDB+qrr74y5yxevFgjR47U+PHj9cMPPygkJESRkZFKSUm5lfUAAADINzISAABAPhm3ICUlxZBkfP3114ZhGMbp06eNMmXKGEuWLDHn7N+/35BkxMfHG4ZhGKtWrTJKlSplJCcnm3Pmzp1reHp6GhkZGYZhGMaLL75o3HHHHXav1b17dyMyMtJ83LJlSyM6Otp8nJ2dbfj7+xuTJ0++4fpTU1MNSUZqamo+zhoAANzOrPj7T0YCAAC3G6v//t/SPaRSU1MlSRUqVJAk7dixQ1lZWQoPDzfn1K9fX9WrV1d8fLzuvPNOxcfHq1GjRqpSpYo5JzIyUk8//bT27t2rpk2bKj4+3u4YuXOGDx8uScrMzNSOHTs0duxYc3+pUqUUHh6u+Pj4q9abkZGhjIwM83FaWtrNnzwAoNjLzs5WVlaWo8tAPpUpU0ZOTk4OrYGMBAAozshIt6eikJH+6qYbUjk5ORo+fLjuuusuNWzYUJKUnJwsZ2dneXt7282tUqWKkpOTzTl/DVq5+3P3XWtOWlqazp8/r1OnTik7O/uKc3766aer1jx58mRNnDgx/ycLAChRDMNQcnKyTp8+7ehScJO8vb3l6+vrkBuXk5EAAMUVGen258iM9Hc33ZCKjo7Wnj17tHnz5oKsp1CNHTtWI0eONB/nfqUhAAB/lRu0fHx85ObmViT+YOPGGIahc+fOmfdL8vPzs7wGMhIAoLgiI92+ikJG+rubakgNHTpUK1as0KZNm1StWjVz3NfXV5mZmTp9+rTdO4AnTpyQr6+vOefv3/SS+w0zf53z92+dOXHihDw9PVW2bFk5OTnJycnpinNyj3ElLi4ucnFxyf8JAwBKjOzsbDNoVaxY0dHl4CaULVtWkpSSkiIfHx9LL00nIwEAiisy0u3PkRnpSvL1LXuGYWjo0KFaunSp1q9fr6CgILv9oaGhKlOmjOLi4syxxMREHT16VGFhYZKksLAw7d692+6bXmJjY+Xp6ang4GBzzl+PkTsn9xjOzs4KDQ21m5OTk6O4uDhzDgAANyP3fghubm4OrgS3Ivf3Z9X9LchIAIDijoxUPFidka4lX1dIRUdHa+HChfriiy/k4eFh3s/Ay8tLZcuWlZeXlwYMGKCRI0eqQoUK8vT01LPPPquwsDDdeeedkqSIiAgFBwfrySef1NSpU5WcnKxXXnlF0dHR5jtzQ4YM0ezZs/Xiiy+qf//+Wr9+vT799FOtXLnSrGXkyJHq06ePmjdvrpYtW+qtt97S2bNn1a9fv4JaGwBACcYl6Lc3q39/ZCQAQElBRrq9FanfX36+kk/SFbeYmBhzzvnz541nnnnGKF++vOHm5mZ07drVSEpKsjvO4cOHjY4dOxply5Y1KlWqZDz//PNGVlaW3ZwNGzYYTZo0MZydnY2aNWvavUauf/3rX0b16tUNZ2dno2XLlsZ3332Xn9PhK40BAHmcP3/e2Ldvn3H+/HlHl4JbcK3fY2H8/ScjAQCKOzJS8WB1RroWm2EYhvVtsKIhLS1NXl5eSk1Nlaenp6PLAQAUARcuXNChQ4cUFBQkV1dXR5eDm3St3yN//6+PNQIA/B0ZqXgoShnppr9lDwCAkiZrjXXfmlYm6u4bnnu9S6/Hjx+vCRMm3GJFN8dms2np0qXq0qXLTR/jvffe08KFC/XDDz/ozJkzOnXqlN2NwQEAgGNZmZEkclKukydPavz48Vq7dq2OHj2qypUrq0uXLpo0aZK8vLwKtthCQEMKhepK/2HKz388AADXl5SUZP68ePFijRs3TomJieaYu7t7vo6XmZkpZ2fnAqvvVp07d05RUVGKiorS2LFjHV0OUCDISABgjeKck44fP67jx49r2rRpCg4O1pEjRzRkyBAdP35cn332maPLu658fcseAAAoenx9fc3Ny8tLNpvNfHz27Fn16tVLVapUkbu7u1q0aKF169bZPb9GjRqaNGmSevfuLU9PTw0ePFiS9P777ysgIEBubm7q2rWrZsyYkefKpC+++ELNmjWTq6uratasqYkTJ+rixYvmcSWpa9eustls5uNdu3apXbt28vDwkKenp0JDQ7V9+/arnt/w4cM1ZswY8+bfAAAAN6o456SGDRvqv//9rzp37qxatWqpffv2eu211/Tll1+ar1OU0ZACAKAYS09P1/3336+4uDjt3LlTUVFR6ty5s44ePWo3b9q0aQoJCdHOnTv1j3/8Q99++62GDBmiYcOGKSEhQffdd59ee+01u+d888036t27t4YNG6Z9+/bp3Xff1fz5881527ZtkyTFxMQoKSnJfNyrVy9Vq1ZN27Zt044dOzRmzBiVKVPGgtUAAAC4rDjmpNz7P5UuXfQ/EFf0KwQAADctJCREISEh5uNJkyZp6dKlWr58uYYOHWqOt2/fXs8//7z5+OWXX1bHjh31wgsvSJLq1q2rLVu2aMWKFeaciRMnasyYMerTp48kqWbNmpo0aZJefPFFjR8/XpUrV5YkeXt7y9fX13ze0aNHNWrUKNWvX1+SVKdOnUI4cwAAgGsrbjnpjz/+0KRJk8yruIo6rpACAKAYS09P1wsvvKAGDRrI29tb7u7u2r9/f553/po3b273ODExUS1btrQb+/vjXbt26dVXX5W7u7u5DRo0SElJSTp37txVaxo5cqQGDhyo8PBwTZkyRQcPHrzFswQAAMi/4pST0tLS1KlTJwUHBzvsJu35RUMKAIBi7IUXXtDSpUv1+uuv65tvvlFCQoIaNWqkzMxMu3nlypXL97HT09M1ceJEJSQkmNvu3bt14MCBa34d9IQJE7R371516tRJ69evV3BwsJYuXZrv1wcAALgVxSUnnTlzRlFRUfLw8NDSpUtvm1sh8JE9AACKsW+//VZ9+/ZV165dJV0KR4cPH77u8+rVq2feyyDX3x83a9ZMiYmJql279lWPU6ZMGWVnZ+cZr1u3rurWrasRI0aoZ8+eiomJMWsEAACwQnHISWlpaYqMjJSLi4uWL19+zWZXUUNDCgCAYqxOnTr6/PPP1blzZ9lsNv3jH/9QTk7OdZ/37LPPqk2bNpoxY4Y6d+6s9evXa/Xq1bLZbOaccePG6YEHHlD16tX1yCOPqFSpUtq1a5f27Nmjf/7zn5IufYNMXFyc7rrrLrm4uMjV1VWjRo3SI488oqCgIP3666/atm2bunXrdtVakpOTlZycrJ9//lmStHv3bnl4eKh69eqqUKHCLa4QAAAoqW73nJSWlqaIiAidO3dOn3zyidLS0pSWliZJqly5spycnApglQoPH9kDAKAYmzFjhsqXL6/WrVurc+fOioyMVLNmza77vLvuukvz5s3TjBkzFBISojVr1mjEiBF277pFRkZqxYoVWrt2rVq0aKE777xTM2fOVGBgoDln+vTpio2NVUBAgJo2bSonJyf9+eef6t27t+rWravHHntMHTt21MSJE69ay7x589S0aVMNGjRIktSmTRs1bdpUy5cvv4WVAQAAJd3tnpN++OEHff/999q9e7dq164tPz8/czt27NitL1AhsxmGYTi6CEdJS0uTl5eX+bWIKHhZazbnGSsTdbcDKgGAG3PhwgUdOnRIQUFBt9Ulz1YYNGiQfvrpJ33zzTeOLuW6rvV75O//9bFGhY+MBOB2Q0a6ttslJxWljMRH9gAAwBVNmzZN9913n8qVK6fVq1fro48+0pw5cxxdFgAAgMORk24dDSkAAHBFW7du1dSpU3XmzBnVrFlTs2bN0sCBAx1dFgAAgMORk24dDSkAAHBFn376qaNLAAAAKJLISbeOm5oDAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLlXZ0AQAA3C4Obn/Xsteq1fypfM3v27evPvroI0lS6dKlVaFCBTVu3Fg9e/ZU3759VarU7fse1N69ezVu3Djt2LFDR44c0cyZMzV8+HBHlwUAAP4/KzOSRE76q/fff1//+c9/tGfPHklSaGioXn/9dbVs2dLBlV3f7bvqAADATlRUlJKSknT48GGtXr1a7dq107Bhw/TAAw/o4sWLji7vpp07d041a9bUlClT5Ovr6+hyAADAbai45qSNGzeqZ8+e2rBhg+Lj4xUQEKCIiAj99ttvji7tumhIAQBQTLi4uMjX11dVq1ZVs2bN9NJLL+mLL77Q6tWrNX/+fHPe6dOnNXDgQFWuXFmenp5q3769du3aZXesL7/8Ui1atJCrq6sqVaqkrl27mvtOnTql3r17q3z58nJzc1PHpq1wwwABAABJREFUjh114MABSdLZs2fl6empzz77zO54y5YtU7ly5XTmzBllZmZq6NCh8vPzk6urqwIDAzV58uSrnleLFi305ptvqkePHnJxcSmAlQIAACVNcc1JCxYs0DPPPKMmTZqofv36+uCDD5STk6O4uLgCWLXCRUMKAIBirH379goJCdHnn39ujj366KNKSUnR6tWrtWPHDjVr1kwdOnTQyZMnJUkrV65U165ddf/992vnzp2Ki4uzu+y7b9++2r59u5YvX674+HgZhqH7779fWVlZKleunHr06KGYmBi7OmJiYvTII4/Iw8NDs2bN0vLly/Xpp58qMTFRCxYsUI0aNSxZDwAAgFzFMSedO3dOWVlZqlChwq0tjgW4hxQAAMVc/fr19eOPP0qSNm/erK1btyolJcW82mjatGlatmyZPvvsMw0ePFivvfaaevTooYkTJ5rHCAkJkSQdOHBAy5cv17fffqvWrVtLuvTOXEBAgJYtW6ZHH31UAwcOVOvWrZWUlCQ/Pz+lpKRo1apVWrdunSTp6NGjqlOnju6++27ZbDYFBgZauRwAAACm4paTRo8eLX9/f4WHh9/y2hQ2rpACAKCYMwxDNptNkrRr1y6lp6erYsWKcnd3N7dDhw7p4MGDkqSEhAR16NDhisfav3+/SpcurVatWpljFStWVL169bR//35JUsuWLXXHHXeYNw/95JNPFBgYqDZt2ki69M5hQkKC6tWrp+eee05r164ttHMHAAC4luKUk6ZMmaJFixZp6dKlcnV1zf9iWIwrpAAAKOb279+voKAgSVJ6err8/Py0cePGPPO8vb0lSWXLlr3l1xw4cKDeeecdjRkzRjExMerXr58Z9po1a6ZDhw5p9erVWrdunR577DGFh4fnuZ8CAABAYSsuOWnatGmaMmWK1q1bp8aNG99yjVbI9xVSmzZtUufOneXv7y+bzaZly5bZ7bfZbFfc3nzzTXNOjRo18uyfMmWK3XF+/PFH3XPPPXJ1dVVAQICmTp2ap5YlS5aofv36cnV1VaNGjbRq1ar8ng4AAMXa+vXrtXv3bnXr1k3SpZCTnJys0qVLq3bt2nZbpUqVJEmNGze+6o0wGzRooIsXL+r77783x/78808lJiYqODjYHHviiSd05MgRzZo1S/v27VOfPn3sjuPp6anu3bvr/fff1+LFi/Xf//7XvDfD7YqMBADA7aW45KSpU6dq0qRJWrNmjZo3b37T62G1fF8hdfbsWYWEhKh///56+OGH8+xPSkqye7x69WoNGDDA/AXnevXVVzVo0CDzsYeHh/lzWlqaIiIiFB4ernnz5mn37t3q37+/vL29NXjwYEnSli1b1LNnT02ePFkPPPCAFi5cqC5duuiHH35Qw4YN83taAADc9jIyMpScnKzs7GydOHFCa9asMf9O9u7dW5IUHh6usLAwdenSRVOnTlXdunV1/Phx8wadzZs31/jx49WhQwfVqlVLPXr00MWLF7Vq1SqNHj1aderU0UMPPaRBgwbp3XfflYeHh8aMGaOqVavqoYceMmspX768Hn74YY0aNUoRERGqVq2auW/GjBny8/NT06ZNVapUKS1ZskS+vr7mO49/l5mZqX379pk///bbb0pISJC7u7tq165deAuaT2QkAACKruKak9544w2NGzdOCxcuVI0aNZScnCxJ5scNi7J8N6Q6duyojh07XnW/r6+v3eMvvvhC7dq1U82aNe3GPTw88szNtWDBAmVmZurDDz+Us7Oz7rjjDiUkJGjGjBlm2Hr77bcVFRWlUaNGSZImTZqk2NhYzZ49W/PmzcvvaQEAcNtbs2aN/Pz8VLp0aZUvX14hISGaNWuW+vTpo1KlLl0UbbPZtGrVKr388svq16+ffv/9d/n6+qpNmzaqUqWKJKlt27ZasmSJJk2apClTpsjT09O8r4F06Ztghg0bpgceeECZmZlq06aNVq1apTJlytjVM2DAAC1cuFD9+/e3G/fw8NDUqVN14MABOTk5qUWLFlq1apVZ498dP35cTZs2NR9PmzZN06ZN07333nvFS+odhYwEAEDRVVxz0ty5c5WZmalHHnnEbnz8+PGaMGHCrS5bobIZhmHc9JNtNi1dulRdunS54v4TJ06oWrVq+uijj/T444+b4zVq1NCFCxeUlZWl6tWr6/HHH9eIESNUuvSl/ljv3r2VlpZmd6n7hg0b1L59e508eVLly5dX9erVNXLkSA0fPtycM378eC1btky7du26ofrT0tLk5eWl1NRUeXp65vv8cX1ZazbnGSsTdbcDKgGAG3PhwgUdOnRIQUFBt8XNIIuyjz/+WCNGjNDx48fl7Oxs6Wtf6/doxd9/MhKuh4wE4HZDRipYjspJjs5If1WoNzX/6KOP5OHhkeey9eeee07NmjVThQoVtGXLFo0dO1ZJSUmaMWOGJCk5Odm8qViu3G5kcnKyypcvr+TkZHPsr3NyL0+7koyMDGVkZJiP09LSbun8AABAXufOnVNSUpKmTJmip556yvJm1O2AjAQAQMlETros3zc1z48PP/xQvXr1ytN1GzlypNq2bavGjRtryJAhmj59uv71r3/ZBaHCMHnyZHl5eZlbQEBAob4eAAAl0dSpU1W/fn35+vpq7Nixji6nSCIjAQBQMpGTLiu0htQ333yjxMREDRw48LpzW7VqpYsXL+rw4cOSLt1j4cSJE3Zzch/n3lPhanOuds8FSRo7dqxSU1PN7dixY/k5JQAAcAMmTJigrKwsxcXFFfmbaToCGQkAgJKLnHRZoTWk/v3vfys0NFQhISHXnZuQkKBSpUrJx8dHkhQWFqZNmzYpKyvLnBMbG6t69eqpfPny5py/f9VibGyswsLCrvo6Li4u8vT0tNsAAACsREYCAAC4iYZUenq6EhISlJCQIEk6dOiQEhISdPToUXNOWlqalixZcsV3/uLj4/XWW29p165d+uWXX7RgwQKNGDFCTzzxhBmkHn/8cTk7O2vAgAHau3evFi9erLffflsjR440jzNs2DCtWbNG06dP108//aQJEyZo+/btGjp0aH5PCQCAPG7hOz9QBDji90dGAgCUBGSk21tR+v3l+6bm27dvV7t27czHuQGoT58+mj9/viRp0aJFMgxDPXv2zPN8FxcXLVq0SBMmTFBGRoaCgoI0YsQIuyDl5eWltWvXKjo6WqGhoapUqZLGjRtnfp2xJLVu3VoLFy7UK6+8opdeekl16tTRsmXL1LBhw/yeEgAAptyv5D137pzKli3r4Gpws86dOydJeb5iuTCRkQAAxRkZqXhwREa6GptRlNpjFuMrjQsfX2kM4HaUlJSk06dPy8fHR25ubrLZbI4uCTfIMAydO3dOKSkp8vb2lp+fX545/P2/Ptao8JGRANyOyEi3r6KYkfJ9hRQAAMVd7s2fU1JSHFwJbpa3t/c1b+INAADyj4x0+ytKGYmGFAAAf2Oz2eTn5ycfHx+7m0fj9lCmTBk5OTk5ugwAAIodMtLtrahlJBpSAABchZOTU5H6ow0AAFAUkJFQEPL9LXsAAAAAAADAraAhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALBUaUcXABR3WWs25xkrE3W3AyoBAAAoOshIAFCycYUUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlsp3Q2rTpk3q3Lmz/P39ZbPZtGzZMrv9ffv2lc1ms9uioqLs5pw8eVK9evWSp6envL29NWDAAKWnp9vN+fHHH3XPPffI1dVVAQEBmjp1ap5alixZovr168vV1VWNGjXSqlWr8ns6AAAABYKMBAAAcOPy3ZA6e/asQkJC9M4771x1TlRUlJKSkszt//7v/+z29+rVS3v37lVsbKxWrFihTZs2afDgweb+tLQ0RUREKDAwUDt27NCbb76pCRMm6L333jPnbNmyRT179tSAAQO0c+dOdenSRV26dNGePXvye0oAAAC3jIwEAABw42yGYRg3/WSbTUuXLlWXLl3Msb59++r06dN53hXMtX//fgUHB2vbtm1q3ry5JGnNmjW6//779euvv8rf319z587Vyy+/rOTkZDk7O0uSxowZo2XLlumnn36SJHXv3l1nz57VihUrzGPfeeedatKkiebNm3dD9aelpcnLy0upqany9PS8iRXA9WSt2ZxnrEzU3Q6oxHFYAwAoWqz4+09GwvWQD1gDAChqrP77Xyj3kNq4caN8fHxUr149Pf300/rzzz/NffHx8fL29jaDliSFh4erVKlS+v777805bdq0MYOWJEVGRioxMVGnTp0y54SHh9u9bmRkpOLj4wvjlAAAAG4ZGQkAAOCS0gV9wKioKD388MMKCgrSwYMH9dJLL6ljx46Kj4+Xk5OTkpOT5ePjY19E6dKqUKGCkpOTJUnJyckKCgqym1OlShVzX/ny5ZWcnGyO/XVO7jGuJCMjQxkZGebjtLS0WzpXAACAG0VGAgAAuKzAG1I9evQwf27UqJEaN26sWrVqaePGjerQoUNBv1y+TJ48WRMnTnRoDQAAoGQiIwEAAFxWKB/Z+6uaNWuqUqVK+vnnnyVJvr6+SklJsZtz8eJFnTx5Ur6+vuacEydO2M3JfXy9Obn7r2Ts2LFKTU01t2PHjt3ayQEAANwkMhIAACjJCr0h9euvv+rPP/+Un5+fJCksLEynT5/Wjh07zDnr169XTk6OWrVqZc7ZtGmTsrKyzDmxsbGqV6+eypcvb86Ji4uze63Y2FiFhYVdtRYXFxd5enrabQAAAI5ARgIAACVZvhtS6enpSkhIUEJCgiTp0KFDSkhI0NGjR5Wenq5Ro0bpu+++0+HDhxUXF6eHHnpItWvXVmRkpCSpQYMGioqK0qBBg7R161Z9++23Gjp0qHr06CF/f39J0uOPPy5nZ2cNGDBAe/fu1eLFi/X2229r5MiRZh3Dhg3TmjVrNH36dP3000+aMGGCtm/frqFDhxbAsgAAAOQPGQkAAODG5bshtX37djVt2lRNmzaVJI0cOVJNmzbVuHHj5OTkpB9//FEPPvig6tatqwEDBig0NFTffPONXFxczGMsWLBA9evXV4cOHXT//ffr7rvv1nvvvWfu9/Ly0tq1a3Xo0CGFhobq+eef17hx4zR48GBzTuvWrbVw4UK99957CgkJ0WeffaZly5apYcOGt7IeAAAAN4WMBAAAcONshmEYji7CUdLS0uTl5aXU1FQuTS8kWWs25xkrE3W3AypxHNYAAIoW/v5fH2tU+MgHrAEAFDVW//0v9HtIAQAAAAAAAH9FQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlirt6AKA4u7w6dV5xurobgdUAgAAUHSQkQCgZOMKKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACyV74bUpk2b1LlzZ/n7+8tms2nZsmXmvqysLI0ePVqNGjVSuXLl5O/vr969e+v48eN2x6hRo4ZsNpvdNmXKFLs5P/74o+655x65uroqICBAU6dOzVPLkiVLVL9+fbm6uqpRo0ZatWpVfk8HAACgQJCRAAAAbly+G1Jnz55VSEiI3nnnnTz7zp07px9++EH/+Mc/9MMPP+jzzz9XYmKiHnzwwTxzX331VSUlJZnbs88+a+5LS0tTRESEAgMDtWPHDr355puaMGGC3nvvPXPOli1b1LNnTw0YMEA7d+5Uly5d1KVLF+3Zsye/pwQAAHDLyEgAAAA3rnR+n9CxY0d17Njxivu8vLwUGxtrNzZ79my1bNlSR48eVfXq1c1xDw8P+fr6XvE4CxYsUGZmpj788EM5OzvrjjvuUEJCgmbMmKHBgwdLkt5++21FRUVp1KhRkqRJkyYpNjZWs2fP1rx58/J7WgAAALeEjAQAAHDjCv0eUqmpqbLZbPL29rYbnzJliipWrKimTZvqzTff1MWLF8198fHxatOmjZydnc2xyMhIJSYm6tSpU+ac8PBwu2NGRkYqPj7+qrVkZGQoLS3NbgMAAHAEMhIAACjJ8n2FVH5cuHBBo0ePVs+ePeXp6WmOP/fcc2rWrJkqVKigLVu2aOzYsUpKStKMGTMkScnJyQoKCrI7VpUqVcx95cuXV3Jysjn21znJyclXrWfy5MmaOHFiQZ0eAADATSEjAQCAkq7QGlJZWVl67LHHZBiG5s6da7dv5MiR5s+NGzeWs7OznnrqKU2ePFkuLi6FVZLGjh1r99ppaWkKCAgotNcDAAD4OzISAABAITWkcoPWkSNHtH79ert3/q6kVatWunjxog4fPqx69erJ19dXJ06csJuT+zj3ngpXm3O1ey5IkouLS6GGOQAAgGshIwEAAFxS4PeQyg1aBw4c0Lp161SxYsXrPichIUGlSpWSj4+PJCksLEybNm1SVlaWOSc2Nlb16tVT+fLlzTlxcXF2x4mNjVVYWFgBng0AAEDBICMBAABclu8rpNLT0/Xzzz+bjw8dOqSEhARVqFBBfn5+euSRR/TDDz9oxYoVys7ONu9XUKFCBTk7Oys+Pl7ff/+92rVrJw8PD8XHx2vEiBF64oknzCD1+OOPa+LEiRowYIBGjx6tPXv26O2339bMmTPN1x02bJjuvfdeTZ8+XZ06ddKiRYu0fft2u689BgAAsAoZCQAA4MbluyG1fft2tWvXznyce7+BPn36aMKECVq+fLkkqUmTJnbP27Bhg9q2bSsXFxctWrRIEyZMUEZGhoKCgjRixAi7+xZ4eXlp7dq1io6OVmhoqCpVqqRx48aZX2csSa1bt9bChQv1yiuv6KWXXlKdOnW0bNkyNWzYML+nhEJ0+PTqPGN1dLcDKgEAoHCRkZAfZCQAQElnMwzDcHQRjpKWliYvLy+lpqZe9x4OuDkHFr2cZ6xOj9ccUInjsAYAULTw9//6WKPCRz5gDQCgqLH673+B30MKAAAAAAAAuBYaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALJXvhtSmTZvUuXNn+fv7y2azadmyZXb7DcPQuHHj5Ofnp7Jlyyo8PFwHDhywm3Py5En16tVLnp6e8vb21oABA5Senm4358cff9Q999wjV1dXBQQEaOrUqXlqWbJkierXry9XV1c1atRIq1atyu/pAAAAFAgyEgAAwI3Ld0Pq7NmzCgkJ0TvvvHPF/VOnTtWsWbM0b948ff/99ypXrpwiIyN14cIFc06vXr20d+9excbGasWKFdq0aZMGDx5s7k9LS1NERIQCAwO1Y8cOvfnmm5owYYLee+89c86WLVvUs2dPDRgwQDt37lSXLl3UpUsX7dmzJ7+nBAAAcMvISAAAADfOZhiGcdNPttm0dOlSdenSRdKld/78/f31/PPP64UXXpAkpaamqkqVKpo/f7569Oih/fv3Kzg4WNu2bVPz5s0lSWvWrNH999+vX3/9Vf7+/po7d65efvllJScny9nZWZI0ZswYLVu2TD/99JMkqXv37jp79qxWrFhh1nPnnXeqSZMmmjdv3g3Vn5aWJi8vL6WmpsrT0/NmlwHXcGDRy3nG6vR4zQGVOA5rAABFixV//8lIuB7yAWsAAEWN1X//C/QeUocOHVJycrLCw8PNMS8vL7Vq1Urx8fGSpPj4eHl7e5tBS5LCw8NVqlQpff/99+acNm3amEFLkiIjI5WYmKhTp06Zc/76Orlzcl/nSjIyMpSWlma3AQAAFDYyEgAAgL0CbUglJydLkqpUqWI3XqVKFXNfcnKyfHx87PaXLl1aFSpUsJtzpWP89TWuNid3/5VMnjxZXl5e5hYQEJDfUwQAAMg3MhIAAIC9EvUte2PHjlVqaqq5HTt2zNElAQAAOBwZCQAAWK1AG1K+vr6SpBMnTtiNnzhxwtzn6+urlJQUu/0XL17UyZMn7eZc6Rh/fY2rzcndfyUuLi7y9PS02wAAAAobGQkAAMBegTakgoKC5Ovrq7i4OHMsLS1N33//vcLCwiRJYWFhOn36tHbs2GHOWb9+vXJyctSqVStzzqZNm5SVlWXOiY2NVb169VS+fHlzzl9fJ3dO7usAAAAUFWQkAAAAe/luSKWnpyshIUEJCQmSLt2kMyEhQUePHpXNZtPw4cP1z3/+U8uXL9fu3bvVu3dv+fv7m98y06BBA0VFRWnQoEHaunWrvv32Ww0dOlQ9evSQv7+/JOnxxx+Xs7OzBgwYoL1792rx4sV6++23NXLkSLOOYcOGac2aNZo+fbp++uknTZgwQdu3b9fQoUNvfVUAAADyiYwEAABw40rn9wnbt29Xu3btzMe5AahPnz6aP3++XnzxRZ09e1aDBw/W6dOndffdd2vNmjVydXU1n7NgwQINHTpUHTp0UKlSpdStWzfNmjXL3O/l5aW1a9cqOjpaoaGhqlSpksaNG6fBgwebc1q3bq2FCxfqlVde0UsvvaQ6depo2bJlatiw4U0tBAAAwK0gIwEAANw4m2EYhqOLcJS0tDR5eXkpNTWVeyUUkgOLXs4zVqfHaw6oxHFYAwAoWvj7f32sUeEjH7AGAFDUWP33v0R9yx4AAAAAAAAcj4YUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLFXhDqkaNGrLZbHm26OhoSVLbtm3z7BsyZIjdMY4ePapOnTrJzc1NPj4+GjVqlC5evGg3Z+PGjWrWrJlcXFxUu3ZtzZ8/v6BPBQAAoMCQkQAAAC4rXdAH3LZtm7Kzs83He/bs0X333adHH33UHBs0aJBeffVV87Gbm5v5c3Z2tjp16iRfX19t2bJFSUlJ6t27t8qUKaPXX39dknTo0CF16tRJQ4YM0YIFCxQXF6eBAwfKz89PkZGRBX1KAAAAt4yMBAAAcFmBN6QqV65s93jKlCmqVauW7r33XnPMzc1Nvr6+V3z+2rVrtW/fPq1bt05VqlRRkyZNNGnSJI0ePVoTJkyQs7Oz5s2bp6CgIE2fPl2S1KBBA23evFkzZ84kbAEAgCKJjAQAAHBZod5DKjMzU5988on69+8vm81mji9YsECVKlVSw4YNNXbsWJ07d87cFx8fr0aNGqlKlSrmWGRkpNLS0rR3715zTnh4uN1rRUZGKj4+/pr1ZGRkKC0tzW4DAACwGhkJAACUdAV+hdRfLVu2TKdPn1bfvn3Nsccff1yBgYHy9/fXjz/+qNGjRysxMVGff/65JCk5OdkuaEkyHycnJ19zTlpams6fP6+yZctesZ7Jkydr4sSJBXV6AAAAN4WMBAAASrpCbUj9+9//VseOHeXv72+ODR482Py5UaNG8vPzU4cOHXTw4EHVqlWrMMvR2LFjNXLkSPNxWlqaAgICCvU1AQAA/o6MBAAASrpCa0gdOXJE69atM9/Vu5pWrVpJkn7++WfVqlVLvr6+2rp1q92cEydOSJJ5TwVfX19z7K9zPD09r/rOnyS5uLjIxcUl3+cCAABQUMhIAAAAhXgPqZiYGPn4+KhTp07XnJeQkCBJ8vPzkySFhYVp9+7dSklJMefExsbK09NTwcHB5py4uDi748TGxiosLKwAzwAAAKDgkZEAAAAKqSGVk5OjmJgY9enTR6VLX74I6+DBg5o0aZJ27Nihw4cPa/ny5erdu7fatGmjxo0bS5IiIiIUHBysJ598Urt27dJXX32lV155RdHR0eY7d0OGDNEvv/yiF198UT/99JPmzJmjTz/9VCNGjCiM0wEAACgQZCQAAIBLCqUhtW7dOh09elT9+/e3G3d2dta6desUERGh+vXr6/nnn1e3bt305ZdfmnOcnJy0YsUKOTk5KSwsTE888YR69+6tV1991ZwTFBSklStXKjY2ViEhIZo+fbo++OADvs4YAAAUaWQkAACASwrlHlIREREyDCPPeEBAgL7++uvrPj8wMFCrVq265py2bdtq586dN10jAACA1chIAAAAlxTaPaQAAAAAAACAK6EhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSpR1dAICSIWvNZrvHZaLudlAlAAAARQcZCUBJxRVSAAAAAAAAsBQNKQAAAAAAAFiKj+wBsMTh06vtHtcRl6MDAACQkQCUVFwhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYKkCb0hNmDBBNpvNbqtfv765/8KFC4qOjlbFihXl7u6ubt266cSJE3bHOHr0qDp16iQ3Nzf5+Pho1KhRunjxot2cjRs3qlmzZnJxcVHt2rU1f/78gj4VAACAAkNGAgAAuKxQrpC64447lJSUZG6bN282940YMUJffvmllixZoq+//lrHjx/Xww8/bO7Pzs5Wp06dlJmZqS1btuijjz7S/PnzNW7cOHPOoUOH1KlTJ7Vr104JCQkaPny4Bg4cqK+++qowTgcAAKBAkJEAAAAuKV0oBy1dWr6+vnnGU1NT9e9//1sLFy5U+/btJUkxMTFq0KCBvvvuO915551au3at9u3bp3Xr1qlKlSpq0qSJJk2apNGjR2vChAlydnbWvHnzFBQUpOnTp0uSGjRooM2bN2vmzJmKjIwsjFMCAAC4ZWQkAACASwrlCqkDBw7I399fNWvWVK9evXT06FFJ0o4dO5SVlaXw8HBzbv369VW9enXFx8dLkuLj49WoUSNVqVLFnBMZGam0tDTt3bvXnPPXY+TOyT0GAABAUURGAgAAuKTAr5Bq1aqV5s+fr3r16ikpKUkTJ07UPffcoz179ig5OVnOzs7y9va2e06VKlWUnJwsSUpOTrYLWrn7c/dda05aWprOnz+vsmXLXrG2jIwMZWRkmI/T0tJu6VwBAABuFBkJAADgsgJvSHXs2NH8uXHjxmrVqpUCAwP16aefXjUEWWXy5MmaOHGiQ2sAAAAlExkJAADgskL5yN5feXt7q27duvr555/l6+urzMxMnT592m7OiRMnzPsp+Pr65vlGmdzH15vj6el5zUA3duxYpaammtuxY8du9fQAAABuChkJAACUZIXekEpPT9fBgwfl5+en0NBQlSlTRnFxceb+xMREHT16VGFhYZKksLAw7d69WykpKeac2NhYeXp6Kjg42Jzz12Pkzsk9xtW4uLjI09PTbgMAAHAEMhIAACjJCrwh9cILL+jrr7/W4cOHtWXLFnXt2lVOTk7q2bOnvLy8NGDAAI0cOVIbNmzQjh071K9fP4WFhenOO++UJEVERCg4OFhPPvmkdu3apa+++kqvvPKKoqOj5eLiIkkaMmSIfvnlF7344ov66aefNGfOHH366acaMWJEQZ8OAABAgSAjAQAAXFbg95D69ddf1bNnT/3555+qXLmy7r77bn333XeqXLmyJGnmzJkqVaqUunXrpoyMDEVGRmrOnDnm852cnLRixQo9/fTTCgsLU7ly5dSnTx+9+uqr5pygoCCtXLlSI0aM0Ntvv61q1arpgw8+4OuMAQBAkUVGAgAAuKzAG1KLFi265n5XV1e98847euedd646JzAwUKtWrbrmcdq2baudO3feVI0AAABWIyMBAABcVuj3kAIAAAAAAAD+ioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLFXhDavLkyWrRooU8PDzk4+OjLl26KDEx0W5O27ZtZbPZ7LYhQ4bYzTl69Kg6deokNzc3+fj4aNSoUbp48aLdnI0bN6pZs2ZycXFR7dq1NX/+/II+HQAAgAJBRgIAALiswBtSX3/9taKjo/Xdd98pNjZWWVlZioiI0NmzZ+3mDRo0SElJSeY2depUc192drY6deqkzMxMbdmyRR999JHmz5+vcePGmXMOHTqkTp06qV27dkpISNDw4cM1cOBAffXVVwV9SgAAALeMjAQAAHBZ6YI+4Jo1a+wez58/Xz4+PtqxY4fatGljjru5ucnX1/eKx1i7dq327dundevWqUqVKmrSpIkmTZqk0aNHa8KECXJ2dta8efMUFBSk6dOnS5IaNGigzZs3a+bMmYqMjCzo0wIAALglZCQAAIDLCv0eUqmpqZKkChUq2I0vWLBAlSpVUsOGDTV27FidO3fO3BcfH69GjRqpSpUq5lhkZKTS0tK0d+9ec054eLjdMSMjIxUfH19YpwIAAFBgyEgAAKAkK/ArpP4qJydHw4cP11133aWGDRua448//rgCAwPl7++vH3/8UaNHj1ZiYqI+//xzSVJycrJd0JJkPk5OTr7mnLS0NJ0/f15ly5bNU09GRoYyMjLMx2lpaQVzogAAAPlARgIAACVdoTakoqOjtWfPHm3evNlufPDgwebPjRo1kp+fnzp06KCDBw+qVq1ahVbP5MmTNXHixEI7PgAAwI0gIwEAgJKu0D6yN3ToUK1YsUIbNmxQtWrVrjm3VatWkqSff/5ZkuTr66sTJ07Yzcl9nHtPhavN8fT0vOI7f5I0duxYpaammtuxY8fyf2IAAAC3gIwEAABQCA0pwzA0dOhQLV26VOvXr1dQUNB1n5OQkCBJ8vPzkySFhYVp9+7dSklJMefExsbK09NTwcHB5py4uDi748TGxiosLOyqr+Pi4iJPT0+7DQAAwApkJAAAgMsK/CN70dHRWrhwob744gt5eHiY9zPw8vJS2bJldfDgQS1cuFD333+/KlasqB9//FEjRoxQmzZt1LhxY0lSRESEgoOD9eSTT2rq1KlKTk7WK6+8oujoaLm4uEiShgwZotmzZ+vFF19U//79tX79en366adauXJlQZ/STctasznPWJmoux1QCQAAcDQy0mVkJAAAUOBXSM2dO1epqalq27at/Pz8zG3x4sWSJGdnZ61bt04RERGqX7++nn/+eXXr1k1ffvmleQwnJyetWLFCTk5OCgsL0xNPPKHevXvr1VdfNecEBQVp5cqVio2NVUhIiKZPn64PPviArzMGAABFEhkJAADgsgK/QsowjGvuDwgI0Ndff33d4wQGBmrVqlXXnNO2bVvt3LkzX/UBAAA4AhkJAADgskK7qTkAAAAAAABwJTSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALFXg37IHALgxWWs25xkrE3W3AyoBAAAoOshIQMlAQwoAHOTw6dV5xuqIsAUAAEo2MhJQMvCRPQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApUo7uoDi7PDp1XnG6uhuB1QCAABQdJCRAAAAV0gBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJYq7egCAAAl24FFL9s9rtPjNQdVAgAAUHSQkVDc3fZXSL3zzjuqUaOGXF1d1apVK23dutXRJQEAADgcGQkAABRlt3VDavHixRo5cqTGjx+vH374QSEhIYqMjFRKSoqjSwMAAHAYMhIAACjqbuuG1IwZMzRo0CD169dPwcHBmjdvntzc3PThhx86ujQAAACHISMBAICi7rZtSGVmZmrHjh0KDw83x0qVKqXw8HDFx8c7sDIAAADHISMBAIDbwW17U/M//vhD2dnZqlKlit14lSpV9NNPP13xORkZGcrIyDAfp6amSpLS0tIKpcb0cxl5xgrrtYoq1oA1yPX3dSiJa/B3/Nu4hH8b0i8/2F+1UrNZfwdVUjLk/hszDMPBlRQOMtLtgTVgDXLxdzAv/m1cwr+NvBlJIicVJsszknGb+u233wxJxpYtW+zGR40aZbRs2fKKzxk/frwhiY2NjY2NjY3NOHbsmBWRxXJkJDY2NjY2NrZb2azKSLftFVKVKlWSk5OTTpw4YTd+4sQJ+fr6XvE5Y8eO1ciRI83HOTk5OnnypCpWrCibzVag9aWlpSkgIEDHjh2Tp6dngR77dsNaXMI6XMZaXMI6XMZaXMI6XFaYa2EYhs6cOSN/f/8CPW5RQUa6fbAWl7AOl7EWl7AOl7EWl7AOlxWnjHTbNqScnZ0VGhqquLg4denSRdKl8BQXF6ehQ4de8TkuLi5ycXGxG/P29i7UOj09PUv8/2BysRaXsA6XsRaXsA6XsRaXsA6XFdZaeHl5Ffgxiwoy0u2HtbiEdbiMtbiEdbiMtbiEdbisOGSk27YhJUkjR45Unz591Lx5c7Vs2VJvvfWWzp49q379+jm6NAAAAIchIwEAgKLutm5Ide/eXb///rvGjRun5ORkNWnSRGvWrMlzE08AAICShIwEAACKutu6ISVJQ4cOverl547k4uKi8ePH57n8vSRiLS5hHS5jLS5hHS5jLS5hHS5jLW4dGanoYy0uYR0uYy0uYR0uYy0uYR0uK05rYTOMYvqdxwAAAAAAACiSSjm6AAAAAAAAAJQsNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhlQheeedd1SjRg25urqqVatW2rp1q6NLstymTZvUuXNn+fv7y2azadmyZY4uySEmT56sFi1ayMPDQz4+PurSpYsSExMdXZbl5s6dq8aNG8vT01Oenp4KCwvT6tWrHV2Ww02ZMkU2m03Dhw93dCmWmzBhgmw2m91Wv359R5flML/99pueeOIJVaxYUWXLllWjRo20fft2R5dlqRo1auT5N2Gz2RQdHe3o0lCAyEhkpFxkpEvISFdGRiIj5SIjFd+MREOqECxevFgjR47U+PHj9cMPPygkJESRkZFKSUlxdGmWOnv2rEJCQvTOO+84uhSH+vrrrxUdHa3vvvtOsbGxysrKUkREhM6ePevo0ixVrVo1TZkyRTt27ND27dvVvn17PfTQQ9q7d6+jS3OYbdu26d1331Xjxo0dXYrD3HHHHUpKSjK3zZs3O7okhzh16pTuuusulSlTRqtXr9a+ffs0ffp0lS9f3tGlWWrbtm12/x5iY2MlSY8++qiDK0NBISNdQka6hIx0CRkpLzISGSkXGemSYpuRDBS4li1bGtHR0ebj7Oxsw9/f35g8ebIDq3IsScbSpUsdXUaRkJKSYkgyvv76a0eX4nDly5c3PvjgA0eX4RBnzpwx6tSpY8TGxhr33nuvMWzYMEeXZLnx48cbISEhji6jSBg9erRx9913O7qMImfYsGFGrVq1jJycHEeXggJCRsqLjHQZGekyMhIZiYx0CRnpyopLRuIKqQKWmZmpHTt2KDw83BwrVaqUwsPDFR8f78DKUFSkpqZKkipUqODgShwnOztbixYt0tmzZxUWFubochwiOjpanTp1svtvRUl04MAB+fv7q2bNmurVq5eOHj3q6JIcYvny5WrevLkeffRR+fj4qGnTpnr//fcdXZZDZWZm6pNPPlH//v1ls9kcXQ4KABkJ10NGIiNJZKRcZKRLyEh5FaeMREOqgP3xxx/Kzs5WlSpV7MarVKmi5ORkB1WFoiInJ0fDhw/XXXfdpYYNGzq6HMvt3r1b7u7ucnFx0ZAhQ7R06VIFBwc7uizLLVq0SD/88IMmT57s6FIcqlWrVpo/f77WrFmjuXPn6tChQ7rnnnt05swZR5dmuV9++UVz585VnTp19NVXX+npp5/Wc889p48++sjRpTnMsmXLdPr0afXt29fRpaCAkJFwLWQkMpJERspFRrqMjJRXccpIpR1dAFCSREdHa8+ePSX2M+D16tVTQkKCUlNT9dlnn6lPnz76+uuvS1TgOnbsmIYNG6bY2Fi5uro6uhyH6tixo/lz48aN1apVKwUGBurTTz/VgAEDHFiZ9XJyctS8eXO9/vrrkqSmTZtqz549mjdvnvr06ePg6hzj3//+tzp27Ch/f39HlwLAAmQkMhIZ6TIy0mVkpLyKU0biCqkCVqlSJTk5OenEiRN24ydOnJCvr6+DqkJRMHToUK1YsUIbNmxQtWrVHF2OQzg7O6t27doKDQ3V5MmTFRISorffftvRZVlqx44dSklJUbNmzVS6dGmVLl1aX3/9tWbNmqXSpUsrOzvb0SU6jLe3t+rWrauff/7Z0aVYzs/PL8//6WjQoEGJvTz/yJEjWrdunQYOHOjoUlCAyEi4GjISGUkiI10LGYmMlKu4ZSQaUgXM2dlZoaGhiouLM8dycnIUFxdXYj8HXtIZhqGhQ4dq6dKlWr9+vYKCghxdUpGRk5OjjIwMR5dhqQ4dOmj37t1KSEgwt+bNm6tXr15KSEiQk5OTo0t0mPT0dB08eFB+fn6OLsVyd911V56vOv/f//6nwMBAB1XkWDExMfLx8VGnTp0cXQoKEBkJf0dGujoyEhnpr8hIZKRcxS0j8ZG9QjBy5Ej16dNHzZs3V8uWLfXWW2/p7Nmz6tevn6NLs1R6erpdF//QoUNKSEhQhQoVVL16dQdWZq3o6GgtXLhQX3zxhTw8PMz7ZHh5eals2bIOrs46Y8eOVceOHVW9enWdOXNGCxcu1MaNG/XVV185ujRLeXh45Lk3Rrly5VSxYsUSd8+MF154QZ07d1ZgYKCOHz+u8ePHy8nJST179nR0aZYbMWKEWrdurddff12PPfaYtm7dqvfee0/vvfeeo0uzXE5OjmJiYtSnTx+VLk1MKW7ISJeQkS4hI11CRrqEjHQZGekyMtJlxTIjOfpr/oqrf/3rX0b16tUNZ2dno2XLlsZ3333n6JIst2HDBkNSnq1Pnz6OLs1SV1oDSUZMTIyjS7NU//79jcDAQMPZ2dmoXLmy0aFDB2Pt2rWOLqtIKKlfady9e3fDz8/PcHZ2NqpWrWp0797d+Pnnnx1dlsN8+eWXRsOGDQ0XFxejfv36xnvvvefokhziq6++MiQZiYmJji4FhYSMREbKRUa6hIx0dWQkMpJhkJFyFceMZDMMw7Cu/QUAAAAAAICSjntIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKeA2NX/+fNlsNh0+fNjRpeAKNm7cKJvNpo0bNxbocdPT0+Xj46MFCxZcd27fvn1Vo0aNPM8fOHCgfH19ZbPZNHz48Hy9/pgxY9SqVat8PQcAACuRkYo2MhKAXDSkABQ5Cxcu1FtvveXoMoqkt99+Wx4eHurRo8dNPf/111/X/Pnz9fTTT+vjjz/Wk08+KUmaO3euHn30UVWvXl02m019+/a94vOHDx+uXbt2afny5Td7CgAA4CaRka6uMDLSsWPHNHHiRLVs2VLly5dXpUqV1LZtW61bty7P88lIQP6VdnQBAPB3Cxcu1J49e/L9zlRR0qZNG50/f17Ozs4FdsysrCy9/fbbGjFihJycnG7qGOvXr9edd96p8ePH242/8cYbOnPmjFq2bKmkpKSrPt/X11cPPfSQpk2bpgcffPCmagAAADeHjHRlhZWRZs+erTfeeENdunRRnz59dPHiRf3nP//Rfffdpw8//FD9+vUz55KRgPyjIQUAhaBUqVJydXUt0GOuWLFCv//+ux577LGbPkZKSoqCg4PzjH/99dfm1VHu7u7XPMZjjz2mRx99VL/88otq1qx507UAAICS53bKSO3atdPRo0dVqVIlc2zIkCFq0qSJxo0bZ9eQkshIQH7xkT2gmJkzZ47uuOMOubi4yN/fX9HR0Tp9+rTdnLZt26phw4bat2+f2rVrJzc3N1WtWlVTp07Nc7wjR47owQcfVLly5eTj46MRI0boq6++uuJn/7///ntFRUXJy8tLbm5uuvfee/Xtt9/azTlz5oyGDx+uGjVqyMXFRT4+Prrvvvv0ww8/mLWtXLlSR44ckc1mk81my/MZ/6vp06ePKlWqpKysrDz7IiIiVK9evRs6jnTp3gLu7u46evSoHnjgAbm7u6tq1ap65513JEm7d+9W+/btVa5cOQUGBmrhwoV2z7/S/RHys+5XsmzZMtWoUUO1atW64r6GDRvK1dVVDRs21NKlS69Yz6FDh7Ry5UpzbXPvrxEYGCibzXZDdYSHh0uSvvjiixuaDwBAUUBGIiPlNyPdcccdds0oSXJxcdH999+vX3/9VWfOnLHbR0YC8oeGFFCMTJgwQdHR0fL399f06dPVrVs3vfvuu4qIiMgTQE6dOqWoqCiFhIRo+vTpql+/vkaPHq3Vq1ebc86ePav27dtr3bp1eu655/Tyyy9ry5YtGj16dJ7XXr9+vdq0aaO0tDSNHz9er7/+uk6fPq327dtr69at5rwhQ4Zo7ty56tatm+bMmaMXXnhBZcuW1f79+yVJL7/8spo0aaJKlSrp448/1scff3zD90p48skn9eeff+qrr76yG09OTtb69ev1xBNP3OhSSpKys7PVsWNHBQQEaOrUqapRo4aGDh2q+fPnKyoqSs2bN9cbb7whDw8P9e7dW4cOHbruMW9k3a9my5YtatasWZ7xtWvXqlu3brLZbJo8ebK6dOmifv36afv27eacBg0a6OOPP1alSpXUpEkTc20rV66crzWRJC8vL9WqVStPkAYAoKgiI5GRCjIjJScny83NTW5ubnbjZCQgnwwAt6WYmBhDknHo0CHDMAwjJSXFcHZ2NiIiIozs7Gxz3uzZsw1JxocffmiO3XvvvYYk4z//+Y85lpGRYfj6+hrdunUzx6ZPn25IMpYtW2aOnT9/3qhfv74hydiwYYNhGIaRk5Nj1KlTx4iMjDRycnLMuefOnTOCgoKM++67zxzz8vIyoqOjr3lunTp1MgIDA/O1HoZhGNnZ2Ua1atWM7t27243PmDHDsNlsxi+//HLDx+rTp48hyXj99dfNsVOnThlly5Y1bDabsWjRInP8p59+MiQZ48ePN8c2bNhgt0aGcePrfiVZWVmGzWYznn/++Tz7mjRpYvj5+RmnT582x9auXWtIyrOOgYGBRqdOna75WuXKlTP69OlzzTkRERFGgwYNrjkHAABHICPlRUYqmIxkGIZx4MABw9XV1XjyySevuJ+MBNw4rpACiol169YpMzNTw4cPV6lSl/+nPWjQIHl6emrlypV2893d3e3eDXN2dlbLli31yy+/mGNr1qxR1apV7W7M6OrqqkGDBtkdKyEhQQcOHNDjjz+uP//8U3/88Yf++OMPnT17Vh06dNCmTZuUk5MjSfL29tb333+v48ePF+j5S5fuSdCrVy8tX77c7hLqBQsWqHXr1goKCsr3MQcOHGj+7O3trXr16qlcuXJ29yioV6+evL297dbuam5k3a/k5MmTMgxD5cuXtxtPSkpSQkKC+vTpIy8vL3P8vvvuu+K9ogpK+fLl9ccffxTa8QEAKChkJDJSQWWkc+fO6dFHH1XZsmU1ZcqUK84hIwE3joYUUEwcOXJEkvLcA8DZ2Vk1a9Y09+eqVq1annsGlS9fXqdOnbI7Zq1atfLMq127tt3jAwcOSLp0f4LKlSvbbR988IEyMjKUmpoqSZo6dar27NmjgIAAtWzZUhMmTLihkHKjevfurfPnz5v3B0hMTNSOHTv05JNP5vtYrq6ueS7X9vLyuuLaeXl52a3d1dzIul+LYRh2j3N/r3Xq1MkzNz/3g8gvwzBu+J5TAAA4EhnpEjLSZTeTkbKzs9WjRw/t27dPn332mfz9/a9aBxkJuDF8yx5QQl3tK3H//sf8RuS+s/fmm2+qSZMmV5yT+81tjz32mO655x4tXbpUa9eu1Ztvvqk33nhDn3/+uTp27Jjv1/674OBghYaG6pNPPlHv3r31ySefyNnZ+aa+deVqa3Qra3ezz61QoYJsNtsNh7LCdurUqTw3+QQAoDggI11fScxIgwYN0ooVK7RgwQK1b9/+qvPISMCNoyEFFBOBgYGSLr3b9devmc3MzNShQ4fMb/3I7zH37duX552en3/+2W5e7jeaeHp63tDr+Pn56ZlnntEzzzyjlJQUNWvWTK+99poZtm71XaXevXtr5MiRSkpK0sKFC9WpU6c8l3HfbkqXLq1atWrluSlo7u899x3Yv0pMTCy0eg4dOqSQkJBCOz4AAAWFjHQZGemS/GakUaNGKSYmRm+99ZZ69ux5zblkJODG8ZE9oJgIDw+Xs7OzZs2aZfdO0r///W+lpqaqU6dO+T5mZGSkfvvtNy1fvtwcu3Dhgt5//327eaGhoapVq5amTZum9PT0PMf5/fffJV261Dn3svRcPj4+8vf3V0ZGhjlWrly5PPPyo2fPnrLZbBo2bJh++eWXfH9zTFEVFhZm960w0qXg2qRJE3300Ud2axYbG6t9+/YVSh2pqak6ePCgWrduXSjHBwCgIJGRLiMj5T8jvfnmm5o2bZpeeuklDRs27JpzyUhA/nCFFFBMVK5cWWPHjtXEiRMVFRWlBx98UImJiZozZ45atGhxU4Hjqaee0uzZs9WzZ08NGzZMfn5+WrBggVxdXSVdfpeuVKlS+uCDD9SxY0fdcccd6tevn6pWrarffvtNGzZskKenp7788kudOXNG1apV0yOPPKKQkBC5u7tr3bp12rZtm6ZPn26+bmhoqBYvXqyRI0eqRYsWcnd3V+fOnfO1FlFRUVqyZIm8vb1vKmgWRQ899JA+/vhj/e9//1PdunXN8cmTJ6tTp066++671b9/f508eVL/+te/dMcdd1wx/F7Jl19+qV27dkmSsrKy9OOPP+qf//ynJOnBBx9U48aNzbnr1q2TYRh66KGHCvDsAAAoHGQk+7UgI914Rlq6dKlefPFF1alTRw0aNNAnn3xit/++++5TlSpVzMdkJCB/aEgBxciECRNUuXJlzZ49WyNGjFCFChU0ePBgvf766ypTpky+j+fu7q7169fr2Wef1dtvvy13d3f17t1brVu3Vrdu3czQJUlt27ZVfHy8Jk2apNmzZys9PV2+vr5q1aqVnnrqKUmSm5ubnnnmGa1du1aff/65cnJyVLt2bc2ZM0dPP/20eaxnnnlGCQkJiomJ0cyZMxUYGJivsCVduiR9xYoVeuyxx+Ti4pLvcy+KOnfurEqVKunTTz/VK6+8Yo7nBstXXnlFY8eOVa1atRQTE6MvvvhCGzduvKFj//e//9VHH31kPt65c6d27twp6dJNRv/akFqyZInuvvtu82MIAAAUdWSky8hIN56Rct+sO3DgwBVv/r5hwwa7hhQZCcgfm3Ezd+cDUKK99dZbGjFihH799VdVrVrV0eVc0RdffKEuXbpo06ZNuueeexxdToGZNGmSYmJidODAgave/LMwJScnKygoSIsWLeLdPwAA/oaM5DhkJOD2Q0MKwDWdP39eZcuWNR9fuHBBTZs2VXZ2tv73v/85sLJre+CBB7R//379/PPPxeqrd9PT01WzZk3NnDlTvXr1svz1x4wZo/Xr12vr1q2WvzYAAEUJGaloISMBtx8+sgfgmh5++GFVr15dTZo0UWpqqj755BP99NNPWrBggaV1/P7778rOzr7qfmdnZ1WoUEGLFi3Sjz/+qJUrV+rtt9/OE7RSU1N1/vz5a76Wr69vgdRcGNzd3ZWSkuKw158yZYrDXhsAgKKEjFS0kJGA2w9XSAG4prfeeksffPCBDh8+rOzsbAUHB+vFF19U9+7dLa2jRo0aOnLkyFX333vvvdq4caNsNpvc3d3VvXt3zZs3T6VL2/fd+/bta3evpCvhP4sAAOB6yEgAcGtoSAG4LXz77bfXfNeufPnyCg0Nve5x9u3bp+PHj19zTnh4eL7rAwAAcAQyEoDbFQ0pAAAAAAAAWKqUowsAAAAAAABAyVKib2qek5Oj48ePy8PDo1h9wwQAALg6wzB05swZ+fv7q1Qp3pu7EjISAAAlj9UZqUQ3pI4fP66AgABHlwEAABzg2LFjqlatmqPLKJLISAAAlFxWZaQS3ZDy8PCQdGmxPT09HVwNAACwQlpamgICAswcgLzISAAAlDxWZ6QS3ZDKvQTd09OTsAUAQAnDR9GujowEAEDJZVVG4sYJAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsVaLvIQUAwLVkZ2crKyvL0WUgn8qUKSMnJydHlwEAQLFFRro9FbWMREMKAIC/MQxDycnJOn36tKNLwU3y9vaWr68vNy4HAKAAkZFuf0UpI9GQAgDgb3KDlo+Pj9zc3IrEH2zcGMMwdO7cOaWkpEiS/Pz8HFwRAADFBxnp9lUUMxINKQAA/iI7O9sMWhUrVnR0ObgJZcuWlSSlpKTIx8enSF2aDgDA7YqMdPsrahmJm5oDAPAXufdDcHNzc3AluBW5vz/ubwEAQMEgIxUPRSkj0ZACAOAKuAT99sbvDwCAwsHf2NtbUfr90ZACAAAAAACApWhIAQAAAAAAwFLc1BwAgBuUtWazZa9VJuruG557vUuvx48frwkTJtxiRTfHZrNp6dKl6tKly00f47333tPChQv1ww8/6MyZMzp16pS8vb0LrEYAAHBrrMxIEjkp18mTJzV+/HitXbtWR48eVeXKldWlSxdNmjRJXl5eBVtsIaAhhZt2pf/o5Oc/DACAgpGUlGT+vHjxYo0bN06JiYnmmLu7e76Ol5mZKWdn5wKr71adO3dOUVFRioqK0tixYx1dDnBdZCQAKDqKc046fvy4jh8/rmnTpik4OFhHjhzRkCFDdPz4cX322WeOLu+6+MgeAAC3OV9fX3Pz8vKSzWYzH589e1a9evVSlSpV5O7urhYtWmjdunV2z69Ro4YmTZqk3r17y9PTU4MHD5Ykvf/++woICJCbm5u6du2qGTNm5Lky6YsvvlCzZs3k6uqqmjVrauLEibp48aJ5XEnq2rWrbDab+XjXrl1q166dPDw85OnpqdDQUG3fvv2q5zd8+HCNGTNGd955Z8EsGAAAKDGKc05q2LCh/vvf/6pz586qVauW2rdvr9dee01ffvml+TpFGQ0pAACKsfT0dN1///2Ki4vTzp07FRUVpc6dO+vo0aN286ZNm6aQkBDt3LlT//jHP/Ttt99qyJAhGjZsmBISEnTffffptddes3vON998o969e2vYsGHat2+f3n33Xc2fP9+ct23bNklSTEyMkpKSzMe9evVStWrVtG3bNu3YsUNjxoxRmTJlLFgNAACAy4pjTkpNTZWnp6dKly76H4gr+hUCAICbFhISopCQEPPxpEmTtHTpUi1fvlxDhw41x9u3b6/nn3/efPzyyy+rY8eOeuGFFyRJdevW1ZYtW7RixQpzzsSJEzVmzBj16dNHklSzZk1NmjRJL774osaPH6/KlStLkry9veXr62s+7+jRoxo1apTq168vSapTp04hnDkAAMC1Fbec9Mcff2jSpEnmVVxFHVdIAQBQjKWnp+uFF15QgwYN5O3tLXd3d+3fvz/PO3/Nmze3e5yYmKiWLVvajf398a5du/Tqq6/K3d3d3AYNGqSkpCSdO3fuqjWNHDlSAwcOVHh4uKZMmaKDBw/e4lkCAADkX3HKSWlpaerUqZOCg4MddpP2/KIhBQBAMfbCCy9o6dKlev311/XNN98oISFBjRo1UmZmpt28cuXK5fvY6enpmjhxohISEsxt9+7dOnDggFxdXa/6vAkTJmjv3r3q1KmT1q9fr+DgYC1dujTfrw8AAHAriktOOnPmjKKiouTh4aGlS5feNrdC4CN7AAAUY99++6369u2rrl27SroUjg4fPnzd59WrV8+8l0Guvz9u1qyZEhMTVbt27asep0yZMsrOzs4zXrduXdWtW1cjRoxQz549FRMTY9YIAABgheKQk9LS0hQZGSkXFxctX778ms2uooaGFAAAxVidOnX0+eefq3PnzrLZbPrHP/6hnJyc6z7v2WefVZs2bTRjxgx17txZ69ev1+rVq2Wz2cw548aN0wMPPKDq1avrkUceUalSpbRr1y7t2bNH//znPyVd+gaZuLg43XXXXXJxcZGrq6tGjRqlRx55REFBQfr111+1bds2devW7aq1JCcnKzk5WT///LMkaffu3fLw8FD16tVVoUKFW1whAABQUt3uOSktLU0RERE6d+6cPvnkE6WlpSktLU2SVLlyZTk5ORXAKhUePrIHAEAxNmPGDJUvX16tW7dW586dFRkZqWbNml33eXfddZfmzZunGTNmKCQkRGvWrNGIESPs3nWLjIzUihUrtHbtWrVo0UJ33nmnZs6cqcDAQHPO9OnTFRsbq4CAADVt2lROTk76888/1bt3b9WtW1ePPfaYOnbsqIkTJ161lnnz5qlp06YaNGiQJKlNmzZq2rSpli9ffgsrAwAASrrbPSf98MMP+v7777V7927Vrl1bfn5+5nbs2LFbX6BCZjMMw3B0EY6SlpYmLy8v82sRkT9ZazbnGSsTdbcDKgGAgnPhwgUdOnRIQUFBt9Ulz1YYNGiQfvrpJ33zzTeOLuW6rvV75O//9bFGt4aMBKA4IiNd2+2Sk4pSRuIjewAA4IqmTZum++67T+XKldPq1av10Ucfac6cOY4uCwAAwOHISbeOhhQAALiirVu3aurUqTpz5oxq1qypWbNmaeDAgY4uCwAAwOHISbeOhhQAALiiTz/91NElAAAAFEnkpFvHTc0BAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClSju6AAAAbhcHt79r2WvVav5Uvub37dtXH330kSSpdOnSqlChgho3bqyePXuqb9++KlXq9n0Pau/evRo3bpx27NihI0eOaObMmRo+fLijywIAAP+flRlJIif91fvvv6///Oc/2rNnjyQpNDRUr7/+ulq2bOngyq7v9l11AABgJyoqSklJSTp8+LBWr16tdu3aadiwYXrggQd08eJFR5d3086dO6eaNWtqypQp8vX1dXQ5AADgNlRcc9LGjRvVs2dPbdiwQfHx8QoICFBERIR+++03R5d2XTSkAAAoJlxcXOTr66uqVauqWbNmeumll/TFF19o9erVmj9/vjnv9OnTGjhwoCpXrixPT0+1b99eu3btsjvWl19+qRYtWsjV1VWVKlVS165dzX2nTp1S7969Vb58ebm5ualjx446cOCAJOns2bPy9PTUZ599Zne8ZcuWqVy5cjpz5owyMzM1dOhQ+fn5ydXVVYGBgZo8efJVz6tFixZ688031aNHD7m4uBTASgEAgJKmuOakBQsW6JlnnlGTJk1Uv359ffDBB8rJyVFcXFwBrFrhoiEFAEAx1r59e4WEhOjzzz83xx599FGlpKRo9erV2rFjh5o1a6YOHTro5MmTkqSVK1eqa9euuv/++7Vz507FxcXZXfbdt29fbd++XcuXL1d8fLwMw9D999+vrKwslStXTj169FBMTIxdHTExMXrkkUfk4eGhWbNmafny5fr000+VmJioBQsWqEaNGpasBwAAQK7imJPOnTunrKwsVahQ4dYWxwLcQwoAgGKufv36+vHHHyVJmzdv1tatW5WSkmJebTRt2jQtW7ZMn332mQYPHqzXXntNPXr00MSJE81jhISESJIOHDig5cuX69tvv1Xr1q0lXXpnLiAgQMuWLdOjjz6qgQMHqnXr1kpKSpKfn59SUlK0atUqrVu3TpJ09OhR1alTR3fffbdsNpsCAwOtXA4AAABTcctJo0ePlr+/v8LDw295bQobV0gBAFDMGYYhm80mSdq1a5fS09NVsWJFubu7m9uhQ4d08OBBSVJCQoI6dOhwxWPt379fpUuXVqtWrcyxihUrql69etq/f78kqWXLlrrjjjvMm4d+8sknCgwMVJs2bSRdeucwISFB9erV03PPPae1a9cW2rkDAABcS3HKSVOmTNGiRYu0dOlSubq65n8xLMYVUgAAFHP79+9XUFCQJCk9PV1+fn7auHFjnnne3t6SpLJly97yaw4cOFDvvPOOxowZo5iYGPXr188Me82aNdOhQ4e0evVqrVu3To899pjCw8Pz3E8BAACgsBWXnDRt2jRNmTJF69atU+PGjW+5RitwhRQAAMXY+vXrtXv3bnXr1k3SpZCTnJys0qVLq3bt2nZbpUqVJEmNGze+6o0wGzRooIsXL+r77783x/78808lJiYqODjYHHviiSd05MgRzZo1S/v27VOfPn3sjuPp6anu3bvr/fff1+LFi/Xf//7XvDcDAACAFYpLTpo6daomTZqkNWvWqHnz5je9HlbjCikAAIqJjIwMJScnKzs7WydOnNCaNWs0efJkPfDAA+rdu7ckKTw8XGFhYerSpYumTp2qunXr6vjx4+YNOps3b67x48erQ4cOqlWrlnr06KGLFy9q1apVGj16tOrUqaOHHnpIgwYN0rvvvisPDw+NGTNGVatW1UMPPWTWUr58eT388MMaNWqUIiIiVK1aNXPfjBkz5Ofnp6ZNm6pUqVJasmSJfH19zXce/y4zM1P79u0zf/7tt9+UkJAgd3d31a5du/AWFAAAFBvFNSe98cYbGjdunBYuXKgaNWooOTlZksyPGxZl+bpCavLkyWrRooU8PDzk4+OjLl26KDEx0W7OhQsXFB0dbX7mslu3bjpx4oTdnKNHj6pTp05yc3OTj4+PRo0apYsXL9rN2bhxo5o1ayYXFxfVrl3b7msYc73zzjuqUaOGXF1d1apVK23dujU/pwMAQLGyZs0a+fn5qUaNGoqKitKGDRs0a9YsffHFF3JycpIk2Ww2rVq1Sm3atFG/fv1Ut25d9ejRQ0eOHFGVKlUkSW3bttWSJUu0fPlyNWnSRO3bt7f7GxsTE6PQ0FA98MADCgsLk2EYWrVqlcqUKWNXz4ABA5SZman+/fvbjXt4eGjq1Klq3ry5WrRoocOHD2vVqlUqVerKseT48eNq2rSpmjZtqqSkJE2bNk1NmzbVwIEDC3L5bgkZCQCAoq245qS5c+cqMzNTjzzyiPz8/Mxt2rRpBbl8hcPIh8jISCMmJsbYs2ePkZCQYNx///1G9erVjfT0dHPOkCFDjICAACMuLs7Yvn27ceeddxqtW7c291+8eNFo2LChER4ebuzcudNYtWqVUalSJWPs2LHmnF9++cVwc3MzRo4caezbt8/417/+ZTg5ORlr1qwx5yxatMhwdnY2PvzwQ2Pv3r3GoEGDDG9vb+PEiRM3fD6pqamGJCM1NTU/y4D/L3P1N3k2ALjdnT9/3ti3b59x/vx5R5dy2/vPf/5jVKxY0cjIyLD8ta/1eyyMv/9kJPwVGQlAcURGKliOyklWZ6RryVdD6u9SUlIMScbXX39tGIZhnD592ihTpoyxZMkSc87+/fsNSUZ8fLxhGIaxatUqo1SpUkZycrI5Z+7cuYanp6f5i3jxxReNO+64w+61unfvbkRGRpqPW7ZsaURHR5uPs7OzDX9/f2Py5Mk3XD9h69YQtgAUR4StW3f27Fnj559/NoKDg42XXnrJITU4OmyRkUo2MhKA4oiMVDAcnZMcnZH+6pZuap6amipJqlChgiRpx44dysrKUnh4uDmnfv36ql69uuLj4yVJ8fHxatSokXm5myRFRkYqLS1Ne/fuNef89Ri5c3KPkZmZqR07dtjNKVWqlMLDw805AADAMaZOnar69evL19dXY8eOdXQ5DkFGAgAAV0JOuuymG1I5OTkaPny47rrrLjVs2FCSlJycLGdn5zw326pSpYp5Y63k5GS7oJW7P3ffteakpaXp/Pnz+uOPP5SdnX3FObnHuJKMjAylpaXZbQAAoGBNmDBBWVlZiouLK/I30ywMZCQAAHA1JT0n/dVNN6Sio6O1Z88eLVq0qCDrKVSTJ0+Wl5eXuQUEBDi6JAAAUMyQkQAAAK7vphpSQ4cO1YoVK7Rhwwa7ryf09fVVZmamTp8+bTf/xIkT8vX1Nef8/Rtlch9fb46np6fKli2rSpUqycnJ6Ypzco9xJWPHjlVqaqq5HTt2LH8nDgAoMQzDcHQJuAWO+v2RkQAAxR0Z6fZWlH5/+WpIGYahoUOHaunSpVq/fr2CgoLs9oeGhqpMmTKKi4szxxITE3X06FGFhYVJksLCwrR7926lpKSYc2JjY+Xp6ang4GBzzl+PkTsn9xjOzs4KDQ21m5OTk6O4uDhzzpW4uLjI09PTbgMA4K9yv5L33LlzDq4EtyL39/f3r1guLGQkAEBxR0YqHqzOSNdSOj+To6OjtXDhQn3xxRfy8PAw70Xg5eWlsmXLysvLSwMGDNDIkSNVoUIFeXp66tlnn1VYWJjuvPNOSVJERISCg4P15JNPaurUqUpOTtYrr7yi6Ohoubi4SJKGDBmi2bNn68UXX1T//v21fv16ffrpp1q5cqVZy8iRI9WnTx81b95cLVu21FtvvaWzZ8+qX79+BbU2AIASyMnJSd7e3mZTwM3NTTabzcFV4UYZhqFz584pJSVF3t7ecnJysuR1yUgAgOKOjHR7c1RGupZ8NaTmzp0rSWrbtq3deExMjPr27StJmjlzpkqVKqVu3bopIyNDkZGRmjNnjjnXyclJK1as0NNPP62wsDCVK1dOffr00auvvmrOCQoK0sqVKzVixAi9/fbbqlatmj744ANFRkaac7p3767ff/9d48aNU3Jyspo0aaI1a9bkuYknAAD5lfvRpr9eqYLbi7e39zU/olbQyEgAgJKAjHT7szojXYvNKEofILRYWlqavLy8lJqayqXpNyFrzeY8Y2Wi7nZAJQBQOLKzs5WVleXoMpBPZcqUuea7fvz9vz7W6NaQkQAUd2Sk21NRy0j5ukIKAICSxMnJqUhczgwAAFCUkJFQEG7qW/YAAAAAAACAm0VDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWKu3oAnB7O3x6td3jOrrbQZUAAAAUHWQkAACujSukAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlsp3Q2rTpk3q3Lmz/P39ZbPZtGzZMrv9ffv2lc1ms9uioqLs5pw8eVK9evWSp6envL29NWDAAKWnp9vN+fHHH3XPPffI1dVVAQEBmjp1ap5alixZovr168vV1VWNGjXSqlWr8ns6AAAABYKMBAAAcOPy3ZA6e/asQkJC9M4771x1TlRUlJKSkszt//7v/+z29+rVS3v37lVsbKxWrFihTZs2afDgweb+tLT/x96dh0VV9/8ff43sqYArSyqSuW8pKmFmpSQueWdZplliarZgt2ZZ2uJSmWbZYotmdWvfO73TFs0sTcLUVHIhMTU1LVxKgcpg3AKEz++PfoyO4D6cgeH5uK5zXc05nznz/sxR591rzpxjV5cuXRQREaGUlBS9+OKLGj9+vGbOnOkYs3btWvXr10+DBw/Wpk2b1KtXL/Xq1Utbt2690CkBAABcMnokAACA82czxpiLfrLNpgULFqhXr16OdQMHDlRWVlaRbwULbd++XU2aNNGGDRvUpk0bSdLSpUvVvXt3/frrrwoPD9f06dP15JNPKj09Xb6+vpKk0aNHa+HChdqxY4ck6Y477tDRo0e1ePFix76vvvpqXXXVVZoxY8Z51W+32xUUFKTs7GwFBgZexDtQvuUtXa09WUuc1tXvO9FN1QAAcH6s+PynRyrf6JEAAGWR1Z//JXINqRUrVqhmzZpq2LChHnjgAf3555+ObcnJyQoODnY0WpIUGxurChUqaN26dY4xHTt2dDRakhQXF6edO3fqr7/+coyJjY11et24uDglJyeXxJQAAAAuGT0SAADAP7xdvcOuXbvq1ltvVWRkpH7++Wc98cQT6tatm5KTk+Xl5aX09HTVrFnTuQhvb1WtWlXp6emSpPT0dEVGRjqNCQkJcWyrUqWK0tPTHetOHVO4j+Lk5OQoJyfH8dhut1/SXAEAAM4XPRIAAMBJLg+k+vbt6/jv5s2bq0WLFqpXr55WrFihzp07u/rlLsikSZM0YcIEt9YAAADKJ3okAACAk0rkJ3unuuKKK1S9enXt3r1bkhQaGqrMzEynMSdOnNChQ4cUGhrqGJORkeE0pvDxucYUbi/OmDFjlJ2d7Vj2799/aZMDAAC4SPRIAACgPCvxQOrXX3/Vn3/+qbCwMElSTEyMsrKylJKS4hizfPlyFRQUKDo62jFm1apVysvLc4xJTExUw4YNVaVKFceYpKQkp9dKTExUTEzMGWvx8/NTYGCg0wIAAOAO9EgAAKA8u+BA6siRI0pNTVVqaqokKS0tTampqdq3b5+OHDmiUaNG6bvvvtOePXuUlJSkm2++WVdeeaXi4uIkSY0bN1bXrl117733av369VqzZo2GDRumvn37Kjw8XJJ05513ytfXV4MHD9a2bds0b948vfbaaxo5cqSjjuHDh2vp0qWaOnWqduzYofHjx2vjxo0aNmyYC94WAACAC0OPBAAAcP4uOJDauHGjWrVqpVatWkmSRo4cqVatWmns2LHy8vLSDz/8oH/9619q0KCBBg8erKioKH377bfy8/Nz7GPOnDlq1KiROnfurO7du6tDhw6aOXOmY3tQUJCWLVumtLQ0RUVF6ZFHHtHYsWM1dOhQx5j27dtr7ty5mjlzplq2bKmPP/5YCxcuVLNmzS7l/QAAALgo9EgAAADnz2aMMe4uwl3sdruCgoKUnZ3NqekXIW/pau3JWuK0rn7fiW6qBgCA88Pn/7nxHl0aeiQAQFlk9ed/iV9DCgAAAAAAADgVgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS3m7uwCgrMhburrIOp+uHdxQCQAAQOlBjwQAuBicIQUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLXXAgtWrVKvXs2VPh4eGy2WxauHCh03ZjjMaOHauwsDAFBAQoNjZWu3btchpz6NAh9e/fX4GBgQoODtbgwYN15MgRpzE//PCDrr32Wvn7+6t27dqaMmVKkVo++ugjNWrUSP7+/mrevLm+/PLLC50OAACAS9AjAQAAnL8LDqSOHj2qli1b6s033yx2+5QpUzRt2jTNmDFD69atU8WKFRUXF6e///7bMaZ///7atm2bEhMTtXjxYq1atUpDhw51bLfb7erSpYsiIiKUkpKiF198UePHj9fMmTMdY9auXat+/fpp8ODB2rRpk3r16qVevXpp69atFzolAACAS0aPBAAAcP5sxhhz0U+22bRgwQL16tVL0j/f/IWHh+uRRx7Ro48+KknKzs5WSEiIZs+erb59+2r79u1q0qSJNmzYoDZt2kiSli5dqu7du+vXX39VeHi4pk+frieffFLp6eny9fWVJI0ePVoLFy7Ujh07JEl33HGHjh49qsWLFzvqufrqq3XVVVdpxowZ51W/3W5XUFCQsrOzFRgYeLFvQ7mVt3S19mQtcVpXv+9EN1VT8vKWri6yzqdrBzdUAgC4FFZ8/tMjlW/0SPRIAFAWWf3579JrSKWlpSk9PV2xsbGOdUFBQYqOjlZycrIkKTk5WcHBwY5GS5JiY2NVoUIFrVu3zjGmY8eOjkZLkuLi4rRz50799ddfjjGnvk7hmMLXAQAAKC3okQAAAJx5u3Jn6enpkqSQkBCn9SEhIY5t6enpqlmzpnMR3t6qWrWq05jIyMgi+yjcVqVKFaWnp5/1dYqTk5OjnJwcx2O73X4h0wMAALgo9EgAAADOytVd9iZNmqSgoCDHUrt2bXeXBAAA4Hb0SAAAwGouDaRCQ0MlSRkZGU7rMzIyHNtCQ0OVmZnptP3EiRM6dOiQ05ji9nHqa5xpTOH24owZM0bZ2dmOZf/+/Rc6RQAAgAtGjwQAAODMpYFUZGSkQkNDlZSU5Fhnt9u1bt06xcTESJJiYmKUlZWllJQUx5jly5eroKBA0dHRjjGrVq1SXl6eY0xiYqIaNmyoKlWqOMac+jqFYwpfpzh+fn4KDAx0WgAAAEoaPRIAAICzCw6kjhw5otTUVKWmpkr65yKdqamp2rdvn2w2m0aMGKHnnntOixYt0pYtWzRgwACFh4c77jLTuHFjde3aVffee6/Wr1+vNWvWaNiwYerbt6/Cw8MlSXfeead8fX01ePBgbdu2TfPmzdNrr72mkSNHOuoYPny4li5dqqlTp2rHjh0aP368Nm7cqGHDhl36uwIAAHCB6JEAAADO3wVf1Hzjxo264YYbHI8LG6D4+HjNnj1bjz32mI4ePaqhQ4cqKytLHTp00NKlS+Xv7+94zpw5czRs2DB17txZFSpUUO/evTVt2jTH9qCgIC1btkwJCQmKiopS9erVNXbsWA0dOtQxpn379po7d66eeuopPfHEE6pfv74WLlyoZs2aXdQbAQAAcCnokQAAAM6fzRhj3F2Eu9jtdgUFBSk7O5tT0y9C3tLV2pO1xGld/b4T3VRNyctburrIOp+uHdxQCQDgUvD5f268R5eGHokeCQDKIqs//8vVXfYAAAAAAADgfhf8kz2gvPl549uSpIKsfZKkusHd3FkOAABAqUCPBAC4FJwhBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwlMsDqfHjx8tmszktjRo1cmz/+++/lZCQoGrVqqlSpUrq3bu3MjIynPaxb98+9ejRQ5dddplq1qypUaNG6cSJE05jVqxYodatW8vPz09XXnmlZs+e7eqpAAAAuAw9EgAAwEklcoZU06ZNdfDgQceyevVqx7aHH35Yn3/+uT766COtXLlSBw4c0K233urYnp+frx49eig3N1dr167V+++/r9mzZ2vs2LGOMWlpaerRo4duuOEGpaamasSIERoyZIi++uqrkpgOAACAS9AjAQAA/MO7RHbq7a3Q0NAi67Ozs/Xee+9p7ty56tSpkyRp1qxZaty4sb777jtdffXVWrZsmX788Ud9/fXXCgkJ0VVXXaVnn31Wjz/+uMaPHy9fX1/NmDFDkZGRmjp1qiSpcePGWr16tV555RXFxcWVxJQAj5e3dHWRdT5dO7ihEgDwXPRIQNlDjwQAJaNEzpDatWuXwsPDdcUVV6h///7at2+fJCklJUV5eXmKjY11jG3UqJHq1Kmj5ORkSVJycrKaN2+ukJAQx5i4uDjZ7XZt27bNMebUfRSOKdwHAABAaUSPBAAA8A+XnyEVHR2t2bNnq2HDhjp48KAmTJiga6+9Vlu3blV6erp8fX0VHBzs9JyQkBClp6dLktLT050arcLthdvONsZut+v48eMKCAgotracnBzl5OQ4Htvt9kuaKwAAwPmiRwIAADjJ5YFUt27dHP/dokULRUdHKyIiQvPnzz9jE2SVSZMmacKECW6tAQAAlE/0SAAAACeVyE/2ThUcHKwGDRpo9+7dCg0NVW5urrKyspzGZGRkOK6nEBoaWuSOMoWPzzUmMDDwrA3dmDFjlJ2d7Vj2799/qdMDAAC4KPRIAACgPCvxQOrIkSP6+eefFRYWpqioKPn4+CgpKcmxfefOndq3b59iYmIkSTExMdqyZYsyMzMdYxITExUYGKgmTZo4xpy6j8Ixhfs4Ez8/PwUGBjotAAAA7kCPBAAAyjOXB1KPPvqoVq5cqT179mjt2rW65ZZb5OXlpX79+ikoKEiDBw/WyJEj9c033yglJUX33HOPYmJidPXVV0uSunTpoiZNmujuu+/W5s2b9dVXX+mpp55SQkKC/Pz8JEn333+/fvnlFz322GPasWOH3nrrLc2fP18PP/ywq6cDAADgEvRIAAAAJ7n8GlK//vqr+vXrpz///FM1atRQhw4d9N1336lGjRqSpFdeeUUVKlRQ7969lZOTo7i4OL311luO53t5eWnx4sV64IEHFBMTo4oVKyo+Pl7PPPOMY0xkZKS++OILPfzww3rttddUq1Ytvfvuu9zOGAAAlFr0SAAAACe5PJD68MMPz7rd399fb775pt58880zjomIiNCXX3551v1cf/312rRp00XVCAAAYDV6JAAAgJNK/BpSAAAAAAAAwKkIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYytvdBXiyvKWri6zz6drBDZUAZ/fzxrdVkLXP8bhucDc3VgMA8HT0SCgr6JEAoORwhhQAAAAAAAAsRSAFAAAAAAAAS/GTvRK0J2uJ02NO8QUAAKBHAgAAnCEFAAAAAAAAixFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS3m7uwAAcJe8paudHvt07eCmSgAAAEqP03skiT4JgOtxhhQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS3m7uwAAcIefN76tgqx9jsd1g7u5sRoAAIDSgR4JgFU4QwoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKi5oDgIfKW7ra6bFP1w5uqgQAAKD0oEcCSgfOkAIAAAAAAIClynwg9eabb6pu3bry9/dXdHS01q9f7+6SAAAA3I4eCQAAlGZlOpCaN2+eRo4cqXHjxun7779Xy5YtFRcXp8zMTHeXBgAA4Db0SAAAoLQr04HUyy+/rHvvvVf33HOPmjRpohkzZuiyyy7Tf/7zH3eXBgButydridMCoPygRwKAM6NHAkqHMntR89zcXKWkpGjMmDGOdRUqVFBsbKySk5OLfU5OTo5ycnIcj7OzsyVJdru9RGo8cizH6bHd56h8Sui13CHv6NGic/Sg+RU6fOS4JMn8/7nafY46tnnK8Tx85LhjftLJOXrK/IpT3Jw9bb7l4e/nqfISi/7b73NjjBsqQWlX+HfBGOPmSkoGPZL70SN5Tg9Bj+SZcy4Pfz9PRY+E82V5j2TKqN9++81IMmvXrnVaP2rUKNOuXbtinzNu3DgjiYWFhYWFhYXF7N+/34qWxXL0SCwsLCwsLCyXsljVI5XZM6QuxpgxYzRy5EjH44KCAh06dEjVqlWTzWZz6WvZ7XbVrl1b+/fvV2BgoEv3XZowT89TXubKPD0L8/Q8JTlXY4wOHz6s8PBwl+63LKNHcj3m6XnKy1yZp2cpL/OUys9cPalHKrOBVPXq1eXl5aWMjAyn9RkZGQoNDS32OX5+fvLz83NaFxwcXFIlSpICAwM9+i9DIebpecrLXJmnZ2Genqek5hoUFOTyfZYW9EilC/P0POVlrszTs5SXeUrlZ66e0COV2Yua+/r6KioqSklJSY51BQUFSkpKUkwMv4cFAADlEz0SAAAoC8rsGVKSNHLkSMXHx6tNmzZq166dXn31VR09elT33HOPu0sDAABwG3okAABQ2pXpQOqOO+7Q77//rrFjxyo9PV1XXXWVli5dqpCQEHeXJj8/P40bN67I6e+ehnl6nvIyV+bpWZin5ylPcy0J9Ejuxzw9T3mZK/P0LOVlnlL5masnzdNmjIfe8xgAAAAAAAClUpm9hhQAAAAAAADKJgIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKRKyJtvvqm6devK399f0dHRWr9+vbtLcqlVq1apZ8+eCg8Pl81m08KFC91dUomYNGmS2rZtq8qVK6tmzZrq1auXdu7c6e6yXG769Olq0aKFAgMDFRgYqJiYGC1ZssTdZZW4yZMny2azacSIEe4uxeXGjx8vm83mtDRq1MjdZZWI3377TXfddZeqVaumgIAANW/eXBs3bnR3WS5Vt27dIsfTZrMpISHB3aW5VH5+vp5++mlFRkYqICBA9erV07PPPivuv+JZ6JE8Az2SZ6NH8gz0SJ7DU3skAqkSMG/ePI0cOVLjxo3T999/r5YtWyouLk6ZmZnuLs1ljh49qpYtW+rNN990dyklauXKlUpISNB3332nxMRE5eXlqUuXLjp69Ki7S3OpWrVqafLkyUpJSdHGjRvVqVMn3Xzzzdq2bZu7SysxGzZs0Ntvv60WLVq4u5QS07RpUx08eNCxrF692t0ludxff/2la665Rj4+PlqyZIl+/PFHTZ06VVWqVHF3aS61YcMGp2OZmJgoSbr99tvdXJlrvfDCC5o+fbreeOMNbd++XS+88IKmTJmi119/3d2lwUXokTwHPRI9UllGj+Q56JHKeI9k4HLt2rUzCQkJjsf5+fkmPDzcTJo0yY1VlRxJZsGCBe4uwxKZmZlGklm5cqW7SylxVapUMe+++667yygRhw8fNvXr1zeJiYnmuuuuM8OHD3d3SS43btw407JlS3eXUeIef/xx06FDB3eXYbnhw4ebevXqmYKCAneX4lI9evQwgwYNclp36623mv79+7upIrgaPZLnokfyDPRInoMeiR6pLOAMKRfLzc1VSkqKYmNjHesqVKig2NhYJScnu7EyuEJ2drYkqWrVqm6upOTk5+frww8/1NGjRxUTE+PuckpEQkKCevTo4fT31BPt2rVL4eHhuuKKK9S/f3/t27fP3SW53KJFi9SmTRvdfvvtqlmzplq1aqV33nnH3WWVqNzcXH3wwQcaNGiQbDabu8txqfbt2yspKUk//fSTJGnz5s1avXq1unXr5ubK4Ar0SJ6NHskz0CN5DnokeqSywNvdBXiaP/74Q/n5+QoJCXFaHxISoh07dripKrhCQUGBRowYoWuuuUbNmjVzdzkut2XLFsXExOjvv/9WpUqVtGDBAjVp0sTdZbnchx9+qO+//14bNmxwdyklKjo6WrNnz1bDhg118OBBTZgwQddee622bt2qypUru7s8l/nll180ffp0jRw5Uk888YQ2bNigf//73/L19VV8fLy7yysRCxcuVFZWlgYOHOjuUlxu9OjRstvtatSokby8vJSfn6+JEyeqf//+7i4NLkCP5LnokTwDPRI9UllHj1T2EEgB5ykhIUFbt271yN+YS1LDhg2Vmpqq7Oxsffzxx4qPj9fKlSs9quHav3+/hg8frsTERPn7+7u7nBJ16rclLVq0UHR0tCIiIjR//nwNHjzYjZW5VkFBgdq0aaPnn39ektSqVStt3bpVM2bM8Nhm67333lO3bt0UHh7u7lJcbv78+ZozZ47mzp2rpk2bKjU1VSNGjFB4eLjHHk/AE9AjlX30SPRInoAeqewhkHKx6tWry8vLSxkZGU7rMzIyFBoa6qaqcKmGDRumxYsXa9WqVapVq5a7yykRvr6+uvLKKyVJUVFR2rBhg1577TW9/fbbbq7MdVJSUpSZmanWrVs71uXn52vVqlV64403lJOTIy8vLzdWWHKCg4PVoEED7d69292luFRYWFiR/yFo3LixPvnkEzdVVLL27t2rr7/+Wp9++qm7SykRo0aN0ujRo9W3b19JUvPmzbV3715NmjSpTDdb+Ac9kmeiR/IM9Ej0SGUdPVLZxDWkXMzX11dRUVFKSkpyrCsoKFBSUpLH/tbckxljNGzYMC1YsEDLly9XZGSku0uyTEFBgXJyctxdhkt17txZW7ZsUWpqqmNp06aN+vfvr9TUVI9ttCTpyJEj+vnnnxUWFubuUlzqmmuuKXKb8Z9++kkRERFuqqhkzZo1SzVr1lSPHj3cXUqJOHbsmCpUcG5NvLy8VFBQ4KaK4Er0SJ6FHokeyVPQI3kGeqSyiTOkSsDIkSMVHx+vNm3aqF27dnr11Vd19OhR3XPPPe4uzWWOHDni9C1CWlqaUlNTVbVqVdWpU8eNlblWQkKC5s6dq88++0yVK1dWenq6JCkoKEgBAQFurs51xowZo27duqlOnTo6fPiw5s6dqxUrVuirr75yd2kuVbly5SLXtqhYsaKqVavmcde8ePTRR9WzZ09FRETowIEDGjdunLy8vNSvXz93l+ZSDz/8sNq3b6/nn39effr00fr16zVz5kzNnDnT3aW5XEFBgWbNmqX4+Hh5e3vmx3fPnj01ceJE1alTR02bNtWmTZv08ssva9CgQe4uDS5Cj0SPVNbQI9EjlVX0SJ7FY3skd9/mz1O9/vrrpk6dOsbX19e0a9fOfPfdd+4uyaW++eYbI6nIEh8f7+7SXKq4OUoys2bNcndpLjVo0CATERFhfH19TY0aNUznzp3NsmXL3F2WJTz1lsZ33HGHCQsLM76+vubyyy83d9xxh9m9e7e7yyoRn3/+uWnWrJnx8/MzjRo1MjNnznR3SSXiq6++MpLMzp073V1KibHb7Wb48OGmTp06xt/f31xxxRXmySefNDk5Oe4uDS5Ej+QZ6JE8Hz1S2UeP5Dk8tUeyGWOMdfEXAAAAAAAAyjuuIQUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFFAKjB8/XjabTX/88UeJv9b111+v66+/vsSfU1oNHDhQdevWdXcZZVbhn1VXW79+vXx9fbV3795zjq1bt64GDhzotG7Xrl3q0qWLgoKCZLPZtHDhwgt6/auvvlqPPfbYBT0HAFDy6JGsQ490aeiRgAtHIAW4wLFjxzR+/HitWLHC3aWUOnPnztWrr77q7jLOqCweu9L+nl6MJ598Uv369VNERMRFPT8+Pl5btmzRxIkT9d///ldt2rTRkSNHNG7cOHXt2lVVq1aVzWbT7Nmzi33+448/rjfffFPp6emXMAsAwOnK4uesVUr753lZPHal/T29GCXRI23YsEHDhg1T06ZNVbFiRdWpU0d9+vTRTz/9VOT59EgoSQRSgAscO3ZMEyZMKFMf2Bdi2bJlWrZs2UU9t7Q1Bu+884527tzpeFwWj50739OnnnpKx48fd+k+U1NT9fXXX+v++++/qOcfP35cycnJGjx4sIYNG6a77rpLtWrV0h9//KFnnnlG27dvV8uWLc+6j5tvvlmBgYF66623LqoGAEDxyuLn7IWgRypd6JGcnalHeuGFF/TJJ5+oc+fOeu211zR06FCtWrVKrVu31tatW532QY+EkkQgBeCcfH195evr6+4yXMLHx0d+fn7uLqPM8vb2lr+/v0v3OWvWLNWpU0dXX331RT3/999/lyQFBwc7rQ8LC9PBgwe1d+9evfjii2fdR4UKFXTbbbfp//7v/2SMuag6AADlDz0SCpWlHmnkyJHau3evpk2bpiFDhuipp57St99+qxMnTmjy5MlOY+mRUJIIpODRCn/L/dNPP+muu+5SUFCQatSooaefflrGGO3fv9+R+oeGhmrq1KlOz8/NzdXYsWMVFRWloKAgVaxYUddee62++eYbx5g9e/aoRo0akqQJEybIZrPJZrNp/PjxjjE7duxQnz59VKNGDQUEBKhhw4Z68skni9SblZWlgQMHKjg4WEFBQbrnnnt07NixIuM++OADRUVFKSAgQFWrVlXfvn21f//+IuNmzpypevXqKSAgQO3atdO33357Ue/j6ddHWLFihWw2m+bPn6+JEyeqVq1a8vf3V+fOnbV7926n533xxRfau3ev43059doEOTk5GjdunK688kr5+fmpdu3aeuyxx5STk+P0+jabTcOGDdPChQvVrFkz+fn5qWnTplq6dKnTuMOHD2vEiBGqW7eu/Pz8VLNmTd144436/vvvHWNOvT7C2Y7drFmzZLPZtGnTpiLvx/PPPy8vLy/99ttv5/X+zZ49WzabTatWrdJ9992natWqKTAwUAMGDNBff/1VZPySJUt03XXXqXLlygoMDFTbtm01d+7c83pPz6Vu3bq66aabtGLFCrVp00YBAQFq3ry549vPTz/9VM2bN5e/v7+ioqKKzL+46yOc7/E5k4ULF6pTp05F9muM0XPPPadatWrpsssu0w033KBt27YVqafwFPZRo0Y5vR9+fn4KDQ0937dGN954o/bu3avU1NTzfg4AlFX0SPRI9EjOylOP1L59+yJBav369dW0aVNt3769SB30SCgp3u4uALDCHXfcocaNG2vy5Mn64osv9Nxzz6lq1ap6++231alTJ73wwguaM2eOHn30UbVt21YdO3aUJNntdr377rvq16+f7r33Xh0+fFjvvfee4uLitH79el111VWqUaOGpk+frgceeEC33HKLbr31VklSixYtJEk//PCDrr32Wvn4+Gjo0KGqW7eufv75Z33++eeaOHGiU519+vRRZGSkJk2apO+//17vvvuuatasqRdeeMExZuLEiXr66afVp08fDRkyRL///rtef/11dezYUZs2bXJ8A/Lee+/pvvvuU/v27TVixAj98ssv+te//qWqVauqdu3aLnlfJ0+erAoVKujRRx9Vdna2pkyZov79+2vdunWS/vnNe3Z2tn799Ve98sorkqRKlSpJkgoKCvSvf/1Lq1ev1tChQ9W4cWNt2bJFr7zyin766aciF1xcvXq1Pv30Uz344IOqXLmypk2bpt69e2vfvn2qVq2aJOn+++/Xxx9/rGHDhqlJkyb6888/tXr1am3fvl2tW7cuUv/Zjl1kZKQSEhI0Z84ctWrVyul5c+bM0fXXX6/LL7/8gt6vYcOGKTg4WOPHj9fOnTs1ffp07d2719G8Sv80ZoMGDVLTpk01ZswYBQcHa9OmTVq6dKnuvPPOs76n52v37t268847dd999+muu+7SSy+9pJ49e2rGjBl64okn9OCDD0qSJk2apD59+mjnzp2qUOHs31+cz/Epzm+//aZ9+/YVe3zGjh2r5557Tt27d1f37t31/fffq0uXLsrNzXWMufXWWxUcHKyHH35Y/fr1U/fu3S/4/SgUFRUlSVqzZk2RYw4AnooeiR6JHumk8twjGWOUkZGhpk2bFtlGj4QSYwAPNm7cOCPJDB061LHuxIkTplatWsZms5nJkyc71v/1118mICDAxMfHO43Nyclx2udff/1lQkJCzKBBgxzrfv/9dyPJjBs3rkgNHTt2NJUrVzZ79+51Wl9QUFCkzlP3aYwxt9xyi6lWrZrj8Z49e4yXl5eZOHGi07gtW7YYb29vx/rc3FxTs2ZNc9VVVznVP3PmTCPJXHfddUXqPJvrrrvO6TnffPONkWQaN27stP/XXnvNSDJbtmxxrOvRo4eJiIgoss///ve/pkKFCubbb791Wj9jxgwjyaxZs8axTpLx9fU1u3fvdqzbvHmzkWRef/11x7qgoCCTkJBw1rnEx8c71XO2Y9evXz8THh5u8vPzHeu+//57I8nMmjXrrK9zqlmzZhlJJioqyuTm5jrWT5kyxUgyn332mTHGmKysLFO5cmUTHR1tjh8/7rSPU/+8nOk9PR8RERFGklm7dq1j3VdffWUkmYCAAKc/p2+//baRZL755hvHusI/q6c63+NTnK+//tpIMp9//rnT+szMTOPr62t69OjhNPcnnnjCSHL6e5qWlmYkmRdffPGMr7Nhw4bzOm6+vr7mgQceOOsYAPAE9Ej0SKejRyqfPVKh//73v0aSee+994rdTo+EksBP9lAuDBkyxPHfXl5eatOmjYwxGjx4sGN9cHCwGjZsqF9++cVpbOHprAUFBTp06JBOnDihNm3aOJ3ifCa///67Vq1apUGDBqlOnTpO24q7LezpFyy89tpr9eeff8put0v651ThgoIC9enTR3/88YdjCQ0NVf369R2nyW/cuFGZmZm6//77nU7HHThwoIKCgs5Z9/m65557nPZ/7bXXSpLTe3gmH330kRo3bqxGjRo5zaVTp06S5HTKvyTFxsaqXr16jsctWrRQYGCg02sFBwdr3bp1OnDgwCXNq9CAAQN04MABp1rmzJmjgIAA9e7d+4L3N3ToUPn4+DgeP/DAA/L29taXX34pSUpMTNThw4c1evToItcgcOVthJs0aaKYmBjH4+joaElSp06dnP6cFq4/n+N5PsenOH/++ackqUqVKk7rv/76a+Xm5uqhhx5ymvuIESPOWculqFKliiW3FgeA0oIe6R/0SBeGHsmzeqQdO3YoISFBMTExio+PL3YMPRJKAj/ZQ7lweqMTFBQkf39/Va9evcj6wn/8C73//vuaOnWqduzYoby8PMf6yMjIc75u4QdNs2bNLqrOwg+gv/76S4GBgdq1a5eMMapfv36xzy/8IN+7d68kFRnn4+OjK6644rxqudR6z2XXrl3avn274/oEp8vMzDzraxW+3qmvNWXKFMXHx6t27dqKiopS9+7dNWDAgIue84033qiwsDDNmTNHnTt3VkFBgf73v//p5ptvVuXKlS94f6cfj0qVKiksLEx79uyRJP3888+Szv/Py8Uq7u+DpCI/Uyhcfz7H83yOz9mY0y6SeaY/wzVq1CjSmLmSMcaljS0AlHb0SCe30yOdP3okz+mR0tPT1aNHDwUFBenjjz+Wl5fXGeugR4KrEUihXCjuH9az/WNb6IMPPtDAgQPVq1cvjRo1SjVr1pSXl5cmTZrk+GAs6TpPramgoEA2m01LliwpduzFXjvnYp3Pe3gmBQUFat68uV5++eVit5/+wX8+r9WnTx9de+21WrBggZYtW6YXX3xRL7zwgj799FN169btnDWdzsvLS3feeafeeecdvfXWW1qzZo0OHDigu+6664L3VZqc6b28lON5sc8tvHbC+TZlJS0rK6vI/4QBgCejRyoZ9EhlU3nrkbKzs9WtWzdlZWXp22+/VXh4+BnH0iOhJBBIAWfx8ccf64orrtCnn37q9I3AuHHjnMad6duCwm+dtm7d6pJ66tWrJ2OMIiMj1aBBgzOOK7yjxq5duxynd0tSXl6e0tLS1LJlS5fUcz7O9N7Uq1dPmzdvVufOnV36bUtYWJgefPBBPfjgg8rMzFTr1q01ceLEMzZb53rtAQMGaOrUqfr888+1ZMkS1ahRQ3FxcRdV265du3TDDTc4Hh85ckQHDx5U9+7dJclxOvfWrVt15ZVXnnE/nvTtVKNGjSRJaWlpTutP/TN86re3v//+e4k1Zr/99ptyc3PVuHHjEtk/AHgSeqRLR490Ej1SUSXdI/3999/q2bOnfvrpJ3399ddq0qTJGcfSI6GkcA0p4CwKv9E49RuMdevWKTk52WncZZddJumfbw5OVaNGDXXs2FH/+c9/tG/fPqdt5/ONyuluvfVWeXl5acKECUWeb4xxnErfpk0b1ahRQzNmzHC628bs2bOL1FjSKlasqOzs7CLr+/Tpo99++03vvPNOkW3Hjx/X0aNHL+h18vPzi7xOzZo1FR4eXuQWyac607Er1KJFC7Vo0ULvvvuuPvnkE/Xt21fe3heX5c+cOdPpJw3Tp0/XiRMnHI1gly5dVLlyZU2aNEl///2303NPPd5nek/Lossvv1y1a9fWxo0bndbHxsbKx8dHr7/+utPcX3311RKrJSUlRdI/t0IGAJwdPdKlo0c6iR6pqJLskfLz83XHHXcoOTlZH330kdN1s4pDj4SSwhlSwFncdNNN+vTTT3XLLbeoR48eSktL04wZM9SkSRMdOXLEMS4gIEBNmjTRvHnz1KBBA1WtWlXNmjVTs2bNNG3aNHXo0EGtW7fW0KFDFRkZqT179uiLL75QamrqBdVTr149PffccxozZoz27NmjXr16qXLlykpLS9OCBQs0dOhQPfroo/Lx8dFzzz2n++67T506ddIdd9yhtLQ0zZo1y6XXRzgfUVFRmjdvnkaOHKm2bduqUqVK6tmzp+6++27Nnz9f999/v7755htdc801ys/P144dOzR//nx99dVXatOmzXm/zuHDh1WrVi3ddtttatmypSpVqqSvv/5aGzZs0NSpU8/4vLMdu0IDBgzQo48+KkmXdCp6bm6uOnfu7LhN8FtvvaUOHTroX//6lyQpMDBQr7zyioYMGaK2bdvqzjvvVJUqVbR582YdO3ZM77//vqQzv6dl1c0336wFCxY4XZugRo0aevTRRzVp0iTddNNN6t69uzZt2qQlS5Zc0Onib7zxhrKyshwXcf3888/166+/SpIeeughpwvYJiYmqk6dOtzOGADOAz3SpaNHOokeqXgl1SM98sgjWrRokXr27KlDhw7pgw8+cNp++rGkR0KJKdmb+AHuVXj71d9//91pfXx8vKlYsWKR8dddd51p2rSp43FBQYF5/vnnTUREhPHz8zOtWrUyixcvLnJbXGOMWbt2rYmKijK+vr5FbpG7detWc8stt5jg4GDj7+9vGjZsaJ5++ulz1ll4K9y0tDSn9Z988onp0KGDqVixoqlYsaJp1KiRSUhIMDt37nQa99Zbb5nIyEjj5+dn2rRpY1atWlXk9sTn40y3NP7oo4+cxhXeWvbU2/0eOXLE3HnnnSY4ONhIcnrfcnNzzQsvvGCaNm1q/Pz8TJUqVUxUVJSZMGGCyc7OdoyTVOytiiMiIhy3ts3JyTGjRo0yLVu2NJUrVzYVK1Y0LVu2NG+99ZbTcy702BljzMGDB42Xl5dp0KDBud+sYhQex5UrV5qhQ4eaKlWqmEqVKpn+/fubP//8s8j4RYsWmfbt25uAgAATGBho2rVrZ/73v/85tp/tPT2XiIgI06NHjyLri3uPi7tV8JluaXyu43M2hbeJPv321vn5+WbChAkmLCzMBAQEmOuvv95s3bq1yH7Pdkvjwls4F7ec+vcqPz/fhIWFmaeeeuqc9QKAJ6BHokeiR3JWnnqk66677oz90elzoEdCSbIZcxHnxAJAOfLHH38oLCxMY8eO1dNPP33Bz589e7buuecebdiw4YK+0SxPOnfurPDwcP33v/91y+svXLhQd955p37++WeFhYW5pQYAAMoaeqSSR48ET8Y1pADgHGbPnq38/Hzdfffd7i7FYz3//POaN2+e41bGVnvhhRc0bNgwGi0AAC4APVLJo0eCJ+MaUkA59vvvvys/P/+M2319fVW1alULKypdli9frh9//FETJ05Ur169VLduXaftx48fP+eFM616/8r6sYyOjna6uKzVTr8ILwCgfCvrn6sljR7JOvRI8GQEUkA51rZt27N+23LddddpxYoV1hVUyjzzzDNau3atrrnmGr3++utFts+bN0/33HPPWffxzTfflFR5TjiWAAC4Dp+rZ0ePBMAVuIYUUI6tWbNGx48fP+P2KlWqKCoqysKKypaDBw9q27ZtZx0TFRWlKlWqlHgtHEsAAFyHz9VLQ48E4HwQSAEAAAAAAMBSXNQcAAAAAAAAlirX15AqKCjQgQMHVLlyZdlsNneXAwAALGCM0eHDhxUeHq4KFfhurjj0SAAAlD9W90jlOpA6cOCAateu7e4yAACAG+zfv1+1atVydxmlEj0SAADll1U9UrkOpCpXrizpnzc7MDDQzdUAAAAr2O121a5d29EHoCh6JAAAyh+re6RyHUgVnoIeGBhIswUAQDnDT9HOjB4JAIDyy6oeiQsnAAAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsVa6vIQUAwNnk5+crLy/P3WXgAvn4+MjLy8vdZQAA4LHokcqm0tYjEUgBAHAaY4zS09OVlZXl7lJwkYKDgxUaGsqFywEAcCF6pLKvNPVIBFIAAJymsNGqWbOmLrvsslLxgY3zY4zRsWPHlJmZKUkKCwtzc0UAAHgOeqSyqzT2SARSAACcIj8/39FoVatWzd3l4CIEBARIkjIzM1WzZs1SdWo6AABlFT1S2VfaeiQuag4AwCkKr4dw2WWXubkSXIrC48f1LQAAcA16JM9QmnokAikAAIrBKehlG8cPAICSwWds2Vaajh+BFAAAAAAAACxFIAUAAAAAAABLcVFzAADOU97S1Za9lk/XDuc99lynXo8bN07jx4+/xIoujs1m04IFC9SrV6+L3sfMmTM1d+5cff/99zp8+LD++usvBQcHu6xGAABwaazskST6pEKHDh3SuHHjtGzZMu3bt081atRQr1699OyzzyooKMi1xZYAAikAAMq4gwcPOv573rx5Gjt2rHbu3OlYV6lSpQvaX25urnx9fV1W36U6duyYunbtqq5du2rMmDHuLgcAAJQhntwnHThwQAcOHNBLL72kJk2aaO/evbr//vt14MABffzxx+4u75z4yZ7F8paudloAALhUoaGhjiUoKEg2m83x+OjRo+rfv79CQkJUqVIltW3bVl9//bXT8+vWratnn31WAwYMUGBgoIYOHSpJeuedd1S7dm1ddtlluuWWW/Tyyy8XOTPps88+U+vWreXv768rrrhCEyZM0IkTJxz7laRbbrlFNpvN8Xjz5s264YYbVLlyZQUGBioqKkobN2484/xGjBih0aNH6+qrr3bNG4ZSiR4JAFASPLlPatasmT755BP17NlT9erVU6dOnTRx4kR9/vnnjtcpzQikAADwYEeOHFH37t2VlJSkTZs2qWvXrurZs6f27dvnNO6ll15Sy5YttWnTJj399NNas2aN7r//fg0fPlypqam68cYbNXHiRKfnfPvttxowYICGDx+uH3/8UW+//bZmz57tGLdhwwZJ0qxZs3Tw4EHH4/79+6tWrVrasGGDUlJSNHr0aPn4+FjwbgAAAJzkiX1Sdna2AgMD5e1d+n8QV/orBAAAF61ly5Zq2bKl4/Gzzz6rBQsWaNGiRRo2bJhjfadOnfTII484Hj/55JPq1q2bHn30UUlSgwYNtHbtWi1evNgxZsKECRo9erTi4+MlSVdccYWeffZZPfbYYxo3bpxq1KghSQoODlZoaKjjefv27dOoUaPUqFEjSVL9+vVLYOYAAABn52l90h9//KFnn33WcRZXaccZUgAAeLAjR47o0UcfVePGjRUcHKxKlSpp+/btRb75a9OmjdPjnTt3ql27dk7rTn+8efNmPfPMM6pUqZJjuffee3Xw4EEdO3bsjDWNHDlSQ4YMUWxsrCZPnqyff/75EmcJAABw4TypT7Lb7erRo4eaNGnitou0XygCKQAAPNijjz6qBQsW6Pnnn9e3336r1NRUNW/eXLm5uU7jKlaseMH7PnLkiCZMmKDU1FTHsmXLFu3atUv+/v5nfN748eO1bds29ejRQ8uXL1eTJk20YMGCC359AACAS+EpfdLhw4fVtWtXVa5cWQsWLCgzl0LgJ3sAAHiwNWvWaODAgbrlllsk/dMc7dmz55zPa9iwoeNaBoVOf9y6dWvt3LlTV1555Rn34+Pjo/z8/CLrGzRooAYNGujhhx9Wv379NGvWLEeNAAAAVvCEPslutysuLk5+fn5atGjRWcOu0oZACgAAD1a/fn19+umn6tmzp2w2m55++mkVFBSc83kPPfSQOnbsqJdfflk9e/bU8uXLtWTJEtlsNseYsWPH6qabblKdOnV02223qUKFCtq8ebO2bt2q5557TtI/d5BJSkrSNddcIz8/P/n7+2vUqFG67bbbFBkZqV9//VUbNmxQ7969z1hLenq60tPTtXv3bknSli1bVLlyZdWpU0dVq1a9xHcIAACUV2W9T7Lb7erSpYuOHTumDz74QHa7XXa7XZJUo0YNeXl5ueBdKjn8ZA8AAA/28ssvq0qVKmrfvr169uypuLg4tW7d+pzPu+aaazRjxgy9/PLLatmypZYuXaqHH37Y6Vu3uLg4LV68WMuWLVPbtm119dVX65VXXlFERIRjzNSpU5WYmKjatWurVatW8vLy0p9//qkBAwaoQYMG6tOnj7p166YJEyacsZYZM2aoVatWuvfeeyVJHTt2VKtWrbRo0aJLeGcAAEB5V9b7pO+//17r1q3Tli1bdOWVVyosLMyx7N+//9LfoBJmM8YYdxfhLna7XUFBQY7bIlohb+lqp8c+XTtY8roAgPPz999/Ky0tTZGRkWXqlGcr3HvvvdqxY4e+/fZbd5dyTmc7ju74/C9r6JEAAKejRzq7stInlaYeiZ/sAQCAYr300ku68cYbVbFiRS1ZskTvv/++3nrrLXeXBQAA4Hb0SZeOQAoAABRr/fr1mjJlig4fPqwrrrhC06ZN05AhQ9xdFgAAgNvRJ106AikAAFCs+fPnu7sEAACAUok+6dJxUXMAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKW83V0AAABlxc8b37bsteq1ue+Cxg8cOFDvv/++JMnb21tVq1ZVixYt1K9fPw0cOFAVKpTd76C2bdumsWPHKiUlRXv37tUrr7yiESNGuLssAADw/1nZI0n0Sad655139H//93/aunWrJCkqKkrPP/+82rVr5+bKzq3svusAAMBJ165ddfDgQe3Zs0dLlizRDTfcoOHDh+umm27SiRMn3F3eRTt27JiuuOIKTZ48WaGhoe4uBwAAlEGe2ietWLFC/fr10zfffKPk5GTVrl1bXbp00W+//ebu0s6JQAoAAA/h5+en0NBQXX755WrdurWeeOIJffbZZ1qyZIlmz57tGJeVlaUhQ4aoRo0aCgwMVKdOnbR582anfX3++edq27at/P39Vb16dd1yyy2ObX/99ZcGDBigKlWq6LLLLlO3bt20a9cuSdLRo0cVGBiojz/+2Gl/CxcuVMWKFXX48GHl5uZq2LBhCgsLk7+/vyIiIjRp0qQzzqtt27Z68cUX1bdvX/n5+bngnQIAAOWNp/ZJc+bM0YMPPqirrrpKjRo10rvvvquCggIlJSW54F0rWQRSAAB4sE6dOqlly5b69NNPHetuv/12ZWZmasmSJUpJSVHr1q3VuXNnHTp0SJL0xRdf6JZbblH37t21adMmJSUlOZ32PXDgQG3cuFGLFi1ScnKyjDHq3r278vLyVLFiRfXt21ezZs1yqmPWrFm67bbbVLlyZU2bNk2LFi3S/PnztXPnTs2ZM0d169a15P0AAAAo5Il90rFjx5SXl6eqVate2ptjAa4hBQCAh2vUqJF++OEHSdLq1au1fv16ZWZmOs42eumll7Rw4UJ9/PHHGjp0qCZOnKi+fftqwoQJjn20bNlSkrRr1y4tWrRIa9asUfv27SX9881c7dq1tXDhQt1+++0aMmSI2rdvr4MHDyosLEyZmZn68ssv9fXXX0uS9u3bp/r166tDhw6y2WyKiIiw8u0AAABw8LQ+6fHHH1d4eLhiY2Mv+b0paZwhBQCAhzPGyGazSZI2b96sI0eOqFq1aqpUqZJjSUtL088//yxJSk1NVefOnYvd1/bt2+Xt7a3o6GjHumrVqqlhw4bavn27JKldu3Zq2rSp4+KhH3zwgSIiItSxY0dJ/3xzmJqaqoYNG+rf//63li1bVmJzBwAAOBtP6pMmT56sDz/8UAsWLJC/v/+FvxkW4wwpAAA83Pbt2xUZGSlJOnLkiMLCwrRixYoi44KDgyVJAQEBl/yaQ4YM0ZtvvqnRo0dr1qxZuueeexzNXuvWrZWWlqYlS5bo66+/Vp8+fRQbG1vkegoAAAAlzVP6pJdeekmTJ0/W119/rRYtWlxyjVbgDCkAADzY8uXLtWXLFvXu3VvSP01Oenq6vL29deWVVzot1atXlyS1aNHijBfCbNy4sU6cOKF169Y51v3555/auXOnmjRp4lh31113ae/evZo2bZp+/PFHxcfHO+0nMDBQd9xxh9555x3NmzdPn3zyiePaDAAAAFbwlD5pypQpevbZZ7V06VK1adPmot8Pq3GGFAAAHiInJ0fp6enKz89XRkaGli5dqkmTJummm27SgAEDJEmxsbGKiYlRr169NGXKFDVo0EAHDhxwXKCzTZs2GjdunDp37qx69eqpb9++OnHihL788ks9/vjjql+/vm6++Wbde++9evvtt1W5cmWNHj1al19+uW6++WZHLVWqVNGtt96qUaNGqUuXLqpVq5Zj28svv6ywsDC1atVKFSpU0EcffaTQ0FDHN4+ny83N1Y8//uj4799++02pqamqVKmSrrzyypJ7QwEAgMfw1D7phRde0NixYzV37lzVrVtX6enpkuT4uWFpxhlSAAB4iKVLlyosLEx169ZV165d9c0332jatGn67LPP5OXlJUmy2Wz68ssv1bFjR91zzz1q0KCB+vbtq7179yokJESSdP311+ujjz7SokWLdNVVV6lTp05av36943VmzZqlqKgo3XTTTYqJiZExRl9++aV8fHyc6hk8eLByc3M1aNAgp/WVK1fWlClT1KZNG7Vt21Z79uzRl19+qQoVim9LDhw4oFatWqlVq1Y6ePCgXnrpJbVq1UpDhgxx5dsHAAA8mKf2SdOnT1dubq5uu+02hYWFOZaXXnrJlW9fyTAXaOXKleamm24yYWFhRpJZsGCB0/aCggLz9NNPm9DQUOPv7286d+5sfvrpJ6cxf/75p7nzzjtN5cqVTVBQkBk0aJA5fPiw05jNmzebDh06GD8/P1OrVi3zwgsvFKll/vz5pmHDhsbPz880a9bMfPHFFxc0l+zsbCPJZGdnX9DzLkXukm+dFgBA6XL8+HHz448/muPHj7u7lDLv//7v/0y1atVMTk6O5a99tuNYUp//9EiXhh4JAEo3eiTXclef5I4e6Uwu+Aypo0ePqmXLlnrzzTeL3T5lyhRNmzZNM2bM0Lp161SxYkXFxcXp77//dozp37+/tm3bpsTERC1evFirVq3S0KFDHdvtdru6dOmiiIgIpaSk6MUXX9T48eM1c+ZMx5i1a9eqX79+Gjx4sDZt2qRevXqpV69e2rp164VOCQAAuNCxY8f0888/a/Lkybrvvvvk6+vr7pIsQY8EAADOpbz2ScW6lDRLp337V1BQYEJDQ82LL77oWJeVlWX8/PzM//73P2OMMT/++KORZDZs2OAYs2TJEmOz2cxvv/1mjDHmrbfeMlWqVHFKCh9//HHTsGFDx+M+ffqYHj16ONUTHR1t7rvvvvOun2//AACn49u/Szdu3Djj7e1tOnXqVOTsHqu4+9s/eqQLR48EAKUbPZJruLtPcnePdCqXXkMqLS1N6enpio2NdawLCgpSdHS0kpOTJUnJyckKDg52uvJ7bGysKlSo4LgSfXJysjp27OiUFMbFxWnnzp3666+/HGNOfZ3CMYWvAwAA3GP8+PHKy8tTUlJSqb+YplXokQAAgESfdCqX3mWv8GruhRf7KhQSEuLYlp6erpo1azoX4e2tqlWrOo2JjIwsso/CbVWqVFF6evpZX6c4OTk5ysnJcTy22+0XMj0AAICLQo8EAADgrFzdZW/SpEkKCgpyLLVr13Z3SQCAUsoY4+4ScAk4fheGHgkAcL74jC3bStPxc2kgFRoaKknKyMhwWp+RkeHYFhoaqszMTKftJ06c0KFDh5zGFLePU1/jTGMKtxdnzJgxys7Odiz79++/0CkCADxc4S15jx075uZKcCkKj9/pt1h2F3okAEBZR4/kGUpTj+TSn+xFRkYqNDRUSUlJuuqqqyT9c8r3unXr9MADD0iSYmJilJWVpZSUFEVFRUmSli9froKCAkVHRzvGPPnkk8rLy3O8SYmJiWrYsKGqVKniGJOUlKQRI0Y4Xj8xMVExMTFnrM/Pz09+fn6unDIAwMN4eXkpODjYEQxcdtllstlsbq4K58sYo2PHjikzM1PBwcHy8vJyd0mS6JEAAGUfPVLZVhp7pAsOpI4cOaLdu3c7HqelpSk1NVVVq1ZVnTp1NGLECD333HOqX7++IiMj9fTTTys8PFy9evWSJDVu3Fhdu3bVvffeqxkzZigvL0/Dhg1T3759FR4eLkm68847NWHCBA0ePFiPP/64tm7dqtdee02vvPKK43WHDx+u6667TlOnTlWPHj304YcfauPGjU63PQYA4GIUnkly+tkqKDuCg4PPekZQSaBHAgB4Onqkss8dPdKZ2MwF/oBwxYoVuuGGG4qsj4+P1+zZs2WM0bhx4zRz5kxlZWWpQ4cOeuutt9SgQQPH2EOHDmnYsGH6/PPPVaFCBfXu3VvTpk1zusL8Dz/8oISEBG3YsEHVq1fXQw89pMcff9zpNT/66CM99dRT2rNnj+rXr68pU6aoe/fu5z0Xu92uoKAgZWdnKzAw8ELehouWt3S102Ofrh0seV0AwIXLz89XXl6eu8vABfLx8Tnrt34l9flPj3Rp6JEAoOygRyqb3NUjnckFB1KehGYLAIDyxx2f/2UNPRIAAOWP1Z//5eouewAAAAAAAHA/AikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKW83V1AeZe3dHWRdT5dO7ihEgAAgNKDHgkAAM/GGVIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEu5PJDKz8/X008/rcjISAUEBKhevXp69tlnZYxxjDHGaOzYsQoLC1NAQIBiY2O1a9cup/0cOnRI/fv3V2BgoIKDgzV48GAdOXLEacwPP/yga6+9Vv7+/qpdu7amTJni6um41M8b39aerCVOCwAAKB/okc6MHgkAgPLH5YHUCy+8oOnTp+uNN97Q9u3b9cILL2jKlCl6/fXXHWOmTJmiadOmacaMGVq3bp0qVqyouLg4/f33344x/fv317Zt25SYmKjFixdr1apVGjp0qGO73W5Xly5dFBERoZSUFL344osaP368Zs6c6eopAQAAXDJ6JAAAgJNs5tSv5VzgpptuUkhIiN577z3Hut69eysgIEAffPCBjDEKDw/XI488okcffVSSlJ2drZCQEM2ePVt9+/bV9u3b1aRJE23YsEFt2rSRJC1dulTdu3fXr7/+qvDwcE2fPl1PPvmk0tPT5evrK0kaPXq0Fi5cqB07dpxXrXa7XUFBQcrOzlZgYKAr34Zi/bzxbRXs3ue0rm5wtyLjfLp2KPFaAAAor6z+/C9Ej3Rm9EgAALif1Z//Lj9Dqn379kpKStJPP/0kSdq8ebNWr16tbt3+aSrS0tKUnp6u2NhYx3OCgoIUHR2t5ORkSVJycrKCg4MdjZYkxcbGqkKFClq3bp1jTMeOHR2NliTFxcVp586d+uuvv4qtLScnR3a73WkBAACwAj0SAADASd6u3uHo0aNlt9vVqFEjeXl5KT8/XxMnTlT//v0lSenp6ZKkkJAQp+eFhIQ4tqWnp6tmzZrOhXp7q2rVqk5jIiMji+yjcFuVKlWK1DZp0iRNmDDBBbMEAAC4MPRIAAAAJ7n8DKn58+drzpw5mjt3rr7//nu9//77eumll/T++++7+qUu2JgxY5Sdne1Y9u/f7+6SAABAOUGPBAAAcJLLz5AaNWqURo8erb59+0qSmjdvrr1792rSpEmKj49XaGioJCkjI0NhYWGO52VkZOiqq66SJIWGhiozM9NpvydOnNChQ4cczw8NDVVGRobTmMLHhWNO5+fnJz8/v0ufJAAAwAWiRwIAADjJ5WdIHTt2TBUqOO/Wy8tLBQUFkqTIyEiFhoYqKSnJsd1ut2vdunWKiYmRJMXExCgrK0spKSmOMcuXL1dBQYGio6MdY1atWqW8vDzHmMTERDVs2LDYU9EBAADciR4JAADgJJcHUj179tTEiRP1xRdfaM+ePVqwYIFefvll3XLLLZIkm82mESNG6LnnntOiRYu0ZcsWDRgwQOHh4erVq5ckqXHjxuratavuvfderV+/XmvWrNGwYcPUt29fhYeHS5LuvPNO+fr6avDgwdq2bZvmzZun1157TSNHjnT1lAAAAC4ZPRIAAMBJLv/J3uuvv66nn35aDz74oDIzMxUeHq777rtPY8eOdYx57LHHdPToUQ0dOlRZWVnq0KGDli5dKn9/f8eYOXPmaNiwYercubMqVKig3r17a9q0aY7tQUFBWrZsmRISEhQVFaXq1atr7NixGjp0qKunBAAAcMnokQAAAE6yGWOMu4twF7vdrqCgIGVnZyswMLDEX+/njW+rYPc+p3V1g7sVGefTtUOJ1wIAQHll9ed/WUSPBABA+WP157/Lf7IHAAAAAAAAnA2BFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsJS3uwso7/ZkLXF6XDe4m5sqAQAAKD3okQAA8GycIQUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLlUgg9dtvv+muu+5StWrVFBAQoObNm2vjxo2O7cYYjR07VmFhYQoICFBsbKx27drltI9Dhw6pf//+CgwMVHBwsAYPHqwjR444jfnhhx907bXXyt/fX7Vr19aUKVNKYjoAAAAuQY8EAADwD5cHUn/99ZeuueYa+fj4aMmSJfrxxx81depUValSxTFmypQpmjZtmmbMmKF169apYsWKiouL099//+0Y079/f23btk2JiYlavHixVq1apaFDhzq22+12denSRREREUpJSdGLL76o8ePHa+bMma6eEgAAwCWjRwIAADjJZowxrtzh6NGjtWbNGn377bfFbjfGKDw8XI888ogeffRRSVJ2drZCQkI0e/Zs9e3bV9u3b1eTJk20YcMGtWnTRpK0dOlSde/eXb/++qvCw8M1ffp0Pfnkk0pPT5evr6/jtRcuXKgdO3acV612u11BQUHKzs5WYGCgC2Z/dj9vfFsFu/eddUzd4G7y6dqhxGsBAKC8svrzvxA90pnRIwEA4H5Wf/67/AypRYsWqU2bNrr99ttVs2ZNtWrVSu+8845je1pamtLT0xUbG+tYFxQUpOjoaCUnJ0uSkpOTFRwc7Gi0JCk2NlYVKlTQunXrHGM6duzoaLQkKS4uTjt37tRff/1VbG05OTmy2+1OCwAAgBXokQAAAE5yeSD1yy+/aPr06apfv76++uorPfDAA/r3v/+t999/X5KUnp4uSQoJCXF6XkhIiGNbenq6atas6bTd29tbVatWdRpT3D5OfY3TTZo0SUFBQY6ldu3alzhbAACA80OPBAAAcJLLA6mCggK1bt1azz//vFq1aqWhQ4fq3nvv1YwZM1z9UhdszJgxys7Odiz79+93d0kAAKCcoEcCAAA4yeWBVFhYmJo0aeK0rnHjxtq375/rAoSGhkqSMjIynMZkZGQ4toWGhiozM9Np+4kTJ3To0CGnMcXt49TXOJ2fn58CAwOdFgAAACvQIwEAAJzk8kDqmmuu0c6dO53W/fTTT4qIiJAkRUZGKjQ0VElJSY7tdrtd69atU0xMjCQpJiZGWVlZSklJcYxZvny5CgoKFB0d7RizatUq5eXlOcYkJiaqYcOGTnerKYvylq4usgAAgLKNHunS0SMBAOA5XB5IPfzww/ruu+/0/PPPa/fu3Zo7d65mzpyphIQESZLNZtOIESP03HPPadGiRdqyZYsGDBig8PBw9erVS9I/3xZ27dpV9957r9avX681a9Zo2LBh6tu3r8LDwyVJd955p3x9fTV48GBt27ZN8+bN02uvvaaRI0e6ekoAAACXjB4JAADgJG9X77Bt27ZasGCBxowZo2eeeUaRkZF69dVX1b9/f8eYxx57TEePHtXQoUOVlZWlDh06aOnSpfL393eMmTNnjoYNG6bOnTurQoUK6t27t6ZNm+bYHhQUpGXLlikhIUFRUVGqXr26xo4dq6FDh7p6SgAAAJeMHgkAAOAkmzHGuLsId7Hb7QoKClJ2drYl10r4eePbKti976xj6gZ3K3a9T9cOJVESAADljtWf/2URPRIAAOWP1Z//Lv/JHgAAAAAAAHA2BFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOXt7gI8Wd7S1U6PC7L2uakSAACA0oMeCQAAcIYUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBS3u4uAM72ZC1xelw3uJubKgEAACg9Tu+RJPokAADKMs6QAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApb3cXgPOTt3S102Ofrh3cVAkAAEDpQY8EAEDZVOJnSE2ePFk2m00jRoxwrPv777+VkJCgatWqqVKlSurdu7cyMjKcnrdv3z716NFDl112mWrWrKlRo0bpxIkTTmNWrFih1q1by8/PT1deeaVmz55d0tMBAABwCXokAABQnpVoILVhwwa9/fbbatGihdP6hx9+WJ9//rk++ugjrVy5UgcOHNCtt97q2J6fn68ePXooNzdXa9eu1fvvv6/Zs2dr7NixjjFpaWnq0aOHbrjhBqWmpmrEiBEaMmSIvvrqq5KcEgAAwCWjRwIAAOVdiQVSR44cUf/+/fXOO++oSpUqjvXZ2dl677339PLLL6tTp06KiorSrFmztHbtWn333XeSpGXLlunHH3/UBx98oKuuukrdunXTs88+qzfffFO5ubmSpBkzZigyMlJTp05V48aNNWzYMN1222165ZVXSmpKAAAAl4weCQAAoAQDqYSEBPXo0UOxsbFO61NSUpSXl+e0vlGjRqpTp46Sk5MlScnJyWrevLlCQkIcY+Li4mS327Vt2zbHmNP3HRcX59gHAABAaUSPBAAAUEIXNf/www/1/fffa8OGDUW2paeny9fXV8HBwU7rQ0JClJ6e7hhzaqNVuL1w29nG2O12HT9+XAEBAUVeOycnRzk5OY7Hdrv9wicHAABwkeiRAAAA/uHyM6T279+v4cOHa86cOfL393f17i/JpEmTFBQU5Fhq167t7pIAAEA5QY8EAABwkssDqZSUFGVmZqp169by9vaWt7e3Vq5cqWnTpsnb21shISHKzc1VVlaW0/MyMjIUGhoqSQoNDS1yR5nCx+caExgYWOw3f5I0ZswYZWdnO5b9+/e7YsoAAADnRI8EAABwkssDqc6dO2vLli1KTU11LG3atFH//v0d/+3j46OkpCTHc3bu3Kl9+/YpJiZGkhQTE6MtW7YoMzPTMSYxMVGBgYFq0qSJY8yp+ygcU7iP4vj5+SkwMNBpAQAAsAI9EgAAwEkuv4ZU5cqV1axZM6d1FStWVLVq1RzrBw8erJEjR6pq1aoKDAzUQw89pJiYGF199dWSpC5duqhJkya6++67NWXKFKWnp+upp55SQkKC/Pz8JEn333+/3njjDT322GMaNGiQli9frvnz5+uLL75w9ZQAAAAuGT0SAADASSVyUfNzeeWVV1ShQgX17t1bOTk5iouL01tvveXY7uXlpcWLF+uBBx5QTEyMKlasqPj4eD3zzDOOMZGRkfriiy/08MMP67XXXlOtWrX07rvvKi4uzh1TAgAAuGT0SAAAoLywGWOMu4twF7vdrqCgIGVnZ5fIqel5S1c7Pd6TteSC91E3uFux6326driomgAAKO9K+vPfE5SFHkkqvk+iRwIA4OJY3SO5/BpSAAAAAAAAwNkQSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOXt7gI82Z6sJe4uAQAAoNShRwIAAARSpVxxDVvd4G5uqAQAAKB0Ob1PokcCAKDs4Cd7AAAAAAAAsBSBFAAAAAAAACzFT/bKqLylq4us8+nawQ2VAAAAlB70SAAAlA2cIQUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUt7uLgAXbk/WEqfHdYO7uakSAACA0oMeCQCAsoMzpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlnJ5IDVp0iS1bdtWlStXVs2aNdWrVy/t3LnTaczff/+thIQEVatWTZUqVVLv3r2VkZHhNGbfvn3q0aOHLrvsMtWsWVOjRo3SiRMnnMasWLFCrVu3lp+fn6688krNnj3b1dMBAABwCXokAACAk1weSK1cuVIJCQn67rvvlJiYqLy8PHXp0kVHjx51jHn44Yf1+eef66OPPtLKlSt14MAB3XrrrY7t+fn56tGjh3Jzc7V27Vq9//77mj17tsaOHesYk5aWph49euiGG25QamqqRowYoSFDhuirr75y9ZTKjLylq4ssAACgdKBHch96JAAASh+bMcaU5Av8/vvvqlmzplauXKmOHTsqOztbNWrU0Ny5c3XbbbdJknbs2KHGjRsrOTlZV199tZYsWaKbbrpJBw4cUEhIiCRpxowZevzxx/X777/L19dXjz/+uL744gtt3brV8Vp9+/ZVVlaWli5del612e12BQUFKTs7W4GBgS6f+64Pn3T5PotztjvI+HTtYEkNAACUFSX9+X++6JFKHj0SAADnz+oeqcSvIZWdnS1Jqlq1qiQpJSVFeXl5io2NdYxp1KiR6tSpo+TkZElScnKymjdv7mi0JCkuLk52u13btm1zjDl1H4VjCvcBAABQmtEjAQCA8sy7JHdeUFCgESNG6JprrlGzZs0kSenp6fL19VVwcLDT2JCQEKWnpzvGnNpoFW4v3Ha2MXa7XcePH1dAQECRenJycpSTk+N4bLfbL22CAAAAF4EeCQAAlHcleoZUQkKCtm7dqg8//LAkX+a8TZo0SUFBQY6ldu3a7i4JAACUQ/RIAACgvCuxQGrYsGFavHixvvnmG9WqVcuxPjQ0VLm5ucrKynIan5GRodDQUMeY0+8oU/j4XGMCAwOL/eZPksaMGaPs7GzHsn///kuaIwAAwIWiRwIAACiBQMoYo2HDhmnBggVavny5IiMjnbZHRUXJx8dHSUlJjnU7d+7Uvn37FBMTI0mKiYnRli1blJmZ6RiTmJiowMBANWnSxDHm1H0UjincR3H8/PwUGBjotAAAAFiBHgkAAOAkl19DKiEhQXPnztVnn32mypUrO65nEBQUpICAAAUFBWnw4MEaOXKkqlatqsDAQD300EOKiYnR1VdfLUnq0qWLmjRporvvvltTpkxRenq6nnrqKSUkJMjPz0+SdP/99+uNN97QY489pkGDBmn58uWaP3++vvjiC1dPCQAA4JLRIwEAAJzk8jOkpk+fruzsbF1//fUKCwtzLPPmzXOMeeWVV3TTTTepd+/e6tixo0JDQ/Xpp586tnt5eWnx4sXy8vJSTEyM7rrrLg0YMEDPPPOMY0xkZKS++OILJSYmqmXLlpo6dareffddxcXFuXpKAAAAl4weCQAA4CSbMca4uwh3sdvtCgoKUnZ2domcmr7rwyddvs/i1A3udsZtPl07WFIDAABlRUl//nsCeiQAAMofq3ukEr3LHgAAAAAAAHA6AikAAAAAAABYyuUXNYf19mQtcXp8ttPTAQAAyovTeySJPgkAgNKCM6QAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAICluKi5h8tbutrpsU/XDm6qBAAAoPSgRwIAwL04QwoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYClvdxcA19uTtaTIurrB3dxQCQAAQOlyep9EjwQAgHsQSJUzeUtXF1nn07WDGyoBAAAoPeiRAACwFj/ZAwAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYytvdBcAae7KWOD2uG9zNTZUAAACUHvRIAAC4B4EUlLd0dZF1Pl07uKESAACA0oMeCQCAksNP9gAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKW4qHk5dfodZSTuKgMAAECPBACANThDCgAAAAAAAJbiDCkU6/TbHHOLYwAAAHokAABchTOkAAAAAAAAYCnOkILD6ddM4HoJAAAA9EgAAJQEAimcl9NPT5c4RR0AAIAeCQCAi8NP9gAAAAAAAGApAikAAAAAAABYip/s4YzOdb0ETlEHAADlET0SAACXjjOkAAAAAAAAYCnOkMJ5O/3bQOnc3wjybSAAAPB09EgAAFw4zpACAAAAAACApThDCiWKaygAAAAURY8EACjvCKRwSc51Uc/i0IABAABPR48EAMDZlflA6s0339SLL76o9PR0tWzZUq+//rratWvn7rLKreKuoXC64hoyrqsAAIBr0SOVLvRIAAA4K9OB1Lx58zRy5EjNmDFD0dHRevXVVxUXF6edO3eqZs2a7i4PZ3CuhqxucDe+IQQA4BLQI5VN9EgAgPLEZowx7i7iYkVHR6tt27Z64403JEkFBQWqXbu2HnroIY0ePfqcz7fb7QoKClJ2drYCAwNdXt+uD590+T5RvLOdBk+TBgA4VUl//pcG9Eg41Zn6JHokAMCprO6RyuwZUrm5uUpJSdGYMWMc6ypUqKDY2FglJycX+5ycnBzl5OQ4HmdnZ0v6500vCUeO5Zx7EFxi67GFZ974n7Nsuwh1gm68oPE+N8a49PUBAJem8HO/DH8nd1b0SDjdGfskN/dIEn0SAJQmVvdIZTaQ+uOPP5Sfn6+QkBCn9SEhIdqxY0exz5k0aZImTJhQZH3t2rVLpEZ4qqnuLgAA4AKHDx9WUFCQu8twOXokuA89EgB4Aqt6pDIbSF2MMWPGaOTIkY7HBQUFOnTokKpVqyabzeay17Hb7apdu7b279/vsT8FKFRe5lpe5ikxV09UXuYplZ+5lpd5SiUzV2OMDh8+rPDwcJfszxPQI7leeZlreZmnxFw9UXmZp1R+5lpe5il5Ro9UZgOp6tWry8vLSxkZGU7rMzIyFBoaWuxz/Pz85Ofn57QuODi4pEpUYGCgx/8lKFRe5lpe5ikxV09UXuYplZ+5lpd5Sq6fqyeeGVWIHql0KS9zLS/zlJirJyov85TKz1zLyzylst0jVbDslVzM19dXUVFRSkpKcqwrKChQUlKSYmL4LToAACif6JEAAEBZUGbPkJKkkSNHKj4+Xm3atFG7du306quv6ujRo7rnnnvcXRoAAIDb0CMBAIDSrkwHUnfccYd+//13jR07Vunp6brqqqu0dOnSIhfxtJqfn5/GjRtX5NR3T1Re5lpe5ikxV09UXuYplZ+5lpd5SuVrrq5Ej+R+5WWu5WWeEnP1ROVlnlL5mWt5mafkGXO1GU+95zEAAAAAAABKpTJ7DSkAAAAAAACUTQRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUiVgDfffFN169aVv7+/oqOjtX79eneXdMlWrVqlnj17Kjw8XDabTQsXLnTabozR2LFjFRYWpoCAAMXGxmrXrl3uKfYSTJo0SW3btlXlypVVs2ZN9erVSzt37nQa8/fffyshIUHVqlVTpUqV1Lt3b2VkZLip4oszffp0tWjRQoGBgQoMDFRMTIyWLFni2O4JcyzO5MmTZbPZNGLECMc6T5nr+PHjZbPZnJZGjRo5tnvKPAv99ttvuuuuu1StWjUFBASoefPm2rhxo2O7p/ybVLdu3SLH1WazKSEhQZLnHNf8/Hw9/fTTioyMVEBAgOrVq6dnn31Wp953xVOOaXlHj1R2/+zSI/3DE+Z4JvRJZX+eEj0SPVIZO6YGLvXhhx8aX19f85///Mds27bN3HvvvSY4ONhkZGS4u7RL8uWXX5onn3zSfPrpp0aSWbBggdP2yZMnm6CgILNw4UKzefNm869//ctERkaa48ePu6fgixQXF2dmzZpltm7dalJTU0337t1NnTp1zJEjRxxj7r//flO7dm2TlJRkNm7caK6++mrTvn17N1Z94RYtWmS++OIL89NPP5mdO3eaJ554wvj4+JitW7caYzxjjqdbv369qVu3rmnRooUZPny4Y72nzHXcuHGmadOm5uDBg47l999/d2z3lHkaY8yhQ4dMRESEGThwoFm3bp355ZdfzFdffWV2797tGOMp/yZlZmY6HdPExEQjyXzzzTfGGM85rhMnTjTVqlUzixcvNmlpaeajjz4ylSpVMq+99ppjjKcc0/KMHqls/9mlR/LcHskY+iRPmSc9Ej1SWTumBFIu1q5dO5OQkOB4nJ+fb8LDw82kSZPcWJVrnd5sFRQUmNDQUPPiiy861mVlZRk/Pz/zv//9zw0Vuk5mZqaRZFauXGmM+WdePj4+5qOPPnKM2b59u5FkkpOT3VWmS1SpUsW8++67HjnHw4cPm/r165vExERz3XXXORotT5rruHHjTMuWLYvd5knzNMaYxx9/3HTo0OGM2z3536Thw4ebevXqmYKCAo86rj169DCDBg1yWnfrrbea/v37G2M8+5iWJ/RI//CUP7v0SP/whDnSJ3nOPOmR6JGMKVvHlJ/suVBubq5SUlIUGxvrWFehQgXFxsYqOTnZjZWVrLS0NKWnpzvNOygoSNHR0WV+3tnZ2ZKkqlWrSpJSUlKUl5fnNNdGjRqpTp06ZXau+fn5+vDDD3X06FHFxMR45BwTEhLUo0cPpzlJnnc8d+3apfDwcF1xxRXq37+/9u3bJ8nz5rlo0SK1adNGt99+u2rWrKlWrVrpnXfecWz31H+TcnNz9cEHH2jQoEGy2WwedVzbt2+vpKQk/fTTT5KkzZs3a/Xq1erWrZskzz2m5Qk9kuf92aVH+kdZn6NEn+RJ86RHokeSytYx9XZ3AZ7kjz/+UH5+vkJCQpzWh4SEaMeOHW6qquSlp6dLUrHzLtxWFhUUFGjEiBG65ppr1KxZM0n/zNXX11fBwcFOY8viXLds2aKYmBj9/fffqlSpkhYsWKAmTZooNTXVY+YoSR9++KG+//57bdiwocg2Tzqe0dHRmj17tho2bKiDBw9qwoQJuvbaa7V161aPmqck/fLLL5o+fbpGjhypJ554Qhs2bNC///1v+fr6Kj4+3mP/TVq4cKGysrI0cOBASZ7153f06NGy2+1q1KiRvLy8lJ+fr4kTJ6p///6SPPdzpjyhR/KsP7v0SMFO48viHAvRJ3lWn0SPNFCSZ/3Z9fQeiUAKOIOEhARt3bpVq1evdncpJaJhw4ZKTU1Vdna2Pv74Y8XHx2vlypXuLsul9u/fr+HDhysxMVH+/v7uLqdEFX5LIkktWrRQdHS0IiIiNH/+fAUEBLixMtcrKChQmzZt9Pzzz0uSWrVqpa1bt2rGjBmKj493c3Ul57333lO3bt0UHh7u7lJcbv78+ZozZ47mzp2rpk2bKjU1VSNGjFB4eLhHH1OgrKJH8gz0SZ7XJ9Ej0SOVNfxkz4WqV68uLy+vIlfvz8jIUGhoqJuqKnmFc/OkeQ8bNkyLFy/WN998o1q1ajnWh4aGKjc3V1lZWU7jy+JcfX19deWVVyoqKkqTJk1Sy5Yt9dprr3nUHFNSUpSZmanWrVvL29tb3t7eWrlypaZNmyZvb2+FhIR4zFxPFxwcrAYNGmj37t0edUwlKSwsTE2aNHFa17hxY8ep9574b9LevXv19ddfa8iQIY51nnRcR40apdGjR6tv375q3ry57r77bj388MOaNGmSJM88puUNPZLnzJseyTPmKNEneWKfRI/0D086pp7eIxFIuZCvr6+ioqKUlJTkWFdQUKCkpCTFxMS4sbKSFRkZqdDQUKd52+12rVu3rszN2xijYcOGacGCBVq+fLkiIyOdtkdFRcnHx8dprjt37tS+ffvK3FxPV1BQoJycHI+aY+fOnbVlyxalpqY6ljZt2qh///6O//aUuZ7uyJEj+vnnnxUWFuZRx1SSrrnmmiK3Gv/pp58UEREhybP+TSo0a9Ys1axZUz169HCs86TjeuzYMVWo4NySeHl5qaCgQJJnHtPyhh6p7P/ZpUfyrB5Jok/yxD6JHukfnnRMPb5HcvdV1T3Nhx9+aPz8/Mzs2bPNjz/+aIYOHWqCg4NNenq6u0u7JIcPHzabNm0ymzZtMpLMyy+/bDZt2mT27t1rjPnnVpPBwcHms88+Mz/88IO5+eaby8ytJk/1wAMPmKCgILNixQqn24geO3bMMeb+++83derUMcuXLzcbN240MTExJiYmxo1VX7jRo0eblStXmrS0NPPDDz+Y0aNHG5vNZpYtW2aM8Yw5nsmpd48xxnPm+sgjj5gVK1aYtLQ0s2bNGhMbG2uqV69uMjMzjTGeM09j/rk1tbe3t5k4caLZtWuXmTNnjrnsssvMBx984BjjKf8mGfPPncjq1KljHn/88SLbPOW4xsfHm8svv9xxS+NPP/3UVK9e3Tz22GOOMZ50TMsreqSy/WeXHsnzeyRj6JPK+jzpkU7ylGPq6T0SgVQJeP31102dOnWMr6+vadeunfnuu+/cXdIl++abb4ykIkt8fLwx5p/bTT799NMmJCTE+Pn5mc6dO5udO3e6t+iLUNwcJZlZs2Y5xhw/ftw8+OCDpkqVKuayyy4zt9xyizl48KD7ir4IgwYNMhEREcbX19fUqFHDdO7c2dFoGeMZczyT0xstT5nrHXfcYcLCwoyvr6+5/PLLzR133GF2797t2O4p8yz0+eefm2bNmhk/Pz/TqFEjM3PmTKftnvJvkjHGfPXVV0ZSsfV7ynG12+1m+PDhpk6dOsbf399cccUV5sknnzQ5OTmOMZ50TMszeqSy+2eXHukfnjDHs6FPKtvzNIYeqZCnHFNP75Fsxhhj1dlYAAAAAAAAANeQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKOIcNGzaoffv2qlixomw2m1JTU91dUpm2Z88e2Ww2zZ49292luITNZtP48ePdXcYFmT17tmw2m/bs2ePS/e7fv1/+/v5as2bNOcdef/31uv76653WZWRk6LbbblO1atVks9n06quvXtDr9+3bV3369Lmg5wAALh49kmvRI7kfPRJgLQIp4Czy8vJ0++2369ChQ3rllVf03//+VxEREe4uy+2OHTum8ePHa8WKFeXidS/E2rVrNX78eGVlZbm7FMs988wzio6O1jXXXHNRz3/44Yf11VdfacyYMfrvf/+rrl27SpImTpyof/3rXwoJCTlrc/v444/rk08+0ebNmy92CgCA80SPVDx6pDOjR3Jtj7Rjxw499thjuuqqq1S5cmWFhYWpR48e2rhxY5Hn0yOh1DIAzmj79u1GknnnnXfcXUqp8vvvvxtJZty4cRf83IKCAnP8+HFz4sQJS1+3pBw/ftzk5eU5Hr/44otGkklLS3NfUedw4sQJc/z4cVNQUOCyfWZmZhofHx8zd+7c8xp/3XXXmeuuu85pXUhIiOnfv3+RsZJMaGioiYuLO+fxb9eunbn77rsvpHQAwEWgRyoePdJJ9Ej/KKke6ZFHHjHBwcFm8ODB5u233zZTpkwx9erVM15eXiYxMbHIfumRUBpxhhRwFpmZmZKk4ODgc449evRoCVfjGWw2m/z9/eXl5eXuUlzC399f3t7e7i7jgnh5ecnf3182m81l+/zggw/k7e2tnj17XvQ+MjMzi/27lpaWpoMHD+qDDz445z769OmjTz/9VEeOHLnoOgAA50aP5Hr0SO5Xlnqkfv36af/+/Xr33Xc1dOhQjRo1SuvWrVPVqlWLPZucHgmlkrsTMaC0io+PN5KclsJvK+Lj403FihXN7t27zf9j787Dqqj7/4+/DsgmeMAFQRL3lTTckTQtRXHNNcUsl1yytFyy1LvcMtNMrSyXrG41y69mpZkLpriVmQuGud9237gUApYKiikI8/ujH6dOuKEwh+X5uK5zfTuf+ZyZ9wxe93l93zNnpm3btoaXl5fRqVMnwzAMY8eOHUb37t2NwMBAw9XV1ShbtqwxYsQI48qVK1m28dlnnxk1a9Y03NzcjPvvv9/48ssvjb59+xrly5e3zYmNjTUkGW+++abx3nvvGRUrVjQ8PDyMVq1aGadPnzYyMjKMV1991bjvvvsMd3d349FHHzV+//33LNtav3690bRpU6No0aKGl5eX0a5dO+PQoUNZ9tnT09P45ZdfjE6dOhmenp5GqVKljBdeeMF2ti6znn++7vSMXObnFy1alOPbPXr0qNGtWzejePHihpubm1G/fn3jq6++stv+okWLDEnGd999Z4wcOdIoVaqUUbRoUaNz585GYmKi3dy9e/carVu3NkqWLGm4u7sbFSpUMPr372835+81TJw48YY1xsbGGs2aNTMeeOCBGx6TatWqGa1bt76j42cYf545u//++40DBw4YzZo1Mzw8PIzKlSsbK1euNAzDMLZt22Y0atTIcHd3N6pVq5blLFnmMfj7Gcry5csb7du3N7799lujYcOGhpubm1GxYkVjyZIld1RTs2bNjIcffviGy95//32jUqVKhru7u9GwYUNjx44ddmf/Muv55+uf7uTs74EDBwxJxpdffnlHdQMAso+MREYiI+WtjPR3Xbt2NUqUKJFlnIyEvIgrpICbePrpp/Wvf/1LkvT8889r6dKlevnll23Lr1+/rvDwcJUuXVozZ85Ut27dJEkrV67UlStX9Mwzz+jdd99VeHi43n33XfXp08du/evWrVPPnj3l4uKiadOmqWvXrhowYICio6NvWM+nn36qefPm6bnnntMLL7yg7du3q0ePHnrllVcUGRmpMWPGaPDgwfr66681evRou88uXbpU7du3l5eXl9544w2NHz9eR44cUdOmTbPctDE9PV3h4eEqWbKkZs6cqebNm2vWrFlauHChJMnX11fz58+XJHXp0kVLly7V0qVL1bVr17s/2Dmw3cOHD6tx48Y6evSoxo4dq1mzZsnT01OdO3fWqlWrsmzvueee04EDBzRx4kQ988wz+vrrrzVs2DDb8sTERLVu3VonT57U2LFj9e6776p379764YcfbroPXbt2Va9evSTJdj+NpUuXytfXV08++aR++uknHTp0yO4ze/fu1X/+8x898cQT2TpeFy5cUIcOHRQSEqIZM2bIzc1NERERWrFihSIiItSuXTtNnz5dKSkp6t69uy5dunTbdf7888/q3r27WrVqpVmzZql48eLq16+fDh8+fMvPpaWlae/evapXr16WZR999JGefvpp+fv7a8aMGWrSpIkeffRRnTlzxjanWbNmWrp0qSSpVatWtuN2N4KCguTh4XFHNw0FANwdMhIZiYyUdzNSfHy8SpUqlWWcjIQ8ydEdMSAv27p1qyHJdlYlU+aZwbFjx2b5zI3O8k2bNs2wWCzGqVOnbGO1a9c2ypYta1y6dMk2tm3bNkPSDc/++fr6GhcvXrSNjxs3zpBkBAcH2/0+v1evXoarq6tx9epVwzAM49KlS4aPj48xaNAgu5ri4+MNb29vu/HM/Xr11Vft5tatW9eoX7++7f293KfgZmf/7nW7LVu2NGrXrm3bb8P4814MDz74oFG1alXbWOaZprCwMLv7A4wcOdJwdna2HeNVq1YZkoy9e/fecn/+Wc/N7o9w8eJFw93d3RgzZozd+PPPP294enoaly9fvuV2/q558+aGJLt7ERw7dsyQZDg5ORk//PCDbXzjxo1ZjvfNzv5JMnbs2GEbS0xMNNzc3IwXXnjhlvX8/PPPhiTj3XfftRtPTU01SpcubdSpU8e4du2abXzhwoV2Z9MzSTKGDh160+3c6b+7atWqGW3btr3lHADAvSEj/YmMdHNkJPMyUqYdO3YYFovFGD9+/A2Xk5GQ13CFFHAPnnnmmSxjHh4etv9OSUnRb7/9pgcffFCGYejHH3+UJMXFxengwYPq06ePvLy8bPObN2+u2rVr33Bbjz32mLy9vW3vQ0JCJElPPPGE3e/zQ0JClJqaql9//VWStGnTJl28eFG9evXSb7/9Zns5OzsrJCREW7duzbKtIUOG2L1/6KGH9L///e+2x+Ne3e12z58/ry1btqhHjx66dOmSbR9///13hYeH68SJE7bjkWnw4MF29wd46KGHlJ6erlOnTkn6654Ya9euVVpa2j3umeTt7a1OnTrp//7v/2QYhqQ/z3iuWLFCnTt3lqenZ7bW5+XlpYiICNv76tWry8fHRzVr1rT925D++ndyJ8cxKChIDz30kO29r6+vqlevftvP/v7775Kk4sWL243v27dPiYmJGjJkiFxdXW3j/fr1s/u3nNOKFy+u3377LdfWDwC4PTJSziIj3bnCmpESExP1+OOPq2LFinrppZduOIeMhLyGhhRwl4oUKaKyZctmGT99+rT69eunEiVKyMvLS76+vmrevLkkKSkpSZJsX+hVqlTJ8vkbjUlSuXLl7N5nflkFBgbecPzChQuSpBMnTkiSWrRoIV9fX7vXN998Y7spaSZ3d3f5+vrajRUvXty2vtxyL9v9+eefZRiGxo8fn2UfJ06cKElZ9vOfxzMzKGRur3nz5urWrZsmT56sUqVKqVOnTlq0aJGuXbt21/vYp08fnT59Wt9++60kafPmzUpISNCTTz6Z7XWVLVs2yw03vb29b/vv4Vb+eUyk7P3tM0Nkpsx/51WrVrUbd3FxUaVKle5onXfDMIwcvRkpACB7yEg5i4yUPYUxI6WkpKhDhw66dOmSvvrqK7tm7j/rICMhL8lfjz0A8hA3Nzc5Odn3dNPT09WqVSudP39eY8aMUY0aNeTp6alff/1V/fr1U0ZGxl1v72ZPXLnZeOYXX+Y2ly5dKn9//yzz/vn0E0c92eVetpu5j6NHj1Z4ePgN5/wzxN7uuFksFn3++ef64Ycf9PXXX2vjxo166qmnNGvWLP3www83/aK/lfDwcPn5+emTTz5Rs2bN9Mknn8jf319hYWHZXtfd/nu4m3Xe7rMlS5aUdGeBzgwXLlzIEvAAAOYhI+UsMlL2FLaMlJqaqq5du+qnn37Sxo0bVatWrZvOJSMhr6EhBeSggwcP6j//+Y+WLFlid4POTZs22c0rX768pD/PWv3TjcbuReXKlSVJpUuXvqsv9Rtx1JmVm20380ySi4tLju1jpsaNG6tx48aaOnWqli1bpt69e2v58uUaOHBgtmqU/gwzjz/+uBYvXqw33nhDq1ev1qBBg/L9453LlSsnDw8PxcbG2o1n/js/ceKEWrRoYRtPS0tTbGysgoODc7yW69ev68yZM3r00UdzfN0AgLtHRspdZKS8KbczUkZGhvr06aOoqCh99tlntisOb4SMhLyIn+wBOSjzS/PvZ0sMw9A777xjNy8gIEC1atXSxx9/rMuXL9vGt2/froMHD+ZoTeHh4bJarXr99ddv+Dv/c+fOZXudRYsWlSRdvHjxXsvLke2WLl1aDz/8sN5//32dPXs2y+fuZh8vXLiQ5axXnTp1JOmWl6Rn3ufgZsfmySef1IULF/T000/r8uXL2X5yTF7k4uKiBg0aaN++fXbjDRo0kK+vrxYsWKDU1FTb+OLFi3Pt386RI0d09epVPfjgg7myfgDA3SEj5S4yUt6U2xnpueee04oVKzRv3rzbPs2RjIS8iCukgBxUo0YNVa5cWaNHj9avv/4qq9WqL7744oaX6b7++uvq1KmTmjRpov79++vChQt67733VKtWLbsAdq+sVqvmz5+vJ598UvXq1VNERIR8fX11+vRprVu3Tk2aNNF7772XrXV6eHgoKChIK1asULVq1VSiRAnVqlXrlpcI54RbbXfu3Llq2rSpateurUGDBqlSpUpKSEjQrl279Msvv+jAgQPZ2taSJUs0b948denSRZUrV9alS5f0wQcfyGq1ql27djf9XP369SVJL7/8siIiIuTi4qKOHTvaQljdunVVq1YtrVy5UjVr1rzhY4Dzo06dOunll19WcnKyrFarpD9D2Guvvaann35aLVq0UM+ePRUbG6tFixZl6/4IS5cu1alTp3TlyhVJ0o4dO/Taa69J+jO8Zp5llP480160aFG1atUqB/cOAHCvyEhkJDJSzmakt99+W/PmzVNoaKiKFi2qTz75xG55ly5d7G4IT0ZCXsQVUkAOcnFx0ddff606depo2rRpmjx5sqpWraqPP/44y9yOHTvq//7v/5SamqqxY8fqyy+/1OLFi1W9enW5u7vnaF2PP/64oqKidN999+nNN9/U8OHDtXz5ctWpU0f9+/e/q3V++OGHuu+++zRy5Ej16tVLn3/+eY7WnN3tBgUFad++fWrfvr0WL16soUOHasGCBXJyctKECROyvZ3mzZurQYMGWr58uZ5//nnNmDFDVatW1ZYtW1SxYsWbfq5hw4aaMmWKDhw4oH79+qlXr15Zzj5m/lThbm7UmVc9+eSTSk9P15o1a+zGBw8erHnz5ikuLk4vvviivv32W61ZsybLjUVv5aOPPtL48eM1bdo0SdLWrVs1fvx4jR8/Pssl8CtXrlTXrl1VrFixe98pAECOISPlPjJS3pRbGSkmJkaStGvXLj355JNZXv88tmQk5EUW407u4gbANHXq1JGvr2+Weyqg4HjnnXc0cuRInTx58oZPbcmvBgwYoP/85z+2J+SYLSYmRvXq1dP+/fttPx0AABQcZKSCj4yUO8hIyKu4QgpwkLS0NF2/ft1ubNu2bTpw4IAefvhhxxSFXGcYhj766CM1b968QAUtSZo4caL27t2rnTt3OmT706dPV/fu3QlaAJDPkZEKJzJS7iEjIa/iCinAQU6ePKmwsDA98cQTCggI0LFjx7RgwQJ5e3vr0KFDtsfE5hepqak6f/78Led4e3vLw8PDpIrylpSUFK1Zs0Zbt27VBx98oK+++irLU07Onz9vd2PLf3J2dpavr29ulwoAgEORkQoXMhJQeNGQAhwkKSlJgwcP1s6dO3Xu3Dl5enqqZcuWmj59uu0xxPnJtm3b9Mgjj9xyzqJFi9SvXz9zCspjTp48qYoVK8rHx0fPPvuspk6dmmXOww8/rO3bt990HeXLl9fJkydzsUoAAByPjFS4kJGAwouGFIAcceHCBUVHR99yzv33368yZcqYVFH+Ex0dfcOnDWXy8PBQkyZNTKwIAADcKzLSvSMjAQUTDSkAAAAAAACYipuaAwAAAAAAwFRFHF2AI2VkZCguLk7FihWTxWJxdDkAAMAEhmHo0qVLCggIkJMT5+ZuhIwEAEDhY3ZGKtQNqbi4OAUGBjq6DAAA4ABnzpxR2bJlHV1GnkRGAgCg8DIrIxXqhlSxYsUk/XmwrVarg6sBAABmSE5OVmBgoC0HICsyEgAAhY/ZGalQN6QyL0G3Wq2ELQAAChl+inZzZCQAAAovszISN04AAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqQn0PKQAAbiU9PV1paWmOLgPZ5OLiImdnZ0eXAQBAgUVGyp/yWkaiIQUAwD8YhqH4+HhdvHjR0aXgLvn4+Mjf358blwMAkIPISPlfXspINKQAAPiHzKBVunRpFS1aNE98YePOGIahK1euKDExUZJUpkwZB1cEAEDBQUbKv/JiRqIhBQDA36Snp9uCVsmSJR1dDu6Ch4eHJCkxMVGlS5fOU5emAwCQX5GR8r+8lpG4qTkAAH+TeT+EokWLOrgS3IvMvx/3twAAIGeQkQqGvJSRaEgBAHADXIKev/H3AwAgd/Adm7/lpb8fDSkAAAAAAACYioYUAAAAAAAATMVNzQEAuENpkd+Zti2XNk3veO7tLr2eOHGiJk2adI8V3R2LxaJVq1apc+fOd72OhQsXatmyZdq/f78uXbqkCxcuyMfHJ8dqBAAA98bMjCSRkzKdP39eEydO1DfffKPTp0/L19dXnTt31pQpU+Tt7Z2zxeYCGlIAAORzZ8+etf33ihUrNGHCBB0/ftw25uXlla31paamytXVNcfqu1dXrlxRmzZt1KZNG40bN87R5QAAgHykIOekuLg4xcXFaebMmQoKCtKpU6c0ZMgQxcXF6fPPP3d0ebfFT/ZyUVrkd1leAADkNH9/f9vL29tbFovF9j4lJUW9e/eWn5+fvLy81LBhQ23evNnu8xUqVNCUKVPUp08fWa1WDR48WJL0wQcfKDAwUEWLFlWXLl00e/bsLFcmffXVV6pXr57c3d1VqVIlTZ48WdevX7etV5K6dOkii8Vie3/gwAE98sgjKlasmKxWq+rXr699+/bddP9GjBihsWPHqnHjxjlzwOBwZCQAgFkKck6qVauWvvjiC3Xs2FGVK1dWixYtNHXqVH399de27eRlNKQAACjALl++rHbt2ikqKko//vij2rRpo44dO+r06dN282bOnKng4GD9+OOPGj9+vHbu3KkhQ4Zo+PDhiomJUatWrTR16lS7z3z77bfq06ePhg8friNHjuj999/X4sWLbfP27t0rSVq0aJHOnj1re9+7d2+VLVtWe/fuVXR0tMaOHSsXFxcTjgYAAMBfCmJOSkpKktVqVZEief8HcXm/QgAAcNeCg4MVHBxsez9lyhStWrVKa9as0bBhw2zjLVq00AsvvGB7//LLL6tt27YaPXq0JKlatWr6/vvvtXbtWtucyZMna+zYserbt68kqVKlSpoyZYpeeuklTZw4Ub6+vpIkHx8f+fv72z53+vRpvfjii6pRo4YkqWrVqrmw5wAAALdW0HLSb7/9pilTptiu4srruEIKAIAC7PLlyxo9erRq1qwpHx8feXl56ejRo1nO/DVo0MDu/fHjx9WoUSO7sX++P3DggF599VV5eXnZXoMGDdLZs2d15cqVm9Y0atQoDRw4UGFhYZo+fbr++9//3uNeAgAAZF9ByknJyclq3769goKCHHaT9uyiIQUAQAE2evRorVq1Sq+//rq+/fZbxcTEqHbt2kpNTbWb5+npme11X758WZMnT1ZMTIztdfDgQZ04cULu7u43/dykSZN0+PBhtW/fXlu2bFFQUJBWrVqV7e0DAADci4KSky5duqQ2bdqoWLFiWrVqVb65FQI/2QMAoADbuXOn+vXrpy5dukj6MxydPHnytp+rXr267V4Gmf75vl69ejp+/LiqVKly0/W4uLgoPT09y3i1atVUrVo1jRw5Ur169dKiRYtsNQIAAJihIOSk5ORkhYeHy83NTWvWrLllsyuvoSEFAEABVrVqVX355Zfq2LGjLBaLxo8fr4yMjNt+7rnnnlOzZs00e/ZsdezYUVu2bNGGDRtksVhscyZMmKAOHTqoXLly6t69u5ycnHTgwAEdOnRIr732mqQ/nyATFRWlJk2ayM3NTe7u7nrxxRfVvXt3VaxYUb/88ov27t2rbt263bSW+Ph4xcfH6+eff5YkHTx4UMWKFVO5cuVUokSJezxCAACgsMrvOSk5OVmtW7fWlStX9Mknnyg5OVnJycmSJF9fXzk7O+fAUco9/GQPAIACbPbs2SpevLgefPBBdezYUeHh4apXr95tP9ekSRMtWLBAs2fPVnBwsCIjIzVy5Ei7s27h4eFau3atvvnmGzVs2FCNGzfWW2+9pfLly9vmzJo1S5s2bVJgYKDq1q0rZ2dn/f777+rTp4+qVaumHj16qG3btpo8efJNa1mwYIHq1q2rQYMGSZKaNWumunXras2aNfdwZAAAQGGX33PS/v37tXv3bh08eFBVqlRRmTJlbK8zZ87c+wHKZRbDMAxHF+EoycnJ8vb2tj0WMaelRX6XZcylTdMc3w4AIOdcvXpVsbGxqlixYr665NkMgwYN0rFjx/Ttt986upTbutXfMbe//wsCMhIA4J/ISLeWX3JSXspI/GQPAADc0MyZM9WqVSt5enpqw4YNWrJkiebNm+fosgAAAByOnHTvaEgBAIAb2rNnj2bMmKFLly6pUqVKmjNnjgYOHOjosgAAAByOnHTvaEgBAIAb+uyzzxxdAgAAQJ5ETrp33NQcAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYqoijCwAAIL/47773TdtW5QZPZ2t+v379tGTJEklSkSJFVKJECT3wwAPq1auX+vXrJyen/HsO6vDhw5owYYKio6N16tQpvfXWWxoxYoSjywIAAP+fmRlJIif93QcffKCPP/5Yhw4dkiTVr19fr7/+uho1auTgym4v/x51AABgp02bNjp79qxOnjypDRs26JFHHtHw4cPVoUMHXb9+3dHl3bUrV66oUqVKmj59uvz9/R1dDgAAyIcKak7atm2bevXqpa1bt2rXrl0KDAxU69at9euvvzq6tNuiIQUAQAHh5uYmf39/3XfffapXr57+9a9/6auvvtKGDRu0ePFi27yLFy9q4MCB8vX1ldVqVYsWLXTgwAG7dX399ddq2LCh3N3dVapUKXXp0sW27MKFC+rTp4+KFy+uokWLqm3btjpx4oQkKSUlRVarVZ9//rnd+lavXi1PT09dunRJqampGjZsmMqUKSN3d3eVL19e06ZNu+l+NWzYUG+++aYiIiLk5uaWA0cKAAAUNgU1J3366ad69tlnVadOHdWoUUMffvihMjIyFBUVlQNHLXfRkAIAoABr0aKFgoOD9eWXX9rGHnvsMSUmJmrDhg2Kjo5WvXr11LJlS50/f16StG7dOnXp0kXt2rXTjz/+qKioKLvLvvv166d9+/ZpzZo12rVrlwzDULt27ZSWliZPT09FRERo0aJFdnUsWrRI3bt3V7FixTRnzhytWbNGn332mY4fP65PP/1UFSpUMOV4AAAAZCqIOenKlStKS0tTiRIl7u3gmIB7SAEAUMDVqFFDP/30kyTpu+++0549e5SYmGi72mjmzJlavXq1Pv/8cw0ePFhTp05VRESEJk+ebFtHcHCwJOnEiRNas2aNdu7cqQcffFDSn2fmAgMDtXr1aj322GMaOHCgHnzwQZ09e1ZlypRRYmKi1q9fr82bN0uSTp8+rapVq6pp06ayWCwqX768mYcDAADApqDlpDFjxiggIEBhYWH3fGxyG1dIAQBQwBmGIYvFIkk6cOCALl++rJIlS8rLy8v2io2N1X//+19JUkxMjFq2bHnDdR09elRFihRRSEiIbaxkyZKqXr26jh49Kklq1KiR7r//ftvNQz/55BOVL19ezZo1k/TnmcOYmBhVr15dzz//vL755ptc23cAAIBbKUg5afr06Vq+fLlWrVold3f37B8Mk3GFFAAABdzRo0dVsWJFSdLly5dVpkwZbdu2Lcs8Hx8fSZKHh8c9b3PgwIGaO3euxo4dq0WLFql///62sFevXj3FxsZqw4YN2rx5s3r06KGwsLAs91MAAADIbQUlJ82cOVPTp0/X5s2b9cADD9xzjWbgCikAAAqwLVu26ODBg+rWrZukP0NOfHy8ihQpoipVqti9SpUqJUl64IEHbnojzJo1a+r69evavXu3bez333/X8ePHFRQUZBt74okndOrUKc2ZM0dHjhxR37597dZjtVrVs2dPffDBB1qxYoW++OIL270ZAAAAzFBQctKMGTM0ZcoURUZGqkGDBnd9PMzGFVIAABQQ165dU3x8vNLT05WQkKDIyEhNmzZNHTp0UJ8+fSRJYWFhCg0NVefOnTVjxgxVq1ZNcXFxtht0NmjQQBMnTlTLli1VuXJlRURE6Pr161q/fr3GjBmjqlWrqlOnTho0aJDef/99FStWTGPHjtV9992nTp062WopXry4unbtqhdffFGtW7dW2bJlbctmz56tMmXKqG7dunJyctLKlSvl7+9vO/P4T6mpqTpy5Ijtv3/99VfFxMTIy8tLVapUyb0DCgAACoyCmpPeeOMNTZgwQcuWLVOFChUUHx8vSbafG+ZlXCEFAEABERkZqTJlyqhChQpq06aNtm7dqjlz5uirr76Ss7OzJMlisWj9+vVq1qyZ+vfvr2rVqikiIkKnTp2Sn5+fJOnhhx/WypUrtWbNGtWpU0ctWrTQnj17bNtZtGiR6tevrw4dOig0NFSGYWj9+vVycXGxq2fAgAFKTU3VU089ZTderFgxzZgxQw0aNFDDhg118uRJrV+/Xk5ON44lcXFxqlu3rurWrauzZ89q5syZqlu3rgYOHJiThw8AABRgBTUnzZ8/X6mpqerevbvKlClje82cOTMnD1+usBiGYTi6CEdJTk6Wt7e3kpKSZLVac3z9aZHfZRlzadM0x7cDAMg5V69eVWxsrCpWrJgvbgaZly1dulQjR45UXFycXF1dTd32rf6Ouf39XxCQkQAA/0RGylmOykl5KSPxkz0AAJCjrly5orNnz2r69Ol6+umnTW9GAQAA5FXkpL/c00/2pk+fLovFohEjRtjGrl69qqFDh9oek9itWzclJCTYfe706dNq3769ihYtqtKlS+vFF1/U9evX7eZs27ZN9erVk5ubm6pUqaLFixdn2f7cuXNVoUIFubu7KyQkxO4yOQAA4BgzZsxQjRo15O/vr3Hjxjm6HIcgIwEAgBshJ/3lrhtSe/fu1fvvv5/lcYIjR47U119/rZUrV2r79u2Ki4tT165dbcvT09PVvn17paam6vvvv9eSJUu0ePFiTZgwwTYnNjZW7du31yOPPKKYmBiNGDFCAwcO1MaNG21zVqxYoVGjRmnixInav3+/goODFR4ersTExLvdJQAAkAMmTZqktLQ0RUVF5fmbaeYGMhIAALiZwp6T/u6uGlKXL19W79699cEHH6h48eK28aSkJH300UeaPXu2WrRoofr162vRokX6/vvv9cMPP0iSvvnmGx05ckSffPKJ6tSpo7Zt22rKlCmaO3euUlNTJUkLFixQxYoVNWvWLNWsWVPDhg1T9+7d9dZbb9m2NXv2bA0aNEj9+/dXUFCQFixYoKJFi+rf//73vRwPAACAu0ZGAgAAuDN31ZAaOnSo2rdvr7CwMLvx6OhopaWl2Y3XqFFD5cqV065duyRJu3btUu3atW13qJek8PBwJScn6/Dhw7Y5/1x3eHi4bR2pqamKjo62m+Pk5KSwsDDbHAAAALORkQAAAO5Mtm9qvnz5cu3fv1979+7Nsiw+Pl6urq7y8fGxG/fz81N8fLxtzt+DVubyzGW3mpOcnKw//vhDFy5cUHp6+g3nHDt27Ka1X7t2TdeuXbO9T05Ovs3eAgAKq4yMDEeXgHvgiL8fGQkAUBiQkfK3vPT3y1ZD6syZMxo+fLg2bdqULx/zOG3aNE2ePNnRZQAA8jBXV1c5OTkpLi5Ovr6+cnV1lcVicXRZuEOGYSg1NVXnzp2Tk5OTaU+uISMBAAo6MlL+5qiMdCvZakhFR0crMTFR9erVs42lp6drx44deu+997Rx40alpqbq4sWLdmcAExIS5O/vL0ny9/fP8qSXzCfM/H3OP586k5CQIKvVKg8PDzk7O8vZ2fmGczLXcSPjxo3TqFGjbO+Tk5MVGBiYjSMAACjonJycVLFiRZ09e1ZxcXGOLgd3qWjRoipXrpycnO7pgcJ3jIwEACjoyEgFg9kZ6Vay1ZBq2bKlDh48aDfWv39/1ahRQ2PGjFFgYKBcXFwUFRWlbt26SZKOHz+u06dPKzQ0VJIUGhqqqVOnKjExUaVLl5Ykbdq0SVarVUFBQbY569evt9vOpk2bbOtwdXVV/fr1FRUVpc6dO0v687KzqKgoDRs27Kb1u7m5yc3NLTu7DAAohFxdXVWuXDldv35d6enpji4H2eTs7KwiRYqYetaWjAQAKAzISPmbIzLSrWSrIVWsWDHVqlXLbszT01MlS5a0jQ8YMECjRo1SiRIlZLVa9dxzzyk0NFSNGzeWJLVu3VpBQUF68sknNWPGDMXHx+uVV17R0KFDbUFoyJAheu+99/TSSy/pqaee0pYtW/TZZ59p3bp1tu2OGjVKffv2VYMGDdSoUSO9/fbbSklJUf/+/e/pgAAAIEkWi0UuLi5ycXFxdCnIB8hIAIDCgoyEnJLtm5rfzltvvSUnJyd169ZN165dU3h4uObNm2db7uzsrLVr1+qZZ55RaGioPD091bdvX7366qu2ORUrVtS6des0cuRIvfPOOypbtqw+/PBDhYeH2+b07NlT586d04QJExQfH686deooMjIyy008AQAA8gIyEgAAwF8shmEYji7CUZKTk+Xt7a2kpCRZrdYcX39a5HdZxlzaNM3x7QAAgDuX29//BQEZCQCAwsfsjOT4u1gBAAAAAACgUKEhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqIo4uoCA7eXGD3fsKPm0dVAkAAEDeQUYCAABcIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVNlqSM2fP18PPPCArFarrFarQkNDtWHDBtvyq1evaujQoSpZsqS8vLzUrVs3JSQk2K3j9OnTat++vYoWLarSpUvrxRdf1PXr1+3mbNu2TfXq1ZObm5uqVKmixYsXZ6ll7ty5qlChgtzd3RUSEqI9e/ZkZ1cAAAByDBkJAAAge7LVkCpbtqymT5+u6Oho7du3Ty1atFCnTp10+PBhSdLIkSP19ddfa+XKldq+fbvi4uLUtWtX2+fT09PVvn17paam6vvvv9eSJUu0ePFiTZgwwTYnNjZW7du31yOPPKKYmBiNGDFCAwcO1MaNG21zVqxYoVGjRmnixInav3+/goODFR4ersTExHs9HgAAANlGRgIAAMgei2EYxr2soESJEnrzzTfVvXt3+fr6atmyZerevbsk6dixY6pZs6Z27dqlxo0ba8OGDerQoYPi4uLk5+cnSVqwYIHGjBmjc+fOydXVVWPGjNG6det06NAh2zYiIiJ08eJFRUZGSpJCQkLUsGFDvffee5KkjIwMBQYG6rnnntPYsWPvuPbk5GR5e3srKSlJVqv1Xg7DDZ1Y/rLd+wo+beXSpmmObwcAANy53P7+z0RGujkyEgAAeY9ZGSnTXd9DKj09XcuXL1dKSopCQ0MVHR2ttLQ0hYWF2ebUqFFD5cqV065duyRJu3btUu3atW1BS5LCw8OVnJxsO4O4a9cuu3VkzslcR2pqqqKjo+3mODk5KSwszDbnZq5du6bk5GS7FwAAQE4iIwEAANxethtSBw8elJeXl9zc3DRkyBCtWrVKQUFBio+Pl6urq3x8fOzm+/n5KT4+XpIUHx9vF7Qyl2cuu9Wc5ORk/fHHH/rtt9+Unp5+wzmZ67iZadOmydvb2/YKDAzM7u4DAADcEBkJAADgzmW7IVW9enXFxMRo9+7deuaZZ9S3b18dOXIkN2rLcePGjVNSUpLtdebMGUeXBAAACggyEgAAwJ0rkt0PuLq6qkqVKpKk+vXra+/evXrnnXfUs2dPpaam6uLFi3ZnABMSEuTv7y9J8vf3z/Kkl8wnzPx9zj+fOpOQkCCr1SoPDw85OzvL2dn5hnMy13Ezbm5ucnNzy+4uAwAA3BYZCQAA4M7d9T2kMmVkZOjatWuqX7++XFxcFBUVZVt2/PhxnT59WqGhoZKk0NBQHTx40O5JL5s2bZLValVQUJBtzt/XkTkncx2urq6qX7++3ZyMjAxFRUXZ5gAAADgaGQkAAODmsnWF1Lhx49S2bVuVK1dOly5d0rJly7Rt2zZt3LhR3t7eGjBggEaNGqUSJUrIarXqueeeU2hoqBo3bixJat26tYKCgvTkk09qxowZio+P1yuvvKKhQ4fazsoNGTJE7733nl566SU99dRT2rJliz777DOtW7fOVseoUaPUt29fNWjQQI0aNdLbb7+tlJQU9e/fPwcPDQAAwJ0hIwEAAGRPthpSiYmJ6tOnj86ePStvb2898MAD2rhxo1q1aiVJeuutt+Tk5KRu3brp2rVrCg8P17x582yfd3Z21tq1a/XMM88oNDRUnp6e6tu3r1599VXbnIoVK2rdunUaOXKk3nnnHZUtW1YffvihwsPDbXN69uypc+fOacKECYqPj1edOnUUGRmZ5SaeAAAAZiAjAQAAZI/FMAzD0UU4SnJysry9vZWUlCSr1Zrj6z+x/GW79xV82sqlTdMc3w4AALhzuf39XxCQkQAAKHzMzkj3fA8pAAAAAAAAIDtoSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFNlqyE1bdo0NWzYUMWKFVPp0qXVuXNnHT9+3G7O1atXNXToUJUsWVJeXl7q1q2bEhIS7OacPn1a7du3V9GiRVW6dGm9+OKLun79ut2cbdu2qV69enJzc1OVKlW0ePHiLKCXD7QAAQAASURBVPXMnTtXFSpUkLu7u0JCQrRnz57s7A4AAECOICMBAABkT7YaUtu3b9fQoUP1ww8/aNOmTUpLS1Pr1q2VkpJimzNy5Eh9/fXXWrlypbZv3664uDh17drVtjw9PV3t27dXamqqvv/+ey1ZskSLFy/WhAkTbHNiY2PVvn17PfLII4qJidGIESM0cOBAbdy40TZnxYoVGjVqlCZOnKj9+/crODhY4eHhSkxMvJfjAQAAkG1kJAAAgOyxGIZh3O2Hz507p9KlS2v79u1q1qyZkpKS5Ovrq2XLlql79+6SpGPHjqlmzZratWuXGjdurA0bNqhDhw6Ki4uTn5+fJGnBggUaM2aMzp07J1dXV40ZM0br1q3ToUOHbNuKiIjQxYsXFRkZKUkKCQlRw4YN9d5770mSMjIyFBgYqOeee05jx469o/qTk5Pl7e2tpKQkWa3Wuz0MN3Vi+ct27yv4tJVLm6Y5vh0AAHDncvv7XyIj3Q4ZCQCAvMeMjPR393QPqaSkJElSiRIlJEnR0dFKS0tTWFiYbU6NGjVUrlw57dq1S5K0a9cu1a5d2xa0JCk8PFzJyck6fPiwbc7f15E5J3Mdqampio6Otpvj5OSksLAw25wbuXbtmpKTk+1eAAAAOY2MBAAAcGt33ZDKyMjQiBEj1KRJE9WqVUuSFB8fL1dXV/n4+NjN9fPzU3x8vG3O34NW5vLMZbeak5ycrD/++EO//fab0tPTbzgncx03Mm3aNHl7e9tegYGB2d9xAACAWyAjAQAA3N5dN6SGDh2qQ4cOafny5TlZT64aN26ckpKSbK8zZ844uiQAAFDAkJEAAABur8jdfGjYsGFau3atduzYobJly9rG/f39lZqaqosXL9qdAUxISJC/v79tzj+f9JL5hJm/z/nnU2cSEhJktVrl4eEhZ2dnOTs733BO5jpuxM3NTW5ubtnfYQAAgDtARgIAALgz2bpCyjAMDRs2TKtWrdKWLVtUsWJFu+X169eXi4uLoqKibGPHjx/X6dOnFRoaKkkKDQ3VwYMH7Z70smnTJlmtVgUFBdnm/H0dmXMy1+Hq6qr69evbzcnIyFBUVJRtDgAAgFnISAAAANmTrSukhg4dqmXLlumrr75SsWLFbPci8Pb2loeHh7y9vTVgwACNGjVKJUqUkNVq1XPPPafQ0FA1btxYktS6dWsFBQXpySef1IwZMxQfH69XXnlFQ4cOtZ2ZGzJkiN577z299NJLeuqpp7RlyxZ99tlnWrduna2WUaNGqW/fvmrQoIEaNWqkt99+WykpKerfv39OHRsAAIA7QkYCAADInmw1pObPny9Jevjhh+3GFy1apH79+kmS3nrrLTk5Oalbt266du2awsPDNW/ePNtcZ2dnrV27Vs8884xCQ0Pl6empvn376tVXX7XNqVixotatW6eRI0fqnXfeUdmyZfXhhx8qPDzcNqdnz546d+6cJkyYoPj4eNWpU0eRkZFZbuIJAACQ28hIAAAA2WMxDMNwdBGOkpycLG9vbyUlJclqteb4+k8sf9nufQWftnJp0zTHtwMAAO5cbn//FwRkJAAACh+zM9JdP2UPAAAAAAAAuBs0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKmy3ZDasWOHOnbsqICAAFksFq1evdpuuWEYmjBhgsqUKSMPDw+FhYXpxIkTdnPOnz+v3r17y2q1ysfHRwMGDNDly5ft5vz000966KGH5O7ursDAQM2YMSNLLStXrlSNGjXk7u6u2rVra/369dndHQAAgBxBRgIAALhz2W5IpaSkKDg4WHPnzr3h8hkzZmjOnDlasGCBdu/eLU9PT4WHh+vq1au2Ob1799bhw4e1adMmrV27Vjt27NDgwYNty5OTk9W6dWuVL19e0dHRevPNNzVp0iQtXLjQNuf7779Xr169NGDAAP3444/q3LmzOnfurEOHDmV3lwAAAO4ZGQkAAODOWQzDMO76wxaLVq1apc6dO0v688xfQECAXnjhBY0ePVqSlJSUJD8/Py1evFgRERE6evSogoKCtHfvXjVo0ECSFBkZqXbt2umXX35RQECA5s+fr5dfflnx8fFydXWVJI0dO1arV6/WsWPHJEk9e/ZUSkqK1q5da6uncePGqlOnjhYsWHBH9ScnJ8vb21tJSUmyWq13exhu6sTyl+3eV/BpK5c2TXN8OwAA4M7l9ve/REa6HTISAAB5jxkZ6e9y9B5SsbGxio+PV1hYmG3M29tbISEh2rVrlyRp165d8vHxsQUtSQoLC5OTk5N2795tm9OsWTNb0JKk8PBwHT9+XBcuXLDN+ft2MudkbgcAACCvICMBAADYK5KTK4uPj5ck+fn52Y37+fnZlsXHx6t06dL2RRQpohIlStjNqVixYpZ1ZC4rXry44uPjb7mdG7l27ZquXbtme5+cnJyd3QMAALgrZCQAAAB7heope9OmTZO3t7ftFRgY6OiSAAAAHI6MBAAAzJajDSl/f39JUkJCgt14QkKCbZm/v78SExPtll+/fl3nz5+3m3Ojdfx9Gzebk7n8RsaNG6ekpCTb68yZM9ndRQAAgGwjIwEAANjL0YZUxYoV5e/vr6ioKNtYcnKydu/erdDQUElSaGioLl68qOjoaNucLVu2KCMjQyEhIbY5O3bsUFpamm3Opk2bVL16dRUvXtw25+/byZyTuZ0bcXNzk9VqtXsBAADkNjISAACAvWw3pC5fvqyYmBjFxMRI+vMmnTExMTp9+rQsFotGjBih1157TWvWrNHBgwfVp08fBQQE2J4yU7NmTbVp00aDBg3Snj17tHPnTg0bNkwREREKCAiQJD3++ONydXXVgAEDdPjwYa1YsULvvPOORo0aZatj+PDhioyM1KxZs3Ts2DFNmjRJ+/bt07Bhw+79qAAAAGQTGQkAAODOZfum5vv27dMjjzxie58ZgPr27avFixfrpZdeUkpKigYPHqyLFy+qadOmioyMlLu7u+0zn376qYYNG6aWLVvKyclJ3bp105w5c2zLvb299c0332jo0KGqX7++SpUqpQkTJmjw4MG2OQ8++KCWLVumV155Rf/6179UtWpVrV69WrVq1bqrAwEAAHAvyEgAAAB3zmIYhuHoIhwlOTlZ3t7eSkpKypVL008sf9nufQWftnJp0zTHtwMAAO5cbn//FwRkJAAACh+zM1KhesoeAAAAAAAAHI+GFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMFURRxdQmJy8uEFO+w7b3ldu8LQDqwEAAMgbyEgAABQ++f4Kqblz56pChQpyd3dXSEiI9uzZ4+iSbinj59O2V1rkd44uBwAAFFBkJAAAkJfl64bUihUrNGrUKE2cOFH79+9XcHCwwsPDlZiY6OjSAAAAHIaMBAAA8rp83ZCaPXu2Bg0apP79+ysoKEgLFixQ0aJF9e9//9vRpQEAADgMGQkAAOR1+fYeUqmpqYqOjta4ceNsY05OTgoLC9OuXbtu+Jlr167p2rVrtvdJSUmSpOTk5Fyp8fKVa7dcfujKaunfq7OMWyqVVaV6T+VKTQAAFHaZ3/uGYTi4ktxR0DOSJHISAAC5wOyMlG8bUr/99pvS09Pl5+dnN+7n56djx47d8DPTpk3T5MmTs4wHBgbmSo33ZqSjCwAAoEC7dOmSvL29HV1Gjiv4GUkiJwEAkHvMykj5tiF1N8aNG6dRo0bZ3mdkZOj8+fMqWbKkLBZLjm4rOTlZgYGBOnPmjKxWa46uO78o7MegsO+/xDGQOAaFff8ljoGU946BYRi6dOmSAgICHF1KnkFGMldhPwaFff8ljoHEMSjs+y9xDKS8dwzMzkj5tiFVqlQpOTs7KyEhwW48ISFB/v7+N/yMm5ub3Nzc7MZ8fHxyq0RJktVqzRP/sBypsB+Dwr7/EsdA4hgU9v2XOAZS3joGBfHKqExkpPyjsB+Dwr7/EsdA4hgU9v2XOAZS3joGZmakfHtTc1dXV9WvX19RUVG2sYyMDEVFRSk0NNSBlQEAADgOGQkAAOQH+fYKKUkaNWqU+vbtqwYNGqhRo0Z6++23lZKSov79+zu6NAAAAIchIwEAgLwuXzekevbsqXPnzmnChAmKj49XnTp1FBkZmeUmno7g5uamiRMnZrn8vTAp7MegsO+/xDGQOAaFff8ljoHEMXAEMlLeVtiPQWHff4ljIHEMCvv+SxwDiWNgMQrqM48BAAAAAACQJ+Xbe0gBAAAAAAAgf6IhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkcsHcuXNVoUIFubu7KyQkRHv27HF0SabasWOHOnbsqICAAFksFq1evdrRJZlq2rRpatiwoYoVK6bSpUurc+fOOn78uKPLMtX8+fP1wAMPyGq1ymq1KjQ0VBs2bHB0WQ4zffp0WSwWjRgxwtGlmGbSpEmyWCx2rxo1aji6LFP9+uuveuKJJ1SyZEl5eHiodu3a2rdvn6PLMk2FChWy/BuwWCwaOnSoo0uDgxXmnERGIiORkeyRkQpnRpIKd04iI/2FhlQOW7FihUaNGqWJEydq//79Cg4OVnh4uBITEx1dmmlSUlIUHBysuXPnOroUh9i+fbuGDh2qH374QZs2bVJaWppat26tlJQUR5dmmrJly2r69OmKjo7Wvn371KJFC3Xq1EmHDx92dGmm27t3r95//3098MADji7FdPfff7/Onj1re3333XeOLsk0Fy5cUJMmTeTi4qINGzboyJEjmjVrlooXL+7o0kyzd+9eu7//pk2bJEmPPfaYgyuDIxX2nERGIiORkf5CRiqcGUkiJ5GR/sZAjmrUqJExdOhQ2/v09HQjICDAmDZtmgOrchxJxqpVqxxdhkMlJiYakozt27c7uhSHKl68uPHhhx86ugxTXbp0yahataqxadMmo3nz5sbw4cMdXZJpJk6caAQHBzu6DIcZM2aM0bRpU0eXkacMHz7cqFy5spGRkeHoUuBA5KS/kJHISJnISGSkwoacZK8wZySukMpBqampio6OVlhYmG3MyclJYWFh2rVrlwMrgyMlJSVJkkqUKOHgShwjPT1dy5cvV0pKikJDQx1djqmGDh2q9u3b2/1vQmFy4sQJBQQEqFKlSurdu7dOnz7t6JJMs2bNGjVo0ECPPfaYSpcurbp16+qDDz5wdFkOk5qaqk8++URPPfWULBaLo8uBg5CT8E9kJDISGanwZSSJnPR3hT0j0ZDKQb/99pvS09Pl5+dnN+7n56f4+HgHVQVHysjI0IgRI9SkSRPVqlXL0eWY6uDBg/Ly8pKbm5uGDBmiVatWKSgoyNFlmWb58uXav3+/pk2b5uhSHCIkJESLFy9WZGSk5s+fr9jYWD300EO6dOmSo0szxf/+9z/Nnz9fVatW1caNG/XMM8/o+eef15IlSxxdmkOsXr1aFy9eVL9+/RxdChyInIS/IyORkchIhTMjSeSkvyvsGamIowsACrKhQ4fq0KFDhe534ZJUvXp1xcTEKCkpSZ9//rn69u2r7du3F4rAdebMGQ0fPlybNm2Su7u7o8txiLZt29r++4EHHlBISIjKly+vzz77TAMGDHBgZebIyMhQgwYN9Prrr0uS6tatq0OHDmnBggXq27evg6sz30cffaS2bdsqICDA0aUAyCPISGQkMlLhzEgSOenvCntG4gqpHFSqVCk5OzsrISHBbjwhIUH+/v4OqgqOMmzYMK1du1Zbt25V2bJlHV2O6VxdXVWlShXVr19f06ZNU3BwsN555x1Hl2WK6OhoJSYmql69eipSpIiKFCmi7du3a86cOSpSpIjS09MdXaLpfHx8VK1aNf3888+OLsUUZcqUyfL/WNSsWbPQXZIvSadOndLmzZs1cOBAR5cCByMnIRMZiYxERvpLYctIEjkpExmJhlSOcnV1Vf369RUVFWUby8jIUFRUVKH7XXhhZhiGhg0bplWrVmnLli2qWLGio0vKEzIyMnTt2jVHl2GKli1b6uDBg4qJibG9GjRooN69eysmJkbOzs6OLtF0ly9f1n//+1+VKVPG0aWYokmTJlkeZf6f//xH5cuXd1BFjrNo0SKVLl1a7du3d3QpcDByEshIN0ZGIiMVpowkkZMykZH4yV6OGzVqlPr27asGDRqoUaNGevvtt5WSkqL+/fs7ujTTXL582a7DHxsbq5iYGJUoUULlypVzYGXmGDp0qJYtW6avvvpKxYoVs90Xw9vbWx4eHg6uzhzjxo1T27ZtVa5cOV26dEnLli3Ttm3btHHjRkeXZopixYpluR+Gp6enSpYsWWjukzF69Gh17NhR5cuXV1xcnCZOnChnZ2f16tXL0aWZYuTIkXrwwQf1+uuvq0ePHtqzZ48WLlyohQsXOro0U2VkZGjRokXq27evihQhcoCcREYiI5GRyEiFPSNJ5CSJjGTj6Mf8FUTvvvuuUa5cOcPV1dVo1KiR8cMPPzi6JFNt3brVkJTl1bdvX0eXZoob7bskY9GiRY4uzTRPPfWUUb58ecPV1dXw9fU1WrZsaXzzzTeOLsuhCtsjjXv27GmUKVPGcHV1Ne677z6jZ8+exs8//+zoskz19ddfG7Vq1TLc3NyMGjVqGAsXLnR0SabbuHGjIck4fvy4o0tBHlKYcxIZiYxERsqKjFT4MpJhkJPISH+yGIZhmNf+AgAAAAAAQGHHPaQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAIA8ZceOHerYsaMCAgJksVi0evXqbH1+0qRJslgsWV6enp65UzAAAIAJClpGoiEFAADylJSUFAUHB2vu3Ll39fnRo0fr7Nmzdq+goCA99thjOVwpAACAeQpaRqIhBQAA8pS2bdvqtddeU5cuXW64/Nq1axo9erTuu+8+eXp6KiQkRNu2bbMt9/Lykr+/v+2VkJCgI0eOaMCAASbtAQAAQM4raBmJhhQAAMhXhg0bpl27dmn58uX66aef9Nhjj6lNmzY6ceLEDed/+OGHqlatmh566CGTKwUAADBPfstINKQAAEC+cfr0aS1atEgrV67UQw89pMqVK2v06NFq2rSpFi1alGX+1atX9emnn3J1FAAAKNDyY0Yq4rAtAwAAZNPBgweVnp6uatWq2Y1fu3ZNJUuWzDJ/1apVunTpkvr27WtWiQAAAKbLjxmJhhQAAMg3Ll++LGdnZ0VHR8vZ2dlumZeXV5b5H374oTp06CA/Pz+zSgQAADBdfsxINKQAAEC+UbduXaWnpysxMfG29zuIjY3V1q1btWbNGpOqAwAAcIz8mJFoSAEAgDzl8uXL+vnnn23vY2NjFRMToxIlSqhatWrq3bu3+vTpo1mzZqlu3bo6d+6coqKi9MADD6h9+/a2z/373/9WmTJl1LZtW0fsBgAAQI4qaBnJYhiG4dAKAAAA/mbbtm165JFHsoz37dtXixcvVlpaml577TV9/PHH+vXXX1WqVCk1btxYkydPVu3atSVJGRkZKl++vPr06aOpU6eavQsAAAA5rqBlJBpSAAAAAAAAMJWTowsAAAAAAABA4UJDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKwB17+OGH9fDDDzu6jDxh8eLFslgsOnnyZI6u98yZM3J3d9fOnTtvO/dGf4+EhAR1795dJUuWlMVi0dtvv52t7UdERKhHjx7Z+gwAAIUdGekvZCQAd4qGFADkIa+++qpCQkLUpEmTu/r8yJEjtXHjRo0bN05Lly5VmzZtJElTp07Vo48+Kj8/P1ksFk2aNOmGnx8zZoy++OILHThw4G53AQAAIMflRkY6duyYXnrpJdWpU0fFihVTmTJl1L59e+3bty/L58lIQM6zGIZhOLoIAPlDamqqJMnV1dXBlTheenq60tLS5ObmJovFkiPrPHfunO677z4tWbJEvXr1uu38zDN/27Zts435+/srLCxMn3zyid1ci8Uif39/BQcHa+PGjZo4ceJNm1IhISGqXr26Pv7447vdFQAAChUy0l/yU0YaPXq0PvroI3Xr1k2NGjVSUlKS3n//fZ08eVKRkZEKCwuzWy8ZCchZXCEF4I65uroStP4/Z2dnubu751jQkqRPPvlERYoUUceOHe96HYmJifLx8ckyHhsbq7Nnz2ZpVN1Ijx499OWXX+ry5ct3XQcAAIUJGekv+Skj9erVS2fOnNGHH36owYMH68UXX9Tu3btVokSJG564IyMBOYuGFFBATZo0SRaLRceOHVOPHj1ktVpVsmRJDR8+XFevXrWbe/36dU2ZMkWVK1eWm5ubKlSooH/961+6du2a3bwb/R7/3Xff1f3336+iRYuqePHiatCggZYtW2ZbfunSJY0YMUIVKlSQm5ubSpcurVatWmn//v1261m5cqXq168vDw8PlSpVSk888YR+/fVXuzn9+vWTl5eXfv31V3Xu3FleXl7y9fXV6NGjlZ6enq3j8/DDD6tWrVr66aef1Lx5cxUtWlRVqlTR559/Lknavn27QkJC5OHhoerVq2vz5s12n7/R/REqVKigDh066LvvvlOjRo3k7u6uSpUq3fFZtNWrVyskJEReXl5Zli1cuFCVK1eWh4eHGjVqpG+//faG9RiGoblz58pisdgFwQoVKtzhkZFatWqllJQUbdq06Y4/AwBAfkFGurXClJHq16+fZZ0lS5bUQw89pKNHj2bZFhkJyFk0pIACrkePHrp69aqmTZumdu3aac6cORo8eLDdnIEDB2rChAmqV6+e3nrrLTVv3lzTpk1TRETELdf9wQcf6Pnnn1dQUJDefvttTZ48WXXq1NHu3bttc4YMGaL58+erW7dumjdvnkaPHi0PDw+7L/nFixerR48ecnZ21rRp0zRo0CB9+eWXatq0qS5evGi3zfT0dIWHh6tkyZKaOXOmmjdvrlmzZmnhwoXZPjYXLlxQhw4dFBISohkzZsjNzU0RERFasWKFIiIi1K5dO02fPl0pKSnq3r27Ll26dNt1/vzzz+revbtatWqlWbNmqXjx4urXr58OHz58y8+lpaVp7969qlevXpZlH330kZ5++mn5+/trxowZatKkiR599FGdOXPGNqdZs2ZaunSppD/D0tKlS23vsysoKEgeHh53dNNQAADyKzLSzRX2jBQfH69SpUplGScjATnMAFAgTZw40ZBkPProo3bjzz77rCHJOHDggGEYhhETE2NIMgYOHGg3b/To0YYkY8uWLbax5s2bG82bN7e979Spk3H//fffsg5vb29j6NChN12emppqlC5d2qhVq5bxxx9/2MbXrl1rSDImTJhgG+vbt68hyXj11Vft1lG3bl2jfv36t6zjn5o3b25IMpYtW2YbO3bsmCHJcHJyMn744Qfb+MaNGw1JxqJFi2xjixYtMiQZsbGxtrHy5csbkowdO3bYxhITEw03NzfjhRdeuGU9P//8syHJePfdd+3GM49PnTp1jGvXrtnGFy5caEiy+3sYhmFIuuXxPnfunCHJmDhx4i3rqVatmtG2bdtbzgEAID8iI91aYc1ImXbs2GFYLBZj/PjxN1xORgJyDldIAQXc0KFD7d4/99xzkqT169fb/d9Ro0bZzXvhhRckSevWrbvpun18fPTLL79o7969t5yze/duxcXF3XD5vn37lJiYqGeffVbu7u628fbt26tGjRo33P6QIUPs3j/00EP63//+d9MabsbLy8vuDGf16tXl4+OjmjVrKiQkxDae+d93so2goCA99NBDtve+vr6qXr36bT/7+++/S5KKFy9uN555fIYMGWJ3b4p+/frJ29v7tvXcreLFi+u3337LtfUDAOBoZKSbK6wZKTExUY8//rgqVqyol1566YZzyEhAzqEhBRRwVatWtXtfuXJlOTk52X7Xf+rUKTk5OalKlSp28/z9/eXj46NTp07ddN1jxoyRl5eXGjVqpKpVq2ro0KFZLmGeMWOGDh06pMDAQDVq1EiTJk2yCx6Z669evXqW9deoUSPL9t3d3eXr62s3Vrx4cV24cOGmdd5M2bJls9xw09vbW4GBgVnGJN3RNsqVK5dlLDv1Gf948Gnm/v/z7+ji4qJKlSrd0TrvhmEYOXozUgAA8hoy0s0VxoyUkpKiDh066NKlS/rqq69ueL+qzDrISEDOoCEFFDI3+wK9my/WmjVr6vjx41q+fLmaNm2qL774Qk2bNtXEiRNtc3r06KH//e9/evfddxUQEKA333xT999/vzZs2HBX9Ts7O9/V57KzrpuN/zMI5eRnS5YsKenOAp0ZLly4cMN7JwAAUFCRkW6/roKakVJTU9W1a1f99NNP+uqrr1SrVq2bziUjATmHhhRQwJ04ccLu/c8//6yMjAzbU9fKly+vjIyMLPMSEhJ08eJFlS9f/pbr9/T0VM+ePbVo0SKdPn1a7du319SpU+2eUlOmTBk9++yzWr16tWJjY1WyZElNnTrVtn1JOn78eJZ1Hz9+/LbbLyjKlSsnDw8PxcbG2o1n7v8//z5paWlZ5uaU69ev68yZM6pZs2aurB8AgLyAjJQ/5HZGysjIUJ8+fRQVFaVly5apefPmN51LRgJyFg0poICbO3eu3ft3331XktS2bVtJUrt27SRJb7/9tt282bNnS/rzPgU3k/mb/kyurq4KCgqSYRhKS0tTenq6kpKS7OaULl1aAQEBtsclN2jQQKVLl9aCBQvsHqG8YcMGHT169JbbL0hcXFzUoEED7du3z268QYMG8vX11YIFC5SammobX7x4cZan6+SUI0eO6OrVq3rwwQdzZf0AAOQFZKT8Ibcz0nPPPacVK1Zo3rx56tq16y3nkpGAnFXE0QUAyF2xsbF69NFH1aZNG+3atUuffPKJHn/8cQUHB0uSgoOD1bdvXy1cuFAXL15U8+bNtWfPHi1ZskSdO3fWI488ctN1t27dWv7+/mrSpIn8/Px09OhRvffee2rfvr2KFSumixcvqmzZsurevbuCg4Pl5eWlzZs3a+/evZo1a5akP0PGG2+8of79+6t58+bq1auXEhIS9M4776hChQoaOXKkKccpL+jUqZNefvllJScny2q1Svrz+Lz22mt6+umn1aJFC/Xs2VOxsbFatGhRtu6PsHTpUp06dUpXrlyRJO3YsUOvvfaaJOnJJ5+0O8u6adMmFS1aVK1atcrBvQMAIG8hI+UfuZWR3n77bc2bN0+hoaEqWrSoPvnkE7vlXbp0kaenp+09GQnIWTSkgAJuxYoVmjBhgsaOHasiRYpo2LBhevPNN+3mfPjhh6pUqZIWL16sVatWyd/fX+PGjbO7z8GNPP300/r00081e/ZsXb58WWXLltXzzz+vV155RZJUtGhRPfvss/rmm2/05ZdfKiMjQ1WqVNG8efP0zDPP2NbTr18/FS1aVNOnT9eYMWPk6empLl266I033pCPj0+OH5O86sknn9TYsWO1Zs0aPfHEE7bxwYMHKz09XW+++aZefPFF1a5dW2vWrNH48ePveN0fffSRtm/fbnu/detWbd26VZLUtGlTu4bUypUr1bVrVxUrViwH9goAgLyJjJR/5FZGiomJkSTt2rVLu3btyrI8NjbWriFFRgJylsW4kzvQAch3Jk2apMmTJ+vcuXPceDEfGTBggP7zn//o22+/dcj2Y2JiVK9ePe3fv1916tRxSA0AAOQmMlL+REYCCh7uIQUAecjEiRO1d+/eLI+GNsv06dPVvXt3ghYAAMhTyEhAwcNP9gAUKOfPn7e7seU/OTs7y9fX18SKsqdcuXJ2T98x2/Llyx22bQAAkHvISPeGjATkPBpSAAqUrl272t0r6Z/Kly+vkydPmlcQAABAHkBGApDXcA8pAAVKdHS0Lly4cNPlHh4eatKkiYkVAQAAOB4ZCUBeQ0MKAAAAAAAApuKm5gAAAAAAADBVob6HVEZGhuLi4lSsWDFZLBZHlwMAAExgGIYuXbqkgIAAOTlxbu5GyEgAABQ+ZmekQt2QiouLU2BgoKPLAAAADnDmzBmVLVvW0WXkSWQkAAAKL7MyUqFuSBUrVkzSnwfbarU6uBoAAGCG5ORkBQYG2nIAsiIjAQBQ+JidkQp1QyrzEnSr1UrYAgCgkOGnaDdHRgIAoPAyKyNx4wQAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKYq1PeQuhMZGRlKTU11dBm4Cy4uLnJ2dnZ0GQAAFFjp6elKS0tzdBnIJjISACAvoCF1C6mpqYqNjVVGRoajS8Fd8vHxkb+/PzeuBQAgBxmGofj4eF28eNHRpeAukZEAAI5GQ+omDMPQ2bNn5ezsrMDAQDk58evG/MQwDF25ckWJiYmSpDJlyji4IgAACo7MZlTp0qVVtGhRmhr5CBkJAJBX0JC6ievXr+vKlSsKCAhQ0aJFHV0O7oKHh4ckKTExUaVLl+bSdAAAckB6erqtGVWyZElHl4O7QEYCAOQFXPZzE+np6ZIkV1dXB1eCe5HZTOT+FgAA5IzM71RO2OVvZCQAgKPRkLoNLkHP3/j7AQCQO/iOzd/4+wEAHI2GFAAAAAAAAExFQwoAAAAAAACm4qbm2ZQW+Z2p23Np0/SO597u0uuJEydq0qRJ91jR3bFYLFq1apU6d+581+tYuHChli1bpv379+vSpUu6cOGCfHx8cqxGAABw98hId+deM9L58+c1ceJEffPNNzp9+rR8fX3VuXNnTZkyRd7e3jlbLAAAOYiGVAFy9uxZ23+vWLFCEyZM0PHjx21jXl5e2Vpfampqnrqp+5UrV9SmTRu1adNG48aNc3Q5AAAgnyjIGSkuLk5xcXGaOXOmgoKCdOrUKQ0ZMkRxcXH6/PPPHV0eAAA3xU/2ChB/f3/by9vbWxaLxfY+JSVFvXv3lp+fn7y8vNSwYUNt3rzZ7vMVKlTQlClT1KdPH1mtVg0ePFiS9MEHHygwMFBFixZVly5dNHv27CxXJn311VeqV6+e3N3dValSJU2ePFnXr1+3rVeSunTpIovFYnt/4MABPfLIIypWrJisVqvq16+vffv23XT/RowYobFjx6px48Y5c8AAALkuLfK7LC/AbAU5I9WqVUtffPGFOnbsqMqVK6tFixaaOnWqvv76a9t2AAB5DxmJhlShcfnyZbVr105RUVH68ccf1aZNG3Xs2FGnT5+2mzdz5kwFBwfrxx9/1Pjx47Vz504NGTJEw4cPV0xMjFq1aqWpU6fafebbb79Vnz59NHz4cB05ckTvv/++Fi9ebJu3d+9eSdKiRYt09uxZ2/vevXurbNmy2rt3r6KjozV27Fi5uLiYcDQAAAD+VBAzUlJSkqxWq4oU4ccQAIC8i2+pQiI4OFjBwcG291OmTNGqVau0Zs0aDRs2zDbeokULvfDCC7b3L7/8stq2bavRo0dLkqpVq6bvv/9ea9eutc2ZPHmyxo4dq759+0qSKlWqpClTpuill17SxIkT5evrK0ny8fGRv7+/7XOnT5/Wiy++qBo1akiSqlatmgt7DgAAcHMFLSP99ttvmjJliu0qLgAA8iqukCokLl++rNGjR6tmzZry8fGRl5eXjh49muXsX4MGDezeHz9+XI0aNbIb++f7AwcO6NVXX5WXl5ftNWjQIJ09e1ZXrly5aU2jRo3SwIEDFRYWpunTp+u///3vPe4lAABA9hSkjJScnKz27dsrKCjIYTdpBwDgTtGQKiRGjx6tVatW6fXXX9e3336rmJgY1a5dW6mpqXbzPD09s73uy5cva/LkyYqJibG9Dh48qBMnTsjd3f2mn5s0aZIOHz6s9u3ba8uWLQoKCtKqVauyvX0AAIC7VVAy0qVLl9SmTRsVK1ZMq1at4jYIAIA8L9sNqR07dqhjx44KCAiQxWLR6tWrbcvS0tI0ZswY1a5dW56engoICFCfPn0UFxdnt47z58+rd+/eslqt8vHx0YABA3T58mW7OT/99JMeeughubu7KzAwUDNmzMhSy8qVK1WjRg25u7urdu3aWr9+fXZ3p9DYuXOn+vXrpy5duqh27dry9/fXyZMnb/u56tWr2+5nkOmf7+vVq6fjx4+rSpUqWV5OTn/+E3NxcVF6enqW9VerVk0jR47UN998o65du2rRokV3v5MAADgQGSl/KggZKTk5Wa1bt5arq6vWrFlzy2YXAAB5RbYbUikpKQoODtbcuXOzLLty5Yr279+v8ePHa//+/fryyy91/PhxPfroo3bzevfurcOHD2vTpk1au3atduzYYfc798wv1fLlyys6OlpvvvmmJk2apIULF9rmfP/99+rVq5cGDBigH3/8UZ07d1bnzp116NCh7O5SoVC1alV9+eWXiomJ0YEDB/T4448rIyPjtp977rnntH79es2ePVsnTpzQ+++/rw0bNshisdjmTJgwQR9//LEmT56sw4cP6+jRo1q+fLleeeUV25wKFSooKipK8fHxunDhgv744w8NGzZM27Zt06lTp7Rz507t3btXNWvWvGkt8fHxiomJ0c8//yxJOnjwoGJiYnT+/Pl7ODIAAOQMMlL+lN8zUua/iZSUFH300UdKTk5WfHy84uPjb9joAgAgr8h2Q6pt27Z67bXX1KVLlyzLvL29tWnTJvXo0UPVq1dX48aN9d577yk6Otr2O/yjR48qMjJSH374oUJCQtS0aVO9++67Wr58ue0s4aeffqrU1FT9+9//1v3336+IiAg9//zzmj17tm1b77zzjtq0aaMXX3xRNWvW1JQpU1SvXj299957d3ssCrTZs2erePHievDBB9WxY0eFh4erXr16t/1ckyZNtGDBAs2ePVvBwcGKjIzUyJEj7c68hYeHa+3atfrmm2/UsGFDNW7cWG+99ZbKly9vmzNr1ixt2rRJgYGBqlu3rpydnfX777+rT58+qlatmnr06KG2bdtq8uTJN61lwYIFqlu3rgYNGiRJatasmerWras1a9bcw5EBACBnkJHyp/yekfbv36/du3fr4MGDqlKlisqUKWN7nTlz5t4PEAAAucRiGIZx1x+2WLRq1Sp17tz5pnM2b96s1q1b6+LFi7Jarfr3v/+tF154QRcuXLDNuX79utzd3bVy5Up16dJFffr0UXJyst2l7lu3blWLFi10/vx5FS9eXOXKldOoUaM0YsQI25yJEydq9erVOnDgwB3Vn5ycLG9vb9ujcf/u6tWrio2NVcWKFbns+R8GDRqkY8eO6dtvv3V0KbfF3xEAHCst8rssYy5tmjqgkr/c6vs/p5CRCicyEgDgThXWjPR3RXJz5VevXtWYMWPUq1cv287Ex8erdOnS9kUUKaISJUooPj7eNqdixYp2c/z8/GzLihcvrvj4eNvY3+dkruNGrl27pmvXrtneJycn3/3OFSIzZ85Uq1at5OnpqQ0bNmjJkiWaN2+eo8sCACDfIiMVDGQkAADuXq49ZS8tLU09evSQYRiaP39+bm0mW6ZNmyZvb2/bKzAw0NEl5Qt79uxRq1atVLt2bS1YsEBz5szRwIEDHV0WAAD5Ehmp4CAjAQBw93LlCqnMoHXq1Clt2bLF7lIvf39/JSYm2s2/fv26zp8/L39/f9uchIQEuzmZ7283J3P5jYwbN06jRo2yvU9OTiZw3YHPPvvM0SUAAFAgkJEKFjISAAB3L8evkMoMWidOnNDmzZtVsmRJu+WhoaG6ePGioqOjbWNbtmxRRkaGQkJCbHN27NihtLQ025xNmzapevXqKl68uG1OVFSU3bo3bdqk0NDQm9bm5uYmq9Vq9wIAADADGQkAAOAv2W5IXb58WTExMYqJiZEkxcbGKiYmRqdPn1ZaWpq6d++uffv26dNPP1V6errtsbOpqamSpJo1a6pNmzYaNGiQ9uzZo507d2rYsGGKiIhQQECAJOnxxx+Xq6urBgwYoMOHD2vFihV655137M7cDR8+XJGRkZo1a5aOHTumSZMmad++fRo2bFgOHBYAAIDsISMBAABkg5FNW7duNSRlefXt29eIjY294TJJxtatW23r+P33341evXoZXl5ehtVqNfr3729cunTJbjsHDhwwmjZtari5uRn33XefMX369Cy1fPbZZ0a1atUMV1dX4/777zfWrVuXrX1JSkoyJBlJSUlZlv3xxx/GkSNHjD/++CNb60Tewt8RABwrdcO3WV6Odqvv/3tBRkJ+wt8RAByrMGWkm7EYhmGY1fzKa3ikccHH3xEAHItHGudPZKSCj78jADgWGSkXn7IHAAAAAAAA3AgNKQAAAAAAAJiKhhQAAAAAAABMVcTRBeQ3/933vqnbq9zg6WzN79evn5YsWSJJKlKkiEqUKKEHHnhAvXr1Ur9+/eTklH97kIcPH9aECRMUHR2tU6dO6a233tKIESMcXRYAABAZyZE++OADffzxxzp06JAkqX79+nr99dfVqFEjB1cGAMDN5d9vXtxUmzZtdPbsWZ08eVIbNmzQI488ouHDh6tDhw66fv26o8u7a1euXFGlSpU0ffp0+fv7O7ocAACQzxTUjLRt2zb16tVLW7du1a5duxQYGKjWrVvr119/dXRpAADcFA2pAsjNzU3+/v667777VK9ePf3rX//SV199pQ0bNmjx4sW2eRcvXtTAgQPl6+srq9WqFi1a6MCBA3br+vrrr9WwYUO5u7urVKlS6tKli23ZhQsX1KdPHxUvXlxFixZV27ZtdeLECUlSSkqKrFarPv/8c7v1rV69Wp6enrp06ZJSU1M1bNgwlSlTRu7u7ipfvrymTZt20/1q2LCh3nzzTUVERMjNzS0HjhQAAChMCmpG+vTTT/Xss8+qTp06qlGjhj788ENlZGQoKioqB44aAAC5g4ZUIdGiRQsFBwfryy+/tI099thjSkxM1IYNGxQdHa169eqpZcuWOn/+vCRp3bp16tKli9q1a6cff/xRUVFRdpd+9+vXT/v27dOaNWu0a9cuGYahdu3aKS0tTZ6enoqIiNCiRYvs6li0aJG6d++uYsWKac6cOVqzZo0+++wzHT9+XJ9++qkqVKhgyvEAAACQCmZGunLlitLS0lSiRIl7OzgAAOQi7iFViNSoUUM//fSTJOm7777Tnj17lJiYaLvaaObMmVq9erU+//xzDR48WFOnTlVERIQmT55sW0dwcLAk6cSJE1qzZo127typBx98UNKfZ+cCAwO1evVqPfbYYxo4cKAefPBBnT17VmXKlFFiYqLWr1+vzZs3S5JOnz6tqlWrqmnTprJYLCpfvryZhwMAAEBSwctIY8aMUUBAgMLCwu752AAAkFu4QqoQMQxDFotFknTgwAFdvnxZJUuWlJeXl+0VGxur//73v5KkmJgYtWzZ8obrOnr0qIoUKaKQkBDbWMmSJVW9enUdPXpUktSoUSPdf//9thuIfvLJJypfvryaNWsm6c+zhzExMapevbqef/55ffPNN7m27wAAADdTkDLS9OnTtXz5cq1atUru7u7ZPxgAAJiEK6QKkaNHj6pixYqSpMuXL6tMmTLatm1blnk+Pj6SJA8Pj3ve5sCBAzV37lyNHTtWixYtUv/+/W2Br169eoqNjdWGDRu0efNm9ejRQ2FhYVnuqQAAAJCbCkpGmjlzpqZPn67NmzfrgQceuOcaAQDITVwhVUhs2bJFBw8eVLdu3ST9GXTi4+NVpEgRValSxe5VqlQpSdIDDzxw05th1qxZU9evX9fu3bttY7///ruOHz+uoKAg29gTTzyhU6dOac6cOTpy5Ij69u1rtx6r1aqePXvqgw8+0IoVK/TFF1/Y7s8AAACQ2wpKRpoxY4amTJmiyMhINWjQ4K6PBwAAZuEKqQLo2rVrio+PV3p6uhISEhQZGalp06apQ4cO6tOnjyQpLCxMoaGh6ty5s2bMmKFq1aopLi7OdpPOBg0aaOLEiWrZsqUqV66siIgIXb9+XevXr9eYMWNUtWpVderUSYMGDdL777+vYsWKaezYsbrvvvvUqVMnWy3FixdX165d9eKLL6p169YqW7asbdns2bNVpkwZ1a1bV05OTlq5cqX8/f1tZx//KTU1VUeOHLH996+//qqYmBh5eXmpSpUquXdAAQBAgVBQM9Ibb7yhCRMmaNmyZapQoYLi4+MlyfZzQwAA8iKukCqAIiMjVaZMGVWoUEFt2rTR1q1bNWfOHH311VdydnaWJFksFq1fv17NmjVT//79Va1aNUVEROjUqVPy8/OTJD388MNauXKl1qxZozp16qhFixbas2ePbTuLFi1S/fr11aFDB4WGhsowDK1fv14uLi529QwYMECpqal66qmn7MaLFSumGTNmqEGDBmrYsKFOnjyp9evXy8npxv8s4+LiVLduXdWtW1dnz57VzJkzVbduXQ0cODAnDx8AACigCmpGmj9/vlJTU9W9e3eVKVPG9po5c2ZOHj4AAHKUxTAMw9FFOEpycrK8vb2VlJQkq9Vqt+zq1auKjY1VxYoVuSHkPVq6dKlGjhypuLg4ubq6mrpt/o4A4Fhpkd9lGXNp09QBlfzlVt//+BMZyRxkJAAovMhI/GQPuejKlSs6e/aspk+frqefftr0oAUAAJAXkZEAAOAne8hFM2bMUI0aNeTv769x48Y5uhwAAIA8gYwEAAANKeSiSZMmKS0tTVFRUdxQEwAA4P8jIwEAQEMKAAAAAAAAJqMhBQAAAAAAAFPRkLqNQvwQwgIhIyPD0SUAAFAg8R2bv/H3AwA4Gk/ZuwkXFxdZLBadO3dOvr6+slgsji4J2WAYhlJTU3Xu3Dk5OTnx9BoAAHKIq6urnJycFBcXJ19fX7m6upKT8hEyEgAgr6AhdRPOzs4qW7asfvnlF508edLR5eAuFS1aVOXKlZOTExcDAgCQE5ycnFSxYkWdPXtWcXFxji4Hd4mMBABwNBpSt+Dl5aWqVasqLS3N0aXgLjg7O6tIkSKctQUAIIe5urqqXLlyun79utLT0x1dDrKJjAQAyAtoSN2Gs7OznJ2dHV0GAABAnmKxWOTi4iIXFxdHlwIAAPIhrtEFAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApsp2Q2rHjh3q2LGjAgICZLFYtHr1arvlhmFowoQJKlOmjDw8PBQWFqYTJ07YzTl//rx69+4tq9UqHx8fDRgwQJcvX7ab89NPP+mhhx6Su7u7AgMDNWPGjCy1rFy5UjVq1JC7u7tq166t9evXZ3d3AAAAcgQZCQAA4M5luyGVkpKi4OBgzZ0794bLZ8yYoTlz5mjBggXavXu3PD09FR4erqtXr9rm9O7dW4cPH9amTZu0du1a7dixQ4MHD7YtT05OVuvWrVW+fHlFR0frzTff1KRJk7Rw4ULbnO+//169evXSgAED9OOPP6pz587q3LmzDh06lN1dAgAAuGdkJAAAgDtnMQzDuOsPWyxatWqVOnfuLOnPM38BAQF64YUXNHr0aElSUlKS/Pz8tHjxYkVEROjo0aMKCgrS3r171aBBA0lSZGSk2rVrp19++UUBAQGaP3++Xn75ZcXHx8vV1VWSNHbsWK1evVrHjh2TJPXs2VMpKSlau3atrZ7GjRurTp06WrBgwR3Vn5ycLG9vbyUlJclqtd7tYQAAADeRFvldljGXNk0dUMlfzPj+JyMBAIBbKawZ6e9y9B5SsbGxio+PV1hYmG3M29tbISEh2rVrlyRp165d8vHxsQUtSQoLC5OTk5N2795tm9OsWTNb0JKk8PBwHT9+XBcuXLDN+ft2MudkbudGrl27puTkZLsXAABAbiMjAQAA2MvRhlR8fLwkyc/Pz27cz8/Ptiw+Pl6lS5e2W16kSBGVKFHCbs6N1vH3bdxsTubyG5k2bZq8vb1tr8DAwOzuIgAAQLaRkQAAAOwVqqfsjRs3TklJSbbXmTNnHF0SAACAw5GRAACA2XK0IeXv7y9JSkhIsBtPSEiwLfP391diYqLd8uvXr+v8+fN2c260jr9v42ZzMpffiJubm6xWq90LAAAgt5GRAAAA7OVoQ6pixYry9/dXVFSUbSw5OVm7d+9WaGioJCk0NFQXL15UdHS0bc6WLVuUkZGhkJAQ25wdO3YoLS3NNmfTpk2qXr26ihcvbpvz9+1kzsncDgAAQF5BRgIAALCX7YbU5cuXFRMTo5iYGEl/3qQzJiZGp0+flsVi0YgRI/Taa69pzZo1OnjwoPr06aOAgADbU2Zq1qypNm3aaNCgQdqzZ4927typYcOGKSIiQgEBAZKkxx9/XK6urhowYIAOHz6sFStW6J133tGoUaNsdQwfPlyRkZGaNWuWjh07pkmTJmnfvn0aNmzYvR8VAACAbCIjAQAAZIORTVu3bjUkZXn17dvXMAzDyMjIMMaPH2/4+fkZbm5uRsuWLY3jx4/breP33383evXqZXh5eRlWq9Xo37+/cenSJbs5Bw4cMJo2bWq4ubkZ9913nzF9+vQstXz22WdGtWrVDFdXV+P+++831q1bl619SUpKMiQZSUlJ2TsIAADgjqRu+DbLy9Fy6/ufjAQAAO5UYcpIN2MxDMNwRCMsL0hOTpa3t7eSkpK4VwIAALkgLfK7LGMubZo6oJK/8P1/exwjAAByFxmpkD1lDwAAAAAAAI5HQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYKocb0ilp6dr/Pjxqlixojw8PFS5cmVNmTJFhmHY5hiGoQkTJqhMmTLy8PBQWFiYTpw4Ybee8+fPq3fv3rJarfLx8dGAAQN0+fJluzk//fSTHnroIbm7uyswMFAzZszI6d0BAADIEWQkAACAv+R4Q+qNN97Q/Pnz9d577+no0aN64403NGPGDL377ru2OTNmzNCcOXO0YMEC7d69W56engoPD9fVq1dtc3r37q3Dhw9r06ZNWrt2rXbs2KHBgwfblicnJ6t169YqX768oqOj9eabb2rSpElauHBhTu8SAADAPSMjAQAA/MVi/P20XA7o0KGD/Pz89NFHH9nGunXrJg8PD33yyScyDEMBAQF64YUXNHr0aElSUlKS/Pz8tHjxYkVEROjo0aMKCgrS3r171aBBA0lSZGSk2rVrp19++UUBAQGaP3++Xn75ZcXHx8vV1VWSNHbsWK1evVrHjh27o1qTk5Pl7e2tpKQkWa3WnDwMAABAUlrkd1nGXNo0dUAlf3HU9z8ZCQAAZCIj5cIVUg8++KCioqL0n//8R5J04MABfffdd2rbtq0kKTY2VvHx8QoLC7N9xtvbWyEhIdq1a5ckadeuXfLx8bEFLUkKCwuTk5OTdu/ebZvTrFkzW9CSpPDwcB0/flwXLly4YW3Xrl1TcnKy3QsAAMAMZCQAAIC/FMnpFY4dO1bJycmqUaOGnJ2dlZ6erqlTp6p3796SpPj4eEmSn5+f3ef8/Pxsy+Lj41W6dGn7QosUUYkSJezmVKxYMcs6MpcVL148S23Tpk3T5MmTc2AvAQAAsoeMBAAA8Jccv0Lqs88+06effqply5Zp//79WrJkiWbOnKklS5bk9Kaybdy4cUpKSrK9zpw54+iSAABAIUFGAgAA+EuOXyH14osvauzYsYqIiJAk1a5dW6dOndK0adPUt29f+fv7S5ISEhJUpkwZ2+cSEhJUp04dSZK/v78SExPt1nv9+nWdP3/e9nl/f38lJCTYzcl8nznnn9zc3OTm5nbvOwkAAJBNZCQAAIC/5PgVUleuXJGTk/1qnZ2dlZGRIUmqWLGi/P39FRUVZVuenJys3bt3KzQ0VJIUGhqqixcvKjo62jZny5YtysjIUEhIiG3Ojh07lJaWZpuzadMmVa9e/YaXogMAADgSGQkAAOAvOd6Q6tixo6ZOnap169bp5MmTWrVqlWbPnq0uXbpIkiwWi0aMGKHXXntNa9as0cGDB9WnTx8FBASoc+fOkqSaNWuqTZs2GjRokPbs2aOdO3dq2LBhioiIUEBAgCTp8ccfl6urqwYMGKDDhw9rxYoVeueddzRq1Kic3iUAAIB7RkYCAAD4S47/ZO/dd9/V+PHj9eyzzyoxMVEBAQF6+umnNWHCBNucl156SSkpKRo8eLAuXryopk2bKjIyUu7u7rY5n376qYYNG6aWLVvKyclJ3bp105w5c2zLvb299c0332jo0KGqX7++SpUqpQkTJmjw4ME5vUsAAAD3jIwEAADwF4thGIaji3CU5ORkeXt7KykpSVar1dHlAABQ4KRFfpdlzKVNUwdU8he+/2+PYwQAQO4iI+XCT/YAAAAAAACAW6EhBQAAAAAAAFPRkAIAAAAAAICpcvym5gAAALfyz3smOPp+CQAAAHlBYctIXCEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqYo4ugAAAJA/pUV+Z/fepU1TB1UCAACQd5CR7gxXSAEAAAAAAMBUNKQAAAAAAABgKhpSAP4fe3ceFlX5/3/8BbK6zOAGSKKSlkq5r5iZmolFi6X5sY+llUsaWmrm8q1cK/24ZFmZreK38pvaJ800UXMrk8woyiXNSsNSwFIYtQSU8/vDH6MjqAPMnBng+biuuS7nPvfc5z7naPPqfc6cAwAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJjKLQWpP/74Q/fff7+qV6+u4OBgNWnSRN988419uWEYmjhxomrVqqXg4GB169ZN+/fvdxjj2LFj6tevnywWi0JCQjRw4ECdPHnSoc8PP/ygG2+8UUFBQYqMjNTMmTPdsTkAAAAuQUYCAAA4x+UFqePHj+uGG26Qv7+/1qxZoz179mjOnDmqWrWqvc/MmTM1b948LViwQNu3b1elSpUUGxur06dP2/v069dPu3fv1vr167Vq1Sp9/vnnGjJkiH25zWZT9+7dVbduXSUnJ2vWrFmaPHmy3njjDVdvEgAAQImRkQAAAM7zMQzDcOWA48eP15dffqkvvvii0OWGYSgiIkJPPPGExowZI0nKyspSWFiYEhIS1LdvX/3444+Kjo7Wjh071Lp1a0lSYmKibrvtNv3++++KiIjQa6+9pqeeekppaWkKCAiwr3vFihXau3evU3O12WyyWq3KysqSxWJxwdYDAFB+5CZudXjv36PjFfsUprDPuZOnvv/JSAAAlA9kJOe4/AqplStXqnXr1rr33nsVGhqqFi1a6M0337QvP3DggNLS0tStWzd7m9VqVbt27ZSUlCRJSkpKUkhIiD1oSVK3bt3k6+ur7du32/t06tTJHrQkKTY2Vvv27dPx48ddvVkAAAAlQkYCAAA4z+UFqV9//VWvvfaarrnmGq1du1bDhg3TY489pkWLFkmS0tLSJElhYWEOnwsLC7MvS0tLU2hoqMNyPz8/VatWzaFPYWNcuI6LZWdny2azObwAAADMQEYCAAA4z8/VA+bl5al169Z6/vnnJUktWrTQrl27tGDBAg0YMMDVqyuS6dOna8qUKR6dAwAAKJ/ISAAAAOe5/AqpWrVqKTo62qGtcePGSk1NlSSFh4dLktLT0x36pKen25eFh4crIyPDYfmZM2d07Ngxhz6FjXHhOi42YcIEZWVl2V+HDh0qziYCAAAUGRkJAADgPJcXpG644Qbt27fPoe2nn35S3bp1JUlRUVEKDw/Xhg0b7MttNpu2b9+umJgYSVJMTIwyMzOVnJxs77Nx40bl5eWpXbt29j6ff/65cnNz7X3Wr1+vhg0bOjyt5kKBgYGyWCwOLwAAADOQkQAAAM5zeUFq1KhR+uqrr/T888/r559/1uLFi/XGG28oPj5ekuTj46ORI0fq2Wef1cqVK7Vz5071799fERER6tmzp6RzZwt79OihwYMH6+uvv9aXX36p4cOHq2/fvoqIiJAk/fvf/1ZAQIAGDhyo3bt3a8mSJXrppZc0evRoV28SAABAiZGRAAAAznP5PaTatGmj5cuXa8KECZo6daqioqL04osvql+/fvY+Y8eO1alTpzRkyBBlZmaqY8eOSkxMVFBQkL3P+++/r+HDh+vmm2+Wr6+vevXqpXnz5tmXW61WrVu3TvHx8WrVqpVq1KihiRMnasiQIa7eJAAAgBIjIwEAAJznYxiG4elJeIrNZpPValVWVhaXpgMAUES5iVsd3vv36HjFPoUp7HPuxPf/lbGPAAAoPjKSc1z+kz0AAAAAAADgcihIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABM5faC1IwZM+Tj46ORI0fa206fPq34+HhVr15dlStXVq9evZSenu7wudTUVMXFxalixYoKDQ3Vk08+qTNnzjj02bx5s1q2bKnAwEA1aNBACQkJ7t4cAAAAlyAjAQCA8sytBakdO3bo9ddfV9OmTR3aR40apU8++UTLli3Tli1bdPjwYd1zzz325WfPnlVcXJxycnK0bds2LVq0SAkJCZo4caK9z4EDBxQXF6cuXbooJSVFI0eO1KBBg7R27Vp3bhIAAECJkZEAAEB557aC1MmTJ9WvXz+9+eabqlq1qr09KytLb7/9tl544QV17dpVrVq10sKFC7Vt2zZ99dVXkqR169Zpz549eu+999S8eXPdeuutmjZtml599VXl5ORIkhYsWKCoqCjNmTNHjRs31vDhw9W7d2/NnTvXXZsEAABQYmQkAAAANxak4uPjFRcXp27dujm0JycnKzc316G9UaNGqlOnjpKSkiRJSUlJatKkicLCwux9YmNjZbPZtHv3bnufi8eOjY21jwEAAOCNyEgAAACSnzsG/eCDD/Ttt99qx44dBZalpaUpICBAISEhDu1hYWFKS0uz97kwaOUvz192uT42m03//POPgoODC6w7Oztb2dnZ9vc2m63oGwcAAFBMZCQAAIBzXH6F1KFDh/T444/r/fffV1BQkKuHL5Hp06fLarXaX5GRkZ6eEgAAKCfISAAAAOe5vCCVnJysjIwMtWzZUn5+fvLz89OWLVs0b948+fn5KSwsTDk5OcrMzHT4XHp6usLDwyVJ4eHhBZ4ok//+Sn0sFkuhZ/4kacKECcrKyrK/Dh065IpNBgAAuCIyEgAAwHkuL0jdfPPN2rlzp1JSUuyv1q1bq1+/fvY/+/v7a8OGDfbP7Nu3T6mpqYqJiZEkxcTEaOfOncrIyLD3Wb9+vSwWi6Kjo+19Lhwjv0/+GIUJDAyUxWJxeAEAAJiBjAQAAHCey+8hVaVKFV1//fUObZUqVVL16tXt7QMHDtTo0aNVrVo1WSwWjRgxQjExMWrfvr0kqXv37oqOjtYDDzygmTNnKi0tTU8//bTi4+MVGBgoSRo6dKheeeUVjR07Vg8//LA2btyopUuXavXq1a7eJAAAgBIjIwEAAJznlpuaX8ncuXPl6+urXr16KTs7W7GxsZo/f759eYUKFbRq1SoNGzZMMTExqlSpkgYMGKCpU6fa+0RFRWn16tUaNWqUXnrpJdWuXVtvvfWWYmNjPbFJAAAAJUZGAgAA5YWPYRiGpyfhKTabTVarVVlZWVyaDgBAEeUmbnV479+j4xX7FKawz7kT3/9Xxj4CAKD4yEjOcfk9pAAAAAAAAIDLoSAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAACABx3MXOPpKZiOghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAKYpj/dHAAAAQEEUpAAAAAAAAGAqClIAAMAUXB0FAABQUHnNSBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYys/TEwAAAGVDbuJWT08BAADA65CRCscVUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqP09PAAAAeFZu4laH9/49Orp8HQcz17h8TAAAAHciI7kXV0gBAAAAAADAVFwhBQAAHFx8NlByzxlBAACA0oSM5FpcIQUAAAAAAABTubwgNX36dLVp00ZVqlRRaGioevbsqX379jn0OX36tOLj41W9enVVrlxZvXr1Unp6ukOf1NRUxcXFqWLFigoNDdWTTz6pM2fOOPTZvHmzWrZsqcDAQDVo0EAJCQmu3hwAAACXICMBAACc5/KC1JYtWxQfH6+vvvpK69evV25urrp3765Tp07Z+4waNUqffPKJli1bpi1btujw4cO655577MvPnj2ruLg45eTkaNu2bVq0aJESEhI0ceJEe58DBw4oLi5OXbp0UUpKikaOHKlBgwZp7dq1rt4kAADKvdzErQVexVVeb95JRgIAoOwhIxWfj2EYhjtXcPToUYWGhmrLli3q1KmTsrKyVLNmTS1evFi9e/eWJO3du1eNGzdWUlKS2rdvrzVr1uj222/X4cOHFRYWJklasGCBxo0bp6NHjyogIEDjxo3T6tWrtWvXLvu6+vbtq8zMTCUmJjo1N5vNJqvVqqysLFksFtdvPAAApUBJgpOzLg5Y9UJutf/Z7HsveMv3PxkJAADvRkZyL7ffQyorK0uSVK1aNUlScnKycnNz1a1bN3ufRo0aqU6dOkpKSpIkJSUlqUmTJvagJUmxsbGy2WzavXu3vc+FY+T3yR8DAADAm5GRAABAeebWp+zl5eVp5MiRuuGGG3T99ddLktLS0hQQEKCQkBCHvmFhYUpLS7P3uTBo5S/PX3a5PjabTf/884+Cg4MLzCc7O1vZ2dn29zabrWQbCAAAUAxkJAAAUN659Qqp+Ph47dq1Sx988IE7V+O06dOny2q12l+RkZGenhIAACiHyEgAAKC8c1tBavjw4Vq1apU2bdqk2rVr29vDw8OVk5OjzMxMh/7p6ekKDw+397n4iTL576/Ux2KxFHrmT5ImTJigrKws++vQoUMl2kYAAICiIiMBAAC4oSBlGIaGDx+u5cuXa+PGjYqKinJY3qpVK/n7+2vDhg32tn379ik1NVUxMTGSpJiYGO3cuVMZGRn2PuvXr5fFYlF0dLS9z4Vj5PfJH6MwgYGBslgsDi8AAAAzkJEAAADOc/k9pOLj47V48WJ9/PHHqlKliv1+BlarVcHBwbJarRo4cKBGjx6tatWqyWKxaMSIEYqJiVH79u0lSd27d1d0dLQeeOABzZw5U2lpaXr66acVHx+vwMBASdLQoUP1yiuvaOzYsXr44Ye1ceNGLV26VKtXr3b1JgEAAJQYGQkAAOA8l18h9dprrykrK0udO3dWrVq17K8lS5bY+8ydO1e33367evXqpU6dOik8PFwfffSRfXmFChW0atUqVahQQTExMbr//vvVv39/TZ061d4nKipKq1ev1vr169WsWTPNmTNHb731lmJjY129SQAAACVGRgIAADjPxzAMw9OT8BSbzSar1aqsrCwuTQcAlFu5iVvdvo6DmWsc3tcLudX+Z/8eHd2+/gvx/X9l7CMAAMhI7ubWp+wBAAAAAAAAF6MgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAACAW118s04AAACQkShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAABRbeX86DAAAQGHISFdGQQoAAJQIgQsAAKAgMtLlUZACAACmI6ABAAAUVJ4yEgUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACm8vP0BAAAgHvkJm4t0Obfo6PLxr/wHgcHM9eoXsitLhsbAADAXchI3oErpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAALjEhTfwBAAAwDlkpMJRkAIAAG5DAAMAACiIjCT5eXoCAADANQp7hLE34zHIAADADGQk78QVUgAAAAAAADAVBSkAAFBkXGYOAABQEBnJeRSkAAAAAAAAYCoKUgAAAAAAADAVNzUHAKAcKW039QQAADADGcl8FKQAAPAyzgQi/x4dTZhJ0ZWXp8IAAADzkZHKFn6yBwAA7A5mruFmnAAAAIUgI7kWBSkAAOAxBDsAAICCykNG4id7AAC4SWGXlXvrZeQXK8ll5VySDgAALqc0ZqT8AhEZyXUoSAEAYKKLA5i3h6/CuPqMXWkMpQAAwLXISAWV9YzET/YAAEChShKquBcVAAAoq8hIrsEVUgAAXEFZPzuVr7BwxKXlAADgUshIZKSSoCAFACg3XBmaPH1ZuTOPPQYAAHAGGQmeQEEKAFDqlJezcWa63KXj7j4DyBlGAABcg4zkemQk96EgBQAo1zx9Fq+0yA9E3PMAAIDygYzkHDJS8ZX6gtSrr76qWbNmKS0tTc2aNdPLL7+stm3benpaAAAXcfaya1ddnl3cccz+nCcQtEoXMhIAlG1kJO9BRiqeUl2QWrJkiUaPHq0FCxaoXbt2evHFFxUbG6t9+/YpNDTU09MDgDLJ3eGAs2+uU1g4Kuyyb28IUWX9knSzkZEAwDPcmZPISK5DRvIOPoZhGJ6eRHG1a9dObdq00SuvvCJJysvLU2RkpEaMGKHx48df8fM2m01Wq1VZWVmyWCzuni6AcsRVlziXpjND8C7OBChvu7z8wrDlztBdHr7/yUgAvBUZCZ5GRro0s7//S+0VUjk5OUpOTtaECRPsbb6+vurWrZuSkpIK/Ux2drays7Pt77OysiSd2+kA3Cd3fcF/k/63xBTrc6XWf9d6egYoY1Kz1quO9ZZLLnPGrr9XuHBGJZc/nzrWW+Tvxu/m/O/9UnxO7rLISEDpQUYSGQkuR0YqPrMzUqktSP355586e/aswsLCHNrDwsK0d+/eQj8zffp0TZkypUB7ZGSkW+YIAIB7zfH0BNzEnO06ceKErFarKesyExkJAAAyUkmYlZFKbUGqOCZMmKDRo0fb3+fl5enYsWOqXr26fHx8PDgzz7LZbIqMjNShQ4e4LP8K2FfOY185j33lPPaV89hXl2YYhk6cOKGIiAhPT8VrkJEKx78j57GvnMe+ch77ynnsK+exry7N7IxUagtSNWrUUIUKFZSenu7Qnp6ervDw8EI/ExgYqMDAQIe2kJAQd02x1LFYLPyDdBL7ynnsK+exr5zHvnIe+6pwZfHKqHxkJNfj35Hz2FfOY185j33lPPaV89hXhTMzI/matiYXCwgIUKtWrbRhwwZ7W15enjZs2KCYmCv/7hoAAKAsIiMBAIDSoNReISVJo0eP1oABA9S6dWu1bdtWL774ok6dOqWHHnrI01MDAADwGDISAADwdqW6IPWvf/1LR48e1cSJE5WWlqbmzZsrMTGxwE08cXmBgYGaNGlSgUv1URD7ynnsK+exr5zHvnIe+6p8IyO5Bv+OnMe+ch77ynnsK+exr5zHvvIePkZZfeYxAAAAAAAAvFKpvYcUAAAAAAAASicKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBqpy78847VadOHQUFBalWrVp64IEHdPjwYYc+P/zwg2688UYFBQUpMjJSM2fO9NBsPefgwYMaOHCgoqKiFBwcrPr162vSpEnKyclx6OPj41Pg9dVXX3lw5uZzZl9J/L3K99xzz6lDhw6qWLGiQkJCCu1T2N+rDz74wNyJegFn9lVqaqri4uJUsWJFhYaG6sknn9SZM2fMnagXqlevXoG/QzNmzPD0tACvRkZyDhnJeWSkoiEjOY+MVHxkJM/y8/QE4FldunTR//zP/6hWrVr6448/NGbMGPXu3Vvbtm2TJNlsNnXv3l3dunXTggULtHPnTj388MMKCQnRkCFDPDx78+zdu1d5eXl6/fXX1aBBA+3atUuDBw/WqVOnNHv2bIe+n332ma677jr7++rVq5s9XY9yZl/x9+q8nJwc3XvvvYqJidHbb799yX4LFy5Ujx497O8vFTbKsivtq7NnzyouLk7h4eHatm2bjhw5ov79+8vf31/PP/+8B2bsXaZOnarBgwfb31epUsWDswG8HxnJOWQk55GRioaM5DwyUsmQkTzIAC7w8ccfGz4+PkZOTo5hGIYxf/58o2rVqkZ2dra9z7hx44yGDRt6aopeY+bMmUZUVJT9/YEDBwxJxnfffee5SXmpi/cVf68KWrhwoWG1WgtdJslYvny5qfPxZpfaV59++qnh6+trpKWl2dtee+01w2KxOPxdK4/q1q1rzJ0719PTAEo1MpLzyEjOIyNdGRnJeWSkoiMjeRY/2YPdsWPH9P7776tDhw7y9/eXJCUlJalTp04KCAiw94uNjdW+fft0/PhxT03VK2RlZalatWoF2u+8806FhoaqY8eOWrlypQdm5n0u3lf8vSq6+Ph41ahRQ23bttU777wjwzA8PSWvk5SUpCZNmigsLMzeFhsbK5vNpt27d3twZt5hxowZql69ulq0aKFZs2ZxmT5QBGSkoiEjOY+MVHJkpCsjI10eGclzKEhB48aNU6VKlVS9enWlpqbq448/ti9LS0tz+A+XJPv7tLQ0U+fpTX7++We9/PLLeuSRR+xtlStX1pw5c7Rs2TKtXr1aHTt2VM+ePct94CpsX/H3qmimTp2qpUuXav369erVq5ceffRRvfzyy56eltfh79WlPfbYY/rggw+0adMmPfLII3r++ec1duxYT08L8HpkpKIjIzmPjFRyZCTn8Pfq0shInkVBqgwaP358oTf4u/C1d+9ee/8nn3xS3333ndatW6cKFSqof//+5ebMQlH3lST98ccf6tGjh+69916H3xrXqFFDo0ePVrt27dSmTRvNmDFD999/v2bNmmX2ZrmFK/dVWVecfXU5zzzzjG644Qa1aNFC48aN09ixY8v13yucU5R9N3r0aHXu3FlNmzbV0KFDNWfOHL388svKzs728FYA5iIjOY+M5DwykvPISM4jIxUfGan04KbmZdATTzyhBx988LJ9rr76avufa9SooRo1aujaa69V48aNFRkZqa+++koxMTEKDw9Xenq6w2fz34eHh7t87mYr6r46fPiwunTpog4dOuiNN9644vjt2rXT+vXrSzpNr+DKfcXfK8d9VVTt2rXTtGnTlJ2drcDAwGKP4w1cua/Cw8P19ddfO7SVpb9XFyvJvmvXrp3OnDmjgwcPqmHDhm6YHeCdyEjOIyM5j4zkPDKS88hIxUdGKj0oSJVBNWvWVM2aNYv12by8PEmyV4RjYmL01FNPKTc3137PhPXr16thw4aqWrWqaybsQUXZV3/88Ye6dOmiVq1aaeHChfL1vfIFhikpKapVq1ZJp+kVXLmv+HtVMikpKapatWqpD1qSa/dVTEyMnnvuOWVkZCg0NFTSub9XFotF0dHRLlmHNynJvktJSZGvr699PwHlBRnJeWQk55GRnEdGch4ZqfjISKUHBalybPv27dqxY4c6duyoqlWr6pdfftEzzzyj+vXrKyYmRpL073//W1OmTNHAgQM1btw47dq1Sy+99JLmzp3r4dmb648//lDnzp1Vt25dzZ49W0ePHrUvyz+rsGjRIgUEBKhFixaSpI8++kjvvPOO3nrrLY/M2VOc2Vf8vTovNTVVx44dU2pqqs6ePauUlBRJUoMGDVS5cmV98sknSk9PV/v27RUUFKT169fr+eef15gxYzw7cQ+40r7q3r27oqOj9cADD2jmzJlKS0vT008/rfj4+DIRTIsrKSlJ27dvV5cuXVSlShUlJSVp1KhRuv/++8vE/9wA7kBGch4ZyXlkpKIhIzmPjFQ8ZCQv4NmH/MGTfvjhB6NLly5GtWrVjMDAQKNevXrG0KFDjd9//92h3/fff2907NjRCAwMNK666ipjxowZHpqx5yxcuNCQVOgrX0JCgtG4cWOjYsWKhsViMdq2bWssW7bMg7P2DGf2lWHw9yrfgAEDCt1XmzZtMgzDMNasWWM0b97cqFy5slGpUiWjWbNmxoIFC4yzZ896duIecKV9ZRiGcfDgQePWW281goODjRo1ahhPPPGEkZub67lJe4Hk5GSjXbt2htVqNYKCgozGjRsbzz//vHH69GlPTw3wWmQk55GRnEdGKhoykvPISMVDRvI8H8MoJ3dmBAAAAAAAgFfgKXsAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKADzk4MGD8vHxUUJCgkvHzcvL0/XXX6/nnnvuin0nT54sHx8fh7YzZ85o7NixioyMlK+vr3r27Fmk9S9YsEB16tRRdnZ2kT4HAAAgkZGA8oKCFIAimT9/vsvDAVzr//7v/3To0CENHz68WJ9/5513NGvWLPXu3VuLFi3SqFGjJElLlizR/fffr2uuuUY+Pj7q3LlzoZ9/8MEHlZOTo9dff724mwAAQKlDRvJ+7shIf/31l2bNmqVOnTqpZs2aCgkJUfv27bVkyZICnycjAY78PD0BAKXL/PnzVaNGDT344IOenkqpV7duXf3zzz/y9/d36bizZs1S3759ZbVai/X5jRs36qqrrtLcuXMd2l977TUlJyerTZs2+uuvvy75+aCgIA0YMEAvvPCCRowYUeDsIgAAZREZyXVKU0ZatWqVnnrqKd122216+umn5efnp//+97/q27ev9uzZoylTptj7kpEAR1whBcBtTp065ekpeDUfHx8FBQWpQoUKLhvzu+++0/fff68+ffoUe4yMjAyFhIQUaH/33XeVlZWljRs3KiIi4rJj9OnTR7/99ps2bdpU7HkAAFBWkZEurzRlpOuuu0779+/XihUr9Pjjjys+Pl4bNmxQ165d9Z///KfAsSYjAedRkAK80IkTJzRy5EjVq1dPgYGBCg0N1S233KJvv/3W3qdz5866/vrrlZycrA4dOig4OFhRUVFasGBBgfGys7M1adIkNWjQQIGBgYqMjNTYsWML/f36e++9p7Zt26pixYqqWrWqOnXqpHXr1kmS6tWrp927d2vLli3y8fFx+NlWQkKCfHx8tGXLFj366KMKDQ1V7dq1JZ27PLlevXoF1lXYb/N9fHw0fPhwLVu2TNHR0QoODlZMTIx27twpSXr99dfVoEEDBQUFqXPnzjp48GCR9+/u3bvVtWtXBQcHq3bt2nr22Wf1zjvvyMfHp0jj5c//p59+0v333y+r1aqaNWvqmWeekWEYOnTokO666y5ZLBaFh4drzpw5Dp8v7P4IDz74oCpXrqw//vhDPXv2VOXKlVWzZk2NGTNGZ8+eveKcVqxYoYCAAHXq1KnAsq1bt6pNmzYKCgpS/fr1C1wunj+fTZs2affu3fZjvHnzZkmy3y/BGa1atVK1atX08ccfO9UfAABnkJHISN6WkaKiolS3bl2H/j4+PurZs6eys7P166+/OiwjIwHn8ZM9wAsNHTpUH374oYYPH67o6Gj99ddf2rp1q3788Ue1bNnS3u/48eO67bbb1KdPH913331aunSphg0bpoCAAD388MOSzt288c4779TWrVs1ZMgQNW7cWDt37tTcuXP1008/acWKFfbxpkyZosmTJ6tDhw6aOnWqAgICtH37dm3cuFHdu3fXiy++qBEjRqhy5cp66qmnJElhYWEOc3/00UdVs2ZNTZw4sdhn/7744gutXLlS8fHxkqTp06fr9ttv19ixYzV//nw9+uijOn78uGbOnKmHH35YGzdudHrstLQ0denSRWfOnNH48eNVqVIlvfHGGwoODi7WXCXpX//6lxo3bqwZM2Zo9erVevbZZ1WtWjW9/vrr9rNj77//vsaMGaM2bdoUGoQudPbsWcXGxqpdu3aaPXu2PvvsM82ZM0f169fXsGHDLvvZbdu26frrry9wifvOnTvVvXt31axZU5MnT9aZM2c0adIkh+NXs2ZNvfvuu3ruued08uRJTZ8+XZLUuHHjYu2Xli1b6ssvvyzWZwEAKAwZiYxUWjJSWlqaJKlGjRoFlpGRgP/PAOB1rFarER8ff9k+N910kyHJmDNnjr0tOzvbaN68uREaGmrk5OQYhmEY7777ruHr62t88cUXDp9fsGCBIcn48ssvDcMwjP379xu+vr7G3XffbZw9e9ahb15env3P1113nXHTTTcVmM/ChQsNSUbHjh2NM2fOOCwbMGCAUbdu3QKfmTRpknHxf4YkGYGBgcaBAwfsba+//rohyQgPDzdsNpu9fcKECYYkh75XMnLkSEOSsX37dntbRkaGYbVaizxW/vyHDBlibztz5oxRu3Ztw8fHx5gxY4a9/fjx40ZwcLAxYMAAe9uBAwcMScbChQvtbQMGDDAkGVOnTnVYV4sWLYxWrVpdcU61a9c2evXqVaC9Z8+eRlBQkPHbb7/Z2/bs2WNUqFChwDG46aabjOuuu+6y67nU34MLDRkyxAgODr7inAEAcBYZiYzk7RnJMAzjr7/+MkJDQ40bb7yx0OVkJOAcfrIHeKGQkBBt375dhw8fvmw/Pz8/PfLII/b3AQEBeuSRR5SRkaHk5GRJ0rJly9S4cWM1atRIf/75p/3VtWtXSbL/fn3FihXKy8vTxIkTC/wsqyg3XBw8eHCJf+9/8803O1y+3q5dO0lSr169VKVKlQLtF18KfTmffvqp2rdvr7Zt29rbatasqX79+hV7voMGDbL/uUKFCmrdurUMw9DAgQPt7SEhIWrYsKHTcx06dKjD+xtvvNGpz/7111+qWrWqQ9vZs2e1du1a9ezZU3Xq1LG3N27cWLGxsU7NpziqVq2qf/75R3///bfb1gEAKF/ISGQkb89IeXl56tevnzIzM/Xyyy8X2oeMBJxDQQrwQjNnztSuXbsUGRmptm3bavLkyYV+0UZERKhSpUoObddee60k2X/nv3//fu3evVs1a9Z0eOX3y8jIkCT98ssv8vX1VXR0dInmHhUVVaLPS3IIBJLsT0KJjIwstP348eNOj/3bb7/pmmuuKdDesGHDok7TrrD5BgUFFbhE22q1OjXXoKAg1axZ06GtatWqTm+nYRgO748ePap//vnH5dvt7Dx4ggwAwFXISGQkb89II0aMUGJiot566y01a9bssvMgI6G84x5SgBfq06ePbrzxRi1fvlzr1q3TrFmz9J///EcfffSRbr311iKNlZeXpyZNmuiFF14odPnFAaakCrvPwKW+bC91A8pLnT28VPvF4cJshc2rJHMtydnT6tWrFyl8utPx48dVsWLFEt17AgCAC5GRyEjFZUZGmjJliubPn68ZM2bogQceuGQ/MhJwDgUpwEvVqlVLjz76qB599FFlZGSoZcuWeu655xzC1uHDh3Xq1CmHM4A//fSTJNkv565fv76+//573XzzzZc9C1O/fn3l5eVpz549at68+SX7FedMTtWqVZWZmVmg/bfffivyWCVVt25d7d+/v0D7vn37TJ+LOzRq1EgHDhxwaKtZs6aCg4NN3+4DBw4U+4boAABcChnJPchIjoq63a+++qomT56skSNHaty4cZftS0YCzuEne4CXOXv2rLKyshzaQkNDFRERUeARxGfOnHF4LG1OTo5ef/111axZU61atZJ07kziH3/8oTfffLPAuv755x/7U1569uwpX19fTZ06VXl5eQ79LjxjValSpUKD0+XUr19fWVlZ+uGHH+xtR44c0fLly4s0jivcdttt+uqrr/T111/b244ePar333/f9Lm4Q0xMjHbt2uXwd6VChQqKjY3VihUrlJqaam//8ccftXbtWrfN5dtvv1WHDh3cNj4AoHwhI7kXGan4GWnJkiV67LHH1K9fv0tecXchMhJwDldIAV7mxIkTql27tnr37q1mzZqpcuXK+uyzz7Rjxw7NmTPHoW9ERIT+85//6ODBg7r22mu1ZMkSpaSk6I033rA/0vaBBx7Q0qVLNXToUG3atEk33HCDzp49q71792rp0qVau3atWrdurQYNGuipp57StGnTdOONN+qee+5RYGCgduzYoYiICPvjbVu1aqXXXntNzz77rBo0aKDQ0FD7zT8vpW/fvho3bpzuvvtuPfbYY/r777/12muv6dprr9W3337rnh15CWPHjtW7776rHj166PHHH7c/0rhu3boOYbC0uuuuuzRt2jRt2bJF3bt3t7dPmTJFiYmJuvHGG/Xoo4/qzJkzevnll3Xdddc5vd2ff/65Pv/8c0nnAuqpU6f07LPPSpI6derk8Kjm5ORkHTt2THfddZcLtw4AUJ6RkdyLjFS8jPT111+rf//+ql69um6++eYCBbwOHTro6quvtr8nIwHnUZACvEzFihX16KOPat26dfroo4+Ul5enBg0aaP78+Ro2bJhD36pVq2rRokUaMWKE3nzzTYWFhemVV17R4MGD7X18fX21YsUKzZ07V//7v/+r5cuXq2LFirr66qv1+OOP22/cKUlTp05VVFSUXn75ZT311FOqWLGimjZt6vAb+IkTJ+q3337TzJkzdeLECd10001XDFvVq1fX8uXLNXr0aI0dO1ZRUVGaPn269u/fb3rYqlWrljZt2qQRI0ZoxowZql69uoYOHaqIiAiHJ76UVq1atVLTpk21dOlSh7DVtGlTrV27VqNHj9bEiRNVu3ZtTZkyRUeOHHE6ZG7cuFFTpkxxaHvmmWckSZMmTXIoSC1btkx16tS54t8NAACcRUZyLzJS8TLSnj17lJOTo6NHj+rhhx8usHzhwoUOBSkyEnCej+HpO90BKJbOnTvrzz//1K5duzw9lTIhISFBDz30kA4cOODwOOXS6N1331V8fLxSU1MVEhJi+vqzs7NVr149jR8/Xo8//rjp6wcAlG9kJNciI7kOGQlwxD2kAKCM6devn+rUqaNXX33VI+tfuHCh/P39NXToUI+sHwAAoDBkJMC78JM9AGXCP//8U+BGpxerVq2aAgICrjjWyZMndfLkycv2qVmzZokePexOvr6+Hj0rPHToUIIWAABegox0HhkJ8C4UpACUCUuWLNFDDz102T6bNm1S586drzjW7NmzC9wr6WJl4bJ1AABQ9pGRAHgr7iEFoEw4cuSIdu/efdk+rVq1UtWqVa841q+//qpff/31sn06duyooKCgIs0RAADAbGQkAN6KghQAAAAAAABMxU3NAQAAAAAAYKpyfQ+pvLw8HT58WFWqVJGPj4+npwMAAExgGIZOnDihiIgI+fpybq4wZCQAAMofszNSuS5IHT58WJGRkZ6eBgAA8IBDhw6pdu3anp6GVyIjAQBQfpmVkcp1QapKlSqSzu1si8Xi4dkAAAAz2Gw2RUZG2nMACiIjAQBQ/pidkcp1QSr/EnSLxULYAgCgnOGnaJdGRgIAoPwyKyNx4wQAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKYq1/eQAgDgcs6ePavc3FxPTwNF5O/vrwoVKnh6GgAAlFlkpNLJ2zISBSkAAC5iGIbS0tKUmZnp6amgmEJCQhQeHs6NywEAcCEyUunnTRmJghQAABfJD1qhoaGqWLGiV3xhwzmGYejvv/9WRkaGJKlWrVoenhEAAGUHGan08saMREEKAIALnD171h60qlev7unpoBiCg4MlSRkZGQoNDfWqS9MBACityEiln7dlJG5qDgDABfLvh1CxYkUPzwQlkX/8uL8FAACuQUYqG7wpI1GQAgCgEFyCXrpx/AAAcA++Y0s3bzp+FKQAAAAAAABgKgpSAAAAAAAAMBU3NQcAwEm5iVtNW5d/j45O973SpdeTJk3S5MmTSzij4vHx8dHy5cvVs2fPYo/xxhtvaPHixfr222914sQJHT9+XCEhIS6bIwAAKBkzM5JETsp37NgxTZo0SevWrVNqaqpq1qypnj17atq0abJara6drBtQkAIAoJQ7cuSI/c9LlizRxIkTtW/fPntb5cqVizReTk6OAgICXDa/kvr777/Vo0cP9ejRQxMmTPD0dAAAQClSlnPS4cOHdfjwYc2ePVvR0dH67bffNHToUB0+fFgffvihp6d3Rfxkz41yE7cWeAEA4Grh4eH2l9VqlY+Pj/39qVOn1K9fP4WFhaly5cpq06aNPvvsM4fP16tXT9OmTVP//v1lsVg0ZMgQSdKbb76pyMhIVaxYUXfffbdeeOGFAlcmffzxx2rZsqWCgoJ09dVXa8qUKTpz5ox9XEm6++675ePjY3///fffq0uXLqpSpYosFotatWqlb7755pLbN3LkSI0fP17t27d3zQ6Dx5GRAABmKcs56frrr9d///tf3XHHHapfv766du2q5557Tp988ol9Pd6MghQAAGXYyZMnddttt2nDhg367rvv1KNHD91xxx1KTU116Dd79mw1a9ZM3333nZ555hl9+eWXGjp0qB5//HGlpKTolltu0XPPPefwmS+++EL9+/fX448/rj179uj1119XQkKCvd+OHTskSQsXLtSRI0fs7/v166fatWtrx44dSk5O1vjx4+Xv72/C3gAAADivLOakrKwsWSwW+fl5/w/ivH+GAACg2Jo1a6ZmzZrZ30+bNk3Lly/XypUrNXz4cHt7165d9cQTT9jfP/XUU7r11ls1ZswYSdK1116rbdu2adWqVfY+U6ZM0fjx4zVgwABJ0tVXX61p06Zp7NixmjRpkmrWrClJCgkJUXh4uP1zqampevLJJ9WoUSNJ0jXXXOOGLQcAALi8spaT/vzzT02bNs1+FZe34wopAADKsJMnT2rMmDFq3LixQkJCVLlyZf34448Fzvy1bt3a4f2+ffvUtm1bh7aL33///feaOnWqKleubH8NHjxYR44c0d9//33JOY0ePVqDBg1St27dNGPGDP3yyy8l3EoAAICiK0s5yWazKS4uTtHR0R67SXtRUZACAKAMGzNmjJYvX67nn39eX3zxhVJSUtSkSRPl5OQ49KtUqVKRxz558qSmTJmilJQU+2vnzp3av3+/goKCLvm5yZMna/fu3YqLi9PGjRsVHR2t5cuXF3n9AAAAJVFWctKJEyfUo0cPValSRcuXLy81t0LgJ3sAAJRhX375pR588EHdfffdks6Fo4MHD17xcw0bNrTfyyDfxe9btmypffv2qUGDBpccx9/fX2fPni3Qfu211+raa6/VqFGjdN9992nhwoX2OQIAAJihLOQkm82m2NhYBQYGauXKlZctdnkbClIAAJRh11xzjT766CPdcccd8vHx0TPPPKO8vLwrfm7EiBHq1KmTXnjhBd1xxx3auHGj1qxZIx8fH3ufiRMn6vbbb1edOnXUu3dv+fr66vvvv9euXbv07LPPSjr3BJkNGzbohhtuUGBgoIKCgvTkk0+qd+/eioqK0u+//64dO3aoV69el5xLWlqa0tLS9PPPP0uSdu7cqSpVqqhOnTqqVq1aCfcQAAAor0p7TrLZbOrevbv+/vtvvffee7LZbLLZbJKkmjVrqkKFCi7YS+7j8p/s1atXTz4+PgVe8fHxkqTTp08rPj5e1atXV+XKldWrVy+lp6c7jJGamqq4uDhVrFhRoaGhevLJJws8snDz5s1q2bKlAgMD1aBBAyUkJLh6UwAAKPVeeOEFVa1aVR06dNAdd9yh2NhYtWzZ8oqfu+GGG7RgwQK98MILatasmRITEzVq1CiHs26xsbFatWqV1q1bpzZt2qh9+/aaO3eu6tata+8zZ84crV+/XpGRkWrRooUqVKigv/76S/3799e1116rPn366NZbb9WUKVMuOZcFCxaoRYsWGjx4sCSpU6dOatGihVauXFmCPWM+MhIAAN6ltOekb7/9Vtu3b9fOnTvVoEED1apVy/46dOhQyXeQm/kYhmG4csCjR486XHK2a9cu3XLLLdq0aZM6d+6sYcOGafXq1UpISJDVatXw4cPl6+urL7/8UpJ09uxZNW/eXOHh4Zo1a5aOHDmi/v37a/DgwXr++eclSQcOHND111+voUOHatCgQdqwYYNGjhyp1atXKzY21um52mw2Wa1W+2MRXS03cWuBNv8eHV2+HgCA65w+fVoHDhxQVFRUqbrk2QyDBw/W3r179cUXX3h6Kld0uePo7u//SyEjnUdGAoDSh4x0eaUlJ3lTRnL5T/byH12Yb8aMGapfv75uuukmZWVl6e2339bixYvVtWtXSdLChQvVuHFjffXVV2rfvr3WrVunPXv26LPPPlNYWJiaN2+uadOmady4cZo8ebICAgK0YMECRUVFac6cOZKkxo0ba+vWrZo7d26RwhYAALi02bNn65ZbblGlSpW0Zs0aLVq0SPPnz/f0tEotMhIAAGUHOank3PqUvZycHL333nt6+OGH5ePjo+TkZOXm5qpbt272Po0aNVKdOnWUlJQkSUpKSlKTJk0UFhZm7xMbGyubzabdu3fb+1w4Rn6f/DEuJTs72/6bygt/WwkAAAr6+uuvdcstt6hJkyZasGCB5s2bp0GDBnl6WmUCGQkAgNKNnFRybr2p+YoVK5SZmakHH3xQ0rmbkgYEBCgkJMShX1hYmNLS0ux9Lgxa+cvzl12uj81m0z///KPg4OBC5zN9+vTL3qMCAACct3TpUk9PocwiIwEAULqRk0rOrVdIvf3227r11lsVERHhztU4bcKECcrKyrK/SsNNvgAAQNlDRgIAAOWd266Q+u233/TZZ5/po48+sreFh4crJydHmZmZDmcA09PTFR4ebu/z9ddfO4yV/4SZC/tc/NSZ9PR0WSyWS575k6TAwEAFBgaWaLsAAABKgowEAADgxiukFi5cqNDQUMXFxdnbWrVqJX9/f23YsMHetm/fPqWmpiomJkaSFBMTo507dyojI8PeZ/369bJYLIqOjrb3uXCM/D75YwAAAHgrMhIAAICbClJ5eXlauHChBgwYID+/8xdhWa1WDRw4UKNHj9amTZuUnJyshx56SDExMWrfvr0kqXv37oqOjtYDDzyg77//XmvXrtXTTz+t+Ph4+5m7oUOH6tdff9XYsWO1d+9ezZ8/X0uXLtWoUaPcsTkAAAAuQUYCAAA4xy0/2fvss8+Umpqqhx9+uMCyuXPnytfXV7169VJ2drZiY2MdHo1YoUIFrVq1SsOGDVNMTIwqVaqkAQMGaOrUqfY+UVFRWr16tUaNGqWXXnpJtWvX1ltvvcXjjAEAgFcjIwEAAJzjYxiG4elJeIrNZpPValVWVpYsFovLx89N3Fqgzb9HR5evBwDgOqdPn9aBAwcUFRWloKAgT08HxXS54+ju7/+ygIwEALgYGals8KaM5Nan7AEAAAAAAAAXc9tT9gAAKGt++eZ109ZVv/UjRer/4IMPatGiRZIkPz8/VatWTU2bNtV9992nBx98UL6+pfcc1O7duzVx4kQlJyfrt99+09y5czVy5EhPTwsAAPx/ZmYkiZx0oTfffFP/+7//q127dkk696CU559/Xm3btvXwzK6s9O51AADgoEePHjpy5IgOHjyoNWvWqEuXLnr88cd1++2368yZM56eXrH9/fffuvrqqzVjxgyFh4d7ejoAAKAUKqs5afPmzbrvvvu0adMmJSUlKTIyUt27d9cff/zh6aldEQUpAADKiMDAQIWHh+uqq65Sy5Yt9T//8z/6+OOPtWbNGiUkJNj7ZWZmatCgQapZs6YsFou6du2q77//3mGsTz75RG3atFFQUJBq1Kihu+++277s+PHj6t+/v6pWraqKFSvq1ltv1f79+yVJp06dksVi0Ycffugw3ooVK1SpUiWdOHFCOTk5Gj58uGrVqqWgoCDVrVtX06dPv+R2tWnTRrNmzVLfvn3tT5MDAAAoirKak95//309+uijat68uRo1aqS33npLeXl52rBhgwv2mntRkAIAoAzr2rWrmjVrpo8++sjedu+99yojI0Nr1qxRcnKyWrZsqZtvvlnHjh2TJK1evVp33323brvtNn333XfasGGDw2XfDz74oL755hutXLlSSUlJMgxDt912m3Jzc1WpUiX17dtXCxcudJjHwoUL1bt3b1WpUkXz5s3TypUrtXTpUu3bt0/vv/++6tWrZ8r+AAAAyFcWc9Lff/+t3NxcVatWrWQ7xwTcQwoAgDKuUaNG+uGHHyRJW7du1ddff62MjAz71UazZ8/WihUr9OGHH2rIkCF67rnn1LdvX02ZMsU+RrNmzSRJ+/fv18qVK/Xll1+qQ4cOks6dmYuMjNSKFSt07733atCgQerQoYOOHDmiWrVqKSMjQ59++qk+++wzSVJqaqquueYadezYUT4+Pqpbt66ZuwMAAMCurOWkcePGKSIiQt26dSvxvnE3rpACAKCMMwxDPj4+kqTvv/9eJ0+eVPXq1VW5cmX768CBA/rll18kSSkpKbr55psLHevHH3+Un5+f2rVrZ2+rXr26GjZsqB9//FGS1LZtW1133XX2m4e+9957qlu3rjp16iTp3JnDlJQUNWzYUI899pjWrVvntm0HAAC4nLKUk2bMmKEPPvhAy5cvV1BQUNF3hsm4QgoAgDLuxx9/VFRUlCTp5MmTqlWrljZv3lygX0hIiCQpODi4xOscNGiQXn31VY0fP14LFy7UQw89ZA97LVu21IEDB7RmzRp99tln6tOnj7p161bgfgoAAADuVlZy0uzZszVjxgx99tlnatq0aYnnaAaukAIAoAzbuHGjdu7cqV69ekk6F3LS0tLk5+enBg0aOLxq1KghSWratOklb4TZuHFjnTlzRtu3b7e3/fXXX9q3b5+io6Ptbffff79+++03zZs3T3v27NGAAQMcxrFYLPrXv/6lN998U0uWLNF///tf+70ZAAAAzFBWctLMmTM1bdo0JSYmqnXr1sXeH2bjCikAAMqI7OxspaWl6ezZs0pPT1diYqKmT5+u22+/Xf3795ckdevWTTExMerZs6dmzpypa6+9VocPH7bfoLN169aaNGmSbr75ZtWvX199+/bVmTNn9Omnn2rcuHG65pprdNddd2nw4MF6/fXXVaVKFY0fP15XXXWV7rrrLvtcqlatqnvuuUdPPvmkunfvrtq1a9uXvfDCC6pVq5ZatGghX19fLVu2TOHh4fYzjxfLycnRnj177H/+448/lJKSosqVK6tBgwbu26EAAKDMKKs56T//+Y8mTpyoxYsXq169ekpLS5Mk+88NvRlXSAEAUEYkJiaqVq1aqlevnnr06KFNmzZp3rx5+vjjj1WhQgVJko+Pjz799FN16tRJDz30kK699lr17dtXv/32m8LCwiRJnTt31rJly7Ry5Uo1b95cXbt21ddff21fz8KFC9WqVSvdfvvtiomJkWEY+vTTT+Xv7+8wn4EDByonJ0cPP/ywQ3uVKlU0c+ZMtW7dWm3atNHBgwf16aefyte38Fhy+PBhtWjRQi1atNCRI0c0e/ZstWjRQoMGDXLl7gMAAGVYWc1Jr732mnJyctS7d2/VqlXL/po9e7Yrd59b+BiGYXh6Ep5is9lktVqVlZUli8Xi8vFzE7cWaPPv0dHl6wEAuM7p06d14MABRUVFlYqbQXqzd999V6NGjdLhw4cVEBBg6rovdxzd/f1fFpCRAAAXIyO5lqdykjdlJH6yBwAAXOrvv//WkSNHNGPGDD3yyCOmF6MAAAC8FTnpPH6yBwAAXGrmzJlq1KiRwsPDNWHCBE9PBwAAwGuQk86jIAUAAFxq8uTJys3N1YYNG7z+ZpoAAABmIiedR0EKAAAAAAAApqIgBQAAAAAAAFNRkAIAoBB5eXmengJKgOMHAIB78B1bunnT8eMpewAAXCAgIEC+vr46fPiwatasqYCAAPn4+Hh6WnCSYRjKycnR0aNH5evrW66fXAMAgCuRkUo3b8xIFKQAALiAr6+voqKidOTIER0+fNjT00ExVaxYUXXq1JGvLxeDAwDgCmSkssGbMhIFKQAALhIQEKA6derozJkzOnv2rKengyKqUKGC/Pz8OGsLAICLkZFKN2/LSBSkAAAohI+Pj/z9/eXv7+/pqQAAAHgNMhJcxfPXaAEAAAAAAKBcoSAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApnJLQeqPP/7Q/fffr+rVqys4OFhNmjTRN998Y19uGIYmTpyoWrVqKTg4WN26ddP+/fsdxjh27Jj69esni8WikJAQDRw4UCdPnnTo88MPP+jGG29UUFCQIiMjNXPmTHdsDgAAgEuQkQAAAM5xeUHq+PHjuuGGG+Tv7681a9Zoz549mjNnjqpWrWrvM3PmTM2bN08LFizQ9u3bValSJcXGxur06dP2Pv369dPu3bu1fv16rVq1Sp9//rmGDBliX26z2dS9e3fVrVtXycnJmjVrliZPnqw33njD1ZsEAABQYmQkAACA83wMwzBcOeD48eP15Zdf6osvvih0uWEYioiI0BNPPKExY8ZIkrKyshQWFqaEhAT17dtXP/74o6Kjo7Vjxw61bt1akpSYmKjbbrtNv//+uyIiIvTaa6/pqaeeUlpamgICAuzrXrFihfbu3evUXG02m6xWq7KysmSxWFyw9Y5yE7cWaPPv0dHl6wEAAM5z9/f/pZCRziMjAQDgfczOSC6/QmrlypVq3bq17r33XoWGhqpFixZ688037csPHDigtLQ0devWzd5mtVrVrl07JSUlSZKSkpIUEhJiD1qS1K1bN/n6+mr79u32Pp06dbIHLUmKjY3Vvn37dPz48ULnlp2dLZvN5vACAAAwAxkJAADgPJcXpH799Ve99tpruuaaa7R27VoNGzZMjz32mBYtWiRJSktLkySFhYU5fC4sLMy+LC0tTaGhoQ7L/fz8VK1aNYc+hY1x4TouNn36dFmtVvsrMjKyhFsLAADgHDISAADAeS4vSOXl5ally5Z6/vnn1aJFCw0ZMkSDBw/WggULXL2qIpswYYKysrLsr0OHDnl6SgAAoJwgIwEAAJzn8oJUrVq1FB0d7dDWuHFjpaamSpLCw8MlSenp6Q590tPT7cvCw8OVkZHhsPzMmTM6duyYQ5/CxrhwHRcLDAyUxWJxeAEAAJiBjAQAAHCeywtSN9xwg/bt2+fQ9tNPP6lu3bqSpKioKIWHh2vDhg325TabTdu3b1dMTIwkKSYmRpmZmUpOTrb32bhxo/Ly8tSuXTt7n88//1y5ubn2PuvXr1fDhg0dnlYDAADgDchIAAAA57m8IDVq1Ch99dVXev755/Xzzz9r8eLFeuONNxQfHy9J8vHx0ciRI/Xss89q5cqV2rlzp/r376+IiAj17NlT0rmzhT169NDgwYP19ddf68svv9Tw4cPVt29fRURESJL+/e9/KyAgQAMHDtTu3bu1ZMkSvfTSSxo9erSrNwkAAKDEyEgAAADn+bl6wDZt2mj58uWaMGGCpk6dqqioKL344ovq16+fvc/YsWN16tQpDRkyRJmZmerYsaMSExMVFBRk7/P+++9r+PDhuvnmm+Xr66tevXpp3rx59uVWq1Xr1q1TfHy8WrVqpRo1amjixIkaMmSIqzcJAACgxMhIAAAA5/kYhmF4ehKeYrPZZLValZWV5ZZ7JeQmbi3Q5t+jo8vXAwAAnOfu7/+ygIwEAED5Y3ZGcvlP9gAAAAAAAIDLoSAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJjK5QWpyZMny8fHx+HVqFEj+/LTp08rPj5e1atXV+XKldWrVy+lp6c7jJGamqq4uDhVrFhRoaGhevLJJ3XmzBmHPps3b1bLli0VGBioBg0aKCEhwdWbAgAA4DJkJAAAgPPccoXUddddpyNHjthfW7dutS8bNWqUPvnkEy1btkxbtmzR4cOHdc8999iXnz17VnFxccrJydG2bdu0aNEiJSQkaOLEifY+Bw4cUFxcnLp06aKUlBSNHDlSgwYN0tq1a92xOQAAAC5BRgIAADjHzy2D+vkpPDy8QHtWVpbefvttLV68WF27dpUkLVy4UI0bN9ZXX32l9u3ba926ddqzZ48+++wzhYWFqXnz5po2bZrGjRunyZMnKyAgQAsWLFBUVJTmzJkjSWrcuLG2bt2quXPnKjY21h2bBAAAUGJkJAAAgHPccoXU/v37FRERoauvvlr9+vVTamqqJCk5OVm5ubnq1q2bvW+jRo1Up04dJSUlSZKSkpLUpEkThYWF2fvExsbKZrNp9+7d9j4XjpHfJ3+MS8nOzpbNZnN4AQAAmIWMBAAAcI7LC1Lt2rVTQkKCEhMT9dprr+nAgQO68cYbdeLECaWlpSkgIEAhISEOnwkLC1NaWpokKS0tzSFo5S/PX3a5PjabTf/8888l5zZ9+nRZrVb7KzIysqSbCwAA4BQyEgAAwHku/8nerbfeav9z06ZN1a5dO9WtW1dLly5VcHCwq1dXJBMmTNDo0aPt7202G4ELAACYgowEAABwnlt+snehkJAQXXvttfr5558VHh6unJwcZWZmOvRJT0+3308hPDy8wBNl8t9fqY/FYrlsoAsMDJTFYnF4AQAAeAIZCQAAlGduL0idPHlSv/zyi2rVqqVWrVrJ399fGzZssC/ft2+fUlNTFRMTI0mKiYnRzp07lZGRYe+zfv16WSwWRUdH2/tcOEZ+n/wxAAAAvB0ZCQAAlGcuL0iNGTNGW7Zs0cGDB7Vt2zbdfffdqlChgu677z5ZrVYNHDhQo0eP1qZNm5ScnKyHHnpIMTExat++vSSpe/fuio6O1gMPPKDvv/9ea9eu1dNPP634+HgFBgZKkoYOHapff/1VY8eO1d69ezV//nwtXbpUo0aNcvXmAAAAuAQZCQAA4DyX30Pq999/13333ae//vpLNWvWVMeOHfXVV1+pZs2akqS5c+fK19dXvXr1UnZ2tmJjYzV//nz75ytUqKBVq1Zp2LBhiomJUaVKlTRgwABNnTrV3icqKkqrV6/WqFGj9NJLL6l27dp66623eJwxAADwWmQkAACA83wMwzA8PQlPsdlsslqtysrKcsu9EnITtxZo8+/R0eXrAQAAznP3939ZQEYCAKD8MTsjuf0eUgAAAAAAAMCFKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKZye0FqxowZ8vHx0ciRI+1tp0+fVnx8vKpXr67KlSurV69eSk9Pd/hcamqq4uLiVLFiRYWGhurJJ5/UmTNnHPps3rxZLVu2VGBgoBo0aKCEhAR3bw4AAIBLkJEAAEB55taC1I4dO/T666+radOmDu2jRo3SJ598omXLlmnLli06fPiw7rnnHvvys2fPKi4uTjk5Odq2bZsWLVqkhIQETZw40d7nwIEDiouLU5cuXZSSkqKRI0dq0KBBWrt2rTs3CQAAoMTISAAAoLzzMQzDcMfAJ0+eVMuWLTV//nw9++yzat68uV588UVlZWWpZs2aWrx4sXr37i1J2rt3rxo3bqykpCS1b99ea9as0e23367Dhw8rLCxMkrRgwQKNGzdOR48eVUBAgMaNG6fVq1dr165d9nX27dtXmZmZSkxMdGqONptNVqtVWVlZslgsLt8HuYlbC7T59+jo8vUAAADnufv7/0rISGQkAAC8kdkZyW1XSMXHxysuLk7dunVzaE9OTlZubq5De6NGjVSnTh0lJSVJkpKSktSkSRN70JKk2NhY2Ww27d69297n4rFjY2PtYxQmOztbNpvN4QUAAGAmMhIAAIDk545BP/jgA3377bfasWNHgWVpaWkKCAhQSEiIQ3tYWJjS0tLsfS4MWvnL85ddro/NZtM///yj4ODgAuuePn26pkyZUuztAgAAKAkyEgAAwDkuv0Lq0KFDevzxx/X+++8rKCjI1cOXyIQJE5SVlWV/HTp0yNNTAgAA5QQZCQAA4DyXF6SSk5OVkZGhli1bys/PT35+ftqyZYvmzZsnPz8/hYWFKScnR5mZmQ6fS09PV3h4uCQpPDy8wBNl8t9fqY/FYin0zJ8kBQYGymKxOLwAAADMQEYCAAA4z+UFqZtvvlk7d+5USkqK/dW6dWv169fP/md/f39t2LDB/pl9+/YpNTVVMTExkqSYmBjt3LlTGRkZ9j7r16+XxWJRdHS0vc+FY+T3yR8DAADAm5CRAAAAznP5PaSqVKmi66+/3qGtUqVKql69ur194MCBGj16tKpVqyaLxaIRI0YoJiZG7du3lyR1795d0dHReuCBBzRz5kylpaXp6aefVnx8vAIDAyVJQ4cO1SuvvKKxY8fq4Ycf1saNG7V06VKtXr3a1ZsEAABQYmQkAACA89xyU/MrmTt3rnx9fdWrVy9lZ2crNjZW8+fPty+vUKGCVq1apWHDhikmJkaVKlXSgAEDNHXqVHufqKgorV69WqNGjdJLL72k2rVr66233lJsbKwnNgkAAKDEyEgAAKC88DEMw/D0JDzFZrPJarUqKyvLLfdKyE3cWqDNv0dHl68HAAA4z93f/2UBGQkAgPLH7Izk8ntIAQAAAAAAAJdDQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMJXLC1KvvfaamjZtKovFIovFopiYGK1Zs8a+/PTp04qPj1f16tVVuXJl9erVS+np6Q5jpKamKi4uThUrVlRoaKiefPJJnTlzxqHP5s2b1bJlSwUGBqpBgwZKSEhw9aYAAAC4DBkJAADgPJcXpGrXrq0ZM2YoOTlZ33zzjbp27aq77rpLu3fvliSNGjVKn3zyiZYtW6YtW7bo8OHDuueee+yfP3v2rOLi4pSTk6Nt27Zp0aJFSkhI0MSJE+19Dhw4oLi4OHXp0kUpKSkaOXKkBg0apLVr17p6cwAAAFyCjAQAAHCej2EYhrtXUq1aNc2aNUu9e/dWzZo1tXjxYvXu3VuStHfvXjVu3FhJSUlq37691qxZo9tvv12HDx9WWFiYJGnBggUaN26cjh49qoCAAI0bN06rV6/Wrl277Ovo27evMjMzlZiY6PS8bDabrFarsrKyZLFYXLvRknITtxZo8+/R0eXrAQAAznP3939RkJHOIyMBAOBZZmckt95D6uzZs/rggw906tQpxcTEKDk5Wbm5uerWrZu9T6NGjVSnTh0lJSVJkpKSktSkSRN70JKk2NhY2Ww2+xnEpKQkhzHy++SPcSnZ2dmy2WwOLwAAALORkQAAQHnnloLUzp07VblyZQUGBmro0KFavny5oqOjlZaWpoCAAIWEhDj0DwsLU1pamiQpLS3NIWjlL89fdrk+NptN//zzzyXnNX36dFmtVvsrMjKypJsKAADgNDISAADAOW4pSDVs2FApKSnavn27hg0bpgEDBmjPnj3uWFWRTJgwQVlZWfbXoUOHPD0lAABQjpCRAAAAzvFzx6ABAQFq0KCBJKlVq1basWOHXnrpJf3rX/9STk6OMjMzHc4ApqenKzw8XJIUHh6ur7/+2mG8/CfMXNjn4qfOpKeny2KxKDg4+JLzCgwMVGBgYIm3DwAAoDjISAAAAOe49R5S+fLy8pSdna1WrVrJ399fGzZssC/bt2+fUlNTFRMTI0mKiYnRzp07lZGRYe+zfv16WSwWRUdH2/tcOEZ+n/wxAAAASgMyEgAAKK9cfoXUhAkTdOutt6pOnTo6ceKEFi9erM2bN2vt2rWyWq0aOHCgRo8erWrVqslisWjEiBGKiYlR+/btJUndu3dXdHS0HnjgAc2cOVNpaWl6+umnFR8fbz9zN3ToUL3yyisaO3asHn74YW3cuFFLly7V6tWrXb05AAAALkFGAgAAOM/lBamMjAz1799fR44ckdVqVdOmTbV27VrdcsstkqS5c+fK19dXvXr1UnZ2tmJjYzV//nz75ytUqKBVq1Zp2LBhiomJUaVKlTRgwABNnTrV3icqKkqrV6/WqFGj9NJLL6l27dp66623FBsb6+rNAQAAcAkyEgAAwHk+hmEYnp6Ep9hsNlmtVmVlZclisbh8/NzErQXa/Ht0dPl6AACA89z9/V8WkJEAACh/zM5IptxDCgAAAAAAAMhHQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMJXLC1LTp09XmzZtVKVKFYWGhqpnz57at2+fQ5/Tp08rPj5e1atXV+XKldWrVy+lp6c79ElNTVVcXJwqVqyo0NBQPfnkkzpz5oxDn82bN6tly5YKDAxUgwYNlJCQ4OrNAQAAcAkyEgAAwHkuL0ht2bJF8fHx+uqrr7R+/Xrl5uaqe/fuOnXqlL3PqFGj9Mknn2jZsmXasmWLDh8+rHvuuce+/OzZs4qLi1NOTo62bdumRYsWKSEhQRMnTrT3OXDggOLi4tSlSxelpKRo5MiRGjRokNauXevqTQIAACgxMhIAAMB5PoZhGO5cwdGjRxUaGqotW7aoU6dOysrKUs2aNbV48WL17t1bkrR37141btxYSUlJat++vdasWaPbb79dhw8fVlhYmCRpwYIFGjdunI4ePaqAgACNGzdOq1ev1q5du+zr6tu3rzIzM5WYmOjU3Gw2m6xWq7KysmSxWFy+7bmJWwu0+ffo6PL1AAAA57n7+99ZZCRHZCQAADzL7Izk9ntIZWVlSZKqVasmSUpOTlZubq66detm79OoUSPVqVNHSUlJkqSkpCQ1adLEHrQkKTY2VjabTbt377b3uXCM/D75YxQmOztbNpvN4QUAAOAJZCQAAFCeubUglZeXp5EjR+qGG27Q9ddfL0lKS0tTQECAQkJCHPqGhYUpLS3N3ufCoJW/PH/Z5frYbDb9888/hc5n+vTpslqt9ldkZGSJtxEAAKCoyEgAAKC8c2tBKj4+Xrt27dIHH3zgztU4bcKECcrKyrK/Dh065OkpAQCAcoiMBAAAyjs/dw08fPhwrVq1Sp9//rlq165tbw8PD1dOTo4yMzMdzgCmp6crPDzc3ufrr792GC//CTMX9rn4qTPp6emyWCwKDg4udE6BgYEKDAws8bYBAAAUFxkJAADADVdIGYah4cOHa/ny5dq4caOioqIclrdq1Ur+/v7asGGDvW3fvn1KTU1VTEyMJCkmJkY7d+5URkaGvc/69etlsVgUHR1t73PhGPl98scAAADwJmQkAACA81x+hVR8fLwWL16sjz/+WFWqVLHfz8BqtSo4OFhWq1UDBw7U6NGjVa1aNVksFo0YMUIxMTFq3769JKl79+6Kjo7WAw88oJkzZyotLU1PP/204uPj7Wfvhg4dqldeeUVjx47Vww8/rI0bN2rp0qVavXq1qzcJAACgxMhIAAAA5/kYhmG4dEAfn0LbFy5cqAcffFCSdPr0aT3xxBP6v//7P2VnZys2Nlbz58+3X2ouSb/99puGDRumzZs3q1KlShowYIBmzJghP7/zNbTNmzdr1KhR2rNnj2rXrq1nnnnGvg5n8EhjAADKH7MfaZyPjHQeGQkAAO9jdkZyeUGqNCFsAQBQ/niqIFWakJEAACh/zM5Ibn3KHgAAAAAAAHAxClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKlcXpD6/PPPdccddygiIkI+Pj5asWKFw3LDMDRx4kTVqlVLwcHB6tatm/bv3+/Q59ixY+rXr58sFotCQkI0cOBAnTx50qHPDz/8oBtvvFFBQUGKjIzUzJkzXb0pAAAALkVOAgAAOMflBalTp06pWbNmevXVVwtdPnPmTM2bN08LFizQ9u3bValSJcXGxur06dP2Pv369dPu3bu1fv16rVq1Sp9//rmGDBliX26z2dS9e3fVrVtXycnJmjVrliZPnqw33njD1ZsDAADgMuQkAACAc3wMwzDcNriPj5YvX66ePXtKOnfWLyIiQk888YTGjBkjScrKylJYWJgSEhLUt29f/fjjj4qOjtaOHTvUunVrSVJiYqJuu+02/f7774qIiNBrr72mp556SmlpaQoICJAkjR8/XitWrNDevXudnp/NZpPValVWVpYsFotrN15SbuLWAm3+PTq6fD0AAMB57v7+d5Y35yQyEgAA5Y/ZGcnUe0gdOHBAaWlp6tatm73NarWqXbt2SkpKkiQlJSUpJCTEHrIkqVu3bvL19dX27dvtfTp16mQPWZIUGxurffv26fjx45dcf3Z2tmw2m8MLAADAG3gyJ5GRAACA2UwtSKWlpUmSwsLCHNrDwsLsy9LS0hQaGuqw3M/PT9WqVXPoU9gYF66jMNOnT5fVarW/IiMjS7ZBAAAALuLJnERGAgAAZitXT9mbMGGCsrKy7K9Dhw55ekoAAAAeR0YCAABmM7UgFR4eLklKT093aE9PT7cvCw8PV0ZGhsPyM2fO6NixYw59ChvjwnUUJjAwUBaLxeEFAADgDTyZk8hIAADAbKYWpKKiohQeHq4NGzbY22w2m7Zv366YmBhJUkxMjDIzM5WcnGzvs3HjRuXl5aldu3b2Pp9//rlyc3PtfdavX6+GDRuqatWqJm0NAACA65CTAABAeeLygtTJkyeVkpKilJQUSedu0JmSkqLU1FT5+Pho5MiRevbZZ7Vy5Urt3LlT/fv3V0REhP0JM40bN1aPHj00ePBgff311/ryyy81fPhw9e3bVxEREZKkf//73woICNDAgQO1e/duLVmyRC+99JJGjx7t6s0BAABwGXISAADAOX6uHvCbb75Rly5d7O/zw8+AAQOUkJCgsWPH6tSpUxoyZIgyMzPVsWNHJSYmKigoyP6Z999/X8OHD9fNN98sX19f9erVS/PmzbMvt1qtWrduneLj49WqVSvVqFFDEydO1JAhQ1y9OQAAAC5DTgIAADjHxzAMw9OT8BSbzSar1aqsrCy33CshN3FrgTb/Hh1dvh4AAOA8d3//lwVkJAAAyh+zM1K5esoeAAAAAAAAPI+CFAAAAAAAAExFQQoAAAAAAACmcvlNzXF5F98zgfslAAAAkJEAAChvuEIKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCqesudhFz9RRuKpMgAAAGQkAADKNq6QAgAAAAAAgKkoSAEAAAAAAMBU/GTPC3GJOgAAQEFkJAAAyg6ukAIAAAAAAICpuEKqlLj4jCBnA4Hyg3//5mOfA6UH/16B8ot//+bjSlW4EgUpAIBLeGModNWcCF8AAKC4SkNGklyXk7xh+1A6UJACgP+vtBQdnJ2np8NBYfMsLme2L7XG7gJ98jJTHRs+WOPU+uqF3HrFPr9883qBtjp/XnfFz3nj3ykAAK7E07nCGWSkwsd3KiNJTuUkMhJciYJUGefp/9iifPLGwo47zwIVxhuCzcFMx1BRL9G5sZyZ+/4Pnrpin8ICy8VzcvZzzqxPmVfu4qzC5nnxvPJ+LhjkDqqQcHfxOIUcB0//+wDKIzISPIGMREaSyEiXQkYqfyhIlTPe+CUI7+XOUFHYl+c1fZ8r1ljO/E9FoV/yzlwtU0gfZ84MORMOfBvUKdDmzNkjV3JmvxQ2z2KP7cbPuZur5lVokHMiCBf2ueL+mwFQEBkJRVFaM5JUcF5kpMKRkZxHRkJxUZAqpVx5macz47sykHFGsnDFDTZm709nzigV+qWgK8/LmTNYzn65FHapsLu4Mhy4M2gUd+zCznLBtbw1YAKlUVnKSK4ev7QiI5XejCS5t1jhKmQk70VGKtt8DMMwPD0JT7HZbLJarcrKypLFYnH5+O4ORJ7mzBe/O8d25/oLG7+4v0l3VnH/Y3vxmajC5uTM77hdtX5vGQvAOZwhLMjd3/9lARmpZDydkQrrR0YiIwFwREYqyOyMxBVSKLbSHCYLnMEq5Eve7NBUXBevz/ebQm5aWMzfcRdn/d4yFgDnOXPmXXLuf+4AkJGcHdvdyEgASoqM5F5cIcXZP7dy5h/rpfoBAEqusPtbXPw/YMX973JpPbPIFVJXRkZyPzISAHgWGakgrpCC6Tx9tgoA4D7O3N+C/y4DhSMjAUDZRUbyPApSpQT/EAAA3oYbMMMbkJEAAN6GjOQcClIAAKBYivu0KAAAgLKMjOQcClJeiDN9AIDSijOCcCcyEgCgtCIjFURBymQEKQAAgILISAAAlC8UpNyIYAUAKG+4RB3OICMBAMobMlJBvp6eAAAAAAAAAMoXrpACAAButf+Dpxze1wu5tUCf8n4PBQAAUP6U94xU6gtSr776qmbNmqW0tDQ1a9ZML7/8stq2bevpaQEAgEso9OdaHxRyGXvf50yYTdlFRgIAoHQpbxmpVP9kb8mSJRo9erQmTZqkb7/9Vs2aNVNsbKwyMjI8PTUAAACPISMBAABvV6oLUi+88IIGDx6shx56SNHR0VqwYIEqVqyod955x9NTAwAA8BgyEgAA8Hal9id7OTk5Sk5O1oQJE+xtvr6+6tatm5KSkgr9THZ2trKzs+3vs7KyJEk2m80tczz5d/aVOwEAgEK56/s5f1zDMNwyvqeRkQAAKNvKSkYqtQWpP//8U2fPnlVYWJhDe1hYmPbu3VvoZ6ZPn64pU6YUaI+MjHTLHAEAQAkMnOPW4U+cOCGr1erWdXgCGQkAgDKujGSkUluQKo4JEyZo9OjR9vd5eXk6duyYqlevLh8fH5euy2azKTIyUocOHZLFYnHp2HANjlHpwHEqHThO3o9jdJ5hGDpx4oQiIiI8PRWvQUbCxThO3o9jVDpwnLwfx+g8szNSqS1I1ahRQxUqVFB6erpDe3p6usLDwwv9TGBgoAIDAx3aQkJC3DVFSZLFYin3f6m9HceodOA4lQ4cJ+/HMTqnLF4ZlY+MBFfiOHk/jlHpwHHyfhyjc8zMSKX2puYBAQFq1aqVNmzYYG/Ly8vThg0bFBMT48GZAQAAeA4ZCQAAlAal9gopSRo9erQGDBig1q1bq23btnrxxRd16tQpPfTQQ56eGgAAgMeQkQAAgLcr1QWpf/3rXzp69KgmTpyotLQ0NW/eXImJiQVu4ukJgYGBmjRpUoHL3+E9OEalA8epdOA4eT+OUflCRkJJcZy8H8eodOA4eT+Okef4GGX1mccAAAAAAADwSqX2HlIAAAAAAAAonShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQWpEnj11VdVr149BQUFqV27dvr6668v23/ZsmVq1KiRgoKC1KRJE3366acmzbT8Ksox2r17t3r16qV69erJx8dHL774onkTLeeKcpzefPNN3XjjjapataqqVq2qbt26XfHfHlyjKMfpo48+UuvWrRUSEqJKlSqpefPmevfdd02cbflU1O+lfB988IF8fHzUs2dP904Q5QYZyfuRkUoHMlLpQEbyfmQk70RBqpiWLFmi0aNHa9KkSfr222/VrFkzxcbGKiMjo9D+27Zt03333aeBAwfqu+++U8+ePdWzZ0/t2rXL5JmXH0U9Rn///beuvvpqzZgxQ+Hh4SbPtvwq6nHavHmz7rvvPm3atElJSUmKjIxU9+7d9ccff5g88/KlqMepWrVqeuqpp5SUlKQffvhBDz30kB566CGtXbvW5JmXH0U9RvkOHjyoMWPG6MYbbzRppijryEjej4xUOpCRSgcykvcjI3kxA8XStm1bIz4+3v7+7NmzRkREhDF9+vRC+/fp08eIi4tzaGvXrp3xyCOPuHWe5VlRj9GF6tata8ydO9eNs0O+khwnwzCMM2fOGFWqVDEWLVrkrinCKPlxMgzDaNGihfH000+7Y3owineMzpw5Y3To0MF46623jAEDBhh33XWXCTNFWUdG8n5kpNKBjFQ6kJG8HxnJe3GFVDHk5OQoOTlZ3bp1s7f5+vqqW7duSkpKKvQzSUlJDv0lKTY29pL9UTLFOUYwnyuO099//63c3FxVq1bNXdMs90p6nAzD0IYNG7Rv3z516tTJnVMtt4p7jKZOnarQ0FANHDjQjGmiHCAjeT8yUulARiodyEjej4zk3fw8PYHS6M8//9TZs2cVFhbm0B4WFqa9e/cW+pm0tLRC+6elpbltnuVZcY4RzOeK4zRu3DhFREQU+J8ZuE5xj1NWVpauuuoqZWdnq0KFCpo/f75uueUWd0+3XCrOMdq6davefvttpaSkmDBDlBdkJO9HRiodyEilAxnJ+5GRvBsFKQCl1owZM/TBBx9o8+bNCgoK8vR0cJEqVaooJSVFJ0+e1IYNGzR69GhdffXV6ty5s6enVu6dOHFCDzzwgN58803VqFHD09MBALgYGcm7kZG8FxnJXBSkiqFGjRqqUKGC0tPTHdrT09MveaPH8PDwIvVHyRTnGMF8JTlOs2fP1owZM/TZZ5+padOm7pxmuVfc4+Tr66sGDRpIkpo3b64ff/xR06dPJ2y5QVGP0S+//KKDBw/qjjvusLfl5eVJkvz8/LRv3z7Vr1/fvZNGmURG8n5kpNKBjFQ6kJG8HxnJu3EPqWIICAhQq1attGHDBntbXl6eNmzYoJiYmEI/ExMT49BfktavX3/J/iiZ4hwjmK+4x2nmzJmaNm2aEhMT1bp1azOmWq656t9TXl6esrOz3THFcq+ox6hRo0bauXOnUlJS7K8777xTXbp0UUpKiiIjI82cPsoQMpL3IyOVDmSk0oGM5P3ISF7O03dVL60++OADIzAw0EhISDD27NljDBkyxAgJCTHS0tIMwzCMBx54wBg/fry9/5dffmn4+fkZs2fPNn788Udj0qRJhr+/v7Fz505PbUKZV9RjlJ2dbXz33XfGd999Z9SqVcsYM2aM8d133xn79+/31CaUC0U9TjNmzDACAgKMDz/80Dhy5Ij9deLECU9tQrlQ1OP0/PPPG+vWrTN++eUXY8+ePcbs2bMNPz8/48033/TUJpR5RT1GF+MJMnAVMpL3IyOVDmSk0oGM5P3ISN6LglQJvPzyy0adOnWMgIAAo23btsZXX31lX3bTTTcZAwYMcOi/dOlS49prrzUCAgKM6667zli9erXJMy5/inKMDhw4YEgq8LrpppvMn3g5U5TjVLdu3UKP06RJk8yfeDlTlOP01FNPGQ0aNDCCgoKMqlWrGjExMcYHH3zggVmXL0X9XroQYQuuREbyfmSk0oGMVDqQkbwfGck7+RiGYZh7TRYAAAAAAADKM+4hBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAC4xIMPPqh69epdsd/Bgwfl4+OjhIQEt8/J0zp37qzOnTu7fNyZM2eqUaNGysvLu2y/S+3rxMRENW/eXEFBQfLx8VFmZqbT6/7rr79UqVIlffrpp8WYOQAA5Q8ZqSAyEgCJghSAIjh8+LAmT56slJQUT0+l3LLZbPrPf/6jcePGyde36P8J/+uvv9SnTx8FBwfr1Vdf1bvvvqtKlSpp3759GjVqlDp06GAPYQcPHizw+erVq2vQoEF65plnXLA1AACUDWQkz3NXRvroo4/0r3/9S1dffbUqVqyohg0b6oknnihQrCIjAUXn5+kJACg9Dh8+rClTpqhevXpq3ry5w7I333zzimejypt169a5fMx33nlHZ86c0X333Vesz+/YsUMnTpzQtGnT1K1bN3t7UlKS5s2bp+joaDVu3PiygXro0KGaN2+eNm7cqK5duxZrHgAAlCVkpKIpTRlpyJAhioiI0P333686depo586deuWVV/Tpp5/q22+/VXBwsL0vGQkoGgpSAFzC39/f01PwOgEBAS4fc+HChbrzzjsVFBRUrM9nZGRIkkJCQhza77zzTmVmZqpKlSqaPXv2ZQtSjRs31vXXX6+EhATCFgAAV0BGKqg0ZaQPP/ywwM8LW7VqpQEDBuj999/XoEGD7O1kJKBo+MkeUMpMnjxZPj4+2rt3r/r06SOLxaLq1avr8ccf1+nTpwv0f++999SqVSsFBwerWrVq6tu3rw4dOuTQp3Pnzrr++uuVnJysDh06KDg4WFFRUVqwYIG9z+bNm9WmTRtJ0kMPPSQfHx+H394Xdn+EzMxMPfjgg7JarQoJCdGAAQMu+Vv8vXv3qnfv3qpWrZqCgoLUunVrrVy5ssj7Jzs7W6NGjVLNmjVVpUoV3Xnnnfr999/l4+OjyZMnOz1O/r0FZs+erVdffdV+mXb37t116NAhGYahadOmqXbt2goODtZdd92lY8eOOYxx8f0RNm/eLB8fHy1dulTPPfecateuraCgIN188836+eefrzinAwcO6IcffnA4a5fPmX3duXNnDRgwQJLUpk0b+fj46MEHH5QkVatWTVWqVHF6/9xyyy365JNPZBiG058BAMCdyEiXR0YqXkYq7F5Xd999tyTpxx9/LLCMjAQ4jyukgFKqT58+qlevnqZPn66vvvpK8+bN0/Hjx/W///u/9j7PPfecnnnmGfXp00eDBg3S0aNH9fLLL6tTp0767rvvHM4AHT9+XLfddpv69Omj++67T0uXLtWwYcMUEBCghx9+WI0bN9bUqVM1ceJEDRkyRDfeeKMkqUOHDoXOzzAM3XXXXdq6dauGDh2qxo0ba/ny5fYv+wvt3r1bN9xwg6666iqNHz9elSpV0tKlS9WzZ0/997//tX/pO2PQoEF677339O9//1sdOnTQxo0bFRcX5/TnL/b+++8rJydHI0aM0LFjxzRz5kz16dNHXbt21ebNmzVu3Dj9/PPPevnllzVmzBi98847VxxzxowZ8vX11ZgxY5SVlaWZM2eqX79+2r59+2U/t23bNklSy5YtHdqd3ddPPfWUGjZsqDfeeENTp05VVFSU6tevX8Q9ck6rVq00d+5c7d69W9dff32xxgAAwB3ISIUjI7kuI6WlpUmSatSoUWAZGQkoAgNAqTJp0iRDknHnnXc6tD/66KOGJOP77783DMMwDh48aFSoUMF47rnnHPrt3LnT8PPzc2i/6aabDEnGnDlz7G3Z2dlG8+bNjdDQUCMnJ8cwDMPYsWOHIclYuHBhgXkNGDDAqFu3rv39ihUrDEnGzJkz7W1nzpwxbrzxxgJj3HzzzUaTJk2M06dP29vy8vKMDh06GNdcc43T+yYlJcWQZDz66KMO7f/+978NScakSZOcHuvAgQOGJKNmzZpGZmamvX3ChAmGJKNZs2ZGbm6uvf2+++4zAgICHLbhpptuMm666Sb7+02bNhmSjMaNGxvZ2dn29pdeesmQZOzcufOyc3r66acNScaJEycc2ouyrxcuXGhIMnbs2HHJ9cyaNcuQZBw4cOCSfbZt22ZIMpYsWXLZOQMAYBYy0qWRkVyTkfINHDjQqFChgvHTTz8VWEZGApzHT/aAUio+Pt7h/YgRIyTJ/qjZjz76SHl5eerTp4/+/PNP+ys8PFzXXHONNm3a5PB5Pz8/PfLII/b3AQEBeuSRR5SRkaHk5OQiz+/TTz+Vn5+fhg0bZm+rUKGCfZ75jh07po0bN6pPnz46ceKEfZ5//fWXYmNjtX//fv3xxx9Or1OSHnvsMYf2kSNHFnn++e69915ZrVb7+3bt2kmS7r//fvn5+Tm05+TkODXXhx56yOHeCflnUn/99dfLfu6vv/6Sn5+fKleu7NDu7L52papVq0qS/vzzT7etAwCA4iAjFb5OiYwklTwjLV68WG+//baeeOIJXXPNNQWWk5EA5/GTPaCUuvgLsH79+vL19dXBgwclSfv375dhGIV+UUoFb7AZERGhSpUqObRde+21ks7dK6B9+/ZFmt9vv/2mWrVqFQgGDRs2dHj/888/yzAMPfPMM5d8TG5GRoauuuoqp9bp6+tb4BLri9dZFHXq1HF4nx+8IiMjC20/fvx4kcfMDy7OfLYwzu5rVzL+/30RfHx83LYOAACKg4xU+DrJSOcVd7u/+OILDRw4ULGxsXruuecK7UNGApxHQQooIy7+0svLy5OPj4/WrFmjChUqFOh/8Rezp+Q/BnnMmDGKjY0ttE+DBg3MnJKDwvbd5doNJ25gWdzPVq9eXWfOnNGJEyeKdANyd8gPhoXdOwEAAG9CRnKP8paRvv/+e9155526/vrr9eGHHzpcBXYhMhLgPApSQCm1f/9+RUVF2d///PPPysvLsz/FpX79+jIMQ1FRUfazeJdz+PBhnTp1yuEM4E8//SRJ9jGLcqanbt262rBhg06ePOkQ7Pbt2+fQ7+qrr5Z07mxkYU9GKYq6desqLy9Pv/zyi8OZr4vXWVo1atRI0rknyTRt2tTe7uy+dqUDBw5IOvd4YwAAvAkZqfB1kpGKn5F++eUX9ejRQ6Ghofr0008vW7QkIwHO4x5SQCn16quvOrx/+eWXJUm33nqr/h97dx4dRZm/f/9KyMaSTgAhiwQIskaRVSHCOIqRsI4i6EQZFmVRB1RA2UZlERVEBpUZELcvMCP83EFkCUIQFcwgRINsMqjB4IQOKibNIlnr+YMnDZ0ECKG7enu/zulz6Kq7q+6qQvryU3ffJUl33HGHatSooZkzZ1a4q2QYhn799VeHZcXFxXrllVfs7wsLC/XKK6+oQYMG6tSpkyTZg9j5Hkt8rj59+qi4uFgvv/yyfVlJSYm9n2UaNmyom266Sa+88oqOHDlSYTs///zzRfdVpuzYFyxY4LD8xRdfrPI2PFliYqIkaefOnQ7Lq3qunSkjI0MRERG6+uqrXbYPAACqg4xUERmp+hnJarWqZ8+eCgwM1IYNG9SgQYMLticjAVXHCCnAS2VlZelPf/qTevXqpfT0dPtjfNu1ayfpzN2/p59+WlOnTtWhQ4d0++23Kzw8XFlZWVq5cqVGjx6txx57zL692NhYPffcczp06JBatmypt99+W5mZmXr11VftcylcddVVioyM1OLFixUeHq7atWurS5cuDnchy/Tv31/dunXTlClTdOjQISUkJOiDDz5Qfn5+hbYLFy5U9+7d1bZtW40aNUrNmjVTbm6u0tPT9dNPP2nXrl1VOift27fX3XffrUWLFik/P1833HCD0tLS9N1331XnFHucZs2a6ZprrtGmTZt033332Zdfyrk+n/z8fHs427ZtmyTpn//8pyIjIxUZGamxY8c6tN+4caP69+/P/AgAAI9DRqqIjFT9jNSrVy/98MMPmjRpkrZu3aqtW7fa10VFRenWW291aE9GAi6B+Q/2A3A5yh5pvG/fPmPQoEFGeHi4UbduXWPs2LHG77//XqH9+++/b3Tv3t2oXbu2Ubt2baN169bGmDFjjAMHDtjb/PGPfzSuvvpqY+fOnUZiYqIRFhZmNGnSxPjnP/9ZYXsffvihkZCQYAQFBTk8Lrf8I40NwzB+/fVXY8iQIYbFYjEiIiKMIUOGGF9//XWlj0X+/vvvjaFDhxrR0dFGcHCwceWVVxr9+vUz3nvvvUs6P7///rvx8MMPG/Xr1zdq165t9O/f3zh8+HC1H2n8/PPPOywveyzxu+++67C8skcFn++RxuU/W7avyh4VXd78+fONOnXqGKdOnXJYXtVzfb5HGpf1obJX+eu6f/9+Q5KxadOmi/YXAACzkJEujIxUvYx0vnwkyeEYDIOMBFyqAMOowuxyADzGjBkzNHPmTP38889Omyzxpptu0i+//KI9e/Y4ZXueKCAgQNOnT9eMGTPc3ZXLkp+fr2bNmmnu3LkaMWKEW/owbtw4ffbZZ8rIyODuHwDAY5CRqoeM5DxkJODSMIcUAHiRiIgITZo0Sc8//7z96Ttm+vXXX/X666/r6aefJmgBAACPQUYCvA9zSAHwClar9YLra9asqYiIiItup6Sk5KKTgNapU8djHvlcmcmTJ2vy5Mlu2Xf9+vV14sQJt+wbAABUREY6i4wEeBcKUgC8QkxMzAXXDxs2TEuXLr3odg4fPlzpBKPn8oVh6wAAwD+QkQB4K+aQAuAVNm3adMH1sbGxSkhIuOh2Tp8+7fB0lMo0a9ZMzZo1u6T+AQAAuAMZCYC3oiAFAAAAAAAAUzGpOQAAAAAAAEzl13NIlZaWKicnR+Hh4TwJAQAAP2EYho4fP67Y2FgFBnJvrjJkJAAA/I/ZGcmvC1I5OTmKi4tzdzcAAIAbHD58WI0aNXJ3NzwSGQkAAP9lVkby64JUeHi4pDMn22KxuLk3AADADDabTXFxcfYcgIrISAAA+B+zM5JfF6TKhqBbLBbCFgAAfoafop0fGQkAAP9lVkZi4gQAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKby6zmkAAC4kJKSEhUVFbm7G7hEwcHBqlGjhru7AQCAzyIjeSdPy0gUpAAAKMcwDFmtVuXl5bm7K6imyMhIRUdHM3E5AABOREbyfp6UkShIAQBQTlnQatiwoWrVquURX9ioGsMwdOrUKR09elSSFBMT4+YeAQDgO8hI3ssTM5LTC1JNmzbVjz/+WGH5X//6Vy1cuFCnT5/Wo48+qrfeeksFBQVKTk7WokWLFBUVZW+bnZ2tBx98UJ988onq1KmjYcOGafbs2QoKOtvdLVu2aMKECdq7d6/i4uL0xBNPaPjw4c4+HACAnykpKbEHrfr167u7O6iGmjVrSpKOHj2qhg0beszQdDISAMCbkZG8n6dlJKdPar5jxw4dOXLE/tq4caMk6c4775QkjR8/Xh999JHeffddffrpp8rJydEdd9xh/3xJSYn69u2rwsJCffHFF1q2bJmWLl2qadOm2dtkZWWpb9++uvnmm5WZmalx48Zp5MiR2rBhg7MPBwDgZ8rmQ6hVq5abe4LLUXb9PGl+CzISAMCbkZF8gydlpADDMAxX7mDcuHFas2aNDh48KJvNpgYNGmjFihUaNGiQJOnbb79VmzZtlJ6erq5du2r9+vXq16+fcnJy7HcEFy9erMmTJ+vnn39WSEiIJk+erLVr12rPnj32/aSkpCgvL0+pqalV7pvNZlNERITy8/NlsVice+AAAK90+vRpZWVlKT4+XmFhYe7uDqrpQtfRU77/yUgAAG9CRvINnpSRnD5C6lyFhYV68803dd999ykgIEAZGRkqKipSUlKSvU3r1q3VuHFjpaenS5LS09PVtm1bh+HpycnJstls2rt3r73Nudsoa1O2DQAAAE9GRgIAAP7OpZOar1q1Snl5efZ5C6xWq0JCQhQZGenQLioqSlar1d7m3KBVtr5s3YXa2Gw2/f777/bfRZZXUFCggoIC+3ubzVbtYwMAAKguMhIAAPB3Li1IvfHGG+rdu7diY2NduZsqmz17tmbOnOnubgAAvFRR6lbT9hXcq3uV217sCTfTp0/XjBkzLrNH1RMQEKCVK1fq9ttvr/Y2Xn31Va1YsUJfffWVjh8/rt9++61C4cbbkJEAAL7EzIwkkZPKHDt2TNOnT9fHH3+s7OxsNWjQQLfffrtmzZqliIgI53bWBVz2k70ff/xRmzZt0siRI+3LoqOjVVhYqLy8PIe2ubm5io6OtrfJzc2tsL5s3YXaWCyW8975k6SpU6cqPz/f/jp8+HC1jw8AAE9x7kTZL774oiwWi8Oyxx577JK2V1hY6KKeVs+pU6fUq1cv/e1vf3N3V5yCjAQAgHl8OSfl5OQoJydH8+bN0549e7R06VKlpqZqxIgR7u5albisILVkyRI1bNhQffv2tS/r1KmTgoODlZaWZl924MABZWdnKzExUZKUmJio3bt36+jRo/Y2GzdulMViUUJCgr3Nudsoa1O2jfMJDQ2VxWJxeLlSUerWCi8AAJwtOjra/oqIiFBAQID9/cmTJzV48GBFRUWpTp06uu6667Rp0yaHzzdt2lSzZs3S0KFDZbFYNHr0aEnSa6+9pri4ONWqVUsDBgzQ/PnzK4xM+vDDD9WxY0eFhYWpWbNmmjlzpoqLi+3blaQBAwYoICDA/n7Xrl26+eabFR4eLovFok6dOmnnzp3nPb5x48ZpypQp6tq1q3NOmJuRkchIAADz+HJOuuaaa/T++++rf//+uuqqq9SjRw8988wz+uijj+z78WQuKUiVlpZqyZIlGjZsmIKCzv4qMCIiQiNGjNCECRP0ySefKCMjQ/fee68SExPtIbNnz55KSEjQkCFDtGvXLm3YsEFPPPGExowZo9DQUEnSAw88oB9++EGTJk3St99+q0WLFumdd97R+PHjXXE4AAB4rRMnTqhPnz5KS0vT119/rV69eql///7Kzs52aDdv3jy1a9dOX3/9tZ588klt27ZNDzzwgB555BFlZmbq1ltv1TPPPOPwmc8//1xDhw7VI488on379umVV17R0qVL7e127Ngh6UwB5siRI/b3gwcPVqNGjbRjxw5lZGRoypQpCg4ONuFsuB8ZCQAAz+GLOansCXnn5gxP5ZIebtq0SdnZ2brvvvsqrHvhhRcUGBiogQMHqqCgQMnJyVq0aJF9fY0aNbRmzRo9+OCDSkxMVO3atTVs2DA99dRT9jbx8fFau3atxo8fr5deekmNGjXS66+/ruTkZFccDgAAXqtdu3Zq166d/f2sWbO0cuVKrV69WmPHjrUv79Gjhx599FH7+8cff1y9e/e2D2Nv2bKlvvjiC61Zs8beZubMmZoyZYqGDRsmSWrWrJlmzZqlSZMmafr06WrQoIEkKTIy0v6TMknKzs7WxIkT1bp1a0lSixYtXHDknomMBACA5/C1nPTLL79o1qxZ9lFcns4lBamePXvKMIxK14WFhWnhwoVauHDheT/fpEkTrVu37oL7uOmmm/T1119fVj8BAPB1J06c0IwZM7R27VodOXJExcXF+v333yvc+evcubPD+wMHDmjAgAEOy66//nqHoLVr1y5t27bN4Y5gSUmJTp8+rVOnTqlWrVqV9mnChAkaOXKk/v3vfyspKUl33nmnrrrqqss9VK9ARgIAwHP4Uk6y2Wzq27evEhIS3DZJ+6Vy2RxSAADA/R577DGtXLlSzz77rD7//HNlZmaqbdu2FSbkrF279iVv+8SJE5o5c6YyMzPtr927d+vgwYMKCws77+dmzJihvXv3qm/fvtq8ebMSEhK0cuXKS94/AADA5fCVnHT8+HH16tVL4eHhWrlypddMheD5PyoEAADVtm3bNg0fPtx+F+/EiRM6dOjQRT/XqlUr+1wGZcq/79ixow4cOKDmzZufdzvBwcEqKSmpsLxly5Zq2bKlxo8fr7vvvltLliypcKcRAADAlXwhJ9lsNiUnJys0NFSrV6++YLHL01CQAgDAh7Vo0UIffPCB+vfvr4CAAD355JMqLS296Oceeugh3XjjjZo/f7769++vzZs3a/369QoICLC3mTZtmvr166fGjRtr0KBBCgwM1K5du7Rnzx49/fTTks48QSYtLU3dunVTaGiowsLCNHHiRA0aNEjx8fH66aeftGPHDg0cOPC8fbFarbJarfruu+8kSbt371Z4eLgaN26sevXqXeYZAgAA/srbc5LNZlPPnj116tQpvfnmm7LZbLLZbJKkBg0aqEaNGk44S67DT/YAAPBh8+fPV926dXXDDTeof//+Sk5OVseOHS/6uW7dumnx4sWaP3++2rVrp9TUVI0fP97hrltycrLWrFmjjz/+WNddd526du2qF154QU2aNLG3+fvf/66NGzcqLi5OHTp0UI0aNfTrr79q6NChatmype666y717t1bM2fOPG9fFi9erA4dOmjUqFGSpBtvvFEdOnTQ6tWrL+PMAAAAf+ftOemrr77S9u3btXv3bjVv3lwxMTH21+HDhy//BLlYgHG+mTX9gM1mU0REhP2xiM5WlLq1wrLgXt2dvh8AgPOcPn1aWVlZio+P96ohz2YYNWqUvv32W33++efu7spFXeg6uvr73xeQkQAA5ZGRLsxbcpInZSR+sgcAACo1b9483Xrrrapdu7bWr1+vZcuWadGiRe7uFgAAgNuRky4fBSkAAFCpL7/8UnPnztXx48fVrFkzLViwQCNHjnR3twAAANyOnHT5KEgBAIBKvfPOO+7uAgAAgEciJ10+JjUHAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmCnJ3BwAA8Bbf73zFtH1d1fn+S2o/fPhwLVu2TJIUFBSkevXq6dprr9Xdd9+t4cOHKzDQe+9B7d27V9OmTVNGRoZ+/PFHvfDCCxo3bpy7uwUAAP5/ZmYkiZx0rtdee03/+te/tGfPHklSp06d9Oyzz+r66693c88uznvPOgAAcNCrVy8dOXJEhw4d0vr163XzzTfrkUceUb9+/VRcXOzu7lXbqVOn1KxZM82ZM0fR0dHu7g4AAPBCvpqTtmzZorvvvluffPKJ0tPTFRcXp549e+p///ufu7t2URSkAADwEaGhoYqOjtaVV16pjh076m9/+5s+/PBDrV+/XkuXLrW3y8vL08iRI9WgQQNZLBb16NFDu3btctjWRx99pOuuu05hYWG64oorNGDAAPu63377TUOHDlXdunVVq1Yt9e7dWwcPHpQknTx5UhaLRe+9957D9latWqXatWvr+PHjKiws1NixYxUTE6OwsDA1adJEs2fPPu9xXXfddXr++eeVkpKi0NBQJ5wpAADgb3w1Jy1fvlx//etf1b59e7Vu3Vqvv/66SktLlZaW5oSz5loUpAAA8GE9evRQu3bt9MEHH9iX3XnnnTp69KjWr1+vjIwMdezYUbfccouOHTsmSVq7dq0GDBigPn366Ouvv1ZaWprDsO/hw4dr586dWr16tdLT02UYhvr06aOioiLVrl1bKSkpWrJkiUM/lixZokGDBik8PFwLFizQ6tWr9c477+jAgQNavny5mjZtasr5AAAAKOOLOenUqVMqKipSvXr1Lu/kmIA5pAAA8HGtW7fWN998I0naunWrvvzySx09etQ+2mjevHlatWqV3nvvPY0ePVrPPPOMUlJSNHPmTPs22rVrJ0k6ePCgVq9erW3btumGG26QdObOXFxcnFatWqU777xTI0eO1A033KAjR44oJiZGR48e1bp167Rp0yZJUnZ2tlq0aKHu3bsrICBATZo0MfN0AAAA2PlaTpo8ebJiY2OVlJR02efG1RghBQCAjzMMQwEBAZKkXbt26cSJE6pfv77q1Kljf2VlZen777+XJGVmZuqWW26pdFv79+9XUFCQunTpYl9Wv359tWrVSvv375ckXX/99br66qvtk4e++eabatKkiW688UZJZ+4cZmZmqlWrVnr44Yf18ccfu+zYAQAALsSXctKcOXP01ltvaeXKlQoLC7v0k2EyRkgBAODj9u/fr/j4eEnSiRMnFBMToy1btlRoFxkZKUmqWbPmZe9z5MiRWrhwoaZMmaIlS5bo3nvvtYe9jh07KisrS+vXr9emTZt01113KSkpqcJ8CgAAAK7mKzlp3rx5mjNnjjZt2qRrr732svtoBkZIAQDgwzZv3qzdu3dr4MCBks6EHKvVqqCgIDVv3tzhdcUVV0iSrr322vNOhNmmTRsVFxdr+/bt9mW//vqrDhw4oISEBPuyv/zlL/rxxx+1YMEC7du3T8OGDXPYjsVi0Z///Ge99tprevvtt/X+++/b52YAAAAwg6/kpLlz52rWrFlKTU1V586dq30+zMYIKQAAfERBQYGsVqtKSkqUm5ur1NRUzZ49W/369dPQoUMlSUlJSUpMTNTtt9+uuXPnqmXLlsrJybFP0Nm5c2dNnz5dt9xyi6666iqlpKSouLhY69at0+TJk9WiRQvddtttGjVqlF555RWFh4drypQpuvLKK3XbbbfZ+1K3bl3dcccdmjhxonr27KlGjRrZ182fP18xMTHq0KGDAgMD9e677yo6Otp+57G8wsJC7du3z/7n//3vf8rMzFSdOnXUvHlz151QAADgM3w1Jz333HOaNm2aVqxYoaZNm8pqtUqS/eeGnowRUgAA+IjU1FTFxMSoadOm6tWrlz755BMtWLBAH374oWrUqCFJCggI0Lp163TjjTfq3nvvVcuWLZWSkqIff/xRUVFRkqSbbrpJ7777rlavXq327durR48e+vLLL+37WbJkiTp16qR+/fopMTFRhmFo3bp1Cg4OdujPiBEjVFhYqPvuu89heXh4uObOnavOnTvruuuu06FDh7Ru3ToFBlYeS3JyctShQwd16NBBR44c0bx589ShQweNHDnSmacPAAD4MF/NSS+//LIKCws1aNAgxcTE2F/z5s1z5ulziQDDMAx3d8JdbDabIiIilJ+fL4vF4vTtF6VurbAsuFd3p+8HAOA8p0+fVlZWluLj471iMkhP9u9//1vjx49XTk6OQkJCTN33ha6jq7//fQEZCQBQHhnJudyVkzwpI/GTPQAA4FSnTp3SkSNHNGfOHN1///2mF6MAAAA8FTnpLH6yBwAAnGru3Llq3bq1oqOjNXXqVHd3BwAAwGOQk86iIAUAAJxqxowZKioqUlpamsdPpgkAAGAmctJZFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAKlFaWuruLuAycP0AAHANvmO9myddP56yBwDAOUJCQhQYGKicnBw1aNBAISEhCggIcHe3UEWGYaiwsFA///yzAgMD/frJNQAAOBMZybt5YkZySUHqf//7nyZPnqz169fr1KlTat68uZYsWaLOnTtLOnMipk+frtdee015eXnq1q2bXn75ZbVo0cK+jWPHjumhhx7SRx99pMDAQA0cOFAvvfSSw6Rf33zzjcaMGaMdO3aoQYMGeuihhzRp0iRXHBIAwE8EBgYqPj5eR44cUU5Ojru7g2qqVauWGjdurMBAzxoMTkYCAHgrMpJv8KSM5PSC1G+//aZu3brp5ptv1vr169WgQQMdPHhQdevWtbeZO3euFixYoGXLlik+Pl5PPvmkkpOTtW/fPoWFhUmSBg8erCNHjmjjxo0qKirSvffeq9GjR2vFihWSJJvNpp49eyopKUmLFy/W7t27dd999ykyMlKjR4929mEBAPxISEiIGjdurOLiYpWUlLi7O7hENWrUUFBQkMfdtSUjAQC8HRnJu3laRgowDMNw5ganTJmibdu26fPPP690vWEYio2N1aOPPqrHHntMkpSfn6+oqCgtXbpUKSkp2r9/vxISErRjxw77HcPU1FT16dNHP/30k2JjY/Xyyy/r8ccfl9VqtQ81mzJlilatWqVvv/22Sn212WyKiIhQfn6+LBaLE47eUVHq1grLgnt1d/p+AABA1bn6+/98yEhnkZEAAPA8Zmckp4/RWr16tTp37qw777xTDRs2VIcOHfTaa6/Z12dlZclqtSopKcm+LCIiQl26dFF6erokKT09XZGRkfagJUlJSUkKDAzU9u3b7W1uvPFGh989Jicn68CBA/rtt9+cfVgAAACXhYwEAABwltMLUj/88IN9roMNGzbowQcf1MMPP6xly5ZJkqxWqyQpKirK4XNRUVH2dVarVQ0bNnRYHxQUpHr16jm0qWwb5+6jvIKCAtlsNocXAACAGchIAAAAZzl9DqnS0lJ17txZzz77rCSpQ4cO2rNnjxYvXqxhw4Y5e3eXZPbs2Zo5c6Zb+wAAAPwTGQkAAOAsp4+QiomJUUJCgsOyNm3aKDs7W5IUHR0tScrNzXVok5uba18XHR2to0ePOqwvLi7WsWPHHNpUto1z91He1KlTlZ+fb38dPny4OocIAABwychIAAAAZzm9INWtWzcdOHDAYdl///tfNWnSRJIUHx+v6OhopaWl2dfbbDZt375diYmJkqTExETl5eUpIyPD3mbz5s0qLS1Vly5d7G0+++wzFRUV2dts3LhRrVq1cnhazblCQ0NlsVgcXgAAAGYgIwEAAJzl9ILU+PHj9Z///EfPPvusvvvuO61YsUKvvvqqxowZI0kKCAjQuHHj9PTTT2v16tXavXu3hg4dqtjYWN1+++2Sztwt7NWrl0aNGqUvv/xS27Zt09ixY5WSkqLY2FhJ0j333KOQkBCNGDFCe/fu1dtvv62XXnpJEyZMcPYhAQAAXDYyEgAAwFlOn0Pquuuu08qVKzV16lQ99dRTio+P14svvqjBgwfb20yaNEknT57U6NGjlZeXp+7duys1NVVhYWH2NsuXL9fYsWN1yy23KDAwUAMHDtSCBQvs6yMiIvTxxx9rzJgx6tSpk6644gpNmzZNo0ePdvYhAQAAXDYyEgAAwFkBhmEY7u6Eu9hsNkVERCg/P98lQ9OLUrdWWBbcq7vT9wMAAKrO1d//voCMBACA/zE7Izn9J3sAAAAAAADAhVCQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFM5vSA1Y8YMBQQEOLxat25tX3/69GmNGTNG9evXV506dTRw4EDl5uY6bCM7O1t9+/ZVrVq11LBhQ02cOFHFxcUObbZs2aKOHTsqNDRUzZs319KlS519KAAAAE5DRgIAADjLJSOkrr76ah05csT+2rp1q33d+PHj9dFHH+ndd9/Vp59+qpycHN1xxx329SUlJerbt68KCwv1xRdfaNmyZVq6dKmmTZtmb5OVlaW+ffvq5ptvVmZmpsaNG6eRI0dqw4YNrjgcAAAApyAjAQAAnBHkko0GBSk6OrrC8vz8fL3xxhtasWKFevToIUlasmSJ2rRpo//85z/q2rWrPv74Y+3bt0+bNm1SVFSU2rdvr1mzZmny5MmaMWOGQkJCtHjxYsXHx+vvf/+7JKlNmzbaunWrXnjhBSUnJ7vikAAAAC4bGQkAAOAMl4yQOnjwoGJjY9WsWTMNHjxY2dnZkqSMjAwVFRUpKSnJ3rZ169Zq3Lix0tPTJUnp6elq27atoqKi7G2Sk5Nls9m0d+9ee5tzt1HWpmwbAAAAnoiMBAAAcIbTR0h16dJFS5cuVatWrXTkyBHNnDlTf/jDH7Rnzx5ZrVaFhIQoMjLS4TNRUVGyWq2SJKvV6hC0ytaXrbtQG5vNpt9//101a9astG8FBQUqKCiwv7fZbJd1rAAAAFVFRgIAADjL6QWp3r172/987bXXqkuXLmrSpIneeeed84Ygs8yePVszZ850ax8AAIB/IiMBAACc5ZKf7J0rMjJSLVu21Hfffafo6GgVFhYqLy/PoU1ubq59PoXo6OgKT5Qpe3+xNhaL5YKBburUqcrPz7e/Dh8+fLmHBwAAUC1kJAAA4M9cXpA6ceKEvv/+e8XExKhTp04KDg5WWlqaff2BAweUnZ2txMRESVJiYqJ2796to0eP2tts3LhRFotFCQkJ9jbnbqOsTdk2zic0NFQWi8XhBQAA4A5kJAAA4M+cXpB67LHH9Omnn+rQoUP64osvNGDAANWoUUN33323IiIiNGLECE2YMEGffPKJMjIydO+99yoxMVFdu3aVJPXs2VMJCQkaMmSIdu3apQ0bNuiJJ57QmDFjFBoaKkl64IEH9MMPP2jSpEn69ttvtWjRIr3zzjsaP368sw8HAADAKchIAAAAZzl9DqmffvpJd999t3799Vc1aNBA3bt313/+8x81aNBAkvTCCy8oMDBQAwcOVEFBgZKTk7Vo0SL752vUqKE1a9bowQcfVGJiomrXrq1hw4bpqaeesreJj4/X2rVrNX78eL300ktq1KiRXn/9dR5nDAAAPBYZCQAA4KwAwzAMd3fCXWw2myIiIpSfn++SoelFqVsrLAvu1d3p+wEAAFXn6u9/X0BGAgDA/5idkVw+hxQAAAAAAABwLgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCqXF6TmzJmjgIAAjRs3zr7s9OnTGjNmjOrXr686depo4MCBys3Ndfhcdna2+vbtq1q1aqlhw4aaOHGiiouLHdps2bJFHTt2VGhoqJo3b66lS5e6+nAAAACcgowEAAD8mUsLUjt27NArr7yia6+91mH5+PHj9dFHH+ndd9/Vp59+qpycHN1xxx329SUlJerbt68KCwv1xRdfaNmyZVq6dKmmTZtmb5OVlaW+ffvq5ptvVmZmpsaNG6eRI0dqw4YNrjwkAACAy0ZGAgAA/i7AMAzDFRs+ceKEOnbsqEWLFunpp59W+/bt9eKLLyo/P18NGjTQihUrNGjQIEnSt99+qzZt2ig9PV1du3bV+vXr1a9fP+Xk5CgqKkqStHjxYk2ePFk///yzQkJCNHnyZK1du1Z79uyx7zMlJUV5eXlKTU2tUh9tNpsiIiKUn58vi8Xi9HNQlLq1wrLgXt2dvh8AAFB1rv7+vxgyEhkJAABPZHZGctkIqTFjxqhv375KSkpyWJ6RkaGioiKH5a1bt1bjxo2Vnp4uSUpPT1fbtm3tQUuSkpOTZbPZtHfvXnub8ttOTk62bwMAAMATkZEAAACkIFds9K233tJXX32lHTt2VFhntVoVEhKiyMhIh+VRUVGyWq32NucGrbL1Zesu1MZms+n3339XzZo1K+y7oKBABQUF9vc2m+3SDw4AAKCayEgAAABnOH2E1OHDh/XII49o+fLlCgsLc/bmL8vs2bMVERFhf8XFxbm7SwAAwE+QkQAAAM5yekEqIyNDR48eVceOHRUUFKSgoCB9+umnWrBggYKCghQVFaXCwkLl5eU5fC43N1fR0dGSpOjo6ApPlCl7f7E2Foul0jt/kjR16lTl5+fbX4cPH3bGIQMAAFwUGQkAAOAspxekbrnlFu3evVuZmZn2V+fOnTV48GD7n4ODg5WWlmb/zIEDB5Sdna3ExERJUmJionbv3q2jR4/a22zcuFEWi0UJCQn2Nuduo6xN2TYqExoaKovF4vACAAAwAxkJAADgLKfPIRUeHq5rrrnGYVnt2rVVv359+/IRI0ZowoQJqlevniwWix566CElJiaqa9eukqSePXsqISFBQ4YM0dy5c2W1WvXEE09ozJgxCg0NlSQ98MAD+uc//6lJkybpvvvu0+bNm/XOO+9o7dq1zj4kAACAy0ZGAgAAOMslk5pfzAsvvKDAwEANHDhQBQUFSk5O1qJFi+zra9SooTVr1ujBBx9UYmKiateurWHDhumpp56yt4mPj9fatWs1fvx4vfTSS2rUqJFef/11JScnu+OQAAAALhsZCQAA+IsAwzAMd3fCXWw2myIiIpSfn++SoelFqVsrLAvu1d3p+wEAAFXn6u9/X0BGAgDA/5idkZw+hxQAAAAAAABwIRSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFROL0i9/PLLuvbaa2WxWGSxWJSYmKj169fb158+fVpjxoxR/fr1VadOHQ0cOFC5ubkO28jOzlbfvn1Vq1YtNWzYUBMnTlRxcbFDmy1btqhjx44KDQ1V8+bNtXTpUmcfCgAAgNOQkQAAAM5yekGqUaNGmjNnjjIyMrRz50716NFDt912m/bu3StJGj9+vD766CO9++67+vTTT5WTk6M77rjD/vmSkhL17dtXhYWF+uKLL7Rs2TItXbpU06ZNs7fJyspS3759dfPNNyszM1Pjxo3TyJEjtWHDBmcfDgAAgFOQkQAAAM4KMAzDcPVO6tWrp+eff16DBg1SgwYNtGLFCg0aNEiS9O2336pNmzZKT09X165dtX79evXr1085OTmKioqSJC1evFiTJ0/Wzz//rJCQEE2ePFlr167Vnj177PtISUlRXl6eUlNTq9wvm82miIgI5efny2KxOPegJRWlbq2wLLhXd6fvBwAAVJ2rv/8vBRnpLDISAADuZXZGcukcUiUlJXrrrbd08uRJJSYmKiMjQ0VFRUpKSrK3ad26tRo3bqz09HRJUnp6utq2bWsPWpKUnJwsm81mv4OYnp7usI2yNmXbOJ+CggLZbDaHFwAAgNnISAAAwN+5pCC1e/du1alTR6GhoXrggQe0cuVKJSQkyGq1KiQkRJGRkQ7to6KiZLVaJUlWq9UhaJWtL1t3oTY2m02///77efs1e/ZsRURE2F9xcXGXe6gAAABVRkYCAAA4wyUFqVatWikzM1Pbt2/Xgw8+qGHDhmnfvn2u2NUlmTp1qvLz8+2vw4cPu7tLAADAj5CRAAAAzghyxUZDQkLUvHlzSVKnTp20Y8cOvfTSS/rzn/+swsJC5eXlOdwBzM3NVXR0tCQpOjpaX375pcP2yp4wc26b8k+dyc3NlcViUc2aNc/br9DQUIWGhl728QEAAFQHGQkAAOAMl84hVaa0tFQFBQXq1KmTgoODlZaWZl934MABZWdnKzExUZKUmJio3bt36+jRo/Y2GzdulMViUUJCgr3Nudsoa1O2DQAAAG9ARgIAAP7K6SOkpk6dqt69e6tx48Y6fvy4VqxYoS1btmjDhg2KiIjQiBEjNGHCBNWrV08Wi0UPPfSQEhMT1bVrV0lSz549lZCQoCFDhmju3LmyWq164oknNGbMGPuduwceeED//Oc/NWnSJN13333avHmz3nnnHa1du9bZhwMAAOAUZCQAAICznF6QOnr0qIYOHaojR44oIiJC1157rTZs2KBbb71VkvTCCy8oMDBQAwcOVEFBgZKTk7Vo0SL752vUqKE1a9bowQcfVGJiomrXrq1hw4bpqaeesreJj4/X2rVrNX78eL300ktq1KiRXn/9dSUnJzv7cAAAAJyCjAQAAHBWgGEYhrs74S42m00RERHKz8+XxWJx+vaLUrdWWBbcq7vT9wMAAKrO1d//voCMBACA/zE7I5kyhxQAAAAAAABQhoIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmMrpBanZs2fruuuuU3h4uBo2bKjbb79dBw4ccGhz+vRpjRkzRvXr11edOnU0cOBA5ebmOrTJzs5W3759VatWLTVs2FATJ05UcXGxQ5stW7aoY8eOCg0NVfPmzbV06VJnHw4AAIBTkJEAAADOcnpB6tNPP9WYMWP0n//8Rxs3blRRUZF69uypkydP2tuMHz9eH330kd599119+umnysnJ0R133GFfX1JSor59+6qwsFBffPGFli1bpqVLl2ratGn2NllZWerbt69uvvlmZWZmaty4cRo5cqQ2bNjg7EMCAAC4bGQkAACAswIMwzBcuYOff/5ZDRs21Keffqobb7xR+fn5atCggVasWKFBgwZJkr799lu1adNG6enp6tq1q9avX69+/fopJydHUVFRkqTFixdr8uTJ+vnnnxUSEqLJkydr7dq12rNnj31fKSkpysvLU2pqapX6ZrPZFBERofz8fFksFqcfe1Hq1grLgnt1d/p+AABA1bn6+7+qyEiOyEgAALiX2RnJ5XNI5efnS5Lq1asnScrIyFBRUZGSkpLsbVq3bq3GjRsrPT1dkpSenq62bdvag5YkJScny2azae/evfY2526jrE3ZNipTUFAgm83m8AIAAHAHMhIAAPBnLi1IlZaWaty4cerWrZuuueYaSZLValVISIgiIyMd2kZFRclqtdrbnBu0ytaXrbtQG5vNpt9//73S/syePVsRERH2V1xc3GUfIwAAwKUiIwEAAH/n0oLUmDFjtGfPHr311luu3E2VTZ06Vfn5+fbX4cOH3d0lAADgh8hIAADA3wW5asNjx47VmjVr9Nlnn6lRo0b25dHR0SosLFReXp7DHcDc3FxFR0fb23z55ZcO2yt7wsy5bco/dSY3N1cWi0U1a9astE+hoaEKDQ297GMDAACoLjISAACAC0ZIGYahsWPHauXKldq8ebPi4+Md1nfq1EnBwcFKS0uzLztw4ICys7OVmJgoSUpMTNTu3bt19OhRe5uNGzfKYrEoISHB3ubcbZS1KdsGAACAJyEjAQAAnOX0EVJjxozRihUr9OGHHyo8PNw+n0FERIRq1qypiIgIjRgxQhMmTFC9evVksVj00EMPKTExUV27dpUk9ezZUwkJCRoyZIjmzp0rq9WqJ554QmPGjLHfvXvggQf0z3/+U5MmTdJ9992nzZs365133tHatWudfUgAAACXjYwEAABwVoBhGIZTNxgQUOnyJUuWaPjw4ZKk06dP69FHH9X/+3//TwUFBUpOTtaiRYvsQ80l6ccff9SDDz6oLVu2qHbt2ho2bJjmzJmjoKCzNbQtW7Zo/Pjx2rdvnxo1aqQnn3zSvo+q4JHGAAD4H7MfaVyGjHQWGQkAAM9jdkZyekHKmxC2AADwP+4qSHkTMhIAAP7H7Izk0qfsAQAAAAAAAOVRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYKsjdHQAAANVTlLrV4X1wr+5u6gkAAIDnICN5B0ZIAQAAAAAAwFQUpAAAAAAAAGAqpxekPvvsM/Xv31+xsbEKCAjQqlWrHNYbhqFp06YpJiZGNWvWVFJSkg4ePOjQ5tixYxo8eLAsFosiIyM1YsQInThxwqHNN998oz/84Q8KCwtTXFyc5s6d6+xDAQAA5yhK3erwwqUjJwEA4HvISNXj9ILUyZMn1a5dOy1cuLDS9XPnztWCBQu0ePFibd++XbVr11ZycrJOnz5tbzN48GDt3btXGzdu1Jo1a/TZZ59p9OjR9vU2m009e/ZUkyZNlJGRoeeff14zZszQq6++6uzDAQAAcBpyEgAAwBlOn9S8d+/e6t27d6XrDMPQiy++qCeeeEK33XabJOlf//qXoqKitGrVKqWkpGj//v1KTU3Vjh071LlzZ0nSP/7xD/Xp00fz5s1TbGysli9frsLCQv3f//2fQkJCdPXVVyszM1Pz5893CGQAAACehJwEAABwhqlP2cvKypLValVSUpJ9WUREhLp06aL09HSlpKQoPT1dkZGR9pAlSUlJSQoMDNT27ds1YMAApaen68Ybb1RISIi9TXJysp577jn99ttvqlu3bqX7LygoUEFBgf29zWZzwVECAOCbDuWtd3jfNLViG55iU33uzElkJAAAqo+MVD2mFqSsVqskKSoqymF5VFSUfZ3ValXDhg0d1gcFBalevXoObeLj4ytso2zd+QpSs2fP1syZMy//QAAA8ADlw08LVS/oHHzr8QrLWqQ8U61tofrcmZPISAAAX1I+IwXu3KurOt9/ydshI7mWqQUpd5s6daomTJhgf2+z2RQXF+fGHgEA4DyVTaJZ2d24qky2yYSc/oWMBADwZaXfZavoF8dsQ0ZyP1MLUtHR0ZKk3NxcxcTE2Jfn5uaqffv29jZHjx51+FxxcbGOHTtm/3x0dLRyc3Md2pS9L2tTmdDQUIWGhl72cQAAgIp3H6Xqj9KCe3MSGQkAAOchI1WNqQWp+Ph4RUdHKy0tzR6sbDabtm/frgcffFCSlJiYqLy8PGVkZKhTp06SpM2bN6u0tFRdunSxt3n88cdVVFSk4OBgSdLGjRvVqlWr8/5cDwAAX1fV8FNZO7gfOQkAANepylQHZCRzOb0gdeLECX333Xf291lZWcrMzFS9evXUuHFjjRs3Tk8//bRatGih+Ph4Pfnkk4qNjdXtt98uSWrTpo169eqlUaNGafHixSoqKtLYsWOVkpKi2NhYSdI999yjmTNnasSIEZo8ebL27Nmjl156SS+88IKzDwcAAL9EIHMNchIAAN6NjOQ8Ti9I7dy5UzfffLP9fdl8BMOGDdPSpUs1adIknTx5UqNHj1ZeXp66d++u1NRUhYWF2T+zfPlyjR07VrfccosCAwM1cOBALViwwL4+IiJCH3/8scaMGaNOnTrpiiuu0LRp03iUMQAA5TDPgWchJwEA4BnISO4XYBiG4e5OuIvNZlNERITy8/NlsVicvv2qTi4LAMC5qhqQPPEOnTc8ecbV3/++gIwEAPBUVclJZKTqMTsj+dVT9gAA8ESVPVIYAADA35GRfBsFKQAATOTrw8MZ+QIAAKqDjOR/KEgBAOAk5YOGP4YMHnMMAADKoxhDRqoMBSkAAEzkiXMaAAAAuBsZyf9QkAIAwEnKByl/v+t1KbhzCgCA72J0UPX5ckaiIGUyfs4BAP7D1+dCqC7OCypDRgIA/0IeqMjfzgkFKQAAqsFbHznsCSo7L00je7uhJwAAwNmqWlQhJ1XkbxmJghQAAHCpqjyymaH8AADA3/h7RqIgBQDwa9X9XT539QAAgC8jI8HVKEgBAFBO+btVgc0b66rO97upNwAAAJ6hshE9LVKecUNP4AsoSAEA/Er5u31VvYv3/c5XXNEdAAAAj0BGgtkoSAEAPEpVh4dX94lc1RlGXvpd9iV/BgAAwJk8MSNJ5CRUHwUpAIBPqO48BwAAAL6MjARPFejuDgAAAAAAAMC/MEIKAOCVqjSs/C2e8gIAAPwLGQneghFSAAAAAAAAMBUjpAAAHqWyu3otxDwHAADAv5GR4GsoSAEAnKKyCTPLq+4EmjxOGAAAeCsyElA5ClIA4Mdc+dSVyu7iBe7cW61t8ThhAABgJjIS4HoUpAAADsoHsMrC18G3Hq/WtglNAADAW5GRAOeiIOVmrqy8A8DFVHaHrmlkbzf0BAAckZEAuBMZCXA9ClIA4KOqchevMuUDWHWHkAMAAHgiMhLgGShIAYCfYAg5AABARWQkwD0oSHkghqgDuJDKnqZCIALgD8hIAC6mfE4iIwGei4IUALhAVR7vW5nK/seKYAUAAHwFGQlAGQpSXqK6v3MGvJ2Zf/ereue9shFK5TXW1RWWlZ93oLKJMSsbMh7YvPFF9wcA/oqMBH9l9t/9quzPWRlJqpiTyEiA76EgBQAXUJXwU9nduEO6+B26ysJXZbjbBwAAPE1VC0Tlc0xVMpJUtZxERgK8GwUpL8UcCvBkrvz7Wd1tV6mwlFe1UEP4AQDPRUaCJ/PWjCRVLSeRkQBcCgpSPoQABqn6fw+c+bmqqO7TTCr1VtVGGpVHaAIA/0BGgkRGuhRkJABmoCDl46ryRVjZF6ozJxt0N0+cW4JABACAe5GRPLNQR0YCAP9BQQrV/iKu7rbKhwNPDENV5cpzV5XJHav6OQAAcOncnZEq+xwZ6YyqPCikKp8DALgPBSmYrioBxZkhxpXbNjvUEKIAAPBd7s5Iztw+GQkAcDEUpOCRqhoqyt8Nq+qoIkILAADwRmQkAICv8PqC1MKFC/X888/LarWqXbt2+sc//qHrr7/e3d3yKlUNKFX5nNmq0gdP6CcAAGYjI10+MhIAAK7j1QWpt99+WxMmTNDixYvVpUsXvfjii0pOTtaBAwfUsGFDd3evSjw1CHhqvwAAwMX5QkaSPDOPeGKfAADwRl5dkJo/f75GjRqle++9V5K0ePFirV27Vv/3f/+nKVOmuLl3BBYAAOAeZCQAAODpvLYgVVhYqIyMDE2dOtW+LDAwUElJSUpPT6/0MwUFBSooKLC/z8/PlyTZbDaX9PHEqYKLNwIAAJVy1fdz2XYNw3DJ9t2NjAQAgG/zlYzktQWpX375RSUlJYqKinJYHhUVpW+//bbSz8yePVszZ86ssDwuLs4lfQQAAJdhxN9duvnjx48rIiLCpftwBzISAAA+zkcyktcWpKpj6tSpmjBhgv19aWmpjh07pvr16ysgIMBp+7HZbIqLi9Phw4dlsVictl24DtfM+3DNvA/XzPv46jUzDEPHjx9XbGysu7viMczKSJLv/r3yVVwv78M18z5cM+/jq9fM7IzktQWpK664QjVq1FBubq7D8tzcXEVHR1f6mdDQUIWGhjosi4yMdFUXZbFYfOovpz/gmnkfrpn34Zp5H1+8Zr44MqqMN2QkyTf/Xvkyrpf34Zp5H66Z9/HFa2ZmRgo0bU9OFhISok6dOiktLc2+rLS0VGlpaUpMTHRjzwAAANyHjAQAALyB146QkqQJEyZo2LBh6ty5s66//nq9+OKLOnnypP2JMgAAAP6IjAQAADydVxek/vznP+vnn3/WtGnTZLVa1b59e6WmplaYxNNsoaGhmj59eoWh7/BcXDPvwzXzPlwz78M1816empEk/l55G66X9+GaeR+umffhmjlHgOGrzzwGAAAAAACAR/LaOaQAAAAAAADgnShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQWpalq4cKGaNm2qsLAwdenSRV9++eUF27/77rtq3bq1wsLC1LZtW61bt86knqLMpVyz1157TX/4wx9Ut25d1a1bV0lJSRe9xnC+S/3vrMxbb72lgIAA3X777a7tICq41GuWl5enMWPGKCYmRqGhoWrZsiX/PprsUq/Ziy++qFatWqlmzZqKi4vT+PHjdfr0aZN6C29ARvI+ZCTvQ0byPmQk70NGMoGBS/bWW28ZISEhxv/93/8Ze/fuNUaNGmVERkYaubm5lbbftm2bUaNGDWPu3LnGvn37jCeeeMIIDg42du/ebXLP/delXrN77rnHWLhwofH1118b+/fvN4YPH25EREQYP/30k8k991+Xes3KZGVlGVdeeaXxhz/8wbjtttvM6SwMw7j0a1ZQUGB07tzZ6NOnj7F161YjKyvL2LJli5GZmWlyz/3XpV6z5cuXG6Ghocby5cuNrKwsY8OGDUZMTIwxfvx4k3sOT0U/MGJuAAEAAElEQVRG8j5kJO9DRvI+ZCTvQ0YyBwWparj++uuNMWPG2N+XlJQYsbGxxuzZsyttf9dddxl9+/Z1WNalSxfj/vvvd2k/cdalXrPyiouLjfDwcGPZsmWu6iLKqc41Ky4uNm644Qbj9ddfN4YNG0bYMtmlXrOXX37ZaNasmVFYWGhWF1HOpV6zMWPGGD169HBYNmHCBKNbt24u7Se8BxnJ+5CRvA8ZyfuQkbwPGckc/GTvEhUWFiojI0NJSUn2ZYGBgUpKSlJ6enqln0lPT3doL0nJycnnbQ/nqs41K+/UqVMqKipSvXr1XNVNnKO61+ypp55Sw4YNNWLECDO6iXNU55qtXr1aiYmJGjNmjKKionTNNdfo2WefVUlJiVnd9mvVuWY33HCDMjIy7EPWf/jhB61bt059+vQxpc/wbGQk70NG8j5kJO9DRvI+ZCTzBLm7A97ml19+UUlJiaKiohyWR0VF6dtvv630M1artdL2VqvVZf3EWdW5ZuVNnjxZsbGxFUIzXKM612zr1q164403lJmZaUIPUV51rtkPP/ygzZs3a/DgwVq3bp2+++47/fWvf1VRUZGmT59uRrf9WnWu2T333KNffvlF3bt3l2EYKi4u1gMPPKC//e1vZnQZHo6M5H3ISN6HjOR9yEjeh4xkHkZIARcxZ84cvfXWW1q5cqXCwsLc3R1U4vjx4xoyZIhee+01XXHFFe7uDqqotLRUDRs21KuvvqpOnTrpz3/+sx5//HEtXrzY3V3DeWzZskXPPvusFi1apK+++koffPCB1q5dq1mzZrm7awDcgIzk+chI3omM5H3ISNXDCKlLdMUVV6hGjRrKzc11WJ6bm6vo6OhKPxMdHX1J7eFc1blmZebNm6c5c+Zo06ZNuvbaa13ZTZzjUq/Z999/r0OHDql///72ZaWlpZKkoKAgHThwQFdddZVrO+3nqvPfWUxMjIKDg1WjRg37sjZt2shqtaqwsFAhISEu7bO/q841e/LJJzVkyBCNHDlSktS2bVudPHlSo0eP1uOPP67AQO5z+TMykvchI3kfMpL3ISN5HzKSeTgrlygkJESdOnVSWlqafVlpaanS0tKUmJhY6WcSExMd2kvSxo0bz9sezlWdayZJc+fO1axZs5SamqrOnTub0VX8/y71mrVu3Vq7d+9WZmam/fWnP/1JN998szIzMxUXF2dm9/1Sdf4769atm7777jt7MJak//73v4qJiSFomaA61+zUqVMVAlVZWDYMw3WdhVcgI3kfMpL3ISN5HzKS9yEjmci9c6p7p7feessIDQ01li5dauzbt88YPXq0ERkZaVitVsMwDGPIkCHGlClT7O23bdtmBAUFGfPmzTP2799vTJ8+nUcam+xSr9mcOXOMkJAQ47333jOOHDlifx0/ftxdh+B3LvWalccTZMx3qdcsOzvbCA8PN8aOHWscOHDAWLNmjdGwYUPj6aefdtch+J1LvWbTp083wsPDjf/3//6f8cMPPxgff/yxcdVVVxl33XWXuw4BHoaM5H3ISN6HjOR9yEjeh4xkDgpS1fSPf/zDaNy4sRESEmJcf/31xn/+8x/7uj/+8Y/GsGHDHNq/8847RsuWLY2QkBDj6quvNtauXWtyj3Ep16xJkyaGpAqv6dOnm99xP3ap/52di7DlHpd6zb744gujS5cuRmhoqNGsWTPjmWeeMYqLi03utX+7lGtWVFRkzJgxw7jqqquMsLAwIy4uzvjrX/9q/Pbbb+Z3HB6LjOR9yEjeh4zkfchI3oeM5HoBhsH4MQAAAAAAAJiHOaQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAJ+zdOlSBQQE6NChQ07d7uHDhxUWFqZt27ZdtO1NN92km266yWFZbm6uBg0apPr16ysgIEAvvvjiJe0/JSVFd9111yV9BgAAoAwZCYAnoSAFwCXWrVunGTNmuLsbTvXUU0+pS5cu6tatW7U+P378eG3YsEFTp07Vv//9b/Xq1UuS9Mwzz+hPf/qToqKiFBAQcN7zNnnyZL3//vvatWtXdQ8BAAC4GRmposoy0rfffqtJkyapffv2Cg8PV0xMjPr27audO3dW+DwZCfBOAYZhGO7uBADfM3bsWC1cuFDu+CempKRERUVFCg0NVUBAgFO2+fPPP+vKK6/UsmXLdPfdd1+0fdmdvy1bttiXRUdHKykpSW+++aZD24CAAEVHR6tdu3basGGDpk+fft6g2qVLF7Vq1Ur/+te/qnsoAADAjchIN0m6eEZ67LHH9MYbb2jgwIG6/vrrlZ+fr1deeUWHDh1SamqqkpKSHLZLRgK8DyOkADjVyZMn3d0F1ahRQ2FhYU4LWpL05ptvKigoSP3796/2No4eParIyMgKy7OysnTkyJEKharK3HXXXfrggw904sSJavcDAACYj4x0fpVlpLvvvluHDx/W66+/rtGjR2vixInavn276tWrV+mNOzIS4H0oSAGothkzZiggIED79u3TPffco7p166p79+4aPny4Fi5cKOnM6J+yV1XddNNNuuaaa/TNN9/oj3/8o2rVqqXmzZvrvffekyR9+umn6tKli2rWrKlWrVpp06ZNDp+vbH6Epk2bql+/ftq6dauuv/56hYWFqVmzZlW+i7Zq1Sp16dJFderUqbDu1Vdf1VVXXaWaNWvq+uuv1+eff15pfwzD0MKFCyucj6ZNm1bxzEi33nqrTp48qY0bN1b5MwAAwFxkpDMuJyN16tSpwjbr16+vP/zhD9q/f3+FfZGRAO9DQQrAZbvzzjt16tQpPfvssxo1apTuv/9+3XrrrZKkf//73/bXpfjtt9/Ur18/denSRXPnzlVoaKhSUlL09ttvKyUlRX369NGcOXN08uRJDRo0SMePH7/oNr/77jsNGjRIt956q/7+97+rbt26Gj58uPbu3XvBzxUVFWnHjh3q2LFjhXVvvPGG7r//fkVHR2vu3Lnq1q2b/vSnP+nw4cP2NjfeeKP9+G+99dZqnY8yCQkJqlmzZpUmDQUAAO5FRnJ+RrJarbriiisqLCcjAd4nyN0dAOD92rVrpxUrVjgsa9mypTZu3Ki//OUv1dpmTk6OVqxYYZ+L4NZbb1Xr1q11zz336IsvvlCXLl0kSW3atFFycrLef/99DR8+/ILbPHDggD777DP94Q9/kHRmaHdcXJyWLFmiefPmnfdz2dnZ+v333xUfH++wvKioSH/729/Uvn17ffLJJwoJCZF0JhCNHj1acXFxkqRmzZqpWbNmGjJkiFq2bFntcyJJQUFBiouL0759+6q9DQAAYA4yknMz0ueff6709HQ98cQTFdaRkQDvwwgpAJftgQcecPo269Spo5SUFPv7Vq1aKTIyUm3atLEHLUn2P//www8X3WZCQoI9aElSgwYN1KpVq4t+9tdff5Uk1a1b12H5zp07dfToUT3wwAP2oCVJw4cPV0RExEX7U11169bVL7/84rLtAwAA5yAjOS8jHT16VPfcc4/i4+M1adKkStuQkQDvwggpAJet/F0xZ2jUqFGFORUiIiLsd9TOXSadGb5+MY0bN66wrG7dulX6rKQKT8P58ccfJUktWrRwWB4cHKxmzZpVaZvVYRiGUycjBQAArkFGck5GOnnypPr166fjx49r69atlc5XVdYPMhLgPRghBeCy1axZ0+nbrFGjxiUtr8qjk6v72fr160uqWqAzw2+//Vbp3AkAAMCzkJEuX2Fhoe644w598803+vDDD3XNNdecty0ZCfAuFKQAuIQv3Z1q3LixatasqaysLIflTZo0kSQdPHjQYXlRUVGFts5SXFysw4cPq02bNi7ZPgAAcC0yUtUzUmlpqYYOHaq0tDStWLFCf/zjH8/blowEeB8KUgBconbt2pKkvLw893bECYKDg9W5c2ft3LnTYXnnzp3VoEEDLV68WIWFhfblS5cuddlx79u3T6dPn9YNN9zgku0DAADXIiPlVXn7Dz30kN5++20tWrRId9xxxwXbkpEA78McUgBcolOnTpKkhx9+WMnJyapRo4bDBJze5rbbbtPjjz8um80mi8Ui6UwIe/rpp3X//ferR48e+vOf/6ysrCwtWbLkkuZH+Pe//60ff/xRp06dkiR99tlnevrppyVJQ4YMsd9llKSNGzeqVq1a9kdGAwAA70JGqlpGevHFF7Vo0SIlJiaqVq1aevPNNx3WDxgwwF7ck8hIgDeiIAXAJe644w499NBDeuutt/Tmm2/KMAyvDltDhgzRlClTtHr1aodHEo8ePVolJSV6/vnnNXHiRLVt21arV6/Wk08+WeVtv/HGG/r000/t7z/55BN98sknkqTu3bs7FKTeffdd3XHHHQoPD3fCUQEAALORkaqWkTIzMyVJ6enpSk9Pr7A+KyvLoSBFRgK8T4BRlVnuAAAaMWKE/vvf/+rzzz93y/4zMzPVsWNHffXVV2rfvr1b+gAAAFAeGQlAdVCQAoAqys7OVsuWLZWWlqZu3bqZvv+UlBSVlpbqnXfeMX3fAAAA50NGAlAdFKQAmObYsWMOE1uWV6NGDTVo0MDEHgEAALgfGQmAP6IgBcA0N910k8NcSeU1adJEhw4dMq9DAAAAHoCMBMAfUZACYJqMjAz99ttv511fs2ZNtwzzBgAAcCcyEgB/REEKAAAAAAAApgp0dwcAAAAAAADgX4Lc3QF3Ki0tVU5OjsLDwxUQEODu7gAAABMYhqHjx48rNjZWgYHcm6sMGQkAAP9jdkby64JUTk6O4uLi3N0NAADgBocPH1ajRo3c3Q2PREYCAMB/mZWR/LogFR4eLunMybZYLG7uDQAAMIPNZlNcXJw9B6AiMhIAAP7H7Izk1wWpsiHoFouFsAUAgJ/hp2jnR0YCAMB/mZWRmDgBAAAAAAAApnJ6Qeqzzz5T//79FRsbq4CAAK1atcphvWEYmjZtmmJiYlSzZk0lJSXp4MGDDm2OHTumwYMHy2KxKDIyUiNGjNCJEycc2nzzzTf6wx/+oLCwMMXFxWnu3LnOPhQAAACnIicBAACc4fSC1MmTJ9WuXTstXLiw0vVz587VggULtHjxYm3fvl21a9dWcnKyTp8+bW8zePBg7d27Vxs3btSaNWv02WefafTo0fb1NptNPXv2VJMmTZSRkaHnn39eM2bM0KuvvurswwEAAHAachIAAMAZAYZhGC7beECAVq5cqdtvv13Smbt+sbGxevTRR/XYY49JkvLz8xUVFaWlS5cqJSVF+/fvV0JCgnbs2KHOnTtLklJTU9WnTx/99NNPio2N1csvv6zHH39cVqtVISEhkqQpU6Zo1apV+vbbb6vcP5vNpoiICOXn5zM/AgCggpKSEhUVFbm7G7hEwcHBqlGjxnnXe8r3vyfnJE85RwAAz0RG8k6elpFMndQ8KytLVqtVSUlJ9mURERHq0qWL0tPTlZKSovT0dEVGRtpDliQlJSUpMDBQ27dv14ABA5Senq4bb7zRHrIkKTk5Wc8995x+++031a1bt9L9FxQUqKCgwP7eZrO54CgBAN7OMAxZrVbl5eW5uyuopsjISEVHR3vVxOXuzElkJABAVZCRvJ8nZSRTC1JWq1WSFBUV5bA8KirKvs5qtaphw4YO64OCglSvXj2HNvHx8RW2UbbufAWp2bNna+bMmZd/IAAAn1YWtBo2bKhatWp5xBc2qsYwDJ06dUpHjx6VJMXExLi5R1XnzpxERgIAVAUZyXt5YkYytSDlblOnTtWECRPs7202m+Li4tzYIwCApykpKbEHrfr167u7O6iGmjVrSpKOHj2qhg0bXnBoOs4gIwEALoaM5P08LSM5fVLzC4mOjpYk5ebmOizPzc21r4uOjrZX7MoUFxfr2LFjDm0q28a5+6hMaGioLBaLwwsAgHOVzYdQq1YtN/cEl6Ps+nnT/BbuzElkJADAxZCRfIMnZSRTC1Lx8fGKjo5WWlqafZnNZtP27duVmJgoSUpMTFReXp4yMjLsbTZv3qzS0lJ16dLF3uazzz5zOIEbN25Uq1atzvtzPQAALgVD0L2bN14/chIAwBt443cszvKk6+f0gtSJEyeUmZmpzMxMSWcm6MzMzFR2drYCAgI0btw4Pf3001q9erV2796toUOHKjY21v6EmTZt2qhXr14aNWqUvvzyS23btk1jx45VSkqKYmNjJUn33HOPQkJCNGLECO3du1dvv/22XnrpJYeh5gAAAJ6GnAQAAHCG0+eQ2rlzp26++Wb7+7LwM2zYMC1dulSTJk3SyZMnNXr0aOXl5al79+5KTU1VWFiY/TPLly/X2LFjdcsttygwMFADBw7UggUL7OsjIiL08ccfa8yYMerUqZOuuOIKTZs2TaNHj3b24QAAADgNOQkAAOCMAMMwDHd3wl1sNpsiIiKUn5/PXAkAAEnS6dOnlZWVpfj4eIcigCQVpW41rR/BvbpXue3Fhl5Pnz5dM2bMuMweVU9AQIBWrlxpH+FTHa+++qpWrFihr776SsePH9dvv/2myMjIC37mQteR7/+L4xwBAMrzlIwkkZPKHDt2TNOnT9fHH3+s7OxsNWjQQLfffrtmzZqliIiISj/jSRnJr56yBwCALzpy5Ij9z2+//bamTZumAwcO2JfVqVPnkrZXWFiokJAQp/Xvcp06dUq9evVSr169NHXqVHd3BwAAeBFfzkk5OTnKycnRvHnzlJCQoB9//FEPPPCAcnJy9N5777m7exdl6qTmAODJilK3VngB3iA6Otr+ioiIUEBAgP39yZMnNXjwYEVFRalOnTq67rrrtGnTJofPN23aVLNmzdLQoUNlsVjsP+167bXXFBcXp1q1amnAgAGaP39+hZFJH374oTp27KiwsDA1a9ZMM2fOVHFxsX27kjRgwAAFBATY3+/atUs333yzwsPDZbFY1KlTJ+3cufO8xzdu3DhNmTJFXbt2dc4JAwBcMjISvJUv56RrrrlG77//vvr376+rrrpKPXr00DPPPKOPPvrIvh9PRkEKAAAfduLECfXp00dpaWn6+uuv1atXL/Xv31/Z2dkO7ebNm6d27drp66+/1pNPPqlt27bpgQce0COPPKLMzEzdeuuteuaZZxw+8/nnn2vo0KF65JFHtG/fPr3yyitaunSpvd2OHTskSUuWLNGRI0fs7wcPHqxGjRppx44dysjI0JQpUxQcHGzC2QAAADjLF3NS2c/tgoI8/wdxnt9DAABQbe3atVO7du3s72fNmqWVK1dq9erVGjt2rH15jx499Oijj9rfP/744+rdu7cee+wxSVLLli31xRdfaM2aNfY2M2fO1JQpUzRs2DBJUrNmzTRr1ixNmjRJ06dPV4MGDSRJkZGRio6Otn8uOztbEydOVOvWrSVJLVq0cMGRAwAAXJiv5aRffvlFs2bN8poHmTBCCgAAH3bixAk99thjatOmjSIjI1WnTh3t37+/wp2/zp07O7w/cOCArr/+eodl5d/v2rVLTz31lOrUqWN/jRo1SkeOHNGpU6fO26cJEyZo5MiRSkpK0pw5c/T9999f5lECAABcOl/KSTabTX379lVCQoLbJmm/VBSkAADwYY899phWrlypZ599Vp9//rkyMzPVtm1bFRYWOrSrXbv2JW/7xIkTmjlzpjIzM+2v3bt36+DBgxWe2nKuGTNmaO/everbt682b96shIQErVy58pL3DwAAcDl8JScdP35cvXr1Unh4uFauXOk1UyHwkz0AAHzYtm3bNHz4cA0YMEDSmXB06NChi36uVatW9rkMypR/37FjRx04cEDNmzc/73aCg4NVUlJSYXnLli3VsmVLjR8/XnfffbeWLFli7yMAAIAZfCEn2Ww2JScnKzQ0VKtXr75gscvTUJACAMCHtWjRQh988IH69++vgIAAPfnkkyotLb3o5x566CHdeOONmj9/vvr376/Nmzdr/fr1CggIsLeZNm2a+vXrp8aNG2vQoEEKDAzUrl27tGfPHj399NOSzjxBJi0tTd26dVNoaKjCwsI0ceJEDRo0SPHx8frpp5+0Y8cODRw48Lx9sVqtslqt+u677yRJu3fvVnh4uBo3bqx69epd5hkCAAD+yttzks1mU8+ePXXq1Cm9+eabstlsstlskqQGDRqoRo0aTjhLrsNP9gAA8GHz589X3bp1dcMNN6h///5KTk5Wx44dL/q5bt26afHixZo/f77atWun1NRUjR8/3uGuW3JystasWaOPP/5Y1113nbp27aoXXnhBTZo0sbf5+9//ro0bNyouLk4dOnRQjRo19Ouvv2ro0KFq2bKl7rrrLvXu3VszZ848b18WL16sDh06aNSoUZKkG2+8UR06dNDq1asv48wAAAB/5+056auvvtL27du1e/duNW/eXDExMfbX4cOHL/8EuViAYRiGuzvhLjabTREREfbHIgLwb0WpWyssC+7V3Q09gTudPn1aWVlZio+P96ohz2YYNWqUvv32W33++efu7spFXeg68v1/cZwjAOWVz0lkJP9DRrowb8lJnpSR+MkeAACo1Lx583Trrbeqdu3aWr9+vZYtW6ZFixa5u1sAAABuR066fBSkAABApb788kvNnTtXx48fV7NmzbRgwQKNHDnS3d0CAABwO3LS5aMgBcDn8NM7wDneeecdd3cBAOBk/PQOcA5y0uWjIAUAcEBQBQAAqIiMBDgXBSkAXq+yEVEAAAD+jowEwJMFursDAAAAAAAA8C8UpAAAAAAAAGAqfrIHwC9Ud6JzJkgHAAC+jIwEwF0YIQUAAAAAAABTUZACAAAAAACAqfjJHgAAVfT9zldM29dVne+/pPbDhw/XsmXLJElBQUGqV6+err32Wt19990aPny4AgO99x7U3r17NW3aNGVkZOjHH3/UCy+8oHHjxrm7WwAA4P9nZkaSyEnneu211/Svf/1Le/bskSR16tRJzz77rK6//no39+ziKEgB8Fs8Chm+plevXlqyZIlKSkqUm5ur1NRUPfLII3rvvfe0evVqBQV559f+qVOn1KxZM915550aP368u7sDAD6PjARf5Ks5acuWLbr77rt1ww03KCwsTM8995x69uypvXv36sorr3R39y7Ie8uAAADAQWhoqKKjo3XllVeqY8eO+tvf/qYPP/xQ69ev19KlS+3t8vLyNHLkSDVo0EAWi0U9evTQrl27HLb10Ucf6brrrlNYWJiuuOIKDRgwwL7ut99+09ChQ1W3bl3VqlVLvXv31sGDByVJJ0+elMVi0XvvveewvVWrVql27do6fvy4CgsLNXbsWMXExCgsLExNmjTR7Nmzz3tc1113nZ5//nmlpKQoNDTUCWcKAAD4G1/NScuXL9df//pXtW/fXq1bt9brr7+u0tJSpaWlOeGsuRYFKQBepSh1a4UXgPPr0aOH2rVrpw8++MC+7M4779TRo0e1fv16ZWRkqGPHjrrlllt07NgxSdLatWs1YMAA9enTR19//bXS0tIchn0PHz5cO3fu1OrVq5Weni7DMNSnTx8VFRWpdu3aSklJ0ZIlSxz6sWTJEg0aNEjh4eFasGCBVq9erXfeeUcHDhzQ8uXL1bRpU1POBwD4KjIScOl8MSedOnVKRUVFqlev3uWdHBN455g0AABQZa1bt9Y333wjSdq6dau+/PJLHT161D7aaN68eVq1apXee+89jR49Ws8884xSUlI0c+ZM+zbatWsnSTp48KBWr16tbdu26YYbbpB05s5cXFycVq1apTvvvFMjR47UDTfcoCNHjigmJkZHjx7VunXrtGnTJklSdna2WrRooe7duysgIEBNmjQx83QAAADY+VpOmjx5smJjY5WUlHTZ58bVGCEFAICPMwxDAQEBkqRdu3bpxIkTql+/vurUqWN/ZWVl6fvvv5ckZWZm6pZbbql0W/v371dQUJC6dOliX1a/fn21atVK+/fvlyRdf/31uvrqq+2Th7755ptq0qSJbrzxRkln7hxmZmaqVatWevjhh/Xxxx+77NgBAAAuxJdy0pw5c/TWW29p5cqVCgsLu/STYTJGSAEA4OP279+v+Ph4SdKJEycUExOjLVu2VGgXGRkpSapZs+Zl73PkyJFauHChpkyZoiVLlujee++1h72OHTsqKytL69ev16ZNm3TXXXcpKSmpwnwKAAAAruYrOWnevHmaM2eONm3apGuvvfay+2gGRkgBAODDNm/erN27d2vgwIGSzoQcq9WqoKAgNW/e3OF1xRVXSJKuvfba806E2aZNGxUXF2v79u32Zb/++qsOHDighIQE+7K//OUv+vHHH7VgwQLt27dPw4YNc9iOxWLRn//8Z7322mt6++239f7779vnZgAAADCDr+SkuXPnatasWUpNTVXnzp2rfT7MxggpAAB8REFBgaxWq8PjjGfPnq1+/fpp6NChkqSkpCQlJibq9ttv19y5c9WyZUvl5OTYJ+js3Lmzpk+frltuuUVXXXWVUlJSVFxcrHXr1mny5Mlq0aKFbrvtNo0aNUqvvPKKwsPDNWXKFF155ZW67bbb7H2pW7eu7rjjDk2cOFE9e/ZUo0aN7Ovmz5+vmJgYdejQQYGBgXr33XcVHR1tv/NYXmFhofbt22f/8//+9z9lZmaqTp06at68uetOKAAA8Bm+mpOee+45TZs2TStWrFDTpk1ltVolyf5zQ0/GCCkAAHxEamqqYmJi1LRpU/Xq1UuffPKJFixYoA8//FA1atSQJAUEBGjdunW68cYbde+996ply5ZKSUnRjz/+qKioKEnSTTfdpHfffVerV69W+/bt1aNHD3355Zf2/SxZskSdOnVSv379lJiYKMMwtG7dOgUHBzv0Z8SIESosLNR9993nsDw8PFxz585V586ddd111+nQoUNat26dAgMrjyU5OTnq0KGDOnTooCNHjmjevHnq0KGDRo4c6czTBwAAfJiv5qSXX35ZhYWFGjRokGJiYuyvefPmOfP0uUSAYRiGuzvhLjabTREREcrPz5fFYnF3dwBUgSc8wji4V3d3d8Glyp9jXz/e8k6fPq2srCzFx8d7xWSQnuzf//63xo8fr5ycHIWEhJi67wtdR77/L45zBHgfMpLrkZHISM7krpzkSRmJn+wBAACnOnXqlI4cOaI5c+bo/vvvN70YBQAA4KnISWfxkz0AAOBUc+fOVevWrRUdHa2pU6e6uzsAAAAeg5x0FgUpAADgVDNmzFBRUZHS0tI8fjJNAAAAM5GTzqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAFCJ0tJSd3cBl4HrBwCAa/Ad69086frxlD0AAM4REhKiwMBA5eTkqEGDBgoJCVFAQIC7u4UqMgxDhYWF+vnnnxUYGOjXT64BAMCZyEjezRMzEgUpAADOERgYqPj4eB05ckQ5OTnu7g6qqVatWmrcuLECAxkMDgCAM5CRfIMnZSQKUgAAlBMSEqLGjRuruLhYJSUl7u4OLlGNGjUUFBTEXVsAAJyMjOTdPC0jUZACAKASAQEBCg4OVnBwsLu7AgAA4DHISHAW94/RAgAAAAAAgF+hIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVZC7OwAAcI2i1K0O74N7dXdTTwAAADwHGQnwDIyQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKrcUpEpKSvTkk08qPj5eNWvW1FVXXaVZs2bJMAx7G8MwNG3aNMXExKhmzZpKSkrSwYMHHbZz7NgxDR48WBaLRZGRkRoxYoROnDhh9uEAAAA4BRkJAAD4C7dMav7cc8/p5Zdf1rJly3T11Vdr586duvfeexUREaGHH35YkjR37lwtWLBAy5YtU3x8vJ588kklJydr3759CgsLkyQNHjxYR44c0caNG1VUVKR7771Xo0eP1ooVK9xxWABcoPykk56osj6aPTmmN5wnABdHRgJQVd7y3e/uCcS95TwB/ijAOPeWm0n69eunqKgovfHGG/ZlAwcOVM2aNfXmm2/KMAzFxsbq0Ucf1WOPPSZJys/PV1RUlJYuXaqUlBTt379fCQkJ2rFjhzp37ixJSk1NVZ8+ffTTTz8pNjb2ov2w2WyKiIhQfn6+LBaLaw4WwGXxpRDhygBWlfNU1f27OzgCrubJ3/9kJABVRUaqGjISUHVmf/+75Sd7N9xwg9LS0vTf//5XkrRr1y5t3bpVvXv3liRlZWXJarUqKSnJ/pmIiAh16dJF6enpkqT09HRFRkbag5YkJSUlKTAwUNu3bzfxaAAAAJyDjAQAAPyFW36yN2XKFNlsNrVu3Vo1atRQSUmJnnnmGQ0ePFiSZLVaJUlRUVEOn4uKirKvs1qtatiwocP6oKAg1atXz96mvIKCAhUUFNjf22w2px0TAFwMd9UAXAwZCYA/IiMB/sktI6TeeecdLV++XCtWrNBXX32lZcuWad68eVq2bJlL9zt79mxFRETYX3FxcS7dHwAAwKUgIwEAAH/hloLUxIkTNWXKFKWkpKht27YaMmSIxo8fr9mzZ0uSoqOjJUm5ubkOn8vNzbWvi46O1tGjRx3WFxcX69ixY/Y25U2dOlX5+fn21+HDh519aAAAANVGRgIAAP7CLQWpU6dOKTDQcdc1atRQaWmpJCk+Pl7R0dFKS0uzr7fZbNq+fbsSExMlSYmJicrLy1NGRoa9zebNm1VaWqouXbpUut/Q0FBZLBaHFwAAgKcgIwEAAH/hljmk+vfvr2eeeUaNGzfW1Vdfra+//lrz58/XfffdJ0kKCAjQuHHj9PTTT6tFixb2RxrHxsbq9ttvlyS1adNGvXr10qhRo7R48WIVFRVp7NixSklJqdLTYwAAADwNGQkAAPgLtxSk/vGPf+jJJ5/UX//6Vx09elSxsbG6//77NW3aNHubSZMm6eTJkxo9erTy8vLUvXt3paamKiwszN5m+fLlGjt2rG655RYFBgZq4MCBWrBggTsOCYCJDuWtr7CsaWRvN/QEAJyLjATgcpXPSWQkAJ4qwDAMw92dcBebzaaIiAjl5+czNB3wUOWfuiL5TkHKmU+Qqew8VXd/POkGvo7v/4vjHAGe73zf/b5QkCIjAe5h9ve/W+aQAgAAAAAAgP+iIAUAAAAAAABTUZACAAAAAACAqdwyqTkAwDNUZV4FAAAAf0NGAlyPEVIAAAAAAAAwFSOkADhdZXeUeAoJAADwd2QkADiLghTgYwg6OB+GngMA/BkZCedDRgLcg5/sAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIpJzQEAF8QksAAAABWRkYDLwwgpAAAAAAAAmIqCFAAAAAAAAEzFT/YA+I1DeesrLGsa2dsNPQEAAPAcZCQA7kBBCgDKKR/KCGQAAABkJADORUEKwHkxUSMAAEBFZCQAuHzMIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFU/ZA3BZKnvKjK8p/4hjyXWPOeapPQAA+AYyknORkQDfwwgpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgqiB3dwAA4FkO5a2vsKxpZG839AQAAMBzkJEA56IgBcAneGNAKErdWq12wb26u6I7AADAB5GRAHgqfrIHAAAAAAAAUzFCCgB8RPk7oJ5+9xMAAMAMZCTAM1GQAgAn8Mbh8AAAAK5GRgJwPvxkDwAAAAAAAKZihBQASVWfPBIAAMCfkJEAwDUoSAF+oLIgxVNIAACAvyMjAYD78JM9AAAAAAAAmIoRUgD8WmUTbQIAAPg7MhIAV2OEFAAAAAAAAEzFCCkAgFuVn7+DuTsAAADISPB9jJACAAAAAACAqRghBfip6j7CmEcfAwAAX0ZGAgBzUJACvAiPJr40TMYJAIB/ICNdGjISAE/AT/YAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxaTmgIfylCe1VDbpZdPI3m7vA3wXE9MCAC7EUzKSVDGjkJHgSmQk+BoKUoCX86RQBgAA4CnISADg2ShIAR6C0OR7PGF0matU5Q4dd/EAAM5ARvI9ZCQyEiC5cQ6p//3vf/rLX/6i+vXrq2bNmmrbtq127txpX28YhqZNm6aYmBjVrFlTSUlJOnjwoMM2jh07psGDB8tisSgyMlIjRozQiRMnzD4UAAAApyEjAQAAf+CWEVK//fabunXrpptvvlnr169XgwYNdPDgQdWtW9feZu7cuVqwYIGWLVum+Ph4Pfnkk0pOTta+ffsUFhYmSRo8eLCOHDmijRs3qqioSPfee69Gjx6tFStWuOOwAMAU3nyn2Jv7DpiBjAQA1efNOcOb+w5Ul1sKUs8995zi4uK0ZMkS+7L4+Hj7nw3D0IsvvqgnnnhCt912myTpX//6l6KiorRq1SqlpKRo//79Sk1N1Y4dO9S5c2dJ0j/+8Q/16dNH8+bNU2xsrLkHBQAAcJnISAAAwF+45Sd7q1evVufOnXXnnXeqYcOG6tChg1577TX7+qysLFmtViUlJdmXRUREqEuXLkpPT5ckpaenKzIy0h60JCkpKUmBgYHavn17pfstKCiQzWZzeAEAnKModavDC8ClIyMBgO8hIwGVc0tB6ocfftDLL7+sFi1aaMOGDXrwwQf18MMPa9myZZIkq9UqSYqKinL4XFRUlH2d1WpVw4YNHdYHBQWpXr169jblzZ49WxEREfZXXFycsw8NAACg2shIAADAX7jlJ3ulpaXq3Lmznn32WUlShw4dtGfPHi1evFjDhg1z2X6nTp2qCRMm2N/bbDYCF4BqqezpMJ7Gl59gA/gqMhIAb0dGAlBVbilIxcTEKCEhwWFZmzZt9P7770uSoqOjJUm5ubmKiYmxt8nNzVX79u3tbY4ePeqwjeLiYh07dsz++fJCQ0MVGhrqrMMAgEtWPgARfgCci4wEwF+RkQD/45af7HXr1k0HDhxwWPbf//5XTZo0kXRm8s7o6GilpaXZ19tsNm3fvl2JiYmSpMTEROXl5SkjI8PeZvPmzSotLVWXLl1MOAoAAADnIiMBAAB/4ZYRUuPHj9cNN9ygZ599VnfddZe+/PJLvfrqq3r11VclSQEBARo3bpyefvpptWjRwv5I49jYWN1+++2Sztwt7NWrl0aNGqXFixerqKhIY8eOVUpKCk+PAbwAEzqen9nDyL1haD3gL8hIAMhI50dGAnyLWwpS1113nVauXKmpU6fqqaeeUnx8vF588UUNHjzY3mbSpEk6efKkRo8erby8PHXv3l2pqakKCwuzt1m+fLnGjh2rW265RYGBgRo4cKAWLFjgjkMC/B7DrAHg8pGRAN9DRgKAyrmlICVJ/fr1U79+/c67PiAgQE899ZSeeuqp87apV6+eVqxY4YruAQAAuAUZCQAA+AO3FaQA+LbydwMDd+7VVZ3vd1NvAAAAPAMZCQDOcMuk5gAAAAAAAPBfFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKSc0BmKL0u2wV/bLV3d0AAADwKGQkAP6KghQA4KLKPxGoaWRvN/UEAADAc5TPSBI5CagqfrIHAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKiY1B3wUEywCAABUREYCAM9AQQoA3KiyUAwAAODvyEiA7+MnewAAAAAAADAVI6QAAB6vKHVrhWXBvbq7oScAAACeg4wEb8YIKQAAAAAAAJiKghQAAAAAAABMxU/2AMCPeMsEoeX7ydOPAACAK5GRAPMxQgoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKmYQwrwY5X9Vp7foQMAAH9HRgIA12OEFAAAAAAAAEzFCCnADYpSt7q7C+flLU8YAZylsv8eg3t1d0NPAABkJMBzkJHgaoyQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKuaQAvwIcx8AAABUREYCAPNRkALgUQiElSt/Xnj0NAAA/oWMVDkyEuC9KEgBHqSqQYMvWqDik1946gsA+Laq5CQyEkBGgvegIAUAuGSV/U8B/xMAAADAqC2gqihIAQBMQyELAACgIjIS/BEFKQAAymGoOwAAQEXlM5JETkL1Bbq7AwAAAAAAAPAvFKQAAAAAAABgKn6yB7hYZcNaAQAA/B0ZCQD8GwUpwAdU5THIAAAA/oaMBACei5/sAQAAAAAAwFSMkAK8EHf74Imq+7hi/j4DAJyF7xR4IjISUDlGSAEAAAAAAMBUjJCC36lsAs3gXt3d0BMAAADPUj4nkZEAAK5CQQqAaao7XBkAAMCXkZEA+CMKUgAuGb9nBwAAqIiMBABVR0EKAOAT+DkuAABARWQkeComNQcAAAAAAICpGCEFOFlldyAAAAD8HRkJAHAuRkgBAAAAAADAVIyQAgAvxKSpAAAAFZGRAO/BCCkAAAAAAACYihFSQBXxdAoAAICKyEgAgOqgIAWIIAW4CsPmAcC7kZEA1yAjAR7wk705c+YoICBA48aNsy87ffq0xowZo/r166tOnToaOHCgcnNzHT6XnZ2tvn37qlatWmrYsKEmTpyo4uJik3sPAPBXRalbK7wAZyMnAQC8DRkJVeXWEVI7duzQK6+8omuvvdZh+fjx47V27Vq9++67ioiI0NixY3XHHXdo27ZtkqSSkhL17dtX0dHR+uKLL3TkyBENHTpUwcHBevbZZ91xKPBB/MMJAHAnchI8FRkJAOAMbhshdeLECQ0ePFivvfaa6tata1+en5+vN954Q/Pnz1ePHj3UqVMnLVmyRF988YX+85//SJI+/vhj7du3T2+++abat2+v3r17a9asWVq4cKEKCwvddUgAAABOQU4CAAC+zm0FqTFjxqhv375KSkpyWJ6RkaGioiKH5a1bt1bjxo2Vnp4uSUpPT1fbtm0VFRVlb5OcnCybzaa9e/eacwAwHcM+AQD+gpyES8HPYwAA3sgtP9l766239NVXX2nHjh0V1lmtVoWEhCgyMtJheVRUlKxWq73NuSGrbH3ZuvMpKChQQUGB/b3NZqvuIQBOwWSGAIDy3JGTyEjwNGQkAPB9phekDh8+rEceeUQbN25UWFiYqfuePXu2Zs6caeo+4du4AwkAcCZ35SQyEpyNjAQAuBjTC1IZGRk6evSoOnbsaF9WUlKizz77TP/85z+1YcMGFRYWKi8vz+HuX25urqKjoyVJ0dHR+vLLLx22W/Z0mbI2lZk6daomTJhgf2+z2RQXF+eMwwJQTdwBRVVU9vekaWRvN/QEcC135SQyEuB5yEioCjISvJnpBalbbrlFu3fvdlh27733qnXr1po8ebLi4uIUHBystLQ0DRw4UJJ04MABZWdnKzExUZKUmJioZ555RkePHlXDhg0lSRs3bpTFYlFCQsJ59x0aGqrQ0FAXHRkAwEzlA5gnhq/KRggE9+ruhp7AW7grJ5GRAMB3eEuRqnxOIiP5H9MLUuHh4brmmmscltWuXVv169e3Lx8xYoQmTJigevXqyWKx6KGHHlJiYqK6du0qSerZs6cSEhI0ZMgQzZ07V1arVU888YTGjBlDmPIj/I8eAGdwZmjjJyq4XOQkOAv/owfgcpGR4GpumdT8Yl544QUFBgZq4MCBKigoUHJyshYtWmRfX6NGDa1Zs0YPPvigEhMTVbt2bQ0bNkxPPfWUG3sNAADgeuQkAADgCzyiILVlyxaH92FhYVq4cKEWLlx43s80adJE69atc3HPAAAA3IucBAAAfFGguzsAAAAAAAAA/0JBCgAAAAAAAKbyiJ/sAc7CROcAnKH8JJ6BO/fqqs73u6k3AHD5yEgAnKGyic5biH9LUD2MkAIAAAAAAICpKEgBAAAAAADAVPxkDzBJZcNbAQAA/B0ZCQD8EwUp+LzK5kwAAADwd2QkAIA7UZACAKAaKruj3zSytxt6AgAA4DnISKgq5pACAAAAAACAqShIAQAAAAAAwFT8ZA8egTkMAJiFf28AeBP+zQJgFv69gdkYIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFTMIQUA8FnMhQAAAFARGQmegBFSAAAAAAAAMBUFKQAAAAAAAJiKn+zBdAwPBQAAqIiMBADwJ4yQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKuaQAgDgIkq/y1bRL8ztAgAAUB7z36G6KEgBAHzCobz1FZY1jezthp4AAAB4lvI5iYwET0BBCnAC/kcYAACgIjISAOB8KEgBl6iyYAUAAODvyEgAgEtBQQp+gzt0AAAAFZGRAADuQEEKPsmZd+i42wcAAHwFGQkA4CkoSAEuQkgDAACoiIwEAJAoSAEA4BUqe6RycK/ubugJAACA5yAjeS8KUvA6zHMAAABQERkJAOBNKEjBr5UPboQ2AAAAMhIAwPUoSMEnOGsuAuY0AAAAvoSMBADwVIHu7gAAAAAAAAD8CyOkAACAS5WfbJSJRgEAAMhIFKTgUpU98QAA3ImfnQDwBGQkAJ6GjASzUZACAMBJmAQYAACgIp4CisowhxQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpmNQcAPD/sXff8VFV+f/H35MeUmlJCDUgSBVpYgTFgoQiiqB8YVkJiNhAKYrCKk0UpIiKsmLZBVdxVVwpsoJUURSRLgJGVJqGEBGSUCQJyfn9wS+zTAqEMLnTXs/HYx4P5t4zd849k2TefO6956KcFDeBZ3351u18AQAAilM4J5GRfA8FKbgV7lAFwNsVd6v3wM4EMAAXRkYC4O3ISL6HghQAAC5WOIARvgAAAChSeTsKUnCq4v5gAAAA+DoyEgAAjihIAQC8VnFzOLnDtpz1/sy1AAAAyoKMBHfAXfYAAAAAAABgKQpSAAAAAAAAsBSX7MFlXH1qJwAAgDsiIwEAfAEFKQAAvAR3ogEAACiKjOSeKEjBrXGEEAAAoCgyEgDA0zGHFAAAAAAAACzFGVIos+JOewQAAPB1ZCQAAC7OJWdITZkyRW3atFFERIRiYmLUo0cPpaSkOLQ5c+aMhgwZosqVKys8PFy9evXSkSNHHNocPHhQ3bp1U4UKFRQTE6NRo0bp7NmzVu4KAACA05CRAACAr3BJQWrdunUaMmSIvvnmG61cuVK5ubnq1KmTTp06ZW8zYsQIffLJJ1qwYIHWrVun1NRU9ezZ074+Ly9P3bp1U05Ojr7++mu9/fbbmjdvnsaNG+eKXQIAALhsZCQAAOArXHLJ3vLlyx2ez5s3TzExMdqyZYtuuOEGZWZm6h//+Ifee+893XzzzZKkuXPnqlGjRvrmm2907bXXasWKFdq9e7dWrVql2NhYXX311Zo0aZKefPJJTZgwQUFBQa7YNQAAgDIjIwEAAF/hFpOaZ2ZmSpIqVaokSdqyZYtyc3PVsWNHe5uGDRuqVq1a2rBhgyRpw4YNatasmWJjY+1tkpKSlJWVpV27dlnYewAAXCN3+XqHB7wPGQkAgEtHRvIMLp/UPD8/X8OHD1e7du3UtGlTSVJaWpqCgoIUHR3t0DY2NlZpaWn2NucHrYL1BeuKk52drezsbPvzrKwsZ+0GAACAU5GRAACAN3P5GVJDhgzR999/r/fff7/c32vKlCmKioqyP2rWrFnu7wkAAFAWZCQAAODNXFqQGjp0qJYuXaq1a9eqRo0a9uVxcXHKyclRRkaGQ/sjR44oLi7O3qbwHWUKnhe0KWzMmDHKzMy0Pw4dOuTEvcHF7M9Y5vAAAADFIyP5FjISAMAXuaQgZYzR0KFDtXDhQq1Zs0YJCQkO61u1aqXAwECtXr3aviwlJUUHDx5UYmKiJCkxMVE7d+5Uenq6vc3KlSsVGRmpxo0bF/u+wcHBioyMdHgAAAC4CzISAADwFS6ZQ2rIkCF67733tHjxYkVERNjnM4iKilJoaKiioqI0aNAgjRw5UpUqVVJkZKQeeeQRJSYm6tprr5UkderUSY0bN9Y999yjadOmKS0tTU8//bSGDBmi4OBgV+wWAADAZSEjAQAAX+GSgtRrr70mSbrxxhsdls+dO1cDBgyQJL344ovy8/NTr169lJ2draSkJP3973+3t/X399fSpUv10EMPKTExUWFhYUpOTtYzzzxj1W4AAAA4FRkJAAD4CpcUpIwxF20TEhKi2bNna/bs2SW2qV27tj799FNndg0AAMsVnjOmznIXdQQuR0YCAOB/imSk6C7KXb7eRb2Bs7mkIAUAgK9iwmIAAICiyEi+h4IUygV/TADAPRR3FDGwc3sX9ASAREYCAHdBRnI9l9xlDwAAAAAAAL6LghQAAAAAAAAsRUEKAAAAAAAAlmIOKZTKhe5kwFwIAADAV5GRAAAoGwpSKBa30gQAACiKjAQAgHNQkAIAwEMVPvuiTnSXMrUBAADwJmXJSJJUX9xlz0rMIQUAAAAAAABLcYYUAABegvlqAAAAiiIjuSfOkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALBXg6g7A9XKXr3d1FwAAANwOGQkAgPJDQQqXbH/GMld3AQAAwO2QkQAAKD0u2QMAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUk5r7GO4WAwAAUBQZCQAAa1GQAgAA5ebnza8rP+Ogw7L6au+i3gAAALgHMhIFKVwEty8GAJSkuDNKAjv7VpCC7yIjAQBKQkYqHQpSAAC4Gav/o1vaS5VKE6QKb6vwkT8AAICyIiN5FyY1BwAAAAAAgKUoSAEAAAAAAMBSXLIHAICP4W5iAAAARZGRrEVByocVvv62TnQXF/UEAADAfRQ3Rwk5CQAA56IgBTvuFgMAAFA8chIAAM5FQQoAAFjq582vOzyv1/oBF/UEAADAffhaRmJScwAAAAAAAFiKM6QAAIDTcFkTAABAUWSkoihIeZHi7ggQ2Lm9C3oCAHBXTNYMX0RGAgCUBjf+shaX7AEAAAAAAMBSFKQAAAAAAABgKS7Z83LFnaIOAADg68hIAAC4FgUpAABQBHMoAAAAFEVGch4KUh6Ko3oAAABFkZEAAPAMzCEFAAAAAAAAS3GGFAAAKJXCZ54UPmUdAADAF5GRyoaClIe43NPP+YUAAJSE7wh4MjISAKC88B1RvihIeSl+cQAAAIoiIwEA4B6YQwoAAAAAAACW4gwpAADgcsVddhXYub0LegIAAOA+vDkjcYYUAAAAAAAALMUZUi7mzdVOAID3YN4dWI2MBADwBGSksqMg5YYu924xAAAA3oiMBACA96Ag5WGovgIAABRFRgIAwLNQkHIjxQWpOtFdXNATAAAA90FGAgDA+zCpOQAAAAAAACzl8WdIzZ49W9OnT1daWpqaN2+uV155Rddcc42ru+U0nH4OAPB2P29+XfkZBx2WcfbL5SMjAQDg2bw9I3n0GVIffPCBRo4cqfHjx2vr1q1q3ry5kpKSlJ6e7uquAQAAuAwZCQAAuDuPLkjNnDlTgwcP1sCBA9W4cWPNmTNHFSpU0D//+U9Xd61EucvXOzwAAACcjYwEAADcncdespeTk6MtW7ZozJgx9mV+fn7q2LGjNmzYUOxrsrOzlZ2dbX+emZkpScrKyiqXPuauLL4fknQwc2W5vCcAAG7vu70XbZIVeEqB5fT9XPC9b4wpl+27mqdnJImcBADwUT6WkTy2IHX06FHl5eUpNjbWYXlsbKx++OGHYl8zZcoUTZw4scjymjVrlksfAQBAWb1Q7u9w4sQJRUVFlfv7WI2MBACAN/OejOSxBamyGDNmjEaOHGl/np+fr2PHjqly5cqy2Wyl2kZWVpZq1qypQ4cOKTIysry66hMYS+diPJ2L8XQextK5GM/LZ4zRiRMnFB8f7+quuA0yknthLJ2L8XQuxtN5GEvnYjwvn9UZyWMLUlWqVJG/v7+OHDnisPzIkSOKi4sr9jXBwcEKDg52WBYdHV2m94+MjOSH3EkYS+diPJ2L8XQextK5GM/L441nRhUgI3kPxtK5GE/nYjydh7F0Lsbz8liZkTx2UvOgoCC1atVKq1evti/Lz8/X6tWrlZiY6MKeAQAAuA4ZCQAAeAKPPUNKkkaOHKnk5GS1bt1a11xzjV566SWdOnVKAwcOdHXXAAAAXIaMBAAA3J1HF6T+7//+T7///rvGjRuntLQ0XX311Vq+fHmRSTydKTg4WOPHjy9yWjsuHWPpXIynczGezsNYOhfjidIgI3k2xtK5GE/nYjydh7F0LsbT89iMt97zGAAAAAAAAG7JY+eQAgAAAAAAgGeiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpIoxZcoUtWnTRhEREYqJiVGPHj2UkpLi0ObMmTMaMmSIKleurPDwcPXq1UtHjhxxUY89x/PPPy+bzabhw4fblzGWl+a3337TX//6V1WuXFmhoaFq1qyZNm/ebF9vjNG4ceNUrVo1hYaGqmPHjtq7d68Le+y+8vLyNHbsWCUkJCg0NFT16tXTpEmTdP69HhjPkn3xxRfq3r274uPjZbPZtGjRIof1pRm7Y8eOqV+/foqMjFR0dLQGDRqkkydPWrgX7uFCY5mbm6snn3xSzZo1U1hYmOLj49W/f3+lpqY6bIOxhBXISOWHjHT5yEjOQ0a6PGQk5yIneS8KUsVYt26dhgwZom+++UYrV65Ubm6uOnXqpFOnTtnbjBgxQp988okWLFigdevWKTU1VT179nRhr93fpk2b9Prrr+uqq65yWM5Ylt7x48fVrl07BQYGatmyZdq9e7deeOEFVaxY0d5m2rRpmjVrlubMmaONGzcqLCxMSUlJOnPmjAt77p6mTp2q1157Ta+++qr27NmjqVOnatq0aXrllVfsbRjPkp06dUrNmzfX7Nmzi11fmrHr16+fdu3apZUrV2rp0qX64osvdP/991u1C27jQmN5+vRpbd26VWPHjtXWrVv18ccfKyUlRbfffrtDO8YSViAjlQ8y0uUjIzkXGenykJGci5zkxQwuKj093Ugy69atM8YYk5GRYQIDA82CBQvsbfbs2WMkmQ0bNriqm27txIkTpn79+mblypWmQ4cOZtiwYcYYxvJSPfnkk6Z9+/Ylrs/PzzdxcXFm+vTp9mUZGRkmODjY/Pvf/7aiix6lW7du5t5773VY1rNnT9OvXz9jDON5KSSZhQsX2p+XZux2795tJJlNmzbZ2yxbtszYbDbz22+/WdZ3d1N4LIvz7bffGknmwIEDxhjGEq5DRrp8ZCTnICM5FxnJechIzkVO8i6cIVUKmZmZkqRKlSpJkrZs2aLc3Fx17NjR3qZhw4aqVauWNmzY4JI+urshQ4aoW7duDmMmMZaXasmSJWrdurXuvvtuxcTEqEWLFnrzzTft6/ft26e0tDSH8YyKilLbtm0Zz2Jcd911Wr16tX788UdJ0o4dO7R+/Xp16dJFEuN5OUozdhs2bFB0dLRat25tb9OxY0f5+flp48aNlvfZk2RmZspmsyk6OloSYwnXISNdPjKSc5CRnIuMVH7ISOWPnOQ5AlzdAXeXn5+v4cOHq127dmratKkkKS0tTUFBQfYf8AKxsbFKS0tzQS/d2/vvv6+tW7dq06ZNRdYxlpfml19+0WuvvaaRI0fqb3/7mzZt2qRHH31UQUFBSk5Oto9ZbGysw+sYz+KNHj1aWVlZatiwofz9/ZWXl6fnnntO/fr1kyTG8zKUZuzS0tIUExPjsD4gIECVKlVifC/gzJkzevLJJ9W3b19FRkZKYizhGmSky0dGch4yknORkcoPGal8kZM8CwWpixgyZIi+//57rV+/3tVd8UiHDh3SsGHDtHLlSoWEhLi6Ox4vPz9frVu31uTJkyVJLVq00Pfff685c+YoOTnZxb3zPB9++KHmz5+v9957T02aNNH27ds1fPhwxcfHM55wS7m5uerdu7eMMXrttddc3R34ODLS5SEjORcZybnISPBE5CTPwyV7FzB06FAtXbpUa9euVY0aNezL4+LilJOTo4yMDIf2R44cUVxcnMW9dG9btmxRenq6WrZsqYCAAAUEBGjdunWaNWuWAgICFBsby1hegmrVqqlx48YOyxo1aqSDBw9Kkn3MCt+Bh/Es3qhRozR69Gj16dNHzZo10z333KMRI0ZoypQpkhjPy1GasYuLi1N6errD+rNnz+rYsWOMbzEKQtaBAwe0cuVK+1E/ibGE9chIl4+M5FxkJOciI5UfMlL5ICd5JgpSxTDGaOjQoVq4cKHWrFmjhIQEh/WtWrVSYGCgVq9ebV+WkpKigwcPKjEx0eruurVbbrlFO3fu1Pbt2+2P1q1bq1+/fvZ/M5al165duyK31/7xxx9Vu3ZtSVJCQoLi4uIcxjMrK0sbN25kPItx+vRp+fk5/hn09/dXfn6+JMbzcpRm7BITE5WRkaEtW7bY26xZs0b5+flq27at5X12ZwUha+/evVq1apUqV67ssJ6xhFXISM5DRnIuMpJzkZHKDxnJ+chJHsy1c6q7p4ceeshERUWZzz//3Bw+fNj+OH36tL3Ngw8+aGrVqmXWrFljNm/ebBITE01iYqILe+05zr+DjDGM5aX49ttvTUBAgHnuuefM3r17zfz5802FChXMu+++a2/z/PPPm+joaLN48WLz3XffmTvuuMMkJCSYP//804U9d0/JycmmevXqZunSpWbfvn3m448/NlWqVDFPPPGEvQ3jWbITJ06Ybdu2mW3bthlJZubMmWbbtm32O5qUZuw6d+5sWrRoYTZu3GjWr19v6tevb/r27euqXXKZC41lTk6Ouf32202NGjXM9u3bHb6XsrOz7dtgLGEFMlL5IiOVHRnJuchIl4eM5FzkJO9FQaoYkop9zJ07197mzz//NA8//LCpWLGiqVChgrnzzjvN4cOHXddpD1I4bDGWl+aTTz4xTZs2NcHBwaZhw4bmjTfecFifn59vxo4da2JjY01wcLC55ZZbTEpKiot6696ysrLMsGHDTK1atUxISIipW7eueeqppxy+vBjPkq1du7bYv5XJycnGmNKN3R9//GH69u1rwsPDTWRkpBk4cKA5ceKEC/bGtS40lvv27Svxe2nt2rX2bTCWsAIZqXyRkS4PGcl5yEiXh4zkXOQk72Uzxhjnn3cFAAAAAAAAFI85pAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAp5kwYYJsNpvDsjp16mjAgAFOe48BAwaoTp06TtueO7PZbJowYYLTt9u1a1cNHjz4ou3mzZsnm82m/fv3OyyfPn266tatK39/f1199dWX9N7Lly9XeHi4fv/990t6HQAAno6c5FzkJMDzUZAC3Minn35aLl+sniY1NVUTJkzQ9u3bXd0Vr/PVV19pxYoVevLJJ8v0+hUrVuiJJ55Qu3btNHfuXE2ePNm+fNCgQWratKn8/f1LDMOdO3fWFVdcoSlTppR1FwAAPoqcdA45qfyUR046ffq0Zs+erU6dOqlatWqKiIhQixYt9NprrykvL8/h9eQk+JoAV3cAwP98+umnmj17tleFrZSUFPn5XVrtOzU1VRMnTlSdOnWKHFl68803lZ+f78Qeuq8///xTAQHO/TM9ffp03XLLLbriiivK9Po1a9bIz89P//jHPxQUFGRf/t577+mDDz5Qy5YtFR8ff8FtPPDAA3r88cc1ceJERURElKkfAADfQ046h5x0jqfkpO+//16PPPKIbrnlFo0cOVKRkZH67LPP9PDDD+ubb77R22+/7bANchJ8CWdIAW7g1KlTLn3/M2fOlFt4CQ4OVmBgoNO2FxgYqODgYKdtz52FhIQ4NWilp6frv//9r3r37n1Z2wgNDXUoRknS5MmTlZWVpa+++krNmze/4DZ69eql7OxsLViwoMz9AAD4DnJS6ZGTyq68clJcXJx27typlStXatSoUXrggQf08ccfa+DAgfrXv/6ln376yWEb5CT4EgpSgMUK5g/YvXu3/vKXv6hixYpq3769BgwYoNmzZ0s6d018waO0brzxRjVt2lRbtmzRddddp9DQUCUkJGjOnDkO7T7//HPZbDa9//77evrpp1W9enVVqFBBWVlZkqSNGzeqc+fOioqKUoUKFdShQwd99dVXRd5v/fr1atOmjUJCQlSvXj29/vrrxfaruLkRMjIyNGLECNWpU0fBwcGqUaOG+vfvr6NHj+rzzz9XmzZtJEkDBw60j8O8efMkFT83wqlTp/TYY4+pZs2aCg4O1pVXXqkZM2bIGOPQzmazaejQoVq0aJGaNm2q4OBgNWnSRMuXL3dod+LECQ0fPtzev5iYGN16663aunXrBT+D8xXMK7B+/Xo9+uijqlq1qqKjo/XAAw8oJydHGRkZ6t+/vypWrKiKFSvqiSeeKLa/5x8FLvjZ+emnnzRgwABFR0crKipKAwcO1OnTpy/ap//+9786e/asOnbsWGTdrl27dPPNNys0NFQ1atTQs88+WyR822w2zZ07V6dOnSryucTHx5c6UMfExOiqq67S4sWLS9UeAOA7yEnkJG/LSVWqVFGTJk2KbPPOO++UJO3Zs8dhOTkJvoRL9gAXufvuu1W/fn1NnjxZxhi1aNFCqampWrlypd55550ybfP48ePq2rWrevfurb59++rDDz/UQw89pKCgIN17770ObSdNmqSgoCA9/vjjys7OVlBQkNasWaMuXbqoVatWGj9+vPz8/DR37lzdfPPN+vLLL3XNNddIknbu3KlOnTqpatWqmjBhgs6ePavx48crNjb2on08efKkrr/+eu3Zs0f33nuvWrZsqaNHj2rJkiX69ddf1ahRIz3zzDMaN26c7r//fl1//fWSpOuuu67Y7RljdPvtt2vt2rUaNGiQrr76an322WcaNWqUfvvtN7344osO7devX6+PP/5YDz/8sCIiIjRr1iz16tVLBw8eVOXKlSVJDz74oD766CMNHTpUjRs31h9//KH169drz549atmy5SV9Jo888oji4uI0ceJEffPNN3rjjTcUHR2tr7/+WrVq1dLkyZP16aefavr06WratKn69+9/0W327t1bCQkJmjJlirZu3aq33npLMTExmjp16gVf9/XXX6ty5cqqXbu2w/K0tDTddNNNOnv2rEaPHq2wsDC98cYbCg0NdWj3zjvv6I033tC3336rt956S1LJn8vFtGrVSosWLSrTawEA3o+cRE7y9pyUlpYmSapSpUqRdeQk+AwDwFLjx483kkzfvn2LrBsyZIgp669lhw4djCTzwgsv2JdlZ2ebq6++2sTExJicnBxjjDFr1641kkzdunXN6dOn7W3z8/NN/fr1TVJSksnPz7cvP336tElISDC33nqrfVmPHj1MSEiIOXDggH3Z7t27jb+/f5H+165d2yQnJ9ufjxs3zkgyH3/8cZF9KHjfTZs2GUlm7ty5RdokJyeb2rVr258vWrTISDLPPvusQ7u77rrL2Gw289NPP9mXSTJBQUEOy3bs2GEkmVdeecW+LCoqygwZMqTIe1+KuXPnGklFxjMxMdHYbDbz4IMP2pedPXvW1KhRw3To0MFhG5LM+PHj7c8Lfnbuvfdeh3Z33nmnqVy58kX71L59e9OqVasiy4cPH24kmY0bN9qXpaenm6ioKCPJ7Nu3z748OTnZhIWFXfB9unXr5vAZFWfy5MlGkjly5MhF+w0A8B3kJHKSt+ckY8797DVu3NgkJCSY3NzcIuvJSfAVXLIHuMiDDz7o9G0GBATogQcesD8PCgrSAw88oPT0dG3ZssWhbXJyssORne3bt2vv3r36y1/+oj/++ENHjx7V0aNHderUKd1yyy364osvlJ+fr7y8PH322Wfq0aOHatWqZX99o0aNlJSUdNE+/uc//1Hz5s3tpymf71JOvS/w6aefyt/fX48++qjD8scee0zGGC1btsxheceOHVWvXj3786uuukqRkZH65Zdf7Muio6O1ceNGpaamXnJ/Chs0aJDDfrVt21bGGA0aNMi+zN/fX61bt3bow4UU/tm5/vrr9ccff9gvJyjJH3/8oYoVKxZZ/umnn+raa6+1H9mVpKpVq6pfv36l6k9ZFPTj6NGj5fYeAADPRU4iJxXwxpw0dOhQ7d69W6+++mqx82CRk+ArKEgBLpKQkOD0bcbHxyssLMxhWYMGDSRJ+/fvv+D77927V9K5AFa1alWHx1tvvaXs7GxlZmbq999/159//qn69esXef8rr7zyon38+eef1bRp00vZrQs6cOCA4uPji9yFpFGjRvb15zs/HBaoWLGijh8/bn8+bdo0ff/996pZs6auueYaTZgwodQhqLDC7xcVFSVJqlmzZpHl5/fhUrZZEFpK83pTaP4F6dwYlfXzLKuCfpQlXAMAvB85yTnISe6Xk6ZPn64333xTkyZNUteuXS/YD3ISvB1zSAEuUvi6c1e/f8HEjNOnTy9yC+EC4eHhys7OLu+ulSt/f/9il58fQHr37q3rr79eCxcu1IoVKzR9+nRNnTpVH3/8sbp06eKU9ytueXEh6FK2ebHXV65cudRhrrwV9KO4eRMAACAnuQY5qXxz0rx58/Tkk0/qwQcf1NNPP11iO3ISfAUFKcCNXO5RkNTUVJ06dcrh6N+PP/4oSUXuuFJYwenZkZGRxd5dpEDVqlUVGhpqP1J4vpSUlIv2sV69evr+++8v2OZSxqF27dpatWqVTpw44XD074cffrCvL4tq1arp4Ycf1sMPP6z09HS1bNlSzz333CUHLXfSsGFD/ec//ymyvHbt2mX+PMtq3759qlKliqpWrVpu7wEA8C7kpHPISeWjvHPS4sWLdd9996lnz572O0aWhJwEX8Ele4AbKQhIGRkZZXr92bNnHW4rnJOTo9dff11Vq1ZVq1atLvjaVq1aqV69epoxY4ZOnjxZZP3vv/8u6dxRp6SkJC1atEgHDx60r9+zZ48+++yzi/axV69e2rFjhxYuXFhkXcGRq0sZh65duyovL0+vvvqqw/IXX3xRNpvtkoNRXl6eMjMzHZbFxMQoPj7e4496JiYm6vjx40VOq+/atau++eYbffvtt/Zlv//+u+bPn19ufdmyZYsSExPLbfsAAO9DTiInlafyzElffPGF+vTpoxtuuEHz58+Xn9+F/xtOToKv4AwpwI0UhKFHH31USUlJ8vf3V58+fUr9+vj4eE2dOlX79+9XgwYN9MEHH2j79u164403FBgYeMHX+vn56a233lKXLl3UpEkTDRw4UNWrV9dvv/2mtWvXKjIyUp988okkaeLEiVq+fLmuv/56Pfzwwzp79qxeeeUVNWnSRN99990F32fUqFH66KOPdPfdd+vee+9Vq1atdOzYMS1ZskRz5sxR8+bNVa9ePUVHR2vOnDmKiIhQWFiY2rZtW+x8Et27d9dNN92kp556Svv371fz5s21YsUKLV68WMOHD3eYmLM0Tpw4oRo1auiuu+5S8+bNFR4erlWrVmnTpk164YUXLmlb7qZbt24KCAjQqlWrdP/999uXP/HEE3rnnXfUuXNnDRs2zH4749q1a1/08yzw3XffacmSJZKkn376SZmZmXr22WclSc2bN1f37t3tbdPT0/Xdd99pyJAhTtw7AIC3IyeRk8pTeeWkAwcO6Pbbb5fNZtNdd92lBQsWOKy/6qqrdNVVV9mfk5PgU6y/sR/g2wpuSfv7778XWXf27FnzyCOPmKpVqxqbzXZJtzbu0KGDadKkidm8ebNJTEw0ISEhpnbt2ubVV191aFdwO+MFCxYUu51t27aZnj17msqVK5vg4GBTu3Zt07t3b7N69WqHduvWrTOtWrUyQUFBpm7dumbOnDn2fTtf4dsZG2PMH3/8YYYOHWqqV69ugoKCTI0aNUxycrI5evSovc3ixYtN48aNTUBAgMOtjQvfztgYY06cOGFGjBhh4uPjTWBgoKlfv76ZPn26w22EjTl3e+DiblN8fh+zs7PNqFGjTPPmzU1ERIQJCwszzZs3N3//+9+LHa+SFNzOeNOmTQ7LS/r8i7tNsEq4nXHh1xa81/m3HS7J7bffbm655ZYiy7/77jvToUMHExISYqpXr24mTZpk/vGPf5T6dsYFfSjuUfjzf+2110yFChVMVlbWRfsLAPAt5CRykrflpIKfqZIe5++DMeQk+BabMaWcHQ6AW7vxxht19OjRi847AN/25Zdf6sYbb9QPP/xQ7B1jrNCiRQvdeOONevHFF13y/gAA30NOQmmQkwBrMYcUAPiQ66+/Xp06ddK0adNc8v7Lly/X3r17NWbMGJe8PwAAQEnISYC1OEMKcHPHjh1TTk5Oiev9/f1VtWpVjvxZ5M8//ywymWdhlSpVUlBQkEU9AgDAd5GT3As5CcClYFJzwM317NlT69atK3F97dq1tX//fus65OM++OADDRw48IJt1q5dqxtvvNGaDgEA4MPISe6FnATgUnCGFODmtmzZouPHj5e4PjQ0VO3atbOwR77t8OHD2rVr1wXbtGrVShUrVrSoRwAA+C5yknshJwG4FBSkAAAAAAAAYCkmNQcAAAAAAIClfHoOqfz8fKWmpioiIkI2m83V3QEAABYwxujEiROKj4+Xnx/H5opDRgIAwPdYnZF8uiCVmpqqmjVrurobAADABQ4dOqQaNWq4uhtuiYwEAIDvsioj+XRBKiIiQtK5wY6MjHRxbwAAgBWysrJUs2ZNew5AUWQkAAB8j9UZyacLUgWnoEdGRhK2AADwMVyKVjIyEgAAvsuqjMTECQAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALOXTc0gBAHAheXl5ys3NdXU3cIkCAwPl7+/v6m4AAOC1yEieyd0yEgUpAAAKMcYoLS1NGRkZru4Kyig6OlpxcXFMXA4AgBORkTyfO2UkClIAABRSELRiYmJUoUIFt/jCRukYY3T69Gmlp6dLkqpVq+biHgEA4D3ISJ7LHTMSBSkAAM6Tl5dnD1qVK1d2dXdQBqGhoZKk9PR0xcTEuNWp6QAAeCoykudzt4zEpOYAAJynYD6EChUquLgnuBwFnx/zWwAA4BxkJO/gThmJghQAAMXgFHTPxucHAED54DvWs7nT50dBCgAAAAAAAJaiIAUAAAAAAABLMak5AACllLt8vWXvFdi5fanbXuzU6/Hjx2vChAmX2aOysdlsWrhwoXr06FHmbbzxxht67733tHXrVp04cULHjx9XdHS00/oIAAAuj5UZSSInFTh27JjGjx+vFStW6ODBg6patap69OihSZMmKSoqyrmdLQcUpAAA8HCHDx+2//uDDz7QuHHjlJKSYl8WHh5+SdvLyclRUFCQ0/p3uU6fPq3OnTurc+fOGjNmjKu7AwAAPIg356TU1FSlpqZqxowZaty4sQ4cOKAHH3xQqamp+uijj1zdvYvikj0AuIDc5euLPDxh2/AtcXFx9kdUVJRsNpv9+alTp9SvXz/FxsYqPDxcbdq00apVqxxeX6dOHU2aNEn9+/dXZGSk7r//fknSm2++qZo1a6pChQq68847NXPmzCJnJi1evFgtW7ZUSEiI6tatq4kTJ+rs2bP27UrSnXfeKZvNZn++Y8cO3XTTTYqIiFBkZKRatWqlzZs3l7h/w4cP1+jRo3Xttdc6Z8AAAJeNjARP4c05qWnTpvrPf/6j7t27q169err55pv13HPP6ZNPPrG/jzujIAUAgBc7efKkunbtqtWrV2vbtm3q3LmzunfvroMHDzq0mzFjhpo3b65t27Zp7Nix+uqrr/Tggw9q2LBh2r59u2699VY999xzDq/58ssv1b9/fw0bNky7d+/W66+/rnnz5tnbbdq0SZI0d+5cHT582P68X79+qlGjhjZt2qQtW7Zo9OjRCgwMtGA0AAAA/scbc1JmZqYiIyMVEOD+F8S5fw8BAECZNW/eXM2bN7c/nzRpkhYuXKglS5Zo6NCh9uU333yzHnvsMfvzp556Sl26dNHjjz8uSWrQoIG+/vprLV261N5m4sSJGj16tJKTkyVJdevW1aRJk/TEE09o/Pjxqlq1qiQpOjpacXFx9tcdPHhQo0aNUsOGDSVJ9evXL4c9BwAAuDBvy0lHjx7VpEmT7GdxuTvOkAIAwIudPHlSjz/+uBo1aqTo6GiFh4drz549RY78tW7d2uF5SkqKrrnmGodlhZ/v2LFDzzzzjMLDw+2PwYMH6/Dhwzp9+nSJfRo5cqTuu+8+dezYUc8//7x+/vnny9xLAACAS+dNOSkrK0vdunVT48aNXTZJ+6WiIAUAgBd7/PHHtXDhQk2ePFlffvmltm/frmbNmiknJ8ehXVhY2CVv++TJk5o4caK2b99uf+zcuVN79+5VSEhIia+bMGGCdu3apW7dumnNmjVq3LixFi5ceMnvDwAAcDm8JSedOHFCnTt3VkREhBYuXOgxUyFwyR4AAF7sq6++0oABA3TnnXdKOheO9u/ff9HXXXnllfa5DAoUft6yZUulpKToiiuuKHE7gYGBysvLK7K8QYMGatCggUaMGKG+fftq7ty59j4CAABYwRtyUlZWlpKSkhQcHKwlS5ZcsNjlbihIAQDgxerXr6+PP/5Y3bt3l81m09ixY5Wfn3/R1z3yyCO64YYbNHPmTHXv3l1r1qzRsmXLZLPZ7G3GjRun2267TbVq1dJdd90lPz8/7dixQ99//72effZZSefuILN69Wq1a9dOwcHBCgkJ0ahRo3TXXXcpISFBv/76qzZt2qRevXqV2Je0tDSlpaXpp59+kiTt3LlTERERqlWrlipVqnSZIwQAAHyVp+ekrKwsderUSadPn9a7776rrKwsZWVlSZKqVq0qf39/J4xS+eGSPQAoB9yuGO5i5syZqlixoq677jp1795dSUlJatmy5UVf165dO82ZM0czZ85U8+bNtXz5co0YMcLhqFtSUpKWLl2qFStWqE2bNrr22mv14osvqnbt2vY2L7zwglauXKmaNWuqRYsW8vf31x9//KH+/furQYMG6t27t7p06aKJEyeW2Jc5c+aoRYsWGjx4sCTphhtuUIsWLbRkyZLLGBkAgCuQkeBOPD0nbd26VRs3btTOnTt1xRVXqFq1avbHoUOHLn+AypnNGGNc3QlXycrKUlRUlP22iABQWGlCUmDn9qV6XeF2pWkD6505c0b79u1TQkKCR53ybIXBgwfrhx9+0JdffunqrlzUhT5Hvv8vjjECcDGlLSSVJf+QkdwTGenCPCUnuVNG4pI9AABQrBkzZujWW29VWFiYli1bprffflt///vfXd0tAAAAlyMnXT4KUgAAoFjffvutpk2bphMnTqhu3bqaNWuW7rvvPld3CwAAwOXISZePghQAACjWhx9+6OouAAAAuCVy0uVjUnMAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpAFd3AAAAT/Hz5tcte696rR+4pPYDBgzQ22+/LUkKCAhQpUqVdNVVV6lv374aMGCA/Pw89xjUrl27NG7cOG3ZskUHDhzQiy++qOHDh7u6WwAA4P+zMiNJ5KTzvfnmm/rXv/6l77//XpLUqlUrTZ48Wddcc42Le3ZxTh/1L774Qt27d1d8fLxsNpsWLVrksN4Yo3HjxqlatWoKDQ1Vx44dtXfvXoc2x44dU79+/RQZGano6GgNGjRIJ0+edGjz3Xff6frrr1dISIhq1qypadOmOXtXAMByucvXF3kApdW5c2cdPnxY+/fv17Jly3TTTTdp2LBhuu2223T27FlXd6/MTp8+rbp16+r5559XXFycq7tzWchJAFA2ZCRcLm/NSZ9//rn69u2rtWvXasOGDapZs6Y6deqk3377zdVduyinF6ROnTql5s2ba/bs2cWunzZtmmbNmqU5c+Zo48aNCgsLU1JSks6cOWNv069fP+3atUsrV67U0qVL9cUXX+j++++3r8/KylKnTp1Uu3ZtbdmyRdOnT9eECRP0xhtvOHt3AADwGMHBwYqLi1P16tXVsmVL/e1vf9PixYu1bNkyzZs3z94uIyND9913n6pWrarIyEjdfPPN2rFjh8O2PvnkE7Vp00YhISGqUqWK7rzzTvu648ePq3///qpYsaIqVKigLl262Ismp06dUmRkpD766COH7S1atEhhYWE6ceKEcnJyNHToUFWrVk0hISGqXbu2pkyZUuJ+tWnTRtOnT1efPn0UHBzshJFyHXISAACu4a05af78+Xr44Yd19dVXq2HDhnrrrbeUn5+v1atXO2HUypfTC1JdunTRs88+6/CBFDDG6KWXXtLTTz+tO+64Q1dddZX+9a9/KTU11X6EcM+ePVq+fLneeusttW3bVu3bt9crr7yi999/X6mpqZLODXhOTo7++c9/qkmTJurTp48effRRzZw509m7AwAXxRE7uLObb75ZzZs318cff2xfdvfddys9PV3Lli3Tli1b1LJlS91yyy06duyYJOm///2v7rzzTnXt2lXbtm3T6tWrHU77HjBggDZv3qwlS5Zow4YNMsaoa9euys3NVVhYmPr06aO5c+c69GPu3Lm66667FBERoVmzZmnJkiX68MMPlZKSovnz56tOnTqWjIerkZMA+BoyEtyZN+ak06dPKzc3V5UqVbq8wbGApXNI7du3T2lpaerYsaN9WVRUlNq2basNGzaoT58+2rBhg6Kjo9W6dWt7m44dO8rPz08bN27UnXfeqQ0bNuiGG25QUFCQvU1SUpKmTp2q48ePq2LFilbuFgAAbq1hw4b67rvvJEnr16/Xt99+q/T0dPvZRjNmzNCiRYv00Ucf6f7779dzzz2nPn36aOLEifZtNG/eXJK0d+9eLVmyRF999ZWuu+46SecKIDVr1tSiRYt0991367777tN1112nw4cPq1q1akpPT9enn36qVatWSZIOHjyo+vXrq3379rLZbKpdu7aVw+G2yEkAAFjP23LSk08+qfj4eIc84a4snbkrLS1NkhQbG+uwPDY21r4uLS1NMTExDusLJh07v01x2zj/PYqTnZ2trKwshwcAAN7OGCObzSZJ2rFjh06ePKnKlSsrPDzc/ti3b59+/vlnSdL27dt1yy23FLutPXv2KCAgQG3btrUvq1y5sq688krt2bNHknTNNdeoSZMm9slD3333XdWuXVs33HCDpHNHDrdv364rr7xSjz76qFasWFFu++5JXJmTyEgAAF/lTTnp+eef1/vvv6+FCxcqJCTk0gfDYj51l70pU6Y4VDEBAPAFe/bsUUJCgiTp5MmTqlatmj7//PMi7aKjoyVJoaGhl/2e9913n2bPnq3Ro0dr7ty5GjhwoD3stWzZUvv27dOyZcu0atUq9e7dWx07diwynwKsQ0YCAPgqb8lJM2bM0PPPP69Vq1bpqquuuuw+WsHSM6QK7oxz5MgRh+VHjhyxr4uLi1N6errD+rNnz+rYsWMObYrbxvnvUZwxY8YoMzPT/jh06NDl7RAAAG5uzZo12rlzp3r16iXpXMhJS0tTQECArrjiCodHlSpVJElXXXVViRNhNmrUSGfPntXGjRvty/744w+lpKSocePG9mV//etfdeDAAc2aNUu7d+9WcnKyw3YiIyP1f//3f3rzzTf1wQcf6D//+Y99bgZf5cqcREYCAPgib8lJ06ZN06RJk7R8+XKHy/rdnaUFqYSEBMXFxTl8eFlZWdq4caMSExMlSYmJicrIyNCWLVvsbdasWaP8/Hz7aW+JiYn64osvlJuba2+zcuVKXXnllRecFyE4OFiRkZEODwAAvEV2drbS0tL022+/aevWrZo8ebLuuOMO3Xbbberfv7+kc/MNJSYmqkePHlqxYoX279+vr7/+Wk899ZQ2b94sSRo/frz+/e9/a/z48dqzZ4927typqVOnSpLq16+vO+64Q4MHD9b69eu1Y8cO/fWvf1X16tV1xx132PtSsWJF9ezZU6NGjVKnTp1Uo0YN+7qZM2fq3//+t3744Qf9+OOPWrBggeLi4uxHHgvLycnR9u3btX37duXk5Oi3337T9u3b9dNPP5XTSLqGK3MSGQkA4O28NSdNnTpVY8eO1T//+U/VqVNHaWlpSktL08mTJ8tpJJ3H6QWpkydP2kOjdG6Czu3bt+vgwYOy2WwaPny4nn32WS1ZskQ7d+5U//79FR8frx49ekg6V1Hs3LmzBg8erG+//VZfffWVhg4dqj59+ig+Pl6S9Je//EVBQUEaNGiQdu3apQ8++EAvv/yyRo4c6ezdAQDAYyxfvlzVqlVTnTp11LlzZ61du1azZs3S4sWL5e/vL0my2Wz69NNPdcMNN2jgwIFq0KCB+vTpowMHDtjnGbrxxhu1YMECLVmyRFdffbVuvvlmffvtt/b3mTt3rlq1aqXbbrtNiYmJMsbo008/VWBgoEN/Bg0apJycHN17770OyyMiIjRt2jS1bt1abdq00f79+/Xpp5/Kz6/4WJKamqoWLVqoRYsWOnz4sGbMmKEWLVrovvvuc+bwWYKcBACAa3hrTnrttdeUk5Oju+66S9WqVbM/ZsyY4czhKxc2Y4xx5gY///xz3XTTTUWWJycna968eTLGaPz48XrjjTeUkZGh9u3b6+9//7saNGhgb3vs2DENHTpUn3zyifz8/NSrVy/NmjVL4eHh9jbfffedhgwZok2bNqlKlSp65JFH9OSTT15SX7OyshQVFaXMzEyOBAIoljNvTxzYub1Ttl14O3CuM2fOaN++fUpISPCIySDd2TvvvKMRI0YoNTXV4Y5vVrjQ5+jK739PyUlkJAAXQ0byPWQk53JVTnKnjOT0gpQnIWwBuBjClu8hbF2+06dP6/Dhw7r99tvVo0cPPffcc5b3wZ3ClidijABcDBnJ95CRnMPVOcmdMpKlc0gBAADvN23aNDVs2FBxcXEaM2aMq7sDAADgNshJ/xPg6g4AgK9w5pFEwJ1NmDBBEyZMcHU3AAAegowEX0JO+h8KUgDcWuGAUtyp2KVpAwAA4E3KkpFKagcArsAlewAAAAAAALAUBSkAAIqRn5/v6i7gMvD5AQBQPviO9Wzu9PlxyR4A/H/MXwBJCgoKkp+fn1JTU1W1alUFBQXJZrO5ulsoJWOMcnJy9Pvvv8vPz8/S2ygDgDcjJ4GM5NncMSNRkAIA4Dx+fn5KSEjQ4cOHlZqa6uruoIwqVKigWrVqyc+Pk8EBAHAGMpJ3cKeMREEKAIBCgoKCVKtWLZ09e1Z5eXmu7g4ukb+/vwICAjhqCwCAk5GRPJu7ZSQKUgA8CqeLwyo2m02BgYEKDAx0dVcAALgoMhKsQkaCs7j+HC0AAAAAAAD4FApSAAAAAAAAsBQFKQAAAAAAAFiKOaQA+CzmWgAAACiKjATAChSkALhEcUEnsHN7F/QEAADAfZCRAPgKClIAnI4gBQAAUBQZCQD+h4IUALfB6eEAAABFkZEAeCMmNQcAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUk5oDuCxMsgkAAFAUGQkALowzpAAAAAAAAGApClIAAAAAAACwFJfsAShRcaeaB3Zu77RtAQAAeCIyEgBcPs6QAgAAAAAAgKUoSAEAAAAAAMBSXLIHwCdwOjwAAEBRZCQArsIZUgAAAAAAALAUZ0gB8Doc6QMAACgeOQmAu+AMKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALBXg6g4A8Cy5y9e7ugsAAABuh4wEAJeGM6QAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlnJJQSovL09jx45VQkKCQkNDVa9ePU2aNEnGGHsbY4zGjRunatWqKTQ0VB07dtTevXsdtnPs2DH169dPkZGRio6O1qBBg3Ty5EmrdwcALJW7fH2RBwDvQEYCgLIjIwGexSUFqalTp+q1117Tq6++qj179mjq1KmaNm2aXnnlFXubadOmadasWZozZ442btyosLAwJSUl6cyZM/Y2/fr1065du7Ry5UotXbpUX3zxhe6//35X7BIAAMBlIyMBAABfYTPnH3KzyG233abY2Fj94x//sC/r1auXQkND9e6778oYo/j4eD322GN6/PHHJUmZmZmKjY3VvHnz1KdPH+3Zs0eNGzfWpk2b1Lp1a0nS8uXL1bVrV/3666+Kj4+/aD+ysrIUFRWlzMxMRUZGls/OAh6CI0ieLbBze1d3AfAY7vz9T0YC3A8ZybORkYDSs/r73yVnSF133XVavXq1fvzxR0nSjh07tH79enXp0kWStG/fPqWlpaljx47210RFRalt27basGGDJGnDhg2Kjo62By1J6tixo/z8/LRx40YL9wYApP0ZyxweAFAWZCQA3oaMBKAkAa5409GjRysrK0sNGzaUv7+/8vLy9Nxzz6lfv36SpLS0NElSbGysw+tiY2Pt69LS0hQTE+OwPiAgQJUqVbK3KSw7O1vZ2dn251lZWU7bJwAAgMtFRgIAAL7CJWdIffjhh5o/f77ee+89bd26VW+//bZmzJiht99+u1zfd8qUKYqKirI/atasWa7vBwAAcCnISAAAwFe4pCA1atQojR49Wn369FGzZs10zz33aMSIEZoyZYokKS4uTpJ05MgRh9cdOXLEvi4uLk7p6ekO68+ePatjx47Z2xQ2ZswYZWZm2h+HDh1y9q4BAACUGRkJAAD4CpcUpE6fPi0/P8e39vf3V35+viQpISFBcXFxWr16tX19VlaWNm7cqMTERElSYmKiMjIytGXLFnubNWvWKD8/X23bti32fYODgxUZGenwAAAAcBdkJAAA4CtcModU9+7d9dxzz6lWrVpq0qSJtm3bppkzZ+ree++VJNlsNg0fPlzPPvus6tevr4SEBI0dO1bx8fHq0aOHJKlRo0bq3LmzBg8erDlz5ig3N1dDhw5Vnz59SnX3GAAAAHdDRgIAAL7CJQWpV155RWPHjtXDDz+s9PR0xcfH64EHHtC4cePsbZ544gmdOnVK999/vzIyMtS+fXstX75cISEh9jbz58/X0KFDdcstt8jPz0+9evXSrFmzXLFLAAAAl42MBAAAfIXNGGNc3QlXycrKUlRUlDIzMzk1HT4vd/l6V3fBoxW+jXGd6C6Wvn9g5/aWvh/gyfj+vzjGCPgfMtLlISMBnsPq73+XzCEFAAAAAAAA3+WSS/YAwJMVPtLnDoo7essRQQAAYCUyEoBLwRlSAAAAAAAAsBRnSAEAHBQ+kshRRAAAADIS4GwUpACgHBR3ynrhSTxL0wYAAMCbkJEAFKAgBQAX4Y7zIQAAALgaGQnA5WAOKQAAAAAAAFiKghQAAAAAAAAsxSV7gI8q7ha4AAAAvo6MBADWoCAFwKUKzz3AhJUAAABM7A3A+1GQAuDTKIgBAAAURUYCUN4oSAE+gFPPIRX/cxDYub0LegIAgHsgI0EiIwGuQkEKAHwYQRwAAKAoMhJQ/ihIAQAuiKOGAAAARZGRgMvj5+oOAAAAAAAAwLdQkAIAAAAAAIClKEgBAAAAAADAUswhBcCtFL7FsGTtbYaLe38AAAB3UDinkJEAeDLOkAIAAAAAAIClKEgBAAAAAADAUlyyB8BncKo5AABAUWQkAK5AQQoA3Jir59QCAABwR2QkwPNRkALgFbzlyJ637AcAAHAP3pItvGU/APwPBSkAsAhBCgAAoCgyEuCbKEgBcHuEFAAAgKLISAA8GQUpAJYhNFkrd/l6V3cBAACUEjnJOmQkwD34uboDAAAAAAAA8C0UpAAAAAAAAGApLtkD3FRxpxIHdm7vgp6UHaeeAwAAZyMjAYB34AwpAAAAAAAAWIozpAAPV/gooacdIYRnKs3RaW84gg0A8FxkJLgCGQkoPQpSgAfhjiAAAABFkZEAwPNwyR4AAAAAAAAsxRlSAACn4Og0AABAUWQkoHgUpAA4BXeLAQAAKB45CQCKoiAFAB6mcKitE93FRT0BAABwH2QkwLNQkALcBKfyAgAAFEVGAgDvREEK8DKENrgzbnMMAHAVMhLcGRkJvoiCFICLKm7eA06BBgAAvo6MBABl5+fqDgAAAAAAAMC3UJACAAAAAACApbhkDyhn3no9OLcvBgAAl4OMBAC+jYIU4AJMqgkAAFAUGQkAfAeX7AEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsJTLClK//fab/vrXv6py5coKDQ1Vs2bNtHnzZvt6Y4zGjRunatWqKTQ0VB07dtTevXsdtnHs2DH169dPkZGRio6O1qBBg3Ty5EmrdwUAAMBpyEgAAMAXuKQgdfz4cbVr106BgYFatmyZdu/erRdeeEEVK1a0t5k2bZpmzZqlOXPmaOPGjQoLC1NSUpLOnDljb9OvXz/t2rVLK1eu1NKlS/XFF1/o/vvvd8UuAYDL7M9YVuQBwDORkQDAechIgHuzGWOM1W86evRoffXVV/ryyy+LXW+MUXx8vB577DE9/vjjkqTMzEzFxsZq3rx56tOnj/bs2aPGjRtr06ZNat26tSRp+fLl6tq1q3799VfFx8dftB9ZWVmKiopSZmamIiMjnbeDwHm84W4xfHl7njrRXVzdhVLzhlt8w7O48/c/GQm+hIwEVyAjASWz+vvfJWdILVmyRK1bt9bdd9+tmJgYtWjRQm+++aZ9/b59+5SWlqaOHTval0VFRalt27basGGDJGnDhg2Kjo62By1J6tixo/z8/LRx48Zi3zc7O1tZWVkODwAAAHdBRgIAAL7CJQWpX375Ra+99prq16+vzz77TA899JAeffRRvf3225KktLQ0SVJsbKzD62JjY+3r0tLSFBMT47A+ICBAlSpVsrcpbMqUKYqKirI/atas6exdAwAAKDMyEgAA8BUuKUjl5+erZcuWmjx5slq0aKH7779fgwcP1pw5c8r1fceMGaPMzEz749ChQ+X6fgAAAJeCjAQAAHyFSwpS1apVU+PGjR2WNWrUSAcPHpQkxcXFSZKOHDni0ObIkSP2dXFxcUpPT3dYf/bsWR07dszeprDg4GBFRkY6PAAAANwFGQkAAPgKlxSk2rVrp5SUFIdlP/74o2rXri1JSkhIUFxcnFavXm1fn5WVpY0bNyoxMVGSlJiYqIyMDG3ZssXeZs2aNcrPz1fbtm0t2AsAAADnIiMBAABfEeCKNx0xYoSuu+46TZ48Wb1799a3336rN954Q2+88YYkyWazafjw4Xr22WdVv359JSQkaOzYsYqPj1ePHj0knTta2LlzZ/tp7Lm5uRo6dKj69OlTqrvHAAAAuBsyEgAA8BUuKUi1adNGCxcu1JgxY/TMM88oISFBL730kvr162dv88QTT+jUqVO6//77lZGRofbt22v58uUKCQmxt5k/f76GDh2qW265RX5+furVq5dmzZrlil0CAJRR4dt+c4tj+DIyEgCgABkJ3s5mjDGu7oSrZGVlKSoqSpmZmcyVgHJT+IvEE+3PWObqLuAy1Ynu4uoulBphC+WN7/+LY4xgBTIS3AEZCfgfq7//XTKHFAAAAAAAAHwXBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLBbi6AwDcD3eMAQAAKIqMBADOQ0EKuAzF3a6Y27ECAABfR0YCAFwMl+wBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUc0gBPo7JOX1X4c++TnQXF/UEAAD3Q0byXWQkwBoUpAAnK24ST8DVCNUAAFcjI8EdkZEA16EgBXgRjubA2fiZAgB4A77P4GzFFbL4uQIuDQUpwMdwFAgAAKAoMhIAWItJzQEAAAAAAGApClIAAAAAAACwFJfsAQAkcakCAABAcchIQPngDCkAAAAAAABYioIUAAAAAAAALMUle4AX4/RiWIFbaQMAPA0ZCVYo7ueMnAT8D2dIAQAAAAAAwFKcIQUAcHu5y9cXWRbYub0LegIAAOA+yEjwZJwhBQAAAAAAAEtxhhQAwK0Ud6QPAADA15GR4G04QwoAAAAAAACW4gwpwA2V5o4c3B0GAAD4GjISAHgPClKAhyBcAQAAFEVGAgDPxCV7AAAAAAAAsBQFKQAAAAAAAFiKS/aAUuKuFgCXRQAAiiIjAeeQk4BLwxlSAAAAAAAAsBRnSAEl4GgfAABAUWQkAIAzcIYUAAAAAAAALEVBCgAAAAAAAJbikj0AgFMVN6FnneguLugJAACAeymck8hI8GWcIQUAAAAAAABLUZACAAAAAACApbhkD3ADxV3iBAAA4OvISADgvShIAeWM68QBAACKIiMBgG+jIAVYjCN9wDn8RwQAcD4yEnAOGQm+gjmkAAAAAAAAYCkKUgAAAAAAALAUl+wBknKXr3d1FwAAANwOGQkAUF44QwoAAAAAAACWoiAFAAAAAAAAS7m8IPX888/LZrNp+PDh9mVnzpzRkCFDVLlyZYWHh6tXr146cuSIw+sOHjyobt26qUKFCoqJidGoUaN09uxZi3sPAABQfshJAADAW7m0ILVp0ya9/vrruuqqqxyWjxgxQp988okWLFigdevWKTU1VT179rSvz8vLU7du3ZSTk6Ovv/5ab7/9tubNm6dx48ZZvQsAAADlgpwEAAC8mcsKUidPnlS/fv305ptvqmLFivblmZmZ+sc//qGZM2fq5ptvVqtWrTR37lx9/fXX+uabbyRJK1as0O7du/Xuu+/q6quvVpcuXTRp0iTNnj1bOTk5rtolAAAApyAnAQAAb+eygtSQIUPUrVs3dezY0WH5li1blJub67C8YcOGqlWrljZs2CBJ2rBhg5o1a6bY2Fh7m6SkJGVlZWnXrl0lvmd2draysrIcHgCA8rc/Y1mRB4CSWZ2TyEgA4BpkJPiyAFe86fvvv6+tW7dq06ZNRdalpaUpKChI0dHRDstjY2OVlpZmb3N+yCpYX7CuJFOmTNHEiRMvs/cAAADlxxU5iYwEAACsZvkZUocOHdKwYcM0f/58hYSEWPreY8aMUWZmpv1x6NAhS98fAADgQlyVk8hIAADAapYXpLZs2aL09HS1bNlSAQEBCggI0Lp16zRr1iwFBAQoNjZWOTk5ysjIcHjdkSNHFBcXJ0mKi4srcjeZgucFbYoTHBysyMhIhwcAAIC7cFVOIiMBAACrWV6QuuWWW7Rz505t377d/mjdurX69etn/3dgYKBWr15tf01KSooOHjyoxMRESVJiYqJ27typ9PR0e5uVK1cqMjJSjRs3tnqXAAAAnIKcBAAAfIXlc0hFRESoadOmDsvCwsJUuXJl+/JBgwZp5MiRqlSpkiIjI/XII48oMTFR1157rSSpU6dOaty4se655x5NmzZNaWlpevrppzVkyBAFBwdbvUsAAABOQU4CAAC+wiWTml/Miy++KD8/P/Xq1UvZ2dlKSkrS3//+d/t6f39/LV26VA899JASExMVFham5ORkPfPMMy7sNSDuigFchuJ+f+pEd3FBTwD3Rk6CJyIjAWVHRoK3shljjKs74SpZWVmKiopSZmYmcyX4uNzl652yHcIW4FwXCluBndtb2BN4E77/L44xQgEyEuCeyEgoD1Z//1s+hxQAAAAAAAB8GwUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAASwW4ugOA1Zx1txgAAABvQ04CAFiFM6QAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKOaSAUtqfsczVXQAAAHA7ZCQAQFlwhhQAAAAAAAAsxRlSAAC3Vfioe53oLvZ/F74TVGDn9pb0CQAAwNXISPAGnCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBR32QMAeIXCd5SRuKsMAAAAGQnuijOkAAAAAAAAYCkKUgAAAAAAALAUl+zB6xV3iioAAICvIyMBAFyJghRQgv0Zy1zdBQAAALdDRgIAOAMFKXgVjvQBAAAURUYCALgbClLwGIWDFHeGAAAA4A5aAADPxKTmAAAAAAAAsBRnSAEAPEZx85bUie7igp4AAAC4DzISPBEFKXgs5kIAcDFcxgLAV5GTAFwIGQnugEv2AAAAAAAAYCnOkALE7YsBb3Kpp6xzhBAASkZGArwHGQnuhjOkAAAAAAAAYCnOkAIAeDSO3gMAABRFRoK7oyAFt8REnAAAAEWRkQAA3oKCFADAp/CfOQAAgKLISLAac0gBAAAAAADAUpwhBctxtwYAAICiyEgAAF/CGVIAAAAAAACwFGdIwesVd3eJOtFdXNATAAAA90FGAgC4EgUpuAUm0AMAACiKjAQA8FZcsgcAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApJjVHuXLXiTiLu6sMABQozd+uwM7tLegJAG9FRgLgichIcCYKUgAAlEFxgYwABgAAfB0ZCaVFQQoA4PUKH/GvE93FRT0BAABwH2QkuJJL5pCaMmWK2rRpo4iICMXExKhHjx5KSUlxaHPmzBkNGTJElStXVnh4uHr16qUjR444tDl48KC6deumChUqKCYmRqNGjdLZs2et3BUAAACnISMBAABf4ZKC1Lp16zRkyBB98803WrlypXJzc9WpUyedOnXK3mbEiBH65JNPtGDBAq1bt06pqanq2bOnfX1eXp66deumnJwcff3113r77bc1b948jRs3zhW7BAAAcNnISAAAwFfYjDHG1Z34/fffFRMTo3Xr1umGG25QZmamqlatqvfee0933XWXJOmHH35Qo0aNtGHDBl177bVatmyZbrvtNqWmpio2NlaSNGfOHD355JP6/fffFRQUdNH3zcrKUlRUlDIzMxUZGVmu++ir3GHCTibnBFAazjhFnfkRPIMnff+TkbwXGQmApyAj+Q6rv/9dcoZUYZmZmZKkSpUqSZK2bNmi3NxcdezY0d6mYcOGqlWrljZs2CBJ2rBhg5o1a2YPWpKUlJSkrKws7dq1q9j3yc7OVlZWlsMDAADAXZGRAACAt3L5pOb5+fkaPny42rVrp6ZNm0qS0tLSFBQUpOjoaIe2sbGxSktLs7c5P2gVrC9YV5wpU6Zo4sSJTt4DAIA3YFJPuBsyEgDAHZCRUF5cXpAaMmSIvv/+e61fX/6nLY8ZM0YjR460P8/KylLNmjXL/X19iTucfg4AgDcgI3kXMhIAAI5cWpAaOnSoli5dqi+++EI1atSwL4+Li1NOTo4yMjIcjgAeOXJEcXFx9jbffvutw/YK7jBT0Kaw4OBgBQcHO3kvAAAAnIuMBAAAvJ1L5pAyxmjo0KFauHCh1qxZo4SEBIf1rVq1UmBgoFavXm1flpKSooMHDyoxMVGSlJiYqJ07dyo9Pd3eZuXKlYqMjFTjxo2t2RG4nf0Zy4o8AADwFGQklCcyEgDAnbjkDKkhQ4bovffe0+LFixUREWGfzyAqKkqhoaGKiorSoEGDNHLkSFWqVEmRkZF65JFHlJiYqGuvvVaS1KlTJzVu3Fj33HOPpk2bprS0ND399NMaMmQIR/h8CGEKAOBNyEhwFjISAMDduaQg9dprr0mSbrzxRoflc+fO1YABAyRJL774ovz8/NSrVy9lZ2crKSlJf//73+1t/f39tXTpUj300ENKTExUWFiYkpOT9cwzz1i1GyhnTJ4HwNMVN2cMtz3GhZCRUBrFFZvISQA8TeGcREbyPTZjjHF1J1wlKytLUVFRyszMVGRkpKu74xWcOWFnaQpSHP0DUF7K6z93hC3X4/v/4hgj5yvPjCQV/ZtFRgJQXshI3svq73+X32UP3qcsAag0f9QIVgAAwJOVNcuQkwAA3sglk5oDAAAAAADAd3GGFMrMmaeeAwAAeAsyEgAAF0dBCm6B08wBuJvS/F1iEmEAViAnAXAnZCQ4CwUpAAAsxJ33AAAAiiIj+R7mkAIAAAAAAIClKEgBAAAAAADAUlyyh1Jhck4AKKq4ORSYMwHwLWQkACiKjITS4AwpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKW4yx4uS3F3TwAAAPB1ZCQAAC6MghQAAE5Umv+EcttjAADga8hIKIxL9gAAAAAAAGApClIAAAAAAACwFJfsAQDgYrnL1zs8D+zc3kU9AQAAcB+FM5JETvImnCEFAAAAAAAAS1GQAgAAAAAAgKW4ZA+XhFsYAwAAFEVGAgDg0nCGFAAAAAAAACxFQQoAAAAAAACW4pI9FKu4uxkAAKzBHWUA90VGAgDX4u7E3oMzpAAAAAAAAGApzpACAMBihSc/rhPdxUU9AQAAcB9kJN9CQQoAABcr7u5cBDAAAODryEjejUv2AAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYijmkUKLirtcFAADwdWQkAAAuHwUp2P28+XX7v/MzDrqwJwCAwnKXry+yLLBzexf0BPA9ZCQAcF9kJM9FQQoAADfEbY8BAACKIiN5D+aQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKeaQgn0SOCbpBAAA+B8yEgAA5YeCFAAAHqC428zXF3eQAQAAvo2M5LkoSPkobl8MAL7h/L/3klSv9QMu6gngGchIAOAbCmckiZxkNQpSAAB4qL3vP+XwvH6f51zUEwAAAPdBRvIMTGoOAAAAAAAAS3GGFAAAXqK4U8/zf3K85Cj36HoFdmZeBQAA4DtKk5EkSa0t6AzsKEgBAOAlig1WxSi4c1gBClQAAMCbkZHcEwUpH1FcRRgAAMDXkZEAAHANClJepHA193zcJQYAIJXu1sjcdQbehowEACiNwjmpcEaSuIOxM3l8QWr27NmaPn260tLS1Lx5c73yyiu65pprXN0tSxX8QhCoAABlUfg/6/kZB+V3RS0X9QbOQkYiIwEALk+xBzSqWN8Pb+XRBakPPvhAI0eO1Jw5c9S2bVu99NJLSkpKUkpKimJiYlzdPQAAPEJxZ00V9vPm14vMv1AnukuRdsy14B7ISAAAXL7iMpJfFceDdmSksvPogtTMmTM1ePBgDRw4UJI0Z84c/fe//9U///lPjR492sW9cw5OBwQAuKvCIa248AXXICMBAOA6ZKTSsRljjKs7URY5OTmqUKGCPvroI/Xo0cO+PDk5WRkZGVq8eHGR12RnZys7O9v+PDMzU7Vq1dKhQ4cUGRnp9D7mrtxQZFngrYkltjmYuVKSZKtb46LbNr/8epm9AwDAGud/r9VteW+x34/FKfyd6SxZWVmqWbOmMjIyFBUVVS7v4UpkJDISAMAz+HpG8tgzpI4ePaq8vDzFxsY6LI+NjdUPP/xQ7GumTJmiiRMnFlles2bNcukjAAAobISrO2B34sQJryxIkZEAAPBEvpeRPLYgVRZjxozRyJEj7c/z8/N17NgxVa5cWTabzYU9K52CamV5Ha30NIyHI8ajKMbEEePhiPFw5EvjYYzRiRMnFB8f7+quuA0ykndhPBwxHkUxJo4YD0eMR1G+MiZWZySPLUhVqVJF/v7+OnLkiMPyI0eOKC4urtjXBAcHKzg42GFZdHR0eXWx3ERGRnr1L8GlYjwcMR5FMSaOGA9HjIcjXxkPbzwzqgAZyft/fkuL8XDEeBTFmDhiPBwxHkX5wphYmZH8LHsnJwsKClKrVq20evVq+7L8/HytXr1aiYnlcz0lAACAuyMjAQAAT+CxZ0hJ0siRI5WcnKzWrVvrmmuu0UsvvaRTp07Z7ygDAADgi8hIAADA3Xl0Qer//u//9Pvvv2vcuHFKS0vT1VdfreXLlxeZxNNbBAcHa/z48UVOqfdVjIcjxqMoxsQR4+GI8XDEeHgXMpJvYzwcMR5FMSaOGA9HjEdRjEn5sBljjKs7AQAAAAAAAN/hsXNIAQAAAAAAwDNRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUm5mypQpatOmjSIiIhQTE6MePXooJSXFoc2ZM2c0ZMgQVa5cWeHh4erVq5eOHDnioh5b6/nnn5fNZtPw4cPty3xxPH777Tf99a9/VeXKlRUaGqpmzZpp8+bN9vXGGI0bN07VqlVTaGioOnbsqL1797qwx+UnLy9PY8eOVUJCgkJDQ1WvXj1NmjRJ59+vwZvH44svvlD37t0VHx8vm82mRYsWOawvzb4fO3ZM/fr1U2RkpKKjozVo0CCdPHnSwr1wrguNSW5urp588kk1a9ZMYWFhio+PV//+/ZWamuqwDW8ak4v9jJzvwQcflM1m00svveSw3JvGA56LjHRhZKRzyEj/Q0YiIxVGRnJERnI9ClJuZt26dRoyZIi++eYbrVy5Urm5uerUqZNOnTplbzNixAh98sknWrBggdatW6fU1FT17NnThb22xqZNm/T666/rqquucljua+Nx/PhxtWvXToGBgVq2bJl2796tF154QRUrVrS3mTZtmmbNmqU5c+Zo48aNCgsLU1JSks6cOePCnpePqVOn6rXXXtOrr76qPXv2aOrUqZo2bZpeeeUVextvHo9Tp06pefPmmj17drHrS7Pv/fr1065du7Ry5UotXbpUX3zxhe6//36rdsHpLjQmp0+f1tatWzV27Fht3bpVH3/8sVJSUnT77bc7tPOmMbnYz0iBhQsX6ptvvlF8fHyRdd40HvBcZKSSkZHOISM5IiORkQojIzkiI7kBA7eWnp5uJJl169YZY4zJyMgwgYGBZsGCBfY2e/bsMZLMhg0bXNXNcnfixAlTv359s3LlStOhQwczbNgwY4xvjseTTz5p2rdvX+L6/Px8ExcXZ6ZPn25flpGRYYKDg82///1vK7poqW7dupl7773XYVnPnj1Nv379jDG+NR6SzMKFC+3PS7Pvu3fvNpLMpk2b7G2WLVtmbDab+e233yzre3kpPCbF+fbbb40kc+DAAWOMd49JSePx66+/murVq5vvv//e1K5d27z44ov2dd48HvBsZKRzyEj/Q0ZyREb6HzJSUWQkR2Qk1+AMKTeXmZkpSapUqZIkacuWLcrNzVXHjh3tbRo2bKhatWppw4YNLumjFYYMGaJu3bo57Lfkm+OxZMkStW7dWnfffbdiYmLUokULvfnmm/b1+/btU1pamsOYREVFqW3btl45Jtddd51Wr16tH3/8UZK0Y8cOrV+/Xl26dJHke+NxvtLs+4YNGxQdHa3WrVvb23Ts2FF+fn7auHGj5X12hczMTNlsNkVHR0vyvTHJz8/XPffco1GjRqlJkyZF1vvaeMBzkJHOISP9DxnJERmpZGSk0iEjkZHKW4CrO4CS5efna/jw4WrXrp2aNm0qSUpLS1NQUJD9j0KB2NhYpaWluaCX5e/999/X1q1btWnTpiLrfHE8fvnlF7322msaOXKk/va3v2nTpk169NFHFRQUpOTkZPt+x8bGOrzOW8dk9OjRysrKUsOGDeXv76+8vDw999xz6tevnyT53HicrzT7npaWppiYGIf1AQEBqlSpktePj3RufpUnn3xSffv2VWRkpCTfG5OpU6cqICBAjz76aLHrfW084BnISOeQkRyRkRyRkUpGRro4MhIZyQoUpNzYkCFD9P3332v9+vWu7orLHDp0SMOGDdPKlSsVEhLi6u64hfz8fLVu3VqTJ0+WJLVo0ULff/+95syZo+TkZBf3znoffvih5s+fr/fee09NmjTR9u3bNXz4cMXHx/vkeKD0cnNz1bt3bxlj9Nprr7m6Oy6xZcsWvfzyy9q6datsNpuruwOUGhmJjFQcMpIjMhLKioxERrIKl+y5qaFDh2rp0qVau3atatSoYV8eFxennJwcZWRkOLQ/cuSI4uLiLO5l+duyZYvS09PVsmVLBQQEKCAgQOvWrdOsWbMUEBCg2NhYnxoPSapWrZoaN27ssKxRo0Y6ePCgJNn3u/BddLx1TEaNGqXRo0erT58+atasme655x6NGDFCU6ZMkeR743G+0ux7XFyc0tPTHdafPXtWx44d8+rxKQhaBw4c0MqVK+1H/iTfGpMvv/xS6enpqlWrlv1v7IEDB/TYY4+pTp06knxrPOAZyEjnkJGKIiM5IiOVjIxUMjLSOWQka1CQcjPGGA0dOlQLFy7UmjVrlJCQ4LC+VatWCgwM1OrVq+3LUlJSdPDgQSUmJlrd3XJ3yy23aOfOndq+fbv90bp1a/Xr18/+b18aD0lq165dkdtc//jjj6pdu7YkKSEhQXFxcQ5jkpWVpY0bN3rlmJw+fVp+fo5/yvz9/ZWfny/J98bjfKXZ98TERGVkZGjLli32NmvWrFF+fr7atm1reZ+tUBC09u7dq1WrVqly5coO631pTO655x599913Dn9j4+PjNWrUKH322WeSfGs84N7ISI7ISEWRkRyRkUpGRioeGel/yEgWce2c6ijsoYceMlFRUebzzz83hw8ftj9Onz5tb/Pggw+aWrVqmTVr1pjNmzebxMREk5iY6MJeW+v8O8gY43vj8e2335qAgADz3HPPmb1795r58+ebChUqmHfffdfe5vnnnzfR0dFm8eLF5rvvvjN33HGHSUhIMH/++acLe14+kpOTTfXq1c3SpUvNvn37zMcff2yqVKlinnjiCXsbbx6PEydOmG3btplt27YZSWbmzJlm27Zt9ruhlGbfO3fubFq0aGE2btxo1q9fb+rXr2/69u3rql26bBcak5ycHHP77bebGjVqmO3btzv8nc3OzrZvw5vG5GI/I4UVvoOMMd41HvBcZKSLIyORkc5HRiIjFUZGckRGcj0KUm5GUrGPuXPn2tv8+eef5uGHHzYVK1Y0FSpUMHfeeac5fPiw6zptscJhyxfH45NPPjFNmzY1wcHBpmHDhuaNN95wWJ+fn2/Gjh1rYmNjTXBwsLnllltMSkqKi3pbvrKyssywYcNMrVq1TEhIiKlbt6556qmnHL44vXk81q5dW+zfjOTkZGNM6fb9jz/+MH379jXh4eEmMjLSDBw40Jw4ccIFe+McFxqTffv2lfh3du3atfZteNOYXOxnpLDiwpY3jQc8Fxnp4shIZKTzkZHISIWRkRyRkVzPZowxzjnXCgAAAAAAALg45pACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSgAeaMGGCbDabw7I6depowIABTnuPAQMGqE6dOk7bHi7s888/l81m00cffeTqrpRKQX8///xzp2735MmTiomJ0fz58y/atrif0ZMnT+q+++5TXFycbDabhg8ffknvP3r0aLVt2/aSXgMAcB9kJO9DRjqHjARvREEKPunTTz/VhAkTXN0Nl0tNTdWECRO0fft2V3cFkCS9/PLLioiIUJ8+fcr0+smTJ2vevHl66KGH9M477+iee+6RJL322mu6++67VatWLdlsthL/YzJ8+HDt2LFDS5YsKesuAIBHIyOdQ0aCuymPjHTo0CFNnDhR11xzjSpWrKgqVaroxhtv1KpVq4q8noyE8hDg6g4ArvDpp59q9uzZXhW4UlJS5Od3aTXm1NRUTZw4UXXq1NHVV1/tsO7NN99Ufn6+E3sIb3LDDTfozz//VFBQkNO2mZubq5dfflkjRoyQv79/mbaxZs0aXXvttRo/frzD8qlTp+rEiRO65pprdPjw4RJfHxcXpzvuuEMzZszQ7bffXqY+AIAnIyOdQ0ZCWXlSRnr11Vc1depU9ejRQ8nJyTp79qz+9a9/6dZbb9U///lPDRw40N6WjITywBlS8CmnTp1y6fufOXOm3AJMcHCwAgMDnba9wMBABQcHO217VjPG6M8//yx2nTM+B1f/LLman5+fQkJCLjngX8jSpUv1+++/q3fv3mXeRnp6uqKjo4ssX7dunY4ePaply5Zd9Oe6d+/eWr9+vX755Zcy9wMAPI2rv9fISNYhI5UvT8pIN910kw4ePKj33ntPQ4YM0bBhw/T111+rYcOGGjduXJFtkJHgbBSk4LUK5hDYvXu3/vKXv6hixYpq3769BgwYoNmzZ0uSbDab/VFaN954o5o2baotW7bouuuuU2hoqBISEjRnzhyHdgXXj7///vt6+umnVb16dVWoUEFZWVmSpI0bN6pz586KiopShQoV1KFDB3311VdF3m/9+vVq06aNQkJCVK9ePb3++uvF9qu4+REyMjI0YsQI1alTR8HBwapRo4b69++vo0eP6vPPP1ebNm0kSQMHDrSPw7x58yQVf+35qVOn9Nhjj6lmzZoKDg7WlVdeqRkzZsgY49DOZrNp6NChWrRokZo2barg4GA1adJEy5cvL+0w2+Xn5+ull15SkyZNFBISotjYWD3wwAM6fvx4kf2/7bbb9Nlnn6l169YKDQ3V66+/ftHPYcGCBWrVqpVCQ0NVpUoV/fWvf9Vvv/3msO0BAwYoPDxcP//8s7p27aqIiAj169evVP0/duyYHn/8cTVr1kzh4eGKjIxUly5dtGPHjmLb5+Xl6W9/+5vi4uIUFham22+/XYcOHXJos3fvXvXq1UtxcXEKCQlRjRo11KdPH2VmZpZ2WO37dPDgQd12220KDw9X9erV7b8bO3fu1M0336ywsDDVrl1b7733nsPri5sfoeB3Y/fu3brppptUoUIFVa9eXdOmTStVnxYtWqQ6deqoXr16xa5r2rSpQkJC1LRpUy1cuLDY/uzbt0///e9/7T/P+/fvlyTVrl271L/nHTt2lCQtXry4VO0BwNOQkchIZKSS+VJGatKkiapUqeLQPjg4WF27dtWvv/6qEydOOKwjI8HZuGQPXu/uu+9W/fr1NXnyZBlj1KJFC6WmpmrlypV65513yrTN48ePq2vXrurdu7f69u2rDz/8UA899JCCgoJ07733OrSdNGmSgoKC9Pjjjys7O1tBQUFas2aNunTpolatWmn8+PHy8/PT3LlzdfPNN+vLL7/UNddcI+ncF16nTp1UtWpVTZgwQWfPntX48eMVGxt70T6ePHlS119/vfbs2aN7771XLVu21NGjR7VkyRL9+uuvatSokZ555hmNGzdO999/v66//npJ0nXXXVfs9owxuv3227V27VoNGjRIV199tT777DONGjVKv/32m1588UWH9uvXr9fHH3+shx9+WBEREZo1a5Z69eqlgwcPqnLlyqUe6wceeEDz5s3TwIED9eijj2rfvn169dVXtW3bNn311VcORzxTUlLUt29fPfDAAxo8eLCuvPLKC34OBdtt06aNpkyZoiNHjujll1/WV199pW3btjkcRTp79qySkpLUvn17zZgxQxUqVChV/3/55RctWrRId999txISEnTkyBG9/vrr6tChg3bv3q34+HiH9s8995xsNpuefPJJpaen66WXXlLHjh21fft2hYaGKicnR0lJScrOztYjjzyiuLg4/fbbb1q6dKkyMjIUFRVV6rHNy8tTly5ddMMNN2jatGmaP3++hg4dqrCwMD311FPq16+fevbsqTlz5qh///5KTExUQkLCBbd5/Phxde7cWT179lTv3r310Ucf6cknn1SzZs3UpUuXC77266+/VsuWLYssX7FihXr16qXGjRtrypQp+uOPPzRw4EDVqFHD3qZRo0Z65513NGLECNWoUUOPPfaYJKlq1aqlHo8CUVFRqlevnr766iuNGDHikl8PAJ6CjERGKulzICP5dkZKS0tThQoVinyWZCQ4nQG81Pjx440k07dv3yLrhgwZYsr649+hQwcjybzwwgv2ZdnZ2ebqq682MTExJicnxxhjzNq1a40kU7duXXP69Gl72/z8fFO/fn2TlJRk8vPz7ctPnz5tEhISzK233mpf1qNHDxMSEmIOHDhgX7Z7927j7+9fpP+1a9c2ycnJ9ufjxo0zkszHH39cZB8K3nfTpk1Gkpk7d26RNsnJyaZ27dr254sWLTKSzLPPPuvQ7q677jI2m8389NNP9mWSTFBQkMOyHTt2GEnmlVdeKfJeJfnyyy+NJDN//nyH5cuXLy+yvHbt2kaSWb58uUPbkj6HnJwcExMTY5o2bWr+/PNP+/KlS5caSWbcuHEOYyHJjB49utR9L3DmzBmTl5fnsGzfvn0mODjYPPPMM0X6Wb16dZOVlWVf/uGHHxpJ5uWXXzbGGLNt2zYjySxYsOCS+3K+gn2aPHmyfdnx48dNaGiosdls5v3337cv/+GHH4wkM378+CL9Xbt2rX1Zwe/Gv/71L/uy7OxsExcXZ3r16nXB/uTm5hqbzWYee+yxIuuuvvpqU61aNZORkWFftmLFCiPJ4WfUmHM/B926dbvge4WFhTn8rhSnU6dOplGjRhdsAwCeioxERjKGjFQSX85Ixhizd+9eExISYu65555i15OR4Excsgev9+CDDzp9mwEBAXrggQfsz4OCgvTAAw8oPT1dW7ZscWibnJys0NBQ+/Pt27dr7969+stf/qI//vhDR48e1dGjR3Xq1Cndcsst+uKLL5Sfn6+8vDx99tln6tGjh2rVqmV/faNGjZSUlHTRPv7nP/9R8+bNdeeddxZZdymn3xf49NNP5e/vr0cffdRh+WOPPSZjjJYtW+awvGPHjg6nFV911VWKjIy8pGvOFyxYoKioKN166632cTp69KhatWql8PBwrV271qF9QkJCiWNT+HPYvHmz0tPT9fDDDyskJMS+vFu3bmrYsKH++9//FtnGQw89VOq+FwgODrbPIZCXl6c//vhD4eHhuvLKK7V169Yi7fv376+IiAj787vuukvVqlXTp59+Kkn2o3ufffaZTp8+fcn9Key+++6z/zs6OlpXXnmlwsLCHOYouPLKKxUdHV2qzy48PFx//etf7c+DgoJ0zTXXXPS1x44dkzFGFStWdFh++PBhbd++XcnJyQ5HNm+99VY1btz4ov0pq4oVK+ro0aPltn0AcAdkJDKSREYqiS9mpNOnT+vuu+9WaGionn/++WLbkJHgTBSk4PUudvpsWcTHxyssLMxhWYMGDSTJPmdNSe+/d+9eSee+/KtWrerweOutt5Sdna3MzEz9/vvv+vPPP1W/fv0i73/+adYl+fnnn9W0adNL2a0LOnDggOLj4x2CgHQu/BWsP9/5AbFAxYoVi8xrcCF79+5VZmamYmJiiozVyZMnlZ6e7tD+Qp914XUF/S1uLBs2bFhkfwICAhxOfy6t/Px8vfjii6pfv76Cg4NVpUoVVa1aVd99912x8xkU/rxtNpuuuOIK+89VQkKCRo4cqbfeektVqlRRUlKSZs+efUlzIxQICQkpcrp2VFSUatSoUSSQR0VFleqzK+61l/K5m0JzbRR8DmX9PSgrY0yZ/lMCAJ6EjOQcZCQykjdkpLy8PPXp00e7d+/WRx99VOSSyfP7QUaCszCHFLze+Ud83OH9C+5cMn369CK3ES4QHh6u7Ozs8u5auSrplrSFv0wvJD8/XzExMZo/f36x6wsHhQt91pf7c3D+UbxLMXnyZI0dO1b33nuvJk2apEqVKsnPz0/Dhw8v811sXnjhBQ0YMECLFy/WihUr9Oijj2rKlCn65ptvLikQlvQZXc5nV9bXVqpUSTab7ZLCeHk6fvx4kUk+AcDbkJFcg4x0DhmpdK+1KiMNHjxYS5cu1fz583XzzTeX2I6MBGeiIAWfdLlV/dTUVJ06dcrhCOCPP/4oSUXuulJYwSnakZGR9jtVFKdq1aoKDQ21Hy08X0pKykX7WK9ePX3//fcXbHMp41C7dm2tWrVKJ06ccDgC+MMPP9jXO1u9evW0atUqtWvXzumhuaC/KSkpRb50U1JSnLY/H330kW666Sb94x//cFiekZFR7Jd54c/bGKOffvpJV111lcPyZs2aqVmzZnr66af19ddfq127dpozZ46effZZp/TbagEBAapXr5727dvnsLzgcyjr70FZ7du3T82bNy+37QOAuyIjnUNGIiO5Cysy0qhRozR37ly99NJL6tu37wXbkpHgTFyyB59UEJIyMjLK9PqzZ8863Fo4JydHr7/+uqpWrapWrVpd8LWtWrVSvXr1NGPGDJ08ebLI+t9//13SuaMoSUlJWrRokQ4ePGhfv2fPHn322WcX7WOvXr20Y8eOIrd+lf53JOZSxqFr167Ky8vTq6++6rD8xRdflM1mu+jdQcqid+/eysvL06RJk4qsO3v2bJk/P0lq3bq1YmJiNGfOHIcjrcuWLdOePXvUrVu3Mm/7fP7+/kWOfC1YsKDIbZML/Otf/3K4xe5HH32kw4cP28c3KytLZ8+edXhNs2bN5Ofn5/FHjBMTE7V582aHZdWqVdPVV1+tt99+2+GU+5UrV2r37t3l0o/MzEz9/PPPJd5NCQC8GRmJjERGcj/lmZGmT5+uGTNm6G9/+5uGDRt2wbZkJDgbZ0jBJxUEokcffVRJSUny9/dXnz59Sv36+Ph4TZ06Vfv371eDBg30wQcfaPv27XrjjTccbrFbHD8/P7311lvq0qWLmjRpooEDB6p69er67bfftHbtWkVGRuqTTz6RJE2cOFHLly/X9ddfr4cfflhnz57VK6+8oiZNmui777674PuMGjVKH330ke6++27de++9atWqlY4dO6YlS5Zozpw5at68uerVq6fo6GjNmTNHERERCgsLU9u2bYudZ6B79+666aab9NRTT2n//v1q3ry5VqxYocWLF2v48OEOk3M6S4cOHfTAAw9oypQp2r59uzp16qTAwEDt3btXCxYs0Msvv6y77rqrTNsODAzU1KlTNXDgQHXo0EF9+/a139K4Tp06TruV7W233aZnnnlGAwcO1HXXXaedO3dq/vz5qlu3brHtK1WqpPbt22vgwIE6cuSIXnrpJV1xxRUaPHiwJGnNmjUaOnSo7r77bjVo0EBnz57VO++8I39/f/Xq1cspfXaVO+64Q++8845+/PFH+3wjkjRlyhR169ZN7du317333qtjx47Zfw+K+w9LcT755BPt2LFDkpSbm6vvvvvOfqT09ttvdzi6umrVKhljdMcddzhx7wDAM5CRyEhkJPdTXhlp4cKFeuKJJ1S/fn01atRI7777rsP6W2+9VbGxsfbnZCQ4nZW39AOsVHBL499//73IurNnz5pHHnnEVK1a1dhstku6vXGHDh1MkyZNzObNm01iYqIJCQkxtWvXNq+++qpDu4JbvpZ069lt27aZnj17msqVK5vg4GBTu3Zt07t3b7N69WqHduvWrTOtWrUyQUFBpm7dumbOnDn2fTtf4VsaG2PMH3/8YYYOHWqqV69ugoKCTI0aNUxycrI5evSovc3ixYtN48aNTUBAgMPtjQvf0tgYY06cOGFGjBhh4uPjTWBgoKlfv76ZPn26w62ZjTl3S+MhQ4YU2efi+lgab7zxhmnVqpUJDQ01ERERplmzZuaJJ54wqampDtsu7la2F/scPvjgA9OiRQsTHBxsKlWqZPr162d+/fVXhzbJyckmLCzskvttzLlbGj/22GOmWrVqJjQ01LRr185s2LDBdOjQwXTo0KFIP//973+bMWPGmJiYGBMaGmq6devmcEvrX375xdx7772mXr16JiQkxFSqVMncdNNNZtWqVZfUr5L2qeDnu7DC41vSLY2Le21xP0vFyc7ONlWqVDGTJk0qsu4///mPadSokQkODjaNGzc2H3/8cbHbLennoOAWzsU9Ct/S+//+7/9M+/btL9pfAPBUZCQykjFkpJL4UkYq+H0p6XH+PhhDRoLz2Yy5hNnzAOjGG2/U0aNHLzr3AIBLN2nSJM2dO1d79+4tcfLP8pSWlqaEhAS9//77HP0DgEtERgLKDxkJ3og5pAAAbmPEiBE6efKk3n//fZe8/0svvaRmzZoRtAAAgFshI8EbcYYU8P8dO3ZMOTk5Ja739/dX1apVOfrnBHl5efaJSUsSHh6u8PBwi3p06f7880+HCSSLU6lSJQUFBVnUo3MyMzP1559/XrBNXFycRb0BAHgDMpJ1yEjlh4wEuB8mNQf+v549e2rdunUlrq9du7b2799vXYe82KFDh4qdFPR848eP14QJE6zpUBl88MEHGjhw4AXbrF27VjfeeKM1Hfr/hg0bprfffvuCbTgOAQC4FGQk65CRyg8ZCXA/nCEF/H9btmzR8ePHS1wfGhqqdu3aWdgj73XmzBmtX7/+gm3q1q1b4l1W3MHhw4e1a9euC7Zp1aqVKlasaFGPztm9e7dSU1Mv2KZjx44W9QYA4A3ISNYhI5UfMhLgfihIAQAAAAAAwFJMag4AAAAAAABL+fQcUvn5+UpNTVVERIRsNpuruwMAACxgjNGJEycUHx8vPz+OzRWHjAQAgO+xOiP5dEEqNTVVNWvWdHU3AACACxw6dEg1atRwdTfcEhkJAADfZVVG8umCVEREhKRzgx0ZGeni3gAAACtkZWWpZs2a9hyAoshIAAD4Hqszkk8XpApOQY+MjCRsAQDgY7gUrWRkJAAAfJdVGYmJEwAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWMqn55ACAOBC8vLylJub6+pu4BIFBgbK39/f1d0AAMBrkZE8k7tlJApSAAAUYoxRWlqaMjIyXN0VlFF0dLTi4uKYuBwAACciI3k+d8pIFKQAACikIGjFxMSoQoUKbvGFjdIxxuj06dNKT0+XJFWrVs3FPQIAwHuQkTyXO2YkClIAAJwnLy/PHrQqV67s6u6gDEJDQyVJ6enpiomJcatT0wEA8FRkJM/nbhmJSc0BADhPwXwIFSpUcHFPcDkKPj/mtwAAwDnISN7BnTISBSkAAIrBKeiejc8PAIDywXesZ3Onz4+CFAAAAAAAACxFQQoAAAAAAACWYlJzAABKKXf5esveK7Bz+1K3vdip1+PHj9eECRMus0dlY7PZtHDhQvXo0aPM23jjjTf03nvvaevWrTpx4oSOHz+u6Ohop/URAABcHiszkkROKnDs2DGNHz9eK1as0MGDB1W1alX16NFDkyZNUlRUlHM7Ww4oSAEA4OEOHz5s//cHH3ygcePGKSUlxb4sPDz8kraXk5OjoKAgp/Xvcp0+fVqdO3dW586dNWbMGFd3BwAAeBBvzkmpqalKTU3VjBkz1LhxYx04cEAPPvigUlNT9dFHH7m6exfFJXvlKHf5+iIPAACcLS4uzv6IioqSzWazPz916pT69eun2NhYhYeHq02bNlq1apXD6+vUqaNJkyapf//+ioyM1P333y9JevPNN1WzZk1VqFBBd955p2bOnFnkzKTFixerZcuWCgkJUd26dTVx4kSdPXvWvl1JuvPOO2Wz2ezPd+zYoZtuukkRERGKjIxUq1attHnz5hL3b/jw4Ro9erSuvfZa5wwYXI6MBACwijfnpKZNm+o///mPunfvrnr16unmm2/Wc889p08++cT+Pu6MghQAAF7s5MmT6tq1q1avXq1t27apc+fO6t69uw4ePOjQbsaMGWrevLm2bdumsWPH6quvvtKDDz6oYcOGafv27br11lv13HPPObzmyy+/VP/+/TVs2DDt3r1br7/+uubNm2dvt2nTJknS3LlzdfjwYfvzfv36qUaNGtq0aZO2bNmi0aNHKzAw0ILRAAAA+B9vzEmZmZmKjIxUQID7XxDn/j0EAABl1rx5czVv3tz+fNKkSVq4cKGWLFmioUOH2pfffPPNeuyxx+zPn3rqKXXp0kWPP/64JKlBgwb6+uuvtXTpUnubiRMnavTo0UpOTpYk1a1bV5MmTdITTzyh8ePHq2rVqpKk6OhoxcXF2V938OBBjRo1Sg0bNpQk1a9fvxz2HAAA4MK8LScdPXpUkyZNsp/F5e44QwoAAC928uRJPf7442rUqJGio6MVHh6uPXv2FDny17p1a4fnKSkpuuaaaxyWFX6+Y8cOPfPMMwoPD7c/Bg8erMOHD+v06dMl9mnkyJG677771LFjRz3//PP6+eefL3MvAQAALp035aSsrCx169ZNjRs3dtkk7ZeKghQAAF7s8ccf18KFCzV58mR9+eWX2r59u5o1a6acnByHdmFhYZe87ZMnT2rixInavn27/bFz507t3btXISEhJb5uwoQJ2rVrl7p166Y1a9aocePGWrhw4SW/PwAAwOXwlpx04sQJde7cWREREVq4cKHHTIXAJXsAAHixr776SgMGDNCdd94p6Vw42r9//0Vfd+WVV9rnMihQ+HnLli2VkpKiK664osTtBAYGKi8vr8jyBg0aqEGDBhoxYoT69u2ruXPn2vsIAABgBW/ISVlZWUpKSlJwcLCWLFlywWKXu6EgBQCAF6tfv74+/vhjde/eXTabTWPHjlV+fv5FX/fII4/ohhtu0MyZM9W9e3etWbNGy5Ytk81ms7cZN26cbrvtNtWqVUt33XWX/Pz8tGPHDn3//fd69tlnJZ27g8zq1avVrl07BQcHKyQkRKNGjdJdd92lhIQE/frrr9q0aZN69epVYl/S0tKUlpamn376SZK0c+dORUREqFatWqpUqdJljhAAAPBVnp6TsrKy1KlTJ50+fVrvvvuusrKylJWVJUmqWrWq/P39nTBK5YdL9gAA8GIzZ85UxYoVdd1116l79+5KSkpSy5YtL/q6du3aac6cOZo5c6aaN2+u5cuXa8SIEQ5H3ZKSkrR06VKtWLFCbdq00bXXXqsXX3xRtWvXtrd54YUXtHLlStWsWVMtWrSQv7+//vjjD/Xv318NGjRQ79691aVLF02cOLHEvsyZM0ctWrTQ4MGDJUk33HCDWrRooSVLllzGyAAAAF/n6Tlp69at2rhxo3bu3KkrrrhC1apVsz8OHTp0+QNUzmzGGOPqTrhKVlaWoqKi7LdFdLbc5euLLAvs3N7p7wMAcJ4zZ85o3759SkhI8KhTnq0wePBg/fDDD/ryyy9d3ZWLutDnWN7f/96AjAQAKIyMdGGekpPcKSNxyR4AACjWjBkzdOuttyosLOz/sXfn0VFU+fvHnw7Z2JIQyEIEwr4KCAExCqiQIQFkRHEJw8giiwuogCAyKsswCiKjIw6KywiOg4o4sogQZUcwgqJxAcwPnQBqCFEwCQHJWr8/+Kal0x1IQnf1kvfrnD7HrrpddaurQz9+6vYtbdy4Ua+99pqef/55d3cLAADA7chJl46CFAAAcGjv3r1auHChTp06pZYtW2rx4sUaN26cu7sFAADgduSkS0dBCgAAOPT222+7uwsAAAAeiZx06ZjUHAAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmMrf3R0AAMBbfP/Zi6btq1WPu6rUfvTo0XrttdckSf7+/goPD1eXLl00fPhwjR49Wn5+3nsNav/+/Zo1a5b27dunI0eO6JlnntHkyZPd3S0AAPB/zMxIEjnpfC+//LL+/e9/65tvvpEkxcXF6YknntCVV17p5p5dnPe+6wAAwEZSUpKOHTumw4cPa+PGjbr++uv1wAMP6IYbblBxcbG7u1dtZ86cUcuWLbVgwQJFR0e7uzsAAMAL+WpO2r59u4YPH65t27YpNTVVTZs21YABA/TTTz+5u2sXRUEKAAAfERQUpOjoaF122WXq3r27/vKXv2jt2rXauHGjli9fbm2Xk5OjcePGKSIiQiEhIerXr5++/PJLm22999576tmzp4KDg9WoUSPddNNN1nW//vqrRo4cqQYNGqhOnToaOHCgDh06JEk6ffq0QkJC9M4779hsb82aNapbt65OnTqlwsJCTZo0SY0bN1ZwcLBiY2M1f/78Co+rZ8+eeuqpp5ScnKygoCAnvFMAAKCm8dWctGLFCt1777264oor1L59e73yyisqLS3Vli1bnPCuuRYFKQAAfFi/fv3UtWtXvfvuu9Zlt956q7Kzs7Vx40bt27dP3bt3V//+/XXy5ElJ0vvvv6+bbrpJgwYN0hdffKEtW7bYDPsePXq0PvvsM61bt06pqakyDEODBg1SUVGR6tatq+TkZC1btsymH8uWLdMtt9yi+vXra/HixVq3bp3efvttpaena8WKFWrevLkp7wcAAEAZX8xJZ86cUVFRkcLDwy/tzTEBc0gBAODj2rdvr6+++kqStGvXLu3du1fZ2dnW0UaLFi3SmjVr9M4772jChAl6/PHHlZycrLlz51q30bVrV0nSoUOHtG7dOu3evVtXX321pHNX5po2bao1a9bo1ltv1bhx43T11Vfr2LFjaty4sbKzs7VhwwZt3rxZknT06FG1adNGvXv3lsViUWxsrJlvBwAAgJWv5aQZM2YoJiZGCQkJl/zeuBojpAAA8HGGYchisUiSvvzyS+Xn56thw4aqV6+e9ZGRkaHvv/9ekpSWlqb+/fs73NbBgwfl7++vXr16WZc1bNhQ7dq108GDByVJV155pTp16mSdPPQ///mPYmNj1bdvX0nnrhympaWpXbt2uv/++/Xhhx+67NgBAAAuxJdy0oIFC/TWW29p9erVCg4OrvqbYTJGSAEA4OMOHjyoFi1aSJLy8/PVuHFjbd++3a5dWFiYJKl27dqXvM9x48ZpyZIlevjhh7Vs2TKNGTPGGva6d++ujIwMbdy4UZs3b9Ztt92mhIQEu/kUAAAAXM1XctKiRYu0YMECbd68WV26dLnkPpqBEVIAAPiwrVu36uuvv9awYcMknQs5WVlZ8vf3V+vWrW0ejRo1kiR16dKlwokwO3TooOLiYu3Zs8e67MSJE0pPT1fHjh2ty/785z/ryJEjWrx4sQ4cOKBRo0bZbCckJES33367Xn75Za1cuVL//e9/rXMzAAAAmMFXctLChQs1b948paSkqEePHtV+P8zGCCkAAHxEQUGBsrKyVFJSouPHjyslJUXz58/XDTfcoJEjR0qSEhISFB8fr6FDh2rhwoVq27atMjMzrRN09ujRQ7Nnz1b//v3VqlUrJScnq7i4WBs2bNCMGTPUpk0b3XjjjRo/frxefPFF1a9fXw8//LAuu+wy3Xjjjda+NGjQQDfffLOmT5+uAQMGqEmTJtZ1Tz/9tBo3bqxu3brJz89Pq1atUnR0tPXKY3mFhYU6cOCA9b9/+uknpaWlqV69emrdurXr3lAAAOAzfDUnPfnkk5o1a5beeOMNNW/eXFlZWZJk/bmhJ2OEFAAAPiIlJUWNGzdW8+bNlZSUpG3btmnx4sVau3atatWqJUmyWCzasGGD+vbtqzFjxqht27ZKTk7WkSNHFBUVJUm67rrrtGrVKq1bt05XXHGF+vXrp71791r3s2zZMsXFxemGG25QfHy8DMPQhg0bFBAQYNOfsWPHqrCwUHfeeafN8vr162vhwoXq0aOHevbsqcOHD2vDhg3y83McSzIzM9WtWzd169ZNx44d06JFi9StWzeNGzfOmW8fAADwYb6ak1544QUVFhbqlltuUePGja2PRYsWOfPtcwmLYRiGuzvhLnl5eQoNDVVubq5CQkKcvv2ilF12ywKSejt9PwAA5zl79qwyMjLUokULr5gM0pO9/vrrmjJlijIzMxUYGGjqvi90Hl39/e8LyEgAgPLISM7lrpzkSRmJn+wBAACnOnPmjI4dO6YFCxborrvuMr0YBQAA4KnISb/jJ3sAAMCpFi5cqPbt2ys6OlozZ850d3cAAAA8BjnpdxSkAACAU82ZM0dFRUXasmWLx0+mCQAAYCZy0u8oSAEAAAAAAMBUFKQAAAAAAABgKgpSAAA4UFpa6u4u4BJw/gAAcA2+Y72bJ50/7rIHAMB5AgMD5efnp8zMTEVERCgwMFAWi8Xd3UIlGYahwsJC/fzzz/Lz86vRd64BAMCZyEjezRMzEgUpAADO4+fnpxYtWujYsWPKzMx0d3dQTXXq1FGzZs3k58dgcAAAnIGM5Bs8KSNRkAIAoJzAwEA1a9ZMxcXFKikpcXd3UEW1atWSv78/V20BAHAyMpJ387SMREEKAAAHLBaLAgICFBAQ4O6uAAAAeAwyEpzF/WO0AAAAAAAAUKNQkAIAAAAAAICpnF6Qmj9/vnr27Kn69esrMjJSQ4cOVXp6uk2bs2fPauLEiWrYsKHq1aunYcOG6fjx4zZtjh49qsGDB6tOnTqKjIzU9OnTVVxcbNNm+/bt6t69u4KCgtS6dWstX77c2YcDAADgFGQkAACA3zm9ILVjxw5NnDhRn3zyiTZt2qSioiINGDBAp0+ftraZMmWK3nvvPa1atUo7duxQZmambr75Zuv6kpISDR48WIWFhfr444/12muvafny5Zo1a5a1TUZGhgYPHqzrr79eaWlpmjx5ssaNG6cPPvjA2YcEAABwychIAAAAv7MYhmG4cgc///yzIiMjtWPHDvXt21e5ubmKiIjQG2+8oVtuuUWS9O2336pDhw5KTU3VVVddpY0bN+qGG25QZmamoqKiJElLly7VjBkz9PPPPyswMFAzZszQ+++/r2+++ca6r+TkZOXk5CglJaVSfcvLy1NoaKhyc3MVEhLi9GMvStlltywgqbfT9wMAACrP1d//lUVGskVGAgDAvczOSC6fQyo3N1eSFB4eLknat2+fioqKlJCQYG3Tvn17NWvWTKmpqZKk1NRUde7c2Rq0JCkxMVF5eXnav3+/tc352yhrU7YNAAAAT0ZGAgAANZm/KzdeWlqqyZMn65prrtHll18uScrKylJgYKDCwsJs2kZFRSkrK8va5vygVba+bN2F2uTl5em3335T7dq17fpTUFCggoIC6/O8vLxLO0AAAIBqICMBAICazqUjpCZOnKhvvvlGb731lit3U2nz589XaGio9dG0aVN3dwkAANRAZCQAAFDTuawgNWnSJK1fv17btm1TkyZNrMujo6NVWFionJwcm/bHjx9XdHS0tU35O8qUPb9Ym5CQEIdX/iRp5syZys3NtT5++OGHSzpGAACAqiIjAQAAuKAgZRiGJk2apNWrV2vr1q1q0aKFzfq4uDgFBARoy5Yt1mXp6ek6evSo4uPjJUnx8fH6+uuvlZ2dbW2zadMmhYSEqGPHjtY252+jrE3ZNhwJCgpSSEiIzQMAAMAMZCQAAIDfOX0OqYkTJ+qNN97Q2rVrVb9+fet8BqGhoapdu7ZCQ0M1duxYTZ06VeHh4QoJCdF9992n+Ph4XXXVVZKkAQMGqGPHjrrjjju0cOFCZWVl6dFHH9XEiRMVFBQkSbr77rv1z3/+Uw899JDuvPNObd26VW+//bbef/99Zx8SAADAJSMjAQAA/M5iGIbh1A1aLA6XL1u2TKNHj5YknT17Vg8++KDefPNNFRQUKDExUc8//7x1qLkkHTlyRPfcc4+2b9+uunXratSoUVqwYIH8/X+voW3fvl1TpkzRgQMH1KRJEz322GPWfVQGtzQGAKDmMfuWxmXISL8jIwEA4HnMzkhOL0h5E8IWAAA1j7sKUt6EjAQAQM1jdkZy6V32AAAAAAAAgPIoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABM5fSC1M6dOzVkyBDFxMTIYrFozZo1NutHjx4ti8Vi80hKSrJpc/LkSY0YMUIhISEKCwvT2LFjlZ+fb9Pmq6++Up8+fRQcHKymTZtq4cKFzj4UAAAApyInAQAAnOP0gtTp06fVtWtXLVmypMI2SUlJOnbsmPXx5ptv2qwfMWKE9u/fr02bNmn9+vXauXOnJkyYYF2fl5enAQMGKDY2Vvv27dNTTz2lOXPm6KWXXnL24QAAADgNOQkAAOAcf2dvcODAgRo4cOAF2wQFBSk6OtrhuoMHDyolJUWffvqpevToIUl67rnnNGjQIC1atEgxMTFasWKFCgsL9eqrryowMFCdOnVSWlqann76aZtABgAA4EnISQAAAOe4ZQ6p7du3KzIyUu3atdM999yjEydOWNelpqYqLCzMGrIkKSEhQX5+ftqzZ4+1Td++fRUYGGhtk5iYqPT0dP36668V7regoEB5eXk2DwAAAE/ijpxERgIAAGYzvSCVlJSkf//739qyZYuefPJJ7dixQwMHDlRJSYkkKSsrS5GRkTav8ff3V3h4uLKysqxtoqKibNqUPS9r48j8+fMVGhpqfTRt2tSZhwYAAHBJ3JWTyEgAAMBsTv/J3sUkJydb/7tz587q0qWLWrVqpe3bt6t///4u3ffMmTM1depU6/O8vDwCFwAA8BjuyklkJAAAYDa3/GTvfC1btlSjRo303XffSZKio6OVnZ1t06a4uFgnT560zqcQHR2t48eP27Qpe17RnAvSuTkZQkJCbB4AAACeyqycREYCAABmc3tB6scff9SJEyfUuHFjSVJ8fLxycnK0b98+a5utW7eqtLRUvXr1srbZuXOnioqKrG02bdqkdu3aqUGDBuYeAAAAgIuQkwAAgK9yekEqPz9faWlpSktLkyRlZGQoLS1NR48eVX5+vqZPn65PPvlEhw8f1pYtW3TjjTeqdevWSkxMlCR16NBBSUlJGj9+vPbu3avdu3dr0qRJSk5OVkxMjCTpT3/6kwIDAzV27Fjt379fK1eu1LPPPmsz1BwAAMDTkJMAAADOcXpB6rPPPlO3bt3UrVs3SdLUqVPVrVs3zZo1S7Vq1dJXX32lP/7xj2rbtq3Gjh2ruLg4ffTRRwoKCrJuY8WKFWrfvr369++vQYMGqXfv3nrppZes60NDQ/Xhhx8qIyNDcXFxevDBBzVr1ixuZQwAADwaOQkAAOAci2EYhrs74S55eXkKDQ1Vbm6uS+ZKKErZZbcsIKm30/cDAAAqz9Xf/76AjAQAQM1jdkZy+xxSAAAAAAAAqFkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYyt/dHahpilJ22TwPSOrtpp4AAAB4DjISAAA1CyOkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATMWk5m5WfgJPiUk8AQAAyEgAAPg2RkgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATMVd9jwQd5UBAACwR0YCAMB3MEIKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABT+bu7A6ieopRddssCknq7oScAAACeg4wEAIB3YIQUAAAAAAAATEVBCgAAAAAAAKbiJ3tewtHwcwAAgJqOjAQAgHdihBQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADCVv7s7AOcpStlltywgqbcbegIAAOA5yEgAAHgeRkgBAAAAAADAVBSkAAAAAAAAYCp+sufjyg9RZ3g6AAAAGQkAAHdjhBQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFM5vSC1c+dODRkyRDExMbJYLFqzZo3NesMwNGvWLDVu3Fi1a9dWQkKCDh06ZNPm5MmTGjFihEJCQhQWFqaxY8cqPz/fps1XX32lPn36KDg4WE2bNtXChQudfSgAAABORU4CAAA4x+kFqdOnT6tr165asmSJw/ULFy7U4sWLtXTpUu3Zs0d169ZVYmKizp49a20zYsQI7d+/X5s2bdL69eu1c+dOTZgwwbo+Ly9PAwYMUGxsrPbt26ennnpKc+bM0UsvveTswwEAAHAachIAAMA5FsMwDJdt3GLR6tWrNXToUEnnrvrFxMTowQcf1LRp0yRJubm5ioqK0vLly5WcnKyDBw+qY8eO+vTTT9WjRw9JUkpKigYNGqQff/xRMTExeuGFF/TII48oKytLgYGBkqSHH35Ya9as0bffflvp/uXl5Sk0NFS5ubkKCQlx7sHL/u4tnoA7yAAAajpXf/9XlifnJDISAAA1j9kZydQ5pDIyMpSVlaWEhATrstDQUPXq1UupqamSpNTUVIWFhVlDliQlJCTIz89Pe/bssbbp27evNWRJUmJiotLT0/Xrr7+adDQAAADOQ04CAAA1ib+ZO8vKypIkRUVF2SyPioqyrsvKylJkZKTNen9/f4WHh9u0adGihd02ytY1aNDA4f4LCgpUUFBgfZ6Xl3cJRwMAAOA87sxJZCQAAGC2GnWXvfnz5ys0NNT6aNq0qbu7BAAA4HZkJAAAYDZTC1LR0dGSpOPHj9ssP378uHVddHS0srOzbdYXFxfr5MmTNm0cbeP8fTgyc+ZM5ebmWh8//PDDpR0QAACAk7gzJ5GRAACA2UwtSLVo0ULR0dHasmWLdVleXp727Nmj+Ph4SVJ8fLxycnK0b98+a5utW7eqtLRUvXr1srbZuXOnioqKrG02bdqkdu3aVfhzPUkKCgpSSEiIzaOmKUrZZfcAAADu586cREYiIwEAYDanF6Ty8/OVlpamtLQ0Secm6ExLS9PRo0dlsVg0efJk/e1vf9O6dev09ddfa+TIkYqJibHeYaZDhw5KSkrS+PHjtXfvXu3evVuTJk1ScnKyYmJiJEl/+tOfFBgYqLFjx2r//v1auXKlnn32WU2dOtXZhwMAAOA05CQAAIBznD6p+Weffabrr7/e+rws/IwaNUrLly/XQw89pNOnT2vChAnKyclR7969lZKSouDgYOtrVqxYoUmTJql///7y8/PTsGHDtHjxYuv60NBQffjhh5o4caLi4uLUqFEjzZo1SxMmTHD24QAAADgNOQkAAOAci2EYhrs74S55eXkKDQ1Vbm6uS4ame8tQ74Ck3u7uAgAApnH1978vICOdQ0YCANQkZmckp4+QgvdxFAoJYAAAoKYjIwEA4DqmTmoOAAAAAAAAUJACAAAAAACAqfjJHhwqP0Sd4ekAAABkJAAAnIURUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATMUcUqgUbnsMAABgj4wEAED1UJBCtRHAAAAA7JGRAAC4OH6yBwAAAAAAAFMxQgpOxa2QAQAA7JGRAACwxQgpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFP5u7sDgCQVpeyyeR6Q1NtNPQEAAPAcZCQAgK9ihBQAAAAAAABMRUEKAAAAAAAApuIne3Cp8sPMJYaaAwAAkJEAADUdBSkXOpyz0W5Z87CBbuiJZ3EUwCrThpAGAIBvICM5RkYCANQk/GQPAAAAAAAApqIgBQAAAAAAAFPxkz14DW57DAAAYI+f8QEAvBEjpAAAAAAAAGAqRkjBa3E1EAAAwDFGlgMAPB0jpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIo5pFDjMPcUAACAY8w9BQAwCwUp+BSKTQAAAPbISAAAT0NBymSHczbaPG8eNtBNPcH5CGkAALgXGckzkZEAAK7CHFIAAAAAAAAwFQUpAAAAAAAAmIqf7LlZ+eHpEkPUAQAAyEgAAPg2ClJegnkVAAAA7JGRAADwThSkvBRXDV2P2x4DAOB9yEiuR0YCADgDBSn4PEd3h3HWdghgAADAW5GRAADuxKTmAAAAAAAAMBUjpDyQo6HmAAAANR0ZCQAA30FBCnAy5lUAAACwR0YCAJyPn+wBAAAAAADAVIyQAnejuQTOmgzU0ba4aggAgHuRkaqPjAQAuBgKUqg2QhoAAIA9MhIAABdHQcrHlQ9EhCEAAAAyEgAA7kZBCk5FuAMAALBHRgIAwBYFKR/CrZABAADskZEAAPA8brnL3pw5c2SxWGwe7du3t64/e/asJk6cqIYNG6pevXoaNmyYjh8/brONo0ePavDgwapTp44iIyM1ffp0FRcXm30oXudwzka7R2XauXp/sFeUssvuAQDwbWQk9yEjeQ8yEgD4BreNkOrUqZM2b978e0f8f+/KlClT9P7772vVqlUKDQ3VpEmTdPPNN2v37t2SpJKSEg0ePFjR0dH6+OOPdezYMY0cOVIBAQF64oknTD8WVA1D1p2LO88AgG8hI9VcTIbuXGQkAPBsbitI+fv7Kzo62m55bm6u/vWvf+mNN95Qv379JEnLli1Thw4d9Mknn+iqq67Shx9+qAMHDmjz5s2KiorSFVdcoXnz5mnGjBmaM2eOAgMDzT4cAAAApyAjAQCAmsBtBalDhw4pJiZGwcHBio+P1/z589WsWTPt27dPRUVFSkhIsLZt3769mjVrptTUVF111VVKTU1V586dFRUVZW2TmJioe+65R/v371e3bt3ccUhwoupeIXTllcXqbpth5ACAqiAj4ULISAAAX+GWglSvXr20fPlytWvXTseOHdPcuXPVp08fffPNN8rKylJgYKDCwsJsXhMVFaWsrCxJUlZWlk3QKltftq4iBQUFKigosD7Py8tz0hH5PlfOa8CcCZ7BUShkaDsAmIuM5H1cnWPISe5HRgIA13BLQWrgwN+vmHTp0kW9evVSbGys3n77bdWuXdtl+50/f77mzp3rsu3Dtao79xRzVrk2SBHSAMB5yEioDk8cNeUtyEgA4D5uucteeWFhYWrbtq2+++47RUdHq7CwUDk5OTZtjh8/bp1PITo62u6OMmXPHc25UGbmzJnKzc21Pn744QfnHggAAIATkZEAAICvctscUufLz8/X999/rzvuuENxcXEKCAjQli1bNGzYMElSenq6jh49qvj4eElSfHy8Hn/8cWVnZysyMlKStGnTJoWEhKhjx44V7icoKEhBQUGuPyCYorpD2H39aiDzMQCA7yAjobqclZPISAAAV3FLQWratGkaMmSIYmNjlZmZqdmzZ6tWrVoaPny4QkNDNXbsWE2dOlXh4eEKCQnRfffdp/j4eF111VWSpAEDBqhjx4664447tHDhQmVlZenRRx/VxIkTCVNAJXlLKOOWzQBqEjIS4H5kJAAwh1sKUj/++KOGDx+uEydOKCIiQr1799Ynn3yiiIgISdIzzzwjPz8/DRs2TAUFBUpMTNTzzz9vfX2tWrW0fv163XPPPYqPj1fdunU1atQo/fWvf3XH4QA+i7kPAMBcZCTAO5CRAODSWQzDMNzdCXfJy8tTaGiocnNzFRIS4vTtH3rrEadvE67haDh6dYe6l9+Wr/1EsHzYcnUg4+ofAGdz9fe/LyAjoQwZqfLISAC8ndkZySPmkAJ8ia/P2VCZYexcNQQAAOWRkchIAHA+ClKAqh+QzN5fZV7nqSENAAB4HzISAMBVKEgBHsrsAFhdlR1uz7ByAADgDGQkAPANFKQAH+Mt8zEwZB0AAJiJjAQAnoWCFACP4S23WQYAADATGQmAL/JzdwcAAAAAAABQszBCCoAk7xnGDgAAYCYyEgC4BgUpABXylklDmQwUAACYyVszkkROAuA5+MkeAAAAAAAATMUIKaAGMHuoeWWuGjraf2X6Wd1JPR297mij/TbPW/W4q1rb4kojAADeiYxUuYwkVS4nMSILQFVQkAJqKG8Zau5Kpd8dtV3Qwz39AAAAnoOM5CAjSeQkAE5HQQqAW7gy7Dm6Oke4BAAA3sDVmaV8TiIjAXAXClIAvJ6zglR1h5l//9mLdsua/dKpWtsCAABwFmcWm6ozZcHhnI3y+8z2539kJABlKEgBwP9xFNraiIAEAABQPieRkQBcKgpSADxa+fDjyolGAQAAvAUZCYC383N3BwAAAAAAAFCzUJACAAAAAACAqfjJHgCv4ol3gnF4a+Qw+wk7K8PRxOrlMfEnAAAozxMzkuQgJ5GRAPwfClIAcAEO76CniwcpR6GweYrtc0ehqTJh0tEkoo762arHXRfdFgAAQHWQkQBcKgpSAHABzhz9BAAA4CvISAAuFQUpAHATR1fsAAAAajoyElAzUJACgCqq7hwNdq/Lqd7+D731iN0yv9bNqrcxAAAAJyEjAagKClIAUEM4mgy0MpN/Vvd1AAAA3oCMBLgHBSkA8FHlh7tXZqJRyT5cObra6WjSUAAAAG9ARgI8AwUpAPBR5ScbPSz7yUcdhabKDLfniiAAAPBWZCTAM1CQAgAf4PBON5Vg9qSh3HoZAACYiYwEeC4KUgBQg1U3pFVGdYMcgQwAALgbGQlwPQpSAACnKB+SHAU57nQDAABqGjIS4JifuzsAAAAAAACAmoURUgAAj3forUfslrVJftzmuaNJRI822m/znGHtAADAlzgrI0nkJJiPghQAoMoc3mUmp3rbKh+SSnNcN2cDAACAK5GRgMqjIAUA8Ep28zE4CGl+jZwzH4OjSUSb/dLJbhm3dQYAAO5mZkZytD8yEiqLghQAwDQO71gTZh9aXKn81UYCEgAAcDcyEmoiClIAAK9Umdsxl29z6Dv7eRb8PmMOBQAA4Duqk5Ek6bBsl5GR4GoUpAAANZrD0Najetty9NO+8hwFufKvq2zYq+7rAAAALoaMBFejIAUAcCuHk3+6WWUmES1/FVFy7nwM5VUmyAEAAN/hDRlJss9JZCRUFgUpAADK8cQAWF2OQhpXCQEAQHWQkeBMFKQAADCRo/BTfkj89+JKHwAAqFkqk5EOffeI/Fq7brQVzEVBCgAAE1VmotHqYsg6AADwVmSkmoeCFAAATuLKIAUAAOCtyEhwhIIUAAA1DHeeAQAAsEdGMhcFKQAAPExlryI6aw4FJvUEAADeojI5iYzkHShIAQDgpao7/L26IY2rhgAAwBuQkbwDBSkAAGqY8iGNu9UAAACQkcxGQQoAgBrO0VXE78XdaAAAQM1GRnItClIAAKBamFcBAADAHhmpcihIAQAApyGAAQAA2CMj2aMgBQAAqsXRMHbmWgAAADUdGalyKEgBAAA71b07jSOOrgiWV9OvEAIAAO9ARnIeClIAAMDtGMYOAABgz5czEgUpAADgUtxCGQAAwF5Nz0gUpAAAgNNUZhh7pYe697jEzgAAAHgIMpI9P3d3AAAAAAAAADULBSkAAAAAAACYyusLUkuWLFHz5s0VHBysXr16ae/eve7uEgAAgNuRkQAAgCfz6oLUypUrNXXqVM2ePVuff/65unbtqsTERGVnZ7u7awAAAG5DRgIAAJ7OqwtSTz/9tMaPH68xY8aoY8eOWrp0qerUqaNXX33V3V0DAABwGzISAADwdF57l73CwkLt27dPM2fOtC7z8/NTQkKCUlNTHb6moKBABQUF1ue5ubmSpLy8PJf0Mf9MwcUbAQAAh1z1/Vy2XcMwXLJ9dyMjAQDg23wlI3ltQeqXX35RSUmJoqKibJZHRUXp22+/dfia+fPna+7cuXbLmzZt6pI+AgCASzD27y7d/KlTpxQaGurSfbgDGQkAAB/nIxnJawtS1TFz5kxNnTrV+ry0tFQnT55Uw4YNZbFYnLqvvLw8NW3aVD/88INCQkKcum1PwTH6Bo7RN9SEY5RqxnFyjK5nGIZOnTqlmJgY0/ftqchIzsUx+gaO0XfUhOPkGH2Du4/R7IzktQWpRo0aqVatWjp+/LjN8uPHjys6Otrha4KCghQUFGSzLCwszFVdlCSFhIT47B9LGY7RN3CMvqEmHKNUM46TY3QtXxwZVYaM5Dk4Rt/AMfqOmnCcHKNvqCkZyWsnNQ8MDFRcXJy2bNliXVZaWqotW7YoPj7ejT0DAABwHzISAADwBl47QkqSpk6dqlGjRqlHjx668sor9Y9//EOnT5/WmDFj3N01AAAAtyEjAQAAT+fVBanbb79dP//8s2bNmqWsrCxdccUVSklJsZvE0x2CgoI0e/Zsu+HvvoRj9A0co2+oCcco1Yzj5BjhDGQk9+IYfQPH6DtqwnFyjL6hJhzj+SyGr97zGAAAAAAAAB7Ja+eQAgAAAAAAgHeiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpC7BkiVL1Lx5cwUHB6tXr17au3fvBduvWrVK7du3V3BwsDp37qwNGzaY1NOqmz9/vnr27Kn69esrMjJSQ4cOVXp6+gVfs3z5clksFptHcHCwST2uujlz5tj1t3379hd8jTedQ0lq3ry53TFaLBZNnDjRYXtvOYc7d+7UkCFDFBMTI4vFojVr1tisNwxDs2bNUuPGjVW7dm0lJCTo0KFDF91uVf+mXelCx1hUVKQZM2aoc+fOqlu3rmJiYjRy5EhlZmZecJvV+cy70sXO4+jRo+36m5SUdNHtest5lOTw79Niseipp56qcJuedB4r811x9uxZTZw4UQ0bNlS9evU0bNgwHT9+/ILbre7fMDwHGcmWt3y/lqkJGUnyzZxERiIjXYi3nEfJ+zOSRE6qDApS1bRy5UpNnTpVs2fP1ueff66uXbsqMTFR2dnZDtt//PHHGj58uMaOHasvvvhCQ4cO1dChQ/XNN9+Y3PPK2bFjhyZOnKhPPvlEmzZtUlFRkQYMGKDTp09f8HUhISE6duyY9XHkyBGTelw9nTp1sunvrl27KmzrbedQkj799FOb49u0aZMk6dZbb63wNd5wDk+fPq2uXbtqyZIlDtcvXLhQixcv1tKlS7Vnzx7VrVtXiYmJOnv2bIXbrOrftKtd6BjPnDmjzz//XI899pg+//xzvfvuu0pPT9cf//jHi263Kp95V7vYeZSkpKQkm/6++eabF9ymN51HSTbHduzYMb366quyWCwaNmzYBbfrKeexMt8VU6ZM0XvvvadVq1Zpx44dyszM1M0333zB7Vbnbxieg4zkmDd8v57P1zOS5Js5iYxERqqIN51HyfszkkROqhQD1XLllVcaEydOtD4vKSkxYmJijPnz5ztsf9tttxmDBw+2WdarVy/jrrvucmk/nSU7O9uQZOzYsaPCNsuWLTNCQ0PN69Qlmj17ttG1a9dKt/f2c2gYhvHAAw8YrVq1MkpLSx2u97ZzaBiGIclYvXq19XlpaakRHR1tPPXUU9ZlOTk5RlBQkPHmm29WuJ2q/k2bqfwxOrJ3715DknHkyJEK21T1M28mR8c4atQo48Ybb6zSdrz9PN54441Gv379LtjGk89j+e+KnJwcIyAgwFi1apW1zcGDBw1JRmpqqsNtVPdvGJ6DjGTP275fa2JGMgzfy0lkpHPISOd4+3n09oxkGOQkRxghVQ2FhYXat2+fEhISrMv8/PyUkJCg1NRUh69JTU21aS9JiYmJFbb3NLm5uZKk8PDwC7bLz89XbGysmjZtqhtvvFH79+83o3vVdujQIcXExKhly5YaMWKEjh49WmFbbz+HhYWF+s9//qM777xTFoulwnbedg7Ly8jIUFZWls25Cg0NVa9evSo8V9X5m/Y0ubm5slgsCgsLu2C7qnzmPcH27dsVGRmpdu3a6Z577tGJEycqbOvt5/H48eN6//33NXbs2Iu29dTzWP67Yt++fSoqKrI5J+3bt1ezZs0qPCfV+RuG5yAjVczbvl9rUkaSakZOIiOFXbCdp363VoSM5Jgnn0dykj0KUtXwyy+/qKSkRFFRUTbLo6KilJWV5fA1WVlZVWrvSUpLSzV58mRdc801uvzyyyts165dO7366qtau3at/vOf/6i0tFRXX321fvzxRxN7W3m9evXS8uXLlZKSohdeeEEZGRnq06ePTp065bC9N59DSVqzZo1ycnI0evToCtt42zl0pOx8VOVcVedv2pOcPXtWM2bM0PDhwxUSElJhu6p+5t0tKSlJ//73v7VlyxY9+eST2rFjhwYOHKiSkhKH7b39PL722muqX7/+RYdpe+p5dPRdkZWVpcDAQLv/CbjY92VZm8q+Bp6DjOSYt32/1rSMJNWMnERGIiN563n09owkkZMq4u/uDsDzTZw4Ud98881Ff38bHx+v+Ph46/Orr75aHTp00Isvvqh58+a5uptVNnDgQOt/d+nSRb169VJsbKzefvvtSlXfvc2//vUvDRw4UDExMRW28bZziHOTd952220yDEMvvPDCBdt622c+OTnZ+t+dO3dWly5d1KpVK23fvl39+/d3Y89c49VXX9WIESMuOkGup57Hyn5XAL6EjOQ7yEm+h4zkO7w9I0nkpIowQqoaGjVqpFq1atnNfn/8+HFFR0c7fE10dHSV2nuKSZMmaf369dq2bZuaNGlSpdcGBASoW7du+u6771zUO+cKCwtT27ZtK+yvt55DSTpy5Ig2b96scePGVel13nYOJVnPR1XOVXX+pj1BWdA6cuSINm3adMErf45c7DPvaVq2bKlGjRpV2F9vPY+S9NFHHyk9Pb3Kf6OSZ5zHir4roqOjVVhYqJycHJv2F/u+LGtT2dfAc5CRKsfbvl99OSNJNScnkZEqzxO+W6uCjOSYp5xHclLFKEhVQ2BgoOLi4rRlyxbrstLSUm3ZssXmqsn54uPjbdpL0qZNmyps726GYWjSpElavXq1tm7dqhYtWlR5GyUlJfr666/VuHFjF/TQ+fLz8/X9999X2F9vO4fnW7ZsmSIjIzV48OAqvc7bzqEktWjRQtHR0TbnKi8vT3v27KnwXFXnb9rdyoLWoUOHtHnzZjVs2LDK27jYZ97T/Pjjjzpx4kSF/fXG81jmX//6l+Li4tS1a9cqv9ad5/Fi3xVxcXEKCAiwOSfp6ek6evRoheekOn/D8BxkpMrxtu9XX85IUs3JSWSkyiMjeQ5vzUgSOalS3Dmjujd76623jKCgIGP58uXGgQMHjAkTJhhhYWFGVlaWYRiGcccddxgPP/ywtf3u3bsNf39/Y9GiRcbBgweN2bNnGwEBAcbXX3/trkO4oHvuuccIDQ01tm/fbhw7dsz6OHPmjLVN+WOcO3eu8cEHHxjff/+9sW/fPiM5OdkIDg429u/f745DuKgHH3zQ2L59u5GRkWHs3r3bSEhIMBo1amRkZ2cbhuH957BMSUmJ0axZM2PGjBl267z1HJ46dcr44osvjC+++MKQZDz99NPGF198Yb17yoIFC4ywsDBj7dq1xldffWXceOONRosWLYzffvvNuo1+/foZzz33nPX5xf6mzXahYywsLDT++Mc/Gk2aNDHS0tJs/kYLCgqs2yh/jBf7zJvtQsd46tQpY9q0aUZqaqqRkZFhbN682ejevbvRpk0b4+zZs9ZtePN5LJObm2vUqVPHeOGFFxxuw5PPY2W+K+6++26jWbNmxtatW43PPvvMiI+PN+Lj4222065dO+Pdd9+1Pq/M3zA8FxnJe79fy9SUjGQYvpeTyEhkpDLefB7LeHNGMgxyUmVQkLoEzz33nNGsWTMjMDDQuPLKK41PPvnEuu7aa681Ro0aZdP+7bffNtq2bWsEBgYanTp1Mt5//32Te1x5khw+li1bZm1T/hgnT55sfT+ioqKMQYMGGZ9//rn5na+k22+/3WjcuLERGBhoXHbZZcbtt99ufPfdd9b13n4Oy3zwwQeGJCM9Pd1unbeew23btjn8fJYdS2lpqfHYY48ZUVFRRlBQkNG/f3+744+NjTVmz55ts+xCf9Nmu9AxZmRkVPg3um3bNus2yh/jxT7zZrvQMZ45c8YYMGCAERERYQQEBBixsbHG+PHj7UKTN5/HMi+++KJRu3ZtIycnx+E2PPk8Vua74rfffjPuvfdeo0GDBkadOnWMm266yTh27Jjdds5/TWX+huHZyEje+f1apqZkJMPwvZxERiIjlfHm81jGmzOSYZCTKsNiGIZR+fFUAAAAAAAAwKVhDikAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFVMKcOXNksVhsljVv3lyjR4922j5Gjx6t5s2bO217uLDt27fLYrHonXfecXdXKu26667Tdddd59RtOvpse5vDhw/LYrFo+fLlTt1uaWmpLr/8cj3++OMXbevofSwuLtZDDz2kpk2bys/PT0OHDq3S/pcuXapmzZqpoKCgSq8DADORkXwPGekcMlLFyEhwFgpSMMWGDRs0Z84cd3fD7TIzMzVnzhylpaW5uyuoQc6cOaM5c+Zo+/bt7u6KV3nzzTf1ww8/aNKkSdV6/auvvqqnnnpKt9xyi1577TVNmTJFkrRy5Ur9+c9/Vps2bWSxWCoM0KNHj1ZhYaFefPHF6h4CAC9ARjqHjAR3ICNVjysy0okTJ/TUU0+pb9++ioiIUFhYmK666iqtXLnS7vVkJN9BQQqm2LBhg+bOnevubjhVenq6Xn755Sq9JjMzU3PnznUYtl5++WWlp6c7qXfA786cOaO5c+c6DFuPPvqofvvtN/M75USxsbH67bffdMcddzh1u0899ZSSk5MVGhparddv3bpVl112mZ555hndcccduvbaayVJL7zwgtauXaumTZuqQYMGFb4+ODhYo0aN0tNPPy3DMKrVBwCej4x0DhkJ7kBGqh5XZKTU1FQ98sgjCg8P16OPPqrHH39cderUUXJysmbPnm3zejKS76AgBZc6ffq0W/d/9uxZlZaWumTbQUFBCggIcNr2AgICFBQU5LTtmc0wjAq/tJ1xHtz9WXIFTzgmf39/BQcHu7sbl8RisSg4OFi1atVy2ja/+OILffnll7rtttuqvY3s7GyFhYXZLX/99deVm5urrVu3KiYm5oLbuO2223TkyBFt27at2v0A4Jnc/R1ARjIPGanqPOGYyEiOuSojderUSYcOHdKaNWv0wAMPaOLEidqyZYv69eunJ5980u4zQUbyDRSk4DRlvw8+cOCA/vSnP6lBgwbq3bu3Ro8erSVLlkg6949i2aOyrrvuOl1++eXat2+frr76atWuXVstWrTQ0qVLbdqV/d79rbfe0qOPPqrLLrtMderUUV5eniRpz549SkpKUmhoqOrUqaNrr71Wu3fvttvfrl271LNnTwUHB6tVq1YVDgV1ND9CTk6OpkyZoubNmysoKEhNmjTRyJEj9csvv2j79u3q2bOnJGnMmDHW96HsN92O5kc4ffq0HnzwQTVt2lRBQUFq166dFi1aZHclwGKxaNKkSVqzZo0uv/xyBQUFqVOnTkpJSans22xVWlqqf/zjH+rUqZOCg4MVFRWlu+66S7/++qvd8d9www364IMP1KNHD9WuXVsvvvjiRc/DqlWrFBcXp9q1a6tRo0b685//rJ9++slm26NHj1a9evX0/fffa9CgQapfv75GjBhRqf6fPHlS06ZNU+fOnVWvXj2FhIRo4MCB+vLLLx22Lykp0V/+8hdFR0erbt26+uMf/6gffvjBps2hQ4c0bNgwRUdHKzg4WE2aNFFycrJyc3Mr+7Ze8Jgq+56XV1hYqFmzZikuLk6hoaGqW7eu+vTpY/PFfPjwYUVEREiS5s6da/3clf08pPzv+i+//HJdf/31dvsqLS3VZZddpltuucVmWXX6XV5ZH/7f//t/+vOf/6zQ0FBFRETosccek2EY+uGHH3TjjTcqJCRE0dHR+vvf/27zekfzI5S93z/99JOGDh2qevXqKSIiQtOmTVNJSclF+7RmzRoFBgaqb9++dusu9m9EWX+2bdum/fv3W9/zsquvZfMlVEZcXJzCw8O1du3aSrUH4JnISGQkMlLFyEgVq0kZqUWLFoqNjbVpb7FYNHToUBUUFOh///ufzToykm/wd3cH4HtuvfVWtWnTRk888YQMw1C3bt2UmZmpTZs26fXXX6/WNn/99VcNGjRIt912m4YPH663335b99xzjwIDA3XnnXfatJ03b54CAwM1bdo0FRQUKDAwUFu3btXAgQMVFxen2bNny8/PT8uWLVO/fv300Ucf6corr5Qkff311xowYIAiIiI0Z84cFRcXa/bs2YqKirpoH/Pz89WnTx8dPHhQd955p7p3765ffvlF69at048//qgOHTror3/9q2bNmqUJEyaoT58+kqSrr77a4fYMw9Af//hHbdu2TWPHjtUVV1yhDz74QNOnT9dPP/2kZ555xqb9rl279O677+ree+9V/fr1tXjxYg0bNkxHjx5Vw4YNK/1e33XXXVq+fLnGjBmj+++/XxkZGfrnP/+pL774Qrt377a54pmenq7hw4frrrvu0vjx49WuXbsLnoey7fbs2VPz58/X8ePH9eyzz2r37t364osvbK6UFBcXKzExUb1799aiRYtUp06dSvX/f//7n9asWaNbb71VLVq00PHjx/Xiiy/q2muv1YEDB+xGpDz++OOyWCyaMWOGsrOz9Y9//EMJCQlKS0tT7dq1VVhYqMTERBUUFOi+++5TdHS0fvrpJ61fv145OTlVGqpc0TFV5T0/X15enl555RUNHz5c48eP16lTp/Svf/1LiYmJ2rt3r6644gpFRETohRde0D333KObbrpJN998sySpS5cuDrd5++23a86cOcrKylJ0dLR1+a5du5SZmank5GTrsur2uyK33367OnTooAULFuj999/X3/72N4WHh+vFF1+0Xh1bsWKFpk2bpp49ezoMQucrKSlRYmKievXqpUWLFmnz5s36+9//rlatWumee+654Gs//vhjXX755XbHUJl/IyIiIvT666/r8ccfV35+vubPny9J6tChQ5XejzLdu3d3+D+GALwPGYmMVNF5ICORkS6kJmekrKwsSVKjRo3s1pGRfIABOMns2bMNScbw4cPt1k2cONGo7sft2muvNSQZf//7363LCgoKjCuuuMKIjIw0CgsLDcMwjG3bthmSjJYtWxpnzpyxti0tLTXatGljJCYmGqWlpdblZ86cMVq0aGH84Q9/sC4bOnSoERwcbBw5csS67MCBA0atWrXs+h8bG2uMGjXK+nzWrFmGJOPdd9+1O4ay/X766aeGJGPZsmV2bUaNGmXExsZan69Zs8aQZPztb3+zaXfLLbcYFovF+O6776zLJBmBgYE2y7788ktDkvHcc8/Z7asiH330kSHJWLFihc3ylJQUu+WxsbGGJCMlJcWmbUXnobCw0IiMjDQuv/xy47fffrMuX79+vSHJmDVrls17Icl4+OGHK933MmfPnjVKSkpslmVkZBhBQUHGX//6V7t+XnbZZUZeXp51+dtvv21IMp599lnDMAzjiy++MCQZq1atqnJfzlfRMVXlPb/22muNa6+91vq8uLjYKCgosHndr7/+akRFRRl33nmnddnPP/9sSDJmz55t16+yv9sy6enpDj839957r1GvXj3rOa1Kvy+mrA8TJkywObYmTZoYFovFWLBggc3x1a5d2+ZvLyMjw+7vquz9Pv+cG4ZhdOvWzYiLi7ton5o0aWIMGzbMbnlV/o249tprjU6dOl1wP506dbI5p45MmDDBqF279kX7DMBzkZHISIZBRqoIGaliNTkjGYZhnDhxwoiMjDT69OnjcD0Zyfvxkz043d133+30bfr7++uuu+6yPg8MDNRdd92l7Oxs7du3z6btqFGjVLt2bevztLQ0HTp0SH/605904sQJ/fLLL/rll190+vRp9e/fXzt37lRpaalKSkr0wQcfaOjQoWrWrJn19R06dFBiYuJF+/jf//5XXbt21U033WS3rjq3jN2wYYNq1aql+++/32b5gw8+KMMwtHHjRpvlCQkJatWqlfV5ly5dFBISYje89UJWrVql0NBQ/eEPf7C+T7/88ovi4uJUr149u99ot2jRosL3pvx5+Oyzz5Sdna17773X5vf4gwcPVvv27fX+++/bbeNiV2gcCQoKsv4cqqSkRCdOnFC9evXUrl07ff7553btR44cqfr161uf33LLLWrcuLE2bNggSdarex988IHOnDlT5f6UV/6Yqvqen69WrVoKDAyUdG5o+MmTJ1VcXKwePXo4PNbKaNu2ra644gqbO5qUlJTonXfe0ZAhQ6zn9FL6XZFx48bZHFuPHj1kGIbGjh1rXR4WFqZ27dpV+nNd/t+jPn36VOq1J06csJtw/FL/jaiuBg0a6LfffnPK5w+Ae5GRyEgSGakiZKSK1cSMVFpaqhEjRignJ0fPPfecwzZkJO9HQQpO16JFC6dvMyYmRnXr1rVZ1rZtW0nnfot8of0fOnRI0rkv/4iICJvHK6+8ooKCAuXm5urnn3/Wb7/9pjZt2tjt//xh1hX5/vvvdfnll1flsC7oyJEjiomJsQkC0u9DWo8cOWKz/Px//Ms0aNCgSr9VP3TokHJzcxUZGWn3XuXn5ys7O9um/YXOdfl1Zf119F62b9/e7nj8/f3VpEmTSve9TGlpqZ555hm1adNGQUFBatSokSIiIvTVV185nM+g/Pm2WCxq3bq19XPVokULTZ06Va+88ooaNWqkxMRELVmypEpzI1zomKr6npf32muvqUuXLgoODlbDhg0VERGh999/v1r9K3P77bdr9+7d1nkrtm/fruzsbN1+++1O67cj5T/DoaGhCg4OthuiHRoaWqnPdXBwsHVuiDJV+Zswys1Dcqn/RlRXWT+q8z9tADwLGck5yEhkJDKS72ek++67TykpKXrllVfUtWvXC/aDjOS9mEMKTnf+FR9P2H/ZnUueeuopXXHFFQ5fU69ePRUUFLi6ay5V0d0zyn9hXEhpaakiIyO1YsUKh+vLf3Fd6Fxf6ufg/Kt4VfHEE0/oscce05133ql58+YpPDxcfn5+mjx5crXvYvP3v/9do0eP1tq1a/Xhhx/q/vvv1/z58/XJJ59UKRA6Oqaqvufn+89//qPRo0dr6NChmj59uiIjI1WrVi3Nnz9f33//faX7Vd7tt9+umTNnatWqVZo8ebLefvtthYaGKikpySn9roijz/ClfK4v5Y4yDRs2rPLEo67y66+/qk6dOm7/txXApXP33zEZyRYZiYxUVWQkczLS3Llz9fzzz2vBggW64447KmxHRvJ+FKRgikutWmdmZur06dM2VwD/3//7f5Jkd9eV8sqGaIeEhCghIaHCdhEREapdu7b1auH50tPTL9rHVq1a6Ztvvrlgm6q8D7Gxsdq8ebNOnTplcwXw22+/ta53tlatWmnz5s265pprnP4Pe1l/09PT1a9fP5t16enpTjued955R9dff73+9a9/2SzPyclxOBli+fNtGIa+++47uwktO3furM6dO+vRRx/Vxx9/rGuuuUZLly7V3/72t0vq76W85++8845atmypd9991+azNXv2bJt2Vf37a9Giha688kqtXLlSkyZN0rvvvquhQ4fa3HLblZ8VT9C+fXtlZGTYLLvUfyOqKyMjo9oTogPwfGSkc8hIZKTyyEieydUZacmSJZozZ44mT56sGTNmXLAtGcn78ZM9mKIsJOXk5FTr9cXFxTa3DS0sLNSLL76oiIgIxcXFXfC1cXFxatWqlRYtWqT8/Hy79T///LOkc1cKEhMTtWbNGh09etS6/uDBg/rggw8u2sdhw4bpyy+/1OrVq+3WlV2pqMr7MGjQIJWUlOif//ynzfJnnnlGFotFAwcOvOg2quq2225TSUmJ5s2bZ7euuLi42udPknr06KHIyEgtXbrU5krrxo0bdfDgQQ0ePLja2z5frVq17K4MrVq1yu62yWX+/e9/69SpU9bn77zzjo4dO2Z9f/Py8lRcXGzzms6dO8vPz88pV4wv5T0vu7p1/vHu2bNHqampNu3K7lRTlfN3++2365NPPtGrr76qX375xWYo+qX22xvEx8frm2++sTnHl/pvRHV9/vnnFd5pCoD3IyORkchIjpGRPJMrM9LKlSt1//33a8SIEXr66acv2p6M5P0YIQVTlAWi+++/X4mJiapVq5bNrVEvJiYmRk8++aQOHz6stm3bauXKlUpLS9NLL7100dum+vn56ZVXXtHAgQPVqVMnjRkzRpdddpl++uknbdu2TSEhIXrvvfcknRsempKSoj59+ujee+9VcXGxnnvuOXXq1ElfffXVBfczffp0vfPOO7r11lt15513Ki4uTidPntS6deu0dOlSde3aVa1atVJYWJiWLl2q+vXrq27duurVq5fDeQaGDBmi66+/Xo888ogOHz6srl276sMPP9TatWs1efJkm8k5neXaa6/VXXfdpfnz5ystLU0DBgxQQECADh06pFWrVunZZ5/VLbfcUq1tBwQE6Mknn9SYMWN07bXXavjw4dZbGjdv3lxTpkxxyjHccMMN+utf/6oxY8bo6quv1tdff60VK1aoZcuWDtuHh4erd+/eGjNmjI4fP65//OMfat26tcaPHy9J2rp1qyZNmqRbb71Vbdu2VXFxsV5//XXVqlVLw4YNu+T+Xsp7fsMNN+jdd9/VTTfdpMGDBysjI0NLly5Vx44dbf7Honbt2urYsaNWrlyptm3bKjw8XJdffvkF5/O47bbbNG3aNE2bNk3h4eF2V85d+VnxBDfeeKPmzZunHTt2aMCAAdbll/JvRJmdO3dq586dks79z97p06etV5H79u1rc6vmffv26eTJk7rxxhudeHQAPAkZiYxERnKMjOSZXJWR9u7dq5EjR6phw4bq37+/3U8er776apvPKhnJR5h7Uz/4srLbkv78889264qLi4377rvPiIiIMCwWS5Vub1x2W9DPPvvMiI+PN4KDg43Y2Fjjn//8p027slvUVnTr2S+++MK4+eabjYYNGxpBQUFGbGyscdtttxlbtmyxabdjxw4jLi7OCAwMNFq2bGksXbrU7ravhmF/S2PDOHdr0kmTJhmXXXaZERgYaDRp0sQYNWqU8csvv1jbrF271ujYsaPh7+9vcxvW8rc0NgzDOHXqlDFlyhQjJibGCAgIMNq0aWM89dRTNrdmNoxztzSeOHGi3TE76mNlvPTSS0ZcXJxRu3Zto379+kbnzp2Nhx56yMjMzLTZ9uDBg+1ee7HzsHLlSqNbt25GUFCQER4ebowYMcL48ccfbdqMGjXKqFu3bpX7bRjnbmn84IMPGo0bNzZq165tXHPNNUZqaqrd7YDL+vnmm28aM2fONCIjI43atWsbgwcPtrld7f/+9z/jzjvvNFq1amUEBwcb4eHhxvXXX29s3ry5Sv262DFV5j0vfwylpaXGE088YcTGxhpBQUFGt27djPXr1zv8LH388cfWz7XOu72xo892mWuuucaQZIwbN+6S+n0xFf3bUdF7Vv5WwRXd0tjRay90vOV16dLFGDt2rN3yyv4bDN2JIwABAABJREFUUdEtjcvaOnqUv+30jBkzjGbNmtn9zQPwLmQkMpJhkJEqQkaqWE3KSMuWLaswH5U/BsMgI/kKi2FUYTY/wA2uu+46/fLLLxedewAAnOn111/XxIkTdfToUYWFhZm+/4KCAjVv3lwPP/ywHnjgAdP3D8DzkZEAuAMZCc7CHFIAADgwYsQINWvWTEuWLHHL/pctW6aAgADdfffdbtk/AACAI2QkOAsjpOA2J0+eVGFhYYXra9WqpYiICK7+OUFJSYl1YtKK1KtXT/Xq1TOpR1X322+/KTc394JtwsPDFRgYaFKPzsnNzdVvv/12wTbR0dEm9caz5OfnO5wk93wRERGXdOthAPBFZCTzkJFch4xUMTIScA6TmsNtbr75Zu3YsaPC9bGxsTp8+LB5HfJhP/zwg8NJQc83e/ZszZkzx5wOVcPKlSs1ZsyYC7bZtm2brrvuOnM69H8eeOABvfbaaxdsU1Pr/osWLdLcuXMv2CYjI+OityUHgJqGjGQeMpLrkJEqRkYCzmGEFNxm3759+vXXXytcX7t2bV1zzTUm9sh3nT17Vrt27bpgm5YtW1Z4lxVPcOzYMe3fv/+CbeLi4tSgQQOTenTOgQMHlJmZecE25e++UlP873//0//+978Ltundu7eCg4NN6hEAeAcyknnISK5DRqoYGQk4h4IUAAAAAAAATMWk5gAAAAAAADBVjZ5DqrS0VJmZmapfv74sFou7uwMAAExgGIZOnTqlmJgY+flxbc4RMhIAADWP2RmpRhekMjMz1bRpU3d3AwAAuMEPP/ygJk2auLsbHomMBABAzWVWRqrRBan69etLOvdmh4SEuLk3AADADHl5eWratKk1B8AeGQkAgJrH7IxUowtSZUPQQ0JCCFsAANQw/BStYmQkAABqLrMyEhMnAAAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwVY2eQwoAgAspKSlRUVGRu7uBKgoICFCtWrXc3Q0AAHwWGck7eVpGoiAFAEA5hmEoKytLOTk57u4KqiksLEzR0dFMXA4AgBORkbyfJ2UkClIAAJRTFrQiIyNVp04dj/jCRuUYhqEzZ84oOztbktS4cWM39wgAAN9BRvJenpiRKEgBAHCekpISa9Bq2LChu7uDaqhdu7YkKTs7W5GRkR41NB0AAG9FRvJ+npaRmNQcAIDzlM2HUKdOHTf3BJei7PwxvwUAAM5BRvINnpSRKEgBAOAAQ9C9G+cPAADX4DvWu3nS+aMgBQAAAAAAAFNRkAIAAAAAAICpmNQcAIBKKkrZZdq+ApJ6V7rtxYZez549W3PmzLnEHlWPxWLR6tWrNXTo0Gpv46WXXtIbb7yhzz//XKdOndKvv/6qsLAwp/URAABcGjMzkkROKnPy5EnNnj1bH374oY4ePaqIiAgNHTpU8+bNU2hoqHM76wIUpAAA8HLHjh2z/vfKlSs1a9YspaenW5fVq1evStsrLCxUYGCg0/p3qc6cOaOkpCQlJSVp5syZ7u4OAADwIr6ckzIzM5WZmalFixapY8eOOnLkiO6++25lZmbqnXfecXf3Loqf7LlQUcouuwcAAM4WHR1tfYSGhspisVifnz59WiNGjFBUVJTq1aunnj17avPmzTavb968uebNm6eRI0cqJCREEyZMkCS9/PLLatq0qerUqaObbrpJTz/9tN3IpLVr16p79+4KDg5Wy5YtNXfuXBUXF1u3K0k33XSTLBaL9fmXX36p66+/XvXr11dISIji4uL02WefVXh8kydP1sMPP6yrrrrKOW8Y3I6MBAAwiy/npMsvv1z//e9/NWTIELVq1Ur9+vXT448/rvfee8+6H09GQQoAAB+Wn5+vQYMGacuWLfriiy+UlJSkIUOG6OjRozbtFi1apK5du+qLL77QY489pt27d+vuu+/WAw88oLS0NP3hD3/Q448/bvOajz76SCNHjtQDDzygAwcO6MUXX9Ty5cut7T799FNJ0rJly3Ts2DHr8xEjRqhJkyb69NNPtW/fPj388MMKCAgw4d0AAAD4nS/mpNzcXIWEhMjf3/N/EOf5PQQAANXWtWtXde3a1fp83rx5Wr16tdatW6dJkyZZl/fr108PPvig9fkjjzyigQMHatq0aZKktm3b6uOPP9b69eutbebOnauHH35Yo0aNkiS1bNlS8+bN00MPPaTZs2crIiJCkhQWFqbo6Gjr644eParp06erffv2kqQ2bdq44MgBAAAuzNdy0i+//KJ58+ZZR3F5OkZIAQDgw/Lz8zVt2jR16NBBYWFhqlevng4ePGh35a9Hjx42z9PT03XllVfaLCv//Msvv9Rf//pX1atXz/oYP368jh07pjNnzlTYp6lTp2rcuHFKSEjQggUL9P3331/iUQIAAFSdL+WkvLw8DR48WB07dnTbJO1VRUEKAAAfNm3aNK1evVpPPPGEPvroI6Wlpalz584qLCy0aVe3bt0qbzs/P19z585VWlqa9fH111/r0KFDCg4OrvB1c+bM0f79+zV48GBt3bpVHTt21OrVq6u8fwAAgEvhKznp1KlTSkpKUv369bV69WqvmQqBn+wBAODDdu/erdGjR+umm26SdC4cHT58+KKva9eunXUugzLln3fv3l3p6elq3bp1hdsJCAhQSUmJ3fK2bduqbdu2mjJlioYPH65ly5ZZ+wgAAGAGX8hJeXl5SkxMVFBQkNatW3fBYpenoSAFAIAPa9Omjd59910NGTJEFotFjz32mEpLSy/6uvvuu099+/bV008/rSFDhmjr1q3auHGjLBaLtc2sWbN0ww03qFmzZrrlllvk5+enL7/8Ut98843+9re/STp3B5ktW7bommuuUVBQkIKDgzV9+nTdcsstatGihX788Ud9+umnGjZsWIV9ycrKUlZWlr777jtJ0tdff6369eurWbNmCg8Pv8R3CAAA1FTenpPy8vI0YMAAnTlzRv/5z3+Ul5envLw8SVJERIRq1arlhHfJdfjJHgAAPuzpp59WgwYNdPXVV2vIkCFKTExU9+7dL/q6a665RkuXLtXTTz+trl27KiUlRVOmTLG56paYmKj169frww8/VM+ePXXVVVfpmWeeUWxsrLXN3//+d23atElNmzZVt27dVKtWLZ04cUIjR45U27Ztddttt2ngwIGaO3duhX1ZunSpunXrpvHjx0uS+vbtq27dumndunWX8M4AAICazttz0ueff649e/bo66+/VuvWrdW4cWPr44cffrj0N8jFLIZhGO7uhLvk5eUpNDTUeltEZytK2WW3LCCpt9P3AwBwnrNnzyojI0MtWrTwqiHPZhg/fry+/fZbffTRR+7uykVd6Dy6+vvfF5CRAADlkZEuzFtykidlJH6yBwAAHFq0aJH+8Ic/qG7dutq4caNee+01Pf/88+7uFgAAgNuRky4dBSkAAODQ3r17tXDhQp06dUotW7bU4sWLNW7cOHd3CwAAwO3ISZeOghQAAHDo7bffdncXAAAAPBI56dIxqTkAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADCVv7s7AACAt/j+sxdN21erHndVqf3o0aP12muvSZL8/f0VHh6uLl26aPjw4Ro9erT8/Lz3GtT+/fs1a9Ys7du3T0eOHNEzzzyjyZMnu7tbAADg/5iZkSRy0vlefvll/fvf/9Y333wjSYqLi9MTTzyhK6+80s09uzjvfdcBAICNpKQkHTt2TIcPH9bGjRt1/fXX64EHHtANN9yg4uJid3ev2s6cOaOWLVtqwYIFio6Odnd3AACAF/LVnLR9+3YNHz5c27ZtU2pqqpo2baoBAwbop59+cnfXLoqCFAAAPiIoKEjR0dG67LLL1L17d/3lL3/R2rVrtXHjRi1fvtzaLicnR+PGjVNERIRCQkLUr18/ffnllzbbeu+999SzZ08FBwerUaNGuummm6zrfv31V40cOVINGjRQnTp1NHDgQB06dEiSdPr0aYWEhOidd96x2d6aNWtUt25dnTp1SoWFhZo0aZIaN26s4OBgxcbGav78+RUeV8+ePfXUU08pOTlZQUFBTninAABATeOrOWnFihW69957dcUVV6h9+/Z65ZVXVFpaqi1btjjhXXMtClIAAPiwfv36qWvXrnr33Xety2699VZlZ2dr48aN2rdvn7p3767+/fvr5MmTkqT3339fN910kwYNGqQvvvhCW7ZssRn2PXr0aH322Wdat26dUlNTZRiGBg0apKKiItWtW1fJyclatmyZTT+WLVumW265RfXr19fixYu1bt06vf3220pPT9eKFSvUvHlzU94PAACAMr6Yk86cOaOioiKFh4df2ptjAuaQAgDAx7Vv315fffWVJGnXrl3au3evsrOzraONFi1apDVr1uidd97RhAkT9Pjjjys5OVlz5861bqNr166SpEOHDmndunXavXu3rr76aknnrsw1bdpUa9as0a233qpx48bp6quv1rFjx9S4cWNlZ2drw4YN2rx5syTp6NGjatOmjXr37i2LxaLY2Fgz3w4AAAArX8tJM2bMUExMjBISEi75vXE1RkgBAODjDMOQxWKRJH355ZfKz89Xw4YNVa9ePesjIyND33//vSQpLS1N/fv3d7itgwcPyt/fX7169bIua9iwodq1a6eDBw9Kkq688kp16tTJOnnof/7zH8XGxqpv376Szl05TEtLU7t27XT//ffrww8/dNmxAwAAXIgv5aQFCxborbfe0urVqxUcHFz1N8NkjJACAMDHHTx4UC1atJAk5efnq3Hjxtq+fbtdu7CwMElS7dq1L3mf48aN05IlS/Twww9r2bJlGjNmjDXsde/eXRkZGdq4caM2b96s2267TQkJCXbzKQAAALiar+SkRYsWacGCBdq8ebO6dOlyyX00AyOkAADwYVu3btXXX3+tYcOGSToXcrKysuTv76/WrVvbPBo1aiRJ6tKlS4UTYXbo0EHFxcXas2ePddmJEyeUnp6ujh07Wpf9+c9/1pEjR7R48WIdOHBAo0aNstlOSEiIbr/9dr388stauXKl/vvf/1rnZgAAADCDr+SkhQsXat68eUpJSVGPHj2q/X6YjRFSAAD4iIKCAmVlZamkpETHjx9XSkqK5s+frxtuuEEjR46UJCUkJCg+Pl5Dhw7VwoUL1bZtW2VmZlon6OzRo4dmz56t/v37q1WrVkpOTlZxcbE2bNigGTNmqE2bNrrxxhs1fvx4vfjii6pfv74efvhhXXbZZbrxxhutfWnQoIFuvvlmTZ8+XQMGDFCTJk2s655++mk1btxY3bp1k5+fn1atWqXo6GjrlcfyCgsLdeDAAet///TTT0pLS1O9evXUunVr172hAADAZ/hqTnryySc1a9YsvfHGG2revLmysrIkyfpzQ0/GCCkAAHxESkqKGjdurObNmyspKUnbtm3T4sWLtXbtWtWqVUuSZLFYtGHDBvXt21djxoxR27ZtlZycrCNHjigqKkqSdN1112nVqlVat26drrjiCvXr10979+617mfZsmWKi4vTDTfcoPj4eBmGoQ0bNiggIMCmP2PHjlVhYaHuvPNOm+X169fXwoUL1aNHD/Xs2VOHDx/Whg0b5OfnOJZkZmaqW7du6tatm44dO6ZFixapW7duGjdunDPfPgAA4MN8NSe98MILKiws1C233KLGjRtbH4sWLXLm2+cSFsMwDHd3wl3y8vIUGhqq3NxchYSEOH37RSm77JYFJPV2+n4AAM5z9uxZZWRkqEWLFl4xGaQne/311zVlyhRlZmYqMDDQ1H1f6Dy6+vvfF5CRAADlkZGcy105yZMyEj/ZAwAATnXmzBkdO3ZMCxYs0F133WV6MQoAAMBTkZN+x0/2AACAUy1cuFDt27dXdHS0Zs6c6e7uAAAAeAxy0u8oSAEAAKeaM2eOioqKtGXLFo+fTBMAAMBM5KTfUZACAAAAAACAqShIAQAAAAAAwFQUpAAAcKC0tNTdXcAl4PwBAOAafMd6N086f9xlDwCA8wQGBsrPz0+ZmZmKiIhQYGCgLBaLu7uFSjIMQ4WFhfr555/l5+dXo+9cAwCAM5GRvJsnZiQKUgAAnMfPz08tWrTQsWPHlJmZ6e7uoJrq1KmjZs2ayc+PweAAADgDGck3eFJGoiAFAEA5gYGBatasmYqLi1VSUuLu7qCKatWqJX9/f67aAgDgZGQk7+ZpGYmCFAAADlgsFgUEBCggIMDdXQEAAPAYZCQ4i/vHaAEAAAAAAKBGoSAFAAAAAAAAUzm9IDV//nz17NlT9evXV2RkpIYOHar09HSbNmfPntXEiRPVsGFD1atXT8OGDdPx48dt2hw9elSDBw9WnTp1FBkZqenTp6u4uNimzfbt29W9e3cFBQWpdevWWr58ubMPBwAAwCnISAAAAL9zekFqx44dmjhxoj755BNt2rRJRUVFGjBggE6fPm1tM2XKFL333ntatWqVduzYoczMTN18883W9SUlJRo8eLAKCwv18ccf67XXXtPy5cs1a9Ysa5uMjAwNHjxY119/vdLS0jR58mSNGzdOH3zwgbMPCQAA4JKRkQAAAH5nMQzDcOUOfv75Z0VGRmrHjh3q27evcnNzFRERoTfeeEO33HKLJOnbb79Vhw4dlJqaqquuukobN27UDTfcoMzMTEVFRUmSli5dqhkzZujnn39WYGCgZsyYoffff1/ffPONdV/JycnKyclRSkpKpfqWl5en0NBQ5ebmKiQkxOnHXpSyy25ZQFJvp+8HAABUnqu//yuLjGSLjAQAgHuZnZFcPodUbm6uJCk8PFyStG/fPhUVFSkhIcHapn379mrWrJlSU1MlSampqercubM1aElSYmKi8vLytH//fmub87dR1qZsGwAAAJ6MjAQAAGoyf1duvLS0VJMnT9Y111yjyy+/XJKUlZWlwMBAhYWF2bSNiopSVlaWtc35Qatsfdm6C7XJy8vTb7/9ptq1a9v1p6CgQAUFBdbneXl5l3aAAAAA1UBGAgAANZ1LR0hNnDhR33zzjd566y1X7qbS5s+fr9DQUOujadOm7u4SAACogchIAACgpnNZQWrSpElav369tm3bpiZNmliXR0dHq7CwUDk5OTbtjx8/rujoaGub8neUKXt+sTYhISEOr/xJ0syZM5Wbm2t9/PDDD5d0jAAAAFVFRgIAAHBBQcowDE2aNEmrV6/W1q1b1aJFC5v1cXFxCggI0JYtW6zL0tPTdfToUcXHx0uS4uPj9fXXXys7O9vaZtOmTQoJCVHHjh2tbc7fRlmbsm04EhQUpJCQEJsHAACAGchIAAAAv3P6HFITJ07UG2+8obVr16p+/frW+QxCQ0NVu3ZthYaGauzYsZo6darCw8MVEhKi++67T/Hx8brqqqskSQMGDFDHjh11xx13aOHChcrKytKjjz6qiRMnKigoSJJ0991365///Kceeugh3Xnnndq6davefvttvf/++84+JAAAgEtGRgIAAPidxTAMw6kbtFgcLl+2bJlGjx4tSTp79qwefPBBvfnmmyooKFBiYqKef/5561BzSTpy5Ijuuecebd++XXXr1tWoUaO0YMEC+fv/XkPbvn27pkyZogMHDqhJkyZ67LHHrPuoDG5pDABAzWP2LY3LkJF+R0YCAMDzmJ2RnF6Q8iaELQAAah53FaS8CRkJAICax+yM5NK77AEAAAAAAADlUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmMrpBamdO3dqyJAhiomJkcVi0Zo1a2zWjx49WhaLxeaRlJRk0+bkyZMaMWKEQkJCFBYWprFjxyo/P9+mzVdffaU+ffooODhYTZs21cKFC519KAAAAE5FTgIAADjH6QWp06dPq2vXrlqyZEmFbZKSknTs2DHr480337RZP2LECO3fv1+bNm3S+vXrtXPnTk2YMMG6Pi8vTwMGDFBsbKz27dunp556SnPmzNFLL73k7MMBAABwGnISAADAOf7O3uDAgQM1cODAC7YJCgpSdHS0w3UHDx5USkqKPv30U/Xo0UOS9Nxzz2nQoEFatGiRYmJitGLFChUWFurVV19VYGCgOnXqpLS0ND399NM2gQwAAMCTkJMAAADOccscUtu3b1dkZKTatWune+65RydOnLCuS01NVVhYmDVkSVJCQoL8/Py0Z88ea5u+ffsqMDDQ2iYxMVHp6en69ddfK9xvQUGB8vLybB4AAACexB05iYwEAADMZnpBKikpSf/+97+1ZcsWPfnkk9qxY4cGDhyokpISSVJWVpYiIyNtXuPv76/w8HBlZWVZ20RFRdm0KXte1saR+fPnKzQ01Ppo2rSpMw8NAADgkrgrJ5GRAACA2Zz+k72LSU5Otv53586d1aVLF7Vq1Urbt29X//79XbrvmTNnaurUqdbneXl5BC4AAOAx3JWTyEgAAMBsbvnJ3vlatmypRo0a6bvvvpMkRUdHKzs726ZNcXGxTp48aZ1PITo6WsePH7dpU/a8ojkXpHNzMoSEhNg8AAAAPJVZOYmMBAAAzOb2gtSPP/6oEydOqHHjxpKk+Ph45eTkaN++fdY2W7duVWlpqXr16mVts3PnThUVFVnbbNq0Se3atVODBg3MPQAAAAAXIScBAABf5fSCVH5+vtLS0pSWliZJysjIUFpamo4ePar8/HxNnz5dn3zyiQ4fPqwtW7boxhtvVOvWrZWYmChJ6tChg5KSkjR+/Hjt3btXu3fv1qRJk5ScnKyYmBhJ0p/+9CcFBgZq7Nix2r9/v1auXKlnn33WZqg5AACApyEnAQAAnOP0gtRnn32mbt26qVu3bpKkqVOnqlu3bpo1a5Zq1aqlr776Sn/84x/Vtm1bjR07VnFxcfroo48UFBRk3caKFSvUvn179e/fX4MGDVLv3r310ksvWdeHhobqww8/VEZGhuLi4vTggw9q1qxZ3MoYAAB4NHISAADAORbDMAx3d8Jd8vLyFBoaqtzcXJfMlVCUsstuWUBSb6fvBwAAVJ6rv/99ARkJAICax+yM5PY5pAAAAAAAAFCzUJACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMJW/uztQ0xSl7LJ5HpDU2009AQAA8BxkJAAAahZGSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKSc3drPwEnhKTeAIAAJCRAADwbYyQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKu+x5IO4qAwAAYI+MBACA72CEFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApvJ3dwdQPUUpu+yWBST1dkNPAAAAPAcZCQAA78AIKQAAAAAAAJiKghQAAAAAAABMxU/2vISj4ecAAAA1HRkJAADvxAgpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKn93dwDOU5Syy25ZQFJvN/QEAADAc5CRAADwPIyQAgAAAAAAgKkoSAEAAAAAAMBU/GTPx5Ufos7wdAAAADISAADuxggpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmcnpBaufOnRoyZIhiYmJksVi0Zs0am/WGYWjWrFlq3LixateurYSEBB06dMimzcmTJzVixAiFhIQoLCxMY8eOVX5+vk2br776Sn369FFwcLCaNm2qhQsXOvtQAAAAnIqcBAAAcI7TC1KnT59W165dtWTJEofrFy5cqMWLF2vp0qXas2eP6tatq8TERJ09e9baZsSIEdq/f782bdqk9evXa+fOnZowYYJ1fV5engYMGKDY2Fjt27dPTz31lObMmaOXXnrJ2YcDAADgNOQkAACAcyyGYRgu27jFotWrV2vo0KGSzl31i4mJ0YMPPqhp06ZJknJzcxUVFaXly5crOTlZBw8eVMeOHfXpp5+qR48ekqSUlBQNGjRIP/74o2JiYvTCCy/okUceUVZWlgIDAyVJDz/8sNasWaNvv/220v3Ly8tTaGiocnNzFRIS4tyDl/3dWzwBd5ABANR0rv7+ryxPzklkJAAAah6zM5Kpc0hlZGQoKytLCQkJ1mWhoaHq1auXUlNTJUmpqakKCwuzhixJSkhIkJ+fn/bs2WNt07dvX2vIkqTExESlp6fr119/NeloAAAAnIecBAAAahJ/M3eWlZUlSYqKirJZHhUVZV2XlZWlyMhIm/X+/v4KDw+3adOiRQu7bZSta9CggcP9FxQUqKCgwPo8Ly/vEo4GAADAedyZk8hIAADAbDXqLnvz589XaGio9dG0aVN3dwkAAMDtyEgAAMBsphakoqOjJUnHjx+3WX78+HHruujoaGVnZ9usLy4u1smTJ23aONrG+ftwZObMmcrNzbU+fvjhh0s7IAAAACdxZ04iIwEAALOZWpBq0aKFoqOjtWXLFuuyvLw87dmzR/Hx8ZKk+Ph45eTkaN++fdY2W7duVWlpqXr16mVts3PnThUVFVnbbNq0Se3atavw53qSFBQUpJCQEJtHTVOUssvuAQAA3M+dOYmMREYCAMBsTi9I5efnKy0tTWlpaZLOTdCZlpamo0ePymKxaPLkyfrb3/6mdevW6euvv9bIkSMVExNjvcNMhw4dlJSUpPHjx2vv3r3avXu3Jk2apOTkZMXExEiS/vSnPykwMFBjx47V/v37tXLlSj377LOaOnWqsw8HAADAachJAAAA5zh9UvPPPvtM119/vfV5WfgZNWqUli9froceekinT5/WhAkTlJOTo969eyslJUXBwcHW16xYsUKTJk1S//795efnp2HDhmnx4sXW9aGhofrwww81ceJExcXFqVGjRpo1a5YmTJjg7MMBAABwGnISAADAORbDMAx3d8Jd8vLyFBoaqtzcXJcMTfeWod4BSb3d3QUAAEzj6u9/X0BGOoeMBACoSczOSE4fIQXv4ygUEsAAAEBNR0YCAMB1TJ3UHAAAAAAAAKAgBQAAAAAAAFPxkz04VH6IOsPTAQAAyEgAADgLI6QAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKOaRQKdz2GAAAwB4ZCQCA6qEghWojgAEAANgjIwEAcHH8ZA8AAAAAAACmYoQUnIpbIQMAANgjIwEAYIsRUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACm8nd3BwBJKkrZZfM8IKm3m3oCAADgOchIAABfxQgpAAAAAAAAmIqCFAAAAAAAAEzFT/bgUuWHmUsMNQcAACAjAQBqOgpSLnQ4Z6PdsuZhA93QE8/iKIBVpg0hDQAA30BGcoyMBACoSfjJHgAAAAAAAExFQQoAAAAAAACm4id78Brc9hgAAMAeP+MDAHgjRkgBAAAAAADAVIyQgtfiaiAAAIBjjCwHAHg6RkgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVc0ihxmHuKQAAAMeYewoAYBYKUvApFJsAAADskZEAAJ6GgpTJDudstHnePGygm3qC8xHSAABwLzKSZyIjAQBchTmkAAAAAAAAYCoKUgAAAAAAADAVP9lzs/LD0yWGqAMAAJCRAADwbRSkvATzKgAAANgjIwEA4J0oSHkprhq6Hrc9BgDA+5CRXI+MBABwBgpS8HmO7g7jrO0QwAAAgLciIwEA3IlJzQEAAAAAAGAqRkh5IEdDzQEAAGo6MhIAAL6DghTgZMyrAAAAYI+MBAA4Hz/ZAwAAAAAAgKkYIQXuRnMJnDUZqKNtcdUQAAD3IiNVHxkJAHAxFKRQbYQ0AAAAe2QkAAAujp/sAQAAAAAAwFSMkPJx5a/QufrqnNn7AwAAqA4yEgAA7kVByodwK2QAAAB7ZCQAADyPW36yN2fOHFksFptH+/btrevPnj2riRMnqmHDhqpXr56GDRum48eP22zj6NGjGjx4sOrUqaPIyEhNnz5dxcXFZh+K1zmcs9HuUZl2rt4f7BWl7LJ7AAB8GxnJfchI3oOMBAC+wW0jpDp16qTNmzf/3hH/37syZcoUvf/++1q1apVCQ0M1adIk3Xzzzdq9e7ckqaSkRIMHD1Z0dLQ+/vhjHTt2TCNHjlRAQICeeOIJ048FVcOQdefizjMA4FvISDUXk6E7FxkJADyb2wpS/v7+io6Otluem5urf/3rX3rjjTfUr18/SdKyZcvUoUMHffLJJ7rqqqv04Ycf6sCBA9q8ebOioqJ0xRVXaN68eZoxY4bmzJmjwMBAsw8HAADAKchIAACgJnBbQerQoUOKiYlRcHCw4uPjNX/+fDVr1kz79u1TUVGREhISrG3bt2+vZs2aKTU1VVdddZVSU1PVuXNnRUVFWdskJibqnnvu0f79+9WtWzd3HBKcqLpXCF15ZbG622YYOQCgKshIuBAyEgDAV7ilINWrVy8tX75c7dq107FjxzR37lz16dNH33zzjbKyshQYGKiwsDCb10RFRSkrK0uSlJWVZRO0ytaXratIQUGBCgoKrM/z8vKcdES+z5XzGjBngmdwFAoZ2g4A5iIjeR9X5xhykvuRkQDANdxSkBo48PcrJl26dFGvXr0UGxurt99+W7Vr13bZfufPn6+5c+e6bPtwrerOPcWcVa4NUoQ0AHAeMhKqwxNHTXkLMhIAuI9b7rJXXlhYmNq2bavvvvtO0dHRKiwsVE5Ojk2b48ePW+dTiI6OtrujTNlzR3MulJk5c6Zyc3Otjx9++MG5BwIAAOBEZCQAAOCr3DaH1Pny8/P1/fff64477lBcXJwCAgK0ZcsWDRs2TJKUnp6uo0ePKj4+XpIUHx+vxx9/XNnZ2YqMjJQkbdq0SSEhIerYsWOF+wkKClJQUJDrDwimqO4Qdl+/Gsh8DADgO8hIqC5n5SQyEgDAVdxSkJo2bZqGDBmi2NhYZWZmavbs2apVq5aGDx+u0NBQjR07VlOnTlV4eLhCQkJ03333KT4+XldddZUkacCAAerYsaPuuOMOLVy4UFlZWXr00Uc1ceJEwhRQSd4SyrhlM4CahIwEuB8ZCQDM4ZaC1I8//qjhw4frxIkTioiIUO/evfXJJ58oIiJCkvTMM8/Iz89Pw4YNU0FBgRITE/X8889bX1+rVi2tX79e99xzj+Lj41W3bl2NGjVKf/3rX91xOIDPYu4DADAXGQnwDmQkALh0FsMwDHd3wl3y8vIUGhqq3NxchYSEOH37h956xOnbhGs4Go5e3aHu5bflaz8RLB+2XB3IuPoHwNlc/f3vC8hIKENGqjwyEgBvZ3ZG8og5pABf4utzNlRmGDtXDQEAQHlkJDISAJyPghSg6gcks/fna1cSAQCAZyMjAQBchYIU4KEqG8jcfdWwsgGQYeUAAMAZyEgA4BsoSAE+xluuEDJkHQAAmImMBACehYIUAI/hLbdZBgAAMBMZCYAv8nN3BwAAAAAAAFCzMEIKgCTvGcYOAABgJjISALgGBSkAFTL7zjrVxWSgAADATN6akSRyEgDPwU/2AAAAAAAAYCpGSAE1gNlDzStz1dDR/ivTz+pO6unMK4SMyAIAwDeQkVybkS5lWwB8HwUpoIbylqHmrnTorUdsnrdJftxNPQEAAJ6CjGSfkSRyEgDnoyAFwC1cGfYcXZ0jXAIAAG/g6sxSPieRkQC4CwUpAD6nusGKIesAAMDXOSsnkZEAXCoKUgC8nrOu7DnaThtdPCB9/9mLdsuaqZNT+gQAAFBdzhz9VH5blclIh3M2yu+z/TbLyEgAylCQAuDRyocfV040CgAA4C3ISAC8nZ+7OwAAAAAAAICahYIUAAAAAAAATMVP9gB4FU+8E0zpd0ftF4ZVb34ERxN9lsfEnwAAoDxPzEiSg5xERgLwfyhIAcAFVHfCckehsHmK7XNHoakyYdLRJKKO+tmqx10X3RYAAEB1kJEAXCoKUgBwAc4c/QQAAOAryEgALhUFKQBwE0dX7AAAAGo6MhJQM1CQAoAqqu4cDXavy6ne/g+99YjdMr/Wzaq3MQAAACchIwGoCgpSAFBDOJoMtDKTf1b3dQAAAN6AjAS4BwUpAPBR5Ye7V2aiUck+XDm62ulo0lAAAABvQEYCPAMFKQDwUeUnGz0s+8lHHYWmygy354ogAADwVmQkwDNQkAIAH+DwTjeVYPakodx6GQAAmImMBHguClIAUINVN6RVRnWDHIEMAAC4GxkJcD0KUgAAp+AWzQAAAPbISIBjFKQAAC7h6Moit14GAAA1HRkJOIeCFADA4x166xG7ZW2SH7d57mgS0aON9ts8Z1g7AADwJc7KSBI5CeajIAUAqDKHd5nJqd62yoek0hzXzdkAAADgSmQkoPIoSAEAfIKjAOjXyDnD3x3N/dDsl052y7itMwAA8DSuzEiSfU4iI6GyKEgBAEzj8I41YfahpTKqO0Fo+auNBCQAAOBuZCTURBSkAABeqTK3Yy7f5tB39vMs+H3GHAoAAMB3VCcjSdJh2S4jI8HVKEgBAGo0h6GtR/W2VZkrko6CXPnXVTbsVfd1AAAAF0NGgqtRkAIAuJXDyT/drDKTiJa/iig5dz6G8qo7/B4AAHgnb8hIkn1OIiOhsihIAQBQjicGwOpyFNK4SggAAKqDjARnoiAFAICJHIWf8kPivxdX+gAAQM1SmYx06LtH5NfadaOtYC4KUgAAmKgyE41WF0PWAQCAtyIj1TwUpAAAcBJXBikAAABvRUaCIxSkAACoYbjzDAAAgD0ykrkoSAEA4GEqexXRWXMoMKknAADwFpXJSWQk70BBCgAAH+YotDEZKAAAqOnISO5HQQoAAC9V3fkYyr+usuGLYewAAMAbkJG8AwUpAABqOEeh7XtxNxoAAFCzkZFci4IUAACoFuZVAAAAsEdGqhwKUgAAwGkIYAAAAPbISPYoSAEAgGphMlAAAAB7ZKTKoSAFAADsVHcyUEccXREsr6ZfIQQAAN6BjOQ8FKQAAIDbMYwdAADAni9nJApSAADApap7C2UAAABfVtMzEgUpAADgNJUZxl7poe49LrEzAAAAHoKMZM/P3R0AAAAAAABAzUJBCgAAAAAAAKby+oLUkiVL1Lx5cwUHB6tXr17au3evu7sEAADgdmQkAADgyby6ILVy5UpNnTpVs2fP1ueff66uXbsqMTFR2dnZ7u4aAACA25CRAACAp/PqgtTTTz+t8ePHa8yYMerYsaOWLl2qOnXq6NVXX3V31wAAANyGjAQAADyd195lr7CwUPv27dPMmTOty/z8/JSQkKDU1FSHrykoKFBBQYH1eW5uriQpLy/PJX3MP1Nw8UYAAMAhV30/l23XMAyXbN/dyEj/n737Do+i3N8/fm86JYWWJiGEbmjSjSKoIKGIoiiCKKAU0YAUQeCrUhUQOFhRRI+gRzgqR5qUSFVEERAInQgYikISKUkoEkIyvz/4ZWVJgCTszm6S9+u69jrszDMzzzOL7H0+M/sMAABFW1HJSIW2IHXy5EllZmYqKCjIZnlQUJD279+f6zaTJk3SuHHjciwPCwtzSB8BAMAt6P0vh+7+7Nmz8vf3d+gxnIGMBABAEVdEMlKhLUgVxKhRozR06FDr+6ysLJ0+fVrlypWTxWKx67HS0tIUFhamY8eOyc/Pz677dmWMm3EXB4ybcRcXRXXshmHo7NmzCg0NdXZXXAYZyfEYN+MuDorruKXiO3bGXbTGbXZGKrQFqfLly8vd3V1JSUk2y5OSkhQcHJzrNt7e3vL29rZZFhAQ4KguSpL8/PyK1F/QvGLcxQvjLl4Yd/FTFMdeFO+MykZGcm2Mu3hh3MVPcR074y46zMxIhXZScy8vLzVq1Ehr1qyxLsvKytKaNWsUFRXlxJ4BAAA4DxkJAAAUBoX2DilJGjp0qHr27KnGjRuradOmevvtt3X+/Hk988wzzu4aAACA05CRAACAqyvUBaknnnhCf/31l0aPHq3ExETdcccdio2NzTGJpzN4e3trzJgxOW5/L+oYN+MuDhg34y4uivPYCzsykuth3Iy7OCiu45aK79gZd/Eat71ZjKL6zGMAAAAAAAC4pEI7hxQAAAAAAAAKJwpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEqH2bMmKHKlSvLx8dHzZo10+bNm2/Yfv78+apVq5Z8fHxUt25dLV++3Ga9YRgaPXq0QkJCVKJECbVu3VoHDhxw5BAKxJ7jzsjI0IgRI1S3bl2VKlVKoaGh6tGjh44fP+7oYeSbvT/vq/Xv318Wi0Vvv/22nXt96xwx7n379umhhx6Sv7+/SpUqpSZNmujo0aOOGkKB2Hvc586d04ABA1SxYkWVKFFCkZGRmjlzpiOHUCD5GfeePXvUuXNnVa5c+YZ/f/N7Lp3B3uOeNGmSmjRpIl9fXwUGBqpTp06Kj4934AgKxhGfd7bJkyfLYrFo8ODB9u00CgUyEhnpRshIZKSrkZHISGQkWBnIky+//NLw8vIyPv30U2PPnj1G3759jYCAACMpKSnX9j/99JPh7u5uTJkyxdi7d6/x6quvGp6ensauXbusbSZPnmz4+/sbixYtMnbs2GE89NBDRkREhPH333+bNaybsve4U1JSjNatWxtfffWVsX//fmPjxo1G06ZNjUaNGpk5rJtyxOedbcGCBUb9+vWN0NBQ46233nLwSPLHEeM+ePCgUbZsWWP48OHGtm3bjIMHDxqLFy++7j6dwRHj7tu3r1G1alVj3bp1RkJCgvHRRx8Z7u7uxuLFi80a1k3ld9ybN282hg0bZvz3v/81goODc/37m999OoMjxh0dHW3Mnj3b2L17txEXF2e0b9/eqFSpknHu3DkHjybvHDHuq9tWrlzZqFevnjFo0CDHDAAui4xERiIj5URGIiPd6j6dgYxERjIbBak8atq0qRETE2N9n5mZaYSGhhqTJk3KtX2XLl2MDh062Cxr1qyZ8dxzzxmGYRhZWVlGcHCwMXXqVOv6lJQUw9vb2/jvf//rgBEUjL3HnZvNmzcbkowjR47Yp9N24Khx//HHH8Ztt91m7N692wgPD3e5sOWIcT/xxBPGU0895ZgO24kjxl27dm1j/PjxNm0aNmxovPLKK3bs+a3J77ivdr2/v7eyT7M4YtzXSk5ONiQZP/zww6101a4cNe6zZ88a1atXN1atWmW0bNmSsFUMkZGuICORka5GRvoHGenW92kWMtIVZCTz8JO9PLh06ZK2bt2q1q1bW5e5ubmpdevW2rhxY67bbNy40aa9JEVHR1vbJyQkKDEx0aaNv7+/mjVrdt19ms0R485NamqqLBaLAgIC7NLvW+WocWdlZenpp5/W8OHDVbt2bcd0/hY4YtxZWVlatmyZatSooejoaAUGBqpZs2ZatGiRw8aRX476vO+66y4tWbJEf/75pwzD0Lp16/Tbb7+pTZs2jhlIPhVk3M7Yp72Z1cfU1FRJUtmyZe22z1vhyHHHxMSoQ4cOOf6bQPFARiIjkZHISFcjI5m3T3sjI5GRnIGCVB6cPHlSmZmZCgoKslkeFBSkxMTEXLdJTEy8Yfvs/83PPs3miHFf6+LFixoxYoS6desmPz8/+3T8Fjlq3G+++aY8PDz04osv2r/TduCIcScnJ+vcuXOaPHmy2rZtq5UrV+qRRx7Ro48+qh9++MExA8knR33e7733niIjI1WxYkV5eXmpbdu2mjFjhlq0aGH/QRRAQcbtjH3amxl9zMrK0uDBg3X33XerTp06dtnnrXLUuL/88ktt27ZNkyZNutUuopAiI5GRJDJSbshI129PRrLPPu2NjERGcgYPZ3cAxVdGRoa6dOkiwzD04YcfOrs7DrV161a988472rZtmywWi7O7Y5qsrCxJ0sMPP6whQ4ZIku644w79/PPPmjlzplq2bOnM7jnUe++9p19++UVLlixReHi41q9fr5iYGIWGhnKVpIiLiYnR7t27tWHDBmd3xaGOHTumQYMGadWqVfLx8XF2d4AihYxU9JGRyEjFERkJ1+IOqTwoX7683N3dlZSUZLM8KSlJwcHBuW4THBx8w/bZ/5uffZrNEePOlh20jhw5olWrVrnMlT/JMeP+8ccflZycrEqVKsnDw0MeHh46cuSIXnrpJVWuXNkh48gvR4y7fPny8vDwUGRkpE2b22+/3WWeIOOIcf/999/6v//7P02fPl0dO3ZUvXr1NGDAAD3xxBOaNm2aYwaSTwUZtzP2aW+O7uOAAQO0dOlSrVu3ThUrVrzl/dmLI8a9detWJScnq2HDhtZ/13744Qe9++678vDwUGZmpj26DhdHRiIjSWSk3JCRcm9PRipa/67lBxmJjJQbClJ54OXlpUaNGmnNmjXWZVlZWVqzZo2ioqJy3SYqKsqmvSStWrXK2j4iIkLBwcE2bdLS0rRp06br7tNsjhi39E/QOnDggFavXq1y5co5ZgAF5IhxP/3009q5c6fi4uKsr9DQUA0fPlzfffed4waTD44Yt5eXl5o0aZLj0a6//fabwsPD7TyCgnHEuDMyMpSRkSE3N9t/Yt3d3a1XRJ2tION2xj7tzVF9NAxDAwYM0MKFC7V27VpFRETYo7t244hxt2rVSrt27bL5d61x48bq3r274uLi5O7ubq/uw4WRkchIZCQy0tXISObt097ISGQkp3DmjOqFyZdffml4e3sbc+bMMfbu3Wv069fPCAgIMBITEw3DMIynn37aGDlypLX9Tz/9ZHh4eBjTpk0z9u3bZ4wZMybXRxoHBAQYixcvNnbu3Gk8/PDDLvlIY3uO+9KlS8ZDDz1kVKxY0YiLizNOnDhhfaWnpztljLlxxOd9LVd8gowjxr1gwQLD09PTmDVrlnHgwAHjvffeM9zd3Y0ff/zR9PFdjyPG3bJlS6N27drGunXrjN9//92YPXu24ePjY3zwwQemj+968jvu9PR0Y/v27cb27duNkJAQY9iwYcb27duNAwcO5HmfrsAR437++ecNf39/4/vvv7f5d+3ChQumj+96HDHua/EEmeKJjERGIiORkbKRkchIZKTckZFyR0EqH9577z2jUqVKhpeXl9G0aVPjl19+sa5r2bKl0bNnT5v2X3/9tVGjRg3Dy8vLqF27trFs2TKb9VlZWcZrr71mBAUFGd7e3karVq2M+Ph4M4aSL/Ycd0JCgiEp19e6detMGlHe2PvzvpYrhi3DcMy4//3vfxvVqlUzfHx8jPr16xuLFi1y9DDyzd7jPnHihNGrVy8jNDTU8PHxMWrWrGn861//MrKysswYTp7lZ9zX+++3ZcuWed6nq7D3uK/379rs2bPNG1QeOOLzvhphq/giI5GRspGR/kFGIiORkchIV++DjJSTxTAMw553XAEAAAAAAAA3whxSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAKmV69eqly5cp23+/XX3+tsmXL6ty5czdta7FYNHbsWJtlW7Zs0V133aVSpUrJYrEoLi4uz8fOyMhQWFiYPvjgg3z2GgAA4AoyElC4UJACACgzM1NjxozRwIEDVbp06Xxvn5GRoccff1ynT5/WW2+9pf/85z8KDw/XiRMnNHLkSN13333y9fWVxWLR999/n2N7T09PDR06VG+88YYuXrxohxEBAADcOkdlpDVr1ujZZ59VjRo1VLJkSVWpUkV9+vTRiRMnbLYnI6EooyAFAIXMxx9/rPj4eLvu89tvv1V8fLz69etXoO0PHTqkI0eOaNiwYerXr5+eeuoplSlTRvHx8XrzzTf1559/qm7dujfcxzPPPKOTJ09q3rx5BeoDAAAo3gpTRhoxYoS+//57PfLII3r33XfVtWtXff3112rQoIESExNt9kFGQlFFQQpwUVlZWS53FeT8+fMOP4ZhGPr7778dfpzCzNPTU97e3nbd5+zZs3X33XfrtttuK9D2ycnJkqSAgACb5Y0aNdKpU6f022+/aejQoTfcR0BAgNq0aaM5c+YUqA8AgOKBjITrKUwZafr06Tp48KDefPNN9enTRxMnTtTSpUuVlJSk999/36YtGQlFFQUpwIHGjh0ri8Wi/fv3q0uXLvLz81O5cuU0aNCgHEHKYrFowIABmjt3rmrXri1vb2/FxsZKkv788089++yzCgoKkre3t2rXrq1PP/00x/EuXryosWPHqkaNGvLx8VFISIgeffRRHTp0SJL0/fff5/qTqcOHD8tisdh8yfXq1UulS5fWoUOH1L59e/n6+qp79+6SpAMHDqhz584KDg6Wj4+PKlasqK5duyo1NdW6/eXLlzVhwgRVrVpV3t7eqly5sv7v//5P6enpNseuXLmyHnzwQX333Xdq3LixSpQooY8++ihP5ze7j7///ruio6NVqlQphYaGavz48TIMI8f4pk2bprfeekvh4eEqUaKEWrZsqd27d+e6z6NHj+rBBx9U6dKlddttt2nGjBmSpF27dun+++9XqVKlFB4eXqArVdmf9fz58xUZGakSJUooKipKu3btkiR99NFHqlatmnx8fHTvvffq8OHDOfp49fwIV49v1qxZ1nPepEkTbdmy5ab9uXjxomJjY9W6desc69LT0zVkyBBVqFBBvr6+euihh/THH3/k6E/Lli0lSY8//rgsFovuvfdeSZKvr6/Kli2b53PzwAMPaMOGDTp9+nSetwEAFD5kJDJSbopTRmrRooXc3Gz/73iLFi1UtmxZ7du3L8fxyEgoijyc3QGgOOjSpYsqV66sSZMm6ZdfftG7776rM2fO6PPPP7dpt3btWn399dcaMGCAypcvr8qVKyspKUl33nmn9Qu6QoUKWrFihXr37q20tDQNHjxY0pXftz/44INas2aNunbtqkGDBuns2bNatWqVdu/erapVq+a735cvX1Z0dLSaN2+uadOmqWTJkrp06ZKio6OVnp6ugQMHKjg4WH/++aeWLl2qlJQU+fv7S5L69Omjzz77TI899pheeuklbdq0SZMmTdK+ffu0cOFCm+PEx8erW7dueu6559S3b1/VrFkzz33MzMxU27Ztdeedd2rKlCmKjY3VmDFjdPnyZY0fP96m7eeff66zZ88qJiZGFy9e1DvvvKP7779fu3btUlBQkM0+27VrpxYtWmjKlCmaO3euBgwYoFKlSumVV15R9+7d9eijj2rmzJnq0aOHoqKiFBERka9z++OPP2rJkiWKiYmRJE2aNEkPPvigXn75ZX3wwQd64YUXdObMGU2ZMkXPPvus1q5de9N9zps3T2fPntVzzz0ni8WiKVOm6NFHH9Xvv/8uT0/P6263detWXbp0SQ0bNsyxrk+fPvriiy/05JNP6q677tLatWvVoUMHmzbPPfecbrvtNk2cOFEvvviimjRpYnM+86NRo0YyDEM///yzHnzwwQLtAwBQeJCRyEjXKs4Z6dy5czp37pzKly+fYx0ZCUWSAcBhxowZY0gyHnroIZvlL7zwgiHJ2LFjh3WZJMPNzc3Ys2ePTdvevXsbISEhxsmTJ22Wd+3a1fD39zcuXLhgGIZhfPrpp4YkY/r06Tn6kZWVZRiGYaxbt86QZKxbt85mfUJCgiHJmD17tnVZz549DUnGyJEjbdpu377dkGTMnz//uuOOi4szJBl9+vSxWT5s2DBDkrF27VrrsvDwcEOSERsbe939XU92HwcOHGhdlpWVZXTo0MHw8vIy/vrrL5vxlShRwvjjjz+sbTdt2mRIMoYMGZJjnxMnTrQuO3PmjFGiRAnDYrEYX375pXX5/v37DUnGmDFj8tVvSYa3t7eRkJBgXfbRRx8Zkozg4GAjLS3NunzUqFGGJJu2PXv2NMLDw63vs8dXrlw54/Tp09blixcvNiQZ33777Q3788knnxiSjF27dtksz/4cX3jhBZvlTz75ZI5xZ//dutHfi/nz5+f69+9qx48fNyQZb7755g37DAAo3MhIZKTcFNeMlG3ChAmGJGPNmjU51pGRUBTxkz3ABNlXeLINHDhQkrR8+XKb5S1btlRkZKT1vWEY+uabb9SxY0cZhqGTJ09aX9HR0UpNTdW2bdskSd98843Kly9v3ffVLBZLgfv+/PPP27zPvrr33Xff6cKFC7lukz2ua+cMeumllyRJy5Yts1keERGh6OjoAvdxwIAB1j9nXyW9dOmSVq9ebdOuU6dONr//b9q0qZo1a5bjc5CuXPXKFhAQoJo1a6pUqVLq0qWLdXnNmjUVEBCg33//Pd99btWqlc0t5c2aNZMkde7cWb6+vjmW5+UYTzzxhMqUKWN9f8899+Rp21OnTkmSzbbSP5/jiy++aLM8+4qzI2T34eTJkw47BgDAdZCRriAj/aO4ZqT169dr3Lhx6tKli+6///4c68lIKIooSAEmqF69us37qlWrys3NLcfv3q+9pfmvv/5SSkqKZs2apQoVKti8nnnmGUn/TJR46NAh1axZUx4e9vslroeHhypWrJijj0OHDtUnn3yi8uXLKzo6WjNmzLCZG+HIkSNyc3NTtWrVbLYNDg5WQECAjhw5csNx54ebm5uqVKlis6xGjRqSlOP8Xvs5ZLe9tp2Pj48qVKhgs8zf318VK1bMEVz9/f115syZfPe7UqVKOfYjSWFhYbkuz8sxrt1ndnDJa/+Mq+aUkP75HK/9KUN+fi6QX9l9uJX/gwAAKDzISFeQkf5RHDPS/v379cgjj6hOnTr65JNPbtgHMhKKEuaQApzgel8kJUqUsHmflZUlSXrqqafUs2fPXLepV6/eLR83MzMz1+Xe3t45JluUpH/961/q1auXFi9erJUrV+rFF1+0zv1wdTjL6xfmteN2Nnd393wtvzakOOsYBd22XLlykq6EsmvDtdmyg2FucycAAIo+MpItMpJ9juHKGenYsWNq06aN/P39tXz5cpu7wK5GRkJRREEKMMGBAwdsrnAdPHhQWVlZNrcj5yb7qR2ZmZm5Pt3jalWrVtWmTZuUkZFx3ckZs68GpaSk2Cy/9mpcXtStW1d169bVq6++qp9//ll33323Zs6cqddff13h4eHKysrSgQMHdPvtt1u3SUpKUkpKisLDw/N9vOvJysrS77//br3iJ0m//fabJOU4vwcOHMix/W+//XbTz6Goq1WrliQpISFBdevWtS7P/hyzryxni4+Pd1hfEhISJMnm7w0AoOgiI11BRnJNjs5Ip06dUps2bZSenq41a9YoJCTkum3JSCiK+MkeYILsx+Fme++99yRJ7dq1u+F27u7u6ty5s7755pscj96Vrtyunq1z5846efKk3n///Rztsq/+hIeHy93dXevXr7dZ/8EHH+RtIJLS0tJ0+fJlm2V169aVm5ub9XHF7du3lyS9/fbbNu2mT58uSTmeQHKrrh6zYRh6//335enpqVatWtm0W7Rokf7880/r+82bN2vTpk03/RyKukaNGsnLy0u//vqrzfLs8/Luu+/aLL/2c7WnrVu3ymKxKCoqymHHAAC4DjLSFWQk1+TIjHT+/Hm1b99ef/75p5YvX57rzyavRkZCUcQdUoAJEhIS9NBDD6lt27bauHGj9RGx9evXv+m2kydP1rp169SsWTP17dtXkZGROn36tLZt26bVq1fr9OnTkqQePXro888/19ChQ7V582bdc889On/+vFavXq0XXnhBDz/8sPz9/fX444/rvffek8ViUdWqVbV06VLrHAt5sXbtWg0YMECPP/64atSoocuXL+s///mPNRhKUv369dWzZ0/NmjVLKSkpatmypTZv3qzPPvtMnTp10n333VewE5kLHx8fxcbGqmfPnmrWrJlWrFihZcuW6f/+7/9yzHFQrVo1NW/eXM8//7zS09P19ttvq1y5cnr55Zft1p/CyMfHR23atNHq1attHgN9xx13qFu3bvrggw+Umpqqu+66S2vWrNHBgwfztf/XX39dkrRnzx5J0n/+8x9t2LBBkvTqq6/atF21apXuvvtu6y3yAICijYxERnJljsxI3bt31+bNm/Xss89q37592rdvn3Vd6dKl1alTJ5v2ZCQURRSkABN89dVXGj16tEaOHCkPDw8NGDBAU6dOzdO2QUFB2rx5s8aPH68FCxbogw8+ULly5VS7dm29+eab1nbu7u5avny53njjDc2bN0/ffPONypUrp+bNm9vcYvzee+8pIyNDM2fOlLe3t7p06aKpU6eqTp06eepP/fr1FR0drW+//VZ//vmnSpYsqfr162vFihW68847re0++eQTValSRXPmzNHChQsVHBysUaNGacyYMXk8a3nj7u6u2NhYPf/88xo+fLh8fX01ZswYjR49OkfbHj16yM3NTW+//baSk5PVtGlTvf/++ze8Pbq4ePbZZ9W5c2cdO3bMZtLQTz/9VBUqVNDcuXO1aNEi3X///Vq2bFmOiUVv5LXXXrN5/+mnn1r/fHVBKjU1VStXrszX1WgAQOFGRiIjuTpHZaS4uDjrfq7ORtKVO/auLkiRkVBUWYyCzDQHIE/Gjh2rcePG6a+//mICQgfo1auX/ve//+ncuXM3bHf48GFFRERo6tSpGjZsmEm9K1wyMzMVGRmpLl26aMKECU7pw9tvv60pU6bo0KFDLjeJKwDAvshIjkVGsh8yEuA4zCEFAJC7u7vGjx+vGTNm3DS8OkJGRoamT5+uV199laAFAABcBhkJcBx+sgfA5aSmpurvv/++YZvg4GCTepN3iYmJN1xfokQJ+fv7m9Sb/HviiSf0xBNPOOXYnp6eOnr0qFOODQBAYUFGcg4yEuAYFKQAuJxBgwbps88+u2EbV/y18c3mWejZs6fmzJljTmcAAECRQ0YCUJQwhxQAl7N3714dP378hm1at25tUm/ybvXq1TdcHxoaqsjISJN6AwAAihoyEoCihIIUAAAAAAAATMWk5gAAAAAAADAVBSkAAAAAAACYqlhPap6VlaXjx4/L19dXFovF2d0BAAAmMAxDZ8+eVWhoqNzcuDaXGzISAADFj9kZqVgXpI4fP66wsDBndwMAADjBsWPHVLFiRWd3wyWRkQAAKL7MykjFuiDl6+sr6crJ9vPzc3JvAACAGdLS0hQWFmbNAciJjAQAQPFjdkYq1gWp7FvQ/fz8CFsAABQz/BTt+shIAAAUX2ZlJCZOAAAAAAAAgKkoSAEAAAAAAMBUxfonewAA3EhmZqYyMjKc3Q3kk6enp9zd3Z3dDQAAiiwyUuHkahmJghQAANcwDEOJiYlKSUlxdldQQAEBAQoODmaeKAAA7IiMVPi5UkaiIAUAwDWyg1ZgYKBKlizpEl/YyBvDMHThwgUlJydLkkJCQpzcIwAAig4yUuHlihmJghQAAFfJzMy0Bq1y5co5uzsogBIlSkiSkpOTFRgY6FK3pgMAUFiRkQo/V8tITGoOAMBVsudDKFmypJN7gluR/fkxvwUAAPZBRioaXCkjUZACACAX3IJeuPH5AQDgGHzHFm6u9PlRkAIAAAAAAICpKEgBAAAAAADAVExqDgBAHmXEbjDtWJ5tm+e57c1uvR4zZozGjh17iz0qGIvFooULF6pTp04F3sesWbM0b948bdu2TWfPntWZM2cUEBBgtz4CAIBbY2ZGkshJ2U6fPq0xY8Zo5cqVOnr0qCpUqKBOnTppwoQJ8vf3t29nHYCCFAAAhdyJEyesf/7qq680evRoxcfHW5eVLl06X/u7dOmSvLy87Na/W3XhwgW1bdtWbdu21ahRo5zdHQAAUIgU5Zx0/PhxHT9+XNOmTVNkZKSOHDmi/v376/jx4/rf//7n7O7dFD/Zc0EZsRtyvAAAuJ7g4GDry9/fXxaLxfr+/Pnz6t69u4KCglS6dGk1adJEq1evttm+cuXKmjBhgnr06CE/Pz/169dPkvTxxx8rLCxMJUuW1COPPKLp06fnuDNp8eLFatiwoXx8fFSlShWNGzdOly9ftu5Xkh555BFZLBbr+x07dui+++6Tr6+v/Pz81KhRI/3666/XHd/gwYM1cuRI3XnnnfY5YSi0yEgAgPwqyjmpTp06+uabb9SxY0dVrVpV999/v9544w19++231uO4MgpSAAAUYefOnVP79u21Zs0abd++XW3btlXHjh119OhRm3bTpk1T/fr1tX37dr322mv66aef1L9/fw0aNEhxcXF64IEH9MYbb9hs8+OPP6pHjx4aNGiQ9u7dq48++khz5syxttuyZYskafbs2Tpx4oT1fffu3VWxYkVt2bJFW7du1ciRI+Xp6WnC2QAAAPhHUcxJqamp8vPzk4eH6/8gzvV7CAAACqx+/fqqX7++9f2ECRO0cOFCLVmyRAMGDLAuv//++/XSSy9Z37/yyitq166dhg0bJkmqUaOGfv75Zy1dutTaZty4cRo5cqR69uwpSapSpYomTJigl19+WWPGjFGFChUkSQEBAQoODrZud/ToUQ0fPly1atWSJFWvXt0BIwcAALixopaTTp48qQkTJljv4nJ13CEFAEARdu7cOQ0bNky33367AgICVLp0ae3bty/Hlb/GjRvbvI+Pj1fTpk1tll37fseOHRo/frxKly5tffXt21cnTpzQhQsXrtunoUOHqk+fPmrdurUmT56sQ4cO3eIoAQAA8q8o5aS0tDR16NBBkZGRTpukPb8oSAEAUIQNGzZMCxcu1MSJE/Xjjz8qLi5OdevW1aVLl2zalSpVKt/7PnfunMaNG6e4uDjra9euXTpw4IB8fHyuu93YsWO1Z88edejQQWvXrlVkZKQWLlyY7+MDAADciqKSk86ePau2bdvK19dXCxcuLDRTIfCTPQAAirCffvpJvXr10iOPPCLpSjg6fPjwTberWbOmdS6DbNe+b9iwoeLj41WtWrXr7sfT01OZmZk5lteoUUM1atTQkCFD1K1bN82ePdvaRwAAADMUhZyUlpam6OhoeXt7a8mSJTcsdrkaClIAABRh1atX14IFC9SxY0dZLBa99tprysrKuul2AwcOVIsWLTR9+nR17NhRa9eu1YoVK2SxWKxtRo8erQcffFCVKlXSY489Jjc3N+3YsUO7d+/W66+/LunKE2TWrFmju+++W97e3vLx8dHw4cP12GOPKSIiQn/88Ye2bNmizp07X7cviYmJSkxM1MGDByVJu3btkq+vrypVqqSyZcve4hkCAADFVWHPSWlpaWrTpo0uXLigL774QmlpaUpLS5MkVahQQe7u7nY4S47DT/YAACjCpk+frjJlyuiuu+5Sx44dFR0drYYNG950u7vvvlszZ87U9OnTVb9+fcXGxmrIkCE2V92io6O1dOlSrVy5Uk2aNNGdd96pt956S+Hh4dY2//rXv7Rq1SqFhYWpQYMGcnd316lTp9SjRw/VqFFDXbp0Ubt27TRu3Ljr9mXmzJlq0KCB+vbtK0lq0aKFGjRooCVLltzCmQEAAMVdYc9J27Zt06ZNm7Rr1y5Vq1ZNISEh1texY8du/QQ5mMUwDMPZnXCWtLQ0+fv7Wx+L6CoyYjfkWObZtrkTegIAxc/FixeVkJCgiIiIQnXLsxn69u2r/fv368cff3R2V27qRp+jq37/uxJXPUdkJABwHjLSjRWWnORKGYmf7AEAgFxNmzZNDzzwgEqVKqUVK1bos88+0wcffODsbgEAADgdOenW2f0ne5MmTVKTJk3k6+urwMBAderUSfHx8TZtLl68qJiYGJUrV06lS5dW586dlZSUZNPm6NGj6tChg0qWLKnAwEANHz5cly9ftmnz/fffq2HDhvL29la1atU0Z84cew8HAIBia/PmzXrggQdUt25dzZw5U++++6769Onj7G4VWmQkAACKDnLSrbN7QeqHH35QTEyMfvnlF61atUoZGRlq06aNzp8/b20zZMgQffvtt5o/f75++OEHHT9+XI8++qh1fWZmpjp06KBLly7p559/1meffaY5c+Zo9OjR1jYJCQnq0KGD7rvvPsXFxWnw4MHq06ePvvvuO3sPCQCAYunrr79WcnKy/v77b+3Zs0f9+/d3dpcKNTISAABFBznp1jl8Dqm//vpLgYGB+uGHH9SiRQulpqaqQoUKmjdvnh577DFJ0v79+3X77bdr48aNuvPOO7VixQo9+OCDOn78uIKCgiRdmdB0xIgR+uuvv+Tl5aURI0Zo2bJl2r17t/VYXbt2VUpKimJjY/PUN1eYHyG3uRByw/wIAGAO5kcoGlxpfoTrISPdGBkJAFwLGalocKWM5PCn7KWmpkqS9bHMW7duVUZGhlq3bm1tU6tWLVWqVEkbN26UJG3cuFF169a1Bi3pygz1aWlp2rNnj7XN1fvIbpO9j9ykp6dbH4N49eMQAQAAzEZGAgAAxZlDC1JZWVkaPHiw7r77btWpU0eSlJiYKC8vLwUEBNi0DQoKUmJiorXN1UEre332uhu1SUtL099//51rfyZNmiR/f3/rKyws7JbHCAAAkF9kJAAAUNw5tCAVExOj3bt368svv3TkYfJs1KhRSk1Ntb6OHTvm7C4BAIBiiIwEAACKOw9H7XjAgAFaunSp1q9fr4oVK1qXBwcH69KlS0pJSbG5ApiUlKTg4GBrm82bN9vsL/sJM1e3ufapM0lJSfLz81OJEiVy7ZO3t7e8vb1veWwAAAAFRUYCAABwwB1ShmFowIABWrhwodauXauIiAib9Y0aNZKnp6fWrFljXRYfH6+jR48qKipKkhQVFaVdu3YpOTnZ2mbVqlXy8/NTZGSktc3V+8huk70PAAAAV0JGAgAA+Ifd75CKiYnRvHnztHjxYvn6+lrnM/D391eJEiXk7++v3r17a+jQoSpbtqz8/Pw0cOBARUVF6c4775QktWnTRpGRkXr66ac1ZcoUJSYm6tVXX1VMTIz16l3//v31/vvv6+WXX9azzz6rtWvX6uuvv9ayZcvsPSQAAIBbRkYCAAD4h90LUh9++KEk6d5777VZPnv2bPXq1UuS9NZbb8nNzU2dO3dWenq6oqOj9cEHH1jburu7a+nSpXr++ecVFRWlUqVKqWfPnho/fry1TUREhJYtW6YhQ4bonXfeUcWKFfXJJ58oOjra3kMCAECSdOjXj0w7VtXGz+Wrfa9evfTZZ59Jkjw8PFS2bFnVq1dP3bp1U69eveTm5vAH6zrMnj17NHr0aG3dulVHjhzRW2+9pcGDBzu7W/lGRgIAFFVmZiSJnHS1jz/+WJ9//rl2794t6cod1xMnTlTTpk2d3LObs3tByjCMm7bx8fHRjBkzNGPGjOu2CQ8P1/Lly2+4n3vvvVfbt2/Pdx8BACiK2rZtq9mzZyszM1NJSUmKjY3VoEGD9L///U9LliyRh4fDpo50qAsXLqhKlSp6/PHHNWTIEGd3p8DISAAAOE9RzUnff/+9unXrprvuuks+Pj5688031aZNG+3Zs0e33Xabs7t3Q4W3DAgAAGx4e3srODhYt912mxo2bKj/+7//0+LFi7VixQrNmTPH2i4lJUV9+vRRhQoV5Ofnp/vvv187duyw2de3336rJk2ayMfHR+XLl9cjjzxiXXfmzBn16NFDZcqUUcmSJdWuXTsdOHBAknT+/Hn5+fnpf//7n83+Fi1apFKlSuns2bO6dOmSBgwYoJCQEPn4+Cg8PFyTJk267riaNGmiqVOnqmvXrky8DQAACqSo5qS5c+fqhRde0B133KFatWrpk08+UVZWVo75JF0RBSkAAIqw+++/X/Xr19eCBQusyx5//HElJydrxYoV2rp1qxo2bKhWrVrp9OnTkqRly5bpkUceUfv27bV9+3atWbPG5rbvXr166ddff9WSJUu0ceNGGYah9u3bKyMjQ6VKlVLXrl01e/Zsm37Mnj1bjz32mHx9ffXuu+9qyZIl+vrrrxUfH6+5c+eqcuXKppwPAACAbEUxJ124cEEZGRkqW7bsrZ0cExTOe9IAAECe1apVSzt37pQkbdiwQZs3b1ZycrL1bqNp06Zp0aJF+t///qd+/frpjTfeUNeuXTVu3DjrPurXry9JOnDggJYsWaKffvpJd911l6QrV+bCwsK0aNEiPf744+rTp4/uuusunThxQiEhIUpOTtby5cu1evVqSdLRo0dVvXp1NW/eXBaLReHh4WaeDgAAAKuilpNGjBih0NBQtW7d+pbPjaNxhxQAAEWcYRiyWCySpB07dujcuXMqV66cSpcubX0lJCTo0KFDkqS4uDi1atUq133t27dPHh4eatasmXVZuXLlVLNmTe3bt0+S1LRpU9WuXds6eegXX3yh8PBwtWjRQtKVK4dxcXGqWbOmXnzxRa1cudJhYwcAALiRopSTJk+erC+//FILFy6Uj49P/k+GybhDCgCAIm7fvn2KiIiQJJ07d04hISH6/vvvc7QLCAiQJJUoUeKWj9mnTx/NmDFDI0eO1OzZs/XMM89Yw17Dhg2VkJCgFStWaPXq1erSpYtat26dYz4FAAAARysqOWnatGmaPHmyVq9erXr16t1yH83AHVIAABRha9eu1a5du9S5c2dJV0JOYmKiPDw8VK1aNZtX+fLlJUn16tW77kSYt99+uy5fvqxNmzZZl506dUrx8fGKjIy0Lnvqqad05MgRvfvuu9q7d6969uxpsx8/Pz898cQT+vjjj/XVV1/pm2++sc7NAAAAYIaikpOmTJmiCRMmKDY2Vo0bNy7w+TAbd0gBAFBEpKenKzEx0eZxxpMmTdKDDz6oHj16SJJat26tqKgoderUSVOmTFGNGjV0/Phx6wSdjRs31pgxY9SqVStVrVpVXbt21eXLl7V8+XKNGDFC1atX18MPP6y+ffvqo48+kq+vr0aOHKnbbrtNDz/8sLUvZcqU0aOPPqrhw4erTZs2qlixonXd9OnTFRISogYNGsjNzU3z589XcHCw9crjtS5duqS9e/da//znn38qLi5OpUuXVrVq1Rx3QgEAQJFRVHPSm2++qdGjR2vevHmqXLmyEhMTJcn6c0NXxh1SAAAUEbGxsQoJCVHlypXVtm1brVu3Tu+++64WL14sd3d3SZLFYtHy5cvVokULPfPMM6pRo4a6du2qI0eOKCgoSJJ07733av78+VqyZInuuOMO3X///dq8ebP1OLNnz1ajRo304IMPKioqSoZhaPny5fL09LTpT+/evXXp0iU9++yzNst9fX01ZcoUNW7cWE2aNNHhw4e1fPlyubnlHkuOHz+uBg0aqEGDBjpx4oSmTZumBg0aqE+fPvY8fQAAoAgrqjnpww8/1KVLl/TYY48pJCTE+po2bZo9T59DWAzDMJzdCWdJS0uTv7+/UlNT5efn55Q+ZMRuyFM7z7bNHdwTAIAkXbx4UQkJCYqIiCgUk0G6sv/85z8aMmSIjh8/Li8vL1OPfaPP0RW+/12dK5wjMhIAuBYykn05Kye5UkbiJ3sAAMCuLly4oBMnTmjy5Ml67rnnTC9GAQAAuCpy0j/4yR4AALCrKVOmqFatWgoODtaoUaOc3R0AAACXQU76BwUpAABgV2PHjlVGRobWrFnj8pNpAgAAmImc9A8KUgAAAAAAADAVBSkAAAAAAACYioIUAAC5KMYPoS0S+PwAAHAMvmMLN1f6/ChIAQBwFU9PT0lXnoCCwiv788v+PAEAwK0hIxUNrpSRPJzdAQAAXIm7u7sCAgKUnJwsSSpZsqQsFouTe4W8MgxDFy5cUHJysgICAuTu7u7sLgEAUCSQkQo3V8xIFKQAALhGcHCwJFkDFwqfgIAA6+cIAADsg4xU+LlSRqIgBQDANSwWi0JCQhQYGKiMjAxndwf55Onp6RJX/QAAKGrISIWbq2UkClIAAFyHu7u7S31pAwAAuAIyEuyBSc0BAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAAprJ7QWr9+vXq2LGjQkNDZbFYtGjRIpv1Fosl19fUqVOtbSpXrpxj/eTJk232s3PnTt1zzz3y8fFRWFiYpkyZYu+hAAAA2BU5CQAA4Aq7F6TOnz+v+vXra8aMGbmuP3HihM3r008/lcViUefOnW3ajR8/3qbdwIEDrevS0tLUpk0bhYeHa+vWrZo6darGjh2rWbNm2Xs4AAAAdkNOAgAAuMLD3jts166d2rVrd931wcHBNu8XL16s++67T1WqVLFZ7uvrm6Nttrlz5+rSpUv69NNP5eXlpdq1aysuLk7Tp09Xv379bn0QAAAADkBOAgAAuMKpc0glJSVp2bJl6t27d451kydPVrly5dSgQQNNnTpVly9ftq7buHGjWrRoIS8vL+uy6OhoxcfH68yZM6b0HQAAwJHISQAAoCiz+x1S+fHZZ5/J19dXjz76qM3yF198UQ0bNlTZsmX1888/a9SoUTpx4oSmT58uSUpMTFRERITNNkFBQdZ1ZcqUyfV46enpSk9Pt75PS0uz53AAAADsxsycREYCAABmc2pB6tNPP1X37t3l4+Njs3zo0KHWP9erV09eXl567rnnNGnSJHl7exf4eJMmTdK4ceMKvD0AAIBZzMxJZCQAAGA2p/1k78cff1R8fLz69Olz07bNmjXT5cuXdfjwYUlX5ldISkqyaZP9/nrzKUjSqFGjlJqaan0dO3as4AMAAABwELNzEhkJAACYzWkFqX//+99q1KiR6tevf9O2cXFxcnNzU2BgoCQpKipK69evV0ZGhrXNqlWrVLNmzev+XE+SvL295efnZ/MCAABwNWbnJDISAAAwm90LUufOnVNcXJzi4uIkSQkJCYqLi9PRo0etbdLS0jR//vxcr/pt3LhRb7/9tnbs2KHff/9dc+fO1ZAhQ/TUU09ZQ9STTz4pLy8v9e7dW3v27NFXX32ld955x+YWdgAAAFdDTgIAALjC7nNI/frrr7rvvvus77PDT8+ePTVnzhxJ0pdffinDMNStW7cc23t7e+vLL7/U2LFjlZ6eroiICA0ZMsQmRPn7+2vlypWKiYlRo0aNVL58eY0ePZpHGQMAAJdGTgIAALjCYhiG4exOOEtaWpr8/f2VmprqtFvTM2I35KmdZ9vmDu4JAADFgyt8/7s6VzhHZCQAAMxl9ve/0+aQAgAAAAAAQPFEQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVB7O7gDyJiN2g817z7bNndQTAAAA10FGAgCgcOIOKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABT2b0gtX79enXs2FGhoaGyWCxatGiRzfpevXrJYrHYvNq2bWvT5vTp0+revbv8/PwUEBCg3r1769y5czZtdu7cqXvuuUc+Pj4KCwvTlClT7D0UAAAAuyInAQAAXGH3gtT58+dVv359zZgx47pt2rZtqxMnTlhf//3vf23Wd+/eXXv27NGqVau0dOlSrV+/Xv369bOuT0tLU5s2bRQeHq6tW7dq6tSpGjt2rGbNmmXv4QAAANgNOQkAAOAKD3vvsF27dmrXrt0N23h7eys4ODjXdfv27VNsbKy2bNmixo0bS5Lee+89tW/fXtOmTVNoaKjmzp2rS5cu6dNPP5WXl5dq166tuLg4TZ8+3SaQAQAAuBJyEgAAwBVOmUPq+++/V2BgoGrWrKnnn39ep06dsq7buHGjAgICrCFLklq3bi03Nzdt2rTJ2qZFixby8vKytomOjlZ8fLzOnDlz3eOmp6crLS3N5gUAAOBKnJGTyEgAAMBsphek2rZtq88//1xr1qzRm2++qR9++EHt2rVTZmamJCkxMVGBgYE223h4eKhs2bJKTEy0tgkKCrJpk/0+u01uJk2aJH9/f+srLCzMnkMDAAC4Jc7KSWQkAABgNrv/ZO9munbtav1z3bp1Va9ePVWtWlXff/+9WrVq5dBjjxo1SkOHDrW+T0tLI3ABAACX4aycREYCAABmc8pP9q5WpUoVlS9fXgcPHpQkBQcHKzk52abN5cuXdfr0aet8CsHBwUpKSrJpk/3+enMuSFfmZPDz87N5AQAAuCqzchIZCQAAmM3pBak//vhDp06dUkhIiCQpKipKKSkp2rp1q7XN2rVrlZWVpWbNmlnbrF+/XhkZGdY2q1atUs2aNVWmTBlzBwAAAOAg5CQAAFBU2b0gde7cOcXFxSkuLk6SlJCQoLi4OB09elTnzp3T8OHD9csvv+jw4cNas2aNHn74YVWrVk3R0dGSpNtvv11t27ZV3759tXnzZv30008aMGCAunbtqtDQUEnSk08+KS8vL/Xu3Vt79uzRV199pXfeecfmVnMAAABXQ04CAAC4wu4FqV9//VUNGjRQgwYNJElDhw5VgwYNNHr0aLm7u2vnzp166KGHVKNGDfXu3VuNGjXSjz/+KG9vb+s+5s6dq1q1aqlVq1Zq3769mjdvrlmzZlnX+/v7a+XKlUpISFCjRo300ksvafTo0TzKGAAAuDRyEgAAwBUWwzAMZ3fCWdLS0uTv76/U1FSnzZWQEbuhQNt5tm1u554AAFA8uML3v6tzhXNERgIAwFxmf/87fQ4pAAAAAAAAFC8UpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFR2L0itX79eHTt2VGhoqCwWixYtWmRdl5GRoREjRqhu3boqVaqUQkND1aNHDx0/ftxmH5UrV5bFYrF5TZ482abNzp07dc8998jHx0dhYWGaMmWKvYcCAABgV+QkAACAK+xekDp//rzq16+vGTNm5Fh34cIFbdu2Ta+99pq2bdumBQsWKD4+Xg899FCOtuPHj9eJEyesr4EDB1rXpaWlqU2bNgoPD9fWrVs1depUjR07VrNmzbL3cAAAAOyGnAQAAHCFh7132K5dO7Vr1y7Xdf7+/lq1apXNsvfff19NmzbV0aNHValSJetyX19fBQcH57qfuXPn6tKlS/r000/l5eWl2rVrKy4uTtOnT1e/fv3sNxgAAAA7IicBAABc4fQ5pFJTU2WxWBQQEGCzfPLkySpXrpwaNGigqVOn6vLly9Z1GzduVIsWLeTl5WVdFh0drfj4eJ05c+a6x0pPT1daWprNCwAAwFWZlZPISAAAwGx2v0MqPy5evKgRI0aoW7du8vPzsy5/8cUX1bBhQ5UtW1Y///yzRo0apRMnTmj69OmSpMTEREVERNjsKygoyLquTJkyuR5v0qRJGjdunINGAwAAYD9m5iQyEgAAMJvTClIZGRnq0qWLDMPQhx9+aLNu6NCh1j/Xq1dPXl5eeu655zRp0iR5e3sX+JijRo2y2XdaWprCwsIKvD8AAABHMDsnkZEAAIDZnFKQyg5ZR44c0dq1a22u+uWmWbNmunz5sg4fPqyaNWsqODhYSUlJNm2y319vPgVJ8vb2vqWCFgAAgKM5IyeRkQAAgNlMn0MqO2QdOHBAq1evVrly5W66TVxcnNzc3BQYGChJioqK0vr165WRkWFts2rVKtWsWfO6P9cDAABwdeQkAABQXNj9Dqlz587p4MGD1vcJCQmKi4tT2bJlFRISoscee0zbtm3T0qVLlZmZqcTERElS2bJl5eXlpY0bN2rTpk2677775Ovrq40bN2rIkCF66qmnrCHqySef1Lhx49S7d2+NGDFCu3fv1jvvvKO33nrL3sMBAACwG3ISAADAFRbDMAx77vD777/Xfffdl2N5z549NXbs2ByTbGZbt26d7r33Xm3btk0vvPCC9u/fr/T0dEVEROjpp5/W0KFDbW4l37lzp2JiYrRlyxaVL19eAwcO1IgRI/LV17S0NPn7+ys1NfWmt8M7SkbshgJt59m2uZ17AgBA8eDM7//CkpPISAAAFD9mf//bvSBVmBC2AAAoflzh+9/VucI5IiMBAGAus7//TZ9DCgAAAAAAAMUbBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADCV3QtS69evV8eOHRUaGiqLxaJFixbZrDcMQ6NHj1ZISIhKlCih1q1b68CBAzZtTp8+re7du8vPz08BAQHq3bu3zp07Z9Nm586duueee+Tj46OwsDBNmTLF3kMBAACwK3ISAADAFXYvSJ0/f17169fXjBkzcl0/ZcoUvfvuu5o5c6Y2bdqkUqVKKTo6WhcvXrS26d69u/bs2aNVq1Zp6dKlWr9+vfr162ddn5aWpjZt2ig8PFxbt27V1KlTNXbsWM2aNcvewwEAALAbchIAAMAVFsMwDIft3GLRwoUL1alTJ0lXrvqFhobqpZde0rBhwyRJqampCgoK0pw5c9S1a1ft27dPkZGR2rJlixo3bixJio2NVfv27fXHH38oNDRUH374oV555RUlJibKy8tLkjRy5EgtWrRI+/fvz3P/0tLS5O/vr9TUVPn5+dl38HmUEbuhQNt5tm1u554AAFA8uML3v+TaOckVzhEZCQAAc5n9/W/qHFIJCQlKTExU69atrcv8/f3VrFkzbdy4UZK0ceNGBQQEWEOWJLVu3Vpubm7atGmTtU2LFi2sIUuSoqOjFR8frzNnzpg0GgAAAPshJwEAgOLEw8yDJSYmSpKCgoJslgcFBVnXJSYmKjAw0Ga9h4eHypYta9MmIiIixz6y15UpUybX46enpys9Pd36Pi0t7RZG4ziHU1bkWFY5oJ0TegIAAMzizJxERgIAAGYrVk/ZmzRpkvz9/a2vsLAwZ3cJAADA6chIAADAbKYWpIKDgyVJSUlJNsuTkpKs64KDg5WcnGyz/vLlyzp9+rRNm9z2cfUxcjNq1CilpqZaX8eOHbu1AQEAANiJM3MSGQkAAJjN1IJURESEgoODtWbNGuuytLQ0bdq0SVFRUZKkqKgopaSkaOvWrdY2a9euVVZWlpo1a2Zts379emVkZFjbrFq1SjVr1rzuz/UkydvbW35+fjYvFFxG7IYcLwAAUDDOzElkJPsiIwEAcHN2n0Pq3LlzOnjwoPV9QkKC4uLiVLZsWVWqVEmDBw/W66+/rurVqysiIkKvvfaaQkNDrU+Yuf3229W2bVv17dtXM2fOVEZGhgYMGKCuXbsqNDRUkvTkk09q3Lhx6t27t0aMGKHdu3frnXfe0VtvvWXv4eAW5TWA8UQcAEBxQE5CNjISAKC4s3tB6tdff9V9991nfT906FBJUs+ePTVnzhy9/PLLOn/+vPr166eUlBQ1b95csbGx8vHxsW4zd+5cDRgwQK1atZKbm5s6d+6sd99917re399fK1euVExMjBo1aqTy5ctr9OjR6tevn72HAwAAYDfkJAAAgCsshmEYzu6Es6Slpcnf31+pqalOuzX9wJev5KndtU+QcYWrZbld2bu2X1z9AwC4Glf4/nd1rnCOyEi5bwcAgKOY/f1v9zukcGOFZQ6Ba/uZ1zBUWMYHAABcS2HJEGQkAADsw9RJzQEAAAAAAADukEKecFUPAAAgJzISAAAFQ0EKBCkAAIBckJEAAHAcfrIHAAAAAAAAU3GHFAqNgk4iCgAAUJTl5al+AAC4GgpScAkUmwAAAHIiIwEAiip+sgcAAAAAAABTUZACAAAAAACAqfjJHlwST7UBAADIiYwEACgquEMKAAAAAAAApuIOqUKKp6kAAADkREYCAKBw4A4pAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAUzGpOQqtgk5aymSnAACgqLs27+Q16xR0OwAA8os7pAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAEzFpOaFxOGUFTbvKwe0c1JPAAAAXAcZCQCAwok7pAAAAAAAAGAq7pAqZq59lC8AAADISAAAmI2CVBGSW5DybNvcCT0BAABwHWQkAABcDwUpFHlc8QQAAMiJjAQAcCanzCFVuXJlWSyWHK+YmBhJ0r333ptjXf/+/W32cfToUXXo0EElS5ZUYGCghg8frsuXLztjOHAhGbEbcrwAACgsyEhwFDISAMDVOOUOqS1btigzM9P6fvfu3XrggQf0+OOPW5f17dtX48ePt74vWbKk9c+ZmZnq0KGDgoOD9fPPP+vEiRPq0aOHPD09NXHiRHMGgSKFW/kBAK6AjARXQ0YCADiKUwpSFSpUsHk/efJkVa1aVS1btrQuK1mypIKDg3PdfuXKldq7d69Wr16toKAg3XHHHZowYYJGjBihsWPHysvLy6H9BwAAcAQyEgAAKC6c8pO9q126dElffPGFnn32WVksFuvyuXPnqnz58qpTp45GjRqlCxcuWNdt3LhRdevWVVBQkHVZdHS00tLStGfPnuseKz09XWlpaTYvIK+41R0AYCYyEgoLMhIAoCCcPqn5okWLlJKSol69elmXPfnkkwoPD1doaKh27typESNGKD4+XgsWLJAkJSYm2gQtSdb3iYmJ1z3WpEmTNG7cOPsPAgAAwM7ISAAAoChzekHq3//+t9q1a6fQ0FDrsn79+ln/XLduXYWEhKhVq1Y6dOiQqlatWuBjjRo1SkOHDrW+T0tLU1hYWIH3h6KNq3sAAGciI8FVkZEAAPbg1ILUkSNHtHr1autVvetp1qyZJOngwYOqWrWqgoODtXnzZps2SUlJknTdORUkydvbW97e3rfYa+AfTPQJAHAEMhIKOzISAOBmnDqH1OzZsxUYGKgOHTrcsF1cXJwkKSQkRJIUFRWlXbt2KTk52dpm1apV8vPzU2RkpMP6CwAAYAYyEgAAKOqcdodUVlaWZs+erZ49e8rD459uHDp0SPPmzVP79u1Vrlw57dy5U0OGDFGLFi1Ur149SVKbNm0UGRmpp59+WlOmTFFiYqJeffVVxcTEcHUPAAAUamQkAABQHDitILV69WodPXpUzz77rM1yLy8vrV69Wm+//bbOnz+vsLAwde7cWa+++qq1jbu7u5YuXarnn39eUVFRKlWqlHr27Knx48ebPQwAAAC7IiMBAIDiwGIYhuHsTjhLWlqa/P39lZqaKj8/P1OOee3v6Q+nrCjQfioHtLNHd+AA186PwBwKAOBanPH9X9iQkeAIZCQAcG1mf/87/Sl7QFHDk2cAAAByIiMBAK7m1EnNAQAAAAAAUPxQkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYComNQecgKfKAAAA5ERGAoDigzukAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATMWk5jDd4ZQVNu8rB7Szy35uZV8AAADORkYCABQn3CEFAAAAAAAAU3GHFPIktyttecHVOAAAUJSRkQAAKBgKUnCogoY0e92yXphkxG6wee/ZtrmTegIAABzNXhlJKvo5iYwEAEUTBSnkUNCABAAAUJSRkQAAsB8KUnA6wh0AAEBOZCQAQFFGQcqBrr29GEWfPW+jz+3vD7eoAwCKAjJS8UNGAgBci6fsAQAAAAAAwFTcIYVCcTt4YehjccHEogCA4qKw5I/C0s+ijowEAPlDQQpQ8XyqHwAAwM2QkQAAjkJBqpgp6lfQHBmaXPUxy1yNAwDg1pGR7Ldve++/oMhIAODaKEgBt6Coh1cAAICCICMBAG6GgpTJ7PXlnJf9uMKVKVdkdkByhVvdeRoNAMDVmZmRJHJSbpydkSTzPxcyEgA4DwUpB+LKEOwtL4/J5lHaAABXR0aCvZGRAKDwoSAFuABnXCFkXgUAAODqyEgAUHS5OeOgY8eOlcVisXnVqlXLuv7ixYuKiYlRuXLlVLp0aXXu3FlJSUk2+zh69Kg6dOigkiVLKjAwUMOHD9fly5fNHgpc3OGUFTleyF1G7IYcLwCAuchIMAsZKe/ISADgGE67Q6p27dpavXr1Px3x+KcrQ4YM0bJlyzR//nz5+/trwIABevTRR/XTTz9JkjIzM9WhQwcFBwfr559/1okTJ9SjRw95enpq4sSJpo8FRY8jQxmBDwBwI2QkuDJH5xhyEgAUH04rSHl4eCg4ODjH8tTUVP373//WvHnzdP/990uSZs+erdtvv12//PKL7rzzTq1cuVJ79+7V6tWrFRQUpDvuuEMTJkzQiBEjNHbsWHl5eZk9HAAAALsgIwEAgOLAKT/Zk6QDBw4oNDRUVapUUffu3XX06FFJ0tatW5WRkaHWrVtb29aqVUuVKlXSxo0bJUkbN25U3bp1FRQUZG0THR2ttLQ07dmzx9yBAAAA2BEZCQAAFAdOuUOqWbNmmjNnjmrWrKkTJ05o3Lhxuueee7R7924lJibKy8tLAQEBNtsEBQUpMTFRkpSYmGgTtLLXZ6+7nvT0dKWnp1vfp6Wl2WlEAK6Wl0co53X+BSYSBVCckJGAoo2MBAD/cEpBql27f56MUa9ePTVr1kzh4eH6+uuvVaJECYcdd9KkSRo3bpzD9g84kiOfMmPGE2yYABQAbo6MBOSfo3PMtfsnIwGAfThtDqmrBQQEqEaNGjp48KAeeOABXbp0SSkpKTZXAJOSkqzzKQQHB2vz5s02+8h+wkxucy5kGzVqlIYOHWp9n5aWprCwMDuOBCh+CFEA4DhkJKDwIiMBwI05bQ6pq507d06HDh1SSEiIGjVqJE9PT61Zs8a6Pj4+XkePHlVUVJQkKSoqSrt27VJycrK1zapVq+Tn56fIyMjrHsfb21t+fn42LwDXx2OOAcC5yEiAayIjAcCtc8odUsOGDVPHjh0VHh6u48ePa8yYMXJ3d1e3bt3k7++v3r17a+jQoSpbtqz8/Pw0cOBARUVF6c4775QktWnTRpGRkXr66ac1ZcoUJSYm6tVXX1VMTIy8vb2dMSSgWDLjp34AUJyQkYCigYwEADfnlILUH3/8oW7duunUqVOqUKGCmjdvrl9++UUVKlSQJL311ltyc3NT586dlZ6erujoaH3wwQfW7d3d3bV06VI9//zzioqKUqlSpdSzZ0+NHz/eGcMBXBqBCAAKDzISYB4yEgA4l8UwDMPZnXCWtLQ0+fv7KzU11SG3ph/48hW77xO4Wl5CU25hy5H7tneQu/oJMod+/SjH+qqNn7Pr8QAUfY7+/i8KyEgo7MhIZCQA+Wd2RnKJSc0BIK+yDh61eZ9xcgOPPQYAAMUeGQlAYUNBCijECnplz5EKekWQ2+YBAIC9kJEAwPVRkAJQ5OT2pBuuEAIAAOTMSWQkAM5CQQpArlzlatzVoSkr5egNWgIAADgeGQkA7IOCFIA8c8Xb3wEAAJyNjAQA+UdBCoDp7BnaDqeskL78Z3/MqQAAAAorR2YkiZwEwLVQkAJQ5B1OWSG3X/fYLONRyAAAoLgjIwFwJgpSABzOVW9jZ1JPAADgTIUlI0nkJAD25+bsDgAAAAAAAKB44Q4pAMVC1kHbp89knMx55Q8AAKC4ISMBcBYKUgBcVkFuY8/rNte2Y5JPAABQWBT0p3552Y6MBMAsFKQAQNd/Eg3zJQAAgOLMWqC65qnGZCQAt4qCFADcwLWTeh5OWSG3apWs73kSDQAAKI7ISABuFQUpAMinq+dauN48C1w1BAAAxQ0ZCUB+UJACAJNceyWRQAYAAEBGAoorN2d3AAAAAAAAAMULd0gBwHUU9Ak2AAAARRkZCYA9cIcUAAAAAAAATMUdUgBwC3K7Qlg5oF2OuRAAAACKEzISgJvhDikAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKZiDikAsLPrzZkAAABQnJGRAFyNghQAmCDXxyN/abusckA7ebZtblKPAAAAnI+MBBRf/GQPAAAAAAAApnJKQWrSpElq0qSJfH19FRgYqE6dOik+Pt6mzb333iuLxWLz6t+/v02bo0ePqkOHDipZsqQCAwM1fPhwXb582cyhAIBdZcRuyPECUHyQkQAgd2QkoOhxyk/2fvjhB8XExKhJkya6fPmy/u///k9t2rTR3r17VapUKWu7vn37avz48db3JUuWtP45MzNTHTp0UHBwsH7++WedOHFCPXr0kKenpyZOnGjqeADAEbJvYXf7dU++tqva+DlHdAeACchIAJA3h1NWkJGAQs4pBanY2Fib93PmzFFgYKC2bt2qFi1aWJeXLFlSwcHBue5j5cqV2rt3r1avXq2goCDdcccdmjBhgkaMGKGxY8fKy8vLoWMAALNkHTxq896tWiUn9QSAo5GRACDvyEhA4eYSc0ilpqZKksqWLWuzfO7cuSpfvrzq1KmjUaNG6cKFC9Z1GzduVN26dRUUFGRdFh0drbS0NO3Zk79KOQAUJlkHj+Z45QW3ugOFDxkJAPKOjAQULk5/yl5WVpYGDx6su+++W3Xq1LEuf/LJJxUeHq7Q0FDt3LlTI0aMUHx8vBYsWCBJSkxMtAlakqzvExMTcz1Wenq60tPTre/T0tLsPRwAKLBcnzKTR1cHroyTV0IUT6MBCjcyEgBcQUYCiianF6RiYmK0e/dubdhgW4Xu16+f9c9169ZVSEiIWrVqpUOHDqlq1aoFOtakSZM0bty4W+ovABQV1869wLwKgGshIwGAc5CRAHM49Sd7AwYM0NKlS7Vu3TpVrFjxhm2bNWsmSTp48KAkKTg4WElJSTZtst9fb06FUaNGKTU11fo6duzYrQ4BAFzO4ZQVOpyyQod+/cj6AlC4kJEAwP7ISIBrccodUoZhaODAgVq4cKG+//57RURE3HSbuLg4SVJISIgkKSoqSm+88YaSk5MVGBgoSVq1apX8/PwUGRmZ6z68vb3l7e1tn0EAgIvL7RZ1AK6NjAQAjkdGAlyDUwpSMTExmjdvnhYvXixfX1/rfAb+/v4qUaKEDh06pHnz5ql9+/YqV66cdu7cqSFDhqhFixaqV6+eJKlNmzaKjIzU008/rSlTpigxMVGvvvqqYmJiCFQAAKBQIiMBAIDiwik/2fvwww+Vmpqqe++9VyEhIdbXV199JUny8vLS6tWr1aZNG9WqVUsvvfSSOnfurG+//da6D3d3dy1dulTu7u6KiorSU089pR49emj8+PHOGBIAAMAtIyMBAIDiwmk/2buRsLAw/fDDDzfdT3h4uJYvX26vbgEArnHo149yPDK5ckC7XNvyxBrg1pGRAKBwICMBt86pk5oDAAAAAACg+HHKHVIAAHMdTllx0zbZT5q59mofAABAUUVGApyHghQAFGMEKwAAgJzISIDjUZACAOTLtVcSrzdfAgAAQHFCRgLyh4IUAOCWWMPXl/+EsMoB7ZjAEwAAFGtkJODGmNQcAAAAAAAApuIOKQCAS8mI3ZBjGVcSAQBAcUdGQlFDQQoA4BC5habcEKQAAEBxQkYCrqAgBQBwqhuFsuy5F9x+3WNdVrXxcw7vEwAAgLORkVDUUZACANhdQZ8yc+12AAAARUluWScvOYmMhKKIghQAwOEIUQAAALkjJ6G4oiAFAHB5WQePWv984OArkiS3apWsy/Jzi/q1t78zPwMAACisyEgozChIAQAKpWsD2NXhKzfMqwAAAIoDMhIKCwpSAIBiiclAAQAAcnc4ZQUZCQ5HQQoAUCRcfTUwNxkn8/aI5Vy3zeUpN9zGDgAACgNHZiSJn/qh4ChIAQCKhetNGHp1SLvVQAYAAFDYkJHgLBSkAAD4/wr6KGYAAICijIwER6AgBQBAAeT2M75rccs6AAAobvKSkSRyEihIAQBwQ9e7jT0vmAwUAAAUVbeSkaR/chIZqfhyc3YHAAAAAAAAULxwhxQAAA6S18lAuWUdAAAUN9k5iYxUfFGQAgDAyXhcMgAAQE65zUdFTio6KEgBAGACnk4DAACQExmp+KIgBQCAk1x3MtAv8zdJ6I1CG1cRAQBAYXPDCdPtlJPISM5HQQoAgGLi0K8f2bzPfqoNt8MDAIDijIzkHBSkAAAogqxXFnO5iuhWrdJNt8t+FLPE45gBAEDRQUZyHYW+IDVjxgxNnTpViYmJql+/vt577z01bdrU2d0CAMA0N7ytPRd5eapNbk8I5Ipg4UJGAgAgfzmJjGSuQl2Q+uqrrzR06FDNnDlTzZo109tvv63o6GjFx8crMDDQ2d0DAMCl5TWgXXtFkKuBro+MBABAwZGRzOHm7A7ciunTp6tv37565plnFBkZqZkzZ6pkyZL69NNPnd01AAAApyEjAQAAV1do75C6dOmStm7dqlGjRlmXubm5qXXr1tq4cWOu26Snpys9Pd36PjU1VZKUlpbmkD6eu5B+80YAABQSlnN/S5Livn9bkmT8/ke+tq/k/0C+2ns+EJWv9nmV/b1vGIZD9u9sZCQAAMxFRiqYQluQOnnypDIzMxUUFGSzPCgoSPv37891m0mTJmncuHE5loeFhTmkjwAA4Gr/cnYHbJw9e1b+/v7O7obdkZEAAChsimdGKrQFqYIYNWqUhg4dan2flZWl06dPq1y5crJYLHY9VlpamsLCwnTs2DH5+fnZdd/IHefcXJxv83HOzcc5N5dZ59swDJ09e1ahoaEOO0ZhQ0Yq2jjn5uJ8m49zbj7OubmKakYqtAWp8uXLy93dXUlJSTbLk5KSFBwcnOs23t7e8vb2tlkWEBDgqC5Kkvz8/PgP1GScc3Nxvs3HOTcf59xcZpzvonhnVDYyEq6Hc24uzrf5OOfm45ybq6hlpEI7qbmXl5caNWqkNWvWWJdlZWVpzZo1iopyzO8pAQAAXB0ZCQAAFAaF9g4pSRo6dKh69uypxo0bq2nTpnr77bd1/vx5PfPMM87uGgAAgNOQkQAAgKsr1AWpJ554Qn/99ZdGjx6txMRE3XHHHYqNjc0xiaczeHt7a8yYMTluf4fjcM7Nxfk2H+fcfJxzc3G+7YeMhKtxzs3F+TYf59x8nHNzFdXzbTGK6jOPAQAAAAAA4JIK7RxSAAAAAAAAKJwoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQeYMWOGKleuLB8fHzVr1kybN292dpcKhUmTJqlJkyby9fVVYGCgOnXqpPj4eJs2Fy9eVExMjMqVK6fSpUurc+fOSkpKsmlz9OhRdejQQSVLllRgYKCGDx+uy5cv27T5/vvv1bBhQ3l7e6tatWqaM2eOo4fn8iZPniyLxaLBgwdbl3G+7e/PP//UU089pXLlyqlEiRKqW7eufv31V+t6wzA0evRohYSEqESJEmrdurUOHDhgs4/Tp0+re/fu8vPzU0BAgHr37q1z587ZtNm5c6fuuece+fj4KCwsTFOmTDFlfK4mMzNTr732miIiIlSiRAlVrVpVEyZM0NXP8+Cc35r169erY8eOCg0NlcVi0aJFi2zWm3l+58+fr1q1asnHx0d169bV8uXL7T5e3DpyUv6RkZyPnOR4ZCRzkZEcj4yUBwbs6ssvvzS8vLyMTz/91NizZ4/Rt29fIyAgwEhKSnJ211xedHS0MXv2bGP37t1GXFyc0b59e6NSpUrGuXPnrG369+9vhIWFGWvWrDF+/fVX48477zTuuusu6/rLly8bderUMVq3bm1s377dWL58uVG+fHlj1KhR1ja///67UbJkSWPo0KHG3r17jffee89wd3c3YmNjTR2vK9m8ebNRuXJlo169esagQYOsyznf9nX69GkjPDzc6NWrl7Fp0ybj999/N7777jvj4MGD1jaTJ082/P39jUWLFhk7duwwHnroISMiIsL4+++/rW3atm1r1K9f3/jll1+MH3/80ahWrZrRrVs36/rU1FQjKCjI6N69u7F7927jv//9r1GiRAnjo48+MnW8ruCNN94wypUrZyxdutRISEgw5s+fb5QuXdp45513rG0457dm+fLlxiuvvGIsWLDAkGQsXLjQZr1Z5/enn34y3N3djSlTphh79+41Xn31VcPT09PYtWuXw88B8o6cVDBkJOciJzkeGcl8ZCTHIyPdHAUpO2vatKkRExNjfZ+ZmWmEhoYakyZNcmKvCqfk5GRDkvHDDz8YhmEYKSkphqenpzF//nxrm3379hmSjI0bNxqGceU/ejc3NyMxMdHa5sMPPzT8/PyM9PR0wzAM4+WXXzZq165tc6wnnnjCiI6OdvSQXNLZs2eN6tWrG6tWrTJatmxpDVqcb/sbMWKE0bx58+uuz8rKMoKDg42pU6dal6WkpBje3t7Gf//7X8MwDGPv3r2GJGPLli3WNitWrDAsFovx559/GoZhGB988IFRpkwZ62eQfeyaNWvae0gur0OHDsazzz5rs+zRRx81unfvbhgG59zerg1bZp7fLl26GB06dLDpT7NmzYznnnvOrmPErSEn2QcZyTzkJHOQkcxHRjIXGSl3/GTPji5duqStW7eqdevW1mVubm5q3bq1Nm7c6MSeFU6pqamSpLJly0qStm7dqoyMDJvzW6tWLVWqVMl6fjdu3Ki6desqKCjI2iY6OlppaWnas2ePtc3V+8huU1w/o5iYGHXo0CHHOeF829+SJUvUuHFjPf744woMDFSDBg308ccfW9cnJCQoMTHR5nz5+/urWbNmNuc8ICBAjRs3trZp3bq13NzctGnTJmubFi1ayMvLy9omOjpa8fHxOnPmjKOH6VLuuusurVmzRr/99pskaceOHdqwYYPatWsniXPuaGaeX/6tcX3kJPshI5mHnGQOMpL5yEjORUa6goKUHZ08eVKZmZk2XzqSFBQUpMTERCf1qnDKysrS4MGDdffdd6tOnTqSpMTERHl5eSkgIMCm7dXnNzExMdfzn73uRm3S0tL0999/O2I4LuvLL7/Utm3bNGnSpBzrON/29/vvv+vDDz9U9erV9d133+n555/Xiy++qM8++0zSP+fsRv+GJCYmKjAw0Ga9h4eHypYtm6/PpbgYOXKkunbtqlq1asnT01MNGjTQ4MGD1b17d0mcc0cz8/xer01xPv+uhpxkH2Qk85CTzENGMh8ZybnISFd4OLsDQG5iYmK0e/dubdiwwdldKbKOHTumQYMGadWqVfLx8XF2d4qFrKwsNW7cWBMnTpQkNWjQQLt379bMmTPVs2dPJ/euaPr66681d+5czZs3T7Vr11ZcXJwGDx6s0NBQzjmAQomMZA5ykrnISOYjI8EVcIeUHZUvX17u7u45nq6RlJSk4OBgJ/Wq8BkwYICWLl2qdevWqWLFitblwcHBunTpklJSUmzaX31+g4ODcz3/2etu1MbPz08lSpSw93Bc1tatW5WcnKyGDRvKw8NDHh4e+uGHH/Tuu+/Kw8NDQUFBnG87CwkJUWRkpM2y22+/XUePHpX0zzm70b8hwcHBSk5Otll/+fJlnT59Ol+fS3ExfPhw6xXAunXr6umnn9aQIUOsV7s5545l5vm9XpvifP5dDTnp1pGRzENOMhcZyXxkJOciI11BQcqOvLy81KhRI61Zs8a6LCsrS2vWrFFUVJQTe1Y4GIahAQMGaOHChVq7dq0iIiJs1jdq1Eienp425zc+Pl5Hjx61nt+oqCjt2rXL5j/cVatWyc/Pz/olFxUVZbOP7DbF7TNq1aqVdu3apbi4OOurcePG6t69u/XPnG/7uvvuu3M8pvu3335TeHi4JCkiIkLBwcE25ystLU2bNm2yOecpKSnaunWrtc3atWuVlZWlZs2aWdusX79eGRkZ1jarVq1SzZo1VaZMGYeNzxVduHBBbm62X3Xu7u7KysqSxDl3NDPPL//WuD5yUsGRkcxHTjIXGcl8ZCTnIiP9f86eVb2o+fLLLw1vb29jzpw5xt69e41+/foZAQEBNk/XQO6ef/55w9/f3/j++++NEydOWF8XLlywtunfv79RqVIlY+3atcavv/5qREVFGVFRUdb12Y/XbdOmjREXF2fExsYaFSpUyPXxusOHDzf27dtnzJgxo1g+Xjc3Vz89xjA43/a2efNmw8PDw3jjjTeMAwcOGHPnzjVKlixpfPHFF9Y2kydPNgICAozFixcbO3fuNB5++OFcH//aoEEDY9OmTcaGDRuM6tWr2zz+NSUlxQgKCjKefvppY/fu3caXX35plCxZslg8XvdaPXv2NG677TbrI40XLFhglC9f3nj55ZetbTjnt+bs2bPG9u3bje3btxuSjOnTpxvbt283jhw5YhiGeef3p59+Mjw8PIxp06YZ+/btM8aMGeMyjzTGP8hJBUNGcg3kJMchI5mPjOR4ZKSboyDlAO+9955RqVIlw8vLy2jatKnxyy+/OLtLhYKkXF+zZ8+2tvn777+NF154wShTpoxRsmRJ45FHHjFOnDhhs5/Dhw8b7dq1M0qUKGGUL1/eeOmll4yMjAybNuvWrTPuuOMOw8vLy6hSpYrNMYqza4MW59v+vv32W6NOnTqGt7e3UatWLWPWrFk267OysozXXnvNCAoKMry9vY1WrVoZ8fHxNm1OnTpldOvWzShdurTh5+dnPPPMM8bZs2dt2uzYscNo3ry54e3tbdx2223G5MmTHT42V5SWlmYMGjTIqFSpkuHj42NUqVLFeOWVV2wejcs5vzXr1q3L9d/unj17GoZh7vn9+uuvjRo1ahheXl5G7dq1jWXLljls3Cg4clL+kZFcAznJschI5iIjOR4Z6eYshmEY5t2PBQAAAAAAgOKOOaQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIU4MLGjh0ri8WikydPOrsrsCOLxaKxY8fafb/t27dX3759b9puzpw5slgsOnz4sM3yqVOnqkqVKnJ3d9cdd9yRr2PHxsaqdOnS+uuvv/K1HQAABUFGKprISEDxQkEKAIqAn376SStXrtSIESMKtP3KlSv18ssv6+6779bs2bM1ceJE6/LevXurTp06cnd3V+XKlXPdvm3btqpWrZomTZpU0CEAAADYnSMy0oULFzRjxgy1adNGISEh8vX1VYMGDfThhx8qMzPTZnsyEnB9Hs7uAAAUN3///bc8POz7z+/UqVPVqlUrVatWrUDbr127Vm5ubvr3v/8tLy8v6/J58+bpq6++UsOGDRUaGnrDfTz33HMaNmyYxo0bJ19f3wL1AwAAFF+FJSPt3r1bAwcOVKtWrTR06FD5+fnpu+++0wsvvKBffvlFn332mc0+yEhA7rhDCoDdnT9/3tldsHKlvmTz8fGxa9hKTk7WsmXL1KVLl1vaR4kSJWyKUZI0ceJEpaWl6aefflL9+vVvuI/OnTsrPT1d8+fPL3A/AAAoylwpl7hSX7IVlowUHBysXbt2adWqVRo+fLiee+45LViwQM8884w+//xzHTx40GYfZCQgdxSkgEIgJSVFvXr1UkBAgPz9/fXMM8/owoUL1vUtW7a8brGgZs2aio6OliQdPnxYFotF06ZN01tvvaXw8HCVKFFCLVu21O7du3Nsu3//fj322GMqW7asfHx81LhxYy1ZssSmTfZv7X/44Qe98MILCgwMVMWKFSVJZ8+e1eDBg1W5cmV5e3srMDBQDzzwgLZt22azj02bNql9+/YqU6aMSpUqpXr16umdd96xabN27Vrdc889KlWqlAICAvTwww9r3759Nm2y55PYu3evnnzySZUpU0bNmze3rv/iiy/UqFEjlShRQmXLllXXrl117Nixm53+XMe7YcMGvfjii6pQoYICAgL03HPP6dKlS0pJSVGPHj1UpkwZlSlTRi+//LIMw7DZx7XzI2T3++DBgzf8nK9n2bJlunz5slq3bp1j3Z49e3T//ferRIkSqlixol5//XVlZWXl6M/s2bN1/vx5WSwWWSwWzZkzR5IUGhoqT0/PPJ2bwMBA1atXT4sXL85TewAAbhUZiYx0I47KSOXLl1ft2rVz7PORRx6RpBznn4wE5I6f7AGFQJcuXRQREaFJkyZp27Zt+uSTTxQYGKg333xTkvT000+rb9++2r17t+rUqWPdbsuWLfrtt9/06quv2uzv888/19mzZxUTE6OLFy/qnXfe0f33369du3YpKChI0pUv6bvvvlu33XabRo4cqVKlSunrr79Wp06d9M0331i/cLO98MILqlChgkaPHm294ta/f3/973//04ABAxQZGalTp05pw4YN2rdvnxo2bChJWrVqlR588EGFhIRo0KBBCg4O1r59+7R06VINGjRIkrR69Wq1a9dOVapU0dixY/X333/rvffe0913361t27blmNfo8ccfV/Xq1TVx4kRr0HnjjTf02muvqUuXLurTp4/++usvvffee2rRooW2b9+ugICAfH0mAwcOVHBwsMaNG6dffvlFs2bNUkBAgH7++WdVqlRJEydO1PLlyzV16lTVqVNHPXr0uOk+b/Y5X8/PP/+scuXKKTw83GZ5YmKi7rvvPl2+fNn6Gc6aNUslSpSwafef//xHs2bN0ubNm/XJJ59Iku666658nY9sjRo10qJFiwq0LQAA+UVGIiPdiNkZKTExUZJUvnz5HOvISEAuDAAua8yYMYYk49lnn7VZ/sgjjxjlypWzvk9JSTF8fHyMESNG2LR78cUXjVKlShnnzp0zDMMwEhISDElGiRIljD/++MPabtOmTYYkY8iQIdZlrVq1MurWrWtcvHjRuiwrK8u46667jOrVq1uXzZ4925BkNG/e3Lh8+bLN8f39/Y2YmJjrju/y5ctGRESEER4ebpw5c8ZmXVZWlvXPd9xxhxEYGGicOnXKumzHjh2Gm5ub0aNHjxznq1u3bjb7Onz4sOHu7m688cYbNst37dpleHh45Fh+I9njjY6OtuljVFSUYbFYjP79+9uMr2LFikbLli1t9iHJGDNmTI5+3+xzvp7mzZsbjRo1yrF88ODBhiRj06ZN1mXJycmGv7+/IclISEiwLu/Zs6dRqlSpGx6nQ4cORnh4+A3bTJw40ZBkJCUl3bTfAAAUFBnpCjLSjZmVkQzDMNLT043IyEgjIiLCyMjIyLGejATkxE/2gEKgf//+Nu/vuecenTp1SmlpaZIkf39/Pfzww/rvf/9rvdqVmZmpr776Sp06dVKpUqVstu/UqZNuu+026/umTZuqWbNmWr58uSTp9OnTWrt2rbp06aKzZ8/q5MmTOnnypE6dOqXo6GgdOHBAf/75p80++/btK3d3d5tlAQEB2rRpk44fP57ruLZv366EhAQNHjw4x9U3i8UiSTpx4oTi4uLUq1cvlS1b1rq+Xr16euCBB6x9vtH5WrBggbKystSlSxfrWE6ePKng4GBVr15d69aty7V/N9K7d29rHyWpWbNmMgxDvXv3ti5zd3dX48aN9fvvv+dpnzf7nK/n1KlTKlOmTI7ly5cv15133qmmTZtal1WoUEHdu3fPU38KIrsfPIYbAGAGMhIZ6UbMzEgDBgzQ3r179f777+c6DxYZCciJghRQCFSqVMnmffYX2pkzZ6zLevTooaNHj+rHH3+UdOUW7qSkJD399NM59le9evUcy2rUqKHDhw9Lkg4ePCjDMPTaa6+pQoUKNq8xY8ZIujLB49UiIiJy7HPKlCnavXu3wsLC1LRpU40dO9YmeBw6dEiSbG6hv9aRI0ckXZnn4Vq33367Tp48mWNSzmv7cuDAARmGoerVq+cYz759+3KMJS+u/Uz8/f0lSWFhYTmWX/055WefuX3O12NcMweDdOXc5fZZ53Yu7SW7H1cHUQAAHIWMREa6GTMy0tSpU/Xxxx9rwoQJat++/Q37QUYC/sEcUkAhcO1VtWxXf8FGR0crKChIX3zxhVq0aKEvvvhCwcHBuU7ieDPZEzoOGzbMOtnnta59dO61v7mXrvze/5577tHChQu1cuVKTZ06VW+++aYWLFigdu3a5btfeXVtX7KysmSxWLRixYpcz2Xp0qXzfYzrfSa5Lc8tCOVnnzfbvly5cnkOdI6W3Y/c5k4AAMDeyEj5Q0ayvzlz5mjEiBHq379/jjnJrkZGAnKiIAUUEe7u7nryySc1Z84cvfnmm1q0aFGut4hLV66GXeu3336zTnxZpUoVSZKnp2eBwtrVQkJC9MILL+iFF15QcnKyGjZsqDfeeEPt2rVT1apVJUm7d+++7nGyJ6GMj4/PsW7//v0qX758jtvtr1W1alUZhqGIiAjVqFHjlsbjimrVqqVvvvkmx/Lw8PBcP+vczqW9JCQkqHz58qpQoYLDjgEAQH6Qka6PjGQrvxlp8eLF6tOnjx599FHNmDHjhm3JSEBO/GQPKEKefvppnTlzRs8995zOnTunp556Ktd2ixYtspnfYPPmzdq0aZP1ilxgYKDuvfdeffTRRzpx4kSO7f/666+b9iUzM1Opqak2ywIDAxUaGqr09HRJUsOGDRUREaG3335bKSkpNm2zr3iFhITojjvu0GeffWbTZvfu3Vq5cuV1b4u+2qOPPip3d3eNGzcux5U0wzB06tSpm+7DlUVFRenMmTM55mFo3769fvnlF23evNm67K+//tLcuXMd1petW7cqKirKYfsHAKAgyEi5IyMVPCOtX79eXbt2VYsWLTR37ly5ud34/1qTkYCcuEMKKEIaNGigOnXqaP78+br99tutjw2+VrVq1dS8eXM9//zzSk9P19tvv61y5crp5ZdftraZMWOGmjdvrrp166pv376qUqWKkpKStHHjRv3xxx/asWPHDfty9uxZVaxYUY899pjq16+v0qVLa/Xq1dqyZYv+9a9/SZLc3Nz04YcfqmPHjrrjjjv0zDPPKCQkRPv379eePXv03XffSbryu/x27dopKipKvXv3tj7S2N/fX2PHjr3pealatapef/11jRo1SocPH1anTp3k6+urhIQELVy4UP369dOwYcPyeJZdT4cOHeTh4aHVq1erX79+1uUvv/yy/vOf/6ht27YaNGiQ9ZHG4eHh2rlzZ572vXPnTi1ZskTSlXkzUlNT9frrr0uS6tevr44dO1rbJicna+fOnYqJibHj6AAAuHVkpNyRkQqWkY4cOaKHHnpIFotFjz32mObPn2+zvl69eqpXr571PRkJyB0FKaCI6dGjh15++eVcJ+q8uo2bm5vefvttJScnq2nTpnr//fcVEhJibRMZGalff/1V48aN05w5c3Tq1CkFBgaqQYMGGj169E37UbJkSb3wwgtauXKl9Qku1apV0wcffKDnn3/e2i46Olrr1q3TuHHj9K9//UtZWVmqWrWq+vbta23TunVrxcbGasyYMRo9erQ8PT3VsmVLvfnmm7lOFJqbkSNHqkaNGnrrrbc0btw4SVcm12zTpo0eeuihPO3DVQUFBal9+/b6+uuvbcJWSEiI1q1bp4EDB2ry5MkqV66c+vfvr9DQUJsn3dzItm3b9Nprr9ksy37fs2dPm4LUggUL5O3trS5duthhVAAA2BcZKXdkpPxnpISEBOtdbrkVmcaMGWNTkCIjAbmzGHmdSQ5AofDOO+9oyJAhOnz4cI4nkhw+fFgRERGaOnVqob7ahZx+/PFH3Xvvvdq/f3+uT40xQ4MGDXTvvffqrbfecsrxAQC4ETJS8URGAlwXc0gBRYhhGPr3v/+tli1b5ghaKNruuecetWnTRlOmTHHK8WNjY3XgwAGNGjXKKccHAOBGyEjFFxkJcF38ZA8oAs6fP68lS5Zo3bp12rVrlxYvXuzsLhU6f//9d44JRq9VtmxZeXl5mdSj/FuxYoXTjt22bVudO3fOaccHACA3ZKRbR0a6NWQk4PooSAFFwF9//aUnn3xSAQEB+r//+79C/3t/Z/jqq6/0zDPP3LDNunXrdO+995rTIQAAcMvISLeOjATAUZhDCgAknThxQnv27Llhm0aNGqlMmTIm9QgAAMD5yEgAHIWCFAAAAAAAAEzFpOYAAAAAAAAwFQUpAAAAAAAAmKpYT2qelZWl48ePy9fXVxaLxdndAQAAJjAMQ2fPnlVoaKjc3Lg2lxsyEgAAxY/ZGalYF6SOHz+usLAwZ3cDAAA4wbFjx1SxYkVnd8MlkZEAACi+zMpIxbog5evrK+nKyfbz83NybwAAgBnS0tIUFhZmzQHIiYwEAEDxY3ZGKtYFqexb0P38/AhbAAAUM/wU7frISAAAFF9mZSQmTgAAAAAAAICpKEgBAAAAAADAVMX6J3sAANxIZmamMjIynN0N5JOnp6fc3d2d3Q0AAIosMlLh5GoZiYIUAADXMAxDiYmJSklJcXZXUEABAQEKDg5mnigAAOyIjFT4uVJGoiAFAMA1soNWYGCgSpYs6RJf2MgbwzB04cIFJScnS5JCQkKc3CMAAIoOMlLh5YoZiYIUAABXyczMtAatcuXKObs7KIASJUpIkpKTkxUYGOhSt6YDAFBYkZEKP1fLSExqDgDAVbLnQyhZsqSTe4Jbkf35Mb8FAAD2QUYqGlwpI1GQAgAgF9yCXrjx+QEA4Bh8xxZurvT5UZACAAAAAACAqShIAQAAAAAAwFRMag4AQB5lxG4w7ViebZvnue3Nbr0eM2aMxo4de4s9KhiLxaKFCxeqU6dOBd7HrFmzNG/ePG3btk1nz57VmTNnFBAQYLc+AgCAW2NmRpLISdlOnz6tMWPGaOXKlTp69KgqVKigTp06acKECfL397dvZx2AghQAAIXciRMnrH/+6quvNHr0aMXHx1uXlS5dOl/7u3Tpkry8vOzWv1t14cIFtW3bVm3bttWoUaOc3R0AAFCIFOWcdPz4cR0/flzTpk1TZGSkjhw5ov79++v48eP63//+5+zu3RQ/2QPyISN2g80LAFxBcHCw9eXv7y+LxWJ9f/78eXXv3l1BQUEqXbq0mjRpotWrV9tsX7lyZU2YMEE9evSQn5+f+vXrJ0n6+OOPFRYWppIlS+qRRx7R9OnTc9yZtHjxYjVs2FA+Pj6qUqWKxo0bp8uXL1v3K0mPPPKILBaL9f2OHTt03333ydfXV35+fmrUqJF+/fXX645v8ODBGjlypO688077nDAAdkdGAuCqinJOqlOnjr755ht17NhRVatW1f3336833nhD3377rfU4royCFAAARdi5c+fUvn17rVmzRtu3b1fbtm3VsWNHHT161KbdtGnTVL9+fW3fvl2vvfaafvrpJ/Xv31+DBg1SXFycHnjgAb3xxhs22/z444/q0aOHBg0apL179+qjjz7SnDlzrO22bNkiSZo9e7ZOnDhhfd+9e3dVrFhRW7Zs0datWzVy5Eh5enqacDYAAAD+URRzUmpqqvz8/OTh4fo/iHP9HgIAgAKrX7++6tevb30/YcIELVy4UEuWLNGAAQOsy++//3699NJL1vevvPKK2rVrp2HDhkmSatSooZ9//llLly61thk3bpxGjhypnj17SpKqVKmiCRMm6OWXX9aYMWNUoUIFSVJAQICCg4Ot2x09elTDhw9XrVq1JEnVq1d3wMgBAABurKjlpJMnT2rChAnWu7hcHXdIAQBQhJ07d07Dhg3T7bffroCAAJUuXVr79u3LceWvcePGNu/j4+PVtGlTm2XXvt+xY4fGjx+v0qVLW199+/bViRMndOHChev2aejQoerTp49at26tyZMn69ChQ7c4SgAAgPwrSjkpLS1NHTp0UGRkpNMmac8vClIAABRhw4YN08KFCzVx4kT9+OOPiouLU926dXXp0iWbdqVKlcr3vs+dO6dx48YpLi7O+tq1a5cOHDggHx+f6243duxY7dmzRx06dNDatWsVGRmphQsX5vv4AAAAt6Ko5KSzZ8+qbdu28vX11cKFCwvNVAj8ZA8AgCLsp59+Uq9evfTII49IuhKODh8+fNPtatasaZ3LINu17xs2bKj4+HhVq1btuvvx9PRUZmZmjuU1atRQjRo1NGTIEHXr1k2zZ8+29hEAAMAMRSEnpaWlKTo6Wt7e3lqyZMkNi12uhoIUAABFWPXq1bVgwQJ17NhRFotFr732mrKysm663cCBA9WiRQtNnz5dHTt21Nq1a7VixQpZLBZrm9GjR+vBBx9UpUqV9Nhjj8nNzU07duzQ7t279frrr0u68gSZNWvW6O6775a3t7d8fHw0fPhwPfbYY4qIiNAff/yhLVu2qHPnztftS2JiohITE3Xw4EFJ0q5du+Tr66tKlSqpbNmyt3iGAABAcVXYc1JaWpratGmjCxcu6IsvvlBaWprS0tIkSRUqVJC7u7sdzpLj8JM9AACKsOnTp6tMmTK666671LFjR0VHR6thw4Y33e7uu+/WzJkzNX36dNWvX1+xsbEaMmSIzVW36OhoLV26VCtXrlSTJk1055136q233lJ4eLi1zb/+9S+tWrVKYWFhatCggdzd3XXq1Cn16NFDNWrUUJcuXdSuXTuNGzfuun2ZOXOmGjRooL59+0qSWrRooQYNGmjJkiW3cGYAAEBxV9hz0rZt27Rp0ybt2rVL1apVU0hIiPV17NixWz9BDmYxDMNwdiecJS0tTf7+/tbHIgI3kxG7wea9Z9vmTuoJAEe5ePGiEhISFBERUahueTZD3759tX//fv3444/O7spN3ehz5Pv/5jhHyC8yElD0kZFurLDkJFfKSPxkDwAA5GratGl64IEHVKpUKa1YsUKfffaZPvjgA2d3CwAAwOnISbeOghQAAMjV5s2bNWXKFJ09e1ZVqlTRu+++qz59+ji7WwAAAE5HTrp1FKQAAECuvv76a2d3AQAAwCWRk24dk5oDAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYyu4FqQ8//FD16tWTn5+f/Pz8FBUVpRUrVljXX7x4UTExMSpXrpxKly6tzp07KykpyWYfR48eVYcOHVSyZEkFBgZq+PDhunz5sk2b77//Xg0bNpS3t7eqVaumOXPm2HsoAAAAdkNGAgAA+Ifdn7JXsWJFTZ48WdWrV5dhGPrss8/08MMPa/v27apdu7aGDBmiZcuWaf78+fL399eAAQP06KOP6qeffpIkZWZmqkOHDgoODtbPP/+sEydOqEePHvL09NTEiRMlSQkJCerQoYP69++vuXPnas2aNerTp49CQkIUHR1t7yEB15URuyHHMs+2zZ3QEwCAqyMjoTghIwEAbsZiGIbh6IOULVtWU6dO1WOPPaYKFSpo3rx5euyxxyRJ+/fv1+23366NGzfqzjvv1IoVK/Tggw/q+PHjCgoKkiTNnDlTI0aM0F9//SUvLy+NGDFCy5Yt0+7du63H6Nq1q1JSUhQbG5vnfqWlpcnf31+pqany8/Oz76BRJOUWrq5F2AIKt4sXLyohIUERERHy8fFxdndQQDf6HF3p+5+MhKKCjAQUfWSkosGVMpLd75C6WmZmpubPn6/z588rKipKW7duVUZGhlq3bm1tU6tWLVWqVMkatjZu3Ki6detag5YkRUdH6/nnn9eePXvUoEEDbdy40WYf2W0GDx7syOEAAIq5Q79+ZNqxqjZ+Ll/te/Xqpc8++0yS5OHhobJly6pevXrq1q2bevXqJTe3wjtt5J49ezR69Ght3bpVR44c0VtvvVXov/PJSACAosTMjCSRk6728ccf6/PPP7dejGrUqJEmTpyopk2bOrlnN+eQs75r1y6VLl1a3t7e6t+/vxYuXKjIyEglJibKy8tLAQEBNu2DgoKUmJgoSUpMTLQJWtnrs9fdqE1aWpr+/vvv6/YrPT1daWlpNi8AAIqKtm3b6sSJEzr8/9i78/Aoqrz9/3dnD0snhCUBCYuyRvYAIYqoEAkYHFEYjTKyCCJOYISMCHnGYXEZeBAVGUGccQYchUfAEUSWYAwCg0aWaGQR8kUHDApJUCDNIkkg9fvDX0qahCVbdXfyfl1XX1e66lT1qZMOffOp6lOHD2vDhg2688479eSTT2rQoEEl5hnyJOfOndONN96o2bNnKywszNXdqRAyEgAArlFdc9LmzZv10EMP6ZNPPlFaWprCw8PVv39//fDDD67u2jVVSUGqbdu2ysjI0Pbt2/XEE09oxIgR+vrrr6vipcpk1qxZCgoKMh/h4eGu7hIAAJXG399fYWFhuuGGG9StWzf9z//8jz744ANt2LDBaWLrU6dOacyYMWrYsKHsdrv69u2rr776ymlfH374oXr06KGAgAA1aNBA9913n7nu5MmTGj58uOrVq6datWpp4MCBOnjwoCTp7Nmzstvteu+995z2t3r1atWuXVunT59WQUGBxo8fr8aNGysgIEDNmzfXrFmzrnhcPXr00Isvvqj4+Hj5+/tXwki5DhkJAADXqK45aenSpfr973+vLl26qF27dnrzzTdVVFSk1NTUShi1qlUlBSk/Pz+1atVKkZGRmjVrljp37qxXX31VYWFhKigo0KlTp5za5+TkmGc8w8LCStxRpvj5tdrY7XYFBgZesV9JSUnKy8szH0eOHKnooQIA4Nb69u2rzp076/333zeX/fa3v1Vubq42bNig9PR0devWTf369dOJEyckSevWrdN9992nu+++W19++aVSU1OdLvseOXKkdu3apTVr1igtLU2GYejuu+9WYWGhateurfj4eC1evNipH4sXL9bQoUNVt25dzZ8/X2vWrNGKFSuUmZmppUuXqkWLFpaMh6uRkQAAcB/VMSedO3dOhYWFCgkJqdjgWKBK55AqVlRUpPz8fEVGRsrX11epqakaMmSIJCkzM1NZWVmKjo6WJEVHR+uFF15Qbm6uGjVqJElKSUmR3W5XRESE2Wb9+vVOr5GSkmLu40r8/f09/swqAABl1a5dO+3evVuStG3bNu3YsUO5ubnmZ+LcuXO1evVqvffeexo7dqxeeOEFxcfHa+bMmeY+OnfuLEk6ePCg1qxZo08//VS33HKLpF/OzIWHh2v16tX67W9/qzFjxuiWW27RsWPH1LhxY+Xm5mr9+vX6+OOPJUlZWVlq3bq1evfuLZvNpubNm1s5HG6FjAQAgGtVt5w0ZcoUNWnSpMScku6o0q+QSkpK0tatW3X48GHt2bNHSUlJ2rx5s4YNG6agoCCNHj1aiYmJ+uSTT5Senq5Ro0YpOjpavXr1kiT1799fEREReuSRR/TVV19p48aNeuaZZ5SQkGC+IcaNG6f//ve/evrpp3XgwAEtXLhQK1as0KRJkyr7cAAA8HiGYchms0mSvvrqK505c0b169dXnTp1zMehQ4f07bffSpIyMjLUr1+/Uve1f/9++fj4KCoqylxWv359tW3bVvv375ck9ezZUzfffLM5eeg777yj5s2bq0+fPpJ+OXOYkZGhtm3b6g9/+IM++uijKjt2d0JGAgDA/VSnnDR79my9++67WrVqlUfcCbHSr5DKzc3V8OHDdezYMQUFBalTp07auHGj7rrrLknSK6+8Ii8vLw0ZMkT5+fmKjY3VwoULze29vb21du1aPfHEE4qOjlbt2rU1YsQIPfvss2abli1bat26dZo0aZJeffVVNW3aVG+++aZiY2Mr+3AAAPB4+/fvV8uWLSVJZ86cUePGjbV58+YS7Yon1L7aV7uu15gxY7RgwQJNnTpVixcv1qhRo8yw161bNx06dEgbNmzQxx9/rAceeEAxMTEl5lOobshIAAC4n+qSk+bOnavZs2fr448/VqdOnSrcRytUekHqH//4x1XXBwQEaMGCBVqwYMEV2zRv3rzE5eaXu+OOO/Tll1+Wq48AANQUmzZt0p49e8wrZLp166bs7Gz5+PhccT6CTp06KTU1VaNGjSqxrn379rpw4YK2b99uXor+008/KTMz0/zamCT97ne/09NPP6358+fr66+/1ogRI5z2Y7fb9eCDD+rBBx/U0KFDNWDAAJ04ccIj5jsoLzISAADupbrkpDlz5uiFF17Qxo0b1b179/IMhUtYMocUAACoevn5+crOztbFixeVk5Oj5ORkzZo1S4MGDdLw4cMlSTExMYqOjtbgwYM1Z84ctWnTRkePHjUn6OzevbumT5+ufv366aabblJ8fLwuXLig9evXa8qUKWrdurXuvfdePfbYY3rjjTdUt25dTZ06VTfccIPuvfdesy/16tXT/fffr8mTJ6t///5q2rSpue7ll19W48aN1bVrV3l5eWnlypUKCwszzzxerqCgwLwTXUFBgX744QdlZGSoTp06atWqVdUNKAAAqDaqa0763//9X02bNk3Lli1TixYtlJ2dLUnm1w3dWZXcZQ8AAFgvOTlZjRs3VosWLTRgwAB98sknmj9/vj744AN5e3tLkmw2m9avX68+ffpo1KhRatOmjeLj4/Xdd98pNDRU0i9X2KxcuVJr1qxRly5d1LdvX+3YscN8ncWLFysyMlKDBg1SdHS0DMPQ+vXr5evr69Sf0aNHq6CgQI8++qjT8rp162rOnDnq3r27evToocOHD2v9+vXy8io9lhw9elRdu3ZV165ddezYMc2dO1ddu3bVmDFjKnP4AABANVZdc9Lrr7+ugoICDR06VI0bNzYfc+fOrczhqxI2wzAMV3fCVRwOh4KCgpSXlye73e7q7sADFCZvu2Yb3wG9LegJgKpy/vx5HTp0SC1btvSIySDd2dtvv61Jkybp6NGj8vPzs/S1r/Z75PP/2hgjlBUZCaj+yEiVy1U5yZ0yEl/ZAypZaYGMAAagJjl37pyOHTum2bNn6/HHH7e8GAXAPZGRAICcdCm+sgcAACrVnDlz1K5dO4WFhSkpKcnV3QEAAHAb5KRfUZACAACVasaMGSosLFRqaqrbT6YJAABgJXLSr/jKHnAF1zMXAgAAQE1DRgIAVAaukAIAAAAAAIClKEgBAFCKGnwT2mqB3x8AAFWDz1jP5k6/PwpSAABcwtfXV9Ivd0CB5yr+/RX/PgEAQMWQkaoHd8pIzCEFAMAlvL29FRwcrNzcXElSrVq1ZLPZXNwrXC/DMHTu3Dnl5uYqODhY3t7eru4SAADVAhnJs7ljRqIgBQDAZcLCwiTJDFzwPMHBwebvEQAAVA4ykudzp4xEQQoAgMvYbDY1btxYjRo1UmFhoau7gzLy9fV1i7N+AABUN2Qkz+ZuGYmCFAAAV+Dt7e1WH9oAAADugIyEysCk5gAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSPq7uAFATFCZvc3ruO6C3i3oCAADgPshIAFBzcYUUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVKUXpGbNmqUePXqobt26atSokQYPHqzMzEynNnfccYdsNpvTY9y4cU5tsrKyFBcXp1q1aqlRo0aaPHmyLly44NRm8+bN6tatm/z9/dWqVSstWbKksg8HAACgUpCRAAAAflXpBaktW7YoISFBn3/+uVJSUlRYWKj+/fvr7NmzTu0ee+wxHTt2zHzMmTPHXHfx4kXFxcWpoKBAn332md566y0tWbJE06ZNM9scOnRIcXFxuvPOO5WRkaGJEydqzJgx2rhxY2UfEgAAQIWRkQAAAH5lMwzDqMoXOH78uBo1aqQtW7aoT58+kn45+9elSxfNmzev1G02bNigQYMG6ejRowoNDZUkLVq0SFOmTNHx48fl5+enKVOmaN26ddq7d6+5XXx8vE6dOqXk5OTr6pvD4VBQUJDy8vJkt9srdqCodgqTt1XZvn0H9K6yfQMArs5dPv/JSPBUZCQAqJ6s/vyv8jmk8vLyJEkhISFOy5cuXaoGDRqoQ4cOSkpK0rlz58x1aWlp6tixoxm0JCk2NlYOh0P79u0z28TExDjtMzY2VmlpaVfsS35+vhwOh9MDAADAFchIAACgJvOpyp0XFRVp4sSJuvXWW9WhQwdz+cMPP6zmzZurSZMm2r17t6ZMmaLMzEy9//77kqTs7GynoCXJfJ6dnX3VNg6HQz///LMCAwNL9GfWrFmaOXNmpR4jUB6lnVnkjCAA1BxkJKB0ZCQAqDmqtCCVkJCgvXv3ats25w+WsWPHmj937NhRjRs3Vr9+/fTtt9/qpptuqrL+JCUlKTEx0XzucDgUHh5eZa8HAABQGjISAACo6arsK3vjx4/X2rVr9cknn6hp06ZXbRsVFSVJ+uabbyRJYWFhysnJcWpT/DwsLOyqbex2e6ln/iTJ399fdrvd6QEAAGAlMhIAAEAVFKQMw9D48eO1atUqbdq0SS1btrzmNhkZGZKkxo0bS5Kio6O1Z88e5ebmmm1SUlJkt9sVERFhtklNTXXaT0pKiqKjoyvpSAAAACoPGQkAAOBXlV6QSkhI0DvvvKNly5apbt26ys7OVnZ2tn7++WdJ0rfffqvnnntO6enpOnz4sNasWaPhw4erT58+6tSpkySpf//+ioiI0COPPKKvvvpKGzdu1DPPPKOEhAT5+/tLksaNG6f//ve/evrpp3XgwAEtXLhQK1as0KRJkyr7kAAAACqMjAQAAPArm2EYRqXu0GYrdfnixYs1cuRIHTlyRL/73e+0d+9enT17VuHh4brvvvv0zDPPOF0e/t133+mJJ57Q5s2bVbt2bY0YMUKzZ8+Wj8+v015t3rxZkyZN0tdff62mTZvqz3/+s0aOHHndfeWWxriaqrylcWmYsBMArOGqz38yEqoLMhIAVE9Wf/5XekHKkxC2cDWELQConvj8vzbGCFdDRgKA6snqz/8qm9QcAAAAAAAAKA0FKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYysfVHQDwi8LkbSWW+Q7o7YKeAAAAuA8yEgBUT1whBQAAAAAAAEtxhRSg0s+8AQAA1HRkJABAVeEKKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAICluMse4MYuv7ON74DeLuoJAACA+yAjAYDn4wopAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYqtILUrNmzVKPHj1Ut25dNWrUSIMHD1ZmZqZTm/PnzyshIUH169dXnTp1NGTIEOXk5Di1ycrKUlxcnGrVqqVGjRpp8uTJunDhglObzZs3q1u3bvL391erVq20ZMmSyj4cAACASkFGAgAA+FWlF6S2bNmihIQEff7550pJSVFhYaH69++vs2fPmm0mTZqkDz/8UCtXrtSWLVt09OhR3X///eb6ixcvKi4uTgUFBfrss8/01ltvacmSJZo2bZrZ5tChQ4qLi9Odd96pjIwMTZw4UWPGjNHGjRsr+5AAAAAqjIwEAADwK5thGEZVvsDx48fVqFEjbdmyRX369FFeXp4aNmyoZcuWaejQoZKkAwcOqH379kpLS1OvXr20YcMGDRo0SEePHlVoaKgkadGiRZoyZYqOHz8uPz8/TZkyRevWrdPevXvN14qPj9epU6eUnJx8XX1zOBwKCgpSXl6e7HZ75R88PEZh8jZXd+G6+A7o7eouAIDHc5fPfzISPAEZCQBqDqs//6t8Dqm8vDxJUkhIiCQpPT1dhYWFiomJMdu0a9dOzZo1U1pamiQpLS1NHTt2NIOWJMXGxsrhcGjfvn1mm0v3UdymeB8AAADujIwEAABqMp+q3HlRUZEmTpyoW2+9VR06dJAkZWdny8/PT8HBwU5tQ0NDlZ2dbba5NGgVry9ed7U2DodDP//8swIDA0v0Jz8/X/n5+eZzh8NRsQMEAAAoBzISAACo6ar0CqmEhATt3btX7777blW+zHWbNWuWgoKCzEd4eLiruwQAAGogMhIAAKjpquwKqfHjx2vt2rXaunWrmjZtai4PCwtTQUGBTp065XQGMCcnR2FhYWabHTt2OO2v+A4zl7a5/K4zOTk5stvtpZ75k6SkpCQlJiaazx0OB4ELHqW0eRyYMwEAPAsZCah8ZCQA8DyVfoWUYRgaP368Vq1apU2bNqlly5ZO6yMjI+Xr66vU1FRzWWZmprKyshQdHS1Jio6O1p49e5Sbm2u2SUlJkd1uV0REhNnm0n0UtyneR2n8/f1lt9udHgAAAFYgIwEAAPyq0q+QSkhI0LJly/TBBx+obt265nwGQUFBCgwMVFBQkEaPHq3ExESFhITIbrdrwoQJio6OVq9evSRJ/fv3V0REhB555BHNmTNH2dnZeuaZZ5SQkCB/f39J0rhx4/Taa6/p6aef1qOPPqpNmzZpxYoVWrduXWUfEgAAQIWRkQAAAH5lMwzDqNQd2mylLl+8eLFGjhwpSTp//rz++Mc/6v/+7/+Un5+v2NhYLVy40LzUXJK+++47PfHEE9q8ebNq166tESNGaPbs2fLx+bWGtnnzZk2aNElff/21mjZtqj//+c/ma1wPbmmMYp5yS+PScDk6AJSNqz7/yUjwRGQkAKg5rP78r/SClCchbKEYYQsAag4+/6+NMUIxMhIA1BxWf/5X6V32AAAAAAAAgMtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzl4+oOAKiYwuRtJZb5Dujtgp4AAAC4DzISALg3rpACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIq77AEVcPjUBvPnFsEDXdgTAAAA90FGAgBcCwUpoAwuDVcAAAD4BRkJAFBWfGUPAAAAAAAAluIKKaCScGk6AABASZdfPUVOAgBIXCEFAAAAAAAAi3GFFGqkwuRtru4CAACA2yEjAQCsQkEKuAYm6QQAACiJjAQAqAi+sgcAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1V6QWrr1q2655571KRJE9lsNq1evdpp/ciRI2Wz2ZweAwYMcGpz4sQJDRs2THa7XcHBwRo9erTOnDnj1Gb37t267bbbFBAQoPDwcM2ZM6eyDwUot8OnNjg9AACQyEmAJDISAECS5FPZOzx79qw6d+6sRx99VPfff3+pbQYMGKDFixebz/39/Z3WDxs2TMeOHVNKSooKCws1atQojR07VsuWLZMkORwO9e/fXzExMVq0aJH27NmjRx99VMHBwRo7dmxlHxLgcQqTtzk99x3Q20U9AQBcipwEuBYZCQDcR6UXpAYOHKiBAwdetY2/v7/CwsJKXbd//34lJydr586d6t69uyTpr3/9q+6++27NnTtXTZo00dKlS1VQUKB//vOf8vPz080336yMjAy9/PLLBC0AAOC2yEkAAAC/cMkcUps3b1ajRo3Utm1bPfHEE/rpp5/MdWlpaQoODjZDliTFxMTIy8tL27dvN9v06dNHfn5+ZpvY2FhlZmbq5MmTV3zd/Px8ORwOpwcAAIA7cUVOIiMBAACrWV6QGjBggP71r38pNTVV//u//6stW7Zo4MCBunjxoiQpOztbjRo1ctrGx8dHISEhys7ONtuEhoY6tSl+XtymNLNmzVJQUJD5CA8Pr8xDAwAAqBBX5SQyEgAAsFqlf2XvWuLj482fO3bsqE6dOummm27S5s2b1a9fvyp97aSkJCUmJprPHQ4HgQsAALgNV+UkMhIAALCa5QWpy914441q0KCBvvnmG/Xr109hYWHKzc11anPhwgWdOHHCnE8hLCxMOTk5Tm2Kn19pzgXplzkZLp8YFLDCpXeRaRF89blDAAAoZlVOIiPBVchIAFBzuWQOqUt9//33+umnn9S4cWNJUnR0tE6dOqX09HSzzaZNm1RUVKSoqCizzdatW1VYWGi2SUlJUdu2bVWvXj1rDwAAAKCKkJMAAEB1VekFqTNnzigjI0MZGRmSpEOHDikjI0NZWVk6c+aMJk+erM8//1yHDx9Wamqq7r33XrVq1UqxsbGSpPbt22vAgAF67LHHtGPHDn366acaP3684uPj1aRJE0nSww8/LD8/P40ePVr79u3T8uXL9eqrrzpdag4AAOBuyEkAAAC/qPSC1K5du9S1a1d17dpVkpSYmKiuXbtq2rRp8vb21u7du/Wb3/xGbdq00ejRoxUZGan//Oc/TpeJL126VO3atVO/fv109913q3fv3vrb3/5mrg8KCtJHH32kQ4cOKTIyUn/84x81bdo0bmUMAADcGjkJAADgFzbDMAxXd8JVHA6HgoKClJeXJ7vd7uruwEKFyduuuv7S+QwqmyvmR/Ad0Nvy1wQAd8Xn/7UxRjUXGQkAai6rP/9dPqk5UJNdHuqYzBMAAOAXTHgOANWbyyc1BwAAAAAAQM1CQQoAAAAAAACW4it7gMWqcu4FAAAAT0VGAoCahSukAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL+bi6AwCqXmHythLLfAf0dkFPAAAA3AcZCQBchyukAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALMWk5oAbOXxqg/lzi+CBLuwJAACA+yAjAUD1Q0EKcFOXBi+J8AUAACCRkQCguuArewAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJZiUnOghipM3ub03HdAbxf1BAAAwH1cnpEkchIAVAWukAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCnmkAIkHT61wdVdAAAAcDtkJABAVeEKKQAAAAAAAFiKghQAAAAAAAAsxVf2AA9x6SXzLYIHurAnAAAA7oOMBACeiSukAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL+bi6AwDKjtsbAwAAlERGAgDPUelXSG3dulX33HOPmjRpIpvNptWrVzutNwxD06ZNU+PGjRUYGKiYmBgdPHjQqc2JEyc0bNgw2e12BQcHa/To0Tpz5oxTm927d+u2225TQECAwsPDNWfOnMo+FAAAgEpFTgIAAPhFpRekzp49q86dO2vBggWlrp8zZ47mz5+vRYsWafv27apdu7ZiY2N1/vx5s82wYcO0b98+paSkaO3atdq6davGjh1rrnc4HOrfv7+aN2+u9PR0vfjii5oxY4b+9re/VfbhADVGYfK2Eg8AQOUiJwGeiYwEAJWv0r+yN3DgQA0cWPrlsYZhaN68eXrmmWd07733SpL+9a9/KTQ0VKtXr1Z8fLz279+v5ORk7dy5U927d5ck/fWvf9Xdd9+tuXPnqkmTJlq6dKkKCgr0z3/+U35+frr55puVkZGhl19+2SmQAQAAuBNyEgAAwC8sndT80KFDys7OVkxMjLksKChIUVFRSktLkySlpaUpODjYDFmSFBMTIy8vL23fvt1s06dPH/n5+ZltYmNjlZmZqZMnT1p0NIB7OHxqg9MDAOCZyElA5SIjAYB7s3RS8+zsbElSaGio0/LQ0FBzXXZ2tho1auS03sfHRyEhIU5tWrZsWWIfxevq1atX6uvn5+crPz/ffO5wOCpwNAAAAJXHlTmJjAQAAKxm6RVSrjZr1iwFBQWZj/DwcFd3CQAAwOXISAAAwGqWFqTCwsIkSTk5OU7Lc3JyzHVhYWHKzc11Wn/hwgWdOHHCqU1p+7j0NUqTlJSkvLw883HkyJGKHRAAAEAlcWVOIiMBAACrWVqQatmypcLCwpSammouczgc2r59u6KjoyVJ0dHROnXqlNLT0802mzZtUlFRkaKiosw2W7duVWFhodkmJSVFbdu2veLX9STJ399fdrvd6QEAAOAOXJmTyEgAAMBqlV6QOnPmjDIyMpSRkSHplwk6MzIylJWVJZvNpokTJ+r555/XmjVrtGfPHg0fPlxNmjTR4MGDJUnt27fXgAED9Nhjj2nHjh369NNPNX78eMXHx6tJkyaSpIcfflh+fn4aPXq09u3bp+XLl+vVV19VYmJiZR8OAABApSEnAQAA/KLSJzXftWuX7rzzTvN5cfgZMWKElixZoqefflpnz57V2LFjderUKfXu3VvJyckKCAgwt1m6dKnGjx+vfv36ycvLS0OGDNH8+fPN9UFBQfroo4+UkJCgyMhINWjQQNOmTeNWxgAAwK2RkwAAAH5hMwzDcHUnXMXhcCgoKEh5eXlcml7DFCZvc3penW4F3CJ4YKXty3dA70rbFwC4Cz7/r40xqrnISNeHjASgOrL687/Sr5ACUH1cHkolAhgAAAAZCQAqjoIUUI1delazMs8KAgAAeDIyEgC4nqV32QMAAAAAAAAoSAEAAAAAAMBSFKQAAAAAAABgKeaQAqqZ6nQ3HAAAgMpCRgIA98IVUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJZiUnNUe4XJ20pdzsSWAACgJiMjAQBciYIUUENcHi5bBA90UU8AAADcBxkJAFyDr+wBAAAAAADAUlwhBaBMLr+833dAbxf1BAAAwH2U9hVIchIAXBlXSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsxV32AFQId5QBAAAoHXcnBoAr4wopAAAAAAAAWIorpNwQV5wAAACUREYCAKD6oCAF1FCHT20wf24RPNCFPQEAAHAfZCQAsAZf2QMAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCnmkALAXAkAAAClICMBQNXhCikAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLMam5GyhM3ubqLgAAALgdMhIAANUXV0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUc0h5iNLmUPAd0NsFPQGujfcrAMAqfObAk/B+BYBfueQKqRkzZshmszk92rVrZ64/f/68EhISVL9+fdWpU0dDhgxRTk6O0z6ysrIUFxenWrVqqVGjRpo8ebIuXLhg9aEA1c7hUxucHgAA65CRAPdFRgKAyuWyK6Ruvvlmffzxx792xOfXrkyaNEnr1q3TypUrFRQUpPHjx+v+++/Xp59+Kkm6ePGi4uLiFBYWps8++0zHjh3T8OHD5evrq7/85S+WHwsAAEBlISMBAICawGUFKR8fH4WFhZVYnpeXp3/84x9atmyZ+vbtK0lavHix2rdvr88//1y9evXSRx99pK+//loff/yxQkND1aVLFz333HOaMmWKZsyYIT8/P6sPBwAAoFKQkQAAQE3gsknNDx48qCZNmujGG2/UsGHDlJWVJUlKT09XYWGhYmJizLbt2rVTs2bNlJaWJklKS0tTx44dFRoaaraJjY2Vw+HQvn37rD0QeBQuswYAuDsyElyBjAQAsJpLrpCKiorSkiVL1LZtWx07dkwzZ87Ubbfdpr179yo7O1t+fn4KDg522iY0NFTZ2dmSpOzsbKegVby+eN2V5OfnKz8/33zucDgq6YiA6uvSYNoieGC593P5JJ5M4AkAJZGRAM9RVRlJIicBqBlcUpAaOPDXf7A7deqkqKgoNW/eXCtWrFBgYGCVve6sWbM0c+bMKts/AABARZCRAABATeGyr+xdKjg4WG3atNE333yjsLAwFRQU6NSpU05tcnJyzPkUwsLCStxRpvh5aXMuFEtKSlJeXp75OHLkSOUeCAAAQCUiIwEAgOrKLQpSZ86c0bfffqvGjRsrMjJSvr6+Sk1NNddnZmYqKytL0dHRkqTo6Gjt2bNHubm5ZpuUlBTZ7XZFRERc8XX8/f1lt9udHgAAAO6KjAQAAKorl3xl76mnntI999yj5s2b6+jRo5o+fbq8vb310EMPKSgoSKNHj1ZiYqJCQkJkt9s1YcIERUdHq1evXpKk/v37KyIiQo888ojmzJmj7OxsPfPMM0pISJC/v78rDsklmJMHAIDqhYxUOchIAAC4P5cUpL7//ns99NBD+umnn9SwYUP17t1bn3/+uRo2bChJeuWVV+Tl5aUhQ4YoPz9fsbGxWrhwobm9t7e31q5dqyeeeELR0dGqXbu2RowYoWeffdYVhwPUGJU1eafEBJ4AUBoyEuCZLr87YWXnJDISgOrIZhiG4epOuIrD4VBQUJDy8vJceml6af8xLw8+qEp36fhyK+PKU9GgVRrewwCs4C6f/+7MXcaIjFS1yEhVp7JzEu9hAFaw+vPfLeaQAgAAAAAAQM1BQQoAAAAAAACWoiAFAAAAAAAAS7lkUvOarLLmQgAAAKhOyEgAANQsFKQAlMvVJj8t70Se3HkPAABUB1fKSWQkAPgVX9kDAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIq77LmZy+/IUd47cQCudOn7mPcwAKCy8PkCT0fWB4BfUZBycwQv1HSX3+aYWxwDACQyEkBGAuDpKEgBqFKcCQQAACgdhVUANRkFqWrk8rMkEmdKAAAAyEgAALgfClIALMWZQAAAgJLISABqGgpS1RxnBAEAAEoiIwEA4FoUpNzA5XPsAAAAgIwEAEB1RkHKg3AZb9l9u+sNFZ3KcnU3UIlKO6NdGs5yA0DNwQ00yo6MVP2QkQB4GgpSHorgVbrLP4gJWgAA1DycxCuJjAQAcDcUpAC4zNW+isF/IAAAQE1FRgJQE1CQqiY4EwgAAFASGQkAAPfk5eoOAAAAAAAAoGahIAUAAAAAAABL8ZW9Guh67sDB3TfgTpjEHwBgBTISPA0ZCYAnoyDlIlebqBBAxf9G+E8FAHgmMhJwdWQkANUFX9kDAAAAAACApbhCqhri0l0AAICSyEgAALgPClIoVWmX8nLpLtxFZd3Cm/c5AKCs+OyAOyMjAfAkFKRqgMr6YAIAAKhOyEgAALgOBSkAHu1qE3vynwsAAFBTkZEAuDsKUjUMZwIBAABKIiMBAGAtClI1WFkn9rz8u+R8jxwAAFRHZCQAAKoeBSmUm7tOdni1y5NRs3C2GwDgCmQkuDsyEgB3QEGqCpUWRtwZH0yozq73/c1ZbgCoemQkwH2QkQC4CgUpi3jaGanyBi8+qOAJyvJVjOv9TxPvdQAon5qakSQ+O+B+yEgArERBCtdU1nkUAE9zpf8MUYwFAFwNGQnVXWXcqY+MBOBKKEihSnE2EDUV730AwLXwH3XURGQkAMU8viC1YMECvfjii8rOzlbnzp3117/+VT179nR1t6q1K12q7oqzhJ42BwU8C2e+AXgyMpL1yEioSZhbDUBFeXRBavny5UpMTNSiRYsUFRWlefPmKTY2VpmZmWrUqJGru1cjlGfeB86KwFNV9D8avPcBWIWM5HpkJNQkVytOXU/hivc+UDPZDMMwXN2J8oqKilKPHj302muvSZKKiooUHh6uCRMmaOrUqdfc3uFwKCgoSHl5ebLb7ZXev0v/YfW0CTurUnnPoJT2oVQ8xowv3MnVilVXanc1BDKgclX15787ICN5rvLkJDISPAUZCXBvVmckj71CqqCgQOnp6UpKSjKXeXl5KSYmRmlpaaVuk5+fr/z8fPN5Xl6epF8GvSp8e3R1lezX0+09t/qK65oF3WX+nJWX4rzu32evuN2Zc/lXXAdY7Wrv8fK00z9/bXfp38i1+N4Vfd1tgZqk+HPfg8/JXRUZybNd6bPh8n//L81JZCR4CjIS4N6szkgeW5D68ccfdfHiRYWGhjotDw0N1YEDB0rdZtasWZo5c2aJ5eHh4VXSR5THS+VcB9QU/B0AleX06dMKCgpydTcqHRmpuiIjAVfH3wFQWazKSB5bkCqPpKQkJSYmms+Liop04sQJ1a9fXzabzYU9cy8Oh0Ph4eE6cuRItf0qQ1Vi/CqG8asYxq9iGL+K8ZTxMwxDp0+fVpMmTVzdFbdBRro+nvIed1eMX8UwfhXD+FUM41cxnjJ+Vmckjy1INWjQQN7e3srJyXFanpOTo7CwsFK38ff3l7+/v9Oy4ODgquqix7Pb7W79x+LuGL+KYfwqhvGrGMavYjxh/KrjlVHFyEhVzxPe4+6M8asYxq9iGL+KYfwqxhPGz8qM5GXZK1UyPz8/RUZGKjU11VxWVFSk1NRURUfznWAAAFAzkZEAAIAn8NgrpCQpMTFRI0aMUPfu3dWzZ0/NmzdPZ8+e1ahRo1zdNQAAAJchIwEAAHfn0QWpBx98UMePH9e0adOUnZ2tLl26KDk5ucQknigbf39/TZ8+vcSl+7g+jF/FMH4Vw/hVDONXMYyf+yAjVQ3e4xXD+FUM41cxjF/FMH4Vw/iVzmZU13seAwAAAAAAwC157BxSAAAAAAAA8EwUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCVA01a9Ys9ejRQ3Xr1lWjRo00ePBgZWZmOrU5f/68EhISVL9+fdWpU0dDhgxRTk6Oi3rsXq5n/O644w7ZbDanx7hx41zUY/fy+uuvq1OnTrLb7bLb7YqOjtaGDRvM9bz3ru5a48d7r2xmz54tm82miRMnmst4D16/0saP9yA8GRmpYshIFUNGqhgyUuUiI1UMGenaKEjVUFu2bFFCQoI+//xzpaSkqLCwUP3799fZs2fNNpMmTdKHH36olStXasuWLTp69Kjuv/9+F/bafVzP+EnSY489pmPHjpmPOXPmuKjH7qVp06aaPXu20tPTtWvXLvXt21f33nuv9u3bJ4n33rVca/wk3nvXa+fOnXrjjTfUqVMnp+W8B6/PlcZP4j0Iz0VGqhgyUsWQkSqGjFR5yEgVQ0a6TgZgGEZubq4hydiyZYthGIZx6tQpw9fX11i5cqXZZv/+/YYkIy0tzVXddFuXj59hGMbtt99uPPnkk67rlIepV6+e8eabb/LeK6fi8TMM3nvX6/Tp00br1q2NlJQUpzHjPXh9rjR+hsF7ENULGaliyEgVR0aqGDJS2ZGRKoaMdP24QgqSpLy8PElSSEiIJCk9PV2FhYWKiYkx27Rr107NmjVTWlqaS/rozi4fv2JLly5VgwYN1KFDByUlJencuXOu6J5bu3jxot59912dPXtW0dHRvPfK6PLxK8Z779oSEhIUFxfn9F6T+Pfvel1p/IrxHkR1QUaqGDJS+ZGRKoaMVH5kpIohI10/H1d3AK5XVFSkiRMn6tZbb1WHDh0kSdnZ2fLz81NwcLBT29DQUGVnZ7ugl+6rtPGTpIcffljNmzdXkyZNtHv3bk2ZMkWZmZl6//33Xdhb97Fnzx5FR0fr/PnzqlOnjlatWqWIiAhlZGTw3rsOVxo/iffe9Xj33Xf1xRdfaOfOnSXW8e/ftV1t/CTeg6g+yEgVQ0YqHzJSxZCRKoaMVDFkpLKhIAUlJCRo79692rZtm6u74pGuNH5jx441f+7YsaMaN26sfv366dtvv9VNN91kdTfdTtu2bZWRkaG8vDy99957GjFihLZs2eLqbnmMK41fREQE771rOHLkiJ588kmlpKQoICDA1d3xONczfrwHUV2QkSqGjFQ+ZKSKISOVHxmpYshIZcdX9mq48ePHa+3atfrkk0/UtGlTc3lYWJgKCgp06tQpp/Y5OTkKCwuzuJfu60rjV5qoqChJ0jfffGNF19yen5+fWrVqpcjISM2aNUudO3fWq6++ynvvOl1p/ErDe89Zenq6cnNz1a1bN/n4+MjHx0dbtmzR/Pnz5ePjo9DQUN6DV3Gt8bt48WKJbXgPwhORkSqGjFR+ZKSKISOVHxmpYshIZUdBqoYyDEPjx4/XqlWrtGnTJrVs2dJpfWRkpHx9fZWammouy8zMVFZWltN3sGuqa41faTIyMiRJjRs3ruLeeaaioiLl5+fz3iun4vErDe89Z/369dOePXuUkZFhPrp3765hw4aZP/MevLJrjZ+3t3eJbXgPwpOQkSqGjFT5yEgVQ0a6fmSkiiEjlR1f2auhEhIStGzZMn3wwQeqW7eu+Z3foKAgBQYGKigoSKNHj1ZiYqJCQkJkt9s1YcIERUdHq1evXi7uvetda/y+/fZbLVu2THfffbfq16+v3bt3a9KkSerTp0+pt/6saZKSkjRw4EA1a9ZMp0+f1rJly7R582Zt3LiR9951uNr48d67trp16zrNZSJJtWvXVv369c3lvAev7Frjx3sQno6MVDFkpIohI1UMGaliyEgVQ0YqB9fe5A+uIqnUx+LFi802P//8s/H73//eqFevnlGrVi3jvvvuM44dO+a6TruRa41fVlaW0adPHyMkJMTw9/c3WrVqZUyePNnIy8tzbcfdxKOPPmo0b97c8PPzMxo2bGj069fP+Oijj8z1vPeu7mrjx3uvfC6/BS/vwbK5dPx4D8LTkZEqhoxUMWSkiiEjVT4yUsWQka7OZhiGYV35CwAAAAAAADUdc0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFODhZsyYIZvNVq5tR44cqRYtWlRuh67h8OHDstlsmjt3rqWv60pLliyRzWbT4cOHK3W/R44cUUBAgD799NNrtr3jjjt0xx13OC3LycnR0KFDVb9+fdlsNs2bN69Mrx8fH68HHnigTNsAAGAVMpL7IyMBNRsFKQCmc+fOacaMGdq8ebOru1Lp1q9frxkzZri6G5Xq2WefVVRUlG699dZybT9p0iRt3LhRSUlJevvttzVgwABJ0gsvvKDf/OY3Cg0Nlc1mu+K4TZkyRf/+97/11VdflfcQAADwCGQkz1IVGenAgQN6+umn1aVLF9WtW1eNGzdWXFycdu3aVWJ7MhJwfShIATCdO3dOM2fOrLZha+bMmS557UceeUQ///yzmjdvXmn7PH78uN566y2NGzeu3PvYtGmT7r33Xj311FP63e9+p3bt2kmSnnnmGe3cuVNdu3a96vZdu3ZV9+7d9dJLL5W7DwAAeAIyUtXwpIz05ptv6u9//7uZfRITE5WZmalevXrp448/dtqejARcHwpSAFDFvL29FRAQUO6vDZTmnXfekY+Pj+65555y7yM3N1fBwcEllh86dEjHjh3TO++8c819PPDAA3r//fd15syZcvcDAADUTJ6UkR566CEdOXJEb775psaOHavJkydr+/btCgkJKfUKMzIScG0UpAAPsm3bNvXo0UMBAQG66aab9MYbb1yx7TvvvKPIyEgFBgYqJCRE8fHxOnLkyBXbHz58WA0bNpQkzZw5UzabzenrWrt379bIkSN14403KiAgQGFhYXr00Uf1008/lft4XnnlFTVv3lyBgYG6/fbbtXfv3hJtDhw4oKFDhyokJEQBAQHq3r271qxZ49SmsLBQM2fOVOvWrRUQEKD69eurd+/eSklJkfTLPBALFiyQJPO4yhJ87rjjDnXo0EG7d+/W7bffrlq1aqlVq1Z67733JElbtmxRVFSUAgMD1bZt2xJnyUqbH6FFixYaNGiQtm3bpp49eyogIEA33nij/vWvf11Xn1avXq2oqCjVqVOnxLq//e1vuummmxQYGKiePXvqP//5T6n9MQxDCxYsKDEeZZkz46677tLZs2fNsQYAwBXISGSkYlWVkSIjI0vss379+rrtttu0f//+Eq9FRgKujYIU4CH27Nmj/v37Kzc3VzNmzNCoUaM0ffp0rVq1qkTbF154QcOHD1fr1q318ssva+LEiUpNTVWfPn106tSpUvffsGFDvf7665Kk++67T2+//bbefvtt3X///ZKklJQU/fe//9WoUaP017/+VfHx8Xr33Xd19913yzCMMh/Pv/71L82fP18JCQlKSkrS3r171bdvX+Xk5Jht9u3bp169emn//v2aOnWqXnrpJdWuXVuDBw92Ou4ZM2Zo5syZuvPOO/Xaa6/pT3/6k5o1a6YvvvhCkvT444/rrrvukiTzuN5+++0y9ffkyZMaNGiQoqKiNGfOHPn7+ys+Pl7Lly9XfHy87r77bs2ePVtnz57V0KFDdfr06Wvu85tvvtHQoUN111136aWXXlK9evU0cuRI7du376rbFRYWaufOnerWrVuJdf/4xz/0+OOPKywsTHPmzNGtt96q3/zmN05Bu0+fPubx33XXXeUaj2IREREKDAy8rklDAQCoCmQkMlIxV2Sk7OxsNWjQoMRyMhJwHQwAHmHw4MFGQECA8d1335nLvv76a8Pb29u49E/58OHDhre3t/HCCy84bb9nzx7Dx8fHafmIESOM5s2bm8+PHz9uSDKmT59e4vXPnTtXYtn//d//GZKMrVu3XvdxHDp0yJBkBAYGGt9//725fPv27YYkY9KkSeayfv36GR07djTOnz9vLisqKjJuueUWo3Xr1uayzp07G3FxcVd93YSEBKO8/+TdfvvthiRj2bJl5rIDBw4YkgwvLy/j888/N5dv3LjRkGQsXrzYXLZ48WJDknHo0CFzWfPmzUuMXW5uruHv72/88Y9/vGp/vvnmG0OS8de//tVpeUFBgdGoUSOjS5cuRn5+vrn8b3/7myHJuP32253aSzISEhKu+DpXez9cqk2bNsbAgQOv2gYAgKpCRvoFGcm6jFRs69aths1mM/785z+Xup6MBFwdV0gBHuDixYvauHGjBg8erGbNmpnL27dvr9jYWKe277//voqKivTAAw/oxx9/NB9hYWFq3bq1Pvnkk3L1ITAw0Pz5/Pnz+vHHH9WrVy9JMs+ylcXgwYN1ww03mM979uypqKgorV+/XpJ04sQJbdq0SQ888IBOnz5tHsdPP/2k2NhYHTx4UD/88IMkKTg4WPv27dPBgwfLdWzXo06dOoqPjzeft23bVsHBwWrfvr2ioqLM5cU///e//73mPiMiInTbbbeZzxs2bKi2bdtec9virwDUq1fPafmuXbuUm5urcePGyc/Pz1w+cuRIBQUFXbM/5VWvXj39+OOPVbZ/AACuhIxERrqUlRkpNzdXDz/8sFq2bKmnn3661DZkJODqKEgBHuD48eP6+eef1bp16xLr2rZt6/T84MGDMgxDrVu3VsOGDZ0e+/fvV25ubrn6cOLECT355JMKDQ1VYGCgGjZsqJYtW0qS8vLyyry/0o6lTZs25hwC33zzjQzD0J///OcSxzF9+nRJMo/l2Wef1alTp9SmTRt17NhRkydP1u7du8t1nFfStGnTEnMqBAUFKTw8vMQy6ZfL16/l0uBcrF69ete1raQSXwP47rvvJJUcW19fX914443Xtc/yMAyjUicjBQDgepGRyEilqeqMdPbsWQ0aNEinT5/WBx98UOp8VcX9ICMBV+bj6g4AqFxFRUWy2WzasGGDvL29S6y/0gfmtTzwwAP67LPPNHnyZHXp0kV16tRRUVGRBgwYoKKioop2u4TifT711FMlznAWa9WqlaRfvu//7bff6oMPPtBHH32kN998U6+88ooWLVqkMWPGVEp/ShvLqy2/PAhV5rb169eXdH2BzgonT54sNTwDAOBOyEhkpMpQUFCg+++/X7t379bGjRvVoUOHK7YlIwFXR0EK8AANGzZUYGBgqZdbZ2ZmOj2/6aabZBiGWrZsqTZt2pTpda50BufkyZNKTU3VzJkzNW3aNHN5RS7/Lm3b//f//p95h7fis1W+vr6KiYm55v5CQkI0atQojRo1SmfOnFGfPn00Y8YMM2xVp7NTzZo1U2BgoA4dOuS0vHnz5pJ+Gdu+ffuaywsLC3Xo0CF17ty50vty4cIFHTlyRL/5zW8qfd8AAFwLGYmMdKmqzkhFRUUaPny4UlNTtWLFCt1+++1XbEtGAq6Nr+wBHsDb21uxsbFavXq1srKyzOX79+/Xxo0bndref//98vb21syZM0ucRTIM46q3IK5Vq5YklbjLTPFZqsv3N2/evLIeimn16tXm/AaStGPHDm3fvl0DBw6UJDVq1Eh33HGH3njjDR07dqzE9sePHzd/vvyY6tSpo1atWik/P99cVrt2bUklj80T+fr6qnv37tq1a5fT8u7du6thw4ZatGiRCgoKzOVLliypsuP++uuvdf78ed1yyy1Vsn8AAK6GjERGulRVZ6QJEyZo+fLlWrhwoXmXxSshIwHXxhVSgIeYOXOmkpOTddttt+n3v/+9Lly4oL/+9a+6+eabneYCuOmmm/T8888rKSlJhw8f1uDBg1W3bl0dOnRIq1at0tixY/XUU0+V+hqBgYGKiIjQ8uXL1aZNG4WEhKhDhw7q0KGD+vTpozlz5qiwsFA33HCDPvrooxJnn8qiVatW6t27t5544gnl5+dr3rx5ql+/vtOkkAsWLFDv3r3VsWNHPfbYY7rxxhuVk5OjtLQ0ff/99/rqq68k/TLx5R133KHIyEiFhIRo165deu+99zR+/HhzX5GRkZKkP/zhD4qNjZW3t7fTBJye5t5779Wf/vQnORwO2e12Sb+EsOeff16PP/64+vbtqwcffFCHDh3S4sWLyzQ/wttvv63vvvtO586dkyRt3bpVzz//vCTpkUceMc8ySr/c6rpWrVrmLaMBALAaGYmMdKmqykjz5s3TwoULFR0drVq1aumdd95xWn/fffeZxT2JjARcF2tv6gegIrZs2WJERkYafn5+xo033mgsWrTImD59eqm36v33v/9t9O7d26hdu7ZRu3Zto127dkZCQoKRmZlptrn8lsaGYRifffaZ+Rq65PbG33//vXHfffcZwcHBRlBQkPHb3/7WOHr06BVvgXwlxbc0fvHFF42XXnrJCA8PN/z9/Y3bbrvN+Oqrr0q0//bbb43hw4cbYWFhhq+vr3HDDTcYgwYNMt577z2zzfPPP2/07NnTCA4ONgIDA4127doZL7zwglFQUGC2uXDhgjFhwgSjYcOGhs1mK9PtjW+//Xbj5ptvLrG8efPmpd5KWZfdKvhKtzQubdvbb7+9xK2HS5OTk2P4+PgYb7/9dol1CxcuNFq2bGn4+/sb3bt3N7Zu3Vrqfi/v56V9kFTq45NPPnFqGxUVZfzud7+7Zn8BAKhKZCQyUrGqykgjRoy4Yj66/BgMg4wEXA+bYVzHrHIAALczevRo/b//9//0n//8xyWvn5GRoW7duumLL75Qly5dXNIHAACAy5GRAM9AQQoAPFRWVpbatGmj1NRU3XrrrZa/fnx8vIqKirRixQrLXxsAAOBKyEiAZ6AgBaBSXLx40WkSzdLUqVOn3LdUrgonTpxwmtjyct7e3mrYsKGFPQIAANUNGQkASkdBCkClOHz4sFq2bHnVNtOnT9eMGTOs6dB1uOOOO7Rly5Yrrm/evLkOHz5sXYcAAEC1Q0YCgNJxlz0AlSIsLEwpKSlXbVOWO71Z4aWXXtLJkyevuD4wMNDC3gAAgOqIjAQApeMKKQAAAAAAAFjKy9UdAAAAAAAAQM1So7+yV1RUpKNHj6pu3bqy2Wyu7g4AALCAYRg6ffq0mjRpIi8vzs2VhowEAEDNY3VGqtEFqaNHjyo8PNzV3QAAAC5w5MgRNW3a1NXdcEtkJAAAai6rMlKNLkjVrVtX0i+DbbfbXdwbAABgBYfDofDwcDMHoCQyEgAANY/VGalGF6SKL0G32+2ELQAAahi+inZlZCQAAGouqzISEycAAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALBUjZ5DCgCAKzEMQxcuXNDFixdd3RWUkbe3t3x8fJgjCgCAKkBG8lzulpEoSAEAcJmCggIdO3ZM586dc3VXUE61atVS48aN5efn5+quAABQbZCRPJ87ZSQKUgAAXKKoqEiHDh2St7e3mjRpIj8/P7c5i4RrMwxDBQUFOn78uA4dOqTWrVvLy4sZCgAAqCgykmdzx4xEQQoAgEsUFBSoqKhI4eHhqlWrlqu7g3IIDAyUr6+vvvvuOxUUFCggIMDVXQIAwOORkTyfu2UkThkCAFAKV58xQsXw+wMAoGrwGevZ3On35z49AQAAAAAAQI1AQQoAAAAAAACWYg4pAACuU2HyNstey3dA7+tue60JRadPn64ZM2ZUsEflY7PZtGrVKg0ePLjc+/jb3/6mZcuW6YsvvtDp06d18uRJBQcHV1ofAQBAxViZkSRyUrETJ05o+vTp+uijj5SVlaWGDRtq8ODBeu655xQUFFS5na0CFKQAAPBwx44dM39evny5pk2bpszMTHNZnTp1yrS/goICt7gVcLFz585pwIABGjBggJKSklzdHQAA4EGqc046evSojh49qrlz5yoiIkLfffedxo0bp6NHj+q9995zdfeuia/sAaixCpO3OT0ATxUWFmY+goKCZLPZzOdnz57VsGHDFBoaqjp16qhHjx76+OOPnbZv0aKFnnvuOQ0fPlx2u11jx46VJP39738376Rz33336eWXXy5xZdIHH3ygbt26KSAgQDfeeKNmzpypCxcumPuVpPvuu082m818/tVXX+nOO+9U3bp1ZbfbFRkZqV27dl3x+CZOnKipU6eqV69elTNgAICrujwjkZPgyapzTurQoYP+/e9/65577tFNN92kvn376oUXXtCHH35ovo47oyAFAEA1dubMGd19991KTU3Vl19+qQEDBuiee+5RVlaWU7u5c+eqc+fO+vLLL/XnP/9Zn376qcaNG6cnn3xSGRkZuuuuu/TCCy84bfOf//xHw4cP15NPPqmvv/5ab7zxhpYsWWK227lzpyRp8eLFOnbsmPl82LBhatq0qXbu3Kn09HRNnTpVvr6+FowGAADAr6pjTsrLy5PdbpePj/t/Ic79ewgAAMqtc+fO6ty5s/n8ueee06pVq7RmzRqNHz/eXN63b1/98Y9/NJ//6U9/0sCBA/XUU09Jktq0aaPPPvtMa9euNdvMnDlTU6dO1YgRIyRJN954o5577jk9/fTTmj59uho2bChJCg4OVlhYmLldVlaWJk+erHbt2kmSWrduXQVHDgAAcHXVLSf9+OOPeu6558yruNwdV0gBAFCNnTlzRk899ZTat2+v4OBg1alTR/v37y9x5q979+5OzzMzM9WzZ0+nZZc//+qrr/Tss8+qTp065uOxxx7TsWPHdO7cuSv2KTExUWPGjFFMTIxmz56tb7/9toJHCQAAUHbVKSc5HA7FxcUpIiLCZZO0lxUFKQAAqrGnnnpKq1at0l/+8hf95z//UUZGhjp27KiCggKndrVr1y7zvs+cOaOZM2cqIyPDfOzZs0cHDx5UQEDAFbebMWOG9u3bp7i4OG3atEkRERFatWpVmV8fAACgIqpLTjp9+rQGDBigunXratWqVR4zFQJf2QMAoBr79NNPNXLkSN13332SfglHhw8fvuZ2bdu2NecyKHb5827duikzM1OtWrW64n58fX118eLFEsvbtGmjNm3aaNKkSXrooYe0ePFis48AAABWqA45yeFwKDY2Vv7+/lqzZs1Vi13uhoIUAADVWOvWrfX+++/rnnvukc1m05///GcVFRVdc7sJEyaoT58+evnll3XPPfdo06ZN2rBhg2w2m9lm2rRpGjRokJo1a6ahQ4fKy8tLX331lfbu3avnn39e0i93kElNTdWtt94qf39/BQQEaPLkyRo6dKhatmyp77//Xjt37tSQIUOu2Jfs7GxlZ2frm2++kSTt2bNHdevWVbNmzRQSElLBEQIAADWVp+ckh8Oh/v3769y5c3rnnXfkcDjkcDgkSQ0bNpS3t3cljFLV4St7AABUYy+//LLq1aunW265Rffcc49iY2PVrVu3a2536623atGiRXr55ZfVuXNnJScna9KkSU5n3WJjY7V27Vp99NFH6tGjh3r16qVXXnlFzZs3N9u89NJLSklJUXh4uLp27Spvb2/99NNPGj58uNq0aaMHHnhAAwcO1MyZM6/Yl0WLFqlr16567LHHJEl9+vRR165dtWbNmgqMDAAAqOk8PSd98cUX2r59u/bs2aNWrVqpcePG5uPIkSMVH6AqZjMMw3B1J1zF4XAoKCjIvC0igJqlMHmb03PfAb1d1BO4k/Pnz+vQoUNq2bKlR13ybIXHHntMBw4c0H/+8x9Xd+WarvZ75PP/2hgjoGa7PCNJ5CSQka7FU3KSO2UkvrIHAABKNXfuXN11112qXbu2NmzYoLfeeksLFy50dbcAAABcjpxUcRSkAABAqXbs2KE5c+bo9OnTuvHGGzV//nyNGTPG1d0CAABwOXJSxVGQAgAApVqxYoWruwAAAOCWyEkVx6TmAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUj6u7gAAAJ7i211vWPZaN3V/vEztR44cqbfeekuS5OPjo5CQEHXq1EkPPfSQRo4cKS8vzz0HtW/fPk2bNk3p6en67rvv9Morr2jixImu7hYAAPj/WZmRJHLSpf7+97/rX//6l/bu3StJioyM1F/+8hf17NnTxT27Ns8ddQAA4GTAgAE6duyYDh8+rA0bNujOO+/Uk08+qUGDBunChQuu7l65nTt3TjfeeKNmz56tsLAwV3cHAAB4oOqakzZv3qyHHnpIn3zyidLS0hQeHq7+/fvrhx9+cHXXromCFAAA1YS/v7/CwsJ0ww03qFu3bvqf//kfffDBB9qwYYOWLFlitjt16pTGjBmjhg0bym63q2/fvvrqq6+c9vXhhx+qR48eCggIUIMGDXTfffeZ606ePKnhw4erXr16qlWrlgYOHKiDBw9Kks6ePSu73a733nvPaX+rV69W7dq1dfr0aRUUFGj8+PFq3LixAgIC1Lx5c82aNeuKx9WjRw+9+OKLio+Pl7+/fyWMFAAAqGmqa05aunSpfv/736tLly5q166d3nzzTRUVFSk1NbUSRq1qUZACAKAa69u3rzp37qz333/fXPbb3/5Wubm52rBhg9LT09WtWzf169dPJ06ckCStW7dO9913n+6++259+eWXSk1Ndbrse+TIkdq1a5fWrFmjtLQ0GYahu+++W4WFhapdu7bi4+O1ePFip34sXrxYQ4cOVd26dTV//nytWbNGK1asUGZmppYuXaoWLVpYMh4AAADFqmNOOnfunAoLCxUSElKxwbEAc0gBAFDNtWvXTrt375Ykbdu2TTt27FBubq55tdHcuXO1evVqvffeexo7dqxeeOEFxcfHa+bMmeY+OnfuLEk6ePCg1qxZo08//VS33HKLpF/OzIWHh2v16tX67W9/qzFjxuiWW27RsWPH1LhxY+Xm5mr9+vX6+OOPJUlZWVlq3bq1evfuLZvNpubNm1s5HAAAAKbqlpOmTJmiJk2aKCYmpsJjU9W4QgoAgGrOMAzZbDZJ0ldffaUzZ86ofv36qlOnjvk4dOiQvv32W0lSRkaG+vXrV+q+9u/fLx8fH0VFRZnL6tevr7Zt22r//v2SpJ49e+rmm282Jw9955131Lx5c/Xp00fSL2cOMzIy1LZtW/3hD3/QRx99VGXHDgAAcDXVKSfNnj1b7777rlatWqWAgICyD4bFuEIKAIBqbv/+/WrZsqUk6cyZM2rcuLE2b95col1wcLAkKTAwsMKvOWbMGC1YsEBTp07V4sWLNWrUKDPsdevWTYcOHdKGDRv08ccf64EHHlBMTEyJ+RQAAACqWnXJSXPnztXs2bP18ccfq1OnThXuoxW4QgoAgGps06ZN2rNnj4YMGSLpl5CTnZ0tHx8ftWrVyunRoEEDSVKnTp2uOBFm+/btdeHCBW3fvt1c9tNPPykzM1MRERHmst/97nf67rvvNH/+fH399dcaMWKE037sdrsefPBB/f3vf9fy5cv173//25ybAQAAwArVJSfNmTNHzz33nJKTk9W9e/dyj4fVuEIKAIBqIj8/X9nZ2bp48aJycnKUnJysWbNmadCgQRo+fLgkKSYmRtHR0Ro8eLDmzJmjNm3a6OjRo+YEnd27d9f06dPVr18/3XTTTYqPj9eFCxe0fv16TZkyRa1bt9a9996rxx57TG+88Ybq1q2rqVOn6oYbbtC9995r9qVevXq6//77NXnyZPXv319NmzY117388stq3LixunbtKi8vL61cuVJhYWHmmcfLFRQU6OuvvzZ//uGHH5SRkaE6deqoVatWVTegAACg2qiuOel///d/NW3aNC1btkwtWrRQdna2JJlfN3RnXCEFAEA1kZycrMaNG6tFixYaMGCAPvnkE82fP18ffPCBvL29JUk2m03r169Xnz59NGrUKLVp00bx8fH67rvvFBoaKkm64447tHLlSq1Zs0ZdunRR3759tWPHDvN1Fi9erMjISA0aNEjR0dEyDEPr16+Xr6+vU39Gjx6tgoICPfroo07L69atqzlz5qh79+7q0aOHDh8+rPXr18vLq/RYcvToUXXt2lVdu3bVsWPHNHfuXHXt2lVjxoypzOEDAADVWHXNSa+//roKCgo0dOhQNW7c2HzMnTu3MoevStgMwzBc3QlXcTgcCgoKUl5enux2u6u7A8BihcnbnJ77Dujtop7AnZw/f16HDh1Sy5YtPWIySHf29ttva9KkSTp69Kj8/Pwsfe2r/R75/L82xgio2S7PSBI5CWSkync79oAAAQAASURBVOaqnOROGYmv7AEAgEp17tw5HTt2TLNnz9bjjz9ueTEKAADAXZGTfsVX9gAAQKWaM2eO2rVrp7CwMCUlJbm6OwAAAG6DnPQrClIAAKBSzZgxQ4WFhUpNTXX7yTQBAACsRE76FQUpAAAAAAAAWIqCFAAAAAAAACxFQQoAgFLU4JvQVgv8/gAAqBp8xno2d/r9UZACAOASvr6+kn65Awo8V/Hvr/j3CQAAKoaMVD24U0aqUEFq9uzZstlsmjhxorns/PnzSkhIUP369VWnTh0NGTJEOTk5TttlZWUpLi5OtWrVUqNGjTR58mRduHDBqc3mzZvVrVs3+fv7q1WrVlqyZEmJ11+wYIFatGihgIAARUVFaceOHRU5HAAA5O3treDgYOXm5uqnn37Szz//rPPnz/PwkMfPP/+sn376Sbm5uQoODpa3t7dL3kdkJABAdUNG8uyHu2SkS/mUd8OdO3fqjTfeUKdOnZyWT5o0SevWrdPKlSsVFBSk8ePH6/7779enn34qSbp48aLi4uIUFhamzz77TMeOHdPw4cPl6+urv/zlL5KkQ4cOKS4uTuPGjdPSpUuVmpqqMWPGqHHjxoqNjZUkLV++XImJiVq0aJGioqI0b948xcbGKjMzU40aNSrvYQEAoLCwMElSbm6ui3uC8goODjZ/j1YjIwEAqisykudzZUa6nM0oxxcIz5w5o27dumnhwoV6/vnn1aVLF82bN095eXlq2LChli1bpqFDh0qSDhw4oPbt2ystLU29evXShg0bNGjQIB09elShoaGSpEWLFmnKlCk6fvy4/Pz8NGXKFK1bt0579+41XzM+Pl6nTp1ScnKyJCkqKko9evTQa6+9JkkqKipSeHi4JkyYoKlTp17XcTgcDgUFBSkvL092u72swwDAwxUmb3N67jugt4t6And18eJFFRYWurobKCNfX9+rnvWrys9/MhKA6uDyjCSRk+CMjOSZXJmRSlOuK6QSEhIUFxenmJgYPf/88+by9PR0FRYWKiYmxlzWrl07NWvWzAxbaWlp6tixoxm0JCk2NlZPPPGE9u3bp65duyotLc1pH8Vtii97LygoUHp6upKSksz1Xl5eiomJUVpaWnkOCQCAEry9vd3icmZ4DjISAKAmICOhMpS5IPXuu+/qiy++0M6dO0usy87Olp+fn4KDg52Wh4aGKjs722xzadAqXl+87mptHA6Hfv75Z508eVIXL14stc2BAweu2Pf8/Hzl5+ebzx0OxzWOFgAA4PqQkQAAAK5fmSY1P3LkiJ588kktXbpUAQEBVdWnKjNr1iwFBQWZj/DwcFd3CQAAVANkJAAAgLIpU0EqPT1dubm56tatm3x8fOTj46MtW7Zo/vz58vHxUWhoqAoKCnTq1Cmn7XJycsxJs8LCwkrcUab4+bXa2O12BQYGqkGDBvL29i61zdUm50pKSlJeXp75OHLkSFkOHwAAoFRkJAAAgLIpU0GqX79+2rNnjzIyMsxH9+7dNWzYMPNnX19fpaammttkZmYqKytL0dHRkqTo6Gjt2bPHaVb+lJQU2e12RUREmG0u3Udxm+J9+Pn5KTIy0qlNUVGRUlNTzTal8ff3l91ud3oAAABUFBkJAACgbMo0h1TdunXVoUMHp2W1a9dW/fr1zeWjR49WYmKiQkJCZLfbNWHCBEVHR6tXr16SpP79+ysiIkKPPPKI5syZo+zsbD3zzDNKSEiQv7+/JGncuHF67bXX9PTTT+vRRx/Vpk2btGLFCq1bt8583cTERI0YMULdu3dXz549NW/ePJ09e1ajRo2q0IAAAACUFRkJAACgbMp1l72reeWVV+Tl5aUhQ4YoPz9fsbGxWrhwobne29tba9eu1RNPPKHo6GjVrl1bI0aM0LPPPmu2admypdatW6dJkybp1VdfVdOmTfXmm28qNjbWbPPggw/q+PHjmjZtmrKzs9WlSxclJyeXmMQTAADAHZCRAAAAfmUzDMNwdSdcxeFwKCgoSHl5eVyaDtRAhcnbnJ77Dujtop4AsBKf/9fGGAE12+UZSSInATWB1Z//ZZpDCgAAAAAAAKgoClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzl4+oOAICrHD61wel5a/V2UU8AAADcx+UZSSInAah8XCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKXKVJB6/fXX1alTJ9ntdtntdkVHR2vDhg3m+vPnzyshIUH169dXnTp1NGTIEOXk5DjtIysrS3FxcapVq5YaNWqkyZMn68KFC05tNm/erG7dusnf31+tWrXSkiVLSvRlwYIFatGihQICAhQVFaUdO3aU5VAAAAAqDRkJAACgbMpUkGratKlmz56t9PR07dq1S3379tW9996rffv2SZImTZqkDz/8UCtXrtSWLVt09OhR3X///eb2Fy9eVFxcnAoKCvTZZ5/prbfe0pIlSzRt2jSzzaFDhxQXF6c777xTGRkZmjhxosaMGaONGzeabZYvX67ExERNnz5dX3zxhTp37qzY2Fjl5uZWdDwAAADKjIwEAABQNjbDMIyK7CAkJEQvvviihg4dqoYNG2rZsmUaOnSoJOnAgQNq37690tLS1KtXL23YsEGDBg3S0aNHFRoaKklatGiRpkyZouPHj8vPz09TpkzRunXrtHfvXvM14uPjderUKSUnJ0uSoqKi1KNHD7322muSpKKiIoWHh2vChAmaOnXqdffd4XAoKChIeXl5stvtFRkGAB7o4Lt/cnreOv4FF/UEgJWs+vwnIwHwVJdnJImcBNQEVn/+l3sOqYsXL+rdd9/V2bNnFR0drfT0dBUWFiomJsZs065dOzVr1kxpaWmSpLS0NHXs2NEMWpIUGxsrh8NhnkFMS0tz2kdxm+J9FBQUKD093amNl5eXYmJizDYAAACuQkYCAAC4Np+ybrBnzx5FR0fr/PnzqlOnjlatWqWIiAhlZGTIz89PwcHBTu1DQ0OVnZ0tScrOznYKWsXri9ddrY3D4dDPP/+skydP6uLFi6W2OXDgwFX7np+fr/z8fPO5w+G4/gMHAAC4CjISAADA9SvzFVJt27ZVRkaGtm/frieeeEIjRozQ119/XRV9q3SzZs1SUFCQ+QgPD3d1lwAAQDVBRgIAALh+ZS5I+fn5qVWrVoqMjNSsWbPUuXNnvfrqqwoLC1NBQYFOnTrl1D4nJ0dhYWGSpLCwsBJ3lCl+fq02drtdgYGBatCggby9vUttU7yPK0lKSlJeXp75OHLkSFkPHwAAoFRkJAAAgOtX7jmkihUVFSk/P1+RkZHy9fVVamqquS4zM1NZWVmKjo6WJEVHR2vPnj1Od3pJSUmR3W5XRESE2ebSfRS3Kd6Hn5+fIiMjndoUFRUpNTXVbHMl/v7+5u2Yix8AAABVgYwEAABwZWWaQyopKUkDBw5Us2bNdPr0aS1btkybN2/Wxo0bFRQUpNGjRysxMVEhISGy2+2aMGGCoqOj1atXL0lS//79FRERoUceeURz5sxRdna2nnnmGSUkJMjf31+SNG7cOL322mt6+umn9eijj2rTpk1asWKF1q1bZ/YjMTFRI0aMUPfu3dWzZ0/NmzdPZ8+e1ahRoypxaAAAAK4PGQkAAKBsylSQys3N1fDhw3Xs2DEFBQWpU6dO2rhxo+666y5J0iuvvCIvLy8NGTJE+fn5io2N1cKFC83tvb29tXbtWj3xxBOKjo5W7dq1NWLECD377LNmm5YtW2rdunWaNGmSXn31VTVt2lRvvvmmYmNjzTYPPvigjh8/rmnTpik7O1tdunRRcnJyiUk8AQAArEBGAgAAKBubYRiGqzvhKg6HQ0FBQcrLy+PSdKAGOvjun5yet45/wUU9AWAlPv+vjTECarbLM5JETgJqAqs//ys8hxQAAAAAAABQFhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLlakgNWvWLPXo0UN169ZVo0aNNHjwYGVmZjq1OX/+vBISElS/fn3VqVNHQ4YMUU5OjlObrKwsxcXFqVatWmrUqJEmT56sCxcuOLXZvHmzunXrJn9/f7Vq1UpLliwp0Z8FCxaoRYsWCggIUFRUlHbs2FGWwwEAAKgUZCQAAICyKVNBasuWLUpISNDnn3+ulJQUFRYWqn///jp79qzZZtKkSfrwww+1cuVKbdmyRUePHtX9999vrr948aLi4uJUUFCgzz77TG+99ZaWLFmiadOmmW0OHTqkuLg43XnnncrIyNDEiRM1ZswYbdy40WyzfPlyJSYmavr06friiy/UuXNnxcbGKjc3tyLjAQAAUGZkJAAAgLKxGYZhlHfj48ePq1GjRtqyZYv69OmjvLw8NWzYUMuWLdPQoUMlSQcOHFD79u2VlpamXr16acOGDRo0aJCOHj2q0NBQSdKiRYs0ZcoUHT9+XH5+fpoyZYrWrVunvXv3mq8VHx+vU6dOKTk5WZIUFRWlHj166LXXXpMkFRUVKTw8XBMmTNDUqVOvq/8Oh0NBQUHKy8uT3W4v7zAA8FAH3/2T0/PW8S+4qCcArGTF5z8ZCYAnuzwjSeQkoCaw+vO/QnNI5eXlSZJCQkIkSenp6SosLFRMTIzZpl27dmrWrJnS0tIkSWlpaerYsaMZtCQpNjZWDodD+/btM9tcuo/iNsX7KCgoUHp6ulMbLy8vxcTEmG0AAABchYwEAABwdT7l3bCoqEgTJ07Urbfeqg4dOkiSsrOz5efnp+DgYKe2oaGhys7ONttcGrSK1xevu1obh8Ohn3/+WSdPntTFixdLbXPgwIEr9jk/P1/5+fnmc4fDUYYjBgAAuDYyEgAAwLWV+wqphIQE7d27V++++25l9qdKzZo1S0FBQeYjPDzc1V0CAADVDBkJAADg2spVkBo/frzWrl2rTz75RE2bNjWXh4WFqaCgQKdOnXJqn5OTo7CwMLPN5XeUKX5+rTZ2u12BgYFq0KCBvL29S21TvI/SJCUlKS8vz3wcOXKkbAcOAABwFWQkAACA61OmgpRhGBo/frxWrVqlTZs2qWXLlk7rIyMj5evrq9TUVHNZZmamsrKyFB0dLUmKjo7Wnj17nO70kpKSIrvdroiICLPNpfsoblO8Dz8/P0VGRjq1KSoqUmpqqtmmNP7+/rLb7U4PAACAiiIjAQAAlE2Z5pBKSEjQsmXL9MEHH6hu3brmfAZBQUEKDAxUUFCQRo8ercTERIWEhMhut2vChAmKjo5Wr169JEn9+/dXRESEHnnkEc2ZM0fZ2dl65plnlJCQIH9/f0nSuHHj9Nprr+npp5/Wo48+qk2bNmnFihVat26d2ZfExESNGDFC3bt3V8+ePTVv3jydPXtWo0aNqqyxAQAAuC5kJAAAgLIpU0Hq9ddflyTdcccdTssXL16skSNHSpJeeeUVeXl5aciQIcrPz1dsbKwWLlxotvX29tbatWv1xBNPKDo6WrVr19aIESP07LPPmm1atmypdevWadKkSXr11VfVtGlTvfnmm4qNjTXbPPjggzp+/LimTZum7OxsdenSRcnJySUm8QQAAKhqZCQAAICysRmGYbi6E67icDgUFBSkvLw8Lk0HaqCD7/7J6Xnr+Bdc1BMAVuLz/9oYI6BmuzwjSeQkoCaw+vO/3HfZAwAAAAAAAMqDghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkyF6S2bt2qe+65R02aNJHNZtPq1aud1huGoWnTpqlx48YKDAxUTEyMDh486NTmxIkTGjZsmOx2u4KDgzV69GidOXPGqc3u3bt12223KSAgQOHh4ZozZ06JvqxcuVLt2rVTQECAOnbsqPXr15f1cAAAACoFGQkAAOD6lbkgdfbsWXXu3FkLFiwodf2cOXM0f/58LVq0SNu3b1ft2rUVGxur8+fPm22GDRumffv2KSUlRWvXrtXWrVs1duxYc73D4VD//v3VvHlzpaen68UXX9SMGTP0t7/9zWzz2Wef6aGHHtLo0aP15ZdfavDgwRo8eLD27t1b1kMCAACoMDISAADA9bMZhmGUe2ObTatWrdLgwYMl/XLmr0mTJvrjH/+op556SpKUl5en0NBQLVmyRPHx8dq/f78iIiK0c+dOde/eXZKUnJysu+++W99//72aNGmi119/XX/605+UnZ0tPz8/SdLUqVO1evVqHThwQJL04IMP6uzZs1q7dq3Zn169eqlLly5atGjRdfXf4XAoKChIeXl5stvt5R0GAB7q4Lt/cnreOv4FF/UEgJWs+PwnIwHwZJdnJImcBNQEVn/+V+ocUocOHVJ2drZiYmLMZUFBQYqKilJaWpokKS0tTcHBwWbQkqSYmBh5eXlp+/btZps+ffqYQUuSYmNjlZmZqZMnT5ptLn2d4jbFr1Oa/Px8ORwOpwcAAEBVIyMBAAA4q9SCVHZ2tiQpNDTUaXloaKi5Ljs7W40aNXJa7+Pjo5CQEKc2pe3j0te4Upvi9aWZNWuWgoKCzEd4eHhZDxEAAKDMyEgAAADOatRd9pKSkpSXl2c+jhw54uouAQAAuBwZCQAAWK1SC1JhYWGSpJycHKflOTk55rqwsDDl5uY6rb9w4YJOnDjh1Ka0fVz6GldqU7y+NP7+/rLb7U4PAACAqkZGAgAAcFapBamWLVsqLCxMqamp5jKHw6Ht27crOjpakhQdHa1Tp04pPT3dbLNp0yYVFRUpKirKbLN161YVFhaabVJSUtS2bVvVq1fPbHPp6xS3KX4dAAAAd0FGAgAAcFbmgtSZM2eUkZGhjIwMSb9M0pmRkaGsrCzZbDZNnDhRzz//vNasWaM9e/Zo+PDhatKkiXmXmfbt22vAgAF67LHHtGPHDn366acaP3684uPj1aRJE0nSww8/LD8/P40ePVr79u3T8uXL9eqrryoxMdHsx5NPPqnk5GS99NJLOnDggGbMmKFdu3Zp/PjxFR8VAACAMiIjAQAAXD+fsm6wa9cu3Xnnnebz4gA0YsQILVmyRE8//bTOnj2rsWPH6tSpU+rdu7eSk5MVEBBgbrN06VKNHz9e/fr1k5eXl4YMGaL58+eb64OCgvTRRx8pISFBkZGRatCggaZNm6axY8eabW655RYtW7ZMzzzzjP7nf/5HrVu31urVq9WhQ4dyDQQAAEBFkJEAAACun80wDMPVnXAVh8OhoKAg5eXlMVcCUAMdfPdPTs9bx7/gop4AsBKf/9fGGAE12+UZSSInATWB1Z//NeouewAAAAAAAHA9ClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKU8viC1YMECtWjRQgEBAYqKitKOHTtc3SUAAACXIyMBAAB35tEFqeXLlysxMVHTp0/XF198oc6dOys2Nla5ubmu7hoAAIDLkJEAAIC78+iC1Msvv6zHHntMo0aNUkREhBYtWqRatWrpn//8p6u7BgAA4DJkJAAA4O58XN2B8iooKFB6erqSkpLMZV5eXoqJiVFaWlqp2+Tn5ys/P998npeXJ0lyOBxV21kAbunMuXyn5/xbANQMxX/rhmG4uCdVg4wEoKIuz0gS/x4ANYHVGcljC1I//vijLl68qNDQUKfloaGhOnDgQKnbzJo1SzNnziyxPDw8vEr6CMDDjH7J1T0AYKHTp08rKCjI1d2odGQkAFWCnATUGFZlJI8tSJVHUlKSEhMTzedFRUU6ceKE6tevL5vN5sKeuReHw6Hw8HAdOXJEdrvd1d2pERhz6zHm1mPMrceYl84wDJ0+fVpNmjRxdVfcBhnp+vA3ZT3G3HqMufUYc+sx5qWzOiN5bEGqQYMG8vb2Vk5OjtPynJwchYWFlbqNv7+//P39nZYFBwdXVRc9nt1u54/TYoy59Rhz6zHm1mPMS6qOV0YVIyNVPf6mrMeYW48xtx5jbj3GvCQrM5LHTmru5+enyMhIpaammsuKioqUmpqq6OhoF/YMAADAdchIAADAE3jsFVKSlJiYqBEjRqh79+7q2bOn5s2bp7Nnz2rUqFGu7hoAAIDLkJEAAIC78+iC1IMPPqjjx49r2rRpys7OVpcuXZScnFxiEk+Ujb+/v6ZPn17i0n1UHcbceoy59Rhz6zHmNRcZqWrwN2U9xtx6jLn1GHPrMebuwWZU13seAwAAAAAAwC157BxSAAAAAAAA8EwUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFHTixAkNGzZMdrtdwcHBGj16tM6cOXNd2xqGoYEDB8pms2n16tVV29FqpKxjfuLECU2YMEFt27ZVYGCgmjVrpj/84Q/Ky8uzsNeeZ8GCBWrRooUCAgIUFRWlHTt2XLX9ypUr1a5dOwUEBKhjx45av369RT2tPsoy5n//+9912223qV69eqpXr55iYmKu+TtCSWV9nxd79913ZbPZNHjw4KrtIODByEjWIyNZg4xkPTKS9chI7o+CFDRs2DDt27dPKSkpWrt2rbZu3aqxY8de17bz5s2TzWar4h5WP2Ud86NHj+ro0aOaO3eu9u7dqyVLlig5OVmjR4+2sNeeZfny5UpMTNT06dP1xRdfqHPnzoqNjVVubm6p7T/77DM99NBDGj16tL788ksNHjxYgwcP1t69ey3uuecq65hv3rxZDz30kD755BOlpaUpPDxc/fv31w8//GBxzz1XWce82OHDh/XUU0/ptttus6ingGciI1mPjFT1yEjWIyNZj4zkIQzUaF9//bUhydi5c6e5bMOGDYbNZjN++OGHq2775ZdfGjfccINx7NgxQ5KxatWqKu5t9VCRMb/UihUrDD8/P6OwsLAquunxevbsaSQkJJjPL168aDRp0sSYNWtWqe0feOABIy4uzmlZVFSU8fjjj1dpP6uTso755S5cuGDUrVvXeOutt6qqi9VOecb8woULxi233GK8+eabxogRI4x7773Xgp4CnoeMZD0ykjXISNYjI1mPjOQZuEKqhktLS1NwcLC6d+9uLouJiZGXl5e2b99+xe3OnTunhx9+WAsWLFBYWJgVXa02yjvml8vLy5PdbpePj09VdNOjFRQUKD09XTExMeYyLy8vxcTEKC0trdRt0tLSnNpLUmxs7BXbw1l5xvxy586dU2FhoUJCQqqqm9VKecf82WefVaNGjbh6ALgGMpL1yEhVj4xkPTKS9chInoN/pWu47OxsNWrUyGmZj4+PQkJClJ2dfcXtJk2apFtuuUX33ntvVXex2invmF/qxx9/1HPPPXfdXxuoaX788UddvHhRoaGhTstDQ0N14MCBUrfJzs4utf31/k5quvKM+eWmTJmiJk2alAi9KF15xnzbtm36xz/+oYyMDAt6CHg2MpL1yEhVj4xkPTKS9chInoMrpKqpqVOnymazXfVxvf8AXm7NmjXatGmT5s2bV7md9nBVOeaXcjgciouLU0REhGbMmFHxjv9/7N13eBTl/v//16YDafQECb1Ji3SiHpqRRAKCBCkWAgI2QIogcFCKgCBywIOiWH4HUFEBEURKkGoBBASiNDnICUUhFCEJNSHJ/P7gm/mwpJA6m/J8XNdel3vvPTP3zGzYl++dvQcoAGbMmKEvv/xSK1askIeHh6OHUyRdvnxZTz/9tD766COVK1fO0cMBHIaMZD0yEpBzZKT8R0ZyHK6QKqJefvll9evXL9M+NWrUkJ+fX5qJ3ZKSknTx4sUMLzPfvHmzjh07Jl9fX7v28PBw/eMf/9DWrVtzMfLCKz+PearLly8rNDRUXl5eWrFihVxdXXM77CKpXLlycnZ21tmzZ+3az549m+Ex9vPzy1Z/2MvJMU81a9YszZgxQxs3blTjxo3zc5hFSnaP+bFjx3T8+HF16dLFbEtJSZF06wqEI0eOqGbNmvk7aKAAICNZj4xUcJCRrEdGsh4ZqRBx9CRWcKzUySN/+eUXs239+vWZTh555swZY//+/XYPSca///1v43//+59VQy+0cnLMDcMw4uLijNatWxtt27Y1rl69asVQC7WWLVsaQ4YMMZ8nJycb99xzT6YTdnbu3NmuLSgoiAk7syG7x9wwDOPNN980vL29jR07dlgxxCInO8f8+vXraf7t7tq1q9GhQwdj//79RkJCgpVDBwo8MpL1yEjWICNZj4xkPTJS4UBBCkZoaKjRpEkTY+fOncZPP/1k1K5d2+jTp4/5+p9//mnUrVvX2LlzZ4brEHeQyZbsHvO4uDijVatWRqNGjYw//vjDOHPmjPlISkpy1G4UaF9++aXh7u5uLFy40Dh06JDx7LPPGr6+vkZMTIxhGIbx9NNPG2PHjjX7b9u2zXBxcTFmzZplHD582Jg4caLh6upq7N+/31G7UOhk95jPmDHDcHNzM7766iu79/Tly5cdtQuFTnaP+Z24gwyQOTKS9chI+Y+MZD0ykvXISIUDBSkYf//9t9GnTx/D09PT8Pb2Nvr372/3j110dLQhydiyZUuG6yBsZU92j/mWLVsMSek+oqOjHbMThcA777xjVKlSxXBzczNatmxp/Pzzz+Zrbdu2NSIiIuz6L1261KhTp47h5uZmNGjQwFizZo3FIy78snPMq1atmu57euLEidYPvBDL7vv8doQtIHNkJOuRkaxBRrIeGcl6ZKSCz2YYhpG/PwoEAAAAAAAA/g932QMAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAHli0qRJstlsjh5Gnli4cKFsNpuOHz/u6KEUGDabTZMmTcrz9Xbq1EmDBg26a7+Mzslbb72lGjVqyNnZWffdd1+2th0ZGSlPT0+dP38+W8sBAJAdZKSijYwE5BwFKQAOt337dk2aNEmxsbGOHkqG3nvvPS1cuDBft2Gz2WSz2TRw4MB0Xx8/frzZ58KFC/k6Fits27ZN3333ncaMGZOj5b/77ju98soreuCBB7RgwQK98cYbZvuAAQPUsGFDOTs7q1q1aukuHxoaqlq1amn69Ok53QUAAPIVGekWMlL2pJeRrl27pnnz5qljx47y9/eXl5eXmjRpovfff1/Jycl2y5ORYBWbYRiGowcBoPBLSkpSUlKSPDw8sr3srFmzNHr0aEVHR2dYPLBScnKybt68KXd3d/MbzYYNG6pcuXLaunVrvm3XZrPJw8NDHh4eOnv2rNzc3Oxer1Gjhs6cOaMbN27o/PnzKleuXL6N5U43btyQi4uLXFxc8myd3bp10/Xr17V+/fq79l24cKH69+9v9x4ZO3as3nrrLV2/ft3uWPXr109LlixR06ZNdfLkSTk7O2f4Te7777+vUaNGKSYmRl5eXnmxWwAA2CEj5R4ZKWNZzUgHDhxQ48aN9dBDD6ljx47y9vbW+vXrtWLFCvXt21eLFi2yWy8ZCVbgCikgC1JSUnTjxg1HD8PO1atX830bhmHo+vXrWerr4uKSo6BVEDk7O8vDw8Mhl9eHhoYqPj5e69ats2vfvn27oqOjFRYWZvmYJMnDwyNPg9a5c+e0Zs0a9ezZM1frKFGiRJpQ+sYbbyg+Pl7btm1TYGBgpusIDw9XQkKCli1bluNxAEBxRka6OzJS3iAjZW8dd2YkPz8/7d+/Xxs2bNDo0aP13HPP6euvv1b//v31ySef6I8//rBbBxkJVqAghWIj9ff7v//+u3r27Clvb2+VLVtWw4YNSxOkbDabhgwZosWLF6tBgwZyd3dXZGSkJOmvv/7SM888o4oVK8rd3V0NGjTQf/7znzTbu3HjhiZNmqQ6derIw8ND/v7+6t69u44dOyZJ2rp1q2w2W5pvk44fPy6bzWZ36XO/fv3k6empY8eOqVOnTvLy8tKTTz4pSTp69KjCw8Pl5+cnDw8PVa5cWb1791ZcXJy5fFJSkqZMmaKaNWvK3d1d1apV0z//+U8lJCTYbbtatWrq3Lmz1q9fr+bNm6tEiRL64IMPsnV80zuOK1euVMOGDc3jlXosU5cbPXq0JKl69erm5da3X9Hy2WefqVmzZipRooTKlCmj3r1769SpU3bbateunRo2bKhDhw6pffv2KlmypO655x7NnDkzzVjfeecdNWjQQCVLllTp0qXVvHlzff755+brd/4Wv1q1ajp48KC+//57c3zt2rXT//73P9lsNs2ZMyfNNrZv3y6bzaYvvvgiS8cv1T333KM2bdrYjUeSFi9erEaNGqlhw4bZWt/t+/PTTz/ppZdeUvny5eXr66vnnntOiYmJio2NVd++fVW6dGmVLl1ar7zyiu68ePbO+RFSz/cff/yhfv36ydfXVz4+Purfv7+uXbt21zGtWbNGSUlJCg4OTvPawYMH1aFDB5UoUUKVK1fW1KlTlZKSkmY8CxYs0NWrV81zkvo3U6lSJbm6umbp2FSoUEGNGzfWN998k6X+AFAUkZHISKnISEU3I5UrV04NGjRIs87HHntMknT48GG7djISrJB3pVygkOjZs6eqVaum6dOn6+eff9bcuXN16dIlffLJJ3b9Nm/erKVLl2rIkCEqV66cqlWrprNnz6p169ZmiChfvrzWrVunAQMGKD4+XsOHD5d063Lmzp07a9OmTerdu7eGDRumy5cva8OGDTpw4IBq1qyZ7XEnJSUpJCREDz74oGbNmqWSJUsqMTFRISEhSkhI0NChQ+Xn56e//vpLq1evVmxsrHx8fCRJAwcO1KJFi9SjRw+9/PLL2rlzp6ZPn67Dhw9rxYoVdts5cuSI+vTpo+eee06DBg1S3bp1c3ag/5+ffvpJX3/9tV588UV5eXlp7ty5Cg8P18mTJ1W2bFl1795d//3vf/XFF19ozpw55iXW5cuXlyRNmzZNr732mnr27KmBAwfq/Pnzeuedd9SmTRvt27dPvr6+5rYuXbqk0NBQde/eXT179tRXX32lMWPGqFGjRnrkkUckSR999JFeeukl9ejRwwzav/32m3bu3Kknnngi3X14++23NXToUHl6emr8+PGSpIoVK6pGjRp64IEHtHjxYo0YMcJumcWLF8vLy0tdu3bN9jF74oknNGzYMF25ckWenp5KSkrSsmXLNHLkyFx9C536Hpk8ebJ+/vlnffjhh/L19dX27dtVpUoVvfHGG1q7dq3eeustNWzYUH379r3rOnv27Knq1atr+vTp2rt3rz7++GNVqFBBb775ZqbLbd++XWXLllXVqlXt2mNiYtS+fXslJSVp7NixKlWqlD788EOVKFHCrt+nn36qDz/8ULt27dLHH38sSbr//vuzeURuadasmVauXJmjZQGgKCEjkZHISMUvI8XExEhSuj9zJCMh3xlAMTFx4kRDkvHoo4/atb/44ouGJOPXX3812yQZTk5OxsGDB+36DhgwwPD39zcuXLhg1967d2/Dx8fHuHbtmmEYhvGf//zHkGTMnj07zThSUlIMwzCMLVu2GJKMLVu22L0eHR1tSDIWLFhgtkVERBiSjLFjx9r13bdvnyHJWLZsWYb7HRUVZUgyBg4caNc+atQoQ5KxefNms61q1aqGJCMyMjLD9WUk9fjeTpLh5uZm/PHHH2bbr7/+akgy3nnnHbPtrbfeMiQZ0dHRdssfP37ccHZ2NqZNm2bXvn//fsPFxcWuvW3btoYk45NPPjHbEhISDD8/PyM8PNxs69q1q9GgQYNM92XBggVpxtOgQQOjbdu2afp+8MEHhiTj8OHDZltiYqJRrlw5IyIiItPt3EmSMXjwYOPixYuGm5ub8emnnxqGYRhr1qwxbDabcfz4cfM4nz9/PsvrTd2fkJAQ8/1nGIYRFBRk2Gw24/nnnzfbkpKSjMqVK6fZV0nGxIkTzeep43jmmWfs+j322GNG2bJl7zqmBx980GjWrFma9uHDhxuSjJ07d5pt586dM3x8fNKck4iICKNUqVKZbicsLMyoWrVqpn3eeOMNQ5Jx9uzZu44bAIoiMhIZyTDISMUtIxnGrfdB/fr1jerVqxs3b95M8zoZCfmNn+yh2Bk8eLDd86FDh0qS1q5da9fetm1b1a9f33xuGIaWL1+uLl26yDAMXbhwwXyEhIQoLi5Oe/fulSQtX75c5cqVM9d9u9z85v6FF16we5767d769eszvAQ4db9Gjhxp1/7yyy9LunVZ8O2qV6+ukJCQHI/xTsHBwXbfdjZu3Fje3t763//+d9dlv/76a6WkpKhnz552x9vPz0+1a9fWli1b7Pp7enrqqaeeMp+7ubmpZcuWdtvy9fXVn3/+qd27d+fB3t369svDw0OLFy8229avX68LFy7YjSU7SpcurdDQUPNS9s8//1z3339/mm/KsmvAgAF2779WrVrJMAwNGDDAbHN2dlbz5s2zdH4k6fnnn7d7/o9//EN///234uPjM13u77//VunSpdO0r127Vq1bt1bLli3NtvLly5s/v8gPqeMoCnflAYDcICPdQkYiIxWXjDRkyBAdOnRI7777brrzYJGRkN8oSKHYqV27tt3zmjVrysnJKc1duKpXr273/Pz584qNjdWHH36o8uXL2z369+8v6dYEgpJ07Ngx1a1bN08nOHRxcVHlypXTjHHkyJH6+OOPVa5cOYWEhGjevHl2cyOcOHFCTk5OqlWrlt2yfn5+8vX11YkTJzLd79yqUqVKmrbSpUvr0qVLd1326NGjMgxDtWvXTnPMDx8+bB7vVJUrV04TZu/c1pgxY+Tp6amWLVuqdu3aGjx4sLZt25bDvbsV3rp06WI3n8HixYt1zz33qEOHDjle7xNPPKENGzbo5MmTWrlyZYaXymfHneciNawHBASkac/K+UlvnanBJSvLG+nc5PXEiRNp/kYl5fpnEVkZhyMmaAWAgoSMdAsZiYxUHDLSW2+9pY8++khTpkxRp06dMh0HGQn5hTmkUOxl9A/snb/HTp0w8KmnnlJERES6yzRu3DjX201OTk633d3dXU5OaWvI//rXv9SvXz998803+u677/TSSy+Zcz/cHs6y+kFy537nlrOzc7rt6X3Q3iklJUU2m03r1q1Ldz2enp7Z3ta9996rI0eOaPXq1YqMjNTy5cv13nvvacKECZo8efJdx5Sevn37atmyZdq+fbsaNWqkVatW6cUXX0z3fGXVo48+Knd3d0VERCghISFXd1pJldHxSa89K+cns3XebfmyZctmOdDlt9RxWHmLaAAoDMhI9shI2UdGSqsgZKSFCxdqzJgxev755/Xqq69m2I+MhPxGQQrFztGjR+2+4frjjz+UkpKiatWqZbpc+fLl5eXlpeTk5HTvenG7mjVraufOnbp582aGd/tK/ZYkNjbWrv3Ob+OyolGjRmrUqJFeffVVbd++XQ888IDmz5+vqVOnqmrVqkpJSdHRo0d17733msucPXtWsbGxub7EOS9kFARr1qwpwzBUvXp11alTJ8+2V6pUKfXq1Uu9evVSYmKiunfvrmnTpmncuHEZ3pY5s7AaGhqq8uXLa/HixWrVqpWuXbump59+OldjLFGihLp166bPPvtMjzzySJELAvXq1dPy5cvTtFetWlVHjx5N037kyJF8G0t0dLTKlStnThILAMUVGekWMhIZyZHyOyN98803GjhwoLp376558+Zl2peMhPzGT/ZQ7Nz5D+8777wjSeYdRjLi7Oys8PBwLV++XAcOHEjz+vnz583/Dg8P14ULF/Tuu++m6Zf6rUjVqlXl7OysH374we719957L2s7Iik+Pl5JSUl2bY0aNZKTk5N5u+LUS3Dffvttu36zZ8+WJIWFhWV5e/mlVKlSktIGz+7du8vZ2VmTJ09O822SYRj6+++/s72tO5dxc3NT/fr1ZRiGbt68mekY7xxfKhcXF/Xp00dLly7VwoUL1ahRo2x9E5yRUaNGaeLEiXrttddyva6CJigoSJcuXUozD0OnTp30888/a9euXWbb+fPn7eafyGt79uxRUFBQvq0fAAoLMtItZKRbyEiOkZ8Z6YcfflDv3r3Vpk0bLV68+K5XqpGRkN+4QgrFTnR0tB599FGFhoZqx44d+uyzz/TEE08oMDDwrsvOmDFDW7ZsUatWrTRo0CDVr19fFy9e1N69e7Vx40ZdvHhR0q3Lkz/55BONHDlSu3bt0j/+8Q9dvXpVGzdu1IsvvqiuXbvKx8dHjz/+uN555x3ZbDbVrFlTq1evTvOb/8xs3rxZQ4YM0eOPP646deooKSlJn376qRkMJSkwMFARERH68MMPFRsbq7Zt22rXrl1atGiRunXrpvbt2+fsQOahZs2aSZLGjx+v3r17y9XVVV26dFHNmjU1depUjRs3TsePH1e3bt3k5eWl6OhorVixQs8++6xGjRqVrW117NhRfn5+euCBB1SxYkUdPnxY7777rsLCwuTl5ZXpGN9//31NnTpVtWrVUoUKFezmP+jbt6/mzp2rLVu23PV2vlkVGBiYpfdlYRQWFiYXFxdt3LhRzz77rNn+yiuv6NNPP1VoaKiGDRtm3tK4atWq+u2337K07t9++02rVq2SdOvb/bi4OE2dOlXSrWPapUsXs++5c+f022+/pZnIFwCKIzISGYmM5Hj5lZFOnDihRx99VDabTT169NCyZcvsXm/cuLFdsZCMBCtQkEKxs2TJEk2YMEFjx46Vi4uLhgwZorfeeitLy1asWFG7du3S66+/rq+//lrvvfeeypYtqwYNGth9wDo7O2vt2rWaNm2aPv/8cy1fvlxly5bVgw8+qEaNGpn93nnnHd28eVPz58+Xu7u7evbsqbfeeksNGzbM0ngCAwMVEhKib7/9Vn/99ZdKliypwMBArVu3Tq1btzb7ffzxx6pRo4YWLlyoFStWyM/PT+PGjdPEiROzeNTyV4sWLTRlyhTNnz9fkZGRSklJUXR0tEqVKqWxY8eqTp06mjNnjjl/QUBAgDp27KhHH30029t67rnntHjxYs2ePVtXrlxR5cqV9dJLL2X6+3lJmjBhgk6cOKGZM2fq8uXLatu2rV3YatasmRo0aKDDhw/n6x3hioqKFSuqU6dOWrp0qV3Y8vf315YtWzR06FDNmDFDZcuW1fPPP69KlSrZ3ekmM3v37k3zjWnq84iICLuC1Ndff23+7QFAcUdGIiORkRwvvzJSdHS0Oal/ekWmiRMn2hWkyEiwgs3I6qxsQCE3adIkTZ48WefPny9yvzVHwdCkSROVKVNGmzZtcvRQCoUff/xR7dq10++//57uXWOs0KRJE7Vr105z5sxxyPYBoCAgIyG/kZGyh4yE4oI5pAAgD/zyyy+KiopS3759HT2UQuMf//iHOnbsqJkzZzpk+5GRkTp69KjGjRvnkO0DAFAckJGyj4yE4oKf7AHIVFxcnK5fv55pHz8/P4tGU/AcOHBAe/bs0b/+9S/5+/urV69edq8nJyfbTeaaHk9PzzS3Z86K69evm5deZ6RMmTJyc3PL9rqtsm7dOodtOzQ0VFeuXHHY9gEAhRsZKXNkpNwhI6E4oCAFIFPDhg3TokWLMu1TnH/5+9VXX+n1119X3bp19cUXX6S5JfKpU6fsbqGdnokTJ2rSpEnZ3vaSJUvUv3//TPts2bJF7dq1y/a6AQBA5shImSMjAbgb5pACkKlDhw7p9OnTmfYJDg62aDSFz40bN/TTTz9l2qdGjRqqUaNGttd95swZHTx4MNM+zZo1U+nSpbO9bgAAkDkyUu6QkQBQkAIAAAAAAIClmNQcAAAAAAAAlirWc0ilpKTo9OnT8vLyks1mc/RwAACABQzD0OXLl1WpUiU5OfHdXHrISAAAFD9WZ6RiXZA6ffq0AgICHD0MAADgAKdOnVLlypUdPYwCiYwEAEDxZVVGKtYFKS8vL0m3Dra3t7eDRwMAAKwQHx+vgIAAMwcgLTISAADFj9UZqVgXpFIvQff29iZsAQBQzPBTtIyRkQAAKL6sykhMnAAAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFLFeg4pAAAyYhiGkpKSlJyc7OihIJucnZ3l4uLCHFEAAOQDMlLhVdAyEgUpAADukJiYqDNnzujatWuOHgpyqGTJkvL395ebm5ujhwIAQJFBRir8ClJGoiAFAMBtUlJSFB0dLWdnZ1WqVElubm4F5lsk3J1hGEpMTNT58+cVHR2t2rVry8mJGQoAAMgtMlLhVhAzEgUpAABuk5iYqJSUFAUEBKhkyZKOHg5yoESJEnJ1ddWJEyeUmJgoDw8PRw8JAIBCj4xU+BW0jMRXhgAApMPR3xghdzh/AADkDz5jC7eCdP4KzkgAAAAAAABQLFCQAgAAAAAAgKWYQwoAgCy6GfmTZdtyDX0wy33vNqHoxIkTNWnSpFyOKGdsNptWrFihbt265XgdH374oT7//HPt3btXly9f1qVLl+Tr65tnYwQAALljZUaSyEmpLl68qIkTJ+q7777TyZMnVb58eXXr1k1TpkyRj49P3g42H1CQAgCgkDtz5oz530uWLNGECRN05MgRs83T0zNb60tMTCwQtwJOde3aNYWGhio0NFTjxo1z9HAAAEAhUpRz0unTp3X69GnNmjVL9evX14kTJ/T888/r9OnT+uqrrxw9vLviJ3v56GbkT5ZXigEAxY+fn5/58PHxkc1mM59fvXpVTz75pCpWrChPT0+1aNFCGzdutFu+WrVqmjJlivr27Stvb289++yzkqSPPvrIvJPOY489ptmzZ6e5Mumbb75R06ZN5eHhoRo1amjy5MlKSkoy1ytJjz32mGw2m/n8119/Vfv27eXl5SVvb281a9ZMv/zyS4b7N3z4cI0dO1atW7fOmwMGhyMjAQCsUpRzUsOGDbV8+XJ16dJFNWvWVIcOHTRt2jR9++235nYKMgpSAAAUYVeuXFGnTp20adMm7du3T6GhoerSpYtOnjxp12/WrFkKDAzUvn379Nprr2nbtm16/vnnNWzYMEVFRenhhx/WtGnT7Jb58ccf1bdvXw0bNkyHDh3SBx98oIULF5r9du/eLUlasGCBzpw5Yz5/8sknVblyZe3evVt79uzR2LFj5erqasHRAAAA+D9FMSfFxcXJ29tbLi4F/wdxBX+EAAAgxwIDAxUYGGg+nzJlilasWKFVq1ZpyJAhZnuHDh308ssvm8/Hjx+vRx55RKNGjZIk1alTR9u3b9fq1avNPpMnT9bYsWMVEREhSapRo4amTJmiV155RRMnTlT58uUlSb6+vvLz8zOXO3nypEaPHq169epJkmrXrp0Pew4AAJC5opaTLly4oClTpphXcRV0XCEFAEARduXKFY0aNUr33nuvfH195enpqcOHD6f55q958+Z2z48cOaKWLVvatd35/Ndff9Xrr78uT09P8zFo0CCdOXNG165dy3BMI0eO1MCBAxUcHKwZM2bo2LFjudxLAACA7CtKOSk+Pl5hYWGqX7++wyZpzy4KUgAAFGGjRo3SihUr9MYbb+jHH39UVFSUGjVqpMTERLt+pUqVyva6r1y5osmTJysqKsp87N+/X0ePHpWHh0eGy02aNEkHDx5UWFiYNm/erPr162vFihXZ3j4AAEBuFJWcdPnyZYWGhsrLy0srVqwoNFMh8JM9AACKsG3btqlfv3567LHHJN0KR8ePH7/rcnXr1jXnMkh15/OmTZvqyJEjqlWrVobrcXV1VXJycpr2OnXqqE6dOhoxYoT69OmjBQsWmGMEAACwQlHISfHx8QoJCZG7u7tWrVqVabGroKEgBQBAEVa7dm19/fXX6tKli2w2m1577TWlpKTcdbmhQ4eqTZs2mj17trp06aLNmzdr3bp1stlsZp8JEyaoc+fOqlKlinr06CEnJyf9+uuvOnDggKZOnSrp1h1kNm3apAceeEDu7u7y8PDQ6NGj1aNHD1WvXl1//vmndu/erfDw8AzHEhMTo5iYGP3xxx+SpP3798vLy0tVqlRRmTJlcnmEAABAcVXYc1J8fLw6duyoa9eu6bPPPlN8fLzi4+MlSeXLl5ezs3MeHKX8w0/2AAAowmbPnq3SpUvr/vvvV5cuXRQSEqKmTZvedbkHHnhA8+fP1+zZsxUYGKjIyEiNGDHC7lu3kJAQrV69Wt99951atGih1q1ba86cOapatarZ51//+pc2bNiggIAANWnSRM7Ozvr777/Vt29f1alTRz179tQjjzyiyZMnZziW+fPnq0mTJho0aJAkqU2bNmrSpIlWrVqViyMDAACKu8Kek/bu3audO3dq//79qlWrlvz9/c3HqVOncn+A8pnNMAzD0YNwlPj4ePn4+Ji3RcxrNyN/kiS5hj6Y5+sGAOSPGzduKDo6WtWrVy9UlzxbYdCgQfr999/1448/Onood5XZeczvz/+igIwEALgTGSlzhSUnFaSMxE/2AABAumbNmqWHH35YpUqV0rp167Ro0SK99957jh4WAACAw5GTco+CFAAASNeuXbs0c+ZMXb58WTVq1NDcuXM1cOBARw8LAADA4chJuUdBCgAApGvp0qWOHgIAAECBRE7KPSY1BwAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlnJx9AAAACgsjv3ygWXbqtn8uWz179evnxYtWiRJcnFxUZkyZdS4cWP16dNH/fr1k5NT4f0O6uDBg5owYYL27NmjEydOaM6cORo+fLijhwUAAP4fKzOSRE663UcffaRPPvlEBw4ckCQ1a9ZMb7zxhlq2bOngkd1d4T3qAADATmhoqM6cOaPjx49r3bp1at++vYYNG6bOnTsrKSnJ0cPLsWvXrqlGjRqaMWOG/Pz8HD0cAABQCBXVnLR161b16dNHW7Zs0Y4dOxQQEKCOHTvqr7/+cvTQ7oqCFAAARYS7u7v8/Px0zz33qGnTpvrnP/+pb775RuvWrdPChQvNfrGxsRo4cKDKly8vb29vdejQQb/++qvdur799lu1aNFCHh4eKleunB577DHztUuXLqlv374qXbq0SpYsqUceeURHjx6VJF29elXe3t766quv7Na3cuVKlSpVSpcvX1ZiYqKGDBkif39/eXh4qGrVqpo+fXqG+9WiRQu99dZb6t27t9zd3fPgSAEAgOKmqOakxYsX68UXX9R9992nevXq6eOPP1ZKSoo2bdqUB0ctf1GQAgCgCOvQoYMCAwP19ddfm22PP/64zp07p3Xr1mnPnj1q2rSpHnroIV28eFGStGbNGj322GPq1KmT9u3bp02bNtld9t2vXz/98ssvWrVqlXbs2CHDMNSpUyfdvHlTpUqVUu/evbVgwQK7cSxYsEA9evSQl5eX5s6dq1WrVmnp0qU6cuSIFi9erGrVqllyPAAAAFIVxZx07do13bx5U2XKlMndwbEAc0gBAFDE1atXT7/99psk6aefftKuXbt07tw582qjWbNmaeXKlfrqq6/07LPPatq0aerdu7cmT55sriMwMFCSdPToUa1atUrbtm3T/fffL+nWN3MBAQFauXKlHn/8cQ0cOFD333+/zpw5I39/f507d05r167Vxo0bJUknT55U7dq19eCDD8pms6lq1apWHg4AAABTUctJY8aMUaVKlRQcHJzrY5PfuEIKAIAizjAM2Ww2SdKvv/6qK1euqGzZsvL09DQf0dHROnbsmCQpKipKDz30ULrrOnz4sFxcXNSqVSuzrWzZsqpbt64OHz4sSWrZsqUaNGhgTh762WefqWrVqmrTpo2kW98cRkVFqW7dunrppZf03Xff5du+AwAAZKYo5aQZM2boyy+/1IoVK+Th4ZH9g2ExrpACAKCIO3z4sKpXry5JunLlivz9/bV169Y0/Xx9fSVJJUqUyPU2Bw4cqHnz5mns2LFasGCB+vfvb4a9pk2bKjo6WuvWrdPGjRvVs2dPBQcHp5lPAQAAIL8VlZw0a9YszZgxQxs3blTjxo1zPUYrcIUUAABF2ObNm7V//36Fh4dLuhVyYmJi5OLiolq1atk9ypUrJ0lq3LhxhhNh3nvvvUpKStLOnTvNtr///ltHjhxR/fr1zbannnpKJ06c0Ny5c3Xo0CFFRETYrcfb21u9evXSRx99pCVLlmj58uXm3AwAAABWKCo5aebMmZoyZYoiIyPVvHnzHB8Pq3GFFAAARURCQoJiYmKUnJyss2fPKjIyUtOnT1fnzp3Vt29fSVJwcLCCgoLUrVs3zZw5U3Xq1NHp06fNCTqbN2+uiRMn6qGHHlLNmjXVu3dvJSUlae3atRozZoxq166trl27atCgQfrggw/k5eWlsWPH6p577lHXrl3NsZQuXVrdu3fX6NGj1bFjR1WuXNl8bfbs2fL391eTJk3k5OSkZcuWyc/Pz/zm8U6JiYk6dOiQ+d9//fWXoqKi5OnpqVq1auXfAQUAAEVGUc1Jb775piZMmKDPP/9c1apVU0xMjCSZPzcsyLhCCgCAIiIyMlL+/v6qVq2aQkNDtWXLFs2dO1fffPONnJ2dJUk2m01r165VmzZt1L9/f9WpU0e9e/fWiRMnVLFiRUlSu3bttGzZMq1atUr33XefOnTooF27dpnbWbBggZo1a6bOnTsrKChIhmFo7dq1cnV1tRvPgAEDlJiYqGeeecau3cvLSzNnzlTz5s3VokULHT9+XGvXrpWTU/qx5PTp02rSpImaNGmiM2fOaNasWWrSpIkGDhyYl4cPAAAUYUU1J73//vtKTExUjx495O/vbz5mzZqVl4cvX9gMwzAcPQhHiY+Pl4+Pj+Li4uTt7Z3n678Z+ZMkyTX0wTxfNwAgf9y4cUPR0dGqXr16oZgMsiD79NNPNWLECJ0+fVpubm6Wbjuz85jfn/9FARkJAHAnMlLeclROKkgZiZ/sAQCAPHXt2jWdOXNGM2bM0HPPPWd5MQoAAKCgIif9n1z9ZG/GjBmy2WwaPny42Xbjxg0NHjzYvE1ieHi4zp49a7fcyZMnFRYWppIlS6pChQoaPXq0kpKS7Pps3bpVTZs2lbu7u2rVqqWFCxem2f68efNUrVo1eXh4qFWrVnaXyQEAAMeYOXOm6tWrJz8/P40bN87Rw3EIMhIAAEgPOen/5LggtXv3bn3wwQdpbic4YsQIffvtt1q2bJm+//57nT59Wt27dzdfT05OVlhYmBITE7V9+3YtWrRICxcu1IQJE8w+0dHRCgsLU/v27RUVFaXhw4dr4MCBWr9+vdlnyZIlGjlypCZOnKi9e/cqMDBQISEhOnfuXE53CQAA5IFJkybp5s2b2rRpU4GfTDM/kJEAAEBGintOsmPkwOXLl43atWsbGzZsMNq2bWsMGzbMMAzDiI2NNVxdXY1ly5aZfQ8fPmxIMnbs2GEYhmGsXbvWcHJyMmJiYsw+77//vuHt7W0kJCQYhmEYr7zyitGgQQO7bfbq1csICQkxn7ds2dIYPHiw+Tw5OdmoVKmSMX369CzvR1xcnCHJiIuLy/rOZ0Piuh+NxHU/5su6AQD54/r168ahQ4eM69evO3ooyIXMzmN+fv6TkbKGjAQAhQ8ZqWhwVEZKT46ukBo8eLDCwsIUHBxs175nzx7dvHnTrr1evXqqUqWKduzYIUnasWOHGjVqZM5QL0khISGKj4/XwYMHzT53rjskJMRcR2Jiovbs2WPXx8nJScHBwWaf9CQkJCg+Pt7uAQAAkFfISAAAAFmT7UnNv/zyS+3du1e7d+9O81pMTIzc3Nzk6+tr116xYkXFxMSYfW4PWqmvp76WWZ/4+Hhdv35dly5dUnJycrp9fv/99wzHPn36dE2ePDlrOwoAKNaM4nsT2iLBEeePjAQAKA7ISIVbQTp/2bpC6tSpUxo2bJgWL15cKG/zOG7cOMXFxZmPU6dOOXpIAIACxtXVVdKtO6Cg8Eo9f6nnM7+RkQAARR0ZqWiwOiNlJltXSO3Zs0fnzp1T06ZNzbbk5GT98MMPevfdd7V+/XolJiYqNjbW7hvAs2fPys/PT5Lk5+eX5k4vqXeYub3PnXedOXv2rLy9vVWiRAk5OzvL2dk53T6p60iPu7u73N3ds7PLAIBixtnZWb6+vuYE0CVLlpTNZnPwqJBVhmHo2rVrOnfunHx9feXs7GzJdslIAICijoxUuDkqI2UmWwWphx56SPv377dr69+/v+rVq6cxY8YoICBArq6u2rRpk8LDwyVJR44c0cmTJxUUFCRJCgoK0rRp03Tu3DlVqFBBkrRhwwZ5e3urfv36Zp+1a9fabWfDhg3mOtzc3NSsWTNt2rRJ3bp1kySlpKRo06ZNGjJkSDYPAQAA9lL/x527khVevr6+mRZg8hoZCQBQHJCRCj+rM1JmslWQ8vLyUsOGDe3aSpUqpbJly5rtAwYM0MiRI1WmTBl5e3tr6NChCgoKUuvWrSVJHTt2VP369fX0009r5syZiomJ0auvvqrBgweb38w9//zzevfdd/XKK6/omWee0ebNm7V06VKtWbPG3O7IkSMVERGh5s2bq2XLlnr77bd19epV9e/fP1cHBAAAm80mf39/VahQQTdv3nT0cJBNrq6uln/rR0YCABQHZKTCzREZKTPZntT8bubMmSMnJyeFh4crISFBISEheu+998zXnZ2dtXr1ar3wwgsKCgpSqVKlFBERoddff93sU716da1Zs0YjRozQv//9b1WuXFkff/yxQkJCzD69evXS+fPnNWHCBMXExOi+++5TZGRkmkk8AQDIqdSfPwF5gYwEACgqyEjICzajIE2xbrH4+Hj5+PgoLi5O3t7eeb7+m5E/SZJcQx/M83UDAICcye/P/6KAjAQAQPFjdUbK1l32AAAAAAAAgNyiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzl4ugBFGXHY9dJkpx+OWi21Wz+nKOGAwAAUCCQkQAAAFdIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLZasg9f7776tx48by9vaWt7e3goKCtG7dOvP1GzduaPDgwSpbtqw8PT0VHh6us2fP2q3j5MmTCgsLU8mSJVWhQgWNHj1aSUlJdn22bt2qpk2byt3dXbVq1dLChQvTjGXevHmqVq2aPDw81KpVK+3atSs7uwIAAJBnyEgAAADZk62CVOXKlTVjxgzt2bNHv/zyizp06KCuXbvq4MGDkqQRI0bo22+/1bJly/T999/r9OnT6t69u7l8cnKywsLClJiYqO3bt2vRokVauHChJkyYYPaJjo5WWFiY2rdvr6ioKA0fPlwDBw7U+vXrzT5LlizRyJEjNXHiRO3du1eBgYEKCQnRuXPncns8AAAAso2MBAAAkD02wzCM3KygTJkyeuutt9SjRw+VL19en3/+uXr06CFJ+v3333Xvvfdqx44dat26tdatW6fOnTvr9OnTqlixoiRp/vz5GjNmjM6fPy83NzeNGTNGa9as0YEDB8xt9O7dW7GxsYqMjJQktWrVSi1atNC7774rSUpJSVFAQICGDh2qsWPHZnns8fHx8vHxUVxcnLy9vXNzGNJ19MvxkiSnWlXMtprNn8vz7QAAgKzL78//VGSkjJGRAAAoeKzKSKlyPIdUcnKyvvzyS129elVBQUHas2ePbt68qeDgYLNPvXr1VKVKFe3YsUOStGPHDjVq1MgMWpIUEhKi+Ph48xvEHTt22K0jtU/qOhITE7Vnzx67Pk5OTgoODjb7AAAAOAoZCQAA4O5csrvA/v37FRQUpBs3bsjT01MrVqxQ/fr1FRUVJTc3N/n6+tr1r1ixomJiYiRJMTExdkEr9fXU1zLrEx8fr+vXr+vSpUtKTk5Ot8/vv/+e6dgTEhKUkJBgPo+Pj8/6jgMAAGSCjAQAAJB12b5Cqm7duoqKitLOnTv1wgsvKCIiQocOHcqPseW56dOny8fHx3wEBAQ4ekgAAKCIICMBAABkXbYLUm5ubqpVq5aaNWum6dOnKzAwUP/+97/l5+enxMRExcbG2vU/e/as/Pz8JEl+fn5p7iiT+vxufby9vVWiRAmVK1dOzs7O6fZJXUdGxo0bp7i4OPNx6tSp7O4+AABAushIAAAAWZfjOaRSpaSkKCEhQc2aNZOrq6s2bdpkvnbkyBGdPHlSQUFBkqSgoCDt37/f7k4vGzZskLe3t+rXr2/2uX0dqX1S1+Hm5qZmzZrZ9UlJSdGmTZvMPhlxd3c3b8ec+gAAAMgPZCQAAICMZWsOqXHjxumRRx5RlSpVdPnyZX3++efaunWr1q9fLx8fHw0YMEAjR45UmTJl5O3traFDhyooKEitW7eWJHXs2FH169fX008/rZkzZyomJkavvvqqBg8eLHd3d0nS888/r3fffVevvPKKnnnmGW3evFlLly7VmjVrzHGMHDlSERERat68uVq2bKm3335bV69eVf/+/fPw0AAAAGQNGQkAACB7slWQOnfunPr27aszZ87Ix8dHjRs31vr16/Xwww9LkubMmSMnJyeFh4crISFBISEheu+998zlnZ2dtXr1ar3wwgsKCgpSqVKlFBERoddff93sU716da1Zs0YjRozQv//9b1WuXFkff/yxQkJCzD69evXS+fPnNWHCBMXExOi+++5TZGRkmkk8AQAArEBGAgAAyB6bYRiGowfhKPHx8fLx8VFcXFy+XJp+9MvxkiSnWlXMtprNn8vz7QAAgKzL78//ooCMBABA8WN1Rsr1HFIAAAAAAABAdlCQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtlqyA1ffp0tWjRQl5eXqpQoYK6deumI0eO2PW5ceOGBg8erLJly8rT01Ph4eE6e/asXZ+TJ08qLCxMJUuWVIUKFTR69GglJSXZ9dm6dauaNm0qd3d31apVSwsXLkwznnnz5qlatWry8PBQq1attGvXruzsDgAAQJ4gIwEAAGRPtgpS33//vQYPHqyff/5ZGzZs0M2bN9WxY0ddvXrV7DNixAh9++23WrZsmb7//nudPn1a3bt3N19PTk5WWFiYEhMTtX37di1atEgLFy7UhAkTzD7R0dEKCwtT+/btFRUVpeHDh2vgwIFav3692WfJkiUaOXKkJk6cqL179yowMFAhISE6d+5cbo4HAABAtpGRAAAAssdmGIaR04XPnz+vChUq6Pvvv1ebNm0UFxen8uXL6/PPP1ePHj0kSb///rvuvfde7dixQ61bt9a6devUuXNnnT59WhUrVpQkzZ8/X2PGjNH58+fl5uamMWPGaM2aNTpw4IC5rd69eys2NlaRkZGSpFatWqlFixZ69913JUkpKSkKCAjQ0KFDNXbs2CyNPz4+Xj4+PoqLi5O3t3dOD0OGjn45XpLkVKuK2Vaz+XN5vh0AAJB1+f35L5GR7oaMBABAwWNFRrpdruaQiouLkySVKVNGkrRnzx7dvHlTwcHBZp969eqpSpUq2rFjhyRpx44datSokRm0JCkkJETx8fE6ePCg2ef2daT2SV1HYmKi9uzZY9fHyclJwcHBZp/0JCQkKD4+3u4BAACQ18hIAAAAmctxQSolJUXDhw/XAw88oIYNG0qSYmJi5ObmJl9fX7u+FStWVExMjNnn9qCV+nrqa5n1iY+P1/Xr13XhwgUlJyen2yd1HemZPn26fHx8zEdAQED2dxwAACATZCQAAIC7y3FBavDgwTpw4IC+/PLLvBxPvho3bpzi4uLMx6lTpxw9JAAAUMSQkQAAAO7OJScLDRkyRKtXr9YPP/ygypUrm+1+fn5KTExUbGys3TeAZ8+elZ+fn9nnzju9pN5h5vY+d9515uzZs/L29laJEiXk7OwsZ2fndPukriM97u7ucnd3z/4OAwAAZAEZCQAAIGuydYWUYRgaMmSIVqxYoc2bN6t69ep2rzdr1kyurq7atGmT2XbkyBGdPHlSQUFBkqSgoCDt37/f7k4vGzZskLe3t+rXr2/2uX0dqX1S1+Hm5qZmzZrZ9UlJSdGmTZvMPgAAAFYhIwEAAGRPtq6QGjx4sD7//HN988038vLyMuci8PHxUYkSJeTj46MBAwZo5MiRKlOmjLy9vTV06FAFBQWpdevWkqSOHTuqfv36evrppzVz5kzFxMTo1Vdf1eDBg81v5p5//nm9++67euWVV/TMM89o8+bNWrp0qdasWWOOZeTIkYqIiFDz5s3VsmVLvf3227p69ar69++fV8cGAAAgS8hIAAAA2ZOtgtT7778vSWrXrp1d+4IFC9SvXz9J0pw5c+Tk5KTw8HAlJCQoJCRE7733ntnX2dlZq1ev1gsvvKCgoCCVKlVKERERev31180+1atX15o1azRixAj9+9//VuXKlfXxxx8rJCTE7NOrVy+dP39eEyZMUExMjO677z5FRkammcQTAAAgv5GRAAAAssdmGIbh6EE4Snx8vHx8fBQXFydvb+88X//RL8dLkpxqVTHbajZ/Ls+3AwAAsi6/P/+LAjISAADFj9UZKcd32QMAAAAAAABygoIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVLYLUj/88IO6dOmiSpUqyWazaeXKlXavG4ahCRMmyN/fXyVKlFBwcLCOHj1q1+fixYt68skn5e3tLV9fXw0YMEBXrlyx6/Pbb7/pH//4hzw8PBQQEKCZM2emGcuyZctUr149eXh4qFGjRlq7dm12dwcAACBPkJEAAACyLtsFqatXryowMFDz5s1L9/WZM2dq7ty5mj9/vnbu3KlSpUopJCREN27cMPs8+eSTOnjwoDZs2KDVq1frhx9+0LPPPmu+Hh8fr44dO6pq1aras2eP3nrrLU2aNEkffvih2Wf79u3q06ePBgwYoH379qlbt27q1q2bDhw4kN1dAgAAyDUyEgAAQNbZDMMwcrywzaYVK1aoW7dukm5981epUiW9/PLLGjVqlCQpLi5OFStW1MKFC9W7d28dPnxY9evX1+7du9W8eXNJUmRkpDp16qQ///xTlSpV0vvvv6/x48crJiZGbm5ukqSxY8dq5cqV+v333yVJvXr10tWrV7V69WpzPK1bt9Z9992n+fPnZ2n88fHx8vHxUVxcnLy9vXN6GDJ09MvxkiSnWlXMtprNn8vz7QAAgKzL789/iYx0N2QkAAAKHisy0u3ydA6p6OhoxcTEKDg42Gzz8fFRq1attGPHDknSjh075OvrawYtSQoODpaTk5N27txp9mnTpo0ZtCQpJCRER44c0aVLl8w+t28ntU/qdgAAAAoKMhIAAIA9l7xcWUxMjCSpYsWKdu0VK1Y0X4uJiVGFChXsB+HiojJlytj1qV69epp1pL5WunRpxcTEZLqd9CQkJCghIcF8Hh8fn53dAwAAyBEyEgAAgL1idZe96dOny8fHx3wEBAQ4ekgAAAAOR0YCAABWy9OClJ+fnyTp7Nmzdu1nz541X/Pz89O5c+fsXk9KStLFixft+qS3jtu3kVGf1NfTM27cOMXFxZmPU6dOZXcXAQAAso2MBAAAYC9PC1LVq1eXn5+fNm3aZLbFx8dr586dCgoKkiQFBQUpNjZWe/bsMfts3rxZKSkpatWqldnnhx9+0M2bN80+GzZsUN26dVW6dGmzz+3bSe2Tup30uLu7y9vb2+4BAACQ38hIAAAA9rJdkLpy5YqioqIUFRUl6dYknVFRUTp58qRsNpuGDx+uqVOnatWqVdq/f7/69u2rSpUqmXeZuffeexUaGqpBgwZp165d2rZtm4YMGaLevXurUqVKkqQnnnhCbm5uGjBggA4ePKglS5bo3//+t0aOHGmOY9iwYYqMjNS//vUv/f7775o0aZJ++eUXDRkyJPdHBQAAIJvISAAAAFmX7UnNf/nlF7Vv3958nhqAIiIitHDhQr3yyiu6evWqnn32WcXGxurBBx9UZGSkPDw8zGUWL16sIUOG6KGHHpKTk5PCw8M1d+5c83UfHx999913Gjx4sJo1a6Zy5cppwoQJevbZZ80+999/vz7//HO9+uqr+uc//6natWtr5cqVatiwYY4OBAAAQG6QkQAAALLOZhiG4ehBOEp8fLx8fHwUFxeXL5emH/1yvCTJqVYVs61m8+fyfDsAACDr8vvzvyggIwEAUPxYnZGK1V32AAAAAAAA4HgUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBShb4gNW/ePFWrVk0eHh5q1aqVdu3a5eghAQAAOBwZCQAAFGSFuiC1ZMkSjRw5UhMnTtTevXsVGBiokJAQnTt3ztFDs5Pyx0ml/HHS0cMAAADFBBkJAAAUdIW6IDV79mwNGjRI/fv3V/369TV//nyVLFlS//nPfxw9NAAAAIchIwEAgILOxdEDyKnExETt2bNH48aNM9ucnJwUHBysHTt2pLtMQkKCEhISzOdxcXGSpPj4+HwZ45VrCfYNvx3Vvt9GSZJsNSpLkmo0fSZftg0AANKX+rlvGIaDR5I/yEgAACAnrM5IhbYgdeHCBSUnJ6tixYp27RUrVtTvv/+e7jLTp0/X5MmT07QHBATkyxizZoQDtw0AQPF1+fJl+fj4OHoYeY6MBAAAcsOqjFRoC1I5MW7cOI0cOdJ8npKSoosXL6ps2bKy2Wx5uq34+HgFBATo1KlT8vb2ztN1I3s4FwUD56Hg4FwUDJwHxzEMQ5cvX1alSpUcPZQCg4xUPHEuCgbOQ8HBuSgYOA+OY3VGKrQFqXLlysnZ2Vlnz561az979qz8/PzSXcbd3V3u7u52bb6+vvk1REmSt7c3f0QFBOeiYOA8FByci4KB8+AYRfHKqFRkJGQX56Jg4DwUHJyLgoHz4BhWZqRCO6m5m5ubmjVrpk2bNpltKSkp2rRpk4KCghw4MgAAAMchIwEAgMKg0F4hJUkjR45URESEmjdvrpYtW+rtt9/W1atX1b9/f0cPDQAAwGHISAAAoKAr1AWpXr166fz585owYYJiYmJ03333KTIyMs0kno7g7u6uiRMnprn8HdbjXBQMnIeCg3NRMHAekJ/ISMgKzkXBwHkoODgXBQPnofiwGUX1nscAAAAAAAAokArtHFIAAAAAAAAonChIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAWpXJg3b56qVasmDw8PtWrVSrt27cq0/7Jly1SvXj15eHioUaNGWrt2rUUjLfqycy4WLlwom81m9/Dw8LBwtEXTDz/8oC5duqhSpUqy2WxauXLlXZfZunWrmjZtKnd3d9WqVUsLFy7M93EWddk9D1u3bk3z92Cz2RQTE2PNgIuo6dOnq0WLFvLy8lKFChXUrVs3HTly5K7L8TmBooKMVHCQkRyPjFQwkJEKDnISUlGQyqElS5Zo5MiRmjhxovbu3avAwECFhITo3Llz6fbfvn27+vTpowEDBmjfvn3q1q2bunXrpgMHDlg88qInu+dCkry9vXXmzBnzceLECQtHXDRdvXpVgYGBmjdvXpb6R0dHKywsTO3bt1dUVJSGDx+ugQMHav369fk80qItu+ch1ZEjR+z+JipUqJBPIywevv/+ew0ePFg///yzNmzYoJs3b6pjx466evVqhsvwOYGigoxUcJCRCgYyUsFARio4yEkwGciRli1bGoMHDzafJycnG5UqVTKmT5+ebv+ePXsaYWFhdm2tWrUynnvuuXwdZ3GQ3XOxYMECw8fHx6LRFU+SjBUrVmTa55VXXjEaNGhg19arVy8jJCQkH0dWvGTlPGzZssWQZFy6dMmSMRVX586dMyQZ33//fYZ9+JxAUUFGKjjISAUPGalgICMVLOSk4osrpHIgMTFRe/bsUXBwsNnm5OSk4OBg7dixI91lduzYYddfkkJCQjLsj6zJybmQpCtXrqhq1aoKCAhQ165ddfDgQSuGi9vwN1Gw3HffffL399fDDz+sbdu2OXo4RU5cXJwkqUyZMhn24W8CRQEZqeAgIxVe/E0ULGSk/EdOKr4oSOXAhQsXlJycrIoVK9q1V6xYMcPfFMfExGSrP7ImJ+eibt26+s9//qNvvvlGn332mVJSUnT//ffrzz//tGLI+H8y+puIj4/X9evXHTSq4sff31/z58/X8uXLtXz5cgUEBKhdu3bau3evo4dWZKSkpGj48OF64IEH1LBhwwz78TmBooCMVHCQkQovMlLBQEayBjmpeHNx9AAAqwUFBSkoKMh8fv/99+vee+/VBx98oClTpjhwZID16tatq7p165rP77//fh07dkxz5szRp59+6sCRFR2DBw/WgQMH9NNPPzl6KACQKTIS8H/ISNYgJxVvXCGVA+XKlZOzs7POnj1r13727Fn5+fmlu4yfn1+2+iNrcnIu7uTq6qomTZrojz/+yI8hIgMZ/U14e3urRIkSDhoVJKlly5b8PeSRIUOGaPXq1dqyZYsqV66caV8+J1AUkJEKDjJS4UVGKrjISHmLnAQKUjng5uamZs2aadOmTWZbSkqKNm3aZPet0u2CgoLs+kvShg0bMuyPrMnJubhTcnKy9u/fL39///waJtLB30TBFRUVxd9DLhmGoSFDhmjFihXavHmzqlevftdl+JtAUUBGKjjISIUXfxMFFxkpb5CTYHL0rOqF1Zdffmm4u7sbCxcuNA4dOmQ8++yzhq+vrxETE2MYhmE8/fTTxtixY83+27ZtM1xcXIxZs2YZhw8fNiZOnGi4uroa+/fvd9QuFBnZPReTJ0821q9fbxw7dszYs2eP0bt3b8PDw8M4ePCgo3ahSLh8+bKxb98+Y9++fYYkY/bs2ca+ffuMEydOGIZhGGPHjjWefvpps////vc/o2TJksbo0aONw4cPG/PmzTOcnZ2NyMhIR+1CkZDd8zBnzhxj5cqVxtGjR439+/cbw4YNM5ycnIyNGzc6aheKhBdeeMHw8fExtm7dapw5c8Z8XLt2zezD5wSKKjJSwUFGKhjISAUDGangICchFQWpXHjnnXeMKlWqGG5ubkbLli2Nn3/+2Xytbdu2RkREhF3/pUuXGnXq1DHc3NyMBg0aGGvWrLF4xEVXds7F8OHDzb4VK1Y0OnXqZOzdu9cBoy5aUm+Ne+cj9dhHREQYbdu2TbPMfffdZ7i5uRk1atQwFixYYPm4i5rsnoc333zTqFmzpuHh4WGUKVPGaNeunbF582bHDL4ISe8cSLJ7j/M5gaKMjFRwkJEcj4xUMJCRCg5yElLZDMMw8vcaLAAAAAAAAOD/MIcUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAABQoPzwww/q0qWLKlWqJJvNppUrV2Z7HevXr1fr1q3l5eWl8uXLKzw8XMePH8/zsQIAAFilqGUkClIAAKBAuXr1qgIDAzVv3rwcLR8dHa2uXbuqQ4cOioqK0vr163XhwgV17949j0cKAABgnaKWkWyGYRgO2TIAAMBd2Gw2rVixQt26dTPbEhISNH78eH3xxReKjY1Vw4YN9eabb6pdu3aSpK+++kp9+vRRQkKCnJxufff27bffqmvXrkpISJCrq6sD9gQAACDvFIWMxBVSAACgUBkyZIh27NihL7/8Ur/99psef/xxhYaG6ujRo5KkZs2aycnJSQsWLFBycrLi4uL06aefKjg4mGIUAAAosgpbRuIKKQAAUGDd+e3fyZMnVaNGDZ08eVKVKlUy+wUHB6tly5Z64403JEnff/+9evbsqb///lvJyckKCgrS2rVr5evr64C9AAAAyFtFISNxhRQAACg09u/fr+TkZNWpU0eenp7m4/vvv9exY8ckSTExMRo0aJAiIiK0e/duff/993Jzc1OPHj3E93AAAKAoKowZycXyLQIAAOTQlStX5OzsrD179sjZ2dnuNU9PT0nSvHnz5OPjo5kzZ5qvffbZZwoICNDOnTvVunVrS8cMAACQ3wpjRqIgBQAACo0mTZooOTlZ586d0z/+8Y90+1y7ds2cqDNVajBLSUnJ9zECAABYrTBmJH6yBwAACpQrV64oKipKUVFRkm7dojgqKkonT55UnTp19OSTT6pv3776+uuvFR0drV27dmn69Olas2aNJCksLEy7d+/W66+/rqNHj2rv3r3q37+/qlatqiZNmjhwzwAAAHKuqGUkJjUHAAAFytatW9W+ffs07REREVq4cKFu3rypqVOn6pNPPtFff/2lcuXKqXXr1po8ebIaNWokSfryyy81c+ZM/fe//1XJkiUVFBSkN998U/Xq1bN6dwAAAPJEUctIFKQAAAAAAABgKX6yBwAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAFI16RJk2Sz2Rw9jDyxcOFC2Ww2HT9+3NFDKTby6/2za9cuubm56cSJE3ftW61aNfXr18+u7ejRo+rYsaN8fHxks9m0cuXKbG2/devWeuWVV7K1DACgaCEjITfISMD/oSAFIM9t375dkyZNUmxsrKOHkqH33ntPCxcuzNdt2Gw22Ww2DRw4MN3Xx48fb/a5cOFCrre3a9cuvfjii2rWrJlcXV2LTFi+3fjx49WnTx9VrVo1R8tHRERo//79mjZtmj799FM1b95cV65c0cSJExUaGqoyZcrIZrNl+N4YM2aM5s2bp5iYmFzsBQCguCIj3UJGynv5kZF2796tIUOGqEGDBipVqpSqVKminj176r///W+a5clIyBEDANJx8+ZN4/r16zla9q233jIkGdHR0Xk7qBxKSkoyrl+/bqSkpJhtDRo0MNq2bZuv25VkeHh4GL6+vkZCQkKa16tXr254eHgYkozz58/nensTJ040XF1djWbNmhl16tQxHPlPfG7ePxnZt2+fIcnYvn17lvpXrVrViIiIMJ9fu3bNkGSMHz/erl90dLQhyahSpYrRrl07Q5KxYMGCdNeZnJxs+Pn5Ga+99lpOdwMAUMiRkXKPjFQ4MlJ4eLjh5+dnDB061Pjoo4+MKVOmGBUrVjRKlSpl7N+/364vGQk5wRVSKJZSUlJ048YNRw/DztWrV/N9G4Zh6Pr161nq6+LiIg8Pj3wekTWcnZ3l4eHhkG/DQkNDFR8fr3Xr1tm1b9++XdHR0QoLC8vSejK7aifVCy+8oLi4OP3yyy96+OGHczrkPJEf758FCxaoSpUqat26dY6WP3/+vCTJ19fXrt3f319nzpzRiRMn9NZbb2W6DicnJ/Xo0UOffPKJDMPI0TgAoCAjI90dGSlvkJHyTn5lpJEjR+rEiROaO3euBg4cqFdffVU//vijkpKSNGPGDLu+ZCTkBAUpFFqpv7/+/fff1bNnT3l7e6ts2bIaNmxYmiBls9k0ZMgQLV68WA0aNJC7u7siIyMlSX/99ZeeeeYZVaxYUe7u7mrQoIH+85//pNnejRs3NGnSJNWpU0ceHh7y9/dX9+7ddezYMUnS1q1bZbPZtHXrVrvljh8/nuaDsl+/fvL09NSxY8fUqVMneXl56cknn5R06/fb4eHh8vPzk4eHhypXrqzevXsrLi7OXD4pKUlTpkxRzZo15e7urmrVqumf//ynEhIS7LZdrVo1de7cWevXr1fz5s1VokQJffDBB9k6vukdx5UrV6phw4bm8Uo9lqnLjR49WpJUvXp183Lr2+cm+Oyzz9SsWTOVKFFCZcqUUe/evXXq1Cm7bbVr104NGzbUoUOH1L59e5UsWVL33HOPZs6cmWas77zzjho0aKCSJUuqdOnSat68uT7//HPz9TvnR6hWrZoOHjyo77//3hxfu3bt9L///U82m01z5sxJs43t27fLZrPpiy++yNLxS3XPPfeoTZs2duORpMWLF6tRo0Zq2LBhttaXmYoVK6pEiRJ5sq7U987WrVvN906jRo3M9/fXX3+tRo0aycPDQ82aNdO+ffvsls/p+yczK1euVIcOHdKs1zAMTZ06VZUrV1bJkiXVvn17HTx4MM14Ui9hHz16tGw2m6pVqyZJcnd3l5+fX1YPjR5++GGdOHFCUVFRWV4GAKxERiIjpSIj3UJGyllGuv/+++Xm5mbXv3bt2mrQoIEOHz6cZhxkJGSXi6MHAORWz549Va1aNU2fPl0///yz5s6dq0uXLumTTz6x67d582YtXbpUQ4YMUbly5VStWjWdPXtWrVu3Nj8Eypcvr3Xr1mnAgAGKj4/X8OHDJUnJycnq3LmzNm3apN69e2vYsGG6fPmyNmzYoAMHDqhmzZrZHndSUpJCQkL04IMPatasWSpZsqQSExMVEhKihIQEDR06VH5+fvrrr7+0evVqxcbGysfHR5I0cOBALVq0SD169NDLL7+snTt3avr06Tp8+LBWrFhht50jR46oT58+eu655zRo0CDVrVs3Zwf6//npp5/09ddf68UXX5SXl5fmzp2r8PBwnTx5UmXLllX37t313//+V1988YXmzJmjcuXKSZLKly8vSZo2bZpee+019ezZUwMHDtT58+f1zjvvqE2bNtq3b5/dNzOXLl1SaGiounfvrp49e+qrr77SmDFj1KhRIz3yyCOSpI8++kgvvfSSevToYQbt3377TTt37tQTTzyR7j68/fbbGjp0qDw9PTV+/HhJt4JKjRo19MADD2jx4sUaMWKE3TKLFy+Wl5eXunbtmu1j9sQTT2jYsGG6cuWKPD09lZSUpGXLlmnkyJEF7lvo2/3xxx964okn9Nxzz+mpp57SrFmz1KVLF82fP1///Oc/9eKLL0qSpk+frp49e+rIkSNycsr8e467vX8y8tdff+nkyZNq2rRpmtcmTJigqVOnqlOnTurUqZP27t2rjh07KjEx0ezTvXt3+fr6asSIEerTp486deokT0/PHB2XZs2aSZK2bdumJk2a5GgdAGAFMhIZiYyUP4pzRjIMQ2fPnlWDBg3SvEZGQrY58OeCQK5MnDjRkGQ8+uijdu0vvviiIcn49ddfzTZJhpOTk3Hw4EG7vgMGDDD8/f2NCxcu2LX37t3b8PHxMa5du2YYhmH85z//MSQZs2fPTjOO1N/cb9myxZBkbNmyxe711Plpbp+TJiIiwpBkjB071q5v6u+/ly1bluF+R0VFGZKMgQMH2rWPGjXKkGRs3rzZbKtataohyYiMjMxwfRlJPb63k2S4ubkZf/zxh9n266+/GpKMd955x2zLaH6E48ePG87Ozsa0adPs2vfv32+4uLjYtbdt29aQZHzyySdmW0JCguHn52eEh4ebbV27djUaNGiQ6b4sWLAgzXgymh/hgw8+MCQZhw8fNtsSExONcuXK2f3WPiskGYMHDzYuXrxouLm5GZ9++qlhGIaxZs0aw2azGcePHzeP893mR7jzPXQ3gwcPztX8CKnvndvnIli/fr0hyShRooRx4sQJsz31mN3+3s/N+yc9GzduNCQZ3377rV37uXPnDDc3NyMsLMxu/ot//vOfhiS7c5b6t/jWW29luJ3du3dn6Vi7ubkZL7zwQqZ9AMBRyEhkJMMgI2WEjJSzjJTq008/NSQZ/9//9/+l+zoZCdnBT/ZQ6A0ePNju+dChQyVJa9eutWtv27at6tevbz43DEPLly9Xly5dZBiGLly4YD5CQkIUFxenvXv3SpKWL1+ucuXKmeu+XW5+c//CCy/YPU/9dm/9+vW6du1ausuk7tfIkSPt2l9++WVJ0po1a+zaq1evrpCQkByP8U7BwcF233Y2btxY3t7e+t///nfXZb/++mulpKSoZ8+edsfbz89PtWvX1pYtW+z6e3p66qmnnjKfu7m5qWXLlnbb8vX11Z9//qndu3fnwd7d+jbZw8NDixcvNtvWr1+vCxcu2I0lO0qXLq3Q0FDzUvbPP/9c999/f4Z3Qbl27Zrd8Um9u8yVK1fs2i5dupSj8WRV/fr1FRQUZD5v1aqVJKlDhw6qUqVKmvasvAdy+v75+++/Jd06lrfbuHGjEhMTNXToULu/xdRv7vNL6dKl8+SuPwCQn8hIt5CRyEh5rbhmpN9//12DBw9WUFCQIiIi0u1DRkJ2UJBCoVe7dm275zVr1pSTk5Pd7/GlW6HjdufPn1dsbKw+/PBDlS9f3u7Rv39/SdK5c+ckSceOHVPdunXl4pJ3v3J1cXFR5cqV04xx5MiR+vjjj1WuXDmFhIRo3rx5dnMjnDhxQk5OTqpVq5bdsn5+fvL19dWJEycy3e/cuv1DNlXp0qWz9MF/9OhRGYah2rVrpznmhw8fNo93qsqVK6cJs3dua8yYMfL09FTLli1Vu3ZtDR48WNu2bcvh3t0Kb126dLGbz2Dx4sW655571KFDhxyv94knntCGDRt08uRJrVy5MsNL5SVp5syZaY6PdOt/JG5vy+9Loe8816n/MxAQEJBue1beA7l5/0hKM0lm6vv9zn8HypcvnyaY5SXDMIrkLaMBFC1kpFvISGSkvFYcM1JMTIzCwsLk4+Ojr776Ss7OzhmOg4yErGIOKRQ5Gf0DeOdEhikpKZKkp556KsMKf+PGjXO93eTk5HTb3d3d0/0t+b/+9S/169dP33zzjb777ju99NJL5twPt4ezrP5Dn1cTOKbK7MPnblJSUmSz2bRu3bp013Pn79Wzsq17771XR44c0erVqxUZGanly5frvffe04QJEzR58uS7jik9ffv21bJly7R9+3Y1atRIq1at0osvvnjX3/5n5tFHH5W7u7siIiKUkJCgnj17Zrr9Bx980K7t4Ycf1ujRo9WxY0ezLa/P7Z0yOv65eQ/kdNnUuRPy+xvPrIqNjTXn/gCAwoKMZI+MlH1kpFuKW0aKi4vTI488otjYWP3444+qVKlShn3JSMgOClIo9I4ePWr3Ddcff/yhlJQU8+4QGSlfvry8vLyUnJys4ODgTPvWrFlTO3fu1M2bN+Xq6ppun9RvGmJjY+3a7/w2LisaNWqkRo0a6dVXX9X27dv1wAMPaP78+Zo6daqqVq2qlJQUHT16VPfee6+5zNmzZxUbG5vhJc5WyigI1qxZU4ZhqHr16qpTp06eba9UqVLq1auXevXqpcTERHXv3l3Tpk3TuHHjMrytbmZhNTQ0VOXLl9fixYvVqlUrXbt2TU8//XSuxliiRAl169ZNn332mR555JFMP6hr1KihGjVqpGmvX7/+Xd+rRVW9evUkSdHR0Xbtqe/3o0eP2h2z8+fP51sw++uvv5SYmGj39wcABREZ6RYyEhmpKMvvjHTjxg116dJF//3vf7Vx40a7n/feiYyE7OIneyj05s2bZ/f8nXfekSTzDiMZcXZ2Vnh4uJYvX64DBw6kef38+fPmf4eHh+vChQt699130/RL/daiatWqcnZ21g8//GD3+nvvvZe1HZEUHx+vpKQku7ZGjRrJycnJvF1xp06dJN26C8rtZs+eLUkKCwvL8vbyS6lSpSSlDZ7du3eXs7OzJk+enObbHsMwzN/AZ8edy7i5ual+/foyDEM3b97MdIx3ji+Vi4uL+vTpo6VLl2rhwoVq1KhRtr4JzsioUaM0ceJEvfbaa7leV3Fzzz33KCAgQL/88otde3BwsFxdXfXOO+/Yvafu/PvIS3v27JF061bIAFCQkZFuISPdQkYqmvIzIyUnJ6tXr17asWOHli1bZjdvVnrISMgurpBCoRcdHa1HH31UoaGh2rFjhz777DM98cQTCgwMvOuyM2bM0JYtW9SqVSsNGjRI9evX18WLF7V3715t3LhRFy9elHTr8uBPPvlEI0eO1K5du/SPf/xDV69e1caNG/Xiiy+qa9eu8vHx0eOPP6533nlHNptNNWvW1OrVq9P85j8zmzdv1pAhQ/T444+rTp06SkpK0qeffmoGQ0kKDAxURESEPvzwQ8XGxqpt27batWuXFi1apG7duql9+/Y5O5B5KPWWr+PHj1fv3r3l6uqqLl26qGbNmpo6darGjRun48ePq1u3bvLy8lJ0dLRWrFihZ599VqNGjcrWtjp27Cg/Pz898MADqlixog4fPqx3331XYWFh8vLyynSM77//vqZOnapatWqpQoUKdvMf9O3bV3PnztWWLVv05ptv5uxA3CEwMDBL78ucOnHihD799FNJMkPJ1KlTJd36n4HcfoPpaF27dtWKFSvs5iYoX768Ro0apenTp6tz587q1KmT9u3bp3Xr1mXrcvF3331XsbGxOn36tCTp22+/1Z9//inp1rwUqXNASNKGDRtUpUoVbmcMoMAjI5GRyEi3kJFylpFefvllrVq1Sl26dNHFixf12Wef2b1+52T2ZCRkW/7fyA/IH6m3TD106JDRo0cPw8vLyyhdurQxZMgQ4/r163Z99f9uLZues2fPGoMHDzYCAgIMV1dXw8/Pz3jooYeMDz/80K7ftWvXjPHjxxvVq1c3+/Xo0cM4duyY2ef8+fNGeHi4UbJkSaN06dLGc889Zxw4cCDdWxqXKlUqzVj+97//Gc8884xRs2ZNw8PDwyhTpozRvn17Y+PGjXb9bt68aUyePNkcS0BAgDFu3Djjxo0bdv2qVq1qhIWFZel43imjW9KmdxyrVq2a5na/U6ZMMe655x7Dyckpze2Ely9fbjz44INGqVKljFKlShn16tUzBg8ebBw5csTs07Zt23RvVRwREWFUrVrVfP7BBx8Ybdq0McqWLWu4u7sbNWvWNEaPHm3ExcWZfdK7pXFMTIwRFhZmeHl5GZLSvb1xgwYNDCcnJ+PPP//M4ChlLrP3Xaq8vKVx6m2103ukt3+Zyei9k94+pXer4Ny+f9Kzd+9eQ5Lx448/2rUnJycbkydPNvz9/Y0SJUoY7dq1Mw4cOJBmvZnd0jj1Fs7pPW5/3yQnJxv+/v7Gq6++etfxAoCjkJHISIZBRrodGSlnGalt27YZHrc794GMhJywGUYWZlgDCqBJkyZp8uTJOn/+PBPnIV80adJEZcqU0aZNmxw9FPw/Dz30kCpVqmR+y2m11Lv/HDt2TP7+/g4ZAwDcDRkJ+Y2MVPCQkVAYMYcUAKTjl19+UVRUlPr27evooeA2b7zxhpYsWZKjiXDzwptvvqkhQ4YQtAAAxRYZqWAiI6EwYg4poJiJi4vT9evXM+3j5+dn0WgKngMHDmjPnj3617/+JX9/f/Xq1cvu9eTkZLvJXNPj6emZ5vbMBcX58+czvM22dGvC0zJlylg4ouxp1aqVEhMTHbb9HTt2OGzbAID8RUbKHBmJjJQZMhJygoIUUMwMGzZMixYtyrRPcf4l71dffaXXX39ddevW1RdffJHmlsinTp2yu4V2eiZOnKhJkybl4yhzrkWLFpl+c9a2bVtt3brVugEBAFBAkJEyR0YiIwF5jTmkgGLm0KFD5p3EMhIcHGzRaAqfGzdu6Keffsq0T40aNVSjRg2LRpQ927Zty/Tb39KlS5t3AAIAoDghI+UOGQlAdlGQAgAAAAAAgKWY1BwAAAAAAACWKtZzSKWkpOj06dPy8vKSzWZz9HAAAIAFDMPQ5cuXValSJTk58d1ceshIAAAUP1ZnpGJdkDp9+rQCAgIcPQwAAOAAp06dUuXKlR09jAKJjAQAQPFlVUYq1gUpLy8vSbcOtre3t4NHAwAArBAfH6+AgAAzByAtMhIAAMWP1RmpWBekUi9B9/b2JmwBAFDM8FO0jJGRAAAovqzKSEycAAAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUsV6DikAADJiGIaSkpKUnJzs6KEgm5ydneXi4sIcUQAA5AMyUuFV0DISBSkAAO6QmJioM2fO6Nq1a44eCnKoZMmS8vf3l5ubm6OHAgBAkUFGKvwKUkaiIAUAwG1SUlIUHR0tZ2dnVapUSW5ubgXmWyTcnWEYSkxM1Pnz5xUdHa3atWvLyYkZCgAAyC0yUuFWEDMSBSkAAG6TmJiolJQUBQQEqGTJko4eDnKgRIkScnV11YkTJ5SYmCgPDw9HDwkAgEKPjFT4FbSMxFeGAACkw9HfGCF3OH8AAOQPPmMLt4J0/grOSAAAAAAAAFAsUJACAAAAAACApZhDCgCALLoZ+ZNl23INfTDLfe82oejEiRM1adKkXI4oZ2w2m1asWKFu3brleB0ffvihPv/8c+3du1eXL1/WpUuX5Ovrm2djBAAAuWNlRpLISakuXryoiRMn6rvvvtPJkydVvnx5devWTVOmTJGPj0/eDjYfUJACAKCQO3PmjPnfS5Ys0YQJE3TkyBGzzdPTM1vrS0xMLBC3Ak517do1hYaGKjQ0VOPGjXP0cAAAQCFSlHPS6dOndfr0ac2aNUv169fXiRMn9Pzzz+v06dP66quvHD28u+Ine/noZuRPaR4AAOQ1Pz8/8+Hj4yObzWY+v3r1qp588klVrFhRnp6eatGihTZu3Gi3fLVq1TRlyhT17dtX3t7eevbZZyVJH330kXknnccee0yzZ89Oc2XSN998o6ZNm8rDw0M1atTQ5MmTlZSUZK5Xkh577DHZbDbz+a+//qr27dvLy8tL3t7eatasmX755ZcM92/48OEaO3asWrdunTcHDA5HRgIAWKUo56SGDRtq+fLl6tKli2rWrKkOHTpo2rRp+vbbb83tFGQUpAAAKMKuXLmiTp06adOmTdq3b59CQ0PVpUsXnTx50q7frFmzFBgYqH379um1117Ttm3b9Pzzz2vYsGGKiorSww8/rGnTptkt8+OPP6pv374aNmyYDh06pA8++EALFy40++3evVuStGDBAp05c8Z8/uSTT6py5cravXu39uzZo7Fjx8rV1dWCowEAAPB/imJOiouLk7e3t1xcCv4P4gr+CAEAQI4FBgYqMDDQfD5lyhStWLFCq1at0pAhQ8z2Dh066OWXXzafjx8/Xo888ohGjRolSapTp462b9+u1atXm30mT56ssWPHKiIiQpJUo0YNTZkyRa+88oomTpyo8uXLS5J8fX3l5+dnLnfy5EmNHj1a9erVkyTVrl07H/YcAAAgc0UtJ124cEFTpkwxr+Iq6LhCCgCAIuzKlSsaNWqU7r33Xvn6+srT01OHDx9O881f8+bN7Z4fOXJELVu2tGu78/mvv/6q119/XZ6enuZj0KBBOnPmjK5du5bhmEaOHKmBAwcqODhYM2bM0LFjx3K5lwAAANlXlHJSfHy8wsLCVL9+fYdN0p5dFKQAACjCRo0apRUrVuiNN97Qjz/+qKioKDVq1EiJiYl2/UqVKpXtdV+5ckWTJ09WVFSU+di/f7+OHj0qDw+PDJebNGmSDh48qLCwMG3evFn169fXihUrsr19AACA3CgqOeny5csKDQ2Vl5eXVqxYUWimQuAnewAAFGHbtm1Tv3799Nhjj0m6FY6OHz9+1+Xq1q1rzmWQ6s7nTZs21ZEjR1SrVq0M1+Pq6qrk5OQ07XXq1FGdOnU0YsQI9enTRwsWLDDHCAAAYIWikJPi4+MVEhIid3d3rVq1KtNiV0FDQQoAgCKsdu3a+vrrr9WlSxfZbDa99tprSklJuetyQ4cOVZs2bTR79mx16dJFmzdv1rp162Sz2cw+EyZMUOfOnVWlShX16NFDTk5O+vXXX3XgwAFNnTpV0q07yGzatEkPPPCA3N3d5eHhodGjR6tHjx6qXr26/vzzT+3evVvh4eEZjiUmJkYxMTH6448/JEn79++Xl5eXqlSpojJlyuTyCAEAgOKqsOek+Ph4dezYUdeuXdNnn32m+Ph4xcfHS5LKly8vZ2fnPDhK+Yef7AEAUITNnj1bpUuX1v33368uXbooJCRETZs2vetyDzzwgObPn6/Zs2crMDBQkZGRGjFihN23biEhIVq9erW+++47tWjRQq1bt9acOXNUtWpVs8+//vUvbdiwQQEBAWrSpImcnZ31999/q2/fvqpTp4569uypRx55RJMnT85wLPPnz1eTJk00aNAgSVKbNm3UpEkTrVq1KhdHBgAAFHeFPSft3btXO3fu1P79+1WrVi35+/ubj1OnTuX+AOUzm2EYhqMH4Sjx8fHy8fExb4uY125G/pSmzTX0wTzfDgAg79y4cUPR0dGqXr16obrk2QqDBg3S77//rh9//NHRQ7mrzM5jfn/+FwVkJADAnchImSssOakgZSR+sgcAANI1a9YsPfzwwypVqpTWrVunRYsW6b333nP0sAAAAByOnJR7FKQAAEC6du3apZkzZ+ry5cuqUaOG5s6dq4EDBzp6WAAAAA5HTso9ClIAACBdS5cudfQQAAAACiRyUu4xqTkAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALCUi6MHAABAYXHslw8s21bN5s9lq3+/fv20aNEiSZKLi4vKlCmjxo0bq0+fPurXr5+cnArvd1AHDx7UhAkTtGfPHp04cUJz5szR8OHDHT0sAADw/1iZkSRy0u0++ugjffLJJzpw4IAkqVmzZnrjjTfUsmVLB4/s7grvUQcAAHZCQ0N15swZHT9+XOvWrVP79u01bNgwde7cWUlJSY4eXo5du3ZNNWrU0IwZM+Tn5+fo4QAAgEKoqOakrVu3qk+fPtqyZYt27NihgIAAdezYUX/99Zejh3ZXFKQAACgi3N3d5efnp3vuuUdNmzbVP//5T33zzTdat26dFi5caPaLjY3VwIEDVb58eXl7e6tDhw769ddf7db17bffqkWLFvLw8FC5cuX02GOPma9dunRJffv2VenSpVWyZEk98sgjOnr0qCTp6tWr8vb21ldffWW3vpUrV6pUqVK6fPmyEhMTNWTIEPn7+8vDw0NVq1bV9OnTM9yvFi1a6K233lLv3r3l7u6eB0cKAAAUN0U1Jy1evFgvvvii7rvvPtWrV08ff/yxUlJStGnTpjw4avmLghQAAEVYhw4dFBgYqK+//tpse/zxx3Xu3DmtW7dOe/bsUdOmTfXQQw/p4sWLkqQ1a9boscceU6dOnbRv3z5t2rTJ7rLvfv366ZdfftGqVau0Y8cOGYahTp066ebNmypVqpR69+6tBQsW2I1jwYIF6tGjh7y8vDR37lytWrVKS5cu1ZEjR7R48WJVq1bNkuMBAACQqijmpGvXrunmzZsqU6ZM7g6OBZhDCgCAIq5evXr67bffJEk//fSTdu3apXPnzplXG82aNUsrV67UV199pWeffVbTpk1T7969NXnyZHMdgYGBkqSjR49q1apV2rZtm+6//35Jt76ZCwgI0MqVK/X4449r4MCBuv/++3XmzBn5+/vr3LlzWrt2rTZu3ChJOnnypGrXrq0HH3xQNptNVatWtfJwAAAAmIpaThozZowqVaqk4ODgXB+b/MYVUgAAFHGGYchms0mSfv31V125ckVly5aVp6en+YiOjtaxY8ckSVFRUXrooYfSXdfhw4fl4uKiVq1amW1ly5ZV3bp1dfjwYUlSy5Yt1aBBA3Py0M8++0xVq1ZVmzZtJN365jAqKkp169bVSy+9pO+++y7f9h0AACAzRSknzZgxQ19++aVWrFghDw+P7B8Mi3GFFAAARdzhw4dVvXp1SdKVK1fk7++vrVu3punn6+srSSpRokSutzlw4EDNmzdPY8eO1YIFC9S/f38z7DVt2lTR0dFat26dNm7cqJ49eyo4ODjNfAoAAAD5rajkpFmzZmnGjBnauHGjGjdunOsxWoErpAAAKMI2b96s/fv3Kzw8XNKtkBMTEyMXFxfVqlXL7lGuXDlJUuPGjTOcCPPee+9VUlKSdu7cabb9/fffOnLkiOrXr2+2PfXUUzpx4oTmzp2rQ4cOKSIiwm493t7e6tWrlz766CMtWbJEy5cvN+dmAAAAsEJRyUkzZ87UlClTFBkZqebNm+f4eFiNK6QAACgiEhISFBMTo+TkZJ09e1aRkZGaPn26OnfurL59+0qSgoODFRQUpG7dumnmzJmqU6eOTp8+bU7Q2bx5c02cOFEPPfSQatasqd69eyspKUlr167VmDFjVLt2bXXt2lWDBg3SBx98IC8vL40dO1b33HOPunbtao6ldOnS6t69u0aPHq2OHTuqcuXK5muzZ8+Wv7+/mjRpIicnJy1btkx+fn7mN493SkxM1KFDh8z//uuvvxQVFSVPT0/VqlUr/w4oAAAoMopqTnrzzTc1YcIEff7556pWrZpiYmIkyfy5YUHGFVIAABQRkZGR8vf3V7Vq1RQaGqotW7Zo7ty5+uabb+Ts7CxJstlsWrt2rdq0aaP+/furTp066t27t06cOKGKFStKktq1a6dly5Zp1apVuu+++9ShQwft2rXL3M6CBQvUrFkzde7cWUFBQTIMQ2vXrpWrq6vdeAYMGKDExEQ988wzdu1eXl6aOXOmmjdvrhYtWuj48eNau3atnJzSjyWnT59WkyZN1KRJE505c0azZs1SkyZNNHDgwLw8fAAAoAgrqjnp/fffV2Jionr06CF/f3/zMWvWrLw8fPnCZhiG4ehBOEp8fLx8fHwUFxcnb2/vPF//zcif0rS5hj6Y59sBAOSdGzduKDo6WtWrVy8Uk0EWZJ9++qlGjBih06dPy83NzdJtZ3Ye8/vzvyggIwEA7kRGyluOykkFKSPl6gqpGTNmyGazafjw4WbbjRs3NHjwYHNW+vDwcJ09e9ZuuZMnTyosLEwlS5ZUhQoVNHr0aCUlJdn12bp1q5o2bSp3d3fVqlVLCxcuTLP9efPmqVq1avLw8FCrVq3sqpIAAMAxrl27pmPHjmnGjBl67rnnLC9GFQRkJAAAkB5y0v/JcUFq9+7d+uCDD9LM3j5ixAh9++23WrZsmb7//nudPn1a3bt3N19PTk5WWFiYEhMTtX37di1atEgLFy7UhAkTzD7R0dEKCwtT+/btFRUVpeHDh2vgwIFav3692WfJkiUaOXKkJk6cqL179yowMFAhISE6d+5cTncJAADkgZkzZ6pevXry8/PTuHHjHD0cy5GRAABARop7TrJj5MDly5eN2rVrGxs2bDDatm1rDBs2zDAMw4iNjTVcXV2NZcuWmX0PHz5sSDJ27NhhGIZhrF271nBycjJiYmLMPu+//77h7e1tJCQkGIZhGK+88orRoEEDu2326tXLCAkJMZ+3bNnSGDx4sPk8OTnZqFSpkjF9+vQs70dcXJwhyYiLi8v6zmdD4rof0zwAAAXb9evXjUOHDhnXr1939FCQC5mdx/z8/CcjZQ0ZCQAKHzJS0eCojJSeHF0hNXjwYIWFhSk4ONiufc+ePbp586Zde7169VSlShXt2LFDkrRjxw41atTInBBMkkJCQhQfH6+DBw+afe5cd0hIiLmOxMRE7dmzx66Pk5OTgoODzT4AAABWIyMBAABkjUt2F/jyyy+1d+9e7d69O81rMTExcnNzS3M7wooVK5q3HoyJibELWqmvp76WWZ/4+Hhdv35dly5dUnJycrp9fv/99wzHnpCQoISEBPN5fHz8XfYWAAAga8hIAAAAWZetK6ROnTqlYcOGafHixYVyVv3p06fLx8fHfAQEBDh6SACAAsoovjehLRKsPn9kJABAcUFGKtwK0vnLVkFqz549OnfunJo2bSoXFxe5uLjo+++/19y5c+Xi4qKKFSsqMTFRsbGxdsudPXtWfn5+kiQ/P780d5RJfX63Pt7e3ipRooTKlSsnZ2fndPukriM948aNU1xcnPk4depUdnYfAFAMuLq6Srp1BxQUXqnnL/V85jcyEgCgqCMjFQ1WZ6TMZOsnew899JD2799v19a/f3/Vq1dPY8aMUUBAgFxdXbVp0yaFh4dLko4cOaKTJ08qKChIkhQUFKRp06bp3LlzqlChgiRpw4YN8vb2Vv369c0+a9eutdvOhg0bzHW4ubmpWbNm2rRpk7p16yZJSklJ0aZNmzRkyJAMx+/u7i53d/fs7DIAoJhxdnaWr6+veUeykiVLymazOXhUyCrDMHTt2jWdO3dOvr6+cnZ2tmS7ZCQAQFFHRircHJWRMpOtgpSXl5caNmxo11aqVCmVLVvWbB8wYIBGjhypMmXKyNvbW0OHDlVQUJBat24tSerYsaPq16+vp59+WjNnzlRMTIxeffVVDR482AxCzz//vN5991298soreuaZZ7R582YtXbpUa9asMbc7cuRIRUREqHnz5mrZsqXefvttXb16Vf3798/VAQEAIPVKktTAhcLH19c30yuC8hoZCQBQHJCRCj+rM1Jmsj2p+d3MmTNHTk5OCg8PV0JCgkJCQvTee++Zrzs7O2v16tV64YUXFBQUpFKlSikiIkKvv/662ad69epas2aNRowYoX//+9+qXPn/Z+/ew6Ks8/+PvwYU8MCAR5DEQx7DzAMqUm1lkVjoN1dNrTbJtCO4KpupWR5K17KzaVnbd7WDrmatZpqYYWol6wGl1NS1ltRSELdgFBUU7t8f/ZivEwc5fobD83Fdc13NfX/u+37PZ0bm3Wtm7rul3n77bUVGRjrHjBgxQunp6Zo+fbpSU1PVvXt3xcfHFziJJwAApWWz2dSiRQs1b95cFy5ccHc5KKW6detWiU/9fo8eCQBQ3dEjVW9VrUeyWVXpjFaGORwO+fn5KTMzU3a7vcL3fyH+qwLL6g64vsKPAwAASq6y3/9rAnokAABqH9M9UqlOag4AAAAAAACUF4EUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKqOuwuoyX7MWF9gWQdd74ZKAAAAqg56JAAAwDekAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKpUgdQbb7yha665Rna7XXa7XeHh4Vq/fr1z/fnz5xUTE6MmTZqoYcOGGjp0qNLS0lz2cfToUUVFRal+/fpq3ry5Jk2apIsXL7qM2bx5s3r27Clvb2+1b99eS5YsKVDLwoUL1aZNG/n4+CgsLEw7duwozUMBAACoMPRIAAAApVOqQKply5Z69tlnlZSUpF27dunmm2/WHXfcof3790uSJk6cqE8++UQrV67Uli1bdPz4cQ0ZMsS5fW5urqKiopSTk6Nt27bpnXfe0ZIlSzR9+nTnmJSUFEVFRalfv35KTk7WhAkTNHbsWG3YsME5ZsWKFYqLi9OMGTO0e/dudevWTZGRkTp58mR55wMAAKDU6JEAAABKx2ZZllWeHTRu3FjPP/+8hg0bpmbNmmnZsmUaNmyYJOngwYO66qqrlJiYqL59+2r9+vUaOHCgjh8/roCAAEnSokWLNHnyZKWnp8vLy0uTJ0/WunXrtG/fPucxRo4cqYyMDMXHx0uSwsLC1Lt3by1YsECSlJeXp+DgYI0bN05Tpkwpce0Oh0N+fn7KzMyU3W4vzzQU6vDyaQWWdRg5p8KPAwAASq6y3//z0SMVjR4JAICqx1SPlK/M55DKzc3V8uXLlZWVpfDwcCUlJenChQuKiIhwjuncubNatWqlxMRESVJiYqK6du3qbLQkKTIyUg6Hw/kJYmJioss+8sfk7yMnJ0dJSUkuYzw8PBQREeEcU5Ts7Gw5HA6XGwAAQEWiRwIAALi8UgdSe/fuVcOGDeXt7a2HH35Yq1atUkhIiFJTU+Xl5SV/f3+X8QEBAUpNTZUkpaamujRa+evz1xU3xuFw6Ny5czp16pRyc3MLHZO/j6LMnTtXfn5+zltwcHBpHz4AAECh6JEAAABKrtSBVKdOnZScnKzt27frkUceUXR0tL777rvKqK3CTZ06VZmZmc7bsWPH3F0SAACoIeiRAAAASq5OaTfw8vJS+/btJUmhoaHauXOnXn31VY0YMUI5OTnKyMhw+QQwLS1NgYGBkqTAwMACV3rJv8LMpWN+f9WZtLQ02e121atXT56envL09Cx0TP4+iuLt7S1vb+/SPmQAAIDLokcCAAAouTKfQypfXl6esrOzFRoaqrp16yohIcG57tChQzp69KjCw8MlSeHh4dq7d6/LlV42btwou92ukJAQ55hL95E/Jn8fXl5eCg0NdRmTl5enhIQE5xgAAAB3o0cCAAAoWqm+ITV16lTddtttatWqlU6fPq1ly5Zp8+bN2rBhg/z8/DRmzBjFxcWpcePGstvtGjdunMLDw9W3b19JUv/+/RUSEqJ7771X8+bNU2pqqp588knFxMQ4P5V7+OGHtWDBAj3++OO6//77tWnTJn3wwQdat26ds464uDhFR0erV69e6tOnj1555RVlZWVp9OjRFTg1AAAAJUOPBAAAUDqlCqROnjypUaNG6cSJE/Lz89M111yjDRs26NZbb5Ukvfzyy/Lw8NDQoUOVnZ2tyMhIvf76687tPT09tXbtWj3yyCMKDw9XgwYNFB0draeffto5pm3btlq3bp0mTpyoV199VS1bttTbb7+tyMhI55gRI0YoPT1d06dPV2pqqrp37674+PgCJ/EEAAAwgR4JAACgdGyWZVnuLsJdHA6H/Pz8lJmZKbvdXuH7P7x8WoFlHUbOqfDjAACAkqvs9/+agB4JAIDax3SPVO5zSAEAAAAAAAClQSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhVqkBq7ty56t27t3x9fdW8eXMNHjxYhw4dchlz/vx5xcTEqEmTJmrYsKGGDh2qtLQ0lzFHjx5VVFSU6tevr+bNm2vSpEm6ePGiy5jNmzerZ8+e8vb2Vvv27bVkyZIC9SxcuFBt2rSRj4+PwsLCtGPHjtI8HAAAgApBjwQAAFA6pQqktmzZopiYGP3rX//Sxo0bdeHCBfXv319ZWVnOMRMnTtQnn3yilStXasuWLTp+/LiGDBniXJ+bm6uoqCjl5ORo27Zteuedd7RkyRJNnz7dOSYlJUVRUVHq16+fkpOTNWHCBI0dO1YbNmxwjlmxYoXi4uI0Y8YM7d69W926dVNkZKROnjxZnvkAAAAoNXokAACA0rFZlmWVdeP09HQ1b95cW7Zs0Q033KDMzEw1a9ZMy5Yt07BhwyRJBw8e1FVXXaXExET17dtX69ev18CBA3X8+HEFBARIkhYtWqTJkycrPT1dXl5emjx5statW6d9+/Y5jzVy5EhlZGQoPj5ekhQWFqbevXtrwYIFkqS8vDwFBwdr3LhxmjJlSonqdzgc8vPzU2Zmpux2e1mnoUiHl08rsKzDyDkVfhwAAFBylf3+L9EjXQ49EgAAVY+JHulS5TqHVGZmpiSpcePGkqSkpCRduHBBERERzjGdO3dWq1atlJiYKElKTExU165dnY2WJEVGRsrhcGj//v3OMZfuI39M/j5ycnKUlJTkMsbDw0MRERHOMYXJzs6Ww+FwuQEAAFQ0eiQAAIDilTmQysvL04QJE3Tdddfp6quvliSlpqbKy8tL/v7+LmMDAgKUmprqHHNpo5W/Pn9dcWMcDofOnTunU6dOKTc3t9Ax+fsozNy5c+Xn5+e8BQcHl/6BAwAAFIMeCQAA4PLKHEjFxMRo3759Wr58eUXWU6mmTp2qzMxM5+3YsWPuLgkAANQw9EgAAACXV6csG8XGxmrt2rXaunWrWrZs6VweGBionJwcZWRkuHwCmJaWpsDAQOeY31/pJf8KM5eO+f1VZ9LS0mS321WvXj15enrK09Oz0DH5+yiMt7e3vL29S/+AAQAASoAeCQAAoGRK9Q0py7IUGxurVatWadOmTWrbtq3L+tDQUNWtW1cJCQnOZYcOHdLRo0cVHh4uSQoPD9fevXtdrvSyceNG2e12hYSEOMdcuo/8Mfn78PLyUmhoqMuYvLw8JSQkOMcAAACYQo8EAABQOqX6hlRMTIyWLVumjz/+WL6+vs5zEfj5+alevXry8/PTmDFjFBcXp8aNG8tut2vcuHEKDw9X3759JUn9+/dXSEiI7r33Xs2bN0+pqal68sknFRMT4/xk7uGHH9aCBQv0+OOP6/7779emTZv0wQcfaN26dc5a4uLiFB0drV69eqlPnz565ZVXlJWVpdGjR1fU3AAAAJQIPRIAAEDplCqQeuONNyRJN910k8vyxYsX67777pMkvfzyy/Lw8NDQoUOVnZ2tyMhIvf76686xnp6eWrt2rR555BGFh4erQYMGio6O1tNPP+0c07ZtW61bt04TJ07Uq6++qpYtW+rtt99WZGSkc8yIESOUnp6u6dOnKzU1Vd27d1d8fHyBk3gCAABUNnokAACA0rFZlmW5uwh3cTgc8vPzU2Zmpux2e4Xv//DyaQWWdRg5p8KPAwAASq6y3/9rAnokAABqH9M9UpmvsgcAAAAAAACUBYEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKNKHUht3bpVgwYNUlBQkGw2m1avXu2y3rIsTZ8+XS1atFC9evUUERGhw4cPu4z55ZdfdM8998hut8vf319jxozRmTNnXMZ8++23+sMf/iAfHx8FBwdr3rx5BWpZuXKlOnfuLB8fH3Xt2lWffvppaR8OAABAhaBHAgAAKLlSB1JZWVnq1q2bFi5cWOj6efPmaf78+Vq0aJG2b9+uBg0aKDIyUufPn3eOueeee7R//35t3LhRa9eu1datW/Xggw861zscDvXv31+tW7dWUlKSnn/+ec2cOVNvvfWWc8y2bdt01113acyYMdqzZ48GDx6swYMHa9++faV9SAAAAOVGjwQAAFByNsuyrDJvbLNp1apVGjx4sKTfPvkLCgrSX/7yFz322GOSpMzMTAUEBGjJkiUaOXKkDhw4oJCQEO3cuVO9evWSJMXHx+v222/XTz/9pKCgIL3xxhuaNm2aUlNT5eXlJUmaMmWKVq9erYMHD0qSRowYoaysLK1du9ZZT9++fdW9e3ctWrSoRPU7HA75+fkpMzNTdru9rNNQpMPLpxVY1mHknAo/DgAAKLnKfv+X6JEuhx4JAICqx0SPdKkKPYdUSkqKUlNTFRER4Vzm5+ensLAwJSYmSpISExPl7+/vbLQkKSIiQh4eHtq+fbtzzA033OBstCQpMjJShw4d0q+//uocc+lx8sfkHwcAAKCqoEcCAABwVacid5aamipJCggIcFkeEBDgXJeamqrmzZu7FlGnjho3buwypm3btgX2kb+uUaNGSk1NLfY4hcnOzlZ2drbzvsPhKM3DAwAAKBN6JAAAAFe16ip7c+fOlZ+fn/MWHBzs7pIAAADcjh4JAACYVqGBVGBgoCQpLS3NZXlaWppzXWBgoE6ePOmy/uLFi/rll19cxhS2j0uPUdSY/PWFmTp1qjIzM523Y8eOlfYhAgAAlBo9EgAAgKsKDaTatm2rwMBAJSQkOJc5HA5t375d4eHhkqTw8HBlZGQoKSnJOWbTpk3Ky8tTWFiYc8zWrVt14cIF55iNGzeqU6dOatSokXPMpcfJH5N/nMJ4e3vLbre73AAAACobPRIAAICrUgdSZ86cUXJyspKTkyX9dpLO5ORkHT16VDabTRMmTNDs2bO1Zs0a7d27V6NGjVJQUJDzKjNXXXWVBgwYoAceeEA7duzQ119/rdjYWI0cOVJBQUGSpLvvvlteXl4aM2aM9u/frxUrVujVV19VXFycs47x48crPj5eL774og4ePKiZM2dq165dio2NLf+sAAAAlBI9EgAAQMmV+qTmu3btUr9+/Zz38xug6OhoLVmyRI8//riysrL04IMPKiMjQ9dff73i4+Pl4+Pj3Gbp0qWKjY3VLbfcIg8PDw0dOlTz5893rvfz89Nnn32mmJgYhYaGqmnTppo+fboefPBB55hrr71Wy5Yt05NPPqknnnhCHTp00OrVq3X11VeXaSIAAADKgx4JAACg5GyWZVnuLsJdHA6H/Pz8lJmZWSlfTT+8fFqBZR1Gzqnw4wAAgJKr7Pf/moAeCQCA2sd0j1SrrrIHAAAAAAAA9yOQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMqvaB1MKFC9WmTRv5+PgoLCxMO3bscHdJAAAAbkePBAAAqrI67i6gPFasWKG4uDgtWrRIYWFheuWVVxQZGalDhw6pefPm7i6vUIeXT3O532HkHDdVAgAAaip6JAAAUNVV629IvfTSS3rggQc0evRohYSEaNGiRapfv77+/ve/u7s0AAAAt6FHAgAAVV21/YZUTk6OkpKSNHXqVOcyDw8PRUREKDExsdBtsrOzlZ2d7byfmZkpSXI4HJVS45mz2Zcds+fvjxVY1m7Y9MooBwAA6P/e9y3LcnMllYMeCQAAlIXpHqnaBlKnTp1Sbm6uAgICXJYHBATo4MGDhW4zd+5czZo1q8Dy4ODgSqmxzMa86O4KAACo8U6fPi0/Pz93l1Hh6JEAAEB5mOqRqm0gVRZTp05VXFyc835eXp5++eUXNWnSRDabrUKP5XA4FBwcrGPHjslut1fovlE2PCdVD89J1cNzUrXwfFQOy7J0+vRpBQUFubuUKoMeqXbjOal6eE6qHp6TqoXno3KY7pGqbSDVtGlTeXp6Ki0tzWV5WlqaAgMDC93G29tb3t7eLsv8/f0rq0RJkt1u5x9IFcNzUvXwnFQ9PCdVC89HxauJ34zKR4+EsuI5qXp4TqoenpOqheej4pnskartSc29vLwUGhqqhIQE57K8vDwlJCQoPDzcjZUBAAC4Dz0SAACoDqrtN6QkKS4uTtHR0erVq5f69OmjV155RVlZWRo9erS7SwMAAHAbeiQAAFDVVetAasSIEUpPT9f06dOVmpqq7t27Kz4+vsBJPN3B29tbM2bMKPD1d7gPz0nVw3NS9fCcVC08HygreiSUBs9J1cNzUvXwnFQtPB81g82qqdc8BgAAAAAAQJVUbc8hBQAAAAAAgOqJQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgVUkWLlyoNm3ayMfHR2FhYdqxY4e7S6qV5s6dq969e8vX11fNmzfX4MGDdejQIXeXhUs8++yzstlsmjBhgrtLqdV+/vln/elPf1KTJk1Ur149de3aVbt27XJ3WbVWbm6unnrqKbVt21b16tVTu3bt9Mwzz4jrkKAmoEeqOuiTqjZ6pKqBHqlqoUeqWQikKsGKFSsUFxenGTNmaPfu3erWrZsiIyN18uRJd5dW62zZskUxMTH617/+pY0bN+rChQvq37+/srKy3F0aJO3cuVNvvvmmrrnmGneXUqv9+uuvuu6661S3bl2tX79e3333nV588UU1atTI3aXVWs8995zeeOMNLViwQAcOHNBzzz2nefPm6bXXXnN3aUC50CNVLfRJVRc9UtVAj1T10CPVLDaLKLHChYWFqXfv3lqwYIEkKS8vT8HBwRo3bpymTJni5upqt/T0dDVv3lxbtmzRDTfc4O5yarUzZ86oZ8+eev311zV79mx1795dr7zyirvLqpWmTJmir7/+Wl9++aW7S8H/N3DgQAUEBOh///d/ncuGDh2qevXq6f3333djZUD50CNVbfRJVQM9UtVBj1T10CPVLHxDqoLl5OQoKSlJERERzmUeHh6KiIhQYmKiGyuDJGVmZkqSGjdu7OZKEBMTo6ioKJd/K3CPNWvWqFevXrrzzjvVvHlz9ejRQ3/729/cXVatdu211yohIUH//ve/JUnffPONvvrqK912221urgwoO3qkqo8+qWqgR6o66JGqHnqkmqWOuwuoaU6dOqXc3FwFBAS4LA8ICNDBgwfdVBWk3z6FnTBhgq677jpdffXV7i6nVlu+fLl2796tnTt3ursUSPrPf/6jN954Q3FxcXriiSe0c+dO/fnPf5aXl5eio6PdXV6tNGXKFDkcDnXu3Fmenp7Kzc3VnDlzdM8997i7NKDM6JGqNvqkqoEeqWqhR6p66JFqFgIp1BoxMTHat2+fvvrqK3eXUqsdO3ZM48eP18aNG+Xj4+PucqDf/iekV69e+utf/ypJ6tGjh/bt26dFixbRbLnJBx98oKVLl2rZsmXq0qWLkpOTNWHCBAUFBfGcAKgU9EnuR49U9dAjVT30SDULgVQFa9q0qTw9PZWWluayPC0tTYGBgW6qCrGxsVq7dq22bt2qli1burucWi0pKUknT55Uz549nctyc3O1detWLViwQNnZ2fL09HRjhbVPixYtFBIS4rLsqquu0kcffeSmijBp0iRNmTJFI0eOlCR17dpVR44c0dy5c2m2UG3RI1Vd9ElVAz1S1UOPVPXQI9UsnEOqgnl5eSk0NFQJCQnOZXl5eUpISFB4eLgbK6udLMtSbGysVq1apU2bNqlt27buLqnWu+WWW7R3714lJyc7b7169dI999yj5ORkGi03uO666wpc5vvf//63Wrdu7aaKcPbsWXl4uL5Fe3p6Ki8vz00VAeVHj1T10CdVLfRIVQ89UtVDj1Sz8A2pShAXF6fo6Gj16tVLffr00SuvvKKsrCyNHj3a3aXVOjExMVq2bJk+/vhj+fr6KjU1VZLk5+enevXqubm62snX17fAuSkaNGigJk2acM4KN5k4caKuvfZa/fWvf9Xw4cO1Y8cOvfXWW3rrrbfcXVqtNWjQIM2ZM0etWrVSly5dtGfPHr300ku6//773V0aUC70SFULfVLVQo9U9dAjVT30SDWLzbIsy91F1EQLFizQ888/r9TUVHXv3l3z589XWFiYu8uqdWw2W6HLFy9erPvuu89sMSjSTTfdxCWN3Wzt2rWaOnWqDh8+rLZt2youLk4PPPCAu8uqtU6fPq2nnnpKq1at0smTJxUUFKS77rpL06dPl5eXl7vLA8qFHqnqoE+q+uiR3I8eqWqhR6pZCKQAAAAAAABgFOeQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAKhStm7dqkGDBikoKEg2m02rV68u1fYzZ86UzWYrcGvQoEHlFAwAAGBATeuRCKQAAECVkpWVpW7dumnhwoVl2v6xxx7TiRMnXG4hISG68847K7hSAAAAc2paj0QgBQAAqpTbbrtNs2fP1h//+MdC12dnZ+uxxx7TFVdcoQYNGigsLEybN292rm/YsKECAwOdt7S0NH333XcaM2aMoUcAAABQ8Wpaj0QgBQAAqpXY2FglJiZq+fLl+vbbb3XnnXdqwIABOnz4cKHj3377bXXs2FF/+MMfDFcKAABgTnXrkQikAABAtXH06FEtXrxYK1eu1B/+8Ae1a9dOjz32mK6//notXry4wPjz589r6dKlfDsKAADUaNWxR6rjtiMDAACU0t69e5Wbm6uOHTu6LM/OzlaTJk0KjF+1apVOnz6t6OhoUyUCAAAYVx17JAIpAABQbZw5c0aenp5KSkqSp6eny7qGDRsWGP/2229r4MCBCggIMFUiAACAcdWxRyKQAgAA1UaPHj2Um5urkydPXvZ8BykpKfriiy+0Zs0aQ9UBAAC4R3XskQikAABAlXLmzBl9//33zvspKSlKTk5W48aN1bFjR91zzz0aNWqUXnzxRfXo0UPp6elKSEjQNddco6ioKOd2f//739WiRQvddttt7ngYAAAAFaqm9Ug2y7Ist1YAAABwic2bN6tfv34FlkdHR2vJkiW6cOGCZs+erXfffVc///yzmjZtqr59+2rWrFnq2rWrJCkvL0+tW7fWqFGjNGfOHNMPAQAAoMLVtB6JQAoAAAAAAABGebi7AAAAAAAAANQuBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACkCJzJw5Uzabzd1lVIglS5bIZrPpxx9/dHcpNUZlvT527NghLy8vHTly5LJj27Rpo/vuu89l2eHDh9W/f3/5+fnJZrNp9erVpTp+37599fjjj5dqGwBA7UKPhOLQIwFFI5ACUOm2bdummTNnKiMjw92lFOn111/XkiVLKvUYNptNNptNY8eOLXT9tGnTnGNOnTp12f3t2LFDjz76qEJDQ1W3bt0a0wxfatq0abrrrrvUunXrMm0fHR2tvXv3as6cOXrvvffUq1cvnTlzRjNmzNCAAQPUuHFj2Wy2Ip/7yZMna+HChUpNTS3HowAAoHD0SL+hRyq9yuiRdu7cqdjYWHXp0kUNGjRQq1atNHz4cP373/8usD09EiqEBQAlcOHCBevcuXNl2vb555+3JFkpKSkVW1QZXbx40Tp37pyVl5fnXNalSxfrxhtvrNTjSrJ8fHwsf39/Kzs7u8D6tm3bWj4+PpYkKz09/bL7mzFjhlW3bl0rNDTU6tixo+XOP+nleX0UZc+ePZYka9u2bSUa37p1ays6Otp5/+zZs5Yka9q0aS7jUlJSLElWq1atrJtuusmSZC1evLjQfebm5lqBgYHWU089VdaHAQCo4eiRyo8eqXQqq0caOnSoFRgYaI0bN87629/+Zj3zzDNWQECA1aBBA2vv3r0uY+mRUBH4hhQgKS8vT+fPn3d3GS6ysrIq/RiWZencuXMlGlunTh35+PhUckVmeHp6ysfHxy2flg0YMEAOh0Pr1693Wb5t2zalpKQoKiqqxPt65JFHlJmZqV27dunWW2+t6FJLpTJeH4sXL1arVq3Ut2/fMm2fnp4uSfL393dZ3qJFC504cUJHjhzR888/X+w+PDw8NGzYML377ruyLKtMdQBAdUaPdHn0SBWDHqnkKqtHiouL05EjRzR//nyNHTtWTz75pL788ktdvHhRzz77rMtYeiRUBAIp1Bj5v88+ePCghg8fLrvdriZNmmj8+PEFGimbzabY2FgtXbpUXbp0kbe3t+Lj4yVJP//8s+6//34FBATI29tbXbp00d///vcCxzt//rxmzpypjh07ysfHRy1atNCQIUP0ww8/SJI2b94sm82mzZs3u2z3448/FviJ0H333aeGDRvqhx9+0O233y5fX1/dc889kn77fffQoUMVGBgoHx8ftWzZUiNHjlRmZqZz+4sXL+qZZ55Ru3bt5O3trTZt2uiJJ55Qdna2y7HbtGmjgQMHasOGDerVq5fq1aunN998s1TzW9g8rl69WldffbVzvvLnMn+7SZMmSZLatm3r/Lr1pecmeP/99xUaGqp69eqpcePGGjlypI4dO+ZyrJtuuklXX321vvvuO/Xr10/169fXFVdcoXnz5hWo9bXXXlOXLl1Uv359NWrUSL169dKyZcuc639/foQ2bdpo//792rJli7O+m266Sf/5z39ks9n08ssvFzjGtm3bZLPZ9I9//KNE85fviiuu0A033OBSjyQtXbpUXbt21dVXX13ifQUEBKhevXqlOn5R8l8bmzdvdr42unbt6nz9/vOf/1TXrl3l4+Oj0NBQ7dmzx2X7sr4+irN69WrdfPPNBfZrWZZmz56tli1bqn79+urXr5/2799foJ78r7BPmjRJNptNbdq0kSR5e3srMDCwpFOjW2+9VUeOHFFycnKJtwGAqoQeiR4pHz1S6dWmHunaa6+Vl5eXy/gOHTqoS5cuOnDgQIE66JFQXnXcXQBQ0YYPH642bdpo7ty5+te//qX58+fr119/1bvvvusybtOmTfrggw8UGxurpk2bqk2bNkpLS1Pfvn2dbxLNmjXT+vXrNWbMGDkcDk2YMEGSlJubq4EDByohIUEjR47U+PHjdfr0aW3cuFH79u1Tu3btSl33xYsXFRkZqeuvv14vvPCC6tevr5ycHEVGRio7O1vjxo1TYGCgfv75Z61du1YZGRny8/OTJI0dO1bvvPOOhg0bpr/85S/avn275s6dqwMHDmjVqlUuxzl06JDuuusuPfTQQ3rggQfUqVOnsk30//fVV1/pn//8px599FH5+vpq/vz5Gjp0qI4ePaomTZpoyJAh+ve//61//OMfevnll9W0aVNJUrNmzSRJc+bM0VNPPaXhw4dr7NixSk9P12uvvaYbbrhBe/bscfnk5tdff9WAAQM0ZMgQDR8+XB9++KEmT56srl276rbbbpMk/e1vf9Of//xnDRs2zNlof/vtt9q+fbvuvvvuQh/DK6+8onHjxqlhw4aaNm2apN8amSuvvFLXXXedli5dqokTJ7pss3TpUvn6+uqOO+4o9ZzdfffdGj9+vM6cOaOGDRvq4sWLWrlypeLi4tz6KfT333+vu+++Ww899JD+9Kc/6YUXXtCgQYO0aNEiPfHEE3r00UclSXPnztXw4cN16NAheXgU/7nG5V4fRfn555919OhR9ezZs8C66dOna/bs2br99tt1++23a/fu3erfv79ycnKcY4YMGSJ/f39NnDhRd911l26//XY1bNiwTPMSGhoqSfr666/Vo0ePMu0DAKoCeiR6JHqksqnNPZJlWUpLS1OXLl0KrKNHQrm58eeCQIWaMWOGJcn6n//5H5fljz76qCXJ+uabb5zLJFkeHh7W/v37XcaOGTPGatGihXXq1CmX5SNHjrT8/Pyss2fPWpZlWX//+98tSdZLL71UoI7839x/8cUXliTriy++cFmff/6aS89ZEx0dbUmypkyZ4jI2//fhK1euLPJxJycnW5KssWPHuix/7LHHLEnWpk2bnMtat25tSbLi4+OL3F9R8uf3UpIsLy8v6/vvv3cu++abbyxJ1muvveZcVtT5EX788UfL09PTmjNnjsvyvXv3WnXq1HFZfuONN1qSrHfffde5LDs72woMDLSGDh3qXHbHHXdYXbp0KfaxLF68uEA9RZ0f4c0337QkWQcOHHAuy8nJsZo2beryW/ySkGTFxMRYv/zyi+Xl5WW99957lmVZ1rp16yybzWb9+OOPznkuyfkRLhUTE1Ou8yPkvzYuPRfBhg0bLElWvXr1rCNHjjiX58/Jpa/t8rw+CvP5559bkqxPPvnEZfnJkyctLy8vKyoqyuX8Fk888YQlyeU5yf+39vzzzxd5nJ07dxZ7Dql8Xl5e1iOPPFLsGACoquiR6JEsix6prGprj5TvvffesyRZ//u//1voenoklAc/2UONExMT43J/3LhxkqRPP/3UZfmNN96okJAQ533LsvTRRx9p0KBBsixLp06dct4iIyOVmZmp3bt3S5I++ugjNW3a1LnvS5XnN/ePPPKIy/38T/c2bNigs2fPFrpN/uOKi4tzWf6Xv/xFkrRu3TqX5W3btlVkZGSZa/y9iIgIl087r7nmGtntdv3nP/+57Lb//Oc/lZeXp+HDh7vMd2BgoDp06KAvvvjCZXzDhg31pz/9yXnfy8tLffr0cTmWv7+/fvrpJ+3cubMCHt1vnyb7+Pho6dKlzmUbNmzQqVOnXGopjUaNGmnAgAHOr7IvW7ZM1157bZmvklJRQkJCFB4e7rwfFhYmSbr55pvVqlWrAstL8hyX9fXx3//+V9Jvc3Wpzz//XDk5ORo3bpzLv7X8T+YrS6NGjUp0VR8AqMrokX5Dj0SPVFq1tUc6ePCgYmJiFB4erujo6ELH0COhPAikUON06NDB5X67du3k4eHh8nt86bem41Lp6enKyMjQW2+9pWbNmrncRo8eLUk6efKkJOmHH35Qp06dVKdOxf3qtU6dOmrZsmWBGuPi4vT222+radOmioyM1MKFC13OjXDkyBF5eHioffv2LtsGBgbK399fR44cKfZxl9elb8L5GjVqpF9//fWy2x4+fFiWZalDhw4F5vzAgQPO+c7XsmXLAs3s7481efJkNWzYUH369FGHDh0UExOjr7/+uoyP7rfmbdCgQS7nM1i6dKmuuOIK3XzzzWXe7913362NGzfq6NGjWr16dZFflT9z5oxSU1Odt/yTUFaG3z+X+c1+cHBwoctL8hyX5/UhqcBJMvNfz7//d96sWbMCjVlFsiyrRl4yGkDtQo/0G3okeqTSqo09UmpqqqKiouTn56cPP/xQnp6eRdZBj4Sy4hxSqPGK+gP5+xMd5uXlSZL+9Kc/FfkJwDXXXFPu4+bm5ha63Nvbu9Dfmr/44ou677779PHHH+uzzz7Tn//8Z+e5Hy5tzkr6RlBRJ3jMV9yb0+Xk5eXJZrNp/fr1he7n979nL8mxrrrqKh06dEhr165VfHy8PvroI73++uuaPn26Zs2addmaCjNq1CitXLlS27ZtU9euXbVmzRo9+uijlz03QHH+53/+R97e3oqOjlZ2draGDx9e6LgXXnjBpe7WrVsX+B+HilLU/JbnOS7rtvnnTihpU1bZMjIynOf2AICagh7JFT1S6dEj1cweKTMzU7fddpsyMjL05ZdfKigoqMix9EgoDwIp1DiHDx92+YTr+++/V15envPqEUVp1qyZfH19lZubq4iIiGLHtmvXTtu3b9eFCxdUt27dQsfkfxKRkZHhsvz3n8aVRNeuXdW1a1c9+eST2rZtm6677jotWrRIs2fPVuvWrZWXl6fDhw/rqquucm6TlpamjIwMt3/FWSq6EWzXrp0sy1Lbtm3VsWPHCjtegwYNNGLECI0YMUI5OTkaMmSI5syZo6lTpxZ52d3imtUBAwaoWbNmWrp0qcLCwnT27Fnde++95aqxXr16Gjx4sN5//33ddtttRb6Rjxo1Stdff73LdrVB586dJUkpKSkuy/Nfz4cPH9aVV17pXJ6enl5pjdnPP/+snJwcl39fAFAd0SP9hh6JHqk6q+we6fz58xo0aJD+/e9/6/PPP3f5+e7v0SOhvPjJHmqchQsXutx/7bXXJMl5hZGieHp6aujQofroo4+0b9++Ausv/Rrw0KFDderUKS1YsKDAuPxPNVq3bi1PT09t3brVZf3rr79esgciyeFw6OLFiy7LunbtKg8PD+flim+//XZJv10F5VIvvfSSJCkqKqrEx6ssDRo0kFSw8RwyZIg8PT01a9asAp8GWZbl/I18afx+Gy8vL4WEhMiyLF24cKHYGn9fX746derorrvu0gcffKAlS5aoa9eupfokuCiPPfaYZsyYoaeeeqrIMVdeeaUiIiKct+uuu67cx60OrrjiCgUHB2vXrl0uyyMiIlS3bl299tprLq+Z37/+K1JSUpKk3y6FDADVGT3Sb+iRfkOPVD1VZo+Um5urESNGKDExUStXrnQ5b1Zh6JFQXnxDCjVOSkqK/ud//kcDBgxQYmKi3n//fd19993q1q3bZbd99tln9cUXXygsLEwPPPCAQkJC9Msvv2j37t36/PPP9csvv0j67ROZd999V3FxcdqxY4f+8Ic/KCsrS59//rkeffRR3XHHHfLz89Odd96p1157TTabTe3atdPatWsL/Oa/OJs2bVJsbKzuvPNOdezYURcvXtR7773nbAwlqVu3boqOjtZbb72ljIwM3XjjjdqxY4feeecdDR48WP369SvbRFag/EvCTps2TSNHjlTdunU1aNAgtWvXTrNnz9bUqVP1448/avDgwfL19VVKSopWrVqlBx98UI899lipjtW/f38FBgbquuuuU0BAgA4cOKAFCxYoKipKvr6+xdb4xhtvaPbs2Wrfvr2aN2/ucv6DUaNGaf78+friiy/03HPPlW0ifqdbt24lel0W5ciRI3rvvfckydmUzJ49W9JvzX55P6F0tzvuuEOrVq1yOTdBs2bN9Nhjj2nu3LkaOHCgbr/9du3Zs0fr168v1dfFFyxYoIyMDB0/flyS9Mknn+inn36S9NtJfvPPASFJGzduVKtWrbicMYBqjx6JHokeiR6pOH/5y1+0Zs0aDRo0SL/88ovef/99l/W/P1k9PRLKrfIv5AeYkX9J1e+++84aNmyY5evrazVq1MiKjY21zp075zJW///SsoVJS0uzYmJirODgYKtu3bpWYGCgdcstt1hvvfWWy7izZ89a06ZNs9q2bescN2zYMOuHH35wjklPT7eGDh1q1a9f32rUqJH10EMPWfv27Sv0ksYNGjQoUMt//vMf6/7777fatWtn+fj4WI0bN7b69etnff755y7jLly4YM2aNctZS3BwsDV16lTr/PnzLuNat25tRUVFlWg+f6+oS9YWNo+tW7cucLnfZ555xrriiissDw+PApcT/uijj6zrr7/eatCggdWgQQOrc+fOVkxMjHXo0CHnmBtvvLHQSxVHR0dbrVu3dt5/8803rRtuuMFq0qSJ5e3tbbVr186aNGmSlZmZ6RxT2CWNU1NTraioKMvX19eSVOjljbt06WJ5eHhYP/30UxGzVLziXnf5SnNJ4/zLZhd2K6z+4hT12iis5sIuFVze10dhdu/ebUmyvvzyS5flubm51qxZs6wWLVpY9erVs2666SZr3759BfZb3CWN8y/hXNjt0tdFbm6u1aJFC+vJJ5+8bL0AUFXRI9EjWRY9Ej3S/+23qB7pxhtvLHLefv8Y6JFQEWyWVYIzrgHVwMyZMzVr1iylp6dzYj1Uih49eqhx48ZKSEhwdym1xi233KKgoCDnp5ym5V/d54cfflCLFi3cUgMAlBc9EiobPZJ59EioCTiHFACUwK5du5ScnKxRo0a5u5Ra5a9//atWrFhRphPdVoTnnntOsbGxNFoAABSBHsk96JFQE3AOKaCWy8zM1Llz54odExgYaKiaqmffvn1KSkrSiy++qBYtWmjEiBEu63Nzc11O5lqYhg0bFrg8synp6elFXkZb+u2Epo0bNzZYUemEhYUpJyfHbcdPTEx027EBAO5Fj1Q8eiT3okdCTUAgBdRy48eP1zvvvFPsmNr8y94PP/xQTz/9tDp16qR//OMfBS6JfOzYMZdLaBdmxowZmjlzZiVWWbTevXsX+8nZjTfeqM2bN5srCACAaoIeqXj0SADKi3NIAbXcd99957zSWFEiIiIMVVP9nD9/Xl999VWxY6688kpdeeWVhipy9fXXXxf76W6jRo2cV/gBAAD/hx6pfOiRAFwOgRQAAAAAAACM4qTmAAAAAAAAMKpWn0MqLy9Px48fl6+vr2w2m7vLAQAABliWpdOnTysoKEgeHnw2Vxh6JAAAah/TPVKtDqSOHz+u4OBgd5cBAADc4NixY2rZsqW7y6iS6JEAAKi9TPVItTqQ8vX1lfTbZNvtdjdXAwAATHA4HAoODnb2ASiIHgkAgNrHdI9UqwOp/K+g2+12mi0AAGoZfopWNHokAABqL1M9EidOAAAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABG1epzSAEAUBTLsnTx4kXl5ua6uxSUkqenp+rUqcM5ogAAqAT0SNVXVeuRCKQAAPidnJwcnThxQmfPnnV3KSij+vXrq0WLFvLy8nJ3KQAA1Bj0SNVfVeqRCKQAALhEXl6eUlJS5OnpqaCgIHl5eVWZT5FweZZlKScnR+np6UpJSVGHDh3k4cEZCgAAKC96pOqtKvZIBFIAAFwiJydHeXl5Cg4OVv369d1dDsqgXr16qlu3ro4cOaKcnBz5+Pi4uyQAAKo9eqTqr6r1SHxkCABAIdz9iRHKh+cPAIDKwXts9VaVnr+qUwkAAAAAAABqBQIpAAAAAAAAGMU5pAAAKKEL8V8ZO1bdAdeXeOzlTig6Y8YMzZw5s5wVlY3NZtOqVas0ePDgMu/jrbfe0rJly7R7926dPn1av/76q/z9/SusRgAAUD4meySJPinfL7/8ohkzZuizzz7T0aNH1axZMw0ePFjPPPOM/Pz8KrbYSkAgBQBANXfixAnnf69YsULTp0/XoUOHnMsaNmxYqv3l5ORUiUsB5zt79qwGDBigAQMGaOrUqe4uBwAAVCM1uU86fvy4jh8/rhdeeEEhISE6cuSIHn74YR0/flwffvihu8u7LH6yV4lMp8QAgNopMDDQefPz85PNZnPez8rK0j333KOAgAA1bNhQvXv31ueff+6yfZs2bfTMM89o1KhRstvtevDBByVJf/vb35xX0vnjH/+ol156qcA3kz7++GP17NlTPj4+uvLKKzVr1ixdvHjRuV9J+uMf/yibzea8/80336hfv37y9fWV3W5XaGiodu3aVeTjmzBhgqZMmaK+fftWzITB7S7Ef0WfBAAwoib3SVdffbU++ugjDRo0SO3atdPNN9+sOXPm6JNPPnEepyojkAIAoAY7c+aMbr/9diUkJGjPnj0aMGCABg0apKNHj7qMe+GFF9StWzft2bNHTz31lL7++ms9/PDDGj9+vJKTk3Xrrbdqzpw5Ltt8+eWXGjVqlMaPH6/vvvtOb775ppYsWeIct3PnTknS4sWLdeLECef9e+65Ry1bttTOnTuVlJSkKVOmqG7dugZmAwAA4P/UxD4pMzNTdrtddepU/R/EVf0KAQBAmXXr1k3dunVz3n/mmWe0atUqrVmzRrGxsc7lN998s/7yl78470+bNk233XabHnvsMUlSx44dtW3bNq1du9Y5ZtasWZoyZYqio6MlSVdeeaWeeeYZPf7445oxY4aaNWsmSfL391dgYKBzu6NHj2rSpEnq3LmzJKlDhw6V8MgBAACKV9P6pFOnTumZZ55xfourquMbUgAA1GBnzpzRY489pquuukr+/v5q2LChDhw4UOCTv169erncP3TokPr06eOy7Pf3v/nmGz399NNq2LCh8/bAAw/oxIkTOnv2bJE1xcXFaezYsYqIiNCzzz6rH374oZyPEgAAoPRqUp/kcDgUFRWlkJAQt52kvbQIpAAAqMEee+wxrVq1Sn/961/15ZdfKjk5WV27dlVOTo7LuAYNGpR632fOnNGsWbOUnJzsvO3du1eHDx+Wj49PkdvNnDlT+/fvV1RUlDZt2qSQkBCtWrWq1McHAAAoj5rSJ50+fVoDBgyQr6+vVq1aVW1OhcBP9gAAqMG+/vpr3XffffrjH/8o6bfm6Mcff7zsdp06dXKeyyDf7+/37NlThw4dUvv27YvcT926dZWbm1tgeceOHdWxY0dNnDhRd911lxYvXuysEQAAwISa0Cc5HA5FRkbK29tba9asKTbsqmoIpAAAqME6dOigf/7znxo0aJBsNpueeuop5eXlXXa7cePG6YYbbtBLL72kQYMGadOmTVq/fr1sNptzzPTp0zVw4EC1atVKw4YNk4eHh7755hvt27dPs2fPlvTbFWQSEhJ03XXXydvbWz4+Ppo0aZKGDRumtm3b6qefftLOnTs1dOjQImtJTU1Vamqqvv/+e0nS3r175evrq1atWqlx48blnCEAAFBbVfc+yeFwqH///jp79qzef/99ORwOORwOSVKzZs3k6elZAbNUefjJHgAANdhLL72kRo0a6dprr9WgQYMUGRmpnj17Xna76667TosWLdJLL72kbt26KT4+XhMnTnT51C0yMlJr167VZ599pt69e6tv3756+eWX1bp1a+eYF198URs3blRwcLB69OghT09P/fe//9WoUaPUsWNHDR8+XLfddptmzZpVZC2LFi1Sjx499MADD0iSbrjhBvXo0UNr1qwpx8wAAIDarrr3Sbt379b27du1d+9etW/fXi1atHDejh07Vv4JqmQ2y7IsdxfhLg6HQ35+fs7LIla0C/Ffqe6A6yt8vwCAynP+/HmlpKSobdu21eorzyY88MADOnjwoL788kt3l3JZxT2Plf3+XxOY6JEk0ScBQDVCj1S86tInVaUeiZ/sAQCAQr3wwgu69dZb1aBBA61fv17vvPOOXn/9dXeXBQAA4Hb0SeVHIAUAAAq1Y8cOzZs3T6dPn9aVV16p+fPna+zYse4uCwAAwO3ok8qPQAoAABTqgw8+cHcJAAAAVRJ9UvlxUnMAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARtVxdwEAAFQXP+x609ix2vV6qFTj77vvPr3zzjuSpDp16qhx48a65pprdNddd+m+++6Th0f1/Qxq//79mj59upKSknTkyBG9/PLLmjBhgrvLAgAA/5/JHkmiT7rU3/72N7377rvat2+fJCk0NFR//etf1adPHzdXdnnVd9YBAICLAQMG6MSJE/rxxx+1fv169evXT+PHj9fAgQN18eJFd5dXZmfPntWVV16pZ599VoGBge4uBwAAVEM1tU/avHmz7rrrLn3xxRdKTExUcHCw+vfvr59//tndpV0WgRQAADWEt7e3AgMDdcUVV6hnz5564okn9PHHH2v9+vVasmSJc1xGRobGjh2rZs2ayW636+abb9Y333zjsq9PPvlEvXv3lo+Pj5o2bao//vGPznW//vqrRo0apUaNGql+/fq67bbbdPjwYUlSVlaW7Ha7PvzwQ5f9rV69Wg0aNNDp06eVk5Oj2NhYtWjRQj4+PmrdurXmzp1b5OPq3bu3nn/+eY0cOVLe3t4VMFMAAKC2qal90tKlS/Xoo4+qe/fu6ty5s95++23l5eUpISGhAmatchFIAQBQg918883q1q2b/vnPfzqX3XnnnTp58qTWr1+vpKQk9ezZU7fccot++eUXSdK6dev0xz/+Ubfffrv27NmjhIQEl69933fffdq1a5fWrFmjxMREWZal22+/XRcuXFCDBg00cuRILV682KWOxYsXa9iwYfL19dX8+fO1Zs0affDBBzp06JCWLl2qNm3aGJkPAACAfDWxTzp79qwuXLigxo0bl29yDOAcUgAA1HCdO3fWt99+K0n66quvtGPHDp08edL5baMXXnhBq1ev1ocffqgHH3xQc+bM0ciRIzVr1iznPrp16yZJOnz4sNasWaOvv/5a1157raTfPpkLDg7W6tWrdeedd2rs2LG69tprdeLECbVo0UInT57Up59+qs8//1ySdPToUXXo0EHXX3+9bDabWrdubXI6AAAAnGpanzR58mQFBQUpIiKi3HNT2fiGFAAANZxlWbLZbJKkb775RmfOnFGTJk3UsGFD5y0lJUU//PCDJCk5OVm33HJLofs6cOCA6tSpo7CwMOeyJk2aqFOnTjpw4IAkqU+fPurSpYvz5KHvv/++WrdurRtuuEHSb58cJicnq1OnTvrzn/+szz77rNIeOwAAQHFqUp/07LPPavny5Vq1apV8fHxKPxmG8Q0pAABquAMHDqht27aSpDNnzqhFixbavHlzgXH+/v6SpHr16pX7mGPHjtXChQs1ZcoULV68WKNHj3Y2ez179lRKSorWr1+vzz//XMOHD1dERESB8ykAAABUtprSJ73wwgt69tln9fnnn+uaa64pd40m8A0pAABqsE2bNmnv3r0aOnSopN+anNTUVNWpU0ft27d3uTVt2lSSdM011xR5IsyrrrpKFy9e1Pbt253L/vvf/+rQoUMKCQlxLvvTn/6kI0eOaP78+fruu+8UHR3tsh+73a4RI0bob3/7m1asWKGPPvrIeW4GAAAAE2pKnzRv3jw988wzio+PV69evco8H6bxDSkAAGqI7OxspaamKjc3V2lpaYqPj9fcuXM1cOBAjRo1SpIUERGh8PBwDR48WPPmzVPHjh11/Phx5wk6e/XqpRkzZuiWW25Ru3btNHLkSF28eFGffvqpJk+erA4dOuiOO+7QAw88oDfffFO+vr6aMmWKrrjiCt1xxx3OWho1aqQhQ4Zo0qRJ6t+/v1q2bOlc99JLL6lFixbq0aOHPDw8tHLlSgUGBjo/efy9nJwcfffdd87//vnnn5WcnKyGDRuqffv2lTehAACgxqipfdJzzz2n6dOna9myZWrTpo1SU1Mlyflzw6qMb0gBAFBDxMfHq0WLFmrTpo0GDBigL774QvPnz9fHH38sT09PSZLNZtOnn36qG264QaNHj1bHjh01cuRIHTlyRAEBAZKkm266SStXrtSaNWvUvXt33XzzzdqxY4fzOIsXL1ZoaKgGDhyo8PBwWZalTz/9VHXr1nWpZ8yYMcrJydH999/vstzX11fz5s1Tr1691Lt3b/3444/69NNP5eFReFty/Phx9ejRQz169NCJEyf0wgsvqEePHho7dmxFTh8AAKjBamqf9MYbbygnJ0fDhg1TixYtnLcXXnihIqevUtgsy7LcXYS7OBwO+fn5KTMzU3a7vcL3fyH+K9UdcH2F7xcAUHnOnz+vlJQUtW3btlqcDLIqe++99zRx4kQdP35cXl5eRo9d3PNY2e//NYGJHkkSfRIAVCP0SBXLXX1SVeqR+MkeAACoUGfPntWJEyf07LPP6qGHHjIeRgEAAFRV9En/p1w/2Xv22Wdls9k0YcIE57Lz588rJibGeZnEoUOHKi0tzWW7o0ePKioqSvXr11fz5s01adIkXbx40WXM5s2b1bNnT3l7e6t9+/ZasmRJgeMvXLhQbdq0kY+Pj8LCwly+JgcAANxj3rx56ty5swIDAzV16lR3l+MW9EgAAKAw9En/p8yB1M6dO/Xmm28WuJzgxIkT9cknn2jlypXasmWLjh8/riFDhjjX5+bmKioqSjk5Odq2bZveeecdLVmyRNOnT3eOSUlJUVRUlPr166fk5GRNmDBBY8eO1YYNG5xjVqxYobi4OM2YMUO7d+9Wt27dFBkZqZMnT5b1IQEAgAowc+ZMXbhwQQkJCVX+ZJqVgR4JAAAUpbb3SS6sMjh9+rTVoUMHa+PGjdaNN95ojR8/3rIsy8rIyLDq1q1rrVy50jn2wIEDliQrMTHRsizL+vTTTy0PDw8rNTXVOeaNN96w7Ha7lZ2dbVmWZT3++ONWly5dXI45YsQIKzIy0nm/T58+VkxMjPN+bm6uFRQUZM2dO7fEjyMzM9OSZGVmZpb8wZdCzvovK2W/AIDKc+7cOeu7776zzp075+5SUA7FPY+V+f5Pj1QyOeu/pE8CgGqGHqlmcFePVJgyfUMqJiZGUVFRioiIcFmelJSkCxcuuCzv3LmzWrVqpcTERElSYmKiunbt6jxDvSRFRkbK4XBo//79zjG/33dkZKRzHzk5OUpKSnIZ4+HhoYiICOcYAAAA0+iRAAAASqbUJzVfvny5du/erZ07dxZYl5qaKi8vL/n7+7ssDwgIUGpqqnPMpY1W/vr8dcWNcTgcOnfunH799Vfl5uYWOubgwYNF1p6dna3s7GznfYfDcZlHCwCorazaexHaGsEdzx89EgCgNqBHqt6q0vNXqm9IHTt2TOPHj9fSpUur5WUe586dKz8/P+ctODjY3SUBAKqYunXrSvrtCiiovvKfv/zns7LRIwEAajp6pJrBdI9UnFJ9QyopKUknT55Uz549nctyc3O1detWLViwQBs2bFBOTo4yMjJcPgFMS0tTYGCgJCkwMLDAlV7yrzBz6ZjfX3UmLS1Ndrtd9erVk6enpzw9PQsdk7+PwkydOlVxcXHO+w6Hg4YLAODC09NT/v7+zhNA169fXzabzc1VoaQsy9LZs2d18uRJ+fv7y9PT08hx6ZEAADUdPVL15q4eqTilCqRuueUW7d2712XZ6NGj1blzZ02ePFnBwcGqW7euEhISNHToUEnSoUOHdPToUYWHh0uSwsPDNWfOHJ08eVLNmzeXJG3cuFF2u10hISHOMZ9++qnLcTZu3Ojch5eXl0JDQ5WQkKDBgwdLkvLy8pSQkKDY2Ngi6/f29pa3t3dpHjIAoBbK/x93rkpWffn7+xcbwFQ0eiQAQG1Aj1T9me6RilOqQMrX11dXX321y7IGDRqoSZMmzuVjxoxRXFycGjduLLvdrnHjxik8PFx9+/aVJPXv318hISG69957NW/ePKWmpurJJ59UTEyMsxF6+OGHtWDBAj3++OO6//77tWnTJn3wwQdat26d87hxcXGKjo5Wr1691KdPH73yyivKysrS6NGjyzUhAADYbDa1aNFCzZs314ULF9xdDkqpbt26xj/1o0cCANQG9EjVmzt6pOKU+qTml/Pyyy/Lw8NDQ4cOVXZ2tiIjI/X6668713t6emrt2rV65JFHFB4ergYNGig6OlpPP/20c0zbtm21bt06TZw4Ua+++qpatmypt99+W5GRkc4xI0aMUHp6uqZPn67U1FR1795d8fHxBU7iCQBAWeX//AmoCPRIAICagh4JFcFmVaVTrBvmcDjk5+enzMxM2e32Ct//hfivVHfA9RW+XwAAUHaV/f5fE5jokSTRJwEAUIWY7pFKdZU9AAAAAAAAoLwIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYVcfdBdRkP2asl8eu/S7L2vV6yE3VAAAAVA0/ZqyXJJc+iR4JAIDahW9IAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARpUqkHrjjTd0zTXXyG63y263Kzw8XOvXr3euP3/+vGJiYtSkSRM1bNhQQ4cOVVpamss+jh49qqioKNWvX1/NmzfXpEmTdPHiRZcxmzdvVs+ePeXt7a327dtryZIlBWpZuHCh2rRpIx8fH4WFhWnHjh2leSgAAAAVhh4JAACgdEoVSLVs2VLPPvuskpKStGvXLt1888264447tH//fknSxIkT9cknn2jlypXasmWLjh8/riFDhji3z83NVVRUlHJycrRt2za98847WrJkiaZPn+4ck5KSoqioKPXr10/JycmaMGGCxo4dqw0bNjjHrFixQnFxcZoxY4Z2796tbt26KTIyUidPnizvfAAAAJQaPRIAAEDp2CzLssqzg8aNG+v555/XsGHD1KxZMy1btkzDhg2TJB08eFBXXXWVEhMT1bdvX61fv14DBw7U8ePHFRAQIElatGiRJk+erPT0dHl5eWny5Mlat26d9u3b5zzGyJEjlZGRofj4eElSWFiYevfurQULFkiS8vLyFBwcrHHjxmnKlCklrt3hcMjPz0+ZmZmy2+3lmYZCHV4+TR7tW7ksa9froQo/DgAAKLnKfv/PR49UtMPLp0mSS59EjwQAgHuZ6pHylfkcUrm5uVq+fLmysrIUHh6upKQkXbhwQREREc4xnTt3VqtWrZSYmChJSkxMVNeuXZ2NliRFRkbK4XA4P0FMTEx02Uf+mPx95OTkKCkpyWWMh4eHIiIinGOKkp2dLYfD4XIDAACoSPRIAAAAl1fqQGrv3r1q2LChvL299fDDD2vVqlUKCQlRamqqvLy85O/v7zI+ICBAqampkqTU1FSXRit/ff664sY4HA6dO3dOp06dUm5ubqFj8vdRlLlz58rPz895Cw4OLu3DBwAAKBQ9EgAAQMmVOpDq1KmTkpOTtX37dj3yyCOKjo7Wd999Vxm1VbipU6cqMzPTeTt27Ji7SwIAADUEPRIAAEDJ1SntBl5eXmrfvr0kKTQ0VDt37tSrr76qESNGKCcnRxkZGS6fAKalpSkwMFCSFBgYWOBKL/lXmLl0zO+vOpOWlia73a569erJ09NTnp6ehY7J30dRvL295e3tXdqHDAAAcFn0SAAAACVX5nNI5cvLy1N2drZCQ0NVt25dJSQkONcdOnRIR48eVXh4uCQpPDxce/fudbnSy8aNG2W32xUSEuIcc+k+8sfk78PLy0uhoaEuY/Ly8pSQkOAcAwAA4G70SAAAAEUr1Tekpk6dqttuu02tWrXS6dOntWzZMm3evFkbNmyQn5+fxowZo7i4ODVu3Fh2u13jxo1TeHi4+vbtK0nq37+/QkJCdO+992revHlKTU3Vk08+qZiYGOencg8//LAWLFigxx9/XPfff782bdqkDz74QOvWrXPWERcXp+joaPXq1Ut9+vTRK6+8oqysLI0ePboCpwYAAKBk6JEAAABKp1SB1MmTJzVq1CidOHFCfn5+uuaaa7RhwwbdeuutkqSXX35ZHh4eGjp0qLKzsxUZGanXX3/dub2np6fWrl2rRx55ROHh4WrQoIGio6P19NNPO8e0bdtW69at08SJE/Xqq6+qZcuWevvttxUZGekcM2LECKWnp2v69OlKTU1V9+7dFR8fX+AkngAAACbQIwEAAJSOzbIsy91FuIvD4ZCfn58yMzNlt9srfP+Hl0+TR/tWLsva9Xqowo8DAABKrrLf/2sCEz2SJJc+iR4JAAD3Mt0jlfscUgAAAAAAAEBpEEgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKpUgdTcuXPVu3dv+fr6qnnz5ho8eLAOHTrkMub8+fOKiYlRkyZN1LBhQw0dOlRpaWkuY44ePaqoqCjVr19fzZs316RJk3Tx4kWXMZs3b1bPnj3l7e2t9u3ba8mSJQXqWbhwodq0aSMfHx+FhYVpx44dpXk4AAAAFYIeCQAAoHRKFUht2bJFMTEx+te//qWNGzfqwoUL6t+/v7KyspxjJk6cqE8++UQrV67Uli1bdPz4cQ0ZMsS5Pjc3V1FRUcrJydG2bdv0zjvvaMmSJZo+fbpzTEpKiqKiotSvXz8lJydrwoQJGjt2rDZs2OAcs2LFCsXFxWnGjBnavXu3unXrpsjISJ08ebI88wEAAFBq9EgAAAClY7Msyyrrxunp6WrevLm2bNmiG264QZmZmWrWrJmWLVumYcOGSZIOHjyoq666SomJierbt6/Wr1+vgQMH6vjx4woICJAkLVq0SJMnT1Z6erq8vLw0efJkrVu3Tvv27XMea+TIkcrIyFB8fLwkKSwsTL1799aCBQskSXl5eQoODta4ceM0ZcqUEtXvcDjk5+enzMxM2e32sk5DkQ4vnyaP9q1clrXr9VCFHwcAAJRcZb//S/RIl3N4+TRJcumT6JEAAHAvEz3Spcp1DqnMzExJUuPGjSVJSUlJunDhgiIiIpxjOnfurFatWikxMVGSlJiYqK5duzobLUmKjIyUw+HQ/v37nWMu3Uf+mPx95OTkKCkpyWWMh4eHIiIinGMAAADchR4JAACgeHXKumFeXp4mTJig6667TldffbUkKTU1VV5eXvL393cZGxAQoNTUVOeYSxut/PX564ob43A4dO7cOf3666/Kzc0tdMzBgweLrDk7O1vZ2dnO+w6HoxSPGAAA4PLokQAAAC6vzN+QiomJ0b59+7R8+fKKrKdSzZ07V35+fs5bcHCwu0sCAAA1DD0SAADA5ZUpkIqNjdXatWv1xRdfqGXLls7lgYGBysnJUUZGhsv4tLQ0BQYGOsf8/ooy+fcvN8Zut6tevXpq2rSpPD09Cx2Tv4/CTJ06VZmZmc7bsWPHSvfAAQAAikGPBAAAUDKlCqQsy1JsbKxWrVqlTZs2qW3bti7rQ0NDVbduXSUkJDiXHTp0SEePHlV4eLgkKTw8XHv37nW50svGjRtlt9sVEhLiHHPpPvLH5O/Dy8tLoaGhLmPy8vKUkJDgHFMYb29v2e12lxsAAEB50SMBAACUTqnOIRUTE6Nly5bp448/lq+vr/N8Bn5+fqpXr578/Pw0ZswYxcXFqXHjxrLb7Ro3bpzCw8PVt29fSVL//v0VEhKie++9V/PmzVNqaqqefPJJxcTEyNvbW5L08MMPa8GCBXr88cd1//33a9OmTfrggw+0bt06Zy1xcXGKjo5Wr1691KdPH73yyivKysrS6NGjK2puAAAASoQeCQAAoHRKFUi98cYbkqSbbrrJZfnixYt13333SZJefvlleXh4aOjQocrOzlZkZKRef/1151hPT0+tXbtWjzzyiMLDw9WgQQNFR0fr6aefdo5p27at1q1bp4kTJ+rVV19Vy5Yt9fbbbysyMtI5ZsSIEUpPT9f06dOVmpqq7t27Kz4+vsBJPAEAACobPRIAAEDp2CzLstxdhLs4HA75+fkpMzOzUr6afnj5NHm0b+WyrF2vhyr8OAAAoOQq+/2/JjDRI0ly6ZPokQAAcC/TPVKZr7IHAAAAAAAAlAWBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgVKkDqa1bt2rQoEEKCgqSzWbT6tWrXdZblqXp06erRYsWqlevniIiInT48GGXMb/88ovuuece2e12+fv7a8yYMTpz5ozLmG+//VZ/+MMf5OPjo+DgYM2bN69ALStXrlTnzp3l4+Ojrl276tNPPy3twwEAAKgQ9EgAAAAlV+pAKisrS926ddPChQsLXT9v3jzNnz9fixYt0vbt29WgQQNFRkbq/PnzzjH33HOP9u/fr40bN2rt2rXaunWrHnzwQed6h8Oh/v37q3Xr1kpKStLzzz+vmTNn6q233nKO2bZtm+666y6NGTNGe/bs0eDBgzV48GDt27evtA8JAACg3OiRAAAASs5mWZZV5o1tNq1atUqDBw+W9Nsnf0FBQfrLX/6ixx57TJKUmZmpgIAALVmyRCNHjtSBAwcUEhKinTt3qlevXpKk+Ph43X777frpp58UFBSkN954Q9OmTVNqaqq8vLwkSVOmTNHq1at18OBBSdKIESOUlZWltWvXOuvp27evunfvrkWLFpWofofDIT8/P2VmZsput5d1Gop0ePk0ebRv5bKsXa+HKvw4AACg5Cr7/V+iR7qcw8unSZJLn0SPBACAe5nokS5VoeeQSklJUWpqqiIiIpzL/Pz8FBYWpsTERElSYmKi/P39nY2WJEVERMjDw0Pbt293jrnhhhucjZYkRUZG6tChQ/r111+dYy49Tv6Y/OMUJjs7Ww6Hw+UGAABQ2eiRAAAAXFVoIJWamipJCggIcFkeEBDgXJeamqrmzZu7rK9Tp44aN27sMqawfVx6jKLG5K8vzNy5c+Xn5+e8BQcHl/YhAgAAlBo9EgAAgKtadZW9qVOnKjMz03k7duyYu0sCAABwO3okAABgWoUGUoGBgZKktLQ0l+VpaWnOdYGBgTp58qTL+osXL+qXX35xGVPYPi49RlFj8tcXxtvbW3a73eUGAABQ2eiRAAAAXFVoINW2bVsFBgYqISHBuczhcGj79u0KDw+XJIWHhysjI0NJSUnOMZs2bVJeXp7CwsKcY7Zu3aoLFy44x2zcuFGdOnVSo0aNnGMuPU7+mPzjAAAAVBX0SAAAAK5KHUidOXNGycnJSk5OlvTbSTqTk5N19OhR2Ww2TZgwQbNnz9aaNWu0d+9ejRo1SkFBQc6rzFx11VUaMGCAHnjgAe3YsUNff/21YmNjNXLkSAUFBUmS7r77bnl5eWnMmDHav3+/VqxYoVdffVVxcXHOOsaPH6/4+Hi9+OKLOnjwoGbOnKldu3YpNja2/LMCAABQSvRIAAAAJVentBvs2rVL/fr1c97Pb4Cio6O1ZMkSPf7448rKytKDDz6ojIwMXX/99YqPj5ePj49zm6VLlyo2Nla33HKLPDw8NHToUM2fP9+53s/PT5999pliYmIUGhqqpk2bavr06XrwwQedY6699lotW7ZMTz75pJ544gl16NBBq1ev1tVXX12miQAAACgPeiQAAICSs1mWZbmQpTsJAAEAAElEQVS7CHdxOBzy8/NTZmZmpZwr4fDyafJo38plWbteD1X4cQAAQMlV9vt/TWCiR5Lk0ifRIwEA4F6me6RadZU9AAAAAAAAuB+BFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjqn0gtXDhQrVp00Y+Pj4KCwvTjh073F0SAACA29EjAQCAqqxaB1IrVqxQXFycZsyYod27d6tbt26KjIzUyZMn3V0aAACA29AjAQCAqq5aB1IvvfSSHnjgAY0ePVohISFatGiR6tevr7///e/uLs0p7/ujyvv+qLvLAAAAtUh16JEk0SMBAFCL1XF3AWWVk5OjpKQkTZ061bnMw8NDERERSkxMLHSb7OxsZWdnO+9nZmZKkhwOR6XUeObs/x1L3x6W7cqWSt78isuYK3veXynHBgAAhct/37csy82VVA56JAAAUBame6RqG0idOnVKubm5CggIcFkeEBCggwcPFrrN3LlzNWvWrALLg4ODK6XGkpnoxmMDAFB7nT59Wn5+fu4uo8LRIwEAgPIw1SNV20CqLKZOnaq4uDjn/by8PP3yyy9q0qSJbDZbhR7L4XAoODhYx44dk91ur9B91wTMT/GYn+IxP0VjborH/BSvtsyPZVk6ffq0goKC3F1KlUGPVHUwP8VjforH/BSP+Skac1O82jI/pnukahtINW3aVJ6enkpLS3NZnpaWpsDAwEK38fb2lre3t8syf3//yipRkmS322v0C7a8mJ/iMT/FY36KxtwUj/kpXm2Yn5r4zah89Eg1A/NTPOaneMxP8ZifojE3xasN82OyR6q2JzX38vJSaGioEhISnMvy8vKUkJCg8PBwN1YGAADgPvRIAACgOqi235CSpLi4OEVHR6tXr17q06ePXnnlFWVlZWn06NHuLg0AAMBt6JEAAEBVV60DqREjRig9PV3Tp09Xamqqunfvrvj4+AIn8XQHb29vzZgxo8DX3/Eb5qd4zE/xmJ+iMTfFY36Kx/zUHPRI1RfzUzzmp3jMT/GYn6IxN8VjfiqHzaqp1zwGAAAAAABAlVRtzyEFAAAAAACA6olACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSBVDgsXLlSbNm3k4+OjsLAw7dixo9jxK1euVOfOneXj46OuXbvq008/NVSpe5RmfpYsWSKbzeZy8/HxMVitOVu3btWgQYMUFBQkm82m1atXX3abzZs3q2fPnvL29lb79u21ZMmSSq/TXUo7P5s3by7w2rHZbEpNTTVTsGFz585V79695evrq+bNm2vw4ME6dOjQZberDX9/yjI3telvzxtvvKFrrrlGdrtddrtd4eHhWr9+fbHb1IbXDSoHPVLx6JEKR49UPHqk4tEjFY0eqXj0SO5DIFVGK1asUFxcnGbMmKHdu3erW7duioyM1MmTJwsdv23bNt11110aM2aM9uzZo8GDB2vw4MHat2+f4crNKO38SJLdbteJEyectyNHjhis2JysrCx169ZNCxcuLNH4lJQURUVFqV+/fkpOTtaECRM0duxYbdiwoZIrdY/Szk++Q4cOubx+mjdvXkkVuteWLVsUExOjf/3rX9q4caMuXLig/v37Kysrq8htasvfn7LMjVR7/va0bNlSzz77rJKSkrRr1y7dfPPNuuOOO7R///5Cx9eW1w0qHj1S8eiRikaPVDx6pOLRIxWNHql49EhuZKFM+vTpY8XExDjv5+bmWkFBQdbcuXMLHT98+HArKirKZVlYWJj10EMPVWqd7lLa+Vm8eLHl5+dnqLqqQ5K1atWqYsc8/vjjVpcuXVyWjRgxwoqMjKzEyqqGkszPF198YUmyfv31VyM1VTUnT560JFlbtmwpckxt+/uTryRzU1v/9uRr1KiR9fbbbxe6rra+blB+9EjFo0cqGXqk4tEjXR49UtHokS6PHskMviFVBjk5OUpKSlJERIRzmYeHhyIiIpSYmFjoNomJiS7jJSkyMrLI8dVZWeZHks6cOaPWrVsrODi42ES6tqlNr53y6N69u1q0aKFbb71VX3/9tbvLMSYzM1OS1Lhx4yLH1NbXUEnmRqqdf3tyc3O1fPlyZWVlKTw8vNAxtfV1g/KhRyoePVLFqk2vnfKgR6JH+j16pKLRI5lFIFUGp06dUm5urgICAlyWBwQEFPmb7NTU1FKNr87KMj+dOnXS3//+d3388cd6//33lZeXp2uvvVY//fSTiZKrtKJeOw6HQ+fOnXNTVVVHixYttGjRIn300Uf66KOPFBwcrJtuukm7d+92d2mVLi8vTxMmTNB1112nq6++ushxtenvT76Szk1t+9uzd+9eNWzYUN7e3nr44Ye1atUqhYSEFDq2Nr5uUH70SMWjR6pY9EjFo0eiRyoMPVLh6JHco467CwAkKTw83CWBvvbaa3XVVVfpzTff1DPPPOPGylDVderUSZ06dXLev/baa/XDDz/o5Zdf1nvvvefGyipfTEyM9u3bp6+++srdpVQ5JZ2b2va3p1OnTkpOTlZmZqY+/PBDRUdHa8uWLUU2XADcr7b9nULFoUeiRyoMPVLh6JHcg29IlUHTpk3l6emptLQ0l+VpaWkKDAwsdJvAwMBSja/OyjI/v1e3bl316NFD33//fWWUWK0U9dqx2+2qV6+em6qq2vr06VPjXzuxsbFau3atvvjiC7Vs2bLYsbXp749Uurn5vZr+t8fLy0vt27dXaGio5s6dq27duunVV18tdGxte92gYtAjFY8eqWLRI5UePZKr2vT3R6JHKg49knsQSJWBl5eXQkNDlZCQ4FyWl5enhISEIn9nGh4e7jJekjZu3Fjk+OqsLPPze7m5udq7d69atGhRWWVWG7XptVNRkpOTa+xrx7IsxcbGatWqVdq0aZPatm172W1qy2uoLHPze7Xtb09eXp6ys7MLXVdbXjeoWPRIxaNHqli16bVTUeiRXNWW1xA9UunRIxni3nOqV1/Lly+3vL29rSVLlljfffed9eCDD1r+/v5WamqqZVmWde+991pTpkxxjv/666+tOnXqWC+88IJ14MABa8aMGVbdunWtvXv3uushVKrSzs+sWbOsDRs2WD/88IOVlJRkjRw50vLx8bH279/vrodQaU6fPm3t2bPH2rNnjyXJeumll6w9e/ZYR44csSzLsqZMmWLde++9zvH/+c9/rPr161uTJk2yDhw4YC1cuNDy9PS04uPj3fUQKlVp5+fll1+2Vq9ebR0+fNjau3evNX78eMvDw8P6/PPP3fUQKtUjjzxi+fn5WZs3b7ZOnDjhvJ09e9Y5prb+/SnL3NSmvz1TpkyxtmzZYqWkpFjffvutNWXKFMtms1mfffaZZVm193WDikePVDx6pKLRIxWPHql49EhFo0cqHj2S+xBIlcNrr71mtWrVyvLy8rL69Olj/etf/3Kuu/HGG63o6GiX8R988IHVsWNHy8vLy+rSpYu1bt06wxWbVZr5mTBhgnNsQECAdfvtt1u7d+92Q9WVL/8SvL+/5c9HdHS0deONNxbYpnv37paXl5d15ZVXWosXLzZetymlnZ/nnnvOateuneXj42M1btzYuummm6xNmza5p3gDCpsbSS6vidr696csc1Ob/vbcf//9VuvWrS0vLy+rWbNm1i233OJstCyr9r5uUDnokYpHj1Q4eqTi0SMVjx6paPRIxaNHch+bZVlWxX/vCgAAAAAAACgc55ACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAqFK2bt2qQYMGKSgoSDabTatXry71PjZs2KC+ffvK19dXzZo109ChQ/Xjjz9WeK0AAACm1LQeiUAKAABUKVlZWerWrZsWLlxYpu1TUlJ0xx136Oabb1ZycrI2bNigU6dOaciQIRVcKQAAgDk1rUeyWZZlueXIAAAAl2Gz2bRq1SoNHjzYuSw7O1vTpk3TP/7xD2VkZOjqq6/Wc889p5tuukmS9OGHH+quu+5Sdna2PDx+++ztk08+0R133KHs7GzVrVvXDY8EAACg4tSEHolvSAEAgGolNjZWiYmJWr58ub799lvdeeedGjBggA4fPixJCg0NlYeHhxYvXqzc3FxlZmbqvffeU0REBGEUAACosapbj8Q3pAAAQJX1+0//jh49qiuvvFJHjx5VUFCQc1xERIT69Omjv/71r5KkLVu2aPjw4frvf/+r3NxchYeH69NPP5W/v78bHgUAAEDFqgk9Et+QAgAA1cbevXuVm5urjh07qmHDhs7bli1b9MMPP0iSUlNT9cADDyg6Olo7d+7Uli1b5OXlpWHDhonP4QAAQE1UHXukOsaPCAAAUEZnzpyRp6enkpKS5Onp6bKuYcOGkqSFCxfKz89P8+bNc657//33FRwcrO3bt6tv375GawYAAKhs1bFHIpACAADVRo8ePZSbm6uTJ0/qD3/4Q6Fjzp496zxRZ778xiwvL6/SawQAADCtOvZI/GQPAABUKWfOnFFycrKSk5Ml/XaJ4uTkZB09elQdO3bUPffco1GjRumf//ynUlJStGPHDs2dO1fr1q2TJEVFRWnnzp16+umndfjwYe3evVujR49W69at1aNHDzc+MgAAgLKraT0SJzUHAABVyubNm9WvX78Cy6Ojo7VkyRJduHBBs2fP1rvvvquff/5ZTZs2Vd++fTVr1ix17dpVkrR8+XLNmzdP//73v1W/fn2Fh/8/9u47PIpy////a9NDSKGlaQihE0V6CU2ESCJFQZADB6VIU0EFDvXroQkIIqIHj9JU8Ch+VDyCqBBBUBGMVINIEzQUhRAUSCiHFDK/P/hldUmAEDazm93n47r2uth77p25ZwbdF++ZvSdOzz//vGrXrm327gAAANiFq2UkClIAAAAAAAAwFT/ZAwAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpADAzRw7dkx+fn7avHnzDfu2bdtWbdu2tWk7efKkevTooQoVKshisejll1++qe336tVLPXv2vKnPAAAAlDQyEmAuClIAbLz22mtaunSpo4eBEvTss8+qWbNmatmyZbE+P3LkSH3++eeaMGGC3n77bSUmJkqSZsyYofvvv19hYWGyWCyaMmVKoZ8fN26c/vvf/2rXrl3F3QUAAExHRnJ9JZGR9u/fr7Fjx6p+/foKDAxURESEOnXqpO3btxf4PBkJ7sZiGIbh6EEAcB533nmnKlasqK+++srRQ0EJOHXqlG677Ta99dZb6t279w3751/5++vfh/DwcMXHx+udd96x6WuxWBQeHq569erp888/1+TJk69ZlGrWrJlq1aql//znP8XdFQAATEVGcm0llZFGjx6tN954Q927d1fTpk2VkZGhhQsX6vDhw0pKSlJ8fLzNeslIcCfcIQWg2C5cuODoIeAmvfPOO/Ly8lKXLl2KvY709HSFhIQUaE9NTdWJEycKFKoK07NnT3300Uc6f/58sccBAICzIiOVPiWVkXr37q1jx47p9ddf15AhQzRmzBht2bJF5cuXL/TCHRkJ7oSCFOAA586d04gRI1SlShX5+voqNDRU9957r3bu3Gnt07ZtW915553asWOHWrRoIX9/f8XExGjBggUF1peVlaXJkyerevXq8vX1VVRUlMaOHausrKwCfd955x01bdpUZcqUUbly5dSmTRutXbtWklSlShXt2bNHX3/9tSwWiywWi/Xqz9KlS2WxWPT111/riSeeUGhoqG6//XZJUv/+/VWlSpUC25oyZYosFotNm8Vi0fDhw7V8+XLFxsbK399fcXFx2r17tyRp4cKFql69uvz8/NS2bVsdPnz4po/vnj171K5dO/n7++v222/X9OnT9eabb8pisdzU+vLH/9NPP+nhhx9WcHCwKlWqpIkTJ8owDB07dkwPPPCAgoKCFB4erhdffLHAOop6bpYsWaJ27dopNDRUvr6+io2N1fz58wusr0qVKurcubM2bdqkpk2bys/PT1WrVi3yVbSVK1eqWbNmKlu2bIFlixYtUrVq1eTv76+mTZvqm2++sVme/3fAMAy9+uqr1r8jfx1bUd177726cOGC1q1bV+TPAABcHxmJjORqGalRo0YF1lmhQgW1bt1a+/btK7AtMhLciZejBwC4o8cee0wffvihhg8frtjYWP3xxx/atGmT9u3bp4YNG1r7nTlzRh07dlTPnj3Vu3dvffDBB3r88cfl4+OjRx99VJKUl5en+++/X5s2bdKQIUNUp04d7d69Wy+99JJ++uknrVy50rq+qVOnasqUKWrRooWeffZZ+fj4aMuWLdqwYYM6dOigl19+WU8++aTKli2rZ555RpIUFhZmM/YnnnhClSpV0qRJk4p99e+bb77RqlWrNGzYMEnSzJkz1blzZ40dO1avvfaannjiCZ05c0azZ8/Wo48+qg0bNhR53WlpabrnnnuUm5ur8ePHKyAgQIsWLZK/v3+xxipJf/vb31SnTh3NmjVLn332maZPn67y5ctr4cKFateunZ5//nktW7ZMo0ePVpMmTdSmTRtJN3du5s+frzvuuEP333+/vLy89Mknn+iJJ55QXl6e9TjlO3TokHr06KGBAweqX79+evPNN9W/f381atRId9xxxzX3IycnR9u2bdPjjz9eYNkbb7yhoUOHqkWLFhoxYoR++eUX3X///SpfvryioqIkSW3atNHbb7+tRx55RPfee6/69u1b7GOaH7Q3b96sbt26FXs9AADXQkYiI7lLRkpLS1PFihULtJOR4FYMAKYLDg42hg0bdt0+d999tyHJePHFF61tWVlZRv369Y3Q0FAjOzvbMAzDePvttw0PDw/jm2++sfn8ggULDEnG5s2bDcMwjIMHDxoeHh5Gt27djMuXL9v0zcvLs/75jjvuMO6+++4C41myZIkhyWjVqpWRm5trs6xfv35GdHR0gc9MnjzZuPp/M5IMX19fIzU11dq2cOFCQ5IRHh5uZGZmWtsnTJhgSLLpeyMjRowwJBlbtmyxtqWnpxvBwcE3va788Q8ZMsTalpuba9x+++2GxWIxZs2aZW0/c+aM4e/vb/Tr18/aVtRzYxiGcfHixQLbT0hIMKpWrWrTFh0dbUgyNm7caLN/vr6+xj/+8Y/r7s+hQ4cMScYrr7xi056dnW2EhoYa9evXN7KysqztixYtMiQV+Psg6bp/f0+dOmVIMiZPnnzd8dSsWdO47777rtsHAOBeyEhkJFfOSPk2btxoWCwWY+LEiYUuJyPBXfCTPcABQkJCtGXLFh0/fvy6/by8vDR06FDrex8fHw0dOlTp6enasWOHJGn58uWqU6eOateurd9//936ateunSTpyy+/lHTlNuS8vDxNmjRJHh62/+lffcv49QwePFienp5F7l+Y9u3b29y+3qxZM0lS9+7dFRgYWKD9l19+KfK6V69erebNm6tp06bWtkqVKqlPnz7FHu+gQYOsf/b09FTjxo1lGIYGDhxobQ8JCVGtWrVsxlrUcyPJ5upkRkaGfv/9d91999365ZdflJGRYTOe2NhYtW7d2mb/rt52Yf744w9JUrly5Wzat2/frvT0dD322GPy8fGxtvfv31/BwcHXXeetKFeunH7//fcSWz8AoPQhI5GRJNfOSOnp6fr73/+umJgYjR07ttA+ZCS4C36yBzjA7Nmz1a9fP0VFRalRo0bq2LGj+vbtq6pVq9r0i4yMVEBAgE1bzZo1JUmHDx9W8+bNdfDgQe3bt0+VKlUqdFvp6emSpJ9//lkeHh6KjY29pbHHxMTc0uclqXLlyjbv87/Q8297vrr9zJkzRV73kSNHrCHtr2rVqnWzw7QqbLx+fn4FbrMODg62BhpJRT43krR582ZNnjxZycnJunjxok2/jIwMm9Bz9XikK8GlqMfJuOrhqkeOHJEk1ahRw6bd29u7wN9JezIM46aCPgDA9ZGRyEiS62akCxcuqHPnzjp37pw2bdpU6HxV+eMgI8EdUJACHKBnz55q3bq1VqxYobVr1+qFF17Q888/r48++kj33XffTa0rLy9PdevW1dy5cwtdfnWAuVWFzTNwrS/My5cvF9p+rauH12q/OhyYrbBxFWWsRT03P//8s9q3b6/atWtr7ty5ioqKko+Pj1avXq2XXnpJeXl5N73twlSoUEHSzYXXknTmzJkCAQ8A4N7ISGQkyTUzUnZ2th588EH98MMP+vzzz3XnnXdesy8ZCe6CghTgIBEREXriiSf0xBNPKD09XQ0bNtSMGTNswtbx48d14cIFmyuAP/30k6Q/n2hWrVo17dq1S+3bt7/ulZRq1aopLy9Pe/fuVf369a/ZrzhXY8qVK6ezZ88WaM+/qmSm6OhoHTx4sED7gQMHTB9LUc/NJ598oqysLK1atcrmyt5fb1e3h8qVK8vf31+pqak27dHR0ZKuXK3Mv1VeujLBZ2pqqurVq2fXcUhSbm6ujh07pvvvv9/u6wYAlG5kpJJBRrq2ks5IeXl56tu3r9avX68PPvhAd9999zX7kpHgTphDCjDZ5cuXC/zePTQ0VJGRkQUec5ubm6uFCxda32dnZ2vhwoWqVKmSGjVqJOnKlcTffvtNixcvLrCt//3vf9anvHTt2lUeHh569tlnC1xN+utVo4CAgEKD0/VUq1ZNGRkZ+uGHH6xtJ06c0IoVK25qPfbQsWNHfffdd9q6dau17dSpU1q2bJnpYynqucm/mvfX85CRkaElS5bYdTze3t5q3Lixtm/fbtPeuHFjVapUSQsWLFB2dra1fenSpTf9d6Go9u7dq0uXLqlFixYlsn4AQOlDRipZZKRrK+mM9OSTT+r999/Xa6+9pgcffPC6fclIcCfcIQWY7Ny5c7r99tvVo0cP1atXT2XLltUXX3yhbdu26cUXX7TpGxkZqeeff16HDx9WzZo19f777yslJUWLFi2St7e3JOmRRx7RBx98oMcee0xffvmlWrZsqcuXL2v//v364IMP9Pnnn6tx48aqXr26nnnmGU2bNk2tW7fWgw8+KF9fX23btk2RkZGaOXOmJKlRo0aaP3++pk+frurVqys0NNTmilBhevXqpXHjxqlbt2566qmndPHiRc2fP181a9bUzp07S+ZAXsPYsWP19ttvKzExUU8//bT1kcbR0dE2YdAMRT03HTp0kI+Pj7p06aKhQ4fq/PnzWrx4sUJDQ3XixAm7jumBBx7QM888o8zMTAUFBUm6EsKmT5+uoUOHql27dvrb3/6m1NRULVmy5KbmR3j77bd15MgR6/wOGzdu1PTp063HIv8qoyStW7dOZcqU0b333mvHvQMAlGZkpJJFRrq+kspIL7/8sl577TXFxcWpTJkyeuedd2yWd+vWzeZOPzIS3Ir5D/YD3FtWVpYxZswYo169ekZgYKAREBBg1KtXz3jttdds+t19993GHXfcYWzfvt2Ii4sz/Pz8jOjoaOPf//53gXVmZ2cbzz//vHHHHXcYvr6+Rrly5YxGjRoZU6dONTIyMmz6vvnmm0aDBg2s/e6++25j3bp11uVpaWlGp06djMDAQJvH2eY/0njbtm2F7tfatWuNO++80/Dx8TFq1aplvPPOO9d8pPHVj8NNTU01JBkvvPCCTfuXX35pSDKWL19+/YN6lR9++MG4++67DT8/P+O2224zpk2bZrzxxhvFfqTxqVOnbNr79etnBAQEFOiff87+qqjnZtWqVcZdd91l+Pn5GVWqVDGef/5548033yww5ujoaKNTp06FbruwR1Ff7eTJk4aXl5fx9ttvF1j22muvGTExMYavr6/RuHFjY+PGjYWut7BzmD8GSYW+vvzyS5u+zZo1Mx5++OEbjhcA4D7ISGQkV8xI/fr1u2Y+Kuy4k5HgTiyG4eCZ8AAUqm3btvr999/1448/OnooLmHp0qUaMGCAUlNTbR6n7I4GDhyon376Sd98841Dtp+SkqKGDRtq586d152rAwCAwpCR7IuM9CcyEmAu5pACADczefJkbdu2TZs3b3bI9mfNmqUePXoQtAAAgFMhIwHmYg4pAKXC//73vwITnV6tfPny8vHxueG6zp8/r/Pnz1+3T6VKla756ODSrnLlyrp06ZLDtv/ee+85bNsAALgaMpL9kJEAc1GQAlAqvP/++xowYMB1+3z55Zdq27btDdc1Z84cTZ069bp9uG0dAACUBmQkAKUVc0gBKBVOnDihPXv2XLdPo0aNVK5cuRuu65dfftEvv/xy3T6tWrWSn5/fTY0RAADAbGQkAKUVBSkAAAAAAACYiknNAQAAAAAAYCq3nkMqLy9Px48fV2BgoCwWi6OHAwAATGAYhs6dO6fIyEh5eHBtrjBkJAAA3I/ZGcmtC1LHjx9XVFSUo4cBAAAc4NixY7r99tsdPQynREYCAMB9mZWR3LogFRgYKOnKwQ4KCnLwaAAAgBkyMzMVFRVlzQEoiIwEAID7MTsjuXVBKv8W9KCgIMIWAABuhp+iXRsZCQAA92VWRmLiBAAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApnLrOaQAALgWwzCUm5ury5cvO3oouEmenp7y8vJijigAAEoAGan0craMREEKAICrZGdn68SJE7p48aKjh4JiKlOmjCIiIuTj4+PooQAA4DLISKWfM2UkClIAAPxFXl6eUlNT5enpqcjISPn4+DjNVSTcmGEYys7O1qlTp5SamqoaNWrIw4MZCgAAuFVkpNLNGTMSBSkAAP4iOztbeXl5ioqKUpkyZRw9HBSDv7+/vL29deTIEWVnZ8vPz8/RQwIAoNQjI5V+zpaRuGQIAEAhHH3FCLeG8wcAQMngO7Z0c6bz5zwjAQAAAAAAgFugIAUAAAAAAABTMYcUAABFlJO0ybRteSe2KnLfG00oOnnyZE2ZMuUWR1Q8FotFK1asUNeuXYu9jkWLFundd9/Vzp07de7cOZ05c0YhISF2GyMAALg1ZmYkiZyU7/Tp05o8ebLWrl2ro0ePqlKlSurataumTZum4OBg+w62BFCQAgCglDtx4oT1z++//74mTZqkAwcOWNvKli17U+vLzs52ikcB57t48aISExOVmJioCRMmOHo4AACgFHHlnHT8+HEdP35cc+bMUWxsrI4cOaLHHntMx48f14cffujo4d0QP9krQTlJmwq8AACwt/DwcOsrODhYFovF+v7ChQvq06ePwsLCVLZsWTVp0kRffPGFzeerVKmiadOmqW/fvgoKCtKQIUMkSYsXL7Y+Sadbt26aO3dugTuTPv74YzVs2FB+fn6qWrWqpk6dqtzcXOt6Jalbt26yWCzW97t27dI999yjwMBABQUFqVGjRtq+ffs192/EiBEaP368mjdvbp8DBocjIwEAzOLKOenOO+/Uf//7X3Xp0kXVqlVTu3btNGPGDH3yySfW7TgzClIAALiw8+fPq2PHjlq/fr2+//57JSYmqkuXLjp69KhNvzlz5qhevXr6/vvvNXHiRG3evFmPPfaYnn76aaWkpOjee+/VjBkzbD7zzTffqG/fvnr66ae1d+9eLVy4UEuXLrX227ZtmyRpyZIlOnHihPV9nz59dPvtt2vbtm3asWOHxo8fL29vbxOOBgAAwJ9cMSdlZGQoKChIXl7O/4M45x8hAAAotnr16qlevXrW99OmTdOKFSu0atUqDR8+3Nrerl07/eMf/7C+f+aZZ3Tfffdp9OjRkqSaNWvq22+/1aeffmrtM3XqVI0fP179+vWTJFWtWlXTpk3T2LFjNXnyZFWqVEmSFBISovDwcOvnjh49qjFjxqh27dqSpBo1apTAngMAAFyfq+Wk33//XdOmTbPexeXsuEMKAAAXdv78eY0ePVp16tRRSEiIypYtq3379hW48te4cWOb9wcOHFDTpk1t2q5+v2vXLj377LMqW7as9TV48GCdOHFCFy9evOaYRo0apUGDBik+Pl6zZs3Szz//fIt7CQAAcPNcKSdlZmaqU6dOio2Nddgk7TeLghQAAC5s9OjRWrFihZ577jl98803SklJUd26dZWdnW3TLyAg4KbXff78eU2dOlUpKSnW1+7du3Xw4EH5+fld83NTpkzRnj171KlTJ23YsEGxsbFasWLFTW8fAADgVrhKTjp37pwSExMVGBioFStWlJqpEPjJHgAALmzz5s3q37+/unXrJulKODp8+PANP1erVi3rXAb5rn7fsGFDHThwQNWrV7/mery9vXX58uUC7TVr1lTNmjU1cuRI9e7dW0uWLLGOEQAAwAyukJMyMzOVkJAgX19frVq16rrFLmdDQQoAABdWo0YNffTRR+rSpYssFosmTpyovLy8G37uySefVJs2bTR37lx16dJFGzZs0Jo1a2SxWKx9Jk2apM6dO6ty5crq0aOHPDw8tGvXLv3444+aPn26pCtPkFm/fr1atmwpX19f+fn5acyYMerRo4diYmL066+/atu2berevfs1x5KWlqa0tDQdOnRIkrR7924FBgaqcuXKKl++/C0eIQAA4K5Ke07KzMxUhw4ddPHiRb3zzjvKzMxUZmamJKlSpUry9PS0w1EqOfxkDwAAFzZ37lyVK1dOLVq0UJcuXZSQkKCGDRve8HMtW7bUggULNHfuXNWrV09JSUkaOXKkzVW3hIQEffrpp1q7dq2aNGmi5s2b66WXXlJ0dLS1z4svvqh169YpKipKDRo0kKenp/744w/17dtXNWvWVM+ePXXfffdp6tSp1xzLggUL1KBBAw0ePFiS1KZNGzVo0ECrVq26hSMDAADcXWnPSTt37tSWLVu0e/duVa9eXREREdbXsWPHbv0AlTCLYRiGowfhKJmZmQoODrY+FtHecpI2FWjzTmxl9+0AAOzn0qVLSk1NVUxMTKm65dkMgwcP1v79+/XNN984eig3dL3zWNLf/66AjAQAuBoZ6fpKS05ypozET/YAAECh5syZo3vvvVcBAQFas2aN3nrrLb322muOHhYAAIDDkZNuHQUpAABQqK1bt2r27Nk6d+6cqlatqnnz5mnQoEGOHhYAAIDDkZNuHQUpAABQqA8++MDRQwAAAHBK5KRbx6TmAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVF6OHgAAAKXFz9sXmratao2H3lT//v3766233pIkeXl5qXz58rrrrrvUu3dv9e/fXx4epfca1J49ezRp0iTt2LFDR44c0UsvvaQRI0Y4elgAAOD/Z2ZGkshJf7V48WL95z//0Y8//ihJatSokZ577jk1bdrUwSO7sdJ71AEAgI3ExESdOHFChw8f1po1a3TPPffo6aefVufOnZWbm+vo4RXbxYsXVbVqVc2aNUvh4eGOHg4AACiFXDUnffXVV+rdu7e+/PJLJScnKyoqSh06dNBvv/3m6KHdEAUpAABchK+vr8LDw3XbbbepYcOG+n//7//p448/1po1a7R06VJrv7Nnz2rQoEGqVKmSgoKC1K5dO+3atctmXZ988omaNGkiPz8/VaxYUd26dbMuO3PmjPr27aty5cqpTJkyuu+++3Tw4EFJ0oULFxQUFKQPP/zQZn0rV65UQECAzp07p+zsbA0fPlwRERHy8/NTdHS0Zs6cec39atKkiV544QX16tVLvr6+djhSAADA3bhqTlq2bJmeeOIJ1a9fX7Vr19brr7+uvLw8rV+/3g5HrWRRkAIAwIW1a9dO9erV00cffWRte+ihh5Senq41a9Zox44datiwodq3b6/Tp09Lkj777DN169ZNHTt21Pfff6/169fb3Pbdv39/bd++XatWrVJycrIMw1DHjh2Vk5OjgIAA9erVS0uWLLEZx5IlS9SjRw8FBgZq3rx5WrVqlT744AMdOHBAy5YtU5UqVUw5HgAAAPlcMSddvHhROTk5Kl++/K0dHBMwhxQAAC6udu3a+uGHHyRJmzZt0tatW5Wenm6922jOnDlauXKlPvzwQw0ZMkQzZsxQr169NHXqVOs66tWrJ0k6ePCgVq1apc2bN6tFixaSrlyZi4qK0sqVK/XQQw9p0KBBatGihU6cOKGIiAilp6dr9erV+uKLLyRJR48eVY0aNdSqVStZLBZFR0ebeTgAAACsXC0njRs3TpGRkYqPj7/lY1PS7H6H1MaNG9WlSxdFRkbKYrFo5cqV1mU5OTkaN26c6tatq4CAAEVGRqpv3746fvy4zTpOnz6tPn36KCgoSCEhIRo4cKDOnz9v0+eHH35Q69at5efnp6ioKM2ePdveuwIAgEswDEMWi0WStGvXLp0/f14VKlRQ2bJlra/U1FT9/PPPkqSUlBS1b9++0HXt27dPXl5eatasmbWtQoUKqlWrlvbt2ydJatq0qe644w7r5KHvvPOOoqOj1aZNG0lXrhympKSoVq1aeuqpp7R27doS23dnQ04CAMC5uFJOmjVrlt577z2tWLFCfn5+N38wTGb3gtSFCxdUr149vfrqqwWWXbx4UTt37tTEiRO1c+dOffTRRzpw4IDuv/9+m359+vTRnj17tG7dOn366afauHGjhgwZYl2emZmpDh06KDo6Wjt27NALL7ygKVOmaNGiRfbeHQAASr19+/YpJiZGknT+/HlFREQoJSXF5nXgwAGNGTNGkuTv73/L2xw0aJB1PoYlS5ZowIAB1rDXsGFDpaamatq0afrf//6nnj17qkePHre8zdKAnAQAgHNxlZw0Z84czZo1S2vXrtVdd911y2M0g91/snfffffpvvvuK3RZcHCw1q1bZ9P273//W02bNtXRo0dVuXJl7du3T0lJSdq2bZsaN24sSXrllVfUsWNHzZkzR5GRkVq2bJmys7P15ptvysfHR3fccYdSUlI0d+5cm0AGAIC727Bhg3bv3q2RI0dKuhJy0tLS5OXldc35CO666y6tX79eAwYMKLCsTp06ys3N1ZYtW6y3ov/xxx86cOCAYmNjrf0efvhhjR07VvPmzdPevXvVr18/m/UEBQXpb3/7m/72t7+pR48eSkxM1OnTp0vFfAe3gpwEAIDzcJWcNHv2bM2YMUOff/65NR+UBg6f1DwjI0MWi0UhISGSpOTkZIWEhNgcxPj4eHl4eGjLli3WPm3atJGPj4+1T0JCgg4cOKAzZ85cc1tZWVnKzMy0eQEA4CqysrKUlpam3377TTt37tRzzz2nBx54QJ07d1bfvn0lXflOjYuLU9euXbV27VodPnxY3377rZ555hlt375dkjR58mT93//9nyZPnqx9+/Zp9+7dev755yVJNWrU0AMPPKDBgwdr06ZN2rVrlx5++GHddttteuCBB6xjKVeunB588EGNGTNGHTp00O23325dNnfuXP3f//2f9u/fr59++knLly9XeHi4NQtcLTs723qFMjs7W7/99ptSUlJ06NChEjqSzsOsnERGAgC4OlfNSc8//7wmTpyoN998U1WqVFFaWprS0tIK/JzfGTm0IHXp0iWNGzdOvXv3VlBQkCQpLS1NoaGhNv28vLxUvnx5paWlWfuEhYXZ9Ml/n9+nMDNnzlRwcLD1FRUVZc/dAQDAoZKSkhQREaEqVaooMTFRX375pebNm6ePP/5Ynp6ekiSLxaLVq1erTZs2GjBggGrWrKlevXrpyJEj1u/Stm3bavny5Vq1apXq16+vdu3aaevWrdbtLFmyRI0aNVLnzp0VFxcnwzC0evVqeXt724xn4MCBys7O1qOPPmrTHhgYqNmzZ6tx48Zq0qSJDh8+rNWrV8vDo/BYcvz4cTVo0EANGjTQiRMnNGfOHDVo0ECDBg2y5+FzOmbmJDISAMDVuWpOmj9/vrKzs9WjRw9FRERYX3PmzLHn4SsRDnvKXk5Ojnr27CnDMDR//nxTtjlhwgSNGjXK+j4zM5PABQAosmqNhzp6CNe0dOlS61wEN5L/SOF58+Zds8+DDz6oBx98sNBl5cqV03/+858bbue3335ThQoVbK4IStLgwYM1ePDgIo1VkqpUqSLDMIrc3xWYnZPISACAW+HMGUly7Zx0+PDhIvd1Ng4pSOWHrCNHjmjDhg3Wq36SFB4ervT0dJv+ubm5On36tMLDw619Tp48adMn/31+n8L4+vpaH90IAABKxsWLF3XixAnNmjVLQ4cOtfnpGG7METmJjAQAgDnISX8y/Sd7+SHr4MGD+uKLL1ShQgWb5XFxcTp79qx27NhhbduwYYPy8vKsj06Mi4vTxo0blZOTY+2zbt061apVS+XKlTNnRwAAQKFmz56t2rVrKzw8XBMmTHD0cEoVchIAAK6NnPQnuxekzp8/b514VJJSU1OVkpKio0ePKicnRz169ND27du1bNkyXb582TrhVnZ2tqQrs9InJiZq8ODB2rp1qzZv3qzhw4erV69eioyMlCT9/e9/l4+PjwYOHKg9e/bo/fff17/+9S+bW80BAIBjTJkyRTk5OVq/fr3Kli3r6OE4FXISAADujZz0J7v/ZG/79u265557rO/zw0+/fv00ZcoUrVq1SpJUv359m899+eWXatu2rSRp2bJlGj58uNq3by8PDw91797d5vebwcHBWrt2rYYNG6ZGjRqpYsWKmjRpEo8yBgAATo2cBAAAcIXFcLdZQv8iMzNTwcHBysjIsJmfwV5ykjbdsI93Yiu7bxcAUHyXLl1SamqqYmJi5Ofn5+jhoJiudx5L+vvfFZCRAABXIyO5BmfKSKbPIQUAQGngxtdrXALnDwCAksF3bOnmTOePghQAAH/h7e0t6coTUFB65Z+//PMJAABuDRnJNThTRrL7HFIAAJRmnp6eCgkJUXp6uiSpTJkyslgsDh4VisowDF28eFHp6ekKCQmRp6eno4cEAIBLICOVbs6YkShIAQBwlfDwcEmyBi6UPiEhIdbzCAAA7IOMVPo5U0aiIAUAwFUsFosiIiIUGhqqnJwcRw8HN8nb29sprvoBAOBqyEilm7NlJApSAABcg6enp1N9aQMAADgDMhLsgUnNAQAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaye0Fq48aN6tKliyIjI2WxWLRy5Uqb5YZhaNKkSYqIiJC/v7/i4+N18OBBmz6nT59Wnz59FBQUpJCQEA0cOFDnz5+36fPDDz+odevW8vPzU1RUlGbPnm3vXQEAALArchIAAMAVdi9IXbhwQfXq1dOrr75a6PLZs2dr3rx5WrBggbZs2aKAgAAlJCTo0qVL1j59+vTRnj17tG7dOn366afauHGjhgwZYl2emZmpDh06KDo6Wjt27NALL7ygKVOmaNGiRfbeHQAAALshJwEAAFxhMQzDKLGVWyxasWKFunbtKunKVb/IyEj94x//0OjRoyVJGRkZCgsL09KlS9WrVy/t27dPsbGx2rZtmxo3bixJSkpKUseOHfXrr78qMjJS8+fP1zPPPKO0tDT5+PhIksaPH6+VK1dq//79RR5fZmamgoODlZGRoaCgIPvuvKScpE3F+px3Yis7jwQAAOQr6e//onLmnERGAgDA/ZidkUydQyo1NVVpaWmKj4+3tgUHB6tZs2ZKTk6WJCUnJyskJMQasiQpPj5eHh4e2rJli7VPmzZtrCFLkhISEnTgwAGdOXPmmtvPyspSZmamzQsAAMAZODInkZEAAIDZTC1IpaWlSZLCwsJs2sPCwqzL0tLSFBoaarPcy8tL5cuXt+lT2Dr+uo3CzJw5U8HBwdZXVFTUre0QAACAnTgyJ5GRAACA2dzqKXsTJkxQRkaG9XXs2DFHDwkAAMDhyEgAAMBsphakwsPDJUknT560aT958qR1WXh4uNLT022W5+bm6vTp0zZ9ClvHX7dRGF9fXwUFBdm8AAAAnIEjcxIZCQAAmM3UglRMTIzCw8O1fv16a1tmZqa2bNmiuLg4SVJcXJzOnj2rHTt2WPts2LBBeXl5atasmbXPxo0blZOTY+2zbt061apVS+XKlTNpbwAAAOyHnAQAANyJ3QtS58+fV0pKilJSUiRdmaAzJSVFR48elcVi0YgRIzR9+nStWrVKu3fvVt++fRUZGWl9wkydOnWUmJiowYMHa+vWrdq8ebOGDx+uXr16KTIyUpL097//XT4+Pho4cKD27Nmj999/X//61780atQoe+8OAACA3ZCTAAAArvCy9wq3b9+ue+65x/o+P/z069dPS5cu1dixY3XhwgUNGTJEZ8+eVatWrZSUlCQ/Pz/rZ5YtW6bhw4erffv28vDwUPfu3TVv3jzr8uDgYK1du1bDhg1To0aNVLFiRU2aNElDhgyx9+4AAADYDTkJAADgCothGIajB+EomZmZCg4OVkZGRonMlZCTtKlYn/NObGXnkQAAgHwl/f3vCshIAAC4H7Mzkls9ZQ8AAAAAAACOR0EKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqbwcPQAUlJO0qUCbd2IrB4wEAADAeZCRAABwHdwhBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJjKIQWpy5cva+LEiYqJiZG/v7+qVaumadOmyTAMax/DMDRp0iRFRETI399f8fHxOnjwoM16Tp8+rT59+igoKEghISEaOHCgzp8/b/buAAAA2AUZCQAAuAuHFKSef/55zZ8/X//+97+1b98+Pf/885o9e7ZeeeUVa5/Zs2dr3rx5WrBggbZs2aKAgAAlJCTo0qVL1j59+vTRnj17tG7dOn366afauHGjhgwZ4ohdAgAAuGVkJAAA4C4sxl8vuZmkc+fOCgsL0xtvvGFt6969u/z9/fXOO+/IMAxFRkbqH//4h0aPHi1JysjIUFhYmJYuXapevXpp3759io2N1bZt29S4cWNJUlJSkjp27Khff/1VkZGRNxxHZmamgoODlZGRoaCgILvvZ07SJrutyzuxld3WBQCAOyvp7/9bQUa6eWQkAADsw+yM5JA7pFq0aKH169frp59+kiTt2rVLmzZt0n333SdJSk1NVVpamuLj462fCQ4OVrNmzZScnCxJSk5OVkhIiDVoSVJ8fLw8PDy0ZcsWE/fGHDlJm2xeAADA9ZCRbh4ZCQCA0snLERsdP368MjMzVbt2bXl6eury5cuaMWOG+vTpI0lKS0uTJIWFhdl8LiwszLosLS1NoaGhNsu9vLxUvnx5a5+rZWVlKSsry/o+MzPTbvsEAABwq8hIAADAXTjkDqkPPvhAy5Yt07vvvqudO3fqrbfe0pw5c/TWW2+V6HZnzpyp4OBg6ysqKqpEtwcAAHAzyEgAAMBdOKQgNWbMGI0fP169evVS3bp19cgjj2jkyJGaOXOmJCk8PFySdPLkSZvPnTx50rosPDxc6enpNstzc3N1+vRpa5+rTZgwQRkZGdbXsWPH7L1rAAAAxUZGAgAA7sIhBamLFy/Kw8N2056ensrLy5MkxcTEKDw8XOvXr7cuz8zM1JYtWxQXFydJiouL09mzZ7Vjxw5rnw0bNigvL0/NmjUrdLu+vr4KCgqyeQEAADgLMhIAAHAXDplDqkuXLpoxY4YqV66sO+64Q99//73mzp2rRx99VJJksVg0YsQITZ8+XTVq1FBMTIwmTpyoyMhIde3aVZJUp04dJSYmavDgwVqwYIFycnI0fPhw9erVq0hPjwEAAHA2ZCQAAOAuHFKQeuWVVzRx4kQ98cQTSk9PV2RkpIYOHapJkyZZ+4wdO1YXLlzQkCFDdPbsWbVq1UpJSUny8/Oz9lm2bJmGDx+u9u3by8PDQ927d9e8efMcsUsAAAC3jIwEAADchcUwDMPRg3CUzMxMBQcHKyMjo0RuTS/JRw97J7YqsXUDAODKSvr73xWQkQAAcD9mZySHzCEFAAAAAAAA90VBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACm8nL0AFA8OUmbCrR5J7ZywEgAAACcBxkJAIDSgTukAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUXo4eAOwnJ2lTgTbvxFYOGAkAAIDzICMBAOB8uEMKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYymEFqd9++00PP/ywKlSoIH9/f9WtW1fbt2+3LjcMQ5MmTVJERIT8/f0VHx+vgwcP2qzj9OnT6tOnj4KCghQSEqKBAwfq/PnzZu8KAACA3ZCRAACAO3BIQerMmTNq2bKlvL29tWbNGu3du1cvvviiypUrZ+0ze/ZszZs3TwsWLNCWLVsUEBCghIQEXbp0ydqnT58+2rNnj9atW6dPP/1UGzdu1JAhQxyxSwAAALeMjAQAANyFxTAMw+yNjh8/Xps3b9Y333xT6HLDMBQZGal//OMfGj16tCQpIyNDYWFhWrp0qXr16qV9+/YpNjZW27ZtU+PGjSVJSUlJ6tixo3799VdFRkbecByZmZkKDg5WRkaGgoKC7LeD/7+cpE12X+fN8k5s5eghAADgVEr6+/9WkJHMQ0YCAMCW2RnJIXdIrVq1So0bN9ZDDz2k0NBQNWjQQIsXL7YuT01NVVpamuLj461twcHBatasmZKTkyVJycnJCgkJsQYtSYqPj5eHh4e2bNli3s4AAFxOTtImmxdgFjISAMCZXZ2RyEm4FQ4pSP3yyy+aP3++atSooc8//1yPP/64nnrqKb311luSpLS0NElSWFiYzefCwsKsy9LS0hQaGmqz3MvLS+XLl7f2uVpWVpYyMzNtXgAAAM6CjAQAANyFlyM2mpeXp8aNG+u5556TJDVo0EA//vijFixYoH79+pXYdmfOnKmpU6eW2PoBAABuBRkJAAC4C4fcIRUREaHY2Fibtjp16ujo0aOSpPDwcEnSyZMnbfqcPHnSuiw8PFzp6ek2y3Nzc3X69Glrn6tNmDBBGRkZ1texY8fssj8AAAD2QEYCAADuwiEFqZYtW+rAgQM2bT/99JOio6MlSTExMQoPD9f69eutyzMzM7VlyxbFxcVJkuLi4nT27Fnt2LHD2mfDhg3Ky8tTs2bNCt2ur6+vgoKCbF6ujt/3AgBQepCRzENGAgDAsRzyk72RI0eqRYsWeu6559SzZ09t3bpVixYt0qJFiyRJFotFI0aM0PTp01WjRg3FxMRo4sSJioyMVNeuXSVduVqYmJiowYMHa8GCBcrJydHw4cPVq1evIj09BgAAwNmQkQAAgLtwSEGqSZMmWrFihSZMmKBnn31WMTExevnll9WnTx9rn7Fjx+rChQsaMmSIzp49q1atWikpKUl+fn7WPsuWLdPw4cPVvn17eXh4qHv37po3b54jdgkAYLKr72jgEe5wBWQkAMCtIiOhtLAYhmE4ehCOkpmZqeDgYGVkZJTIrenOePs3/zMC4CpKMmwR5FxbSX//uwIyEgCUXmZmJHuvH45ldkZyyB1SAACUJoQvAACAwnEhD8XlkEnNAQAAAAAA4L4oSAEAAAAAAMBU/GTPzfCzEwDuhFvIARQVGQmAO+H/eXAGFKQAAG7DGSdSBgAAcAbkJJiNghQAAMXw8/aFBdqqNR7qgJEAAAA4DzISioqCFADArR0+u6ZAW5WQ+4q1Ln4iCAAAXEVJZiSJnAQKUgAAJ1PcwMJt5gAAwJWRkeBqKEgBAByqtIakvENHCzaG3GH+QAAAgEsiI8HVUZACAKAEXT2PAnMoAAAAkJFAQQoAgCIpbB6F4mAOBQAA4ErISCguClIAALsoLRN62ys0FUVO0iblnb3qtnVuWQcAwK2QkQpX4Kd9ZCS3Q0EKAJxcaQkxAAAAZiIjAaUbBSkAcAGl5Rbn0jI5p9lXCAEAQMkgI9kXGQn2REEKAFAiCgtWhYWYKiH3mTEcAAAAp0BGAq6gIAUAgJMpLVdzAQAAzERGci0UpADARbnSvArFvY3d7NvKi7K9wvrU0I3PDQEMAAD7ICORkeAcKEgBABzq6vBR2O3pzFcAAADcDRkJro6CFAAADlZaJjIFAAAwExnJtVGQAoD/nzve7uuO+wwAAG6eK/3MrSjISEDJoyAFAKVMca8UHXzvmQJtPL0FAAC4iuJmpJykTUX6eRwA+6IgBQC4aUUJfMxpAAAA3A0ZCSg6ClLgdlTAJD9vX1igrVrjoTbvneF38leP8+oxAoC7ICMB5iitGUkiJwG3goIUALio4l59yzt01Lahcclur6TWAwAAUBh7ZSSP6pVLdHsltR7AWVCQQqHcbdJCuD5Xu8pt5jwHhV0NrKw7Smx7KHrgrJJk+740/50GSgsyElwNGenWXJ2TyEglryg5iYxUOlCQAoCb5G7/GClwx5QkhRC2AACALVcrbt0IGQm4NRSkAMCNFffWb24ZBwAAroyMBJQ8ClIAcB2l5edqhJ/SjfMHAChtyEgwA+fPtVGQAuAWCvsyq6GSu4W80CfBVCyxzQEAABQLGQmAo3g4egAAAAAAAABwL9whBQB/cfVVQo+KRXucb3HkHTqqnN8LuUoIAADgZMhIAOyNghSAUs8Znnp39TwKeWcLeerK2YJNZj+aGAAAuA9neOodGQnAtVCQQrE5wxccALizq8N6Sc75AaDoyEgA4FgF7ujbvkfVGg910GhwLRSkALitQifVLOZ6Cr3aBwAAUArZKyNJV35+BwCFoSAFwO6KcmWYq8cAAMDdkJEA4E8UpABcU1Gujrl6QCr0ql7IHeYPBCiCq+fpkMTt6QBQAshIZCSUPlfnJDKS43k4egCzZs2SxWLRiBEjrG2XLl3SsGHDVKFCBZUtW1bdu3fXyZMnbT539OhRderUSWXKlFFoaKjGjBmj3Nxck0fvPnKSNhV4AaXd4bNrCrwAwJmQk5wfGQmuiIwEwAwOLUht27ZNCxcu1F133WXTPnLkSH3yySdavny5vv76ax0/flwPPvigdfnly5fVqVMnZWdn69tvv9Vbb72lpUuXatKkSWbvAgAAQIkgJwEAAFfmsJ/snT9/Xn369NHixYs1ffp0a3tGRobeeOMNvfvuu2rXrp0kacmSJapTp46+++47NW/eXGvXrtXevXv1xRdfKCwsTPXr19e0adM0btw4TZkyRT4+Po7aLQB2dvWVZle//R24FYX+fKKx+ePArSMnAbgRMhJQdGQk5+SwgtSwYcPUqVMnxcfH2wStHTt2KCcnR/Hx8da22rVrq3LlykpOTlbz5s2VnJysunXrKiwszNonISFBjz/+uPbs2aMGDRoUus2srCxlZWVZ32dmZpbAngHmcrcw4o4/heA2ecD9mJ2TyEhwRWQk10dGAko3hxSk3nvvPe3cuVPbtm0rsCwtLU0+Pj4KCQmxaQ8LC1NaWpq1z19DVv7y/GXXMnPmTE2dOvUWR4/rcbcvftiXOwYpALiaI3ISGankkZFwK8hIAFyR6QWpY8eO6emnn9a6devk5+dn6rYnTJigUaNGWd9nZmYqKirK1DEAKHmlObRxpQ9m4B/GzstROYmMBLiP0pqTyEgwAxnJXKZPar5jxw6lp6erYcOG8vLykpeXl77++mvNmzdPXl5eCgsLU3Z2ts6ePWvzuZMnTyo8PFySFB4eXuBpMvnv8/sUxtfXV0FBQTYvAAAAZ+GonERGAgAAZjP9Dqn27dtr9+7dNm0DBgxQ7dq1NW7cOEVFRcnb21vr169X9+7dJUkHDhzQ0aNHFRcXJ0mKi4vTjBkzlJ6ertDQUEnSunXrFBQUpNjYWHN3CDetKFdlqES7np+3L7R5X1l3FOlzV18NqxJy3w37AEBpRU5yb2Qk93R1Rso7e7TQvHM1MhKA0s70glRgYKDuvPNOm7aAgABVqFDB2j5w4ECNGjVK5cuXV1BQkJ588knFxcWpefPmkqQOHTooNjZWjzzyiGbPnq20tDT985//1LBhw+Tr62v2LuE6Sustwc6gsGPn6iGU0ATY39X/0JGKXhCG+chJ7oOMVHxkJAD2QEZyPIc9Ze96XnrpJXl4eKh79+7KyspSQkKCXnvtNetyT09Pffrpp3r88ccVFxengIAA9evXT88++6wDRw0gX2GhyaNiZQeMBEBRuOM/7kozchJQepGRgNKFjFSynKIg9dVXX9m89/Pz06uvvqpXX331mp+Jjo7W6tWrS3hkgHsrytW4GuJ/yIAzyzt0tGBjCFf/ShNyEuB8ipKRPLbvUbXGQ00YDYDiICM5nlMUpADYT1Gr+PZ6gkRxf3JQ3FvPuWUdsL9Cr9hv31OgrfLvtiGNK4QAShOzM1LeoaPK+d28nERGAuyPjFSyKEgBwE0i8MEdcNUQAHCzyEhwB2Qk+6EgBbdT1Dt67FXVLu7VuMIUd+I9JuwDAABFYeaT/shIAODeKEgBkFTyT/sp9EoCAIfgCjYAFB0ZCXAfZCRzUZACAABFcnVI46EGAAAAZKTioiAFp2Tm7eKlCb9XBgDAvZk99UBpQUYCgNKHghRcXkneZl3cdZf0rd/Fwe2pAAC4FzJS0ZGTAMD+PBw9AAAAAAAAALgX7pBCqVXUJ7PYa/3Oeut7Ua7YeVSsXKzP2Wv7AADAXCWZY8hI9h0DALgr7pACAAAAAACAqbhDCnADPE4YAACgIDISADgOd0gBAAAAAADAVNwhBZfijE+LAQAAcDQyEgDA2XCHFAAAAAAAAEzFHVKAE+PJLAAAAAWRkQCg9KMgBTgJghUAAEBBZCQAcE0UpAAHIFgBAAAUREYCAPfBHFIAAAAAAAAwFXdIAbegsKt4VULuc8BIAAAAnAcZCQBwIxSkAABAsfy8fWGBtmqNhzpgJAAAAM6DjFQ0/GQPAAAAAAAApuIOKcDOmIwTgLvIO3S0YGNj88cBoHQgIwFwF2SkoqEgBVwDcx8AAAAUREYCANgDP9kDAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqn7MGlFPWpL1f348kwAADAlZGRAADOhoIUSo2SfMRwYesGANy8nKRNBdq8E1s5YCSA+yAjAYDzIyMVREEKLs+eQYpQBgAAXAUZCQDgSMwhBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVMwhBdMVZY4BnugCAADcTVHnYSInAQBcgUPukJo5c6aaNGmiwMBAhYaGqmvXrjpw4IBNn0uXLmnYsGGqUKGCypYtq+7du+vkyZM2fY4ePapOnTqpTJkyCg0N1ZgxY5Sbm2vmruAGDp9dU+AFAAAKR0ZyL2QkAIA7c0hB6uuvv9awYcP03Xffad26dcrJyVGHDh104cIFa5+RI0fqk08+0fLly/X111/r+PHjevDBB63LL1++rE6dOik7O1vffvut3nrrLS1dulSTJk1yxC4BAADcMjISAABwFxbDMAxHD+LUqVMKDQ3V119/rTZt2igjI0OVKlXSu+++qx49ekiS9u/frzp16ig5OVnNmzfXmjVr1LlzZx0/flxhYWGSpAULFmjcuHE6deqUfHx8brjdzMxMBQcHKyMjQ0FBQXbfr5ykTXZfZ2lT0lf7rr5lnauLAOBYhf2UyDuxlQNGcm0l/f1vT2Qk11aSuYWMBADOhYxUkFNMap6RkSFJKl++vCRpx44dysnJUXx8vLVP7dq1VblyZSUnJ0uSkpOTVbduXWvQkqSEhARlZmZqz549hW4nKytLmZmZNi+UbtzqDgBwZWQkFBcZCQDg7BxekMrLy9OIESPUsmVL3XnnnZKktLQ0+fj4KCQkxKZvWFiY0tLSrH3+GrTyl+cvK8zMmTMVHBxsfUVFRdl5bwAAAOyDjAQAAFyZwwtSw4YN048//qj33nuvxLc1YcIEZWRkWF/Hjh0r8W0CAAAUBxkJAAC4Mi9Hbnz48OH69NNPtXHjRt1+++3W9vDwcGVnZ+vs2bM2VwBPnjyp8PBwa5+tW7farC//CTP5fa7m6+srX19fO+8FAACAfZGRAACAq3PIHVKGYWj48OFasWKFNmzYoJiYGJvljRo1kre3t9avX29tO3DggI4ePaq4uDhJUlxcnHbv3q309HRrn3Xr1ikoKEixsbHm7AgAAIAdkZEAAIC7cMgdUsOGDdO7776rjz/+WIGBgdb5DIKDg+Xv76/g4GANHDhQo0aNUvny5RUUFKQnn3xScXFxat68uSSpQ4cOio2N1SOPPKLZs2crLS1N//znPzVs2DCu8JWQqyfELOwpAUyaCQDurbDvgRpyrifIODMyUulERgIA3AgZqSCHFKTmz58vSWrbtq1N+5IlS9S/f39J0ksvvSQPDw91795dWVlZSkhI0GuvvWbt6+npqU8//VSPP/644uLiFBAQoH79+unZZ581azdKraKEJgAAYD4ykmORkQAAMI/FMAzD0YNwlMzMTAUHBysjI0NBQUF2X39O0ia7r9Meihu2uLIHACiOGr1mOHoINkr6+98VkJGuICMBAEqSu2ckh05qDudFsAIAACiIjAQAgH04ZFJzAAAAAAAAuC8KUgAAAAAAADAVP9kDt54DAAAUgowEAEDJ4Q4pAAAAAAAAmIo7pFwcV/YAAAAKIiMBAOBYFKRcCMEKAACgIDISAADOh5/sAQAAAAAAwFTcIVWKcbUPAFAa5CRtsnnvndjKQSOBuyAjAQBKA3fPSBSkSgmCFQAAQEFkJAAASicKUgAAwFRXXw2U3O+KIAAAwNXcLSMxhxQAAAAAAABMxR1SAACgRBXlJ1U15LpX/wAAAArj7hmJO6QAAAAAAABgKgpSAAAAAAAAMBU/2QMAAA538L1nCrTV6DXDASMBAABwHq6ckbhDCgAAAAAAAKbiDiknVJSJzQAAANwNGQkAANfBHVIAAAAAAAAwFXdImaywK3tVQu5zwEgAAACcBxkJAAD3QkHKCXD7OQAAQEFkJAAAXBc/2QMAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKbycvQAXNnhs2scPQQAAACnQ0YCAADcIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmKrUF6ReffVVValSRX5+fmrWrJm2bt3q6CEBAAA4HBkJAAA4s1JdkHr//fc1atQoTZ48WTt37lS9evWUkJCg9PR0Rw8NAADAYchIAADA2ZXqgtTcuXM1ePBgDRgwQLGxsVqwYIHKlCmjN99809FDAwAAcBgyEgAAcHaltiCVnZ2tHTt2KD4+3trm4eGh+Ph4JScnO3BkAAAAjkNGAgAApYGXowdQXL///rsuX76ssLAwm/awsDDt37+/0M9kZWUpKyvL+j4jI0OSlJmZWSJjPH8x68adAABAoUrq+zl/vYZhlMj6HY2MBACAa3OVjFRqC1LFMXPmTE2dOrVAe1RUlANGAwAArmvgiyW6+nPnzik4OLhEt1FakJEAAChFXCQjldqCVMWKFeXp6amTJ0/atJ88eVLh4eGFfmbChAkaNWqU9X1eXp5Onz6tChUqyGKx2HV8mZmZioqK0rFjxxQUFGTXdcM+OEelA+epdOA8OT/O0Z8Mw9C5c+cUGRnp6KGUCDIS7IHz5Pw4R6UD58n5cY7+ZHZGKrUFKR8fHzVq1Ejr169X165dJV0JT+vXr9fw4cML/Yyvr698fX1t2kJCQkp0nEFBQW7/l9rZcY5KB85T6cB5cn6coytc+c4oMhLsifPk/DhHpQPnyflxjq4wMyOV2oKUJI0aNUr9+vVT48aN1bRpU7388su6cOGCBgwY4OihAQAAOAwZCQAAOLtSXZD629/+plOnTmnSpElKS0tT/fr1lZSUVGASTwAAAHdCRgIAAM6uVBekJGn48OHXvP3ckXx9fTV58uQCt7/DeXCOSgfOU+nAeXJ+nCP3Q0bCreA8OT/OUenAeXJ+nCPHsRiu+sxjAAAAAAAAOCUPRw8AAAAAAAAA7oWCFAAAAAAAAExFQQoAAAAAAACmoiB1C1599VVVqVJFfn5+atasmbZu3Xrd/suXL1ft2rXl5+enunXravXq1SaN1H3dzDnas2ePunfvripVqshisejll182b6Bu7mbO0+LFi9W6dWuVK1dO5cqVU3x8/A3/24N93Mx5+uijj9S4cWOFhIQoICBA9evX19tvv23iaN3TzX4v5XvvvfdksVjUtWvXkh0g3AYZyfmRkUoHMlLpQEZyfmQk50RBqpjef/99jRo1SpMnT9bOnTtVr149JSQkKD09vdD+3377rXr37q2BAwfq+++/V9euXdW1a1f9+OOPJo/cfdzsObp48aKqVq2qWbNmKTw83OTRuq+bPU9fffWVevfurS+//FLJycmKiopShw4d9Ntvv5k8cvdys+epfPnyeuaZZ5ScnKwffvhBAwYM0IABA/T555+bPHL3cbPnKN/hw4c1evRotW7d2qSRwtWRkZwfGal0ICOVDmQk50dGcmIGiqVp06bGsGHDrO8vX75sREZGGjNnziy0f8+ePY1OnTrZtDVr1swYOnRoiY7Tnd3sOfqr6Oho46WXXirB0SHfrZwnwzCM3NxcIzAw0HjrrbdKaogwbv08GYZhNGjQwPjnP/9ZEsODUbxzlJuba7Ro0cJ4/fXXjX79+hkPPPCACSOFqyMjOT8yUulARiodyEjOj4zkvLhDqhiys7O1Y8cOxcfHW9s8PDwUHx+v5OTkQj+TnJxs01+SEhISrtkft6Y45wjms8d5unjxonJyclS+fPmSGqbbu9XzZBiG1q9frwMHDqhNmzYlOVS3Vdxz9Oyzzyo0NFQDBw40Y5hwA2Qk50dGKh3ISKUDGcn5kZGcm5ejB1Aa/f7777p8+bLCwsJs2sPCwrR///5CP5OWllZo/7S0tBIbpzsrzjmC+exxnsaNG6fIyMgC/5iB/RT3PGVkZOi2225TVlaWPD099dprr+nee+8t6eG6peKco02bNumNN95QSkqKCSOEuyAjOT8yUulARiodyEjOj4zk3ChIASi1Zs2apffee09fffWV/Pz8HD0cXCUwMFApKSk6f/681q9fr1GjRqlq1apq27ato4fm9s6dO6dHHnlEixcvVsWKFR09HACAnZGRnBsZyXmRkcxFQaoYKlasKE9PT508edKm/eTJk9ec6DE8PPym+uPWFOccwXy3cp7mzJmjWbNm6YsvvtBdd91VksN0e8U9Tx4eHqpevbokqX79+tq3b59mzpxJ2CoBN3uOfv75Zx0+fFhdunSxtuXl5UmSvLy8dODAAVWrVq1kBw2XREZyfmSk0oGMVDqQkZwfGcm5MYdUMfj4+KhRo0Zav369tS0vL0/r169XXFxcoZ+Ji4uz6S9J69atu2Z/3JrinCOYr7jnafbs2Zo2bZqSkpLUuHFjM4bq1uz131NeXp6ysrJKYohu72bPUe3atbV7926lpKRYX/fff7/uuecepaSkKCoqyszhw4WQkZwfGal0ICOVDmQk50dGcnKOnlW9tHrvvfcMX19fY+nSpcbevXuNIUOGGCEhIUZaWpphGIbxyCOPGOPHj7f237x5s+Hl5WXMmTPH2LdvnzF58mTD29vb2L17t6N2weXd7DnKysoyvv/+e+P77783IiIijNGjRxvff/+9cfDgQUftglu42fM0a9Ysw8fHx/jwww+NEydOWF/nzp1z1C64hZs9T88995yxdu1a4+effzb27t1rzJkzx/Dy8jIWL17sqF1weTd7jq7GE2RgL2Qk50dGKh3ISKUDGcn5kZGcFwWpW/DKK68YlStXNnx8fIymTZsa3333nXXZ3XffbfTr18+m/wcffGDUrFnT8PHxMe644w7js88+M3nE7udmzlFqaqohqcDr7rvvNn/gbuZmzlN0dHSh52ny5MnmD9zN3Mx5euaZZ4zq1asbfn5+Rrly5Yy4uDjjvffec8Co3cvNfi/9FWEL9kRGcn5kpNKBjFQ6kJGcHxnJOVkMwzDMvScLAAAAAAAA7ow5pAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKQJH0799fVapUuWG/w4cPy2KxaOnSpSU+JhSuY8eOGjx48A37LV26VBaLRYcPH7Zpf+GFF1S1alV5enqqfv36N7XtpKQklS1bVqdOnbqpzwEAUJqRk0oPchLgPChIAbA6fvy4pkyZopSUFEcPBcW0efNmrV27VuPGjSvW59euXauxY8eqZcuWWrJkiZ577jlr+8CBA3XnnXfK09PzmqE7MTFR1atX18yZM4u7CwAAOCVyUulXEjnp4sWLevXVV9WhQwdFREQoMDBQDRo00Pz583X58mWbz5OTAFsUpABYHT9+XFOnTi00aC1evFgHDhwwf1C4KS+88ILat2+v6tWrF+vzGzZskIeHh9544w317dtXHTt2lCS9++67evfddxUcHKzIyMjrrmPo0KFauHChzp07V6wxAADgjMhJpV9J5KRffvlFTz75pAzD0KhRozRnzhzFxMToiSee0KOPPlpgHeQk4E8UpAAUibe3t3x9fR09DFxHenq6PvvsM/Xs2fOW1uHv7y8fHx+b9ueee06ZmZnavHmz6tWrd911dO/eXVlZWVq+fHmxxwEAQGlCTnJ+JZWTwsPDtXv3bq1bt05jxozR0KFD9dFHH2nAgAH6z3/+o0OHDtmsg5wE/ImCFOBkpkyZIovFov3796tnz54KCgpShQoV9PTTT+vSpUsF+r/zzjtq1KiR/P39Vb58efXq1UvHjh2z6dO2bVvdeeed2rFjh1q0aCF/f3/FxMRowYIF1j5fffWVmjRpIkkaMGCALBaLzRwHhc2NcPbsWfXv31/BwcEKCQlRv379dPbs2UL3a//+/erRo4fKly8vPz8/NW7cWKtWrbrp45OVlaWRI0eqUqVKCgwM1P33369ff/1VFotFU6ZMKfJ68udwmDNnjl599VVVrVpVZcqUUYcOHXTs2DEZhqFp06bp9ttvl7+/vx544AGdPn26wHrWrFmj1q1bKyAgQIGBgerUqZP27Nlj0+eHH35Q//79VbVqVfn5+Sk8PFyPPvqo/vjjD5t++ef+0KFD6t+/v0JCQhQcHKwBAwbo4sWLN9ynzz77TLm5uYqPjy+wbM+ePWrXrp38/f11++23a/r06crLy7PpY7FYtGTJEl24cKHA+Y+MjJS3t/cNxyBJoaGhuuuuu/Txxx8XqT8AAEVFTro+ctK1lVROqlixou64444C6+zWrZskad++fTbt5CTgT16OHgCAwvXs2VNVqlTRzJkz9d1332nevHk6c+aM/vOf/1j7zJgxQxMnTlTPnj01aNAgnTp1Sq+88oratGmj77//XiEhIda+Z86cUceOHdWzZ0/17t1bH3zwgR5//HH5+Pjo0UcfVZ06dfTss89q0qRJGjJkiFq3bi1JatGiRaHjMwxDDzzwgDZt2qTHHntMderU0YoVK9SvX78Cfffs2aOWLVvqtttu0/jx4xUQEKAPPvhAXbt21X//+1/rF3ZRDBo0SO+8847+/ve/q0WLFtqwYYM6depU5M9fbdmyZcrOztaTTz6p06dPa/bs2erZs6fatWunr776SuPGjdOhQ4f0yiuvaPTo0XrzzTetn3377bfVr18/JSQk6Pnnn9fFixc1f/58tWrVSt9//701mK5bt06//PKLBgwYoPDwcO3Zs0eLFi3Snj179N1338lisdiMqWfPnoqJidHMmTO1c+dOvf766woNDdXzzz9/3X359ttvVaFCBUVHR9u0p6Wl6Z577lFubq71+C9atEj+/v42/d5++20tWrRIW7du1euvvy7p2uf/Rho1aqSVK1cW67MAANwIOalw5KRrMzsnpaWlSZIqVqxYYBk5Cfj/GQCcyuTJkw1Jxv3332/T/sQTTxiSjF27dhmGYRiHDx82PD09jRkzZtj02717t+Hl5WXTfvfddxuSjBdffNHalpWVZdSvX98IDQ01srOzDcMwjG3bthmSjCVLlhQYV79+/Yzo6Gjr+5UrVxqSjNmzZ1vbcnNzjdatWxdYR/v27Y26desaly5dsrbl5eUZLVq0MGrUqFHkY5OSkmJIMp544gmb9r///e+GJGPy5MlFXldqaqohyahUqZJx9uxZa/uECRMMSUa9evWMnJwca3vv3r0NHx8f6z6cO3fOCAkJMQYPHmyz3rS0NCM4ONim/eLFiwW2/3//93+GJGPjxo3Wtvxz/+ijj9r07datm1GhQoUb7lOrVq2MRo0aFWgfMWKEIcnYsmWLtS09Pd0IDg42JBmpqanW9n79+hkBAQHX3U6nTp1s/i4U5rnnnjMkGSdPnrzhuAEAKCpy0rWRk67PrJxkGFf+/sTGxhoxMTE2xykfOQm4gp/sAU5q2LBhNu+ffPJJSdLq1aslSR999JHy8vLUs2dP/f7779ZXeHi4atSooS+//NLm815eXho6dKj1vY+Pj4YOHar09HTt2LHjpse3evVqeXl56fHHH7e2eXp6WseZ7/Tp09qwYYN69uypc+fOWcf5xx9/KCEhQQcPHtRvv/1W5G1K0lNPPWXTPmLEiJsef76HHnpIwcHB1vfNmjWTJD388MPy8vKyac/OzraOdd26dTp79qx69+5tc/w9PT3VrFkzm+P/1ytsly5d0u+//67mzZtLknbu3FlgTI899pjN+9atW+uPP/5QZmbmdffljz/+ULly5Qq0r169Ws2bN1fTpk2tbZUqVVKfPn2uu75bkT+O33//vcS2AQBwX+SkwrcpkZOuxcycNHz4cO3du1f//ve/bY5TPnIScAU/2QOcVI0aNWzeV6tWTR4eHjp8+LAk6eDBgzIMo0C/fFfP9xMZGamAgACbtpo1a0q6Mk9A/hd/UR05ckQREREqW7asTXutWrVs3h86dEiGYWjixImaOHFioetKT0/XbbfdVqRtenh4qFq1atfd5s2oXLmyzfv80BUVFVVo+5kzZyRdOf6S1K5du0LXGxQUZP3z6dOnNXXqVL333ntKT0+36ZeRkXHDMeWHljNnztistzCGYRRoO3LkiDVA/tWtHLcbyR/H1bfZAwBgD+SkwrdJTnJ8TnrhhRe0ePFiTZs2zfq04muNg5wEd0dBCiglrv7CysvLk8Vi0Zo1a+Tp6Vmg/9UByFHyJ4QcPXq0EhISCu1T3Efv2kNhx+567fkBIn+/3n77bYWHhxfo99erYT179tS3336rMWPGqH79+ipbtqzy8vKUmJhYYMLMomz7WipUqGANgo6WP47C5k0AAMDeyEklg5x0c5YuXapx48bpscce0z//+c9r9iMnAVdQkAKc1MGDBxUTE2N9f+jQIeXl5VkngKxWrZoMw1BMTIz1Ct71HD9+XBcuXLC5+vfTTz9JknWdN3OVJjo6WuvXr9f58+dtQt2BAwds+lWtWlXSlSuRhT3V5GZER0crLy9PP//8s81Vq6u3aYb8q4+hoaHX3a8zZ85o/fr1mjp1qiZNmmRtz79yaE+1a9fWf//73wLt0dHRhW6vJI9bamqqKlasqEqVKpXYNgAA7oucVPg2yUnXVtI56eOPP9agQYP04IMP6tVXX71uX3IScAVzSAFO6uovsldeeUWSdN9990mSHnzwQXl6emrq1KkFrggZhlHgUbm5ublauHCh9X12drYWLlyoSpUqqVGjRpJkDWHXeiTxX3Xs2FG5ubmaP3++te3y5cvWceYLDQ1V27ZttXDhQp04caLAek6dOnXDbeXL3/d58+bZtL/88stFXoe9JCQkKCgoSM8995xycnIKLM/fr/yreFefo5IYc1xcnM6cOaNffvnFpr1jx4767rvvtHXrVpvxLVu2zO5jyLdjxw7FxcWV2PoBAO6NnFQQOen6SjInbdy4Ub169VKbNm20bNkyeXhc/5/Z5CTgCu6QApxUamqq7r//fiUmJio5Odn6CN969epJunLlafr06ZowYYIOHz6srl27KjAwUKmpqVqxYoWGDBmi0aNHW9cXGRmp559/XocPH1bNmjX1/vvvKyUlRYsWLbLOo1CtWjWFhIRowYIFCgwMVEBAgJo1a2ZzBTJfly5d1LJlS40fP16HDx9WbGysPvroo0J/6//qq6+qVatWqlu3rgYPHqyqVavq5MmTSk5O1q+//qpdu3YV6ZjUr19fvXv31muvvaaMjAy1aNFC69ev16FDh4pziG9JUFCQ5s+fr0ceeUQNGzZUr169VKlSJR09elSfffaZWrZsqX//+98KCgpSmzZtNHv2bOXk5Oi2227T2rVrlZqaavcxderUSV5eXvriiy80ZMgQa/vYsWP19ttvKzExUU8//bT1ccbR0dH64YcfirTuH374QatWrZJ05Sp0RkaGpk+fLkmqV6+eunTpYu2bnp6uH374ocCEswAA2As5qSBy0vWVVE46cuSI7r//flksFvXo0UPLly+3WX7XXXfprrvusr4nJwF/Ye5D/QDcSP4jbffu3Wv06NHDCAwMNMqVK2cMHz7c+N///leg/3//+1+jVatWRkBAgBEQEGDUrl3bGDZsmHHgwAFrn7vvvtu44447jO3btxtxcXGGn5+fER0dbfz73/8usL6PP/7YiI2NNby8vGweS3z144wNwzD++OMP45FHHjGCgoKM4OBg45FHHjG+//77Qh+J/PPPPxt9+/Y1wsPDDW9vb+O2224zOnfubHz44Yc3dXz+97//GU899ZRRoUIFIyAgwOjSpYtx7NixYj/O+IUXXrBp//LLLw1JxvLly23alyxZYkgytm3bVqB/QkKCERwcbPj5+RnVqlUz+vfvb2zfvt3a59dffzW6detmhISEGMHBwcZDDz1kHD9+vMCY88/9qVOnCt32Xx87fC3333+/0b59+wLtP/zwg3H33Xcbfn5+xm233WZMmzbNeOONN4r8OOP8MRT26tevn03f+fPnG2XKlDEyMzNvOF4AAG4GOen6yEnXVxI5Kf+YXOt19XEnJwF/shjGDWZ/A2CqKVOmaOrUqTp16pTdJjps27atfv/9d/344492WZ8zslgsmjx5sqZMmeLooTjUN998o7Zt22r//v3XfLJQSWvQoIHatm2rl156ySHbBwC4LnJS8ZCTriAnAc6FOaQAwIW0bt1aHTp00OzZsx2y/aSkJB08eFATJkxwyPYBAACuhZwEOBfmkALgFNLS0q673N/fX8HBwTdcz+XLl284AWjZsmWd5nHPJWHNmjUO23ZiYqLOnz/vsO0DAOCKyEn2Q04CnAcFKQBOISIi4rrL+/Xrp6VLl95wPceOHSt0ctG/4pZ1AABQmpCTALgi5pAC4BS++OKL6y6PjIxUbGzsDddz6dIlbdq06bp9qlatqqpVq97U+AAAAByFnATAFVGQAgAAAAAAgKmY1BwAAAAAAACmcus5pPLy8nT8+HEFBgbKYrE4ejgAAMAEhmHo3LlzioyMlIcH1+YKQ0YCAMD9mJ2R3Logdfz4cUVFRTl6GAAAwAGOHTum22+/3dHDcEpkJAAA3JdZGcmtC1KBgYGSrhzsoKAgB48GAACYITMzU1FRUdYcgILISAAAuB+zM5JbF6Tyb0EPCgoibAEA4Gb4Kdq1kZEAAHBfZmUkJk4AAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqt55DCgCAazEMQ7m5ubp8+bKjh4Kb5OnpKS8vL+aIAgCgBJCRSi9ny0gUpAAAuEp2drZOnDihixcvOnooKKYyZcooIiJCPj4+jh4KAAAug4xU+jlTRqIgBQDAX+Tl5Sk1NVWenp6KjIyUj4+P01xFwo0ZhqHs7GydOnVKqampqlGjhjw8mKEAAIBbRUYq3ZwxI1GQAgDgL7Kzs5WXl6eoqCiVKVPG0cNBMfj7+8vb21tHjhxRdna2/Pz8HD0kAABKPTJS6edsGYlLhgAAFMLRV4xwazh/AACUDL5jSzdnOn/OMxIAAAAAAAC4BQpSAAAAAAAAMBUFKQAASjmLxXLd15QpUxw6tpUrV97SOhYtWqS2bdsqKChIFotFZ8+etcvYAACA63PlnHT69Gk9+eSTqlWrlvz9/VW5cmU99dRTysjIsN8gSxCTmgMAUEQ5SZtM25Z3Yqsi9z1x4oT1z++//74mTZqkAwcOWNvKli17U9vOzs52ikcB57t48aISExOVmJioCRMmOHo4AADgKmZmJImclO/48eM6fvy45syZo9jYWB05ckSPPfaYjh8/rg8//NDRw7sh7pAqQTlJmwq8AACwt/DwcOsrODhYFovF+v7ChQvq06ePwsLCVLZsWTVp0kRffPGFzeerVKmiadOmqW/fvgoKCtKQIUMkSYsXL7Y+Sadbt26aO3euQkJCbD778ccfq2HDhvLz81PVqlU1depU5ebmWtcrSd26dZPFYrG+37Vrl+655x4FBgYqKChIjRo10vbt26+5fyNGjND48ePVvHlz+xwwOBwZCQBgFlfOSXfeeaf++9//qkuXLqpWrZratWunGTNm6JNPPrFux5lRkAIAwIWdP39eHTt21Pr16/X9998rMTFRXbp00dGjR236zZkzR/Xq1dP333+viRMnavPmzXrsscf09NNPKyUlRffee69mzJhh85lvvvlGffv21dNPP629e/dq4cKFWrp0qbXftm3bJElLlizRiRMnrO/79Omj22+/Xdu2bdOOHTs0fvx4eXt7m3A0AAAA/uSKOSkjI0NBQUHy8nL+H8Q5/wgBAECx1atXT/Xq1bO+nzZtmlasWKFVq1Zp+PDh1vZ27drpH//4h/X9M888o/vuu0+jR4+WJNWsWVPffvutPv30U2ufqVOnavz48erXr58kqWrVqpo2bZrGjh2ryZMnq1KlSpKkkJAQhYeHWz939OhRjRkzRrVr15Yk1ahRowT2HAAA4PpcLSf9/vvvmjZtmvUuLmfHHVIAALiw8+fPa/To0apTp45CQkJUtmxZ7du3r8CVv8aNG9u8P3DggJo2bWrTdvX7Xbt26dlnn1XZsmWtr8GDB+vEiRO6ePHiNcc0atQoDRo0SPHx8Zo1a5Z+/vnnW9xLAACAm+dKOSkzM1OdOnVSbGysQydqvxkUpAAAcGGjR4/WihUr9Nxzz+mbb75RSkqK6tatq+zsbJt+AQEBN73u8+fPa+rUqUpJSbG+du/erYMHD8rPz++an5syZYr27NmjTp06acOGDYqNjdWKFStuevsAAAC3wlVy0rlz55SYmKjAwECtWLGi1EyFwE/2AABwYZs3b1b//v3VrVs3SVfC0eHDh2/4uVq1alnnMsh39fuGDRvqwIEDql69+jXX4+3trcuXLxdor1mzpmrWrKmRI0eqd+/eWrJkiXWMAAAAZnCFnJSZmamEhAT5+vpq1apV1y12ORsKUgAAuLAaNWroo48+UpcuXWSxWDRx4kTl5eXd8HNPPvmk2rRpo7lz56pLly7asGGD1qxZI4vFYu0zadIkde7cWZUrV1aPHj3k4eGhXbt26ccff9T06dMlXXmCzPr169WyZUv5+vrKz89PY8aMUY8ePRQTE6Nff/1V27ZtU/fu3a85lrS0NKWlpenQoUOSpN27dyswMFCVK1dW+fLlb/EIAQAAd1Xac1JmZqY6dOigixcv6p133lFmZqYyMzMlSZUqVZKnp6cdjlLJ4Sd7AAC4sLlz56pcuXJq0aKFunTpooSEBDVs2PCGn2vZsqUWLFiguXPnql69ekpKStLIkSNtrrolJCTo008/1dq1a9WkSRM1b95cL730kqKjo619XnzxRa1bt05RUVFq0KCBPD099ccff6hv376qWbOmevbsqfvuu09Tp0695lgWLFigBg0aaPDgwZKkNm3aqEGDBlq1atUtHBkAAODuSntO2rlzp7Zs2aLdu3erevXqioiIsL6OHTt26weohFkMwzAcPQhHyczMVHBwsPWxiPaWk7SpQJt3Yiu7bwcAYD+XLl1SamqqYmJiStUtz2YYPHiw9u/fr2+++cbRQ7mh653Hkv7+dwVkJADA1chI11dacpIzZaQSuUPqt99+08MPP6wKFSrI399fdevW1fbt263LDcPQpEmTFBERIX9/f8XHx+vgwYM26zh9+rT69OmjoKAghYSEaODAgTp//rxNnx9++EGtW7eWn5+foqKiNHv27JLYHQAA3NKcOXO0a9cuHTp0SK+88oreeust66OLUTxkJAAAXAM56dbZvSB15swZtWzZUt7e3lqzZo327t2rF198UeXKlbP2mT17tubNm6cFCxZoy5YtCggIUEJCgi5dumTt06dPH+3Zs0fr1q3Tp59+qo0bN2rIkCHW5fm/lYyOjtaOHTv0wgsvaMqUKVq0aJG9dwkAALe0detW3Xvvvapbt64WLFigefPmadCgQY4eVqlFRgIAwHWQk26d3X+yN378eG3evPmat6kZhqHIyEj94x//0OjRoyVJGRkZCgsL09KlS9WrVy/t27dPsbGx2rZtmxo3bixJSkpKUseOHfXrr78qMjJS8+fP1zPPPKO0tDT5+PhYt71y5Urt37+/SGPldnQAwNW4Hd01ONPt6PnISH8iIwFA6UNGcg3OlJHsfofUqlWr1LhxYz300EMKDQ1VgwYNtHjxYuvy1NRUpaWlKT4+3toWHBysZs2aKTk5WZKUnJyskJAQa9CSpPj4eHl4eGjLli3WPm3atLEGLenKpGEHDhzQmTNn7L1bAAAAt4SMBAAA8Ce7F6R++eUXzZ8/XzVq1NDnn3+uxx9/XE899ZTeeustSVce3SxJYWFhNp8LCwuzLktLS1NoaKjNci8vL5UvX96mT2Hr+Os2rpaVlWV9DOJfH4cIAABQ0shIAAAAf/Ky9wrz8vLUuHFjPffcc5KkBg0a6Mcff9SCBQscPsHXzJkzr/tYaQAAgJJCRgIAAPiT3e+QioiIUGxsrE1bnTp1dPToUUlSeHi4JOnkyZM2fU6ePGldFh4ervT0dJvlubm5On36tE2fwtbx121cbcKECcrIyLC+jh07VpxdBAAAuGlkJAAAgD/ZvSDVsmVLHThwwKbtp59+UnR0tCQpJiZG4eHhWr9+vXV5ZmamtmzZori4OElSXFyczp49qx07dlj7bNiwQXl5eWrWrJm1z8aNG5WTk2Pts27dOtWqVcvmaTV/5evrq6CgIJsXAACAGchIAAAAf7J7QWrkyJH67rvv9Nxzz+nQoUN69913tWjRIg0bNkySZLFYNGLECE2fPl2rVq3S7t271bdvX0VGRqpr166SrlwtTExM1ODBg7V161Zt3rxZw4cPV69evRQZGSlJ+vvf/y4fHx8NHDhQe/bs0fvvv69//etfGjVqlL13CQAA4JaRkQAAAP5k9zmkmjRpohUrVmjChAl69tlnFRMTo5dffll9+vSx9hk7dqwuXLigIUOG6OzZs2rVqpWSkpJsHjm4bNkyDR8+XO3bt5eHh4e6d++uefPmWZcHBwdr7dq1GjZsmBo1aqSKFStq0qRJGjJkiL13CQAA4JaRkQAAAP5kMQzDcPQgHCUzM1PBwcHKyMgokVvTc5I2FWjzTmxl9+0AAOzn0qVLSk1NVUxMjE0RQJJ+3r7QtHFUazz0pvr379/f+rS2/Keu3XXXXerdu7f69+8vDw+73xRtmj179mjSpEnasWOHjhw5opdeekkjRoy47meudx5L+vvfFZCRAABXc5aMJJGT/mrx4sX6z3/+ox9//FGS1KhRIz333HNq2rRpof2dKSOV3qMOAABsJCYm6sSJEzp8+LDWrFmje+65R08//bQ6d+6s3NxcRw+v2C5evKiqVatq1qxZ15yUGwAA4HpcNSd99dVX6t27t7788kslJycrKipKHTp00G+//ebood0QBSkAAFyEr6+vwsPDddttt6lhw4b6f//v/+njjz/WmjVrtHTpUmu/s2fPatCgQapUqZKCgoLUrl077dq1y2Zdn3zyiZo0aSI/Pz9VrFhR3bp1sy47c+aM+vbtq3LlyqlMmTK67777dPDgQUnShQsXFBQUpA8//NBmfStXrlRAQIDOnTun7OxsDR8+XBEREfLz81N0dLRmzpx5zf1q0qSJXnjhBfXq1Uu+vr52OFIAAMDduGpOWrZsmZ544gnVr19ftWvX1uuvv668vDybh6Q4KwpSAAC4sHbt2qlevXr66KOPrG0PPfSQ0tPTtWbNGu3YsUMNGzZU+/btdfr0aUnSZ599pm7duqljx476/vvvtX79epvbvvv376/t27dr1apVSk5OlmEY6tixo3JychQQEKBevXppyZIlNuNYsmSJevToocDAQM2bN0+rVq3SBx98oAMHDmjZsmWqUqWKKccDAAAgnyvmpIsXLyonJ0fly5e/tYNjArtPag4AAJxL7dq19cMPP0iSNm3apK1btyo9Pd16t9GcOXO0cuVKffjhhxoyZIhmzJihXr16aerUqdZ11KtXT5J08OBBrVq1Sps3b1aLFi0kXbkyFxUVpZUrV+qhhx7SoEGD1KJFC504cUIRERFKT0/X6tWr9cUXX0iSjh49qho1aqhVq1ayWCyKjo4283AAAABYuVpOGjdunCIjIxUfH3/Lx6akcYcUAAAuzjAMWSwWSdKuXbt0/vx5VahQQWXLlrW+UlNT9fPPP0uSUlJS1L59+0LXtW/fPnl5ealZs2bWtgoVKqhWrVrat2+fJKlp06a64447rJOHvvPOO4qOjlabNm0kXblymJKSolq1aumpp57S2rVrS2zfAQAArseVctKsWbP03nvvacWKFQUmLHdG3CEFAICL27dvn2JiYiRJ58+fV0REhL766qsC/UJCQiRJ/v7+t7zNQYMG6dVXX9X48eO1ZMkSDRgwwBr2GjZsqNTUVK1Zs0ZffPGFevbsqfj4+ALzKQAAAJQ0V8lJc+bM0axZs/TFF1/orrvuuuUxmoE7pAAAcGEbNmzQ7t271b17d0lXQk5aWpq8vLxUvXp1m1fFihUlSXfdddc1J8KsU6eOcnNztWXLFmvbH3/8oQMHDig2Ntba9vDDD+vIkSOaN2+e9u7dq379+tmsJygoSH/729+0ePFivf/++/rvf/9rnZsBAADADK6Sk2bPnq1p06YpKSlJjRs3LvbxMBt3SAEA4CKysrKUlpamy5cv6+TJk0pKStLMmTPVuXNn9e3bV5IUHx+vuLg4de3aVbNnz1bNmjV1/Phx6wSdjRs31uTJk9W+fXtVq1ZNvXr1Um5urlavXq1x48apRo0aeuCBBzR48GAtXLhQgYGBGj9+vG677TY98MAD1rGUK1dODz74oMaMGaMOHTro9ttvty6bO3euIiIi1KBBA3l4eGj58uUKDw+3Xnm8WnZ2tvbu3Wv982+//aaUlBSVLVtW1atXL7kDCgAAXIar5qTnn39ekyZN0rvvvqsqVaooLS1Nkqw/N3Rm3CEFAICLSEpKUkREhKpUqaLExER9+eWXmjdvnj7++GN5enpKkiwWi1avXq02bdpowIABqlmzpnr16qUjR44oLCxMktS2bVstX75cq1atUv369dWuXTtt3brVup0lS5aoUaNG6ty5s+Li4mQYhlavXi1vb2+b8QwcOFDZ2dl69NFHbdoDAwM1e/ZsNW7cWE2aNNHhw4e1evVqeXgUHkuOHz+uBg0aqEGDBjpx4oTmzJmjBg0aaNCgQfY8fAAAwIW5ak6aP3++srOz1aNHD0VERFhfc+bMsefhKxEWwzAMRw/CUTIzMxUcHKyMjAwFBQXZff05SZsKtHkntrL7dgAA9nPp0iWlpqYqJiamVEwG6czefvttjRw5UsePH5ePj4+p277eeSzp739XQEYCAFyNjGRfjspJzpSR+MkeAACwq4sXL+rEiROaNWuWhg4danoxCgAAwFmRk/7ET/YAAIBdzZ49W7Vr11Z4eLgmTJjg6OEAAAA4DXLSnyhIAQAAu5oyZYpycnK0fv16p59MEwAAwEzkpD9RkAIAAAAAAICpKEgBAAAAAADAVBSkAAAohBs/hNYlcP4AACgZfMeWbs50/ihIAQDwF97e3pKuPAEFpVf++cs/nwAA4NaQkVyDM2UkL0cPAAAAZ+Lp6amQkBClp6dLksqUKSOLxeLgUaGoDMPQxYsXlZ6erpCQEHl6ejp6SAAAuAQyUunmjBmJghQAAFcJDw+XJGvgQukTEhJiPY8AAMA+yEilnzNlJApSAABcxWKxKCIiQqGhocrJyXH0cHCTvL29neKqHwAAroaMVLo5W0aiIAUAwDV4eno61Zc2AACAMyAjwR6Y1BwAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaye0FqypQpslgsNq/atWtbl1+6dEnDhg1ThQoVVLZsWXXv3l0nT560WcfRo0fVqVMnlSlTRqGhoRozZoxyc3Nt+nz11Vdq2LChfH19Vb16dS1dutTeuwIAAGA3ZCQAAIA/lcgdUnfccYdOnDhhfW3atMm6bOTIkfrkk0+0fPlyff311zp+/LgefPBB6/LLly+rU6dOys7O1rfffqu33npLS5cu1aRJk6x9UlNT1alTJ91zzz1KSUnRiBEjNGjQIH3++eclsTsAAAB2QUYCAAC4wqtEVurlpfDw8ALtGRkZeuONN/Tuu++qXbt2kqQlS5aoTp06+u6779S8eXOtXbtWe/fu1RdffKGwsDDVr19f06ZN07hx4zRlyhT5+PhowYIFiomJ0YsvvihJqlOnjjZt2qSXXnpJCQkJJbFLAAAAt4yMBAAAcEWJ3CF18OBBRUZGqmrVqurTp4+OHj0qSdqxY4dycnIUHx9v7Vu7dm1VrlxZycnJkqTk5GTVrVtXYWFh1j4JCQnKzMzUnj17rH3+uo78PvnrAAAAcEZkJAAAgCvsfodUs2bNtHTpUtWqVUsnTpzQ1KlT1bp1a/34449KS0uTj4+PQkJCbD4TFhamtLQ0SVJaWppN0Mpfnr/sen0yMzP1v//9T/7+/oWOLSsrS1lZWdb3mZmZt7SvAAAARUVGAgAA+JPdC1L33Xef9c933XWXmjVrpujoaH3wwQfXDEFmmTlzpqZOnerQMQAAAPdERgIAAPhTifxk769CQkJUs2ZNHTp0SOHh4crOztbZs2dt+pw8edI6n0J4eHiBJ8rkv79Rn6CgoOsGugkTJigjI8P6Onbs2K3uHgAAQLGQkQAAgDsr8YLU+fPn9fPPPysiIkKNGjWSt7e31q9fb11+4MABHT16VHFxcZKkuLg47d69W+np6dY+69atU1BQkGJjY619/rqO/D7567gWX19fBQUF2bwAAAAcgYwEAADcmd0LUqNHj9bXX3+tw4cP69tvv1W3bt3k6emp3r17Kzg4WAMHDtSoUaP05ZdfaseOHRowYIDi4uLUvHlzSVKHDh0UGxurRx55RLt27dLnn3+uf/7znxo2bJh8fX0lSY899ph++eUXjR07Vvv379drr72mDz74QCNHjrT37gAAANgFGQkAAOBPdp9D6tdff1Xv3r31xx9/qFKlSmrVqpW+++47VapUSZL00ksvycPDQ927d1dWVpYSEhL02muvWT/v6empTz/9VI8//rji4uIUEBCgfv366dlnn7X2iYmJ0WeffaaRI0fqX//6l26//Xa9/vrrPM4YAAA4LTISAADAnyyGYRiOHoSjZGZmKjg4WBkZGSVya3pO0qYCbd6Jrey+HQAAUHQl/f3vCshIAAC4H7MzUonPIQUAAAAAAAD8FQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpSrwgNWvWLFksFo0YMcLadunSJQ0bNkwVKlRQ2bJl1b17d508edLmc0ePHlWnTp1UpkwZhYaGasyYMcrNzbXp89VXX6lhw4by9fVV9erVtXTp0pLeHQAAALsgIwEAAHdWogWpbdu2aeHChbrrrrts2keOHKlPPvlEy5cv19dff63jx4/rwQcftC6/fPmyOnXqpOzsbH377bd66623tHTpUk2aNMnaJzU1VZ06ddI999yjlJQUjRgxQoMGDdLnn39ekrsEAABwy8hIAADA3VkMwzBKYsXnz59Xw4YN9dprr2n69OmqX7++Xn75ZWVkZKhSpUp699131aNHD0nS/v37VadOHSUnJ6t58+Zas2aNOnfurOPHjyssLEyStGDBAo0bN06nTp2Sj4+Pxo0bp88++0w//vijdZu9evXS2bNnlZSUVKQxZmZmKjg4WBkZGQoKCrL7MchJ2lSgzTuxld23AwAAiq6kv/9vhIxERgIAwBmZnZFK7A6pYcOGqVOnToqPj7dp37Fjh3Jycmzaa9eurcqVKys5OVmSlJycrLp161qDliQlJCQoMzNTe/bssfa5et0JCQnWdRQmKytLmZmZNi8AAAAzkZEAAAAkr5JY6XvvvaedO3dq27ZtBZalpaXJx8dHISEhNu1hYWFKS0uz9vlr0Mpfnr/sen0yMzP1v//9T/7+/gW2PXPmTE2dOrXY+wUAAHAryEgAAABX2P0OqWPHjunpp5/WsmXL5OfnZ+/V35IJEyYoIyPD+jp27JijhwQAANwEGQkAAOBPdi9I7dixQ+np6WrYsKG8vLzk5eWlr7/+WvPmzZOXl5fCwsKUnZ2ts2fP2nzu5MmTCg8PlySFh4cXeKJM/vsb9QkKCir0yp8k+fr6KigoyOYFAABgBjISAADAn+xekGrfvr12796tlJQU66tx48bq06eP9c/e3t5av3699TMHDhzQ0aNHFRcXJ0mKi4vT7t27lf7/sXfvcVnUef/H34ACHrjAI2jiITQVj4mKdLAsEpPaLN20WsXSzEJLKU+rechavc1KS8va7hW31TWttBLFUNPWJE2K8nybUdrqhZbB5ZHj/P7ox+glqIAXc3F4PR+P63F3zXxm5jvX4F7v+zNzzRw/btYkJSXJZrMpNDTUrLl4HQU1BesAAAAoT8hIAAAAF7j8HlJ+fn5q376907RatWqpXr165vRhw4YpLi5OdevWlc1m0+jRoxUREaEePXpIknr37q3Q0FANHjxYc+bMkd1u15QpUxQbGysfHx9J0siRI7VgwQKNHz9ejz32mDZt2qQVK1YoISHB1bsEAABwzchIAAAAF5TJTc2v5rXXXpOnp6f69++vrKwsRUVF6c033zTne3l5ac2aNXryyScVERGhWrVqKSYmRi+88IJZ06JFCyUkJGjs2LGaP3++mjRponfffVdRUVHu2CUAAIBrRkYCAABVhYdhGIa7B+EuDodD/v7+yszMLJN7JeQkbi00rXqfW1y+HQAAUHxl/f1fGZCRAACoeqzOSC6/hxQAAAAAAABwJTSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACzl8obUW2+9pY4dO8pms8lmsykiIkLr1q0z558/f16xsbGqV6+eateurf79+ys9Pd1pHYcPH1Z0dLRq1qyphg0baty4ccrNzXWq2bx5s7p06SIfHx+1bNlS8fHxrt4VAAAAlyEjAQAAXODyhlSTJk00e/ZspaSkaOfOnbrjjjt03333ac+ePZKksWPH6tNPP9XKlSu1ZcsWHT16VA888IC5fF5enqKjo5Wdna1t27ZpyZIlio+P19SpU82atLQ0RUdHq1evXkpNTdWYMWM0fPhwrV+/3tW7AwAA4BJkJAAAgAs8DMMwynojdevW1csvv6wBAwaoQYMGWrZsmQYMGCBJ2r9/v9q2bavk5GT16NFD69at0z333KOjR48qMDBQkrRo0SJNmDBBJ06ckLe3tyZMmKCEhATt3r3b3MagQYOUkZGhxMTEYo/L4XDI399fmZmZstlsrt1pSTmJWwtNq97nFpdvBwAAFF9Zf/+XBBnpAjISAADuZXVGKtN7SOXl5Wn58uU6c+aMIiIilJKSopycHEVGRpo1bdq0UdOmTZWcnCxJSk5OVocOHcygJUlRUVFyOBzmGcTk5GSndRTUFKwDAACgPCMjAQCAqq5aWax0165dioiI0Pnz51W7dm2tWrVKoaGhSk1Nlbe3twICApzqAwMDZbfbJUl2u90paBXML5h3pRqHw6Fz586pRo0aRY4rKytLWVlZ5nuHw3FN+wkAAFASZCQAAIA/lMkVUq1bt1Zqaqq2b9+uJ598UjExMdq7d29ZbKpEZs2aJX9/f/MVHBzs7iEBAIAqhIwEAADwhzJpSHl7e6tly5YKCwvTrFmz1KlTJ82fP19BQUHKzs5WRkaGU316erqCgoIkSUFBQYWeKFPw/mo1Npvtsmf+JGnSpEnKzMw0X0eOHLnWXQUAACg2MhIAAMAfyvQeUgXy8/OVlZWlsLAwVa9eXRs3bjTnHThwQIcPH1ZERIQkKSIiQrt27dLx48fNmqSkJNlsNoWGhpo1F6+joKZgHZfj4+NjPmq54AUAAOAuZCQAAFBVufweUpMmTdLdd9+tpk2b6tSpU1q2bJk2b96s9evXy9/fX8OGDVNcXJzq1q0rm82m0aNHKyIiQj169JAk9e7dW6GhoRo8eLDmzJkju92uKVOmKDY2Vj4+PpKkkSNHasGCBRo/frwee+wxbdq0SStWrFBCQoKrdwcAAMAlyEgAAAAXuLwhdfz4cQ0ZMkTHjh2Tv7+/OnbsqPXr1+uuu+6SJL322mvy9PRU//79lZWVpaioKL355pvm8l5eXlqzZo2efPJJRUREqFatWoqJidELL7xg1rRo0UIJCQkaO3as5s+fryZNmujdd99VVFSUq3cHAADAJchIAAAAF3gYhmG4exDu4nA45O/vr8zMzDK5ND0ncWuhadX73OLy7QAAgOIr6+//yoCMBABA1WN1RrLkHlIAAAAAAABAARpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLubwhNWvWLHXr1k1+fn5q2LCh+vXrpwMHDjjVnD9/XrGxsapXr55q166t/v37Kz093anm8OHDio6OVs2aNdWwYUONGzdOubm5TjWbN29Wly5d5OPjo5YtWyo+Pt7VuwMAAOASZCQAAIALXN6Q2rJli2JjY/XVV18pKSlJOTk56t27t86cOWPWjB07Vp9++qlWrlypLVu26OjRo3rggQfM+Xl5eYqOjlZ2dra2bdumJUuWKD4+XlOnTjVr0tLSFB0drV69eik1NVVjxozR8OHDtX79elfvEgAAwDUjIwEAAFzgYRiGUZYbOHHihBo2bKgtW7aoZ8+eyszMVIMGDbRs2TINGDBAkrR//361bdtWycnJ6tGjh9atW6d77rlHR48eVWBgoCRp0aJFmjBhgk6cOCFvb29NmDBBCQkJ2r17t7mtQYMGKSMjQ4mJicUam8PhkL+/vzIzM2Wz2Vy+7zmJWwtNq97nFpdvBwAAFF9Zf/8XFxnJGRkJAAD3sjojlfk9pDIzMyVJdevWlSSlpKQoJydHkZGRZk2bNm3UtGlTJScnS5KSk5PVoUMHM2hJUlRUlBwOh/bs2WPWXLyOgpqCdRQlKytLDofD6QUAAOAOZCQAAFCVlWlDKj8/X2PGjNHNN9+s9u3bS5Lsdru8vb0VEBDgVBsYGCi73W7WXBy0CuYXzLtSjcPh0Llz54ocz6xZs+Tv72++goODr3kfAQAASoqMBAAAqroybUjFxsZq9+7dWr58eVluptgmTZqkzMxM83XkyBF3DwkAAFRBZCQAAFDVVSurFY8aNUpr1qzRF198oSZNmpjTg4KClJ2drYyMDKczgOnp6QoKCjJrduzY4bS+gifMXFxz6VNn0tPTZbPZVKNGjSLH5OPjIx8fn2veNwAAgNIiIwEAAJTBFVKGYWjUqFFatWqVNm3apBYtWjjNDwsLU/Xq1bVx40Zz2oEDB3T48GFFRERIkiIiIrRr1y4dP37crElKSpLNZlNoaKhZc/E6CmoK1gEAAFCekJEAAAAucPkVUrGxsVq2bJk+/vhj+fn5mfcz8Pf3V40aNeTv769hw4YpLi5OdevWlc1m0+jRoxUREaEePXpIknr37q3Q0FANHjxYc+bMkd1u15QpUxQbG2uevRs5cqQWLFig8ePH67HHHtOmTZu0YsUKJSQkuHqXAAAArhkZCQAA4AIPwzAMl67Qw6PI6YsXL9bQoUMlSefPn9ezzz6rf//738rKylJUVJTefPNN81JzSfr555/15JNPavPmzapVq5ZiYmI0e/ZsVat2oYe2efNmjR07Vnv37lWTJk30/PPPm9soDh5pDABA1WP1I40LkJEuICMBAFD+WJ2RXN6QqkgIWwAAVD3uakhVJGQkAACqHqszUpk+ZQ8AAAAAAAC4FA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiqmrsHAAAASicncavT++p9bnHTSAAAAMoPMlLFwBVSAAAAAAAAsBRXSAEAgGLhbCMAAEBhZKTScfkVUl988YXuvfdeNW7cWB4eHlq9erXTfMMwNHXqVDVq1Eg1atRQZGSkDh486FRz8uRJPfLII7LZbAoICNCwYcN0+vRpp5rvv/9et956q3x9fRUcHKw5c+a4elcAAABcipwEAADwB5c3pM6cOaNOnTpp4cKFRc6fM2eOXn/9dS1atEjbt29XrVq1FBUVpfPnz5s1jzzyiPbs2aOkpCStWbNGX3zxhUaMGGHOdzgc6t27t5o1a6aUlBS9/PLLmj59ut555x1X7w4AAPj/fspY5/RCyZGTAACofMhIpePyn+zdfffduvvuu4ucZxiG5s2bpylTpui+++6TJP3zn/9UYGCgVq9erUGDBmnfvn1KTEzU119/ra5du0qS3njjDfXt21dz585V48aNtXTpUmVnZ+sf//iHvL291a5dO6WmpurVV191CmQAAKDsXHp5usQl6ldDTgIAoPIjIxWPpTc1T0tLk91uV2RkpDnN399f4eHhSk5OliQlJycrICDADFmSFBkZKU9PT23fvt2s6dmzp7y9vc2aqKgoHThwQL///rtFewMAQOVwcPnkQi9Yj5wEAED5QkYqW5be1Nxut0uSAgMDnaYHBgaa8+x2uxo2bOg0v1q1aqpbt65TTYsWLQqto2BenTp1itx+VlaWsrKyzPcOh+Ma9gYAAPe69JLwVirembeiztrB/dyZk8hIAIDK5NKM5Llzj0K6PnHV5chI1qpST9mbNWuWZsyY4e5hAABQJlx5eTiBrGohIwEAKrP8Hw4r51fXPAmPjOQ6ljakgoKCJEnp6elq1KiROT09PV2dO3c2a44fP+60XG5urk6ePGkuHxQUpPT0dKeagvcFNUWZNGmS4uLizPcOh0PBwcGl3yEAACogV91ss6j1FPcqLRTmzpxERgIAgIxkNUvvIdWiRQsFBQVp48aN5jSHw6Ht27crIiJCkhQREaGMjAylpKSYNZs2bVJ+fr7Cw8PNmi+++EI5OTlmTVJSklq3bn3Zn+tJko+Pj2w2m9MLAIDK4tInvPCUl4rFnTmJjAQAqOzISOWPy6+QOn36tH744QfzfVpamlJTU1W3bl01bdpUY8aM0YsvvqhWrVqpRYsWev7559W4cWP169dPktS2bVv16dNHjz/+uBYtWqScnByNGjVKgwYNUuPGjSVJDz/8sGbMmKFhw4ZpwoQJ2r17t+bPn6/XXnvN1bsDAECFVtrLyglqZYOcBABA+UBGcj+XN6R27typXr16me8LLv+OiYlRfHy8xo8frzNnzmjEiBHKyMjQLbfcosTERPn6+prLLF26VKNGjdKdd94pT09P9e/fX6+//ro539/fX5999pliY2MVFham+vXra+rUqTzKGAAAlGvkJAAAgD94GIZhuHsQ7uJwOOTv76/MzMwyuTTdlTeXBQBUHYd2vl1oWtNf2xWaVpwzdM0D7i7VcqXVatBLZbZuVynr7//KgIwEACivLs1JZCTXsTojVamn7AEAUBHk/3C48MSAwmGrOKy+rJxGAwAAKEuFchIZqcKiIQUAgIW4XwEAAEBhZKSqh4YUAABuVpmCFI85BgAArkJGqtw83T0AAAAAAAAAVC1cIQUAgItceql5UfcFqExn+gAAAIqjOPdPIiNVPVwhBQAAAAAAAEtxhRQAAC5S6Mze8nVFPlK4qivuTUur+pNnAACoLIq6+ql5ohsGUs5VtYxEQ8pixfk5BwCg8uDyc+nQzred3udnHC5UQ+MOZCQAqFrISGQkGlIAAJRCaR9NXBXl/1A4XAEAgMqJjFR8VT0j0ZACAABux6OQAQAACqvMGYmGFACgSivOU1+KwmXmAACgMiMjoazRkAIAVCnFuYyce9kAAICqpjQZSSInofRoSAEAqpRLz9oVdaPIS2s8d+4p0zEBAAC4W2kykkROQunRkAIAVGnFuay8qt9wEgAAVD3F/ekdOQmlRUMKAFCuFPdS8OJcVs4l5AAAoLIgI6Gy8XT3AAAAAAAAAFC1cIUUAKBCKtZl5Mt5ygsAAKhayEioKLhCCgAAAAAAAJbiCikAQLlS1Fm9VuI+BwAAoGojI6GyoSEFAHCJS2+gyc0yAQAAyEjA5dCQAgCUeweXT3b3EAAAAModMhIqMhpSAFCFFffxwaVRVEDybNm00LT8Hw67ZHsAAACuUpYZKSdxa6Gf35GRUBXRkHKzsvwfOgAojeJcVl7U/3YBgCuRkQCUN2QkwLVoSAEASqxYjxMuAmf6AABAZUZGAoqPhlQ5xBlBAFYpTmjy3LnHgpEAwNWRkQBYhYwElD0aUgBQSXHJOAAAQGFkJKB8oCEFAJVAUcGqtJeMX4pLyAEAQEVFRgLKLxpSFURxbqAHoHI6tPPtq9bkZxCIAFRNZCSg6iIjARUbDakKinsoABUP/08TAJQ9MhJQ8ZCRgKqJhhQA/H+l/X9ichK3Frr0u3nA3aVariieLZs6vefycAAAYLXSNo0OLp/s9J6MBKAADSkA5Zqrzpi58oz5pZeHF3UpuKvuTSARrgAAQGEVISMVhYwEoAANqUqES9RRXhTnb/FarkYqzXLFVSgkLXddaAIAuAcZCeUFGQkALqAhBeCaWP3Y3KLOqjVPvHpdUZeHX3oJOQAAgKtYnZGkIvIPGQlAOUZDqpIrzhdheTjjAtcpbvgpztk4V7p0/UVerl3KM23FufTblZeHAwAqPjJS1VNRMpLkuquRyEgAyjMaUij1l6yrAlhZBzl3P7WjIoWf4iC0AACqCndnpKLWVZYZydXrL832i0JGAoDKiYYUXKoszzaWZj3FXbcr11VaxTk7VpynkhSFgAQAgHtZmZGKu67irJ+MBAAoKzSkYDlXBZSyDjqlVeQ9ji4JScWpKe66AQBA5VAesw0ZCQBQVmhIocJwZYixOrTw+30AAFBWSpt/yEgAAHeq8A2phQsX6uWXX5bdblenTp30xhtvqHv37u4eVpVV2qaRK7dXmhoAACobMlL5QkYCAMBZhW5Ivf/++4qLi9OiRYsUHh6uefPmKSoqSgcOHFDDhg3dPbxSc2U4qChnvgAAgOtU1owkuS5XkJEAAHAvD8MwDHcPorTCw8PVrVs3LViwQJKUn5+v4OBgjR49WhMnTrzq8g6HQ/7+/srMzJTNZnP5+A4un+zydQIAUFW0GvRSmay3rL//y4PynpFyErfSjAEAoJQqS0byLPMtlJHs7GylpKQoMjLSnObp6anIyEglJye7cWQAAADuQ0YCAAAVQYX9yd6vv/6qvLw8BQYGOk0PDAzU/v37i1wmKytLWVlZ5vvMzExJf3QBy8Lps1lXLwIAAEUqq+/ngvVW4IvEr6giZKScM2fISQAAlFJlyUgVtiFVGrNmzdKMGTMKTQ8ODnbDaAAAwBUNe6VMV3/q1Cn5+/uX6TYqCjISAAAVSCXJSBW2IVW/fn15eXkpPT3daXp6erqCgoKKXGbSpEmKi4sz3+fn5+vkyZOqV6+ePDw8XDY2h8Oh4OBgHTlypNLem6Ky4ZhVPByziodjVvFU1mNmGIZOnTqlxo0bu3soZaI8ZySp8v5dVVYcr4qHY1bxcMwqnsp6zKzOSBW2IeXt7a2wsDBt3LhR/fr1k/RHeNq4caNGjRpV5DI+Pj7y8fFxmhYQEFBmY7TZbJXqj7Mq4JhVPByziodjVvFUxmNWma+MqggZSaqcf1eVGcer4uGYVTwcs4qnMh4zKzNShW1ISVJcXJxiYmLUtWtXde/eXfPmzdOZM2f06KOPuntoAAAAbkNGAgAA5V2FbkgNHDhQJ06c0NSpU2W329W5c2clJiYWuoknAABAVUJGAgAA5V2FbkhJ0qhRoy57+bm7+Pj4aNq0aYUufUf5xTGreDhmFQ/HrOLhmFVs5TEjSfxdVTQcr4qHY1bxcMwqHo6Za3gYlfWZxwAAAAAAACiXPN09AAAAAAAAAFQtNKQAAAAAAABgKRpSAAAAAAAAsBQNqVJauHChmjdvLl9fX4WHh2vHjh1XrF+5cqXatGkjX19fdejQQWvXrrVopChQkmP297//Xbfeeqvq1KmjOnXqKDIy8qrHGK5X0n9nBZYvXy4PDw/169evbAeIQkp6zDIyMhQbG6tGjRrJx8dHN9xwA//7aLGSHrN58+apdevWqlGjhoKDgzV27FidP3/eotGiIiAjVTxkpIqHjFTxkJEqHjKSBQyU2PLlyw1vb2/jH//4h7Fnzx7j8ccfNwICAoz09PQi67/88kvDy8vLmDNnjrF3715jypQpRvXq1Y1du3ZZPPKqq6TH7OGHHzYWLlxofPvtt8a+ffuMoUOHGv7+/sYvv/xi8cirrpIeswJpaWnGddddZ9x6663GfffdZ81gYRhGyY9ZVlaW0bVrV6Nv377G1q1bjbS0NGPz5s1GamqqxSOvukp6zJYuXWr4+PgYS5cuNdLS0oz169cbjRo1MsaOHWvxyFFekZEqHjJSxUNGqnjISBUPGckaNKRKoXv37kZsbKz5Pi8vz2jcuLExa9asIusffPBBIzo62mlaeHi48cQTT5TpOHFBSY/ZpXJzcw0/Pz9jyZIlZTVEXKI0xyw3N9e46aabjHfffdeIiYkhbFmspMfsrbfeMq6//nojOzvbqiHiEiU9ZrGxscYdd9zhNC0uLs64+eaby3ScqDjISBUPGaniISNVPGSkioeMZA1+sldC2dnZSklJUWRkpDnN09NTkZGRSk5OLnKZ5ORkp3pJioqKumw9XKs0x+xSZ8+eVU5OjurWrVtWw8RFSnvMXnjhBTVs2FDDhg2zYpi4SGmO2SeffKKIiAjFxsYqMDBQ7du319/+9jfl5eVZNewqrTTH7KabblJKSop5yfqPP/6otWvXqm/fvpaMGeUbGaniISNVPGSkioeMVPGQkaxTzd0DqGh+/fVX5eXlKTAw0Gl6YGCg9u/fX+Qydru9yHq73V5m48QFpTlml5owYYIaN25cKDSjbJTmmG3dulX/+7//q9TUVAtGiEuV5pj9+OOP2rRpkx555BGtXbtWP/zwg5566inl5ORo2rRpVgy7SivNMXv44Yf166+/6pZbbpFhGMrNzdXIkSP117/+1Yoho5wjI1U8ZKSKh4xU8ZCRKh4yknW4Qgq4itmzZ2v58uVatWqVfH193T0cFOHUqVMaPHiw/v73v6t+/fruHg6KKT8/Xw0bNtQ777yjsLAwDRw4UJMnT9aiRYvcPTRcxubNm/W3v/1Nb775pr755ht99NFHSkhI0MyZM909NABuQEYq/8hIFRMZqeIhI5UOV0iVUP369eXl5aX09HSn6enp6QoKCipymaCgoBLVw7VKc8wKzJ07V7Nnz9aGDRvUsWPHshwmLlLSY3bo0CH99NNPuvfee81p+fn5kqRq1arpwIEDCgkJKdtBV3Gl+XfWqFEjVa9eXV5eXua0tm3bym63Kzs7W97e3mU65qquNMfs+eef1+DBgzV8+HBJUocOHXTmzBmNGDFCkydPlqcn57mqMjJSxUNGqnjISBUPGaniISNZh0+lhLy9vRUWFqaNGzea0/Lz87Vx40ZFREQUuUxERIRTvSQlJSVdth6uVZpjJklz5szRzJkzlZiYqK5du1oxVPx/JT1mbdq00a5du5Sammq+/vSnP6lXr15KTU1VcHCwlcOvkkrz7+zmm2/WDz/8YAZjSfq///s/NWrUiKBlgdIcs7NnzxYKVAVh2TCMshssKgQyUsVDRqp4yEgVDxmp4iEjWci991SvmJYvX274+PgY8fHxxt69e40RI0YYAQEBht1uNwzDMAYPHmxMnDjRrP/yyy+NatWqGXPnzjX27dtnTJs2jUcaW6ykx2z27NmGt7e38cEHHxjHjh0zX6dOnXLXLlQ5JT1ml+IJMtYr6TE7fPiw4efnZ4waNco4cOCAsWbNGqNhw4bGiy++6K5dqHJKesymTZtm+Pn5Gf/+97+NH3/80fjss8+MkJAQ48EHH3TXLqCcISNVPGSkioeMVPGQkSoeMpI1aEiV0htvvGE0bdrU8Pb2Nrp372589dVX5rzbbrvNiImJcapfsWKFccMNNxje3t5Gu3btjISEBItHjJIcs2bNmhmSCr2mTZtm/cCrsJL+O7sYYcs9SnrMtm3bZoSHhxs+Pj7G9ddfb7z00ktGbm6uxaOu2kpyzHJycozp06cbISEhhq+vrxEcHGw89dRTxu+//279wFFukZEqHjJSxUNGqnjISBUPGanseRgG148BAAAAAADAOtxDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAFMv06dPl4eHh7mG4RHx8vDw8PPTTTz+5eyi4gtOnT6thw4ZaunTpVWuHDh2q5s2bF1p++PDhCgoKkoeHh8aMGVOi7U+cOFHh4eElWgYAUPWQkWA1MhIqCxpSAMrctm3bNH36dGVkZLh7KJf15ptvKj4+vky34eHhIQ8PDw0fPrzI+ZMnTzZrfv311zIdS0Uwf/58+fn5adCgQaVa/m9/+5vi4+P15JNP6r333tPgwYMlSW+99Zb+/Oc/q2nTpvLw8NDQoUOLXH7MmDH67rvv9Mknn5R2FwAAuCIy0h/ISCVTFhnpyJEjmjFjhrp37646deqofv36uv3227Vhw4ZCy5OR4CoehmEY7h4EgPIvNzdXubm58vX1LfGyc+fO1bhx45SWllboDI075OXlKScnRz4+PuYZzfbt26t+/fravHlzmW3Xw8NDvr6+8vX1VXp6ury9vZ3mX3/99Tp27JjOnz+vEydOqH79+mU2lvIuJydH1113ncaOHatJkyZdtX7o0KHavHmz0xndHj16qFq1atq6datTbfPmzXXq1Cl1795dGzZs0COPPHLZoD1w4EAdO3ZMX3zxxbXsDgCgEiMjXTsyUvGVVUZasGCBxo8fr379+unmm29Wbm6u/vnPf+qbb77RP/7xDz366KNO6yUjwRW4QgqQlJ+fr/Pnz7t7GE7OnDlT5tswDEPnzp0rVm21atVKFbTKIy8vL/n6+rrl8vo+ffrI4XBo3bp1TtO3bdumtLQ0RUdHWz6m8mjNmjU6ceKEHnzwwVKv4/jx4woICCg0fcuWLfr111+1bt06+fj4XHEdDz74oLZu3aoff/yx1OMAgIqMjHR1ZCTXICMVT1llpF69eunw4cNatmyZYmNj9cwzz2jbtm1q06aNpk6dWmgdZCS4Ag0pVBoFv9/fv3+/HnzwQdlsNtWrV0/PPPNMoSDl4eGhUaNGaenSpWrXrp18fHyUmJgoSfrvf/+rxx57TIGBgfLx8VG7du30j3/8o9D2zp8/r+nTp+uGG26Qr6+vGjVqpAceeECHDh2SJG3evFkeHh6Fzib99NNP8vDwcLoiY+jQoapdu7YOHTqkvn37ys/PT4888ogk6eDBg+rfv7+CgoLk6+urJk2aaNCgQcrMzDSXz83N1cyZMxUSEiIfHx81b95cf/3rX5WVleW07ebNm+uee+7R+vXr1bVrV9WoUUNvv/12iT7foj7H1atXq3379ubnVfBZFiw3btw4SVKLFi3My60vPkvzr3/9S2FhYapRo4bq1q2rQYMG6ciRI07buv3229W+fXvt3btXvXr1Us2aNXXddddpzpw5hcb6xhtvqF27dqpZs6bq1Kmjrl27atmyZeb8S++P0Lx5c+3Zs0dbtmwxx3f77bfrxx9/lIeHh1577bVC29i2bZs8PDz073//u1ifX4HrrrtOPXv2dBqPJC1dulQdOnRQ+/btS7S+i/dn69atevrpp9WgQQMFBAToiSeeUHZ2tjIyMjRkyBDVqVNHderU0fjx43XpxbH5+fmaN2+e2rVrJ19fXwUGBuqJJ57Q77//7lT38ccfKzo6Wo0bN5aPj49CQkI0c+ZM5eXlOdWV5HgVZfXq1WrevLlCQkKKnNe+fXv5+vqqffv2WrVqldP8gn97aWlpSkhIKPQ316xZs2IH7cjISHO/AaCiIiORkQqQkchIl8tI7dq1K3TlmY+Pj/r27atffvlFp06dcppHRoIrVHP3AABXe/DBB9W8eXPNmjVLX331lV5//XX9/vvv+uc//+lUt2nTJq1YsUKjRo1S/fr11bx5c6Wnp6tHjx5miGjQoIHWrVunYcOGyeFwmDf8y8vL0z333KONGzdq0KBBeuaZZ3Tq1CklJSVp9+7dRX5BXE1ubq6ioqJ0yy23aO7cuapZs6ays7MVFRWlrKwsjR49WkFBQfrvf/+rNWvWKCMjQ/7+/pKk4cOHa8mSJRowYICeffZZbd++XbNmzdK+ffsKfREdOHBADz30kJ544gk9/vjjat26dek+6P9v69at+uijj/TUU0/Jz89Pr7/+uvr376/Dhw+rXr16euCBB/R///d/+ve//63XXnvN/KJr0KCBJOmll17S888/rwcffFDDhw/XiRMn9MYbb6hnz5769ttvnc7e/P777+rTp48eeOABPfjgg/rggw80YcIEdejQQXfffbck6e9//7uefvppDRgwwAza33//vbZv366HH364yH2YN2+eRo8erdq1a2vy5MmSpMDAQF1//fW6+eabtXTpUo0dO9ZpmaVLl8rPz0/33XdfiT+zhx9+WM8884xOnz6t2rVrKzc3VytXrlRcXNw1nYUu+BuZMWOGvvrqK73zzjsKCAjQtm3b1LRpU/3tb3/T2rVr9fLLL6t9+/YaMmSIuewTTzyh+Ph4Pfroo3r66aeVlpamBQsW6Ntvv9WXX36p6tWrS/oj2NWuXVtxcXGqXbu2Nm3apKlTp8rhcOjll192Gk9xjtflbNu2TV26dCk0/bPPPlP//v0VGhqqWbNm6bffftOjjz6qJk2amDVt27bVe++9p7Fjx6pJkyZ69tlnJV34mysJf39/hYSE6Msvvyz0NwAAFQ0ZiYxERiIjlTQj2e121axZUzVr1nSaTkaCSxhAJTFt2jRDkvGnP/3JafpTTz1lSDK+++47c5okw9PT09izZ49T7bBhw4xGjRoZv/76q9P0QYMGGf7+/sbZs2cNwzCMf/zjH4Yk49VXXy00jvz8fMMwDOPzzz83JBmff/650/y0tDRDkrF48WJzWkxMjCHJmDhxolPtt99+a0gyVq5cedn9Tk1NNSQZw4cPd5r+3HPPGZKMTZs2mdOaNWtmSDISExMvu77LKfh8LybJ8Pb2Nn744Qdz2nfffWdIMt544w1z2ssvv2xIMtLS0pyW/+mnnwwvLy/jpZdecpq+a9cuo1q1ak7Tb7vtNkOS8c9//tOclpWVZQQFBRn9+/c3p913331Gu3btrrgvixcvLjSedu3aGbfddluh2rffftuQZOzbt8+clp2dbdSvX9+IiYm54nYuJcmIjY01Tp48aXh7exvvvfeeYRiGkZCQYHh4eBg//fST+TmfOHGi2Ost2J+oqCjz788wDCMiIsLw8PAwRo4caU7Lzc01mjRp4rSv//nPfwxJxtKlS53Wm5iYWGh6wb+Biz3xxBNGzZo1jfPnz5vTinu8ipKTk2N4eHgYzz77bKF5nTt3Nho1amRkZGSY0z777DNDktGsWTOn2mbNmhnR0dFX3FatWrWuehx79+5ttG3b9oo1AFCekZHISIZBRiIjXVCcjGQYhnHw4EHD19fXGDx4cJHzyUi4VvxkD5VObGys0/vRo0dLktauXes0/bbbblNoaKj53jAMffjhh7r33ntlGIZ+/fVX8xUVFaXMzEx98803kqQPP/xQ9evXN9d9sWv5zf2TTz7p9L7g7N769et19uzZIpcp2K+4uDin6QVnPBISEpymt2jRQlFRUaUe46UiIyOdznZ27NhRNputWL8n/+ijj5Sfn68HH3zQ6fMOCgpSq1at9PnnnzvV165dW3/5y1/M997e3urevbvTtgICAvTLL7/o66+/dsHe/XE22dfX1+mxuuvXr9evv/7qNJaSqFOnjvr06WNeyr5s2TLddNNNatas2TWNddiwYU5/f+Hh4TIMQ8OGDTOneXl5qWvXrk6f2cqVK+Xv76+77rrL6TiEhYWpdu3aTsehRo0a5n+fOnVKv/76q2699VadPXtW+/fvdxpPcY5XUU6ePCnDMFSnTh2n6ceOHVNqaqpiYmLMfxuSdNdddzn9W3a1OnXq8EQfAJUCGekPZCQyEhnp6s6ePas///nPqlGjhmbPnl1kDRkJ14qGFCqdVq1aOb0PCQmRp6en0+/xpT9Cx8VOnDihjIwMvfPOO2rQoIHTq+CpEsePH5ckHTp0SK1bt1a1aq771Wu1atWcLqktGGNcXJzeffdd1a9fX1FRUVq4cKHTvRF+/vlneXp6qmXLlk7LBgUFKSAgQD///PMV9/taNW3atNC0OnXqFPpdfVEOHjwowzDUqlWrQp/5vn37zM+7QJMmTQqF2Uu3NWHCBNWuXVvdu3dXq1atFBsbqy+//LKUe/dHeLv33nud7mewdOlSXXfddbrjjjtKvd6HH35YSUlJOnz4sFavXn3ZS+VL4tJjURBIgoODC02/+DM7ePCgMjMz1bBhw0LH4fTp007HYc+ePbr//vvl7+8vm82mBg0amIHq4r9LqXjH60qMS+7hUPC3fOm/cUnX/LOKq43DHTd3BQBXIyP9gYxERiIjXVleXp4GDRqkvXv36oMPPlDjxo0vOw4yEq4F95BCpXe5/5G8+CyG9McNCyXpL3/5i2JiYopcpmPHjte83UtvbFjAx8dHnp6Fe8SvvPKKhg4dqo8//lifffaZnn76afPeDxeHs+J+GVy639fKy8uryOmXflEWJT8/Xx4eHlq3bl2R66ldu3aJt9W2bVsdOHBAa9asUWJioj788EO9+eabmjp1qmbMmHHVMRVlyJAhWrlypbZt26YOHTrok08+0VNPPVXk8SquP/3pT/Lx8VFMTIyysrKu6UkpBS73+RQ1/eLPLD8/Xw0bNnQ6w3mxgvsKZGRk6LbbbpPNZtMLL7ygkJAQ+fr66ptvvtGECRPMf0NXG8/V/jbq1q0rDw+PYoeysvb7779X6cdLA6i8yEjOyEglR0aqnBnp8ccf15o1a7R06dIrNhfJSLhWNKRQ6Rw8eNDpDNcPP/yg/Px8NW/e/IrLNWjQQH5+fsrLyzOfGnE5ISEh2r59u3JycswbGV6q4FLajIwMp+mXno0rjg4dOqhDhw6aMmWKtm3bpptvvlmLFi3Siy++qGbNmik/P18HDx5U27ZtzWXS09OVkZFxzZc4u8LlgmBISIgMw1CLFi10ww03uGx7tWrV0sCBAzVw4EBlZ2frgQce0EsvvaRJkyZd9rHMVwqrffr0UYMGDbR06VKFh4fr7NmzGjx48DWNsUaNGurXr5/+9a9/6e6773brl3lISIg2bNigm2+++YphfPPmzfrtt9/00UcfqWfPnub0tLQ0l46nWrVqCgkJKbTegr/lgwcPFlrmwIEDLh3DxdLS0tSpU6cyWz8AWIWM9AcyEhmpuKpiRho3bpwWL16sefPm6aGHHrpiLRkJ14qf7KHSWbhwodP7N954Q5Ku+sQKLy8v9e/fXx9++KF2795daP6JEyfM/+7fv79+/fVXLViwoFBdwZmNZs2aycvLS1988YXT/DfffLN4OyLJ4XAoNzfXaVqHDh3k6elpPq64b9++kv54CsrFXn31VUlSdHR0sbdXVmrVqiWpcPB84IEH5OXlpRkzZhQ6I2QYhn777bcSb+vSZby9vRUaGirDMJSTk3PFMV46vgLVqlXTQw89pBUrVig+Pl4dOnQo0Zngy3nuuec0bdo0Pf/889e8rmvx4IMPKi8vTzNnziw0Lzc31/xcCs7mXXyssrOzS/Q3XVwRERHauXOn07RGjRqpc+fOWrJkidOl70lJSdq7d6/LxyD9cYn9oUOHdNNNN5XJ+gHASmSkP5CR/kBGurqqlpFefvllzZ07V3/961/1zDPPXLGWjARX4AopVDppaWn605/+pD59+ig5OVn/+te/9PDDDxerez979mx9/vnnCg8P1+OPP67Q0FCdPHlS33zzjTZs2KCTJ09K+uPy5H/+85+Ki4vTjh07dOutt+rMmTPasGGDnnrqKd13333y9/fXn//8Z73xxhvy8PBQSEiI1qxZU+g3/1eyadMmjRo1Sn/+8591ww03KDc3V++9954ZDCWpU6dOiomJ0TvvvGNeLrxjxw4tWbJE/fr1U69evUr3QbpQWFiYJGny5MkaNGiQqlevrnvvvVchISF68cUXNWnSJP3000/q16+f/Pz8lJaWplWrVmnEiBF67rnnSrSt3r17KygoSDfffLMCAwO1b98+LViwQNHR0fLz87viGN966y29+OKLatmypRo2bOh0ifKQIUP0+uuv6/PPP9f//M//lO6DuESnTp3KxVml2267TU888YRmzZql1NRU9e7dW9WrV9fBgwe1cuVKzZ8/XwMGDNBNN92kOnXqKCYmRk8//bQ8PDz03nvvFeunByV133336b333tP//d//OZ0ZnjVrlqKjo3XLLbfoscce08mTJ/XGG2+oXbt2On36dLHW/emnn+q7776TJOXk5Oj777/Xiy++KOmPnwlcHKQ3bNggwzBK9ehqAChvyEhkJDJSyVSljLRq1SqNHz9erVq1Utu2bfWvf/3Laf5dd92lwMBA8z0ZCS5Rlo/wA6xU8CjYvXv3GgMGDDD8/PyMOnXqGKNGjTLOnTvnVKv//2jZoqSnpxuxsbFGcHCwUb16dSMoKMi48847jXfeecep7uzZs8bkyZONFi1amHUDBgwwDh06ZNacOHHC6N+/v1GzZk2jTp06xhNPPGHs3r27yEca16pVq9BYfvzxR+Oxxx4zQkJCDF9fX6Nu3bpGr169jA0bNjjV5eTkGDNmzDDHEhwcbEyaNMnpEbOGUfxHvBblco80LupzbNasWaHH/c6cOdO47rrrDE9Pz0KPE/7www+NW265xahVq5ZRq1Yto02bNkZsbKxx4MABs+a2224r8lHFMTExTo+yffvtt42ePXsa9erVM3x8fIyQkBBj3LhxRmZmpllT1CON7Xa7ER0dbfj5+RmSiny8cbt27QxPT0/jl19+ucyndGVX+rsrcC2PNP7666+Lta7L/b298847RlhYmFGjRg3Dz8/P6NChgzF+/Hjj6NGjZs2XX35p9OjRw6hRo4bRuHFjY/z48cb69esLPb67uMfrcrKysoz69esbM2fOLDTvww8/NNq2bWv4+PgYoaGhxkcffVTkei/3917wCPGiXhf/uzQMwxg4cKBxyy23XHW8AFCekZHISIZBRirOuqpyRir4TC73ungfDIOMBNfwMIwyaNsCbjB9+nTNmDFDJ06c4OZ6KBM33nij6tatq40bN7p7KFXCzJkztXjxYh08ePCyN/8sS3a7XS1atNDy5cs5+wegQiMjoayRkaxFRkJlwT2kAKAYdu7cqdTUVA0ZMsTdQ6kyxo4dq9OnT2v58uVu2f68efPUoUMHghYAAFdARrIeGQmVBfeQAqq4zMxMnTt37oo1QUFBFo2m/Nm9e7dSUlL0yiuvqFGjRho4cKDT/Ly8PKebuRaldu3ahR7PXBznzp1zujFlUerWrStvb+8Sr7siqF27donuJ+Jqs2fPdtu2AQDuR0a6MjKS+5CRUFnQkAKquGeeeUZLliy5Yk1V/mXvBx98oBdeeEGtW7fWv//970KPRD5y5IjTI7SLMm3aNE2fPr3E237//ff16KOPXrHm888/1+23317idQMAgCsjI10ZGQnAteIeUkAVt3fvXh09evSKNZGRkRaNpuI5f/68tm7desWa66+/Xtdff32J133s2DHt2bPnijVhYWGqU6dOidcNAACujIx0bchIAK6GhhQAAAAAAAAsxU3NAQAAAAAAYKkqfQ+p/Px8HT16VH5+fvLw8HD3cAAAgAUMw9CpU6fUuHFjeXpybq4oZCQAAKoeqzNSlW5IHT16VMHBwe4eBgAAcIMjR46oSZMm7h5GuURGAgCg6rIqI1XphpSfn5+kPz5sm83m5tEAAAArOBwOBQcHmzkAhZGRAACoeqzOSFW6IVVwCbrNZiNsAQBQxfBTtMsjIwEAUHVZlZG4cQIAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEtV6XtIAQBwOYZhKDc3V3l5ee4eCkrIy8tL1apV4x5RAACUATJSxVXeMhINKQAALpGdna1jx47p7Nmz7h4KSqlmzZpq1KiRvL293T0UAAAqDTJSxVeeMhINKQAALpKfn6+0tDR5eXmpcePG8vb2LjdnkXB1hmEoOztbJ06cUFpamlq1aiVPT+5QAADAtSIjVWzlMSPRkAIA4CLZ2dnKz89XcHCwatas6e7hoBRq1Kih6tWr6+eff1Z2drZ8fX3dPSQAACo8MlLFV94yEqcMAQAogrvPGOHacPwAACgbfMdWbOXp+JWfkQAAAAAAAKBKoCEFAAAAAAAAS9GQAgCggvPw8Ljia/r06W4d2+rVq69pHe+8845uv/122Ww2eXh4KCMjwyVjAwAAlV9lzkknT57U6NGj1bp1a9WoUUNNmzbV008/rczMTNcNsgxxU3MAAIopJ3GrZduq3ueWYtceO3bM/O/3339fU6dO1YEDB8xptWvXLtG2s7Ozy8WjgAucPXtWffr0UZ8+fTRp0iR3DwcAAFzCyowkkZMKHD16VEePHtXcuXMVGhqqn3/+WSNHjtTRo0f1wQcfuHt4V8UVUmUoJ3Gr5f8wAQBVT1BQkPny9/eXh4eH+f7MmTN65JFHFBgYqNq1a6tbt27asGGD0/LNmzfXzJkzNWTIENlsNo0YMUKS9Pe//918ks7999+vV199VQEBAU7Lfvzxx+rSpYt8fX11/fXXa8aMGcrNzTXXK0n333+/PDw8zPffffedevXqJT8/P9lsNoWFhWnnzp2X3b8xY8Zo4sSJ6tGjh2s+MLhdQUYiJwEAylplzknt27fXhx9+qHvvvVchISG644479NJLL+nTTz81t1Oe0ZACAKASO336tPr27auNGzfq22+/VZ8+fXTvvffq8OHDTnVz585Vp06d9O233+r555/Xl19+qZEjR+qZZ55Ramqq7rrrLr300ktOy/znP//RkCFD9Mwzz2jv3r16++23FR8fb9Z9/fXXkqTFixfr2LFj5vtHHnlETZo00ddff62UlBRNnDhR1atXt+DTAAAAuKAy5qTMzEzZbDZVq1b+fxBX/kcIAABKrVOnTurUqZP5fubMmVq1apU++eQTjRo1ypx+xx136NlnnzXfT548WXfffbeee+45SdINN9ygbdu2ac2aNWbNjBkzNHHiRMXExEiSrr/+es2cOVPjx4/XtGnT1KBBA0lSQECAgoKCzOUOHz6scePGqU2bNpKkVq1alcGeAwAAXFlly0m//vqrZs6caV7FVd5xhRQAAJXY6dOn9dxzz6lt27YKCAhQ7dq1tW/fvkJn/rp27er0/sCBA+revbvTtEvff/fdd3rhhRdUu3Zt8/X444/r2LFjOnv27GXHFBcXp+HDhysyMlKzZ8/WoUOHrnEvAQAASq4y5SSHw6Ho6GiFhoa69UbtJUFDCgCASuy5557TqlWr9Le//U3/+c9/lJqaqg4dOig7O9uprlatWiVe9+nTpzVjxgylpqaar127dungwYPy9fW97HLTp0/Xnj17FB0drU2bNik0NFSrVq0q8fYBAACuRWXJSadOnVKfPn3k5+enVatWVZhbIfCTPQAAKrEvv/xSQ4cO1f333y/pj3D0008/XXW51q1bm/cyKHDp+y5duujAgQNq2bLlZddTvXp15eXlFZp+ww036IYbbtDYsWP10EMPafHixeYYAQAArFAZcpLD4VBUVJR8fHz0ySefXLHZVd7QkAIAoBJr1aqVPvroI917773y8PDQ888/r/z8/KsuN3r0aPXs2VOvvvqq7r33Xm3atEnr1q2Th4eHWTN16lTdc889atq0qQYMGCBPT09999132r17t1588UVJfzxBZuPGjbr55pvl4+MjX19fjRs3TgMGDFCLFi30yy+/6Ouvv1b//v0vOxa73S673a4ffvhBkrRr1y75+fmpadOmqlu37jV+QgAAoKqq6DnJ4XCod+/eOnv2rP71r3/J4XDI4XBIkho0aCAvLy8XfEplh5/sAQBQib366quqU6eObrrpJt17772KiopSly5drrrczTffrEWLFunVV19Vp06dlJiYqLFjxzqddYuKitKaNWv02WefqVu3burRo4dee+01NWvWzKx55ZVXlJSUpODgYN14443y8vLSb7/9piFDhuiGG27Qgw8+qLvvvlszZsy47FgWLVqkG2+8UY8//rgkqWfPnrrxxhv1ySefXMMnAwAAqrqKnpO++eYbbd++Xbt27VLLli3VqFEj83XkyJFr/4DKmIdhGIa7B+EuDodD/v7+5mMRXS0ncaskqXqfW1y+bgBA2Th//rzS0tLUokWLCnXJsxUef/xx7d+/X//5z3/cPZSrutJxLOvv/8rAqowkkZMAoKIgI11ZRclJ5Skj8ZM9AABQpLlz5+quu+5SrVq1tG7dOi1ZskRvvvmmu4cFAADgduSka0dDCgAAFGnHjh2aM2eOTp06peuvv16vv/66hg8f7u5hAQAAuB056dpd0z2kZs+eLQ8PD40ZM8acdv78ecXGxqpevXqqXbu2+vfvr/T0dKflDh8+rOjoaNWsWVMNGzbUuHHjlJub61SzefNmdenSRT4+PmrZsqXi4+MLbX/hwoVq3ry5fH19FR4erh07dlzL7gAAgIusWLFCx48f17lz57Rnzx6NHDnS3UOqMMhIAABUbuSka1fqhtTXX3+tt99+Wx07dnSaPnbsWH366adauXKltmzZoqNHj+qBBx4w5+fl5Sk6OlrZ2dnatm2blixZovj4eE2dOtWsSUtLU3R0tHr16qXU1FSNGTNGw4cP1/r1682a999/X3FxcZo2bZq++eYbderUSVFRUTp+/HhpdwkAAOCakZEAAACKwSiFU6dOGa1atTKSkpKM2267zXjmmWcMwzCMjIwMo3r16sbKlSvN2n379hmSjOTkZMMwDGPt2rWGp6enYbfbzZq33nrLsNlsRlZWlmEYhjF+/HijXbt2TtscOHCgERUVZb7v3r27ERsba77Py8szGjdubMyaNavY+5GZmWlIMjIzM4u/8yWQve4/Rva6/5TJugEAZePcuXPG3r17jXPnzrl7KLgGVzqOZfn9T0YqnoKMRE4CgIqDjFQ5uCsjFaVUV0jFxsYqOjpakZGRTtNTUlKUk5PjNL1NmzZq2rSpkpOTJUnJycnq0KGDAgMDzZqoqCg5HA7t2bPHrLl03VFRUeY6srOzlZKS4lTj6empyMhIswYAAMBqZCQAAIDiKfFNzZcvX65vvvlGX3/9daF5drtd3t7eCggIcJoeGBgou91u1lwctArmF8y7Uo3D4dC5c+f0+++/Ky8vr8ia/fv3X3bsWVlZysrKMt87HI6r7C0AAEDxkJEAAACKr0RXSB05ckTPPPOMli5dKl9f37IaU5mZNWuW/P39zVdwcLC7hwQAACoBMhIAAEDJlKghlZKSouPHj6tLly6qVq2aqlWrpi1btuj1119XtWrVFBgYqOzsbGVkZDgtl56erqCgIElSUFBQoSfKFLy/Wo3NZlONGjVUv359eXl5FVlTsI6iTJo0SZmZmebryJEjJdl9AACAIpGRAAAASqZEDak777xTu3btUmpqqvnq2rWrHnnkEfO/q1evro0bN5rLHDhwQIcPH1ZERIQkKSIiQrt27XJ60ktSUpJsNptCQ0PNmovXUVBTsA5vb2+FhYU51eTn52vjxo1mTVF8fHxks9mcXgAAANeKjAQAAFAyJbqHlJ+fn9q3b+80rVatWqpXr545fdiwYYqLi1PdunVls9k0evRoRUREqEePHpKk3r17KzQ0VIMHD9acOXNkt9s1ZcoUxcbGysfHR5I0cuRILViwQOPHj9djjz2mTZs2acWKFUpISDC3GxcXp5iYGHXt2lXdu3fXvHnzdObMGT366KPX9IEAAHA5h3a+bdm2Qro+UaL6oUOHasmSJZKkatWqqW7duurYsaMeeughDR06VJ6epXqOSbmwZ88eTZ06VSkpKfr555/12muvacyYMe4elhMyEgCgKrMyI0nkpIv9/e9/1z//+U/t3r1bkhQWFqa//e1v6t69u5tHdnUu/9Rfe+013XPPPerfv7969uypoKAgffTRR+Z8Ly8vrVmzRl5eXoqIiNBf/vIXDRkyRC+88IJZ06JFCyUkJCgpKUmdOnXSK6+8onfffVdRUVFmzcCBAzV37lxNnTpVnTt3VmpqqhITEwvdxBMAgKqiT58+OnbsmH766SetW7dOvXr10jPPPKN77rlHubm57h5eqZ09e1bXX3+9Zs+efcWfnZV3ZCQAANynsuakzZs366GHHtLnn3+u5ORkBQcHq3fv3vrvf//r7qFd1TU3pDZv3qx58+aZ7319fbVw4UKdPHlSZ86c0UcffVQoPDZr1kxr167V2bNndeLECc2dO1fVqjlfrHX77bfr22+/VVZWlg4dOqShQ4cW2vaoUaP0888/KysrS9u3b1d4ePi17g4AABWWj4+PgoKCdN1116lLly7661//qo8//ljr1q1TfHy8WZeRkaHhw4erQYMGstlsuuOOO/Tdd985revTTz9Vt27d5Ovrq/r16+v+++835/3+++8aMmSI6tSpo5o1a+ruu+/WwYMHJUlnzpyRzWbTBx984LS+1atXq1atWjp16pSys7M1atQoNWrUSL6+vmrWrJlmzZp12f3q1q2bXn75ZQ0aNMi8UqgiICMBAFB+VNactHTpUj311FPq3Lmz2rRpo3fffdf8uX55V3GvSwMAAFd1xx13qFOnTk5X4vz5z3/W8ePHtW7dOqWkpKhLly668847dfLkSUlSQkKC7r//fvXt21fffvutNm7c6HTZ99ChQ7Vz50598sknSk5OlmEY6tu3r3JyclSrVi0NGjRIixcvdhrH4sWLNWDAAPn5+en111/XJ598ohUrVujAgQNaunSpmjdvbsnnAQAAUKAy5qSzZ88qJydHdevWvbYPxwIluocUAACoeNq0aaPvv/9ekrR161bt2LFDx48fN682mjt3rlavXq0PPvhAI0aM0EsvvaRBgwZpxowZ5jo6deokSTp48KA++eQTffnll7rpppsk/XFmLjg4WKtXr9af//xnDR8+XDfddJOOHTumRo0a6fjx41q7dq02bNggSTp8+LBatWqlW265RR4eHmrWrJmVHwcAAICpsuWkCRMmqHHjxoqMjLzmz6ascYUUAACVnGEY8vDwkCR99913On36tOrVq6fatWubr7S0NB06dEiSlJqaqjvvvLPIde3bt0/VqlVz+glYvXr11Lp1a+3bt0+S1L17d7Vr1868eei//vUvNWvWTD179pT0x5nD1NRUtW7dWk8//bQ+++yzMtt3AACAK6lMOWn27Nlavny5Vq1aJV9f35J/GBbjCikAACq5ffv2qUWLFpKk06dPq1GjRtq8eXOhuoCAAElSjRo1rnmbw4cP18KFCzVx4kQtXrxYjz76qBn2unTporS0NK1bt04bNmzQgw8+qMjIyEL3UwAAAChrlSUnzZ07V7Nnz9aGDRvUsWPHax6jFbhCCgCASmzTpk3atWuX+vfvL+mPkGO321WtWjW1bNnS6VW/fn1JUseOHS97I8y2bdsqNzdX27dvN6f99ttvOnDggEJDQ81pf/nLX/Tzzz/r9ddf1969exUTE+O0HpvNpoEDB+rvf/+73n//fX344YfmvRkAAACsUFly0pw5czRz5kwlJiaqa9eupf48rMYVUgAAVBJZWVmy2+3Ky8tTenq6EhMTNWvWLN1zzz0aMmSIJCkyMlIRERHq16+f5syZoxtuuEFHjx41b9DZtWtXTZs2TXfeeadCQkI0aNAg5ebmau3atZowYYJatWql++67T48//rjefvtt+fn5aeLEibruuut03333mWOpU6eOHnjgAY0bN069e/dWkyZNzHmvvvqqGjVqpBtvvFGenp5auXKlgoKCzDOPl8rOztbevXvN//7vf/+r1NRU1a5dWy1btiy7DxQAAFQalTUn/c///I+mTp2qZcuWqXnz5rLb7ZJk/tywPOMKKQAAKonExEQ1atRIzZs3V58+ffT555/r9ddf18cffywvLy9JkoeHh9auXauePXvq0Ucf1Q033KBBgwbp559/VmBgoCTp9ttv18qVK/XJJ5+oc+fOuuOOO7Rjxw5zO4sXL1ZYWJjuueceRUREyDAMrV27VtWrV3caz7Bhw5Sdna3HHnvMabqfn5/mzJmjrl27qlu3bvrpp5+0du1aeXoWHUuOHj2qG2+8UTfeeKOOHTumuXPn6sYbb9Tw4cNd+fEBAIBKrLLmpLfeekvZ2dkaMGCAGjVqZL7mzp3ryo+vTHgYhmG4exDu4nA45O/vr8zMTNlsNpevPydxqySpep9bXL5uAEDZOH/+vNLS0tSiRYsKcTPI8uy9997T2LFjdfToUXl7e1u67Ssdx7L+/q8MrMpIEjkJACoKMpJruSsnlaeMxE/2AACAS509e1bHjh3T7Nmz9cQTT1jejAIAACivyEkX8JM9AADgUnPmzFGbNm0UFBSkSZMmuXs4AAAA5QY56QIaUgAAwKWmT5+unJwcbdy4sdzfTBMAAMBK5KQLaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAFKEKP4S2UuD4AQBQNviOrdjK0/GjIQUAwEWqV68u6Y8noKDiKjh+BccTAABcGzJS5VCeMlI1dw8AAIDyxMvLSwEBATp+/LgkqWbNmvLw8HDzqFBchmHo7NmzOn78uAICAuTl5eXuIQEAUCmQkSq28piRaEgBAHCJoKAgSTIDFyqegIAA8zgCAADXICNVfOUpI9GQAgDgEh4eHmrUqJEaNmyonJwcdw8HJVS9evVycdYPAIDKhoxUsZW3jERDCgCAy/Dy8ipXX9oAAADlARkJrsBNzQEAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS5WoIfXWW2+pY8eOstlsstlsioiI0Lp168z5t99+uzw8PJxeI0eOdFrH4cOHFR0drZo1a6phw4YaN26ccnNznWo2b96sLl26yMfHRy1btlR8fHyhsSxcuFDNmzeXr6+vwsPDtWPHjpLsCgAAgMuQkQAAAEqmRA2pJk2aaPbs2UpJSdHOnTt1xx136L777tOePXvMmscff1zHjh0zX3PmzDHn5eXlKTo6WtnZ2dq2bZuWLFmi+Ph4TZ061axJS0tTdHS0evXqpdTUVI0ZM0bDhw/X+vXrzZr3339fcXFxmjZtmr755ht16tRJUVFROn78+LV8FgAAAKVCRgIAACgZD8MwjGtZQd26dfXyyy9r2LBhuv3229W5c2fNmzevyNp169bpnnvu0dGjRxUYGChJWrRokSZMmKATJ07I29tbEyZMUEJCgnbv3m0uN2jQIGVkZCgxMVGSFB4erm7dumnBggWSpPz8fAUHB2v06NGaOHFiscfucDjk7++vzMxM2Wy2Un4Cl5eTuFWSVL3PLS5fNwAAKJ2y/v4vQEa6vIKMJJGTAAAoL6zKSAVKfQ+pvLw8LV++XGfOnFFERIQ5fenSpapfv77at2+vSZMm6ezZs+a85ORkdejQwQxakhQVFSWHw2GeQUxOTlZkZKTTtqKiopScnCxJys7OVkpKilONp6enIiMjzRoAAAB3ISMBAABcXbWSLrBr1y5FRETo/Pnzql27tlatWqXQ0FBJ0sMPP6xmzZqpcePG+v777zVhwgQdOHBAH330kSTJbrc7BS1J5nu73X7FGofDoXPnzun3339XXl5ekTX79++/4tizsrKUlZVlvnc4HCXdfQAAgCKRkQAAAIqvxA2p1q1bKzU1VZmZmfrggw8UExOjLVu2KDQ0VCNGjDDrOnTooEaNGunOO+/UoUOHFBIS4tKBl8asWbM0Y8YMdw8DAABUQmQkAACA4ivxT/a8vb3VsmVLhYWFadasWerUqZPmz59fZG14eLgk6YcffpAkBQUFKT093amm4H1QUNAVa2w2m2rUqKH69evLy8uryJqCdVzOpEmTlJmZab6OHDlSzL0GAAC4MjISAABA8ZX6HlIF8vPznS7xvlhqaqokqVGjRpKkiIgI7dq1y+lJL0lJSbLZbOYl7REREdq4caPTepKSksx7MHh7eyssLMypJj8/Xxs3bnS6T0NRfHx8zMcxF7wAAADKAhkJAADg8kr0k71Jkybp7rvvVtOmTXXq1CktW7ZMmzdv1vr163Xo0CEtW7ZMffv2Vb169fT9999r7Nix6tmzpzp27ChJ6t27t0JDQzV48GDNmTNHdrtdU6ZMUWxsrHx8fCRJI0eO1IIFCzR+/Hg99thj2rRpk1asWKGEhARzHHFxcYqJiVHXrl3VvXt3zZs3T2fOnNGjjz7qwo8GAACgeMhIAAAAJVOihtTx48c1ZMgQHTt2TP7+/urYsaPWr1+vu+66S0eOHNGGDRvM4BMcHKz+/ftrypQp5vJeXl5as2aNnnzySUVERKhWrVqKiYnRCy+8YNa0aNFCCQkJGjt2rObPn68mTZro3XffVVRUlFkzcOBAnThxQlOnTpXdblfnzp2VmJhY6CaeAAAAViAjAQAAlIyHYRiGuwfhLg6HQ/7+/srMzCyTS9NzErdKkqr3ucXl6wYAAKVT1t//lYFVGUkiJwEAUF5YnZGu+R5SAAAAAAAAQEmU6Cd7KJmfMtZJkjx37jGnhXR9wl3DAQAAKBcKMpJ0ISeRkQAAqFq4QgoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxVoobUW2+9pY4dO8pms8lmsykiIkLr1q0z558/f16xsbGqV6+eateurf79+ys9Pd1pHYcPH1Z0dLRq1qyphg0baty4ccrNzXWq2bx5s7p06SIfHx+1bNlS8fHxhcaycOFCNW/eXL6+vgoPD9eOHTtKsisAAAAuQ0YCAAAomRI1pJo0aaLZs2crJSVFO3fu1B133KH77rtPe/bskSSNHTtWn376qVauXKktW7bo6NGjeuCBB8zl8/LyFB0drezsbG3btk1LlixRfHy8pk6datakpaUpOjpavXr1UmpqqsaMGaPhw4dr/fr1Zs3777+vuLg4TZs2Td988406deqkqKgoHT9+/Fo/DwAAgBIjIwEAAJSMh2EYxrWsoG7dunr55Zc1YMAANWjQQMuWLdOAAQMkSfv371fbtm2VnJysHj16aN26dbrnnnt09OhRBQYGSpIWLVqkCRMm6MSJE/L29taECROUkJCg3bt3m9sYNGiQMjIylJiYKEkKDw9Xt27dtGDBAklSfn6+goODNXr0aE2cOLHYY3c4HPL391dmZqZsNtu1fAxFOrh8siTJs2VTc1pI1ydcvh0AAFB8Zf39X4CMdHkFGUm6kJPISAAAuJdVGalAqe8hlZeXp+XLl+vMmTOKiIhQSkqKcnJyFBkZada0adNGTZs2VXJysiQpOTlZHTp0MIOWJEVFRcnhcJhnEJOTk53WUVBTsI7s7GylpKQ41Xh6eioyMtKsuZysrCw5HA6nFwAAgCuRkQAAAK6uxA2pXbt2qXbt2vLx8dHIkSO1atUqhYaGym63y9vbWwEBAU71gYGBstvtkiS73e4UtArmF8y7Uo3D4dC5c+f066+/Ki8vr8iagnVczqxZs+Tv72++goODS7r7AAAARSIjAQAAFF+JG1KtW7dWamqqtm/frieffFIxMTHau3dvWYzN5SZNmqTMzEzzdeTIEXcPCQAAVBJkJAAAgOKrVtIFvL291bJlS0lSWFiYvv76a82fP18DBw5Udna2MjIynM4ApqenKygoSJIUFBRU6EkvBU+Yubjm0qfOpKeny2azqUaNGvLy8pKXl1eRNQXruBwfHx/5+PiUdJcBAACuiowEAABQfKW+h1SB/Px8ZWVlKSwsTNWrV9fGjRvNeQcOHNDhw4cVEREhSYqIiNCuXbucnvSSlJQkm82m0NBQs+bidRTUFKzD29tbYWFhTjX5+fnauHGjWQMAAOBuZCQAAIDLK9EVUpMmTdLdd9+tpk2b6tSpU1q2bJk2b96s9evXy9/fX8OGDVNcXJzq1q0rm82m0aNHKyIiQj169JAk9e7dW6GhoRo8eLDmzJkju92uKVOmKDY21jwrN3LkSC1YsEDjx4/XY489pk2bNmnFihVKSEgwxxEXF6eYmBh17dpV3bt317x583TmzBk9+uijLvxoAAAAioeMBAAAUDIlakgdP35cQ4YM0bFjx+Tv76+OHTtq/fr1uuuuuyRJr732mjw9PdW/f39lZWUpKipKb775prm8l5eX1qxZoyeffFIRERGqVauWYmJi9MILL5g1LVq0UEJCgsaOHav58+erSZMmevfddxUVFWXWDBw4UCdOnNDUqVNlt9vVuXNnJSYmFrqJJwAAgBXISAAAACXjYRiG4e5BuIvD4ZC/v78yMzNls9lcvv6DyydLkjxbNjWnhXR9wuXbAQAAxVfW3/+VgVUZSbqQk8hIAAC4l9UZ6ZrvIQUAAAAAAACUBA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVIkaUrNmzVK3bt3k5+enhg0bql+/fjpw4IBTze233y4PDw+n18iRI51qDh8+rOjoaNWsWVMNGzbUuHHjlJub61SzefNmdenSRT4+PmrZsqXi4+MLjWfhwoVq3ry5fH19FR4erh07dpRkdwAAAFyCjAQAAFAyJWpIbdmyRbGxsfrqq6+UlJSknJwc9e7dW2fOnHGqe/zxx3Xs2DHzNWfOHHNeXl6eoqOjlZ2drW3btmnJkiWKj4/X1KlTzZq0tDRFR0erV69eSk1N1ZgxYzR8+HCtX7/erHn//fcVFxenadOm6ZtvvlGnTp0UFRWl48ePl/azAAAAKBUyEgAAQMl4GIZhlHbhEydOqGHDhtqyZYt69uwp6Y+zf507d9a8efOKXGbdunW65557dPToUQUGBkqSFi1apAkTJujEiRPy9vbWhAkTlJCQoN27d5vLDRo0SBkZGUpMTJQkhYeHq1u3blqwYIEkKT8/X8HBwRo9erQmTpxYrPE7HA75+/srMzNTNputtB/DZR1cPlmS5NmyqTktpOsTLt8OAAAovrL+/pfISFdTkJGkCzmJjAQAgHtZkZEudk33kMrMzJQk1a1b12n60qVLVb9+fbVv316TJk3S2bNnzXnJycnq0KGDGbQkKSoqSg6HQ3v27DFrIiMjndYZFRWl5ORkSVJ2drZSUlKcajw9PRUZGWnWFCUrK0sOh8PpBQAA4GpkJAAAgCurVtoF8/PzNWbMGN18881q3769Of3hhx9Ws2bN1LhxY33//feaMGGCDhw4oI8++kiSZLfbnYKWJPO93W6/Yo3D4dC5c+f0+++/Ky8vr8ia/fv3X3bMs2bN0owZM0q7ywAAAFdFRgIAALi6UjekYmNjtXv3bm3dutVp+ogRI8z/7tChgxo1aqQ777xThw4dUkhISOlH6gKTJk1SXFyc+d7hcCg4ONiNIwIAAJUNGQkAAODqStWQGjVqlNasWaMvvvhCTZo0uWJteHi4JOmHH35QSEiIgoKCCj3pJT09XZIUFBRk/t+CaRfX2Gw21ahRQ15eXvLy8iqypmAdRfHx8ZGPj0/xdhIAAKCEyEgAAADFU6J7SBmGoVGjRmnVqlXatGmTWrRocdVlUlNTJUmNGjWSJEVERGjXrl1OT3pJSkqSzWZTaGioWbNx40an9SQlJSkiIkKS5O3trbCwMKea/Px8bdy40awBAACwChkJAACgZEp0hVRsbKyWLVumjz/+WH5+fub9DPz9/VWjRg0dOnRIy5YtU9++fVWvXj19//33Gjt2rHr27KmOHTtKknr37q3Q0FANHjxYc+bMkd1u15QpUxQbG2uemRs5cqQWLFig8ePH67HHHtOmTZu0YsUKJSQkmGOJi4tTTEyMunbtqu7du2vevHk6c+aMHn30UVd9NgAAAMVCRgIAACiZEjWk3nrrLUl/PLb4YosXL9bQoUPl7e2tDRs2mMEnODhY/fv315QpU8xaLy8vrVmzRk8++aQiIiJUq1YtxcTE6IUXXjBrWrRooYSEBI0dO1bz589XkyZN9O677yoqKsqsGThwoE6cOKGpU6fKbrerc+fOSkxMLHQTTwAAgLJGRgIAACgZD8MwDHcPwl0cDof8/f2VmZkpm83m8vUfXD5ZkuTZsqk5LaTrEy7fDgAAKL6y/v6vDKzKSNKFnERGAgDAvazOSCW6hxQAAAAAAABwrWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApUrUkJo1a5a6desmPz8/NWzYUP369dOBAwecas6fP6/Y2FjVq1dPtWvXVv/+/ZWenu5Uc/jwYUVHR6tmzZpq2LChxo0bp9zcXKeazZs3q0uXLvLx8VHLli0VHx9faDwLFy5U8+bN5evrq/DwcO3YsaMkuwMAAOASZCQAAICSKVFDasuWLYqNjdVXX32lpKQk5eTkqHfv3jpz5oxZM3bsWH366adauXKltmzZoqNHj+qBBx4w5+fl5Sk6OlrZ2dnatm2blixZovj4eE2dOtWsSUtLU3R0tHr16qXU1FSNGTNGw4cP1/r1682a999/X3FxcZo2bZq++eYbderUSVFRUTp+/Pi1fB4AAAAlRkYCAAAoGQ/DMIzSLnzixAk1bNhQW7ZsUc+ePZWZmakGDRpo2bJlGjBggCRp//79atu2rZKTk9WjRw+tW7dO99xzj44eParAwEBJ0qJFizRhwgSdOHFC3t7emjBhghISErR7925zW4MGDVJGRoYSExMlSeHh4erWrZsWLFggScrPz1dwcLBGjx6tiRMnFmv8DodD/v7+yszMlM1mK+3HcFkHl0+WJHm2bGpOC+n6hMu3AwAAiq+sv/8lMtLVFGQk6UJOIiMBAOBeVmSki13TPaQyMzMlSXXr1pUkpaSkKCcnR5GRkWZNmzZt1LRpUyUnJ0uSkpOT1aFDBzNoSVJUVJQcDof27Nlj1ly8joKagnVkZ2crJSXFqcbT01ORkZFmDQAAgLuQkQAAAK6sWmkXzM/P15gxY3TzzTerffv2kiS73S5vb28FBAQ41QYGBsput5s1FwetgvkF865U43A4dO7cOf3+++/Ky8srsmb//v2XHXNWVpaysrLM9w6HowR7DAAAcHVkJAAAgKsr9RVSsbGx2r17t5YvX+7K8ZSpWbNmyd/f33wFBwe7e0gAAKCSISMBAABcXakaUqNGjdKaNWv0+eefq0mTJub0oKAgZWdnKyMjw6k+PT1dQUFBZs2lT5QpeH+1GpvNpho1aqh+/fry8vIqsqZgHUWZNGmSMjMzzdeRI0dKtuMAAABXQEYCAAAonhI1pAzD0KhRo7Rq1Spt2rRJLVq0cJofFham6tWra+PGjea0AwcO6PDhw4qIiJAkRUREaNeuXU5PeklKSpLNZlNoaKhZc/E6CmoK1uHt7a2wsDCnmvz8fG3cuNGsKYqPj49sNpvTCwAA4FqRkQAAAEqmRPeQio2N1bJly/Txxx/Lz8/PvJ+Bv7+/atSoIX9/fw0bNkxxcXGqW7eubDabRo8erYiICPXo0UOS1Lt3b4WGhmrw4MGaM2eO7Ha7pkyZotjYWPn4+EiSRo4cqQULFmj8+PF67LHHtGnTJq1YsUIJCQnmWOLi4hQTE6OuXbuqe/fumjdvns6cOaNHH33UVZ8NAABAsZCRAAAASqZEDam33npLknT77bc7TV+8eLGGDh0qSXrttdfk6emp/v37KysrS1FRUXrzzTfNWi8vL61Zs0ZPPvmkIiIiVKtWLcXExOiFF14wa1q0aKGEhASNHTtW8+fPV5MmTfTuu+8qKirKrBk4cKBOnDihqVOnym63q3PnzkpMTCx0E08AAICyRkYCAAAoGQ/DMAx3D8JdHA6H/P39lZmZWSaXph9cPlmS5NmyqTktpOsTLt8OAAAovrL+/q8MrMpI0oWcREYCAMC9rM5IpX7KHgAAAAAAAFAaNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSJW5IffHFF7r33nvVuHFjeXh4aPXq1U7zhw4dKg8PD6dXnz59nGpOnjypRx55RDabTQEBARo2bJhOnz7tVPP999/r1ltvla+vr4KDgzVnzpxCY1m5cqXatGkjX19fdejQQWvXri3p7gAAALgEGQkAAKD4StyQOnPmjDp16qSFCxdetqZPnz46duyY+fr3v//tNP+RRx7Rnj17lJSUpDVr1uiLL77QiBEjzPkOh0O9e/dWs2bNlJKSopdfflnTp0/XO++8Y9Zs27ZNDz30kIYNG6Zvv/1W/fr1U79+/bR79+6S7hIAAMA1IyMBAAAUn4dhGEapF/bw0KpVq9SvXz9z2tChQ5WRkVHorGCBffv2KTQ0VF9//bW6du0qSUpMTFTfvn31yy+/qHHjxnrrrbc0efJk2e12eXt7S5ImTpyo1atXa//+/ZKkgQMH6syZM1qzZo257h49eqhz585atGhRscbvcDjk7++vzMxM2Wy2UnwCV3Zw+WRJkmfLpua0kK5PuHw7AACg+Mr6+18iI11NQUaSLuQkMhIAAO5lRUa6WJncQ2rz5s1q2LChWrdurSeffFK//fabOS85OVkBAQFm0JKkyMhIeXp6avv27WZNz549zaAlSVFRUTpw4IB+//13syYyMtJpu1FRUUpOTi6LXQIAALhmZCQAAIA/VHP1Cvv06aMHHnhALVq00KFDh/TXv/5Vd999t5KTk+Xl5SW73a6GDRs6D6JaNdWtW1d2u12SZLfb1aJFC6eawMBAc16dOnVkt9vNaRfXFKyjKFlZWcrKyjLfOxyOa9pXAACA4iIjAQAAXODyhtSgQYPM/+7QoYM6duyokJAQbd68WXfeeaerN1cis2bN0owZM9w6BgAAUDWRkQAAAC4ok5/sXez6669X/fr19cMPP0iSgoKCdPz4caea3NxcnTx5UkFBQWZNenq6U03B+6vVFMwvyqRJk5SZmWm+jhw5cm07BwAAUEpkJAAAUJWVeUPql19+0W+//aZGjRpJkiIiIpSRkaGUlBSzZtOmTcrPz1d4eLhZ88UXXygnJ8esSUpKUuvWrVWnTh2zZuPGjU7bSkpKUkRExGXH4uPjI5vN5vQCAABwBzISAACoykrckDp9+rRSU1OVmpoqSUpLS1NqaqoOHz6s06dPa9y4cfrqq6/0008/aePGjbrvvvvUsmVLRUVFSZLatm2rPn366PHHH9eOHTv05ZdfatSoURo0aJAaN24sSXr44Yfl7e2tYcOGac+ePXr//fc1f/58xcXFmeN45plnlJiYqFdeeUX79+/X9OnTtXPnTo0aNcoFHwsAAEDJkJEAAACKr8QNqZ07d+rGG2/UjTfeKEmKi4vTjTfeqKlTp8rLy0vff/+9/vSnP+mGG27QsGHDFBYWpv/85z/y8fEx17F06VK1adNGd955p/r27atbbrlF77zzjjnf399fn332mdLS0hQWFqZnn31WU6dO1YgRI8yam266ScuWLdM777yjTp066YMPPtDq1avVvn37a/k8AAAASoWMBAAAUHwehmEY7h6EuzgcDvn7+yszM7NMLk0/uHyyJMmzZVNzWkjXJ1y+HQAAUHxl/f1fGViVkaQLOYmMBACAe1mdkcr8HlIAAAAAAADAxWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFIlbkh98cUXuvfee9W4cWN5eHho9erVTvMNw9DUqVPVqFEj1ahRQ5GRkTp48KBTzcmTJ/XII4/IZrMpICBAw4YN0+nTp51qvv/+e916663y9fVVcHCw5syZU2gsK1euVJs2beTr66sOHTpo7dq1Jd0dAAAAlyAjAQAAFF+JG1JnzpxRp06dtHDhwiLnz5kzR6+//roWLVqk7du3q1atWoqKitL58+fNmkceeUR79uxRUlKS1qxZoy+++EIjRoww5zscDvXu3VvNmjVTSkqKXn75ZU2fPl3vvPOOWbNt2zY99NBDGjZsmL799lv169dP/fr10+7du0u6SwAAANeMjAQAAFB8HoZhGKVe2MNDq1atUr9+/ST9ceavcePGevbZZ/Xcc89JkjIzMxUYGKj4+HgNGjRI+/btU2hoqL7++mt17dpVkpSYmKi+ffvql19+UePGjfXWW29p8uTJstvt8vb2liRNnDhRq1ev1v79+yVJAwcO1JkzZ7RmzRpzPD169FDnzp21aNGiYo3f4XDI399fmZmZstlspf0YLuvg8smSJM+WTc1pIV2fcPl2AABA8ZX1979ERrqagowkXchJZCQAANzLiox0MZfeQyotLU12u12RkZHmNH9/f4WHhys5OVmSlJycrICAADNoSVJkZKQ8PT21fft2s6Znz55m0JKkqKgoHThwQL///rtZc/F2CmoKtlOUrKwsORwOpxcAAEBZIyMBAAA4c2lDym63S5ICAwOdpgcGBprz7Ha7GjZs6DS/WrVqqlu3rlNNUeu4eBuXqymYX5RZs2bJ39/ffAUHB5d0FwEAAEqMjAQAAOCsSj1lb9KkScrMzDRfR44ccfeQAAAA3I6MBAAArObShlRQUJAkKT093Wl6enq6OS8oKEjHjx93mp+bm6uTJ0861RS1jou3cbmagvlF8fHxkc1mc3oBAACUNTISAACAM5c2pFq0aKGgoCBt3LjRnOZwOLR9+3ZFRERIkiIiIpSRkaGUlBSzZtOmTcrPz1d4eLhZ88UXXygnJ8esSUpKUuvWrVWnTh2z5uLtFNQUbAcAAKC8ICMBAAA4K3FD6vTp00pNTVVqaqqkP27SmZqaqsOHD8vDw0NjxozRiy++qE8++US7du3SkCFD1LhxY/MpM23btlWfPn30+OOPa8eOHfryyy81atQoDRo0SI0bN5YkPfzww/L29tawYcO0Z88evf/++5o/f77i4uLMcTzzzDNKTEzUK6+8ov3792v69OnauXOnRo0ade2fCgAAQAmRkQAAAIqvWkkX2Llzp3r16mW+LwhAMTExio+P1/jx43XmzBmNGDFCGRkZuuWWW5SYmChfX19zmaVLl2rUqFG688475enpqf79++v111835/v7++uzzz5TbGyswsLCVL9+fU2dOlUjRowwa2666SYtW7ZMU6ZM0V//+le1atVKq1evVvv27Uv1QQAAAFwLMhIAAEDxeRiGYbh7EO7icDjk7++vzMzMMrlXwsHlkyVJni2bmtNCuj7h8u0AAIDiK+vv/8rAqowkXchJZCQAANzL6oxUpZ6yBwAAAAAAAPejIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJZyeUNq+vTp8vDwcHq1adPGnH/+/HnFxsaqXr16ql27tvr376/09HSndRw+fFjR0dGqWbOmGjZsqHHjxik3N9epZvPmzerSpYt8fHzUsmVLxcfHu3pXAAAAXIaMBAAAcEGZXCHVrl07HTt2zHxt3brVnDd27Fh9+umnWrlypbZs2aKjR4/qgQceMOfn5eUpOjpa2dnZ2rZtm5YsWaL4+HhNnTrVrElLS1N0dLR69eql1NRUjRkzRsOHD9f69evLYncAAABcgowEAADwh2plstJq1RQUFFRoemZmpv73f/9Xy5Yt0x133CFJWrx4sdq2bauvvvpKPXr00Geffaa9e/dqw4YNCgwMVOfOnTVz5kxNmDBB06dPl7e3txYtWqQWLVrolVdekSS1bdtWW7du1WuvvaaoqKiy2CUAAIBrRkYCAAD4Q5lcIXXw4EE1btxY119/vR555BEdPnxYkpSSkqKcnBxFRkaatW3atFHTpk2VnJwsSUpOTlaHDh0UGBho1kRFRcnhcGjPnj1mzcXrKKgpWMflZGVlyeFwOL0AAACsQkYCAAD4g8sbUuHh4YqPj1diYqLeeustpaWl6dZbb9WpU6dkt9vl7e2tgIAAp2UCAwNlt9slSXa73SloFcwvmHelGofDoXPnzl12bLNmzZK/v7/5Cg4OvtbdBQAAKBYyEgAAwAUu/8ne3Xffbf53x44dFR4ermbNmmnFihWqUaOGqzdXIpMmTVJcXJz53uFwELgAAIAlyEgAAAAXlMlP9i4WEBCgG264QT/88IOCgoKUnZ2tjIwMp5r09HTzfgpBQUGFnihT8P5qNTab7YqBzsfHRzabzekFAADgDmQkAABQlZV5Q+r06dM6dOiQGjVqpLCwMFWvXl0bN2405x84cECHDx9WRESEJCkiIkK7du3S8ePHzZqkpCTZbDaFhoaaNRevo6CmYB0AAADlHRkJAABUZS5vSD333HPasmWLfvrpJ23btk3333+/vLy89NBDD8nf31/Dhg1TXFycPv/8c6WkpOjRRx9VRESEevToIUnq3bu3QkNDNXjwYH333Xdav369pkyZotjYWPn4+EiSRo4cqR9//FHjx4/X/v379eabb2rFihUaO3asq3cHAADAJchIAAAAF7j8HlK//PKLHnroIf32229q0KCBbrnlFn311Vdq0KCBJOm1116Tp6en+vfvr6ysLEVFRenNN980l/fy8tKaNWv05JNPKiIiQrVq1VJMTIxeeOEFs6ZFixZKSEjQ2LFjNX/+fDVp0kTvvvsujzMGAADlFhkJAADgAg/DMAx3D8JdHA6H/P39lZmZWSb3Sji4fLIkybNlU3NaSNcnXL4dAABQfGX9/V8ZWJWRpAs5iYwEAIB7WZ2RyvweUgAAAAAAAMDFaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWqubuAVQF+T8cmzhBywABAABJREFUvvCmq/vGAQAAUN6YOYmMBABAlcIVUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpau4eQFWTk7hVklS9zy1uHgkAAED5UZCRJHISAABVQYW/QmrhwoVq3ry5fH19FR4erh07drh7SAAAAG5HRgIAAOVZhW5Ivf/++4qLi9O0adP0zTffqFOnToqKitLx48fdPTQAAAC3ISMBAIDyzsMwDMPdgyit8PBwdevWTQsWLJAk5efnKzg4WKNHj9bEiROvurzD4ZC/v78yMzNls9lcPr6DyydftaZ5wN1clg4AgIXK+vu/PCAjAQCAkrI6I1XYe0hlZ2crJSVFkyZNMqd5enoqMjJSycnJbhxZyfyUsU5avs5pGgEMAACUFhkJAABUBBW2IfXrr78qLy9PgYGBTtMDAwO1f//+IpfJyspSVlaW+T4zM1PSH13AsnD6bNbVi4qw++xq6R+rXTqWonhc30SSFPxbW3Na9bsiJEmHPnjBqe76Lo+V+XgAALBCwfd+Bb5I/IrISNeOjAQAqIqszkgVtiFVGrNmzdKMGTMKTQ8ODnbDaCqase4eAAAALnXq1Cn5+/u7exjlAhnpWpCRAACVi1UZqcI2pOrXry8vLy+lp6c7TU9PT1dQUFCRy0yaNElxcXHm+/z8fJ08eVL16tWTh4fH/2PvzuNruPc/jr9PQhJksyZUSuxCbEGEVqlUEEpRtFqh6BZaUoqr1tbV6qILrS63dOG2llK1RDW2q1IUsXPRWFoSW5NYE5L5/eGXuY4kJJGcE8nr+Xicx8P5zndmvjNzTs7b58yZydPxJSUlycfHRydOnCi016e4V3AsCgaOQ8HBsSgYOA72YxiGLly4oEqVKtl7KPmCjITs4lgUDByHgoNjUTBwHOzH1hnpni1IOTk5KSAgQFFRUerWrZukG+EpKipKQ4YMyXQeZ2dnOTs7W7V5enrm6zjd3d15ExUQHIuCgeNQcHAsCgaOg30U5jOjyEjIKY5FwcBxKDg4FgUDx8E+bJmR7tmClCRFREQoLCxMTZs2VfPmzfX+++/r0qVLGjBggL2HBgAAYDdkJAAAUNDd0wWp3r1768yZMxo/frzi4uLUqFEjRUZGZriIJwAAQFFCRgIAAAXdPV2QkqQhQ4Zkefq5PTk7O2vChAkZTn+H7XEsCgaOQ8HBsSgYOA7Ib2Qk3AnHomDgOBQcHIuCgeNQdFiMwnrPYwAAAAAAABRIDvYeAAAAAAAAAIoWClIAAAAAAACwKQpSAAAAAAAAsCkKUndh5syZqlq1qlxcXBQYGKgtW7bctv+CBQtUp04dubi4yN/fXytWrLDRSAu/nByLOXPmyGKxWD1cXFxsONrCacOGDerSpYsqVaoki8WiJUuW3HGedevWqUmTJnJ2dlaNGjU0Z86cfB9nYZfT47Bu3boM7weLxaK4uDjbDLiQmjp1qpo1ayY3NzdVqFBB3bp108GDB+84H58TKCzISAUHGcn+yEgFAxmp4CAnIR0FqVz6/vvvFRERoQkTJmj79u1q2LChQkJCdPr06Uz7b9q0SU888YQGDhyoHTt2qFu3burWrZv27Nlj45EXPjk9FpLk7u6uU6dOmY9jx47ZcMSF06VLl9SwYUPNnDkzW/1jY2MVGhqqtm3bKiYmRsOGDdOgQYO0atWqfB5p4ZbT45Du4MGDVu+JChUq5NMIi4b169crPDxcv/32m1avXq1r166pffv2unTpUpbz8DmBwoKMVHCQkQoGMlLBQEYqOMhJMBnIlebNmxvh4eHm89TUVKNSpUrG1KlTM+3fq1cvIzQ01KotMDDQeO655/J1nEVBTo/F7NmzDQ8PDxuNrmiSZCxevPi2fV599VWjXr16Vm29e/c2QkJC8nFkRUt2jsPatWsNScbff/9tkzEVVadPnzYkGevXr8+yD58TKCzISAUHGangISMVDGSkgoWcVHRxhlQupKSkaNu2bQoODjbbHBwcFBwcrOjo6EzniY6OtuovSSEhIVn2R/bk5lhI0sWLF1WlShX5+Pioa9eu2rt3ry2Gi5vwnihYGjVqpIoVK+qRRx7Rr7/+au/hFDqJiYmSpDJlymTZh/cECgMyUsFBRrp38Z4oWMhI+Y+cVHRRkMqFs2fPKjU1VV5eXlbtXl5eWf6mOC4uLkf9kT25ORa1a9fWl19+qR9//FHffvut0tLS1LJlS/3555+2GDL+X1bviaSkJF25csVOoyp6KlasqFmzZmnRokVatGiRfHx81KZNG23fvt3eQys00tLSNGzYMLVq1Ur169fPsh+fEygMyEgFBxnp3kVGKhjISLZBTiraitl7AICtBQUFKSgoyHzesmVL1a1bV59++qlef/11O44MsL3atWurdu3a5vOWLVvqyJEjmj59ur755hs7jqzwCA8P1549e7Rx40Z7DwUAbouMBPwPGck2yElFG2dI5UK5cuXk6Oio+Ph4q/b4+Hh5e3tnOo+3t3eO+iN7cnMsblW8eHE1btxYhw8fzo8hIgtZvSfc3d1VokQJO40KktS8eXPeD3lkyJAhWrZsmdauXavKlSvfti+fEygMyEgFBxnp3kVGKrjISHmLnAQKUrng5OSkgIAARUVFmW1paWmKioqy+lbpZkFBQVb9JWn16tVZ9kf25OZY3Co1NVW7d+9WxYoV82uYyATviYIrJiaG98NdMgxDQ4YM0eLFi7VmzRr5+vrecR7eEygMyEgFBxnp3sV7ouAiI+UNchJM9r6q+r3qu+++M5ydnY05c+YY+/btM5599lnD09PTiIuLMwzDMJ5++mlj9OjRZv9ff/3VKFasmPHOO+8Y+/fvNyZMmGAUL17c2L17t702odDI6bGYNGmSsWrVKuPIkSPGtm3bjD59+hguLi7G3r177bUJhcKFCxeMHTt2GDt27DAkGe+9956xY8cO49ixY4ZhGMbo0aONp59+2uz/xx9/GCVLljRGjhxp7N+/35g5c6bh6OhoREZG2msTCoWcHofp06cbS5YsMQ4dOmTs3r3bePnllw0HBwfjl19+sdcmFAovvPCC4eHhYaxbt844deqU+bh8+bLZh88JFFZkpIKDjFQwkJEKBjJSwUFOQjoKUnfho48+Mu6//37DycnJaN68ufHbb7+Z0x566CEjLCzMqv/8+fONWrVqGU5OTka9evWM5cuX23jEhVdOjsWwYcPMvl5eXkanTp2M7du322HUhUv6rXFvfaTv+7CwMOOhhx7KME+jRo0MJycno1q1asbs2bNtPu7CJqfH4a233jKqV69uuLi4GGXKlDHatGljrFmzxj6DL0QyOwaSrF7jfE6gMCMjFRxkJPsjIxUMZKSCg5yEdBbDMIz8PQcLAAAAAAAA+B+uIQUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAKlA0bNqhLly6qVKmSLBaLlixZkuNlrFq1Si1atJCbm5vKly+vHj166OjRo3k+VgAAAFspbBmJghQAAChQLl26pIYNG2rmzJm5mj82NlZdu3bVww8/rJiYGK1atUpnz55V9+7d83ikAAAAtlPYMpLFMAzDLmsGAAC4A4vFosWLF6tbt25mW3JyssaOHat///vfSkhIUP369fXWW2+pTZs2kqSFCxfqiSeeUHJyshwcbnz39tNPP6lr165KTk5W8eLF7bAlAAAAeacwZCTOkAIAAPeUIUOGKDo6Wt9995127dqlxx9/XB06dNChQ4ckSQEBAXJwcNDs2bOVmpqqxMREffPNNwoODqYYBQAACq17LSNxhhQAACiwbv327/jx46pWrZqOHz+uSpUqmf2Cg4PVvHlz/fOf/5QkrV+/Xr169dK5c+eUmpqqoKAgrVixQp6ennbYCgAAgLxVGDISZ0gBAIB7xu7du5WamqpatWrJ1dXVfKxfv15HjhyRJMXFxWnw4MEKCwvT1q1btX79ejk5Oalnz57iezgAAFAY3YsZqZjN1wgAAJBLFy9elKOjo7Zt2yZHR0eraa6urpKkmTNnysPDQ9OmTTOnffvtt/Lx8dHmzZvVokULm44ZAAAgv92LGYmCFAAAuGc0btxYqampOn36tB588MFM+1y+fNm8UGe69GCWlpaW72MEAACwtXsxI/GTPQAAUKBcvHhRMTExiomJkXTjFsUxMTE6fvy4atWqpb59+6pfv3764YcfFBsbqy1btmjq1Klavny5JCk0NFRbt27V5MmTdejQIW3fvl0DBgxQlSpV1LhxYztuGQAAQO4VtozERc0BAECBsm7dOrVt2zZDe1hYmObMmaNr167pjTfe0Ndff62//vpL5cqVU4sWLTRp0iT5+/tLkr777jtNmzZN//3vf1WyZEkFBQXprbfeUp06dWy9OQAAAHmisGUkClIAAAAAAACwKX6yBwAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBRRREydOlMVisfcw8sScOXNksVh09OhRew8FdjZt2jTVqVNHaWlpt+139OhRWSwWzZkzx6o9MjJSjRo1kouLiywWixISErK97nPnzqlUqVJasWJFLkYOACgoyEgojMhIKIgoSAHIsU2bNmnixIk5+iCytY8//jjDB2les1gsslgsGjRoUKbTx44da/Y5e/bsXa9vy5YtevHFFxUQEKDixYsXmrCcV5KSkvTWW29p1KhRcnDI+cfbuXPn1KtXL5UoUUIzZ87UN998o1KlSungwYMaPny4WrZsaYawzIJ92bJlNWjQII0bNy4PtgYAcC8iI91ARipY8isj/fDDD+rdu7eqVaumkiVLqnbt2nrllVcyvP7JSMiSAaBIunbtmnHlypVczfv2228bkozY2Ni8HVQuXb9+3bhy5YqRlpZmttWrV8946KGH8nW9kgwXFxfD09PTSE5OzjDd19fXcHFxMSQZZ86cuev1TZgwwShevLgREBBg1KpVy+BPuLXp06cb7u7u2Xpdx8bGGpKM2bNnm20rV640JBmrV6+26jt79mzDwcHBqF+/vtGoUaPbvvb37dtnSDKioqLuZlMAAHZERrp7ZKSCJb8yUtmyZQ1/f39j3Lhxxueff2689NJLhpOTk1GnTh3j8uXLVn3JSMgMZ0ihUEpLS9PVq1ftPQwrly5dyvd1GIahK1euZKtvsWLF5OLiks8jsg1HR0fzzBVb69Chg5KSkrRy5Uqr9k2bNik2NlahoaHZWk5mp0bf6oUXXlBiYqJ+//13PfLII7kdcqE1e/ZsPfroo7l+XZ8+fVqS5OnpadX+6KOPKiEhQbt371bfvn1vu4y6deuqfv36+f7NMwDkFhnpzshIeYOMVHDkV0ZauHChdu3apcmTJ2vQoEH64IMP9Pnnn+vAgQOaO3euVV8yEjJDQQoFVvrv9w8cOKBevXrJ3d1dZcuW1csvv5whSFksFg0ZMkRz585VvXr15OzsrMjISEnSX3/9pWeeeUZeXl5ydnZWvXr19OWXX2ZY39WrVzVx4kTVqlVLLi4uqlixorp3764jR45IktatWyeLxaJ169ZZzZfZ76z79+8vV1dXHTlyRJ06dZKbm5v5H9lDhw6pR48e8vb2louLiypXrqw+ffooMTHRnP/69et6/fXXVb16dTk7O6tq1ar6xz/+oeTkZKt1V61aVZ07d9aqVavUtGlTlShRQp9++mmO9m9m+3HJkiWqX7++ub/S92X6fCNHjpQk+fr6mqdb3/wTpm+//VYBAQEqUaKEypQpoz59+ujEiRNW62rTpo3q16+vffv2qW3btipZsqTuu+8+TZs2LcNYP/roI9WrV08lS5ZU6dKl1bRpU82bN8+cfuv1EapWraq9e/dq/fr15vjatGmjP/74QxaLRdOnT8+wjk2bNslisejf//53tvZfuvvuu0+tW7e2Go8kzZ07V/7+/qpfv36Olnc7Xl5eKlGiRJ4sK/21s27dOvO14+/vb76+f/jhB/n7+8vFxUUBAQHasWNHhmUcOHBAPXv2VJkyZeTi4qKmTZtq6dKlVn3Onz+vESNGyN/fX66urnJ3d1fHjh21c+dOq37p76/58+drypQpqly5slxcXNSuXTsdPnz4jtsTGxurXbt2KTg4OMO0hIQE9e/fXx4eHvL09FRYWFiGU8nbtGmjsLAwSVKzZs1ksVjUv39/SVKZMmXk5uZ2xzGke+SRR/TTTz/JMIxszwMAOUFGIiOlIyPdQEbKWn5mpDZt2mRY5mOPPSZJ2r9/f4ZpZCTcqpi9BwDcSa9evVS1alVNnTpVv/32mz788EP9/fff+vrrr636rVmzRvPnz9eQIUNUrlw5Va1aVfHx8WrRooUZIsqXL6+VK1dq4MCBSkpK0rBhwyRJqamp6ty5s6KiotSnTx+9/PLLunDhglavXq09e/aoevXqOR739evXFRISogceeEDvvPOOSpYsqZSUFIWEhCg5OVlDhw6Vt7e3/vrrLy1btkwJCQny8PCQJA0aNEhfffWVevbsqVdeeUWbN2/W1KlTtX//fi1evNhqPQcPHtQTTzyh5557ToMHD1bt2rVzt6P/38aNG/XDDz/oxRdflJubmz788EP16NFDx48fV9myZdW9e3f997//1b///W9Nnz5d5cqVkySVL19ekjRlyhSNGzdOvXr10qBBg3TmzBl99NFHat26tXbs2GH1zcrff/+tDh06qHv37urVq5cWLlyoUaNGyd/fXx07dpQkff7553rppZfUs2dPM2jv2rVLmzdv1pNPPpnpNrz//vsaOnSoXF1dNXbsWEk3gkq1atXUqlUrzZ07V8OHD7eaZ+7cuXJzc1PXrl1zvM+efPJJvfzyy7p48aJcXV11/fp1LViwQBEREQXuW+ibHT58WE8++aSee+45PfXUU3rnnXfUpUsXzZo1S//4xz/04osvSpKmTp2qXr166eDBg+Z1B/bu3atWrVrpvvvu0+jRo1WqVCnNnz9f3bp106JFi8ww8scff2jJkiV6/PHH5evrq/j4eH366ad66KGHtG/fPlWqVMlqTG+++aYcHBw0YsQIJSYmatq0aerbt682b958223ZtGmTJKlJkyZW7YZhqGvXrtq4caOef/551a1bV4sXLzaDVbqxY8eqdu3a+uyzzzR58mT5+vrm6n0vSQEBAZo+fbr27t2bp2EbAG5FRiIjkZHyBxnpf3KakeLi4iTJfP3fjIyEDOz5e0HgdiZMmGBIMh599FGr9hdffNGQZOzcudNsk2Q4ODgYe/futeo7cOBAo2LFisbZs2et2vv06WN4eHiYv23+8ssvDUnGe++9l2Ec6b+5X7t2rSHJWLt2rdX0zH5nHRYWZkgyRo8ebdV3x44dhiRjwYIFWW53TEyMIckYNGiQVfuIESMMScaaNWvMtipVqhiSjMjIyCyXl5X0/XszSYaTk5Nx+PBhs23nzp2GJOOjjz4y27K6PsLRo0cNR0dHY8qUKVbtu3fvNooVK2bV/tBDDxmSjK+//tpsS05ONry9vY0ePXqYbV27djXq1at3222ZPXt2hvFkdX2ETz/91JBk7N+/32xLSUkxypUrZ4SFhd12PbeSZISHhxvnz583nJycjG+++cYwDMNYvny5YbFYjKNHj5r7+U7XR7j1NXQn4eHhd3V9hPTXzqZNm8y2VatWGZKMEiVKGMeOHTPb0/fZza/9du3aGf7+/sbVq1fNtrS0NKNly5ZGzZo1zbarV68aqampVuuOjY01nJ2djcmTJ5tt6e+vunXrWl1r4oMPPjAkGbt3777t9rz22muGJOPChQtW7UuWLDEkGdOmTTPbrl+/bjz44IMZ9nn662jr1q1Zric71wbZtGmTIcn4/vvvbztmAMgtMhIZyTDISFkhI1mzVUZKN3DgQMPR0dH473//m2EaGQm34id7KPDCw8Otng8dOlSSMtw29KGHHpKfn5/53DAMLVq0SF26dJFhGDp79qz5CAkJUWJiorZv3y5JWrRokcqVK2cu+2Z385v7F154wep5+rd7q1at0uXLlzOdJ327IiIirNpfeeUVSdLy5cut2n19fRUSEpLrMd4qODjY6luPBg0ayN3dXX/88ccd5/3hhx+UlpamXr16We1vb29v1axZU2vXrrXq7+rqqqeeesp87uTkpObNm1uty9PTU3/++ae2bt2aB1t349tkFxcXq9+1r1q1SmfPnrUaS06ULl1aHTp0ME9lnzdvnlq2bKkqVapk2v/y5ctW+yf97jIXL160avv7779zNZ7s8vPzU1BQkPk8MDBQkvTwww/r/vvvz9CeflzOnz+vNWvWqFevXrpw4YI53nPnzikkJESHDh3SX3/9JUlydnY2vzFMTU3VuXPn5Orqqtq1a5vvv5sNGDBATk5O5vMHH3zQat1ZOXfunIoVKyZXV1er9hUrVqhYsWJW70VHR8dM3+t5pXTp0pKUJ3cNAoDbISPdQEYiI+U1MlLuzJs3T//617/0yiuvqGbNmhmmk5FwKwpSKPBu/WNWvXp1OTg4ZLjtuq+vr9XzM2fOKCEhQZ999pnKly9v9RgwYICk/12g78iRI6pdu7aKFcu7X7EWK1ZMlStXzjDGiIgIffHFFypXrpxCQkI0c+ZMq2sjHDt2TA4ODqpRo4bVvN7e3vL09NSxY8duu9136+YP2XSlS5fO1gf/oUOHZBiGatasmWGf79+/39zf6SpXrpwhzN66rlGjRsnV1VXNmzdXzZo1FR4erl9//TWXW3cjvHXp0sXqegZz587Vfffdp4cffjjXy33yySe1evVqHT9+XEuWLMnyVHlJmjZtWob9I934j8TNbY0bN871eLLj1mOd/p8BHx+fTNvTj8vhw4dlGIbGjRuXYTsmTJgg6X/vrbS0NE2fPl01a9aUs7OzypUrp/Lly2vXrl1Wr/usxpQeXHIbPI8dO6aKFStmCGF3+7ON2zH+/7oI3HIaQH4jI91ARiIj5TUyUs795z//0cCBAxUSEqIpU6Zk2oeMhFtxDSncc7L6A3brhQzT0tIkSU899VSG30Kna9CgwV2vNzU1NdP2m7/1uNm7776r/v3768cff9TPP/+sl156ybz2w83hLLt/qPPqAo7pHB0dM21P/wC5nbS0NFksFq1cuTLT5dz6gZedddWtW1cHDx7UsmXLFBkZqUWLFunjjz/W+PHjNWnSpDuOKTP9+vXTggULtGnTJvn7+2vp0qV68cUXMz1e2fXoo4/K2dlZYWFhSk5OVq9evW67/gceeMCq7ZFHHtHIkSPVvn17sy2vj+2tstr/dzou6e+tESNGZPnNc/p/Fv75z39q3LhxeuaZZ/T666+rTJkycnBw0LBhw8zl5GTdWSlbtqyuX7+uCxcu5OgC5PkhPRhmdu0EAMhPZCRrZKScIyPdQEbKmZ07d+rRRx9V/fr1tXDhwiwL2GQk3IqCFAq8Q4cOWX3DdfjwYaWlpalq1aq3na98+fJyc3NTampqpneVuFn16tW1efNmXbt2TcWLF8+0T/q3ELfeeeLWb+Oyw9/fX/7+/nrttde0adMmtWrVSrNmzdIbb7yhKlWqKC0tTYcOHVLdunXNeeLj45WQkJDlKc62lFUQrF69ugzDkK+vr2rVqpVn6ytVqpR69+6t3r17KyUlRd27d9eUKVM0ZsyYLG9fe7uw2qFDB5UvX15z585VYGCgLl++rKeffvquxliiRAl169ZN3377rTp27HjbD9pq1aqpWrVqGdr9/Pzu+FotCNLHXrx48TuOd+HChWrbtq3+9a9/WbUnJCTkaRipU6eOpBt3krn5P1FVqlRRVFSUeTHVdAcPHsyzdd8qNjZWkqzevwCQH8hIN5CRyEgFRVHMSEeOHFGHDh1UoUIFrVixIkNx9WZkJNyKn+yhwJs5c6bV848++kiSzDuMZMXR0VE9evTQokWLtGfPngzTz5w5Y/67R48eOnv2rGbMmJGhX/q3DlWqVJGjo6M2bNhgNf3jjz/O3oZISkpK0vXr163a/P395eDgYN6uuFOnTpJu3AXlZu+9954kKTQ0NNvryy+lSpWSlDF4du/eXY6Ojpo0aVKGb2sMw9C5c+dyvK5b53FycpKfn58Mw9C1a9duO8Zbx5euWLFieuKJJzR//nzNmTNH/v7+OfomOCsjRozQhAkTNG7cuLteVkFWoUIFtWnTRp9++qlOnTqVYfrN7y1HR8cMr4UFCxaY10/IK+nXefj999+t2jt16qTr16/rk08+MdtSU1PNvyP5Ydu2bfLw8FC9evXybR0AIJGR0pGRbiAj2V9Ry0hxcXFq3769HBwctGrVKvMnllkhI+FWnCGFAi82NlaPPvqoOnTooOjoaH377bd68skn1bBhwzvO++abb2rt2rUKDAzU4MGD5efnp/Pnz2v79u365ZdfdP78eUk3Tg/++uuvFRERoS1btujBBx/UpUuX9Msvv+jFF19U165d5eHhoccff1wfffSRLBaLqlevrmXLlmX4zf/trFmzRkOGDNHjjz+uWrVq6fr16/rmm2/MYChJDRs2VFhYmD777DMlJCTooYce0pYtW/TVV1+pW7duatu2be52ZB4KCAiQdOM2sH369FHx4sXVpUsXVa9eXW+88YbGjBmjo0ePqlu3bnJzc1NsbKwWL16sZ599ViNGjMjRutq3by9vb2+1atVKXl5e2r9/v2bMmKHQ0NDbnnYcEBCgTz75RG+88YZq1KihChUqWF3/oF+/fvrwww+1du1avfXWW7nbEbdo2LBhtl6XuXXs2DF98803kv4XKt544w1JN/4zcLffYObEzJkz9cADD8jf31+DBw9WtWrVFB8fr+joaP3555/auXOnJKlz586aPHmyBgwYoJYtW2r37t2aO3dupt9+3o1q1aqpfv36+uWXX/TMM8+Y7V26dFGrVq00evRoHT16VH5+fvrhhx8yvTZDVhITE81wln5tjhkzZsjT01Oenp4aMmSIVf/Vq1erS5cuXB8BQL4jI5GRyEg3kJGylp8ZqUOHDvrjjz/06quvauPGjdq4caM5zcvLS4888ohVfzISMrDFrfyA3Ei/Fey+ffuMnj17Gm5ubkbp0qWNIUOGGFeuXLHqq/+/tWxm4uPjjfDwcMPHx8coXry44e3tbbRr18747LPPrPpdvnzZGDt2rOHr62v269mzp3HkyBGzz5kzZ4wePXoYJUuWNEqXLm0899xzxp49ezK9pXGpUqUyjOWPP/4wnnnmGaN69eqGi4uLUaZMGaNt27bGL7/8YtXv2rVrxqRJk8yx+Pj4GGPGjLG6faxh3LgtbWhoaLb2562yuqVxZvuxSpUqGW73+/rrrxv33Xef4eDgkOF2wosWLTIeeOABo1SpUkapUqWMOnXqGOHh4cbBgwfNPg899FCmtyoOCwszqlSpYj7/9NNPjdatWxtly5Y1nJ2djerVqxsjR440EhMTzT6Z3dI4Li7OCA0NNdzc3AxJmd7euF69eoaDg4Px559/ZrGXbu92r7t0eXlL4/Tb/mb2yGz7bier105m25R+2+63337bqv3IkSNGv379DG9vb6N48eLGfffdZ3Tu3NlYuHCh2efq1avGK6+8YlSsWNEoUaKE0apVKyM6Otp46KGHrMacvm233u47s1uGZ+W9994zXF1dzVuVpzt37pzx9NNPG+7u7oaHh4fx9NNPm7cXz84tjdPHkNnj5teqYRjG/v37DUkZ3tMAkJfISGQkwyAj3YyMdHv5lZGy2ueZ7XcyEjJjMYxsXIUPsIOJEydq0qRJOnPmDBe+Q75o3LixypQpo6ioKHsPBXkgMTFR1apV07Rp0zRw4EC7jGHYsGHasGGDtm3bxrd/APINGQn5jYxUuJCRUFBxDSkARdLvv/+umJgY9evXz95DQR7x8PDQq6++qrfffjvTu9Pkt3PnzumLL77QG2+8QdACANyzyEiFDxkJBRVnSKHA4tu/3ElMTNSVK1du28fb29tGoyl49uzZo23btundd9/V2bNn9ccff1jdhSY1NdXqgpOZcXV1ve0dROzpzJkzWd5mW7pxwdMyZcrYcEQAgLxGRsodMtLtkZHISICtcVFzoJB5+eWX9dVXX922T1GuQy9cuFCTJ09W7dq19e9//zvDLZFPnDhhdQvtzEyYMEETJ07Mx1HmXrNmzW57m+2HHnpI69ats92AAAAoIMhIt0dGIiMBtsYZUkAhs2/fPp08efK2fYKDg200mnvP1atXre4Qkplq1arl+R1Q8sqvv/56229/S5cubd4BCACAooSMdHfISADyGgUpAAAAAAAA2BQXNQcAAAAAAIBNFelrSKWlpenkyZNyc3Pjav8AABQRhmHowoULqlSpkhwc+G4uM2QkAACKHltnpCJdkDp58qR8fHzsPQwAAGAHJ06cUOXKle09jAKJjAQAQNFlq4xUpAtSbm5ukm7sbHd3dzuPBgAA2EJSUpJ8fHzMHICMyEgAABQ9ts5IRboglX4Kuru7O2ELAIAihp+iZY2MBABA0WWrjMSFEwAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFNF+hpSAADcTmpqqq5du2bvYSCHihcvLkdHR3sPAwCAQouMdG8qaBmJghQAALcwDENxcXFKSEiw91CQS56envL29ubC5QAA5CEy0r2vIGUkClIAANwiPWhVqFBBJUuWLBAf2MgewzB0+fJlnT59WpJUsWJFO48IAIDCg4x07yqIGYmCFAAAN0lNTTWDVtmyZe09HORCiRIlJEmnT59WhQoVCtSp6QAA3KvISPe+gpaRuKg5AAA3Sb8eQsmSJe08EtyN9OPH9S0AAMgbZKTCoSBlJApSAABkglPQ720cPwAA8gefsfe2gnT8KEgBAAAAAADApihIAQBwj7NYLLd9TJw40a5jW7JkyV0t47PPPlObNm3k7u4ui8XCnX0AAEC2FeacdP78eQ0dOlS1a9dWiRIldP/99+ull15SYmJi3g0yH3FRcwAAsula5Eabrat4hwey3ffUqVPmv7///nuNHz9eBw8eNNtcXV1ztO6UlBQ5OTnlaJ78dPnyZXXo0EEdOnTQmDFj7D0cAABwC1tmJImclO7kyZM6efKk3nnnHfn5+enYsWN6/vnndfLkSS1cuNDew7sjzpDKR9ciN2Z4AACQ17y9vc2Hh4eHLBaL+fzSpUvq27evvLy85OrqqmbNmumXX36xmr9q1ap6/fXX1a9fP7m7u+vZZ5+VJH3++efy8fFRyZIl9dhjj+m9996Tp6en1bw//vijmjRpIhcXF1WrVk2TJk3S9evXzeVK0mOPPSaLxWI+37lzp9q2bSs3Nze5u7srICBAv//+e5bbN2zYMI0ePVotWrTImx0GuyMjAQBspTDnpPr162vRokXq0qWLqlevrocfflhTpkzRTz/9ZK6nIKMgBQBAIXbx4kV16tRJUVFR2rFjhzp06KAuXbro+PHjVv3eeecdNWzYUDt27NC4ceP066+/6vnnn9fLL7+smJgYPfLII5oyZYrVPP/5z3/Ur18/vfzyy9q3b58+/fRTzZkzx+y3detWSdLs2bN16tQp83nfvn1VuXJlbd26Vdu2bdPo0aNVvHhxG+wNAACA/ymMOSkxMVHu7u4qVqzg/yCu4I8QAADkWsOGDdWwYUPz+euvv67Fixdr6dKlGjJkiNn+8MMP65VXXjGfjx07Vh07dtSIESMkSbVq1dKmTZu0bNkys8+kSZM0evRohYWFSZKqVaum119/Xa+++qomTJig8uXLS5I8PT3l7e1tznf8+HGNHDlSderUkSTVrFkzH7YcAADg9gpbTjp79qxef/118yyugo4zpAAAKMQuXryoESNGqG7duvL09JSrq6v279+f4Zu/pk2bWj0/ePCgmjdvbtV26/OdO3dq8uTJcnV1NR+DBw/WqVOndPny5SzHFBERoUGDBik4OFhvvvmmjhw5cpdbCQAAkHOFKSclJSUpNDRUfn5+dr1Qe05QkAIAoBAbMWKEFi9erH/+85/6z3/+o5iYGPn7+yslJcWqX6lSpXK87IsXL2rSpEmKiYkxH7t379ahQ4fk4uKS5XwTJ07U3r17FRoaqjVr1sjPz0+LFy/O8foBAADuRmHJSRcuXFCHDh3k5uamxYsX3zOXQuAnewAAFGK//vqr+vfvr8cee0zSjXB09OjRO85Xu3Zt81oG6W593qRJEx08eFA1atTIcjnFixdXampqhvZatWqpVq1aGj58uJ544gnNnj3bHCMAAIAtFIaclJSUpJCQEDk7O2vp0qW3LXYVNBSkAAAoxGrWrKkffvhBXbp0kcVi0bhx45SWlnbH+YYOHarWrVvrvffeU5cuXbRmzRqtXLlSFovF7DN+/Hh17txZ999/v3r27CkHBwft3LlTe/bs0RtvvCHpxh1koqKi1KpVKzk7O8vFxUUjR45Uz5495evrqz///FNbt25Vjx49shxLXFyc4uLidPjwYUnS7t275ebmpvvvv19lypS5yz0EAACKqns9JyUlJal9+/a6fPmyvv32WyUlJSkpKUmSVL58eTk6OubBXso//GQPAIBC7L333lPp0qXVsmVLdenSRSEhIWrSpMkd52vVqpVmzZql9957Tw0bNlRkZKSGDx9u9a1bSEiIli1bpp9//lnNmjVTixYtNH36dFWpUsXs8+6772r16tXy8fFR48aN5ejoqHPnzqlfv36qVauWevXqpY4dO2rSpElZjmXWrFlq3LixBg8eLElq3bq1GjdurKVLl97FngEAAEXdvZ6Ttm/frs2bN2v37t2qUaOGKlasaD5OnDhx9zson1kMwzDsPQh7SUpKkoeHh3lbxLx2LXJjhrbiHR7I8/UAAPLO1atXFRsbK19f33vqlGdbGDx4sA4cOKD//Oc/9h7KHd3uOOb3539hQEYCANyKjHR790pOKkgZiZ/sAQCATL3zzjt65JFHVKpUKa1cuVJfffWVPv74Y3sPCwAAwO7ISXfvrn6y9+abb8pisWjYsGFm29WrVxUeHq6yZcvK1dVVPXr0UHx8vNV8x48fV2hoqEqWLKkKFSpo5MiRun79ulWfdevWqUmTJnJ2dlaNGjU0Z86cDOufOXOmqlatKhcXFwUGBmrLli13szkAAOAmW7Zs0SOPPCJ/f3/NmjVLH374oQYNGmTvYd0TyEgAABRu5KS7l+uC1NatW/Xpp5+qQYMGVu3Dhw/XTz/9pAULFmj9+vU6efKkunfvbk5PTU1VaGioUlJStGnTJn311VeaM2eOxo8fb/aJjY1VaGio2rZtq5iYGA0bNkyDBg3SqlWrzD7ff/+9IiIiNGHCBG3fvl0NGzZUSEiITp8+ndtNAgAAN5k/f75Onz6tK1euaO/evXr++eftPaR7AhkJAIDCj5x093JVkLp48aL69u2rzz//XKVLlzbbExMT9a9//UvvvfeeHn74YQUEBGj27NnatGmTfvvtN0nSzz//rH379unbb79Vo0aN1LFjR73++uuaOXOmUlJSJN24eKmvr6/effdd1a1bV0OGDFHPnj01ffp0c13vvfeeBg8erAEDBsjPz0+zZs1SyZIl9eWXX97N/gAAAMg1MhIAAED25KogFR4ertDQUAUHB1u1b9u2TdeuXbNqr1Onju6//35FR0dLkqKjo+Xv7y8vLy+zT0hIiJKSkrR3716zz63LDgkJMZeRkpKibdu2WfVxcHBQcHCw2SczycnJ5m0Qb74dIgAAQF4gIwEAAGRPji9q/t1332n79u3aunVrhmlxcXFycnKSp6enVbuXl5fi4uLMPjcHrfTp6dNu1ycpKUlXrlzR33//rdTU1Ez7HDhwIMuxT5069ba3lQYAAMgtMhIAAED25egMqRMnTujll1/W3Llz78nbPI4ZM0aJiYnm48SJE/YeEgAAKATISAAAADmTo4LUtm3bdPr0aTVp0kTFihVTsWLFtH79en344YcqVqyYvLy8lJKSooSEBKv54uPj5e3tLUny9vbOcEeZ9Od36uPu7q4SJUqoXLlycnR0zLRP+jIy4+zsLHd3d6sHAADA3SIjAQAA5EyOClLt2rXT7t27FRMTYz6aNm2qvn37mv8uXry4oqKizHkOHjyo48ePKygoSJIUFBSk3bt3W93pZfXq1XJ3d5efn5/Z5+ZlpPdJX4aTk5MCAgKs+qSlpSkqKsrsAwAAYCtkJAAAgJzJ0TWk3NzcVL9+fau2UqVKqWzZsmb7wIEDFRERoTJlysjd3V1Dhw5VUFCQWrRoIUlq3769/Pz89PTTT2vatGmKi4vTa6+9pvDwcDk7O0uSnn/+ec2YMUOvvvqqnnnmGa1Zs0bz58/X8uXLzfVGREQoLCxMTZs2VfPmzfX+++/r0qVLGjBgwF3tEAAAgJwiIwEAAORMru6ydzvTp09X586d1aNHD7Vu3Vre3t764YcfzOmOjo5atmyZHB0dFRQUpKeeekr9+vXT5MmTzT6+vr5avny5Vq9erYYNG+rdd9/VF198oZCQELNP79699c4772j8+PFq1KiRYmJiFBkZmeEingAAFAX9+/eXxWKRxWJR8eLF5eXlpUceeURffvml0tLS7D28u7J371716NFDVatWlcVi0fvvv2/vIeUKGQkAAPsozDnp888/14MPPqjSpUurdOnSCg4O1pYtW+w9rGyxGIZh2HsQ9pKUlCQPDw8lJibmy7USrkVuzNBWvMMDeb4eAEDeuXr1qmJjY+Xr65vh4tRHfv/UZuOo3vS5HPXv37+/4uPjNXv2bKWmpio+Pl6RkZGaOnWqHnzwQS1dulTFiuX45roFwtatWzV//nwFBARo+PDhGjVqlIYNG3bbeW53HPP7878wICMBAG5VUDKSRE66Wd++fdWqVSu1bNlSLi4ueuutt7R48WLt3btX9913X4b+BSkj5fkZUgAAwD6cnZ3l7e2t++67T02aNNE//vEP/fjjj1q5cqXmzJlj9ktISNCgQYNUvnx5ubu76+GHH9bOnTutlvXTTz+pWbNmcnFxUbly5fTYY4+Z0/7++2/169dPpUuXVsmSJdWxY0cdOnRIknTp0iW5u7tr4cKFVstbsmSJSpUqpQsXLiglJUVDhgxRxYoV5eLioipVqmjq1KlZblezZs309ttvq0+fPuZP1wAAAHKisOakuXPn6sUXX1SjRo1Up04dffHFF+b1Iws6ClIAABRiDz/8sBo2bGj107DHH39cp0+f1sqVK7Vt2zY1adJE7dq10/nz5yVJy5cv12OPPaZOnTppx44dioqKUvPmzc35+/fvr99//11Lly5VdHS0DMNQp06ddO3aNZUqVUp9+vTR7NmzrcYxe/Zs9ezZU25ubvrwww+1dOlSzZ8/XwcPHtTcuXNVtWpVm+wPAACAdIUxJ12+fFnXrl1TmTJl7m7n2MC9eU4aAADItjp16mjXrl2SpI0bN2rLli06ffq0ebbRO++8oyVLlmjhwoV69tlnNWXKFPXp00eTJk0yl9GwYUNJ0qFDh7R06VL9+uuvatmypaQb38z5+PhoyZIlevzxxzVo0CC1bNlSp06dUsWKFXX69GmtWLFCv/zyiyTp+PHjqlmzph544AFZLBZVqVLFlrsDAADAVNhy0qhRo1SpUiUFBwff9b7Jb5whBQBAIWcYhiwWiyRp586dunjxosqWLStXV1fzERsbqyNHjkiSYmJi1K5du0yXtX//fhUrVkyBgYFmW9myZVW7dm3t379fktS8eXPVq1dPX331lSTp22+/VZUqVdS6dWtJN745jImJUe3atfXSSy/p559/zrdtBwAAuJ3ClJPefPNNfffdd1q8eHGG60MVRJwhBQBAIbd//375+vpKki5evKiKFStq3bp1Gfp5enpKkkqUKHHX6xw0aJBmzpyp0aNHa/bs2RowYIAZ9po0aaLY2FitXLlSv/zyi3r16qXg4OAM11MAAADIb4UlJ73zzjt688039csvv6hBgwZ3PUZb4AwpAAAKsTVr1mj37t3q0aOHpBshJy4uTsWKFVONGjWsHuXKlZMkNWjQIMsLYdatW1fXr1/X5s2bzbZz587p4MGD8vPzM9ueeuopHTt2TB9++KH27dunsLAwq+W4u7urd+/e+vzzz/X9999r0aJF5rUZAAAAbKGw5KRp06bp9ddfV2RkpJo2bZrr/WFrnCEFAEAhkZycrLi4uAy3M+7cubP69esnSQoODlZQUJC6deumadOmqVatWjp58qR5gc6mTZtqwoQJateunapXr64+ffro+vXrWrFihUaNGqWaNWuqa9euGjx4sD799FO5ublp9OjRuu+++9S1a1dzLKVLl1b37t01cuRItW/fXpUrVzanvffee6pYsaIaN24sBwcHLViwQN7e3uY3j7dKSUnRvn37zH//9ddfiomJkaurq2rUqJF/OxQAABQahTUnvfXWWxo/frzmzZunqlWrKi4uTpLMnxsWZJwhBQBAIREZGamKFSuqatWq6tChg9auXasPP/xQP/74oxwdHSVJFotFK1asUOvWrTVgwADVqlVLffr00bFjx+Tl5SVJatOmjRYsWKClS5eqUaNGevjhh7VlyxZzPbNnz1ZAQIA6d+6soKAgGYahFStWqHjx4lbjGThwoFJSUvTMM89Ytbu5uWnatGlq2rSpmjVrpqNHj2rFihVycMg8lpw8eVKNGzdW48aNderUKb3zzjtq3LixBg0alJe7DwAAFGKFNSd98sknSklJUc+ePVWxYkXz8c477+Tl7ssXFsMwDHsPwl6SkpLk4eGhxMREubu75/nyr0VuzNBWvMMDeb4eAEDeuXr1qmJjY+Xr63tPXAyyIPvmm280fPhwnTx5Uk5OTjZd9+2OY35//hcGZCQAwK3ISHnLXjmpIGUkfrIHAADy1OXLl3Xq1Cm9+eabeu6552xejAIAACioyEn/w0/2AABAnpo2bZrq1Kkjb29vjRkzxt7DAQAAKDDISf9DQQoAAOSpiRMn6tq1a4qKiirwF9MEAACwJXLS/1CQAgAAAAAAgE1RkAIAAAAAAIBNUZACACATRfgmtIUCxw8AgPzBZ+y9rSAdPwpSAADcpHjx4pJu3AEF967045d+PAEAwN0hIxUOBSkjFbP3AAAAKEgcHR3l6emp06dPS5JKliwpi8Vi51EhuwzD0OXLl3X69Gl5enrK0dHR3kMCAKBQICPd2wpiRqIgBQDALby9vSXJDFy493h6eprHEQAA5A0y0r2vIGUkClIAANzCYrGoYsWKqlChgq5du2bv4SCHihcvXiC+9QMAoLAhI93bClpGoiAFAEAWHB0dC9SHNgAAQEFARkJe4KLmAAAAAAAAsCkKUgAAAAAAALApClIAAAAAAACwKQpSAAAAAAAAsCkKUgAAAAAAALCpHBWkPvnkEzVo0EDu7u5yd3dXUFCQVq5caU5v06aNLBaL1eP555+3Wsbx48cVGhqqkiVLqkKFCho5cqSuX79u1WfdunVq0qSJnJ2dVaNGDc2ZMyfDWGbOnKmqVavKxcVFgYGB2rJlS042BQAAIM+QkQAAAHImRwWpypUr680339S2bdv0+++/6+GHH1bXrl21d+9es8/gwYN16tQp8zFt2jRzWmpqqkJDQ5WSkqJNmzbpq6++0pw5czR+/HizT2xsrEJDQ9W2bVvFxMRo2LBhGjRokFatWmX2+f777xUREaEJEyZo+/btatiwoUJCQnT69Om72RcAAAC5QkYCAADIGYthGMbdLKBMmTJ6++23NXDgQLVp00aNGjXS+++/n2nflStXqnPnzjp58qS8vLwkSbNmzdKoUaN05swZOTk5adSoUVq+fLn27NljztenTx8lJCQoMjJSkhQYGKhmzZppxowZkqS0tDT5+Pho6NChGj16dLbHnpSUJA8PDyUmJsrd3T2XeyBr1yI3Zmgr3uGBPF8PAADIvvz+/E9HRsoaGQkAgILHVhkpXa6vIZWamqrvvvtOly5dUlBQkNk+d+5clStXTvXr19eYMWN0+fJlc1p0dLT8/f3NoCVJISEhSkpKMr9BjI6OVnBwsNW6QkJCFB0dLUlKSUnRtm3brPo4ODgoODjY7AMAAGAvZCQAAIA7K5bTGXbv3q2goCBdvXpVrq6uWrx4sfz8/CRJTz75pKpUqaJKlSpp165dGjVqlA4ePKgffvhBkhQXF2cVtCSZz+Pi4m7bJykpSVeuXNHff/+t1NTUTPscOHDgtmNPTk5WcnKy+TwpKSmnmw8AAJApMhIAAED25bggVbt2bcXExCgxMVELFy5UWFiY1q9fLz8/Pz377LNmP39/f1WsWFHt2rXTkSNHVL169TwdeG5MnTpVkyZNsvcwAABAIURGAgAAyL4c/2TPyclJNWrUUEBAgKZOnaqGDRvqgw8+yLRvYGCgJOnw4cOSJG9vb8XHx1v1SX/u7e192z7u7u4qUaKEypUrJ0dHx0z7pC8jK2PGjFFiYqL5OHHiRDa3GgAA4PbISAAAANmX62tIpUtLS7M6xftmMTExkqSKFStKkoKCgrR7926rO72sXr1a7u7u5intQUFBioqKslrO6tWrzWswODk5KSAgwKpPWlqaoqKirK7TkBlnZ2fzdszpDwAAgPxARgIAAMhajn6yN2bMGHXs2FH333+/Lly4oHnz5mndunVatWqVjhw5onnz5qlTp04qW7asdu3apeHDh6t169Zq0KCBJKl9+/by8/PT008/rWnTpikuLk6vvfaawsPD5ezsLEl6/vnnNWPGDL366qt65plntGbNGs2fP1/Lly83xxEREaGwsDA1bdpUzZs31/vvv69Lly5pwIABebhrAAAAsoeMBAAAkDM5KkidPn1a/fr106lTp+Th4aEGDRpo1apVeuSRR3TixAn98ssvZvDx8fFRjx499Nprr5nzOzo6atmyZXrhhRcUFBSkUqVKKSwsTJMnTzb7+Pr6avny5Ro+fLg++OADVa5cWV988YVCQkLMPr1799aZM2c0fvx4xcXFqVGjRoqMjMxwEU8AAABbICMBAADkjMUwDMPeg7CXpKQkeXh4KDExMV9OTb8WuTFDW/EOD+T5egAAQPbl9+d/YUBGAgCg6LF1Rrrra0gBAAAAAAAAOUFBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANlXM3gMozI4mrMzQVlMP2GEkAAAABQcZCQAAcIYUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsioIUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsioIUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsioIUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsioIUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsioIUAAAAAAAAbIqCFAAAAAAAAGyKghQAAAAAAABsKkcFqU8++UQNGjSQu7u73N3dFRQUpJUrV5rTr169qvDwcJUtW1aurq7q0aOH4uPjrZZx/PhxhYaGqmTJkqpQoYJGjhyp69evW/VZt26dmjRpImdnZ9WoUUNz5szJMJaZM2eqatWqcnFxUWBgoLZs2ZKTTQEAAMgzZCQAAICcyVFBqnLlynrzzTe1bds2/f7773r44YfVtWtX7d27V5I0fPhw/fTTT1qwYIHWr1+vkydPqnv37ub8qampCg0NVUpKijZt2qSvvvpKc+bM0fjx480+sbGxCg0NVdu2bRUTE6Nhw4Zp0KBBWrVqldnn+++/V0REhCZMmKDt27erYcOGCgkJ0enTp+92fwAAAOQYGQkAACBnLIZhGHezgDJlyujtt99Wz549Vb58ec2bN089e/aUJB04cEB169ZVdHS0WrRooZUrV6pz5846efKkvLy8JEmzZs3SqFGjdObMGTk5OWnUqFFavny59uzZY66jT58+SkhIUGRkpCQpMDBQzZo104wZMyRJaWlp8vHx0dChQzV69Ohsjz0pKUkeHh5KTEyUu7v73eyGTB36bmyGtpp9puT5egAAQPbl9+d/OjJS1shIAAAUPLbKSOlyfQ2p1NRUfffdd7p06ZKCgoK0bds2Xbt2TcHBwWafOnXq6P7771d0dLQkKTo6Wv7+/mbQkqSQkBAlJSWZ3yBGR0dbLSO9T/oyUlJStG3bNqs+Dg4OCg4ONvtkJTk5WUlJSVYPAACAvERGAgAAuLMcF6R2794tV1dXOTs76/nnn9fixYvl5+enuLg4OTk5ydPT06q/l5eX4uLiJElxcXFWQSt9evq02/VJSkrSlStXdPbsWaWmpmbaJ30ZWZk6dao8PDzMh4+PT043HwAAIFNkJAAAgOzLcUGqdu3aiomJ0ebNm/XCCy8oLCxM+/bty4+x5bkxY8YoMTHRfJw4ccLeQwIAAIUEGQkAACD7iuV0BicnJ9WoUUOSFBAQoK1bt+qDDz5Q7969lZKSooSEBKtvAOPj4+Xt7S1J8vb2znCnl/Q7zNzc59a7zsTHx8vd3V0lSpSQo6OjHB0dM+2TvoysODs7y9nZOaebDAAAcEdkJAAAgOzL9TWk0qWlpSk5OVkBAQEqXry4oqKizGkHDx7U8ePHFRQUJEkKCgrS7t27re70snr1arm7u8vPz8/sc/My0vukL8PJyUkBAQFWfdLS0hQVFWX2AQAAsDcyEgAAQNZydIbUmDFj1LFjR91///26cOGC5s2bp3Xr1mnVqlXy8PDQwIEDFRERoTJlysjd3V1Dhw5VUFCQWrRoIUlq3769/Pz89PTTT2vatGmKi4vTa6+9pvDwcPNbueeff14zZszQq6++qmeeeUZr1qzR/PnztXz5cnMcERERCgsLU9OmTdW8eXO9//77unTpkgYMGJCHuwYAACB7yEgAAAA5k6OC1OnTp9WvXz+dOnVKHh4eatCggVatWqVHHnlEkjR9+nQ5ODioR48eSk5OVkhIiD7++GNzfkdHRy1btkwvvPCCgoKCVKpUKYWFhWny5MlmH19fXy1fvlzDhw/XBx98oMqVK+uLL75QSEiI2ad37946c+aMxo8fr7i4ODVq1EiRkZEZLuIJAABgC2QkAACAnLEYhmHYexD2kpSUJA8PDyUmJsrd3T3Pl3/ou7EZ2mr2mZLn6wEAANmX35//hQEZCQCAosfWGemuryEFAAAAAAAA5AQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2FSOClJTp05Vs2bN5ObmpgoVKqhbt246ePCgVZ82bdrIYrFYPZ5//nmrPsePH1doaKhKliypChUqaOTIkbp+/bpVn3Xr1qlJkyZydnZWjRo1NGfOnAzjmTlzpqpWrSoXFxcFBgZqy5YtOdkcAACAPEFGAgAAyJkcFaTWr1+v8PBw/fbbb1q9erWuXbum9u3b69KlS1b9Bg8erFOnTpmPadOmmdNSU1MVGhqqlJQUbdq0SV999ZXmzJmj8ePHm31iY2MVGhqqtm3bKiYmRsOGDdOgQYO0atUqs8/333+viIgITZgwQdu3b1fDhg0VEhKi06dP53ZfAAAA5AoZCQAAIGcshmEYuZ35zJkzqlChgtavX6/WrVtLuvHtX6NGjfT+++9nOs/KlSvVuXNnnTx5Ul5eXpKkWbNmadSoUTpz5oycnJw0atQoLV++XHv27DHn69OnjxISEhQZGSlJCgwMVLNmzTRjxgxJUlpamnx8fDR06FCNHj06W+NPSkqSh4eHEhMT5e7untvdkKVD343N0Fazz5Q8Xw8AAMi+/P78l8hId0JGAgCg4LFFRrrZXV1DKjExUZJUpkwZq/a5c+eqXLlyql+/vsaMGaPLly+b06Kjo+Xv728GLUkKCQlRUlKS9u7da/YJDg62WmZISIiio6MlSSkpKdq2bZtVHwcHBwUHB5t9AAAA7IWMBAAAcHvFcjtjWlqahg0bplatWql+/fpm+5NPPqkqVaqoUqVK2rVrl0aNGqWDBw/qhx9+kCTFxcVZBS1J5vO4uLjb9klKStKVK1f0999/KzU1NdM+Bw4cyHLMycnJSk5ONp8nJSXlYssBAACyRkYCAAC4s1wXpMLDw7Vnzx5t3LjRqv3ZZ581/+3v76+KFSuqXbt2OnLkiKpXr577keaBqVOnatKkSXYdAwAAKNzISAAAAHeWq5/sDRkyRMuWLdPatWtVuXLl2/YNDAyUJB0+fFiS5O3trfj4eKs+6c+9vb1v28fd3V0lSpRQuXLl5OjomGmf9GVkZsyYMUpMTDQfJ06cyMbWAgAAZA8ZCQAAIHtyVJAyDENDhgzR4sWLtWbNGvn6+t5xnpiYGElSxYoVJUlBQUHavXu31Z1eVq9eLXd3d/n5+Zl9oqKirJazevVqBQUFSZKcnJwUEBBg1SctLU1RUVFmn8w4OzvL3d3d6gEAAHC3yEgAAAA5k6Of7IWHh2vevHn68ccf5ebmZl7PwMPDQyVKlNCRI0c0b948derUSWXLltWuXbs0fPhwtW7dWg0aNJAktW/fXn5+fnr66ac1bdo0xcXF6bXXXlN4eLicnZ0lSc8//7xmzJihV199Vc8884zWrFmj+fPna/ny5eZYIiIiFBYWpqZNm6p58+Z6//33denSJQ0YMCCv9g0AAEC2kJEAAAByJkcFqU8++UTSjdsW32z27Nnq37+/nJyc9Msvv5jBx8fHRz169NBrr71m9nV0dNSyZcv0wgsvKCgoSKVKlVJYWJgmT55s9vH19dXy5cs1fPhwffDBB6pcubK++OILhYSEmH169+6tM2fOaPz48YqLi1OjRo0UGRmZ4SKeAAAA+Y2MBAAAkDMWwzAMew/CXpKSkuTh4aHExMR8OTX90HdjM7TV7DMlz9cDAACyL78//wsDMhIAAEWPrTNSri5qDgAAAAAAAOQWBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYVI4KUlOnTlWzZs3k5uamChUqqFu3bjp48KBVn6tXryo8PFxly5aVq6urevToofj4eKs+x48fV2hoqEqWLKkKFSpo5MiRun79ulWfdevWqUmTJnJ2dlaNGjU0Z86cDOOZOXOmqlatKhcXFwUGBmrLli052RwAAIA8QUYCAADImRwVpNavX6/w8HD99ttvWr16ta5du6b27dvr0qVLZp/hw4frp59+0oIFC7R+/XqdPHlS3bt3N6enpqYqNDRUKSkp2rRpk7766ivNmTNH48ePN/vExsYqNDRUbdu2VUxMjIYNG6ZBgwZp1apVZp/vv/9eERERmjBhgrZv366GDRsqJCREp0+fvpv9AQAAkGNkJAAAgJyxGIZh5HbmM2fOqEKFClq/fr1at26txMRElS9fXvPmzVPPnj0lSQcOHFDdunUVHR2tFi1aaOXKlercubNOnjwpLy8vSdKsWbM0atQonTlzRk5OTho1apSWL1+uPXv2mOvq06ePEhISFBkZKUkKDAxUs2bNNGPGDElSWlqafHx8NHToUI0ePTpb409KSpKHh4cSExPl7u6e292QpUPfjc3QVrPPlDxfDwAAyL78/vyXyEh3QkYCAKDgsUVGutldXUMqMTFRklSmTBlJ0rZt23Tt2jUFBwebferUqaP7779f0dHRkqTo6Gj5+/ubQUuSQkJClJSUpL1795p9bl5Gep/0ZaSkpGjbtm1WfRwcHBQcHGz2yUxycrKSkpKsHgAAAHmNjAQAAHB7uS5IpaWladiwYWrVqpXq168vSYqLi5OTk5M8PT2t+np5eSkuLs7sc3PQSp+ePu12fZKSknTlyhWdPXtWqampmfZJX0Zmpk6dKg8PD/Ph4+OT8w0HAAC4DTISAADAneW6IBUeHq49e/bou+++y8vx5KsxY8YoMTHRfJw4ccLeQwIAAIUMGQkAAODOiuVmpiFDhmjZsmXasGGDKleubLZ7e3srJSVFCQkJVt8AxsfHy9vb2+xz651e0u8wc3OfW+86Ex8fL3d3d5UoUUKOjo5ydHTMtE/6MjLj7OwsZ2fnnG8wAABANpCRAAAAsidHZ0gZhqEhQ4Zo8eLFWrNmjXx9fa2mBwQEqHjx4oqKijLbDh48qOPHjysoKEiSFBQUpN27d1vd6WX16tVyd3eXn5+f2efmZaT3SV+Gk5OTAgICrPqkpaUpKirK7AMAAGArZCQAAICcydEZUuHh4Zo3b55+/PFHubm5mdci8PDwUIkSJeTh4aGBAwcqIiJCZcqUkbu7u4YOHaqgoCC1aNFCktS+fXv5+fnp6aef1rRp0xQXF6fXXntN4eHh5jdzzz//vGbMmKFXX31VzzzzjNasWaP58+dr+fLl5lgiIiIUFhampk2bqnnz5nr//fd16dIlDRgwIK/2DQAAQLaQkQAAAHImRwWpTz75RJLUpk0bq/bZs2erf//+kqTp06fLwcFBPXr0UHJyskJCQvTxxx+bfR0dHbVs2TK98MILCgoKUqlSpRQWFqbJkyebfXx9fbV8+XINHz5cH3zwgSpXrqwvvvhCISEhZp/evXvrzJkzGj9+vOLi4tSoUSNFRkZmuIgnAABAfiMjAQAA5IzFMAzD3oOwl6SkJHl4eCgxMVHu7u55vvxD343N0Fazz5Q8Xw8AAMi+/P78LwzISAAAFD22zki5vsseAAAAAAAAkBsUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFM5Lkht2LBBXbp0UaVKlWSxWLRkyRKr6f3795fFYrF6dOjQwarP+fPn1bdvX7m7u8vT01MDBw7UxYsXrfrs2rVLDz74oFxcXOTj46Np06ZlGMuCBQtUp04dubi4yN/fXytWrMjp5gAAAOQJMhIAAED25bggdenSJTVs2FAzZ87Msk+HDh106tQp8/Hvf//banrfvn21d+9erV69WsuWLdOGDRv07LPPmtOTkpLUvn17ValSRdu2bdPbb7+tiRMn6rPPPjP7bNq0SU888YQGDhyoHTt2qFu3burWrZv27NmT000CAAC4a2QkAACA7LMYhmHkemaLRYsXL1a3bt3Mtv79+yshISHDt4Lp9u/fLz8/P23dulVNmzaVJEVGRqpTp076888/ValSJX3yyScaO3as4uLi5OTkJEkaPXq0lixZogMHDkiSevfurUuXLmnZsmXmslu0aKFGjRpp1qxZ2Rp/UlKSPDw8lJiYKHd391zsgds79N3YDG01+0zJ8/UAAIDsy+/Pf4mMdCdkJAAACh5bZKSb5cs1pNatW6cKFSqodu3aeuGFF3Tu3DlzWnR0tDw9Pc2gJUnBwcFycHDQ5s2bzT6tW7c2g5YkhYSE6ODBg/r777/NPsHBwVbrDQkJUXR0dJbjSk5OVlJSktUDAADAVshIAAAAN+R5QapDhw76+uuvFRUVpbfeekvr169Xx44dlZqaKkmKi4tThQoVrOYpVqyYypQpo7i4OLOPl5eXVZ/053fqkz49M1OnTpWHh4f58PHxubuNBQAAyCYyEgAAwP8Uy+sF9unTx/y3v7+/GjRooOrVq2vdunVq165dXq8uR8aMGaOIiAjzeVJSEoELAADYBBkJAADgf/LlJ3s3q1atmsqVK6fDhw9Lkry9vXX69GmrPtevX9f58+fl7e1t9omPj7fqk/78Tn3Sp2fG2dlZ7u7uVg8AAAB7ICMBAICiLN8LUn/++afOnTunihUrSpKCgoKUkJCgbdu2mX3WrFmjtLQ0BQYGmn02bNiga9eumX1Wr16t2rVrq3Tp0mafqKgoq3WtXr1aQUFB+b1JAAAAd42MBAAAirIcF6QuXryomJgYxcTESJJiY2MVExOj48eP6+LFixo5cqR+++03HT16VFFRUeratatq1KihkJAQSVLdunXVoUMHDR48WFu2bNGvv/6qIUOGqE+fPqpUqZIk6cknn5STk5MGDhyovXv36vvvv9cHH3xgdSr5yy+/rMjISL377rs6cOCAJk6cqN9//11DhgzJg90CAACQM2QkAACA7MtxQer3339X48aN1bhxY0lSRESEGjdurPHjx8vR0VG7du3So48+qlq1amngwIEKCAjQf/7zHzk7O5vLmDt3rurUqaN27dqpU6dOeuCBB/TZZ5+Z0z08PPTzzz8rNjZWAQEBeuWVVzR+/Hg9++yzZp+WLVtq3rx5+uyzz9SwYUMtXLhQS5YsUf369e9mfwAAAOQKGQkAACD7LIZhGPYehL0kJSXJw8NDiYmJ+XKthEPfjc3QVrPPlDxfDwAAyL78/vwvDMhIAAAUPbbOSPl+DSkAAAAAAADgZhSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUzkuSG3YsEFdunRRpUqVZLFYtGTJEqvphmFo/PjxqlixokqUKKHg4GAdOnTIqs/58+fVt29fubu7y9PTUwMHDtTFixet+uzatUsPPvigXFxc5OPjo2nTpmUYy4IFC1SnTh25uLjI399fK1asyOnmAAAA5AkyEgAAQPbluCB16dIlNWzYUDNnzsx0+rRp0/Thhx9q1qxZ2rx5s0qVKqWQkBBdvXrV7NO3b1/t3btXq1ev1rJly7RhwwY9++yz5vSkpCS1b99eVapU0bZt2/T2229r4sSJ+uyzz8w+mzZt0hNPPKGBAwdqx44d6tatm7p166Y9e/bkdJMAAADuGhkJAAAg+yyGYRi5ntli0eLFi9WtWzdJN775q1Spkl555RWNGDFCkpSYmCgvLy/NmTNHffr00f79++Xn56etW7eqadOmkqTIyEh16tRJf/75pypVqqRPPvlEY8eOVVxcnJycnCRJo0eP1pIlS3TgwAFJUu/evXXp0iUtW7bMHE+LFi3UqFEjzZo1K1vjT0pKkoeHhxITE+Xu7p7b3ZClQ9+NzdBWs8+UPF8PAADIvvz+/JfISHdCRgIAoOCxRUa6WZ5eQyo2NlZxcXEKDg422zw8PBQYGKjo6GhJUnR0tDw9Pc2gJUnBwcFycHDQ5s2bzT6tW7c2g5YkhYSE6ODBg/r777/NPjevJ71P+noAAAAKCjISAACAtWJ5ubC4uDhJkpeXl1W7l5eXOS0uLk4VKlSwHkSxYipTpoxVH19f3wzLSJ9WunRpxcXF3XY9mUlOTlZycrL5PCkpKSebBwAAkCtkJAAAAGtF6i57U6dOlYeHh/nw8fGx95AAAADsjowEAABsLU8LUt7e3pKk+Ph4q/b4+Hhzmre3t06fPm01/fr16zp//rxVn8yWcfM6suqTPj0zY8aMUWJiovk4ceJETjcRAAAgx8hIAAAA1vK0IOXr6ytvb29FRUWZbUlJSdq8ebOCgoIkSUFBQUpISNC2bdvMPmvWrFFaWpoCAwPNPhs2bNC1a9fMPqtXr1bt2rVVunRps8/N60nvk76ezDg7O8vd3d3qAQAAkN/ISAAAANZyXJC6ePGiYmJiFBMTI+nGRTpjYmJ0/PhxWSwWDRs2TG+88YaWLl2q3bt3q1+/fqpUqZJ5l5m6deuqQ4cOGjx4sLZs2aJff/1VQ4YMUZ8+fVSpUiVJ0pNPPiknJycNHDhQe/fu1ffff68PPvhAERER5jhefvllRUZG6t1339WBAwc0ceJE/f777xoyZMjd7xUAAIAcIiMBAABkX44vav7777+rbdu25vP0ABQWFqY5c+bo1Vdf1aVLl/Tss88qISFBDzzwgCIjI+Xi4mLOM3fuXA0ZMkTt2rWTg4ODevTooQ8//NCc7uHhoZ9//lnh4eEKCAhQuXLlNH78eD377LNmn5YtW2revHl67bXX9I9//EM1a9bUkiVLVL9+/VztCAAAgLtBRgIAAMg+i2EYhr0HYS9JSUny8PBQYmJivpyafui7sRnaavaZkufrAQAA2Zffn/+FARkJAICix9YZqUjdZQ8AAAAAAAD2R0EKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANkVBCgAAAAAAADZFQQoAAAAAAAA2RUEKAAAAAAAANpXnBamJEyfKYrFYPerUqWNOv3r1qsLDw1W2bFm5urqqR48eio+Pt1rG8ePHFRoaqpIlS6pChQoaOXKkrl+/btVn3bp1atKkiZydnVWjRg3NmTMnrzcFAAAgz5CRAAAA/idfzpCqV6+eTp06ZT42btxoThs+fLh++uknLViwQOvXr9fJkyfVvXt3c3pqaqpCQ0OVkpKiTZs26auvvtKcOXM0fvx4s09sbKxCQ0PVtm1bxcTEaNiwYRo0aJBWrVqVH5sDAACQJ8hIAAAANxTLl4UWKyZvb+8M7YmJifrXv/6lefPm6eGHH5YkzZ49W3Xr1tVvv/2mFi1a6Oeff9a+ffv0yy+/yMvLS40aNdLrr7+uUaNGaeLEiXJyctKsWbPk6+urd999V5JUt25dbdy4UdOnT1dISEh+bBIAAMBdIyMBAADckC9nSB06dEiVKlVStWrV1LdvXx0/flyStG3bNl27dk3BwcFm3zp16uj+++9XdHS0JCk6Olr+/v7y8vIy+4SEhCgpKUl79+41+9y8jPQ+6cvISnJyspKSkqweAAAAtkJGAgAAuCHPC1KBgYGaM2eOIiMj9cknnyg2NlYPPvigLly4oLi4ODk5OcnT09NqHi8vL8XFxUmS4uLirIJW+vT0abfrk5SUpCtXrmQ5tqlTp8rDw8N8+Pj43O3mAgAAZAsZCQAA4H/y/Cd7HTt2NP/doEEDBQYGqkqVKpo/f75KlCiR16vLkTFjxigiIsJ8npSUROACAAA2QUYCAAD4n3z5yd7NPD09VatWLR0+fFje3t5KSUlRQkKCVZ/4+Hjzegre3t4Z7iiT/vxOfdzd3W8b6JydneXu7m71AAAAsAcyEgAAKMryvSB18eJFHTlyRBUrVlRAQICKFy+uqKgoc/rBgwd1/PhxBQUFSZKCgoK0e/dunT592uyzevVqubu7y8/Pz+xz8zLS+6QvAwAAoKAjIwEAgKIszwtSI0aM0Pr163X06FFt2rRJjz32mBwdHfXEE0/Iw8NDAwcOVEREhNauXatt27ZpwIABCgoKUosWLSRJ7du3l5+fn55++mnt3LlTq1at0muvvabw8HA5OztLkp5//nn98ccfevXVV3XgwAF9/PHHmj9/voYPH57XmwMAAJAnyEgAAAD/k+fXkPrzzz/1xBNP6Ny5cypfvrweeOAB/fbbbypfvrwkafr06XJwcFCPHj2UnJyskJAQffzxx+b8jo6OWrZsmV544QUFBQWpVKlSCgsL0+TJk80+vr6+Wr58uYYPH64PPvhAlStX1hdffMHtjAEAQIFFRgIAAPgfi2EYhr0HYS9JSUny8PBQYmJivlwr4dB3YzO01ewzJc/XAwAAsi+/P/8LAzISAABFj60zUr5fQwoAAAAAAAC4GQUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2BQFKQAAAAAAANgUBSkAAAAAAADYFAUpAAAAAAAA2FQxew+gqLkWudHqefEOD9hpJAAAAAUHGQkAgKKFM6QAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTFKQAAAAAAABgUxSkAAAAAAAAYFMUpAAAAAAAAGBTxew9gKLuWuTGDG3FOzxgh5EAAAAUHGQkAAAKt3v+DKmZM2eqatWqcnFxUWBgoLZs2WLvId3W0YSVVg8AAID8QEYCAAAF2T1dkPr+++8VERGhCRMmaPv27WrYsKFCQkJ0+vRpew8NAADAbshIAACgoLMYhmHYexC5FRgYqGbNmmnGjBmSpLS0NPn4+Gjo0KEaPXr0HedPSkqSh4eHEhMT5e7unufjO/Td2Dv2qerZMVvL4hR1AADyRn5//hcEZCQAAJBTts5I9+w1pFJSUrRt2zaNGTPGbHNwcFBwcLCio6PtOLKcyc4p6VU9O2Z6HYVbEcgAAAAZKSMyEgAABc89W5A6e/asUlNT5eXlZdXu5eWlAwcOZDpPcnKykpOTzeeJiYmSblQB88PFy8l37pQNey4vyV7HL7PZLw/c7/GI1fPjiaslSZZqlc22ak2e0bXVGYNv8UeC8ndwAADcRvrn/j18kvhtkZEyQUYCAOCObJ2R7tmCVG5MnTpVkyZNytDu4+Njh9Hc697NRp/h+T4KAABy68KFC/Lw8LD3MAoEMlJeIiMBAO5ttspI92xBqly5cnJ0dFR8fLxVe3x8vLy9vTOdZ8yYMYqIiDCfp6Wl6fz58ypbtqwsFkueji8pKUk+Pj46ceJEob0+xb2CY1EwcBwKDo5FwcGxsA/DMHThwgVVqlTJ3kPJF2QkZBfHomDgOBQcHIuCg2NhH7bOSPdsQcrJyUkBAQGKiopSt27dJN0IT1FRURoyZEim8zg7O8vZ2dmqzdPTM1/H6e7uzhuogOBYFAwch4KDY1FwcCxsrzCfGUVGQk5xLAoGjkPBwbEoODgWtmfLjHTPFqQkKSIiQmFhYWratKmaN2+u999/X5cuXdKAAQPsPTQAAAC7ISMBAICC7p4uSPXu3VtnzpzR+PHjFRcXp0aNGikyMjLDRTwBAACKEjISAAAo6O7pgpQkDRkyJMvTz+3J2dlZEyZMyHD6O2yPY1EwcBwKDo5FwcGxQH4iI+FOOBYFA8eh4OBYFBwci6LBYhTWex4DAAAAAACgQHKw9wAAAAAAAABQtFCQAgAAAAAAgE1RkAIAAAAAAIBNUZDKJzNnzlTVqlXl4uKiwMBAbdmyxd5DKlKmTp2qZs2ayc3NTRUqVFC3bt108OBBew8Lkt58801ZLBYNGzbM3kMpkv766y899dRTKlu2rEqUKCF/f3/9/vvv9h5WkZKamqpx48bJ19dXJUqUUPXq1fX666+LSzqiqCAj2RcZqeAiI9kXGcn+yEhFDwWpfPD9998rIiJCEyZM0Pbt29WwYUOFhITo9OnT9h5akbF+/XqFh4frt99+0+rVq3Xt2jW1b99ely5dsvfQirStW7fq008/VYMGDew9lCLp77//VqtWrVS8eHGtXLlS+/bt07vvvqvSpUvbe2hFyltvvaVPPvlEM2bM0P79+/XWW29p2rRp+uijj+w9NCDfkZHsj4xUMJGR7IuMVDCQkYoe7rKXDwIDA9WsWTPNmDFDkpSWliYfHx8NHTpUo0ePtvPoiqYzZ86oQoUKWr9+vVq3bm3v4RRJFy9eVJMmTfTxxx/rjTfeUKNGjfT+++/be1hFyujRo/Xrr7/qP//5j72HUqR17txZXl5e+te//mW29ejRQyVKlNC3335rx5EB+Y+MVPCQkeyPjGR/ZKSCgYxU9HCGVB5LSUnRtm3bFBwcbLY5ODgoODhY0dHRdhxZ0ZaYmChJKlOmjJ1HUnSFh4crNDTU6r0B21q6dKmaNm2qxx9/XBUqVFDjxo31+eef23tYRU7Lli0VFRWl//73v5KknTt3auPGjerYsaOdRwbkLzJSwURGsj8ykv2RkQoGMlLRU8zeAyhszp49q9TUVHl5eVm1e3l56cCBA3YaVdGWlpamYcOGqVWrVqpfv769h1Mkfffdd9q+fbu2bt1q76EUaX/88Yc++eQTRURE6B//+Ie2bt2ql156SU5OTgoLC7P38IqM0aNHKykpSXXq1JGjo6NSU1M1ZcoU9e3b195DA/IVGangISPZHxmpYCAjFQxkpKKHghQKvfDwcO3Zs0cbN26091CKpBMnTujll1/W6tWr5eLiYu/hFGlpaWlq2rSp/vnPf0qSGjdurD179mjWrFmELRuaP3++5s6dq3nz5qlevXqKiYnRsGHDVKlSJY4DAJsiI9kXGangICMVDGSkooeCVB4rV66cHB0dFR8fb9UeHx8vb29vO42q6BoyZIiWLVumDRs2qHLlyvYeTpG0bds2nT59Wk2aNDHbUlNTtWHDBs2YMUPJyclydHS04wiLjooVK8rPz8+qrW7dulq0aJGdRlQ0jRw5UqNHj1afPn0kSf7+/jp27JimTp1K2EKhRkYqWMhI9kdGKjjISAUDGano4RpSeczJyUkBAQGKiooy29LS0hQVFaWgoCA7jqxoMQxDQ4YM0eLFi7VmzRr5+vrae0hFVrt27bR7927FxMSYj6ZNm6pv376KiYkhaNlQq1atMtza+7///a+qVKlipxEVTZcvX5aDg/XHr6Ojo9LS0uw0IsA2yEgFAxmp4CAjFRxkpIKBjFT0cIZUPoiIiFBYWJiaNm2q5s2b6/3339elS5c0YMAAew+tyAgPD9e8efP0448/ys3NTXFxcZIkDw8PlShRws6jK1rc3NwyXJeiVKlSKlu2LNersLHhw4erZcuW+uc//6levXppy5Yt+uyzz/TZZ5/Ze2hFSpcuXTRlyhTdf//9qlevnnbs2KH33ntPzzzzjL2HBuQ7MpL9kZEKDjJSwUFGKhjISEWPxTAMw96DKIxmzJiht99+W3FxcWrUqJE+/PBDBQYG2ntYRYbFYsm0ffbs2erfv79tB4MM2rRpwy2N7WTZsmUaM2aMDh06JF9fX0VERGjw4MH2HlaRcuHCBY0bN06LFy/W6dOnValSJT3xxBMaP368nJyc7D08IN+RkeyLjFSwkZHsh4xkf2SkooeCFAAAAAAAAGyKa0gBAAAAAADApihIAQAAAAAAwKYoSAEAAAAAAMCmKEgBAAAAAADApihIAQAAAAAAwKYoSAEAAAAAAMCmKEgBAAAAAADApihIAQCAAmXDhg3q0qWLKlWqJIvFoiVLluRo/okTJ8pisWR4lCpVKn8GDAAAYAOFLSNRkAIAAAXKpUuX1LBhQ82cOTNX848YMUKnTp2yevj5+enxxx/P45ECAADYTmHLSBSkAABAgdKxY0e98cYbeuyxxzKdnpycrBEjRui+++5TqVKlFBgYqHXr1pnTXV1d5e3tbT7i4+O1b98+DRw40EZbAAAAkPcKW0aiIAUAAO4pQ4YMUXR0tL777jvt2rVLjz/+uDp06KBDhw5l2v+LL75QrVq19OCDD9p4pAAAALZzr2UkClIAAOCecfz4cc2ePVsLFizQgw8+qOrVq2vEiBF64IEHNHv27Az9r169qrlz53J2FAAAKNTuxYxUzG5rBgAAyKHdu3crNTVVtWrVsmpPTk5W2bJlM/RfvHixLly4oLCwMFsNEQAAwObuxYxEQQoAANwzLl68KEdHR23btk2Ojo5W01xdXTP0/+KLL9S5c2d5eXnZaogAAAA2dy9mJApSAADgntG4cWOlpqbq9OnTd7zeQWxsrNauXaulS5faaHQAAAD2cS9mJApSAACgQLl48aIOHz5sPo+NjVVMTIzKlCmjWrVqqW/fvurXr5/effddNW7cWGfOnFFUVJQaNGig0NBQc74vv/xSFStWVMeOHe2xGQAAAHmqsGUki2EYhl1HAAAAcJN169apbdu2GdrDwsI0Z84cXbt2TW+88Ya+/vpr/fXXXypXrpxatGihSZMmyd/fX5KUlpamKlWqqF+/fpoyZYqtNwEAACDPFbaMREEKAAAAAAAANuVg7wEAAAAAAACgaKEgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFAAAAAAAAm6IgBQAAAAAAAJuiIAUAAAAAAACboiAFQJI0ceJEWSwWew8jT8yZM0cWi0VHjx6191CQz6ZNm6Y6deooLS3ttv2OHj0qi8WiOXPmWLVHRkaqUaNGcnFxkcViUUJCQrbXfe7cOZUqVUorVqzIxcgBAPcKMhLuRWQk3AsoSAG4a5s2bdLEiRNz9EFlax9//HGGD9q8ZrFYZLFYNGjQoEynjx071uxz9uzZOy5vy5YtevHFFxUQEKDixYsXmjCcV5KSkvTWW29p1KhRcnDI+cfZuXPn1KtXL5UoUUIzZ87UN998o1KlSungwYMaPny4WrZsaYawzIJ72bJlNWjQII0bNy4PtgYAUBiRkW4gI9lWfmWkH374Qb1791a1atVUsmRJ1a5dW6+88kqG1zcZCdlmAIBhGNeuXTOuXLmSq3nffvttQ5IRGxubt4PKpevXrxtXrlwx0tLSzLZ69eoZDz30UL6uV5Lh4uJieHp6GsnJyRmm+/r6Gi4uLoYk48yZM3dc3oQJE4zixYsbAQEBRq1atQz+ZFubPn264e7unq3XbWxsrCHJmD17ttm2cuVKQ5KxevVqq76zZ882HBwcjPr16xuNGjW67Wt73759hiQjKirqbjYFAFCAkZHuHhnJtvIrI5UtW9bw9/c3xo0bZ3z++efGSy+9ZDg5ORl16tQxLl++bNWXjITs4AwpFAlpaWm6evWqvYdh5dKlS/m+DsMwdOXKlWz1LVasmFxcXPJ5RLbh6Ohontliax06dFBSUpJWrlxp1b5p0ybFxsYqNDQ028t64YUXlJiYqN9//12PPPJIXg/1njd79mw9+uijuX7dnj59WpLk6elp1f7oo48qISFBu3fvVt++fW+7jLp166p+/fr5/s0yAOQXMtKdkZHyBhnJdvIrIy1cuFC7du3S5MmTNWjQIH3wwQf6/PPPdeDAAc2dO9eqLxkJ2UFBCveM9N/vHzhwQL169ZK7u7vKli2rl19+OUOQslgsGjJkiObOnat69erJ2dlZkZGRkqS//vpLzzzzjLy8vOTs7Kx69erpyy+/zLC+q1evauLEiapVq5ZcXFxUsWJFde/eXUeOHJEkrVu3ThaLRevWrbOaL7PfYffv31+urq46cuSIOnXqJDc3N/M/uocOHVKPHj3k7e0tFxcXVa5cWX369FFiYqI5//Xr1/X666+revXqcnZ2VtWqVfWPf/xDycnJVuuuWrWqOnfurFWrVqlp06YqUaKEPv300xzt38z245IlS1S/fn1zf6Xvy/T5Ro4cKUny9fU1T7e++SdO3377rQICAlSiRAmVKVNGffr00YkTJ6zW1aZNG9WvX1/79u1T27ZtVbJkSd13332aNm1ahrF+9NFHqlevnkqWLKnSpUuradOmmjdvnjn91usjVK1aVXv37tX69evN8bVp00Z//PGHLBaLpk+fnmEdmzZtksVi0b///e9s7b909913n1q3bm01HkmaO3eu/P39Vb9+/Wwvy8vLSyVKlMjR+rOS/tpYt26d+drw9/c3X78//PCD/P395eLiooCAAO3YsSPDMg4cOKCePXuqTJkycnFxUdOmTbV06VKrPufPn9eIESPk7+8vV1dXubu7q2PHjtq5c6dVv/T3z/z58zVlyhRVrlxZLi4uateunQ4fPnzH7YmNjdWuXbsUHBycYVpCQoL69+8vDw8PeXp6KiwsLMOp5G3atFFYWJgkqVmzZrJYLOrfv78kqUyZMnJzc7vjGNI98sgj+umnn2QYRrbnAYC8REYiI6UjI+UcGSnBqs/tMlKbNm0yLPOxxx6TJO3fvz/DNDIS7qSYvQcA5FSvXr1UtWpVTZ06Vb/99ps+/PBD/f333/r666+t+q1Zs0bz58/XkCFDVK5cOVWtWlXx8fFq0aKFGSLKly+vlStXauDAgUpKStKwYcMkSampqercubOioqLUp08fvfzyy7pw4YJWr16tPXv2qHr16jke9/Xr1xUSEqIHHnhA77zzjkqWLKmUlBSFhIQoOTlZQ4cOlbe3t/766y8tW7ZMCQkJ8vDwkCQNGjRIX331lXr27KlXXnlFmzdv1tSpU7V//34tXrzYaj0HDx7UE088oeeee06DBw9W7dq1c7ej/9/GjRv1ww8/6MUXX5Sbm5s+/PBD9ejRQ8ePH1fZsmXVvXt3/fe//9W///1vTZ8+XeXKlZMklS9fXpI0ZcoUjRs3Tr169dKgQYN05swZffTRR2rdurV27Nhh9c3L33//rQ4dOqh79+7q1auXFi5cqFGjRsnf318dO3aUJH3++ed66aWX1LNnTzNo79q1S5s3b9aTTz6Z6Ta8//77Gjp0qFxdXTV27FhJN4JMtWrV1KpVK82dO1fDhw+3mmfu3Llyc3NT165dc7zPnnzySb388su6ePGiXF1ddf36dS1YsEARERF2/Rb68OHDevLJJ/Xcc8/pqaee0jvvvKMuXbpo1qxZ+sc//qEXX3xRkjR16lT16tVLBw8eNK87sHfvXrVq1Ur33XefRo8erVKlSmn+/Pnq1q2bFi1aZIaRP/74Q0uWLNHjjz8uX19fxcfH69NPP9VDDz2kffv2qVKlSlZjevPNN+Xg4KARI0YoMTFR06ZNU9++fbV58+bbbsumTZskSU2aNLFqNwxDXbt21caNG/X888+rbt26Wrx4sRms0o0dO1a1a9fWZ599psmTJ8vX1zdX72tJCggI0PTp07V3794chWkAyGtkJDISGSl3yEj/k9OMFBcXJ0nm6/tmZCTckT1/LwjkxIQJEwxJxqOPPmrV/uKLLxqSjJ07d5ptkgwHBwdj7969Vn0HDhxoVKxY0Th79qxVe58+fQwPDw/zt89ffvmlIcl47733Mowj/Tf3a9euNSQZa9eutZqe2e+ww8LCDEnG6NGjrfru2LHDkGQsWLAgy+2OiYkxJBmDBg2yah8xYoQhyVizZo3ZVqVKFUOSERkZmeXyspK+f28myXBycjIOHz5stu3cudOQZHz00UdmW1bXRzh69Kjh6OhoTJkyxap99+7dRrFixazaH3roIUOS8fXXX5ttycnJhre3t9GjRw+zrWvXrka9evVuuy2zZ8/OMJ6sro/w6aefGpKM/fv3m20pKSlGuXLljLCwsNuu51aSjPDwcOP8+fOGk5OT8c033xiGYRjLly83LBaLcfToUXM/Z+f6CDcLDw+/q+sjpL82Nm3aZLatWrXKkGSUKFHCOHbsmNmevk9ufm23a9fO8Pf3N65evWq2paWlGS1btjRq1qxptl29etVITU21WndsbKzh7OxsTJ482WxLf//UrVvX6loSH3zwgSHJ2L17922357XXXjMkGRcuXLBqX7JkiSHJmDZtmtl2/fp148EHH8zwvkx/nWzdujXL9WTn2h+bNm0yJBnff//9bccMAPmFjERGMgwyUm6RkXKXkdINHDjQcHR0NP773/9mmEZGwp3wkz3cc8LDw62eDx06VJIy3Fb0oYcekp+fn/ncMAwtWrRIXbp0kWEYOnv2rPkICQlRYmKitm/fLklatGiRypUrZy77Znfzm/sXXnjB6nn6t3urVq3S5cuXM50nfbsiIiKs2l955RVJ0vLly63afX19FRISkusx3io4ONjqW5EGDRrI3d1df/zxxx3n/eGHH5SWlqZevXpZ7W9vb2/VrFlTa9euterv6uqqp556ynzu5OSk5s2bW63L09NTf/75p7Zu3ZoHW3fj22QXFxer372vWrVKZ8+etRpLTpQuXVodOnQwT2WfN2+eWrZsqSpVquTJmHPLz89PQUFB5vPAwEBJ0sMPP6z7778/Q3v6fj9//rzWrFmjXr166cKFC+ZxPHfunEJCQnTo0CH99ddfkiRnZ2fzG8PU1FSdO3dOrq6uql27tvn+utmAAQPk5ORkPn/wwQet1p2Vc+fOqVixYnJ1dbVqX7FihYoVK2b1XnN0dMz0vZxXSpcuLUnZuisQAOQnMtINZCQyUk6RkXJn3rx5+te//qVXXnlFNWvWzDCdjIQ7oSCFe86tf+yqV68uBweHDLdl9/X1tXp+5swZJSQk6LPPPlP58uWtHgMGDJD0vwv4HTlyRLVr11axYnn3q9ZixYqpcuXKGcYYERGhL774QuXKlVNISIhmzpxpdW2EY8eOycHBQTVq1LCa19vbW56enjp27Nhtt/tu3fwhnK506dL6+++/7zjvoUOHZBiGatasmWGf79+/39zf6SpXrpwhzN66rlGjRsnV1VXNmzdXzZo1FR4erl9//TWXW3cjvHXp0sXqegZz587Vfffdp4cffjjXy33yySe1evVqHT9+XEuWLMnyVPmLFy8qLi7OfJw5cybX67yTW49letj38fHJtD19vx8+fFiGYWjcuHEZjuOECRMk/e+9k5aWpunTp6tmzZpydnZWuXLlVL58ee3atcvqdZ3VmNKDS3ZeX5k5duyYKlasmCGE3e3PMm7H+P/rInDLaQD2Rka6gYxERsopMlLO/ec//9HAgQMVEhKiKVOmZNqHjIQ74RpSuOdl9Qfu1gsdpqWlSZKeeuqpDL+VTtegQYO7Xm9qamqm7Td/K3Kzd999V/3799ePP/6on3/+WS+99JJ57Yebw1l2/5Dn1QUe0zk6Ombanv4BcztpaWmyWCxauXJlpsu59QMxO+uqW7euDh48qGXLlikyMlKLFi3Sxx9/rPHjx2vSpEl3HFNm+vXrpwULFmjTpk3y9/fX0qVL9eKLL2Z6vLLr0UcflbOzs8LCwpScnKxevXpl2u+dd96xGneVKlUy/Mchr2S1f++039PfOyNGjMjym+X0/wz885//1Lhx4/TMM8/o9ddfV5kyZeTg4KBhw4aZy8nJurNStmxZXb9+XRcuXMjRBcjzQ3owzOzaCQBgT2Qka2SknCMjkZEys3PnTj366KOqX7++Fi5cmGWBmoyEO6EghXvOoUOHrL7hOnz4sNLS0lS1atXbzle+fHm5ubkpNTU107tO3Kx69eravHmzrl27puLFi2faJ/1bilvvTHHrt3HZ4e/vL39/f7322mvatGmTWrVqpVmzZumNN95QlSpVlJaWpkOHDqlu3brmPPHx8UpISLD7Kc5S1kGwevXqMgxDvr6+qlWrVp6tr1SpUurdu7d69+6tlJQUde/eXVOmTNGYMWOyvL3t7cJqhw4dVL58ec2dO1eBgYG6fPmynn766bsaY4kSJdStWzd9++236tixY5YfxP369dMDDzxgNV9BU61aNUlS8eLF7/jeWbhwodq2bat//etfVu0JCQl5Gkbq1Kkj6cadZG7+T1KVKlUUFRVlXiw13cGDB/Ns3beKjY2VJKv3JwDYAxnpBjISGclWimJGOnLkiDp06KAKFSpoxYoVGYqnNyMj4U74yR7uOTNnzrR6/tFHH0mSeYeRrDg6OqpHjx5atGiR9uzZk2H6zacB9+jRQ2fPntWMGTMy9Ev/VqJKlSpydHTUhg0brKZ//PHH2dsQSUlJSbp+/bpVm7+/vxwcHMzbFXfq1EnSjbug3Oy9996TJIWGhmZ7ffmlVKlSkjIGz+7du8vR0VGTJk3K8G2OYRg6d+5cjtd16zxOTk7y8/OTYRi6du3abcd46/jSFStWTE888YTmz5+vOXPmyN/fP0ffBGdlxIgRmjBhgsaNG5dln2rVqik4ONh8tGrV6q7Xm9cqVKigNm3a6NNPP9WpU6cyTL/5vePo6JjhWC9YsMC8fkJeSb/Ow++//27V3qlTJ12/fl2ffPKJ2Zaammr+ncgP27Ztk4eHh+rVq5dv6wCA7CAj3UBGuoGMlP+KWkaKi4tT+/bt5eDgoFWrVpl3jMwKGQl3whlSuOfExsbq0UcfVYcOHRQdHa1vv/1WTz75pBo2bHjHed98802tXbtWgYGBGjx4sPz8/HT+/Hlt375dv/zyi86fPy/pxjcyX3/9tSIiIrRlyxb9H3t3HpZVnf9//HWDLCrc4AqauG+hhrtijSuJhY6mljZNkqltaC6TqVPjkjaaOVamZcuVOmXjVpq5YIpLUzIuGOY+ZqY2CGgFuALC+f3hj/PtlkXWcws8H9d1X5f3uT/nnPf5cAfvXve5z/nDH/6gK1euaNu2bXruuefUv39/+fj46OGHH9bbb78tm82mRo0aacOGDdm+85+X7du3a/To0Xr44YfVtGlT3bhxQx9//LHZGEpSUFCQwsPD9f777yspKUndunXT3r17tWzZMg0YMEA9evQo3EQWo3bt2km6eZvYoUOHys3NTf369VOjRo00a9YsTZkyRT/99JMGDBggb29vnT59WmvXrtVTTz2lF154oUD76t27t/z9/XXvvffKz89Px44d08KFCxUWFpbnacnt2rXTu+++q1mzZqlx48aqWbOmw/UPhg0bpgULFmjHjh167bXXCjcRtwgKCsrX+zI3Z86c0ccffyzp/5qKWbNmSbrZ7Bf1E8qCWLRoke677z61atVKo0aNUsOGDZWQkKDo6Gj9/PPPOnjwoCSpb9++euWVVzR8+HB16dJFhw4d0vLly81PEItLw4YN1bJlS23btk1PPvmkubxfv3669957NXnyZP30008KDAzU559/nuO1GXKTnJxsNmdZ195YuHChfH195evrq9GjRzuM37p1q/r168f1EQA4HT0SPRI9Ej1SSfZIffr00Y8//qgXX3xR33zzjb755hvzNT8/P91///0O4+mRcFtW3MoPKA5Zt4I9evSoMXjwYMPb29uoUqWKMXr0aOPatWsOY/X/by2bk4SEBCMiIsIICAgw3NzcDH9/f6NXr17G+++/7zDu6tWrxksvvWQ0aNDAHDd48GDj1KlT5pgLFy4YgwYNMipVqmRUqVLFePrpp43Dhw/neEvjypUrZ6vlxx9/NJ588kmjUaNGhqenp1G1alWjR48exrZt2xzGpaenGzNmzDBrCQgIMKZMmeJwe1nDuHnb2rCwsHzN561yu6VxTvNYr169bLf7nTlzpnHXXXcZLi4u2W4n/Nlnnxn33XefUblyZaNy5cpG8+bNjYiICOPEiRPmmG7duuV4q+Lw8HCjXr165vP33nvP6Nq1q1GtWjXDw8PDaNSokTFx4kQjOTnZHJPTLY3j4+ONsLAww9vb25CU4+2NW7RoYbi4uBg///xzLrOUt7zed1kKckvjrNv+5vTIqf685PbeyKnmrNtyv/766w7LT506ZQwbNszw9/c33NzcjLvuusvo27evsWbNGnPM9evXjb/85S9GrVq1jIoVKxr33nuvER0dbXTr1s2h5qxju/V23jndEjw38+fPN7y8vMxbkWf55ZdfjMcff9yw2+2Gj4+P8fjjj5u3D8/PLY2zasjp8fv3omEYxrFjxwxJ2f6bBQAr0SPRIxkGPRI90v8pqR4ptznPad7pkZAfNsPIx1X3gDvA9OnTNWPGDF24cIEL46FEtGnTRlWrVlVUVJSzS0E+JCcnq2HDhpo7d65GjBjhlBrGjRunr7/+WjExMXz6B8Bp6JFQ0uiRShd6JJQWXEMKAHTzdO/Y2FgNGzbM2aUgn3x8fPTiiy/q9ddfz/HuNCXtl19+0YcffqhZs2bRaAEAyix6pNKHHgmlBWdIodTg07/CSU5O1rVr1/Ic4+/vb1E1d57Dhw8rJiZG//jHP3Tx4kX9+OOPDnehycjIcLggZU68vLzyvMNISbpw4UKut9GWbl7QtGrVqhZWBACwGj1S4dAj5Y0eCUBJ46LmQBk3duxYLVu2LM8x5TmXXrNmjV555RU1a9ZM//rXv7LdEvncuXMOt9DOybRp0zR9+vQSrDJ3HTp0yPM22t26ddPOnTutKwgAgFKCHilv9EgAShpnSAFl3NGjRxUXF5fnmJCQEIuqKX2uX7/ucAeRnDRs2LDY75CSX99++22en+5WqVLFvMMPAAD4P/RIRUOPBKCoCKQAAAAAAABgKS5qDgAAAAAAAEuV62tIZWZmKi4uTt7e3lz9HwCAcsIwDF26dEm1a9eWiwufzeWEHgkAgPLH6h6pXAdScXFxCggIcHYZAADACc6dO6c6deo4u4w7Ej0SAADll1U9UrkOpLy9vSXdnGy73e7kagAAgBVSUlIUEBBg9gHIjh4JAIDyx+oeqVwHUlmnoNvtdpotAADKGb6Kljt6JAAAyi+reiQunAAAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsFS5voYUAAB5ycjIUHp6urPLQAG5ubnJ1dXV2WUAAFBm0SOVTndaj0QgBQDALQzDUHx8vJKSkpxdCgrJ19dX/v7+XLgcAIBiRI9U+t1JPRKBFAAAt8hqtGrWrKlKlSrdEX+wkT+GYejq1atKTEyUJNWqVcvJFQEAUHbQI5Ved2KPRCAFAMDvZGRkmI1WtWrVnF0OCqFixYqSpMTERNWsWfOOOjUdAIDSih6p9LvTeiQuag4AwO9kXQ+hUqVKTq4ERZH18+P6FgAAFA96pLLhTuqRCKQAAMgBp6CXbvz8AAAoGfyNLd3upJ8fgRQAAAAAAAAsRSAFAEApZ7PZ8nxMnz7dqbWtW7euSNt4//331b17d9ntdtlsNu7sAwAA8q0s90m//vqrxowZo2bNmqlixYqqW7eunn/+eSUnJxdfkSWIi5oDAJBP6ZHfWLYvtz735Xvs+fPnzX+vXLlSU6dO1YkTJ8xlXl5eBdp3Wlqa3N3dC7ROSbp69ar69OmjPn36aMqUKc4uBwAA3MLKHkmiT8oSFxenuLg4zZs3T4GBgTpz5oyeeeYZxcXFac2aNc4u77Y4Q6oEpUd+Y/l/mACA8sff3998+Pj4yGazmc+vXLmixx57TH5+fvLy8lKHDh20bds2h/Xr16+vmTNnatiwYbLb7XrqqackSR988IECAgJUqVIlPfTQQ5o/f758fX0d1v3iiy/Utm1beXp6qmHDhpoxY4Zu3LhhbleSHnroIdlsNvP5wYMH1aNHD3l7e8tut6tdu3bav39/rsc3btw4TZ48WZ07dy6eCYPT0SMBAKxSlvukli1b6rPPPlO/fv3UqFEj9ezZU6+++qq+/PJLcz93MgIpAADKsMuXL+vBBx9UVFSUvvvuO/Xp00f9+vXT2bNnHcbNmzdPQUFB+u677/S3v/1N3377rZ555hmNHTtWsbGxuv/++/Xqq686rPPvf/9bw4YN09ixY3X06FG99957Wrp0qTlu3759kqQlS5bo/Pnz5vPHHntMderU0b59+xQTE6PJkyfLzc3NgtkAAAD4P2WxT0pOTpbdbleFCnf+F+Lu/AoBAEChBQUFKSgoyHw+c+ZMrV27VuvXr9fo0aPN5T179tRf/vIX8/lLL72kBx54QC+88IIkqWnTptq9e7c2bNhgjpkxY4YmT56s8PBwSVLDhg01c+ZMvfjii5o2bZpq1KghSfL19ZW/v7+53tmzZzVx4kQ1b95cktSkSZMSOHIAAIC8lbU+6eLFi5o5c6Z5FtedjjOkAAAowy5fvqwXXnhBd999t3x9feXl5aVjx45l++Svffv2Ds9PnDihjh07Oiy79fnBgwf1yiuvyMvLy3yMGjVK58+f19WrV3OtacKECRo5cqRCQkI0Z84cnTp1qohHCQAAUHBlqU9KSUlRWFiYAgMDnXqh9oIgkAIAoAx74YUXtHbtWv3973/Xv//9b8XGxqpVq1ZKS0tzGFe5cuUCb/vy5cuaMWOGYmNjzcehQ4d08uRJeXp65rre9OnTdeTIEYWFhWn79u0KDAzU2rVrC7x/AACAoigrfdKlS5fUp08feXt7a+3ataXmUgh8ZQ8AgDLs22+/1RNPPKGHHnpI0s3m6Keffrrtes2aNTOvZZDl1udt27bViRMn1Lhx41y34+bmpoyMjGzLmzZtqqZNm2r8+PF69NFHtWTJErNGAAAAK5SFPiklJUWhoaHy8PDQ+vXr8wy77jQEUgAAlGFNmjTR559/rn79+slms+lvf/ubMjMzb7vemDFj1LVrV82fP1/9+vXT9u3btXnzZtlsNnPM1KlT1bdvX9WtW1eDBw+Wi4uLDh48qMOHD2vWrFmSbt5BJioqSvfee688PDzk6empiRMnavDgwWrQoIF+/vln7du3T4MGDcq1lvj4eMXHx+uHH36QJB06dEje3t6qW7euqlatWsQZAgAA5VVp75NSUlLUu3dvXb16VZ988olSUlKUkpIiSapRo4ZcXV2LYZZKDl/ZAwCgDJs/f76qVKmiLl26qF+/fgoNDVXbtm1vu969996rxYsXa/78+QoKClJkZKTGjx/v8KlbaGioNmzYoK+++kodOnRQ586d9cYbb6hevXrmmH/84x/aunWrAgIC1KZNG7m6uuqXX37RsGHD1LRpUz3yyCN64IEHNGPGjFxrWbx4sdq0aaNRo0ZJkrp27ao2bdpo/fr1RZgZAABQ3pX2PunAgQPas2ePDh06pMaNG6tWrVrm49y5c0WfoBJmMwzDcHYRzpKSkiIfHx/ztojFLT3yG0mSW5/7in3bAICScf36dZ0+fVoNGjQoVac8W2HUqFE6fvy4/v3vfzu7lNvK6+dY0n//ywJ6JADAreiR8lZa+qQ7qUfiK3sAACBH8+bN0/3336/KlStr8+bNWrZsmd555x1nlwUAAOB09ElFRyAFAABytHfvXs2dO1eXLl1Sw4YNtWDBAo0cOdLZZQEAADgdfVLREUgBAIAcrVq1ytklAAAA3JHok4qOi5oDAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAQBnwxBNPyGazyWazyc3NTX5+frr//vv10UcfKTMz09nlFcmRI0c0aNAg1a9fXzabTW+++aazSwIAAKVIWe6TPvjgA/3hD39QlSpVVKVKFYWEhGjv3r3OLitfKji7AAAASotT+9+zbF+N2j9d4HX69OmjJUuWKCMjQwkJCYqMjNTYsWO1Zs0arV+/XhUqlM4/+1evXlXDhg318MMPa/z48c4uBwAA3MLKHkmiT/q9nTt36tFHH1WXLl3k6emp1157Tb1799aRI0d01113Obu8PHGGFAAAZYSHh4f8/f111113qW3btvrrX/+qL774Qps3b9bSpUvNcUlJSRo5cqRq1Kghu92unj176uDBgw7b+vLLL9WhQwd5enqqevXqeuihh8zXfvvtNw0bNkxVqlRRpUqV9MADD+jkyZOSpCtXrshut2vNmjUO21u3bp0qV66sS5cuKS0tTaNHj1atWrXk6empevXqafbs2bkeV4cOHfT6669r6NCh8vDwKIaZAgAA5U1Z7ZOWL1+u5557Tq1bt1bz5s314YcfKjMzU1FRUcUwayWLQAoAgDKsZ8+eCgoK0ueff24ue/jhh5WYmKjNmzcrJiZGbdu2Va9evfTrr79KkjZu3KiHHnpIDz74oL777jtFRUWpY8eO5vpPPPGE9u/fr/Xr1ys6OlqGYejBBx9Uenq6KleurKFDh2rJkiUOdSxZskSDBw+Wt7e3FixYoPXr12vVqlU6ceKEli9frvr161syHwAAAFnKYp909epVpaenq2rVqkWbHAuUznPSAABAvjVv3lzff/+9JOmbb77R3r17lZiYaJ5tNG/ePK1bt05r1qzRU089pVdffVVDhw7VjBkzzG0EBQVJkk6ePKn169fr22+/VZcuXSTd/GQuICBA69at08MPP6yRI0eqS5cuOn/+vGrVqqXExERt2rRJ27ZtkySdPXtWTZo00X333SebzaZ69epZOR0AAACmstYnTZo0SbVr11ZISEiR56akcYYUAABlnGEYstlskqSDBw/q8uXLqlatmry8vMzH6dOnderUKUlSbGysevXqleO2jh07pgoVKqhTp07msmrVqqlZs2Y6duyYJKljx45q0aKFli1bJkn65JNPVK9ePXXt2lXSzU8OY2Nj1axZMz3//PP66quvSuzYAQAA8lKW+qQ5c+ZoxYoVWrt2rTw9PQs+GRbjDCkAAMq4Y8eOqUGDBpKky5cvq1atWtq5c2e2cb6+vpKkihUrFnmfI0eO1KJFizR58mQtWbJEw4cPN5u9tm3b6vTp09q8ebO2bdumRx55RCEhIdmupwAAAFDSykqfNG/ePM2ZM0fbtm3TPffcU+QarcAZUgAAlGHbt2/XoUOHNGjQIEk3m5z4+HhVqFBBjRs3dnhUr15dknTPPffkeiHMu+++Wzdu3NCePXvMZb/88otOnDihwMBAc9mf//xnnTlzRgsWLNDRo0cVHh7usB273a4hQ4bogw8+0MqVK/XZZ5+Z12YAAACwQlnpk+bOnauZM2cqMjJS7du3L/R8WI0zpAAAKCNSU1MVHx/vcDvj2bNnq2/fvho2bJgkKSQkRMHBwRowYIDmzp2rpk2bKi4uzrxAZ/v27TVt2jT16tVLjRo10tChQ3Xjxg1t2rRJkyZNUpMmTdS/f3+NGjVK7733nry9vTV58mTddddd6t+/v1lLlSpVNHDgQE2cOFG9e/dWnTp1zNfmz5+vWrVqqU2bNnJxcdHq1avl7+9vfvJ4q7S0NB09etT89//+9z/FxsbKy8tLjRs3LrkJBQAAZUZZ7ZNee+01TZ06VZ9++qnq16+v+Ph4STK/bngn4wwpAADKiMjISNWqVUv169dXnz59tGPHDi1YsEBffPGFXF1dJUk2m02bNm1S165dNXz4cDVt2lRDhw7VmTNn5OfnJ0nq3r27Vq9erfXr16t169bq2bOn9u7da+5nyZIlateunfr27avg4GAZhqFNmzbJzc3NoZ4RI0YoLS1NTz75pMNyb29vzZ07V+3bt1eHDh30008/adOmTXJxybktiYuLU5s2bdSmTRudP39e8+bNU5s2bTRy5MjinD4AAFCGldU+6d1331VaWpoGDx6sWrVqmY958+YV5/SVDKMIZs+ebUgyxo4day67du2a8dxzzxlVq1Y1KleubAwcONCIj493WO/MmTPGgw8+aFSsWNGoUaOG8cILLxjp6ekOY3bs2GG0adPGcHd3Nxo1amQsWbIk2/4XLlxo1KtXz/Dw8DA6duxo7Nmzp0D1JycnG5KM5OTkAq2XX2mb/22kbf53iWwbAFAyrl27Zhw9etS4du2as0sp9f75z38a1apVM1JTUy3fd14/x5L++28Y9Ei3Q48EAKUPPVLxclaf5Owe6fcKfYbUvn379N5772W7WNb48eP15ZdfavXq1dq1a5fi4uI0cOBA8/WMjAyFhYUpLS1Nu3fv1rJly7R06VJNnTrVHHP69GmFhYWpR48eio2N1bhx4zRy5Eht2bLFHLNy5UpNmDBB06ZN04EDBxQUFKTQ0FAlJiYW9pAAAEAxuHr1qk6dOqU5c+bo6aeflru7u7NLshQ9EgAAyE1575McFCbFunTpktGkSRNj69atRrdu3cxP/5KSkgw3Nzdj9erV5thjx44Zkozo6GjDMAxj06ZNhouLi8Mngu+++65ht9vNZPDFF180WrRo4bDPIUOGGKGhoebzjh07GhEREebzjIwMo3bt2sbs2bPzfRx8+gcAuBWf/hXdtGnTjAoVKhg9e/Y0Ll265JQanPXpHz1S/tAjAUDpQ49UPJzdJ5X6M6QiIiIUFhamkJAQh+UxMTFKT093WN68eXPVrVtX0dHRkqTo6Gi1atXK/P6lJIWGhiolJUVHjhwxx9y67dDQUHMbaWlpiomJcRjj4uKikJAQc0xOUlNTlZKS4vAAAADFa/r06UpPT1dUVNQdfzHN4kaPBAAA8lKe+6RbFfgueytWrNCBAwe0b9++bK/Fx8fL3d0929Xf/fz8zCu9x8fHOzRaWa9nvZbXmJSUFF27dk2//fabMjIychxz/PjxXGufPXu2ZsyYkb8DBQAAKAB6JAAAgPwr0BlS586d09ixY7V8+XJ5enqWVE0lZsqUKUpOTjYf586dc3ZJAACgDKBHAgAAKJgCBVIxMTFKTExU27ZtVaFCBVWoUEG7du3SggULVKFCBfn5+SktLU1JSUkO6yUkJMjf31+S5O/vr4SEhGyvZ72W1xi73a6KFSuqevXqcnV1zXFM1jZy4uHhIbvd7vAAACAnhmE4uwQUgdU/P3okAEB5QY9Uut1JP78CBVK9evXSoUOHFBsbaz7at2+vxx57zPy3m5uboqKizHVOnDihs2fPKjg4WJIUHBysQ4cOOdzpZevWrbLb7QoMDDTH/H4bWWOytuHu7q527do5jMnMzFRUVJQ5BgCAwnBzc5N08w4oKL2yfn5ZP8+SRo8EACjr6JHKBqt7pLwU6BpS3t7eatmypcOyypUrq1q1aubyESNGaMKECapatarsdrvGjBmj4OBgde7cWZLUu3dvBQYG6vHHH9fcuXMVHx+vl19+WREREfLw8JAkPfPMM1q4cKFefPFFPfnkk9q+fbtWrVqljRs3mvudMGGCwsPD1b59e3Xs2FFvvvmmrly5ouHDhxdpQgAA5Zurq6t8fX3NUKBSpUqy2WxOrgr5ZRiGrl69qsTERPn6+srV1dWS/dIjAQDKOnqk0s1ZPVJeCnxR89t544035OLiokGDBik1NVWhoaF65513zNddXV21YcMGPfvsswoODlblypUVHh6uV155xRzToEEDbdy4UePHj9dbb72lOnXq6MMPP1RoaKg5ZsiQIbpw4YKmTp2q+Ph4tW7dWpGRkdku4gkAQEFlfbXp92eqoHTx9fXN8ytqzkCPBAAo7eiRSr87qUeyGXfSFwgtlpKSIh8fHyUnJ5fItRLSI7+RJLn1ua/Ytw0AKHkZGRlKT093dhkoIDc3tzw/9Svpv/9lAT0SACAv9Eil053WIxX7GVIAAJQVrq6ud8TpzAAAAHcSeiQUhwJd1BwAAAAAAAAoKgIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJaq4OwCyrKfkjZLklz2HzGXNWr/tLPKAQAAuCPQIwEAAM6QAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlipQIPXuu+/qnnvukd1ul91uV3BwsDZv3my+fv36dUVERKhatWry8vLSoEGDlJCQ4LCNs2fPKiwsTJUqVVLNmjU1ceJE3bhxw2HMzp071bZtW3l4eKhx48ZaunRptloWLVqk+vXry9PTU506ddLevXsLcigAAADFhh4JAACgYAoUSNWpU0dz5sxRTEyM9u/fr549e6p///46cuSIJGn8+PH68ssvtXr1au3atUtxcXEaOHCguX5GRobCwsKUlpam3bt3a9myZVq6dKmmTp1qjjl9+rTCwsLUo0cPxcbGaty4cRo5cqS2bNlijlm5cqUmTJigadOm6cCBAwoKClJoaKgSExOLOh8AAAAFRo8EAABQMDbDMIyibKBq1ap6/fXXNXjwYNWoUUOffvqpBg8eLEk6fvy47r77bkVHR6tz587avHmz+vbtq7i4OPn5+UmSFi9erEmTJunChQtyd3fXpEmTtHHjRh0+fNjcx9ChQ5WUlKTIyEhJUqdOndShQwctXLhQkpSZmamAgACNGTNGkydPznftKSkp8vHxUXJysux2e1GmIUcnV7wkSXJpXNdc1qj908W+HwAAkH8l/fc/Cz1S7uiRAAC481jVI2Up9DWkMjIytGLFCl25ckXBwcGKiYlRenq6QkJCzDHNmzdX3bp1FR0dLUmKjo5Wq1atzEZLkkJDQ5WSkmJ+ghgdHe2wjawxWdtIS0tTTEyMwxgXFxeFhISYY3KTmpqqlJQUhwcAAEBxokcCAAC4vQIHUocOHZKXl5c8PDz0zDPPaO3atQoMDFR8fLzc3d3l6+vrMN7Pz0/x8fGSpPj4eIdGK+v1rNfyGpOSkqJr167p4sWLysjIyHFM1jZyM3v2bPn4+JiPgICAgh4+AABAjuiRAAAA8q/AgVSzZs0UGxurPXv26Nlnn1V4eLiOHj1aErUVuylTpig5Odl8nDt3ztklAQCAMoIeCQAAIP8qFHQFd3d3NW7cWJLUrl077du3T2+99ZaGDBmitLQ0JSUlOXwCmJCQIH9/f0mSv79/tju9ZN1h5vdjbr3rTEJCgux2uypWrChXV1e5urrmOCZrG7nx8PCQh4dHQQ8ZAADgtuiRAAAA8q/Q15DKkpmZqdTUVLVr105ubm6KiooyXztx4oTOnj2r4OBgSVJwcLAOHTrkcKeXrVu3ym63KzAw0Bzz+21kjcnahru7u9q1a+cwJjMzU1FRUeYYAAAAZ6NHAgAAyF2BzpCaMmWKHnjgAdWtW1eXLl3Sp59+qp07d2rLli3y8fHRiBEjNGHCBFWtWlV2u11jxoxRcHCwOnfuLEnq3bu3AgMD9fjjj2vu3LmKj4/Xyy+/rIiICPNTuWeeeUYLFy7Uiy++qCeffFLbt2/XqlWrtHHjRrOOCRMmKDw8XO3bt1fHjh315ptv6sqVKxo+fHgxTg0AAED+0CMBAAAUTIECqcTERA0bNkznz5+Xj4+P7rnnHm3ZskX333+/JOmNN96Qi4uLBg0apNTUVIWGhuqdd94x13d1ddWGDRv07LPPKjg4WJUrV1Z4eLheeeUVc0yDBg20ceNGjR8/Xm+99Zbq1KmjDz/8UKGhoeaYIUOG6MKFC5o6dari4+PVunVrRUZGZruIJwAAgBXokQAAAArGZhiG4ewinCUlJUU+Pj5KTk6W3W4v9u2fXPGSJMmlcV1zWaP2Txf7fgAAQP6V9N//soAeCQCA8sfqHqnI15ACAAAAAAAACoJACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWKpAgdTs2bPVoUMHeXt7q2bNmhowYIBOnDjhMOb69euKiIhQtWrV5OXlpUGDBikhIcFhzNmzZxUWFqZKlSqpZs2amjhxom7cuOEwZufOnWrbtq08PDzUuHFjLV26NFs9ixYtUv369eXp6alOnTpp7969BTkcAACAYkGPBAAAUDAFCqR27dqliIgI/ec//9HWrVuVnp6u3r1768qVK+aY8ePH68svv9Tq1au1a9cuxcXFaeDAgebrGRkZCgsLU1pamnbv3q1ly5Zp6dKlmjp1qjnm9OnTCgsLU48ePRQbG6tx48Zp5MiR2rJlizlm5cqVmjBhgqZNm6YDBw4oKChIoaGhSkxMLMp8AAAAFBg9EgAAQMHYDMMwCrvyhQsXVLNmTe3atUtdu3ZVcnKyatSooU8//VSDBw+WJB0/flx33323oqOj1blzZ23evFl9+/ZVXFyc/Pz8JEmLFy/WpEmTdOHCBbm7u2vSpEnauHGjDh8+bO5r6NChSkpKUmRkpCSpU6dO6tChgxYuXChJyszMVEBAgMaMGaPJkyfnq/6UlBT5+PgoOTlZdru9sNOQq5MrXpIkuTSuay5r1P7pYt8PAADIv5L++y/RI90OPRIAAHceK3qk3yvSNaSSk5MlSVWrVpUkxcTEKD09XSEhIeaY5s2bq27duoqOjpYkRUdHq1WrVmajJUmhoaFKSUnRkSNHzDG/30bWmKxtpKWlKSYmxmGMi4uLQkJCzDE5SU1NVUpKisMDAACguNEjAQAA5K3QgVRmZqbGjRune++9Vy1btpQkxcfHy93dXb6+vg5j/fz8FB8fb475faOV9XrWa3mNSUlJ0bVr13Tx4kVlZGTkOCZrGzmZPXu2fHx8zEdAQEDBDxwAACAP9EgAAAC3V+hAKiIiQocPH9aKFSuKs54SNWXKFCUnJ5uPc+fOObskAABQxtAjAQAA3F6Fwqw0evRobdiwQV9//bXq1KljLvf391daWpqSkpIcPgFMSEiQv7+/OebWO71k3WHm92NuvetMQkKC7Ha7KlasKFdXV7m6uuY4JmsbOfHw8JCHh0fBDxgAACAf6JEAAADyp0BnSBmGodGjR2vt2rXavn27GjRo4PB6u3bt5ObmpqioKHPZiRMndPbsWQUHB0uSgoODdejQIYc7vWzdulV2u12BgYHmmN9vI2tM1jbc3d3Vrl07hzGZmZmKiooyxwAAAFiFHgkAAKBgCnSGVEREhD799FN98cUX8vb2Nq9F4OPjo4oVK8rHx0cjRozQhAkTVLVqVdntdo0ZM0bBwcHq3LmzJKl3794KDAzU448/rrlz5yo+Pl4vv/yyIiIizE/mnnnmGS1cuFAvvviinnzySW3fvl2rVq3Sxo0bzVomTJig8PBwtW/fXh07dtSbb76pK1euaPjw4cU1NwAAAPlCjwQAAFAwBQqk3n33XUlS9+7dHZYvWbJETzzxhCTpjTfekIuLiwYNGqTU1FSFhobqnXfeMce6urpqw4YNevbZZxUcHKzKlSsrPDxcr7zyijmmQYMG2rhxo8aPH6+33npLderU0YcffqjQ0FBzzJAhQ3ThwgVNnTpV8fHxat26tSIjI7NdxBMAAKCk0SMBAAAUjM0wDMPZRThLSkqKfHx8lJycLLvdXuzbP7niJUmSS+O65rJG7Z8u9v0AAID8K+m//2UBPRIAAOWP1T1Soe+yBwAAAAAAABQGgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALBUgQOpr7/+Wv369VPt2rVls9m0bt06h9cNw9DUqVNVq1YtVaxYUSEhITp58qTDmF9//VWPPfaY7Ha7fH19NWLECF2+fNlhzPfff68//OEP8vT0VEBAgObOnZutltWrV6t58+by9PRUq1attGnTpoIeDgAAQLGgRwIAAMi/AgdSV65cUVBQkBYtWpTj63PnztWCBQu0ePFi7dmzR5UrV1ZoaKiuX79ujnnsscd05MgRbd26VRs2bNDXX3+tp556ynw9JSVFvXv3Vr169RQTE6PXX39d06dP1/vvv2+O2b17tx599FGNGDFC3333nQYMGKABAwbo8OHDBT0kAACAIqNHAgAAyD+bYRhGoVe22bR27VoNGDBA0s1P/mrXrq2//OUveuGFFyRJycnJ8vPz09KlSzV06FAdO3ZMgYGB2rdvn9q3by9JioyM1IMPPqiff/5ZtWvX1rvvvquXXnpJ8fHxcnd3lyRNnjxZ69at0/HjxyVJQ4YM0ZUrV7Rhwwazns6dO6t169ZavHhxvupPSUmRj4+PkpOTZbfbCzsNuTq54iVJkkvjuuayRu2fLvb9AACA/Cvpv/8SPdLt0CMBAHDnsaJH+r1ivYbU6dOnFR8fr5CQEHOZj4+POnXqpOjoaElSdHS0fH19zUZLkkJCQuTi4qI9e/aYY7p27Wo2WpIUGhqqEydO6LfffjPH/H4/WWOy9gMAAHCnoEcCAABwVKE4NxYfHy9J8vPzc1ju5+dnvhYfH6+aNWs6FlGhgqpWreowpkGDBtm2kfValSpVFB8fn+d+cpKamqrU1FTzeUpKSkEODwAAoFDokQAAAByVq7vszZ49Wz4+PuYjICDA2SUBAAA4HT0SAACwWrEGUv7+/pKkhIQEh+UJCQnma/7+/kpMTHR4/caNG/r1118dxuS0jd/vI7cxWa/nZMqUKUpOTjYf586dK+ghAgAAFBg9EgAAgKNiDaQaNGggf39/RUVFmctSUlK0Z88eBQcHS5KCg4OVlJSkmJgYc8z27duVmZmpTp06mWO+/vprpaenm2O2bt2qZs2aqUqVKuaY3+8na0zWfnLi4eEhu93u8AAAAChp9EgAAACOChxIXb58WbGxsYqNjZV08yKdsbGxOnv2rGw2m8aNG6dZs2Zp/fr1OnTokIYNG6batWubd5m5++671adPH40aNUp79+7Vt99+q9GjR2vo0KGqXbu2JOlPf/qT3N3dNWLECB05ckQrV67UW2+9pQkTJph1jB07VpGRkfrHP/6h48ePa/r06dq/f79Gjx5d9FkBAAAoIHokAACA/CvwRc3379+vHj16mM+zGqDw8HAtXbpUL774oq5cuaKnnnpKSUlJuu+++xQZGSlPT09zneXLl2v06NHq1auXXFxcNGjQIC1YsMB83cfHR1999ZUiIiLUrl07Va9eXVOnTtVTTz1ljunSpYs+/fRTvfzyy/rrX/+qJk2aaN26dWrZsmWhJgIAAKAo6JEAAADyz2YYhuHsIpwlJSVFPj4+Sk5OLpFT00+ueEmS5NK4rrmsUfuni30/AAAg/0r6739ZQI8EAED5Y3WPVK7usgcAAAAAAADnI5ACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWKvWB1KJFi1S/fn15enqqU6dO2rt3r7NLyibzh7POLgEAAJQz9EgAAOBOVqoDqZUrV2rChAmaNm2aDhw4oKCgIIWGhioxMdHZpQEAADgNPRIAALjTlepAav78+Ro1apSGDx+uwMBALV68WJUqVdJHH33k7NIAAACchh4JAADc6So4u4DCSktLU0xMjKZMmWIuc3FxUUhIiKKjo51YWc6yTkk/pfccljdq/7QzygEAAGUUPRIAACgNSm0gdfHiRWVkZMjPz89huZ+fn44fP57jOqmpqUpNTTWfJycnS5JSUlJKpMbLV1OzL/z+pMPT775/IdsQW8M6hdpfw7ZPFmo9AADKk6y/+4ZhOLmSkkGPlB09EgAAt2d1j1RqA6nCmD17tmbMmJFteUBAgBOqKQnjnV0AAAClxqVLl+Tj4+PsMu4I9EgAACCLVT1SqQ2kqlevLldXVyUkJDgsT0hIkL+/f47rTJkyRRMmTDCfZ2Zm6tdff1W1atVks9mKtb6UlBQFBATo3LlzstvtxbrtsoD5yRvzkzfmJ3fMTd6Yn7yVl/kxDEOXLl1S7dq1nV1KiaBHKt2Yn7wxP3ljfvLG/OSOuclbeZkfq3ukUhtIubu7q127doqKitKAAQMk3WyeoqKiNHr06BzX8fDwkIeHh8MyX1/fEq3TbreX6TdsUTE/eWN+8sb85I65yRvzk7fyMD9l+cwoeqSygfnJG/OTN+Ynb8xP7pibvJWH+bGyRyq1gZQkTZgwQeHh4Wrfvr06duyoN998U1euXNHw4cOdXRoAAIDT0CMBAIA7XakOpIYMGaILFy5o6tSpio+PV+vWrRUZGZntIp4AAADlCT0SAAC405XqQEqSRo8enevp587k4eGhadOmZTv9HTcxP3ljfvLG/OSOuckb85M35qdsoUcqnZifvDE/eWN+8sb85I65yRvzUzJsRlm95zEAAAAAAADuSC7OLgAAAAAAAADlC4EUAAAAAAAALEUgBQAAAAAAAEsRSBXBokWLVL9+fXl6eqpTp07au3dvnuNXr16t5s2by9PTU61atdKmTZssqtQ5CjI/S5culc1mc3h4enpaWK11vv76a/Xr10+1a9eWzWbTunXrbrvOzp071bZtW3l4eKhx48ZaunRpidfpLAWdn507d2Z779hsNsXHx1tTsMVmz56tDh06yNvbWzVr1tSAAQN04sSJ265XHn7/FGZuytPvnnfffVf33HOP7Ha77Ha7goODtXnz5jzXKQ/vG5QMeqS80SPljB4pb/RIeaNHyh09Ut7okZyHQKqQVq5cqQkTJmjatGk6cOCAgoKCFBoaqsTExBzH7969W48++qhGjBih7777TgMGDNCAAQN0+PBhiyu3RkHnR5LsdrvOnz9vPs6cOWNhxda5cuWKgoKCtGjRonyNP336tMLCwtSjRw/FxsZq3LhxGjlypLZs2VLClTpHQecny4kTJxzePzVr1iyhCp1r165dioiI0H/+8x9t3bpV6enp6t27t65cuZLrOuXl909h5kYqP7976tSpozlz5igmJkb79+9Xz5491b9/fx05ciTH8eXlfYPiR4+UN3qk3NEj5Y0eKW/0SLmjR8obPZITGSiUjh07GhEREebzjIwMo3bt2sbs2bNzHP/II48YYWFhDss6depkPP300yVap7MUdH6WLFli+Pj4WFTdnUOSsXbt2jzHvPjii0aLFi0clg0ZMsQIDQ0twcruDPmZnx07dhiSjN9++82Smu40iYmJhiRj165duY4pb79/suRnbsrr754sVapUMT788MMcXyuv7xsUHT1S3uiR8oceKW/0SLdHj5Q7eqTbo0eyBmdIFUJaWppiYmIUEhJiLnNxcVFISIiio6NzXCc6OtphvCSFhobmOr40K8z8SNLly5dVr149BQQE5JlIlzfl6b1TFK1bt1atWrV0//3369tvv3V2OZZJTk6WJFWtWjXXMeX1PZSfuZHK5++ejIwMrVixQleuXFFwcHCOY8rr+wZFQ4+UN3qk4lWe3jtFQY9Ej3QreqTc0SNZi0CqEC5evKiMjAz5+fk5LPfz88v1O9nx8fEFGl+aFWZ+mjVrpo8++khffPGFPvnkE2VmZqpLly76+eefrSj5jpbbeyclJUXXrl1zUlV3jlq1amnx4sX67LPP9NlnnykgIEDdu3fXgQMHnF1aicvMzNS4ceN07733qmXLlrmOK0+/f7Lkd27K2++eQ4cOycvLSx4eHnrmmWe0du1aBQYG5ji2PL5vUHT0SHmjRype9Eh5o0eiR8oJPVLO6JGco4KzCwAkKTg42CGB7tKli+6++2699957mjlzphMrw52uWbNmatasmfm8S5cuOnXqlN544w19/PHHTqys5EVEROjw4cP65ptvnF3KHSe/c1Pefvc0a9ZMsbGxSk5O1po1axQeHq5du3bl2nABcL7y9nsKxYceiR4pJ/RIOaNHcg7OkCqE6tWry9XVVQkJCQ7LExIS5O/vn+M6/v7+BRpfmhVmfm7l5uamNm3a6IcffiiJEkuV3N47drtdFStWdFJVd7aOHTuW+ffO6NGjtWHDBu3YsUN16tTJc2x5+v0jFWxublXWf/e4u7urcePGateunWbPnq2goCC99dZbOY4tb+8bFA96pLzRIxUveqSCo0dyVJ5+/0j0SHmhR3IOAqlCcHd3V7t27RQVFWUuy8zMVFRUVK7fMw0ODnYYL0lbt27NdXxpVpj5uVVGRoYOHTqkWrVqlVSZpUZ5eu8Ul9jY2DL73jEMQ6NHj9batWu1fft2NWjQ4LbrlJf3UGHm5lbl7XdPZmamUlNTc3ytvLxvULzokfJGj1S8ytN7p7jQIzkqL+8heqSCo0eyiHOvqV56rVixwvDw8DCWLl1qHD161HjqqacMX19fIz4+3jAMw3j88ceNyZMnm+O//fZbo0KFCsa8efOMY8eOGdOmTTPc3NyMQ4cOOesQSlRB52fGjBnGli1bjFOnThkxMTHG0KFDDU9PT+PIkSPOOoQSc+nSJeO7774zvvvuO0OSMX/+fOO7774zzpw5YxiGYUyePNl4/PHHzfE//vijUalSJWPixInGsWPHjEWLFhmurq5GZGSksw6hRBV0ft544w1j3bp1xsmTJ41Dhw4ZY8eONVxcXIxt27Y56xBK1LPPPmv4+PgYO3fuNM6fP28+rl69ao4pr79/CjM35el3z+TJk41du3YZp0+fNr7//ntj8uTJhs1mM7766ivDMMrv+wbFjx4pb/RIuaNHyhs9Ut7okXJHj5Q3eiTnIZAqgrffftuoW7eu4e7ubnTs2NH4z3/+Y77WrVs3Izw83GH8qlWrjKZNmxru7u5GixYtjI0bN1pcsbUKMj/jxo0zx/r5+RkPPvigceDAASdUXfKybsF76yNrPsLDw41u3bplW6d169aGu7u70bBhQ2PJkiWW122Vgs7Pa6+9ZjRq1Mjw9PQ0qlatanTv3t3Yvn27c4q3QE5zI8nhPVFef/8UZm7K0++eJ5980qhXr57h7u5u1KhRw+jVq5fZaBlG+X3foGTQI+WNHiln9Eh5o0fKGz1S7uiR8kaP5Dw2wzCM4j/vCgAAAAAAAMgZ15ACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAB3lK+//lr9+vVT7dq1ZbPZtG7dugJvY8uWLercubO8vb1Vo0YNDRo0SD/99FOx1woAAGCVstYjEUgBAIA7ypUrVxQUFKRFixYVav3Tp0+rf//+6tmzp2JjY7VlyxZdvHhRAwcOLOZKAQAArFPWeiSbYRiGU/YMAABwGzabTWvXrtWAAQPMZampqXrppZf0r3/9S0lJSWrZsqVee+01de/eXZK0Zs0aPfroo0pNTZWLy83P3r788kv1799fqampcnNzc8KRAAAAFJ+y0CNxhhQAAChVRo8erejoaK1YsULff/+9Hn74YfXp00cnT56UJLVr104uLi5asmSJMjIylJycrI8//lghISGEUQAAoMwqbT0SZ0gBAIA71q2f/p09e1YNGzbU2bNnVbt2bXNcSEiIOnbsqL///e+SpF27dumRRx7RL7/8ooyMDAUHB2vTpk3y9fV1wlEAAAAUr7LQI3GGFAAAKDUOHTqkjIwMNW3aVF5eXuZj165dOnXqlCQpPj5eo0aNUnh4uPbt26ddu3bJ3d1dgwcPFp/DAQCAsqg09kgVLN8jAABAIV2+fFmurq6KiYmRq6urw2teXl6SpEWLFsnHx0dz5841X/vkk08UEBCgPXv2qHPnzpbWDAAAUNJKY49EIAUAAEqNNm3aKCMjQ4mJifrDH/6Q45irV6+aF+rMktWYZWZmlniNAAAAViuNPRJf2QMAAHeUy5cvKzY2VrGxsZJu3qI4NjZWZ8+eVdOmTfXYY49p2LBh+vzzz3X69Gnt3btXs2fP1saNGyVJYWFh2rdvn1555RWdPHlSBw4c0PDhw1WvXj21adPGiUcGAABQeGWtR+Ki5gAA4I6yc+dO9ejRI9vy8PBwLV26VOnp6Zo1a5b++c9/6n//+5+qV6+uzp07a8aMGWrVqpUkacWKFZo7d67++9//qlKlSgoODtZrr72m5s2bW304AAAAxaKs9UgEUgAAAAAAALAUX9kDAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikABTJ9OnTZbPZnF1GsVi6dKlsNpt++uknZ5dS7jz33HO6//77bztu586dstls2rlzp8Pyjz/+WM2bN5ebm5t8fX0LtO+jR4+qQoUKOnz4cIHWAwAgL/RIKA70SCjLCKQAOM3u3bs1ffp0JSUlObuUXL3zzjtaunRpie7DZrPJZrNp5MiROb7+0ksvmWMuXrxYorU4w+nTp/Xhhx/qr3/9a6HWP378uJ544gk1atRIH3zwgd5//31J0t69e/Xcc8+pXbt2cnNzy/V/CgIDAxUWFqapU6cW+hgAAChO9Eg30SMVf4+UmZmppUuX6o9//KMCAgJUuXJltWzZUrNmzdL169cd1qdHQkmzGYZhOLsIAKXXjRs3dOPGDXl6ehZ43Xnz5mnixIk6ffq06tevX/zFFVBGRobS09Pl4eFhhhctW7ZU9erVs33aVJxsNps8PT3l6emphIQEubu7O7zesGFDnT9/XtevX9eFCxdUvXr1EqvFGcaNG6fNmzfrxIkTtx27c+dO9ejRQzt27FD37t0lSYsXL9azzz6rkydPqnHjxubY6dOn6+9//7vuueceXbp0Sf/973+V25+8zZs368EHH9QPP/ygRo0aFctxAQDKN3qkoqNHKv4e6fLly/L29lbnzp3Vt29f1axZU9HR0Vq2bJm6du2q7du3O3yIR4+EksQZUkAeMjMzs31S4GxXrlwp8X0YhqFr167la2yFChUK1WjdiVxdXeXp6emU0+v79OmjlJQUbd682WH57t27dfr0aYWFhVlekxXS09O1fPlyPfLII4XeRmJioiRlOw392WefVXJysvbv33/bU91DQkJUpUoVLVu2rNB1AEB5Qo90e/RIxYMeqXh7JHd3d3377beKjo7WSy+9pFGjRumjjz7StGnTtHPnTkVFRTlsgx4JJYlACmVe1vf3jx8/rkceeUR2u13VqlXT2LFjszVSNptNo0eP1vLly9WiRQt5eHgoMjJSkvS///1PTz75pPz8/OTh4aEWLVroo48+yra/69eva/r06WratKk8PT1Vq1YtDRw4UKdOnZKU+/e7f/rpJ9lsNodTn5944gl5eXnp1KlTevDBB+Xt7a3HHntMknTy5EkNGjRI/v7+8vT0VJ06dTR06FAlJyeb69+4cUMzZ85Uo0aN5OHhofr16+uvf/2rUlNTHfZdv3599e3bV1u2bFH79u1VsWJFvffeewWa35zmcd26dWrZsqU5X1lzmbXexIkTJUkNGjQwT7f+/bUJPvnkE7Vr104VK1ZU1apVNXToUJ07d85hX927d1fLli119OhR9ejRQ5UqVdJdd92luXPnZqv17bffVosWLVSpUiVVqVJF7du316effmq+fuv1EerXr68jR45o165dZn3du3fXjz/+KJvNpjfeeCPbPnbv3i2bzaZ//etf+Zq/LHfddZe6du3qUI8kLV++XK1atVLLli0LtD3pZiMzY8YMNWnSRJ6enqpWrZruu+8+bd261RzTvXt381O033viiSccPpHNen/OmzdPixYtUsOGDVWpUiX17t1b586dk2EYmjlzpurUqaOKFSuqf//++vXXX29b4zfffKOLFy8qJCQk22s///yzBgwYoMqVK6tmzZoaP358ju/dadOmSZJq1Kghm82m6dOnS5L8/PxUsWLFfMyU5Obmpu7du+uLL77I13gAKAvokeiRstAjlZ8eyd3dXV26dMm2zYceekiSdOzYMYfl9EgoSRWcXQBglUceeUT169fX7Nmz9Z///EcLFizQb7/9pn/+858O47Zv365Vq1Zp9OjRql69uurXr6+EhAR17tzZbCJq1KihzZs3a8SIEUpJSdG4ceMk3TyduW/fvoqKitLQoUM1duxYXbp0SVu3btXhw4cLdZrrjRs3FBoaqvvuu0/z5s1TpUqVlJaWptDQUKWmpmrMmDHy9/fX//73P23YsEFJSUny8fGRJI0cOVLLli3T4MGD9Ze//EV79uzR7NmzdezYMa1du9ZhPydOnNCjjz6qp59+WqNGjVKzZs0KN9H/3zfffKPPP/9czz33nLy9vbVgwQINGjRIZ8+eVbVq1TRw4ED997//1b/+9S+98cYb5inWNWrUkCS9+uqr+tvf/qZHHnlEI0eO1IULF/T222+ra9eu+u677xw+6fntt9/Up08fDRw4UI888ojWrFmjSZMmqVWrVnrggQckSR988IGef/55DR482Gy0v//+e+3Zs0d/+tOfcjyGN998U2PGjJGXl5deeuklSTdDjoYNG+ree+/V8uXLNX78eId1li9fLm9vb/Xv37/Ac/anP/1JY8eO1eXLl+Xl5aUbN25o9erVmjBhQqE+hZ4+fbpmz56tkSNHqmPHjkpJSdH+/ft14MCBfF0cMyfLly9XWlqaxowZo19//VVz587VI488op49e2rnzp2aNGmSfvjhB7399tt64YUXcvwfkt/Lak7btGnjsPzatWvq1auXzp49q+eff161a9fWxx9/rO3btzuMe/PNN/XPf/5Ta9eu1bvvvisvLy/dc889hTq2du3a6YsvvlBKSorsdnuhtgEApRE9Ej0SPRI9Unx8vCTl+LVHeiSUGAMo46ZNm2ZIMv74xz86LH/uuecMScbBgwfNZZIMFxcX48iRIw5jR4wYYdSqVcu4ePGiw/KhQ4caPj4+xtWrVw3DMIyPPvrIkGTMnz8/Wx2ZmZmGYRjGjh07DEnGjh07HF4/ffq0IclYsmSJuSw8PNyQZEyePNlh7HfffWdIMlavXp3rccfGxhqSjJEjRzosf+GFFwxJxvbt281l9erVMyQZkZGRuW4vN1nz+3uSDHd3d+OHH34wlx08eNCQZLz99tvmstdff92QZJw+fdph/Z9++slwdXU1Xn31VYflhw4dMipUqOCwvFu3boYk45///Ke5LDU11fD39zcGDRpkLuvfv7/RokWLPI9lyZIl2epp0aKF0a1bt2xj33vvPUOScezYMXNZWlqaUb16dSM8PDzP/dxKkhEREWH8+uuvhru7u/Hxxx8bhmEYGzduNGw2m/HTTz+Z83zhwoV8bzcoKMgICwvLc0y3bt1yPL7w8HCjXr165vOs92eNGjWMpKQkc/mUKVMMSUZQUJCRnp5uLn/00UcNd3d34/r163nu/89//rNRrVq1bMvffPNNQ5KxatUqc9mVK1eMxo0bZ/vvJz9zExERke19eqtPP/3UkGTs2bMnz3EAUFbQI9EjGQY9Um7KS4+UJSQkxLDb7cZvv/2W7TV6JJQUvrKHciMiIsLh+ZgxYyRJmzZtcljerVs3BQYGms8Nw9Bnn32mfv36yTAMXbx40XyEhoYqOTlZBw4ckCR99tlnql69urnt3yvKd+6fffZZh+dZn+5t2bJFV69ezXGdrOOaMGGCw/K//OUvkqSNGzc6LG/QoIFCQ0MLXeOtQkJCHD7tvOeee2S32/Xjjz/edt3PP/9cmZmZeuSRRxzm29/fX02aNNGOHTscxnt5eenPf/6z+dzd3V0dO3Z02Jevr69+/vln7du3rxiO7uanyZ6enlq+fLm5bMuWLbp48aJDLQVRpUoV9enTxzyV/dNPP1WXLl1Ur169Qm3P19dXR44c0cmTJwu1fk4efvhh8/0nSZ06dZIk/fnPf1aFChUclqelpel///tfntv75ZdfVKVKlWzLN23apFq1amnw4MHmskqVKumpp54q6iHkKquOsniXHgDICz3STfRI9EhFUZp7pL///e/atm2b5syZk+2anBI9EkoOgRTKjSZNmjg8b9SokVxcXBy+jy/dbDp+78KFC0pKStL777+vGjVqODyGDx8u6f8uGHjq1Ck1a9bM4Y9OUVWoUEF16tTJVuOECRP04Ycfqnr16goNDdWiRYscro1w5swZubi4ONx1TJL8/f3l6+urM2fO5HncRVW3bt1sy6pUqaLffvvttuuePHlShmGoSZMm2eb82LFj5nxnqVOnTrZm9tZ9TZo0SV5eXurYsaOaNGmiiIgIffvtt4U8upuNTL9+/RyuZ7B8+XLddddd6tmzZ6G3+6c//Ulbt27V2bNntW7dulxPlc+PV155RUlJSWratKlatWqliRMn6vvvvy/09qTsP9esxisgICDH5fn5eRs53PnuzJkzaty4cbafa1G/JpGfOpxxwVYAcCZ6pJvokeiRiqK09kgrV67Uyy+/rBEjRmQLeG+tgx4JxY1rSKHcyu0X6q0XQc7MzJR089ON8PDwHNcpyDVrcttvRkZGjss9PDzk4pI9O/7HP/6hJ554Ql988YW++uorPf/88+a1H37fnOX3D0d+L/6cX66urjkuz+kP660yMzNls9m0efPmHLfj5eVV4H3dfffdOnHihDZs2KDIyEh99tlneueddzR16lTNmDHjtjXlZNiwYVq9erV2796tVq1aaf369Xruuedy/Hnl1x//+Ed5eHgoPDxcqampRbqzSteuXXXq1CnzPfLhhx/qjTfe0OLFizVy5EhJN98fOf1Mcns/5jbXhf15V6tWLV8NmRWy6ihrt4wGgIKiR3JEj1Rw9Ei3X34n9Ehbt27VsGHDFBYWpsWLF+c6jh4JJYVACuXGyZMnHT7h+uGHH5SZmelwl4yc1KhRQ97e3srIyMjxLhe/16hRI+3Zs0fp6elyc3PLcUzWKa9JSUkOy2/9NC4/WrVqpVatWunll1/W7t27de+992rx4sWaNWuW6tWrp8zMTJ08eVJ33323uU5CQoKSkpIKfYpzccqtEWzUqJEMw1CDBg3UtGnTYttf5cqVNWTIEA0ZMkRpaWkaOHCgXn31VU2ZMiXX2zLn1az26dNHNWrU0PLly9WpUyddvXpVjz/+eJFqrFixogYMGKBPPvlEDzzwQJH/8FetWlXDhw/X8OHDdfnyZXXt2lXTp083m60qVark+BWBwrwfC6N58+Zavny5kpOTHU5zr1evng4fPizDMBx+BidOnCixWk6fPi0XF5difc8BQGlAj3QTPRI9Unnqkfbs2aOHHnpI7du316pVq/I8e5EeCSWFr+yh3Fi0aJHD87fffluSzDuM5MbV1VWDBg3SZ599psOHD2d7/cKFC+a/Bw0apIsXL2rhwoXZxmV9ClKvXj25urrq66+/dnj9nXfeyd+BSEpJSdGNGzcclrVq1UouLi7mLV8ffPBBSTfvsPF78+fPlySFhYXle38lpXLlypKyN54DBw6Uq6urZsyYke3TI8Mw9MsvvxR4X7eu4+7ursDAQBmGofT09DxrvLW+LBUqVNCjjz6qVatWaenSpWrVqlWh7/D2ey+88IKmTZumv/3tb0Xazq3H7OXlpcaNGzvcFrhRo0Y6fvy4w/v44MGDRTpVvyCCg4NlGIZiYmIclj/44IOKi4vTmjVrzGVXr17V+++/X2K1xMTEqEWLFg5NHwCUB/RIN9Ej3USPdFNZ7pGOHTumsLAw1a9fXxs2bLjtWYD0SCgpnCGFcuP06dP64x//qD59+ig6OlqffPKJ/vSnPykoKOi2686ZM0c7duxQp06dNGrUKAUGBurXX3/VgQMHtG3bNv3666+Sbp6e/M9//lMTJkzQ3r179Yc//EFXrlzRtm3b9Nxzz6l///7y8fHRww8/rLfffls2m02NGjXShg0bsn3nPy/bt2/X6NGj9fDDD6tp06a6ceOGPv74Y7MxlKSgoCCFh4fr/fffV1JSkrp166a9e/dq2bJlGjBggHr06FG4iSxG7dq1kyS99NJLGjp0qNzc3NSvXz81atRIs2bN0pQpU/TTTz9pwIAB8vb21unTp7V27Vo99dRTeuGFFwq0r969e8vf31/33nuv/Pz8dOzYMS1cuFBhYWHy9vbOs8Z3331Xs2bNUuPGjVWzZk2H6x8MGzZMCxYs0I4dO/Taa68VbiJuERQUlK/35e0EBgaqe/fuateunapWrar9+/drzZo1Gj16tDnmySef1Pz58xUaGqoRI0YoMTFRixcvVosWLZSSklLkGm7nvvvuU7Vq1bRt2zaHeR01apQWLlyoYcOGKSYmRrVq1dLHH3+sSpUq5XvbZ86c0ccffyxJ2r9/vyRp1qxZkm7+T8/vP6lNT0/Xrl279NxzzxXHYQFAqUKPRI9Ej1R+eqRLly4pNDRUv/32myZOnJjtIv6NGjVScHCw+ZweCSWq5G/kBzhX1u1Ojx49agwePNjw9vY2qlSpYowePdq4du2aw1j9/1vL5iQhIcGIiIgwAgICDDc3N8Pf39/o1auX8f777zuMu3r1qvHSSy8ZDRo0MMcNHjzYOHXqlDnmwoULxqBBg4xKlSoZVapUMZ5++mnj8OHDOd7SuHLlytlq+fHHH40nn3zSaNSokeHp6WlUrVrV6NGjh7Ft2zaHcenp6caMGTPMWgICAowpU6Zku81svXr1bnvr29zkdkvjnOaxXr162W73O3PmTOOuu+4yXFxcst1O+LPPPjPuu+8+o3LlykblypWN5s2bGxEREcaJEyfMMd26dcvxVsW33pL3vffeM7p27WpUq1bN8PDwMBo1amRMnDjRSE5ONsfkdEvj+Ph4IywszPD29jYk5Xj73xYtWhguLi7Gzz//nMss5S2v912WwtzSeNasWUbHjh0NX19fo2LFikbz5s2NV1991UhLS3MY98knnxgNGzY03N3djdatWxtbtmzJ9ZbGr7/+usO6WbfovvX22llzuW/fvtvW+fzzzxuNGzfOtvzMmTPGH//4R6NSpUpG9erVjbFjxxqRkZH5vqVxVm05PW79OW7evNmQZJw8efK29QJAWUGPRI9kGPRI5a1Hyqo3t8et70N6JJQkm2Hk4+p5QCk2ffp0zZgxQxcuXOBCfCgRbdq0UdWqVRUVFeXsUkqlH3/8Uc2bN9fmzZvVq1cvp9QwYMAA2Ww2rV271in7BwBnoEdCSaNHKhp6JJR1fGUPAIpg//79io2N1dKlS51dSqnVsGFDjRgxQnPmzHFKs3Xs2DFt2LBBsbGxlu8bAICyih6p6OiRUNYRSAHIUXJysq5du5bnGH9/f4uqufMcPnxYMTEx+sc//qFatWppyJAhDq9nZGQ4XAQzJ15eXtluz5wf165dU3Jycp5jqlatKnd39wJv21neffddp+377rvvznYBXAAAckOPlDd6pOJFj4SyjEAKQI7Gjh2rZcuW5TmmPH/jd82aNXrllVfUrFkz/etf/8p2S+Rz58453EI7J9OmTdP06dMLvO+VK1dq+PDheY7ZsWOHunfvXuBtAwCAvNEj5Y0eCUB+cQ0pADk6evSo4uLi8hwTEhJiUTWlz/Xr1/XNN9/kOaZhw4Zq2LBhgbd9/vx5HTlyJM8x7dq1U5UqVQq8bQAAkDd6pKKhRwKQhUAKAAAAAAAAlnJxdgEAAAAAAAAoX8r1NaQyMzMVFxcnb29v2Ww2Z5cDAAAsYBiGLl26pNq1a8vFhc/mckKPBABA+WN1j1SuA6m4uDgFBAQ4uwwAAOAE586dU506dZxdxh2JHgkAgPLLqh6pXAdS3t7ekm5Ott1ud3I1AADACikpKQoICDD7AGRHjwQAQPljdY9UrgOprFPQ7XY7zRYAAOUMX0XLHT0SAADll1U9EhdOAAAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYqlxfQwoAgLxkZGQoPT3d2WWggNzc3OTq6ursMgAAKLPokUqnO61HIpACAOAWhmEoPj5eSUlJzi4FheTr6yt/f38uXA4AQDGiRyr97qQeiUAKAIBbZDVaNWvWVKVKle6IP9jIH8MwdPXqVSUmJkqSatWq5eSKAAAoO+iRSq87sUcikAIA4HcyMjLMRqtatWrOLgeFULFiRUlSYmKiataseUedmg4AQGlFj1T63Wk9Ehc1BwDgd7Kuh1CpUiUnV4KiyPr5cX0LAACKBz1S2XAn9UgEUgAA5IBT0Es3fn4AAJQM/saWbnfSz49ACgAAAAAAAJYikAIAoJSz2Wx5PqZPn+7U2tatW1ekbbz//vvq3r277Ha7bDYbd/YBAAD5Vpb7pF9//VVjxoxRs2bNVLFiRdWtW1fPP/+8kpOTi6/IEsRFzQEAyKf0yG8s25dbn/vyPfb8+fPmv1euXKmpU6fqxIkT5jIvL68C7TstLU3u7u4FWqckXb16VX369FGfPn00ZcoUZ5cDAABuYWWPJNEnZYmLi1NcXJzmzZunwMBAnTlzRs8884zi4uK0Zs0aZ5d3W5whVYLSI7/J9gAAoLj5+/ubDx8fH9lsNvP5lStX9Nhjj8nPz09eXl7q0KGDtm3b5rB+/fr1NXPmTA0bNkx2u11PPfWUJOmDDz5QQECAKlWqpIceekjz58+Xr6+vw7pffPGF2rZtK09PTzVs2FAzZszQjRs3zO1K0kMPPSSbzWY+P3jwoHr06CFvb2/Z7Xa1a9dO+/fvz/X4xo0bp8mTJ6tz587FM2FwOnokAIBVynKf1LJlS3322Wfq16+fGjVqpJ49e+rVV1/Vl19+ae7nTkYgBQBAGXb58mU9+OCDioqK0nfffac+ffqoX79+Onv2rMO4efPmKSgoSN99953+9re/6dtvv9UzzzyjsWPHKjY2Vvfff79effVVh3X+/e9/a9iwYRo7dqyOHj2q9957T0uXLjXH7du3T5K0ZMkSnT9/3nz+2GOPqU6dOtq3b59iYmI0efJkubm5WTAbAAAA/6cs9knJycmy2+2qUOHO/0LcnV8hAAAotKCgIAUFBZnPZ86cqbVr12r9+vUaPXq0ubxnz576y1/+Yj5/6aWX9MADD+iFF16QJDVt2lS7d+/Whg0bzDEzZszQ5MmTFR4eLklq2LChZs6cqRdffFHTpk1TjRo1JEm+vr7y9/c31zt79qwmTpyo5s2bS5KaNGlSAkcOAACQt7LWJ128eFEzZ840z+K603GGFAAAZdjly5f1wgsv6O6775avr6+8vLx07NixbJ/8tW/f3uH5iRMn1LFjR4dltz4/ePCgXnnlFXl5eZmPUaNG6fz587p69WquNU2YMEEjR45USEiI5syZo1OnThXxKAEAAAquLPVJKSkpCgsLU2BgoFMv1F4QBFIAAJRhL7zwgtauXau///3v+ve//63Y2Fi1atVKaWlpDuMqV65c4G1fvnxZM2bMUGxsrPk4dOiQTp48KU9Pz1zXmz59uo4cOaKwsDBt375dgYGBWrt2bYH3DwAAUBRlpU+6dOmS+vTpI29vb61du7bUXAqBr+wBAFCGffvtt3riiSf00EMPSbrZHP3000+3Xa9Zs2bmtQyy3Pq8bdu2OnHihBo3bpzrdtzc3JSRkZFtedOmTdW0aVONHz9ejz76qJYsWWLWCAAAYIWy0CelpKQoNDRUHh4eWr9+fZ5h152GQAoAgDKsSZMm+vzzz9WvXz/ZbDb97W9/U2Zm5m3XGzNmjLp27ar58+erX79+2r59uzZv3iybzWaOmTp1qvr27au6detq8ODBcnFx0cGDB3X48GHNmjVL0s07yERFRenee++Vh4eHPD09NXHiRA0ePFgNGjTQzz//rH379mnQoEG51hIfH6/4+Hj98MMPkqRDhw7J29tbdevWVdWqVYs4QwAAoLwq7X1SSkqKevfuratXr+qTTz5RSkqKUlJSJEk1atSQq6trMcxSyeErewAAlGHz589XlSpV1KVLF/Xr10+hoaFq27btbde79957tXjxYs2fP19BQUGKjIzU+PHjHT51Cw0N1YYNG/TVV1+pQ4cO6ty5s9544w3Vq1fPHPOPf/xDW7duVUBAgNq0aSNXV1f98ssvGjZsmJo2bapHHnlEDzzwgGbMmJFrLYsXL1abNm00atQoSVLXrl3Vpk0brV+/vggzAwAAyrvS3icdOHBAe/bs0aFDh9S4cWPVqlXLfJw7d67oE1TCbIZhGM4uwllSUlLk4+Nj3haxuKVHfpNtmVuf+4p9PwCA4nP9+nWdPn1aDRo0KFWnPFth1KhROn78uP797387u5TbyuvnWNJ//8sCeiQAwK3okfJWWvqkO6lH4it7AAAgR/PmzdP999+vypUra/PmzVq2bJneeecdZ5cFAADgdPRJRUcgBQAAcrR3717NnTtXly5dUsOGDbVgwQKNHDnS2WUBAAA4HX1S0RFIAQCAHK1atcrZJQAAANyR6JOKjouaAwAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAEAZ8MQTT8hms8lms8nNzU1+fn66//779dFHHykzM9PZ5RXJkSNHNGjQINWvX182m01vvvmms0sCAAClSFnukz744AP94Q9/UJUqVVSlShWFhIRo7969zi4rXyo4uwAAAEqLU/vfs2xfjdo/XeB1+vTpoyVLligjI0MJCQmKjIzU2LFjtWbNGq1fv14VKpTOP/tXr15Vw4YN9fDDD2v8+PHOLgcAANzCyh5Jok/6vZ07d+rRRx9Vly5d5Onpqddee029e/fWkSNHdNdddzm7vDxxhhQAAGWEh4eH/P39ddddd6lt27b661//qi+++EKbN2/W0qVLzXFJSUkaOXKkatSoIbvdrp49e+rgwYMO2/ryyy/VoUMHeXp6qnr16nrooYfM13777TcNGzZMVapUUaVKlfTAAw/o5MmTkqQrV67IbrdrzZo1Dttbt26dKleurEuXLiktLU2jR49WrVq15OnpqXr16mn27Nm5HleHDh30+uuva+jQofLw8CiGmQIAAOVNWe2Tli9frueee06tW7dW8+bN9eGHHyozM1NRUVHFMGsli0AKAIAyrGfPngoKCtLnn39uLnv44YeVmJiozZs3KyYmRm3btlWvXr3066+/SpI2btyohx56SA8++KC+++47RUVFqWPHjub6TzzxhPbv36/169crOjpahmHowQcfVHp6uipXrqyhQ4dqyZIlDnUsWbJEgwcPlre3txYsWKD169dr1apVOnHihJYvX6769etbMh8AAABZymKfdPXqVaWnp6tq1apFmxwLlM5z0gAAQL41b95c33//vSTpm2++0d69e5WYmGiebTRv3jytW7dOa9as0VNPPaVXX31VQ4cO1YwZM8xtBAUFSZJOnjyp9evX69tvv1WXLl0k3fxkLiAgQOvWrdPDDz+skSNHqkuXLjp//rxq1aqlxMREbdq0Sdu2bZMknT17Vk2aNNF9990nm82mevXqWTkdAAAAprLWJ02aNEm1a9dWSEhIkeempHGGFAAAZZxhGLLZbJKkgwcP6vLly6pWrZq8vLzMx+nTp3Xq1ClJUmxsrHr16pXjto4dO6YKFSqoU6dO5rJq1aqpWbNmOnbsmCSpY8eOatGihZYtWyZJ+uSTT1SvXj117dpV0s1PDmNjY9WsWTM9//zz+uqrr0rs2AEAAPJSlvqkOXPmaMWKFVq7dq08PT0LPhkW4wwpAADKuGPHjqlBgwaSpMuXL6tWrVrauXNntnG+vr6SpIoVKxZ5nyNHjtSiRYs0efJkLVmyRMOHDzebvbZt2+r06dPavHmztm3bpkceeUQhISHZrqcAAABQ0spKnzRv3jzNmTNH27Zt0z333FPkGq3AGVIAAJRh27dv16FDhzRo0CBJN5uc+Ph4VahQQY0bN3Z4VK9eXZJ0zz335HohzLvvvls3btzQnj17zGW//PKLTpw4ocDAQHPZn//8Z505c0YLFizQ0aNHFR4e7rAdu92uIUOG6IMPPtDKlSv12WefmddmAAAAsEJZ6ZPmzp2rmTNnKjIyUu3bty/0fFiNM6QAACgjUlNTFR8f73A749mzZ6tv374aNmyYJCkkJETBwcEaMGCA5s6dq6ZNmyouLs68QGf79u01bdo09erVS40aNdLQoUN148YNbdq0SZMmTVKTJk3Uv39/jRo1Su+99568vb01efJk3XXXXerfv79ZS5UqVTRw4EBNnDhRvXv3Vp06dczX5s+fr1q1aqlNmzZycXHR6tWr5e/vb37yeKu0tDQdPXrU/Pf//vc/xcbGysvLS40bNy65CQUAAGVGWe2TXnvtNU2dOlWffvqp6tevr/j4eEkyv254J+MMKQAAyojIyEjVqlVL9evXV58+fbRjxw4tWLBAX3zxhVxdXSVJNptNmzZtUteuXTV8+HA1bdpUQ4cO1ZkzZ+Tn5ydJ6t69u1avXq3169erdevW6tmzp/bu3WvuZ8mSJWrXrp369u2r4OBgGYahTZs2yc3NzaGeESNGKC0tTU8++aTDcm9vb82dO1ft27dXhw4d9NNPP2nTpk1yccm5LYmLi1ObNm3Upk0bnT9/XvPmzVObNm00cuTI4pw+AABQhpXVPundd99VWlqaBg8erFq1apmPefPmFef0lQibYRiGs4twlpSUFPn4+Cg5OVl2u73Yt58e+U22ZW597iv2/QAAis/169d1+vRpNWjQoFRcDPJO9vHHH2v8+PGKi4uTu7u7pfvO6+dY0n//ywJ6JADAreiRipez+qQ7qUcq0hlSc+bMkc1m07hx48xl169fV0REhHlV+kGDBikhIcFhvbNnzyosLEyVKlVSzZo1NXHiRN24ccNhzM6dO9W2bVt5eHiocePGWrp0abb9L1q0SPXr15enp6c6derkkEoCAADnuHr1qk6dOqU5c+bo6aeftjyMuhPQIwEAgJzQJ/2fQgdS+/bt03vvvZft6u3jx4/Xl19+qdWrV2vXrl2Ki4vTwIEDzdczMjIUFhamtLQ07d69W8uWLdPSpUs1depUc8zp06cVFhamHj16KDY2VuPGjdPIkSO1ZcsWc8zKlSs1YcIETZs2TQcOHFBQUJBCQ0OVmJhY2EMCAADFYO7cuWrevLn8/f01ZcoUZ5djOXokAACQm/LeJzkwCuHSpUtGkyZNjK1btxrdunUzxo4daxiGYSQlJRlubm7G6tWrzbHHjh0zJBnR0dGGYRjGpk2bDBcXFyM+Pt4c8+677xp2u91ITU01DMMwXnzxRaNFixYO+xwyZIgRGhpqPu/YsaMRERFhPs/IyDBq165tzJ49O9/HkZycbEgykpOT83/wBZC2+d/ZHgCAO9u1a9eMo0ePGteuXXN2KSiCvH6OJfn3nx4pf+iRAKD0oUcqG5zVI+WkUGdIRUREKCwsTCEhIQ7LY2JilJ6e7rC8efPmqlu3rqKjoyVJ0dHRatWqlXlBMEkKDQ1VSkqKjhw5Yo65dduhoaHmNtLS0hQTE+MwxsXFRSEhIeaYnKSmpiolJcXhAQAAUFzokQAAAPKnQkFXWLFihQ4cOKB9+/Zley0+Pl7u7u7Zbkfo5+dn3nowPj7eodHKej3rtbzGpKSk6Nq1a/rtt9+UkZGR45jjx4/nWvvs2bM1Y8aM/B0oAABAAdAjAQAA5F+BzpA6d+6cxo4dq+XLl5fKq+pPmTJFycnJ5uPcuXPOLgkAcIcyyu9NaMsEq39+9EgAgPKCHql0u5N+fgUKpGJiYpSYmKi2bduqQoUKqlChgnbt2qUFCxaoQoUK8vPzU1pampKSkhzWS0hIkL+/vyTJ398/2x1lsp7fbozdblfFihVVvXp1ubq65jgmaxs58fDwkN1ud3gAAPB7bm5ukm7eAQWlV9bPL+vnWdLokQAAZR09UtlgdY+UlwJ9Za9Xr146dOiQw7Lhw4erefPmmjRpkgICAuTm5qaoqCgNGjRIknTixAmdPXtWwcHBkqTg4GC9+uqrSkxMVM2aNSVJW7duld1uV2BgoDlm06ZNDvvZunWruQ13d3e1a9dOUVFRGjBggCQpMzNTUVFRGj16dAGnAACA/+Pq6ipfX1/zjmSVKlWSzWZzclXIL8MwdPXqVSUmJsrX11eurq6W7JceCQBQ1tEjlW7O6pHyUqBAytvbWy1btnRYVrlyZVWrVs1cPmLECE2YMEFVq1aV3W7XmDFjFBwcrM6dO0uSevfurcDAQD3++OOaO3eu4uPj9fLLLysiIkIeHh6SpGeeeUYLFy7Uiy++qCeffFLbt2/XqlWrtHHjRnO/EyZMUHh4uNq3b6+OHTvqzTff1JUrVzR8+PAiTQgAAFlnkmQ1XCh9fH198zwjqLjRIwEAygN6pNLP6h4pLwW+qPntvPHGG3JxcdGgQYOUmpqq0NBQvfPOO+brrq6u2rBhg5599lkFBwercuXKCg8P1yuvvGKOadCggTZu3Kjx48frrbfeUp06dfThhx8qNDTUHDNkyBBduHBBU6dOVXx8vFq3bq3IyMhsF/EEAKCgbDabatWqpZo1ayo9Pd3Z5aCA3Nzc7ohP/W5FjwQAKO3okUq3O61Hshl30hWtLJaSkiIfHx8lJyeXyLUS0iO/ybbMrc99xb4fAACQfyX9978soEcCAKD8sbpHKtBFzQEAAAAAAICiIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAACApX5K2uzsEgAAgJMRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALFWgQOrdd9/VPffcI7vdLrvdruDgYG3evNl8/fr164qIiFC1atXk5eWlQYMGKSEhwWEbZ8+eVVhYmCpVqqSaNWtq4sSJunHjhsOYnTt3qm3btvLw8FDjxo21dOnSbLUsWrRI9evXl6enpzp16qS9e/cW5FAAAACKDT0SAABAwRQokKpTp47mzJmjmJgY7d+/Xz179lT//v115MgRSdL48eP15ZdfavXq1dq1a5fi4uI0cOBAc/2MjAyFhYUpLS1Nu3fv1rJly7R06VJNnTrVHHP69GmFhYWpR48eio2N1bhx4zRy5Eht2bLFHLNy5UpNmDBB06ZN04EDBxQUFKTQ0FAlJiYWdT4AAAAKjB4JAACgYGyGYRhF2UDVqlX1+uuva/DgwapRo4Y+/fRTDR48WJJ0/Phx3X333YqOjlbnzp21efNm9e3bV3FxcfLz85MkLV68WJMmTdKFCxfk7u6uSZMmaePGjTp8+LC5j6FDhyopKUmRkZGSpE6dOqlDhw5auHChJCkzM1MBAQEaM2aMJk+enO/aU1JS5OPjo+TkZNnt9qJMQ47SI7/Jtsytz33Fvh8AAJB/Jf33Pws9Uu5OrnhJ9X0fcFhGjwQAgHNZ1SNlKfQ1pDIyMrRixQpduXJFwcHBiomJUXp6ukJCQswxzZs3V926dRUdHS1Jio6OVqtWrcxGS5JCQ0OVkpJifoIYHR3tsI2sMVnbSEtLU0xMjMMYFxcXhYSEmGNyk5qaqpSUFIcHAABAcaJHAgAAuL0CB1KHDh2Sl5eXPDw89Mwzz2jt2rUKDAxUfHy83N3d5evr6zDez89P8fHxkqT4+HiHRivr9azX8hqTkpKia9eu6eLFi8rIyMhxTNY2cjN79mz5+PiYj4CAgIIePgAAQI7okQAAAPKvwIFUs2bNFBsbqz179ujZZ59VeHi4jh49WhK1FbspU6YoOTnZfJw7d87ZJQEAgDKCHgkAACD/KhR0BXd3dzVu3FiS1K5dO+3bt09vvfWWhgwZorS0NCUlJTl8ApiQkCB/f39Jkr+/f7Y7vWTdYeb3Y26960xCQoLsdrsqVqwoV1dXubq65jgmaxu58fDwkIeHR0EPGQAA4LbokQAAAPKv0NeQypKZmanU1FS1a9dObm5uioqKMl87ceKEzp49q+DgYElScHCwDh065HCnl61bt8putyswMNAc8/ttZI3J2oa7u7vatWvnMCYzM1NRUVHmGAAAAGejRwIAAMhdgc6QmjJlih544AHVrVtXly5d0qeffqqdO3dqy5Yt8vHx0YgRIzRhwgRVrVpVdrtdY8aMUXBwsDp37ixJ6t27twIDA/X4449r7ty5io+P18svv6yIiAjzU7lnnnlGCxcu1Isvvqgnn3xS27dv16pVq7Rx40azjgkTJig8PFzt27dXx44d9eabb+rKlSsaPnx4MU4NAABA/tAjAQAAFEyBAqnExEQNGzZM58+fl4+Pj+655x5t2bJF999/vyTpjTfekIuLiwYNGqTU1FSFhobqnXfeMdd3dXXVhg0b9Oyzzyo4OFiVK1dWeHi4XnnlFXNMgwYNtHHjRo0fP15vvfWW6tSpow8//FChoaHmmCFDhujChQuaOnWq4uPj1bp1a0VGRma7iCcAAIAV6JEAAAAKxmYYhuHsIpwlJSVFPj4+Sk5Olt1uL/btp0d+k22ZW5/7in0/AAAg/0r6739ZUNJzdHLFS6rv+4DDMnokAACcy+oeqcjXkAIAAAAAAAAKgkAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGCpAgVSs2fPVocOHeTt7a2aNWtqwIABOnHihMOY69evKyIiQtWqVZOXl5cGDRqkhIQEhzFnz55VWFiYKlWqpJo1a2rixIm6ceOGw5idO3eqbdu28vDwUOPGjbV06dJs9SxatEj169eXp6enOnXqpL179xbkcAAAAIoFPRIAAEDBFCiQ2rVrlyIiIvSf//xHW7duVXp6unr37q0rV66YY8aPH68vv/xSq1ev1q5duxQXF6eBAwear2dkZCgsLExpaWnavXu3li1bpqVLl2rq1KnmmNOnTyssLEw9evRQbGysxo0bp5EjR2rLli3mmJUrV2rChAmaNm2aDhw4oKCgIIWGhioxMbEo8wEAAFBg9EgAAAAFYzMMwyjsyhcuXFDNmjW1a9cude3aVcnJyapRo4Y+/fRTDR48WJJ0/Phx3X333YqOjlbnzp21efNm9e3bV3FxcfLz85MkLV68WJMmTdKFCxfk7u6uSZMmaePGjTp8+LC5r6FDhyopKUmRkZGSpE6dOqlDhw5auHChJCkzM1MBAQEaM2aMJk+enK/6U1JS5OPjo+TkZNnt9sJOQ67SI7/Jtsytz33Fvh8AAJB/Jf33X6JHup2TK15Sfd8HHJbRIwEA4FxW9Ei/V6RrSCUnJ0uSqlatKkmKiYlRenq6QkJCzDHNmzdX3bp1FR0dLUmKjo5Wq1atzEZLkkJDQ5WSkqIjR46YY36/jawxWdtIS0tTTEyMwxgXFxeFhISYYwAAAJyFHgkAACBvFQq7YmZmpsaNG6d7771XLVu2lCTFx8fL3d1dvr6+DmP9/PwUHx9vjvl9o5X1etZreY1JSUnRtWvX9NtvvykjIyPHMcePH8+15tTUVKWmpprPU1JSCnDEAAAAt0ePBAAAcHuFPkMqIiJChw8f1ooVK4qznhI1e/Zs+fj4mI+AgABnlwQAAMoYeiQAAIDbK1QgNXr0aG3YsEE7duxQnTp1zOX+/v5KS0tTUlKSw/iEhAT5+/ubY269o0zW89uNsdvtqlixoqpXry5XV9ccx2RtIydTpkxRcnKy+Th37lzBDhwAACAP9EgAAAD5U6BAyjAMjR49WmvXrtX27dvVoEEDh9fbtWsnN7f/x96dh8d47/8ff00iG9msiV3sjSWKipTaGhJFqWhtp1Kla+Igh5avU0tLqVZLi9L2lNZSpS1tqTgaLW3tNC2KoxqlhywOEqJZJPfvD1fm15Egick9Es/Hdc11dT7zue/7PffMMe/zuu/ct4vi4uKsY0ePHtXJkycVEhIiSQoJCdGBAwds7vSyefNmeXt7KzAw0Drnr+vIm5O3DldXV7Vp08ZmTm5uruLi4qxzCuLm5iZvb2+bBwAAwK2iRwIAACiaIl1DKioqSitXrtTnn38uLy8v6/UMfHx85OHhIR8fH40YMUIxMTGqVKmSvL29NWrUKIWEhKh9+/aSpB49eigwMFCPPvqoZs+ercTERP3zn/9UVFSU3NzcJElPP/205s+fr+eee06PP/64tmzZotWrV2vDhg3WWmJiYhQZGam2bduqXbt2mjt3rtLT0zV8+HB77RsAAIBCoUcCAAAomiIFUm+//bYkqUuXLjbjS5Ys0WOPPSZJeuONN+Tk5KSIiAhlZmYqLCxMCxcutM51dnbW+vXr9cwzzygkJEQVKlRQZGSkXnzxReucgIAAbdiwQWPHjtW8efNUq1YtvffeewoLC7POGThwoFJSUjR58mQlJiaqVatWio2NzXcRTwAAgJJGjwQAAFA0FsMwDEcX4ShpaWny8fFRampqiZyanh37fb4xl/COdt8OAAAovJL+/S8LSnofHVs1SfV8e9qM0SMBAOBYZvdIxb7LHgAAAAAAAFAcBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBURQ6ktm3bpj59+qhGjRqyWCxat26dzeuGYWjy5MmqXr26PDw8FBoaqmPHjtnMOXfunIYOHSpvb2/5+vpqxIgRunTpks2cn3/+Wffdd5/c3d1Vu3ZtzZ49O18ta9asUdOmTeXu7q4WLVroq6++KurbAQAAsAt6JAAAgMIrciCVnp6uoKAgLViwoMDXZ8+erTfffFOLFi3Srl27VKFCBYWFhSkjI8M6Z+jQoTp06JA2b96s9evXa9u2bXryySetr6elpalHjx6qW7eu9u3bp1dffVVTp07VO++8Y52zfft2DR48WCNGjNCPP/6ofv36qV+/fjp48GBR3xIAAMAto0cCAAAoPIthGEaxF7ZYtHbtWvXr10/S1SN/NWrU0D/+8Q+NGzdOkpSamio/Pz8tXbpUgwYN0uHDhxUYGKg9e/aobdu2kqTY2Fg98MAD+uOPP1SjRg29/fbbmjRpkhITE+Xq6ipJmjBhgtatW6cjR45IkgYOHKj09HStX7/eWk/79u3VqlUrLVq0qFD1p6WlycfHR6mpqfL29i7ubriu7Njv8425hHe0+3YAAEDhlfTvv0SPdDPHVk1SPd+eNmP0SAAAOJYZPdJf2fUaUgkJCUpMTFRoaKh1zMfHR8HBwdqxY4ckaceOHfL19bU2WpIUGhoqJycn7dq1yzqnU6dO1kZLksLCwnT06FGdP3/eOuev28mbk7cdAACA2wU9EgAAgK1y9lxZYmKiJMnPz89m3M/Pz/paYmKiqlWrZltEuXKqVKmSzZyAgIB868h7rWLFikpMTLzhdgqSmZmpzMxM6/O0tLSivD0AAIBioUcCAACwdUfdZW/mzJny8fGxPmrXru3okgAAAByOHgkAAJjNroGUv7+/JCkpKclmPCkpyfqav7+/kpOTbV6/cuWKzp07ZzOnoHX8dRvXm5P3ekEmTpyo1NRU6+PUqVNFfYsAAABFRo8EAABgy66BVEBAgPz9/RUXF2cdS0tL065duxQSEiJJCgkJ0YULF7Rv3z7rnC1btig3N1fBwcHWOdu2bVN2drZ1zubNm9WkSRNVrFjROuev28mbk7edgri5ucnb29vmAQAAUNLokQAAAGwVOZC6dOmS4uPjFR8fL+nqRTrj4+N18uRJWSwWjRkzRtOnT9cXX3yhAwcOaNiwYapRo4b1LjN33XWXwsPD9cQTT2j37t364YcfFB0drUGDBqlGjRqSpCFDhsjV1VUjRozQoUOH9PHHH2vevHmKiYmx1jF69GjFxsZqzpw5OnLkiKZOnaq9e/cqOjr61vcKAABAEdEjAQAAFIFRRN98840hKd8jMjLSMAzDyM3NNV544QXDz8/PcHNzM+6//37j6NGjNuv43//+ZwwePNjw9PQ0vL29jeHDhxsXL160mfPTTz8ZHTt2NNzc3IyaNWsas2bNylfL6tWrjcaNGxuurq5Gs2bNjA0bNhTpvaSmphqSjNTU1KLthELK2vhdvgcAAHCskvr9p0cqvP989H/0SAAA3GZK+vf/WhbDMAxHBGG3g7S0NPn4+Cg1NbVETk3Pjv0+35hLeEe7bwcAABReSf/+lwUlvY+OrZqker49bcbokQAAcCyze6Q76i57AAAAAAAAcDwCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAADMy8jEAAQAASURBVAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYCoCKQAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqQikAAAAAAAAYKpSH0gtWLBA9erVk7u7u4KDg7V7925HlwQAAOBw9EgAAOB2Vs7RBdyKjz/+WDExMVq0aJGCg4M1d+5chYWF6ejRo6pWrZqjyytQduz3Ns9dwjs6qBIAAFBW0SMBAIDbXak+Q+r111/XE088oeHDhyswMFCLFi1S+fLl9f777zu6NAAAAIehRwIAALe7UnuGVFZWlvbt26eJEydax5ycnBQaGqodO3Y4sLL/78SFjarn2/OGc649GihxRBAAABRfaeiRCoMeCQCAsq3UBlJnz55VTk6O/Pz8bMb9/Px05MiRApfJzMxUZmam9XlqaqokKS0trURqvHQ5Uwcvr5Mk1fHpXvgFP91UIvVcj0v3EFO3BwCAI+X97huG4eBKSgY9kv3QIwEA7iRm90ilNpAqjpkzZ2ratGn5xmvXrm3C1ueYsA0AAFBYFy9elI+Pj6PLuC3QIwEAgDxm9UilNpCqUqWKnJ2dlZSUZDOelJQkf3//ApeZOHGiYmJirM9zc3N17tw5Va5cWRaLxa71paWlqXbt2jp16pS8vb3tuu47FfvU/tin9sc+tS/2p/2xT68e9bt48aJq1Kjh6FJKBD3SnYd9an/sU/tjn9of+9S+2J/m90ilNpBydXVVmzZtFBcXp379+km62jzFxcUpOjq6wGXc3Nzk5uZmM+br61uidXp7e9+xX+aSwj61P/ap/bFP7Yv9aX93+j4ty2dG0SPdudin9sc+tT/2qf2xT+3rTt+fZvZIpTaQkqSYmBhFRkaqbdu2ateunebOnav09HQNHz7c0aUBAAA4DD0SAAC43ZXqQGrgwIFKSUnR5MmTlZiYqFatWik2NjbfRTwBAADuJPRIAADgdleqAylJio6Ovu7p547k5uamKVOm5Dv9HcXHPrU/9qn9sU/ti/1pf+zTOwc90p2DfWp/7FP7Y5/aH/vUvtif5rMYZfWexwAAAAAAALgtOTm6AAAAAAAAANxZCKQAAAAAAABgKgIpAAAAAAAAmIpAqoQsWLBA9erVk7u7u4KDg7V7925Hl1Rqbdu2TX369FGNGjVksVi0bt06R5dUqs2cOVP33HOPvLy8VK1aNfXr109Hjx51dFml2ttvv62WLVvK29tb3t7eCgkJ0caNGx1dVpkya9YsWSwWjRkzxtGllFpTp06VxWKxeTRt2tTRZeEORI9kP/RI9kWPZH/0SCWPHunW0SM5DoFUCfj4448VExOjKVOmaP/+/QoKClJYWJiSk5MdXVqplJ6erqCgIC1YsMDRpZQJW7duVVRUlHbu3KnNmzcrOztbPXr0UHp6uqNLK7Vq1aqlWbNmad++fdq7d6+6deumvn376tChQ44urUzYs2ePFi9erJYtWzq6lFKvWbNmOnPmjPXx/fffO7ok3GHokeyLHsm+6JHsjx6pZNEj2Q89kmNwl70SEBwcrHvuuUfz58+XJOXm5qp27doaNWqUJkyY4ODqSjeLxaK1a9eqX79+ji6lzEhJSVG1atW0detWderUydHllBmVKlXSq6++qhEjRji6lFLt0qVLat26tRYuXKjp06erVatWmjt3rqPLKpWmTp2qdevWKT4+3tGl4A5Gj1Ry6JHsjx6pZNAj2Qc9kv3QIzkOZ0jZWVZWlvbt26fQ0FDrmJOTk0JDQ7Vjxw4HVgYULDU1VdLV5gC3LicnR6tWrVJ6erpCQkIcXU6pFxUVpV69etn8m4riO3bsmGrUqKH69etr6NChOnnypKNLwh2EHgmlDT2SfdEj2Rc9kn3RIzlGOUcXUNacPXtWOTk58vPzsxn38/PTkSNHHFQVULDc3FyNGTNGHTp0UPPmzR1dTql24MABhYSEKCMjQ56enlq7dq0CAwMdXVaptmrVKu3fv1979uxxdCllQnBwsJYuXaomTZrozJkzmjZtmu677z4dPHhQXl5eji4PdwB6JJQm9Ej2Q49kf/RI9kWP5DgEUsAdLCoqSgcPHuRvpO2gSZMmio+PV2pqqj755BNFRkZq69atNFzFdOrUKY0ePVqbN2+Wu7u7o8spE3r27Gn975YtWyo4OFh169bV6tWr+bMJALgGPZL90CPZFz2S/dEjOQ6BlJ1VqVJFzs7OSkpKshlPSkqSv7+/g6oC8ouOjtb69eu1bds21apVy9HllHqurq5q2LChJKlNmzbas2eP5s2bp8WLFzu4stJp3759Sk5OVuvWra1jOTk52rZtm+bPn6/MzEw5Ozs7sMLSz9fXV40bN9avv/7q6FJwh6BHQmlBj2Rf9Ej2RY9U8uiRzMM1pOzM1dVVbdq0UVxcnHUsNzdXcXFx/K00bguGYSg6Olpr167Vli1bFBAQ4OiSyqTc3FxlZmY6uoxS6/7779eBAwcUHx9vfbRt21ZDhw5VfHw8jZYdXLp0ScePH1f16tUdXQruEPRIuN3RI5mDHunW0COVPHok83CGVAmIiYlRZGSk2rZtq3bt2mnu3LlKT0/X8OHDHV1aqXTp0iWbdDohIUHx8fGqVKmS6tSp48DKSqeoqCitXLlSn3/+uby8vJSYmChJ8vHxkYeHh4OrK50mTpyonj17qk6dOrp48aJWrlypb7/9Vps2bXJ0aaWWl5dXvmt2VKhQQZUrV+ZaHsU0btw49enTR3Xr1tXp06c1ZcoUOTs7a/DgwY4uDXcQeiT7okeyL3ok+6NHsj96JPujR3IcAqkSMHDgQKWkpGjy5MlKTExUq1atFBsbm+8iniicvXv3qmvXrtbnMTExkqTIyEgtXbrUQVWVXm+//bYkqUuXLjbjS5Ys0WOPPWZ+QWVAcnKyhg0bpjNnzsjHx0ctW7bUpk2b1L17d0eXBlj98ccfGjx4sP73v/+patWq6tixo3bu3KmqVas6ujTcQeiR7Iseyb7okeyPHgmlAT2S41gMwzAcXQQAAAAAAADuHFxDCgAAAAAAAKYikAIAAAAAAICpCKQAAAAAAABgKgIpAAAAAAAAmIpACgAAAAAAAKYikAIAAAAAAICpCKQAAAAAAABgKgIpAAAAAAAAmIpACgAA3Fa2bdumPn36qEaNGrJYLFq3bl2R17F69Wq1atVK5cuXV926dfXqq6/av1AAAAATlbUeiUAKAADcVtLT0xUUFKQFCxYUa/mNGzdq6NChevrpp3Xw4EEtXLhQb7zxhubPn2/nSgEAAMxT1noki2EYhkO2DAAAcBMWi0Vr165Vv379rGOZmZmaNGmSPvroI124cEHNmzfXK6+8oi5dukiShgwZouzsbK1Zs8a6zFtvvaXZs2fr5MmTslgsJr8LAAAA+yoLPRJnSAEAgFIlOjpaO3bs0KpVq/Tzzz/r4YcfVnh4uI4dOybpajPm7u5us4yHh4f++OMP/f77744oGQAAoMSVth6JQAoAAJQaJ0+e1JIlS7RmzRrdd999atCggcaNG6eOHTtqyZIlkqSwsDB99tlniouLU25urv7zn/9ozpw5kqQzZ844snwAAIASURp7pHKmbxEAAKCYDhw4oJycHDVu3NhmPDMzU5UrV5YkPfHEEzp+/Lh69+6t7OxseXt7a/To0Zo6daqcnDgWBwAAyp7S2CMRSAEAgFLj0qVLcnZ21r59++Ts7Gzzmqenp6Sr11R45ZVX9PLLLysxMVFVq1ZVXFycJKl+/fqm1wwAAFDSSmOPRCAFAABKjbvvvls5OTlKTk7Wfffdd8O5zs7OqlmzpiTpo48+UkhIiKpWrWpGmQAAAKYqjT0SgRQAALitXLp0Sb/++qv1eUJCguLj41WpUiU1btxYQ4cO1bBhwzRnzhzdfffdSklJUVxcnFq2bKlevXrp7Nmz+uSTT9SlSxdlZGRYr6ewdetWB74rAACAW1PWeiSLYRiGQ7YMAABQgG+//VZdu3bNNx4ZGamlS5cqOztb06dP14cffqj//ve/qlKlitq3b69p06apRYsWOnv2rPr06aMDBw7IMAyFhIRoxowZCg4OdsC7AQAAsI+y1iMRSAEAAAAAAMBU3GoGAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAmBj6tSpslgsji7DLpYuXSqLxaITJ044uhTY2alTp+Tu7q4ffvjhpnO7dOmiLl262IwlJSVpwIABqly5siwWi+bOnVuk7Q8aNEiPPPJIkZYBAJRu9EgoDeiRUJoQSAGwm+3bt2vq1Km6cOGCo0u5roULF2rp0qUlug2LxSKLxaKRI0cW+PqkSZOsc86ePXvL29u9e7eeffZZtWnTRi4uLmWmWb6RF198UcHBwerQoUOxlh87dqw2bdqkiRMnatmyZQoPD5ckzZgxQw8++KD8/PxksVg0derUApd//vnn9emnn+qnn34q7lsAANxB6JGuokcqeSXRIx05ckTPPfecWrVqJS8vL1WvXl29evXS3r178y1Pj4SisBiGYTi6CAC3jytXrujKlStyd3cv8rKvvfaaxo8fr4SEBNWrV8/+xRVRTk6OsrOz5ebmZm1AmjdvripVqujbb78tse1aLBa5u7vL3d1dSUlJcnV1tXm9fv36OnPmjDIyMpSSkqIqVarc0vamTp2ql19+WS1bttTFixf1n//8R2X5n/aUlBTVrFlTH3zwgQYPHnzT+XlH/v76mfv7+ys0NFTLly+3mWuxWOTv76+goCBt2rRJU6ZMuW4oFRwcrCZNmujDDz8s7lsBAJQi9Ei3jh6pZJVUjzRu3Dj961//UkREhNq1a6fU1FQtXrxYJ06cUGxsrEJDQ23WS4+EwuIMKdxRcnNzlZGR4egybKSnp5f4NgzD0J9//lmoueXKlStWo3U7cnZ2lru7u0OOhoWHhystLU0bN260Gd++fbsSEhLUq1evQq3HYrHc9GjlM888o9TUVO3du1fdu3cvbsmlxvLly1WuXDn16dOn2OtITk6Wr69vvvGEhASdOXMmX1BVkEceeUSfffaZLl26VOw6AOB2QY90c/RI9kGPVHJKqkcaPHiwTp06pffee09PPvmkxo8fr127dqlSpUoFHrijR0JhEUih1Mn7+/0jR47okUcekbe3typXrqzRo0fna6QsFouio6O1YsUKNWvWTG5uboqNjZUk/fe//9Xjjz8uPz8/ubm5qVmzZnr//ffzbS8jI0NTp05V48aN5e7ururVq6t///46fvy4pKtHFCwWS76jSSdOnMj3Q/nYY4/J09NTx48f1wMPPCAvLy8NHTpUknTs2DFFRETI399f7u7uqlWrlgYNGqTU1FTr8leuXNFLL72kBg0ayM3NTfXq1dP//d//KTMz02bb9erVU+/evbVp0ya1bdtWHh4eWrx4cZH2b0H7cd26dWrevLl1f+Xty7zlxo8fL0kKCAiwnm7912sTLF++XG3atJGHh4cqVaqkQYMG6dSpUzbb6tKli5o3b65ffvlFXbt2Vfny5VWzZk3Nnj07X61vvfWWmjVrpvLly6tixYpq27atVq5caX392usj1KtXT4cOHdLWrVut9XXp0kW//fabLBaL3njjjXzb2L59uywWiz766KNC7b88NWvWVKdOnWzqkaQVK1aoRYsWat68eZHWdyN+fn7y8PCwy7r27t2rsLAwValSRR4eHgoICNDjjz9ufb043/eTJ0+qd+/e8vT0VM2aNbVgwQJJ0oEDB9StWzdVqFBBdevWzbevrmfdunUKDg6Wp6dnvtfeeecdNWjQQB4eHmrXrp2+++47m9fzvhOGYWjBggXW70Geohy17t69u9LT07V58+ZCLwMAJYkeiR4pDz3SVfRI/9+t9Eht2rTJt87KlSvrvvvu0+HDh/Ntix4JhUUghVLrkUceUUZGhmbOnKkHHnhAb775pp588sl887Zs2aKxY8dq4MCBmjdvnurVq6ekpCS1b99eX3/9taKjozVv3jw1bNhQI0aMsLlwX05Ojnr37q1p06apTZs2mjNnjkaPHq3U1FQdPHiwWHVfuXJFYWFhqlatml577TVFREQoKytLYWFh2rlzp0aNGqUFCxboySef1G+//WZzrYGRI0dq8uTJat26td544w117txZM2fO1KBBg/Jt5+jRoxo8eLC6d++uefPmqVWrVsWqN8/333+vZ599VoMGDdLs2bOVkZGhiIgI/e9//5Mk9e/f33pq8BtvvKFly5Zp2bJlqlq1qqSr1+YZNmyYGjVqpNdff11jxoxRXFycOnXqlO96CufPn1d4eLiCgoI0Z84cNW3aVM8//7zNkbR3331Xf//73xUYGKi5c+dq2rRpatWqlXbt2nXd9zB37lzVqlVLTZs2tdY3adIk1a9fXx06dNCKFSvyLbNixQp5eXmpb9++Rd5nQ4YM0Zdffmk9OnTlyhWtWbNGQ4YMKfK6zJCcnKwePXroxIkTmjBhgt566y0NHTpUO3fuLPY6c3Jy1LNnT9WuXVuzZ89WvXr1FB0draVLlyo8PFxt27bVK6+8Ii8vLw0bNkwJCQk3XF92drb27Nmj1q1b53vtX//6l5566in5+/tr9uzZ6tChgx588EGbhr5Tp05atmyZpKvNUt73oDgCAwPl4eFRqIuGAoCZ6JHokeiR7IseqWCJiYkF/lklPRIKzQBKmSlTphiSjAcffNBm/NlnnzUkGT/99JN1TJLh5ORkHDp0yGbuiBEjjOrVqxtnz561GR80aJDh4+NjXL582TAMw3j//fcNScbrr7+er47c3FzDMAzjm2++MSQZ33zzjc3rCQkJhiRjyZIl1rHIyEhDkjFhwgSbuT/++KMhyVizZs1133d8fLwhyRg5cqTN+Lhx4wxJxpYtW6xjdevWNSQZsbGx113f9eTt37+SZLi6uhq//vqrdeynn34yJBlvvfWWdezVV181JBkJCQk2y584ccJwdnY2ZsyYYTN+4MABo1y5cjbjnTt3NiQZH374oXUsMzPT8Pf3NyIiIqxjffv2NZo1a3bD97JkyZJ89TRr1szo3LlzvrmLFy82JBmHDx+2jmVlZRlVqlQxIiMjb7ida0kyoqKijHPnzhmurq7GsmXLDMMwjA0bNhgWi8U4ceKEdT+npKTcdF1//Q7dTFRUVL7Pr7DWrl1rSDL27Nlz3TnF+b6//PLL1rHz588bHh4ehsViMVatWmUdP3LkiCHJmDJlyg1r/PXXX/N97wzj6mdVrVo1o1WrVkZmZqZ1/J133jEk5fvM8z6j60lJSSlUPY0bNzZ69ux5wzkAYBZ6JHokw6BHuh56JPv0SHm2bdtmWCwW44UXXijwdXokFAZnSKHUioqKsnk+atQoSdJXX31lM965c2cFBgZanxuGoU8//VR9+vSRYRg6e/as9REWFqbU1FTt379fkvTpp5+qSpUq1nX/1a38zf0zzzxj89zHx0eStGnTJl2+fLnAZfLeV0xMjM34P/7xD0nShg0bbMYDAgIUFhZW7BqvFRoaqgYNGlift2zZUt7e3vrtt99uuuxnn32m3NxcPfLIIzb729/fX40aNdI333xjM9/T01N/+9vfrM9dXV3Vrl07m235+vrqjz/+0J49e+zw7q4eTXZ3d7c5Arhp0yadPXvWppaiqFixosLDw62nsq9cuVL33nuv6tatW+D8y5cv2+yfvLvLXLp0yWbs/PnzxarnZvKuF7B+/XplZ2fbbb1/vZOOr6+vmjRpogoVKtjcErhJkyby9fW96fcp72hzxYoVbcb37t2r5ORkPf300zYXSH3ssces//sqCRUrVrTLXYAAwJ7oka6iR6JHshd6JFvJyckaMmSIAgIC9NxzzxU4hx4JhUEghVKrUaNGNs8bNGggJycnm7/Hl642HX+VkpKiCxcu6J133lHVqlVtHsOHD5d09R9ZSTp+/LiaNGmicuXK2a3ucuXKqVatWvlqjImJ0XvvvacqVaooLCxMCxYssLk2wu+//y4nJyc1bNjQZll/f3/5+vrq999/v+H7vlV16tTJN1axYsVC/fAfO3ZMhmGoUaNG+fb54cOHrfs7T61atfI1s9du6/nnn5enp6fatWunRo0aKSoq6pZOC/b19VWfPn1s/kZ/xYoVqlmzprp161bs9Q4ZMkSbN2/WyZMntW7duhueij579ux8+0e6+n8k/jp29913F7ueG+ncubMiIiI0bdo0ValSRX379tWSJUvyXX+jKNzd3a3vI4+Pj0+Bn7GPj0+hG0njmjvk5H3/r/13wcXFRfXr1y9q2YVmGMYdcQtpAKULPdJV9Ej0SPZCj/T/paenq3fv3rp48aI+//zzAq9XlVcHPRJuxn6/IICDXe8fvGsvZJibmytJ+tvf/qbIyMgCl2nZsuUtbzcnJ6fAcTc3Nzk55c+C58yZo8cee0yff/65/v3vf+vvf/+7Zs6cqZ07d9o0Z4X9h91eF3DM4+zsXOD4tT96BcnNzZXFYtHGjRsLXM+1P2SF2dZdd92lo0ePav369YqNjdWnn36qhQsXavLkyZo2bdpNayrIsGHDtGbNGm3fvl0tWrTQF198oWeffbbAz6uwHnzwQbm5uSkyMlKZmZk2R7wK2n7Hjh1txrp3767x48erR48e1jF7f7Z5LBaLPvnkE+3cuVNffvmlNm3apMcff1xz5szRzp075enpWeTv+/U+y+J+nypXrixJJXYEtKjOnz+fr8EDgNsNPZIteqSio0eiR5KkrKws9e/fXz///LM2bdp0wwvQ0yOhMAikUGodO3bM5gjXr7/+qtzc3JveJatq1ary8vJSTk6OQkNDbzi3QYMG2rVrl7Kzs+Xi4lLgnLzTYq+96OS1R+MKo0WLFmrRooX++c9/avv27erQoYMWLVqk6dOnq27dusrNzdWxY8d01113WZdJSkrShQsXrnuKs5mu90PcoEEDGYahgIAANW7c2G7bq1ChggYOHKiBAwdafyBnzJihiRMnXve2zDdqVsPDw1W1alWtWLFCwcHBunz5sh599NFbqtHDw0P9+vXT8uXL1bNnzwIv/Jinfv36BR6pCgwMvOl31Z7at2+v9u3ba8aMGVq5cqWGDh2qVatWaeTIkXb9vhdHnTp15OHhke/Cnnnf/2PHjtkcrc3OzlZCQoKCgoLsXsuVK1d06tQpPfjgg3ZfNwDcCnqkq+iR6JHs7U7ukXJzczVs2DDFxcVp9erV6ty583Xn0iOhsPiTPZRaebdFzfPWW29Jknr27HnD5ZydnRUREaFPP/20wLvApKSkWP87IiJCZ8+e1fz58/PNyztKUbduXTk7O2vbtm02ry9cuLBwb0RSWlqarly5YjPWokULOTk5WU8FfuCBByTJ5g43kvT6669Lknr16lXo7ZWUChUqSMr/Q9y/f385Oztr2rRp+Y7uGIZh/Zv3orh2GVdXVwUGBsowjBv+bX+FChXy1ZenXLlyGjx4sFavXq2lS5eqRYsWRToSfD3jxo3TlClT9MILL9zyukrS+fPn830+eXceyvse2uP7fitcXFzUtm1b7d2712a8bdu2qlq1qhYtWqSsrCzr+NKlS6/7ed+qX375RRkZGbr33ntLZP0AUFz0SFfRI11Fj3Tr6JGu/nnkxx9/rIULF6p///43nEuPhMLiDCmUWgkJCXrwwQcVHh6uHTt2aPny5RoyZEihUv5Zs2bpm2++UXBwsJ544gkFBgbq3Llz2r9/v77++mudO3dO0tXTgz/88EPFxMRo9+7duu+++5Senq6vv/5azz77rPr27SsfHx89/PDDeuutt2SxWNSgQQOtX78+39/838iWLVsUHR2thx9+WI0bN9aVK1e0bNkya2MoSUFBQYqMjNQ777yjCxcuqHPnztq9e7c++OAD9evXT127di3ejrSjNm3aSJImTZqkQYMGycXFRX369FGDBg00ffp0TZw4USdOnFC/fv3k5eWlhIQErV27Vk8++aTGjRtXpG316NFD/v7+6tChg/z8/HT48GHNnz9fvXr1kpeX1w1rfPvttzV9+nQ1bNhQ1apVszlaNGzYML355pv65ptv9MorrxRvR1wjKCioRM7QyfP7779bb8ub14RMnz5d0tXmqLBHMD/44AMtXLhQDz30kBo0aKCLFy/q3Xfflbe3t7XZt8f3/Vb17dtXkyZNUlpamry9vSVdbcKmT5+up556St26ddPAgQOVkJCgJUuWFOn6CMuWLdPvv/9uvXDutm3brPvy0UcftTnKvnnzZpUvX17du3e347sDgFtHj0SPRI90FT2SfXqkuXPnauHChQoJCVH58uW1fPlym9cfeugha+gq0SOhCMy5mR9gP3m3gv3ll1+MAQMGGF5eXkbFihWN6Oho488//7SZqxvctjQpKcmIiooyateubbi4uBj+/v7G/fffb7zzzjs28y5fvmxMmjTJCAgIsM4bMGCAcfz4ceuclJQUIyIiwihfvrxRsWJF46mnnjIOHjxY4C1eK1SokK+W3377zXj88ceNBg0aGO7u7kalSpWMrl27Gl9//bXNvOzsbGPatGnWWmrXrm1MnDjRyMjIsJlXt25do1evXoXan9e63i2NC9qPdevWzXe735deesmoWbOm4eTklO92wp9++qnRsWNHo0KFCkaFChWMpk2bGlFRUcbRo0etczp37lzgrYojIyONunXrWp8vXrzY6NSpk1G5cmXDzc3NaNCggTF+/HgjNTXVOqegWxonJiYavXr1Mry8vAq81a1hXL3tsZOTk/HHH39cZy/d2I2+d3nseUvjvNsMF/Qo6P1dz/79+43BgwcbderUMdzc3Ixq1aoZvXv3Nvbu3Wsz71a/79f7jAv7vU1KSjLKlStnvVX0Xy1cuNAICAgw3NzcjLZt2xrbtm0zOnfuXOhbGufdUrugx7W3cQ4ODjb+9re/3bReADALPRI9kmHQI/0VPdL/dys9UmRk5HX347XfI8OgR0LhWQyjEFfbA24jU6dO1bRp05SSknLDvzUHiuvuu+9WpUqVFBcX5+hScB0jRozQf/7zH3333XcO2X58fLxat26t/fv3W0/ZBwBHo0dCSaNHuv3RI6E04RpSAPAXe/fuVXx8vIYNG+boUnADU6ZM0Z49e27pNta3YtasWRowYACNFgDgjkGPVDrQI6E04RpSwB0iNTVVf/755w3n+Pv7m1TN7efgwYPat2+f5syZo+rVq2vgwIE2r+fk5NhczLUgnp6e+W7PfLtISUm57m2HpasXPK1UqZKJFd2aOnXqKCMjw2HbX7VqlcO2DQCwL3qkG6NHokcqCnokFAWBFHCHGD16tD744IMbzrmT/4L3k08+0YsvvqgmTZroo48+yndL5FOnTtncQrsgU6ZM0dSpU0uwyuK75557bnjb4c6dO+vbb781ryAAAG4T9Eg3Ro9EjwSUFK4hBdwhfvnlF50+ffqGc0JDQ02qpvTJyMjQ999/f8M59evXL9Id3cz0ww8/3PDob8WKFa13AAIA4E5Cj3Rr6JEAFBeBFAAAAAAAAEzFRc0BAAAAAABgqjv6GlK5ubk6ffq0vLy8ZLFYHF0OAAAwgWEYunjxomrUqCEnJ47NFYQeCQCAO4/ZPdIdHUidPn1atWvXdnQZAADAAU6dOqVatWo5uozbEj0SAAB3LrN6pDs6kPLy8pJ0dWd7e3s7uBoAAGCGtLQ01a5d29oHID96JAAA7jxm90h3dCCVdwq6t7c3zRYAAHcY/hTt+uiRAAC4c5nVI3HhBAAAAAAAAJiKQAoAAAAAAACmIpACAAAAAACAqe7oa0gBAHAjOTk5ys7OdnQZKCIXFxc5Ozs7ugwAAMoseqTS6XbrkQikAAC4hmEYSkxM1IULFxxdCorJ19dX/v7+XLgcAAA7okcq/W6nHolACgCAa+Q1WtWqVVP58uVvix9sFI5hGLp8+bKSk5MlSdWrV3dwRQAAlB30SKXX7dgjEUgBAPAXOTk51karcuXKji4HxeDh4SFJSk5OVrVq1W6rU9MBACit6JFKv9utR+Ki5gAA/EXe9RDKly/v4EpwK/I+P65vAQCAfdAjlQ23U49EIAUAQAE4Bb104/MDAKBk8Btbut1Onx+BFAAAAAAAAExFIAUAQClnsVhu+Jg6dapDa1u3bt0treOdd95Rly5d5O3tLYvFwp19AABAoZXlPuncuXMaNWqUmjRpIg8PD9WpU0d///vflZqaar8iSxAXNQcAoJCyY783bVsu4R0LPffMmTPW//744481efJkHT161Drm6elZpG1nZWXJ1dW1SMuUpMuXLys8PFzh4eGaOHGio8sBAADXMLNHkuiT8pw+fVqnT5/Wa6+9psDAQP3+++96+umndfr0aX3yySeOLu+mOEOqBGXHfp/vAQCAvfn7+1sfPj4+slgs1ufp6ekaOnSo/Pz85OnpqXvuuUdff/21zfL16tXTSy+9pGHDhsnb21tPPvmkJOndd99V7dq1Vb58eT300EN6/fXX5evra7Ps559/rtatW8vd3V3169fXtGnTdOXKFet6Jemhhx6SxWKxPv/pp5/UtWtXeXl5ydvbW23atNHevXuv+/7GjBmjCRMmqH379vbZYXA4eiQAgFnKcp/UvHlzffrpp+rTp48aNGigbt26acaMGfryyy+t27mdEUgBAFCGXbp0SQ888IDi4uL0448/Kjw8XH369NHJkydt5r322msKCgrSjz/+qBdeeEE//PCDnn76aY0ePVrx8fHq3r27ZsyYYbPMd999p2HDhmn06NH65ZdftHjxYi1dutQ6b8+ePZKkJUuW6MyZM9bnQ4cOVa1atbRnzx7t27dPEyZMkIuLiwl7AwAA4P8ri31SamqqvL29Va7c7f8Hcbd/hQAAoNiCgoIUFBRkff7SSy9p7dq1+uKLLxQdHW0d79atm/7xj39Yn0+aNEk9e/bUuHHjJEmNGzfW9u3btX79euucadOmacKECYqMjJQk1a9fXy+99JKee+45TZkyRVWrVpUk+fr6yt/f37rcyZMnNX78eDVt2lSS1KhRoxJ45wAAADdW1vqks2fP6qWXXrKexXW74wwpAADKsEuXLmncuHG666675OvrK09PTx0+fDjfkb+2bdvaPD969KjatWtnM3bt859++kkvvviiPD09rY8nnnhCZ86c0eXLl69bU0xMjEaOHKnQ0FDNmjVLx48fv8V3CQAAUHRlqU9KS0tTr169FBgY6NALtRcFgRQAAGXYuHHjtHbtWr388sv67rvvFB8frxYtWigrK8tmXoUKFYq87kuXLmnatGmKj4+3Pg4cOKBjx47J3d39ustNnTpVhw4dUq9evbRlyxYFBgZq7dq1Rd4+AADArSgrfdLFixcVHh4uLy8vrV27ttRcCoE/2QMAoAz74Ycf9Nhjj+mhhx6SdLU5OnHixE2Xa9KkifVaBnmufd66dWsdPXpUDRs2vO56XFxclJOTk2+8cePGaty4scaOHavBgwdryZIl1hoBAADMUBb6pLS0NIWFhcnNzU1ffPHFDcOu2w2BFAAAZVijRo302WefqU+fPrJYLHrhhReUm5t70+VGjRqlTp066fXXX1efPn20ZcsWbdy4URaLxTpn8uTJ6t27t+rUqaMBAwbIyclJP/30kw4ePKjp06dLunoHmbi4OHXo0EFubm5yd3fX+PHjNWDAAAUEBOiPP/7Qnj17FBERcd1aEhMTlZiYqF9//VWSdODAAXl5ealOnTqqVKnSLe4hAABwpyrtfVJaWpp69Oihy5cva/ny5UpLS1NaWpokqWrVqnJ2drbDXio5/MkeAABl2Ouvv66KFSvq3nvvVZ8+fRQWFqbWrVvfdLkOHTpo0aJFev311xUUFKTY2FiNHTvW5qhbWFiY1q9fr3//+9+655571L59e73xxhuqW7eudc6cOXO0efNm1a5dW3fffbecnZ31v//9T8OGDVPjxo31yCOPqGfPnpo2bdp1a1m0aJHuvvtuPfHEE5KkTp066e6779YXX3xxC3sGAADc6Up7n7R//37t2rVLBw4cUMOGDVW9enXr49SpU7e+g0qYxTAMw9FFOEpaWpp8fHyst0W0t+zY7/ONuYR3tPt2AAD2k5GRoYSEBAUEBJSqU57N8MQTT+jIkSP67rvvHF3KTd3ocyzp3/+ygB4JAHAteqQbKy190u3UI/EnewAAoECvvfaaunfvrgoVKmjjxo364IMPtHDhQkeXBQAA4HD0SbeOQAoAABRo9+7dmj17ti5evKj69evrzTff1MiRIx1dFgAAgMPRJ906AikAAFCg1atXO7oEAACA2xJ90q3jouYAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAUAY89thjslgsslgscnFxkZ+fn7p37673339fubm5ji7vlhw6dEgRERGqV6+eLBaL5s6d6+iSAABAKVKW+6R3331X9913nypWrKiKFSsqNDRUu3fvdnRZhVLO0QUAAFBaHN+72LRtNWj7VJGXCQ8P15IlS5STk6OkpCTFxsZq9OjR+uSTT/TFF1+oXLnS+bN/+fJl1a9fXw8//LDGjh3r6HIAAMA1zOyRJPqkv/r22281ePBg3XvvvXJ3d9crr7yiHj166NChQ6pZs6ajy7shzpACAKCMcHNzk7+/v2rWrKnWrVvr//7v//T5559r48aNWrp0qXXehQsXNHLkSFWtWlXe3t7q1q2bfvrpJ5t1ffnll7rnnnvk7u6uKlWq6KGHHrK+dv78eQ0bNkwVK1ZU+fLl1bNnTx07dkySlJ6eLm9vb33yySc261u3bp0qVKigixcvKisrS9HR0apevbrc3d1Vt25dzZw587rv65577tGrr76qQYMGyc3NzQ57CgAA3GnKap+0YsUKPfvss2rVqpWaNm2q9957T7m5uYqLi7PDXitZBFIAAJRh3bp1U1BQkD777DPr2MMPP6zk5GRt3LhR+/btU+vWrXX//ffr3LlzkqQNGzbooYce0gMPPKAff/xRcXFxateunXX5xx57THv37tUXX3yhHTt2yDAMPfDAA8rOzlaFChU0aNAgLVmyxKaOJUuWaMCAAfLy8tKbb76pL774QqtXr9bRo0e1YsUK1atXz5T9AQAAkKcs9kmXL19Wdna2KlWqdGs7xwSl85w0AABQaE2bNtXPP/8sSfr++++1e/duJScnW882eu2117Ru3Tp98sknevLJJzVjxgwNGjRI06ZNs64jKChIknTs2DF98cUX+uGHH3TvvfdKunpkrnbt2lq3bp0efvhhjRw5Uvfee6/OnDmj6tWrKzk5WV999ZW+/vprSdLJkyfVqFEjdezYURaLRXXr1jVzdwAAAFiVtT7p+eefV40aNRQaGnrL+6akcYYUAABlnGEYslgskqSffvpJly5dUuXKleXp6Wl9JCQk6Pjx45Kk+Ph43X///QWu6/DhwypXrpyCg4OtY5UrV1aTJk10+PBhSVK7du3UrFkzffDBB5Kk5cuXq27duurUqZOkq0cO4+Pj1aRJE/3973/Xv//97xJ77wAAADdSlvqkWbNmadWqVVq7dq3c3d2LvjNMxhlSAACUcYcPH1ZAQIAk6dKlS6pevbq+/fbbfPN8fX0lSR4eHre8zZEjR2rBggWaMGGClixZouHDh1ubvdatWyshIUEbN27U119/rUceeUShoaH5rqcAAABQ0spKn/Taa69p1qxZ+vrrr9WyZctbrtEMnCEFAEAZtmXLFh04cEARERGSrjY5iYmJKleunBo2bGjzqFKliiSpZcuW170Q5l133aUrV65o165d1rH//e9/Onr0qAIDA61jf/vb3/T777/rzTff1C+//KLIyEib9Xh7e2vgwIF699139fHHH+vTTz+1XpsBAADADGWlT5o9e7ZeeuklxcbGqm3btsXeH2bjDCkAAMqIzMxMJSYm2tzOeObMmerdu7eGDRsmSQoNDVVISIj69eun2bNnq3Hjxjp9+rT1Ap1t27bVlClTdP/996tBgwYaNGiQrly5oq+++krPP/+8GjVqpL59++qJJ57Q4sWL5eXlpQkTJqhmzZrq27evtZaKFSuqf//+Gj9+vHr06KFatWpZX3v99ddVvXp13X333XJyctKaNWvk7+9vPfJ4raysLP3yyy/W//7vf/+r+Ph4eXp6qmHDhiW3QwEAQJlRVvukV155RZMnT9bKlStVr149JSYmSpL1zw1vZ5whBQBAGREbG6vq1aurXr16Cg8P1zfffKM333xTn3/+uZydnSVJFotFX331lTp16qThw4ercePGGjRokH7//Xf5+flJkrp06aI1a9boiy++UKtWrdStWzft3r3bup0lS5aoTZs26t27t0JCQmQYhr766iu5uLjY1DNixAhlZWXp8ccftxn38vLS7Nmz1bZtW91zzz06ceKEvvrqKzk5FdyWnD59WnfffbfuvvtunTlzRq+99pruvvtujRw50p67DwAAlGFltU96++23lZWVpQEDBqh69erWx2uvvWbP3VciLIZhGI4uwlHS0tLk4+Oj1NRUeXt723392bHf5xtzCe9o9+0AAOwnIyNDCQkJCggIKBUXg7ydLVu2TGPHjtXp06fl6upq6rZv9DmW9O9/WUCPBAC4Fj2SfTmqT7qdeqRbOkNq1qxZslgsGjNmjHUsIyNDUVFR1qvSR0REKCkpyWa5kydPqlevXipfvryqVaum8ePH68qVKzZzvv32W7Vu3Vpubm5q2LChli5dmm/7CxYsUL169eTu7q7g4GCbVBIAADjG5cuXdfz4cc2aNUtPPfWU6WHU7YAeCQAAFIQ+6f8rdiC1Z88eLV68ON/V28eOHasvv/xSa9as0datW3X69Gn179/f+npOTo569eqlrKwsbd++XR988IGWLl2qyZMnW+ckJCSoV69e6tq1q+Lj4zVmzBiNHDlSmzZtss75+OOPFRMToylTpmj//v0KCgpSWFiYkpOTi/uWAACAHcyePVtNmzaVv7+/Jk6c6OhyTEePBAAArudO75NsGMVw8eJFo1GjRsbmzZuNzp07G6NHjzYMwzAuXLhguLi4GGvWrLHOPXz4sCHJ2LFjh2EYhvHVV18ZTk5ORmJionXO22+/bXh7exuZmZmGYRjGc889ZzRr1sxmmwMHDjTCwsKsz9u1a2dERUVZn+fk5Bg1atQwZs6cWej3kZqaakgyUlNTC//miyBr43f5HgCA29uff/5p/PLLL8aff/7p6FJwC270OZbk7z89UuHQIwFA6UOPVDY4qkcqSLHOkIqKilKvXr0UGhpqM75v3z5lZ2fbjDdt2lR16tTRjh07JEk7duxQixYtrBcEk6SwsDClpaXp0KFD1jnXrjssLMy6jqysLO3bt89mjpOTk0JDQ61zAAAAzEaPBAAAUDjlirrAqlWrtH//fu3Zsyffa4mJiXJ1dc13O0I/Pz/rrQcTExNtGq281/Neu9GctLQ0/fnnnzp//rxycnIKnHPkyJHr1p6ZmanMzEzr87S0tJu8WwAAgMKhRwIAACi8Ip0hderUKY0ePVorVqwolVfVnzlzpnx8fKyP2rVrO7okAMBtyrhzb0JbJpj9+dEjAQDuFPRIpdvt9PkVKZDat2+fkpOT1bp1a5UrV07lypXT1q1b9eabb6pcuXLy8/NTVlaWLly4YLNcUlKS/P39JUn+/v757iiT9/xmc7y9veXh4aEqVarI2dm5wDl56yjIxIkTlZqaan2cOnWqKG8fAHAHcHFxkXT1DigovfI+v7zPs6TRIwEAyjp6pLLB7B7pRor0J3v333+/Dhw4YDM2fPhwNW3aVM8//7xq164tFxcXxcXFKSIiQpJ09OhRnTx5UiEhIZKkkJAQzZgxQ8nJyapWrZokafPmzfL29lZgYKB1zldffWWznc2bN1vX4erqqjZt2iguLk79+vWTJOXm5iouLk7R0dHXrd/NzU1ubm5FecsAgDuMs7OzfH19rXckK1++vCwWi4OrQmEZhqHLly8rOTlZvr6+cnZ2NmW79EgAgLKOHql0c1SPdCNFCqS8vLzUvHlzm7EKFSqocuXK1vERI0YoJiZGlSpVkre3t0aNGqWQkBC1b99ektSjRw8FBgbq0Ucf1ezZs5WYmKh//vOfioqKsjZCTz/9tObPn6/nnntOjz/+uLZs2aLVq1drw4YN1u3GxMQoMjJSbdu2Vbt27TR37lylp6dr+PDht7RDAADIO5Mkr+FC6ePr63vDM4LsjR4JAHAnoEcq/czukW6kyBc1v5k33nhDTk5OioiIUGZmpsLCwrRw4ULr687Ozlq/fr2eeeYZhYSEqEKFCoqMjNSLL75onRMQEKANGzZo7NixmjdvnmrVqqX33ntPYWFh1jkDBw5USkqKJk+erMTERLVq1UqxsbH5LuIJAEBRWSwWVa9eXdWqVVN2drajy0ERubi43BZH/a5FjwQAKO3okUq3261Hshi30xWtTJaWliYfHx+lpqbK29vb7uvPjv0+35hLeEe7bwcAABReSf/+lwX0SAAA3HnM7pGKdFFzAAAAAAAA4FYRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMVKZB6++231bJlS3l7e8vb21shISHauHGj9fWMjAxFRUWpcuXK8vT0VEREhJKSkmzWcfLkSfXq1Uvly5dXtWrVNH78eF25csVmzrfffqvWrVvLzc1NDRs21NKlS/PVsmDBAtWrV0/u7u4KDg7W7t27i/JWAAAA7IYeCQAAoGiKFEjVqlVLs2bN0r59+7R3715169ZNffv21aFDhyRJY8eO1Zdffqk1a9Zo69atOn36tPr3729dPicnR7169VJWVpa2b9+uDz74QEuXLtXkyZOtcxISEtSrVy917dpV8fHxGjNmjEaOHKlNmzZZ53z88ceKiYnRlClTtH//fgUFBSksLEzJycm3uj8AAACKjB4JAACgaCyGYRi3soJKlSrp1Vdf1YABA1S1alWtXLlSAwYMkCQdOXJEd911l3bs2KH27dtr48aN6t27t06fPi0/Pz9J0qJFi/T8888rJSVFrq6uev7557VhwwYdPHjQuo1BgwbpwoULio2NlSQFBwfrnnvu0fz58yVJubm5ql27tkaNGqUJEyYUuva0tDT5+PgoNTVV3t7et7IbCpQd+32+MZfwjnbfDgAAKLyS/v3PQ490ffRIAADcfszqkfIU+xpSOTk5WrVqldLT0xUSEqJ9+/YpOztboaGh1jlNmzZVnTp1tGPHDknSjh071KJFC2ujJUlhYWFKS0uzHkHcsWOHzTry5uStIysrS/v27bOZ4+TkpNDQUOscAAAAR6FHAgAAuLlyRV3gwIEDCgkJUUZGhjw9PbV27VoFBgYqPj5erq6u8vX1tZnv5+enxMRESVJiYqJNo5X3et5rN5qTlpamP//8U+fPn1dOTk6Bc44cOXLD2jMzM5WZmWl9npaWVvg3DgAAcAP0SAAAAIVX5DOkmjRpovj4eO3atUvPPPOMIiMj9csvv5REbXY3c+ZM+fj4WB+1a9d2dEkAAKCMoEcCAAAovCIHUq6urmrYsKHatGmjmTNnKigoSPPmzZO/v7+ysrJ04cIFm/lJSUny9/eXJPn7++e7o0ze85vN8fb2loeHh6pUqSJnZ+cC5+St43omTpyo1NRU6+PUqVNFffsAAAAFokcCAAAovGJfQypPbm6uMjMz1aZNG7m4uCguLs762tGjR3Xy5EmFhIRIkkJCQnTgwAGbO71s3rxZ3t7eCgwMtM756zry5uStw9XVVW3atLGZk5ubq7i4OOuc63Fzc7PejjnvAQAAUBLokQAAAK6vSNeQmjhxonr27Kk6dero4sWLWrlypb799ltt2rRJPj4+GjFihGJiYlSpUiV5e3tr1KhRCgkJUfv27SVJPXr0UGBgoB599FHNnj1biYmJ+uc//6moqCi5ublJkp5++mnNnz9fzz33nB5//HFt2bJFq1ev1oYNG6x1xMTEKDIyUm3btlW7du00d+5cpaena/jw4XbcNQAAAIVDjwQAAFA0RQqkkpOTNWzYMJ05c0Y+Pj5q2bKlNm3apO7du0uS3njjDTk5OSkiIkKZmZkKCwvTwoULrcs7Oztr/fr1euaZZxQSEqIKFSooMjJSL774onVOQECANmzYoLFjx2revHmqVauW3nvvPYWFhVnnDBw4UCkpKZo8ebISExPVqlUrxcbG5ruIJwAAgBnokQAAAIrGYhiG4egiHCUtLU0+Pj5KTU0tkVPTs2O/zzfmEt7R7tsBAACFV9K//2UBPRIAAHces3ukW76GFAAAAAAAAFAUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBURQqkZs6cqXvuuUdeXl6qVq2a+vXrp6NHj9rMycjIUFRUlCpXrixPT09FREQoKSnJZs7JkyfVq1cvlS9fXtWqVdP48eN15coVmznffvutWrduLTc3NzVs2FBLly7NV8+CBQtUr149ubu7Kzg4WLt37y7K2wEAALALeiQAAICiKVIgtXXrVkVFRWnnzp3avHmzsrOz1aNHD6Wnp1vnjB07Vl9++aXWrFmjrVu36vTp0+rfv7/19ZycHPXq1UtZWVnavn27PvjgAy1dulSTJ0+2zklISFCvXr3UtWtXxcfHa8yYMRo5cqQ2bdpknfPxxx8rJiZGU6ZM0f79+xUUFKSwsDAlJyffyv4AAAAoMnokAACAorEYhmEUd+GUlBRVq1ZNW7duVadOnZSamqqqVatq5cqVGjBggCTpyJEjuuuuu7Rjxw61b99eGzduVO/evXX69Gn5+flJkhYtWqTnn39eKSkpcnV11fPPP68NGzbo4MGD1m0NGjRIFy5cUGxsrCQpODhY99xzj+bPny9Jys3NVe3atTVq1ChNmDChUPWnpaXJx8dHqamp8vb2Lu5uuK7s2O/zjbmEd7T7dgAAQOGV9O+/RI90M/RIAADcfszokf7qlq4hlZqaKkmqVKmSJGnfvn3Kzs5WaGiodU7Tpk1Vp04d7dixQ5K0Y8cOtWjRwtpoSVJYWJjS0tJ06NAh65y/riNvTt46srKytG/fPps5Tk5OCg0Ntc4pSGZmptLS0mweAAAA9kaPBAAAcGPFDqRyc3M1ZswYdejQQc2bN5ckJSYmytXVVb6+vjZz/fz8lJiYaJ3z10Yr7/W81240Jy0tTX/++afOnj2rnJycAufkraMgM2fOlI+Pj/VRu3btor9xAACAG6BHAgAAuLliB1JRUVE6ePCgVq1aZc96StTEiROVmppqfZw6dcrRJQEAgDKGHgkAAODmyhVnoejoaK1fv17btm1TrVq1rOP+/v7KysrShQsXbI4AJiUlyd/f3zrn2ju95N1h5q9zrr3rTFJSkry9veXh4SFnZ2c5OzsXOCdvHQVxc3OTm5tb0d8wAABAIdAjAQAAFE6RzpAyDEPR0dFau3attmzZooCAAJvX27RpIxcXF8XFxVnHjh49qpMnTyokJESSFBISogMHDtjc6WXz5s3y9vZWYGCgdc5f15E3J28drq6uatOmjc2c3NxcxcXFWecAAACYhR4JAACgaIp0hlRUVJRWrlypzz//XF5eXtZrEfj4+MjDw0M+Pj4aMWKEYmJiVKlSJXl7e2vUqFEKCQlR+/btJUk9evRQYGCgHn30Uc2ePVuJiYn65z//qaioKOuRuaefflrz58/Xc889p8cff1xbtmzR6tWrtWHDBmstMTExioyMVNu2bdWuXTvNnTtX6enpGj58uL32DQAAQKHQIwEAABRNkQKpt99+W5LUpUsXm/ElS5bosccekyS98cYbcnJyUkREhDIzMxUWFqaFCxda5zo7O2v9+vV65plnFBISogoVKigyMlIvvviidU5AQIA2bNigsWPHat68eapVq5bee+89hYWFWecMHDhQKSkpmjx5shITE9WqVSvFxsbmu4gnAABASaNHAgAAKBqLYRiGo4twlLS0NPn4+Cg1NVXe3t52X3927Pf5xlzCO9p9OwAAoPBK+ve/LKBHAgDgzmN2j1Tsu+wBAAAAAAAAxUEgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwFYEUAAAAAAAATEUgBQAAAAAAAFMRSAEAAAAAAMBUBFIAAAAAAAAwVZEDqW3btqlPnz6qUaOGLBaL1q1bZ/O6YRiaPHmyqlevLg8PD4WGhurYsWM2c86dO6ehQ4fK29tbvr6+GjFihC5dumQz5+eff9Z9990nd3d31a5dW7Nnz85Xy5o1a9S0aVO5u7urRYsW+uqrr4r6dgAAAOyCHgkAAKDwihxIpaenKygoSAsWLCjw9dmzZ+vNN9/UokWLtGvXLlWoUEFhYWHKyMiwzhk6dKgOHTqkzZs3a/369dq2bZuefPJJ6+tpaWnq0aOH6tatq3379unVV1/V1KlT9c4771jnbN++XYMHD9aIESP0448/ql+/furXr58OHjxY1LcEAABwy+iRAAAACs9iGIZR7IUtFq1du1b9+vWTdPXIX40aNfSPf/xD48aNkySlpqbKz89PS5cu1aBBg3T48GEFBgZqz549atu2rSQpNjZWDzzwgP744w/VqFFDb7/9tiZNmqTExES5urpKkiZMmKB169bpyJEjkqSBAwcqPT1d69evt9bTvn17tWrVSosWLSpU/WlpafLx8VFqaqq8vb2LuxuuKzv2+3xjLuEd7b4dAABQeCX9+y/RI90MPRIAALcfM3qkv7LrNaQSEhKUmJio0NBQ65iPj4+Cg4O1Y8cOSdKOHTvk6+trbbQkKTQ0VE5OTtq1a5d1TqdOnayNliSFhYXp6NGjOn/+vHXOX7eTNydvOwAAALcLeiQAAABb5ey5ssTEREmSn5+fzbifn5/1tcTERFWrVs22iHLlVKlSJZs5AQEB+daR91rFihWVmJh4w+0UJDMzU5mZmdbnaWlpRXl7AAAAxUKPBAAAYOuOusvezJkz5ePjY33Url3b0SUBAAA4HD0SAAAwm10DKX9/f0lSUlKSzXhSUpL1NX9/fyUnJ9u8fuXKFZ07d85mTkHr+Os2rjcn7/WCTJw4UampqdbHqVOnivoWAQAAioweCQAAwJZdA6mAgAD5+/srLi7OOpaWlqZdu3YpJCREkhQSEqILFy5o37591jlbtmxRbm6ugoODrXO2bdum7Oxs65zNmzerSZMmqlixonXOX7eTNydvOwVxc3OTt7e3zQMAAKCk0SMBAADYKnIgdenSJcXHxys+Pl7S1Yt0xsfH6+TJk7JYLBozZoymT5+uL774QgcOHNCwYcNUo0YN611m7rrrLoWHh+uJJ57Q7t279cMPPyg6OlqDBg1SjRo1JElDhgyRq6urRowYoUOHDunjjz/WvHnzFBMTY61j9OjRio2N1Zw5c3TkyBFNnTpVe/fuVXR09K3vFQAAgCKiRwIAACgCo4i++eYbQ1K+R2RkpGEYhpGbm2u88MILhp+fn+Hm5mbcf//9xtGjR23W8b///c8YPHiw4enpaXh7exvDhw83Ll68aDPnp59+Mjp27Gi4ubkZNWvWNGbNmpWvltWrVxuNGzc2XF1djWbNmhkbNmwo0ntJTU01JBmpqalF2wmFlLXxu3wPAADgWCX1+0+PVHj0SAAA3H5K+vf/WhbDMAxHBGG3g7S0NPn4+Cg1NbVETk3Pjv0+35hLeEe7bwcAABReSf/+lwX0SAAA3HnM7pHuqLvsAQAAAAAAwPEIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKkIpAAAAAAAAGAqAikAAAAAAACYikAKAAAAAAAApiKQAgAAAAAAgKlKfSC1YMEC1atXT+7u7goODtbu3bsdXRIAAIDD0SMBAIDbWTlHF3ArPv74Y8XExGjRokUKDg7W3LlzFRYWpqNHj6patWqOLq9A2bHf2zx3Ce/ooEoAAEBZRY8EAABud6X6DKnXX39dTzzxhIYPH67AwEAtWrRI5cuX1/vvv+/o0iRJJy5sdHQJAADgDkSPBAAAbnel9gyprKws7du3TxMnTrSOOTk5KTQ0VDt27HBgZUVz7dFAiSOCAACg+OiRAABAaVBqA6mzZ88qJydHfn5+NuN+fn46cuRIgctkZmYqMzPT+jw1NVWSlJaWViI1XrqcqYOX10mS6vh0L/yCn26yWw0u3UPsti4AAMqCvN99wzAcXEnJoEcqHHokAABsmd0jldpAqjhmzpypadOm5RuvXbu2CVufY8I2AABAYV28eFE+Pj6OLuO2QI8EAADymNUjldpAqkqVKnJ2dlZSUpLNeFJSkvz9/QtcZuLEiYqJibE+z83N1blz51S5cmVZLBa71peWlqbatWvr1KlT8vb2tuu6UbL47EovPrvSjc+v9Cptn51hGLp48aJq1Kjh6FJKBD0SSgqfXenFZ1e68fmVXqXtszO7Ryq1gZSrq6vatGmjuLg49evXT9LV5ikuLk7R0dEFLuPm5iY3NzebMV9f3xKt09vbu1R88ZAfn13pxWdXuvH5lV6l6bMry2dG0SOhpPHZlV58dqUbn1/pVZo+OzN7pFIbSElSTEyMIiMj1bZtW7Vr105z585Venq6hg8f7ujSAAAAHIYeCQAA3O5KdSA1cOBApaSkaPLkyUpMTFSrVq0UGxub7yKeAAAAdxJ6JAAAcLsr1YGUJEVHR1/39HNHcnNz05QpU/Kd/o7bH59d6cVnV7rx+ZVefHa3J3ok2BufXenFZ1e68fmVXnx2N2Yxyuo9jwEAAAAAAHBbcnJ0AQAAAAAAALizEEgBAAAAAADAVARSAAAAAAAAMBWBVAlZsGCB6tWrJ3d3dwUHB2v37t2OLgk3sW3bNvXp00c1atSQxWLRunXrHF0SCmnmzJm655575OXlpWrVqqlfv346evSoo8tCIbz99ttq2bKlvL295e3trZCQEG3cuNHRZaEYZs2aJYvFojFjxji6FNzm6JFKH3qk0oseqfSiRyo76JGuj0CqBHz88ceKiYnRlClTtH//fgUFBSksLEzJycmOLg03kJ6erqCgIC1YsMDRpaCItm7dqqioKO3cuVObN29Wdna2evToofT0dEeXhpuoVauWZs2apX379mnv3r3q1q2b+vbtq0OHDjm6NBTBnj17tHjxYrVs2dLRpeA2R49UOtEjlV70SKUXPVLZQI90Y9xlrwQEBwfrnnvu0fz58yVJubm5ql27tkaNGqUJEyY4uDoUhsVi0dq1a9WvXz9Hl4JiSElJUbVq1bR161Z16tTJ0eWgiCpVqqRXX31VI0aMcHQpKIRLly6pdevWWrhwoaZPn65WrVpp7ty5ji4Ltyl6pNKPHql0o0cq3eiRShd6pJvjDCk7y8rK0r59+xQaGmodc3JyUmhoqHbs2OHAyoA7R2pqqqSrP9ooPXJycrRq1Sqlp6crJCTE0eWgkKKiotSrVy+b3z2gIPRIgOPRI5VO9EilEz3SzZVzdAFlzdmzZ5WTkyM/Pz+bcT8/Px05csRBVQF3jtzcXI0ZM0YdOnRQ8+bNHV0OCuHAgQMKCQlRRkaGPD09tXbtWgUGBjq6LBTCqlWrtH//fu3Zs8fRpaAUoEcCHIseqfShRyq96JEKh0AKQJkSFRWlgwcP6vvvv3d0KSikJk2aKD4+Xqmpqfrkk08UGRmprVu30nDd5k6dOqXRo0dr8+bNcnd3d3Q5AICboEcqfeiRSid6pMIjkLKzKlWqyNnZWUlJSTbjSUlJ8vf3d1BVwJ0hOjpa69ev17Zt21SrVi1Hl4NCcnV1VcOGDSVJbdq00Z49ezRv3jwtXrzYwZXhRvbt26fk5GS1bt3aOpaTk6Nt27Zp/vz5yszMlLOzswMrxO2GHglwHHqk0okeqXSiRyo8riFlZ66urmrTpo3i4uKsY7m5uYqLi+PvfYESYhiGoqOjtXbtWm3ZskUBAQGOLgm3IDc3V5mZmY4uAzdx//3368CBA4qPj7c+2rZtq6FDhyo+Pp5GC/nQIwHmo0cqW+iRSgd6pMLjDKkSEBMTo8jISLVt21bt2rXT3LlzlZ6eruHDhzu6NNzApUuX9Ouvv1qfJyQkKD4+XpUqVVKdOnUcWBluJioqSitXrtTnn38uLy8vJSYmSpJ8fHzk4eHh4OpwIxMnTlTPnj1Vp04dXbx4UStXrtS3336rTZs2Obo03ISXl1e+a5BUqFBBlStX5tokuC56pNKJHqn0okcqveiRSi96pMIjkCoBAwcOVEpKiiZPnqzExES1atVKsbGx+S7iidvL3r171bVrV+vzmJgYSVJkZKSWLl3qoKpQGG+//bYkqUuXLjbjS5Ys0WOPPWZ+QSi05ORkDRs2TGfOnJGPj49atmypTZs2qXv37o4uDUAJoEcqneiRSi96pNKLHgl3AothGIajiwAAAAAAAMCdg2tIAQAAAAAAwFQEUgAAAAAAADAVgRQAAAAAAABMRSAFAAAAAAAAUxFIAQAAAAAAwFQEUgAAAAAAADAVgRQAAAAAAABMRSAFAAAAAAAAUxFIAQCA28q2bdvUp08f1ahRQxaLRevWrSvyOlavXq1WrVqpfPnyqlu3rl599VX7FwoAAGCistYjEUgBAIDbSnp6uoKCgrRgwYJiLb9x40YNHTpUTz/9tA4ePKiFCxfqjTfe0Pz58+1cKQAAgHnKWo9kMQzDcMiWAQAAbsJisWjt2rXq16+fdSwzM1OTJk3SRx99pAsXLqh58+Z65ZVX1KVLF0nSkCFDlJ2drTVr1liXeeuttzR79mydPHlSFovF5HcBAABgX2WhR+IMKQAAUKpER0drx44dWrVqlX7++Wc9/PDDCg8P17FjxyRdbcbc3d1tlvHw8NAff/yh33//3RElAwAAlLjS1iMRSAEAgFLj5MmTWrJkidasWaP77rtPDRo00Lhx49SxY0ctWbJEkhQWFqbPPvtMcXFxys3N1X/+8x/NmTNHknTmzBlHlg8AAFAiSmOPVM70LQIAABTTgQMHlJOTo8aNG9uMZ2ZmqnLlypKkJ554QsePH1fv3r2VnZ0tb29vjR49WlOnTpWTE8fiAABA2VMaeyQCKQAAUGpcunRJzs7O2rdvn5ydnW1e8/T0lHT1mgqvvPKKXn75ZSUmJqpq1aqKi4uTJNWvX9/0mgEAAEpaaeyRCKQAAECpcffddysnJ0fJycm67777bjjX2dlZNWvWlCR99NFHCgkJUdWqVc0oEwAAwFSlsUcikAIAALeVS5cu6ddff7U+T0hIUHx8vCpVqqTGjRtr6NChGjZsmObMmaO7775bKSkpiouLU8uWLdWrVy+dPXtWn3zyibp06aKMjAzr9RS2bt3qwHcFAABwa8paj2QxDMNwyJYBAAAK8O2336pr1675xiMjI7V06VJlZ2dr+vTp+vDDD/Xf//5XVapUUfv27TVt2jS1aNFCZ8+eVZ8+fXTgwAEZhqGQkBDNmDFDwcHBDng3AAAA9lHWeiQCKQAAAAAAAJiKW80AAAAAAADAVARSAAAAAAAAMBWBFAAAAAAAAExFIAUAAAAAAABTEUgBAAAAAADAVARSAAAAAAAAMBWBFAAAAAAAAExFIAUAAAAAAABTEUgBAAAAAADAVARSAAAAAAAAMBWBFAAAAAAAAExFIAUAAAAAAABTEUgBAAAAAADAVARSAAAAAAAAMBWBFAAAAAAAAExFIAUAAAAAAABTEUgBAAAAAADAVARSAG5o6tSpslgsji7DLpYuXSqLxaITJ044uhQU0alTp+Tu7q4ffvjhpnO7dOmiLl262IwlJSVpwIABqly5siwWi+bOnVuk7Q8aNEiPPPJIkZYBAJRt9Ei4HdAjoTQjkAJQYrZv366pU6fqwoULji7luhYuXKilS5eW6DYsFossFotGjhxZ4OuTJk2yzjl79uxN17d79249++yzatOmjVxcXMpMM3wjL774ooKDg9WhQ4diLT927Fht2rRJEydO1LJlyxQeHi5JmjFjhh588EH5+fnJYrFo6tSpBS7//PPP69NPP9VPP/1U3LcAAIAVPdJV9Ei3riR6pCNHjui5555Tq1at5OXlperVq6tXr17au3dvvuXpkXArLIZhGI4uAsDt68qVK7py5Yrc3d2LvOxrr72m8ePHKyEhQfXq1bN/cUWUk5Oj7Oxsubm5WRuU5s2bq0qVKvr2229LbLsWi0Xu7u5yd3dXUlKSXF1dbV6vX7++zpw5o4yMDKWkpKhKlSo3XN/UqVP18ssvq2XLlrp48aL+85//qCz/U56SkqKaNWvqgw8+0ODBg286P+/I318/U39/f4WGhmr58uU2cy0Wi/z9/RUUFKRNmzZpypQp1w2lgoOD1aRJE3344YfFfSsAgDKEHunW0SPdmpLqkcaNG6d//etfioiIULt27ZSamqrFixfrxIkTio2NVWhoqM166ZFQXJwhhTtabm6uMjIyHF2GjfT09BLfhmEY+vPPPws1t1y5csVqtG5Hzs7Ocnd3d8jRsvDwcKWlpWnjxo0249u3b1dCQoJ69epV6HU988wzSk1N1d69e9W9e3d7l3rbWb58ucqVK6c+ffoUex3Jycny9fXNN56QkKAzZ87kC6oK8sgjj+izzz7TpUuXil0HAJQW9Eg3R49kH/RIxVdSPdLgwYN16tQpvffee3ryySc1fvx47dq1S5UqVSrwwB09EoqLQAqlXt7f7x85ckSPPPKIvL29VblyZY0ePTpfI2WxWBQdHa0VK1aoWbNmcnNzU2xsrCTpv//9rx5//HH5+fnJzc1NzZo10/vvv59vexkZGZo6daoaN24sd3d3Va9eXf3799fx48clXT3iYLFY8h1NOnHihCwWi82pz4899pg8PT11/PhxPfDAA/Ly8tLQoUMlSceOHVNERIT8/f3l7u6uWrVqadCgQUpNTbUuf+XKFb300ktq0KCB3NzcVK9ePf3f//2fMjMzbbZdr1499e7dW5s2bVLbtm3l4eGhxYsXF2n/FrQf161bp+bNm1v3V96+zFtu/PjxkqSAgADr6dZ/vTbB8uXL1aZNG3l4eKhSpUoaNGiQTp06ZbOtLl26qHnz5vrll1/UtWtXlS9fXjVr1tTs2bPz1frWW2+pWbNmKl++vCpWrKi2bdtq5cqV1tevvT5CvXr1dOjQIW3dutVaX5cuXfTbb7/JYrHojTfeyLeN7du3y2Kx6KOPPirU/stTs2ZNderUyaYeSVqxYoVatGih5s2bF3pdfn5+8vDwKNL2r2fv3r0KCwtTlSpV5OHhoYCAAD3++OPW14vzfT558qR69+4tT09P1axZUwsWLJAkHThwQN26dVOFChVUt27dfPvietatW6fg4GB5enrme+2dd95RgwYN5OHhoXbt2um7776zeT3vMzcMQwsWLLB+znmKclS6e/fuSk9P1+bNmwu9DAA4Ej0SPVIeeqSiu5N7pDZt2uRbZ+XKlXXffffp8OHD+bZFj4TiIpBCmfHII48oIyNDM2fO1AMPPKA333xTTz75ZL55W7Zs0dixYzVw4EDNmzdP9erVU1JSktq3b6+vv/5a0dHRmjdvnho2bKgRI0bYXNgvJydHvXv31rRp09SmTRvNmTNHo0ePVmpqqg4ePFisuq9cuaKwsDBVq1ZNr732miIiIpSVlaWwsDDt3LlTo0aN0oIFC/Tkk0/qt99+s7nWwMiRIzV58mS1bt1ab7zxhjp37qyZM2dq0KBB+bZz9OhRDR48WN27d9e8efPUqlWrYtWb5/vvv9ezzz6rQYMGafbs2crIyFBERIT+97//SZL69+9vPXX4jTfe0LJly7Rs2TJVrVpV0tVr9wwbNkyNGjXS66+/rjFjxiguLk6dOnXKdz2F8+fPKzw8XEFBQZozZ46aNm2q559/3uZI2rvvvqu///3vCgwM1Ny5czVt2jS1atVKu3btuu57mDt3rmrVqqWmTZta65s0aZLq16+vDh06aMWKFfmWWbFihby8vNS3b98i77MhQ4boyy+/tB49unLlitasWaMhQ4YUeV32kJycrB49eujEiROaMGGC3nrrLQ0dOlQ7d+4s9jpzcnLUs2dP1a5dW7Nnz1a9evUUHR2tpUuXKjw8XG3bttUrr7wiLy8vDRs2TAkJCTdcX3Z2tvbs2aPWrVvne+1f//qXnnrqKfn7+2v27Nnq0KGDHnzwQZuGvVOnTlq2bJmkq81S3udcHIGBgfLw8CjURUMB4HZCj0SPRI9UNPRIBUtMTCzwzybpkVBsBlDKTZkyxZBkPPjggzbjzz77rCHJ+Omnn6xjkgwnJyfj0KFDNnNHjBhhVK9e3Th79qzN+KBBgwwfHx/j8uXLhmEYxvvvv29IMl5//fV8deTm5hqGYRjffPONIcn45ptvbF5PSEgwJBlLliyxjkVGRhqSjAkTJtjM/fHHHw1Jxpo1a677vuPj4w1JxsiRI23Gx40bZ0gytmzZYh2rW7euIcmIjY297vquJ2///pUkw9XV1fj111+tYz/99JMhyXjrrbesY6+++qohyUhISLBZ/sSJE4azs7MxY8YMm/EDBw4Y5cqVsxnv3LmzIcn48MMPrWOZmZmGv7+/ERERYR3r27ev0axZsxu+lyVLluSrp1mzZkbnzp3zzV28eLEhyTh8+LB1LCsry6hSpYoRGRl5w+1cS5IRFRVlnDt3znB1dTWWLVtmGIZhbNiwwbBYLMaJEyes+zklJaVI646Kisr3+RTW2rVrDUnGnj17rjunON/nl19+2Tp2/vx5w8PDw7BYLMaqVaus40eOHDEkGVOmTLlhjb/++mu+75VhXP0sqlWrZrRq1crIzMy0jr/zzjuGpHyfad5ncD0pKSmFqqdx48ZGz549bzgHAG4X9Ej0SIZBj1Qc9Ej5bdu2zbBYLMYLL7xQ4Ov0SCgOzpBCmREVFWXzfNSoUZKkr776yma8c+fOCgwMtD43DEOffvqp+vTpI8MwdPbsWesjLCxMqamp2r9/vyTp008/VZUqVazr/qtb+Zv7Z555xua5j4+PJGnTpk26fPlygcvkva+YmBib8X/84x+SpA0bNtiMBwQEKCwsrNg1Xis0NFQNGjSwPm/ZsqW8vb3122+/3XTZzz77TLm5uXrkkUds9re/v78aNWqkb775xma+p6en/va3v1mfu7q6ql27djbb8vX11R9//KE9e/bY4d1dPZrs7u5ucwRw06ZNOnv2rE0tRVGxYkWFh4dbT2VfuXKl7r33XtWtW9cuNRdV3vUC1q9fr+zsbLut9693yvH19VWTJk1UoUIFm1sCN2nSRL6+vjf9vuQdTa5YsaLN+N69e5WcnKynn37a5gKojz32mPV/PyWhYsWKhbrLDwDcTuiRrqJHokcqLHokW8nJyRoyZIgCAgL03HPPFTiHHgnFQSCFMqNRo0Y2zxs0aCAnJyebv8eXrjYdf5WSkqILFy7onXfeUdWqVW0ew4cPl3T1H2FJOn78uJo0aaJy5crZre5y5cqpVq1a+WqMiYnRe++9pypVqigsLEwLFiywuTbC77//LicnJzVs2NBmWX9/f/n6+ur333+/4fu+VXXq1Mk3VrFiRZ0/f/6myx47dkyGYahRo0b59vnhw4et+ztPrVq18jWz127r+eefl6enp9q1a6dGjRopKirqlk4b9vX1VZ8+fWz+hn/FihWqWbOmunXrVuz1DhkyRJs3b9bJkye1bt26656KfunSJSUmJlofKSkpxd7m9XTu3FkRERGaNm2aqlSpor59+2rJkiX5rq9RFO7u7tY/Ocjj4+NT4Gfo4+NTqO+LpHx3yMn7fl/7v3sXFxfVr1+/qGUXmmEYd8QtpAGULfRIV9Ej0SMVFj3S/5eenq7evXvr4sWL+vzzzwu8XlVeHfRIKCr7/WIAt5nr/YN47YUOc3NzJUl/+9vfFBkZWeAyLVu2vOXt5uTkFDju5uYmJ6f82fCcOXP02GOP6fPPP9e///1v/f3vf9fMmTO1c+dOm+assP/w2+sCj3mcnZ0LHL/2R7Egubm5slgs2rhxY4HrufaHrjDbuuuuu3T06FGtX79esbGx+vTTT7Vw4UJNnjxZ06ZNu2lNBRk2bJjWrFmj7du3q0WLFvriiy/07LPPFvh5FdaDDz4oNzc3RUZGKjMz0+aI2F+99tprNnXXrVs33/9xuFUWi0WffPKJdu7cqS+//FKbNm3S448/rjlz5mjnzp3y9PQs8vf5ep9Vcb8vlStXlqRCN2Ul7fz58/kaPAAobeiRbNEjFR090p3RI2VlZal///76+eeftWnTphteYJ4eCcVBIIUy49ixYzZHuH799Vfl5ube9C5aVatWlZeXl3JychQaGnrDuQ0aNNCuXbuUnZ0tFxeXAufknTZ77UUnrz0aVxgtWrRQixYt9M9//lPbt29Xhw4dtGjRIk2fPl1169ZVbm6ujh07prvuusu6TFJSki5cuOCwU5z/6no/1A0aNJBhGAoICFDjxo3ttr0KFSpo4MCBGjhwoPUHdMaMGZo4ceJ1b8t8o2Y1PDxcVatW1YoVKxQcHKzLly/r0UcfvaUaPTw81K9fPy1fvlw9e/Ys8MKQ0tVGr2PHjjbLlZT27durffv2mjFjhlauXKmhQ4dq1apVGjlypF2/z8VRp04deXh45LuwZ973+9ixYzZHY7Ozs5WQkKCgoCC713LlyhWdOnVKDz74oN3XDQAliR7pKnokeqSiupN7pNzcXA0bNkxxcXFavXq1OnfufN259EgoLv5kD2VG3m1T87z11luSpJ49e95wOWdnZ0VEROjTTz8t8C4wfz0NOCIiQmfPntX8+fPzzcs7ilG3bl05Oztr27ZtNq8vXLiwcG9EUlpamq5cuWIz1qJFCzk5OVlPFX7ggQckyeYON5L0+uuvS5J69epV6O2VlAoVKkjK/0Pdv39/OTs7a9q0afmO/hiGYf2b+KK4dhlXV1cFBgbKMIwb/u1/hQoV8tWXp1y5cho8eLBWr16tpUuXqkWLFkU6Enw948aN05QpU/TCCy9cd079+vUVGhpqfXTo0OGWt3ut8+fP59v/eXcWyvue2eP7fCtcXFzUtm1b7d2712a8bdu2qlq1qhYtWqSsrCzr+NKlS6/7ed6qX375RRkZGbr33ntLZP0AUFLoka6iR7qKHunm6JGuXmvu448/1sKFC9W/f/8bzqVHQnFxhhTKjISEBD344IMKDw/Xjh07tHz5cg0ZMqRQRwFmzZqlb775RsHBwXriiScUGBioc+fOaf/+/fr666917tw5SVePyHz44YeKiYnR7t27dd999yk9PV1ff/21nn32WfXt21c+Pj56+OGH9dZbb8lisahBgwZav359vr/5v5EtW7YoOjpaDz/8sBo3bqwrV65o2bJl1sZQkoKCghQZGal33nlHFy5cUOfOnbV792598MEH6tevn7p27Vq8HWlHbdq0kSRNmjRJgwYNkouLi/r06aMGDRpo+vTpmjhxok6cOKF+/frJy8tLCQkJWrt2rZ588kmNGzeuSNvq0aOH/P391aFDB/n5+enw4cOaP3++evXqJS8vrxvW+Pbbb2v69Olq2LChqlWrZnM0adiwYXrzzTf1zTff6JVXXinejrhGUFDQLZ3B8/vvv1tvy5vXhEyfPl3S1eaosEcoP/jgAy1cuFAPPfSQGjRooIsXL+rdd9+Vt7e3tZm3x/f5VvXt21eTJk1SWlqavL29JV1twqZPn66nnnpK3bp108CBA5WQkKAlS5YU6foIy5Yt0++//269MO62bdus+/LRRx+1OYq+efNmlS9fXt27d7fjuwOAkkePRI9Ej0SPVJQeae7cuVq4cKFCQkJUvnx5LV++3Ob1hx56yBqqSvRIuAXm3MwPKDl5t4L95ZdfjAEDBhheXl5GxYoVjejoaOPPP/+0masb3NY0KSnJiIqKMmrXrm24uLgY/v7+xv3332+88847NvMuX75sTJo0yQgICLDOGzBggHH8+HHrnJSUFCMiIsIoX768UbFiReOpp54yDh48WOAtYCtUqJCvlt9++814/PHHjQYNGhju7u5GpUqVjK5duxpff/21zbzs7Gxj2rRp1lpq165tTJw40cjIyLCZV7duXaNXr16F2p/Xut4tjQvaj/+PvTuPq6Ls/z/+PiA7HHBBwMR9JRV3pczMUFT0VtPSbu9Ec6lutdQ09a5cstLMbDVtuUO/d4um5ZILpZiW6Z25UGpq5m1qKWIW4A7C/P7wx+SRRY7CsL2ej8d55Jm5Zuaa68w5vPucOTPVq1fPdrvf6dOnG7fccovh4uKS7XbCn3zyidGuXTvDx8fH8PHxMRo0aGCMGDHCOHDggNnmzjvvzPFWxTExMUb16tXN52+99ZbRvn17o2LFioaHh4dRu3ZtY/z48UZKSorZJqdbGicmJhrR0dGGn59fjrfCNYwrtz12cXExfv3111xGKW95HXdZnLmlcdZthnN65NT/3OzcudO4//77jWrVqhkeHh5G5cqVje7duxvbt293aHezx3Nur2F+j8uTJ08a5cqVM28FfbU333zTqFmzpuHh4WG0bNnS+Oqrr4w777wz37c0zrpldk6Pa2/j3KZNG+Mf//jHdfsLAMUFGYmMZBhkJDKS8xkpJiYm13G89jgxDDISbpzNMPJxdT2gGJs6daqmTZumU6dO5fpbc+BmNGvWTBUqVFB8fHxRd6XMGjJkiH766Sd9/fXXRbL9hIQENW/eXDt37jRP2QeA4o6MhMJGRip6ZCSUZFxDCgDysH37diUkJGjgwIFF3ZUybcqUKfruu+9u6jbVN2PmzJnq27cvQQsAgP+PjFQ8kJFQknENKaCMSklJ0YULF/JsExwcbFFvip89e/Zox44deumllxQSEqJ+/fo5zM/IyHC4mGtOfH19s92e2SqnTp3K9bbD0pULmlaoUMHCHt2catWq6eLFi0W2/UWLFhXZtgEA1iIj5Y2MVLyQkVCSUZACyqjHHntMCxcuzLNNWf5F79KlS/XMM8+ofv36+uijj7LdEvnYsWMOt9DOyZQpUzR16tRC7GXuWrVqledth++8805t3LjRug4BAFBCkJHyRkYCUFC4hhRQRv344486fvx4nm0iIyMt6k3Jc/HiRW3evDnPNrVq1XLqjm8F6Ztvvsnz293y5cubd/gBAAB/ISPdHDISgPyiIAUAAAAAAABLcVFzAAAAAAAAWKpMX0MqMzNTx48fl5+fn2w2W1F3BwAAWMAwDJ05c0ZVqlSRiwvfzeWEjAQAQNljdUYq0wWp48ePKzQ0tKi7AQAAisCxY8dUtWrVou5GsURGAgCg7LIqI5XpgpSfn5+kK4Ntt9uLuDcAAMAKqampCg0NNXMAsiMjAQBQ9lidkcp0QSrrFHS73U7YAgCgjOGnaLkjIwEAUHZZlZG4cAIAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEuV6WtIAQCQl4yMDKWnpxd1N+AkNzc3ubq6FnU3AAAotchIJVNxy0gUpAAAuIZhGEpMTFRycnJRdwU3KCAgQMHBwVy4HACAAkRGKvmKU0aiIAUAwDWyglblypXl7e1dLP5gI38Mw9D58+eVlJQkSQoJCSniHgEAUHqQkUqu4piRKEgBAHCVjIwMM2hVrFixqLuDG+Dl5SVJSkpKUuXKlYvVqekAAJRUZKSSr7hlJC5qDgDAVbKuh+Dt7V3EPcHNyHr9uL4FAAAFg4xUOhSnjERBCgCAHHAKesnG6wcAQOHgb2zJVpxePwpSAAAAAAAAsBQFKQAASjibzZbnY+rUqUXat+XLl9/UOt5++2116NBBdrtdNpuNO/sAAIB8K8056Y8//tCoUaNUv359eXl5qVq1anr00UeVkpJScJ0sRFzUHACAfEqP22zZtty6tMt32xMnTpj/Xrx4sSZPnqwDBw6Y03x9fZ3adlpamtzd3Z1apjCdP39eXbp0UZcuXTRp0qSi7g4AALiGlRlJIidlOX78uI4fP67Zs2crLCxMR44c0cMPP6zjx49r6dKlRd296+IMqUKUHrc52wMAgIIWHBxsPvz9/WWz2czn586d04ABAxQUFCRfX1+1atVK69evd1i+Ro0amj59ugYOHCi73a7hw4dLkt555x2FhobK29tbvXv31pw5cxQQEOCw7IoVK9S8eXN5enqqVq1amjZtmi5fvmyuV5J69+4tm81mPv/+++911113yc/PT3a7XS1atND27dtz3b/Ro0dr4sSJatu2bcEMGIocGQkAYJXSnJMaNWqkTz75RD169FDt2rXVsWNHPffcc/rss8/M7RRnFKQAACjFzp49q27duik+Pl67du1Sly5d1KNHDx09etSh3ezZsxUeHq5du3bp6aef1jfffKOHH35Yjz32mBISEtSpUyc999xzDst8/fXXGjhwoB577DH9+OOPeuutt7RgwQKz3XfffSdJio2N1YkTJ8znAwYMUNWqVfXdd99px44dmjhxotzc3CwYDQAAgL+UxpyUkpIiu92ucuWK/w/iin8PAQDADQsPD1d4eLj5fPr06Vq2bJlWrlypkSNHmtM7duyoxx9/3Hz+5JNPqmvXrho3bpwkqV69etqyZYtWrVpltpk2bZomTpyomJgYSVKtWrU0ffp0PfHEE5oyZYoCAwMlSQEBAQoODjaXO3r0qMaPH68GDRpIkurWrVsIew4AAJC30paTfv/9d02fPt08i6u44wwpAABKsbNnz2rcuHFq2LChAgIC5Ovrq3379mX75q9ly5YOzw8cOKDWrVs7TLv2+ffff69nnnlGvr6+5mPYsGE6ceKEzp8/n2ufxo4dq6FDhyoyMlIzZ87UoUOHbnIvAQAAnFeaclJqaqqio6MVFhZWpBdqdwYFKQAASrFx48Zp2bJlev755/X1118rISFBjRs3VlpamkM7Hx8fp9d99uxZTZs2TQkJCeZj9+7dOnjwoDw9PXNdburUqdq7d6+io6O1YcMGhYWFadmyZU5vHwAA4GaUlpx05swZdenSRX5+flq2bFmJuRQCP9kDAKAU++abbzRo0CD17t1b0pVw9Msvv1x3ufr165vXMshy7fPmzZvrwIEDqlOnTq7rcXNzU0ZGRrbp9erVU7169TRmzBjdf//9io2NNfsIAABghdKQk1JTUxUVFSUPDw+tXLkyz2JXcUNBCgCAUqxu3br69NNP1aNHD9lsNj399NPKzMy87nKjRo1S+/btNWfOHPXo0UMbNmzQ2rVrZbPZzDaTJ09W9+7dVa1aNfXt21cuLi76/vvvtWfPHj377LOSrtxBJj4+Xrfffrs8PDzk6emp8ePHq2/fvqpZs6Z+/fVXfffdd+rTp0+ufUlMTFRiYqJ+/vlnSdLu3bvl5+enatWqqUKFCjc5QgAAoKwq6TkpNTVVnTt31vnz5/X+++8rNTVVqampkqTAwEC5uroWwCgVHn6yBwBAKTZnzhyVL19et912m3r06KGoqCg1b978usvdfvvtmj9/vubMmaPw8HDFxcVpzJgxDt+6RUVFadWqVfriiy/UqlUrtW3bVi+//LKqV69utnnppZe0bt06hYaGqlmzZnJ1ddXp06c1cOBA1atXT/fdd5+6du2qadOm5dqX+fPnq1mzZho2bJgkqX379mrWrJlWrlx5EyMDAADKupKek3bu3Klvv/1Wu3fvVp06dRQSEmI+jh07dvMDVMhshmEYRd2JopKamip/f3/ztogFLT1uc7Zpbl3aFfh2AAAF5+LFizp8+LBq1qxZok55tsKwYcO0f/9+ff3110XdlevK63Us7L//pQEZCQBwLTJS3kpKTipOGYmf7AEAgBzNnj1bnTp1ko+Pj9auXauFCxfqzTffLOpuAQAAFDly0s2jIAUAAHK0bds2zZo1S2fOnFGtWrX02muvaejQoUXdLQAAgCJHTrp5FKQAAECOPv7446LuAgAAQLFETrp5XNQcAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAClwKBBg2Sz2WSz2eTm5qagoCB16tRJ7733njIzM4u6ezdl79696tOnj2rUqCGbzaZXXnmlqLsEAABKkNKck9555x3dcccdKl++vMqXL6/IyEht27atqLuVL+WKugMAAJQUh7a/Zdm2ard8yOllunTpotjYWGVkZOjkyZOKi4vTY489pqVLl2rlypUqV65k/tk/f/68atWqpXvvvVdjxowp6u4AAIBrWJmRJHLS1TZu3Kj7779ft912mzw9PfXCCy+oc+fO2rt3r2655Zai7l6eOEMKAIBSwsPDQ8HBwbrlllvUvHlz/etf/9KKFSu0du1aLViwwGyXnJysoUOHKjAwUHa7XR07dtT333/vsK7PPvtMrVq1kqenpypVqqTevXub8/78808NHDhQ5cuXl7e3t7p27aqDBw9Kks6dOye73a6lS5c6rG/58uXy8fHRmTNnlJaWppEjRyokJESenp6qXr26ZsyYket+tWrVSi+++KL69+8vDw+PAhgpAABQ1pTWnPTBBx/on//8p5o2baoGDRro3XffVWZmpuLj4wtg1AoXBSkAAEqxjh07Kjw8XJ9++qk57d5771VSUpLWrl2rHTt2qHnz5rr77rv1xx9/SJJWr16t3r17q1u3btq1a5fi4+PVunVrc/lBgwZp+/btWrlypbZu3SrDMNStWzelp6fLx8dH/fv3V2xsrEM/YmNj1bdvX/n5+em1117TypUr9fHHH+vAgQP64IMPVKNGDUvGAwAAIEtpzEnnz59Xenq6KlSocHODY4GSeU4aAADItwYNGuiHH36QJG3evFnbtm1TUlKSebbR7NmztXz5ci1dulTDhw/Xc889p/79+2vatGnmOsLDwyVJBw8e1MqVK/XNN9/otttuk3Tlm7nQ0FAtX75c9957r4YOHarbbrtNJ06cUEhIiJKSkrRmzRqtX79eknT06FHVrVtX7dq1k81mU/Xq1a0cDgAAAFNpy0kTJkxQlSpVFBkZedNjU9g4QwoAgFLOMAzZbDZJ0vfff6+zZ8+qYsWK8vX1NR+HDx/WoUOHJEkJCQm6++67c1zXvn37VK5cObVp08acVrFiRdWvX1/79u2TJLVu3Vq33nqrFi5cKEl6//33Vb16dbVv317SlW8OExISVL9+fT366KP64osvCm3fAQAA8lKactLMmTO1aNEiLVu2TJ6ens4PhsU4QwoAgFJu3759qlmzpiTp7NmzCgkJ0caNG7O1CwgIkCR5eXnd9DaHDh2quXPnauLEiYqNjdXgwYPNsNe8eXMdPnxYa9eu1fr163XfffcpMjIy2/UUAAAACltpyUmzZ8/WzJkztX79ejVp0uSm+2gFzpACAKAU27Bhg3bv3q0+ffpIuhJyEhMTVa5cOdWpU8fhUalSJUlSkyZNcr0QZsOGDXX58mV9++235rTTp0/rwIEDCgsLM6f94x//0JEjR/Taa6/pxx9/VExMjMN67Ha7+vXrp3feeUeLFy/WJ598Yl6bAQAAwAqlJSfNmjVL06dPV1xcnFq2bHnD42E1zpACAKCUuHTpkhITEx1uZzxjxgx1795dAwcOlCRFRkYqIiJCvXr10qxZs1SvXj0dP37cvEBny5YtNWXKFN19992qXbu2+vfvr8uXL2vNmjWaMGGC6tatq549e2rYsGF666235Ofnp4kTJ+qWW25Rz549zb6UL19e99xzj8aPH6/OnTuratWq5rw5c+YoJCREzZo1k4uLi5YsWaLg4GDzm8drpaWl6ccffzT//dtvvykhIUG+vr6qU6dO4Q0oAAAoNUprTnrhhRc0efJkffjhh6pRo4YSExMlyfy5YXHGGVIAAJQScXFxCgkJUY0aNdSlSxd9+eWXeu2117RixQq5urpKkmw2m9asWaP27dtr8ODBqlevnvr3768jR44oKChIktShQwctWbJEK1euVNOmTdWxY0dt27bN3E5sbKxatGih7t27KyIiQoZhaM2aNXJzc3Poz5AhQ5SWlqYHH3zQYbqfn59mzZqlli1bqlWrVvrll1+0Zs0aubjkHEuOHz+uZs2aqVmzZjpx4oRmz56tZs2aaejQoQU5fAAAoBQrrTlp3rx5SktLU9++fRUSEmI+Zs+eXZDDVyhshmEYRd2JopKamip/f3+lpKTIbrcX+PrT4zZnm+bWpV2BbwcAUHAuXryow4cPq2bNmiXiYpDF2X/+8x+NGTNGx48fl7u7u6Xbzut1LOy//6UBGQkAcC0yUsEqqpxUnDISP9kDAAAF6vz58zpx4oRmzpyphx56yPJiFAAAQHFFTvoLP9kDAAAFatasWWrQoIGCg4M1adKkou4OAABAsUFO+gsFKQAAUKCmTp2q9PR0xcfHF/uLaQIAAFiJnPQXClIAAAAAAACwFAUpAAAAAAAAWOqmClIzZ86UzWbT6NGjzWkXL17UiBEjVLFiRfn6+qpPnz46efKkw3JHjx5VdHS0vL29VblyZY0fP16XL192aLNx40Y1b95cHh4eqlOnjhYsWJBt+3PnzlWNGjXk6empNm3aONxqEQCAm1GGb0JbKhT160dGAgCUVkX9NxY3pzi9fjdckPruu+/01ltvqUmTJg7Tx4wZo88++0xLlizRpk2bdPz4cd1zzz3m/IyMDEVHRystLU1btmzRwoULtWDBAk2ePNlsc/jwYUVHR+uuu+5SQkKCRo8eraFDh+rzzz832yxevFhjx47VlClTtHPnToWHhysqKkpJSUk3uksAAMjNzU3SlTugoOTKev2yXk8rkZEAAKURGal0KMqMdC2bcQPlsbNnz6p58+Z688039eyzz6pp06Z65ZVXlJKSosDAQH344Yfq27evJGn//v1q2LChtm7dqrZt22rt2rXq3r27jh8/rqCgIEnS/PnzNWHCBJ06dUru7u6aMGGCVq9erT179pjb7N+/v5KTkxUXFydJatOmjVq1aqU33nhDkpSZmanQ0FCNGjVKEydOzNd+pKamyt/fXykpKbLb7c4Ow3Wlx23ONs2tS7sC3w4AoGCdOHFCycnJqly5sry9vWWz2Yq6S8gnwzB0/vx5JSUlKSAgQCEhIdnaFObffzJS/pCRAKBkIiOVXEWdkXJS7kYWGjFihKKjoxUZGalnn33WnL5jxw6lp6crMjLSnNagQQNVq1bNDFtbt25V48aNzaAlSVFRUXrkkUe0d+9eNWvWTFu3bnVYR1abrNPe09LStGPHDodbJLq4uCgyMlJbt269kV0CAMAUHBwsSZxRUoIFBASYr6OVyEgAgNKMjFTyFVVGyonTBalFixZp586d+u6777LNS0xMlLu7uwICAhymBwUFKTEx0WxzddDKmp81L682qampunDhgv78809lZGTk2Gb//v259v3SpUu6dOmS+Tw1NfU6ewsAKItsNptCQkJUuXJlpaenF3V34CQ3Nze5urpavl0yEgCgtCMjlWxFlZFy41RB6tixY3rssce0bt06eXp6FlafCs2MGTM0bdq0ou4GAKCEcHV1LVZ/tFF8kZEAAGUJGQkFwamLmu/YsUNJSUlq3ry5ypUrp3LlymnTpk167bXXVK5cOQUFBSktLU3JyckOy508edI8JSw4ODjbHWWynl+vjd1ul5eXlypVqiRXV9cc2+R16tmkSZOUkpJiPo4dO+bM7gMAAOSIjAQAAOAcpwpSd999t3bv3q2EhATz0bJlSw0YMMD8t5ubm+Lj481lDhw4oKNHjyoiIkKSFBERod27dzv85nTdunWy2+0KCwsz21y9jqw2Wetwd3dXixYtHNpkZmYqPj7ebJMTDw8P2e12hwcAAMDNIiMBAAA4x6mf7Pn5+alRo0YO03x8fFSxYkVz+pAhQzR27FhVqFBBdrtdo0aNUkREhNq2bStJ6ty5s8LCwvTAAw9o1qxZSkxM1FNPPaURI0bIw8NDkvTwww/rjTfe0BNPPKEHH3xQGzZs0Mcff6zVq1eb2x07dqxiYmLUsmVLtW7dWq+88orOnTunwYMH39SAAAAAOIuMBAAA4JwbusteXl5++WW5uLioT58+unTpkqKiovTmm2+a811dXbVq1So98sgjioiIkI+Pj2JiYvTMM8+YbWrWrKnVq1drzJgxevXVV1W1alW9++67ioqKMtv069dPp06d0uTJk5WYmKimTZsqLi4u20U8AQAAigMyEgAAwF9shmEYRd2JopKamip/f3+lpKQUyqnp6XGbs01z69KuwLcDAADyr7D//pcGZCQAAMoeqzOSU9eQAgAAAAAAAG4WBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFLliroDpdkvyWslSTUCuhZxTwAAAIqPrIwkkZMAACirOEMKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAs5VRBat68eWrSpInsdrvsdrsiIiK0du1ac/7Fixc1YsQIVaxYUb6+vurTp49OnjzpsI6jR48qOjpa3t7eqly5ssaPH6/Lly87tNm4caOaN28uDw8P1alTRwsWLMjWl7lz56pGjRry9PRUmzZttG3bNmd2BQAAoMCQkQAAAJzjVEGqatWqmjlzpnbs2KHt27erY8eO6tmzp/bu3StJGjNmjD777DMtWbJEmzZt0vHjx3XPPfeYy2dkZCg6OlppaWnasmWLFi5cqAULFmjy5Mlmm8OHDys6Olp33XWXEhISNHr0aA0dOlSff/652Wbx4sUaO3aspkyZop07dyo8PFxRUVFKSkq62fEAAABwGhkJAADAOTbDMIybWUGFChX04osvqm/fvgoMDNSHH36ovn37SpL279+vhg0bauvWrWrbtq3Wrl2r7t276/jx4woKCpIkzZ8/XxMmTNCpU6fk7u6uCRMmaPXq1dqzZ4+5jf79+ys5OVlxcXGSpDZt2qhVq1Z64403JEmZmZkKDQ3VqFGjNHHixHz3PTU1Vf7+/kpJSZHdbr+ZYcjRwUVPSpJqBHQ1p7l1aVfg2wEAAPlX2H//s5CRcpeVkaS/chIZCQCAomVVRspyw9eQysjI0KJFi3Tu3DlFRERox44dSk9PV2RkpNmmQYMGqlatmrZu3SpJ2rp1qxo3bmwGLUmKiopSamqq+Q3i1q1bHdaR1SZrHWlpadqxY4dDGxcXF0VGRpptcnPp0iWlpqY6PAAAAAoSGQkAAOD6nC5I7d69W76+vvLw8NDDDz+sZcuWKSwsTImJiXJ3d1dAQIBD+6CgICUmJkqSEhMTHYJW1vyseXm1SU1N1YULF/T7778rIyMjxzZZ68jNjBkz5O/vbz5CQ0Od3X0AAIAckZEAAADyz+mCVP369ZWQkKBvv/1WjzzyiGJiYvTjjz8WRt8K3KRJk5SSkmI+jh07VtRdAgAApQQZCQAAIP/KObuAu7u76tSpI0lq0aKFvvvuO7366qvq16+f0tLSlJyc7PAN4MmTJxUcHCxJCg4Oznanl6w7zFzd5tq7zpw8eVJ2u11eXl5ydXWVq6trjm2y1pEbDw8PeXh4OLvLAAAA10VGAgAAyL8bvoZUlszMTF26dEktWrSQm5ub4uPjzXkHDhzQ0aNHFRERIUmKiIjQ7t27He70sm7dOtntdoWFhZltrl5HVpusdbi7u6tFixYObTIzMxUfH2+2AQAAKGpkJAAAgNw5dYbUpEmT1LVrV1WrVk1nzpzRhx9+qI0bN+rzzz+Xv7+/hgwZorFjx6pChQqy2+0aNWqUIiIi1LZtW0lS586dFRYWpgceeECzZs1SYmKinnrqKY0YMcL8Vu7hhx/WG2+8oSeeeEIPPvigNmzYoI8//lirV682+zF27FjFxMSoZcuWat26tV555RWdO3dOgwcPLsChAQAAyB8yEgAAgHOcKkglJSVp4MCBOnHihPz9/dWkSRN9/vnn6tSpkyTp5ZdflouLi/r06aNLly4pKipKb775prm8q6urVq1apUceeUQRERHy8fFRTEyMnnnmGbNNzZo1tXr1ao0ZM0avvvqqqlatqnfffVdRUVFmm379+unUqVOaPHmyEhMT1bRpU8XFxWW7iCcAAIAVyEgAAADOsRmGYRR1J4pKamqq/P39lZKSIrvdXuDrP7joSUlSjYCu5jS3Lu0KfDsAACD/Cvvvf2lgVUaS/spJZCQAAIqW1Rnppq8hBQAAAAAAADiDghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCmnClIzZsxQq1at5Ofnp8qVK6tXr146cOCAQ5uLFy9qxIgRqlixonx9fdWnTx+dPHnSoc3Ro0cVHR0tb29vVa5cWePHj9fly5cd2mzcuFHNmzeXh4eH6tSpowULFmTrz9y5c1WjRg15enqqTZs22rZtmzO7AwAAUCDISAAAAM5xqiC1adMmjRgxQv/973+1bt06paenq3Pnzjp37pzZZsyYMfrss8+0ZMkSbdq0ScePH9c999xjzs/IyFB0dLTS0tK0ZcsWLVy4UAsWLNDkyZPNNocPH1Z0dLTuuusuJSQkaPTo0Ro6dKg+//xzs83ixYs1duxYTZkyRTt37lR4eLiioqKUlJR0M+MBAADgNDISAACAc2yGYRg3uvCpU6dUuXJlbdq0Se3bt1dKSooCAwP14Ycfqm/fvpKk/fv3q2HDhtq6davatm2rtWvXqnv37jp+/LiCgoIkSfPnz9eECRN06tQpubu7a8KECVq9erX27Nljbqt///5KTk5WXFycJKlNmzZq1aqV3njjDUlSZmamQkNDNWrUKE2cODFf/U9NTZW/v79SUlJkt9tvdBhydXDRk5KkGgFdzWluXdoV+HYAAED+Ffbff4mMdD1ZGUn6KyeRkQAAKFpWZKSr3dQ1pFJSUiRJFSpUkCTt2LFD6enpioyMNNs0aNBA1apV09atWyVJW7duVePGjc2gJUlRUVFKTU3V3r17zTZXryOrTdY60tLStGPHDoc2Li4uioyMNNsAAAAUFTISAABA3srd6IKZmZkaPXq0br/9djVq1EiSlJiYKHd3dwUEBDi0DQoKUmJiotnm6qCVNT9rXl5tUlNTdeHCBf3555/KyMjIsc3+/ftz7fOlS5d06dIl83lqaqoTewwAAHB9ZCQAAIDru+EzpEaMGKE9e/Zo0aJFBdmfQjVjxgz5+/ubj9DQ0KLuEgAAKGXISAAAANd3QwWpkSNHatWqVfryyy9VtWpVc3pwcLDS0tKUnJzs0P7kyZMKDg4221x7R5ms59drY7fb5eXlpUqVKsnV1TXHNlnryMmkSZOUkpJiPo4dO+bcjgMAAOSBjAQAAJA/ThWkDMPQyJEjtWzZMm3YsEE1a9Z0mN+iRQu5ubkpPj7enHbgwAEdPXpUERERkqSIiAjt3r3b4U4v69atk91uV1hYmNnm6nVktclah7u7u1q0aOHQJjMzU/Hx8WabnHh4eMhutzs8AAAAbhYZCQAAwDlOXUNqxIgR+vDDD7VixQr5+fmZ1zPw9/eXl5eX/P39NWTIEI0dO1YVKlSQ3W7XqFGjFBERobZt20qSOnfurLCwMD3wwAOaNWuWEhMT9dRTT2nEiBHy8PCQJD388MN644039MQTT+jBBx/Uhg0b9PHHH2v16tVmX8aOHauYmBi1bNlSrVu31iuvvKJz585p8ODBBTU2AAAA+UJGAgAAcI5TBal58+ZJkjp06OAwPTY2VoMGDZIkvfzyy3JxcVGfPn106dIlRUVF6c033zTburq6atWqVXrkkUcUEREhHx8fxcTE6JlnnjHb1KxZU6tXr9aYMWP06quvqmrVqnr33XcVFRVltunXr59OnTqlyZMnKzExUU2bNlVcXFy2i3gCAAAUNjISAACAc2yGYRhF3YmikpqaKn9/f6WkpBTKqekHFz0pSaoR0NWc5talXYFvBwAA5F9h//0vDazKSNJfOYmMBABA0bI6I93wXfYAAAAAAACAG0FBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWMrpgtRXX32lHj16qEqVKrLZbFq+fLnDfMMwNHnyZIWEhMjLy0uRkZE6ePCgQ5s//vhDAwYMkN1uV0BAgIYMGaKzZ886tPnhhx90xx13yNPTU6GhoZo1a1a2vixZskQNGjSQp6enGjdurDVr1ji7OwAAAAWCjAQAAJB/Thekzp07p/DwcM2dOzfH+bNmzdJrr72m+fPn69tvv5WPj4+ioqJ08eJFs82AAQO0d+9erVu3TqtWrdJXX32l4cOHm/NTU1PVuXNnVa9eXTt27NCLL76oqVOn6u233zbbbNmyRffff7+GDBmiXbt2qVevXurVq5f27Nnj7C4BAADcNDISAABA/tkMwzBueGGbTcuWLVOvXr0kXfnmr0qVKnr88cc1btw4SVJKSoqCgoK0YMEC9e/fX/v27VNYWJi+++47tWzZUpIUFxenbt266ddff1WVKlU0b948Pfnkk0pMTJS7u7skaeLEiVq+fLn2798vSerXr5/OnTunVatWmf1p27atmjZtqvnz5+er/6mpqfL391dKSorsdvuNDkOuDi56UpJUI6CrOc2tS7sC3w4AAMi/wv77L5GRricrI0l/5SQyEgAARcuKjHS1Ar2G1OHDh5WYmKjIyEhzmr+/v9q0aaOtW7dKkrZu3aqAgAAzaElSZGSkXFxc9O2335pt2rdvbwYtSYqKitKBAwf0559/mm2u3k5Wm6zt5OTSpUtKTU11eAAAABQ2MhIAAICjAi1IJSYmSpKCgoIcpgcFBZnzEhMTVblyZYf55cqVU4UKFRza5LSOq7eRW5us+TmZMWOG/P39zUdoaKizuwgAAOA0MhIAAICjMnWXvUmTJiklJcV8HDt2rKi7BAAAUOTISAAAwGoFWpAKDg6WJJ08edJh+smTJ815wcHBSkpKcph/+fJl/fHHHw5tclrH1dvIrU3W/Jx4eHjIbrc7PAAAAAobGQkAAMBRgRakatasqeDgYMXHx5vTUlNT9e233yoiIkKSFBERoeTkZO3YscNss2HDBmVmZqpNmzZmm6+++krp6elmm3Xr1ql+/foqX7682ebq7WS1ydoOAABAcUFGAgAAcOR0Qers2bNKSEhQQkKCpCsX6UxISNDRo0dls9k0evRoPfvss1q5cqV2796tgQMHqkqVKuZdZho2bKguXbpo2LBh2rZtm7755huNHDlS/fv3V5UqVSRJf//73+Xu7q4hQ4Zo7969Wrx4sV599VWNHTvW7Mdjjz2muLg4vfTSS9q/f7+mTp2q7du3a+TIkTc/KgAAAE4iIwEAADjBcNKXX35pSMr2iImJMQzDMDIzM42nn37aCAoKMjw8PIy7777bOHDggMM6Tp8+bdx///2Gr6+vYbfbjcGDBxtnzpxxaPP9998b7dq1Mzw8PIxbbrnFmDlzZra+fPzxx0a9evUMd3d349ZbbzVWr17t1L6kpKQYkoyUlBTnBiGffvroX8ZPH/3LSFv7tfkAAABFq7D+/pOR8i8rI12dkwAAQNEq7L//17IZhmEURSGsOEhNTZW/v79SUlIK5VoJBxc9KUmqEdDVnObWpV2BbwcAAORfYf/9Lw2sykjSXzmJjAQAQNGyOiOVqbvsAQAAAAAAoOhRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALFXiC1Jz585VjRo15OnpqTZt2mjbtm1F3SUAAIAiR0YCAADFWYkuSC1evFhjx47VlClTtHPnToWHhysqKkpJSUlF3TUAAIAiQ0YCAADFXYkuSM2ZM0fDhg3T4MGDFRYWpvnz58vb21vvvfdeUXcNAACgyJCRAABAcVeuqDtwo9LS0rRjxw5NmjTJnObi4qLIyEht3bq1CHuW3S/Ja81/14hznOfWpZ3FvQEAAKVZScpI0l85iYwEAEDZUmILUr///rsyMjIUFBTkMD0oKEj79+/PcZlLly7p0qVL5vOUlBRJUmpqaqH08ez5S9mm7Tm/XJJUzb/TlQmffJ6tjVuniELpDwAA+OvvvmEYRdyTwlHSM5L0/3MSGQkAAEtZnZFKbEHqRsyYMUPTpk3LNj00NLQIevNSEWwTAABkOXPmjPz9/Yu6G8VC8cpIEjkJAICiY1VGKrEFqUqVKsnV1VUnT550mH7y5EkFBwfnuMykSZM0duxY83lmZqb++OMPVaxYUTabrUD7l5qaqtDQUB07dkx2u71A113SMTa5Y2xyx9jkjrHJHWOTu7I8NoZh6MyZM6pSpUpRd6VQkJFKLsYmd4xN7hib3DE2uWNscleWx8bqjFRiC1Lu7u5q0aKF4uPj1atXL0lXwlN8fLxGjhyZ4zIeHh7y8PBwmBYQEFCo/bTb7WXuIM4vxiZ3jE3uGJvcMTa5Y2xyV1bHpjSfGUVGKvkYm9wxNrljbHLH2OSOscldWR0bKzNSiS1ISdLYsWMVExOjli1bqnXr1nrllVd07tw5DR48uKi7BgAAUGTISAAAoLgr0QWpfv366dSpU5o8ebISExPVtGlTxcXFZbuIJwAAQFlCRgIAAMVdiS5ISdLIkSNzPf28KHl4eGjKlCnZTn8HY5MXxiZ3jE3uGJvcMTa5Y2xKPzJSycPY5I6xyR1jkzvGJneMTe4YG+vYjNJ6z2MAAAAAAAAUSy5F3QEAAAAAAACULRSkAAAAAAAAYCkKUgAAAAAAALAUBSknzJ07VzVq1JCnp6fatGmjbdu25dl+yZIlatCggTw9PdW4cWOtWbPGYb5hGJo8ebJCQkLk5eWlyMhIHTx4sDB3odA4MzbvvPOO7rjjDpUvX17ly5dXZGRktvaDBg2SzWZzeHTp0qWwd6NQODM2CxYsyLbfnp6eDm3K6nHToUOHbGNjs9kUHR1ttikNx81XX32lHj16qEqVKrLZbFq+fPl1l9m4caOaN28uDw8P1alTRwsWLMjWxtnPr+LI2bH59NNP1alTJwUGBsputysiIkKff/65Q5upU6dmO2YaNGhQiHtROJwdm40bN+b4fkpMTHRoVxqOG1iDjJQ7MlLuyEi5IyNlR0bKHRkpd2Sk4o2CVD4tXrxYY8eO1ZQpU7Rz506Fh4crKipKSUlJObbfsmWL7r//fg0ZMkS7du1Sr1691KtXL+3Zs8dsM2vWLL322muaP3++vv32W/n4+CgqKkoXL160arcKhLNjs3HjRt1///368ssvtXXrVoWGhqpz58767bffHNp16dJFJ06cMB8fffSRFbtToJwdG0my2+0O+33kyBGH+WX1uPn0008dxmXPnj1ydXXVvffe69CupB83586dU3h4uObOnZuv9ocPH1Z0dLTuuusuJSQkaPTo0Ro6dKhDqLiR47A4cnZsvvrqK3Xq1Elr1qzRjh07dNddd6lHjx7atWuXQ7tbb73V4ZjZvHlzYXS/UDk7NlkOHDjgsO+VK1c255WW4waFj4yUOzJS7shIuSMj5YyMlDsyUu7ISMWcgXxp3bq1MWLECPN5RkaGUaVKFWPGjBk5tr/vvvuM6Ohoh2lt2rQxHnroIcMwDCMzM9MIDg42XnzxRXN+cnKy4eHhYXz00UeFsAeFx9mxudbly5cNPz8/Y+HChea0mJgYo2fPngXdVcs5OzaxsbGGv79/ruvjuPnLyy+/bPj5+Rlnz541p5WW4yaLJGPZsmV5tnniiSeMW2+91WFav379jKioKPP5zY51cZSfsclJWFiYMW3aNPP5lClTjPDw8ILrWDGQn7H58ssvDUnGn3/+mWub0njcoHCQkXJHRsodGSl3ZKTrIyPljoyUOzJS8cMZUvmQlpamHTt2KDIy0pzm4uKiyMhIbd26Ncdltm7d6tBekqKiosz2hw8fVmJiokMbf39/tWnTJtd1Fkc3MjbXOn/+vNLT01WhQgWH6Rs3blTlypVVv359PfLIIzp9+nSB9r2w3ejYnD17VtWrV1doaKh69uypvXv3mvM4bv7y73//W/3795ePj4/D9JJ+3Djrep81BTHWpUVmZqbOnDmT7bPm4MGDqlKlimrVqqUBAwbo6NGjRdRD6zVt2lQhISHq1KmTvvnmG3M6xw3yi4yUOzJS7shIuSMjFRwyUv6RkbIjI1mDglQ+/P7778rIyFBQUJDD9KCgoGy/Jc2SmJiYZ/us/zqzzuLoRsbmWhMmTFCVKlUc3tRdunTR//3f/yk+Pl4vvPCCNm3apK5duyojI6NA+1+YbmRs6tevr/fee08rVqzQ+++/r8zMTN1222369ddfJXHcZNm2bZv27NmjoUOHOkwvDceNs3L7rElNTdWFCxcK5D1aWsyePVtnz57VfffdZ05r06aNFixYoLi4OM2bN0+HDx/WHXfcoTNnzhRhTwtfSEiI5s+fr08++USffPKJQkND1aFDB+3cuVNSwXy2o2wgI+WOjJQ7MlLuyEgFh4yUf2Skv5CRrFWuqDuAsm3mzJlatGiRNm7c6HBhyv79+5v/bty4sZo0aaLatWtr48aNuvvuu4uiq5aIiIhQRESE+fy2225Tw4YN9dZbb2n69OlF2LPi5d///rcaN26s1q1bO0wvq8cNru/DDz/UtGnTtGLFCodrAHTt2tX8d5MmTdSmTRtVr15dH3/8sYYMGVIUXbVE/fr1Vb9+ffP5bbfdpkOHDunll1/Wf/7znyLsGYAsZCRHZKT8ISPBWWQkR2Qka3GGVD5UqlRJrq6uOnnypMP0kydPKjg4OMdlgoOD82yf9V9n1lkc3cjYZJk9e7ZmzpypL774Qk2aNMmzba1atVSpUiX9/PPPN91nq9zM2GRxc3NTs2bNzP3muLlyYcJFixbl6w9hSTxunJXbZ43dbpeXl1eBHIcl3aJFizR06FB9/PHH2U7dv1ZAQIDq1atXqo+Z3LRu3drcb44b5BcZKXdkpNyRkXJHRio4ZKTrIyPlDxmp8FCQygd3d3e1aNFC8fHx5rTMzEzFx8c7fFNztYiICIf2krRu3Tqzfc2aNRUcHOzQJjU1Vd9++22u6yyObmRspCt3QZk+fbri4uLUsmXL627n119/1enTpxUSElIg/bbCjY7N1TIyMrR7925zv8v6cSNduVX4pUuX9I9//OO62ymJx42zrvdZUxDHYUn20UcfafDgwfroo48cbn+dm7Nnz+rQoUOl+pjJTUJCgrnfZf24Qf6RkXJHRsodGSl3ZKSCQ0bKGxkp/8hIhaior6peUixatMjw8PAwFixYYPz444/G8OHDjYCAACMxMdEwDMN44IEHjIkTJ5rtv/nmG6NcuXLG7NmzjX379hlTpkwx3NzcjN27d5ttZs6caQQEBBgrVqwwfvjhB6Nnz55GzZo1jQsXLli+fzfD2bGZOXOm4e7ubixdutQ4ceKE+Thz5oxhGIZx5swZY9y4ccbWrVuNw4cPG+vXrzeaN29u1K1b17h48WKR7OONcnZspk2bZnz++efGoUOHjB07dhj9+/c3PD09jb1795ptyupxk6Vdu3ZGv379sk0vLcfNmTNnjF27dhm7du0yJBlz5swxdu3aZRw5csQwDMOYOHGi8cADD5jt//e//xne3t7G+PHjjX379hlz5841XF1djbi4OLPN9ca6pHB2bD744AOjXLlyxty5cx0+a5KTk802jz/+uLFx40bj8OHDxjfffGNERkYalSpVMpKSkizfv5vh7Ni8/PLLxvLly42DBw8au3fvNh577DHDxcXFWL9+vdmmtBw3KHxkpNyRkXJHRsodGSlnZKTckZFyR0Yq3ihIOeH11183qlWrZri7uxutW7c2/vvf/5rz7rzzTiMmJsah/ccff2zUq1fPcHd3N2699VZj9erVDvMzMzONp59+2ggKCjI8PDyMu+++2zhw4IAVu1LgnBmb6tWrG5KyPaZMmWIYhmGcP3/e6Ny5sxEYGGi4ubkZ1atXN4YNG1Zi3+DOjM3o0aPNtkFBQUa3bt2MnTt3OqyvrB43hmEY+/fvNyQZX3zxRbZ1lZbjJutWs9c+ssYiJibGuPPOO7Mt07RpU8Pd3d2oVauWERsbm229eY11SeHs2Nx55515tjeMK7d/DgkJMdzd3Y1bbrnF6Nevn/Hzzz9bu2MFwNmxeeGFF4zatWsbnp6eRoUKFYwOHToYGzZsyLbe0nDcwBpkpNyRkXJHRsodGSk7MlLuyEi5IyMVbzbDMIyCOtsKAAAAAAAAuB6uIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAACKla+++ko9evRQlSpVZLPZtHz5cqfX8fHHH6tp06by9vZW9erV9eKLLxZ8RwEAACxU2jISBSkAAFCsnDt3TuHh4Zo7d+4NLb927VoNGDBADz/8sPbs2aM333xTL7/8st54440C7ikAAIB1SltGshmGYRTJlgEAAK7DZrNp2bJl6tWrlznt0qVLevLJJ/XRRx8pOTlZjRo10gsvvKAOHTpIkv7+978rPT1dS5YsMZd5/fXXNWvWLB09elQ2m83ivQAAAChYpSEjcYYUAAAoUUaOHKmtW7dq0aJF+uGHH3TvvfeqS5cuOnjwoKQrYczT09NhGS8vL/366686cuRIUXQZAACg0JW0jERBCgAAlBhHjx5VbGyslixZojvuuEO1a9fWuHHj1K5dO8XGxkqSoqKi9Omnnyo+Pl6ZmZn66aef9NJLL0mSTpw4UZTdBwAAKBQlMSOVs3yLAAAAN2j37t3KyMhQvXr1HKZfunRJFStWlCQNGzZMhw4dUvfu3ZWeni673a7HHntMU6dOlYsL38UBAIDSpyRmJApSAACgxDh79qxcXV21Y8cOubq6Oszz9fWVdOWaCi+88IKef/55JSYmKjAwUPHx8ZKkWrVqWd5nAACAwlYSMxIFKQAAUGI0a9ZMGRkZSkpK0h133JFnW1dXV91yyy2SpI8++kgREREKDAy0opsAAACWKokZiYIUAAAoVs6ePauff/7ZfH748GElJCSoQoUKqlevngYMGKCBAwfqpZdeUrNmzXTq1CnFx8erSZMmio6O1u+//66lS5eqQ4cOunjxonk9hU2bNhXhXgEAANyc0paRbIZhGEWyZQAAgBxs3LhRd911V7bpMTExWrBggdLT0/Xss8/q//7v//Tbb7+pUqVKatu2raZNm6bGjRvr999/V48ePbR7924ZhqGIiAg999xzatOmTRHsDQAAQMEobRmJghQAAAAAAAAsxa1mAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpS0NSpU2Wz2Rym1ahRQ4MGDSr0bf/yyy+y2WxasGCBOW3QoEHy9fUt9G1nsdlsmjp1qmXbK+k6dOigDh06FOg6czoG4Sin90pZtWDBAtlsNv3yyy/XbWvVZ9mNmDVrlho0aKDMzMw82+X22sfFxalp06by9PSUzWZTcnJyvrd9+vRp+fj4aM2aNTfQc6DsICORkZxBRioaZKS/kJGuICOVHBSkUGDWrFlTbENLce5bWXH+/HlNnTpVGzduLOquFDmOx9Lh3//+txo2bChPT0/VrVtXr7/+er6XTU1N1QsvvKAJEybIxcX5P8WnT5/WfffdJy8vL82dO1f/+c9/5OPjowMHDmjMmDG67bbbzBCWUyitWLGihg4dqqefftrpbQNwXnH+3C/OfSsryEh/4XgsHYpjRvr000/Vr18/1apVS97e3qpfv74ef/zxbMUqMpLFDJR5U6ZMMa49FC5evGikpaU5tZ4RI0ZkW8/1ZGZmGhcuXDAuX75sTouJiTF8fHycWs/N9O3ChQtGenp6gW6vNLvzzjuNO++80+nlTp06ZUgypkyZkm1eenq6ceHChZvvXAlRUO+Vsury5cvGhQsXjMzMzOu2rV69uhETE1PgfZg/f74hyejTp4/x9ttvGw888IAhyZg5c2a+ln/55ZcNu92er+P+8OHDhiQjNjbWnLZ27VpDkrFu3TqHtrGxsYaLi4vRqFEjo2nTpoYk4/Dhwzmu98cffzQkGfHx8fnqM1AWkZHISM4gI908MtLNISPlnpEqVqxoNG7c2Hj66aeNd955x3j00UcNd3d3o0GDBsb58+cd2pKRrFPO0uoXSgwPD49CXf/ly5eVmZkpd3d3eXp6Fuq2rqeot2+Fixcvyt3dPcdvGc6dOycfH58i6NVfypUrp3Ll+DjKSXF6rxQXrq6ucnV1LbLtX7hwQU8++aSio6O1dOlSSdKwYcOUmZmp6dOna/jw4Spfvnye64iNjdXf/va3G35Nk5KSJEkBAQEO0//2t78pOTlZfn5+mj17thISEnJdR8OGDdWoUSMtWLBAHTt2vKF+AGURGal0ISOVXMXpvVJckJFyz0hLly7N9pPaFi1aKCYmRh988IGGDh1qTicjWYef7JUxmzdvVqtWreTp6anatWvrrbfeyrHdtb8pTk9P17Rp01S3bl15enqqYsWKateundatWyfpyjUN5s6dK+nK9QayHtJfv+2dPXu2XnnlFdWuXVseHh768ccf8/zN9//+9z9FRUXJx8dHVapU0TPPPCPDMMz5GzdulM1my3Z687XrzKtvWdOuPTV4165d6tq1q+x2u3x9fXX33Xfrv//9r0ObrN9of/PNNxo7dqwCAwPl4+Oj3r1769SpUzm/AHn47bffNGTIEFWpUkUeHh6qWbOmHnnkEaWlpTmMyb333qsKFSrI29tbbdu21erVqx3WkzUuixYt0lNPPaVbbrlF3t7eSk1NNa89cejQIXXr1k1+fn4aMGCAJCkzM1OvvPKKbr31Vnl6eiooKEgPPfSQ/vzzzzz7nZaWpsmTJ6tFixby9/eXj4+P7rjjDn355Zdmm19++UWBgYGSpGnTppmvQda453R9hMuXL2v69Onm8VKjRg3961//0qVLlxza1ahRQ927d9fmzZvVunVreXp6qlatWvq///s/514AXTkWRo4cqSVLligsLExeXl6KiIjQ7t27JUlvvfWW6tSpI09PT3Xo0CHbT6G+/vpr3XvvvapWrZo8PDwUGhqqMWPG6MKFC2abgnqvJCUlKTAwUB06dHB4X/z888/y8fFRv3798r3fWcfyV199pYceekgVK1aU3W7XwIEDs73+27dvV1RUlCpVqiQvLy/VrFlTDz74oDn/6n2YO3eueVp0586ddezYMRmGoenTp6tq1ary8vJSz5499ccff+S7r1f39+rxNwxDzz77rKpWrSpvb2/ddddd2rt3b7Zlr/dZlh9ffvmlTp8+rX/+858O00eMGKFz585le09e6/Dhw/rhhx8UGRmZbV5ycrIGDRokf39/BQQEKCYmJtup5B06dFBMTIwkqVWrVrLZbObndYUKFeTn55fvfenUqZM+++wzh2MIKKvISGQkMlLuyEhkpPwozhkpp+u79e7dW5K0b9++bPPISNag3F6G7N69W507d1ZgYKCmTp2qy5cva8qUKQoKCrruslOnTtWMGTM0dOhQtW7dWqmpqdq+fbt27typTp066aGHHtLx48e1bt06/ec//8lxHbGxsbp48aKGDx8uDw8PVahQIdcL1WVkZKhLly5q27atZs2apbi4OE2ZMkWXL1/WM88849R+56dvV9u7d6/uuOMO2e12PfHEE3Jzc9Nbb72lDh06aNOmTWrTpo1D+1GjRql8+fKaMmWKfvnlF73yyisaOXKkFi9enO8+Hj9+XK1bt1ZycrKGDx+uBg0a6LffftPSpUt1/vx5ubu76+TJk7rtttt0/vx5Pfroo6pYsaIWLlyov/3tb1q6dKn5gZpl+vTpcnd317hx43Tp0iW5u7tLuhJioqKi1K5dO82ePVve3t7mOC1YsECDBw/Wo48+qsOHD+uNN97Qrl279M0338jNzS3Hvqempurdd9/V/fffr2HDhunMmTP697//raioKG3btk1NmzZVYGCg5s2bp0ceeUS9e/fWPffcI0lq0qRJrmMydOhQLVy4UH379tXjjz+ub7/9VjNmzNC+ffu0bNkyh7Y///yz+vbtqyFDhigmJkbvvfeeBg0apBYtWujWW2/N9+sgXQlMK1eu1IgRIyRJM2bMUPfu3fXEE0/ozTff1D//+U/9+eefmjVrlh588EFt2LDBXHbJkiU6f/68HnnkEVWsWFHbtm3T66+/rl9//VVLliwxx7kg3iuVK1fWvHnzdO+99+r111/Xo48+qszMTA0aNEh+fn568803ndpvSRo5cqQCAgI0depUHThwQPPmzdORI0fMAJ+UlGR+hkycOFEBAQH65Zdf9Omnn2Zb1wcffKC0tDSNGjVKf/zxh2bNmqX77rtPHTt21MaNGzVhwgT9/PPPev311zVu3Di99957Tvf3apMnT9azzz6rbt26qVu3btq5c6c6d+7s8D8r0vU/y/Jj165dkqSWLVs6TG/RooVcXFy0a9cu/eMf/8h1+S1btkiSmjdv7jDdMAz17NlTmzdv1sMPP6yGDRtq2bJlZrDK8uSTT6p+/fp6++239cwzz6hmzZqqXbt2vvp+rRYtWujll1/W3r171ahRoxtaB1AakJHISBIZ6XrISGSk6ylpGSkxMVGSVKlSpWzzyEgWKZpfCqIo9OrVy/D09DSOHDliTvvxxx8NV1fXbL/VvvY3xeHh4UZ0dHSe68/tN99Zv+212+1GUlJSjvOu/t1vTEyMIckYNWqUOS0zM9OIjo423N3djVOnThmGYRhffvmlIcn48ssvr7vOvH6Prmt+s9+rVy/D3d3dOHTokDnt+PHjhp+fn9G+fXtzWmxsrCHJiIyMdPid9pgxYwxXV1cjOTk5x+3lZODAgYaLi4vx3XffZZuXte7Ro0cbkoyvv/7anHfmzBmjZs2aRo0aNYyMjAzDMP4al1q1amX7PXTW2E6cONFh+tdff21IMj744AOH6XFxcdmmX3t9hMuXLxuXLl1yWO7PP/80goKCjAcffNCcltf1Ea69RkdCQoIhyRg6dKhDu3HjxhmSjA0bNpjTqlevbkgyvvrqK3NaUlKS4eHhYTz++OPZtpUXSYaHh4fDNXfeeustQ5IRHBxspKammtMnTZqU7fo81463YRjGjBkzDJvN5vC+K6j3imEYxv333294e3sbP/30k/Hiiy8akozly5c7td9Zx3KLFi0crosya9YsQ5KxYsUKwzAMY9myZYakHI/Ta/sZGBjo8B7IGq/w8HCH65Hcf//9hru7u3Hx4kWn+5s19klJSYa7u7sRHR3t8F7817/+ZUhy+rPsekaMGGG4urrmOC8wMNDo379/nss/9dRThiTjzJkzDtOXL19uSDJmzZplTrt8+bJxxx13ZHvts8Ygr9ci63jI7RpShmEYW7ZsMSQZixcvzrPPQGlHRiIjkZHyRkYiI+VHSclIWYYMGWK4uroaP/30U7Z5ZCRr8JO9MiIjI0Off/65evXqpWrVqpnTGzZsqKioqOsuHxAQoL179+rgwYM33Ic+ffqYpyTnx8iRI81/Z50mnJaWpvXr199wH64nIyNDX3zxhXr16qVatWqZ00NCQvT3v/9dmzdvVmpqqsMyw4cPdziV+o477lBGRoaOHDmSr21mZmZq+fLl6tGjR7ZvEySZ616zZo1at26tdu3amfN8fX01fPhw/fLLL/rxxx8dlouJiZGXl1eO23zkkUccni9ZskT+/v7q1KmTfv/9d/PRokUL+fr6Opxafi1XV1fzm8XMzEz98ccfunz5slq2bKmdO3fmawyulXWb1bFjxzpMf/zxxyUp2+m+YWFhuuOOO8zngYGBql+/vv73v/85ve27775bNWrUMJ9nfdvbp08fh59CZU2/ehtXj/e5c+f0+++/67bbbpNhGOY3RvnhzHvljTfekL+/v/r27aunn35aDzzwgHr27JnvbV1t+PDhDt/yPvLIIypXrpz5emT9Fn/VqlVKT0/Pc1333nuv/P39zedZ4/WPf/zD4VoYbdq0UVpamn777bcb6rMkrV+/3vym8er34ujRo7O1LYjPsgsXLpjH/LU8PT0dfn6Qk9OnT6tcuXLZbt2+Zs0alStXzuH96erqqlGjRt1wX68n6zoOv//+e6FtAyjuyEj5Q0YiI5GRyEjXU5Iy0ocffqh///vfevzxx1W3bt1s88lI1qAgVUacOnVKFy5cyPHNVr9+/esu/8wzzyg5OVn16tVT48aNNX78eP3www9O9aFmzZr5buvi4uIQdiSpXr16kpTjLcwLyqlTp3T+/Pkcx6Rhw4bKzMzUsWPHHKZfHV6lvz68rnddgau3mZqaet1TQY8cOZJrv7LmXy238S5XrpyqVq3qMO3gwYNKSUlR5cqVFRgY6PA4e/aseXHA3CxcuFBNmjQxf28eGBio1atXKyUlJc/lcnPkyBG5uLioTp06DtODg4MVEBCQbV+vfQ2kK69Dfl+DvNaVFRhCQ0NznH71No4ePapBgwapQoUK8vX1VWBgoO68805JcmosnHmvVKhQQa+99pp++OEH+fv767XXXsv3ste69vPB19dXISEh5nvuzjvvVJ8+fTRt2jRVqlRJPXv2VGxsbLZrVkg3N47Oyjoeru1/YGBgtgtnFsRnmZeXV7bT3LNcvHgx1//JuZ4jR44oJCQkWwjLz2f0jTL+/3URrr0+CVCWkJHyh4xERiIj/YWMlLOSkpG+/vprDRkyRFFRUXruuedybENGsgYFKeRL+/btdejQIb333ntq1KiR3n33XTVv3lzvvvtuvtdxox9AucntwyEjI6NAt3M9ud3JIutDrKjkNt4eHh7Z7iSTmZmpypUra926dTk+8romxfvvv69Bgwapdu3a+ve//624uDitW7dOHTt2zPX6F/mV3z8ABfka5Lau620jIyNDnTp10urVqzVhwgQtX75c69atMy+w6cxYOPte+fzzzyVdCSy//vqrU8s6w2azaenSpdq6datGjhyp3377TQ8++KBatGihs2fPOrS90XEsbAXxWRYSEqKMjIxs/xOSlpam06dPq0qVKnkuX7FiRV2+fFlnzpy5oX0oSFkhN6drJwDIHzJS7or6Mz83ZCQyUkEjI11REjLS999/r7/97W9q1KiRli5dmutdLMlI1qAgVUYEBgbKy8srx1MwDxw4kK91VKhQQYMHD9ZHH32kY8eOqUmTJg53XinI6nFmZma2U4l/+uknSTJPFc6q6l97d4WcTgPPb98CAwPl7e2d45js379fLi4u2b69uFmBgYGy2+3as2dPnu2qV6+ea7+y5t+o2rVr6/Tp07r99tsVGRmZ7REeHp7rskuXLlWtWrX06aef6oEHHlBUVJQiIyN18eJFh3bOHB/Vq1dXZmZmtuP15MmTSk5Ovql9LSy7d+/WTz/9pJdeekkTJkxQz549FRkZmeMf3oJ8r8TFxendd9/VE088ocDAQMXExOjy5cs3tK5rx/vs2bM6ceKEw+n5ktS2bVs999xz2r59uz744APt3btXixYtutFduGlZx8O1/T916lSO3ype77Psepo2bSrpyt10rrZ9+3ZlZmaa83PToEEDSVfuJHPtfpw4cSJbcM3vZ/SNyOpD1lkEQFlERiIj5YWMdPPISGSk4pKRDh06pC5duqhy5cpas2ZNtjOurkZGsgYFqTLC1dVVUVFRWr58uY4ePWpO37dvn/nNQV5Onz7t8NzX11d16tRxOA3Vx8dHUvbwc6PeeOMN89+GYeiNN96Qm5ub7r77bklXPphcXV311VdfOSyX050z8ts3V1dXde7cWStWrHA47f3kyZP68MMP1a5dO9nt9hvco5y5uLioV69e+uyzz7J9eEt/fSvSrVs3bdu2TVu3bjXnnTt3Tm+//bZq1KihsLCwG+7Dfffdp4yMDE2fPj3bvMuXL+c5blnf5lz97c23337r0E9J5p1q8nN8dOvWTZL0yiuvOEyfM2eOJCk6Ovq667BaTuNgGIZeffXVbG0L6r2SnJxs3gnl+eef17vvvqudO3fq+eefv6H1vf322w7XPZg3b54uX76srl27SrryTdG139JlBYucTkm3SmRkpNzc3PT666879O/a40fK32fZ9XTs2FEVKlTQvHnzHKbPmzdP3t7e1z0+IyIiJGUPa926ddPly5cd1puRkaHXX389331z1o4dO+Tv7+/0nZaA0oSMREbKCxnp5pGRyEjFISMlJiaqc+fOcnFx0eeff37da5GRkayR8/lpKJWmTZumuLg43XHHHfrnP/+py5cv6/XXX9ett9563d8Hh4WFqUOHDmrRooUqVKig7du3a+nSpQ4X1WzRooUk6dFHH1VUVJRcXV3Vv3//G+qrp6en4uLiFBMTozZt2mjt2rVavXq1/vWvf5kfHv7+/ubtXG02m2rXrq1Vq1bl+Ft+Z/r27LPPat26dWrXrp3++c9/qly5cnrrrbd06dIlzZo164b253qef/55ffHFF7rzzjs1fPhwNWzYUCdOnNCSJUu0efNmBQQEaOLEifroo4/UtWtXPfroo6pQoYIWLlyow4cP65NPPsl2irkz7rzzTj300EOaMWOGEhIS1LlzZ7m5uengwYNasmSJXn31VfXt2zfHZbt3765PP/1UvXv3VnR0tA4fPqz58+crLCzM4VsMLy8vhYWFafHixapXr54qVKigRo0a5XhdiPDwcMXExOjtt99WcnKy7rzzTm3btk0LFy5Ur169dNddd93wvhaWBg0aqHbt2ho3bpx+++032e12ffLJJzl++1RQ75XHHntMp0+f1vr16+Xq6qouXbpo6NChevbZZ9WzZ888v7XNSVpamu6++27dd999OnDggN588021a9dOf/vb3yRduQ7Gm2++qd69e6t27do6c+aM3nnnHdntdjMgF4XAwECNGzfOvP10t27dtGvXLq1duzbbadb5+Sy7Hi8vL02fPl0jRozQvffeq6ioKH399dd6//339dxzz6lChQp5Ll+rVi01atRI69ev14MPPmhO79Gjh26//XZNnDhRv/zyi8LCwvTpp586dW2NlJQUM5x98803kq78j2tAQIACAgKy7ee6devUo0cPro+AMo+MREbKDRnp5pGRyEjFISN16dJF//vf//TEE09o8+bN2rx5szkvKChInTp1cmhPRrKIVbfzQ/GwadMmo0WLFoa7u7tRq1YtY/78+dluJ2sY2W9p/OyzzxqtW7c2AgICDC8vL6NBgwbGc88953D708uXLxujRo0yAgMDDZvNZq4z6xanL774Yrb+5HZLYx8fH+PQoUNG586dDW9vbyMoKMiYMmWKedveLKdOnTL69OljeHt7G+XLlzceeughY8+ePdnWmVvfDCP7LY0NwzB27txpREVFGb6+voa3t7dx1113GVu2bHFok9stRXO71fL1HDlyxBg4cKARGBhoeHh4GLVq1TJGjBjhcLvgQ4cOGX379jUCAgIMT09Po3Xr1saqVaty3P6SJUuybSNrbHPz9ttvGy1atDC8vLwMPz8/o3HjxsYTTzxhHD9+3Gxz7S2NMzMzjeeff96oXr264eHhYTRr1sxYtWqVERMTY1SvXt1h/Vu2bDGPv6vHPadjMD093Zg2bZpRs2ZNw83NzQgNDTUmTZqU7da31atXz/EWtdf2Mz8kGSNGjHCYltvxm9M4//jjj0ZkZKTh6+trVKpUyRg2bJjx/fff5/t4dOa9smLFCkOS8dJLLzm0S01NNapXr26Eh4c7vD/zknUsb9q0yRg+fLhRvnx5w9fX1xgwYIBx+vRps93OnTuN+++/36hWrZrh4eFhVK5c2ejevbuxffv2Gxqvq7edn1vzXrvM1beTzsjIMKZNm2aEhIQYXl5eRocOHYw9e/bc0GdZfr399ttG/fr1DXd3d6N27drGyy+/7HBL5bzMmTPH8PX1zXYb7NOnTxsPPPCAYbfbDX9/f+OBBx4wdu3ale9bGmeNf06Pa9+P+/btMyQZ69evd3rfgdKIjERGIiPljoxERnJGccxIueUjSdneD2Qk69gMo4ivKggAKFILFizQ4MGD9d133+V4W20UvJSUFNWqVUuzZs3SkCFDiqQPo0eP1ldffaUdO3bw7R8AADkgI1mPjFS2cA0pAAAs5u/vryeeeEIvvvjiTd9p6UacPn1a7777rp599lmCFgAAKDbISGUL15ACCtHZs2ez3Q3iWoGBgbne5hUFIzExMc/5Xl5e8vf3t6g31rlw4cJ1f1t/vd/yW6mo3y9paWn6448/8mzj7+9fYLdnnzBhgiZMmFAg63JWxYoVrzvWAFCYivozH1eQkXJHRvoLGQmFhYIUUIhmz56tadOm5dnm8OHD2W4Zi4IVEhKS5/yYmBgtWLDAms5YaPHixRo8eHCebb788kuLenN9Rf1+2bJly3UvBhsbG6tBgwYVyvYBoCwp6s98XEFGyh0Z6S9kJBQWriEFFKL//e9/+t///pdnm3bt2snT09OiHpVN69evz3N+lSpVbuqW0MXViRMntHfv3jzbtGjRQuXLl7eoR3kr6vfLn3/+qR07duTZ5tZbb71ueAcAXF9Rf+bjCjJS7shIfyEjobBQkAIAAAAAAICluKg5AAAAAAAALFWmryGVmZmp48ePy8/PjyvoAwBQRhiGoTNnzqhKlSpyceG7uZyQkQAAKHuszkhluiB1/PhxhYaGFnU3AABAETh27JiqVq1a1N0olshIAACUXVZlpDJdkPLz85N0ZbDtdnsR9wYAAFghNTVVoaGhZg5AdmQkAADKHqszUpkuSGWdgm632wlbAACUMfwULXdkJAAAyi6rMhIXTgAAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkyfQ0pAADykpGRofT09KLuBpzk5uYmV1fXou4GAAClFhmpZCpuGYmCFAAA1zAMQ4mJiUpOTi7qruAGBQQEKDg4mAuXAwBQgMhIJV9xykgUpAAAuEZW0KpcubK8vb2LxR9s5I9hGDp//rySkpIkSSEhIUXcIwAASg8yUslVHDMSBSkAAK6SkZFhBq2KFSsWdXdwA7y8vCRJSUlJqly5crE6NR0AgJKKjFTyFbeMxEXNAQC4Stb1ELy9vYu4J7gZWa8f17cAAKBgkJFKh+KUkShIAQCQA05BL9l4/QAAKBz8jS3ZitPrR0EKAAAAAAAAlqIgBQBACWez2fJ8TJ06tUj7tnz58ptax9tvv60OHTrIbrfLZrNxZx8AAJBvpTkn/fHHHxo1apTq168vLy8vVatWTY8++qhSUlIKrpOFiIuaAwCQT+lxmy3blluXdvlue+LECfPfixcv1uTJk3XgwAFzmq+vr1PbTktLk7u7u1PLFKbz58+rS5cu6tKliyZNmlTU3QEAANewMiNJ5KQsx48f1/HjxzV79myFhYXpyJEjevjhh3X8+HEtXbq0qLt3XZwhVYjS4zZnewAAUNCCg4PNh7+/v2w2m/n83LlzGjBggIKCguTr66tWrVpp/fr1DsvXqFFD06dP18CBA2W32zV8+HBJ0jvvvKPQ0FB5e3urd+/emjNnjgICAhyWXbFihZo3by5PT0/VqlVL06ZN0+XLl831SlLv3r1ls9nM599//73uuusu+fn5yW63q0WLFtq+fXuu+zd69GhNnDhRbdu2LZgBQ5EjIwEArFKac1KjRo30ySefqEePHqpdu7Y6duyo5557Tp999pm5neKMghQAAKXY2bNn1a1bN8XHx2vXrl3q0qWLevTooaNHjzq0mz17tsLDw7Vr1y49/fTT+uabb/Twww/rscceU0JCgjp16qTnnnvOYZmvv/5aAwcO1GOPPaYff/xRb731lhYsWGC2++677yRJsbGxOnHihPl8wIABqlq1qr777jvt2LFDEydOlJubmwWjAQAA8JfSmJNSUlJkt9tVrlzx/0Fc8e8hAAC4YeHh4QoPDzefT58+XcuWLdPKlSs1cuRIc3rHjh31+OOPm8+ffPJJde3aVePGjZMk1atXT1u2bNGqVavMNtOmTdPEiRMVExMjSapVq5amT5+uJ554QlOmTFFgYKAkKSAgQMHBweZyR48e1fjx49WgQQNJUt26dQthzwEAAPJW2nLS77//runTp5tncRV3nCEFAEApdvbsWY0bN04NGzZUQECAfH19tW/fvmzf/LVs2dLh+YEDB9S6dWuHadc+//777/XMM8/I19fXfAwbNkwnTpzQ+fPnc+3T2LFjNXToUEVGRmrmzJk6dOjQTe4lAACA80pTTkpNTVV0dLTCwsKK9ELtzqAgBQBAKTZu3DgtW7ZMzz//vL7++mslJCSocePGSktLc2jn4+Pj9LrPnj2radOmKSEhwXzs3r1bBw8elKenZ67LTZ06VXv37lV0dLQ2bNigsLAwLVu2zOntAwAA3IzSkpPOnDmjLl26yM/PT8uWLSsxl0LgJ3sAAJRi33zzjQYNGqTevXtLuhKOfvnll+suV79+ffNaBlmufd68eXMdOHBAderUyXU9bm5uysjIyDa9Xr16qlevnsaMGaP7779fsbGxZh8BAACsUBpyUmpqqqKiouTh4aGVK1fmWewqbihIAQBQitWtW1effvqpevToIZvNpqefflqZmZnXXW7UqFFq37695syZox49emjDhg1au3atbDab2Wby5Mnq3r27qlWrpr59+8rFxUXff/+99uzZo2effVbSlTvIxMfH6/bbb5eHh4c8PT01fvx49e3bVzVr1tSvv/6q7777Tn369Mm1L4mJiUpMTNTPP/8sSdq9e7f8/PxUrVo1VahQ4SZHCAAAlFUlPSelpqaqc+fOOn/+vN5//32lpqYqNTVVkhQYGChXV9cCGKXCw0/2AAAoxebMmaPy5cvrtttuU48ePRQVFaXmzZtfd7nbb79d8+fP15w5cxQeHq64uDiNGTPG4Vu3qKgorVq1Sl988YVatWqltm3b6uWXX1b16tXNNi+99JLWrVun0NBQNWvWTK6urjp9+rQGDhyoevXq6b777lPXrl01bdq0XPsyf/58NWvWTMOGDZMktW/fXs2aNdPKlStvYmQAAEBZV9Jz0s6dO/Xtt99q9+7dqlOnjkJCQszHsWPHbn6ACpnNMAyjqDtRVFJTU+Xv72/eFrGgpcdtzjbNrUu7At8OAKDgXLx4UYcPH1bNmjVL1CnPVhg2bJj279+vr7/+uqi7cl15vY6F/fe/NCAjAQCuRUbKW0nJScUpI/GTPQAAkKPZs2erU6dO8vHx0dq1a7Vw4UK9+eabRd0tAACAIkdOunkUpAAAQI62bdumWbNm6cyZM6pVq5Zee+01DR06tKi7BQAAUOTISTePghQAAMjRxx9/XNRdAAAAKJbISTePi5oDAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAKAUGDRokGw2m2w2m9zc3BQUFKROnTrpvffeU2ZmZlF376bs3btXffr0UY0aNWSz2fTKK68UdZcAAEAJUppz0jvvvKM77rhD5cuXV/ny5RUZGalt27YVdbfypVxRdwAAgJLi0Pa3LNtW7ZYPOb1Mly5dFBsbq4yMDJ08eVJxcXF67LHHtHTpUq1cuVLlypXMP/vnz59XrVq1dO+992rMmDFF3R0AAHANKzOSRE662saNG3X//ffrtttuk6enp1544QV17txZe/fu1S233FLU3csTZ0gBAFBKeHh4KDg4WLfccouaN2+uf/3rX1qxYoXWrl2rBQsWmO2Sk5M1dOhQBQYGym63q2PHjvr+++8d1vXZZ5+pVatW8vT0VKVKldS7d29z3p9//qmBAweqfPny8vb2VteuXXXw4EFJ0rlz52S327V06VKH9S1fvlw+Pj46c+aM0tLSNHLkSIWEhMjT01PVq1fXjBkzct2vVq1a6cUXX1T//v3l4eFRACMFAADKmtKakz744AP985//VNOmTdWgQQO9++67yszMVHx8fAGMWuGiIAUAQCnWsWNHhYeH69NPPzWn3XvvvUpKStLatWu1Y8cONW/eXHfffbf++OMPSdLq1avVu3dvdevWTbt27VJ8fLxat25tLj9o0CBt375dK1eu1NatW2UYhrp166b09HT5+Piof//+io2NdehHbGys+vbtKz8/P7322mtauXKlPv74Yx04cEAffPCBatSoYcl4AAAAZCmNOen8+fNKT09XhQoVbm5wLFAyz0kDAAD51qBBA/3www+SpM2bN2vbtm1KSkoyzzaaPXu2li9frqVLl2r48OF67rnn1L9/f02bNs1cR3h4uCTp4MGDWrlypb755hvddtttkq58MxcaGqrly5fr3nvv1dChQ3XbbbfpxIkTCgkJUVJSktasWaP169dLko4ePaq6deuqXbt2stlsql69upXDAQAAYCptOWnChAmqUqWKIiMjb3psChtnSAEAUMoZhiGbzSZJ+v7773X27FlVrFhRvr6+5uPw4cM6dOiQJCkhIUF33313juvat2+fypUrpzZt2pjTKlasqPr162vfvn2SpNatW+vWW2/VwoULJUnvv/++qlevrvbt20u68s1hQkKC6tevr0cffVRffPFFoe07AABAXkpTTpo5c6YWLVqkZcuWydPT0/nBsBhnSAEAUMrt27dPNWvWlCSdPXtWISEh2rhxY7Z2AQEBkiQvL6+b3ubQoUM1d+5cTZw4UbGxsRo8eLAZ9po3b67Dhw9r7dq1Wr9+ve677z5FRkZmu54CAABAYSstOWn27NmaOXOm1q9fryZNmtx0H63g1BlSM2bMUKtWreTn56fKlSurV69eOnDggEObDh06mLdTzHo8/PDDDm2OHj2q6OhoeXt7q3Llyho/frwuX77s0Gbjxo1q3ry5PDw8VKdOHYeLjGWZO3euatSoIU9PT7Vp06bE3NoQAACrbNiwQbt371afPn0kXQk5iYmJKleunOrUqePwqFSpkiSpSZMmuV4Is2HDhrp8+bK+/fZbc9rp06d14MABhYWFmdP+8Y9/6MiRI3rttdf0448/KiYmxmE9drtd/fr10zvvvKPFixfrk08+Ma/NUBKRkQAAKHlKS06aNWuWpk+frri4OLVs2fKGx8NqThWkNm3apBEjRui///2v1q1bp/T0dHXu3Fnnzp1zaDds2DCdOHHCfMyaNcucl5GRoejoaKWlpWnLli1auHChFixYoMmTJ5ttDh8+rOjoaN11111KSEjQ6NGjNXToUH3++edmm8WLF2vs2LGaMmWKdu7cqfDwcEVFRSkpKelGxwIAgBLt0qVLSkxM1G+//aadO3fq+eefV8+ePdW9e3cNHDhQkhQZGamIiAj16tVLX3zxhX755Rdt2bJFTz75pLZv3y5JmjJlij766CNNmTJF+/bt0+7du/XCCy9IkurWrauePXtq2LBh2rx5s77//nv94x//0C233KKePXuafSlfvrzuuecejR8/Xp07d1bVqlXNeXPmzNFHH32k/fv366efftKSJUsUHBxsfvN4rbS0NCUkJCghIUFpaWn67bfflJCQoJ9//rmQRtJ5ZCQAAIq30pqTXnjhBT399NN67733VKNGDSUmJioxMVFnz54tpJEsOE4VpOLi4jRo0CDdeuutCg8P14IFC3T06FHt2LHDoZ23t7eCg4PNh91uN+d98cUX+vHHH/X++++radOm6tq1q6ZPn665c+cqLS1NkjR//nzVrFlTL730kho2bKiRI0eqb9++evnll831zJkzR8OGDdPgwYMVFham+fPny9vbW++9997NjAcAACVWXFycQkJCVKNGDXXp0kVffvmlXnvtNa1YsUKurq6SJJvNpjVr1qh9+/YaPHiw6tWrp/79++vIkSMKCgqSdOVMniVLlmjlypVq2rSpOnbs6HCGTWxsrFq0aKHu3bsrIiJChmFozZo1cnNzc+jPkCFDlJaWpgcffNBhup+fn2bNmqWWLVuqVatW+uWXX7RmzRq5uOQcS44fP65mzZqpWbNmOnHihGbPnq1mzZpp6NChBTl8N4WMBABA8VZac9K8efOUlpamvn37KiQkxHzMnj27IIevUNgMwzBudOGff/5ZdevW1e7du9WoUSNJV16cvXv3yjAMBQcHq0ePHnr66afl7e0tSZo8ebJWrlyphIQEcz2HDx9WrVq1tHPnTjVr1kzt27dX8+bN9corr5htYmNjNXr0aKWkpCgtLU3e3t5aunSpevXqZbaJiYlRcnKyVqxYka/+p6amyt/fXykpKQ6BsKCkx23ONs2tS7sC3w4AoOBcvHhRhw8fVs2aNUvExSCLs//85z8aM2aMjh8/Lnd3d0u3ndfrWNh//yUy0vWQkQCg5CEjFayiyklFnZGudsMXNc/MzNTo0aN1++23m0FLkv7+97+revXqqlKlin744QdNmDBBBw4c0KeffipJSkxMNCuLWbKeJyYm5tkmNTVVFy5c0J9//qmMjIwc2+zfvz/XPl+6dEmXLl0yn6empt7AngMAgLycP39eJ06c0MyZM/XQQw9ZXowqamQkAACQm7Kek652wwWpESNGaM+ePdq82fEbruHDh5v/bty4sUJCQnT33Xfr0KFDql279o33tADMmDFD06ZNs2x7vySvzTatrvj2DwBQus2aNUvPPfec2rdvr0mTJhV1dyxHRro+MhIAoKwq6znpak5dQyrLyJEjtWrVKn355ZcOF9/KSZs2bSTJvPBocHCwTp486dAm63lwcHCebex2u7y8vFSpUiW5urrm2CZrHTmZNGmSUlJSzMexY8fysbcAAMAZU6dOVXp6uuLj4+Xr61vU3bEUGQkAAOSlLOekazlVkDIMQyNHjtSyZcu0YcMG1axZ87rLZF0HISQkRJIUERGh3bt3O9zpZd26dbLb7eZtECMiIrLdRnHdunWKiIiQJLm7u6tFixYObTIzMxUfH2+2yYmHh4fsdrvDAwAA4GaRkQAAAJzj1E/2RowYoQ8//FArVqyQn5+feT0Df39/eXl56dChQ/rwww/VrVs3VaxYUT/88IPGjBmj9u3bq0mTJpKkzp07KywsTA888IBmzZqlxMREPfXUUxoxYoQ8PDwkSQ8//LDeeOMNPfHEE3rwwQe1YcMGffzxx1q9erXZl7FjxyomJkYtW7ZU69at9corr+jcuXMaPHhwQY0NAABAvpCRAAAAnONUQWrevHmSrtwl5mqxsbEaNGiQ3N3dtX79ejP4hIaGqk+fPnrqqafMtq6urlq1apUeeeQRRUREyMfHRzExMXrmmWfMNjVr1tTq1as1ZswYvfrqq6patareffddRUVFmW369eunU6dOafLkyUpMTFTTpk0VFxeX7SKeAADciJu4CS2KAatfPzISAKCsICOVbMXp9bMZxak3FivsWxoeXPRktml1+z9X4NsBABScjIwM/fTTT6pcubIqVqxY1N3BDTp9+rSSkpJUr149ubq6Osyz+pbGJREZCQBwLTJS6VCcMtIN32UPAIDSyNXVVQEBAeZ1fLy9vWWz2Yq4V8gvwzB0/vx5JSUlKSAgIFvQAgAAN4aMVLIVx4xEQQoAgGtk3Y3s6otLo2QJCAjI865yAADAeWSkkq84ZSQKUgAAXMNmsykkJESVK1dWenp6UXcHTnJzcysW3/oBAFDakJFKtuKWkShIAQCQC1dX12L1RxsAAKA4ICOhILgUdQcAAAAAAABQtlCQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJZyqiA1Y8YMtWrVSn5+fqpcubJ69eqlAwcOOLS5ePGiRowYoYoVK8rX11d9+vTRyZMnHdocPXpU0dHR8vb2VuXKlTV+/HhdvnzZoc3GjRvVvHlzeXh4qE6dOlqwYEG2/sydO1c1atSQp6en2rRpo23btjmzOwAAAAWCjAQAAOAcpwpSmzZt0ogRI/Tf//5X69atU3p6ujp37qxz586ZbcaMGaPPPvtMS5Ys0aZNm3T8+HHdc8895vyMjAxFR0crLS1NW7Zs0cKFC7VgwQJNnjzZbHP48GFFR0frrrvuUkJCgkaPHq2hQ4fq888/N9ssXrxYY8eO1ZQpU7Rz506Fh4crKipKSUlJNzMeAAAATiMjAQAAOMdmGIZxowufOnVKlStX1qZNm9S+fXulpKQoMDBQH374ofr27StJ2r9/vxo2bKitW7eqbdu2Wrt2rbp3767jx48rKChIkjR//nxNmDBBp06dkru7uyZMmKDVq1drz5495rb69++v5ORkxcXFSZLatGmjVq1a6Y033pAkZWZmKjQ0VKNGjdLEiRPz1f/U1FT5+/srJSVFdrv9RochVwcXPZltWt3+zxX4dgAAQP4V9t9/iYx0PWQkAACKHysy0tVu6hpSKSkpkqQKFSpIknbs2KH09HRFRkaabRo0aKBq1app69atkqStW7eqcePGZtCSpKioKKWmpmrv3r1mm6vXkdUmax1paWnasWOHQxsXFxdFRkaabQAAAIoKGQkAACBv5W50wczMTI0ePVq33367GjVqJElKTEyUu7u7AgICHNoGBQUpMTHRbHN10MqanzUvrzapqam6cOGC/vzzT2VkZOTYZv/+/bn2+dKlS7p06ZL5PDU11Yk9BgAAuD4yEgAAwPXd8BlSI0aM0J49e7Ro0aKC7E+hmjFjhvz9/c1HaGhoUXcJAACUMmQkAACA67uhgtTIkSO1atUqffnll6patao5PTg4WGlpaUpOTnZof/LkSQUHB5ttrr2jTNbz67Wx2+3y8vJSpUqV5OrqmmObrHXkZNKkSUpJSTEfx44dc27HAQAA8kBGAgAAyB+nClKGYWjkyJFatmyZNmzYoJo1azrMb9Gihdzc3BQfH29OO3DggI4ePaqIiAhJUkREhHbv3u1wp5d169bJbrcrLCzMbHP1OrLaZK3D3d1dLVq0cGiTmZmp+Ph4s01OPDw8ZLfbHR4AAAA3i4wEAADgHKeuITVixAh9+OGHWrFihfz8/MzrGfj7+8vLy0v+/v4aMmSIxo4dqwoVKshut2vUqFGKiIhQ27ZtJUmdO3dWWFiYHnjgAc2aNUuJiYl66qmnNGLECHl4eEiSHn74Yb3xxht64okn9OCDD2rDhg36+OOPtXr1arMvY8eOVUxMjFq2bKnWrVvrlVde0blz5zR48OCCGhsAAIB8ISMBAAA4x6mC1Lx58yRJHTp0cJgeGxurQYMGSZJefvllubi4qE+fPrp06ZKioqL05ptvmm1dXV21atUqPfLII4qIiJCPj49iYmL0zDPPmG1q1qyp1atXa8yYMXr11VdVtWpVvfvuu4qKijLb9OvXT6dOndLkyZOVmJiopk2bKi4uLttFPAEAAAobGQkAAMA5NsMwjKLuRFFJTU2Vv7+/UlJSCuXU9IOLnsw2rW7/5wp8OwAAIP8K++9/aUBGAgCg7LE6I93wXfYAAAAAAACAG0FBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClnC5IffXVV+rRo4eqVKkim82m5cuXO8wfNGiQbDabw6NLly4Obf744w8NGDBAdrtdAQEBGjJkiM6ePevQ5ocfftAdd9whT09PhYaGatasWdn6smTJEjVo0ECenp5q3Lix1qxZ4+zuAAAAFAgyEgAAQP45XZA6d+6cwsPDNXfu3FzbdOnSRSdOnDAfH330kcP8AQMGaO/evVq3bp1WrVqlr776SsOHDzfnp6amqnPnzqpevbp27NihF198UVOnTtXbb79tttmyZYvuv/9+DRkyRLt27VKvXr3Uq1cv7dmzx9ldAgAAuGlkJAAAgPyzGYZh3PDCNpuWLVumXr16mdMGDRqk5OTkbN8KZtm3b5/CwsL03XffqWXLlpKkuLg4devWTb/++quqVKmief+PvfsOj6rK/zj+SQIplCSUVA29FylBQpAqkSDIiotSZDEgxZKogIIgLkVEXATFQhFdCT/FBWEFETDSBKQogkTpixAEhQQESaip9/cHT0aGBMiE5KS9X88zj8y559575mTKx+/cuXf2bI0dO1bx8fFydXWVJI0ePVrLli3TgQMHJEm9e/fWxYsXtWLFCtu2W7VqpaZNm2rOnDk5Gn9SUpK8vLyUmJgoT0/PXMzAzR1aODZLW+0+k/N8PwAAIOfy+/NfIiPdChkJAIDCx0RGula+nENqw4YN8vX1Vd26dfXUU0/pzJkztmXbtm2Tt7e3LWhJUlhYmJydnfX999/b+rRr184WtCQpPDxcBw8e1J9//mnrExYWZrff8PBwbdu2LT8eEgAAwG0jIwEAAFxVKq832KVLF/39739X9erVdfjwYb300ku6//77tW3bNrm4uCg+Pl6+vr72gyhVShUrVlR8fLwkKT4+XtWrV7fr4+fnZ1tWoUIFxcfH29qu7ZO5jewkJycrOTnZdj8pKem2HisAAEBOkZEAAAD+kucFqT59+tj+3bhxY911112qWbOmNmzYoE6dOuX17hwyZcoUTZw4sUDHAAAASiYyEgAAwF/y5Sd716pRo4YqV66sX375RZLk7++vU6dO2fVJS0vT2bNn5e/vb+uTkJBg1yfz/q36ZC7PzpgxY5SYmGi7HT9+/PYeHAAAQC6RkQAAQEmW7wWp3377TWfOnFFAQIAkKTQ0VOfOndPOnTttfdavX6+MjAyFhITY+mzatEmpqam2PmvWrFHdunVVoUIFW59169bZ7WvNmjUKDQ294Vjc3Nzk6elpdwMAACgIZCQAAFCSOVyQunDhgmJjYxUbGytJiouLU2xsrI4dO6YLFy5o5MiR+u6773T06FGtW7dODz74oGrVqqXw8HBJUv369dWlSxcNGTJE27dv15YtWxQVFaU+ffooMDBQkvToo4/K1dVVgwYN0t69e7Vo0SK9/fbbGjFihG0czz33nGJiYjR9+nQdOHBAEyZM0I4dOxQVFZUH0wIAAOAYMhIAAEDOOVyQ2rFjh5o1a6ZmzZpJkkaMGKFmzZpp3LhxcnFx0c8//6y//e1vqlOnjgYNGqTg4GB9++23cnNzs21jwYIFqlevnjp16qSuXbuqTZs2mjt3rm25l5eXVq9erbi4OAUHB+v555/XuHHjNHToUFuf1q1b69NPP9XcuXPVpEkTLVmyRMuWLVOjRo1uZz4AAAByhYwEAACQc06WZVkFPYiCkpSUJC8vLyUmJubLoemHFo7N0la7z+Q83w8AAMi5/P78Lw7ISAAAlDymM1K+n0MKAAAAAAAAuBYFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAUQ4XpDZt2qTu3bsrMDBQTk5OWrZsmd1yy7I0btw4BQQEyMPDQ2FhYTp06JBdn7Nnz6pfv37y9PSUt7e3Bg0apAsXLtj1+fnnn9W2bVu5u7srKChIU6dOzTKWxYsXq169enJ3d1fjxo21atUqRx8OAABAniAjAQAA5JzDBamLFy+qSZMmmjlzZrbLp06dqnfeeUdz5szR999/r7Jlyyo8PFxXrlyx9enXr5/27t2rNWvWaMWKFdq0aZOGDh1qW56UlKTOnTuratWq2rlzp9544w1NmDBBc+fOtfXZunWr+vbtq0GDBmnXrl3q0aOHevTooT179jj6kAAAAG4bGQkAACDnnCzLsnK9spOTli5dqh49eki6+s1fYGCgnn/+eb3wwguSpMTERPn5+Sk6Olp9+vTR/v371aBBA/3www9q0aKFJCkmJkZdu3bVb7/9psDAQM2ePVtjx45VfHy8XF1dJUmjR4/WsmXLdODAAUlS7969dfHiRa1YscI2nlatWqlp06aaM2dOjsaflJQkLy8vJSYmytPTM7fTcEOHFo7N0la7z+Q83w8AAMi5/P78l8hIt0JGAgCg8DGRka6Vp+eQiouLU3x8vMLCwmxtXl5eCgkJ0bZt2yRJ27Ztk7e3ty1oSVJYWJicnZ31/fff2/q0a9fOFrQkKTw8XAcPHtSff/5p63PtfjL7ZO4HAACgsCAjAQAA2CuVlxuLj4+XJPn5+dm1+/n52ZbFx8fL19fXfhClSqlixYp2fapXr55lG5nLKlSooPj4+JvuJzvJyclKTk623U9KSnLk4QEAAOQKGQkAAMBeibrK3pQpU+Tl5WW7BQUFFfSQAAAAChwZCQAAmJanBSl/f39JUkJCgl17QkKCbZm/v79OnTpltzwtLU1nz56165PdNq7dx436ZC7PzpgxY5SYmGi7HT9+3NGHCAAA4DAyEgAAgL08LUhVr15d/v7+Wrduna0tKSlJ33//vUJDQyVJoaGhOnfunHbu3Gnrs379emVkZCgkJMTWZ9OmTUpNTbX1WbNmjerWrasKFSrY+ly7n8w+mfvJjpubmzw9Pe1uAAAA+Y2MBAAAYM/hgtSFCxcUGxur2NhYSVdP0hkbG6tjx47JyclJw4YN06uvvqrly5dr9+7deuyxxxQYGGi7ykz9+vXVpUsXDRkyRNu3b9eWLVsUFRWlPn36KDAwUJL06KOPytXVVYMGDdLevXu1aNEivf322xoxYoRtHM8995xiYmI0ffp0HThwQBMmTNCOHTsUFRV1+7MCAADgIDISAABAzjl8UvMdO3aoY8eOtvuZASgiIkLR0dEaNWqULl68qKFDh+rcuXNq06aNYmJi5O7ubltnwYIFioqKUqdOneTs7KyePXvqnXfesS338vLS6tWrFRkZqeDgYFWuXFnjxo3T0KFDbX1at26tTz/9VC+//LJeeukl1a5dW8uWLVOjRo1yNREAAAC3g4wEAACQc06WZVkFPYiCkpSUJC8vLyUmJubLoemHFo7N0la7z+Q83w8AAMi5/P78Lw7ISAAAlDymM1KJusoeAAAAAAAACh4FKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAUXlekJowYYKcnJzsbvXq1bMtv3LliiIjI1WpUiWVK1dOPXv2VEJCgt02jh07pm7duqlMmTLy9fXVyJEjlZaWZtdnw4YNat68udzc3FSrVi1FR0fn9UMBAADIM2QkAACAv+TLEVINGzbUyZMnbbfNmzfblg0fPlxffvmlFi9erI0bN+rEiRP6+9//bluenp6ubt26KSUlRVu3btX8+fMVHR2tcePG2frExcWpW7du6tixo2JjYzVs2DANHjxYX3/9dX48HAAAgDxBRgIAALiqVL5stFQp+fv7Z2lPTEzUv//9b3366ae69957JUnz5s1T/fr19d1336lVq1ZavXq19u3bp7Vr18rPz09NmzbVpEmT9OKLL2rChAlydXXVnDlzVL16dU2fPl2SVL9+fW3evFlvvfWWwsPD8+MhAQAA3DYyEgAAwFX5coTUoUOHFBgYqBo1aqhfv346duyYJGnnzp1KTU1VWFiYrW+9evVUpUoVbdu2TZK0bds2NW7cWH5+frY+4eHhSkpK0t69e219rt1GZp/MbQAAABRGZCQAAICr8vwIqZCQEEVHR6tu3bo6efKkJk6cqLZt22rPnj2Kj4+Xq6urvL297dbx8/NTfHy8JCk+Pt4uaGUuz1x2sz5JSUm6fPmyPDw8sh1bcnKykpOTbfeTkpJu67ECAADkFBkJAADgL3lekLr//vtt/77rrrsUEhKiqlWr6rPPPrthCDJlypQpmjhxYoGOAQAAlExkJAAAgL/ky0/2ruXt7a06derol19+kb+/v1JSUnTu3Dm7PgkJCbbzKfj7+2e5okzm/Vv18fT0vGmgGzNmjBITE22348eP3+7DAwAAyBUyEgAAKMnyvSB14cIFHT58WAEBAQoODlbp0qW1bt062/KDBw/q2LFjCg0NlSSFhoZq9+7dOnXqlK3PmjVr5OnpqQYNGtj6XLuNzD6Z27gRNzc3eXp62t0AAAAKAhkJAACUZHlekHrhhRe0ceNGHT16VFu3btVDDz0kFxcX9e3bV15eXho0aJBGjBihb775Rjt37tTAgQMVGhqqVq1aSZI6d+6sBg0aqH///vrpp5/09ddf6+WXX1ZkZKTc3NwkSU8++aSOHDmiUaNG6cCBA5o1a5Y+++wzDR8+PK8fDgAAQJ4gIwEAAPwlz88h9dtvv6lv3746c+aMfHx81KZNG3333Xfy8fGRJL311ltydnZWz549lZycrPDwcM2aNcu2vouLi1asWKGnnnpKoaGhKlu2rCIiIvTKK6/Y+lSvXl0rV67U8OHD9fbbb+vOO+/Uhx9+yOWMAQBAoUVGAgAA+IuTZVlWQQ+ioCQlJcnLy0uJiYn5cmj6oYVjs7TV7jM5z/cDAAByLr8//4sDMhIAACWP6YyU7+eQAgAAAAAAAK5FQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAUaUKegAAAACpMZuztJXu0qYARgIAAFB4FOeMREEKAAAUuKPnvsrSVlvFI2wBAADkVnHOSPxkDwAAAAAAAEZxhBQAADAqu0PPAQAASrqSlpEoSAEAgHxV0sIVAABATpT0jFTkC1IzZ87UG2+8ofj4eDVp0kTvvvuuWrZsWdDDAgCg2MtpiMru3AfIf2QkAAAKBhkpZ4p0QWrRokUaMWKE5syZo5CQEM2YMUPh4eE6ePCgfH19C3p42br+iVlczo4PACi68vLbuZIerAoLMhIAALePjJS/inRB6s0339SQIUM0cOBASdKcOXO0cuVKffTRRxo9enQBjy5ncvoEJ5QBQMHJ7eV2C8Nh2ISfkomMBAAwJbdfKBR0TiIjFbwiW5BKSUnRzp07NWbMGFubs7OzwsLCtG3btgIc2c1d/6Sv5n1/jtYr6BcrUJhd/6HH6wW3Kyfv1dk9zwg2KAzISAAyZVcY4DWD25Fd1rn+/ZqMhJwqsgWpP/74Q+np6fLz87Nr9/Pz04EDB7JdJzk5WcnJybb7iYmJkqSkpKR8GeOFS8m37LPn0rJ82TdQony0rKBHgGKO9+qCkV+fz5nbtSwrX7Zf0MhIAGzISDCA92vziktGKrIFqdyYMmWKJk6cmKU9KCioAEYDAABuatD0fN38+fPn5eXlla/7KCrISAAAFCHFJCMV2YJU5cqV5eLiooSEBLv2hIQE+fv7Z7vOmDFjNGLECNv9jIwMnT17VpUqVZKTk1Oeji8pKUlBQUE6fvy4PD0983TbyB5zbh5zbh5zbh5zXjDyc94ty9L58+cVGBiYp9stLMhIuB5zbh5zbh5zXjCYd/OKU0YqsgUpV1dXBQcHa926derRo4ekq+Fp3bp1ioqKynYdNzc3ubm52bV5e3vn6zg9PT15YRrGnJvHnJvHnJvHnBeM/Jr34nxkFBkJN8Kcm8ecm8ecFwzm3bzikJGKbEFKkkaMGKGIiAi1aNFCLVu21IwZM3Tx4kXbFWUAAABKIjISAAAo7Ip0Qap37946ffq0xo0bp/j4eDVt2lQxMTFZTuIJAABQkpCRAABAYVekC1KSFBUVdcPDzwuSm5ubxo8fn+Xwd+Qf5tw85tw85tw85rxgMO+3j4yETMy5ecy5ecx5wWDezStOc+5kFddrHgMAAAAAAKBQci7oAQAAAAAAAKBkoSAFAAAAAAAAoyhIAQAAAAAAwCgKUrdh5syZqlatmtzd3RUSEqLt27fftP/ixYtVr149ubu7q3Hjxlq1apWhkRYfjsz5Bx98oLZt26pChQqqUKGCwsLCbvk3QlaOPs8zLVy4UE5OTurRo0f+DrAYcnTOz507p8jISAUEBMjNzU116tTh/cVBjs75jBkzVLduXXl4eCgoKEjDhw/XlStXDI226Nu0aZO6d++uwMBAOTk5admyZbdcZ8OGDWrevLnc3NxUq1YtRUdH5/s4kXtkJPPISOaRkcwjI5lHRjKrxGUkC7mycOFCy9XV1froo4+svXv3WkOGDLG8vb2thISEbPtv2bLFcnFxsaZOnWrt27fPevnll63SpUtbu3fvNjzyosvROX/00UetmTNnWrt27bL2799vDRgwwPLy8rJ+++03wyMvuhyd80xxcXHWHXfcYbVt29Z68MEHzQy2mHB0zpOTk60WLVpYXbt2tTZv3mzFxcVZGzZssGJjYw2PvOhydM4XLFhgubm5WQsWLLDi4uKsr7/+2goICLCGDx9ueORF16pVq6yxY8dan3/+uSXJWrp06U37HzlyxCpTpow1YsQIa9++fda7775rubi4WDExMWYGDIeQkcwjI5lHRjKPjGQeGcm8kpaRKEjlUsuWLa3IyEjb/fT0dCswMNCaMmVKtv179epldevWza4tJCTEeuKJJ/J1nMWJo3N+vbS0NKt8+fLW/Pnz82uIxU5u5jwtLc1q3bq19eGHH1oRERGELQc5OuezZ8+2atSoYaWkpJgaYrHj6JxHRkZa9957r13biBEjrHvuuSdfx1lc5SRsjRo1ymrYsKFdW+/eva3w8PB8HBlyi4xkHhnJPDKSeWQk88hIBaskZCR+spcLKSkp2rlzp8LCwmxtzs7OCgsL07Zt27JdZ9u2bXb9JSk8PPyG/WEvN3N+vUuXLik1NVUVK1bMr2EWK7md81deeUW+vr4aNGiQiWEWK7mZ8+XLlys0NFSRkZHy8/NTo0aN9Nprryk9Pd3UsIu03Mx569attXPnTtsh60eOHNGqVavUtWtXI2MuifgMLTrISOaRkcwjI5lHRjKPjFQ0FPXP0FIFPYCi6I8//lB6err8/Pzs2v38/HTgwIFs14mPj8+2f3x8fL6NszjJzZxf78UXX1RgYGCWFyyyl5s537x5s/79738rNjbWwAiLn9zM+ZEjR7R+/Xr169dPq1at0i+//KKnn35aqampGj9+vIlhF2m5mfNHH31Uf/zxh9q0aSPLspSWlqYnn3xSL730kokhl0g3+gxNSkrS5cuX5eHhUUAjw/XISOaRkcwjI5lHRjKPjFQ0FPWMxBFSKBFef/11LVy4UEuXLpW7u3tBD6dYOn/+vPr3768PPvhAlStXLujhlBgZGRny9fXV3LlzFRwcrN69e2vs2LGaM2dOQQ+t2NqwYYNee+01zZo1Sz/++KM+//xzrVy5UpMmTSrooQGAw8hI+Y+MVDDISOaRkeAojpDKhcqVK8vFxUUJCQl27QkJCfL39892HX9/f4f6w15u5jzTtGnT9Prrr2vt2rW666678nOYxYqjc3748GEdPXpU3bt3t7VlZGRIkkqVKqWDBw+qZs2a+TvoIi43z/OAgACVLl1aLi4utrb69esrPj5eKSkpcnV1zdcxF3W5mfN//vOf6t+/vwYPHixJaty4sS5evKihQ4dq7Nixcnbmu568dqPPUE9Pz0L/zV9JQ0Yyj4xkHhnJPDKSeWSkoqGoZySeEbng6uqq4OBgrVu3ztaWkZGhdevWKTQ0NNt1QkND7fpL0po1a27YH/ZyM+eSNHXqVE2aNEkxMTFq0aKFiaEWG47Oeb169bR7927Fxsbabn/729/UsWNHxcbGKigoyOTwi6TcPM/vuece/fLLL7ZgK0n/+9//FBAQQNDKgdzM+aVLl7IEqsywa1lW/g22BOMztOggI5lHRjKPjGQeGck8MlLRUOQ/Qwv2nOpF18KFCy03NzcrOjra2rdvnzV06FDL29vbio+PtyzrKov2AAEAAElEQVTLsvr372+NHj3a1n/Lli1WqVKlrGnTpln79++3xo8fzyWNHeTonL/++uuWq6urtWTJEuvkyZO22/nz5wvqIRQ5js759biCjOMcnfNjx45Z5cuXt6KioqyDBw9aK1assHx9fa1XX321oB5CkePonI8fP94qX7689Z///Mc6cuSItXr1aqtmzZpWr169CuohFDnnz5+3du3aZe3atcuSZL355pvWrl27rF9//dWyLMsaPXq01b9/f1v/zEsajxw50tq/f781c+bMInVJ45KGjGQeGck8MpJ5ZCTzyEjmlbSMREHqNrz77rtWlSpVLFdXV6tly5bWd999Z1vWvn17KyIiwq7/Z599ZtWpU8dydXW1GjZsaK1cudLwiIs+R+a8atWqlqQst/Hjx5sfeBHm6PP8WoSt3HF0zrdu3WqFhIRYbm5uVo0aNazJkydbaWlphkddtDky56mpqdaECROsmjVrWu7u7lZQUJD19NNPW3/++af5gRdR33zzTbbvz5nzHBERYbVv3z7LOk2bNrVcXV2tGjVqWPPmzTM+buQcGck8MpJ5ZCTzyEjmkZHMKmkZycmyOHYOAAAAAAAA5nAOKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFqRJmwoQJcnJysmurVq2aBgwYkO/7Pnr0qJycnBQdHW1rGzBggMqVK5fv+87k5OSkCRMmGNtfUdehQwd16NAhT7eZ3XMQ9rJ7rZRU0dHRcnJy0tGjR2/Z19R7WX7KyMhQo0aNNHny5Fv2ze61lJaWplGjRikoKEjOzs7q0aOHQ/ufM2eOqlSpouTkZIfWA4oDMhIZyRFkpIJBRvoLGenGyEhFBwUp5MqqVasKbWgpzGMrKS5duqQJEyZow4YNBT2UAsfzsWg7fvy4Jk6cqJYtW6pChQqqXLmyOnTooLVr12bpmxkMs7vFx8fnaH//+c9/dPz4cUVFReVqvB999JHeeOMNPfzww5o/f76GDx8uSVq0aJH+8Y9/qHbt2nJycrrh/0QNGDBAKSkpev/993O1fwCF+32/MI+tpCAj/YXnY9FWHDLSmTNn9MYbb6hdu3by8fGRt7e3WrVqpUWLFmVZn4yUP0oV9ABQ8A4ePChnZ8dqk6tWrdLMmTMd+hCpWrWqLl++rNKlSzs4QsfcbGyXL19WqVI87fPbpUuXNHHiREnK8j++L7/8skaPHl0AoyoYhfm1UhT0799fffr0kZubW4Hs/4svvtC//vUv9ejRQxEREUpLS9P//d//6b777tNHH32kgQMHZlnnlVdeUfXq1e3avL29c7S/N954Q3369JGXl1euxrt+/Xrdcccdeuutt+zaZ8+erZ07d+ruu+/WmTNnbri+u7u7IiIi9Oabb+qZZ57hm3qUeGQk5DUy0l8K82ulKCAjOSa7jLRixQqNHTtWXbt21csvv6xSpUrpv//9r/r06aN9+/bZXqsSGSm/8KmDfH8TS0tLU0ZGhlxdXeXu7p6v+7qVgt6/CVeuXJGrq2u2AfrixYsqW7ZsAYzqL6VKlSLw3kBheq0UFi4uLnJxcSmw/Xfs2FHHjh1T5cqVbW1PPvmkmjZtqnHjxmUbtu6//361aNHC4X3t2rVLP/30k6ZPn57r8Z46dSrbYPfxxx/rjjvukLOzsxo1anTTbfTq1UtTp07VN998o3vvvTfXYwGKAzJS8UJGKroK02ulsCAjOSa7jNSwYUMdOnRIVatWtbU9/fTTCgsL07/+9S+NGjXK7n2BjJT3+MleMbZ582bdfffdcnd3V82aNW94eOH1vylOTU3VxIkTVbt2bbm7u6tSpUpq06aN1qxZI+nq4YozZ86UJLvDLaW/ftc9bdo0zZgxQzVr1pSbm5v27dt30998HzlyROHh4SpbtqwCAwP1yiuvyLIs2/INGzbIyckpy+HN12/zZmPLbLv+W5hdu3bp/vvvl6enp8qVK6dOnTrpu+++s+uTeZjpli1bNGLECPn4+Khs2bJ66KGHdPr06ez/ADfx+++/a9CgQQoMDJSbm5uqV6+up556SikpKXZz8sgjj6hixYoqU6aMWrVqpZUrV9ptJ3NeFi5cqJdffll33HGHypQpo6SkJNu5Jw4fPqyuXbuqfPny6tevn6Srv8GeMWOGGjZsKHd3d/n5+emJJ57Qn3/+edNxp6SkaNy4cQoODpaXl5fKli2rtm3b6ptvvrH1OXr0qHx8fCRJEydOtP0NMuf9Rr/pnjRpku35Uq1aNb300ktZfqNdrVo1PfDAA9q8ebNatmwpd3d31ahRQ//3f//n2B9AV58LUVFRWrx4sRo0aCAPDw+FhoZq9+7dkqT3339ftWrVkru7uzp06JDl9/nffvutHnnkEVWpUkVubm4KCgrS8OHDdfnyZVufvHqtnDp1Sj4+PurQoYPd6+KXX35R2bJl1bt37xw/7szn8qZNm/TEE0+oUqVK8vT01GOPPZbl779jxw6Fh4ercuXK8vDwUPXq1fX444/bll/7GGbOnKkaNWqoTJky6ty5s44fPy7LsjRp0iTdeeed8vDw0IMPPqizZ8/meKzXjvfa+bcsS6+++qruvPNOlSlTRh07dtTevXuzrHur97KcaNiwoV3Qkq7+D2rXrl3122+/6fz589mud/78eaWnp+d4P5K0bNkyubq6ql27dlmW3er9PPNv8c0332jv3r2251rme2bm+RJyIjg4WBUrVtQXX3zh0PiBooSMREYiI90YGYmMlBPFISNVr17drhglXX0+9ujRQ8nJyTpy5IjdMjJS3qMEX0zt3r1bnTt3lo+PjyZMmKC0tDSNHz9efn5+t1x3woQJmjJligYPHqyWLVsqKSlJO3bs0I8//qj77rtPTzzxhE6cOKE1a9bo448/znYb8+bN05UrVzR06FC5ubmpYsWKysjIyLZvenq6unTpolatWmnq1KmKiYnR+PHjlZaWpldeecWhx52TsV1r7969atu2rTw9PTVq1CiVLl1a77//vjp06KCNGzcqJCTErv8zzzyjChUqaPz48Tp69KhmzJihqKiobH9nfCMnTpxQy5Ytde7cOQ0dOlT16tXT77//riVLlujSpUtydXVVQkKCWrdurUuXLunZZ59VpUqVNH/+fP3tb3/TkiVL9NBDD9ltc9KkSXJ1ddULL7yg5ORkubq6SroaYsLDw9WmTRtNmzZNZcqUsc1TdHS0Bg4cqGeffVZxcXF67733tGvXLm3ZsuWGh0EnJSXpww8/VN++fTVkyBCdP39e//73vxUeHq7t27eradOm8vHx0ezZs/XUU0/poYce0t///ndJ0l133XXDORk8eLDmz5+vhx9+WM8//7y+//57TZkyRfv379fSpUvt+v7yyy96+OGHNWjQIEVEROijjz7SgAEDFBwcrIYNG+b47yBdDUzLly9XZGSkJGnKlCl64IEHNGrUKM2aNUtPP/20/vzzT02dOlWPP/641q9fb1t38eLFunTpkp566ilVqlRJ27dv17vvvqvffvtNixcvts1zXrxWfH19NXv2bD3yyCN699139eyzzyojI0MDBgxQ+fLlNWvWLIcetyRFRUXJ29tbEyZM0MGDBzV79mz9+uuvtgB/6tQp23vI6NGj5e3traNHj+rzzz/Psq0FCxYoJSVFzzzzjM6ePaupU6eqV69euvfee7Vhwwa9+OKL+uWXX/Tuu+/qhRde0EcffeTweK81btw4vfrqq+ratau6du2qH3/8UZ07d7b7nxXp1u9ltyM+Pl5lypSxvaau1bFjR124cEGurq4KDw/X9OnTVbt27Vtuc+vWrWrUqFGW119O3s99fHz08ccfa/Lkybpw4YKmTJkiSapfv36uHl/z5s21ZcuWXK0LFHZkJDKSREa6FTISGSm3ikNGyjyv1fUFN4mMlOcsFEs9evSw3N3drV9//dXWtm/fPsvFxcW6/s9etWpVKyIiwna/SZMmVrdu3W66/cjIyCzbsSzLiouLsyRZnp6e1qlTp7JdNm/ePFtbRESEJcl65plnbG0ZGRlWt27dLFdXV+v06dOWZVnWN998Y0myvvnmm1tu80ZjsyzLkmSNHz/edr9Hjx6Wq6urdfjwYVvbiRMnrPLly1vt2rWztc2bN8+SZIWFhVkZGRm29uHDh1suLi7WuXPnst1fdh577DHL2dnZ+uGHH7Isy9z2sGHDLEnWt99+a1t2/vx5q3r16la1atWs9PR0y7L+mpcaNWpYly5dsttW5tyOHj3arv3bb7+1JFkLFiywa4+JicnS3r59e6t9+/a2+2lpaVZycrLden/++afl5+dnPf7447a206dPZ5nrTOPHj7f7+8TGxlqSrMGDB9v1e+GFFyxJ1vr1621tVatWtSRZmzZtsrWdOnXKcnNzs55//vks+7oZSZabm5sVFxdna3v//fctSZa/v7+VlJRkax8zZowlya7v9fNtWZY1ZcoUy8nJye51l1evFcuyrL59+1plypSx/ve//1lvvPGGJclatmyZQ48787kcHBxspaSk2NqnTp1qSbK++OILy7Isa+nSpZakbJ+n14/Tx8fH7jWQOV9NmjSxUlNT7cbv6upqXblyxeHxZs79qVOnLFdXV6tbt252r8WXXnrJkuTwe1luHDp0yHJ3d7f69+9v175o0SJrwIAB1vz5862lS5daL7/8slWmTBmrcuXK1rFjx2653TvvvNPq2bNnlnZH3s/bt29vNWzY8Kb7adiwod3rOjtDhw61PDw8bjlmoCgiI5GRyEg3R0YiI+VWUc9IlmVZZ86csXx9fa22bdtmu5yMlLf4yV4xlJ6erq+//lo9evRQlSpVbO3169dXeHj4Ldf39vbW3r17dejQoVyPoWfPnrZDknPi2qslZB4mnJKSku1VGvJKenq6Vq9erR49eqhGjRq29oCAAD366KPavHmzkpKS7NYZOnSo3aHUbdu2VXp6un799dcc7TMjI0PLli1T9+7ds/39dOa2V61apZYtW6pNmza2ZeXKldPQoUN19OhR7du3z269iIgIeXh4ZLvPp556yu7+4sWL5eXlpfvuu09//PGH7RYcHKxy5crZHVp+PRcXF9s3ixkZGTp79qzS0tLUokUL/fjjjzmag+utWrVKkjRixAi79ueff16SshyC36BBA7Vt29Z238fHR3Xr1s1ySG1OdOrUSdWqVbPdz/y2t2fPnipfvnyW9mv3ce18X7x4UX/88Ydat24ty7K0a9euHI/BkdfKe++9Jy8vLz388MP65z//qf79++vBBx/M8b6uNXToULtvmZ566imVKlXK9vfI/I39ihUrlJqaetNtPfLII3YnmMycr3/84x9258IICQlRSkqKfv/991yNWZLWrl1r+6bx2tfisGHDsvTNi/ey6126dEmPPPKIPDw89Prrr9st69Wrl+bNm6fHHntMPXr00KRJk/T111/rzJkzObpE8ZkzZ1ShQgW7ttt9P8+tChUq6PLly7p06VK+7QMoCGSknCEjkZHISGQkRxWHjJSRkaF+/frp3Llzevfdd7PtQ0bKWxSkiqHTp0/r8uXL2R7+WLdu3Vuu/8orr+jcuXOqU6eOGjdurJEjR+rnn392aAzXXz3hZpydne3CjiTVqVNHkrL8Jj0vnT59WpcuXcp2TurXr6+MjAwdP37crv3aNztJtjfGW51X4Np9JiUl3fKkwr/++usNx5W5/Fo3mu9SpUrpzjvvtGs7dOiQEhMT5evrKx8fH7vbhQsXdOrUqZuObf78+brrrrtsvzf38fHRypUrlZiYeNP1buTXX3+Vs7OzatWqZdfu7+8vb2/vLI/1+r+BdPXvkNO/wc22lRkYgoKCsm2/dh/Hjh3TgAEDVLFiRZUrV04+Pj5q3769JDk0F468VipWrKh33nlHP//8s7y8vPTOO+/keN3rXf/+UK5cOQUEBNhec+3bt1fPnj01ceJEVa5cWQ8++KDmzZuX5ZwV0u3No6Mynw/Xj9/HxydLUMmL97Jrpaen2666smTJEgUGBt5ynTZt2igkJCTH/+NoXXP+C+n2389zK3McXEEGxQ0ZKWfISGQkMtJfyEi3Vlwy0jPPPKOYmBh9+OGHatKkyU3HQUbKG5xDClm0a9dOhw8f1hdffKHVq1frww8/1FtvvaU5c+Zo8ODBOdrGjb6Jyq0bveAdPSHe7brRlSyuf4M07Ubz7ebmluVExhkZGfL19dWCBQuyXedm30R98sknGjBggHr06KGRI0fK19dXLi4umjJlig4fPpz7B6Ccv6nn5d/gRtu61T7S09N133336ezZs3rxxRdVr149lS1bVr///rsGDBhww3OBZMfR18rXX38t6Wpg+e2333J8qVxHOTk5acmSJfruu+/05Zdf6uuvv9bjjz+u6dOn67vvvlO5cuVsfXM7j/ktL97LrjVkyBCtWLFCCxYscOjKKkFBQTp48OAt+1WqVOm2gmhe+vPPP1WmTJk8fy8Hijoy0o0V9Hv+jZCRyEh5jYyUVXHISBMnTtSsWbP0+uuvq3///jfsR0bKWxwhVQz5+PjIw8Mj20Mwc/KCl65+yzBw4ED95z//0fHjx3XXXXfZXXklLyvCGRkZWQ4l/t///idJtkOFM6v6586ds+uX3WHgOR2bj4+PypQpk+2cHDhwQM7Ozlm+vbhdPj4+8vT01J49e27ar2rVqjccV+by3KpZs6bOnDmje+65R2FhYVluN/o2QJKWLFmiGjVq6PPPP1f//v0VHh6usLAwXblyxa6fI8+PqlWrKiMjI8vzNSEhQefOnbutx5pfdu/erf/973+aPn26XnzxRT344IMKCwvL9tugvHytZH5jM2rUKPn4+CgiIkJpaWm52tb1833hwgWdPHnS7vB8SWrVqpUmT56sHTt2aMGCBdq7d68WLlyY24dw2zKfD9eP//Tp09kGlVu9l+XUyJEjNW/ePL311lvq27evQ+seOXIkRz85qFevnuLi4uza8uL9PDfi4uJyfUJ0oDAjI5GRboaMdPvISGQkRxSWjDRz5kxNmDBBw4YN04svvnjTvmSkvEVBqhhycXFReHi4li1bpmPHjtna9+/fb/vm4GbOnDljd79cuXKqVauW3WGoZcuWlZQ1/OTWe++9Z/u3ZVl67733VLp0aXXq1EnS1TdYFxcXbdq0yW697K6ckdOxubi4qHPnzvriiy/sDntPSEjQp59+qjZt2sjT0zOXjyh7zs7O6tGjh7788kvt2LEjy/LMb0W6du2q7du3a9u2bbZlFy9e1Ny5c1WtWjU1aNAg12Po1auX0tPTNWnSpCzL0tLSbjpvmd/mXPvtzffff283Tkm2q2rk5PnRtWtXSdKMGTPs2t98801JUrdu3W65DdOymwfLsvT2229n6ZtXr5Vz587ZroTy2muv6cMPP9SPP/6o1157LVfbmzt3rt15D2bPnq20tDTdf//9kq5++3P9t3RNmzaVpGwPSTclLCxMpUuX1rvvvms3vuufP1LO3sty4o033tC0adP00ksv6bnnnrthv+wub75q1Srt3LlTXbp0ueV+QkNDtWfPHrvx3e77eW79+OOPat26db5tHygoZCQy0s2QkW4fGYmMlJ3CnJEWLVqkZ599Vv369bO9tm6GjJS3+MleMTVx4kTFxMSobdu2evrpp5WWlqZ3331XDRs2vOXvgxs0aKAOHTooODhYFStW1I4dO7RkyRK7k2oGBwdLkp599lmFh4fLxcVFffr0ydVY3d3dFRMTo4iICIWEhOirr77SypUr9dJLL9kq5l5eXrbLuTo5OalmzZpasWJFtr/ld2Rsr776qtasWaM2bdro6aefVqlSpfT+++8rOTlZU6dOzdXjuZXXXntNq1evVvv27TV06FDVr19fJ0+e1OLFi7V582Z5e3tr9OjR+s9//qP7779fzz77rCpWrKj58+crLi5O//3vf7McYu6I9u3b64knntCUKVMUGxurzp07q3Tp0jp06JAWL16st99+Ww8//HC26z7wwAP6/PPP9dBDD6lbt26Ki4vTnDlz1KBBA124cMHWz8PDQw0aNNCiRYtUp04dVaxYUY0aNcr2vBBNmjRRRESE5s6dq3Pnzql9+/bavn275s+frx49eqhjx465fqz5pV69eqpZs6ZeeOEF/f777/L09NR///vfbL99yqvXynPPPaczZ85o7dq1cnFxUZcuXTR48GC9+uqrevDBB2/6rW12UlJS1KlTJ/Xq1UsHDx7UrFmz1KZNG/3tb3+TdPU8GLNmzdJDDz2kmjVr6vz58/rggw/k6elpC8gFwcfHRy+88ILt8tNdu3bVrl279NVXX2W5NG9O3stuZenSpRo1apRq166t+vXr65NPPrFbft9999kuLdy6dWs1a9ZMLVq0kJeXl3788Ud99NFHCgoK0ksvvXTLfT344IOaNGmSNm7cqM6dO9vab+f9PNOmTZts/7N6+vRpXbx4Ua+++qqkq4ftt2vXztZ3586dOnv2bK5PBgsUdmQkMtKNkJFuHxmJjJSpKGSk7du367HHHlOlSpXUqVOnLD/Xbd26td15/MhI+cDMxfxQEDZu3GgFBwdbrq6uVo0aNaw5c+ZkuZysZWW9pPGrr75qtWzZ0vL29rY8PDysevXqWZMnT7a7/GlaWpr1zDPPWD4+PpaTk5Ntm5mXOH3jjTeyjOdGlzQuW7asdfjwYatz585WmTJlLD8/P2v8+PG2y/ZmOn36tNWzZ0+rTJkyVoUKFawnnnjC2rNnT5Zt3mhslpX1ksaWZVk//vijFR4ebpUrV84qU6aM1bFjR2vr1q12fTIvq3r95V1vdKnlW/n111+txx57zPLx8bHc3NysGjVqWJGRkXaXCz58+LD18MMPW97e3pa7u7vVsmVLa8WKFdnuf/HixVn2kTm3NzJ37lwrODjY8vDwsMqXL281btzYGjVqlHXixAlbn+svaZyRkWG99tprVtWqVS03NzerWbNm1ooVK6yIiAiratWqdtvfunWr7fl37bxn9xxMTU21Jk6caFWvXt0qXbq0FRQUZI0ZMybLpW+rVq2a7SVqrx9nTkiyIiMj7dpu9PzNbp737dtnhYWFWeXKlbMqV65sDRkyxPrpp59y/Hx05LXyxRdfWJKs6dOn2/VLSkqyqlatajVp0sTu9Xkzmc/ljRs3WkOHDrUqVKhglStXzurXr5915swZW78ff/zR6tu3r1WlShXLzc3N8vX1tR544AFrx44duZqva/d9s8sk32i8115OOj093Zo4caIVEBBgeXh4WB06dLD27NmTq/eyW8l8vt7odu1rf+zYsVbTpk0tLy8vq3Tp0laVKlWsp556yoqPj8/x/u666y5r0KBBWdpz+n5+o0sa3+xxXP+e+OKLL1pVqlSxu2Q0UNyQkchIZKQbIyORkXKiOGSkzDm80e3a56tlkZHyg5NlFfCZBgEAxkRHR2vgwIH64Ycfsr2sNgrWxx9/rMjISB07dizfTsZ6M8nJyapWrZpGjx5900PvAQAobshIhRsZqXjiHFIAABQS/fr1U5UqVTRz5swC2f+8efNUunRpPfnkkwWyfwAAgOyQkYonziEF5JELFy7YnSMgOz4+Pje8zCvyRnx8/E2Xe3h4yMvLy9BozLl8+bISExNv2qdixYqGRnNrBf16SUlJ0dmzZ2/ax8vLy/glfZ2dnW95han89OSTTxK0AOS5gn7Px1VkpBsjI/2FjJQ9MlL+oCAF5JFp06Zp4sSJN+0TFxeX5ZKxyFsBAQE3XR4REaHo6GgzgzFo0aJFGjhw4E37fPPNN4ZGc2sF/XrZunXrLU8GO2/ePA0YMCBf9g8AJUlBv+fjKjLSjZGR/kJGgkmcQwrII0eOHNGRI0du2qdNmzZyd3c3NKKSae3atTddHhgYeFuXhC6sTp48qb179960T3BwsCpUqGBoRDdX0K+XP//8Uzt37rxpn4YNG94yvAMAbq2g3/NxFRnpxshIfyEjwSQKUgAAAAAAADCKk5oDAAAAAADAqBJ9DqmMjAydOHFC5cuXl5OTU0EPBwAAGGBZls6fP6/AwEA5O/PdXHbISAAAlDymM1KJLkidOHFCQUFBBT0MAABQAI4fP64777yzoIdRKJGRAAAouUxlpBJdkCpfvrykq5Pt6elZwKMBAAAmJCUlKSgoyJYDkBUZCQCAksd0RirRBanMQ9A9PT0JWwAAlDD8FO3GyEgAAJRcpjISJ04AAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhVos8hBQDAzaSnpys1NbWghwEHlS5dWi4uLgU9DAAAii0yUtFU2DISBSkAAK5jWZbi4+N17ty5gh4Kcsnb21v+/v6cuBwAgDxERir6ClNGoiAFAMB1MoOWr6+vypQpUyg+sJEzlmXp0qVLOnXqlCQpICCggEcEAEDxQUYqugpjRqIgBQDANdLT021Bq1KlSgU9HOSCh4eHJOnUqVPy9fUtVIemAwBQVJGRir7ClpE4qTkAANfIPB9CmTJlCngkuB2Zfz/ObwEAQN4gIxUPhSkjUZACACAbHIJetPH3AwAgf/AZW7QVpr8fBSkAAAAAAAAYRUEKAIAizsnJ6aa3CRMmFOjYli1bdlvbmDt3rjp06CBPT085OTlxZR8AAJBjxTknnT17Vs8884zq1q0rDw8PValSRc8++6wSExPzbpD5iJOaAwCQQ6kxm43tq3SXNjnue/LkSdu/Fy1apHHjxungwYO2tnLlyjm075SUFLm6ujq0Tn66dOmSunTpoi5dumjMmDEFPRwAAHAdkxlJIidlOnHihE6cOKFp06apQYMG+vXXX/Xkk0/qxIkTWrJkSUEP75Y4QiofpcZsznIDACCv+fv7225eXl5ycnKy3b948aL69esnPz8/lStXTnfffbfWrl1rt361atU0adIkPfbYY/L09NTQoUMlSR988IGCgoJUpkwZPfTQQ3rzzTfl7e1tt+4XX3yh5s2by93dXTVq1NDEiROVlpZm264kPfTQQ3JycrLd/+mnn9SxY0eVL19enp6eCg4O1o4dO274+IYNG6bRo0erVatWeTNhKHBkJACAKcU5JzVq1Ej//e9/1b17d9WsWVP33nuvJk+erC+//NK2n8KMghQAAMXYhQsX1LVrV61bt067du1Sly5d1L17dx07dsyu37Rp09SkSRPt2rVL//znP7VlyxY9+eSTeu655xQbG6v77rtPkydPtlvn22+/1WOPPabnnntO+/bt0/vvv6/o6Ghbvx9++EGSNG/ePJ08edJ2v1+/frrzzjv1ww8/aOfOnRo9erRKly5tYDYAAAD+UhxzUmJiojw9PVWqVOH/QVzhHyEAAMi1Jk2aqEmTJrb7kyZN0tKlS7V8+XJFRUXZ2u+99149//zztvtjx47V/fffrxdeeEGSVKdOHW3dulUrVqyw9Zk4caJGjx6tiIgISVKNGjU0adIkjRo1SuPHj5ePj48kydvbW/7+/rb1jh07ppEjR6pevXqSpNq1a+fDIwcAALi54paT/vjjD02aNMl2FFdhxxFSAAAUYxcuXNALL7yg+vXry9vbW+XKldP+/fuzfPPXokULu/sHDx5Uy5Yt7dquv//TTz/plVdeUbly5Wy3IUOG6OTJk7p06dINxzRixAgNHjxYYWFhev3113X48OHbfJQAAACOK045KSkpSd26dVODBg0K9ETtjqAgBQBAMfbCCy9o6dKleu211/Ttt98qNjZWjRs3VkpKil2/smXLOrztCxcuaOLEiYqNjbXddu/erUOHDsnd3f2G602YMEF79+5Vt27dtH79ejVo0EBLly51eP8AAAC3o7jkpPPnz6tLly4qX768li5dWmROhcBP9gAAKMa2bNmiAQMG6KGHHpJ0NRwdPXr0luvVrVvXdi6DTNffb968uQ4ePKhatWrdcDulS5dWenp6lvY6deqoTp06Gj58uPr27at58+bZxggAAGBCcchJSUlJCg8Pl5ubm5YvX37TYldhQ0EKAIBirHbt2vr888/VvXt3OTk56Z///KcyMjJuud4zzzyjdu3a6c0331T37t21fv16ffXVV3JycrL1GTdunB544AFVqVJFDz/8sJydnfXTTz9pz549evXVVyVdvYLMunXrdM8998jNzU3u7u4aOXKkHn74YVWvXl2//fabfvjhB/Xs2fOGY4mPj1d8fLx++eUXSdLu3btVvnx5ValSRRUrVrzNGQIAACVVUc9JSUlJ6ty5sy5duqRPPvlESUlJSkpKkiT5+PjIxcUlD2Yp//CTPQAAirE333xTFSpUUOvWrdW9e3eFh4erefPmt1zvnnvu0Zw5c/Tmm2+qSZMmiomJ0fDhw+2+dQsPD9eKFSu0evVq3X333WrVqpXeeustVa1a1dZn+vTpWrNmjYKCgtSsWTO5uLjozJkzeuyxx1SnTh316tVL999/vyZOnHjDscyZM0fNmjXTkCFDJEnt2rVTs2bNtHz58tuYGQAAUNIV9Zz0448/6vvvv9fu3btVq1YtBQQE2G7Hjx+//QnKZ06WZVkFPYiCkpSUJC8vL9tlEfNaaszmLG2lu7TJ8/0AAPLOlStXFBcXp+rVqxepQ55NGDJkiA4cOKBvv/22oIdySzf7O+b3539xQEYCAFyPjHRzRSUnFaaMxE/2AABAtqZNm6b77rtPZcuW1VdffaX58+dr1qxZBT0sAACAAkdOun0UpAAAQLa2b9+uqVOn6vz586pRo4beeecdDR48uKCHBQAAUODISbePghQAAMjWZ599VtBDAAAAKJTISbePk5oDAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKIcKUlOmTNHdd9+t8uXLy9fXVz169NDBgwft+nTo0EFOTk52tyeffNKuz7Fjx9StWzeVKVNGvr6+GjlypNLS0uz6bNiwQc2bN5ebm5tq1aql6OjoLOOZOXOmqlWrJnd3d4WEhGj79u2OPBwAAIA8QUYCAABwjEMFqY0bNyoyMlLfffed1qxZo9TUVHXu3FkXL1606zdkyBCdPHnSdps6daptWXp6urp166aUlBRt3bpV8+fPV3R0tMaNG2frExcXp27duqljx46KjY3VsGHDNHjwYH399de2PosWLdKIESM0fvx4/fjjj2rSpInCw8N16tSp3M4FAABArpCRAAAAHONQQSomJkYDBgxQw4YN1aRJE0VHR+vYsWPauXOnXb8yZcrI39/fdvP09LQtW716tfbt26dPPvlETZs21f33369JkyZp5syZSklJkSTNmTNH1atX1/Tp01W/fn1FRUXp4Ycf1ltvvWXbzptvvqkhQ4Zo4MCBatCggebMmaMyZcroo48+up35AACgSBowYIDtqJvSpUvLz89P9913nz766CNlZGQU9PBuy969e9WzZ09Vq1ZNTk5OmjFjRkEPKQsyEgAAhVdxzkkffPCB2rZtqwoVKqhChQoKCwsrMkdGl7qdlRMTEyVJFStWtGtfsGCBPvnkE/n7+6t79+765z//qTJlykiStm3bpsaNG8vPz8/WPzw8XE899ZT27t2rZs2aadu2bQoLC7PbZnh4uIYNGyZJSklJ0c6dOzVmzBjbcmdnZ4WFhWnbtm03HG9ycrKSk5Nt95OSknL3wAEAJdLhHe8b21fNFk84vE6XLl00b948paenKyEhQTExMXruuee0ZMkSLV++XKVK3dbHfoG5dOmSatSooUceeUTDhw8v6OHkCBkJAFCSmMxIEjnpWhs2bFDfvn3VunVrubu761//+pc6d+6svXv36o477ijo4d1Urk9qnpGRoWHDhumee+5Ro0aNbO2PPvqoPvnkE33zzTcaM2aMPv74Y/3jH/+wLY+Pj7cLWpJs9+Pj42/aJykpSZcvX9Yff/yh9PT0bPtkbiM7U6ZMkZeXl+0WFBSUuwcPAEAh5ObmJn9/f91xxx1q3ry5XnrpJX3xxRf66quv7M4zdO7cOQ0ePFg+Pj7y9PTUvffeq59++sluW19++aXuvvtuubu7q3LlynrooYdsy/7880899thjqlChgsqUKaP7779fhw4dkiRdvHhRnp6eWrJkid32li1bprJly+r8+fNKSUlRVFSUAgIC5O7urqpVq2rKlCk3fFx333233njjDfXp00dubm55MFP5i4wEAEDhU1xz0oIFC/T000+radOmqlevnj788ENlZGRo3bp1eTBr+SvXBanIyEjt2bNHCxcutGsfOnSowsPD1bhxY/Xr10//93//p6VLl+rw4cO3PdjbNWbMGCUmJtpux48fL+ghAQCQr+699141adJEn3/+ua3tkUce0alTp/TVV19p586dat68uTp16qSzZ89KklauXKmHHnpIXbt21a5du7Ru3Tq1bNnStv6AAQO0Y8cOLV++XNu2bZNlWeratatSU1NVtmxZ9enTR/PmzbMbx7x58/Twww+rfPnyeuedd7R8+XJ99tlnOnjwoBYsWKBq1aoZmQ8TyEgAABQNxTEnXbp0SampqVmO0i6McnVMWlRUlFasWKFNmzbpzjvvvGnfkJAQSdIvv/yimjVryt/fP8vvGRMSEiRJ/v7+tv9mtl3bx9PTUx4eHnJxcZGLi0u2fTK3kR03N7ci8c0qAAB5qV69evr5558lSZs3b9b27dt16tQp22fitGnTtGzZMi1ZskRDhw7V5MmT1adPH02cONG2jSZNmkiSDh06pOXLl2vLli1q3bq1pKvfzAUFBWnZsmV65JFHNHjwYLVu3VonT55UQECATp06pVWrVmnt2rWSrl5Jrnbt2mrTpo2cnJxUtWpVk9ORr8hIAAAULcUtJ7344osKDAzM8hP/wsihI6Qsy1JUVJSWLl2q9evXq3r16rdcJzY2VpIUEBAgSQoNDdXu3bvtrvSyZs0aeXp6qkGDBrY+1x9etmbNGoWGhkqSXF1dFRwcbNcn85C0zD6FwdFzX2W5AQBgmmVZcnJykiT99NNPunDhgipVqqRy5crZbnFxcbYjdWJjY9WpU6dst7V//36VKlXKVkyRpEqVKqlu3brav3+/JKlly5Zq2LCh5s+fL0n65JNPVLVqVbVr107S1W8OY2NjVbduXT377LNavXp1vj12U8hIjiEjAQAKi+KUk15//XUtXLhQS5culbu7u+OTYZhDR0hFRkbq008/1RdffKHy5cvbzkXg5eUlDw8PHT58WJ9++qm6du2qSpUq6eeff9bw4cPVrl073XXXXZKkzp07q0GDBurfv7+mTp2q+Ph4vfzyy4qMjLRVIJ988km99957GjVqlB5//HGtX79en332mVauXGkby4gRIxQREaEWLVqoZcuWmjFjhi5evKiBAwfm1dwAAFAs7N+/31YguXDhggICArRhw4Ys/by9vSVJHh4et73PwYMHa+bMmRo9erTmzZungQMH2sJe8+bNFRcXp6+++kpr165Vr169FBYWluV8CkUJGQkAgKKpuOSkadOm6fXXX9fatWtt2aKwc+gIqdmzZysxMVEdOnRQQECA7bZo0SJJV7+VW7t2rTp37qx69erp+eefV8+ePfXll1/atuHi4qIVK1bIxcVFoaGh+sc//qHHHntMr7zyiq1P9erVtXLlSq1Zs0ZNmjTR9OnT9eGHHyo8PNzWp3fv3po2bZrGjRunpk2bKjY2VjExMVlO4gkAQEm2fv167d69Wz179pR0NeTEx8erVKlSqlWrlt2tcuXKkqS77rrrhifCrF+/vtLS0vT999/b2s6cOaODBw/ajuKRpH/84x/69ddf9c4772jfvn2KiIiw246np6d69+6tDz74QIsWLdJ///tf27kZiiIyEgAARU9xyUlTp07VpEmTFBMToxYtWuR6Pkxz6Agpy7JuujwoKEgbN2685XaqVq2qVatW3bRPhw4dtGvXrpv2iYqKUlRU1C33BwBASZCcnKz4+Hi7yxlPmTJFDzzwgB577DFJUlhYmEJDQ9WjRw9NnTpVderU0YkTJ2wn6GzRooXGjx+vTp06qWbNmurTp4/S0tK0atUqvfjii6pdu7YefPBBDRkyRO+//77Kly+v0aNH64477tCDDz5oG0uFChX097//XSNHjlTnzp3tzqf05ptvKiAgQM2aNZOzs7MWL14sf39/2zeP10tJSdG+ffts//79998VGxurcuXKqVatWvk3oQ4gIwEAULgV15z0r3/9S+PGjdOnn36qatWq2Y7Szvy5YWGW66vsAQCAwiUmJkYBAQGqVq2aunTpom+++UbvvPOOvvjiC7m4uEiSnJyctGrVKrVr104DBw5UnTp11KdPH/3666+2I2g6dOigxYsXa/ny5WratKnuvfdeu5Ntz5s3T8HBwXrggQcUGhoqy7K0atUqlS5d2m48gwYNUkpKih5//HG79vLly2vq1Klq0aKF7r77bh09elSrVq2Ss3P2seTEiRNq1qyZmjVrppMnT2ratGlq1qyZBg8enJfTBwAAirHimpNmz56tlJQUPfzww3ZHaU+bNi0vpy9fOFm3+kqvGEtKSpKXl5cSExPl6emZ59s/tHBslrbafSbn+X4AAHnnypUriouLU/Xq1YvEySALs48//ljDhw/XiRMn5OrqanTfN/s75vfnf3FARgIAXI+MlLcKKicVpozk0E/2AAAAbuXSpUs6efKkXn/9dT3xxBPGi1EAAACFFTnpL/xkDwAA5KmpU6eqXr168vf315gxYwp6OAAAAIUGOekvFKQAAECemjBhglJTU7Vu3bpCfzJNAAAAk8hJf6EgBQAAAAAAAKMoSAEAAAAAAMAoClIAAGSjBF+Etljg7wcAQP7gM7ZoK0x/PwpSAABco3Tp0pKuXgEFRVfm3y/z7wkAAG4PGal4KEwZqVRBDwAAgMLExcVF3t7eOnXqlCSpTJkycnJyKuBRIacsy9KlS5d06tQpeXt7y8XFpaCHBABAsUBGKtoKY0aiIAUAwHX8/f0lyRa4UPR4e3vb/o4AACBvkJGKvsKUkShIAQBwHScnJwUEBMjX11epqakFPRw4qHTp0oXiWz8AAIobMlLRVtgyEgUpAABuwMXFpVB9aAMAABQGZCTkBU5qDgAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMcKkhNmTJFd999t8qXLy9fX1/16NFDBw8etOtz5coVRUZGqlKlSipXrpx69uyphIQEuz7Hjh1Tt27dVKZMGfn6+mrkyJFKS0uz67NhwwY1b95cbm5uqlWrlqKjo7OMZ+bMmapWrZrc3d0VEhKi7du3O/JwAAAA8gQZCQAAwDEOFaQ2btyoyMhIfffdd1qzZo1SU1PVuXNnXbx40dZn+PDh+vLLL7V48WJt3LhRJ06c0N///nfb8vT0dHXr1k0pKSnaunWr5s+fr+joaI0bN87WJy4uTt26dVPHjh0VGxurYcOGafDgwfr6669tfRYtWqQRI0Zo/Pjx+vHHH9WkSROFh4fr1KlTtzMfAAAADiMjAQAAOMbJsiwrtyufPn1avr6+2rhxo9q1a6fExET5+Pjo008/1cMPPyxJOnDggOrXr69t27apVatW+uqrr/TAAw/oxIkT8vPzkyTNmTNHL774ok6fPi1XV1e9+OKLWrlypfbs2WPbV58+fXTu3DnFxMRIkkJCQnT33XfrvffekyRlZGQoKChIzzzzjEaPHp2j8SclJcnLy0uJiYny9PTM7TTc0KGFY7O01e4zOc/3AwAAci6/P/8lMtKtkJEAACh8TGSka93WOaQSExMlSRUrVpQk7dy5U6mpqQoLC7P1qVevnqpUqaJt27ZJkrZt26bGjRvbgpYkhYeHKykpSXv37rX1uXYbmX0yt5GSkqKdO3fa9XF2dlZYWJitT3aSk5OVlJRkdwMAAMhrZCQAAICby3VBKiMjQ8OGDdM999yjRo0aSZLi4+Pl6uoqb29vu75+fn6Kj4+39bk2aGUuz1x2sz5JSUm6fPmy/vjjD6Wnp2fbJ3Mb2ZkyZYq8vLxst6CgIMcfOAAAwE2QkQAAAG4t1wWpyMhI7dmzRwsXLszL8eSrMWPGKDEx0XY7fvx4QQ8JAAAUM2QkAACAWyuVm5WioqK0YsUKbdq0SXfeeaet3d/fXykpKTp37pzdN4AJCQny9/e39bn+Si+ZV5i5ts/1V51JSEiQp6enPDw85OLiIhcXl2z7ZG4jO25ubnJzc3P8AQMAAOQAGQkAACBnHDpCyrIsRUVFaenSpVq/fr2qV69utzw4OFilS5fWunXrbG0HDx7UsWPHFBoaKkkKDQ3V7t277a70smbNGnl6eqpBgwa2PtduI7NP5jZcXV0VHBxs1ycjI0Pr1q2z9QEAADCFjAQAAOAYh46QioyM1KeffqovvvhC5cuXt52LwMvLSx4eHvLy8tKgQYM0YsQIVaxYUZ6ennrmmWcUGhqqVq1aSZI6d+6sBg0aqH///po6dari4+P18ssvKzIy0vbN3JNPPqn33ntPo0aN0uOPP67169frs88+08qVK21jGTFihCIiItSiRQu1bNlSM2bM0MWLFzVw4MC8mhsAAIAcISMBAAA4xqGC1OzZsyVJHTp0sGufN2+eBgwYIEl666235OzsrJ49eyo5OVnh4eGaNWuWra+Li4tWrFihp556SqGhoSpbtqwiIiL0yiuv2PpUr15dK1eu1PDhw/X222/rzjvv1Icffqjw8HBbn969e+v06dMaN26c4uPj1bRpU8XExGQ5iScAAEB+IyMBAAA4xsmyLKugB1FQkpKS5OXlpcTERHl6eub59g8tHJulrXafyXm+HwAAkHP5/flfHJCRAAAoeUxnpFxfZQ8AAAAAAADIDQpSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMMrhgtSmTZvUvXt3BQYGysnJScuWLbNbPmDAADk5OdndunTpYtfn7Nmz6tevnzw9PeXt7a1BgwbpwoULdn1+/vlntW3bVu7u7goKCtLUqVOzjGXx4sWqV6+e3N3d1bhxY61atcrRhwMAAJAnyEgAAAA553BB6uLFi2rSpIlmzpx5wz5dunTRyZMnbbf//Oc/dsv79eunvXv3as2aNVqxYoU2bdqkoUOH2pYnJSWpc+fOqlq1qnbu3Kk33nhDEyZM0Ny5c219tm7dqr59+2rQoEHatWuXevTooR49emjPnj2OPiQAAIDbRkYCAADIOSfLsqxcr+zkpKVLl6pHjx62tgEDBujcuXNZvhXMtH//fjVo0EA//PCDWrRoIUmKiYlR165d9dtvvykwMFCzZ8/W2LFjFR8fL1dXV0nS6NGjtWzZMh04cECS1Lt3b128eFErVqywbbtVq1Zq2rSp5syZk6PxJyUlycvLS4mJifL09MzFDNzcoYVjs7TV7jM5z/cDAAByLr8//yUy0q2QkQAAKHxMZKRr5cs5pDZs2CBfX1/VrVtXTz31lM6cOWNbtm3bNnl7e9uCliSFhYXJ2dlZ33//va1Pu3btbEFLksLDw3Xw4EH9+eeftj5hYWF2+w0PD9e2bdtuOK7k5GQlJSXZ3QAAAEwhIwEAAFyV5wWpLl266P/+7/+0bt06/etf/9LGjRt1//33Kz09XZIUHx8vX19fu3VKlSqlihUrKj4+3tbHz8/Prk/m/Vv1yVyenSlTpsjLy8t2CwoKur0HCwAAkENkJAAAgL+UyusN9unTx/bvxo0b66677lLNmjW1YcMGderUKa9355AxY8ZoxIgRtvtJSUkELgAAYAQZCQAA4C/58pO9a9WoUUOVK1fWL7/8Ikny9/fXqVOn7PqkpaXp7Nmz8vf3t/VJSEiw65N5/1Z9Mpdnx83NTZ6ennY3AACAgkBGAgAAJVm+F6R+++03nTlzRgEBAZKk0NBQnTt3Tjt37rT1Wb9+vTIyMhQSEmLrs2nTJqWmptr6rFmzRnXr1lWFChVsfdatW2e3rzVr1ig0NDS/HxIAAMBtIyMBAICSzOGC1IULFxQbG6vY2FhJUlxcnGJjY3Xs2DFduHBBI0eO1HfffaejR49q3bp1evDBB1WrVi2Fh4dLkurXr68uXbpoyJAh2r59u7Zs2aKoqCj16dNHgYGBkqRHH31Urq6uGjRokPbu3atFixbp7bfftjuU/LnnnlNMTIymT5+uAwcOaMKECdqxY4eioqLyYFoAAAAcQ0YCAADIOYcLUjt27FCzZs3UrFkzSdKIESPUrFkzjRs3Ti4uLvr555/1t7/9TXXq1NGgQYMUHBysb7/9Vm5ubrZtLFiwQPXq1VOnTp3UtWtXtWnTRnPnzrUt9/Ly0urVqxUXF6fg4GA9//zzGjdunIYOHWrr07p1a3366aeaO3eumjRpoiVLlmjZsmVq1KjR7cwHAABArpCRAAAAcs7JsiyroAdRUJKSkuTl5aXExMR8OVfCoYVjs7TV7jM5z/cDAAByLr8//4sDMhIAACWP6YyU7+eQAgAAAAAAAK5FQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGUZACAAAAAACAURSkAAAAAAAAYBQFKQAAAAAAABhFQQoAAAAAAABGOVyQ2rRpk7p3767AwEA5OTlp2bJldssty9K4ceMUEBAgDw8PhYWF6dChQ3Z9zp49q379+snT01Pe3t4aNGiQLly4YNfn559/Vtu2beXu7q6goCBNnTo1y1gWL16sevXqyd3dXY0bN9aqVascfTgAAAB5gowEAACQcw4XpC5evKgmTZpo5syZ2S6fOnWq3nnnHc2ZM0fff/+9ypYtq/DwcF25csXWp1+/ftq7d6/WrFmjFStWaNOmTRo6dKhteVJSkjp37qyqVatq586deuONNzRhwgTNnTvX1mfr1q3q27evBg0apF27dqlHjx7q0aOH9uzZ4+hDAgAAuG1kJAAAgJxzsizLyvXKTk5aunSpevToIenqN3+BgYF6/vnn9cILL0iSEhMT5efnp+joaPXp00f79+9XgwYN9MMPP6hFixaSpJiYGHXt2lW//fabAgMDNXv2bI0dO1bx8fFydXWVJI0ePVrLli3TgQMHJEm9e/fWxYsXtWLFCtt4WrVqpaZNm2rOnDk5Gn9SUpK8vLyUmJgoT0/P3E7DDR1aODZLW+0+k/N8PwAAIOfy+/NfIiPdChkJAIDCx0RGulaenkMqLi5O8fHxCgsLs7V5eXkpJCRE27ZtkyRt27ZN3t7etqAlSWFhYXJ2dtb3339v69OuXTtb0JKk8PBwHTx4UH/++aetz7X7yeyTuZ/sJCcnKykpye4GAACQ38hIAAAA9vK0IBUfHy9J8vPzs2v38/OzLYuPj5evr6/d8lKlSqlixYp2fbLbxrX7uFGfzOXZmTJliry8vGy3oKAgRx8iAACAw8hIAAAA9krUVfbGjBmjxMRE2+348eMFPSQAAIACR0YCAACm5WlByt/fX5KUkJBg156QkGBb5u/vr1OnTtktT0tL09mzZ+36ZLeNa/dxoz6Zy7Pj5uYmT09PuxsAAEB+IyMBAADYy9OCVPXq1eXv769169bZ2pKSkvT9998rNDRUkhQaGqpz585p586dtj7r169XRkaGQkJCbH02bdqk1NRUW581a9aobt26qlChgq3PtfvJ7JO5HwAAgMKCjAQAAGDP4YLUhQsXFBsbq9jYWElXT9IZGxurY8eOycnJScOGDdOrr76q5cuXa/fu3XrssccUGBhou8pM/fr11aVLFw0ZMkTbt2/Xli1bFBUVpT59+igwMFCS9Oijj8rV1VWDBg3S3r17tWjRIr399tsaMWKEbRzPPfecYmJiNH36dB04cEATJkzQjh07FBUVdfuzAgAA4CAyEgAAQM6VcnSFHTt2qGPHjrb7mQEoIiJC0dHRGjVqlC5evKihQ4fq3LlzatOmjWJiYuTu7m5bZ8GCBYqKilKnTp3k7Oysnj176p133rEt9/Ly0urVqxUZGang4GBVrlxZ48aN09ChQ219WrdurU8//VQvv/yyXnrpJdWuXVvLli1To0aNcjURAAAAt4OMBAAAkHNOlmVZBT2IgpKUlCQvLy8lJibmy7kSDi0cm6Wtdp/Jeb4fAACQc/n9+V8ckJEAACh5TGekEnWVPQAAAAAAABQ8ClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMCoPC9ITZgwQU5OTna3evXq2ZZfuXJFkZGRqlSpksqVK6eePXsqISHBbhvHjh1Tt27dVKZMGfn6+mrkyJFKS0uz67NhwwY1b95cbm5uqlWrlqKjo/P6oQAAAOQZMhIAAMBf8uUIqYYNG+rkyZO22+bNm23Lhg8fri+//FKLFy/Wxo0bdeLECf3973+3LU9PT1e3bt2UkpKirVu3av78+YqOjta4ceNsfeLi4tStWzd17NhRsbGxGjZsmAYPHqyvv/46Px4OAABAniAjAQAAXFUqXzZaqpT8/f2ztCcmJurf//63Pv30U917772SpHnz5ql+/fr67rvv1KpVK61evVr79u3T2rVr5efnp6ZNm2rSpEl68cUXNWHCBLm6umrOnDmqXr26pk+fLkmqX7++Nm/erLfeekvh4eH58ZAAAABuGxkJAADgqnw5QurQoUMKDAxUjRo11K9fPx07dkyStHPnTqWmpiosLMzWt169eqpSpYq2bdsmSdq2bZsaN24sPz8/W5/w8HAlJSVp7969tj7XbiOzT+Y2AAAACiMyEgAAwFV5foRUSEiIoqOjVbduXZ08eVITJ05U27ZttWfPHsXHx8vV1VXe3t526/j5+Sk+Pl6SFB8fbxe0MpdnLrtZn6SkJF2+fFkeHh7Zji05OVnJycm2+0lJSbf1WAEAAHKKjAQAAPCXPC9I3X///bZ/33XXXQoJCVHVqlX12Wef3TAEmTJlyhRNnDixQMcAAABKJjISAADAX/LlJ3vX8vb2Vp06dfTLL7/I399fKSkpOnfunF2fhIQE2/kU/P39s1xRJvP+rfp4enreNNCNGTNGiYmJttvx48dv9+EBAADkChkJAACUZPlekLpw4YIOHz6sgIAABQcHq3Tp0lq3bp1t+cGDB3Xs2DGFhoZKkkJDQ7V7926dOnXK1mfNmjXy9PRUgwYNbH2u3UZmn8xt3Iibm5s8PT3tbgAAAAWBjAQAAEqyPC9IvfDCC9q4caOOHj2qrVu36qGHHpKLi4v69u0rLy8vDRo0SCNGjNA333yjnTt3auDAgQoNDVWrVq0kSZ07d1aDBg3Uv39//fTTT/r666/18ssvKzIyUm5ubpKkJ598UkeOHNGoUaN04MABzZo1S5999pmGDx+e1w8HAAAgT5CRAAAA/pLn55D67bff1LdvX505c0Y+Pj5q06aNvvvuO/n4+EiS3nrrLTk7O6tnz55KTk5WeHi4Zs2aZVvfxcVFK1as0FNPPaXQ0FCVLVtWEREReuWVV2x9qlevrpUrV2r48OF6++23deedd+rDDz/kcsYAAKDQIiMBAAD8xcmyLKugB1FQkpKS5OXlpcTExHw5NP3QwrFZ2mr3mZzn+wEAADmX35//xQEZCQCAksd0Rsr3c0gBAAAAAAAA16IgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwioIUAAAAAAAAjKIgBQAAAAAAAKMoSAEAAAAAAMAoClIAAAAAAAAwqlRBDwAAACA1ZnOWttJd2hTASAAAAAqP4pyROEIKAAAAAAAARnGEFAAAKHBHz32Vpa22ise3fwAAALlVnDMSBSkAAGBUdoeeAwAAlHQlLSNRkAIAAPmqpIUrAACAnCjpGYmCFAAAyJXchqjsDj0HAAAoLshIOVPkC1IzZ87UG2+8ofj4eDVp0kTvvvuuWrZsWdDDAgDAuJxehcX0t3ElLVwVFmQkAACuIiMVTkW6ILVo0SKNGDFCc+bMUUhIiGbMmKHw8HAdPHhQvr6+BT08AEAxkdvL7RaGw7DzcgwlPTQVJWQkAIAp12eNnGSk7NYzjYxU8Ip0QerNN9/UkCFDNHDgQEnSnDlztHLlSn300UcaPXp0AY8OAPJHXn7Dk9PAkJttF3dFZQ4ISCUTGQlASURGKhyKyhyQkQpekS1IpaSkaOfOnRozZoytzdnZWWFhYdq2bVsBjuzm8vPND8VLUT4iA+bl9u/O8yV7BBQUZWQkFHdkJDiCjJS3yEjIS0W2IPXHH38oPT1dfn5+du1+fn46cOBAtuskJycrOTnZdj8xMVGSlJSUlC9jvHApOUvbnkvLbr3iRznog5KJ5waAEiS/Pp8zt2tZVr5sv6CRkVAi8dwAUIIUl4xUZAtSuTFlyhRNnDgxS3tQUFABjAYAANzUoOn5uvnz58/Ly8srX/dRVJCRAAAoQopJRiqyBanKlSvLxcVFCQkJdu0JCQny9/fPdp0xY8ZoxIgRtvsZGRk6e/asKlWqJCcnpzwdX1JSkoKCgnT8+HF5enrm6baRPebcPObcPObcPOa8YOTnvFuWpfPnzyswMDBPt1tYkJFwPebcPObcPOa8YDDv5hWnjFRkC1Kurq4KDg7WunXr1KNHD0lXw9O6desUFRWV7Tpubm5yc3Oza/P29s7XcXp6evLCNIw5N485N485N485Lxj5Ne/F+cgoMhJuhDk3jzk3jzkvGMy7ecUhIxXZgpQkjRgxQhEREWrRooVatmypGTNm6OLFi7YrygAAAJREZCQAAFDYFemCVO/evXX69GmNGzdO8fHxatq0qWJiYrKcxBMAAKAkISMBAIDCrkgXpCQpKirqhoefFyQ3NzeNHz8+y+HvyD/MuXnMuXnMuXnMecFg3m8fGQmZmHPzmHPzmPOCwbybV5zm3Mkqrtc8BgAAAAAAQKHkXNADAAAAAAAAQMlCQQoAAAAAAABGUZACAAAAAACAURSkbsPMmTNVrVo1ubu7KyQkRNu3b79p/8WLF6tevXpyd3dX48aNtWrVKkMjLT4cmfMPPvhAbdu2VYUKFVShQgWFhYXd8m+ErBx9nmdauHChnJyc1KNHj/wdYDHk6JyfO3dOkZGRCggIkJubm+rUqcP7i4McnfMZM2aobt268vDwUFBQkIYPH64rV64YGm3Rt2nTJnXv3l2BgYFycnLSsmXLbrnOhg0b1Lx5c7m5ualWrVqKjo7O93Ei98hI5pGRzCMjmUdGMo+MZFaJy0gWcmXhwoWWq6ur9dFHH1l79+61hgwZYnl7e1sJCQnZ9t+yZYvl4uJiTZ061dq3b5/18ssvW6VLl7Z2795teORFl6Nz/uijj1ozZ860du3aZe3fv98aMGCA5eXlZf3222+GR150OTrnmeLi4qw77rjDatu2rfXggw+aGWwx4eicJycnWy1atLC6du1qbd682YqLi7M2bNhgxcbGGh550eXonC9YsMByc3OzFixYYMXFxVlff/21FRAQYA0fPtzwyIuuVatWWWPHjrU+//xzS5K1dOnSm/Y/cuSIVaZMGWvEiBHWvn37rHfffddycXGxYmJizAwYDiEjmUdGMo+MZB4ZyTwyknklLSNRkMqlli1bWpGRkbb76enpVmBgoDVlypRs+/fq1cvq1q2bXVtISIj1xBNP5Os4ixNH5/x6aWlpVvny5a358+fn1xCLndzMeVpamtW6dWvrww8/tCIiIghbDnJ0zmfPnm3VqFHDSklJMTXEYsfROY+MjLTuvfdeu7YRI0ZY99xzT76Os7jKSdgaNWqU1bBhQ7u23r17W+Hh4fk4MuQWGck8MpJ5ZCTzyEjmkZEKVknISPxkLxdSUlK0c+dOhYWF2dqcnZ0VFhambdu2ZbvOtm3b7PpLUnh4+A37w15u5vx6ly5dUmpqqipWrJhfwyxWcjvnr7zyinx9fTVo0CATwyxWcjPny5cvV2hoqCIjI+Xn56dGjRrptddeU3p6uqlhF2m5mfPWrVtr586dtkPWjxw5olWrVqlr165GxlwS8RladJCRzCMjmUdGMo+MZB4ZqWgo6p+hpQp6AEXRH3/8ofT0dPn5+dm1+/n56cCBA9muEx8fn23/+Pj4fBtncZKbOb/eiy++qMDAwCwvWGQvN3O+efNm/fvf/1ZsbKyBERY/uZnzI0eOaP369erXr59WrVqlX375RU8//bRSU1M1fvx4E8Mu0nIz548++qj++OMPtWnTRpZlKS0tTU8++aReeuklE0MukW70GZqUlKTLly/Lw8OjgEaG65GRzCMjmUdGMo+MZB4ZqWgo6hmJI6RQIrz++utauHChli5dKnd394IeTrF0/vx59e/fXx988IEqV65c0MMpMTIyMuTr66u5c+cqODhYvXv31tixYzVnzpyCHlqxtWHDBr322muaNWuWfvzxR33++edauXKlJk2aVNBDAwCHkZHyHxmpYJCRzCMjwVEcIZULlStXlouLixISEuzaExIS5O/vn+06/v7+DvWHvdzMeaZp06bp9ddf19q1a3XXXXfl5zCLFUfn/PDhwzp69Ki6d+9ua8vIyJAklSpVSgcPHlTNmjXzd9BFXG6e5wEBASpdurRcXFxsbfXr11d8fLxSUlLk6uqar2Mu6nIz5//85z/Vv39/DR48WJLUuHFjXbx4UUOHDtXYsWPl7Mx3PXntRp+hnp6ehf6bv5KGjGQeGck8MpJ5ZCTzyEhFQ1HPSDwjcsHV1VXBwcFat26drS0jI0Pr1q1TaGhotuuEhoba9ZekNWvW3LA/7OVmziVp6tSpmjRpkmJiYtSiRQsTQy02HJ3zevXqaffu3YqNjbXd/va3v6ljx46KjY1VUFCQyeEXSbl5nt9zzz365ZdfbMFWkv73v/8pICCAoJUDuZnzS5cuZQlUmWHXsqz8G2wJxmdo0UFGMo+MZB4ZyTwyknlkpKKhyH+GFuw51YuuhQsXWm5ublZ0dLS1b98+a+jQoZa3t7cVHx9vWZZl9e/f3xo9erSt/5YtW6xSpUpZ06ZNs/bv32+NHz+eSxo7yNE5f/311y1XV1dryZIl1smTJ2238+fPF9RDKHIcnfPrcQUZxzk658eOHbPKly9vRUVFWQcPHrRWrFhh+fr6Wq+++mpBPYQix9E5Hz9+vFW+fHnrP//5j3XkyBFr9erVVs2aNa1evXoV1EMocs6fP2/t2rXL2rVrlyXJevPNN61du3ZZv/76q2VZljV69Girf//+tv6ZlzQeOXKktX//fmvmzJlF6pLGJQ0ZyTwyknlkJPPISOaRkcwraRmJgtRtePfdd60qVapYrq6uVsuWLa3vvvvOtqx9+/ZWRESEXf/PPvvMqlOnjuXq6mo1bNjQWrlypeERF32OzHnVqlUtSVlu48ePNz/wIszR5/m1CFu54+icb9261QoJCbHc3NysGjVqWJMnT7bS0tIMj7poc2TOU1NTrQkTJlg1a9a03N3draCgIOvpp5+2/vzzT/MDL6K++eabbN+fM+c5IiLCat++fZZ1mjZtarm6ulo1atSw5s2bZ3zcyDkyknlkJPPISOaRkcwjI5lV0jKSk2Vx7BwAAAAAAADM4RxSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSAAAAAAAAMIqCFAAAAAAAAIyiIAUAAAAAAACjKEgBAAAAAADAKApSJcyECRPk5ORk11atWjUNGDAg3/d99OhROTk5KTo62tY2YMAAlStXLt/3ncnJyUkTJkwwtr+irkOHDurQoUOebjO75yDsZfdaKamio6Pl5OSko0eP3rKvqfey/HThwgX5+vpqwYIFt+w7YMAAVatWLcv6gwcPlr+/v5ycnDRs2DCH9j969GiFhIQ4tA5QXJCRyEiOICMVDDLSX8hIN0ZGKjooSCFXVq1aVWhDS2EeW0lx6dIlTZgwQRs2bCjooRQ4no9Fn5OTU7a3119/PUvf33//Xb169ZK3t7c8PT314IMP6siRIzne19tvv63y5curT58+uRrra6+9pujoaD311FP6+OOP1b9/f0nS7Nmz9cgjj6hKlSpycnK6YSgdNmyYfvrpJy1fvjxX+wdQuN/3C/PYSgoy0l94PhZ9RT0jHT9+XBMnTlTLli1VoUIFVa5cWR06dNDatWuzrE9GyicWSpTx48db1//Zr1y5YqWkpDi0ncjIyCzbuZWMjAzr8uXLVlpamq0tIiLCKlu2rEPbuZ2xXb582UpNTc3T/RVn7du3t9q3b+/weqdPn7YkWePHj8+yLDU11bp8+fLtD66IyKvXSkmVlpZmXb582crIyLhl36pVq1oRERF5PgZJ1n333Wd9/PHHdrc9e/bY9Tt//rxVu3Zty9fX1/rXv/5lvfnmm1ZQUJB15513Wn/88cct95OSkmL5+PhYr732Wo7GFRERYVWtWtWuLSQkxLrnnnuy9K1atapVsWJFq0uXLlapUqVuOk+9evWy2rZtm6MxAMUJGYmM5Agy0u0jI90eMtKN5TQjvfvuu5aHh4fVt29f67333rNmzJhhNW/e3JJkffTRR1m2S0bKe6UKpAqGQsXNzS1ft5+WlqaMjAy5urrK3d09X/d1KwW9fxOuXLkiV1dXOTtnPQDy4sWLKlu2bAGM6i+lSpVSqVK89WSnML1WCgsXFxe5uLgU9DBUp04d/eMf/7hpn1mzZunQoUPavn277r77bknS/fffr0aNGmn69Ol67bXXbrr+ihUrdPr0afXq1SvX4zx16pQaNGiQpX3jxo22o6Nu9ROgXr166ZFHHtGRI0dUo0aNXI8FKA7ISMULGanoKkyvlcKCjOSY7DJSx44ddezYMVWuXNnW9uSTT6pp06YaN26cBg4caNefjJT3+MleMbZ582bdfffdcnd3V82aNfX+++9n2+/63xSnpqZq4sSJql27ttzd3VWpUiW1adNGa9askXT1N7kzZ86UZH+YpvTX77qnTZumGTNmqGbNmnJzc9P/s3ff0VVUexvHnxBSSaOkISGETgRBQhcQIRCkSLiggl4ISFEEVJCqXoqAeBEVC8VyBV5FUVCKlEgTlKJICV1EDEUhBCkJECBt3j9YGTmkkIRkUvh+1jpLzsyemX32KXn8nTl7Dh48mOVvvv/44w+FhYWpVKlSKl++vF599VUZhmGu37hxo+zs7NKd3nzrPrPqW9qyW08N3r17tx5++GF5eHjIzc1Nbdq00U8//WTTJu032lu2bNHw4cPl7e2tUqVKqWvXrjp79mzGT0AW/vrrL/Xr10/ly5eXk5OTgoKCNGjQICUmJtqMyaOPPqoyZcrI1dVVTZo00cqVK232kzYuCxcu1CuvvKJ77rlHrq6uio+PN+eeOHr0qDp06CB3d3c9+eSTkqTU1FTNmDFD9957r5ydneXr66unn35aFy5cyLLfiYmJGjdunEJCQuTp6alSpUqpRYsW+v777802x44dk7e3tyRp4sSJ5nOQNu4ZzY+QnJysSZMmma+XSpUq6aWXXtL169dt2lWqVEmdOnXS5s2b1ahRIzk7O6ty5cr6v//7v5w9AbrxWhgyZIgWLVqk4OBgubi4qGnTptq3b58k6YMPPlDVqlXl7OysVq1apft9/o8//mj+BMrJyUkBAQEaNmyYrl69arbJq/dKbGysvL291apVK5v3xe+//65SpUrp8ccfz/bjTnst//DDD3r66adVtmxZeXh4qHfv3ume/x07digsLEzlypWTi4uLgoKC9NRTT5nrb34MM2fOVOXKleXq6qp27drp5MmTMgxDkyZNUoUKFeTi4qIuXbro/Pnz2e7rzf29efwNw9DkyZNVoUIFubq66qGHHtKBAwfSbXu7z7Kcunr1qq5du5bp+sWLF6thw4Zm0JKkmjVrqk2bNvrqq69uu/+lS5eqUqVKqlKlSobrateuLWdnZ9WuXVtLliyxWZ/2WRAdHa2VK1ear7W0cQsMDMz2vCShoaGSpGXLlmWrPVAUkZHISGSkzJGRyEg5VVQz0r333mtTjJJufBHRoUMH/fnnn7p06ZLNOjJS3qMEX0zt27dP7dq1k7e3tyZMmKDk5GSNHz9evr6+t912woQJmjp1qvr3769GjRopPj5eO3bs0K5du9S2bVs9/fTTOnXqlNauXatPP/00w33MnTtX165d08CBA+Xk5KQyZcooNTU1w7YpKSlq3769mjRpomnTpikyMlLjx49XcnKyXn311Rw97uz07WYHDhxQixYt5OHhoVGjRsnBwUEffPCBWrVqpU2bNqWbuG7o0KEqXbq0xo8fr2PHjmnGjBkaMmSIvvzyy2z38dSpU2rUqJEuXryogQMHqmbNmvrrr7+0ePFiJSQkyNHRUWfOnFGzZs2UkJCg5557TmXLltX8+fP1yCOPaPHixeratavNPidNmiRHR0eNGDFC169fl6Ojo6QbISYsLEzNmzfX9OnT5erqao7TvHnz1LdvXz333HOKjo7W+++/r927d2vLli1ycHDIsO/x8fH6+OOP1bNnTw0YMECXLl3S//73P4WFhWn79u2qV6+evL29NXv2bA0aNEhdu3bVv/71L0nSfffdl+mY9O/fX/Pnz1f37t314osv6ueff9bUqVN16NChdH9Ufv/9d3Xv3l39+vVTRESEPvnkE/Xp00chISG69957s/08SDcC0/LlyzV48GBJ0tSpU9WpUyeNGjVKs2bN0rPPPqsLFy5o2rRpeuqpp7RhwwZz20WLFikhIUGDBg1S2bJltX37dr333nv6888/tWjRInOc8+K94uPjY84B9N577+m5555Tamqq+vTpI3d3d82aNStHj1uShgwZIi8vL02YMEGHDx/W7Nmzdfz4cfOPdmxsrPkZMmbMGHl5eenYsWP65ptv0u1rwYIFSkxM1NChQ3X+/HlNmzZNjz32mFq3bq2NGzdq9OjR+v333/Xee+9pxIgR+uSTT3Lc35uNGzdOkydPVocOHdShQwft2rVL7dq1s/mfFen2n2U5MW/ePM2aNUuGYahWrVp65ZVX9MQTT5jrU1NTtXfvXpswmqZRo0Zas2aNLl26JHd390yPsXXrVtWvXz/d8jVr1qhbt24KDg7W1KlTde7cOfXt21cVKlQw29SqVUuffvqphg0bpgoVKujFF1+UJPN/fHLC09NTVapU0ZYtWzRs2LAcbw8UdmQkMpJERrodMhIZKbuKY0aKiYmRq6ur+bmQhoyUDwrqt4LIX+Hh4Yazs7Nx/Phxc9nBgwcNe3v7dL/VvvU3xXXr1jU6duyY5f4z+813dHS0Icnw8PAwYmNjM1w3d+5cc1lERIQhyRg6dKi5LDU11ejYsaPh6OhonD171jAMw/j+++8NScb3339/231m9Xt03fKb/fDwcMPR0dE4evSouezUqVOGu7u70bJlS3PZ3LlzDUlGaGioze+0hw0bZtjb2xsXL17M8HgZ6d27t1GiRAnjl19+Sbcubd8vvPCCIcn48ccfzXWXLl0ygoKCjEqVKhkpKSmGYfwzLpUrVzYSEhJs9pU2tmPGjLFZ/uOPPxqSjAULFtgsj4yMTLf81vkRkpOTjevXr9tsd+HCBcPX19d46qmnzGVZzY9w6xwdUVFRhiSjf//+Nu1GjBhhSDI2bNhgLgsMDDQkGT/88IO5LDY21nBycjJefPHFdMfKiiTDycnJiI6ONpd98MEHhiTDz8/PiI+PN5ePHTvWkGTT9tbxNgzDmDp1qmFnZ2fzvsur94phGEbPnj0NV1dX47fffjPeeOMNQ5KxdOnSHD3utNdySEiIzbwo06ZNMyQZy5YtMwzDMJYsWWJIyvB1ems/vb29bd4DaeNVt25dm/lIevbsaTg6OhrXrl3LcX/Txj42NtZwdHQ0OnbsaPNefOmllwxJOf4sy45mzZoZM2bMMJYtW2bMnj3bqF27tiHJmDVrltkm7TX/6quvptt+5syZhiTj119/zfQYSUlJhp2dXYav43r16hn+/v42Y7xmzRpDUrr5EQIDA2/7mEuVKnXbeSTatWtn1KpVK8s2QFFFRiIjkZGyRkYiI2VXcctIhmEYR44cMZydnY1evXpluJ6MlLf4yV4xlJKSou+++07h4eGqWLGiubxWrVoKCwu77fZeXl46cOCAjhw5kus+dOvWLUffzA8ZMsT8d9ppwomJiRle4SCvpKSkaM2aNQoPD7f5DbC/v7+eeOIJbd68WfHx8TbbDBw40OZU6hYtWiglJUXHjx/P1jFTU1O1dOlSde7cWQ0aNEi3Pm3fq1atUqNGjdS8eXNznZubmwYOHKhjx47p4MGDNttFRETIxcUlw2MOGjTI5v6iRYvk6emptm3b6u+//zZvISEhcnNzszm1/Fb29vbmN4upqak6f/68kpOT1aBBA+3atStbY3CrVatWSZKGDx9uszzt24tbT8EPDg5WixYtzPve3t6qUaNGjq7SkaZNmzY2l4RN+7a3W7duNt/SpC2/+Rg3j/eVK1f0999/q1mzZjIMQ7t37852H3LyXnn//ffl6emp7t276z//+Y969eqlLl26ZPtYNxs4cKDNt7yDBg1SyZIlzefDy8tL0o3f7CclJWW5r0cffVSenp7m/bTx+ve//20zF0bjxo2VmJiov/76K1d9lqR169aZ3zTe/F7M6NK9efFZJklbtmzR888/r0ceeUTPPPOMdu7cqdq1a+ull14yf36Q9t+M5ptJm+vi5p8q3Or8+fMyDEOlS5e2WX769GlFRUUpIiLCZozbtm2b4VxReaV06dL6+++/823/QEEhI2UPGYmMREYiI2VHcctICQkJevTRR+Xi4pLhlQIlMlJeoyBVDJ09e1ZXr15VtWrV0q2rUaPGbbd/9dVXdfHiRVWvXl116tTRyJEjtXfv3hz1ISgoKNttS5QokW5SuOrVq0tSut+k56WzZ88qISEhwzGpVauWUlNTdfLkSZvlN4dXSeYH4+3mFbj5mPHx8apdu3aW7Y4fP55pv9LW3yyz8S5ZsqTNKauSdOTIEcXFxcnHx0fe3t42t8uXLys2NjbLvs2fP1/33Xef+Xtzb29vrVy5UnFxcVlul5njx4+rRIkSqlq1qs1yPz8/eXl5pXustz4H0o3nIbvPQVb7SvtjFhAQkOHym49x4sQJ9enTR2XKlJGbm5u8vb314IMPSlKOxiIn75UyZcro3Xff1d69e+Xp6al3330329ve6tbPBzc3N/n7+5vvuQcffFDdunXTxIkTVa5cOXXp0kVz585NN2eFdGfjmFNpr4db++/t7Z0uqOTFZ1lGHB0dNWTIEF28eFE7d+6U9E/4zmh80uZUyOx/iG5m3DT/hZT545Wy93meW4ZhZHvOKaAoISNlDxmJjERG+gcZKfuKckZKSUlRjx49dPDgQS1evFjly5fPtB9kpLzDHFJIp2XLljp69KiWLVumNWvW6OOPP9bbb7+tOXPmqH///tnaR3Y+VHIiszd9SkpKnh7ndjK7ksWtH5BWy2y8nZyc0l1JJjU1VT4+PlqwYEGG22T1TdRnn32mPn36KDw8XCNHjpSPj4/s7e01depUHT16NPcPQJk/x7fKy+cgs33d7hgpKSlq27atzp8/r9GjR6tmzZoqVaqU/vrrL/Xp0yfTuUAyktP3ynfffSfpRmD5888/zW/p8pqdnZ0WL16sn376Sd9++62+++47PfXUU3rzzTf1008/2VypLbfjmN/y4rMsM2lBMm0C0jJlysjJyUmnT59O1zZtWWbBJm17Ozu7OwqieenChQvpJvkEQEbKSkF/5meGjERGymtkpKwV1Yw0YMAArVixQgsWLFDr1q0zbUdGylucIVUMeXt7y8XFJcNTMA8fPpytfZQpU0Z9+/bVF198oZMnT+q+++6zufJKXlaFU1NT051K/Ntvv0mSeapwWlX/4sWLNu0yOg08u33z9vaWq6trhmPy66+/qkSJEum+vbhT3t7e8vDw0P79+7NsFxgYmGm/0tbnVpUqVXTu3Dk98MADCg0NTXerW7duptsuXrxYlStX1jfffKNevXopLCxMoaGh6a6qkZPXR2BgoFJTU9O9Xs+cOaOLFy/e0WPNL/v27dNvv/2mN998U6NHj1aXLl0UGhqa4R/TvHyvREZG6uOPP9aoUaPk7e2tiIgIJScn52pft4735cuXdfr0aZvT8yWpSZMmmjJlinbs2KEFCxbowIEDWrhwYW4fwh1Lez3c2v+zZ89mGFRu91mWW2mfWWn/c1KiRAnVqVNHO3bsSNf2559/VuXKlbOcrLNkyZKqUqWKoqOjbZZn9nil7H+e50Z0dLR5tgFQnJCRyEhZISPdOTISGakoZqSRI0dq7ty5evvtt9WzZ88s25KR8hYFqWLI3t5eYWFhWrp0qU6cOGEuP3TokPnNQVbOnTtnc9/NzU1Vq1a1Oc2yVKlSktKHn9x6//33zX8bhqH3339fDg4OatOmjaQbHzj29vb64YcfbLbL6MoZ2e2bvb292rVrp2XLltmc9n7mzBl9/vnnat68uTw8PHL5iDJWokQJhYeH69tvv83wQzntW5EOHTpo+/bt2rZtm7nuypUr+vDDD1WpUqU7mjvmscceU0pKiiZNmpRuXXJycpbjlvZtzs3f3vz88882/ZRkXpEiO6+PDh06SJJmzJhhs/ytt96SJHXs2PG2+7BaRuNgGIbeeeeddG3z6r1y8eJF80oor732mj7++GPt2rVLr732Wq729+GHH9rMezB79mwlJyfr4YcflnTj259bv6WrV6+epIxPubZKaGioHBwc9N5779n079bXj5S9z7LbyeiS5ZcuXdKMGTNUrlw5hYSEmMu7d++uX375xea9ffjwYW3YsEGPPvrobY/VtGnTdJ8L/v7+qlevnubPn2/zM4e1a9emmyclr8TFxeno0aNq1qxZvuwfKEhkJDJSVshId46MREYqahnpjTfe0PTp0/XSSy/p+eefz7ItGSnv8ZO9YmrixImKjIxUixYt9Oyzzyo5OVnvvfee7r333tv+Pjg4OFitWrVSSEiIypQpox07dmjx4sU2k2qmfcA899xzCgsLk729vXr06JGrvjo7OysyMlIRERFq3LixVq9erZUrV+qll14yK+uenp7m5Vzt7OxUpUoVrVixIsPf8uekb5MnT9batWvVvHlzPfvssypZsqQ++OADXb9+XdOmTcvV47md1157TWvWrNGDDz6ogQMHqlatWjp9+rQWLVqkzZs3y8vLS2PGjNEXX3yhhx9+WM8995zKlCmj+fPnKzo6Wl9//XW6U8xz4sEHH9TTTz+tqVOnKioqSu3atZODg4OOHDmiRYsW6Z133lH37t0z3LZTp0765ptv1LVrV3Xs2FHR0dGaM2eOgoODdfnyZbOdi4uLgoOD9eWXX6p69eoqU6aMateuneG8EHXr1lVERIQ+/PBDXbx4UQ8++KC2b9+u+fPnKzw8XA899FCuH2t+qVmzpqpUqaIRI0bor7/+koeHh77++usMv33Kq/fK888/r3PnzmndunWyt7dX+/bt1b9/f02ePFldunTJ8lvbjCQmJqpNmzZ67LHHdPjwYc2aNUvNmzfXI488IunGPBizZs1S165dVaVKFV26dEkfffSRPDw8zIBcELy9vTVixAjz8tMdOnTQ7t27tXr16nSnT2fns+x2Zs6caU6yW7FiRZ0+fVqffPKJTpw4oU8//dScwFaSnn32WX300Ufq2LGjRowYIQcHB7311lvy9fU1J6DNSpcuXfTpp5/qt99+M+eIkW5cartjx45q3ry5nnrqKZ0/f978PL/5fZeVb7/9Vnv27JEkJSUlae/evZo8ebIk6ZFHHrG55Pi6detkGEauJ4MFCjsyEhkpM2SkO0dGIiMVpYy0ZMkSjRo1StWqVVOtWrX02Wef2axv27atfH19zftkpHyQ/xfyQ0HZtGmTERISYjg6OhqVK1c25syZk+5ysoaR/pLGkydPNho1amR4eXkZLi4uRs2aNY0pU6bYXP40OTnZGDp0qOHt7W3Y2dmZ+0y7xOkbb7yRrj+ZXdK4VKlSxtGjR4127doZrq6uhq+vrzF+/Hjzsr1pzp49a3Tr1s1wdXU1SpcubTz99NPG/v370+0zs74ZRvpLGhuGYezatcsICwsz3NzcDFdXV+Ohhx4ytm7datMm7bKqt17eNbNLLd/O8ePHjd69exve3t6Gk5OTUblyZWPw4ME2lws+evSo0b17d8PLy8twdnY2GjVqZKxYsSLD4y9atCjdMdLGNjMffvihERISYri4uBju7u5GnTp1jFGjRhmnTp0y29x6SePU1FTjtddeMwIDAw0nJyfj/vvvN1asWGFERESku7Tq1q1bzdffzeOe0WswKSnJmDhxohEUFGQ4ODgYAQEBxtixY9Nd+jazy7Xe2s/skGQMHjzYZllmr9+MxvngwYNGaGio4ebmZpQrV84YMGCAsWfPnmy/HnPyXlm2bJkhyXjzzTdt2sXHxxuBgYFG3bp1bd6fWUl7LW/atMkYOHCgUbp0acPNzc148sknjXPnzpntdu3aZfTs2dOoWLGi4eTkZPj4+BidOnUyduzYkavxuvnYWV0mObP+3nw56ZSUFGPixImGv7+/4eLiYrRq1crYv39/rj7LbmfNmjVG27ZtDT8/P8PBwcHw8vIy2rVrZ6xfvz7D9idPnjS6d+9ueHh4GG5ubkanTp2MI0eOZOtY169fN8qVK2dMmjQp3bqvv/7aqFWrluHk5GQEBwcb33zzTYbvu8zeI2mXOM/oduulsx9//HGjefPm2eozUFSRkchIZKTMkZHISNlRHDJS2nsus9utn19kpLxnZxgFPNMgAMAy8+bNU9++ffXLL79keFltFKxJkyZp7ty5OnLkSKYTnuanmJgYBQUFaeHChXz7BwC4q5CRCjcyUvHEHFIAABQSw4YN0+XLlwtsUtQZM2aoTp06BC0AAFCokJGKJ+aQAvLI5cuXb/tbZW9v7wKp6N9NYmJislzv4uIiT09Pi3pjnatXr9pM6JiRMmXKWNSb2yvo90tiYqJ5OeLMeHp65vnl2W/Hzc0tw3lfrPL6668X2LEBFF8F/ZmPG8hImSMj/YOMlDEyUv6gIAXkkenTp2vixIlZtomOjk53yVjkLX9//yzXR0REaN68edZ0xkJffvml+vbtm2Wb77//3qLe3F5Bv1+2bt1628lg586dqz59+uTL8QHgblLQn/m4gYyUOTLSP8hIsBJzSAF55I8//tAff/yRZZvmzZvL2dnZoh7dndatW5fl+vLly9/RJaELq9OnT+vAgQNZtgkJCVHp0qUt6lHWCvr9cuHCBe3cuTPLNvfee+9twzsA4PYK+jMfN5CRMkdG+gcZCVaiIAUAAAAAAABLMak5AAAAAAAALHVXzyGVmpqqU6dOyd3dXXZ2dgXdHQAAYAHDMHTp0iWVL19eJUrw3VxGyEgAANx9rM5Id3VB6tSpUwoICCjobgAAgAJw8uRJVahQoaC7USiRkQAAuHtZlZHu6oKUu7u7pBuD7eHhUcC9AQAAVoiPj1dAQICZA5AeGQkAgLuP1Rnpri5IpZ2C7uHhQdgCAOAuw0/RMkdGAgDg7mVVRmLiBAAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlrqr55ACACArKSkpSkpKKuhuIIccHBxkb29f0N0AAKDYIiMVTYUtI1GQAgDgFoZhKCYmRhcvXizoriCXvLy85Ofnx8TlAADkITJS0VeYMhIFKQAAbpEWtHx8fOTq6loo/mAjewzDUEJCgmJjYyVJ/v7+BdwjAACKDzJS0VUYMxIFKQAAbpKSkmIGrbJlyxZ0d5ALLi4ukqTY2Fj5+PgUqlPTAQAoqshIRV9hy0hMag4AwE3S5kNwdXUt4J7gTqQ9f8xvAQBA3iAjFQ+FKSNRkAIAIAOcgl608fwBAJA/+BtbtBWm54+CFAAAAAAAACxFQQoAgCLOzs4uy9uECRMKtG9Lly69o318+OGHatWqlTw8PGRnZ8eVfQAAQLYV55x0/vx5DR06VDVq1JCLi4sqVqyo5557TnFxcXnXyXzEpOYAAGRTUuRmy47l0L55ttuePn3a/PeXX36pcePG6fDhw+YyNze3HB07MTFRjo6OOdomPyUkJKh9+/Zq3769xo4dW9DdAQAAt7AyI0nkpDSnTp3SqVOnNH36dAUHB+v48eN65plndOrUKS1evLigu3dbnCGVj5IiN6e7AQCQ1/z8/Mybp6en7OzszPtXrlzRk08+KV9fX7m5ualhw4Zat26dzfaVKlXSpEmT1Lt3b3l4eGjgwIGSpI8++kgBAQFydXVV165d9dZbb8nLy8tm22XLlql+/fpydnZW5cqVNXHiRCUnJ5v7laSuXbvKzs7OvL9nzx499NBDcnd3l4eHh0JCQrRjx45MH98LL7ygMWPGqEmTJnkzYChwZCQAgFWKc06qXbu2vv76a3Xu3FlVqlRR69atNWXKFH377bfmcQozClIAABRjly9fVocOHbR+/Xrt3r1b7du3V+fOnXXixAmbdtOnT1fdunW1e/du/ec//9GWLVv0zDPP6Pnnn1dUVJTatm2rKVOm2Gzz448/qnfv3nr++ed18OBBffDBB5o3b57Z7pdffpEkzZ07V6dPnzbvP/nkk6pQoYJ++eUX7dy5U2PGjJGDg4MFowEAAPCP4piT4uLi5OHhoZIlC/8P4gp/DwEAQK7VrVtXdevWNe9PmjRJS5Ys0fLlyzVkyBBzeevWrfXiiy+a919++WU9/PDDGjFihCSpevXq2rp1q1asWGG2mThxosaMGaOIiAhJUuXKlTVp0iSNGjVK48ePl7e3tyTJy8tLfn5+5nYnTpzQyJEjVbNmTUlStWrV8uGRAwAAZK245aS///5bkyZNMs/iKuw4QwoAgGLs8uXLGjFihGrVqiUvLy+5ubnp0KFD6b75a9Cggc39w4cPq1GjRjbLbr2/Z88evfrqq3JzczNvAwYM0OnTp5WQkJBpn4YPH67+/fsrNDRUr7/+uo4ePXqHjxIAACDnilNOio+PV8eOHRUcHFygE7XnBAUpAACKsREjRmjJkiV67bXX9OOPPyoqKkp16tRRYmKiTbtSpUrleN+XL1/WxIkTFRUVZd727dunI0eOyNnZOdPtJkyYoAMHDqhjx47asGGDgoODtWTJkhwfHwAA4E4Ul5x06dIltW/fXu7u7lqyZEmRmQqBn+wBAFCMbdmyRX369FHXrl0l3QhHx44du+12NWrUMOcySHPr/fr16+vw4cOqWrVqpvtxcHBQSkpKuuXVq1dX9erVNWzYMPXs2VNz5841+wgAAGCF4pCT4uPjFRYWJicnJy1fvjzLYldhQ0EKAIBirFq1avrmm2/UuXNn2dnZ6T//+Y9SU1Nvu93QoUPVsmVLvfXWW+rcubM2bNig1atXy87Ozmwzbtw4derUSRUrVlT37t1VokQJ7dmzR/v379fkyZMl3biCzPr16/XAAw/IyclJzs7OGjlypLp3766goCD9+eef+uWXX9StW7dM+xITE6OYmBj9/vvvkqR9+/bJ3d1dFStWVJkyZe5whAAAwN2qqOek+Ph4tWvXTgkJCfrss88UHx+v+Ph4SZK3t7fs7e3zYJTyDz/ZAwCgGHvrrbdUunRpNWvWTJ07d1ZYWJjq169/2+0eeOABzZkzR2+99Zbq1q2ryMhIDRs2zOZbt7CwMK1YsUJr1qxRw4YN1aRJE7399tsKDAw027z55ptau3atAgICdP/998ve3l7nzp1T7969Vb16dT322GN6+OGHNXHixEz7MmfOHN1///0aMGCAJKlly5a6//77tXz58jsYGQAAcLcr6jlp165d+vnnn7Vv3z5VrVpV/v7+5u3kyZN3PkD5zM4wDKOgO1FQ4uPj5enpaV4WMa8lRW5Ot8yhffM8Pw4AIO9cu3ZN0dHRCgoKKlKnPFthwIAB+vXXX/Xjjz8WdFduK6vnMb///hcHZCQAwK3ISFkrKjmpMGUkfrIHAAAyNH36dLVt21alSpXS6tWrNX/+fM2aNauguwUAAFDgyEl3joIUAADI0Pbt2zVt2jRdunRJlStX1rvvvqv+/fsXdLcAAAAKHDnpzlGQAgAAGfrqq68KugsAAACFEjnpzjGpOQAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKVyVJCaOnWqGjZsKHd3d/n4+Cg8PFyHDx+2adOqVSvZ2dnZ3J555hmbNidOnFDHjh3l6uoqHx8fjRw5UsnJyTZtNm7cqPr168vJyUlVq1bVvHnz0vVn5syZqlSpkpydndW4cWNt3749Jw8HAAAgT5CRAAAAciZHBalNmzZp8ODB+umnn7R27VolJSWpXbt2unLlik27AQMG6PTp0+Zt2rRp5rqUlBR17NhRiYmJ2rp1q+bPn6958+Zp3LhxZpvo6Gh17NhRDz30kKKiovTCCy+of//++u6778w2X375pYYPH67x48dr165dqlu3rsLCwhQbG5vbsQAAAMgVMhIAAEDO2BmGYeR247Nnz8rHx0ebNm1Sy5YtJd349q9evXqaMWNGhtusXr1anTp10qlTp+Tr6ytJmjNnjkaPHq2zZ8/K0dFRo0eP1sqVK7V//35zux49eujixYuKjIyUJDVu3FgNGzbU+++/L0lKTU1VQECAhg4dqjFjxmSr//Hx8fL09FRcXJw8PDxyOwyZSorcnG6ZQ/vmeX4cAEDeuXbtmqKjoxUUFCRnZ+eC7g5yKavnMb///ktkpNshIwFA0UNGKh4KOiPd7I7mkIqLi5MklSlTxmb5ggULVK5cOdWuXVtjx45VQkKCuW7btm2qU6eOGbQkKSwsTPHx8Tpw4IDZJjQ01GafYWFh2rZtmyQpMTFRO3futGlTokQJhYaGmm0ycv36dcXHx9vcAAAoDvr06WP+DMzBwUG+vr5q27atPvnkE6WmphZ09+7IgQMH1K1bN1WqVEl2dnaZFnQKEzISAACFR3HOSR999JFatGih0qVLq3Tp0goNDS0yP9UvmdsNU1NT9cILL+iBBx5Q7dq1zeVPPPGEAgMDVb58ee3du1ejR4/W4cOH9c0330iSYmJibIKWJPN+TExMlm3i4+N19epVXbhwQSkpKRm2+fXXXzPt89SpUzVx4sTcPmQAwF3u6I4PLDtWlQZP53ib9u3ba+7cuUpJSdGZM2cUGRmp559/XosXL9by5ctVsmSu/+wXqISEBFWuXFmPPvqohg0bVtDduS0yEgDgbmNlRpLISTfbuHGjevbsqWbNmsnZ2Vn//e9/1a5dOx04cED33HNPQXcvS7k+Q2rw4MHav3+/Fi5caLN84MCBCgsLU506dfTkk0/q//7v/7RkyRIdPXr0jjt7p8aOHau4uDjzdvLkyYLuEgAAecbJyUl+fn665557VL9+fb300ktatmyZVq9ebTPx9cWLF9W/f395e3vLw8NDrVu31p49e2z29e2336phw4ZydnZWuXLl1LVrV3PdhQsX1Lt3b5UuXVqurq56+OGHdeTIEUnSlStX5OHhocWLF9vsb+nSpSpVqpQuXbqkxMREDRkyRP7+/nJ2dlZgYKCmTp2a6eNq2LCh3njjDfXo0UNOTk55MFL5i4wEAEDhU1xz0oIFC/Tss8+qXr16qlmzpj7++GOlpqZq/fr1eTBq+StXBakhQ4ZoxYoV+v7771WhQoUs2zZu3FiS9Pvvv0uS/Pz8dObMGZs2aff9/PyybOPh4SEXFxeVK1dO9vb2GbZJ20dGnJyc5OHhYXMDAKA4a926terWrWuehSNJjz76qGJjY7V69Wrt3LlT9evXV5s2bXT+/HlJ0sqVK9W1a1d16NBBu3fv1vr169WoUSNz+z59+mjHjh1avny5tm3bJsMw1KFDByUlJalUqVLq0aOH5s6da9OPuXPnqnv37nJ3d9e7776r5cuX66uvvtLhw4e1YMECVapUyZLxyG9kJAAAio7imJMSEhKUlJSUbtqAwihH56QZhqGhQ4dqyZIl2rhxo4KCgm67TVRUlCTJ399fktS0aVNNmTJFsbGx8vHxkSStXbtWHh4eCg4ONtusWrXKZj9r165V06ZNJUmOjo4KCQnR+vXrFR4eLklmBXDIkCE5eUj56tjF1emWVRMTdgIArFWzZk3t3btXkrR582Zt375dsbGx5tlG06dP19KlS7V48WINHDhQU6ZMUY8ePWx+wlW3bl1J0pEjR7R8+XJt2bJFzZo1k3Tjm7mAgAAtXbpUjz76qPr3769mzZrp9OnT8vf3V2xsrFatWqV169ZJkk6cOKFq1aqpefPmsrOzU2BgoJXDkS/ISDlDRgIAFBbFLSeNHj1a5cuXTzfnZGGUozOkBg8erM8++0yff/653N3dFRMTo5iYGF29elWSdPToUU2aNEk7d+7UsWPHtHz5cvXu3VstW7bUfffdJ0lq166dgoOD1atXL+3Zs0ffffedXnnlFQ0ePNh8wp955hn98ccfGjVqlH799VfNmjVLX331lc28EcOHD9dHH32k+fPn69ChQxo0aJCuXLmivn375tXYAABQLBiGITs7O0nSnj17dPnyZZUtW1Zubm7mLTo62vzpWFRUlNq0aZPhvg4dOqSSJUuaZ/dIUtmyZVWjRg0dOnRIktSoUSPde++9mj9/viTps88+U2BgoHm1uT59+igqKko1atTQc889pzVr1uTbY7cKGQkAgKKpOOWk119/XQsXLtSSJUuKxJUQc3SG1OzZsyXduGzxzebOnas+ffrI0dFR69at04wZM3TlyhUFBASoW7dueuWVV8y29vb2WrFihQYNGqSmTZuqVKlSioiI0Kuvvmq2CQoK0sqVKzVs2DC98847qlChgj7++GOFhYWZbR5//HGdPXtW48aNU0xMjOrVq6fIyMh0k3gCAHC3O3TokHnGzuXLl+Xv76+NGzema+fl5SVJcnFxueNj9u/fXzNnztSYMWM0d+5c9e3b1wx79evXV3R0tFavXq1169bpscceU2hoaLr5FIoSMhIAAEVTcclJ06dP1+uvv65169aZX3YVdjn+yV5WAgICtGnTptvuJzAwMN3p5rdq1aqVdu/enWWbIUOGFKrTzwEAKGw2bNigffv2mWfQ1K9fXzExMSpZsmSm8xHcd999Wr9+fYZn1NSqVUvJycn6+eefzVPRz507p8OHD5s/K5Okf//73xo1apTeffddHTx4UBERETb78fDw0OOPP67HH39c3bt3V/v27XX+/PkiMd9BRshIAAAUPcUlJ02bNk1TpkzRd999pwYNGuRmKApE0byuIQAASOf69euKiYmxuZzx1KlT1alTJ/Xu3VuSFBoaqqZNmyo8PFzTpk1T9erVderUKXOCzgYNGmj8+PFq06aNqlSpoh49eig5OVmrVq3S6NGjVa1aNXXp0kUDBgzQBx98IHd3d40ZM0b33HOPunTpYvaldOnS+te//qWRI0eqXbt2NhN8v/XWW/L399f999+vEiVKaNGiRfLz8zO/ebxVYmKiDh48aP77r7/+UlRUlNzc3FS1atX8G1AAAFBsFNec9N///lfjxo3T559/rkqVKikmJkaSzJ8bFma5usoeAAAofCIjI+Xv769KlSqpffv2+v777/Xuu+9q2bJlsre3lyTZ2dlp1apVatmypfr27avq1aurR48eOn78uPmTrlatWmnRokVavny56tWrp9atW2v79u3mcebOnauQkBB16tRJTZs2lWEYWrVqlRwcHGz6069fPyUmJuqpp56yWe7u7q5p06apQYMGatiwoY4dO6ZVq1apRImMY8mpU6d0//336/7779fp06c1ffp03X///erfv39eDh8AACjGimtOmj17thITE9W9e3f5+/ubt+nTp+fl8OULO+N255gXY/Hx8fL09FRcXFy+XN74yMKX0y2r1mNKnh8HAJB3rl27pujoaAUFBRWJySALs08//VTDhg3TqVOn5OjoaOmxs3oe8/vvf3FARgIA3IqMlLcKKicVpozET/YAAECeSkhI0OnTp/X666/r6aeftrwYBQAAUFiRk/7BT/YAAECemjZtmmrWrCk/Pz+NHTu2oLsDAABQaJCT/kFBCgAA5KkJEyYoKSlJ69evL/STaQIAAFiJnPQPClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAGbiLL0JbLPD8AQCQP/gbW7QVpuePghQAADdxcHCQdOMKKCi60p6/tOcTAADcGTJS8VCYMlLJgu4AAACFib29vby8vBQbGytJcnV1lZ2dXQH3CtllGIYSEhIUGxsrLy8v2dvbF3SXAAAoFshIRVthzEgUpAAAuIWfn58kmYELRY+Xl5f5PAIAgLxBRir6ClNGoiAFAMAt7Ozs5O/vLx8fHyUlJRV0d5BDDg4OheJbPwAAihsyUtFW2DISBSkAADJhb29fqP5oAwAAFAZkJOQFJjUHAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS+WoIDV16lQ1bNhQ7u7u8vHxUXh4uA4fPmzT5tq1axo8eLDKli0rNzc3devWTWfOnLFpc+LECXXs2FGurq7y8fHRyJEjlZycbNNm48aNql+/vpycnFS1alXNmzcvXX9mzpypSpUqydnZWY0bN9b27dtz8nAAAADyBBkJAAAgZ3JUkNq0aZMGDx6sn376SWvXrlVSUpLatWunK1eumG2GDRumb7/9VosWLdKmTZt06tQp/etf/zLXp6SkqGPHjkpMTNTWrVs1f/58zZs3T+PGjTPbREdHq2PHjnrooYcUFRWlF154Qf3799d3331ntvnyyy81fPhwjR8/Xrt27VLdunUVFham2NjYOxkPAACAHCMjAQAA5IydYRhGbjc+e/asfHx8tGnTJrVs2VJxcXHy9vbW559/ru7du0uSfv31V9WqVUvbtm1TkyZNtHr1anXq1EmnTp2Sr6+vJGnOnDkaPXq0zp49K0dHR40ePVorV67U/v37zWP16NFDFy9eVGRkpCSpcePGatiwod5//31JUmpqqgICAjR06FCNGTMmW/2Pj4+Xp6en4uLi5OHhkdthyNSRhS+nW1atx5Q8Pw4AAMi+/P77L5GRboeMBABA4WNFRrrZHc0hFRcXJ0kqU6aMJGnnzp1KSkpSaGio2aZmzZqqWLGitm3bJknatm2b6tSpYwYtSQoLC1N8fLwOHDhgtrl5H2lt0vaRmJionTt32rQpUaKEQkNDzTYZuX79uuLj421uAAAAeY2MBAAAkLVcF6RSU1P1wgsv6IEHHlDt2rUlSTExMXJ0dJSXl5dNW19fX8XExJhtbg5aaevT1mXVJj4+XlevXtXff/+tlJSUDNuk7SMjU6dOlaenp3kLCAjI+QMHAADIAhkJAADg9nJdkBo8eLD279+vhQsX5mV/8tXYsWMVFxdn3k6ePFnQXQIAAMUMGQkAAOD2SuZmoyFDhmjFihX64YcfVKFCBXO5n5+fEhMTdfHiRZtvAM+cOSM/Pz+zza1Xekm7wszNbW696syZM2fk4eEhFxcX2dvby97ePsM2afvIiJOTk5ycnHL+gAEAALKBjAQAAJA9OTpDyjAMDRkyREuWLNGGDRsUFBRksz4kJEQODg5av369uezw4cM6ceKEmjZtKklq2rSp9u3bZ3Oll7Vr18rDw0PBwcFmm5v3kdYmbR+Ojo4KCQmxaZOamqr169ebbQAAAKxCRgIAAMiZHJ0hNXjwYH3++edatmyZ3N3dzbkIPD095eLiIk9PT/Xr10/Dhw9XmTJl5OHhoaFDh6pp06Zq0qSJJKldu3YKDg5Wr169NG3aNMXExOiVV17R4MGDzW/mnnnmGb3//vsaNWqUnnrqKW3YsEFfffWVVq5cafZl+PDhioiIUIMGDdSoUSPNmDFDV65cUd++ffNqbAAAALKFjAQAAJAzOSpIzZ49W5LUqlUrm+Vz585Vnz59JElvv/22SpQooW7duun69esKCwvTrFmzzLb29vZasWKFBg0apKZNm6pUqVKKiIjQq6++arYJCgrSypUrNWzYML3zzjuqUKGCPv74Y4WFhZltHn/8cZ09e1bjxo1TTEyM6tWrp8jIyHSTeAIAAOQ3MhIAAEDO2BmGYRR0JwpKfHy8PD09FRcXJw8Pjzzf/5GFL6dbVq3HlDw/DgAAyL78/vtfHJCRAAC4+1idkXJ9lT0AAAAAAAAgNyhIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALJXjgtQPP/ygzp07q3z58rKzs9PSpUtt1vfp00d2dnY2t/bt29u0OX/+vJ588kl5eHjIy8tL/fr10+XLl23a7N27Vy1atJCzs7MCAgI0bdq0dH1ZtGiRatasKWdnZ9WpU0erVq3K6cMBAADIE2QkAACA7MtxQerKlSuqW7euZs6cmWmb9u3b6/Tp0+btiy++sFn/5JNP6sCBA1q7dq1WrFihH374QQMHDjTXx8fHq127dgoMDNTOnTv1xhtvaMKECfrwww/NNlu3blXPnj3Vr18/7d69W+Hh4QoPD9f+/ftz+pAAAADuGBkJAAAg++wMwzByvbGdnZYsWaLw8HBzWZ8+fXTx4sV03wqmOXTokIKDg/XLL7+oQYMGkqTIyEh16NBBf/75p8qXL6/Zs2fr5ZdfVkxMjBwdHSVJY8aM0dKlS/Xrr79Kkh5//HFduXJFK1asMPfdpEkT1atXT3PmzMlW/+Pj4+Xp6am4uDh5eHjkYgSydmThy+mWVesxJc+PAwAAsi+///5LZKTbISMBAFD4WJGRbpYvc0ht3LhRPj4+qlGjhgYNGqRz586Z67Zt2yYvLy8zaElSaGioSpQooZ9//tls07JlSzNoSVJYWJgOHz6sCxcumG1CQ0NtjhsWFqZt27blx0MCAAC4Y2QkAACAG0rm9Q7bt2+vf/3rXwoKCtLRo0f10ksv6eGHH9a2bdtkb2+vmJgY+fj42HaiZEmVKVNGMTExkqSYmBgFBQXZtPH19TXXlS5dWjExMeaym9uk7SMj169f1/Xr18378fHxd/RYAQAAsouMBAAA8I88L0j16NHD/HedOnV03333qUqVKtq4caPatGmT14fLkalTp2rixIkF2gcAAHB3IiMBAAD8I19+snezypUrq1y5cvr9998lSX5+foqNjbVpk5ycrPPnz8vPz89sc+bMGZs2afdv1yZtfUbGjh2ruLg483by5Mk7e3AAAAC5REYCAAB3s3wvSP355586d+6c/P39JUlNmzbVxYsXtXPnTrPNhg0blJqaqsaNG5ttfvjhByUlJZlt1q5dqxo1aqh06dJmm/Xr19sca+3atWratGmmfXFycpKHh4fNDQAAoCCQkQAAwN0sxwWpy5cvKyoqSlFRUZKk6OhoRUVF6cSJE7p8+bJGjhypn376SceOHdP69evVpUsXVa1aVWFhYZKkWrVqqX379howYIC2b9+uLVu2aMiQIerRo4fKly8vSXriiSfk6Oiofv366cCBA/ryyy/1zjvvaPjw4WY/nn/+eUVGRurNN9/Ur7/+qgkTJmjHjh0aMmRIHgwLAABAzpCRAAAAsi/HBakdO3bo/vvv1/333y9JGj58uO6//36NGzdO9vb22rt3rx555BFVr15d/fr1U0hIiH788Uc5OTmZ+1iwYIFq1qypNm3aqEOHDmrevLk+/PBDc72np6fWrFmj6OhohYSE6MUXX9S4ceM0cOBAs02zZs30+eef68MPP1TdunW1ePFiLV26VLVr176T8QAAAMgVMhIAAED22RmGYRR0JwpKfHy8PD09FRcXly+nph9Z+HK6ZdV6TMnz4wAAgOzL77//xQEZCQCAu4/VGSnf55ACAAAAAAAAbkZBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkcF6R++OEHde7cWeXLl5ednZ2WLl1qs94wDI0bN07+/v5ycXFRaGiojhw5YtPm/PnzevLJJ+Xh4SEvLy/169dPly9ftmmzd+9etWjRQs7OzgoICNC0adPS9WXRokWqWbOmnJ2dVadOHa1atSqnDwcAACBPkJEAAACyL8cFqStXrqhu3bqaOXNmhuunTZumd999V3PmzNHPP/+sUqVKKSwsTNeuXTPbPPnkkzpw4IDWrl2rFStW6IcfftDAgQPN9fHx8WrXrp0CAwO1c+dOvfHGG5owYYI+/PBDs83WrVvVs2dP9evXT7t371Z4eLjCw8O1f//+nD4kAACAO0ZGAgAAyD47wzCMXG9sZ6clS5YoPDxc0o1v/sqXL68XX3xRI0aMkCTFxcXJ19dX8+bNU48ePXTo0CEFBwfrl19+UYMGDSRJkZGR6tChg/7880+VL19es2fP1ssvv6yYmBg5OjpKksaMGaOlS5fq119/lSQ9/vjjunLlilasWGH2p0mTJqpXr57mzJmTrf7Hx8fL09NTcXFx8vDwyO0wZOrIwpfTLavWY0qeHwcAAGRffv/9l8hIt0NGAgCg8LEiI90sT+eQio6OVkxMjEJDQ81lnp6eaty4sbZt2yZJ2rZtm7y8vMygJUmhoaEqUaKEfv75Z7NNy5YtzaAlSWFhYTp8+LAuXLhgtrn5OGlt0o4DAABQWJCRAAAAbJXMy53FxMRIknx9fW2W+/r6mutiYmLk4+Nj24mSJVWmTBmbNkFBQen2kbaudOnSiomJyfI4Gbl+/bquX79u3o+Pj8/JwwMAAMgVMhIAAICtu+oqe1OnTpWnp6d5CwgIKOguAQAAFDgyEgAAsFqeFqT8/PwkSWfOnLFZfubMGXOdn5+fYmNjbdYnJyfr/PnzNm0y2sfNx8isTdr6jIwdO1ZxcXHm7eTJkzl9iAAAADlGRgIAALCVpwWpoKAg+fn5af369eay+Ph4/fzzz2ratKkkqWnTprp48aJ27txpttmwYYNSU1PVuHFjs80PP/ygpKQks83atWtVo0YNlS5d2mxz83HS2qQdJyNOTk7y8PCwuQEAAOQ3MhIAAICtHBekLl++rKioKEVFRUm6MUlnVFSUTpw4ITs7O73wwguaPHmyli9frn379ql3794qX768eZWZWrVqqX379howYIC2b9+uLVu2aMiQIerRo4fKly8vSXriiSfk6Oiofv366cCBA/ryyy/1zjvvaPjw4WY/nn/+eUVGRurNN9/Ur7/+qgkTJmjHjh0aMmTInY8KAABADpGRAAAAsi/Hk5rv2LFDDz30kHk/LQBFRERo3rx5GjVqlK5cuaKBAwfq4sWLat68uSIjI+Xs7Gxus2DBAg0ZMkRt2rRRiRIl1K1bN7377rvmek9PT61Zs0aDBw9WSEiIypUrp3HjxmngwIFmm2bNmunzzz/XK6+8opdeeknVqlXT0qVLVbt27VwNBAAAwJ0gIwEAAGSfnWEYRkF3oqDEx8fL09NTcXFx+XJq+pGFL6dbVq3HlDw/DgAAyL78/vtfHJCRAAC4+1idke6qq+wBAAAAAACg4FGQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWCrPC1ITJkyQnZ2dza1mzZrm+mvXrmnw4MEqW7as3Nzc1K1bN505c8ZmHydOnFDHjh3l6uoqHx8fjRw5UsnJyTZtNm7cqPr168vJyUlVq1bVvHnz8vqhAAAA5BkyEgAAwD/y5Qype++9V6dPnzZvmzdvNtcNGzZM3377rRYtWqRNmzbp1KlT+te//mWuT0lJUceOHZWYmKitW7dq/vz5mjdvnsaNG2e2iY6OVseOHfXQQw8pKipKL7zwgvr376/vvvsuPx4OAABAniAjAQAA3FAyX3ZasqT8/PzSLY+Li9P//vc/ff7552rdurUkae7cuapVq5Z++uknNWnSRGvWrNHBgwe1bt06+fr6ql69epo0aZJGjx6tCRMmyNHRUXPmzFFQUJDefPNNSVKtWrW0efNmvf322woLC8uPhwQAAHDHyEgAAAA35MsZUkeOHFH58uVVuXJlPfnkkzpx4oQkaefOnUpKSlJoaKjZtmbNmqpYsaK2bdsmSdq2bZvq1KkjX19fs01YWJji4+N14MABs83N+0hrk7YPAACAwoiMBAAAcEOenyHVuHFjzZs3TzVq1NDp06c1ceJEtWjRQvv371dMTIwcHR3l5eVls42vr69iYmIkSTExMTZBK2192rqs2sTHx+vq1atycXHJsG/Xr1/X9evXzfvx8fF39FgBAACyi4wEAADwjzwvSD388MPmv++77z41btxYgYGB+uqrrzINQVaZOnWqJk6cWKB9AAAAdycyEgAAwD/y5Sd7N/Py8lL16tX1+++/y8/PT4mJibp48aJNmzNnzpjzKfj5+aW7okza/du18fDwyDLQjR07VnFxcebt5MmTd/rwAAAAcoWMBAAA7mb5XpC6fPmyjh49Kn9/f4WEhMjBwUHr16831x8+fFgnTpxQ06ZNJUlNmzbVvn37FBsba7ZZu3atPDw8FBwcbLa5eR9pbdL2kRknJyd5eHjY3AAAAAoCGQkAANzN8rwgNWLECG3atEnHjh3T1q1b1bVrV9nb26tnz57y9PRUv379NHz4cH3//ffauXOn+vbtq6ZNm6pJkyaSpHbt2ik4OFi9evXSnj179N133+mVV17R4MGD5eTkJEl65pln9Mcff2jUqFH69ddfNWvWLH311VcaNmxYXj8cAACAPEFGAgAA+EeezyH1559/qmfPnjp37py8vb3VvHlz/fTTT/L29pYkvf322ypRooS6deum69evKywsTLNmzTK3t7e314oVKzRo0CA1bdpUpUqVUkREhF599VWzTVBQkFauXKlhw4bpnXfeUYUKFfTxxx9zOWMAAFBokZEAAAD+YWcYhlHQnSgo8fHx8vT0VFxcXL6cmn5k4cvpllXrMSXPjwMAALIvv//+FwdkJAAA7j5WZ6R8n0MKAAAAAAAAuBkFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApUoWdAcAAACSIjenW+bQvnkB9AQAAKDwKM4ZiTOkAAAAAAAAYCkKUgAAAAAAALAUP9kDAACWyujU82MXV6dbVk3F43R0AACA7LjbMhIFKQAAkK8yClcAAAB3u7s9I1GQAgAAuXK3hygAAICMkJGyh4IUAADFWHauzGJ1aMro1HMAAAArkZEKHgUpAAAKmexe3je3IYlwBQAAiqpbcwwZqegq8gWpmTNn6o033lBMTIzq1q2r9957T40aNSrobgEAkKehpqic+n23B6vChIwEACjM8irbkJGKriJdkPryyy81fPhwzZkzR40bN9aMGTMUFhamw4cPy8fHp6C7BwAoAopKiLEaoaloIyMBAO4UGSljZKS8U6QLUm+99ZYGDBigvn37SpLmzJmjlStX6pNPPtGYMWMKuHcAcHcjxOQ/AhEyQ0YCgMKLjJT/yEhFQ5EtSCUmJmrnzp0aO3asuaxEiRIKDQ3Vtm3bCrBnAIoTAkPhlZ2gUcnr4XzbN1BYkZEAWIGMVHiRkVBUFNmC1N9//62UlBT5+vraLPf19dWvv/6a4TbXr1/X9evXzftxcXGSpPj4+Hzp4+WE6+mW7f5kRL4cC3mvomdbm/sn4tYWUE8A5Nb+hKUF3QXcgfz6+5y2X8Mw8mX/BY2MhPxGRgKKPjJS0VZcMlKRLUjlxtSpUzVx4sR0ywMCAgqgNyj83izoDgDA3a1f/n4OX7p0SZ6envl6jKKCjIScISMBQIEqJhmpyBakypUrJ3t7e505c8Zm+ZkzZ+Tn55fhNmPHjtXw4cPN+6mpqTp//rzKli0rOzu7PO1ffHy8AgICdPLkSXl4eOTpvpExxtx6jLn1GHPrMeYFIz/H3TAMXbp0SeXLl8/T/RYWZCTcijG3HmNuPca8YDDu1itOGanIFqQcHR0VEhKi9evXKzw8XNKN8LR+/XoNGTIkw22cnJzk5ORks8zLyytf++nh4cEb02KMufUYc+sx5tZjzAtGfo17cT4zioyEzDDm1mPMrceYFwzG3XrFISMV2YKUJA0fPlwRERFq0KCBGjVqpBkzZujKlSvmFWUAAADuRmQkAABQ2BXpgtTjjz+us2fPaty4cYqJiVG9evUUGRmZbhJPAACAuwkZCQAAFHZFuiAlSUOGDMn09POC5OTkpPHjx6c7/R35hzG3HmNuPcbceox5wWDc7xwZCWkYc+sx5tZjzAsG42694jTmdkZxveYxAAAAAAAACqUSBd0BAAAAAAAA3F0oSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFqTswc+ZMVapUSc7OzmrcuLG2b9+eZftFixapZs2acnZ2Vp06dbRq1SqLelp85GTMP/roI7Vo0UKlS5dW6dKlFRoaetvnCOnl9HWeZuHChbKzs1N4eHj+drAYyumYX7x4UYMHD5a/v7+cnJxUvXp1Pl9yKKdjPmPGDNWoUUMuLi4KCAjQsGHDdO3aNYt6W/T98MMP6ty5s8qXLy87OzstXbr0ttts3LhR9evXl5OTk6pWrap58+blez+Re2Qk65GRrEdGsh4ZyXpkJGvddRnJQK4sXLjQcHR0ND755BPjwIEDxoABAwwvLy/jzJkzGbbfsmWLYW9vb0ybNs04ePCg8corrxgODg7Gvn37LO550ZXTMX/iiSeMmTNnGrt37zYOHTpk9OnTx/D09DT+/PNPi3tedOV0zNNER0cb99xzj9GiRQujS5cu1nS2mMjpmF+/ft1o0KCB0aFDB2Pz5s1GdHS0sXHjRiMqKsrinhddOR3zBQsWGE5OTsaCBQuM6Oho47vvvjP8/f2NYcOGWdzzomvVqlXGyy+/bHzzzTeGJGPJkiVZtv/jjz8MV1dXY/jw4cbBgweN9957z7C3tzciIyOt6TByhIxkPTKS9chI1iMjWY+MZL27LSNRkMqlRo0aGYMHDzbvp6SkGOXLlzemTp2aYfvHHnvM6Nixo82yxo0bG08//XS+9rM4yemY3yo5Odlwd3c35s+fn19dLHZyM+bJyclGs2bNjI8//tiIiIggbOVQTsd89uzZRuXKlY3ExESruljs5HTMBw8ebLRu3dpm2fDhw40HHnggX/tZXGUnbI0aNcq49957bZY9/vjjRlhYWD72DLlFRrIeGcl6ZCTrkZGsR0YqWHdDRuIne7mQmJionTt3KjQ01FxWokQJhYaGatu2bRlus23bNpv2khQWFpZpe9jKzZjfKiEhQUlJSSpTpkx+dbNYye2Yv/rqq/Lx8VG/fv2s6GaxkpsxX758uZo2barBgwfL19dXtWvX1muvvaaUlBSrul2k5WbMmzVrpp07d5qnrP/xxx9atWqVOnToYEmf70b8DS06yEjWIyNZj4xkPTKS9chIRUNR/xtasqA7UBT9/fffSklJka+vr81yX19f/frrrxluExMTk2H7mJiYfOtncZKbMb/V6NGjVb58+XRvWGQsN2O+efNm/e9//1NUVJQFPSx+cjPmf/zxhzZs2KAnn3xSq1at0u+//65nn31WSUlJGj9+vBXdLtJyM+ZPPPGE/v77bzVv3lyGYSg5OVnPPPOMXnrpJSu6fFfK7G9ofHy8rl69KhcXlwLqGW5FRrIeGcl6ZCTrkZGsR0YqGop6RuIMKdwVXn/9dS1cuFBLliyRs7NzQXenWLp06ZJ69eqljz76SOXKlSvo7tw1UlNT5ePjow8//FAhISF6/PHH9fLLL2vOnDkF3bVia+PGjXrttdc0a9Ys7dq1S998841WrlypSZMmFXTXACDHyEj5j4xUMMhI1iMjIac4QyoXypUrJ3t7e505c8Zm+ZkzZ+Tn55fhNn5+fjlqD1u5GfM006dP1+uvv65169bpvvvuy89uFis5HfOjR4/q2LFj6ty5s7ksNTVVklSyZEkdPnxYVapUyd9OF3G5eZ37+/vLwcFB9vb25rJatWopJiZGiYmJcnR0zNc+F3W5GfP//Oc/6tWrl/r37y9JqlOnjq5cuaKBAwfq5ZdfVokSfNeT1zL7G+rh4VHov/m725CRrEdGsh4ZyXpkJOuRkYqGop6ReEXkgqOjo0JCQrR+/XpzWWpqqtavX6+mTZtmuE3Tpk1t2kvS2rVrM20PW7kZc0maNm2aJk2apMjISDVo0MCKrhYbOR3zmjVrat++fYqKijJvjzzyiB566CFFRUUpICDAyu4XSbl5nT/wwAP6/fffzWArSb/99pv8/f0JWtmQmzFPSEhIF6jSwq5hGPnX2bsYf0OLDjKS9chI1iMjWY+MZD0yUtFQ5P+GFuyc6kXXwoULDScnJ2PevHnGwYMHjYEDBxpeXl5GTEyMYRiG0atXL2PMmDFm+y1bthglS5Y0pk+fbhw6dMgYP348lzTOoZyO+euvv244OjoaixcvNk6fPm3eLl26VFAPocjJ6ZjfiivI5FxOx/zEiROGu7u7MWTIEOPw4cPGihUrDB8fH2Py5MkF9RCKnJyO+fjx4w13d3fjiy++MP744w9jzZo1RpUqVYzHHnusoB5CkXPp0iVj9+7dxu7duw1JxltvvWXs3r3bOH78uGEYhjFmzBijV69eZvu0SxqPHDnSOHTokDFz5swidUnjuw0ZyXpkJOuRkaxHRrIeGcl6d1tGoiB1B9577z2jYsWKhqOjo9GoUSPjp59+Mtc9+OCDRkREhE37r776yqhevbrh6Oho3HvvvcbKlSst7nHRl5MxDwwMNCSlu40fP976jhdhOX2d34ywlTs5HfOtW7cajRs3NpycnIzKlSsbU6ZMMZKTky3uddGWkzFPSkoyJkyYYFSpUsVwdnY2AgICjGeffda4cOGC9R0vor7//vsMP5/TxjkiIsJ48MEH021Tr149w9HR0ahcubIxd+5cy/uN7CMjWY+MZD0ykvXISNYjI1nrbstIdobBuXMAAAAAAACwDnNIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFqbvMhAkTZGdnZ7OsUqVK6tOnT74f+9ixY7Kzs9O8efPMZX369JGbm1u+HzuNnZ2dJkyYYNnxirpWrVqpVatWebrPjF6DsJXRe+VuNW/ePNnZ2enYsWO3bWvVZ1l+unz5snx8fLRgwYLbtu3Tp48qVaqUbvv+/fvLz89PdnZ2euGFF3J0/DFjxqhx48Y52gYoLshIZKScICMVDDLSP8hImSMjFR0UpJArq1atKrShpTD37W6RkJCgCRMmaOPGjQXdlQLH67FoSwt7md1uDkVp/yNx683Z2Tnbx3vnnXfk7u6uHj165Kq/r732mubNm6dBgwbp008/Va9evSRJs2fP1qOPPqqKFSvKzs4u01D6wgsvaM+ePVq+fHmujg+gcH/uF+a+3S3ISP/g9Vi0FYeMdPLkSU2cOFGNGjVS6dKlVa5cObVq1Urr1q1Ltz0ZKX+ULOgOoOAdPnxYJUrkrDa5atUqzZw5M0d/RAIDA3X16lU5ODjksIc5k1Xfrl69qpIlednnt4SEBE2cOFGS0n17+Morr2jMmDEF0KuCUZjfK0VBr1691KNHDzk5ORXI8Vu2bKlPP/003fK3335be/bsUZs2bdKtmz17ts1ZDfb29tk6VlJSkt555x0NGzYs29vcasOGDWrSpInGjx9vs/y///2vLl26pEaNGun06dOZbu/n56cuXbpo+vTpeuSRR3LVB6A4ISMhr5GR/lGY3ytFARkpZzLKSO+//77++9//Kjw8XBEREUpOTtb//d//qW3btvrkk0/Ut29fsy0ZKX/wVwf5/iGWnJys1NRUOTo65qgKnh8K+vhWuHbtmhwdHTMM0FeuXFGpUqUKoFf/KFmyJIE3E4XpvVJY2Nvb5zp45IXKlSurcuXKNsuuXr2qZ599Vq1bt5afn1+6bbp3765y5crl+FgrVqzQ2bNn9dhjj+W6v7GxsQoODk63fNOmTebZUbf7CdBjjz2mRx99VH/88Ue6xw7cbchIxQsZqegqTO+VwoKMlDMZZaSHHnpIJ06csOnTM888o3r16mncuHE2BSmJjJQf+MleMbZ582Y1bNhQzs7OqlKlij744IMM2936m+KkpCRNnDhR1apVk7Ozs8qWLavmzZtr7dq1km78JnfmzJmSZHPKpfTP77qnT5+uGTNmqEqVKnJyctLBgwez/M33H3/8obCwMJUqVUrly5fXq6++KsMwzPUbN26UnZ1dutObb91nVn1LW3brtzC7d+/Www8/LA8PD7m5ualNmzb66aefbNqknZK6ZcsWDR8+XN7e3ipVqpS6du2qs2fPZvwEZOGvv/5Sv379VL58eTk5OSkoKEiDBg1SYmKizZg8+uijKlOmjFxdXdWkSROtXLnSZj9p47Jw4UK98soruueee+Tq6qr4+Hhz7omjR4+qQ4cOcnd315NPPilJSk1N1YwZM3TvvffK2dlZvr6+evrpp3XhwoUs+52YmKhx48YpJCREnp6eKlWqlFq0aKHvv//ebHPs2DF5e3tLkiZOnGg+B2njntH8CMnJyZo0aZL5eqlUqZJeeuklXb9+3aZdpUqV1KlTJ23evFmNGjWSs7OzKleurP/7v//L2ROgG6+FIUOGaNGiRQoODpaLi4uaNm2qffv2SZI++OADVa1aVc7OzmrVqlW63+f/+OOP5k+gnJycFBAQoGHDhunq1atmm7x6r8TGxsrb21utWrWyeV/8/vvvKlWqlB5//PFsP+601/IPP/ygp59+WmXLlpWHh4d69+6d7vnfsWOHwsLCVK5cObm4uCgoKEhPPfWUuf7mxzBz5kxVrlxZrq6uateunU6ePCnDMDRp0iRVqFBBLi4u6tKli86fP5/tvt7c35vH3zAMTZ48WRUqVJCrq6seeughHThwIN22t/ssy61vv/1Wly5dMt9PtzIMQ/Hx8TbPVXYsXbpUlSpVUpUqVTJcV7t2bTk7O6t27dpasmSJzfq0z4Lo6GitXLnSfK2ljVtgYGC25yUJDQ2VJC1btixH/QeKEjISGYmMlDkyEhkpt4paRrr33nvTFcicnJzUoUMH/fnnn7p06ZLNOjJS3qMEX0zt27dP7dq1k7e3tyZMmKDk5GSNHz9evr6+t912woQJmjp1qvr3769GjRopPj5eO3bs0K5du9S2bVs9/fTTOnXqlNauXZvhaZqSNHfuXF27dk0DBw6Uk5OTypQpo9TU1AzbpqSkqH379mrSpImmTZumyMhIjR8/XsnJyXr11Vdz9Liz07ebHThwQC1atJCHh4dGjRolBwcHffDBB2rVqpU2bdqUbuK6oUOHqnTp0ho/fryOHTumGTNmaMiQIfryyy+z3cdTp06pUaNGunjxogYOHKiaNWvqr7/+0uLFi5WQkCBHR0edOXNGzZo1U0JCgp577jmVLVtW8+fP1yOPPKLFixera9euNvucNGmSHB0dNWLECF2/fl2Ojo6SboSYsLAwNW/eXNOnT5erq6s5TvPmzVPfvn313HPPKTo6Wu+//752796tLVu2ZHoadHx8vD7++GP17NlTAwYM0KVLl/S///1PYWFh2r59u+rVqydvb2/Nnj1bgwYNUteuXfWvf/1LknTfffdlOib9+/fX/Pnz1b17d7344ov6+eefNXXqVB06dCjdH5Xff/9d3bt3V79+/RQREaFPPvlEffr0UUhIiO69995sPw/SjcC0fPlyDR48WJI0depUderUSaNGjdKsWbP07LPP6sKFC5o2bZqeeuopbdiwwdx20aJFSkhI0KBBg1S2bFlt375d7733nv78808tWrTIHOe8eK/4+PiYcwC99957eu6555Samqo+ffrI3d1ds2bNytHjlqQhQ4bIy8tLEyZM0OHDhzV79mwdP37c/KMdGxtrfoaMGTNGXl5eOnbsmL755pt0+1qwYIESExM1dOhQnT9/XtOmTdNjjz2m1q1ba+PGjRo9erR+//13vffeexoxYoQ++eSTHPf3ZuPGjdPkyZPVoUMHdejQQbt27VK7du1s/mdFuv1nWW4tWLBALi4u5mv7VpUrV9bly5dVqlQphYeH680338zWZ+/WrVtVv379dMvXrFmjbt26KTg4WFOnTtW5c+fUt29fVahQwWxTq1Ytffrppxo2bJgqVKigF198UZLM//HJCU9PT1WpUkVbtmzRsGHDcrw9UNiRkchIEhnpdshIZKTcKC4ZKSYmRq6urubnQhoyUj4wUCyFh4cbzs7OxvHjx81lBw8eNOzt7Y1bn/bAwEAjIiLCvF+3bl2jY8eOWe5/8ODB6fZjGIYRHR1tSDI8PDyM2NjYDNfNnTvXXBYREWFIMoYOHWouS01NNTp27Gg4OjoaZ8+eNQzDML7//ntDkvH999/fdp+Z9c0wDEOSMX78ePN+eHi44ejoaBw9etRcdurUKcPd3d1o2bKluWzu3LmGJCM0NNRITU01lw8bNsywt7c3Ll68mOHxMtK7d2+jRIkSxi+//JJuXdq+X3jhBUOS8eOPP5rrLl26ZAQFBRmVKlUyUlJSDMP4Z1wqV65sJCQk2OwrbWzHjBljs/zHH380JBkLFiywWR4ZGZlu+YMPPmg8+OCD5v3k5GTj+vXrNttduHDB8PX1NZ566ilz2dmzZ9ONdZrx48fbPD9RUVGGJKN///427UaMGGFIMjZs2GAuCwwMNCQZP/zwg7ksNjbWcHJyMl588cV0x8qKJMPJycmIjo42l33wwQeGJMPPz8+Ij483l48dO9aQZNP21vE2DMOYOnWqYWdnZ/O+y6v3imEYRs+ePQ1XV1fjt99+M9544w1DkrF06dIcPe6013JISIiRmJhoLp82bZohyVi2bJlhGIaxZMkSQ1KGr9Nb++nt7W3zHkgbr7p16xpJSUk2/Xd0dDSuXbuW4/6mjX1sbKzh6OhodOzY0ea9+NJLLxmScvxZllPnzp0zHB0djcceeyzduhkzZhhDhgwxFixYYCxevNh4/vnnjZIlSxrVqlUz4uListxvUlKSYWdnl+HruF69eoa/v7/NGK9Zs8aQZAQGBtq0DQwMvO1jLlWqlM04ZaRdu3ZGrVq1smwDFFVkJDISGSlrZCQyUm4Uh4xkGIZx5MgRw9nZ2ejVq1eG68lIeYuf7BVDKSkp+u677xQeHq6KFSuay2vVqqWwsLDbbu/l5aUDBw7oyJEjue5Dt27dcvTN/JAhQ8x/p50mnJiYmOEVDvJKSkqK1qxZo/DwcJvfAPv7++uJJ57Q5s2bFR8fb7PNwIEDbU6lbtGihVJSUnT8+PFsHTM1NVVLly5V586d1aBBg3Tr0/a9atUqNWrUSM2bNzfXubm5aeDAgTp27JgOHjxos11ERIRcXFwyPOagQYNs7i9atEienp5q27at/v77b/MWEhIiNzc3m1PLb2Vvb29+s5iamqrz588rOTlZDRo00K5du7I1BrdatWqVJGn48OE2y9O+vbj1FPzg4GC1aNHCvO/t7a0aNWrojz/+yPGx27RpY3NJ2LRve7t16yZ3d/d0y28+xs3jfeXKFf39999q1qyZDMPQ7t27s92HnLxX3n//fXl6eqp79+76z3/+o169eqlLly7ZPtbNBg4caPMt76BBg1SyZEnz+fDy8pJ04zf7SUlJWe7r0Ucflaenp3k/bbz+/e9/28yF0bhxYyUmJuqvv/7KVZ8lad26deY3jTe/FzO6dG9efJbdavHixUpMTMzwVPTnn39e7733np544gl169ZNM2bM0Pz583XkyJHbfkN7/vx5GYah0qVL2yw/ffq0oqKiFBERYTPGbdu2zXCuqLxSunRp/f333/m2f6CgkJGyh4xERiIjkZFyqjhkpISEBD366KNycXHR66+/nmEbMlLeoiBVDJ09e1ZXr15VtWrV0q2rUaPGbbd/9dVXdfHiRVWvXl116tTRyJEjtXfv3hz1ISgoKNttS5QokW5SuOrVq0tSut+k56WzZ88qISEhwzGpVauWUlNTdfLkSZvlN4dXSeYH4+3mFbj5mPHx8apdu3aW7Y4fP55pv9LW3yyz8S5ZsqTNKauSdOTIEcXFxcnHx0fe3t42t8uXLys2NjbLvs2fP1/33Xef+Xtzb29vrVy5UnFxcVlul5njx4+rRIkSqlq1qs1yPz8/eXl5pXustz4H0o3nIbvPQVb7SvtjFhAQkOHym49x4sQJ9enTR2XKlJGbm5u8vb314IMPSlKOxiIn75UyZcro3Xff1d69e+Xp6al3330329ve6tbPBzc3N/n7+5vvuQcffFDdunXTxIkTVa5cOXXp0kVz585NN2eFdGfjmFNpr4db++/t7Z0uqOTFZ9mtFixYoDJlyujhhx/OVvsnnnhCfn5+2f4fR+OWORUye7xS9j7Pc8swjGzPOQUUJWSk7CEjkZHISP8gI2VPUc9IKSkp6tGjhw4ePKjFixerfPnymfaDjJR3mEMK6bRs2VJHjx7VsmXLtGbNGn388cd6++23NWfOHPXv3z9b+8jsm6jcyuxNn5KSkqfHuZ3MrmRx6wek1TIbbycnp3RXkklNTZWPj48WLFiQ4TZZfRP12WefqU+fPgoPD9fIkSPl4+Mje3t7TZ06VUePHs39A1Dmz/Gt8vI5yGxftztGSkqK2rZtq/Pnz2v06NGqWbOmSpUqpb/++kt9+vTJdC6QjOT0vfLdd99JuhFY/vzzT/NburxmZ2enxYsX66efftK3336r7777Tk899ZTefPNN/fTTT9m6ZG9Bv1/y4rPsZidOnNCPP/6Y7pvT2wkICLjtRKVlypSRnZ3dHQXRvHThwoVcXQUHKO7ISJkr6M/8zJCRyEh5jYyUXnHISAMGDNCKFSu0YMECtW7dOtN2ZKS8xRlSxZC3t7dcXFwyPAXz8OHD2dpHmTJl1LdvX33xxRc6efKk7rvvPpsrr+RlVTg1NTXdqcS//fabJJmnCqdV9S9evGjTLqPTwLPbN29vb7m6umY4Jr/++qtKlCiR7tuLO+Xt7S0PDw/t378/y3aBgYGZ9ittfW5VqVJF586d0wMPPKDQ0NB0t7p162a67eLFi1W5cmV988036tWrl8LCwhQaGqpr167ZtMvJ6yMwMFCpqanpXq9nzpzRxYsX7+ix5pd9+/bpt99+05tvvqnRo0erS5cuCg0NzfCblLx8r0RGRurjjz/WqFGj5O3trYiICCUnJ+dqX7eO9+XLl3X69Gmb0/MlqUmTJpoyZYp27NihBQsW6MCBA1q4cGFuH8IdS3s93Nr/s2fPZhhUbvdZlhNffPGFDMPI9MoxGTEMw+aqSpkpWbKkqlSpoujoaJvlmT1eKfuf57kRHR1tnm0AFCdkJDJSVshId46MREbKrsKUkUaOHKm5c+fq7bffVs+ePbNsS0bKWxSkiiF7e3uFhYVp6dKlOnHihLn80KFD5jcHWTl37pzNfTc3N1WtWtXmNNRSpUpJSh9+cuv99983/20Yht5//305ODioTZs2km584Njb2+uHH36w2S6j3xxnt2/29vZq166dli1bZnPa+5kzZ/T555+refPm8vDwyOUjyliJEiUUHh6ub7/9Vjt27Ei3Pu1bkQ4dOmj79u3atm2bue7KlSv68MMPValSpTuaO+axxx5TSkqKJk2alG5dcnJyluOW9m3Ozd/e/Pzzzzb9lGRekSI7r48OHTpIkmbMmGGz/K233pIkdezY8bb7sFpG42AYht555510bfPqvXLx4kXzSiivvfaaPv74Y+3atUuvvfZarvb34Ycf2sx7MHv2bCUnJ5unWV+4cCHdt3T16tWTpAxPSbdKaGioHBwc9N5779n079bXj5S9z7Kc+Pzzz1WxYkWbeUtultHlzWfPnq2zZ8+qffv2t91/06ZN030u+Pv7q169epo/f77NzxzWrl2bbp6UvBIXF6ejR4+qWbNm+bJ/oCCRkchIWSEj3TkyEhkpI4U5I73xxhuaPn26XnrpJT3//PNZtiUj5T1+sldMTZw4UZGRkWrRooWeffZZJScn67333tO99957298HBwcHq1WrVgoJCVGZMmW0Y8cOLV682GZSzZCQEEnSc889p7CwMNnb26tHjx656quzs7MiIyMVERGhxo0ba/Xq1Vq5cqVeeukls2Lu6elpXs7Vzs5OVapU0YoVKzL8LX9O+jZ58mStXbtWzZs317PPPquSJUvqgw8+0PXr1zVt2rRcPZ7bee2117RmzRo9+OCDGjhwoGrVqqXTp09r0aJF2rx5s7y8vDRmzBh98cUXevjhh/Xcc8+pTJkymj9/vqKjo/X111+nO8U8Jx588EE9/fTTmjp1qqKiotSuXTs5ODjoyJEjWrRokd555x117949w207deqkb775Rl27dlXHjh0VHR2tOXPmKDg4WJcvXzbbubi4KDg4WF9++aWqV6+uMmXKqHbt2hnOC1G3bl1FREToww8/1MWLF/Xggw9q+/btmj9/vsLDw/XQQw/l+rHml5o1a6pKlSoaMWKE/vrrL3l4eOjrr7/O8NunvHqvPP/88zp37pzWrVsne3t7tW/fXv3799fkyZPVpUuXLL+1zUhiYqLatGmjxx57TIcPH9asWbPUvHlzPfLII5JuzIMxa9Ysde3aVVWqVNGlS5f00UcfycPDwwzIBcHb21sjRowwLz/doUMH7d69W6tXr053+nR2Psuya//+/dq7d6/GjBmT6Te6gYGBevzxx1WnTh05Oztr8+bNWrhwoerVq6enn376tsfo0qWLPv30U/3222/mHDHSjUttd+zYUc2bN9dTTz2l8+fPm5/nN7/vsvLtt99qz549kqSkpCTt3btXkydPliQ98sgjNpccX7dunQzDyPVksEBhR0YiI2WGjHTnyEhkpIwU1oy0ZMkSjRo1StWqVVOtWrX02Wef2axv27atfH19zftkpHyQvxfxQ0HatGmTERISYjg6OhqVK1c25syZk+5ysoaR/pLGkydPNho1amR4eXkZLi4uRs2aNY0pU6bYXP40OTnZGDp0qOHt7W3Y2dmZ+0y7xOkbb7yRrj+ZXdK4VKlSxtGjR4127doZrq6uhq+vrzF+/Hjzsr1pzp49a3Tr1s1wdXU1SpcubTz99NPG/v370+0zs74ZRvpLGhuGYezatcsICwsz3NzcDFdXV+Ohhx4ytm7datMm7bKqt17eNbNLLd/O8ePHjd69exve3t6Gk5OTUblyZWPw4ME2lws+evSo0b17d8PLy8twdnY2GjVqZKxYsSLD4y9atCjdMdLGNjMffvihERISYri4uBju7u5GnTp1jFGjRhmnTp0y29x6SePU1FTjtddeMwIDAw0nJyfj/vvvN1asWGFERESku7Tq1q1bzdffzeOe0WswKSnJmDhxohEUFGQ4ODgYAQEBxtixY9Nd+jazy7Xe2s/skGQMHjzYZllmr9+MxvngwYNGaGio4ebmZpQrV84YMGCAsWfPnmy/HnPyXlm2bJkhyXjzzTdt2sXHxxuBgYFG3bp1bd6fWUl7LW/atMkYOHCgUbp0acPNzc148sknjXPnzpntdu3aZfTs2dOoWLGi4eTkZPj4+BidOnUyduzYkavxuvnYWV0mObP+3nw56ZSUFGPixImGv7+/4eLiYrRq1crYv39/rj7LsmvMmDGGJGPv3r2Ztunfv78RHBxsuLu7Gw4ODkbVqlWN0aNH21weOyvXr183ypUrZ0yaNCnduq+//tqoVauW4eTkZAQHBxvffPNNhu+7zN4jaZc4z+h266WzH3/8caN58+bZ6jNQVJGRyEhkpMyRkchIOVGUM1Laey6z262fX2SkvGdnGAU80yAAwDLz5s1T37599csvv2R4WW0UrEmTJmnu3Lk6cuRIphOe5qeYmBgFBQVp4cKFfPsHALirkJEKNzJS8cQcUgAAFBLDhg3T5cuXC2xS1BkzZqhOnToELQAAUKiQkYon5pAC8sjly5dv+1tlb2/vAqno301iYmKyXO/i4iJPT0+LemOdq1ev2kzomJEyZcpY1JvbK+j3S2Ji4m0vM+zp6Znnl2e/HTc3twznfbHK66+/XmDHBlB8FfRnPm4gI2WOjPQPMlLGyEj5g4IUkEemT5+uiRMnZtkmOjo63SVjkbf8/f2zXB8REaF58+ZZ0xkLffnll+rbt2+Wbb7//nuLenN7Bf1+2bp1620ng507d6769OmTL8cHgLtJQX/m4wYyUubISP8gI8FKzCEF5JE//vhDf/zxR5ZtmjdvLmdnZ4t6dHdat25dluvLly9/R5eELqxOnz6tAwcOZNkmJCREpUuXtqhHWSvo98uFCxe0c+fOLNvce++9tw3vAIDbK+jPfNxARsocGekfZCRYiYIUAAAAAAAALMWk5gAAAAAAALDUXT2HVGpqqk6dOiV3d3fZ2dkVdHcAAIAFDMPQpUuXVL58eZUowXdzGSEjAQBw97E6I93VBalTp04pICCgoLsBAAAKwMmTJ1WhQoWC7kahREYCAODuZVVGuqsLUu7u7pJuDLaHh0cB9wYAAFghPj5eAQEBZg5AemQkAADuPlZnpLu6IJV2CrqHhwdhCwCAuww/RcscGQkAgLuXVRmJiRMAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjqrp5DCgCArKSkpCgpKamgu4EccnBwkL29fUF3AwCAYouMVDQVtoxEQQoAgFsYhqGYmBhdvHixoLuCXPLy8pKfnx8TlwMAkIfISEVfYcpIFKQAALhFWtDy8fGRq6trofiDjewxDEMJCQmKjY2VJPn7+xdwjwAAKD7ISEVXYcxIFKQAALhJSkqKGbTKli1b0N1BLri4uEiSYmNj5ePjU6hOTQcAoKgiIxV9hS0jMak5AAA3SZsPwdXVtYB7gjuR9vwxvwUAAHmDjFQ8FKaMREEKAIAMcAp60cbzBwBA/uBvbNFWmJ4/ClIAAAAAAACwFAUpAAAAAAAAWIpJzQEAyKakyM2WHcuhffNst73dqdfjx4/XhAkT7rBHuWNnZ6clS5YoPDw81/v48MMP9fnnn2vXrl26dOmSLly4IC8vrzzrIwAAuDNWZiSJnJTm/PnzGj9+vNasWaMTJ07I29tb4eHhmjRpkjw9PfO2s/mAglQ+yuhNmZM3DgAA2XH69Gnz319++aXGjRunw4cPm8vc3NxytL/ExEQ5OjrmWf/uVEJCgtq3b6/27dtr7NixBd0d5AEyEgDAKsU5J506dUqnTp3S9OnTFRwcrOPHj+uZZ57RqVOntHjx4oLu3m3xkz0AAIo4Pz8/8+bp6Sk7Ozvz/pUrV/Tkk0/K19dXbm5uatiwodatW2ezfaVKlTRp0iT17t1bHh4eGjhwoCTpo48+UkBAgFxdXdW1a1e99dZb6c5MWrZsmerXry9nZ2dVrlxZEydOVHJysrlfSeratavs7OzM+3v27NFDDz0kd3d3eXh4KCQkRDt27Mj08b3wwgsaM2aMmjRpkjcDBgAA7hrFOSfVrl1bX3/9tTp37qwqVaqodevWmjJlir799lvzOIUZBSkAAIqxy5cvq0OHDlq/fr12796t9u3bq3Pnzjpx4oRNu+nTp6tu3bravXu3/vOf/2jLli165pln9PzzzysqKkpt27bVlClTbLb58ccf1bt3bz3//PM6ePCgPvjgA82bN89s98svv0iS5s6dq9OnT5v3n3zySVWoUEG//PKLdu7cqTFjxsjBwcGC0QAAAPhHccxJcXFx8vDwUMmShf8HcYW/hwAAINfq1q2runXrmvcnTZqkJUuWaPny5RoyZIi5vHXr1nrxxRfN+y+//LIefvhhjRgxQpJUvXp1bd26VStWrDDbTJw4UWPGjFFERIQkqXLlypo0aZJGjRql8ePHy9vbW5Lk5eUlPz8/c7sTJ05o5MiRqlmzpiSpWrVq+fDIAQAAslbcctLff/+tSZMmmWdxFXacIQUAQDF2+fJljRgxQrVq1ZKXl5fc3Nx06NChdN/8NWjQwOb+4cOH1ahRI5tlt97fs2ePXn31Vbm5uZm3AQMG6PTp00pISMi0T8OHD1f//v0VGhqq119/XUePHr3DRwkAAJBzxSknxcfHq2PHjgoODi6wSdpzioIUAADF2IgRI7RkyRK99tpr+vHHHxUVFaU6deooMTHRpl2pUqVyvO/Lly9r4sSJioqKMm/79u3TkSNH5OzsnOl2EyZM0IEDB9SxY0dt2LBBwcHBWrJkSY6PDwAAcCeKS066dOmS2rdvL3d3dy1ZsqTITIXAT/YAACjGtmzZoj59+qhr166SboSjY8eO3Xa7GjVqmHMZpLn1fv369XX48GFVrVo10/04ODgoJSUl3fLq1aurevXqGjZsmHr27Km5c+eafQQAALBCcchJ8fHxCgsLk5OTk5YvX55lsauwoSAFAEAxVq1aNX3zzTfq3Lmz7Ozs9J///Eepqam33W7o0KFq2bKl3nrrLXXu3FkbNmzQ6tWrZWdnZ7YZN26cOnXqpIoVK6p79+4qUaKE9uzZo/3792vy5MmSblxBZv369XrggQfk5OQkZ2dnjRw5Ut27d1dQUJD+/PNP/fLLL+rWrVumfYmJiVFMTIx+//13SdK+ffvk7u6uihUrqkyZMnc4QgAA4G5V1HNSfHy82rVrp4SEBH322WeKj49XfHy8JMnb21v29vZ5MEr5h5/sAQBQjL311lsqXbq0mjVrps6dOyssLEz169e/7XYPPPCA5syZo7feekt169ZVZGSkhg0bZvOtW1hYmFasWKE1a9aoYcOGatKkid5++20FBgaabd58802tXbtWAQEBuv/++2Vvb69z586pd+/eql69uh577DE9/PDDmjhxYqZ9mTNnju6//34NGDBAktSyZUvdf//9Wr58+R2MDAAAuNsV9Zy0a9cu/fzzz9q3b5+qVq0qf39/83by5Mk7H6B8ZmcYhlHQnSgo8fHx8vT0NC+LmNeSIjenW+bQvnmeHwcAkHeuXbum6OhoBQUFFalTnq0wYMAA/frrr/rxxx8Luiu3ldXzmN9//4sDMhIA4FZkpKwVlZxUmDISP9kDAAAZmj59utq2batSpUpp9erVmj9/vmbNmlXQ3QIAAChw5KQ7R0EKAABkaPv27Zo2bZouXbqkypUr691331X//v0LulsAAAAFjpx05yhIAQCADH311VcF3QUAAIBCiZx055jUHAAAAAAAAJaiIAUAAAAAAABL5aggNXXqVDVs2FDu7u7y8fFReHi4Dh8+bNOmVatWsrOzs7k988wzNm1OnDihjh07ytXVVT4+Pho5cqSSk5Nt2mzcuFH169eXk5OTqlatqnnz5qXrz8yZM1WpUiU5OzurcePG2r59e04eDgAAQJ4gIwEAAORMjgpSmzZt0uDBg/XTTz9p7dq1SkpKUrt27XTlyhWbdgMGDNDp06fN27Rp08x1KSkp6tixoxITE7V161bNnz9f8+bN07hx48w20dHR6tixox566CFFRUXphRdeUP/+/fXdd9+Zbb788ksNHz5c48eP165du1S3bl2FhYUpNjY2t2MBAACQK2QkAACAnLEzDMPI7cZnz56Vj4+PNm3apJYtW0q68e1fvXr1NGPGjAy3Wb16tTp16qRTp07J19dXkjRnzhyNHj1aZ8+elaOjo0aPHq2VK1dq//795nY9evTQxYsXFRkZKUlq3LixGjZsqPfff1+SlJqaqoCAAA0dOlRjxozJVv/j4+Pl6empuLg4eXh45HYYMpUUuTndMof2zfP8OACAvHPt2jVFR0crKChIzs7OBd0d5FJWz2N+//2XyEi3Q0YCgKKHjFQ8FHRGutkdzSEVFxcnSSpTpozN8gULFqhcuXKqXbu2xo4dq4SEBHPdtm3bVKdOHTNoSVJYWJji4+N14MABs01oaKjNPsPCwrRt2zZJUmJionbu3GnTpkSJEgoNDTXbAAAAFBQyEgAAQNZyXZBKTU3VCy+8oAceeEC1a9c2lz/xxBP67LPP9P3332vs2LH69NNP9e9//9tcHxMTYxO0JJn3Y2JismwTHx+vq1ev6u+//1ZKSkqGbdL2kZHr168rPj7e5gYAQHHQp08fc14iBwcH+fr6qm3btvrkk0+Umppa0N27IwcOHFC3bt1UqVIl2dnZZXqGUWFBRgIAoHApzjnpo48+UosWLVS6dGmVLl1aoaGhRWbuyJK53XDw4MHav3+/Nm+2PeV64MCB5r/r1Kkjf39/tWnTRkePHlWVKlVy39M8MHXqVE2cOLFA+wAAKLqO7vjAsmNVafB0jrdp37695s6dq5SUFJ05c0aRkZF6/vnntXjxYi1fvlwlS+b6z36BSkhIUOXKlfXoo49q2LBhBd2d2yIjAQDuNlZmJImcdLONGzeqZ8+eatasmZydnfXf//5X7dq104EDB3TPPfcUdPeylKszpIYMGaIVK1bo+++/V4UKFbJs27hxY0nS77//Lkny8/PTmTNnbNqk3ffz88uyjYeHh1xcXFSuXDnZ29tn2CZtHxkZO3as4uLizNvJkyez8WgBACganJyc5Ofnp3vuuUf169fXSy+9pGXLlmn16tU2V2K7ePGi+vfvL29vb3l4eKh169bas2ePzb6+/fZbNWzYUM7OzipXrpy6du1qrrtw4YJ69+6t0qVLy9XVVQ8//LCOHDkiSbpy5Yo8PDy0ePFim/0tXbpUpUqV0qVLl5SYmKghQ4bI399fzs7OCgwM1NSpUzN9XA0bNtQbb7yhHj16yMnJKQ9GKv+QkQAAKJyKa05asGCBnn32WdWrV081a9bUxx9/rNTUVK1fvz4PRi1/5aggZRiGhgwZoiVLlmjDhg0KCgq67TZRUVGSJH9/f0lS06ZNtW/fPpsrvaxdu1YeHh4KDg4229w6eGvXrlXTpk0lSY6OjgoJCbFpkzbgaW0y4uTkJA8PD5sbAADFWevWrVW3bl1988035rJHH31UsbGxWr16tXbu3Kn69eurTZs2On/+vCRp5cqV6tq1qzp06KDdu3dr/fr1atSokbl9nz59tGPHDi1fvlzbtm2TYRjq0KGDkpKSVKpUKfXo0UNz58616cfcuXPVvXt3ubu7691339Xy5cv11Vdf6fDhw1qwYIEqVapkyXjkFzISAABFT3HMSQkJCUpKSko3j2VhlKNz0gYPHqzPP/9cy5Ytk7u7uzkXgaenp1xcXHT06FF9/vnn6tChg8qWLau9e/dq2LBhatmype677z5JUrt27RQcHKxevXpp2rRpiomJ0SuvvKLBgweb33o+88wzev/99zVq1Cg99dRT2rBhg7766iutXLnS7Mvw4cMVERGhBg0aqFGjRpoxY4auXLmivn375tXY3LFjF1enW1ZNXEEGAGCtmjVrau/evZKkzZs3a/v27YqNjTX/7k6fPl1Lly7V4sWLNXDgQE2ZMkU9evSw+QlX3bp1JUlHjhzR8uXLtWXLFjVr1kzSjW/mAgICtHTpUj366KPq37+/mjVrptOnT8vf31+xsbFatWqV1q1bJ0k6ceKEqlWrpubNm8vOzk6BgYFWDke+ICPlDBkJAFBYFLecNHr0aJUvXz7dRVAKoxydITV79mzFxcWpVatW8vf3N29ffvmlpBvfyq1bt07t2rVTzZo19eKLL6pbt2769ttvzX3Y29trxYoVsre3V9OmTfXvf/9bvXv31quvvmq2CQoK0sqVK7V27VrVrVtXb775pj7++GOFhYWZbR5//HFNnz5d48aNU7169RQVFaXIyMh0k3gCAHC3MwxDdnZ2kqQ9e/bo8uXLKlu2rNzc3MxbdHS0jh49KunGmTtt2rTJcF+HDh1SyZIlzZ+bSVLZsmVVo0YNHTp0SJLUqFEj3XvvvZo/f74k6bPPPlNgYKBatmwp6cY3h1FRUapRo4aee+45rVmzJt8eu1XISMD/s3fncVHV+x/H3wOyuDDgwprkvpa54IapaRKYZlFaat5Sc2mBFs1csuuSlV2yPZesm/a7N6+mN83UKMTUTNNcKPdrhqkpaBpMrmzn94cPTo6AAsJhez0fj3kk53zmnO98YWY+vefMOQBQNpWnPunVV1/VwoULtXTpUnl6ehZ8MixWoCOkDMO46vrg4GCtW7fumtupU6eOVq1addWabt26aceOHVetiY6OVnR09DX3BwBARbZ3717zK2RnzpxRYGCg1q5dm6POx8dHklS5cuXr3ufw4cM1c+ZMjR8/XvPmzdPQoUPNZq9NmzZKTEzUl19+qdWrV+uBBx5QWFhYjvMplCX0SAAAlE3lpU+aMWOGXn31Va1evdo8+rq0K9RJzQEAQNmwZs0a7dy5U3379pV0qclJSkpSpUqV1LBhQ6dbrVq1JEm33HJLnifCbNasmTIyMrR582Zz2alTp7R//37zPEeS9Le//U2//vqr3nnnHe3Zs0eDBw922o7dblf//v31wQcfaNGiRfrvf/9rnpsBAADACuWlT4qJidG0adMUGxurtm3bFno+rFY2r2sIAAByuHjxopKSkpwuZzx9+nTdddddevjhhyVJYWFhCg0NVWRkpGJiYtS4cWMdO3bMPEFn27ZtNXnyZPXo0UMNGjTQgAEDlJGRoVWrVmncuHFq1KiR7rnnHo0YMULvv/++vLy8NH78eN1www265557zLFUr15d9913n5577jmFh4c7XXHujTfeUGBgoFq3bi0XFxctXrxYAQEB5iePV0pLS9OePXvMf//2229KSEhQtWrV1LBhw+KbUAAAUG6U1z7pH//4hyZNmqQFCxaobt265nkss79uWJpxhBQAAOVEbGysAgMDVbduXfXs2VPffPON3nnnHX3++edydXWVJNlsNq1atUpdu3bV0KFD1bhxYw0YMEC//vqreY6hbt26afHixVq+fLlatWql22+/XVu2bDH3M2/ePIWEhOiuu+5SaGioDMPQqlWr5Obm5jSeYcOGKS0tTY888ojTci8vL8XExKht27Zq166dDh06pFWrVsnFJfe25NixY2rdurVat26t48ePa8aMGWrdurWGDx9elNMHAADKsfLaJ82ePVtpaWnq16+f03ksZ8yYUZTTVyxsxrVOelCOORwOeXt7KzU1tVgub3xg4cQcyxoNeLnI9wMAKDoXLlxQYmKi6tWrVyZOBlma/etf/9KoUaN07Ngxubu7W7rvq/0ei/v9vzygRwIAXIkeqWiVVJ9UmnokvrIHAACK1Llz53T8+HG9+uqrevTRRy0PowAAAEor+qS/8JU9AABQpGJiYtS0aVMFBARowoQJJT0cAACAUoM+6S8EUgAAoEhNmTJF6enpio+PL/Un0wQAALASfdJfCKQAAAAAAABgKQIpAAAAAAAAWIpACgCAXFTgi9CWC/z+AAAoHrzHlm2l6fdHIAUAwGXc3NwkXboCCsqu7N9f9u8TAABcH3qk8qE09UiVSnoAAACUJq6urvLx8dGJEyckSVWqVJHNZivhUSG/DMPQuXPndOLECfn4+MjV1bWkhwQAQLlAj1S2lcYeiUAKAIArBAQESJLZcKHs8fHxMX+PAACgaNAjlX2lqUcikAIA4Ao2m02BgYHy8/NTenp6SQ8HBeTm5lYqPvUDAKC8oUcq20pbj0QgBQBAHlxdXUvVmzYAAEBpQI+EosBJzQEAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUKFEhNnz5d7dq1k5eXl/z8/BQZGan9+/c71Vy4cEFRUVGqWbOmqlWrpr59+yo5Odmp5vDhw+rdu7eqVKkiPz8/Pffcc8rIyHCqWbt2rdq0aSMPDw81bNhQ8+fPzzGemTNnqm7duvL09FSHDh20ZcuWgjwcAACAIkGPBAAAUDAFCqTWrVunqKgoff/994qLi1N6errCw8N19uxZs2bUqFH64osvtHjxYq1bt07Hjh3TfffdZ67PzMxU7969lZaWpo0bN+rjjz/W/PnzNWnSJLMmMTFRvXv3Vvfu3ZWQkKBnnnlGw4cP11dffWXWLFq0SKNHj9bkyZO1fft2tWzZUhERETpx4sT1zAcAAECB0SMBAAAUjM0wDKOwdz558qT8/Py0bt06de3aVampqfL19dWCBQvUr18/SdK+ffvUrFkzbdq0SR07dtSXX36pu+66S8eOHZO/v78kac6cORo3bpxOnjwpd3d3jRs3TitXrtSuXbvMfQ0YMEApKSmKjY2VJHXo0EHt2rXTe++9J0nKyspScHCwnnzySY0fPz5f43c4HPL29lZqaqrsdnthpyFPBxZOzLGs0YCXi3w/AAAg/4r7/V+iR7oWeiQAAEofK3qky13XOaRSU1MlSTVq1JAkbdu2Tenp6QoLCzNrmjZtqhtvvFGbNm2SJG3atEktWrQwGy1JioiIkMPh0O7du82ay7eRXZO9jbS0NG3bts2pxsXFRWFhYWZNbi5evCiHw+F0AwAAKGr0SAAAAFdX6EAqKytLzzzzjG699VbdfPPNkqSkpCS5u7vLx8fHqdbf319JSUlmzeWNVvb67HVXq3E4HDp//rx+//13ZWZm5lqTvY3cTJ8+Xd7e3uYtODi44A8cAADgKuiRAAAArq3QgVRUVJR27dqlhQsXFuV4itWECROUmppq3o4cOVLSQwIAAOUMPRIAAMC1VSrMnaKjo7VixQqtX79etWvXNpcHBAQoLS1NKSkpTp8AJicnKyAgwKy58kov2VeYubzmyqvOJCcny263q3LlynJ1dZWrq2uuNdnbyI2Hh4c8PDwK/oABAADygR4JAAAgfwp0hJRhGIqOjtbSpUu1Zs0a1atXz2l9SEiI3NzcFB8fby7bv3+/Dh8+rNDQUElSaGiodu7c6XSll7i4ONntdjVv3tysuXwb2TXZ23B3d1dISIhTTVZWluLj480aAAAAq9AjAQAAFEyBjpCKiorSggUL9Pnnn8vLy8s8F4G3t7cqV64sb29vDRs2TKNHj1aNGjVkt9v15JNPKjQ0VB07dpQkhYeHq3nz5nrooYcUExOjpKQkvfDCC4qKijI/mXvsscf03nvvaezYsXrkkUe0Zs0affrpp1q5cqU5ltGjR2vw4MFq27at2rdvr7feektnz57V0KFDi2puAAAA8oUeCQAAoGAKFEjNnj1bktStWzen5fPmzdOQIUMkSW+++aZcXFzUt29fXbx4UREREZo1a5ZZ6+rqqhUrVujxxx9XaGioqlatqsGDB+vFF180a+rVq6eVK1dq1KhRevvtt1W7dm19+OGHioiIMGv69++vkydPatKkSUpKSlKrVq0UGxub4ySeAAAAxY0eCQAAoGBshmEYJT2IkuJwOOTt7a3U1FTZ7fYi3/6BhRNzLGs04OUi3w8AAMi/4n7/Lw/okQAAqHis7pEKfZU9AAAAAAAAoDAIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGCpAgdS69evV58+fRQUFCSbzaZly5Y5rR8yZIhsNpvTrWfPnk41p0+f1qBBg2S32+Xj46Nhw4bpzJkzTjU//fSTunTpIk9PTwUHBysmJibHWBYvXqymTZvK09NTLVq00KpVqwr6cAAAAIoEPRIAAED+FTiQOnv2rFq2bKmZM2fmWdOzZ08dP37cvP3nP/9xWj9o0CDt3r1bcXFxWrFihdavX6+RI0ea6x0Oh8LDw1WnTh1t27ZNr732mqZMmaK5c+eaNRs3btTAgQM1bNgw7dixQ5GRkYqMjNSuXbsK+pAAAACuGz0SAABA/tkMwzAKfWebTUuXLlVkZKS5bMiQIUpJScnxqWC2vXv3qnnz5vrhhx/Utm1bSVJsbKx69eqlo0ePKigoSLNnz9bEiROVlJQkd3d3SdL48eO1bNky7du3T5LUv39/nT17VitWrDC33bFjR7Vq1Upz5szJ1/gdDoe8vb2Vmpoqu91eiBm4ugMLJ+ZY1mjAy0W+HwAAkH/F/f4v0SNdCz0SAACljxU90uWK5RxSa9eulZ+fn5o0aaLHH39cp06dMtdt2rRJPj4+ZqMlSWFhYXJxcdHmzZvNmq5du5qNliRFRERo//79+uOPP8yasLAwp/1GRERo06ZNeY7r4sWLcjgcTjcAAACr0CMBAABcUuSBVM+ePfV///d/io+P1z/+8Q+tW7dOd955pzIzMyVJSUlJ8vPzc7pPpUqVVKNGDSUlJZk1/v7+TjXZP1+rJnt9bqZPny5vb2/zFhwcfH0PFgAAIJ/okQAAAP5Sqag3OGDAAPPfLVq00C233KIGDRpo7dq16tGjR1HvrkAmTJig0aNHmz87HA4aLgAAYAl6JAAAgL8Uy1f2Lle/fn3VqlVLP//8syQpICBAJ06ccKrJyMjQ6dOnFRAQYNYkJyc71WT/fK2a7PW58fDwkN1ud7oBAACUBHokAABQkRV7IHX06FGdOnVKgYGBkqTQ0FClpKRo27ZtZs2aNWuUlZWlDh06mDXr169Xenq6WRMXF6cmTZqoevXqZk18fLzTvuLi4hQaGlrcDwkAAOC60SMBAICKrMCB1JkzZ5SQkKCEhARJUmJiohISEnT48GGdOXNGzz33nL7//nsdOnRI8fHxuueee9SwYUNFRERIkpo1a6aePXtqxIgR2rJli7777jtFR0drwIABCgoKkiQ9+OCDcnd317Bhw7R7924tWrRIb7/9ttOh5E8//bRiY2P1+uuva9++fZoyZYq2bt2q6OjoIpgWAACAgqFHAgAAyL8CB1Jbt25V69at1bp1a0nS6NGj1bp1a02aNEmurq766aefdPfdd6tx48YaNmyYQkJC9O2338rDw8PcxieffKKmTZuqR48e6tWrlzp37qy5c+ea6729vfX1118rMTFRISEhevbZZzVp0iSNHDnSrOnUqZMWLFiguXPnqmXLllqyZImWLVumm2+++XrmAwAAoFDokQAAAPLPZhiGUdKDKCkOh0Pe3t5KTU0tlnMlHFg4MceyRgNeLvL9AACA/Cvu9//ygB4JAICKx+oeqdjPIQUAAAAAAABcjkAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlipwILV+/Xr16dNHQUFBstlsWrZsmdN6wzA0adIkBQYGqnLlygoLC9OBAwecak6fPq1BgwbJbrfLx8dHw4YN05kzZ5xqfvrpJ3Xp0kWenp4KDg5WTExMjrEsXrxYTZs2laenp1q0aKFVq1YV9OEAAAAUCXokAACA/CtwIHX27Fm1bNlSM2fOzHV9TEyM3nnnHc2ZM0ebN29W1apVFRERoQsXLpg1gwYN0u7duxUXF6cVK1Zo/fr1GjlypLne4XAoPDxcderU0bZt2/Taa69pypQpmjt3rlmzceNGDRw4UMOGDdOOHTsUGRmpyMhI7dq1q6APCQAA4LrRIwEAAOSfzTAMo9B3ttm0dOlSRUZGSrr0yV9QUJCeffZZjRkzRpKUmpoqf39/zZ8/XwMGDNDevXvVvHlz/fDDD2rbtq0kKTY2Vr169dLRo0cVFBSk2bNna+LEiUpKSpK7u7skafz48Vq2bJn27dsnSerfv7/Onj2rFStWmOPp2LGjWrVqpTlz5uRr/A6HQ97e3kpNTZXdbi/sNOTpwMKJOZY1GvByke8HAADkX3G//0v0SNdCjwQAQOljRY90uSI9h1RiYqKSkpIUFhZmLvP29laHDh20adMmSdKmTZvk4+NjNlqSFBYWJhcXF23evNms6dq1q9loSVJERIT279+vP/74w6y5fD/ZNdn7yc3FixflcDicbgAAAMWNHgkAAMBZkQZSSUlJkiR/f3+n5f7+/ua6pKQk+fn5Oa2vVKmSatSo4VST2zYu30deNdnrczN9+nR5e3ubt+Dg4II+RAAAgAKjRwIAAHBWoa6yN2HCBKWmppq3I0eOlPSQAAAAShw9EgAAsFqRBlIBAQGSpOTkZKflycnJ5rqAgACdOHHCaX1GRoZOnz7tVJPbNi7fR1412etz4+HhIbvd7nQDAAAobvRIAAAAzoo0kKpXr54CAgIUHx9vLnM4HNq8ebNCQ0MlSaGhoUpJSdG2bdvMmjVr1igrK0sdOnQwa9avX6/09HSzJi4uTk2aNFH16tXNmsv3k12TvR8AAIDSgh4JAADAWYEDqTNnzighIUEJCQmSLp2kMyEhQYcPH5bNZtMzzzyjl156ScuXL9fOnTv18MMPKygoyLzKTLNmzdSzZ0+NGDFCW7Zs0Xfffafo6GgNGDBAQUFBkqQHH3xQ7u7uGjZsmHbv3q1Fixbp7bff1ujRo81xPP3004qNjdXrr7+uffv2acqUKdq6dauio6Ovf1YAAAAKiB4JAAAg/yoV9A5bt25V9+7dzZ+zG6DBgwdr/vz5Gjt2rM6ePauRI0cqJSVFnTt3VmxsrDw9Pc37fPLJJ4qOjlaPHj3k4uKivn376p133jHXe3t76+uvv1ZUVJRCQkJUq1YtTZo0SSNHjjRrOnXqpAULFuiFF17Q888/r0aNGmnZsmW6+eabCzURAAAA14MeCQAAIP9shmEYJT2IkuJwOOTt7a3U1NRiOVfCgYUTcyxrNODlIt8PAADIv+J+/y8P6JEAAKh4rO6RKtRV9gAAAAAAAFDyCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqSIPpKZMmSKbzeZ0a9q0qbn+woULioqKUs2aNVWtWjX17dtXycnJTts4fPiwevfurSpVqsjPz0/PPfecMjIynGrWrl2rNm3ayMPDQw0bNtT8+fOL+qEAAAAUGXokAACAvxTLEVI33XSTjh8/bt42bNhgrhs1apS++OILLV68WOvWrdOxY8d03333meszMzPVu3dvpaWlaePGjfr44481f/58TZo0yaxJTExU79691b17dyUkJOiZZ57R8OHD9dVXXxXHwwEAACgS9EgAAACXVCqWjVaqpICAgBzLU1NT9c9//lMLFizQ7bffLkmaN2+emjVrpu+//14dO3bU119/rT179mj16tXy9/dXq1atNG3aNI0bN05TpkyRu7u75syZo3r16un111+XJDVr1kwbNmzQm2++qYiIiOJ4SAAAANeNHgkAAOCSYjlC6sCBAwoKClL9+vU1aNAgHT58WJK0bds2paenKywszKxt2rSpbrzxRm3atEmStGnTJrVo0UL+/v5mTUREhBwOh3bv3m3WXL6N7JrsbQAAAJRG9EgAAACXFPkRUh06dND8+fPVpEkTHT9+XFOnTlWXLl20a9cuJSUlyd3dXT4+Pk738ff3V1JSkiQpKSnJqdHKXp+97mo1DodD58+fV+XKlXMd28WLF3Xx4kXzZ4fDcV2PFQAAIL/okQAAAP5S5IHUnXfeaf77lltuUYcOHVSnTh19+umneTZBVpk+fbqmTp1aomMAAAAVEz0SAADAX4rlK3uX8/HxUePGjfXzzz8rICBAaWlpSklJcapJTk42z6cQEBCQ44oy2T9fq8Zut1+1oZswYYJSU1PN25EjR6734QEAABQKPRIAAKjIij2QOnPmjA4ePKjAwECFhITIzc1N8fHx5vr9+/fr8OHDCg0NlSSFhoZq586dOnHihFkTFxcnu92u5s2bmzWXbyO7JnsbefHw8JDdbne6AQAAlAR6JAAAUJEVeSA1ZswYrVu3TocOHdLGjRt17733ytXVVQMHDpS3t7eGDRum0aNH65tvvtG2bds0dOhQhYaGqmPHjpKk8PBwNW/eXA899JB+/PFHffXVV3rhhRcUFRUlDw8PSdJjjz2mX375RWPHjtW+ffs0a9Ysffrppxo1alRRPxwAAIAiQY8EAADwlyI/h9TRo0c1cOBAnTp1Sr6+vurcubO+//57+fr6SpLefPNNubi4qG/fvrp48aIiIiI0a9Ys8/6urq5asWKFHn/8cYWGhqpq1aoaPHiwXnzxRbOmXr16WrlypUaNGqW3335btWvX1ocffsjljAEAQKlFjwQAAPAXm2EYRkkPoqQ4HA55e3srNTW1WA5NP7BwYo5ljQa8XOT7AQAA+Vfc7//lAT0SAAAVj9U9UrGfQwoAAAAAAAC4HIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEtVKukBAAAApMduyLHMrWfnEhgJAABA6VGeeySOkAIAAAAAAIClCKQAAAAAAABgKb6yBwAALJXboecAAAAVXUXrkThCCgAAAAAAAJbiCCkAAFCsKtqnfQAAAPlR0XskAikAAFBkKnpjBQAAkBt6pJwIpAAAQKEUZWN1KOXLHMsaqXxc0hgAAFQs9Ej5wzmkAAAAAAAAYCmOkAIAADlwWDkAAEBO9EhFh0AKAIAKjsYKAAAgJ3qk4kUgBQBABUNzBQAAkBM9krUIpAAAQLHK7WScAAAAFV1F75EIpAAAKCf4VA8AACAneqTSiUAKAIAyoKw0UhX9kz4AAGAteqSyq8wHUjNnztRrr72mpKQktWzZUu+++67at29f0sMCACDfykojdSUaq9KNHgkAUNbRI5VvZTqQWrRokUaPHq05c+aoQ4cOeuuttxQREaH9+/fLz8+vpIcHAKhgrmya3Hp2vmZNaUDTVP7QIwEASpPc+p8r+yR6pIqnTAdSb7zxhkaMGKGhQ4dKkubMmaOVK1fqo48+0vjx40t4dAAAK+Wn0cmrrrgU975okpAXeiQAQLbS2CMV9/7okcqGMhtIpaWladu2bZowYYK5zMXFRWFhYdq0aVMJjgwAKqbSeHTQgYUTcyyr63On0880LChv6JEAoHShRwJyV2YDqd9//12ZmZny9/d3Wu7v7699+/blep+LFy/q4sWL5s+pqamSJIfDUSxjPHPuYo5lOz4ac8373eh9xzVr3O4IzbEsPS5nk5lbXWl05diLcty/bP/I6ef6bR4pku3kta38PJb8/K4OLnkxR01+/jby63BqXJFsx1a/do5lhZ2X3B7zlXKbgysfS35qYIGPlpX0CHK169yykh4C8qm43p+zt2sYRrFsv6TRI9Ej5Vd+e5ui2g49Usn3SLnV0SOVAHokXKfy0iOV2UCqMKZPn66pU6fmWB4cHFwCo7ma10t6AOXcqFK6rfwoK38bxTkv+ZmDsjJPAK5qWPE+l//88095e3sX6z7KCnok/KWo3sPpkXJX0j1SQeoAlFrlpEcqs4FUrVq15OrqquTkZKflycnJCggIyPU+EyZM0OjRo82fs7KydPr0adWsWVM2m61Ix+dwOBQcHKwjR47IbrcX6baRO+bcesy59Zhz6zHnJaM4590wDP35558KCgoq0u2WFvRIuBJzbj3m3HrMeclg3q1XnnqkMhtIubu7KyQkRPHx8YqMjJR0qXmKj49XdHR0rvfx8PCQh4eH0zIfH59iHafdbueJaTHm3HrMufWYc+sx5yWjuOa9PB8ZRY+EvDDn1mPOrceclwzm3XrloUcqs4GUJI0ePVqDBw9W27Zt1b59e7311ls6e/aseUUZAACAiogeCQAAlHZlOpDq37+/Tp48qUmTJikpKUmtWrVSs/IqfQABAABJREFUbGxsjpN4AgAAVCT0SAAAoLQr04GUJEVHR+d5+HlJ8vDw0OTJk3Mc/o7iw5xbjzm3HnNuPea8ZDDv148eCdmYc+sx59ZjzksG82698jTnNqO8XvMYAAAAAAAApZJLSQ8AAAAAAAAAFQuBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRS12HmzJmqW7euPD091aFDB23ZsuWq9YsXL1bTpk3l6empFi1aaNWqVRaNtPwoyJx/8MEH6tKli6pXr67q1asrLCzsmr8j5FTQv/NsCxculM1mU2RkZPEOsBwq6JynpKQoKipKgYGB8vDwUOPGjXl9KaCCzvlbb72lJk2aqHLlygoODtaoUaN04cIFi0Zb9q1fv159+vRRUFCQbDabli1bds37rF27Vm3atJGHh4caNmyo+fPnF/s4UXj0SNajR7IePZL16JGsR49krQrXIxkolIULFxru7u7GRx99ZOzevdsYMWKE4ePjYyQnJ+da/9133xmurq5GTEyMsWfPHuOFF14w3NzcjJ07d1o88rKroHP+4IMPGjNnzjR27Nhh7N271xgyZIjh7e1tHD161OKRl10FnfNsiYmJxg033GB06dLFuOeee6wZbDlR0Dm/ePGi0bZtW6NXr17Ghg0bjMTERGPt2rVGQkKCxSMvuwo655988onh4eFhfPLJJ0ZiYqLx1VdfGYGBgcaoUaMsHnnZtWrVKmPixInGZ599Zkgyli5detX6X375xahSpYoxevRoY8+ePca7775ruLq6GrGxsdYMGAVCj2Q9eiTr0SNZjx7JevRI1qtoPRKBVCG1b9/eiIqKMn/OzMw0goKCjOnTp+da/8ADDxi9e/d2WtahQwfj0UcfLdZxlicFnfMrZWRkGF5eXsbHH39cXEMsdwoz5xkZGUanTp2MDz/80Bg8eDDNVgEVdM5nz55t1K9f30hLS7NqiOVOQec8KirKuP32252WjR492rj11luLdZzlVX6arbFjxxo33XST07L+/fsbERERxTgyFBY9kvXokaxHj2Q9eiTr0SOVrIrQI/GVvUJIS0vTtm3bFBYWZi5zcXFRWFiYNm3alOt9Nm3a5FQvSREREXnWw1lh5vxK586dU3p6umrUqFFcwyxXCjvnL774ovz8/DRs2DArhlmuFGbOly9frtDQUEVFRcnf318333yzXnnlFWVmZlo17DKtMHPeqVMnbdu2zTxk/ZdfftGqVavUq1cvS8ZcEfEeWnbQI1mPHsl69EjWo0eyHj1S2VDW30MrlfQAyqLff/9dmZmZ8vf3d1ru7++vffv25XqfpKSkXOuTkpKKbZzlSWHm/Erjxo1TUFBQjicscleYOd+wYYP++c9/KiEhwYIRlj+FmfNffvlFa9as0aBBg7Rq1Sr9/PPPeuKJJ5Senq7JkydbMewyrTBz/uCDD+r3339X586dZRiGMjIy9Nhjj+n555+3YsgVUl7voQ6HQ+fPn1flypVLaGS4Ej2S9eiRrEePZD16JOvRI5UNZb1H4ggpVAivvvqqFi5cqKVLl8rT07Okh1Mu/fnnn3rooYf0wQcfqFatWiU9nAojKytLfn5+mjt3rkJCQtS/f39NnDhRc+bMKemhlVtr167VK6+8olmzZmn79u367LPPtHLlSk2bNq2khwYABUaPVPzokUoGPZL16JFQUBwhVQi1atWSq6urkpOTnZYnJycrICAg1/sEBAQUqB7OCjPn2WbMmKFXX31Vq1ev1i233FKcwyxXCjrnBw8e1KFDh9SnTx9zWVZWliSpUqVK2r9/vxo0aFC8gy7jCvN3HhgYKDc3N7m6uprLmjVrpqSkJKWlpcnd3b1Yx1zWFWbO//73v+uhhx7S8OHDJUktWrTQ2bNnNXLkSE2cOFEuLnzWU9Tyeg+12+2l/pO/ioYeyXr0SNajR7IePZL16JHKhrLeI/EXUQju7u4KCQlRfHy8uSwrK0vx8fEKDQ3N9T6hoaFO9ZIUFxeXZz2cFWbOJSkmJkbTpk1TbGys2rZta8VQy42CznnTpk21c+dOJSQkmLe7775b3bt3V0JCgoKDg60cfplUmL/zW2+9VT///LPZ2ErS//73PwUGBtJo5UNh5vzcuXM5GqrsZtcwjOIbbAXGe2jZQY9kPXok69EjWY8eyXr0SGVDmX8PLdlzqpddCxcuNDw8PIz58+cbe/bsMUaOHGn4+PgYSUlJhmEYxkMPPWSMHz/erP/uu++MSpUqGTNmzDD27t1rTJ48mUsaF1BB5/zVV1813N3djSVLlhjHjx83b3/++WdJPYQyp6BzfiWuIFNwBZ3zw4cPG15eXkZ0dLSxf/9+Y8WKFYafn5/x0ksvldRDKHMKOueTJ082vLy8jP/85z/GL7/8Ynz99ddGgwYNjAceeKCkHkKZ8+effxo7duwwduzYYUgy3njjDWPHjh3Gr7/+ahiGYYwfP9546KGHzPrsSxo/99xzxt69e42ZM2eWqUsaVzT0SNajR7IePZL16JGsR49kvYrWIxFIXYd3333XuPHGGw13d3ejffv2xvfff2+uu+2224zBgwc71X/66adG48aNDXd3d+Omm24yVq5cafGIy76CzHmdOnUMSTlukydPtn7gZVhB/84vR7NVOAWd840bNxodOnQwPDw8jPr16xsvv/yykZGRYfGoy7aCzHl6eroxZcoUo0GDBoanp6cRHBxsPPHEE8Yff/xh/cDLqG+++SbX1+fseR48eLBx22235bhPq1atDHd3d6N+/frGvHnzLB838o8eyXr0SNajR7IePZL16JGsVdF6JJthcOwcAAAAAAAArMM5pAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQKsemTJkim83mtKxu3boaMmRIse/70KFDstlsmj9/vrlsyJAhqlatWrHvO5vNZtOUKVMs219Z161bN3Xr1q1It5nb3yCc5fZcqajmz58vm82mQ4cOXbPWqtey0uLTTz9VjRo1dObMmWvW5vba98MPP6hTp06qWrWqbDabEhIS8r3v9PR0BQcHa9asWQUcNVB60SPRIxUEPVLJoEf6Cz1S3uiRyjYCKVzTqlWrSm3TUprHVlGcO3dOU6ZM0dq1a0t6KCWOv8eyb/bs2br//vt14403ymazXbWhS0lJ0ciRI+Xr66uqVauqe/fu2r59e661y5cvV5s2beTp6akbb7xRkydPVkZGRr7GlJmZqcmTJ+vJJ58s1P+wpqen6/7779fp06f15ptv6l//+pfq1Kmj48ePa/z48erevbu8vLxks9lyfR67ublp9OjRevnll3XhwoUC7x8oz0rz635pHltFQY/0F/4ey76K1CPFx8frkUceUePGjVWlShXVr19fw4cP1/Hjx53uT49UBAyUW5MnTzau/BVfuHDBSEtLK9B2oqKicmznWrKysozz588bGRkZ5rLBgwcbVatWLdB2rmds58+fN9LT04t0f+XZbbfdZtx2220Fvt/JkycNScbkyZNzrEtPTzfOnz9//YMrI4rquVJRZWRkGOfPnzeysrKuWVunTh1j8ODBRT6GOnXqGDVq1DB69uxpVKpUKc99ZGZmGp06dTKqVq1qTJkyxXjvvfeM5s2bG15eXsb//vc/p9pVq1YZNpvN6N69uzF37lzjySefNFxcXIzHHnssX2NaunSpYbPZjKNHj+ar/srn4969ew1JxgcffOBU98033xiSjEaNGhmhoaGGJOObb77JdZt//PGH4e7ubvzzn//M1xiA0o4eiR6pIOiRrh890vWhR8pdcfVIISEhRr169YyxY8caH3zwgTFhwgTDy8vL8Pf3N44fP+5US490fSpZH4GhJHl4eBTr9jMyMpSVlSV3d3d5enoW676upaT3b4ULFy7I3d1dLi45D3Y8e/asqlatWgKj+kulSpVUqRIvM7kpTc+V0sLV1VWurq4lOoZ169aZn/xd7ZO2JUuWaOPGjVq8eLH69esnSXrggQfUuHFjTZ48WQsWLDBrx4wZo1tuuUVff/21+Xyw2+165ZVX9PTTT6tp06ZXHdO8efN066236oYbbijUYzpx4oQkycfHx2l5SEiITp06pRo1amjJkiW6//7789yGj4+PwsPDNX/+fD3yyCOFGgdQ2tEjlS/0SGVXaXqulBb0SLkrrh7pjTfeUOfOnZ1eP3r27KnbbrtN7733nl566SVzOT3S9eEre+XEhg0b1K5dO3l6eqpBgwZ6//33c6278jvF6enpmjp1qho1aiRPT0/VrFlTnTt3VlxcnKRL5zSYOXOmpEvfuc2+SX99r3vGjBl666231KBBA3l4eGjPnj1X/c73L7/8ooiICFWtWlVBQUF68cUXZRiGuX7t2rW5fnXkym1ebWzZy648NHjHjh268847ZbfbVa1aNfXo0UPff/+9U032d7S/++47jR492jzU9N5779XJkydz/wVcxW+//aZhw4YpKChIHh4eqlevnh5//HGlpaU5zcn999+vGjVqqEqVKurYsaNWrlzptJ3seVm4cKFeeOEF3XDDDapSpYocDod57omDBw+qV69e8vLy0qBBgyRJWVlZeuutt3TTTTfJ09NT/v7+evTRR/XHH39cddxpaWmaNGmSQkJC5O3trapVq6pLly765ptvzJpDhw7J19dXkjR16lTzd5A977mdHyEjI0PTpk0z/17q1q2r559/XhcvXnSqq1u3ru666y5t2LBB7du3l6enp+rXr6//+7//K9gvQJf+FqKjo7V48WI1b95clStXVmhoqHbu3ClJev/999WwYUN5enqqW7duOb6f/+2335qHKHt4eCg4OFijRo3S+fPnzZqieq6cOHFCvr6+6tatm9Pz4ueff1bVqlXVv3//fD/u7L/l9evX69FHH1XNmjVlt9v18MMP5/j9b926VREREapVq5YqV66sevXqOb2pXv4YZs6cqfr166tKlSoKDw/XkSNHZBiGpk2bptq1a6ty5cq65557dPr06XyP9fLxXj7/hmHopZdeUu3atVWlShV1795du3fvznHfa72W5VedOnXydU6PJUuWyN/fX/fdd5+5zNfXVw888IA+//xz8+95z5492rNnj0aOHOn0Px5PPPGEDMPQkiVLrrqfCxcuKDY2VmFhYTnWXbx4UaNGjZKvr6+8vLx099136+jRo041Q4YM0W233SZJuv/++2Wz2czzoHh5ealGjRrXfKzZ7rjjDm3YsKHAv1egpNEj0SPRI+WNHokeKb8qUo/UtWvXHGF2165dVaNGDe3duzfH/uiRCo9YvhzYuXOnwsPD5evrqylTpigjI0OTJ0+Wv7//Ne87ZcoUTZ8+XcOHD1f79u3lcDi0detWbd++XXfccYceffRRHTt2THFxcfrXv/6V6zbmzZunCxcuaOTIkfLw8FCNGjWUlZWVa21mZqZ69uypjh07KiYmRrGxseb3hF988cUCPe78jO1yu3fvVpcuXWS32zV27Fi5ubnp/fffV7du3bRu3Tp16NDBqf7JJ59U9erVNXnyZB06dEhvvfWWoqOjtWjRonyP8dixY2rfvr35PeqmTZvqt99+05IlS3Tu3Dm5u7srOTlZnTp10rlz5/TUU0+pZs2a+vjjj3X33XdryZIluvfee522OW3aNLm7u2vMmDG6ePGi3N3dJV1qYiIiItS5c2fNmDFDVapUMedp/vz5Gjp0qJ566iklJibqvffe044dO/Tdd9/Jzc0t17E7HA59+OGHGjhwoEaMGKE///xT//znPxUREaEtW7aoVatW8vX11ezZs/X444/r3nvvNd94brnlljznZPjw4fr444/Vr18/Pfvss9q8ebOmT5+uvXv3aunSpU61P//8s/r166dhw4Zp8ODB+uijjzRkyBCFhITopptuyvfvQbrUMC1fvlxRUVGSpOnTp+uuu+7S2LFjNWvWLD3xxBP6448/FBMTo0ceeURr1qwx77t48WKdO3dOjz/+uGrWrKktW7bo3Xff1dGjR7V48WJznoviueLn52d+R//dd9/VU089paysLA0ZMkReXl6FOmlidHS0fHx8NGXKFO3fv1+zZ8/Wr7/+ajbwJ06cMF9Dxo8fLx8fHx06dEifffZZjm198sknSktL05NPPqnTp08rJiZGDzzwgG6//XatXbtW48aN088//6x3331XY8aM0UcffVTg8V5u0qRJeumll9SrVy/16tVL27dvV3h4uNP/rEjXfi0rajt27FCbNm1yNCvt27fX3Llz9b///U8tWrTQjh07JElt27Z1qgsKClLt2rXN9XnZtm2b0tLS1KZNmxzrhg8frn//+9968MEH1alTJ61Zs0a9e/d2qnn00Ud1ww036JVXXtFTTz2ldu3a5eu9ITchISEyDEMbN27UXXfdVahtAFajR6JHkuiRroUeiR6pKJXXHunMmTM6c+aMatWqlWMdPdJ1KJlvCqIoRUZGGp6ensavv/5qLtuzZ4/h6uqa47vaV36nuGXLlkbv3r2vuv28vvOdmJhoSDLsdrtx4sSJXNfNmzfPXDZ48GBDkvHkk0+ay7KysozevXsb7u7uxsmTJw3D+Ou8JleeyyS3bV7t++i64jvCkZGRhru7u3Hw4EFz2bFjxwwvLy+ja9eu5rJ58+YZkoywsDCn72mPGjXKcHV1NVJSUnLdX24efvhhw8XFxfjhhx9yrMve9jPPPGNIMr799ltz3Z9//mnUq1fPqFu3rpGZmWkYxl/zUr9+fePcuXNO28qe2/Hjxzst//bbbw1JxieffOK0PDY2NsfyK8+PkJGRYVy8eNHpfn/88Yfh7+9vPPLII+ayq50f4cpzdCQkJBiSjOHDhzvVjRkzxpBkrFmzxlxWp04dQ5Kxfv16c9mJEycMDw8P49lnn82xr6uRZHh4eBiJiYnmsvfff9+QZAQEBBgOh8NcPmHCBEOSU+2V820YhjF9+nTDZrM5Pe+K6rliGIYxcOBAo0qVKsb//vc/47XXXjMkGcuWLSvQ487+Ww4JCXE6L0pMTIwhyfj8888Nw7j0/XtJuf6dXjlOX19fp+dA9ny1bNnS6XwkAwcONNzd3Y0LFy4UeLzZc3/ixAnD3d3d6N27t9Nz8fnnnzckFfi1rKCqVq2a5/kRqlat6vQ8yLZy5UpDkhEbG2sYhmH+7g4fPpyjtl27dkbHjh2vOoYPP/zQkGTs3LnTaXn2c+mJJ55wWv7ggw/meD5mv3YsXrw4z/0sXrz4queQMoxLr5eSjH/84x9XHTNQmtAj0SPRI10dPRI9UmFUpB4p27Rp0wxJRnx8fI519EiFx1f2yrjMzEx99dVXioyM1I033mgub9asmSIiIq55fx8fH+3evVsHDhwo9Bj69u1rHpKcH9HR0ea/sw8TTktL0+rVqws9hmvJzMzU119/rcjISNWvX99cHhgYqAcffFAbNmyQw+Fwus/IkSOdDkvt0qWLMjMz9euvv+Zrn1lZWVq2bJn69OmTI/mXZG571apVat++vTp37myuq1atmkaOHKlDhw5pz549TvcbPHiwKleunOs+H3/8caefFy9eLG9vb91xxx36/fffzVtISIiqVavmdGj5lVxdXc1PFrOysnT69GllZGSobdu2eV4l41pWrVolSRo9erTT8meffVaSchyC37x5c3Xp0sX82dfXV02aNNEvv/xS4H336NFDdevWNX/O/rS3b9++8vLyyrH88n1cPt9nz57V77//rk6dOskwjGt+enO5gjxX3nvvPXl7e6tfv376+9//roceekj33HNPvvd1uZEjRzp9yvv444+rUqVK5u8j+3vzK1asUHp6+lW3df/998vb29v8OXu+/va3vzkdbt2hQwelpaXpt99+K9SYJWn16tXmJ42XPxefeeaZHLVF8VpWEOfPn8/1fDPZ57rI/qpC9n/zqr38Kw25OXXqlCSpevXqTsuzf3dPPfWU0/Lc5qaoZI/h999/L7Z9AEWJHil/6JHokeiR6JGKUnnskdavX6+pU6eaR7xdiR6p8AikyriTJ0/q/PnzatSoUY51TZo0ueb9X3zxRaWkpKhx48Zq0aKFnnvuOf30008FGkO9evXyXevi4uLU7EhS48aNJSnHd9KL0smTJ3Xu3Llc56RZs2bKysrSkSNHnJZf3rxKf73QXOu8Apfv0+Fw6Oabb75q3a+//prnuLLXXy6v+a5UqZJq167ttOzAgQNKTU2Vn5+ffH19nW5nzpwxT+SXl48//li33HKL+X1zX19frVy5UqmpqVe9X15+/fVXubi4qGHDhk7LAwIC5OPjk+OxXvk7kC79HvL7O7jatrIbhuDg4FyXX76Pw4cPa8iQIapRo4aqVasmX19f8zvnBZmLgjxXatSooXfeeUc//fSTvL299c477+T7vle68vWhWrVqCgwMNJ9zt912m/r27aupU6eqVq1auueeezRv3rwc56yQrm8eCyr77+HK8fv6+uZoPoritawgKleunOv8ZF/yN7tBz/5vXrV5/Y/TlYzLzpUh/fVcatCggdPy/LzuF1b2GPJz/gigNKBHyh96JHokeqS/0CNdv/LWI+3bt0/33nuvbr75Zn344YdXHQM9UsERSFVwXbt21cGDB/XRRx+ZT7I2bdrk+WTLTX5fLPIrrydyZmZmke7nWvK6ksWVL3pWy2u+PTw8cnxXOysrS35+foqLi8v1drVzUvz73//WkCFD1KBBA/3zn/9UbGys4uLidPvtt+d5/ov8yu+LdVH+DvLa1rX2kZmZqTvuuEMrV67UuHHjtGzZMsXFxZkn2CzIXBT0ufLVV19JutSwXHkixqJks9m0ZMkSbdq0SdHR0frtt9/0yCOPKCQkRGfOnHGqLew8FreieC0riMDAQB0/fjzH8uxlQUFBZt3ly6+sza7LS82aNSVdX9NaVLLHkNu5E4DyiB4pbyX9mp8XeiR6pKJGj1Rw5alHOnLkiMLDw+Xt7a1Vq1Y5HTF4OXqkwiOQKuN8fX1VuXLlXA/B3L9/f762UaNGDQ0dOlT/+c9/dOTIEd1yyy1OV14pyqQ3Kysrx6HE//vf/yTJPFQ4O9VPSUlxqsvtMPD8js3X11dVqlTJdU727dsnFxeXHJ9eXC9fX1/Z7Xbt2rXrqnV16tTJc1zZ6wurQYMGOnXqlG699VaFhYXluLVs2TLP+y5ZskT169fXZ599poceekgREREKCwszP93IVpC/jzp16igrKyvH32tycrJSUlKu67EWl507d+p///ufXn/9dY0bN0733HOPwsLCcn2TLMrnSmxsrD788EONHTtWvr6+Gjx4sDIyMgq1rSvn+8yZMzp+/LjT4fmS1LFjR7388svaunWrPvnkE+3evVsLFy4s7EO4btl/D1eO/+TJk7k2H9d6LStKrVq10vbt23M025s3b1aVKlXMoxpatWol6dIVei537NgxHT161Fyfl+zLHScmJjotz34uHTx40Gl5fl/3CyN7DNlHJgClHT0SPdLV0CNdP3okeqTclJce6dSpUwoPD9fFixf11VdfmQFabuiRCo9AqoxzdXVVRESEli1bpsOHD5vL9+7da35ycDXZ373NVq1aNTVs2NDp0MmqVatKytn8FNZ7771n/tswDL333ntyc3NTjx49JF16EXF1ddX69eud7pfblTPyOzZXV1eFh4fr888/dzrsPTk5WQsWLFDnzp1lt9sL+Yhy5+LiosjISH3xxRc5Xmilvz4V6dWrl7Zs2aJNmzaZ686ePau5c+eqbt26at68eaHH8MADDygzM1PTpk3LsS4jI+Oq85b9ac7ln95s3rzZaZySzCvV5Ofvo1evXpKkt956y2n5G2+8IUk5rn5RGuQ2D4Zh6O23385RW1TPlZSUFPNKKK+88oo+/PBDbd++Xa+88kqhtjd37lyn8x7Mnj1bGRkZuvPOOyVd+lTnyk/pspuA3A6jtkpYWJjc3Nz07rvvOo3vyr8fKX+vZUWpX79+Sk5OdrrKzu+//67FixerT58+5vkQbrrpJjVt2lRz5851OoJh9uzZstls6tev31X3ExISInd39xyvIdm/uyu/ppDb3BSVbdu2yWazKTQ0tNj2ARQleiR6pKuhR7p+9Ej0SLkpDz3S2bNn1atXL/32229atWpVrl/9vhw9UuFVunYJSrupU6cqNjZWXbp00RNPPKGMjAy9++67uummm675/eDmzZurW7duCgkJUY0aNbR161YtWbLE6aSaISEhki6dGC4iIkKurq4aMGBAocbq6emp2NhYDR48WB06dNCXX36plStX6vnnnzdPZOjt7W1eztVms6lBgwZasWJFrt/lL8jYXnrpJcXFxalz58564oknVKlSJb3//vu6ePGiYmJiCvV4ruWVV17R119/rdtuu00jR45Us2bNdPz4cS1evFgbNmyQj4+Pxo8fr//85z+688479dRTT6lGjRr6+OOPlZiYqP/+9785DjEviNtuu02PPvqopk+froSEBIWHh8vNzU0HDhzQ4sWL9fbbb+f5Yn/XXXfps88+07333qvevXsrMTFRc+bMUfPmzZ0OUa5cubKaN2+uRYsWqXHjxqpRo4ZuvvnmXM8L0bJlSw0ePFhz585VSkqKbrvtNm3ZskUff/yxIiMj1b1790I/1uLStGlTNWjQQGPGjNFvv/0mu92u//73v7l++lRUz5Wnn35ap06d0urVq+Xq6qqePXtq+PDheumll3TPPfdc9VPb3KSlpalHjx564IEHtH//fs2aNUudO3fW3XffLenSeTBmzZqle++9Vw0aNNCff/6pDz74QHa73WyQS4Kvr6/GjBljXn66V69e2rFjh7788ssch0Tn57UsP7744gv9+OOPkqT09HT99NNPeumllyRJd999t3m57n79+qljx44aOnSo9uzZo1q1amnWrFnKzMzU1KlTnbb52muv6e6771Z4eLgGDBigXbt26b333tPw4cOv+Umap6enwsPDtXr1aqevj7Rq1UoDBw7UrFmzlJqaqk6dOik+Pl4///xzgR5v9mPbvXu3JOlf//qXNmzYIEl64YUXnGrj4uJ06623mofIA2UBPRI9Ul7oka4fPRI9UnntkQYNGqQtW7bokUce0d69e7V3715zXbVq1RQZGelUT490Hay5mB+K27p164yQkBDD3d3dqF+/vjFnzpwcl5M1jJyXNH7ppZeM9u3bGz4+PkblypWNpk2bGi+//LLT5U8zMjKMJ5980vD19TVsNpu5zexLnL722ms5xpPXJY2rVq1qHDx40AgPDzeqVKli+Pv7G5MnTzYv25vt5MmTRt++fY0qVaoY1atXNx599FFj165dObaZ19gMI+cljQ3DMLZv325EREQY1apVM6pUqWJ0797d2Lhxo1NN9mVVr7y8a16XWr6WX3/91Xj44YcNX19fw8PDw6hfv74RFRXldLnggwcPGv369TN8fHwMT09Po3379saKFSty3X9ulyXNntu8zJ071wgJCTEqV65seHl5GS1atDDGjh1rHDt2zKy58pLGWVlZxiuvvGLUqVPH8PDwMFq3bm2sWLHCGDx4sFGnTh2n7W/cuNH8+7t83nP7G0xPTzemTp1q1KtXz3BzczOCg4ONCRMm5Lj0bZ06dXK9RO2V48wPSUZUVJTTsrz+fnOb5z179hhhYWFGtWrVjFq1ahkjRowwfvzxx3z/PRbkufL5558bkozXX3/dqc7hcBh16tQxWrZs6fT8vJrsv+V169YZI0eONKpXr25Uq1bNGDRokHHq1Cmzbvv27cbAgQONG2+80fDw8DD8/PyMu+66y9i6dWuh5uvyfV/tMsl5jffyy0lnZmYaU6dONQIDA43KlSsb3bp1M3bt2lWo17L8yL48eG63Ky87ffr0aWPYsGFGzZo1jSpVqhi33XZbno936dKlRqtWrQwPDw+jdu3axgsvvJDvsX322WeGzWbLcVnk8+fPG0899ZRRs2ZNo2rVqkafPn2MI0eOFOiSxnk91iuftykpKYa7u7vx4Ycf5mvMQGlCj0SPRI+UN3okeqT8qkg9Up06dfJ8rFc+x+mRro/NMEr47IMAgGIxf/58DR06VD/88EOul9VG2ZCZmanmzZvrgQceyPWrJVZ46623FBMTo4MHDxb5SZoBALAaPVL5QI9U9nEOKQAASjFXV1e9+OKLmjlzZo4r+lghPT1db7zxhl544QUaLQAAUGrQI5V9nEMKKIQzZ85c80XP19c3z8u8omgkJSVddX3lypXl7e1t0Wisc/78eaWmpl61pkaNGhaN5tpK+vmSlpam06dPX7XG29u7VDcS/fv3V//+/Utk325ubk4nhAaAqynp13xcQo+UN3qkv9AjXR96pOtHIAUUwowZM3KclO9KiYmJOS4Zi6J1tcuvStLgwYM1f/58awZjoUWLFmno0KFXrfnmm28sGs21lfTzZePGjdc8Gey8efM0ZMiQYtk/AFQkJf2aj0vokfJGj/QXeiSUNM4hBRTCL7/8ol9++eWqNZ07d5anp6dFI6qYVq9efdX1QUFB13VJ6NLq+PHj5lXR8hISEqLq1atbNKKrK+nnyx9//KFt27Zdteamm266ZvMOALi2kn7NxyX0SHmjR/oLPRJKGoEUAAAAAAAALMVJzQEAAAAAAGCpCn0OqaysLB07dkxeXl6y2WwlPRwAAGABwzD0559/KigoSC4ufDaXG3okAAAqHqt7pAodSB07dkzBwcElPQwAAFACjhw5otq1a5f0MEoleiQAACouq3qkCh1IeXl5Sbo02Xa7vYRHAwAArOBwOBQcHGz2AciJHgkAgIrH6h6pQgdS2Yeg2+12mi0AACoYvoqWN3okAAAqLqt6JE6cAAAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwVIU+hxQAAFeTmZmp9PT0kh4GCsjNzU2urq4lPQwAAMoteqSyqbT1SARSAABcwTAMJSUlKSUlpaSHgkLy8fFRQEAAJy4HAKAI0SOVfaWpRyKQAgDgCtmNlp+fn6pUqVIq3rCRP4Zh6Ny5czpx4oQkKTAwsIRHBABA+UGPVHaVxh6JQAoAgMtkZmaajVbNmjVLejgohMqVK0uSTpw4IT8/v1J1aDoAAGUVPVLZV9p6JE5qDgDAZbLPh1ClSpUSHgmuR/bvj/NbAABQNOiRyofS1CMRSAEAkAsOQS/b+P0BAFA8eI8t20rT749ACgAAAAAAAJYikAIAAAAAAIClOKk5AAD5lB67wbJ9ufXsnO/aax16PXnyZE2ZMuU6R1Q4NptNS5cuVWRkZKG3MXfuXC1YsEDbt2/Xn3/+qT/++EM+Pj5FNkYAAHB9rOyRJPqkbKdPn9bkyZP19ddf6/Dhw/L19VVkZKSmTZsmb2/voh1sMSCQKka5PSkL8sQBACA/jh8/bv570aJFmjRpkvbv328uq1atWoG2l5aWJnd39yIb3/U6d+6cevbsqZ49e2rChAklPRwUAXokAIBVynOfdOzYMR07dkwzZsxQ8+bN9euvv+qxxx7TsWPHtGTJkpIe3jXxlT0AAMq4gIAA8+bt7S2bzWb+fPbsWQ0aNEj+/v6qVq2a2rVrp9WrVzvdv27dupo2bZoefvhh2e12jRw5UpL0wQcfKDg4WFWqVNG9996rN954I8eRSZ9//rnatGkjT09P1a9fX1OnTlVGRoa5XUm69957ZbPZzJ9//PFHde/eXV5eXrLb7QoJCdHWrVvzfHzPPPOMxo8fr44dOxbNhAEAgAqjPPdJN998s/773/+qT58+atCggW6//Xa9/PLL+uKLL8z9lGYEUgAAlGNnzpxRr169FB8frx07dqhnz57q06ePDh8+7FQ3Y8YMtWzZUjt27NDf//53fffdd3rsscf09NNPKyEhQXfccYdefvllp/t8++23evjhh/X0009rz549ev/99zV//nyz7ocffpAkzZs3T8ePHzd/HjRokGrXrq0ffvhB27Zt0/jx4+Xm5mbBbAAAAPylPPZJqampstvtqlSp9H8hrvSPEAAAFFrLli3VsmVL8+dp06Zp6dKlWr58uaKjo83lt99+u5599lnz54kTJ+rOO+/UmDFjJEmNGzfWxo0btWLFCrNm6tSpGj9+vAYPHixJql+/vqZNm6axY8dq8uTJ8vX1lST5+PgoICDAvN/hw4f13HPPqWnTppKkRo0aFcMjBwAAuLry1if9/vvvmjZtmnkUV2nHEVIAAJRjZ86c0ZgxY9SsWTP5+PioWrVq2rt3b45P/tq2bev08/79+9W+fXunZVf+/OOPP+rFF19UtWrVzNuIESN0/PhxnTt3Ls8xjR49WsOHD1dYWJheffVVHTx48DofJQAAQMGVpz7J4XCod+/eat68eYmdpL2gCKQAACjHxowZo6VLl+qVV17Rt99+q4SEBLVo0UJpaWlOdVWrVi3wts+cOaOpU6cqISHBvO3cuVMHDhyQp6dnnvebMmWKdu/erd69e2vNmjVq3ry5li5dWuD9AwAAXI/y0if9+eef6tmzp7y8vLR06dIycyoEvrIHAEA59t1332nIkCG69957JV1qjg4dOnTN+zVp0sQ8l0G2K39u06aN9u/fr4YNG+a5HTc3N2VmZuZY3rhxYzVu3FijRo3SwIEDNW/ePHOMAAAAVigPfZLD4VBERIQ8PDy0fPnyq4ZdpQ2BFAAA5VijRo302WefqU+fPrLZbPr73/+urKysa97vySefVNeuXfXGG2+oT58+WrNmjb788kvZbDazZtKkSbrrrrt04403ql+/fnJxcdGPP/6oXbt26aWXXpJ06Qoy8fHxuvXWW+Xh4SFPT08999xz6tevn+rVq6ejR4/qhx9+UN++ffMcS1JSkpKSkvTzzz9Lknbu3CkvLy/deOONqlGjxnXOEAAAqKjKep/kcDgUHh6uc+fO6d///rccDoccDockydfXV66urkUwS8WHr+wBAFCOvfHGG6pevbo6deqkPn36KCIiQm3atLnm/W699VbNmTNHb7zxhlq2bKnY2FiNGjXK6VO3iIgIrVixQl9//bXatWunjh076s0331SdOnXMmtdff11xcXEKDg5W69at5erqqlOnTunhhx9W48aN9cADD+jOO+/U1KlT8xzLnDlz1Lp1a40YMUKS1LVrV7Vu3VrLly+/jpkBAAAVXVnvk7Zv367Nmzdr586datiwoQIDA83bkSNHrn+CipnNMAyjpAdRUhwOh7y9vc3LIha19NgNOZa59exc5PsBABSdCxcuKDExUfXq1StThzxbYcSIEdq3b5++/fbbkh7KNV3t91jc7//lAT0SAOBK9EhXV1b6pNLUI/GVPQAAkKsZM2bojjvuUNWqVfXll1/q448/1qxZs0p6WAAAACWOPun6EUgBAIBcbdmyRTExMfrzzz9Vv359vfPOOxo+fHhJDwsAAKDE0SddPwIpAACQq08//bSkhwAAAFAq0SddP05qDgAAAAAAAEsRSAEAAAAAAMBSBQqkpk+frnbt2snLy0t+fn6KjIzU/v37nWq6desmm83mdHvsscecag4fPqzevXurSpUq8vPz03PPPaeMjAynmrVr16pNmzby8PBQw4YNNX/+/BzjmTlzpurWrStPT0916NBBW7ZsKcjDAQAAKBL0SAAAAAVToEBq3bp1ioqK0vfff6+4uDilp6crPDxcZ8+edaobMWKEjh8/bt5iYmLMdZmZmerdu7fS0tK0ceNGffzxx5o/f74mTZpk1iQmJqp3797q3r27EhIS9Mwzz2j48OH66quvzJpFixZp9OjRmjx5srZv366WLVsqIiJCJ06cKOxcAAAAFAo9EgAAQMHYDMMwCnvnkydPys/PT+vWrVPXrl0lXfr0r1WrVnrrrbdyvc+XX36pu+66S8eOHZO/v78kac6cORo3bpxOnjwpd3d3jRs3TitXrtSuXbvM+w0YMEApKSmKjY2VJHXo0EHt2rXTe++9J0nKyspScHCwnnzySY0fPz5f43c4HPL29lZqaqrsdnthpyFP6bEbcixz69m5yPcDACg6Fy5cUGJiourVqydPT8+SHg4K6Wq/x+J+/5foka6FHgkAyh56pPKhpHuky13XOaRSU1MlSTVq1HBa/sknn6hWrVq6+eabNWHCBJ07d85ct2nTJrVo0cJstCQpIiJCDodDu3fvNmvCwsKcthkREaFNmzZJktLS0rRt2zanGhcXF4WFhZk1AAAAJYUeCQAA4OoKHUhlZWXpmWee0a233qqbb77ZXP7ggw/q3//+t7755htNmDBB//rXv/S3v/3NXJ+UlOTUaEkyf05KSrpqjcPh0Pnz5/X7778rMzMz15rsbeTm4sWLcjgcTjcAAMqDIUOGmOclcnNzk7+/v+644w599NFHysrKKunhXZfdu3erb9++qlu3rmw2W55HGJUW9EgAAJQu5blP+uCDD9SlSxdVr15d1atXV1hYWJk5d2Slwt4xKipKu3bt0oYNzodcjxw50vx3ixYtFBgYqB49eujgwYNq0KBB4UdaBKZPn66pU6eW6BgAAGXXwa3vW7avBm0fLfB9evbsqXnz5ikzM1PJycmKjY3V008/rSVLlmj58uWqVKnQb/sl6ty5c6pfv77uv/9+jRo1qqSHc030SACAisbKHkmiT7rc2rVrNXDgQHXq1Emenp76xz/+ofDwcO3evVs33HBDSQ/vqgp1hFR0dLRWrFihb775RrVr175qbYcOHSRJP//8syQpICBAycnJTjXZPwcEBFy1xm63q3LlyqpVq5ZcXV1zrcneRm4mTJig1NRU83bkyJF8PFoAAMoGDw8PBQQE6IYbblCbNm30/PPP6/PPP9eXX37pdCW2lJQUDR8+XL6+vrLb7br99tv1448/Om3riy++ULt27eTp6alatWrp3nvvNdf98ccfevjhh1W9enVVqVJFd955pw4cOCBJOnv2rOx2u5YsWeK0vWXLlqlq1ar6888/lZaWpujoaAUGBsrT01N16tTR9OnT83xc7dq102uvvaYBAwbIw8OjCGaq+NAjAQBQOpXXPumTTz7RE088oVatWqlp06b68MMPlZWVpfj4+CKYteJVoEDKMAxFR0dr6dKlWrNmjerVq3fN+yQkJEiSAgMDJUmhoaHauXOn05Ve4uLiZLfb1bx5c7PmysmLi4tTaGioJMnd3V0hISFONdkTnl2TGw8PD9ntdqcbAADl2e23366WLVvqs88+M5fdf//9OnHihL788ktt27ZNbdq0UY8ePXT69GlJ0sqVK3XvvfeqV69e2rFjh+Lj49W+fXvz/kOGDNHWrVu1fPlybdq0SYZhqFevXkpPT1fVqlU1YMAAzZs3z2kc8+bNU79+/eTl5aV33nlHy5cv16effqr9+/frk08+Ud26dS2Zj+JCjwQAQNlTHvukc+fOKT09Pcd5LEujAh2TFhUVpQULFujzzz+Xl5eXeS4Cb29vVa5cWQcPHtSCBQvUq1cv1axZUz/99JNGjRqlrl276pZbbpEkhYeHq3nz5nrooYcUExOjpKQkvfDCC4qKijI/9Xzsscf03nvvaezYsXrkkUe0Zs0affrpp1q5cqU5ltGjR2vw4MFq27at2rdvr7feektnz57V0KFDi2purtuhlC9zLGskriADALBW06ZN9dNPP0mSNmzYoC1btujEiRPm++6MGTO0bNkyLVmyRCNHjtTLL7+sAQMGOH2Fq2XLlpKkAwcOaPny5fruu+/UqVMnSZc+mQsODtayZct0//33a/jw4erUqZOOHz+uwMBAnThxQqtWrdLq1aslSYcPH1ajRo3UuXNn2Ww21alTx8rpKBb0SAVDjwQAKC3KW580btw4BQUF5bgISmlUoCOkZs+erdTUVHXr1k2BgYHmbdGiRZIufSq3evVqhYeHq2nTpnr22WfVt29fffHFF+Y2XF1dtWLFCrm6uio0NFR/+9vf9PDDD+vFF180a+rVq6eVK1cqLi5OLVu21Ouvv64PP/xQERERZk3//v01Y8YMTZo0Sa1atVJCQoJiY2NznMQTAICKzjAM2Ww2SdKPP/6oM2fOqGbNmqpWrZp5S0xM1MGDByVdOnKnR48euW5r7969qlSpkvl1M0mqWbOmmjRpor1790qS2rdvr5tuukkff/yxJOnf//636tSpo65du0q69MlhQkKCmjRpoqeeekpff/11sT12q9AjAQBQNpWnPunVV1/VwoULtXTpUnl6ehZ8MixWoCOkDMO46vrg4GCtW7fumtupU6eOVq1addWabt26aceOHVetiY6OVnR09DX3BwBARbZ3717zK2RnzpxRYGCg1q5dm6POx8dHklS5cuXr3ufw4cM1c+ZMjR8/XvPmzdPQoUPNZq9NmzZKTEzUl19+qdWrV+uBBx5QWFhYjvMplCX0SAAAlE3lpU+aMWOGXn31Va1evdo8+rq0K9RJzQEAQNmwZs0a7dy5U3379pV0qclJSkpSpUqV1LBhQ6dbrVq1JEm33HJLnifCbNasmTIyMrR582Zz2alTp7R//37zPEeS9Le//U2//vqr3nnnHe3Zs0eDBw922o7dblf//v31wQcfaNGiRfrvf/9rnpsBAADACuWlT4qJidG0adMUGxurtm3bFno+rFY2r2sIAAByuHjxopKSkpwuZzx9+nTdddddevjhhyVJYWFhCg0NVWRkpGJiYtS4cWMdO3bMPEFn27ZtNXnyZPXo0UMNGjTQgAEDlJGRoVWrVmncuHFq1KiR7rnnHo0YMULvv/++vLy8NH78eN1www265557zLFUr15d9913n5577jmFh4c7XXHujTfeUGBgoFq3bi0XFxctXrxYAQEB5iePV0pLS9OePXvMf//2229KSEhQtWrV1LBhw+KbUAAAUG6U1z7pH//4hyZNmqQFCxaobt265nkss79uWJpxhBQAAOVEbGysAgMDVbduXfXs2VPffPON3nnnHX3++edydXWVJNlsNq1atUpdu3bV0KFD1bhxYw0YMEC//vqreY6hbt26afHixVq+fLlatWql22+/XVu2bDH3M2/ePIWEhOiuu+5SaGioDMPQqlWr5Obm5jSeYcOGKS0tTY888ojTci8vL8XExKht27Zq166dDh06pFWrVsnFJfe25NixY2rdurVat26t48ePa8aMGWrdurWGDx9elNMHAADKsfLaJ82ePVtpaWnq16+f03ksZ8yYUZTTVyxsxrVOelCOORwOeXt7KzU1tVgub3xg4cQcyxoNeLnI9wMAKDoXLlxQYmKi6tWrVyZOBlma/etf/9KoUaN07Ngxubu7W7rvq/0ei/v9vzygRwIAXIkeqWiVVJ9UmnokvrIHAACK1Llz53T8+HG9+uqrevTRRy0PowAAAEor+qS/8JU9AABQpGJiYtS0aVMFBARowoQJJT0cAACAUoM+6S8EUgAAoEhNmTJF6enpio+PL/Un0wQAALASfdJfCKQAAAAAAABgKQIpAAAAAAAAWIpACgCAXFTgi9CWC/z+AAAoHrzHlm2l6fdHIAUAwGXc3NwkXboCCsqu7N9f9u8TAABcH3qk8qE09UiVSnoAAACUJq6urvLx8dGJEyckSVWqVJHNZivhUSG/DMPQuXPndOLECfn4+MjV1bWkhwQAQLlAj1S2lcYeiUAKAIArBAQESJLZcKHs8fHxMX+PAACgaNAjlX2lqUcikAIA4Ao2m02BgYHy8/NTenp6SQ8HBeTm5lYqPvUDAKC8oUcq20pbj0QgBQBAHlxdXUvVmzYAAEBpQI+EosBJzQEAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUKFEhNnz5d7dq1k5eXl/z8/BQZGan9+/c71Vy4cEFRUVGqWbOmqlWrpr59+yo5Odmp5vDhw+rdu7eqVKkiPz8/Pffcc8rIyHCqWbt2rdq0aSMPDw81bNhQ8+fPzzGemTNnqm7duvL09FSHDh20ZcuWgjwcAACAIkGPBAAAUDAFCqTWrVunqKgoff/994qLi1N6errCw8N19uxZs2bUqFH64osvtHjxYq1bt07Hjh3TfffdZ67PzMxU7969lZaWpo0bN+rjjz/W/PnzNWnSJLMmMTFRvXv3Vvfu3ZWQkKBnnnlGw4cP11dffWXWLFq0SKNHj9bkyZO1fft2tWzZUhERETpx4sT1zAcAAECB0SMBAAAUjM0wDKOwdz558qT8/Py0bt06de3aVampqfL19dWCBQvUr18/SdK+ffvUrFkzbdq0SR07dtSXX36pu+66S8eOHZO/v78kac6cORo3bpxOnjwpd3d3jRs3TitXrtSuXbvMfQ0YMEApKSmKjY2VJHXo0EHt2rXTe++9J0nKyspScHCwnnzySY0fPz5f43c4HPL29lZqaqrsdnthpyFPBxZOzLGs0YCXi3w/AAAg/4r7/V+iR7oWeiQAAEofK3qky13XOaRSU1MlSTVq1JAkbdu2Tenp6QoLCzNrmjZtqhtvvFGbNm2SJG3atEktWrQwGy1JioiIkMPh0O7du82ay7eRXZO9jbS0NG3bts2pxsXFRWFhYWZNbi5evCiHw+F0AwAAKGr0SAAAAFdX6EAqKytLzzzzjG699VbdfPPNkqSkpCS5u7vLx8fHqdbf319JSUlmzeWNVvb67HVXq3E4HDp//rx+//13ZWZm5lqTvY3cTJ8+Xd7e3uYtODi44A8cAADgKuiRAAAArq3QgVRUVJR27dqlhQsXFuV4itWECROUmppq3o4cOVLSQwIAAOUMPRIAAMC1VSrMnaKjo7VixQqtX79etWvXNpcHBAQoLS1NKSkpTp8AJicnKyAgwKy58kov2VeYubzmyqvOJCcny263q3LlynJ1dZWrq2uuNdnbyI2Hh4c8PDwK/oABAADygR4JAAAgfwp0hJRhGIqOjtbSpUu1Zs0a1atXz2l9SEiI3NzcFB8fby7bv3+/Dh8+rNDQUElSaGiodu7c6XSll7i4ONntdjVv3tysuXwb2TXZ23B3d1dISIhTTVZWluLj480aAAAAq9AjAQAAFEyBjpCKiorSggUL9Pnnn8vLy8s8F4G3t7cqV64sb29vDRs2TKNHj1aNGjVkt9v15JNPKjQ0VB07dpQkhYeHq3nz5nrooYcUExOjpKQkvfDCC4qKijI/mXvsscf03nvvaezYsXrkkUe0Zs0affrpp1q5cqU5ltGjR2vw4MFq27at2rdvr7feektnz57V0KFDi2puAAAA8oUeCQAAoGAKFEjNnj1bktStWzen5fPmzdOQIUMkSW+++aZcXFzUt29fXbx4UREREZo1a5ZZ6+rqqhUrVujxxx9XaGioqlatqsGDB+vFF180a+rVq6eVK1dq1KhRevvtt1W7dm19+OGHioiIMGv69++vkydPatKkSUpKSlKrVq0UGxub4ySeAAAAxY0eCQAAoGBshmEYJT2IkuJwOOTt7a3U1FTZ7fYi3/6BhRNzLGs04OUi3w8AAMi/4n7/Lw/okQAAqHis7pEKfZU9AAAAAAAAoDAIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGCpAgdS69evV58+fRQUFCSbzaZly5Y5rR8yZIhsNpvTrWfPnk41p0+f1qBBg2S32+Xj46Nhw4bpzJkzTjU//fSTunTpIk9PTwUHBysmJibHWBYvXqymTZvK09NTLVq00KpVqwr6cAAAAIoEPRIAAED+FTiQOnv2rFq2bKmZM2fmWdOzZ08dP37cvP3nP/9xWj9o0CDt3r1bcXFxWrFihdavX6+RI0ea6x0Oh8LDw1WnTh1t27ZNr732mqZMmaK5c+eaNRs3btTAgQM1bNgw7dixQ5GRkYqMjNSuXbsK+pAAAACuGz0SAABA/tkMwzAKfWebTUuXLlVkZKS5bMiQIUpJScnxqWC2vXv3qnnz5vrhhx/Utm1bSVJsbKx69eqlo0ePKigoSLNnz9bEiROVlJQkd3d3SdL48eO1bNky7du3T5LUv39/nT17VitWrDC33bFjR7Vq1Upz5szJ1/gdDoe8vb2Vmpoqu91eiBm4ugMLJ+ZY1mjAy0W+HwAAkH/F/f4v0SNdCz0SAACljxU90uWK5RxSa9eulZ+fn5o0aaLHH39cp06dMtdt2rRJPj4+ZqMlSWFhYXJxcdHmzZvNmq5du5qNliRFRERo//79+uOPP8yasLAwp/1GRERo06ZNeY7r4sWLcjgcTjcAAACr0CMBAABcUuSBVM+ePfV///d/io+P1z/+8Q+tW7dOd955pzIzMyVJSUlJ8vPzc7pPpUqVVKNGDSUlJZk1/v7+TjXZP1+rJnt9bqZPny5vb2/zFhwcfH0PFgAAIJ/okQAAAP5Sqag3OGDAAPPfLVq00C233KIGDRpo7dq16tGjR1HvrkAmTJig0aNHmz87HA4aLgAAYAl6JAAAgL8Uy1f2Lle/fn3VqlVLP//8syQpICBAJ06ccKrJyMjQ6dOnFRAQYNYkJyc71WT/fK2a7PW58fDwkN1ud7oBAACUBHokAABQkRV7IHX06FGdOnVKgYGBkqTQ0FClpKRo27ZtZs2aNWuUlZWlDh06mDXr169Xenq6WRMXF6cmTZqoevXqZk18fLzTvuLi4hQaGlrcDwkAAOC60SMBAICKrMCB1JkzZ5SQkKCEhARJUmJiohISEnT48GGdOXNGzz33nL7//nsdOnRI8fHxuueee9SwYUNFRERIkpo1a6aePXtqxIgR2rJli7777jtFR0drwIABCgoKkiQ9+OCDcnd317Bhw7R7924tWrRIb7/9ttOh5E8//bRiY2P1+uuva9++fZoyZYq2bt2q6OjoIpgWAACAgqFHAgAAyL8CB1Jbt25V69at1bp1a0nS6NGj1bp1a02aNEmurq766aefdPfdd6tx48YaNmyYQkJC9O2338rDw8PcxieffKKmTZuqR48e6tWrlzp37qy5c+ea6729vfX1118rMTFRISEhevbZZzVp0iSNHDnSrOnUqZMWLFiguXPnqmXLllqyZImWLVumm2+++XrmAwAAoFDokQAAAPLPZhiGUdKDKCkOh0Pe3t5KTU0tlnMlHFg4MceyRgNeLvL9AACA/Cvu9//ygB4JAICKx+oeqdjPIQUAAAAAAABcjkAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlipwILV+/Xr16dNHQUFBstlsWrZsmdN6wzA0adIkBQYGqnLlygoLC9OBAwecak6fPq1BgwbJbrfLx8dHw4YN05kzZ5xqfvrpJ3Xp0kWenp4KDg5WTExMjrEsXrxYTZs2laenp1q0aKFVq1YV9OEAAAAUCXokAACA/CtwIHX27Fm1bNlSM2fOzHV9TEyM3nnnHc2ZM0ebN29W1apVFRERoQsXLpg1gwYN0u7duxUXF6cVK1Zo/fr1GjlypLne4XAoPDxcderU0bZt2/Taa69pypQpmjt3rlmzceNGDRw4UMOGDdOOHTsUGRmpyMhI7dq1q6APCQAA4LrRIwEAAOSfzTAMo9B3ttm0dOlSRUZGSrr0yV9QUJCeffZZjRkzRpKUmpoqf39/zZ8/XwMGDNDevXvVvHlz/fDDD2rbtq0kKTY2Vr169dLRo0cVFBSk2bNna+LEiUpKSpK7u7skafz48Vq2bJn27dsnSerfv7/Onj2rFStWmOPp2LGjWrVqpTlz5uRr/A6HQ97e3kpNTZXdbi/sNOTpwMKJOZY1GvByke8HAADkX3G//0v0SNdCjwQAQOljRY90uSI9h1RiYqKSkpIUFhZmLvP29laHDh20adMmSdKmTZvk4+NjNlqSFBYWJhcXF23evNms6dq1q9loSVJERIT279+vP/74w6y5fD/ZNdn7yc3FixflcDicbgAAAMWNHgkAAMBZkQZSSUlJkiR/f3+n5f7+/ua6pKQk+fn5Oa2vVKmSatSo4VST2zYu30deNdnrczN9+nR5e3ubt+Dg4II+RAAAgAKjRwIAAHBWoa6yN2HCBKWmppq3I0eOlPSQAAAAShw9EgAAsFqRBlIBAQGSpOTkZKflycnJ5rqAgACdOHHCaX1GRoZOnz7tVJPbNi7fR1412etz4+HhIbvd7nQDAAAobvRIAAAAzoo0kKpXr54CAgIUHx9vLnM4HNq8ebNCQ0MlSaGhoUpJSdG2bdvMmjVr1igrK0sdOnQwa9avX6/09HSzJi4uTk2aNFH16tXNmsv3k12TvR8AAIDSgh4JAADAWYEDqTNnzighIUEJCQmSLp2kMyEhQYcPH5bNZtMzzzyjl156ScuXL9fOnTv18MMPKygoyLzKTLNmzdSzZ0+NGDFCW7Zs0Xfffafo6GgNGDBAQUFBkqQHH3xQ7u7uGjZsmHbv3q1Fixbp7bff1ujRo81xPP3004qNjdXrr7+uffv2acqUKdq6dauio6Ovf1YAAAAKiB4JAAAg/yoV9A5bt25V9+7dzZ+zG6DBgwdr/vz5Gjt2rM6ePauRI0cqJSVFnTt3VmxsrDw9Pc37fPLJJ4qOjlaPHj3k4uKivn376p133jHXe3t76+uvv1ZUVJRCQkJUq1YtTZo0SSNHjjRrOnXqpAULFuiFF17Q888/r0aNGmnZsmW6+eabCzURAAAA14MeCQAAIP9shmEYJT2IkuJwOOTt7a3U1NRiOVfCgYUTcyxrNODlIt8PAADIv+J+/y8P6JEAAKh4rO6RKtRV9gAAAAAAAFDyCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqUolPQAAAID02A05lrn17FwCIwEAACg9ynOPxBFSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLFXkgNWXKFNlsNqdb06ZNzfUXLlxQVFSUatasqWrVqqlv375KTk522sbhw4fVu3dvValSRX5+fnruueeUkZHhVLN27Vq1adNGHh4eatiwoebPn1/UDwUAAKDI0CMBAAD8pViOkLrpppt0/Phx87ZhwwZz3ahRo/TFF19o8eLFWrdunY4dO6b77rvPXJ+ZmanevXsrLS1NGzdu1Mcff6z58+dr0qRJZk1iYqJ69+6t7t27KyEhQc8884yGDx+ur776qjgeDgAAQJGgRwIAALikUrFstFIlBQQE5Fiempqqf/7zn1qwYIFuv/12SdK8efPUrFkzff/99+rYsaO+/vpr7dmzR6tXr5a/v79atWqladOmady4cZoyZYrc3d01Z84c1atXT6+//rokqVmzZtqwYYPefPNNRUREFMdDAgAAuG70SAAAAJcUyxFSBw4cUFBQkOrXr69Bgwbp8OHDkqRt27YpPT1dYWFhZm3Tpk114403atOmTZKkTZs2qUWLFvL39zdrIiIi5HA4tHv3brPm8m1k12RvAwAAoDSiRwIAALikyI+Q6tChg+bPn68mTZro+PHjmjp1qrp06aJdu3YpKSlJ7u7u8vHxcbqPv7+/kpKSJElJSUlOjVb2+ux1V6txOBw6f/68KleunOvYLl68qIsXL5o/OxyO63qsAAAA+UWPBAAA8JciD6TuvPNO89+33HKLOnTooDp16ujTTz/NswmyyvTp0zV16tQSHQMAAKiY6JEAAAD+Uixf2bucj4+PGjdurJ9//lkBAQFKS0tTSkqKU01ycrJ5PoWAgIAcV5TJ/vlaNXa7/aoN3YQJE5Sammrejhw5cr0PDwAAoFDokQAAQEVW7IHUmTNndPDgQQUGBiokJERubm6Kj4831+/fv1+HDx9WaGioJCk0NFQ7d+7UiRMnzJq4uDjZ7XY1b97crLl8G9k12dvIi4eHh+x2u9MNAACgJNAjAQCAiqzIA6kxY8Zo3bp1OnTokDZu3Kh7771Xrq6uGjhwoLy9vTVs2DCNHj1a33zzjbZt26ahQ4cqNDRUHTt2lCSFh4erefPmeuihh/Tjjz/qq6++0gsvvKCoqCh5eHhIkh577DH98ssvGjt2rPbt26dZs2bp008/1ahRo4r64QAAABQJeiQAAIC/FPk5pI4ePaqBAwfq1KlT8vX1VefOnfX999/L19dXkvTmm2/KxcVFffv21cWLFxUREaFZs2aZ93d1ddWKFSv0+OOPKzQ0VFWrVtXgwYP14osvmjX16tXTypUrNWrUKL399tuqXbu2PvzwQy5nDAAASi16JAAAgL/YDMMwSnoQJcXhcMjb21upqanFcmj6gYUTcyxrNODlIt8PAABlXXrshhzL3Hp2LpZ9Fff7f3lAjwQAQOlQnnukYj+HFAAAAAAAAHA5AikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAin8P3t3HhdVvf9x/A0oICrgxnYl9zW3xFRMzZJEJW+ULVo3sVyuBpVSbuV1reyamZammaXeezWXblq5oIipmaRFUu4/F8xKUUtlXFnP748enOsIKiCcYXk9H495PJxzPnPO53yHmfn4mTPfAwAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsFQ5RycAAADKlvSYbY5OAQAAoNgpazUSZ0gBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYiknNAQCAwx07vy7Hsgbq6IBMAAAAio/SXCNxhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClmNQcAAAUqfSYbY5OAQAAoNgp6zUSZ0gBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALMVV9gAAQKEp61eLAQAAyA01Uk40pAAAgKWOnV/n6BQAAACKnbJWI9GQAgAABcI3fQAAADlRI+UNc0gBAAAAAADAUpwhBQAA8qSg3/aVtdPPAQBA2UKNVDCcIQUAAAAAAABLcYYUAABlXGHOc1DWv+kDAAClBzVS0SrxDanZs2frrbfeUnJyslq2bKn33ntPbdu2dXRaAAAUW4VVXFFYFW/USAAA5A81krVKdENq2bJlio6O1ty5c9WuXTvNmDFDoaGhOnjwoHx8fBydHgAAluJbPGSjRgIA4H+okYqnEt2Qmj59ugYNGqRnnnlGkjR37lytWbNGH3/8sUaPHu3g7AAAKBiKJtwuaiQAQGnFWUylR4ltSKWlpSkhIUFjxowxlzk7OyskJETx8fEOzAwAUNpw5RSUJNRIAAArUSehoEpsQ+r3339XZmamfH197Zb7+vrqwIEDuT4mNTVVqamp5v2UlBRJks1mK5IcL15OzbFs18cv292/w+uBHDHlHwguknxQfKTH5vwPgdXP+/U55Lb/vOR59IePc8TUbf1sgXI68umkW8bUe3TcLWNyy7soHU+JzVPc9a/33B6X23tCQfcHlHRF9fmcvV3DMIpk+45GjYSSjBopd4VVI0nFs06iRgLyp7TUSCW2IVUQU6ZM0cSJE3MsDwwMdEA22d524L6BojK86DY9oCS/ZvKSe0k+PqCQFfHr/cKFC/Ly8irSfZQU1EiAVaiRckeNBORLKamRSmxDqnr16nJxcdGpU6fslp86dUp+fn65PmbMmDGKjo4272dlZens2bOqVq2anJycCjU/m82mwMBA/fLLL/L09CzUbSN3jLn1GHPrMebWY8wdoyjH3TAMXbhwQQEBAYW63eKCGgnXY8ytx5hbjzF3DMbdeqWpRiqxDSlXV1cFBQUpLi5O4eHhkv4snuLi4hQVFZXrY9zc3OTm5ma3zNvbu0jz9PT05IVpMcbceoy59Rhz6zHmjlFU416az4yiRsKNMObWY8ytx5g7BuNuvdJQI5XYhpQkRUdHKyIiQm3atFHbtm01Y8YMXbp0ybyiDAAAQFlEjQQAAIq7Et2QeuKJJ3TmzBmNGzdOycnJatWqlWJiYnJM4gkAAFCWUCMBAIDirkQ3pCQpKirqhqefO5Kbm5vGjx+f4/R3FB3G3HqMufUYc+sx5o7BuN8+aiRkY8ytx5hbjzF3DMbdeqVpzJ2M0nrNYwAAAAAAABRLzo5OAAAAAAAAAGULDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIXUbZs+erdq1a8vd3V3t2rXTzp07bxq/YsUKNW7cWO7u7mrevLnWrl1rUaalR37G/MMPP1SnTp1UpUoVValSRSEhIbd8jpBTfv/Osy1dulROTk4KDw8v2gRLofyO+fnz5xUZGSl/f3+5ubmpYcOGvL/kU37HfMaMGWrUqJEqVKigwMBADR8+XFevXrUo25Jv69at6tWrlwICAuTk5KRVq1bd8jGbN29W69at5ebmpvr162vhwoVFnicKjhrJetRI1qNGsh41kvWokaxV5mokAwWydOlSw9XV1fj444+NvXv3GoMGDTK8vb2NU6dO5Rr/zTffGC4uLsbUqVONffv2GWPHjjXKly9v7N692+LMS678jvmTTz5pzJ4929i1a5exf/9+o3///oaXl5fx66+/Wpx5yZXfMc+WlJRk/OUvfzE6depkPPTQQ9YkW0rkd8xTU1ONNm3aGD179jS2bdtmJCUlGZs3bzYSExMtzrzkyu+YL1682HBzczMWL15sJCUlGevXrzf8/f2N4cOHW5x5ybV27Vrj1VdfNT777DNDkrFy5cqbxh89etTw8PAwoqOjjX379hnvvfee4eLiYsTExFiTMPKFGsl61EjWo0ayHjWS9aiRrFfWaiQaUgXUtm1bIzIy0ryfmZlpBAQEGFOmTMk1/vHHHzfCwsLslrVr1874+9//XqR5lib5HfPrZWRkGJUrVzYWLVpUVCmWOgUZ84yMDKNDhw7G/PnzjYiICIqtfMrvmM+ZM8eoW7eukZaWZlWKpU5+xzwyMtK4//777ZZFR0cb99xzT5HmWVrlpdgaOXKkceedd9ote+KJJ4zQ0NAizAwFRY1kPWok61EjWY8ayXrUSI5VFmokfrJXAGlpaUpISFBISIi5zNnZWSEhIYqPj8/1MfHx8XbxkhQaGnrDeNgryJhf7/Lly0pPT1fVqlWLKs1SpaBjPmnSJPn4+GjAgAFWpFmqFGTMv/jiCwUHBysyMlK+vr5q1qyZ3njjDWVmZlqVdolWkDHv0KGDEhISzFPWjx49qrVr16pnz56W5FwW8RlaclAjWY8ayXrUSNajRrIeNVLJUNI/Q8s5OoGS6Pfff1dmZqZ8fX3tlvv6+urAgQO5PiY5OTnX+OTk5CLLszQpyJhfb9SoUQoICMjxgkXuCjLm27Zt00cffaTExEQLMix9CjLmR48e1aZNm/TUU09p7dq1Onz4sJ577jmlp6dr/PjxVqRdohVkzJ988kn9/vvv6tixowzDUEZGhoYMGaJXXnnFipTLpBt9htpsNl25ckUVKlRwUGa4HjWS9aiRrEeNZD1qJOtRI5UMJb1G4gwplAlvvvmmli5dqpUrV8rd3d3R6ZRKFy5c0NNPP60PP/xQ1atXd3Q6ZUZWVpZ8fHw0b948BQUF6YknntCrr76quXPnOjq1Umvz5s1644039P777+uHH37QZ599pjVr1mjy5MmOTg0A8o0aqehRIzkGNZL1qJGQX5whVQDVq1eXi4uLTp06Zbf81KlT8vPzy/Uxfn5++YqHvYKMebZp06bpzTff1MaNG9WiRYuiTLNUye+YHzlyRMeOHVOvXr3MZVlZWZKkcuXK6eDBg6pXr17RJl3CFeTv3N/fX+XLl5eLi4u5rEmTJkpOTlZaWppcXV2LNOeSriBj/o9//ENPP/20Bg4cKElq3ry5Ll26pMGDB+vVV1+VszPf9RS2G32Genp6Fvtv/soaaiTrUSNZjxrJetRI1qNGKhlKeo3EX0QBuLq6KigoSHFxceayrKwsxcXFKTg4ONfHBAcH28VLUmxs7A3jYa8gYy5JU6dO1eTJkxUTE6M2bdpYkWqpkd8xb9y4sXbv3q3ExETz9te//lX33XefEhMTFRgYaGX6JVJB/s7vueceHT582CxsJen//u//5O/vT6GVBwUZ88uXL+coqLKLXcMwii7ZMozP0JKDGsl61EjWo0ayHjWS9aiRSoYS/xnq2DnVS66lS5cabm5uxsKFC419+/YZgwcPNry9vY3k5GTDMAzj6aefNkaPHm3Gf/PNN0a5cuWMadOmGfv37zfGjx/PJY3zKb9j/uabbxqurq7Gp59+apw8edK8XbhwwVGHUOLkd8yvxxVk8i+/Y378+HGjcuXKRlRUlHHw4EFj9erVho+Pj/Haa6856hBKnPyO+fjx443KlSsbn3zyiXH06FFjw4YNRr169YzHH3/cUYdQ4ly4cMHYtWuXsWvXLkOSMX36dGPXrl3Gzz//bBiGYYwePdp4+umnzfjsSxqPGDHC2L9/vzF79uwSdUnjsoYayXrUSNajRrIeNZL1qJGsV9ZqJBpSt+G9994z7rjjDsPV1dVo27at8e2335rr7r33XiMiIsIufvny5UbDhg0NV1dX48477zTWrFljccYlX37GvFatWoakHLfx48dbn3gJlt+/82tRbBVMfsd8+/btRrt27Qw3Nzejbt26xuuvv25kZGRYnHXJlp8xT09PNyZMmGDUq1fPcHd3NwIDA43nnnvOOHfunPWJl1BfffVVru/P2eMcERFh3HvvvTke06pVK8PV1dWoW7eusWDBAsvzRt5RI1mPGsl61EjWo0ayHjWStcpajeRkGJw7BwAAAAAAAOswhxQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZCCJGnChAlycnKyW1a7dm3179+/yPd97NgxOTk5aeHCheay/v37q1KlSkW+72xOTk6aMGGCZfsr6bp06aIuXboU6jZz+xuEvdxeK4Xp0KFD6tatm7y8vOTk5KRVq1YVyX5uR37+Torz6/q5557TAw88cMu4zZs3y8nJSZs3b7Zb/u9//1uNGzdW+fLl5e3tna9979u3T+XKldOePXvy9TigLKNOKr7vp8URdZJjUCdRJ2WjTio5aEihUK1du7bYvrEV59zKisuXL2vChAk5PjTKouL49xgREaHdu3fr9ddf17///W+1adPG0SkVS1lZWZo6darq1Kkjd3d3tWjRQp988kmeH5+UlKT58+frlVdeKdD+Dxw4oP79+6tevXr68MMPNW/ePEnSzp079dxzzykoKEjly5e/YUHatGlThYWFady4cQXaP4CCK47v/dmKc25lBXXS/xTHv0fqpLwpjnVSVlaWFi5cqL/+9a8KDAxUxYoV1axZM7322mu6evWq3eOpkyxmAIZhjB8/3rj+z+Hq1atGWlpavrYTGRmZYzu3kpWVZVy5csXIyMgwl0VERBgVK1bM13ZuJ7crV64Y6enphbq/0uzee+817r333nw/7syZM4YkY/z48TnWpaenG1euXLn95EqIwnqtFJbLly8bkoxXX3210LddmPLzd3Kjv7XbNXr0aEOSMWjQIGPevHlGWFiYIcn45JNP8vT4F1980WjYsGGeYr/66itDkvHVV1+Zy+bMmWNIMg4dOmQXO378eKN8+fJGUFCQ0bBhw5v+fa1du9aQZBw+fDhPeQBlHXUSdVJ+UCfdPuqkgqFOyr1OunDhgiHJaN++vfHaa68Z8+bNM5555hnD2dnZ6NKli5GVlWW3Xeok63CGFG7Izc1N5cuXL7LtZ2RkKC0tTU5OTnJ3d5eLi0uR7etW3N3dVa5cOYft3wpXr15VVlZWrusuXbpkcTY5lStXTu7u7o5Oo1iy4rVy5swZScrTac2O/Htx9N/Jb7/9prfffluRkZGaN2+eBg0apC+//FKdOnXSiBEjlJmZedPHp6ena/HixXr88ccLnMPp06cl5Xyuhg4dqpSUFH3//fe3PM09JCREVapU0aJFiwqcB1DWUSeVLtRJJRd10v84+u+kuNZJrq6u+uabbxQfH69XX31VgwYN0scff6zx48dr8+bNiouLs9sGdZJ1aEiVQdu2bdPdd98td3d31atXTx988EGucdfPjZCenq6JEyeqQYMGcnd3V7Vq1dSxY0fFxsZK+nM+g9mzZ0v68zfJ2Tfpf7/pnjZtmmbMmKF69erJzc1N+/btu+nvvY8eParQ0FBVrFhRAQEBmjRpkgzDMNff6HfD12/zZrllL7v+tOBdu3apR48e8vT0VKVKldS1a1d9++23djELFy6Uk5OTvvnmG0VHR6tGjRqqWLGiHn74YfODKz9+++03DRgwQAEBAXJzc1OdOnU0dOhQpaWl2Y3JY489pqpVq8rDw0Pt27fXmjVr7LaTPS5Lly7V2LFj9Ze//EUeHh6y2WzmvBNHjhxRz549VblyZT311FOS/jzFdsaMGbrzzjvl7u4uX19f/f3vf9e5c+dumndaWprGjRunoKAgeXl5qWLFiurUqZO++uorM+bYsWOqUaOGJGnixInmc5A97rn95j0jI0OTJ082/15q166tV155RampqXZxtWvX1oMPPqht27apbdu2cnd3V926dfWvf/0rf0+A/vxbiIqK0ooVK9S0aVNVqFBBwcHB2r17tyTpgw8+UP369eXu7q4uXbro2LFjdo//+uuv9dhjj+mOO+6Qm5ubAgMDNXz4cF25csWMKazXyunTp1WjRg116dLF7nVx+PBhVaxYUU888USejnnChAmqVauWJGnEiBFycnJS7dq1zXVOTk7at2+fnnzySVWpUkUdO3aUJP3000/q37+/6tatK3d3d/n5+enZZ5/VH3/8kWMfmzdvVps2bezedwoyH0Zuj0lNTdXw4cNVo0YNVa5cWX/961/166+/5njshQsXNGzYMNWuXVtubm7y8fHRAw88oB9++CHP+//888+Vnp6u5557zlzm5OSkoUOH6tdff1V8fPxNH79t2zb9/vvvCgkJybHu119/VXh4uCpWrCgfHx8NHz4817/18ePHS5Jq1Khh9xry9fVVhQoV8nQc5cuXV5cuXfT555/nKR4oS6iTqJOok26MOok66WaKa53k6uqqDh065Njmww8/LEnav3+/3XLqJOuU7q86kMPu3bvVrVs31ahRQxMmTFBGRobGjx8vX1/fWz52woQJmjJligYOHKi2bdvKZrPp+++/1w8//KAHHnhAf//733XixAnFxsbq3//+d67bWLBgga5evarBgwfLzc1NVatWveG3UZmZmerevbvat2+vqVOnKiYmRuPHj1dGRoYmTZqUr+POS27X2rt3rzp16iRPT0+NHDlS5cuX1wcffKAuXbpoy5YtateunV38888/rypVqmj8+PE6duyYZsyYoaioKC1btizPOZ44cUJt27bV+fPnNXjwYDVu3Fi//fabPv30U12+fFmurq46deqUOnTooMuXL+uFF15QtWrVtGjRIv31r3/Vp59+ar6pZps8ebJcXV318ssvKzU1Va6urpL+LGBCQ0PVsWNHTZs2TR4eHuY4LVy4UM8884xeeOEFJSUladasWdq1a5e++eabG34TbLPZNH/+fPXt21eDBg3ShQsX9NFHHyk0NFQ7d+5Uq1atVKNGDc2ZM0dDhw7Vww8/rEceeUSS1KJFixuOycCBA7Vo0SI9+uijeumll7Rjxw5NmTJF+/fv18qVK+1iDx8+rEcffVQDBgxQRESEPv74Y/Xv319BQUG688478/w8SH8WS1988YUiIyMlSVOmTNGDDz6okSNH6v3339dzzz2nc+fOaerUqXr22We1adMm87ErVqzQ5cuXNXToUFWrVk07d+7Ue++9p19//VUrVqwwx7kwXis+Pj6aM2eOHnvsMb333nt64YUXlJWVpf79+6ty5cp6//3383S8jzzyiLy9vTV8+HD17dtXPXv2zDFZ7mOPPaYGDRrojTfeMIu62NhYHT16VM8884z8/Py0d+9ezZs3T3v37tW3335rFkS7du1S9+7d5e/vr4kTJyozM1OTJk0yC+/bNXDgQP3nP//Rk08+qQ4dOmjTpk0KCwvLETdkyBB9+umnioqKUtOmTfXHH39o27Zt2r9/v1q3bp2nfe3atUsVK1ZUkyZN7Ja3bdvWXJ9diOZm+/btcnJy0l133WW3/MqVK+ratauOHz+uF154QQEBAfr3v/9t97clSTNmzNC//vUvrVy5UnPmzFGlSpVu+hq6maCgIH3++eey2Wzy9PQs0DaA0oY6iTpJok66Feok6qQbKWl1UnJysiSpevXqOdZRJ1nEkb8XhPXCw8MNd3d34+effzaX7du3z3BxccnxO+1atWoZERER5v2WLVsaYWFhN93+jX7vnZSUZEgyPD09jdOnT+e6bsGCBeayiIgIQ5Lx/PPPm8uysrKMsLAww9XV1Thz5oxhGLn/bvhG27zZb9F13W+ow8PDDVdXV+PIkSPmshMnThiVK1c2OnfubC5bsGCBIckICQmx++3x8OHDDRcXF+P8+fO57i83/fr1M5ydnY3vvvsux7rsbQ8bNsyQZHz99dfmugsXLhh16tQxateubWRmZhqG8b9xqVu3rnH58mW7bWWP7ejRo+2Wf/3114YkY/HixXbLY2Jiciy/fm6EjIwMIzU11e5x586dM3x9fY1nn33WXHazuRGun58jMTHRkGQMHDjQLu7ll182JBmbNm0yl9WqVcuQZGzdutVcdvr0acPNzc146aWXcuzrZiQZbm5uRlJSkrnsgw8+MCQZfn5+hs1mM5ePGTPGkGQXe/14G4ZhTJkyxXBycrJ73RXWa8UwDKNv376Gh4eH8X//93/GW2+9ZUgyVq1ala/jzt72W2+9Zbc8+3np27dvjsfkdqyffPJJjueiV69ehoeHh/Hbb7+Zyw4dOmSUK1cu3/ND3Ojv5LnnnrOLe/LJJ3P8rXl5eRmRkZH52t/1wsLCjLp16+ZYfunSpVxfV9f729/+ZlSrVi3H8hkzZhiSjOXLl9tts379+jne47LHIPt9MDd5mXtjyZIlhiRjx44dN40DyhLqJOok6qSbo06iTrqZklInZQsJCTE8PT2Nc+fO5VhHnWQNfrJXhmRmZmr9+vUKDw/XHXfcYS5v0qSJQkNDb/l4b29v7d27V4cOHSpwDr17985Xtz8qKsr8d/Ypwmlpadq4cWOBc7iVzMxMbdiwQeHh4apbt6653N/fX08++aS2bdsmm81m95jBgwfbnR7bqVMnZWZm6ueff87TPrOysrRq1Sr16tUr1yt2ZG977dq1atu2rd03C5UqVdLgwYN17Ngx7du3z+5xERERN/wJz9ChQ+3ur1ixQl5eXnrggQf0+++/m7egoCBVqlTJ7rTy67m4uJjfKmZlZens2bPKyMhQmzZt8nWa77XWrl0rSYqOjrZb/tJLL0lSjtPvmzZtqk6dOpn3a9SooUaNGuno0aP53nfXrl3NU7Elmd/09u7dW5UrV86x/Np9XDvely5d0u+//64OHTrIMAzt2rUrzznk57Uya9YseXl56dFHH9U//vEPPf3003rooYfyvK+8GDJkSI5l1x7r1atX9fvvv6t9+/aSZD7vmZmZ2rhxo8LDwxUQEGDG169fXz169LjtvLL/Tl544QW75cOGDcsR6+3trR07dujEiRMF3t+VK1fk5uaWY3n2fA3X/uQgN3/88YeqVKmSY/natWvl7++vRx991Fzm4eGhwYMHFzjXW8nO4/fffy+yfQAlCXVS3lAnUSdRJ+VEnfSnklQnvfHGG9q4caPefPPNXOcGo06yBg2pMuTMmTO6cuWKGjRokGNdo0aNbvn4SZMm6fz582rYsKGaN2+uESNG6KeffspXDnXq1MlzrLOzs12hI0kNGzaUpBy/Ry9MZ86c0eXLl3MdkyZNmigrK0u//PKL3fJrC1fpf29gt5pT4Np92mw2NWvW7KZxP//88w3zyl5/rRuNd7ly5VSzZk27ZYcOHVJKSop8fHxUo0YNu9vFixfNCQJvZNGiRWrRooU5b0aNGjW0Zs0apaSk3PRxN/Lzzz/L2dlZ9evXt1vu5+cnb2/vHMd6/XMg/fk85PU5uNm2vLy8JEmBgYG5Lr92H8ePH1f//v1VtWpVVapUSTVq1NC9994rSfkai/y8VqpWrap3331XP/30k7y8vPTuu+/m+bG3k8/Zs2f14osvmnMX1ahRw4zLPtbTp0/rypUrOZ5HSbkuy6/sv5N69erZLc/tdTJ16lTt2bNHgYGBatu2rSZMmJDvQrxChQo55iuQZF4yOC9zOBnXzGOR7eeff1b9+vVzzPuQl/fmgsrOI7/zUwClFXVS3lAnUSdRJ+UtH+qk/yluddKyZcs0duxYDRgwIEfz+fo8qJOKFnNIIc86d+6sI0eO6PPPP9eGDRs0f/58vfPOO5o7d64GDhyYp23kdcLdvLrRG8StruBQ2G50NY/c3lCtdKPxdnNzk7OzfT86KytLPj4+Wrx4ca6Pudm3UP/5z3/Uv39/hYeHa8SIEfLx8ZGLi4umTJmiI0eOFPwAlPcPgcJ8Dm60rVvtIzMzUw888IDOnj2rUaNGqXHjxqpYsaJ+++039e/f/4bzgOQmv6+V9evXS/qz6Pv111/zdBWY/Mgtn8cff1zbt2/XiBEj1KpVK1WqVElZWVnq3r17vo7VKo8//rg6deqklStXasOGDXrrrbf0z3/+U5999lmev4X09/fXV199JcMw7P42T548KUl2327mplq1agUq/otCdh65zZsAIP+ok26MOok6SaJOok4qHnVSbGys+vXrp7CwMM2dO/eGcdRJ1qAhVYbUqFFDFSpUyPVU8oMHD+ZpG1WrVtUzzzyjZ555RhcvXlTnzp01YcIEs9AqzA5yVlaWjh49an7bJ0n/93//J0nmacLZ37CdP3/e7rG5nQKe19xq1KghDw+PXMfkwIEDcnZ2zvEN0O2qUaOGPD09tWfPnpvG1apV64Z5Za8vqHr16mnjxo2655578v0h/+mnn6pu3br67LPP7MY5+yoX2fLz91GrVi1lZWXp0KFDdhMjnjp1SufPn7+tYy0qu3fv1v/93/9p0aJF6tevn7k8+wpL1yrM10pMTIzmz5+vkSNHavHixYqIiNCOHTuK9BLd586dU1xcnCZOnKhx48aZy69/f/Hx8ZG7u7sOHz6cYxu5Lcuv7L+TI0eO2H1LdqP3NH9/fz333HN67rnndPr0abVu3Vqvv/56ngutVq1aaf78+dq/f7+aNm1qLt+xY4e5/mYaN26sxYsXKyUlxfzmOPs49uzZk6OAy+t7c0EkJSXJ2dnZ7j0WKMuok6iTboY66fZRJ1EnObpO2rFjhx5++GG1adNGy5cvv+nfAHWSNfjJXhni4uKi0NBQrVq1SsePHzeX79+/3/zW4Gauv0RppUqVVL9+fbvTMitWrCgpZ+FTULNmzTL/bRiGZs2apfLly6tr166S/nxzcnFx0datW+0el9tVM/Kam4uLi7p166bPP//c7pT3U6dOacmSJerYsWOhX2nB2dlZ4eHh+vLLL/X999/nWJ/9zVLPnj21c+dOu0umXrp0SfPmzVPt2rXt3vjz6/HHH1dmZqYmT56cY11GRsZNxy37G7Frv2XbsWNHjku7Zl+lJi9/Hz179pT059UyrjV9+nRJyvXqII6W2zgYhqGZM2fmiC2s18r58+fNKzq98cYbmj9/vn744Qe98cYbt7XdW8ntWKWcz5eLi4tCQkK0atUquzkJDh8+rHXr1t12HtkF0vWn31+fR2ZmZo6fAvj4+CggICDXU8tv5KGHHlL58uXt3mMMw9DcuXP1l7/8JddLCl8rODhYhmEoISHBbnnPnj114sQJffrpp+ayy5cva968eXnOLb8SEhJ055132hV8QFlGnUSddDPUSbePOok6yZF10v79+xUWFqbatWtr9erVt2wsUydZgzOkypiJEycqJiZGnTp10nPPPaeMjAy99957uvPOO285z0HTpk3VpUsXBQUFqWrVqvr+++/NS4NmCwoKkvTnxHmhoaFycXFRnz59CpSru7u7YmJiFBERoXbt2mndunVas2aNXnnlFfO0aC8vL/NSrk5OTqpXr55Wr16d6+/485Pba6+9ptjYWHXs2FHPPfecypUrpw8++ECpqamaOnVqgY7nVt544w1t2LBB9957rwYPHqwmTZro5MmTWrFihbZt2yZvb2+NHj1an3zyiXr06KEXXnhBVatW1aJFi5SUlKT//ve/OU4vz497771Xf//73zVlyhQlJiaqW7duKl++vA4dOqQVK1Zo5syZdhMJXuvBBx/UZ599pocfflhhYWFKSkrS3Llz1bRpU128eNGMq1Chgpo2baply5apYcOGqlq1qpo1a5brnBAtW7ZURESE5s2bp/Pnz+vee+/Vzp07tWjRIoWHh+u+++4r8LEWlcaNG6tevXp6+eWX9dtvv8nT01P//e9/cz31uLBeKy+++KL++OMPbdy4US4uLurevbsGDhyo1157TQ899JBatmx528eVG09PT3Xu3FlTp05Venq6/vKXv2jDhg1KSkrKETthwgRt2LBB99xzj4YOHarMzEzNmjVLzZo1U2Ji4m3l0apVK/Xt21fvv/++UlJS1KFDB8XFxeX4VvHChQuqWbOmHn30UbVs2VKVKlXSxo0b9d133+ntt9/O8/5q1qypYcOG6a233lJ6erruvvturVq1Sl9//bUWL158w58rZOvYsaOqVaumjRs36v777zeXDxo0SLNmzVK/fv2UkJAgf39//fvf/zb/c5IXP//8s3l57Oz/sL322muS/vxP6dNPP23Gpqena8uWLXruuefyvH2gLKBOok66Eeqk20edRJ3kqDrpwoULCg0N1blz5zRixIgck/7Xq1dPwcHB5n3qJAsV/YX8UNxs2bLFCAoKMlxdXY26desac+fOzXGJUMPIeTnj1157zWjbtq3h7e1tVKhQwWjcuLHx+uuvG2lpaWZMRkaG8fzzzxs1atQwnJyczG3e6FKp1667/nLGFStWNI4cOWJ069bN8PDwMHx9fY3x48ebl+zNdubMGaN3796Gh4eHUaVKFePvf/+7sWfPnhzbvFFuhpHzcsaGYRg//PCDERoaalSqVMnw8PAw7rvvPmP79u12MdmXM77+EsQ3uszyrfz8889Gv379jBo1ahhubm5G3bp1jcjISLtLBR85csR49NFHDW9vb8Pd3d1o27atsXr16lz3v2LFihz7yB7bG5k3b54RFBRkVKhQwahcubLRvHlzY+TIkcaJEyfMmOsvZ5yVlWW88cYbRq1atQw3NzfjrrvuMlavXm1EREQYtWrVstv+9u3bzb+/a8c9t7/B9PR0Y+LEiUadOnWM8uXLG4GBgcaYMWOMq1ev2sXVqlUr10ttX59nXkjKccnbG/395jbO+/btM0JCQoxKlSoZ1atXNwYNGmT8+OOPef57zM9r5fPPPzckGW+//bZdnM1mM2rVqmW0bNnS7vV5M7e6nHFul8799ddfjYcfftjw9vY2vLy8jMcee8w4ceJErq+nuLg446677jJcXV2NevXqGfPnzzdeeuklw93dPU/5XZ/Pta5cuWK88MILRrVq1YyKFSsavXr1Mn755Re7PFJTU40RI0YYLVu2NCpXrmxUrFjRaNmypfH+++/na/+GYRiZmZnm37urq6tx5513Gv/5z3/y/PgXXnjBqF+/fo7lP//8s/HXv/7V8PDwMKpXr268+OKL5uXE83I54+y/x9xu178O1q1bZ0gyDh06lK9jB8oC6iTqJOqkG6NOok66leJYJ2U/fze6XftebhjUSVZyMgwHzyYIACiTwsPDb/sS6SXR0aNH1bhxY61bt878WY3VwsPD5eTkpJUrVzpk/wAA4Oaok6iTygLmkAIAFLkrV67Y3T906JDWrl2rLl26OCYhB6pbt64GDBigN9980yH7379/v1avXp3rPCgAAMB61En/Q51UtnCGFFDELl68aDc/QG5q1Khxy99U4/YkJyffdH2FChVK5aSFV65cyTFJ5fWqVq0qV1fXIs3D399f/fv3V926dfXzzz9rzpw5Sk1N1a5du9SgQQOlpKTkKMau5+fnV2T5FZdxAoCyhjqpeKBOujHqpOIzTiiFHPuLQaD0y/4d881uSUlJjk6z1LvVc3D9b8dLi+z5O252y+8cHgXRv39/c+4MT09PIzQ01EhISDDXR0RE3DLPolRcxgkAyhrqpOKBOok66WaKyzih9OEMKaCIHT16VEePHr1pTMeOHeXu7m5RRmXTxo0bb7o+ICDgti4HXVydPHlSe/fuvWlMUFCQqlSpYlFGudu3b5/d5Y5zExISUmT7LynjBAClDXVS8UCddGPF4fOfOgmlFQ0pAAAAAAAAWIpJzQEAAAAAAGCpco5OwJGysrJ04sQJVa5cWU5OTo5OBwAAWMAwDF24cEEBAQFydua7udxQIwEAUPZYXSOV6YbUiRMnFBgY6Og0AACAA/zyyy+qWbOmo9MolqiRAAAou6yqkcp0Q6py5cqS/hxsT09PB2cDAACsYLPZFBgYaNYByIkaCQCAssfqGqlMN6SyT0H39PSk2AIAoIzhp2g3Ro0EAEDZZVWNxMQJAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsVabnkAIA4GYyMzOVnp7u6DSQT+XLl5eLi4uj0wAAoNSiRiqZiluNREMKAIDrGIah5ORknT9/3tGpoIC8vb3l5+fHxOUAABQiaqSSrzjVSDSkAAC4Tnah5ePjIw8Pj2LxgY28MQxDly9f1unTpyVJ/v7+Ds4IAIDSgxqp5CqONRINKQAArpGZmWkWWtWqVXN0OiiAChUqSJJOnz4tHx+fYnVqOgAAJRU1UslX3GokJjUHAOAa2fMheHh4ODgT3I7s54/5LQAAKBzUSKVDcaqRaEgBAJALTkEv2Xj+AAAoGnzGlmzF6fmjIQUAAAAAAABL0ZACAAAAAACApZjUHACAPEqP2WbZvsp375jn2Fudej1+/HhNmDDhNjMqGCcnJ61cuVLh4eEF3sa8efO0ZMkS/fDDD7pw4YLOnTsnb2/vQssRAADcHitrJIk6KdvZs2c1fvx4bdiwQcePH1eNGjUUHh6uyZMny8vLq3CTLQI0pACUWdd/cObngw0oTk6ePGn+e9myZRo3bpwOHjxoLqtUqVK+tpeWliZXV9dCy+92Xb58Wd27d1f37t01ZswYR6eDQpDbf1x4DwYAFIXSXCedOHFCJ06c0LRp09S0aVP9/PPPGjJkiE6cOKFPP/3U0endEj/ZAwCghPPz8zNvXl5ecnJyMu9funRJTz31lHx9fVWpUiXdfffd2rhxo93ja9eurcmTJ6tfv37y9PTU4MGDJUkffvihAgMD5eHhoYcffljTp0/PcWbS559/rtatW8vd3V1169bVxIkTlZGRYW5Xkh5++GE5OTmZ93/88Ufdd999qly5sjw9PRUUFKTvv//+hsc3bNgwjR49Wu3bty+cAQMAAGVGaa6TmjVrpv/+97/q1auX6tWrp/vvv1+vv/66vvzyS3M/xRkNKQAASrGLFy+qZ8+eiouL065du9S9e3f16tVLx48ft4ubNm2aWrZsqV27dukf//iHvvnmGw0ZMkQvvviiEhMT9cADD+j111+3e8zXX3+tfv366cUXX9S+ffv0wQcfaOHChWbcd999J0lasGCBTp48ad5/6qmnVLNmTX333XdKSEjQ6NGjVb58eQtGAwAA4H9KY52UkpIiT09PlStX/H8QV/wzBAAABdayZUu1bNnSvD958mStXLlSX3zxhaKioszl999/v1566SXz/quvvqoePXro5ZdfliQ1bNhQ27dv1+rVq82YiRMnavTo0YqIiJAk1a1bV5MnT9bIkSM1fvx41ahRQ5Lk7e0tPz8/83HHjx/XiBEj1LhxY0lSgwYNiuDIAQAAbq601Um///67Jk+ebJ7FVdxxhhQAAKXYxYsX9fLLL6tJkyby9vZWpUqVtH///hzf/LVp08bu/sGDB9W2bVu7Zdff//HHHzVp0iRVqlTJvA0aNEgnT57U5cuXb5hTdHS0Bg4cqJCQEL355ps6cuTIbR4lAABA/pWmOslmsyksLExNmzZ12CTt+UVDCgCAUuzll1/WypUr9cYbb+jrr79WYmKimjdvrrS0NLu4ihUr5nvbFy9e1MSJE5WYmGjedu/erUOHDsnd3f2Gj5swYYL27t2rsLAwbdq0SU2bNtXKlSvzvX8AAIDbUVrqpAsXLqh79+6qXLmyVq5cWWKmQuAnewAAlGLffPON+vfvr4cffljSn8XRsWPHbvm4Ro0amXMZZLv+fuvWrXXw4EHVr1//htspX768MjMzcyxv2LChGjZsqOHDh6tv375asGCBmSMAAIAVSkOdZLPZFBoaKjc3N33xxRc3bXYVNzSkAAAoxRo0aKDPPvtMvXr1kpOTk/7xj38oKyvrlo97/vnn1blzZ02fPl29evXSpk2btG7dOjk5OZkx48aN04MPPqg77rhDjz76qJydnfXjjz9qz549eu211yT9eQWZuLg43XPPPXJzc5O7u7tGjBihRx99VHXq1NGvv/6q7777Tr17975hLsnJyUpOTtbhw4clSbt371blypV1xx13qGrVqrc5QgAAoKwq6XWSzWZTt27ddPnyZf3nP/+RzWaTzWaTJNWoUUMuLi6FMEpFh5/sAQBQik2fPl1VqlRRhw4d1KtXL4WGhqp169a3fNw999yjuXPnavr06WrZsqViYmI0fPhwu2/dQkNDtXr1am3YsEF333232rdvr3feeUe1atUyY95++23FxsYqMDBQd911l1xcXPTHH3+oX79+atiwoR5//HH16NFDEydOvGEuc+fO1V133aVBgwZJkjp37qy77rpLX3zxxW2MDAAAKOtKep30ww8/aMeOHdq9e7fq168vf39/8/bLL7/c/gAVMSfDMAxHJ+EoNptNXl5e5mURAZQt6THb7O6X797RQZmgOLl69aqSkpJUp06dEnXKsxUGDRqkAwcO6Ouvv3Z0Krd0s+eRz/9bK+oxuv79V+I9GACKO2qkmyspdVJxqpH4yR4AAMjVtGnT9MADD6hixYpat26dFi1apPfff9/RaQEAADgcddLtoyEFAABytXPnTk2dOlUXLlxQ3bp19e6772rgwIGOTgsAAMDhqJNuHw0pAACQq+XLlzs6BQAAgGKJOun2Mak5AAAAAAAALJWvhtSUKVN09913q3LlyvLx8VF4eLgOHjxoF9OlSxc5OTnZ3YYMGWIXc/z4cYWFhcnDw0M+Pj4aMWKEMjIy7GI2b96s1q1by83NTfXr19fChQtz5DN79mzVrl1b7u7uateunXbu3JmfwwEAAAAAAIAD5KshtWXLFkVGRurbb79VbGys0tPT1a1bN126dMkubtCgQTp58qR5mzp1qrkuMzNTYWFhSktL0/bt27Vo0SItXLhQ48aNM2OSkpIUFham++67T4mJiRo2bJgGDhyo9evXmzHLli1TdHS0xo8frx9++EEtW7ZUaGioTp8+XdCxAAAAAAAAgAXyNYdUTEyM3f2FCxfKx8dHCQkJ6ty5s7ncw8NDfn5+uW5jw4YN2rdvnzZu3ChfX1+1atVKkydP1qhRozRhwgS5urpq7ty5qlOnjt5++21JUpMmTbRt2za98847Cg0NlSRNnz5dgwYN0jPPPCNJmjt3rtasWaOPP/5Yo0ePzs9hAQAAAAAAwEK3NYdUSkqKJKlq1ap2yxcvXqzq1aurWbNmGjNmjC5fvmyui4+PV/PmzeXr62suCw0Nlc1m0969e82YkJAQu22GhoYqPj5ekpSWlqaEhAS7GGdnZ4WEhJgxAAAAAAAAKJ4K3JDKysrSsGHDdM8996hZs2bm8ieffFL/+c9/9NVXX2nMmDH697//rb/97W/m+uTkZLtmlCTzfnJy8k1jbDabrly5ot9//12ZmZm5xmRvIzepqamy2Wx2NwAAgNs1Z84ctWjRQp6envL09FRwcLDWrVtnrmeOTQAAAHv5+snetSIjI7Vnzx5t27bNbvngwYPNfzdv3lz+/v7q2rWrjhw5onr16hU800IwZcoUTZw40aE5AACA0qdmzZp688031aBBAxmGoUWLFumhhx7Srl27dOedd0r6c47NSZMmmY/x8PAw/509x6afn5+2b9+ukydPql+/fipfvrzeeOMNSf+bY3PIkCFavHix4uLiNHDgQPn7+5tTGmTPsTl37ly1a9dOM2bMUGhoqA4ePCgfHx8LRwQAAODmCtSQioqK0urVq7V161bVrFnzprHt2rWTJB0+fFj16tWTn59fjm/qTp06JUnmvFN+fn7msmtjPD09VaFCBbm4uMjFxSXXmBvNXSVJY8aMUXR0tHnfZrMpMDDwFkcLAMCfjnz/gWX7qtfm7/mK79+/vxYtWiRJKleunKpWraoWLVqob9++6t+/v5ydb+tX+g61d+9ejRs3TgkJCfr555/1zjvvaNiwYY5Oy06vXr3s7r/++uuaM2eOvv32W7MhxRybAIDSysoaSaJOutaHH36of/3rX9qzZ48kKSgoSG+88Ybatm3r4MxuLV+jbhiGoqKitHLlSm3atEl16tS55WMSExMlSf7+/pKk4OBg7d692+5qeLGxsfL09FTTpk3NmLi4OLvtxMbGKjg4WJLk6uqqoKAgu5isrCzFxcWZMblxc3MzT6XPvgEAUFp0795dJ0+e1LFjx7Ru3Trdd999evHFF/Xggw/m+OlXSXL58mXVrVtXb7755k2/eCouMjMztXTpUl26dMmuLinOc2wyrQEAoLQrrXXS5s2b1bdvX3311VeKj49XYGCgunXrpt9++83Rqd1SvhpSkZGR+s9//qMlS5aocuXKSk5OVnJysq5cuSJJOnLkiCZPnqyEhAQdO3ZMX3zxhfr166fOnTurRYsWkqRu3bqpadOmevrpp/Xjjz9q/fr1Gjt2rCIjI+Xm5iZJGjJkiI4ePaqRI0fqwIEDev/997V8+XINHz7czCU6OloffvihFi1apP3792vo0KG6dOmS+Y0gAABljZubm/z8/PSXv/xFrVu31iuvvKLPP/9c69ats5tr6Pz58xo4cKBq1KghT09P3X///frxxx/ttvXll1/q7rvvlru7u6pXr66HH37YXHfu3Dn169dPVapUkYeHh3r06KFDhw5Jki5duiRPT099+umndttbtWqVKlasqAsXLigtLU1RUVHy9/eXu7u7atWqpSlTptzwuO6++2699dZb6tOnj1krFEe7d+9WpUqV5ObmpiFDhmjlypXml23FeY5N6c9pDby8vMwbZ5ADAEqb0lonLV68WM8995xatWqlxo0ba/78+eYJO8VdvhpSc+bMUUpKirp06SJ/f3/ztmzZMkl/nrm0ceNGdevWTY0bN9ZLL72k3r1768svvzS34eLiotWrV8vFxUXBwcH629/+pn79+tnNqVCnTh2tWbNGsbGxatmypd5++23Nnz/fPB1dkp544glNmzZN48aNU6tWrZSYmKiYmJgcRRgAAGXZ/fffr5YtW+qzzz4zlz322GM6ffq01q1bp4SEBLVu3Vpdu3bV2bNnJUlr1qzRww8/rJ49e2rXrl2Ki4uzO+27f//++v777/XFF18oPj5ehmGoZ8+eSk9PV8WKFdWnTx8tWLDALo8FCxbo0UcfVeXKlfXuu+/qiy++0PLly3Xw4EEtXrxYtWvXtmQ8ilKjRo2UmJioHTt2aOjQoYqIiNC+ffsk/TnHZmhoqJo3b66nnnpK//rXv7Ry5UodOXLEwVn/acyYMUpJSTFvv/zyi6NTAgCgyJXGOuny5ctKT09X1apVb29wLJCvOaQMw7jp+sDAQG3ZsuWW26lVq5bWrl1705guXbpo165dN42JiopSVFTULfcHALk5dn6d3f0G6uigTICi1bhxY/3000+SpG3btmnnzp06ffq0ebbRtGnTtGrVKn366acaPHiwXn/9dfXp08fuQiAtW7aUJB06dEhffPGFvvnmG3Xo0EHSn9/MBQYGatWqVXrsscc0cOBAdejQQSdPnpS/v79Onz6ttWvXauPGjZL+vJpcgwYN1LFjRzk5OalWrVpWDkeRcXV1Vf369SX9OX/Dd999p5kzZ+qDD3LOq1Gc5tiU/vzWuDiffQYAQFEpbXXSqFGjFBAQkONn/sVRyZ25CwAA5IlhGHJycpIk/fjjj7p48aKqVaumSpUqmbekpCTzbJ3ExER17do1123t379f5cqVMxsqklStWjU1atRI+/fvlyS1bdtWd955pzl56H/+8x/VqlVLnTt3lvTnN4eJiYlq1KiRXnjhBW3YsKHIjt2RsrKylJqamuu64jTHJgAAZVlpqpPefPNNLV26VCtXrpS7u3v+B8NiBbrKHgAAKDn2799vXojk4sWL8vf31+bNm3PEeXt7S5IqVKhw2/scOHCgZs+erdGjR2vBggV65plnzGKvdevWSkpK0rp167Rx40Y9/vjjCgkJyTGfQkkyZswY9ejRQ3fccYcuXLigJUuWaPPmzVq/fr2OHDmiJUuWqGfPnqpWrZp++uknDR8+/IZzbE6dOlXJycm5zrE5a9YsjRw5Us8++6w2bdqk5cuXa82aNWYe0dHRioiIUJs2bdS2bVvNmDGDOTYBALiJ0lInTZs2TW+++aY2btxo1hfFHWdIAQBQim3atEm7d+9W7969Jf1Z5CQnJ6tcuXKqX7++3a169eqSpBYtWtxwIswmTZooIyNDO3bsMJf98ccfOnjwoHkmjyT97W9/088//6x3331X+/btU0REhN12PD099cQTT+jDDz/UsmXL9N///tecm6EkOn36tPr166dGjRqpa9eu+u6777R+/Xo98MADzLEJAEAxVVrqpKlTp2ry5MmKiYlRmzZtCjweVuMMKQAASonU1FQlJycrMzNTp06dUkxMjKZMmaIHH3xQ/fr1kySFhIQoODhY4eHhmjp1qho2bKgTJ06YE3S2adNG48ePV9euXVWvXj316dNHGRkZWrt2rUaNGqUGDRrooYce0qBBg/TBBx+ocuXKGj16tP7yl7/ooYceMnOpUqWKHnnkEY0YMULdunVTzZo1zXXTp0+Xv7+/7rrrLjk7O2vFihXy8/Mzv3m8Xlpamjk5eFpamn777TclJiaqUqVK5pxNjvbRRx/dcB1zbAIA4HiltU765z//qXHjxmnJkiWqXbu2eWXd7J8bFmecIQUAQCkRExMjf39/1a5dW927d9dXX32ld999V59//rlcXFwkSU5OTlq7dq06d+6sZ555Rg0bNlSfPn30888/m2fRdOnSRStWrNAXX3yhVq1a6f7777ebcHvBggUKCgrSgw8+qODgYBmGobVr16p8+fJ2+QwYMEBpaWl69tln7ZZXrlxZU6dOVZs2bXT33Xfr2LFjWrt2rZydcy9LTpw4obvuukt33XWXTp48qWnTpumuu+7SwIEDC3P4AABAKVZa66Q5c+YoLS1Njz76qPz9/c3btGnTCnP4ioSTcatL55ViNptNXl5eSklJkaenp6PTAWCxQ0tftbvfoM/rDsoExcnVq1eVlJSkOnXqlIjJIIuzf//73xo+fLhOnDghV1dXS/d9s+eRz/9bK+oxSo/ZlmNZ+e5c6RQAijNqpMLlqDqpONVI/GQPAAAUqsuXL+vkyZN688039fe//93yZhQAAEBxRZ30P/xkDwAAFKqpU6eqcePG8vPz05gxYxydDgAAQLFBnfQ/NKQAAEChmjBhgtLT0xUXF1fsJ9MEAACwEnXS/9CQAgAAAAAAgKVoSAEAkIsyfM2PUoHnDwCAosFnbMlWnJ4/GlIAAFwj+5K8ly9fdnAmuB3Zz9/1l1gGAAAFQ41UOhSnGomr7AEAcA0XFxd5e3vr9OnTkiQPDw85OTk5OCvklWEYunz5sk6fPi1vb2+5uLg4OiUAAEoFaqSSrTjWSDSkAAC4jp+fnySZBRdKHm9vb/N5BAAAhYMaqeQrTjUSDSkAAK7j5OQkf39/+fj4KD093dHpIJ/Kly9fLL71AwCgtKFGKtmKW41EQwoAgBtwcXEpVh/aAAAAxQE1EgoDk5oDAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAABu05w5c9SiRQt5enrK09NTwcHBWrdunbn+6tWrioyMVLVq1VSpUiX17t1bp06dstvG8ePHFRYWJg8PD/n4+GjEiBHKyMiwi9m8ebNat24tNzc31a9fXwsXLsyRy+zZs1W7dm25u7urXbt22rlzZ5EcMwAAwO2gIQUAAHCbatasqTfffFMJCQn6/vvvdf/99+uhhx7S3r17JUnDhw/Xl19+qRUrVmjLli06ceKEHnnkEfPxmZmZCgsLU1pamrZv365FixZp4cKFGjdunBmTlJSksLAw3XfffUpMTNSwYcM0cOBArV+/3oxZtmyZoqOjNX78eP3www9q2bKlQkNDdfr0aesGAwAAIA+cDMMwHJ2Eo9hsNnl5eSklJUWenp6OTgeAxQ4tfdXufoM+rzsoEwBWsurzv2rVqnrrrbf06KOPqkaNGlqyZIkeffRRSdKBAwfUpEkTxcfHq3379lq3bp0efPBBnThxQr6+vpKkuXPnatSoUTpz5oxcXV01atQorVmzRnv27DH30adPH50/f14xMTGSpHbt2unuu+/WrFmzJElZWVkKDAzU888/r9GjR+c596Ieo/SYbTmWle/esdD3AwAA8s7qHglnSAEAABSizMxMLV26VJcuXVJwcLASEhKUnp6ukJAQM6Zx48a64447FB8fL0mKj49X8+bNzWaUJIWGhspms5lnWcXHx9ttIzsmextpaWlKSEiwi3F2dlZISIgZAwAAUFyUc3QCAAAApcHu3bsVHBysq1evqlKlSlq5cqWaNm2qxMREubq6ytvb2y7e19dXycnJkqTk5GS7ZlT2+ux1N4ux2Wy6cuWKzp07p8zMzFxjDhw4cNPcU1NTlZqaat632Wx5P3AAAIAC4AwpAACAQtCoUSMlJiZqx44dGjp0qCIiIrRv3z5Hp5UnU6ZMkZeXl3kLDAx0dEoAAKCUoyEFAABQCFxdXVW/fn0FBQVpypQpatmypWbOnCk/Pz+lpaXp/PnzdvGnTp2Sn5+fJMnPzy/HVfey798qxtPTUxUqVFD16tXl4uKSa0z2Nm5kzJgxSklJMW+//PJLvo8fAAAgP2hIAQAAFIGsrCylpqYqKChI5cuXV1xcnLnu4MGDOn78uIKDgyVJwcHB2r17t93V8GJjY+Xp6ammTZuaMdduIzsmexuurq4KCgqyi8nKylJcXJwZcyNubm7y9PS0uwEAABQl5pACAAC4TWPGjFGPHj10xx136MKFC1qyZIk2b96s9evXy8vLSwMGDFB0dLSqVq0qT09PPf/88woODlb79u0lSd26dVPTpk319NNPa+rUqUpOTtbYsWMVGRkpNzc3SdKQIUM0a9YsjRw5Us8++6w2bdqk5cuXa82aNWYe0dHRioiIUJs2bdS2bVvNmDFDly5d0jPPPOOQcQEAALgRGlIAAAC36fTp0+rXr59OnjwpLy8vtWjRQuvXr9cDDzwgSXrnnXfk7Oys3r17KzU1VaGhoXr//ffNx7u4uGj16tUaOnSogoODVbFiRUVERGjSpElmTJ06dbRmzRoNHz5cM2fOVM2aNTV//nyFhoaaMU888YTOnDmjcePGKTk5Wa1atVJMTEyOic4BAAAczckwDMPRSTiKzWaTl5eXUlJSODUdKIMOLX3V7n6DPq87KBMAVuLz/9aKeozSY7blWFa+e8dC3w8AAMg7q2sk5pACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpfDWkpkyZorvvvluVK1eWj4+PwsPDdfDgQbuYq1evKjIyUtWqVVOlSpXUu3dvnTp1yi7m+PHjCgsLk4eHh3x8fDRixAhlZGTYxWzevFmtW7eWm5ub6tevr4ULF+bIZ/bs2apdu7bc3d3Vrl077dy5Mz+HAwAAAAAAAAfIV0Nqy5YtioyM1LfffqvY2Filp6erW7duunTpkhkzfPhwffnll1qxYoW2bNmiEydO6JFHHjHXZ2ZmKiwsTGlpadq+fbsWLVqkhQsXaty4cWZMUlKSwsLCdN999ykxMVHDhg3TwIEDtX79ejNm2bJlio6O1vjx4/XDDz+oZcuWCg0N1enTp29nPAAAAAAAAFDEbusqe2fOnJGPj4+2bNmizp07KyUlRTVq1NCSJUv06KOPSpIOHDigJk2aKD4+Xu3bt9e6dev04IMP6sSJE+YliOfOnatRo0bpzJkzcnV11ahRo7RmzRrt2bPH3FefPn10/vx5xcTESJLatWunu+++W7NmzZIkZWVlKTAwUM8//7xGjx6dp/y5yg5QtnGVPaBs4vP/1rjKHgAAZU+JuspeSkqKJKlq1aqSpISEBKWnpyskJMSMady4se644w7Fx8dLkuLj49W8eXOzGSVJoaGhstls2rt3rxlz7TayY7K3kZaWpoSEBLsYZ2dnhYSEmDG5SU1Nlc1ms7sBAAAAAADAWgVuSGVlZWnYsGG655571KxZM0lScnKyXF1d5e3tbRfr6+ur5ORkM+baZlT2+ux1N4ux2Wy6cuWKfv/9d2VmZuYak72N3EyZMkVeXl7mLTAwMP8HDgAAAAAAgNtS4IZUZGSk9uzZo6VLlxZmPkVqzJgxSklJMW+//PKLo1MCAAAAAAAoc8oV5EFRUVFavXq1tm7dqpo1a5rL/fz8lJaWpvPnz9udJXXq1Cn5+fmZMddfDS/7KnzXxlx/Zb5Tp07J09NTFSpUkIuLi1xcXHKNyd5Gbtzc3OTm5pb/AwYAAAAAAEChydcZUoZhKCoqSitXrtSmTZtUp04du/VBQUEqX7684uLizGUHDx7U8ePHFRwcLEkKDg7W7t277a6GFxsbK09PTzVt2tSMuXYb2THZ23B1dVVQUJBdTFZWluLi4swYAAAAAAAAFE/5OkMqMjJSS5Ys0eeff67KlSub8zV5eXmpQoUK8vLy0oABAxQdHa2qVavK09NTzz//vIKDg9W+fXtJUrdu3dS0aVM9/fTTmjp1qpKTkzV27FhFRkaaZy8NGTJEs2bN0siRI/Xss89q06ZNWr58udasWWPmEh0drYiICLVp00Zt27bVjBkzdOnSJT3zzDOFNTYAAAAAAAAoAvlqSM2ZM0eS1KVLF7vlCxYsUP/+/SVJ77zzjpydndW7d2+lpqYqNDRU77//vhnr4uKi1atXa+jQoQoODlbFihUVERGhSZMmmTF16tTRmjVrNHz4cM2cOVM1a9bU/PnzFRoaasY88cQTOnPmjMaNG6fk5GS1atVKMTExOSY6BwAAAAAAQPHiZBiG4egkHMVms8nLy0spKSny9PR0dDoALHZo6at29xv0ed1BmQCwEp//t1bUY3T9+6/EezAAAI5mdY1U4KvsAQAAAAAAAAVBQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAADAbZoyZYruvvtuVa5cWT4+PgoPD9fBgwftYrp06SInJye725AhQ+xijh8/rrCwMHl4eMjHx0cjRoxQRkaGXczmzZvVunVrubm5qX79+lq4cGGOfGbPnq3atWvL3d1d7dq1086dOwv9mAEAAG4HDSkAAIDbtGXLFkVGRurbb79VbGys0tPT1a1bN126dMkubtCgQTp58qR5mzp1qrkuMzNTYWFhSktL0/bt27Vo0SItXLhQ48aNM2OSkpIUFham++67T4mJiRo2bJgGDhyo9evXmzHLli1TdHS0xo8frx9++EEtW7ZUaGioTp8+XfQDAQAAkEflHJ0AAABASRcTE2N3f+HChfLx8VFCQoI6d+5sLvfw8JCfn1+u29iwYYP27dunjRs3ytfXV61atdLkyZM1atQoTZgwQa6urpo7d67q1Kmjt99+W5LUpEkTbdu2Te+8845CQ0MlSdOnT9egQYP0zDPPSJLmzp2rNWvW6OOPP9bo0aOL4vABAADyjTOkAAAACllKSookqWrVqnbLFy9erOrVq6tZs2YaM2aMLl++bK6Lj49X8+bN5evray4LDQ2VzWbT3r17zZiQkBC7bYaGhio+Pl6SlJaWpoSEBLsYZ2dnhYSEmDG5SU1Nlc1ms7sBAAAUJc6QAgAAKERZWVkaNmyY7rnnHjVr1sxc/uSTT6pWrVoKCAjQTz/9pFGjRungwYP67LPPJEnJycl2zShJ5v3k5OSbxthsNl25ckXnzp1TZmZmrjEHDhy4Yc5TpkzRxIkTC37QAAAA+URDCgAAoBBFRkZqz5492rZtm93ywYMHm/9u3ry5/P391bVrVx05ckT16tWzOk07Y8aMUXR0tHnfZrMpMDDQgRkBAIDSjoYUAABAIYmKitLq1au1detW1axZ86ax7dq1kyQdPnxY9erVk5+fX46r4Z06dUqSzHmn/Pz8zGXXxnh6eqpChQpycXGRi4tLrjE3mrtKktzc3OTm5pa3gwQAACgEzCEFAABwmwzDUFRUlFauXKlNmzapTp06t3xMYmKiJMnf31+SFBwcrN27d9tdDS82Nlaenp5q2rSpGRMXF2e3ndjYWAUHB0uSXF1dFRQUZBeTlZWluLg4MwYAAKA44AwpAACA2xQZGaklS5bo888/V+XKlc05n7y8vFShQgUdOXJES5YsUc+ePVWtWjX99NNPGj58uDp37qwWLVpIkrp166amTZvq6aef1tSpU5WcnKyxY8cqMjLSPHtpyJAhmjVrlkaOHKlnn31WmzZt0vLly7VmzRozl+joaEVERKhNmzZq27atZsyYoUuXLplX3QMAACgOaEgBAADcpjlz5kiSunTpYrd8wYIF6t+/v1xdXbVx40azORQYGKjevXtr7NixZqyLi4tWr16toUOHKjg4WBUrVlRERIQmTZpkxtSpU0dr1qzR8OHDNXPmTNWsWVPz589XaGioGfPEE0/ozJkzGjdunJKTk9WqVSvFxMTkmOgcAADAkWhIAQAA3CbDMG66PjAwUFu2bLnldmrVqqW1a9feNKZLly7atWvXTWOioqIUFRV1y/0BAAA4CnNIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALBUvhtSW7duVa9evRQQECAnJyetWrXKbn3//v3l5ORkd+vevbtdzNmzZ/XUU0/J09NT3t7eGjBggC5evGgX89NPP6lTp05yd3dXYGCgpk6dmiOXFStWqHHjxnJ3d1fz5s21du3a/B4OAAAAAAAALJbvhtSlS5fUsmVLzZ49+4Yx3bt318mTJ83bJ598Yrf+qaee0t69exUbG6vVq1dr69atGjx4sLneZrOpW7duqlWrlhISEvTWW29pwoQJmjdvnhmzfft29e3bVwMGDNCuXbsUHh6u8PBw7dmzJ7+HBAAAAAAAAAuVy+8DevTooR49etw0xs3NTX5+frmu279/v2JiYvTdd9+pTZs2kqT33ntPPXv21LRp0xQQEKDFixcrLS1NH3/8sVxdXXXnnXcqMTFR06dPNxtXM2fOVPfu3TVixAhJ0uTJkxUbG6tZs2Zp7ty5+T0sAAAAAAAAWKRI5pDavHmzfHx81KhRIw0dOlR//PGHuS4+Pl7e3t5mM0qSQkJC5OzsrB07dpgxnTt3lqurqxkTGhqqgwcP6ty5c2ZMSEiI3X5DQ0MVHx9fFIcEAAAAAACAQpLvM6RupXv37nrkkUdUp04dHTlyRK+88op69Oih+Ph4ubi4KDk5WT4+PvZJlCunqlWrKjk5WZKUnJysOnXq2MX4+vqa66pUqaLk5GRz2bUx2dvITWpqqlJTU837Npvtto4VAAAAAAAA+VfoDak+ffqY/27evLlatGihevXqafPmzeratWth7y5fpkyZookTJzo0BwAAAAAAgLKuSH6yd626deuqevXqOnz4sCTJz89Pp0+ftovJyMjQ2bNnzXmn/Pz8dOrUKbuY7Pu3irnR3FWSNGbMGKWkpJi3X3755fYODgAAAAAAAPlW5A2pX3/9VX/88Yf8/f0lScHBwTp//rwSEhLMmE2bNikrK0vt2rUzY7Zu3ar09HQzJjY2Vo0aNVKVKlXMmLi4OLt9xcbGKjg4+Ia5uLm5ydPT0+4GAAAAAAAAa+W7IXXx4kUlJiYqMTFRkpSUlKTExEQdP35cFy9e1IgRI/Ttt9/q2LFjiouL00MPPaT69esrNDRUktSkSRN1795dgwYN0s6dO/XNN98oKipKffr0UUBAgCTpySeflKurqwYMGKC9e/dq2bJlmjlzpqKjo808XnzxRcXExOjtt9/WgQMHNGHCBH3//feKiooqhGEBAAAAAABAUcl3Q+r777/XXXfdpbvuukuSFB0drbvuukvjxo2Ti4uLfvrpJ/31r39Vw4YNNWDAAAUFBenrr7+Wm5ubuY3FixercePG6tq1q3r27KmOHTtq3rx55novLy9t2LBBSUlJCgoK0ksvvaRx48Zp8ODBZkyHDh20ZMkSzZs3Ty1bttSnn36qVatWqVmzZrczHgAAAAAAAChi+W5IdenSRYZh5LgtXLhQFSpU0Pr163X69GmlpaXp2LFjmjdvXo6r4VWtWlVLlizRhQsXlJKSoo8//liVKlWyi2nRooW+/vprXb16Vb/++qtGjRqVI5fHHntMBw8eVGpqqvbs2aOePXvm93AAAABu25QpU3T33XercuXK8vHxUXh4uA4ePGgXc/XqVUVGRqpatWqqVKmSevfunWM+zOPHjyssLEweHh7y8fHRiBEjlJGRYRezefNmtW7dWm5ubqpfv74WLlyYI5/Zs2erdu3acnd3V7t27bRz585CP2YAAIDbUeRzSAEAAJR2W7ZsUWRkpL799lvFxsYqPT1d3bp106VLl8yY4cOH68svv9SKFSu0ZcsWnThxQo888oi5PjMzU2FhYUpLS9P27du1aNEiLVy4UOPGjTNjkpKSFBYWpvvuu0+JiYkaNmyYBg4cqPXr15sxy5YtU3R0tMaPH68ffvhBLVu2VGhoaI6LygAAADiSk2EYhqOTcBSbzSYvLy+lpKQwwTlQBh1a+qrd/QZ9XndQJgCsZMXn/5kzZ+Tj46MtW7aoc+fOSklJUY0aNbRkyRI9+uijkqQDBw6oSZMmio+PV/v27bVu3To9+OCDOnHihHl2+dy5czVq1CidOXNGrq6uGjVqlNasWaM9e/aY++rTp4/Onz+vmJgYSVK7du109913a9asWZKkrKwsBQYG6vnnn9fo0aPzlH9Rj9H1778S78EAADia1T0SzpACAAAoZCkpKZL+nKZAkhISEpSenq6QkBAzpnHjxrrjjjsUHx8vSYqPj1fz5s3tpjoIDQ2VzWbT3r17zZhrt5Edk72NtLQ0JSQk2MU4OzsrJCTEjAEAACgOyjk6AQAAgNIkKytLw4YN0z333GNebCU5OVmurq7y9va2i/X19VVycrIZc/28m9n3bxVjs9l05coVnTt3TpmZmbnGHDhw4IY5p6amKjU11bxvs9nyccQAAAD5xxlSAAAAhSgyMlJ79uzR0qVLHZ1Knk2ZMkVeXl7mLTAw0NEpAQCAUo6GFAAAQCGJiorS6tWr9dVXX6lmzZrmcj8/P6Wlpen8+fN28adOnZKfn58Zc/1V97Lv3yrG09NTFSpUUPXq1eXi4pJrTPY2cjNmzBilpKSYt19++SV/Bw4AAJBPNKQAAABuk2EYioqK0sqVK7Vp0ybVqVPHbn1QUJDKly+vuLg4c9nBgwd1/PhxBQcHS5KCg4O1e/duu6vhxcbGytPTU02bNjVjrt1Gdkz2NlxdXRUUFGQXk5WVpbi4ODMmN25ubvL09LS7AQAAFCXmkAIAALhNkZGRWrJkiT7//HNVrlzZnPPJy8tLFSpUkJeXlwYMGKDo6GhVrVpVnp6eev755xUcHKz27dtLkrp166amTZvq6aef1tSpU5WcnKyxY8cqMjJSbm5ukqQhQ4Zo1qxZGjlypJ599llt2rRJy5cv15o1a8xcoqOjFRERoTZt2qht27aaMWOGLl26pGeeecb6gQEAALgBGlIAAAC3ac6cOZKkLl262C1fsGCB+vfvL0l655135OzsrN69eys1NVWhoaF6//33zVgXFxetXr1aQ4cOVXBwsCpWrKiIiAhNmjTJjKlTp47WrFmj4cOHa+bMmapZs6bmz5+v0NBQM+aJJ57QmTNnNG7cOCUnJ6tVq1aKiYnJMdE5AACAIzkZhmE4OglHsdls8vLyUkpKCqemA2XQoaWv2t1v0Od1B2UCwEp8/t9aUY/R9e+/Eu/BAAA4mtU1EnNIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAABQCLZu3apevXopICBATk5OWrVqld36/v37y8nJye7WvXt3u5izZ8/qqaeekqenp7y9vTVgwABdvHjRLuann35Sp06d5O7ursDAQE2dOjVHLitWrFDjxo3l7u6u5s2ba+3atYV+vAAAALeDhhQAAEAhuHTpklq2bKnZs2ffMKZ79+46efKkefvkk0/s1j/11FPau3evYmNjtXr1am3dulWDBw8219tsNnXr1k21atVSQkKC3nrrLU2YMEHz5s0zY7Zv366+fftqwIAB2rVrl8LDwxUeHq49e/YU/kEDAAAUUDlHJwAAAFAa9OjRQz169LhpjJubm/z8/HJdt3//fsXExOi7775TmzZtJEnvvfeeevbsqWnTpikgIECLFy9WWlqaPv74Y7m6uurOO+9UYmKipk+fbjauZs6cqe7du2vEiBGSpMmTJys2NlazZs3S3LlzC/GIAQAACo4zpAAAACyyefNm+fj4qFGjRho6dKj++OMPc118fLy8vb3NZpQkhYSEyNnZWTt27DBjOnfuLFdXVzMmNDRUBw8e1Llz58yYkJAQu/2GhoYqPj7+hnmlpqbKZrPZ3QAAAIoSDSkAAAALdO/eXf/6178UFxenf/7zn9qyZYt69OihzMxMSVJycrJ8fHzsHlOuXDlVrVpVycnJZoyvr69dTPb9W8Vkr8/NlClT5OXlZd4CAwNv72ABAABugZ/sAQAAWKBPnz7mv5s3b64WLVqoXr162rx5s7p27erAzKQxY8YoOjravG+z2WhKAQCAIsUZUgAAAA5Qt25dVa9eXYcPH5Yk+fn56fTp03YxGRkZOnv2rDnvlJ+fn06dOmUXk33/VjE3mrtK+nNuK09PT7sbAABAUcp3Q+pWlzQ2DEPjxo2Tv7+/KlSooJCQEB06dMguhksaAwCAsu7XX3/VH3/8IX9/f0lScHCwzp8/r4SEBDNm06ZNysrKUrt27cyYrVu3Kj093YyJjY1Vo0aNVKVKFTMmLi7Obl+xsbEKDg4u6kMCAADIs3w3pG51SeOpU6fq3Xff1dy5c7Vjxw5VrFhRoaGhunr1qhnDJY0BAEBpc/HiRSUmJioxMVGSlJSUpMTERB0/flwXL17UiBEj9O233+rYsWOKi4vTQw89pPr16ys0NFSS1KRJE3Xv3l2DBg3Szp079c033ygqKkp9+vRRQECAJOnJJ5+Uq6urBgwYoL1792rZsmWaOXOm3c/tXnzxRcXExOjtt9/WgQMHNGHCBH3//feKioqyfEwAAABuxMkwDKPAD3Zy0sqVKxUeHi7pz7OjAgIC9NJLL+nll1+WJKWkpMjX11cLFy5Unz59tH//fjVt2tTuksYxMTHq2bOnfv31VwUEBGjOnDl69dVXlZycbF5FZvTo0Vq1apUOHDggSXriiSd06dIlrV692synffv2atWqVZ4vaWyz2eTl5aWUlBROTQfKoENLX7W736DP6w7KBICViurzf/PmzbrvvvtyLI+IiNCcOXMUHh6uXbt26fz58woICFC3bt00efJkuwnIz549q6ioKH355ZdydnZW79699e6776pSpUpmzE8//aTIyEh99913ql69up5//nmNGjXKbp8rVqzQ2LFjdezYMTVo0EBTp05Vz54983wsRV0jXf/+K/EeDACAo1ndIynUSc2TkpKUnJxsd6lhLy8vtWvXTvHx8erTp88tL2n88MMP3/CSxv/85z917tw5ValSRfHx8XbfBmbHXP8TwmulpqYqNTXVvM8ljQEAQGHp0qWLbvY93/r162+5japVq2rJkiU3jWnRooW+/vrrm8Y89thjeuyxx265PwAAAEcp1EnNsy8nfLNLDXNJYwAAAAAAgLKtTF1lb8yYMUpJSTFvv/zyi6NTAgAAAAAAKHMK9Sd72ZcTPnXqlHnFmOz7rVq1MmMceUljNze3AhxZwaTHbMuxrHz3jpbtHwAAAAAAoDgq1DOk6tSpIz8/P7tLDdtsNu3YscO81DCXNAYAAAAAACjb8t2QutkljZ2cnDRs2DC99tpr+uKLL7R7927169dPAQEB5pX4uKQxAAAAAABA2Zbvn+x9//33dpc0zm4SRUREaOHChRo5cqQuXbqkwYMH6/z58+rYsaNiYmLk7u5uPmbx4sWKiopS165d7S5pnM3Ly0sbNmxQZGSkgoKCVL16dY0bN06DBw82Yzp06KAlS5Zo7NixeuWVV9SgQQOtWrVKzZo1K9BAAAAAAAAAwBpOxs2uT1zK2Ww2eXl5KSUlRZ6enoW+feaQAoq3Q0tftbvfoM/rDsoEgJWK+vO/NCjqMbr+/VfiPRgAAEezukYqU1fZAwAAAAAAgOPRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBS5RydQGl27Py6HMsaqKMDMgEAAAAAACg+OEMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAACgEW7duVa9evRQQECAnJyetWrXKbr1hGBo3bpz8/f1VoUIFhYSE6NChQ3YxZ8+e1VNPPSVPT095e3trwIABunjxol3MTz/9pE6dOsnd3V2BgYGaOnVqjlxWrFihxo0by93dXc2bN9fatWsL/XgBAABuBw0pAACAQnDp0iW1bNlSs2fPznX91KlT9e6772ru3LnasWOHKlasqNDQUF29etWMeeqpp7R3717FxsZq9erV2rp1qwYPHmyut9ls6tatm2rVqqWEhAS99dZbmjBhgubNm2fGbN++XX379tWAAQO0a9cuhYeHKzw8XHv27Cm6gwcAAMgnJjUHAAAoBD169FCPHj1yXWcYhmbMmKGxY8fqoYcekiT961//kq+vr1atWqU+ffpo//79iomJ0Xfffac2bdpIkt577z317NlT06ZNU0BAgBYvXqy0tDR9/PHHcnV11Z133qnExERNnz7dbFzNnDlT3bt314gRIyRJkydPVmxsrGbNmqW5c+daMBIAAAC3xhlSAAAARSwpKUnJyckKCQkxl3l5ealdu3aKj4+XJMXHx8vb29tsRklSSEiInJ2dtWPHDjOmc+fOcnV1NWNCQ0N18OBBnTt3zoy5dj/ZMdn7AQAAKA44QwoAAKCIJScnS5J8fX3tlvv6+prrkpOT5ePjY7e+XLlyqlq1ql1MnTp1cmwje12VKlWUnJx80/3kJjU1VampqeZ9m82Wn8MDAADIN86QAgAAKOOmTJkiLy8v8xYYGOjolAAAQClHQwoAAKCI+fn5SZJOnTplt/zUqVPmOj8/P50+fdpufUZGhs6ePWsXk9s2rt3HjWKy1+dmzJgxSklJMW+//PJLfg8RAAAgX2hIAQAAFLE6derIz89PcXFx5jKbzaYdO3YoODhYkhQcHKzz588rISHBjNm0aZOysrLUrl07M2br1q1KT083Y2JjY9WoUSNVqVLFjLl2P9kx2fvJjZubmzw9Pe1uAAAARYmGFAAAQCG4ePGiEhMTlZiYKOnPicwTExN1/PhxOTk5adiwYXrttdf0xRdfaPfu3erXr58CAgIUHh4uSWrSpIm6d++uQYMGaefOnfrmm28UFRWlPn36KCAgQJL05JNPytXVVQMGDNDevXu1bNkyzZw5U9HR0WYeL774omJiYvT222/rwIEDmjBhgr7//ntFRUVZPSQAAAA3xKTmAAAAheD777/XfffdZ97PbhJFRERo4cKFGjlypC5duqTBgwfr/Pnz6tixo2JiYuTu7m4+ZvHixYqKilLXrl3l7Oys3r1769133zXXe3l5acOGDYqMjFRQUJCqV6+ucePGafDgwWZMhw4dtGTJEo0dO1avvPKKGjRooFWrVqlZs2YWjAIAAEDe0JACAAAoBF26dJFhGDdc7+TkpEmTJmnSpEk3jKlataqWLFly0/20aNFCX3/99U1jHnvsMT322GM3TxgAAMCB+MkeAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBShd6QmjBhgpycnOxujRs3NtdfvXpVkZGRqlatmipVqqTevXvr1KlTdts4fvy4wsLC5OHhIR8fH40YMUIZGRl2MZs3b1br1q3l5uam+vXra+HChYV9KAAAAAAAACgCRXKG1J133qmTJ0+at23btpnrhg8fri+//FIrVqzQli1bdOLECT3yyCPm+szMTIWFhSktLU3bt2/XokWLtHDhQo0bN86MSUpKUlhYmO677z4lJiZq2LBhGjhwoNavX18UhwMAAAAAAIBCVK5INlqunPz8/HIsT0lJ0UcffaQlS5bo/vvvlyQtWLBATZo00bfffqv27dtrw4YN2rdvnzZu3ChfX1+1atVKkydP1qhRozRhwgS5urpq7ty5qlOnjt5++21JUpMmTbRt2za98847Cg0NLYpDAgAAAAAAQCEpkjOkDh06pICAANWtW1dPPfWUjh8/LklKSEhQenq6QkJCzNjGjRvrjjvuUHx8vCQpPj5ezZs3l6+vrxkTGhoqm82mvXv3mjHXbiM7JnsbN5KamiqbzWZ3AwAAAAAAgLUKvSHVrl07LVy4UDExMZozZ46SkpLUqVMnXbhwQcnJyXJ1dZW3t7fdY3x9fZWcnCxJSk5OtmtGZa/PXnezGJvNpitXrtwwtylTpsjLy8u8BQYG3u7hAgAAAAAAIJ8K/Sd7PXr0MP/dokULtWvXTrVq1dLy5ctVoUKFwt5dvowZM0bR0dHmfZvNRlMKAAAAAADAYkXyk71reXt7q2HDhjp8+LD8/PyUlpam8+fP28WcOnXKnHPKz88vx1X3su/fKsbT0/OmTS83Nzd5enra3QAAAAAAAGCtIm9IXbx4UUeOHJG/v7+CgoJUvnx5xcXFmesPHjyo48ePKzg4WJIUHBys3bt36/Tp02ZMbGysPD091bRpUzPm2m1kx2RvAwAAAAAAAMVXof9k7+WXX1avXr1Uq1YtnThxQuPHj5eLi4v69u0rLy8vDRgwQNHR0apatao8PT31/PPPKzg4WO3bt5ckdevWTU2bNtXTTz+tqVOnKjk5WWPHjlVkZKTc3NwkSUOGDNGsWbM0cuRIPfvss9q0aZOWL1+uNWvWFPbhAAAAAAAAOER6zLYcy8p37+iATApfoTekfv31V/Xt21d//PGHatSooY4dO+rbb79VjRo1JEnvvPOOnJ2d1bt3b6Wmpio0NFTvv/+++XgXFxetXr1aQ4cOVXBwsCpWrKiIiAhNmjTJjKlTp47WrFmj4cOHa+bMmapZs6bmz5+v0NDQwj4cAAAAAAAAFLJCb0gtXbr0puvd3d01e/ZszZ49+4YxtWrV0tq1a2+6nS5dumjXrl0FyhEAAAAAAACOU+RzSAEAAAAAAADXoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBShT6pOQAAAAAAAG7fsfPrcixroI4OyKTwcYYUAAAAAAAALEVDCgAAwAITJkyQk5OT3a1x48bm+qtXryoyMlLVqlVTpUqV1Lt3b506dcpuG8ePH1dYWJg8PDzk4+OjESNGKCMjwy5m8+bNat26tdzc3FS/fn0tXLjQisMDAADIFxpSAAAAFrnzzjt18uRJ87Zt2zZz3fDhw/Xll19qxYoV2rJli06cOKFHHnnEXJ+ZmamwsDClpaVp+/btWrRokRYuXKhx48aZMUlJSQoLC9N9992nxMREDRs2TAMHDtT69estPU4AAIBbYQ4pAAAAi5QrV05+fn45lqekpOijjz7SkiVLdP/990uSFixYoCZNmujbb79V+/bttWHDBu3bt08bN26Ur6+vWrVqpcmTJ2vUqFGaMGGCXF1dNXfuXNWpU0dvv/22JKlJkybatm2b3nnnHYWGhlp6rAAAADfDGVIAAAAWOXTokAICAlS3bl099dRTOn78uCQpISFB6enpCgkJMWMbN26sO+64Q/Hx8ZKk+Ph4NW/eXL6+vmZMaGiobDab9u7da8Zcu43smOxt3EhqaqpsNpvdDQAAoCjRkAIAALBAu3bttHDhQsXExGjOnDlKSkpSp06ddOHCBSUnJ8vV1VXe3t52j/H19VVycrIkKTk52a4Zlb0+e93NYmw2m65cuXLD3KZMmSIvLy/zFhgYeLuHCwAAcFP8ZA8AAMACPXr0MP/dokULtWvXTrVq1dLy5ctVoUIFB2YmjRkzRtHR0eZ9m81GUwoAABQpzpACAABwAG9vbzVs2FCHDx+Wn5+f0tLSdP78ebuYU6dOmXNO+fn55bjqXvb9W8V4enretOnl5uYmT09PuxsAAEBRoiEFAADgABcvXtSRI0fk7++voKAglS9fXnFxceb6gwcP6vjx4woODpYkBQcHa/fu3Tp9+rQZExsbK09PTzVt2tSMuXYb2THZ2wAAACguaEgBAABY4OWXX9aWLVt07Ngxbd++XQ8//LBcXFzUt29feXl5acCAAYqOjtZXX32lhIQEPfPMMwoODlb79u0lSd26dVPTpk319NNP68cff9T69es1duxYRUZGys3NTZI0ZMgQHT16VCNHjtSBAwf0/vvva/ny5Ro+fLgjDx0AACAH5pACAACwwK+//qq+ffvqjz/+UI0aNdSxY0d9++23qlGjhiTpnXfekbOzs3r37q3U1FSFhobq/fffNx/v4uKi1atXa+jQoQoODlbFihUVERGhSZMmmTF16tTRmjVrNHz4cM2cOVM1a9bU/PnzFRoaavnxAgAA3AwNKQAAAAssXbr0puvd3d01e/ZszZ49+4YxtWrV0tq1a2+6nS5dumjXrl0FyhEAAMAq/GQPAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlirn6ATKmvSYbXb3y3fv6KBMAAAAAAAAHIMzpAAAAAAAAGApzpBysOvPmJJyP2sqt7iCPI4zsgAAAAAAgKPRkCqG8tJ8KujjCrptGlkAAAAAAKCwlPiG1OzZs/XWW28pOTlZLVu21Hvvvae2bds6Oq0bOnZ+nd392t49HJRJ/uS1kUXjCgCA4qGk1UgAAKBsKdENqWXLlik6Olpz585Vu3btNGPGDIWGhurgwYPy8fFxdHplEmdgAQAK4tDSV3Msa9DndQdkUjqUxBqJaQYAAChbSnRDavr06Ro0aJCeeeYZSdLcuXO1Zs0affzxxxo9erSDs8ub68+YupGSciZVQRV0jiwAAJBTSayRrq+JGojPfQAASrMS25BKS0tTQkKCxowZYy5zdnZWSEiI4uPjHZhZ0SipP/UrTJx9BQDArZWWGonpAgAAKN1KbEPq999/V2Zmpnx9fe2W+/r66sCBA7k+JjU1Vampqeb9lJQUSZLNZiuSHC9eTr11UAHtubyqyLZd1O7wesDaHf53vaW7K/9AsN399NiCFf/XbweF7/rXaFG9FwC4tdw+M4vqNZm9XcMwimT7jlZaaqQ81zof28flVmccT4nNsSwv9QifxQAARyvNNVKJbUgVxJQpUzRx4sQcywMDAx2QTVn2tqMTAHI3gL9NoFgp4tfkhQsX5OXlVaT7KClKV42U178b3vMBACVUKamRSmxDqnr16nJxcdGpU6fslp86dUp+fn65PmbMmDGKjo4272dlZens2bOqVq2anJycCjU/m82mwMBA/fLLL/L09CzUbRcnHGfpU1aOleMsXTjO0qcoj9UwDF24cEEBAQGFut3ighoJ12PMrceYW48xdwzG3XqlqUYqsQ0pV1dXBQUFKS4uTuHh4ZL+LJ7i4uIUFRWV62Pc3Nzk5uZmt8zb27tI8/T09CwTL0yOs/QpK8fKcZYuHGfpU1THWprPjKJGwo0w5tZjzK3HmDsG42690lAjldiGlCRFR0crIiJCbdq0Udu2bTVjxgxdunTJvKIMAABAWUSNBAAAirsS3ZB64okndObMGY0bN07Jyclq1aqVYmJickziCQAAUJZQIwEAgOKuRDekJCkqKuqGp587kpubm8aPH5/j9PfShuMsfcrKsXKcpQvHWfqUpWMtKtRIyMaYW48xtx5j7hiMu/VK05g7GaX1mscAAAAAAAAolpwdnQAAAAAAAADKFhpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUOqgF5//XV16NBBHh4e8vb2ztNjDMPQuHHj5O/vrwoVKigkJESHDh2yizl79qyeeuopeXp6ytvbWwMGDNDFixeL4AjyLr85HTt2TE5OTrneVqxYYcbltn7p0qVWHFKuCjL2Xbp0yXEMQ4YMsYs5fvy4wsLC5OHhIR8fH40YMUIZGRlFeSg3ld/jPHv2rJ5//nk1atRIFSpU0B133KEXXnhBKSkpdnGOfj5nz56t2rVry93dXe3atdPOnTtvGr9ixQo1btxY7u7uat68udauXWu3Pi+vV0fJz7F++OGH6tSpk6pUqaIqVaooJCQkR3z//v1zPHfdu3cv6sO4pfwc58KFC3Mcg7u7u11McX1O83Ocub3nODk5KSwszIwpjs/n1q1b1atXLwUEBMjJyUmrVq265WM2b96s1q1by83NTfXr19fChQtzxOT3dQ/rFPZ7Mm6tsD8bcGsFfQ9aunSpnJycFB4eXrQJlkL5HfPz588rMjJS/v7+cnNzU8OGDXl/yaf8jvmMGTPM/zcEBgZq+PDhunr1qkXZlnxFVTMVWwYKZNy4ccb06dON6Ohow8vLK0+PefPNNw0vLy9j1apVxo8//mj89a9/NerUqWNcuXLFjOnevbvRsmVL49tvvzW+/vpro379+kbfvn2L6CjyJr85ZWRkGCdPnrS7TZw40ahUqZJx4cIFM06SsWDBAru4a8fCagUZ+3vvvdcYNGiQ3TGkpKSY6zMyMoxmzZoZISEhxq5du4y1a9ca1atXN8aMGVPUh3ND+T3O3bt3G4888ojxxRdfGIcPHzbi4uKMBg0aGL1797aLc+TzuXTpUsPV1dX4+OOPjb179xqDBg0yvL29jVOnTuUa/8033xguLi7G1KlTjX379hljx441ypcvb+zevduMycvr1RHye6xPPvmkMXv2bGPXrl3G/v37jf79+xteXl7Gr7/+asZEREQY3bt3t3vuzp49a9Uh5Sq/x7lgwQLD09PT7hiSk5PtYorjc5rf4/zjjz/sjnHPnj2Gi4uLsWDBAjOmOD6fa9euNV599VXjs88+MyQZK1euvGn80aNHDQ8PDyM6OtrYt2+f8d577xkuLi5GTEyMGZPfsYN1iuI9GTdXFJ8NuLmCvgclJSUZf/nLX4xOnToZDz30kDXJlhL5HfPU1FSjTZs2Rs+ePY1t27YZSUlJxubNm43ExESLMy+58jvmixcvNtzc3IzFixcbSUlJxvr16w1/f39j+PDhFmdechVFzVSc0ZC6TQsWLMhTQyorK8vw8/Mz3nrrLXPZ+fPnDTc3N+OTTz4xDMMw9u3bZ0gyvvvuOzNm3bp1hpOTk/Hbb78Veu55UVg5tWrVynj22WftluXlBWaVgh7nvffea7z44os3XL927VrD2dnZ7j/Gc+bMMTw9PY3U1NRCyT0/Cuv5XL58ueHq6mqkp6ebyxz5fLZt29aIjIw072dmZhoBAQHGlClTco1//PHHjbCwMLtl7dq1M/7+978bhpG316uj5PdYr5eRkWFUrlzZWLRokbksIiKi2BXF+T3OW70XF9fn9Hafz3feeceoXLmycfHiRXNZcXw+r5WX94qRI0cad955p92yJ554wggNDTXv3+7YoegU9nsybq0oPhtwcwUZ84yMDKNDhw7G/Pnzi/17dXGU3zGfM2eOUbduXSMtLc2qFEud/I55ZGSkcf/999sti46ONu65554izbO0KqyaqTjjJ3sWSUpKUnJyskJCQsxlXl5eateuneLj4yVJ8fHx8vb2Vps2bcyYkJAQOTs7a8eOHZbnXFg5JSQkKDExUQMGDMixLjIyUtWrV1fbtm318ccfyzCMQss9P27nOBcvXqzq1aurWbNmGjNmjC5fvmy33ebNm8vX19dcFhoaKpvNpr179xb+gdxCYf2NpaSkyNPTU+XKlbNb7ojnMy0tTQkJCXavLWdnZ4WEhJivrevFx8fbxUt/Pi/Z8Xl5vTpCQY71epcvX1Z6erqqVq1qt3zz5s3y8fFRo0aNNHToUP3xxx+Fmnt+FPQ4L168qFq1aikwMFAPPfSQ3WusOD6nhfF8fvTRR+rTp48qVqxot7w4PZ8FcavXaGGMHYpGUbwn4+aK8rMBuSvomE+aNEk+Pj651sS4uYKM+RdffKHg4GBFRkbK19dXzZo10xtvvKHMzEyr0i7RCjLmHTp0UEJCgvmzvqNHj2rt2rXq2bOnJTmXRSX9M7TcrUNQGJKTkyXJrjGRfT97XXJysnx8fOzWlytXTlWrVjVjrFYYOX300Udq0qSJOnToYLd80qRJuv/+++Xh4aENGzboueee08WLF/XCCy8UWv55VdDjfPLJJ1WrVi0FBATop59+0qhRo3Tw4EF99tln5nZze86z11mtMJ7P33//XZMnT9bgwYPtljvq+fz999+VmZmZ6zgfOHAg18fc6Hm59rWYvexGMY5QkGO93qhRoxQQEGD3wdW9e3c98sgjqlOnjo4cOaJXXnlFPXr0UHx8vFxcXAr1GPKiIMfZqFEjffzxx2rRooVSUlI0bdo0dejQQXv37lXNmjWL5XN6u8/nzp07tWfPHn300Ud2y4vb81kQN3qN2mw2XblyRefOnbvt1wKKRlG8J+PmiuqzATdWkDHftm2bPvroIyUmJlqQYelTkDE/evSoNm3apKeeekpr167V4cOH9dxzzyk9PV3jx4+3Iu0SrSBj/uSTT+r3339Xx44dZRiGMjIyNGTIEL3yyitWpFwm3apmqlChgoMyyxsaUtcYPXq0/vnPf940Zv/+/WrcuLFFGRWdvB7r7bpy5YqWLFmif/zjHznWXbvsrrvu0qVLl/TWW28VagOjqI/z2qZM8+bN5e/vr65du+rIkSOqV69egbebX1Y9nzabTWFhYWratKkmTJhgt86K5xO3580339TSpUu1efNmuwm/+/TpY/67efPmatGiherVq6fNmzera9eujkg134KDgxUcHGze79Chg5o0aaIPPvhAkydP/n/27jyuirL///gbUUCQxYXNW9xNJXdMoswsSVxaLK20bkVzSdNKLU1bXDO9zcoWzVb1W3abdqd5uytmZZqWSZrbrYZLKWou4AoC1++PfkweQeAgzAF8PR+P89Az85mZ67rmnDkfPmfOjAtbVng++ugjNWzYUC1atHCYXhL2JwD7XO2zAQXnzJkz6t69uz744ANVqlTJ1c25bmRkZCgoKEjvv/++3N3dFRERoT/++EOvvvoqBalCsnbtWr3yyiuaPn26IiMjtXfvXj399NMaP358tn8PAhSkLvPMM8+oZ8+eOcbUrFkzX+sOCQmRJB09elShoaHW9KNHj6pJkyZWzLFjxxyWS0tL08mTJ63lC0pe+3qtbfriiy90/vx59ejRI9fYyMhIjR8/XikpKfL09Mw1Pi/s6memyMhISdLevXtVq1YthYSEZLkTxdGjRyWpQPepHf08c+aM2rVrJ19fXy1YsEBlypTJMb4w9md2KlWqJHd3d2tcMx09evSqfQoJCckxPi/vV1fIT18zTZkyRZMmTdLq1avVqFGjHGNr1qypSpUqae/evS4pYFxLPzOVKVNGTZs21d69eyUVzX16Lf08d+6c5s6dq3HjxuW6HVfvz/y42nvUz89PZcuWlbu7+zW/RlA4CuOYjJzZ9dmAvzk75vv27dP+/ft1zz33WNMyMjIk/XWm+u7du239IrM4ys/rPDQ0VGXKlHE4O7h+/fpKTExUamqqPDw8CrXNxV1+xvyll15S9+7d1adPH0l/fTF27tw59evXTy+88IJKleKKQQUtt5ypqOMVcZnAwEDVq1cvx0d+D1w1atRQSEiI4uLirGnJycnauHGj9a1+VFSUTp8+rc2bN1sxa9asUUZGhlXoKCh57eu1tumjjz7Svffeq8DAwFxj4+PjVb58+QItXtjVz8v7IMn6gzcqKkrbtm1zKAKtWrVKfn5+Cg8PL5hOqvD7mZycrLZt28rDw0OLFi3K0zeohbE/s+Ph4aGIiAiH91ZGRobi4uIczpi5XFRUlEO89Nd+yYzPy/vVFfLTV0maPHmyxo8fr+XLlztcP+xqfv/9d504ccKhcGOn/Pbzcunp6dq2bZvVh6K4T6+ln/Pnz1dKSor++c9/5rodV+/P/MjtPVoQrxEUjsI4JiNndn024G/Ojnm9evW0bds2xcfHW497771Xd9xxh+Lj4xUWFmZn84ul/LzOb731Vu3du9cq/knS//73P4WGhlKMyoP8jPn58+ezFJ0yC4KuulZwSVfsP0Nde0314uvAgQNmy5YtZuzYsaZcuXJmy5YtZsuWLebMmTNWTN26dc2XX35pPZ80aZIJCAgwX331ldm6dau57777stxyvF27dqZp06Zm48aNZt26daZOnTqmW7dutvbtSrm16ffffzd169Y1GzdudFhuz549xs3NzSxbtizLOhctWmQ++OADs23bNrNnzx4zffp04+3tbUaNGlXo/bkaZ/u5d+9eM27cOPPTTz+ZhIQE89VXX5maNWuaVq1aWcukpaWZBg0amLZt25r4+HizfPlyExgYaEaOHGl7/zI528+kpCQTGRlpGjZsaPbu3etwK/m0tDRjjOv359y5c42np6eZNWuW2bFjh+nXr58JCAiw7m7YvXt3M2LECCv++++/N6VLlzZTpkwxO3fuNKNHj85yi/G8vF9dwdm+Tpo0yXh4eJgvvvjCYd9lHqvOnDljnn32WbNhwwaTkJBgVq9ebZo1a2bq1KljLl686JI+GuN8P8eOHWtWrFhh9u3bZzZv3my6du1qvLy8zPbt262YorhPne1nppYtW5qHH344y/Siuj/PnDljfU5KMq+//rrZsmWLOXDggDHGmBEjRpju3btb8Zm3MB42bJjZuXOnmTZtWpZbGOc2dnCdwjgmI2cF/dmA3OX3+J2Ju+w5z9kxP3jwoPH19TWDBg0yu3fvNosXLzZBQUHm5ZdfdlUXih1nx3z06NHG19fX/Pvf/za//fabWblypalVq5Z56KGHXNWFYqcwcqaijIJUPsXGxhpJWR5ff/21FSPJzJw503qekZFhXnrpJRMcHGw8PT1NmzZtzO7dux3We+LECdOtWzdTrlw54+fnZ3r16uXy5CC3NiUkJGTpuzHGjBw50oSFhZn09PQs61y2bJlp0qSJKVeunPHx8TGNGzc2M2bMyDbWLs728+DBg6ZVq1amQoUKxtPT09SuXdsMGzbMJCUlOax3//79pn379qZs2bKmUqVK5plnnjGXLl2ys2sOnO3n119/ne1rXZJJSEgwxhSN/fn222+bqlWrGg8PD9OiRQvzww8/WPNuv/12Exsb6xA/b948c8MNNxgPDw9z4403miVLljjMz8v71VWc6Wu1atWy3XejR482xhhz/vx507ZtWxMYGGjKlCljqlWrZvr27Vsk/qh3pp+DBw+2YoODg02HDh3Mzz//7LC+orpPnX3t7tq1y0gyK1euzLKuoro/r3YcyexbbGysuf3227Ms06RJE+Ph4WFq1qzp8HmaKaexg2sV9DEZuSvIzwbkjbOv88tRkMofZ8d8/fr1JjIy0nh6epqaNWuaCRMmWF+oIm+cGfNLly6ZMWPGmFq1ahkvLy8TFhZmnnjiCXPq1Cn7G15MFVbOVFS5GcO5cwAAAAAAALAP15ACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpS16ExY8bIzc3NYVr16tXVs2fPQt/2/v375ebmplmzZlnTevbsqXLlyhX6tjO5ublpzJgxtm2vuGvdurVat25doOvM7jUIR9m9VwrSnj171LZtW/n7+8vNzU0LFy4slO1cC2deJyXhfX327FkFBQVpzpw5ucb27NlT1atXz7J8nz59FBISIjc3Nw0ePNip7Y8YMUKRkZFOLQOUNORIxf9YaidyJNcgRyJHygk5UvFCQQr5tnTp0iJ7cCvKbbtenD9/XmPGjNHatWtd3RSXK4qvx9jYWG3btk0TJkzQJ598oubNm7u6SUXOrl27NHz4cDVp0kS+vr4KDQ1Vx44d9dNPP2WJzUwMr3x4eXnleXtvvvmmfH191bVr13y195VXXtGsWbM0YMAAffLJJ+revbsk6d1339WDDz6oqlWrys3N7ap/WA8ePFi//PKLFi1alK/tA/hbUTzuZyrKbbtekCP9rSi+HsmRclcScqRDhw5p7NixatGihcqXL69KlSqpdevWWr16dZblyZEKkcF1Z/To0ebKXX/x4kWTmprq1HoGDhyYZT25ycjIMBcuXDBpaWnWtNjYWOPj4+PUeq6lbRcuXDCXLl0q0O2VZLfffru5/fbbnV7u+PHjRpIZPXp0lnmXLl0yFy5cuPbGFRMF9V4pKOfPnzeSzAsvvFDg6y5IzrxOrvZauxbPPPOMCQgIML179zbvvfeemTx5sqlVq5Zxd3c3q1atcojNPK6+++675pNPPrEen332WZ62lZqaagIDA80rr7ySp/jY2FhTrVo1h2mRkZHm1ltvzRJbrVo1U6FCBdOuXTtTunRpExsbe9X1PvTQQ+a2227LUxuAkogciRzJGeRI144cKX/Ika4urznS22+/bcqWLWu6detm3nnnHTN16lTTrFkzI8l8/PHHWdZLjlQ4StteAUOR5OnpWajrT0tLU0ZGhjw8PJyqhhcGV2/fDhcvXpSHh4dKlcp6EuS5c+fk4+Pjglb9rXTp0ipdmsNPdux4rxw/flySFBAQkGusK18vrn6ddOvWTWPGjHH4ucxjjz2m+vXra8yYMYqOjs6yTJcuXVSpUiWnt7V48WIdP35cDz30UL7be+zYMYWHh2eZ/s0331hnR+X205+HHnpIDz74oH777TfVrFkz320BShJypJKFHKn4Ikf6m6tfJyUhR7rjjjt08OBBhzb1799fTZo00ahRo9SrVy+HeHKkwsFP9kq4devW6aabbpKXl5dq1aql9957L9u4K6+PcOnSJY0dO1Z16tSRl5eXKlasqJYtW2rVqlWS/vpt7rRp0yTJ4dRL6e/fdU+ZMkVTp05VrVq15OnpqR07duT4m+/ffvtNMTEx8vHxUeXKlTVu3DgZY6z5a9eulZubW5bTm69cZ05ty5x25anBW7ZsUfv27eXn56dy5cqpTZs2+uGHHxxiZs2aJTc3N33//fcaOnSoAgMD5ePjo/vvv9/68HLGH3/8od69e6ty5cry9PRUjRo1NGDAAKWmpjqMyYMPPqgKFSrI29tbN998s5YsWeKwnsxxmTt3rl588UX94x//kLe3t5KTk61rT+zbt08dOnSQr6+vHn30UUlSRkaGpk6dqhtvvFFeXl4KDg7W448/rlOnTuXY7tTUVI0aNUoRERHy9/eXj4+PbrvtNn399ddWzP79+xUYGChJGjt2rLUPMsc9u9+9p6Wlafz48dbrpXr16nr++eeVkpLiEFe9enXdfffdWrdunVq0aCEvLy/VrFlT//d//+fcDtBfr4VBgwZp/vz5Cg8PV9myZRUVFaVt27ZJkt577z3Vrl1bXl5eat26tfbv3++w/HfffWf9FMrT01NhYWEaMmSILly4YMUU1Hvl2LFjCgwMVOvWrR3eF3v37pWPj48efvjhPPV5zJgxqlatmiRp2LBhcnNzs35nn7lfduzYoUceeUTly5dXy5YtJUlbt25Vz549VbNmTXl5eSkkJESPPfaYTpw4kWUba9euVfPmzR2OO/m5JkZ2y6SkpGjIkCEKDAyUr6+v7r33Xv3+++9Zlj1z5owGDx6s6tWry9PTU0FBQbrrrrv0888/53n7ERERWQo4FStW1G233aadO3dmu4wxRsnJyQ77KC8WLlyo6tWrq1atWtnOa9Cggby8vNSgQQMtWLDAYX7mMSAhIUFLliyxXmOZr9dq1arleewzE8ivvvrKqfYDxRE5EjkSOdLVkSORI+WkJORIN954Y5YCmaenpzp06KDff/9dZ86ccZhHjlQ4KL+XYNu2bVPbtm0VGBioMWPGKC0tTaNHj1ZwcHCuy44ZM0YTJ05Unz591KJFCyUnJ+unn37Szz//rLvuukuPP/64Dh8+rFWrVumTTz7Jdh0zZ87UxYsX1a9fP3l6eqpChQrKyMjINjY9PV3t2rXTzTffrMmTJ2v58uUaPXq00tLSNG7cOKf6nZe2XW779u267bbb5Ofnp+HDh6tMmTJ677331Lp1a33zzTdZLmD35JNPqnz58ho9erT279+vqVOnatCgQfr888/z3MbDhw+rRYsWOn36tPr166d69erpjz/+0BdffKHz58/Lw8NDR48e1S233KLz58/rqaeeUsWKFTV79mzde++9+uKLL3T//fc7rHP8+PHy8PDQs88+q5SUFHl4eEj6K4mJiYlRy5YtNWXKFHl7e1vjNGvWLPXq1UtPPfWUEhIS9M4772jLli36/vvvVaZMmWzbnpycrA8//FDdunVT3759debMGX300UeKiYnRpk2b1KRJEwUGBurdd9/VgAEDdP/99+uBBx6QJDVq1OiqY9KnTx/Nnj1bXbp00TPPPKONGzdq4sSJ2rlzZ5YPl71796pLly7q3bu3YmNj9fHHH6tnz56KiIjQjTfemOf9IP2VMC1atEgDBw6UJE2cOFF33323hg8frunTp+uJJ57QqVOnNHnyZD322GNas2aNtez8+fN1/vx5DRgwQBUrVtSmTZv09ttv6/fff9f8+fOtcS6I90pQUJB1LaC3335bTz31lDIyMtSzZ0/5+vpq+vTpeervAw88oICAAA0ZMkTdunVThw4dsiQUDz74oOrUqaNXXnnFShpWrVql3377Tb169VJISIi2b9+u999/X9u3b9cPP/xgJUVbtmxRu3btFBoaqrFjxyo9PV3jxo2zku9r1adPH3366ad65JFHdMstt2jNmjXq2LFjlrj+/fvriy++0KBBgxQeHq4TJ05o3bp12rlzp5o1a3ZNbUhMTLzqN3w1a9bU2bNn5ePjo06dOum1117L0zF3/fr12bZr5cqV6ty5s8LDwzVx4kSdOHFCvXr1UpUqVayY+vXr65NPPtGQIUNUpUoVPfPMM5KUrzH39/dXrVq19P3332vIkCFOLw8UF+RI5EgSOVJuyJHIkZxVEnKkxMREeXt7W8eDTORIhcRVvxVE4evUqZPx8vIyBw4csKbt2LHDuLu7Z/mtdrVq1RyuK9K4cWPTsWPHHNd/td98JyQkGEnGz8/PHDt2LNt5M2fOtKbFxsYaSebJJ5+0pmVkZJiOHTsaDw8Pc/z4cWOMMV9//bWRZL7++utc15nT79F1xe+oO3XqZDw8PMy+ffusaYcPHza+vr6mVatW1rSZM2caSSY6OtpkZGRY04cMGWLc3d3N6dOns91ednr06GFKlSplfvzxxyzzMtc9ePBgI8l899131rwzZ86YGjVqmOrVq5v09HRjzN/jUrNmTXP+/HmHdWWO7YgRIxymf/fdd0aSmTNnjsP05cuXZ5l+5fUR0tLSTEpKisNyp06dMsHBweaxxx6zpuV0fYQrr9ERHx9vJJk+ffo4xD377LNGklmzZo01rVq1akaS+fbbb61px44dM56enuaZZ57Jsq2cSDKenp4mISHBmvbee+8ZSSYkJMQkJydb00eOHGkkOcReOd7GGDNx4kTj5ubm8L4rqPeKMcZ069bNeHt7m//973/m1VdfNZLMwoULnep35rpfffVVh+mZ+6Vbt25Zlsmur//+97+z7It77rnHeHt7mz/++MOatmfPHlO6dGmnrxFxtdfJE0884RD3yCOPZHmt+fv7m4EDBzq1vbz49ttvjZubm3nppZccpk+dOtUMGjTIzJkzx3zxxRfm6aefNqVLlzZ16tQxSUlJOa7z0qVLxs3NLdvXb5MmTUxoaKjD8WXlypVGUpbrI1SrVi3X47aPj0+O15Ayxpi2bdua+vXr5xgDFHfkSORI5Eg5I0ciR3JWcc+RjPlrf3h5eZnu3btnO58cqeDxk70SKj09XStWrFCnTp1UtWpVa3r9+vUVExOT6/IBAQHavn279uzZk+82dO7c2amK/6BBg6z/Z54mnJqamu2dDgpKenq6Vq5cqU6dOjn8Fjg0NFSPPPKI1q1bp+TkZIdl+vXr53CK7G233ab09HQdOHAgT9vMyMjQwoULdc8992R7147MdS9dulQtWrSwTgeWpHLlyqlfv37av3+/duzY4bBcbGysypYtm+02BwwY4PB8/vz58vf311133aU///zTemSefnv5qeVXcnd3t75ZzMjI0MmTJ5WWlqbmzZs7darv5ZYuXSpJGjp0qMP0zG8xrjwFPzw8XLfddpv1PDAwUHXr1tVvv/3m9LbbtGnjcGvYzG97O3fuLF9f3yzTL9/G5eN97tw5/fnnn7rllltkjNGWLVvy3AZn3ivvvPOO/P391aVLF7300kvq3r277rvvvjxvKy/69++fZdrlfb148aL+/PNP3XzzzZJk7ff09HStXr1anTp1UuXKla342rVrq3379tfcrszXyVNPPeUwPbtb9wYEBGjjxo06fPjwNW8307Fjx/TII4+oRo0aGj58uMO8p59+Wm+//bYeeeQRde7cWVOnTtXs2bO1Z8+eXL+ZPXnypIwxKl++vMP0I0eOKD4+XrGxsfL397em33XXXdleK6qglC9fXn/++WehrR9wNXKkvCFHIkciR8qKHCl7JSFHOn/+vB588EGVLVtWkyZNyjaGHKngUZAqoY4fP64LFy6oTp06WebVrVs31+XHjRun06dP64YbblDDhg01bNgwbd261ak21KhRI8+xpUqVynJxuBtuuEGSsvwmvSAdP35c58+fz3ZM6tevr4yMDB06dMhh+uXJqyTrAJnbdQUu32ZycrIaNGiQY9yBAweu2q7M+Ze72niXLl3a4dRVSdqzZ4+SkpIUFBSkwMBAh8fZs2d17NixHNs2e/ZsNWrUyLp2RmBgoJYsWaKkpKQcl7uaAwcOqFSpUqpdu7bD9JCQEAUEBGTp65X7QPprP+R1H+S0rswPtbCwsGynX76NgwcPqmfPnqpQoYLKlSunwMBA3X777ZLk1Fg4816pUKGC3nrrLW3dulX+/v5666238rzstbTn5MmTevrppxUcHKyyZcsqMDDQisvs67Fjx3ThwoUs+1FSttOclfk6ufIaAtm9TyZPnqxff/1VYWFhatGihcaMGZOvZDzTuXPndPfdd+vMmTP66quvcr04uCQ98sgjCgkJyfMfjOaKaypkvu7zexzPL2OM09eyAIoTcqS8IUciRyJHylt7yJGKf46Unp6url27aseOHfriiy8cioZXtoMcqWBxDSlkq1WrVtq3b5+++uorrVy5Uh9++KHeeOMNzZgxQ3369MnTOq72TVR+Xe3Nn56eXqDbyY27u3u20688UNrtauPt6emZ5U4yGRkZCgoK0pw5c7JdJqdvoj799FP17NlTnTp10rBhwxQUFCR3d3dNnDhR+/bty38HdPV9fKWC3AdXW1du20hPT9ddd92lkydP6rnnnlO9evXk4+OjP/74Qz179rzqtUCy4+x7ZcWKFZL+Svx+//33PN0JxhnZteehhx7S+vXrNWzYMDVp0kTlypVTRkaG2rVr51Rf7fLQQw/ptttu04IFC7Ry5Uq9+uqr+te//qUvv/zS6W8iU1NT9cADD2jr1q1asWJFrn8oXS4sLEwnT57MMaZChQpyc3PL1x8LheHUqVP5ugsOcL0gR7o6ciRyJIkciRwpb4pSjtS3b18tXrxYc+bM0Z133nnVOHKkgkdBqoQKDAxU2bJlsz2dfPfu3XlaR4UKFdSrVy/16tVLZ8+eVatWrTRmzBgr2SrI6nBGRoZ+++036xs/Sfrf//4nSdapwpnfsp0+fdph2exOA89r2wIDA+Xt7Z3tmOzatUulSpXK8i3QtQoMDJSfn59+/fXXHOOqVat21XZlzs+vWrVqafXq1br11lud/qD/4osvVLNmTX355ZcO4zx69GiHOGdeH9WqVVNGRob27NljfbspSUePHtXp06evqa+FZdu2bfrf//6n2bNnq0ePHtb0zLssXa4g3yvLly/Xhx9+qOHDh2vOnDmKjY3Vxo0bC/XWv6dOnVJcXJzGjh2rUaNGWdOvPL4EBQXJy8tLe/fuzbKO7KY5K/N1sm/fPodvv652TAsNDdUTTzyhJ554QseOHVOzZs00YcIEp5KtjIwM9ejRQ3FxcZo3b5717W5eGGO0f/9+NW3aNMe40qVLq1atWkpISHCYnvm6v5bjeH4kJCSocePGhbZ+wNXIkciRckKOdO3IkciRclOUcqRhw4Zp5syZmjp1qrp165ZjLDlSweMneyWUu7u7YmJitHDhQh08eNCavnPnTuubg5xceZvScuXKqXbt2g63l/Xx8ZGUNfnJr3feecf6vzFG77zzjsqUKaM2bdpI+uvA4+7urm+//dZhuex+e5zXtrm7u6tt27b66quvHE57P3r0qD777DO1bNlSfn5++exR9kqVKqVOnTrpv//9r3766acs8zO/XerQoYM2bdqkDRs2WPPOnTun999/X9WrV7+ma8g89NBDSk9P1/jx47PMS0tLy3HcMr8Vu/ybto0bNzq0U5J1Z4q8vD46dOggSZo6darD9Ndff12Ssr1DiKtlNw7GGL355ptZYgvqvXL69Gnrrk6vvPKKPvzwQ/3888965ZVXrmm9ucmur1LW/eXu7q7o6GgtXLjQ4boEe/fu1bJly665HZlJ0pWn4F/ZjvT09Cw/BwgKClLlypWz3CI7N08++aQ+//xzTZ8+3boTUnayu635u+++q+PHj6tdu3a5bicqKirL8SA0NFRNmjTR7NmzHfqzatWqLNdHKShJSUnat2+fbrnllkJZP1AUkCORI+WEHOnakSORI12uKOdIr776qqZMmaLnn39eTz/9dI6x5EiFgzOkSrCxY8dq+fLluu222/TEE08oLS1Nb7/9tm688cZcr3UQHh6u1q1bKyIiQhUqVNBPP/1k3R40U0REhKS/Lp4XExMjd3d3de3aNV9t9fLy0vLlyxUbG6vIyEgtW7ZMS5Ys0fPPP2+dGu3v72/dztXNzU21atXS4sWLs/0tvzNte/nll7Vq1Sq1bNlSTzzxhEqXLq333ntPKSkpmjx5cr76k5tXXnlFK1eu1O23365+/fqpfv36OnLkiObPn69169YpICBAI0aM0L///W+1b99eTz31lCpUqKDZs2crISFB//nPf7KcYu6M22+/XY8//rgmTpyo+Ph4tW3bVmXKlNGePXs0f/58vfnmm+rSpUu2y95999368ssvdf/996tjx45KSEjQjBkzFB4errNnz1pxZcuWVXh4uD7//HPdcMMNqlChgho0aJDtqbyNGzdWbGys3n//fZ0+fVq33367Nm3apNmzZ6tTp06644478t3XwlKvXj3VqlVLzz77rP744w/5+fnpP//5T7anFBfUe+Xpp5/WiRMntHr1arm7u6tdu3bq06ePXn75Zd13332F9o2Nn5+fWrVqpcmTJ+vSpUv6xz/+oZUrV2b5tkr663boK1eu1K233qoBAwYoPT1d77zzjho0aKD4+PhrakeTJk3UrVs3TZ8+XUlJSbrlllsUFxeX5ZvFM2fOqEqVKurSpYsaN26scuXKafXq1frxxx/12muv5Xl7U6dO1fTp0xUVFSVvb299+umnDvPvv/9+K5GuVq2aHn74YTVs2FBeXl5at26d5s6dqyZNmujxxx/PdVv33XefPvnkE/3vf/9zOAti4sSJ6tixo1q2bKnHHntMJ0+etI7jl7/fcvLf//5Xv/zyiyTp0qVL2rp1q15++WVJ0r333utwq/HVq1fLGFPgF4EFihpyJHKkqyFHunbkSORIxSFHWrBggYYPH646deqofv36Wfpw1113KTg42HpOjlRI7LiVH1znm2++MREREcbDw8PUrFnTzJgxI8ttQo3Jekvjl19+2bRo0cIEBASYsmXLmnr16pkJEyaY1NRUKyYtLc08+eSTJjAw0Li5uVnrvNrtUi+fd+UtjX18fMy+fftM27Ztjbe3twkODjajR4+2btub6fjx46Zz587G29vblC9f3jz++OPm119/zbLOq7XNmKy3NDbGmJ9//tnExMSYcuXKGW9vb3PHHXeY9evXO8Rk3tL4ytsQX+1Wy7k5cOCA6dGjhwkMDDSenp6mZs2aZuDAgQ63C963b5/p0qWLCQgIMF5eXqZFixZm8eLF2W5//vz5WbaRObZX8/7775uIiAhTtmxZ4+vraxo2bGiGDx9uDh8+bMVceUvjjIwM88orr5hq1aoZT09P07RpU7N48WITGxub5Rar69evt15/l497dq/BS5cumbFjx5oaNWqYMmXKmLCwMDNy5Ehz8eJFh7ir3bb1ynbmhaQst7292us3u3HesWOHiY6ONuXKlTOVKlUyffv2Nb/88kueX4/OvFe++uorI8m89tprDnHJycmmWrVqpnHjxg7vz5zkdkvjzNuIX+733383999/vwkICDD+/v7mwQcfNIcPH872/RQXF2eaNm1qPDw8TK1atcyHH35onnnmGePl5ZWn9l3ZnstduHDBPPXUU6ZixYrGx8fH3HPPPebQoUMO7UhJSTHDhg0zjRs3Nr6+vsbHx8c0btzYTJ8+3antZ94S/GqPy29v3adPHxMeHm58fX1NmTJlTO3atc1zzz3ncFvsnKSkpJhKlSqZ8ePHZ5n3n//8x9SvX994enqa8PBw8+WXX2b7frvaeyOnflx5y+yHH37YtGzZMk9tBoo7ciRyJHKkqyNHIkfKSUnIkTLH8GqPK49b5EiFw80YF19lEABQ4nXq1Omab5Ne0o0fP14zZ87Unj17rnrB2MKUmJioGjVqaO7cuXz7BwCATciRckeOVHJxDSkAQIG6cOGCw/M9e/Zo6dKlat26tWsaVEwMGTJEZ8+e1dy5c12y/alTp6phw4YkWgAAFBJypPwhRyq5OEMKKEBnz57N9TfLgYGBLqnsX08SExNznF+2bFn5+/vb1Br7XLhwIcuFKq9UoUIFeXh4FGo7QkND1bNnT9WsWVMHDhzQu+++q5SUFG3ZskV16tRRUlJSloTsSiEhIYXWvqIyTgBwPSFHKhrIka6OHKnojBOuI679xSBQsuT2W2Rd8ZtqFI7c9sHl1wIpSTKv4ZHTw9nreORHz549retn+Pn5mZiYGLN582Zrfm7XHSjsj6aiMk4AcD0hRyoayJHIkXJSVMYJ1w/OkAIK0G+//abffvstx5iWLVvKy8vLphZdn1avXp3j/MqVK1/TLaGLqiNHjmj79u05xkRERKh8+fI2tSh7O3bscLjlcXaio6MLbfvFZZwAoCQhRyoayJGurih89pMj4XpDQQoAAAAAAAC24qLmAAAAAAAAsFVpVzfAlTIyMnT48GH5+vrKzc3N1c0BAAA2MMbozJkzqly5skqV4ru57JAjAQBw/bE7R7quC1KHDx9WWFiYq5sBAABc4NChQ6pSpYqrm1EkkSMBAHD9sitHuq4LUr6+vpL+Gmw/Pz8XtwYAANghOTlZYWFhVh6ArMiRAAC4/tidI13XBanMU9D9/PxItgAAuM7wU7SrI0cCAOD6ZVeOxIUTAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADY6rq+hhQAADlJT0/XpUuXXN0MOKlMmTJyd3d3dTMAACixyJGKp6KWI1GQAgDgCsYYJSYm6vTp065uCvIpICBAISEhXLgcAIACRI5U/BWlHImCFAAAV8hMtIKCguTt7V0kPrCRN8YYnT9/XseOHZMkhYaGurhFAACUHORIxVdRzJEoSAEAcJn09HQr0apYsaKrm4N8KFu2rCTp2LFjCgoKKlKnpgMAUFyRIxV/RS1H4qLmAABcJvN6CN7e3i5uCa5F5v7j+hYAABQMcqSSoSjlSBSkAADIBqegF2/sPwAACgefscVbUdp/FKQAAAAAAABgKwpSAAAAAAAAsNU1FaQmTZokNzc3DR482Jp28eJFDRw4UBUrVlS5cuXUuXNnHT161GG5gwcPqmPHjvL29lZQUJCGDRumtLQ0h5i1a9eqWbNm8vT0VO3atTVr1qws2582bZqqV68uLy8vRUZGatOmTdfSHQAAcnRp+TrbHs5wc3PL8TFmzJjCGZA8tm3hwoXXtI73339frVu3lp+fn9zc3IrFrabJkQAA1xM7cyTypL+dPHlSTz75pOrWrauyZcuqatWqeuqpp5SUlFRwjSxE+b7L3o8//qj33ntPjRo1cpg+ZMgQLVmyRPPnz5e/v78GDRqkBx54QN9//72kv67M37FjR4WEhGj9+vU6cuSIevTooTJlyuiVV16RJCUkJKhjx47q37+/5syZo7i4OPXp00ehoaGKiYmRJH3++ecaOnSoZsyYocjISE2dOlUxMTHavXu3goKC8tstANeRKz/MyrRr6aKWANfmyJEj1v8///xzjRo1Srt377amlStXzqn1paamysPDo8Dad63Onz+vdu3aqV27dho5cqSrm5MrcqTcZffHBMdgAEBhKMl50uHDh3X48GFNmTJF4eHhOnDggPr376/Dhw/riy++cHXzcpWvM6TOnj2rRx99VB988IHKly9vTU9KStJHH32k119/XXfeeaciIiI0c+ZMrV+/Xj/88IMkaeXKldqxY4c+/fRTNWnSRO3bt9f48eM1bdo0paamSpJmzJihGjVq6LXXXlP9+vU1aNAgdenSRW+88Ya1rddff119+/ZVr169FB4erhkzZsjb21sff/zxtYwHAADFTkhIiPXw9/eXm5ub9fzcuXN69NFHFRwcrHLlyummm27S6tWrHZavXr26xo8frx49esjPz0/9+vWTJH3wwQcKCwuTt7e37r//fr3++usKCAhwWParr75Ss2bN5OXlpZo1a2rs2LHWGT3Vq1eXJN1///1yc3Oznv/yyy+644475OvrKz8/P0VEROinn366av8GDx6sESNG6Oabby6YAStE5EgAABQtJTlPatCggf7zn//onnvuUa1atXTnnXdqwoQJ+u9//5vlDOuiKF8FqYEDB6pjx46Kjo52mL5582ZdunTJYXq9evVUtWpVbdiwQZK0YcMGNWzYUMHBwVZMTEyMkpOTtX37divmynXHxMRY60hNTdXmzZsdYkqVKqXo6GgrBgAA/FUg6dChg+Li4rRlyxa1a9dO99xzjw4ePOgQN2XKFDVu3FhbtmzRSy+9pO+//179+/fX008/rfj4eN11112aMGGCwzLfffedevTooaefflo7duzQe++9p1mzZllxP/74oyRp5syZOnLkiPX80UcfVZUqVfTjjz9q8+bNGjFihMqUKWPDaBS+4pojpaSkKDk52eEBAEBJVxLzpKSkJPn5+al06Xz/IM42Trdw7ty5+vnnn63BulxiYqI8PDyyVAWDg4OVmJhoxVyeaGXOz5yXU0xycrIuXLigU6dOKT09PduYXbt2XbXtKSkpSklJsZ6TbAEASrrGjRurcePG1vPx48drwYIFWrRokQYNGmRNv/POO/XMM89Yz1944QW1b99ezz77rCTphhtu0Pr167V48WIrZuzYsRoxYoRiY2MlSTVr1tT48eM1fPhwjR49WoGBgZKkgIAAhYSEWMsdPHhQw4YNU7169SRJderUKYSe268450gTJ07U2LFj89ZRAABKiJKWJ/35558aP368dRZXUefUGVKHDh3S008/rTlz5sjLy6uw2lRoJk6cKH9/f+sRFhbm6iYBAFCozp49q2effVb169dXQECAypUrp507d2b55q958+YOz3fv3q0WLVo4TLvy+S+//KJx48apXLly1qNv3746cuSIzp8/f9U2DR06VH369FF0dLQmTZqkffv2XWMvXa+450gjR45UUlKS9Th06JCrmwQAQKErSXlScnKyOnbsqPDwcJdeqN0ZThWkNm/erGPHjqlZs2YqXbq0SpcurW+++UZvvfWWSpcureDgYKWmpma5+83Ro0etil9ISEiWO8pkPs8txs/PT2XLllWlSpXk7u6ebczllcUrkWwBAK43zz77rBYsWKBXXnlF3333neLj49WwYUPrmkSZfHx8nF732bNnNXbsWMXHx1uPbdu2ac+ePTkWZcaMGaPt27erY8eOWrNmjcLDw7VgwQKnt1+UFPccydPTU35+fg4PAABKupKSJ505c0bt2rWTr6+vFixYUGwuheBUQapNmzbatm2bw4A2b95cjz76qPX/MmXKKC4uzlpm9+7dOnjwoKKioiRJUVFR2rZtm44dO2bFrFq1Sn5+fgoPD7diLl9HZkzmOjw8PBQREeEQk5GRobi4OCsmOyRbAIDrzffff6+ePXvq/vvvV8OGDRUSEqL9+/fnulzdunWz/PTsyufNmjXT7t27Vbt27SyPUqX+SjHKlCmj9PT0LOu/4YYbNGTIEK1cuVIPPPCAZs6cmXhLLmwAAQAASURBVP9OFgHFPUcCAOB6VBLypOTkZLVt21YeHh5atGhRsTpT26lrSPn6+qpBgwYO03x8fFSxYkVreu/evTV06FBVqFBBfn5+evLJJxUVFWXdGadt27YKDw9X9+7dNXnyZCUmJurFF1/UwIED5enpKUnq37+/3nnnHQ0fPlyPPfaY1qxZo3nz5mnJkiXWdocOHarY2Fg1b95cLVq00NSpU3Xu3Dn16tXrmgYEAICSpE6dOvryyy91zz33yM3NTS+99JIyMjJyXe7JJ59Uq1at9Prrr+uee+7RmjVrtGzZMrm5uVkxo0aN0t13362qVauqS5cuKlWqlH755Rf9+uuvevnllyX9dQeZuLg43XrrrfL09JSXl5eGDRumLl26qEaNGvr999/1448/qnPnzldtS2JiohITE7V3715J0rZt2+Tr66uqVauqQoUK1zhCBYMcCQCA4qe450mZxajz58/r008/dbgxSWBgoNzd3QtglApPvu6yl5M33nhDd999tzp37qxWrVopJCREX375pTXf3d1dixcvlru7u6KiovTPf/5TPXr00Lhx46yYGjVqaMmSJVq1apUaN26s1157TR9++KFiYmKsmIcfflhTpkzRqFGj1KRJE8XHx2v58uVZLuIJAMD17PXXX1f58uV1yy236J577lFMTIyaNWuW63K33nqrZsyYoddff12NGzfW8uXLNWTIEIdv3WJiYrR48WKtXLlSN910k26++Wa98cYbqlatmhXz2muvadWqVQoLC1PTpk3l7u6uEydOqEePHrrhhhv00EMPqX379jleUHvGjBlq2rSp+vbtK0lq1aqVmjZtqkWLFl3DyNiPHAkAgKKluOdJP//8szZu3Kht27apdu3aCg0NtR7F4RJFbsYY4+pGuEpycrL8/f2t2yICuL5cWr7O4XmZdi1d1BIUJRcvXlRCQoJq1KhRrE55tkPfvn21a9cufffdd65uSq5y2o98/ueusMfoyuOvxDEYAIo6cqScFZc8qSjlSE79ZA8AAFw/pkyZorvuuks+Pj5atmyZZs+erenTp7u6WQAAAC5HnnTtKEgBAIBsbdq0SZMnT9aZM2dUs2ZNvfXWW+rTp4+rmwUAAOBy5EnXjoIUAADI1rx581zdBAAAgCKJPOnaFfhFzQEAAAAAAICcUJACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxV2tUNAACguNj303u2batW88ediu/Zs6dmz54tSSpdurQqVKigRo0aqVu3burZs6dKlSq+30Ft375do0aN0ubNm3XgwAG98cYbGjx4sKubBQAA/j87cySJPOlyH3zwgf7v//5Pv/76qyQpIiJCr7zyilq0aOHiluWu+I46AABw0K5dOx05ckT79+/XsmXLdMcdd+jpp5/W3XffrbS0NFc3L9/Onz+vmjVratKkSQoJCXF1cwAAQDFUUvOktWvXqlu3bvr666+1YcMGhYWFqW3btvrjjz9c3bRcUZACAKCE8PT0VEhIiP7xj3+oWbNmev755/XVV19p2bJlmjVrlhV3+vRp9enTR4GBgfLz89Odd96pX375xWFd//3vf3XTTTfJy8tLlSpV0v3332/NO3XqlHr06KHy5cvL29tb7du31549eyRJ586dk5+fn7744guH9S1cuFA+Pj46c+aMUlNTNWjQIIWGhsrLy0vVqlXTxIkTr9qvm266Sa+++qq6du0qT0/PAhgpAABwvSmpedKcOXP0xBNPqEmTJqpXr54+/PBDZWRkKC4urgBGrXBRkAIAoAS788471bhxY3355ZfWtAcffFDHjh3TsmXLtHnzZjVr1kxt2rTRyZMnJUlLlizR/fffrw4dOmjLli2Ki4tzOO27Z8+e+umnn7Ro0SJt2LBBxhh16NBBly5dko+Pj7p27aqZM2c6tGPmzJnq0qWLfH199dZbb2nRokWaN2+edu/erTlz5qh69eq2jAcAAECmkpgnnT9/XpcuXVKFChWubXBswDWkAAAo4erVq6etW7dKktatW6dNmzbp2LFj1tlGU6ZM0cKFC/XFF1+oX79+mjBhgrp27aqxY8da62jcuLEkac+ePVq0aJG+//573XLLLZL++mYuLCxMCxcu1IMPPqg+ffrolltu0ZEjRxQaGqpjx45p6dKlWr16tSTp4MGDqlOnjlq2bCk3NzdVq1bNzuEAAACwlLQ86bnnnlPlypUVHR19zWNT2DhDCgCAEs4YIzc3N0nSL7/8orNnz6pixYoqV66c9UhISNC+ffskSfHx8WrTpk2269q5c6dKly6tyMhIa1rFihVVt25d7dy5U5LUokUL3XjjjdbFQz/99FNVq1ZNrVq1kvTXN4fx8fGqW7eunnrqKa1cubLQ+g4AAJCTkpQnTZo0SXPnztWCBQvk5eXl/GDYjDOkAAAo4Xbu3KkaNWpIks6ePavQ0FCtXbs2S1xAQIAkqWzZste8zT59+mjatGkaMWKEZs6cqV69elnJXrNmzZSQkKBly5Zp9erVeuihhxQdHZ3legoAAACFraTkSVOmTNGkSZO0evVqNWrU6JrbaAfOkAIAoARbs2aNtm3bps6dO0v6K8lJTExU6dKlVbt2bYdHpUqVJEmNGjW66oUw69evr7S0NG3cuNGaduLECe3evVvh4eHWtH/+8586cOCA3nrrLe3YsUOxsbEO6/Hz89PDDz+sDz74QJ9//rn+85//WNdmAAAAsENJyZMmT56s8ePHa/ny5WrevHm+x8NunCEFAEAJkZKSosTERKWnp+vo0aNavny5Jk6cqLvvvls9evSQJEVHRysqKkqdOnXS5MmTdcMNN+jw4cPWBTqbN2+u0aNHq02bNqpVq5a6du2qtLQ0LV26VM8995zq1Kmj++67T3379tV7770nX19fjRgxQv/4xz903333WW0pX768HnjgAQ0bNkxt27ZVlSpVrHmvv/66QkND1bRpU5UqVUrz589XSEiI9c3jlVJTU7Vjxw7r/3/88Yfi4+NVrlw51a5du/AGFAAAlBglNU/617/+pVGjRumzzz5T9erVlZiYKEnWzw2LMs6QAgCghFi+fLlCQ0NVvXp1tWvXTl9//bXeeustffXVV3J3d5ckubm5aenSpWrVqpV69eqlG264QV27dtWBAwcUHBwsSWrdurXmz5+vRYsWqUmTJrrzzju1adMmazszZ85URESE7r77bkVFRckYo6VLl6pMmTIO7endu7dSU1P12GOPOUz39fXV5MmT1bx5c910003av3+/li5dqlKlsk9LDh8+rKZNm6pp06Y6cuSIpkyZoqZNm6pPnz4FOXwAAKAEK6l50rvvvqvU1FR16dJFoaGh1mPKlCkFOXyFws0YY1zdCFdJTk6Wv7+/kpKS5Ofn5+rmALDZpeXrHJ6XadfSRS1BUXLx4kUlJCSoRo0axeJikEXZJ598oiFDhujw4cPy8PCwdds57Uc+/3NX2GN05fFX4hgMAEUdOVLBclWeVJRyJH6yBwAACtT58+d15MgRTZo0SY8//rjtxSgAAICiijzpb/xkDwAAFKjJkyerXr16CgkJ0ciRI13dHAAAgCKDPOlvFKQAAECBGjNmjC5duqS4uLgifzFNAAAAO5En/Y2CFAAAAAAAAGxFQQoAgGxcx/f8KBHYfwAAFA4+Y4u3orT/KEgBAHCZzFvynj9/3sUtwbXI3H9X3mIZAADkDzlSyVCUciSnClLvvvuuGjVqJD8/P/n5+SkqKkrLli2z5rdu3Vpubm4Oj/79+zus4+DBg+rYsaO8vb0VFBSkYcOGKS0tzSFm7dq1atasmTw9PVW7dm3NmjUrS1umTZum6tWry8vLS5GRkdq0aZMzXQEAIFvu7u4KCAjQsWPHdOLECV24cEEXL17kUUweFy5c0IkTJ3Ts2DEFBATI3d3dltcNORIAoKQjRyreD1flSDkp7UxwlSpVNGnSJNWpU0fGGM2ePVv33XeftmzZohtvvFGS1LdvX40bN85axtvb2/p/enq6OnbsqJCQEK1fv15HjhxRjx49VKZMGb3yyiuSpISEBHXs2FH9+/fXnDlzFBcXpz59+ig0NFQxMTGSpM8//1xDhw7VjBkzFBkZqalTpyomJka7d+9WUFDQNQ8KAOD6FhISIkk6duyYi1uC/AoICLD2ox3IkQAA1wNypOLP7hwpJ27mGn9AWKFCBb366qvq3bu3WrdurSZNmmjq1KnZxi5btkx33323Dh8+rODgYEnSjBkz9Nxzz+n48ePy8PDQc889pyVLlujXX3+1luvatatOnz6t5cuXS5IiIyN100036Z133pEkZWRkKCwsTE8++aRGjBiR57YnJyfL399fSUlJ8vPzy+cIACiuLi1f5/C8TLuWLmoJiqr09HRdunTJ1c2Ak8qUKZPjt352ff6TI13dlcdfiWMwABQn5EjFU1HJkTI5dYbU5dLT0zV//nydO3dOUVFR1vQ5c+bo008/VUhIiO655x699NJL1jeAGzZsUMOGDa1ES5JiYmI0YMAAbd++XU2bNtWGDRsUHR3tsK2YmBgNHjxYkpSamqrNmzdr5MiR1vxSpUopOjpaGzZsyG93AADIwt3dvUiczozipTjmSCkpKUpJSbGeJycn57v/AICSjxwJBcHpgtS2bdsUFRWlixcvqly5clqwYIHCw8MlSY888oiqVaumypUra+vWrXruuee0e/duffnll5KkxMREh0RLkvU8MTExx5jk5GRduHBBp06dUnp6erYxu3btyrHtJFsAAKCwFOccaeLEiRo7dmz+Ow8AAOAkpwtSdevWVXx8vJKSkvTFF18oNjZW33zzjcLDw9WvXz8rrmHDhgoNDVWbNm20b98+1apVq0Abnh8kWwAAoLAU5xxp5MiRGjp0qPU8OTlZYWFhLmwRAAAo6Zy6y54keXh4qHbt2oqIiNDEiRPVuHFjvfnmm9nGRkZGSpL27t0r6a8LoB09etQhJvN55kW1rhbj5+ensmXLqlKlSnJ3d882JrcLc40cOVJJSUnW49ChQ3nsNQAAQM6Kc47k6elp3SEw8wEAAFCYnC5IXSkjI8PhZ3CXi4+PlySFhoZKkqKiorRt2zaHK/KvWrVKfn5+1intUVFRiouLc1jPqlWrrGsweHh4KCIiwiEmIyNDcXFxDtdpyA7JFgAAsEtxypEAAADs5tRP9kaOHKn27duratWqOnPmjD777DOtXbtWK1as0L59+/TZZ5+pQ4cOqlixorZu3aohQ4aoVatWatSokSSpbdu2Cg8PV/fu3TV58mQlJibqxRdf1MCBA+Xp6SlJ6t+/v9555x0NHz5cjz32mNasWaN58+ZpyZIlVjuGDh2q2NhYNW/eXC1atNDUqVN17tw59erVqwCHBgAAIG/IkQAAAJzjVEHq2LFj6tGjh44cOSJ/f381atRIK1as0F133aVDhw5p9erVVuITFhamzp0768UXX7SWd3d31+LFizVgwABFRUXJx8dHsbGxGjdunBVTo0YNLVmyREOGDNGbb76pKlWq6MMPP1RMTIwV8/DDD+v48eMaNWqUEhMT1aRJEy1fvjzLRTwBAADsQI7knP2nl2WZVkctXdASAADgKm7GGOPqRrhKcnKy/P39lZSUxM/3gOvQnrkvODyv03WCi1oCwE58/ueusMfoyuOvxDEYAABXsztHuuZrSAEAAAAAAADOoCAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAuEbvvvuuGjVqJD8/P/n5+SkqKkrLli2z5l+8eFEDBw5UxYoVVa5cOXXu3FlHjx51WMfBgwfVsWNHeXt7KygoSMOGDVNaWppDzNq1a9WsWTN5enqqdu3amjVrVpa2TJs2TdWrV5eXl5ciIyO1adOmQukzAADAtXCqIEWyBQAAkFWVKlU0adIkbd68WT/99JPuvPNO3Xfffdq+fbskaciQIfrvf/+r+fPn65tvvtHhw4f1wAMPWMunp6erY8eOSk1N1fr16zV79mzNmjVLo0aNsmISEhLUsWNH3XHHHYqPj9fgwYPVp08frVixwor5/PPPNXToUI0ePVo///yzGjdurJiYGB07dsy+wQAAAMgDpwpSJFsAAABZ3XPPPerQoYPq1KmjG264QRMmTFC5cuX0ww8/KCkpSR999JFef/113XnnnYqIiNDMmTO1fv16/fDDD5KklStXaseOHfr000/VpEkTtW/fXuPHj9e0adOUmpoqSZoxY4Zq1Kih1157TfXr19egQYPUpUsXvfHGG1Y7Xn/9dfXt21e9evVSeHi4ZsyYIW9vb3388ccuGRcAAICrcaogRbIFAACQs/T0dM2dO1fnzp1TVFSUNm/erEuXLik6OtqKqVevnqpWraoNGzZIkjZs2KCGDRsqODjYiomJiVFycrL1xd+GDRsc1pEZk7mO1NRUbd682SGmVKlSio6OtmIAAACKinxfQ6o4JlspKSlKTk52eAAAABSEbdu2qVy5cvL09FT//v21YMEChYeHKzExUR4eHgoICHCIDw4OVmJioiQpMTHRIT/KnJ85L6eY5ORkXbhwQX/++afS09Ozjclcx9WQIwEAALs5XZAqzsnWxIkT5e/vbz3CwsKc7T4AAEC26tatq/j4eG3cuFEDBgxQbGysduzY4epm5Qk5EgAAsJvTBaninGyNHDlSSUlJ1uPQoUOubhIAACghPDw8VLt2bUVERGjixIlq3Lix3nzzTYWEhCg1NVWnT592iD969KhCQkIkSSEhIVluBJP5PLcYPz8/lS1bVpUqVZK7u3u2MZnruBpyJAAAYDenC1LFOdny9PS07hCY+QAAACgMGRkZSklJUUREhMqUKaO4uDhr3u7du3Xw4EFFRUVJkqKiorRt2zaHG7SsWrVKfn5+Cg8Pt2IuX0dmTOY6PDw8FBER4RCTkZGhuLg4K+ZqyJEAAIDd8n0NqUzFKdkCAAAoDCNHjtS3336r/fv3a9u2bRo5cqTWrl2rRx99VP7+/urdu7eGDh2qr7/+Wps3b1avXr0UFRWlm2++WZLUtm1bhYeHq3v37vrll1+0YsUKvfjiixo4cKA8PT0lSf3799dvv/2m4cOHa9euXZo+fbrmzZunIUOGWO0YOnSoPvjgA82ePVs7d+7UgAEDdO7cOfXq1csl4wIAAHA1pZ0JHjlypNq3b6+qVavqzJkz+uyzz7R27VqtWLHCIdmqUKGC/Pz89OSTT1412Zo8ebISExOzTbbeeecdDR8+XI899pjWrFmjefPmacmSJVY7hg4dqtjYWDVv3lwtWrTQ1KlTSbYAAIDLHDt2TD169NCRI0fk7++vRo0aacWKFbrrrrskSW+88YZKlSqlzp07KyUlRTExMZo+fbq1vLu7uxYvXqwBAwYoKipKPj4+io2N1bhx46yYGjVqaMmSJRoyZIjefPNNValSRR9++KFiYmKsmIcffljHjx/XqFGjlJiYqCZNmmj58uVZrr0JAADgam7GGJPX4N69eysuLs4h2XruueesZOvixYt65pln9O9//9sh2br8p3QHDhzQgAEDtHbtWivZmjRpkkqX/rs2tnbtWg0ZMkQ7duxQlSpV9NJLL6lnz54ObXnnnXf06quvWsnWW2+9pcjISKc6n5ycLH9/fyUlJXFqOnAd2jP3BYfndbpOcFFLANiJz//cFfYYXXn8lTgGAwDganbnSE4VpEoaElLg+kZBCrg+8fmfOwpSAABcf+zOka75GlIAAAAAAACAMyhIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAK7RxIkTddNNN8nX11dBQUHq1KmTdu/e7RDTunVrubm5OTz69+/vEHPw4EF17NhR3t7eCgoK0rBhw5SWluYQs3btWjVr1kyenp6qXbu2Zs2alaU906ZNU/Xq1eXl5aXIyEht2rSpwPsMAABwLZwqSJFsAQAAZPXNN99o4MCB+uGHH7Rq1SpdunRJbdu21blz5xzi+vbtqyNHjliPyZMnW/PS09PVsWNHpaamav369Zo9e7ZmzZqlUaNGWTEJCQnq2LGj7rjjDsXHx2vw4MHq06ePVqxYYcV8/vnnGjp0qEaPHq2ff/5ZjRs3VkxMjI4dO1b4AwEAAJBHThWkSLYAAACyWr58uXr27Kkbb7xRjRs31qxZs3Tw4EFt3rzZIc7b21shISHWw8/Pz5q3cuVK7dixQ59++qmaNGmi9u3ba/z48Zo2bZpSU1MlSTNmzFCNGjX02muvqX79+ho0aJC6dOmiN954w1rP66+/rr59+6pXr14KDw/XjBkz5O3trY8//tiewQAAAMgDpwpSJFsAAAC5S0pKkiRVqFDBYfqcOXNUqVIlNWjQQCNHjtT58+eteRs2bFDDhg0VHBxsTYuJiVFycrK2b99uxURHRzusMyYmRhs2bJAkpaamavPmzQ4xpUqVUnR0tBUDAABQFFzTNaSKW7KVkpKi5ORkhwcAAEBBysjI0ODBg3XrrbeqQYMG1vRHHnlEn376qb7++muNHDlSn3zyif75z39a8xMTEx3yI0nW88TExBxjkpOTdeHCBf35559KT0/PNiZzHdkhRwIAAHYrnd8Fc0q2qlWrpsqVK2vr1q167rnntHv3bn355ZeSCibZOnXq1FWTrV27dl21zRMnTtTYsWPz22UAAIBcDRw4UL/++qvWrVvnML1fv37W/xs2bKjQ0FC1adNG+/btU61atexupgNyJAAAYLd8F6SKY7I1cuRIDR061HqenJyssLAwF7YIAACUJIMGDdLixYv17bffqkqVKjnGRkZGSpL27t2rWrVqKSQkJMsNWo4ePSpJCgkJsf7NnHZ5jJ+fn8qWLSt3d3e5u7tnG5O5juyQIwEAALvl6yd7mcnW119/7VSyJV09kcqcl1NMZrJVqVKlfCVbnp6e8vPzc3gAAABcK2OMBg0apAULFmjNmjWqUaNGrsvEx8dLkkJDQyVJUVFR2rZtm8MNWlatWiU/Pz+Fh4dbMXFxcQ7rWbVqlaKioiRJHh4eioiIcIjJyMhQXFycFZMdciQAAGA3pwpSxT3ZAgAAKAwDBw7Up59+qs8++0y+vr5KTExUYmKiLly4IEnat2+fxo8fr82bN2v//v1atGiRevTooVatWqlRo0aSpLZt2yo8PFzdu3fXL7/8ohUrVujFF1/UwIED5enpKUnq37+/fvvtNw0fPly7du3S9OnTNW/ePA0ZMsRqy9ChQ/XBBx9o9uzZ2rlzpwYMGKBz586pV69e9g8MAADAVTj1k72BAwfqs88+01dffWUlW5Lk7++vsmXLat++ffrss8/UoUMHVaxYUVu3btWQIUOummxNnjxZiYmJ2SZb77zzjoYPH67HHntMa9as0bx587RkyRKrLUOHDlVsbKyaN2+uFi1aaOrUqSRbAADAJd59911JUuvWrR2mz5w5Uz179pSHh4dWr15t5SthYWHq3LmzXnzxRSvW3d1dixcv1oABAxQVFSUfHx/FxsZq3LhxVkyNGjW0ZMkSDRkyRG+++aaqVKmiDz/8UDExMVbMww8/rOPHj2vUqFFKTExUkyZNtHz58izX3gQAAHAlN2OMyXOwm1u20zOTrUOHDumf//ynfv31VyvZuv/++/Xiiy86nPp94MABDRgwQGvXrrWSrUmTJql06b/rY2vXrtWQIUO0Y8cOValSRS+99JJ69uzpsN133nlHr776qpVsvfXWW9ZPBPMiOTlZ/v7+SkpK4tR04Dq0Z+4LDs/rdJ3gopYAsBOf/7kr7DG68vgrcQwGAMDV7M6RnDpDKrfaVVhYmL755ptc11OtWjUtXbo0x5jWrVtry5YtOcYMGjRIgwYNynV7AAAAAAAAKDrydVFzAAAAAAAAIL8oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWThWkJk6cqJtuukm+vr4KCgpSp06dtHv3boeYixcvauDAgapYsaLKlSunzp076+jRow4xBw8eVMeOHeXt7a2goCANGzZMaWlpDjFr165Vs2bN5Onpqdq1a2vWrFlZ2jNt2jRVr15dXl5eioyM1KZNm5zpDgAAQIEgRwIAAHCOUwWpb775RgMHDtQPP/ygVatW6dKlS2rbtq3OnTtnxQwZMkT//e9/NX/+fH3zzTc6fPiwHnjgAWt+enq6OnbsqNTUVK1fv16zZ8/WrFmzNGrUKCsmISFBHTt21B133KH4+HgNHjxYffr00YoVK6yYzz//XEOHDtXo0aP1888/q3HjxoqJidGxY8euZTwAAACcRo4EAADgHDdjjMnvwsePH1dQUJC++eYbtWrVSklJSQoMDNRnn32mLl26SJJ27dql+vXra8OGDbr55pu1bNky3X333Tp8+LCCg4MlSTNmzNBzzz2n48ePy8PDQ88995yWLFmiX3/91dpW165ddfr0aS1fvlySFBkZqZtuuknvvPOOJCkjI0NhYWF68sknNWLEiDy1Pzk5Wf7+/kpKSpKfn19+hwFAMbVn7gsOz+t0neCilgCwkx2f/+RIObvy+CtxDAYAwNXsrpFc0zWkkpKSJEkVKlSQJG3evFmXLl1SdHS0FVOvXj1VrVpVGzZskCRt2LBBDRs2tBItSYqJiVFycrK2b99uxVy+jsyYzHWkpqZq8+bNDjGlSpVSdHS0FQMAAOAq5EgAAAA5K53fBTMyMjR48GDdeuutatCggSQpMTFRHh4eCggIcIgNDg5WYmKiFXN5opU5P3NeTjHJycm6cOGCTp06pfT09Gxjdu3addU2p6SkKCUlxXqenJzsRI8BAAByR44EAACQu3yfITVw4ED9+uuvmjt3bkG2p1BNnDhR/v7+1iMsLMzVTQIAACUMORIAAEDu8lWQGjRokBYvXqyvv/5aVapUsaaHhIQoNTVVp0+fdog/evSoQkJCrJgr7yiT+Ty3GD8/P5UtW1aVKlWSu7t7tjGZ68jOyJEjlZSUZD0OHTrkXMcBAAByQI4EAACQN04VpIwxGjRokBYsWKA1a9aoRo0aDvMjIiJUpkwZxcXFWdN2796tgwcPKioqSpIUFRWlbdu2OdzpZdWqVfLz81N4eLgVc/k6MmMy1+Hh4aGIiAiHmIyMDMXFxVkx2fH09JSfn5/DAwAA4FqRIwEAADjHqWtIDRw4UJ999pm++uor+fr6Wtcz8Pf3V9myZeXv76/evXtr6NChqlChgvz8/PTkk08qKipKN998sySpbdu2Cg8PV/fu3TV58mQlJibqxRdf1MCBA+Xp6SlJ6t+/v9555x0NHz5cjz32mNasWaN58+ZpyZIlVluGDh2q2NhYNW/eXC1atNDUqVN17tw59erVq6DGBgAAIE/IkQAAAJzjVEHq3XfflSS1bt3aYfrMmTPVs2dPSdIbb7yhUqVKqXPnzkpJSVFMTIymT59uxbq7u2vx4sUaMGCAoqKi5OPjo9jYWI0bN86KqVGjhpYsWaIhQ4bozTffVJUqVfThhx8qJibGinn44Yd1/PhxjRo1SomJiWrSpImWL1+e5SKeAAAAhY0cCQAAwDluxhjj6ka4SnJysvz9/ZWUlMSp6cB1aM/cFxye1+k6wUUtAWAnPv9zV9hjdOXxV+IYDACAq9mdI+X7LnsAAAAAAABAflCQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWThekvv32W91zzz2qXLmy3NzctHDhQof5PXv2lJubm8OjXbt2DjEnT57Uo48+Kj8/PwUEBKh37946e/asQ8zWrVt12223ycvLS2FhYZo8eXKWtsyfP1/16tWTl5eXGjZsqKVLlzrbHQAAgAJBjgQAAJB3Thekzp07p8aNG2vatGlXjWnXrp2OHDliPf797387zH/00Ue1fft2rVq1SosXL9a3336rfv36WfOTk5PVtm1bVatWTZs3b9arr76qMWPG6P3337di1q9fr27duql3797asmWLOnXqpE6dOunXX391tksAAADXjBwJAAAg79yMMSbfC7u5acGCBerUqZM1rWfPnjp9+nSWbwUz7dy5U+Hh4frxxx/VvHlzSdLy5cvVoUMH/f7776pcubLeffddvfDCC0pMTJSHh4ckacSIEVq4cKF27dolSXr44Yd17tw5LV682Fr3zTffrCZNmmjGjBl5an9ycrL8/f2VlJQkPz+/fIwAgOJsz9wXHJ7X6TrBRS0BYCc7Pv/JkXJ25fFX4hgMAICr2V0jKZRrSK1du1ZBQUGqW7euBgwYoBMnTljzNmzYoICAACvRkqTo6GiVKlVKGzdutGJatWplJVqSFBMTo927d+vUqVNWTHR0tMN2Y2JitGHDhsLoEgAAwDUrqjlSSkqKkpOTHR4AAACFqcALUu3atdP//d//KS4uTv/617/0zTffqH379kpPT5ckJSYmKigoyGGZ0qVLq0KFCkpMTLRigoODHWIyn+cWkzk/OyRbAADAVYpyjjRx4kT5+/tbj7CwsGvrLAAAQC5KF/QKu3btav2/YcOGatSokWrVqqW1a9eqTZs2Bb05p0ycOFFjx451aRsAAMD1qSjnSCNHjtTQoUOt58nJyRSlAABAoSqUn+xdrmbNmqpUqZL27t0rSQoJCdGxY8ccYtLS0nTy5EmFhIRYMUePHnWIyXyeW0zm/OyMHDlSSUlJ1uPQoUPX1jkAAIB8Kko5kqenp/z8/BweAAAAhanQC1K///67Tpw4odDQUElSVFSUTp8+rc2bN1sxa9asUUZGhiIjI62Yb7/9VpcuXbJiVq1apbp166p8+fJWTFxcnMO2Vq1apaioqKu2hWQLAAAUFUUpRwIAALCb0wWps2fPKj4+XvHx8ZKkhIQExcfH6+DBgzp79qyGDRumH374Qfv371dcXJzuu+8+1a5dWzExMZKk+vXrq127durbt682bdqk77//XoMGDVLXrl1VuXJlSdIjjzwiDw8P9e7dW9u3b9fnn3+uN9980+FU8qefflrLly/Xa6+9pl27dmnMmDH66aefNGjQoAIYFgAAAOeQIwEAAOSd0wWpn376SU2bNlXTpk0lSUOHDlXTpk01atQoubu7a+vWrbr33nt1ww03qHfv3oqIiNB3330nT09Pax1z5sxRvXr11KZNG3Xo0EEtW7bU+++/b8339/fXypUrlZCQoIiICD3zzDMaNWqU+vXrZ8Xccsst+uyzz/T++++rcePG+uKLL7Rw4UI1aNDgWsYDAAAgX8iRAAAA8s7NGGNc3QhXSU5Olr+/v5KSkvj5HnAd2jP3BYfndbpOcFFLANiJz//cFfYYXXn8lTgGAwDganbnSIV+DSkAAAAAAADgchSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALCV0wWpb7/9Vvfcc48qV64sNzc3LVy40GG+MUajRo1SaGioypYtq+joaO3Zs8ch5uTJk3r00Ufl5+engIAA9e7dW2fPnnWI2bp1q2677TZ5eXkpLCxMkydPztKW+fPnq169evLy8lLDhg21dOlSZ7sDAABQIMiRAAAA8s7pgtS5c+fUuHFjTZs2Ldv5kydP1ltvvaUZM2Zo48aN8vHxUUxMjC5evGjFPProo9q+fbtWrVqlxYsX69tvv1W/fv2s+cnJyWrbtq2qVaumzZs369VXX9WYMWP0/vvvWzHr169Xt27d1Lt3b23ZskWdOnVSp06d9OuvvzrbJQAAgGtGjgQAAJB3bsYYk++F3dy0YMECderUSdJf3/xVrlxZzzzzjJ599llJUlJSkoKDgzVr1ix17dpVO3fuVHh4uH788Uc1b95ckrR8+XJ16NBBv//+uypXrqx3331XL7zwghITE+Xh4SFJGjFihBYuXKhdu3ZJkh5++GGdO3dOixcvttpz8803q0mTJpoxY0ae2p+cnCx/f38lJSXJz88vv8MAoJjaM/cFh+d1uk5wUUsA2MmOz39ypJxdefyVOAYDAOBqdtdICvQaUgkJCUpMTFR0dLQ1zd/fX5GRkdqwYYMkacOGDQoICLASLUmKjo5WqVKltHHjRiumVatWVqIlSTExMdq9e7dOnTplxVy+ncyYzO1kJyUlRcnJyQ4PAACAwkaOBAAA4KhAC1KJiYmSpODgYIfpwcHB1rzExEQFBQU5zC9durQqVKjgEJPdOi7fxtViMudnZ+LEifL397ceYWFhznYRAADAaeRIAAAAjq6ru+yNHDlSSUlJ1uPQoUOubhIAAIDLkSMBAAC7FWhBKiQkRJJ09OhRh+lHjx615oWEhOjYsWMO89PS0nTy5EmHmOzWcfk2rhaTOT87np6e8vPzc3gAAAAUNnIkAAAARwVakKpRo4ZCQkIUFxdnTUtOTtbGjRsVFRUlSYqKitLp06e1efNmK2bNmjXKyMhQZGSkFfPtt9/q0qVLVsyqVatUt25dlS9f3oq5fDuZMZnbAQAAKCrIkQAAABw5XZA6e/as4uPjFR8fL+mvi3TGx8fr4MGDcnNz0+DBg/Xyyy9r0aJF2rZtm3r06KHKlStbd5mpX7++2rVrp759+2rTpk36/vvvNWjQIHXt2lWVK1eWJD3yyCPy8PBQ7969tX37dn3++ed68803NXToUKsdTz/9tJYvX67XXntNu3bt0pgxY/TTTz9p0KBB1z4qAAAATiJHAgAAyLvSzi7w008/6Y477rCeZyZAsbGxmjVrloYPH65z586pX79+On36tFq2bKnly5fLy8vLWmbOnDkaNGiQ2rRpo1KlSqlz58566623rPn+/v5auXKlBg4cqIiICFWqVEmjRo1Sv379rJhbbrlFn332mV588UU9//zzqlOnjhYuXKgGDRrkayAAAACuBTkSAABA3rkZY4yrG+EqycnJ8vf3V1JSEtdKAK5De+a+4PC8TtcJLmoJADvx+Z+7wh6jK4+/EsdgAABcze4c6bq6yx4AAAAAAABcj4IUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALYq8ILUmDFj5Obm5vCoV6+eNf/ixYsaOHCgKlasqHLlyqlz5846evSowzoOHjyojh07ytvbW0FBQRo2bJjS0tIcYtauXatmzZrJ09NTtWvX1qxZswq6KwAAAAWGHAkAAOBvhXKG1I033qgjR45Yj3Xr1lnzhgwZov/+97+aP3++vvnmGx0+fFgPPPCANT89PV0dO3ZUamqq1q9fr9mzZ2vWrFkaNWqUFZOQkKCOHTvqjjvuUHx8vAYPHqw+ffpoxYoVhdEdAACAAkGOBAAA8JfShbLS0qUVEhKSZXpSUpI++ugjffbZZ7rzzjslSTNnzlT9+vX1ww8/6Oabb9bKlSu1Y8cOrV69WsHBwWrSpInGjx+v5557TmPGjJGHh4dmzJihGjVq6LXXXpMk1a9fX+vWrdMbb7yhmJiYwugSAADANSNHAgAA+EuhnCG1Z88eVa5cWTVr1tSjjz6qgwcPSpI2b96sS5cuKTo62oqtV6+eqlatqg0bNkiSNmzYoIYNGyo4ONiKiYmJUXJysrZv327FXL6OzJjMdVxNSkqKkpOTHR4AAAB2IUcCAAD4S4EXpCIjIzVr1iwtX75c7777rhISEnTbbbfpzJkzSkxMlIeHhwICAhyWCQ4OVmJioiQpMTHRIdHKnJ85L6eY5ORkXbhw4aptmzhxovz9/a1HWFjYtXYXAAAgT8iRAAAA/lbgP9lr37699f9GjRopMjJS1apV07x581S2bNmC3pxTRo4cqaFDh1rPk5OTSbgAAIAtyJEAAAD+Vig/2btcQECAbrjhBu3du1chISFKTU3V6dOnHWKOHj1qXU8hJCQkyx1lMp/nFuPn55djQufp6Sk/Pz+HBwAAgCuQIwEAgOtZoRekzp49q3379ik0NFQREREqU6aM4uLirPm7d+/WwYMHFRUVJUmKiorStm3bdOzYMStm1apV8vPzU3h4uBVz+ToyYzLXAQAAUNSRIwEAgOtZgReknn32WX3zzTfav3+/1q9fr/vvv1/u7u7q1q2b/P391bt3bw0dOlRff/21Nm/erF69eikqKko333yzJKlt27YKDw9X9+7d9csvv2jFihV68cUXNXDgQHl6ekqS+vfvr99++03Dhw/Xrl27NH36dM2bN09Dhgwp6O4AAAAUCHIkAACAvxX4NaR+//13devWTSdOnFBgYKBatmypH374QYGBgZKkN954Q6VKlVLnzp2VkpKimJgYTZ8+3Vre3d1dixcv1oABAxQVFSUfHx/FxsZq3LhxVkyNGjW0ZMkSDRkyRG+++aaqVKmiDz/8kNsZAwCAIoscCQAA4G9uxhjj6ka4SnJysvz9/ZWUlMS1EoDr0J65Lzg8r9N1gotaAsBOfP7nrrDH6Mrjr8QxGAAAV7M7Ryr0a0gBAAAAAAAAl6MgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFsV+4LUtGnTVL16dXl5eSkyMlKbNm1ydZMAAABcjhwJAAAUZcW6IPX5559r6NChGj16tH7++Wc1btxYMTExOnbsmKubBgAA4DLkSAAAoKgr1gWp119/XX379lWvXr0UHh6uGTNmyNvbWx9//LGrmwYAAOAy5EgAAKCoK+3qBuRXamqqNm/erJEjR1rTSpUqpejoaG3YsMGFLQMAAM66tHxdlmll2rV0QUuKv5KSI2X3mihMvN4AAEVRSc6Rim1B6s8//1R6erqCg4MdpgcHB2vXrl3ZLpOSkqKUlBTreVJSkiQpOTm58BoKXIcurSoef/CcPZ/i8PzEf1a4qCW43pW5K8rheX7fQ1eu52rryi4uP/Lazrxsb9/hhVmm1Upu5GyT8iTzc98YUyjrd7XikCNdefyVisAx2NXbvw7k5ViXl+NYQR3DnGkDALhKSc6Rim1BKj8mTpyosWPHZpkeFhbmgtYAKHpec3UDAFyud+G+J8+cOSN/f/9C3UZxUTRyJI7BAADkSQnJkYptQapSpUpyd3fX0aNHHaYfPXpUISEh2S4zcuRIDR061HqekZGhkydPqmLFinJzcyvQ9iUnJyssLEyHDh2Sn59fga67KKGfJc/10lf6WbLQz5KnMPtqjNGZM2dUuXLlAl1vUUGOhCsx5vZjzO3HmLsG426/kpQjFduClIeHhyIiIhQXF6dOnTpJ+it5iouL06BBg7JdxtPTU56eng7TAgICCrWdfn5+18Ubk36WPNdLX+lnyUI/S57C6mtJPjOKHAlXw5jbjzG3H2PuGoy7/UpCjlRsC1KSNHToUMXGxqp58+Zq0aKFpk6dqnPnzqlXr16ubhoAAIDLkCMBAICirlgXpB5++GEdP35co0aNUmJiopo0aaLly5dnuYgnAADA9YQcCQAAFHXFuiAlSYMGDbrq6eeu5OnpqdGjR2c5/b2koZ8lz/XSV/pZstDPkud66mthIUdCJsbcfoy5/Rhz12Dc7VeSxtzNlNR7HgMAAAAAAKBIKuXqBgAAAAAAAOD6QkEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEjl04QJE3TLLbfI29tbAQEBeVrGGKNRo0YpNDRUZcuWVXR0tPbs2eMQc/LkST366KPy8/NTQECAevfurbNnzxZCD/LO2Tbt379fbm5u2T7mz59vxWU3f+7cuXZ0KVv5GfvWrVtn6UP//v0dYg4ePKiOHTvK29tbQUFBGjZsmNLS0gqzKzlytp8nT57Uk08+qbp166ps2bKqWrWqnnrqKSUlJTnEuXp/Tps2TdWrV5eXl5ciIyO1adOmHOPnz5+vevXqycvLSw0bNtTSpUsd5ufl/eoqzvT1gw8+0G233aby5curfPnyio6OzhLfs2fPLPuuXbt2hd2NXDnTz1mzZmXpg5eXl0NMUd2nzvQzu2OOm5ubOnbsaMUUxf357bff6p577lHlypXl5uamhQsX5rrM2rVr1axZM3l6eqp27dqaNWtWlhhn3/ewT0Efk5G7gv5sQO7yewyaO3eu3Nzc1KlTp8JtYAnk7JifPn1aAwcOVGhoqDw9PXXDDTdwfHGSs2M+depU6++GsLAwDRkyRBcvXrSptcVfYeVMRZZBvowaNcq8/vrrZujQocbf3z9Py0yaNMn4+/ubhQsXml9++cXce++9pkaNGubChQtWTLt27Uzjxo3NDz/8YL777jtTu3Zt061bt0LqRd4426a0tDRz5MgRh8fYsWNNuXLlzJkzZ6w4SWbmzJkOcZePhd3yM/a333676du3r0MfkpKSrPlpaWmmQYMGJjo62mzZssUsXbrUVKpUyYwcObKwu3NVzvZz27Zt5oEHHjCLFi0ye/fuNXFxcaZOnTqmc+fODnGu3J9z5841Hh4e5uOPPzbbt283ffv2NQEBAebo0aPZxn///ffG3d3dTJ482ezYscO8+OKLpkyZMmbbtm1WTF7er67gbF8feeQRM23aNLNlyxazc+dO07NnT+Pv729+//13KyY2Nta0a9fOYd+dPHnSri5ly9l+zpw50/j5+Tn0ITEx0SGmKO5TZ/t54sQJhz7++uuvxt3d3cycOdOKKYr7c+nSpeaFF14wX375pZFkFixYkGP8b7/9Zry9vc3QoUPNjh07zNtvv23c3d3N8uXLrRhnxw72KYxjMnJWGJ8NyFl+j0EJCQnmH//4h7ntttvMfffdZ09jSwhnxzwlJcU0b97cdOjQwaxbt84kJCSYtWvXmvj4eJtbXnw5O+Zz5swxnp6eZs6cOSYhIcGsWLHChIaGmiFDhtjc8uKrMHKmooyC1DWaOXNmngpSGRkZJiQkxLz66qvWtNOnTxtPT0/z73//2xhjzI4dO4wk8+OPP1oxy5YtM25ubuaPP/4o8LbnRUG1qUmTJuaxxx5zmJaXN5hd8tvP22+/3Tz99NNXnb906VJTqlQphz+M3333XePn52dSUlIKpO3OKKj9OW/ePOPh4WEuXbpkTXPl/mzRooUZOHCg9Tw9Pd1UrlzZTJw4Mdv4hx56yHTs2NFhWmRkpHn88ceNMXl7v7qKs329UlpamvH19TWzZ8+2psXGxha5pNjZfuZ2LC6q+/Ra9+cbb7xhfH19zdmzZ61pRXF/Xi4vx4rhw4ebG2+80WHaww8/bGJiYqzn1zp2KDwFfUxG7grjswE5y8+Yp6WlmVtuucV8+OGHRf5YXRQ5O+bvvvuuqVmzpklNTbWriSWOs2M+cOBAc+eddzpMGzp0qLn11lsLtZ0lVUHlTEUZP9mzSUJCghITExUdHW1N8/f3V2RkpDZs2CBJ2rBhgwICAtS8eXMrJjo6WqVKldLGjRttb3NBtWnz5s2Kj49X7969s8wbOHCgKlWqpBYtWujjjz+WMabA2u6Ma+nnnDlzVKlSJTVo0EAjR47U+fPnHdbbsGFDBQcHW9NiYmKUnJys7du3F3xHclFQr7GkpCT5+fmpdOnSDtNdsT9TU1O1efNmh/dWqVKlFB0dbb23rrRhwwaHeOmv/ZIZn5f3qyvkp69XOn/+vC5duqQKFSo4TF+7dq2CgoJUt25dDRgwQCdOnCjQtjsjv/08e/asqlWrprCwMN13330O77GiuE8LYn9+9NFH6tq1q3x8fBymF6X9mR+5vUcLYuxQOArjmIycFeZnA7KX3zEfN26cgoKCss2JkbP8jPmiRYsUFRWlgQMHKjg4WA0aNNArr7yi9PR0u5pdrOVnzG+55RZt3rzZ+lnfb7/9pqVLl6pDhw62tPl6VNw/Q0vnHoKCkJiYKEkOhYnM55nzEhMTFRQU5DC/dOnSqlChghVjt4Jo00cffaT69evrlltucZg+btw43XnnnfL29tbKlSv1xBNP6OzZs3rqqacKrP15ld9+PvLII6pWrZoqV66srVu36rnnntPu3bv15ZdfWuvNbp9nzrNbQezPP//8U+PHj1e/fv0cprtqf/75559KT0/Pdpx37dqV7TJX2y+Xvxczp10txhXy09crPffcc6pcubLDB1e7du30wAMPqEaNGtq3b5+ef/55tW/fXhs2bJC7u3uB9iEv8tPPunXr6uOPP1ajRo2UlJSkKVOm6JZbbtH27dtVpUqVIrlPr3V/btq0Sb/++qs++ugjh+lFbX/mx9Xeo8nJybpw4YJOnTp1ze8FFI7COCYjZ4X12YCry8+Yr1u3Th999JHi4+NtaGHJk58x/+2337RmzRo9+uijWrp0qfbu3asnnnhCly5d0ujRo+1odrGWnzF/5JFH9Oeff6ply5YyxigtLU39+/fX888/b0eTr0u55Uxly5Z1UcvyhoLUZUaMGKF//etfOcbs3LlT9erVs6lFhSevfb1WFy5c0GeffaaXXnopy7zLpzVt2lTnzp3Tq6++WqAFjMLu5+VFmYYNGyo0NFRt2rTRvn37VKtWrXyv11l27c/k5GR17NhR4eHhGjNmjMM8O/Ynrs2kSZM0d+5crV271uGC3127drX+37BhQzVq1Ei1atXS2rVr1aZNG1c01WlRUVGKioqynt9yyy2qX7++3nvvPY0fP96FLSs8H330kRo2bKgWLVo4TC8J+xOAfa722YCCc+bMGXXv3l0ffPCBKlWq5OrmXDcyMjIUFBSk999/X+7u7oqIiNAff/yhV199lYJUIVm7dq1eeeUVTZ8+XZGRkdq7d6+efvppjR8/Ptu/BwEKUpd55pln1LNnzxxjatasma91h4SESJKOHj2q0NBQa/rRo0fVpEkTK+bYsWMOy6WlpenkyZPW8gUlr3291jZ98cUXOn/+vHr06JFrbGRkpMaPH6+UlBR5enrmGp8XdvUzU2RkpCRp7969qlWrlkJCQrLcieLo0aOSVKD71I5+njlzRu3atZOvr68WLFigMmXK5BhfGPszO5UqVZK7u7s1rpmOHj161T6FhITkGJ+X96sr5KevmaZMmaJJkyZp9erVatSoUY6xNWvWVKVKlbR3716XFDCupZ+ZypQpo6ZNm2rv3r2SiuY+vZZ+njt3TnPnztW4ceNy3Y6r92d+XO096ufnp7Jly8rd3f2aXyMoHIVxTEbO7PpswN+cHfN9+/Zp//79uueee6xpGRkZkv46U3337t22fpFZHOXndR4aGqoyZco4nB1cv359JSYmKjU1VR4eHoXa5uIuP2P+0ksvqXv37urTp4+kv74YO3funPr166cXXnhBpUpxxaCCllvOVNTxirhMYGCg6tWrl+MjvweuGjVqKCQkRHFxcda05ORkbdy40fpWPyoqSqdPn9bmzZutmDVr1igjI8MqdBSUvPb1Wtv00Ucf6d5771VgYGCusfHx8SpfvnyBFi/s6uflfZBk/cEbFRWlbdu2ORSBVq1aJT8/P4WHhxdMJ1X4/UxOTlbbtm3l4eGhRYsW5ekb1MLYn9nx8PBQRESEw3srIyNDcXFxDmfMXC4qKsohXvprv2TG5+X96gr56askTZ48WePHj9fy5csdrh92Nb///rtOnDjhULixU377ebn09HRt27bN6kNR3KfX0s/58+crJSVF//znP3Pdjqv3Z37k9h4tiNcICkdhHJORM7s+G/A3Z8e8Xr162rZtm+Lj463HvffeqzvuuEPx8fEKCwuzs/nFUn5e57feeqv27t1rFf8k6X//+59CQ0MpRuVBfsb8/PnzWYpOmQVBV10ruKQr9p+hrr2mevF14MABs2XLFjN27FhTrlw5s2XLFrNlyxZz5swZK6Zu3brmyy+/tJ5PmjTJBAQEmK+++sps3brV3HfffVluOd6uXTvTtGlTs3HjRrNu3TpTp04d061bN1v7dqXc2vT777+bunXrmo0bNzost2fPHuPm5maWLVuWZZ2LFi0yH3zwgdm2bZvZs2ePmT59uvH29jajRo0q9P5cjbP93Lt3rxk3bpz56aefTEJCgvnqq69MzZo1TatWraxl0tLSTIMGDUzbtm1NfHy8Wb58uQkMDDQjR460vX+ZnO1nUlKSiYyMNA0bNjR79+51uJV8WlqaMcb1+3Pu3LnG09PTzJo1y+zYscP069fPBAQEWHc37N69uxkxYoQV//3335vSpUubKVOmmJ07d5rRo0dnucV4Xt6vruBsXydNmmQ8PDzMF1984bDvMo9VZ86cMc8++6zZsGGDSUhIMKtXrzbNmjUzderUMRcvXnRJH41xvp9jx441K1asMPv27TObN282Xbt2NV5eXmb79u1WTFHcp872M1PLli3Nww8/nGV6Ud2fZ86csT4nJZnXX3/dbNmyxRw4cMAYY8yIESNM9+7drfjMWxgPGzbM7Ny500ybNi3LLYxzGzu4TmEck5Gzgv5sQO7ye/zOxF32nOfsmB88eND4+vqaQYMGmd27d5vFixeboKAg8/LLL7uqC8WOs2M+evRo4+vra/7973+b3377zaxcudLUqlXLPPTQQ67qQrFTGDlTUUZBKp9iY2ONpCyPr7/+2oqRZGbOnGk9z8jIMC+99JIJDg42np6epk2bNmb37t0O6z1x4oTp1q2bKVeunPHz8zO9evVyeXKQW5sSEhKy9N0YY0aOHGnCwsJMenp6lnUuW7bMNGnSxJQrV874+PiYxo0bmxkzZmQbaxdn+3nw4EHTqlUrU6FCBePp6Wlq165thg0bZpKSkhzWu3//ftO+fXtTtmxZU6lSJfPMM8+YS5cu2dk1B8728+uvv872tS7JJCQkGGOKxv58++23TdWqVY2Hh4dp0aKF+eGHH6x5t99+u4mNjXWInzdvnrnhhhuMh4eHufHGG82SJUsc5ufl/eoqzvS1WrVq2e670aNHG2OMOX/+vGnbtq0JDAw0ZcqUMdWqVTN9+/YtEn/UO9PPwYMHW7HBwcGmQ4cO5ueff3ZYX1Hdp86+dnft2mUkmZUrV2ZZV1Hdn1c7jmT2LTY21tx+++1ZlmnSpInx8PAwNWvWdPg8zZTT2MG1CvqYjNwV5GcD8sbZ1/nlKEjlj7Njvn79ehMZGWk8PT1NzZo1zYQJE6wvVJE3zoz5pUuXzJgxY0ytWrWMl5eXCQsLM0888YQ5deqU/Q0vpgorZyqq3Izh3DkAAAAAAADYh2tIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFKQAAAAAAANiKghQAAAAAAABsRUEKAAAAAAAAtqIgBQAAAAAAAFtRkAIAAAAAAICtKEgBAAAAAADAVhSkAAAAAAAAYCsKUgAAAAAAALAVBSkAAAAAAADYioIUAAAAAAAAbEVBCgAAAAAAALaiIAUAAAAAAABbUZACAAAAAACArShIAQAAAAAAwFYUpAAAAAAAAGArClIAAAAAAACwFQUpAAAAAAAA2IqCFAAAAAAAAGxFQQoAAAAAAAC2oiAFAAAAAAAAW1GQAgAAAAAAgK0oSAEAAAAAAMBWFKQAAAAAAABgKwpSAAAAAAAAsBUFqevQmDFj5Obm5jCtevXq6tmzZ6Fve//+/XJzc9OsWbOsaT179lS5cuUKfduZ3NzcNGbMGNu2V9y1bt1arVu3LtB1ZvcahKPs3isFac+ePWrbtq38/f3l5uamhQsXFsp2roUzr5OS8L4+dOiQvLy89P333+cam9378ujRo+rSpYsqVqwoNzc3TZ061antd+3aVQ899JBTywAlDTlS8T+W2okcyTXIkciRckKOVLxQkEK+LV26tMge3Ipy264X58+f15gxY7R27VpXN8XliuLrMTY2Vtu2bdOECRP0ySefqHnz5q5uUpGTmfBm95g7d26W+J07d6pdu3YqV66cKlSooO7du+v48eN53t64ceMUGRmpW2+9NV/tHTJkiFasWKGRI0fqk08+Ubt27SRJEyZM0L333qvg4OAck9LnnntO//nPf/TLL7/ka/sA/lYUj/uZinLbrhfkSH8riq9HcqTclYQcadeuXRo+fLiaNGkiX19fhYaGqmPHjvrpp5+yLE+OVIgMrjujR482V+76ixcvmtTUVKfWM3DgwCzryU1GRoa5cOGCSUtLs6bFxsYaHx8fp9ZzLW27cOGCuXTpUoFuryS7/fbbze233+70csePHzeSzOjRo7PMu3Tpkrlw4cK1N66YKKj3SkE5f/68kWReeOGFAl93QXLmdXK119q1SEhIMJJMt27dzCeffOLw2L9/v0PsoUOHTKVKlUytWrXMm2++aSZMmGDKly9vGjdubFJSUnLd1rFjx0yZMmXMZ599lqe2Zfe+DA4ONo8++miWWEkmJCTExMTE5DpOLVq0MN27d89TG4CSiByJHMkZ5EjXjhwpf8iRri6vOdIzzzxjAgICTO/evc17771nJk+ebGrVqmXc3d3NqlWrsqyXHKlwlLa7AIaiydPTs1DXn5aWpoyMDHl4eMjLy6tQt5UbV2/fDhcvXpSHh4dKlcp6EuS5c+fk4+Pjglb9rXTp0ipdmsNPdux4r2R+IxUQEJBrrCtfL0XlddKsWTP985//zDHmlVde0blz57R582ZVrVpVktSiRQvdddddmjVrlvr165fj8p9++qlKly6te+65J9/tPHbsWLb7NCEhQdWrV9eff/6pwMDAHNfx0EMPafTo0Zo+fbqtPxMCijJypJKFHKn4Ikf6W1F5nRTnHKlbt24aM2aMQ77z2GOPqX79+hozZoyio6Md4smRCgc/2Svh1q1bp5tuukleXl6qVauW3nvvvWzjrrw+wqVLlzR27FjVqVNHXl5eqlixolq2bKlVq1ZJ+uuaBtOmTZMkh1M0pb9P4ZwyZYqmTp2qWrVqydPTUzt27MjxN9+//fabYmJi5OPjo8qVK2vcuHEyxljz165dKzc3tyynN1+5zpzaljntylODt2zZovbt28vPz0/lypVTmzZt9MMPPzjEzJo1S25ubvr+++81dOhQBQYGysfHR/fff79Tp5xm+uOPP9S7d29VrlxZnp6eqlGjhgYMGKDU1FSHMXnwwQdVoUIFeXt76+abb9aSJUsc1pM5LnPnztWLL76of/zjH/L29lZycrJ17Yl9+/apQ4cO8vX11aOPPipJysjI0NSpU3XjjTfKy8tLwcHBevzxx3Xq1Kkc252amqpRo0YpIiJC/v7+8vHx0W233aavv/7aitm/f7/1h+/YsWOtfZA57tn97j0tLU3jx4+3Xi/Vq1fX888/r5SUFIe46tWr6+6779a6devUokULeXl5qWbNmvq///s/53aA/notDBo0SPPnz1d4eLjKli2rqKgobdu2TZL03nvvqXbt2vLy8lLr1q21f/9+h+W/++47Pfjgg6patao8PT0VFhamIUOG6MKFC1ZMQb1Xjh07psDAQLVu3drhfbF37175+Pjo4YcfzlOfx4wZo2rVqkmShg0bJjc3N1WvXt2a5+bmph07duiRRx5R+fLl1bJlS0nS1q1b1bNnT9WsWVNeXl4KCQnRY489phMnTmTZxtq1a9W8eXOH405+romR3TIpKSkaMmSIAgMD5evrq3vvvVe///57lmXPnDmjwYMHq3r16vL09FRQUJDuuusu/fzzz061IdO5c+cc3ptX+s9//qO7777bSrQkKTo6WjfccIPmzZuX6/oXLlyoyMjIbBOc999/X7Vq1VLZsmXVokULfffddw7zM49NxhhNmzYtyzEvc//mxV133aVz585Zx3qgJCNHIkciR7o6ciRypLwqrjlSRERElnVWrFhRt912m3bu3JllW+RIhcP1ZVUUmm3btqlt27YKDAzUmDFjlJaWptGjRys4ODjXZceMGaOJEyeqT58+atGihZKTk/XTTz/p559/1l133aXHH39c/4+9O4/zqe7/P/6cGbOazTBjRsZOTGUwsiWVhpGliIq6MmRJlixFtFiS5ZKkkpDrwrdUokiWsYxWuexTQhITaowhy2Aw2/v3R7/55GMWM2PmzOJxv90+t5t5n/c553Xen+3ldc7nfeLi4rRhwwZ98MEHWW5jwYIFunz5svr37y9XV1f5+fkpPT09y75paWlq166dmjVrpmnTpikqKkrjxo1TamqqXn311Twdd25iu9revXt19913y9vbW6NGjZKzs7Pmzp2re++9V998842aNm1q13/IkCEqV66cxo0bp99//10zZ87U4MGDtWTJklzHGBcXpyZNmujs2bPq37+/6tatqz///FPLli1TUlKSXFxcdOLECbVo0UJJSUl69tlnVb58eS1atEgPPvigli1bpi5duthtc+LEiXJxcdHzzz+vK1euyMXFRdLfSUxERIRatmyp6dOny8PDwzZOCxcuVO/evfXss88qNjZWs2bN0u7du7V582Y5OztnGXtiYqLmz5+vHj16qF+/fjp//rz+85//KCIiQtu2bVODBg3k7++v9957T88884y6dOmihx9+WJJUv379bMekb9++WrRokbp166bnnntOW7du1ZQpU7R//34tX77cru9vv/2mbt26qU+fPoqMjNR///tf9erVS2FhYbrtttty/TxIfydMK1eu1KBBgyRJU6ZMUceOHTVq1CjNnj1bAwcO1JkzZzRt2jQ99dRT2rRpk23dpUuXKikpSc8884zKly+vbdu26Z133tEff/yhpUuX2sa5IN4rAQEBeu+99/TII4/onXfe0bPPPqv09HT16tVLXl5emj17dq6O9+GHH5avr6+GDx+uHj16qH379pm+jB955BHVrl1bkydPtiV2GzZs0OHDh9W7d28FBgZq7969mjdvnvbu3av//e9/ti/33bt3q127dgoKCtKECROUlpamV1999bpX5uRW37599eGHH+rxxx9XixYttGnTJnXo0CFTvwEDBmjZsmUaPHiwQkJC9Ndff+n777/X/v371ahRozztc8KECbbENCwsTJMmTVLbtm1ty//8808lJCRkOcdEkyZNtGbNmhy3n5KSou3bt+uZZ57JtOw///mPnn76abVo0ULDhg3T4cOH9eCDD8rPz0/BwcGSpFatWumDDz7Qk08+qTZt2qhnz555Or6rZfynY/PmzZk+Y4DShByJHEkiR7oeciRypOspjTlSfHy8KlSokKmdHKmQFN2vBVHYOnfubNzc3MyRI0dsbfv27TNOTk6ZfqtdtWpVExkZafs7NDTUdOjQIcftZ/eb74zfFHt7e5uEhIQsly1YsMDWFhkZaSSZIUOG2NrS09NNhw4djIuLizl58qQxxpivvvrKSDJfffXVdbeZ0+/Rdc3vqDt37mxcXFzMoUOHbG1xcXHGy8vLtGrVyta2YMECI8mEh4eb9PR0W/vw4cONk5OTOXv2bJb7y0rPnj2No6Oj2b59e6ZlGdseNmyYkWS+++4727Lz58+b6tWrm2rVqpm0tDRjzD/jUqNGDZOUlGS3rYyxHT16tF37d999ZySZxYsX27VHRUVlar/2d9ipqamZfu995swZU7FiRfPUU0/Z2nKaH+HaOTpiYmKMJNO3b1+7fs8//7yRZDZt2mRrq1q1qpFkvv32W1tbQkKCcXV1Nc8991ymfeVEknF1dTWxsbG2trlz59rm3ElMTLS1jxkzxkiy63vteBtjzJQpU4yDg4Pd+66g3ivGGNOjRw/j4eFhfv31V/P6668bSWbFihV5Ou6Mbb/++ut27RnPS48ePTKtk9Wxfvzxx5mei06dOhkPDw/z559/2toOHjxoypQpk+c5IrJ7nQwcONCu3+OPP57ptebj42MGDRqUp/1d68iRI6Zt27bmvffeMytXrjQzZ840VapUMY6OjmbVqlW2ftu3bzeSzP/93/9l2sbIkSONJHP58uVs9/Pbb78ZSeadd96xa09OTjYBAQGmQYMGdu+5efPmGUmZ5keQlOMx5/SevFqdOnXMAw88kGMfoKQjRyJHIkfKGTkSOVJOSluOlOHbb781Dg4O5pVXXslyOTlSweMne6VUWlqa1q1bp86dO9tdHlmvXj1FRERcd31fX1/t3btXBw8ezHcMXbt2zVPFf/DgwbZ/Z1wmnJycrI0bN+Y7hutJS0vT+vXr1blzZ9WoUcPWHhQUpMcff1zff/+9EhMT7dbp37+/3SWyd999t9LS0nTkyJFc7TM9PV0rVqxQp06dsjxbkLHtNWvWqEmTJrbLgSXJ09NT/fv31++//659+/bZrRcZGSl3d/cs93ntWYWlS5fKx8dHbdq00alTp2yPjEtXr760/FpOTk62M4vp6ek6ffq0UlNT1bhx43xf6ptxdmTEiBF27c8995wkZboEPyQkRHfffbftb39/f9166606fPhwnvd9//332/2kKeNsb9euXeXl5ZWp/ep9XD3eFy9e1KlTp9SiRQsZY7R79+5cx5CX98qsWbPk4+Ojbt266ZVXXtGTTz6phx56KNf7yo0BAwZkarv6WC9fvqxTp06pWbNmkmR73tPS0rRx40Z17txZlSpVsvWvVauWHnjggRuOK+N18uyzz9q1Dxs2LFNfX19fbd26VXFxcfneX5UqVbRu3ToNGDBAnTp10tChQ7V79275+/vbXpuSbD8/yGqemYw5Lq7+icK1Mi7pL1eunF37jh07lJCQoAEDBtjec9LfP3Hw8fHJ93FdT7ly5XTq1KlC2z5Q1MiRcocciRyJHCkzcqS/lcYcKSEhQY8//riqV6+uUaNGZdmHHKngUZAqpU6ePKlLly6pdu3amZbdeuut113/1Vdf1dmzZ1WnTh3dcccdGjlypH766ac8xVC9evVc93V0dLRLdiSpTp06kpTpN+kF6eTJk0pKSspyTOrVq6f09HQdO3bMrv3q5FX65wPyevMKXL3PxMRE3X777Tn2O3LkSLZxZSy/WnbjXaZMGVWuXNmu7eDBgzp37pwCAgLk7+9v97hw4YISEhJyjG3RokWqX7++be4Mf39/rV69WufOnctxvewcOXJEjo6OqlWrll17YGCgfH19Mx3rtc+B9PfzkNvnIKdtZXyJZVzqe2371fs4evSoevXqJT8/P3l6esrf31/33HOPJOVpLPLyXvHz89Pbb7+tn376ST4+Pnr77bdzve6NxHP69GkNHTpUFStWlLu7u/z9/W39Mo41ISFBly5dyvQ8SsqyLa8yXic1a9a0a8/qfTJt2jT9/PPPCg4OVpMmTTR+/Ph8JePX8vPzU+/evXXgwAHbvAwZiei1c3lIfyemV/fJiblq3gvpn/f4tZ/jzs7OmT4vC5IxJs9zWQAlCTlS7pAjkSORI+UuHnKkv5XkHOnixYvq2LGjzp8/ry+++CLbScvJkQoec0ghS61atdKhQ4f0xRdfaP369Zo/f77efPNNzZkzR3379s3VNnLz4ZIX2b3509LSCnQ/1+Pk5JRl+7UflFbLbrxdXV0z3UkmPT1dAQEBWrx4cZbr5HQm6sMPP1SvXr3UuXNnjRw5UgEBAXJyctKUKVN06NCh/B+Asn+Or1WQz0F227rePtLS0tSmTRudPn1aL7zwgurWrauyZcvqzz//VK9evbKdCyQreX2vrFu3TtLfid8ff/yRqzvB5EVW8Tz66KP64YcfNHLkSDVo0ECenp5KT09Xu3bt8nSsVnn00Ud19913a/ny5Vq/fr1ef/11/fvf/9bnn39+w2ciMxLx06dPq3LlygoKCpIkHT9+PFPf48ePy8/PL8e7dJUvX15S7v/DVtjOnDmT5X/UAfyNHCl75EjkSBI5EjlSycqRkpOT9fDDD+unn37SunXrciyIkyMVPApSpZS/v7/c3d2zvJz8wIEDudpGRpW7d+/eunDhglq1aqXx48fbkq2CrA6np6fr8OHDtjN+kvTrr79K+ucOURln2c6ePWu3blaXgec2Nn9/f3l4eGQ5Jr/88oscHR0znQW6Uf7+/vL29tbPP/+cY7+qVatmG1fG8vyqWbOmNm7cqLvuuivPX/TLli1TjRo19Pnnn9uN87hx4+z65eX1UbVqVaWnp+vgwYO2s5uSdOLECZ09e/aGjrWw7NmzR7/++qsWLVpkN0FiVnfeKMj3SlRUlObPn69Ro0Zp8eLFioyM1NatWwv11r9nzpxRdHS0JkyYoLFjx9rar/18CQgIkJubm3777bdM28iqLa8yXieHDh2yO+OX3WdaUFCQBg4cqIEDByohIUGNGjXSpEmTbjjZyjiLmPGfkltuuUX+/v7asWNHpr4Zk9jmpEqVKnJ3d1dsbKxde8br/uDBg2rdurWtPSUlRbGxsQoNDb2Rw8hSamqqjh07pgcffLDAtw0UF+RI5Eg5IUe6ceRI5EglJUdKT09Xz549FR0drU8//dR2FV9WyJEKBz/ZK6WcnJwUERGhFStW6OjRo7b2/fv3284c5OTa25R6enqqVq1adpdbli1bVlLm5Ce/Zs2aZfu3MUazZs2Ss7Oz7r//fkl/f/A4OTnp22+/tVsvqztn5DY2JycntW3bVl988YXdZe8nTpzQRx99pJYtW8rb2zufR5Q1R0dHde7cWV9++WWWH84ZZ5fat2+vbdu2acuWLbZlFy9e1Lx581StWjWFhITkO4ZHH31UaWlpmjhxYqZlqampOY5bxlmxq8+0bd261S5OSbY71eTm9dG+fXtJ0syZM+3aZ8yYIUlZ3iGkqGU1DsYYvfXWW5n6FtR75ezZs7a7Ok2ePFnz58/Xrl27NHny5Bva7vVkdaxS5ufLyclJ4eHhWrFihd28BL/99pvWrl17w3FkJEnXXoJ/bRxpaWmZfg4QEBCgSpUqZXnJeHayulX5n3/+qf/+97+qX7++7ayf9PccF6tWrbL7+Up0dLR+/fVXPfLIIznux9nZWY0bN870edC4cWP5+/trzpw5drdTXrhwYYF97l5r3759unz5slq0aFEo2weKA3IkcqSckCPdOHIkcqSSkiMNGTJES5Ys0ezZs213vMwOOVLh4AqpUmzChAmKiorS3XffrYEDByo1NVXvvPOObrvttuvOdRASEqJ7771XYWFh8vPz044dO2y3B80QFhYm6e/J8yIiIuTk5KTu3bvnK1Y3NzdFRUUpMjJSTZs21dq1a7V69Wq9+OKLtgq7j4+P7XauDg4OqlmzplatWpXlb/nzEttrr72mDRs2qGXLlho4cKDKlCmjuXPn6sqVK5o2bVq+jud6Jk+erPXr1+uee+5R//79Va9ePR0/flxLly7V999/L19fX40ePVoff/yxHnjgAT377LPy8/PTokWLFBsbq88++yzTJeZ5cc899+jpp5/WlClTFBMTo7Zt28rZ2VkHDx7U0qVL9dZbb6lbt25ZrtuxY0d9/vnn6tKlizp06KDY2FjNmTNHISEhunDhgq2fu7u7QkJCtGTJEtWpU0d+fn66/fbbs7wMNjQ0VJGRkZo3b57Onj2re+65R9u2bdOiRYvUuXNn3Xffffk+1sJSt25d1axZU88//7z+/PNPeXt767PPPsvykuKCeq8MHTpUf/31lzZu3CgnJye1a9dOffv21WuvvaaHHnqoUK6YkSRvb2+1atVK06ZNU0pKim655RatX78+09kq6e/boa9fv1533XWXnnnmGaWlpWnWrFm6/fbbFRMTc0NxNGjQQD169NDs2bN17tw5tWjRQtHR0ZnOLJ4/f16VK1dWt27dFBoaKk9PT23cuFHbt2/XG2+8kev9jRo1SocOHdL999+vSpUq6ffff9fcuXN18eLFTEn1iy++qKVLl+q+++7T0KFDdeHCBb3++uu644471Lt37+vu66GHHtJLL72kxMRE23/wnJ2d9dprr+npp59W69at9dhjjyk2NlYLFizI0/wIH3zwgY4cOaKkpCRJ0rfffqvXXntNkvTkk0/anV3fsGGDPDw81KZNm1xvHyiJyJHIkbJDjnTjyJHIka5WXHOkmTNnavbs2WrevLk8PDz04Ycf2i3v0qWLrWAqkSMVGutu6Iei8M0335iwsDDj4uJiatSoYebMmZPpNqHGZL6l8WuvvWaaNGlifH19jbu7u6lbt66ZNGmSSU5OtvVJTU01Q4YMMf7+/sbBwcG2zexul3r1smtvaVy2bFlz6NAh07ZtW+Ph4WEqVqxoxo0bZ7ttb4aTJ0+arl27Gg8PD1OuXDnz9NNPm59//jnTNrOLzZjMtzQ2xphdu3aZiIgI4+npaTw8PMx9991nfvjhB7s+Gbc0vvY2xNndavl6jhw5Ynr27Gn8/f2Nq6urqVGjhhk0aJDdrUsPHTpkunXrZnx9fY2bm5tp0qSJ3a1Ur97/0qVLM+0jY2yzM2/ePBMWFmbc3d2Nl5eXueOOO8yoUaNMXFycrc+1tzROT083kydPNlWrVjWurq6mYcOGZtWqVSYyMtJUrVrVbvs//PCD7fV39bhn9RpMSUkxEyZMMNWrVzfOzs4mODjYjBkzJtOtYKtWrZrl7bavjTM3lMUtYLN7/WY1zvv27TPh4eHG09PTVKhQwfTr18/8+OOPuX495uW98sUXXxhJ5o033rDrl5iYaKpWrWpCQ0Pt3p85ud4tjTNuI361P/74w3Tp0sX4+voaHx8f88gjj5i4uLgs30/R0dGmYcOGxsXFxdSsWdPMnz/fPPfcc8bNzS1X8V0bz9UuXbpknn32WVO+fHlTtmxZ06lTJ3Ps2DG7OK5cuWJGjhxpQkNDjZeXlylbtqwJDQ01s2fPztP+P/roI9OqVSvj7+9vypQpYypUqGC6dOlidu7cmWX/n3/+2fYZ5uvra5544gkTHx+fq32dOHHClClTxnzwwQeZls2ePdtUr17duLq6msaNG5tvv/02y9d7Vq9nY/5+b0jK8nHt51bTpk3Nv/71r1zFDJR05EjkSORI2SNHIkfKSWnIkSIjI7PNjySZ2NhYu/7kSIXDwZginmUQAFDqde7c+YZvk17a9enTR7/++qu+++67Itl/TEyMGjVqpF27dl13TgcAAFAwyJGujxyp9KIgBQAoUJcuXbKbCPbgwYO67bbbFBkZqffff78IIyvejh49qjp16ig6Olp33XWX5fvv3r270tPT9emnn1q+bwAAbgbkSPlDjlR6UZACCtCFCxfs5gjIir+/f7a3y0XBiI+Pz3G5u7u7fHx8LIrGOpcuXco0UeW1/Pz85OLiUqhxBAUFqVevXqpRo4aOHDmi9957T1euXNHu3btVu3ZtnTt3TpcuXcpxG4GBgYUWX3EZJwC4mZAjFQ/kSNkjRyo+44SbSFH+XhAobTJ+z53T49rfI6PgXe85uHoukNIkYw6PnB55nccjP3r16mWbP8Pb29tERETYzSlwvd/sF/ZXU3EZJwC4mZAjFQ/kSORIOSku44SbB1dIAQXo8OHDOnz4cI59WrZsKTc3N4siujlt3Lgxx+WVKlW6oVtCF1fHjx/X3r17c+wTFhamcuXKWRRR1vbt22d3y+OshIeHF9r+S8o4AUBpQo5UPJAjZa84fPeTI+FmQ0EKAAAAAAAAlnIs6gAAAAAAAABwcylT1AEUpfT0dMXFxcnLy0sODg5FHQ4AALCAMUbnz59XpUqV5OjIubmskCMBAHDzsTpHuqkLUnFxcQoODi7qMAAAQBE4duyYKleuXNRhFEvkSAAA3LysypFu6oKUl5eXpL8H29vbu4ijAQAAVkhMTFRwcLAtD0Bm5EgAANx8rM6RbuqCVMYl6N7e3iRbAADcZPgpWvbIkQAAuHlZlSMxcQIAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvd1HNIAQCQk7S0NKWkpBR1GMgjZ2dnOTk5FXUYAACUWuRIJVNxy5EoSAEAcA1jjOLj43X27NmiDgX55Ovrq8DAQCYuBwCgAJEjlXzFKUeiIAUAwDUyEq2AgAB5eHgUiy9s5I4xRklJSUpISJAkBQUFFXFEAACUHuRIJVdxzJEoSAEAcJW0tDRbolW+fPmiDgf54O7uLklKSEhQQEBAsbo0HQCAkoocqeQrbjkSk5oDAHCVjPkQPDw8ijgS3IiM54/5LQAAKBjkSKVDccqRKEgBAJAFLkEv2Xj+AAAoHHzHlmzF6fmjIAUAAAAAAABLUZACAAAAAACApZjUHACAXEqJ+t6yfTm3a5nrvte79HrcuHEaP378DUaUPw4ODlq+fLk6d+6c723MmzdPH330kXbt2qXz58/rzJkz8vX1LbAYAQDAjbEyR5LIkzKcPn1a48aN0/r163X06FH5+/urc+fOmjhxonx8fAo22EJAQQq5ktUHTF4+BAAAhef48eO2fy9ZskRjx47VgQMHbG2enp552l5ycrJcXFwKLL4blZSUpHbt2qldu3YaM2ZMUYeDAkBeAQCwSmnOk+Li4hQXF6fp06crJCRER44c0YABAxQXF6dly5YVdXjXxU/2AAAo4QIDA20PHx8fOTg42P6+ePGinnjiCVWsWFGenp668847tXHjRrv1q1WrpokTJ6pnz57y9vZW//79JUnvv/++goOD5eHhoS5dumjGjBmZrkz64osv1KhRI7m5ualGjRqaMGGCUlNTbduVpC5dusjBwcH2948//qj77rtPXl5e8vb2VlhYmHbs2JHt8Q0bNkyjR49Ws2bNCmbAAADATaM050m33367PvvsM3Xq1Ek1a9ZU69atNWnSJH355Ze2/RRnFKQAACjFLly4oPbt2ys6Olq7d+9Wu3bt1KlTJx09etSu3/Tp0xUaGqrdu3frlVde0ebNmzVgwAANHTpUMTExatOmjSZNmmS3znfffaeePXtq6NCh2rdvn+bOnauFCxfa+m3fvl2StGDBAh0/ftz29xNPPKHKlStr+/bt2rlzp0aPHi1nZ2cLRgMAAOAfpTFPOnfunLy9vVWmTPH/QVzxjxAAAORbaGioQkNDbX9PnDhRy5cv18qVKzV48GBbe+vWrfXcc8/Z/n7ppZf0wAMP6Pnnn5ck1alTRz/88INWrVpl6zNhwgSNHj1akZGRkqQaNWpo4sSJGjVqlMaNGyd/f39Jkq+vrwIDA23rHT16VCNHjlTdunUlSbVr1y6EIwcAAMhZacuTTp06pYkTJ9qu4iruuEIKAIBS7MKFC3r++edVr149+fr6ytPTU/v378905q9x48Z2fx84cEBNmjSxa7v27x9//FGvvvqqPD09bY9+/frp+PHjSkpKyjamESNGqG/fvgoPD9fUqVN16NChGzxKAACAvCtNeVJiYqI6dOigkJCQIpukPa8oSAEAUIo9//zzWr58uSZPnqzvvvtOMTExuuOOO5ScnGzXr2zZsnne9oULFzRhwgTFxMTYHnv27NHBgwfl5uaW7Xrjx4/X3r171aFDB23atEkhISFavnx5nvcPAABwI0pLnnT+/Hm1a9dOXl5eWr58eYmZCoGf7AEAUIpt3rxZvXr1UpcuXST9nRz9/vvv113v1ltvtc1lkOHavxs1aqQDBw6oVq1a2W7H2dlZaWlpmdrr1KmjOnXqaPjw4erRo4cWLFhgixEAAMAKpSFPSkxMVEREhFxdXbVy5coci13FDQUpAABKsdq1a+vzzz9Xp06d5ODgoFdeeUXp6enXXW/IkCFq1aqVZsyYoU6dOmnTpk1au3atHBwcbH3Gjh2rjh07qkqVKurWrZscHR31448/6ueff9Zrr70m6e87yERHR+uuu+6Sq6ur3NzcNHLkSHXr1k3Vq1fXH3/8oe3bt6tr167ZxhIfH6/4+Hj99ttvkqQ9e/bIy8tLVapUkZ+f3w2OEAAAuFmV9DwpMTFRbdu2VVJSkj788EMlJiYqMTFRkuTv7y8nJ6cCGKXCw0/2AAAoxWbMmKFy5cqpRYsW6tSpkyIiItSoUaPrrnfXXXdpzpw5mjFjhkJDQxUVFaXhw4fbnXWLiIjQqlWrtH79et15551q1qyZ3nzzTVWtWtXW54033tCGDRsUHByshg0bysnJSX/99Zd69uypOnXq6NFHH9UDDzygCRMmZBvLnDlz1LBhQ/Xr10+S1KpVKzVs2FArV668gZEBAAA3u5KeJ+3atUtbt27Vnj17VKtWLQUFBdkex44du/EBKmQOxhhT1EEUlcTERPn4+Nhui4jspUR9n6nNuV3LIogEAArX5cuXFRsbq+rVq5eoS56t0K9fP/3yyy/67rvvijqU68rpeeT7//oKe4zIKwCg5CFHyllJyZOKU47ET/YAAECWpk+frjZt2qhs2bJau3atFi1apNmzZxd1WAAAAEWOPOnGUZACAABZ2rZtm6ZNm6bz58+rRo0aevvtt9W3b9+iDgsAAKDIkSfdOApSAAAgS59++mlRhwAAAFAskSfdOCY1BwAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlipT1AEAAFBSHNox17J91Wz8dJ769+rVS4sWLZIklSlTRn5+fqpfv7569OihXr16ydGx5J6D2rt3r8aOHaudO3fqyJEjevPNNzVs2LCiDgsAAPx/VuZIEnnS1d5//3393//9n37++WdJUlhYmCZPnqwmTZoUcWTXV3JHHQAA2GnXrp2OHz+u33//XWvXrtV9992noUOHqmPHjkpNTS3q8PItKSlJNWrU0NSpUxUYGFjU4QAAgBKotOZJX3/9tXr06KGvvvpKW7ZsUXBwsNq2bas///yzqEO7LgpSAACUEq6urgoMDNQtt9yiRo0a6cUXX9QXX3yhtWvXauHChbZ+Z8+eVd++feXv7y9vb2+1bt1aP/74o922vvzyS915551yc3NThQoV1KVLF9uyM2fOqGfPnipXrpw8PDz0wAMP6ODBg5KkixcvytvbW8uWLbPb3ooVK1S2bFmdP39eycnJGjx4sIKCguTm5qaqVatqypQp2R7XnXfeqddff13du3eXq6trAYwUAAC42ZTWPGnx4sUaOHCgGjRooLp162r+/PlKT09XdHR0AYxa4bqhgtTUqVPl4OBgd9n85cuXNWjQIJUvX16enp7q2rWrTpw4Ybfe0aNH1aFDB3l4eCggIEAjR47MVJH8+uuv1ahRI7m6uqpWrVp2L5AM7777rqpVqyY3Nzc1bdpU27Ztu5HDAQCg1GndurVCQ0P1+eef29oeeeQRJSQkaO3atdq5c6caNWqk+++/X6dPn5YkrV69Wl26dFH79u21e/duRUdH21323atXL+3YsUMrV67Uli1bZIxR+/btlZKSorJly6p79+5asGCBXRwLFixQt27d5OXlpbffflsrV67Up59+qgMHDmjx4sWqVq2aJeNhFXIkAACKv9KYJyUlJSklJUV+fn43NjgWyPccUtu3b9fcuXNVv359u/bhw4dr9erVWrp0qXx8fDR48GA9/PDD2rx5syQpLS1NHTp0UGBgoH744QcdP35cPXv2lLOzsyZPnixJio2NVYcOHTRgwAAtXrxY0dHR6tu3r4KCghQRESFJWrJkiUaMGKE5c+aoadOmmjlzpiIiInTgwAEFBATk97AAACh16tatq59++kmS9P3332vbtm1KSEiwXW00ffp0rVixQsuWLVP//v01adIkde/eXRMmTLBtIzQ0VJJ08OBBrVy5Ups3b1aLFi0k/X1mLjg4WCtWrNAjjzyivn37qkWLFjp+/LiCgoKUkJCgNWvWaOPGjZL+LrrUrl1bLVu2lIODg6pWrWrlcBQ6ciQAAEqO0pYnvfDCC6pUqZLCw8NveGwKW76ukLpw4YKeeOIJvf/++ypXrpyt/dy5c/rPf/6jGTNmqHXr1goLC9OCBQv0ww8/6H//+58kaf369dq3b58+/PBDNWjQQA888IAmTpyod999V8nJyZKkOXPmqHr16nrjjTdUr149DR48WN26ddObb75p29eMGTPUr18/9e7dWyEhIZozZ448PDz03//+90bGAwCAUscYIwcHB0nSjz/+qAsXLtiu0sl4xMbG6tChQ5KkmJgY3X///Vlua//+/SpTpoyaNm1qaytfvrxuvfVW7d+/X5LUpEkT3XbbbbbJQz/88ENVrVpVrVq1kvT3mcOYmBjdeuutevbZZ7V+/fpCO3arkSMBAFCylKY8aerUqfrkk0+0fPlyubm55X0wLJavgtSgQYPUoUOHTBW3nTt3KiUlxa69bt26qlKlirZs2SJJ2rJli+644w5VrFjR1iciIkKJiYnau3evrc+1246IiLBtIzk5WTt37rTr4+joqPDwcFufrFy5ckWJiYl2DwAASrv9+/erevXqkv4umAQFBSkmJsbuceDAAY0cOVKS5O7ufsP77Nu3r+2nZAsWLFDv3r1tyV6jRo0UGxuriRMn6tKlS3r00UfVrVu3G95ncUCOBABAyVJa8qTp06dr6tSpWr9+faartIurPBekPvnkE+3atSvLSbXi4+Pl4uIiX19fu/aKFSsqPj7e1ufqRCtjecaynPokJibq0qVLOnXqlNLS0rLsk7GNrEyZMkU+Pj62R3BwcO4OGgCAEmrTpk3as2ePunbtKunvJCc+Pl5lypRRrVq17B4VKlSQJNWvXz/biTDr1aun1NRUbd261db2119/6cCBAwoJCbG1/etf/9KRI0f09ttva9++fYqMjLTbjre3tx577DG9//77WrJkiT777DPb3AwlFTkSAAAlS2nJk6ZNm6aJEycqKipKjRs3zvd4WC1Pc0gdO3ZMQ4cO1YYNG0rE5V/XGjNmjEaMGGH7OzExkYQLAFBqXLlyRfHx8UpLS9OJEycUFRWlKVOmqGPHjurZs6ckKTw8XM2bN1fnzp01bdo01alTR3FxcbYJOhs3bqxx48bp/vvvV82aNdW9e3elpqZqzZo1euGFF1S7dm099NBD6tevn+bOnSsvLy+NHj1at9xyix566CFbLOXKldPDDz+skSNHqm3btqpcubJt2YwZMxQUFKSGDRvK0dFRS5cuVWBgYKZiTYbk5GTt27fP9u8///xTMTEx8vT0VK1atQpvQPOAHAkAgOKttOZJ//73vzV27Fh99NFHqlatmu0EVMbPDYuzPF0htXPnTiUkJKhRo0YqU6aMypQpo2+++UZvv/22ypQpo4oVKyo5OVlnz561W+/EiRMKDAyUJAUGBma6o0zG39fr4+3tLXd3d1WoUEFOTk5Z9snYRlZcXV3l7e1t9wAAoLSIiopSUFCQqlWrpnbt2umrr77S22+/rS+++EJOTk6SJAcHB61Zs0atWrVS7969VadOHXXv3l1HjhyxXVVz7733aunSpVq5cqUaNGig1q1b292lbcGCBQoLC1PHjh3VvHlzGWO0Zs0aOTs728XTp08fJScn66mnnrJr9/Ly0rRp09S4cWPdeeed+v3337VmzRo5OmadlsTFxalhw4Zq2LChjh8/runTp6thw4bq27dvQQ7fDSFHAgCgeCutedJ7772n5ORkdevWTUFBQbbH9OnTC3L4CoWDMcbktvP58+d15MgRu7bevXurbt26euGFFxQcHCx/f399/PHHtkveDhw4oLp162rLli1q1qyZ1q5dq44dO+r48eO2O73MmzdPI0eOtM1k/8ILL2jNmjXas2ePbT+PP/64Tp8+raioKElS06ZN1aRJE73zzjuSpPT0dFWpUkWDBw/W6NGjc3U8iYmJ8vHx0blz50i8riMl6vtMbc7tWhZBJABQuC5fvqzY2FhVr169RF7pUpx88MEHGj58uOLi4uTi4mLpvnN6Hgvj+58cKW/IKwCg5CFHKlhFlSdZnSPlJE8/2fPy8tLtt99u11a2bFmVL1/e1t6nTx+NGDFCfn5+8vb21pAhQ9S8eXM1a9ZMktS2bVuFhIToySef1LRp0xQfH6+XX35ZgwYNst1WccCAAZo1a5ZGjRqlp556Sps2bdKnn36q1atX2/Y7YsQIRUZGqnHjxmrSpIlmzpypixcvqnfv3jc0IAAA4MYkJSXp+PHjmjp1qp5++mnLi1FFgRwJAADkxs2YJ2UnTwWp3HjzzTfl6Oiorl276sqVK4qIiNDs2bNty52cnLRq1So988wzat68ucqWLavIyEi9+uqrtj7Vq1fX6tWrNXz4cL311luqXLmy5s+fr4iICFufxx57TCdPntTYsWMVHx+vBg0aKCoqKtMkngAAwFrTpk3TpEmT1KpVK40ZM6aowyk2yJEAAAB50j/y9JO90oaf7OUel9YDuFlwOXrpUJwuRy+J+MkeAOBa5EilQ3HKkfI0qTkAAAAAAABwoyhIAQCQhZv4AuJSgecPAIDCwXdsyVacnj8KUgAAXCXjlrxJSUlFHAluRMbzd+0tlgEAQP6QI5UOxSlHKvBJzQEAKMmcnJzk6+urhIQESZKHh4ccHByKOCrkljFGSUlJSkhIkK+vr5ycnIo6JAAASgVypJKtOOZIFKQAALhGYGCgJNkSLpQ8vr6+tucRAAAUDHKkkq845UgUpAAAuIaDg4OCgoIUEBCglJSUog4HeeTs7FwszvoBAFDakCOVbMUtR6IgBQBANpycnIrVlzYAAEBxQI6EgsCk5gAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUmWKOgCUDL+fXZuprbZaFkEkAACgpCOvAAAAXCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSeSpIvffee6pfv768vb3l7e2t5s2ba+3atbblly9f1qBBg1S+fHl5enqqa9euOnHihN02jh49qg4dOsjDw0MBAQEaOXKkUlNT7fp8/fXXatSokVxdXVWrVi0tXLgwUyzvvvuuqlWrJjc3NzVt2lTbtm3Ly6EAAAAUGHIkAACAvMlTQapy5cqaOnWqdu7cqR07dqh169Z66KGHtHfvXknS8OHD9eWXX2rp0qX65ptvFBcXp4cffti2flpamjp06KDk5GT98MMPWrRokRYuXKixY8fa+sTGxqpDhw667777FBMTo2HDhqlv375at26drc+SJUs0YsQIjRs3Trt27VJoaKgiIiKUkJBwo+MBAACQZ+RIAAAAeeNgjDE3sgE/Pz+9/vrr6tatm/z9/fXRRx+pW7dukqRffvlF9erV05YtW9SsWTOtXbtWHTt2VFxcnCpWrChJmjNnjl544QWdPHlSLi4ueuGFF7R69Wr9/PPPtn10795dZ8+eVVRUlCSpadOmuvPOOzVr1ixJUnp6uoKDgzVkyBCNHj0617EnJibKx8dH586dk7e3940MQ6l38JOXMrXV7j6pCCIBAODGWPX9T46UPfIKAACKH6trJPmeQyotLU2ffPKJLl68qObNm2vnzp1KSUlReHi4rU/dunVVpUoVbdmyRZK0ZcsW3XHHHbZES5IiIiKUmJhoO4O4ZcsWu21k9MnYRnJysnbu3GnXx9HRUeHh4bY+AAAARYUcCQAA4PrK5HWFPXv2qHnz5rp8+bI8PT21fPlyhYSEKCYmRi4uLvL19bXrX7FiRcXHx0uS4uPj7RKtjOUZy3Lqk5iYqEuXLunMmTNKS0vLss8vv/ySY+xXrlzRlStXbH8nJibm/sABAAByQI4EAACQe3m+QurWW29VTEyMtm7dqmeeeUaRkZHat29fYcRW4KZMmSIfHx/bIzg4uKhDAgAApQQ5EgAAQO7luSDl4uKiWrVqKSwsTFOmTFFoaKjeeustBQYGKjk5WWfPnrXrf+LECQUGBkqSAgMDM91RJuPv6/Xx9vaWu7u7KlSoICcnpyz7ZGwjO2PGjNG5c+dsj2PHjuX18AEAALJEjgQAAJB7+Z5DKkN6erquXLmisLAwOTs7Kzo62rbswIEDOnr0qJo3by5Jat68ufbs2WN3p5cNGzbI29tbISEhtj5XbyOjT8Y2XFxcFBYWZtcnPT1d0dHRtj7ZcXV1td2OOeMBAABQGMiRAAAAspenOaTGjBmjBx54QFWqVNH58+f10Ucf6euvv9a6devk4+OjPn36aMSIEfLz85O3t7eGDBmi5s2bq1mzZpKktm3bKiQkRE8++aSmTZum+Ph4vfzyyxo0aJBcXV0lSQMGDNCsWbM0atQoPfXUU9q0aZM+/fRTrV692hbHiBEjFBkZqcaNG6tJkyaaOXOmLl68qN69exfg0AAAAOQOORIAAEDe5KkglZCQoJ49e+r48ePy8fFR/fr1tW7dOrVp00aS9Oabb8rR0VFdu3bVlStXFBERodmzZ9vWd3Jy0qpVq/TMM8+oefPmKlu2rCIjI/Xqq6/a+lSvXl2rV6/W8OHD9dZbb6ly5cqaP3++IiIibH0ee+wxnTx5UmPHjlV8fLwaNGigqKioTJN4AgAAWIEcCQAAIG8cjDGmqIMoKomJifLx8dG5c+e4NP06Dn7yUqa22t0nFUEkAADcGL7/r6+wx4i8AgCA4sfqHOmG55ACAAAAAAAA8oKCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlspTQWrKlCm688475eXlpYCAAHXu3FkHDhyw63P58mUNGjRI5cuXl6enp7p27aoTJ07Y9Tl69Kg6dOggDw8PBQQEaOTIkUpNTbXr8/XXX6tRo0ZydXVVrVq1tHDhwkzxvPvuu6pWrZrc3NzUtGlTbdu2LS+HAwAAUCDIkQAAAPImTwWpb775RoMGDdL//vc/bdiwQSkpKWrbtq0uXrxo6zN8+HB9+eWXWrp0qb755hvFxcXp4Ycfti1PS0tThw4dlJycrB9++EGLFi3SwoULNXbsWFuf2NhYdejQQffdd59iYmI0bNgw9e3bV+vWrbP1WbJkiUaMGKFx48Zp165dCg0NVUREhBISEm5kPAAAAPKMHAkAACBvHIwxJr8rnzx5UgEBAfrmm2/UqlUrnTt3Tv7+/vroo4/UrVs3SdIvv/yievXqacuWLWrWrJnWrl2rjh07Ki4uThUrVpQkzZkzRy+88IJOnjwpFxcXvfDCC1q9erV+/vln2766d++us2fPKioqSpLUtGlT3XnnnZo1a5YkKT09XcHBwRoyZIhGjx6dq/gTExPl4+Ojc+fOydvbO7/DcFM4+MlLmdpqd59UBJEAAHBjrPj+J0fKGXkFAADFj9U1khuaQ+rcuXOSJD8/P0nSzp07lZKSovDwcFufunXrqkqVKtqyZYskacuWLbrjjjtsiZYkRUREKDExUXv37rX1uXobGX0ytpGcnKydO3fa9XF0dFR4eLitDwAAQFEhRwIAAMhZmfyumJ6ermHDhumuu+7S7bffLkmKj4+Xi4uLfH197fpWrFhR8fHxtj5XJ1oZyzOW5dQnMTFRly5d0pkzZ5SWlpZln19++SXbmK9cuaIrV67Y/k5MTMzDEQMAAFwfORIAAMD15fsKqUGDBunnn3/WJ598UpDxFKopU6bIx8fH9ggODi7qkAAAQClDjgQAAHB9+SpIDR48WKtWrdJXX32lypUr29oDAwOVnJyss2fP2vU/ceKEAgMDbX2uvaNMxt/X6+Pt7S13d3dVqFBBTk5OWfbJ2EZWxowZo3Pnztkex44dy9uBAwAA5IAcCQAAIHfyVJAyxmjw4MFavny5Nm3apOrVq9stDwsLk7Ozs6Kjo21tBw4c0NGjR9W8eXNJUvPmzbVnzx67O71s2LBB3t7eCgkJsfW5ehsZfTK24eLiorCwMLs+6enpio6OtvXJiqurq7y9ve0eAAAAN4ocCQAAIG/yNIfUoEGD9NFHH+mLL76Ql5eXbT4DHx8fubu7y8fHR3369NGIESPk5+cnb29vDRkyRM2bN1ezZs0kSW3btlVISIiefPJJTZs2TfHx8Xr55Zc1aNAgubq6SpIGDBigWbNmadSoUXrqqae0adMmffrpp1q9erUtlhEjRigyMlKNGzdWkyZNNHPmTF28eFG9e/cuqLEBAADIFXIkAACAvMlTQeq9996TJN1777127QsWLFCvXr0kSW+++aYcHR3VtWtXXblyRREREZo9e7atr5OTk1atWqVnnnlGzZs3V9myZRUZGalXX33V1qd69epavXq1hg8frrfeekuVK1fW/PnzFRERYevz2GOP6eTJkxo7dqzi4+PVoEEDRUVFZZrEEwAAoLCRIwEAAOSNgzHGFHUQRSUxMVE+Pj46d+4cl6Zfx8FPXsrUVrv7pCKIBACAG8P3//UV9hiRVwAAUPxYnSPl+y57AAAAAAAAQH5QkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFJ5Lkh9++236tSpkypVqiQHBwetWLHCbrkxRmPHjlVQUJDc3d0VHh6ugwcP2vU5ffq0nnjiCXl7e8vX11d9+vTRhQsX7Pr89NNPuvvuu+Xm5qbg4GBNmzYtUyxLly5V3bp15ebmpjvuuENr1qzJ6+EAAAAUCHIkAACA3MtzQerixYsKDQ3Vu+++m+XyadOm6e2339acOXO0detWlS1bVhEREbp8+bKtzxNPPKG9e/dqw4YNWrVqlb799lv179/ftjwxMVFt27ZV1apVtXPnTr3++usaP3685s2bZ+vzww8/qEePHurTp492796tzp07q3Pnzvr555/zekgAAAA3jBwJAAAg9xyMMSbfKzs4aPny5ercubOkv8/8VapUSc8995yef/55SdK5c+dUsWJFLVy4UN27d9f+/fsVEhKi7du3q3HjxpKkqKgotW/fXn/88YcqVaqk9957Ty+99JLi4+Pl4uIiSRo9erRWrFihX375RZL02GOP6eLFi1q1apUtnmbNmqlBgwaaM2dOruJPTEyUj4+Pzp07J29v7/wOw03h4CcvZWqr3X1SEUQCAMCNseL7nxwpZ+QVAAAUP1bXSAp0DqnY2FjFx8crPDzc1ubj46OmTZtqy5YtkqQtW7bI19fXlmhJUnh4uBwdHbV161Zbn1atWtkSLUmKiIjQgQMHdObMGVufq/eT0SdjP1m5cuWKEhMT7R4AAACFjRwJAADAXoEWpOLj4yVJFStWtGuvWLGibVl8fLwCAgLslpcpU0Z+fn52fbLaxtX7yK5PxvKsTJkyRT4+PrZHcHBwXg8RAAAgz8iRAAAA7N1Ud9kbM2aMzp07Z3scO3asqEMCAAAocuRIAADAagVakAoMDJQknThxwq79xIkTtmWBgYFKSEiwW56amqrTp0/b9clqG1fvI7s+Gcuz4urqKm9vb7sHAABAYSNHAgAAsFegBanq1asrMDBQ0dHRtrbExERt3bpVzZs3lyQ1b95cZ8+e1c6dO219Nm3apPT0dDVt2tTW59tvv1VKSoqtz4YNG3TrrbeqXLlytj5X7yejT8Z+AAAAigtyJAAAAHt5LkhduHBBMTExiomJkfT3JJ0xMTE6evSoHBwcNGzYML322mtauXKl9uzZo549e6pSpUq2u8zUq1dP7dq1U79+/bRt2zZt3rxZgwcPVvfu3VWpUiVJ0uOPPy4XFxf16dNHe/fu1ZIlS/TWW29pxIgRtjiGDh2qqKgovfHGG/rll180fvx47dixQ4MHD77xUQEAAMgjciQAAIDcK5PXFXbs2KH77rvP9ndGAhQZGamFCxdq1KhRunjxovr376+zZ8+qZcuWioqKkpubm22dxYsXa/Dgwbr//vvl6Oiorl276u2337Yt9/Hx0fr16zVo0CCFhYWpQoUKGjt2rPr372/r06JFC3300Ud6+eWX9eKLL6p27dpasWKFbr/99nwNBAAAwI0gRwIAAMg9B2OMKeogikpiYqJ8fHx07tw55kq4joOfvJSprXb3SUUQCQAAN4bv/+sr7DEirwAAoPixOke6qe6yBwAAAAAAgKJHQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlirxBal3331X1apVk5ubm5o2bapt27YVdUgAAABFjhwJAAAUZyW6ILVkyRKNGDFC48aN065duxQaGqqIiAglJCQUdWgAAABFhhwJAAAUdyW6IDVjxgz169dPvXv3VkhIiObMmSMPDw/997//LerQAAAAigw5EgAAKO5KbEEqOTlZO3fuVHh4uK3N0dFR4eHh2rJlSxFGBgAAUHTIkQAAQElQpqgDyK9Tp04pLS1NFStWtGuvWLGifvnllyzXuXLliq5cuWL7+9y5c5KkxMTEwgu0lLiQdCVTG+MGACiJMr6/jDFFHEnhKAk5EnkFAADFj9U5UoktSOXHlClTNGHChEztwcHBRRBNKdDnjaKOAACAfDt//rx8fHyKOoxioVjkSOQVAAAUC1blSCW2IFWhQgU5OTnpxIkTdu0nTpxQYGBgluuMGTNGI0aMsP2dnp6u06dPq3z58nJwcCjUeEuLxMREBQcH69ixY/L29i7qcEosxrFgMI4Fh7EsGIxjwSnMsTTG6Pz586pUqVKBbre4KO45Eu8T6zHm1mPMrceYFw3G3XqlKUcqsQUpFxcXhYWFKTo6Wp07d5b0d/IUHR2twYMHZ7mOq6urXF1d7dp8fX0LOdLSydvbmw+cAsA4FgzGseAwlgWDcSw4hTWWpfnKqJKSI/E+sR5jbj3G3HqMedFg3K1XGnKkEluQkqQRI0YoMjJSjRs3VpMmTTRz5kxdvHhRvXv3LurQAAAAigw5EgAAKO5KdEHqscce08mTJzV27FjFx8erQYMGioqKyjSJJwAAwM2EHAkAABR3JbogJUmDBw/O9vJzFDxXV1eNGzcu02X9yBvGsWAwjgWHsSwYjGPBYSxvXHHNkXhurceYW48xtx5jXjQYd+uVpjF3MKX1nscAAAAAAAAolhyLOgAAAAAAAADcXChIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpZPLuu++qWrVqcnNzU9OmTbVt27Yc+y9dulR169aVm5ub7rjjDq1Zs8aiSIu3vIzj+++/r7vvvlvlypVTuXLlFB4eft1xv1nk9fWY4ZNPPpGDg4M6d+5cuAGWIHkdy7Nnz2rQoEEKCgqSq6ur6tSpw/tbeR/HmTNn6tZbb5W7u7uCg4M1fPhwXb582aJoi6dvv/1WnTp1UqVKleTg4KAVK1Zcd52vv/5ajRo1kqurq2rVqqWFCxcWepzIP3IJ65F3WI8cxXrkMtYj77HWTZcjGeAqn3zyiXFxcTH//e9/zd69e02/fv2Mr6+vOXHiRJb9N2/ebJycnMy0adPMvn37zMsvv2ycnZ3Nnj17LI68eMnrOD7++OPm3XffNbt37zb79+83vXr1Mj4+PuaPP/6wOPLiJa/jmCE2Ntbccsst5u677zYPPfSQNcEWc3kdyytXrpjGjRub9u3bm++//97Exsaar7/+2sTExFgcefGS13FcvHixcXV1NYsXLzaxsbFm3bp1JigoyAwfPtziyIuXNWvWmJdeesl8/vnnRpJZvnx5jv0PHz5sPDw8zIgRI8y+ffvMO++8Y5ycnExUVJQ1ASNPyCWsR95hPXIU65HLWI+8x3o3W45EQQp2mjRpYgYNGmT7Oy0tzVSqVMlMmTIly/6PPvqo6dChg11b06ZNzdNPP12ocRZ3eR3Ha6WmphovLy+zaNGiwgqxRMjPOKamppoWLVqY+fPnm8jISJK9/y+vY/nee++ZGjVqmOTkZKtCLBHyOo6DBg0yrVu3tmsbMWKEueuuuwo1zpIkN8nWqFGjzG233WbX9thjj5mIiIhCjAz5RS5hPfIO65GjWI9cxnrkPUXrZsiR+MkebJKTk7Vz506Fh4fb2hwdHRUeHq4tW7Zkuc6WLVvs+ktSREREtv1vBvkZx2slJSUpJSVFfn5+hRVmsZffcXz11VcVEBCgPn36WBFmiZCfsVy5cqWaN2+uQYMGqWLFirr99ts1efJkpaWlWRV2sZOfcWzRooV27txpu7z98OHDWrNmjdq3b29JzKUF3zUlB7mE9cg7rEeOYj1yGeuR95QMJf07tExRB4Di49SpU0pLS1PFihXt2itWrKhffvkly3Xi4+Oz7B8fH19ocRZ3+RnHa73wwguqVKlSpg+Xm0l+xvH777/Xf/7zH8XExFgQYcmRn7E8fPiwNm3apCeeeEJr1qzRb7/9poEDByolJUXjxo2zIuxiJz/j+Pjjj+vUqVNq2bKljDFKTU3VgAED9OKLL1oRcqmR3XdNYmKiLl26JHd39yKKDNcil7AeeYf1yFGsRy5jPfKekqGk50hcIQUUM1OnTtUnn3yi5cuXy83NrajDKTHOnz+vJ598Uu+//74qVKhQ1OGUeOnp6QoICNC8efMUFhamxx57TC+99JLmzJlT1KGVKF9//bUmT56s2bNna9euXfr888+1evVqTZw4sahDAwBJ5B1WIEcpGuQy1iPvQV5xhRRsKlSoICcnJ504ccKu/cSJEwoMDMxyncDAwDz1vxnkZxwzTJ8+XVOnTtXGjRtVv379wgyz2MvrOB46dEi///67OnXqZGtLT0+XJJUpU0YHDhxQzZo1CzfoYio/r8mgoCA5OzvLycnJ1lavXj3Fx8crOTlZLi4uhRpzcZSfcXzllVf05JNPqm/fvpKkO+64QxcvXlT//v310ksvydGR80K5kd13jbe3d7E/83ezIZewHnmH9chRrEcuYz3ynpKhpOdIvCJg4+LiorCwMEVHR9va0tPTFR0drebNm2e5TvPmze36S9KGDRuy7X8zyM84StK0adM0ceJERUVFqXHjxlaEWqzldRzr1q2rPXv2KCYmxvZ48MEHdd999ykmJkbBwcFWhl+s5Oc1edddd+m3336zJcyS9OuvvyooKOimTeDyM45JSUmZkq+MxNgYU3jBljJ815Qc5BLWI++wHjmK9chlrEfeUzKU+O/Qop1THcXNJ598YlxdXc3ChQvNvn37TP/+/Y2vr6+Jj483xhjz5JNPmtGjR9v6b9682ZQpU8ZMnz7d7N+/34wbN45bNZu8j+PUqVONi4uLWbZsmTl+/Ljtcf78+aI6hGIhr+N4Le5g84+8juXRo0eNl5eXGTx4sDlw4IBZtWqVCQgIMK+99lpRHUKxkNdxHDdunPHy8jIff/yxOXz4sFm/fr2pWbOmefTRR4vqEIqF8+fPm927d5vdu3cbSWbGjBlm9+7d5siRI8YYY0aPHm2efPJJW/+MWxqPHDnS7N+/37z77rsl6pbGNxtyCeuRd1iPHMV65DLWI++x3s2WI1GQQibvvPOOqVKlinFxcTFNmjQx//vf/2zL7rnnHhMZGWnX/9NPPzV16tQxLi4u5rbbbjOrV6+2OOLiKS/jWLVqVSMp02PcuHHWB17M5PX1eDWSPXt5HcsffvjBNG3a1Li6upoaNWqYSZMmmdTUVIujLn7yMo4pKSlm/PjxpmbNmsbNzc0EBwebgQMHmjNnzlgfeDHy1VdfZfmZlzF2kZGR5p577sm0ToMGDYyLi4upUaOGWbBggeVxI/fIJaxH3mE9chTrkctYj7zHWjdbjuRgDNfOAQAAAAAAwDrMIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKRuQuPHj5eDg4NdW7Vq1dSrV69C3/fvv/8uBwcHLVy40NbWq1cveXp6Fvq+Mzg4OGj8+PGW7a+ku/fee3XvvfcW6Dazeg3CXlbvlYJ08OBBtW3bVj4+PnJwcNCKFSsKZT83Ii+vk9Lwvj527Jjc3Ny0efPm6/bN6n154sQJdevWTeXLl5eDg4NmzpyZp/13795djz76aJ7WAUobcqSS/1lqJXKkokGORI6UE3KkkoWCFPJtzZo1xfbDrTjHdrNISkrS+PHj9fXXXxd1KEWuOL4eIyMjtWfPHk2aNEkffPCBGjduXNQhFTsZyV52j6uTol69emXZp27durne36uvvqqmTZvqrrvuyle8w4cP17p16zRmzBh98MEHateunSRp0qRJevDBB1WxYsUck9IXXnhBn332mX788cd87R/AP4rj536G4hzbzYIc6R/F8fVIjnR9pSFH+uWXXzRq1Cg1aNBAXl5eCgoKUocOHbRjx45M65MjFZ4yRR0AiocDBw7I0TFv9ck1a9bo3XffzdOXSNWqVXXp0iU5OzvnMcK8ySm2S5cuqUwZXvqFLSkpSRMmTJCkTGcpXn75ZY0ePboIoioaxe29cunSJW3ZskUvvfSSBg8eXODbLyhF/Tp5+OGHVatWrUztL774oi5cuKA777zTrt3V1VXz58+3a/Px8cnVvk6ePKlFixZp0aJF+Y5306ZNeuihh/T888/btb/88ssKDAxUw4YNtW7dumzXb9iwoRo3bqw33nhD//d//5fvOIDShhwJBY0c6R/F7b1CjpQ7pSFHev755/Wf//xHXbt21cCBA3Xu3DnNnTtXzZo1U1RUlMLDw219yZEKD984kPT3h0RhSk1NVXp6ulxcXOTm5lao+7qeot6/FS5fviwXF5csE+iLFy+qbNmyRRDVP8qUKUPCmw0r3isnT56UJPn6+l63b1G+Xor6dVK/fn3Vr1/fru3YsWP6448/1LdvX7m4uNgtK1OmjP71r3/la18ffvihypQpo06dOuU73oSEhCyf09jYWFWrVk2nTp2Sv79/jtt49NFHNW7cOM2ePdvSnwkBxRk5UulCjlRykSP9o6hfJ6UhR+rRo4fGjx9vl+889dRTqlevnsaPH29XkJLIkQoLP9kr5b7//nvdeeedcnNzU82aNTV37tws+107P0JKSoomTJig2rVry83NTeXLl1fLli21YcMGSX9fevnuu+9Kkt2ll9I/v+uePn26Zs6cqZo1a8rV1VX79u3L8Tffhw8fVkREhMqWLatKlSrp1VdflTHGtvzrr7+Wg4NDpsubr91mTrFltF17Fmb37t164IEH5O3tLU9PT91///363//+Z9dn4cKFtktQR4wYIX9/f5UtW1ZdunSxfXnlxZ9//qk+ffqoUqVKcnV1VfXq1fXMM88oOTnZbkweeeQR+fn5ycPDQ82aNdPq1avttpMxLp988olefvll3XLLLfLw8FBiYqJt7olDhw6pffv28vLy0hNPPCFJSk9P18yZM3XbbbfJzc1NFStW1NNPP60zZ87kGHdycrLGjh2rsLAw+fj4qGzZsrr77rv11Vdf2fr8/vvvtv/4TpgwwfYcZIx7Vr97T01N1cSJE22vl2rVqunFF1/UlStX7PpVq1ZNHTt21Pfff68mTZrIzc1NNWrUyNfZCgcHBw0ePFhLly5VSEiI3N3d1bx5c+3Zs0eSNHfuXNWqVUtubm6699579fvvv9ut/9133+mRRx5RlSpV5OrqquDgYA0fPlyXLl2y9Smo90pCQoL8/f1177332r0vfvvtN5UtW1aPPfZYro55/Pjxqlq1qiRp5MiRcnBwULVq1WzLHBwctG/fPj3++OMqV66cWrZsKUn66aef1KtXL9WoUUNubm4KDAzUU089pb/++ivTPr7++ms1btzY7nMnP3NiZLXOlStXNHz4cPn7+8vLy0sPPvig/vjjj0zrnj9/XsOGDVO1atXk6uqqgIAAtWnTRrt27cpTDNf6+OOPZYyxvY+ulZaWpsTExDxvd8WKFWratGmWCc68efNUs2ZNubu7q0mTJvruu+/slmd8Nhlj9O6772b6zMt4fnOjTZs2unjxou2zHijNyJHIkciRskeORI6UVyUtRwoLC8u0zfLly+vuu+/W/v37M+2LHKlwUH4vxfbs2aO2bdvK399f48ePV2pqqsaNG6eKFSted93x48drypQp6tu3r5o0aaLExETt2LFDu3btUps2bfT0008rLi5OGzZs0AcffJDlNhYsWKDLly+rf//+cnV1lZ+fn9LT07Psm5aWpnbt2qlZs2aaNm2aoqKiNG7cOKWmpurVV1/N03HnJrar7d27V3fffbe8vb01atQoOTs7a+7cubr33nv1zTffqGnTpnb9hwwZonLlymncuHH6/fffNXPmTA0ePFhLlizJdYxxcXFq0qSJzp49q/79+6tu3br6888/tWzZMiUlJcnFxUUnTpxQixYtlJSUpGeffVbly5fXokWL9OCDD2rZsmXq0qWL3TYnTpwoFxcXPf/887py5YrtzERqaqoiIiLUsmVLTZ8+XR4eHrZxWrhwoXr37q1nn31WsbGxmjVrlnbv3q3Nmzdnexl0YmKi5s+frx49eqhfv346f/68/vOf/ygiIkLbtm1TgwYN5O/vr/fee0/PPPOMunTpoocffliSMp1JuVrfvn21aNEidevWTc8995y2bt2qKVOmaP/+/Vq+fLld399++03dunVTnz59FBkZqf/+97/q1auXwsLCdNttt+X6eZD+TphWrlypQYMGSZKmTJmijh07atSoUZo9e7YGDhyoM2fOaNq0aXrqqae0adMm27pLly5VUlKSnnnmGZUvX17btm3TO++8oz/++ENLly61jXNBvFcCAgL03nvv6ZFHHtE777yjZ599Vunp6erVq5e8vLw0e/bsXB3vww8/LF9fXw0fPlw9evRQ+/btM30ZP/LII6pdu7YmT55sS+w2bNigw4cPq3fv3goMDNTevXs1b9487d27V//73/9sX+67d+9Wu3btFBQUpAkTJigtLU2vvvrqda/Mya2+ffvqww8/1OOPP64WLVpo06ZN6tChQ6Z+AwYM0LJlyzR48GCFhITor7/+0vfff6/9+/erUaNG+d7/4sWLFRwcrFatWmValpSUJG9vbyUlJalcuXLq0aOH/v3vf1/3LFpKSoq2b9+uZ555JtOy//znP3r66afVokULDRs2TIcPH9aDDz4oPz8/BQcHS5JatWqlDz74QE8++aTatGmjnj175vv4Mv7TsXnz5kyfMUBpQo5EjiSRI10PORI5Ul6UlhwpPj5eFSpUyNROjlRIDEqtzp07Gzc3N3PkyBFb2759+4yTk5O59qmvWrWqiYyMtP0dGhpqOnTokOP2Bw0alGk7xhgTGxtrJBlvb2+TkJCQ5bIFCxbY2iIjI40kM2TIEFtbenq66dChg3FxcTEnT540xhjz1VdfGUnmq6++uu42s4vNGGMkmXHjxtn+7ty5s3FxcTGHDh2ytcXFxRkvLy/TqlUrW9uCBQuMJBMeHm7S09Nt7cOHDzdOTk7m7NmzWe4vKz179jSOjo5m+/btmZZlbHvYsGFGkvnuu+9sy86fP2+qV69uqlWrZtLS0owx/4xLjRo1TFJSkt22MsZ29OjRdu3fffedkWQWL15s1x4VFZWp/Z577jH33HOP7e/U1FRz5coVu/XOnDljKlasaJ566ilb28mTJzONdYZx48bZPT8xMTFGkunbt69dv+eff95IMps2bbK1Va1a1Ugy3377ra0tISHBuLq6mueeey7TvnIiybi6uprY2Fhb29y5c40kExgYaBITE23tY8aMMZLs+l473sYYM2XKFOPg4GD3viuo94oxxvTo0cN4eHiYX3/91bz++utGklmxYkWejjtj26+//rpde8bz0qNHj0zrZHWsH3/8cabnolOnTsbDw8P8+eeftraDBw+aMmXKZPuezE52r5OBAwfa9Xv88cczvdZ8fHzMoEGD8rS/6/n555+NJDNq1KhMy0aPHm1eeOEFs2TJEvPxxx/b3nt33XWXSUlJyXG7v/32m5Fk3nnnHbv25ORkExAQYBo0aGD3nps3b56RZPe+NObv13NOx5zTe/JqderUMQ888ECOfYCSjhyJHIkcKWfkSORIeVHSc6QM3377rXFwcDCvvPJKlsvJkQoeP9krpdLS0rRu3Tp17txZVapUsbXXq1dPERER113f19dXe/fu1cGDB/MdQ9euXfNU8b964sCMy4STk5O1cePGfMdwPWlpaVq/fr06d+6sGjVq2NqDgoL0+OOP6/vvv890aWn//v3tLpG9++67lZaWpiNHjuRqn+np6VqxYoU6deqU5V07Mra9Zs0aNWnSxHY5sCR5enqqf//++v3337Vv3z679SIjI+Xu7p7lPq89q7B06VL5+PioTZs2OnXqlO2Rcenq1ZeWX8vJycl2ZjE9PV2nT59WamqqGjdunO9LfdesWSNJGjFihF37c889J0mZLsEPCQnR3Xffbfvb399ft956qw4fPpznfd9///12P2nKONvbtWtXeXl5ZWq/eh9Xj/fFixd16tQptWjRQsYY7d69O9cx5OW9MmvWLPn4+Khbt2565ZVX9OSTT+qhhx7K9b5yY8CAAZnarj7Wy5cv69SpU2rWrJkk2Z73tLQ0bdy4UZ07d1alSpVs/WvVqqUHHnjghuPKeJ08++yzdu3Dhg3L1NfX11dbt25VXFzcDe83w+LFiyUpy0vRp0yZoqlTp+rRRx9V9+7dtXDhQk2aNEmbN2/WsmXLctxuxiX95cqVs2vfsWOHEhISNGDAALu5GHr16pXriUDzo1y5cjp16lShbR8oauRIuUOORI5EjpQZOVLWSkOOlJCQoMcff1zVq1fXqFGjsuxDjlTwKEiVUidPntSlS5dUu3btTMtuvfXW667/6quv6uzZs6pTp47uuOMOjRw5Uj/99FOeYqhevXqu+zo6OtolO5JUp04dScr0m/SCdPLkSSUlJWU5JvXq1VN6erqOHTtm13518ir98wF5vXkFrt5nYmKibr/99hz7HTlyJNu4MpZfLbvxLlOmjCpXrmzXdvDgQZ07d04BAQHy9/e3e1y4cEEJCQk5xrZo0SLVr1/fNneGv7+/Vq9erXPnzuW4XnaOHDkiR0fHTHfrCAwMlK+vb6ZjvfY5kP5+HnL7HOS0rYwvsYxLfa9tv3ofR48eVa9eveTn5ydPT0/5+/vrnnvukaQ8jUVe3it+fn56++239dNPP8nHx0dvv/12rte9kXhOnz6toUOHqmLFinJ3d5e/v7+tX8axJiQk6NKlS1nedSWrtrzKeJ3UrFnTrj2r98m0adP0888/Kzg4WE2aNNH48ePzlYxnMMboo48+0u23357jzyquNnz4cDk6Oub6P4zmqnkvpH/e49d+jjs7O2f6vCxIxpg8z2UBlCTkSLlDjkSORI6Uu3jIkUp+jnTx4kV17NhR58+f1xdffJHtTwnJkQoec0ghS61atdKhQ4f0xRdfaP369Zo/f77efPNNzZkzR3379s3VNrI7E5Vf2b3509LSCnQ/1+Pk5JRl+7UflFbLbrxdXV0z3UkmPT1dAQEBtrMZ18rpTNSHH36oXr16qXPnzho5cqQCAgLk5OSkKVOm6NChQ/k/AGX/HF+rIJ+D7LZ1vX2kpaWpTZs2On36tF544QXVrVtXZcuW1Z9//qlevXplOxdIVvL6Xlm3bp2kvxO/P/74I1d3gsmLrOJ59NFH9cMPP2jkyJFq0KCBPD09lZ6ernbt2uXpWK3y6KOP6u6779by5cu1fv16vf766/r3v/+tzz//PF9nIjdv3qwjR45oypQpuV7H3d1d5cuX1+nTp3PsV758eUm5/w9bYTtz5kyW/1EH8DdypOyRI5EjSeRI5EjXV5xypOTkZD388MP66aeftG7duhwL4uRIBY+CVCnl7+8vd3f3LC8nP3DgQK624efnp969e6t37966cOGCWrVqpfHjx9uSrYKsDqenp+vw4cO2M36S9Ouvv0r65w5RGWfZzp49a7duVpeB5zY2f39/eXh4ZDkmv/zyixwdHTOdBbpR/v7+8vb21s8//5xjv6pVq2YbV8by/KpZs6Y2btyou+66K89f9MuWLVONGjX0+eef243zuHHj7Prl5fVRtWpVpaen6+DBg7azm5J04sQJnT179oaOtbDs2bNHv/76qxYtWmQ3QWJWd94oyPdKVFSU5s+fr1GjRmnx4sWKjIzU1q1bC/XWv2fOnFF0dLQmTJigsWPH2tqv/XwJCAiQm5ubfvvtt0zbyKotrzJeJ4cOHbI745fdZ1pQUJAGDhyogQMHKiEhQY0aNdKkSZPylWwtXrxYDg4Oevzxx3O9zvnz53Xq1Knr/tSgSpUqcnd3V2xsrF17xuv+4MGDat26ta09JSVFsbGxCg0NzcMR5E5qaqqOHTumBx98sMC3DRQX5EjkSDkhR7px5EjkSNdTXHKk9PR09ezZU9HR0fr0009tV/FlhRypcPCTvVLKyclJERERWrFihY4ePWpr379/v+3MQU6uvU2pp6enatWqZXd72bJly0rKnPzk16xZs2z/NsZo1qxZcnZ21v333y/p7w8eJycnffvtt3brZXXnjNzG5uTkpLZt2+qLL76wu+z9xIkT+uijj9SyZUt5e3vn84iy5ujoqM6dO+vLL7/Ujh07Mi3POLvUvn17bdu2TVu2bLEtu3jxoubNm6dq1aopJCQk3zE8+uijSktL08SJEzMtS01NzXHcMs6KXX2mbevWrXZxSrLdqSY3r4/27dtLkmbOnGnXPmPGDEnK8g4hRS2rcTDG6K233srUt6DeK2fPnrXd1Wny5MmaP3++du3apcmTJ9/Qdq8nq2OVMj9fTk5OCg8P14oVK+zmJfjtt9+0du3aG44jI0m69hL8a+NIS0vL9HOAgIAAVapUKdMtsnMjJSVFS5cuVcuWLbP8KcTly5d1/vz5TO0TJ06UMUbt2rXLcfvOzs5q3Lhxps+Dxo0by9/fX3PmzLG71fnChQsL7HP3Wvv27dPly5fVokWLQtk+UByQI5Ej5YQc6caRI5EjZSjuOdKQIUO0ZMkSzZ4923bHy+yQIxUOrpAqxSZMmKCoqCjdfffdGjhwoFJTU/XOO+/otttuu+5cByEhIbr33nsVFhYmPz8/7dixw3Z70AxhYWGS/p48LyIiQk5OTurevXu+YnVzc1NUVJQiIyPVtGlTrV27VqtXr9aLL75oq5z7+PjYbufq4OCgmjVratWqVVn+lj8vsb322mvasGGDWrZsqYEDB6pMmTKaO3eurly5omnTpuXreK5n8uTJWr9+ve655x71799f9erV0/Hjx7V06VJ9//338vX11ejRo/Xxxx/rgQce0LPPPis/Pz8tWrRIsbGx+uyzzzJdYp4X99xzj55++mlNmTJFMTExatu2rZydnXXw4EEtXbpUb731lrp165bluh07dtTnn3+uLl26qEOHDoqNjdWcOXMUEhKiCxcu2Pq5u7srJCRES5YsUZ06deTn56fbb789y8tgQ0NDFRkZqXnz5uns2bO65557tG3bNi1atEidO3fWfffdl+9jLSx169ZVzZo19fzzz+vPP/+Ut7e3PvvssywvKS6o98rQoUP1119/aePGjXJyclK7du3Ut29fvfbaa3rooYcK5YoZSfL29larVq00bdo0paSk6JZbbtH69eszna2S/r4d+vr163XXXXfpmWeeUVpammbNmqXbb79dMTExNxRHgwYN1KNHD82ePVvnzp1TixYtFB0dnenM4vnz51W5cmV169ZNoaGh8vT01MaNG7V9+3a98cYbed7vunXr9Ndff2U5Uaf09+2BGzZsqB49eqhu3bq2ddasWaN27drlakLVhx56SC+99JISExNt/8FzdnbWa6+9pqefflqtW7fWY489ptjYWC1YsCBP8yN88MEHOnLkiJKSkiRJ3377rV577TVJ0pNPPml3dn3Dhg3y8PBQmzZtcr19oCQiRyJHyg450o0jRyJHylCcc6SZM2dq9uzZat68uTw8PPThhx/aLe/SpYutYCqRIxUaa27mh6LyzTffmLCwMOPi4mJq1Khh5syZk+k2ocZkvqXxa6+9Zpo0aWJ8fX2Nu7u7qVu3rpk0aZJJTk629UlNTTVDhgwx/v7+xsHBwbbN7G6XevWya29pXLZsWXPo0CHTtm1b4+HhYSpWrGjGjRtnu21vhpMnT5quXbsaDw8PU65cOfP000/bbjN69Tazi82YzLc0NsaYXbt2mYiICOPp6Wk8PDzMfffdZ3744Qe7Phm3NL72NsTZ3Wr5eo4cOWJ69uxp/P39jaurq6lRo4YZNGiQ3a1LDx06ZLp162Z8fX2Nm5ubadKkiVm1alWW+1+6dGmmfWSMbXbmzZtnwsLCjLu7u/Hy8jJ33HGHGTVqlImLi7P1ufaWxunp6Wby5MmmatWqxtXV1TRs2NCsWrXKREZGmqpVq9pt/4cffrC9/q4e96xegykpKWbChAmmevXqxtnZ2QQHB5sxY8aYy5cv2/WrWrVqlrfbvjbO3FAWt4DN7vWb1Tjv27fPhIeHG09PT1OhQgXTr18/8+OPP+b69ZiX98oXX3xhJJk33njDrl9iYqKpWrWqCQ0NtXt/5uR6tzTOuI341f744w/TpUsX4+vra3x8fMwjjzxi4uLisnw/RUdHm4YNGxoXFxdTs2ZNM3/+fPPcc88ZNze3XMV3bTxXu3Tpknn22WdN+fLlTdmyZU2nTp3MsWPH7OK4cuWKGTlypAkNDTVeXl6mbNmyJjQ01MyePTtP+8/QvXt34+zsbP76668sl585c8b861//MrVq1TIeHh7G1dXV3HbbbWby5Mm5fk5OnDhhypQpYz744INMy2bPnm2qV69uXF1dTePGjc23336b5es9q9ezMX+/NyRl+bj2c6tp06bmX//6V65iBko6ciRyJHKk7JEjkSPlRknOkSIjI7PNjySZ2NhYu/7kSIXDwZginmUQAFDqde7c+YZvk17a9enTR7/++qu+++67Itl/TEyMGjVqpF27dqlBgwZFEgMAADcbcqTrI0cqvShIAQAK1KVLl+wmgj148KBuu+02RUZG6v333y/CyIq3o0ePqk6dOoqOjtZdd91l+f67d++u9PR0ffrpp5bvGwCAmwE5Uv6QI5VeFKSAAnThwgW7OQKy4u/vn+3tclEw4uPjc1zu7u4uHx8fi6KxzqVLlzJNVHktPz8/ubi4FGocQUFB6tWrl2rUqKEjR47ovffe05UrV7R7927Vrl1b586d06VLl3LcRmBgYKHFV1zGCQBuJuRIxQM5UvbIkYrPOOEmUpS/FwRKm4zfc+f0uPb3yCh413sOrp4LpDTJmMMjp0de5/HIj169etnmz/D29jYRERFm586dtuXX+81+YX81FZdxAoCbCTlS8UCORI6Uk+IyTrh5cIUUUIAOHz6sw4cP59inZcuWcnNzsyiim9PGjRtzXF6pUqUbuiV0cXX8+HHt3bs3xz5hYWEqV66cRRFlbd++fXa3PM5KeHh4oe2/pIwTAJQm5EjFAzlS9orDdz85Em42FKQAAAAAAABgKceiDgAAAAAAAAA3lzJFHUBRSk9PV1xcnLy8vOTg4FDU4QAAAAsYY3T+/HlVqlRJjo6cm8sKORIAADcfq3Okm7ogFRcXp+Dg4KIOAwAAFIFjx46pcuXKRR1GsUSOBADAzcuqHOmmLkh5eXlJ+nuwvb29izgaAABghcTERAUHB9vyAGRGjgQAwM3H6hzppi5IZVyC7u3tTbIFAMBNhp+iZY8cCQCAm5dVORITJwAAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsNRNPYcUAAA5SUtLU0pKSlGHgTxydnaWk5NTUYcBAECpRY5UMhW3HImCFAAA1zDGKD4+XmfPni3qUJBPvr6+CgwMZOJyAAAKEDlSyVecciQKUgAAXCMj0QoICJCHh0ex+MJG7hhjlJSUpISEBElSUFBQEUcEAEDpQY5UchXHHImCFAAAV0lLS7MlWuXLly/qcJAP7u7ukqSEhAQFBAQUq0vTAQAoqciRSr7iliMxqTkAAFfJmA/Bw8OjiCPBjch4/pjfAgCAgkGOVDoUpxyJghQAAFngEvSSjecPAIDCwXdsyVacnj8KUgAAAAAAALAUBSkAAAAAAABYiknNAQDIpZSo7y3bl3O7lrnue71Lr8eNG6fx48ffYET54+DgoOXLl6tz58753sa8efP00UcfadeuXTp//rzOnDkjX1/fAosRAADcGCtzJIk8KcPp06c1btw4rV+/XkePHpW/v786d+6siRMnysfHp2CDLQQUpApRVm/KvLxxAADIjePHj9v+vWTJEo0dO1YHDhywtXl6euZpe8nJyXJxcSmw+G5UUlKS2rVrp3bt2mnMmDFFHQ4KADkSAMAqpTlPiouLU1xcnKZPn66QkBAdOXJEAwYMUFxcnJYtW1bU4V0XP9kDAKCECwwMtD18fHzk4OBg+/vixYt64oknVLFiRXl6eurOO+/Uxo0b7davVq2aJk6cqJ49e8rb21v9+/eXJL3//vsKDg6Wh4eHunTpohkzZmS6MumLL75Qo0aN5Obmpho1amjChAlKTU21bVeSunTpIgcHB9vfP/74o+677z55eXnJ29tbYWFh2rFjR7bHN2zYMI0ePVrNmjUrmAEDAAA3jdKcJ91+++367LPP1KlTJ9WsWVOtW7fWpEmT9OWXX9r2U5xRkAIAoBS7cOGC2rdvr+joaO3evVvt2rVTp06ddPToUbt+06dPV2hoqHbv3q1XXnlFmzdv1oABAzR06FDFxMSoTZs2mjRpkt063333nXr27KmhQ4dq3759mjt3rhYuXGjrt337dknSggULdPz4cdvfTzzxhCpXrqzt27dr586dGj16tJydnS0YDQAAgH+Uxjzp3Llz8vb2Vpkyxf8HccU/QgAAkG+hoaEKDQ21/T1x4kQtX75cK1eu1ODBg23trVu31nPPPWf7+6WXXtIDDzyg559/XpJUp04d/fDDD1q1apWtz4QJEzR69GhFRkZKkmrUqKGJEydq1KhRGjdunPz9/SVJvr6+CgwMtK139OhRjRw5UnXr1pUk1a5duxCOHAAAIGelLU86deqUJk6caLuKq7jjCikAAEqxCxcu6Pnnn1e9evXk6+srT09P7d+/P9OZv8aNG9v9feDAATVp0sSu7dq/f/zxR7366qvy9PS0Pfr166fjx48rKSkp25hGjBihvn37Kjw8XFOnTtWhQ4du8CgBAADyrjTlSYmJierQoYNCQkKKbJL2vKIgBQBAKfb8889r+fLlmjx5sr777jvFxMTojjvuUHJysl2/smXL5nnbFy5c0IQJExQTE2N77NmzRwcPHpSbm1u2640fP1579+5Vhw4dtGnTJoWEhGj58uV53j8AAMCNKC150vnz59WuXTt5eXlp+fLlJWYqBH6yBwBAKbZ582b16tVLXbp0kfR3cvT7779fd71bb73VNpdBhmv/btSokQ4cOKBatWplux1nZ2elpaVlaq9Tp47q1Kmj4cOHq0ePHlqwYIEtRgAAACuUhjwpMTFRERERcnV11cqVK3MsdhU3FKQAACjFateurc8//1ydOnWSg4ODXnnlFaWnp193vSFDhqhVq1aaMWOGOnXqpE2bNmnt2rVycHCw9Rk7dqw6duyoKlWqqFu3bnJ0dNSPP/6on3/+Wa+99pqkv+8gEx0drbvuukuurq5yc3PTyJEj1a1bN1WvXl1//PGHtm/frq5du2YbS3x8vOLj4/Xbb79Jkvbs2SMvLy9VqVJFfn5+NzhCAADgZlXS86TExES1bdtWSUlJ+vDDD5WYmKjExERJkr+/v5ycnApglAoPP9kDAKAUmzFjhsqVK6cWLVqoU6dOioiIUKNGja673l133aU5c+ZoxowZCg0NVVRUlIYPH2531i0iIkKrVq3S+vXrdeedd6pZs2Z68803VbVqVVufN954Qxs2bFBwcLAaNmwoJycn/fXXX+rZs6fq1KmjRx99VA888IAmTJiQbSxz5sxRw4YN1a9fP0lSq1at1LBhQ61cufIGRgYAANzsSnqetGvXLm3dulV79uxRrVq1FBQUZHscO3bsxgeokDkYY0xRB1FUEhMT5ePjY7stYkFLifo+U5tzu5YFvh8AQMG5fPmyYmNjVb169RJ1ybMV+vXrp19++UXfffddUYdyXTk9j4X9/V8akCMBAK5FjpSzkpInFacciZ/sAQCALE2fPl1t2rRR2bJltXbtWi1atEizZ88u6rAAAACKHHnSjaMgBQAAsrRt2zZNmzZN58+fV40aNfT222+rb9++RR0WAABAkSNPunEUpAAAQJY+/fTTog4BAACgWCJPunFMag4AAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxVpqgDAACgpDi0Y65l+6rZ+Ok89e/Vq5cWLVokSSpTpoz8/PxUv3599ejRQ7169ZKjY8k9B7V3716NHTtWO3fu1JEjR/Tmm29q2LBhRR0WAAD4/6zMkSTypKu9//77+r//+z/9/PPPkqSwsDBNnjxZTZo0KeLIrq/kjjoAALDTrl07HT9+XL///rvWrl2r++67T0OHDlXHjh2Vmppa1OHlW1JSkmrUqKGpU6cqMDCwqMMBAAAlUGnNk77++mv16NFDX331lbZs2aLg4GC1bdtWf/75Z1GHdl0UpAAAKCVcXV0VGBioW265RY0aNdKLL76oL774QmvXrtXChQtt/c6ePau+ffvK399f3t7eat26tX788Ue7bX355Ze688475ebmpgoVKqhLly62ZWfOnFHPnj1Vrlw5eXh46IEHHtDBgwclSRcvXpS3t7eWLVtmt70VK1aobNmyOn/+vJKTkzV48GAFBQXJzc1NVatW1ZQpU7I9rjvvvFOvv/66unfvLldX1wIYKQAAcLMprXnS4sWLNXDgQDVo0EB169bV/PnzlZ6erujo6AIYtcJFQQoAgFKsdevWCg0N1eeff25re+SRR5SQkKC1a9dq586datSoke6//36dPn1akrR69Wp16dJF7du31+7duxUdHW132XevXr20Y8cOrVy5Ulu2bJExRu3bt1dKSorKli2r7t27a8GCBXZxLFiwQN26dZOXl5fefvttrVy5Up9++qkOHDigxYsXq1q1apaMBwAAQIbSmCclJSUpJSVFfn5+NzY4FmAOKQAASrm6devqp59+kiR9//332rZtmxISEmxXG02fPl0rVqzQsmXL1L9/f02aNEndu3fXhAkTbNsIDQ2VJB08eFArV67U5s2b1aJFC0l/n5kLDg7WihUr9Mgjj6hv375q0aKFjh8/rqCgICUkJGjNmjXauHGjJOno0aOqXbu2WrZsKQcHB1WtWtXK4QAAALApbXnSCy+8oEqVKik8PPyGx6awcYUUAAClnDFGDg4OkqQff/xRFy5cUPny5eXp6Wl7xMbG6tChQ5KkmJgY3X///Vlua//+/SpTpoyaNm1qaytfvrxuvfVW7d+/X5LUpEkT3XbbbbbJQz/88ENVrVpVrVq1kvT3mcOYmBjdeuutevbZZ7V+/fpCO3YAAICclKY8aerUqfrkk0+0fPlyubm55X0wLMYVUgAAlHL79+9X9erVJUkXLlxQUFCQvv7660z9fH19JUnu7u43vM++ffvq3Xff1ejRo7VgwQL17t3bluw1atRIsbGxWrt2rTZu3KhHH31U4eHhmeZTAAAAKGylJU+aPn26pk6dqo0bN6p+/fo3HKMVuEIKAIBSbNOmTdqzZ4+6du0q6e8kJz4+XmXKlFGtWrXsHhUqVJAk1a9fP9uJMOvVq6fU1FRt3brV1vbXX3/pwIEDCgkJsbX961//0pEjR/T2229r3759ioyMtNuOt7e3HnvsMb3//vtasmSJPvvsM9vcDAAAAFYoLXnStGnTNHHiREVFRalx48b5Hg+rcYUUAAClxJUrVxQfH6+0tDSdOHFCUVFRmjJlijp27KiePXtKksLDw9W8eXN17txZ06ZNU506dRQXF2eboLNx48YaN26c7r//ftWsWVPdu3dXamqq1qxZoxdeeEG1a9fWQw89pH79+mnu3Lny8vLS6NGjdcstt+ihhx6yxVKuXDk9/PDDGjlypNq2bavKlSvbls2YMUNBQUFq2LChHB0dtXTpUgUGBtrOPF4rOTlZ+/bts/37zz//VExMjDw9PVWrVq3CG1AAAFBqlNY86d///rfGjh2rjz76SNWqVVN8fLwk2X5uWJxxhRQAAKVEVFSUgoKCVK1aNbVr105fffWV3n77bX3xxRdycnKSJDk4OGjNmjVq1aqVevfurTp16qh79+46cuSIKlasKEm69957tXTpUq1cuVINGjRQ69attW3bNtt+FixYoLCwMHXs2FHNmzeXMUZr1qyRs7OzXTx9+vRRcnKynnrqKbt2Ly8vTZs2TY0bN9add96p33//XWvWrJGjY9ZpSVxcnBo2bKiGDRvq+PHjmj59uho2bKi+ffsW5PABAIBSrLTmSe+9956Sk5PVrVs3BQUF2R7Tp08vyOErFA7GGFPUQRSVxMRE+fj46Ny5c/L29i7w7adEfZ+pzbldywLfDwCg4Fy+fFmxsbGqXr16iZgMsjj74IMPNHz4cMXFxcnFxcXSfef0PBb2939pQI4EALgWOVLBKqo8qTjlSPxkDwAAFKikpCQdP35cU6dO1dNPP215MQoAAKC4Ik/6Bz/ZAwAABWratGmqW7euAgMDNWbMmKIOBwAAoNggT/oHBSkAAFCgxo8fr5SUFEVHRxf7yTQBAACsRJ70jxsqSE2dOlUODg4aNmyYre3y5csaNGiQypcvL09PT3Xt2lUnTpywW+/o0aPq0KGDPDw8FBAQoJEjRyo1NdWuz9dff61GjRrJ1dVVtWrV0sKFCzPt/91331W1atXk5uampk2b2k0kBgAAUFTIkQAAAHKW74LU9u3bNXfuXNWvX9+uffjw4fryyy+1dOlSffPNN4qLi9PDDz9sW56WlqYOHTooOTlZP/zwgxYtWqSFCxdq7Nixtj6xsbHq0KGD7rvvPsXExGjYsGHq27ev1q1bZ+uzZMkSjRgxQuPGjdOuXbsUGhqqiIgIJSQk5PeQAACwuYnv+VEqFOXzR44EACjNyJFKtmL1/Jl8OH/+vKldu7bZsGGDueeee8zQoUONMcacPXvWODs7m6VLl9r67t+/30gyW7ZsMcYYs2bNGuPo6Gji4+Ntfd577z3j7e1trly5YowxZtSoUea2226z2+djjz1mIiIibH83adLEDBo0yPZ3WlqaqVSpkpkyZUquj+PcuXNGkjl37lzuDz4Pktd+l+kBACjeUlNTzb59+8ypU6eKOhTcgFOnTpl9+/aZ1NTUTMsK8/ufHCl3yJEAoOQhRyodiipHykq+7rI3aNAgdejQQeHh4Xrttdds7Tt37lRKSorCw8NtbXXr1lWVKlW0ZcsWNWvWTFu2bNEdd9yhihUr2vpERETomWee0d69e9WwYUNt2bLFbhsZfTIue09OTtbOnTvtJgBzdHRUeHi4tmzZkp9DAgBAkuTk5CRfX1/b1SQeHh5ycHAo4qiQW8YYJSUlKSEhQb6+vnJycrJ0/+RIAIDSihypZCvqHCkreS5IffLJJ9q1a5e2b9+eaVl8fLxcXFzk6+tr116xYkXFx8fb+lydaGUsz1iWU5/ExERdunRJZ86cUVpaWpZ9fvnll2xjv3Lliq5cuWL7OzEx8TpHCwC4GQUGBkoSP3EqwXx9fW3Po1XIkQAApR05UslXFDlSdvJUkDp27JiGDh2qDRs2yM3NrbBiKjRTpkzRhAkTijoMAEAx5+DgoKCgIAUEBCglJaWow0EeOTs7W37WjxwJAHAzIEcq2YoiR8pJngpSO3fuVEJCgho1amRrS0tL07fffqtZs2Zp3bp1Sk5O1tmzZ+3OAJ44ccJWgQsMDMx0p5eMO8xc3efau86cOHFC3t7ecnd3l5OTk5ycnLLsk1Olb8yYMRoxYoTt78TERAUHB+dhBAAAN5OM7xvgesiRAAA3E3IkFIQ83WXv/vvv1549exQTE2N7NG7cWE888YTt387OzoqOjratc+DAAR09elTNmzeXJDVv3lx79uyxu8Rvw4YN8vb2VkhIiK3P1dvI6JOxDRcXF4WFhdn1SU9PV3R0tK1PVlxdXeXt7W33AAAAuFHkSAAAAHmTpyukvLy8dPvtt9u1lS1bVuXLl7e19+nTRyNGjJCfn5+8vb01ZMgQNW/eXM2aNZMktW3bViEhIXryySc1bdo0xcfH6+WXX9agQYPk6uoqSRowYIBmzZqlUaNG6amnntKmTZv06aefavXq1bb9jhgxQpGRkWrcuLGaNGmimTNn6uLFi+rdu/cNDQgAAEBekSMBAADkTb7uspeTN998U46OjuratauuXLmiiIgIzZ4927bcyclJq1at0jPPPKPmzZurbNmyioyM1KuvvmrrU716da1evVrDhw/XW2+9pcqVK2v+/PmKiIiw9Xnsscd08uRJjR07VvHx8WrQoIGioqIyTeIJAABQHJAjAQAA/MPBGGOKOoiikpj4/9i787Ao6/3/4y9AAbcZRFn0SC5pKmmauGG2k5hLWVpafRXNJQ0tpdyyo6aZHuuUlVvlOer3HP1qdtLKhVLMzORoopT7saS0FFwKxpX1/v3RjzmOoDIsHwSfj+ua65L7/sx9v+fDDPP2Nffct0N2u11paWklcmh6ZuyWPMsqdu5Y7PsBAAAFV9Lv/+UBPRIAADce0z2SW+eQAgAAAAAAAIqKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMqlHYB5dlPqevyLGukjqVQCQAAwPWDHgkAAHCEFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRbgVS8+bN02233SabzSabzabw8HCtW7fOuf7ixYuKjo5WjRo1VLVqVfXs2VMpKSku2zhy5Ii6du2qypUrKzAwUKNHj1ZWVpbLmE2bNqlVq1by8fFRw4YNtWjRojy1zJkzR/Xq1ZOvr6/atWun7du3u/NQAAAAig09EgAAgHvcCqTq1KmjGTNmKCEhQTt27NB9992nhx9+WHv37pUkjRo1Sp999plWrFihr776SseOHdOjjz7qvH92dra6du2qjIwMbd26VYsXL9aiRYs0ceJE55ikpCR17dpV9957rxITEzVy5EgNGjRIn3/+uXPM8uXLFRMTo0mTJmnnzp1q0aKFIiMjdeLEiaLOBwAAgNvokQAAANzjYVmWVZQN+Pv76/XXX1evXr0UEBCgpUuXqlevXpKkAwcOqGnTpoqPj1f79u21bt06devWTceOHVNQUJAkaf78+Ro7dqxOnjwpb29vjR07VmvWrNGePXuc++jTp49SU1MVGxsrSWrXrp3atGmj2bNnS5JycnIUEhKiESNGaNy4cQWu3eFwyG63Ky0tTTabrSjTkK9DyybkWdaoz7Ri3w8AACi4kn7/z0WPdGX0SAAAXH9M9Ui5Cn0OqezsbC1btkznzp1TeHi4EhISlJmZqYiICOeYJk2a6KabblJ8fLwkKT4+Xs2bN3c2WpIUGRkph8Ph/AQxPj7eZRu5Y3K3kZGRoYSEBJcxnp6eioiIcI4BAAAoLfRIAAAA11bB3Tvs3r1b4eHhunjxoqpWraqVK1cqNDRUiYmJ8vb2lp+fn8v4oKAgJScnS5KSk5NdGq3c9bnrrjbG4XDowoUL+v3335WdnZ3vmAMHDly19vT0dKWnpzt/djgcBX/gAAAAV0GPBAAAUHBuHyHVuHFjJSYmatu2bRo2bJiioqK0b9++kqit2E2fPl12u915CwkJKe2SAABAOUGPBAAAUHBuB1Le3t5q2LChwsLCNH36dLVo0UJvv/22goODlZGRodTUVJfxKSkpCg4OliQFBwfnuaJM7s/XGmOz2VSpUiXVrFlTXl5e+Y7J3caVjB8/Xmlpac7b0aNH3X34AAAA+aJHAgAAKLhCn0MqV05OjtLT0xUWFqaKFSsqLi7Oue7gwYM6cuSIwsPDJUnh4eHavXu3y5Ve1q9fL5vNptDQUOeYS7eROyZ3G97e3goLC3MZk5OTo7i4OOeYK/Hx8XFejjn3BgAAUBLokQAAAK7MrXNIjR8/Xg8++KBuuukmnTlzRkuXLtWmTZv0+eefy263a+DAgYqJiZG/v79sNptGjBih8PBwtW/fXpLUqVMnhYaGqm/fvpo5c6aSk5P18ssvKzo6Wj4+PpKkoUOHavbs2RozZoyefvppbdy4UR9++KHWrFnjrCMmJkZRUVFq3bq12rZtq1mzZuncuXMaMGBAMU4NAABAwdAjAQAAuMetQOrEiRPq16+fjh8/Lrvdrttuu02ff/65HnjgAUnSW2+9JU9PT/Xs2VPp6emKjIzU3Llznff38vLS6tWrNWzYMIWHh6tKlSqKiorSlClTnGPq16+vNWvWaNSoUXr77bdVp04dLViwQJGRkc4xvXv31smTJzVx4kQlJyerZcuWio2NzXMSTwAAABPokQAAANzjYVmWVdpFlBaHwyG73a60tLQSOTT90LIJeZY16jOt2PcDAAAKrqTf/8sDeiQAAG48pnukIp9DCgAAAAAAAHAHgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAo9wKpKZPn642bdqoWrVqCgwMVI8ePXTw4EGXMRcvXlR0dLRq1KihqlWrqmfPnkpJSXEZc+TIEXXt2lWVK1dWYGCgRo8eraysLJcxmzZtUqtWreTj46OGDRtq0aJFeeqZM2eO6tWrJ19fX7Vr107bt2935+EAAAAUC3okAAAA97gVSH311VeKjo7Wv//9b61fv16ZmZnq1KmTzp075xwzatQoffbZZ1qxYoW++uorHTt2TI8++qhzfXZ2trp27aqMjAxt3bpVixcv1qJFizRx4kTnmKSkJHXt2lX33nuvEhMTNXLkSA0aNEiff/65c8zy5csVExOjSZMmaefOnWrRooUiIyN14sSJoswHAACA2+iRAAAA3ONhWZZV2DufPHlSgYGB+uqrr3TXXXcpLS1NAQEBWrp0qXr16iVJOnDggJo2bar4+Hi1b99e69atU7du3XTs2DEFBQVJkubPn6+xY8fq5MmT8vb21tixY7VmzRrt2bPHua8+ffooNTVVsbGxkqR27dqpTZs2mj17tiQpJydHISEhGjFihMaNG1eg+h0Oh+x2u9LS0mSz2Qo7DVd0aNmEPMsa9ZlW7PsBAAAFV9Lv/xI90rXQIwEAcP0x0SNdqkjnkEpLS5Mk+fv7S5ISEhKUmZmpiIgI55gmTZropptuUnx8vCQpPj5ezZs3dzZakhQZGSmHw6G9e/c6x1y6jdwxudvIyMhQQkKCyxhPT09FREQ4x+QnPT1dDofD5QYAAFDc6JEAAACurtCBVE5OjkaOHKk77rhDzZo1kyQlJyfL29tbfn5+LmODgoKUnJzsHHNpo5W7Pnfd1cY4HA5duHBBp06dUnZ2dr5jcreRn+nTp8tutztvISEh7j9wAACAq6BHAgAAuLZCB1LR0dHas2ePli1bVpz1lKjx48crLS3NeTt69GhplwQAAMoZeiQAAIBrq1CYOw0fPlyrV6/W5s2bVadOHefy4OBgZWRkKDU11eUTwJSUFAUHBzvHXH6ll9wrzFw65vKrzqSkpMhms6lSpUry8vKSl5dXvmNyt5EfHx8f+fj4uP+AAQAACoAeCQAAoGDcOkLKsiwNHz5cK1eu1MaNG1W/fn2X9WFhYapYsaLi4uKcyw4ePKgjR44oPDxckhQeHq7du3e7XOll/fr1stlsCg0NdY65dBu5Y3K34e3trbCwMJcxOTk5iouLc44BAAAwhR4JAADAPW4dIRUdHa2lS5fqk08+UbVq1ZznIrDb7apUqZLsdrsGDhyomJgY+fv7y2azacSIEQoPD1f79u0lSZ06dVJoaKj69u2rmTNnKjk5WS+//LKio6Odn8wNHTpUs2fP1pgxY/T0009r48aN+vDDD7VmzRpnLTExMYqKilLr1q3Vtm1bzZo1S+fOndOAAQOKa24AAAAKhB4JAADAPW4FUvPmzZMk3XPPPS7LFy5cqP79+0uS3nrrLXl6eqpnz55KT09XZGSk5s6d6xzr5eWl1atXa9iwYQoPD1eVKlUUFRWlKVOmOMfUr19fa9as0ahRo/T222+rTp06WrBggSIjI51jevfurZMnT2rixIlKTk5Wy5YtFRsbm+ckngAAACWNHgkAAMA9HpZlWaVdRGlxOByy2+1KS0uTzWYr9u0fWjYhz7JGfaYV+34AAEDBlfT7f3lAjwQAwI3HdI9U6KvsAQAAAAAAAIVBIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKLcDqc2bN6t79+6qXbu2PDw8tGrVKpf1lmVp4sSJqlWrlipVqqSIiAgdOnTIZcxvv/2mp556SjabTX5+fho4cKDOnj3rMub777/XnXfeKV9fX4WEhGjmzJl5almxYoWaNGkiX19fNW/eXGvXrnX34QAAABQLeiQAAICCczuQOnfunFq0aKE5c+bku37mzJl65513NH/+fG3btk1VqlRRZGSkLl686Bzz1FNPae/evVq/fr1Wr16tzZs3a8iQIc71DodDnTp1Ut26dZWQkKDXX39dkydP1vvvv+8cs3XrVj3xxBMaOHCgdu3apR49eqhHjx7as2ePuw8JAACgyOiRAAAACs7Dsiyr0Hf28NDKlSvVo0cPSX988le7dm298MILevHFFyVJaWlpCgoK0qJFi9SnTx/t379foaGh+vbbb9W6dWtJUmxsrLp06aJffvlFtWvX1rx58zRhwgQlJyfL29tbkjRu3DitWrVKBw4ckCT17t1b586d0+rVq531tG/fXi1bttT8+fMLVL/D4ZDdbldaWppsNlthp+GKDi2bkGdZoz7Tin0/AACg4Er6/V+iR7oWeiQAAK4/JnqkSxXrOaSSkpKUnJysiIgI5zK73a527dopPj5ekhQfHy8/Pz9noyVJERER8vT01LZt25xj7rrrLmejJUmRkZE6ePCgfv/9d+eYS/eTOyZ3P/lJT0+Xw+FwuQEAAJQ0eiQAAABXxRpIJScnS5KCgoJclgcFBTnXJScnKzAw0GV9hQoV5O/v7zImv21cuo8rjcldn5/p06fLbrc7byEhIe4+RAAAALfRIwEAALi6oa6yN378eKWlpTlvR48eLe2SAAAASh09EgAAMK1YA6ng4GBJUkpKisvylJQU57rg4GCdOHHCZX1WVpZ+++03lzH5bePSfVxpTO76/Pj4+Mhms7ncAAAASho9EgAAgKtiDaTq16+v4OBgxcXFOZc5HA5t27ZN4eHhkqTw8HClpqYqISHBOWbjxo3KyclRu3btnGM2b96szMxM55j169ercePGql69unPMpfvJHZO7HwAAgOsFPRIAAIArtwOps2fPKjExUYmJiZL+OElnYmKijhw5Ig8PD40cOVKvvvqqPv30U+3evVv9+vVT7dq1nVeZadq0qTp37qzBgwdr+/bt+uabbzR8+HD16dNHtWvXliQ9+eST8vb21sCBA7V3714tX75cb7/9tmJiYpx1PP/884qNjdVf//pXHThwQJMnT9aOHTs0fPjwos8KAACAm+iRAAAACq6Cu3fYsWOH7r33XufPuQ1QVFSUFi1apDFjxujcuXMaMmSIUlNT1bFjR8XGxsrX19d5nyVLlmj48OG6//775enpqZ49e+qdd95xrrfb7friiy8UHR2tsLAw1axZUxMnTtSQIUOcYzp06KClS5fq5Zdf1ksvvaRGjRpp1apVatasWaEmAgAAoCjokQAAAArOw7Isq7SLKC0Oh0N2u11paWklcq6EQ8sm5FnWqM+0Yt8PAAAouJJ+/y8P6JEAALjxmO6Rbqir7AEAAAAAAKD0EUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUWU+kJozZ47q1asnX19ftWvXTtu3by/tkgAAAEodPRIAALielelAavny5YqJidGkSZO0c+dOtWjRQpGRkTpx4kRplwYAAFBq6JEAAMD1rkwHUm+++aYGDx6sAQMGKDQ0VPPnz1flypX197//vbRLAwAAKDX0SAAA4HpXZgOpjIwMJSQkKCIiwrnM09NTERERio+PL8XKAAAASg89EgAAKAsqlHYBhXXq1CllZ2crKCjIZXlQUJAOHDiQ733S09OVnp7u/DktLU2S5HA4SqTGs+fT8ywrqX0BAICCyX0vtiyrlCspGfRIAACgMEz3SGU2kCqM6dOn65VXXsmzPCQkxFwRA/9qbl8AAOCKzpw5I7vdXtplXBfokQAAQC5TPVKZDaRq1qwpLy8vpaSkuCxPSUlRcHBwvvcZP368YmJinD/n5OTot99+U40aNeTh4VGs9TkcDoWEhOjo0aOy2WzFum3kjzk3jzk3jzk3jzkvHSU575Zl6cyZM6pdu3axbvd6QY+EyzHn5jHn5jHnpYN5N6889UhlNpDy9vZWWFiY4uLi1KNHD0l/NE9xcXEaPnx4vvfx8fGRj4+PyzI/P78SrdNms/HCNIw5N485N485N485Lx0lNe/l+cgoeiRcCXNuHnNuHnNeOph388pDj1RmAylJiomJUVRUlFq3bq22bdtq1qxZOnfunAYMGFDapQEAAJQaeiQAAHC9K9OBVO/evXXy5ElNnDhRycnJatmypWJjY/OcxBMAAOBGQo8EAACud2U6kJKk4cOHX/Hw89Lk4+OjSZMm5Tn8HSWHOTePOTePOTePOS8dzHvR0SMhF3NuHnNuHnNeOph388rTnHtY5fWaxwAAAAAAALgueZZ2AQAAAAAAALixEEgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpIpgzpw5qlevnnx9fdWuXTtt3779quNXrFihJk2ayNfXV82bN9fatWsNVVp+uDPnH3zwge68805Vr15d1atXV0RExDV/R8jL3ed5rmXLlsnDw0M9evQo2QLLIXfnPDU1VdHR0apVq5Z8fHx0yy238PfFTe7O+axZs9S4cWNVqlRJISEhGjVqlC5evGio2rJv8+bN6t69u2rXri0PDw+tWrXqmvfZtGmTWrVqJR8fHzVs2FCLFi0q8TpRePRI5tEjmUePZB49knn0SGbdcD2ShUJZtmyZ5e3tbf3973+39u7daw0ePNjy8/OzUlJS8h3/zTffWF5eXtbMmTOtffv2WS+//LJVsWJFa/fu3YYrL7vcnfMnn3zSmjNnjrVr1y5r//79Vv/+/S273W798ssvhisvu9yd81xJSUnWn/70J+vOO++0Hn74YTPFlhPuznl6errVunVrq0uXLtaWLVuspKQka9OmTVZiYqLhyssud+d8yZIllo+Pj7VkyRIrKSnJ+vzzz61atWpZo0aNMlx52bV27VprwoQJ1scff2xJslauXHnV8YcPH7YqV65sxcTEWPv27bPeffddy8vLy4qNjTVTMNxCj2QePZJ59Ejm0SOZR49k3o3WIxFIFVLbtm2t6Oho58/Z2dlW7dq1renTp+c7/vHHH7e6du3qsqxdu3bWM888U6J1lifuzvnlsrKyrGrVqlmLFy8uqRLLncLMeVZWltWhQwdrwYIFVlRUFM2Wm9yd83nz5lkNGjSwMjIyTJVY7rg759HR0dZ9993nsiwmJsa64447SrTO8qogzdaYMWOsW2+91WVZ7969rcjIyBKsDIVFj2QePZJ59Ejm0SOZR49Uum6EHomv7BVCRkaGEhISFBER4Vzm6empiIgIxcfH53uf+Ph4l/GSFBkZecXxcFWYOb/c+fPnlZmZKX9//5Iqs1wp7JxPmTJFgYGBGjhwoIkyy5XCzPmnn36q8PBwRUdHKygoSM2aNdNrr72m7OxsU2WXaYWZ8w4dOighIcF5yPrhw4e1du1adenSxUjNNyLeQ8sOeiTz6JHMo0cyjx7JPHqksqGsv4dWKO0CyqJTp04pOztbQUFBLsuDgoJ04MCBfO+TnJyc7/jk5OQSq7M8KcycX27s2LGqXbt2nhcs8leYOd+yZYv+9re/KTEx0UCF5U9h5vzw4cPauHGjnnrqKa1du1Y//PCDnn32WWVmZmrSpEkmyi7TCjPnTz75pE6dOqWOHTvKsixlZWVp6NCheumll0yUfEO60nuow+HQhQsXVKlSpVKqDJejRzKPHsk8eiTz6JHMo0cqG8p6j8QRUrghzJgxQ8uWLdPKlSvl6+tb2uWUS2fOnFHfvn31wQcfqGbNmqVdzg0jJydHgYGBev/99xUWFqbevXtrwoQJmj9/fmmXVm5t2rRJr732mubOnaudO3fq448/1po1azR16tTSLg0A3EaPVPLokUoHPZJ59EhwF0dIFULNmjXl5eWllJQUl+UpKSkKDg7O9z7BwcFujYerwsx5rjfeeEMzZszQhg0bdNttt5VkmeWKu3P+448/6qefflL37t2dy3JyciRJFSpU0MGDB3XzzTeXbNFlXGGe57Vq1VLFihXl5eXlXNa0aVMlJycrIyND3t7eJVpzWVeYOf/zn/+svn37atCgQZKk5s2b69y5cxoyZIgmTJggT08+6yluV3oPtdls1/0nfzcaeiTz6JHMo0cyjx7JPHqksqGs90g8IwrB29tbYWFhiouLcy7LyclRXFycwsPD871PeHi4y3hJWr9+/RXHw1Vh5lySZs6cqalTpyo2NlatW7c2UWq54e6cN2nSRLt371ZiYqLz9tBDD+nee+9VYmKiQkJCTJZfJhXmeX7HHXfohx9+cDa2kvSf//xHtWrVotEqgMLM+fnz5/M0VLnNrmVZJVfsDYz30LKDHsk8eiTz6JHMo0cyjx6pbCjz76Gle071smvZsmWWj4+PtWjRImvfvn3WkCFDLD8/Pys5OdmyLMvq27evNW7cOOf4b775xqpQoYL1xhtvWPv377cmTZrEJY3d5O6cz5gxw/L29rY++ugj6/jx487bmTNnSushlDnuzvnluIKM+9yd8yNHjljVqlWzhg8fbh08eNBavXq1FRgYaL366qul9RDKHHfnfNKkSVa1atWs//u//7MOHz5sffHFF9bNN99sPf7446X1EMqcM2fOWLt27bJ27dplSbLefPNNa9euXdbPP/9sWZZljRs3zurbt69zfO4ljUePHm3t37/fmjNnTpm6pPGNhh7JPHok8+iRzKNHMo8eybwbrUcikCqCd99917rpppssb29vq23btta///1v57q7777bioqKchn/4YcfWrfccovl7e1t3XrrrdaaNWsMV1z2uTPndevWtSTluU2aNMl84WWYu8/zS9FsFY67c75161arXbt2lo+Pj9WgQQNr2rRpVlZWluGqyzZ35jwzM9OaPHmydfPNN1u+vr5WSEiI9eyzz1q///67+cLLqC+//DLfv8+58xwVFWXdfffdee7TsmVLy9vb22rQoIG1cOFC43Wj4OiRzKNHMo8eyTx6JPPokcy60XokD8vi2DkAAAAAAACYwzmkAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUuXc5MmT5eHh4bKsXr166t+/f4nv+6effpKHh4cWLVrkXNa/f39VrVq1xPedy8PDQ5MnTza2v7Lunnvu0T333FOs28zvOQhX+b1WitOhQ4fUqVMn2e12eXh4aNWqVSWyn6Jw53lyo72uZ86cqSZNmignJ+eq4670PIqNjVXLli3l6+srDw8PpaamFnjfp0+fVpUqVbR27dpCVA5c3+iRbqy/pUVFj1Q66JHoka6GHqnsI5BCgaxdu/a6/eN2Pdd2ozh//rwmT56sTZs2lXYppe56fD5GRUVp9+7dmjZtmv7xj3+odevWpV3SdWnatGl66KGHFBQUdM2G7tdff9Xjjz8uPz8/2Ww2Pfzwwzp8+HC+Y//2t7+padOm8vX1VaNGjfTuu+8WuCaHw6G//OUvGjt2rDw93X/LPn36tB5//HFVqlRJc+bM0T/+8Q9VqVJFBw8e1KhRo9ShQwdnE/bTTz/luX+NGjU0aNAg/fnPf3Z738CN4nr8u5/req7tRkGP9F/X4/ORHqlgbqQe6eOPP1bv3r3VoEEDVa5cWY0bN9YLL7yQJ6yiRyomFsq1SZMmWZf/mi9evGhlZGS4tZ3o6Og827mWnJwc68KFC1ZWVpZzWVRUlFWlShW3tlOU2i5cuGBlZmYW6/7Ks7vvvtu6++673b7fyZMnLUnWpEmT8qzLzMy0Lly4UPTiyojieq0Ul/Pnz1uSrAkTJhT7touTO8+TKz3XikqSFRwcbEVGRl51H2fOnLEaNWpkBQYGWn/5y1+sN9980woJCbHq1KljnTp1ymXs/PnzLUlWz549rffff9/q27evJcmaMWNGgWp66623LJvNVqC5SUpKsiRZCxcudC5bt26dJclav369y9iFCxdanp6eVrNmzayWLVtakqykpKR8t7tv3z5LkhUXF1egmoGygh6JHskd9EhFR49UOPRI+SupHqlGjRpW8+bNrT//+c/WBx98YD333HOWt7e31aRJE+v8+fMuY+mRiq6CkdQL1xUfH58S3X5WVpZycnLk7e0tX1/fEt3XtZT2/k24ePGivL298/1k4Ny5c6pSpUopVPVfFSpUUIUK/KnJj4nXysmTJyVJfn5+1xxbms+X6+F5kpSUpHr16unUqVMKCAi44ri5c+fq0KFD2r59u9q0aSNJevDBB9WsWTP99a9/1WuvvSZJunDhgiZMmKCuXbvqo48+kiQNHjxYOTk5mjp1qoYMGaLq1atftaaFCxfqoYceKvTz48SJE5Ly/v4feughpaamqlq1anrjjTeUmJh4xW00bdpUzZo106JFi3TfffcVqg6grKBHKl/okcoueqT/uh6eJzdSj/TRRx/l+XpuWFiYoqKitGTJEg0aNMi5nB6p6PjKXjmyZcsWtWnTRr6+vrr55pv13nvv5Tvu8vMjZGZm6pVXXlGjRo3k6+urGjVqqGPHjlq/fr2kP85pMGfOHEl/fC859yb99/u4b7zxhmbNmqWbb75ZPj4+2rdv31W/83348GFFRkaqSpUqql27tqZMmSLLspzrN23aJA8PjzyHN1++zavVlrvs8kNKd+3apQcffFA2m01Vq1bV/fffr3//+98uYxYtWiQPDw998803iomJUUBAgKpUqaJHHnnE+ebljl9//VUDBw5U7dq15ePjo/r162vYsGHKyMhwmZPHHntM/v7+qly5stq3b681a9a4bCd3XpYtW6aXX35Zf/rTn1S5cmU5HA7nuSd+/PFHdenSRdWqVdNTTz0lScrJydGsWbN06623ytfXV0FBQXrmmWf0+++/X7XujIwMTZw4UWFhYbLb7apSpYruvPNOffnll84xP/30k/ON6ZVXXnH+DnLnPb/vvWdlZWnq1KnO50u9evX00ksvKT093WVcvXr11K1bN23ZskVt27aVr6+vGjRooP/93/917xegP54Lw4cP14oVKxQaGqpKlSopPDxcu3fvliS99957atiwoXx9fXXPPffk+frS119/rccee0w33XSTfHx8FBISolGjRunChQvOMcX1Wjlx4oQCAgJ0zz33uLwufvjhB1WpUkW9e/cu0GOePHmy6tatK0kaPXq0PDw8VK9ePec6Dw8P7du3T08++aSqV6+ujh07SpK+//579e/fXw0aNJCvr6+Cg4P19NNP6/Tp03n2sWnTJrVu3drl705hzomR333S09M1atQoBQQEqFq1anrooYf0yy+/5LnvmTNnNHLkSNWrV08+Pj4KDAzUAw88oJ07d7pVQ+7cXMtHH32kNm3aOBstSWrSpInuv/9+ffjhh85lX375pU6fPq1nn33W5f7R0dE6d+5cntf35ZKSkvT9998rIiIiz7rU1FT1799fdrtdfn5+ioqKynMo+T333KOoqChJUps2beTh4eH82+/v769q1aoV6PFK0gMPPKDPPvvM5fkIlCX0SPRI9EhXRo9Ej3QtN1KPlN+54h555BFJ0v79+/Oso0cqGiL5cmL37t3q1KmTAgICNHnyZGVlZWnSpEkKCgq65n0nT56s6dOna9CgQWrbtq0cDod27NihnTt36oEHHtAzzzyjY8eOaf369frHP/6R7zYWLlyoixcvasiQIfLx8ZG/v/8VTy6XnZ2tzp07q3379po5c6ZiY2M1adIkZWVlacqUKW497oLUdqm9e/fqzjvvlM1m05gxY1SxYkW99957uueee/TVV1+pXbt2LuNHjBih6tWra9KkSfrpp580a9YsDR8+XMuXLy9wjceOHVPbtm2VmpqqIUOGqEmTJvr111/10Ucf6fz58/L29lZKSoo6dOig8+fP67nnnlONGjW0ePFiPfTQQ/roo4+cfwRzTZ06Vd7e3nrxxReVnp4ub29vSX80MZGRkerYsaPeeOMNVa5c2TlPixYt0oABA/Tcc88pKSlJs2fP1q5du/TNN9+oYsWK+dbucDi0YMECPfHEExo8eLDOnDmjv/3tb4qMjNT27dvVsmVLBQQEaN68eRo2bJgeeeQRPfroo5Kk22677YpzMmjQIC1evFi9evXSCy+8oG3btmn69Onav3+/Vq5c6TL2hx9+UK9evTRw4EBFRUXp73//u/r376+wsDDdeuutBf49SH80TJ9++qmio6MlSdOnT1e3bt00ZswYzZ07V88++6x+//13zZw5U08//bQ2btzovO+KFSt0/vx5DRs2TDVq1ND27dv17rvv6pdfftGKFSuc81wcr5XAwEDNmzdPjz32mN59910999xzysnJUf/+/VWtWjXNnTu3QI/30UcflZ+fn0aNGqUnnnhCXbp0yXPC3Mcee0yNGjXSa6+95nwjXb9+vQ4fPqwBAwYoODhYe/fu1fvvv6+9e/fq3//+t7Mp2rVrlzp37qxatWrplVdeUXZ2tqZMmXLVT87cMWjQIP3zn//Uk08+qQ4dOmjjxo3q2rVrnnFDhw7VRx99pOHDhys0NFSnT5/Wli1btH//frVq1apYasmVk5Oj77//Xk8//XSedW3bttUXX3yhM2fOqFq1atq1a5ck5TkfRVhYmDw9PbVr1y79z//8zxX3tXXrVknK8xgsy9LDDz+sLVu2aOjQoWratKlWrlzpbKxyTZgwQY0bN9b777+vKVOmqH79+rr55psL9bjDwsL01ltvae/evWrWrFmhtgGUFnokeiSJHula6JHokYqqPPdIycnJkqSaNWvmWUePVESl9V1BFK8ePXpYvr6+1s8//+xctm/fPsvLyyvPd7Xr1q1rRUVFOX9u0aKF1bVr16tu/0rf+c79Pq7NZrNOnDiR77pLv6sbFRVlSbJGjBjhXJaTk2N17drV8vb2tk6ePGlZlmV9+eWXliTryy+/vOY2r/Z9dF32HecePXpY3t7e1o8//uhcduzYMatatWrWXXfd5Vy2cOFCS5IVERFh5eTkOJePGjXK8vLyslJTU/PdX3769etneXp6Wt9++22edbnbHjlypCXJ+vrrr53rzpw5Y9WvX9+qV6+elZ2dbVnWf+elQYMGeb7DnDu348aNc1n+9ddfW5KsJUuWuCyPjY3Ns/zy8yNkZWVZ6enpLvf7/fffraCgIOvpp592Lrva+REuP0dHYmKiJckaNGiQy7gXX3zRkmRt3LjRuaxu3bqWJGvz5s3OZSdOnLB8fHysF154Ic++rkaS5ePj43KenPfee8/5nXiHw+FcPn78+Dzn1Ll8vi3LsqZPn255eHi4vO6K67ViWZb1xBNPWJUrV7b+85//WK+//rolyVq1apVbjzt326+//rrL8tzfyxNPPJHnPvk91v/7v//L87vo3r27VblyZevXX391Ljt06JBVoUIFt88RcaXnybPPPusy7sknn8zzXLPb7VZ0dLRb+7uaqz2fc9dNmTIlz7o2pRIwAAEAAElEQVQ5c+ZYkqwDBw5YlvXHc8HLyyvffQQEBFh9+vS5ah0vv/yyJck6c+aMy/JVq1ZZkqyZM2c6l2VlZVl33nlnnudR7t+y/P7+5Mp9bl3pHFKWZVlbt261JFnLly+/as3A9YgeiR6JHunq6JHokQrqRuuRcg0cONDy8vKy/vOf/+RZR49UNHxlrxzIzs7W559/rh49euimm25yLm/atKkiIyOveX8/Pz/t3btXhw4dKnQNPXv2dCvxHz58uPPfuYcJZ2RkaMOGDYWu4Vqys7P1xRdfqEePHmrQoIFzea1atfTkk09qy5YtcjgcLvcZMmSIyyGyd955p7Kzs/Xzzz8XaJ85OTlatWqVunfvnu9VO3K3vXbtWrVt29Z5OLAkVa1aVUOGDNFPP/2kffv2udwvKipKlSpVynefw4YNc/l5xYoVstvteuCBB3Tq1CnnLSwsTFWrVnU5tPxyXl5ezk8Wc3Jy9NtvvykrK0utW7d2+1DfXLmXRo2JiXFZ/sILL0hSnkN0Q0NDdeeddzp/DggIUOPGja94tY6ruf/++10OOc79tLdnz54uX1/KXX7pPi6d73PnzunUqVPq0KGDLMtyfspTEO68VmbPni273a5evXrpz3/+s/r27auHH364wPsqiKFDh+ZZduljvXjxok6dOqX27dtLkvP3np2drQ0bNqhHjx6qXbu2c3zDhg314IMPFrmu3OfJc88957J85MiRecb6+flp27ZtOnbsWJH3ey25Xz/I7zwzuecwyB1z4cIF5+snv7GXfpUhP6dPn1aFChXyfGK7du1aVahQweW17uXlpREjRhT8gbgp9zwOp06dKrF9ACWBHqlg6JHokeiR8qJHck957ZGWLl2qv/3tb3rhhRfUqFGjPOvpkYqGQKocOHnypC5cuJDvC6Rx48bXvP+UKVOUmpqqW265Rc2bN9fo0aP1/fffu1VD/fr1CzzW09PTpdmRpFtuuUWS8r3seHE5efKkzp8/n++cNG3aVDk5OTp69KjL8kubV+m/f3CudV6BS/fpcDiuefjmzz//fMW6ctdf6krzXaFCBdWpU8dl2aFDh5SWlqbAwEAFBAS43M6ePes8od+VLF68WLfddpvz3BkBAQFas2aN0tLSrnq/K/n555/l6emphg0buiwPDg6Wn59fnsd6+e9A+uP3UNDfwdW2ZbfbJUkhISH5Lr90H0eOHFH//v3l7++vqlWrKiAgQHfffbckuTUX7rxW/P399c477+j777+X3W7XO++8U+D7FqWe3377Tc8//7yCgoJUqVIlBQQEOMflPtYTJ07owoULeX6PkvJd5q7c58nlh0/n9zqZOXOm9uzZo5CQELVt21aTJ08uVDNeELmN6OXn8pD+aEwvHVOpUiWXc6BcPvZK/2G6lp9//lm1atXK04QV5O99YVn//6sK7p73Aiht9EgFQ49Ej0SPVLB66JGurDz2SF9//bUGDhyoyMhITZs2Ld8x9EhFwzmkoLvuuks//vijPvnkE33xxRdasGCB3nrrLc2fP9/lKgJXU9g/GldypRd0dnZ2se7nWry8vPJdnvuHp7Rcab59fHzyXEkmJydHgYGBWrJkSb73udonUf/85z/Vv39/9ejRQ6NHj1ZgYKC8vLw0ffp0/fjjj4V/ACr4H+3i/B1caVvX2kd2drYeeOAB/fbbbxo7dqyaNGmiKlWq6Ndff1X//v2veC6Q/Lj7Wvn8888l/dH4/fLLLwW6Eow78qvn8ccf19atWzV69Gi1bNlSVatWVU5Ojjp37uzWYzXl8ccf15133qmVK1fqiy++0Ouvv66//OUv+vjjj4vlk8hL+fv7y8fHR8ePH8+zLndZ7qehtWrVUnZ2tk6cOKHAwEDnuIyMDJ0+fdrlU9P81KhRQ1lZWc7zLZSm3P945HfuBKA8o0e6MnokeiSJHoke6b/KW4/03Xff6aGHHlKzZs300UcfXfFKh/RIRUMgVQ4EBASoUqVK+R5OfvDgwQJtw9/fXwMGDNCAAQN09uxZ3XXXXZo8ebKz2SrOxDcnJ0eHDx92fuInSf/5z38k/fcKDrmfsl1+RYT8DgMvaG0BAQGqXLlyvnNy4MABeXp65vkUqKgCAgJks9m0Z8+eq46rW7fuFevKXV9YN998szZs2KA77rjD7Tf6jz76SA0aNNDHH3/sMs+TJk1yGefO86Nu3brKycnRoUOHnJ9uSlJKSopSU1OL9FhLyu7du/Wf//xHixcvVr9+/ZzLc6+ydKnifK3ExsZqwYIFGjNmjJYsWaKoqCht27atRC/9+/vvvysuLk6vvPKKJk6c6Fx++d+XwMBA+fr66ocffsizjfyWuSv3efLjjz+6fKp1pb9ptWrV0rPPPqtnn31WJ06cUKtWrTRt2rRib7Y8PT3VvHlz7dixI8+6bdu2qUGDBs7GqGXLlpKkHTt2qEuXLs5xO3bsUE5OjnP9lTRp0kTSH1eSufQEuHXr1lVcXJzOnj3r8glgQf/eF0ZSUpIkubxmgbKAHoke6WrokYqOHokeKVd56pF+/PFHde7cWYGBgVq7dm2eI64uRY9UNHxlrxzw8vJSZGSkVq1apSNHjjiX79+/3/nJwdVcfpnSqlWrqmHDhi6HW1apUkVS3uansGbPnu38t2VZmj17tipWrKj7779f0h9/TLy8vLR582aX++V35YyC1ubl5aVOnTrpk08+cTnsPSUlRUuXLlXHjh1ls9kK+Yjy5+npqR49euizzz7L949z7qdLXbp00fbt2xUfH+9cd+7cOb3//vuqV6+eQkNDC13D448/ruzsbE2dOjXPuqysrKvOW+6nYpd+0rZt2zaXOiU5r1RTkOdH7pvOrFmzXJa/+eabkpTvFUJKW37zYFmW3n777Txji+u1kpqa6ryq02uvvaYFCxZo586deu2114q03WvJ77FKeX9fXl5eioiI0KpVq1zOS/DDDz9o3bp1Ra4jt0m6/BD8y+vIzs7O83WAwMBA1a5dO99DxotDr1699O2337q8pg8ePKiNGzfqsccecy6777775O/vr3nz5rncf968eapcufI1n+vh4eGSlOdvR5cuXZSVleWy3ezsbL377ruFfkzXkpCQILvd7vZVm4DSRo9Ej3Q19EhFR49Ej3Sp8tAjJScnq1OnTvL09NTnn39+zfOa0SMVDUdIlROvvPKKYmNjdeedd+rZZ59VVlaW3n33Xd16663XPNdBaGio7rnnHoWFhcnf3187duxwXh40V1hYmKQ/Tp4XGRkpLy8v9enTp1C1+vr6KjY2VlFRUWrXrp3WrVunNWvW6KWXXnK+4O12u/Nyrh4eHrr55pu1evXqfL/L705tr776qtavX6+OHTvq2WefVYUKFfTee+8pPT1dM2fOLNTjuZbXXntNX3zxhe6++24NGTJETZs21fHjx7VixQpt2bJFfn5+GjdunP7v//5PDz74oJ577jn5+/tr8eLFSkpK0r/+9a88h5i74+6779Yzzzyj6dOnKzExUZ06dVLFihV16NAhrVixQm+//bZ69eqV7327deumjz/+WI888oi6du2qpKQkzZ8/X6GhoTp79qxzXKVKlRQaGqrly5frlltukb+/v5o1a5bveSFatGihqKgovf/++0pNTdXdd9+t7du3a/HixerRo4fuvffeQj/WktKkSRPdfPPNevHFF/Xrr7/KZrPpX//6V77naCiu18rzzz+v06dPa8OGDfLy8lLnzp01aNAgvfrqq3r44YfVokWLIj+u/NhsNt11112aOXOmMjMz9ac//UlffPGF89OfS02ePFlffPGF7rjjDg0bNkzZ2dmaPXu2mjVrpsTExCLV0bJlSz3xxBOaO3eu0tLS1KFDB8XFxeX5ZPHMmTOqU6eOevXqpRYtWqhq1arasGGDvv32W/31r391a5//+Mc/9PPPP+v8+fOSpM2bN+vVV1+VJPXt29f5yfSzzz6rDz74QF27dtWLL76oihUr6s0331RQUJDzxLPSH6+LqVOnKjo6Wo899pgiIyP19ddf65///KemTZsmf3//q9bToEEDNWvWTBs2bHC5hHL37t11xx13aNy4cfrpp58UGhqqjz/+2K3zdKSlpTmbs2+++UbSH/8J9vPzk5+fn8vff+mPT7q7d+/O+RFQJtEj0SNdCT1S0dEj0SOVtx6pc+fOOnz4sMaMGaMtW7Zoy5YtznVBQUF64IEHXMbTIxWRyUv6oWR99dVXVlhYmOXt7W01aNDAmj9/fp7LhFpW3ksav/rqq1bbtm0tPz8/q1KlSlaTJk2sadOmWRkZGc4xWVlZ1ogRI6yAgADLw8PDuc0rXS710nWXX9K4SpUq1o8//mh16tTJqly5shUUFGRNmjTJedneXCdPnrR69uxpVa5c2apevbr1zDPPWHv27MmzzSvVZll5L2lsWZa1c+dOKzIy0qpatapVuXJl695777W2bt3qMuZKlwG90qWWr+Xnn3+2+vXrZwUEBFg+Pj5WgwYNrOjoaJfLBf/4449Wr169LD8/P8vX19dq27attXr16nz3v2LFijz7yJ3bK3n//fetsLAwq1KlSla1atWs5s2bW2PGjLGOHTvmHHP5JY1zcnKs1157zapbt67l4+Nj3X777dbq1autqKgoq27dui7b37p1q/P5d+m85/cczMzMtF555RWrfv36VsWKFa2QkBBr/Pjx1sWLF13G1a1bN9/LbV9eZ0FIynPZ2ys9f/Ob53379lkRERFW1apVrZo1a1qDBw+2vvvuuwI/H915rXzyySeWJOuvf/2ryziHw2HVrVvXatGihcvr82qudUnj3MuIX+qXX36xHnnkEcvPz8+y2+3WY489Zh07dizf11NcXJx1++23W97e3tbNN99sLViwwHrhhRcsX1/fAtV3eT2XunDhgvXcc89ZNWrUsKpUqWJ1797dOnr0qEsd6enp1ujRo60WLVpY1apVs6pUqWK1aNHCmjt3rlv7t6w/nleS8r1d/po/evSo1atXL8tms1lVq1a1unXrZh06dCjf7b7//vtW48aNnXP01ltvuVwq/WrefPNNq2rVqnkuM3369Gmrb9++ls1ms+x2u9W3b19r165dBb6kce7zIr/b5a/t/fv3W5KsDRs2FKhm4HpEj0SPRI90ZfRI9EjXciP1SFd6nJLyvLbokYrOw7JK+cyDAIBypUePHkW+TDr+kJaWpgYNGmjmzJkaOHBgqdQwcuRIbd68WQkJCXz6BwBAEdAjFR96pPKBc0gBAArtwoULLj8fOnRIa9eu1T333FM6BZUzdrtdY8aM0euvv14qV+85ffq0FixYoFdffZVGCwAAN9AjlSx6pPKBI6SAQjp79qzLOQLyExAQcMXL5aJ4JCcnX3V9pUqVZLfbDVVjzoULF675fXh/f395e3uXaB21atVS//791aBBA/3888+aN2+e0tPTtWvXLjVq1EhpaWl5GrLLBQcHl1h918s8AcCNhB7p+kCPdGX0SNfPPOEGV7rfGATKrtzvc1/tlpSUVNpllnvX+h1cei6Q8iT3e+9Xu7l7Ho/C6N+/v/P8GTabzYqMjLQSEhKc66Oioq5ZZ0m6XuYJAG4k9EjXB3okeqSruV7mCTc2jpACCunw4cM6fPjwVcd07NhRvr6+hiq6MW3YsOGq62vXrl2kS0Jfr44fP669e/dedUxYWJiqV69uqKL87du3z+WSx/mJiIgosf2XlXkCgPKEHun6QI90ZdfDez89EsBX9gAAAAAAAGAYJzUHAAAAAACAURVKu4DSlJOTo2PHjqlatWqcGR8AgBuEZVk6c+aMateuLU9PPpvLDz0SAAA3HtM90g0dSB07dkwhISGlXQYAACgFR48eVZ06dUq7jOsSPRIAADcuUz3SDR1IVatWTdIfk22z2Uq5GgAAYILD4VBISIizD0Be9EgAANx4TPdIN3QglXsIus1mo9kCAOAGw1fRroweCQCAG5epHokTJwAAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAo27oc0gBAHA12dnZyszMLO0y4KaKFSvKy8urtMsAAKDcokcqm663HolACgCAy1iWpeTkZKWmppZ2KSgkPz8/BQcHc+JyAACKET1S2Xc99UgEUgAAXCa30QoMDFTlypWvizdsFIxlWTp//rxOnDghSapVq1YpVwQAQPlBj1R2XY89EoEUAACXyM7OdjZaNWrUKO1yUAiVKlWSJJ04cUKBgYHX1aHpAACUVfRIZd/11iNxUnMAAC6Rez6EypUrl3IlKIrc3x/ntwAAoHjQI5UP11OPRCAFAEA+OAS9bOP3BwBAyeA9tmy7nn5/BFIAAAAAAAAwikAKAAAAAAAARnFScwAACigzdouxfVXs3LHAY6916PWkSZM0efLkIlZUOB4eHlq5cqV69OhR6G28//77Wrp0qXbu3KkzZ87o999/l5+fX7HVCAAAisZkjyTRJ+X67bffNGnSJH3xxRc6cuSIAgIC1KNHD02dOlV2u714iy0BBFIlKL8XpTsvHAAACuL48ePOfy9fvlwTJ07UwYMHncuqVq3q1vYyMjLk7e1dbPUV1fnz59W5c2d17txZ48ePL+1yUAzokQAAppTnPunYsWM6duyY3njjDYWGhurnn3/W0KFDdezYMX300UelXd418ZU9AADKuODgYOfNbrfLw8PD+fO5c+f01FNPKSgoSFWrVlWbNm20YcMGl/vXq1dPU6dOVb9+/WSz2TRkyBBJ0gcffKCQkBBVrlxZjzzyiN588808RyZ98sknatWqlXx9fdWgQQO98sorysrKcm5Xkh555BF5eHg4f/7uu+907733qlq1arLZbAoLC9OOHTuu+PhGjhypcePGqX379sUzYQAA4IZRnvukZs2a6V//+pe6d++um2++Wffdd5+mTZumzz77zLmf6xmBFAAA5djZs2fVpUsXxcXFadeuXercubO6d++uI0eOuIx744031KJFC+3atUt//vOf9c0332jo0KF6/vnnlZiYqAceeEDTpk1zuc/XX3+tfv366fnnn9e+ffv03nvvadGiRc5x3377rSRp4cKFOn78uPPnp556SnXq1NG3336rhIQEjRs3ThUrVjQwGwAAAP9VHvuktLQ02Ww2Vahw/X8h7vqvEAAAFFqLFi3UokUL589Tp07VypUr9emnn2r48OHO5ffdd59eeOEF588TJkzQgw8+qBdffFGSdMstt2jr1q1avXq1c8wrr7yicePGKSoqSpLUoEEDTZ06VWPGjNGkSZMUEBAgSfLz81NwcLDzfkeOHNHo0aPVpEkTSVKjRo1K4JEDAABcXXnrk06dOqWpU6c6j+K63nGEFAAA5djZs2f14osvqmnTpvLz81PVqlW1f//+PJ/8tW7d2uXngwcPqm3bti7LLv/5u+++05QpU1S1alXnbfDgwTp+/LjOnz9/xZpiYmI0aNAgRUREaMaMGfrxxx+L+CgBAADcV576JIfDoa5duyo0NLTUTtLuLgIpAADKsRdffFErV67Ua6+9pq+//lqJiYlq3ry5MjIyXMZVqVLF7W2fPXtWr7zyihITE5233bt369ChQ/L19b3i/SZPnqy9e/eqa9eu2rhxo0JDQ7Vy5Uq39w8AAFAU5aVPOnPmjDp37qxq1app5cqVZeZUCHxlDwCAcuybb75R//799cgjj0j6ozn66aefrnm/xo0bO89lkOvyn1u1aqWDBw+qYcOGV9xOxYoVlZ2dnWf5LbfcoltuuUWjRo3SE088oYULFzprBAAAMKE89EkOh0ORkZHy8fHRp59+etWw63pDIAUAQDnWqFEjffzxx+revbs8PDz05z//WTk5Ode834gRI3TXXXfpzTffVPfu3bVx40atW7dOHh4ezjETJ05Ut27ddNNNN6lXr17y9PTUd999pz179ujVV1+V9McVZOLi4nTHHXfIx8dHvr6+Gj16tHr16qX69evrl19+0bfffquePXtesZbk5GQlJyfrhx9+kCTt3r1b1apV00033SR/f/8izhAAALhRlfU+yeFwqFOnTjp//rz++c9/yuFwyOFwSJICAgLk5eVVDLNUcvjKHgAA5dibb76p6tWrq0OHDurevbsiIyPVqlWra97vjjvu0Pz58/Xmm2+qRYsWio2N1ahRo1w+dYuMjNTq1av1xRdfqE2bNmrfvr3eeust1a1b1znmr3/9q9avX6+QkBDdfvvt8vLy0unTp9WvXz/dcsstevzxx/Xggw/qlVdeuWIt8+fP1+23367BgwdLku666y7dfvvt+vTTT4swMwAA4EZX1vuknTt3atu2bdq9e7caNmyoWrVqOW9Hjx4t+gSVMA/LsqzSLqK0OBwO2e1252URi1tm7JY8yyp27ljs+wEAFJ+LFy8qKSlJ9evXL1OHPJswePBgHThwQF9//XVpl3JNV/s9lvT7f3lAjwQAuBw90tWVlT7peuqR+MoeAADI1xtvvKEHHnhAVapU0bp167R48WLNnTu3tMsCAAAodfRJRUcgBQAA8rV9+3bNnDlTZ86cUYMGDfTOO+9o0KBBpV0WAABAqaNPKjoCKQAAkK8PP/ywtEsAAAC4LtEnFR0nNQcAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgVIXSLgAAgLLixx3vGdvXza2fcWt8//79tXjxYklShQoV5O/vr9tuu01PPPGE+vfvL0/PsvsZ1N69ezVx4kQlJCTo559/1ltvvaWRI0eWdlkAAOD/M9kjSfRJl/rggw/0v//7v9qzZ48kKSwsTK+99pratm1bypVdW9mddQAA4KJz5846fvy4fvrpJ61bt0733nuvnn/+eXXr1k1ZWVmlXV6hnT9/Xg0aNNCMGTMUHBxc2uUAAIAyqLz2SZs2bdITTzyhL7/8UvHx8QoJCVGnTp3066+/lnZp10QgBQBAOeHj46Pg4GD96U9/UqtWrfTSSy/pk08+0bp167Ro0SLnuNTUVA0aNEgBAQGy2Wy677779N1337ls67PPPlObNm3k6+urmjVr6pFHHnGu+/3339WvXz9Vr15dlStX1oMPPqhDhw5Jks6dOyebzaaPPvrIZXurVq1SlSpVdObMGWVkZGj48OGqVauWfH19VbduXU2fPv2Kj6tNmzZ6/fXX1adPH/n4+BTDTAEAgBtNee2TlixZomeffVYtW7ZUkyZNtGDBAuXk5CguLq4YZq1kEUgBAFCO3XfffWrRooU+/vhj57LHHntMJ06c0Lp165SQkKBWrVrp/vvv12+//SZJWrNmjR555BF16dJFu3btUlxcnMth3/3799eOHTv06aefKj4+XpZlqUuXLsrMzFSVKlXUp08fLVy40KWOhQsXqlevXqpWrZreeecdffrpp/rwww918OBBLVmyRPXq1TMyHwAAALnKY590/vx5ZWZmyt/fv2iTYwDnkAIAoJxr0qSJvv/+e0nSli1btH37dp04ccJ5tNEbb7yhVatW6aOPPtKQIUM0bdo09enTR6+88opzGy1atJAkHTp0SJ9++qm++eYbdejQQdIfn8yFhIRo1apVeuyxxzRo0CB16NBBx48fV61atXTixAmtXbtWGzZskCQdOXJEjRo1UseOHeXh4aG6deuanA4AAACn8tYnjR07VrVr11ZERESR56akcYQUAADlnGVZ8vDwkCR99913Onv2rGrUqKGqVas6b0lJSfrxxx8lSYmJibr//vvz3db+/ftVoUIFtWvXzrmsRo0aaty4sfbv3y9Jatu2rW699VbnyUP/+c9/qm7durrrrrsk/fHJYWJioho3bqznnntOX3zxRYk9dgAAgKspT33SjBkztGzZMq1cuVK+vr7uT4ZhHCEFAEA5t3//ftWvX1+SdPbsWdWqVUubNm3KM87Pz0+SVKlSpSLvc9CgQZozZ47GjRunhQsXasCAAc5mr1WrVkpKStK6deu0YcMGPf7444qIiMhzPgUAAICSVl76pDfeeEMzZszQhg0bdNtttxW5RhM4QgoAgHJs48aN2r17t3r27CnpjyYnOTlZFSpUUMOGDV1uNWvWlCTddtttVzwRZtOmTZWVlaVt27Y5l50+fVoHDx5UaGioc9n//M//6Oeff9Y777yjffv2KSoqymU7NptNvXv31gcffKDly5frX//6l/PcDAAAACaUlz5p5syZmjp1qmJjY9W6detCz4dpHCEFAEA5kZ6eruTkZGVnZyslJUWxsbGaPn26unXrpn79+kmSIiIiFB4erh49emjmzJm65ZZbdOzYMecJOlu3bq1Jkybp/vvv180336w+ffooKytLa9eu1dixY9WoUSM9/PDDGjx4sN577z1Vq1ZN48aN05/+9Cc9/PDDzlqqV6+uRx99VKNHj1anTp1Up04d57o333xTtWrV0u233y5PT0+tWLFCwcHBzk8eL5eRkaF9+/Y5//3rr78qMTFRVatWVcOGDUtuQgEAQLlRXvukv/zlL5o4caKWLl2qevXqKTk5WZKcXze8nnGEFAAA5URsbKxq1aqlevXqqXPnzvryyy/1zjvv6JNPPpGXl5ckycPDQ2vXrtVdd92lAQMG6JZbblGfPn30888/KygoSJJ0zz33aMWKFfr000/VsmVL3Xfffdq+fbtzPwsXLlRYWJi6deum8PBwWZaltWvXqmLFii71DBw4UBkZGXr66addllerVk0zZ85U69at1aZNG/30009au3atPD3zb0uOHTum22+/XbfffruOHz+uN954Q7fffrsGDRpUnNMHAADKsfLaJ82bN08ZGRnq1auXatWq5by98cYbxTl9JcLDsiyrtIsoLQ6HQ3a7XWlpabLZbMW+/czYLXmWVezcsdj3AwAoPhcvXlRSUpLq169fJk4GeT37xz/+oVGjRunYsWPy9vY2uu+r/R5L+v2/PKBHAgBcjh6peJVWn3Q99Uh8ZQ8AABSr8+fP6/jx45oxY4aeeeYZ42EUAADA9Yo+6b/4yh4AAChWM2fOVJMmTRQcHKzx48eXdjkAAADXDfqk/yKQAgAAxWry5MnKzMxUXFzcdX8yTQAAAJPok/6LQAoAAAAAAABGEUgBAJCPG/iaH+UCvz8AAEoG77Fl2/X0+yOQAgDgErmX5D1//nwpV4KiyP39XX6JZQAAUDj0SOXD9dQjFSmQmjFjhjw8PDRy5EjnsosXLyo6Olo1atRQ1apV1bNnT6WkpLjc78iRI+ratasqV66swMBAjR49WllZWS5jNm3apFatWsnHx0cNGzbUokWL8ux/zpw5qlevnnx9fdWuXTtt3769KA8HAAB5eXnJz89PJ06c0OnTp3XhwgVdvHiRWxm5XbhwQadPn9aJEyfk5+cnLy+vUnke0SMBAMobeqSyfbteeqRLVSjsHb/99lu99957uu2221yWjxo1SmvWrNGKFStkt9s1fPhwPfroo/rmm28kSdnZ2eratauCg4O1detWHT9+XP369VPFihX12muvSZKSkpLUtWtXDR06VEuWLFFcXJwGDRqkWrVqKTIyUpK0fPlyxcTEaP78+WrXrp1mzZqlyMhIHTx4UIGBgYV9WAAAKDg4WJJ04sSJUq4EheXn5+f8PZpGjwQAKK/okcq+0uyRLudhFeILhGfPnlWrVq00d+5cvfrqq2rZsqVmzZqltLQ0BQQEaOnSperVq5ck6cCBA2ratKni4+PVvn17rVu3Tt26ddOxY8cUFBQkSZo/f77Gjh2rkydPytvbW2PHjtWaNWu0Z88e5z779Omj1NRUxcbGSpLatWunNm3aaPbs2ZKknJwchYSEaMSIERo3blyBHofD4ZDdbldaWppsNpu703BNmbFb8iyr2Lljse8HAFAysrOzlZmZWdplwE0VK1a86qd+Jfn+T49UMPRIAFC20SOVTaXZI+WnUEdIRUdHq2vXroqIiNCrr77qXJ6QkKDMzExFREQ4lzVp0kQ33XSTs9mKj49X8+bNnY2WJEVGRmrYsGHau3evbr/9dsXHx7tsI3dM7mHvGRkZSkhI0Pjx453rPT09FRERofj4+MI8JAAA8vDy8rouDmdG2UGPBAC4EdAjoTi4HUgtW7ZMO3fu1LfffptnXXJysry9veXn5+eyPCgoSMnJyc4xlzZauetz111tjMPh0IULF/T7778rOzs73zEHDhy4Yu3p6elKT093/uxwOK7xaAEAAAqGHgkAAKDg3Dqp+dGjR/X8889ryZIl8vX1LamaSsz06dNlt9udt5CQkNIuCQAAlAP0SAAAAO5xK5BKSEjQiRMn1KpVK1WoUEEVKlTQV199pXfeeUcVKlRQUFCQMjIylJqa6nK/lJQU50mzgoOD81xRJvfna42x2WyqVKmSatasKS8vr3zHXO3kXOPHj1daWprzdvToUXcePgAAQL7okQAAANzjViB1//33a/fu3UpMTHTeWrduraeeesr574oVKyouLs55n4MHD+rIkSMKDw+XJIWHh2v37t0uZ+Vfv369bDabQkNDnWMu3UbumNxteHt7KywszGVMTk6O4uLinGPy4+PjI5vN5nIDAAAoKnokAAAA97h1Dqlq1aqpWbNmLsuqVKmiGjVqOJcPHDhQMTEx8vf3l81m04gRIxQeHq727dtLkjp16qTQ0FD17dtXM2fOVHJysl5++WVFR0fLx8dHkjR06FDNnj1bY8aM0dNPP62NGzfqww8/1Jo1a5z7jYmJUVRUlFq3bq22bdtq1qxZOnfunAYMGFCkCQEAAHAXPRIAAIB7CnWVvat566235OnpqZ49eyo9PV2RkZGaO3euc72Xl5dWr16tYcOGKTw8XFWqVFFUVJSmTJniHFO/fn2tWbNGo0aN0ttvv606depowYIFioyMdI7p3bu3Tp48qYkTJyo5OVktW7ZUbGxsnpN4AgAAXA/okQAAAP7Lw7Isq7SLKC0Oh0N2u11paWklcmh6ZuyWPMsqdu5Y7PsBAAAFV9Lv/+UBPRIAADce0z2SW+eQAgAAAAAAAIqKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGFWhtAsoz35KXZdnWSN1LIVKAAAArh/0SAAAgCOkAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIxyK5CaN2+ebrvtNtlsNtlsNoWHh2vdunXO9RcvXlR0dLRq1KihqlWrqmfPnkpJSXHZxpEjR9S1a1dVrlxZgYGBGj16tLKyslzGbNq0Sa1atZKPj48aNmyoRYsW5allzpw5qlevnnx9fdWuXTtt377dnYcCAABQbOiRAAAA3ONWIFWnTh3NmDFDCQkJ2rFjh+677z49/PDD2rt3ryRp1KhR+uyzz7RixQp99dVXOnbsmB599FHn/bOzs9W1a1dlZGRo69atWrx4sRYtWqSJEyc6xyQlJalr16669957lZiYqJEjR2rQoEH6/PPPnWOWL1+umJgYTZo0STt37lSLFi0UGRmpEydOFHU+AAAA3EaPBAAA4B4Py7KsomzA399fr7/+unr16qWAgAAtXbpUvXr1kiQdOHBATZs2VXx8vNq3b69169apW7duOnbsmIKCgiRJ8+fP19ixY3Xy5El5e3tr7NixWrNmjfbs2ePcR58+fZSamqrY2FhJUrt27dSmTRvNnj1bkpSTk6OQkBCNGDFC48aNK3DtDodDdrtdaWlpstlsRZmGfB1aNiHPskZ9phX7fgAAQMGV9Pt/LnqkK6NHAgDg+mOqR8pV6HNIZWdna9myZTp37pzCw8OVkJCgzMxMRUREOMc0adJEN910k+Lj4yVJ8fHxat68ubPRkqTIyEg5HA7nJ4jx8fEu28gdk7uNjIwMJSQkuIzx9PRURESEcwwAAEBpoUcCAAC4tgru3mH37t0KDw/XxYsXVbVqVa1cuVKhoaFKTEyUt7e3/Pz8XMYHBQUpOTlZkpScnOzSaOWuz113tTEOh0MXLlzQ77//ruzs7HzHHDhw4Kq1p6enKz093fmzw+Eo+AMHAAC4CnokAACAgnP7CKnGjRsrMTFR27Zt07BhwxQVFaV9+/aVRG3Fbvr06bLb7c5bSEhIaZcEAADKCXokAACAgnM7kPL29lbDhg0VFham6dOnq0WLFnr77bcVHBysjIwMpaamuoxPSUlRcHCwJCk4ODjPFWVyf77WGJvNpkqVKqlmzZry8vLKd0zuNq5k/PjxSktLc96OHj3q7sMHAADIFz0SAABAwRX6HFK5cnJylJ6errCwMFWsWFFxcXHOdQcPHtSRI0cUHh4uSQoPD9fu3btdrvSyfv162Ww2hYaGOsdcuo3cMbnb8Pb2VlhYmMuYnJwcxcXFOcdciY+Pj/NyzLk3AACAkkCPBAAAcGVunUNq/PjxevDBB3XTTTfpzJkzWrp0qTZt2qTPP/9cdrtdAwcOVExMjPz9/WWz2TRixAiFh4erffv2kqROnTopNDRUffv21cyZM5WcnKyXX35Z0dHR8vHxkSQNHTpUs2fP1pgxY/T0009r48aN+vDDD7VmzRpnHTExMYqKilLr1q3Vtm1bzZo1S+fOndOAAQOKcWoAAAAKhh4JAADAPW4FUidOnFC/fv10/Phx2e123Xbbbfr888/1wAMPSJLeeusteXp6qmfPnkpPT1dkZKTmzp3rvL+Xl5dWr16tYcOGKTw8XFWqVFFUVJSmTJniHFO/fn2tWbNGo0aN0ttvv606depowYIFioyMdI7p3bu3Tp48qYkTJyo5OVktW7ZUbGxsnpN4AgAAmECPBAAA4B4Py7Ks0i6itDgcDtntdqWlpZXIoemHlk3Is6xRn2nFvh8AAFBwJf3+Xx7QIwEAcOMx3SMV+RxSAAAAAAAAgDsIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAotwKp6dOnq02bNqpWrZoCAwPVo0cPHTx40GXMxYsXFR0drRo1aqhq1arq2bOnUlJSXMYcOXJEXbt2VeXKlRUYGKjRo0crKyvLZcymTZvUqlUr+fj4qGHDhlq0aFGeeubMmaN69erJ19dX7dq10/bt2915OAAAAMWCHgkAAMA9bgVSX331laKjo/Xvf/9b69evV2Zmpjp16qRz5845x4waNUqfffaZVqxYoa+++krHjh3To48+6lyfnZ2trl27KiMjQ1u3btXixYu1aNEiTZw40TkmKSlJXbt21b333qvExESNHDlSgwYN0ueff+4cs3z5csXExGjSpEnauXOnWrRoocjISJ04caIo8wEAAOA2eiQAAAD3eFiWZRX2zidPnlRgYKC++uor3XXXXUpLS1NAQICWLl2qXr16SZIOHDigpk2bKj4+Xu3bt9e6devUrVs3HTt2TEFBQZKk+fPna+zYsTp58qS8vb01duxYrVmzRnv27HHuq0+fPkpNTVVsbKwkqV27dmrTpo1mz54tScrJyVFISIhGjBihcePGFah+h8Mhu92utLQ02Wy2wk7DFR1aNiHPskZ9phX7fgAAQMGV9Pu/RI90LfRIAABcf0z0SJcq0jmk0tLSJEn+/v6SpISEBGVmZioiIsI5pkmTJrrpppsUHx8vSYqPj1fz5s2djZYkRUZGyuFwaO/evc4xl24jd0zuNjIyMpSQkOAyxtPTUxEREc4xAAAApYUeCQAA4OoqFPaOOTk5GjlypO644w41a9ZMkpScnCxvb2/5+fm5jA0KClJycrJzzKWNVu763HVXG+NwOHThwgX9/vvvys7OznfMgQMHrlhzenq60tPTnT87HA43HjEAAMC10SMBAABcW6GPkIqOjtaePXu0bNmy4qynRE2fPl12u915CwkJKe2SAABAOUOPBAAAcG2FCqSGDx+u1atX68svv1SdOnWcy4ODg5WRkaHU1FSX8SkpKQoODnaOufyKMrk/X2uMzWZTpUqVVLNmTXl5eeU7Jncb+Rk/frzS0tKct6NHj7r3wAEAAK6CHgkAAKBg3AqkLMvS8OHDtXLlSm3cuFH169d3WR8WFqaKFSsqLi7OuezgwYM6cuSIwsPDJUnh4eHavXu3y5Ve1q9fL5vNptDQUOeYS7eROyZ3G97e3goLC3MZk5OTo7i4OOeY/Pj4+Mhms7ncAAAAiooeCQAAwD1unUMqOjpaS5cu1SeffKJq1ao5z2dgt9tVqVIl2e12DRw4UDExMfL395fNZtOIESMUHh6u9u3bS5I6deqk0NBQ9e3bVzNnzlRycrJefvllRUdHy8fHR5I0dOhQzZ49W2PGjNHTTz+tjRs36sMPP9SaNWuctcTExCgqKkqtW7dW27ZtNWvWLJ07d04DBgworrkBAAAoEHokAAAA97gVSM2bN0+SdM8997gsX7hwofr37y9Jeuutt+Tp6amePXsqPT1dkZGRmjt3rnOsl5eXVq9erWHDhik8PFxVqlRRVFSUpkyZ4hxTv359rVmzRqNGjdLbb7+tOnXqaMGCBYqMjHSO6d27t06ePKmJEycqOTlZLVu2VGxsbJ6TeAIAAJQ0eiQAAAD3eFiWZZV2EaXF4XDIbrcrLS2tRA5NP7RsQp5ljfpMK/b9AACAgivp9//ygB4JAIAbj+keqdBX2QMAAAAAAAAKg0AKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjHI7kNq8ebO6d++u2rVry8PDQ6tWrXJZb1mWJk6cqFq1aqlSpUqKiIjQoUOHXMb89ttveuqpp2Sz2eTn56eBAwfq7NmzLmO+//573XnnnfL19VVISIhmzpyZp5YVK1aoSZMm8vX1VfPmzbV27Vp3Hw4AAECxoEcCAAAoOLcDqXPnzqlFixaaM2dOvutnzpypd955R/Pnz9e2bdtUpUoVRUZG6uLFi84xTz31lPbu3av169dr9erV2rx5s4YMGeJc73A41KlTJ9WtW1cJCQl6/fXXNXnyZL3//vvOMVu3btUTTzyhgQMHateuXerRo4d69OihPXv2uPuQAAAAioweCQAAoOA8LMuyCn1nDw+tXLlSPXr0kPTHJ3+1a9fWCy+8oBdffFGSlJaWpqCgIC1atEh9+vTR/v37FRoaqm+//VatW7eWJMXGxqpLly765ZdfVLt2bc2bN08TJkxQcnKyvL29JUnjxo3TqlWrdODAAUlS7969de7cOa1evdpZT/v27dWyZUvNnz+/QPU7HA7Z7XalpaXJZrMVdhqu6NCyCXmWNeozrdj3AwAACq6k3/8leqRroUcCAOD6Y6JHulSxnkMqKSlJycnJioiIcC6z2+1q166d4uPjJUnx8fHy8/NzNlqSFBERIU9PT23bts055q677nI2WpIUGRmpgwcP6vfff3eOuXQ/uWNy9wMAAHC9oEcCAABwVaE4N5acnCxJCgoKclkeFBTkXJecnKzAwEDXIipUkL+/v8uY+vXr59lG7rrq1asrOTn5qvvJT3p6utLT050/OxwOdx4eAABAodAjAQAAuLqhrrI3ffp02e125y0kJKS0SwIAACh19EgAAMC0Yg2kgoODJUkpKSkuy1NSUpzrgoODdeLECZf1WVlZ+u2331zG5LeNS/dxpTG56/Mzfvx4paWlOW9Hjx519yECAAC4jR4JAADAVbEGUvXr11dwcLDi4uKcyxwOh7Zt26bw8HBJUnh4uFJTU5WQkOAcs3HjRuXk5Khdu3bOMZs3b1ZmZqZzzPr169W4cWNVr17dOebS/eSOyd1Pfnx8fGSz2VxuAAAAJY0eCQAAwJXbgdTZs2eVmJioxMRESX+cpDMxMVFHjhyRh4eHRo4cqVdffVWffvqpdu/erX79+ql27drOq8w0bdpUnTt31uDBg7V9+3Z98803Gj58uPr06aPatWtLkp588kl5e3tr4MCB2rt3r5YvX663335bMTExzjqef/55xcbG6q9//asOHDigyZMna8eOHRo+fHjRZwUAAMBN9EgAAAAF5/ZJzXfs2KF7773X+XNuAxQVFaVFixZpzJgxOnfunIYMGaLU1FR17NhRsbGx8vX1dd5nyZIlGj58uO6//355enqqZ8+eeuedd5zr7Xa7vvjiC0VHRyssLEw1a9bUxIkTNWTIEOeYDh06aOnSpXr55Zf10ksvqVGjRlq1apWaNWtWqIkAAAAoCnokAACAgvOwLMsq7SJKi8PhkN1uV1paWokcmn5o2YQ8yxr1mVbs+wEAAAVX0u//5QE9EgAANx7TPdINdZU9AAAAAAAAlD4CKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGlflAas6cOapXr558fX3Vrl07bd++vbRLAgAAKHX0SAAA4HpWpgOp5cuXKyYmRpMmTdLOnTvVokULRUZG6sSJE6VdGgAAQKmhRwIAANe7Mh1Ivfnmmxo8eLAGDBig0NBQzZ8/X5UrV9bf//730i4NAACg1NAjAQCA612F0i6gsDIyMpSQkKDx48c7l3l6eioiIkLx8fH53ic9PV3p6enOn9PS0iRJDoejRGo8ez49z7KS2hcAACiY3Pdiy7JKuZKSQY8EAAAKw3SPVGYDqVOnTik7O1tBQUEuy4OCgnTgwIF87zN9+nS98soreZaHhISUSI35GvhXc/sCAABXdObMGdnt9tIuo9jRIwEAgKIw1SOV2UCqMMaPH6+YmBjnzzk5Ofrtt99Uo0YNeXh4FOu+HA6HQkJCdPToUdlstmLdNvLHnJvHnJvHnJvHnJeOkpx3y7J05swZ1a5du1i3W5bRI5VvzLl5zLl5zHnpYN7NK089UpkNpGrWrCkvLy+lpKS4LE9JSVFwcHC+9/Hx8ZGPj4/LMj8/v5IqUZJks9l4YRrGnJvHnJvHnJvHnJeOkpr38nhkVC56JFwJc24ec24ec146mHfzykOPVGZPau7t7a2wsDDFxcU5l+Xk5CguLk7h4eGlWBkAAEDpoUcCAABlQZk9QkqSYmJiFBUVpdatW6tt27aaNWuWzp07pwEDBpR2aQAAAKWGHgkAAFzvynQg1bt3b508eVITJ05UcnKyWrZsqdjY2Dwn8SwNPj4+mjRpUp7D31FymHPzmHPzmHPzmPPSwbwXDT0SLsWcm8ecm8eclw7m3bzyNOceVnm95jEAAAAAAACuS2X2HFIAAAAAAAAomwikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFJFMGfOHNWrV0++vr5q166dtm/fftXxK1asUJMmTeTr66vmzZtr7dq1hiotP9yZ8w8++EB33nmnqlevrurVqysiIuKavyPk5e7zPNeyZcvk4eGhHj16lGyB5ZC7c56amqro6GjVqlVLPj4+uuWWW/j74iZ353zWrFlq3LixKlWqpJCQEI0aNUoXL140VG3Zt3nzZnXv3l21a9eWh4eHVq1adc37bNq0Sa1atZKPj48aNmyoRYsWlXidKDx6JPPokcyjRzKPHsk8eiSzbrgeyUKhLFu2zPL29rb+/ve/W3v37rUGDx5s+fn5WSkpKfmO/+abbywvLy9r5syZ1r59+6yXX37ZqlixorV7927DlZdd7s75k08+ac2ZM8fatWuXtX//fqt///6W3W63fvnlF8OVl13uznmupKQk609/+pN15513Wg8//LCZYssJd+c8PT3dat26tdWlSxdry5YtVlJSkrVp0yYrMTHRcOVll7tzvmTJEsvHx8dasmSJlZSUZH3++edWrVq1rFGjRhmuvOxau3atNWHCBOvjjz+2JFkrV6686vjDhw9blStXtmJiYqx9+/ZZ7777ruXl5WXFxsaaKRhuoUcyjx7JPHok8+iRzKNHMu9G65EIpAqpbdu2VnR0tPPn7Oxsq3bt2tb06dPzHf/4449bXbt2dVnWrl0765lnninROssTd+f8cllZWVa1atWsxYsXl1SJ5U5h5jwrK8vq0KGDtWDBAisqKopmy03uzvm8efOsBg0aWBkZGaZKLHfcnfPo6Gjrvvvuc1kWExNj3XHHHSVaZ3lVkGZrzJgx1q233uqyrHfv3lZkZGQJVobCokcyjx7JPHok8+iRzKNHKl03Qo/EV/YKISMjQwkJCYqIiHAu8/T0VEREhOLj4/O9T3x8vMt4SYqMjLzieLgqzJxf7vz588rMzJS/v39JlVmuFHbOp0yZosDAQA0cONBEmeVKYeb8008/VXh4uKKjoxUUFKRmzZrptddeU3Z2tqmyy7TCzHmHDh2UkJDgPGT98OHDWrt2rbp06WKk5hsR76FlBz2SefRI5tEjmUePZB49UtlQ1t9DK5R2AWXRqVOnlJ2draCgIJflQUFBOnDgQL73SU5Oznd8cnJyidVZnhRmzi83duxY1a5dO88LFvkrzJxv2bJFf/vb35SYmGigwvKnMHN++PBhbdy4UU899ZTWrl2rH374Qc8++6wyMzM1adIkE2WXaYWZ8yeffFKnTp1Sx44dZVmWsrKyNHToUL300ksmSr4hXek91OFw6MKFC6pUqVIpVYbL0SOZR49kHj2SefRI5tEjlQ1lvUfiCCncEGbMmKFly5Zp5cqV8vX1Le1yyqUzZ86ob9+++uCDD1SzZs3SLueGkZOTo8DAQL3//vsKCwtT7969NWHCBM2fP7+0Syu3Nm3apNdee01z587Vzp079fHHH2vNmjWaOnVqaZcGAG6jRyp59Eilgx7JPHokuIsjpAqhZs2a8vLyUkpKisvylJQUBQcH/z/27js+imr///g7CWlACsFUxBCaFBEwSG9KLqEqiCLKlYBAuEoRUBEU6YIiX0QQRdQLqHBFuIJIiTQV6UVQmoh0hRAVQ4BASDm/P/hlL5tGEpLdJPt6Ph77eLBnzsycM7PZ/fCZM2eyXCcoKChP9WEtP8c83bRp0/T6669r/fr1uvfeewuzmSVKXo/5sWPHdPLkSXXu3NlSlpaWJkkqVaqUjhw5oipVqhRuo4u5/HzOg4OD5erqKhcXF0tZzZo1FRsbq+vXr8vNza1Q21zc5eeYv/rqq3rqqafUr18/SVKdOnV05coVRUdH65VXXpGzM9d6Clp2v6He3t5F/sqfoyFGsj1iJNsjRrI9YiTbI0YqHop7jMQnIh/c3NwUHh6uDRs2WMrS0tK0YcMGNWnSJMt1mjRpYlVfktatW5dtfVjLzzGXpKlTp2rixImKiYlRgwYNbNHUEiOvx7xGjRrav3+/9u3bZ3k99NBDeuCBB7Rv3z5VrFjRls0vlvLzOW/WrJl+/fVXS2ArSb/88ouCg4MJtHIhP8c8MTExU0CVHuwaYwqvsQ6M39DigxjJ9oiRbI8YyfaIkWyPGKl4KPa/ofadU734+uyzz4y7u7uZP3++OXTokImOjja+vr4mNjbWGGPMU089ZUaOHGmpv2XLFlOqVCkzbdo0c/jwYTN27FgeaZxHeT3mr7/+unFzczNLly41586ds7wuXbpkry4UO3k95hnxBJm8y+sxP336tPHy8jKDBg0yR44cMStXrjQBAQFm0qRJ9upCsZPXYz527Fjj5eVl/vOf/5jjx4+btWvXmipVqpju3bvbqwvFzqVLl8zevXvN3r17jSQzffp0s3fvXnPq1CljjDEjR440Tz31lKV++iONX3zxRXP48GEze/bsYvVIY0dDjGR7xEi2R4xke8RItkeMZHuOFiORkLoNs2bNMnfddZdxc3MzDRs2NNu3b7csa9WqlYmKirKq//nnn5vq1asbNzc3U7t2bbNq1Sobt7j4y8sxDw0NNZIyvcaOHWv7hhdjef2c34xgK3/yesy3bt1qGjVqZNzd3U3lypXNa6+9ZlJSUmzc6uItL8c8OTnZjBs3zlSpUsV4eHiYihUrmmeffdb8/ffftm94MfXNN99k+f2cfpyjoqJMq1atMq1Tr1494+bmZipXrmzmzZtn83Yj94iRbI8YyfaIkWyPGMn2iJFsy9FiJCdjGDsHAAAAAAAA22EOKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkpAAAAAAAA2BQJKQAAAAAAANgUCSkAAAAAAADYFAkp2MS4cePk5ORkVVapUiX17t270Pd98uRJOTk5af78+Zay3r17q2zZsoW+73ROTk4aN26czfZX3LVu3VqtW7cu0G1m9Rm0h8L43Gfc5rfffisnJyd9++23ed5Wbo/97ewjL+z1t/P555/Lz89Ply9fvmXdrNq4a9cuNW3aVGXKlJGTk5P27duX630nJyerYsWKevfdd/PYagDFETESMVJeECPd3jaJkW4fMRIKEgkpFCurV68uskFLUW6bo0hMTNS4ceMKPQBA0bdixQrdd9998vDw0F133aWxY8cqJSUlV+umpqZq7NixGjx4cL7+U5acnKzHHntMFy5c0FtvvaVPPvlEoaGhOnfunEaOHKkHHnhAXl5e2Qarrq6uGj58uF577TVdu3Ytz/sH4JiKchxSlNvmKIiRkK4oxkgbNmzQ008/rerVq6t06dKqXLmy+vXrp3PnzlmtT4xUAhnABsaOHWsyftyuXbtmrl+/nqftDBw4MNN2biUtLc1cvXrVpKSkWMqioqJMmTJl8rSd22nb1atXTXJycoHuryRr1aqVadWqVZ7X++OPP4wkM3bs2EzLkpOTzdWrV2+/cbcpP5/7WwkNDTVRUVGW96mpqebq1asmNTU1z9tKSkoySUlJt6z3zTffGEnmm2++yfM+8iK785mT1atXGycnJ/PAAw+YuXPnmsGDBxtnZ2fzr3/9K1frL1u2zDg5OZnffvstX208fPiwkWQ++OADq3rpx6xatWqmSZMmOR6/v//+27i5uZmPPvooV20AUHwRIxEj5QUxUt4QI1krqjFSeHi4CQsLMyNGjDAffPCBGTVqlPHy8jKBgYHm3LlzVnWJkUqWUrZOgAHp3N3dC3X7KSkpSktLk5ubmzw8PAp1X7di7/3bwrVr1+Tm5iZn58wDL69cuaIyZcrYoVX/U6pUKZUqZf+vvML+3EuSs7Nzvj9zbm5uBdwa23vhhRd07733au3atZZz7u3trcmTJ+u5555TjRo1clx/3rx5atasmSpUqJCv/cfFxUmSfH19rcrDw8P1119/yc/PT0uXLtVjjz2W7TZ8fX3Vtm1bzZ8/X08//XS+2gGg+CJGKlmIkXKHGKnwFdUYafr06WrevLnV30i7du3UqlUrvfPOO5o0aZKlnBipZOGWPRS4zZs36/7775eHh4eqVKmi999/P8t6Ge/pTk5O1vjx41WtWjV5eHiofPnyat68udatWyfpxpwGs2fPlnTjfuT0l/S/ORCmTZumGTNmqEqVKnJ3d9ehQ4eynB8h3fHjxxUZGakyZcooJCREEyZMkDHGsjy7e8AzbjOntqWXZRyqvnfvXrVv317e3t4qW7as2rRpo+3bt1vVmT9/vpycnLRlyxYNHz5c/v7+KlOmjLp27ao//vgj6xOQg99//119+/ZVSEiI3N3dFRYWpmeeeUbXr1+3OiaPPfaY/Pz8VLp0aTVu3FirVq2y2k76cfnss880evRoVahQQaVLl1ZCQoJl7oljx46pQ4cO8vLyUs+ePSVJaWlpmjFjhmrXri0PDw8FBgZqwIAB+vvvv3Ns9/Xr1zVmzBiFh4fLx8dHZcqUUYsWLfTNN99Y6pw8eVL+/v6SpPHjx1vOQfpxz2p+hJSUFE2cONHyealUqZJefvllJSUlWdWrVKmSOnXqpM2bN6thw4by8PBQ5cqV9fHHH+ftBCjz5z4v59gYo0mTJunOO+9U6dKl9cADD+jgwYOZ9pHxczto0CCVLVtWiYmJmeo+8cQTCgoKUmpqqqSs50f47bff1KVLF5UpU0YBAQEaNmxYpmOUVd/SZdxmbs5nfh06dEiHDh1SdHS0VXD97LPPyhijpUuX5rj+tWvXFBMTo4iIiEzLkpKSNGzYMPn7+8vLy0sPPfSQfvvtN6s6vXv3VqtWrSRJjz32mJycnCx99/Lykp+fX6778o9//EObN2/WhQsXcr0OgKKNGIkYiRgpe8RIjhsjtWzZMlPCtmXLlvLz89Phw4cz7Y8YqeSwfyocJcr+/fvVtm1b+fv7a9y4cUpJSdHYsWMVGBh4y3XHjRunKVOmqF+/fmrYsKESEhK0e/du/fDDD/rHP/6hAQMG6OzZs1q3bp0++eSTLLcxb948Xbt2TdHR0XJ3d5efn5/S0tKyrJuamqp27dqpcePGmjp1qmJiYiz3UE+YMCFP/c5N22528OBBtWjRQt7e3hoxYoRcXV31/vvvq3Xr1vruu+/UqFEjq/qDBw9WuXLlNHbsWJ08eVIzZszQoEGDtHjx4ly38ezZs2rYsKHi4+MVHR2tGjVq6Pfff9fSpUuVmJgoNzc3nT9/Xk2bNlViYqKGDBmi8uXLa8GCBXrooYe0dOlSde3a1WqbEydOlJubm1544QUlJSVZrhylpKQoMjJSzZs317Rp01S6dGnLcZo/f7769OmjIUOG6MSJE3rnnXe0d+9ebdmyRa6urlm2PSEhQR9++KGeeOIJ9e/fX5cuXdJHH32kyMhI7dy5U/Xq1ZO/v7/ee+89PfPMM+rataseeeQRSdK9996b7THp16+fFixYoEcffVTPP/+8duzYoSlTpujw4cNatmyZVd1ff/1Vjz76qPr27auoqCj9+9//Vu/evRUeHq7atWvn+jxkJzfneMyYMZo0aZI6dOigDh066IcfflDbtm2tguWsPP7445o9e7ZWrVplNSonMTFRX331lXr37i0XF5cs17169aratGmj06dPa8iQIQoJCdEnn3yijRs35ruvuTmf+bV3715JUoMGDazKQ0JCdOedd1qWZ2fPnj26fv267rvvvkzL+vXrp08//VRPPvmkmjZtqo0bN6pjx45WdQYMGKAKFSpo8uTJGjJkiO6///5cff9lJTw8XMYYbd26VZ06dcrXNgAUHcRIxEgSMVJ+ECM5Zox0+fJlXb58WXfccUemZcRIJYj97hZESdSlSxfj4eFhTp06ZSk7dOiQcXFxyTR3QMZ7uuvWrWs6duyY4/azm4PgxIkTRpLx9vY2cXFxWS6bN2+epSwqKspIMoMHD7aUpaWlmY4dOxo3Nzfzxx9/GGOyvwc8q23mND+CMtw/3aVLF+Pm5maOHTtmKTt79qzx8vIyLVu2tJTNmzfPSDIREREmLS3NUj5s2DDj4uJi4uPjs9xfVnr16mWcnZ3Nrl27Mi1L3/bQoUONJPP9999bll26dMmEhYWZSpUqWe63Tz8ulStXNomJiVbbSj+2I0eOtCr//vvvjSSzcOFCq/KYmJhM5RnnR0hJScl0z/7ff/9tAgMDzdNPP20py2l+hIxzdOzbt89IMv369bOq98ILLxhJZuPGjZay0NBQI8ls2rTJUhYXF2fc3d3N888/n2lfOcn4uc/tOY6LizNubm6mY8eOVvVefvllI8lqmxk/t2lpaaZChQqmW7duVm35/PPPM/Ur47GfMWOGkWQ+//xzS9mVK1dM1apVM/1tZOxbdtvM7fk0Ju/zI7z55ptGkjl9+nSmZffff79p3Lhxjut/+OGHRpLZv3+/VXn65+XZZ5+1Kn/yyScztTH9+C9ZsiTb/SxZsuSW80ucPXvWSDJvvPFGjm0GUDwQIxEjESPljBiJGOlmEydONJLMhg0bMi0jRio5uGUPBSY1NVVff/21unTporvuustSXrNmTUVGRt5yfV9fXx08eFBHjx7Ndxu6detmGZKcG4MGDbL828nJSYMGDdL169e1fv36fLfhVlJTU7V27Vp16dJFlStXtpQHBwfrySef1ObNm5WQkGC1TnR0tNVQ6hYtWig1NVWnTp3K1T7T0tK0fPlyde7cOdNVEUmWba9evVoNGzZU8+bNLcvKli2r6OhonTx5UocOHbJaLyoqSp6enlnu85lnnrF6v2TJEvn4+Ogf//iH/vzzT8srPDxcZcuWzXEosouLi+XKYlpami5cuKCUlBQ1aNBAP/zwQ66OQUarV6+WJA0fPtyq/Pnnn5ekTEPwa9WqpRYtWlje+/v76+6779bx48fztf+MbnWO169fr+vXr2vw4MFW9YYOHXrLbTs5Oemxxx7T6tWrrR7Ru3jxYlWoUMHqfGe0evVqBQcH69FHH7WUlS5dWtHR0XnpnpXCOJ/prl69KinreSg8PDwsy7Pz119/SZLKlStnVZ7+eRkyZIhVeW6Of36lt+HPP/8stH0AsA1ipNwhRiJGygoxkuPFSJs2bdL48ePVvXt3Pfjgg5mWEyOVHCSkUGD++OMPXb16VdWqVcu07O67777l+hMmTFB8fLyqV6+uOnXq6MUXX9RPP/2UpzaEhYXluq6zs7NVsCNJ1atXl3TjXvvC8scffygxMTHLY1KzZk2lpaXpzJkzVuU3B6/S/76EbzWvwM37TEhI0D333JNjvVOnTmXbrvTlN8vueJcqVUp33nmnVdnRo0d18eJFBQQEyN/f3+p1+fJlyySH2VmwYIHuvfdey9wZ/v7+WrVqlS5evJjjetk5deqUnJ2dVbVqVavyoKAg+fr6ZuprxnMg3TgPuT0Ht3Krc5zenox/X/7+/pkCg6w8/vjjunr1qlasWCHpxjDo1atXW+7hz86pU6dUtWrVTHVy8zedk4I+n+nSg/+s5m+4du1atv85yMjcNE+K9L/PS5UqVazKb/c45KYNOZ0fAMUDMVLuECMRI2WFGMmxYqSff/5ZXbt21T333KMPP/wwxzYQIxV/zCGFIqNly5Y6duyYvvzyS61du1Yffvih3nrrLc2ZM0f9+vXL1TZy+0WaW9l9yaVPbmgr2d27nvEHwdayO97u7u6ZJiZMS0tTQECAFi5cmOU6OV21/fTTT9W7d2916dJFL774ogICAuTi4qIpU6bo2LFj+e+Acv9DVtjnoLC337hxY1WqVEmff/65nnzySX311Ve6evWqHn/88QLZvpTz38vN/SvM8xkcHCxJOnfunCpWrGi17Ny5c2rYsGGO65cvX17SjSA3438YbC090M5q7gQAjoUYKXvESMRIt4sYqejESGfOnFHbtm3l4+Oj1atXy8vLK8t6xEglBwkpFBh/f395enpmOZz8yJEjudqGn5+f+vTpoz59+ujy5ctq2bKlxo0bZwm2CjILnpaWpuPHj1uu+EnSL7/8IunGkzCk/12BiY+Pt1o3q2HguW2bv7+/SpcuneUx+fnnn+Xs7JzpR+J2+fv7y9vbWwcOHMixXmhoaLbtSl+eX1WqVNH69evVrFmzPAfFS5cuVeXKlfXFF19YHeexY8da1cvL5yM0NFRpaWk6evSo5eqmJJ0/f17x8fG31dfCkN6eo0ePWl21/uOPP3J9BbJ79+56++23lZCQoMWLF6tSpUpq3LjxLfd74MABGWOsjm9Wn5Ny5cpl+luRbvy93Nzm3J7P/Eif7HP37t1WgdXZs2f122+/3XIYffrjjk+cOKE6depYytM/L8eOHbO64pfb77b8OHHihCRZfT4BFE/ESMRIOSFGuj3ESLlT1GOkv/76S23btlVSUpI2bNhgSaBlhRip5OCWPRQYFxcXRUZGavny5Tp9+rSl/PDhw/r6669vuX76fcnpypYtq6pVq1oNKy1TpoykzMFPfr3zzjuWfxtj9M4778jV1VVt2rSRdOML1sXFRZs2bbJa79133820rdy2zcXFRW3bttWXX35pNez9/PnzWrRokZo3by5vb+989ihrzs7O6tKli7766ivt3r070/L0K0wdOnTQzp07tW3bNsuyK1euaO7cuapUqZJq1aqV7zZ0795dqampmjhxYqZlKSkpOR639CtHN18J27Fjh1U7JVmeVJObz0eHDh0kSTNmzLAqnz59uiRlejKIvUVERMjV1VWzZs2yOg4Z25+Txx9/XElJSVqwYIFiYmLUvXv3W67ToUMHnT171upRwImJiZo7d26mulWqVNH27dutnmizcuXKTLdX5PZ85kft2rVVo0YNzZ071+oq/XvvvScnJyereR6yEh4eLjc3t0x/J+3bt5ckzZw506o8L8c/r/bs2SMnJyc1adKk0PYBwDaIkYiRckKMdHuIkXKnKMdIV65cUYcOHfT7779r9erVWd7efDNipJKDEVIoUOPHj1dMTIxatGihZ599VikpKZo1a5Zq1659y7kOatWqpdatWys8PFx+fn7avXu3li5dajWpZnh4uKQbk+ZFRkbKxcVFPXr0yFdbPTw8FBMTo6ioKDVq1Ehr1qzRqlWr9PLLL1uGRvv4+Oixxx7TrFmz5OTkpCpVqmjlypVZ3sufl7ZNmjRJ69atU/PmzfXss8+qVKlSev/995WUlKSpU6fmqz+3MnnyZK1du1atWrVSdHS0atasqXPnzmnJkiXavHmzfH19NXLkSP3nP/9R+/btNWTIEPn5+WnBggU6ceKE/vvf/2YaYp4XrVq10oABAzRlyhTt27dPbdu2laurq44ePaolS5bo7bffzvaHsFOnTvriiy/UtWtXdezYUSdOnNCcOXNUq1YtqwkoPT09VatWLS1evFjVq1eXn5+f7rnnniznhahbt66ioqI0d+5cxcfHq1WrVtq5c6cWLFigLl266IEHHsh3XwuDv7+/XnjhBU2ZMkWdOnVShw4dtHfvXq1ZsybXw5Xvu+8+Va1aVa+88oqSkpJyNRS9f//+euedd9SrVy/t2bNHwcHB+uSTTyyB7c369eunpUuXql27durevbuOHTumTz/9NNOcArk9n/n15ptv6qGHHlLbtm3Vo0cPHThwQO+884769et3yytpHh4eatu2rdavX2/1aPN69erpiSee0LvvvquLFy+qadOm2rBhg3799dc8tW3SpEmSbjzWXJI++eQTbd68WZI0evRoq7rr1q1Ts2bNLEPkARRvxEjESNkhRro9xEi5V1RjpJ49e2rnzp16+umndfjwYR0+fNiyrGzZsurSpYtVfWKkEsSWj/SDY/juu+9MeHi4cXNzM5UrVzZz5szJ9DhZYzI//nTSpEmmYcOGxtfX13h6epoaNWqY1157zVy/ft1SJyUlxQwePNj4+/sbJycnyzbTHzH85ptvZmpPdo80LlOmjDl27Jhp27atKV26tAkMDDRjx461PLY33R9//GG6detmSpcubcqVK2cGDBhgDhw4kGmb2bXNmKwfy/rDDz+YyMhIU7ZsWVO6dGnzwAMPmK1bt1rVSX/cbcbHEGf3qOVbOXXqlOnVq5fx9/c37u7upnLlymbgwIFWj5c9duyYefTRR42vr6/x8PAwDRs2NCtXrsxy/1k9sjX92GZn7ty5Jjw83Hh6ehovLy9Tp04dM2LECHP27FlLnYyPwE1LSzOTJ082oaGhxt3d3dSvX9+sXLnSREVFmdDQUKvtb9261fL5u/m4Z/UZTE5ONuPHjzdhYWHG1dXVVKxY0YwaNcpcu3bNql5oaGiWj9vO2M7cyO6Rxrk5x6mpqWb8+PEmODjYeHp6mtatW5sDBw5k2mZOn49XXnnFSDJVq1bNsn1Z9enUqVPmoYceMqVLlzZ33HGHee655yyPos64j//7v/8zFSpUMO7u7qZZs2Zm9+7dt3U+s/rbyY1ly5aZevXqGXd3d3PnnXea0aNHW32X5OSLL74wTk5OmR6LfPXqVTNkyBBTvnx5U6ZMGdO5c2dz5syZPD3SWFK2r5vFx8cbNzc38+GHH+a57wCKLmIkYiRipOwRIzlujBQaGpptfJSx38RIJYuTMXae8Q8AgCIkNTVVtWrVUvfu3bO8fcIWZsyYoalTp+rYsWMFPhExAABAfhAjoaAxhxQAADdxcXHRhAkTNHv27AIZHp9XycnJmj59ukaPHk2gBQAAigxiJBQ0RkgBxdzly5dv+YPg7++f7SNzUTBiY2NzXO7p6SkfHx8btabkSU1N1R9//JFjnbJly6ps2bI2ahEAoKgjRioaiJEKFzESijMSUkAxN27cOI0fPz7HOidOnLA8phmF41aPU46KitL8+fNt05gS6OTJkwoLC8uxztixYzVu3DjbNAgAUOQRIxUNxEiFixgJxRlP2QOKuV69eql58+Y51gkKCrJRaxzXunXrclweEhJio5aUTEFBQbc8xpUrV7ZRawAAxQExUtFAjFS4iJFQnDFCCgAAAAAAADbFpOYAAAA2smnTJnXu3FkhISFycnLS8uXLrZYbYzRmzBgFBwfL09NTEREROnr0qFWdCxcuqGfPnvL29pavr6/69u2baZ6cn376SS1atJCHh4cqVqyoqVOnFnbXAAAA8sShb9lLS0vT2bNn5eXldct7mwEAQMlgjNGlS5cUEhIiZ2fbXpu7cuWK6tatq6efflqPPPJIpuVTp07VzJkztWDBAoWFhenVV19VZGSkDh06JA8PD0lSz549de7cOa1bt07Jycnq06ePoqOjtWjRIklSQkKC2rZtq4iICM2ZM0f79+/X008/LV9fX0VHR+eqncRIAAA4HpvHSMaBnTlzxkjixYsXL168eDng68yZM3aNQySZZcuWWd6npaWZoKAg8+abb1rK4uPjjbu7u/nPf/5jjDHm0KFDRpLZtWuXpc6aNWuMk5OT+f33340xxrz77rumXLlyJikpyVLnpZdeMnfffXeu20aMxIsXL168eDnuy1YxkkOPkPLy8pIknTlzRt7e3nZuDQAAsIWEhARVrFjREgcUFSdOnFBsbKwiIiIsZT4+PmrUqJG2bdumHj16aNu2bfL19VWDBg0sdSIiIuTs7KwdO3aoa9eu2rZtm1q2bCk3NzdLncjISL3xxhv6+++/Va5cuUz7TkpKUlJSkuW9+f9TjBIjAQDgOGwdIzl0Qip9CLq3tzfBFgAADqao3YoWGxsrSQoMDLQqDwwMtCyLjY1VQECA1fJSpUrJz8/Pqk7GR4CnbzM2NjbLhNSUKVM0fvz4TOXESAAAOB5bxUhMag4AAODgRo0apYsXL1peZ86csXeTAABACUdCCgAAoAgICgqSJJ0/f96q/Pz585ZlQUFBiouLs1qekpKiCxcuWNXJahs37yMjd3d3y2goRkUBAABbICEFAABQBISFhSkoKEgbNmywlCUkJGjHjh1q0qSJJKlJkyaKj4/Xnj17LHU2btyotLQ0NWrUyFJn06ZNSk5OttRZt26d7r777ixv1wMAALAHh55DCgCAnKSmplr9px7Fg6urq1xcXOzdjCxdvnxZv/76q+X9iRMntG/fPvn5+emuu+7S0KFDNWnSJFWrVk1hYWF69dVXFRISoi5dukiSatasqXbt2ql///6aM2eOkpOTNWjQIPXo0UMhISGSpCeffFLjx49X37599dJLL+nAgQN6++239dZbb9mjywCAEogYqXgqajESCSkAADIwxig2Nlbx8fH2bgryydfXV0FBQUVu4vLdu3frgQcesLwfPny4JCkqKkrz58/XiBEjdOXKFUVHRys+Pl7NmzdXTEyMPDw8LOssXLhQgwYNUps2beTs7Kxu3bpp5syZluU+Pj5au3atBg4cqPDwcN1xxx0aM2aMoqOjbddRAECJRIxU/BWlGMnJpD/X1wElJCTIx8dHFy9eZK4EAIDFuXPnFB8fr4CAAJUuXbpI/GAjd4wxSkxMVFxcnHx9fRUcHJypDr//t8YxAgBkhRip+CqKMRIjpAAAuElqaqol0Cpfvry9m4N88PT0lCTFxcUpICCgSA1NBwCguCJGKv6KWozEpOYAANwkfT6E0qVL27kluB3p54/5LQAAKBjESCVDUYqRCjwhtWnTJnXu3FkhISFycnLS8uXLrZYbYzRmzBgFBwfL09NTEREROnr0qFWdCxcuqGfPnvL29pavr6/69u2ry5cvW9X56aef1KJFC3l4eKhixYqaOnVqQXcFAODAGIJevHH+AAAoHPzGFm9F6fwVeELqypUrqlu3rmbPnp3l8qlTp2rmzJmaM2eOduzYoTJlyigyMlLXrl2z1OnZs6cOHjyodevWaeXKldq0aZPVRJwJCQlq27atQkNDtWfPHr355psaN26c5s6dW9DdAQAAAAAAQAEr8Dmk2rdvr/bt22e5zBijGTNmaPTo0Xr44YclSR9//LECAwO1fPly9ejRQ4cPH1ZMTIx27dqlBg0aSJJmzZqlDh06aNq0aQoJCdHChQt1/fp1/fvf/5abm5tq166tffv2afr06TxBBgAAAAAAoIiz6aTmJ06cUGxsrCIiIixlPj4+atSokbZt26YePXpo27Zt8vX1tSSjJCkiIkLOzs7asWOHunbtqm3btqlly5Zyc3Oz1ImMjNQbb7yhv//+W+XKlcty/0lJSUpKSrK8T0hIKIReAgBKquSYzTbbl2u75rmue6uh12PHjtW4ceNus0X54+TkpGXLlqlLly753sbcuXO1aNEi/fDDD7p06ZL+/vtv+fr6FlgbAQDA7bFljCQRJ6W7cOGCxo4dq7Vr1+r06dPy9/dXly5dNHHiRPn4+BRsYwuBTRNSsbGxkqTAwECr8sDAQMuy2NhYBQQEWC0vVaqU/Pz8rOqEhYVl2kb6suwSUlOmTNH48eNvvyMAABQh586ds/x78eLFGjNmjI4cOWIpK1u2bJ62d/36dauLPvaWmJiodu3aqV27dho1apS9mwMAAIqRkhwnnT17VmfPntW0adNUq1YtnTp1Sv/617909uxZLV261N7NuyWHesreqFGjdPHiRcvrzJkz9m4SgCIuOWZzphdQ1AQFBVlePj4+cnJysry/cuWKevbsqcDAQJUtW1b333+/1q9fb7V+pUqVNHHiRPXq1Uve3t6W298/+OADVaxYUaVLl1bXrl01ffr0TCOTvvzyS913333y8PBQ5cqVNX78eKWkpFi2K0ldu3aVk5OT5f2PP/6oBx54QF5eXvL29lZ4eLh2796dbf+GDh2qkSNHqnHjxgVzwAAAeUY8hOKqJMdJ99xzj/773/+qc+fOqlKlih588EG99tpr+uqrryz7KcpsmpAKCgqSJJ0/f96q/Pz585ZlQUFBiouLs1qekpKiCxcuWNXJahs37yMr7u7u8vb2tnoBAFCSXb58WR06dNCGDRu0d+9etWvXTp07d9bp06et6k2bNk1169bV3r179eqrr2rLli3617/+peeee0779u3TP/7xD7322mtW63z//ffq1auXnnvuOR06dEjvv/++5s+fb6m3a9cuSdK8efN07tw5y/uePXvqzjvv1K5du7Rnzx6NHDlSrq6uNjgaAAAA/1MS46SLFy/K29tbpUrZ9Ia4fLFpC8PCwhQUFKQNGzaoXr16km7M47Rjxw4988wzkqQmTZooPj5ee/bsUXh4uCRp48aNSktLU6NGjSx1XnnlFSUnJ1tOzLp163T33Xdne7seAACOqG7duqpbt67l/cSJE7Vs2TKtWLFCgwYNspQ/+OCDev755y3vX3nlFbVv314vvPCCJKl69eraunWrVq5caakzfvx4jRw5UlFRUZKkypUra+LEiRoxYoTGjh0rf39/SZKvr6/VBaPTp0/rxRdfVI0aNSRJ1apVK4SeAwAA5KykxUl//vmnJk6cWGwe9lbgI6QuX76sffv2ad++fZJuTGS+b98+nT59Wk5OTho6dKgmTZqkFStWaP/+/erVq5dCQkIsk3jVrFlT7dq1U//+/bVz505t2bJFgwYNUo8ePRQSEiJJevLJJ+Xm5qa+ffvq4MGDWrx4sd5++20NHz68oLsDAECxdvnyZb3wwguqWbOmfH19VbZsWR0+fDjTlb+bHyYiSUeOHFHDhg2tyjK+//HHHzVhwgSVLVvW8urfv7/OnTunxMTEbNs0fPhw9evXTxEREXr99dd17Nix2+wlAABA3pWkOCkhIUEdO3ZUrVq17DZJe14V+Aip3bt364EHHrC8T08SRUVFaf78+RoxYoSuXLmi6OhoxcfHq3nz5oqJiZGHh4dlnYULF2rQoEFq06aNnJ2d1a1bN82cOdOy3MfHR2vXrtXAgQMVHh6uO+64Q2PGjCk2WUAAAGzlhRde0Lp16zRt2jRVrVpVnp6eevTRR3X9+nWremXKlMnzti9fvqzx48frkUceybTs5t/1jMaNG6cnn3xSq1at0po1azR27Fh99tln6tq1a57bAAAAkF8lJU66dOmS2rVrJy8vLy1btqzYTIVQ4Amp1q1byxiT7XInJydNmDBBEyZMyLaOn5+fFi1alON+7r33Xn3//ff5bicAAI5gy5Yt6t27tyWIuXz5sk6ePHnL9e6++27LXAbpMr6/7777dOTIEVWtWjXb7bi6uio1NTVTefXq1VW9enUNGzZMTzzxhObNm0dCCgAA2FRJiJMSEhIUGRkpd3d3rVixIsdkV1FT9Ge5AgAA+VatWjV98cUX6ty5s5ycnPTqq68qLS3tlusNHjxYLVu21PTp09W5c2dt3LhRa9askZOTk6XOmDFj1KlTJ91111169NFH5ezsrB9//FEHDhzQpEmTJN14gsyGDRvUrFkzubu7y8PDQy+++KIeffRRhYWF6bffftOuXbvUrVu3bNsSGxur2NhY/frrr5Kk/fv3y8vLS3fddZf8/Pxu8wgBQMmV1dPwXNs1t0NLgKKpuMdJCQkJatu2rRITE/Xpp58qISFBCQkJkiR/f3+5uLgUwFEqPDZ9yh4AALCt6dOnq1y5cmratKk6d+6syMhI3Xfffbdcr1mzZpozZ46mT5+uunXrKiYmRsOGDbO66hYZGamVK1dq7dq1uv/++9W4cWO99dZbCg0NtdT5v//7P61bt04VK1ZU/fr15eLior/++ku9evVS9erV1b17d7Vv317jx4/Pti1z5sxR/fr11b9/f0lSy5YtVb9+fa1YseI2jgwAOKbkmM1WL8CRFfc46YcfftCOHTu0f/9+Va1aVcHBwZbXmTNnbv8AFTInk9P9dSVcQkKCfHx8LI9FBICMuLLoeK5du6YTJ04oLCysWA15toX+/fvr559/Lha3zOd0Hvn9vzWOEVAy5CbhlNu4JuO2iIccDzFSzopLnFSUYiRu2QMAAFmaNm2a/vGPf6hMmTJas2aNFixYoHfffdfezQIAALA74qTbR0IKAABkaefOnZo6daouXbqkypUra+bMmerXr5+9mwUAAGB3xEm3j4QUAADI0ueff27vJgAAijlu9UNJRZx0+5jUHAAAAAAAADZFQgoAAAAAAAA2xS17ABxCbp6Wx6OPAQBAcUUcA6C4ISEFAAAAAMiT3FzsA4CckJACAAAAgGKmMEdEMdoKgC0whxQAAAAAAABsioQUAAAAAAAAbIpb9gAUK8xXAHs6tvt9m+2rSoMBearfu3dvLViwQJJUqlQp+fn56d5779UTTzyh3r17y9m5+F6DOnjwoMaMGaM9e/bo1KlTeuuttzR06FB7NwsAbIZb6FDU2TJGkoiTbvbBBx/o448/1oEDByRJ4eHhmjx5sho2bGjnlt1a8T3qAJCN5JjNmV6AI2jXrp3OnTunkydPas2aNXrggQf03HPPqVOnTkpJSbF38/ItMTFRlStX1uuvv66goCB7NwcAABRDJTVO+vbbb/XEE0/om2++0bZt21SxYkW1bdtWv//+u72bdkskpAAgj3KT7CIpBntwd3dXUFCQKlSooPvuu08vv/yyvvzyS61Zs0bz58+31IuPj1e/fv3k7+8vb29vPfjgg/rxxx+ttvXVV1/p/vvvl4eHh+644w517drVsuzvv/9Wr169VK5cOZUuXVrt27fX0aNHJUlXrlyRt7e3li5darW95cuXq0yZMrp06ZKuX7+uQYMGKTg4WB4eHgoNDdWUKVOy7df999+vN998Uz169JC7u3sBHCkAQDpiFjiKkhonLVy4UM8++6zq1aunGjVq6MMPP1RaWpo2bNhQAEetcJGQAlDsEUQB2XvwwQdVt25dffHFF5ayxx57THFxcVqzZo327Nmj++67T23atNGFCxckSatWrVLXrl3VoUMH7d27Vxs2bLAa9t27d2/t3r1bK1as0LZt22SMUYcOHZScnKwyZcqoR48emjdvnlU75s2bp0cffVReXl6aOXOmVqxYoc8//1xHjhzRwoULValSJZscDwAAgHQlMU5KTExUcnKy/Pz8bu/g2ABzSAEAUMLVqFFDP/30kyRp8+bN2rlzp+Li4iyjjaZNm6bly5dr6dKlio6O1muvvaYePXpo/Pjxlm3UrVtXknT06FGtWLFCW7ZsUdOmTSXduDJXsWJFLV++XI899pj69eunpk2b6ty5cwoODlZcXJxWr16t9evXS5JOnz6tatWqqXnz5nJyclJoaKgtDwcAAIBFSYuTXnrpJYWEhCgiIuK2j01hY4QUAAAlnDFGTk5OkqQff/xRly9fVvny5VW2bFnL68SJEzp27Jgkad++fWrTpk2W2zp8+LBKlSqlRo0aWcrKly+vu+++W4cPH5YkNWzYULVr17ZMHvrpp58qNDRULVu2lHTjyuG+fft09913a8iQIVq7dm2h9R0AACAnJSlOev311/XZZ59p2bJl8vDwyPvBsDFGSAFwWNzeB0dx+PBhhYWFSZIuX76s4OBgffvtt5nq+fr6SpI8PT1ve5/9+vXT7NmzNXLkSM2bN099+vSxBHv33XefTpw4oTVr1mj9+vXq3r27IiIiMs2nAACOiPgEsK2SEidNmzZNr7/+utavX6977733tttoC4yQAgCgBNu4caP279+vbt26SboR5MTGxqpUqVKqWrWq1euOO+6QJN17773ZToRZs2ZNpaSkaMeOHZayv/76S0eOHFGtWrUsZf/85z916tQpzZw5U4cOHVJUVJTVdry9vfX444/rgw8+0OLFi/Xf//7XMjcDAACALZSUOGnq1KmaOHGiYmJi1KBBg3wfD1tjhBSAIiOrK4Ku7ZrboSVA8ZSUlKTY2Filpqbq/PnziomJ0ZQpU9SpUyf16tVLkhQREaEmTZqoS5cumjp1qqpXr66zZ89aJuhs0KCBxo4dqzZt2qhKlSrq0aOHUlJStHr1ar300kuqVq2aHn74YfXv31/vv/++vLy8NHLkSFWoUEEPP/ywpS3lypXTI488ohdffFFt27bVnXfeaVk2ffp0BQcHq379+nJ2dtaSJUsUFBRkufKY0fXr13Xo0CHLv3///Xft27dPZcuWVdWqVQvvgAIAgBKjpMZJb7zxhsaMGaNFixapUqVKio2NlSTL7YZFGSOkAAAoIWJiYhQcHKxKlSqpXbt2+uabbzRz5kx9+eWXcnFxkSQ5OTlp9erVatmypfr06aPq1aurR48eOnXqlAIDAyVJrVu31pIlS7RixQrVq1dPDz74oHbu3GnZz7x58xQeHq5OnTqpSZMmMsZo9erVcnV1tWpP3759df36dT399NNW5V5eXpo6daoaNGig+++/XydPntTq1avl7Jx1WHL27FnVr19f9evX17lz5zRt2jTVr19f/fr1K8jDBwAASrCSGie99957un79uh599FEFBwdbXtOmTSvIw1conIwxxt6NsJeEhAT5+Pjo4sWL8vb2tndzAIeXmxFSRXFehaxGcTHaq/i6du2aTpw4obCwsGIxGWRR9sknn2jYsGE6e/as3NzcbLrvnM4jv/+3xjEC7Kcoxjq5lduYKDfroeghRipY9oqTilKMxC17AACgQCUmJurcuXN6/fXXNWDAAJsnowAAxRsX9lCSESf9D7fsAQCAAjV16lTVqFFDQUFBGjVqlL2bAwAo4pJjNlu9gJKMOOl/GCEFAEUIVwRREowbN07jxo2zdzMAoFggAQM4FuKk/yEhBaBII0gDAAAAgJKHhBQAAFlw4Gd+lAicPwAoWZgcvejgN7Z4K0rnj4QUANwmRnGVLOmP5E1MTJSnp6edW4P8SkxMlKRMj1gGAAD5Q4xUMhSlGImEFAAUM8wzVbhcXFzk6+uruLg4SVLp0qXl5ORk51Yht4wxSkxMVFxcnHx9feXi4mLvJgEAUCIQIxVvRTFGIiEFAEAGQUFBkmQJuFD8+Pr6Ws4jAAAoGMRIxV9RipFISAGAjeT31j5uCbQ9JycnBQcHKyAgQMnJyfZuDvLI1dW1SFz1AwCgpCFGKt6KWoxEQgoAgGy4uLgUqR9tAACAooAYCQXB2d4NAAAAAAAAgGMhIQUAAAAAAACb4pY9AAAAAMBtY95LAHnBCCkAAAAAAADYFAkpAAAAAAAA2BQJKQAAgCIiNTVVr776qsLCwuTp6akqVapo4sSJMsZY6hhjNGbMGAUHB8vT01MRERE6evSo1XYuXLignj17ytvbW76+vurbt68uX75s6+4AAABki4QUAABAEfHGG2/ovffe0zvvvKPDhw/rjTfe0NSpUzVr1ixLnalTp2rmzJmaM2eOduzYoTJlyigyMlLXrl2z1OnZs6cOHjyodevWaeXKldq0aZOio6Pt0SUAAIAsMak5AABAEbF161Y9/PDD6tixoySpUqVK+s9//qOdO3dKujE6asaMGRo9erQefvhhSdLHH3+swMBALV++XD169NDhw4cVExOjXbt2qUGDBpKkWbNmqUOHDpo2bZpCQkLs0zkAAICbMEIKAACgiGjatKk2bNigX375RZL0448/avPmzWrfvr0k6cSJE4qNjVVERIRlHR8fHzVq1Ejbtm2TJG3btk2+vr6WZJQkRUREyNnZWTt27LBhbwAAALLHCCkAAIAiYuTIkUpISFCNGjXk4uKi1NRUvfbaa+rZs6ckKTY2VpIUGBhotV5gYKBlWWxsrAICAqyWlypVSn5+fpY6GSUlJSkpKcnyPiEhocD6BAAAkBUSUgAAAEXE559/roULF2rRokWqXbu29u3bp6FDhyokJERRUVGFtt8pU6Zo/PjxhbZ9ADckx2y2dxMAoMggIQXALgjIACCzF198USNHjlSPHj0kSXXq1NGpU6c0ZcoURUVFKSgoSJJ0/vx5BQcHW9Y7f/686tWrJ0kKCgpSXFyc1XZTUlJ04cIFy/oZjRo1SsOHD7e8T0hIUMWKFQuyawAAAFaYQwoAAKCISExMlLOzdXjm4uKitLQ0SVJYWJiCgoK0YcMGy/KEhATt2LFDTZo0kSQ1adJE8fHx2rNnj6XOxo0blZaWpkaNGmW5X3d3d3l7e1u9AAAAChMjpAAAAIqIzp0767XXXtNdd92l2rVra+/evZo+fbqefvppSZKTk5OGDh2qSZMmqVq1agoLC9Orr76qkJAQdenSRZJUs2ZNtWvXTv3799ecOXOUnJysQYMGqUePHjxhDyhhTsavsXpfybe9nVpSdGU1Kt+1XXM7tARARiSkAAAAiohZs2bp1Vdf1bPPPqu4uDiFhIRowIABGjNmjKXOiBEjdOXKFUVHRys+Pl7NmzdXTEyMPDw8LHUWLlyoQYMGqU2bNnJ2dla3bt00c+ZMe3QJAAAgS07GGGPvRthLQkKCfHx8dPHiRYamAzbGHFIFiyt9QO7x+39rHCOgcBR0/MMIKWtZxUOMkAJyz9a//3aZQyo1NVWvvvqqwsLC5OnpqSpVqmjixIm6OTdmjNGYMWMUHBwsT09PRURE6OjRo1bbuXDhgnr27Clvb2/5+vqqb9++unz5sq27AwB2lxyzOdMLAAAAAIoqu9yy98Ybb+i9997TggULVLt2be3evVt9+vSRj4+PhgwZIkmaOnWqZs6cqQULFljmR4iMjNShQ4csQ9J79uypc+fOad26dUpOTlafPn0UHR2tRYsW2aNbAHJAggQAAKD4KU6jsIg3geLFLgmprVu36uGHH1bHjh0lSZUqVdJ//vMf7dy5U9KN0VEzZszQ6NGj9fDDD0uSPv74YwUGBmr58uXq0aOHDh8+rJiYGO3atUsNGjSQdGPehQ4dOmjatGlM2gkgV4pTkJVXGYMyhqcDAICMSnIsBKBos8ste02bNtWGDRv0yy+/SJJ+/PFHbd68We3b3/jyO3HihGJjYxUREWFZx8fHR40aNdK2bdskSdu2bZOvr68lGSVJERERcnZ21o4dO7Lcb1JSkhISEqxeAAAAAAAAsC27jJAaOXKkEhISVKNGDbm4uCg1NVWvvfaaevbsKUmKjY2VJAUGBlqtFxgYaFkWGxurgIAAq+WlSpWSn5+fpU5GU6ZM0fjx4wu6OwBQbDHRJwAAhYPbxwAgZ3YZIfX5559r4cKFWrRokX744QctWLBA06ZN04IFCwp1v6NGjdLFixctrzNnzhTq/gAAAAAAAJCZXUZIvfjiixo5cqR69OghSapTp45OnTqlKVOmKCoqSkFBQZKk8+fPKzg42LLe+fPnVa9ePUlSUFCQ4uLirLabkpKiCxcuWNbPyN3dXe7u7oXQIwAAAABAccA8m0DRYJeEVGJiopydrQdnubi4KC0tTZIUFhamoKAgbdiwwZKASkhI0I4dO/TMM89Ikpo0aaL4+Hjt2bNH4eHhkqSNGzcqLS1NjRo1sl1nAAAAADg8btErvpjCALAPuySkOnfurNdee0133XWXateurb1792r69Ol6+umnJUlOTk4aOnSoJk2apGrVqiksLEyvvvqqQkJC1KVLF0lSzZo11a5dO/Xv319z5sxRcnKyBg0apB49evCEPcCB8GQYAAAAACh+7JKQmjVrll599VU9++yziouLU0hIiAYMGKAxY8ZY6owYMUJXrlxRdHS04uPj1bx5c8XExMjDw8NSZ+HChRo0aJDatGkjZ2dndevWTTNnzrRHlwAAAAAAAJBLdklIeXl5acaMGZoxY0a2dZycnDRhwgRNmDAh2zp+fn5atGhRIbQQAG5gBBYAAAAAFDy7JKQAAAAAAHmT8UIZABRnJKQAAAAAoAgqjgmorNpcUkeYMxk6cHucb10FAAAAAAAAKDiMkAIAAAAASCqeo7IAFE8kpADAQWQ1rBwAAACZcTseUPhISAEocCQ+AAAA7I+nBQMoykhIAQDyjKuGAAAUPbe63Y7b8QAUJSSkANwWRkMBAAAAAPKKp+wBAAAAAADApkhIAQAAAAAAwKa4ZQ8AbsLcCtyGCQAAAKDwkZACUKQVt6fDFLf2AgAAAIA9kJACUKKQEAIAAMUVI7WLNkaRAwWLhBQAAAAA5AGJCQC4fSSkAJRojJgCAAAoXojfAMdAQgoAAAAAkCski/Iu44g613bN7dQSoGghIQUAAAAAhYz5oQDAGgkpAHnCnAkAAAAAgNtFQgqAQ+HqJAAAAADYHwkpADZ1u/MO2DuhxLwJAAAA/2Pv2AxA8eVs7wYAAAAAAADAsZCQAgAAAAAAgE1xyx4AAAAA5BG38QPA7SEhBQAoEBmfwOjarrmdWgIAAIoSR0re8URqIPdISAEoUpgYEwAAAABKPhJSAOyKBFTJldUVQkZNAQAcBTFO9hxpxBSA7JGQAgAAAADYDck7wDHxlD0AAAAAAADYFCOkAAAAAOA2Mcqn8HCLH1AykZACgNtQEMEnQRYAAEUXT00DgMJBQgpAoeJqIQAAAAAgI+aQAgAAAAAAgE0xQgrAbeF2s4LHMQUAAABQ0pGQAgAb4hZGAAAA5EbG+ctc2zW3U0uAwkFCCgBgM1lNDEtwBQAAChojzoGij4QUAKBIIWkFAABKMmId4AYSUgBQiAriFj2u8AEAAAAoaXjKHgAAAAAAAGyKhBQAAAAAAABsilv2AAAAAAAo4ph7CiUNCSkA2crqRw9FH3NOAQCAkiyrOTqJd4Dih4QUgAJVEJN4w7GQ+AQAFCX8LgGAbTCHFACgyEuO2ZzpBZRUv//+u/75z3+qfPny8vT0VJ06dbR7927LcmOMxowZo+DgYHl6eioiIkJHjx612saFCxfUs2dPeXt7y9fXV3379tXly5dt3RUAAIBskZACAAAoIv7++281a9ZMrq6uWrNmjQ4dOqT/+7//U7ly5Sx1pk6dqpkzZ2rOnDnasWOHypQpo8jISF27ds1Sp2fPnjp48KDWrVunlStXatOmTYqOjrZHlwAAALLELXsAAABFxBtvvKGKFStq3rx5lrKwsDDLv40xmjFjhkaPHq2HH35YkvTxxx8rMDBQy5cvV48ePXT48GHFxMRo165datCggSRp1qxZ6tChg6ZNm6aQkBDbdgoAioHiOgdnbiY6ZzJ0FFWMkAIAACgiVqxYoQYNGuixxx5TQECA6tevrw8++MCy/MSJE4qNjVVERISlzMfHR40aNdK2bdskSdu2bZOvr68lGSVJERERcnZ21o4dO2zXGQCwoZPxa6xeAIo+RkgBAAAUEcePH9d7772n4cOH6+WXX9auXbs0ZMgQubm5KSoqSrGxsZKkwMBAq/UCAwMty2JjYxUQEGC1vFSpUvLz87PUySgpKUlJSUmW9wkJCQXZLQDALTA/JhwRCSkAKOa4CgiUHGlpaWrQoIEmT54sSapfv74OHDigOXPmKCoqqtD2O2XKFI0fP77Qtg8AAJARCSkAQLGU8UoicyGgJAgODlatWrWsymrWrKn//ve/kqSgoCBJ0vnz5xUcHGypc/78edWrV89SJy4uzmobKSkpunDhgmX9jEaNGqXhw4db3ickJKhixYq33R8AKKq4oAfYHwkpAChmCKCAkqtZs2Y6cuSIVdkvv/yi0NBQSTcmOA8KCtKGDRssCaiEhATt2LFDzzzzjCSpSZMmio+P1549exQeHi5J2rhxo9LS0tSoUaMs9+vu7i53d/dC6hUAAEBmdpvU/Pfff9c///lPlS9fXp6enqpTp452795tWW6M0ZgxYxQcHCxPT09FRETo6NGjVtu4cOGCevbsKW9vb/n6+qpv3766fPmyrbsCAABQIIYNG6bt27dr8uTJ+vXXX7Vo0SLNnTtXAwcOlCQ5OTlp6NChmjRpklasWKH9+/erV69eCgkJUZcuXSTdGFHVrl079e/fXzt37tSWLVs0aNAg9ejRgyfsAQCAIsMuI6T+/vtvNWvWTA888IDWrFkjf39/HT16VOXKlbPUmTp1qmbOnKkFCxYoLCxMr776qiIjI3Xo0CF5eHhIknr27Klz585p3bp1Sk5OVp8+fRQdHa1FixbZo1sAADg8Hi19e+6//34tW7ZMo0aN0oQJExQWFqYZM2aoZ8+eljojRozQlStXFB0drfj4eDVv3lwxMTGW+EiSFi5cqEGDBqlNmzZydnZWt27dNHPmTHt0CQAAIEt2SUi98cYbqlixoubNm2cpCwsLs/zbGKMZM2Zo9OjRevjhhyVJH3/8sQIDA7V8+XL16NFDhw8fVkxMjHbt2mV5rPGsWbPUoUMHTZs2jSuAAACgWOrUqZM6deqU7XInJydNmDBBEyZMyLaOn58fF+gAAECRZpeE1IoVKxQZGanHHntM3333nSpUqKBnn31W/fv3lySdOHFCsbGxioiIsKzj4+OjRo0aadu2berRo4e2bdsmX19fSzJKkiIiIuTs7KwdO3aoa9euNu8XAAAAgJKJORxRXGQ1WtmW+2NkNHLLLnNIHT9+XO+9956qVaumr7/+Ws8884yGDBmiBQsWSJJiY2MlSYGBgVbrBQYGWpbFxsYqICDAanmpUqXk5+dnqZNRUlKSEhISrF4AAAAAAACwLbuMkEpLS1ODBg00efJkSVL9+vV14MABzZkzR1FRUYW23ylTpmj8+PGFtn0AAAAAAICMmGczM7uMkAoODlatWrWsymrWrKnTp09LkoKCgiRJ58+ft6pz/vx5y7KgoCDFxcVZLU9JSdGFCxcsdTIaNWqULl68aHmdOXOmQPoDALC/5JjNmV4AAAAAiia7jJBq1qyZjhw5YlX2yy+/KDQ0VNKNCc6DgoK0YcMG1atXT5KUkJCgHTt26JlnnpEkNWnSRPHx8dqzZ4/Cw8MlSRs3blRaWpoaNWqU5X7d3d3l7u5eSL0CgOIp45wYlXzb26klBY8rUQAAALA1Lozmjl0SUsOGDVPTpk01efJkde/eXTt37tTcuXM1d+5cSTeeHjN06FBNmjRJ1apVU1hYmF599VWFhISoS5cukm6MqGrXrp369++vOXPmKDk5WYMGDVKPHj14wh5QiJjQEwAAAABwu+ySkLr//vu1bNkyjRo1ShMmTFBYWJhmzJihnj17WuqMGDFCV65cUXR0tOLj49W8eXPFxMTIw8PDUmfhwoUaNGiQ2rRpI2dnZ3Xr1k0zZ860R5eAYo8sPgAAAADAVuySkJKkTp06qVOnTtkud3Jy0oQJEzRhwoRs6/j5+WnRokWF0TwAAAAAQAnBKH+g6LFbQgoAAAAAAKC4426T/CEhBQAOhiuEAAAAAOyNhBQAALfA0/oAoGRiVAOQPeIfFDYSUgAAAAAAOBCSTSgKSEgBAAAAAADkAiMrCw4JKQAo4ZgzylrGIIKrgQAAAJCIE23N2d4NAAAAAAAAgGNhhBQAAMgXhqwDAIDcYM4qZIWEFAAAGZBoAQAAyIwYCQWJhBQAwErGOacq+ba3U0uKtuJ8pY/5EQAgZ8y/CACFjzmkAAAAAAAAYFOMkAIAwMEV59FeAADAsTDSu+QgIQUAgJ3lZj6GohBsMW8EAAC4FeIF5BYJKQAAAAAAbpKbecSYZ7PkI7lWuEhIAQAcWnEJNLitDgAAIDNipOKLhBQAAAAAh8ZT9ZAfPJm46GKeqeKBhBSAHBGgAY6pIEeOERQCAICMiA9AQgoAgAJCYAUAAIqr4jKNAUoOElIAAAAAAMCumAvK8ZCQAgCgkBBYAQAAIDuOPrqehBQAIEdM2FmwGA4PAAAASM72bgAAAAAAAAAcCyOkAAAAAABAkcPI8pKNhBQAIE+4hQ8AAADA7eKWPQAAAAAAANgUCSkAAAAAAADYFLfsAQAAAABQyJj2ALBGQgoAgGIqNxN9urZrboOWAACAvCJBBUdHQgoAAAAAADgUnuBnfySkAAAAAAAoYBlHQAGwRkIKgBV+OIGShat/AHAD34cAULTwlD0AAAAAAADYFCOkAAAFigk6AQAA8i6rOxWIo1CSkZACAAAAAAAlFrfsFk0kpAAAAAAAuE3MxQrkDQkpAIBNcUsfAAAAACY1BwAAAAAAgE0xQgpwUNxHDQAAHBW3VgGA/ZGQAgAANpVVQty1XXM7tAQAgKKNqQ5QkpGQAgDcFq4yAwAAAMgrElKAgyOZgMLGZwwAAABARiSkAAB2xVB0AAAAwPHwlD0AAAAAAADYFAkpAAAAAAAA2BS37AEOIKsnWgEAAAAAYC+MkAIAACiiXn/9dTk5OWno0KGWsmvXrmngwIEqX768ypYtq27duun8+fNW650+fVodO3ZU6dKlFRAQoBdffFEpKSk2bj0AAED2GCEFAABQBO3atUvvv/++7r33XqvyYcOGadWqVVqyZIl8fHw0aNAgPfLII9qyZYskKTU1VR07dlRQUJC2bt2qc+fOqVevXnJ1ddXkyZPt0RUAAJALWd3Z4tquuR1aYhskpAAARQpP3QOky5cvq2fPnvrggw80adIkS/nFixf10UcfadGiRXrwwQclSfPmzVPNmjW1fft2NW7cWGvXrtWhQ4e0fv16BQYGql69epo4caJeeukljRs3Tm5ubvbqFmBTTFkAAEUbt+wBAAAUMQMHDlTHjh0VERFhVb5nzx4lJydbldeoUUN33XWXtm3bJknatm2b6tSpo8DAQEudyMhIJSQk6ODBg1nuLykpSQkJCVYvAACAwsQIKQAAgCLks88+0w8//KBdu3ZlWhYbGys3Nzf5+vpalQcGBio2NtZS5+ZkVPry9GVZmTJlisaPH18ArQcAAMgdu4+QYrJOAACAG86cOaPnnntOCxculIeHh832O2rUKF28eNHyOnPmjM32DQAAHJNdE1I5Tdb51VdfacmSJfruu+909uxZPfLII5bl6ZN1Xr9+XVu3btWCBQs0f/58jRkzxtZdAAAAKDB79uxRXFyc7rvvPpUqVUqlSpXSd999p5kzZ6pUqVIKDAzU9evXFR8fb7Xe+fPnFRQUJEkKCgrKdCEv/X16nYzc3d3l7e1t9QIAAChMdktI3TxZZ7ly5Szl6ZN1Tp8+XQ8++KDCw8M1b948bd26Vdu3b5cky2Sdn376qerVq6f27dtr4sSJmj17tq5fv26vLgEAANyWNm3aaP/+/dq3b5/l1aBBA/Xs2dPyb1dXV23YsMGyzpEjR3T69Gk1adJEktSkSRPt379fcXFxljrr1q2Tt7e3atWqZfM+AQAAZMVuCSlbT9YJAABQ1Hl5eemee+6xepUpU0bly5fXPffcIx8fH/Xt21fDhw/XN998oz179qhPnz5q0qSJGjduLElq27atatWqpaeeeko//vijvv76a40ePVoDBw6Uu7u7nXsIAABwg10mNbfHZJ3SjSfIJCUlWd7zBBkAAFDcvPXWW3J2dla3bt2UlJSkyMhIvfvuu5blLi4uWrlypZ555hk1adJEZcqUUVRUlCZMmGDHVgMAAFizeUIqfbLOdevW2XSyToknyAAAgOLn22+/tXrv4eGh2bNna/bs2dmuExoaqtWrVxdyywAAtnYyfo3V+0q+7e3UEuD22fyWPXtN1inxBBkAAAAAAICiwOYjpNIn67xZnz59VKNGDb300kuqWLGiZbLObt26Scp6ss7XXntNcXFxCggIkJS7yTrd3d2ZOwEAAABwMBlHlQAA7M/mCan0yTpvdvNknZIsk3X6+fnJ29tbgwcPznayzqlTpyo2NpbJOgGghGJoOgAAQNaIk1Cc2WVS81thsk4AQG4RiAEAAADFT5FISDFZJwAAAAAABYsLdyjKikRCCoBtMH8CSgI+xwAAAFkjTkJxYvOn7AEAAAAAAMCxkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATfGUPaCESY7ZbO8mAAAA2BTxDwAUPySkAAAlSsbHHVfybW+nlgAAAADIDrfsAQAAAAAAwKZISAEAAAAAAMCmuGUPAAAAAAAHkHFqA4npDWA/JKQAAAAAAECWmJ8ThYWEFFCCZXUFBAAAoKQjBgKAoo85pAAAAAAAAGBTjJACAJRoDDMHAAAAih5GSAEAAAAAAMCmSEgBAAAAAADAprhlDwAAAAAA5ArTIaCgMEIKAAAAAAAANkVCCgAAAAAAADbFLXsAAAAAADgobsGDvTBCCgAAAAAAADbFCCkAADLgSiEAAABQuEhIAQAAAAAASZkvzAGFhYQUAMDhEXgBAAAAtkVCCgCAW+AWPgAAAKBgkZACADgURkMBAAAA9sdT9gAAAAAAAGBTjJACAAAAAAD5wtQGyC8SUkAJcmz3+0qLP23vZgAAANgUt2MDQPFDQgoAgDziSiAAAABwe5hDCgAAAAAAADbFCCmgmEuO2Wz5N7frAQCAku7m2AcAUHwxQgoAAAAAAAA2RUIKAAAAAAAANkVCCgAAAAAAADZFQgoAAAAAAAA2xaTmAAAAAADAbk7Gr7F6X8m3vZ1aAlsiIQUAgI0RdAEAAMDRccseAAAAAAAAbIqEFAAAAAAAAGyKhBQAAAAAAABsijmkAAAAABQbGefhA1C0ZfU3y/yZkBghBQAAAAAAABtjhBQAAAAAALAZRjpCIiEFFGvHdr+vtPjT9m4GAAAAAEgi2YTcIyEFAEAByxiIMU8CAAAAYI2EFAAAhYwrhQAAAIA1JjUHipHkmM1Wr7RfuV0PQMmQ8fstOWazvZtkF1OmTNH9998vLy8vBQQEqEuXLjpy5IhVnWvXrmngwIEqX768ypYtq27duun8+fNWdU6fPq2OHTuqdOnSCggI0IsvvqiUlBRbdgUAACBHjJACAAAoIr777jsNHDhQ999/v1JSUvTyyy+rbdu2OnTokMqUKSNJGjZsmFatWqUlS5bIx8dHgwYN0iOPPKItW7ZIklJTU9WxY0cFBQVp69atOnfunHr16iVXV1dNnjzZnt0D8uXY7vft3QQAQCGwywgprv4BAABkFhMTo969e6t27dqqW7eu5s+fr9OnT2vPnj2SpIsXL+qjjz7S9OnT9eCDDyo8PFzz5s3T1q1btX37dknS2rVrdejQIX366aeqV6+e2rdvr4kTJ2r27Nm6fv26PbsHAABgYZeEVPrVv+3bt2vdunVKTk5W27ZtdeXKFUudYcOG6auvvtKSJUv03Xff6ezZs3rkkUcsy9Ov/l2/fl1bt27VggULNH/+fI0ZM8YeXQIAOLCT8WusXkBBuXjxoiTJz89PkrRnzx4lJycrIiLCUqdGjRq66667tG3bNknStm3bVKdOHQUGBlrqREZGKiEhQQcPHsxyP0lJSUpISLB6AQBQVBBrlUx2uWUvJibG6v38+fMVEBCgPXv2qGXLlparf4sWLdKDDz4oSZo3b55q1qyp7du3q3Hjxparf+vXr1dgYKDq1auniRMn6qWXXtK4cePk5uZmj64BAAAUiLS0NA0dOlTNmjXTPffcI0mKjY2Vm5ubfH19reoGBgYqNjbWUufmZFT68vRlWZkyZYrGjx9fwD0ACgZzZgKOh6STYygSk5rb6uofUNxxZQAAHMfAgQN14MABffbZZ4W+r1GjRunixYuW15kzZwp9nwAAwLHZfVJzW179S0pKUlJSkuU9w9EBAEBRNGjQIK1cuVKbNm3SnXfeaSkPCgrS9evXFR8fbxUnnT9/XkFBQZY6O3futNpe+jyc6XUycnd3l7u7ewH3AgAA3K6snjzs2q65HVpS8Ow+QsqWV/+mTJkiHx8fy6tixYqFvk8AAPKK0ZCOyxijQYMGadmyZdq4caPCwsKsloeHh8vV1VUbNmywlB05ckSnT59WkyZNJElNmjTR/v37FRcXZ6mzbt06eXt7q1atWrbpCAAAwC3YdYSUra/+jRo1SsOHD7e8T0hIICkFALA7kk5IN3DgQC1atEhffvmlvLy8LKO+fXx85OnpKR8fH/Xt21fDhw+Xn5+fvL29NXjwYDVp0kSNGzeWJLVt21a1atXSU089palTpyo2NlajR4/WwIEDGQUFAACKDLuMkLLX1T93d3d5e3tbvQAAAIqK9957TxcvXlTr1q0VHBxseS1evNhS56233lKnTp3UrVs3tWzZUkFBQfriiy8sy11cXLRy5Uq5uLioSZMm+uc//6levXppwoQJ9ugSAABAluwyQoqrfwAAAJkZY25Zx8PDQ7Nnz9bs2bOzrRMaGqrVq1cXZNMAAAAKlF0SUu+9954kqXXr1lbl8+bNU+/evSXduPrn7Oysbt26KSkpSZGRkXr33XctddOv/j3zzDNq0qSJypQpo6ioKK7+AQAAAAAAFHF2SUhx9Q8AAAAAAMBx2XVScwAAAAAAgLzI+ECYSr7t7dQS3A67TGoOAAAAAAAAx8UIKaCISo7ZbO8mAAAA2BTxD4CCwiiqoo+EFAAARRwBFQAAQPYyxkooHkhIAQAAALA5RkMBgGNjDikAAAAAAADYFCOkAAAoZriFD0BJxq03AOAYSEgBRURWw9YJyADkBgkqAACAvCF+sj8SUgAAlDC3SmYTcAEAAEfDxf6ihzmkAAAAAAAAYFOMkAIAAABgN4xaAADHxAgpAAAAAAAA2BQjpIAihCuEAAAAAABHQEIKAAAHw1NlAAAArBEf2R637AEAAAAAAMCmSEgBAAAAAADApkhIAQAAAAAAwKaYQwoAAACAzRzb/b4kKS3+tJ1bAgCwJxJSgB0kx2y2dxMAAAAAALAbElKAHWV8kgMAAEBJlX5BjpFRAACJhBQAAACAQsQtegCArJCQAmyIgAxAUZRxtGYl3/Z2agkAAEDRQHxU+EhIAQAAAAAA5CCr6VZIUt0eZ3s3AAAAAAAAAI6FEVIAAMAKQ9QBAABQ2BghBQAAAAAAAJtihBQAAAAAAEAeMar89pCQAgAAOSLYAgAAQEHjlj0AAAAAAADYFCOkAABAnjBiCgAAIDNipLwhIQUAAACgQBzb/b69mwAAKCZISAGFiKAMAAA4orRfT9u7CQCAIo45pAAAAAAAAGBTjJACClhyzGbLv9PiT8u56l12bA0AAAAAAEUPCSmgkDFkHQAAAAAcD5Oc54yEFAAAuC0EW4Bjyzg6HACA3GAOKQAAAAAAANgUI6QAAAAA5ErGJwhXaTDATi0BABR3jJACAAAAAACATTFCCrgNXCUEAACO7Nju95k3CgByiXk3rZGQAgoQQRkAZEbwBQAAkJmjx0gkpAAAQIHKGFwBKL5ufoKedOMpes5V77JTawAAJQkJKQAAAAC5lvYro8EBALePhBSQSxmvEEri9jwAyIesRlA52hB1AACAjBztFj6esgcAAAAAAACbYoQUkI2sRkQxLwoAAHAkxD4AgMLCCCkAAAAAAADYFCOkAAAAAEiSju1+395NAAA4CBJSQA4Ypg4AABwJT9ADANgKCSlAWc8XBQAAUNLcPAIq7dfTJf4JTgCAoouEFBxaelCWFn/jaiBBGQAAcCSMBgcA2EuxT0jNnj1bb775pmJjY1W3bl3NmjVLDRs2tHezUETkdR4EgjIAsI+M379cILh9xEiOLePob9d2ze3UEgAAslasE1KLFy/W8OHDNWfOHDVq1EgzZsxQZGSkjhw5ooCAAHs3D0VExrkQnKveZaeWAABgG8RIjiU9+ZTjhbXPuOgGAMVNVt/rJeminZMxxti7EfnVqFEj3X///XrnnXckSWlpaapYsaIGDx6skSNH3nL9hIQE+fj46OLFi/L29i7s5qKAJcdszvQHmlWyick5AaD4qeTbvtBGdDjC7z8xUsmR00gny9QDxDoA4DBKUoxUbEdIXb9+XXv27NGoUaMsZc7OzoqIiNC2bduyXCcpKUlJSUmW9xcvXpR046DDdpLXZT4/rv9okmWd0xfX5W3jPx3Nd7sAAEVHgusVuRbS73P6734xviaXI2Ik+8sq1skoY+wjSceWTrj1xv+9PB8tAgCUFCUpRiq2Cak///xTqampCgwMtCoPDAzUzz//nOU6U6ZM0fjx4zOVV6xYsVDaCAAA8uv/Cn0Ply5dko+PT6Hvx9aIkQAAKMlKToxUbBNS+TFq1CgNHz7c8j4tLU0XLlxQ+fLl5eTkZJc2JSQkqGLFijpz5kyJHRJPH0sG+lgy0MeSgT7eHmOMLl26pJCQkALdbnFW2DGSI3xm09HXksdR+ik5Tl8dpZ8SfS2JSlKMVGwTUnfccYdcXFx0/vx5q/Lz588rKCgoy3Xc3d3l7u5uVebr61tYTcwTb2/vEv1HI9HHkoI+lgz0sWSgj/lXEkdGpSvKMZIjfGbT0deSx1H6KTlOXx2lnxJ9LYlKQozkbLM9FTA3NzeFh4drw4YNlrK0tDRt2LBBTZpkvicfAADAERAjAQCA4qDYjpCSpOHDhysqKkoNGjRQw4YNNWPGDF25ckV9+vSxd9MAAADshhgJAAAUdcU6IfX444/rjz/+0JgxYxQbG6t69eopJiYm0ySeRZm7u7vGjh2baZh8SUIfSwb6WDLQx5KBPuJWilqM5Ejnk76WPI7ST8lx+uoo/ZToa0lUkvrpZErqM48BAAAAAABQJBXbOaQAAAAAAABQPJGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQsoMLFy6oZ8+e8vb2lq+vr/r27avLly/fcr1t27bpwQcfVJkyZeTt7a2WLVvq6tWrNmhx3uW3j5JkjFH79u3l5OSk5cuXF25Db0Ne+3jhwgUNHjxYd999tzw9PXXXXXdpyJAhunjxog1bnbPZs2erUqVK8vDwUKNGjbRz584c6y9ZskQ1atSQh4eH6tSpo9WrV9uopfmXlz5+8MEHatGihcqVK6dy5copIiLilsekKMjreUz32WefycnJSV26dCncBhaAvPYxPj5eAwcOVHBwsNzd3VW9evUi/3nNax9nzJhh+X6pWLGihg0bpmvXrtmotXm3adMmde7cWSEhIbn+vv/222913333yd3dXVWrVtX8+fMLvZ3IP0eId9I5QtwjlczYJ50jxEDpHCEWkhwjHkrnCHGRVPJjo3QOFSMZ2Fy7du1M3bp1zfbt2833339vqlatap544okc19m6davx9vY2U6ZMMQcOHDA///yzWbx4sbl27ZqNWp03+eljuunTp5v27dsbSWbZsmWF29DbkNc+7t+/3zzyyCNmxYoV5tdffzUbNmww1apVM926dbNhq7P32WefGTc3N/Pvf//bHDx40PTv39/4+vqa8+fPZ1l/y5YtxsXFxUydOtUcOnTIjB492ri6upr9+/fbuOW5l9c+Pvnkk2b27Nlm79695vDhw6Z3797Gx8fH/PbbbzZuee7ltY/pTpw4YSpUqGBatGhhHn74Yds0Np/y2sekpCTToEED06FDB7N582Zz4sQJ8+2335p9+/bZuOW5l9c+Lly40Li7u5uFCxeaEydOmK+//toEBwebYcOG2bjlubd69WrzyiuvmC+++CJX3/fHjx83pUuXNsOHDzeHDh0ys2bNMi4uLiYmJsY2DUaeOUK8k84R4h5jSl7sk84RYqB0jhALGeMY8VA6R4iLjHGM2CidI8VIJKRs7NChQ0aS2bVrl6VszZo1xsnJyfz+++/ZrteoUSMzevRoWzTxtuW3j8YYs3fvXlOhQgVz7ty5Ih2Y3U4fb/b5558bNzc3k5ycXBjNzJOGDRuagQMHWt6npqaakJAQM2XKlCzrd+/e3XTs2NGqrFGjRmbAgAGF2s7bkdc+ZpSSkmK8vLzMggULCquJty0/fUxJSTFNmzY1H374oYmKiiryAVhe+/jee++ZypUrm+vXr9uqibctr30cOHCgefDBB63Khg8fbpo1a1ao7Swoufm+HzFihKldu7ZV2eOPP24iIyMLsWXIL0eId9I5QtxjTMmMfdI5QgyUzhFiIWMcIx5K5whxkTGOFxulK+kxErfs2di2bdvk6+urBg0aWMoiIiLk7OysHTt2ZLlOXFycduzYoYCAADVt2lSBgYFq1aqVNm/ebKtm50l++ihJiYmJevLJJzV79mwFBQXZoqn5lt8+ZnTx4kV5e3urVKlShdHMXLt+/br27NmjiIgIS5mzs7MiIiK0bdu2LNfZtm2bVX1JioyMzLa+veWnjxklJiYqOTlZfn5+hdXM25LfPk6YMEEBAQHq27evLZp5W/LTxxUrVqhJkyYaOHCgAgMDdc8992jy5MlKTU21VbPzJD99bNq0qfbs2WMZun78+HGtXr1aHTp0sEmbbaG4fec4OkeId9I5QtwjlbzYJ50jxEDpHCEWkhwjHkrnCHGRRGx0K8X1O0mSisYvgQOJjY1VQECAVVmpUqXk5+en2NjYLNc5fvy4JGncuHGaNm2a6tWrp48//lht2rTRgQMHVK1atUJvd17kp4+SNGzYMDVt2lQPP/xwYTfxtuW3jzf7888/NXHiREVHRxdGE/Pkzz//VGpqqgIDA63KAwMD9fPPP2e5TmxsbJb1c9t/W8tPHzN66aWXFBISkukLv6jITx83b96sjz76SPv27bNBC29ffvp4/Phxbdy4UT179tTq1av166+/6tlnn1VycrLGjh1ri2bnSX76+OSTT+rPP/9U8+bNZYxRSkqK/vWvf+nll1+2RZNtIrvvnISEBF29elWenp52ahmy4gjxTjpHiHukkhf7pHOEGCidI8RCkmPEQ+kcIS6SiI1upTjHSIyQKiAjR46Uk5NTjq/cftFnlJaWJkkaMGCA+vTpo/r16+utt97S3XffrX//+98F2Y0cFWYfV6xYoY0bN2rGjBkF2+g8Ksw+3iwhIUEdO3ZUrVq1NG7cuNtvOArd66+/rs8++0zLli2Th4eHvZtTIC5duqSnnnpKH3zwge644w57N6fQpKWlKSAgQHPnzlV4eLgef/xxvfLKK5ozZ469m1Zgvv32W02ePFnvvvuufvjhB33xxRdatWqVJk6caO+moYRxhHgnnSPEPRKxD3KvJMZCkuPEQ+kcIS6SiI2KC0ZIFZDnn39evXv3zrFO5cqVFRQUpLi4OKvylJQUXbhwIdvh2sHBwZKkWrVqWZXXrFlTp0+fzn+j86gw+7hx40YdO3ZMvr6+VuXdunVTixYt9O23395Gy3OvMPuY7tKlS2rXrp28vLy0bNkyubq63m6zb9sdd9whFxcXnT9/3qr8/Pnz2fYnKCgoT/XtLT99TDdt2jS9/vrrWr9+ve69997CbOZtyWsfjx07ppMnT6pz586WsvT/EJYqVUpHjhxRlSpVCrfReZSf8xgcHCxXV1e5uLhYymrWrKnY2Fhdv35dbm5uhdrmvMpPH1999VU99dRT6tevnySpTp06unLliqKjo/XKK6/I2bn4X3/K7jvH29u7SF/5K2kcId5J5whxj+S4sU86R4iB0jlCLCQ5RjyUzhHiIonY6FaKc4xEQqqA+Pv7y9/f/5b1mjRpovj4eO3Zs0fh4eGSbgQlaWlpatSoUZbrVKpUSSEhITpy5IhV+S+//KL27dvffuNzqTD7OHLkSMuXRbo6derorbfesvpxKGyF2UfpxtXByMhIubu7a8WKFUXm6pKbm5vCw8O1YcMGyyNu09LStGHDBg0aNCjLdZo0aaINGzZo6NChlrJ169apSZMmNmhx3uWnj5I0depUvfbaa/r666+t5s0oivLaxxo1amj//v1WZaNHj9alS5f09ttvq2LFirZodp7k5zw2a9ZMixYtUlpamiX4+OWXXxQcHFwkg6789DExMTFTYJUeaBpjCrW9ttKkSZNMj6Quyt85JZUjxDvpHCHukRw39knnCDFQOkeIhSTHiIfSOUJcJBEb3UqxjpHsO6e6Y2rXrp2pX7++2bFjh9m8ebOpVq2a1SNzf/vtN3P33XebHTt2WMreeust4+3tbZYsWWKOHj1qRo8ebTw8PMyvv/5qjy7cUn76mJGK+NNm8trHixcvmkaNGpk6deqYX3/91Zw7d87ySklJsVc3LD777DPj7u5u5s+fbw4dOmSio6ONr6+viY2NNcYY89RTT5mRI0da6m/ZssWUKlXKTJs2zRw+fNiMHTu2yD/yOK99fP31142bm5tZunSp1fm6dOmSvbpwS3ntY0bF4akyee3j6dOnjZeXlxk0aJA5cuSIWblypQkICDCTJk2yVxduKa99HDt2rPHy8jL/+c9/zPHjx83atWtNlSpVTPfu3e3VhVu6dOmS2bt3r9m7d6+RZKZPn2727t1rTp06ZYwxZuTIkeapp56y1E9/pPGLL75oDh8+bGbPnl1sHmnsqBwh3knnCHGPMSUv9knnCDFQOkeIhYxxjHgonSPERcY4RmyUzpFiJBJSdvDXX3+ZJ554wpQtW9Z4e3ubPn36WH2pnzhxwkgy33zzjdV6U6ZMMXfeeacpXbq0adKkifn+++9t3PLcy28fb1bUA7O89vGbb74xkrJ8nThxwj6dyGDWrFnmrrvuMm5ubqZhw4Zm+/btlmWtWrUyUVFRVvU///xzU716dePm5mZq165tVq1aZeMW511e+hgaGprl+Ro7dqztG54HeT2PNysuAVhe+7h161bTqFEj4+7ubipXrmxee+21IvWfoazkpY/Jyclm3LhxpkqVKsbDw8NUrFjRPPvss+bvv/+2fcNzKbvvxPR+RUVFmVatWmVap169esbNzc1UrlzZzJs3z+btRu45QryTzhHiHmNKZuyTzhFioHSOEAsZ4xjxUDpHiIuMKfmxUTpHipGcjClh49UAAAAAAABQpJWcmbwAAAAAAABQLJCQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkAIAAAAAAIBNkZACAAAAAACATZGQAgAAAAAAgE2RkEKBGzdunJycnKzKKlWqpN69exf6vk+ePCknJyfNnz/fUta7d2+VLVu20PedzsnJSePGjbPZ/oq71q1bq3Xr1gW6zaw+g/ZQGJ/7jNv89ttv5eTkpG+//TbP28rtsb+dfeRFcfjb6dChg/r373/LevPnz5eTk5NOnjxpVf7mm2+qcuXKcnFxUb169fK075iYGJUtW1Z//PFHntYDUHQQIxX97/mihBjp9rZJjGRbxEjIDxJSKLJWr15dZL94i3LbHEViYqLGjRtX6AEAiq6//vpLb775plq2bCl/f3/5+vqqcePGWrx4caa66QFjVq/t27fnan9btmzR2rVr9dJLL+WrvWvXrtWIESPUrFkzzZs3T5MnT7aU9+3bV/fcc49cXFxUqVKlLNdv166dqlatqilTpuRr/wBKjqIchxTltjkKYiSUhBgpMTFRs2fPVtu2bRUcHCwvLy/Vr19f7733nlJTU63WJ0YqvkrZuwFwDEeOHJGzc97yn6tXr9bs2bPzFNSEhobq6tWrcnV1zWML8yantl29elWlSvGnVdgSExM1fvx4Scp0BWv06NEaOXKkHVplLT+f+7xq2bKlrl69Kjc3tzyvu3bt2kJoke1s27ZNr7zyijp06KDRo0erVKlS+u9//6sePXro0KFDls/HzYYMGaL777/fqqxq1aq52t+bb76pNm3a5Lp+Rhs3bpSzs7M++ugjq/O1aNEiLV68WPfdd59CQkJy3MaAAQP0wgsvaPz48fLy8spXOwAULcRIKGjESDcQIxXvGOnAgQMaPHiw2rRpo+HDh8vb21tff/21nn32WW3fvl0LFiyw2gYxUvHELwJswt3dvVC3n5KSorS0NLm5ucnDw6NQ93Ur9t6/LVy7dk1ubm5ZBhJXrlxRmTJl7NCq/ylVqlSRCHgL+3MvSc7Ozvn+zOUnQCtKateuraNHjyo0NNRS9uyzzyoiIkJvvPGGRowYkemz2KJFCz366KN53ldcXJxWrVqlOXPm5Lu9cXFx8vT0zHTcJ0+erA8++ECurq7q1KmTDhw4kO02unXrpsGDB2vJkiV6+umn890WAEUHMVLJQoyUO8RIhaskxEhBQUHav3+/ateubSkbMGCAnn76ac2bN0+vvvqqVQKMGKl44pY93JbNmzfr/vvvl4eHh6pUqaL3338/y3oZ7+lOTk7W+PHjVa1aNXl4eKh8+fJq3ry51q1bJ+nGnAazZ8+WJKtho9L/5kCYNm2aZsyYoSpVqsjd3V2HDh3Kcn6EdMePH1dkZKTKlCmjkJAQTZgwQcYYy/Ls7gHPuM2c2pZelvGq4N69e9W+fXt5e3urbNmyatOmTaYhsOn3U2/ZskXDhw+Xv7+/ypQpo65du+brfujff/9dffv2VUhIiNzd3RUWFqZnnnlG169ftzomjz32mPz8/FS6dGk1btxYq1atstpO+nH57LPPNHr0aFWoUEGlS5dWQkKCZe6JY8eOqUOHDvLy8lLPnj0lSWlpaZoxY4Zq164tDw8PBQYGasCAAfr7779zbPf169c1ZswYhYeHy8fHR2XKlFGLFi30zTffWOqcPHlS/v7+kqTx48dbzkH6cc9qfoSUlBRNnDjR8nmpVKmSXn75ZSUlJVnVq1Spkjp16qTNmzerYcOG8vDwUOXKlfXxxx/n7QQo8+c+L+fYGKNJkybpzjvvVOnSpfXAAw/o4MGDmfaR8XM7aNAglS1bVomJiZnqPvHEEwoKCrIMc85qfoTffvtNXbp0UZkyZRQQEKBhw4ZlOkZZ9S1dxm3m5nzmV1hYmFWgJd34++vSpYuSkpJ0/PjxLNe7dOmSUlJS8rSvVatWKSUlRREREZmWHTx4UA8++KA8PT115513atKkSUpLS8vUrnnz5unKlSuWz2v6d0pISEiuRywEBATo3nvv1Zdffpmn9gOwPWIkYiRipOwRIxEj3dyurGKkO+64wyoZla5r166SpMOHD1uVEyMVT/ZPj6PY2r9/v9q2bSt/f3+NGzdOKSkpGjt2rAIDA2+57rhx4zRlyhT169dPDRs2VEJCgnbv3q0ffvhB//jHPzRgwACdPXtW69at0yeffJLlNubNm6dr164pOjpa7u7u8vPzy/QFly41NVXt2rVT48aNNXXqVMXExGjs2LFKSUnRhAkT8tTv3LTtZgcPHlSLFi3k7e2tESNGyNXVVe+//75at26t7777To0aNbKqP3jwYJUrV05jx47VyZMnNWPGDA0aNCjLe76zc/bsWTVs2FDx8fGKjo5WjRo19Pvvv2vp0qVKTEyUm5ubzp8/r6ZNmyoxMVFDhgxR+fLltWDBAj300ENaunSp5cs+3cSJE+Xm5qYXXnhBSUlJlisYKSkpioyMVPPmzTVt2jSVLl3acpzmz5+vPn36aMiQITpx4oTeeecd7d27V1u2bMn2P+AJCQn68MMP9cQTT6h///66dOmSPvroI0VGRmrnzp2qV6+e/P399d577+mZZ55R165d9cgjj0iS7r333myPSb9+/bRgwQI9+uijev7557Vjxw5NmTJFhw8f1rJly6zq/vrrr3r00UfVt29fRUVF6d///rd69+6t8PDwLH8Y8yo353jMmDGaNGmSOnTooA4dOuiHH35Q27ZtrYLlrDz++OOaPXu2Vq1apccee8xSnpiYqK+++kq9e/eWi4tLlutevXpVbdq00enTpzVkyBCFhITok08+0caNG/Pd19ycz4IWGxsrSbrjjjsyLevTp48uX74sFxcXtWjRQm+++aYaNGhwy21u3bpV5cuXzxTcxcbG6oEHHlBKSopGjhypMmXKaO7cufL09LSq98knn2ju3LnauXOnPvzwQ0lS06ZN89W/8PBwLV++PF/rArANYiRiJIkYKT+IkYiRpJxjpJz6QIxUDBkgn7p06WI8PDzMqVOnLGWHDh0yLi4uJuNHKzQ01ERFRVne161b13Ts2DHH7Q8cODDTdowx5sSJE0aS8fb2NnFxcVkumzdvnqUsKirKSDKDBw+2lKWlpZmOHTsaNzc388cffxhjjPnmm2+MJPPNN9/ccpvZtc0YYySZsWPHWt536dLFuLm5mWPHjlnKzp49a7y8vEzLli0tZfPmzTOSTEREhElLS7OUDxs2zLi4uJj4+Pgs95eVXr16GWdnZ7Nr165My9K3PXToUCPJfP/995Zlly5dMmFhYaZSpUomNTXVGPO/41K5cmWTmJhota30Yzty5Eir8u+//95IMgsXLrQqj4mJyVTeqlUr06pVK8v7lJQUk5SUZLXe33//bQIDA83TTz9tKfvjjz8yHet0Y8eOtTo/+/btM5JMv379rOq98MILRpLZuHGjpSw0NNRIMps2bbKUxcXFGXd3d/P8889n2ldOMn7uc3uO4+LijJubm+nYsaNVvZdfftlIstpmxs9tWlqaqVChgunWrZtVWz7//PNM/cp47GfMmGEkmc8//9xSduXKFVO1atVMfxsZ+5bdNnN7Po3J/LeTH3/99ZcJCAgwLVq0sCrfsmWL6datm/noo4/Ml19+aaZMmWLKly9vPDw8zA8//HDL7TZv3tyEh4dnKk//O9qxY4elLC4uzvj4+BhJ5sSJE5byqKgoU6ZMmRz307FjRxMaGppjncmTJxtJ5vz587dsNwD7IEYiRiJGyhkxEjFSXmMkY4xJSkoytWrVMmFhYSY5OTnTcmKk4odb9pAvqamp+vrrr9WlSxfdddddlvKaNWsqMjLyluv7+vrq4MGDOnr0aL7b0K1bN8uQ5NwYNGiQ5d9OTk4aNGiQrl+/rvXr1+e7DbeSmpqqtWvXqkuXLqpcubKlPDg4WE8++aQ2b96shIQEq3Wio6OthlK3aNFCqampOnXqVK72mZaWpuXLl6tz585ZXtVI3/bq1avVsGFDNW/e3LKsbNmyio6O1smTJ3Xo0CGr9aKiojJd0Uj3zDPPWL1fsmSJfHx89I9//EN//vmn5RUeHq6yZcvmOBTZxcXFcmUxLS1NFy5cUEpKiho0aKAffvghV8cgo9WrV0uShg8fblX+/PPPS1KmIfi1atVSixYtLO/9/f119913Zzu8Oa9udY7Xr1+v69eva/DgwVb1hg4desttOzk56bHHHtPq1at1+fJlS/nixYtVoUIFq/Od0erVqxUcHGw1f0Dp0qUVHR2dl+5ZKYzzmZ20tDT17NlT8fHxmjVrltWypk2baunSpXr66af10EMPaeTIkdq+fbucnJw0atSoW277r7/+Urly5TKVr169Wo0bN1bDhg0tZf7+/pbbMgpDejv+/PPPQtsHgPwjRsodYiRipKwQIxEj5WTQoEE6dOiQ3nnnnSznQiNGKn5ISCFf/vjjD129elXVqlXLtOzuu+++5foTJkxQfHy8qlevrjp16ujFF1/UTz/9lKc2hIWF5bqus7OzVbAjSdWrV5d04177wvLHH38oMTExy2NSs2ZNpaWl6cyZM1blNwev0v++WG81r8DN+0xISNA999yTY71Tp05l26705TfL7niXKlVKd955p1XZ0aNHdfHiRQUEBMjf39/qdfnyZcXFxeXYtgULFujee++1zJ3h7++vVatW6eLFizmul51Tp07J2dk505M/goKC5Ovrm6mvGc+BdOM85PYc3MqtznF6ezL+ffn7+2f5g5/R448/rqtXr2rFihWSpMuXL2v16tV67LHHMs0bcbNTp06patWqmerk5m86JwV9PrMzePBgxcTE6MMPP1TdunVvWb9q1ap6+OGH9c0332R6fHBWzE3zqaQ7depUvr8H8yu9HTmdSwD2Q4yUO8RIxEhZIUYiRsrOm2++qQ8++EATJ05Uhw4dcmwHMVLxwRxSsIuWLVvq2LFj+vLLL7V27Vp9+OGHeuuttzRnzhz169cvV9vI7kpUfmX3xZWbL+GClN2961l90dtSdsfb3d0905Nk0tLSFBAQoIULF2a5Tk5XbT/99FP17t1bXbp00YsvvqiAgAC5uLhoypQpOnbsWP47oNz/OBX2OSjs7Tdu3FiVKlXS559/rieffFJfffWVrl69qscff7xAti/l/Pdyc/8K83zebPz48Xr33Xf1+uuv66mnnsr1ehUrVtT169d15coVeXt7Z1uvfPnyBRZs3670dmQ1dwKA4o8YKXvESMRIt4sYqXjGSPPnz9dLL72kf/3rXxo9enS29YiRih8SUsgXf39/eXp6Zjmc/MiRI7nahp+fn/r06WOZQK9ly5YaN26cJdgqyMx2Wlqajh8/brniJ0m//PKLpBtPwpD+dwUmPj7eat2shoHntm3+/v4qXbp0lsfk559/lrOzsypWrJirbeWWv7+/vL29c3x0vCSFhoZm26705flVpUoVrV+/Xs2aNctzULx06VJVrlxZX3zxhdVxHjt2rFW9vHw+QkNDlZaWpqNHj1qubkrS+fPnFR8ff1t9LQzp7Tl69KjVVes//vgj1z/43bt319tvv62EhAQtXrxYlSpVUuPGjW+53wMHDsgYY3V8s/qclCtXLtPfinTj7+XmNuf2fN6O2bNna9y4cRo6dKheeumlPK17/PhxeXh4qGzZsjnWq1Gjhv773/9mKg8NDb2t78H8OHHihO6444483Y4DwHaIkYiRckKMdHuIkfKmJMRIX375pfr166dHHnnE8hTP7BAjFT/csod8cXFxUWRkpJYvX67Tp09byg8fPqyvv/76luv/9ddfVu/Lli2rqlWrWj06tUyZMpIyBz/59c4771j+bYzRO++8I1dXV7Vp00bSjS9NFxcXbdq0yWq9d999N9O2cts2FxcXtW3bVl9++aXVsPfz589r0aJFat68eY5XHPLD2dlZXbp00VdffaXdu3dnWp5+halDhw7auXOntm3bZll25coVzZ07V5UqVVKtWrXy3Ybu3bsrNTVVEydOzLQsJSUlx+OWfuXo5ithO3bssGqnJMuTanLz+Ugf1jtjxgyr8unTp0uSOnbseMtt2FJERIRcXV01a9Ysq+OQsf05efzxx5WUlKQFCxYoJiZG3bt3v+U6HTp00NmzZ7V06VJLWWJioubOnZupbpUqVbR9+3arJ9qsXLky0+0VuT2f+bV48WINGTJEPXv2tJzPrGT1WPAff/xRK1asUNu2bTNdwc6oSZMm+vvvvzPNkdGhQwdt375dO3futNpXdle+C8KePXvUpEmTQts+gNtDjESMlBNipNtDjJR7JSFG2rRpk3r06KGWLVtq4cKFt2wLMVLxwwgp5Nv48eMVExOjFi1a6Nlnn1VKSopmzZql2rVr33Kug1q1aql169YKDw+Xn5+fdu/eraVLl1pNqhkeHi5JGjJkiCIjI+Xi4qIePXrkq60eHh6KiYlRVFSUGjVqpDVr1mjVqlV6+eWXLRl0Hx8fPfbYY5o1a5acnJxUpUoVrVy5Mst7+fPStkmTJmndunVq3ry5nn32WZUqVUrvv/++kpKSNHXq1Hz151YmT56stWvXqlWrVoqOjlbNmjV17tw5LVmyRJs3b5avr69Gjhyp//znP2rfvr2GDBkiPz8/LViwQCdOnNB///vfW37h56RVq1YaMGCApkyZon379qlt27ZydXXV0aNHtWTJEr399ttWk0LerFOnTvriiy/UtWtXdezYUSdOnNCcOXNUq1YtqwkoPT09VatWLS1evFjVq1eXn5+f7rnnniznhahbt66ioqI0d+5cxcfHq1WrVtq5c6cWLFigLl266IEHHsh3XwuDv7+/XnjhBU2ZMkWdOnVShw4dtHfvXq1ZsybXQ5Dvu+8+Va1aVa+88oqSkpJyNRS9f//+euedd9SrVy/t2bNHwcHB+uSTTyyB7c369eunpUuXql27durevbuOHTumTz/9VFWqVLGql9vzmR87d+5Ur169VL58ebVp0yZTgNO0aVPLlcjHH39cnp6eatq0qQICAnTo0CHNnTtXpUuX1uuvv37LfXXs2FGlSpXS+vXrrSYwHTFihD755BO1a9dOzz33nOWRxqGhobme8+Wnn36yzGXx66+/6uLFi5o0aZKkG5/dzp07W+rGxcXpp59+0sCBA3O1bQD2QYxEjJQdYqTbQ4yUOyUhRjp16pQeeughOTk56dFHH9WSJUuslt9777269957Le+JkYopWz7SDyXPd999Z8LDw42bm5upXLmymTNnTqbHyRqT+fGnkyZNMg0bNjS+vr7G09PT1KhRw7z22mvm+vXrljopKSlm8ODBxt/f3zg5OVm2mf6I4TfffDNTe7J7pHGZMmXMsWPHTNu2bU3p0qVNYGCgGTt2rOWxven++OMP061bN1O6dGlTrlw5M2DAAHPgwIFM28yubcZk/VjWH374wURGRpqyZcua0qVLmwceeMBs3brVqk76424zPoY4u0ct38qpU6dMr169jL+/v3F3dzeVK1c2AwcOtHq87LFjx8yjjz5qfH19jYeHh2nYsKFZuXJllvtfsmRJpn3c6hGtc+fONeHh4cbT09N4eXmZOnXqmBEjRpizZ89a6mR8BG5aWpqZPHmyCQ0NNe7u7qZ+/fpm5cqVJioqyoSGhlptf+vWrZbP383HPavPYHJyshk/frwJCwszrq6upmLFimbUqFHm2rVrVvVCQ0OzfNx2xnbmRnaPNM7NOU5NTTXjx483wcHBxtPT07Ru3docOHAg0zZz+ny88sorRpKpWrVqlu3Lqk+nTp0yDz30kCldurS54447zHPPPWd5FHXGffzf//2fqVChgnF3dzfNmjUzu3fvvq3zmdXfTk7Sj2d2r5v/Zt9++23TsGFD4+fnZ0qVKmWCg4PNP//5T3P06NFc7++hhx4ybdq0yVT+008/mVatWhkPDw9ToUIFM3HiRPPRRx/l+pHGOfUj42Oj33vvPVO6dGmTkJCQ63YDsA9iJGIkYqTsESMRI90qRko/f9m9Mh4PYqTiyckYO88CCABAMfD999+rdevW+vnnn7N8aowt1K9fX61bt9Zbb71ll/0DAABkRIyE/CIhBQBALrVv31533nmnPvjgA5vvOyYmRo8++qiOHz+ugIAAm+8fAAAgO8RIyA8SUkAxcvny5VveU+7v75/tI3NRMGJjY3Nc7unpKR8fHxu1puRJTU3NcoLNm5UtW/aWT30BADgOYqSigRipcBEjoaQhIQUUI+PGjdP48eNzrHPixAnLY5pROG71OOWoqCjNnz/fNo0pgU6ePKmwsLAc64wdO1bjxo2zTYMAAEUeMVLRQIxUuIiRUNLwlD2gGOnVq5eaN2+eY52goCAbtcZxrVu3LsflISEhNmpJyRQUFHTLY5z+ZBgAACRipKKCGKlwESOhpGGEFAAAAAAAAGzK2d4NAAAAAAAAgGNx6Fv20tLSdPbsWXl5ed3yfmcAAFAyGGN06dIlhYSEyNmZa3NZIUYCAMDx2DpGcuiE1NmzZ1WxYkV7NwMAANjBmTNndOedd9q7GUUSMRIAAI7LVjGSQyekvLy8JN042N7e3nZuDQAAsIWEhARVrFjREgcgM2IkAAAcj61jJIdOSKUPQff29ibYAgDAwdjjVrRNmzbpzTff1J49e3Tu3DktW7ZMXbp0sSw3xmjs2LH64IMPFB8fr2bNmum9995TtWrVLHUuXLigwYMH66uvvpKzs7O6deumt99+W2XLlrXU+emnnzRw4EDt2rVL/v7+Gjx4sEaMGJHrdhIjAQDguGwVIzFxAgAAgI1cuXJFdevW1ezZs7NcPnXqVM2cOVNz5szRjh07VKZMGUVGRuratWuWOj179tTBgwe1bt06rVy5Ups2bVJ0dLRleUJCgtq2bavQ0FDt2bNHb775psaNG6e5c+cWev8AAAByy8kYY+zdCHtJSEiQj4+PLl68yNU/AAAcRFH5/XdycrIaIWWMUUhIiJ5//nm98MILkqSLFy8qMDBQ8+fPV48ePXT48GHVqlVLu3btUoMGDSRJMTEx6tChg3777TeFhITovffe0yuvvKLY2Fi5ublJkkaOHKnly5fr559/zlXbisoxAgAAtmPr339GSAEAABQBJ06cUGxsrCIiIv4fe3cel1WZ/3/8DciOgJhshYimqWXuC2ZWSuKSXzWsaJjExqUpsNRJ0zJ3xRxHHc2ymlKbdCqdNHNh3NpUQiVt3MbMVJr0hsoQkWQ9vz/8cY83iwLCfd/A6/l4nMejc851zrmuc+N9f/qc61yXeZuPj4+6du2qpKQkSVJSUpJ8fX3NyShJioiIkKOjo5KTk81levbsaU5GSVJkZKROnDihX3/9tdRr5+TkKDMz02IBAACoTnV6DCkAAK6noKBAeXl5tq4GKsjZ2VlOTk62rkaFmUwmSVJAQIDF9oCAAPM+k8kkf39/i/316tWTn5+fRZmwsLAS5yja16BBgxLXTkhI0IwZM6qmIQCAWo8YqWaytxiJhBQAAMUYhiGTyaSMjAxbVwWV5Ovrq8DAQJsMXF4TTZ48WePHjzevF82yAwDAtYiRaj57ipFISAEAUExRoOXv7y8PDw+7+MFG+RiGoezsbKWnp0uSgoKCbFyj8gsMDJQkpaWlWdQ7LS1N7dq1M5cpaluR/Px8XbhwwXx8YGCg0tLSLMoUrReVKc7V1VWurq5V0g4AQO1FjFRz2WOMREIKAIBrFBQUmAOthg0b2ro6qAR3d3dJUnp6uvz9/e2qa/r1hIWFKTAwUDt37jQnoDIzM5WcnKynn35akhQeHq6MjAylpKSoY8eOkqRdu3apsLBQXbt2NZd56aWXlJeXJ2dnZ0nS9u3bdccdd5T6uh4AAOVBjFTz2VuMxKDmAABco2g8BA8PDxvXBDej6POzt/EtsrKydOjQIR06dEjS1YHMDx06pNTUVDk4OGjs2LGaPXu2Nm7cqMOHD2vYsGEKDg42z8TXqlUr9e3bV6NGjdK+ffu0Z88excfHKzo6WsHBwZKk3/3ud3JxcdGIESN09OhRffDBB/rrX/9q8UoeAAAVRYxUO9hTjEQPKQAASkEX9JrNXj+/AwcO6IEHHjCvFyWJYmNjtXLlSk2cOFGXL1/W6NGjlZGRoR49eigxMVFubm7mY1avXq34+Hj17t1bjo6OioqK0pIlS8z7fXx8tG3bNsXFxaljx4665ZZbNHXqVI0ePdp6DQUA1Fr2+huL8rGnz4+EFAAAgJXcf//9MgyjzP0ODg6aOXOmZs6cWWYZPz8/rVmz5rrXufvuu/Xll19Wup4AAADVjVf2AAAAAAAAYFX0kAIAoJzyEndb7VrOfXuUu+yNul5PmzZN06dPv8kaVY6Dg4PWr19vHgOpMt58802tWbNGX3/9tS5duqRff/1Vvr6+VVZHAABwc6wZI0nESUUuXLigadOmadu2bUpNTVWjRo00ePBgzZo1Sz4+PlVb2WpAQgoAgBru/Pnz5v/+4IMPNHXqVJ04ccK8zcvLq0Lny83NlYuLS5XV72ZlZ2erb9++6tu3ryZPnmzr6gAAgBqkNsdJ586d07lz57RgwQK1bt1aZ8+e1R//+EedO3dO69ats3X1bohX9gBUubzE3SWWqjoXgJICAwPNi4+PjxwcHMzrly9fVkxMjAICAuTl5aXOnTtrx44dFsc3adJEs2bN0rBhw+Tt7W0e/Pqtt95SSEiIPDw8NGTIEC1cuLBEz6SPP/5YHTp0kJubm5o2baoZM2YoPz/ffF5JGjJkiBwcHMzr33zzjR544AHVr19f3t7e6tixow4cOFBm+8aOHatJkyapW7duVXPDAAA3rSrjPaA61eY46a677tI///lPDRw4UM2aNVOvXr00Z84cffLJJ+br2DMSUgAA1GJZWVnq37+/du7cqYMHD6pv374aOHCgUlNTLcotWLBAbdu21cGDB/Xyyy9rz549+uMf/6jnnntOhw4d0oMPPqg5c+ZYHPPll19q2LBheu6553Ts2DG98cYbWrlypbnc/v37JUkrVqzQ+fPnzesxMTG67bbbtH//fqWkpGjSpElydna2wt0AgLqFpBFwfbUxTrp48aK8vb1Vr579vxBn/zUEAACV1rZtW7Vt29a8PmvWLK1fv14bN25UfHy8eXuvXr30pz/9ybz+0ksvqV+/fnr++eclSS1atNDevXu1adMmc5kZM2Zo0qRJio2NlSQ1bdpUs2bN0sSJEzVt2jQ1atRIkuTr66vAwEDzcampqZowYYJatmwpSWrevHk1tBwAAOD6aluc9PPPP2vWrFnmXlz2jh5SAADUYllZWXr++efVqlUr+fr6ysvLS8ePHy/x5K9Tp04W6ydOnFCXLl0sthVf/+abbzRz5kx5eXmZl1GjRun8+fPKzs4us07jx4/XyJEjFRERoXnz5unUqVM32UoAAICKq01xUmZmpgYMGKDWrVvbbJD2iqKHFAAAtdjzzz+v7du3a8GCBbr99tvl7u6uoUOHKjc316Kcp6dnhc+dlZWlGTNm6OGHHy6xz83Nrczjpk+frt/97nfavHmztm7dqmnTpun999/XkCFDKlwHAMDNKe01vorMYAbUZLUlTrp06ZL69u2r+vXra/369TVmKAQSUgAA1GJ79uzR8OHDzUFMVlaWzpw5c8Pj7rjjDvNYBkWKr3fo0EEnTpzQ7bffXuZ5nJ2dVVBQUGJ7ixYt1KJFC40bN06PP/64VqxYQUIKAABYVW2IkzIzMxUZGSlXV1dt3Ljxuskue0NCCsBNYXBMwL41b95cH330kQYOHCgHBwe9/PLLKiwsvOFxY8aMUc+ePbVw4UINHDhQu3bt0tatW+Xg4GAuM3XqVD300ENq3Lixhg4dKkdHR33zzTc6cuSIZs+eLenqDDI7d+7UPffcI1dXV7m5uWnChAkaOnSowsLC9N///lf79+9XVFRUmXUxmUwymUz67rvvJEmHDx9W/fr11bhxY/n5+d3kHQIAAHVVTY+TMjMz1adPH2VnZ+u9995TZmamMjMzJUmNGjWSk5NTFdyl6sMYUgCsghleANtYuHChGjRooO7du2vgwIGKjIxUhw4dbnjcPffco+XLl2vhwoVq27atEhMTNW7cOIunbpGRkdq0aZO2bdumzp07q1u3blq0aJFCQ0PNZf7yl79o+/btCgkJUfv27eXk5KRffvlFw4YNU4sWLfToo4+qX79+mjFjRpl1Wb58udq3b69Ro0ZJknr27Kn27dtr48aNN3FnAABAXVfT46Svv/5aycnJOnz4sG6//XYFBQWZlx9++OHmb1A1czAMw7B1JWwlMzNTPj4+5mkRAVRcVSaXShuvoDznZ5wDVKUrV67o9OnTCgsLq1Fdnq1h1KhR+s9//qMvv/zS1lW5oet9jvz+3xj3CKgdqjNOY+ypuocY6fpqSpxkTzESr+wBAIBSLViwQA8++KA8PT21detWrVq1Sq+99pqtqwUAAGBzxEk3j4QUAAAo1b59+zR//nxdunRJTZs21ZIlSzRy5EhbVwsAAMDmiJNuHgkpAABQqg8//NDWVQAAALBLxEk3j0HNAQAAAAAAYFUkpAAAAAAAAGBVNklIFRQU6OWXX1ZYWJjc3d3VrFkzzZo1S9dO+GcYhqZOnaqgoCC5u7srIiJCJ0+etDjPhQsXFBMTI29vb/n6+mrEiBHKysqydnMAAAAAoNrkJe4usQBATWeThNQrr7yi119/Xa+++qqOHz+uV155RfPnz9fSpUvNZebPn68lS5Zo+fLlSk5OlqenpyIjI3XlyhVzmZiYGB09elTbt2/Xpk2b9MUXX2j06NG2aBIAAAAAAADKySaDmu/du1eDBg3SgAEDJElNmjTRP/7xD+3bt0/S1d5Rixcv1pQpUzRo0CBJ0rvvvquAgABt2LBB0dHROn78uBITE7V//3516tRJkrR06VL1799fCxYsUHBwsC2aBgAAAAAoQ2m9u5z79rBBTQDYmk0SUt27d9ebb76pb7/9Vi1atNA333yj3bt3a+HChZKk06dPy2QyKSIiwnyMj4+PunbtqqSkJEVHRyspKUm+vr7mZJQkRUREyNHRUcnJyRoyZIjV2wXg5tD9HAAAwD4RpwGoajZJSE2aNEmZmZlq2bKlnJycVFBQoDlz5igmJkaSZDKZJEkBAQEWxwUEBJj3mUwm+fv7W+yvV6+e/Pz8zGWKy8nJUU5Ojnk9MzOzytoEAAAAAACA8rFJQurDDz/U6tWrtWbNGt155506dOiQxo4dq+DgYMXGxlbbdRMSEjRjxoxqOz8AoHY7deANq12rWaenKlR++PDhWrVqlaT/PaC5++679fjjj2v48OFydKy5E+sePXpUU6dOVUpKis6ePatFixZp7Nixtq4WAAD4/6wZI0nESdd666239O677+rIkSOSpI4dO2ru3Lnq0qWLjWt2Yza56xMmTNCkSZMUHR2tNm3a6IknntC4ceOUkJAgSQoMDJQkpaWlWRyXlpZm3hcYGKj09HSL/fn5+bpw4YK5THGTJ0/WxYsXzcsPP/xQ1U0DAMBm+vbtq/Pnz+vMmTPaunWrHnjgAT333HN66KGHlJ+fb+vqVVp2draaNm2qefPmlfkbDwAAcD21NU767LPP9Pjjj+vTTz9VUlKSQkJC1KdPH/3444+2rtoN2SQhlZ2dXSID6eTkpMLCQklSWFiYAgMDtXPnTvP+zMxMJScnKzw8XJIUHh6ujIwMpaSkmMvs2rVLhYWF6tq1a6nXdXV1lbe3t8UCAEBt4erqqsDAQN16663q0KGDXnzxRX388cfaunWrVq5caS6XkZGhkSNHqlGjRvL29lavXr30zTffWJzrk08+UefOneXm5qZbbrnFYmzGX3/9VcOGDVODBg3k4eGhfv366eTJk5Kky5cvy9vbW+vWrbM434YNG+Tp6alLly4pNzdX8fHxCgoKkpubm0JDQ80PpUrTuXNn/fnPf1Z0dLRcXV2r4E4BAIC6prbGSatXr9Yzzzyjdu3aqWXLlvrb3/6mwsJCi3yKvbJJQmrgwIGaM2eONm/erDNnzmj9+vVauHCh+UN0cHDQ2LFjNXv2bG3cuFGHDx/WsGHDFBwcrMGDB0uSWrVqpb59+2rUqFHat2+f9uzZo/j4eEVHRzPDHlBF8hJ3l1hQEvcJ9qxXr15q27atPvroI/O2Rx55ROnp6dq6datSUlLUoUMH9e7dWxcuXJAkbd68WUOGDFH//v118OBB7dy506Lb9/Dhw3XgwAFt3LhRSUlJMgxD/fv3V15enjw9PRUdHa0VK1ZY1GPFihUaOnSo6tevryVLlmjjxo368MMPdeLECa1evVpNmjSxyv0AAAAoUhvjpOzsbOXl5cnPz+/mbo4V2GQMqaVLl+rll1/WM888o/T0dAUHB+upp57S1KlTzWUmTpyoy5cva/To0crIyFCPHj2UmJgoNzc3c5nVq1crPj5evXv3lqOjo6KiorRkyRJbNAmAHWE6YcBSy5Yt9e9//1uStHv3bu3bt0/p6enm3kYLFizQhg0btG7dOo0ePVpz5sxRdHS0xbiLbdu2lSSdPHlSGzdu1J49e9S9e3dJV3+PQ0JCtGHDBj3yyCMaOXKkunfvrvPnzysoKEjp6enasmWLduzYIUlKTU1V8+bN1aNHDzk4OCg0NNSatwMAAMCstsVJL7zwgoKDgxUREXHT96a62SQhVb9+fS1evFiLFy8us4yDg4NmzpypmTNnllnGz89Pa9asqYYaArVf8aRNeRM29P4Bah7DMOTg4CBJ+uabb5SVlaWGDRtalPntt9906tQpSdKhQ4c0atSoUs91/Phx1atXz+L1+IYNG+qOO+7Q8ePHJUldunTRnXfeqVWrVmnSpEl67733FBoaqp49e0q6+uTwwQcf1B133KG+ffvqoYceUp8+faq83QCAuoWHkqiM2hQnzZs3T++//74+++wzi8489somCSkAAGA9x48fV1hYmCQpKytLQUFB+uyzz0qU8/X1lSS5u7vf9DVHjhypZcuWadKkSVqxYoWefPJJc7DXoUMHnT59Wlu3btWOHTv06KOPKiIiosR4CgCAuonEEqyptsRJCxYs0Lx587Rjxw7dfffdN11HayAhBQDXQUCEmm7Xrl06fPiwxo0bJ+lqkGMymVSvXr0yxyO4++67tXPnTj355JMl9rVq1Ur5+flKTk42d0X/5ZdfdOLECbVu3dpc7ve//70mTpyoJUuW6NixY4qNjbU4j7e3tx577DE99thjGjp0qPr27asLFy7UiPEOAMAeVLa3u7XRux72rLbESfPnz9ecOXP0r3/9S506darMrbAJElIAANQSOTk5MplMKigoUFpamhITE5WQkKCHHnpIw4YNkyRFREQoPDxcgwcP1vz589WiRQudO3fOPEBnp06dNG3aNPXu3VvNmjVTdHS08vPztWXLFr3wwgtq3ry5Bg0apFGjRumNN95Q/fr1NWnSJN16660aNGiQuS4NGjTQww8/rAkTJqhPnz667bbbzPsWLlyooKAgtW/fXo6Ojlq7dq0CAwPNTx6Ly83N1bFjx8z//eOPP+rQoUPy8vLS7bffXn03FABqEBI/wPXV1jjplVde0dSpU7VmzRo1adJEJpNJkuTl5SUvL6/qu6FVwCaz7AEAgKqXmJiooKAgNWnSRH379tWnn36qJUuW6OOPP5aTk5Okq2M0btmyRT179tSTTz6pFi1aKDo6WmfPnlVAQIAk6f7779fatWu1ceNGtWvXTr169dK+ffvM11mxYoU6duyohx56SOHh4TIMQ1u2bJGzs7NFfUaMGKHc3Fz94Q9/sNhev359zZ8/X506dVLnzp115swZbdmyRY6OpYcl586dU/v27dW+fXudP39eCxYsUPv27TVy5MiqvH0AABspz2zFzGqMm1Vb46TXX39dubm5Gjp0qIKCgszLggULqvL2VQsHwzAMW1fCVjIzM+Xj46OLFy/K29vb1tUBrKo83bxryg998bpX5Wt25TkXr/XVLleuXNHp06cVFhZWIwaDtGd///vfNW7cOJ07d04uLi5Wvfb1Pkd+/2+MewTYl5oak0nVW3diMusiRqpatoqT7ClG4pU9ADd0JmNriW1NfPvZoCYAaoLs7GydP39e8+bN01NPPWX1ZBQAwDZqSuIMsCXipP/hlT0AdQLdvAHrmT9/vlq2bKnAwEBNnjzZ1tUBAACwG8RJ/0MPKQD4/0hSAVVj+vTpmj59uq2rAQAAYHeIk/6HhBQAu2LN1wNJQAEAAACAbZCQAmA1jEWFmqQOz/lRK/D5AQBQPfiNrdns6fMjIQVAUs3uLVST6w77UzQlb3Z2ttzd3W1cG1RWdna2JJWYYhkAAFQOMVLtYE8xEgkpoA4gYQOUn5OTk3x9fZWeni5J8vDwkIODg41rhfIyDEPZ2dlKT0+Xr6+vnJycbF0lAABqBWKkms0eYyQSUgAAFBMYGChJ5oALNY+vr6/5cwQAAFWDGKnms6cYiYQUAADFODg4KCgoSP7+/srLy7N1dVBBzs7OdvHUDwCA2oYYqWaztxiJhBSAWqH4gOkMlo6q4OTkZFc/2gAAAPaAGAlVgYQUAFQQY3IBAADUXMVjOee+PWxUE6BuIyEFAAAAAHaCB18A6goSUgBsqvirdgAAAACA2s/R1hUAAAAAAABA3UIPKQCwkdK65DOGAQAAAIC6gIQUgBJ4jQ4AAKDq8TAKAP6HhBRQw9lqlpDiSasmvv2scl0AAIDahEHMAdRVjCEFAAAAAAAAq6KHFIBqw6t/AAAAqC70LgNqNnpIAbVMXuLuEgsAoGYoKCjQyy+/rLCwMLm7u6tZs2aaNWuWDMMwlzEMQ1OnTlVQUJDc3d0VERGhkydPWpznwoULiomJkbe3t3x9fTVixAhlZWVZuzkAAABlsklCqkmTJnJwcCixxMXFSZKuXLmiuLg4NWzYUF5eXoqKilJaWprFOVJTUzVgwAB5eHjI399fEyZMUH5+vi2aAwAAUCVeeeUVvf7663r11Vd1/PhxvfLKK5o/f76WLl1qLjN//nwtWbJEy5cvV3Jysjw9PRUZGakrV66Yy8TExOjo0aPavn27Nm3apC+++EKjR4+2RZMAAABKZZNX9vbv36+CggLz+pEjR/Tggw/qkUcekSSNGzdOmzdv1tq1a+Xj46P4+Hg9/PDD2rNnj6SrTw8HDBigwMBA7d27V+fPn9ewYcPk7OysuXPn2qJJAKpRTRxAnVl0AFTG3r17NWjQIA0YMEDS1Yd4//jHP7Rv3z5JV3tHLV68WFOmTNGgQYMkSe+++64CAgK0YcMGRUdH6/jx40pMTNT+/fvVqVMnSdLSpUvVv39/LViwQMHBwbZpHAAAwDVs0kOqUaNGCgwMNC+bNm1Ss2bNdN999+nixYt6++23tXDhQvXq1UsdO3bUihUrtHfvXn311VeSpG3btunYsWN677331K5dO/Xr10+zZs3SsmXLlJuba4smAQAA3LTu3btr586d+vbbbyVJ33zzjXbv3q1+/a4m4k+fPi2TyaSIiAjzMT4+PuratauSkpIkSUlJSfL19TUnoyQpIiJCjo6OSk5OLvW6OTk5yszMtFgAoK5gyAvANmw+qHlubq7ee+89jR8/Xg4ODkpJSVFeXp5FoNWyZUs1btxYSUlJ6tatm5KSktSmTRsFBASYy0RGRurpp5/W0aNH1b59e1s0BaiRGHgcAOzHpEmTlJmZqZYtW8rJyUkFBQWaM2eOYmJiJEkmk0mSLGKgovWifSaTSf7+/hb769WrJz8/P3OZ4hISEjRjxoyqbg4AAECZbD6o+YYNG5SRkaHhw4dLuhpEubi4yNfX16Jc8UCrtECsaF9ZePoHAADs2YcffqjVq1drzZo1+vrrr7Vq1SotWLBAq1atqtbrTp48WRcvXjQvP/zwQ7VeDwAAwOY9pN5++23169fPKuMZ8PQPAADYswkTJmjSpEmKjo6WJLVp00Znz55VQkKCYmNjFRgYKElKS0tTUFCQ+bi0tDS1a9dOkhQYGKj09HSL8+bn5+vChQvm44tzdXWVq6trNbQIAACgdDbtIXX27Fnt2LFDI0eONG8LDAxUbm6uMjIyLMqmpaWZg6jAwMASs+4VrZcVaEk8/QOq05mMrSUWAEDFZGdny9HRMjxzcnJSYWGhJCksLEyBgYHauXOneX9mZqaSk5MVHh4uSQoPD1dGRoZSUlLMZXbt2qXCwkJ17drVCq0AAAC4MZv2kFqxYoX8/f3NM8lIUseOHeXs7KydO3cqKipKknTixAmlpqZaBFpz5sxRenq6eYyE7du3y9vbW61bty7zejz9Q21XE2ejqwySXQBqq4EDB2rOnDlq3Lix7rzzTh08eFALFy7UH/7wB0mSg4ODxo4dq9mzZ6t58+YKCwvTyy+/rODgYA0ePFiS1KpVK/Xt21ejRo3S8uXLlZeXp/j4eEVHRzPDHgAAsBs2S0gVFhZqxYoVio2NVb16/6uGj4+PRowYofHjx8vPz0/e3t4aM2aMwsPD1a1bN0lSnz591Lp1az3xxBOaP3++TCaTpkyZori4OBJOAACgxlq6dKlefvllPfPMM0pPT1dwcLCeeuopTZ061Vxm4sSJunz5skaPHq2MjAz16NFDiYmJcnNzM5dZvXq14uPj1bt3bzk6OioqKkpLliyxRZMAwKaYMQ+wXzZLSO3YsUOpqanmJ37XWrRokTl4ysnJUWRkpF577TXzficnJ23atElPP/20wsPD5enpqdjYWM2cOdOaTQBqJHoXAYD9ql+/vhYvXqzFixeXWcbBwUEzZ868btzj5+enNWvWVEMNAQDXU1oCzLlvDxvUBLB/NktI9enTR4ZhlLrPzc1Ny5Yt07Jly8o8PjQ0VFu2bKmu6gFAleMJHQAAAABcZfNZ9gDAWkrrHWZv42zxVA0AAABAXUBCCqjFeD0PAAAAVamuTKIDoPqRkAIAAACAOooEEwBbcbR1BQAAAAAAAFC30EMKsFOMJWQdPBUEAAA1CbELgNqCHlIAAAAAAACwKhJSAAAAAAAAsCpe2QNqkNJe4wMAAADKUtFX/HglEIC1kJACgFqqeAKTMcgAAKh9SCDZDg+LgZtDQgqwQ6cOvKHCjFSLbQQX1lE8qJO49wAAoOJslawoLZaxp/MBQBESUgBqpdoUPFVVTydmbgQAALUpRqpOxE1A9WNQcwAAAAAAAFgVCSkAAAAAAABYFa/sAUANwwCaAAAA1kcMBlQtElJADcX7/wAAAACAmopX9gAAAAAAAGBV9JACgBso3hutiW8/G9UEAAAAAGoHElIAAAAAgEopbRgJHt4BKA8SUgAAAACAakNvcwClISEFAAAAADepumZgYyIbALUVg5oDAAAAAADAqughBQBVgK7oAACgMoghuAdAXUVCCgAAAABQZXjNEEB5kJACgAoiyAIAAKg+ta3HVHnGF3Pu28MKNQHsC2NIAQAAAAAAwKpslpD68ccf9fvf/14NGzaUu7u72rRpowMHDpj3G4ahqVOnKigoSO7u7oqIiNDJkyctznHhwgXFxMTI29tbvr6+GjFihLKysqzdFAAAAAAAqlVe4u4SC1CT2SQh9euvv+qee+6Rs7Oztm7dqmPHjukvf/mLGjRoYC4zf/58LVmyRMuXL1dycrI8PT0VGRmpK1eumMvExMTo6NGj2r59uzZt2qQvvvhCo0ePtkWTAKDOI0ACAAAAUF42GUPqlVdeUUhIiFasWGHeFhYWZv5vwzC0ePFiTZkyRYMGDZIkvfvuuwoICNCGDRsUHR2t48ePKzExUfv371enTp0kSUuXLlX//v21YMECBQcHW7dRQDVj3CIAAAAAQG1hk4TUxo0bFRkZqUceeUSff/65br31Vj3zzDMaNWqUJOn06dMymUyKiIgwH+Pj46OuXbsqKSlJ0dHRSkpKkq+vrzkZJUkRERFydHRUcnKyhgwZUuK6OTk5ysnJMa9nZmZWYysBwP4xyCYAAAAAW7DJK3vff/+9Xn/9dTVv3lz/+te/9PTTT+vZZ5/VqlWrJEkmk0mSFBAQYHFcQECAeZ/JZJK/v7/F/nr16snPz89cpriEhAT5+PiYl5CQkKpuGgAAAABU2pmMrRYLANRWNukhVVhYqE6dOmnu3LmSpPbt2+vIkSNavny5YmNjq+26kydP1vjx483rmZmZJKUAVIvSAsiaPmUxAAC4vuK///z2Vw3uK1A72SQhFRQUpNatW1tsa9Wqlf75z39KkgIDAyVJaWlpCgoKMpdJS0tTu3btzGXS09MtzpGfn68LFy6Yjy/O1dVVrq6uVdUMoEpd++pUYUaqDWsCAAAAAED1sklC6p577tGJEycstn377bcKDQ2VdHWA88DAQO3cudOcgMrMzFRycrKefvppSVJ4eLgyMjKUkpKijh07SpJ27dqlwsJCde3a1XqNAW7SqQNvSCIJBQAAAACoO2ySkBo3bpy6d++uuXPn6tFHH9W+ffv05ptv6s0335QkOTg4aOzYsZo9e7aaN2+usLAwvfzyywoODtbgwYMlXe1R1bdvX40aNUrLly9XXl6e4uPjFR0dzQx7AAAAAGCnGBsLgGSjhFTnzp21fv16TZ48WTNnzlRYWJgWL16smJgYc5mJEyfq8uXLGj16tDIyMtSjRw8lJibKzc3NXGb16tWKj49X79695ejoqKioKC1ZssQWTQIAAAAAAEA52SQhJUkPPfSQHnrooTL3Ozg4aObMmZo5c2aZZfz8/LRmzZrqqB4AAAAAlOrasT8BAJVjs4QUAAAAANQ1vK4GAFc52roCAAAAAAAAqFvoIQUAAAAAQC1V2iumzn172KAmgCUSUgBgI6V12W/i288GNQEAAAAA6yIhBQBWUpvGjGAwVwAAgOpFvIXajjGkAAAAAAAAYFX0kAIAO1K8FxWv8AEAAFwf8RNQM5GQAmzg2u63hRmpNqwJUH0YQBMAAABAWUhIAQAAAEA1qE3jRwJAVWMMKQAAAAAAAFgVCSkAAAAAAABYFa/sAQAAAABgQ6WNvQnUdiSkAAAAAAA1BmNzAbUDCSkAgF1hdj4AAIDysYe4qXgdiNtQXowhBQAAAAAAAKsiIQUAAGBHfvzxR/3+979Xw4YN5e7urjZt2ujAgQPm/YZhaOrUqQoKCpK7u7siIiJ08uRJi3NcuHBBMTEx8vb2lq+vr0aMGKGsrCxrNwUAAKBMJKQAAADsxK+//qp77rlHzs7O2rp1q44dO6a//OUvatCggbnM/PnztWTJEi1fvlzJycny9PRUZGSkrly5Yi4TExOjo0ePavv27dq0aZO++OILjR492hZNAgCbO5Ox1WIBYB8YQwoA7FhpQVMT3342qAkAa3jllVcUEhKiFStWmLeFhYWZ/9swDC1evFhTpkzRoEGDJEnvvvuuAgICtGHDBkVHR+v48eNKTEzU/v371alTJ0nS0qVL1b9/fy1YsEDBwcHWbRQAAEApSEgBAK6LaYgB69m4caMiIyP1yCOP6PPPP9ett96qZ555RqNGjZIknT59WiaTSREREeZjfHx81LVrVyUlJSk6OlpJSUny9fU1J6MkKSIiQo6OjkpOTtaQIUNKXDcnJ0c5OTnm9czMzGpsJVCz8DsIANWDhBRQzQhiUNWK95qixxRQe3z//fd6/fXXNX78eL344ovav3+/nn32Wbm4uCg2NlYmk0mSFBAQYHFcQECAeZ/JZJK/v7/F/nr16snPz89cpriEhATNmDGjGloEANbHa3lAzUBCCgBgU9ZO2jI1MexZYWGhOnXqpLlz50qS2rdvryNHjmj58uWKjY2ttutOnjxZ48ePN69nZmYqJCSk2q4HAABAQgoAAMBOBAUFqXXr1hbbWrVqpX/+85+SpMDAQElSWlqagoKCzGXS0tLUrl07c5n09HSLc+Tn5+vChQvm44tzdXWVq6trVTUDAGBDvKGBmoJZ9gArY5YPAEBZ7rnnHp04ccJi27fffqvQ0FBJVwc4DwwM1M6dO837MzMzlZycrPDwcElSeHi4MjIylJKSYi6za9cuFRYWqmvXrlZoBQAAwI3RQwoAAMBOjBs3Tt27d9fcuXP16KOPat++fXrzzTf15ptvSpIcHBw0duxYzZ49W82bN1dYWJhefvllBQcHa/DgwZKu9qjq27evRo0apeXLlysvL0/x8fGKjo5mhj2givFwEQAqj4QUAACAnejcubPWr1+vyZMna+bMmQoLC9PixYsVExNjLjNx4kRdvnxZo0ePVkZGhnr06KHExES5ubmZy6xevVrx8fHq3bu3HB0dFRUVpSVLltiiSQBgd5ggBrAPNnllb/r06XJwcLBYWrZsad5/5coVxcXFqWHDhvLy8lJUVJTS0tIszpGamqoBAwbIw8ND/v7+mjBhgvLz863dFAAAgCr10EMP6fDhw7py5YqOHz+uUaNGWex3cHDQzJkzZTKZdOXKFe3YsUMtWrSwKOPn56c1a9bo0qVLunjxot555x15eXlZsxkAUGMwpAZgGzbrIXXnnXdqx44d/6tIvf9VZdy4cdq8ebPWrl0rHx8fxcfH6+GHH9aePXskSQUFBRowYIACAwO1d+9enT9/XsOGDZOzs7N5VhoAAAAAAFBSaQOfM/MwrM1mCal69eqVOtPLxYsX9fbbb2vNmjXq1auXJGnFihVq1aqVvvrqK3Xr1k3btm3TsWPHtGPHDgUEBKhdu3aaNWuWXnjhBU2fPl0uLi7Wbg4AAAAAAADKyWYJqZMnTyo4OFhubm4KDw9XQkKCGjdurJSUFOXl5SkiIsJctmXLlmrcuLGSkpLUrVs3JSUlqU2bNgoICDCXiYyM1NNPP62jR4+qffv2pV4zJydHOTk55vXMzMzqayAg6dSBN1SYkWrragB2o7LTEFf2KR7THgMAAAD2ySZjSHXt2lUrV65UYmKiXn/9dZ0+fVr33nuvLl26JJPJJBcXF/n6+locExAQIJPJJEkymUwWyaii/UX7ypKQkCAfHx/zEhISUrUNAwAAAAAAwA3ZpIdUv37/m8Xg7rvvVteuXRUaGqoPP/xQ7u7u1XbdyZMna/z48eb1zMxMklKoctf2yKB3FAAAAIDagt7nqEo26SFVnK+vr1q0aKHvvvtOgYGBys3NVUZGhkWZtLQ085hTgYGBJWbdK1ovbVyqIq6urvL29rZYAAAAAAAAYF02G0PqWllZWTp16pSeeOIJdezYUc7Oztq5c6eioqIkSSdOnFBqaqrCw8MlSeHh4ZozZ47S09Pl7+8vSdq+fbu8vb3VunVrm7UDAGA7PLEDAABV4UzG1hLbmvj2K6UkgJthk4TU888/r4EDByo0NFTnzp3TtGnT5OTkpMcff1w+Pj4aMWKExo8fLz8/P3l7e2vMmDEKDw9Xt27dJEl9+vRR69at9cQTT2j+/PkymUyaMmWK4uLi5OrqaosmAQBQqzAdNACUVFqiAgBQOTZJSP33v//V448/rl9++UWNGjVSjx499NVXX6lRo0aSpEWLFsnR0VFRUVHKyclRZGSkXnvtNfPxTk5O2rRpk55++mmFh4fL09NTsbGxmjlzpi2aAwAAAKCWoMctUPVqyoOu4vW0xzrWJjZJSL3//vvX3e/m5qZly5Zp2bJlZZYJDQ3Vli1bqrpqAFDj1NVu5XXtfxhqSiAHAABqB3uItYh/aje7GEMKAAB7wtMxAAAAoHqRkAIA1Gn28PQPAAAA5WPrB4f02qo6JKQAALAxWwdWAAAAgLWRkAIAAAAAoI6rql7jdbH3OQ8XK4eEFFCFTh14Q4UZqbauBlBCXR34HHQrBwCgKhSPpYijgJtHQgoAgGpS254Q8vQPAAAAVcXR1hUAAAAAAABA3UIPKQCoo+h6XvVqW48oAACA6kLPa5CQAgCgEmpy8qkm1x0AAMBaiJmqFwkpAIAkBj6/HoIRAAAAoGqRkAIAAAAAADZVlQ8Ay/M6IA8cbY+EFADUQqX1dkLNQYAEAACA2o6EFAAAAAAAqJF4kFdzkZACAACVUloAyAw5AAAAKA8SUgAAAAAAVEDx4RGYCAY3woO8kkhIAQDKRLAFAAAAoDqQkAIAAAAASacOvKHCjFRbVwMA6gQSUgCAm1LajH70pAIAAHUZvcyBG3O0dQUAAAAAAABQt9BDCgCAWoJpjwEAsE/0mKpbiMnKh4QUAKDcSns9DwAAALBnJIjsE6/sAQAAAAAAwKpISAEAAAAAAMCqSEgBAAAAAADAqmyekJo3b54cHBw0duxY87YrV64oLi5ODRs2lJeXl6KiopSWlmZxXGpqqgYMGCAPDw/5+/trwoQJys/Pt3LtAQAAAAAAUFE2HdR8//79euONN3T33XdbbB83bpw2b96stWvXysfHR/Hx8Xr44Ye1Z88eSVJBQYEGDBigwMBA7d27V+fPn9ewYcPk7OysuXPn2qIpAAAAAACUC7PuATZMSGVlZSkmJkZvvfWWZs+ebd5+8eJFvf3221qzZo169eolSVqxYoVatWqlr776St26ddO2bdt07Ngx7dixQwEBAWrXrp1mzZqlF154QdOnT5eLi4utmgUAgNXY44wxpdXJuW8PG9QEAADrYSZioOJs9speXFycBgwYoIiICIvtKSkpysvLs9jesmVLNW7cWElJSZKkpKQktWnTRgEBAeYykZGRyszM1NGjR63TAAAAAAA1Wl7iboul8LtUW1cJAOoMm/SQev/99/X1119r//79JfaZTCa5uLjI19fXYntAQIBMJpO5zLXJqKL9RfvKkpOTo5ycHPN6ZmZmZZsAAAAAAACASrJ6D6kffvhBzz33nFavXi03NzerXjshIUE+Pj7mJSQkxKrXBwAAAAAAgA0SUikpKUpPT1eHDh1Ur1491atXT59//rmWLFmievXqKSAgQLm5ucrIyLA4Li0tTYGBgZKkwMDAErPuFa0XlSnN5MmTdfHiRfPyww8/VG3jAAAAAAAAcENWf2Wvd+/eOnz4sMW2J598Ui1bttQLL7ygkJAQOTs7a+fOnYqKipIknThxQqmpqQoPD5ckhYeHa86cOUpPT5e/v78kafv27fL29lbr1q3LvLarq6tcXV2rqWWoa04deMPWVQAAAABQCzDrHuoiqyek6tevr7vuustim6enpxo2bGjePmLECI0fP15+fn7y9vbWmDFjFB4erm7dukmS+vTpo9atW+uJJ57Q/PnzZTKZNGXKFMXFxZFwAgAAAADUKiSsUBvZZFDzG1m0aJEcHR0VFRWlnJwcRUZG6rXXXjPvd3Jy0qZNm/T0008rPDxcnp6eio2N1cyZM21Ya9RFzMQCAAAAAEDF2UVC6rPPPrNYd3Nz07Jly7Rs2bIyjwkNDdWWLVuquWYAAAAAAFhX8R5RQG1k9UHNAQAAAAAAULfZRQ8poCbIS9xtsV6Ywet6AAAAAABUBj2kAAAAAAAAYFX0kAIAVDlmggEAAACur/hbOM59e9ioJrZBQgoAUO1KG5iTJBUAAABQd/HKHgAAAAAAAKyKhBQAAAAAAACsioQUAACAnZo3b54cHBw0duxY87YrV64oLi5ODRs2lJeXl6KiopSWlmZxXGpqqgYMGCAPDw/5+/trwoQJys/Pt3LtAQAAykZCCgAAwA7t379fb7zxhu6++26L7ePGjdMnn3yitWvX6vPPP9e5c+f08MMPm/cXFBRowIABys3N1d69e7Vq1SqtXLlSU6dOtXYTAAAAykRCCgBgt85kbLVYgLoiKytLMTExeuutt9SgQQPz9osXL+rtt9/WwoUL1atXL3Xs2FErVqzQ3r179dVXX0mStm3bpmPHjum9995Tu3bt1K9fP82aNUvLli1Tbm6urZoEAABggYQUAACAnYmLi9OAAQMUERFhsT0lJUV5eXkW21u2bKnGjRsrKSlJkpSUlKQ2bdooICDAXCYyMlKZmZk6evRoqdfLyclRZmamxQIAAFCd6tm6AgAASKIHVC2Wl7jbYt25bw8b1aRmeP/99/X1119r//79JfaZTCa5uLjI19fXYntAQIBMJpO5zLXJqKL9RftKk5CQoBkzZlRB7QEAAMqHhBQAwCZIQAEl/fDDD3ruuee0fft2ubm5We26kydP1vjx483rmZmZCgkJsdr1AWsonhwHANgWr+wBAADYiZSUFKWnp6tDhw6qV6+e6tWrp88//1xLlixRvXr1FBAQoNzcXGVkZFgcl5aWpsDAQElSYGBgiVn3itaLyhTn6uoqb29viwUAAKA6kZACAACwE71799bhw4d16NAh89KpUyfFxMSY/9vZ2Vk7d+40H3PixAmlpqYqPDxckhQeHq7Dhw8rPT3dXGb79u3y9vZW69atrd4mAACA0vDKHgAAgJ2oX7++7rrrLottnp6eatiwoXn7iBEjNH78ePn5+cnb21tjxoxReHi4unXrJknq06ePWrdurSeeeELz58+XyWTSlClTFBcXJ1dXV6u3CQAAoDQkpIByYrwbAIA9WLRokRwdHRUVFaWcnBxFRkbqtddeM+93cnLSpk2b9PTTTys8PFyenp6KjY3VzJkzbVhrwD4R36GmKv6328S3n41qAlQeCSkAAAA79tlnn1msu7m5admyZVq2bFmZx4SGhmrLli3VXDMAAIDKIyEFAAAAAEANRo8p1EQkpAAAAAAAqMVIWMEeMcseAAAAAAAArIqEFAAAAAAAAKyKV/aAMuQl7rZ1FQAAAAAAqJXoIQUAAAAAAACrIiEFAAAAAAAAq7JJQur111/X3XffLW9vb3l7eys8PFxbt/5v1P8rV64oLi5ODRs2lJeXl6KiopSWlmZxjtTUVA0YMEAeHh7y9/fXhAkTlJ+fb+2mAAAAAAAAoIJskpC67bbbNG/ePKWkpOjAgQPq1auXBg0apKNHj0qSxo0bp08++URr167V559/rnPnzunhhx82H19QUKABAwYoNzdXe/fu1apVq7Ry5UpNnTrVFs0BAAAAAABABdhkUPOBAwdarM+ZM0evv/66vvrqK9122216++23tWbNGvXq1UuStGLFCrVq1UpfffWVunXrpm3btunYsWPasWOHAgIC1K5dO82aNUsvvPCCpk+fLhcXF1s0CwAAAICdYIIaoGxnMraW2NbEt58NaoK6zOZjSBUUFOj999/X5cuXFR4erpSUFOXl5SkiIsJcpmXLlmrcuLGSkpIkSUlJSWrTpo0CAgLMZSIjI5WZmWnuZQUAAAAAQF10JmOrxQLYI5v0kJKkw4cPKzw8XFeuXJGXl5fWr1+v1q1b69ChQ3JxcZGvr69F+YCAAJlMJkmSyWSySEYV7S/aV5acnBzl5OSY1zMzM6uoNQAAAAAAACgvmyWk7rjjDh06dEgXL17UunXrFBsbq88//7xar5mQkKAZM2ZU6zUAALZFF3QAAADA/tksIeXi4qLbb79dktSxY0ft379ff/3rX/XYY48pNzdXGRkZFr2k0tLSFBgYKEkKDAzUvn37LM5XNAtfUZnSTJ48WePHjzevZ2ZmKiQkpKqahFrk1IE3VJiRautqAAAAAABQK9l8DKkihYWFysnJUceOHeXs7KydO3ea9504cUKpqakKDw+XJIWHh+vw4cNKT083l9m+fbu8vb3VunXrMq/h6uoqb29viwUAAABA3cC4OgBgP2zSQ2ry5Mnq16+fGjdurEuXLmnNmjX67LPP9K9//Us+Pj4aMWKExo8fLz8/P3l7e2vMmDEKDw9Xt27dJEl9+vRR69at9cQTT2j+/PkymUyaMmWK4uLi5OrqaosmAQDsWPH/6eAVPgAAAMC2bJKQSk9P17Bhw3T+/Hn5+Pjo7rvv1r/+9S89+OCDkqRFixbJ0dFRUVFRysnJUWRkpF577TXz8U5OTtq0aZOefvpphYeHy9PTU7GxsZo5c6YtmgMAAAAAAIAKsElC6u23377ufjc3Ny1btkzLli0rs0xoaKi2bNlS1VUDAAAAAABANbObMaQAAAAAAABQN9hslj0AAKoCg9ICAACgNshL3F1im3PfHjaoiXWQkAJU8h9+YUaqjWoC4HpIPgEAAAC1A6/sAQAAAAAAwKroIQUAAKyqrnVHBwAAQEkkpAAAAAAAgIUbDZXQxLeflWqC2oqEFAAAAIBaibEHAcB+kZACAAAAAKCOI4ELa2NQcwAAAAAAAFgVCSkAAAAAAABYFQkpAAAAAAAAWBUJKQAAAAAAAFgVCSkAAAAAAABYFbPsAQAAAACAm1J8lr4mvv1sVBPUFCSkAAAQQRQAAABgTSSkAAB1TvHkEwAAAADrIiEFAAAAAAAqhAd8uFkkpAAAKKfyBF686gcAAADcGLPsAQAAAAAAwKroIQUAAACgRstL3G3rKgAAKoiEFCDefwYAAAAAwJp4ZQ8AAAAAAABWRUIKAAAAAAAAVkVCCgAAAAAAAFZFQgoAAAAAAABWZZOEVEJCgjp37qz69evL399fgwcP1okTJyzKXLlyRXFxcWrYsKG8vLwUFRWltLQ0izKpqakaMGCAPDw85O/vrwkTJig/P9+aTQEAAAAAAEAF2WSWvc8//1xxcXHq3Lmz8vPz9eKLL6pPnz46duyYPD09JUnjxo3T5s2btXbtWvn4+Cg+Pl4PP/yw9uzZI0kqKCjQgAEDFBgYqL179+r8+fMaNmyYnJ2dNXfuXFs0CzXEqQNv2LoKAAAAAIBrFJ/5vIlvPxvVBNZik4RUYmKixfrKlSvl7++vlJQU9ezZUxcvXtTbb7+tNWvWqFevXpKkFStWqFWrVvrqq6/UrVs3bdu2TceOHdOOHTsUEBCgdu3a4EaZgAABAABJREFUadasWXrhhRc0ffp0ubi42KJpAAAAAACgGBJOKM4uxpC6ePGiJMnPz0+SlJKSory8PEVERJjLtGzZUo0bN1ZSUpIkKSkpSW3atFFAQIC5TGRkpDIzM3X06FEr1h4AAAAAAAAVYZMeUtcqLCzU2LFjdc899+iuu+6SJJlMJrm4uMjX19eibEBAgEwmk7nMtcmoov1F+0qTk5OjnJwc83pmZmZVNQMAAAAAAADlZPOEVFxcnI4cOaLdu3dX+7USEhI0Y8aMar8O7Fvhd6m2rgKAWozu6ABgO8W/gwEA9sumr+zFx8dr06ZN+vTTT3XbbbeZtwcGBio3N1cZGRkW5dPS0hQYGGguU3zWvaL1ojLFTZ48WRcvXjQvP/zwQxW2BgAAAAAAlMeZjK0WC+oem/SQMgxDY8aM0fr16/XZZ58pLCzMYn/Hjh3l7OysnTt3KioqSpJ04sQJpaamKjw8XJIUHh6uOXPmKD09Xf7+/pKk7du3y9vbW61bty71uq6urnJ1da3GlgEAagsCIwCwf0WzJxdm0AMeAGoamySk4uLitGbNGn388ceqX7++ecwnHx8fubu7y8fHRyNGjND48ePl5+cnb29vjRkzRuHh4erWrZskqU+fPmrdurWeeOIJzZ8/XyaTSVOmTFFcXBxJJwAAAAAAADtmk1f2Xn/9dV28eFH333+/goKCzMsHH3xgLrNo0SI99NBDioqKUs+ePRUYGKiPPvrIvN/JyUmbNm2Sk5OTwsPD9fvf/17Dhg3TzJkzbdEkAACAm5aQkKDOnTurfv368vf31+DBg3XixAmLMleuXFFcXJwaNmwoLy8vRUVFlRjGIDU1VQMGDJCHh4f8/f01YcIE5efnW7MpAAAA12WzV/ZuxM3NTcuWLdOyZcvKLBMaGqotW7ZUZdUAAABs5vPPP1dcXJw6d+6s/Px8vfjii+rTp4+OHTsmT09PSdK4ceO0efNmrV27Vj4+PoqPj9fDDz+sPXv2SJIKCgo0YMAABQYGau/evTp//ryGDRsmZ2dnzZ0715bNAwAAMLP5LHsAANRm5RmLipn4UCQxMdFifeXKlfL391dKSop69uypixcv6u2339aaNWvUq1cvSdKKFSvUqlUrffXVV+rWrZu2bdumY8eOaceOHQoICFC7du00a9YsvfDCC5o+fbpcXFxs0TQAAAALNp1lDwAAAGW7ePGiJMnPz0+SlJKSory8PEVERJjLtGzZUo0bN1ZSUpIkKSkpSW3atFFAQIC5TGRkpDIzM3X06NFSr5OTk6PMzEyLBQAAW2IWvtqPhBQAAIAdKiws1NixY3XPPfforrvukiSZTCa5uLjI19fXomxAQIB5khiTyWSRjCraX7SvNAkJCfLx8TEvISEhVdwaAAAAS7yyh1rv5Psv2boKAABUWFxcnI4cOaLdu3dX+7UmT56s8ePHm9czMzNJSsFu5SX+799EYUaqDWsCwJqK95JiyIOaj4QUAAA2Vlo3dIKsui0+Pl6bNm3SF198odtuu828PTAwULm5ucrIyLDoJZWWlqbAwEBzmX379lmcr2gWvqIyxbm6usrV1bWKWwEAqMt4zQ43wit7AAAAdsIwDMXHx2v9+vXatWuXwsLCLPZ37NhRzs7O2rlzp3nbiRMnlJqaqvDwcElSeHi4Dh8+rPT0dHOZ7du3y9vbW61bt7ZOQwAAAG6AHlIAAAB2Ii4uTmvWrNHHH3+s+vXrm8d88vHxkbu7u3x8fDRixAiNHz9efn5+8vb21pgxYxQeHq5u3bpJkvr06aPWrVvriSee0Pz582UymTRlyhTFxcXRCwoAANgNElIAAAB24vXXX5ck3X///RbbV6xYoeHDh0uSFi1aJEdHR0VFRSknJ0eRkZF67bXXzGWdnJy0adMmPf300woPD5enp6diY2M1c+ZMazUDAADghkhIAQAA2AnDMG5Yxs3NTcuWLdOyZcvKLBMaGqotW7ZUZdUAAACqFGNIAQAAAAAAwKroIQUAQA3F7HwA6oK8xN22rgIAO1Q8DiIGqnnoIQUAAAAAAACroocUahWeoAGoLej9BAAAgNqMhBRqrNKST6X9DxwAAAAAALAvvLIHAAAAAAAAq6KHFAAAAIAagd7wACqCgc/tGwkpAABqEQIvALXJqQNvqDAj1dbVAABUA17ZAwAAAAAAgFXRQwoAAAAAANRovNJb85CQQo3Glw6AuoTvPAAAANQWJKQAAAAA2IW8xN0W64wfBaAqMdamfSEhBQAAAAAA6hwSVLZFQgo1xqkDb1is88QMAG6stNf87DHYKt4rQpKc+/awQU0AAADsR22OkUhIAQAAAACAOo8eU9blaOsKAAAAAAAAoG6xSULqiy++0MCBAxUcHCwHBwdt2LDBYr9hGJo6daqCgoLk7u6uiIgInTx50qLMhQsXFBMTI29vb/n6+mrEiBHKysqyYisAAAAAAABQGTZJSF2+fFlt27bVsmXLSt0/f/58LVmyRMuXL1dycrI8PT0VGRmpK1eumMvExMTo6NGj2r59uzZt2qQvvvhCo0ePtlYTYAOF36VaLAAAAAAAoGayyRhS/fr1U79+pb+LaRiGFi9erClTpmjQoEGSpHfffVcBAQHasGGDoqOjdfz4cSUmJmr//v3q1KmTJGnp0qXq37+/FixYoODgYKu1BQAAAAAAABVjd2NInT59WiaTSREREeZtPj4+6tq1q5KSkiRJSUlJ8vX1NSejJCkiIkKOjo5KTk4u89w5OTnKzMy0WAAAAAAAAGBddjfLnslkkiQFBARYbA8ICDDvM5lM8vf3t9hfr149+fn5mcuUJiEhQTNmzKjiGgMAULMwgwwAe3DqwBslthVmMCwDANQVdpeQqk6TJ0/W+PHjzeuZmZkKCQmxYY1wPaUFKQAAAAAAoOazu4RUYGCgJCktLU1BQUHm7WlpaWrXrp25THp6usVx+fn5unDhgvn40ri6usrV1bXqKw0AAACgQpikBgDqNrsbQyosLEyBgYHauXOneVtmZqaSk5MVHh4uSQoPD1dGRoZSUlLMZXbt2qXCwkJ17drV6nUGAAAAAABA+dmkh1RWVpa+++478/rp06d16NAh+fn5qXHjxho7dqxmz56t5s2bKywsTC+//LKCg4M1ePBgSVKrVq3Ut29fjRo1SsuXL1deXp7i4+MVHR3NDHsAAAAAAAB2ziYJqQMHDuiBBx4wrxeN6xQbG6uVK1dq4sSJunz5skaPHq2MjAz16NFDiYmJcnNzMx+zevVqxcfHq3fv3nJ0dFRUVJSWLFli9bYAAFDTFR/kvDQMfA4AAOoaJoKpXjZJSN1///0yDKPM/Q4ODpo5c6ZmzpxZZhk/Pz+tWbOmOqoHAAAAAABggQRV1bK7Qc0BAAAAAADsHQmqm2N3g5oDAAAAAACgdqOHFAAAAIBqd+rAG7auAgDAjtBDCgAAAAAAAFZFDynYpbzE3SrMSLV1NQAAAAAAQDUgIQW7ULwLN8koALAvxQftlBi4EwAAAJVHQgoAAABAtSv8jgeOAID/ISEFAAAqhamOAQAA/ofYqGJISAEAAACocsyqBwC4HmbZAwAAAAAAgFXRQwp2gTEFAAAAAAC1Ca/wXR89pAAAAAAAAGBV9JACAADVhieDQN2Ul7hbhRn0gAcAlI2EFKpdaQNaNuv0lA1qAgAAgOpybcxHMgoAcCMkpFCtyno6dvK7l2xQGwBAdSreGwoAAAAoCwkpAAAAAACAanajh3d1bWgDElIAAAAAyi0vcbfFunPfHjaqCQCgJiMhhSrH+AEAAAB1R1GCirgPAFARjrauAAAAAAAAAOoWekihSjHFLwAAQO1U1AueWA8AqkfxMaZq+5hSJKQAAIDVlDaYZ20PtgAAAFASCSkAAAAApbp2AHN6RgEAqhIJKZRL8dlUitxo2koAAADUHGXFfAAAVDUSUgAAAEAdcO1MyJLUrNNTNqoJAAAkpOqs8gQk15ahizYAAEDdQk94AEB1crR1BW7WsmXL1KRJE7m5ualr167at2+fratUK+Ql7lbhd6nmBQCA6nImY6vFgqpBjISKOnXgDf4tAgCspkb3kPrggw80fvx4LV++XF27dtXixYsVGRmpEydOyN/f39bVAwAAsAliJBSXl7i7RI/3U3qjjNIAAHtQ/OFAbZuZ2MEwDMPWlaisrl27qnPnznr11VclSYWFhQoJCdGYMWM0adKkGx6fmZkpHx8fXbx4Ud7e3tVd3ZtSfIBJ5749yixTnj9annoBAOxV0e9Wab91VaEm/f5XVl2KkVB2DAgAqF1qW4xUY3tI5ebmKiUlRZMnTzZvc3R0VEREhJKSkko9JicnRzk5Oeb1ixcvSrp606tD3vaS9XB+MLzM8t9//Y7FetMOf/jfuS5fliSlXtwuSXL47ECJ441z/y31vEeyN9ywrgAA2ItM56u/ec7V9Ptc9Ltfg5/JXVdNiJFQMk5MvbhdDk1vM68XxYGlxZNlycrOuXEhAECNVdtipBqbkPr5559VUFCggIAAi+0BAQH6z3/+U+oxCQkJmjFjRontISEh1VLHmzfO1hUAAMAG/mKVq1y6dEk+Pj5WuZY11Y0YqS4gDgQAFFe7YqQam5CqjMmTJ2v8+PHm9cLCQl24cEENGzaUg4NDtV47MzNTISEh+uGHH+p013fuw1Xch6u4D1dxH67iPlzFfbiqOu+DYRi6dOmSgoODq/S8NRkxUvWjnbVHXWijRDtrm7rQzrrQRql2xUg1NiF1yy23yMnJSWlpaRbb09LSFBgYWOoxrq6ucnV1tdjm6+tbXVUslbe3d63+x1Fe3IeruA9XcR+u4j5cxX24ivtwVXXdh9rYM6oIMZJ9o521R11oo0Q7a5u60M660EapdsRIjla7UhVzcXFRx44dtXPnTvO2wsJC7dy5U+HhZY/TBAAAUJsRIwEAgJqgxvaQkqTx48crNjZWnTp1UpcuXbR48WJdvnxZTz75pK2rBgAAYDPESAAAwN7V6ITUY489pp9++klTp06VyWRSu3btlJiYWGIQT3vg6uqqadOmlegOX9dwH67iPlzFfbiK+3AV9+Eq7sNV3IebQ4xkf2hn7VEX2ijRztqmLrSzLrRRql3tdDBq65zHAAAAAAAAsEs1dgwpAAAAAAAA1EwkpAAAAAAAAGBVJKQAAAAAAABgVSSkAAAAAAAAYFUkpKrRhQsXFBMTI29vb/n6+mrEiBHKysoq17GGYahfv35ycHDQhg0bqrei1ayi9+HChQsaM2aM7rjjDrm7u6tx48Z69tlndfHiRSvW+uYtW7ZMTZo0kZubm7p27ap9+/Zdt/zatWvVsmVLubm5qU2bNtqyZYuValq9KnIf3nrrLd17771q0KCBGjRooIiIiBvet5qion8PRd5//305ODho8ODB1VtBK6nofcjIyFBcXJyCgoLk6uqqFi1a1Ip/GxW9D4sXLzZ/J4aEhGjcuHG6cuWKlWpbPb744gsNHDhQwcHB5f6t++yzz9ShQwe5urrq9ttv18qVK6u9nqgelY2RkpKS1KtXL3l6esrb21s9e/bUb7/9ZoUaV05diAVra5xXV+K4uhKn1YU4rK7EWHUhhqpTMZKBatO3b1+jbdu2xldffWV8+eWXxu233248/vjj5Tp24cKFRr9+/QxJxvr166u3otWsovfh8OHDxsMPP2xs3LjR+O6774ydO3cazZs3N6KioqxY65vz/vvvGy4uLsY777xjHD161Bg1apTh6+trpKWllVp+z549hpOTkzF//nzj2LFjxpQpUwxnZ2fj8OHDVq551aroffjd735nLFu2zDh48KBx/PhxY/jw4YaPj4/x3//+18o1r1oVvQ9FTp8+bdx6663GvffeawwaNMg6la1GFb0POTk5RqdOnYz+/fsbu3fvNk6fPm189tlnxqFDh6xc86pV0fuwevVqw9XV1Vi9erVx+vRp41//+pcRFBRkjBs3zso1r1pbtmwxXnrpJeOjjz4q12/d999/b3h4eBjjx483jh07ZixdutRwcnIyEhMTrVNhVKnKxEh79+41vL29jYSEBOPIkSPGf/7zH+ODDz4wrly5YqVaV1xdiAVrY5xXV+K4uhKn1YU4rK7EWHUlhqpLMRIJqWpy7NgxQ5Kxf/9+87atW7caDg4Oxo8//njdYw8ePGjceuutxvnz5+0+CLmRm7kP1/rwww8NFxcXIy8vrzqqWeW6dOlixMXFmdcLCgqM4OBgIyEhodTyjz76qDFgwACLbV27djWeeuqpaq1ndavofSguPz/fqF+/vrFq1arqqqJVVOY+5OfnG927dzf+9re/GbGxsXYfCJVHRe/D66+/bjRt2tTIzc21VhWtoqL3IS4uzujVq5fFtvHjxxv33HNPtdbTmsrzWzdx4kTjzjvvtNj22GOPGZGRkdVYM1SHysYGXbt2NaZMmWKNKlaJuhAL1tY4r67EcXUlTqsLcVhdibHqYgxV22MkXtmrJklJSfL19VWnTp3M2yIiIuTo6Kjk5OQyj8vOztbvfvc7LVu2TIGBgdaoarWq7H0o7uLFi/L29la9evWqo5pVKjc3VykpKYqIiDBvc3R0VEREhJKSkko9JikpyaK8JEVGRpZZviaozH0oLjs7W3l5efLz86uuala7yt6HmTNnyt/fXyNGjLBGNatdZe7Dxo0bFR4erri4OAUEBOiuu+7S3LlzVVBQYK1qV7nK3Ifu3bsrJSXF3CX9+++/15YtW9S/f3+r1Nle1MbvybqqMrFBenq6kpOT5e/vr+7duysgIED33Xefdu/eba1qV1hdiAVrY5xXV+K4uhKn1YU4rK7EWMRQZauJ30FFbP+tX0uZTCb5+/tbbKtXr578/PxkMpnKPG7cuHHq3r27Bg0aVN1VtIrK3odr/fzzz5o1a5ZGjx5dHVWscj///LMKCgoUEBBgsT0gIED/+c9/Sj3GZDKVWr6898geVeY+FPfCCy8oODi4xBdsTVKZ+7B79269/fbbOnTokBVqaB2VuQ/ff/+9du3apZiYGG3ZskXfffednnnmGeXl5WnatGnWqHaVq8x9+N3vfqeff/5ZPXr0kGEYys/P1x//+Ee9+OKL1qiy3SjrezIzM1O//fab3N3dbVQzVFRlYoPvv/9ekjR9+nQtWLBA7dq107vvvqvevXvryJEjat68ebXXu6LqQixYG+O8uhLH1ZU4rS7EYXUlxiKGKltNjpHoIVVBkyZNkoODw3WX8n6JF7dx40bt2rVLixcvrtpKV4PqvA/XyszM1IABA9S6dWtNnz795iuOGmPevHl6//33tX79erm5udm6OlZz6dIlPfHEE3rrrbd0yy232Lo6NlVYWCh/f3+9+eab6tixox577DG99NJLWr58ua2rZlWfffaZ5s6dq9dee01ff/21PvroI23evFmzZs2yddUAC9UZGxQWFkqSnnrqKT355JNq3769Fi1apDvuuEPvvPNOVTbjhupCLEichxuprXFaXYnD6kqMRQxl/+ghVUF/+tOfNHz48OuWadq0qQIDA5Wenm6xPT8/XxcuXCiz+/WuXbt06tQp+fr6WmyPiorSvffeq88+++wmal61qvM+FLl06ZL69u2r+vXra/369XJ2dr7ZalvFLbfcIicnJ6WlpVlsT0tLK7PNgYGBFSpfE1TmPhRZsGCB5s2bpx07dujuu++uzmpWu4reh1OnTunMmTMaOHCgeVvR/4jVq1dPJ06cULNmzaq30tWgMn8PQUFBcnZ2lpOTk3lbq1atZDKZlJubKxcXl2qtc3WozH14+eWX9cQTT2jkyJGSpDZt2ujy5csaPXq0XnrpJTk61o1nS2V9T3p7e9v1k7+6pDpjg6CgIElS69atLba3atVKqampla90JdSFWLAux3l1JY6rK3FaXYjD6kqMRQxVtpocI9WOT8CKGjVqpJYtW153cXFxUXh4uDIyMpSSkmI+dteuXSosLFTXrl1LPfekSZP073//W4cOHTIvkrRo0SKtWLHCGs0rt+q8D9LVJ2Z9+vSRi4uLNm7cWKOevLi4uKhjx47auXOneVthYaF27typ8PDwUo8JDw+3KC9J27dvL7N8TVCZ+yBJ8+fP16xZs5SYmGgxJkVNVdH70LJlSx0+fNjie+D//u//9MADD+jQoUMKCQmxZvWrTGX+Hu655x5999135kBQkr799lsFBQXZZaBUHpW5D9nZ2SUCpqIA0jCM6qusnamN35O1TXXGBk2aNFFwcLBOnDhhsf3bb79VaGhotbaruLoQC9blOK+uxHF1JU6rC3FYXYmxiKHKVhO/g8xsO6Z67da3b1+jffv2RnJysrF7926jefPmFtPg/ve//zXuuOMOIzk5ucxzyI5nVimvit6HixcvGl27djXatGljfPfdd8b58+fNS35+vq2aUSHvv/++4erqaqxcudI4duyYMXr0aMPX19cwmUyGYRjGE088YUyaNMlcfs+ePUa9evWMBQsWGMePHzemTZtWI6YLvpGK3od58+YZLi4uxrp16yw+90uXLtmqCVWiovehuJowu0t5VPQ+pKamGvXr1zfi4+ONEydOGJs2bTL8/f2N2bNn26oJVaKi92HatGlG/fr1jX/84x/G999/b2zbts1o1qyZ8eijj9qqCVXi0qVLxsGDB42DBw8akoyFCxcaBw8eNM6ePWsYhmFMmjTJeOKJJ8zli6Y0njBhgnH8+HFj2bJlNWZKY5RUmRhp0aJFhre3t7F27Vrj5MmTxpQpUww3Nzfju+++s0UTyqUuxIK1Mc6rK3FcXYnT6kIcVldirLoSQ9WlGImEVDX65ZdfjMcff9zw8vIyvL29jSeffNLiC/v06dOGJOPTTz8t8xz2HoSUR0Xvw6effmpIKnU5ffq0bRpRCUuXLjUaN25suLi4GF26dDG++uor87777rvPiI2NtSj/4YcfGi1atDBcXFyMO++809i8ebOVa1w9KnIfQkNDS/3cp02bZv2KV7GK/j1cqyYEQuVV0fuwd+9eo2vXroarq6vRtGlTY86cOXbzPyw3oyL3IS8vz5g+fbrRrFkzw83NzQgJCTGeeeYZ49dff7V+xatQWd/1RW2PjY017rvvvhLHtGvXznBxcTGaNm1qrFixwur1RtWobIyUkJBg3HbbbYaHh4cRHh5ufPnll1auecXUhViwtsZ5dSWOqytxWl2Iw+pKjFUXYqi6FCM5GEYt6qsGAAAAAAAAu8cYUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSAAAAAAAAsCoSUgAAAAAAALAqElIAAAAAAACwKhJSqHLTp0+Xg4ODxbYmTZpo+PDh1X7tM2fOyMHBQStXrjRvGz58uLy8vKr92kUcHBw0ffp0q12vprv//vt1//33V+k5S/sbtIXq+Lsvfs7PPvtMDg4O+uyzzyp8rvLe+5u5RkXY+7+dwsJC3XXXXZozZ84Ny5b2N5ifn6+JEycqJCREjo6OGjx4cIWuv3z5cjVu3Fg5OTkVOg6A/SBGsu/veXtDjHRz5yRGsh5iJFQWCSnYrS1bttjtF689162uyM7O1vTp06s9AIB9a9KkiRwcHEosf/zjH0uUzcjI0OjRo9WoUSN5enrqgQce0Ndff13ua/3jH//QDz/8oPj4+ErV9Z133tGf//xnDR06VKtWrdK4ceMkSR988IF+//vfq3nz5nJwcCgzAB4+fLhyc3P1xhtvVOr6AGoPe45D7LludQUxEqSaHyP98ssv+vOf/6yePXuqUaNG8vX1Vbdu3fTBBx+UOJ4YqeaqZ+sKoG44ceKEHB0rlv/csmWLli1bVqGgJjQ0VL/99pucnZ0rWMOKuV7dfvvtN9Wrxz+t6padna0ZM2ZIUon/gZ8yZYomTZpkg1pZqszffUX17NlTv/32m1xcXCp87LZt26qhRtbXrl07/elPf7LY1qJFC4v1wsJCDRgwQN98840mTJigW265Ra+99pruv/9+paSkqHnz5je8zp///GdFR0fLx8enUvXctWuXbr31Vi1atMhi++uvv66UlBR17txZv/zyS5nHu7m5KTY2VgsXLtSYMWPs4gk3gJtHjISqRox0FTFSzY6RNm3apJdeekn9+/fXlClTVK9ePf3zn/9UdHS0jh07Zv4bl4iRajJ+EWAVrq6u1Xr+/Px8FRYWysXFRW5ubtV6rRux9fWt4cqVK3JxcSk1kLh8+bI8PT1tUKv/qVevnl0EvNX9dy9Jjo6Olf6bq0yAZo9uvfVW/f73v79umXXr1mnv3r1au3athg4dKkl69NFH1aJFC02bNk1r1qy57vEHDx7UN998o7/85S+Vrmd6erp8fX1LbP/73/+uW2+9VY6Ojrrrrruue45HH31U8+fP16effqpevXpVui4A7AcxUu1CjFQ+xEjWUZNjpDvvvFMnT55UaGioedszzzyjiIgIvfLKK5o4caLFvydipJqJV/ZwU3bv3q3OnTvLzc1NzZo1K7ObZPF3uvPy8jRjxgw1b95cbm5uatiwoXr06KHt27dLutrtctmyZZJk0cVU+t8YCAsWLNDixYvVrFkzubq66tixY6WOj1Dk+++/V2RkpDw9PRUcHKyZM2fKMAzz/rLeAS9+zuvVrWhb8aeCBw8eVL9+/eTt7S0vLy/17t1bX331lUWZlStXysHBQXv27NH48ePNXWaHDBmin376qfQP4Dp+/PFHjRgxQsHBwXJ1dVVYWJiefvpp5ebmWtyTRx55RH5+fvLw8FC3bt20efNmi/MU3Zf3339fU6ZM0a233ioPDw9lZmaax544deqU+vfvr/r16ysmJkbS1actixcv1p133ik3NzcFBAToqaee0q+//nrdeufm5mrq1Knq2LGjfHx85OnpqXvvvVeffvqpucyZM2fUqFEjSdKMGTPMn0HRfS/r3fRZs2aZ/16aNGmiF198scS75k2aNNFDDz2k3bt3q0uXLnJzc1PTpk317rvvVuwDUMm/+4p8xoZhaPbs2brtttvk4eGhBx54QEePHi1xjeJ/t/Hx8fLy8lJ2dnaJso8//rgCAwNVUFAgqfTxEf773/9q8ODB8vT0lL+/v8aNG1fq+/hljf1Q/Jzl+TyrQm5uri5fvlzm/nXr1ikgIEAPP/yweVujRo306KOP6uOPP77hmAMbNmyQi4uLevbsWWLfjb4Hi75DPv30Ux09etT891r0mRWNl1AeHTt2lJ+fnz7++ONylQdgO8RIxEjESGUjRiJGkq4fI4WFhVkko6Sr3yGDBw9WTk6Ovv/+e4t9xEg1k+3T46ixDh8+rD59+qhRo0aaPn268vPzNW3aNAUEBNzw2OnTpyshIUEjR45Uly5dlJmZqQMHDujrr7/Wgw8+qKeeekrnzp3T9u3b9fe//73Uc6xYsUJXrlzR6NGj5erqKj8/PxUWFpZatqCgQH379lW3bt00f/58JSYmatq0acrPz9fMmTMr1O7y1O1aR48e1b333itvb29NnDhRzs7OeuONN3T//ffr888/V9euXS3KjxkzRg0aNNC0adN05swZLV68WPHx8aW+L12Wc+fOqUuXLub3wVu2bKkff/xR69atU3Z2tlxcXJSWlqbu3bsrOztbzz77rBo2bKhVq1bp//7v/7Ru3ToNGTLE4pyzZs2Si4uLnn/+eeXk5JifHOXn5ysyMlI9evTQggUL5OHhYb5PK1eu1JNPPqlnn31Wp0+f1quvvqqDBw9qz549Zb4ykJmZqb/97W96/PHHNWrUKF26dElvv/22IiMjtW/fPrVr106NGjXS66+/rqefflpDhgwx/4DefffdZd6TkSNHatWqVRo6dKj+9Kc/KTk5WQkJCTp+/LjWr19vUfa7777T0KFDNWLECMXGxuqdd97R8OHD1bFjR915553l/hzKUp7PeOrUqZo9e7b69++v/v376+uvv1afPn0sguXSPPbYY1q2bJk2b96sRx55xLw9Oztbn3zyiYYPHy4nJ6dSj/3tt9/Uu3dvpaam6tlnn1VwcLD+/ve/a9euXZVua3k+z5u1a9cueXh4qKCgQKGhoRo3bpyee+45izIHDx5Uhw4dSiR+unTpojfffFPffvut2rRpU+Y19u7dq7vuuqvE3215vgcbNWqkv//975ozZ46ysrKUkJAgSWrVqlWl2tuhQwft2bOnUscCsA5iJGIkiRipMoiRiJGk68dIJpNJknTLLbeU2EeMVAMZQCUNHjzYcHNzM86ePWveduzYMcPJycko/qcVGhpqxMbGmtfbtm1rDBgw4Lrnj4uLK3EewzCM06dPG5IMb29vIz09vdR9K1asMG+LjY01JBljxowxbyssLDQGDBhguLi4GD/99JNhGIbx6aefGpKMTz/99IbnLKtuhmEYkoxp06aZ1wcPHmy4uLgYp06dMm87d+6cUb9+faNnz57mbStWrDAkGREREUZhYaF5+7hx4wwnJycjIyOj1OuVZtiwYYajo6Oxf//+EvuKzj127FhDkvHll1+a9126dMkICwszmjRpYhQUFBiG8b/70rRpUyM7O9viXEX3dtKkSRbbv/zyS0OSsXr1aovtiYmJJbbfd999xn333Wdez8/PN3JyciyO+/XXX42AgADjD3/4g3nbTz/9VOJeF5k2bZrF53Po0CFDkjFy5EiLcs8//7whydi1a5d5W2hoqCHJ+OKLL8zb0tPTDVdXV+NPf/pTiWtdT/G/+/J+xunp6YaLi4sxYMAAi3IvvviiIcninMX/bgsLC41bb73ViIqKsqjLhx9+WKJdxe/94sWLDUnGhx9+aN52+fJl4/bbby/xb6N428o6Z3k/T8Mo+W+nPAYOHGi88sorxoYNG4y3337buPfeew1JxsSJEy3KeXp6lrieYRjG5s2bDUlGYmLida9z2223lbinhlGx78H77rvPuPPOO697nTvvvNPi/pVm9OjRhru7+3XLALAtYiRiJGKk6yNGIka6VnliJMMwjF9++cXw9/c37r333lL3EyPVPLyyh0opKCjQv/71Lw0ePFiNGzc2b2/VqpUiIyNveLyvr6+OHj2qkydPVroOUVFR5i7J5XHtrA8ODg6Kj49Xbm6uduzYUek63EhBQYG2bdumwYMHq2nTpubtQUFB+t3vfqfdu3crMzPT4pjRo0dbdKW+9957VVBQoLNnz5brmoWFhdqwYYMGDhyoTp06ldhfdO4tW7aoS5cu6tGjh3mfl5eXRo8erTNnzujYsWMWx8XGxsrd3b3Uaz799NMW62vXrpWPj48efPBB/fzzz+alY8eO8vLyum5XZCcnJ/OTxcLCQl24cEH5+fnq1KlThWb7uNaWLVskSePHj7fYXjTIY/Eu+K1bt9a9995rXm/UqJHuuOOOEl2DK+tGn/GOHTuUm5tbYlDGsWPH3vDcDg4OeuSRR7RlyxZlZWWZt3/wwQe69dZbLT7v4rZs2aKgoCDz+AGS5OHhodGjR1ekeRaq4/O81saNGzVx4kQNGjRIf/jDH/T5558rMjJSCxcu1H//+19zud9++63U8SqKxpb47bffrnudX375RQ0aNLDYdrPfg5XVoEED/fbbb6W+cgDA9oiRyocYiRipNMRIxEhlKSwsVExMjDIyMrR06dJSyxAj1TwkpFApP/30k3777bdSZ1244447bnj8zJkzlZGRoRYtWqhNmzaaMGGC/v3vf1eoDmFhYeUu6+joaBHsSP+bYeLMmTMVum5F/PTTT8rOzi71nrRq1UqFhYX64YcfLLZf+6UtyfwFf6NxBa69ZmZm5g0HRz579myZ9Sraf62y7ne9evV02223WWw7efKkLl68KH9/fzVq1MhiycrKUnp6+nXrtmrVKt19993msTMaNWqkzZs36+LFi9c9rixnz56Vo6Ojbr/9dovtgYGB8vX1LdHW4p+BdPVzKO9ncCM3+oyL6lP831ejRo1K/OCX5rHHHtNvv/2mjRs3SpKysrK0ZcsWPfLII9eddeTs2bO6/fbbS5Qpz7/p66nqz/N6HBwcNG7cOOXn51uMdeLu7l7qGAhXrlwx778R45rxVKSb/x6srKJ6MIMMYJ+IkcqHGIkYqTTESMRIZRkzZowSExP1t7/9TW3btr1uPYiRag7GkIJN9OzZU6dOndLHH3+sbdu26W9/+5sWLVqk5cuXa+TIkeU6R3m+HCuirC+uosENraWsd9eLf9FbW1n329XVtcQ754WFhfL399fq1atLPeZ6T23fe+89DR8+XIMHD9aECRPk7+8vJycnJSQk6NSpU5VvgMr/41Tdn0F1n79bt25q0qSJPvzwQ/3ud7/TJ598ot9++02PPfZYlZxfuv6/l2vbV52fZ1lCQkIkSRcuXDBvCwoK0vnz50uULdoWHBx83XM2bNiwyoLtm/Xrr7/Kw8Ojyr8DAdgHYqSyESMRI90sYqSaGSPNmDFDr732mubNm6cnnniizHLESDUPCSlUSqNGjeTu7l5qd/ITJ06U6xx+fn568skn9eSTTyorK0s9e/bU9OnTzcFWVWa2CwsL9f3335uf+EnSt99+K+nqTBjS/57AZGRkWBxbWjfw8tatUaNG8vDwKPWe/Oc//5Gjo6P5h6GqNGrUSN7e3jpy5Mh1y4WGhpZZr6L9ldWsWTPt2LFD99xzT4V/ENatW6emTZvqo48+srjP06ZNsyhXkb+P0NBQFRYW6uTJkxaDJKalpSkjI+Om2lodiupz8uRJi6fWP/30U7l/8B999FH99a9/VWZmpj744AM1adJE3bp1u+F1jxw5IsMwLO5vaX8nDRo0KPFvRbr67+XaOpf386xKRa8NXBvUt2vXTl9++aUKCwst/ucgOTlZHh4eFt8NpWnZsqVOnz5tsa0qvgcr4/Tp05UeEB1A9SNGIka6HmKkm0OMdHNqYoy0bNkyTZ8+XWPHjtULL7xw3bLESDUPr+yhUpycnBQZGakNGzYoNTXVvP348eP617/+dcPjf/nlF4t1Ly8v3X777RbdRT09PSWVDH4q69VXXzX/t2EYevXVV+Xs7KzevXtLuvpD4+TkpC+++MLiuNdee63EucpbNycnJ/Xp00cff/yxRbf3tLQ0rVmzRj169JC3t3clW1Q6R0dHDR48WJ988okOHDhQYn/RE6b+/ftr3759SkpKMu+7fPmy3nzzTTVp0kStW7eudB0effRRFRQUaNasWSX25efnX/e+FT05uvZJWHJyskU9JZlnqinP30f//v0lSYsXL7bYvnDhQknSgAEDbngOa4qIiJCzs7OWLl1qcR+K1/96HnvsMeXk5GjVqlVKTEzUo48+esNj+vfvr3PnzmndunXmbdnZ2XrzzTdLlG3WrJm++uorixltNm3aVOL1ivJ+npVx4cKFEk/n8/LyNG/ePLm4uOiBBx4wbx86dKjS0tL00Ucfmbf9/PPPWrt2rQYOHFjq2AnXCg8P15EjRyy+o272e7Cyvv76a3Xv3r3azg/g5hAjESNdDzHSzSFGKp/aEiN98MEHevbZZxUTE2P+m7weYqSahx5SqLQZM2YoMTFR9957r5555hnl5+dr6dKluvPOO2841kHr1q11//33q2PHjvLz89OBAwe0bt06i0E1O3bsKEl69tlnFRkZKScnJ0VHR1eqrm5ubkpMTFRsbKy6du2qrVu3avPmzXrxxRfNTwh8fHz0yCOPaOnSpXJwcFCzZs20adOmUt/lr0jdZs+ere3bt6tHjx565plnVK9ePb3xxhvKycnR/PnzK9WeG5k7d662bdum++67T6NHj1arVq10/vx5rV27Vrt375avr68mTZqkf/zjH+rXr5+effZZ+fn5adWqVTp9+rT++c9/luhiXhH33XefnnrqKSUkJOjQoUPq06ePnJ2ddfLkSa1du1Z//etfLQaFvNZDDz2kjz76SEOGDNGAAQN0+vRpLV++XK1bt7YYgNLd3V2tW7fWBx98oBYtWsjPz0933XVXqeNCtG3bVrGxsXrzzTeVkZGh++67T/v27dOqVas0ePBgix9le9CoUSM9//zzSkhI0EMPPaT+/fvr4MGD2rp1a6lT3JamQ4cOuv322/XSSy8pJyenXF3RR40apVdffVXDhg1TSkqKgoKC9Pe//90c2F5r5MiRWrdunfr27atHH31Up06d0nvvvadmzZpZlCvv51kZGzdu1OzZszV06FCFhYXpwoULWrNmjY4cOaK5c+cqMDDQXHbo0KHq1q2bnnzySR07dky33HKLXnvtNRUUFGjGjBk3vNagQYM0a9Ysff755+rTp495+818Dxb54osvzP+T99NPP+ny5cuaPXu2pKuv7vTs2dNcNiUlRRcuXNCgQYPKdW4AtkGMRIxUFmKkm0OMVD61IUbat2+fhg0bpoYNG6p3794lXnPt3r27RY8zYqQayppT+qH2+fzzz42OHTsaLi4uRtOmTY3ly5eXmE7WMEpOfzp79myjS5cuhq+vr+Hu7m60bNnSmDNnjpGbm2suk5+fb4wZM8Zo1KiR4eDgYD5n0RTDf/7zn0vUp6wpjT09PY1Tp04Zffr0MTw8PIyAgABj2rRp5ml7i/z0009GVFSU4eHhYTRo0MB46qmnjCNHjpQ4Z1l1M4zSp2X9+uuvjcjISMPLy8vw8PAwHnjgAWPv3r0WZYqmuy0+DXFZUy3fyNmzZ41hw4YZjRo1MlxdXY2mTZsacXFxFtPLnjp1yhg6dKjh6+truLm5GV26dDE2bdpU6vXXrl1b4hpF97Ysb775ptGxY0fD3d3dqF+/vtGmTRtj4sSJxrlz58xlik+BW1hYaMydO9cIDQ01XF1djfbt2xubNm0yYmNjjdDQUIvz79271/z3d+19L+1vMC8vz5gxY4YRFhZmODs7GyEhIcbkyZONK1euWJQLDQ0tdbrt4vUsj7KmNC7PZ1xQUGDMmDHDCAoKMtzd3Y3777/fOHLkSIlzXu/v46WXXjIkGbfffnup9SutTWfPnjX+7//+z/Dw8DBuueUW47nnnjNPRV38Gn/5y1+MW2+91XB1dTXuuece48CBAzf1eZb2b+d6Dhw4YAwcONC49dZbDRcXF8PLy8vo0aOHxZTM17pw4YIxYsQIo2HDhoaHh4dx3333lTrtd1nuvvtuY8SIESW2l/d7sKwpjYvKlrYUvx8vvPCC0bhxY4uprgHYJ2IkYiRipLIRIxEjXau0GKnob6Ks5drvHcMgRqqpHAzDxqMAAgBQA/z9739XXFycUlNT5evra/Xr5+TkqEmTJpo0aZKee+45q18fAACgNMRIqCzGkAIAoBxiYmLUuHFjLVu2zCbXX7FihZydnfXHP/7RJtcHAAAoDTESKoseUkANkpWVdcN3yhs1alTmlLmoGiaT6br73d3d5ePjY6Xa1D4FBQX66aefrlvGy8tLXl5eVqoRAMDeESPZB2Kk6kWMhNqGhBRQg0yfPv2GgwuePn3aPE0zqseNplOOjY3VypUrrVOZWujMmTMKCwu7bplp06Zp+vTp1qkQAMDuESPZB2Kk6kWMhNqGWfaAGmTYsGHq0aPHdctcO2sGqsf27duvuz84ONhKNamdAgMDb3iPr51VBQAAYiT7QIxUvYiRUNvQQwoAAAAAAABWxaDmAAAAAAAAsKo6/cpeYWGhzp07p/r169/wfWcAAFA7GIahS5cuKTg4WI6OPJsrDTESAAB1j7VjpDqdkDp37pxCQkJsXQ0AAGADP/zwg2677TZbV8MuESMBAFB3WStGqtMJqfr160u6erO9vb1tXBsAAGANmZmZCgkJMccBKIkYCQCAusfaMVKdTkgVdUH39vYm2AIAoI7hVbSyESMBAFB3WStGYuAEAAAAAAAAWBUJKQAAAAAAAFgVCSkAAAAAAABYVZ0eQwoAgOspKChQXl6erauBCnJ2dpaTk5OtqwEAQK1FjFQz2VuMREIKAIBiDMOQyWRSRkaGrauCSvL19VVgYCADlwMAUIWIkWo+e4qRSEgBAFBMUaDl7+8vDw8Pu/jBRvkYhqHs7Gylp6dLkoKCgmxcIwAAag9ipJrLHmMkElIAAFyjoKDAHGg1bNjQ1tVBJbi7u0uS0tPT5e/vb1dd0wEAqKmIkWo+e4uRGNQcAIBrFI2H4OHhYeOa4GYUfX6MbwEAQNUgRqod7ClGIiEFAEAp6IJes/H5AQBQPfiNrdns6fMjIQUAAAAAAACrIiEFAAAAAAAAq2JQcwAAyikvcbfVruXct0e5y96o6/W0adM0ffr0m6xR5Tg4OGj9+vUaPHhwpc/x5ptvas2aNfr666916dIl/frrr/L19a2yOgIAgJtjzRhJIk4qcuHCBU2bNk3btm1TamqqGjVqpMGDB2vWrFny8fGp2spWAxJSAADUcOfPnzf/9wcffKCpU6fqxIkT5m1eXl4VOl9ubq5cXFyqrH43Kzs7W3379lXfvn01efJkW1cHAADUILU5Tjp37pzOnTunBQsWqHXr1jp79qz++Mc/6ty5c1q3bp2tq3dDvLIHwK7lJe62WACUFBgYaF58fHzk4OBgXr98+bJiYmIUEBAgLy8vde7cWTt27LA4vkmTJpo1a5aGDRsmb29vjR49WpL01ltvKSQkRB4eHhoyZIgWLlxYomfSxx9/rA4dOsjNzU1NmzbVjBkzlJ+fbz6vJA0ZMkQODg7m9W+++UYPPPCA6tevL29vb3Xs2FEHDhwos31jx47VpEmT1K1bt6q5YTb0xRdfaODAgQoODpaDg4M2bNhgsd8wDE2dOlVBQUFyd3dXRESETp48aVHmwoULiomJkbe3t3x9fTVixAhlZWVZlPn3v/+te++9V25ubgoJCdH8+fOru2kA6pjiMRpxGuxVbY6T7rrrLv3zn//UwIED1axZM/Xq1Utz5szRJ598Yr6OPSMhBQBALZaVlaX+/ftr586dOnjwoPr27auBAwcqNTXVotyCBQvUtm1bHTx4UC+//LL27NmjP/7xj3ruued06NAhPfjgg5ozZ47FMV9++aWGDRum5557TseOHdMbb7yhlStXmsvt379fkrRixQqdP3/evB4TE6PbbrtN+/fvV0pKiiZNmiRnZ2cr3A3bu3z5stq2batly5aVun/+/PlasmSJli9fruTkZHl6eioyMlJXrlwxl4mJidHRo0e1fft2bdq0SV988YU5OJakzMxM9enTR6GhoUpJSdGf//xnTZ8+XW+++Wa1tw8AgJqkNsZJFy9elLe3t+rVs/8X4uy/hgAAoNLatm2rtm3bmtdnzZql9evXa+PGjYqPjzdv79Wrl/70pz+Z11966SX169dPzz//vCSpRYsW2rt3rzZt2mQuM2PGDE2aNEmxsbGSpKZNm2rWrFmaOHGipk2bpkaNGkmSfH19FRgYaD4uNTVVEyZMUMuWLSVJzZs3r4aW26d+/fqpX79+pe4zDEOLFy/WlClTNGjQIEnSu+++q4CAAG3YsEHR0dE6fvy4EhMTtX//fnXq1EmStHTpUvXv318LFixQcHCwVq9erdzcXL3zzjtycXHRnXfeqUOHDmnhwoUWiSsAAOq62hYn/fzzz5o1a1aN+b2nhxQAALVYVlaWnn/+ebVq1Uq+vr7y8vLS8ePHSzz5K0puFDlx4oS6dOlisa34+jfffKOZM2fKy8vLvIwaNUrnz59XdnZ2mXUaP368Ro4cqYiICM2bN0+nTp26yVbWDqdPn5bJZFJERIR5m4+Pj7p27aqkpCRJUlJSknx9fS0+r4iICDk6Oio5OdlcpmfPnhbjW0RGRurEiRP69ddfS712Tk6OMjMzLRYAAGq72hQnZWZmasCAAWrdurXNBmmvKBJSAGyCcQcA63j++ee1fv16zZ07V19++aUOHTqkNm3aKDc316Kcp6dnhc+dlZWlGTNm6NChQ+bl8OHDOnnypNzc3Mo8bvr06Tp69KgGDBigXbt2qXXr1lq/fn2Fr1/bmEwmSVJAQIDF9oCAAPM+k8kkf39/i/316tWTn5+fRZnSznHtNYpLSEiQj4+PeQkJCbn5BgEAYOdqS5x06dIl9e3bV/Xr19f69etrzFAIvLIHwCpIOAG2sWfPHg0fPlxDhgyRdDU4OnPmzA2Pu+OOO8xjGRQpvt6hQwedOHFCt99+e5nncXZ2VkFBQYntLVq0UIsWLTRu3Dg9/vjjWrFihbmOsL7Jkydr/Pjx5vXMzEySUgCAWq82xEmZmZmKjIyUq6urNm7ceN1kl70hIQWgypF8AuxH8+bN9dFHH2ngwIFycHDQyy+/rMLCwhseN2bMGPXs2VMLFy7UwIEDtWvXLm3dulUODg7mMlOnTtVDDz2kxo0ba+jQoXJ0dNQ333yjI0eOaPbs2ZKuziCzc+dO3XPPPXJ1dZWbm5smTJigoUOHKiwsTP/973+1f/9+RUVFlVkXk8kkk8mk7777TpJ0+PBh1a9fX40bN5afn99N3iH7UTR+RFpamoKCgszb09LS1K5dO3OZ9PR0i+Py8/N14cIF8/GBgYFKS0uzKFO0fu0YFddydXWVq6trlbQDAICaoqbHSUUTmWRnZ+u9996zeO2+UaNGcnJyqoK7VH14ZQ9AhfCaHVCzLFy4UA0aNFD37t01cOBARUZGqkOHDjc87p577tHy5cu1cOFCtW3bVomJiRo3bpzFU7fIyEht2rRJ27ZtU+fOndWtWzctWrRIoaGh5jJ/+ctftH37doWEhKh9+/ZycnLSL7/8omHDhqlFixZ69NFH1a9fP82YMaPMuixfvlzt27fXqFGjJEk9e/ZU+/bttXHjxpu4M/YnLCxMgYGB2rlzp3lbZmamkpOTFR4eLkkKDw9XRkaGUlJSzGV27dqlwsJCde3a1Vzmiy++UF5enrnM9u3bdccdd6hBgwZWag0AAPavpsdJX3/9tZKTk3X48GHdfvvtCgoKMi8//PDDzd+gauZgGIZh60rYSmZmpnx8fMzTIgK4seJJKOe+PW5YprzKc67SygBV6cqVKzp9+rTCwsJqVJdnaxg1apT+85//6Msvv7R1VW7oep+jLX//s7KyzD292rdvr4ULF+qBBx6Qn5+fGjdurFdeeUXz5s3TqlWrFBYWppdffln//ve/dezYMXM7+vXrp7S0NC1fvlx5eXl68skn1alTJ61Zs0bS1eme77jjDvXp00cvvPCCjhw5oj/84Q9atGhRuWfdIUYCcCOlxXvEabUbMdL11ZQ4yZ5iJF7ZAwAApVqwYIEefPBBeXp6auvWrVq1apVee+01W1erRjtw4IAeeOAB83rRuE2xsbFauXKlJk6cqMuXL2v06NHKyMhQjx49lJiYaBEwrl69WvHx8erdu7ccHR0VFRWlJUuWmPf7+Pho27ZtiouLU8eOHXXLLbdo6tSpNWYKaAAAagLipJtHQgoAAJRq3759mj9/vi5duqSmTZtqyZIlGjlypK2rVaPdf//9ul7ndAcHB82cOVMzZ84ss4yfn5+5N1RZ7r77brt/QgsAQE1GnHTzSEgBAIBSffjhh7auAgAAgF0iTrp5NhnUvKCgQC+//LLCwsLk7u6uZs2aadasWRZPDA3D0NSpUxUUFCR3d3dFRETo5MmTFue5cOGCYmJi5O3tLV9fX40YMUJZWVnWbg4AAAAAAAAqwCYJqVdeeUWvv/66Xn31VR0/flyvvPKK5s+fr6VLl5rLzJ8/X0uWLNHy5cuVnJwsT09PRUZG6sqVK+YyMTExOnr0qLZv365Nmzbpiy++YHwEAAAAAAAAO2eTV/b27t2rQYMGacCAAZKkJk2a6B//+If27dsn6WrvqMWLF2vKlCkaNGiQJOndd99VQECANmzYoOjoaB0/flyJiYnav3+/OnXqJElaunSp+vfvrwULFig4ONgWTQNQyzCDDAAAAABUPZv0kOrevbt27typb7/9VpL0zTffaPfu3erXr58k6fTp0zKZTIqIiDAf4+Pjo65duyopKUmSlJSUJF9fX3MySpIiIiLk6Oio5ORkK7YGAAAAAAAAFWGTHlKTJk1SZmamWrZsKScnJxUUFGjOnDmKiYmRJJlMJklSQECAxXEBAQHmfSaTSf7+/hb769WrJz8/P3OZ4nJycpSTk2Nez8zMrLI2AQAAAAAAoHxskpD68MMPtXr1aq1Zs0Z33nmnDh06pLFjxyo4OFixsbHVdt2EhATNmDGj2s4P1EWlvdJm63Pxmh0AAEDlEUsBsAabvLI3YcIETZo0SdHR0WrTpo2eeOIJjRs3TgkJCZKkwMBASVJaWprFcWlpaeZ9gYGBSk9Pt9ifn5+vCxcumMsUN3nyZF28eNG8/PDDD1XdNAAAAAAAANyATXpIZWdny9HRMhfm5OSkwsJCSVJYWJgCAwO1c+dOtWvXTtLV1+uSk5P19NNPS5LCw8OVkZGhlJQUdezYUZK0a9cuFRYWqmvXrqVe19XVVa6urtXUKqD2qcreT0BtcOrAG1a7VrNOT1Wo/PDhw7Vq1SpJ/3uF/e6779bjjz+u4cOHl/jdrUmOHj2qqVOnKiUlRWfPntWiRYs0duxYW1cLAGoF4j1UBWvGSBJx0rXeeustvfvuuzpy5IgkqWPHjpo7d666dOli45rdmE3u+sCBAzVnzhxt3rxZZ86c0fr167Vw4UINGTJEkuTg4KCxY8dq9uzZ2rhxow4fPqxhw4YpODhYgwcPliS1atVKffv21ahRo7Rv3z7t2bNH8fHxio6OZoY9AECd1LdvX50/f15nzpzR1q1b9cADD+i5557TQw89pPz8fFtXr9Kys7PVtGlTzZs3r8xe0AAAANdTW+Okzz77TI8//rg+/fRTJSUlKSQkRH369NGPP/5o66rdkE0SUkuXLtXQoUP1zDPPqFWrVnr++ef11FNPadasWeYyEydO1JgxYzR69Gh17txZWVlZSkxMlJubm7nM6tWr1bJlS/Xu3Vv9+/dXjx499Oabb9qiSQAA2Jyrq6sCAwN16623qkOHDnrxxRf18ccfa+vWrVq5cqW5XEZGhkaOHKlGjRrJ29tbvXr10jfffGNxrk8++USdO3eWm5ubbrnlFvNDI0n69ddfNWzYMDVo0EAeHh7q16+fTp48KUm6fPmyvL29tW7dOovzbdiwQZ6enrp06ZJyc3MVHx+voKAgubm5KTQ01Pzafmk6d+6sP//5z4qOjqanMwDcpLzE3RYLUFfU1jhp9erVeuaZZ9SuXTu1bNlSf/vb31RYWKidO3dWwV2rXjZJSNWvX1+LFy/W2bNn9dtvv+nUqVOaPXu2XFxczGUcHBw0c+ZMmUwmXblyRTt27FCLFi0szuPn56c1a9bo0qVLunjxot555x15eXlZuzkArKh4EFXVg6oTpKG26dWrl9q2bauPPvrIvO2RRx5Renq6tm7dqpSUFHXo0EG9e/fWhQsXJEmbN2/WkCFD1L9/fx08eFA7d+606PY9fPhwHThwQBs3blRSUpIMw1D//v2Vl5cnT09PRUdHa8WKFRb1WLFihYYOHar69etryZIl2rhxoz788EOdOHFCq1evVpMmTaxyPwAAAIrUxjgpOztbeXl58vPzu7mbYwU2GUMKAKyN2WJQl7Vs2VL//ve/JUm7d+/Wvn37lJ6ebu5ttGDBAm3YsEHr1q3T6NGjNWfOHEVHR1vMTNu2bVtJ0smTJ7Vx40bt2bNH3bt3l3T1yVxISIg2bNigRx55RCNHjlT37t11/vx5BQUFKT09XVu2bNGOHTskSampqWrevLl69OghBwcHhYaGWvN2AAAqgQd1qK1qW5z0wgsvKDg4WBERETd9b6pbzR25CwAAlIthGHJwcJAkffPNN8rKylLDhg3l5eVlXk6fPq1Tp05Jkg4dOqTevXuXeq7jx4+rXr16FhOINGzYUHfccYeOHz8uSerSpYvuvPNO8+Ch7733nkJDQ9WzZ09JV58cHjp0SHfccYeeffZZbdu2rdraDgAAcD21KU6aN2+e3n//fa1fv95iuCN7RQ8pAABquePHjyssLEySlJWVpaCgIH322Wclyvn6+kqS3N3db/qaI0eO1LJlyzRp0iStWLFCTz75pDnY69Chw/9j786jo6jy/o9/soctCWGyKkvYhCAIsgYRFSIBog9oXHAYCIjggwEHGFEY2RGCDAM8MAjqOAEXRsURRITI5jJA2KLMj20QEYgjdOKIISyStX5/cNLSSQeSkN7fr3PqHLrqVtW91Z3uL9+6da9OnjypTZs2aevWrXrssccUHx9fbjwFAABK0dsdtuIucdKCBQs0b948bd26Ve3atbvpOtoDCSkAkuiGDbir7du36+DBgxo/frykq0GOyWSSr69vheMRtGvXTtu2bdPw4cPLbWvdurWKioq0Z88ec1f0n376SceOHVNsbKy53O9+9zs9//zzWrJkiY4cOaLk5GSL4wQFBenxxx/X448/rkceeUR9+/bVuXPnXGK8AwBwFcR3wPW5S5w0f/58zZkzR59++qk6depUnUvhECSkAABwE/n5+TKZTCouLlZ2drbS09OVmpqqBx54QEOHDpUkxcfHKy4uTgMHDtT8+fPVsmVLnTlzxjxAZ6dOnTR9+nT17t1bzZo106BBg1RUVKSNGzfqhRdeUIsWLTRgwACNHDlSr776qurVq6dJkybplltu0YABA8x1qV+/vh5++GFNnDhRffr00a233mretnDhQkVFRalDhw7y9vbWmjVrFBkZab7zWFZBQYGOHDli/vcPP/ygAwcOqG7dumrevLntLigAAHAb7honvfzyy5o2bZpWr16tJk2ayGQySZL5cUNnxhhSgIdiNjnA/aSnpysqKkpNmjRR37599dlnn2nJkiX66KOP5OPjI+nqLLYbN25Uz549NXz4cLVs2VKDBg3S6dOnFRERIUm69957tWbNGq1fv17t27dXr169tHfvXvN50tLS1LFjRz3wwAOKi4uTYRjauHGj/Pz8LOozYsQIFRQU6Mknn7RYX69ePc2fP1+dOnVS586dderUKW3cuFHe3tbDkjNnzqhDhw7q0KGDzp49qwULFqhDhw566qmnavLyAQDsgFmN4SjuGictX75cBQUFeuSRRxQVFWVeFixYUJOXzya8DMMwHF0JR8nLy1NwcLDOnz+voKAgR1cHsCt3+vEvO35AZdtWU/vBvVy5ckUnT55UTEyMSwwG6czeeustjR8/XmfOnJG/v79dz32995Hf/xvjGgHuwRnivcrEW5WJrRhDyvGIkWqWo+IkZ4qReGQPAADUqMuXL+vs2bOaN2+enn76absnowAAAJwVcdKvSEgBwE3ijh1gqXRgzZ49e2ry5MmOrg4AeARn6A3laMRkcAXESb9iDCkAAFCjZsyYocLCQm3bts3pB9MEAACwJ+KkX9FDCoBVp3I3lVvXJKSfA2oCAAAAAHA3JKQA2BSJLQAAAFxP2UfteMwO8AwkpAA3w7PzQM0oKSlxdBVwE3j/ALg7xoyCo/Ab69qc6f0jIQXA4ehFBWfi7+8vb29vnTlzRmFhYfL395eXl5ejq4VKMgxDBQUF+vHHH+Xt7e3RM9cAgDMgceY+iJFcmzPGSCSkAHgsAiRY4+3trZiYGJ09e1ZnzpxxdHVQTbVr11ajRo3k7c38LQDgrojl7IsYyT04U4xEQgrwAO7+Y+3u7YP9+fv7q1GjRioqKlJxcbGjq4Mq8vHxka+vL3dtAQCoYcRIrs3ZYiQSUgAAWOHl5SU/Pz/5+fk5uioAAABOgxgJNYWEFACnVHZcKcaUAgAAAAD3QUIKAAAAAJwYwxMAcEeOH8UKAAAAAAAAHoUeUgBQRdylBAAAAICbQ0IKgKTyYza5y7kAAAAAAM6HhBTg4pyttw7JJgAAAADAjTCGFAAAAAAAAOyKhBQAAAAAAADsyiEJqSZNmsjLy6vckpKSIkm6cuWKUlJS1KBBA9WtW1dJSUnKzs62OEZWVpYSExNVu3ZthYeHa+LEiSoqKnJEcwAAAAAAAFAFDhlDat++fSouLja/PnTokO6//349+uijkqTx48frk08+0Zo1axQcHKwxY8bo4Ycf1s6dOyVJxcXFSkxMVGRkpHbt2qWzZ89q6NCh8vPz09y5cx3RJAC4obLjffn17eGgmgAAADgvZxsjFYBtOCQhFRYWZvF63rx5atasme655x6dP39eb7zxhlavXq1evXpJktLS0tS6dWvt3r1b3bp10+bNm3XkyBFt3bpVERERat++vWbPnq0XXnhBM2bMkL+/vyOaBQBmBFIAAKAyuGFlW9ZiMq4x4BwcPoZUQUGB3n77bT355JPy8vJSZmamCgsLFR8fby7TqlUrNWrUSBkZGZKkjIwMtW3bVhEREeYyCQkJysvL0+HDh+3eBgC2dyp3U7kFAAAAAOCaHNJD6lrr1q1Tbm6uhg0bJkkymUzy9/dXSEiIRbmIiAiZTCZzmWuTUaXbS7dVJD8/X/n5+ebXeXl5NdACAAAAAAAAVIXDE1JvvPGG+vXrp+joaJufKzU1VTNnzrT5eQDAGfAIAAAArofH/gF4CocmpE6fPq2tW7fqww8/NK+LjIxUQUGBcnNzLXpJZWdnKzIy0lxm7969FscqnYWvtIw1kydP1oQJE8yv8/Ly1LBhw5poCgAnYO0xviYh/RxQEwAAAADA9Th0DKm0tDSFh4crMTHRvK5jx47y8/PTtm3bzOuOHTumrKwsxcXFSZLi4uJ08OBB5eTkmMts2bJFQUFBio2NrfB8AQEBCgoKslgAT8DYSwAAAAAAZ+KwHlIlJSVKS0tTcnKyfH1/rUZwcLBGjBihCRMmKDQ0VEFBQRo7dqzi4uLUrVs3SVKfPn0UGxurIUOGaP78+TKZTJoyZYpSUlIUEBDgqCYBLoOkFAAAAADAkRyWkNq6dauysrL05JNPltu2aNEieXt7KykpSfn5+UpISNArr7xi3u7j46MNGzZo9OjRiouLU506dZScnKxZs2bZswmAxyOxBQAAAACoDoclpPr06SPDMKxuCwwM1LJly7Rs2bIK92/cuLE2btxoq+oBsIIElO1ZG8iUwcgBAAAAuBuHz7IH4OaUTRIxiDcAAAAAwNk5dFBzALA1Zx7QvTB9R7kFgGcrLi7W1KlTFRMTo1q1aqlZs2aaPXu2Ra9ywzA0bdo0RUVFqVatWoqPj9fx48ctjnPu3DkNHjxYQUFBCgkJ0YgRI3Tx4kV7NwcAAKBCJKQAAACcxMsvv6zly5frL3/5i44ePaqXX35Z8+fP19KlS81l5s+fryVLlmjFihXas2eP6tSpo4SEBF25csVcZvDgwTp8+LC2bNmiDRs26Msvv9SoUaMc0SQAAACreGQPcCH0oAEA97Zr1y4NGDBAiYmJkqQmTZro73//u/bu3Svpau+oxYsXa8qUKRowYIAk6c0331RERITWrVunQYMG6ejRo0pPT9e+ffvUqVMnSdLSpUvVv39/LViwQNHR0Y5pHAA4ibIxNeN1Ao5BDykAHqXsI3zO9hgfAM/WvXt3bdu2Td98840k6V//+pd27Nihfv2ujg948uRJmUwmxcfHm/cJDg5W165dlZGRIUnKyMhQSEiIORklSfHx8fL29taePXvs2BoAAICK0UMKAJwcd/EAzzFp0iTl5eWpVatW8vHxUXFxsebMmaPBgwdLkkwmkyQpIiLCYr+IiAjzNpPJpPDwcIvtvr6+Cg0NNZcpKz8/X/n5+ebXeXl5NdYmAHB2lZ3lmJgMqFkkpAB4PGYqBOAs3n//fb3zzjtavXq12rRpowMHDmjcuHGKjo5WcnKyzc6bmpqqmTNn2uz4AFwLsREAeyAhBbgZT3oEzZPaCsAzTJw4UZMmTdKgQYMkSW3bttXp06eVmpqq5ORkRUZGSpKys7MVFRVl3i87O1vt27eXJEVGRionJ8fiuEVFRTp37px5/7ImT56sCRMmmF/n5eWpYcOGNdk0AAAACySkAAAAnMTly5fl7W05xKePj49KSkokSTExMYqMjNS2bdvMCai8vDzt2bNHo0ePliTFxcUpNzdXmZmZ6tixoyRp+/btKikpUdeuXa2eNyAgQAEBATZqFQC4HiYTAmyPhBQAVAJd1wHYw4MPPqg5c+aoUaNGatOmjb7++mstXLhQTz75pCTJy8tL48aN00svvaQWLVooJiZGU6dOVXR0tAYOHChJat26tfr27auRI0dqxYoVKiws1JgxYzRo0CBm2AMAAE6DhBQAuAHu4gHuYenSpZo6daqeeeYZ5eTkKDo6Wk8//bSmTZtmLvP888/r0qVLGjVqlHJzc9WjRw+lp6crMDDQXOadd97RmDFj1Lt3b3l7eyspKUlLlixxRJMAAACsIiEFAADgJOrVq6fFixdr8eLFFZbx8vLSrFmzNGvWrArLhIaGavXq1TaoIQDQcxxAzSAhBTgperygInw2AAAAALg67xsXAQAAAAAAAGoOCSkAAAAAAADYFY/sAQAAAIAd2Ouxe8Z4AuAK6CEFAAAAAAAAuyIhBQAAAAAAALvikT0AAAAAAGqAtccy/fr2cEBNAOdHQgpwEvYaUwAAAACoSYxZBaA6SEgBQBllgyoAAACgLG4oAzeHMaQAAAAAAABgVySkAAAAAAAAYFc8sge4EB4lw81gkE0AAAAAzoKEFOAkSDYBAACgOogjAbgihz2y98MPP+h3v/udGjRooFq1aqlt27bav3+/ebthGJo2bZqioqJUq1YtxcfH6/jx4xbHOHfunAYPHqygoCCFhIRoxIgRunjxor2bAgAAAAAAgCpwSA+pn3/+WXfddZfuu+8+bdq0SWFhYTp+/Ljq169vLjN//nwtWbJEq1atUkxMjKZOnaqEhAQdOXJEgYGBkqTBgwfr7Nmz2rJliwoLCzV8+HCNGjVKq1evdkSzAAAAAMDl0MPKtsoOm8CQCcBVDklIvfzyy2rYsKHS0tLM62JiYsz/NgxDixcv1pQpUzRgwABJ0ptvvqmIiAitW7dOgwYN0tGjR5Wenq59+/apU6dOkqSlS5eqf//+WrBggaKjo+3bKAAAAACwg5tNIJGAAuAMHJKQWr9+vRISEvToo4/qiy++0C233KJnnnlGI0eOlCSdPHlSJpNJ8fHx5n2Cg4PVtWtXZWRkaNCgQcrIyFBISIg5GSVJ8fHx8vb21p49e/TQQw/ZvV0A4GoY6BwAAPfn6ARW2f2bhPS7qeMBcA8OGUPqu+++0/Lly9WiRQt9+umnGj16tJ599lmtWrVKkmQymSRJERERFvtFRESYt5lMJoWHh1ts9/X1VWhoqLlMWfn5+crLy7NYAAAAAAAAYF8O6SFVUlKiTp06ae7cuZKkDh066NChQ1qxYoWSk5Ntdt7U1FTNnDnTZscHAAAAAADAjTkkIRUVFaXY2FiLda1bt9Y//vEPSVJkZKQkKTs7W1FRUeYy2dnZat++vblMTk6OxTGKiop07tw58/5lTZ48WRMmTDC/zsvLU8OGDW+6PQAg0R0dAAD8ytpj8QCAXzkkIXXXXXfp2LFjFuu++eYbNW7cWNLVAc4jIyO1bds2cwIqLy9Pe/bs0ejRoyVJcXFxys3NVWZmpjp27ChJ2r59u0pKStS1a1er5w0ICFBAQICNWgUAlqyNt0CSCgAAwBI39QDP5JCE1Pjx49W9e3fNnTtXjz32mPbu3avXXntNr732miTJy8tL48aN00svvaQWLVooJiZGU6dOVXR0tAYOHCjpao+qvn37auTIkVqxYoUKCws1ZswYDRo0iBn2AOAmMDUxAAD2RULGEtcD8AwOSUh17txZa9eu1eTJkzVr1izFxMRo8eLFGjx4sLnM888/r0uXLmnUqFHKzc1Vjx49lJ6ersDAQHOZd955R2PGjFHv3r3l7e2tpKQkLVmyxBFNAgAAAAAAQCU5JCElSQ888IAeeOCBCrd7eXlp1qxZmjVrVoVlQkNDtXr1altUDwAAAACAGmdtfDF6pMMTOSwhBQBwXQRSAADYjrs/smZtnE0AnoeEFAAAAACgxpBwsg1uCMLdeDu6AgAAAAAAAPAs9JACbIw7GQAAALgZ9DgC4I5ISAGAA1kLMN1tnAgAAAAAKIuEFABUgy3vVLr7QKZlle1FSA9CAAAAwP0xhhQAAAAAAADsih5SAIAaQU8nAAAAAJVFDykAAAAAAADYFT2kAMCOmCUHAAAAAEhIAQAAAMBNK/voOmzHHSeAsfb5YfgDuDsSUgAAmyCwAgAAAFARElIAAKdCIgsA4OzoDQV74HMGd0dCCnCAwvQdjCUEAAAAAPBYzLIHAAAAAAAAu6KHFADguuguDgAAHIknCwD3REIKAAAAAOyIBAtqCmNvwpWRkALsgKADcAyCNAAAAMA5kZACANgNj/8BADxB2ZuRTUL6Oagm8ERl4y1rN+O4aQdnQEIKAAAAAGyI3vJwJG4IwlmRkAIAAAAAuC16rAHOydvRFQAAAAAAAIBnoYcUAAAAAMBt8Igk4BpISAEAPEplBvoEAAAAYFs8sgcAAAAAAAC7ckhCasaMGfLy8rJYWrVqZd5+5coVpaSkqEGDBqpbt66SkpKUnZ1tcYysrCwlJiaqdu3aCg8P18SJE1VUVGTvpgCAQ5zK3WSx4GrPp7IL4Ip++OEH/e53v1ODBg1Uq1YttW3bVvv37zdvNwxD06ZNU1RUlGrVqqX4+HgdP37c4hjnzp3T4MGDFRQUpJCQEI0YMUIXL160d1MAAAAq5LAeUm3atNHZs2fNy44dv/7HYfz48fr444+1Zs0affHFFzpz5owefvhh8/bi4mIlJiaqoKBAu3bt0qpVq7Ry5UpNmzbNEU0BAACoET///LPuuusu+fn5adOmTTpy5Ij+/Oc/q379+uYy8+fP15IlS7RixQrt2bNHderUUUJCgq5cuWIuM3jwYB0+fFhbtmzRhg0b9OWXX2rUqFGOaBIAAIBVDhtDytfXV5GRkeXWnz9/Xm+88YZWr16tXr16SZLS0tLUunVr7d69W926ddPmzZt15MgRbd26VREREWrfvr1mz56tF154QTNmzJC/v7+9mwMAQDnWemkxZhWu5+WXX1bDhg2VlpZmXhcTE2P+t2EYWrx4saZMmaIBAwZIkt58801FRERo3bp1GjRokI4ePar09HTt27dPnTp1kiQtXbpU/fv314IFCxQdHW3fRgEAAFjhsB5Sx48fV3R0tJo2barBgwcrKytLkpSZmanCwkLFx8eby7Zq1UqNGjVSRkaGJCkjI0Nt27ZVRESEuUxCQoLy8vJ0+PBh+zYEAACghqxfv16dOnXSo48+qvDwcHXo0EGvv/66efvJkydlMpks4qTg4GB17drVIk4KCQkxJ6MkKT4+Xt7e3tqzZ4/9GgMAdsJQBoBrckhCqmvXrlq5cqXS09O1fPlynTx5UnfffbcuXLggk8kkf39/hYSEWOwTEREhk8kkSTKZTBbJqNLtpdsqkp+fr7y8PIsFAADAWXz33Xdavny5WrRooU8//VSjR4/Ws88+q1WrVkn6Nc6xFgddGyeFh4dbbPf19VVoaGiFcRIxEgAAsDeHPLLXr18/87/btWunrl27qnHjxnr//fdVq1Ytm503NTVVM2fOtNnxAQAAbkZJSYk6deqkuXPnSpI6dOigQ4cOacWKFUpOTrbZeYmRAACAvTnskb1rhYSEqGXLlvr2228VGRmpgoIC5ebmWpTJzs42jzkVGRlZbta90tfWxqUqNXnyZJ0/f968fP/99zXbEACwgbLd0OmKDrivqKgoxcbGWqxr3bq1eWiD0jjHWhx0bZyUk5Njsb2oqEjnzp2rME4iRgIAAPbmFAmpixcv6sSJE4qKilLHjh3l5+enbdu2mbcfO3ZMWVlZiouLkyTFxcXp4MGDFsHWli1bFBQUVC6Iu1ZAQICCgoIsFgAAAGdx11136dixYxbrvvnmGzVu3FjS1QHOIyMjLeKkvLw87dmzxyJOys3NVWZmprnM9u3bVVJSoq5du1o9LzESAACwN4c8svfcc8/pwQcfVOPGjXXmzBlNnz5dPj4+euKJJxQcHKwRI0ZowoQJCg0NVVBQkMaOHau4uDh169ZNktSnTx/FxsZqyJAhmj9/vkwmk6ZMmaKUlBQFBAQ4okkAABtitjp4ivHjx6t79+6aO3euHnvsMe3du1evvfaaXnvtNUmSl5eXxo0bp5deekktWrRQTEyMpk6dqujoaA0cOFDS1R5Vffv21ciRI7VixQoVFhZqzJgxGjRoEDPsAQAAp+GQhNR//vMfPfHEE/rpp58UFhamHj16aPfu3QoLC5MkLVq0SN7e3kpKSlJ+fr4SEhL0yiuvmPf38fHRhg0bNHr0aMXFxalOnTpKTk7WrFmzHNEcAACAGtG5c2etXbtWkydP1qxZsxQTE6PFixdr8ODB5jLPP/+8Ll26pFGjRik3N1c9evRQenq6AgMDzWXeeecdjRkzRr179zbHVEuWLHFEkwAAAKzyMgzDcHQlHCUvL0/BwcE6f/48XdNRo07sf9X875JvsxxYE3iKJiH9blzIzZTtIWWtF1V1jlOT6NnlnPj9vzGuEXB9N/rNYbxH51Y2bir7fnliXCVVP0Yp+/dArOO67P3775AeUgCAmlWZwNdTgysAAAAAzoeEFFDDCtN3qCSXXlEAAAAAAFSEhBQAwKPxWB0AALgWj/BVrLpDJNgbjxG6Bm9HVwAAAAAAAACehR5SAAAAAHATGMTctfB+VY6r9IZyRvTArxwSUgAAM2sBGt3UAQAAANQ0ElIAANgRd8wAAAAqh7jJvZGQAgAA5RAAAsBVPLYET8FnHfZGQgoAPIS7PY5ny6CJmVkAAAAA2yIhBQBADeHOIgAAQPUQR3keElIAAFSDqwRNNfnoHT3HAABAdTAUAKwhIQUAAAAAQCWVHQbBlYdAcEXOeIPMVW5UOhsSUgAAeBhnDOQAAHBW1sbhRMVIzqCySEgBAHADtg6sXDVBRPd7AAAAVBcJKQDwYNzxg8SdTAAAANift6MrAAAAAAAAAM9CDykAAFwAj8cBAAA4Hj3Law4JKQAAAAAA4JJIELkuElIAADgZAisAAODuiHdAQgoAABflqrPzAQAAACSkAABVYm1mviYh/RxQEwAAAACuiln2AAAAAAAAYFf0kAIAXJe1HlEAAACAK6vMGFYMh2BbJKSAm3Ri/6sWr0tysxxUEwAAANgDN2sA4OaRkAIAAAAAAG6LGf2ck8PHkJo3b568vLw0btw487orV64oJSVFDRo0UN26dZWUlKTs7GyL/bKyspSYmKjatWsrPDxcEydOVFFRkZ1rDwCA8yhM31FuAQAAjnUqd5PFAuAqh/aQ2rdvn1599VW1a9fOYv348eP1ySefaM2aNQoODtaYMWP08MMPa+fOnZKk4uJiJSYmKjIyUrt27dLZs2c1dOhQ+fn5ae7cuY5oCjxUYfoOHtEDAAAAPBhJJqB6HNZD6uLFixo8eLBef/111a9f37z+/PnzeuONN7Rw4UL16tVLHTt2VFpamnbt2qXdu3dLkjZv3qwjR47o7bffVvv27dWvXz/Nnj1by5YtU0FBgaOaBAAAAAAAgEpwWEIqJSVFiYmJio+Pt1ifmZmpwsJCi/WtWrVSo0aNlJGRIUnKyMhQ27ZtFRERYS6TkJCgvLw8HT582D4NAAAAAOAReOQKAGqeQx7Ze/fdd/XVV19p37595baZTCb5+/srJCTEYn1ERIRMJpO5zLXJqNLtpdsqkp+fr/z8fPPrvLy86jYBAAAAAACgUqyN7enXt4cDauI87J6Q+v777/X73/9eW7ZsUWBgoF3PnZqaqpkzZ9r1nHAfDA4MVKzs3eImIf0cVBMAAACgZvB/QNuy+yN7mZmZysnJ0Z133ilfX1/5+vrqiy++0JIlS+Tr66uIiAgVFBQoNzfXYr/s7GxFRkZKkiIjI8vNulf6urSMNZMnT9b58+fNy/fff1+zjQMAAADg0pitFADsw+49pHr37q2DBw9arBs+fLhatWqlF154QQ0bNpSfn5+2bdumpKQkSdKxY8eUlZWluLg4SVJcXJzmzJmjnJwchYeHS5K2bNmioKAgxcbGVnjugIAABQQE2KhlAACA7ugAAACoDLsnpOrVq6fbb7/dYl2dOnXUoEED8/oRI0ZowoQJCg0NVVBQkMaOHau4uDh169ZNktSnTx/FxsZqyJAhmj9/vkwmk6ZMmaKUlBQSTgAAAAAAl8HQB/BUDhnU/EYWLVokb29vJSUlKT8/XwkJCXrllVfM2318fLRhwwaNHj1acXFxqlOnjpKTkzVr1iwH1hoAAAAAAACV4RQJqc8//9zidWBgoJYtW6Zly5ZVuE/jxo21ceNGG9cMAAAAAAAANc0pElIAAAAAAKA8HumDuyIhBQAAbKrsQOcMcg4AAAASUgAAAAAA2EnZHk+ApyIhBVQRPyAAAAAAANwcb0dXAAAAAAAAAJ6FhBQAAAAAAADsikf2AAAAAABwEgwRAk9BQgoAYBfVCa6Y1hgAAABwTzyyBwAAAAAAALuihxQAoMbR1RwAAADA9dBDCgAAAAAAAHZFQgoAAAAAAAB2xSN7AAAAAHANHj0HANujhxQAAICTmjdvnry8vDRu3DjzuitXriglJUUNGjRQ3bp1lZSUpOzsbIv9srKylJiYqNq1ays8PFwTJ05UUVGRnWsPAACupzB9h8XiaeghBQAA4IT27dunV199Ve3atbNYP378eH3yySdas2aNgoODNWbMGD388MPauXOnJKm4uFiJiYmKjIzUrl27dPbsWQ0dOlR+fn6aO3euI5oCOC1P/A8gXF/ZHnxNQvo5qCbAzaGHFAAAgJO5ePGiBg8erNdff13169c3rz9//rzeeOMNLVy4UL169VLHjh2VlpamXbt2affu3ZKkzZs368iRI3r77bfVvn179evXT7Nnz9ayZctUUFDgqCYBAABYICEFAADgZFJSUpSYmKj4+HiL9ZmZmSosLLRY36pVKzVq1EgZGRmSpIyMDLVt21YRERHmMgkJCcrLy9Phw4ft0wAAAIAb4JE9AAAAJ/Luu+/qq6++0r59+8ptM5lM8vf3V0hIiMX6iIgImUwmc5lrk1Gl20u3WZOfn6/8/Hzz67y8vJtpAgAAwA2RkAIqwJgCAAB7+/777/X73/9eW7ZsUWBgoN3Om5qaqpkzZ9rtfAAAADyyBwAA4CQyMzOVk5OjO++8U76+vvL19dUXX3yhJUuWyNfXVxERESooKFBubq7FftnZ2YqMjJQkRUZGlpt1r/R1aZmyJk+erPPnz5uX77//vuYbBwAAcA0SUgAAAE6id+/eOnjwoA4cOGBeOnXqpMGDB5v/7efnp23btpn3OXbsmLKyshQXFydJiouL08GDB5WTk2Mus2XLFgUFBSk2NtbqeQMCAhQUFGSxAAAA2BKP7AEAADiJevXq6fbbb7dYV6dOHTVo0MC8fsSIEZowYYJCQ0MVFBSksWPHKi4uTt26dZMk9enTR7GxsRoyZIjmz58vk8mkKVOmKCUlRQEBAXZvEwAAgDUkpAAATutU7qZy65qE9HNATQDnsWjRInl7eyspKUn5+flKSEjQK6+8Yt7u4+OjDRs2aPTo0YqLi1OdOnWUnJysWbNmObDWAAAAlkhIAddh7T/DAADY0+eff27xOjAwUMuWLdOyZcsq3Kdx48bauHGjjWsGAHBFZf+Pw80+OApjSAEAAAAAAMCu6CEFAAAAAICboAcUXIVDekgtX75c7dq1M8/iEhcXp02bfv2juXLlilJSUtSgQQPVrVtXSUlJ5aYvzsrKUmJiomrXrq3w8HBNnDhRRUVF9m4KAAAAAAAOcyp3k8UCuAqHJKRuvfVWzZs3T5mZmdq/f7969eqlAQMG6PDhw5Kk8ePH6+OPP9aaNWv0xRdf6MyZM3r44YfN+xcXFysxMVEFBQXatWuXVq1apZUrV2ratGmOaA4AAAAAAACqwCGP7D344IMWr+fMmaPly5dr9+7duvXWW/XGG29o9erV6tWrlyQpLS1NrVu31u7du9WtWzdt3rxZR44c0datWxUREaH27dtr9uzZeuGFFzRjxgz5+/s7olkAAAAAXBC9SgDA/hw+qHlxcbHeffddXbp0SXFxccrMzFRhYaHi4+PNZVq1aqVGjRopIyNDkpSRkaG2bdsqIiLCXCYhIUF5eXnmXlbW5OfnKy8vz2IBAAAAAACAfTlsUPODBw8qLi5OV65cUd26dbV27VrFxsbqwIED8vf3V0hIiEX5iIgImUwmSZLJZLJIRpVuL91WkdTUVM2cObNmGwIAAAAAgJOiByCclcN6SN122206cOCA9uzZo9GjRys5OVlHjhyx6TknT56s8+fPm5fvv//epucDAAAAAABAeQ7rIeXv76/mzZtLkjp27Kh9+/bp//7v//T444+roKBAubm5Fr2ksrOzFRkZKUmKjIzU3r17LY5XOgtfaRlrAgICFBAQUMMtAQAAAAAAQFU4fAypUiUlJcrPz1fHjh3l5+enbdu2mbcdO3ZMWVlZiouLkyTFxcXp4MGDysnJMZfZsmWLgoKCFBsba/e6AwAAAHBuhek7yi0AAMdxSA+pyZMnq1+/fmrUqJEuXLig1atX6/PPP9enn36q4OBgjRgxQhMmTFBoaKiCgoI0duxYxcXFqVu3bpKkPn36KDY2VkOGDNH8+fNlMpk0ZcoUpaSk0AMKANxc2XEQmoT0c1BNAAAAgJpjLVHu17eHA2piHw5JSOXk5Gjo0KE6e/asgoOD1a5dO3366ae6//77JUmLFi2St7e3kpKSlJ+fr4SEBL3yyivm/X18fLRhwwaNHj1acXFxqlOnjpKTkzVr1ixHNAduoPQPnwH/AAAAAACwPYckpN54443rbg8MDNSyZcu0bNmyCss0btxYGzdurOmqAQDckLVkMz2rAAAAAMdxmjGkAAAAAAAA4BkcNsseAAC2wuO3AAAAgHMjIQUAcGkknwAAAADXwyN7AAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwK8aQAgAAdlWYvqPcOr++PRxQEwAAADgKPaQAAAAAAABgV/SQAgAAAAAAksrPYNwkpJ+DagJ3R0IKAAAAAAAPVTYBVdXyJKxQXSSkAAAeiWAKADxXVf8DDgCoeYwhBQAAAAAAALsiIQUAAAAAAAC7IiEFAAAAAAAAuyIhBQAAAAAAALsiIQUAAAAAAAC7YpY9AABuArP1AQAAAFVHQgoAAAAAAFhV9uYbUFN4ZA8AAAAAAAB2RUIKAAAAAAAAdkVCCgAAAAAAAHbFGFIAAAAAAKBamOAF1UUPKQAAAAAAANgVCSkAAAAAAADYFY/swWOc2P+qxetmnZ52UE0AOCNrUxrT5RwAAACwDYckpFJTU/Xhhx/q3//+t2rVqqXu3bvr5Zdf1m233WYuc+XKFf3hD3/Qu+++q/z8fCUkJOiVV15RRESEuUxWVpZGjx6tzz77THXr1lVycrJSU1Pl60ueDRUr+TZLknT82xcdXBMArsZa0goA4JwK03c4ugqAR2JMKVSWQx7Z++KLL5SSkqLdu3dry5YtKiwsVJ8+fXTp0iVzmfHjx+vjjz/WmjVr9MUXX+jMmTN6+OGHzduLi4uVmJiogoIC7dq1S6tWrdLKlSs1bdo0RzQJAAAAAAAAleSQrkTp6ekWr1euXKnw8HBlZmaqZ8+eOn/+vN544w2tXr1avXr1kiSlpaWpdevW2r17t7p166bNmzfryJEj2rp1qyIiItS+fXvNnj1bL7zwgmbMmCF/f39HNA0AAAAAAAA34BSDmp8/f16SFBoaKknKzMxUYWGh4uPjzWVatWqlRo0aKSMjQ5KUkZGhtm3bWjzCl5CQoLy8PB0+fNjqefLz85WXl2exAAAAAHBvp3I3WSwAAMdz+GBLJSUlGjdunO666y7dfvvtkiSTySR/f3+FhIRYlI2IiJDJZDKXuTYZVbq9dJs1qampmjlzZg23AADgrvhPCwAAAGAbDk9IpaSk6NChQ9qxw/aDDk6ePFkTJkwwv87Ly1PDhg1tfl4AAAAAAMCg5/iVQxNSY8aM0YYNG/Tll1/q1ltvNa+PjIxUQUGBcnNzLXpJZWdnKzIy0lxm7969FsfLzs42b7MmICBAAQEBNdwKAAAAAAAAVIVDxpAyDENjxozR2rVrtX37dsXExFhs79ixo/z8/LRt2zbzumPHjikrK0txcXGSpLi4OB08eFA5OTnmMlu2bFFQUJBiY2Pt0xAAAAAAAABUmUN6SKWkpGj16tX66KOPVK9ePfOYT8HBwapVq5aCg4M1YsQITZgwQaGhoQoKCtLYsWMVFxenbt26SZL69Omj2NhYDRkyRPPnz5fJZNKUKVOUkpJCLygAAAAAAAAn5pCE1PLlyyVJ9957r8X6tLQ0DRs2TJK0aNEieXt7KykpSfn5+UpISNArr7xiLuvj46MNGzZo9OjRiouLU506dZScnKxZs2bZqxkAAAAAnNCJ/a+qJDfL0dUAUAmMKeW5HJKQMgzjhmUCAwO1bNkyLVu2rMIyjRs31saNG2uyagAA3BRrM/OVDawqUwYAAMATkaDyHA4ZQwoAAADlpaamqnPnzqpXr57Cw8M1cOBAHTt2zKLMlStXlJKSogYNGqhu3bpKSkoyT+xSKisrS4mJiapdu7bCw8M1ceJEFRUV2bMpAAAA1+XQWfYAeyhM3yFJdNsG4DDWekQB1nzxxRdKSUlR586dVVRUpD/+8Y/q06ePjhw5ojp16kiSxo8fr08++URr1qxRcHCwxowZo4cfflg7d+6UJBUXFysxMVGRkZHatWuXzp49q6FDh8rPz09z5851ZPMAAADMSEgBAOAE6J4OSUpPT7d4vXLlSoWHhyszM1M9e/bU+fPn9cYbb2j16tXq1auXpKtjcLZu3Vq7d+9Wt27dtHnzZh05ckRbt25VRESE2rdvr9mzZ+uFF17QjBkz5O/v74imAQAAWOCRPQAAACd1/vx5SVJoaKgkKTMzU4WFhYqPjzeXadWqlRo1aqSMjAxJUkZGhtq2bauIiAhzmYSEBOXl5enw4cN2rD0AAEDF6CEFAADghEpKSjRu3Djddddduv322yVJJpNJ/v7+CgkJsSgbEREhk8lkLnNtMqp0e+k2a/Lz85Wfn29+nZeXV1PNAOyidIiGUgzVAADOj4QUAACAE0pJSdGhQ4e0Y8eOGxe+SampqZo5c6bNzwMAwM1imAP3QUIKAADAyYwZM0YbNmzQl19+qVtvvdW8PjIyUgUFBcrNzbXoJZWdna3IyEhzmb1791ocr3QWvtIyZU2ePFkTJkwwv87Ly1PDhg1rqjmAzTF5BOC8+PtERRhDCgAAwEkYhqExY8Zo7dq12r59u2JiYiy2d+zYUX5+ftq2bZt53bFjx5SVlaW4uDhJUlxcnA4ePKicnBxzmS1btigoKEixsbFWzxsQEKCgoCCLBQAAwJboIQUAAOAkUlJStHr1an300UeqV6+eecyn4OBg1apVS8HBwRoxYoQmTJig0NBQBQUFaezYsYqLi1O3bt0kSX369FFsbKyGDBmi+fPny2QyacqUKUpJSVFAQIAjmwcAQJXRw8p9kZCCWzqx/1XzvxnUEgDgKpYvXy5Juvfeey3Wp6WladiwYZKkRYsWydvbW0lJScrPz1dCQoJeeeUVc1kfHx9t2LBBo0ePVlxcnOrUqaPk5GTNmjXLXs0AAAC4IRJSAAAATsIwjBuWCQwM1LJly7Rs2bIKyzRu3FgbN26syaoBAADUKBJSAAC4KGtd2JlpBgAAeBJm3XNdJKTgsgrTf50Gu/RLyLt5I0dVBwBqFMkmAAAAuDMSUgAAAABcxrU3JQEArsvb0RUAAAAAAACAZ6GHFNxKybfMqAfAfTHtMQAAgGex1ivUr28PB9Sk5pGQAgAAAOC0eEQPANwTCSkAANwIM80AAADAFZCQAgAAAAAAHoGbd86DQc0BAAAAAABgV/SQAgAAAAAAboEeUK6DhBQAAAAAAHBLN5qlmASW45CQgstghhUAAABIN/4PJgDA+ZGQgtM7sf9VSVJJbpYkMtYAAAAAALg6ElIAAAAAnBo9ogDA/Thklr0vv/xSDz74oKKjo+Xl5aV169ZZbDcMQ9OmTVNUVJRq1aql+Ph4HT9+3KLMuXPnNHjwYAUFBSkkJEQjRozQxYsX7dgKAACc36ncTeUWAAAAwNEc0kPq0qVLuuOOO/Tkk0/q4YcfLrd9/vz5WrJkiVatWqWYmBhNnTpVCQkJOnLkiAIDAyVJgwcP1tmzZ7VlyxYVFhZq+PDhGjVqlFavXm3v5sDO+M8UANwcBu8EAACAozkkIdWvXz/162c9+DUMQ4sXL9aUKVM0YMAASdKbb76piIgIrVu3ToMGDdLRo0eVnp6uffv2qVOnTpKkpUuXqn///lqwYIGio6Pt1hYAAAAAAABUjUMe2buekydPymQyKT4+3rwuODhYXbt2VUZGhiQpIyNDISEh5mSUJMXHx8vb21t79uyp8Nj5+fnKy8uzWAAAAAAAAGBfTjeouclkkiRFRERYrI+IiDBvM5lMCg8Pt9ju6+ur0NBQcxlrUlNTNXPmzBquMQAAuFmF6TvKrfPr28MBNQEAAIA9OF1CypYmT56sCRMmmF/n5eWpYcOGDqwRAAAAgLJO7H/V/O+S3CwH1gSAp2GsTftxuoRUZGSkJCk7O1tRUVHm9dnZ2Wrfvr25TE5OjsV+RUVFOnfunHl/awICAhQQEFDzlQYAAABw00p7S5KEAgD353RjSMXExCgyMlLbtm0zr8vLy9OePXsUFxcnSYqLi1Nubq4yMzPNZbZv366SkhJ17drV7nUGAAAAAABA5Tmkh9TFixf17bffml+fPHlSBw4cUGhoqBo1aqRx48bppZdeUosWLRQTE6OpU6cqOjpaAwcOlCS1bt1affv21ciRI7VixQoVFhZqzJgxGjRoEDPsubhru2cDAADAM5TGgPSMAuBseITPdhySkNq/f7/uu+8+8+vScZ2Sk5O1cuVKPf/887p06ZJGjRql3Nxc9ejRQ+np6QoMDDTv884772jMmDHq3bu3vL29lZSUpCVLlti9LQAAAAAAAKgahySk7r33XhmGUeF2Ly8vzZo1S7NmzaqwTGhoqFavXm2L6gEA4PG4GwgAAABbcrpBzQFJKvmW7toAYC9lk08AAACArZGQAgAAAAAAqAR6kdccp5tlDwAAAAAAAO6NHlIAAOCGrD3Wxx1BAADg6egxVX0kpAAAAAAAAGoACarK45E9AAAAAAAA2BU9pAAAQLVwBxAAAADVRUIKDnVi/6uOrgIAAADs7MT+V1XybZajqwEAcCAe2QMAAAAAAIBd0UMKToE7ZAAAAAAAeA4SUgAAAAAAADbAmJsV45E9AAAAAAAA2BU9pGB3hek7zP8uyeVRPQAAAAAAPA0JKQAAYDN0UwcAAIA1JKRgMyf2v2p1Pb2iAMA9lU0+AcC16CUPALgWCSkAAAAANnVi/6skoQDACk/uTU5CCjWq7J0v7+aNHFgbAAAAOEJFPeUBAChFQgo2VfItd8IAAAA8DTEgAFjHEAe/IiGFGlF6F4yu2AAAAJ7l2h7yAABUFgkpAAAAADeFO/4AgKoiIQUAAOzG2n9aPWnwTgAAgOvxpEHOSUihUqx1xfbr28MBNQEAAAAAAK6OhBSq5VTuJnnvP+zoagAAAMCGGB8KAGArJKRwQyf2v2p1sHJmTwEAAPBMjBkFALhZJKQ8TOlseKWadXraQTUBAACAs2IGZQCArbl8QmrZsmX605/+JJPJpDvuuENLly5Vly5dHF0tl1E2QVWK3k8AALg2YiRcz4n9r1qN97ybN3JAbQAAnsilE1LvvfeeJkyYoBUrVqhr165avHixEhISdOzYMYWHhzu6ek6JwAMA4Gw8aTYZeyFGQnVxUxIAnIs7x0lehmEYjq5EdXXt2lWdO3fWX/7yF0lSSUmJGjZsqLFjx2rSpEk33D8vL0/BwcE6f/68goKCbF1dm7PW24mgAgDgakoDLVvN5upuv//WECOhLOJEAHAPTUL6uU2M5LI9pAoKCpSZmanJkyeb13l7eys+Pl4ZGRlW98nPz1d+fr759fnz5yVdvei2ULilfD387o+rchlr5bLOb7nJ2gEA4Jzy/C5Jkvxs9Ptc+rvvwvfkrssVYiRYV5XYkVgQADxTnt8lt4mRXDYh9d///lfFxcWKiIiwWB8REaF///vfVvdJTU3VzJkzy61v2LChTeoIAACq4892OcuFCxcUHBxsl3PZEzESAADuzPZxkr1iJJdNSFXH5MmTNWHCBPPrkpISnTt3Tg0aNJCXl5fNzpuXl6eGDRvq+++/9+hu71yHq7gOV3EdruI6/IprcRXX4SpbXgfDMHThwgVFR0fX6HFdmaNipBvxhL8H2uj63L19Em10F7TRPbhTjOSyCanf/OY38vHxUXZ2tsX67OxsRUZGWt0nICBAAQEBFutCQkJsVcVygoKC3PaPoiq4DldxHa7iOlzFdfgV1+IqrsNVtroO7tgzqpQrxkg34gl/D7TR9bl7+yTa6C5oo3twhxjJ225nqmH+/v7q2LGjtm3bZl5XUlKibdu2KS6u/BhMAAAAnoAYCQAAuAKX7SElSRMmTFBycrI6deqkLl26aPHixbp06ZKGDx/u6KoBAAA4DDESAABwdi6dkHr88cf1448/atq0aTKZTGrfvr3S09PLDeLpaAEBAZo+fXq5rvCehutwFdfhKq7DVVyHX3EtruI6XMV1uDmuEiPdiCd8Dmij63P39km00V3QRvfgTm30Mtx1zmMAAAAAAAA4JZcdQwoAAAAAAACuiYQUAAAAAAAA7IqEFAAAAAAAAOyKhBQAAAAAAADsioSUDZw7d06DBw9WUFCQQkJCNGLECF28eLFS+xqGoX79+snLy0vr1q2zbUVtrKrX4dy5cxo7dqxuu+021apVS40aNdKzzz6r8+fP27HWNWPZsmVq0qSJAgMD1bVrV+3du/e65desWaNWrVopMDBQbdu21caNG+1UU9uqynV4/fXXdffdd6t+/fqqX7++4uPjb3jdXEVVPw+l3n33XXl5eWngwIG2raAdVfVa5ObmKiUlRVFRUQoICFDLli3d4u+jqtdh8eLF5u/Ghg0bavz48bpy5YqdamsbX375pR588EFFR0dX+jfv888/15133qmAgAA1b95cK1eutHk9YV/VjaEyMjLUq1cv1alTR0FBQerZs6d++eUXO9S46jwhTnTHGNATYjtPiNs8ISbzhFjL3eMoj4qRDNS4vn37GnfccYexe/du45///KfRvHlz44knnqjUvgsXLjT69etnSDLWrl1r24raWFWvw8GDB42HH37YWL9+vfHtt98a27ZtM1q0aGEkJSXZsdY379133zX8/f2Nv/3tb8bhw4eNkSNHGiEhIUZ2drbV8jt37jR8fHyM+fPnG0eOHDGmTJli+Pn5GQcPHrRzzWtWVa/Db3/7W2PZsmXG119/bRw9etQYNmyYERwcbPznP/+xc81rVlWvQ6mTJ08at9xyi3H33XcbAwYMsE9lbayq1yI/P9/o1KmT0b9/f2PHjh3GyZMnjc8//9w4cOCAnWtes6p6Hd555x0jICDAeOedd4yTJ08an376qREVFWWMHz/ezjWvWRs3bjRefPFF48MPP6zUb953331n1K5d25gwYYJx5MgRY+nSpYaPj4+Rnp5unwrDLqoTQ+3atcsICgoyUlNTjUOHDhn//ve/jffee8+4cuWKnWpdNZ4QJ7pbDOgJsZ0nxG2eEJN5QqzlCXGUJ8VIJKRq2JEjRwxJxr59+8zrNm3aZHh5eRk//PDDdff9+uuvjVtuucU4e/as0wcaN3Iz1+Fa77//vuHv728UFhbaopo20aVLFyMlJcX8uri42IiOjjZSU1Otln/ssceMxMREi3Vdu3Y1nn76aZvW09aqeh3KKioqMurVq2esWrXKVlW0i+pch6KiIqN79+7GX//6VyM5Odnpg5/Kquq1WL58udG0aVOjoKDAXlW0i6peh5SUFKNXr14W6yZMmGDcddddNq2nPVXmN+/555832rRpY7Hu8ccfNxISEmxYM9hTdWOHrl27GlOmTLFHFW+aJ8SJ7hgDekJs5wlxmyfEZJ4Qa3laHOXuMRKP7NWwjIwMhYSEqFOnTuZ18fHx8vb21p49eyrc7/Lly/rtb3+rZcuWKTIy0h5VtanqXoeyzp8/r6CgIPn6+tqimjWuoKBAmZmZio+PN6/z9vZWfHy8MjIyrO6TkZFhUV6SEhISKizvCqpzHcq6fPmyCgsLFRoaaqtq2lx1r8OsWbMUHh6uESNG2KOadlGda7F+/XrFxcUpJSVFERERuv322zV37lwVFxfbq9o1rjrXoXv37srMzDR3R//uu++0ceNG9e/f3y51dhbu+F0JS9WJHXJycrRnzx6Fh4ere/fuioiI0D333KMdO3bYq9pV4glxorvFgJ4Q23lC3OYJMZknxFrEUda52nfOtVzjf/kuxGQyKTw83GKdr6+vQkNDZTKZKtxv/Pjx6t69uwYMGGDrKtpFda/Dtf773/9q9uzZGjVqlC2qaBP//e9/VVxcrIiICIv1ERER+ve//211H5PJZLV8Za+TM6rOdSjrhRdeUHR0dLkvV1dSneuwY8cOvfHGGzpw4IAdamg/1bkW3333nbZv367Bgwdr48aN+vbbb/XMM8+osLBQ06dPt0e1a1x1rsNvf/tb/fe//1WPHj1kGIaKior0v//7v/rjH/9ojyo7jYq+K/Py8vTLL7+oVq1aDqoZakp1YofvvvtOkjRjxgwtWLBA7du315tvvqnevXvr0KFDatGihc3rXRWeECe6WwzoCbGdJ8RtnhCTeUKsRRxlnSvHSPSQqqRJkybJy8vruktlv7DLWr9+vbZv367FixfXbKVtwJbX4Vp5eXlKTExUbGysZsyYcfMVh0uZN2+e3n33Xa1du1aBgYGOro7dXLhwQUOGDNHrr7+u3/zmN46ujsOVlJQoPDxcr732mjp27KjHH39cL774olasWOHoqtnV559/rrlz5+qVV17RV199pQ8//FCffPKJZs+e7eiqAZViy9ihpKREkvT0009r+PDh6tChgxYtWqTbbrtNf/vb32qyGdflCXEiMSAq4o5xm6fEZJ4QaxFHOTd6SFXSH/7wBw0bNuy6ZZo2barIyEjl5ORYrC8qKtK5c+cq7GK9fft2nThxQiEhIRbrk5KSdPfdd+vzzz+/iZrXLFteh1IXLlxQ3759Va9ePa1du1Z+fn43W227+c1vfiMfHx9lZ2dbrM/Ozq6w3ZGRkVUq7wqqcx1KLViwQPPmzdPWrVvVrl07W1bT5qp6HU6cOKFTp07pwQcfNK8r/c+Wr6+vjh07pmbNmtm20jZSnc9EVFSU/Pz85OPjY17XunVrmUwmFRQUyN/f36Z1toXqXIepU6dqyJAheuqppyRJbdu21aVLlzRq1Ci9+OKL8vb2jHtLFX1XBgUFOfWdP9g2doiKipIkxcbGWqxv3bq1srKyql/pKvKEONFTY0BPiO08IW7zhJjME2It4ijrXDlGcv2rbydhYWFq1arVdRd/f3/FxcUpNzdXmZmZ5n23b9+ukpISde3a1eqxJ02apP/3//6fDhw4YF4kadGiRUpLS7NH8yrNltdBunpXrE+fPvL399f69etd7i6Lv7+/OnbsqG3btpnXlZSUaNu2bYqLi7O6T1xcnEV5SdqyZUuF5V1Bda6DJM2fP1+zZ89Wenq6xdgTrqqq16FVq1Y6ePCgxXfB//zP/+i+++7TgQMH1LBhQ3tWv0ZV5zNx11136dtvvzUHgJL0zTffKCoqyukCpMqqznW4fPlyuWCpNHA0DMN2lXUy7vhd6SlsGTs0adJE0dHROnbsmMX6b775Ro0bN7Zpu67lCXGip8aAnhDbeULc5gkxmSfEWsRR1rnad44Fx46p7p769u1rdOjQwdizZ4+xY8cOo0WLFhZT3f7nP/8xbrvtNmPPnj0VHkNOPHtKZVX1Opw/f97o2rWr0bZtW+Pbb781zp49a16Kiooc1Ywqe/fdd42AgABj5cqVxpEjR4xRo0YZISEhhslkMgzDMIYMGWJMmjTJXH7nzp2Gr6+vsWDBAuPo0aPG9OnTnX5q4Mqo6nWYN2+e4e/vb3zwwQcW7/2FCxcc1YQaUdXrUJYrzOhSWVW9FllZWUa9evWMMWPGGMeOHTM2bNhghIeHGy+99JKjmlAjqnodpk+fbtSrV8/4+9//bnz33XfG5s2bjWbNmhmPPfaYo5pQIy5cuGB8/fXXxtdff21IMhYuXGh8/fXXxunTpw3DMIxJkyYZQ4YMMZcvndJ44sSJxtGjR41ly5a5zJTGqLzqxFCLFi0ygoKCjDVr1hjHjx83pkyZYgQGBhrffvutI5pwQ54QJ7pbDOgJsZ0nxG2eEJN5QqzlCXGUJ8VIJKRs4KeffjKeeOIJo27dukZQUJAxfPhwiy/nkydPGpKMzz77rMJjOHugURlVvQ6fffaZIcnqcvLkScc0opqWLl1qNGrUyPD39ze6dOli7N6927ztnnvuMZKTky3Kv//++0bLli0Nf39/o02bNsYnn3xi5xrbRlWuQ+PGja2+99OnT7d/xWtYVT8P13KF4Kcqqnotdu3aZXTt2tUICAgwmjZtasyZM8cp/nNys6pyHQoLC40ZM2YYzZo1MwIDA42GDRsazzzzjPHzzz/bv+I1qKLv/NK2JycnG/fcc0+5fdq3b2/4+/sbTZs2NdLS0uxeb9hWdWOo1NRU49ZbbzVq165txMXFGf/85z/tXPPK84Q40R1jQE+I7TwhbvOEmMwTYi13j6M8KUbyMgw36acGAAAAAAAAl8AYUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSAAAAAAAAsCsSUgAAAAAAALArElIAAAAAAACwKxJSqHEzZsyQl5eXxbomTZpo2LBhNj/3qVOn5OXlpZUrV5rXDRs2THXr1rX5uUt5eXlpxowZdjufq7v33nt177331ugxrX0GHcEWn/uyx/z888/l5eWlzz//vMrHquy1v5lzVIWz/+2UlJTo9ttv15w5c25Y1tpnsKioSM8//7waNmwob29vDRw4sErnX7FihRo1aqT8/Pwq7QfAeRAjOff3vLMhRrq5YxIj2Q8xEqqLhBSc1saNG532i9eZ6+YpLl++rBkzZtg8AIDzKg0CK1quDYpWrlxZYTmTyVSp8/3973/X999/rzFjxlSrvn/729/0pz/9SY888ohWrVql8ePHS5Lee+89/e53v1OLFi3k5eVVYQA8bNgwFRQU6NVXX63W+QG4D2eOQ5y5bp6CGAnuECP99NNP+tOf/qSePXsqLCxMISEh6tatm957771y+xMjuS5fR1cAnuHYsWPy9q5a/nPjxo1atmxZlYKaxo0b65dffpGfn18Va1g116vbL7/8Il9f/rRs7fLly5o5c6YklfsP/JQpUzRp0iQH1MpSdT73VdWzZ0/98ssv8vf3r/K+mzdvtkGN7Kd169Z66623yq1/6623tHnzZvXp06fctlmzZikmJsZiXUhISKXO96c//UmDBg1ScHBwteq7fft23XLLLVq0aJHF+uXLlyszM1OdO3fWTz/9VOH+gYGBSk5O1sKFCzV27FinuMMN4OYRI6GmESNdRYzk2jHShg0b9OKLL6p///6aMmWKfH199Y9//EODBg3SkSNHzJ9xiRjJlfGLALsICAiw6fGLiopUUlIif39/BQYG2vRcN+Lo89vDlStX5O/vbzWQuHTpkurUqeOAWv3K19fXKQJeW3/uJcnb27van7nqBGjOJCIiQr/73e/KrZ85c6ZatGihzp07l9vWr18/derUqcrn+vrrr/Wvf/1Lf/7zn6tVV0nKycmxGti99dZbuuWWW+Tt7a3bb7/9usd47LHHNH/+fH322Wfq1atXtesCwHkQI7kXYqTKIUayLXeIkdq0aaPjx4+rcePG5nXPPPOM4uPj9fLLL+v555+3+HsiRnJNPLKHm7Jjxw517txZgYGBatasWYXdJMs+011YWGj+QgwMDFSDBg3Uo0cPbdmyRdLVbpfLli2TJItuo9KvYyAsWLBAixcvVrNmzRQQEKAjR45YHR+h1HfffaeEhATVqVNH0dHRmjVrlgzDMG+v6Bnwsse8Xt1K15W9K/j111+rX79+CgoKUt26ddW7d2/t3r3bokxpd9mdO3dqwoQJCgsLU506dfTQQw/pxx9/tP4GXMcPP/ygESNGKDo6WgEBAYqJidHo0aNVUFBgcU0effRRhYaGqnbt2urWrZs++eQTi+OUXpd3331XU6ZM0S233KLatWsrLy/PPPbEiRMn1L9/f9WrV0+DBw+WdPVZ8sWLF6tNmzYKDAxURESEnn76af3888/XrXdBQYGmTZumjh07Kjg4WHXq1NHdd9+tzz77zFzm1KlTCgsLk3T1h7X0PSi97hU9mz579mzz56VJkyb64x//WO5Z8yZNmuiBBx7Qjh071KVLFwUGBqpp06Z68803q/YGqPznvirvsWEYeumll3Trrbeqdu3auu+++3T48OFy5yj7uR0zZozq1q2ry5cvlyv7xBNPKDIyUsXFxZKsj4/wn//8RwMHDlSdOnUUHh6u8ePHW30ev6KxH8oeszLvZ03au3evvv32W/Pn0JoLFy6Yr0FlrVu3Tv7+/urZs2e5bTf6Hiz9Dvnss890+PBh8+e19D0rHS+hMjp27KjQ0FB99NFHVao/APsjRiJGIkaqGDESMZJ0/RgpJibGIhklXf0OGThwoPLz8/Xdd99ZbCNGck2OT4/DZR08eFB9+vRRWFiYZsyYoaKiIk2fPl0RERE33HfGjBlKTU3VU089pS5duigvL0/79+/XV199pfvvv19PP/20zpw5oy1btljtbipJaWlpunLlikaNGqWAgACFhoaqpKTEatni4mL17dtX3bp10/z585Wenq7p06erqKhIs2bNqlK7K1O3ax0+fFh33323goKC9Pzzz8vPz0+vvvqq7r33Xn3xxRfq2rWrRfmxY8eqfv36mj59uk6dOqXFixdrzJgxVp+XrsiZM2fUpUsX5ebmatSoUWrVqpV++OEHffDBB7p8+bL8/f2VnZ2t7t276/Lly3r22WfVoEEDrVq1Sv/zP/+jDz74QA899JDFMWfPni1/f38999xzys/PN985KioqUkJCgnr06KEFCxaodu3a5uu0cuVKDR8+XM8++6xOnjypv/zlL/r666+1c+fOCh8ZyMvL01//+lc98cQTGjlypC5cuKA33nhDCQkJ2rt3r9q3b6+wsDAtX75co0eP1kMPPaSHH35YktSuXbsKr8lTTz2lVatW6ZFHHtEf/vAH7dmzR6mpqTp69KjWrl1rUfbbb7/VI488ohEjRig5OVl/+9vfNGzYMHXs2FFt2rSp9PtQkcq8x9OmTdNLL72k/v37q3///vrqq6/Up08fi2DZmscff1zLli3TJ598okcffdS8/vLly/r44481bNgw+fj4WN33l19+Ue/evZWVlaVnn31W0dHReuutt7R9+/Zqt7Uy72dNeueddySpwmDrvvvu08WLF+Xv76+EhAT9+c9/VosWLW543F27dun2228v97mtzPdgWFiY3nrrLc2ZM0cXL15UamqqpKvd6avjzjvv1M6dO6u1LwD7IEYiRpKIkaqDGIkYSbp+jFQ6rtVvfvObctuIkVyQAVTTwIEDjcDAQOP06dPmdUeOHDF8fHyMsh+txo0bG8nJyebXd9xxh5GYmHjd46ekpJQ7jmEYxsmTJw1JRlBQkJGTk2N1W1pamnldcnKyIckYO3aseV1JSYmRmJho+Pv7Gz/++KNhGIbx2WefGZKMzz777IbHrKhuhmEYkozp06ebXw8cONDw9/c3Tpw4YV535swZo169ekbPnj3N69LS0gxJRnx8vFFSUmJeP378eMPHx8fIzc21ej5rhg4danh7exv79u0rt6302OPGjTMkGf/85z/N2y5cuGDExMQYTZo0MYqLiw3D+PW6NG3a1Lh8+bLFsUqv7aRJkyzW//Of/zQkGe+8847F+vT09HLr77nnHuOee+4xvy4qKjLy8/Mt9vv555+NiIgI48knnzSv+/HHH8td61LTp0+3eH8OHDhgSDKeeuopi3LPPfecIcnYvn27eV3jxo0NScaXX35pXpeTk2MEBAQYf/jDH8qd63rKfu4r+x7n5OQY/v7+RmJiokW5P/7xj4Yki2OW/dyWlJQYt9xyi5GUlGRRl/fff79cu8pe+8WLFxuSjPfff9+87tKlS0bz5s3L/W2UbVtFx6zs+2kY5f92qqqoqMiIiIgwunTpUm7be++9ZwwbNsxYtWqVsXbtWmPKlClG7dq1jd/85jdGVlbWDY996623lrumhlG178F77rnHaNOmzXXP06ZNG4vrZ82oUaOMWrVq3bDOAByHGIkYiRjp+oiRiJGuVZkYyTAM46effjLCw8ONu+++2+p2YiTXwyN7qJbi4mJ9+umnGjhwoBo1amRe37p1ayUkJNxw/5CQEB0+fFjHjx+vdh2SkpLMXZIr49pZH7y8vDRmzBgVFBRo69at1a7DjRQXF2vz5s0aOHCgmjZtal4fFRWl3/72t9qxY4fy8vIs9hk1apRFV+q7775bxcXFOn36dKXOWVJSonXr1unBBx+0+hx46bE3btyoLl26qEePHuZtdevW1ahRo3Tq1CkdOXLEYr/k5GTVqlXL6jlHjx5t8XrNmjUKDg7W/fffr//+97/mpWPHjqpbt+51uyL7+PiY7yyWlJTo3LlzKioqUqdOnfTVV19V6hqUtXHjRknShAkTLNb/4Q9/kKRyXfBjY2N19913m1+HhYXptttuK9c1uLpu9B5v3bpVBQUF5QZlHDdu3A2P7eXlpUcffVQbN27UxYsXzevfe+893XLLLRbvd1kbN25UVFSUHnnkEfO62rVra9SoUVVpngVbvJ8V2bZtm7Kzs63e+XvssceUlpamoUOHauDAgZo9e7Y+/fRT/fTTT5Waovinn35S/fr1Ldbd7PdgddWvX1+//PKL1UcOADgeMVLlECMRI1lDjESMVJGSkhINHjxYubm5Wrp0qdUyxEiuh4QUquXHH3/UL7/8YrUb52233XbD/WfNmqXc3Fy1bNlSbdu21cSJE/X//t//q1Idys4CcT3e3t4WwY4ktWzZUtLVZ5dt5ccff9Tly5etXpPWrVurpKRE33//vcX6a7+0JZm/4G80rsC158zLy7vh4MinT5+usF6l269V0fX29fXVrbfearHu+PHjOn/+vMLDwxUWFmaxXLx4UTk5Odet26pVq9SuXTvz2BlhYWH65JNPdP78+evuV5HTp0/L29tbzZs3t1gfGRmpkJCQcm0t+x5IV9+Hyr4HN3Kj97i0PmX/vsLCwsr94Fvz+OOP65dfftH69eslSRcvXtTGjRv16KOPXnfWkdOnT6t58+blylTmb/p6avr9rMg777wjHx8fPf7445Uq36NHD3Xt2rXS/+EyrhlPRbr578HqKq0HM8gAzokYqXKIkYiRrCFGIkaqyNixY5Wenq6//vWvuuOOO65bD2Ik18EYUnCInj176sSJE/roo4+0efNm/fWvf9WiRYu0YsUKPfXUU5U6RkV3oqqroi+uqg7sd7Mqena97Be9vVV0vQMCAsoNyFxSUqLw8HDzs+plXe+u7dtvv61hw4Zp4MCBmjhxosLDw+Xj46PU1FSdOHGi+g1Q5X+cbP0e2Pr43bp1U5MmTfT+++/rt7/9rT7++GP98ssvlQ5CKuN6fy/Xts+W7+e1fvnlF61du1bx8fGVGqOlVMOGDXXs2LEblmvQoEGNBds36+eff1bt2rVr/DsQgHMgRqoYMRIx0s0iRnLNGGnmzJl65ZVXNG/ePA0ZMqTCcsRIroeEFKolLCxMtWrVstqdvDJfXJIUGhqq4cOHa/jw4bp48aJ69uypGTNmmIOtmsxsl5SU6LvvvjPf8ZOkb775RtLVmTCkX+/A5ObmWuxrrRt4ZesWFham2rVrW70m//73v+Xt7a2GDRtW6liVFRYWpqCgIB06dOi65Ro3blxhvUq3V1ezZs20detW3XXXXVX+Qfjggw/UtGlTffjhhxbXefr06RblqvL5aNy4sUpKSnT8+HGLQRKzs7OVm5t7U221hdL6HD9+3OKu9Y8//ljpH/zHHntM//d//6e8vDy99957atKkibp163bD8x46dEiGYVhcX2ufk/r165f7W5Gu/r1cW+fKvp83a/369bpw4cJ1Z46x5rvvvqvUYy2tWrXSyZMnLdbVxPdgdZw8ebLaA6IDsD1iJGKk6yFGujnESFXn6jHSsmXLNGPGDI0bN04vvPDCdcsSI7keHtlDtfj4+CghIUHr1q1TVlaWef3Ro0f16aef3nD/n376yeJ13bp11bx5c4upU+vUqSOpfPBTXX/5y1/M/zYMQ3/5y1/k5+en3r17S7r6Q+Pj46Mvv/zSYr9XXnml3LEqWzcfHx/16dNHH330kUW39+zsbK1evVo9evRQUFBQNVtknbe3twYOHKiPP/5Y+/fvL7e99A5T//79tXfvXmVkZJi3Xbp0Sa+99pqaNGmi2NjYatfhscceU3FxsWbPnl1uW1FR0XWvW+mdo2vvhO3Zs8einpLMM9VU5vPRv39/SdLixYst1i9cuFCSlJiYeMNj2FN8fLz8/Py0dOlSi+tQtv7X8/jjjys/P1+rVq1Senq6HnvssRvu079/f505c0YffPCBed3ly5f12muvlSvbrFkz7d6922JGmw0bNpR7vKKy7+fNWr16tWrXrl1u5qNS1qYF37hxozIzM9W3b98bHj8uLk6HDh2y+I662e/B6vrqq6/UvXt3mx0fwM0hRiJGuh5ipJtDjFR1rhwjvffee3r22Wc1ePBg82fyeoiRXA89pFBtM2fOVHp6uu6++24988wzKioq0tKlS9WmTZsbjnUQGxure++9Vx07dlRoaKj279+vDz74wGJQzY4dO0qSnn32WSUkJMjHx0eDBg2qVl0DAwOVnp6u5ORkde3aVZs2bdInn3yiP/7xj+bMf3BwsB599FEtXbpUXl5eatasmTZs2GD1Wf6q1O2ll17Sli1b1KNHDz3zzDPy9fXVq6++qvz8fM2fP79a7bmRuXPnavPmzbrnnns0atQotW7dWmfPntWaNWu0Y8cOhYSEaNKkSfr73/+ufv366dlnn1VoaKhWrVqlkydP6h//+Ee5LuZVcc899+jpp59WamqqDhw4oD59+sjPz0/Hjx/XmjVr9H//938Wg0Je64EHHtCHH36ohx56SImJiTp58qRWrFih2NhYiwEoa9WqpdjYWL333ntq2bKlQkNDdfvtt1sdF+KOO+5QcnKyXnvtNeXm5uqee+7R3r17tWrVKg0cOFD33XdftdtqC2FhYXruueeUmpqqBx54QP3799fXX3+tTZs2WZ3i1po777xTzZs314svvqj8/PxKdUUfOXKk/vKXv2jo0KHKzMxUVFSU3nrrLXNge62nnnpKH3zwgfr27avHHntMJ06c0Ntvv61mzZpZlKvs+3kzzp07p02bNikpKUl169a1WqZ79+7q0KGDOnXqpODgYH311Vf629/+poYNG+qPf/zjDc8xYMAAzZ49W1988YX69OljXn8z34OlvvzyS/N/8n788UddunRJL730kqSrj+707NnTXDYzM1Pnzp3TgAEDKnVsAI5BjESMVBFipJtDjFQ1rhwj7d27V0OHDlWDBg3Uu3fvco+5du/e3aLHGTGSi7LnlH5wP1988YXRsWNHw9/f32jatKmxYsWKctPJGkb56U9feuklo0uXLkZISIhRq1Yto1WrVsacOXOMgoICc5mioiJj7NixRlhYmOHl5WU+ZukUw3/605/K1aeiKY3r1KljnDhxwujTp49Ru3ZtIyIiwpg+fbp52t5SP/74o5GUlGTUrl3bqF+/vvH0008bhw4dKnfMiupmGNanZf3qq6+MhIQEo27dukbt2rWN++67z9i1a5dFmdLpbstOQ1zRVMs3cvr0aWPo0KFGWFiYERAQYDRt2tRISUmxmF72xIkTxiOPPGKEhIQYgYGBRpcuXYwNGzZYPf+aNWvKnaP02lbktddeMzp27GjUqlXLqFevntG2bVvj+eefN86cOWMuU3YK3JKSEmPu3LlG48aNjYCAAKNDhw7Ghg0bjOTkZKNx48YWx9+1a5f583ftdbf2GSwsLDRmzpxpxMTEGH5+fkbDhg2NyZMnG1euXLEo17hxY6vTbZetZ2VUNKVxZd7j4uJiY+bMmUZUVJRRq1Yt49577zUOHTpU7pjX+3y8+OKLhiSjefPmVutnrU2nT582/ud//sc83e/vf/9781TUZc/x5z//2bjllluMgIAA46677jL2799/U++ntb+dylixYoUhyVi/fn2FZV588UWjffv2RnBwsOHn52c0atTIGD16tGEymSp9nnbt2hkjRowot76y34MVTWlcWtbaUvZ6vPDCC0ajRo0sproG4JyIkYiRiJEqRoxEjHQtazFS6WeiouXa7x3DIEZyVV6G4eBRAAEAcAFvvfWWUlJSlJWVpZCQELufPz8/X02aNNGkSZP0+9//3u7nBwAAsIYYCdXFGFIAAFTC4MGD1ahRIy1btswh509LS5Ofn5/+93//1yHnBwAAsIYYCdVFDynAhVy8ePGGz5SHhYVVOGUuaobJZLru9lq1aik4ONhOtXE/xcXFVgfYvFbdunUrHAsBAOB5iJGcAzGSbREjwd2QkAJcyIwZMzRz5szrljl58qR5mmbYxo2mU05OTtbKlSvtUxk3dOrUKcXExFy3zPTp0zVjxgz7VAgA4PSIkZwDMZJtESPB3TDLHuBChg4dqh49ely3TGRkpJ1q47m2bNly3e3R0dF2qol7ioyMvOE1vnZWFQAAiJGcAzGSbREjwd3QQwoAAAAAAAB2xaDmAAAAAAAAsCuPfmSvpKREZ86cUb169W74vDMAAHAPhmHowoULio6Olrc39+asIUYCAMDz2DtG8uiE1JkzZ9SwYUNHVwMAADjA999/r1tvvdXR1XBKxEgAAHgue8VIHp2QqlevnqSrFzsoKMjBtQEAAPaQl5enhg0bmuMAlEeMBACA57F3jOTRCanSLuhBQUEEWwAAeBgeRasYMRIAAJ7LXjESAycAAAAAAADArkhIAQAAAAAAwK5ISAEAAAAAAMCuPHoMKQAArqe4uFiFhYWOrgaqyM/PTz4+Po6uBgAAbosYyTU5W4xEQgoAgDIMw5DJZFJubq6jq4JqCgkJUWRkJAOXAwBQg4iRXJ8zxUgkpAAAKKM00AoPD1ft2rWd4gcblWMYhi5fvqycnBxJUlRUlINrBACA+yBGcl3OGCORkAIA4BrFxcXmQKtBgwaOrg6qoVatWpKknJwchYeHO1XXdAAAXBUxkutzthiJQc0BALhG6XgItWvXdnBNcDNK3z/GtwAAoGYQI7kHZ4qRSEgBAGAFXdBdG+8fAAC2wW+sa3Om94+EFAAAAAAAAOyKhBQAAAAAAADsikHNAQCopML0HXY7l1/fHpUue6Ou19OnT9eMGTNuskbV4+XlpbVr12rgwIHVPsZrr72m1atX66uvvtKFCxf0888/KyQkpMbqCAAAbo49YySJOKnUuXPnNH36dG3evFlZWVkKCwvTwIEDNXv2bAUHB9dsZW2AhBQAAC7u7Nmz5n+/9957mjZtmo4dO2ZeV7du3Sodr6CgQP7+/jVWv5t1+fJl9e3bV3379tXkyZMdXR0AAOBC3DlOOnPmjM6cOaMFCxYoNjZWp0+f1v/+7//qzJkz+uCDDxxdvRvikT0AVVKYvsNiAeB4kZGR5iU4OFheXl7m15cuXdLgwYMVERGhunXrqnPnztq6davF/k2aNNHs2bM1dOhQBQUFadSoUZKk119/XQ0bNlTt2rX10EMPaeHCheV6Jn300Ue68847FRgYqKZNm2rmzJkqKioyH1eSHnroIXl5eZlf/+tf/9J9992nevXqKSgoSB07dtT+/fsrbN+4ceM0adIkdevWrWYuGAA4SNk4ilgKsD13jpNuv/12/eMf/9CDDz6oZs2aqVevXpozZ44+/vhj83mcGQkpAADc2MWLF9W/f39t27ZNX3/9tfr27asHH3xQWVlZFuUWLFigO+64Q19//bWmTp2qnTt36n//93/1+9//XgcOHND999+vOXPmWOzzz3/+U0OHDtXvf/97HTlyRK+++qpWrlxpLrdv3z5JUlpams6ePWt+PXjwYN16663at2+fMjMzNWnSJPn5+dnhagAAAPzKHeOk8+fPKygoSL6+zv9AnPPXEIBbKHsHsLLPfVd3PwBX3XHHHbrjjjvMr2fPnq21a9dq/fr1GjNmjHl9r1699Ic//MH8+sUXX1S/fv303HPPSZJatmypXbt2acOGDeYyM2fO1KRJk5ScnCxJatq0qWbPnq3nn39e06dPV1hYmCQpJCREkZGR5v2ysrI0ceJEtWrVSpLUokULG7QcAADg+twtTvrvf/+r2bNnm3txOTt6SAEA4MYuXryo5557Tq1bt1ZISIjq1q2ro0ePlrvz16lTJ4vXx44dU5cuXSzWlX39r3/9S7NmzVLdunXNy8iRI3X27Fldvny5wjpNmDBBTz31lOLj4zVv3jydOHHiJlsJAO6Dx/oA+3GnOCkvL0+JiYmKjY112CDtVUVCCgAAN/bcc89p7dq1mjt3rv75z3/qwIEDatu2rQoKCizK1alTp8rHvnjxombOnKkDBw6Yl4MHD+r48eMKDAyscL8ZM2bo8OHDSkxM1Pbt2xUbG6u1a9dW+fwAAAA3w13ipAsXLqhv376qV6+e1q5d6zJDIfDIHgAAbmznzp0aNmyYHnroIUlXg6NTp07dcL/bbrvNPJZBqbKv77zzTh07dkzNmzev8Dh+fn4qLi4ut75ly5Zq2bKlxo8fryeeeEJpaWnmOgIAboxhDYCb5w5xUl5enhISEhQQEKD169dfN9nlbEhIAQDgxlq0aKEPP/xQDz74oLy8vDR16lSVlJTccL+xY8eqZ8+eWrhwoR588EFt375dmzZtkpeXl7nMtGnT9MADD6hRo0Z65JFH5O3trX/96186dOiQXnrpJUlXZ5DZtm2b7rrrLgUEBCgwMFATJ07UI488opiYGP3nP//Rvn37lJSUVGFdTCaTTCaTvv32W0nSwYMHVa9ePTVq1EihoaE3eYUAAICncvU4KS8vT3369NHly5f19ttvKy8vT3l5eZKksLAw+fj41MBVsh0e2QMAwI0tXLhQ9evXV/fu3fXggw8qISFBd9555w33u+uuu7RixQotXLhQd9xxh9LT0zV+/HiLu24JCQnasGGDNm/erM6dO6tbt25atGiRGjdubC7z5z//WVu2bFHDhg3VoUMH+fj46KefftLQoUPVsmVLPfbYY+rXr59mzpxZYV1WrFihDh06aOTIkZKknj17qkOHDlq/fv1NXBkAAODpXD1O+uqrr7Rnzx4dPHhQzZs3V1RUlHn5/vvvb/4C2ZiXYRiGoyvhKHl5eQoODjZPiwjgxuw9Wx7d0WFvV65c0cmTJxUTE+NSXZ7tYeTIkfr3v/+tf/7zn46uyg1d733k9//GuEaAbVgboLxsbFOZMtbKESPB1oiRrs9V4iRnipF4ZA9AjWM2GMA9LFiwQPfff7/q1KmjTZs2adWqVXrllVccXS0AAACHI066eSSkAACAVXv37tX8+fN14cIFNW3aVEuWLNFTTz3l6GoBAAA4HHHSzSMhBcDtVLarO4Dre//99x1dBQAAAKdEnHTzSEgBAAAAwE1iTCcAqBoSUgAcgl5MAAAANYfYCoCr8XZ0BQAAAAAAAOBZHJKQKi4u1tSpUxUTE6NatWqpWbNmmj17tgzDMJcxDEPTpk1TVFSUatWqpfj4eB0/ftziOOfOndPgwYMVFBSkkJAQjRgxQhcvXrR3cwAAAAAAAFAFDnlk7+WXX9by5cu1atUqtWnTRvv379fw4cMVHBysZ599VpI0f/58LVmyRKtWrVJMTIymTp2qhIQEHTlyRIGBgZKkwYMH6+zZs9qyZYsKCws1fPhwjRo1SqtXr3ZEswC3Y63rNwAAAGoO8RYAT+WQhNSuXbs0YMAAJSYmSpKaNGmiv//979q7d6+kq72jFi9erClTpmjAgAGSpDfffFMRERFat26dBg0apKNHjyo9PV379u1Tp06dJElLly5V//79tWDBAkVHRzuiaQAAAAAAALgBhzyy1717d23btk3ffPONJOlf//qXduzYoX79+kmSTp48KZPJpPj4ePM+wcHB6tq1qzIyMiRJGRkZCgkJMSejJCk+Pl7e3t7as2ePHVsDAABQMxjWAAAAeAqH9JCaNGmS8vLy1KpVK/n4+Ki4uFhz5szR4MGDJUkmk0mSFBERYbFfRESEeZvJZFJ4eLjFdl9fX4WGhprLlJWfn6/8/Hzz67y8vBprEwDA/Z3Y/6rdztWs09NVKj9s2DCtWrVK0q+/h+3atdMTTzyhYcOGydvbdecxOXz4sKZNm6bMzEydPn1aixYt0rhx4xxdLZtgWAMAgCuyZ4wkESdd6/XXX9ebb76pQ4cOSZI6duyouXPnqkuXLg6u2Y055Kq///77euedd7R69Wp99dVXWrVqlRYsWGD+gNhKamqqgoODzUvDhg1tej4AAOypb9++Onv2rE6dOqVNmzbpvvvu0+9//3s98MADKioqcnT1qu3y5ctq2rSp5s2bp8jISEdXx6auHdagSZMmeuSRR9SnT58KhzVo166d3nzzTZ05c0br1q2TJPOwBn/961/VtWtX9ejRQ0uXLtW7776rM2fOOLB1gGcpTN9RbgHgOO4aJ33++ed64okn9NlnnykjI0MNGzZUnz599MMPPzi6ajfkkITUxIkTNWnSJA0aNEht27bVkCFDNH78eKWmpkqSOdjMzs622C87O9u8LTIyUjk5ORbbi4qKdO7cuQqD1cmTJ+v8+fPm5fvvv6/ppgEA4DABAQGKjIzULbfcojvvvFN//OMf9dFHH2nTpk1auXKluVxubq6eeuophYWFKSgoSL169dK//vUvi2N9/PHH6ty5swIDA/Wb3/xGDz30kHnbzz//rKFDh6p+/fqqXbu2+vXrZ35k7NKlSwoKCtIHH3xgcbx169apTp06unDhggoKCjRmzBhFRUUpMDBQjRs3NscA1nTu3Fl/+tOfNGjQIAUEBNTAlXJeDGsAAIBtuGuc9M477+iZZ55R+/bt1apVK/31r39VSUmJtm3bVgNXzbYckpC6fPlyuS5xPj4+KikpkSTFxMQoMjLS4gLm5eVpz549iouLkyTFxcUpNzdXmZmZ5jLbt29XSUmJunbtavW8AQEBCgoKslgAOI/K3EnkbiNQNb169dIdd9yhDz/80Lzu0UcfVU5OjjZt2qTMzEzdeeed6t27t86dOydJ+uSTT/TQQw+pf//++vrrr7Vt2zaLbt/Dhg3T/v37tX79emVkZMgwDPXv31+FhYWqU6eOBg0apLS0NIt6pKWl6ZFHHlG9evW0ZMkSrV+/Xu+//76OHTumd955R02aNLHL9XB2pTfsWrVqJT8/P3Xo0EHjxo2zy7AGeXl5FgsAAO7OHeOky5cvq7CwUKGhoTd3cezAIWNIPfjgg5ozZ44aNWqkNm3a6Ouvv9bChQv15JNPSpK8vLw0btw4vfTSS2rRooV5fITo6GgNHDhQktS6dWv17dtXI0eO1IoVK1RYWKgxY8Zo0KBBzLAHoMZYS3j59e3hgJoA1deqVSv9v//3/yRJO3bs0N69e5WTk2PubbRgwQKtW7dOH3zwgUaNGqU5c+Zo0KBBmjlzpvkYd9xxhyTp+PHjWr9+vXbu3Knu3btLunpnrmHDhlq3bp0effRRPfXUU+revbvOnj2rqKgo5eTkaOPGjdq6daskKSsrSy1atFCPHj3k5eWlxo0b2/NyOLVrhzVo06aNDhw4oHHjxik6OlrJyck2O29qaqrF+w0AgKdwtzjphRdeUHR0tEVvamflkITU0qVLNXXqVD3zzDPKyclRdHS0nn76aU2bNs1c5vnnn9elS5c0atQo5ebmqkePHkpPTzcP1ildfWPHjBmj3r17y9vbW0lJSVqyZIkjmgQAgNMyDENeXl6Srj4CdvHiRTVo0MCizC+//KITJ05Ikg4cOKCRI0daPdbRo0fl6+tr0Ru5QYMGuu2223T06FFJUpcuXdSmTRutWrVKkyZN0ttvv63GjRurZ8+ekq7eObz//vt12223qW/fvnrggQfUp0+fGm+3K7p2WANJatu2rU6fPq3U1FQlJydbDGsQFRVl3i87O1vt27eXVP1hDSZMmGB+nZeXx1ibwHXYu4c2PcIB23GnOGnevHl699139fnnn1vkTpyVQxJS9erV0+LFi7V48eIKy3h5eWnWrFmaNWtWhWVCQ0OZLQYAgBs4evSoYmJiJEkXL15UVFSUPv/883LlQkJCJEm1atW66XM+9dRTWrZsmSZNmqS0tDQNHz7cHOzdeeedOnnypDZt2qStW7fqscceU3x8fLnxFDxRVYY1KE1AlQ5rMHr0aEmWwxp07NhRUuWGNXD38bkAALDGXeKkBQsWaN68edq6davatWt303W0B9ed2xAAANzQ9u3bdfDgQSUlJUm6GuSYTCb5+vqqefPmFstvfvMbSVK7du0qHAizdevWKioqshgc+6efftKxY8cUGxtrXve73/1Op0+f1pIlS3TkyJFyj5sFBQXp8ccf1+uvv6733ntP//jHP8xjM3iy0mENPvnkE506dUpr167VwoULzYOlXjuswfr163Xw4EENHTq0wmEN9u7dq507dzKsAQAAVrhLnDR//nzNnj1b6enpFpOaODuH9JACAHfCOFNwFvn5+TKZTCouLlZ2drbS09OVmpqqBx54QEOHDpV0dba1uLg4DRw4UPPnz1fLli115swZ8wCdnTp10vTp09W7d281a9ZMgwYNUlFRkTZu3KgXXnhBLVq00IABAzRy5Ei9+uqrqlevniZNmqRbbrlFAwYMMNelfv36evjhhzVx4kT16dNHt956q3nbwoULFRUVpQ4dOsjb21tr1qxRZGSk+c5jWQUFBTpy5Ij53z/88IMOHDigunXrqnnz5ra7oA7AsAYAXEVl45+y5YiR4CjuGie9/PLLmjZtmlavXq0mTZqYJzCpW7eu6tata7sLWgPoIQUAgJtIT09XVFSUmjRpor59++qzzz7TkiVL9NFHH8nHx0fS1R42GzduVM+ePTV8+HC1bNlSgwYN0unTp80zt917771as2aN1q9fr/bt26tXr17au3ev+TxpaWnq2LGjHnjgAcXFxckwDG3cuFF+fn4W9RkxYoQKCgrMk5aUqlevnubPn69OnTqpc+fOOnXqlDZu3FjuUbVSZ86cUYcOHdShQwedPXtWCxYsUIcOHfTUU0/V5OVzCqXDGpw+fdo8XsVLL70kf39/c5nSYQ1MJpOuXLmirVu3qmXLlhbHKR3W4MKFCzp//rz+9re/OX1QCgCALblrnLR8+XIVFBTokUceUVRUlHlZsGBBTV4+m/AyDMNwdCUcJS8vT8HBwTp//ryCgoIcXR3AZipzB6u6g2VW5k6YrVWmLdW9G1fda8fdP9d15coVnTx5UjExMS4xGKQze+uttzR+/HidOXPGIqFiD9d7H/n9vzGuETxFdX/DXWWQcVvGI/SQ8jzESDXLUXGSM8VIPLIHwGMRIAG2cfnyZZ09e1bz5s3T008/bfdkFADcDOIDALZEnPQrHtkDAAA1av78+WrVqpUiIyM1efJkR1cHAHCNwvQdFgsA+yJO+hU9pAAP5WkBiKe1F3CkGTNmaMaMGY6uBgAAgNMhTvoVCSkAN8WdEj3u1BYAAAAAcGYkpAC4PBJJAAAAAOBaSEgBAGBFSUmJo6uAm8D7BwCVw2zBqCp+Y12bM71/JKQAALiGv7+/vL29debMGYWFhcnf319eXl6OrhYqyTAMFRQU6Mcff5S3t7dHz1wDoGbQE7vyuFbujRjJtTljjERCCoBVp3I3WbxuEtLPQTUB7Mvb21sxMTE6e/aszpw54+jqoJpq166tRo0aydubCYUBeC4SRKhJxEjuwZliJBJSAACU4e/vr0aNGqmoqEjFxcWOrg6qyMfHR76+vty1BeAWuEkIZ0KM5NqcLUYiIQXArsoGVRKBFZyTl5eX/Pz85Ofn5+iqAACcjCcmiWqqtxVjVrk+YiTUFBJSgJtxZNdskk0AAAAAgMogIQUAAAAAMGPsKQD2QEIKAGyA7ugAAKCqrPU2BwB3RUIKgMN54jgMAAAAAODJHD/PHwAAAAAAADwKCSkAAAAAAADYFY/sAQAAAICNMRsxAFgiIQUAAAAALoLEFgB3QUIKQLVVZiYYZosBAAAAAJRFQgpApZBYAgAArqQwfYfFa7++PRxUE+fArMYAnA0JKQBOh67oAAAAAODeHDLLXpMmTeTl5VVuSUlJkSRduXJFKSkpatCggerWraukpCRlZ2dbHCMrK0uJiYmqXbu2wsPDNXHiRBUVFTmiOQAAAAAAAKgCh/SQ2rdvn4qLi82vDx06pPvvv1+PPvqoJGn8+PH65JNPtGbNGgUHB2vMmDF6+OGHtXPnTklScXGxEhMTFRkZqV27duns2bMaOnSo/Pz8NHfuXEc0CQBuiEcHAABwT/TuBoCqc0hCKiwszOL1vHnz1KxZM91zzz06f/683njjDa1evVq9evWSJKWlpal169bavXu3unXrps2bN+vIkSPaunWrIiIi1L59e82ePVsvvPCCZsyYIX9/f0c0C3BZrjA+VGXGPWBsBAAA4CxcIb4CAEdyyCN71yooKNDbb7+tJ598Ul5eXsrMzFRhYaHi4+PNZVq1aqVGjRopIyNDkpSRkaG2bdsqIiLCXCYhIUF5eXk6fPiw3dsAAAAAAFV1KneTxeLo4wCAPTl8UPN169YpNzdXw4YNkySZTCb5+/srJCTEolxERIRMJpO5zLXJqNLtpdsqkp+fr/z8fPPrvLy8GmgBAAAAAGdX9tF5AIBjOTwh9cYbb6hfv36Kjo62+blSU1M1c+ZMm58HsKeywRWPrQEAAAAAnJ1DH9k7ffq0tm7dqqeeesq8LjIyUgUFBcrNzbUom52drcjISHOZsrPulb4uLWPN5MmTdf78efPy/fff11BLAAAAAAAAUFkO7SGVlpam8PBwJSYmmtd17NhRfn5+2rZtm5KSkiRJx44dU1ZWluLi4iRJcXFxmjNnjnJychQeHi5J2rJli4KCghQbG1vh+QICAhQQEGDDFgEAAAAAboa1xyuZnRhwPw5LSJWUlCgtLU3Jycny9f21GsHBwRoxYoQmTJig0NBQBQUFaezYsYqLi1O3bt0kSX369FFsbKyGDBmi+fPny2QyacqUKUpJSSHhBMDmbDkGBQEYAAAAAE/gsITU1q1blZWVpSeffLLctkWLFsnb21tJSUnKz89XQkKCXnnlFfN2Hx8fbdiwQaNHj1ZcXJzq1Kmj5ORkzZo1y55NAAAAAOBCGGsTAJyHwxJSffr0kWEYVrcFBgZq2bJlWrZsWYX7N27cWBs3brRV9QC3xnTAAAAAlUPc5BzoRQ64H4cOag4AAAAAAADP49BBzQHAk9lyLCoAAAAAcGYkpAAXdmL/qyrJzXJ0NVyKJ40dUTbhRbd2AAAsWXscz51jAwBwJiSkAHg0AlEAAHAtxoyyP3qNA56JhBQAAAAAt0NiCQCcGwkpwM0RjFWdJz3WBwAAAACOQEIKcCFluzMzfhQAAAAAwBWRkALgtugdBgAAUHmViZ3oOQ6gpng7ugIAAAAAAADwLPSQAgA3wOw0AACgKuhJDsDRSEgBgIsh+QQAAByFyV8A1BQSUgDg5EhAAQAAlFc2RvLr28NBNQFQHSSkACdFEuL66GYOAABgHXESAFdAQgoAAACAS+NGHipi7bNBTyrAOTDLHgAAAAAAAOyKHlIAAAAAAI/B2FOAcyAhBQA3YG0cBlecUYYu6wAAd8DjeQDgHnhkDwAAAAAAAHZFDynASZzY/6rF60Zq46CaAAAAAK6H3nOAayEhBTgpd3lMDAAAAACAskhIAS7EWpIKAADA3V3bk7wkN8vqTTriJABwLYwhBQAAAAAAALuihxQA1AAesQQAAACAyiMhBQAAAADwWNYGQ/fr28MBNQE8CwkpAECVEbgBAAAAuBkOG0Pqhx9+0O9+9zs1aNBAtWrVUtu2bbV//37zdsMwNG3aNEVFRalWrVqKj4/X8ePHLY5x7tw5DR48WEFBQQoJCdGIESN08eJFezcFAAAAADzSqdxN5Zbq7AfA8zgkIfXzzz/rrrvukp+fnzZt2qQjR47oz3/+s+rXr28uM3/+fC1ZskQrVqzQnj17VKdOHSUkJOjKlSvmMoMHD9bhw4e1ZcsWbdiwQV9++aVGjRrliCYBQDkEWgAAAABgnUMSUi+//LIaNmyotLQ0denSRTExMerTp4+aNWsm6WrvqMWLF2vKlCkaMGCA2rVrpzfffFNnzpzRunXrJElHjx5Venq6/vrXv6pr167q0aOHli5dqnfffVdnzpxxRLMAAABuGr3IAbib6vaicqTC9B3lFgA1yyEJqfXr16tTp0569NFHFR4erg4dOuj11183bz958qRMJpPi4+PN64KDg9W1a1dlZGRIkjIyMhQSEqJOnTqZy8THx8vb21t79uyxet78/Hzl5eVZLICzKPk2y2IBAHgeepEDleOKCQ4AgCWHJKS+++47LV++XC1atNCnn36q0aNH69lnn9WqVaskSSaTSZIUERFhsV9ERIR5m8lkUnh4uMV2X19fhYaGmsuUlZqaquDgYPPSsGHDmm4aAABAtdGLHAAAeAqHJKRKSkp05513au7cuerQoYNGjRqlkSNHasWKFTY97+TJk3X+/Hnz8v3339v0fADgSejWDtw8epEDAABP4ZCEVFRUlGJjYy3WtW7dWllZVx9TioyMlCRlZ2dblMnOzjZvi4yMVE5OjsX2oqIinTt3zlymrICAAAUFBVksAAAAzoJe5ADgvLj5BtQshySk7rrrLh07dsxi3TfffKPGjRtLkmJiYhQZGalt27aZt+fl5WnPnj2Ki4uTJMXFxSk3N1eZmZnmMtu3b1dJSYm6du1qh1YAAADULHqRA4D7IZEFWOfriJOOHz9e3bt319y5c/XYY49p7969eu211/Taa69Jkry8vDRu3Di99NJLatGihWJiYjR16lRFR0dr4MCBkq72qOrbt685SCssLNSYMWM0aNAgRUdHO6JZAOByrAVFfn17OKAmAKSKe5H/4x//kGTZizwqKspcJjs7W+3btzeXqU4v8oCAgJpqBgAPxyDzACrDIQmpzp07a+3atZo8ebJmzZqlmJgYLV68WIMHDzaXef7553Xp0iWNGjVKubm56tGjh9LT0xUYGGgu884772jMmDHq3bu3vL29lZSUpCVLljiiSQBQY8oGcU1C+tn1/GWTVCSoAPupSi/y0gRUaS/y0aNHS7LsRd6xY0dJ9CIHAADOxyEJKUl64IEH9MADD1S43cvLS7NmzdKsWbMqLBMaGqrVq1fbonoAAAB2Ry9yAADgKRyWkAIAuLfqPg7IY4TwZPQiB8orTN+hktwsR1cDqDHEOsBVJKQAAACcCL3IAQCAJ3DILHsAAAAAAADwXPSQAmyMLrnuidljAAAAUJa12B+AdSSkAAfghwoAAACoGms3BO09GzGAmkNCCgDshCAKAAAAAK5iDCkAAAAAAADYFT2kAAAAADgFhjUAAM9BDykAAAAAAADYFQkpAAAAAAAA2BUJKQAAAAAAANgVY0gBgANZm3nP0zBeCAAAAOB56CEFAAAAAAAAu6KHFAAAAAAAVVSTvbytHcuvb48aOz7gjEhIAQCui0fqAAD2xOPsnsna+94kpJ8DagLAXkhIAQAAAACcDslJwL0xhhQAAAAAAADsih5SAAAAAOyOR8IBwLORkAIcgO7HAAAAAK6nbNLW2iDnDIYOV0ZCCgAAAAAAJ0evQrgbElIAAAAAALgpelHBWTGoOQAAAAAAAOyKHlIAAJRRmTEbAAAAAFQfCSkAgN0w9gEAAAAAyUGP7M2YMUNeXl4WS6tWrczbr1y5opSUFDVo0EB169ZVUlKSsrOzLY6RlZWlxMRE1a5dW+Hh4Zo4caKKiors3RQAsLlTuZvKLQAAAADgyhzWQ6pNmzbaunXrrxXx/bUq48eP1yeffKI1a9YoODhYY8aM0cMPP6ydO3dKkoqLi5WYmKjIyEjt2rVLZ8+e1dChQ+Xn56e5c+favS3AjZBAAJwHj+MBAACUR4wEe3NYQsrX11eRkZHl1p8/f15vvPGGVq9erV69ekmS0tLS1Lp1a+3evVvdunXT5s2bdeTIEW3dulURERFq3769Zs+erRdeeEEzZsyQv7+/vZsDAAAAALCzsjd+m4T0c1BNAFSVwxJSx48fV3R0tAIDAxUXF6fU1FQ1atRImZmZKiwsVHx8vLlsq1at1KhRI2VkZKhbt27KyMhQ27ZtFRERYS6TkJCg0aNH6/Dhw+rQoYMjmgQADmOtF56nBWRMaQwAAAC4DockpLp27aqVK1fqtttu09mzZzVz5kzdfffdOnTokEwmk/z9/RUSEmKxT0REhEwmkyTJZDJZJKNKt5duq0h+fr7y8/PNr/Py8mqoRQAAWyLZBADui6ENUJO4SQe4DockpPr1+/ULoV27duratasaN26s999/X7Vq1bLZeVNTUzVz5kybHR8AAAAAAHfADUHYmsMe2btWSEiIWrZsqW+//Vb333+/CgoKlJuba9FLKjs72zzmVGRkpPbu3WtxjNJZ+KyNS1Vq8uTJmjBhgvl1Xl6eGjZsWIMtAQD74G4yAABA5TDOVM0hSYWa5O3oCkjSxYsXdeLECUVFRaljx47y8/PTtm3bzNuPHTumrKwsxcXFSZLi4uJ08OBB5eTkmMts2bJFQUFBio2NrfA8AQEBCgoKslgAAAAAAABgXw7pIfXcc8/pwQcfVOPGjXXmzBlNnz5dPj4+euKJJxQcHKwRI0ZowoQJCg0NVVBQkMaOHau4uDh169ZNktSnTx/FxsZqyJAhmj9/vkwmk6ZMmaKUlBQFBAQ4okkAACdk7S4eAAAAAMdzSELqP//5j5544gn99NNPCgsLU48ePbR7926FhYVJkhYtWiRvb28lJSUpPz9fCQkJeuWVV8z7+/j4aMOGDRo9erTi4uJUp04dJScna9asWY5oDgDAzdE9HQBuHjcJAFyr7HcCsZXncUhC6t13373u9sDAQC1btkzLli2rsEzjxo21cePGmq4aAAAAAAAAbMwpBjUHAMBRuGMP/H/27j2uqir///ibOwoCYsKBQsVbilmallJ2UxKV/GbSxcZJLNPGARu1TJ28a1KOk46NaTUOWulYNumYKYmaloo30sbUMTOTSg80Y3C8JNf9+4MfJw8XBeVcgNfz8diPOmuvs/fa6xzhw2evvRYAADWHkeWoKhJSQA3jj1sAAAAArszRf7PwNxIqQkIKAOooljgGAACof+pS8ofRVnUbCSkAAOyEIAoAAACoGAkpAAAAAADgVHVpZBeqhoQUAKBWcnbQwugnAAAA4OqRkAIAoIY4O0kGAACurOw8mxJzbQLOQEIKAIBaqmwCjBFaAAAAqC1ISAEA4EBVGUVFYgkAAKBqmEah9iIhBQAAAAAA6hUSWc5HQgoA6rGK5lAoizkVao+qBlY86gcAAABnIyEF1LCq/IEPOAPfTQAAgKph4nPA/khIAQBQh7HyHwAAAFwRCSkAAFwMcxoAAACgriMhBQAAAAAAagVGf9cdJKQAAJdVdg4F5k+oHxilBcAemM8QrorvJuB4JKQAAAAAALgCbtJVjBFLuFokpAAAAAAAQL1XNrnG6HD7IiEFAKgWlkF2Du4+AgAA1A5MfVA17s5uAAAAAAAAAOoXRkgBAIAqYRg7AACXxzxTrsneI80ZyX51SEgBAFDPEUQBAFB9VVmZj6kOgMrxyB4AAAAAAAAcihFSwDUoSN1epTsjAAAAAIDahcnJ7YuEFADgmjFfAgCgIsf3vWH9/+KcTCe2BABqBlMd1BynP7L38ssvy83NTaNHj7aWXbx4UYmJiWrSpIn8/f0VHx+vrKwsm/dlZmYqLi5ODRs2VEhIiMaNG6fCwkIHtx4AAAAAAADV5dQRUnv37tUbb7yhm2++2aZ8zJgx+vjjj7Vq1SoFBgYqKSlJAwcO1I4dOyRJRUVFiouLk8lk0s6dO3X69GkNGTJEXl5emj17tjMuBQCAeodh7AAAALhaThshde7cOQ0ePFhvvfWWGjdubC3Pzc3VkiVL9Oqrr6pnz57q0qWLUlJStHPnTu3atUuStHHjRh0+fFjvvvuuOnXqpL59+2rmzJlauHCh8vPznXVJAAAANYqR5AAAoK5yWkIqMTFRcXFxiomJsSnPyMhQQUGBTXm7du3UrFkzpaenS5LS09PVsWNHhYaGWuvExsbKYrHo0KFDjrkAAAAAO7rcSPKPPvpIq1at0rZt23Tq1CkNHDjQur90JHl+fr527typZcuWaenSpZoyZYqjLwEAAKcoSN1us8E1OeWRvZUrV+qLL77Q3r17y+0zm83y9vZWUFCQTXloaKjMZrO1zqXJqNL9pfsqk5eXp7y8POtri8VytZcAAABgN5eOJJ81a5a1vHQk+YoVK9SzZ09JUkpKitq3b69du3ape/fu1pHkmzZtUmhoqDp16qSZM2dq/PjxmjZtmry9vZ11WahHSv8AZCJzAEBlHD5C6vvvv9cf/vAHLV++XL6+vg49d3JysgIDA61bRESEQ88PAABQFY4eSZ6XlyeLxWKzAQAA2JPDE1IZGRnKzs7WrbfeKk9PT3l6emrbtm1asGCBPD09FRoaqvz8fOXk5Ni8LysrSyaTSZJkMpnKzZVQ+rq0TkUmTpyo3Nxc6/b999/X7MUBAABco9KR5MnJyeX22WskOTftAACAozk8IdWrVy8dPHhQBw4csG5du3bV4MGDrf/v5eWlzZs3W99z9OhRZWZmKjo6WpIUHR2tgwcPKjs721onLS1NAQEBioqKqvTcPj4+CggIsNkAAABchbNGknPTDgAAOJrD55Bq1KiRbrrpJpsyPz8/NWnSxFo+bNgwjR07VsHBwQoICNCoUaMUHR2t7t27S5J69+6tqKgoPfHEE5ozZ47MZrMmTZqkxMRE+fj4OPqSUE8wGR4AwN4uHUleqqioSJ999pn++te/6pNPPrGOJL90lFTZkeR79uyxOe6VRpL7+PgQQwEAAIdy2ip7lzNv3jw98MADio+P19133y2TyaQPP/zQut/Dw0Pr1q2Th4eHoqOj9dvf/lZDhgzRjBkznNhqAACAa+PMkeQAAACO5JRV9sraunWrzWtfX18tXLhQCxcurPQ9zZs31/r16+3cMgAAUB0VjSb16tPDCS2pnRhJDgAA6guXSEgBAACgaubNmyd3d3fFx8crLy9PsbGxev311637S0eSjxw5UtHR0fLz81NCQgIjyQEAgEshIQUAAODCGEkOAADqIpecQwoAAAAAAAB1FyOkAAAAAFw1ViIGgCtjns3ySEgBAAAAuGbf5WxwdhMAALUICSkAAAAAABykbPK2RVBfJ7UEcC4SUgCAGlfRXXKCLQAAAAClSEgB1cBQdAAAAAA1iRt5qK9ISAEAXAZD2AEAAID6gYQUAMAhSDYBAAAAKOXu7AYAAAAAAACgfiEhBQAAAAAAAIciIQUAAAAAAACHYg4pAAAAAABcSFVW92Y+TtR2jJACAAAAAACAQzFCCgDgFFW58wcAAACgbiIhBVSiIHW7s5sAAAAAAKijyv7N6dWnh5Na4hw8sgcAAAAAAACHIiEFAAAAAAAAhyIhBQAAAAAAAIciIQUAAAAAAACHYlJzAIDLqmglvhZBfZ3QEgBAWcf3vSFJKs7JdHJLAAC1ESOkAAAAAAAA4FCMkAIAAAAAoJYpO5KcUeSobRghBQAAAAAAAIdySkJq0aJFuvnmmxUQEKCAgABFR0drw4Zfs7sXL15UYmKimjRpIn9/f8XHxysrK8vmGJmZmYqLi1PDhg0VEhKicePGqbCw0NGXAgAAANQrBanbVZC6XcXfZKr4G+aPAgBcHackpG644Qa9/PLLysjI0L59+9SzZ089+OCDOnTokCRpzJgx+uijj7Rq1Spt27ZNp06d0sCBA63vLyoqUlxcnPLz87Vz504tW7ZMS5cu1ZQpU5xxOQAAAAAAAKgGp8wh1b9/f5vXL730khYtWqRdu3bphhtu0JIlS7RixQr17NlTkpSSkqL27dtr165d6t69uzZu3KjDhw9r06ZNCg0NVadOnTRz5kyNHz9e06ZNk7e3tzMuC3VQRSt8AQAAAACAa+P0OaSKioq0cuVKnT9/XtHR0crIyFBBQYFiYmKsddq1a6dmzZopPT1dkpSenq6OHTsqNDTUWic2NlYWi8U6yqoieXl5slgsNhsAAAAAAAAcy2kJqYMHD8rf318+Pj763e9+p9WrVysqKkpms1ne3t4KCgqyqR8aGiqz2SxJMpvNNsmo0v2l+yqTnJyswMBA6xYREVGzFwUAAAAAAIArcsoje5J044036sCBA8rNzdUHH3yghIQEbdu2za7nnDhxosaOHWt9bbFYSEoBAGBnBanbbV579enhpJYAAADAVTgtIeXt7a3WrVtLkrp06aK9e/fqL3/5ix577DHl5+crJyfHZpRUVlaWTCaTJMlkMmnPnj02xytdha+0TkV8fHzk4+NTw1cCAAAAAIDrq2iO3BZBfZ3QEsAF5pAqVVxcrLy8PHXp0kVeXl7avHmzdd/Ro0eVmZmp6OhoSVJ0dLQOHjyo7Oxsa520tDQFBAQoKirK4W0HAAAAAABA1TllhNTEiRPVt29fNWvWTGfPntWKFSu0detWffLJJwoMDNSwYcM0duxYBQcHKyAgQKNGjVJ0dLS6d+8uSerdu7eioqL0xBNPaM6cOTKbzZo0aZISExMZAQUAAAAAAODinJKQys7O1pAhQ3T69GkFBgbq5ptv1ieffKL7779fkjRv3jy5u7srPj5eeXl5io2N1euvv259v4eHh9atW6eRI0cqOjpafn5+SkhI0IwZM5xxOQAAAAAAAKgGpySklixZctn9vr6+WrhwoRYuXFhpnebNm2v9+vU13TTUU2Un3AXguiqa+6As5kIAAAComrKxFXEUHMVl5pACAAAAAABA/eC0VfYAALAXRlEBAAAAro2EFAAAAAAAdVBVbtIBzsIjewAAAAAAAHAoElIAAAAAAABwKB7ZAwAAAACgluPxPNQ2jJACAAAAAACAQzFCCgAAAECFClK3O7sJAIA6ioQUAKBeKjusvUVQXye1BAAAAKh/SEgB/x/PXAMAAAAA4BjMIQUAAAAAAACHIiEFAAAAAAAAh+KRPQAAAAAAIKniqUyYaxP2wAgpAAAAAAAAOBQjpAAAuAas1gegPmDxFwBATWOEFAAAAAAAAByKEVIAAMChClK3lyvz6tPDCS0BAACAs5CQQr10fN8bNq+LczKd1BIAAAAAqHuYHB1XQkIKAAAAAABUijkzYQ8kpAAAAAAAAJysvk1rwKTmAAAAAAAAcCgSUgAAAAAAAHAoHtlDvVOQup1JzAGUU9HEm2UxXwIAAABQM0hIoV64dFU9klEAAAC/Krv6sCS16vqME1oCAKhPnPLIXnJysm677TY1atRIISEhGjBggI4ePWpT5+LFi0pMTFSTJk3k7++v+Ph4ZWVl2dTJzMxUXFycGjZsqJCQEI0bN06FhYWOvBQAAAAAAOqV73I2XHEDrsQpCalt27YpMTFRu3btUlpamgoKCtS7d2+dP3/eWmfMmDH66KOPtGrVKm3btk2nTp3SwIEDrfuLiooUFxen/Px87dy5U8uWLdPSpUs1ZcoUZ1wSAKAeINiCvXHTDq7i+L43dHzfG/ysAwDYjVMSUqmpqRo6dKg6dOigW265RUuXLlVmZqYyMjIkSbm5uVqyZIleffVV9ezZU126dFFKSop27typXbt2SZI2btyow4cP691331WnTp3Ut29fzZw5UwsXLlR+fr4zLgsAAOCacNMOAADUFy6xyl5ubq4kKTg4WJKUkZGhgoICxcTEWOu0a9dOzZo1U3p6uiQpPT1dHTt2VGhoqLVObGysLBaLDh065MDWAwAA1Axu2gEAgPrC6Qmp4uJijR49WnfeeaduuukmSZLZbJa3t7eCgoJs6oaGhspsNlvrXJqMKt1fuq8ieXl5slgsNhsAAICr4qYdAACoq5y+yl5iYqK++uorbd++3e7nSk5O1vTp0+1+HgAAgGvl6Jt2eXl51tfctAMAAPbm1BFSSUlJWrdunT799FPdcMMN1nKTyaT8/Hzl5OTY1M/KypLJZLLWKTuBZ+nr0jplTZw4Ubm5udbt+++/r8GrAQAAqDmlN+1Wrlxp93MlJycrMDDQukVERNj9nHBNxd9k2mwAANiLUxJShmEoKSlJq1ev1pYtWxQZGWmzv0uXLvLy8tLmzZutZUePHlVmZqaio6MlSdHR0Tp48KCys7OtddLS0hQQEKCoqKgKz+vj46OAgACbDQAAwNVw0w4AANR1TklIJSYm6t1339WKFSvUqFEjmc1mmc1m/fLLL5KkwMBADRs2TGPHjtWnn36qjIwMPfnkk4qOjlb37t0lSb1791ZUVJSeeOIJffnll/rkk080adIkJSYmysfHxxmXBQAAcE24aQcAAOoLp8whtWjRIknSvffea1OekpKioUOHSpLmzZsnd3d3xcfHKy8vT7GxsXr99detdT08PLRu3TqNHDlS0dHR8vPzU0JCgmbMmOGoywAAoJzvcjaUK2sR1LfadVA/JSYmasWKFfrXv/5lvWknldysa9Cggc1Nu+DgYAUEBGjUqFGV3rSbM2eOzGYzN+0AAIDLcUpCyjCMK9bx9fXVwoULtXDhwkrrNG/eXOvXr6/JpgEAADgNN+0AAEB94fRV9gAAQPlRU4yYqp+4aQcAqMsqGiVeFjFQ/eHUVfYAAAAAAABQ/zBCCgAAO6vK3UAAcLSC1O2SpOKcTCe3BAB+xSiq+oOEFOq8gtTtBFoAAAAAALgQHtkDAAAAAACAQ5GQAgAAAAAAgEORkAIAAAAAAIBDkZACAAAAAACAQzGpOQAAAAAAqFPKrtbHynyuhxFSAAAAAAAAcCgSUgAAAAAAAHAoElIAAAAAAABwKOaQAgDABZWd90Bi7gMAAADUHSSkAACopUhaAQAAoLYiIYVa7/i+N6z/X/xNJn+MAQAA/H+XxkllFedkOrAlAADYIiEFAAAA1DEFqdslkXQCUDeVHSXOoITaiYQUai0CLQAAAAAAaicSUqhzKppTBQAAAABQN/E3YO1EQgoAgFqCYAsAAAB1BQkpAADqEOZUAAAAKK+2rk5cOlXNpbz69HBCS2qeu7MbAAAAAAAAgPqFhBQAAAAAAAAcioQUAAAAAAAAHIo5pAAAqMNqy3wJdXl+BMCRju97Q5JUnJPp5JYAAHB5JKRQaxSkbmeFKQAAAAAA6gCnPLL32WefqX///goPD5ebm5vWrFljs98wDE2ZMkVhYWFq0KCBYmJidOzYMZs6Z86c0eDBgxUQEKCgoCANGzZM586dc+BVAAAAAAAA4Go4ZYTU+fPndcstt+ipp57SwIEDy+2fM2eOFixYoGXLlikyMlKTJ09WbGysDh8+LF9fX0nS4MGDdfr0aaWlpamgoEBPPvmkRowYoRUrVjj6cgAAAACHK308DwBwdco+geOK0xrUZU5JSPXt21d9+1b8QRuGofnz52vSpEl68MEHJUlvv/22QkNDtWbNGg0aNEhHjhxRamqq9u7dq65du0qSXnvtNfXr109z585VeHi4w64F9nVpoMVcCAAAAOUVf0OMBACofVxulb0TJ07IbDYrJibGWhYYGKhu3bopPT1dkpSenq6goCBrMkqSYmJi5O7urt27d1d67Ly8PFksFpsNAAAAAAAAjuVyCSmz2SxJCg0NtSkPDQ217jObzQoJCbHZ7+npqeDgYGudiiQnJyswMNC6RURE1HDrAQAAAAAAcCUul5Cyp4kTJyo3N9e6ff/9985uEgAADvddzgabDQAAAHA0p8whdTkmk0mSlJWVpbCwMGt5VlaWOnXqZK2TnZ1t877CwkKdOXPG+v6K+Pj4yMfHp+YbDQAAAAAAarWKbtQx0bn9uNwIqcjISJlMJm3evNlaZrFYtHv3bkVHR0uSoqOjlZOTo4yMDGudLVu2qLi4WN26dXN4mwEAAAAAAFB1Thkhde7cOX3zzTfW1ydOnNCBAwcUHBysZs2aafTo0Zo1a5batGmjyMhITZ48WeHh4RowYIAkqX379urTp4+GDx+uxYsXq6CgQElJSRo0aBAr7AEAUAO4QwgAAAB7ckpCat++fbrvvvusr8eOHStJSkhI0NKlS/XCCy/o/PnzGjFihHJyctSjRw+lpqbK19fX+p7ly5crKSlJvXr1kru7u+Lj47VgwQKHXwsAAAAAAACqxykJqXvvvVeGYVS6383NTTNmzNCMGTMqrRMcHKwVK1bYo3kAANQrTGwOAABQsarESYwivzouN4cUAAAAAAAA6jYSUgAAAAAAAHAopzyyB1Tk+L43rP9f/E2mE1sCAAAAAADsiRFSAAAAAAAAcChGSAEAAAC1wPF9bzCKHABQZ5CQAgAAVVJ2lRlWlAEAACBGulokpAAAwFWpaBlkAjAAAABUBQkpOM2lk5gDAAAAAFAXcNOuapjUHAAAAAAAAA7FCCkAAADAxTCSHABQ15GQgktgxRgAAIDyiJEAAHUVj+wBAAAAAADAoUhIAQAAAAAAwKF4ZA8OwTwIAAAAlTu+7w0ezwMA1CskpOBwBFsAUHeVXeaYJY4BAADKx0gVqW9xEwkpAABgNxUFX/Ut2AIAAEB5JKRQowpSt9u89urTw0ktAQAAcF1lY6biHEaQAwDqFxJSsIvSO+Lu+w45uSUAAACu5fi+N0hAAQDqPRJSuGaXTlheNrhivigAAAAAAFAWCSkAAOBQTHwOAAAAElKokrLzHEjMDwUAAFBVl8ZSPK4HAKhIfbtpR0IKAAAAqEFlb+RVZalvAADqGxJSqDYmLAcAAChR0ShyAABwZSSk6rFLJyMv1arrMxXWqWhoOROWAwCA+o7RTwAAXB0SUqhQ6d0+5jgAAAD4FSOiAACoGbU+IbVw4UL96U9/ktls1i233KLXXntNt99+u7ObVWtdbkQUAACoPYiRrl1Fo8mJkQAAqBm1OiH13nvvaezYsVq8eLG6deum+fPnKzY2VkePHlVISIizm+dyju97o8LH7NxbN3NCawAAKFHRI091fVUZeyNGqr6Kkk8AADhTXY+R3AzDMJzdiKvVrVs33XbbbfrrX/8qSSouLlZERIRGjRqlCRMmXPH9FotFgYGBys3NVUBAgL2b6xSXDitnjgMAQG3RIqivvPr0sMux68Pv//oUI5V9hK6q35tjK1+0R3MAALCruhQj1doRUvn5+crIyNDEiROtZe7u7oqJiVF6enqF78nLy1NeXp71dW5urqSSTreHgrTy7fC6P/qy7/n2i7+XK2t561MVHutSmblp1WscAAAuzOJ1Xl52+v1c+nu/Ft+Tu6y6GiOVKhsrGad+sHnttnWfWt76lE3Z8Q9mVLOFAAC4proUI9XahNR///tfFRUVKTQ01KY8NDRU//nPfyp8T3JysqZPn16uPCIiwi5trDljnN0AAAAc7M92P8PZs2cVGBho9/M4Wv2KkSpD7AQAqKvqToxUaxNSV2PixIkaO3as9XVxcbHOnDmjJk2ayM3NzW7ntVgsioiI0Pfff+/yw97tiX4oQT+UoB9+RV+UoB9K0A8l7NkPhmHo7NmzCg8Pr9Hj1mbOipEkvvOl6IcS9EMJ+qEE/VCCfvgVfVHCXv3g6Bip1iakrrvuOnl4eCgrK8umPCsrSyaTqcL3+Pj4yMfHx6YsKCjIXk0sJyAgoF7/oylFP5SgH0rQD7+iL0rQDyXohxL26oe6ODKqVG2MkSS+86XohxL0Qwn6oQT9UIJ++BV9UcIe/eDIGMndYWeqYd7e3urSpYs2b95sLSsuLtbmzZsVHV21OQgAAADqGmIkAABQG9TaEVKSNHbsWCUkJKhr1666/fbbNX/+fJ0/f15PPvmks5sGAADgNMRIAADA1dXqhNRjjz2mn376SVOmTJHZbFanTp2UmppabhJPZ/Px8dHUqVPLDYWvb+iHEvRDCfrhV/RFCfqhBP1Qgn64NrUlRpL4rEvRDyXohxL0Qwn6oQT98Cv6okRd6Qc3o66ueQwAAAAAAACXVGvnkAIAAAAAAEDtREIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORULKDs6cOaPBgwcrICBAQUFBGjZsmM6dO1el9xqGob59+8rNzU1r1qyxb0MdoLp9cebMGY0aNUo33nijGjRooGbNmunZZ59Vbm6uA1t97RYuXKgWLVrI19dX3bp10549ey5bf9WqVWrXrp18fX3VsWNHrV+/3kEtta/q9MNbb72lu+66S40bN1bjxo0VExNzxX6rTar7nSi1cuVKubm5acCAAfZtoINUtx9ycnKUmJiosLAw+fj4qG3btnXi30d1+2H+/PnWn4sREREaM2aMLl686KDW2sdnn32m/v37Kzw8vMq/87Zu3apbb71VPj4+at26tZYuXWr3dsI+iJVKECcRJxEnESOVIkYqQYxUz2IkAzWuT58+xi233GLs2rXL+Pzzz43WrVsbjz/+eJXe++qrrxp9+/Y1JBmrV6+2b0MdoLp9cfDgQWPgwIHG2rVrjW+++cbYvHmz0aZNGyM+Pt6Brb42K1euNLy9vY2///3vxqFDh4zhw4cbQUFBRlZWVoX1d+zYYXh4eBhz5swxDh8+bEyaNMnw8vIyDh486OCW16zq9sNvfvMbY+HChcb+/fuNI0eOGEOHDjUCAwONH374wcEtr3nV7YtSJ06cMK6//nrjrrvuMh588EHHNNaOqtsPeXl5RteuXY1+/foZ27dvN06cOGFs3brVOHDggINbXrOq2w/Lly83fHx8jOXLlxsnTpwwPvnkEyMsLMwYM2aMg1tes9avX2+8+OKLxocfflil33nffvut0bBhQ2Ps2LHG4cOHjddee83w8PAwUlNTHdNg1ChipRLEScRJ9T1OIkYqQYxUghipRH2KkUhI1bDDhw8bkoy9e/dayzZs2GC4ubkZP/7442Xfu3//fuP66683Tp8+XSeCrGvpi0u9//77hre3t1FQUGCPZta422+/3UhMTLS+LioqMsLDw43k5OQK6z/66KNGXFycTVm3bt2MZ555xq7ttLfq9kNZhYWFRqNGjYxly5bZq4kOczV9UVhYaNxxxx3G3/72NyMhIaFOBFvV7YdFixYZLVu2NPLz8x3VRIeobj8kJiYaPXv2tCkbO3asceedd9q1nY5Uld95L7zwgtGhQwebsscee8yIjY21Y8tgD8RKJYiTShAnlaivcRIxUglipBLESOXV9RiJR/ZqWHp6uoKCgtS1a1drWUxMjNzd3bV79+5K33fhwgX95je/0cKFC2UymRzRVLu72r4oKzc3VwEBAfL09LRHM2tUfn6+MjIyFBMTYy1zd3dXTEyM0tPTK3xPenq6TX1Jio2NrbR+bXA1/VDWhQsXVFBQoODgYHs10yGuti9mzJihkJAQDRs2zBHNtLur6Ye1a9cqOjpaiYmJCg0N1U033aTZs2erqKjIUc2ucVfTD3fccYcyMjKsQ9a//fZbrV+/Xv369XNIm11FXfxZWV8RK5UgTipBnFSiPsZJxEgliJFKECNdvdr8c9L1f3PVMmazWSEhITZlnp6eCg4OltlsrvR9Y8aM0R133KEHH3zQ3k10mKvti0v997//1cyZMzVixAh7NLHG/fe//1VRUZFCQ0NtykNDQ/Wf//ynwveYzeYK61e1j1zR1fRDWePHj1d4eHi5H661zdX0xfbt27VkyRIdOHDAAS10jKvph2+//VZbtmzR4MGDtX79en3zzTf6/e9/r4KCAk2dOtURza5xV9MPv/nNb/Tf//5XPXr0kGEYKiws1O9+9zv98Y9/dESTXUZlPystFot++eUXNWjQwEktQ3URK5UgTvoVcVKJ+hYnESOVIEYqQYx09WpzjMQIqSqaMGGC3NzcLrtV9RdIWWvXrtWWLVs0f/78mm20ndizLy5lsVgUFxenqKgoTZs27dobjlrj5Zdf1sqVK7V69Wr5+vo6uzkOdfbsWT3xxBN66623dN111zm7OU5VXFyskJAQvfnmm+rSpYsee+wxvfjii1q8eLGzm+ZQW7du1ezZs/X666/riy++0IcffqiPP/5YM2fOdHbTABvESiWIk2Bv9TVOIkb6FTFSCWKk2o8RUlX03HPPaejQoZet07JlS5lMJmVnZ9uUFxYW6syZM5UOL9+yZYuOHz+uoKAgm/L4+Hjddddd2rp16zW0vObZsy9KnT17Vn369FGjRo20evVqeXl5XWuzHeK6666Th4eHsrKybMqzsrIqvWaTyVSt+rXB1fRDqblz5+rll1/Wpk2bdPPNN9uzmQ5R3b44fvy4vvvuO/Xv399aVlxcLKnkzvnRo0fVqlUr+zbaDq7mOxEWFiYvLy95eHhYy9q3by+z2az8/Hx5e3vbtc32cDX9MHnyZD3xxBN6+umnJUkdO3bU+fPnNWLECL344otyd68f95Yq+1kZEBDg0nf+6hNipRLESZUjTipBnFSCGKkEMVIJYqSrV5tjpPrxCdWApk2bql27dpfdvL29FR0drZycHGVkZFjfu2XLFhUXF6tbt24VHnvChAn697//rQMHDlg3SZo3b55SUlIccXnVYs++kEru+PXu3Vve3t5au3Ztrbrz4+3trS5dumjz5s3WsuLiYm3evFnR0dEVvic6OtqmviSlpaVVWr82uJp+kKQ5c+Zo5syZSk1NtZlTozarbl+0a9dOBw8etPl58H//93+67777dODAAUVERDiy+TXmar4Td955p7755htrsClJX3/9tcLCwmploCVdXT9cuHChXEBVGoAahmG/xrqYuvizsq4hVipBnFQ54qQSxEkliJFKECOVIEa6erX656Rz51Svm/r06WN07tzZ2L17t7F9+3ajTZs2Nkv4/vDDD8aNN95o7N69u9JjqJavHFOqun2Rm5trdOvWzejYsaPxzTffGKdPn7ZuhYWFzrqMalm5cqXh4+NjLF261Dh8+LAxYsQIIygoyDCbzYZhGMYTTzxhTJgwwVp/x44dhqenpzF37lzjyJEjxtSpU+vMcsbV6YeXX37Z8Pb2Nj744AObz/3s2bPOuoQaU92+KKuurCBT3X7IzMw0GjVqZCQlJRlHjx411q1bZ4SEhBizZs1y1iXUiOr2w9SpU41GjRoZ//jHP4xvv/3W2Lhxo9GqVSvj0UcfddYl1IizZ88a+/fvN/bv329IMl599VVj//79xsmTJw3DMIwJEyYYTzzxhLV+6ZLG48aNM44cOWIsXLiw1ixpjPKIlUoQJxEn1fc4iRipBDFSCWKkEvUpRiIhZQf/+9//jMcff9zw9/c3AgICjCeffNLml8WJEycMScann35a6THqQpBlGNXvi08//dSQVOF24sQJ51zEVXjttdeMZs2aGd7e3sbtt99u7Nq1y7rvnnvuMRISEmzqv//++0bbtm0Nb29vo0OHDsbHH3/s4BbbR3X6oXnz5hV+7lOnTnV8w+2gut+JS9WVYMswqt8PO3fuNLp162b4+PgYLVu2NF566aVa80fX5VSnHwoKCoxp06YZrVq1Mnx9fY2IiAjj97//vfHzzz87vuE1qLKf96XXnpCQYNxzzz3l3tOpUyfD29vbaNmypZGSkuLwdqNmECuVIE4iTiJOIkYqRYxUghipfsVIboZRj8ayAQAAAAAAwOmYQwoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCgAAAAAAAA5FQgoAAAAAAAAORUIKAAAAAAAADkVCCtdk2rRpcnNzsylr0aKFhg4davdzf/fdd3Jzc9PSpUutZUOHDpW/v7/dz13Kzc1N06ZNc9j5art7771X9957b40es6LvoDPY43tf9phbt26Vm5ubtm7dWu1jVbXvr+Uc1VGX/u3s2bNH3t7eOnny5BXrVvQ9OXbsmHr37q3AwEC5ublpzZo11Tp/9+7d9cILL1TrPQDsjxip7vycdwRipGs7JjGSayJGwpWQkIJLWL9+vcv+4HXlttUXFy5c0LRp0+weAMC1vffee/rtb3+rNm3ayM3N7bLBY15ensaPH6/w8HA1aNBA3bp1U1paWoV1d+7cqR49eqhhw4YymUx69tlnde7cuSq368UXX9Tjjz+u5s2bV/eSJEkJCQk6ePCgXnrpJb3zzjvq2rWrzp07p6lTp6pPnz4KDg4u94flpcaPH6+FCxfKbDZf1fkBuDZXjkNcuW31BTESpPoVI+3du1dJSUnq0KGD/Pz81KxZMz366KP6+uuvy72fGKkWMIBrMHXqVKPs1+jixYtGfn5+tY6TmJhY7jhXUlxcbPzyyy9GYWGhtSwhIcHw8/Or1nGupW2//PKLUVBQUKPnq8vuuece45577qn2+3766SdDkjF16tRy+woKCoxffvnl2ht3ja7me38lzZs3NxISEqyvi4qKjF9++cUoKiqq9rHy8vKMvLy8K9b79NNPDUnGp59+Wu1zVEdln+fl3HPPPYa/v79x3333GY0bN77sd2nQoEGGp6en8fzzzxtvvPGGER0dbXh6ehqff/65Tb39+/cbvr6+RufOnY1FixYZL774ouHj42P06dOnSm3av3+/IcnYuXNnleqX/UwvXLhgSDJefPFFm3onTpwwJBnNmjUz7r33XkOSkZKSUuExi4qKDJPJZEyePLlKbQDgGMRIxEjVQYxUPcRItupTjBQfH2+YTCZj1KhRxltvvWXMnDnTCA0NNfz8/IyDBw/a1CVGcn2ejk6Aoe7z8fGx6/ELCwtVXFwsb29v+fr62vVcV+Ls8zvCxYsX5e3tLXf38gMqz58/Lz8/Pye06leenp7y9HT+jzJ7f+8lyd3d/aq/c97e3jXcGsd75513dP3118vd3V033XRTpfX27NmjlStX6k9/+pOef/55SdKQIUN000036YUXXtDOnTutdf/4xz+qcePG2rp1qwICAiSVDBkfPny4Nm7cqN69e1+2TSkpKWrWrJm6d+9+Vdf0008/SZKCgoJsysPCwnT69GmZTCbt27dPt912W6XHcHd318MPP6y3335b06dPd4nHMwBUjBipbiFGqhpiJPurTzHS2LFjtWLFCpvP7bHHHlPHjh318ssv691337WWEyO5Ph7ZQ5Vt375dt912m3x9fdWqVSu98cYbFdYr+/xvQUGBpk+frjZt2sjX11dNmjRRjx49rENDhw4dqoULF0oqeWa6dJN+nQNh7ty5mj9/vlq1aiUfHx8dPny4wvkRSn377beKjY2Vn5+fwsPDNWPGDBmGYd1f2TPgZY95ubaVlpUdqr5//3717dtXAQEB8vf3V69evbRr1y6bOkuXLpWbm5t27NihsWPHqmnTpvLz89NDDz1k/eFbHT/++KOGDRum8PBw+fj4KDIyUiNHjlR+fr5NnzzyyCMKDg5Ww4YN1b17d3388cc2xyntl5UrV2rSpEm6/vrr1bBhQ1ksFuvcE8ePH1e/fv3UqFEjDR48WJJUXFys+fPnq0OHDvL19VVoaKieeeYZ/fzzz5dtd35+vqZMmaIuXbooMDBQfn5+uuuuu/Tpp59a63z33Xdq2rSpJFl/kVza7xXNj1BYWKiZM2davy8tWrTQH//4R+Xl5dnUa9GihR544AFt375dt99+u3x9fdWyZUu9/fbb1fsAVP57X53P2DAMzZo1SzfccIMaNmyo++67T4cOHSp3jrLf26SkJPn7++vChQvl6j7++OMymUwqKiqSVPH8CD/88IMGDBggPz8/hYSEaMyYMeX6qKJrK1X2mFX5PK9FREREhUF/WR988IE8PDw0YsQIa5mvr6+GDRum9PR0ff/995Iki8WitLQ0/fa3v7UGWlJJYObv76/333//iudas2aNevbsWe47WJXPdNq0adYh7OPGjZObm5tatGghqSR4N5lMVzx/qfvvv18nT57UgQMHqvweADWHGIkYiRipcsRIxEiXutYY6Y477iiXRGzTpo06dOigI0eOlGsHMZJrc37KHLXCwYMH1bt3bzVt2lTTpk1TYWGhpk6dqtDQ0Cu+d9q0aUpOTtbTTz+t22+/XRaLRfv27dMXX3yh+++/X88884xOnTqltLQ0vfPOOxUeIyUlRRcvXtSIESPk4+Oj4OBgFRcXV1i3qKhIffr0Uffu3TVnzhylpqZq6tSpKiws1IwZM6p13VVp26UOHTqku+66SwEBAXrhhRfk5eWlN954Q/fee6+2bdumbt262dQfNWqUGjdurKlTp+q7777T/PnzlZSUpPfee6/KbTx16pRuv/125eTkaMSIEWrXrp1+/PFHffDBB7pw4YK8vb2VlZWlO+64QxcuXNCzzz6rJk2aaNmyZfq///s/ffDBB3rooYdsjjlz5kx5e3vr+eefV15envWHfmFhoWJjY9WjRw/NnTtXDRs2tPbT0qVL9eSTT+rZZ5/ViRMn9Ne//lX79+/Xjh075OXlVWHbLRaL/va3v+nxxx/X8OHDdfbsWS1ZskSxsbHas2ePOnXqpKZNm2rRokUaOXKkHnroIQ0cOFCSdPPNN1faJ08//bSWLVumhx9+WM8995x2796t5ORkHTlyRKtXr7ap+8033+jhhx/WsGHDlJCQoL///e8aOnSounTpog4dOlT5c6hMVT7jKVOmaNasWerXr5/69eunL774Qr1797YJlivy2GOPaeHChfr444/1yCOPWMsvXLigjz76SEOHDpWHh0eF7/3ll1/Uq1cvZWZm6tlnn1V4eLjeeecdbdmy5aqvtSqfpyPs379fbdu2tQmgJOn222+XJB04cEARERE6ePCgCgsL1bVrV5t63t7e6tSpk/bv33/Z8/z444/KzMzUrbfeWm5fVT7TgQMHKigoSGPGjNHjjz+ufv36XfWEw126dJEk7dixQ507d76qYwC4OsRIxEgSMdLVIEYiRqqpGMkwDGVlZVX4vSRGcnFOfFwQtciAAQMMX19f4+TJk9ayw4cPGx4eHuXmDij7/O8tt9xixMXFXfb4lc1BUDqPSkBAgJGdnV3hvkvnVUlISDAkGaNGjbKWFRcXG3FxcYa3t7fx008/GYZR+TPgFR3zcvMjqMwz3gMGDDC8vb2N48ePW8tOnTplNGrUyLj77rutZSkpKYYkIyYmxiguLraWjxkzxvDw8DBycnIqPF9FhgwZYri7uxt79+4tt6/02KNHjzYk2TwbfvbsWSMyMtJo0aKF9Xn70n5p2bKlceHCBZtjlfbthAkTbMo///xzQ5KxfPlym/LU1NRy5WXnRygsLCz3zP7PP/9shIaGGk899ZS17HLzI5Sdo+PAgQOGJOPpp5+2qff8888bkowtW7ZYy5o3b25IMj777DNrWXZ2tuHj42M899xz5c51OWW/91X9jLOzsw1vb28jLi7Opt4f//hHQ5LNMct+b4uLi43rr7/eiI+Pt2nL+++/X+66yvb9/PnzDUnG+++/by07f/680bp163L/NspeW2XHrOrnaRhXNz/CpTp06FDp/AgdOnQwevbsWa780KFDhiRj8eLFhmEYxqpVq8r1U6lHHnnEMJlMl23Dpk2bDEnGRx99ZFNenc+09GfOn/70p0rPs3fv3svOIVXK29vbGDly5GXrAKh5xEjESMRIl0eMRIxUqqZjpFLvvPOOIclYsmRJhfuJkVwXj+zhioqKivTJJ59owIABatasmbW8ffv2io2NveL7g4KCdOjQIR07duyq2xAfH28dklwVSUlJ1v93c3NTUlKS8vPztWnTpqtuw5UUFRVp48aNGjBggFq2bGktDwsL029+8xtt375dFovF5j0jRoywGcZ61113qaioqEpLo0olw8DXrFmj/v37l7uDIcl67PXr1+v2229Xjx49rPv8/f01YsQIfffddzp8+LDN+xISEtSgQYMKzzly5Eib16tWrVJgYKDuv/9+/fe//7VuXbp0kb+//2WHInt4eFjvLBYXF+vMmTPWuzFffPFFlfqgrPXr10sqeb78Us8995wklRuCHxUVpbvuusv6umnTprrxxhv17bffXtX5y7rSZ7xp0ybl5+dr1KhRNvVGjx59xWO7ubnpkUce0fr1621WPHnvvfd0/fXX23zeZa1fv15hYWF6+OGHrWUNGza0GcJdXfb4PK/GL7/8UuF8FaVzS/zyyy82/62sbun+yvzvf/+TJDVu3Nim/Fo+02vRuHFj/fe//7XrOQDYIkaqGmIkYqSKECMRI5W6lhjpP//5jxITExUdHa2EhIQK6xAjuS4SUriin376Sb/88ovatGlTbt+NN954xffPmDFDOTk5atu2rTp27Khx48bp3//+d7XaEBkZWeW67u7uNsGOJLVt21ZSybP29vLTTz/pwoULFfZJ+/btVVxcbH0uu9Slwav06w/tK80rcOk5LRbLZScvlKSTJ09W2q7S/ZeqrL89PT11ww032JQdO3ZMubm5CgkJUdOmTW22c+fOKTs7+7JtW7ZsmW6++Wbr3BlNmzbVxx9/rNzc3Mu+rzInT56Uu7u7WrdubVNuMpkUFBRU7lrLfgZSyedQ1c/gSq70GZe2p+y/r6ZNm5b7JV6Rxx57TL/88ovWrl0rSTp37pzWr1+vRx555LITN548eVKtW7cuV6cq/6Yvp6Y/z6vRoEGDCud5uHjxonX/pf+trG5lf3CUZVwy94p07Z/p1TIMg8k6AQcjRqoaYiRipIoQIxEjlbraGMlsNisuLk6BgYHW+bEqawcxkmtiDinY3d13363jx4/rX//6lzZu3Ki//e1vmjdvnhYvXqynn366Sseo6g+9qqrsB1Lp5IaOcrkfms5UWX/7+PiUmzCxuLhYISEhWr58eYXvudxd23fffVdDhw7VgAEDNG7cOIWEhMjDw0PJyck6fvz41V+AKv+My7L3Z2Dv43fv3l0tWrTQ+++/r9/85jf66KOP9Msvv+ixxx6rkeNLl//3cun12fPzrI6wsDD9+OOP5cpPnz4tSQoPD7fWu7S8bN3SepVp0qSJpKr/cWRvOTk5uu6665zdDADVQIxUOWIkYqRrRYxUXl2KkXJzc9W3b1/l5OTo888/v2ybiJFcFwkpXFHTpk3VoEGDCoeTHz16tErHCA4O1pNPPqknn3xS586d0913361p06ZZg62azFgXFxfr22+/td7xk6Svv/5akqyrM5Rm4HNycmzeW9Ew8Kq2rWnTpmrYsGGFffKf//xH7u7uioiIqNKxqqpp06YKCAjQV199ddl6zZs3r7RdpfuvVqtWrbRp0ybdeeed1Q6KP/jgA7Vs2VIffvihTT9PnTrVpl51vh/NmzdXcXGxjh07Zr27KUlZWVnKycm5pmu1h9L2HDt2zOau9U8//VTlX+KPPvqo/vKXv8hisei9995TixYtrrjEbvPmzfXVV1+Vu2NU0fekcePG5f6tSCX/Xi5tc1U/T3vr1KmTPv30U1ksFptJO3fv3m3dL0k33XSTPD09tW/fPj366KPWevn5+Tpw4IBNWUXatWsnSTpx4oRNeU18ptX1448/Kj8/3+Y7D8D+iJGIkS6HGOnaECPVvLoSI128eFH9+/fX119/rU2bNikqKqrSusRIro1H9nBFHh4eio2N1Zo1a5SZmWktP3LkiD755JMrvr/0GeJS/v7+at26tc0QUD8/P0nlg5+r9de//tX6/4Zh6K9//au8vLzUq1cvSSU/DD08PPTZZ5/ZvO/1118vd6yqts3Dw0O9e/fWv/71L5th71lZWVqxYoV69OhRbkWLa+Xu7q4BAwboo48+0r59+8rtL73D1K9fP+3Zs0fp6enWfefPn9ebb76pFi1aXPaH+JU8+uijKioq0syZM8vtKywsvGy/ld45uvRO2O7du23aKcm6Uk1Vvh/9+vWTJM2fP9+m/NVXX5UkxcXFXfEYjhQTEyMvLy+99tprNv1Qtv2X89hjjykvL0/Lli1TamrqFYMEqaSfTp06pQ8++MBaduHCBb355pvl6rZq1Uq7du2yWf1k3bp15R6vqOrnaW8PP/ywioqKbK4lLy9PKSkp6tatm/WPnsDAQMXExOjdd9/V2bNnrXXfeecdnTt3zmZVnopcf/31ioiIKPdvryY+0+rKyD2vU1oAAQAASURBVMiQVLIUMgDHIUYiRrocYqRrQ4xU8+pCjFRUVKTHHntM6enpWrVqlaKjoy9bnxjJtTFCClUyffp0paam6q677tLvf/97FRYW6rXXXlOHDh2uONdBVFSU7r33XnXp0kXBwcHat2+fPvjgA5tJNUuX43z22WcVGxsrDw8PDRo06Kra6uvrq9TUVCUkJKhbt27asGGDPv74Y/3xj3+0Do0ODAzUI488otdee01ubm5q1aqV1q1bV+Gz/NVp26xZs5SWlqYePXro97//vTw9PfXGG28oLy9Pc+bMuarruZLZs2dr48aNuueeezRixAi1b99ep0+f1qpVq7R9+3YFBQVpwoQJ+sc//qG+ffvq2WefVXBwsJYtW6YTJ07on//8Z7kh5tVxzz336JlnnlFycrIOHDig3r17y8vLS8eOHdOqVav0l7/8xWZSyEs98MAD+vDDD/XQQw8pLi5OJ06c0OLFixUVFWUzAWWDBg0UFRWl9957T23btlVwcLBuuummCueFuOWWW5SQkKA333xTOTk5uueee7Rnzx4tW7ZMAwYM0H333XfV12oPTZs21fPPP6/k5GQ98MAD6tevn/bv368NGzZUeWjxrbfeqtatW+vFF19UXl5elYaiDx8+XH/96181ZMgQZWRkKCwsTO+88441sL3U008/rQ8++EB9+vTRo48+quPHj+vdd99Vq1atbOpV9fO8Wp999pn1D6SffvpJ58+f16xZsySVPPZy9913S5K6deumRx55RBMnTlR2drZat26tZcuW6bvvvtOSJUtsjvnSSy/pjjvusP77+eGHH/TnP/9ZvXv3Vp8+fa7YpgcffFCrV6+2uYtaE5+pVPJHY05Ojk6dOiVJ+uijj/TDDz9IKlkqOzAw0Fo3LS1NzZo1YzljwAmIkYiRKkOMdG2IkaquPsVIzz33nNauXav+/fvrzJkzevfdd232//a3v7V5TYzk4hy1nB9qv23bthldunQxvL29jZYtWxqLFy8ut5ysYZRf/nTWrFnG7bffbgQFBRkNGjQw2rVrZ7z00ktGfn6+tU5hYaExatQoo2nTpoabm5v1mJdb7rOyJY39/PyM48ePG7179zYaNmxohIaGGlOnTrUu21vqp59+MuLj442GDRsajRs3Np555hnjq6++KnfMytpmGBUvy/rFF18YsbGxhr+/v9GwYUPjvvvuM3bu3GlTp3S527LLEFe21PKVnDx50hgyZIjRtGlTw8fHx2jZsqWRmJhos7zs8ePHjYcfftgICgoyfH19jdtvv91Yt25dhedftWpVuXOU9m1l3nzzTaNLly5GgwYNjEaNGhkdO3Y0XnjhBePUqVPWOmWXwC0uLjZmz55tNG/e3PDx8TE6d+5srFu3zkhISDCaN29uc/ydO3dav3+X9ntF38GCggJj+vTpRmRkpOHl5WVEREQYEydONC5evGhTr3nz5hUut122nVVR2ZLGVfmMi4qKjOnTpxthYWFGgwYNjHvvvdf46quvyh3zct+PF1980ZBktG7dusL2VXRNJ0+eNP7v//7PaNiwoXHdddcZf/jDH6xLUZc9x5///Gfj+uuvN3x8fIw777zT2Ldv3zV9nhX927mS0s+6oq3ssX755Rfj+eefN0wmk+Hj42PcdtttRmpqaoXH/fzzz4077rjD8PX1NZo2bWokJiYaFoulSm364osvyi0XbhhV/0wv9zOudMntirYTJ07YnCssLMyYNGlSldoMoOYRIxEjESNVjhiJGOlS1xoj3XPPPZVea9nvOzGS63MzDCfPDAgAQC3Wq1cvhYeH65133nHK+desWaPf/OY3On78uHUSUgAAAGcjRsKVkJACAOAa7N69W3fddZeOHTvmlAlho6Ojddddd9ntkRcAAICrQYyEKyEhBbioc+fOXfGZ8qZNm1a6ZC5qhtlsvuz+Bg0a2Mzlg+opKirSTz/9dNk6/v7+8vf3d1CLAACujhjJNRAj2RcxEuoDElKAi5o2bZqmT59+2TonTpywLtMM+7jScsoJCQlaunSpYxpTB3333XeKjIy8bJ2pU6dq2rRpjmkQAMDlESO5BmIk+yJGQn3AKnuAixoyZIh69Ohx2Tomk8lBram/0tLSLrs/PDzcQS2pm0wm0xX7uGXLlg5qDQCgNiBGcg3ESPZFjIT6gBFSAAAAAAAAcCh3ZzcAAAAAAAAA9Uu9fmSvuLhYp06dUqNGja74DDQAAKgbDMPQ2bNnFR4eLnd37s1VhBgJAID6x9ExUr1OSJ06dUoRERHObgYAAHCC77//XjfccIOzm+GSiJEAAKi/HBUj1euEVKNGjSSVdHZAQICTWwMAABzBYrEoIiLCGgegPGIkAADqH0fHSPU6IVU6BD0gIIBgCwCAeoZH0SpHjAQAQP3lqBiJiRMAAAAAAADgUCSkAAAAAAAA4FAkpAAAAAAAAOBQNT6H1GeffaY//elPysjI0OnTp7V69WoNGDDAut8wDE2dOlVvvfWWcnJydOedd2rRokVq06aNtc6ZM2c0atQoffTRR3J3d1d8fLz+8pe/yN/f31rn3//+txITE7V37141bdpUo0aN0gsvvFDTlwMAqMeKiopUUFDg7Gagmry8vOTh4eHsZgAAUGcRI9VOrhYj1XhC6vz587rlllv01FNPaeDAgeX2z5kzRwsWLNCyZcsUGRmpyZMnKzY2VocPH5avr68kafDgwTp9+rTS0tJUUFCgJ598UiNGjNCKFSsklcz83rt3b8XExGjx4sU6ePCgnnrqKQUFBWnEiBE1fUkAgHrGMAyZzWbl5OQ4uym4SkFBQTKZTExcDgBADSJGqv1cKUZyMwzDsNvB3dxsRkgZhqHw8HA999xzev755yVJubm5Cg0N1dKlSzVo0CAdOXJEUVFR2rt3r7p27SpJSk1NVb9+/fTDDz8oPDxcixYt0osvviiz2Sxvb29J0oQJE7RmzRr95z//qXL7LBaLAgMDlZubywoyAACr06dPKycnRyEhIWrYsKFL/MJG1RiGoQsXLig7O1tBQUEKCwsrV4ff/1dGHwEAKkKMVHu5YoxU4yOkLufEiRMym82KiYmxlgUGBqpbt25KT0/XoEGDlJ6erqCgIGsySpJiYmLk7u6u3bt366GHHlJ6erruvvtuazJKkmJjY/XKK6/o559/VuPGjR15WQCAOqSoqMgaaDVp0sTZzcFVaNCggSQpOztbISEhLjU0HQCA2ooYqfZztRjJoQkps9ksSQoNDbUpDw0Nte4zm80KCQmx2e/p6ang4GCbOpGRkeWOUbqvsoRUXl6e8vLyrK8tFss1XA0AoC4qnQ+hYcOGTm4JrkXp51dQUOD0YAsAgLqAGKlucKUYqV6tspecnKzAwEDrFhER4ewmAQBcFEPQazc+PwAA7IPfsbWbK31+Dk1ImUwmSVJWVpZNeVZWlnWfyWRSdna2zf7CwkKdOXPGpk5Fx7j0HBWZOHGicnNzrdv3339/bRcEAAAAAACAanNoQioyMlImk0mbN2+2llksFu3evVvR0dGSpOjoaOXk5CgjI8NaZ8uWLSouLla3bt2sdT777DObZSbT0tJ04403Xnb+KB8fHwUEBNhsAAAAAAAAcKwan0Pq3Llz+uabb6yvT5w4oQMHDig4OFjNmjXT6NGjNWvWLLVp00aRkZGaPHmywsPDrSvxtW/fXn369NHw4cO1ePFiFRQUKCkpSYMGDVJ4eLgk6Te/+Y2mT5+uYcOGafz48frqq6/0l7/8RfPmzavpywEAwKogdbvDzuXVp0eV615p6PXUqVM1bdq0a2zR1Sm74u7VePPNN7VixQp98cUXOnv2rH7++WcFBQXVWBsBAMC1cWSMJBEnlTpz5oymTp2qjRs3KjMzU02bNtWAAQM0c+ZMBQYG1mxj7aDGE1L79u3TfffdZ309duxYSVJCQoKWLl2qF154QefPn9eIESOUk5OjHj16KDU1Vb6+vtb3LF++XElJSerVq5fc3d0VHx+vBQsWWPcHBgZq48aNSkxMVJcuXXTddddpypQpGjFiRE1fDgAALu/06dPW/3/vvfc0ZcoUHT161Frm7+9frePl5+fbrGTrbBcuXFCfPn3Up08fTZw40dnNAQAAtUhdjpNOnTqlU6dOae7cuYqKitLJkyf1u9/9TqdOndIHH3zg7OZdUY0/snfvvffKMIxy29KlSyWVZABnzJghs9msixcvatOmTWrbtq3NMYKDg7VixQqdPXtWubm5+vvf/17uS3LzzTfr888/18WLF/XDDz9o/PjxNX0pAOqZgtTt5TagNjCZTNYtMDBQbm5u1tfnz5/X4MGDFRoaKn9/f912223atGmTzftbtGihmTNnasiQIQoICLDe4HnrrbcUERGhhg0b6qGHHtKrr75abmTSv/71L916663y9fVVy5YtNX36dBUWFlqPK0kPPfSQ3NzcrK+//PJL3XfffWrUqJECAgLUpUsX7du3r9LrGz16tCZMmKDu3bvXTIcBgAurajxCzAJUTV2Ok2666Sb985//VP/+/dWqVSv17NlTL730kj766CPreVxZvVplDwCA+ubcuXPq16+fNm/erP3796tPnz7q37+/MjMzberNnTtXt9xyi/bv36/Jkydrx44d+t3vfqc//OEPOnDggO6//3699NJLNu/5/PPPNWTIEP3hD3/Q4cOH9cYbb2jp0qXWenv37pUkpaSk6PTp09bXgwcP1g033KC9e/cqIyNDEyZMkJeXlwN6AwAA4Fd1MU7Kzc1VQECAPD1r/IG4Guf6LQQAAFftlltu0S233GJ9PXPmTK1evVpr165VUlKStbxnz5567rnnrK9ffPFF9e3bV88//7wkqW3bttq5c6fWrVtnrTN9+nRNmDBBCQkJkqSWLVtq5syZeuGFFzR16lQ1bdpUkhQUFGSzCm5mZqbGjRundu3aSZLatGljhysHAAC4vLoWJ/33v//VzJkza810RoyQAgCgDjt37pyef/55tW/fXkFBQfL399eRI0fK3fnr2rWrzeujR4/q9ttvtykr+/rLL7/UjBkz5O/vb92GDx+u06dP68KFC5W2aezYsXr66acVExOjl19+WcePH7/GqwQAAKi+uhQnWSwWxcXFKSoqymmTtFcXCSkAAOqw559/XqtXr9bs2bP1+eef68CBA+rYsaPy8/Nt6vn5+VX72OfOndP06dN14MAB63bw4EEdO3bMZrGSsqZNm6ZDhw4pLi5OW7ZsUVRUlFavXl3t8wMAAFyLuhInnT17Vn369FGjRo20evXqWjMVAo/sAQBQh+3YsUNDhw7VQw89JKkkOPruu++u+L4bb7zROpdBqbKvb731Vh09elStW7eu9DheXl4qKioqV962bVu1bdtWY8aM0eOPP66UlBRrGwGgNio7sXh1lqUH4Bx1IU6yWCyKjY2Vj4+P1q5de9lkl6shIQUAQB3Wpk0bffjhh+rfv7/c3Nw0efJkFRcXX/F9o0aN0t13361XX31V/fv315YtW7Rhwwa5ublZ60yZMkUPPPCAmjVrpocfflju7u768ssv9dVXX2nWrFmSSlaQ2bx5s+688075+PjI19dX48aN08MPP6zIyEj98MMP2rt3r+Lj4ytti9lsltls1jfffCNJOnjwoBo1aqRmzZopODj4GnsIAADUV7U9TrJYLOrdu7cuXLigd999VxaLRRaLRZLUtGlTeXh41EAv2Q+P7AEAUIe9+uqraty4se644w71799fsbGxuvXWW6/4vjvvvFOLFy/Wq6++qltuuUWpqakaM2aMzV232NhYrVu3Ths3btRtt92m7t27a968eWrevLm1zp///GelpaUpIiJCnTt3loeHh/73v/9pyJAhatu2rR599FH17dtX06dPr7QtixcvVufOnTV8+HBJ0t13363OnTtr7dq119AzAOB4Banbr7gBcJzaHid98cUX2r17tw4ePKjWrVsrLCzMun3//ffX3kF25mYYhuHsRjiLxWJRYGCgdVlEAPVbRUEgw+3rn4sXL+rEiROKjIysVUOeHWH48OH6z3/+o88//9zZTbmiy32O/P6/MvoIqL6qPLJ3tQmnqhyLmAX2Rox0ebUlTnKlGIlH9gDUegRkgH3MnTtX999/v/z8/LRhwwYtW7ZMr7/+urObBQAA4HTESdeOR/YAAECF9uzZo/vvv18dO3bU4sWLtWDBAj399NPObladVlRUpMmTJysyMlINGjRQq1atNHPmTF06oN0wDE2ZMkVhYWFq0KCBYmJidOzYMZvjnDlzRoMHD1ZAQICCgoI0bNgwnTt3ztGXA8AF8YggUDOIk64dI6QAAECF3n//fWc3od555ZVXtGjRIi1btkwdOnTQvn379OSTTyowMFDPPvusJGnOnDlasGCBli1bpsjISE2ePFmxsbE6fPiwdej94MGDdfr0aaWlpamgoEBPPvmkRowYoRUrVjjz8gAAqDOIk64dCSkAAAAXsXPnTj344IOKi4uTVLL6zj/+8Q/t2bNHUsnoqPnz52vSpEl68MEHJUlvv/22QkNDtWbNGg0aNEhHjhxRamqq9u7dq65du0qSXnvtNfXr109z585VeHi4cy4OAADgEiSkAAAAXMQdd9yhN998U19//bXatm2rL7/8Utu3b9err74qSTpx4oTMZrNiYmKs7wkMDFS3bt2Unp6uQYMGKT09XUFBQdZklCTFxMTI3d1du3fv1kMPPVTuvHl5ecrLy7O+Ll0yGkDFHP2oG4/WAaiLSEgBAAC4iAkTJshisahdu3by8PBQUVGRXnrpJQ0ePFiSZDabJUmhoaE27wsNDbXuM5vNCgkJsdnv6emp4OBga52ykpOTK11SGgAAwB5ISAGocyq6i8jKewBqg/fff1/Lly/XihUr1KFDBx04cECjR49WeHi4EhIS7HbeiRMnauzYsdbXFotFERERdjsfUB8wqgkALo+EFAAAgIsYN26cJkyYoEGDBkmSOnbsqJMnTyo5OVkJCQkymUySpKysLIWFhVnfl5WVpU6dOkmSTCaTsrOzbY5bWFioM2fOWN9flo+Pj3x8fOxwRQAAABUjIQXAKRjFBADlXbhwQe7u7jZlHh4eKi4uliRFRkbKZDJp8+bN1gSUxWLR7t27NXLkSElSdHS0cnJylJGRoS5dukiStmzZouLiYnXr1s1xFwOgTikbuxG3AbhWJKQA1CoMfwdQl/Xv318vvfSSmjVrpg4dOmj//v169dVX9dRTT0mS3NzcNHr0aM2aNUtt2rRRZGSkJk+erPDwcA0YMECS1L59e/Xp00fDhw/X4sWLVVBQoKSkJA0aNIgV9oAyuEEGAM5DQgoAgCo6vu8Nh52rVddnqlV/6NChWrZsmaRfJ7C++eab9fjjj2vo0KHlRt3UJocOHdKUKVOUkZGhkydPat68eRo9erSzm2UXr732miZPnqzf//73ys7OVnh4uJ555hlNmTLFWueFF17Q+fPnNWLECOXk5KhHjx5KTU2Vr6+vtc7y5cuVlJSkXr16yd3dXfHx8VqwYIEzLgkAUA84MkaSiJMu9dZbb+ntt9/WV199JUnq0qWLZs+erdtvv93JLbsyElIAcBncOUVt0qdPH6WkpKioqEhZWVlKTU3VH/7wB33wwQdau3atPD1r56/9CxcuqGXLlnrkkUc0ZswYZzfHrho1aqT58+dr/vz5ldZxc3PTjBkzNGPGjErrBAcHa8WKFXZoIQBX5aoxC4/6wVXU1Thp69atevzxx3XHHXfI19dXr7zyinr37q1Dhw7p+uuvd3bzLqv2pgEBoBoKUreX24C6xsfHRyaTSddff71uvfVW/fGPf9S//vUvbdiwQUuXLrXWy8nJ0dNPP62mTZsqICBAPXv21JdffmlzrI8++ki33XabfH19dd111+mhhx6y7vv55581ZMgQNW7cWA0bNlTfvn117NgxSdL58+cVEBCgDz74wOZ4a9askZ+fn86ePav8/HwlJSUpLCxMvr6+at68uZKTkyu9rttuu01/+tOfNGjQICbeBmB3FcUMxBBA7VdX46Tly5fr97//vTp16qR27drpb3/7m4qLi7V58+Ya6DX7IiEFAEAd1rNnT91yyy368MMPrWWPPPKIsrOztWHDBmVkZOjWW29Vr169dObMGUnSxx9/rIceekj9+vXT/v37tXnzZpth30OHDtW+ffu0du1apaenyzAM9evXTwUFBfLz89OgQYOUkpJi046UlBQ9/PDDatSokRYsWKC1a9fq/fff19GjR7V8+XK1aNHCIf0BALBFwg31WV2Mky5cuKCCggIFBwdfW+c4QO0ckwYAAKqsXbt2+ve//y1J2r59u/bs2aPs7GzraKO5c+dqzZo1+uCDDzRixAi99NJLGjRokKZPn249xi233CJJOnbsmNauXasdO3bojjvukFRyZy4iIkJr1qzRI488oqefflp33HGHTp8+rbCwMGVnZ2v9+vXatGmTJCkzM1Nt2rRRjx495ObmpubNmzuyOwAAAKzqWpw0fvx4hYeHKyYm5pr7xt5ISAFwadylA66dYRhyc3OTJH355Zc6d+6cmjRpYlPnl19+0fHjxyVJBw4c0PDhwys81pEjR+Tp6alu3bpZy5o0aaIbb7xRR44ckSTdfvvt6tChg5YtW6YJEybo3XffVfPmzXX33XdLKrlzeP/99+vGG29Unz599MADD6h37941ft0AgKtD/IX6pC7FSS+//LJWrlyprVu32ix24qpISAHANXLVSUSBUkeOHFFkZKQk6dy5cwoLC9PWrVvL1QsKCpIkNWjQ4JrP+fTTT2vhwoWaMGGCUlJS9OSTT1qDvVtvvVUnTpzQhg0btGnTJj366KOKiYkpN58CAACAvdWVOGnu3Ll6+eWXtWnTJt18883X3EZHYA4pAADqsC1btujgwYOKj4+XVBLkmM1meXp6qnXr1jbbddddJ0m6+eabK50Is3379iosLNTu3butZf/73/909OhRRUVFWct++9vf6uTJk1qwYIEOHz6shIQEm+MEBAToscce01tvvaX33ntP//znP61zMwAAADhCXYmT5syZo5kzZyo1NVVdu3a96v5wNEZIAQBQR+Tl5clsNtssZ5ycnKwHHnhAQ4YMkSTFxMQoOjpaAwYM0Jw5c9S2bVudOnXKOkFn165dNXXqVPXq1UutWrXSoEGDVFhYqPXr12v8+PFq06aNHnzwQQ0fPlxvvPGGGjVqpAkTJuj666/Xgw8+aG1L48aNNXDgQI0bN069e/fWDTfcYN336quvKiwsTJ07d5a7u7tWrVolk8lkvfNYVn5+vg4fPmz9/x9//FEHDhyQv7+/Wrdubb8OBQAAdUZdjZNeeeUVTZkyRStWrFCLFi1kNpslSf7+/vL397dfh9YARkgBAFBHpKamKiwsTC1atFCfPn306aefasGCBfrXv/4lDw8PSZKbm5vWr1+vu+++W08++aTatm2rQYMG6eTJkwoNDZUk3XvvvVq1apXWrl2rTp06qWfPntqzZ4/1PCkpKerSpYseeOABRUdHyzAMrV+/Xl5eXjbtGTZsmPLz8/XUU0/ZlDdq1Ehz5sxR165dddttt+m7777T+vXr5e5ecVhy6tQpde7cWZ07d9bp06c1d+5cde7cWU8//XRNdh8AVMl3ORvKbQBcX12NkxYtWqT8/Hw9/PDDCgsLs25z586tye6zCzfDMAxnN8JZLBaLAgMDlZubq4CAAGc3B6hXXGGyzLLzPFW1TVV5X03OIVX2+MxPZV8XL17UiRMnFBkZWSsmg3Rl77zzjsaMGaNTp07J29vboee+3OfI7/8ro49QX1xNPFJRAqpFUN+aaE6NqyhmsGcMVpXzEcfUXsRINctZcZIrxUg8sgeg3nKFpBhQF124cEGnT5/Wyy+/rGeeecbhySgAAABXRZz0Kx7ZAwAANWrOnDlq166dTCaTJk6c6OzmAAAcpCB1e7kNgC3ipF8xQgoAANSoadOmadq0ac5uBgDUeySEANdDnPQrElIAYAf2nlcKAAAAAGozHtkDAAAAAACAQzFCCgCchFFUrq24uNjZTcA14PMDAMA++B1bu7nS50dCCgCAS3h7e8vd3V2nTp1S06ZN5e3tLTc3N2c3C1VkGIby8/P1008/yd3dvV6vXAMAQE0iRqrdXDFGIiEFAMAl3N3dFRkZqdOnT+vUqVPObg6uUsOGDdWsWTO5uzM7AYC65bucDTavWwT1dVJLUN8QI9UNrhQjkZACAAdhpZvaw9vbW82aNVNhYaGKioqc3RxUk4eHhzw9PblrCwBADSNGqt1cLUYiIQXAIUjGoLZxc3OTl5eXvLy8nN0UAAAAl0GMhJpCQgoAXAiJOwAAXEvZR+RQ88rGPyzyAtQPzn9oEAAAAAAAAPUKI6QAAAAA1HmMQgYA10JCCgAAAECdQwIKAFwbCSkAAAAAcLCK5qZqEdTXCS0BAOcgIQUA1cQdVwAAcDk1lWxiQnUAdRmTmgMAALiIFi1ayM3NrdyWmJgoSbp48aISExPVpEkT+fv7Kz4+XllZWTbHyMzMVFxcnBo2bKiQkBCNGzdOhYWFzrgcAACASjFCCgDqgIpGbbFkMlD77N27V0VFRdbXX331le6//3498sgjkqQxY8bo448/1qpVqxQYGKikpCQNHDhQO3bskCQVFRUpLi5OJpNJO3fu1OnTpzVkyBB5eXlp9uzZTrkmAACAipCQAgAAcBFNmza1ef3yyy+rVatWuueee5Sbm6slS5ZoxYoV6tmzpyQpJSVF7du3165du9S9e3dt3LhRhw8f1qZNmxQaGqpOnTpp5syZGj9+vKZNmyZvb29nXBYA8fgdAJTFI3sAAAAuKD8/X++++66eeuopubm5KSMjQwUFBYqJibHWadeunZo1a6b09HRJUnp6ujp27KjQ0FBrndjYWFksFh06dMjh1wCger7L2WCzAUBdxggpAAAAF7RmzRrl5ORo6NChkiSz2Sxvb28FBQXZ1AsNDZXZbLbWuTQZVbq/dF9l8vLylJeXZ31tsVhq4AoAAAAqR0IKAADABS1ZskR9+/ZVeHi43c+VnJys6dOn2/08gKurjaOSampFPwBwNBJSAFDLVDSBOYC65eTJk9q0aZM+/PBDa5nJZFJ+fr5ycnJsRkllZWXJZDJZ6+zZs8fmWKWr8JXWqcjEiRM1duxY62uLxaKIiIiauBSgXqiNiSxnudo4hgVcgLrHKXNIFRUVafLkyYqMjFSDBg3UqlUrzZw5U4ZhWOsYhqEpU6YoLCxMDRo0UExMjI4dO2ZznDNnzmjw4MEKCAhQUFCQhg0bpnPnzjn6cgCUUZC6vdwGAKi6lJQUhYSEKC4uzlrWpUsXeXl5afPmzdayo0ePKjMzU9HR0ZKk6OhoHTx4UNnZ2dY6aWlpCggIUFRUVKXn8/HxUUBAgM0G1DVl52ciiQQAzuWUhNQrr7yiRYsW6a9//auOHDmiV155RXPmzNFrr71mrTNnzhwtWLBAixcv1u7du+Xn56fY2FhdvHjRWmfw4ME6dOiQ0tLStG7dOn322WcaMWKEMy4JAACgRhQXFyslJUUJCQny9Px1MHtgYKCGDRumsWPH6tNPP1VGRoaefPJJRUdHq3v37pKk3r17KyoqSk888YS+/PJLffLJJ5o0aZISExPl4+PjrEsCAAAoxymP7O3cuVMPPvig9a5fixYt9I9//MM6xNwwDM2fP1+TJk3Sgw8+KEl6++23FRoaqjVr1mjQoEE6cuSIUlNTtXfvXnXt2lWS9Nprr6lfv36aO3euQ+ZbAAAAqGmbNm1SZmamnnrqqXL75s2bJ3d3d8XHxysvL0+xsbF6/fXXrfs9PDy0bt06jRw5UtHR0fLz81NCQoJmzJjhyEsAHI7R2KiOst8XHv0DnMMpI6TuuOMObd68WV9//bUk6csvv9T27dvVt2/J5HsnTpyQ2Wy2WdY4MDBQ3bp1s1nWOCgoyJqMkqSYmBi5u7tr9+7dFZ43Ly9PFovFZgMAAHAlvXv3lmEYatu2bbl9vr6+Wrhwoc6cOaPz58/rww8/LDc3VPPmzbV+/XpduHBBP/30k+bOnWsz0goAAMAVOCU6mTBhgiwWi9q1aycPDw8VFRXppZde0uDBgyX9uixxRcsWX7qscUhIiM1+T09PBQcHV7qsMSvIAAAAAPUDc0TVXox4A+oHp4yQev/997V8+XKtWLFCX3zxhZYtW6a5c+dq2bJldj3vxIkTlZuba92+//57u54PAAAAAAAA5TllhNS4ceM0YcIEDRo0SJLUsWNHnTx5UsnJyUpISLAOPc/KylJYWJj1fVlZWerUqZOkkqWLL11BRpIKCwt15syZSpc19vHxYUJPAAAAoBZhvh8AqJuckpC6cOGC3N1tB2d5eHiouLhYkhQZGSmTyaTNmzdbE1AWi0W7d+/WyJEjJZUsa5yTk6OMjAx16dJFkrRlyxYVFxerW7dujrsYAAAAAHAhZR9XbBHU10ktcT4e/wNcl1MSUv3799dLL72kZs2aqUOHDtq/f79effVV62oybm5uGj16tGbNmqU2bdooMjJSkydPVnh4uAYMGCBJat++vfr06aPhw4dr8eLFKigoUFJSkgYNGsQKe0AdQkAFAABQ84ixADibUxJSr732miZPnqzf//73ys7OVnh4uJ555hlNmTLFWueFF17Q+fPnNWLECOXk5KhHjx5KTU2Vr6+vtc7y5cuVlJSkXr16WZdAXrBggTMuCQAAAAAAAFXklIRUo0aNNH/+fM2fP7/SOm5ubpoxY4ZmzJhRaZ3g4GCtWLHCDi0EAAAAgLqBFQcBuCKnJKQAAPZXU5PAVjT3AhPKAgAAALgWJKQAXBMmigQAAAAAVJf7lasAAAAAAAAANYeEFAAAAAAAAByKR/YAAAAAoJ6raOLzFkF9ndASAPUFCSkAqCeqOt8XE5YDAFwZ81c6T1VW6yOJBaCqSEgBqBaCQAAAAADAtSIhBQAAAAAopyojogDgapGQAuBSCHwAAEB1XW38QNwBAM5DQgoAAAAAUOsxtQRQu5CQAlCrlb2zWRMTadrjmAAAAACAX5GQAlDvMVwfAADXVdHvaW4WQWJEFFDbuTu7AQAAAAAAAKhfGCEFAAAAoFZhdDMA1H4kpADUacwHVX0MfwcAAABgbySkANQq3BEFAAAAgNqPhBQAVBOjrgAAAADg2pCQAuBUjHgCAABAbVB2WgOvPj2c1BKgbmCVPQB1ync5G2w2AKhtfvzxR/32t79VkyZN1KBBA3Xs2FH79u2z7jcMQ1OmTFFYWJgaNGigmJgYHTt2zOYYZ86c0eDBgxUQEKCgoCANGzZM586dc/SlAAAAVIqEFAAAgIv4+eefdeedd8rLy0sbNmzQ4cOH9ec//1mNGze21pkzZ44WLFigxYsXa/fu3fLz81NsbKwuXrxorTN48GAdOnRIaWlpWrdunT777DONGDHCGZcEAABQIR7ZA1ApVlsDAMd65ZVXFBERoZSUFGtZZGSk9f8Nw9D8+fM1adIkPfjgg5Kkt99+W6GhoVqzZo0GDRqkI0eOKDU1VXv37lXXrl0lSa+99pr69eunuXPnKjw83LEXBQAurqKYl8fxAPtjhBQAuyn7+ByP0AHA5a1du1Zdu3bVI488opCQEHXu3FlvvfWWdf+JEydkNpsVExNjLQsMDFS3bt2Unp4uSUpPT1dQUJA1GSVJMTExcnd31+7dux13MQAAAJdBQgoAAMBFfPvtt1q0aJHatGmjTz75RCNHjtSzzz6rZcuWSZLMZrMkKTQ01OZ9oaGh1n1ms1khISE2+z09PRUcHGytU1ZeXp4sFovNBgAAYE88sgcAAOAiiouL1bVrV82ePVuS1LlzZ3311VdavHixEhIS7Hbe5ORkTZ8+3W7HB1C/lR0l3yKor5NaUnU1OXUFq/MBFSMhBQBwKoI04FdhYWGKioqyKWvfvr3++c9/SpJMJpMkKSsrS2FhYdY6WVlZ6tSpk7VOdna2zTEKCwt15swZ6/vLmjhxosaOHWt9bbFYFBERcc3XAwAVqWgah9qQpKoK5mAFqo6EFIAaUxvmiHJEG2vjXUAAruHOO+/U0aNHbcq+/vprNW/eXFLJBOcmk0mbN2+2JqAsFot2796tkSNHSpKio6OVk5OjjIwMdenSRZK0ZcsWFRcXq1u3bhWe18fHRz4+Pna6KgD1SW2IBwG4BhJSAIAawUgn4NqNGTNGd9xxh2bPnq1HH31Ue/bs0Ztvvqk333xTkuTm5qbRo0dr1qxZatOmjSIjIzV58mSFh4drwIABkkpGVPXp00fDhw/X4sWLVVBQoKSkJA0aNIgV9gAAgMsgIQUAV3ClO33cCawYSygD1Xfbbbdp9erVmjhxombMmKHIyEjNnz9fgwcPttZ54YUXdP78eY0YMUI5OTnq0aOHUlNT5evra62zfPlyJSUlqVevXnJ3d1d8fLwWLFjgjEsCAACoEAkpAAAAF/LAAw/ogQceqHS/m5ubZsyYoRkzZlRaJzg4WCtWrLBH8wAAAGoECSkAsDPmlAIAoDxG0gJA/UZCCgAAAIBLYIUyAKg/3J3dAAAAAAAAANQvjJACAFQbd7ABAACuDo+rAiVISAFwKFakAwAAAACQkAIAAAAAuDwWigHqFuaQAgAAAAAAgEMxQgpAlfG4HQAAAACgJpCQAlApElAAAAAAAHsgIQUAcCmsPAMAAADUfSSkAMDJKhqJxiSdAAAA9VvZm3TcoENdQ0IKAByMRyGrj1FTAADUbcRH9kMcBVdFQgqApIp/UQEAAABwDSSWUNe4O7sBAAAAAAAAqF8YIQUAAAAAgBPxtALqIxJSAAAAAFwGcwkBQP3AI3sAAAAAAABwKBJSAAAAAAAAcCge2QMA1AmsPAMAAADUHiSkAMAFlZ0/o0VQXye1BAAAABVhInLg2pCQAuopfoHWLiSoAAB1EROYA0D9xRxSAAAAAAAAcCinJaR+/PFH/fa3v1WTJk3UoEEDdezYUfv27bPuNwxDU6ZMUVhYmBo0aKCYmBgdO3bM5hhnzpzR4MGDFRAQoKCgIA0bNkznzp1z9KUAAAAAAACgGpySkPr555915513ysvLSxs2bNDhw4f15z//WY0bN7bWmTNnjhYsWKDFixdr9+7d8vPzU2xsrC5evGitM3jwYB06dEhpaWlat26dPvvsM40YMcIZlwQAAAAAAIAqcsocUq+88ooiIiKUkpJiLYuMjLT+v2EYmj9/viZNmqQHH3xQkvT2228rNDRUa9as0aBBg3TkyBGlpqZq79696tq1qyTptddeU79+/TR37lyFh4c79qIAwIW5yhxUNTl3GfOgAQBQv1U0BxnzbAK1h1NGSK1du1Zdu3bVI488opCQEHXu3FlvvfWWdf+JEydkNpsVExNjLQsMDFS3bt2Unp4uSUpPT1dQUJA1GSVJMTExcnd31+7duys8b15eniwWi80GAAAAAAAAx3JKQurbb7/VokWL1KZNG33yyScaOXKknn32WS1btkySZDabJUmhoaE27wsNDbXuM5vNCgkJsdnv6emp4OBga52ykpOTFRgYaN0iIiJq+tIAAACu2rRp0+Tm5maztWvXzrr/4sWLSkxMVJMmTeTv76/4+HhlZWXZHCMzM1NxcXFq2LChQkJCNG7cOBUWFjr6UgAAAC7LKY/sFRcXq2vXrpo9e7YkqXPnzvrqq6+0ePFiJSQk2O28EydO1NixY62vLRYLSSkAwBVV9HigV58eTmgJ6oMOHTpo06ZN1teenr+Ga2PGjNHHH3+sVatWKTAwUElJSRo4cKB27NghSSoqKlJcXJxMJpN27typ06dPa8iQIfLy8rLGXQCAuoMYBbWZUxJSYWFhioqKsilr3769/vnPf0qSTCaTJCkrK0thYWHWOllZWerUqZO1TnZ2ts0xCgsLdebMGev7y/Lx8ZGPj09NXQYAOI2rzAkFoOZ5enpWGMvk5uZqyZIlWrFihXr27ClJSklJUfv27bVr1y51795dGzdu1OHDh7Vp0yaFhoaqU6dOmjlzpsaPH69p06bJ29vb0ZcDWDH3HxyBGMm+SIChJjnlkb0777xTR48etSn7+uuv1bx5c0klE5ybTCZt3rzZut9isWj37t2Kjo6WJEVHRysnJ0cZGRnWOlu2bFFxcbG6devmgKsAAACoeceOHVN4eLhatmypwYMHKzMzU5KUkZGhgoICmzk227Vrp2bNmtnMsdmxY0ebaQ9iY2NlsVh06NChSs/JPJsAgILU7TYbYG9OSUiNGTNGu3bt0uzZs/XNN99oxYoVevPNN5WYmChJcnNz0+jRozVr1iytXbtWBw8e1JAhQxQeHq4BAwZIKhlR1adPHw0fPlx79uzRjh07lJSUpEGDBrHCHgAAqJW6deumpUuXKjU1VYsWLdKJEyd011136ezZszKbzfL29lZQUJDNe8rOsVnRHJyl+yrDPJsAAMDRnPLI3m233abVq1dr4sSJmjFjhiIjIzV//nwNHjzYWueFF17Q+fPnNWLECOXk5KhHjx5KTU2Vr6+vtc7y5cuVlJSkXr16yd3dXfHx8VqwYIEzLgkAAOCa9e3766MlN998s7p166bmzZvr/fffV4MGDex2XubZBAAAjuaUhJQkPfDAA3rggQcq3e/m5qYZM2ZoxowZldYJDg7WihUr7NE8AAAApwsKClLbtm31zTff6P7771d+fr5ycnJsRkllZWVZ55wymUzas2ePzTFKV+GrbI5NiXk2AQCA4znlkT0AQM36LmeDzQagbjh37pyOHz+usLAwdenSRV5eXjZzbB49elSZmZk2c2wePHjQZuGXtLQ0BQQElFtQBgAAwJmcNkIKAAAAtp5//nn1799fzZs316lTpzR16lR5eHjo8ccfV2BgoIYNG6axY8cqODhYAQEBGjVqlKKjo9W9e3dJUu/evRUVFaUnnnhCc+bMkdls1qRJk5SYmMgIKAAA4FJISAFAHcQoKaB2+uGHH/T444/rf//7n5o2baoePXpo165datq0qSRp3rx51nkz8/LyFBsbq9dff936fg8PD61bt04jR45UdHS0/Pz8lJCQcNkpEAAAdQsr5KG2ICEFAKizKgrIvPr0cEJLgKpZuXLlZff7+vpq4cKFWrhwYaV1mjdvrvXr19d004AawQ0TOFpF37kWQX0rqAlXRCxXtzGHFAAAAAAAAByKEVJAPcCwXaB6+DcDAADqMmIduAISUgCAcsPZGcoOAACAmsKjd6gICSkAAAAAAOBQZZNUJKjqHxJSAIB6heAHAAAAcD4SUgCsWPkGAAAAAOAIJKQAAPWaoyf1ZA4FAACA8phovf5xd3YDAAAAAAAAUL+QkAIAAAAAAIBDkZACAAAAAACAQzGHFAAAV8Gec0ExzxQAAPZTdiGfFkF9ndQS18acTrA3ElJAPcaqegAAAABqEoksVBUJKQAAakjZAIxRTQAAAEDFSEgBQD3E6DgAgL0d3/eGzevinEwntQS4vIriIh7jqzpGROFqMak5AAAAAAAAHIoRUgAA2Al3DAEAAICKkZACAAAAAOASVZnegMf6ajdWNXY+ElIAAAAAalRB6nbmjAIAXBYJKQAAAAAAUCsx0qn2IiEFACiH1WbqtrKBG0EbAAAAHI1V9gAAAAAAAOBQJKQAAAAAAADgUDyyBwCAk1U090FV6tjzUTvmYwAAoHqY8gCoHhJSAAAAAACgVqjKjTzUDjyyBwAAAAAAAIciIQUAAOCiXn75Zbm5uWn06NHWsosXLyoxMVFNmjSRv7+/4uPjlZWVZfO+zMxMxcXFqWHDhgoJCdG4ceNUWFjo4NYDAABUjkf2AAAAXNDevXv1xhtv6Oabb7YpHzNmjD7++GOtWrVKgYGBSkpK0sCBA7Vjxw5JUlFRkeLi4mQymbRz506dPn1aQ4YMkZeXl2bPnu2MSwGAeqvsvFLMKQX8ioQUAOCqEGAB9nPu3DkNHjxYb731lmbNmmUtz83N1ZIlS7RixQr17NlTkpSSkqL27dtr165d6t69uzZu3KjDhw9r06ZNCg0NVadOnTRz5kyNHz9e06ZNk7e3t7MuCwDqlIomMUftVpX5qVjkpeaQkALqGCb5A4DaLzExUXFxcYqJibFJSGVkZKigoEAxMTHWsnbt2qlZs2ZKT09X9+7dlZ6ero4dOyo0NNRaJzY2ViNHjtShQ4fUuXNnh14L6j5iDwCupuzPJZJIromEFFCPcBcHQEX4Y9K1rFy5Ul988YX27t1bbp/ZbJa3t7eCgoJsykNDQ2U2m611Lk1Gle4v3VeRvLw85eXlWV9bLJZruQQAAFwKsY5rIiEFALALHulzDTUZgHG30f6+//57/eEPf1BaWpp8fX0ddt7k5GRNnz7dYecDAKAuqyj+Im4qj1X2AAAAXERGRoays7N16623ytPTU56entq2bZsWLFggT09PhYaGKj8/Xzk5OTbvy8rKkslkkiSZTKZyq+6Vvi6tU9bEiROVm5tr3b7//vuavzgAAIBLMEIKAIBaihFLdU+vXr108OBBm7Inn3xS7dq10/jx4xURESEvLy9t3rxZ8fHxkqSjR48qMzNT0dHRkqTo6Gi99NJLys7OVkhIiCQpLS1NAQEBioqKqvC8Pj4+8vHxseOVAQAA2CIhBQBwCh7pA8pr1KiRbrrpJpsyPz8/NWnSxFo+bNgwjR07VsHBwQoICNCoUaMUHR2t7t27S5J69+6tqKgoPfHEE5ozZ47MZrMmTZqkxMREkk4AAFwjHserOSSkAABVwqT4gGuYN2+e3N3dFR8fr7y8PMXGxur111+37vfw8NC6des0cuRIRUdHy8/PTwkJCZoxY4YTWw0AAGCLhBQAAHUEK8jUTVu3brV57evrq4ULF2rhwoWVvqd58+Zav369nVsGAAAkYrCrRUIKAAAAwDVjJC0AoDpYZQ8AAAAAAAAOxQgpAECN4M44AAAAgKoiIQXUYSQIAAAAAACuiIQUAAAAAABOUvYmcougvk5qCeBYJKQAAA7BiD0AAAAApUhIAQAAAAAA2FFB6vZyZV59ejihJa6DhBQAALgqBFYAANS8ikaV8xgf6iJ3ZzcAAAAAAAAA9QsjpAAALoEJPQEAACpGnIS6iBFSAAAAAAAAcCinJ6Refvllubm5afTo0dayixcvKjExUU2aNJG/v7/i4+OVlZVl877MzEzFxcWpYcOGCgkJ0bhx41RYWOjg1gMAAAAAAKC6nPrI3t69e/XGG2/o5ptvtikfM2aMPv74Y61atUqBgYFKSkrSwIEDtWPHDklSUVGR4uLiZDKZtHPnTp0+fVpDhgyRl5eXZs+e7YxLAQAAAOqFihY0AACgupw2QurcuXMaPHiw3nrrLTVu3NhanpubqyVLlujVV19Vz5491aVLF6WkpGjnzp3atWuXJGnjxo06fPiw3n33XXXq1El9+/bVzJkztXDhQuXn5zvrkgCnKEjdbrMBAAAAAODqnJaQSkxMVFxcnGJiYmzKMzIyVFBQYFPerl07NWvWTOnp6ZKk9PR0dezYUaGhodY6sbGxslgsOnToUKXnzMvLk8VisdkAAAAAAHCE73I2lNuA+sopj+ytXLlSX3zxhfbu3Vtun9lslre3t4KCgmzKQ0NDZTabrXUuTUaV7i/dV5nk5GRNnz79GlsPAAAqU9FITa8+PZzQEgAAALgyhyekvv/+e/3hD39QWlqafH19HXruiRMnauzYsdbXFotFERERDm0DAAD1TdkkFQkqAAAAOPyRvYyMDGVnZ+vWW2+Vp6enPD09tW3bNi1YsECenp4KDQ1Vfn6+cnJybN6XlZUlk8kkSTKZTOVW3St9XVqnIj4+PgoICLDZAAAAAAAA4FgOT0j16tVLBw8e1IEDB6xb165dNXjwYOv/e3l5afPmzdb3HD16VJmZmYqOjpYkRUdH6+DBg8rOzrbWSUtLU0BAgKKiohx9SQAAAAAAAKgGhz+y16hRI9100002ZX5+fmrSpIm1fNiwYRo7dqyCg4MVEBCgUaNGKTo6Wt27d5ck9e7dW1FRUXriiSc0Z84cmc1mTZo0SYmJifLx8XH0JQEAAAAAAKAanDKp+ZXMmzdP7u7uio+PV15enmJjY/X6669b93t4eGjdunUaOXKkoqOj5efnp4SEBM2YMcOJrQYAAAAAAEBVuERCauvWrTavfX19tXDhQi1cuLDS9zRv3lzr16+3c8sAAAAAlMVS9QBw7er7wi8On0MKAAAAAAAA9RsJKQAAAAAAADiUSzyyBwBATSj7CEmLoL5OagkAAACAyyEhBQCotZjDBAAAAKidSEgBdQR/mKOu4zuO+mDRokVatGiRvvvuO0lShw4dNGXKFPXtWzLa7+LFi3ruuee0cuVKm5WIQ0NDrcfIzMzUyJEj9emnn8rf318JCQlKTk6WpydhH6qv7IS7AFxDRXERI8NR2xCZAABcEgko1Ec33HCDXn75ZbVp00aGYWjZsmV68MEHtX//fnXo0EFjxozRxx9/rFWrVikwMFBJSUkaOHCgduzYIUkqKipSXFycTCaTdu7cqdOnT2vIkCHy8vLS7NmznXx1AAAAvyIhBQAA4CL69+9v8/qll17SokWLtGvXLt1www1asmSJVqxYoZ49e0qSUlJS1L59e+3atUvdu3fXxo0bdfjwYW3atEmhoaHq1KmTZs6cqfHjx2vatGny9vZ2xmUBAACUwyp7AAAALqioqEgrV67U+fPnFR0drYyMDBUUFCgmJsZap127dmrWrJnS09MlSenp6erYsaPNI3yxsbGyWCw6dOhQpefKy8uTxWKx2QAAAOyJEVJALcI8DgBQ9x08eFDR0dG6ePGi/P39tXr1akVFRenAgQPy9vZWUFCQTf3Q0FCZzWZJktlstklGle4v3VeZ5ORkTZ8+vWYvBAAA4DJISAEAALiQG2+8UQcOHFBubq4++OADJSQkaNu2bXY958SJEzV27Fjra4vFooiICLueE7UL8/oBAGoaCSkAAAAX4u3trdatW0uSunTpor179+ovf/mLHnvsMeXn5ysnJ8dmlFRWVpZMJpMkyWQyac+ePTbHy8rKsu6rjI+Pj3x8fGr4SgAAACrHHFIAAAAurLi4WHl5eerSpYu8vLy0efNm676jR48qMzNT0dHRkqTo6GgdPHhQ2dnZ1jppaWkKCAhQVFSUw9sOAHBt3+VsKLcBjsIIKQAAABcxceJE9e3bV82aNdPZs2e1YsUKbd26VZ988okCAwM1bNgwjR07VsHBwQoICNCoUaMUHR2t7t27S5J69+6tqKgoPfHEE5ozZ47MZrMmTZqkxMRERkABAACXQkIKAADARWRnZ2vIkCE6ffq0AgMDdfPNN+uTTz7R/fffL0maN2+e3N3dFR8fr7y8PMXGxur111+3vt/Dw0Pr1q3TyJEjFR0dLT8/PyUkJGjGjBnOuiQAgJMw2gmujoQUAACAi1iyZMll9/v6+mrhwoVauHBhpXWaN2+u9evX13TTAAAAahRzSAEAAAAAAMChSEgBAAAAAADAoXhkDwAAAACAWo45o1DbMEIKAAAAAAAADkVCCgAAAAAAAA7FI3sAAPx/ZYe6twjq66SWAAAAAHUbCSkAQJ1FggkAAABwTTyyBwAAAAAAAIdihBRQS7GKBgAAAACgtiIhBQCoN3iEDwAAAHANJKQAAAAAAIAkbuDBcUhIAQDqLR59dY6C1O3lyrz69HBCSwAAAOAsTGoOAAAAAAAAh2KEFAAAAAAAqFE8+ocrYYQUAAAAAAAAHIoRUgAAVII7ewAAAIB9MEIKAAAAAAAADsUIKQAAAACSKl4FEwAAeyAhBbgoAkIAAAAAQF1FQgoAAACAVdn58wAAjlHRoASvPj2c0BLHYA4pAAAAAAAAOBQjpIBagruVAADAHo7ve8P6/8U5mU5sCQBXVNHfIaw8jJpAQgoAAAAAAFQZN8tRE3hkDwAAAAAAAA7FCCkAAKqo7N1AhqsDAAAAV4cRUgAAAC4iOTlZt912mxo1aqSQkBANGDBAR48etalz8eJFJSYmqkmTJvL391d8fLyysrJs6mRmZiouLk4NGzZUSEiIxo0bp8LCQkdeCgAAwGWRkAIAAHAR27ZtU2Jionbt2qW0tDQVFBSod+/eOn/+vLXOmDFj9NFHH2nVqlXatm2bTp06pYEDB1r3FxUVKS4uTvn5+dq5c6eWLVumpUuXasqUKc64JAAAgArxyB4AADWIx/pwLVJTU21eL126VCEhIcrIyNDdd9+t3NxcLVmyRCtWrFDPnj0lSSkpKWrfvr127dql7t27a+PGjTp8+LA2bdqk0NBQderUSTNnztT48eM1bdo0eXt7O+PSAAAAbDBCCnBR3+VssNkAAPVPbm6uJCk4OFiSlJGRoYKCAsXExFjrtGvXTs2aNVN6erokKT09XR07dlRoaKi1TmxsrCwWiw4dOlThefLy8mSxWGw2AAAAeyIhBQAA4IKKi4s1evRo3XnnnbrpppskSWazWd7e3goKCrKpGxoaKrPZbK1zaTKqdH/pvookJycrMDDQukVERNTw1QAAANgiIQUAAOCCEhMT9dVXX2nlypV2P9fEiROVm5tr3b7//nu7nxMAANRvzCEFAIAdMacUrkZSUpLWrVunzz77TDfccIO13GQyKT8/Xzk5OTajpLKysmQymax19uzZY3O80lX4SuuU5ePjIx8fnxq+CgAAgMoxQgoAAMBFGIahpKQkrV69Wlu2bFFkZKTN/i5dusjLy0ubN2+2lh09elSZmZmKjo6WJEVHR+vgwYPKzs621klLS1NAQICioqIccyEAAABXwAgpAAAciBFTuJzExEStWLFC//rXv9SoUSPrnE+BgYFq0KCBAgMDNWzYMI0dO1bBwcEKCAjQqFGjFB0dre7du0uSevfuraioKD3xxBOaM2eOzGazJk2apMTEREZBAQBcCnFR/UZCCgAAwEUsWrRIknTvvffalKekpGjo0KGSpHnz5snd3V3x8fHKy8tTbGysXn/9dWtdDw8PrVu3TiNHjlR0dLT8/PyUkJCgGTNmOOoyUEsUpG6XJBXnZDq5JQCA+oiEFAAAV6nsXT3gWhmGccU6vr6+WrhwoRYuXFhpnebNm2v9+vU12TQAAIAa5ZQ5pJKTk3XbbbepUaNGCgkJ0YABA3T06FGbOhcvXlRiYqKaNGkif39/xcfHWyfkLJWZmam4uDg1bNhQISEhGjdunAoLCx15KQAAAAAA4Aq+y9lQbkP95pSE1LZt25SYmKhdu3YpLS1NBQUF6t27t86fP2+tM2bMGH300UdatWqVtm3bplOnTmngwIHW/UVFRYqLi1N+fr527typZcuWaenSpZoyZYozLgkAAAAAAABV5JRH9lJTU21eL126VCEhIcrIyNDdd9+t3NxcLVmyRCtWrFDPnj0llcyd0L59e+3atUvdu3fXxo0bdfjwYW3atEmhoaHq1KmTZs6cqfHjx2vatGny9vZ2xqUBAAAAAADgClxiDqnc3FxJUnBwsCQpIyNDBQUFiomJsdZp166dmjVrpvT0dHXv3l3p6enq2LGjQkNDrXViY2M1cuRIHTp0SJ07dy53nry8POXl5VlfWywWe10SUG3H973h7CYAcAGsNgMAAID6wOkJqeLiYo0ePVp33nmnbrrpJkmS2WyWt7e3goKCbOqGhoZalz82m802yajS/aX7KpKcnKzp06fX8BUAAHD1mD8BAACgctysq7ucnpBKTEzUV199pe3bt9v9XBMnTtTYsWOtry0WiyIiIux+XgAAAAAAcHncqKtfnJqQSkpK0rp16/TZZ5/phhtusJabTCbl5+crJyfHZpRUVlaWTCaTtc6ePXv+H3v3Ht9z/f9//L7NDk7bjNkhzBxyyiGECZFlDilCKd9CWJ9CoRMlcyolSQ6fpD6hPnwon0gOyyJJFpGVkI+ci6HYZsYO9vr94bdX3nY+vd7vbbfr5fK+XLxfr+fr9Xo+n+/3trvH+/V+vWz2l3EXvow2N3N3d5e7u3sRjwIAAAAoGW68REB63Ek79gQAUNbZpSBlGIZGjx6t1atXa+vWrQoODrZZ36pVK7m6umrz5s3q16+fJOnQoUM6efKkQkJCJEkhISF69dVXde7cOVWvXl2SFBUVJU9PTzVu3NjaAQEAAAAAgGKX1VlUN3+NLy9tYH92KUiNHDlSy5cv1+eff67KlSub13zy8vJS+fLl5eXlpWHDhmncuHHy8fGRp6enRo8erZCQELVr106S1K1bNzVu3FiPPvqoZs6cqdjYWE2cOFEjR47kLCiUSOm/8SklAAAAAKBssEtB6t1335Ukde7c2Wb54sWLNWTIEEnS22+/LWdnZ/Xr10/JyckKCwvTP//5T7Oti4uL1q1bpyeffFIhISGqWLGiBg8erKlTp1o1DAAAAKBESI28fr1WvqYHAHAUdvvKXm48PDy0YMECLViwINs2QUFB2rBhQ1F2DQAAAAAAAMXM7nfZAwAAAFA8Mi5izplRAABHQ0EKsIOM0+YBIDc3X5STC3ICAACgNHC2dwcAAAAAAABQtnCGFAAAJQhnTAEAAKA0oCAFAAAAlDLcVQ8A4OgoSAEAUILdfMZUVjiLCgAAlGZ5yUNwPBSkADvhlyYAAAAAWIPLHjgeClIAAJRyJSGAZXX3UdfuHezQEwAAAFiBu+wBAAAAAADAUhSkAAAAAAAAYCm+sgcUs6y+hgIAAAAAQFnGGVIAAAAAAACwFGdIAQAAACUYZ2MDQOlVmm/8QkEKsMjNd7kCAAAAAKCs4it7AAAADmLbtm3q3bu3AgMD5eTkpDVr1tisNwxDkyZNUkBAgMqXL6/Q0FAdPnzYps2FCxc0aNAgeXp6ytvbW8OGDVNiYqKFo4C9HI/bmOkBAMgavzPtj4IUAACAg7h8+bKaN2+uBQsWZLl+5syZmjt3rhYuXKidO3eqYsWKCgsL09WrV802gwYN0v79+xUVFaV169Zp27ZtCg8Pt2oIsNCR3e/pyO73+I8UABQRClTW4it7QDE5svs9SVJ63Ek79wQAUFL06NFDPXr0yHKdYRiaM2eOJk6cqPvvv1+S9NFHH8nPz09r1qzRwIEDdfDgQUVGRuqHH35Q69atJUnz5s1Tz549NWvWLAUGBlo2FgAAgJxwhhQAAEAJcOzYMcXGxio0NNRc5uXlpbZt2yo6OlqSFB0dLW9vb7MYJUmhoaFydnbWzp07Le8zAABAdjhDCgAAoASIjY2VJPn5+dks9/PzM9fFxsaqevXqNuvLlSsnHx8fs01WkpOTlZycbD5PSEgoqm4DAABkiYIUUMQybsvJV/UAOKqbr4lQ2zvrr4ih7JgxY4amTJli724AAIAyhK/sAQAAlAD+/v6SpLNnz9osP3v2rLnO399f586ds1mflpamCxcumG2yMmHCBMXHx5uPU6dOFXHvAQAAbFGQAgAAKAGCg4Pl7++vzZs3m8sSEhK0c+dOhYSESJJCQkIUFxenPXv2mG22bNmi9PR0tW3bNtt9u7u7y9PT0+YBAABQnPjKHgAAgINITEzUb7/9Zj4/duyYYmJi5OPjo1q1amnMmDGaPn266tevr+DgYL3yyisKDAxUnz59JEmNGjVS9+7dNWLECC1cuFCpqakaNWqUBg4cyB32AACAQ6EgBQAAbHCNKfvZvXu3unTpYj4fN26cJGnw4MFasmSJXnjhBV2+fFnh4eGKi4tThw4dFBkZKQ8PD3ObZcuWadSoUerataucnZ3Vr18/zZ071/KxoHhkXKtS4nqVAICSjYIUAACAg+jcubMMw8h2vZOTk6ZOnaqpU6dm28bHx0fLly8vju4BAFCm3PwhncQHdUWJghRQBI7sfs/8N59WAihpsgpbAAAAyIwzyYsOBSkAAADAwWV8+MUHXwCA0oKCFAAAAAAAQAHwtb6Cc7Z3BwAAAAAAAFC2UJACAAAAAACApfjKHlAIGbde5noOAEozLt4JAACAokZBCgAA5AsFKqD43XgHXwBAyUJWyhsKUkABcKcbAAAAAAAKjmtIAQAAAAAAwFKcIQUAAAqF09KBopFxbUqJs7ABAKUfZ0gBAAAAAADAUpwhBeQRn1oCAAAAAFA0KEgBAAAAAAAUk5svbyBxiQOJghQAAAAAAICluAYnBSkAAFDE+BQQyNmR3e/ZPK/b+gk79QQAAPuhIAXkwZHd73HdKAAAUCwyClRkDQBAWUJBCsjCzZ9cAgAAAACAokNBCpB0eMXL9u4CAJRqXCcBZR136wUAwJazvTsAAAAAAACAsoUzpAAAgOU4YwplBdeHAgAgaxSkAAAAAAAA7Kgs3qWYghQAAABQQDdeGyqDa/cOdugJAAAlCwUplDlZBUcAAICiwgXMAQDIHQUplHoUoAAAAAAAcCwUpFAmZfX9XAAAgPw4svu9TGdAlfbrfQAAUFQoSKFUyrijjXT9VHnCIQAAyMmN2aEw+NALAFBUSvtdiUt8QWrBggV68803FRsbq+bNm2vevHlq06aNvbsFi5m3VP4t6+s0EA4BAGUNGal4ZJc1AABA/pTogtTKlSs1btw4LVy4UG3bttWcOXMUFhamQ4cOqXr16vbuHopYxrWgKC4BQOlT2j8BtBoZCQAAOLoSXZCaPXu2RowYoaFDh0qSFi5cqPXr1+vDDz/U+PHj7dw7FNTNp8zXbf2EnXoCAEDJREaydXjFyzbPsyp4cjc8AACsVWILUikpKdqzZ48mTJhgLnN2dlZoaKiio6Oz3CY5OVnJycnm8/j4eElSQkJC8XYWuUqN+vs1S4g/LKc6NcznMVvnSJKM079b3S0AgJ0kuF6WazH9fc74u28YRrHs395KQka68e9+Btd7QnJtc6rqwUzLav7VyOb5yfioXI//S9KaXNsAAOBoElwvS1KpyUgltiD1559/6tq1a/Lz87NZ7ufnp19//TXLbWbMmKEpU6ZkWl6zZs1i6SMAACiot4r9CJcuXZKXl1exH8dqZCQAAEqr4s9HknUZqcQWpApiwoQJGjdunPk8PT1dFy5cUNWqVeXk5FTo/SckJKhmzZo6deqUPD09C70/R8ZYS5+yMk6p7Iy1rIxTYqylUXGO0zAMXbp0SYGBgUW635KsuDNSdsrK+zk3zMN1zMN1zMN1zMPfmIvrmIfrSlNGKrEFqWrVqsnFxUVnz561WX727Fn5+/tnuY27u7vc3d1tlnl7exd53zw9PcvMDwhjLX3KyjilsjPWsjJOibGWRsU1ztJ4ZlQGR85I2Skr7+fcMA/XMQ/XMQ/XMQ9/Yy6uYx6uKw0ZydmyIxUxNzc3tWrVSps3bzaXpaena/PmzQoJCclhSwAAgNKLjAQAAEqCEnuGlCSNGzdOgwcPVuvWrdWmTRvNmTNHly9fNu8oAwAAUBaRkQAAgKMr0QWphx56SOfPn9ekSZMUGxurFi1aKDIyMtNFPK3i7u6uiIiITKe8l0aMtfQpK+OUys5Yy8o4JcZaGpWVcRYXR8tI2eF1vo55uI55uI55uI55+BtzcR3zcF1pmgcno7Te8xgAAAAAAAAOqcReQwoAAAAAAAAlEwUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiBVSBcuXNCgQYPk6ekpb29vDRs2TImJibluFx0drbvvvlsVK1aUp6enOnXqpCtXrljQ44Ir6FglyTAM9ejRQ05OTlqzZk3xdrSQ8jvOCxcuaPTo0WrQoIHKly+vWrVq6emnn1Z8fLyFvc6bBQsWqHbt2vLw8FDbtm21a9euHNt/+umnatiwoTw8PNS0aVNt2LDBop4WXn7G+v7776tjx46qUqWKqlSpotDQ0FznxlHk9zXNsGLFCjk5OalPnz7F28EilN+xxsXFaeTIkQoICJC7u7tuvfXWEvMezu9Y58yZY/4OqlmzpsaOHaurV69a1NuC2bZtm3r37q3AwMA8/23YunWrWrZsKXd3d9WrV09Lliwp9n6iaJWVLJEXpTlv5KQsZZGclJWckpuylGNyUpYyTm7KQgbKTZnKSAYKpXv37kbz5s2N77//3vj222+NevXqGQ8//HCO2+zYscPw9PQ0ZsyYYfzyyy/Gr7/+aqxcudK4evWqRb0umIKMNcPs2bONHj16GJKM1atXF29HCym/49y3b5/xwAMPGGvXrjV+++03Y/PmzUb9+vWNfv36Wdjr3K1YscJwc3MzPvzwQ2P//v3GiBEjDG9vb+Ps2bNZtv/uu+8MFxcXY+bMmcaBAweMiRMnGq6ursa+ffss7nn+5XesjzzyiLFgwQJj7969xsGDB40hQ4YYXl5exu+//25xz/Mnv+PMcOzYMeOWW24xOnbsaNx///3WdLaQ8jvW5ORko3Xr1kbPnj2N7du3G8eOHTO2bt1qxMTEWNzz/MvvWJctW2a4u7sby5YtM44dO2Z8+eWXRkBAgDF27FiLe54/GzZsMF5++WXjs88+y9PfhqNHjxoVKlQwxo0bZxw4cMCYN2+e4eLiYkRGRlrTYRSJspIl8qK05o2clKUskpOyklNyU5ZyTE7KUsbJTVnJQLkpSxmJglQhHDhwwJBk/PDDD+ayjRs3Gk5OTsYff/yR7XZt27Y1Jk6caEUXi0xBx2oYhrF3717jlltuMc6cOePwIbIw47zRJ598Yri5uRmpqanF0c0CadOmjTFy5Ejz+bVr14zAwEBjxowZWbZ/8MEHjV69etksa9u2rfHEE08Uaz+LQn7HerO0tDSjcuXKxtKlS4uri0WiIONMS0sz2rdvb3zwwQfG4MGDS0yQy+9Y3333XaNOnTpGSkqKVV0sMvkd68iRI427777bZtm4ceOMO++8s1j7WZTy8rfhhRdeMJo0aWKz7KGHHjLCwsKKsWcoSmUlS+RFac4bOSlLWSQnZSWn5KYs5ZiclKWMk5uymIFyU9ozEl/ZK4To6Gh5e3urdevW5rLQ0FA5Oztr586dWW5z7tw57dy5U9WrV1f79u3l5+enu+66S9u3b7eq2wVSkLFKUlJSkh555BEtWLBA/v7+VnS1UAo6zpvFx8fL09NT5cqVK45u5ltKSor27Nmj0NBQc5mzs7NCQ0MVHR2d5TbR0dE27SUpLCws2/aOoiBjvVlSUpJSU1Pl4+NTXN0stIKOc+rUqapevbqGDRtmRTeLREHGunbtWoWEhGjkyJHy8/PTbbfdptdee03Xrl2zqtsFUpCxtm/fXnv27DFPaT969Kg2bNignj17WtJnq5TU30n4W1nJEnlRWvNGTspSFslJWckpuSlLOSYnZSnj5IYMVHAl+Xel4//1cmCxsbGqXr26zbJy5crJx8dHsbGxWW5z9OhRSdLkyZM1a9YstWjRQh999JG6du2qX375RfXr1y/2fhdEQcYqSWPHjlX79u11//33F3cXi0RBx3mjP//8U9OmTVN4eHhxdLFA/vzzT127dk1+fn42y/38/PTrr79muU1sbGyW7fM6D/ZSkLHe7MUXX1RgYGCmX+yOpCDj3L59u/71r38pJibGgh4WnYKM9ejRo9qyZYsGDRqkDRs26LffftNTTz2l1NRURUREWNHtAinIWB955BH9+eef6tChgwzDUFpamv7xj3/opZdesqLLlsnud1JCQoKuXLmi8uXL26lnyKuykiXyorTmjZyUpSySk7KSU3JTlnJMTspSxskNGajgSnJG4gypLIwfP15OTk45PvL6B+Nm6enpkqQnnnhCQ4cO1e233663335bDRo00IcffliUw8iT4hzr2rVrtWXLFs2ZM6doO10AxTnOGyUkJKhXr15q3LixJk+eXPiOw3Kvv/66VqxYodWrV8vDw8Pe3Skyly5d0qOPPqr3339f1apVs3d3il16erqqV6+uRYsWqVWrVnrooYf08ssva+HChfbuWpHbunWrXnvtNf3zn//Ujz/+qM8++0zr16/XtGnT7N01lBFlJUvkBXkDxa205pTclLUck5OylHFyQwYq+ThDKgvPPvushgwZkmObOnXqyN/fX+fOnbNZnpaWpgsXLmR7SnlAQIAkqXHjxjbLGzVqpJMnTxa80wVUnGPdsmWLjhw5Im9vb5vl/fr1U8eOHbV169ZC9Dx/inOcGS5duqTu3burcuXKWr16tVxdXQvb7SJTrVo1ubi46OzZszbLz549m+24/P3989XeURRkrBlmzZql119/XV999ZWaNWtWnN0stPyO88iRIzp+/Lh69+5tLssokJcrV06HDh1S3bp1i7fTBVSQ1zQgIECurq5ycXExlzVq1EixsbFKSUmRm5tbsfa5oAoy1ldeeUWPPvqohg8fLklq2rSpLl++rPDwcL388stydi4dnz1l9zvJ09PToT/5KwvKSpbIi7KeN3JSlrJITspKTslNWcoxOSlLGSc3ZKCCK8kZqWy8Qvnk6+urhg0b5vhwc3NTSEiI4uLitGfPHnPbLVu2KD09XW3bts1y37Vr11ZgYKAOHTpks/x///ufgoKCinVcWSnOsY4fP14///yzYmJizIckvf3221q8eLEVwzMV5zil659UduvWTW5ublq7dq3DfWLl5uamVq1aafPmzeay9PR0bd68WSEhIVluExISYtNekqKiorJt7ygKMlZJmjlzpqZNm6bIyEiba3o4qvyOs2HDhtq3b5/Nz+N9992nLl26KCYmRjVr1rSy+/lSkNf0zjvv1G+//WaGVen679mAgACHDmoFGWtSUlKmwJURUg3DKL7OWqyk/k4qC8pKlsiLsp43clKWskhOykpOyU1ZyjE5KUsZJzdkoIIr0b8r7XtN9ZKve/fuxu23327s3LnT2L59u1G/fn2bW/b+/vvvRoMGDYydO3eay95++23D09PT+PTTT43Dhw8bEydONDw8PIzffvvNHkPIs4KM9WYqAXfGye844+PjjbZt2xpNmzY1fvvtN+PMmTPmIy0tzV7DyGTFihWGu7u7sWTJEuPAgQNGeHi44e3tbcTGxhqGYRiPPvqoMX78eLP9d999Z5QrV86YNWuWcfDgQSMiIqLE3Go5v2N9/fXXDTc3N2PVqlU2r9+lS5fsNYQ8ye84b1aS7k6T37GePHnSqFy5sjFq1Cjj0KFDxrp164zq1asb06dPt9cQ8iy/Y42IiDAqV65s/Oc//zGOHj1qbNq0yahbt67x4IMP2msIeXLp0iVj7969xt69ew1JxuzZs429e/caJ06cMAzDMMaPH288+uijZvuMWxo///zzxsGDB40FCxaUmFsa429lJUvkRWnNGzkpS1kkJ2Ulp+SmLOWYnJSljJObspKBclOWMhIFqUL666+/jIcfftioVKmS4enpaQwdOtTmj8OxY8cMScbXX39ts92MGTOMGjVqGBUqVDBCQkKMb7/91uKe519Bx3qjkhAi8zvOr7/+2pCU5ePYsWP2GUQ25s2bZ9SqVctwc3Mz2rRpY3z//ffmurvuussYPHiwTftPPvnEuPXWWw03NzejSZMmxvr16y3uccHlZ6xBQUFZvn4RERHWdzyf8vua3qikBbn8jnXHjh1G27ZtDXd3d6NOnTrGq6++WmL+05afsaamphqTJ0826tata3h4eBg1a9Y0nnrqKePixYvWdzwfsvvdmTG2wYMHG3fddVembVq0aGG4ubkZderUMRYvXmx5v1E4ZSVL5EVpzhs5KUtZJCdlJafkpizlmJyUpYyTm7KQgXJTljKSk2GUoXPZAAAAAAAAYHdcQwoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEghTyZPniwnJyebZbVr19aQIUOK/djHjx+Xk5OTlixZYi4bMmSIKlWqVOzHzuDk5KTJkydbdrySrnPnzurcuXOR7jOr96A9FMf7/uZ9bt26VU5OTtq6dWu+95XXuS/MMfLDnj87Wf3uyM6QIUNUu3btIj1+YmKiqlevrmXLlhXo+ImJiRo+fLj8/f3l5OSkMWPG5Ov448ePV9u2bfO1DYD8IyORkfKDjFS4fZKRigYZiYzkKChIwVIbNmxw2NDiyH0rK5KSkjR58uRiDwBwfGvXrlXLli3l4eGhWrVqKSIiQmlpafbuVr688847qly5sgYOHFig7V977TUtWbJETz75pD7++GM9+uijkqR3331XAwYMUK1ateTk5JRt+B8zZox++uknrV27tqBDAGAhR84hjty3soKMhAxkpKwz0qlTpzRlyhS1adNGVapUUbVq1dS5c2d99dVXmbYnIzmOcvbuAEquQ4cOydk5fzXNDRs2aMGCBfkKNUFBQbpy5YpcXV3z2cP8yalvV65cUbly/LgUt6SkJE2ZMkWSMn2CNXHiRI0fP94OvbJVkPd9fnXq1ElXrlyRm5tbvrfdtGlTMfTIWhs3blSfPn3UuXNnzZs3T/v27dP06dN17tw5vfvuu3nej1W/O7KSmpqqd955R2PHjpWLi0uB9rFlyxa1a9dOERERNsvfeOMNXbp0SW3atNGZM2ey3d7f31/333+/Zs2apfvuu69AfQBQMGQkFDUy0nVkJDKSlHVGmj9/vt544w316dNHgwcPVlpamj766CPdc889+vDDDzV06FCzLRnJcfDXAwXm7u5erPtPS0tTenq63Nzc5OHhUazHyo29j2+Fq1evys3NLcsgcfnyZVWsWNEOvfpbuXLlHCLwFvf7XpKcnZ0L/J4rSEBzNM8995yaNWumTZs2ma+5p6enXnvtNT3zzDNq2LBhnvbj5ORkt5/ddevW6fz583rwwQcLvI9z586pcePGmZZ/88035tlRuX0t58EHH9SAAQN09OhR1alTp8B9AZA/ZKTShYyUN2Sk4kdGui6rjNSlSxedPHlS1apVM5f94x//UIsWLTRp0iSbgpRERnIUfGUPmWzfvl133HGHPDw8VLduXb333ntZtrv5O92pqamaMmWK6tevLw8PD1WtWlUdOnRQVFSUpOvf/12wYIGk678EMx7S399jnjVrlubMmaO6devK3d1dBw4cyPE7zkePHlVYWJgqVqyowMBATZ06VYZhmOuz+w74zfvMqW8Zy27+VHDv3r3q0aOHPD09ValSJXXt2lXff/+9TZslS5bIyclJ3333ncaNGydfX19VrFhRffv21fnz57N+AXLwxx9/aNiwYQoMDJS7u7uCg4P15JNPKiUlxWZOBgwYIB8fH1WoUEHt2rXT+vXrbfaTMS8rVqzQxIkTdcstt6hChQpKSEgwrz1x5MgR9ezZU5UrV9agQYMkSenp6ZozZ46aNGkiDw8P+fn56YknntDFixdz7HdKSoomTZqkVq1aycvLSxUrVlTHjh319ddfm22OHz8uX19fSdKUKVPM1yBj3rO6PkJaWpqmTZtmvl9q166tl156ScnJyTbtateurXvvvVfbt29XmzZt5OHhoTp16uijjz7K3wugzO/7/LzGhmFo+vTpqlGjhipUqKAuXbpo//79mY5x8/t21KhRqlSpkpKSkjK1ffjhh+Xv769r165Jyvr6CL///rv69OmjihUrqnr16ho7dmymOcpqbBlu3mdeXs+COnDggA4cOKDw8HCbcP3UU0/JMAytWrUqz/vK7nfHmjVrdNttt8nDw0O33XabVq9enWnbiIgIOTs7a/PmzTbLw8PD5ebmpp9++inHY69Zs0a1a9dW3bp1s1yX0/EzXv9jx45p/fr15s/C8ePHJV3/VDOv1woJDQ2VJH3++ed5ag8gZ2QkMhIZKXtkJDKSPTNSkyZNbIpR0vUiac+ePfX777/r0qVLNuvISI7B/qV0OJR9+/apW7du8vX11eTJk5WWlqaIiAj5+fnluu3kyZM1Y8YMDR8+XG3atFFCQoJ2796tH3/8Uffcc4+eeOIJnT59WlFRUfr444+z3MfixYt19epVhYeHy93dXT4+PkpPT8+y7bVr19S9e3e1a9dOM2fOVGRkpPkd6qlTp+Zr3Hnp243279+vjh07ytPTUy+88IJcXV313nvvqXPnzvrmm28yXSRv9OjRqlKliiIiInT8+HHNmTNHo0aN0sqVK/Pcx9OnT6tNmzaKi4tTeHi4GjZsqD/++EOrVq1SUlKS3NzcdPbsWbVv315JSUl6+umnVbVqVS1dulT33XefVq1apb59+9rsc9q0aXJzc9Nzzz2n5ORk85OjtLQ0hYWFqUOHDpo1a5YqVKhgztOSJUs0dOhQPf300zp27Jjmz5+vvXv36rvvvsv2tN+EhAR98MEHevjhhzVixAhdunRJ//rXvxQWFqZdu3apRYsW8vX11bvvvqsnn3xSffv21QMPPCBJatasWbZzMnz4cC1dulT9+/fXs88+q507d2rGjBk6ePBgpj9gv/32m/r3769hw4Zp8ODB+vDDDzVkyBC1atVKTZo0yfPrkJ28vMaTJk3S9OnT1bNnT/Xs2VM//vijunXrZhOWs/LQQw9pwYIFWr9+vQYMGGAuT0pK0hdffKEhQ4Zke8rzlStX1LVrV508eVJPP/20AgMD9fHHH2vLli0FHmteXs+C2rt3rySpdevWNssDAwNVo0YNc31Bbdq0Sf369VPjxo01Y8YM/fXXXxo6dKhq1Khh027ixIn64osvNGzYMO3bt0+VK1fWl19+qffff1/Tpk1T8+bNczzOjh071LJlywIdv1GjRvr44481duxY1ahRQ88++6wkmf8ZyQ8vLy/VrVtX3333ncaOHZvv7QH8jYxERpLISAVBRiIj3cjqjBQbG6sKFSqYP6sZyEgOwgBu0KdPH8PDw8M4ceKEuezAgQOGi4uLcfPbJSgoyBg8eLD5vHnz5kavXr1y3P/IkSMz7ccwDOPYsWOGJMPT09M4d+5clusWL15sLhs8eLAhyRg9erS5LD093ejVq5fh5uZmnD9/3jAMw/j6668NScbXX3+d6z6z65thGIYkIyIiwnzep08fw83NzThy5Ii57PTp00blypWNTp06mcsWL15sSDJCQ0ON9PR0c/nYsWMNFxcXIy4uLsvjZeWxxx4znJ2djR9++CHTuox9jxkzxpBkfPvtt+a6S5cuGcHBwUbt2rWNa9euGYbx97zUqVPHSEpKstlXxtyOHz/eZvm3335rSDKWLVtmszwyMjLT8rvuusu46667zOdpaWlGcnKyzXYXL140/Pz8jMcff9xcdv78+UxznSEiIsLm9YmJiTEkGcOHD7dp99xzzxmSjC1btpjLgoKCDEnGtm3bzGXnzp0z3N3djWeffTbTsXJy8/s+r6/xuXPnDDc3N6NXr1427V566SVDks0+b37fpqenG7fccovRr18/m7588sknmcZ189zPmTPHkGR88skn5rLLly8b9erVy/SzcfPYsttnXl9Pw8j8s5ObN99805BknDx5MtO6O+64w2jXrl2e95XVz3mLFi2MgIAAm5+9TZs2GZKMoKAgm+337dtnuLm5GcOHDzcuXrxo3HLLLUbr1q2N1NTUHI+bmppqODk5Zfneys/xg4KCcv2dWrFixSxfsxt169bNaNSoUY5tAOSOjERGIiPljIxERnKkjGQYhnH48GHDw8PDePTRR7NcT0ayP76yB9O1a9f05Zdfqk+fPqpVq5a5vFGjRgoLC8t1e29vb+3fv1+HDx8ucB/69euXr7MARo0aZf7byclJo0aNUkpKSpZ3Uygq165d06ZNm9SnTx+b7xsHBATokUce0fbt25WQkGCzTXh4uM2p1B07dtS1a9d04sSJPB0zPT1da9asUe/evTN9KiLJ3PeGDRvUpk0bdejQwVxXqVIlhYeH6/jx4zpw4IDNdoMHD1b58uWzPOaTTz5p8/zTTz+Vl5eX7rnnHv3555/mo1WrVqpUqVKOpyK7uLiYnyymp6frwoULSktLU+vWrfXjjz/maQ5utmHDBknSuHHjbJZnfFJy8yn4jRs3VseOHc3nvr6+atCggY4ePVqg498st9f4q6++UkpKikaPHm3TLi+3qXVyctKAAQO0YcMGJSYmmstXrlypW265xeb1vtmGDRsUEBCg/v37m8sqVKig8PDw/AzPRnG8nhmuXLkiKevrUHh4eJjrC+LMmTOKiYnR4MGD5eXlZS6/5557srxW02233aYpU6bogw8+UFhYmP78808tXbo01+t0XLhwQYZhqEqVKoU6flGpUqWK/vzzz2LbP1AWkJHyhoxERsoKGYmMlMHKjJSUlKQBAwaofPnyev3117NsQ0ayPwpSMJ0/f15XrlxR/fr1M61r0KBBrttPnTpVcXFxuvXWW9W0aVM9//zz+vnnn/PVh+Dg4Dy3dXZ2znQBultvvVWSzGutFIfz588rKSkpyzlp1KiR0tPTderUKZvlN4ZXSeYv4dyuK3DjMRMSEnTbbbfl2O7EiRPZ9itj/Y2ym+9y5cplOj338OHDio+PV/Xq1eXr62vzSExM1Llz53Ls29KlS9WsWTPz2hm+vr5av3694uPjc9wuOydOnJCzs7Pq1atns9zf31/e3t6ZxnrzayBdfx3y+hrkJrfXOKM/N/98+fr6ZvqjnJWHHnpIV65cMW9Pm5iYqA0bNmjAgAE5Xk/oxIkTqlevXqY2efmZzklRv54ZMsJ/VtdvuHr1arb/OciL7F4DKfv5eP7559W8eXPt2rVLERER+QpFxg3Xaino8YuCYRh5vuYUgKyRkfKGjERGygoZiYx0s+LOSNeuXdPAgQN14MABrVq1SoGBgdn2g4xkX1xDCkWmU6dOOnLkiD7//HNt2rRJH3zwgd5++20tXLhQw4cPz9M+CvOLNCvZ/YLJuLihVbL77vrNv4ytlt18u7u7Z7qTTHp6uqpXr65ly5ZluU1On9r++9//1pAhQ9SnTx89//zzql69ulxcXDRjxgwdOXKk4ANQ9q/xzYr7NSju/bdr1061a9fWJ598okceeURffPGFrly5ooceeqhI9i/l/PNy4/iK8/UMCAiQdP2Tspo1a9qsO3PmjNq0aVOo/efX0aNHzTMa9u3bl6dtfHx85OTkVGRBvrAuXryY6SKfAKxFRsoeGYmMVFhkJDLSzUaMGKF169Zp2bJluvvuu7NtR0ayPwpSMPn6+qp8+fJZnk5+6NChPO3Dx8dHQ4cO1dChQ5WYmKhOnTpp8uTJZtgqygp0enq6jh49an7iJ0n/+9//JF2/E4b09ycwcXFxNttmdRp4Xvvm6+urChUqZDknv/76q5ydnTP9kSgsX19feXp66pdffsmxXVBQULb9ylhfUHXr1tVXX32lO++8M9+heNWqVapTp44+++wzm3mOiIiwaZef90dQUJDS09N1+PBh89NNSTp79qzi4uIKNdbikNGfw4cP23xqff78+Tz/UX7wwQf1zjvvKCEhQStXrlTt2rXVrl27XI/7yy+/ZPoEKKv3SZUqVTL9rEjXf15u7HNeX8+CyLjY5+7du22C1enTp/X7778X6jT6G1+Dm2U1H+np6RoyZIg8PT01ZswYvfbaa+rfv795MdnslCtXTnXr1tWxY8cKdfyicuzYsVwvMAogZ2QkMlJOyEiFQ0bKGzJS3jz//PNavHix5syZo4cffjjHtmQk++MrezC5uLgoLCxMa9as0cmTJ83lBw8e1Jdffpnr9n/99ZfN80qVKqlevXo2p5VWrFhRUubwU1Dz5883/20YhubPny9XV1d17dpV0vVfbi4uLtq2bZvNdv/85z8z7SuvfXNxcVG3bt30+eef25z2fvbsWS1fvlwdOnSQp6dnAUeUNWdnZ/Xp00dffPGFdu/enWl9xidMPXv21K5duxQdHW2uu3z5shYtWqTatWsX6jo1Dz74oK5du6Zp06ZlWpeWlpbjvGV8cnTjJ2E7d+606ack8+4XeXl/9OzZU5I0Z84cm+WzZ8+WJPXq1SvXfVgpNDRUrq6umjdvns083Nz/nDz00ENKTk7W0qVLFRkZqQcffDDXbXr27KnTp0/b3Ao4KSlJixYtytS2bt26+v77723uaLNu3bpMX6/I6+tZEE2aNFHDhg21aNEim0/p3333XTk5Odlc5yG/AgIC1KJFCy1dutTmtPmoqKhM1w6Rrr+XduzYoUWLFmnatGlq3769nnzyyTxdayAkJCTTz2p+j18U4uPjdeTIEbVv375Y9g+UFWQkMlJOyEiFQ0bKGzJS7t58803NmjVLL730kp555pkc25KRHANnSMHGlClTFBkZqY4dO+qpp55SWlqa5s2bpyZNmuR6rYPGjRurc+fOatWqlXx8fLR7926tWrXK5qKarVq1kiQ9/fTTCgsLk4uLiwYOHFigvnp4eCgyMlKDBw9W27ZttXHjRq1fv14vvfSSeWq0l5eXBgwYoHnz5snJyUl169bVunXrsvwuf376Nn36dEVFRalDhw566qmnVK5cOb333ntKTk7WzJkzCzSe3Lz22mvatGmT7rrrLoWHh6tRo0Y6c+aMPv30U23fvl3e3t4aP368/vOf/6hHjx56+umn5ePjo6VLl+rYsWP673//m+kU8/y466679MQTT2jGjBmKiYlRt27d5OrqqsOHD+vTTz/VO++8k+0fwnvvvVefffaZ+vbtq169eunYsWNauHChGjdubHMByvLly6tx48ZauXKlbr31Vvn4+Oi2227L8roQzZs31+DBg7Vo0SLFxcXprrvu0q5du7R06VL16dNHXbp0KfBYi4Ovr6+ee+45zZgxQ/fee6969uypvXv3auPGjXk+Vbhly5aqV6+eXn75ZSUnJ+fpVPQRI0Zo/vz5euyxx7Rnzx4FBATo448/znTrW+n6LaJXrVql7t2768EHH9SRI0f073//W3Xr1rVpl9fXs6DefPNN3XffferWrZsGDhyoX375RfPnz9fw4cNtPuktiBkzZqhXr17q0KGDHn/8cV24cMH8HXdj3w8ePKhXXnlFQ4YMUe/evSVJS5YsUYsWLfTUU0/pk08+yfE4999/vz7++GP973//szlDIa/Hz8kXX3yhn376SZKUmpqqn3/+WdOnT5ck3XfffTa3Af/qq69kGIbuv//+vE0QgGyRkchI2SEjFQ4ZKe/ISNlbvXq1XnjhBdWvX1+NGjXSv//9b5v199xzj/z8/MznZCQHYdXt/FByfPPNN0arVq0MNzc3o06dOsbChQsz3U7WMDLf/nT69OlGmzZtDG9vb6N8+fJGw4YNjVdffdVISUkx26SlpRmjR482fH19DScnJ3OfGbceffPNNzP1J7tbGlesWNE4cuSI0a1bN6NChQqGn5+fERERYd62N8P58+eNfv36GRUqVDCqVKliPPHEE8Yvv/ySaZ/Z9c0wsr4t648//miEhYUZlSpVMipUqGB06dLF2LFjh02bjNvd3nwb4uxutZybEydOGI899pjh6+truLu7G3Xq1DFGjhxpc3vZI0eOGP379ze8vb0NDw8Po02bNsa6deuyPP6nn36a6RgZc5udRYsWGa1atTLKly9vVK5c2WjatKnxwgsvGKdPnzbb3HwL3PT0dOO1114zgoKCDHd3d+P222831q1bZwwePDjTbVx37Nhhvv9unPes3oOpqanGlClTjODgYMPV1dWoWbOmMWHCBOPq1as27bK7NezN/cyL7G5pnJfX+Nq1a8aUKVOMgIAAo3z58kbnzp2NX375JdM+c3p/vPzyy4Yko169eln2L6sxnThxwrjvvvuMChUqGNWqVTOeeeYZ81bUNx/jrbfeMm655RbD3d3duPPOO43du3cX6vXM6mcnL1avXm20aNHCcHd3N2rUqGFMnDjR5ndJXmT1u8MwDOO///2v0ahRI8Pd3d1o3Lix8dlnn9n0PS0tzbjjjjuMGjVqZLrt+DvvvGNIMlauXJnjsZOTk41q1aoZ06ZNy7Qut+NnyO59m3Hb8aweN4/1oYceMjp06JBjXwHkHRmJjERGyh4ZiYxkz4yU8XOQ3ePm15OM5BicDMPOVwwEAKAUmjZtmhYvXqzDhw9ne0HX4hQbG6vg4GCtWLGCT/8AAIDDICMhA9eQAgCgGIwdO1aJiYlasWKFXY4/Z84cNW3alKAFAAAcChkJGThDCrCzxMTEXL8X7evra5dPD8qS2NjYHNeXL19eXl5eFvWm9Ll27ZrOnz+fY5tKlSqpUqVKue4rJSVFFy5cyLGNl5dXkd8iHQBgLTKSYyAjFS8yEsoyClKAnU2ePFlTpkzJsc2xY8fM2zSjeOR2O+XBgwdryZIl1nSmFDp+/LiCg4NzbBMREaHJkyfnuq+tW7fmekHWxYsXa8iQIfnoIQDA0ZCRHAMZqXiRkVCWUZAC7Ozo0aM6evRojm06dOggDw8Pi3pUNn311Vc5rg8MDCzULaHLuqtXr2r79u05tqlTp47q1KmT674uXryoPXv25NimSZMmCggIyFcfAQCOhYzkGMhIxYuMhLKMghQAAAAAAAAsxUXNAQAAAAAAYKly9u6APaWnp+v06dOqXLlyrt+NBgAApYNhGLp06ZICAwPl7Mxnc1khIwEAUPZYnZHKdEHq9OnTqlmzpr27AQAA7ODUqVOqUaOGvbvhkMhIAACUXVZlpDJdkKpcubKk65Pt6elp594AAAArJCQkqGbNmmYOQGZkJAAAyh6rM1KZLkhlnILu6elJ2AIAoIzhq2jZIyMBAFB2WZWRuHACAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLlelrSAEAkJNr164pNTXV3t1APrm6usrFxcXe3QAAoNQiI5VMjpaRKEgBAHATwzAUGxuruLg4e3cFBeTt7S1/f38uXA4AQBEiI5V8jpSRKEgBAHCTjKBVvXp1VahQwSH+YCNvDMNQUlKSzp07J0kKCAiwc48AACg9yEgllyNmJApSAADc4Nq1a2bQqlq1qr27gwIoX768JOncuXOqXr26Q52aDgBASUVGKvkcLSNxUXMAAG6QcT2EChUq2LknKIyM14/rWwAAUDTISKWDI2UkClIAAGSBU9BLNl4/AACKB39jSzZHev0oSAEAAAAAAMBSFKQAAAAAAABgKS5qDgBAHqVGbrfsWK7dO+S5bW6nXkdERGjy5MmF7FHBODk5afXq1erTp0+B97Fo0SItX75cP/74oy5duqSLFy/K29u7yPoIAAAKx8qMJJGTMly4cEERERHatGmTTp48KV9fX/Xp00fTpk2Tl5dX0Xa2GFCQAgCghDtz5oz575UrV2rSpEk6dOiQuaxSpUr52l9KSorc3NyKrH+FlZSUpO7du6t79+6aMGGCvbsDAABKkNKck06fPq3Tp09r1qxZaty4sU6cOKF//OMfOn36tFatWmXv7uWKr+zBIaVGbs/0AABkzd/f33x4eXnJycnJfH758mUNGjRIfn5+qlSpku644w599dVXNtvXrl1b06ZN02OPPSZPT0+Fh4dLkt5//33VrFlTFSpUUN++fTV79uxMZyZ9/vnnatmypTw8PFSnTh1NmTJFaWlp5n4lqW/fvnJycjKf//TTT+rSpYsqV64sT09PtWrVSrt37852fGPGjNH48ePVrl27opkwoAQjIwFA/pTmnHTbbbfpv//9r3r37q26devq7rvv1quvvqovvvjCPI4joyAFAEAplpiYqJ49e2rz5s3au3evunfvrt69e+vkyZM27WbNmqXmzZtr7969euWVV/Tdd9/pH//4h5555hnFxMTonnvu0auvvmqzzbfffqvHHntMzzzzjA4cOKD33ntPS5YsMdv98MMPkqTFixfrzJkz5vNBgwapRo0a+uGHH7Rnzx6NHz9erq6uFswGAADA30pjToqPj5enp6fKlXP8L8Q5fg8BAECBNW/eXM2bNzefT5s2TatXr9batWs1atQoc/ndd9+tZ5991nz+8ssvq0ePHnruueckSbfeeqt27NihdevWmW2mTJmi8ePHa/DgwZKkOnXqaNq0aXrhhRcUEREhX19fSZK3t7f8/f3N7U6ePKnnn39eDRs2lCTVr1+/GEYOAACQs9KWk/78809NmzbNPIvL0XGGFAAApVhiYqKee+45NWrUSN7e3qpUqZIOHjyY6ZO/1q1b2zw/dOiQ2rRpY7Ps5uc//fSTpk6dqkqVKpmPESNG6MyZM0pKSsq2T+PGjdPw4cMVGhqq119/XUeOHCnkKAEAAPKvNOWkhIQE9erVS40bN7bbRdrzi4IUAACl2HPPPafVq1frtdde07fffquYmBg1bdpUKSkpNu0qVqyY730nJiZqypQpiomJMR/79u3T4cOH5eHhke12kydP1v79+9WrVy9t2bJFjRs31urVq/N9fAAAgMIoLTnp0qVL6t69uypXrqzVq1eXmEsh8JU9AABKse+++05DhgxR3759JV0PR8ePH891uwYNGpjXMshw8/OWLVvq0KFDqlevXrb7cXV11bVr1zItv/XWW3Xrrbdq7Nixevjhh7V48WKzjwAAAFYoDTkpISFBYWFhcnd319q1a3MsdjkaClIAAJRi9evX12effabevXvLyclJr7zyitLT03PdbvTo0erUqZNmz56t3r17a8uWLdq4caOcnJzMNpMmTdK9996rWrVqqX///nJ2dtZPP/2kX375RdOnT5d0/Q4ymzdv1p133il3d3d5eHjo+eefV//+/RUcHKzff/9dP/zwg/r165dtX2JjYxUbG6vffvtNkrRv3z5VrlxZtWrVko+PTyFnCAAAlFUlPSclJCSoW7duSkpK0r///W8lJCQoISFBkuTr6ysXF5cimKXiw1f2AAAoxWbPnq0qVaqoffv26t27t8LCwtSyZctct7vzzju1cOFCzZ49W82bN1dkZKTGjh1r86lbWFiY1q1bp02bNumOO+5Qu3bt9PbbbysoKMhs89ZbbykqKko1a9bU7bffLhcXF/3111967LHHdOutt+rBBx9Ujx49NGXKlGz7snDhQt1+++0aMWKEJKlTp066/fbbtXbt2kLMDAAAKOtKek768ccftXPnTu3bt0/16tVTQECA+Th16lThJ6iYORmGYdi7E/aSkJAgLy8v87aIcBypkdszLXPt3sEOPQFQ1ly9elXHjh1TcHBwiTrl2QojRozQr7/+qm+//dbeXclVTq8jf/9zxxw5LjISAHshI+WspOQkR8pIfGUPAABkadasWbrnnntUsWJFbdy4UUuXLtU///lPe3cLAADA7shJhUdBCgAAZGnXrl2aOXOmLl26pDp16mju3LkaPny4vbsFAABgd+SkwqMgBQAAsvTJJ5/YuwsAAAAOiZxUeFzUHAAAAAAAAJaiIAUAAAAAAABLUZACAAAoAtu2bVPv3r0VGBgoJycnrVmzxlyXmpqqF198UU2bNlXFihUVGBioxx57TKdPn7bZx4ULFzRo0CB5enrK29tbw4YNU2Jiok2bn3/+WR07dpSHh4dq1qypmTNnZurLp59+qoYNG8rDw0NNmzbVhg0bimXMAAAABZXvghRhCwAAILPLly+refPmWrBgQaZ1SUlJ+vHHH/XKK6/oxx9/1GeffaZDhw7pvvvus2k3aNAg7d+/X1FRUVq3bp22bdum8PBwc31CQoK6deumoKAg7dmzR2+++aYmT56sRYsWmW127Nihhx9+WMOGDdPevXvVp08f9enTR7/88kvxDR4AACCf8l2QImwBAABk1qNHD02fPl19+/bNtM7Ly0tRUVF68MEH1aBBA7Vr107z58/Xnj17dPLkSUnSwYMHFRkZqQ8++EBt27ZVhw4dNG/ePK1YscL8cG/ZsmVKSUnRhx9+qCZNmmjgwIF6+umnNXv2bPNY77zzjrp3767nn39ejRo10rRp09SyZUvNnz/fmokAAADIg3zfZa9Hjx7q0aNHlusywtaN5s+frzZt2ujkyZOqVauWGbZ++OEHtW7dWpI0b9489ezZU7NmzVJgYKBN2HJzc1OTJk0UExOj2bNnm4WrG8OWJE2bNk1RUVGaP3++Fi5cmN9hAQAAWCo+Pl5OTk7y9vaWJEVHR8vb29vMR5IUGhoqZ2dn7dy5U3379lV0dLQ6deokNzc3s01YWJjeeOMNXbx4UVWqVFF0dLTGjRtnc6ywsDCbs9oBAADsrdivIZXfsJXRJquwdejQIV28eNFsExoaanOssLAwRUdHZ9uX5ORkJSQk2DwAAACsdvXqVb344ot6+OGH5enpKUmKjY1V9erVbdqVK1dOPj4+io2NNdv4+fnZtMl4nlubjPVZISMBAACr5fsMqfwoTNgKDg62aXNj2KpSpUqBwtaMGTM0ZcqUQo8LAFA2Hdn9nmXHqtv6iXy1HzJkiJYuXSrp77+rzZo108MPP6whQ4bI2bnk3sdk//79mjRpkvbs2aMTJ07o7bff1pgxY+zdrQJLTU3Vgw8+KMMw9O6779q7O5LISACAwrEyI0nkpBu9//77+uijj8zLF7Vq1Uqvvfaa2rRpY+ee5a7YZt0Rw9aECRMUHx9vPk6dOmXvLgEAUGS6d++uM2fO6Pjx49q4caO6dOmiZ555Rvfee6/S0tLs3b0CS0pKUp06dfT666/L39/f3t0plIx8dOLECUVFRZkf2EmSv7+/zp07Z9M+LS1NFy5cMMft7++vs2fP2rTJeJ5bm5zmjowEACjtSmtO2rp1qx5++GF9/fXXio6OVs2aNdWtWzf98ccf9u5aroqlIOWoYcvd3V2enp42DwAASgt3d3f5+/vrlltuUcuWLfXSSy/p888/18aNG7VkyRKzXVxcnIYPHy5fX195enrq7rvv1k8//WSzry+++EJ33HGHPDw8VK1aNZsLdV+8eFGPPfaYqlSpogoVKqhHjx46fPiwpOs3P/H09NSqVats9rdmzRpVrFhRly5dUkpKikaNGqWAgAB5eHgoKChIM2bMyHZcd9xxh958800NHDhQ7u7uRTBT9pGRjw4fPqyvvvpKVatWtVkfEhKiuLg47dmzx1y2ZcsWpaenq23btmabbdu2KTU11WwTFRWlBg0aqEqVKmabzZs32+w7KipKISEh2faNjAQAKO1Ka05atmyZnnrqKbVo0UINGzbUBx98oPT09ExZwBEVeUHKkcMWAABlzd13363mzZvrs88+M5cNGDBA586d08aNG7Vnzx61bNlSXbt21YULFyRJ69evV9++fdWzZ0/t3btXmzdvtjnte8iQIdq9e7fWrl2r6OhoGYahnj17KjU1VRUrVtTAgQO1ePFim34sXrxY/fv3V+XKlTV37lytXbtWn3zyiQ4dOqRly5apdu3alsxHcUpMTFRMTIxiYmIkSceOHVNMTIxOnjyp1NRU9e/fX7t379ayZct07do1xcbGKjY2VikpKZKkRo0aqXv37hoxYoR27dql7777TqNGjdLAgQMVGBgoSXrkkUfk5uamYcOGaf/+/Vq5cqXeeecdm4uYP/PMM4qMjNRbb72lX3/9VZMnT9bu3bs1atQoy+cEAABHVhpzUlJSklJTU+Xj41O4ybFAvq8hlZiYqN9++818nhG2fHx8FBAQoP79++vHH3/UunXrzLAlST4+PnJzc7MJWwsXLlRqamqWYWvKlCkaNmyYXnzxRf3yyy9655139Pbbb5vHfeaZZ3TXXXfprbfeUq9evbRixQrt3r1bixYtKuycAABQqjRs2FA///yzJGn79u3atWuXzp07Z55tNGvWLK1Zs0arVq1SeHi4Xn31VQ0cONDmmkLNmzeXJB0+fFhr167Vd999p/bt20u6/slczZo1tWbNGg0YMEDDhw9X+/btdebMGQUEBOjcuXPasGGDvvrqK0nSyZMnVb9+fXXo0EFOTk4KCgqycjqKze7du9WlSxfzeUaRaPDgwZo8ebLWrl0rSWrRooXNdl9//bU6d+4s6fpcjho1Sl27dpWzs7P69eunuXPnmm29vLy0adMmjRw5Uq1atVK1atU0adIk8y7EktS+fXstX75cEydO1EsvvaT69etrzZo1uu2224pp5AAAlFylLSe9+OKLCgwMzHQTOEeU74IUYQsAgJLFMAw5OTlJkn766SclJiZmOoP5ypUrOnLkiCQpJiZGI0aMyHJfBw8eVLly5cyzmiWpatWqatCggQ4ePChJatOmjZo0aaKlS5dq/Pjx+ve//62goCB16tRJ0vVPDu+55x41aNBA3bt317333qtu3boV+bit1rlzZxmGke36nNZl8PHx0fLly3Ns06xZM3377bc5thkwYIAGDBiQ6/EAACjrSlNOev3117VixQpt3bpVHh4e+ZsIO8h3QYqwBQBAyXLw4EHz7rWJiYkKCAjQ1q1bM7Xz9vaWJJUvX77Qxxw+fLgWLFig8ePHa/HixRo6dKgZ9lq2bKljx45p48aN+uqrr/Tggw8qNDQ00/UUAAAAiltpyUmzZs3S66+/rq+++krNmjUrdB+tUHLvbQgAAHK1ZcsW7du3T/369ZN0PeTExsaqXLlyqlevns2jWrVqkq5/KJTdhTAbNWqktLQ07dy501z2119/6dChQ2rcuLG57P/+7/904sQJzZ07VwcOHNDgwYNt9uPp6amHHnpI77//vlauXKn//ve/5rUZAAAArFBactLMmTM1bdo0RUZGqnXr1gWeD6vl+wwpAADgmJKTkxUbG6tr167p7NmzioyM1IwZM3TvvffqsccekySFhoYqJCREffr00cyZM3Xrrbfq9OnT5gU6W7durYiICHXt2lV169bVwIEDlZaWpg0bNujFF19U/fr1df/992vEiBF67733VLlyZY0fP1633HKL7r//frMvVapU0QMPPKDnn39e3bp1U40aNcx1s2fPVkBAgG6//XY5Ozvr008/lb+/v/nJ481SUlJ04MAB899//PGHYmJiVKlSJdWrV6/4JhQAAJQapTUnvfHGG5o0aZKWL1+u2rVrm9fxrlSpkipVqlR8E1oEOEMKAIBSIjIyUgEBAapdu7a6d++ur7/+WnPnztXnn38uFxcXSZKTk5M2bNigTp06aejQobr11ls1cOBAnThxQn5+fpKufz3/008/1dq1a9WiRQvdfffd2rVrl3mcxYsXq1WrVrr33nsVEhIiwzC0YcMGubq62vRn2LBhSklJ0eOPP26zvHLlypo5c6Zat26tO+64Q8ePH9eGDRvk7Jx1LDl9+rRuv/123X777Tpz5oxmzZql22+/XcOHDy/K6QMAAKVYac1J7777rlJSUtS/f38FBASYj1mzZhXl9BULJyMvF30qpRISEuTl5aX4+Hh5enrauzu4QWrk9kzLXLt3sENPAJQ1V69e1bFjxxQcHFwiLgbpyD7++GONHTtWp0+flpubm6XHzul15O9/7pgjx0VGAmAvZKSiZa+c5EgZia/sAQCAIpWUlKQzZ87o9ddf1xNPPGF5MQoAAMBRkZP+xlf2AABAkZo5c6YaNmwof39/TZgwwd7dAQAAcBjkpL9RkAIAAEVq8uTJSk1N1ebNmx3+YpoAAABWIif9jYIUAAAAAAAALEVBCgAAAAAAAJaiIAUAQBbS09Pt3QUUAq8fAADFg7+xJZsjvX7cZQ8AgBu4ubnJ2dlZp0+flq+vr9zc3OTk5GTvbiGPDMNQSkqKzp8/L2dn5zJ95xoAAIoSGalkc8SMREEKAIAbODs7Kzg4WGfOnNHp06ft3R0UUIUKFVSrVi05O3MyOAAARYGMVDo4UkaiIAUAwE3c3NxUq1YtpaWl6dq1a/buDvLJxcVF5cqV41NbAACKGBmpZHO0jERBCgCALDg5OcnV1VWurq727goASJKO7H5P6XEnJUm1vXvYuTcAyioyEoqK/c/RAgAAAAAAQJnCGVJweMfjNkqSnHfvV93WT9i5NwAAAAAAoLA4QwoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsFQ5e3cAAAAAQPFKjdyeaZlr9w526AkAANdxhhQAAAAAAAAsRUEKAAAAAAAAluIreyjVOD0dAAAAAADHwxlSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYKt8FqW3btql3794KDAyUk5OT1qxZY7PeMAxNmjRJAQEBKl++vEJDQ3X48GGbNhcuXNCgQYPk6ekpb29vDRs2TImJiTZtfv75Z3Xs2FEeHh6qWbOmZs6cmakvn376qRo2bCgPDw81bdpUGzZsyO9wAAAAigQZCQAAIO/yXZC6fPmymjdvrgULFmS5fubMmZo7d64WLlyonTt3qmLFigoLC9PVq1fNNoMGDdL+/fsVFRWldevWadu2bQoPDzfXJyQkqFu3bgoKCtKePXv05ptvavLkyVq0aJHZZseOHXr44Yc1bNgw7d27V3369FGfPn30yy+/5HdIAAAAhUZGAgAAyDsnwzCMAm/s5KTVq1erT58+kq5/8hcYGKhnn31Wzz33nCQpPj5efn5+WrJkiQYOHKiDBw+qcePG+uGHH9S6dWtJUmRkpHr27Knff/9dgYGBevfdd/Xyyy8rNjZWbm5ukqTx48drzZo1+vXXXyVJDz30kC5fvqx169aZ/WnXrp1atGihhQsX5qn/CQkJ8vLyUnx8vDw9PQs6DSgGqZHbzX8fj9soSXKuV0t1Wz9R4P1kcO3eoXCdAwCUaFb8/ScjoTgc2f2e0n87KUmq7d3DXJ6XbEMmAgDkxuq//0V6Daljx44pNjZWoaGh5jIvLy+1bdtW0dHRkqTo6Gh5e3ubQUuSQkND5ezsrJ07d5ptOnXqZAYtSQoLC9OhQ4d08eJFs82Nx8lok3EcAAAAR+HoGSk5OVkJCQk2DwAAgOJUpAWp2NhYSZKfn5/Ncj8/P3NdbGysqlevbrO+XLly8vHxsWmT1T5uPEZ2bTLWZ4WwBQAA7MHRM9KMGTPk5eVlPmrWrJnfIQIAAORLmbrLHmELAAAgswkTJig+Pt58nDp1yt5dAgAApVyRFqT8/f0lSWfPnrVZfvbsWXOdv7+/zp07Z7M+LS1NFy5csGmT1T5uPEZ2bTLWZ4WwBQAA7MHRM5K7u7s8PT1tHgAAAMWpSAtSwcHB8vf31+bNm81lCQkJ2rlzp0JCQiRJISEhiouL0549e8w2W7ZsUXp6utq2bWu22bZtm1JTU802UVFRatCggapUqWK2ufE4GW0yjpMVwhYAALAHR89IAAAAVst3QSoxMVExMTGKiYmRdP0inTExMTp58qScnJw0ZswYTZ8+XWvXrtW+ffv02GOPKTAw0LzLTKNGjdS9e3eNGDFCu3bt0nfffadRo0Zp4MCBCgwMlCQ98sgjcnNz07Bhw7R//36tXLlS77zzjsaNG2f245lnnlFkZKTeeust/frrr5o8ebJ2796tUaNGFX5WAAAA8omMBAAAkHfl8rvB7t271aVLF/N5RgAaPHiwlixZohdeeEGXL19WeHi44uLi1KFDB0VGRsrDw8PcZtmyZRo1apS6du0qZ2dn9evXT3PnzjXXe3l5adOmTRo5cqRatWqlatWqadKkSQoPDzfbtG/fXsuXL9fEiRP10ksvqX79+lqzZo1uu+22Ak0EAABAYZCRAAAA8s7JMAzD3p2wl4SEBHl5eSk+Pp6v7zmY1Mjt5r+Px22UJDnXq6W6rZ8o8H4yuHbvULjOAQBKNP7+5445ckxHdr+n9N9OSpJqe/cwl+cl25CJAAC5sfrvf5m6yx4AAAAAAADsj4IUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEuVs3cHACscj9to/ru+OtixJwAAAPZDJgIAOArOkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAASxV5QeratWt65ZVXFBwcrPLly6tu3bqaNm2aDMMw2xiGoUmTJikgIEDly5dXaGioDh8+bLOfCxcuaNCgQfL09JS3t7eGDRumxMREmzY///yzOnbsKA8PD9WsWVMzZ84s6uEAAAAUCTISAADA34q8IPXGG2/o3Xff1fz583Xw4EG98cYbmjlzpubNm2e2mTlzpubOnauFCxdq586dqlixosLCwnT16lWzzaBBg7R//35FRUVp3bp12rZtm8LDw831CQkJ6tatm4KCgrRnzx69+eabmjx5shYtWlTUQwIAACg0MhIAAMDfyhX1Dnfs2KH7779fvXr1kiTVrl1b//nPf7Rr1y5J1z/5mzNnjiZOnKj7779fkvTRRx/Jz89Pa9as0cCBA3Xw4EFFRkbqhx9+UOvWrSVJ8+bNU8+ePTVr1iwFBgZq2bJlSklJ0Ycffig3Nzc1adJEMTExmj17tk0oAwAAcARkJAAAgL8V+RlS7du31+bNm/W///1PkvTTTz9p+/bt6tGjhyTp2LFjio2NVWhoqLmNl5eX2rZtq+joaElSdHS0vL29zaAlSaGhoXJ2dtbOnTvNNp06dZKbm5vZJiwsTIcOHdLFixeLelgAAACF4sgZKTk5WQkJCTYPAACA4lTkZ0iNHz9eCQkJatiwoVxcXHTt2jW9+uqrGjRokCQpNjZWkuTn52eznZ+fn7kuNjZW1atXt+1ouXLy8fGxaRMcHJxpHxnrqlSpkqlvycnJSk5ONp8TtgAAgFUcOSPNmDFDU6ZMKYJRAgAA5E2RnyH1ySefaNmyZVq+fLl+/PFHLV26VLNmzdLSpUuL+lD5NmPGDHl5eZmPmjVr2rtLAACgjHDkjDRhwgTFx8ebj1OnTtm7SwAAoJQr8jOknn/+eY0fP14DBw6UJDVt2lQnTpzQjBkzNHjwYPn7+0uSzp49q4CAAHO7s2fPqkWLFpIkf39/nTt3zma/aWlpunDhgrm9v7+/zp49a9Mm43lGm5tNmDBB48aNM58nJCRQlAIAAJZw5Izk7u4ud3f3wg8SAAAgj4r8DKmkpCQ5O9vu1sXFRenp6ZKk4OBg+fv7a/Pmzeb6hIQE7dy5UyEhIZKkkJAQxcXFac+ePWabLVu2KD09XW3btjXbbNu2TampqWabqKgoNWjQIMtT0aXrYcvT09PmAQAAYAVHzkgAAABWK/KCVO/evfXqq69q/fr1On78uFavXq3Zs2erb9++kiQnJyeNGTNG06dP19q1a7Vv3z499thjCgwMVJ8+fSRJjRo1Uvfu3TVixAjt2rVL3333nUaNGqWBAwcqMDBQkvTII4/Izc1Nw4YN0/79+7Vy5Uq98847NmdAAQAAOAoyEgAAwN+K/Ct78+bN0yuvvKKnnnpK586dU2BgoJ544glNmjTJbPPCCy/o8uXLCg8PV1xcnDp06KDIyEh5eHiYbZYtW6ZRo0apa9eucnZ2Vr9+/TR37lxzvZeXlzZt2qSRI0eqVatWqlatmiZNmsTtjAEAgEMiIwEAAPzNyTAMw96dsJeEhAR5eXkpPj6er+85mNTI7ea/j8dtlCQ516uluq2fKNB+MvYhSfUHvloEPQQAlFT8/c8dc+SYjux+T+m/nZQk1fbuYS537d4h123JRACA3Fj997/Iv7IHAAAAAAAA5KTIv7IH3OzGs50y5OWTPAAAAAAAUDpRkAIAAACK2c0f0PHhHACgrOMrewAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUuXs3QEAAACgLDket1HOu/dLkuq2fsLOvQEAwD4oSKFYHdn9ntLjTkqSanv3sHNvAAAAAACAI+ArewAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAW+eOPP/R///d/qlq1qsqXL6+mTZtq9+7d5nrDMDRp0iQFBASofPnyCg0N1eHDh232ceHCBQ0aNEienp7y9vbWsGHDlJiYaNPm559/VseOHeXh4aGaNWtq5syZlowPAAAgr4qlIEXYAgAAsHXx4kXdeeedcnV11caNG3XgwAG99dZbqlKlitlm5syZmjt3rhYuXKidO3eqYsWKCgsL09WrV802gwYN0v79+xUVFaV169Zp27ZtCg8PN9cnJCSoW7duCgoK0p49e/Tmm29q8uTJWrRokaXjBQAAyEm5ot5hRtjq0qWLNm7cKF9fXx0+fDjLsLV06VIFBwfrlVdeUVhYmA4cOCAPDw9J18PWmTNnFBUVpdTUVA0dOlTh4eFavny5pL/DVmhoqBYuXKh9+/bp8ccfl7e3t00oAwAAcARvvPGGatasqcWLF5vLgoODzX8bhqE5c+Zo4sSJuv/++yVJH330kfz8/LRmzRoNHDhQBw8eVGRkpH744Qe1bt1akjRv3jz17NlTs2bNUmBgoJYtW6aUlBR9+OGHcnNzU5MmTRQTE6PZs2eTkQAAgMMo8jOkbgxbbdq0UXBwsLp166a6detKyhy2mjVrpo8++kinT5/WmjVrJMkMWx988IHatm2rDh06aN68eVqxYoVOnz4tSTZhq0mTJho4cKCefvppzZ49u6iHBAAAUGhr165V69atNWDAAFWvXl2333673n//fXP9sWPHFBsbq9DQUHOZl5eX2rZtq+joaElSdHS0vL29zWKUJIWGhsrZ2Vk7d+4023Tq1Elubm5mm7CwMB06dEgXL14s7mGiDEiN3G7zAACgIIq8IOXIYSs5OVkJCQk2DwAAACscPXpU7777rurXr68vv/xSTz75pJ5++mktXbpUkhQbGytJ8vPzs9nOz8/PXBcbG6vq1avbrC9Xrpx8fHxs2mS1jxuPcTMyEgAAsFqRF6QcOWzNmDFDXl5e5qNmzZqFHC3Kips/CeTTQABAfqWnp6tly5Z67bXXdPvttys8PFwjRozQwoUL7d01MhIAALBckRekHDlsTZgwQfHx8ebj1KlT9u4SAAAoIwICAtS4cWObZY0aNdLJkyclSf7+/pKks2fP2rQ5e/asuc7f31/nzp2zWZ+WlqYLFy7YtMlqHzce42ZkJAAAYLUiL0g5cthyd3eXp6enzQMAAMAKd955pw4dOmSz7H//+5+CgoIkXb/Aub+/vzZv3myuT0hI0M6dOxUSEiJJCgkJUVxcnPbs2WO22bJli9LT09W2bVuzzbZt25Sammq2iYqKUoMGDWxuMnMjMhIAALBakRekHDlsAQAA2MvYsWP1/fff67XXXtNvv/2m5cuXa9GiRRo5cqQkycnJSWPGjNH06dO1du1a7du3T4899pgCAwPVp08fSdc/5OvevbtGjBihXbt26bvvvtOoUaM0cOBABQYGSpIeeeQRubm5adiwYdq/f79Wrlypd955R+PGjbPX0AEAADIp8oIUYQsAACCzO+64Q6tXr9Z//vMf3XbbbZo2bZrmzJmjQYMGmW1eeOEFjR49WuHh4brjjjuUmJioyMhIeXh4mG2WLVumhg0bqmvXrurZs6c6dOigRYsWmeu9vLy0adMmHTt2TK1atdKzzz6rSZMmKTw83NLxAgAA5KRcUe8wI2xNmDBBU6dOVXBwcJZh6/LlywoPD1dcXJw6dOiQZdgaNWqUunbtKmdnZ/Xr109z584112eErZEjR6pVq1aqVq0aYQsAADi0e++9V/fee2+2652cnDR16lRNnTo12zY+Pj5avnx5jsdp1qyZvv322wL3EwAAoLgVeUFKImwBAAAAAAAge0X+lT0AAAAAAAAgJxSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALFXO3h0ASorjcRvNf9f27mHHngAAAFjvyO73JEnpcSfJQgCAQuMMKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUsVekHr99dfl5OSkMWPGmMuuXr2qkSNHqmrVqqpUqZL69euns2fP2mx38uRJ9erVSxUqVFD16tX1/PPPKy0tzabN1q1b1bJlS7m7u6tevXpasmRJcQ8HAACgSJCRAABAWVasBakffvhB7733npo1a2azfOzYsfriiy/06aef6ptvvtHp06f1wAMPmOuvXbumXr16KSUlRTt27NDSpUu1ZMkSTZo0yWxz7Ngx9erVS126dFFMTIzGjBmj4cOH68svvyzOIQEAABQaGQkAAJR1xVaQSkxM1KBBg/T++++rSpUq5vL4+Hj961//0uzZs3X33XerVatWWrx4sXbs2KHvv/9ekrRp0yYdOHBA//73v9WiRQv16NFD06ZN04IFC5SSkiJJWrhwoYKDg/XWW2+pUaNGGjVqlPr376+33367uIYEAABQaGQkAACAYixIjRw5Ur169VJoaKjN8j179ig1NdVmecOGDVWrVi1FR0dLkqKjo9W0aVP5+fmZbcLCwpSQkKD9+/ebbW7ed1hYmLkPAAAAR0RGAgAAkMoVx05XrFihH3/8UT/88EOmdbGxsXJzc5O3t7fNcj8/P8XGxpptbgxaGesz1uXUJiEhQVeuXFH58uUzHTs5OVnJycnm84SEhPwPDgAAoIDISAAAANcV+RlSp06d0jPPPKNly5bJw8OjqHdfKDNmzJCXl5f5qFmzpr27BAAAyggyEgAAwN+KvCC1Z88enTt3Ti1btlS5cuVUrlw5ffPNN5o7d67KlSsnPz8/paSkKC4uzma7s2fPyt/fX5Lk7++f6Y4yGc9za+Pp6ZnlJ3+SNGHCBMXHx5uPU6dOFcWQAQAAckVGAgAA+FuRF6S6du2qffv2KSYmxny0bt1agwYNMv/t6uqqzZs3m9scOnRIJ0+eVEhIiCQpJCRE+/bt07lz58w2UVFR8vT0VOPGjc02N+4jo03GPrLi7u4uT09PmwcAAIAVyEgAAAB/K/JrSFWuXFm33XabzbKKFSuqatWq5vJhw4Zp3Lhx8vHxkaenp0aPHq2QkBC1a9dOktStWzc1btxYjz76qGbOnKnY2FhNnDhRI0eOlLu7uyTpH//4h+bPn68XXnhBjz/+uLZs2aJPPvlE69evL+ohAQAAFBoZCQAA4G/FclHz3Lz99ttydnZWv379lJycrLCwMP3zn/8017u4uGjdunV68sknFRISoooVK2rw4MGaOnWq2SY4OFjr16/X2LFj9c4776hGjRr64IMPFBYWZo8hAQAAFBoZCQAAlBWWFKS2bt1q89zDw0MLFizQggULst0mKChIGzZsyHG/nTt31t69e4uiiwAAAJYjIwEAgLKqyK8hBQAAAAAAAOSEghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpcvbuAFCapUZut3nu2r2DnXoCAAAAAIDjoCAFAAAAoNjxQR0A4EZ8ZQ8AAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFJFXpCaMWOG7rjjDlWuXFnVq1dXnz59dOjQIZs2V69e1ciRI1W1alVVqlRJ/fr109mzZ23anDx5Ur169VKFChVUvXp1Pf/880pLS7Nps3XrVrVs2VLu7u6qV6+elixZUtTDAQAAKBJkJAAAgL8VeUHqm2++0ciRI/X9998rKipKqamp6tatmy5fvmy2GTt2rL744gt9+umn+uabb3T69Gk98MAD5vpr166pV69eSklJ0Y4dO7R06VItWbJEkyZNMtscO3ZMvXr1UpcuXRQTE6MxY8Zo+PDh+vLLL4t6SAAAAIVGRgIAAPhbuaLeYWRkpM3zJUuWqHr16tqzZ486deqk+Ph4/etf/9Ly5ct19913S5IWL16sRo0a6fvvv1e7du20adMmHThwQF999ZX8/PzUokULTZs2TS+++KImT54sNzc3LVy4UMHBwXrrrbckSY0aNdL27dv19ttvKywsrKiHBQAAUChkJAAAgL8V+zWk4uPjJUk+Pj6SpD179ig1NVWhoaFmm4YNG6pWrVqKjo6WJEVHR6tp06by8/Mz24SFhSkhIUH79+8329y4j4w2GfsAAABwZI6UkZKTk5WQkGDzAAAAKE7FWpBKT0/XmDFjdOedd+q2226TJMXGxsrNzU3e3t42bf38/BQbG2u2uTFoZazPWJdTm4SEBF25ciXL/hC2AACAI3C0jDRjxgx5eXmZj5o1axZ6jAAAADkp1oLUyJEj9csvv2jFihXFeZg8I2wBAABH4GgZacKECYqPjzcfp06dsneXAABAKVdsBalRo0Zp3bp1+vrrr1WjRg1zub+/v1JSUhQXF2fT/uzZs/L39zfb3HxHmYznubXx9PRU+fLls+wTYQsAANibI2Ykd3d3eXp62jwAAACKU5EXpAzD0KhRo7R69Wpt2bJFwcHBNutbtWolV1dXbd682Vx26NAhnTx5UiEhIZKkkJAQ7du3T+fOnTPbREVFydPTU40bNzbb3LiPjDYZ+8gKYQsAANiLI2ckAAAAqxX5XfZGjhyp5cuX6/PPP1flypXN6xl4eXmpfPny8vLy0rBhwzRu3Dj5+PjI09NTo0ePVkhIiNq1aydJ6tatmxo3bqxHH31UM2fOVGxsrCZOnKiRI0fK3d1dkvSPf/xD8+fP1wsvvKDHH39cW7Zs0SeffKL169cX9ZAAAAAKjYwEAADwtyI/Q+rdd99VfHy8OnfurICAAPOxcuVKs83bb7+te++9V/369VOnTp3k7++vzz77zFzv4uKidevWycXFRSEhIfq///s/PfbYY5o6darZJjg4WOvXr1dUVJSaN2+ut956Sx988AG3MwYAAA6JjAQAAPC3Ij9DyjCMXNt4eHhowYIFWrBgQbZtgoKCtGHDhhz307lzZ+3duzfffQQAALAaGQkAAOBvRV6QAgAAAICsHI/baP67vjrYsScAAHujIAVY6Mju98x/1239hB17AgAAAACA/RT5NaQAAAAAAACAnFCQAgAAAAAAgKX4yh5QAqRGbrd57tqday4AAAAAAEouClIAAAAASoybP6iT+LAOAEoivrIHAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsVc7eHQAAAABKitTI7TbPXbt3sFNPAAAo2ShIIVs3By6J0AUAAAAAAAqPr+wBAAAAAADAUhSkAAAAAAAAYCm+sodsHY/baP67tncPO/YEAADA/o7sfk/pcSclkY0AACgszpACAAAAAACApShIAQAAAAAAwFJ8ZQ8oQ7hVNQAAKKu4gzQAOBbOkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALFXO3h0AUPLcfNtkbpkMAABKq5tzj0T2AYCiwBlSAAAAAEqU43EbdTxuo727AQAoBM6QAkqAGwNXbe8eduwJAAAAAACFR0EKgCU43R0AAAAAkIGCFAAAAABYgA/oAOBvXEMKAAAAAAAAluIMKQAlCp8sAgCAsob8A6A04gwpAAAAAAAAWIqCFAAAAAAAACzFV/YAlEmc+g4AAMqimzMQ+QeAvZT4M6QWLFig2rVry8PDQ23bttWuXbvs3SXAIR3Z/Z6Ox23U8biN9u5KiZYaud3mYe/9AEB2yEhAZhlZiDyUf2QXAEWtRJ8htXLlSo0bN04LFy5U27ZtNWfOHIWFhenQoUOqXr26vbtnN6mR223+yNb27sEnHwAAlCFkJFs3/+f5eNxGOderJUmq2/oJe3QJKLMKepY6Z7cDpU+JLkjNnj1bI0aM0NChQyVJCxcu1Pr16/Xhhx9q/Pjxdu4dABS/gpx2X1Sn6nPKP+C4yEgAkD0yDOAYSmxBKiUlRXv27NGECRPMZc7OzgoNDVV0dHSW2yQnJys5Odl8Hh8fL0lKSEgo3s5aLPXyZSUm/T3OBNfLci3AGG/eh6R87+dS4hUZ/38/GfvIy35SL//dNqMfTolX8v1aZezHZiwFmIuCzumN45CkSx5XCtSPong9s3ot8rufoz9+KEkyTv+uWl73mMsLMhcFOb4j7Ofm7QpybHvvx+HGEGX7O9v1nhC77gelX8bvX8Mw7NyT4kFGyuzm31eJSclySrz+Nzk/YyzM39Kbs01RHT+vfSiKTHTp//fZSErO9/Ez+lDYTHbzfvLzOhRVnjsZHyWnrbslSXVaPp7nfme1L8naHJXVvgryHi7K4+d1Xw4xBwXMGsWVdQqzLyArlmcko4T6448/DEnGjh07bJY///zzRps2bbLcJiIiwpDEgwcPHjx48OBhnDp1yorIYjkyEg8ePHjw4MGjMA+rMlKJPUOqICZMmKBx48aZz9PT03XhwgVVrVpVTk5OduyZ40pISFDNmjV16tQpeXp62rs7JRpzWXSYy6LDXBYd5rJoFed8GoahS5cuKTAwsEj3W5KRkfKOn/XCYw4Lh/krHOavcJi/wnPkObQ6I5XYglS1atXk4uKis2fP2iw/e/as/P39s9zG3d1d7u7uNsu8vb2Lq4uliqenp8P9sJRUzGXRYS6LDnNZdJjLolVc8+nl5VXk+3QUZCRr8LNeeMxh4TB/hcP8FQ7zV3iOOodWZiRny45UxNzc3NSqVStt3rzZXJaenq7NmzcrJITv0QIAgLKJjAQAAEqCEnuGlCSNGzdOgwcPVuvWrdWmTRvNmTNHly9fNu8oAwAAUBaRkQAAgKMr0QWphx56SOfPn9ekSZMUGxurFi1aKDIyUn5+fvbuWqnh7u6uiIiITKfxI/+Yy6LDXBYd5rLoMJdFi/ksHDJS8eG9WXjMYeEwf4XD/BUO81d4zOHfnAyjlN7zGAAAAAAAAA6pxF5DCgAAAAAAACUTBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIIUsTZ48WU5OTjaPhg0b2rtbJcK2bdvUu3dvBQYGysnJSWvWrLFZbxiGJk2apICAAJUvX16hoaE6fPiwfTrr4HKbyyFDhmR6n3bv3t0+nXVwM2bM0B133KHKlSurevXq6tOnjw4dOmTT5urVqxo5cqSqVq2qSpUqqV+/fjp79qydeuy48jKXnTt3zvTe/Mc//mGnHjuud999V82aNZOnp6c8PT0VEhKijRs3mut5T8KRkI3yhzxUeOSggiP3FB55p3DIOHlDQQrZatKkic6cOWM+tm/fbu8ulQiXL19W8+bNtWDBgizXz5w5U3PnztXChQu1c+dOVaxYUWFhYbp69arFPXV8uc2lJHXv3t3mffqf//zHwh6WHN98841Gjhyp77//XlFRUUpNTVW3bt10+fJls83YsWP1xRdf6NNPP9U333yj06dP64EHHrBjrx1TXuZSkkaMGGHz3pw5c6adeuy4atSooddff1179uzR7t27dffdd+v+++/X/v37JfGehOMhG+UdeajwyEEFR+4pPPJO4ZBx8sgAshAREWE0b97c3t0o8SQZq1evNp+np6cb/v7+xptvvmkui4uLM9zd3Y3//Oc/duhhyXHzXBqGYQwePNi4//777dKfku7cuXOGJOObb74xDOP6+9DV1dX49NNPzTYHDx40JBnR0dH26maJcPNcGoZh3HXXXcYzzzxjv06VYFWqVDE++OAD3pNwOGSjgiMPFR45qHDIPYVH3ik8Mk5mnCGFbB0+fFiBgYGqU6eOBg0apJMnT9q7SyXesWPHFBsbq9DQUHOZl5eX2rZtq+joaDv2rOTaunWrqlevrgYNGujJJ5/UX3/9Ze8ulQjx8fGSJB8fH0nSnj17lJqaavPebNiwoWrVqsV7Mxc3z2WGZcuWqVq1arrttts0YcIEJSUl2aN7Jca1a9e0YsUKXb58WSEhIbwn4ZDIRkWDPFR0yEF5Q+4pPPJOwZFxslfO3h2AY2rbtq2WLFmiBg0a6MyZM5oyZYo6duyoX375RZUrV7Z390qs2NhYSZKfn5/Ncj8/P3Md8q579+564IEHFBwcrCNHjuill15Sjx49FB0dLRcXF3t3z2Glp6drzJgxuvPOO3XbbbdJuv7edHNzk7e3t01b3ps5y2ouJemRRx5RUFCQAgMD9fPPP+vFF1/UoUOH9Nlnn9mxt45p3759CgkJ0dWrV1WpUiWtXr1ajRs3VkxMDO9JOBSyUdEhDxUNclDekHsKj7xTMGSc3FGQQpZ69Ohh/rtZs2Zq27atgoKC9Mknn2jYsGF27Bnwt4EDB5r/btq0qZo1a6a6detq69at6tq1qx175thGjhypX375hWufFIHs5jI8PNz8d9OmTRUQEKCuXbvqyJEjqlu3rtXddGgNGjRQTEyM4uPjtWrVKg0ePFjffPONvbsFZEI2gqMhB+UNuafwyDsFQ8bJHV/ZQ554e3vr1ltv1W+//WbvrpRo/v7+kpTpDgpnz54116Hg6tSpo2rVqvE+zcGoUaO0bt06ff3116pRo4a53N/fXykpKYqLi7Npz3sze9nNZVbatm0rSbw3s+Dm5qZ69eqpVatWmjFjhpo3b6533nmH9yQcHtmo4MhDxYMclBm5p/DIOwVHxskdBSnkSWJioo4cOaKAgAB7d6VECw4Olr+/vzZv3mwuS0hI0M6dOxUSEmLHnpUOv//+u/766y/ep1kwDEOjRo3S6tWrtWXLFgUHB9usb9WqlVxdXW3em4cOHdLJkyd5b94kt7nMSkxMjCTx3syD9PR0JScn856EwyMbFRx5qHiQg/5G7ik88k7RI+Nkxlf2kKXnnntOvXv3VlBQkE6fPq2IiAi5uLjo4YcftnfXHF5iYqLNpwLHjh1TTEyMfHx8VKtWLY0ZM0bTp09X/fr1FRwcrFdeeUWBgYHq06eP/TrtoHKaSx8fH02ZMkX9+vWTv7+/jhw5ohdeeEH16tVTWFiYHXvtmEaOHKnly5fr888/V+XKlc3vp3t5eal8+fLy8vLSsGHDNG7cOPn4+MjT01OjR49WSEiI2rVrZ+feO5bc5vLIkSNavny5evbsqapVq+rnn3/W2LFj1alTJzVr1szOvXcsEyZMUI8ePVSrVi1dunRJy5cv19atW/Xll1/ynoTDIRvlD3mo8MhBBUfuKTzyTuGQcfLIvjf5g6N66KGHjICAAMPNzc245ZZbjIceesj47bff7N2tEuHrr782JGV6DB482DCM67c6fuWVVww/Pz/D3d3d6Nq1q3Ho0CH7dtpB5TSXSUlJRrdu3QxfX1/D1dXVCAoKMkaMGGHExsbau9sOKat5lGQsXrzYbHPlyhXjqaeeMqpUqWJUqFDB6Nu3r3HmzBn7ddpB5TaXJ0+eNDp16mT4+PgY7u7uRr169Yznn3/eiI+Pt2/HHdDjjz9uBAUFGW5uboavr6/RtWtXY9OmTeZ63pNwJGSj/CEPFR45qODIPYVH3ikcMk7eOBmGYRRPqQsAAAAAAADIjGtIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKdiYPHmynJycbJbVrl1bQ4YMKfZjHz9+XE5OTlqyZIm5bMiQIapUqVKxHzuDk5OTJk+ebNnxSrrOnTurc+fORbrPrN6D9lAc7/ub97l161Y5OTlp69at+d5XXue+MMfIj5Lys5Of91dxjOmTTz6Rj4+PEhMTC3T8H374Qe3bt1fFihXl5OSkmJiYPB87NTVVNWvW1D//+c989hqAREYqKb/nHQUZqXD7JCNZj4xERrIHClIoFhs2bHDYX7yO3LeyIikpSZMnTy72AADH9ddff+nNN99Up06d5OvrK29vb7Vr104rV67M1DYjMGb1+P777+3Q+4K5du2aIiIiNHr06AL9JzI1NVUDBgzQhQsX9Pbbb+vjjz9WUFCQzpw5o/Hjx6tLly6qXLlytuHa1dVV48aN06uvvqqrV68WwYgAFIQj5xBH7ltZQUYCGanoMtLmzZv1+OOP69Zbb1WFChVUp04dDR8+XGfOnLHZnoxkP+Xs3QE4vkOHDsnZOX+1yw0bNmjBggX5CjVBQUG6cuWKXF1d89nD/Mmpb1euXFG5cvxYFLekpCRNmTJFkjJ9gjVx4kSNHz/eDr2yVZD3fX516tRJV65ckZubW7633bRpUzH0yDrR0dF6+eWX1bNnT02cOFHlypXTf//7Xw0cOFAHDhww3x83evrpp3XHHXfYLKtXr16+jmvP99cXX3yhQ4cOKTw8vEDbHzlyRCdOnND777+v4cOHm8u3bt2qN954Q/Xr11fTpk0VHR2d7T6GDh2q8ePHa/ny5Xr88ccL1A8AfyMjoaiRka4jI5GR8iO7jPTiiy/qwoULGjBggOrXr6+jR49q/vz5WrdunWJiYuTv72+2JSPZB39VkCt3d/di3X9aWprS09Pl5uYmDw+PYj1Wbux9fCtcvXpVbm5uWQaJy5cvq2LFinbo1d/KlSvnEIG3uN/3kuTs7Fzg91xBApojadKkiQ4fPqygoCBz2VNPPaXQ0FC98cYbeuGFFzK9Fzt27Kj+/fsX6rj2fH8tXrxYd955p2655ZYCbX/u3DlJkre3t83yVq1a6a+//pKPj49WrVqlAQMGZLsPb29vdevWTUuWLCFsAUWAjFS6kJHyhoxUvMhI+ZddRpo9e7Y6dOhg8zPdvXt33XXXXZo/f76mT59uLicj2Qdf2SvDtm/frjvuuEMeHh6qW7eu3nvvvSzb3fyd7tTUVE2ZMkX169eXh4eHqlatqg4dOigqKkrS9WsaLFiwQJJsThuV/r4GwqxZszRnzhzVrVtX7u7uOnDgQJbXR8hw9OhRhYWFqWLFigoMDNTUqVNlGIa5PrvvgN+8z5z6lrHs5k8F9+7dqx49esjT01OVKlVS165dM50Cu2TJEjk5Oem7777TuHHj5Ovrq4oVK6pv3746f/581i9ADv744w8NGzZMgYGBcnd3V3BwsJ588kmlpKTYzMmAAQPk4+OjChUqqF27dlq/fr3NfjLmZcWKFZo4caJuueUWVahQQQkJCea1J44cOaKePXuqcuXKGjRokCQpPT1dc+bMUZMmTeTh4SE/Pz898cQTunjxYo79TklJ0aRJk9SqVSt5eXmpYsWK6tixo77++muzzfHjx+Xr6ytJmjJlivkaZMx7Vt9fT0tL07Rp08z3S+3atfXSSy8pOTnZpl3t2rV17733avv27WrTpo08PDxUp04dffTRR/l7AZT5fZ+f19gwDE2fPl01atRQhQoV1KVLF+3fvz/TMW5+344aNUqVKlVSUlJSprYPP/yw/P39de3aNUlZXx/h999/V58+fVSxYkVVr15dY8eOzTRHWY0tw837zMvrWVDBwcE2QUu6/vPXp08fJScn6+jRo1lud+nSJaWlpRX4uFm9v5KTkzV27Fj5+vqqcuXKuu+++/T777/btLly5YoaNmyohg0b6sqVK+byCxcuKCAgQO3btzdfm6xcvXpVkZGRCg0NzbQuL8cfMmSI7rrrLknSgAED5OTkZL5WlStXlo+PT57n4J577tH27dt14cKFPG8DlDVkJDISGSl7ZCQy0o0cOSN16tQpU4G5U6dO8vHx0cGDBzMdj4xkPfuX2GEX+/btU7du3eTr66vJkycrLS1NERER8vPzy3XbyZMna8aMGRo+fLjatGmjhIQE7d69Wz/++KPuuecePfHEEzp9+rSioqL08ccfZ7mPxYsX6+rVqwoPD5e7u7t8fHyUnp6eZdtr166pe/fuateunWbOnKnIyEhFREQoLS1NU6dOzde489K3G+3fv18dO3aUp6enXnjhBbm6uuq9995T586d9c0336ht27Y27UePHq0qVaooIiJCx48f15w5czRq1Kgsv/OdndOnT6tNmzaKi4tTeHi4GjZsqD/++EOrVq1SUlKS3NzcdPbsWbVv315JSUl6+umnVbVqVS1dulT33XefVq1apb59+9rsc9q0aXJzc9Nzzz2n5ORk85OjtLQ0hYWFqUOHDpo1a5YqVKhgztOSJUs0dOhQPf300zp27Jjmz5+vvXv36rvvvsv2KwMJCQn64IMP9PDDD2vEiBG6dOmS/vWvfyksLEy7du1SixYt5Ovrq3fffVdPPvmk+vbtqwceeECS1KxZs2znZPjw4Vq6dKn69++vZ599Vjt37tSMGTN08OBBrV692qbtb7/9pv79+2vYsGEaPHiwPvzwQw0ZMkStWrVSkyZN8vw6ZCcvr/GkSZM0ffp09ezZUz179tSPP/6obt262YTlrDz00ENasGCB1q9fb3OWS1JSkr744gsNGTJELi4uWW575coVde3aVSdPntTTTz+twMBAffzxx9qyZUuBx5qX17OoxcbGSpKqVauWad3QoUOVmJgoFxcXdezYUW+++aZat25d6GMOHz5c//73v/XII4+offv22rJli3r16mXTpnz58lq6dKnuvPNOvfzyy5o9e7YkaeTIkYqPj9eSJUuyfW0kac+ePUpJSVHLli0LdPwnnnhCt9xyi1577TXztPy8/L7OSqtWrWQYhnbs2KF77723QPsASjMyEhlJIiMVBBmJjFQSMlJiYqISExOznEcykh0YKJP69OljeHh4GCdOnDCXHThwwHBxcTFuflsEBQUZgwcPNp83b97c6NWrV477HzlyZKb9GIZhHDt2zJBkeHp6GufOncty3eLFi81lgwcPNiQZo0ePNpelp6cbvXr1Mtzc3Izz588bhmEYX3/9tSHJ+Prrr3PdZ3Z9MwzDkGRERESYz/v06WO4ubkZR44cMZedPn3aqFy5stGpUydz2eLFiw1JRmhoqJGenm4uHzt2rOHi4mLExcVlebysPPbYY4azs7Pxww8/ZFqXse8xY8YYkoxvv/3WXHfp0iUjODjYqF27tnHt2jXDMP6elzp16hhJSUk2+8qY2/Hjx9ss//bbbw1JxrJly2yWR0ZGZlp+1113GXfddZf5PC0tzUhOTrbZ7uLFi4afn5/x+OOPm8vOnz+faa4zRERE2Lw+MTExhiRj+PDhNu2ee+45Q/+PvfsOr6JM/z/+SUIqaQRCioYQOkgPXUCESELTsBRBdgGl6ApKUQQsdEUjoiIoIiuwCivCFxAxRJqKCIIEojRZxFA0BFwwCT1tfn/wy8ghPSTnJOH9uq65Ls7MMzP3PDM55+aeJhnbtm0zxwUHBxuSjO3bt5vjzp07Zzg7OxvPPPNMtnXl5dbjvqD7+Ny5c4aTk5PRo0cPi3bPP/+8Iclimbcet5mZmcZdd91l9OnTxyKWTz/9NNt23dr3b731liHJ+PTTT81xly9fNmrVqpXtb+PWbcttmQXdn4aR/W+nKM6fP29UrVrV6NChg8X47777zujTp4/xr3/9y/jss8+M2bNnG5UrVzZcXFyMffv2FWoduR1fTz75pEW7Rx55JMdtmjx5smFvb29s377dWLVqlSHJeOutt/Jd7+LFiw1JxoEDByzGF2b9WcfLqlWrcl1PVky3fhfeLCEhwZBkvPbaa/nGDdyJyJHIkciR8kaORI5UFnOkLDNnzjQkGVu3bs02jRzJ+rhl7w6UkZGhL7/8UpGRkapWrZo5vn79+goPD893fm9vbx06dEjHjh0rcgx9+vQxL0kuiNGjR5v/trOz0+jRo5WamqotW7YUOYb8ZGRkaNOmTYqMjFSNGjXM8QEBAXrkkUe0Y8cOpaSkWMwzcuRIi0tdO3TooIyMDJ08ebJA68zMzNS6devUq1evHM9qZC07OjparVq1Uvv27c1p7u7uGjlypE6cOKHDhw9bzDdkyBC5urrmuM5//vOfFp9XrVolLy8vPfDAA/rf//5nDqGhoXJ3d8/zUmQHBwfzzGJmZqYuXLig9PR0tWjRQvv27StQH9wqOjpakjR+/HiL8c8884wkZbsEv0GDBurQoYP52dfXV3Xr1s318ubCym8fb9myRampqXrqqacs2o0dOzbfZdvZ2alfv36Kjo62eOXtypUrddddd1ns71tFR0crICDA4vkBbm5uRX44pFQy+zM3mZmZGjRokJKSkvTOO+9YTGvXrp1Wr16txx57TA8++KAmTZqk77//XnZ2dpo8efJtrTfr+Hr66actxue2v6ZNm6Z77rlHQ4YM0ZNPPqn77rsv27w5OX/+vCSpUqVKt7X+4pAVw//+978SWwdQVpEjFQw5EjlSTsiRyJFKe460fft2TZ8+Xf3791fnzp2zTSdHsj4KUnegP/74Q1evXlXt2rWzTatbt26+88+YMUNJSUmqU6eOGjVqpAkTJuinn34qVAwhISEFbmtvb2+R7EhSnTp1JN24176k/PHHH7py5UqOfVK/fn1lZmbq9OnTFuNvTl6lv77U8nuuwM3rTElJUcOGDfNsd/LkyVzjypp+s9z6u0KFCrr77rstxh07dkzJycmqWrWqfH19LYZLly6ZDw3MzbJly9S4cWPz2Rm+vr764osvlJycnOd8uTl58qTs7e2zvSnE399f3t7e2bb11n0g3dgPBd0H+clvH2fFc+vfl6+vb7Yf2pw8/PDDunr1qtavXy/pxmXF0dHR5j3xuTl58qRq1aqVrU1B/qbzUtz7MzdPPfWUYmJitHjxYjVp0iTf9rVq1dJDDz2kr776Ks/nEuQn6/iqWbOmxfjc+s3JyUkffvih4uPjdfHiRS1ZsiTP/XIr46bnuhRl/cUhK4bCxA3cKciRCoYciRwpJ+RI5EilOUf6+eef1bt3bzVs2FCLFy/OMwZyJOvhGVIotI4dO+r48eP67LPPtGnTJi1evFhvvvmmFi5caPGazbzkdiaqqHL70ridL+GiyO3+6Fu/YK0tt/52dnbO9qC/zMxMVa1aVcuXL89xnrzO2n788ccaOnSoIiMjNWHCBFWtWlUODg6aPXu2jh8/XvQNUMF/GEp6H5T08tu0aaPq1avr008/1SOPPKLPP/9cV69e1cMPP1wsy5fy/nu5eftKcn/ebPr06Xr33Xf16quv6h//+EeB5wsKClJqaqouX74sT0/PYosnP19++aWkGw/hPHbsWIH+81i5cmVJN5LyW/+DY21Z/zHI6dkJAG4POVLuyJHIkW4XORI5UlGdPn1aXbt2lZeXl6Kjo+Xh4ZFjO3Ik66MgdQfy9fWVq6trjpeTHz16tEDL8PHx0aOPPmo+QK9jx46aNm2amWwVZ1U5MzNTv/76q3nGT5L++9//SrrxJgzprzMwSUlJFvPmdBl4QWPz9fWVm5tbjn3y888/y97eXkFBQQVaVkH5+vrK09NTBw8ezLNdcHBwrnFlTS+qmjVrasuWLbr33nsLnRSvXr1aNWrU0Jo1ayz6eerUqRbtCnN8BAcHKzMzU8eOHTPPbkrS2bNnlZSUdFvbWhKy4jl27JjFWes//vijwGcg+/fvr7ffflspKSlauXKlqlevrjZt2uS73oMHD8owDIv+zek4qVSpUra/FenG38vNMRd0f96OBQsWaNq0aRo7dqwmTpxYqHl//fVXubi4yN3dvcjrzzq+jh8/bnHGLbfvwp9++kkzZszQo48+qri4OA0fPlwHDhyQl5dXnuupV6+eJCk+Pl6NGjUq8vqLQ3x8vCRZ/D0BuIEciRwpL+RIt4ccqXDIkYonRzp//ry6du2q69eva+vWrQoICMi1LTmS9XHL3h3IwcFB4eHhWrdunU6dOmWOP3LkiFnVzkvWfb5Z3N3dVatWLYtXp1asWFFS9uSnqObPn2/+2zAMzZ8/X46OjurSpYukG19YDg4O2r59u8V87777brZlFTQ2BwcHde3aVZ999pnFZe9nz57VihUr1L59+2I/42Bvb6/IyEh9/vnn2rt3b7bpWWeYunfvrj179mjXrl3mtMuXL2vRokWqXr26GjRoUOQY+vfvr4yMDM2cOTPbtPT09Dz7LevM0c1nwnbv3m0RpyTzTTUFOT66d+8uSXrrrbcsxme9wePWN23YWlhYmBwdHfXOO+9Y9MOt8efl4Ycf1vXr17Vs2TLFxMSof//++c7TvXt3JSQkaPXq1ea4K1euaNGiRdna1qxZU99//73FG202bNiQ7faKgu7Polq5cqWefvppDRo0yNyfOcnpteA//vij1q9fr65du2Y7g10Y3bp1kyTNmzfPYnxO+ystLU1Dhw5VYGCg3n77bS1dulRnz57VuHHj8l1PaGionJycsv1dF2b9xSU2NlZ2dnZq27Ztia0DKKvIkciR8kKOdHvIkQqOHKl4cqTLly+re/fu+v333xUdHZ3j7dg3I0eyPq6QukNNnz5dMTEx6tChg5588kmlp6frnXfe0T333JPvsw4aNGigTp06KTQ0VD4+Ptq7d69Wr15t8VDN0NBQSTceQhceHi4HBwcNGDCgSLG6uLgoJiZGQ4YMUevWrbVx40Z98cUXev75581Lo728vNSvXz+98847srOzU82aNbVhw4Yc7+UvTGyzZs3S5s2b1b59ez355JOqUKGC3n//fV2/fl1RUVFF2p78vPLKK9q0aZPuu+8+jRw5UvXr19eZM2e0atUq7dixQ97e3po0aZL+85//qFu3bnr66afl4+OjZcuWKT4+Xv/3f/93Wz8+9913nx5//HHNnj1bcXFx6tq1qxwdHXXs2DGtWrVKb7/9tsVDIW/Ws2dPrVmzRr1791aPHj0UHx+vhQsXqkGDBhYPoHR1dVWDBg20cuVK1alTRz4+PmrYsGGOz4Vo0qSJhgwZokWLFikpKUn33Xef9uzZo2XLlikyMlL3339/kbe1JPj6+urZZ5/V7Nmz1bNnT3Xv3l379+/Xxo0bC3z5b/PmzVWrVi298MILun79eoEuRR8xYoTmz5+vwYMHKzY2VgEBAfroo4/MxPZmw4cP1+rVqxUREaH+/fvr+PHj+vjjj7Pdo1/Q/VkUe/bs0eDBg1W5cmV16dIl2+0P7dq1M89EPvzww3J1dVW7du1UtWpVHT58WIsWLZKbm5teffXV24qjadOmGjhwoN59910lJyerXbt22rp1q3755ZdsbWfNmqW4uDht3bpVHh4eaty4saZMmaIXX3xRffv2Nf9jkBMXFxd17dpVW7ZssXgVe2HWn5dZs2ZJuvEadkn66KOPtGPHDknSiy++aNF28+bNuvfee81L5AFYIkciR8oNOdLtIUcqGHKkwq8/N4MGDdKePXv02GOP6ciRIzpy5Ig5zd3dXZGRkRbtyZFswJqv9EPp8s033xihoaGGk5OTUaNGDWPhwoXZXvdpGNlffzpr1iyjVatWhre3t+Hq6mrUq1fPePnll43U1FSzTXp6uvHUU08Zvr6+hp2dnbnMrFcMv/7669niye2VxhUrVjSOHz9udO3a1XBzczP8/PyMqVOnmq/tzfLHH38Yffr0Mdzc3IxKlSoZjz/+uHHw4MFsy8wtNsPI+bWs+/btM8LDww13d3fDzc3NuP/++42dO3datMl63e2tryHO7VXL+Tl58qQxePBgw9fX13B2djZq1KhhjBo1yuL1ssePHzf69u1reHt7Gy4uLkarVq2MDRs25Lj+nF6BmtW3uVm0aJERGhpquLq6Gh4eHkajRo2M5557zkhISDDb3PoK3MzMTOOVV14xgoODDWdnZ6NZs2bGhg0bjCFDhhjBwcEWy9+5c6d5/N3c7zkdg2lpacb06dONkJAQw9HR0QgKCjImT55sXLt2zaJdcHBwjq/bvjXOgsjtlcYF2ccZGRnG9OnTjYCAAMPV1dXo1KmTcfDgwWzLzOv4eOGFFwxJRq1atXKML6dtOnnypPHggw8abm5uRpUqVYwxY8aYr6K+dR1vvPGGcddddxnOzs7Gvffea+zdu/e29mdOfzt5yerP3Iab/2bffvtto1WrVoaPj49RoUIFIyAgwPj73/9uHDt2rMDry5LT8XX16lXj6aefNipXrmxUrFjR6NWrl3H69GmLbYqNjTUqVKhg8Xp1w7jxfdKyZUsjMDDQ+PPPP/Nc95o1aww7Ozvj1KlThV6/YeT995xXX94sKSnJcHJyMhYvXpxPTwF3NnIkciRypNyRI5EjlZUcKTg4ONd+vHU/kSPZhp1h2PhJggAA3AEyMjLUoEED9e/fP8fbPazhrbfeUlRUlI4fP17sD04GAAAoCnKkOxfPkAIAwAocHBw0Y8YMLViw4LYv5y+KtLQ0zZ07Vy+++CKJFgAAKDXIke5cXCEFWMmlS5fy/YL19fXN9ZW5KB6JiYl5Tnd1dc33bSDIXUZGRo4P2LyZu7v7bb31JSfJycm6evVqnm38/f2LdZ0AgOJBjlQ6kCOVLHIkIDsKUoCVTJs2TdOnT8+zTXx8vPmaZpSM/F6nPGTIEC1dutQ6wZRDJ06cUEhISJ5tpk6dqmnTphXreocOHaply5bl2YafOwAonciRSgdypJJFjgRkR0EKsJJff/1Vv/76a55t2rdvLxcXFytFdGfasmVLntMDAwNv65XQd7pr166Zb3fLTY0aNcy3wxSXw4cPKyEhIc82YWFhxbpOAEDxIEcqHciRShY5EpAdBSkAAAAAAABYFQ81BwAAAAAAgFVVsHUAtpSZmamEhAR5eHjke880AAAoHwzD0MWLFxUYGCh7e87N5YQcCQCAO4+1c6Q7uiCVkJCgoKAgW4cBAABs4PTp07r77rttHUapRI4EAMCdy1o50h1dkPLw8JB0o7M9PT1tHA0AALCGlJQUBQUFmXkAsiNHAgDgzmPtHOmOLkhlXYLu6elJsgUAwB2GW9FyR44EAMCdy1o5Eg9OAAAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVd3Rz5ACACAvGRkZSktLs3UYKCRHR0c5ODjYOgwAAMotcqSyqbTlSBSkAAC4hWEYSkxMVFJSkq1DQRF5e3vL39+fB5cDAFCMyJHKvtKUI1GQAgDgFlmJVtWqVeXm5lYqfrBRMIZh6MqVKzp37pwkKSAgwMYRAQBQfpAjlV2lMUeiIAUAwE0yMjLMRKty5cq2DgdF4OrqKkk6d+6cqlatWqouTQcAoKwiRyr7SluOxEPNAQC4SdbzENzc3GwcCW5H1v7j+RYAABQPcqTyoTTlSBSkAADIAZegl23sPwAASga/sWVbadp/FKQAAAAAAABgVRSkAAAAAAAAYFU81BwAgAJKi9lhtXU5RrQvcNv8Lr2eOnWqpk2bdpsRFY2dnZ3Wrl2ryMjIIi9j0aJFWrFihfbt26eLFy/qzz//lLe3d7HFCAAAbo81cySJPCnLhQsXNHXqVG3atEmnTp2Sr6+vIiMjNXPmTHl5eRVvsCWAghQAAGXcmTNnzH+vXLlSU6ZM0dGjR81x7u7uhVpeamqqnJycii2+23XlyhVFREQoIiJCkydPtnU4AACgDCnPeVJCQoISEhI0Z84cNWjQQCdPntQTTzyhhIQErV692tbh5Ytb9lAqpcXsyDYAAHLm7+9vDl5eXrKzszM/X758WYMGDZKfn5/c3d3VsmVLbdmyxWL+6tWra+bMmRo8eLA8PT01cuRISdIHH3ygoKAgubm5qXfv3po7d262K5M+++wzNW/eXC4uLqpRo4amT5+u9PR0c7mS1Lt3b9nZ2Zmff/zxR91///3y8PCQp6enQkNDtXfv3ly3b+zYsZo0aZLatGlTPB0GlCHkQwBwe8pzntSwYUP93//9n3r16qWaNWuqc+fOevnll/X555+b6ynNKEgBAFCOXbp0Sd27d9fWrVu1f/9+RUREqFevXjp16pRFuzlz5qhJkybav3+/XnrpJX333Xd64oknNGbMGMXFxemBBx7Qyy+/bDHPt99+q8GDB2vMmDE6fPiw3n//fS1dutRs98MPP0iSlixZojNnzpifBw0apLvvvls//PCDYmNjNWnSJDk6OlqhNwAAAP5SHvOk5ORkeXp6qkKF0n9DXOmPEAAAFFmTJk3UpEkT8/PMmTO1du1arV+/XqNHjzbHd+7cWc8884z5+YUXXlC3bt307LPPSpLq1KmjnTt3asOGDWab6dOna9KkSRoyZIgkqUaNGpo5c6aee+45TZ06Vb6+vpIkb29v+fv7m/OdOnVKEyZMUL169SRJtWvXLoEtBwAAyFt5y5P+97//aebMmeZVXKUdV0gBAFCOXbp0Sc8++6zq168vb29vubu768iRI9nO/LVo0cLi89GjR9WqVSuLcbd+/vHHHzVjxgy5u7ubw4gRI3TmzBlduXIl15jGjx+v4cOHKywsTK+++qqOHz9+m1sJAABQeOUpT0pJSVGPHj3UoEEDmz2kvbAoSAEAUI49++yzWrt2rV555RV9++23iouLU6NGjZSammrRrmLFioVe9qVLlzR9+nTFxcWZw4EDB3Ts2DG5uLjkOt+0adN06NAh9ejRQ9u2bVODBg20du3aQq8fAADgdpSXPOnixYuKiIiQh4eH1q5dW2YehcAtewAAlGPfffedhg4dqt69e0u6kRydOHEi3/nq1q1rPssgy62fmzdvrqNHj6pWrVq5LsfR0VEZGRnZxtepU0d16tTRuHHjNHDgQC1ZssSMEQAAwBrKQ56UkpKi8PBwOTs7a/369XkWu0obClIAAJRjtWvX1po1a9SrVy/Z2dnppZdeUmZmZr7zPfXUU+rYsaPmzp2rXr16adu2bdq4caPs7OzMNlOmTFHPnj1VrVo19e3bV/b29vrxxx918OBBzZo1S9KNN8hs3bpV9957r5ydneXi4qIJEyaob9++CgkJ0W+//aYffvhBffr0yTWWxMREJSYm6pdffpEkHThwQB4eHqpWrZp8fHxus4cAAMCdqqznSSkpKeratauuXLmijz/+WCkpKUpJSZEk+fr6ysHBoRh6qeRwyx4AAOXY3LlzValSJbVr1069evVSeHi4mjdvnu989957rxYuXKi5c+eqSZMmiomJ0bhx4yzOuoWHh2vDhg3atGmTWrZsqTZt2ujNN99UcHCw2eaNN97Q5s2bFRQUpGbNmsnBwUHnz5/X4MGDVadOHfXv31/dunXT9OnTc41l4cKFatasmUaMGCFJ6tixo5o1a6b169ffRs8AAIA7XVnPk/bt26fdu3frwIEDqlWrlgICAszh9OnTt99BJczOMAzD1kHYSkpKiry8vMzXIqL0SIvZkW2cY0R7G0QC4E5z7do1xcfHKyQkpExd8mwNI0aM0M8//6xvv/3W1qHkK6/9yO9//uij0uPWnIh8CICtkCPlrazkSaUpR+KWPQAAkKM5c+bogQceUMWKFbVx40YtW7ZM7777rq3DAgAAsDnypNtHQQoAAORoz549ioqK0sWLF1WjRg3NmzdPw4cPt3VYAAAANkeedPsoSAEAgBx9+umntg4BAACgVCJPun081BwAAAAAAABWRUEKAAAAAAAAVlXogtT27dvVq1cvBQYGys7OTuvWrTOnpaWlaeLEiWrUqJEqVqyowMBADR48WAkJCRbLuHDhggYNGiRPT095e3tr2LBhunTpkkWbn376SR06dJCLi4uCgoIUFRWVLZZVq1apXr16cnFxUaNGjRQdHV3YzQEAAAAAAICVFbogdfnyZTVp0kQLFizINu3KlSvat2+fXnrpJe3bt09r1qzR0aNH9eCDD1q0GzRokA4dOqTNmzdrw4YN2r59u0aOHGlOT0lJUdeuXRUcHKzY2Fi9/vrrmjZtmhYtWmS22blzpwYOHKhhw4Zp//79ioyMVGRkpA4ePFjYTQIAALhtnLQDAAAouEIXpLp166ZZs2apd+/e2aZ5eXlp8+bN6t+/v+rWras2bdpo/vz5io2N1alTpyRJR44cUUxMjBYvXqzWrVurffv2euedd/TJJ5+YSdny5cuVmpqqDz/8UPfcc48GDBigp59+WnPnzjXX9fbbbysiIkITJkxQ/fr1NXPmTDVv3lzz588val8AAAAUGSftAAAACq7E37KXnJwsOzs7eXt7S5J27dolb29vtWjRwmwTFhYme3t77d69W71799auXbvUsWNHOTk5mW3Cw8P12muv6c8//1SlSpW0a9cujR8/3mJd4eHhFmcjAQAArKVbt27q1q1bjtOyTtrdbP78+WrVqpVOnTqlatWqmSftfvjhBzNPeuedd9S9e3fNmTNHgYGBFiftnJycdM899yguLk5z5841C1c3n7STpJkzZ2rz5s2aP3++Fi5cWII9AAAAUHAl+lDza9euaeLEiRo4cKA8PT0lSYmJiapatapFuwoVKsjHx0eJiYlmGz8/P4s2WZ/za5M1PSfXr19XSkqKxQAAAGALhT1pl9Ump5N2R48e1Z9//mm2CQsLs1hXeHi4du3aVcJbBAAAUHAldoVUWlqa+vfvL8Mw9N5775XUagpl9uzZmj59uq3DAACUUcf3vm+1ddVs8Xih2g8dOlTLli2T9NeJnsaNG2vgwIEaOnSo7O3L7ot1Dx06pClTpig2NlYnT57Um2++qbFjx9o6rNtyOyftQkJCLNrcfNKuUqVKRT5pd/36dfMzJ+0AAIVhzRxJIk+62QcffKB///vf5q35oaGheuWVV9SqVSsbR5a/Eun1rGLUyZMntXnzZjPRkiR/f3+dO3fOon16erouXLggf39/s83Zs2ct2mR9zq9N1vScTJ48WcnJyeZw+vTpom8kAAClTEREhM6cOaMTJ05o48aNuv/++zVmzBj17NlT6enptg6vyK5cuaIaNWro1VdfzfN3vqworSftvLy8zCEoKMjWIQEAUKzKa5709ddfa+DAgfrqq6+0a9cuBQUFqWvXrvr9999tHVq+ir0glZVkHTt2TFu2bFHlypUtprdt21ZJSUmKjY01x23btk2ZmZlq3bq12Wb79u1KS0sz22zevFl169ZVpUqVzDZbt261WPbmzZvVtm3bXGNzdnaWp6enxQAAQHnh7Owsf39/3XXXXWrevLmef/55ffbZZ9q4caOWLl1qtktKStLw4cPl6+srT09Pde7cWT/++KPFsj7//HO1bNlSLi4uqlKlisXLTP78808NHjxYlSpVkpubm7p166Zjx45JuvFgb09PT61evdpieevWrVPFihV18eJFpaamavTo0QoICJCLi4uCg4M1e/bsXLerZcuWev311zVgwAA5OzsXQ0/ZDiftAACwjfKaJy1fvlxPPvmkmjZtqnr16mnx4sXKzMzMVi8pjQpdkLp06ZLi4uIUFxcnSYqPj1dcXJxOnTqltLQ09e3bV3v37tXy5cuVkZGhxMREJSYmKjU1VZJUv359RUREaMSIEdqzZ4++++47jR49WgMGDFBgYKAk6ZFHHpGTk5OGDRumQ4cOaeXKlXr77bctHmI+ZswYxcTE6I033tDPP/+sadOmae/evRo9enQxdAsAAOVD586d1aRJE61Zs8Yc169fP507d04bN25UbGysmjdvri5duujChQuSpC+++EK9e/dW9+7dtX//fm3dutXisu+hQ4dq7969Wr9+vXbt2iXDMNS9e3elpaWpYsWKGjBggJYsWWIRx5IlS9S3b195eHho3rx5Wr9+vT799FMdPXpUy5cvV/Xq1a3SH7bESTsAAEqX8pgnXblyRWlpafLx8bm9zrGCQj9Dau/evbr//vvNz1lFoiFDhmjatGlav369JKlp06YW83311Vfq1KmTpBsVvNGjR6tLly6yt7dXnz59NG/ePLOtl5eXNm3apFGjRik0NFRVqlTRlClTLF573K5dO61YsUIvvviinn/+edWuXVvr1q1Tw4YNC7tJAACUa/Xq1dNPP/0kSdqxY4f27Nmjc+fOmVcbzZkzR+vWrdPq1as1cuRIvfzyyxowYIDFcxebNGkiSTp27JjWr1+v7777Tu3atZN043c9KChI69atU79+/TR8+HC1a9dOZ86cUUBAgM6dO6fo6Ght2bJFknTq1CnVrl1b7du3l52dnYKDg63ZHSXm0qVL+uWXX8zPWSftfHx8FBAQoL59+2rfvn3asGGDedJOknx8fOTk5GRx0m7hwoVKS0vL8aTd9OnTNWzYME2cOFEHDx7U22+/rTfffNNc75gxY3TffffpjTfeUI8ePfTJJ59o7969WrRokXU7BACAMqC85UkTJ05UYGBgtheclEaFLkh16tRJhmHkOj2vaVl8fHy0YsWKPNs0btxY3377bZ5t+vXrp379+uW7PgAA7mSGYcjOzk6S9OOPP+rSpUvZrs65evWqjh8/LkmKi4vTiBEjclzWkSNHVKFCBfOKHUmqXLmy6tatqyNHjkiSWrVqpXvuuUfLli3TpEmT9PHHHys4OFgdO3aUdOPM4QMPPKC6desqIiJCPXv2VNeuXYt9u62Nk3YAAJQ95SlPevXVV/XJJ5/o66+/louLS+E6wgZK7C17AACgdDhy5Ij5ZrZLly4pICBAX3/9dbZ23t7ekiRXV9fbXufw4cO1YMECTZo0SUuWLNGjjz5qJnvNmzdXfHy8Nm7cqC1btqh///4KCwvL9jyFsoaTdgAAlD3lJU+aM2eOXn31VW3ZskWNGze+7Ritoey+2xAAAORr27ZtOnDggPr06SPpRpKTmJioChUqqFatWhZDlSpVJN0oeOT2IMz69esrPT1du3fvNsedP39eR48eVYMGDcxxf//733Xy5EnNmzdPhw8f1pAhQyyW4+npqYcfflgffPCBVq5cqf/7v/8zn80AAABgDeUlT4qKitLMmTMVExOjFi1aFLk/rI0rpAAAKCeuX7+uxMREZWRk6OzZs4qJidHs2bPVs2dPDR48WJIUFhamtm3bKjIyUlFRUapTp44SEhLMB3S2aNFCU6dOVZcuXVSzZk0NGDBA6enpio6O1sSJE1W7dm099NBDGjFihN5//315eHho0qRJuuuuu/TQQw+ZsVSqVEl/+9vfNGHCBHXt2lV33323OW3u3LkKCAhQs2bNZG9vr1WrVsnf398883ir1NRUHT582Pz377//rri4OLm7u6tWrVol16EAAKDcKK950muvvaYpU6ZoxYoVql69uvmMSnd3d7m7u5dchxYDrpACAKCciImJUUBAgKpXr66IiAh99dVXmjdvnj777DM5ODhIkuzs7BQdHa2OHTvq0UcfVZ06dTRgwACdPHlSfn5+km7cerZq1SqtX79eTZs2VefOnbVnzx5zPUuWLFFoaKh69uyptm3byjAMRUdHy9HR0SKeYcOGKTU1VY899pjFeA8PD0VFRalFixZq2bKlTpw4oejoaNnb55yWJCQkqFmzZmrWrJnOnDmjOXPmqFmzZho+fHhxdh8AACjHymue9N577yk1NVV9+/ZVQECAOcyZM6c4u69E2BkFeaBBOZWSkiIvLy8lJyfzeuNSJi1mR7ZxjhHtbRAJgDvNtWvXFB8fr5CQkDLxMMjS7KOPPtK4ceOUkJAgJycnq647r/3I73/+6KPS49aciHwIgK2QIxUvW+VJpSlH4pY9AABQrK5cuaIzZ87o1Vdf1eOPP271YhQAAEBpRZ70F27ZAwAAxSoqKkr16tWTv7+/Jk+ebOtwAAAASg3ypL9QkAIAAMVq2rRpSktL09atW0v9wzQBAACsiTzpLxSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAMhBZmamrUPAbWD/AQBQMviNLdtK0/7jLXsAANzEyclJ9vb2SkhIkK+vr5ycnGRnZ2frsFBAhmEoNTVVf/zxh+zt7e/oN9cAAFCcyJHKttKYI1GQAgDgJvb29goJCdGZM2eUkJBg63BQRG5ubqpWrZrs7bkYHACA4kCOVD6UphyJghQAALdwcnJStWrVlJ6eroyMDFuHg0JycHBQhQoVOGsLAEAxI0cq20pbjkRBCgCAHNjZ2cnR0VGOjo62DgUAAKDUIEdCcaEghVLvRNJGSZL93kOq2eJxG0cDAABgXVm5UHXvbjaOBACA4mP7mwYBAAAAAABwR6EgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACrqmDrAICSlBazI9s4x4j2NogEAAAAAABkoSAFAAAAlHOcpAMAlDbcsgcAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACrKnRBavv27erVq5cCAwNlZ2endevWWUw3DENTpkxRQECAXF1dFRYWpmPHjlm0uXDhggYNGiRPT095e3tr2LBhunTpkkWbn376SR06dJCLi4uCgoIUFRWVLZZVq1apXr16cnFxUaNGjRQdHV3YzQEAAAAAAICVFbogdfnyZTVp0kQLFizIcXpUVJTmzZunhQsXavfu3apYsaLCw8N17do1s82gQYN06NAhbd68WRs2bND27ds1cuRIc3pKSoq6du2q4OBgxcbG6vXXX9e0adO0aNEis83OnTs1cOBADRs2TPv371dkZKQiIyN18ODBwm4SAADAbeOkHQAAQMEVuiDVrVs3zZo1S7179842zTAMvfXWW3rxxRf10EMPqXHjxvr3v/+thIQEMyk7cuSIYmJitHjxYrVu3Vrt27fXO++8o08++UQJCQmSpOXLlys1NVUffvih7rnnHg0YMEBPP/205s6da67r7bffVkREhCZMmKD69etr5syZat68uebPn1/ErgAAACg6TtoBAAAUXLE+Qyo+Pl6JiYkKCwszx3l5eal169batWuXJGnXrl3y9vZWixYtzDZhYWGyt7fX7t27zTYdO3aUk5OT2SY8PFxHjx7Vn3/+aba5eT1ZbbLWAwAAYE2ctAMAACi4Yi1IJSYmSpL8/Pwsxvv5+ZnTEhMTVbVqVYvpFSpUkI+Pj0WbnJZx8zpya5M1PSfXr19XSkqKxQAAAFDSSvtJO3IkAABgbXfUW/Zmz54tLy8vcwgKCrJ1SAAA4A5Q2k/akSMBAABrK9aClL+/vyTp7NmzFuPPnj1rTvP399e5c+cspqenp+vChQsWbXJaxs3ryK1N1vScTJ48WcnJyeZw+vTpwm4iAABAuUOOBAAArK1YC1IhISHy9/fX1q1bzXEpKSnavXu32rZtK0lq27atkpKSFBsba7bZtm2bMjMz1bp1a7PN9u3blZaWZrbZvHmz6tatq0qVKpltbl5PVpus9eTE2dlZnp6eFgMAAEBJK+0n7ciRAACAtRW6IHXp0iXFxcUpLi5O0o1nIsTFxenUqVOys7PT2LFjNWvWLK1fv14HDhzQ4MGDFRgYqMjISElS/fr1FRERoREjRmjPnj367rvvNHr0aA0YMECBgYGSpEceeUROTk4aNmyYDh06pJUrV+rtt9/W+PHjzTjGjBmjmJgYvfHGG/r55581bdo07d27V6NHj779XgEAAChGpf2kHQAAgLUVuiC1d+9eNWvWTM2aNZMkjR8/Xs2aNdOUKVMkSc8995yeeuopjRw5Ui1bttSlS5cUExMjFxcXcxnLly9XvXr11KVLF3Xv3l3t27e3eF2xl5eXNm3apPj4eIWGhuqZZ57RlClTLF573K5dO61YsUKLFi1SkyZNtHr1aq1bt04NGzYscmcAAAAUFSftAAAACs7OMAzD1kHYSkpKiry8vJScnMyl6aVMWswO898nkjZKkuxrVVPNFo8XeTlZHCPa315wAIAyraR+/7/++mvdf//92cYPGTJES5culWEYmjp1qhYtWqSkpCS1b99e7777rurUqWO2vXDhgkaPHq3PP/9c9vb26tOnj+bNmyd3d3ezzU8//aRRo0bphx9+UJUqVfTUU09p4sSJFutctWqVXnzxRZ04cUK1a9dWVFSUunfvXuBtIUcqPdJidpi5UHXvbkXOY8iJAAD5sfbvf4USXwMAAMAdoFOnTsrrPJ+dnZ1mzJihGTNm5NrGx8dHK1asyHM9jRs31rfffptnm379+qlfv355BwwAAGBDxfpQcwAAAAAAACA/FKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUVbB0AYA0nkjaa/66t9jaMBAAAAAAAcIUUAAAAAAAArIorpAAAAIBy7Pje95WZdEqSVN27m42jAQDgBq6QAgAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVVGQAgAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVVGQAgAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVVGQAgAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVVGQAgAAAAAAgFVRkAIAAAAAAIBVUZACAAAAAACAVRV7QSojI0MvvfSSQkJC5Orqqpo1a2rmzJkyDMNsYxiGpkyZooCAALm6uiosLEzHjh2zWM6FCxc0aNAgeXp6ytvbW8OGDdOlS5cs2vz000/q0KGDXFxcFBQUpKioqOLeHAAAgGJBjgQAAPCXYi9Ivfbaa3rvvfc0f/58HTlyRK+99pqioqL0zjvvmG2ioqI0b948LVy4ULt371bFihUVHh6ua9eumW0GDRqkQ4cOafPmzdqwYYO2b9+ukSNHmtNTUlLUtWtXBQcHKzY2Vq+//rqmTZumRYsWFfcmAQAA3DZyJAAAgL9UKO4F7ty5Uw899JB69OghSapevbr+85//aM+ePZJunPl766239OKLL+qhhx6SJP373/+Wn5+f1q1bpwEDBujIkSOKiYnRDz/8oBYtWkiS3nnnHXXv3l1z5sxRYGCgli9frtTUVH344YdycnLSPffco7i4OM2dO9ciKQMAACgNyJEAAAD+UuxXSLVr105bt27Vf//7X0nSjz/+qB07dqhbt26SpPj4eCUmJiosLMycx8vLS61bt9auXbskSbt27ZK3t7eZaElSWFiY7O3ttXv3brNNx44d5eTkZLYJDw/X0aNH9eeff+YY2/Xr15WSkmIxAAAAWENpzpEAAACsrdivkJo0aZJSUlJUr149OTg4KCMjQy+//LIGDRokSUpMTJQk+fn5Wczn5+dnTktMTFTVqlUtA61QQT4+PhZtQkJCsi0ja1qlSpWyxTZ79mxNnz69GLYSAACgcEpzjnT9+nVdv37d/MxJOwAAUNKK/QqpTz/9VMuXL9eKFSu0b98+LVu2THPmzNGyZcuKe1WFNnnyZCUnJ5vD6dOnbR0SAAC4Q5TmHGn27Nny8vIyh6CgIFuHBAAAyrliv0JqwoQJmjRpkgYMGCBJatSokU6ePKnZs2dryJAh8vf3lySdPXtWAQEB5nxnz55V06ZNJUn+/v46d+6cxXLT09N14cIFc35/f3+dPXvWok3W56w2t3J2dpazs/PtbyQAAEAhleYcafLkyRo/frz5OSUlhaIUAAAoUcV+hdSVK1dkb2+5WAcHB2VmZkqSQkJC5O/vr61bt5rTU1JStHv3brVt21aS1LZtWyUlJSk2NtZss23bNmVmZqp169Zmm+3btystLc1ss3nzZtWtWzfHS9EBAABsqTTnSM7OzvL09LQYAAAASlKxF6R69eqll19+WV988YVOnDihtWvXau7cuerdu7ckyc7OTmPHjtWsWbO0fv16HThwQIMHD1ZgYKAiIyMlSfXr11dERIRGjBihPXv26LvvvtPo0aM1YMAABQYGSpIeeeQROTk5adiwYTp06JBWrlypt99+2+LsHgAAQGlBjgQAAPCXYr9l75133tFLL72kJ598UufOnVNgYKAef/xxTZkyxWzz3HPP6fLlyxo5cqSSkpLUvn17xcTEyMXFxWyzfPlyjR49Wl26dJG9vb369OmjefPmmdO9vLy0adMmjRo1SqGhoapSpYqmTJnC64wBAECpRI4EAADwFzvDMAxbB2ErKSkp8vLyUnJyMpemlzJpMTvMf59I2ihJsq9VTTVbPF6k5WQtQ5JqD3i5GCIEAJRV/P7njz4qPdJidph5THXvbnKMaF/oZRzf+74yfzllLiNLUZYFACi/rP37X+y37AEAAAAAAAB5KfZb9oBb3Xy1UxbOyAEAAAAAcOeiIAUAAACUsFtP0HFyDgBwp+OWPQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWFUFWweA8u343veVmXRKklTdu5uNowEAALCdE0kbJZETAQAgcYUUAAAAAAAArIyCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsqkQKUr///rv+/ve/q3LlynJ1dVWjRo20d+9ec7phGJoyZYoCAgLk6uqqsLAwHTt2zGIZFy5c0KBBg+Tp6Slvb28NGzZMly5dsmjz008/qUOHDnJxcVFQUJCioqJKYnMAAACKBTkSAADADcVekPrzzz917733ytHRURs3btThw4f1xhtvqFKlSmabqKgozZs3TwsXLtTu3btVsWJFhYeH69q1a2abQYMG6dChQ9q8ebM2bNig7du3a+TIkeb0lJQUde3aVcHBwYqNjdXrr7+uadOmadGiRcW9SQAAALeNHAkAAOAvFYp7ga+99pqCgoK0ZMkSc1xISIj5b8Mw9NZbb+nFF1/UQw89JEn697//LT8/P61bt04DBgzQkSNHFBMTox9++EEtWrSQJL3zzjvq3r275syZo8DAQC1fvlypqan68MMP5eTkpHvuuUdxcXGaO3euRVIGFIe0mB3ZxjlGtLdBJACAsoocCWURORAAoKQU+xVS69evV4sWLdSvXz9VrVpVzZo10wcffGBOj4+PV2JiosLCwsxxXl5eat26tXbt2iVJ2rVrl7y9vc1ES5LCwsJkb2+v3bt3m206duwoJycns014eLiOHj2qP//8M8fYrl+/rpSUFIsBAADAGsiRAAAA/lLsBalff/1V7733nmrXrq0vv/xS//znP/X0009r2bJlkqTExERJkp+fn8V8fn5+5rTExERVrVrVYnqFChXk4+Nj0SanZdy8jlvNnj1bXl5e5hAUFHSbWwsAAFAw5EgAAAB/KfaCVGZmppo3b65XXnlFzZo108iRIzVixAgtXLiwuFdVaJMnT1ZycrI5nD592tYhAQCAOwQ5EgAAwF+KvSAVEBCgBg0aWIyrX7++Tp06JUny9/eXJJ09e9aizdmzZ81p/v7+OnfunMX09PR0XbhwwaJNTsu4eR23cnZ2lqenp8UAAABgDeRIAAAAfyn2gtS9996ro0ePWoz773//q+DgYEk3Ht7p7++vrVu3mtNTUlK0e/dutW3bVpLUtm1bJSUlKTY21myzbds2ZWZmqnXr1mab7du3Ky0tzWyzefNm1a1b1+JtNQAAAKUBORIAAMBfir0gNW7cOH3//fd65ZVX9Msvv2jFihVatGiRRo0aJUmys7PT2LFjNWvWLK1fv14HDhzQ4MGDFRgYqMjISEk3zhZGRERoxIgR2rNnj7777juNHj1aAwYMUGBgoCTpkUcekZOTk4YNG6ZDhw5p5cqVevvttzV+/Pji3iQAAIDbRo4EAADwlwrFvcCWLVtq7dq1mjx5smbMmKGQkBC99dZbGjRokNnmueee0+XLlzVy5EglJSWpffv2iomJkYuLi9lm+fLlGj16tLp06SJ7e3v16dNH8+bNM6d7eXlp06ZNGjVqlEJDQ1WlShVNmTKF1xkDAIBSiRwJAADgL8VekJKknj17qmfPnrlOt7Oz04wZMzRjxoxc2/j4+GjFihV5rqdx48b69ttvixwnAACANZEjAQAA3FDst+wBAAAAAAAAeaEgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACroiAFAAAAAAAAq6IgBQAAAAAAAKuqYOsAgLLiRNJG89/VvbvZMBIAAAAAAMo2ClIAAAAAsjm+931lJp2SxMk4AEDx45Y9AAAAAAAAWBUFKQAAAAAAAFgVBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFhViRekXn31VdnZ2Wns2LHmuGvXrmnUqFGqXLmy3N3d1adPH509e9ZivlOnTqlHjx5yc3NT1apVNWHCBKWnp1u0+frrr9W8eXM5OzurVq1aWrp0aUlvDgAAAAAAAG5TiRakfvjhB73//vtq3Lixxfhx48bp888/16pVq/TNN98oISFBf/vb38zpGRkZ6tGjh1JTU7Vz504tW7ZMS5cu1ZQpU8w28fHx6tGjh+6//37FxcVp7NixGj58uL788suS3CQAAIBiwUk7AABwJyuxgtSlS5c0aNAgffDBB6pUqZI5Pjk5Wf/61780d+5cde7cWaGhoVqyZIl27typ77//XpK0adMmHT58WB9//LGaNm2qbt26aebMmVqwYIFSU1MlSQsXLlRISIjeeOMN1a9fX6NHj1bfvn315ptvltQmAQAAFAtO2gEAgDtdiRWkRo0apR49eigsLMxifGxsrNLS0izG16tXT9WqVdOuXbskSbt27VKjRo3k5+dntgkPD1dKSooOHTpktrl12eHh4eYyAAAASiNO2gEAAJRQQeqTTz7Rvn37NHv27GzTEhMT5eTkJG9vb4vxfn5+SkxMNNvcXIzKmp41La82KSkpunr1ao5xXb9+XSkpKRYDAACANZXGk3bkSAAAwNqKvSB1+vRpjRkzRsuXL5eLi0txL/62zJ49W15eXuYQFBRk65AAAMAdpLSetCNHAgAA1lbsBanY2FidO3dOzZs3V4UKFVShQgV98803mjdvnipUqCA/Pz+lpqYqKSnJYr6zZ8/K399fkuTv75/tAZ5Zn/Nr4+npKVdX1xxjmzx5spKTk83h9OnTxbHJAAAA+SrNJ+3IkQAAgLUVe0GqS5cuOnDggOLi4syhRYsWGjRokPlvR0dHbd261Zzn6NGjOnXqlNq2bStJatu2rQ4cOKBz586ZbTZv3ixPT081aNDAbHPzMrLaZC0jJ87OzvL09LQYAAAArKE0n7QjRwIAANZWobgX6OHhoYYNG1qMq1ixoiocwWSnAAEAAElEQVRXrmyOHzZsmMaPHy8fHx95enrqqaeeUtu2bdWmTRtJUteuXdWgQQP94x//UFRUlBITE/Xiiy9q1KhRcnZ2liQ98cQTmj9/vp577jk99thj2rZtmz799FN98cUXxb1JAAAAty3rpN3NHn30UdWrV08TJ05UUFCQedKuT58+knI+affyyy/r3Llzqlq1qqScT9pFR0dbrCe/k3YAAADWVuwFqYJ48803ZW9vrz59+uj69esKDw/Xu+++a053cHDQhg0b9M9//lNt27ZVxYoVNWTIEM2YMcNsExISoi+++ELjxo3T22+/rbvvvluLFy9WeHi4LTYJAAAgT5y0AwAA+ItVClJff/21xWcXFxctWLBACxYsyHWe4ODgbGf3btWpUyft37+/OEIEAACwOU7aAQCAO4VNrpACAAAAJ+0AAMCdq9gfag4AAAAAAADkhYIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyqgq0DAMqztJgdFp8dI9rbKBIAAAAAAEoPClIAAAAAitWtJ+UkTswBACxxyx4AAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsioIUAAAAAAAArIqCFAAAAAAAAKyKghQAAAAAAACsqtgLUrNnz1bLli3l4eGhqlWrKjIyUkePHrVoc+3aNY0aNUqVK1eWu7u7+vTpo7Nnz1q0OXXqlHr06CE3NzdVrVpVEyZMUHp6ukWbr7/+Ws2bN5ezs7Nq1aqlpUuXFvfmAAAAFAtyJAAAgL8Ue0Hqm2++0ahRo/T9999r8+bNSktLU9euXXX58mWzzbhx4/T5559r1apV+uabb5SQkKC//e1v5vSMjAz16NFDqamp2rlzp5YtW6alS5dqypQpZpv4+Hj16NFD999/v+Li4jR27FgNHz5cX375ZXFvEgAAwG0jRwIAAPhLheJeYExMjMXnpUuXqmrVqoqNjVXHjh2VnJysf/3rX1qxYoU6d+4sSVqyZInq16+v77//Xm3atNGmTZt0+PBhbdmyRX5+fmratKlmzpypiRMnatq0aXJyctLChQsVEhKiN954Q5JUv3597dixQ2+++abCw8OLe7MAAABuCzkSAADAX0r8GVLJycmSJB8fH0lSbGys0tLSFBYWZrapV6+eqlWrpl27dkmSdu3apUaNGsnPz89sEx4erpSUFB06dMhsc/MystpkLSMn169fV0pKisUAAABgC6UpRwIAALC2Ei1IZWZmauzYsbr33nvVsGFDSVJiYqKcnJzk7e1t0dbPz0+JiYlmm5sTrazpWdPyapOSkqKrV6/mGM/s2bPl5eVlDkFBQbe9jQAAAIVV2nIkTtoBAABrK9GC1KhRo3Tw4EF98sknJbmaAps8ebKSk5PN4fTp07YOCQAA3IFKW47ESTsAAGBtJVaQGj16tDZs2KCvvvpKd999tzne399fqampSkpKsmh/9uxZ+fv7m21ufaNM1uf82nh6esrV1TXHmJydneXp6WkxAAAAWFNpzJE4aQcAAKyt2AtShmFo9OjRWrt2rbZt26aQkBCL6aGhoXJ0dNTWrVvNcUePHtWpU6fUtm1bSVLbtm114MABnTt3zmyzefNmeXp6qkGDBmabm5eR1SZrGQAAAKVJac6ROGkHAACsrdjfsjdq1CitWLFCn332mTw8PMznGXh5ecnV1VVeXl4aNmyYxo8fLx8fH3l6euqpp55S27Zt1aZNG0lS165d1aBBA/3jH/9QVFSUEhMT9eKLL2rUqFFydnaWJD3xxBOaP3++nnvuOT322GPatm2bPv30U33xxRfFvUkAAAC3jRwJAADgL8V+hdR7772n5ORkderUSQEBAeawcuVKs82bb76pnj17qk+fPurYsaP8/f21Zs0ac7qDg4M2bNggBwcHtW3bVn//+981ePBgzZgxw2wTEhKiL774Qps3b1aTJk30xhtvaPHixbzOGAAAlErkSAAAAH8p9iukDMPIt42Li4sWLFigBQsW5NomODhY0dHReS6nU6dO2r9/f6FjBAAAsDZyJAAAgL+U6Fv2AAAAAAAAgFsV+xVSAHJ3fO/75r9rtnjchpEAAACUvBNJG81/11Z7G0YCAChtuEIKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWxTOkgDIgLWaHxWfHCJ7BAAAAAAAou7hCCgAAAAAAAFbFFVIAAAAASi2uFAeA8okrpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUUpAAAAAAAAGBVFKQAAAAAAABgVRSkAAAAAAAAYFUVbB0ASq9bX7Er8ZpdAABwZ7s1PyI3AgCgaLhCCgAAAAAAAFZFQQoAAAAAAABWxS17yNWJpI3mv6t7d7NhJAAAALZ1fO/7kqTMpFPkRQAAFAOukAIAAAAAAIBVUZACAAAAAACAVXHLHnAH4c1AAADgTkHeAwClG1dIAQAAAAAAwKooSAEAAAAAAMCqKEgBAAAAAADAqihIAQAAAAAAwKooSAEAAAAAAMCqKEgBAAAAAADAqirYOgAAZQ+vUQYAAOUVeQ4AWAcFKQAAAACl1omkjea/q3t3s2EkAIDiREEKKANIxAAAAAAA5QnPkAIAAAAAAIBVcYUUAKu49XkMEs9kAAAA5Re5DwDkjSukAAAAAAAAYFUUpAAAAAAAAGBV3LIHoEzh8ncAAFCekesAuFNQkAIAAACAMo5CFoCyhoIUgDsSSRsAAAAA2E6Zf4bUggULVL16dbm4uKh169bas2ePrUMCSqXje9/XiaSNOpG00dahlGlpMTssBgAorciRcKfLynvIfQrv1nyHnAdASSjTV0itXLlS48eP18KFC9W6dWu99dZbCg8P19GjR1W1alVbh2czaTE7LH54q3t348oPAADuIORIlm7+z3RWjmRfq5pqtnjcViEB5RJXoAMojDJdkJo7d65GjBihRx99VJK0cOFCffHFF/rwww81adIkG0cHALm7NWErarJWlOUU17oBlF7kSADKkpLKi25nWQBKXpktSKWmpio2NlaTJ082x9nb2yssLEy7du3KcZ7r16/r+vXr5ufk5GRJUkpKSskGa2Vply/r0pW/tjPF8bIci7CNty5DUqGXc/HSVRn/fzlZyyjIctIu/9U2Kw67S1cLva+ylmOxLUXoi6L26c3bIUkXXa4WKY7i2J857YvCLufXfR9KkoyE31TN6wFzfFH6oijrLw3LuXW+oqzb1ssptnVvtvyudXygbblYDsq/rO9fwzBsHEnJIEfKrjjyiouXbvyGG1euFyqnuTmGSzf9Dpf0fDcraj5W1Pmy4pZuPwfLtoxC9EFR57v5eDmVvFl2X+9VjeaPFTDanJeTpSRzpuLKkWwRQ0nlRQVe/+bs340FySOKOh9QWlk9RzLKqN9//92QZOzcudNi/IQJE4xWrVrlOM/UqVMNSQwMDAwMDAwMxunTp62RslgdORIDAwMDAwPD7QzWypHK7BVSRTF58mSNHz/e/JyZmakLFy6ocuXKsrOzs2FkpVdKSoqCgoJ0+vRpeXp62jqcMo2+LD70ZfGhL4sPfVm8SrI/DcPQxYsXFRgYWKzLLcvIkQqGv/PCo8+Khn4rPPqsaOi3oimv/WbtHKnMFqSqVKkiBwcHnT171mL82bNn5e/vn+M8zs7OcnZ2thjn7e1dUiGWK56enuXqD82W6MviQ18WH/qy+NCXxauk+tPLy6vYl1lakCOVPP7OC48+Kxr6rfDos6Kh34qmPPabNXMke6utqZg5OTkpNDRUW7duNcdlZmZq69atatuW+3YBAMCdiRwJAACUBWX2CilJGj9+vIYMGaIWLVqoVatWeuutt3T58mXzjTIAAAB3InIkAABQ2pXpgtTDDz+sP/74Q1OmTFFiYqKaNm2qmJgY+fn52Tq0csPZ2VlTp07Ndhk/Co++LD70ZfGhL4sPfVm86M/bQ45UMjguC48+Kxr6rfDos6Kh34qGfisedoZRTt95DAAAAAAAgFKpzD5DCgAAAAAAAGUTBSkAAAAAAABYFQUpAAAAAAAAWBUFKQAAAAAAAFgVBSnkaNq0abKzs7MY6tWrZ+uwyoTt27erV69eCgwMlJ2dndatW2cx3TAMTZkyRQEBAXJ1dVVYWJiOHTtmm2BLufz6cujQodmO04iICNsEW8rNnj1bLVu2lIeHh6pWrarIyEgdPXrUos21a9c0atQoVa5cWe7u7urTp4/Onj1ro4hLr4L0ZadOnbIdm0888YSNIi693nvvPTVu3Fienp7y9PRU27ZttXHjRnM6xyRKA3KigiH/KRpyncIjpyk8cpeiIU8peRSkkKt77rlHZ86cMYcdO3bYOqQy4fLly2rSpIkWLFiQ4/SoqCjNmzdPCxcu1O7du1WxYkWFh4fr2rVrVo609MuvLyUpIiLC4jj9z3/+Y8UIy45vvvlGo0aN0vfff6/NmzcrLS1NXbt21eXLl80248aN0+eff65Vq1bpm2++UUJCgv72t7/ZMOrSqSB9KUkjRoywODajoqJsFHHpdffdd+vVV19VbGys9u7dq86dO+uhhx7SoUOHJHFMovQgJ8of+U/RkOsUHjlN4ZG7FA15ihUYQA6mTp1qNGnSxNZhlHmSjLVr15qfMzMzDX9/f+P11183xyUlJRnOzs7Gf/7zHxtEWHbc2peGYRhDhgwxHnroIZvEU9adO3fOkGR88803hmHcOA4dHR2NVatWmW2OHDliSDJ27dplqzDLhFv70jAM47777jPGjBlju6DKsEqVKhmLFy/mmESpQU5UeOQ/RUOuUzTkNIVH7lJ05CnFiyukkKtjx44pMDBQNWrU0KBBg3Tq1Clbh1TmxcfHKzExUWFhYeY4Ly8vtW7dWrt27bJhZGXX119/rapVq6pu3br65z//qfPnz9s6pDIhOTlZkuTj4yNJio2NVVpamsWxWa9ePVWrVo1jMx+39mWW5cuXq0qVKmrYsKEmT56sK1eu2CK8MiMjI0OffPKJLl++rLZt23JMolQhJ7o95D+3h1wnb+Q0hUfuUnjkKSWjgq0DQOnUunVrLV26VHXr1tWZM2c0ffp0dejQQQcPHpSHh4etwyuzEhMTJUl+fn4W4/38/MxpKLiIiAj97W9/U0hIiI4fP67nn39e3bp1065du+Tg4GDr8EqtzMxMjR07Vvfee68aNmwo6cax6eTkJG9vb4u2HJt5y6kvJemRRx5RcHCwAgMD9dNPP2nixIk6evSo1qxZY8NoS6cDBw6obdu2unbtmtzd3bV27Vo1aNBAcXFxHJMoFciJbh/5T9GR6+SNnKbwyF0KhzylZFGQQo66detm/rtx48Zq3bq1goOD9emnn2rYsGE2jAz4y4ABA8x/N2rUSI0bN1bNmjX19ddfq0uXLjaMrHQbNWqUDh48yDNQikFufTly5Ejz340aNVJAQIC6dOmi48ePq2bNmtYOs1SrW7eu4uLilJycrNWrV2vIkCH65ptvbB0WYCIngi2R6+SNnKbwyF0KhzylZHHLHgrE29tbderU0S+//GLrUMo0f39/Scr29oWzZ8+a01B0NWrUUJUqVThO8zB69Ght2LBBX331le6++25zvL+/v1JTU5WUlGTRnmMzd7n1ZU5at24tSRybOXByclKtWrUUGhqq2bNnq0mTJnr77bc5JlFqkRMVHvlP8SHX+Qs5TeGRuxQeeUrJoiCFArl06ZKOHz+ugIAAW4dSpoWEhMjf319bt241x6WkpGj37t1q27atDSMrH3777TedP3+e4zQHhmFo9OjRWrt2rbZt26aQkBCL6aGhoXJ0dLQ4No8ePapTp05xbN4iv77MSVxcnCRxbBZAZmamrl+/zjGJUoucqPDIf4oPuQ45TVGQuxQf8pTixS17yNGzzz6rXr16KTg4WAkJCZo6daocHBw0cOBAW4dW6l26dMniTEJ8fLzi4uLk4+OjatWqaezYsZo1a5Zq166tkJAQvfTSSwoMDFRkZKTtgi6l8upLHx8fTZ8+XX369JG/v7+OHz+u5557TrVq1VJ4eLgNoy6dRo0apRUrVuizzz6Th4eHeW+7l5eXXF1d5eXlpWHDhmn8+PHy8fGRp6ennnrqKbVt21Zt2rSxcfSlS359efz4ca1YsULdu3dX5cqV9dNPP2ncuHHq2LGjGjdubOPoS5fJkyerW7duqlatmi5evKgVK1bo66+/1pdffskxiVKDnKhgyH+Khlyn8MhpCo/cpWjIU6zAti/5Q2n18MMPGwEBAYaTk5Nx1113GQ8//LDxyy+/2DqsMuGrr74yJGUbhgwZYhjGjVcfv/TSS4afn5/h7OxsdOnSxTh69Khtgy6l8urLK1euGF27djV8fX0NR0dHIzg42BgxYoSRmJho67BLpZz6UZKxZMkSs83Vq1eNJ5980qhUqZLh5uZm9O7d2zhz5oztgi6l8uvLU6dOGR07djR8fHwMZ2dno1atWsaECROM5ORk2wZeCj322GNGcHCw4eTkZPj6+hpdunQxNm3aZE7nmERpQE5UMOQ/RUOuU3jkNIVH7lI05Cklz84wDKNkSl0AAAAAAABAdjxDCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWRUEKFqZNmyY7OzuLcdWrV9fQoUNLfN0nTpyQnZ2dli5dao4bOnSo3N3dS3zdWezs7DRt2jSrra+s69Spkzp16lSsy8zpGLSFkjjub13m119/LTs7O3399deFXlZB+/521lEYZeVvZ+jQoapevXq+7XL6PioOUVFRqlevnjIzM4u0/piYGDVt2lQuLi6ys7NTUlJSgdd9/vx5VaxYUdHR0UWIHAA5Utn4ni8tyJFub5nkSNZHjkSOZAsUpFAioqOjS+0Xb2mO7U5x5coVTZs2rcQTAJRu1atXl52dXbbhiSeeyNY2KSlJI0eOlK+vrypWrKj7779f+/bts0HURZeSkqLXXntNEydOlL194X9+z58/r/79+8vV1VULFizQRx99pIoVK+ro0aMaN26c2rVrZyZhJ06cyDZ/5cqVNXz4cL300kvFsDUAiqo05yGlObY7BTkSJHKkwsotR1qzZo0efvhh1ahRQ25ubqpbt66eeeaZbMUqciTbqWDrAFD6HT16tNBfDNHR0VqwYEGhkprg4GBdvXpVjo6OhYywcPKK7erVq6pQgT+LknblyhVNnz5dkrKdwXrxxRc1adIkG0RlqSjHfWF17NhRV69elZOTU6Hn3bRpUwlEZH1NmzbVM888YzGuTp06Fp8zMzPVo0cP/fjjj5owYYKqVKmid999V506dVJsbKxq165d4PV98MEH+Z55Kykffvih0tPTNXDgwCLN/8MPP+jixYuaOXOmwsLCzPG7du3SvHnz1KBBA9WvX19xcXG5LuOJJ57QvHnztG3bNnXu3LlIcQD4CzkSihs50g3kSORIhZFbjjRy5EgFBgbq73//u6pVq6YDBw5o/vz5io6O1r59++Tq6mq2JUeyDX5VkC9nZ+cSXX56eroyMzPl5OQkFxeXEl1Xfmy9fmu4du2anJycckwkLl++rIoVK9ogqr9UqFChVCS8JX3cS5K9vX2Rj7miJGil0V133aW///3vebZZvXq1du7cqVWrVqlv376SpP79+6tOnTqaOnWqVqxYUeD1lfR/5vKyZMkSPfjgg0Xe5+fOnZMkeXt7W4x/8MEHlZSUJA8PD82ZMyfPglT9+vXVsGFDLV26lGQLKAbkSOULOVLBkCNZBzlSweWWI61evTpbYTc0NFRDhgzR8uXLNXz4cHM8OZJtcMveHWzHjh1q2bKlXFxcVLNmTb3//vs5trv1nu60tDRNnz5dtWvXlouLiypXrqz27dtr8+bNkm7cf7xgwQJJsrjEVPrrnt85c+borbfeUs2aNeXs7KzDhw/neT/yr7/+qvDwcFWsWFGBgYGaMWOGDMMwp+d2D/ity8wrtqxxt54V3L9/v7p16yZPT0+5u7urS5cu+v777y3aLF26VHZ2dvruu+80fvx485LZ3r17648//sh5B+Th999/17BhwxQYGChnZ2eFhITon//8p1JTUy36pF+/fvLx8ZGbm5vatGmjL774wmI5Wf3yySef6MUXX9Rdd90lNzc3paSkmM+eOH78uLp37y4PDw8NGjRI0o2zLW+99Zbuueceubi4yM/PT48//rj+/PPPPONOTU3VlClTFBoaKi8vL1WsWFEdOnTQV199ZbY5ceKEfH19JUnTp08390FWv+f0fIT09HTNnDnTPF6qV6+u559/XtevX7doV716dfXs2VM7duxQq1at5OLioho1aujf//534XaAsh/3hdnHhmFo1qxZuvvuu+Xm5qb7779fhw4dyraOW4/b0aNHy93dXVeuXMnWduDAgfL391dGRoaknJ+P8NtvvykyMlIVK1ZU1apVNW7cuGx9lNO2Zbl1mQXZn8UhNTVVly9fznX66tWr5efnp7/97W/mOF9fX/Xv31+fffZZjtuYm5yej5CUlKShQ4fKy8tL3t7eGjJkSLZLuc+dOydfX1916tTJ4rvnl19+UcWKFfXwww/nud74+Hj99NNPFmftCrP+Tp06aciQIZKkli1bys7OztyHPj4+8vDwKFgHSHrggQf0+eefW2wHAEvkSORI5Ei5I0ciR7pZac6RcnqWWO/evSVJR44cyTaNHMn6bF9ih00cOHBAXbt2la+vr6ZNm6b09HRNnTpVfn5++c47bdo0zZ49W8OHD1erVq2UkpKivXv3at++fXrggQf0+OOPKyEhQZs3b9ZHH32U4zKWLFmia9euaeTIkXJ2dpaPj0+ul4hmZGQoIiJCbdq0UVRUlGJiYjR16lSlp6drxowZhdrugsR2s0OHDqlDhw7y9PTUc889J0dHR73//vvq1KmTvvnmG7Vu3dqi/VNPPaVKlSpp6tSpOnHihN566y2NHj1aK1euLHCMCQkJatWqlXk/eL169fT7779r9erVunLlipycnHT27Fm1a9dOV65c0dNPP63KlStr2bJlevDBB7V69WrzizbLzJkz5eTkpGeffVbXr183zxylp6crPDxc7du315w5c+Tm5mb209KlS/Xoo4/q6aefVnx8vObPn6/9+/fru+++y/UMSkpKihYvXqyBAwdqxIgRunjxov71r38pPDxce/bsUdOmTeXr66v33ntP//znP9W7d2/zB7Rx48a59snw4cO1bNky9e3bV88884x2796t2bNn68iRI1q7dq1F219++UV9+/bVsGHDNGTIEH344YcaOnSoQkNDdc899xR4P+SmIPt4ypQpmjVrlrp3767u3btr37596tq1q0WynJOHH35YCxYs0BdffKF+/fqZ469cuaLPP/9cQ4cOlYODQ47zXr16VV26dNGpU6f09NNPKzAwUB999JG2bdtW5G0tyP68Xdu2bZObm5syMjIUHByscePGacyYMRZt9u/fr+bNm2c7Y92qVSstWrRI//3vf9WoUaMird8wDD300EPasWOHnnjiCdWvX19r1641E5ssVatW1Xvvvad+/frpnXfe0dNPP63MzEwNHTpUHh4eevfdd/Ncz86dOyVJzZs3L9L6X3jhBdWtW1eLFi3SjBkzFBISopo1axZpm0NDQ/Xmm2/q0KFDatiwYZGWAZRn5EjkSBI5UlGQI5EjlYUcKTExUZJUpUqVbNPIkWzAwB0pMjLScHFxMU6ePGmOO3z4sOHg4GDcelgEBwcbQ4YMMT83adLE6NGjR57LHzVqVLblGIZhxMfHG5IMT09P49y5czlOW7JkiTluyJAhhiTjqaeeMsdlZmYaPXr0MJycnIw//vjDMAzD+OqrrwxJxldffZXvMnOLzTAMQ5IxdepU83NkZKTh5ORkHD9+3ByXkJBgeHh4GB07djTHLVmyxJBkhIWFGZmZmeb4cePGGQ4ODkZSUlKO68vJ4MGDDXt7e+OHH37INi1r2WPHjjUkGd9++6057eLFi0ZISIhRvXp1IyMjwzCMv/qlRo0axpUrVyyWldW3kyZNshj/7bffGpKM5cuXW4yPiYnJNv6+++4z7rvvPvNzenq6cf36dYv5/vzzT8PPz8947LHHzHF//PFHtr7OMnXqVIv9ExcXZ0gyhg8fbtHu2WefNSQZ27ZtM8cFBwcbkozt27eb486dO2c4OzsbzzzzTLZ15eXW476g+/jcuXOGk5OT0aNHD4t2zz//vCHJYpm3HreZmZnGXXfdZfTp08cilk8//TTbdt3a92+99ZYhyfj000/NcZcvXzZq1aqV7W/j1m3LbZkF3Z+Gkf1vpyB69eplvPbaa8a6deuMf/3rX0aHDh0MScZzzz1n0a5ixYrZ1mcYhvHFF18YkoyYmJgCr3PIkCFGcHCw+XndunWGJCMqKsocl56ebsZy83eHYRjGwIEDDTc3N+O///2v8frrrxuSjHXr1uW73hdffNGQZFy8eNFifGHWn3UM5vTdkCUrpvj4+Fzb7Ny505BkrFy5Mt+4gTsRORI5EjlS3siRyJHKYo6UZdiwYYaDg4Px3//+N9s0ciTr45a9O1BGRoa+/PJLRUZGqlq1aub4+vXrKzw8PN/5vb29dejQIR07dqzIMfTp08e8JLkgRo8ebf7bzs5Oo0ePVmpqqrZs2VLkGPKTkZGhTZs2KTIyUjVq1DDHBwQE6JFHHtGOHTuUkpJiMc/IkSMtLqXu0KGDMjIydPLkyQKtMzMzU+vWrVOvXr3UokWLbNOzlh0dHa1WrVqpffv25jR3d3eNHDlSJ06c0OHDhy3mGzJkiMVD+272z3/+0+LzqlWr5OXlpQceeED/+9//zCE0NFTu7u55Xors4OBgnlnMzMzUhQsXlJ6erhYtWhT5bR9Zr18dP368xfishzzeegl+gwYN1KFDB/Ozr6+v6tatq19//bVI679Vfvt4y5YtSk1N1VNPPWXRbuzYsfku287OTv369VN0dLQuXbpkjl+5cqXuuusui/19q+joaAUEBJjPD5AkNzc3jRw5sjCbZ6Ek9ufN1q9fr+eee04PPfSQHnvsMX3zzTcKDw/X3Llz9dtvv5ntrl69muPzKrKeM3D16tUixxAdHa0KFSpY/B04ODjoqaeeyrH9/Pnz5eXlpb59++qll17SP/7xDz300EP5ruf8+fOqUKFCtle0F3b9xaFSpUqSpP/9738ltg6grCJHKhhyJHKknJAjkSOV9hxpxYoV+te//qVnnnkmxwe+kyNZHwWpO9Aff/yhq1ev5vhHWLdu3XznnzFjhpKSklSnTh01atRIEyZM0E8//VSoGEJCQgrc1t7e3iLZkf56w0ROrzYvLn/88YeuXLmSY5/Ur19fmZmZOn36tMX4m5NX6a8vtfyeK3DzOlNSUvK9RPTkyZO5xpU1/Wa59XeFChV09913W4w7duyYkpOTVbVqVfn6+loMly5dMh8amJtly5apcePG5rMzfH199cUXXyg5OTnP+XJz8uRJ2dvbq1atWhbj/f395e3tnW1bb90H0o39UNB9kJ/89nFWPLf+ffn6+ppt8/Lwww/r6tWrWr9+vSTp0qVLio6OVr9+/bI9N+JmJ0+eVK1atbK1KcjfdF6Ke3/mxc7OTuPGjVN6errFs05cXV1zfAbCtWvXzOlFdfLkSQUEBGRLgnLrNx8fH82bN08//fSTvLy8NG/evCKvuyjrLw7G/38uQl7HE3CnIkcqGHIkcqSckCORI5XmHOnbb7/VsGHDFB4erpdffjnHNuRI1sczpFBoHTt21PHjx/XZZ59p06ZNWrx4sd58800tXLjQ4k0FebmdL8ec5PalkfVwQ2vJ7d71rC83W8mtv52dnbPdc56ZmamqVatq+fLlOc6T11nbjz/+WEOHDlVkZKQmTJigqlWrysHBQbNnz9bx48eLvgEq+A9DSe+Dkl5+mzZtVL16dX366ad65JFH9Pnnn+vq1av5PhCyMPL6e7l5+0pyf+YmKChIknThwgVzXEBAgM6cOZOtbda4wMDAEoklN19++aWkGwn2b7/9lu2NLjmpXLmy0tPTdfHixUI9gLwkZP3HIKdnJwC4PeRIuSNHIke6XeRI5EhF9eOPP+rBBx9Uw4YNtXr16lzfVkmOZH1cIXUH8vX1laura46Xkx89erRAy/Dx8dGjjz6q//znPzp9+rQaN25s8eaV4qwqZ2ZmZruU+L///a8kmW+CyDqrcutbF3K6DLygsfn6+srNzS3HPvn5559lb29v/jAUF19fX3l6eurgwYN5tgsODs41rqzpRVWzZk2dP39e9957r8LCwrINTZo0yXXe1atXq0aNGlqzZo3+8Y9/KDw8XGFhYeZZmiyFOT6Cg4OVmZmZ7Xg9e/askpKSbmtbS0JWPLfG+8cffxT4DGT//v0VExOjlJQUrVy5UtWrV1ebNm3yXe/x48ezJX05HSeVKlXK9rciZf97Kej+LE5Zf+s3J/VNmzbVvn37sj3Ud/fu3XJzczOvBiiK4OBgnTlzxuLyfyn378KYmBgtXrxYzz33nHx9fTVkyBClp6fnu5569epJuvEmmdtZf3HIiiHragEAfyFHIkfKCznS7SFHuj3kSHmvPzfHjx9XRESEqlatqujo6GxXXN2MHMn6KEjdgRwcHBQeHq5169bp1KlT5vgjR46YVe28nD9/3uKzu7u7atWqZXG5aMWKFSVlT36Kav78+ea/DcPQ/Pnz5ejoqC5duki68YXl4OCg7du3W8yX01sdChqbg4ODunbtqs8++8zisvezZ89qxYoVat++vTw9PYu4RTmzt7dXZGSkPv/8c+3duzfb9Kwf0u7du2vPnj3atWuXOe3y5ctatGiRqlevrgYNGhQ5hv79+ysjI0MzZ87MNi09PT3Pfss6c3TzD/7u3bst4pRkvqmmIMdH9+7dJUlvvfWWxfi5c+dKknr06JHvMqwpLCxMjo6Oeueddyz64db48/Lwww/r+vXrWrZsmWJiYtS/f/985+nevbsSEhK0evVqc9yVK1e0aNGibG1r1qyp77//3uKNNhs2bMh2e0VB92dRXLhwIdvZ+bS0NL366qtycnLS/fffb47v27evzp49qzVr1pjj/ve//2nVqlXq1atXjs9OKKju3bsrPT1d7733njkuIyND77zzTra2SUlJ5puzXnnlFS1evFj79u3TK6+8ku962rZtK0nZ/q4Ls/7iEhsbKy8vr2J5oxJQ3pAjkSPlhRzp9pAjFQw5UuHXn5vExER17dpV9vb2+vLLL/N9Ph85kvVxy94davr06YqJiVGHDh305JNPKj09Xe+8847uueeefJ910KBBA3Xq1EmhoaHy8fHR3r17tXr1aouHaoaGhkqSnn76aYWHh8vBwUEDBgwoUqwuLi6KiYnRkCFD1Lp1a23cuFFffPGFnn/+efNLxcvLy3zVqJ2dnWrWrKkNGzbkeC9/YWKbNWuWNm/erPbt2+vJJ59UhQoV9P777+v69euKiooq0vbk55VXXtGmTZt03333aeTIkapfv77OnDmjVatWaceOHfL29takSZP0n//8R926ddPTTz8tHx8fLVu2TPHx8fq///u/bJeYF8Z9992nxx9/XLNnz1ZcXJy6du0qR0dHHTt2TKtWrdLbb79t8VDIm/Xs2VNr1qxR79691aNHD8XHx2vhwoVq0KCBxdkNV1dXNWjQQCtXrlSdOnXk4+Ojhg0b5vhciCZNmmjIkCFatGiRkpKSdN9992nPnj1atmyZIiMjLX6USwNfX189++yzmj17tnr27Knu3btr//792rhxY4Ev/23evLlq1aqlF154QdevXy/QpegjRozQ/PnzNXjwYMXGxiogIEAfffSRmdjebPjw4Vq9erUiIiLUv39/HT9+XB9//HG2V+QWdH8Wxfr16zVr1iz17dtXISEhunDhglasWKGDBw/qlVdekb+/v9m2b9++atOmjR599FEdPnxYVapU0bvvvquMjAxNnz79tuLo1auX7r33Xk2aNEknTpxQgwYNtGbNmhyf/zBmzBidP39eW7ZskYODgyIiIjR8+HDNmjVLDz30UJ5nxmvUqKGGDRtqy5Yteuyxx4q0/twkJyebydl3330n6cZ/UL29veXt7W3x3SxJmzdvVq9evXg+ApALciRypNyQI90ecqSCIUcq/PpzExERoV9//VXPPfecduzYoR07dpjT/Pz89MADD1i0J0eyAeu+1A+lyTfffGOEhoYaTk5ORo0aNYyFCxdme52sYWR//emsWbOMVq1aGd7e3oarq6tRr1494+WXXzZSU1PNNunp6cZTTz1l+Pr6GnZ2duYys14x/Prrr2eLJ7dXGlesWNE4fvy40bVrV8PNzc3w8/Mzpk6dar62N8sff/xh9OnTx3BzczMqVapkPP7448bBgwezLTO32Awj59ey7tu3zwgPDzfc3d0NNzc34/777zd27txp0Sa3V43m9qrl/Jw8edIYPHiw4evrazg7Oxs1atQwRo0aZfF62ePHjxt9+/Y1vL29DRcXF6NVq1bGhg0bclz/qlWrsq0jq29zs2jRIiM0NNRwdXU1PDw8jEaNGhnPPfeckZCQYLa59RW4mZmZxiuvvGIEBwcbzs7ORrNmzYwNGzZke42sYdx4rWrW8Xdzv+d0DKalpRnTp083QkJCDEdHRyMoKMiYPHmyce3aNYt2wcHBOb5u+9Y4CyK3VxoXZB9nZGQY06dPNwICAgxXV1ejU6dOxsGDB7MtM6/j44UXXjAkGbVq1coxvpy26eTJk8aDDz5ouLm5GVWqVDHGjBljvor61nW88cYbxl133WU4Ozsb9957r7F3797b2p85/e3kZe/evUavXr2Mu+66y3BycjLc3d2N9u3bW7yS+WYXLlwwhg0bZlSuXNlwc3Mz7rvvvgK92vdWOcV+/vx54x//+Ifh6elpeHl5Gf/4xz+M/fv3W3x3fPbZZ4Yk44033rCYNyUlxQgODjaaNGli8R2Yk7lz5xru7u7ZXi9ekPUbRu7HYNZ3Z07Drdt65MgRQ5KxZcuW/DsLuIORI5EjkSPljhyJHKms5Ei55UeSsh0j5Ei2YWcYNn6SIAAAd4Dk5GTVqFFDUVFRGjZsmE1iGDt2rLZv367Y2FjO/gEAgFKBHOnORUEKAAAree2117RkyRIdPnz4tm4bKYrz588rODhYn376qfncEQAAgNKAHOnOREEKsJJLly7le0+5r69vrq/MRfFITEzMc7qrq6u8vLysFE35k5GRoT/++CPPNu7u7nm+4aQoLly4YPEA0ls5ODjk+yBLAIBtkCOVDuRIJYscCciOghRgJdOmTcv34YLx8fHma5pRMvK7BHfIkCFaunSpdYIph06cOKGQkJA820ydOtXiFejFoVOnTvrmm29ynR4cHGzxJigAQOlBjlQ6kCOVLHIkIDvesgdYyeDBg9W+ffs829z81gyUjM2bN+c5PTAw0EqRlE/+/v759nGNGjWKfb1vvPGG/vzzz1ynu7q6Fvs6AQDFgxypdCBHKlnkSEB2XCEFAAAAAAAAq7Lu08IAAAAAAABwx7ujb9nLzMxUQkKCPDw8eLUjAAB3CMMwdPHiRQUGBlr9TT5lBTkSAAB3HmvnSHd0QSohIUFBQUG2DgMAANjA6dOndffdd9s6jFKJHAkAgDuXtXKkO7og5eHhIelGZ3t6eto4GgAAYA0pKSkKCgoy8wBkR44EAMCdx9o50h1dkMq6BN3T05NkCwCAOwy3ouWOHAkAgDuXtXIkHpwAAAAAAAAAq6IgBQAAAAAAAKuiIAUAAAAAAACruqOfIQUAQF4yMjKUlpZm6zBQSI6OjnJwcLB1GAAAlFvkSGVTacuRKEgBAHALwzCUmJiopKQkW4eCIvL29pa/vz8PLgcAoBiRI5V9pSlHoiAFAMAtshKtqlWrys3NrVT8YKNgDMPQlStXdO7cOUlSQECAjSMCAKD8IEcqu0pjjkRBCgCAm2RkZJiJVuXKlW0dDorA1dVVknTu3DlVrVq1VF2aDgBAWUWOVPaVthyJh5oDAHCTrOchuLm52TgS3I6s/cfzLQAAKB7kSOVDacqRKEgBAJADLkEv29h/AACUDH5jy7bStP8oSAEAAAAAAMCqKEgBAAAAAADAqnioOQAABZQWs8Nq63KMaF/gtvldej116lRNmzbtNiMqGjs7O61du1aRkZFFXsaiRYu0YsUK7du3TxcvXtSff/4pb2/vYosRAADcHmvmSBJ5UpYLFy5o6tSp2rRpk06dOiVfX19FRkZq5syZ8vLyKt5gSwAFKQAAyrgzZ86Y/165cqWmTJmio0ePmuPc3d0LtbzU1FQ5OTkVW3y368qVK4qIiFBERIQmT55s63AAAEAZUp7zpISEBCUkJGjOnDlq0KCBTp48qSeeeEIJCQlavXq1rcPLF7fsoVRKi9mRbQAA5Mzf398cvLy8ZGdnZ36+fPmyBg0aJD8/P7m7u6tly5basmWLxfzVq1fXzJkzNXjwYHl6emrkyJGSpA8++EBBQUFyc3NT7969NXfu3GxXJn322Wdq3ry5XFxcVKNGDU2fPl3p6enmciWpd+/esrOzMz//+OOPuv/+++Xh4SFPT0+FhoZq7969uW7f2LFjNWnSJLVp06Z4Ogwow8iRAKBwynOe1LBhQ/3f//2fevXqpZo1a6pz5856+eWX9fnnn5vrKc0oSAEAUI5dunRJ3bt319atW7V//35FRESoV69eOnXqlEW7OXPmqEmTJtq/f79eeuklfffdd3riiSc0ZswYxcXF6YEHHtDLL79sMc+3336rwYMHa8yYMTp8+LDef/99LV261Gz3ww8/SJKWLFmiM2fOmJ8HDRqku+++Wz/88INiY2M1adIkOTo6WqE3AAAA/lIe86Tk5GR5enqqQoXSf0Nc6Y8QAAAUWZMmTdSkSRPz88yZM7V27VqtX79eo0ePNsd37txZzzzzjPn5hRdeULdu3fTss89KkurUqaOdO3dqw4YNZpvp06dr0qRJGjJkiCSpRo0amjlzpp577jlNnTpVvr6+kiRvb2/5+/ub8506dUoTJkxQvXr1JEm1a9cugS0HAADIW3nLk/73v/9p5syZ5lVcpR1XSAEAUI5dunRJzz77rOrXry9vb2+5u7vryJEj2c78tWjRwuLz0aNH1apVK4txt37+8ccfNWPGDLm7u5vDiBEjdObMGV25ciXXmMaPH6/hw4crLCxMr776qo4fP36bWwkAAFB45SlPSklJUY8ePdSgQQObPaS9sChIAQBQjj377LNau3atXnnlFX377beKi4tTo0aNlJqaatGuYsWKhV72pUuXNH36dMXFxZnDgQMHdOzYMbm4uOQ637Rp03To0CH16NFD27ZtU4MGDbR27dpCrx8AAOB2lJc86eLFi4qIiJCHh4fWrl1bZh6FwC17AACUY999952GDh2q3r17S7qRHJ04cSLf+erWrWs+yyDLrZ+bN2+uo0ePqlatWrkux9HRURkZGdnG16lTR3Xq1NG4ceM0cOBALVmyxIwRAADAGspDnpSSkqLw8HA5Oztr/fr1eRa7ShsKUgAAlGO1a9fWmjVr1KtXL9nZ2emll15SZmZmvvM99dRT6tixo+bOnatevXpp27Zt2rhxo+zs7Mw2U6ZMUc+ePVWtWjX17dtX9vb2+vHHH3Xw4EHNmjVL0o03yGzdulX33nuvnJ2d5eLiogkTJqhv374KCQnRb7/9ph9++EF9+vTJNZbExEQlJibql19+kSQdOHBAHh4eqlatmnx8fG6zhwAAwJ2qrOdJKSkp6tq1q65cuaKPP/5YKSkpSklJkST5+vrKwcGhGHqp5HDLHgAA5djcuXNVqVIltWvXTr169VJ4eLiaN2+e73z33nuvFi5cqLlz56pJkyaKiYnRuHHjLM66hYeHa8OGDdq0aZNatmypNm3a6M0331RwcLDZ5o033tDmzZsVFBSkZs2aycHBQefPn9fgwYNVp04d9e/fX926ddP06dNzjWXhwoVq1qyZRowYIUnq2LGjmjVrpvXr199GzwAAgDtdWc+T9u3bp927d+vAgQOqVauWAgICzOH06dO330ElzM4wDMPWQdhKSkqKvLy8zNciovRIi9mRbZxjRHsbRALgTnPt2jXFx8crJCSkTF3ybA0jRozQzz//rG+//dbWoeQrr/3I73/+6KPSixwJgK2QI+WtrORJpSlH4pY9AACQozlz5uiBBx5QxYoVtXHjRi1btkzvvvuurcMCAACwOfKk20dBCgAA5GjPnj2KiorSxYsXVaNGDc2bN0/Dhw+3dVgAAAA2R550+yhIAQCAHH366ae2DgEAAKBUIk+6fTzUHAAAAAAAAFZFQQoAAAAAAABWRUEKAAAAAAAAVkVBCgAAAAAAAFZFQQoAAAAAAABWVeiC1Pbt29WrVy8FBgbKzs5O69atM6elpaVp4sSJatSokSpWrKjAwEANHjxYCQkJFsu4cOGCBg0aJE9PT3l7e2vYsGG6dOmSRZuffvpJHTp0kIuLi4KCghQVFZUtllWrVqlevXpycXFRo0aNFB0dXdjNAQAAKBbkSAAAAAVX6ILU5cuX1aRJEy1YsCDbtCtXrmjfvn166aWXtG/fPq1Zs0ZHjx7Vgw8+aNFu0KBBOnTokDZv3qwNGzZo+/btGjlypDk9JSVFXbt2VXBwsGJjY/X6669r2rRpWrRokdlm586dGjhwoIYNG6b9+/crMjJSkZGROnjwYGE3CQAA4LaRIwEAABScnWEYRpFntrPT2rVrFRkZmWubH374Qa1atdLJkydVrVo1HTlyRA0aNNAPP/ygFi1aSJJiYmLUvXt3/fbbbwoMDNR7772nF154QYmJiXJycpIkTZo0SevWrdPPP/8sSXr44Yd1+fJlbdiwwVxXmzZt1LRpUy1cuLBA8aekpMjLy0vJycny9PQsYi+gJKTF7Mg2zjGivQ0iAXCnuXbtmuLj4xUSEiIXFxeLacf3vm+1OGq2eLxQ7YcOHaply5ZJkipUqCAfHx81btxYAwcO1NChQ2VvX3bv0j906JCmTJmi2NhYnTx5Um+++abGjh2b5zx57Udr/P6TI6GkkCMBsJXSkiNJ5Ek3++CDD/Tvf//bPPEUGhqqV155Ra1atcqxva1zpJuVeK8nJyfLzs5O3t7ekqRdu3bJ29vbTLQkKSwsTPb29tq9e7fZpmPHjmaiJUnh4eE6evSo/vzzT7NNWFiYxbrCw8O1a9euXGO5fv26UlJSLAYAAMqLiIgInTlzRidOnNDGjRt1//33a8yYMerZs6fS09NtHV6RXblyRTVq1NCrr74qf39/W4dTbEpTjgQAQHlXXvOkr7/+WgMHDtRXX32lXbt2KSgoSF27dtXvv/9u69DyVaIFqWvXrmnixIkaOHCgWV1LTExU1apVLdplVSgTExPNNn5+fhZtsj7n1yZrek5mz54tLy8vcwgKCrq9DQQAoBRxdnaWv7+/7rrrLjVv3lzPP/+8PvvsM23cuFFLly412yUlJWn48OHy9fWVp6enOnfurB9//NFiWZ9//rlatmwpFxcXValSRb179zan/fnnnxo8eLAqVaokNzc3devWTceOHZN047Y1T09PrV692mJ569atU8WKFXXx4kWlpqZq9OjRCggIkIuLi4KDgzV79uxct6tly5Z6/fXXNWDAADk7OxdDT9leacuROGkHACjvymuetHz5cj355JNq2rSp6tWrp8WLFyszM1Nbt24thl4rWSVWkEpLS1P//v1lGIbee++9klpNoUyePFnJycnmcPr0aVuHBABAiercubOaNGmiNWvWmOP69eunc+fOaePGjYqNjVXz5s3VpUsXXbhwQZL0xRdfqHfv3urevbv279+vrVu3Wlz2PXToUO3du1fr16/Xrl27ZBiGunfvrrS0NFWsWFEDBgzQkiVLLOJYsmSJ+vbtKw8PD82bN0/r16/Xp59+qqNHj2r58uWqXr26VfqjNCiNORIn7QAAd6LymCdduXJFaWlp8vHxub3OsYIKJbHQrETr5MmT2rZtm8W9h/7+/jp37pxF+/T0dF24cMG8DN/f319nz561aJP1Ob82eV3K7+zsXG7OrAIAUFD16tXTTz/9JEnasWOH9uzZo3Pnzpm/iXPmzNG6deu0evVqjRw5Ui+//LIGDBig6dOnm8to0qSJJOnYsWNav369vvvuO7Vr107SjTNzQUFBWrdunfr166fhw4erXbt2OnPmjAICAnTu3DlFR0dry5YtkqRTp06pdu3aat++vezs7BQcHGzN7rCp0pojTZ48WePHjzc/p6SkUJQCANwRylueNHHiRAUGBma7fb80KvYrpLISrWPHjmnLli2qXLmyxfS2bdsqKSlJsbGx5rht27YpMzNTrVu3Ntts375daWlpZpvNmzerbt26qlSpktnm1kvQNm/erLZt2xb3JgEAUKYZhiE7OztJ0o8//qhLly6pcuXKcnd3N4f4+HgdP35ckhQXF6cuXbrkuKwjR46oQoUK5m+2JFWuXFl169bVkSNHJEmtWrXSPffcYz489OOPP1ZwcLA6duwo6caZw7i4ONWtW1dPP/20Nm3aVGLbXpqU5hzJ2dlZnp6eFgMAAHeC8pQnvfrqq/rkk0+0du3abA8sL40KfYXUpUuX9Msvv5if4+PjFRcXJx8fHwUEBKhv377at2+fNmzYoIyMDPN5BT4+PnJyclL9+vUVERGhESNGaOHChUpLS9Po0aM1YMAABQYGSpIeeeQRTZ8+XcOGDdPEiRN18OBBvf3223rzzTfN9Y4ZM0b33Xef3njjDfXo0UOffPKJ9u7da/HaYwAAcCM5CgkJkXTjdzwgIEBff/11tnZZD9d2dXW97XUOHz5cCxYs0KRJk7RkyRI9+uijZrLXvHlzxcfHa+PGjdqyZYv69++vsLCwbM9TKGvIkQAAKHvKS540Z84cvfrqq9qyZYsaN2582zFaQ6GvkNq7d6+aNWumZs2aSZLGjx+vZs2aacqUKfr999+1fv16/fbbb2ratKkCAgLMYefOneYyli9frnr16qlLly7q3r272rdvb5EkeXl5adOmTYqPj1doaKieeeYZTZkyRSNHjjTbtGvXTitWrNCiRYvUpEkTrV69WuvWrVPDhg1vpz8AAChXtm3bpgMHDqhPnz6SbiQ5iYmJqlChgmrVqmUxVKlSRZLUuHHjXB+EWb9+faWnp5tvfZOk8+fP6+jRo2rQoIE57u9//7tOnjypefPm6fDhwxoyZIjFcjw9PfXwww/rgw8+0MqVK/V///d/5rMZyipyJAAAypbykidFRUVp5syZiomJsXhbb2lX6CukOnXqJMMwcp2e17QsPj4+WrFiRZ5tGjdurG+//TbPNv369VO/fv3yXR8AAHeC69evKzExURkZGTp79qxiYmI0e/Zs9ezZU4MHD5YkhYWFqW3btoqMjFRUVJTq1KmjhIQE8wGdLVq00NSpU9WlSxfVrFlTAwYMUHp6uqKjozVx4kTVrl1bDz30kEaMGKH3339fHh4emjRpku666y499NBDZiyVKlXS3/72N02YMEFdu3bV3XffbU6bO3euAgIC1KxZM9nb22vVqlXy9/c3zzzeKjU1VYcPHzb//fvvvysuLk7u7u6qVatWyXVoIZEjAQBQepXXPOm1117TlClTtGLFClWvXt28AjvrdsPSrMTesgcAAKwrJiZGAQEBql69uiIiIvTVV19p3rx5+uyzz+Tg4CBJsrOzU3R0tDp27KhHH31UderU0YABA3Ty5En5+flJulFYWbVqldavX6+mTZuqc+fO2rNnj7meJUuWKDQ0VD179lTbtm1lGIaio6Pl6OhoEc+wYcOUmpqqxx57zGK8h4eHoqKi1KJFC7Vs2VInTpxQdHS07O1zTksSEhLMK4/OnDmjOXPmqFmzZho+fHhxdh8AACjHymue9N577yk1NVV9+/a1uAJ7zpw5xdl9JcLOKMjpunIqJSVFXl5eSk5O5uGdpUxazI5s4xwj2tsgEgB3mmvXrik+Pl4hISFl4mGQpdlHH32kcePGKSEhQU5OTlZdd177kd///NFHpRc5EgBbIUcqXrbKk0pTjlToW/YAAADycuXKFZ05c0avvvqqHn/8casXowAAAEor8qS/cMseAAAoVlFRUapXr578/f01efJkW4cDAABQapAn/YWCFAAAKFbTpk1TWlqatm7dWuofpgkAAGBN5El/oSAFAAAA/D/27jwsi3r///iLHTdAXFgKEZdccskto9QsSVAzKa0sT+oJtTpgLqVpmXtZpOZ6Muukdo6ezE6auZCklZnkgpJmHjLT9IRg3xRwZZH5/eGP0VtAQW7mBn0+rmuui3vmMzOf+dy38PY1c88AAABLEUgBAAAAAADAUgRSAAAUIi8vz9FdQCnw/gEAUDb4G1uxlaf3j6fsAQBwGXd3dzk7OyslJUW1atWSu7u7nJycHN0tFJNhGMrOztYff/whZ2fnm/rJNQAA2BM1UsVWHmskAikAAC7j7OyskJAQHTt2TCkpKY7uDq5T5cqVVadOHTk7czE4AAD2QI10YyhPNRKBFAAAV3B3d1edOnWUm5urCxcuOLo7KCEXFxe5urpy1hYAADujRqrYyluNRCAFAEAhnJyc5ObmJjc3N0d3BQAAoNygRoK9OP4aLQAAAAAAANxUCKQAAAAAAABgKb6yhwrhcPp6Oe/cJ0mq3/YZB/cGAADAegd3vqu89COSpLo+3RzcGwAASocrpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApnrKHG1pO3JYC89wiOjigJwAAAAAAIB+BFAAAAHCDu/IkHSfoAACOxlf2AAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiqxIHU5s2b1bNnTwUGBsrJyUmrVq2yWW4YhsaPH6+AgABVqlRJYWFhOnDggE2bEydOqF+/fvLy8pKPj4+ioqJ0+vRpmzZ79uxRx44d5enpqaCgIMXGxhboy4oVK9S4cWN5enqqefPmWrduXUkPBwAAwC6okQAAAIqvxIHUmTNn1LJlS82fP7/Q5bGxsZozZ44WLFigbdu2qUqVKgoPD9f58+fNNv369dO+ffsUHx+vNWvWaPPmzRoyZIi5PDMzU127dlVwcLASExP11ltvaeLEiVq4cKHZZuvWrXriiScUFRWl3bt3KzIyUpGRkfrxxx9LekgAAAClRo0EAABQfE6GYRjXvbKTk1auXKnIyEhJF8/8BQYG6oUXXtCLL74oScrIyJCfn58WL16svn37av/+/WratKl27Nihtm3bSpLi4uLUvXt3/e9//1NgYKDeeecdvfLKK0pNTZW7u7skacyYMVq1apX++9//SpIef/xxnTlzRmvWrDH7c9ddd+mOO+7QggULitX/zMxMeXt7KyMjQ15eXtc7DCgDOXFbbF4fTl8v5wZ1JEn12z5z3duRJLeIDqXrHACgQrPi7z81EsrCwZ3vKu+XI5Kkuj7dzPnFqW2urImohwAAV7L6779d7yF16NAhpaamKiwszJzn7e2t9u3bKyEhQZKUkJAgHx8fs9CSpLCwMDk7O2vbtm1mm06dOpmFliSFh4crOTlZJ0+eNNtcvp/8Nvn7AQAAKC+okQAAAGy52nNjqampkiQ/Pz+b+X5+fuay1NRU1a5d27YTrq7y9fW1aRMSElJgG/nLqlevrtTU1KvupzBZWVnKysoyX2dmZpbk8AAAAK4LNRIAAICtm+ope9OmTZO3t7c5BQUFObpLAAAADkeNBAAArGbXQMrf31+SlJaWZjM/LS3NXObv76/jx4/bLM/NzdWJEyds2hS2jcv3UVSb/OWFGTt2rDIyMszp6NGjJT1EAACAEqNGAgAAsGXXQCokJET+/v7auHGjOS8zM1Pbtm1TaGioJCk0NFTp6elKTEw022zatEl5eXlq37692Wbz5s3Kyckx28THx6tRo0aqXr262eby/eS3yd9PYTw8POTl5WUzAQAAlDVqJAAAAFslDqROnz6tpKQkJSUlSbp4k86kpCQdOXJETk5OGj58uKZOnarVq1dr79696t+/vwIDA82nzDRp0kQREREaPHiwtm/fru+++04xMTHq27evAgMDJUlPPvmk3N3dFRUVpX379mn58uWaPXu2Ro4cafZj2LBhiouL04wZM/Tf//5XEydO1M6dOxUTE1P6UQEAACghaiQAAIDiK/FNzXfu3Kn77rvPfJ1fAA0YMECLFy/W6NGjdebMGQ0ZMkTp6enq0KGD4uLi5Onpaa6zdOlSxcTEqEuXLnJ2dlbv3r01Z84cc7m3t7c2bNig6OhotWnTRjVr1tT48eM1ZMgQs83dd9+tZcuWady4cXr55ZfVsGFDrVq1Ss2aNbuugQAAACgNaiQAAIDiczIMw3B0JxwlMzNT3t7eysjI4NL0ciYnbovN68Pp6+XcoI4kqX7bZ657O5LkFtGhdJ0DAFRo/P2/NsaofDq4813l/XJEklTXp5s5vzi1zZU1EfUQAOBKVv/9v6mesgcAAAAAAADHI5ACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFjK1dEdAKxyOH29JMl55z7Vb/uMg3sDAABgPeohAEB5wRVSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUnYPpC5cuKBXX31VISEhqlSpkurXr68pU6bIMAyzjWEYGj9+vAICAlSpUiWFhYXpwIEDNts5ceKE+vXrJy8vL/n4+CgqKkqnT5+2abNnzx517NhRnp6eCgoKUmxsrL0PBwAAwC6okQAAAC6xeyD15ptv6p133tG8efO0f/9+vfnmm4qNjdXcuXPNNrGxsZozZ44WLFigbdu2qUqVKgoPD9f58+fNNv369dO+ffsUHx+vNWvWaPPmzRoyZIi5PDMzU127dlVwcLASExP11ltvaeLEiVq4cKG9DwkAAKDUqJEAAAAucbX3Brdu3apevXqpR48ekqS6devq3//+t7Zv3y7p4pm/WbNmady4cerVq5ck6cMPP5Sfn59WrVqlvn37av/+/YqLi9OOHTvUtm1bSdLcuXPVvXt3TZ8+XYGBgVq6dKmys7P1wQcfyN3dXbfffruSkpI0c+ZMm6IMAACgPKBGAgAAuMTuV0jdfffd2rhxo37++WdJ0g8//KAtW7aoW7dukqRDhw4pNTVVYWFh5jre3t5q3769EhISJEkJCQny8fExCy1JCgsLk7Ozs7Zt22a26dSpk9zd3c024eHhSk5O1smTJwvtW1ZWljIzM20mAAAAK1AjAQAAXGL3K6TGjBmjzMxMNW7cWC4uLrpw4YJee+019evXT5KUmpoqSfLz87NZz8/Pz1yWmpqq2rVr23bU1VW+vr42bUJCQgpsI39Z9erVC/Rt2rRpmjRpkh2OEgAAoGSokQAAAC6x+xVSH3/8sZYuXaply5Zp165dWrJkiaZPn64lS5bYe1clNnbsWGVkZJjT0aNHHd0lAABwk6BGAgAAuMTuV0iNGjVKY8aMUd++fSVJzZs312+//aZp06ZpwIAB8vf3lySlpaUpICDAXC8tLU133HGHJMnf31/Hjx+32W5ubq5OnDhhru/v76+0tDSbNvmv89tcycPDQx4eHqU/SAAAgBKiRgIAALjE7ldInT17Vs7Otpt1cXFRXl6eJCkkJET+/v7auHGjuTwzM1Pbtm1TaGioJCk0NFTp6elKTEw022zatEl5eXlq37692Wbz5s3Kyckx28THx6tRo0aFXooOAADgSNRIAAAAl9g9kOrZs6dee+01rV27VocPH9bKlSs1c+ZMPfzww5IkJycnDR8+XFOnTtXq1au1d+9e9e/fX4GBgYqMjJQkNWnSRBERERo8eLC2b9+u7777TjExMerbt68CAwMlSU8++aTc3d0VFRWlffv2afny5Zo9e7ZGjhxp70MCAAAoNWokAACAS+z+lb25c+fq1Vdf1d/+9jcdP35cgYGBeuaZZzR+/HizzejRo3XmzBkNGTJE6enp6tChg+Li4uTp6Wm2Wbp0qWJiYtSlSxc5Ozurd+/emjNnjrnc29tbGzZsUHR0tNq0aaOaNWtq/PjxPM64HMqJ21JgnltEBwf0BAAAx6FGAgAAuMTJMAzD0Z1wlMzMTHl7eysjI0NeXl6O7s4N63oCqSvXOZy+Xs4N6kiS6rd95rr2fTh9vSTJuUGdEm0DAHBj4e//tTFG9mePE3QHd76rvF+OSJLq+nQr0Xby9089BAAoitV//+3+lT0AAAAAAADgagikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApVwd3QHcHA6nrzd/ruvTzYE9AQAAcKz8ush55z7Vb/uMg3sDAIBjcIUUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEuVSSD1+++/6y9/+Ytq1KihSpUqqXnz5tq5c6e53DAMjR8/XgEBAapUqZLCwsJ04MABm22cOHFC/fr1k5eXl3x8fBQVFaXTp0/btNmzZ486duwoT09PBQUFKTY2tiwOBwAAwC6okQAAAC6yeyB18uRJ3XPPPXJzc9P69ev1008/acaMGapevbrZJjY2VnPmzNGCBQu0bds2ValSReHh4Tp//rzZpl+/ftq3b5/i4+O1Zs0abd68WUOGDDGXZ2ZmqmvXrgoODlZiYqLeeustTZw4UQsXLrT3IQEAAJQaNRIAAMAlrvbe4JtvvqmgoCAtWrTInBcSEmL+bBiGZs2apXHjxqlXr16SpA8//FB+fn5atWqV+vbtq/379ysuLk47duxQ27ZtJUlz585V9+7dNX36dAUGBmrp0qXKzs7WBx98IHd3d91+++1KSkrSzJkzbYoyAACA8oAaCTeCnLgtNq/dIjo4qCcAgIrO7ldIrV69Wm3bttWjjz6q2rVrq1WrVnrvvffM5YcOHVJqaqrCwsLMed7e3mrfvr0SEhIkSQkJCfLx8TELLUkKCwuTs7Oztm3bZrbp1KmT3N3dzTbh4eFKTk7WyZMnC+1bVlaWMjMzbSagOHLithSYAAAoCWokAACAS+weSP36669655131LBhQ33xxRd67rnn9Pzzz2vJkiWSpNTUVEmSn5+fzXp+fn7mstTUVNWuXdtmuaurq3x9fW3aFLaNy/dxpWnTpsnb29ucgoKCSnm0AAAAxUONBAAAcIndA6m8vDy1bt1ar7/+ulq1aqUhQ4Zo8ODBWrBggb13VWJjx45VRkaGOR09etTRXQIAADcJaiQAAIBL7B5IBQQEqGnTpjbzmjRpoiNHjkiS/P39JUlpaWk2bdLS0sxl/v7+On78uM3y3NxcnThxwqZNYdu4fB9X8vDwkJeXl80EAABgBWokAACAS+weSN1zzz1KTk62mffzzz8rODhY0sWbd/r7+2vjxo3m8szMTG3btk2hoaGSpNDQUKWnpysxMdFss2nTJuXl5al9+/Zmm82bNysnJ8dsEx8fr0aNGtk8rQYAAKA8oEYCAAC4xO6B1IgRI/T999/r9ddf1y+//KJly5Zp4cKFio6OliQ5OTlp+PDhmjp1qlavXq29e/eqf//+CgwMVGRkpKSLZwsjIiI0ePBgbd++Xd99951iYmLUt29fBQYGSpKefPJJubu7KyoqSvv27dPy5cs1e/ZsjRw50t6HBAAAUGrUSAAAAJe42nuD7dq108qVKzV27FhNnjxZISEhmjVrlvr162e2GT16tM6cOaMhQ4YoPT1dHTp0UFxcnDw9Pc02S5cuVUxMjLp06SJnZ2f17t1bc+bMMZd7e3trw4YNio6OVps2bVSzZk2NHz+exxkDAIByiRoJAADgErsHUpL04IMP6sEHHyxyuZOTkyZPnqzJkycX2cbX11fLli276n5atGihb7/99rr7CQAAYCVqJAAAgIvs/pU9AAAAAAAA4GoIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApV0d3AKgoDqevt3ndUB0c1BMAAADrHdz5rvLSj0iS6vp0c3BvAAAVHVdIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFJlHki98cYbcnJy0vDhw81558+fV3R0tGrUqKGqVauqd+/eSktLs1nvyJEj6tGjhypXrqzatWtr1KhRys3NtWnz9ddfq3Xr1vLw8FCDBg20ePHisj4cAAAAu6BGAgAAN7MyDaR27Nihd999Vy1atLCZP2LECH3++edasWKFvvnmG6WkpOiRRx4xl1+4cEE9evRQdna2tm7dqiVLlmjx4sUaP3682ebQoUPq0aOH7rvvPiUlJWn48OEaNGiQvvjii7I8JAAAgFKjRgIAADe7MgukTp8+rX79+um9995T9erVzfkZGRn6xz/+oZkzZ+r+++9XmzZttGjRIm3dulXff/+9JGnDhg366aef9K9//Ut33HGHunXrpilTpmj+/PnKzs6WJC1YsEAhISGaMWOGmjRpopiYGPXp00dvv/12WR0SAABAqVEjAQAAlGEgFR0drR49eigsLMxmfmJionJycmzmN27cWHXq1FFCQoIkKSEhQc2bN5efn5/ZJjw8XJmZmdq3b5/Z5spth4eHm9sAAAAoj6iRAAAAJNey2OhHH32kXbt2aceOHQWWpaamyt3dXT4+Pjbz/fz8lJqaara5vNDKX56/7GptMjMzde7cOVWqVKnAvrOyspSVlWW+zszMLPnBAQAAXCdqJAAAgIvsfoXU0aNHNWzYMC1dulSenp723nypTJs2Td7e3uYUFBTk6C4BAICbBDUSAADAJXYPpBITE3X8+HG1bt1arq6ucnV11TfffKM5c+bI1dVVfn5+ys7OVnp6us16aWlp8vf3lyT5+/sXeKJM/utrtfHy8ir0zJ8kjR07VhkZGeZ09OhRexwyAADANVEjAQAAXGL3QKpLly7au3evkpKSzKlt27bq16+f+bObm5s2btxorpOcnKwjR44oNDRUkhQaGqq9e/fq+PHjZpv4+Hh5eXmpadOmZpvLt5HfJn8bhfHw8JCXl5fNBAAAYAVqJAAAgEvsfg+patWqqVmzZjbzqlSpoho1apjzo6KiNHLkSPn6+srLy0tDhw5VaGio7rrrLklS165d1bRpUz311FOKjY1Vamqqxo0bp+joaHl4eEiSnn32Wc2bN0+jR4/W008/rU2bNunjjz/W2rVr7X1IAAAApUaNBAAAcEmZ3NT8Wt5++205Ozurd+/eysrKUnh4uP7+97+by11cXLRmzRo999xzCg0NVZUqVTRgwABNnjzZbBMSEqK1a9dqxIgRmj17tm699Va9//77Cg8Pd8QhAQAAlBo1EgAAuFlYEkh9/fXXNq89PT01f/58zZ8/v8h1goODtW7duqtut3Pnztq9e7c9uggAAGA5aiQAAHCzsvs9pAAAAAAAAICrIZACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWcnV0B4AbWU7cFpvXbhEdHNQTAACA8oMaCQDAFVIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALGX3QGratGlq166dqlWrptq1aysyMlLJyck2bc6fP6/o6GjVqFFDVatWVe/evZWWlmbT5siRI+rRo4cqV66s2rVra9SoUcrNzbVp8/XXX6t169by8PBQgwYNtHjxYnsfDgAAgF1QIwEAAFxi90Dqm2++UXR0tL7//nvFx8crJydHXbt21ZkzZ8w2I0aM0Oeff64VK1bom2++UUpKih555BFz+YULF9SjRw9lZ2dr69atWrJkiRYvXqzx48ebbQ4dOqQePXrovvvuU1JSkoYPH65Bgwbpiy++sPchAQAAlBo1EgAAwCWu9t5gXFyczevFixerdu3aSkxMVKdOnZSRkaF//OMfWrZsme6//35J0qJFi9SkSRN9//33uuuuu7Rhwwb99NNP+vLLL+Xn56c77rhDU6ZM0UsvvaSJEyfK3d1dCxYsUEhIiGbMmCFJatKkibZs2aK3335b4eHh9j4sAACAUqFGAgAAuKTM7yGVkZEhSfL19ZUkJSYmKicnR2FhYWabxo0bq06dOkpISJAkJSQkqHnz5vLz8zPbhIeHKzMzU/v27TPbXL6N/Db52wAAACjPqJEAAMDNzO5XSF0uLy9Pw4cP1z333KNmzZpJklJTU+Xu7i4fHx+btn5+fkpNTTXbXF5o5S/PX3a1NpmZmTp37pwqVapUoD9ZWVnKysoyX2dmZpbuAAEAAK4DNRIAALjZlekVUtHR0frxxx/10UcfleVuim3atGny9vY2p6CgIEd3CQAA3ISokQAAwM2uzAKpmJgYrVmzRl999ZVuvfVWc76/v7+ys7OVnp5u0z4tLU3+/v5mmyufKJP/+lptvLy8Cj3zJ0ljx45VRkaGOR09erRUxwgAAFBS1EgAAABlEEgZhqGYmBitXLlSmzZtUkhIiM3yNm3ayM3NTRs3bjTnJScn68iRIwoNDZUkhYaGau/evTp+/LjZJj4+Xl5eXmratKnZ5vJt5LfJ30ZhPDw85OXlZTMBAABYgRoJAADgErvfQyo6OlrLli3TZ599pmrVqpn3M/D29lalSpXk7e2tqKgojRw5Ur6+vvLy8tLQoUMVGhqqu+66S5LUtWtXNW3aVE899ZRiY2OVmpqqcePGKTo6Wh4eHpKkZ599VvPmzdPo0aP19NNPa9OmTfr444+1du1aex8SAABAqVEjAQAAXGL3K6TeeecdZWRkqHPnzgoICDCn5cuXm23efvttPfjgg+rdu7c6deokf39/ffrpp+ZyFxcXrVmzRi4uLgoNDdVf/vIX9e/fX5MnTzbbhISEaO3atYqPj1fLli01Y8YMvf/++zzOGAAAlEvUSAAAAJfY/QopwzCu2cbT01Pz58/X/Pnzi2wTHBysdevWXXU7nTt31u7du0vcRwAAAKtRIwEAAFxSpk/ZAwAAAAAAAK5k9yukABTt4M53zZ/rt33GgT0BAACwXn4tlJd+RHV9ujm4NwAAR+IKKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApbiHFAAAAIByLyduS4F5bhEdHNATAIA9cIUUAAAAAAAALMUVUkAFcOUZQc4GAgAAAAAqMq6QAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApV0d3AOVXTtyWAvPcIjo4oCcAAADlx5U1EvURAAAlxxVSAAAAAAAAsBSBFAAAAAAAACzFV/ZwTYfT15s/NxSXpAMAgJvTwZ3vSpLy0o+ork83B/cGAICKjSukAAAAAAAAYCkCKQAAAAAAAFiKr+wBAAAAuGnwJGkAKB+4QgoAAAAAAACW4gop4CZy5RlBzgYCAAAAAByBK6QAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAICluKk5AAAAAFzFlQ+GkXg4DACUFoEUgBLjaX0AAAAAgNIgkAIqmMPp6+W8c58kqX7bZxzcGwAAAOsdTl8vSWooTooBQEXFPaQAAAAAAABgKQIpAAAAAAAAWIqv7AGwBDcDBQAANzvqIQC4hCukAAAAAAAAYCmukAJQoXBmEQAAAAAqPgIpAAAAACjHrjwhx8k4ADcCAikANyWutAIAADcbgi0A5UmFv4fU/PnzVbduXXl6eqp9+/bavn27o7sElGuH09eb08Gd7zq6OwCAMkKNBBR0cOe7Zh0EAHCsCn2F1PLlyzVy5EgtWLBA7du316xZsxQeHq7k5GTVrl3b0d1zmMvPfOT/sXVuUEeSVL/tMw7pE3CjsNeZRc5QAihL1EiFy//de3l9RG0ElBx1DAB7qNCB1MyZMzV48GD99a9/lSQtWLBAa9eu1QcffKAxY8Y4uHcAUPYoCAEUhhoJQHljr9slcNsF4MZRYQOp7OxsJSYmauzYseY8Z2dnhYWFKSEhodB1srKylJWVZb7OyMiQJGVmZpZtZy2Wc+aM+fPpsxeP1+n0OUklO9b87eRvo6TrX74dm224nZHbNbZz+THk96E0x5C/DeniWJT0OK48huL248rjOOV5rkTrF7ad6x2L/O1cfhzXMxaSdDBllflzHe8Hrvl+5u/7SsVZr7xt58r1rmffjt5OTrzt70i3B0Kvb9836HZw48v/vWcYhoN7UjaokYp2ZW1T0r+Dp/7/31/jbJYy3S79/i3p34/S7N/4/+te7/5LUw8Vtv+S/v2y9xja4xiKs//L930kI16S5PT1TtVr/XSJ9n9T1x+OruEcWG9cuU5p9g+UJctrJKOC+v333w1JxtatW23mjxo1yrjzzjsLXWfChAmGJCYmJiYmJiYm4+jRo1aULJajRmJiYmJiYmIqzWRVjVRhr5C6HmPHjtXIkSPN13l5eTpx4oRq1KghJycnB/as/MrMzFRQUJCOHj0qLy8vR3enQmMs7YextB/G0n4YS/sqy/E0DEOnTp1SYGCgXbdbkVEjFR//1kuPMSwdxq90GL/SYfxKrzyPodU1UoUNpGrWrCkXFxelpaXZzE9LS5O/v3+h63h4eMjDw8Nmno+PT1l18Ybi5eVV7v6xVFSMpf0wlvbDWNoPY2lfZTWe3t7edt9meUGNZA3+rZceY1g6jF/pMH6lw/iVXnkdQytrJGfL9mRn7u7uatOmjTZu3GjOy8vL08aNGxUayvdxAQDAzYkaCQAAVAQV9gopSRo5cqQGDBigtm3b6s4779SsWbN05swZ84kyAAAANyNqJAAAUN5V6EDq8ccf1x9//KHx48crNTVVd9xxh+Li4uTn5+fort0wPDw8NGHChAKX8aPkGEv7YSzth7G0H8bSvhjP0qFGKjt8NkuPMSwdxq90GL/SYfxKjzG8xMkwbtBnHgMAAAAAAKBcqrD3kAIAAAAAAEDFRCAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQKNXHiRDk5OdlMjRs3dnS3KoTNmzerZ8+eCgwMlJOTk1atWmWz3DAMjR8/XgEBAapUqZLCwsJ04MABx3S2nLvWWA4cOLDA5zQiIsIxnS3npk2bpnbt2qlatWqqXbu2IiMjlZycbNPm/Pnzio6OVo0aNVS1alX17t1baWlpDupx+VWcsezcuXOBz+azzz7roB6XX++8845atGghLy8veXl5KTQ0VOvXrzeX85lEeUJtVDLUQ6VHHXT9qHtKj3qndKhxiodACkW6/fbbdezYMXPasmWLo7tUIZw5c0YtW7bU/PnzC10eGxurOXPmaMGCBdq2bZuqVKmi8PBwnT9/3uKeln/XGktJioiIsPmc/vvf/7awhxXHN998o+joaH3//feKj49XTk6OunbtqjNnzphtRowYoc8//1wrVqzQN998o5SUFD3yyCMO7HX5VJyxlKTBgwfbfDZjY2Md1OPy69Zbb9Ubb7yhxMRE7dy5U/fff7969eqlffv2SeIzifKH2qj4qIdKjzro+lH3lB71TulQ4xSTARRiwoQJRsuWLR3djQpPkrFy5UrzdV5enuHv72+89dZb5rz09HTDw8PD+Pe//+2AHlYcV46lYRjGgAEDjF69ejmkPxXd8ePHDUnGN998YxjGxc+hm5ubsWLFCrPN/v37DUlGQkKCo7pZIVw5loZhGPfee68xbNgwx3WqAqtevbrx/vvv85lEuUNtdP2oh0qPOqh0qHtKj3qn9KhxCuIKKRTpwIEDCgwMVL169dSvXz8dOXLE0V2q8A4dOqTU1FSFhYWZ87y9vdW+fXslJCQ4sGcV19dff63atWurUaNGeu655/Tnn386uksVQkZGhiTJ19dXkpSYmKicnBybz2bjxo1Vp04dPpvXcOVY5lu6dKlq1qypZs2aaezYsTp79qwjuldhXLhwQR999JHOnDmj0NBQPpMol6iN7IN6yH6og4qHuqf0qHeuHzVO0Vwd3QGUT+3bt9fixYvVqFEjHTt2TJMmTVLHjh31448/qlq1ao7uXoWVmpoqSfLz87OZ7+fnZy5D8UVEROiRRx5RSEiIDh48qJdfflndunVTQkKCXFxcHN29cisvL0/Dhw/XPffco2bNmkm6+Nl0d3eXj4+PTVs+m1dX2FhK0pNPPqng4GAFBgZqz549eumll5ScnKxPP/3Ugb0tn/bu3avQ0FCdP39eVatW1cqVK9W0aVMlJSXxmUS5Qm1kP9RD9kEdVDzUPaVHvXN9qHGujUAKherWrZv5c4sWLdS+fXsFBwfr448/VlRUlAN7BlzSt29f8+fmzZurRYsWql+/vr7++mt16dLFgT0r36Kjo/Xjjz9y7xM7KGoshwwZYv7cvHlzBQQEqEuXLjp48KDq169vdTfLtUaNGikpKUkZGRn65JNPNGDAAH3zzTeO7hZQALURyhvqoOKh7ik96p3rQ41zbXxlD8Xi4+Oj2267Tb/88ouju1Kh+fv7S1KBJyikpaWZy3D96tWrp5o1a/I5vYqYmBitWbNGX331lW699VZzvr+/v7Kzs5Wenm7Tns9m0Yoay8K0b99ekvhsFsLd3V0NGjRQmzZtNG3aNLVs2VKzZ8/mM4lyj9ro+lEPlQ3qoIKoe0qPeuf6UeNcG4EUiuX06dM6ePCgAgICHN2VCi0kJET+/v7auHGjOS8zM1Pbtm1TaGioA3t2Y/jf//6nP//8k89pIQzDUExMjFauXKlNmzYpJCTEZnmbNm3k5uZm89lMTk7WkSNH+Gxe4VpjWZikpCRJ4rNZDHl5ecrKyuIziXKP2uj6UQ+VDeqgS6h7So96x/6ocQriK3so1IsvvqiePXsqODhYKSkpmjBhglxcXPTEE084umvl3unTp23OChw6dEhJSUny9fVVnTp1NHz4cE2dOlUNGzZUSEiIXn31VQUGBioyMtJxnS6nrjaWvr6+mjRpknr37i1/f38dPHhQo0ePVoMGDRQeHu7AXpdP0dHRWrZsmT777DNVq1bN/H66t7e3KlWqJG9vb0VFRWnkyJHy9fWVl5eXhg4dqtDQUN11110O7n35cq2xPHjwoJYtW6bu3burRo0a2rNnj0aMGKFOnTqpRYsWDu59+TJ27Fh169ZNderU0alTp7Rs2TJ9/fXX+uKLL/hMotyhNioZ6qHSow66ftQ9pUe9UzrUOMXk2If8obx6/PHHjYCAAMPd3d245ZZbjMcff9z45ZdfHN2tCuGrr74yJBWYBgwYYBjGxUcdv/rqq4afn5/h4eFhdOnSxUhOTnZsp8upq43l2bNnja5duxq1atUy3NzcjODgYGPw4MFGamqqo7tdLhU2jpKMRYsWmW3OnTtn/O1vfzOqV69uVK5c2Xj44YeNY8eOOa7T5dS1xvLIkSNGp06dDF9fX8PDw8No0KCBMWrUKCMjI8OxHS+Hnn76aSM4ONhwd3c3atWqZXTp0sXYsGGDuZzPJMoTaqOSoR4qPeqg60fdU3rUO6VDjVM8ToZhGGUTdQEAAAAAAAAFcQ8pAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKRgY+LEiXJycrKZV7duXQ0cOLDM93348GE5OTlp8eLF5ryBAweqatWqZb7vfE5OTpo4caJl+6voOnfurM6dO9t1m4V9Bh2hLD73V27z66+/lpOTk77++usSb6u4Y1+afZRERfm3M3DgQNWtW/ea7Qr7fWQPsbGxaty4sfLy8q5r/3Fxcbrjjjvk6ekpJycnpaenF3vff/75p6pUqaJ169ZdR88BUCNVjN/z5QU1Uum2SY1kPWokaiRHIJBCmVi3bl25/cVbnvt2szh79qwmTpxY5gUAyq/8IrCo6bXXXjPbLl68uMh2qampDjyKksnMzNSbb76pl156Sc7OJf/z++eff+qxxx5TpUqVNH/+fP3zn/9UlSpVlJycrBEjRujuu+82i7DDhw8XWL9GjRoaNGiQXn31VTscDYDrVZ7rkPLct5sFNRKokexXI3366ad6/PHHVa9ePVWuXFmNGjXSCy+8UCCsokZyHFdHdwDlX3Jycol/Maxbt07z588vUVETHBysc+fOyc3NrYQ9LJmr9e3cuXNydeWfRVk7e/asJk2aJEkFzmCNGzdOY8aMcUCvbF3P576kOnXqpHPnzsnd3b3E627YsKEMemSdJk2a6J///GeB+f/85z+1YcMGde3atcCyyZMnKyQkxGaej49Pifb73nvvXfPMW1n54IMPlJubqyeeeOK61t+xY4dOnTqlKVOmKCwszJyfkJCgOXPmqGnTpmrSpImSkpKK3Mazzz6rOXPmaNOmTbr//vuvqx8ALqFGgr1RI11EjUSNVBJF1UhDhgxRYGCg/vKXv6hOnTrau3ev5s2bp3Xr1mnXrl2qVKmS2ZYayTH4q4Jr8vDwKNPt5+bmKi8vT+7u7vL09CzTfV2Lo/dvhfPnz8vd3b3QQuLMmTOqUqWKA3p1iaura7koeMv6cy9Jzs7O1/2Zu54CrTzx8/PTX/7ylwLzJ02apIYNG6pdu3YFlnXr1k1t27Yt1X7L+j9zV7No0SI99NBD1/2eHz9+XFLBAvOhhx5Senq6qlWrpunTp181kGrSpImaNWumxYsXU2wBdkCNdGOhRioeaqSyRY1UckXVSJ988kmBYLdNmzYaMGCAli5dqkGDBpnzqZEcg6/s3cS2bNmidu3aydPTU/Xr19e7775baLsrv9Odk5Nj/kL09PRUjRo11KFDB8XHx0u6+P3j+fPnS5LNZaPSpe/8Tp8+XbNmzVL9+vXl4eGhn3766arfR/71118VHh6uKlWqKDAwUJMnT5ZhGObyor4DfuU2r9a3/HlXnhXcvXu3unXrJi8vL1WtWlVdunTR999/b9Mm/3LZ7777TiNHjlStWrVUpUoVPfzww/rjjz8KfwOu4vfff1dUVJQCAwPl4eGhkJAQPffcc8rOzrYZk0cffVS+vr6qXLmy7rrrLq1du9ZmO/nj8tFHH2ncuHG65ZZbVLlyZWVmZpr3njh48KC6d++uatWqqV+/fpKkvLw8zZo1S7fffrs8PT3l5+enZ555RidPnrxqv7OzszV+/Hi1adNG3t7eqlKlijp27KivvvrKbHP48GHVqlVL0sU/rPnvQf64F3Z/hNzcXE2ZMsX8vNStW1cvv/yysrKybNrVrVtXDz74oLZs2aI777xTnp6eqlevnj788MOSvQEq+LkvyXtsGIamTp2qW2+9VZUrV9Z9992nffv2FdjHlZ/bmJgYVa1aVWfPni3Q9oknnpC/v78uXLggqfD7I/zvf/9TZGSkqlSpotq1a2vEiBEFxqiwY8t35TaL837a0/bt2/XLL7+Yn8PCnDp1yhyD61HY/RHS09M1cOBAeXt7y8fHRwMGDChwKffx48dVq1Ytde7c2eZ3zy+//KIqVaro8ccfv+p+Dx06pD179tictSvJ/jt37qwBAwZIktq1aycnJyfzPfT19VW1atWKNwCSHnjgAX3++ec2xwHAFjUSNRI1UtGokaiRLleea6TC7iX28MMPS5L2799fYBk1kvUcH7HDIfbu3auuXbuqVq1amjhxonJzczVhwgT5+fldc92JEydq2rRpGjRokO68805lZmZq586d2rVrlx544AE988wzSklJUXx8fKGXm0oXU/Dz589ryJAh8vDwkK+vb5GXiF64cEERERG66667FBsbq7i4OE2YMEG5ubmaPHlyiY67OH273L59+9SxY0d5eXlp9OjRcnNz07vvvqvOnTvrm2++Ufv27W3aDx06VNWrV9eECRN0+PBhzZo1SzExMVq+fHmx+5iSkqI777xT6enpGjJkiBo3bqzff/9dn3zyic6ePSt3d3elpaXp7rvv1tmzZ/X888+rRo0aWrJkiR566CF98skn5i/afFOmTJG7u7tefPFFZWVlmWeOcnNzFR4erg4dOmj69OmqXLmyOU6LFy/WX//6Vz3//PM6dOiQ5s2bp927d+u7774r8gxKZmam3n//fT3xxBMaPHiwTp06pX/84x8KDw/X9u3bdccdd6hWrVp655139Nxzz+nhhx/WI488Iklq0aJFkWMyaNAgLVmyRH369NELL7ygbdu2adq0adq/f79Wrlxp0/aXX35Rnz59FBUVpQEDBuiDDz7QwIED1aZNG91+++3Ffh+KUpz3ePz48Zo6daq6d++u7t27a9euXeratatNsVyYxx9/XPPnz9fatWv16KOPmvPPnj2rzz//XAMHDpSLi0uh6547d05dunTRkSNH9PzzzyswMFD//Oc/tWnTpus+1uK8n/a0dOlSSSqy2Lrvvvt0+vRpubu7Kzw8XDNmzFDDhg1LtU/DMNSrVy9t2bJFzz77rJo0aaKVK1eahU2+2rVr65133tGjjz6quXPn6vnnn1deXp4GDhyoatWq6e9///tV97N161ZJUuvWra9r/6+88ooaNWqkhQsXmpfl169f/7qOuU2bNnr77be1b98+NWvW7Lq2AdzIqJGokSRqpOtBjUSNVBFqpPx7a9WsWbPAMmokBzBwU4qMjDQ8PT2N3377zZz3008/GS4uLsaVH4vg4GBjwIAB5uuWLVsaPXr0uOr2o6OjC2zHMAzj0KFDhiTDy8vLOH78eKHLFi1aZM4bMGCAIckYOnSoOS8vL8/o0aOH4e7ubvzxxx+GYRjGV199ZUgyvvrqq2tus6i+GYZhSDImTJhgvo6MjDTc3d2NgwcPmvNSUlKMatWqGZ06dTLnLVq0yJBkhIWFGXl5eeb8ESNGGC4uLkZ6enqh+ytM//79DWdnZ2PHjh0FluVve/jw4YYk49tvvzWXnTp1yggJCTHq1q1rXLhwwTCMS+NSr1494+zZszbbyh/bMWPG2Mz/9ttvDUnG0qVLbebHxcUVmH/vvfca9957r/k6NzfXyMrKslnv5MmThp+fn/H000+b8/74448CY51vwoQJNu9PUlKSIckYNGiQTbsXX3zRkGRs2rTJnBccHGxIMjZv3mzOO378uOHh4WG88MILBfZ1NVd+7ov7Hh8/ftxwd3c3evToYdPu5ZdfNiTZbPPKz21eXp5xyy23GL1797bpy8cff1zguK4c+1mzZhmSjI8//ticd+bMGaNBgwYF/m1ceWxFbbO476dhFPy3U1K5ubmGn5+fceeddxZYtnz5cmPgwIHGkiVLjJUrVxrjxo0zKleubNSsWdM4cuRIifYzYMAAIzg42Hy9atUqQ5IRGxtr05eOHTsW+N1hGIbxxBNPGJUrVzZ+/vln46233jIkGatWrbrmfseNG2dIMk6dOmUzvyT7z/8MFva7IV9+nw4dOlRkm61btxqSjOXLl1+z38DNiBqJGoka6eqokaiRKmKNlC8qKspwcXExfv755wLLqJGsx1f2bkIXLlzQF198ocjISNWpU8ec36RJE4WHh19zfR8fH+3bt08HDhy47j707t3bvCS5OGJiYsyfnZycFBMTo+zsbH355ZfX3YdruXDhgjZs2KDIyEjVq1fPnB8QEKAnn3xSW7ZsUWZmps06Q4YMsbmUumPHjrpw4YJ+++23Yu0zLy9Pq1atUs+ePQv9Hnj+ttetW6c777xTHTp0MJdVrVpVQ4YM0eHDh/XTTz/ZrDdgwACbm/Zd7rnnnrN5vWLFCnl7e+uBBx7Q//3f/5lTmzZtVLVq1ateiuzi4mKeWczLy9OJEyeUm5urtm3bateuXcUagyvlP3515MiRNvNfeOEFSSpwCX7Tpk3VsWNH83WtWrXUqFEj/frrr9e1/ytd6z3+8ssvlZ2draFDh9q0Gz58+DW37eTkpEcffVTr1q3T6dOnzfnLly/XLbfcYvN+X2ndunUKCAhQnz59zHmVK1fWkCFDSnJ4Nsri/SzKxo0blZaWVuiZv8cee0yLFi1S//79FRkZqSlTpuiLL77Qn3/+afOkmeuxbt06ubq62vw7cHFx0dChQwttP2/ePHl7e6tPnz569dVX9dRTT6lXr17X3M+ff/4pV1fXAo9oL+n+7aF69eqSpP/7v/8rs30AFRU1UvFQI1EjFYYaiRqpvNdIy5Yt0z/+8Q+98MILhV5BRo1kPQKpm9Aff/yhc+fOFfqPsFGjRtdcf/LkyUpPT9dtt92m5s2ba9SoUdqzZ0+J+nDlUyCuxtnZ2abYkaTbbrtNkgp9tLm9/PHHHzp79myhY9KkSRPl5eXp6NGjNvMvL16lS7/UrnVfgcv3mZmZec1LRH/77bci+5W//HJFjberq6tuvfVWm3kHDhxQRkaGateurVq1atlMp0+fNm8aWJQlS5aoRYsW5r0zatWqpbVr1yojI+Oq6xXlt99+k7Ozsxo0aGAz39/fXz4+PgWO9cr3QLr4PhT3PbiWa73H+f258t9XrVq1zLZX8/jjj+vcuXNavXq1JOn06dNat26dHn300QL3jbjcb7/9pgYNGhRoU5x/01dj7/ezKEuXLpWLi8s17zOQr0OHDmrfvn2p/8P122+/KSAgoEARVNS4+fr6as6cOdqzZ4+8vb01Z84cS/dvD8b/vy/C1T5PwM2KGql4qJGokQpDjUSNVJ5rpG+//VZRUVEKDw8vMqyjRrIe95BCiXXq1EkHDx7UZ599pg0bNuj999/X22+/rQULFtg8qeBqijoTdb2K+qVRmhv7XY+ivrue/8vNUYoabw8PjwJPksnLy1Pt2rXN76pf6Wpnbf/1r39p4MCBioyM1KhRo1S7dm25uLho2rRpOnjw4PUfgIr/h6Gs34Oy3v5dd92lunXr6uOPP9aTTz6pzz//XOfOnSt2EVIcV/v3cvnxleX7eblz585p5cqVCgsLK9Y9WvIFBQUpOTnZbv0ori+++ELSxQL7f//7X7Eeq1yjRg3l5ubq1KlTJboBeVnI/49BYfdOAFA61EhFo0aiRiotaiRqpOv1ww8/6KGHHlKzZs30ySefFPm0Smok63GF1E2oVq1aqlSpUqGXkxf3F5evr6/++te/6t///reOHj2qFi1a2Dx5xZ6pcl5eXoFLiX/++WdJMp8EkX9W5cqnLhR2GXhx+1arVi1Vrly50DH573//K2dnZwUFBRVrW8VVq1YteXl56ccff7xqu+Dg4CL7lb/8etWvX19//vmn7rnnHoWFhRWYWrZsWeS6n3zyierVq6dPP/1UTz31lMLDwxUWFqbz58/btCvJ5yM4OFh5eXkFPq9paWlKT08v1bGWhfz+XNnfP/74o9hnIB977DHFxcUpMzNTy5cvV926dXXXXXddc78HDx4sUPQV9jmpXr16gX8rUsF/L8V9P0tr9erVOnXq1FWfHFOYX3/9tURfaylMcHCwjh07ZnP5v1T078K4uDi9//77Gj16tGrVqqUBAwYoNzf3mvtp3LixpItPkinN/u0hvw/5VwsAuIQaiRrpaqiRSocaqeSokUpfIx08eFARERGqXbu21q1bV+CKq8tRI1mPQOom5OLiovDwcK1atUpHjhwx5+/fv99Mta/mzz//tHldtWpVNWjQwObRqVWqVJFUsPi5XvPmzTN/NgxD8+bNk5ubm7p06SLp4i8sFxcXbd682Wa9wp7qUNy+ubi4qGvXrvrss89sLntPS0vTsmXL1KFDB3l5eV3nERXO2dlZkZGR+vzzz7Vz584Cy/P/kHbv3l3bt29XQkKCuezMmTNauHCh6tatq6ZNm153Hx577DFduHBBU6ZMKbAsNzf3quOWf+bo8j/427Zts+mnJPNJNcX5fHTv3l2SNGvWLJv5M2fOlCT16NHjmtuwUlhYmNzc3DR37lybcbiy/1fz+OOPKysrS0uWLFFcXJwee+yxa67TvXt3paSk6JNPPjHnnT17VgsXLizQtn79+vr+++9tnmizZs2aAl+vKO77WVrLli1T5cqVCzz5KF9hjwVft26dEhMTFRERUap9d+/eXbm5uXrnnXfMeRcuXNDcuXMLtE1PTzefnPX666/r/fff165du/T6669fcz+hoaGSVODfdUn2by+JiYny9va2yxOVgBsNNRI10tVQI5UONVLJUSOVrkZKTU1V165d5ezsrC+++OKaIR01kvX4yt5NatKkSYqLi1PHjh31t7/9Tbm5uZo7d65uv/32a97roGnTpurcubPatGkjX19f7dy5U5988onNTTXbtGkjSXr++ecVHh4uFxcX9e3b97r66unpqbi4OA0YMEDt27fX+vXrtXbtWr388svmLxVvb2/zUaNOTk6qX7++1qxZU+h3+UvSt6lTpyo+Pl4dOnTQ3/72N7m6uurdd99VVlaWYmNjr+t4ruX111/Xhg0bdO+992rIkCFq0qSJjh07phUrVmjLli3y8fHRmDFj9O9//1vdunXT888/L19fXy1ZskSHDh3Sf/7znwKXmJfEvffeq2eeeUbTpk1TUlKSunbtKjc3Nx04cEArVqzQ7NmzbW4KebkHH3xQn376qR5++GH16NFDhw4d0oIFC9S0aVObsxuVKlVS06ZNtXz5ct12223y9fVVs2bNCr0vRMuWLTVgwAAtXLhQ6enpuvfee7V9+3YtWbJEkZGRuu+++677WMtCrVq19OKLL2ratGl68MEH1b17d+3evVvr168v9uW/rVu3VoMGDfTKK68oKyurWJeiDx48WPPmzVP//v2VmJiogIAA/fOf/zQL28sNGjRIn3zyiSIiIvTYY4/p4MGD+te//lXgEbnFfT9L48SJE1q/fr169+5d5Bmru+++W61atVLbtm3l7e2tXbt26YMPPlBQUJBefvnlUu2/Z8+euueeezRmzBgdPnxYTZs21aefflro/R+GDRumP//8U19++aVcXFwUERGhQYMGaerUqerVq9dVz4zXq1dPzZo105dffqmnn376uvZflIyMDLM4++677yRd/A+qj4+PfHx8bH43S1J8fLx69uzJ/RGAIlAjUSMVhRqpdKiRSoYaqfQ1UkREhH799VeNHj1aW7Zs0ZYtW8xlfn5+euCBB2zaUyM5gLUP9UN58s033xht2rQx3N3djXr16hkLFiwo8DhZwyj4+NOpU6cad955p+Hj42NUqlTJaNy4sfHaa68Z2dnZZpvc3Fxj6NChRq1atQwnJydzm/mPGH7rrbcK9KeoRxpXqVLFOHjwoNG1a1ejcuXKhp+fnzFhwgTzsb35/vjjD6N3795G5cqVjerVqxvPPPOM8eOPPxbYZlF9M4zCH8u6a9cuIzw83KhatapRuXJl47777jO2bt1q06aoR40W9ajla/ntt9+M/v37G7Vq1TI8PDyMevXqGdHR0TaPlz148KDRp08fw8fHx/D09DTuvPNOY82aNYXuf8WKFQX2kT+2RVm4cKHRpk0bo1KlSka1atWM5s2bG6NHjzZSUlLMNlc+AjcvL894/fXXjeDgYMPDw8No1aqVsWbNmgKPkTWMi49Vzf/8XT7uhX0Gc3JyjEmTJhkhISGGm5ubERQUZIwdO9Y4f/68Tbvg4OBCH7d9ZT+Lo6hHGhfnPb5w4YIxadIkIyAgwKhUqZLRuXNn48cffyywzat9Pl555RVDktGgQYNC+1fYMf3222/GQw89ZD7ud9iwYeajqK/cx4wZM4xbbrnF8PDwMO655x5j586dpXo/C/u3UxwLFiwwJBmrV68uss0rr7xi3HHHHYa3t7fh5uZm1KlTx3juueeM1NTUEu+vsL7/+eefxlNPPWV4eXkZ3t7exlNPPWXs3r3b5nfHZ599ZkgyZsyYYbNuZmamERwcbLRs2dLmd2BhZs6caVStWrXA48WLs3/DKPozmP+7s7DpymPdv3+/Icn48ssvrz1YwE2MGokaiRqpaNRI1EgVpUYqqj6SVOAzQo3kGE6G4eA7CQIAcBPIyMhQvXr1FBsbq6ioKIf0Yfjw4dq8ebMSExM5+wcAAMoFaqSbF4EUAAAWefPNN7Vo0SL99NNPpfrayPX4888/FRwcrI8//ti87wgAAEB5QI10cyKQAixy+vTpa36nvFatWkU+Mhf2kZqaetXllSpVkre3t0W9ufFcuHCh0BtsXq5q1apXfcLJ9Thx4oTNDUiv5OLiUuqnzQAAygY1UvlAjVS2qJGAggikAItMnDhRkyZNumqbQ4cOmY9pRtm41iW4AwYM0OLFi63pzA3o8OHDCgkJuWqbCRMm2DwC3R46d+6sb775psjlwcHBNk+CAgCUH9RI5QM1UtmiRgIK4il7gEX69++vDh06XLWNv7+/Rb25ecXHx191eWBgoEU9uTH5+/tfc4zr1atn9/3OmDFDJ0+eLHJ5pUqV7L5PAIB9UCOVD9RIZYsaCSiIK6QAAAAAAABgKWvvFgYAAAAAAICb3k39lb28vDylpKSoWrVqPNoRAICbhGEYOnXqlAIDAy1/kk9FQY0EAMDNx+oa6aYOpFJSUhQUFOTobgAAAAc4evSobr31Vkd3o1yiRgIA4OZlVY10UwdS1apVk3RxsL28vBzcGwAAYIXMzEwFBQWZdQAKokYCAODmY3WNdFMHUvmXoHt5eVFsAQBwk+GraEWjRgIA4OZlVY3EjRMAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJa6qe8hBQDA1Vy4cEE5OTmO7gZKyM3NTS4uLo7uBgAANyxqpIqpvNVIBFIAAFzBMAylpqYqPT3d0V3BdfLx8ZG/vz83LgcAwI6okSq+8lQjEUgBAHCF/EKrdu3aqly5crn4g43iMQxDZ8+e1fHjxyVJAQEBDu4RAAA3Dmqkiqs81kgEUgAAXObChQtmoVWjRg1HdwfXoVKlSpKk48ePq3bt2uXq0nQAACoqaqSKr7zVSNzUHACAy+TfD6Fy5coO7glKI//94/4WAADYBzXSjaE81UgEUgAAFIJL0Cs23j8AAMoGf2MrtvL0/hFIAQAAAAAAwFIEUgAAAAAAALAUNzUHAKCYcuK2WLYvt4gOxW57rUuvJ0yYoIkTJ5ayR9fHyclJK1euVGRk5HVvY+HChVq2bJl27dqlU6dO6eTJk/Lx8bFbHwEAQOlYWSNJ1En5Tpw4oQkTJmjDhg06cuSIatWqpcjISE2ZMkXe3t727WwZIJACAKCCO3bsmPnz8uXLNX78eCUnJ5vzqlatWqLtZWdny93d3W79K62zZ88qIiJCERERGjt2rKO7AwAAKpAbuU5KSUlRSkqKpk+frqZNm+q3337Ts88+q5SUFH3yySeO7t418ZU9VCg5cVtsJgCA5O/vb07e3t5ycnIyX585c0b9+vWTn5+fqlatqnbt2unLL7+0Wb9u3bqaMmWK+vfvLy8vLw0ZMkSS9N577ykoKEiVK1fWww8/rJkzZxa4Mumzzz5T69at5enpqXr16mnSpEnKzc01tytJDz/8sJycnMzXP/zwg+677z5Vq1ZNXl5eatOmjXbu3Fnk8Q0fPlxjxozRXXfdZZ8BAyqwK2sh6iEAuLobuU5q1qyZ/vOf/6hnz56qX7++7r//fr322mv6/PPPzf2UZwRSAADcwE6fPq3u3btr48aN2r17tyIiItSzZ08dOXLEpt306dPVsmVL7d69W6+++qq+++47Pfvssxo2bJiSkpL0wAMP6LXXXrNZ59tvv1X//v01bNgw/fTTT3r33Xe1ePFis92OHTskSYsWLdKxY8fM1/369dOtt96qHTt2KDExUWPGjJGbm5sFowEAAHDJjVgnZWRkyMvLS66u5f8LceW/hwAA4Lq1bNlSLVu2NF9PmTJFK1eu1OrVqxUTE2POv//++/XCCy+Yr1955RV169ZNL774oiTptttu09atW7VmzRqzzaRJkzRmzBgNGDBAklSvXj1NmTJFo0eP1oQJE1SrVi1Jko+Pj/z9/c31jhw5olGjRqlx48aSpIYNG5bBkQMAAFzdjVYn/d///Z+mTJliXsVV3nGFFAAAN7DTp0/rxRdfVJMmTeTj46OqVatq//79Bc78tW3b1uZ1cnKy7rzzTpt5V77+4YcfNHnyZFWtWtWcBg8erGPHjuns2bNF9mnkyJEaNGiQwsLC9MYbb+jgwYOlPEoAAICSu5HqpMzMTPXo0UNNmzZ12E3aS4pACgCAG9iLL76olStX6vXXX9e3336rpKQkNW/eXNnZ2TbtqlSpUuJtnz59WpMmTVJSUpI57d27VwcOHJCnp2eR602cOFH79u1Tjx49tGnTJjVt2lQrV64s8f4BAABK40apk06dOqWIiAhVq1ZNK1eurDC3QuArewAA3MC+++47DRw4UA8//LCki8XR4cOHr7leo0aNzHsZ5LvydevWrZWcnKwGDRoUuR03NzdduHChwPzbbrtNt912m0aMGKEnnnhCixYtMvsIAABghRuhTsrMzFR4eLg8PDy0evXqq4Zd5Q2BFAAAN7CGDRvq008/Vc+ePeXk5KRXX31VeXl511xv6NCh6tSpk2bOnKmePXtq06ZNWr9+vZycnMw248eP14MPPqg6deqoT58+cnZ21g8//KAff/xRU6dOlXTxCTIbN27UPffcIw8PD3l6emrUqFHq06ePQkJC9L///U87duxQ7969i+xLamqqUlNT9csvv0iS9u7dq2rVqqlOnTry9fUt5QgBAICbVUWvkzIzM9W1a1edPXtW//rXv5SZmanMzExJUq1ateTi4mKHUSo7fGUPAIAb2MyZM1W9enXdfffd6tmzp8LDw9W6detrrnfPPfdowYIFmjlzplq2bKm4uDiNGDHC5qxbeHi41qxZow0bNqhdu3a666679Pbbbys4ONhsM2PGDMXHxysoKEitWrWSi4uL/vzzT/Xv31+33XabHnvsMXXr1k2TJk0qsi8LFixQq1atNHjwYElSp06d1KpVK61evboUIwMAAG52Fb1O2rVrl7Zt26a9e/eqQYMGCggIMKejR4+WfoDKmJNhGIajO+EomZmZ8vb2Nh+LiPIvJ26LzWu3iA4O6gmAG9X58+d16NAhhYSEVKhLnq0wePBg/fe//9W3337r6K5c09XeR/7+XxtjVH5dWQtJ1EMArEGNdHUVpU4qTzUSX9kDAACFmj59uh544AFVqVJF69ev15IlS/T3v//d0d0CAABwOOqk0iOQAgAAhdq+fbtiY2N16tQp1atXT3PmzNGgQYMc3S0AAACHo04qPQIpAABQqI8//tjRXQAAACiXqJNKj5uaAwAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALBUiQOpzZs3q2fPngoMDJSTk5NWrVplLsvJydFLL72k5s2bq0qVKgoMDFT//v2VkpJis40TJ06oX79+8vLyko+Pj6KionT69GmbNnv27FHHjh3l6empoKAgxcbGFujLihUr1LhxY3l6eqp58+Zat25dSQ8HAAAAAAAAFnMt6QpnzpxRy5Yt9fTTT+uRRx6xWXb27Fnt2rVLr776qlq2bKmTJ09q2LBheuihh7Rz506zXb9+/XTs2DHFx8crJydHf/3rXzVkyBAtW7ZMkpSZmamuXbsqLCxMCxYs0N69e/X000/Lx8dHQ4YMkSRt3bpVTzzxhKZNm6YHH3xQy5YtU2RkpHbt2qVmzZqVZkwAACjUwZ3vWrav+m2fKVH7gQMHasmSJZIkV1dX+fr6qkWLFnriiSc0cOBAOTtX3Iui9+3bp/HjxysxMVG//fab3n77bQ0fPtzR3Spg8+bNeuutt5SYmKhjx45p5cqVioyMlHTxpN24ceO0bt06/frrr/L29lZYWJjeeOMNBQYGmts4ceKEhg4dqs8//1zOzs7q3bu3Zs+erapVq5pt9uzZo+joaO3YsUO1atXS0KFDNXr0aJu+rFixQq+++qoOHz6shg0b6s0331T37t0tGQcAwM3HyhpJok663HvvvacPP/xQP/74oySpTZs2ev3113XnnXc6uGfXVuJR79atm6ZOnaqHH364wDJvb2/Fx8frscceU6NGjXTXXXdp3rx5SkxM1JEjRyRJ+/fvV1xcnN5//321b99eHTp00Ny5c/XRRx+ZV1ItXbpU2dnZ+uCDD3T77berb9++ev755zVz5kxzX7Nnz1ZERIRGjRqlJk2aaMqUKWrdurXmzZt3vWMBAECFFhERoWPHjunw4cNav3697rvvPg0bNkwPPvigcnNzHd2963b27FnVq1dPb7zxhvz9/R3dnSLln7SbP39+gWWXn7TbtWuXPv30UyUnJ+uhhx6yadevXz/t27dP8fHxWrNmjTZv3myejJMunbQLDg5WYmKi3nrrLU2cOFELFy402+SftIuKitLu3bsVGRmpyMhIs1AFAOBmdKPWSV9//bWeeOIJffXVV0pISFBQUJC6du2q33//3dFdu6YyjwEzMjLk5OQkHx8fSVJCQoJ8fHzUtm1bs01YWJicnZ21bds2s02nTp3k7u5utgkPD1dycrJOnjxptgkLC7PZV3h4uBISEsr4iAAAKJ88PDzk7++vW265Ra1bt9bLL7+szz77TOvXr9fixYvNdunp6Ro0aJBq1aolLy8v3X///frhhx9stvX555+rXbt28vT0VM2aNW1ORJ08eVL9+/dX9erVVblyZXXr1k0HDhyQdDGU8fLy0ieffGKzvVWrVqlKlSo6deqUsrOzFRMTo4CAAHl6eio4OFjTpk0r8rjatWunt956S3379pWHh4cdRqpscNIOAIDy60atk5YuXaq//e1vuuOOO9S4cWO9//77ysvL08aNG+0wamWrTAOp8+fP66WXXtITTzwhLy8vSVJqaqpq165t0y7/krnU1FSzjZ+fn02b/NfXapO/vDBZWVnKzMy0mQAAuJHdf//9atmypT799FNz3qOPPqrjx49r/fr1SkxMVOvWrdWlSxedOHFCkrR27Vo9/PDD6t69u3bv3q2NGzfaXPY9cOBA7dy5U6tXr1ZCQoIMw1D37t2Vk5OjKlWqqG/fvlq0aJFNPxYtWqQ+ffqoWrVqmjNnjlavXq2PP/5YycnJWrp0qerWrWvJeJQnnLQDAMCxbsQ66ezZs8rJyZGvr2/pBscCJb6HVHHl5OTosccek2EYeuedd8pqNyUybdo0TZo0ydHdAADAUo0bN9aePXskSVu2bNH27dt1/Phx82qj6dOna9WqVfrkk080ZMgQvfbaa+rbt6/N38yWLVtKkg4cOKDVq1fru+++09133y3p4pm5oKAgrVq1So8++qgGDRqku+++W8eOHVNAQICOHz+udevW6csvv5QkHTlyRA0bNlSHDh3k5OSk4OBgK4ejXCjNSbuQkBCbNpeftKtevfp1n7TLysoyX3PSDgBws7jR6qSXXnpJgYGBBU5OlUdlcoVUfhj122+/KT4+3iy0JMnf31/Hjx+3aZ+bm6sTJ06Y94Xw9/dXWlqaTZv819dqc7V7S4wdO1YZGRnmdPTo0es/SAAAKgjDMOTk5CRJ+uGHH3T69GnVqFFDVatWNadDhw7p4MGDkqSkpCR16dKl0G3t379frq6uat++vTmvRo0aatSokfbv3y9JuvPOO3X77bebNw/917/+peDgYHXq1EnSxTOHSUlJatSokZ5//nlt2LChzI69PCqvJ+28vb3NKSgoyNFdAgDAEjdSnfTGG2/oo48+0sqVK+Xp6VnywbCY3QOp/CLrwIED+vLLL1WjRg2b5aGhoUpPT1diYqI5b9OmTcrLyzPftNDQUG3evFk5OTlmm/j4eDVq1EjVq1c321z5ncj4+HiFhoYW2TcPDw95eXnZTAAA3Oj2799vXlVz+vRpBQQEKCkpyWZKTk7WqFGjJEmVKlUq9T4HDRpk3o9h0aJF+utf/2oWe61bt9ahQ4c0ZcoUnTt3To899pj69OlT6n1WBJy0AwCgfLlR6qTp06frjTfe0IYNG9SiRYtS99EKJQ6kTp8+bb4pknTo0CElJSXpyJEjysnJUZ8+fbRz504tXbpUFy5cUGpqqlJTU5WdnS1JatKkiSIiIjR48GBt375d3333nWJiYtS3b1/zscdPPvmk3N3dFRUVpX379mn58uWaPXu2Ro4cafZj2LBhiouL04wZM/Tf//5XEydO1M6dOxUTE2OHYQEA4MawadMm7d27V71795Z0schJTU2Vq6urGjRoYDPVrFlTktSiRYsib4TZpEkT5ebmmvc0kqQ///xTycnJatq0qTnvL3/5i3777TfNmTNHP/30kwYMGGCzHS8vLz3++ON67733tHz5cv3nP/8x781wo+KkHQAA5cuNUifFxsZqypQpiouLs7kXZXlX4ntI7dy5U/fdd5/5Oj8kGjBggCZOnKjVq1dLku644w6b9b766it17txZ0sXvUMbExKhLly5ydnZW7969NWfOHLOtt7e3NmzYoOjoaLVp00Y1a9bU+PHjbR57fPfdd2vZsmUaN26cXn75ZTVs2FCrVq1Ss2bNSnpIAADcELKyspSamqoLFy4oLS1NcXFxmjZtmh588EH1799f0sWbZIeGhioyMlKxsbG67bbblJKSYt6gs23btpowYYK6dOmi+vXrq2/fvsrNzdW6dev00ksvqWHDhurVq5cGDx6sd999V9WqVdOYMWN0yy23qFevXmZfqlevrkceeUSjRo1S165ddeutt5rLZs6cqYCAALVq1UrOzs5asWKF/P39zZt7Xyk7O1s//fST+fPvv/+upKQkVa1aVQ0aNCi7AS2h06dP65dffjFf55+08/X1VUBAgPr06aNdu3ZpzZo15kk7SfL19ZW7u7vNSbsFCxYoJyen0JN2kyZNUlRUlF566SX9+OOPmj17tt5++21zv8OGDdO9996rGTNmqEePHvroo4+0c+dOLVy40NoBAQCgHLlR66Q333xT48eP17Jly1S3bl2zvsj/umF5VuJAqnPnzjIMo8jlV1uWz9fXV8uWLbtqmxYtWujbb7+9aptHH31Ujz766DX3BwDAzSAuLk4BAQFydXVV9erV1bJlS82ZM0cDBgyQs/PFi6KdnJy0bt06vfLKK/rrX/+qP/74Q/7+/urUqZN5I+zOnTtrxYoVmjJlit544w15eXmZ9zWQLl5aPmzYMD344IPKzs5Wp06dtG7dOrm5udn0JyoqSsuWLdPTTz9tM79atWqKjY3VgQMH5OLionbt2mndunVmH6+UkpKiVq1ama+nT5+u6dOn695779XXX39tj6GzC07aAQBQft2oddI777yj7OzsAl/rmzBhgiZOnFjaYStTTkZxEqQbVGZmpry9vZWRkcGl6RVETtwWm9duER0c1BMAN6rz58/r0KFDCgkJqRA3gyzP/vnPf2rEiBFKSUmRu7u7pfu+2vvI3/9rY4zKrytrIYl6CIA1qJHsy1F1UnmqkUp8hRQAAMDVnD17VseOHdMbb7yhZ555xvIwCgAAoLyiTrrE7k/ZAwAAN7fY2Fg1btxY/v7+Gjt2rKO7AwAAUG5QJ11CIAUAAOxq4sSJysnJ0caNG8v9zTQBAACsRJ10CYEUAAAAAAAALEUgBQAAAAAAAEsRSAEAUIi8vDxHdwGlwPsHAEDZ4G9sxVae3j+esgcAwGXc3d3l7OyslJQU1apVS+7u7nJycnJ0t1BMhmEoOztbf/zxh5ydnW/qJ9cAAGBP1EgVW3mskQikAAC4jLOzs0JCQnTs2DGlpKQ4uju4TpUrV1adOnXk7MzF4AAA2AM10o2hPNVIBFIAAFzB3d1dderUUW5uri5cuODo7qCEXFxc5OrqyllbAADsjBqpYitvNRKBFAAAhXBycpKbm5vc3Nwc3RUAAIBygxoJ9uL4a7QAAAAAAABwUyGQAgAAAAAAgKX4yh4qnMPp682fnXfuU/22zziwNwAAAAAAoKQIpAAAAIAK4ODOd5WXfkSSVNenm4N7AwBA6fCVPQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApbiHFAAAAHCDy4nbYvPaLaKDg3oCAMBFXCEFAAAAAAAASxFIAQAAAAAAwFJ8ZQ83nSsvWZe4bB0AAAAAACtxhRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS5U4kNq8ebN69uypwMBAOTk5adWqVTbLDcPQ+PHjFRAQoEqVKiksLEwHDhywaXPixAn169dPXl5e8vHxUVRUlE6fPm3TZs+ePerYsaM8PT0VFBSk2NjYAn1ZsWKFGjduLE9PTzVv3lzr1q0r6eEAAAAAAADAYiUOpM6cOaOWLVtq/vz5hS6PjY3VnDlztGDBAm3btk1VqlRReHi4zp8/b7bp16+f9u3bp/j4eK1Zs0abN2/WkCFDzOWZmZnq2rWrgoODlZiYqLfeeksTJ07UwoULzTZbt27VE088oaioKO3evVuRkZGKjIzUjz/+WNJDAgAAKDVO2gEAABRfiQOpbt26aerUqXr44YcLLDMMQ7NmzdK4cePUq1cvtWjRQh9++KFSUlLMomz//v2Ki4vT+++/r/bt26tDhw6aO3euPvroI6WkpEiSli5dquzsbH3wwQe6/fbb1bdvXz3//POaOXOmua/Zs2crIiJCo0aNUpMmTTRlyhS1bt1a8+bNu86hAAAAuH6ctAMAACg+u95D6tChQ0pNTVVYWJg5z9vbW+3bt1dCQoIkKSEhQT4+Pmrbtq3ZJiwsTM7Oztq2bZvZplOnTnJ3dzfbhIeHKzk5WSdPnjTbXL6f/Db5+wEAALASJ+0AAACKz66BVGpqqiTJz8/PZr6fn5+5LDU1VbVr17ZZ7urqKl9fX5s2hW3j8n0U1SZ/eWGysrKUmZlpMwEAAJQ1TtoBAADYuqmesjdt2jR5e3ubU1BQkKO7BAAAbgKctAMAALBl10DK399fkpSWlmYzPy0tzVzm7++v48eP2yzPzc3ViRMnbNoUto3L91FUm/zlhRk7dqwyMjLM6ejRoyU9RAAAgBsOJ+0AAIDV7BpIhYSEyN/fXxs3bjTnZWZmatu2bQoNDZUkhYaGKj09XYmJiWabTZs2KS8vT+3btzfbbN68WTk5OWab+Ph4NWrUSNWrVzfbXL6f/Db5+ymMh4eHvLy8bCYAAICyxkk7AAAAWyUOpE6fPq2kpCQlJSVJunhPhKSkJB05ckROTk4aPny4pk6dqtWrV2vv3r3q37+/AgMDFRkZKUlq0qSJIiIiNHjwYG3fvl3fffedYmJi1LdvXwUGBkqSnnzySbm7uysqKkr79u3T8uXLNXv2bI0cOdLsx7BhwxQXF6cZM2bov//9ryZOnKidO3cqJiam9KMCAABgR5y0AwAAsFXiQGrnzp1q1aqVWrVqJUkaOXKkWrVqpfHjx0uSRo8eraFDh2rIkCFq166dTp8+rbi4OHl6eprbWLp0qRo3bqwuXbqoe/fu6tChg83jir29vbVhwwYdOnRIbdq00QsvvKDx48fbPPb47rvv1rJly7Rw4UK1bNlSn3zyiVatWqVmzZpd92AAAABcL07aAQAAFJ+TYRiGozvhKJmZmfL29lZGRgZnAiuInLgtOpy+3nzt3KCO6rd9psTbuJJbRIdS9w0AUDGU1d//r7/+Wvfdd1+B+QMGDNDixYtlGIYmTJighQsXKj09XR06dNDf//533XbbbWbbEydOKCYmRp9//rmcnZ3Vu3dvzZkzR1WrVjXb7NmzR9HR0dqxY4dq1qypoUOH6qWXXrLZ54oVKzRu3DgdPnxYDRs2VGxsrLp3717sY6FGKp8O7nxXeb8ckSTV9elmzi9OHXNl/UPtAwC4ktV//13LfA8AAAA3gc6dO+tq5/mcnJw0efJkTZ48ucg2vr6+WrZs2VX306JFC3377bdXbfPoo4/q0UcfvXqHAQAAHMiuNzUHAAAAAAAAroVACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClXB3dAcARDqevt3ndUB0c1BMAAAAAAG4+BFIAAADATSL/pJzzzn2q3/YZB/cGAHAz4yt7AAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxl90DqwoULevXVVxUSEqJKlSqpfv36mjJligzDMNsYhqHx48crICBAlSpVUlhYmA4cOGCznRMnTqhfv37y8vKSj4+PoqKidPr0aZs2e/bsUceOHeXp6amgoCDFxsba+3AAAAAAAABgZ3YPpN5880298847mjdvnvbv368333xTsbGxmjt3rtkmNjZWc+bM0YIFC7Rt2zZVqVJF4eHhOn/+vNmmX79+2rdvn+Lj47VmzRpt3rxZQ4YMMZdnZmaqa9euCg4OVmJiot566y1NnDhRCxcutPchAQAAlBon7QAAAC6xeyC1detW9erVSz169FDdunXVp08fde3aVdu3b5d0sdCaNWuWxo0bp169eqlFixb68MMPlZKSolWrVkmS9u/fr7i4OL3//vtq3769OnTooLlz5+qjjz5SSkqKJGnp0qXKzs7WBx98oNtvv119+/bV888/r5kzZ9r7kAAAAEqNk3YAAACX2D2Quvvuu7Vx40b9/PPPkqQffvhBW7ZsUbdu3SRJhw4dUmpqqsLCwsx1vL291b59eyUkJEiSEhIS5OPjo7Zt25ptwsLC5OzsrG3btpltOnXqJHd3d7NNeHi4kpOTdfLkSXsfFgAAQKlw0g4AAOASuwdSY8aMUd++fdW4cWO5ubmpVatWGj58uPr16ydJSk1NlST5+fnZrOfn52cuS01NVe3atW2Wu7q6ytfX16ZNYdu4fB9XysrKUmZmps0EAABgBU7aAQAAXOJq7w1+/PHHWrp0qZYtW6bbb79dSUlJGj58uAIDAzVgwAB7765Epk2bpkmTJjm0DwAA4OY0ZswYZWZmqnHjxnJxcdGFCxf02muvlclJu5CQkALbyF9WvXr1An3LyspSVlaW+ZqTdgAAoKzZ/QqpUaNGmVdJNW/eXE899ZRGjBihadOmSZL8/f0lSWlpaTbrpaWlmcv8/f11/Phxm+W5ubk6ceKETZvCtnH5Pq40duxYZWRkmNPRo0dLebQAAADFc/lJu127dmnJkiWaPn26lixZ4uiuadq0afL29janoKAgR3cJAADc4OweSJ09e1bOzrabdXFxUV5eniQpJCRE/v7+2rhxo7k8MzNT27ZtU2hoqCQpNDRU6enpSkxMNNts2rRJeXl5at++vdlm8+bNysnJMdvEx8erUaNGhZ75kyQPDw95eXnZTLBGTtwWmwkAgJsNJ+0AAAAusXsg1bNnT7322mtau3atDh8+rJUrV2rmzJl6+OGHJUlOTk4aPny4pk6dqtWrV2vv3r3q37+/AgMDFRkZKUlq0qSJIiIiNHjwYG3fvl3fffedYmJi1LdvXwUGBkqSnnzySbm7uysqKkr79u3T8uXLNXv2bI0cOdLehwQAAFBqnLQDAAC4xO73kJo7d65effVV/e1vf9Px48cVGBioZ555RuPHjzfbjB49WmfOnNGQIUOUnp6uDh06KC4uTp6enmabpUuXKiYmRl26dJGzs7N69+6tOXPmmMu9vb21YcMGRUdHq02bNqpZs6bGjx9v89hjAACA8iL/pF2dOnV0++23a/fu3Zo5c6aefvppSbYn7Ro2bKiQkBC9+uqrRZ60W7BggXJycgo9aTdp0iRFRUXppZde0o8//qjZs2fr7bffdtShAwAAFGD3QKpatWqaNWuWZs2aVWQbJycnTZ48WZMnTy6yja+vr5YtW3bVfbVo0ULffvvt9XYVAADAMpy0u7kVdssCt4gODugJAADlg90DKQAAABTESTsAAIBL7H4PKQAAAAAAAOBqCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClXB3dAdxcDqevlyQ579yn+m2fcXBvAAAArEc9BAAAV0gBAAAAAADAYgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsFSZBFK///67/vKXv6hGjRqqVKmSmjdvrp07d5rLDcPQ+PHjFRAQoEqVKiksLEwHDhyw2caJEyfUr18/eXl5ycfHR1FRUTp9+rRNmz179qhjx47y9PRUUFCQYmNjy+JwAAAA7IIaCQAA4CK7B1InT57UPffcIzc3N61fv14//fSTZsyYoerVq5ttYmNjNWfOHC1YsEDbtm1TlSpVFB4ervPnz5tt+vXrp3379ik+Pl5r1qzR5s2bNWTIEHN5ZmamunbtquDgYCUmJuqtt97SxIkTtXDhQnsfEgAAQKlRIwEAAFziau8NvvnmmwoKCtKiRYvMeSEhIebPhmFo1qxZGjdunHr16iVJ+vDDD+Xn56dVq1apb9++2r9/v+Li4rRjxw61bdtWkjR37lx1795d06dPV2BgoJYuXars7Gx98MEHcnd31+23366kpCTNnDnTpigDykpO3JYC89wiOjigJwCAioAaCQAA4BK7XyG1evVqtW3bVo8++qhq166tVq1a6b333jOXHzp0SKmpqQoLCzPneXt7q3379kpISJAkJSQkyMfHxyy0JCksLEzOzs7atm2b2aZTp05yd3c324SHhys5OVknT54stG9ZWVnKzMy0mQAAAKxAjYQbQU7cFpsJAIDrZfdA6tdff9U777yjhg0b6osvvtBzzz2n559/XkuWLJEkpaamSpL8/Pxs1vPz8zOXpaamqnbt2jbLXV1d5evra9OmsG1cvo8rTZs2Td7e3uYUFBRUyqMFAAAoHmokAACAS+weSOXl5al169Z6/fXX1apVKw0ZMkSDBw/WggUL7L2rEhs7dqwyMjLM6ejRo47uEgAAuElQIwEAAFxi90AqICBATZs2tZnXpEkTHTlyRJLk7+8vSUpLS7Npk5aWZi7z9/fX8ePHbZbn5ubqxIkTNm0K28bl+7iSh4eHvLy8bCYAAAArUCMBAABcYvdA6p577lFycrLNvJ9//lnBwcGSLt6809/fXxs3bjSXZ2Zmatu2bQoNDZUkhYaGKj09XYmJiWabTZs2KS8vT+3btzfbbN68WTk5OWab+Ph4NWrUyOZpNQAAAOUBNRIAAMAldg+kRowYoe+//16vv/66fvnlFy1btkwLFy5UdHS0JMnJyUnDhw/X1KlTtXr1au3du1f9+/dXYGCgIiMjJV08WxgREaHBgwdr+/bt+u677xQTE6O+ffsqMDBQkvTkk0/K3d1dUVFR2rdvn5YvX67Zs2dr5MiR9j4kAACAUqNGAgAAuMTV3hts166dVq5cqbFjx2ry5MkKCQnRrFmz1K9fP7PN6NGjdebMGQ0ZMkTp6enq0KGD4uLi5OnpabZZunSpYmJi1KVLFzk7O6t3796aM2eOudzb21sbNmxQdHS02rRpo5o1a2r8+PE8zhgAAJRL1EgAAACX2D2QkqQHH3xQDz74YJHLnZycNHnyZE2ePLnINr6+vlq2bNlV99OiRQt9++23191PAAAAK1EjAQAAXGT3r+wBAAAAAAAAV0MgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOXq6A4AFdnh9PXmz3V9ujmwJwAAAAAAVBwEUgAAAACu6eDOd5WXfkQSJ+IAAKXHV/YAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqTIPpN544w05OTlp+PDh5rzz588rOjpaNWrUUNWqVdW7d2+lpaXZrHfkyBH16NFDlStXVu3atTVq1Cjl5ubatPn666/VunVreXh4qEGDBlq8eHFZHw4AAIBdUCMBAICbWZkGUjt27NC7776rFi1a2MwfMWKEPv/8c61YsULffPONUlJS9Mgjj5jLL1y4oB49eig7O1tbt27VkiVLtHjxYo0fP95sc+jQIfXo0UP33XefkpKSNHz4cA0aNEhffPFFWR4SAABAqVEjAQCAm12ZBVKnT59Wv3799N5776l69erm/IyMDP3jH//QzJkzdf/996tNmzZatGiRtm7dqu+//16StGHDBv3000/617/+pTvuuEPdunXTlClTNH/+fGVnZ0uSFixYoJCQEM2YMUNNmjRRTEyM+vTpo7fffrusDgkAAKDUqJEAAADKMJCKjo5Wjx49FBYWZjM/MTFROTk5NvMbN26sOnXqKCEhQZKUkJCg5s2by8/Pz2wTHh6uzMxM7du3z2xz5bbDw8PNbRQmKytLmZmZNhMAAICVqJEAAAAk17LY6EcffaRdu3Zpx44dBZalpqbK3d1dPj4+NvP9/PyUmppqtrm80Mpfnr/sam0yMzN17tw5VapUqcC+p02bpkmTJl33cQEAAJQGNRIAAMBFdr9C6ujRoxo2bJiWLl0qT09Pe2++VMaOHauMjAxzOnr0qKO7BAAAbhLUSAAAAJfYPZBKTEzU8ePH1bp1a7m6usrV1VXffPON5syZI1dXV/n5+Sk7O1vp6ek266Wlpcnf31+S5O/vX+CJMvmvr9XGy8ur0DN/kuTh4SEvLy+bCQAAwArUSAAAAJfYPZDq0qWL9u7dq6SkJHNq27at+vXrZ/7s5uamjRs3muskJyfryJEjCg0NlSSFhoZq7969On78uNkmPj5eXl5eatq0qdnm8m3kt8nfBgAAQHlCjQQAAHCJ3e8hVa1aNTVr1sxmXpUqVVSjRg1zflRUlEaOHClfX195eXlp6NChCg0N1V133SVJ6tq1q5o2baqnnnpKsbGxSk1N1bhx4xQdHS0PDw9J0rPPPqt58+Zp9OjRevrpp7Vp0yZ9/PHHWrt2rb0PCQAAoNSokQAAAC4pk5uaX8vbb78tZ2dn9e7dW1lZWQoPD9ff//53c7mLi4vWrFmj5557TqGhoapSpYoGDBigyZMnm21CQkK0du1ajRgxQrNnz9att96q999/X+Hh4Y44JAAAgFKjRgIAADcLSwKpr7/+2ua1p6en5s+fr/nz5xe5TnBwsNatW3fV7Xbu3Fm7d++2RxcBAAAsR40EAABuVna/hxQAAAAAAABwNQRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLuTq6A8DNJidui81rt4gODuoJAAAAAACOQSAFAAAAwFKcoAMA8JU9AAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJayeyA1bdo0tWvXTtWqVVPt2rUVGRmp5ORkmzbnz59XdHS0atSooapVq6p3795KS0uzaXPkyBH1+H/s3XlcVnX6//E3IJsLIIogqUhq7porUoqWDLjUhFtZllou1aCllluZilqWmprpZNakTqNlNmllSpJrJrmg5JLDmONWivZVAVcWOb8/+nHyFlTWc7O8no/HeeR9zuf+nOt87sN9X11n695d5cuXV7Vq1TR69GhlZGTYtNm8ebNatmwpV1dX1a1bV0uWLCnszQEAACgU5EgAAAB/KvSC1JYtWxQZGakff/xRMTExSk9PV1hYmC5fvmy2GTlypL7++mutXLlSW7Zs0alTp9SzZ09z+fXr19W9e3elpaVp+/btWrp0qZYsWaKJEyeabY4eParu3bvrgQceUHx8vEaMGKHBgwfr22+/LexNAgAAKDByJAAAgD+VK+wOo6OjbV4vWbJE1apVU1xcnEJCQpScnKx//OMfWr58uR588EFJ0uLFi9WwYUP9+OOPateundavX6+ff/5Z3333nXx9fXXvvfdq6tSpGjt2rCZPniwXFxctXLhQgYGBevvttyVJDRs21LZt2zRnzhyFh4cX9mYBAAAUCDkSAADAn4r8HlLJycmSJG9vb0lSXFyc0tPTFRoaarZp0KCBatWqpdjYWElSbGysmjZtKl9fX7NNeHi4UlJSdPDgQbPNjX1ktcnqIyepqalKSUmxmQAAAOyBHAkAAJRlRVqQyszM1IgRI3T//ferSZMmkqTExES5uLjIy8vLpq2vr68SExPNNjcmWlnLs5bdrk1KSoquXr2aYzzTp0+Xp6enOdWsWbPA2wgAAJBX5EgAAKCsK9KCVGRkpA4cOKBPP/20KFeTa+PHj1dycrI5nTx50t4hAQCAMogcCQAAlHWFfg+pLMOGDdOaNWu0detW1ahRw5zv5+entLQ0JSUl2RwBPHPmjPz8/Mw2O3futOkv6wkzN7a5+akzZ86ckYeHh9zd3XOMydXVVa6urgXeNgAAgPwiRwIAACiCM6QMw9CwYcO0atUqbdy4UYGBgTbLW7VqJWdnZ23YsMGcl5CQoBMnTig4OFiSFBwcrP379+vs2bNmm5iYGHl4eKhRo0Zmmxv7yGqT1QcAAEBxQo4EAADwp0I/QyoyMlLLly/Xl19+qUqVKpn3M/D09JS7u7s8PT01aNAgjRo1St7e3vLw8NDw4cMVHBysdu3aSZLCwsLUqFEjPfXUU5oxY4YSExM1YcIERUZGmkfvnnvuOc2fP19jxozRM888o40bN+qzzz7TN998U9ibBAAAUGDkSAAAAH8q9DOk3nvvPSUnJ6tTp06qXr26Oa1YscJsM2fOHD300EPq1auXQkJC5Ofnpy+++MJc7uTkpDVr1sjJyUnBwcF68skn1b9/f02ZMsVsExgYqG+++UYxMTFq3ry53n77bX344Yc8zhgAABRL5EgAAAB/KvQzpAzDuGMbNzc3LViwQAsWLLhlm4CAAK1du/a2/XTq1El79+7Nc4wAAABWI0cCAAD4U5E+ZQ8AAAAAAAC4WZE9ZQ9A7hzZ/b757zqtn7VjJAAAAEUrK+/JTDqh2l5d7RwNAMCeOEMKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAICluIcUUEKlR2+zee3cpb2dIgEAACh6N+c+EvkPAJRknCEFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiqnL0DAAAAAEqS9OhtNq+du7S3UyQAAJRcFKRwWyRcAAAAAACgsHHJHgAAAAAAACxFQQoAAAAAAACW4pI95NqxpHVy3H1QklSn9bN2jgYAAMBaR3a/L0nKTDqh2l5d7RwNAAAlG2dIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFPeQAsq49OhtNq+du7S3UyQAAAAAgLKCghQAAACAMuPmg3ESB+QAwB64ZA8AAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsFQ5ewcAoOCOJa2T4+6D5us6rZ+1PIabH6HM45MBAEBROZa0TpJUT9bkGzfnORK5DgAUFGdIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFPeQAlCscC8qAABQWnEvKgD4E2dIAQAAAAAAwFKcIQUAAAAAxRhnkAMojShIASh1OB0eAAAAAIq3En/J3oIFC1S7dm25ubkpKChIO3futHdIQIl0LGmdjiWt05Hd7+vI7vftHU6xkB69LdsEACUFORKQ3ZHd75s5T1lEXgOgOCnRZ0itWLFCo0aN0sKFCxUUFKS5c+cqPDxcCQkJqlatmr3Ds6sbf2COJa2TY91a5us6rZ+1R0gAAMAi5Eg5y8qPsooRjnVrkRcB+cAlhAAKQ4kuSM2ePVtDhgzR008/LUlauHChvvnmG3300UcaN26cnaMDUFYVVpJW3PoBUHKQIwEobrilAoCbldiCVFpamuLi4jR+/HhznqOjo0JDQxUbG5vje1JTU5Wammq+Tk5OliSlpKQUbbB2kH75svnvS1dS5XDpqvk6L9t7q37yOmZZ/Vy68sf4O1y6mq9xT7982ewjv/3c3IeUv33g5n5SnC/LORf93DimknTRrXA/m/z2c+Nnk9c+buznRHLMH/1s3q27Wz6Tpz5u7CdLbsb0Tn1Y3U9hbEOx7CfG9rvV+S/Bdu0HyK+s7zfDMOwcSdEgR7q1guYjF///b6RxJVUpzn9+t+b1t6Eg6zf+/3vzu/6C5GI5rT+vvymFPYaFsQ25Wf+N6y5IrlOWc4tCy89isn+P5SaXII8B7szyHMkooX777TdDkrF9+3ab+aNHjzbatm2b43smTZpkSGJiYmJiYmJiMk6ePGlFymI5ciQmJiYmJiamgkxW5Ugl9gyp/Bg/frxGjRplvs7MzNT58+dVpUoVOTg42DGy4i8lJUU1a9bUyZMn5eHhYe9wSg3GtWgwrkWDcS06jG3RuNW4Goahixcvyt/f347RFS/kSLnH32vBMYYFw/gVDONXMIxfwRXnMbQ6RyqxBamqVavKyclJZ86csZl/5swZ+fn55fgeV1dXubq62szz8vIqqhBLJQ8Pj2L3R1MaMK5Fg3EtGoxr0WFsi0ZO4+rp6WmnaIoeOZI1+HstOMawYBi/gmH8CobxK7jiOoZW5kiOlq2pkLm4uKhVq1basGGDOS8zM1MbNmxQcDDX8QIAgLKJHAkAAJQEJfYMKUkaNWqUBgwYoNatW6tt27aaO3euLl++bD5RBgAAoCwiRwIAAMVdiS5IPfbYY/r99981ceJEJSYm6t5771V0dLR8fX3tHVqp4+rqqkmTJmU7nR8Fw7gWDca1aDCuRYexLRpleVzJkYpOWd6vCgtjWDCMX8EwfgXD+BUcY/gnB8Mopc88BgAAAAAAQLFUYu8hBQAAAAAAgJKJghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkMItTZ48WQ4ODjZTgwYN7B1WibR161Y9/PDD8vf3l4ODg1avXm2z3DAMTZw4UdWrV5e7u7tCQ0N1+PBh+wRbgtxpXAcOHJhtH+7SpYt9gi1Bpk+frjZt2qhSpUqqVq2aIiIilJCQYNPm2rVrioyMVJUqVVSxYkX16tVLZ86csVPEJUNuxrVTp07Z9tnnnnvOThGXDO+9956aNWsmDw8PeXh4KDg4WOvWrTOXs6+isJAX5Q25T8GR5+QfuUzBkbcUDPlJ7lCQwm01btxYp0+fNqdt27bZO6QS6fLly2revLkWLFiQ4/IZM2Zo3rx5WrhwoXbs2KEKFSooPDxc165dszjSkuVO4ypJXbp0sdmHP/nkEwsjLJm2bNmiyMhI/fjjj4qJiVF6errCwsJ0+fJls83IkSP19ddfa+XKldqyZYtOnTqlnj172jHq4i834ypJQ4YMsdlnZ8yYYaeIS4YaNWrozTffVFxcnHbv3q0HH3xQjzzyiA4ePCiJfRWFi7wo98h9Co48J//IZQqOvKVgyE9yyQBuYdKkSUbz5s3tHUapI8lYtWqV+TozM9Pw8/MzZs6cac5LSkoyXF1djU8++cQOEZZMN4+rYRjGgAEDjEceecQu8ZQmZ8+eNSQZW7ZsMQzjj/3T2dnZWLlypdnm0KFDhiQjNjbWXmGWODePq2EYRseOHY0XX3zRfkGVEpUrVzY+/PBD9lUUKvKi/CP3KTjynIIhlyk48paCIz/JjjOkcFuHDx+Wv7+/7r77bvXr108nTpywd0ilztGjR5WYmKjQ0FBznqenp4KCghQbG2vHyEqHzZs3q1q1aqpfv76ef/55nTt3zt4hlTjJycmSJG9vb0lSXFyc0tPTbfbZBg0aqFatWuyzeXDzuGZZtmyZqlatqiZNmmj8+PG6cuWKPcIrka5fv65PP/1Uly9fVnBwMPsqCh15UeEg9yk85Dm5Qy5TcOQt+Ud+cmvl7B0Aiq+goCAtWbJE9evX1+nTpxUVFaUOHTrowIEDqlSpkr3DKzUSExMlSb6+vjbzfX19zWXIny5duqhnz54KDAzUkSNH9Morr6hr166KjY2Vk5OTvcMrETIzMzVixAjdf//9atKkiaQ/9lkXFxd5eXnZtGWfzb2cxlWSnnjiCQUEBMjf31/79u3T2LFjlZCQoC+++MKO0RZ/+/fvV3BwsK5du6aKFStq1apVatSokeLj49lXUWjIiwoPuU/hIM/JHXKZgiNvyR/ykzujIIVb6tq1q/nvZs2aKSgoSAEBAfrss880aNAgO0YG5E7fvn3Nfzdt2lTNmjVTnTp1tHnzZnXu3NmOkZUckZGROnDgAPdJKWS3GtehQ4ea/27atKmqV6+uzp0768iRI6pTp47VYZYY9evXV3x8vJKTk/X5559rwIAB2rJli73DQilDXoTihjwnd8hlCo68JX/IT+6MS/aQa15eXrrnnnv0yy+/2DuUUsXPz0+Ssj1V4cyZM+YyFI67775bVatWZR/OpWHDhmnNmjXatGmTatSoYc738/NTWlqakpKSbNqzz+bOrcY1J0FBQZLEPnsHLi4uqlu3rlq1aqXp06erefPmeuedd9hXUaTIi/KP3KdokOdkRy5TcOQt+Ud+cmcUpJBrly5d0pEjR1S9enV7h1KqBAYGys/PTxs2bDDnpaSkaMeOHQoODrZjZKXPr7/+qnPnzrEP34FhGBo2bJhWrVqljRs3KjAw0GZ5q1at5OzsbLPPJiQk6MSJE+yzt3Gncc1JfHy8JLHP5lFmZqZSU1PZV1GkyIvyj9ynaJDn/IlcpuDIWwof+Ul2XLKHW3r55Zf18MMPKyAgQKdOndKkSZPk5OSkxx9/3N6hlTiXLl2yOVJw9OhRxcfHy9vbW7Vq1dKIESM0bdo01atXT4GBgXrttdfk7++viIgI+wVdAtxuXL29vRUVFaVevXrJz89PR44c0ZgxY1S3bl2Fh4fbMeriLzIyUsuXL9eXX36pSpUqmdeye3p6yt3dXZ6enho0aJBGjRolb29veXh4aPjw4QoODla7du3sHH3xdadxPXLkiJYvX65u3bqpSpUq2rdvn0aOHKmQkBA1a9bMztEXX+PHj1fXrl1Vq1YtXbx4UcuXL9fmzZv17bffsq+iUJEX5Q25T8GR5+QfuUzBkbcUDPlJLtn3IX8ozh577DGjevXqhouLi3HXXXcZjz32mPHLL7/YO6wSadOmTYakbNOAAQMMw/jj8cevvfaa4evra7i6uhqdO3c2EhIS7Bt0CXC7cb1y5YoRFhZm+Pj4GM7OzkZAQIAxZMgQIzEx0d5hF3s5jakkY/HixWabq1evGn/729+MypUrG+XLlzd69OhhnD592n5BlwB3GtcTJ04YISEhhre3t+Hq6mrUrVvXGD16tJGcnGzfwIu5Z555xggICDBcXFwMHx8fo3Pnzsb69evN5eyrKCzkRXlD7lNw5Dn5Ry5TcOQtBUN+kjsOhmEYRVPqAgAAAAAAALLjHlIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUGqDJs8ebIcHBxs5tWuXVsDBw4s8nUfO3ZMDg4OWrJkiTlv4MCBqlixYpGvO4uDg4MmT55s2fpKuk6dOqlTp06F2mdO+6A9FMV+f3OfmzdvloODgzZv3pznvnI79gVZR16Uxr+d3G5TUeyzmZmZatKkiV5//fV8rT8jI0NjxoxRzZo15ejoqIiIiDytf+HChapVq5ZSU1Pz9D6gNCNHKn3f80WJHKlgfZIjFW/kSORIRYmCFAps7dq1xfaLtzjHVlZcuXJFkydPLvIEAMXbihUr9OSTT6pevXpycHC4bfKYmpqqsWPHyt/fX+7u7goKClJMTEyObbdv36727durfPny8vPz0wsvvKBLly4V0VYUjU8++UQnT57UsGHD8vX+jz76SDNnzlTv3r21dOlSjRw5UlLux3zgwIFKS0vT+++/n99NAHALxTkPKc6xlRXkSJDIkW6nKHKkc+fOaebMmQoJCZGPj4+8vLzUrl07rVixItv7yZGKXjl7B4DiJSEhQY6OeatTrl27VgsWLMhTUhMQEKCrV6/K2dk5jxHmze1iu3r1qsqV40+gqF25ckVRUVGSlO0HdsKECRo3bpwdorKVn/0+r0JCQnT16lW5uLjk+b3r168vgois9d577ykuLk5t2rTRuXPnbtt24MCB+vzzzzVixAjVq1dPS5YsUbdu3bRp0ya1b9/ebBcfH6/OnTurYcOGmj17tn799VfNmjVLhw8f1rp16/IUnz2/D2bOnKm+ffvK09MzX+/fuHGj7rrrLs2ZM8dmfm7H3M3NTQMGDNDs2bM1fPjwYnFEHiiOyJFQ2MiR/kCORI50K0WRI61Zs0avvvqqunXrpgkTJqhcuXL697//rb59++rnn382/yYlciQr8EsDG66urkXaf0ZGhjIzM+Xi4iI3N7ciXded2Hv9Vrh27ZpcXFxyTCQuX76sChUq2CGqP5UrV65YJLxFvd9LkqOjY773ufwkaMXNxx9/rLvuukuOjo5q0qTJLdvt3LlTn376qWbOnKmXX35ZktS/f381adJEY8aM0fbt2822r7zyiipXrqzNmzfLw8ND0h+XAQwZMkTr169XWFhYruOz1/fB3r179dNPP+ntt9/Odx9nz56Vl5dXtvm5HXNJevTRRzVjxgxt2rRJDz74YL5jAUozcqTShRwpd8iRih45Us6KKkdq3LixDh8+rICAAHPe3/72N4WGhuqtt97SmDFjbP7+yZGKFpfslRHbtm1TmzZt5Obmpjp16tzytMObr+lOT09XVFSU6tWrJzc3N1WpUkXt27c3Tw0dOHCgFixYIOmP64uzJunPeyDMmjVLc+fOVZ06deTq6qqff/45x/sjZPnf//6n8PBwVahQQf7+/poyZYoMwzCX3+oa8Jv7vF1sWfNuPiq4d+9ede3aVR4eHqpYsaI6d+6sH3/80abNkiVL5ODgoB9++EGjRo2Sj4+PKlSooB49euj333/P+QO4jd9++02DBg2Sv7+/XF1dFRgYqOeff15paWk2Y9KnTx95e3urfPnyateunb755hubfrLG5dNPP9WECRN01113qXz58kpJSTHvPXHkyBF169ZNlSpVUr9+/ST9cW323Llz1bhxY7m5ucnX11fPPvusLly4cNu409LSNHHiRLVq1Uqenp6qUKGCOnTooE2bNpltjh07Jh8fH0lSVFSU+RlkjfutrvWeOnWqub/Url1br7zySrZrt2vXrq2HHnpI27ZtU9u2beXm5qa7775b//znP/P2ASj7fp+Xz9gwDE2bNk01atRQ+fLl9cADD+jgwYPZ1nHzfjts2DBVrFhRV65cydb28ccfl5+fn65fvy4p5/sj/Prrr4qIiFCFChVUrVo1jRw5Msfr229174eb+8zN51kQWdfu38nnn38uJycnDR061Jzn5uamQYMGKTY2VidPnpQkpaSkKCYmRk8++aSZaEl/JGYVK1bUZ599lqf4cvo+yM335uLFi+Xg4KCPPvrIZv4bb7whBwcHrV279rbrXb16tVxcXBQSEpJt2Z3Wn/Wdt2nTJh08eND8+8rax3I75pLUqlUreXt768svv8xVe6A0IUciRyJHujVyJHKk0pYjBQYG2hSjsrYxIiJCqamp+t///mezjBypaNm/7I4it3//foWFhcnHx0eTJ09WRkaGJk2aJF9f3zu+d/LkyZo+fboGDx6stm3bKiUlRbt379aePXv0l7/8Rc8++6xOnTqlmJgYffzxxzn2sXjxYl27dk1Dhw6Vq6urvL29lZmZmWPb69evq0uXLmrXrp1mzJih6OhoTZo0SRkZGZoyZUqetjs3sd3o4MGD6tChgzw8PDRmzBg5Ozvr/fffV6dOnbRlyxYFBQXZtB8+fLgqV66sSZMm6dixY5o7d66GDRuW4/XHt3Lq1Cm1bdtWSUlJGjp0qBo0aKDffvtNn3/+ua5cuSIXFxedOXNG9913n65cuaIXXnhBVapU0dKlS/XXv/5Vn3/+uXr06GHT59SpU+Xi4qKXX35Zqamp5pGjjIwMhYeHq3379po1a5bKly9vjtOSJUv09NNP64UXXtDRo0c1f/587d27Vz/88MMtLxlISUnRhx9+qMcff1xDhgzRxYsX9Y9//EPh4eHauXOn7r33Xvn4+Oi9997T888/rx49eqhnz56SpGbNmt1yTAYPHqylS5eqd+/eeumll7Rjxw5Nnz5dhw4d0qpVq2za/vLLL+rdu7cGDRqkAQMG6KOPPtLAgQPVqlUrNW7cONefw63k5jOeOHGipk2bpm7duqlbt27as2ePwsLCbJLlnDz22GNasGCBvvnmG/Xp08ecf+XKFX399dcaOHCgnJyccnzv1atX1blzZ504cUIvvPCC/P399fHHH2vjxo353tbcfJ5W2Lt3r+655x6bBEqS2rZtK+mPU9Br1qyp/fv3KyMjQ61bt7Zp5+LionvvvVd79+4tUBy5/d58+umn9cUXX2jUqFH6y1/+YsYWFRWlQYMGqVu3brddz/bt29WkSZNsf2e5Wb+Pj48+/vhjvf7667p06ZKmT58uSWrYsGG+trlly5b64Ycf8vVeoKQiRyJHksiR8oMciRyptOVIiYmJkqSqVatmW0aOVIQMlHoRERGGm5ubcfz4cXPezz//bDg5ORk37wIBAQHGgAEDzNfNmzc3unfvftv+IyMjs/VjGIZx9OhRQ5Lh4eFhnD17NsdlixcvNucNGDDAkGQMHz7cnJeZmWl0797dcHFxMX7//XfDMAxj06ZNhiRj06ZNd+zzVrEZhmFIMiZNmmS+joiIMFxcXIwjR46Y806dOmVUqlTJCAkJMectXrzYkGSEhoYamZmZ5vyRI0caTk5ORlJSUo7ry0n//v0NR0dHY9euXdmWZfU9YsQIQ5Lx/fffm8suXrxoBAYGGrVr1zauX79uGMaf43L33XcbV65csekra2zHjRtnM//77783JBnLli2zmR8dHZ1tfseOHY2OHTuarzMyMozU1FSb9124cMHw9fU1nnnmGXPe77//nm2ss0yaNMnm84mPjzckGYMHD7Zp9/LLLxuSjI0bN5rzAgICDEnG1q1bzXlnz541XF1djZdeeinbum7n5v0+t5/x2bNnDRcXF6N79+427V555RVDkk2fN++3mZmZxl133WX06tXLJpbPPvss23bdPPZz5841JBmfffaZOe/y5ctG3bp1s/1t3Lxtt+ozt5+nYWT/28mrxo0b26z75mUPPvhgtvkHDx40JBkLFy40DMMwVq5cmW2csvTp08fw8/PLU0w5fR/k9nvz9OnThre3t/GXv/zFSE1NNVq0aGHUqlXLSE5OvuN6a9SokW0fyOv6O3bsaDRu3Pi267ndmGcZOnSo4e7ufseYgdKEHIkciRzp9siRyJFKe45kGIZx7tw5o1q1akaHDh1yXE6OVHS4ZK+Uu379ur799ltFRESoVq1a5vyGDRsqPDz8ju/38vLSwYMHdfjw4XzH0KtXL/OU5Ny48SkKDg4OGjZsmNLS0vTdd9/lO4Y7uX79utavX6+IiAjdfffd5vzq1avriSee0LZt25SSkmLznqFDh9qcSt2hQwddv35dx48fz9U6MzMztXr1aj388MPZjmBIMvteu3at2rZta3OjwooVK2ro0KE6duyYfv75Z5v3DRgwQO7u7jmu8/nnn7d5vXLlSnl6euovf/mL/u///s+cWrVqpYoVK972VGQnJyfzyGJmZqbOnz9vHo3Zs2dPrsbgZlmn7o4aNcpm/ksvvSRJ2U7Bb9SokTp06GC+9vHxUf369bOdaptfd/qMv/vuO6WlpWW7yeGIESPu2LeDg4P69OmjtWvX2jzxZMWKFbrrrrtsPu+brV27VtWrV1fv3r3NeeXLl7c5hTuviuLzzI+rV6/meL+KrPsXXL161ea/t2qbtTw/8vq96efnpwULFigmJkYdOnRQfHy8Pvroo2xHMHNy7tw5Va5cuUDrLyyVK1fW1atXc7xEAiiNyJFyhxyJHCkn5EjkSKUlR8rMzFS/fv2UlJSkd999N8c25EhFh4JUKff777/r6tWrqlevXrZl9evXv+P7p0yZoqSkJN1zzz1q2rSpRo8erX379uUphsDAwFy3dXR0tEl2JOmee+6R9Me1wEXl999/15UrV3Ick4YNGyozM9O8LjvLjV+CkswvzDvdV+DGdaakpNzxZsPHjx+/ZVxZy290q/EuV66catSoYTPv8OHDSk5OVrVq1eTj42MzXbp0SWfPnr1tbEuXLlWzZs3Me2f4+Pjom2++UXJy8m3fdyvHjx+Xo6Oj6tatazPfz89PXl5e2bb15s9A+uNzyO1ncCd3+oyz4rn578vHxyfbD2hOHnvsMV29elVfffWVJOnSpUtau3at+vTpc9uneBw/flx169bN1iY3f9O3U9ifZ364u7vneJ+Ha9eumctv/O+t2t7qfzhyIz/fm3379lX37t21c+dODRkyRJ07d871+owb7v+S3/UXhqw4eIIMygpypNwhRyJHygk5EjnSzUpqjjR8+HBFR0frww8/VPPmzW8bBzlS4eMeUritkJAQHTlyRF9++aXWr1+vDz/8UHPmzNHChQs1ePDgXPVRkC+9nNzqiyDr5oZWudW16zd/cVrtVuPt6uqa7YaJmZmZqlatmpYtW5bje2531PZf//qXBg4cqIiICI0ePVrVqlWTk5OTpk+friNHjuR/A5T7L/ui/gyKuv927dqpdu3a+uyzz/TEE0/o66+/1tWrV/XYY48VSv/S7f9ebty+ovw886J69er67bffss0/ffq0JMnf399sd+P8m9tmtbPKuXPntHv3bknSzz//rMzMzFzdoLRKlSqF9j8HBXXhwgWVL1++0L+zgdKKHOnWyJHIkQqKHCk7cqTCFxUVpb///e9688039dRTT92yHTlS0eEMqVLOx8dH7u7uOZ5OnpCQkKs+vL299fTTT+uTTz7RyZMn1axZM5snLRRmpTgzMzPbqcT//e9/Jf3xJAzpzyMwSUlJNu1yOg08t7H5+PiofPnyOY7Jf/7zHzk6OqpmzZq56iu3fHx85OHhoQMHDty2XUBAwC3jylqeX3Xq1NG5c+d0//33KzQ0NNt0q6ME0h9P+rj77rv1xRdf6KmnnlJ4eLhCQ0PNozRZ8rJ/BAQEKDMzM9v+eubMGSUlJRVoW4tCVjw3x/v777/n+gf00UcfVXR0tFJSUrRixQrVrl1b7dq1u+N6jxw5ki3py2k/qVy5cra/FSn730tuP8+idu+99+q///1vtss/duzYYS6XpCZNmqhcuXJmgpMlLS1N8fHxBbrBaH6+NyMjI3Xx4kVNnz5d27Zt09y5c3O1rgYNGujo0aMFXn9hOHr0aL5viA6URORI5Ei3Q45UMORIhY8cqXBzpAULFmjy5MkaMWKExo4de9u25EhFh4JUKefk5KTw8HCtXr1aJ06cMOcfOnRI33777R3ff+7cOZvXFStWVN26dW1OAa1QoYKk7MlPfs2fP9/8t2EYmj9/vpydnc3TOwMCAuTk5KStW7favO/vf/97tr5yG5uTk5PCwsL05Zdf2pz2fubMGS1fvlzt27fP1bXOeeHo6KiIiAh9/fXX2X4wpD+PMHXr1k07d+5UbGysuezy5ctatGiRateurUaNGuU7hkcffVTXr1/X1KlTsy3LyMi47bhlHTm68Qd/x44dNnFKMp9Uk5v9I+tpGzf/UM2ePVuS1L179zv2YaXQ0FA5Ozvr3XfftRmH3P7QSn+ckp6amqqlS5cqOjpajz766B3f061bN506dUqff/65Oe/KlStatGhRtrZ16tTRjz/+aPNEmzVr1mS7vCK3n2dR6927t65fv26zLampqVq8eLGCgoLM/+nx9PRUaGio/vWvf+nixYtm248//liXLl2yeSpPXuX1e/Pzzz/XihUr9Oabb2rcuHHq27evJkyYYP6P4u0EBwfrwIEDNt+pBf3ezq89e/bovvvuK7L+geKGHIkc6XbIkQqGHKnwkSMVXo60YsUKvfDCC+rXr5/5N3Q75EhFh0v2yoCoqChFR0erQ4cO+tvf/qaMjAy9++67aty48R3vddCoUSN16tRJrVq1kre3t3bv3q3PP//c5qaarVq1kiS98MILCg8Pl5OTk/r27ZuvWN3c3BQdHa0BAwYoKChI69at0zfffKNXXnnFPDXa09NTffr00bvvvisHBwfVqVNHa9asyfFa/rzENm3aNMXExKh9+/b629/+pnLlyun9999XamqqZsyYka/tuZM33nhD69evV8eOHTV06FA1bNhQp0+f1sqVK7Vt2zZ5eXlp3Lhx+uSTT9S1a1e98MIL8vb21tKlS3X06FH9+9//ztUpr7fSsWNHPfvss5o+fbri4+MVFhYmZ2dnHT58WCtXrtQ777xjc1PIGz300EP64osv1KNHD3Xv3l1Hjx7VwoUL1ahRI5sbULq7u6tRo0ZasWKF7rnnHnl7e6tJkyY53heiefPmGjBggBYtWqSkpCR17NhRO3fu1NKlSxUREaEHHngg39taFHx8fPTyyy9r+vTpeuihh9StWzft3btX69aty/GRsTlp2bKl6tatq1dffVWpqam5OhV9yJAhmj9/vvr376+4uDhVr15dH3/8sZnY3mjw4MH6/PPP1aVLFz366KM6cuSI/vWvf6lOnTo27XL7eebX1q1bzf9B+v3333X58mVNmzZN0h+XvYSEhEiSgoKC1KdPH40fP15nz55V3bp1tXTpUh07dkz/+Mc/bPp8/fXXdd9995l/P7/++qvefvtthYWFqUuXLgWKN7ffm2fPntXzzz+vBx54wPxenD9/vjZt2qSBAwdq27Ztt/0bfeSRRzR16lRt2bJFYWFheV7/7eR2zCUpLi5O58+f1yOPPJL7QQJKAXIkcqRbIUcqGHKk3CNHyllR5Ug7d+5U//79VaVKFXXu3DnbZbn33Xefzf36yJGKmJWP9IP9bNmyxWjVqpXh4uJi3H333cbChQuzPU7WMLI//nTatGlG27ZtDS8vL8Pd3d1o0KCB8frrrxtpaWlmm4yMDGP48OGGj4+P4eDgYPaZ9YjhmTNnZovnVo80rlChgnHkyBEjLCzMKF++vOHr62tMmjTJfGxvlt9//93o1auXUb58eaNy5crGs88+axw4cCBbn7eKzTByfizrnj17jPDwcKNixYpG+fLljQceeMDYvn27TZusx93e/BjiWz1q+U6OHz9u9O/f3/Dx8TFcXV2Nu+++24iMjLR5vOyRI0eM3r17G15eXoabm5vRtm1bY82aNTmuf+XKldnWkTW2t7Jo0SKjVatWhru7u1GpUiWjadOmxpgxY4xTp06ZbW5+BG5mZqbxxhtvGAEBAYarq6vRokULY82aNcaAAQOMgIAAm/63b99u7n83jntO+2B6eroRFRVlBAYGGs7OzkbNmjWN8ePHG9euXbNpFxAQkOPjtm+OMzdu9Ujj3HzG169fN6Kioozq1asb7u7uRqdOnYwDBw5k6/N2+8err75qSDLq1q2bY3w5bdPx48eNv/71r0b58uWNqlWrGi+++KL5KOqb1/H2228bd911l+Hq6mrcf//9xu7duwv0eeb0t3MnWZ91TtPNfV29etV4+eWXDT8/P8PV1dVo06aNER0dnWO/33//vXHfffcZbm5uho+PjxEZGWmkpKTkKbZbbVNuvjd79uxpVKpUyTh27JjNe7/88ktDkvHWW2/dcd3NmjUzBg0alG1+br+3b/VI47yM+dixY41atWrZPJobKCvIkciRyJFujRyJHKm05UhZ+/Ctphu/Jw2DHKmoORiGne8uCABAGfbxxx8rMjJSJ06ckJeXl+XrT01NVe3atTVu3Di9+OKLlq8fAAAgJ+RIpR/3kAIAwI769eunWrVqacGCBXZZ/+LFi+Xs7KznnnvOLusHAADICTlS6ccZUkARuHTp0h2vKffx8bnlI3NROBITE2+73N3dXZ6enhZFU/pcv35dv//++23bVKxYURUrVrQoIlvFPT4AKIvIkYoHcqSiVdxzkOIeH8oOClJAEZg8ebKioqJu2+bo0aPmY5pRNO70OOUBAwZoyZIl1gRTCh07dkyBgYG3bTNp0iSbR6BbqbjHBwBlETlS8UCOVLSKew5S3OND2cFT9oAi0L9/f7Vv3/62bfz8/CyKpuyKiYm57XJ/f3+LIimd/Pz87jjGNz6lxGrFPT4AKIvIkYoHcqSiVdxzkOIeH8oOzpACAAAAAACApbipOQAAAAAAACxVpi/Zy8zM1KlTp1SpUqU7XkcNAABKB8MwdPHiRfn7+8vRkWNzOSFHAgCg7LE6RyrTBalTp06pZs2a9g4DAADYwcmTJ1WjRg17h1EskSMBAFB2WZUjlemCVKVKlST9MdgeHh52jgYAAFghJSVFNWvWNPOAwrJ161bNnDlTcXFxOn36tFatWqWIiIgc2z733HN6//33NWfOHI0YMcKcf/78eQ0fPlxff/21HB0d1atXL73zzjs2j97et2+fIiMjtWvXLvn4+Gj48OEaM2aMTf8rV67Ua6+9pmPHjqlevXp666231K1bt1xvCzkSAABlT1HlSLdSpgtSWaege3h4kGwBAFDGFPalaJcvX1bz5s31zDPPqGfPnrdst2rVKv344485PsWqX79+On36tGJiYpSenq6nn35aQ4cO1fLlyyX9kSiGhYUpNDRUCxcu1P79+/XMM8/Iy8tLQ4cOlSRt375djz/+uKZPn66HHnpIy5cvV0REhPbs2aMmTZrkalvIkQAAKLusulw/zxcFbt26VQ8//LD8/f3l4OCg1atX37Ltc889JwcHB82dO9dm/vnz59WvXz95eHjIy8tLgwYN0qVLl2za7Nu3Tx06dJCbm5tq1qypGTNmZOt/5cqVatCggdzc3NS0aVOtXbs2r5sDAABQKLp27app06apR48et2zz22+/afjw4Vq2bJmcnZ1tlh06dEjR0dH68MMPFRQUpPbt2+vdd9/Vp59+qlOnTkmSli1bprS0NH300Udq3Lix+vbtqxdeeEGzZ882+3nnnXfUpUsXjR49Wg0bNtTUqVPVsmVLzZ8/v2g2HAAAIB/yXJDKOvq3YMGC27a709G/gwcPKiYmRmvWrNHWrVvNo3rSn0f/AgICFBcXp5kzZ2ry5MlatGiR2Sbr6N+gQYO0d+9eRUREKCIiQgcOHMjrJgEAABS5zMxMPfXUUxo9erQaN26cbXlsbKy8vLzUunVrc15oaKgcHR21Y8cOs01ISIhcXFzMNuHh4UpISNCFCxfMNqGhoTZ9h4eHKzY2tig2CwAAIF/yfMle165d1bVr19u2yTr69+2336p79+42y7KO/u3atctMuN59911169ZNs2bNkr+/v83RPxcXFzVu3Fjx8fGaPXu2Wbi68eifJE2dOlUxMTGaP3++Fi5cmNfNAgAAKFJvvfWWypUrpxdeeCHH5YmJiapWrZrNvHLlysnb21uJiYlmm8DAQJs2vr6+5rLKlSsrMTHRnHdjm6w+cpKamqrU1FTzdUpKSu43DAAAIB8K/R5SBT3616NHj1se/Xvrrbd04cIFVa5cWbGxsRo1apRN3+Hh4be9hJBkCwCQF9evX1d6erq9w0AeOTs7y8nJyd5h2IiLi9M777yjPXv2WHZfhryYPn26oqKi7B0GAKCEIEcqmYpbjlToBanifPSPZAsAkBuGYSgxMVFJSUn2DgX55OXlJT8/v2JT/Pn+++919uxZ1apVy5x3/fp1vfTSS5o7d66OHTsmPz8/nT171uZ9GRkZOn/+vPz8/CRJfn5+OnPmjE2brNd3apO1PCfjx4+3OdCX9ZQdAABuRI5U8hWnHKlQC1LF/egfyRYAIDeyEq1q1aqpfPnyxfI3DTkzDENXrlwxCzvVq1e3c0R/eOqpp3K8r9NTTz2lp59+WpIUHByspKQkxcXFqVWrVpKkjRs3KjMzU0FBQWabV199Venp6eZN0WNiYlS/fn1VrlzZbLNhwwaNGDHCXFdMTIyCg4NvGZ+rq6tcXV0LbXsBAKUTOVLJVRxzpEItSBX3o38kWwCAO7l+/bqZaFWpUsXe4SAf3N3dJUlnz55VtWrVLDs1/dKlS/rll1/M10ePHlV8fLy8vb1Vq1atbPuTs7Oz/Pz8VL9+fUlSw4YN1aVLFw0ZMkQLFy5Uenq6hg0bpr59+5oPiXniiScUFRWlQYMGaezYsTpw4IDeeecdzZkzx+z3xRdfVMeOHfX222+re/fu+vTTT7V7926bh8MAAJBX5Egln71ypFvJ81P2buepp57Svn37FB8fb07+/v4aPXq0vv32W0m2R/+y5HT0b+vWrTbXpN7q6N+N7nT0DwCAO8n67SlfvrydI0FBZH1+Vt7fYvfu3WrRooVatGghSRo1apRatGihiRMn5rqPZcuWqUGDBurcubO6deum9u3b2xSSPD09tX79eh09elStWrXSSy+9pIkTJ9o8rfi+++7T8uXLtWjRIjVv3lyff/65Vq9erSZNmhTexgIAyhxypNLBHjnSreT5DCmO/gEAygJOQS/Z7PH5derUSYZh5Lr9sWPHss3z9vbW8uXLb/u+Zs2a6fvvv79tmz59+qhPnz65jgUAgNwiRyrZitPnl+czpDj6BwAAAAAAgILI8xlSHP0DAAAAAABAQRTqTc0BACjN0qO3WbYu5y7tc932TqdeT5o0SZMnTy5gRPnj4OCgVatWKSIiIt99LFq0SMuXL9eePXt08eJFXbhwQV5eXoUWIwAAKBgrcySJPCnL+fPnNWnSJK1fv14nTpyQj4+PIiIiNHXqVHl6ehZusEWAghQAACXc6dOnzX+vWLFCEydOVEJCgjmvYsWKeeovLS1NLi4uhRZfQV25ckVdunRRly5dNH78eHuHAwAASpDSnCedOnVKp06d0qxZs9SoUSMdP35czz33nE6dOqXPP//c3uHdUaE+ZQ+wUnr0tmwTAJRFfn5+5uTp6SkHBwfz9eXLl9WvXz/5+vqqYsWKatOmjb777jub99euXVtTp05V//795eHhYd6z8YMPPlDNmjVVvnx59ejRQ7Nnz852ZtKXX36pli1bys3NTXfffbeioqKUkZFh9itJPXr0kIODg/n6p59+0gMPPKBKlSrJw8NDrVq10u7du2+5fSNGjNC4cePUrl27whkwANmQUwEorUpzntSkSRP9+9//1sMPP6w6derowQcf1Ouvv66vv/7aXE9xRkEKAIBS7NKlS+rWrZs2bNigvXv3qkuXLnr44Yd14sQJm3azZs1S8+bNtXfvXr322mv64Ycf9Nxzz+nFF19UfHy8/vKXv+j111+3ec/333+v/v3768UXX9TPP/+s999/X0uWLDHb7dq1S5K0ePFinT592nzdr18/1ahRQ7t27VJcXJzGjRsnZ2dnC0YDAADgT6UxT0pOTpaHh4fKlSv+F8QV/wgBAEC+NW/eXM2bNzdfT506VatWrdJXX32lYcOGmfMffPBBvfTSS+brV199VV27dtXLL78sSbrnnnu0fft2rVmzxmwTFRWlcePGacCAAZKku+++W1OnTtWYMWM0adIk+fj4SJK8vLzk5+dnvu/EiRMaPXq0GjRoIEmqV69eEWw5AADA7ZW2POn//u//NHXqVPMsruKOM6QAACjFLl26pJdfflkNGzaUl5eXKlasqEOHDmU78te6dWub1wkJCWrbtq3NvJtf//TTT5oyZYoqVqxoTkOGDNHp06d15cqVW8Y0atQoDR48WKGhoXrzzTd15MiRAm4lAABA3pWmPCklJUXdu3dXo0aN7HaT9ryiIAUAQCn28ssva9WqVXrjjTf0/fffKz4+Xk2bNlVaWppNuwoVKuS570uXLikqKkrx8fHmtH//fh0+fFhubm63fN/kyZN18OBBde/eXRs3blSjRo20atWqPK8fAACgIEpLnnTx4kV16dJFlSpV0qpVq0rMrRC4ZA8AgFLshx9+0MCBA9WjRw9JfyRHx44du+P76tevb97LIMvNr1u2bKmEhATVrVv3lv04Ozvr+vXr2ebfc889uueeezRy5Eg9/vjjWrx4sRkjAACAFUpDnpSSkqLw8HC5urrqq6++um2xq7ihIAUAQClWr149ffHFF3r44Yfl4OCg1157TZmZmXd83/DhwxUSEqLZs2fr4Ycf1saNG7Vu3To5ODiYbSZOnKiHHnpItWrVUu/eveXo6KiffvpJBw4c0LRp0yT98QSZDRs26P7775erq6vc3Nw0evRo9e7dW4GBgfr111+1a9cu9erV65axJCYmKjExUb/88oskaf/+/apUqZJq1aolb2/vAo4QAAAoq0p6npSSkqKwsDBduXJF//rXv5SSkqKUlBRJko+Pj5ycnAphlIoOl+wBAFCKzZ49W5UrV9Z9992nhx9+WOHh4WrZsuUd33f//fdr4cKFmj17tpo3b67o6GiNHDnS5qhbeHi41qxZo/Xr16tNmzZq166d5syZo4CAALPN22+/rZiYGNWsWVMtWrSQk5OTzp07p/79++uee+7Ro48+qq5duyoqKuqWsSxcuFAtWrTQkCFDJEkhISFq0aKFvvrqqwKMDAAAKOtKep60Z88e7dixQ/v371fdunVVvXp1czp58mTBB6iIORiGYdg7CHtJSUmRp6en+VhElCzp0duyzXPu0t4OkQAoTa5du6ajR48qMDCwRJ3ybIUhQ4boP//5j77//nt7h3JHt/sc+f2/M8ao7Lk5ryKnAnAzcqTbKyl5UnHKkbhkDwAA5GjWrFn6y1/+ogoVKmjdunVaunSp/v73v9s7LAAAALsjTyo4ClIAACBHO3fu1IwZM3Tx4kXdfffdmjdvngYPHmzvsAAAAOyOPKngKEgBAIAcffbZZ/YOAQAAoFgiTyo4bmoOAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsVc7eAQAAUFIc2f2+Zeuq0/rZPLUfOHCgli5dKkkqV66cvL291axZMz3++OMaOHCgHB1L7jGogwcPauLEiYqLi9Px48c1Z84cjRgxwt5hAQCA/8/KHEkiT7rRBx98oH/+8586cOCAJKlVq1Z644031LZtWztHdmcld9QBAICNLl266PTp0zp27JjWrVunBx54QC+++KIeeughZWRk2Du8fLty5Yruvvtuvfnmm/Lz87N3OAAAoAQqrXnS5s2b9fjjj2vTpk2KjY1VzZo1FRYWpt9++83eod0RBSkAAEoJV1dX+fn56a677lLLli31yiuv6Msvv9S6deu0ZMkSs11SUpIGDx4sHx8feXh46MEHH9RPP/1k09fXX3+tNm3ayM3NTVWrVlWPHj3MZRcuXFD//v1VuXJllS9fXl27dtXhw4clSZcvX5aHh4c+//xzm/5Wr16tChUq6OLFi0pLS9OwYcNUvXp1ubm5KSAgQNOnT7/ldrVp00YzZ85U37595erqWggjBQAAyprSmictW7ZMf/vb33TvvfeqQYMG+vDDD5WZmakNGzYUwqgVLQpSAACUYg8++KCaN2+uL774wpzXp08fnT17VuvWrVNcXJxatmypzp076/z585Kkb775Rj169FC3bt20d+9ebdiwwea074EDB2r37t366quvFBsbK8Mw1K1bN6Wnp6tChQrq27evFi9ebBPH4sWL1bt3b1WqVEnz5s3TV199pc8++0wJCQlatmyZateubcl4AAAAZCmNedKVK1eUnp4ub2/vgg2OBbiHFAAApVyDBg20b98+SdK2bdu0c+dOnT171jzbaNasWVq9erU+//xzDR06VK+//rr69u2rqKgos4/mzZtLkg4fPqyvvvpKP/zwg+677z5JfxyZq1mzplavXq0+ffpo8ODBuu+++3T69GlVr15dZ8+e1dq1a/Xdd99Jkk6cOKF69eqpffv2cnBwUEBAgJXDAQAAYCptedLYsWPl7++v0NDQAo9NUeMMKQAASjnDMOTg4CBJ+umnn3Tp0iVVqVJFFStWNKejR4/qyJEjkqT4+Hh17tw5x74OHTqkcuXKKSgoyJxXpUoV1a9fX4cOHZIktW3bVo0bNzZvHvqvf/1LAQEBCgkJkfTHkcP4+HjVr19fL7zwgtavX19k2w4AAHA7pSlPevPNN/Xpp59q1apVcnNzy/tgWIwzpAAAKOUOHTqkwMBASdKlS5dUvXp1bd68OVs7Ly8vSZK7u3uB1zl48GAtWLBA48aN0+LFi/X000+byV7Lli119OhRrVu3Tt99950effRRhYaGZrufAgAAQFErLXnSrFmz9Oabb+q7775Ts2bNChyjFThDCgCAUmzjxo3av3+/evXqJemPJCcxMVHlypVT3bp1baaqVatKkpo1a3bLG2E2bNhQGRkZ2rFjhznv3LlzSkhIUKNGjcx5Tz75pI4fP6558+bp559/1oABA2z68fDw0GOPPaYPPvhAK1as0L///W/z3gwAAABWKC150owZMzR16lRFR0erdevW+R4Pq3GGFAAApURqaqoSExN1/fp1nTlzRtHR0Zo+fboeeugh9e/fX5IUGhqq4OBgRUREaMaMGbrnnnt06tQp8wadrVu31qRJk9S5c2fVqVNHffv2VUZGhtauXauxY8eqXr16euSRRzRkyBC9//77qlSpksaNG6e77rpLjzzyiBlL5cqV1bNnT40ePVphYWGqUaOGuWz27NmqXr26WrRoIUdHR61cuVJ+fn7mkcebpaWl6eeffzb//dtvvyk+Pl4VK1ZU3bp1i25AAQBAqVFa86S33npLEydO1PLly1W7dm0lJiZKknm5YXHGGVIAAJQS0dHRql69umrXrq0uXbpo06ZNmjdvnr788ks5OTlJkhwcHLR27VqFhITo6aef1j333KO+ffvq+PHj8vX1lSR16tRJK1eu1FdffaV7771XDz74oHbu3GmuZ/HixWrVqpUeeughBQcHyzAMrV27Vs7OzjbxDBo0SGlpaXrmmWds5leqVEkzZsxQ69at1aZNGx07dkxr166Vo2POacmpU6fUokULtWjRQqdPn9asWbPUokULDR48uDCHDwAAlGKlNU967733lJaWpt69e6t69ermNGvWrMIcviLhYBiGYe8g7CUlJUWenp5KTk6Wh4eHvcNBHqVHb8s2z7lLeztEAqA0uXbtmo4eParAwMAScTPI4uzjjz/WyJEjderUKbm4uFi67tt9jvz+3xljVPbcnFeRUwG4GTlS4bJXnlScciTOkAIAAIXqypUrOnLkiN588009++yzlhej7GXr1q16+OGH5e/vLwcHB61evdpclp6errFjx6pp06aqUKGC/P391b9/f506dcqmj/Pnz6tfv37y8PCQl5eXBg0apEuXLtm02bdvnzp06CA3NzfVrFlTM2bMyBbLypUr1aBBA7m5ualp06Zau3ZtkWwzAADIm7KaJ+UkzwUpki0AAHA7M2bMUIMGDeTn56fx48fbOxzLXL58Wc2bN9eCBQuyLbty5Yr27Nmj1157TXv27NEXX3yhhIQE/fWvf7Vp169fPx08eFAxMTFas2aNtm7dqqFDh5rLU1JSFBYWpoCAAMXFxWnmzJmaPHmyFi1aZLbZvn27Hn/8cQ0aNEh79+5VRESEIiIidODAgaLbeAAAkCtlNU/KSZ4v2Vu3bp1++OEHtWrVSj179tSqVasUEREhSUpOTlbv3r01ZMgQNW/eXBcuXNCLL76o69eva/fu3WYfXbt21enTp/X+++8rPT1dTz/9tNq0aaPly5dL+iPZuueeexQaGqrx48dr//79euaZZzR37lwzKdu+fbtCQkLMm5AtX75cb731lvbs2aMmTZrkals4Hb1k45I9AEWB09FLB3ufju7g4GCTI+Vk165datu2rY4fP65atWrp0KFDatSokXbt2mU+ISc6OlrdunXTr7/+Kn9/f7333nt69dVXlZiYaB5RHTdunFavXq3//Oc/kqTHHntMly9f1po1a8x1tWvXTvfee68WLlyYq/jJkcoeLtkDcCfkSKWDvXOkG+X5KXtdu3ZV165dc1zm6empmJgYm3nz589X27ZtdeLECTPZio6Otkm23n33XXXr1k2zZs2Sv7+/li1bprS0NH300UdycXFR48aNFR8fr9mzZ5sFqXfeeUddunTR6NGjJUlTp05VTEyM5s+fn+tkCwAAwF6Sk5Pl4OBgPjUnNjZWXl5eNo9rDg0NlaOjo3bs2KEePXooNjZWISEhNqf3h4eH66233tKFCxdUuXJlxcbGatSoUTbrCg8PtzmrHQAAwN6K/B5SeU22strklGwlJCTowoULZpvQ0FCbdYWHhys2NraItwgAAKBgrl27prFjx+rxxx83j0AmJiaqWrVqNu3KlSsnb29v8xHOiYmJ5lN+smS9vlObrOU5SU1NVUpKis0EAABQlIq0IEWyBQAoqTIzM+0dAgqgOH9+6enpevTRR2UYht577z17hyNJmj59ujw9Pc2pZs2a9g4JAFBMFeffWNxZcfr88nzJXm4V12QrKirK3mEAAIoxFxcXOTo66tSpU/Lx8ZGLi4scHBzsHRZyyTAMpaWl6ffff5ejo2Oxe3JNVn50/Phxbdy40eb+DH5+fjp79qxN+4yMDJ0/f15+fn5mmzNnzti0yXp9pzZZy3Myfvx4m8v8UlJSKEoBAGyQI5VsxTFHKpKCFMkWAKCkcnR0VGBgoE6fPp3tKbEoOcqXL69atWrJ0bHI706Qa1n50eHDh7Vp0yZVqVLFZnlwcLCSkpIUFxenVq1aSZI2btyozMxMBQUFmW1effVVpaeny9nZWZIUExOj+vXrq3LlymabDRs2aMSIEWbfMTExCg4OvmVsrq6ucnV1LczNBQCUMuRIpUNxypEKvSBFsgUAKOlcXFxUq1YtZWRk6Pr16/YOB3nk5OSkcuXKWX7U9tKlS/rll1/M10ePHlV8fLy8vb1VvXp19e7dW3v27NGaNWt0/fp18zYD3t7ecnFxUcOGDdWlSxcNGTJECxcuVHp6uoYNG6a+ffvK399fkvTEE08oKipKgwYN0tixY3XgwAG98847mjNnjrneF198UR07dtTbb7+t7t2769NPP9Xu3bu1aNEiS8cDAFD6kCOVbPbKkW7FwTAMIy9vuDHZatGihWbPnq0HHnggx2Trxns8ZSVb0h9P6jtz5oyZbD399NNq3bq1li9fLumPG6HXr19fYWFhZrL1zDPPaM6cOeZT9rZv366OHTvqzTffNJOtN954Q3v27FGTJk1ytS080rhku/nxxBKPKAYA3FlR/f5v3rxZDzzwQLb5AwYM0OTJkxUYGJjj+zZt2qROnTpJks6fP69hw4bp66+/lqOjo3r16qV58+apYsWKZvt9+/YpMjJSu3btUtWqVTV8+HCNHTvWps+VK1dqwoQJtHN9hwABAABJREFUOnbsmOrVq6cZM2aoW7duud4WcqSy5+a8ipwKAMoeq3//81yQItlCcUFBCgCQH/z+3xljVPZQkAIAFPuCVGlCslWyUZACAOQHv/93xhiVPRSkAABW//7b/y5WAAAAAAAAKFMoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEuVs3cAAAAAAOzrWNI6m9f11N5OkQAAygoKUiiRjux+X5lJJyRJtb262jkaAAAAAACQF1yyBwAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUtxDCpCUHr0t2zznLtzMEwAAILfIpwAAecEZUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAACgEGzdulUPP/yw/P395eDgoNWrV9ssNwxDEydOVPXq1eXu7q7Q0FAdPnzYps358+fVr18/eXh4yMvLS4MGDdKlS5ds2uzbt08dOnSQm5ubatasqRkzZmSLZeXKlWrQoIHc3NzUtGlTrV27ttC3FwAAoCDyXJAi2QIAAMju8uXLat68uRYsWJDj8hkzZmjevHlauHChduzYoQoVKig8PFzXrl0z2/Tr108HDx5UTEyM1qxZo61bt2ro0KHm8pSUFIWFhSkgIEBxcXGaOXOmJk+erEWLFplttm/frscff1yDBg3S3r17FRERoYiICB04cKDoNh4AACCP8lyQItkCAADIrmvXrpo2bZp69OiRbZlhGJo7d64mTJigRx55RM2aNdM///lPnTp1yjy4d+jQIUVHR+vDDz9UUFCQ2rdvr3fffVeffvqpTp06JUlatmyZ0tLS9NFHH6lx48bq27evXnjhBc2ePdtc1zvvvKMuXbpo9OjRatiwoaZOnaqWLVtq/vz5lowDAABAbuS5IEWyBQAAkDdHjx5VYmKiQkNDzXmenp4KCgpSbGysJCk2NlZeXl5q3bq12SY0NFSOjo7asWOH2SYkJEQuLi5mm/DwcCUkJOjChQtmmxvXk9Umaz0AAADFQaHeQ4pkCwAAILvExERJkq+vr818X19fc1liYqKqVatms7xcuXLy9va2aZNTHzeu41ZtspbnJDU1VSkpKTYTAABAUSrUghTJFgAAQMkzffp0eXp6mlPNmjXtHRIAACjlytRT9ki2AACAPfj5+UmSzpw5YzP/zJkz5jI/Pz+dPXvWZnlGRobOnz9v0yanPm5cx63aZC3Pyfjx45WcnGxOJ0+ezOsmAgAA5EmhFqRItgAAALILDAyUn5+fNmzYYM5LSUnRjh07FBwcLEkKDg5WUlKS4uLizDYbN25UZmamgoKCzDZbt25Venq62SYmJkb169dX5cqVzTY3rierTdZ6cuLq6ioPDw+bCQAAoCgVakGKZAsAAJRVly5dUnx8vOLj4yX9cW/N+Ph4nThxQg4ODhoxYoSmTZumr776Svv371f//v3l7++viIgISVLDhg3VpUsXDRkyRDt37tQPP/ygYcOGqW/fvvL395ckPfHEE3JxcdGgQYN08OBBrVixQu+8845GjRplxvHiiy8qOjpab7/9tv7zn/9o8uTJ2r17t4YNG2b1kAAAANxSngtSJFsAAADZ7d69Wy1atFCLFi0kSaNGjVKLFi00ceJESdKYMWM0fPhwDR06VG3atNGlS5cUHR0tNzc3s49ly5apQYMG6ty5s7p166b27dtr0aJF5nJPT0+tX79eR48eVatWrfTSSy9p4sSJGjp0qNnmvvvu0/Lly7Vo0SI1b95cn3/+uVavXq0mTZpYNBIAAAB35mAYhpGXN2zevFkPPPBAtvkDBgzQkiVLZBiGJk2apEWLFikpKUnt27fX3//+d91zzz1m2/Pnz2vYsGH6+uuv5ejoqF69emnevHmqWLGi2Wbfvn2KjIzUrl27VLVqVQ0fPlxjx461WefKlSs1YcIEHTt2TPXq1dOMGTPUrVu3XG9LSkqKPD09lZyczNlSJcyR3e8r85cTkqTaXl3N+c5d2uerv/Tobdnm5bcvAEDxxu//nTFGZc/hT1+1eV2v7+t57oN8CgBKNqt//8vl9Q2dOnXS7WpYDg4OmjJliqZMmXLLNt7e3lq+fPlt19OsWTN9//33t23Tp08f9enT5/YBAwAAAAAAoFgpU0/ZAwAAAAAAgP1RkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBS5ewdAAAAAIDS51jSOjnuPmi+rtP6WTtGAwAobjhDCgAAAAAAAJbiDCmUeUd2v6/MpBPm69peXe0YDQAAAAAApR9nSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEuVs3cAAAAAAO4sPXpbtnnOXdrbIRIAAAqOM6QAAAAAAABgKc6QguU4ugcAAAAAQNnGGVIAAAAAAACwFAUpAAAAC1y/fl2vvfaaAgMD5e7urjp16mjq1KkyDMNsYxiGJk6cqOrVq8vd3V2hoaE6fPiwTT/nz59Xv3795OHhIS8vLw0aNEiXLl2yabNv3z516NBBbm5uqlmzpmbMmGHJNgIAAORWoRekSLYAAACye+utt/Tee+9p/vz5OnTokN566y3NmDFD7777rtlmxowZmjdvnhYuXKgdO3aoQoUKCg8P17Vr18w2/fr108GDBxUTE6M1a9Zo69atGjp0qLk8JSVFYWFhCggIUFxcnGbOnKnJkydr0aJFlm4vAADA7RR6QYpkCwAAILvt27frkUceUffu3VW7dm317t1bYWFh2rlzp6Q/DtjNnTtXEyZM0COPPKJmzZrpn//8p06dOqXVq1dLkg4dOqTo6Gh9+OGHCgoKUvv27fXuu+/q008/1alTpyRJy5YtU1pamj766CM1btxYffv21QsvvKDZs2fba9MBAACyKfSCFMkWAABAdvfdd582bNig//73v5Kkn376Sdu2bVPXrl0lSUePHlViYqJCQ0PN93h6eiooKEixsbGSpNjYWHl5eal169Zmm9DQUDk6OmrHjh1mm5CQELm4uJhtwsPDlZCQoAsXLhT5dgIAAORGoRekSLYAAACyGzdunPr27asGDRrI2dlZLVq00IgRI9SvXz9JUmJioiTJ19fX5n2+vr7mssTERFWrVs1mebly5eTt7W3TJqc+blzHzVJTU5WSkmIzAQAAFKVyhd3huHHjlJKSogYNGsjJyUnXr1/X66+/XiTJVmBgYLY+spZVrlw5W2ypqalKTU01X5NsAQAAq3z22WdatmyZli9frsaNGys+Pl4jRoyQv7+/BgwYYNfYpk+frqioKLvGAAAAypZCP0PqxmRrz549Wrp0qWbNmqWlS5cW9qrybPr06fL09DSnmjVr2jskAABQRowePdo8S6pp06Z66qmnNHLkSE2fPl2S5OfnJ0k6c+aMzfvOnDljLvPz89PZs2dtlmdkZOj8+fM2bXLq48Z13Gz8+PFKTk42p5MnTxZwawEAAG6v0AtSJFsAAADZXblyRY6OtqmXk5OTMjMzJUmBgYHy8/PThg0bzOUpKSnasWOHgoODJUnBwcFKSkpSXFyc2Wbjxo3KzMxUUFCQ2Wbr1q1KT08328TExKh+/fo5nkEuSa6urvLw8LCZAAAAilKhF6RItgAAALJ7+OGH9frrr+ubb77RsWPHtGrVKs2ePVs9evSQJDk4OGjEiBGaNm2avvrqK+3fv1/9+/eXv7+/IiIiJEkNGzZUly5dNGTIEO3cuVM//PCDhg0bpr59+8rf31+S9MQTT8jFxUWDBg3SwYMHtWLFCr3zzjsaNWqUvTYdAAAgm0K/h1RWslWrVi01btxYe/fu1ezZs/XMM89Isk226tWrp8DAQL322mu3TLYWLlyo9PT0HJOtqKgoDRo0SGPHjtWBAwf0zjvvaM6cOYW9SQAAAAX27rvv6rXXXtPf/vY3nT17Vv7+/nr22Wc1ceJEs82YMWN0+fJlDR06VElJSWrfvr2io6Pl5uZmtlm2bJmGDRumzp07y9HRUb169dK8efPM5Z6enlq/fr0iIyPVqlUrVa1aVRMnTtTQoUMt3V4AAIDbKfSCFMkWAABAdpUqVdLcuXM1d+7cW7ZxcHDQlClTNGXKlFu28fb21vLly2+7rmbNmun777/Pb6gAAABFrtALUiRbAAAAAAAAuJ1Cv4cUAAAAAAAAcDsUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYqpy9AwAAAACQN8eS1kmSHHcflCTVaf2sPcMBACDPKEjBLrKSKEmq7dXVjpEAAAAAAACrcckeAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKWKpCD122+/6cknn1SVKlXk7u6upk2bavfu3eZywzA0ceJEVa9eXe7u7goNDdXhw4dt+jh//rz69esnDw8PeXl5adCgQbp06ZJNm3379qlDhw5yc3NTzZo1NWPGjKLYHAAAgEJBjgQAAPCHQi9IXbhwQffff7+cnZ21bt06/fzzz3r77bdVuXJls82MGTM0b948LVy4UDt27FCFChUUHh6ua9eumW369eungwcPKiYmRmvWrNHWrVs1dOhQc3lKSorCwsIUEBCguLg4zZw5U5MnT9aiRYsKe5MAAAAKjBwJAADgT+UKu8O33npLNWvW1OLFi815gYGB5r8Nw9DcuXM1YcIEPfLII5Kkf/7zn/L19dXq1avVt29fHTp0SNHR0dq1a5dat24tSXr33XfVrVs3zZo1S/7+/lq2bJnS0tL00UcfycXFRY0bN1Z8fLxmz55tk5QBAAAUB+RIAAAAfyr0M6S++uortW7dWn369FG1atXUokULffDBB+byo0ePKjExUaGhoeY8T09PBQUFKTY2VpIUGxsrLy8vM9GSpNDQUDk6OmrHjh1mm5CQELm4uJhtwsPDlZCQoAsXLhT2ZgEAABRIcc6RUlNTlZKSYjMBAAAUpUIvSP3vf//Te++9p3r16unbb7/V888/rxdeeEFLly6VJCUmJkqSfH19bd7n6+trLktMTFS1atVslpcrV07e3t42bXLq48Z13IxkC4UtPXpbtgkAgJwU5xxp+vTp8vT0NKeaNWsWcGuBwkW+BQClT6EXpDIzM9WyZUu98cYbatGihYYOHaohQ4Zo4cKFhb2qPCPZAgAA9lKcc6Tx48crOTnZnE6ePGnvkAAAQClX6AWp6tWrq1GjRjbzGjZsqBMnTkiS/Pz8JElnzpyxaXPmzBlzmZ+fn86ePWuzPCMjQ+fPn7dpk1MfN67jZiRbAADAXopzjuTq6ioPDw+bCQAAoCgVekHq/vvvV0JCgs28//73vwoICJD0x807/fz8tGHDBnN5SkqKduzYoeDgYElScHCwkpKSFBcXZ7bZuHGjMjMzFRQUZLbZunWr0tPTzTYxMTGqX7++zdNqbkSyBQAA7KU450gAAABWK/SC1MiRI/Xjjz/qjTfe0C+//KLly5dr0aJFioyMlCQ5ODhoxIgRmjZtmr766ivt379f/fv3l7+/vyIiIiT9cbSwS5cuGjJkiHbu3KkffvhBw4YNU9++feXv7y9JeuKJJ+Ti4qJBgwbp4MGDWrFihd555x2NGjWqsDcJAACgwMiRAAAA/lSusDts06aNVq1apfHjx2vKlCkKDAzU3Llz1a9fP7PNmDFjdPnyZQ0dOlRJSUlq3769oqOj5ebmZrZZtmyZhg0bps6dO8vR0VG9evXSvHnzzOWenp5av369IiMj1apVK1WtWlUTJ07kccYAAKBYIkcCAAD4U6EXpCTpoYce0kMPPXTL5Q4ODpoyZYqmTJlyyzbe3t5avnz5bdfTrFkzff/99/mOEwAAwErkSAAAAH8o9Ev2AAAAAAAAgNuhIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWKqcvQMAAAAAgDs5lrTO/Lfj7oOq0/pZO0YDACgoClJAAd2YHElSPbW3UyQAAAAAAJQMXLIHAAAAAAAASxV5QerNN9+Ug4ODRowYYc67du2aIiMjVaVKFVWsWFG9evXSmTNnbN534sQJde/eXeXLl1e1atU0evRoZWRk2LTZvHmzWrZsKVdXV9WtW1dLliwp6s0BAAAoFORIAACgLCvSgtSuXbv0/vvvq1mzZjbzR44cqa+//lorV67Uli1bdOrUKfXs2dNcfv36dXXv3l1paWnavn27li5dqiVLlmjixIlmm6NHj6p79+564IEHFB8frxEjRmjw4MH69ttvi3KTAAAACowcCQAAlHVFVpC6dOmS+vXrpw8++ECVK1c25ycnJ+sf//iHZs+erQcffFCtWrXS4sWLtX37dv3444+SpPXr1+vnn3/Wv/71L917773q2rWrpk6dqgULFigtLU2StHDhQgUGBurtt99Ww4YNNWzYMPXu3Vtz5swpqk0CAAAoMHIkAACAIixIRUZGqnv37goNDbWZHxcXp/T0dJv5DRo0UK1atRQbGytJio2NVdOmTeXr62u2CQ8PV0pKig4ePGi2ubnv8PBwsw8AAIDiqDjmSKmpqUpJSbGZAAAAilKRPGXv008/1Z49e7Rr165syxITE+Xi4iIvLy+b+b6+vkpMTDTb3JhoZS3PWna7NikpKbp69arc3d2zrTs1NVWpqanma5ItAABgpeKaI02fPl1RUVH53i4AAIC8KvQzpE6ePKkXX3xRy5Ytk5ubW2F3XyDTp0+Xp6enOdWsWdPeIQEAgDKiOOdI48ePV3JysjmdPHnS3iEBAIBSrtALUnFxcTp79qxatmypcuXKqVy5ctqyZYvmzZuncuXKydfXV2lpaUpKSrJ535kzZ+Tn5ydJ8vPzy/ZEmazXd2rj4eGR45E/iWQLAADYT3HOkVxdXeXh4WEzAQAAFKVCL0h17txZ+/fvV3x8vDm1bt1a/fr1M//t7OysDRs2mO9JSEjQiRMnFBwcLEkKDg7W/v37dfbsWbNNTEyMPDw81KhRI7PNjX1ktcnqIyckWwAAwF6Kc44EAABgtUK/h1SlSpXUpEkTm3kVKlRQlSpVzPmDBg3SqFGj5O3tLQ8PDw0fPlzBwcFq166dJCksLEyNGjXSU089pRkzZigxMVETJkxQZGSkXF1dJUnPPfec5s+frzFjxuiZZ57Rxo0b9dlnn+mbb74p7E0CAAAoMHIkAACAPxXJTc3vZM6cOXJ0dFSvXr2Umpqq8PBw/f3vfzeXOzk5ac2aNXr++ecVHBysChUqaMCAAZoyZYrZJjAwUN98841Gjhypd955RzVq1NCHH36o8PBwe2wSAABAgZEjAQCAssKSgtTmzZttXru5uWnBggVasGDBLd8TEBCgtWvX3rbfTp06ae/evYURIgAAgOXIkQAAQFlV6PeQAgAAAAAAAG6HghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWKmfvAAAAAACgqKVHb8s2z7lLeztEAgCQKEgBxcbNSRIJEgAAAACgtOKSPQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApQq9IDV9+nS1adNGlSpVUrVq1RQREaGEhASbNteuXVNkZKSqVKmiihUrqlevXjpz5oxNmxMnTqh79+4qX768qlWrptGjRysjI8OmzebNm9WyZUu5urqqbt26WrJkSWFvDgAAQKEgRwIAAPhToRektmzZosjISP3444+KiYlRenq6wsLCdPnyZbPNyJEj9fXXX2vlypXasmWLTp06pZ49e5rLr1+/ru7duystLU3bt2/X0qVLtWTJEk2cONFsc/ToUXXv3l0PPPCA4uPjNWLECA0ePFjffvttYW8SAABAgZEjAQAA/KlcYXcYHR1t83rJkiWqVq2a4uLiFBISouTkZP3jH//Q8uXL9eCDD0qSFi9erIYNG+rHH39Uu3bttH79ev3888/67rvv5Ovrq3vvvVdTp07V2LFjNXnyZLm4uGjhwoUKDAzU22+/LUlq2LChtm3bpjlz5ig8PLywNwsAAKBAyJEAAAD+VOT3kEpOTpYkeXt7S5Li4uKUnp6u0NBQs02DBg1Uq1YtxcbGSpJiY2PVtGlT+fr6mm3Cw8OVkpKigwcPmm1u7COrTVYfOUlNTVVKSorNBAAAYA/kSAAAoCwr0oJUZmamRowYofvvv19NmjSRJCUmJsrFxUVeXl42bX19fZWYmGi2uTHRylqetex2bVJSUnT16tUc45k+fbo8PT3NqWbNmgXeRgAAgLwiRwIAAGVdkRakIiMjdeDAAX366adFuZpcGz9+vJKTk83p5MmT9g4JAACUQeRIAACgrCv0e0hlGTZsmNasWaOtW7eqRo0a5nw/Pz+lpaUpKSnJ5gjgmTNn5OfnZ7bZuXOnTX9ZT5i5sc3NT505c+aMPDw85O7unmNMrq6ucnV1LfC2AQAA5Bc5EgAAQBGcIWUYhoYNG6ZVq1Zp48aNCgwMtFneqlUrOTs7a8OGDea8hIQEnThxQsHBwZKk4OBg7d+/X2fPnjXbxMTEyMPDQ40aNTLb3NhHVpusPgAAAIoTciQAAIA/FfoZUpGRkVq+fLm+/PJLVapUybyfgaenp9zd3eXp6alBgwZp1KhR8vb2loeHh4YPH67g4GC1a9dOkhQWFqZGjRrpqaee0owZM5SYmKgJEyYoMjLSPHr33HPPaf78+RozZoyeeeYZbdy4UZ999pm++eabwt4kAACAAiNHAgAA+FOhnyH13nvvKTk5WZ06dVL16tXNacWKFWabOXPm6KGHHlKvXr0UEhIiPz8/ffHFF+ZyJycnrVmzRk5OTgoODtaTTz6p/v37a8qUKWabwMBAffPNN4qJiVHz5s319ttv68MPP+RxxgAAoFgiRwIAAPhToZ8hZRjGHdu4ublpwYIFWrBgwS3bBAQEaO3atbftp1OnTtq7d2+eYwQAALAaORIAAMCfivQpewAAAAAAAMDNKEgBAAAAAADAUoV+yR6AgjmWtE6S5Lj7oOq0ftbO0QAAAJROx5LWyXH3QfM1eRcAWIszpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACW4il7AAAAAFAA6dHbbF47d2lvp0gAoOSgIAWUMjcnRBJJEQAAAACgeKEghVyhyAEAAJA/5FEAAGTHPaQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKe0gh144lrTP/Xdurqx0jAQAAKFluzKMkqZ64hxQAoGzjDCkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVDl7BwCg+EqP3pZtnnOX9naIBAAAAABQmlCQAgAAAAA740AggLKGS/YAAAAAAABgKQpSAAAAAAAAsBSX7AGl2LGkdZIkx90HVaf1s3aOBgAAAACAP1CQAgAAAIACyjoQKHEwEAByg4IUAAAAAJRiN98wnZulAygOKEgBsASJEAAAAAAgCzc1BwAAAAAAgKUoSAEAAAAAAMBSXLIHoES5+dI/icv/AAAA7IFbMgAoiBJ/htSCBQtUu3Ztubm5KSgoSDt37rR3SAAAAHZHjgQAAIqzEn2G1IoVKzRq1CgtXLhQQUFBmjt3rsLDw5WQkKBq1arZO7xiIeuoRdZjaB3r1pIkHkOLXLnx8cWSVNurq50iKRoc1QNQWpEj5c+NvwvkTigOjux+3+Z1ad0PycmAsqlEnyE1e/ZsDRkyRE8//bQaNWqkhQsXqnz58vroo4/sHRqAUiw9epvNBADFDTkSAGTP2cjbgOKlxJ4hlZaWpri4OI0fP96c5+joqNDQUMXGxub4ntTUVKWmppqvk5OTJUkpKSlFG6wdpV++LEm6dOWP7Xa4dFVS3rc5/fJlsw9JSnG+LOd8jlth9HXx0lUZ/7+PFOfL5vz8xHRjXzf2l5u+bt4WKf/7U06fVX76yuqnMPrKtm0F/NxPJMeYr+ukNMt3PzcrSEz56Se/78vWT0z27yrnvwTbvS+gtMv6PjQMw86RFA1ypPy71W+oVLCxKKx8oajiu7G/LAWNL6vPrPjy2+eNfd8YY35ym5IWnyRddLtq87qgeWZWLuawebck6e6Wz+Srv5v7zWJ1TpbXfvPb9815FjkWSivLcySjhPrtt98MScb27dtt5o8ePdpo27Ztju+ZNGmSIYmJiYmJiYmJyTh58qQVKYvlyJGYmJiYmJiYCjJZlSOV2DOk8mP8+PEaNWqU+TozM1Pnz59XlSpV5ODgYMfISo6UlBTVrFlTJ0+elIeHh73DKZUYY2swzkWPMbYG45x3hmHo4sWL8vf3t3coxQY5UtHi77T44TMpfvhMih8+k+KpKD8Xq3OkEluQqlq1qpycnHTmzBmb+WfOnJGfn1+O73F1dZWrq6vNPC8vr6IKsVTz8PDgS6mIMcbWYJyLHmNsDcY5bzw9Pe0dQpEhRyq++DstfvhMih8+k+KHz6R4KqrPxcocqcTe1NzFxUWtWrXShg0bzHmZmZnasGGDgoO5phcAAJRN5EgAAKAkKLFnSEnSqFGjNGDAALVu3Vpt27bV3LlzdfnyZT399NP2Dg0AAMBuyJEAAEBxV6ILUo899ph+//13TZw4UYmJibr33nsVHR0tX19fe4dWarm6umrSpEnZTutH4WGMrcE4Fz3G2BqMM3JCjlS88Hda/PCZFD98JsUPn0nxVJo+FwfDKKXPPAYAAAAAAECxVGLvIQUAAAAAAICSiYIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZDCHU2ePFkODg42U4MGDewdVom3detWPfzww/L395eDg4NWr15ts9wwDE2cOFHVq1eXu7u7QkNDdfjwYfsEW4LdaZwHDhyYbf/u0qWLfYItoaZPn642bdqoUqVKqlatmiIiIpSQkGDT5tq1a4qMjFSVKlVUsWJF9erVS2fOnLFTxCVPbsa4U6dO2fbl5557zk4RA5DIoYoD8q3ih9ys+CGXK37KSu5HQQq50rhxY50+fdqctm3bZu+QSrzLly+refPmWrBgQY7LZ8yYoXnz5mnhwoXasWOHKlSooPDwcF27ds3iSEu2O42zJHXp0sVm//7kk08sjLDk27JliyIjI/Xjjz8qJiZG6enpCgsL0+XLl802I0eO1Ndff62VK1dqy5YtOnXqlHr27GnHqEuW3IyxJA0ZMsRmX54xY4adIgaQhRzKvsi3ih9ys+KHXK74KTO5nwHcwaRJk4zmzZvbO4xSTZKxatUq83VmZqbh5+dnzJw505yXlJRkuLq6Gp988okdIiwdbh5nwzCMAQMGGI888ohd4imtzp49a0gytmzZYhjGH/uus7OzsXLlSrPNoUOHDElGbGysvcIs0W4eY8MwjI4dOxovvvii/YICkA05VPFCvlX8kJsVT+RyxU9pzf04Qwq5cvjwYfn7++vuu+9Wv379dOLECXuHVKodPXpUiYmJCg0NNed5enoqKChIsbGxdoysdNq8ebOqVaum+vXr6/nnn9e5c+fsHVKJlpycLEny9vaWJMXFxSk9Pd1mf27QoIFq1arF/pxPN49xlmXLlqlq1apq0qSJxo8frytXrtgjPAA3IIcqvsi3ii9yM/silyt+SmvuV87eAaD4CwoK0pIlS1S/fn2dPn1aUVFR6tChgw4cOKBKlSrZO7xSKTExUZLk6+trM9/X19dchsLRpUsX9ezZU4GBgTpy5IheeeUVde3aVbGxsXJycrJ3eCVOZmamRowYofvvv19NmjSR9Mf+7OLiIi8vL5u27M/5k9MYS9ITTzyhgIAA+fv7a9++fRo7dqwSEhL0xRdf2DFaoGwjhyreyLeKJ3Iz+yKXK35Kc+5HQQp31LVrV/PfzZo1U1BQkAICAvTZZ59p0KBBdowMKLi+ffua/27atKmaNWumOnXqaPPmzercubMdIyuZIiMjdeDAAe6RUoRuNcZDhw41/920aVNVr15dnTt31pEjR1SnTh2rwwQgciggP8jN7Itcrvgpzbkfl+whz7y8vHTPPffol19+sXcopZafn58kZXtyxZkzZ8xlKBp33323qlatyv6dD8OGDdOaNWu0adMm1ahRw5zv5+entLQ0JSUl2bRnf867W41xToKCgiSJfRkoRsihihfyrZKB3Mw65HLFT2nP/ShIIc8uXbqkI0eOqHr16vYOpdQKDAyUn5+fNmzYYM5LSUnRjh07FBwcbMfISr9ff/1V586dY//OA8MwNGzYMK1atUobN25UYGCgzfJWrVrJ2dnZZn9OSEjQiRMn2J9z6U5jnJP4+HhJYl8GihFyqOKFfKtkIDcreuRyxU9Zyf24ZA939PLLL+vhhx9WQECATp06pUmTJsnJyUmPP/64vUMr0S5dumRTvT569Kji4+Pl7e2tWrVqacSIEZo2bZrq1aunwMBAvfbaa/L391dERIT9gi6BbjfO3t7eioqKUq9eveTn56cjR45ozJgxqlu3rsLDw+0YdckSGRmp5cuX68svv1SlSpXMewl4enrK3d1dnp6eGjRokEaNGiVvb295eHho+PDhCg4OVrt27ewcfclwpzE+cuSIli9frm7duqlKlSrat2+fRo4cqZCQEDVr1szO0QNlFzmU/ZFvFT/kZsUPuVzxU2ZyP/s+5A8lwWOPPWZUr17dcHFxMe666y7jscceM3755Rd7h1Xibdq0yZCUbRowYIBhGH88ivi1114zfH19DVdXV6Nz585GQkKCfYMugW43zleuXDHCwsIMHx8fw9nZ2QgICDCGDBliJCYm2jvsEiWn8ZVkLF682Gxz9epV429/+5tRuXJlo3z58kaPHj2M06dP2y/oEuZOY3zixAkjJCTE8Pb2NlxdXY26desao0ePNpKTk+0bOFDGkUPZH/lW8UNuVvyQyxU/ZSX3czAMwyiaUhcAAAAAAACQHfeQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUkAJsXnzZjk4OGjz5s2F2q+Dg4MmT55cqH2WNgMHDlTt2rXtHUaxULt2bQ0cOPCO7ZYsWSIHBwcdO3asyGPKq8zMTDVp0kSvv/76HdtOnjxZDg4ONvMyMjI0ZswY1axZU46OjoqIiMjT+hcuXKhatWopNTU1T+8DAOSMHMl+yJH+RI5EjoS8oyAFy23fvl2TJ09WUlKSvUMpM9auXUtCJenKlSuaPHlyoSessE5CQoJGjhyp++67T25ubvlK6D755BOdPHlSw4YNy1cMH330kWbOnKnevXtr6dKlGjlypCRpxYoVevLJJ1WvXj05ODioU6dOOb5/4MCBSktL0/vvv5+v9QMovciRrEeO9AdypJKvuOZI586d08yZMxUSEiIfHx95eXmpXbt2WrFiRbb3kyOVPRSkYLnt27crKiqKZMtCa9euVVRUVI7Lrl69qgkTJlgckX1cuXJFUVFReU62PvjgAyUkJBRNUCVMQkKCPvjgA7utPzY2VvPmzdPFixfVsGHDfPUxc+ZM9e3bV56envl6/8aNG3XXXXdpzpw5euqpp9SxY0dJ0nvvvacvv/xSNWvWVOXKlW/5fjc3Nw0YMECzZ8+WYRj5igFA6USOZD1ypD+QIxUcOVLOOVJsbKxeffVVeXt7a8KECXr99ddVvnx59e3bV5MmTbJ5PzlS2UNBCihiV65cyXF+RkaG0tLSLI4mOzc3N5UrV87eYRRLly9fliQ5OzvL1dXVztEUD66urnJ2drbb+v/6178qKSlJ+/fvV79+/fL8/r179+qnn37So48+mu8Yzp49Ky8vr2zzP/74YyUnJ2vjxo3y9/e/bR+PPvqojh8/rk2bNuU7DgAo6ciRSi5ypOzIkXLOkRo3bqzDhw9r9erVevHFFxUZGakNGzbowQcf1FtvvWXuS1nIkcoWClKw1OTJkzV69GhJUmBgoBwcHGxOJ83IyNDUqVNVp04dubq6qnbt2nrllVeyXUdcu3ZtPfTQQ1q/fr3uvfdeubm5qVGjRvriiy/yFde//vUvtW3bVuXLl1flypUVEhKi9evX27T5+9//rsaNG8vV1VX+/v6KjIzMdgSzU6dOatKkieLi4hQSEqLy5cvrlVde0bFjx+Tg4KBZs2Zp7ty55vb9/PPPkqT//Oc/6t27t7y9veXm5qbWrVvrq6++umPc33//vfr06aNatWrJ1dVVNWvW1MiRI3X16lWzzcCBA7VgwQJJMsf7xuu9c7o/wt69e9W1a1d5eHioYsWK6ty5s3788UebNlnXv//www8aNWqUfHx8VKFCBfXo0UO///77HWO/UdY16P/973/15JNPytPTUz4+PnrttddkGIZOnjypRx55RB4eHvLz89Pbb79t8/60tDRNnDhRrVq1kqenpypUqKAOHTrY/JAdO3ZMPj4+kqSoqChzHLK2feDAgapYsaKOHDmibt26qVKlSuaP+c33R5g0aZIcHR21YcMGmziGDh0qFxcX/fTTT7ne9tzuy+np6YqKilK9evXk5uamKlWqqH379oqJiTHbZG3DiRMn9NBDD6lixYq66667zM9///79evDBB1WhQgUFBARo+fLluY7zxnhvvj/CwYMH9eCDD8rd3V01atTQtGnTlJmZme29u3fvVnh4uKpWrSp3d3cFBgbqmWeeydP6vb29ValSpTzHnWX16tVycXFRSEhItmXbtm1TmzZt5Obmpjp16mQ7XTzr73jTpk06ePCguQ9lHU3Oul9CbrRq1Ure3t768ssv870tAEoXciRypJyQI5Ej5VZxzZECAwMVEBBg097BwUERERFKTU3V//73P5tl5EhlCyV/WKpnz57673//q08++URz5sxR1apVJcn8ERw8eLCWLl2q3r1766WXXtKOHTs0ffp0HTp0SKtWrbLp6/Dhw3rsscf03HPPacCAAVq8eLH69Omj6Oho/eUvf8l1TFFRUZo8ebLuu+8+TZkyRS4uLtqxY4c2btyosLAwSX8kA1FRUQoNDdXzzz+vhIQEvffee9q1a5d++OEHm6Mh586dU9euXdW3b189+eST8vX1NZctXrxY165d09ChQ+Xq6ipvb28dPHhQ999/v+666y6NGzdOFSpU0GeffaaIiAj9+9//Vo8ePW4Z+8qVK3XlyhU9//zzqlKlinbu3Kl3331Xv/76q1auXClJevbZZ3Xq1CnFxMTo448/vuN4HDx4UB06dJCHh4fGjBkjZ2dnvf/+++rUqZO2bNmioKAgm/bDhw9X5cqVNWnSJB07dkxz587VsGHDcrwu/E4ee+wxNWzYUG+++aa++eYbTZs2Td7e3nr//ffNoyjLli3Tyy+/rDZt2pg/mCkpKfrwww/1+OOPa8iQIbp48aL+8Y9/KDw8XDt37tS9994rHx8fvffee3r++efVo0cP9ezZU5LUrFkzc/0ZGRkKDw9X+/btNWvWLJUvXz7HOCdMmKCvv/5agwYN0v79+1WpUiV9++23+uCDDzR16lQ1b948T9udm3158uTJmj59ugYPHqy2bdsqJSVFu3fv1p49e2z29+vXr6tr164KCQnRjBkztGzZMg0bNkwVKlTQq6++qn79+qlnz55auHCh+vfvr+DgYAUGBuYp3hslJibqgQceUEZGhrn/Llq0SO7u7jbtzp49q7CwMPn4+GjcuHHy8vLSsWPH8v0/SPm1fft2NWnSJNsRzP3795vxTZ48WRkZGZo0aZLN36+Pj48+/vhjvf7667p06ZKmT58uSfk+Lb5ly5b64Ycf8r8xAEoVciRypNshRyJHKmpW50iJiYmSZH7X3YgcqQwxAIvNnDnTkGQcPXrUZn58fLwhyRg8eLDN/JdfftmQZGzcuNGcFxAQYEgy/v3vf5vzkpOTjerVqxstWrTIdSyHDx82HB0djR49ehjXr1+3WZaZmWkYhmGcPXvWcHFxMcLCwmzazJ8/35BkfPTRR+a8jh07GpKMhQsX2vR19OhRQ5Lh4eFhnD171mZZ586djaZNmxrXrl2zWfd9991n1KtXz5y3adMmQ5KxadMmc96VK1eybdP06dMNBwcH4/jx4+a8yMhI41Z/7pKMSZMmma8jIiIMFxcX48iRI+a8U6dOGZUqVTJCQkLMeYsXLzYkGaGhoeZYGYZhjBw50nBycjKSkpJyXF9OJk2aZEgyhg4das7LyMgwatSoYTg4OBhvvvmmOf/ChQuGu7u7MWDAAJu2qampNn1euHDB8PX1NZ555hlz3u+//55te7MMGDDAkGSMGzcux2UBAQE28/bv32+4uLgYgwcPNi5cuGDcddddRuvWrY309PRcb7dh5H5fbt68udG9e/fb9pW1DW+88YY5L2u8HBwcjE8//dSc/5///OeWY3GneG8c+xEjRhiSjB07dpjzzp49a3h6etr8na9atcqQZOzatStP67udW32X3E6NGjWMXr16ZZsfERFhuLm52fzd/Pzzz4aTk1O2v52OHTsajRs3vu16GjdubHTs2PG2bYYOHWq4u7vnOnYApR85EjnSzf4fe/cdHUW5/3H8k4Q0IJtQEhIghE6I9B6kCZEg5RoEFUUpUi4KXgGlXRSIiHARsaJYgeuFHyhKkRKqoDSREqRGxAgqhE6WoqTN7w9ORpYkkIRk0t6vc/YcdubZmWeebLIfvjP7DBmJjJQd+TkjGYZhnD9/3vDz8zNat26d7noyUtHBV/aQb6xatUqSNHLkSIflzz//vCRp5cqVDsvLly/vcGbMZrOpT58+2rt3r1lxv5OlS5cqJSVFEyZMSPNVm9RLttevX6+EhAQNHz7coc2gQYNks9nS9Mvd3V39+/dPd389evQwz3RK0oULF7Rx40Y98sgjunz5ss6dO6dz587p/PnzCg8P19GjR/XHH39k2P+bz7BcvXpV586dU8uWLWUYhvbu3ZupMbhZcnKy1q5dq4iICFWtWtVcHhAQoMcff1xbtmyR3W53eM3gwYMdLm9v3bq1kpOTdfz48Szvf+DAgea/XVxc1KRJExmGoQEDBpjLfXx8VKtWLYfLe11cXOTm5ibpxu1qL1y4oKSkJDVp0kR79uzJUh+efvrpTLWrU6eOIiMj9fHHHys8PFznzp3TvHnzsjXXRGbeyz4+Pjp48KCOHj16x+3dPI6p41WiRAmHOQFq1aolHx+fNJdJZ9WqVavUokULNWvWzFzm6+ubZu6C1PkEVqxYocTExLva5904f/58mgnHk5OTtWbNGkVERKhSpUrm8tq1ays8PDzX+lKqVCn9+eefGc6hAgCpyEhkJDLSDWSk3GNVRkpJSVHv3r116dIlvfPOO+m2ISMVHRSkkG8cP35czs7Oql69usNyf39/+fj4pPnwrl69usOHvCTVrFlTkjJ9i9Njx47J2dlZISEht+2XdOPD6WZubm6qWrVqmn5VqFDB/OC/1a2X/f78888yDEMvvfSSfH19HR6pd504c+ZMhn07ceKE+vXrp9KlS6tkyZLy9fU17/gVHx+f4esycvbsWV27di3NsUo3PnhSUlL022+/OSy/+cNJkvlBdvHixSzv/9ZteXt7y8PDI82lvN7e3mm2P2/ePNWrV8+cO8DX11crV67M0jgUK1ZMFStWzHT7UaNGqX79+tq5c6cmTpx42/fR7WTmvfzyyy/r0qVLqlmzpurWratRo0bpxx9/TLMtDw8Ph0Av3RivihUrptlHeuOYVcePH1eNGjXSLL/1PdS2bVv16NFDkZGRKlu2rB588EHNmTMnzdwnVjBuuWvL2bNn9eeff2bqOHKjH7f+XADgVmQkMhIZ6W9kpNxjRUZ69tlnFRUVpY8//jjDr3CSkYoO5pBCvlPQ//Dc+r3w261LndTwhRdeyPAsw63hM1VycrLuv/9+XbhwQWPGjFFwcLBKlCihP/74Q/369Ut3wsTc4OLiku7yWz/QsrutzGz/f//7n/r166eIiAiNGjVKfn5+cnFx0dSpU3Xs2LFM79/d3T3Tk1JL0i+//GKejdu/f3+mX5cdbdq00bFjx7Rs2TKtXbtWH3/8sd544w3Nnj07zVnT9OTkzyk7nJyctHjxYu3YsUNff/211qxZo6eeekqvv/66duzYoZIlS1rSjzJlytx1wMwpFy9eVPHixW/7NwMAbkZGckRGIiNJZKScYkVGioyM1Hvvvadp06bpySefzLAdGanooCAFy2UUpoKCgpSSkqKjR486TIB3+vRpXbp0Kc3dGVLPnN28vZ9++kmSHO72cTvVqlVTSkqKDh06pAYNGmTYL0mKiYlxuEQ7ISFBsbGxCgsLy9S+0pO6PVdX1yxvZ//+/frpp580b9489enTx1x+8x1FUmU2wPr6+qp48eKKiYlJs+7IkSNydnZWYGBglvpphcWLF6tq1ar66quvHI419QxqqpwM8ikpKerXr59sNpuGDx+uV199VT179jQnAs2KzL6XS5curf79+6t///66cuWK2rRpo0mTJjmELasFBQWle4l8eu8hSWrRooVatGihKVOmaMGCBerdu7cWLlxo2TEEBwcrNjbWYZmvr688PT2zdBw5ITY2NtsTogMonMhIfyMj5QwyEhkps3I7I82aNUuTJk3S8OHDNWbMmNu2JSMVHXxlD5YrUaKEJKW5HXDnzp0lSW+++abD8pkzZ0qSunTp4rD85MmTDneVsdvt+u9//6sGDRrI398/U32JiIiQs7OzXn755TRny1LPioSFhcnNzU1vv/22w5mSTz75RPHx8Wn6lRV+fn5q166dPvjgA506dSrN+tvdGjj1bM7NfTIMQ2+99VaathmNeXrb7Nixo5YtW+ZwSf/p06e1YMECtWrVSjab7bbbyAvpjcX333+v7du3O7RLvSPMncYhM2bOnKlt27bpww8/1OTJk9WyZUs9/fTTOnfuXJa3lZn38vnz5x1eU7JkSVWvXj1PLue+WefOnbVjxw7t3LnTXHb27FnNnz/fod3FixfTnGlM/Q+OlccQGhqqAwcOOOzTxcVF4eHhWrp0qU6cOGEuP3z4sNasWZNrfdmzZ49atmyZa9sHUPCQkf5GRsoZZKS8Q0b626JFi/Svf/1LvXv3Nv9u3Q4ZqejgCilYrnHjxpKk8ePHq1evXnJ1dVW3bt1Uv3599e3bVx9++KEuXbqktm3baufOnZo3b54iIiJ03333OWynZs2aGjBggH744QeVK1dOn376qU6fPq05c+Zkui/Vq1fX+PHjNXnyZLVu3VoPPfSQ3N3d9cMPP6h8+fKaOnWqfH19NW7cOEVGRqpTp076xz/+oZiYGL333ntq2rSpnnjiibsaj1mzZqlVq1aqW7euBg0apKpVq+r06dPavn27fv/9d+3bty/d1wUHB6tatWp64YUX9Mcff8hms+nLL79M91Lb1DH/17/+pfDwcLm4uKhXr17pbveVV17RunXr1KpVKz3zzDMqVqyYPvjgA12/fl3Tp0+/q2PNLV27dtVXX32l7t27q0uXLoqNjdXs2bMVEhKiK1eumO08PT0VEhKiRYsWqWbNmipdurTq1KmjOnXqZGl/hw8f1ksvvaR+/fqpW7dukqS5c+eqQYMGeuaZZ/T5559naXuZeS+HhISoXbt2aty4sUqXLq1du3Zp8eLFGjZsWJb2ldNGjx6tzz77TJ06ddJzzz1n3tI4KCjIYf6GefPm6b333lP37t1VrVo1Xb58WR999JFsNpv5H63MiI+PNyfATL0d8LvvvisfHx/5+PjccTwefPBBTZ48WZs3bzZvWS7duIQ8KipKrVu31jPPPKOkpCS98847uueee9KdhyI93377rb799ltJNwLn1atX9corr0i68XWC1FtwS9Lu3bt14cIFPfjgg5k+dgCFHxnJERnp7pGR8g4Z6YadO3eqT58+KlOmjDp06JCmINeyZUuHKyzJSEVM7t/ID0hr8uTJRoUKFQxnZ2eHW5ImJiYakZGRRpUqVQxXV1cjMDDQGDdunMPtfg3jxm1Vu3TpYqxZs8aoV6+e4e7ubgQHBxtffPFFtvrz6aefGg0bNjTc3d2NUqVKGW3btjXWrVvn0Obdd981goODDVdXV6NcuXLG008/bVy8eNGhTUa3Ok29pfFrr72W7v6PHTtm9OnTx/D39zdcXV2NChUqGF27djUWL15stknvlsaHDh0ywsLCjJIlSxply5Y1Bg0aZOzbt8+QZMyZM8dsl5SUZDz77LOGr6+v4eTk5HCLVqVzW9s9e/YY4eHhRsmSJY3ixYsb9913n7Ft2zaHNqm3NL71FrXp9fNOUm9pfPbsWYflffv2NUqUKJGm/a3jnJKSYrz66qtGUFCQ4e7ubjRs2NBYsWJFurci3rZtm9G4cWPDzc3N4dgz2lfqutTtJCUlGU2bNjUqVqyY5rbNb731liHJWLRoUaaPPbPv5VdeecVo1qyZ4ePjY3h6ehrBwcHGlClTjISEBId+Zma8bt13Vtx6S2PDMIwff/zRaNu2reHh4WFUqFDBmDx5svHJJ584/G7v2bPHeOyxx4xKlSoZ7u7uhp+fn9G1a1dj165dWdp/6u9Seo9bf9YZqVevnjFgwIA0yzdv3my+N6pWrWrMnj3bfG/eLKPxTG2b3uPW37ExY8YYlSpVcrgdOAAYBhnpVmQkMhIZKXPya0ZK/X3I6HHz76NhkJGKGifDsGi2NiAHVa5cWXXq1NGKFSvyuivAXeG9bL3PPvtMQ4cO1YkTJ8xbLVvp+vXrqly5ssaOHavnnnvO8v0DKNz4XEFhwXvZemQkWI05pAAARUrv3r1VqVIlzZo1K0/2P2fOHLm6umrIkCF5sn8AAID0kJFgNeaQQqEVFxd32/Wenp7y9va2qDdF05UrVxzmJ0iPr69vhrfbLcjOnj2r5OTkDNe7ubmpdOnSFvbo9vL69+XChQtKSEjIcL2Li4t8fX1zZF/Ozs46cOBAjmwrO4YMGULQApCn8vpvPshIZKTMIyOhMKMghUIrICDgtuv79u2ruXPnWtOZImrGjBmKjIy8bZvY2NhM34K6IGnatKmOHz+e4fq2bdtq06ZN1nXoDvL69+Whhx7S5s2bM1wfFBTkcFcjAED25fXffJCRyEiZR0ZCYcYcUii01q9ff9v15cuXV0hIiEW9KZp++eUX/fLLL7dt06pVK3l4eFjUI+ts3bpVf/75Z4brS5UqZd7ZJz/I69+X3bt3p3v3o1Senp669957c23/AFCU5PXffJCRyEiZR0ZCYUZBCgAAAAAAAJZiUnMAAAAAAABYioIUAAAAAAAALFWkJzVPSUnRyZMn5eXlJScnp7zuDgAAsIBhGLp8+bLKly8vZ2fOzaWHjAQAQNFjdUYq0gWpkydPKjAwMK+7AQAA8sBvv/2mihUr5nU38iUyEgAARZdVGalIF6S8vLwk3Rhsm82Wx70BAABWsNvtCgwMNHMA0iIjAQBQ9FidkYp0QSr1EnSbzUbYAgCgiOGraBkjIwEAUHRZlZGYOAEAAAAAAACWoiAFAAAAAAAASxXpr+wBAHA7ycnJSkxMzOtuIItcXV3l4uKS190AAKDQIiMVTPktI1GQAgDgFoZhKC4uTpcuXcrrriCbfHx85O/vzzxRAADkIDJSwZefMhIFKQAAbpEatPz8/FS8ePF88YGNzDEMQ9euXdOZM2ckSQEBAXncIwAACg8yUsGVHzMSBSkAAG6SnJxsBq0yZcrkdXeQDZ6enpKkM2fOyM/PL19dmg4AQEFFRir48ltGYlJzAABukjofQvHixfO4J7gbqT8/5rcAACBnkJEKh/yUkShIAQCQDi5BL9j4+QEAkDv4jC3Y8tPPj4IUAAAAAAAALEVBCgAAAAAAAJZiUnMAADIpMWqLZfty7dQq023vdOn1xIkTNWnSpLvsUfY4OTlpyZIlioiIyPY2PvzwQy1YsEB79uzR5cuXdfHiRfn4+ORYHwEAwN2xMiNJ5KRUFy5c0MSJE7V27VqdOHFCvr6+ioiI0OTJk+Xt7Z2znc0FFKQAACjgTp06Zf570aJFmjBhgmJiYsxlJUuWzNL2EhIS5ObmlmP9u1vXrl1Tp06d1KlTJ40bNy6vuwMAAAqQwpyTTp48qZMnT2rGjBkKCQnR8ePHNWTIEJ08eVKLFy/O6+7dEV/Zy0WJUVvSPAAAyGn+/v7mw9vbW05OTubzq1evqnfv3ipXrpxKliyppk2bav369Q6vr1y5siZPnqw+ffrIZrNp8ODBkqSPPvpIgYGBKl68uLp3766ZM2emuTJp2bJlatSokTw8PFS1alVFRkYqKSnJ3K4kde/eXU5OTubzffv26b777pOXl5dsNpsaN26sXbt2ZXh8w4cP19ixY9WiRYucGTDkOTISAMAqhTkn1alTR19++aW6deumatWqqX379poyZYq+/vprcz/5GQUpAAAKsStXrqhz587asGGD9u7dq06dOqlbt246ceKEQ7sZM2aofv362rt3r1566SVt3bpVQ4YM0XPPPafo6Gjdf//9mjJlisNrvvvuO/Xp00fPPfecDh06pA8++EBz58412/3www+SpDlz5ujUqVPm8969e6tixYr64YcftHv3bo0dO1aurq4WjAYAAMDfCmNOio+Pl81mU7Fi+f8Lcfm/hwAAINvq16+v+vXrm88nT56sJUuWaPny5Ro2bJi5vH379nr++efN5+PHj9cDDzygF154QZJUs2ZNbdu2TStWrDDbREZGauzYserbt68kqWrVqpo8ebJGjx6tiRMnytfXV5Lk4+Mjf39/83UnTpzQqFGjFBwcLEmqUaNGLhw5AADA7RW2nHTu3DlNnjzZvIorv+MKKQAACrErV67ohRdeUO3ateXj46OSJUvq8OHDac78NWnSxOF5TEyMmjVr5rDs1uf79u3Tyy+/rJIlS5qPQYMG6dSpU7p27VqGfRo5cqQGDhyosLAwTZs2TceOHbvLowQAAMi6wpST7Ha7unTpopCQkDybpD2rKEgBAFCIvfDCC1qyZIleffVVfffdd4qOjlbdunWVkJDg0K5EiRJZ3vaVK1cUGRmp6Oho87F//34dPXpUHh4eGb5u0qRJOnjwoLp06aKNGzcqJCRES5YsyfL+AQAA7kZhyUmXL19Wp06d5OXlpSVLlhSYqRD4yh4AAIXY1q1b1a9fP3Xv3l3SjXD066+/3vF1tWrVMucySHXr80aNGikmJkbVq1fPcDuurq5KTk5Os7xmzZqqWbOmRowYoccee0xz5swx+wgAAGCFwpCT7Ha7wsPD5e7uruXLl9+22JXfUJACAKAQq1Gjhr766it169ZNTk5Oeumll5SSknLH1z377LNq06aNZs6cqW7dumnjxo1avXq1nJyczDYTJkxQ165dValSJfXs2VPOzs7at2+fDhw4oFdeeUXSjTvIbNiwQffee6/c3d3l4eGhUaNGqWfPnqpSpYp+//13/fDDD+rRo0eGfYmLi1NcXJx+/vlnSdL+/fvl5eWlSpUqqXTp0nc5QgAAoKgq6DnJbrerY8eOunbtmv73v//JbrfLbrdLknx9feXi4pIDo5R7+MoeAACF2MyZM1WqVCm1bNlS3bp1U3h4uBo1anTH1917772aPXu2Zs6cqfr16ysqKkojRoxwOOsWHh6uFStWaO3atWratKlatGihN954Q0FBQWab119/XevWrVNgYKAaNmwoFxcXnT9/Xn369FHNmjX1yCOP6IEHHlBkZGSGfZk9e7YaNmyoQYMGSZLatGmjhg0bavny5XcxMgAAoKgr6Dlpz549+v7777V//35Vr15dAQEB5uO33367+wHKZU6GYRh53Ym8Yrfb5e3tbd4WMaclRm1Js8y1U6sc3w8AIOf89ddfio2NVZUqVQrUJc9WGDRokI4cOaLvvvsur7tyR7f7Oeb2539hQEYCANyKjHR7BSUn5aeMxFf2AABAumbMmKH7779fJUqU0OrVqzVv3jy99957ed0tAACAPEdOunsUpAAAQLp27typ6dOn6/Lly6patarefvttDRw4MK+7BQAAkOfISXePghQAAEjX559/ntddAAAAyJfISXePSc0BAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFgqSwWpqVOnqmnTpvLy8pKfn58iIiIUExPj0KZdu3ZycnJyeAwZMsShzYkTJ9SlSxcVL15cfn5+GjVqlJKSkhzabNq0SY0aNZK7u7uqV6+uuXPnpunPrFmzVLlyZXl4eKh58+bauXNnVg4HAAAgR5CRAAAAsiZLBanNmzdr6NCh2rFjh9atW6fExER17NhRV69edWg3aNAgnTp1ynxMnz7dXJecnKwuXbooISFB27Zt07x58zR37lxNmDDBbBMbG6suXbrovvvuU3R0tIYPH66BAwdqzZo1ZptFixZp5MiRmjhxovbs2aP69esrPDxcZ86cye5YAAAAZAsZCQAAIGucDMMwsvvis2fPys/PT5s3b1abNm0k3Tj716BBA7355pvpvmb16tXq2rWrTp48qXLlykmSZs+erTFjxujs2bNyc3PTmDFjtHLlSh04cMB8Xa9evXTp0iVFRUVJkpo3b66mTZvq3XfflSSlpKQoMDBQzz77rMaOHZup/tvtdnl7eys+Pl42my27w5ChxKgtaZa5dmqV4/sBAOScv/76S7GxsapSpYo8PDzyujvIptv9HHP7818iI90JGQkACh4yUuGQ1xnpZnc1h1R8fLwkqXTp0g7L58+fr7Jly6pOnToaN26crl27Zq7bvn276tatawYtSQoPD5fdbtfBgwfNNmFhYQ7bDA8P1/bt2yVJCQkJ2r17t0MbZ2dnhYWFmW3Sc/36ddntdocHAABATiMjAQAA3F6x7L4wJSVFw4cP17333qs6deqYyx9//HEFBQWpfPny+vHHHzVmzBjFxMToq6++kiTFxcU5BC1J5vO4uLjbtrHb7frzzz918eJFJScnp9vmyJEjGfZ56tSpioyMzO4hAwCKuGO7PrBsX9Wa/DNL7fv166d58+ZJkooVK6bSpUurXr16euyxx9SvXz85Oxfc+5gcPHhQEyZM0O7du3X8+HG98cYbGj58eF53K0NkJABAUWNlRpLISTf76KOP9N///te8erpx48Z69dVX1axZszzu2Z1luyA1dOhQHThwQFu2OF5yPXjwYPPfdevWVUBAgDp06KBjx46pWrVq2e9pDhg3bpxGjhxpPrfb7QoMDMzDHgEAkHM6deqkOXPmKDk5WadPn1ZUVJSee+45LV68WMuXL1exYtn+2M9T165dU9WqVfXwww9rxIgRed2dOyIjAQCQ/xTWnLRp0yY99thjatmypTw8PPSf//xHHTt21MGDB1WhQoW87t5tZasMOGzYMK1YsULffPONKlaseNu2zZs3lyT9/PPPkiR/f3+dPn3aoU3qc39//9u2sdls8vT0VNmyZeXi4pJum9RtpMfd3V02m83hAQBAYeHu7i5/f39VqFBBjRo10r///W8tW7ZMq1evdrgT26VLlzRw4ED5+vrKZrOpffv22rdvn8O2vv76azVt2lQeHh4qW7asunfvbq67ePGi+vTpo1KlSql48eJ64IEHdPToUUnS1atXZbPZtHjxYoftLV26VCVKlNDly5eVkJCgYcOGKSAgQB4eHgoKCtLUqVMzPK6mTZvqtddeU69eveTu7p4DI5V7yEgAAORPhTUnzZ8/X88884waNGig4OBgffzxx0pJSdGGDRtyYNRyV5YKUoZhaNiwYVqyZIk2btyoKlWq3PE10dHRkqSAgABJUmhoqPbv3+9wp5d169bJZrMpJCTEbHPr4K1bt06hoaGSJDc3NzVu3NihTeqAp7YBAABS+/btVb9+ffNrYZL08MMP68yZM1q9erV2796tRo0aqUOHDrpw4YIkaeXKlerevbs6d+6svXv3asOGDQ6Xfffr10+7du3S8uXLtX37dhmGoc6dOysxMVElSpRQr169NGfOHId+zJkzRz179pSXl5fefvttLV++XJ9//rliYmI0f/58Va5c2ZLxyC1kJAAACp7CmJOuXbumxMTENPNY5kdZuiZt6NChWrBggZYtWyYvLy9zPgNvb295enrq2LFjWrBggTp37qwyZcroxx9/1IgRI9SmTRvVq1dPktSxY0eFhIToySef1PTp0xUXF6cXX3xRQ4cONc96DhkyRO+++65Gjx6tp556Shs3btTnn3+ulStXmn0ZOXKk+vbtqyZNmqhZs2Z68803dfXqVfXv3z+nxuau/XppdZplNcQdZAAA1goODtaPP/4oSdqyZYt27typM2fOmJ+7M2bM0NKlS7V48WINHjxYU6ZMUa9evRzmFKpfv74k6ejRo1q+fLm2bt2qli1bSrpxZi4wMFBLly7Vww8/rIEDB6ply5Y6deqUAgICdObMGa1atUrr16+XJJ04cUI1atRQq1at5OTkpKCgICuHI1eQkbKGjAQAyC8KW04aM2aMypcvn+YmKPlRlq6Qev/99xUfH6927dopICDAfCxatEjSjbNy69evV8eOHRUcHKznn39ePXr00Ndff21uw8XFRStWrJCLi4tCQ0P1xBNPqE+fPnr55ZfNNlWqVNHKlSu1bt061a9fX6+//ro+/vhjhYeHm20effRRzZgxQxMmTFCDBg0UHR2tqKioNJN4AgBQ1BmGIScnJ0nSvn37dOXKFZUpU0YlS5Y0H7GxsTp27JikG1fudOjQId1tHT58WMWKFTO/biZJZcqUUa1atXT48GFJUrNmzXTPPfeYk4f+73//U1BQkNq0aSPpxpnD6Oho1apVS//617+0du3aXDt2q5CRAAAomApTTpo2bZoWLlyoJUuWyMPDI+uDYbEsXSFlGMZt1wcGBmrz5s133E5QUJBWrVp12zbt2rXT3r17b9tm2LBhGjZs2B33BwBAUXb48GHzK2RXrlxRQECANm3alKadj4+PJMnT0/Ou9zlw4EDNmjVLY8eO1Zw5c9S/f38z7DVq1EixsbFavXq11q9fr0ceeURhYWFp5lMoSMhIAAAUTIUlJ82YMUPTpk3T+vXrzauv87uCe29DAABwRxs3btT+/fvVo0cPSTdCTlxcnIoVK6bq1as7PMqWLStJqlevXoYTYdauXVtJSUn6/vvvzWXnz59XTEyMOc+RJD3xxBM6fvy43n77bR06dEh9+/Z12I7NZtOjjz6qjz76SIsWLdKXX35pzs0AAABghcKSk6ZPn67JkycrKipKTZo0yfZ4WK1g3tcQAACkcf36dcXFxTncznjq1Knq2rWr+vTpI0kKCwtTaGioIiIiNH36dNWsWVMnT540J+hs0qSJJk6cqA4dOqhatWrq1auXkpKStGrVKo0ZM0Y1atTQgw8+qEGDBumDDz6Ql5eXxo4dqwoVKujBBx80+1KqVCk99NBDGjVqlDp27Ohwx7mZM2cqICBADRs2lLOzs7744gv5+/ubZx5vlZCQoEOHDpn//uOPPxQdHa2SJUuqevXquTegAACg0CisOek///mPJkyYoAULFqhy5crmPJapXzfMz7hCCgCAQiIqKkoBAQGqXLmyOnXqpG+++UZvv/22li1bJhcXF0mSk5OTVq1apTZt2qh///6qWbOmevXqpePHj5tzDLVr105ffPGFli9frgYNGqh9+/bauXOnuZ85c+aocePG6tq1q0JDQ2UYhlatWiVXV1eH/gwYMEAJCQl66qmnHJZ7eXlp+vTpatKkiZo2bapff/1Vq1atkrNz+rHk5MmTatiwoRo2bKhTp05pxowZatiwoQYOHJiTwwcAAAqxwpqT3n//fSUkJKhnz54O81jOmDEjJ4cvVzgZd5r0oBCz2+3y9vZWfHy8bDZbjm//6MLxaZbV6DUlx/cDAMg5f/31l2JjY1WlSpUCMRlkfvbZZ59pxIgROnnypNzc3Czd9+1+jrn9+V8YkJEAALciI+WsvMpJ+Skj8ZU9AACQo65du6ZTp05p2rRp+uc//2l5MQoAACC/Iif9ja/sAQCAHDV9+nQFBwfL399f48aNy+vuAAAA5BvkpL9RkAIAADlq0qRJSkxM1IYNG/L9ZJoAAABWIif9jYIUAAAAAAAALEVBCgAAAAAAAJaiIAUAQDqK8E1oCwV+fgAA5A4+Ywu2/PTzoyAFAMBNXF1dJd24AwoKrtSfX+rPEwAA3B0yUuGQnzJSsbzuAAAA+YmLi4t8fHx05swZSVLx4sXl5OSUx71CZhmGoWvXrunMmTPy8fGRi4tLXncJAIBCgYxUsOXHjERBCgCAW/j7+0uSGbhQ8Pj4+Jg/RwAAkDPISAVffspIFKQAALiFk5OTAgIC5Ofnp8TExLzuDrLI1dU1X5z1AwCgsCEjFWz5LSNRkAIAIAMuLi756kMbAAAgPyAjIScwqTkAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALBUlgpSU6dOVdOmTeXl5SU/Pz9FREQoJibGoc1ff/2loUOHqkyZMipZsqR69Oih06dPO7Q5ceKEunTpouLFi8vPz0+jRo1SUlKSQ5tNmzapUaNGcnd3V/Xq1TV37tw0/Zk1a5YqV64sDw8PNW/eXDt37szK4QAAAOQIMhIAAEDWZKkgtXnzZg0dOlQ7duzQunXrlJiYqI4dO+rq1atmmxEjRujrr7/WF198oc2bN+vkyZN66KGHzPXJycnq0qWLEhIStG3bNs2bN09z587VhAkTzDaxsbHq0qWL7rvvPkVHR2v48OEaOHCg1qxZY7ZZtGiRRo4cqYkTJ2rPnj2qX7++wsPDdebMmbsZDwAAgCwjIwEAAGSNk2EYRnZffPbsWfn5+Wnz5s1q06aN4uPj5evrqwULFqhnz56SpCNHjqh27dravn27WrRoodWrV6tr1646efKkypUrJ0maPXu2xowZo7Nnz8rNzU1jxozRypUrdeDAAXNfvXr10qVLlxQVFSVJat68uZo2bap3331XkpSSkqLAwEA9++yzGjt2bKb6b7fb5e3trfj4eNlstuwOQ4aOLhyfZlmNXlNyfD8AACDzcvvzXyIj3QkZCQCA/MeKjHSzu5pDKj4+XpJUunRpSdLu3buVmJiosLAws01wcLAqVaqk7du3S5K2b9+uunXrmkFLksLDw2W323Xw4EGzzc3bSG2Tuo2EhATt3r3boY2zs7PCwsLMNgAAAHmFjAQAAHB7xbL7wpSUFA0fPlz33nuv6tSpI0mKi4uTm5ubfHx8HNqWK1dOcXFxZpubg1bq+tR1t2tjt9v1559/6uLFi0pOTk63zZEjRzLs8/Xr13X9+nXzud1uz8IRAwAA3BkZCQAA4M6yfYXU0KFDdeDAAS1cuDAn+5Orpk6dKm9vb/MRGBiY110CAACFDBkJAADgzrJVkBo2bJhWrFihb775RhUrVjSX+/v7KyEhQZcuXXJof/r0afn7+5ttbr2jTOrzO7Wx2Wzy9PRU2bJl5eLikm6b1G2kZ9y4cYqPjzcfv/32W9YOHAAA4DbISAAAAJmTpYKUYRgaNmyYlixZoo0bN6pKlSoO6xs3bixXV1dt2LDBXBYTE6MTJ04oNDRUkhQaGqr9+/c73Oll3bp1stlsCgkJMdvcvI3UNqnbcHNzU+PGjR3apKSkaMOGDWab9Li7u8tmszk8AAAA7hYZCQAAIGuyNIfU0KFDtWDBAi1btkxeXl7mfAbe3t7y9PSUt7e3BgwYoJEjR6p06dKy2Wx69tlnFRoaqhYtWkiSOnbsqJCQED355JOaPn264uLi9OKLL2ro0KFyd3eXJA0ZMkTvvvuuRo8eraeeekobN27U559/rpUrV5p9GTlypPr27asmTZqoWbNmevPNN3X16lX1798/p8YGAAAgU8hIAAAAWZOlgtT7778vSWrXrp3D8jlz5qhfv36SpDfeeEPOzs7q0aOHrl+/rvDwcL333ntmWxcXF61YsUJPP/20QkNDVaJECfXt21cvv/yy2aZKlSpauXKlRowYobfeeksVK1bUxx9/rPDwcLPNo48+qrNnz2rChAmKi4tTgwYNFBUVlWYSTwAAgNxGRgIAAMgaJ8MwjLzuRF6x2+3y9vZWfHx8rlyafnTh+DTLavSakuP7AQAAmZfbn/+FARkJAICix+qMlO277AEAAAAAAADZQUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgqSwXpL799lt169ZN5cuXl5OTk5YuXeqwvl+/fnJycnJ4dOrUyaHNhQsX1Lt3b9lsNvn4+GjAgAG6cuWKQ5sff/xRrVu3loeHhwIDAzV9+vQ0ffniiy8UHBwsDw8P1a1bV6tWrcrq4QAAAOQIMhIAAEDmZbkgdfXqVdWvX1+zZs3KsE2nTp106tQp8/F///d/Dut79+6tgwcPat26dVqxYoW+/fZbDR482Fxvt9vVsWNHBQUFaffu3Xrttdc0adIkffjhh2abbdu26bHHHtOAAQO0d+9eRUREKCIiQgcOHMjqIQEAANw1MhIAAEDmORmGYWT7xU5OWrJkiSIiIsxl/fr106VLl9KcFUx1+PBhhYSE6IcfflCTJk0kSVFRUercubN+//13lS9fXu+//77Gjx+vuLg4ubm5SZLGjh2rpUuX6siRI5KkRx99VFevXtWKFSvMbbdo0UINGjTQ7NmzM9V/u90ub29vxcfHy2azZWMEbu/owvFpltXoNSXH9wMAADIvtz//JTLSnZCRAADIf6zISDfLlTmkNm3aJD8/P9WqVUtPP/20zp8/b67bvn27fHx8zKAlSWFhYXJ2dtb3339vtmnTpo0ZtCQpPDxcMTExunjxotkmLCzMYb/h4eHavn17bhwSAADAXSMjAQAA3FAspzfYqVMnPfTQQ6pSpYqOHTumf//733rggQe0fft2ubi4KC4uTn5+fo6dKFZMpUuXVlxcnCQpLi5OVapUcWhTrlw5c12pUqUUFxdnLru5Teo20nP9+nVdv37dfG632+/qWAEAADKLjAQAAPC3HC9I9erVy/x33bp1Va9ePVWrVk2bNm1Shw4dcnp3WTJ16lRFRkbmaR8AAEDRREYCAAD4W658Ze9mVatWVdmyZfXzzz9Lkvz9/XXmzBmHNklJSbpw4YL8/f3NNqdPn3Zok/r8Tm1S16dn3Lhxio+PNx+//fbb3R0cAABANpGRAABAUZbrBanff/9d58+fV0BAgCQpNDRUly5d0u7du802GzduVEpKipo3b262+fbbb5WYmGi2WbdunWrVqqVSpUqZbTZs2OCwr3Xr1ik0NDTDvri7u8tmszk8AAAA8gIZCQAAFGVZLkhduXJF0dHRio6OliTFxsYqOjpaJ06c0JUrVzRq1Cjt2LFDv/76qzZs2KAHH3xQ1atXV3h4uCSpdu3a6tSpkwYNGqSdO3dq69atGjZsmHr16qXy5ctLkh5//HG5ublpwIABOnjwoBYtWqS33npLI0eONPvx3HPPKSoqSq+//rqOHDmiSZMmadeuXRo2bFgODAsAAEDWkJEAAAAyL8sFqV27dqlhw4Zq2LChJGnkyJFq2LChJkyYIBcXF/3444/6xz/+oZo1a2rAgAFq3LixvvvuO7m7u5vbmD9/voKDg9WhQwd17txZrVq10ocffmiu9/b21tq1axUbG6vGjRvr+eef14QJEzR48GCzTcuWLbVgwQJ9+OGHql+/vhYvXqylS5eqTp06dzMeAAAA2UJGAgAAyDwnwzCMvO5EXrHb7fL29lZ8fHyuXJp+dOH4NMtq9JqS4/sBAACZl9uf/4UBGQkAgKLH6oyU63NIAQAAAAAAADejIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALBUlgtS3377rbp166by5cvLyclJS5cudVhvGIYmTJiggIAAeXp6KiwsTEePHnVoc+HCBfXu3Vs2m00+Pj4aMGCArly54tDmxx9/VOvWreXh4aHAwEBNnz49TV+++OILBQcHy8PDQ3Xr1tWqVauyejgAAAA5gowEAACQeVkuSF29elX169fXrFmz0l0/ffp0vf3225o9e7a+//57lShRQuHh4frrr7/MNr1799bBgwe1bt06rVixQt9++60GDx5srrfb7erYsaOCgoK0e/duvfbaa5o0aZI+/PBDs822bdv02GOPacCAAdq7d68iIiIUERGhAwcOZPWQAAAA7hoZCQAAIPOcDMMwsv1iJyctWbJEERERkm6c+Stfvryef/55vfDCC5Kk+Ph4lStXTnPnzlWvXr10+PBhhYSE6IcfflCTJk0kSVFRUercubN+//13lS9fXu+//77Gjx+vuLg4ubm5SZLGjh2rpUuX6siRI5KkRx99VFevXtWKFSvM/rRo0UINGjTQ7NmzM9V/u90ub29vxcfHy2azZXcYMnR04fg0y2r0mpLj+wEAAJmX25//EhnpTshIAADkP1ZkpJvl6BxSsbGxiouLU1hYmLnM29tbzZs31/bt2yVJ27dvl4+Pjxm0JCksLEzOzs76/vvvzTZt2rQxg5YkhYeHKyYmRhcvXjTb3Lyf1Dap+wEAAMgvyEgAAACOiuXkxuLi4iRJ5cqVc1herlw5c11cXJz8/PwcO1GsmEqXLu3QpkqVKmm2kbquVKlSiouLu+1+0nP9+nVdv37dfG6327NyeAAAANlCRgIAAHBUpO6yN3XqVHl7e5uPwMDAvO4SAABAniMjAQAAq+VoQcrf31+SdPr0aYflp0+fNtf5+/vrzJkzDuuTkpJ04cIFhzbpbePmfWTUJnV9esaNG6f4+Hjz8dtvv2X1EAEAALKMjAQAAOAoRwtSVapUkb+/vzZs2GAus9vt+v777xUaGipJCg0N1aVLl7R7926zzcaNG5WSkqLmzZubbb799lslJiaabdatW6datWqpVKlSZpub95PaJnU/6XF3d5fNZnN4AAAA5DYyEgAAgKMsF6SuXLmi6OhoRUdHS7oxSWd0dLROnDghJycnDR8+XK+88oqWL1+u/fv3q0+fPipfvrx5l5natWurU6dOGjRokHbu3KmtW7dq2LBh6tWrl8qXLy9Jevzxx+Xm5qYBAwbo4MGDWrRokd566y2NHDnS7Mdzzz2nqKgovf766zpy5IgmTZqkXbt2adiwYXc/KgAAAFlERgIAAMi8LE9qvmvXLt13333m89QA1LdvX82dO1ejR4/W1atXNXjwYF26dEmtWrVSVFSUPDw8zNfMnz9fw4YNU4cOHeTs7KwePXro7bffNtd7e3tr7dq1Gjp0qBo3bqyyZctqwoQJGjx4sNmmZcuWWrBggV588UX9+9//Vo0aNbR06VLVqVMnWwMBAABwN8hIAAAAmedkGIaR153IK3a7Xd7e3oqPj8+VS9OPLhyfZlmNXlNyfD8AACDzcvvzvzAgIwEAUPRYnZGK1F32AAAAAAAAkPcoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYqltcdAAAASIzakmaZa6dWedATAACA/KMwZySukAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJbK8YLUpEmT5OTk5PAIDg421//1118aOnSoypQpo5IlS6pHjx46ffq0wzZOnDihLl26qHjx4vLz89OoUaOUlJTk0GbTpk1q1KiR3N3dVb16dc2dOzenDwUAACDHkJEAAAD+litXSN1zzz06deqU+diyZYu5bsSIEfr666/1xRdfaPPmzTp58qQeeughc31ycrK6dOmihIQEbdu2TfPmzdPcuXM1YcIEs01sbKy6dOmi++67T9HR0Ro+fLgGDhyoNWvW5MbhAAAA5AgyEgAAwA3FcmWjxYrJ398/zfL4+Hh98sknWrBggdq3by9JmjNnjmrXrq0dO3aoRYsWWrt2rQ4dOqT169erXLlyatCggSZPnqwxY8Zo0qRJcnNz0+zZs1WlShW9/vrrkqTatWtry5YteuONNxQeHp4bhwQAAHDXyEgAAAA35MoVUkePHlX58uVVtWpV9e7dWydOnJAk7d69W4mJiQoLCzPbBgcHq1KlStq+fbskafv27apbt67KlStntgkPD5fdbtfBgwfNNjdvI7VN6jYycv36ddntdocHAACAVchIAAAAN+R4Qap58+aaO3euoqKi9P777ys2NlatW7fW5cuXFRcXJzc3N/n4+Di8ply5coqLi5MkxcXFOQSt1PWp627Xxm63688//8ywb1OnTpW3t7f5CAwMvNvDBQAAyBQyEgAAwN9y/Ct7DzzwgPnvevXqqXnz5goKCtLnn38uT0/PnN5dlowbN04jR440n9vtdgIXAACwBBkJAADgb7nylb2b+fj4qGbNmvr555/l7++vhIQEXbp0yaHN6dOnzfkU/P3909xRJvX5ndrYbLbbBjp3d3fZbDaHBwAAQF4gIwEAgKIs1wtSV65c0bFjxxQQEKDGjRvL1dVVGzZsMNfHxMToxIkTCg0NlSSFhoZq//79OnPmjNlm3bp1stlsCgkJMdvcvI3UNqnbAAAAyO/ISAAAoCjL8YLUCy+8oM2bN+vXX3/Vtm3b1L17d7m4uOixxx6Tt7e3BgwYoJEjR+qbb77R7t271b9/f4WGhqpFixaSpI4dOyokJERPPvmk9u3bpzVr1ujFF1/U0KFD5e7uLkkaMmSIfvnlF40ePVpHjhzRe++9p88//1wjRozI6cMBAADIEWQkAACAv+X4HFK///67HnvsMZ0/f16+vr5q1aqVduzYIV9fX0nSG2+8IWdnZ/Xo0UPXr19XeHi43nvvPfP1Li4uWrFihZ5++mmFhoaqRIkS6tu3r15++WWzTZUqVbRy5UqNGDFCb731lipWrKiPP/6Y2xkDAIB8i4wEAADwNyfDMIy87kResdvt8vb2Vnx8fK7MlXB04fg0y2r0mpLj+wEAoKBLjNqSZplrp1a5sq/c/vwvDMhIAADkD4U5I+X6HFIAAAAAAADAzShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYqltcdAAAARUti1Ja87gIAAEC+U9QyEldIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIpJzQEAQJ779dLqNMtqqFUe9AQAACD/KMwZiSukAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYijmkAABArkqM2pLXXQAAAMh3inpG4gopAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKW4yx4AAMgxRf1uMQAAAOkhI6VFQQoAAFjq10ur87oLAAAA+U5Ry0h8ZQ8AAAAAAACW4gopAACQLVx6DgAAkBYZKXMoSAEAgFxV1C4/BwAAyIyinpEoSAEAgEzhbB8AAEBaZKTsoSAFAADSyG6wKupn+gAAQOFGRso5FKQAAChicuosHsEKAAAUJmQkaxX4gtSsWbP02muvKS4uTvXr19c777yjZs2a5XW3AADIFziLV3SRkQAAyBgZKe8V6ILUokWLNHLkSM2ePVvNmzfXm2++qfDwcMXExMjPzy+vuwcAQK7iLB4yQkYCABRlZKSCoUAXpGbOnKlBgwapf//+kqTZs2dr5cqV+vTTTzV27Ng87h0AAGnl5KSXhCRkhIwEAChoyEhFT4EtSCUkJGj37t0aN26cuczZ2VlhYWHavn17uq+5fv26rl+/bj6Pj4+XJNnt9lzp45Vr19Msy619AUBeS1zn+LfX9f7QHNlORk7Er3N4Xsn7/ju2Sa9dem2QP+TWZ2bqdg3DyJXt5zUyEgDkL2Qk5LTCkpEKbEHq3LlzSk5OVrly5RyWlytXTkeOHEn3NVOnTlVkZGSa5YGBgbnSx3QNeN26fQFAkZLZv6/8HS4wcvkz8/Lly/L29s7VfeQFMhIAwBEZqdApJBmpwBaksmPcuHEaOXKk+TwlJUUXLlxQmTJl5OTklKP7stvtCgwM1G+//SabzZaj20b6GHPrMebWY8ytx5jnjdwcd8MwdPnyZZUvXz5Ht1uQkZEKN8bceoy59RjzvMG4W68wZaQCW5AqW7asXFxcdPr0aYflp0+flr+/f7qvcXd3l7u7u8MyHx+f3OqiJMlms/GLaTHG3HqMufUYc+sx5nkjt8a9MF4ZlYqMhIww5tZjzK3HmOcNxt16hSEjOVu2pxzm5uamxo0ba8OGDeaylJQUbdiwQaGh2ftOLgAAQEFHRgIAAAVBgb1CSpJGjhypvn37qkmTJmrWrJnefPNNXb161byjDAAAQFFERgIAAPldgS5IPfroozp79qwmTJiguLg4NWjQQFFRUWkm8cwL7u7umjhxYprL35F7GHPrMebWY8ytx5jnDcb97pCRcDPG3HqMufUY87zBuFuvMI25k1FY73kMAAAAAACAfKnAziEFAAAAAACAgomCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQuguzZs1S5cqV5eHhoebNm2vnzp23bf/FF18oODhYHh4eqlu3rlatWmVRTwuPrIz5Rx99pNatW6tUqVIqVaqUwsLC7vgzQlpZfZ+nWrhwoZycnBQREZG7HSyEsjrmly5d0tChQxUQECB3d3fVrFmTvy9ZlNUxf/PNN1WrVi15enoqMDBQI0aM0F9//WVRbwu+b7/9Vt26dVP58uXl5OSkpUuX3vE1mzZtUqNGjeTu7q7q1atr7ty5ud5PZB8ZyXpkJOuRkaxHRrIeGclaRS4jGciWhQsXGm5ubsann35qHDx40Bg0aJDh4+NjnD59Ot32W7duNVxcXIzp06cbhw4dMl588UXD1dXV2L9/v8U9L7iyOuaPP/64MWvWLGPv3r3G4cOHjX79+hne3t7G77//bnHPC66sjnmq2NhYo0KFCkbr1q2NBx980JrOFhJZHfPr168bTZo0MTp37mxs2bLFiI2NNTZt2mRER0db3POCK6tjPn/+fMPd3d2YP3++ERsba6xZs8YICAgwRowYYXHPC65Vq1YZ48ePN7766itDkrFkyZLbtv/ll1+M4sWLGyNHjjQOHTpkvPPOO4aLi4sRFRVlTYeRJWQk65GRrEdGsh4ZyXpkJOsVtYxEQSqbmjVrZgwdOtR8npycbJQvX96YOnVquu0feeQRo0uXLg7Lmjdvbvzzn//M1X4WJlkd81slJSUZXl5exrx583Kri4VOdsY8KSnJaNmypfHxxx8bffv2JWxlUVbH/P333zeqVq1qJCQkWNXFQierYz506FCjffv2DstGjhxp3Hvvvbnaz8IqM2Fr9OjRxj333OOw7NFHHzXCw8NzsWfILjKS9chI1iMjWY+MZD0yUt4qChmJr+xlQ0JCgnbv3q2wsDBzmbOzs8LCwrR9+/Z0X7N9+3aH9pIUHh6eYXs4ys6Y3+ratWtKTExU6dKlc6ubhUp2x/zll1+Wn5+fBgwYYEU3C5XsjPny5csVGhqqoUOHqly5cqpTp45effVVJScnW9XtAi07Y96yZUvt3r3bvGT9l19+0apVq9S5c2dL+lwU8RlacJCRrEdGsh4ZyXpkJOuRkQqGgv4ZWiyvO1AQnTt3TsnJySpXrpzD8nLlyunIkSPpviYuLi7d9nFxcbnWz8IkO2N+qzFjxqh8+fJpfmGRvuyM+ZYtW/TJJ58oOjragh4WPtkZ819++UUbN25U7969tWrVKv3888965plnlJiYqIkTJ1rR7QItO2P++OOP69y5c2rVqpUMw1BSUpKGDBmif//731Z0uUjK6DPUbrfrzz//lKenZx71DLciI1mPjGQ9MpL1yEjWIyMVDAU9I3GFFIqEadOmaeHChVqyZIk8PDzyujuF0uXLl/Xkk0/qo48+UtmyZfO6O0VGSkqK/Pz89OGHH6px48Z69NFHNX78eM2ePTuvu1Zobdq0Sa+++qree+897dmzR1999ZVWrlypyZMn53XXACDLyEi5j4yUN8hI1iMjIau4QiobypYtKxcXF50+fdph+enTp+Xv75/ua/z9/bPUHo6yM+apZsyYoWnTpmn9+vWqV69ebnazUMnqmB87dky//vqrunXrZi5LSUmRJBUrVkwxMTGqVq1a7na6gMvO+zwgIECurq5ycXExl9WuXVtxcXFKSEiQm5tbrva5oMvOmL/00kt68sknNXDgQElS3bp1dfXqVQ0ePFjjx4+XszPnenJaRp+hNpst35/5K2rISNYjI1mPjGQ9MpL1yEgFQ0HPSLwjssHNzU2NGzfWhg0bzGUpKSnasGGDQkND031NaGioQ3tJWrduXYbt4Sg7Yy5J06dP1+TJkxUVFaUmTZpY0dVCI6tjHhwcrP379ys6Otp8/OMf/9B9992n6OhoBQYGWtn9Aik77/N7771XP//8sxlsJemnn35SQEAAQSsTsjPm165dSxOoUsOuYRi519kijM/QgoOMZD0ykvXISNYjI1mPjFQwFPjP0LydU73gWrhwoeHu7m7MnTvXOHTokDF48GDDx8fHiIuLMwzDMJ588klj7NixZvutW7caxYoVM2bMmGEcPnzYmDhxIrc0zqKsjvm0adMMNzc3Y/HixcapU6fMx+XLl/PqEAqcrI75rbiDTNZldcxPnDhheHl5GcOGDTNiYmKMFStWGH5+fsYrr7ySV4dQ4GR1zCdOnGh4eXkZ//d//2f88ssvxtq1a41q1aoZjzzySF4dQoFz+fJlY+/evcbevXsNScbMmTONvXv3GsePHzcMwzDGjh1rPPnkk2b71Fsajxo1yjh8+LAxa9asAnVL46KGjGQ9MpL1yEjWIyNZj4xkvaKWkShI3YV33nnHqFSpkuHm5mY0a9bM2LFjh7mubdu2Rt++fR3af/7550bNmjUNNzc345577jFWrlxpcY8LvqyMeVBQkCEpzWPixInWd7wAy+r7/GaErezJ6phv27bNaN68ueHu7m5UrVrVmDJlipGUlGRxrwu2rIx5YmKiMWnSJKNatWqGh4eHERgYaDzzzDPGxYsXre94AfXNN9+k+/c5dZz79u1rtG3bNs1rGjRoYLi5uRlVq1Y15syZY3m/kXlkJOuRkaxHRrIeGcl6ZCRrFbWM5GQYXDsHAAAAAAAA6zCHFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIKiE2bNsnJyUmbNm3K0e06OTlp0qRJObrNwqZfv36qXLlyXncjX6hcubL69et3x3Zz586Vk5OTfv3111zvU1alpKSoTp06mjJlyh3bTpo0SU5OTg7LkpKSNHr0aAUGBsrZ2VkRERFZ2v/s2bNVqVIlXb9+PUuvAwCkj4yUd8hIfyMjkZGQdRSkYLlt27Zp0qRJunTpUl53pchYtWoVgUrStWvXNGnSpBwPrLDOV199pUcffVRVq1ZV8eLFVatWLT3//PNZ+nvyf//3f/rtt980bNiwbPXh008/1WuvvaaePXtq3rx5GjFihCRp0aJFeuKJJ1SjRg05OTmpXbt26b6+X79+SkhI0AcffJCt/QMovMhI1iMj3UBGKvjya0Y6f/68XnvtNbVp00a+vr7y8fFRixYttGjRojSvJyMVPcXyugMoerZt26bIyEj169dPPj4+ed2dImHVqlWaNWtWuoHrzz//VLFiReNPwbVr1xQZGSlJGRYL0vPRRx8pJSUll3pVsMTExMjZOe/OZQwePFjly5fXE088oUqVKmn//v169913tWrVKu3Zs0eenp533MZrr72mXr16ydvbO1t92LhxoypUqKA33njDYfn777+v3bt3q2nTpjp//nyGr/fw8FDfvn01c+ZMPfvss2nOLgIoushI1iMj3UBGuntkpPQz0ooVKzR+/Hh17txZL774oooVK6Yvv/xSvXr10qFDh8z3nURGKoqKxl9YIA9du3ZNxYsXT7M8KSlJKSkpcnNzy4Ne/c3DwyNP95+fXb16VSVKlJCrq2tedyXfcHd3z9P9L168OE1Qbty4sfr27av58+dr4MCBt3393r17tW/fPr3++uvZ7sOZM2fS/Y/iZ599pgoVKsjZ2Vl16tS57TYeeeQRTZ8+Xd98843at2+f7b4AQEFGRiq4yEhpkZHSz0j33HOPjh49qqCgIHPZM888o7CwMP3nP//R6NGjVaJECXMdGalo4St7sNSkSZM0atQoSVKVKlXk5OTk8B3qpKQkTZ48WdWqVZO7u7sqV66sf//732m+R1y5cmV17dpVa9euVYMGDeTh4aGQkBB99dVX2erX//73PzVr1kzFixdXqVKl1KZNG61du9ahzXvvvad77rlH7u7uKl++vIYOHZrmEth27dqpTp062r17t9q0aaPixYvr3//+t3799Vc5OTlpxowZevPNN83jO3TokCTpyJEj6tmzp0qXLi0PDw81adJEy5cvv2O/v/vuOz388MOqVKmS3N3dFRgYqBEjRujPP/802/Tr10+zZs2SJHO8bz7bkN78CHv37tUDDzwgm82mkiVLqkOHDtqxY4dDm9Tvv2/dulUjR46Ur6+vSpQooe7du+vs2bN37PvNUr+D/tNPP+mJJ56Qt7e3fH199dJLL8kwDP3222968MEHZbPZ5O/vn+aDMiEhQRMmTFDjxo3l7e2tEiVKqHXr1vrmm2/MNr/++qt8fX0lSZGRkeY4pB57v379VLJkSR07dkydO3eWl5eXevfuba67eX6EiRMnytnZWRs2bHDox+DBg+Xm5qZ9+/Zl+tgz+15OTExUZGSkatSoIQ8PD5UpU0atWrXSunXrzDapx3DixAl17dpVJUuWVIUKFcyf//79+9W+fXuVKFFCQUFBWrBgQab7eXN/b50f4eDBg2rfvr08PT1VsWJFvfLKK+meLd21a5fCw8NVtmxZeXp6qkqVKnrqqaeytP/0ztp2795dknT48OE7vn7p0qVyc3NTmzZt0qzbsmWLmjZtKg8PD1WrVi3N5eKpv8fffPONDh48aL6HUr/ekDpfQmY0btxYpUuX1rJlyzLVHkDhR0YiI6WHjERGyqz8mpGqVKniUIySbvxuRURE6Pr16/rll18c1pGRihaukIKlHnroIf3000/6v//7P73xxhsqW7asJJkfggMHDtS8efPUs2dPPf/88/r+++81depUHT58WEuWLHHY1tGjR/Xoo49qyJAh6tu3r+bMmaOHH35YUVFRuv/++zPdp8jISE2aNEktW7bUyy+/LDc3N33//ffauHGjOnbsKOlGGIiMjFRYWJiefvppxcTE6P3339cPP/ygrVu3OpwdOn/+vB544AH16tVLTzzxhMqVK2eumzNnjv766y8NHjxY7u7uKl26tA4ePKh7771XFSpU0NixY1WiRAl9/vnnioiI0Jdffml+kKTniy++0LVr1/T000+rTJky2rlzp9555x39/vvv+uKLLyRJ//znP3Xy5EmtW7dOn3322R3H4+DBg2rdurVsNptGjx4tV1dXffDBB2rXrp02b96s5s2bO7R/9tlnVapUKU2cOFG//vqr3nzzTQ0bNizd74XfyaOPPqratWtr2rRpWrlypV555RWVLl1aH3zwgdq3b6///Oc/mj9/vl544QU1bdrU/MC02+36+OOP9dhjj2nQoEG6fPmyPvnkE4WHh2vnzp1q0KCBfH199f777+vpp59W9+7d9dBDD0mS6tWrZ+4/KSlJ4eHhatWqlWbMmJHuWVtJevHFF/X1119rwIAB2r9/v7y8vLRmzRp99NFHmjx5surXr5+l487Me3nSpEmaOnWqBg4cqGbNmslut2vXrl3as2ePw/s9OTlZDzzwgNq0aaPp06dr/vz5GjZsmEqUKKHx48erd+/eeuihhzR79mz16dNHoaGhqlKlSpb6e7O4uDjdd999SkpKMt+/H374YZrLws+cOaOOHTvK19dXY8eOlY+Pj3799dds/wfp1j5IMv+e3M62bdtUp06dNGd09+/fb/Zv0qRJSkpK0sSJEx1+f319ffXZZ59pypQpunLliqZOnSpJql27drb63ahRI23dujVbrwVQ+JCRyEi3Q0YiI2W3D1L+zEi36xsZqQgxAIu99tprhiQjNjbWYXl0dLQhyRg4cKDD8hdeeMGQZGzcuNFcFhQUZEgyvvzyS3NZfHy8ERAQYDRs2DDTfTl69Kjh7OxsdO/e3UhOTnZYl5KSYhiGYZw5c8Zwc3MzOnbs6NDm3XffNSQZn376qbmsbdu2hiRj9uzZDtuKjY01JBk2m804c+aMw7oOHToYdevWNf766y+Hfbds2dKoUaOGueybb74xJBnffPONuezatWtpjmnq1KmGk5OTcfz4cXPZ0KFDjYx+3SUZEydONJ9HREQYbm5uxrFjx8xlJ0+eNLy8vIw2bdqYy+bMmWNIMsLCwsyxMgzDGDFihOHi4mJcunQp3f2lZ+LEiYYkY/DgweaypKQko2LFioaTk5Mxbdo0c/nFixcNT09Po2/fvg5tr1+/7rDNixcvGuXKlTOeeuopc9nZs2fTHG+qvn37GpKMsWPHprsuKCjIYdn+/fsNNzc3Y+DAgcbFixeNChUqGE2aNDESExMzfdyGkfn3cv369Y0uXbrcdlupx/Dqq6+ay1LHy8nJyVi4cKG5/MiRIxmOxZ36e/PYDx8+3JBkfP/99+ayM2fOGN7e3g6/50uWLDEkGT/88EOW9pcZAwYMMFxcXIyffvrpjm0rVqxo9OjRI83yiIgIw8PDw+H35tChQ4aLi0ua3522bdsa99xzz233c8899xht27a9bZvBgwcbnp6ed+wzgKKDjERGuhUZiYx0N/JjRjIMwzh//rzh5+dntG7dOt31ZKSig6/sId9YtWqVJGnkyJEOy59//nlJ0sqVKx2Wly9f3uHMmM1mU58+fbR3716z4n4nS5cuVUpKiiZMmJDmqzapl2yvX79eCQkJGj58uEObQYMGyWazpemXu7u7+vfvn+7+evToYZ7plKQLFy5o48aNeuSRR3T58mWdO3dO586d0/nz5xUeHq6jR4/qjz/+yLD/N59huXr1qs6dO6eWLVvKMAzt3bs3U2Nws+TkZK1du1YRERGqWrWquTwgIECPP/64tmzZIrvd7vCawYMHO1ze3rp1ayUnJ+v48eNZ3v/N3213cXFRkyZNZBiGBgwYYC738fFRrVq1HC7vdXFxMeeZSElJ0YULF5SUlKQmTZpoz549WerD008/nal2derUUWRkpD7++GOFh4fr3LlzmjdvXrYmP83Me9nHx0cHDx7U0aNH77i9m8cxdbxKlCihRx55xFxeq1Yt+fj4pLlMOqtWrVqlFi1aqFmzZuYyX19f81L+m/sh3ZjYMjEx8a72ebMFCxbok08+0fPPP68aNWrcsf358+dVqlQph2XJyclas2aNIiIiVKlSJXN57dq1FR4enmN9vVWpUqX0559/6tq1a7m2DwCFAxmJjERGuoGMlHn5NSOlpKSod+/eunTpkt55551025CRig4KUsg3jh8/LmdnZ1WvXt1hub+/v3x8fNJ8eFevXj3NnRdq1qwpSeZ8C3dy7NgxOTs7KyQk5Lb9km58ON3Mzc1NVatWTdOvChUqZDgJ562X/f78888yDEMvvfSSfH19HR4TJ06UdOMy3oycOHFC/fr1U+nSpVWyZEn5+vqqbdu2kqT4+PgMX5eRs2fP6tq1a2mOVbrxwZOSkqLffvvNYfnNH06SzA+yixcvZnn/t27L29tbHh4eaS7l9fb2TrP9efPmqV69eubcAb6+vlq5cmWWxqFYsWKqWLFiptuPGjVK9evX186dOzVx4sTbvo9uJzPv5ZdfflmXLl1SzZo1VbduXY0aNUo//vhjmm15eHg4BHrpxnhVrFgxzT7SG8esOn78eLoh59b3UNu2bdWjRw9FRkaqbNmyevDBBzVnzpw0c59kxXfffacBAwYoPDxcU6ZMyfTrDMNweH727Fn9+eefmTqOnJTaD+4gA+BOyEhkJDLS38hId5afM9Kzzz6rqKgoffzxxxl+hZOMVHQwhxTynYL+h+d2t1S9dV3qpIYvvPBChmcZbg2fqZKTk3X//ffrwoULGjNmjIKDg1WiRAn98ccf6tevn2W34HVxcUl3+a0faNndVma2/7///U/9+vVTRESERo0aJT8/P7m4uGjq1Kk6duxYpvfv7u6epdv1/vLLL+bZuP3792f6ddnRpk0bHTt2TMuWLdPatWv18ccf64033tDs2bPTnDVNT07+nLLDyclJixcv1o4dO/T1119rzZo1euqpp/T6669rx44dKlmyZJa2t2/fPv3jH/9QnTp1tHjx4kyfdS1TpsxdB8yccvHiRRUvXjxTt2EGAImMdCsyEhlJIiPdKj9npMjISL333nuaNm2annzyyQzbkZGKDgpSsFxGYSooKEgpKSk6evSowwR4p0+f1qVLl9LcnSH1zNnN2/vpp58kyeFuH7dTrVo1paSk6NChQ2rQoEGG/ZKkmJgYh0u0ExISFBsbq7CwsEztKz2p23N1dc3ydvbv36+ffvpJ8+bNU58+fczlN99RJFVmA6yvr6+KFy+umJiYNOuOHDkiZ2dnBQYGZqmfVli8eLGqVq2qr776yuFYU8+gpsrJIJ+SkqJ+/frJZrNp+PDhevXVV9WzZ09zItCsyOx7uXTp0urfv7/69++vK1euqE2bNpo0adIdb+Obm4KCgtK9RD6995AktWjRQi1atNCUKVO0YMEC9e7dWwsXLszSMRw7dkydOnWSn5+fVq1alaWgFhwcrNjYWIdlvr6+8vT0zNJx5ITY2NhsT4gOoHAiI/2NjJQzyEhkpMzK7Yw0a9YsTZo0ScOHD9eYMWNu25aMVHTwlT1YrkSJEpKU5nbAnTt3liS9+eabDstnzpwpSerSpYvD8pMnTzrcVcZut+u///2vGjRoIH9//0z1JSIiQs7Oznr55ZfTnC1LPSsSFhYmNzc3vf322w5nSj755BPFx8en6VdW+Pn5qV27dvrggw906tSpNOtvd2vg1LM5N/fJMAy99dZbadpmNObpbbNjx45atmyZwyX9p0+f1oIFC9SqVSvZbLbbbiMvpDcW33//vbZv3+7QLvWOMHcah8yYOXOmtm3bpg8//FCTJ09Wy5Yt9fTTT+vcuXNZ3lZm3svnz593eE3JkiVVvXr1u7qcOyd07txZO3bs0M6dO81lZ8+e1fz58x3aXbx4Mc2ZxtT/4GTlGOLi4tSxY0c5OztrzZo1aS69v5PQ0FAdOHDAYZ8uLi4KDw/X0qVLdeLECXP54cOHtWbNmixtPyv27Nmjli1b5tr2ARQ8ZKS/kZFyBhkp75CR/rZo0SL961//Uu/evc2/W7dDRio6uEIKlmvcuLEkafz48erVq5dcXV3VrVs31a9fX3379tWHH36oS5cuqW3bttq5c6fmzZuniIgI3XfffQ7bqVmzpgYMGKAffvhB5cqV06effqrTp09rzpw5me5L9erVNX78eE2ePFmtW7fWQw89JHd3d/3www8qX768pk6dKl9fX40bN06RkZHq1KmT/vGPfygmJkbvvfeemjZtqieeeOKuxmPWrFlq1aqV6tatq0GDBqlq1ao6ffq0tm/frt9//1379u1L93XBwcGqVq2aXnjhBf3xxx+y2Wz68ssv073UNnXM//Wvfyk8PFwuLi7q1atXutt95ZVXtG7dOrVq1UrPPPOMihUrpg8++EDXr1/X9OnT7+pYc0vXrl311VdfqXv37urSpYtiY2M1e/ZshYSE6MqVK2Y7T09PhYSEaNGiRapZs6ZKly6tOnXqqE6dOlna3+HDh/XSSy+pX79+6tatmyRp7ty5atCggZ555hl9/vnnWdpeZt7LISEhateunRo3bqzSpUtr165dWrx4sYYNG5alfeW00aNH67PPPlOnTp303HPPmbc0DgoKcpi/Yd68eXrvvffUvXt3VatWTZcvX9ZHH30km81m/kcrMzp16qRffvlFo0eP1pYtW7RlyxZzXbly5e54O/MHH3xQkydP1ubNm81blks3LiGPiopS69at9cwzzygpKUnvvPOO7rnnnnTnoUjPt99+q2+//VbSjcB59epVvfLKK5JufJ0g9RbckrR7925duHBBDz74YKaPHUDhR0ZyREa6e2SkvENGumHnzp3q06ePypQpow4dOqQpyLVs2dLhCksyUhGT+zfyA9KaPHmyUaFCBcPZ2dnhtqeJiYlGZGSkUaVKFcPV1dUIDAw0xo0b53C7X8O4cVvVLl26GGvWrDHq1atnuLu7G8HBwcYXX3yRrf58+umnRsOGDQ13d3ejVKlSRtu2bY1169Y5tHn33XeN4OBgw9XV1ShXrpzx9NNPGxcvXnRok9GtTlNvafzaa6+lu/9jx44Zffr0Mfz9/Q1XV1ejQoUKRteuXY3FixebbdK7pfGhQ4eMsLAwo2TJkkbZsmWNQYMGGfv27TMkGXPmzDHbJSUlGc8++6zh6+trODk5OdyiVenc1nbPnj1GeHi4UbJkSaN48eLGfffdZ2zbts2hTeotjW+9RW16/byT1Fsanz171mF53759jRIlSqRpf+s4p6SkGK+++qoRFBRkuLu7Gw0bNjRWrFiR7q2It23bZjRu3Nhwc3NzOPaM9pW6LnU7SUlJRtOmTY2KFSumuW3zW2+9ZUgyFi1alOljz+x7+ZVXXjGaNWtm+Pj4GJ6enkZwcLAxZcoUIyEhwaGfmRmvW/edFbfe0tgwDOPHH3802rZta3h4eBgVKlQwJk+ebHzyyScOv9t79uwxHnvsMaNSpUqGu7u74efnZ3Tt2tXYtWtXlvYvKcNH27ZtM7WNevXqGQMGDEizfPPmzeZ7o2rVqsbs2bPN9+bNMhrP1LbpPW79HRszZoxRqVIlh9uBA4BhkJFuRUYiI5GRMie/ZqTU34eMHjf/PhoGGamocTIMi2ZrA3JQ5cqVVadOHa1YsSKvuwLcFd7L1vvss880dOhQnThxwrzVspWuX7+uypUra+zYsXruuecs3z+Awo3PFRQWvJetR0aC1ZhDCgBQpPTu3VuVKlXSrFmz8mT/c+bMkaurq4YMGZIn+wcAAEgPGQlWYw4pFFpxcXG3Xe/p6Slvb2+LelM0XblyxWF+gvT4+vpmeLvdguzs2bNKTk7OcL2bm5tKly5tYY9uL69/Xy5cuKCEhIQM17u4uGR5cs6MODs768CBAzmyrewYMmQIQQtAnsrrv/kgI5GRMo+MhMKMghQKrYCAgNuu79u3r+bOnWtNZ4qoGTNmKDIy8rZtYmNjM30L6oKkadOmOn78eIbr27Ztq02bNlnXoTvI69+Xhx56SJs3b85wfVBQkMNdjQAA2ZfXf/NBRiIjZR4ZCYUZc0ih0Fq/fv1t15cvX14hISEW9aZo+uWXX/TLL7/ctk2rVq3k4eFhUY+ss3XrVv35558Zri9VqpR5Z5/8IK9/X3bv3p3u3Y9SeXp66t577821/QNAUZLXf/NBRiIjZR4ZCYUZBSkAAAAAAABYiknNAQAAAAAAYCkKUgAAAAAAALBUkZ7UPCUlRSdPnpSXl5ecnJzyujsAAMAChmHo8uXLKl++vJydOTeXHjISAABFj9UZqUgXpE6ePKnAwMC87gYAAMgDv/32mypWrJjX3ciXyEgAABRdVmWkIl2Q8vLyknRjsG02Wx73BgAAWMFutyswMNDMAUiLjAQAQNFjdUYq0gWp1EvQbTYbYQsAgCKGr6JljIwEAEDRZVVGYuIEAAAAAAAAWIqCFAAAAAAAACxVpL+yBwDA7SQnJysxMTGvu4EscnV1lYuLS153AwCAQouMVDDlt4xEQQoAgFsYhqG4uDhdunQpr7uCbPLx8ZG/vz/zRAEAkIPISAVffspIFKQAALhFatDy8/NT8eLF88UHNjLHMAxdu3ZNZ86ckSQFBATkcY8AACg8yEgFV37MSBSkAAC4SXJyshm0ypQpk9fdQTZ4enpKks6cOSM/P798dWk6AAAFFRmp4MtvGYlJzQEAuEnqfAjFixfP457gbqT+/JjfAgCAnEFGKhzyU0aiIAUAQDq4BL1g4+cHAEDu4DO2YMtPPz8KUgAAAAAAALAUBSkAAAAAAABYiknNAQDIpMSoLZbty7VTq0y3vdOl1xMnTtSkSZPuskfZ4+TkpCVLligiIiLb2/jwww+1YMEC7dmzR5cvX9bFixfl4+OTY30EAAB3x8qMJJGTUl24cEETJ07U2rVrdeLECfn6+ioiIkKTJ0+Wt7d3znY2F1CQAgCggDt16pT570WLFmnChAmKiYkxl5UsWTJL20tISJCbm1uO9e9uXbt2TZ06dVKnTp00bty4vO4OAAAoQApzTjp58qROnjypGTNmKCQkRMePH9eQIUN08uRJLV68OK+7d0d8ZS8XJUZtSfMAACCn+fv7mw9vb285OTmZz69evarevXurXLlyKlmypJo2bar169c7vL5y5cqaPHmy+vTpI5vNpsGDB0uSPvroIwUGBqp48eLq3r27Zs6cmebKpGXLlqlRo0by8PBQ1apVFRkZqaSkJHO7ktS9e3c5OTmZz/ft26f77rtPXl5estlsaty4sXbt2pXh8Q0fPlxjx45VixYtcmbAkOfISAAAqxTmnFSnTh19+eWX6tatm6pVq6b27dtrypQp+vrrr8395GcUpAAAKMSuXLmizp07a8OGDdq7d686deqkbt266cSJEw7tZsyYofr162vv3r166aWXtHXrVg0ZMkTPPfecoqOjdf/992vKlCkOr/nuu+/Up08fPffcczp06JA++OADzZ0712z3ww8/SJLmzJmjU6dOmc979+6tihUr6ocfftDu3bs1duxYubq6WjAaAAAAfyuMOSk+Pl42m03FiuX/L8Tl/x4CAIBsq1+/vurXr28+nzx5spYsWaLly5dr2LBh5vL27dvr+eefN5+PHz9eDzzwgF544QVJUs2aNbVt2zatWLHCbBMZGamxY8eqb9++kqSqVatq8uTJGj16tCZOnChfX19Jko+Pj/z9/c3XnThxQqNGjVJwcLAkqUaNGrlw5AAAALdX2HLSuXPnNHnyZPMqrvyOK6QAACjErly5ohdeeEG1a9eWj4+PSpYsqcOHD6c589ekSROH5zExMWrWrJnDsluf79u3Ty+//LJKlixpPgYNGqRTp07p2rVrGfZp5MiRGjhwoMLCwjRt2jQdO3bsLo8SAAAg6wpTTrLb7erSpYtCQkLybJL2rKIgBQBAIfbCCy9oyZIlevXVV/Xdd98pOjpadevWVUJCgkO7EiVKZHnbV65cUWRkpKKjo83H/v37dfToUXl4eGT4ukmTJungwYPq0qWLNm7cqJCQEC1ZsiTL+wcAALgbhSUnXb58WZ06dZKXl5eWLFlSYKZC4Ct7AAAUYlu3blW/fv3UvXt3STfC0a+//nrH19WqVcucyyDVrc8bNWqkmJgYVa9ePcPtuLq6Kjk5Oc3ymjVrqmbNmhoxYoQee+wxzZkzx+wjAACAFQpDTrLb7QoPD5e7u7uWL19+22JXfkNBCgCAQqxGjRr66quv1K1bNzk5Oemll15SSkrKHV/37LPPqk2bNpo5c6a6deumjRs3avXq1XJycjLbTJgwQV27dlWlSpXUs2dPOTs7a9++fTpw4IBeeeUVSTfuILNhwwbde++9cnd3l4eHh0aNGqWePXuqSpUq+v333/XDDz+oR48eGfYlLi5OcXFx+vnnnyVJ+/fvl5eXlypVqqTSpUvf5QgBAICiqqDnJLvdro4dO+ratWv63//+J7vdLrvdLkny9fWVi4tLDoxS7uErewAAFGIzZ85UqVKl1LJlS3Xr1k3h4eFq1KjRHV937733avbs2Zo5c6bq16+vqKgojRgxwuGsW3h4uFasWKG1a9eqadOmatGihd544w0FBQWZbV5//XWtW7dOgYGBatiwoVxcXHT+/Hn16dNHNWvW1COPPKIHHnhAkZGRGfZl9uzZatiwoQYNGiRJatOmjRo2bKjly5ffxcgAAICirqDnpD179uj777/X/v37Vb16dQUEBJiP33777e4HKJc5GYZh5HUn8ordbpe3t7d5W8Sclhi1Jc0y106tcnw/AICc89dffyk2NlZVqlQpUJc8W2HQoEE6cuSIvvvuu7zuyh3d7ueY25//hQEZCQBwKzLS7RWUnJSfMhJf2QMAAOmaMWOG7r//fpUoUUKrV6/WvHnz9N577+V1twAAAPIcOenuUZACAADp2rlzp6ZPn67Lly+ratWqevvttzVw4MC87hYAAECeIyfdPQpSAAAgXZ9//nledwEAACBfIifdPSY1BwAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgqSwVpKZOnaqmTZvKy8tLfn5+ioiIUExMjEObdu3aycnJyeExZMgQhzYnTpxQly5dVLx4cfn5+WnUqFFKSkpyaLNp0yY1atRI7u7uql69uubOnZumP7NmzVLlypXl4eGh5s2ba+fOnVk5HAAAgBxBRgIAAMiaLBWkNm/erKFDh2rHjh1at26dEhMT1bFjR129etWh3aBBg3Tq1CnzMX36dHNdcnKyunTpooSEBG3btk3z5s3T3LlzNWHCBLNNbGysunTpovvuu0/R0dEaPny4Bg4cqDVr1phtFi1apJEjR2rixInas2eP6tevr/DwcJ05cya7YwEAAJAtZCQAAICscTIMw8jui8+ePSs/Pz9t3rxZbdq0kXTj7F+DBg305ptvpvua1atXq2vXrjp58qTKlSsnSZo9e7bGjBmjs2fPys3NTWPGjNHKlSt14MAB83W9evXSpUuXFBUVJUlq3ry5mjZtqnfffVeSlJKSosDAQD377LMaO3Zspvpvt9vl7e2t+Ph42Wy27A5DhhKjtqRZ5tqpVY7vBwCQc/766y/FxsaqSpUq8vDwyOvuIJtu93PM7c9/iYx0J2QkACh4yEiFQ15npJvd1RxS8fHxkqTSpUs7LJ8/f77Kli2rOnXqaNy4cbp27Zq5bvv27apbt64ZtCQpPDxcdrtdBw8eNNuEhYU5bDM8PFzbt2+XJCUkJGj37t0ObZydnRUWFma2Sc/169dlt9sdHgAAADmNjAQAAHB7xbL7wpSUFA0fPlz33nuv6tSpYy5//PHHFRQUpPLly+vHH3/UmDFjFBMTo6+++kqSFBcX5xC0JJnP4+LibtvGbrfrzz//1MWLF5WcnJxumyNHjmTY56lTpyoyMjK7hwwAKOKO7frAsn1Va/LPLLXv16+f5s2bJ0kqVqyYSpcurXr16umxxx5Tv3795OxccO9jcvDgQU2YMEG7d+/W8ePH9cYbb2j48OF53a0MkZEAAEWNlRlJIifd7KOPPtJ///tf8+rpxo0b69VXX1WzZs3yuGd3lu2C1NChQ3XgwAFt2eJ4yfXgwYPNf9etW1cBAQHq0KGDjh07pmrVqmW/pzlg3LhxGjlypPncbrcrMDAwD3sEAEDO6dSpk+bMmaPk5GSdPn1aUVFReu6557R48WItX75cxYpl+2M/T127dk1Vq1bVww8/rBEjRuR1d+6IjAQAQP5TWHPSpk2b9Nhjj6lly5by8PDQf/7zH3Xs2FEHDx5UhQoV8rp7t5WtMuCwYcO0YsUKffPNN6pYseJt2zZv3lyS9PPPP0uS/P39dfr0aYc2qc/9/f1v28Zms8nT01Nly5aVi4tLum1St5Eed3d32Ww2hwcAAIWFu7u7/P39VaFCBTVq1Ej//ve/tWzZMq1evdrhTmyXLl3SwIED5evrK5vNpvbt22vfvn0O2/r666/VtGlTeXh4qGzZsurevbu57uLFi+rTp49KlSql4sWL64EHHtDRo0clSVevXpXNZtPixYsdtrd06VKVKFFCly9fVkJCgoYNG6aAgAB5eHgoKChIU6dOzfC4mjZtqtdee029evWSu7t7DoxU7iEjAQCQPxXWnDR//nw988wzatCggYKDg/Xxxx8rJSVFGzZsyIFRy11ZKkgZhqFhw4ZpyZIl2rhxo6pUqXLH10RHR0uSAgICJEmhoaHav3+/w51e1q1bJ5vNppCQELPNrYO3bt06hYaGSpLc3NzUuHFjhzapA57aBgAASO3bt1f9+vXNr4VJ0sMPP6wzZ85o9erV2r17txo1aqQOHTrowoULkqSVK1eqe/fu6ty5s/bu3asNGzY4XPbdr18/7dq1S8uXL9f27dtlGIY6d+6sxMRElShRQr169dKcOXMc+jFnzhz17NlTXl5eevvtt7V8+XJ9/vnniomJ0fz581W5cmVLxiO3kJEAACh4CmNOunbtmhITE9PMY5kfZematKFDh2rBggVatmyZvLy8zPkMvL295enpqWPHjmnBggXq3LmzypQpox9//FEjRoxQmzZtVK9ePUlSx44dFRISoieffFLTp09XXFycXnzxRQ0dOtQ86zlkyBC9++67Gj16tJ566ilt3LhRn3/+uVauXGn2ZeTIkerbt6+aNGmiZs2a6c0339TVq1fVv3//nBqbu/brpdVpltUQd5ABAFgrODhYP/74oyRpy5Yt2rlzp86cOWN+7s6YMUNLly7V4sWLNXjwYE2ZMkW9evVymFOofv36kqSjR49q+fLl2rp1q1q2bCnpxpm5wMBALV26VA8//LAGDhyoli1b6tSpUwoICNCZM2e0atUqrV+/XpJ04sQJ1ahRQ61atZKTk5OCgoKsHI5cQUbKGjISACC/KGw5acyYMSpfvnyam6DkR1m6Qur9999XfHy82rVrp4CAAPOxaNEiSTfOyq1fv14dO3ZUcHCwnn/+efXo0UNff/21uQ0XFxetWLFCLi4uCg0N1RNPPKE+ffro5ZdfNttUqVJFK1eu1Lp161S/fn29/vrr+vjjjxUeHm62efTRRzVjxgxNmDBBDRo0UHR0tKKiotJM4gkAQFFnGIacnJwkSfv27dOVK1dUpkwZlSxZ0nzExsbq2LFjkm5cudOhQ4d0t3X48GEVK1bM/LqZJJUpU0a1atXS4cOHJUnNmjXTPffcY04e+r///U9BQUFq06aNpBtnDqOjo1WrVi3961//0tq1a3Pt2K1CRgIAoGAqTDlp2rRpWrhwoZYsWSIPD4+sD4bFsnSFlGEYt10fGBiozZs333E7QUFBWrVq1W3btGvXTnv37r1tm2HDhmnYsGF33B8AAEXZ4cOHza+QXblyRQEBAdq0aVOadj4+PpIkT0/Pu97nwIEDNWvWLI0dO1Zz5sxR//79zbDXqFEjxcbGavXq1Vq/fr0eeeQRhYWFpZlPoSAhIwEAUDAVlpw0Y8YMTZs2TevXrzevvs7vCu69DQEAwB1t3LhR+/fvV48ePSTdCDlxcXEqVqyYqlev7vAoW7asJKlevXoZToRZu3ZtJSUl6fvvvzeXnT9/XjExMeY8R5L0xBNP6Pjx43r77bd16NAh9e3b12E7NptNjz76qD766CMtWrRIX375pTk3AwAAgBUKS06aPn26Jk+erKioKDVp0iTb42G1gnlfQwAAkMb169cVFxfncDvjqVOnqmvXrurTp48kKSwsTKGhoYqIiND06dNVs2ZNnTx50pygs0mTJpo4caI6dOigatWqqVevXkpKStKqVas0ZswY1ahRQw8++KAGDRqkDz74QF5eXho7dqwqVKigBx980OxLqVKl9NBDD2nUqFHq2LGjwx3nZs6cqYCAADVs2FDOzs764osv5O/vb555vFVCQoIOHTpk/vuPP/5QdHS0SpYsqerVq+fegAIAgEKjsOak//znP5owYYIWLFigypUrm/NYpn7dMD/jCikAAAqJqKgoBQQEqHLlyurUqZO++eYbvf3221q2bJlcXFwkSU5OTlq1apXatGmj/v37q2bNmurVq5eOHz9uzjHUrl07ffHFF1q+fLkaNGig9u3ba+fOneZ+5syZo8aNG6tr164KDQ2VYRhatWqVXF1dHfozYMAAJSQk6KmnnnJY7uXlpenTp6tJkyZq2rSpfv31V61atUrOzunHkpMnT6phw4Zq2LChTp06pRkzZqhhw4YaOHBgTg4fAAAoxAprTnr//feVkJCgnj17OsxjOWPGjJwcvlzhZNxp0oNCzG63y9vbW/Hx8bLZbDm+/aMLx6dZVqPXlBzfDwAg5/z111+KjY1VlSpVCsRkkPnZZ599phEjRujkyZNyc3OzdN+3+znm9ud/YUBGAgDcioyUs/IqJ+WnjMRX9gAAQI66du2aTp06pWnTpumf//yn5cUoAACA/Iqc9De+sgcAAHLU9OnTFRwcLH9/f40bNy6vuwMAAJBvkJP+RkEKAADkqEmTJikxMVEbNmzI95NpAgAAWImc9DcKUgAAAAAAALAUBSkAAAAAAABYioIUAADpKMI3oS0U+PkBAJA7+Iwt2PLTz4+CFAAAN3F1dZV04w4oKLhSf36pP08AAHB3yEiFQ37KSMXyugMAAOQnLi4u8vHx0ZkzZyRJxYsXl5OTUx73CpllGIauXbumM2fOyMfHRy4uLnndJQAACgUyUsGWHzMSBSkAAG7h7+8vSWbgQsHj4+Nj/hwBAEDOICMVfPkpI1GQAgDgFk5OTgoICJCfn58SExPzujvIIldX13xx1g8AgMKGjFSw5beMREEKAIAMuLi45KsPbQAAgPyAjIScwKTmAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUlkqSE2dOlVNmzaVl5eX/Pz8FBERoZiYGIc2f/31l4YOHaoyZcqoZMmS6tGjh06fPu3Q5sSJE+rSpYuKFy8uPz8/jRo1SklJSQ5tNm3apEaNGsnd3V3Vq1fX3Llz0/Rn1qxZqly5sjw8PNS8eXPt3LkzK4cDAACQI8hIAAAAWZOlgtTmzZs1dOhQ7dixQ+vWrVNiYqI6duyoq1evmm1GjBihr7/+Wl988YU2b96skydP6qGHHjLXJycnq0uXLkpISNC2bds0b948zZ07VxMmTDDbxMbGqkuXLrrvvvsUHR2t4cOHa+DAgVqzZo3ZZtGiRRo5cqQmTpyoPXv2qH79+goPD9eZM2fuZjwAAACyjIwEAACQNU6GYRjZffHZs2fl5+enzZs3q02bNoqPj5evr68WLFignj17SpKOHDmi2rVra/v27WrRooVWr16trl276uTJkypXrpwkafbs2RozZozOnj0rNzc3jRkzRitXrtSBAwfMffXq1UuXLl1SVFSUJKl58+Zq2rSp3n33XUlSSkqKAgMD9eyzz2rs2LGZ6r/dbpe3t7fi4+Nls9myOwwZOrpwfJplNXpNyfH9AACAzMvtz3+JjHQnZCQAAPIfKzLSze5qDqn4+HhJUunSpSVJu3fvVmJiosLCwsw2wcHBqlSpkrZv3y5J2r59u+rWrWsGLUkKDw+X3W7XwYMHzTY3byO1Teo2EhIStHv3boc2zs7OCgsLM9sAAADkFTISAADA7RXL7gtTUlI0fPhw3XvvvapTp44kKS4uTm5ubvLx8XFoW65cOcXFxZltbg5aqetT192ujd1u159//qmLFy8qOTk53TZHjhzJsM/Xr1/X9evXzed2uz0LRwwAAHBnZCQAAIA7y/YVUkOHDtWBAwe0cOHCnOxPrpo6daq8vb3NR2BgYF53CQAAFDJkJAAAgDvLVkFq2LBhWrFihb755htVrFjRXO7v76+EhARdunTJof3p06fl7+9vtrn1jjKpz+/UxmazydPTU2XLlpWLi0u6bVK3kZ5x48YpPj7efPz2229ZO3AAAIDbICMBAABkTpYKUoZhaNiwYVqyZIk2btyoKlWqOKxv3LixXF1dtWHDBnNZTEyMTpw4odDQUElSaGio9u/f73Cnl3Xr1slmsykkJMRsc/M2UtukbsPNzU2NGzd2aJOSkqINGzaYbdLj7u4um83m8AAAALhbZCQAAICsydIcUkOHDtWCBQu0bNkyeXl5mfMZeHt7y9PTU97e3howYIBGjhyp0qVLy2az6dlnn1VoaKhatGghSerYsaNCQkL05JNPavr06YqLi9OLL76ooUOHyt3dXZI0ZMgQvfvuuxo9erSeeuopbdy4UZ9//rlWrlxp9mXkyJHq27evmjRpombNmunNN9/U1atX1b9//5waGwAAgEwhIwEAAGRNlgpS77//vvT/7N15XJT1/v//J6CA24CmgCQp5p77jqmVcsQ0T5SdtDyF5XIy7JNSmmYpZmbHNltcWtXvOZpmJ63UUNPUo6ImSblnhmlHB82FcSkQuH5/9OPKCVQG4Y3A4367ze3WXNd7rut1vQXm1XOuuS5Jt956q9vy2bNna+DAgZKk1157Td7e3urbt6/S09MVFRWlGTNm2GN9fHy0dOlSDRs2TBEREapUqZJiYmL03HPP2WPCw8O1bNkyjRw5Uq+//rpq1aql9957T1FRUfaYfv366fjx4xo/frycTqdatmyphISEXBfxBAAAKGr0SAAAAJ7xsizLKu4iiovL5VJAQIDS0tKK5NT0/QvG5VpWv//kQt8PAADIv6J+/y8N6JEAACh7TPdIBb7LHgAAAAAAAFAQBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAozwOpNavX68+ffooNDRUXl5eWrJkidv6gQMHysvLy+3Rs2dPtzEnT57UgAED5HA4FBgYqEGDBuns2bNuY7777jt16dJF/v7+CgsL09SpU3PVsmjRIjVq1Ej+/v5q1qyZli9f7unhAAAAFAp6JAAAgPzzOJA6d+6cWrRooenTp19yTM+ePXX06FH78eGHH7qtHzBggHbt2qVVq1Zp6dKlWr9+vYYOHWqvd7lc6tGjh2rXrq2kpCS99NJLio+P1zvvvGOP2bRpk+677z4NGjRI27dvV3R0tKKjo7Vz505PDwkAAOCq0SMBAADkn5dlWVaBX+zlpcWLFys6OtpeNnDgQJ0+fTrXp4I59uzZoyZNmujrr79W27ZtJUkJCQnq1auXfv75Z4WGhmrmzJkaN26cnE6nfH19JUljxozRkiVLtHfvXklSv379dO7cOS1dutTedseOHdWyZUvNmjUrX/W7XC4FBAQoLS1NDoejADNwefsXjMu1rH7/yYW+HwAAkH9F/f4v0SNdCT0SAADXHhM90sWK5BpSa9euVVBQkBo2bKhhw4bpxIkT9rrExEQFBgbajZYkRUZGytvbW1u2bLHHdO3a1W60JCkqKkr79u3TqVOn7DGRkZFu+42KilJiYmJRHBIAAMBVo0cCAAD4XbnC3mDPnj119913Kzw8XAcOHNDTTz+t22+/XYmJifLx8ZHT6VRQUJB7EeXKqVq1anI6nZIkp9Op8PBwtzHBwcH2uqpVq8rpdNrLLh6Ts428pKenKz093X7ucrmu6lgBAADyix4JAADgD4UeSPXv39/+72bNmql58+a68cYbtXbtWnXv3r2wd+eRKVOmaOLEicVaAwAAKJvokQAAAP5QJF/Zu1jdunVVvXp1/fDDD5KkkJAQHTt2zG1MZmamTp48qZCQEHtMamqq25ic51cak7M+L2PHjlVaWpr9OHz48NUdHAAAQAHRIwEAgLKsyAOpn3/+WSdOnFDNmjUlSRERETp9+rSSkpLsMWvWrFF2drY6dOhgj1m/fr0uXLhgj1m1apUaNmyoqlWr2mNWr17ttq9Vq1YpIiLikrX4+fnJ4XC4PQAAAIoDPRIAACjLPA6kzp49q+TkZCUnJ0uSUlJSlJycrEOHDuns2bMaNWqUNm/erIMHD2r16tW68847Va9ePUVFRUmSGjdurJ49e2rIkCHaunWrNm7cqOHDh6t///4KDQ2VJN1///3y9fXVoEGDtGvXLi1cuFCvv/664uLi7Doef/xxJSQk6JVXXtHevXsVHx+vbdu2afjw4YUwLQAAAJ6hRwIAAMg/jwOpbdu2qVWrVmrVqpUkKS4uTq1atdL48ePl4+Oj7777Tn/961/VoEEDDRo0SG3atNF///tf+fn52duYN2+eGjVqpO7du6tXr17q3Lmz3nnnHXt9QECAVq5cqZSUFLVp00ZPPPGExo8fr6FDh9pjOnXqpPnz5+udd95RixYt9PHHH2vJkiVq2rTp1cwHAABAgdAjAQAA5J+XZVlWcRdRXFwulwICApSWllYkp6bvXzAu17L6/ScX+n4AAED+FfX7f2lAjwQAQNljukcq8mtIAQAAAAAAABcjkAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAY5XEgtX79evXp00ehoaHy8vLSkiVL3NZblqXx48erZs2aqlChgiIjI7V//363MSdPntSAAQPkcDgUGBioQYMG6ezZs25jvvvuO3Xp0kX+/v4KCwvT1KlTc9WyaNEiNWrUSP7+/mrWrJmWL1/u6eEAAAAUCnokAACA/PM4kDp37pxatGih6dOn57l+6tSpeuONNzRr1ixt2bJFlSpVUlRUlH777Td7zIABA7Rr1y6tWrVKS5cu1fr16zV06FB7vcvlUo8ePVS7dm0lJSXppZdeUnx8vN555x17zKZNm3Tfffdp0KBB2r59u6KjoxUdHa2dO3d6ekgAAABXjR4JAAAg/7wsy7IK/GIvLy1evFjR0dGSfv/kLzQ0VE888YSefPJJSVJaWpqCg4M1Z84c9e/fX3v27FGTJk309ddfq23btpKkhIQE9erVSz///LNCQ0M1c+ZMjRs3Tk6nU76+vpKkMWPGaMmSJdq7d68kqV+/fjp37pyWLl1q19OxY0e1bNlSs2bNylf9LpdLAQEBSktLk8PhKOg0XNL+BeNyLavff3Kh7wcAAORfUb//S/RIV0KPBADAtcdEj3SxQr2GVEpKipxOpyIjI+1lAQEB6tChgxITEyVJiYmJCgwMtBstSYqMjJS3t7e2bNlij+natavdaElSVFSU9u3bp1OnTtljLt5Pzpic/QAAAFwr6JEAAADclSvMjTmdTklScHCw2/Lg4GB7ndPpVFBQkHsR5cqpWrVqbmPCw8NzbSNnXdWqVeV0Oi+7n7ykp6crPT3dfu5yuTw5PAAAgAKhRwIAAHBXpu6yN2XKFAUEBNiPsLCw4i4JAACg2NEjAQAA0wo1kAoJCZEkpaamui1PTU2114WEhOjYsWNu6zMzM3Xy5Em3MXlt4+J9XGpMzvq8jB07Vmlpafbj8OHDnh4iAACAx+iRAAAA3BVqIBUeHq6QkBCtXr3aXuZyubRlyxZFRERIkiIiInT69GklJSXZY9asWaPs7Gx16NDBHrN+/XpduHDBHrNq1So1bNhQVatWtcdcvJ+cMTn7yYufn58cDofbAwAAoKjRIwEAALjzOJA6e/askpOTlZycLOn3i3QmJyfr0KFD8vLy0ogRI/T888/rs88+044dO/Tggw8qNDTUvstM48aN1bNnTw0ZMkRbt27Vxo0bNXz4cPXv31+hoaGSpPvvv1++vr4aNGiQdu3apYULF+r1119XXFycXcfjjz+uhIQEvfLKK9q7d6/i4+O1bds2DR8+/OpnBQAAwEP0SAAAAPnn8UXNt23bpttuu81+ntMAxcTEaM6cORo9erTOnTunoUOH6vTp0+rcubMSEhLk7+9vv2bevHkaPny4unfvLm9vb/Xt21dvvPGGvT4gIEArV65UbGys2rRpo+rVq2v8+PEaOnSoPaZTp06aP3++nnnmGT399NOqX7++lixZoqZNmxZoIgAAAK4GPRIAAED+eVmWZRV3EcXF5XIpICBAaWlpRXJq+v4F43Itq99/cqHvBwAA5F9Rv/+XBvRIAACUPaZ7pDJ1lz0AAAAAAAAUPwIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwqlxxFwAAAHAhYUOuZeV7di6GSgAAAK4dpblH4gwpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYVeiAVHx8vLy8vt0ejRo3s9b/99ptiY2N13XXXqXLlyurbt69SU1PdtnHo0CH17t1bFStWVFBQkEaNGqXMzEy3MWvXrlXr1q3l5+enevXqac6cOYV9KAAAAIWGHgkAAOAPRXKG1E033aSjR4/ajw0bNtjrRo4cqc8//1yLFi3SunXrdOTIEd199932+qysLPXu3VsZGRnatGmT5s6dqzlz5mj8+PH2mJSUFPXu3Vu33XabkpOTNWLECA0ePFgrVqwoisMBAAAoFPRIAAAAvytXJBstV04hISG5lqelpen999/X/Pnz1a1bN0nS7Nmz1bhxY23evFkdO3bUypUrtXv3bn355ZcKDg5Wy5YtNWnSJD311FOKj4+Xr6+vZs2apfDwcL3yyiuSpMaNG2vDhg167bXXFBUVVRSHBAAAcNXokQAAAH5XJGdI7d+/X6Ghoapbt64GDBigQ4cOSZKSkpJ04cIFRUZG2mMbNWqkG264QYmJiZKkxMRENWvWTMHBwfaYqKgouVwu7dq1yx5z8TZyxuRs41LS09PlcrncHgAAAKbQIwEAAPyu0AOpDh06aM6cOUpISNDMmTOVkpKiLl266MyZM3I6nfL19VVgYKDba4KDg+V0OiVJTqfTrdHKWZ+z7nJjXC6Xfv3110vWNmXKFAUEBNiPsLCwqz1cAACAfKFHAgAA+EOhf2Xv9ttvt/+7efPm6tChg2rXrq2PPvpIFSpUKOzdeWTs2LGKi4uzn7tcLhouAABgBD0SAADAH4rkK3sXCwwMVIMGDfTDDz8oJCREGRkZOn36tNuY1NRU+3oKISEhue4ok/P8SmMcDsdlGzo/Pz85HA63BwAAQHGgRwIAAGVZkQdSZ8+e1YEDB1SzZk21adNG5cuX1+rVq+31+/bt06FDhxQRESFJioiI0I4dO3Ts2DF7zKpVq+RwONSkSRN7zMXbyBmTsw0AAIBrHT0SAAAoywo9kHryySe1bt06HTx4UJs2bdJdd90lHx8f3XfffQoICNCgQYMUFxenr776SklJSXrooYcUERGhjh07SpJ69OihJk2a6IEHHtC3336rFStW6JlnnlFsbKz8/PwkSY888oh+/PFHjR49Wnv37tWMGTP00UcfaeTIkYV9OAAAAIWCHgkAAOAPhX4NqZ9//ln33XefTpw4oRo1aqhz587avHmzatSoIUl67bXX5O3trb59+yo9PV1RUVGaMWOG/XofHx8tXbpUw4YNU0REhCpVqqSYmBg999xz9pjw8HAtW7ZMI0eO1Ouvv65atWrpvffe43bGAADgmkWPBAAA8Acvy7Ks4i6iuLhcLgUEBCgtLa1IrpWwf8G4XMvq959c6PsBAKCku5CwIdey8j07F8m+ivr9vzSgRwIA4NpQmnukIr+GFAAAAAAAAHAxAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKpccRcAAADKlgsJG4q7BAAAgGtOWeuROEMKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjuKg5AAAodgdPf5FrWX11LoZKAAAArh2luUfiDCkAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBTXkAIAAEXqQsKG4i4BAADgmlPWeyTOkAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABjFXfYAAEChKet3iwEAAMgLPVJuBFIAAMCog6e/KO4SAAAArjllrUfiK3sAAAAAAAAwijOkAABAgXDqOQAAQG70SPlDIAUAAIpUWTv9HAAAID/Keo9EIAUAAPKFT/sAAAByo0cqGAIpAACQS0Ebq7L+SR8AACjd6JEKD4EUAABlTGF9ikdjBQAAShN6JLNKfCA1ffp0vfTSS3I6nWrRooXefPNNtW/fvrjLAgDgmlCYp5DTXJUs9EgAAFwaPVLxK9GB1MKFCxUXF6dZs2apQ4cOmjZtmqKiorRv3z4FBQUVd3kAABQpPsXDpdAjAQDKMnqkkqFEB1KvvvqqhgwZooceekiSNGvWLC1btkwffPCBxowZU8zVAQCQP1yLAIWNHgkAUBrQI5VuJTaQysjIUFJSksaOHWsv8/b2VmRkpBITE/N8TXp6utLT0+3naWlpkiSXy1UkNZ49n55rWVHtCwBKiwur8v4b/meH0la5Pb8h4C9XHJPXuLzG4NpQVO+ZOdu1LKtItl/c6JEAoHSiR0KO0tIjldhA6pdfflFWVpaCg4PdlgcHB2vv3r15vmbKlCmaOHFiruVhYWFFUmOeBr1ibl8AUKbk9+8rf4dLjCJ+zzxz5owCAgKKdB/FgR4JAOCOHqnUKSU9UokNpApi7NixiouLs59nZ2fr5MmTuu666+Tl5VWo+3K5XAoLC9Phw4flcDgKddvIG3NuHnNuHnNuHnNePIpy3i3L0pkzZxQaGlqo2y3J6JFKN+bcPObcPOa8eDDv5pWmHqnEBlLVq1eXj4+PUlNT3ZanpqYqJCQkz9f4+fnJz8/PbVlgYGBRlShJcjgc/GIaxpybx5ybx5ybx5wXj6Ka99J4ZlQOeiRcCnNuHnNuHnNePJh380pDj+RtbE+FzNfXV23atNHq1avtZdnZ2Vq9erUiIiKKsTIAAIDiQ48EAABKghJ7hpQkxcXFKSYmRm3btlX79u01bdo0nTt3zr6jDAAAQFlEjwQAAK51JTqQ6tevn44fP67x48fL6XSqZcuWSkhIyHURz+Lg5+enCRMm5Dr9HUWHOTePOTePOTePOS8ezPvVoUfCxZhz85hz85jz4sG8m1ea5tzLKq33PAYAAAAAAMA1qcReQwoAAAAAAAAlE4EUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQOoqTJ8+XXXq1JG/v786dOigrVu3Xnb8okWL1KhRI/n7+6tZs2Zavny5oUpLD0/m/N1331WXLl1UtWpVVa1aVZGRkVf8N0Junv6c51iwYIG8vLwUHR1dtAWWQp7O+enTpxUbG6uaNWvKz89PDRo04O+Lhzyd82nTpqlhw4aqUKGCwsLCNHLkSP3222+Gqi351q9frz59+ig0NFReXl5asmTJFV+zdu1atW7dWn5+fqpXr57mzJlT5HWi4OiRzKNHMo8eyTx6JPPokcwqcz2ShQJZsGCB5evra33wwQfWrl27rCFDhliBgYFWampqnuM3btxo+fj4WFOnTrV2795tPfPMM1b58uWtHTt2GK685PJ0zu+//35r+vTp1vbt2609e/ZYAwcOtAICAqyff/7ZcOUll6dzniMlJcW6/vrrrS5dulh33nmnmWJLCU/nPD093Wrbtq3Vq1cva8OGDVZKSoq1du1aKzk52XDlJZencz5v3jzLz8/PmjdvnpWSkmKtWLHCqlmzpjVy5EjDlZdcy5cvt8aNG2d98sknliRr8eLFlx3/448/WhUrVrTi4uKs3bt3W2+++abl4+NjJSQkmCkYHqFHMo8eyTx6JPPokcyjRzKvrPVIBFIF1L59eys2NtZ+npWVZYWGhlpTpkzJc/y9995r9e7d221Zhw4drH/84x9FWmdp4umc/1lmZqZVpUoVa+7cuUVVYqlTkDnPzMy0OnXqZL333ntWTEwMzZaHPJ3zmTNnWnXr1rUyMjJMlVjqeDrnsbGxVrdu3dyWxcXFWTfffHOR1lla5afZGj16tHXTTTe5LevXr58VFRVVhJWhoOiRzKNHMo8eyTx6JPPokYpXWeiR+MpeAWRkZCgpKUmRkZH2Mm9vb0VGRioxMTHP1yQmJrqNl6SoqKhLjoe7gsz5n50/f14XLlxQtWrViqrMUqWgc/7cc88pKChIgwYNMlFmqVKQOf/ss88UERGh2NhYBQcHq2nTpnrhhReUlZVlquwSrSBz3qlTJyUlJdmnrP/4449avny5evXqZaTmsoj30JKDHsk8eiTz6JHMo0cyjx6pZCjp76HliruAkuiXX35RVlaWgoOD3ZYHBwdr7969eb7G6XTmOd7pdBZZnaVJQeb8z5566imFhobm+oVF3goy5xs2bND777+v5ORkAxWWPgWZ8x9//FFr1qzRgAEDtHz5cv3www969NFHdeHCBU2YMMFE2SVaQeb8/vvv1y+//KLOnTvLsixlZmbqkUce0dNPP22i5DLpUu+hLpdLv/76qypUqFBMleHP6JHMo0cyjx7JPHok8+iRSoaS3iNxhhTKhBdffFELFizQ4sWL5e/vX9zllEpnzpzRAw88oHfffVfVq1cv7nLKjOzsbAUFBemdd95RmzZt1K9fP40bN06zZs0q7tJKrbVr1+qFF17QjBkz9M033+iTTz7RsmXLNGnSpOIuDQA8Ro9U9OiRigc9knn0SPAUZ0gVQPXq1eXj46PU1FS35ampqQoJCcnzNSEhIR6Nh7uCzHmOl19+WS+++KK+/PJLNW/evCjLLFU8nfMDBw7o4MGD6tOnj70sOztbklSuXDnt27dPN954Y9EWXcIV5Oe8Zs2aKl++vHx8fOxljRs3ltPpVEZGhnx9fYu05pKuIHP+7LPP6oEHHtDgwYMlSc2aNdO5c+c0dOhQjRs3Tt7efNZT2C71HupwOK75T/7KGnok8+iRzKNHMo8eyTx6pJKhpPdI/EQUgK+vr9q0aaPVq1fby7Kzs7V69WpFRETk+ZqIiAi38ZK0atWqS46Hu4LMuSRNnTpVkyZNUkJCgtq2bWui1FLD0zlv1KiRduzYoeTkZPvx17/+VbfddpuSk5MVFhZmsvwSqSA/5zfffLN++OEHu7GVpO+//141a9ak0cqHgsz5+fPnczVUOc2uZVlFV2wZxntoyUGPZB49knn0SObRI5lHj1QylPj30OK9pnrJtWDBAsvPz8+aM2eOtXv3bmvo0KFWYGCg5XQ6LcuyrAceeMAaM2aMPX7jxo1WuXLlrJdfftnas2ePNWHCBG5p7CFP5/zFF1+0fH19rY8//tg6evSo/Thz5kxxHUKJ4+mc/xl3kPGcp3N+6NAhq0qVKtbw4cOtffv2WUuXLrWCgoKs559/vrgOocTxdM4nTJhgValSxfrwww+tH3/80Vq5cqV14403Wvfee29xHUKJc+bMGWv79u3W9u3bLUnWq6++am3fvt366aefLMuyrDFjxlgPPPCAPT7nlsajRo2y9uzZY02fPr1E3dK4rKFHMo8eyTx6JPPokcyjRzKvrPVIBFJX4c0337RuuOEGy9fX12rfvr21efNme90tt9xixcTEuI3/6KOPrAYNGli+vr7WTTfdZC1btsxwxSWfJ3Neu3ZtS1Kux4QJE8wXXoJ5+nN+MZqtgvF0zjdt2mR16NDB8vPzs+rWrWtNnjzZyszMNFx1yebJnF+4cMGKj4+3brzxRsvf398KCwuzHn30UevUqVPmCy+hvvrqqzz/PufMc0xMjHXLLbfkek3Lli0tX19fq27dutbs2bON1438o0cyjx7JPHok8+iRzKNHMqus9UhelsW5cwAAAAAAADCHa0gBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFFBCrF27Vl5eXlq7dm2hbtfLy0vx8fGFus3SZuDAgapTp05xl3FNqFOnjgYOHHjFcXPmzJGXl5cOHjxY5DV5Kjs7W02bNtXkyZOvODY+Pl5eXl5uyzIzMzV69GiFhYXJ29tb0dHRHu1/1qxZuuGGG5Senu7R6wAAeaNHKj70SH+gR6JHgucIpGDcpk2bFB8fr9OnTxd3KWXG8uXLaagknT9/XvHx8YXesMKcxYsXKyoqSqGhofLz81OtWrV0zz33aOfOnfnexocffqjDhw9r+PDhBarhgw8+0EsvvaR77rlHc+fO1ciRIyVJCxcu1N///nfVr19fXl5euvXWW/N8/cCBA5WRkaG33367QPsHUHrRI5lHj/Q7eqSS71rtkU6cOKGXXnpJXbt2VY0aNRQYGKiOHTtq4cKFuV5Pj1T2lCvuAlD2bNq0SRMnTtTAgQMVGBhY3OWUCcuXL9f06dPzbLh+/fVXlStXNv4UnD9/XhMnTpSkS4YFeXn33XeVnZ1dRFWVLPv27ZO3d/F9lrFjxw5VrVpVjz/+uKpXry6n06kPPvhA7du3V2Jiolq0aHHFbbz00kvq37+/AgICClTDmjVrdP311+u1115zWz5z5kwlJSWpXbt2OnHixCVf7+/vr5iYGL366qt67LHHcn26CKDsokcyjx7pd/RIV48eKe8eaenSpRo3bpx69eqlZ555RuXKldN//vMf9e/fX7t377Z/7iR6pLKobPyFBYrR+fPnVbFixVzLMzMzlZ2dLV9f32Ko6g/+/v7Fuv9r2blz51SpUiWVL1++uEu5Zvj5+RXr/sePH59r2eDBg1WrVi3NnDlTs2bNuuzrt2/frm+//VavvPJKgWs4duxYnv+j+K9//UvXX3+9vL291bRp08tu495779XUqVP11VdfqVu3bgWuBQBKMnqkkoseKTd6pLx7pJtuukn79+9X7dq17WWPPvqoIiMj9c9//lOjR49WpUqV7HX0SGULX9mDUfHx8Ro1apQkKTw8XF5eXm7foc7MzNSkSZN04403ys/PT3Xq1NHTTz+d63vEderU0R133KGVK1eqZcuW8vf3V5MmTfTJJ58UqK5///vfat++vSpWrKiqVauqa9euWrlypduYGTNm6KabbpKfn59CQ0MVGxub65T6W2+9VU2bNlVSUpK6du2qihUr6umnn9bBgwfl5eWll19+WdOmTbOPb/fu3ZKkvXv36p577lG1atXk7++vtm3b6rPPPrti3f/973/1t7/9TTfccIP8/PwUFhamkSNH6tdff7XHDBw4UNOnT5cke74v/rQhr+sjbN++XbfffrscDocqV66s7t27a/PmzW5jcr7/vnHjRsXFxalGjRqqVKmS7rrrLh0/fvyKtV8s5zvo33//vf7+978rICBANWrU0LPPPivLsnT48GHdeeedcjgcCgkJyfVGmZGRofHjx6tNmzYKCAhQpUqV1KVLF3311Vf2mIMHD6pGjRqSpIkTJ9rzkHPsAwcOVOXKlXXgwAH16tVLVapU0YABA+x1F18fYcKECfL29tbq1avd6hg6dKh8fX317bff5vvY8/uzfOHCBU2cOFH169eXv7+/rrvuOnXu3FmrVq2yx+Qcw6FDh3THHXeocuXKuv766+1//x07dqhbt26qVKmSateurfnz5+e7zovr/fP1EXbt2qVu3bqpQoUKqlWrlp5//vk8Py3dtm2boqKiVL16dVWoUEHh4eF6+OGHPa7hz4KCglSxYsV8fcVlyZIl8vX1VdeuXXOt27Bhg9q1ayd/f3/deOONuU4Xz/k9/uqrr7Rr1y77Zyjn6w0510vIjzZt2qhatWr69NNP8zUeQOlHj0SPlBd6JHqkq3Et9Ejh4eFuYZT0++9WdHS00tPT9eOPP7qto0cqWzhDCkbdfffd+v777/Xhhx/qtddeU/Xq1SXJfhMcPHiw5s6dq3vuuUdPPPGEtmzZoilTpmjPnj1avHix27b279+vfv366ZFHHlFMTIxmz56tv/3tb0pISNBf/vKXfNc0ceJExcfHq1OnTnruuefk6+urLVu2aM2aNerRo4ek35uBiRMnKjIyUsOGDdO+ffs0c+ZMff3119q4caPbp0MnTpzQ7bffrv79++vvf/+7goOD7XWzZ8/Wb7/9pqFDh8rPz0/VqlXTrl27dPPNN+v666/XmDFjVKlSJX300UeKjo7Wf/7zH911112XrH3RokU6f/68hg0bpuuuu05bt27Vm2++qZ9//lmLFi2SJP3jH//QkSNHtGrVKv3rX/+64nzs2rVLXbp0kcPh0OjRo1W+fHm9/fbbuvXWW7Vu3Tp16NDBbfxjjz2mqlWrasKECTp48KCmTZum4cOH5/m98Cvp16+fGjdurBdffFHLli3T888/r2rVquntt99Wt27d9M9//lPz5s3Tk08+qXbt2tlvmC6XS++9957uu+8+DRkyRGfOnNH777+vqKgobd26VS1btlSNGjU0c+ZMDRs2THfddZfuvvtuSVLz5s3t/WdmZioqKkqdO3fWyy+/nOentpL0zDPP6PPPP9egQYO0Y8cOValSRStWrNC7776rSZMm5euU6Ivl52c5Pj5eU6ZM0eDBg9W+fXu5XC5t27ZN33zzjdvPe1ZWlm6//XZ17dpVU6dO1bx58zR8+HBVqlRJ48aN04ABA3T33Xdr1qxZevDBBxUREaHw8HCP6r2Y0+nUbbfdpszMTPvn95133lGFChXcxh07dkw9evRQjRo1NGbMGAUGBurgwYMF/h+k06dP68KFC3I6nZo2bZpcLpe6d+9+xddt2rRJTZs2zfWJ7o4dO+z64uPjlZmZqQkTJrj9/taoUUP/+te/NHnyZJ09e1ZTpkyRJDVu3LhAx9C6dWtt3LixQK8FUPrQI9EjXQ49Ej1SfpWUHsnpdEqS/bfuYvRIZYgFGPbSSy9ZkqyUlBS35cnJyZYka/DgwW7Ln3zySUuStWbNGntZ7dq1LUnWf/7zH3tZWlqaVbNmTatVq1b5rmX//v2Wt7e3ddddd1lZWVlu67Kzsy3Lsqxjx45Zvr6+Vo8ePdzGvPXWW5Yk64MPPrCX3XLLLZYka9asWW7bSklJsSRZDofDOnbsmNu67t27W82aNbN+++03t3136tTJql+/vr3sq6++siRZX331lb3s/PnzuY5pypQplpeXl/XTTz/Zy2JjY61L/bpLsiZMmGA/j46Otnx9fa0DBw7Yy44cOWJVqVLF6tq1q71s9uzZliQrMjLSnivLsqyRI0daPj4+1unTp/PcX14mTJhgSbKGDh1qL8vMzLRq1apleXl5WS+++KK9/NSpU1aFChWsmJgYt7Hp6elu2zx16pQVHBxsPfzww/ay48eP5zreHDExMZYka8yYMXmuq127ttuyHTt2WL6+vtbgwYOtU6dOWddff73Vtm1b68KFC/k+bsvK/89yixYtrN69e192WznH8MILL9jLcubLy8vLWrBggb187969l5yLK9V78dyPGDHCkmRt2bLFXnbs2DErICDA7fd88eLFliTr66+/9mh/l9KwYUNLkiXJqly5svXMM8/k+h3OS61atay+ffvmWh4dHW35+/u7/d7s3r3b8vHxyfW7c8stt1g33XTTZfdz0003WbfccstlxwwdOtSqUKHCFWsGUHbQI9Ej/Rk9Ej2Sp671HsmyLOvEiRNWUFCQ1aVLlzzX0yOVHXxlD9eM5cuXS5Li4uLclj/xxBOSpGXLlrktDw0NdftkzOFw6MEHH9T27dvtxP1KlixZouzsbI0fPz7XV21yTtn+8ssvlZGRoREjRriNGTJkiBwOR666/Pz89NBDD+W5v759+9qfdErSyZMntWbNGt177706c+aMfvnlF/3yyy86ceKEoqKitH//fv3vf/+7ZP0Xf8Jy7tw5/fLLL+rUqZMsy9L27dvzNQcXy8rK0sqVKxUdHa26devay2vWrKn7779fGzZskMvlcnvN0KFD3U5v79Kli7KysvTTTz95vP/Bgwfb/+3j46O2bdvKsiwNGjTIXh4YGKiGDRu6nd7r4+NjX2ciOztbJ0+eVGZmptq2batvvvnGoxqGDRuWr3FNmzbVxIkT9d577ykqKkq//PKL5s6dW6CLn+bnZzkwMFC7du3S/v37r7i9i+cxZ74qVaqke++9117esGFDBQYG5jpN2lPLly9Xx44d1b59e3tZjRo17FP5L65D+v3ClhcuXLiqfUq/f5KekJCgGTNmqHHjxvr111+VlZV1xdedOHFCVatWdVuWlZWlFStWKDo6WjfccIO9vHHjxoqKirrqWi+latWq+vXXX3X+/Pki2weA0oEeiR6JHul39EhXdq33SNnZ2RowYIBOnz6tN998M88x9EhlB4EUrhk//fSTvL29Va9ePbflISEhCgwMzPXmXa9evVx3XmjQoIEk2ddbuJIDBw7I29tbTZo0uWxd0u9vThfz9fVV3bp1c9V1/fXXX/IinH8+7feHH36QZVl69tlnVaNGDbfHhAkTJP1+Gu+lHDp0SAMHDlS1atVUuXJl1ahRQ7fccoskKS0t7ZKvu5Tjx4/r/PnzuY5V+v2NJzs7W4cPH3ZbfvGbkyT7jezUqVMe7//P2woICJC/v3+uU3kDAgJybX/u3Llq3ry5fe2AGjVqaNmyZR7NQ7ly5VSrVq18jx81apRatGihrVu3asKECZf9Obqc/PwsP/fcczp9+rQaNGigZs2aadSoUfruu+9ybcvf39+toZd+n69atWrl2kde8+ipn376SfXr18+1/M8/Q7fccov69u2riRMnqnr16rrzzjs1e/bsXNc+ya+IiAhFRUVp2LBhWrFihf79739r7Nix+XqtZVluz48fP65ff/01X8dRmHLq4A4yAK6EHokeiR7pD/RIl3et90iPPfaYEhIS9N57713yK5z0SGUH15DCNaek/+H58/fCL7cu56KGTz755CU/Zfhz85kjKytLf/nLX3Ty5Ek99dRTatSokSpVqqT//e9/GjhwoLFb8Pr4+OS5/M9vaAXdVn62/+9//1sDBw5UdHS0Ro0apaCgIPn4+GjKlCk6cOBAvvfv5+fn0e16f/zxR/vTuB07duT7dQXRtWtXHThwQJ9++qlWrlyp9957T6+99ppmzZqV61PTvBTmv1NBeHl56eOPP9bmzZv1+eefa8WKFXr44Yf1yiuvaPPmzapcuXKBt121alV169ZN8+bN08svv3zZsdddd91VN5iF5dSpU6pYseJl/2YAwMXokdzRI9EjSfRIl3Ot9UgTJ07UjBkz9OKLL+qBBx645Dh6pLKDQArGXaqZql27trKzs7V//363C+Clpqbq9OnTue7OkPPJ2cXb+/777yXJ7W4fl3PjjTcqOztbu3fvVsuWLS9ZlyTt27fP7RTtjIwMpaSkKDIyMl/7ykvO9sqXL+/xdnbs2KHvv/9ec+fO1YMPPmgvv/iOIjny28DWqFFDFStW1L59+3Kt27t3r7y9vRUWFuZRnSZ8/PHHqlu3rj755BO3Y835BDVHYTby2dnZGjhwoBwOh0aMGKEXXnhB99xzj30hUE/k92e5WrVqeuihh/TQQw/p7Nmz6tq1q+Lj492aLdNq166d5ynyef0MSVLHjh3VsWNHTZ48WfPnz9eAAQO0YMGCqz6GX3/9NV+f9DZq1EgpKSluy2rUqKEKFSp4dByFISUlpcAXRAdQOtEj/YEeqXDQI9EjXSs90vTp0xUfH68RI0boqaeeuuxYeqSyg6/swbhKlSpJUq7bj/bq1UuSNG3aNLflr776qiSpd+/ebsuPHDnidlcZl8ul//f//p9atmypkJCQfNUSHR0tb29vPffcc7k+Lcv5VCQyMlK+vr5644033D4pef/995WWlparLk8EBQXp1ltv1dtvv62jR4/mWn+5WwPnfJpzcU2WZen111/PNfZSc57XNnv06KFPP/3U7ZT+1NRUzZ8/X507d5bD4bjsNopDXnOxZcsWJSYmuo3LuSNMfm59eyWvvvqqNm3apHfeeUeTJk1Sp06dNGzYMP3yyy8ebys/P8snTpxwe03lypVVr169Ap/OXVh69eqlzZs3a+vWrfay48ePa968eW7jTp06leuTxpz/wfHkGPL6esbBgwe1evVqtW3b9oqvj4iI0M6dO9326ePjo6ioKC1ZskSHDh2yl+/Zs0crVqzId22e+uabb9SpU6ci2z6Akoce6Q/0SIWDHqn40CP9YeHChfq///s/DRgwwP67dTn0SGUHZ0jBuDZt2kiSxo0bp/79+6t8+fLq06ePWrRooZiYGL3zzjs6ffq0brnlFm3dulVz585VdHS0brvtNrftNGjQQIMGDdLXX3+t4OBgffDBB0pNTdXs2bPzXUu9evU0btw4TZo0SV26dNHdd98tPz8/ff311woNDdWUKVNUo0YNjR07VhMnTlTPnj3117/+Vfv27dOMGTPUrl07/f3vf7+q+Zg+fbo6d+6sZs2aaciQIapbt65SU1OVmJion3/+Wd9++22er2vUqJFuvPFGPfnkk/rf//4nh8Oh//znP3meapsz5//3f/+nqKgo+fj4qH///nlu9/nnn9eqVavUuXNnPfrooypXrpzefvttpaena+rUqVd1rEXljjvu0CeffKK77rpLvXv3VkpKimbNmqUmTZro7Nmz9rgKFSqoSZMmWrhwoRo0aKBq1aqpadOmatq0qUf727Nnj5599lkNHDhQffr0kSTNmTNHLVu21KOPPqqPPvrIo+3l52e5SZMmuvXWW9WmTRtVq1ZN27Zt08cff6zhw4d7tK/CNnr0aP3rX/9Sz5499fjjj9u3NK5du7bb9Rvmzp2rGTNm6K677tKNN96oM2fO6N1335XD4bD/Rys/mjVrpu7du6tly5aqWrWq9u/fr/fff18XLlzQiy++eMXX33nnnZo0aZLWrVtn37Jc+v0U8oSEBHXp0kWPPvqoMjMz9eabb+qmm27K8zoUeVm/fr3Wr18v6feG89y5c3r++ecl/f51gpxbcEtSUlKSTp48qTvvvDPfxw6g9KNHckePdPXokYoPPdLvtm7dqgcffFDXXXedunfvniuQ69Spk9sZlvRIZUzR38gPyG3SpEnW9ddfb3l7e7vd9vTChQvWxIkTrfDwcKt8+fJWWFiYNXbsWLfb/VrW77dV7d27t7VixQqrefPmlp+fn9WoUSNr0aJFBarngw8+sFq1amX5+flZVatWtW655RZr1apVbmPeeustq1GjRlb58uWt4OBga9iwYdapU6fcxlzqVqc5tzR+6aWX8tz/gQMHrAcffNAKCQmxypcvb11//fXWHXfcYX388cf2mLxuabx7924rMjLSqly5slW9enVryJAh1rfffmtJsmbPnm2Py8zMtB577DGrRo0alpeXl9stWpXHbW2/+eYbKyoqyqpcubJVsWJF67bbbrM2bdrkNibnlsZ/vkVtXnVeSc4tjY8fP+62PCYmxqpUqVKu8X+e5+zsbOuFF16wateubfn5+VmtWrWyli5dmuetiDdt2mS1adPG8vX1dTv2S+0rZ13OdjIzM6127dpZtWrVynXb5tdff92SZC1cuDDfx57fn+Xnn3/eat++vRUYGGhVqFDBatSokTV58mQrIyPDrc78zNef9+2JP9/S2LIs67vvvrNuueUWy9/f37r++uutSZMmWe+//77b7/Y333xj3XfffdYNN9xg+fn5WUFBQdYdd9xhbdu2zaP9T5gwwWrbtq1VtWpVq1y5clZoaKjVv39/67vvvsv3Npo3b24NGjQo1/J169bZPxt169a1Zs2aZf9sXuxS85kzNq/Hn3/HnnrqKeuGG25wux04AFgWPdKf0SPRI9Ej5c+12iPl/D5c6nHx76Nl0SOVNV6WZehqbUAhqlOnjpo2baqlS5cWdynAVeFn2bx//etfio2N1aFDh+xbLZuUnp6uOnXqaMyYMXr88ceN7x9A6cb7CkoLfpbNo0eCaVxDCgBQpgwYMEA33HCDpk+fXiz7nz17tsqXL69HHnmkWPYPAACQF3okmMY1pFBqOZ3Oy66vUKGCAgICDFVTNp09e9bt+gR5qVGjxiVvt1uSHT9+XFlZWZdc7+vrq2rVqhms6PKK+/fl5MmTysjIuOR6Hx8f1ahRo1D25e3trZ07dxbKtgrikUceodECUKyK+28+6JHokfKPHgmlGYEUSq2aNWtedn1MTIzmzJljppgy6uWXX9bEiRMvOyYlJSXft6AuSdq1a6effvrpkutvueUWrV271lxBV1Dcvy9333231q1bd8n1tWvXdrurEQCg4Ir7bz7okeiR8o8eCaUZ15BCqfXll19edn1oaKiaNGliqJqy6ccff9SPP/542TGdO3eWv7+/oYrM2bhxo3799ddLrq9atap9Z59rQXH/viQlJeV596McFSpU0M0331xk+weAsqS4/+aDHokeKf/okVCaEUgBAAAAAADAKC5qDgAAAAAAAKPK9DWksrOzdeTIEVWpUkVeXl7FXQ4AADDAsiydOXNGoaGh8vbms7m80CMBAFD2mO6RynQgdeTIEYWFhRV3GQAAoBgcPnxYtWrVKu4yrkn0SAAAlF2meqQyHUhVqVJF0u+T7XA4irkaAABggsvlUlhYmN0HIDd6JAAAyh7TPVKZDqRyTkF3OBw0WwAAlDF8Fe3S6JEAACi7TPVIXDgBAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhVpq8hBQDApViWpczMTGVlZRV3KfCQj4+PypUrxzWiAAAoAvRIJde11iMRSAEA8CcZGRk6evSozp8/X9yloIAqVqyomjVrytfXt7hLAQCg1KBHKvmupR6JQAoAgItkZ2crJSVFPj4+Cg0Nla+v7zXzKRKuzLIsZWRk6Pjx40pJSVH9+vXl7c0VCgAAuFr0SCXbtdgjEUgBAHCRjIwMZWdnKywsTBUrVizuclAAFSpUUPny5fXTTz8pIyND/v7+xV0SAAAlHj1SyXet9Uh8ZAgAQB6K+xMjXB3+/QAAKBq8x5Zs19K/37VTCQAAAAAAAMoEAikAAAAAAAAYxTWkAADIpwsJG4ztq3zPzvkee6ULik6YMEHx8fFXWVHBeHl5afHixYqOji7wNt555x3Nnz9f33zzjc6cOaNTp04pMDCw0GoEAABXx2SPJNEn5Th58qQmTJiglStX6tChQ6pRo4aio6M1adIkBQQEFG6xRYBACgCAEu7o0aP2fy9cuFDjx4/Xvn377GWVK1f2aHsZGRnXxK2Ac5w/f149e/ZUz549NXbs2OIuBwAAlCCluU86cuSIjhw5opdffllNmjTRTz/9pEceeURHjhzRxx9/XNzlXRFf2StCFxI25HoAAFDYQkJC7EdAQIC8vLzs5+fOndOAAQMUHBysypUrq127dvryyy/dXl+nTh1NmjRJDz74oBwOh4YOHSpJevfdd+076dx111169dVXc52Z9Omnn6p169by9/dX3bp1NXHiRGVmZtrblaS77rpLXl5e9vNvv/1Wt912m6pUqSKHw6E2bdpo27Ztlzy+ESNGaMyYMerYsWPhTBiKHT0SAMCU0twnNW3aVP/5z3/Up08f3XjjjerWrZsmT56szz//3N7PtYxACgCAUuzs2bPq1auXVq9ere3bt6tnz57q06ePDh065Dbu5ZdfVosWLbR9+3Y9++yz2rhxox555BE9/vjjSk5O1l/+8hdNnjzZ7TX//e9/9eCDD+rxxx/X7t279fbbb2vOnDn2uK+//lqSNHv2bB09etR+PmDAANWqVUtff/21kpKSNGbMGJUvX97AbAAAAPyhNPZJaWlpcjgcKlfu2v9C3LVfIQAAKLAWLVqoRYsW9vNJkyZp8eLF+uyzzzR8+HB7ebdu3fTEE0/Yz8eNG6fbb79dTz75pCSpQYMG2rRpk5YuXWqPmThxosaMGaOYmBhJUt26dTVp0iSNHj1aEyZMUI0aNSRJgYGBCgkJsV936NAhjRo1So0aNZIk1a9fvwiOHAAA4PJKW5/0yy+/aNKkSfZZXNc6zpACAKAUO3v2rJ588kk1btxYgYGBqly5svbs2ZPrk7+2bdu6Pd+3b5/at2/vtuzPz7/99ls999xzqly5sv0YMmSIjh49qvPnz1+ypri4OA0ePFiRkZF68cUXdeDAgas8SgAAAM+Vpj7J5XKpd+/eatKkSbFdpN1TBFIAAJRiTz75pBYvXqwXXnhB//3vf5WcnKxmzZopIyPDbVylSpU83vbZs2c1ceJEJScn248dO3Zo//798vf3v+Tr4uPjtWvXLvXu3Vtr1qxRkyZNtHjxYo/3DwAAcDVKS5905swZ9ezZU1WqVNHixYtLzKUQ+MoeAACl2MaNGzVw4EDdddddkn5vjg4ePHjF1zVs2NC+lkGOPz9v3bq19u3bp3r16l1yO+XLl1dWVlau5Q0aNFCDBg00cuRI3XfffZo9e7ZdIwAAgAmloU9yuVyKioqSn5+fPvvss8uGXdcaAikAAEqx+vXr65NPPlGfPn3k5eWlZ599VtnZ2Vd83WOPPaauXbvq1VdfVZ8+fbRmzRp98cUX8vLysseMHz9ed9xxh2644Qbdc8898vb21rfffqudO3fq+eefl/T7HWRWr16tm2++WX5+fvL399eoUaN0zz33KDw8XD///LO+/vpr9e3b95K1OJ1OOZ1O/fDDD5KkHTt2qEqVKrrhhhtUrVq1q5whAABQVpX0PsnlcqlHjx46f/68/v3vf8vlcsnlckmSatSoIR8fn0KYpaLDV/YAACjFXn31VVWtWlWdOnVSnz59FBUVpdatW1/xdTfffLNmzZqlV199VS1atFBCQoJGjhzp9qlbVFSUli5dqpUrV6pdu3bq2LGjXnvtNdWuXdse88orr2jVqlUKCwtTq1at5OPjoxMnTujBBx9UgwYNdO+99+r222/XxIkTL1nLrFmz1KpVKw0ZMkSS1LVrV7Vq1UqfffbZVcwMAAAo60p6n/TNN99oy5Yt2rFjh+rVq6eaNWvaj8OHD1/9BBUxL8uyrOIuori4XC4FBATYt0UsbBcSNuRaVr5n50LfDwCg8Pz2229KSUlReHh4iTrl2YQhQ4Zo7969+u9//1vcpVzR5f4di/r9vzSgRwIA/Bk90uWVlD7pWuqR+MoeAADI08svv6y//OUvqlSpkr744gvNnTtXM2bMKO6yAAAAih190tUjkAIAAHnaunWrpk6dqjNnzqhu3bp64403NHjw4OIuCwAAoNjRJ109AikAAJCnjz76qLhLAAAAuCbRJ109LmoOAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwKhyxV0AAAAlxYFtbxvb141t/+HR+IEDB2ru3LmSpHLlyqlatWpq3ry57rvvPg0cOFDe3iX3M6hdu3Zp/PjxSkpK0k8//aTXXntNI0aMKO6yAADA/89kjyTRJ13s3Xff1f/7f/9PO3fulCS1adNGL7zwgtq3b1/MlV1ZyZ11AADgpmfPnjp69KgOHjyoL774Qrfddpsef/xx3XHHHcrMzCzu8grs/Pnzqlu3rl588UWFhIQUdzkAAKAEKq190tq1a3Xffffpq6++UmJiosLCwtSjRw/973//K+7SrohACgCAUsLPz08hISG6/vrr1bp1az399NP69NNP9cUXX2jOnDn2uNOnT2vw4MGqUaOGHA6HunXrpm+//dZtW59//rnatWsnf39/Va9eXXfddZe97tSpU3rwwQdVtWpVVaxYUbfffrv2798vSTp37pwcDoc+/vhjt+0tWbJElSpV0pkzZ5SRkaHhw4erZs2a8vf3V+3atTVlypRLHle7du300ksvqX///vLz8yuEmQIAAGVNae2T5s2bp0cffVQtW7ZUo0aN9N577yk7O1urV68uhFkrWgRSAACUYt26dVOLFi30ySef2Mv+9re/6dixY/riiy+UlJSk1q1bq3v37jp58qQkadmyZbrrrrvUq1cvbd++XatXr3Y77XvgwIHatm2bPvvsMyUmJsqyLPXq1UsXLlxQpUqV1L9/f82ePdutjtmzZ+uee+5RlSpV9MYbb+izzz7TRx99pH379mnevHmqU6eOkfkAAADIURr7pPPnz+vChQuqVq3a1U2OAVxDCgCAUq5Ro0b67rvvJEkbNmzQ1q1bdezYMftso5dffllLlizRxx9/rKFDh2ry5Mnq37+/Jk6caG+jRYsWkqT9+/frs88+08aNG9WpUydJv38yFxYWpiVLluhvf/ubBg8erE6dOuno0aOqWbOmjh07puXLl+vLL7+UJB06dEj169dX586d5eXlpdq1a5ucDgAAAFtp65OeeuophYaGKjIy8qrnpqhxhhQAAKWcZVny8vKSJH377bc6e/asrrvuOlWuXNl+pKSk6MCBA5Kk5ORkde/ePc9t7dmzR+XKlVOHDh3sZdddd50aNmyoPXv2SJLat2+vm266yb546L///W/Vrl1bXbt2lfT7J4fJyclq2LCh/u///k8rV64ssmMHAAC4nNLUJ7344otasGCBFi9eLH9/f88nwzDOkAIAoJTbs2ePwsPDJUlnz55VzZo1tXbt2lzjAgMDJUkVKlS46n0OHjxY06dP15gxYzR79mw99NBDdrPXunVrpaSk6IsvvtCXX36pe++9V5GRkbmupwAAAFDUSkuf9PLLL+vFF1/Ul19+qebNm191jSZ4dIbUzJkz1bx5czkcDjkcDkVEROiLL76w1//222+KjY2108S+ffsqNTXVbRuHDh1S7969VbFiRQUFBWnUqFG5rmi/du1atW7dWn5+fqpXr57bBcZyTJ8+XXXq1JG/v786dOigrVu3enIoRhw8/UWuBwAAJq1Zs0Y7duxQ3759Jf3e5DidTpUrV0716tVze1SvXl2S1Lx580teCLNx48bKzMzUli1b7GUnTpzQvn371KRJE3vZ3//+d/3000964403tHv3bsXExLhtx+FwqF+/fnr33Xe1cOFC/ec//7GvzVAS0SN5hh4JAHAtKC190tSpUzVp0iQlJCSobdu2BZ4P0zwKpGrVqqUXX3xRSUlJ2rZtm7p166Y777xTu3btkiSNHDlSn3/+uRYtWqR169bpyJEjuvvuu+3XZ2VlqXfv3srIyNCmTZs0d+5czZkzR+PHj7fHpKSkqHfv3rrtttuUnJysESNGaPDgwVqxYoU9ZuHChYqLi9OECRP0zTffqEWLFoqKitKxY8eudj4AACix0tPT5XQ69b///U/ffPONXnjhBd15552644479OCDD0qSIiMjFRERoejoaK1cuVIHDx7Upk2bNG7cOG3btk2SNGHCBH344YeaMGGC9uzZox07duif//ynJKl+/fq68847NWTIEG3YsEHffvut/v73v+v666/XnXfeaddStWpV3X333Ro1apR69OihWrVq2eteffVVffjhh9q7d6++//57LVq0SCEhIfYnj3+WkZGh5ORkJScnKyMjQ//73/+UnJysH374oYhm0nP0SAAAXNtKa5/0z3/+U88++6w++OAD1alTR06nU06nU2fPni2imSw8HgVSffr0Ua9evVS/fn01aNBAkydPVuXKlbV582alpaXp/fff16uvvqpu3bqpTZs2mj17tjZt2qTNmzdLklauXKndu3fr3//+t1q2bKnbb79dkyZN0vTp05WRkSFJmjVrlsLDw/XKK6+ocePGGj58uO655x699tprdh2vvvqqhgwZooceekhNmjTRrFmzVLFiRX3wwQeFODUAAJQsCQkJqlmzpurUqaOePXvqq6++0htvvKFPP/1UPj4+kiQvLy8tX75cXbt21UMPPaQGDRqof//++umnnxQcHCxJuvXWW7Vo0SJ99tlnatmypbp16+Z2ls3s2bPVpk0b3XHHHYqIiJBlWVq+fLnKly/vVs+gQYOUkZGhhx9+2G15lSpVNHXqVLVt21bt2rXTwYMHtXz5cnl7592WHDlyRK1atVKrVq109OhRvfzyy2rVqpUGDx5cmNN3VeiRAAC4tpXWPmnmzJnKyMjQPffco5o1a9qPl19+uTCnr0h4WZZlFeSFWVlZWrRokWJiYrR9+3Y5nU51795dp06dckvuateurREjRmjkyJEaP368PvvsMyUnJ9vrU1JSVLduXX3zzTdq1aqVunbtqtatW2vatGn2mNmzZ2vEiBFKS0tTRkaGKlasqI8//ljR0dH2mJiYGJ0+fVqffvrpJWtOT09Xenq6/dzlciksLExpaWlyOBwFmYbL2r9gXK5l9ftPLvT9AAAKz2+//aaUlBSFh4eXiItBXsv+9a9/aeTIkTpy5Ih8fX2N7vty/44ul0sBAQFF9v5Pj3Rl9EgAUPLQIxWu4uqTirNH+jOP77K3Y8cOVa5cWX5+fnrkkUe0ePFiNWnSRE6nU76+vrlOIwsODpbT6ZQkOZ1OO1W8eH3OusuNcblc+vXXX/XLL78oKysrzzE527iUKVOmKCAgwH6EhYV5evgAAOAKzp8/rwMHDujFF1/UP/7xD+NhVHGhRwIAAFdSVvukvHgcSDVs2FDJycnasmWLhg0bppiYGO3evbsoait0Y8eOVVpamv04fPhwcZcEAECpM3XqVDVq1EghISEaO3ZscZdjDD0SAAC4krLaJ+WlnKcv8PX1Vb169SRJbdq00ddff63XX39d/fr1U0ZGhk6fPu32CWBqaqpCQkIkSSEhIbnu9JJzh5mLx/z5rjOpqalyOByqUKGCfHx85OPjk+eYnG1cip+fn/z8/Dw9ZAAA4IH4+HjFx8cXdxnG0SMBAIArKat9Ul48PkPqz7Kzs5Wenq42bdqofPnybrc/3Ldvnw4dOqSIiAhJUkREhHbs2OF2p5dVq1bJ4XDYt0CMiIjIdQvFVatW2dvw9fVVmzZt3MZkZ2dr9erV9hgAAIDiRo8EAABwaR6dITV27FjdfvvtuuGGG3TmzBnNnz9fa9eu1YoVKxQQEKBBgwYpLi5O1apVk8Ph0GOPPaaIiAh17NhRktSjRw81adJEDzzwgKZOnSqn06lnnnlGsbGx9qdyjzzyiN566y2NHj1aDz/8sNasWaOPPvpIy5Yts+uIi4tTTEyM2rZtq/bt22vatGk6d+6cHnrooUKcGgAAgPyhRwIAANQeoP0AAQAASURBVPCMR4HUsWPH9OCDD+ro0aMKCAhQ8+bNtWLFCv3lL3+RJL322mvy9vZW3759lZ6erqioKM2YMcN+vY+Pj5YuXaphw4YpIiJClSpVUkxMjJ577jl7THh4uJYtW6aRI0fq9ddfV61atfTee+8pKirKHtOvXz8dP35c48ePl9PpVMuWLZWQkJDrIp4AABRUAW9Ci2uE6X8/eiQAQFlBj1SyXUv/fl7WtVSNYUV9S0NuaQwAJU9WVpa+//57BQUF6brrrivuclBAJ06c0LFjx9SgQQP5+Pi4rTN9S+OSiB4JAPBn9Eilw7XUI3l8UXMAAEozHx8fBQYG2tfyqVixory8vIq5KuSXZVk6f/68jh07psDAwFyNFgAAKBh6pJLtWuyRCKQAAPiTnDuSXXyBaZQsgYGBV7yzHAAA8Aw9Usl3LfVIBFIAAPyJl5eXatasqaCgIF24cKG4y4GHypcvf0186gcAQGlDj1SyXWs9EoEUAACX4OPjc029aQMAAFwL6JFQGLyLuwAAAAAAAACULQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAozwKpKZMmaJ27dqpSpUqCgoKUnR0tPbt2+c25tZbb5WXl5fb45FHHnEbc+jQIfXu3VsVK1ZUUFCQRo0apczMTLcxa9euVevWreXn56d69eppzpw5ueqZPn266tSpI39/f3Xo0EFbt2715HAAAAAKBT0SAACAZzwKpNatW6fY2Fht3rxZq1at0oULF9SjRw+dO3fObdyQIUN09OhR+zF16lR7XVZWlnr37q2MjAxt2rRJc+fO1Zw5czR+/Hh7TEpKinr37q3bbrtNycnJGjFihAYPHqwVK1bYYxYuXKi4uDhNmDBB33zzjVq0aKGoqCgdO3asoHMBAABQIPRIAAAAnvGyLMsq6IuPHz+uoKAgrVu3Tl27dpX0+6d/LVu21LRp0/J8zRdffKE77rhDR44cUXBwsCRp1qxZeuqpp3T8+HH5+vrqqaee0rJly7Rz5077df3799fp06eVkJAgSerQoYPatWunt956S5KUnZ2tsLAwPfbYYxozZky+6ne5XAoICFBaWpocDkdBp+GS9i8Yl2tZ/f6TC30/AAAg/4r6/V+iR7oSeiQAAK49Jnqki13VNaTS0tIkSdWqVXNbPm/ePFWvXl1NmzbV2LFjdf78eXtdYmKimjVrZjdakhQVFSWXy6Vdu3bZYyIjI922GRUVpcTERElSRkaGkpKS3MZ4e3srMjLSHgMAAFBc6JEAAAAur1xBX5idna0RI0bo5ptvVtOmTe3l999/v2rXrq3Q0FB99913euqpp7Rv3z598sknkiSn0+nWaEmynzudzsuOcblc+vXXX3Xq1CllZWXlOWbv3r2XrDk9PV3p6en2c5fLVYAjBwAAuDR6JAAAgCsrcCAVGxurnTt3asOGDW7Lhw4dav93s2bNVLNmTXXv3l0HDhzQjTfeWPBKC8GUKVM0ceLEYq0BAACUbvRIAAAAV1agr+wNHz5cS5cu1VdffaVatWpddmyHDh0kST/88IMkKSQkRKmpqW5jcp6HhIRcdozD4VCFChVUvXp1+fj45DkmZxt5GTt2rNLS0uzH4cOH83G0AAAA+UOPBAAAkD8eBVKWZWn48OFavHix1qxZo/Dw8Cu+Jjk5WZJUs2ZNSVJERIR27NjhdqeXVatWyeFwqEmTJvaY1atXu21n1apVioiIkCT5+vqqTZs2bmOys7O1evVqe0xe/Pz85HA43B4AAABXix4JAADAMx59ZS82Nlbz58/Xp59+qipVqtjXMwgICFCFChV04MABzZ8/X7169dJ1112n7777TiNHjlTXrl3VvHlzSVKPHj3UpEkTPfDAA5o6daqcTqeeeeYZxcbGys/PT5L0yCOP6K233tLo0aP18MMPa82aNfroo4+0bNkyu5a4uDjFxMSobdu2at++vaZNm6Zz587poYceKqy5AQAAyBd6JAAAAM94FEjNnDlT0u+3Lb7Y7NmzNXDgQPn6+urLL7+0G5+wsDD17dtXzzzzjD3Wx8dHS5cu1bBhwxQREaFKlSopJiZGzz33nD0mPDxcy5Yt08iRI/X666+rVq1aeu+99xQVFWWP6devn44fP67x48fL6XSqZcuWSkhIyHURTwAAgKJGjwQAAOAZL8uyrOIuori4XC4FBAQoLS2tSE5N379gXK5l9ftPLvT9AACA/Cvq9//SgB4JAICyx3SPVKCLmgMAAAAAAAAFRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABglEeB1JQpU9SuXTtVqVJFQUFBio6O1r59+9zG/Pbbb4qNjdV1112nypUrq2/fvkpNTXUbc+jQIfXu3VsVK1ZUUFCQRo0apczMTLcxa9euVevWreXn56d69eppzpw5ueqZPn266tSpI39/f3Xo0EFbt2715HAAAAAKBT0SAACAZzwKpNatW6fY2Fht3rxZq1at0oULF9SjRw+dO3fOHjNy5Eh9/vnnWrRokdatW6cjR47o7rvvttdnZWWpd+/eysjI0KZNmzR37lzNmTNH48ePt8ekpKSod+/euu2225ScnKwRI0Zo8ODBWrFihT1m4cKFiouL04QJE/TNN9+oRYsWioqK0rFjx65mPgAAADxGjwQAAOAZL8uyrIK++Pjx4woKCtK6devUtWtXpaWlqUaNGpo/f77uueceSdLevXvVuHFjJSYmqmPHjvriiy90xx136MiRIwoODpYkzZo1S0899ZSOHz8uX19fPfXUU1q2bJl27txp76t///46ffq0EhISJEkdOnRQu3bt9NZbb0mSsrOzFRYWpscee0xjxozJV/0ul0sBAQFKS0uTw+Eo6DRc0v4F43Itq99/cqHvBwAA5F9Rv/9L9EhXQo8EAMC1x0SPdLGruoZUWlqaJKlatWqSpKSkJF24cEGRkZH2mEaNGumGG25QYmKiJCkxMVHNmjWzGy1JioqKksvl0q5du+wxF28jZ0zONjIyMpSUlOQ2xtvbW5GRkfYYAACA4kKPBAAAcHnlCvrC7OxsjRgxQjfffLOaNm0qSXI6nfL19VVgYKDb2ODgYDmdTnvMxY1WzvqcdZcb43K59Ouvv+rUqVPKysrKc8zevXsvWXN6errS09Pt5y6Xy4MjBgAAuDJ6JAAAgCsr8BlSsbGx2rlzpxYsWFCY9RSpKVOmKCAgwH6EhYUVd0kAAKCUoUcCAAC4sgIFUsOHD9fSpUv11VdfqVatWvbykJAQZWRk6PTp027jU1NTFRISYo/58x1lcp5faYzD4VCFChVUvXp1+fj45DkmZxt5GTt2rNLS0uzH4cOHPTtwAACAy6BHAgAAyB+PAinLsjR8+HAtXrxYa9asUXh4uNv6Nm3aqHz58lq9erW9bN++fTp06JAiIiIkSREREdqxY4fbnV5WrVolh8OhJk2a2GMu3kbOmJxt+Pr6qk2bNm5jsrOztXr1antMXvz8/ORwONweAAAAV4seCQAAwDMeXUMqNjZW8+fP16effqoqVarY1zMICAhQhQoVFBAQoEGDBikuLk7VqlWTw+HQY489poiICHXs2FGS1KNHDzVp0kQPPPCApk6dKqfTqWeeeUaxsbHy8/OTJD3yyCN66623NHr0aD388MNas2aNPvroIy1btsyuJS4uTjExMWrbtq3at2+vadOm6dy5c3rooYcKa24AAADyhR4JAADAMx4FUjNnzpQk3XrrrW7LZ8+erYEDB0qSXnvtNXl7e6tv375KT09XVFSUZsyYYY/18fHR0qVLNWzYMEVERKhSpUqKiYnRc889Z48JDw/XsmXLNHLkSL3++uuqVauW3nvvPUVFRdlj+vXrp+PHj2v8+PFyOp1q2bKlEhIScl3EEwAAoKjRIwEAAHjGy7Isq7iLKC4ul0sBAQFKS0srklPT9y8Yl2tZ/f6TC30/AAAg/4r6/b80oEcCAKDsMd0jFfguewAAAAAAAEBBEEgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAY5XEgtX79evXp00ehoaHy8vLSkiVL3NYPHDhQXl5ebo+ePXu6jTl58qQGDBggh8OhwMBADRo0SGfPnnUb891336lLly7y9/dXWFiYpk6dmquWRYsWqVGjRvL391ezZs20fPlyTw8HAACgUNAjAQAA5J/HgdS5c+fUokULTZ8+/ZJjevbsqaNHj9qPDz/80G39gAEDtGvXLq1atUpLly7V+vXrNXToUHu9y+VSjx49VLt2bSUlJemll15SfHy83nnnHXvMpk2bdN9992nQoEHavn27oqOjFR0drZ07d3p6SAAAAFeNHgkAACD/vCzLsgr8Yi8vLV68WNHR0faygQMH6vTp07k+FcyxZ88eNWnSRF9//bXatm0rSUpISFCvXr30888/KzQ0VDNnztS4cePkdDrl6+srSRozZoyWLFmivXv3SpL69eunc+fOaenSpfa2O3bsqJYtW2rWrFn5qt/lcikgIEBpaWlyOBwFmIHL279gXK5l9ftPLvT9AACA/Cvq93+JHulK6JEAALj2mOiRLlYk15Bau3atgoKC1LBhQw0bNkwnTpyw1yUmJiowMNButCQpMjJS3t7e2rJliz2ma9eudqMlSVFRUdq3b59OnTplj4mMjHTbb1RUlBITE4vikAAAAK4aPRIAAMDvyhX2Bnv27Km7775b4eHhOnDggJ5++mndfvvtSkxMlI+Pj5xOp4KCgtyLKFdO1apVk9PplCQ5nU6Fh4e7jQkODrbXVa1aVU6n01528ZicbeQlPT1d6enp9nOXy3VVxwoAAJBf9EgAAAB/KPRAqn///vZ/N2vWTM2bN9eNN96otWvXqnv37oW9O49MmTJFEydOLNYaAABA2USPBAAA8Ici+crexerWravq1avrhx9+kCSFhITo2LFjbmMyMzN18uRJhYSE2GNSU1PdxuQ8v9KYnPV5GTt2rNLS0uzH4cOHr+7gAAAACogeCQAAlGVFHkj9/PPPOnHihGrWrClJioiI0OnTp5WUlGSPWbNmjbKzs9WhQwd7zPr163XhwgV7zKpVq9SwYUNVrVrVHrN69Wq3fa1atUoRERGXrMXPz08Oh8PtAQAAUBzokQAAQFnmcSB19uxZJScnKzk5WZKUkpKi5ORkHTp0SGfPntWoUaO0efNmHTx4UKtXr9add96pevXqKSoqSpLUuHFj9ezZU0OGDNHWrVu1ceNGDR8+XP3791doaKgk6f7775evr68GDRqkXbt2aeHChXr99dcVFxdn1/H4448rISFBr7zyivbu3av4+Hht27ZNw4cPL4RpAQAA8Aw9EgAAQP55HEht27ZNrVq1UqtWrSRJcXFxatWqlcaPHy8fHx999913+utf/6oGDRpo0KBBatOmjf773//Kz8/P3sa8efPUqFEjde/eXb169VLnzp31zjvv2OsDAgK0cuVKpaSkqE2bNnriiSc0fvx4DR061B7TqVMnzZ8/X++8845atGihjz/+WEuWLFHTpk2vZj4AAAAKhB4JAAAg/7wsy7KKu4ji4nK5FBAQoLS0tCI5NX3/gnG5ltXvP7nQ9wMAAPKvqN//SwN6JAAAyh7TPVKRX0MKAAAAAAAAuBiBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEeB1Lr169Xnz59FBoaKi8vLy1ZssRtvWVZGj9+vGrWrKkKFSooMjJS+/fvdxtz8uRJDRgwQA6HQ4GBgRo0aJDOnj3rNua7775Tly5d5O/vr7CwME2dOjVXLYsWLVKjRo3k7++vZs2aafny5Z4eDgAAQKGgRwIAAMg/jwOpc+fOqUWLFpo+fXqe66dOnao33nhDs2bN0pYtW1SpUiVFRUXpt99+s8cMGDBAu3bt0qpVq7R06VKtX79eQ4cOtde7XC716NFDtWvXVlJSkl566SXFx8frnXfescds2rRJ9913nwYNGqTt27crOjpa0dHR2rlzp6eHBAAAcNXokQAAAPLPy7Isq8Av9vLS4sWLFR0dLen3T/5CQ0P1xBNP6Mknn5QkpaWlKTg4WHPmzFH//v21Z88eNWnSRF9//bXatm0rSUpISFCvXr30888/KzQ0VDNnztS4cePkdDrl6+srSRozZoyWLFmivXv3SpL69eunc+fOaenSpXY9HTt2VMuWLTVr1qx81e9yuRQQEKC0tDQ5HI6CTsMl7V8wLtey+v0nF/p+AABA/hX1+79Ej3Ql9EgAAFx7TPRIFyvUa0ilpKTI6XQqMjLSXhYQEKAOHTooMTFRkpSYmKjAwEC70ZKkyMhIeXt7a8uWLfaYrl272o2WJEVFRWnfvn06deqUPebi/eSMydkPAADAtYIeCQAAwF25wtyY0+mUJAUHB7stDw4Ottc5nU4FBQW5F1GunKpVq+Y2Jjw8PNc2ctZVrVpVTqfzsvvJS3p6utLT0+3nLpfLk8MDAAAoEHokAAAAd2XqLntTpkxRQECA/QgLCyvukgAAAIodPRIAADCtUAOpkJAQSVJqaqrb8tTUVHtdSEiIjh075rY+MzNTJ0+edBuT1zYu3selxuSsz8vYsWOVlpZmPw4fPuzpIQIAAHiMHgkAAMBdoQZS4eHhCgkJ0erVq+1lLpdLW7ZsUUREhCQpIiJCp0+fVlJSkj1mzZo1ys7OVocOHewx69ev14ULF+wxq1atUsOGDVW1alV7zMX7yRmTs5+8+Pn5yeFwuD0AAACKGj0SAACAO48DqbNnzyo5OVnJycmSfr9IZ3Jysg4dOiQvLy+NGDFCzz//vD777DPt2LFDDz74oEJDQ+27zDRu3Fg9e/bUkCFDtHXrVm3cuFHDhw9X//79FRoaKkm6//775evrq0GDBmnXrl1auHChXn/9dcXFxdl1PP7440pISNArr7yivXv3Kj4+Xtu2bdPw4cOvflYAAAA8RI8EAACQfx5f1Hzbtm267bbb7Oc5DVBMTIzmzJmj0aNH69y5cxo6dKhOnz6tzp07KyEhQf7+/vZr5s2bp+HDh6t79+7y9vZW37599cYbb9jrAwICtHLlSsXGxqpNmzaqXr26xo8fr6FDh9pjOnXqpPnz5+uZZ57R008/rfr162vJkiVq2rRpgSYCAADgatAjAQAA5J+XZVlWcRdRXFwulwICApSWllYkp6bvXzAu17L6/ScX+n4AAED+FfX7f2lAjwQAQNljukcqU3fZAwAAAAAAQPEjkAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMIpACgAAAAAAAEYRSAEAAAAAAMAoAikAAAAAAAAYRSAFAAAAAAAAowikAAAAAAAAYBSBFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCq0AOp+Ph4eXl5uT0aNWpkr//tt98UGxur6667TpUrV1bfvn2Vmprqto1Dhw6pd+/eqlixooKCgjRq1ChlZma6jVm7dq1at24tPz8/1atXT3PmzCnsQwEAACg09EgAAAB/KJIzpG666SYdPXrUfmzYsMFeN3LkSH3++edatGiR1q1bpyNHjujuu++212dlZal3797KyMjQpk2bNHfuXM2ZM0fjx4+3x6SkpKh379667bbblJycrBEjRmjw4MFasWJFURwOAABAoaBHAgAA+F25ItlouXIKCQnJtTwtLU3vv/++5s+fr27dukmSZs+ercaNG2vz5s3q2LGjVq5cqd27d+vLL79UcHCwWrZsqUmTJumpp55SfHy8fH19NWvWLIWHh+uVV16RJDVu3FgbNmzQa6+9pqioqKI4JAAAgKtGjwQAAPC7IjlDav/+/QoNDVXdunU1YMAAHTp0SJKUlJSkCxcuKDIy0h7bqFEj3XDDDUpMTJQkJSYmqlmzZgoODrbHREVFyeVyadeuXfaYi7eRMyZnGwAAANcieiQAAIDfFfoZUh06dNCcOXPUsGFDHT16VBMnTlSXLl20c+dOOZ1O+fr6KjAw0O01wcHBcjqdkiSn0+nWaOWsz1l3uTEul0u//vqrKlSokGdt6enpSk9Pt5+7XK6rOlYAAID8okcCAAD4Q6EHUrfffrv9382bN1eHDh1Uu3ZtffTRR5dsgkyZMmWKJk6cWKw1AACAsokeCQAA4A9F8pW9iwUGBqpBgwb64YcfFBISooyMDJ0+fdptTGpqqn09hZCQkFx3lMl5fqUxDofjsg3d2LFjlZaWZj8OHz58tYcHAABQIPRIAACgLCvyQOrs2bM6cOCAatasqTZt2qh8+fJavXq1vX7fvn06dOiQIiIiJEkRERHasWOHjh07Zo9ZtWqVHA6HmjRpYo+5eBs5Y3K2cSl+fn5yOBxuDwAAgOJAjwQAAMqyQg+knnzySa1bt04HDx7Upk2bdNddd8nHx0f33XefAgICNGjQIMXFxemrr75SUlKSHnroIUVERKhjx46SpB49eqhJkyZ64IEH9O2332rFihV65plnFBsbKz8/P0nSI488oh9//FGjR4/W3r17NWPGDH300UcaOXJkYR8OAABAoaBHAgAA+EOhX0Pq559/1n333acTJ06oRo0a6ty5szZv3qwaNWpIkl577TV5e3urb9++Sk9PV1RUlGbMmGG/3sfHR0uXLtWwYcMUERGhSpUqKSYmRs8995w9Jjw8XMuWLdPIkSP1+uuvq1atWnrvvfe4nTEAALhm0SMBAAD8wcuyLKu4iyguLpdLAQEBSktLK5JT0/cvGJdrWf3+kwt9PwAAIP+K+v2/NKBHAgCg7DHdIxX5NaQAAAAAAACAixFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCv0uewAAAJ66kLAh17LyPTsXQyUAAADXjtLcI3GGFAAAAAAAAIwikAIAAAAAAIBRBFIAAAAAAAAwikAKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjCKQAAAAAAABgFIEUAAAAAAAAjCKQAgAAAAAAgFEEUgAAAAAAADCKQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgBQAAAAAAAKMIpAAAAAAAAGAUgRQAAAAAAACMIpACAAAAAACAUQRSAAAAAAAAMKpccRcAAADKlgsJG4q7BAAAgGtOWeuROEMKAAAAAAAARhFIAQAAAAAAwCgCKQAAAAAAABhFIAUAAAAAAACjuKg5AAAoUmXtAp0AAAD5UdZ7JM6QAgAAAAAAgFEEUgAAAAAAADCKr+wBAIBCU9ZPPQcAAMgLPVJuBFIAAKDYHTz9Ra5l9dW5GCoBAAC4dpTmHolACgAAFAif9AEAAORGj5Q/Jf4aUtOnT1edOnXk7++vDh06aOvWrcVdEgAApdKFhA1uD1zb6JEAADCDHqlgSvQZUgsXLlRcXJxmzZqlDh06aNq0aYqKitK+ffsUFBRU3OUBAFAimG6c8jr1HIWLHgkAgKtHj1S0SnQg9eqrr2rIkCF66KGHJEmzZs3SsmXL9MEHH2jMmDHFXB0AAGbRNCEHPRIAAH+gR7o2ldhAKiMjQ0lJSRo7dqy9zNvbW5GRkUpMTMzzNenp6UpPT7efp6WlSZJcLleR1Hj2fHquZUW1LwBA0bmwKu/3lT8r/5eIK77uz2M82X5BHEpbVWTbLmpF9Z6Zs13Lsopk+8WNHgkAYFJ++pj89D/0SPlXWnqkEhtI/fLLL8rKylJwcLDb8uDgYO3duzfP10yZMkUTJ07MtTwsLKxIaszToFfM7QsAgJKsiN8zz5w5o4CAgCLdR3GgRwIAoJQrJT1SiQ2kCmLs2LGKi4uzn2dnZ+vkyZO67rrr5OXlVaj7crlcCgsL0+HDh+VwOAp128gbc24ec24ec24ec148inLeLcvSmTNnFBoaWqjbLcnokUo35tw85tw85rx4MO/mlaYeqcQGUtWrV5ePj49SU1PdlqempiokJCTP1/j5+cnPz89tWWBgYFGVKElyOBz8YhrGnJvHnJvHnJvHnBePopr30nhmVA56JFwKc24ec24ec148mHfzSkOP5G1sT4XM19dXbdq00erVq+1l2dnZWr16tSIicn/3FAAAoCygRwIAACVBiT1DSpLi4uIUExOjtm3bqn379po2bZrOnTtn31EGAACgLKJHAgAA17oSHUj169dPx48f1/jx4+V0OtWyZUslJCTkuohncfDz89OECRNynf6OosOcm8ecm8ecm8ecFw/m/erQI+FizLl5zLl5zHnxYN7NK01z7mWV1nseAwAAAAAA4JpUYq8hBQAAAAAAgJKJQAoAAAAAAABGEUgBAAAAAADAKAIpAAAAAAAAGEUgdRWmT5+uOnXqyN/fXx06dNDWrVsvO37RokVq1KiR/P391axZMy1fvtxQpaWHJ3P+7rvvqkuXLqpataqqVq2qyMjIK/4bITdPf85zLFiwQF5eXoqOji7aAkshT+f89OnTio2NVc2aNeXn56cGDRrw98VDns75tGnT1LBhQ1WoUEFhYWEaOXKkfvvtN0PVlnzr169Xnz59FBoaKi8vLy1ZsuSKr1m7dq1at24tPz8/1atXT3PmzCnyOlFw9Ejm0SOZR49kHj2SefRIZpW5HslCgSxYsMDy9fW1PvjgA2vXrl3WkCFDrMDAQCs1NTXP8Rs3brR8fHysqVOnWrt377aeeeYZq3z58taOHTsMV15yeTrn999/vzV9+nRr+/bt1p49e6yBAwdaAQEB1s8//2y48pLL0znPkZKSYl1//fVWly5drDvvvNNMsaWEp3Oenp5utW3b1urVq5e1YcMGKyUlxVq7dq2VnJxsuPKSy9M5nzdvnuXn52fNmzfPSklJsVasWGHVrFnTGjlypOHKS67ly5db48aNsz755BNLkrV48eLLjv/xxx+tihUrWnFxcdbu3butN9980/Lx8bESEhLMFAyP0COZR49kHj2SefRI5tEjmVfWeiQCqQJq3769FRsbaz/PysqyQkNDrSlTpuQ5/t5777V69+7ttqxDhw7WP/7xjyKtszTxdM7/LDMz06pSpYo1d+7coiqx1CnInGdmZlqdOnWy3nvvPSsmJoZmy0OezvnMmTOtunXrWhkZGaZKLHU8nfPY2FirW7dubsvi4uKsm2++uUjrLK3y02yNHj3auummm9yW9evXz4qKiirCylBQ9Ejm0SOZR49kHj2SefRIxass9Eh8Za8AMjIylJSUpMjISHuZt7e3IiMjlZiYmOdrEhMT3cZLUlRU1CXHw11B5vzPzp8/rwsXLqhatWpFVWapUtA5f+655xQUFKRBgwaZKLNUKcicf/bZZ4qIiFBsbKyCg4PVtGlTvfDCC8rKyjJVdolWkDnv1KmTkpKS7FPWf/zxRy1fvly9evUyUnNZxHtoyUGPZB49knn0SObRI5lHj1QylPT30HLFXUBJ9MsvvygrK0vBwcFuy4ODg7V37948X+N0OvMc73Q6i6zO0qQgc/5nTz31lEJDQ3P9wiJvBZnzDRs26P3331dycrKBCkufgsz5jz/+qDVr1mjAgAFavny5fvjhBz366KO6cOGCJkyYYKLsEq0gc37//ffrl19+UefOnfX/sXfncVGV/f/H3wPCgCigiQKJuC+4Ya6YaZmJuSSmd2ndiuVya9o3tUzNcolSUzOtXFru1EpvK1MrNdNcuu9SMxfMNM0Ml1JcUsGlWK/fH/2YHAFlEA4Cr+fjMY+Hc53rnHOdi4F5+5kz5xhjlJqaqkGDBumZZ56xYsjFUnbvoYmJifrjjz/k7e1dQCPD1chI1iMjWY+MZD0ykvXISIVDYc9InCGFYmHKlClasmSJli9fLi8vr4IeTpF04cIF9e7dW2+99ZbKlStX0MMpNtLT01W+fHm9+eabaty4sR588EGNHTtW8+bNK+ihFVmbNm3SpEmTNGfOHO3cuVPLli3TqlWrFBMTU9BDAwCXkZHyHxmpYJCRrEdGgqs4QyoXypUrJ3d3d508edKp/eTJkwoMDMxyncDAQJf6w1lu5jzD9OnTNWXKFH355Zdq0KBBfg6zSHF1zg8dOqTDhw+rS5cujrb09HRJUokSJXTgwAFVq1YtfwddyOXmdR4UFCQPDw+5u7s72urUqaP4+HglJyfL09MzX8dc2OVmzp977jn17t1b/fv3lyTVr19fly5d0sCBAzV27Fi5ufFZT17L7j3U19f3pv/kr7ghI1mPjGQ9MpL1yEjWIyMVDoU9I/GKyAVPT081btxY69evd7Slp6dr/fr1ioiIyHKdiIgIp/6StG7dumz7w1lu5lySpk6dqpiYGK1Zs0ZNmjSxYqhFhqtzXrt2be3Zs0exsbGOx3333ae77rpLsbGxCgkJsXL4hVJuXue33367fv75Z0ewlaSffvpJQUFBBK0cyM2cX758OVOgygi7xpj8G2wxxnto4UFGsh4ZyXpkJOuRkaxHRiocCv17aMFeU73wWrJkibHb7WbBggVm3759ZuDAgcbf39/Ex8cbY4zp3bu3GT16tKP/N998Y0qUKGGmT59ufvzxRzN+/HhuaewiV+d8ypQpxtPT0yxdutScOHHC8bhw4UJBHUKh4+qcX407yLjO1Tk/evSoKV26tBk6dKg5cOCAWblypSlfvrx54YUXCuoQCh1X53z8+PGmdOnS5j//+Y/55ZdfzNq1a021atXMAw88UFCHUOhcuHDB7Nq1y+zatctIMjNmzDC7du0yR44cMcYYM3r0aNO7d29H/4xbGo8cOdL8+OOPZvbs2YXqlsbFDRnJemQk65GRrEdGsh4ZyXrFLSNRkLoBr732mqlUqZLx9PQ0zZo1M1u3bnUsa9OmjYmOjnbq/+GHH5qaNWsaT09PU7duXbNq1SqLR1z4uTLnoaGhRlKmx/jx460feCHm6uv8SoSt3HF1zjdv3myaN29u7Ha7qVq1qnnxxRdNamqqxaMu3FyZ85SUFDNhwgRTrVo14+XlZUJCQsxjjz1mzp07Z/3AC6mNGzdm+fc5Y56jo6NNmzZtMq0THh5uPD09TdWqVc38+fMtHzdyjoxkPTKS9chI1iMjWY+MZK3ilpFsxnDuHAAAAAAAAKzDNaQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCigkNm3aJJvNpk2bNuXpdm02myZMmJCn2yxq+vbtq8qVKxf0MG4KlStXVt++fa/bb8GCBbLZbDp8+HC+j8lVFy9eVPny5bVo0aLr9s3qZ3/x4kX1799fgYGBstlsGjZsmEv7Hz16tJo3b+7SOgCA7JGRCg4Z6W9kJDISXEdBCpbbvHmzJkyYoPPnzxf0UIqN1atXE6gkXb58WRMmTMjzwIqCc88998hms2no0KE5XmfWrFkqXbq0evbsmat9Tpo0SQsWLNDgwYP13nvvqXfv3pKkuXPn6h//+IcqVaokm82WbSgdNmyYdu/erU8//TRX+wdQdJGRrEdG+gsZqei5WTLSsWPHNHHiRDVr1kxlypRRuXLldOedd+rLL7/MtD4ZqfgpUdADQPGzefNmTZw4UX379pW/v39BD6dYWL16tWbPnp1l4Prjjz9UokTx+FNw+fJlTZw4UZJ055135ni9t956S+np6fk0qsLlwIEDcnO7OT7LWLZsmbZs2eLSOikpKZo1a5aGDx8ud3f3XO13w4YNatGihcaPH+/U/tJLL+nChQtq1qyZTpw4ke36gYGB6tq1q6ZPn6777rsvV2MAUDSRkaxHRvoLGenGkZGyzkivv/66XnrpJUVFRSk6Olqpqal69913dc899+idd97RI4884uhLRip+bo7fGKAIu3z5cpbtqampSk5Otng0mXl5eRWbsOWqS5cuSZI8PDxkt9sLeDQ3B7vdLg8Pj4Iehv788089+eSTGjVqlEvrrVy5UqdPn9YDDzyQ632fOnUqy/8ofvXVVzpz5ow+//zz675eHnjgAX399df65Zdfcj0OACjsyEiFFxkpMzJS1hnprrvu0tGjR7V48WINGTJETzzxhDZv3qzatWtr3LhxmbZBRipeKEjBUhMmTNDIkSMlSVWqVJHNZnP6DnVqaqpiYmJUrVo12e12Va5cWc8884ySkpKctlO5cmV17txZa9euVXh4uLy8vBQWFqZly5blalzvv/++mjVrppIlS6pMmTJq3bq11q5d69Rnzpw5qlu3rux2u4KDgzVkyJBMp9Tfeeedqlevnnbs2KHWrVurZMmSeuaZZ3T48GHZbDZNnz5dM2fOdBzfvn37JEn79+9Xjx49VLZsWXl5ealJkyY5OlX1f//7n+MrQna7XSEhIRo+fLj++OMPR5++fftq9uzZkuSYb5vN5lie1fURdu3apXvvvVe+vr4qVaqU7r77bm3dutWpT8b337/55huNGDFCAQEB8vHxUbdu3XT69Onrjv1KEyZMkM1m008//aR//vOf8vPzU0BAgJ577jkZY3Ts2DF17dpVvr6+CgwM1Msvv+y0fnJyssaNG6fGjRvLz89PPj4+uuOOO7Rx40ZHn8OHDysgIECSNHHiRMc8ZBx73759VapUKR06dEgdO3ZU6dKl9fDDDzuWXfkd+fHjx8vNzU3r1693GsfAgQPl6emp3bt35/jYc/paTklJ0cSJE1WjRg15eXnplltuUatWrbRu3TpHn4xjOHr0qDp37qxSpUrp1ltvdfz89+zZo7Zt28rHx0ehoaFavHhxjsd55Xiv/ira3r171bZtW3l7e6tixYp64YUXsvy0dPv27YqMjFS5cuXk7e2tKlWq6NFHH3V5DJI0depUpaen66mnnnJpvRUrVqhy5cqqVq1alsvq1asnLy8v1atXT8uXL3dannGNkri4OK1atSrT36/Q0FCn361radeunSTpk08+cWn8AIouMhIZKStkJDKSq262jFS3bl2VK1fOqb/dblfHjh3166+/6sKFC07LyEjFjAEstHv3btOrVy8jybzyyivmvffeM++99565ePGiMcaY6OhoI8n06NHDzJ492/Tp08dIMlFRUU7bCQ0NNTVr1jT+/v5m9OjRZsaMGaZ+/frGzc3NrF271qUxTZgwwUgyLVu2NNOmTTOzZs0yDz30kBk1apSjz/jx440k065dO/Paa6+ZoUOHGnd3d9O0aVOTnJzs6NemTRsTGBhoAgICzOOPP27eeOMNs2LFChMXF2ckmbCwMFO1alUzZcoU88orr5gjR46YH374wfj5+ZmwsDDz0ksvmddff920bt3a2Gw2s2zZMse2N27caCSZjRs3Otoef/xx07FjRzNp0iTzxhtvmH79+hl3d3fTo0cPR5/Nmzebe+65x0hyzPd7773nWC7JjB8/3vH8hx9+MD4+PiYoKMjExMSYKVOmmCpVqhi73W62bt3q6Dd//nwjyTRq1Mi0bdvWvPbaa+bJJ5807u7u5oEHHnDpZ5Axv+Hh4aZXr15mzpw5plOnTkaSmTFjhqlVq5YZPHiwmTNnjrn99tuNJPPVV1851j99+rQJCgoyI0aMMHPnzjVTp041tWrVMh4eHmbXrl3GGGMuXrxo5s6daySZbt26OeZh9+7dxpi/Xnt2u91Uq1bNREdHm3nz5pl3333XsSw0NNSxv+TkZNOoUSMTGhpqEhMTjTHGrFmzxkgyMTExLh17Tl/LzzzzjLHZbGbAgAHmrbfeMi+//LLp1auXmTJliqNPdHS08fLyMmFhYWbQoEFm9uzZpmXLlkaSmT9/vgkODjYjR440r732mqlbt65xd3c3v/zyi8vjjY6Odjw/ceKECQgIMGXKlDETJkww06ZNMzVq1DANGjQwkkxcXJwxxpiTJ0+aMmXKmJo1a5pp06aZt956y4wdO9bUqVPHpf0bY8yRI0eMt7e3+c9//mOM+es1PGTIkBytW716dXP//fdnav/iiy+Mm5ubqVevnpkxY4YZO3as8fPzM3Xr1nX87OPj4817771nypUrZ8LDwzP9/bqSj4+P0zxlN5bu3bvnaNwAij4yEhkpK2QkMpIrCkNGyvDQQw+ZkiVLmtTU1CzHQkYqHihIwXLTpk1z+iOcITY21kgy/fv3d2p/6qmnjCSzYcMGR1toaKiRZD7++GNHW0JCggkKCjKNGjXK8VgOHjxo3NzcTLdu3UxaWprTsvT0dGOMMadOnTKenp6mffv2Tn1ef/11I8m88847jrY2bdoYSWbevHlO28oIW76+vubUqVNOy+6++25Tv3598+effzrtu2XLlqZGjRqOtqzC1uXLlzMd0+TJk43NZjNHjhxxtA0ZMsRkV3++OmxFRUUZT09Pc+jQIUfb8ePHTenSpU3r1q0dbRlhq127do65MsaY4cOHG3d3d3P+/Pks95eVjLA1cOBAR1tqaqqpWLGisdlsToHi3Llzxtvb2+kNPzU11SQlJTlt89y5c6ZChQrm0UcfdbSdPn060/FmyAj6o0ePznLZlWHLGGP27NljPD09Tf/+/c25c+fMrbfeapo0aWJSUlJyfNzG5Py13LBhQ9OpU6drbivjGCZNmuRoy5gvm81mlixZ4mjfv39/tnNxvfFeOffDhg0zksy3337raDt16pTx8/Nz+j1fvny5kWS+++47l/aXlR49epiWLVs6nuc0bKWkpBibzWaefPLJTMvCw8NNUFCQ0+t27dq1RlKmn31oaOh1fxY5KUi1b98+V2ETQNFFRiIjXY2MREZyRWHISMb89ffFy8vL9O7dO8vlZKTig6/s4aaxevVqSdKIESOc2p988klJ0qpVq5zag4OD1a1bN8dzX19f9enTR7t27VJ8fHyO9rlixQqlp6dr3LhxmS5CmHHK9pdffqnk5GQNGzbMqc+AAQPk6+ubaVx2u93p4nxX6t69u+OUaEk6e/asNmzYoAceeEAXLlzQmTNndObMGf3++++KjIzUwYMH9dtvv2U7fm9vb8e/L126pDNnzqhly5YyxmjXrl05moMrpaWlae3atYqKilLVqlUd7UFBQXrooYf09ddfKzEx0WmdgQMHOp3efscddygtLU1Hjhxxef/9+/d3/Nvd3V1NmjSRMUb9+vVztPv7+6tWrVpO3yt3d3eXp6enJCk9PV1nz55VamqqmjRpop07d7o0hsGDB+eoX7169TRx4kS9/fbbioyM1JkzZ7Rw4cJcXWsiJ69lf39/7d27VwcPHrzu9q6cx4z58vHxcbomQK1ateTv73/D389fvXq1WrRooWbNmjnaAgICHKfyXzkO6a/rE6SkpOR6fxs3btTHH3+smTNnurzu2bNnZYxRmTJlnNpPnDih2NhYRUdHy8/Pz9F+zz33KCwsLNdjvZ4yZcrozJkz+bZ9AEUHGYmMREb6Cxkpe4UlI12+fFn/+Mc/5O3trSlTpmTZh4xUfFCQwk3jyJEjcnNzU/Xq1Z3aAwMD5e/vn+nNu3r16pmu11KzZk1Jclxv4XoOHTokNze3a/5BzdhvrVq1nNo9PT1VtWrVTOO69dZbHW/8V6tSpYrT859//lnGGD333HMKCAhwemTcneLUqVPZju3o0aPq27evypYtq1KlSikgIEBt2rSRJCUkJGS7XnZOnz6ty5cvZzpWSapTp47S09N17Ngxp/ZKlSo5Pc94Izt37pzL+796W35+fvLy8sr0vXM/P79M21+4cKEaNGjguHZAQECAVq1a5dI8lChRQhUrVsxx/5EjR6phw4batm2bxo8fn+s35py8lp9//nmdP39eNWvWVP369TVy5Eh9//33mbbl5eXlFOilv+arYsWKmfaR1Ty66siRI6pRo0am9qtfQ23atFH37t01ceJElStXTl27dtX8+fMzXfvkWlJTU/V///d/6t27t5o2bZrrMRtjnJ5n/A7n5DjykjEmx9ecAlC8kZHISGSkv5GRMissGSktLU09e/bUvn37tHTpUgUHB2c7DjJS8cBtI3DTKex/fK78RO56yzIuavjUU08pMjIyy3WuDp8Z0tLSdM899+js2bMaNWqUateuLR8fH/3222/q27evZbfgze62sFe/oeV2WznZ/vvvv6++ffsqKipKI0eOVPny5eXu7q7Jkyfr0KFDOd6/3W536Xa9v/zyi+PTuD179uR4vdxo3bq1Dh06pE8++URr167V22+/rVdeeUXz5s3L9KlpVvLy55QbNptNS5cu1datW/XZZ5/piy++0KOPPqqXX35ZW7duValSpa67jXfffVcHDhzQG2+8kek/VBcuXNDhw4dVvnx5lSxZMsv1y5YtK5vNdsMBM6+cO3cu038kAOBayEjOyEhkJImMJBWejDRgwACtXLlSixYtUtu2bbPtR0YqPihIwXLZhanQ0FClp6fr4MGDqlOnjqP95MmTOn/+vEJDQ536Z3xyduX2fvrpJ0lyutvHtVSrVk3p6enat2+fwsPDsx2XJB04cMDpFO3k5GTFxcU57gSRGxnb8/DwcHk7e/bs0U8//aSFCxeqT58+jvYr7yiSIacBNiAgQCVLltSBAwcyLdu/f7/c3NwUEhLi0jitsHTpUlWtWlXLli1zOtaMT1Az5GWQT09PV9++feXr66thw4Zp0qRJ6tGjh+6//36Xt5XT13LZsmX1yCOP6JFHHtHFixfVunVrTZgwwSlsWS00NDTLU+Szeg1JUosWLdSiRQu9+OKLWrx4sR5++GEtWbIkR8dw9OhRpaSk6Pbbb8+07N1339W7776r5cuXKyoqKsv1S5QooWrVqikuLi7TMUhy6TjyQlxcnBo2bJhv2wdQ+JCR/kZGyhtkJDLSzZKRRo4cqfnz52vmzJnq1avXNfuSkYoPvrIHy/n4+EhSptsBd+zYUZIyfe95xowZkqROnTo5tR8/ftzplqOJiYl69913FR4ersDAwByNJSoqSm5ubnr++eczfVqW8alIu3bt5OnpqVdffdXpk5J///vfSkhIyDQuV5QvX1533nmn3njjDZ04cSLT8mvdGjjj05wrx2SM0axZszL1zW7Os9pm+/bt9cknnzh9unLy5EktXrxYrVq1kq+v7zW3URCymotvv/1WW7ZsceqX8anQ9eYhJ2bMmKHNmzfrzTffVExMjFq2bKnBgwfn6vvuOXkt//77707rlCpVStWrV3fpdO780LFjR23dulXbtm1ztJ0+fVqLFi1y6nfu3LlMnzRm/Acnp8fQs2dPLV++PNMjYxzLly9X8+bNr7mNiIgIbd++3aktKChI4eHhWrhwodPXF9atW+e47XheS0hI0KFDh9SyZct82T6AwomM9DcyUt4gIxUcMtLfpk2bpunTp+uZZ57RE088cc2+ZKTihTOkYLnGjRtLksaOHauePXvKw8NDXbp0UcOGDRUdHa0333xT58+fV5s2bbRt2zYtXLhQUVFRuuuuu5y2U7NmTfXr10/fffedKlSooHfeeUcnT57U/PnzczyW6tWra+zYsYqJidEdd9yh+++/X3a7Xd99952Cg4M1efJkBQQEaMyYMZo4caI6dOig++67TwcOHNCcOXPUtGlT/fOf/7yh+Zg9e7ZatWql+vXra8CAAapatapOnjypLVu26Ndff9Xu3buzXK927dqqVq2annrqKf3222/y9fXVxx9/nOWpthlz/n//93+KjIyUu7u7evbsmeV2X3jhBa1bt06tWrXSY489phIlSuiNN95QUlKSpk6dekPHml86d+6sZcuWqVu3burUqZPi4uI0b948hYWF6eLFi45+3t7eCgsL0wcffKCaNWuqbNmyqlevnurVq+fS/n788Uc999xz6tu3r7p06SJJWrBggcLDw/XYY4/pww8/dGl7OXkth4WF6c4771Tjxo1VtmxZbd++XUuXLtXQoUNd2ldee/rpp/Xee++pQ4cOeuKJJ+Tj46M333xToaGhTtdvWLhwoebMmaNu3bqpWrVqunDhgt566y35+vo6/qN1PbVr11bt2rWzXFalSpVsP/W7UteuXfXee+/pp59+clyDQpImT56sTp06qVWrVnr00Ud19uxZvfbaa6pbt67Ta+haPvvsM8fva0pKir7//nu98MILkqT77rtPDRo0cPT98ssvZYxR165dc7RtAMUDGckZGenGkZEKDhnpL8uXL9fTTz+tGjVqqE6dOnr//fedlt9zzz2qUKGC4zkZqZjJ35v4AVmLiYkxt956q3Fzc3O67WlKSoqZOHGiqVKlivHw8DAhISFmzJgxTrf7NebvW4p+8cUXpkGDBsZut5vatWubjz76KFfjeeedd0yjRo2M3W43ZcqUMW3atDHr1q1z6vP666+b2rVrGw8PD1OhQgUzePBgc+7cOac+bdq0MXXr1s20/YxbGk+bNi3L/R86dMj06dPHBAYGGg8PD3Prrbeazp07m6VLlzr6ZHVL43379pl27dqZUqVKmXLlypkBAwaY3bt3G0lm/vz5jn6pqanm8ccfNwEBAcZmsznd3lhZ3NZ2586dJjIy0pQqVcqULFnS3HXXXWbz5s1OfTJuaXz1LWqzGuf1ZNzS+PTp007t0dHRxsfHJ1P/q+c5PT3dTJo0yYSGhhq73W4aNWpkVq5cmeWtiDdv3mwaN25sPD09nY49u31lLMvYTmpqqmnatKmpWLFipts2z5o1y0gyH3zwQY6PPaev5RdeeME0a9bM+Pv7G29vb1O7dm3z4osvmuTkZKdx5mS+rt63K66+pbExxnz//femTZs2xsvLy9x6660mJibG/Pvf/3b63d65c6fp1auXqVSpkrHb7aZ8+fKmc+fOZvv27S7tPyvK4S2NjTEmKSnJlCtXzsTExGRa9vHHH5s6deoYu91uwsLCzLJly7J8DWU3bxm3lM7qceXvozHGPPjgg6ZVq1Y5PkYAxQcZyRkZiYxERsq9myEjZbyGs3tc/ftARipebMZYdLU2IA9VrlxZ9erV08qVKwt6KMAN4bVsvZiYGM2fP18HDx7M9kKm+Sk+Pl5VqlTRkiVL+PQPQJ7jfQVFBa9l65GRYDWuIQUAKFaGDx+uixcvasmSJQWy/5kzZ6p+/foELQAAcFMhI8FqXEMKRVZ8fPw1l3t7e8vPz8+i0RRPFy9evO53ywMCAgrkE5j8dvr0aaWlpWW73NPTU2XLlrVwRNdW0L8vZ8+eVXJycrbL3d3dFRAQkCf7KlWqlE6dOpUn28qNKVOmFNi+AUAq+L/5ICORkXKOjISijIIUiqygoKBrLo+OjtaCBQusGUwxNX36dE2cOPGafeLi4nJ8C+rCpGnTpjpy5Ei2y9u0aaNNmzZZN6DrKOjfl/vvv19fffVVtstDQ0Od7moEAMi9gv6bDzISGSnnyEgoyriGFIqsL7/88prLg4ODFRYWZtFoiqdffvlFv/zyyzX7tGrVSl5eXhaNyDrffPON/vjjj2yXlylTxnFnn5tBQf++7NixI8u7H2Xw9vbW7bffnm/7B4DipKD/5oOMREbKOTISijIKUgAAAAAAALAUFzUHAAAAAACApYr1NaTS09N1/PhxlS5dWjabraCHAwAALGCM0YULFxQcHCw3Nz6bywoZCQCA4sfqjFSsC1LHjx9XSEhIQQ8DAAAUgGPHjqlixYoFPYybEhkJAIDiy6qMVKwLUqVLl5b012T7+voW8GgAAIAVEhMTFRIS4sgByIyMBABA8WN1RirWBamMU9B9fX0JWwAAFDN8FS17ZCQAAIovqzISF04AAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpYn0NKQAAsmOMUWpqqtLS0gp6KHCRu7u7SpQowTWiAADIB2Skwutmy0gUpAAAuEpycrJOnDihy5cvF/RQkEslS5ZUUFCQPD09C3ooAAAUGWSkwu9mykgUpAAAuEJ6erri4uLk7u6u4OBgeXp63jSfIuH6jDFKTk7W6dOnFRcXpxo1asjNjSsUAABwo8hIhdvNmJEoSAEAcIXk5GSlp6crJCREJUuWLOjhIBe8vb3l4eGhI0eOKDk5WV5eXgU9JAAACj0yUuF3s2UkPjIEACALBf2JEW4MPz8AAPIH77GF283087t5RgIAAAAAAIBigYIUAAAAAAAALMU1pAAAyKGUNV9bti+PDq1y3Pd6FxQdP368JkyYcIMjyh2bzably5crKioq19t48803tXjxYu3cuVMXLlzQuXPn5O/vn2djBAAAN8bKjCSRkzKcPXtW48eP19q1a3X06FEFBAQoKipKMTEx8vPzy9vB5gMKUgAAFHInTpxw/PuDDz7QuHHjdODAAUdbqVKlXNpecnLyTXEr4AyXL19Whw4d1KFDB40ZM6aghwMAAAqRopyTjh8/ruPHj2v69OkKCwvTkSNHNGjQIB0/flxLly4t6OFdF1/Zy0cpa77O9AAAIK8FBgY6Hn5+frLZbI7nly5d0sMPP6wKFSqoVKlSatq0qb788kun9StXrqyYmBj16dNHvr6+GjhwoCTprbfectxJp1u3bpoxY0amM5M++eQT3XbbbfLy8lLVqlU1ceJEpaamOrYrSd26dZPNZnM83717t+666y6VLl1avr6+aty4sbZv357t8Q0bNkyjR49WixYt8mbCUODISAAAqxTlnFSvXj19/PHH6tKli6pVq6a2bdvqxRdf1GeffebYz82MghQAAEXYxYsX1bFjR61fv167du1Shw4d1KVLFx09etSp3/Tp09WwYUPt2rVLzz33nL755hsNGjRITzzxhGJjY3XPPffoxRdfdFrnf//7n/r06aMnnnhC+/bt0xtvvKEFCxY4+n333XeSpPnz5+vEiROO5w8//LAqVqyo7777Tjt27NDo0aPl4eFhwWwAAAD8rSjmpISEBPn6+qpEiZv/C3E3/wgBAECuNWzYUA0bNnQ8j4mJ0fLly/Xpp59q6NChjva2bdvqySefdDwfO3as7r33Xj311FOSpJo1a2rz5s1auXKlo8/EiRM1evRoRUdHS5KqVq2qmJgYPf300xo/frwCAgIkSf7+/goMDHSsd/ToUY0cOVK1a9eWJNWoUSMfjhwAAODailpOOnPmjGJiYhxncd3sOEMKAIAi7OLFi3rqqadUp04d+fv7q1SpUvrxxx8zffLXpEkTp+cHDhxQs2bNnNqufr579249//zzKlWqlOMxYMAAnThxQpcvX852TCNGjFD//v3Vrl07TZkyRYcOHbrBowQAAHBdUcpJiYmJ6tSpk8LCwgrsIu2uoiAFAEAR9tRTT2n58uWaNGmS/ve//yk2Nlb169dXcnKyUz8fHx+Xt33x4kVNnDhRsbGxjseePXt08OBBeXl5ZbvehAkTtHfvXnXq1EkbNmxQWFiYli9f7vL+AQAAbkRRyUkXLlxQhw4dVLp0aS1fvrzQXAqBr+wBAFCEffPNN+rbt6+6desm6a9wdPjw4euuV6tWLce1DDJc/fy2227TgQMHVL169Wy34+HhobS0tEztNWvWVM2aNTV8+HD16tVL8+fPd4wRAADACkUhJyUmJioyMlJ2u12ffvrpNYtdNxsKUgAAFGE1atTQsmXL1KVLF9lsNj333HNKT0+/7nqPP/64WrdurRkzZqhLly7asGGDPv/8c9lsNkefcePGqXPnzqpUqZJ69OghNzc37d69Wz/88INeeOEFSX/dQWb9+vW6/fbbZbfb5eXlpZEjR6pHjx6qUqWKfv31V3333Xfq3r17tmOJj49XfHy8fv75Z0nSnj17VLp0aVWqVElly5a9wRkCAADFVWHPSYmJiWrfvr0uX76s999/X4mJiUpMTJQkBQQEyN3dPQ9mKf/wlT0AAIqwGTNmqEyZMmrZsqW6dOmiyMhI3Xbbbddd7/bbb9e8efM0Y8YMNWzYUGvWrNHw4cOdPnWLjIzUypUrtXbtWjVt2lQtWrTQK6+8otDQUEefl19+WevWrVNISIgaNWokd3d3/f777+rTp49q1qypBx54QPfee68mTpyY7VjmzZunRo0aacCAAZKk1q1bq1GjRvr0009vYGYAAEBxV9hz0s6dO/Xtt99qz549ql69uoKCghyPY8eO3fgE5TObMcYU9CAKSmJiovz8/By3RcxrKWu+ztTm0aFVnu8HAJB3/vzzT8XFxalKlSqF6pRnKwwYMED79+/X//73v4IeynVd6+eY3+//RQEZCQBwNTLStRWWnHQzZSS+sgcAALI0ffp03XPPPfLx8dHnn3+uhQsXas6cOQU9LAAAgAJHTrpxFKQAAECWtm3bpqlTp+rChQuqWrWqXn31VfXv37+ghwUAAFDgyEk3joIUAADI0ocffljQQwAAALgpkZNuHBc1BwAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlipR0AMAAKCwOLT9Dcv2Va3Jv1zq37dvXy1cuFCSVKJECZUtW1YNGjRQr1691LdvX7m5Fd7PoPbu3atx48Zpx44dOnLkiF555RUNGzasoIcFAAD+PyszkkROutJbb72ld999Vz/88IMkqXHjxpo0aZKaNWtWwCO7vsI76wAAwEmHDh104sQJHT58WJ9//rnuuusuPfHEE+rcubNSU1MLeni5dvnyZVWtWlVTpkxRYGBgQQ8HAAAUQkU1J23atEm9evXSxo0btWXLFoWEhKh9+/b67bffCnpo10VBCgCAIsJutyswMFC33nqrbrvtNj3zzDP65JNP9Pnnn2vBggWOfufPn1f//v0VEBAgX19ftW3bVrt373ba1meffaamTZvKy8tL5cqVU7du3RzLzp07pz59+qhMmTIqWbKk7r33Xh08eFCSdOnSJfn6+mrp0qVO21uxYoV8fHx04cIFJScna+jQoQoKCpKXl5dCQ0M1efLkbI+radOmmjZtmnr27Cm73Z4HMwUAAIqbopqTFi1apMcee0zh4eGqXbu23n77baWnp2v9+vV5MGv5i4IUAABFWNu2bdWwYUMtW7bM0faPf/xDp06d0ueff64dO3botttu0913362zZ89KklatWqVu3bqpY8eO2rVrl9avX+902nffvn21fft2ffrpp9qyZYuMMerYsaNSUlLk4+Ojnj17av78+U7jmD9/vnr06KHSpUvr1Vdf1aeffqoPP/xQBw4c0KJFi1S5cmVL5gMAACBDUcxJly9fVkpKisqWLXtjk2MBriEFAEARV7t2bX3//feSpK+//lrbtm3TqVOnHGcbTZ8+XStWrNDSpUs1cOBAvfjii+rZs6cmTpzo2EbDhg0lSQcPHtSnn36qb775Ri1btpT01ydzISEhWrFihf7xj3+of//+atmypU6cOKGgoCCdOnVKq1ev1pdffilJOnr0qGrUqKFWrVrJZrMpNDTUyukAAABwKGo5adSoUQoODla7du1ueG7yG2dIAQBQxBljZLPZJEm7d+/WxYsXdcstt6hUqVKOR1xcnA4dOiRJio2N1d13353ltn788UeVKFFCzZs3d7TdcsstqlWrln788UdJUrNmzVS3bl3HxUPff/99hYaGqnXr1pL++uQwNjZWtWrV0v/93/9p7dq1+XbsAAAA11KUctKUKVO0ZMkSLV++XF5eXq5PhsU4QwoAgCLuxx9/VJUqVSRJFy9eVFBQkDZt2pSpn7+/vyTJ29v7hvfZv39/zZ49W6NHj9b8+fP1yCOPOMLebbfdpri4OH3++ef68ssv9cADD6hdu3aZrqcAAACQ34pKTpo+fbqmTJmiL7/8Ug0aNLjhMVrBpTOk5s6dqwYNGsjX11e+vr6KiIjQ559/7lj+559/asiQIY5qYvfu3XXy5EmnbRw9elSdOnVSyZIlVb58eY0cOTLTFe03bdqk2267TXa7XdWrV3e6wFiG2bNnq3LlyvLy8lLz5s21bds2Vw7FEofPf57pAQCAlTZs2KA9e/aoe/fukv4KOfHx8SpRooSqV6/u9ChXrpwkqUGDBtleCLNOnTpKTU3Vt99+62j7/fffdeDAAYWFhTna/vnPf+rIkSN69dVXtW/fPkVHRzttx9fXVw8++KDeeustffDBB/r4448d12YojMhIriEjAQBuBkUlJ02dOlUxMTFas2aNmjRpkuv5sJpLBamKFStqypQp2rFjh7Zv3662bduqa9eu2rt3ryRp+PDh+uyzz/TRRx/pq6++0vHjx3X//fc71k9LS1OnTp2UnJyszZs3a+HChVqwYIHGjRvn6BMXF6dOnTrprrvuUmxsrIYNG6b+/fvriy++cPT54IMPNGLECI0fP147d+5Uw4YNFRkZqVOnTt3ofAAAUGglJSUpPj5ev/32m3bu3KlJkyapa9eu6ty5s/r06SNJateunSIiIhQVFaW1a9fq8OHD2rx5s8aOHavt27dLksaPH6///Oc/Gj9+vH788Uft2bNHL730kiSpRo0a6tq1qwYMGKCvv/5au3fv1j//+U/deuut6tq1q2MsZcqU0f3336+RI0eqffv2qlixomPZjBkz9J///Ef79+/XTz/9pI8++kiBgYGOTx6vlpycrNjYWMXGxio5OVm//fabYmNj9fPPP+fTTLqOjAQAwM2tqOakl156Sc8995zeeecdVa5cWfHx8YqPj9fFixfzaSbzjksFqS5duqhjx46qUaOGatasqRdffFGlSpXS1q1blZCQoH//+9+aMWOG2rZtq8aNG2v+/PnavHmztm7dKklau3at9u3bp/fff1/h4eG69957FRMTo9mzZys5OVmSNG/ePFWpUkUvv/yy6tSpo6FDh6pHjx565ZVXHOOYMWOGBgwYoEceeURhYWGaN2+eSpYsqXfeeScPpwYAgMJlzZo1CgoKUuXKldWhQwdt3LhRr776qj755BO5u7tLkmw2m1avXq3WrVvrkUceUc2aNdWzZ08dOXJEFSpUkCTdeeed+uijj/Tpp58qPDxcbdu2dTrLZv78+WrcuLE6d+6siIgIGWO0evVqeXh4OI2nX79+Sk5O1qOPPurUXrp0aU2dOlVNmjRR06ZNdfjwYa1evVpublnHkuPHj6tRo0Zq1KiRTpw4oenTp6tRo0bq379/Xk7fDSEjAQBwcyuqOWnu3LlKTk5Wjx49FBQU5HhMnz49L6cvX9iMMSY3K6alpemjjz5SdHS0du3apfj4eN199906d+6cU+UuNDRUw4YN0/DhwzVu3Dh9+umnio2NdSyPi4tT1apVtXPnTjVq1EitW7fWbbfdppkzZzr6zJ8/X8OGDVNCQoKSk5NVsmRJLV26VFFRUY4+0dHROn/+vD755JNsx5yUlKSkpCTH88TERIWEhCghIUG+vr65mYZrOrhkbKa2Gj1fzPP9AADyzp9//qm4uDhVqVKlUFwM8mb23nvvafjw4Tp+/Lg8PT0t3fe1fo6JiYny8/PLt/d/MtL1kZEAoPAhI+WtgspJBZmRrubyXfb27NmjUqVKyW63a9CgQVq+fLnCwsIUHx8vT0/PTKeRVahQQfHx8ZKk+Ph4R1XxyuUZy67VJzExUX/88YfOnDmjtLS0LPtkbCM7kydPlp+fn+MREhLi6uEDAIDruHz5sg4dOqQpU6boX//6l+XFqIJCRgIAANdTXHNSVlwuSNWqVUuxsbH69ttvNXjwYEVHR2vfvn35MbY8N2bMGCUkJDgex44dK+ghAQBQ5EydOlW1a9dWYGCgxowZU9DDsQwZCQAAXE9xzUlZKeHqCp6enqpevbokqXHjxvruu+80a9YsPfjgg0pOTtb58+edPgE8efKkAgMDJUmBgYGZ7vSScYeZK/tcfdeZkydPytfXV97e3nJ3d5e7u3uWfTK2kR273S673e7qIQMAABdMmDBBEyZMKOhhWI6MBAAArqe45qSsuHyG1NXS09OVlJSkxo0by8PDw+n2hwcOHNDRo0cVEREhSYqIiNCePXuc7vSybt06+fr6Om6BGBERkekWiuvWrXNsw9PTU40bN3bqk56ervXr1zv6AAAAFDQyEgAAQPZcOkNqzJgxuvfee1WpUiVduHBBixcv1qZNm/TFF1/Iz89P/fr104gRI1S2bFn5+vrq8ccfV0REhFq0aCFJat++vcLCwtS7d29NnTpV8fHxevbZZzVkyBDHp3KDBg3S66+/rqefflqPPvqoNmzYoA8//FCrVq1yjGPEiBGKjo5WkyZN1KxZM82cOVOXLl3SI488kodTAwAAkDNkJAAAANe4VJA6deqU+vTpoxMnTsjPz08NGjTQF198oXvuuUeS9Morr8jNzU3du3dXUlKSIiMjNWfOHMf67u7uWrlypQYPHqyIiAj5+PgoOjpazz//vKNPlSpVtGrVKg0fPlyzZs1SxYoV9fbbbysyMtLR58EHH9Tp06c1btw4xcfHKzw8XGvWrMl0EU8AAHIrlzehxU3C6p8fGQkAUFyQkQq3m+nnZzM302gslt+3NOSWxgBQ+KSlpemnn35S+fLldcsttxT0cJBLv//+u06dOqWaNWvK3d3daZnVtzQujMhIAICrkZGKhpspI7l8UXMAAIoyd3d3+fv7O67lU7JkSdlstgIeFXLKGKPLly/r1KlT8vf3zxS0AABA7pCRCrebMSNRkAIA4CoZdyS78gLTKFz8/f2ve2c5AADgGjJS4XczZSQKUgAAXMVmsykoKEjly5dXSkpKQQ8HLvLw8LgpPvUDAKCoISMVbjdbRqIgBQBANtzd3W+qN20AAICbARkJecGtoAcAAAAAAACA4oWCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSLhWkJk+erKZNm6p06dIqX768oqKidODAAac+d955p2w2m9Nj0KBBTn2OHj2qTp06qWTJkipfvrxGjhyp1NRUpz6bNm3SbbfdJrvdrurVq2vBggWZxjN79mxVrlxZXl5eat68ubZt2+bK4QAAAOQJMhIAAIBrXCpIffXVVxoyZIi2bt2qdevWKSUlRe3bt9elS5ec+g0YMEAnTpxwPKZOnepYlpaWpk6dOik5OVmbN2/WwoULtWDBAo0bN87RJy4uTp06ddJdd92l2NhYDRs2TP3799cXX3zh6PPBBx9oxIgRGj9+vHbu3KmGDRsqMjJSp06dyu1cAAAA5AoZCQAAwDU2Y4zJ7cqnT59W+fLl9dVXX6l169aS/vr0Lzw8XDNnzsxync8//1ydO3fW8ePHVaFCBUnSvHnzNGrUKJ0+fVqenp4aNWqUVq1apR9++MGxXs+ePXX+/HmtWbNGktS8eXM1bdpUr7/+uiQpPT1dISEhevzxxzV69OgcjT8xMVF+fn5KSEiQr69vbqchWweXjM3UVqPni3m+HwAAkHP5/f4vkZGuh4wEAMDNx4qMdKUbuoZUQkKCJKls2bJO7YsWLVK5cuVUr149jRkzRpcvX3Ys27Jli+rXr+8IWpIUGRmpxMRE7d2719GnXbt2TtuMjIzUli1bJEnJycnasWOHUx83Nze1a9fO0QcAAKCgkJEAAACurURuV0xPT9ewYcN0++23q169eo72hx56SKGhoQoODtb333+vUaNG6cCBA1q2bJkkKT4+3iloSXI8j4+Pv2afxMRE/fHHHzp37pzS0tKy7LN///5sx5yUlKSkpCTH88TExFwcOQAAQPbISAAAANeX64LUkCFD9MMPP+jrr792ah84cKDj3/Xr11dQUJDuvvtuHTp0SNWqVcv9SPPA5MmTNXHixAIdAwAAKNrISAAAANeXq6/sDR06VCtXrtTGjRtVsWLFa/Zt3ry5JOnnn3+WJAUGBurkyZNOfTKeBwYGXrOPr6+vvL29Va5cObm7u2fZJ2MbWRkzZowSEhIcj2PHjuXgaAEAAHKGjAQAAJAzLhWkjDEaOnSoli9frg0bNqhKlSrXXSc2NlaSFBQUJEmKiIjQnj17nO70sm7dOvn6+iosLMzRZ/369U7bWbdunSIiIiRJnp6eaty4sVOf9PR0rV+/3tEnK3a7Xb6+vk4PAACAG0VGAgAAcI1LX9kbMmSIFi9erE8++USlS5d2XM/Az89P3t7eOnTokBYvXqyOHTvqlltu0ffff6/hw4erdevWatCggSSpffv2CgsLU+/evTV16lTFx8fr2Wef1ZAhQ2S32yVJgwYN0uuvv66nn35ajz76qDZs2KAPP/xQq1atcoxlxIgRio6OVpMmTdSsWTPNnDlTly5d0iOPPJJXcwMAAJAjZCQAAADXuFSQmjt3rqS/blt8pfnz56tv377y9PTUl19+6Qg+ISEh6t69u5599llHX3d3d61cuVKDBw9WRESEfHx8FB0dreeff97Rp0qVKlq1apWGDx+uWbNmqWLFinr77bcVGRnp6PPggw/q9OnTGjdunOLj4xUeHq41a9ZkuognAABAfiMjAQAAuMZmjDEFPYiCkpiYKD8/PyUkJOTLqekHl4zN1Faj54t5vh8AAJBz+f3+XxSQkQAAKH6szki5uqg5AAAAAAAAkFsUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsJRLBanJkyeradOmKl26tMqXL6+oqCgdOHDAqc+ff/6pIUOG6JZbblGpUqXUvXt3nTx50qnP0aNH1alTJ5UsWVLly5fXyJEjlZqa6tRn06ZNuu2222S321W9enUtWLAg03hmz56typUry8vLS82bN9e2bdtcORwAAIA8QUYCAABwjUsFqa+++kpDhgzR1q1btW7dOqWkpKh9+/a6dOmSo8/w4cP12Wef6aOPPtJXX32l48eP6/7773csT0tLU6dOnZScnKzNmzdr4cKFWrBggcaNG+foExcXp06dOumuu+5SbGyshg0bpv79++uLL75w9Pnggw80YsQIjR8/Xjt37lTDhg0VGRmpU6dO3ch8AAAAuIyMBAAA4BqbMcbkduXTp0+rfPny+uqrr9S6dWslJCQoICBAixcvVo8ePSRJ+/fvV506dbRlyxa1aNFCn3/+uTp37qzjx4+rQoUKkqR58+Zp1KhROn36tDw9PTVq1CitWrVKP/zwg2NfPXv21Pnz57VmzRpJUvPmzdW0aVO9/vrrkqT09HSFhITo8ccf1+jRo3M0/sTERPn5+SkhIUG+vr65nYZsHVwyNlNbjZ4v5vl+AABAzuX3+79ERroeMhIAADcfKzLSlW7oGlIJCQmSpLJly0qSduzYoZSUFLVr187Rp3bt2qpUqZK2bNkiSdqyZYvq16/vCFqSFBkZqcTERO3du9fR58ptZPTJ2EZycrJ27Njh1MfNzU3t2rVz9AEAACgoZCQAAIBrK5HbFdPT0zVs2DDdfvvtqlevniQpPj5enp6e8vf3d+pboUIFxcfHO/pcGbQylmcsu1afxMRE/fHHHzp37pzS0tKy7LN///5sx5yUlKSkpCTH88TERBeOGAAA4PrISAAAANeX6zOkhgwZoh9++EFLlizJy/Hkq8mTJ8vPz8/xCAkJKeghAQCAIoaMBAAAcH25KkgNHTpUK1eu1MaNG1WxYkVHe2BgoJKTk3X+/Hmn/idPnlRgYKCjz9V3lMl4fr0+vr6+8vb2Vrly5eTu7p5ln4xtZGXMmDFKSEhwPI4dO+bagQMAAFwDGQkAACBnXCpIGWM0dOhQLV++XBs2bFCVKlWcljdu3FgeHh5av369o+3AgQM6evSoIiIiJEkRERHas2eP051e1q1bJ19fX4WFhTn6XLmNjD4Z2/D09FTjxo2d+qSnp2v9+vWOPlmx2+3y9fV1egAAANwoMhIAAIBrXLqG1JAhQ7R48WJ98sknKl26tON6Bn5+fvL29pafn5/69eunESNGqGzZsvL19dXjjz+uiIgItWjRQpLUvn17hYWFqXfv3po6dari4+P17LPPasiQIbLb7ZKkQYMG6fXXX9fTTz+tRx99VBs2bNCHH36oVatWOcYyYsQIRUdHq0mTJmrWrJlmzpypS5cu6ZFHHsmruQEAAMgRMhIAAIBrXCpIzZ07V5J05513OrXPnz9fffv2lSS98sorcnNzU/fu3ZWUlKTIyEjNmTPH0dfd3V0rV67U4MGDFRERIR8fH0VHR+v555939KlSpYpWrVql4cOHa9asWapYsaLefvttRUZGOvo8+OCDOn36tMaNG6f4+HiFh4drzZo1mS7iCQAAkN/ISAAAAK6xGWNMQQ+ioCQmJsrPz08JCQn5cmr6wSVjM7XV6Plinu8HAADkXH6//xcFZCQAAIofqzNSru+yBwAAAAAAAOQGBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACzlckHqv//9r7p06aLg4GDZbDatWLHCaXnfvn1ls9mcHh06dHDqc/bsWT388MPy9fWVv7+/+vXrp4sXLzr1+f7773XHHXfIy8tLISEhmjp1aqaxfPTRR6pdu7a8vLxUv359rV692tXDAQAAyBNkJAAAgJxzuSB16dIlNWzYULNnz862T4cOHXTixAnH4z//+Y/T8ocfflh79+7VunXrtHLlSv33v//VwIEDHcsTExPVvn17hYaGaseOHZo2bZomTJigN99809Fn8+bN6tWrl/r166ddu3YpKipKUVFR+uGHH1w9JAAAgBtGRgIAAMg5mzHG5Hplm03Lly9XVFSUo61v3746f/58pk8FM/z4448KCwvTd999pyZNmkiS1qxZo44dO+rXX39VcHCw5s6dq7Fjxyo+Pl6enp6SpNGjR2vFihXav3+/JOnBBx/UpUuXtHLlSse2W7RoofDwcM2bNy9H409MTJSfn58SEhLk6+ubixm4toNLxmZqq9HzxTzfDwAAyLn8fv+XyEjXQ0YCAODmY0VGulK+XENq06ZNKl++vGrVqqXBgwfr999/dyzbsmWL/P39HUFLktq1ayc3Nzd9++23jj6tW7d2BC1JioyM1IEDB3Tu3DlHn3bt2jntNzIyUlu2bMmPQwIAALhhZCQAAIC/lMjrDXbo0EH333+/qlSpokOHDumZZ57Rvffeqy1btsjd3V3x8fEqX7688yBKlFDZsmUVHx8vSYqPj1eVKlWc+lSoUMGxrEyZMoqPj3e0XdknYxtZSUpKUlJSkuN5YmLiDR0rAABATpGRAAAA/pbnBamePXs6/l2/fn01aNBA1apV06ZNm3T33Xfn9e5cMnnyZE2cOLFAxwAAAIonMhIAAMDf8uUre1eqWrWqypUrp59//lmSFBgYqFOnTjn1SU1N1dmzZxUYGOjoc/LkSac+Gc+v1ydjeVbGjBmjhIQEx+PYsWM3dnAAAAC5REYCAADFWb4XpH799Vf9/vvvCgoKkiRFRETo/Pnz2rFjh6PPhg0blJ6erubNmzv6/Pe//1VKSoqjz7p161SrVi2VKVPG0Wf9+vVO+1q3bp0iIiKyHYvdbpevr6/TAwAAoCCQkQAAQHHmckHq4sWLio2NVWxsrCQpLi5OsbGxOnr0qC5evKiRI0dq69atOnz4sNavX6+uXbuqevXqioyMlCTVqVNHHTp00IABA7Rt2zZ98803Gjp0qHr27Kng4GBJ0kMPPSRPT0/169dPe/fu1QcffKBZs2ZpxIgRjnE88cQTWrNmjV5++WXt379fEyZM0Pbt2zV06NA8mBYAAADXkJEAAAByzuWC1Pbt29WoUSM1atRIkjRixAg1atRI48aNk7u7u77//nvdd999qlmzpvr166fGjRvrf//7n+x2u2MbixYtUu3atXX33XerY8eOatWqld58803Hcj8/P61du1ZxcXFq3LixnnzySY0bN04DBw509GnZsqUWL16sN998Uw0bNtTSpUu1YsUK1atX70bmAwAAIFfISAAAADlnM8aYgh5EQUlMTJSfn58SEhLy5dT0g0vGZmqr0fPFPN8PAADIufx+/y8KyEgAABQ/VmekfL+GFAAAAAAAAHAlClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjK5YLUf//7X3Xp0kXBwcGy2WxasWKF03JjjMaNG6egoCB5e3urXbt2OnjwoFOfs2fP6uGHH5avr6/8/f3Vr18/Xbx40anP999/rzvuuENeXl4KCQnR1KlTM43lo48+Uu3ateXl5aX69etr9erVrh4OAABAniAjAQAA5JzLBalLly6pYcOGmj17dpbLp06dqldffVXz5s3Tt99+Kx8fH0VGRurPP/909Hn44Ye1d+9erVu3TitXrtR///tfDRw40LE8MTFR7du3V2hoqHbs2KFp06ZpwoQJevPNNx19Nm/erF69eqlfv37atWuXoqKiFBUVpR9++MHVQwIAALhhZCQAAICcsxljTK5Xttm0fPlyRUVFSfrrk7/g4GA9+eSTeuqppyRJCQkJqlChghYsWKCePXvqxx9/VFhYmL777js1adJEkrRmzRp17NhRv/76q4KDgzV37lyNHTtW8fHx8vT0lCSNHj1aK1as0P79+yVJDz74oC5duqSVK1c6xtOiRQuFh4dr3rx5ORp/YmKi/Pz8lJCQIF9f39xOQ7YOLhmbqa1GzxfzfD8AACDn8vv9XyIjXQ8ZCQCAm48VGelKeXoNqbi4OMXHx6tdu3aONj8/PzVv3lxbtmyRJG3ZskX+/v6OoCVJ7dq1k5ubm7799ltHn9atWzuCliRFRkbqwIEDOnfunKPPlfvJ6JOxHwAAgJsFGQkAAMBZibzcWHx8vCSpQoUKTu0VKlRwLIuPj1f58uWdB1GihMqWLevUp0qVKpm2kbGsTJkyio+Pv+Z+spKUlKSkpCTH88TERFcODwAAIFfISAAAAM6K1V32Jk+eLD8/P8cjJCSkoIcEAABQ4MhIAADAanlakAoMDJQknTx50qn95MmTjmWBgYE6deqU0/LU1FSdPXvWqU9W27hyH9n1yVielTFjxighIcHxOHbsmKuHCAAA4DIyEgAAgLM8LUhVqVJFgYGBWr9+vaMtMTFR3377rSIiIiRJEREROn/+vHbs2OHos2HDBqWnp6t58+aOPv/973+VkpLi6LNu3TrVqlVLZcqUcfS5cj8ZfTL2kxW73S5fX1+nBwAAQH4jIwEAADhzuSB18eJFxcbGKjY2VtJfF+mMjY3V0aNHZbPZNGzYML3wwgv69NNPtWfPHvXp00fBwcGOu8zUqVNHHTp00IABA7Rt2zZ98803Gjp0qHr27Kng4GBJ0kMPPSRPT0/169dPe/fu1QcffKBZs2ZpxIgRjnE88cQTWrNmjV5++WXt379fEyZM0Pbt2zV06NAbnxUAAAAXkZEAAAByzuWLmm/fvl133XWX43lGAIqOjtaCBQv09NNP69KlSxo4cKDOnz+vVq1aac2aNfLy8nKss2jRIg0dOlR333233Nzc1L17d7366quO5X5+flq7dq2GDBmixo0bq1y5cho3bpwGDhzo6NOyZUstXrxYzz77rJ555hnVqFFDK1asUL169XI1EQAAADeCjAQAAJBzNmOMKehBFJTExET5+fkpISEhX05NP7hkbKa2Gj1fzPP9AACAnMvv9/+igIwEAEDxY3VGKlZ32QMAAAAAAEDBoyAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAICl8rwgNWHCBNlsNqdH7dq1Hcv//PNPDRkyRLfccotKlSql7t276+TJk07bOHr0qDp16qSSJUuqfPnyGjlypFJTU536bNq0SbfddpvsdruqV6+uBQsW5PWhAAAA5BkyEgAAwN/y5QypunXr6sSJE47H119/7Vg2fPhwffbZZ/roo4/01Vdf6fjx47r//vsdy9PS0tSpUyclJydr8+bNWrhwoRYsWKBx48Y5+sTFxalTp0666667FBsbq2HDhql///764osv8uNwAAAA8gQZCQAA4C8l8mWjJUooMDAwU3tCQoL+/e9/a/HixWrbtq0kaf78+apTp462bt2qFi1aaO3atdq3b5++/PJLVahQQeHh4YqJidGoUaM0YcIEeXp6at68eapSpYpefvllSVKdOnX09ddf65VXXlFkZGR+HBIAAMANIyMBAAD8JV/OkDp48KCCg4NVtWpVPfzwwzp69KgkaceOHUpJSVG7du0cfWvXrq1KlSppy5YtkqQtW7aofv36qlChgqNPZGSkEhMTtXfvXkefK7eR0SdjGwAAADcjMhIAAMBf8vwMqebNm2vBggWqVauWTpw4oYkTJ+qOO+7QDz/8oPj4eHl6esrf399pnQoVKig+Pl6SFB8f7xS0MpZnLLtWn8TERP3xxx/y9vbOcmxJSUlKSkpyPE9MTLyhYwUAAMgpMhIAAMDf8rwgde+99zr+3aBBAzVv3lyhoaH68MMPsw1BVpk8ebImTpxYoGMAAADFExkJAADgb/nylb0r+fv7q2bNmvr5558VGBio5ORknT9/3qnPyZMnHddTCAwMzHRHmYzn1+vj6+t7zUA3ZswYJSQkOB7Hjh270cMDAADIFTISAAAozvK9IHXx4kUdOnRIQUFBaty4sTw8PLR+/XrH8gMHDujo0aOKiIiQJEVERGjPnj06deqUo8+6devk6+ursLAwR58rt5HRJ2Mb2bHb7fL19XV6AAAAFAQyEgAAKM7yvCD11FNP6auvvtLhw4e1efNmdevWTe7u7urVq5f8/PzUr18/jRgxQhs3btSOHTv0yCOPKCIiQi1atJAktW/fXmFhYerdu7d2796tL774Qs8++6yGDBkiu90uSRo0aJB++eUXPf3009q/f7/mzJmjDz/8UMOHD8/rwwEAAMgTZCQAAIC/5fk1pH799Vf16tVLv//+uwICAtSqVStt3bpVAQEBkqRXXnlFbm5u6t69u5KSkhQZGak5c+Y41nd3d9fKlSs1ePBgRUREyMfHR9HR0Xr++ecdfapUqaJVq1Zp+PDhmjVrlipWrKi3336b2xkDAICbFhkJAADgbzZjjCnoQRSUxMRE+fn5KSEhIV9OTT+4ZGymtho9X8zz/QAAgJzL7/f/ooCMBABA8WN1Rsr3a0gBAAAAAAAAV6IgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUnl+lz0AAABXpaz5OlObR4dWBTASAACAm0dRzkicIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUiUKegAAAKB4SVnzdUEPAQAA4KZT3DISZ0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALMVd9gAAQL4qbneMAQAAyIninpE4QwoAAAAAAACW4gwpAACQZ4r7J30AAABZISNlRkEKAAAUuMPnP8/UVkOtCmAkAAAAN4+inJEoSAEAgFzhkz4AAIDMyEg5U+ivITV79mxVrlxZXl5eat68ubZt21bQQwIAoEhKWfO10wM3NzISAADWICPlTqE+Q+qDDz7QiBEjNG/ePDVv3lwzZ85UZGSkDhw4oPLlyxf08AAAKBSsDk5ZnXqOvEVGAgDgxpGR8lehLkjNmDFDAwYM0COPPCJJmjdvnlatWqV33nlHo0ePLuDRAQBgLUITMpCRAAD4Gxnp5lRoC1LJycnasWOHxowZ42hzc3NTu3bttGXLlizXSUpKUlJSkuN5QkKCJCkxMTFfxnjxclKmtvzaFwDg5pOyLvP7kcc9ETnql1eOJqzLt23nt/x6z8zYrjEmX7Zf0MhIAIDC4Or8Q0bKuaKSkQptQerMmTNKS0tThQoVnNorVKig/fv3Z7nO5MmTNXHixEztISEh+TLGLPV72bp9AQBQmOXze+aFCxfk5+eXr/soCGQkAACKuCKSkQptQSo3xowZoxEjRjiep6en6+zZs7rllltks9nydF+JiYkKCQnRsWPH5Ovrm6fbRtaYc+sx59Zjzq3HnBeM/Jx3Y4wuXLig4ODgPN1uYUZGKtqYc+sx59ZjzgsG8269opSRCm1Bqly5cnJ3d9fJkyed2k+ePKnAwMAs17Hb7bLb7U5t/v7++TVESZKvry+/mBZjzq3HnFuPObcec14w8mvei+KZURnISMgOc2495tx6zHnBYN6tVxQykptle8pjnp6eaty4sdavX+9oS09P1/r16xURkfm7pwAAAMUBGQkAABQGhfYMKUkaMWKEoqOj1aRJEzVr1kwzZ87UpUuXHHeUAQAAKI7ISAAA4GZXqAtSDz74oE6fPq1x48YpPj5e4eHhWrNmTaaLeBYEu92u8ePHZzr9HfmHObcec2495tx6zHnBYN5vDBkJV2LOrcecW485LxjMu/WK0pzbTFG95zEAAAAAAABuSoX2GlIAAAAAAAAonChIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAWpGzB79mxVrlxZXl5eat68ubZt23bN/h999JFq164tLy8v1a9fX6tXr7ZopEWHK3P+1ltv6Y477lCZMmVUpkwZtWvX7ro/I2Tm6us8w5IlS2Sz2RQVFZW/AyyCXJ3z8+fPa8iQIQoKCpLdblfNmjX5++IiV+d85syZqlWrlry9vRUSEqLhw4frzz//tGi0hd9///tfdenSRcHBwbLZbFqxYsV119m0aZNuu+022e12Va9eXQsWLMj3cSL3yEjWIyNZj4xkPTKS9chI1ip2GckgV5YsWWI8PT3NO++8Y/bu3WsGDBhg/P39zcmTJ7Ps/8033xh3d3czdepUs2/fPvPss88aDw8Ps2fPHotHXni5OucPPfSQmT17ttm1a5f58ccfTd++fY2fn5/59ddfLR554eXqnGeIi4szt956q7njjjtM165drRlsEeHqnCclJZkmTZqYjh07mq+//trExcWZTZs2mdjYWItHXni5OueLFi0ydrvdLFq0yMTFxZkvvvjCBAUFmeHDh1s88sJr9erVZuzYsWbZsmVGklm+fPk1+//yyy+mZMmSZsSIEWbfvn3mtddeM+7u7mbNmjXWDBguISNZj4xkPTKS9chI1iMjWa+4ZSQKUrnUrFkzM2TIEMfztLQ0ExwcbCZPnpxl/wceeMB06tTJqa158+bmX//6V76Osyhxdc6vlpqaakqXLm0WLlyYX0MscnIz56mpqaZly5bm7bffNtHR0YQtF7k653PnzjVVq1Y1ycnJVg2xyHF1zocMGWLatm3r1DZixAhz++235+s4i6qchK2nn37a1K1b16ntwQcfNJGRkfk4MuQWGcl6ZCTrkZGsR0ayHhmpYBWHjMRX9nIhOTlZO3bsULt27Rxtbm5uateunbZs2ZLlOlu2bHHqL0mRkZHZ9oez3Mz51S5fvqyUlBSVLVs2v4ZZpOR2zp9//nmVL19e/fr1s2KYRUpu5vzTTz9VRESEhgwZogoVKqhevXqaNGmS0tLSrBp2oZabOW/ZsqV27NjhOGX9l19+0erVq9WxY0dLxlwc8R5aeJCRrEdGsh4ZyXpkJOuRkQqHwv4eWqKgB1AYnTlzRmlpaapQoYJTe4UKFbR///4s14mPj8+yf3x8fL6NsyjJzZxfbdSoUQoODs70C4us5WbOv/76a/373/9WbGysBSMsenIz57/88os2bNighx9+WKtXr9bPP/+sxx57TCkpKRo/frwVwy7UcjPnDz30kM6cOaNWrVrJGKPU1FQNGjRIzzzzjBVDLpayew9NTEzUH3/8IW9v7wIaGa5GRrIeGcl6ZCTrkZGsR0YqHAp7RuIMKRQLU6ZM0ZIlS7R8+XJ5eXkV9HCKpAsXLqh379566623VK5cuYIeTrGRnp6u8uXL680331Tjxo314IMPauzYsZo3b15BD63I2rRpkyZNmqQ5c+Zo586dWrZsmVatWqWYmJiCHhoAuIyMlP/ISAWDjGQ9MhJcxRlSuVCuXDm5u7vr5MmTTu0nT55UYGBglusEBga61B/OcjPnGaZPn64pU6boyy+/VIMGDfJzmEWKq3N+6NAhHT58WF26dHG0paenS5JKlCihAwcOqFq1avk76EIuN6/zoKAgeXh4yN3d3dFWp04dxcfHKzk5WZ6envk65sIuN3P+3HPPqXfv3urfv78kqX79+rp06ZIGDhyosWPHys2Nz3ryWnbvob6+vjf9J3/FDRnJemQk65GRrEdGsh4ZqXAo7BmJV0QueHp6qnHjxlq/fr2jLT09XevXr1dERESW60RERDj1l6R169Zl2x/OcjPnkjR16lTFxMRozZo1atKkiRVDLTJcnfPatWtrz549io2NdTzuu+8+3XXXXYqNjVVISIiVwy+UcvM6v/322/Xzzz87gq0k/fTTTwoKCiJo5UBu5vzy5cuZAlVG2DXG5N9gizHeQwsPMpL1yEjWIyNZj4xkPTJS4VDo30ML9prqhdeSJUuM3W43CxYsMPv27TMDBw40/v7+Jj4+3hhjTO/evc3o0aMd/b/55htTokQJM336dPPjjz+a8ePHc0tjF7k651OmTDGenp5m6dKl5sSJE47HhQsXCuoQCh1X5/xq3EHGda7O+dGjR03p0qXN0KFDzYEDB8zKlStN+fLlzQsvvFBQh1DouDrn48ePN6VLlzb/+c9/zC+//GLWrl1rqlWrZh544IGCOoRC58KFC2bXrl1m165dRpKZMWOG2bVrlzly5IgxxpjRo0eb3r17O/pn3NJ45MiR5scffzSzZ88uVLc0Lm7ISNYjI1mPjGQ9MpL1yEjWK24ZiYLUDXjttddMpUqVjKenp2nWrJnZunWrY1mbNm1MdHS0U/8PP/zQ1KxZ03h6epq6deuaVatWWTziws+VOQ8NDTWSMj3Gjx9v/cALMVdf51cibOWOq3O+efNm07x5c2O3203VqlXNiy++aFJTUy0edeHmypynpKSYCRMmmGrVqhkvLy8TEhJiHnvsMXPu3DnrB15Ibdy4Mcu/zxnzHB0dbdq0aZNpnfDwcOPp6WmqVq1q5s+fb/m4kXNkJOuRkaxHRrIeGcl6ZCRrFbeMZDOGc+cAAAAAAABgHa4hBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClJAIbFp0ybZbDZt2rQpT7drs9k0YcKEPN1mUdO3b19Vrly5oIdxU6hcubL69u173X4LFiyQzWbT4cOH831Mrrp48aLKly+vRYsWXbdvVj/7ixcvqn///goMDJTNZtOwYcNc2v/o0aPVvHlzl9YBAGSPjFRwyEh/IyORkeA6ClKw3ObNmzVhwgSdP3++oIdSbKxevZpAJeny5cuaMGFCngdWWGfChAmy2WyZHl5eXjnexqxZs1S6dGn17NkzV2OYNGmSFixYoMGDB+u9995T7969JUlz587VP/7xD1WqVEk2my3bUDps2DDt3r1bn376aa72D6DoIiNZj4z0FzJS4XezZqRjx45p4sSJatasmcqUKaNy5crpzjvv1JdffplpfTJS8VOioAeA4mfz5s2aOHGi+vbtK39//4IeTrGwevVqzZ49O8vA9ccff6hEieLxp+Dy5cuaOHGiJOnOO+/M8XpvvfWW0tPT82lUhcuBAwfk5lbwn2XMnTtXpUqVcjx3d3fP0XopKSmaNWuWhg8fnuN1rrZhwwa1aNFC48ePd2p/6aWXdOHCBTVr1kwnTpzIdv3AwEB17dpV06dP13333ZerMQAomshI1iMj/YWMdOPISFlnpNdff10vvfSSoqKiFB0drdTUVL377ru655579M477+iRRx5x9CUjFT/F4y8sUIAuX76skiVLZmpPTU1Venq6PD09C2BUf3PlU5Pi5tKlS/Lx8ZGHh0dBD+WmYbfbC3oIkqQePXqoXLlyLq+3cuVKnT59Wg888ECu933q1CmFhYVlav/qq68cZ0ddGQSz8sADD+gf//iHfvnlF1WtWjXXYwGAwoyMVHiRkTIjI2Wdke666y4dPXrUaUyDBg1SeHi4xo0b51SQkshIxU3Bl3BRrEyYMEEjR46UJFWpUsVxKmnGd6hTU1MVExOjatWqyW63q3LlynrmmWeUlJTktJ3KlSurc+fOWrt2rcLDw+Xl5aWwsDAtW7YsV+N6//331axZM5UsWVJlypRR69attXbtWqc+c+bMUd26dWW32xUcHKwhQ4ZkOqX+zjvvVL169bRjxw61bt1aJUuW1DPPPKPDhw/LZrNp+vTpmjlzpuP49u3bJ0nav3+/evToobJly8rLy0tNmjTJ0amq//vf/xxfEbLb7QoJCdHw4cP1xx9/OPr07dtXs2fPliSn03czZHV9hF27dunee++Vr6+vSpUqpbvvvltbt2516pPx/fdvvvlGI0aMUEBAgHx8fNStWzedPn36umO/UsYpxj/99JP++c9/ys/PTwEBAXruuedkjNGxY8fUtWtX+fr6KjAwUC+//LLT+snJyRo3bpwaN24sPz8/+fj46I477tDGjRsdfQ4fPqyAgABJ0sSJEx3zkHHsffv2ValSpXTo0CF17NhRpUuX1sMPP+xYduV35MePHy83NzetX7/eaRwDBw6Up6endu/eneNjz+lrOSUlRRMnTlSNGjXk5eWlW265Ra1atdK6descfTKO4ejRo+rcubNKlSqlW2+91fHz37Nnj9q2bSsfHx+FhoZq8eLFOR7nleO9+qtoe/fuVdu2beXt7a2KFSvqhRdeyPLT0u3btysyMlLlypWTt7e3qlSpokcffdTlMUiSMUaJiYkyxri03ooVK1S5cmVVq1Yty2X16tWTl5eX6tWrp+XLlzstz7hGSVxcnFatWpXp71doaKjT79a1tGvXTpL0ySefuDR+AEUXGYmMlBUyEhnJVTdbRqpbt26mApndblfHjh3166+/6sKFC07LyEjFjAEstHv3btOrVy8jybzyyivmvffeM++99565ePGiMcaY6OhoI8n06NHDzJ492/Tp08dIMlFRUU7bCQ0NNTVr1jT+/v5m9OjRZsaMGaZ+/frGzc3NrF271qUxTZgwwUgyLVu2NNOmTTOzZs0yDz30kBk1apSjz/jx440k065dO/Paa6+ZoUOHGnd3d9O0aVOTnJzs6NemTRsTGBhoAgICzOOPP27eeOMNs2LFChMXF2ckmbCwMFO1alUzZcoU88orr5gjR46YH374wfj5+ZmwsDDz0ksvmddff920bt3a2Gw2s2zZMse2N27caCSZjRs3Otoef/xx07FjRzNp0iTzxhtvmH79+hl3d3fTo0cPR5/Nmzebe+65x0hyzPd7773nWC7JjB8/3vH8hx9+MD4+PiYoKMjExMSYKVOmmCpVqhi73W62bt3q6Dd//nwjyTRq1Mi0bdvWvPbaa+bJJ5807u7u5oEHHnDpZ5Axv+Hh4aZXr15mzpw5plOnTkaSmTFjhqlVq5YZPHiwmTNnjrn99tuNJPPVV1851j99+rQJCgoyI0aMMHPnzjVTp041tWrVMh4eHmbXrl3GGGMuXrxo5s6daySZbt26OeZh9+7dxpi/Xnt2u91Uq1bNREdHm3nz5pl3333XsSw0NNSxv+TkZNOoUSMTGhpqEhMTjTHGrFmzxkgyMTExLh17Tl/LzzzzjLHZbGbAgAHmrbfeMi+//LLp1auXmTJliqNPdHS08fLyMmFhYWbQoEFm9uzZpmXLlkaSmT9/vgkODjYjR440r732mqlbt65xd3c3v/zyi8vjjY6Odjw/ceKECQgIMGXKlDETJkww06ZNMzVq1DANGjQwkkxcXJwxxpiTJ0+aMmXKmJo1a5pp06aZt956y4wdO9bUqVPHpf1nvFZKlSplJBkfHx/z8MMPm/j4+BytX716dXP//fdnav/iiy+Mm5ubqVevnpkxY4YZO3as8fPzM3Xr1nX87OPj4817771nypUrZ8LDwzP9/bqSj4+P0zxlN5bu3bvnaNwAij4yEhkpK2QkMlJOFZaMlOGhhx4yJUuWNKmpqVmOhYxUPFCQguWmTZvm9Ec4Q2xsrJFk+vfv79T+1FNPGUlmw4YNjrbQ0FAjyXz88ceOtoSEBBMUFGQaNWqU47EcPHjQuLm5mW7dupm0tDSnZenp6cYYY06dOmU8PT1N+/btnfq8/vrrRpJ55513HG1t2rQxksy8efOctpURtnx9fc2pU6eclt19992mfv365s8//3Tad8uWLU2NGjUcbVmFrcuXL2c6psmTJxubzWaOHDniaBsyZIjJrv58ddiKiooynp6e5tChQ46248ePm9KlS5vWrVs72jLCVrt27RxzZYwxw4cPN+7u7ub8+fNZ7i8rGW+gAwcOdLSlpqaaihUrGpvN5hQozp07Z7y9vZ3e8FNTU01SUpLTNs+dO2cqVKhgHn30UUfb6dOnMx1vhoygP3r06CyXXRm2jDFmz549xtPT0/Tv39+cO3fO3HrrraZJkyYmJSUlx8dtTM5fyw0bNjSdOnW65rYyjmHSpEmOtoz5stlsZsmSJY72/fv3ZzsX1xvvlXM/bNgwI8l8++23jrZTp04ZPz8/p9/z5cuXG0nmu+++c2l/V5s5c6YZOnSoWbRokVm6dKl54oknTIkSJUyNGjVMQkLCNddNSUkxNpvNPPnkk5mWhYeHm6CgIKfX7dq1a42kTD/70NDQ6/4sclKQat++vcthE0DRRkYiI12NjERGyqnCkpGM+evvi5eXl+ndu3eWy8lIxQdf2cNNY/Xq1ZKkESNGOLU/+eSTkqRVq1Y5tQcHB6tbt26O576+vurTp4927dql+Pj4HO1zxYoVSk9P17hx4zJdhDDjlO0vv/xSycnJGjZsmFOfAQMGyNfXN9O47HZ7pu9CZ+jevbvjlGhJOnv2rDZs2KAHHnhAFy5c0JkzZ3TmzBn9/vvvioyM1MGDB/Xbb79lO35vb2/Hvy9duqQzZ86oZcuWMsZo165dOZqDK6WlpWnt2rWKiopy+s52UFCQHnroIX399ddKTEx0WmfgwIFOp7ffcccdSktL05EjR1zef//+/R3/dnd3V5MmTWSMUb9+/Rzt/v7+qlWrln755RenvhnXmUhPT9fZs2eVmpqqJk2aaOfOnS6NYfDgwTnqV69ePU2cOFFvv/22IiMjdebMGS1cuDBXFz/NyWvZ399fe/fu1cGDB6+7vSvnMWO+fHx8nK4JUKtWLfn7+zvNY26sXr1aLVq0ULNmzRxtAQEBjlP5rxyH9Nf1CVJSUnK9vyeeeEKvvfaaHnroIXXv3l0zZ87UwoULdfDgQc2ZM+ea6549e1bGGJUpU8ap/cSJE4qNjVV0dLT8/Pwc7ffcc0+W14rKK2XKlNGZM2fybfsAig4yEhmJjPQXMlL2CktGunz5sv7xj3/I29tbU6ZMybIPGan4oCCFm8aRI0fk5uam6tWrO7UHBgbK398/05t39erVM12vpWbNmpLkuN7C9Rw6dEhubm7X/IOasd9atWo5tXt6eqpq1aqZxnXrrbdmexHOKlWqOD3/+eefZYzRc889p4CAAKdHxt0pTp06le3Yjh49qr59+6ps2bIqVaqUAgIC1KZNG0lSQkJCtutl5/Tp07p8+XKmY5WkOnXqKD09XceOHXNqr1SpktPzjDeyc+fOubz/q7fl5+cnLy+vTN879/Pzy7T9hQsXqkGDBo5rBwQEBGjVqlUuzUOJEiVUsWLFHPcfOXKkGjZsqG3btmn8+PG5fmPOyWv5+eef1/nz51WzZk3Vr19fI0eO1Pfff59pW15eXk6BXvprvipWrJhpH1nNo6uOHDmiGjVqZGq/+jXUpk0bde/eXRMnTlS5cuXUtWtXzZ8/P9O1T3LjoYceUmBgYJa3D86KueqaChm/wzk5jrxkjMnxNacAFG9kJDISGelvZKScu9kyUlpamnr27Kl9+/Zp6dKlCg4OznYcZKTigbvs4aZT2P/4XPmJ3PWWZVzU8KmnnlJkZGSW61wdPjOkpaXpnnvu0dmzZzVq1CjVrl1bPj4++u2339S3b1/LbsGb3W1hr35Dy+22crL9999/X3379lVUVJRGjhyp8uXLy93dXZMnT9ahQ4dyvH+73e7S7Xp/+eUXx6dxe/bsyfF6udG6dWsdOnRIn3zyidauXau3335br7zyiubNm5fpU9Os5OXPKTdsNpuWLl2qrVu36rPPPtMXX3yhRx99VC+//LK2bt163bvSXU9ISIjOnj17zT5ly5aVzWa74YCZV86dO5eru+AAKL7ISM7ISGQkiYx0PTdTRhowYIBWrlypRYsWqW3bttn2IyMVHxSkYLnswlRoaKjS09N18OBB1alTx9F+8uRJnT9/XqGhoU79Mz45u3J7P/30kyQ53e3jWqpVq6b09HTt27dP4eHh2Y5Lkg4cOOB0inZycrLi4uIcd4LIjYzteXh4uLydPXv26KefftLChQvVp08fR/uVdxTJkNMAGxAQoJIlS+rAgQOZlu3fv19ubm4KCQlxaZxWWLp0qapWraply5Y5HWvGJ6gZ8jLIp6enq2/fvvL19dWwYcM0adIk9ejRQ/fff7/L28rpa7ls2bJ65JFH9Mgjj+jixYtq3bq1JkyY4BS2rBYaGprlKfJZvYYkqUWLFmrRooVefPFFLV68WA8//LCWLFlyQ8dgjNHhw4fVqFGja/YrUaKEqlWrpri4uEzHIMml48gLcXFxatiwYb5tH0DhQ0b6Gxkpb5CRyEg3S0YaOXKk5s+fr5kzZ6pXr17X7EtGKj74yh4s5+PjI0mZbgfcsWNHSdLMmTOd2mfMmCFJ6tSpk1P78ePHnW45mpiYqHfffVfh4eEKDAzM0ViioqLk5uam559/PtOnZRmfirRr106enp569dVXnT4p+fe//62EhIRM43JF+fLldeedd+qNN97QiRMnMi2/1q2BMz7NuXJMxhjNmjUrU9/s5jyrbbZv316ffPKJ0yn9J0+e1OLFi9WqVSv5+vpecxsFIau5+Pbbb7VlyxanfiVLlpR0/XnIiRkzZmjz5s168803FRMTo5YtW2rw4MG5+r57Tl7Lv//+u9M6pUqVUvXq1fPkdO4b0bFjR23dulXbtm1ztJ0+fVqLFi1y6nfu3LlMnzRm/AfHlWPI6ndi7ty5On36tDp06HDd9SMiIrR9+3antqCgIIWHh2vhwoVOX19Yt26d47bjeS0hIUGHDh1Sy5Yt82X7AAonMtLfyEh5g4xUcMhIf5s2bZqmT5+uZ555Rk888cQ1+5KRihfOkILlGjduLEkaO3asevbsKQ8PD3Xp0kUNGzZUdHS03nzzTZ0/f15t2rTRtm3btHDhQkVFRemuu+5y2k7NmjXVr18/fffdd6pQoYLeeecdnTx5UvPnz8/xWKpXr66xY8cqJiZGd9xxh+6//37Z7XZ99913Cg4O1uTJkxUQEKAxY8Zo4sSJ6tChg+677z4dOHBAc+bMUdOmTfXPf/7zhuZj9uzZatWqlerXr68BAwaoatWqOnnypLZs2aJff/1Vu3fvznK92rVrq1q1anrqqaf022+/ydfXVx9//HGWp9pmzPn//d//KTIyUu7u7urZs2eW233hhRe0bt06tWrVSo899phKlCihN954Q0lJSZo6deoNHWt+6dy5s5YtW6Zu3bqpU6dOiouL07x58xQWFqaLFy86+nl7eyssLEwffPCBatasqbJly6pevXqqV6+eS/v78ccf9dxzz6lv377q0qWLJGnBggUKDw/XY489pg8//NCl7eXktRwWFqY777xTjRs3VtmyZbV9+3YtXbpUQ4cOdWlfee3pp5/We++9pw4dOuiJJ56Qj4+P3nzzTYWGhjpdv2HhwoWaM2eOunXrpmrVqunChQt666235Ovr6/iPVk6EhobqwQcfVP369eXl5aWvv/5aS5YsUXh4uP71r39dd/2uXbvqvffe008//eS4BoUkTZ48WZ06dVKrVq306KOP6uzZs3rttddUt25dp9fQtXz22WeO39eUlBR9//33euGFFyRJ9913nxo0aODo++WXX8oYo65du+b42AEUfWQkZ2SkG0dGKjhkpL8sX75cTz/9tGrUqKE6dero/fffd1p+zz33qEKFCo7nZKRiJj9v4QdkJyYmxtx6663Gzc3N6banKSkpZuLEiaZKlSrGw8PDhISEmDFjxjjd7teYv28p+sUXX5gGDRoYu91uateubT766KNcjeedd94xjRo1Mna73ZQpU8a0adPGrFu3zqnP66+/bmrXrm08PDxMhQoVzODBg825c+ec+rRp08bUrVs30/Yzbmk8bdq0LPd/6NAh06dPHxMYGGg8PDzMrbfeajp37myWLl3q6JPVLY337dtn2rVrZ0qVKmXKlStnBgwYYHbv3m0kmfnz5zv6paammscff9wEBAQYm83mdHtjZXFb2507d5rIyEhTqlQpU7JkSXPXXXeZzZs3O/XJuKXx1beozWqc15NxS+PTp087tUdHRxsfH59M/a+e5/T0dDNp0iQTGhpq7Ha7adSokVm5cmWWtyLevHmzady4sfH09HQ69uz2lbEsYzupqammadOmpmLFiplu2zxr1iwjyXzwwQc5PvacvpZfeOEF06xZM+Pv72+8vb1N7dq1zYsvvmiSk5OdxpmT+bp63664+pbGxhjz/fffmzZt2hgvLy9z6623mpiYGPPvf//b6Xd7586dplevXqZSpUrGbreb8uXLm86dO5vt27e7tP/+/fubsLAwU7p0aePh4WGqV69uRo0aZRITE3O0flJSkilXrpyJiYnJtOzjjz82derUMXa73YSFhZlly5Zl+RrKbt4ybimd1ePK30djjHnwwQdNq1atcnzcAIoPMpIzMhIZiYyUMzdrRsp4DWf3uPr3gYxUvNiMsehqbUAeqly5surVq6eVK1cW9FCAG8Jr2XoxMTGaP3++Dh48mO2FTPNTfHy8qlSpoiVLlvDpH4A8x/sKigpey9YjI8FqXEMKAFCsDB8+XBcvXtSSJUsKZP8zZ85U/fr1CVoAAOCmQkaC1biGFIqs+Pj4ay739vaWn5+fRaMpni5evHjd75YHBAQUyCcw+e306dNKS0vLdrmnp6fKli1r4YiuraB/X86ePavk5ORsl7u7uysgICBP9lWqVCmdOnUqT7aVG1OmTCmwfQOAVPB/80FGIiPlHBkJRZor3++bM2eOqV+/vildurQpXbq0adGihVm9erVjeZs2bTJ9J/Rf//qX0zaOHDliOnbsaLy9vU1AQIB56qmnTEpKilOfjRs3mkaNGhlPT09TrVq1TNfeMOav76pnfBe6WbNm5ttvv3XlUFDI5eR73Ve/Fq9+XP0db+S9631nXFd8f76oCQ0NveZxt2nTxtHP1WsU5IeC/n3J6v3jysfV1ygAbjZkJNwsyEiFAxmJjJRTZCQUZS6dIVWxYkVNmTJFNWrUkDFGCxcuVNeuXbVr1y7VrVtXkjRgwAA9//zzjnUybiEqSWlpaerUqZMCAwO1efNmnThxQn369JGHh4cmTZokSYqLi1OnTp00aNAgLVq0SOvXr1f//v0VFBSkyMhISdIHH3ygESNGaN68eWrevLlmzpypyMhIHThwQOXLl3flkFBIXXm73eysW7fumsuDg4PzaDTITp8+fdSqVatr9snp7acLm0WLFumPP/7IdnmZMmUk5ey1bIWC/n15+eWXs7z7UQZvb+983T9wo8hIuFmQkQoHMhIZKafISCjKbvii5mXLltW0adPUr18/3XnnnQoPD9fMmTOz7Pv555+rc+fOOn78uOPWjvPmzdOoUaN0+vRpeXp6atSoUVq1apV++OEHx3o9e/bU+fPntWbNGklS8+bN1bRpU73++uuSpPT0dIWEhOjxxx/X6NGjb+RwAAAA8gQZCQAAIHu5vqh5WlqalixZokuXLikiIsLRvmjRIpUrV0716tXTmDFjdPnyZceyLVu2qH79+o6gJUmRkZFKTEzU3r17HX3atWvntK/IyEht2bJFkpScnKwdO3Y49XFzc1O7du0cfQAAAAoKGQkAAOD6XL6o+Z49exQREaE///xTpUqV0vLlyxUWFiZJeuihhxQaGqrg4GB9//33GjVqlA4cOKBly5ZJ+uuCcFcGLUmO5xkXi8uuT2Jiov744w+dO3dOaWlpWfbZv3//NceelJSkpKQkx/P09HSdPXtWt9xyi2w2m6tTAQAACiFjjC5cuKDg4GC5ueXdDYfJSAAAoDDLr4yUHZcLUrVq1VJsbKwSEhK0dOlSRUdH66uvvlJYWJgGDhzo6Fe/fn0FBQXp7rvv1qFDh1StWrU8HXhuTJ48WRMnTizoYQAAgJvAsWPHVLFixTzbHhkJAAAUBXmdkbLjckHK09NT1atXlyQ1btxY3333nWbNmqU33ngjU9/mzZtLkn7++WdVq1ZNgYGB2rZtm1OfkydPSvr7on2BgYGOtiv7+Pr6ytvbW+7u7nJ3d8+yz/Uu/DdmzBiNGDHC8TwhIUGVKlXSsWPH5Ovrm5PDBwAAhVxiYqJCQkJUunTpPN0uGQkAABRm+ZWRsuNyQepq6enpTqd4Xyk2NlaSFBQUJEmKiIjQiy++qFOnTjnu9LJu3Tr5+vo6TmmPiIjQ6tWrnbazbt06xzUYPD091bhxY61fv15RUVGOMaxfv15Dhw695ljtdrvsdnumdl9fX8IWAADFTH5/FY2MBAAACiOrvq7vUkFqzJgxuvfee1WpUiVduHBBixcv1qZNm/TFF1/o0KFDWrx4sTp27KhbbrlF33//vYYPH67WrVurQYMGkqT27dsrLCxMvXv31tSpUxUfH69nn31WQ4YMcYSgQYMG6fXXX9fTTz+tRx99VBs2bNCHH36oVatWOcYxYsQIRUdHq0mTJmrWrJlmzpypS5cu6ZFHHsnDqQEAAMgZMhIAAICLjAseffRRExoaajw9PU1AQIC5++67zdq1a40xxhw9etS0bt3alC1b1tjtdlO9enUzcuRIk5CQ4LSNw4cPm3vvvdd4e3ubcuXKmSeffNKkpKQ49dm4caMJDw83np6epmrVqmb+/PmZxvLaa6+ZSpUqGU9PT9OsWTOzdetWVw7FGGNMQkKCkZRpjAAAoOjKj/d/MhIAACjsrH7/txljTMGWxApOYmKi/Pz8lJCQwOnoAAAUE7z/Xx9zBABA8WP1+/8NX0MKAICiyBij1NRUpaWlFfRQ4CJ3d3eVKFHCsusfAABQnJCRCq+bLSNRkAIA4CrJyck6ceKELl++XNBDQS6VLFlSQUFB8vT0LOihAABQZJCRCr+bKSNRkAIA4Arp6emKi4uTu7u7goOD5enpedN8ioTrM8YoOTlZp0+fVlxcnGrUqCE3N7eCHhYAAIUeGalwuxkzEgUpAACukJycrPT0dIWEhKhkyZIFPRzkgre3tzw8PHTkyBElJyfLy8uroIcEAEChR0Yq/G62jMRHhgAAZKGgPzHCjeHnBwBA/uA9tnC7mX5+N89IAAAAAAAAUCxQkAIAAAAAAICluIYUAAA5lLLma8v25dGhVY77Xu+CouPHj9eECRNucES5Y7PZtHz5ckVFReV6G2+++aYWL16snTt36sKFCzp37pz8/f3zbIwAAODGWJmRJHJShrNnz2r8+PFau3atjh49qoCAAEVFRSkmJkZ+fn55O9h8QEEKAIBC7sSJE45/f/DBBxo3bpwOHDjgaCtVqpRL20tOTr4pbgWc4fLly+rQoYM6dOigMWPGFPRwAABAIVKUc9Lx48d1/PhxTZ8+XWFhYTpy5IgGDRqk48ePa+nSpQU9vOviK3v5KGXN15keAADktcDAQMfj/7F353FZlPv/x9+AAm43uCGYiPtCLihumFkqiYoeNS21TqK5HDvYN6FMzXLJTDNzqSxbTugpPZqeNHNHTFvUzAVzJTPUSlFL5XZJQJjfH/2Y4y2o3AiD4Ov5eMwj72uumbnmAr3ffe65Z7y8vOTi4mK+vnTpkh5//HFVqlRJpUuXVvPmzbVhwwaH7atVq6ZJkyapf//+stlsGjp0qCTpgw8+MJ+k07NnT82YMSPLlUmff/65mjZtKk9PT9WoUUMTJ07U1atXzf1KUs+ePeXi4mK+3rNnj9q1a6cyZcrIZrMpODhYO3bsuOH5jRgxQqNHj1arVq3yZsJQ4MhIAACrFOWc1KBBA/33v/9Vt27dVLNmTbVv316TJ0/WF198YR7nTkZBCgCAIuzixYvq0qWL4uLitHv3bnXq1EndunXT8ePHHfpNnz5djRs31u7du/XSSy/p22+/1bBhw/TMM88oPj5eDz30kCZPnuywzddff63+/fvrmWee0YEDB/Tee+9p3rx5Zr/vv/9ekhQTE6OTJ0+arx9//HFVqVJF33//vXbu3KnRo0erePHiFswGAADA/xTFnJScnCybzaZixe78L8Td+SMEAAC51rhxYzVu3Nh8PWnSJC1btkwrVqzQ8OHDzfb27dvr2WefNV+PHTtWnTt31nPPPSdJqlOnjrZs2aKVK1eafSZOnKjRo0crIiJCklSjRg1NmjRJzz//vMaPH6+KFStKkry9veXr62tud/z4cY0cOVL16tWTJNWuXTsfzhwAAODmilpO+v333zVp0iTzKq47HVdIAQBQhF28eFHPPfec6tevL29vb5UuXVoHDx7M8slfs2bNHF4nJCSoRYsWDm3Xv96zZ49efvlllS5d2lyGDBmikydP6vLlyzccU3R0tAYPHqzQ0FBNnTpVR44cuc2zBAAAcF5Rykl2u13h4eEKDAwssJu0O4uCFAAARdhzzz2nZcuW6dVXX9XXX3+t+Ph4NWzYUKmpqQ79SpUq5fS+L168qIkTJyo+Pt5c9u7dq8OHD8vT0/OG202YMEH79+9XeHi4Nm7cqMDAQC1btszp4wMAANyOopKTLly4oE6dOqlMmTJatmxZobkVAl/ZAwCgCPv22281YMAA9ezZU9Jf4ejo0aO33K5u3brmvQwyXf+6adOmSkhIUK1atW64n+LFiys9PT1Le506dVSnTh1FRUWpX79+iomJMccIAABghaKQk+x2u8LCwuTh4aEVK1bctNh1p6EgBQBAEVa7dm199tln6tatm1xcXPTSSy8pIyPjlts9/fTTatu2rWbMmKFu3bpp48aNWrNmjVxcXMw+48aNU9euXVW1alX17t1brq6u2rNnj/bt26dXXnlF0l9PkImLi9N9990nDw8PeXp6auTIkerdu7eqV6+uX3/9Vd9//7169ep1w7EkJSUpKSlJP/30kyRp7969KlOmjKpWrapy5crd5gwBAIC7VWHPSXa7XR07dtTly5f1ySefyG63y263S5IqVqwoNze3PJil/MNX9gAAKMJmzJihsmXLqnXr1urWrZvCwsLUtGnTW2533333ae7cuZoxY4YaN26stWvXKioqyuFTt7CwMK1cuVLr169X8+bN1apVK82cOVMBAQFmnzfeeEOxsbHy9/dXkyZN5Obmpj/++EP9+/dXnTp19Oijj6pz586aOHHiDccyd+5cNWnSREOGDJEktW3bVk2aNNGKFStuY2YAAMDdrrDnpF27dum7777T3r17VatWLfn5+ZnLL7/8cvsTlM9cDMMwCnoQBcVut8vLy8t8LGJeS1v7TZa24p3a5PlxAAB558qVK0pMTFT16tUL1SXPVhgyZIgOHTqkr7/+uqCHcks3+znm9/t/UUBGAgBcj4x0c4UlJ91JGYmv7AEAgGxNnz5dDz30kEqVKqU1a9Zo/vz5eueddwp6WAAAAAWOnHT7KEgBAIBsbd++XdOmTdOFCxdUo0YNvfnmmxo8eHBBDwsAAKDAkZNuHwUpAACQrU8//bSghwAAAHBHIifdPm5qDgAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALFWsoAcAAEBhcWTHe5Ydq2azfzjVf8CAAZo/f74kqVixYipXrpwaNWqkfv36acCAAXJ1LbyfQe3fv1/jxo3Tzp07dezYMc2cOVMjRowo6GEBAID/z8qMJJGTrvXBBx/o3//+t/bt2ydJCg4O1quvvqoWLVoU8MhurfDOOgAAcNCpUyedPHlSR48e1Zo1a9SuXTs988wz6tq1q65evVrQw8u1y5cvq0aNGpo6dap8fX0LejgAAKAQKqo5adOmTerXr5++/PJLbd26Vf7+/urYsaN+++23gh7aLVGQAgCgiPDw8JCvr6/uueceNW3aVC+88II+//xzrVmzRvPmzTP7nT9/XoMHD1bFihVls9nUvn177dmzx2FfX3zxhZo3by5PT09VqFBBPXv2NNedO3dO/fv3V9myZVWyZEl17txZhw8fliRdunRJNptNS5cuddjf8uXLVapUKV24cEGpqakaPny4/Pz85OnpqYCAAE2ZMuWG59W8eXO9/vrr6tu3rzw8PPJgpgAAwN2mqOakBQsW6J///KeCgoJUr149ffjhh8rIyFBcXFwezFr+oiAFAEAR1r59ezVu3FifffaZ2fbII4/o9OnTWrNmjXbu3KmmTZuqQ4cOOnv2rCRp1apV6tmzp7p06aLdu3crLi7O4bLvAQMGaMeOHVqxYoW2bt0qwzDUpUsXpaWlqVSpUurbt69iYmIcxhETE6PevXurTJkyevPNN7VixQp9+umnSkhI0IIFC1StWjVL5gMAACBTUcxJly9fVlpamsqVK3d7k2MB7iEFAEARV69ePf3www+SpG+++Ubbt2/X6dOnzauNpk+fruXLl2vp0qUaOnSoJk+erL59+2rixInmPho3bixJOnz4sFasWKFvv/1WrVu3lvTXJ3P+/v5avny5HnnkEQ0ePFitW7fWyZMn5efnp9OnT2v16tXasGGDJOn48eOqXbu22rRpIxcXFwUEBFg5HQAAAKailpNGjRqlypUrKzQ09LbnJr9xhRQAAEWcYRhycXGRJO3Zs0cXL15U+fLlVbp0aXNJTEzUkSNHJEnx8fHq0KFDtvs6ePCgihUrppYtW5pt5cuXV926dXXw4EFJUosWLXTvvfeaNw/95JNPFBAQoLZt20r665PD+Ph41a1bV//3f/+n9evX59u5AwAA3ExRyklTp07VokWLtGzZMnl6ejo/GRbjCikAAIq4gwcPqnr16pKkixcvys/PT5s2bcrSz9vbW5JUokSJ2z7m4MGDNWfOHI0ePVoxMTEaOHCgGfaaNm2qxMRErVmzRhs2bNCjjz6q0NDQLPdTAAAAyG9FJSdNnz5dU6dO1YYNG9SoUaPbHqMVnLpC6t1331WjRo1ks9lks9kUEhKiNWvWmOuvXLmiyMhIs5rYq1cvnTp1ymEfx48fV3h4uEqWLCkfHx+NHDkyyx3tN23apKZNm8rDw0O1atVyuMFYpjlz5qhatWry9PRUy5YttX37dmdOxRJHz6/JsgAAYKWNGzdq79696tWrl6S/Qk5SUpKKFSumWrVqOSwVKlSQJDVq1OiGN8KsX7++rl69qu+++85s++OPP5SQkKDAwECz7e9//7uOHTumN998UwcOHFBERITDfmw2m/r06aMPPvhAixcv1n//+1/z3gyFERnJOWQkAMCdoKjkpGnTpmnSpElau3atmjVrluv5sJpTBakqVapo6tSp2rlzp3bs2KH27dure/fu2r9/vyQpKipKX3zxhZYsWaLNmzfrxIkTevjhh83t09PTFR4ertTUVG3ZskXz58/XvHnzNG7cOLNPYmKiwsPD1a5dO8XHx2vEiBEaPHiw1q1bZ/ZZvHixoqOjNX78eO3atUuNGzdWWFiYTp8+fbvzAQBAoZWSkqKkpCT99ttv2rVrl1599VV1795dXbt2Vf/+/SVJoaGhCgkJUY8ePbR+/XodPXpUW7Zs0dixY7Vjxw5J0vjx4/Wf//xH48eP18GDB7V371699tprkqTatWure/fuGjJkiL755hvt2bNHf//733XPPfeoe/fu5ljKli2rhx9+WCNHjlTHjh1VpUoVc92MGTP0n//8R4cOHdKPP/6oJUuWyNfX1/zk8XqpqamKj49XfHy8UlNT9dtvvyk+Pl4//fRTPs2k88hIAADc2YpqTnrttdf00ksv6aOPPlK1atWUlJSkpKQkXbx4MZ9mMu84VZDq1q2bunTpotq1a6tOnTqaPHmySpcurW3btik5OVn/+te/NGPGDLVv317BwcGKiYnRli1btG3bNknS+vXrdeDAAX3yyScKCgpS586dNWnSJM2ZM0epqamSpLlz56p69ep64403VL9+fQ0fPly9e/fWzJkzzXHMmDFDQ4YM0cCBAxUYGKi5c+eqZMmS+uijj/JwagAAKFzWrl0rPz8/VatWTZ06ddKXX36pN998U59//rnc3NwkSS4uLlq9erXatm2rgQMHqk6dOurbt6+OHTumSpUqSZIefPBBLVmyRCtWrFBQUJDat2/vcJVNTEyMgoOD1bVrV4WEhMgwDK1evVrFixd3GM+gQYOUmpqqJ5980qG9TJkymjZtmpo1a6bmzZvr6NGjWr16tVxds48lJ06cUJMmTdSkSROdPHlS06dPV5MmTTR48OC8nL7bQkYCAODOVlRz0rvvvqvU1FT17t1bfn5+5jJ9+vS8nL584WIYhpGbDdPT07VkyRJFRERo9+7dSkpKUocOHXTu3DmHyl1AQIBGjBihqKgojRs3TitWrFB8fLy5PjExUTVq1NCuXbvUpEkTtW3bVk2bNtWsWbPMPjExMRoxYoSSk5OVmpqqkiVLaunSperRo4fZJyIiQufPn9fnn3+e43Ow2+3y8vJScnKybDZbbqbhpg4vGpulrXbfyXl+HABA3rly5YoSExNVvXr1QnEzyDvZxx9/rKioKJ04cULu7u6WHvtmP8f8fv8nI90aGQkACh8yUt4qqJxUkBnpek7f1Hzv3r0KCQnRlStXVLp0aS1btkyBgYGKj4+Xu7t7lsvIKlWqpKSkJElSUlKSWVW8dn3mupv1sdvt+vPPP3Xu3Dmlp6dn2+fQoUM3HXtKSopSUlLM13a7PecnDgAAcuTy5cs6efKkpk6dqn/84x+WF6MKChkJAADcyt2ak7Lj1Ff2JKlu3bqKj4/Xd999p6eeekoRERE6cOBAfowtz02ZMkVeXl7m4u/vX9BDAgCgyJk2bZrq1asnX19fjRkzpqCHYxkyEgAAuJW7NSdlx+mClLu7u2rVqqXg4GBNmTJFjRs31uzZs+Xr66vU1FSdP3/eof+pU6fk6+srSfL19c3yRJnM17fqY7PZVKJECVWoUEFubm7Z9sncx42MGTNGycnJ5vLLL784e/oAAOAWJkyYoLS0NMXFxal06dIFPRzLkJEAAMCt3K05KTtOF6Sul5GRoZSUFAUHB6t48eIOjz9MSEjQ8ePHFRISIkkKCQnR3r17HZ70EhsbK5vNZj4CMSQkJMsjFGNjY819uLu7Kzg42KFPRkaG4uLizD434uHhYT6OOXMBAADID2QkAACAG3PqHlJjxoxR586dVbVqVV24cEELFy7Upk2btG7dOnl5eWnQoEGKjo5WuXLlZLPZ9PTTTyskJEStWrWSJHXs2FGBgYF64oknNG3aNCUlJenFF19UZGSkPDw8JEnDhg3T22+/reeff15PPvmkNm7cqE8//VSrVq0yxxEdHa2IiAg1a9ZMLVq00KxZs3Tp0iUNHDgwD6cGAAAgZ8hIAAAAznGqIHX69Gn1799fJ0+elJeXlxo1aqR169bpoYcekiTNnDlTrq6u6tWrl1JSUhQWFqZ33nnH3N7NzU0rV67UU089pZCQEJUqVUoRERF6+eWXzT7Vq1fXqlWrFBUVpdmzZ6tKlSr68MMPFRYWZvbp06ePzpw5o3HjxikpKUlBQUFau3Ztlpt4AgCQW7l8CC3uEFb//MhIAIC7BRmpcLuTfn4uxp00GovxSGMAwPXS09P1448/ysfHR+XLly/o4SCX/vjjD50+fVp16tSRm5ubwzqrH2lcGJGRAADXIyMVDXdSRnLqCikAAIo6Nzc3eXt7m/fyKVmypFxcXAp4VMgpwzB0+fJlnT59Wt7e3lmCFgAAyB0yUuF2J2YkClIAAFwn84lk195gGoWLt7f3LZ8sBwAAnENGKvzupIxEQQoAgOu4uLjIz89PPj4+SktLK+jhwEnFixe/Iz71AwCgqCEjFW53WkaiIAUAwA24ubndUW/aAAAAdwIyEvKCa0EPAAAAAAAAAHcXClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKWcKkhNmTJFzZs3V5kyZeTj46MePXooISHBoc+DDz4oFxcXh2XYsGEOfY4fP67w8HCVLFlSPj4+GjlypK5everQZ9OmTWratKk8PDxUq1YtzZs3L8t45syZo2rVqsnT01MtW7bU9u3bnTkdAACAPEFGAgAAcI5TBanNmzcrMjJS27ZtU2xsrNLS0tSxY0ddunTJod+QIUN08uRJc5k2bZq5Lj09XeHh4UpNTdWWLVs0f/58zZs3T+PGjTP7JCYmKjw8XO3atVN8fLxGjBihwYMHa926dWafxYsXKzo6WuPHj9euXbvUuHFjhYWF6fTp07mdCwAAgFwhIwEAADjHxTAMI7cbnzlzRj4+Ptq8ebPatm0r6a9P/4KCgjRr1qxst1mzZo26du2qEydOqFKlSpKkuXPnatSoUTpz5ozc3d01atQorVq1Svv27TO369u3r86fP6+1a9dKklq2bKnmzZvr7bffliRlZGTI399fTz/9tEaPHp2j8dvtdnl5eSk5OVk2my2303BDhxeNzdJWu+/kPD8OAADIufx+/5fISLdCRgIA4M5jRUa61m3dQyo5OVmSVK5cOYf2BQsWqEKFCmrQoIHGjBmjy5cvm+u2bt2qhg0bmkFLksLCwmS327V//36zT2hoqMM+w8LCtHXrVklSamqqdu7c6dDH1dVVoaGhZp/spKSkyG63OywAAAB5jYwEAABwc8Vyu2FGRoZGjBih++67Tw0aNDDbH3vsMQUEBKhy5cr64YcfNGrUKCUkJOizzz6TJCUlJTkELUnm66SkpJv2sdvt+vPPP3Xu3Dmlp6dn2+fQoUM3HPOUKVM0ceLE3J4yAADALZGRAAAAbi3XBanIyEjt27dP33zzjUP70KFDzT83bNhQfn5+6tChg44cOaKaNWvmfqR5YMyYMYqOjjZf2+12+fv7F+CIAABAUUNGAgAAuLVcFaSGDx+ulStX6quvvlKVKlVu2rdly5aSpJ9++kk1a9aUr69vlie9nDp1SpLk6+tr/jez7do+NptNJUqUkJubm9zc3LLtk7mP7Hh4eMjDwyNnJwkAAOAkMhIAAEDOOHUPKcMwNHz4cC1btkwbN25U9erVb7lNfHy8JMnPz0+SFBISor179zo86SU2NlY2m02BgYFmn7i4OIf9xMbGKiQkRJLk7u6u4OBghz4ZGRmKi4sz+wAAAFiFjAQAAOAcp66QioyM1MKFC/X555+rTJky5v0MvLy8VKJECR05ckQLFy5Uly5dVL58ef3www+KiopS27Zt1ahRI0lSx44dFRgYqCeeeELTpk1TUlKSXnzxRUVGRpqfzA0bNkxvv/22nn/+eT355JPauHGjPv30U61atcocS3R0tCIiItSsWTO1aNFCs2bN0qVLlzRw4MC8mhsAAIAcISMBAAA4x6mC1Lvvvivpr8cWXysmJkYDBgyQu7u7NmzYYAYff39/9erVSy+++KLZ183NTStXrtRTTz2lkJAQlSpVShEREXr55ZfNPtWrV9eqVasUFRWl2bNnq0qVKvrwww8VFhZm9unTp4/OnDmjcePGKSkpSUFBQVq7dm2Wm3gCAADkNzISAACAc1wMwzAKehAFxW63y8vLS8nJybLZbHm+/8OLxmZpq913cp4fBwAA5Fx+v/8XBWQkAADuPlZnJKfuIQUAAAAAAADcLgpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYyqmC1JQpU9S8eXOVKVNGPj4+6tGjhxISEhz6XLlyRZGRkSpfvrxKly6tXr166dSpUw59jh8/rvDwcJUsWVI+Pj4aOXKkrl696tBn06ZNatq0qTw8PFSrVi3Nmzcvy3jmzJmjatWqydPTUy1bttT27dudOR0AAIA8QUYCAABwjlMFqc2bNysyMlLbtm1TbGys0tLS1LFjR126dMnsExUVpS+++EJLlizR5s2bdeLECT388MPm+vT0dIWHhys1NVVbtmzR/PnzNW/ePI0bN87sk5iYqPDwcLVr107x8fEaMWKEBg8erHXr1pl9Fi9erOjoaI0fP167du1S48aNFRYWptOnT9/OfAAAADiNjAQAAOAcF8MwjNxufObMGfn4+Gjz5s1q27atkpOTVbFiRS1cuFC9e/eWJB06dEj169fX1q1b1apVK61Zs0Zdu3bViRMnVKlSJUnS3LlzNWrUKJ05c0bu7u4aNWqUVq1apX379pnH6tu3r86fP6+1a9dKklq2bKnmzZvr7bffliRlZGTI399fTz/9tEaPHp2j8dvtdnl5eSk5OVk2my2303BDhxeNzdJWu+/kPD8OAADIufx+/5fISLdCRgIA4M5jRUa61m3dQyo5OVmSVK5cOUnSzp07lZaWptDQULNPvXr1VLVqVW3dulWStHXrVjVs2NAMWpIUFhYmu92u/fv3m32u3Udmn8x9pKamaufOnQ59XF1dFRoaavbJTkpKiux2u8MCAACQ18hIAAAAN5frglRGRoZGjBih++67Tw0aNJAkJSUlyd3dXd7e3g59K1WqpKSkJLPPtUErc33mupv1sdvt+vPPP/X7778rPT092z6Z+8jOlClT5OXlZS7+/v7OnzgAAMBNkJEAAABuLdcFqcjISO3bt0+LFi3Ky/HkqzFjxig5Odlcfvnll4IeEgAAKGLISAAAALdWLDcbDR8+XCtXrtRXX32lKlWqmO2+vr5KTU3V+fPnHT4BPHXqlHx9fc0+1z/pJfMJM9f2uf6pM6dOnZLNZlOJEiXk5uYmNze3bPtk7iM7Hh4e8vDwcP6EAQAAcoCMBAAAkDNOXSFlGIaGDx+uZcuWaePGjapevbrD+uDgYBUvXlxxcXFmW0JCgo4fP66QkBBJUkhIiPbu3evwpJfY2FjZbDYFBgaafa7dR2afzH24u7srODjYoU9GRobi4uLMPgAAAFYhIwEAADjHqSukIiMjtXDhQn3++ecqU6aMeS8CLy8vlShRQl5eXho0aJCio6NVrlw52Ww2Pf300woJCVGrVq0kSR07dlRgYKCeeOIJTZs2TUlJSXrxxRcVGRlpfjI3bNgwvf3223r++ef15JNPauPGjfr000+1atUqcyzR0dGKiIhQs2bN1KJFC82aNUuXLl3SwIED82puAAAAcoSMBAAA4BynClLvvvuuJOnBBx90aI+JidGAAQMkSTNnzpSrq6t69eqllJQUhYWF6Z133jH7urm5aeXKlXrqqacUEhKiUqVKKSIiQi+//LLZp3r16lq1apWioqI0e/ZsValSRR9++KHCwsLMPn369NGZM2c0btw4JSUlKSgoSGvXrs1yE08AAID8RkYCAABwjothGEZBD6Kg2O12eXl5KTk5WTabLc/3f3jR2CxttftOzvPjAACAnMvv9/+igIwEAMDdx+qMlOun7AEAAAAAAAC5QUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLOV2Q+uqrr9StWzdVrlxZLi4uWr58ucP6AQMGyMXFxWHp1KmTQ5+zZ8/q8ccfl81mk7e3twYNGqSLFy869Pnhhx90//33y9PTU/7+/po2bVqWsSxZskT16tWTp6enGjZsqNWrVzt7OgAAAHmCjAQAAJBzThekLl26pMaNG2vOnDk37NOpUyedPHnSXP7zn/84rH/88ce1f/9+xcbGauXKlfrqq680dOhQc73dblfHjh0VEBCgnTt36vXXX9eECRP0/vvvm322bNmifv36adCgQdq9e7d69OihHj16aN++fc6eEgAAwG0jIwEAAOSci2EYRq43dnHRsmXL1KNHD7NtwIABOn/+fJZPBTMdPHhQgYGB+v7779WsWTNJ0tq1a9WlSxf9+uuvqly5st59912NHTtWSUlJcnd3lySNHj1ay5cv16FDhyRJffr00aVLl7Ry5Upz361atVJQUJDmzp2bo/Hb7XZ5eXkpOTlZNpstFzNwc4cXjc3SVrvv5Dw/DgAAyLn8fv+XyEi3QkYCAODOY0VGula+3ENq06ZN8vHxUd26dfXUU0/pjz/+MNdt3bpV3t7eZtCSpNDQULm6uuq7774z+7Rt29YMWpIUFhamhIQEnTt3zuwTGhrqcNywsDBt3br1huNKSUmR3W53WAAAAKxCRgIAAPhLnhekOnXqpH//+9+Ki4vTa6+9ps2bN6tz585KT0+XJCUlJcnHx8dhm2LFiqlcuXJKSkoy+1SqVMmhT+brW/XJXJ+dKVOmyMvLy1z8/f1v72QBAAByiIwEAADwP8Xyeod9+/Y1/9ywYUM1atRINWvW1KZNm9ShQ4e8PpxTxowZo+joaPO13W4ncAEAAEuQkQAAAP4nX76yd60aNWqoQoUK+umnnyRJvr6+On36tEOfq1ev6uzZs/L19TX7nDp1yqFP5utb9clcnx0PDw/ZbDaHBQAAoCCQkQAAwN0s3wtSv/76q/744w/5+flJkkJCQnT+/Hnt3LnT7LNx40ZlZGSoZcuWZp+vvvpKaWlpZp/Y2FjVrVtXZcuWNfvExcU5HCs2NlYhISH5fUoAAAC3jYwEAADuZk4XpC5evKj4+HjFx8dLkhITExUfH6/jx4/r4sWLGjlypLZt26ajR48qLi5O3bt3V61atRQWFiZJql+/vjp16qQhQ4Zo+/bt+vbbbzV8+HD17dtXlStXliQ99thjcnd316BBg7R//34tXrxYs2fPdriU/JlnntHatWv1xhtv6NChQ5owYYJ27Nih4cOH58G0AAAAOIeMBAAAkHNOF6R27NihJk2aqEmTJpKk6OhoNWnSROPGjZObm5t++OEH/e1vf1OdOnU0aNAgBQcH6+uvv5aHh4e5jwULFqhevXrq0KGDunTpojZt2uj9998313t5eWn9+vVKTExUcHCwnn32WY0bN05Dhw41+7Ru3VoLFy7U+++/r8aNG2vp0qVavny5GjRocDvzAQAAkCtkJAAAgJxzMQzDKOhBFBS73S4vLy8lJyfny70SDi8am6Wtdt/JeX4cAACQc/n9/l8UkJEAALj7WJ2R8v0eUgAAAAAAAMC1KEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFJOF6S++uordevWTZUrV5aLi4uWL1/usN4wDI0bN05+fn4qUaKEQkNDdfjwYYc+Z8+e1eOPPy6bzSZvb28NGjRIFy9edOjzww8/6P7775enp6f8/f01bdq0LGNZsmSJ6tWrJ09PTzVs2FCrV6929nQAAADyBBkJAAAg55wuSF26dEmNGzfWnDlzsl0/bdo0vfnmm5o7d66+++47lSpVSmFhYbpy5YrZ5/HHH9f+/fsVGxurlStX6quvvtLQoUPN9Xa7XR07dlRAQIB27typ119/XRMmTND7779v9tmyZYv69eunQYMGaffu3erRo4d69Oihffv2OXtKAAAAt42MBAAAkHMuhmEYud7YxUXLli1Tjx49JP31yV/lypX17LPP6rnnnpMkJScnq1KlSpo3b5769u2rgwcPKjAwUN9//72aNWsmSVq7dq26dOmiX3/9VZUrV9a7776rsWPHKikpSe7u7pKk0aNHa/ny5Tp06JAkqU+fPrp06ZJWrlxpjqdVq1YKCgrS3LlzczR+u90uLy8vJScny2az5XYabujworFZ2mr3nZznxwEAADmX3+//EhnpVshIAADceazISNfK03tIJSYmKikpSaGhoWabl5eXWrZsqa1bt0qStm7dKm9vbzNoSVJoaKhcXV313XffmX3atm1rBi1JCgsLU0JCgs6dO2f2ufY4mX0yjwMAAHCnICMBAAA4KpaXO0tKSpIkVapUyaG9UqVK5rqkpCT5+Pg4DqJYMZUrV86hT/Xq1bPsI3Nd2bJllZSUdNPjZCclJUUpKSnma7vd7szpAQAA5AoZCQAAwNFd9ZS9KVOmyMvLy1z8/f0LekgAAAAFjowEAACslqcFKV9fX0nSqVOnHNpPnTplrvP19dXp06cd1l+9elVnz5516JPdPq49xo36ZK7PzpgxY5ScnGwuv/zyi7OnCAAA4DQyEgAAgKM8LUhVr15dvr6+iouLM9vsdru+++47hYSESJJCQkJ0/vx57dy50+yzceNGZWRkqGXLlmafr776SmlpaWaf2NhY1a1bV2XLljX7XHuczD6Zx8mOh4eHbDabwwIAAJDfyEgAAACOnC5IXbx4UfHx8YqPj5f010064+Pjdfz4cbm4uGjEiBF65ZVXtGLFCu3du1f9+/dX5cqVzafM1K9fX506ddKQIUO0fft2ffvttxo+fLj69u2rypUrS5Iee+wxubu7a9CgQdq/f78WL16s2bNnKzo62hzHM888o7Vr1+qNN97QoUOHNGHCBO3YsUPDhw+//VkBAABwEhkJAAAg55y+qfmOHTvUrl0783VmAIqIiNC8efP0/PPP69KlSxo6dKjOnz+vNm3aaO3atfL09DS3WbBggYYPH64OHTrI1dVVvXr10ptvvmmu9/Ly0vr16xUZGang4GBVqFBB48aN09ChQ80+rVu31sKFC/Xiiy/qhRdeUO3atbV8+XI1aNAgVxMBAABwO8hIAAAAOediGIZR0IMoKHa7XV5eXkpOTs6XS9MPLxqbpa1238l5fhwAAJBz+f3+XxSQkQAAuPtYnZHuqqfsAQAAAAAAoOBRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFJ5XpCaMGGCXFxcHJZ69eqZ669cuaLIyEiVL19epUuXVq9evXTq1CmHfRw/flzh4eEqWbKkfHx8NHLkSF29etWhz6ZNm9S0aVN5eHioVq1amjdvXl6fCgAAQJ4hIwEAAPxPvlwhde+99+rkyZPm8s0335jroqKi9MUXX2jJkiXavHmzTpw4oYcffthcn56ervDwcKWmpmrLli2aP3++5s2bp3Hjxpl9EhMTFR4ernbt2ik+Pl4jRozQ4MGDtW7duvw4HQAAgDxBRgIAAPhLsXzZabFi8vX1zdKenJysf/3rX1q4cKHat28vSYqJiVH9+vW1bds2tWrVSuvXr9eBAwe0YcMGVapUSUFBQZo0aZJGjRqlCRMmyN3dXXPnzlX16tX1xhtvSJLq16+vb775RjNnzlRYWFh+nBIAAMBtIyMBAAD8JV+ukDp8+LAqV66sGjVq6PHHH9fx48clSTt37lRaWppCQ0PNvvXq1VPVqlW1detWSdLWrVvVsGFDVapUyewTFhYmu92u/fv3m32u3Udmn8x9AAAA3InISAAAAH/J8yukWrZsqXnz5qlu3bo6efKkJk6cqPvvv1/79u1TUlKS3N3d5e3t7bBNpUqVlJSUJElKSkpyCFqZ6zPX3ayP3W7Xn3/+qRIlSmQ7tpSUFKWkpJiv7Xb7bZ0rAABATpGRAAAA/ifPC1KdO3c2/9yoUSO1bNlSAQEB+vTTT28YgqwyZcoUTZw4sUDHAAAA7k5kJAAAgP/Jl6/sXcvb21t16tTRTz/9JF9fX6Wmpur8+fMOfU6dOmXeT8HX1zfLE2UyX9+qj81mu2mgGzNmjJKTk83ll19+ud3TAwAAyBUyEgAAuJvle0Hq4sWLOnLkiPz8/BQcHKzixYsrLi7OXJ+QkKDjx48rJCREkhQSEqK9e/fq9OnTZp/Y2FjZbDYFBgaafa7dR2afzH3ciIeHh2w2m8MCAABQEMhIAADgbpbnBannnntOmzdv1tGjR7Vlyxb17NlTbm5u6tevn7y8vDRo0CBFR0fryy+/1M6dOzVw4ECFhISoVatWkqSOHTsqMDBQTzzxhPbs2aN169bpxRdfVGRkpDw8PCRJw4YN088//6znn39ehw4d0jvvvKNPP/1UUVFReX06AAAAeYKMBAAA8D95fg+pX3/9Vf369dMff/yhihUrqk2bNtq2bZsqVqwoSZo5c6ZcXV3Vq1cvpaSkKCwsTO+88465vZubm1auXKmnnnpKISEhKlWqlCIiIvTyyy+bfapXr65Vq1YpKipKs2fPVpUqVfThhx/yOGMAAHDHIiMBAAD8j4thGEZBD6Kg2O12eXl5KTk5OV8uTT+8aGyWttp9J+f5cQAAQM7l9/t/UUBGAgDg7mN1Rsr3e0gBAAAAAAAA16IgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYqVtADAAAASFv7TZa24p3aFMBIAAAA7hxFOSNxhRQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWKpYQQ8AAADcXdLWflPQQwAAALjj3G0ZiSukAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYintIAQCAfHW33Q8BAAAgJ+72jMQVUgAAAAAAALAUV0gBAIA8c7d/0gcAAJAdMlJWXCEFAAAAAAAAS3GFFAAAyJW8/KTv6Pk1Wdpqq02e7R8AAMAqZKScKfRXSM2ZM0fVqlWTp6enWrZsqe3btxf0kAAAKJLS1n7jsODORkYCAMAaZKTcKdRXSC1evFjR0dGaO3euWrZsqVmzZiksLEwJCQny8fEp6OEBAFAoEJyKHjISAAC3j4yUvwp1QWrGjBkaMmSIBg4cKEmaO3euVq1apY8++kijR48u4NEBAGCtOzU0ZXepOfIXGQkAgP8hI92ZCm1BKjU1VTt37tSYMWPMNldXV4WGhmrr1q3ZbpOSkqKUlBTzdXJysiTJbrfnyxgvXk7J0pZfxwIAFA5psdm/R+WX48mxWdqqej2Uq+2sll/vmZn7NQwjX/Zf0MhIAIDCiIyUc0UlIxXagtTvv/+u9PR0VapUyaG9UqVKOnToULbbTJkyRRMnTszS7u/vny9jzNagN6w7FgAA2Sok70X5/J554cIFeXl55esxCgIZCQCA3Cok70VFJCMV2oJUbowZM0bR0dHm64yMDJ09e1bly5eXi4tLnh7LbrfL399fv/zyi2w2W57uG9ljzq3HnFuPObcec14w8nPeDcPQhQsXVLly5Tzdb2FGRiramHPrMefWY84LBvNuvaKUkQptQapChQpyc3PTqVOnHNpPnTolX1/fbLfx8PCQh4eHQ5u3t3d+DVGSZLPZ+ItpMebcesy59Zhz6zHnBSO/5r0oXhmViYyEG2HOrcecW485LxjMu/WKQkZytexIeczd3V3BwcGKi4sz2zIyMhQXF6eQkJACHBkAAEDBISMBAIDCoNBeISVJ0dHRioiIULNmzdSiRQvNmjVLly5dMp8oAwAAcDciIwEAgDtdoS5I9enTR2fOnNG4ceOUlJSkoKAgrV27NstNPAuCh4eHxo8fn+Xyd+Qf5tx6zLn1mHPrMecFg3m/PWQkXIs5tx5zbj3mvGAw79YrSnPuYhTVZx4DAAAAAADgjlRo7yEFAAAAAACAwomCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQug1z5sxRtWrV5OnpqZYtW2r79u037b9kyRLVq1dPnp6eatiwoVavXm3RSIsOZ+b8gw8+0P3336+yZcuqbNmyCg0NveXPCFk5+3ueadGiRXJxcVGPHj3yd4BFkLNzfv78eUVGRsrPz08eHh6qU6cO/744ydk5nzVrlurWrasSJUrI399fUVFRunLlikWjLfy++uordevWTZUrV5aLi4uWL19+y202bdqkpk2bysPDQ7Vq1dK8efPyfZzIPTKS9chI1iMjWY+MZD0ykrXuuoxkIFcWLVpkuLu7Gx999JGxf/9+Y8iQIYa3t7dx6tSpbPt/++23hpubmzFt2jTjwIEDxosvvmgUL17c2Lt3r8UjL7ycnfPHHnvMmDNnjrF7927j4MGDxoABAwwvLy/j119/tXjkhZezc54pMTHRuOeee4z777/f6N69uzWDLSKcnfOUlBSjWbNmRpcuXYxvvvnGSExMNDZt2mTEx8dbPPLCy9k5X7BggeHh4WEsWLDASExMNNatW2f4+fkZUVFRFo+88Fq9erUxduxY47PPPjMkGcuWLbtp/59//tkoWbKkER0dbRw4cMB46623DDc3N2Pt2rXWDBhOISNZj4xkPTKS9chI1iMjWe9uy0gUpHKpRYsWRmRkpPk6PT3dqFy5sjFlypRs+z/66KNGeHi4Q1vLli2Nf/zjH/k6zqLE2Tm/3tWrV40yZcoY8+fPz68hFjm5mfOrV68arVu3Nj788EMjIiKCsOUkZ+f83XffNWrUqGGkpqZaNcQix9k5j4yMNNq3b+/QFh0dbdx33335Os6iKidh6/nnnzfuvfdeh7Y+ffoYYWFh+Tgy5BYZyXpkJOuRkaxHRrIeGalg3Q0Zia/s5UJqaqp27typ0NBQs83V1VWhoaHaunVrttts3brVob8khYWF3bA/HOVmzq93+fJlpaWlqVy5cvk1zCIlt3P+8ssvy8fHR4MGDbJimEVKbuZ8xYoVCgkJUWRkpCpVqqQGDRro1VdfVXp6ulXDLtRyM+etW7fWzp07zUvWf/75Z61evVpdunSxZMx3I95DCw8ykvXISNYjI1mPjGQ9MlLhUNjfQ4sV9AAKo99//13p6emqVKmSQ3ulSpV06NChbLdJSkrKtn9SUlK+jbMoyc2cX2/UqFGqXLlylr+wyF5u5vybb77Rv/71L8XHx1swwqInN3P+888/a+PGjXr88ce1evVq/fTTT/rnP/+ptLQ0jR8/3ophF2q5mfPHHntMv//+u9q0aSPDMHT16lUNGzZML7zwghVDvivd6D3Ubrfrzz//VIkSJQpoZLgeGcl6ZCTrkZGsR0ayHhmpcCjsGYkrpHBXmDp1qhYtWqRly5bJ09OzoIdTJF24cEFPPPGEPvjgA1WoUKGgh3PXyMjIkI+Pj95//30FBwerT58+Gjt2rObOnVvQQyuyNm3apFdffVXvvPOOdu3apc8++0yrVq3SpEmTCnpoAOA0MlL+IyMVDDKS9chIcBZXSOVChQoV5ObmplOnTjm0nzp1Sr6+vtlu4+vr61R/OMrNnGeaPn26pk6dqg0bNqhRo0b5Ocwixdk5P3LkiI4ePapu3bqZbRkZGZKkYsWKKSEhQTVr1szfQRdyufk99/PzU/HixeXm5ma21a9fX0lJSUpNTZW7u3u+jrmwy82cv/TSS3riiSc0ePBgSVLDhg116dIlDR06VGPHjpWrK5/15LUbvYfabLY7/pO/uw0ZyXpkJOuRkaxHRrIeGalwKOwZid+IXHB3d1dwcLDi4uLMtoyMDMXFxSkkJCTbbUJCQhz6S1JsbOwN+8NRbuZckqZNm6ZJkyZp7dq1atasmRVDLTKcnfN69epp7969io+PN5e//e1vateuneLj4+Xv72/l8Aul3Pye33ffffrpp5/MYCtJP/74o/z8/AhaOZCbOb98+XKWQJUZdg3DyL/B3sV4Dy08yEjWIyNZj4xkPTKS9chIhUOhfw8t2HuqF16LFi0yPDw8jHnz5hkHDhwwhg4danh7extJSUmGYRjGE088YYwePdrs/+233xrFihUzpk+fbhw8eNAYP348jzR2krNzPnXqVMPd3d1YunSpcfLkSXO5cOFCQZ1CoePsnF+PJ8g4z9k5P378uFGmTBlj+PDhRkJCgrFy5UrDx8fHeOWVVwrqFAodZ+d8/PjxRpkyZYz//Oc/xs8//2ysX7/eqFmzpvHoo48W1CkUOhcuXDB2795t7N6925BkzJgxw9i9e7dx7NgxwzAMY/To0cYTTzxh9s98pPHIkSONgwcPGnPmzClUjzS+25CRrEdGsh4ZyXpkJOuRkax3t2UkClK34a233jKqVq1quLu7Gy1atDC2bdtmrnvggQeMiIgIh/6ffvqpUadOHcPd3d249957jVWrVlk84sLPmTkPCAgwJGVZxo8fb/3ACzFnf8+vRdjKHWfnfMuWLUbLli0NDw8Po0aNGsbkyZONq1evWjzqws2ZOU9LSzMmTJhg1KxZ0/D09DT8/f2Nf/7zn8a5c+esH3gh9eWXX2b773PmPEdERBgPPPBAlm2CgoIMd3d3o0aNGkZMTIzl40bOkZGsR0ayHhnJemQk65GRrHW3ZSQXw+DaOQAAAAAAAFiHe0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFFBIbNq0SS4uLtq0aVOe7tfFxUUTJkzI030WNQMGDFC1atUKehh3hGrVqmnAgAG37Ddv3jy5uLjo6NGj+T4mZ128eFE+Pj5asGDBLftm97O/ePGiBg8eLF9fX7m4uGjEiBFOHX/06NFq2bKlU9sAAG6MjFRwyEj/Q0YiI8F5FKRguS1btmjChAk6f/58QQ/lrrF69WoClaTLly9rwoQJeR5YYb3FixcrJCREpUqVkre3t1q3bq2NGzfmaNvZs2erTJky6tu3b66O/eqrr2revHl66qmn9PHHH+uJJ56QJL377rt65JFHVLVqVbm4uNwwlI4YMUJ79uzRihUrcnV8AEUXGcl6ZKS/kJGKjjstI/3yyy+aOHGiWrRoobJly6pChQp68MEHtWHDhizbk5HuPsUKegC4+2zZskUTJ07UgAED5O3tXdDDuSusXr1ac+bMyTZw/fnnnypW7O74p+Dy5cuaOHGiJOnBBx/M8XYffPCBMjIy8mlUhUtCQoJcXQv2s4wJEybo5ZdfVu/evTVgwAClpaVp3759+u233265bVpammbPnq2oqCi5ubnl6vgbN25Uq1atNH78eIf21157TRcuXFCLFi108uTJG27v6+ur7t27a/r06frb3/6WqzEAKJrISNYjI/2FjHT7yEjZZ6S3335br732mnr06KGIiAhdvXpV//73v/XQQw/po48+0sCBA82+ZKS7z93xLyxQgC5fvqySJUtmab969aoyMjLk7u5eAKP6H09PzwI9/p3s0qVLKlWqlIoXL17QQ7ljeHh4FOjxt23bppdffllvvPGGoqKinN5+5cqVOnPmjB599NFcj+H06dMKDAzM0r5582bz6qjSpUvfdB+PPvqoHnnkEf3888+qUaNGrscCAIUZGanwIiNlRUbKPiO1a9dOx48fV4UKFcy2YcOGKSgoSOPGjXMoSElkpLsNX9mDpSZMmKCRI0dKkqpXry4XFxeH71BfvXpVkyZNUs2aNeXh4aFq1arphRdeUEpKisN+qlWrpq5du2r9+vUKCgqSp6enAgMD9dlnn+VqXJ988olatGihkiVLqmzZsmrbtq3Wr1/v0Oedd97RvffeKw8PD1WuXFmRkZFZLql/8MEH1aBBA+3cuVNt27ZVyZIl9cILL+jo0aNycXHR9OnTNWvWLPP8Dhw4IEk6dOiQevfurXLlysnT01PNmjXL0aWqX3/9tfkVIQ8PD/n7+ysqKkp//vmn2WfAgAGaM2eOJJnz7eLiYq7P7v4Iu3fvVufOnWWz2VS6dGl16NBB27Ztc+iT+f33b7/9VtHR0apYsaJKlSqlnj176syZM7cc+7UmTJggFxcX/fjjj/r73/8uLy8vVaxYUS+99JIMw9Avv/yi7t27y2azydfXV2+88YbD9qmpqRo3bpyCg4Pl5eWlUqVK6f7779eXX35p9jl69KgqVqwoSZo4caI5D5nnPmDAAJUuXVpHjhxRly5dVKZMGT3++OPmumu/Iz9+/Hi5uroqLi7OYRxDhw6Vu7u79uzZk+Nzz+nvclpamiZOnKjatWvL09NT5cuXV5s2bRQbG2v2yTyH48ePq2vXripdurTuuece8+e/d+9etW/fXqVKlVJAQIAWLlyY43FeO97rv4q2f/9+tW/fXiVKlFCVKlX0yiuvZPtp6Y4dOxQWFqYKFSqoRIkSql69up588kmnjj9r1iz5+vrqmWeekWEYunjxolPbL1++XNWqVVPNmjWzXdegQQN5enqqQYMGWrZsmcP6zHuUJCYmatWqVVn+/QoICHD4u3UzoaGhkqTPP//cqfEDKLrISGSk7JCRyEg5dadmpHvvvdehGCX9Vbzr0qWLfv31V124cMFhHRnpLmMAFtqzZ4/Rr18/Q5Ixc+ZM4+OPPzY+/vhj4+LFi4ZhGEZERIQhyejdu7cxZ84co3///oYko0ePHg77CQgIMOrUqWN4e3sbo0ePNmbMmGE0bNjQcHV1NdavX+/UmCZMmGBIMlq3bm28/vrrxuzZs43HHnvMGDVqlNln/PjxhiQjNDTUeOutt4zhw4cbbm5uRvPmzY3U1FSz3wMPPGD4+voaFStWNJ5++mnjvffeM5YvX24kJiYakozAwECjRo0axtSpU42ZM2cax44dM/bt22d4eXkZgYGBxmuvvWa8/fbbRtu2bQ0XFxfjs88+M/f95ZdfGpKML7/80mx7+umnjS5duhivvvqq8d577xmDBg0y3NzcjN69e5t9tmzZYjz00EOGJHO+P/74Y3O9JGP8+PHm63379hmlSpUy/Pz8jEmTJhlTp041qlevbnh4eBjbtm0z+8XExBiSjCZNmhjt27c33nrrLePZZ5813NzcjEcffdSpn0Hm/AYFBRn9+vUz3nnnHSM8PNyQZMyYMcOoW7eu8dRTTxnvvPOOcd999xmSjM2bN5vbnzlzxvDz8zOio6ONd99915g2bZpRt25do3jx4sbu3bsNwzCMixcvGu+++64hyejZs6c5D3v27DEM46/fPQ8PD6NmzZpGRESEMXfuXOPf//63uS4gIMA8XmpqqtGkSRMjICDAsNvthmEYxtq1aw1JxqRJk5w695z+Lr/wwguGi4uLMWTIEOODDz4w3njjDaNfv37G1KlTzT4RERGGp6enERgYaAwbNsyYM2eO0bp1a0OSERMTY1SuXNkYOXKk8dZbbxn33nuv4ebmZvz8889OjzciIsJ8ffLkSaNixYpG2bJljQkTJhivv/66Ubt2baNRo0aGJCMxMdEwDMM4deqUUbZsWaNOnTrG66+/bnzwwQfG2LFjjfr16zt1/AoVKhh/+9vfjJkzZxrly5c3JBm+vr7GW2+9laPta9WqZTz88MNZ2tetW2e4uroaDRo0MGbMmGGMHTvW8PLyMu69917zZ5+UlGR8/PHHRoUKFYygoKAs/35dq1SpUg7zdKOx9OrVK0fjBlD0kZHISNkhI5GRcqqwZKRMjz32mFGyZEnj6tWr2Y6FjHR3oCAFy73++usO/whnio+PNyQZgwcPdmh/7rnnDEnGxo0bzbaAgABDkvHf//7XbEtOTjb8/PyMJk2a5Hgshw8fNlxdXY2ePXsa6enpDusyMjIMwzCM06dPG+7u7kbHjh0d+rz99tuGJOOjjz4y2x544AFDkjF37lyHfWWGLZvNZpw+fdphXYcOHYyGDRsaV65ccTh269atjdq1a5tt2YWty5cvZzmnKVOmGC4uLsaxY8fMtsjISONG9efrw1aPHj0Md3d348iRI2bbiRMnjDJlyhht27Y12zLDVmhoqDlXhmEYUVFRhpubm3H+/Plsj5edzLA1dOhQs+3q1atGlSpVDBcXF4dAce7cOaNEiRIOb/hXr141UlJSHPZ57tw5o1KlSsaTTz5ptp05cybL+WbKDPqjR4/Odt21YcswDGPv3r2Gu7u7MXjwYOPcuXPGPffcYzRr1sxIS0vL8XkbRs5/lxs3bmyEh4ffdF+Z5/Dqq6+abZnz5eLiYixatMhsP3To0A3n4lbjvXbuR4wYYUgyvvvuO7Pt9OnThpeXl8Pf82XLlhmSjO+//96p413r7NmzhiSjfPnyRunSpY3XX3/dWLx4sdGpU6ds/95dLy0tzXBxcTGeffbZLOuCgoIMPz8/h9/b9evXG5Ky/OwDAgJu+bPISUGqY8eOTodNAEUbGYmMdD0yEhkpJwpTRjKMv/598fT0NJ544ols15OR7h58ZQ93jNWrV0uSoqOjHdqfffZZSdKqVasc2itXrqyePXuar202m/r376/du3crKSkpR8dcvny5MjIyNG7cuCw3Icy8ZHvDhg1KTU3ViBEjHPoMGTJENpsty7g8PDyyfBc6U69evcxLoiXp7Nmz2rhxox599FFduHBBv//+u37//Xf98ccfCgsL0+HDh296E8ISJUqYf7506ZJ+//13tW7dWoZhaPfu3Tmag2ulp6dr/fr16tGjh8N3tv38/PTYY4/pm2++kd1ud9hm6NChDpe333///UpPT9exY8ecPv7gwYPNP7u5ualZs2YyDEODBg0y2729vVW3bl39/PPPDn0z7zORkZGhs2fP6urVq2rWrJl27drl1BieeuqpHPVr0KCBJk6cqA8//FBhYWH6/fffNX/+/Fzd/DQnv8ve3t7av3+/Dh8+fMv9XTuPmfNVqlQph3sC1K1bV97e3g7zmBurV69Wq1at1KJFC7OtYsWK5qX8145D+uv+BGlpabk6Vual53/88Yc+/PBDPffcc3r00Ue1atUqBQYG6pVXXrnp9mfPnpVhGCpbtqxD+8mTJxUfH6+IiAh5eXmZ7Q899FC294rKK2XLltXvv/+eb/sHUHSQkchIZKS/kJGyV5gy0uXLl/XII4+oRIkSmjp1arZ9yEh3DwpSuGMcO3ZMrq6uqlWrlkO7r6+vvL29s7x516pVK8v9WurUqSNJ5v0WbuXIkSNydXW96T+omcetW7euQ7u7u7tq1KiRZVz33HPPDW/CWb16dYfXP/30kwzD0EsvvaSKFSs6LJlPpzh9+vQNx3b8+HENGDBA5cqVU+nSpVWxYkU98MADkqTk5OQbbncjZ86c0eXLl7OcqyTVr19fGRkZ+uWXXxzaq1at6vA6843s3LlzTh//+n15eXnJ09Mzy/fOvby8sux//vz5atSokXnvgIoVK2rVqlVOzUOxYsVUpUqVHPcfOXKkGjdurO3bt2v8+PG5fmPOye/yyy+/rPPnz6tOnTpq2LChRo4cqR9++CHLvjw9PR0CvfTXfFWpUiXLMbKbR2cdO3ZMtWvXztJ+/e/QAw88oF69emnixImqUKGCunfvrpiYmCz3PrmZzP+5KF68uHr37m22u7q6qk+fPvr11191/PjxW+7HMIws5yApR+eRlwzDyPE9pwDc3chIZCQy0v+QkbIqLBkpPT1dffv21YEDB7R06VJVrlz5huMgI90deMoe7jiF/R+faz+Ru9W6zJsaPvfccwoLC8t2m+vDZ6b09HQ99NBDOnv2rEaNGqV69eqpVKlS+u233zRgwADLHsF7o8fCXv+Gltt95WT/n3zyiQYMGKAePXpo5MiR8vHxkZubm6ZMmaIjR47k+PgeHh5OPa73559/Nj+N27t3b463y422bdvqyJEj+vzzz7V+/Xp9+OGHmjlzpubOnZvlU9Ps5OXPKTdcXFy0dOlSbdu2TV988YXWrVunJ598Um+88Ya2bdt2y6fSSTJvaOvt7Z3lfHx8fCT9FfKvD+3Xbu/i4nLbATOvnDt3Lsv/SADAzZCRHJGRyEgSGUkqPBlpyJAhWrlypRYsWKD27dvfsB8Z6e5BQQqWu1GYCggIUEZGhg4fPqz69eub7adOndL58+cVEBDg0D/zk7Nr9/fjjz9KksPTPm6mZs2aysjI0IEDBxQUFHTDcUlSQkKCwyXaqampSkxMNJ8EkRuZ+ytevLjT+9m7d69+/PFHzZ8/X/379zfbr32iSKacBtiKFSuqZMmSSkhIyLLu0KFDcnV1lb+/v1PjtMLSpUtVo0YNffbZZw7nmvkJaqa8DPIZGRkaMGCAbDabRowYoVdffVW9e/fWww8/7PS+cvq7XK5cOQ0cOFADBw7UxYsX1bZtW02YMMEhbFktICAg20vks/sdkqRWrVqpVatWmjx5shYuXKjHH39cixYtytE5uLq6KigoSN9//71SU1MdPmU/ceKEJGX55PNaxYoVU82aNZWYmJjlHCQ5dR55ITExUY0bN863/QMofMhI/0NGyhtkJDLSnZKRRo4cqZiYGM2aNUv9+vW7aV8y0t2Dr+zBcqVKlZKkLI8D7tKli6S/Hll6rRkzZkiSwsPDHdpPnDjh8MhRu92uf//73woKCpKvr2+OxtKjRw+5urrq5ZdfzvJpWeanIqGhoXJ3d9ebb77p8EnJv/71LyUnJ2cZlzN8fHz04IMP6r333tPJkyezrL/Zo4EzP/24dkyGYWj27NlZ+t5ozrPbZ8eOHfX55587XNJ/6tQpLVy4UG3atJHNZrvpPgpCdnPx3XffaevWrQ79SpYsKenW85ATM2bM0JYtW/T+++9r0qRJat26tZ566qlcfd89J7/Lf/zxh8M2pUuXVq1atZy6nDs/dOnSRdu2bdP27dvNtjNnzmjBggUO/c6dO5flk8bM/8Fx5hz69Omj9PR0zZ8/32y7cuWKFixYoMDAwBte+p0pJCREO3bscGjz8/NTUFCQ5s+f7/D1hdjYWPOx43ktOTlZR44cUevWrfNl/wAKJzLS/5CR8gYZqeCQkf7n9ddf1/Tp0/XCCy/omWeeuWlfMtLdhSukYLng4GBJ0tixY9W3b18VL15c3bp1U+PGjRUREaH3339f58+f1wMPPKDt27dr/vz56tGjh9q1a+ewnzp16mjQoEH6/vvvValSJX300Uc6deqUYmJicjyWWrVqaezYsZo0aZLuv/9+Pfzww/Lw8ND333+vypUra8qUKapYsaLGjBmjiRMnqlOnTvrb3/6mhIQEvfPOO2revLn+/ve/39Z8zJkzR23atFHDhg01ZMgQ1ahRQ6dOndLWrVv166+/as+ePdluV69ePdWsWVPPPfecfvvtN9lsNv33v//N9lLbzDn/v//7P4WFhcnNzU19+/bNdr+vvPKKYmNj1aZNG/3zn/9UsWLF9N577yklJUXTpk27rXPNL127dtVnn32mnj17Kjw8XImJiZo7d64CAwPNmzxKf30dIDAwUIsXL1adOnVUrlw5NWjQQA0aNHDqeAcPHtRLL72kAQMGqFu3bpKkefPmKSgoSP/85z/16aefOrW/nPwuBwYG6sEHH1RwcLDKlSunHTt2aOnSpRo+fLhTx8przz//vD7++GN16tRJzzzzjEqVKqX3339fAQEBDvdvmD9/vt555x317NlTNWvW1IULF/TBBx/IZrOZ/6OVE//4xz/04YcfKjIyUj/++KOqVq2qjz/+WMeOHdMXX3xxy+27d++ujz/+WD/++KN5DwpJmjJlisLDw9WmTRs9+eSTOnv2rN566y3de++9Dr9DN/PFF1+Yf1/T0tL0ww8/mDcR/dvf/qZGjRqZfTds2CDDMNS9e/ccnzuAoo+M5IiMdPvISAWHjPSXZcuW6fnnn1ft2rVVv359ffLJJw7rH3roIVWqVMl8TUa6y+TvQ/yA7E2aNMm45557DFdXV4fHnqalpRkTJ040qlevbhQvXtzw9/c3xowZ4/C4X8P43yNF161bZzRq1Mjw8PAw6tWrZyxZsiRX4/noo4+MJk2aGB4eHkbZsmWNBx54wIiNjXXo8/bbbxv16tUzihcvblSqVMl46qmnjHPnzjn0eeCBB4x77703y/4zH2n8+uuvZ3v8I0eOGP379zd8fX2N4sWLG/fcc4/RtWtXY+nSpWaf7B5pfODAASM0NNQoXbq0UaFCBWPIkCHGnj17DElGTEyM2e/q1avG008/bVSsWNFwcXFxeLyxsnms7a5du4ywsDCjdOnSRsmSJY127doZW7ZsceiT+Ujj6x9Rm904byXzkcZnzpxxaI+IiDBKlSqVpf/185yRkWG8+uqrRkBAgOHh4WE0adLEWLlyZbaPIt6yZYsRHBxsuLu7O5z7jY6VuS5zP1evXjWaN29uVKlSJctjm2fPnm1IMhYvXpzjc8/p7/Irr7xitGjRwvD29jZKlChh1KtXz5g8ebKRmprqMM6czNf1x3bG9Y80NgzD+OGHH4wHHnjA8PT0NO655x5j0qRJxr/+9S+Hv9u7du0y+vXrZ1StWtXw8PAwfHx8jK5duxo7duxw6viGYRinTp0yIiIijHLlyhkeHh5Gy5YtjbVr1+Zo25SUFKNChQrGpEmTsqz773//a9SvX9/w8PAwAgMDjc8++yzb36EbzVvmI6WzW679+2gYhtGnTx+jTZs2OT5nAHcPMpIjMhIZiYyUc3diRsr8Hb7Rcv3fBzLS3cXFMCy6WxuQh6pVq6YGDRpo5cqVBT0U4Lbwu2y9SZMmKSYmRocPH77hjUzzU1JSkqpXr65Fixbx6R+APMf7CooKfpetR0aC1biHFADgrhIVFaWLFy9q0aJFBXL8WbNmqWHDhgQtAABwRyEjwWrcQwpFVlJS0k3XlyhRQl5eXhaN5u508eLFW363vGLFigXyCUx+O3PmjNLT02+43t3dXeXKlbNwRDdX0H9fzp49q9TU1Buud3Nzu+nTYZxRunRpnT59Ok/2lRtTp04tsGMDgFTw/+aDjERGyjkyEoo0Z77f98477xgNGzY0ypQpY5QpU8Zo1aqVsXr1anP9Aw88kOU7of/4xz8c9nHs2DGjS5cuRokSJYyKFSsazz33nJGWlubQ58svvzSaNGliuLu7GzVr1sxy7w3D+Ou76pnfhW7RooXx3XffOXMqKORy8r3u638Xr1+u/4438t6tvjOua74/X9QEBATc9LwfeOABs5+z9yjIDwX99yW7949rl+vvUQDcachIuFOQkQoHMhIZKafISCjKnLpCqkqVKpo6dapq164twzA0f/58de/eXbt379a9994rSRoyZIhefvllc5vMR4hKUnp6usLDw+Xr66stW7bo5MmT6t+/v4oXL65XX31VkpSYmKjw8HANGzZMCxYsUFxcnAYPHiw/Pz+FhYVJkhYvXqzo6GjNnTtXLVu21KxZsxQWFqaEhAT5+Pg4c0oopK593O6NxMbG3nT9rR59itvXv39/tWnT5qZ9cvr46cJmwYIF+vPPP2+4vmzZspJy9rtshYL++/LGG29k+/SjTCVKlMjX4wO3i4yEOwUZqXAgI5GRcoqMhKLstm9qXq5cOb3++usaNGiQHnzwQQUFBWnWrFnZ9l2zZo26du2qEydOmI92nDt3rkaNGqUzZ87I3d1do0aN0qpVq7Rv3z5zu759++r8+fNau3atJKlly5Zq3ry53n77bUlSRkaG/P399fTTT2v06NG3czoAAAB5gowEAABwY7m+qXl6eroWLVqkS5cuKSQkxGxfsGCBKlSooAYNGmjMmDG6fPmyuW7r1q1q2LChGbQkKSwsTHa7Xfv37zf7hIaGOhwrLCxMW7dulSSlpqZq586dDn1cXV0VGhpq9gEAACgoZCQAAIBbc/qm5nv37lVISIiuXLmi0qVLa9myZQoMDJQkPfbYYwoICFDlypX1ww8/aNSoUUpISNBnn30m6a8bwl0btCSZrzNvFnejPna7XX/++afOnTun9PT0bPscOnTopmNPSUlRSkqK+TojI0Nnz55V+fLl5eLi4uxUAACAQsgwDF24cEGVK1eWq2vePXCYjAQAAAqz/MpIN+J0Qapu3bqKj49XcnKyli5dqoiICG3evFmBgYEaOnSo2a9hw4by8/NThw4ddOTIEdWsWTNPB54bU6ZM0cSJEwt6GAAA4A7wyy+/qEqVKnm2PzISAAAoCvI6I92I0wUpd3d31apVS5IUHBys77//XrNnz9Z7772XpW/Lli0lST/99JNq1qwpX19fbd++3aHPqVOnJP3vpn2+vr5m27V9bDabSpQoITc3N7m5uWXb51Y3/hszZoyio6PN18nJyapatap++eUX2Wy2nJw+AAAo5Ox2u/z9/VWmTJk83S8ZCQAAFGb5lZFuxOmC1PUyMjIcLvG+Vnx8vCTJz89PkhQSEqLJkyfr9OnT5pNeYmNjZbPZzEvaQ0JCtHr1aof9xMbGmvdgcHd3V3BwsOLi4tSjRw9zDHFxcRo+fPhNx+rh4SEPD48s7TabjbAFAMBdJr+/ikZGAgAAhZFVX9d3qiA1ZswYde7cWVWrVtWFCxe0cOFCbdq0SevWrdORI0e0cOFCdenSReXLl9cPP/ygqKgotW3bVo0aNZIkdezYUYGBgXriiSc0bdo0JSUl6cUXX1RkZKQZgoYNG6a3335bzz//vJ588klt3LhRn376qVatWmWOIzo6WhEREWrWrJlatGihWbNm6dKlSxo4cGAeTg0AAEDOkJEAAACcZDjhySefNAICAgx3d3ejYsWKRocOHYz169cbhmEYx48fN9q2bWuUK1fO8PDwMGrVqmWMHDnSSE5OdtjH0aNHjc6dOxslSpQwKlSoYDz77LNGWlqaQ58vv/zSCAoKMtzd3Y0aNWoYMTExWcby1ltvGVWrVjXc3d2NFi1aGNu2bXPmVAzDMIzk5GRDUpYxAgCAois/3v/JSADRnsLgAAEAAElEQVQAoLCz+v3fxTAMo2BLYgXHbrfLy8tLycnJXI4OAMBdgvf/W2OOAAC4+1j9/n/b95ACAKAoMgxDV69eVXp6ekEPBU5yc3NTsWLFLLv/AQAAdxMyUuF1p2UkClIAAFwnNTVVJ0+e1OXLlwt6KMilkiVLys/PT+7u7gU9FAAAigwyUuF3J2UkClIAAFwjIyNDiYmJcnNzU+XKleXu7n7HfIqEWzMMQ6mpqTpz5owSExNVu3Ztubq6FvSwAAAo9MhIhdudmJEoSAEAcI3U1FRlZGTI399fJUuWLOjhIBdKlCih4sWL69ixY0pNTZWnp2dBDwkAgEKPjFT43WkZiY8MAQDIRkF/YoTbw88PAID8wXts4XYn/fzunJEAAAAAAADgrkBBCgAAAAAAAJbiHlIAAORQ2tpvLDtW8U5tctz3VjcUHT9+vCZMmHCbI8odFxcXLVu2TD169Mj1Pt5//30tXLhQu3bt0oULF3Tu3Dl5e3vn2RgBAMDtsTIjSeSkTGfPntX48eO1fv16HT9+XBUrVlSPHj00adIkeXl55e1g8wEFKQAACrmTJ0+af168eLHGjRunhIQEs6106dJO7S81NfWOeBRwpsuXL6tTp07q1KmTxowZU9DDAQAAhUhRzkknTpzQiRMnNH36dAUGBurYsWMaNmyYTpw4oaVLlxb08G6Jr+zlo7S132RZAADIa76+vubi5eUlFxcX8/WlS5f0+OOPq1KlSipdurSaN2+uDRs2OGxfrVo1TZo0Sf3795fNZtPQoUMlSR988IH5JJ2ePXtqxowZWa5M+vzzz9W0aVN5enqqRo0amjhxoq5evWruV5J69uwpFxcX8/WePXvUrl07lSlTRjabTcHBwdqxY8cNz2/EiBEaPXq0WrVqlTcThgJHRgIAWKUo56QGDRrov//9r7p166aaNWuqffv2mjx5sr744gvzOHcyClIAABRhFy9eVJcuXRQXF6fdu3erU6dO6tatm44fP+7Qb/r06WrcuLF2796tl156Sd9++62GDRumZ555RvHx8XrooYc0efJkh22+/vpr9e/fX88884wOHDig9957T/PmzTP7ff/995KkmJgYnTx50nz9+OOPq0qVKvr++++1c+dOjR49WsWLF7dgNgAAAP6nKOak5ORk2Ww2FSt2538h7s4fIQAAyLXGjRurcePG5utJkyZp2bJlWrFihYYPH262t2/fXs8++6z5euzYsercubOee+45SVKdOnW0ZcsWrVy50uwzceJEjR49WhEREZKkGjVqaNKkSXr++ec1fvx4VaxYUZLk7e0tX19fc7vjx49r5MiRqlevniSpdu3a+XDmAAAAN1fUctLvv/+uSZMmmVdx3em4QgoAgCLs4sWLeu6551S/fn15e3urdOnSOnjwYJZP/po1a+bwOiEhQS1atHBou/71nj179PLLL6t06dLmMmTIEJ08eVKXL1++4Ziio6M1ePBghYaGaurUqTpy5MhtniUAAIDzilJOstvtCg8PV2BgYIHdpN1ZFKQAACjCnnvuOS1btkyvvvqqvv76a8XHx6thw4ZKTU116FeqVCmn933x4kVNnDhR8fHx5rJ3714dPnxYnp6eN9xuwoQJ2r9/v8LDw7Vx40YFBgZq2bJlTh8fAADgdhSVnHThwgV16tRJZcqU0bJlywrNrRD4yh4AAEXYt99+qwEDBqhnz56S/gpHR48eveV2devWNe9lkOn6102bNlVCQoJq1ap1w/0UL15c6enpWdrr1KmjOnXqKCoqSv369VNMTIw5RgAAACsUhZxkt9sVFhYmDw8PrVix4qbFrjsNBSkAAIqw2rVr67PPPlO3bt3k4uKil156SRkZGbfc7umnn1bbtm01Y8YMdevWTRs3btSaNWvk4uJi9hk3bpy6du2qqlWrqnfv3nJ1ddWePXu0b98+vfLKK5L+eoJMXFyc7rvvPnl4eMjT01MjR45U7969Vb16df3666/6/vvv1atXrxuOJSkpSUlJSfrpp58kSXv37lWZMmVUtWpVlStX7jZnCAAA3K0Ke06y2+3q2LGjLl++rE8++UR2u112u12SVLFiRbm5ueXBLOUfvrIHAEARNmPGDJUtW1atW7dWt27dFBYWpqZNm95yu/vuu09z587VjBkz1LhxY61du1ZRUVEOn7qFhYVp5cqVWr9+vZo3b65WrVpp5syZCggIMPu88cYbio2Nlb+/v5o0aSI3Nzf98ccf6t+/v+rUqaNHH31UnTt31sSJE284lrlz56pJkyYaMmSIJKlt27Zq0qSJVqxYcRszAwAA7naFPSft2rVL3333nfbu3atatWrJz8/PXH755Zfbn6B85mIYhlHQgygodrtdXl5e5mMR81ra2m+ytBXv1CbPjwMAyDtXrlxRYmKiqlevXqguebbCkCFDdOjQIX399dcFPZRbutnPMb/f/4sCMhIA4HpkpJsrLDnpTspIfGUPAABka/r06XrooYdUqlQprVmzRvPnz9c777xT0MMCAAAocOSk20dBCgAAZGv79u2aNm2aLly4oBo1aujNN9/U4MGDC3pYAAAABY6cdPsoSAEAgGx9+umnBT0EAACAOxI56fZxU3MAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpYgU9AAAACosjO96z7Fg1m/3Dqf4DBgzQ/PnzJUnFihVTuXLl1KhRI/Xr108DBgyQq2vh/Qxq//79GjdunHbu3Kljx45p5syZGjFiREEPCwAA/H9WZiSJnHStDz74QP/+97+1b98+SVJwcLBeffVVtWjRooBHdmuFd9YBAICDTp066eTJkzp69KjWrFmjdu3a6ZlnnlHXrl119erVgh5erl2+fFk1atTQ1KlT5evrW9DDAQAAhVBRzUmbNm1Sv3799OWXX2rr1q3y9/dXx44d9dtvvxX00G6JghQAAEWEh4eHfH19dc8996hp06Z64YUX9Pnnn2vNmjWaN2+e2e/8+fMaPHiwKlasKJvNpvbt22vPnj0O+/riiy/UvHlzeXp6qkKFCurZs6e57ty5c+rfv7/Kli2rkiVLqnPnzjp8+LAk6dKlS7LZbFq6dKnD/pYvX65SpUrpwoULSk1N1fDhw+Xn5ydPT08FBARoypQpNzyv5s2b6/XXX1ffvn3l4eGRBzMFAADuNkU1Jy1YsED//Oc/FRQUpHr16unDDz9URkaG4uLi8mDW8hcFKQAAirD27durcePG+uyzz8y2Rx55RKdPn9aaNWu0c+dONW3aVB06dNDZs2clSatWrVLPnj3VpUsX7d69W3FxcQ6XfQ8YMEA7duzQihUrtHXrVhmGoS5duigtLU2lSpVS3759FRMT4zCOmJgY9e7dW2XKlNGbb76pFStW6NNPP1VCQoIWLFigatWqWTIfAAAAmYpiTrp8+bLS0tJUrly525scC3APKQAAirh69erphx9+kCR988032r59u06fPm1ebTR9+nQtX75cS5cu1dChQzV58mT17dtXEydONPfRuHFjSdLhw4e1YsUKffvtt2rdurWkvz6Z8/f31/Lly/XII49o8ODBat26tU6ePCk/Pz+dPn1aq1ev1oYNGyRJx48fV+3atdWmTRu5uLgoICDAyukAAAAwFbWcNGrUKFWuXFmhoaG3PTf5jSukAAAo4gzDkIuLiyRpz549unjxosqXL6/SpUubS2Jioo4cOSJJio+PV4cOHbLd18GDB1WsWDG1bNnSbCtfvrzq1q2rgwcPSpJatGihe++917x56CeffKKAgAC1bdtW0l+fHMbHx6tu3br6v//7P61fvz7fzh0AAOBmilJOmjp1qhYtWqRly5bJ09PT+cmwGFdIAQBQxB08eFDVq1eXJF28eFF+fn7atGlTln7e3t6SpBIlStz2MQcPHqw5c+Zo9OjRiomJ0cCBA82w17RpUyUmJmrNmjXasGGDHn30UYWGhma5nwIAAEB+Kyo5afr06Zo6dao2bNigRo0a3fYYreDUFVLvvvuuGjVqJJvNJpvNppCQEK1Zs8Zcf+XKFUVGRprVxF69eunUqVMO+zh+/LjCw8NVsmRJ+fj4aOTIkVnuaL9p0yY1bdpUHh4eqlWrlsMNxjLNmTNH1apVk6enp1q2bKnt27c7cyqWOHp+TZYFAAArbdy4UXv37lWvXr0k/RVykpKSVKxYMdWqVcthqVChgiSpUaNGN7wRZv369XX16lV99913Ztsff/yhhIQEBQYGmm1///vfdezYMb355ps6cOCAIiIiHPZjs9nUp08fffDBB1q8eLH++9//mvdmKIzISM4hIwEA7gRFJSdNmzZNkyZN0tq1a9WsWbNcz4fVnCpIValSRVOnTtXOnTu1Y8cOtW/fXt27d9f+/fslSVFRUfriiy+0ZMkSbd68WSdOnNDDDz9sbp+enq7w8HClpqZqy5Ytmj9/vubNm6dx48aZfRITExUeHq527dopPj5eI0aM0ODBg7Vu3Tqzz+LFixUdHa3x48dr165daty4scLCwnT69OnbnQ8AAAqtlJQUJSUl6bffftOuXbv06quvqnv37uratav69+8vSQoNDVVISIh69Oih9evX6+jRo9qyZYvGjh2rHTt2SJLGjx+v//znPxo/frwOHjyovXv36rXXXpMk1a5dW927d9eQIUP0zTffaM+ePfr73/+ue+65R927dzfHUrZsWT388MMaOXKkOnbsqCpVqpjrZsyYof/85z86dOiQfvzxRy1ZskS+vr7mJ4/XS01NVXx8vOLj45WamqrffvtN8fHx+umnn/JpJp1HRgIA4M5WVHPSa6+9ppdeekkfffSRqlWrpqSkJCUlJenixYv5NJN5x6mCVLdu3dSlSxfVrl1bderU0eTJk1W6dGlt27ZNycnJ+te//qUZM2aoffv2Cg4OVkxMjLZs2aJt27ZJktavX68DBw7ok08+UVBQkDp37qxJkyZpzpw5Sk1NlSTNnTtX1atX1xtvvKH69etr+PDh6t27t2bOnGmOY8aMGRoyZIgGDhyowMBAzZ07VyVLltRHH32Uh1MDAEDhsnbtWvn5+alatWrq1KmTvvzyS7355pv6/PPP5ebmJklycXHR6tWr1bZtWw0cOFB16tRR3759dezYMVWqVEmS9OCDD2rJkiVasWKFgoKC1L59e4erbGJiYhQcHKyuXbsqJCREhmFo9erVKl68uMN4Bg0apNTUVD355JMO7WXKlNG0adPUrFkzNW/eXEePHtXq1avl6pp9LDlx4oSaNGmiJk2a6OTJk5o+fbqaNGmiwYMH5+X03RYyEgAAd7aimpPeffddpaamqnfv3vLz8zOX6dOn5+X05QsXwzCM3GyYnp6uJUuWKCIiQrt371ZSUpI6dOigc+fOOVTuAgICNGLECEVFRWncuHFasWKF4uPjzfWJiYmqUaOGdu3apSZNmqht27Zq2rSpZs2aZfaJiYnRiBEjlJycrNTUVJUsWVJLly5Vjx49zD4RERE6f/68Pv/88xyfg91ul5eXl5KTk2Wz2XIzDTd1eNHYLG21+07O8+MAAPLOlStXlJiYqOrVqxeKm0HeyT7++GNFRUXpxIkTcnd3t/TYN/s55vf7Pxnp1shIAFD4kJHyVkHlpILMSNdz+qbme/fuVUhIiK5cuaLSpUtr2bJlCgwMVHx8vNzd3bNcRlapUiUlJSVJkpKSksyq4rXrM9fdrI/dbteff/6pc+fOKT09Pds+hw4duunYU1JSlJKSYr622+05P3EAAJAjly9f1smTJzV16lT94x//sLwYVVDISAAA4Fbu1pyUHae+sidJdevWVXx8vL777js99dRTioiI0IEDB/JjbHluypQp8vLyMhd/f/+CHhIAAEXOtGnTVK9ePfn6+mrMmDEFPRzLkJEAAMCt3K05KTtOF6Tc3d1Vq1YtBQcHa8qUKWrcuLFmz54tX19fpaam6vz58w79T506JV9fX0mSr69vlifKZL6+VR+bzaYSJUqoQoUKcnNzy7ZP5j5uZMyYMUpOTjaXX375xdnTBwAAtzBhwgSlpaUpLi5OpUuXLujhWIaMBAAAbuVuzUnZcbogdb2MjAylpKQoODhYxYsXd3j8YUJCgo4fP66QkBBJUkhIiPbu3evwpJfY2FjZbDbzEYghISFZHqEYGxtr7sPd3V3BwcEOfTIyMhQXF2f2uREPDw/zccyZCwAAQH4gIwEAANyYU/eQGjNmjDp37qyqVavqwoULWrhwoTZt2qR169bJy8tLgwYNUnR0tMqVKyebzaann35aISEhatWqlSSpY8eOCgwM1BNPPKFp06YpKSlJL774oiIjI+Xh4SFJGjZsmN5++209//zzevLJJ7Vx40Z9+umnWrVqlTmO6OhoRUREqFmzZmrRooVmzZqlS5cuaeDAgXk4NQAAADlDRgIAAHCOUwWp06dPq3///jp58qS8vLzUqFEjrVu3Tg899JAkaebMmXJ1dVWvXr2UkpKisLAwvfPOO+b2bm5uWrlypZ566imFhISoVKlSioiI0Msvv2z2qV69ulatWqWoqCjNnj1bVapU0YcffqiwsDCzT58+fXTmzBmNGzdOSUlJCgoK0tq1a7PcxBMAgNzK5UNocYew+udHRgIA3C3ISIXbnfTzczHupNFYjEcaAwCul56erh9//FE+Pj4qX758QQ8HufTHH3/o9OnTqlOnjtzc3BzWWf1I48KIjAQAuB4ZqWi4kzKSU1dIAQBQ1Lm5ucnb29u8l0/JkiXl4uJSwKNCThmGocuXL+v06dPy9vbOErQAAEDukJEKtzsxI1GQAgDgOplPJLv2BtMoXLy9vW/5ZDkAAOAcMlLhdydlJApSAABcx8XFRX5+fvLx8VFaWlpBDwdOKl68+B3xqR8AAEUNGalwu9MyEgUpAABuwM3N7Y560wYAALgTkJGQF1wLegAAAAAAAAC4u1CQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAs5VRBasqUKWrevLnKlCkjHx8f9ejRQwkJCQ59HnzwQbm4uDgsw4YNc+hz/PhxhYeHq2TJkvLx8dHIkSN19epVhz6bNm1S06ZN5eHhoVq1amnevHlZxjNnzhxVq1ZNnp6eatmypbZv3+7M6QAAAOQJMhIAAIBznCpIbd68WZGRkdq2bZtiY2OVlpamjh076tKlSw79hgwZopMnT5rLtGnTzHXp6ekKDw9XamqqtmzZovnz52vevHkaN26c2ScxMVHh4eFq166d4uPjNWLECA0ePFjr1q0z+yxevFjR0dEaP368du3apcaNGyssLEynT5/O7VwAAADkChkJAADAOS6GYRi53fjMmTPy8fHR5s2b1bZtW0l/ffoXFBSkWbNmZbvNmjVr1LVrV504cUKVKlWSJM2dO1ejRo3SmTNn5O7urlGjRmnVqlXat2+fuV3fvn11/vx5rV27VpLUsmVLNW/eXG+//bYkKSMjQ/7+/nr66ac1evToHI3fbrfLy8tLycnJstlsuZ2GGzq8aGyWttp9J+f5cQAAQM7l9/u/REa6FTISAAB3Hisy0rVu6x5SycnJkqRy5co5tC9YsEAVKlRQgwYNNGbMGF2+fNlct3XrVjVs2NAMWpIUFhYmu92u/fv3m31CQ0Md9hkWFqatW7dKklJTU7Vz506HPq6urgoNDTX7ZCclJUV2u91hAQAAyGtkJAAAgJsrltsNMzIyNGLECN13331q0KCB2f7YY48pICBAlStX1g8//KBRo0YpISFBn332mSQpKSnJIWhJMl8nJSXdtI/dbteff/6pc+fOKT09Pds+hw4duuGYp0yZookTJ+b2lAEAAG6JjAQAAHBruS5IRUZGat++ffrmm28c2ocOHWr+uWHDhvLz81OHDh105MgR1axZM/cjzQNjxoxRdHS0+dput8vf378ARwQAAIoaMhIAAMCt5aogNXz4cK1cuVJfffWVqlSpctO+LVu2lCT99NNPqlmzpnx9fbM86eXUqVOSJF9fX/O/mW3X9rHZbCpRooTc3Nzk5uaWbZ/MfWTHw8NDHh4eOTtJAAAAJ5GRAAAAcsape0gZhqHhw4dr2bJl2rhxo6pXr37LbeLj4yVJfn5+kqSQkBDt3bvX4UkvsbGxstlsCgwMNPvExcU57Cc2NlYhISGSJHd3dwUHBzv0ycjIUFxcnNkHAADAKmQkAAAA5zh1hVRkZKQWLlyozz//XGXKlDHvZ+Dl5aUSJUroyJEjWrhwobp06aLy5cvrhx9+UFRUlNq2batGjRpJkjp27KjAwEA98cQTmjZtmpKSkvTiiy8qMjLS/GRu2LBhevvtt/X888/rySef1MaNG/Xpp59q1apV5liio6MVERGhZs2aqUWLFpo1a5YuXbqkgQMH5tXcAAAA5AgZCQAAwDlOFaTeffddSX89tvhaMTExGjBggNzd3bVhwwYz+Pj7+6tXr1568cUXzb5ubm5auXKlnnrqKYWEhKhUqVKKiIjQyy+/bPapXr26Vq1apaioKM2ePVtVqlTRhx9+qLCwMLNPnz59dObMGY0bN05JSUkKCgrS2rVrs9zEEwAAIL+RkQAAAJzjYhiGUdCDKCh2u11eXl5KTk6WzWbL8/0fXjQ2S1vtvpPz/DgAACDn8vv9vyggIwEAcPexOiM5dQ8pAAAAAAAA4HZRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFJOFaSmTJmi5s2bq0yZMvLx8VGPHj2UkJDg0OfKlSuKjIxU+fLlVbp0afXq1UunTp1y6HP8+HGFh4erZMmS8vHx0ciRI3X16lWHPps2bVLTpk3l4eGhWrVqad68eVnGM2fOHFWrVk2enp5q2bKltm/f7szpAAAA5AkyEgAAgHOcKkht3rxZkZGR2rZtm2JjY5WWlqaOHTvq0qVLZp+oqCh98cUXWrJkiTZv3qwTJ07o4YcfNtenp6crPDxcqamp2rJli+bPn6958+Zp3LhxZp/ExESFh4erXbt2io+P14gRIzR48GCtW7fO7LN48WJFR0dr/Pjx2rVrlxo3bqywsDCdPn36duYDAADAaWQkAAAA57gYhmHkduMzZ87Ix8dHmzdvVtu2bZWcnKyKFStq4cKF6t27tyTp0KFDql+/vrZu3apWrVppzZo16tq1q06cOKFKlSpJkubOnatRo0bpzJkzcnd316j/x97dx1VR5///fx5QDl6dg6ZykaR4LXmNipjZFYlpbpRtan4SzYuPrvZNKVOzUDPTtTJt86KLTd1WP3axaaWGEqZuiZkkeZWuGaWtHrRUjhcFCPP7ox+TJ1A5CIPA4367ndt2Zl4z85636Hnu6wwzEydq7dq12rNnj3msAQMG6PTp00pMTJQkRUZGqnPnznrllVckSXl5eQoNDdUjjzyiSZMmFWn8brdbTqdTmZmZcjgcxZ2GSzq4ckqBZc0GzCzx4wAAgKIr7c9/iYx0JWQkAACuPVZkpItd1T2kMjMzJUl16tSRJKWmpionJ0fR0dFmTcuWLXXDDTcoJSVFkpSSkqI2bdqYQUuSYmJi5Ha7tXfvXrPm4n3k1+TvIzs7W6mpqR41Pj4+io6ONmsKk5WVJbfb7fECAAAoaWQkAACAyyt2QyovL0/jxo3TTTfdpNatW0uSXC6X/Pz8FBAQ4FEbGBgol8tl1lwctPLX56+7XI3b7dYvv/yin376Sbm5uYXW5O+jMLNmzZLT6TRfoaGh3p84AADAZZCRAAAArqzYDakxY8Zoz549WrlyZUmOp1RNnjxZmZmZ5uvIkSNlPSQAAFDBkJEAAACurEpxNho7dqzWrFmjLVu2qEGDBubyoKAgZWdn6/Tp0x7fAGZkZCgoKMis+eOTXvKfMHNxzR+fOpORkSGHw6Fq1arJ19dXvr6+hdbk76Mwdrtddrvd+xMGAAAoAjISAABA0Xh1hZRhGBo7dqxWrVqljRs3KiwszGN9RESEqlatquTkZHPZgQMHdPjwYUVFRUmSoqKitHv3bo8nvSQlJcnhcCg8PNysuXgf+TX5+/Dz81NERIRHTV5enpKTk80aAAAAq5CRAAAAvOPVFVJjxozRihUr9MEHH6hWrVrmvQicTqeqVasmp9OpYcOGKT4+XnXq1JHD4dAjjzyiqKgode3aVZLUs2dPhYeH66GHHtKcOXPkcrn01FNPacyYMeY3c6NGjdIrr7yiJ554Qg8//LA2btyod955R2vXrjXHEh8fr7i4OHXq1EldunTRvHnzdO7cOQ0dOrSk5gYAAKBIyEgAAADe8aohtWjRIknSrbfe6rF8yZIlGjJkiCTppZdeko+Pj/r166esrCzFxMRo4cKFZq2vr6/WrFmj0aNHKyoqSjVq1FBcXJyeeeYZsyYsLExr167V+PHjNX/+fDVo0EBvvPGGYmJizJr+/fvrxIkTSkhIkMvlUvv27ZWYmFjgJp4AAACljYwEAADgHZthGEZZD6KsuN1uOZ1OZWZmyuFwlPj+D66cUmBZswEzS/w4AACg6Er7878iICMBAFD5WJ2Riv2UPQAAAAAAAKA4aEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGAprxtSW7ZsUd++fRUSEiKbzabVq1d7rB8yZIhsNpvHq1evXh41J0+e1KBBg+RwOBQQEKBhw4bp7NmzHjW7du3SzTffLH9/f4WGhmrOnDkFxvLuu++qZcuW8vf3V5s2bbRu3TpvTwcAAKBEkJEAAACKzuuG1Llz59SuXTstWLDgkjW9evXSsWPHzNf//d//eawfNGiQ9u7dq6SkJK1Zs0ZbtmzRyJEjzfVut1s9e/ZUw4YNlZqaqueff17Tpk3Ta6+9ZtZs3bpVAwcO1LBhw7Rz507FxsYqNjZWe/bs8faUAAAArhoZCQAAoOhshmEYxd7YZtOqVasUGxtrLhsyZIhOnz5d4FvBfN98843Cw8P15ZdfqlOnTpKkxMRE9e7dWz/++KNCQkK0aNEiTZkyRS6XS35+fpKkSZMmafXq1dq/f78kqX///jp37pzWrFlj7rtr165q3769Fi9eXKTxu91uOZ1OZWZmyuFwFGMGLu/gyikFljUbMLPEjwMAAIqutD//JTLSlZCRAAC49liRkS5WKveQ2rRpk+rXr68WLVpo9OjR+vnnn811KSkpCggIMIOWJEVHR8vHx0dffPGFWdOjRw8zaElSTEyMDhw4oFOnTpk10dHRHseNiYlRSkrKJceVlZUlt9vt8QIAALAKGQkAAOA3Jd6Q6tWrl/7xj38oOTlZf/3rX7V582bdddddys3NlSS5XC7Vr1/fY5sqVaqoTp06crlcZk1gYKBHTf77K9Xkry/MrFmz5HQ6zVdoaOjVnSwAAEARkZEAAAB+V6WkdzhgwADzv9u0aaO2bduqSZMm2rRpk+64446SPpxXJk+erPj4ePO92+0mcAEAAEuQkQAAAH5XKr+yd7HGjRurbt26+vbbbyVJQUFBOn78uEfNhQsXdPLkSQUFBZk1GRkZHjX5769Uk7++MHa7XQ6Hw+MFAABQFshIAACgMiv1htSPP/6on3/+WcHBwZKkqKgonT59WqmpqWbNxo0blZeXp8jISLNmy5YtysnJMWuSkpLUokUL1a5d26xJTk72OFZSUpKioqJK+5QAAACuGhkJAABUZl43pM6ePau0tDSlpaVJktLT05WWlqbDhw/r7NmzmjBhgrZt26bvv/9eycnJuueee9S0aVPFxMRIklq1aqVevXppxIgR2r59uz7//HONHTtWAwYMUEhIiCTpwQcflJ+fn4YNG6a9e/fq7bff1vz58z0uJX/00UeVmJioF198Ufv379e0adO0Y8cOjR07tgSmBQAAwDtkJAAAgKLzuiG1Y8cOdejQQR06dJAkxcfHq0OHDkpISJCvr6927dqlP/3pT2revLmGDRumiIgI/fvf/5bdbjf3sXz5crVs2VJ33HGHevfure7du+u1114z1zudTm3YsEHp6emKiIjQY489poSEBI0cOdKs6datm1asWKHXXntN7dq103vvvafVq1erdevWVzMfAAAAxUJGAgAAKDqbYRhGWQ+irLjdbjmdTmVmZpbKvRIOrpxSYFmzATNL/DgAAKDoSvvzvyIgIwEAUPlYnZFK/R5SAAAAAAAAwMVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUl43pLZs2aK+ffsqJCRENptNq1ev9lhvGIYSEhIUHBysatWqKTo6WgcPHvSoOXnypAYNGiSHw6GAgAANGzZMZ8+e9ajZtWuXbr75Zvn7+ys0NFRz5swpMJZ3331XLVu2lL+/v9q0aaN169Z5ezoAAAAlgowEAABQdF43pM6dO6d27dppwYIFha6fM2eOXn75ZS1evFhffPGFatSooZiYGP36669mzaBBg7R3714lJSVpzZo12rJli0aOHGmud7vd6tmzpxo2bKjU1FQ9//zzmjZtml577TWzZuvWrRo4cKCGDRumnTt3KjY2VrGxsdqzZ4+3pwQAAHDVyEgAAABFZzMMwyj2xjabVq1apdjYWEm/ffMXEhKixx57TI8//rgkKTMzU4GBgVq6dKkGDBigb775RuHh4fryyy/VqVMnSVJiYqJ69+6tH3/8USEhIVq0aJGmTJkil8slPz8/SdKkSZO0evVq7d+/X5LUv39/nTt3TmvWrDHH07VrV7Vv316LFy8u0vjdbrecTqcyMzPlcDiKOw2XdHDllALLmg2YWeLHAQAARVfan/8SGelKyEgAAFx7rMhIFyvRe0ilp6fL5XIpOjraXOZ0OhUZGamUlBRJUkpKigICAsygJUnR0dHy8fHRF198Ydb06NHDDFqSFBMTowMHDujUqVNmzcXHya/JPw4AAMC1gowEAADgqUpJ7szlckmSAgMDPZYHBgaa61wul+rXr+85iCpVVKdOHY+asLCwAvvIX1e7dm25XK7LHqcwWVlZysrKMt+73W5vTg8AAKBYyEgAAACeKtVT9mbNmiWn02m+QkNDy3pIAAAAZY6MBAAArFaiDamgoCBJUkZGhsfyjIwMc11QUJCOHz/usf7ChQs6efKkR01h+7j4GJeqyV9fmMmTJyszM9N8HTlyxNtTBAAA8BoZCQAAwFOJNqTCwsIUFBSk5ORkc5nb7dYXX3yhqKgoSVJUVJROnz6t1NRUs2bjxo3Ky8tTZGSkWbNlyxbl5OSYNUlJSWrRooVq165t1lx8nPya/OMUxm63y+FweLwAAABKGxkJAADAk9cNqbNnzyotLU1paWmSfrtJZ1pamg4fPiybzaZx48bp2Wef1Ycffqjdu3dr8ODBCgkJMZ8y06pVK/Xq1UsjRozQ9u3b9fnnn2vs2LEaMGCAQkJCJEkPPvig/Pz8NGzYMO3du1dvv/225s+fr/j4eHMcjz76qBITE/Xiiy9q//79mjZtmnbs2KGxY8de/awAAAB4iYwEAABQdF7f1HzHjh267bbbzPf5ASguLk5Lly7VE088oXPnzmnkyJE6ffq0unfvrsTERPn7+5vbLF++XGPHjtUdd9whHx8f9evXTy+//LK53ul0asOGDRozZowiIiJUt25dJSQkaOTIkWZNt27dtGLFCj311FN68skn1axZM61evVqtW7cu1kQAAABcDTISAABA0dkMwzDKehBlxe12y+l0KjMzs1QuTT+4ckqBZc0GzCzx4wAAgKIr7c//ioCMBABA5WN1RqpUT9kDAAAAAABA2aMhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApUq8ITVt2jTZbDaPV8uWLc31v/76q8aMGaPrrrtONWvWVL9+/ZSRkeGxj8OHD6tPnz6qXr266tevrwkTJujChQseNZs2bVLHjh1lt9vVtGlTLV26tKRPBQAAoMSQkQAAAH5XKldI3XjjjTp27Jj5+uyzz8x148eP10cffaR3331Xmzdv1tGjR3XfffeZ63Nzc9WnTx9lZ2dr69atWrZsmZYuXaqEhASzJj09XX369NFtt92mtLQ0jRs3TsOHD9f69etL43QAAABKBBkJAADgN1VKZadVqigoKKjA8szMTP3973/XihUrdPvtt0uSlixZolatWmnbtm3q2rWrNmzYoH379umTTz5RYGCg2rdvrxkzZmjixImaNm2a/Pz8tHjxYoWFhenFF1+UJLVq1UqfffaZXnrpJcXExJTGKQEAAFw1MhIAAMBvSuUKqYMHDyokJESNGzfWoEGDdPjwYUlSamqqcnJyFB0dbda2bNlSN9xwg1JSUiRJKSkpatOmjQIDA82amJgYud1u7d2716y5eB/5Nfn7AAAAuBaRkQAAAH5T4ldIRUZGaunSpWrRooWOHTum6dOn6+abb9aePXvkcrnk5+engIAAj20CAwPlcrkkSS6XyyNo5a/PX3e5GrfbrV9++UXVqlUrdGxZWVnKysoy37vd7qs6VwAAgKIiIwEAAPyuxBtSd911l/nfbdu2VWRkpBo2bKh33nnnkiHIKrNmzdL06dPLdAwAAKByIiMBAAD8rlR+Ze9iAQEBat68ub799lsFBQUpOztbp0+f9qjJyMgw76cQFBRU4Iky+e+vVONwOC4b6CZPnqzMzEzzdeTIkas9PQAAgGIhIwEAgMqs1BtSZ8+e1aFDhxQcHKyIiAhVrVpVycnJ5voDBw7o8OHDioqKkiRFRUVp9+7dOn78uFmTlJQkh8Oh8PBws+bifeTX5O/jUux2uxwOh8cLAACgLJCRAABAZVbiDanHH39cmzdv1vfff6+tW7fq3nvvla+vrwYOHCin06lhw4YpPj5en376qVJTUzV06FBFRUWpa9eukqSePXsqPDxcDz30kL7++mutX79eTz31lMaMGSO73S5JGjVqlL777js98cQT2r9/vxYuXKh33nlH48ePL+nTAQAAKBFkJAAAgN+V+D2kfvzxRw0cOFA///yz6tWrp+7du2vbtm2qV6+eJOmll16Sj4+P+vXrp6ysLMXExGjhwoXm9r6+vlqzZo1Gjx6tqKgo1ahRQ3FxcXrmmWfMmrCwMK1du1bjx4/X/Pnz1aBBA73xxhs8zhgAAFyzyEgAAAC/sxmGYZT1IMqK2+2W0+lUZmZmqVyafnDllALLmg2YWeLHAQAARVfan/8VARkJAIDKx+qMVOr3kAIAAAAAAAAuRkMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALFWlrAcAAACQk/hZgWVVe3Uvg5EAAABcOypyRuIKKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVJWyHgAAAKhcchI/K+shAAAAXHMqW0biCikAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJbiHlIAAKBUVbb7IQAAABRFZc9IXCEFAAAAAAAAS3GFFAAAKDGV/Zs+AACAwpCRCuIKKQAAAAAAAFiKK6QAAECxlOQ3fd+f/rjAsmbqXmL7BwAAsAoZqWjK/RVSCxYsUKNGjeTv76/IyEht3769rIcEAECFlJP4mccL1zYyEgAA1iAjFU+5vkLq7bffVnx8vBYvXqzIyEjNmzdPMTExOnDggOrXr1/WwwMAoFwgOFU8ZCQAAK4eGal0leuG1Ny5czVixAgNHTpUkrR48WKtXbtWb775piZNmlTGowMAwFrXamgq7FJzlC4yEgAAvyMjXZvKbUMqOztbqampmjx5srnMx8dH0dHRSklJKXSbrKwsZWVlme8zMzMlSW63u1TGePZ8VoFlpXUsAED5kJNU+GfUteZwZlJZD6HUPjPz92sYRqnsv6yRkQAA5REZqegqSkYqtw2pn376Sbm5uQoMDPRYHhgYqP379xe6zaxZszR9+vQCy0NDQ0tljIUa9qJ1xwIAoDwr5c/MM2fOyOl0luoxygIZCQCACq6CZKRy25AqjsmTJys+Pt58n5eXp5MnT+q6666TzWYr0WO53W6FhobqyJEjcjgcJbpvFI45tx5zbj3m3HrMedkozXk3DENnzpxRSEhIie63PCMjVWzMufWYc+sx52WDebdeRcpI5bYhVbduXfn6+iojI8NjeUZGhoKCggrdxm63y263eywLCAgorSFKkhwOB38xLcacW485tx5zbj3mvGyU1rxXxCuj8pGRcCnMufWYc+sx52WDebdeRchIPpYdqYT5+fkpIiJCycnJ5rK8vDwlJycrKiqqDEcGAABQdshIAACgPCi3V0hJUnx8vOLi4tSpUyd16dJF8+bN07lz58wnygAAAFRGZCQAAHCtK9cNqf79++vEiRNKSEiQy+VS+/btlZiYWOAmnmXBbrdr6tSpBS5/R+lhzq3HnFuPObcec142mPerQ0bCxZhz6zHn1mPOywbzbr2KNOc2o6I+8xgAAAAAAADXpHJ7DykAAAAAAACUTzSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYiobUVViwYIEaNWokf39/RUZGavv27Zetf/fdd9WyZUv5+/urTZs2WrdunUUjrTi8mfPXX39dN998s2rXrq3atWsrOjr6in9GKMjbn/N8K1eulM1mU2xsbOkOsALyds5Pnz6tMWPGKDg4WHa7Xc2bN+ffFy95O+fz5s1TixYtVK1aNYWGhmr8+PH69ddfLRpt+bdlyxb17dtXISEhstlsWr169RW32bRpkzp27Ci73a6mTZtq6dKlpT5OFB8ZyXpkJOuRkaxHRrIeGclalS4jGSiWlStXGn5+fsabb75p7N271xgxYoQREBBgZGRkFFr/+eefG76+vsacOXOMffv2GU899ZRRtWpVY/fu3RaPvPzyds4ffPBBY8GCBcbOnTuNb775xhgyZIjhdDqNH3/80eKRl1/eznm+9PR04/rrrzduvvlm45577rFmsBWEt3OelZVldOrUyejdu7fx2WefGenp6camTZuMtLQ0i0defnk758uXLzfsdruxfPlyIz093Vi/fr0RHBxsjB8/3uKRl1/r1q0zpkyZYrz//vuGJGPVqlWXrf/uu++M6tWrG/Hx8ca+ffuMv/3tb4avr6+RmJhozYDhFTKS9chI1iMjWY+MZD0ykvUqW0aiIVVMXbp0McaMGWO+z83NNUJCQoxZs2YVWv/AAw8Yffr08VgWGRlp/O///m+pjrMi8XbO/+jChQtGrVq1jGXLlpXWECuc4sz5hQsXjG7duhlvvPGGERcXR9jykrdzvmjRIqNx48ZGdna2VUOscLyd8zFjxhi33367x7L4+HjjpptuKtVxVlRFCVtPPPGEceONN3os69+/vxETE1OKI0NxkZGsR0ayHhnJemQk65GRylZlyEj8yl4xZGdnKzU1VdHR0eYyHx8fRUdHKyUlpdBtUlJSPOolKSYm5pL18FScOf+j8+fPKycnR3Xq1CmtYVYoxZ3zZ555RvXr19ewYcOsGGaFUpw5//DDDxUVFaUxY8YoMDBQrVu31nPPPafc3Fyrhl2uFWfOu3XrptTUVPOS9e+++07r1q1T7969LRlzZcRnaPlBRrIeGcl6ZCTrkZGsR0YqH8r7Z2iVsh5AefTTTz8pNzdXgYGBHssDAwO1f//+QrdxuVyF1rtcrlIbZ0VSnDn/o4kTJyokJKTAX1gUrjhz/tlnn+nvf/+70tLSLBhhxVOcOf/uu++0ceNGDRo0SOvWrdO3336rv/zlL8rJydHUqVOtGHa5Vpw5f/DBB/XTTz+pe/fuMgxDFy5c0KhRo/Tkk09aMeRK6VKfoW63W7/88ouqVatWRiPDH5GRrEdGsh4ZyXpkJOuRkcqH8p6RuEIKlcLs2bO1cuVKrVq1Sv7+/mU9nArpzJkzeuihh/T666+rbt26ZT2cSiMvL0/169fXa6+9poiICPXv319TpkzR4sWLy3poFdamTZv03HPPaeHChfrqq6/0/vvva+3atZoxY0ZZDw0AvEZGKn1kpLJBRrIeGQne4gqpYqhbt658fX2VkZHhsTwjI0NBQUGFbhMUFORVPTwVZ87zvfDCC5o9e7Y++eQTtW3btjSHWaF4O+eHDh3S999/r759+5rL8vLyJElVqlTRgQMH1KRJk9IddDlXnJ/z4OBgVa1aVb6+vuayVq1ayeVyKTs7W35+fqU65vKuOHP+9NNP66GHHtLw4cMlSW3atNG5c+c0cuRITZkyRT4+fNdT0i71GepwOK75b/4qGzKS9chI1iMjWY+MZD0yUvlQ3jMSPxHF4Ofnp4iICCUnJ5vL8vLylJycrKioqEK3iYqK8qiXpKSkpEvWw1Nx5lyS5syZoxkzZigxMVGdOnWyYqgVhrdz3rJlS+3evVtpaWnm609/+pNuu+02paWlKTQ01Mrhl0vF+Tm/6aab9O2335rBVpL+85//KDg4mKBVBMWZ8/PnzxcIVPlh1zCM0htsJcZnaPlBRrIeGcl6ZCTrkZGsR0YqH8r9Z2jZ3lO9/Fq5cqVht9uNpUuXGvv27TNGjhxpBAQEGC6XyzAMw3jooYeMSZMmmfWff/65UaVKFeOFF14wvvnmG2Pq1Kk80thL3s757NmzDT8/P+O9994zjh07Zr7OnDlTVqdQ7ng753/EE2S85+2cHz582KhVq5YxduxY48CBA8aaNWuM+vXrG88++2xZnUK54+2cT5061ahVq5bxf//3f8Z3331nbNiwwWjSpInxwAMPlNUplDtnzpwxdu7caezcudOQZMydO9fYuXOn8cMPPxiGYRiTJk0yHnroIbM+/5HGEyZMML755htjwYIF5eqRxpUNGcl6ZCTrkZGsR0ayHhnJepUtI9GQugp/+9vfjBtuuMHw8/MzunTpYmzbts1cd8sttxhxcXEe9e+8847RvHlzw8/Pz7jxxhuNtWvXWjzi8s+bOW/YsKEhqcBr6tSp1g+8HPP25/xihK3i8XbOt27dakRGRhp2u91o3LixMXPmTOPChQsWj7p882bOc3JyjGnTphlNmjQx/P39jdDQUOMvf/mLcerUKesHXk59+umnhf77nD/PcXFxxi233FJgm/bt2xt+fn5G48aNjSVLllg+bhQdGcl6ZCTrkZGsR0ayHhnJWpUtI9kMg2vnAAAAAAAAYB3uIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSQDmxadMm2Ww2bdq0qUT3a7PZNG3atBLdZ0UzZMgQNWrUqKyHcU1o1KiRhgwZcsW6pUuXymaz6fvvvy/1MXnr7Nmzql+/vpYvX37F2sL+7M+ePavhw4crKChINptN48aN8+r4kyZNUmRkpFfbAAAujYxUdshIvyMjkZHgPRpSsNzWrVs1bdo0nT59uqyHUmmsW7eOQCXp/PnzmjZtWokHVlinUaNGstlshb6aNWtWpH3Mnz9ftWrV0oABA4o1hueee05Lly7V6NGj9dZbb+mhhx6SJC1atEh//vOfdcMNN8hms10ylI4bN05ff/21Pvzww2IdH0DFRUayHhnpN2Sk8u9azUhHjhzR9OnT1aVLF9WuXVt169bVrbfeqk8++aTA9mSkyqdKWQ8Alc/WrVs1ffp0DRkyRAEBAWU9nEph3bp1WrBgQaGB65dfflGVKpXjn4Lz589r+vTpkqRbb721yNu9/vrrysvLK6VRlS8HDhyQj0/ZfZcxb948nT171mPZDz/8oKeeeko9e/a84vY5OTmaP3++xo8fL19f32KNYePGjerataumTp3qsfyvf/2rzpw5oy5duujYsWOX3D4oKEj33HOPXnjhBf3pT38q1hgAVExkJOuRkX5DRrp6ZKTCM9Irr7yiv/71r4qNjVVcXJwuXLigf/zjH7rzzjv15ptvaujQoWYtGanyqRz/wgJl6Pz586pevXqB5RcuXFBeXp78/PzKYFS/8/f3L9PjX8vOnTunGjVqqGrVqmU9lGuG3W4v0+PHxsYWWPbss89KkgYNGnTF7desWaMTJ07ogQceKPYYjh8/rvDw8ALLN2/ebF4dVbNmzcvu44EHHtCf//xnfffdd2rcuHGxxwIA5RkZqfwiIxVERio8I9122206fPiw6tatay4bNWqU2rdvr4SEBI+GlERGqmz4lT1Yatq0aZowYYIkKSwszLyMNP93qC9cuKAZM2aoSZMmstvtatSokZ588kllZWV57KdRo0a6++67tWHDBrVv317+/v4KDw/X+++/X6xx/fOf/1SXLl1UvXp11a5dWz169NCGDRs8ahYuXKgbb7xRdrtdISEhGjNmTIFL6m+99Va1bt1aqamp6tGjh6pXr64nn3xS33//vWw2m1544QXNmzfPPL99+/ZJkvbv36/7779fderUkb+/vzp16lSkS1X//e9/m78iZLfbFRoaqvHjx+uXX34xa4YMGaIFCxZIkselu/kKuz/Czp07ddddd8nhcKhmzZq64447tG3bNo+a/N9///zzzxUfH6969eqpRo0auvfee3XixIkrjv1i06ZNk81m03/+8x/9z//8j5xOp+rVq6enn35ahmHoyJEjuueee+RwOBQUFKQXX3zRY/vs7GwlJCQoIiJCTqdTNWrU0M0336xPP/3UrPn+++9Vr149SdL06dPNecg/9yFDhqhmzZo6dOiQevfurVq1apkf3n/8HfmpU6fKx8dHycnJHuMYOXKk/Pz89PXXXxf53Iv6s5yTk6Pp06erWbNm8vf313XXXafu3bsrKSnJrMk/h8OHD+vuu+9WzZo1df3115t//rt379btt9+uGjVqqGHDhlqxYkWRx3nxeP/4q2h79+7V7bffrmrVqqlBgwZ69tlnC/22dMeOHYqJiVHdunVVrVo1hYWF6eGHH/Z6DH+0YsUKhYWFqVu3blesXb16tRo1aqQmTZoUuq5169by9/dX69attWrVKo/1+fcoSU9P19q1awv8+9WwYUOPv1uXEx0dLUn64IMPilQPoOIjI5GRCkNGIiNdjWshI914440ezSjpt+Zd79699eOPP+rMmTMe68hIlYwBWOjrr782Bg4caEgyXnrpJeOtt94y3nrrLePs2bOGYRhGXFycIcm4//77jQULFhiDBw82JBmxsbEe+2nYsKHRvHlzIyAgwJg0aZIxd+5co02bNoaPj4+xYcMGr8Y0bdo0Q5LRrVs34/nnnzfmz59vPPjgg8bEiRPNmqlTpxqSjOjoaONvf/ubMXbsWMPX19fo3LmzkZ2dbdbdcsstRlBQkFGvXj3jkUceMV599VVj9erVRnp6uiHJCA8PNxo3bmzMnj3beOmll4wffvjB2LNnj+F0Oo3w8HDjr3/9q/HKK68YPXr0MGw2m/H++++b+/70008NScann35qLnvkkUeM3r17G88995zx6quvGsOGDTN8fX2N+++/36zZunWrceeddxqSzPl+6623zPWSjKlTp5rv9+zZY9SoUcMIDg42ZsyYYcyePdsICwsz7Ha7sW3bNrNuyZIlhiSjQ4cOxu2332787W9/Mx577DHD19fXeOCBB7z6M8if3/bt2xsDBw40Fi5caPTp08eQZMydO9do0aKFMXr0aGPhwoXGTTfdZEgyNm/ebG5/4sQJIzg42IiPjzcWLVpkzJkzx2jRooVRtWpVY+fOnYZhGMbZs2eNRYsWGZKMe++915yHr7/+2jCM33727Ha70aRJEyMuLs5YvHix8Y9//MNc17BhQ/N42dnZRocOHYyGDRsabrfbMAzDSExMNCQZM2bM8Orci/qz/OSTTxo2m80YMWKE8frrrxsvvviiMXDgQGP27NlmTVxcnOHv72+Eh4cbo0aNMhYsWGB069bNkGQsWbLECAkJMSZMmGD87W9/M2688UbD19fX+O6777web1xcnPn+2LFjRr169YzatWsb06ZNM55//nmjWbNmRtu2bQ1JRnp6umEYhpGRkWHUrl3baN68ufH8888br7/+ujFlyhSjVatWXh3/j7766itDkjFlypQi1Tdt2tS47777Cixfv3694ePjY7Ru3dqYO3euMWXKFMPpdBo33nij+WfvcrmMt956y6hbt67Rvn37Av9+XaxGjRoe83SpsfTr169I4wZQ8ZGRyEiFISORkYrrWs1I+R588EGjevXqxoULFwodCxmpcqAhBcs9//zzHv8I50tLSzMkGcOHD/dY/vjjjxuSjI0bN5rLGjZsaEgy/vWvf5nLMjMzjeDgYKNDhw5FHsvBgwcNHx8f49577zVyc3M91uXl5RmGYRjHjx83/Pz8jJ49e3rUvPLKK4Yk48033zSX3XLLLYYkY/HixR77yg9bDofDOH78uMe6O+64w2jTpo3x66+/ehy7W7duRrNmzcxlhYWt8+fPFzinWbNmGTabzfjhhx/MZWPGjDEu1X/+Y9iKjY01/Pz8jEOHDpnLjh49atSqVcvo0aOHuSw/bEVHR5tzZRiGMX78eMPX19c4ffp0occrTH7YGjlypLnswoULRoMGDQybzeYRKE6dOmVUq1bN4wP/woULRlZWlsc+T506ZQQGBhoPP/ywuezEiRMFzjdfftCfNGlSoesuDluGYRi7d+82/Pz8jOHDhxunTp0yrr/+eqNTp05GTk5Okc/bMIr+s9yuXTujT58+l91X/jk899xz5rL8+bLZbMbKlSvN5fv377/kXFxpvBfP/bhx4wxJxhdffGEuO378uOF0Oj3+nq9atcqQZHz55ZdeHe9KHnvsMUOSsW/fvivW5uTkGDabzXjssccKrGvfvr0RHBzs8XO7YcMGQ1KBP/uGDRte8c+iKA2pnj17XnXYBFCxkJHISH9ERiIjFde1mpEM47d/X/z9/Y2HHnqo0PVkpMqDX9nDNWPdunWSpPj4eI/ljz32mCRp7dq1HstDQkJ07733mu8dDocGDx6snTt3yuVyFemYq1evVl5enhISEgrchDD/ku1PPvlE2dnZGjdunEfNiBEj5HA4CozLbrcX+F3ofP369TMviZakkydPauPGjXrggQd05swZ/fTTT/rpp5/0888/KyYmRgcPHtR///vfS46/WrVq5n+fO3dOP/30k7p16ybDMLRz584izcHFcnNztWHDBsXGxnr8znZwcLAefPBBffbZZ3K73R7bjBw50uPy9ptvvlm5ubn64YcfvD7+8OHDzf/29fVVp06dZBiGhg0bZi4PCAhQixYt9N1333nU5t9nIi8vTydPntSFCxfUqVMnffXVV16NYfTo0UWqa926taZPn6433nhDMTEx+umnn7Rs2bJi3fy0KD/LAQEB2rt3rw4ePHjF/V08j/nzVaNGDY97ArRo0UIBAQEe81gc69atU9euXdWlSxdzWb169QrcqyD/5rxr1qxRTk7OVR0zX15enlauXKkOHTqoVatWV6w/efKkDMNQ7dq1PZYfO3ZMaWlpiouLk9PpNJffeeedhd4rqqTUrl1bP/30U6ntH0DFQUYiI5GRfkNGKpprOSOdP39ef/7zn1WtWjXNnj270BoyUuVBQwrXjB9++EE+Pj5q2rSpx/KgoCAFBAQU+PBu2rRpgfu1NG/eXJLM+y1cyaFDh+Tj43PZf1Dzj9uiRQuP5X5+fmrcuHGBcV1//fWXvAlnWFiYx/tvv/1WhmHo6aefVr169Txe+U+nOH78+CXHdvjwYQ0ZMkR16tRRzZo1Va9ePd1yyy2SpMzMzEtudyknTpzQ+fPnC5yrJLVq1Up5eXk6cuSIx/IbbrjB433+B9mpU6e8Pv4f9+V0OuXv71/g986dTmeB/S9btkxt27Y17x1Qr149rV271qt5qFKliho0aFDk+gkTJqhdu3bavn27pk6dWuwP5qL8LD/zzDM6ffq0mjdvrjZt2mjChAnatWtXgX35+/t7BHrpt/lq0KBBgWMUNo/e+uGHHwp9lPAff4ZuueUW9evXT9OnT1fdunV1zz33aMmSJQXufeKNzZs367///W+RbtR5McMwPN7n/x0uynmUJMMwinzPKQCVGxmJjERG+h0Z6cqu1YyUm5urAQMGaN++fXrvvfcUEhJyyXGQkSoHnrKHa055/8fn4m/krrQu/6aGjz/+uGJiYgrd5o/hM19ubq7uvPNOnTx5UhMnTlTLli1Vo0YN/fe//9WQIUMsewTvpR4L+8cPtOLuqyj7/+c//6khQ4YoNjZWEyZMUP369eXr66tZs2bp0KFDRT6+3W736nG93333nflt3O7du4u8XXH06NFDhw4d0gcffKANGzbojTfe0EsvvaTFixcX+Na0MCX551QcNptN7733nrZt26aPPvpI69ev18MPP6wXX3xR27Ztu+JT6QqzfPly+fj4aODAgUWqr1Onjmw221UHzJJy6tSpAv9HAgAuh4zkiYxERpLISIW5VjPSiBEjtGbNGi1fvly33377JevISJUHDSlY7lJhqmHDhsrLy9PBgwc9Li3NyMjQ6dOn1bBhQ4/6/G/OLt7ff/7zH0nyeNrH5TRp0kR5eXnat2+f2rdvf8lxSdKBAwc8LtHOzs5Wenq6+SSI4sjfX9WqVb3ez+7du/Wf//xHy5Yt0+DBg83lFz9RJF9RA2y9evVUvXp1HThwoMC6/fv3y8fHR6GhoV6N0wrvvfeeGjdurPfff9/jXPO/Qc1XkkE+Ly9PQ4YMkcPh0Lhx4/Tcc8/p/vvv13333ef1vor6s1ynTh0NHTpUQ4cO1dmzZ9WjRw9NmzbNI2xZrWHDhoVeIl/Yz5Akde3aVV27dtXMmTO1YsUKDRo0SCtXrvT6HLKysvSvf/1Lt9566yW/XfujKlWqqEmTJkpPTy9wDpK8Oo+SkJ6ernbt2pXa/gGUP2Sk35GRSgYZiYxUFFZkpAkTJmjJkiWaN2/eFRtlZKTKg1/Zg+Vq1KghSQUeB9y7d29J0rx58zyWz507V5LUp08fj+VHjx71eOSo2+3WP/7xD7Vv315BQUFFGktsbKx8fHz0zDPPFPi2LP9bkejoaPn5+enll1/2+Kbk73//uzIzMwuMyxv169fXrbfeqldffVXHjh0rsP5yjwbO/zbn4jEZhqH58+cXqL3UnBe2z549e+qDDz7wuKQ/IyNDK1asUPfu3eVwOC67j7JQ2Fx88cUXSklJ8airXr26pCvPQ1HMnTtXW7du1WuvvaYZM2aoW7duGj16dLF+370oP8s///yzxzY1a9ZU06ZNr+py7pLQu3dvbdu2Tdu3bzeXnThxQsuXL/eoO3XqVIFvGvP/D05xzmHdunU6ffq015eiR0VFaceOHR7LgoOD1b59ey1btszj1xeSkpLMx46XtMzMTB06dKhIj2EGUHmQkX5HRioZZKSyQ0b63fPPP68XXnhBTz75pB599NHL1pKRKheukILlIiIiJElTpkzRgAEDVLVqVfXt21ft2rVTXFycXnvtNZ0+fVq33HKLtm/frmXLlik2Nla33Xabx36aN2+uYcOG6csvv1RgYKDefPNNZWRkaMmSJUUeS9OmTTVlyhTNmDFDN998s+677z7Z7XZ9+eWXCgkJ0axZs1SvXj1NnjxZ06dPV69evfSnP/1JBw4c0MKFC9W5c2f9z//8z1XNx4IFC9S9e3e1adNGI0aMUOPGjZWRkaGUlBT9+OOP+vrrrwvdrmXLlmrSpIkef/xx/fe//5XD4dC//vWvQi+1zZ/z//f//p9iYmLk6+urAQMGFLrfZ599VklJSerevbv+8pe/qEqVKnr11VeVlZWlOXPmXNW5lpa7775b77//vu6991716dNH6enpWrx4scLDw3X27Fmzrlq1agoPD9fbb7+t5s2bq06dOmrdurVat27t1fG++eYbPf300xoyZIj69u0rSVq6dKnat2+vv/zlL3rnnXe82l9RfpbDw8N16623KiIiQnXq1NGOHTv03nvvaezYsV4dq6Q98cQTeuutt9SrVy89+uijqlGjhl577TU1bNjQ4/4Ny5Yt08KFC3XvvfeqSZMmOnPmjF5//XU5HA7z/2h5Y/ny5bLb7erXr59X291zzz1666239J///Me8B4UkzZo1S3369FH37t318MMP6+TJk/rb3/6mG2+80eNn6HI++ugj8+9rTk6Odu3apWeffVaS9Kc//Ult27Y1az/55BMZhqF77rnHq/EDqNjISJ7ISFePjFR2yEi/WbVqlZ544gk1a9ZMrVq10j//+U+P9XfeeacCAwPN92SkSqZ0H+IHFG7GjBnG9ddfb/j4+Hg89jQnJ8eYPn26ERYWZlStWtUIDQ01Jk+e7PG4X8P4/ZGi69evN9q2bWvY7XajZcuWxrvvvlus8bz55ptGhw4dDLvdbtSuXdu45ZZbjKSkJI+aV155xWjZsqVRtWpVIzAw0Bg9erRx6tQpj5pbbrnFuPHGGwvsP/+Rxs8//3yhxz906JAxePBgIygoyKhatapx/fXXG3fffbfx3nvvmTWFPdJ43759RnR0tFGzZk2jbt26xogRI4yvv/7akGQsWbLErLtw4YLxyCOPGPXq1TNsNpvH441VyGNtv/rqKyMmJsaoWbOmUb16deO2224ztm7d6lGT/0jjPz6itrBxXkn+I41PnDjhsTwuLs6oUaNGgfo/znNeXp7x3HPPGQ0bNjTsdrvRoUMHY82aNYU+injr1q1GRESE4efn53HulzpW/rr8/Vy4cMHo3Lmz0aBBgwKPbZ4/f74hyXj77beLfO5F/Vl+9tlnjS5duhgBAQFGtWrVjJYtWxozZ840srOzPcZZlPn647G98cdHGhuGYezatcu45ZZbDH9/f+P66683ZsyYYfz973/3+Lv91VdfGQMHDjRuuOEGw263G/Xr1zfuvvtuY8eOHV4d3zB+e+Szv7+/cd9993m9bVZWllG3bl1jxowZBdb961//Mlq1amXY7XYjPDzceP/99wv9GbrUvOU/Urqw18V/Hw3DMPr37290797d6/EDqPjISJ7ISGQkMlLRXYsZKf9n+FKvP/59ICNVLjbDsOhubUAJatSokVq3bq01a9aU9VCAq8LPsvVmzJihJUuW6ODBg5e8kWlpcrlcCgsL08qVK/n2D0CJ43MFFQU/y9YjI8Fq3EMKAFCpjB8/XmfPntXKlSvL5Pjz5s1TmzZtCFoAAOCaQkaC1biHFCosl8t12fXVqlWT0+m0aDSV09mzZ6/4u+X16tUrk29gStuJEyeUm5t7yfV+fn6qU6eOhSO6vLL++3Ly5EllZ2dfcr2vr6/q1atXIseqWbOmjh8/XiL7Ko7Zs2eX2bEBQCr7f/NBRiIjFR0ZCRUZDSlUWMHBwZddHxcXp6VLl1ozmErqhRde0PTp0y9bk56eXuRHUJcnnTt31g8//HDJ9bfccos2bdpk3YCuoKz/vtx3333avHnzJdc3bNjQ46lGAIDiK+t/80FGIiMVHRkJFRn3kEKF9cknn1x2fUhIiMLDwy0aTeX03Xff6bvvvrtsTffu3eXv72/RiKzz+eef65dffrnk+tq1a5tP9rkWlPXfl9TU1EKffpSvWrVquummm0rt+ABQmZT1v/kgI5GRio6MhIqMhhQAAAAAAAAsxU3NAQAAAAAAYKlKfQ+pvLw8HT16VLVq1ZLNZivr4QAAAAsYhqEzZ84oJCREPj58N1cYMhIAAJWP1RmpUjekjh49qtDQ0LIeBgAAKANHjhxRgwYNynoY1yQyEgAAlZdVGalSN6Rq1aol6bfJdjgcZTwaAABgBbfbrdDQUDMHoCAyEgAAlY/VGalSN6TyL0F3OByELQAAKhl+Fe3SyEgAAFReVmUkbpwAAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSlfoeUgAAXIphGLpw4YJyc3PLeijwkq+vr6pUqcI9ogAAKAVkpPLrWstINKQAAPiD7OxsHTt2TOfPny/roaCYqlevruDgYPn5+ZX1UAAAqDDISOXftZSRaEgBAHCRvLw8paeny9fXVyEhIfLz87tmvkXClRmGoezsbJ04cULp6elq1qyZfHy4QwEAAFeLjFS+XYsZiYYUAAAXyc7OVl5enkJDQ1W9evWyHg6KoVq1aqpatap++OEHZWdny9/fv6yHBABAuUdGKv+utYzEV4YAABSirL8xwtXhzw8AgNLBZ2z5di39+V07IwEAAAAAAEClQEMKAAAAAAAAluIeUgAAFFFO4meWHatqr+5Frr3SDUWnTp2qadOmXeWIisdms2nVqlWKjY0t9j5ee+01rVixQl999ZXOnDmjU6dOKSAgoMTGCAAAro6VGUkiJ+U7efKkpk6dqg0bNujw4cOqV6+eYmNjNWPGDDmdzpIdbCmgIQUAQDl37Ngx87/ffvttJSQk6MCBA+aymjVrerW/7Ozsa+JRwPnOnz+vXr16qVevXpo8eXJZDwcAAJQjFTknHT16VEePHtULL7yg8PBw/fDDDxo1apSOHj2q9957r6yHd0X8yl4pykn8rMALAICSFhQUZL6cTqdsNpv5/ty5cxo0aJACAwNVs2ZNde7cWZ988onH9o0aNdKMGTM0ePBgORwOjRw5UpL0+uuvm0/SuffeezV37twCVyZ98MEH6tixo/z9/dW4cWNNnz5dFy5cMPcrSffee69sNpv5/uuvv9Ztt92mWrVqyeFwKCIiQjt27Ljk+Y0bN06TJk1S165dS2bCUObISAAAq1TknNS6dWv961//Ut++fdWkSRPdfvvtmjlzpj766CPzONcyGlIAAFRgZ8+eVe/evZWcnKydO3eqV69e6tu3rw4fPuxR98ILL6hdu3bauXOnnn76aX3++ecaNWqUHn30UaWlpenOO+/UzJkzPbb597//rcGDB+vRRx/Vvn379Oqrr2rp0qVm3ZdffilJWrJkiY4dO2a+HzRokBo0aKAvv/xSqampmjRpkqpWrWrBbAAAAPyuIuakzMxMORwOValy7f9C3LU/QgAAUGzt2rVTu3btzPczZszQqlWr9OGHH2rs2LHm8ttvv12PPfaY+X7KlCm666679Pjjj0uSmjdvrq1bt2rNmjVmzfTp0zVp0iTFxcVJkho3bqwZM2boiSee0NSpU1WvXj1JUkBAgIKCgsztDh8+rAkTJqhly5aSpGbNmpXCmQMAAFxeRctJP/30k2bMmGFexXWt4wopAAAqsLNnz+rxxx9Xq1atFBAQoJo1a+qbb74p8M1fp06dPN4fOHBAXbp08Vj2x/dff/21nnnmGdWsWdN8jRgxQseOHdP58+cvOab4+HgNHz5c0dHRmj17tg4dOnSVZwkAAOC9ipST3G63+vTpo/Dw8DK7Sbu3aEgBAFCBPf7441q1apWee+45/fvf/1ZaWpratGmj7Oxsj7oaNWp4ve+zZ89q+vTpSktLM1+7d+/WwYMH5e/vf8ntpk2bpr1796pPnz7auHGjwsPDtWrVKq+PDwAAcDUqSk46c+aMevXqpVq1amnVqlXl5lYIXjWkFi1apLZt28rhcMjhcCgqKkoff/yxuf7WW2+VzWbzeI0aNcpjH4cPH1afPn1UvXp11a9fXxMmTChws61NmzapY8eOstvtatq0qZYuXVpgLAsWLFCjRo3k7++vyMhIbd++3ZtTAQCgUvj88881ZMgQ3XvvvWrTpo2CgoL0/fffX3G7Fi1amPcyyPfH9x07dtSBAwfUtGnTAi8fn98iRtWqVZWbm1tg/82bN9f48eO1YcMG3XfffVqyZEnxT/IaQEYCAKD8qQg5ye12q2fPnvLz89OHH3542WbXtcare0g1aNBAs2fPVrNmzWQYhpYtW6Z77rlHO3fu1I033ihJGjFihJ555hlzm+rVq5v/nZubqz59+igoKEhbt27VsWPHNHjwYFWtWlXPPfecJCk9PV19+vTRqFGjtHz5ciUnJ2v48OEKDg5WTEyMpN8e1RgfH6/FixcrMjJS8+bNU0xMjA4cOKD69etf9aQAAFBRNGvWTO+//7769u0rm82mp59+Wnl5eVfc7pFHHlGPHj00d+5c9e3bVxs3btTHH38sm81m1iQkJOjuu+/WDTfcoPvvv18+Pj76+uuvtWfPHj377LOSfnuCTHJysm666SbZ7Xb5+/trwoQJuv/++xUWFqYff/xRX375pfr163fJsbhcLrlcLn377beSpN27d6tWrVq64YYbVKdOnaucoZJBRgIAoPwp7zkpvxl1/vx5/fOf/5Tb7Zbb7ZYk1atXT76+viUwS6XHqyuk+vbtq969e6tZs2Zq3ry5Zs6cqZo1a2rbtm1mTfXq1T0eq+hwOMx1GzZs0L59+/TPf/5T7du311133aUZM2ZowYIF5iVxixcvVlhYmF588UW1atVKY8eO1f3336+XXnrJ3M/cuXM1YsQIDR06VOHh4Vq8eLGqV6+uN99882rnAwCACmXu3LmqXbu2unXrpr59+yomJkYdO3a84nY33XSTFi9erLlz56pdu3ZKTEzU+PHjPb51i4mJ0Zo1a7RhwwZ17txZXbt21UsvvaSGDRuaNS+++KKSkpIUGhqqDh06yNfXVz///LMGDx6s5s2b64EHHtBdd92l6dOnX3IsixcvVocOHTRixAhJUo8ePdShQwd9+OGHVzEzJYuMBABA+VPec9JXX32lL774Qrt371bTpk0VHBxsvo4cOXL1E1TKbIZhGMXZMDc3V++++67i4uK0c+dOhYeH69Zbb9XevXtlGIaCgoLUt29fPf300+Y3gAkJCfrwww+VlpZm7ic9PV2NGzfWV199pQ4dOqhHjx7q2LGj5s2bZ9YsWbJE48aNU2ZmprKzs1W9enW99957io2NNWvi4uJ0+vRpffDBB0U+B7fbLafTaT4WsaTlJH5WYFnVXt1L/DgAgJLz66+/Kj09XWFhYeXqkmcrjBgxQvv379e///3vsh7KFV3uz7G0P//JSFdGRgKA8oeMdHnlJSeVZUb6I69+ZU/67TL5qKgo/frrr6pZs6ZWrVql8PBwSdKDDz6ohg0bKiQkRLt27dLEiRN14MABvf/++5J+u+Q+MDDQY3/5710u12Vr3G63fvnlF506dUq5ubmF1uzfv/+yY8/KylJWVpb5Pv9SNgAAUNALL7ygO++8UzVq1NDHH3+sZcuWaeHChWU9rGsWGQkAgMqDnHT1vG5ItWjRQmlpacrMzNR7772nuLg4bd68WeHh4Ro5cqRZ16ZNGwUHB+uOO+7QoUOH1KRJkxIdeHHMmjXrsr8SAAAAfrd9+3bNmTNHZ86cUePGjfXyyy9r+PDhZT2saxYZCQCAyoOcdPW8bkj5+fmpadOmkqSIiAh9+eWXmj9/vl599dUCtZGRkZKkb7/9Vk2aNFFQUFCBJ71kZGRIkoKCgsz/zV92cY3D4VC1atXk6+srX1/fQmvy93EpkydPVnx8vPne7XYrNDS0KKcNAECl884775T1EMoVMhIAAJUHOenqeXVT88Lk5eV5XOJ9sfz7IAQHB0uSoqKitHv3bh0/ftysSUpKksPhMC9pj4qKUnJyssd+kpKSFBUVJem3sBcREeFRk5eXp+TkZLPmUux2u/k45vwXAABAaSAjAQAAXJpXV0hNnjxZd911l2644QadOXNGK1as0KZNm7R+/XodOnRIK1asUO/evXXddddp165dGj9+vHr06KG2bdtKknr27Knw8HA99NBDmjNnjlwul5566imNGTNGdrtdkjRq1Ci98soreuKJJ/Twww9r48aNeuedd7R27VpzHPHx8YqLi1OnTp3UpUsXzZs3T+fOndPQoUNLcGoAAACKhowEAADgHa8aUsePH9fgwYN17NgxOZ1OtW3bVuvXr9edd96pI0eO6JNPPjGDT2hoqPr166ennnrK3N7X11dr1qzR6NGjFRUVpRo1aiguLk7PPPOMWRMWFqa1a9dq/Pjxmj9/vho0aKA33nhDMTExZk3//v114sQJJSQkyOVyqX379kpMTCxwE08AAAArkJEAAAC8YzMMwyjrQZQVHmkMAPgjHmlcMVxLjzQuj8hIAIA/IiNVDNdSRrrqe0gBAAAAAAAA3qAhBQAAAAAAAEvRkAIAAAAAAIClvLqpOQAAldmhHa9adqwmnf7Xq/ohQ4Zo2bJlkqQqVaqoTp06atu2rQYOHKghQ4bIx6f8fge1d+9eJSQkKDU1VT/88INeeukljRs3rqyHBQAA/n9WZiSJnHSx119/Xf/4xz+0Z88eSVJERISee+45denSpYxHdmXld9YBAICHXr166dixY/r+++/18ccf67bbbtOjjz6qu+++WxcuXCjr4RXb+fPn1bhxY82ePVtBQUFlPRwAAFAOVdSctGnTJg0cOFCffvqpUlJSFBoaqp49e+q///1vWQ/timhIAQBQQdjtdgUFBen6669Xx44d9eSTT+qDDz7Qxx9/rKVLl5p1p0+f1vDhw1WvXj05HA7dfvvt+vrrrz329dFHH6lz587y9/dX3bp1de+995rrTp06pcGDB6t27dqqXr267rrrLh08eFCSdO7cOTkcDr333nse+1u9erVq1KihM2fOKDs7W2PHjlVwcLD8/f3VsGFDzZo165Ln1blzZz3//PMaMGCA7HZ7CcwUAACobCpqTlq+fLn+8pe/qH379mrZsqXeeOMN5eXlKTk5uQRmrXTRkAIAoAK7/fbb1a5dO73//vvmsj//+c86fvy4Pv74Y6Wmpqpjx4664447dPLkSUnS2rVrde+996p3797auXOnkpOTPS77HjJkiHbs2KEPP/xQKSkpMgxDvXv3Vk5OjmrUqKEBAwZoyZIlHuNYsmSJ7r//ftWqVUsvv/yyPvzwQ73zzjs6cOCAli9frkaNGlkyHwAAAPkqYk46f/68cnJyVKdOnaubHAtwDykAACq4li1bateuXZKkzz77TNu3b9fx48fNq41eeOEFrV69Wu+9955GjhypmTNnasCAAZo+fbq5j3bt2kmSDh48qA8//FCff/65unXrJum3b+ZCQ0O1evVq/fnPf9bw4cPVrVs3HTt2TMHBwTp+/LjWrVunTz75RJJ0+PBhNWvWTN27d5fNZlPDhg2tnA4AAABTRctJEydOVEhIiKKjo696bkobV0gBAFDBGYYhm80mSfr666919uxZXXfddapZs6b5Sk9P16FDhyRJaWlpuuOOOwrd1zfffKMqVaooMjLSXHbdddepRYsW+uabbyRJXbp00Y033mjePPSf//ynGjZsqB49ekj67ZvDtLQ0tWjRQv/v//0/bdiwodTOHQAA4HIqUk6aPXu2Vq5cqVWrVsnf39/7ybAYV0gBAFDBffPNNwoLC5MknT17VsHBwdq0aVOBuoCAAElStWrVrvqYw4cP14IFCzRp0iQtWbJEQ4cONcNex44dlZ6ero8//liffPKJHnjgAUVHRxe4nwIAAEBpqyg56YUXXtDs2bP1ySefqG3btlc9RitwhRQAABXYxo0btXv3bvXr10/SbyHH5XKpSpUqatq0qcerbt26kqS2bdte8kaYrVq10oULF/TFF1+Yy37++WcdOHBA4eHh5rL/+Z//0Q8//KCXX35Z+/btU1xcnMd+HA6H+vfvr9dff11vv/22/vWvf5n3ZgAAALBCRclJc+bM0YwZM5SYmKhOnToVez6sxhVSAABUEFlZWXK5XMrNzVVGRoYSExM1a9Ys3X333Ro8eLAkKTo6WlFRUYqNjdWcOXPUvHlzHT161LxBZ6dOnTR16lTdcccdatKkiQYMGKALFy5o3bp1mjhxopo1a6Z77rlHI0aM0KuvvqpatWpp0qRJuv7663XPPfeYY6ldu7buu+8+TZgwQT179lSDBg3MdXPnzlVwcLA6dOggHx8fvfvuuwoKCjK/efyj7Oxs7du3z/zv//73v0pLS1PNmjXVtGnT0ptQAABQYVTUnPTXv/5VCQkJWrFihRo1aiSXyyVJ5q8bXsu4QgoAgAoiMTFRwcHBatSokXr16qVPP/1UL7/8sj744AP5+vpKkmw2m9atW6cePXpo6NChat68uQYMGKAffvhBgYGBkqRbb71V7777rj788EO1b99et99+u7Zv324eZ8mSJYqIiNDdd9+tqKgoGYahdevWqWrVqh7jGTZsmLKzs/Xwww97LK9Vq5bmzJmjTp06qXPnzvr++++1bt06+fgUHkuOHj2qDh06qEOHDjp27JheeOEFdejQQcOHDy/J6QMAABVYRc1JixYtUnZ2tu6//34FBwebrxdeeKEkp69U2AzDMMp6EGXF7XbL6XQqMzNTDoejxPefk/hZgWVVe3Uv8eMAAErOr7/+qvT0dIWFhZWLm0Fey9566y2NHz9eR48elZ+fn6XHvtyfY2l//lcEZCQAwB+RkUpWWeWkaykj8St7AACgRJ0/f17Hjh3T7Nmz9b//+7+WN6MAAACuVeSk39GQKkXfn/64wLJm4ts/AEDFNmfOHM2cOVM9evTQ5MmTy3o4uAaRkQAAlRU56XfcQwoAAJSoadOmKScnR8nJydf8zTQBAACsRE76HQ0pAAAAAAAAWIqGFAAAAAAAACxFQwoAgEJU4ofQVgj8+QEAUDr4jC3frqU/PxpSAABcpGrVqpJ+ewIKyq/8P7/8P08AAHB1yEgVw7WUkXjKHgAAF/H19VVAQICOHz8uSapevbpsNlsZjwpFZRiGzp8/r+PHjysgIEC+vr5lPSQAACoEMlL5di1mJBpSAAD8QVBQkCSZgQvlT0BAgPnnCAAASgYZqfy7ljISDSkAAP7AZrMpODhY9evXV05OTlkPB16qWrXqNfGtHwAAFQ0ZqXy71jISDSkAAC7B19f3mvrQBgAAuBaQkVASuKk5AAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwlFcNqUWLFqlt27ZyOBxyOByKiorSxx9/bK7/9ddfNWbMGF133XWqWbOm+vXrp4yMDI99HD58WH369FH16tVVv359TZgwQRcuXPCo2bRpkzp27Ci73a6mTZtq6dKlBcayYMECNWrUSP7+/oqMjNT27du9ORUAAIASQ0YCAADwjlcNqQYNGmj27NlKTU3Vjh07dPvtt+uee+7R3r17JUnjx4/XRx99pHfffVebN2/W0aNHdd9995nb5+bmqk+fPsrOztbWrVu1bNkyLV26VAkJCWZNenq6+vTpo9tuu01paWkaN26chg8frvXr15s1b7/9tuLj4zV16lR99dVXateunWJiYnT8+PGrnQ8AAACvkZEAAAC8YzMMw7iaHdSpU0fPP/+87r//ftWrV08rVqzQ/fffL0nav3+/WrVqpZSUFHXt2lUff/yx7r77bh09elSBgYGSpMWLF2vixIk6ceKE/Pz8NHHiRK1du1Z79uwxjzFgwACdPn1aiYmJkqTIyEh17txZr7zyiiQpLy9PoaGheuSRRzRp0qQij93tdsvpdCozM1MOh+NqpqFQB1dOKbCs2YCZJX4cAABQdKX9+Z+PjHRpZCQAAK49VmWkfMW+h1Rubq5Wrlypc+fOKSoqSqmpqcrJyVF0dLRZ07JlS91www1KSUmRJKWkpKhNmzZm0JKkmJgYud1u8xvElJQUj33k1+TvIzs7W6mpqR41Pj4+io6ONmsuJSsrS2632+MFAABQkshIAAAAV+Z1Q2r37t2qWbOm7Ha7Ro0apVWrVik8PFwul0t+fn4KCAjwqA8MDJTL5ZIkuVwuj6CVvz5/3eVq3G63fvnlF/3000/Kzc0ttCZ/H5cya9YsOZ1O8xUaGurt6QMAABSKjAQAAFB0XjekWrRoobS0NH3xxRcaPXq04uLitG/fvtIYW4mbPHmyMjMzzdeRI0fKekgAAKCCICMBAAAUXRVvN/Dz81PTpk0lSREREfryyy81f/589e/fX9nZ2Tp9+rTHN4AZGRkKCgqSJAUFBRV40kv+E2YurvnjU2cyMjLkcDhUrVo1+fr6ytfXt9Ca/H1cit1ul91u9/aUAQAAroiMBAAAUHTFvodUvry8PGVlZSkiIkJVq1ZVcnKyue7AgQM6fPiwoqKiJElRUVHavXu3x5NekpKS5HA4FB4ebtZcvI/8mvx9+Pn5KSIiwqMmLy9PycnJZg0AAEBZIyMBAABcmldXSE2ePFl33XWXbrjhBp05c0YrVqzQpk2btH79ejmdTg0bNkzx8fGqU6eOHA6HHnnkEUVFRalr166SpJ49eyo8PFwPPfSQ5syZI5fLpaeeekpjxowxv5UbNWqUXnnlFT3xxBN6+OGHtXHjRr3zzjtau3atOY74+HjFxcWpU6dO6tKli+bNm6dz585p6NChJTg1AAAARUNGAgAA8I5XDanjx49r8ODBOnbsmJxOp9q2bav169frzjvvlCS99NJL8vHxUb9+/ZSVlaWYmBgtXLjQ3N7X11dr1qzR6NGjFRUVpRo1aiguLk7PPPOMWRMWFqa1a9dq/Pjxmj9/vho0aKA33nhDMTExZk3//v114sQJJSQkyOVyqX379kpMTCxwE08AAAArkJEAAAC8YzMMwyjrQZQVt9stp9OpzMxMORyOEt//wZVTCixrNmBmiR8HAAAUXWl//lcEZCQAACofqzPSVd9DCgAAAAAAAPAGDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFJeNaRmzZqlzp07q1atWqpfv75iY2N14MABj5pbb71VNpvN4zVq1CiPmsOHD6tPnz6qXr266tevrwkTJujChQseNZs2bVLHjh1lt9vVtGlTLV26tMB4FixYoEaNGsnf31+RkZHavn27N6cDAABQIshIAAAA3vGqIbV582aNGTNG27ZtU1JSknJyctSzZ0+dO3fOo27EiBE6duyY+ZozZ465Ljc3V3369FF2dra2bt2qZcuWaenSpUpISDBr0tPT1adPH912221KS0vTuHHjNHz4cK1fv96sefvttxUfH6+pU6fqq6++Urt27RQTE6Pjx48Xdy4AAACKhYwEAADgHZthGEZxNz5x4oTq16+vzZs3q0ePHpJ++/avffv2mjdvXqHbfPzxx7r77rt19OhRBQYGSpIWL16siRMn6sSJE/Lz89PEiRO1du1a7dmzx9xuwIABOn36tBITEyVJkZGR6ty5s1555RVJUl5enkJDQ/XII49o0qRJRRq/2+2W0+lUZmamHA5Hcafhkg6unFJgWbMBM0v8OAAAoOhK+/NfIiNdCRkJAIBrjxUZ6WJXdQ+pzMxMSVKdOnU8li9fvlx169ZV69atNXnyZJ0/f95cl5KSojZt2phBS5JiYmLkdru1d+9esyY6OtpjnzExMUpJSZEkZWdnKzU11aPGx8dH0dHRZk1hsrKy5Ha7PV4AAAAljYwEAABweVWKu2FeXp7GjRunm266Sa1btzaXP/jgg2rYsKFCQkK0a9cuTZw4UQcOHND7778vSXK5XB5BS5L53uVyXbbG7Xbrl19+0alTp5Sbm1tozf79+y855lmzZmn69OnFPWUAAIArIiMBAABcWbEbUmPGjNGePXv02WefeSwfOXKk+d9t2rRRcHCw7rjjDh06dEhNmjQp/khLwOTJkxUfH2++d7vdCg0NLcMRAQCAioaMBAAAcGXFakiNHTtWa9as0ZYtW9SgQYPL1kZGRkqSvv32WzVp0kRBQUEFnvSSkZEhSQoKCjL/N3/ZxTUOh0PVqlWTr6+vfH19C63J30dh7Ha77HZ70U4SAADAS2QkAACAovHqHlKGYWjs2LFatWqVNm7cqLCwsCtuk5aWJkkKDg6WJEVFRWn37t0eT3pJSkqSw+FQeHi4WZOcnOyxn6SkJEVFRUmS/Pz8FBER4VGTl5en5ORkswYAAMAqZCQAAADveHWF1JgxY7RixQp98MEHqlWrlnk/A6fTqWrVqunQoUNasWKFevfureuuu067du3S+PHj1aNHD7Vt21aS1LNnT4WHh+uhhx7SnDlz5HK59NRTT2nMmDHmN3OjRo3SK6+8oieeeEIPP/ywNm7cqHfeeUdr1641xxIfH6+4uDh16tRJXbp00bx583Tu3DkNHTq0pOYGAACgSMhIAAAA3vGqIbVo0SJJvz22+GJLlizRkCFD5Ofnp08++cQMPqGhoerXr5+eeuops9bX11dr1qzR6NGjFRUVpRo1aiguLk7PPPOMWRMWFqa1a9dq/Pjxmj9/vho0aKA33nhDMTExZk3//v114sQJJSQkyOVyqX379kpMTCxwE08AAIDSRkYCAADwjs0wDKOsB1FW3G63nE6nMjMz5XA4Snz/B1dOKbCs2YCZJX4cAABQdKX9+V8RkJEAAKh8rM5IXt1DCgAAAAAAALhaNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEt51ZCaNWuWOnfurFq1aql+/fqKjY3VgQMHPGp+/fVXjRkzRtddd51q1qypfv36KSMjw6Pm8OHD6tOnj6pXr6769etrwoQJunDhgkfNpk2b1LFjR9ntdjVt2lRLly4tMJ4FCxaoUaNG8vf3V2RkpLZv3+7N6QAAAJQIMhIAAIB3vGpIbd68WWPGjNG2bduUlJSknJwc9ezZU+fOnTNrxo8fr48++kjvvvuuNm/erKNHj+q+++4z1+fm5qpPnz7Kzs7W1q1btWzZMi1dulQJCQlmTXp6uvr06aPbbrtNaWlpGjdunIYPH67169ebNW+//bbi4+M1depUffXVV2rXrp1iYmJ0/Pjxq5kPAAAAr5GRAAAAvGMzDMMo7sYnTpxQ/fr1tXnzZvXo0UOZmZmqV6+eVqxYofvvv1+StH//frVq1UopKSnq2rWrPv74Y9199906evSoAgMDJUmLFy/WxIkTdeLECfn5+WnixIlau3at9uzZYx5rwIABOn36tBITEyVJkZGR6ty5s1555RVJUl5enkJDQ/XII49o0qRJRRq/2+2W0+lUZmamHA5Hcafhkg6unFJgWbMBM0v8OAAAoOhK+/NfIiNdCRkJAIBrjxUZ6WJXdQ+pzMxMSVKdOnUkSampqcrJyVF0dLRZ07JlS91www1KSUmRJKWkpKhNmzZm0JKkmJgYud1u7d2716y5eB/5Nfn7yM7OVmpqqkeNj4+PoqOjzRoAAICyQkYCAAC4vCrF3TAvL0/jxo3TTTfdpNatW0uSXC6X/Pz8FBAQ4FEbGBgol8tl1lwctPLX56+7XI3b7dYvv/yiU6dOKTc3t9Ca/fv3X3LMWVlZysrKMt+73W4vzhgAAODKyEgAAABXVuwrpMaMGaM9e/Zo5cqVJTmeUjVr1iw5nU7zFRoaWtZDAgAAFQwZCQAA4MqK1ZAaO3as1qxZo08//VQNGjQwlwcFBSk7O1unT5/2qM/IyFBQUJBZ88cnyuS/v1KNw+FQtWrVVLduXfn6+hZak7+PwkyePFmZmZnm68iRI96dOAAAwGWQkQAAAIrGq4aUYRgaO3asVq1apY0bNyosLMxjfUREhKpWrark5GRz2YEDB3T48GFFRUVJkqKiorR7926PJ70kJSXJ4XAoPDzcrLl4H/k1+fvw8/NTRESER01eXp6Sk5PNmsLY7XY5HA6PFwAAwNUiIwEAAHjHq3tIjRkzRitWrNAHH3ygWrVqmfczcDqdqlatmpxOp4YNG6b4+HjVqVNHDodDjzzyiKKiotS1a1dJUs+ePRUeHq6HHnpIc+bMkcvl0lNPPaUxY8bIbrdLkkaNGqVXXnlFTzzxhB5++GFt3LhR77zzjtauXWuOJT4+XnFxcerUqZO6dOmiefPm6dy5cxo6dGhJzQ0AAECRkJEAAAC841VDatGiRZKkW2+91WP5kiVLNGTIEEnSSy+9JB8fH/Xr109ZWVmKiYnRwoULzVpfX1+tWbNGo0ePVlRUlGrUqKG4uDg988wzZk1YWJjWrl2r8ePHa/78+WrQoIHeeOMNxcTEmDX9+/fXiRMnlJCQIJfLpfbt2ysxMbHATTwBAABKGxkJAADAOzbDMIyyHkRZcbvdcjqdyszMLJVL0w+unFJgWbMBM0v8OAAAoOhK+/O/IiAjAQBQ+VidkYr9lD0AAAAAAACgOGhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACW8rohtWXLFvXt21chISGy2WxavXq1x/ohQ4bIZrN5vHr16uVRc/LkSQ0aNEgOh0MBAQEaNmyYzp4961Gza9cu3XzzzfL391doaKjmzJlTYCzvvvuuWrZsKX9/f7Vp00br1q3z9nQAAABKBBkJAACg6LxuSJ07d07t2rXTggULLlnTq1cvHTt2zHz93//9n8f6QYMGae/evUpKStKaNWu0ZcsWjRw50lzvdrvVs2dPNWzYUKmpqXr++ec1bdo0vfbaa2bN1q1bNXDgQA0bNkw7d+5UbGysYmNjtWfPHm9PCQAA4KqRkQAAAIrOZhiGUeyNbTatWrVKsbGx5rIhQ4bo9OnTBb4VzPfNN98oPDxcX375pTp16iRJSkxMVO/evfXjjz8qJCREixYt0pQpU+RyueTn5ydJmjRpklavXq39+/dLkvr3769z585pzZo15r67du2q9u3ba/HixUUav9vtltPpVGZmphwORzFm4PIOrpxSYFmzATNL/DgAAKDoSvvzXyIjXQkZCQCAa48VGelipXIPqU2bNql+/fpq0aKFRo8erZ9//tlcl5KSooCAADNoSVJ0dLR8fHz0xRdfmDU9evQwg5YkxcTE6MCBAzp16pRZEx0d7XHcmJgYpaSklMYpAQAAXDUyEgAAwG+qlPQOe/Xqpfvuu09hYWE6dOiQnnzySd11111KSUmRr6+vXC6X6tev7zmIKlVUp04duVwuSZLL5VJYWJhHTWBgoLmudu3acrlc5rKLa/L3UZisrCxlZWWZ791u91WdKwAAQFGRkQAAAH5X4g2pAQMGmP/dpk0btW3bVk2aNNGmTZt0xx13lPThvDJr1ixNnz69TMcAAAAqJzISAADA70rlV/Yu1rhxY9WtW1fffvutJCkoKEjHjx/3qLlw4YJOnjypoKAgsyYjI8OjJv/9lWry1xdm8uTJyszMNF9Hjhy5upMDAAAoJjISAACozEq9IfXjjz/q559/VnBwsCQpKipKp0+fVmpqqlmzceNG5eXlKTIy0qzZsmWLcnJyzJqkpCS1aNFCtWvXNmuSk5M9jpWUlKSoqKhLjsVut8vhcHi8AAAAygIZCQAAVGZeN6TOnj2rtLQ0paWlSZLS09OVlpamw4cP6+zZs5owYYK2bdum77//XsnJybrnnnvUtGlTxcTESJJatWqlXr16acSIEdq+fbs+//xzjR07VgMGDFBISIgk6cEHH5Sfn5+GDRumvXv36u2339b8+fMVHx9vjuPRRx9VYmKiXnzxRe3fv1/Tpk3Tjh07NHbs2BKYFgAAAO+QkQAAAIrO64bUjh071KFDB3Xo0EGSFB8frw4dOighIUG+vr7atWuX/vSnP6l58+YaNmyYIiIi9O9//1t2u93cx/Lly9WyZUvdcccd6t27t7p3767XXnvNXO90OrVhwwalp6crIiJCjz32mBISEjRy5Eizplu3blqxYoVee+01tWvXTu+9955Wr16t1q1bX818AAAAFAsZCQAAoOhshmEYZT2IsuJ2u+V0OpWZmVkql6YfXDmlwLJmA2aW+HEAAEDRlfbnf0VARgIAoPKxOiOV+j2kAAAAAAAAgIvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJbyuiG1ZcsW9e3bVyEhIbLZbFq9erXHesMwlJCQoODgYFWrVk3R0dE6ePCgR83Jkyc1aNAgORwOBQQEaNiwYTp79qxHza5du3TzzTfL399foaGhmjNnToGxvPvuu2rZsqX8/f3Vpk0brVu3ztvTAQAAKBFkJAAAgKLzuiF17tw5tWvXTgsWLCh0/Zw5c/Tyyy9r8eLF+uKLL1SjRg3FxMTo119/NWsGDRqkvXv3KikpSWvWrNGWLVs0cuRIc73b7VbPnj3VsGFDpaam6vnnn9e0adP02muvmTVbt27VwIEDNWzYMO3cuVOxsbGKjY3Vnj17vD0lAACAq0ZGAgAAKDqbYRhGsTe22bRq1SrFxsZK+u2bv5CQED322GN6/PHHJUmZmZkKDAzU0qVLNWDAAH3zzTcKDw/Xl19+qU6dOkmSEhMT1bt3b/34448KCQnRokWLNGXKFLlcLvn5+UmSJk2apNWrV2v//v2SpP79++vcuXNas2aNOZ6uXbuqffv2Wrx4cZHG73a75XQ6lZmZKYfDUdxpuKSDK6cUWNZswMwSPw4AACi60v78l8hIV0JGAgDg2mNFRrpYid5DKj09XS6XS9HR0eYyp9OpyMhIpaSkSJJSUlIUEBBgBi1Jio6Olo+Pj7744guzpkePHmbQkqSYmBgdOHBAp06dMmsuPk5+Tf5xCpOVlSW32+3xAgAAKG1kJAAAAE8l2pByuVySpMDAQI/lgYGB5jqXy6X69et7rK9SpYrq1KnjUVPYPi4+xqVq8tcXZtasWXI6neYrNDTU21MEAADwGhkJAADAU6V6yt7kyZOVmZlpvo4cOVLWQwIAAChzZCQAAGC1Em1IBQUFSZIyMjI8lmdkZJjrgoKCdPz4cY/1Fy5c0MmTJz1qCtvHxce4VE3++sLY7XY5HA6PFwAAQGkjIwEAAHgq0YZUWFiYgoKClJycbC5zu9364osvFBUVJUmKiorS6dOnlZqaatZs3LhReXl5ioyMNGu2bNminJwcsyYpKUktWrRQ7dq1zZqLj5Nfk38cAACAawUZCQAAwJPXDamzZ88qLS1NaWlpkn67SWdaWpoOHz4sm82mcePG6dlnn9WHH36o3bt3a/DgwQoJCTGfMtOqVSv16tVLI0aM0Pbt2/X5559r7NixGjBggEJCQiRJDz74oPz8/DRs2DDt3btXb7/9tubPn6/4+HhzHI8++qgSExP14osvav/+/Zo2bZp27NihsWPHXv2sAAAAeImMBAAAUHRVvN1gx44duu2228z3+QEoLi5OS5cu1RNPPKFz585p5MiROn36tLp3767ExET5+/ub2yxfvlxjx47VHXfcIR8fH/Xr108vv/yyud7pdGrDhg0aM2aMIiIiVLduXSUkJGjkyJFmTbdu3bRixQo99dRTevLJJ9WsWTOtXr1arVu3LtZEAAAAXA0yEgAAQNHZDMMwynoQZcXtdsvpdCozM7NU7pVwcOWUAsuaDZhZ4scBAABFV9qf/xUBGQkAgMrH6oxUqZ6yBwAAAAAAgLJHQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsFSJN6SmTZsmm83m8WrZsqW5/tdff9WYMWN03XXXqWbNmurXr58yMjI89nH48GH16dNH1atXV/369TVhwgRduHDBo2bTpk3q2LGj7Ha7mjZtqqVLl5b0qQAAAJQYMhIAAMDvSuUKqRtvvFHHjh0zX5999pm5bvz48froo4/07rvvavPmzTp69Kjuu+8+c31ubq769Omj7Oxsbd26VcuWLdPSpUuVkJBg1qSnp6tPnz667bbblJaWpnHjxmn48OFav359aZwOAABAiSAjAQAA/KZKqey0ShUFBQUVWJ6Zmam///3vWrFihW6//XZJ0pIlS9SqVStt27ZNXbt21YYNG7Rv3z598sknCgwMVPv27TVjxgxNnDhR06ZNk5+fnxYvXqywsDC9+OKLkqRWrVrps88+00svvaSYmJjSOCUAAICrRkYCAAD4TalcIXXw4EGFhISocePGGjRokA4fPixJSk1NVU5OjqKjo83ali1b6oYbblBKSookKSUlRW3atFFgYKBZExMTI7fbrb1795o1F+8jvyZ/H5eSlZUlt9vt8QIAALAKGQkAAOA3Jd6QioyM1NKlS5WYmKhFixYpPT1dN998s86cOSOXyyU/Pz8FBAR4bBMYGCiXyyVJcrlcHkErf33+usvVuN1u/fLLL5cc26xZs+R0Os1XaGjo1Z4uAABAkZCRAAAAflfiv7J31113mf/dtm1bRUZGqmHDhnrnnXdUrVq1kj6cVyZPnqz4+HjzvdvtJnABAABLkJEAAAB+Vyq/snexgIAANW/eXN9++62CgoKUnZ2t06dPe9RkZGSY91MICgoq8ESZ/PdXqnE4HJcNdHa7XQ6Hw+MFAABQFshIAACgMiv1htTZs2d16NAhBQcHKyIiQlWrVlVycrK5/sCBAzp8+LCioqIkSVFRUdq9e7eOHz9u1iQlJcnhcCg8PNysuXgf+TX5+wAAALjWkZEAAEBlVuINqccff1ybN2/W999/r61bt+ree++Vr6+vBg4cKKfTqWHDhik+Pl6ffvqpUlNTNXToUEVFRalr166SpJ49eyo8PFwPPfSQvv76a61fv15PPfWUxowZI7vdLkkaNWqUvvvuOz3xxBPav3+/Fi5cqHfeeUfjx48v6dMBAAAoEWQkAACA35X4PaR+/PFHDRw4UD///LPq1aun7t27a9u2bapXr54k6aWXXpKPj4/69eunrKwsxcTEaOHCheb2vr6+WrNmjUaPHq2oqCjVqFFDcXFxeuaZZ8yasLAwrV27VuPHj9f8+fPVoEEDvfHGGzzOGAAAXLPISAAAAL+zGYZhlPUgyorb7ZbT6VRmZmap3Cvh4MopBZY1GzCzxI8DAACKrrQ//ysCMhIAAJWP1Rmp1O8hBQAAAAAAAFyMhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApaqU9QAAAAByEj8rsKxqr+5lMBIAAIBrR0XOSFwhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFJVynoAAACgcslJ/KyshwAAAHDNqWwZiSukAAAAAAAAYCkaUgAAAAAAALAUv7IHAABKVWW7/BwAAKAoKntG4gopAAAAAAAAWIorpAAAQImp7N/0AQAAFIaMVFC5v0JqwYIFatSokfz9/RUZGant27eX9ZAAAKgUchI/K/DCtYOMBABA2SAjFU25vkLq7bffVnx8vBYvXqzIyEjNmzdPMTExOnDggOrXr1/WwwMAoNwiOJVvZCQAAEoHGanklOuG1Ny5czVixAgNHTpUkrR48WKtXbtWb775piZNmlTGowMA4Np0LQap709/XGBZM3Uvg5FUDGQkAAC8R0ayVrltSGVnZys1NVWTJ082l/n4+Cg6OlopKSllODIAALxzLYafklRYkELpISMBACoKMlLFVm4bUj/99JNyc3MVGBjosTwwMFD79+8vdJusrCxlZWWZ7zMzMyVJbre7VMZ49nxWgWU733y8VI4FAEBFU1qfz/n7NQyjVPZf1shIAABUbBUlI5XbhlRxzJo1S9OnTy+wPDQ0tAxGAwAALmvYi6W6+zNnzsjpdJbqMcoLMhIAAOVIBclI5bYhVbduXfn6+iojI8NjeUZGhoKCggrdZvLkyYqPjzff5+Xl6eTJk7ruuutks9lKdHxut1uhoaE6cuSIHA5Hie4bhWPOrcecW485tx5zXjZKc94Nw9CZM2cUEhJSovu9VpCR8EfMufWYc+sx52WDebdeRcpI5bYh5efnp4iICCUnJys2NlbSb+EpOTlZY8eOLXQbu90uu93usSwgIKBUx+lwOPiLaTHm3HrMufWYc+sx52WjtOa9Il8ZRUbCpTDn1mPOrceclw3m3XoVISOV24aUJMXHxysuLk6dOnVSly5dNG/ePJ07d858ogwAAEBlREYCAADXunLdkOrfv79OnDihhIQEuVwutW/fXomJiQVu4gkAAFCZkJEAAMC1rlw3pCRp7Nixl7z8vCzZ7XZNnTq1wOXvKD3MufWYc+sx59ZjzssG8371yEjIx5xbjzm3HnNeNph361WkObcZFfWZxwAAAAAAALgm+ZT1AAAAAAAAAFC50JACAAAAAACApWhIAQAAAAAAwFL/H3v3Ht9z/f9//P7e2Hs23huZbZg5H+Z8NsmpZXL4IEL1YeTwIfqGElIOKXwkUU4d8Sk+KqFCzqlPIZFJRGKomEPYHMpOz98f/fbO24a9Z3vNttv1cnlf6v18PV+v1/P13Ht73z3er/frRUHqNsyZM0dly5aVt7e3GjdurB07dty0/4cffqiqVavK29tbNWvW1Jo1aywaad7hzpy/+eabuueee1S0aFEVLVpUERERt/wZIS13X+epli5dKpvNps6dO2fvAPMgd+f8woULGjJkiIKDg2W321W5cmX+vrjJ3TmfOXOmqlSpokKFCikkJETDhw/Xn3/+adFoc78vv/xSHTt2VMmSJWWz2bRy5cpbrrNlyxbVq1dPdrtdFStW1MKFC7N9nMg8MpL1yEjWIyNZj4xkPTKStfJdRjLIlKVLlxovLy/zzjvvmH379pkBAwYYf39/c+rUqXT7f/3118bT09NMmzbN7N+/3zz77LOmYMGCZu/evRaPPPdyd84ffvhhM2fOHLN7927z448/mj59+hg/Pz/z66+/Wjzy3MvdOU8VExNjSpUqZe655x7TqVMnawabR7g751evXjUNGjQw7dq1M1999ZWJiYkxW7ZsMdHR0RaPPPdyd84XL15s7Ha7Wbx4sYmJiTHr1q0zwcHBZvjw4RaPPPdas2aNGTt2rFm+fLmRZFasWHHT/keOHDE+Pj5mxIgRZv/+/ea1114znp6eZu3atdYMGG4hI1mPjGQ9MpL1yEjWIyNZL79lJApSmdSoUSMzZMgQ5/Pk5GRTsmRJM2XKlHT7d+/e3bRv396lrXHjxuZf//pXto4zL3F3zq+XlJRkihQpYhYtWpRdQ8xzMjPnSUlJpmnTpuatt94yUVFRhC03uTvn8+bNM+XLlzcJCQlWDTHPcXfOhwwZYlq3bu3SNmLECHP33Xdn6zjzqoyEraefftpUr17dpa1Hjx4mMjIyG0eGzCIjWY+MZD0ykvXISNYjI+Ws/JCR+MpeJiQkJGjXrl2KiIhwtnl4eCgiIkLbtm1Ld51t27a59JekyMjIG/aHq8zM+fWuXLmixMREFStWLLuGmadkds6ff/55lShRQv369bNimHlKZub8k08+UXh4uIYMGaLAwEDVqFFDkydPVnJyslXDztUyM+dNmzbVrl27nKesHzlyRGvWrFG7du0sGXN+xHto7kFGsh4ZyXpkJOuRkaxHRsodcvt7aIGcHkBudPbsWSUnJyswMNClPTAwUAcOHEh3ndjY2HT7x8bGZts485LMzPn1Ro0apZIlS6b5hUX6MjPnX331ld5++21FR0dbMMK8JzNzfuTIEW3evFmPPPKI1qxZo59//lmPPfaYEhMTNX78eCuGnatlZs4ffvhhnT17Vs2aNZMxRklJSRo0aJCeeeYZK4acL93oPTQ+Pl5//PGHChUqlEMjw/XISNYjI1mPjGQ9MpL1yEi5Q27PSJwhhXxh6tSpWrp0qVasWCFvb++cHk6edPHiRfXq1UtvvvmmihcvntPDyTdSUlJUokQJvfHGG6pfv7569OihsWPHav78+Tk9tDxry5Ytmjx5subOnavvvvtOy5cv1+rVqzVp0qScHhoAuI2MlP3ISDmDjGQ9MhLcxRlSmVC8eHF5enrq1KlTLu2nTp1SUFBQuusEBQW51R+uMjPnqaZPn66pU6dq48aNqlWrVnYOM09xd84PHz6so0ePqmPHjs62lJQUSVKBAgV08OBBVahQIXsHnctl5nUeHBysggULytPT09lWrVo1xcbGKiEhQV5eXtk65twuM3P+3HPPqVevXurfv78kqWbNmrp8+bIGDhyosWPHysODz3qy2o3eQx0Oxx3/yV9+Q0ayHhnJemQk65GRrEdGyh1ye0biFZEJXl5eql+/vjZt2uRsS0lJ0aZNmxQeHp7uOuHh4S79JWnDhg037A9XmZlzSZo2bZomTZqktWvXqkGDBlYMNc9wd86rVq2qvXv3Kjo62vn4xz/+oVatWik6OlohISFWDj9Xyszr/O6779bPP//sDLaS9NNPPyk4OJiglQGZmfMrV66kCVSpYdcYk32Dzcd4D809yEjWIyNZj4xkPTKS9chIuUOufw/N2Wuq515Lly41drvdLFy40Ozfv98MHDjQ+Pv7m9jYWGOMMb169TKjR4929v/6669NgQIFzPTp082PP/5oxo8fzy2N3eTunE+dOtV4eXmZZcuWmZMnTzofFy9ezKlDyHXcnfPrcQcZ97k758ePHzdFihQxQ4cONQcPHjSrVq0yJUqUMC+88EJOHUKu4+6cjx8/3hQpUsT897//NUeOHDHr1683FSpUMN27d8+pQ8h1Ll68aHbv3m12795tJJkZM2aY3bt3m2PHjhljjBk9erTp1auXs3/qLY1HjhxpfvzxRzNnzpxcdUvj/IaMZD0ykvXISNYjI1mPjGS9/JaRKEjdhtdee82UKVPGeHl5mUaNGpnt27c7l7Vo0cJERUW59P/ggw9M5cqVjZeXl6levbpZvXq1xSPO/dyZ89DQUCMpzWP8+PHWDzwXc/d1fi3CVua4O+dbt241jRs3Nna73ZQvX968+OKLJikpyeJR527uzHliYqKZMGGCqVChgvH29jYhISHmscceM+fPn7d+4LnU559/nu7f59R5joqKMi1atEizTp06dYyXl5cpX768WbBggeXjRsaRkaxHRrIeGcl6ZCTrkZGsld8yks0Yzp0DAAAAAACAdbiGFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBucSWLVtks9m0ZcuWLN2uzWbThAkTsnSbeU2fPn1UtmzZnB7GHaFs2bLq06fPLfstXLhQNptNR48ezfYxuevSpUsqUaKEFi9efMu+6f3sL126pP79+ysoKEg2m03Dhg1za/+jR49W48aN3VoHAHBjZKScQ0b6GxmJjAT3UZCC5bZu3aoJEybowoULOT2UfGPNmjUEKklXrlzRhAkTsjywwlobN25Uq1atVLx4cfn7+6tRo0Z69913M7z+rFmzVKRIEfXs2TNT+588ebIWLlyowYMH691331WvXr0kSfPmzdODDz6oMmXKyGaz3TCUDhs2THv27NEnn3ySqf0DyLvISNYjI/2FjJQ33IkZ6ZdfftHEiRPVqFEjFS1aVMWLF1fLli21cePGNOuTkfKfAjk9AOQ/W7du1cSJE9WnTx/5+/vn9HDyhTVr1mjOnDnpBq4//vhDBQrkjz8FV65c0cSJEyVJLVu2zPB6b775plJSUrJpVLnLwYMH5eGRc59lfPLJJ+rcubPCw8M1YcIE2Ww2ffDBB+rdu7fOnj2r4cOH33T9xMREzZo1S8OHD5enp2emxrB582Y1adJE48ePd2n/97//rYsXL6pRo0Y6efLkDdcPCgpSp06dNH36dP3jH//I1BgA5E1kJOuRkf5CRrp9ZKT0M9Ls2bP173//W507d1ZUVJSSkpL0n//8R/fdd5/eeecd9e3b19mXjJT/5I+/sEAOunLlinx8fNK0JyUlKSUlRV5eXjkwqr95e3vn6P7vZJcvX5avr68KFiyY00O5Y9jt9hzd/+zZsxUcHKzNmzc7x/Kvf/1LVatW1cKFC28ZtlatWqUzZ86oe/fumR7D6dOnFRYWlqb9iy++cJ4dVbhw4Ztuo3v37nrwwQd15MgRlS9fPtNjAYDcjIyUe5GR0iIjpZ+RWrVqpePHj6t48eLOtkGDBqlOnToaN26cS0FKIiPlN3xlD5aaMGGCRo4cKUkqV66cbDaby3eok5KSNGnSJFWoUEF2u11ly5bVM888o6tXr7psp2zZsurQoYPWr1+vOnXqyNvbW2FhYVq+fHmmxvXee++pUaNG8vHxUdGiRdW8eXOtX7/epc/cuXNVvXp12e12lSxZUkOGDElzSn3Lli1Vo0YN7dq1S82bN5ePj4+eeeYZHT16VDabTdOnT9fMmTOdx7d//35J0oEDB9StWzcVK1ZM3t7eatCgQYZOVf3f//7n/IqQ3W5XSEiIhg8frj/++MPZp0+fPpozZ44kOefbZrM5l6d3fYTdu3fr/vvvl8PhUOHChXXvvfdq+/btLn1Sv//+9ddfa8SIEQoICJCvr6+6dOmiM2fO3HLs10r9FOenn37SP//5T/n5+SkgIEDPPfecjDH65Zdf1KlTJzkcDgUFBenll192WT8hIUHjxo1T/fr15efnJ19fX91zzz36/PPPnX2OHj2qgIAASdLEiROd85B67H369FHhwoV1+PBhtWvXTkWKFNEjjzziXHbtd+THjx8vDw8Pbdq0yWUcAwcOlJeXl/bs2ZPhY8/oazkxMVETJ05UpUqV5O3trbvuukvNmjXThg0bnH1Sj+H48ePq0KGDChcurFKlSjl//nv37lXr1q3l6+ur0NBQLVmyJMPjvHa8138Vbd++fWrdurUKFSqk0qVL64UXXkj309KdO3cqMjJSxYsXV6FChVSuXDk9+uijbu0/Pj5eRYsWdQl9BQoUcG7zVlauXKmyZcuqQoUK6S6rUaOGvL29VaNGDa1YscJleeo1SmJiYrR69eo0f79CQ0NdfrduJiIiQpL08ccfZ6g/gLyPjERGSg8ZiYyUUXdqRqpevbpLMUr6q3jXrl07/frrr7p48aLLMjJSPmMAC+3Zs8c89NBDRpJ55ZVXzLvvvmveffddc+nSJWOMMVFRUUaS6datm5kzZ47p3bu3kWQ6d+7ssp3Q0FBTuXJl4+/vb0aPHm1mzJhhatasaTw8PMz69evdGtOECROMJNO0aVPz0ksvmVmzZpmHH37YjBo1ytln/PjxRpKJiIgwr732mhk6dKjx9PQ0DRs2NAkJCc5+LVq0MEFBQSYgIMA8/vjj5vXXXzcrV640MTExRpIJCwsz5cuXN1OnTjWvvPKKOXbsmPnhhx+Mn5+fCQsLM//+97/N7NmzTfPmzY3NZjPLly93bvvzzz83ksznn3/ubHv88cdNu3btzOTJk83rr79u+vXrZzw9PU23bt2cfbZu3Wruu+8+I8k53++++65zuSQzfvx45/MffvjB+Pr6muDgYDNp0iQzdepUU65cOWO328327dud/RYsWGAkmbp165rWrVub1157zTz55JPG09PTdO/e3a2fQer81qlTxzz00ENm7ty5pn379kaSmTFjhqlSpYoZPHiwmTt3rrn77ruNJPPFF1841z9z5owJDg42I0aMMPPmzTPTpk0zVapUMQULFjS7d+82xhhz6dIlM2/ePCPJdOnSxTkPe/bsMcb89dqz2+2mQoUKJioqysyfP9/85z//cS4LDQ117i8hIcHUrVvXhIaGmvj4eGOMMWvXrjWSzKRJk9w69oy+lp955hljs9nMgAEDzJtvvmlefvll89BDD5mpU6c6+0RFRRlvb28TFhZmBg0aZObMmWOaNm1qJJkFCxaYkiVLmpEjR5rXXnvNVK9e3Xh6epojR464Pd6oqCjn85MnT5qAgABTtGhRM2HCBPPSSy+ZSpUqmVq1ahlJJiYmxhhjzKlTp0zRokVN5cqVzUsvvWTefPNNM3bsWFOtWjW39j9q1CgjyTz77LPm0KFD5ueffzbPP/+88fT0NB999NEt169YsaJ54IEH0rSvW7fOeHh4mBo1apgZM2aYsWPHGj8/P1O9enXnzz42Nta8++67pnjx4qZOnTpp/n5dy9fX12WebjSWrl27Zui4AeR9ZCQyUnrISGSkjMotGSnVww8/bHx8fExSUlK6YyEj5Q8UpGC5l156yeWPcKro6GgjyfTv39+l/amnnjKSzObNm51toaGhRpLLH9e4uDgTHBxs6tatm+GxHDp0yHh4eJguXbqY5ORkl2UpKSnGGGNOnz5tvLy8TJs2bVz6zJ4920gy77zzjrOtRYsWRpKZP3++y7ZSw5bD4TCnT592WXbvvfeamjVrmj///NNl302bNjWVKlVytqUXtq5cuZLmmKZMmWJsNps5duyYs23IkCHmRvXn68NW586djZeXlzl8+LCz7cSJE6ZIkSKmefPmzrbUsBUREeGcK2OMGT58uPH09DQXLlxId3/pSQ1bAwcOdLYlJSWZ0qVLG5vN5hIozp8/bwoVKuTyhp+UlGSuXr3qss3z58+bwMBA8+ijjzrbzpw5k+Z4U6UG/dGjR6e77NqwZYwxe/fuNV5eXqZ///7m/PnzplSpUqZBgwYmMTExw8dtTMZfy7Vr1zbt27e/6bZSj2Hy5MnOttT5stlsZunSpc72AwcO3HAubjXea+d+2LBhRpL55ptvnG2nT582fn5+Lr/nK1asMJLMt99+69b+rnfp0iXTvXt3Y7PZjCQjyfj4+JiVK1fect3ExERjs9nMk08+mWZZnTp1THBwsMvrdv369UZSmp99aGjoLX8WGSlItWnTxu2wCSBvIyORka5HRiIjZVRuyUjG/PX3xdvb2/Tq1Svd5WSk/IOv7OGOsWbNGknSiBEjXNqffPJJSdLq1atd2kuWLKkuXbo4nzscDvXu3Vu7d+9WbGxshva5cuVKpaSkaNy4cWkuQph6yvbGjRuVkJCgYcOGufQZMGCAHA5HmnHZ7fY034VO1bVrV+cp0ZJ07tw5bd68Wd27d9fFixd19uxZnT17Vr///rsiIyN16NAh/fbbbzcc/7Wn316+fFlnz55V06ZNZYzR7t27MzQH10pOTtb69evVuXNnl+9sBwcH6+GHH9ZXX32l+Ph4l3UGDhzocnr7Pffco+TkZB07dszt/ffv39/5/56enmrQoIGMMerXr5+z3d/fX1WqVNGRI0dc+qZeZyIlJUXnzp1TUlKSGjRooO+++86tMQwePDhD/WrUqKGJEyfqrbfeUmRkpM6ePatFixZl6uKnGXkt+/v7a9++fTp06NAtt3ftPKbOl6+vr8s1AapUqSJ/f3+XecyMNWvWqEmTJmrUqJGzLSAgwHkq/7XjkP66PkFiYmKm92e321W5cmV169ZN//3vf/Xee++pQYMG+uc//5nmKxPXO3funIwxKlq0qEv7yZMnFR0draioKPn5+Tnb77vvvnSvFZVVihYtqrNnz2bb9gHkHWQkMhIZ6S9kpBvLLRnpypUrevDBB1WoUCFNnTo13T5kpPyDghTuGMeOHZOHh4cqVqzo0h4UFCR/f/80b94VK1ZMc72WypUrS5Lzegu3cvjwYXl4eNz0D2rqfqtUqeLS7uXlpfLly6cZV6lSpW54Ec5y5cq5PP/5559ljNFzzz2ngIAAl0fq3SlOnz59w7EdP35cffr0UbFixVS4cGEFBASoRYsWkqS4uLgbrncjZ86c0ZUrV9IcqyRVq1ZNKSkp+uWXX1zay5Qp4/I89Y3s/Pnzbu//+m35+fnJ29s7zffO/fz80mx/0aJFqlWrlvPaAQEBAVq9erVb81CgQAGVLl06w/1Hjhyp2rVra8eOHRo/fnym35gz8lp+/vnndeHCBVWuXFk1a9bUyJEj9f3336fZlre3t0ugl/6ar9KlS6fZR3rz6K5jx46pUqVKadqvfw21aNFCXbt21cSJE1W8eHF16tRJCxYsSHPtk1sZOnSoPv30Uy1dulQ9e/bUI488oo0bNyo4OFhPPPFEhrZhjElzDJIydBxZyRiT4WtOAcjfyEhkJDLS38hI6csNGSk5OVk9e/bU/v37tWzZMpUsWfKG4yAj5Q/cZQ93nNz+x+dmFw28flnqRQ2feuopRUZGprvO9eEzVXJysu677z6dO3dOo0aNUtWqVeXr66vffvtNffr0sewWvDe6Lez1b2iZ3VZGtv/ee++pT58+6ty5s0aOHKkSJUrI09NTU6ZM0eHDhzO8f7vd7tbteo8cOeL8NG7v3r0ZXi8zmjdvrsOHD+vjjz/W+vXr9dZbb+mVV17R/Pnz03xqmp6s/Dllhs1m07Jly7R9+3Z9+umnWrdunR599FG9/PLL2r59+y3vSif9dWHWt99+W08//bTLz6lgwYK6//77NXv2bCUkJNzwHzvFihWTzWa77YCZVc6fP5/mHxIAcDNkJFdkJDKSREaSck9GGjBggFatWqXFixerdevWN+xHRso/KEjBcjcKU6GhoUpJSdGhQ4dUrVo1Z/upU6d04cIFhYaGuvRP/eTs2u399NNPkuRyt4+bqVChglJSUrR//37VqVPnhuOSpIMHD7qcop2QkKCYmBjnnSAyI3V7BQsWdHs7e/fu1U8//aRFixapd+/ezvZr7yiSKqMBNiAgQD4+Pjp48GCaZQcOHJCHh4dCQkLcGqcVli1bpvLly2v58uUux5r6CWqqrAzyKSkp6tOnjxwOh4YNG6bJkyerW7dueuCBB9zeVkZfy8WKFVPfvn3Vt29fXbp0Sc2bN9eECRNcwpbVQkND0z1FPr3XkCQ1adJETZo00YsvvqglS5bokUce0dKlSzN0DL///ruSkpKUnJycZlliYqJSUlLSXZaqQIECqlChgmJiYtIcgyS3jiMrxMTEqHbt2tm2fQC5Dxnpb2SkrEFGIiPdKRlp5MiRWrBggWbOnKmHHnropn3JSPkHX9mD5Xx9fSUpze2A27VrJ0maOXOmS/uMGTMkSe3bt3dpP3HihMstR+Pj4/Wf//xHderUUVBQUIbG0rlzZ3l4eOj5559P82lZ6qciERER8vLy0quvvuryScnbb7+tuLi4NONyR4kSJdSyZUu9/vrrOnnyZJrlN7s1cOqnOdeOyRijWbNmpel7ozlPb5tt2rTRxx9/7HJK/6lTp7RkyRI1a9ZMDofjptvICenNxTfffKNt27a59PPx8ZF063nIiBkzZmjr1q164403NGnSJDVt2lSDBw/O1PfdM/Ja/v33313WKVy4sCpWrOj26dxZrV27dtq+fbt27NjhbDtz5owWL17s0u/8+fNpPmlM/QdORo+hRIkS8vf314oVK5SQkOBsv3Tpkj799FNVrVr1lrc1Dg8P186dO13agoODVadOHS1atMjl6wsbNmxw3nY8q8XFxenw4cNq2rRptmwfQO5ERvobGSlrkJFyDhnpby+99JKmT5+uZ5555pZfHyQj5S+cIQXL1a9fX5I0duxY9ezZUwULFlTHjh1Vu3ZtRUVF6Y033tCFCxfUokUL7dixQ4sWLVLnzp3VqlUrl+1UrlxZ/fr107fffqvAwEC98847OnXqlBYsWJDhsVSsWFFjx47VpEmTdM899+iBBx6Q3W7Xt99+q5IlS2rKlCkKCAjQmDFjNHHiRLVt21b/+Mc/dPDgQc2dO1cNGzbUP//5z9uajzlz5qhZs2aqWbOmBgwYoPLly+vUqVPatm2bfv31V+3Zsyfd9apWraoKFSroqaee0m+//SaHw6GPPvoo3VNtU+f8//7v/xQZGSlPT0/17Nkz3e2+8MIL2rBhg5o1a6bHHntMBQoU0Ouvv66rV69q2rRpt3Ws2aVDhw5avny5unTpovbt2ysmJkbz589XWFiYLl265OxXqFAhhYWF6f3331flypVVrFgx1ahRQzVq1HBrfz/++KOee+459enTRx07dpQkLVy4UHXq1NFjjz2mDz74wK3tZeS1HBYWppYtW6p+/foqVqyYdu7cqWXLlmno0KFu7SurPf3003r33XfVtm1bPfHEE/L19dUbb7yh0NBQl+s3LFq0SHPnzlWXLl1UoUIFXbx4UW+++aYcDofzH1q34unpqaeeekrPPvusmjRpot69eys5OVlvv/22fv31V7333nu33EanTp307rvv6qeffnJeg0KSpkyZovbt26tZs2Z69NFHde7cOb322muqXr26y2voZj799FPn72tiYqK+//57vfDCC5Kkf/zjH6pVq5az78aNG2WMUadOnTK0bQD5AxnJFRnp9pGRcg4Z6S8rVqzQ008/rUqVKqlatWppxnLfffcpMDDQ+ZyMlM9k7038gPRNmjTJlCpVynh4eLjc9jQxMdFMnDjRlCtXzhQsWNCEhISYMWPGuNzu15i/bym6bt06U6tWLWO3203VqlXNhx9+mKnxvPPOO6Zu3brGbrebokWLmhYtWpgNGza49Jk9e7apWrWqKViwoAkMDDSDBw8258+fd+nTokULU7169TTbT72l8UsvvZTu/g8fPmx69+5tgoKCTMGCBU2pUqVMhw4dzLJly5x90rul8f79+01ERIQpXLiwKV68uBkwYIDZs2ePkWQWLFjg7JeUlGQef/xxExAQ4LwVbCqlc1vb7777zkRGRprChQsbHx8f06pVK7N161aXPqm3NL7+FrXpjfNWUm9pfObMGZf2qKgo4+vrm6b/9fOckpJiJk+ebEJDQ43dbjd169Y1q1atSvdWxFu3bjX169c3Xl5eLsd+o32lLkvdTlJSkmnYsKEpXbp0mts2z5o1y0gy77//foaPPaOv5RdeeME0atTI+Pv7m0KFCpmqVauaF1980SQkJLiMMyPzdf2+3XH9LY2NMeb77783LVq0MN7e3qZUqVJm0qRJ5u2333b53f7uu+/MQw89ZMqUKWPsdrspUaKE6dChg9m5c6db+zfGmMWLF7vMRePGjV1+V27m6tWrpnjx4mbSpElpln300UemWrVqxm63m7CwMLN8+fJ0X0M3mrfUW0qn97j299EYY3r06GGaNWuW4WMGkH+QkVyRkchIZKSMuxMzUupr+EaP638fyEj5i80Yi67WBmShsmXLqkaNGlq1alVODwW4LbyWrTdp0iQtWLBAhw4duuGFTLNTbGysypUrp6VLl/LpH4Asx/sK8gpey9YjI8FqXEMKAJCvDB8+XJcuXdLSpUtzZP8zZ85UzZo1CVoAAOCOQkaC1biGFPKs2NjYmy4vVKiQ/Pz8LBpN/nTp0qVbfrc8ICAgRz6ByW5nzpy56d1MvLy8VKxYMQtHdHM5/fty7tw5l4twXs/T01MBAQFZsq/ChQvr9OnTWbKtzJg6dWqO7RsApJz/mw8yEhkp48hIyMsoSCHPCg4OvunyqKgoLVy40JrB5FPTp0/XxIkTb9onJiYmw7egzk0aNmyoY8eO3XB5ixYttGXLFusGdAs5/fvywAMP6Isvvrjh8tDQUJe7GgEAMi+n/+aDjERGyjgyEvIyriGFPGvjxo03XV6yZEmFhYVZNJr86ciRIzpy5MhN+zRr1kze3t4Wjcg6X3/9tf74448bLi9atKjzzj53gpz+fdm1a1e6dz9KVahQId19993Ztn8AyE9y+m8+yEhkpIwjIyEvoyAFAAAAAAAAS3FRcwAAAAAAAFgqX19DKiUlRSdOnFCRIkVks9lyejgAAMACxhhdvHhRJUuWlIcHn82lh4wEAED+Y3VGytcFqRMnTigkJCSnhwEAAHLAL7/8otKlS+f0MO5IZCQAAPIvqzJSvi5IFSlSRNJfk+1wOHJ4NAAAwArx8fEKCQlx5gCkRUYCACD/sToj5euCVOop6A6Hg7AFAEA+w1fRboyMBABA/mVVRuLCCQAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALJWvryEFAMCNGGOUlJSk5OTknB4K3OTp6akCBQpwjSgAALIBGSn3utMyEgUpAACuk5CQoJMnT+rKlSs5PRRkko+Pj4KDg+Xl5ZXTQwEAIM8gI+V+d1JGoiAFAMA1UlJSFBMTI09PT5UsWVJeXl53zKdIuDVjjBISEnTmzBnFxMSoUqVK8vDgCgUAANwuMlLudidmJApSAABcIyEhQSkpKQoJCZGPj09ODweZUKhQIRUsWFDHjh1TQkKCvL29c3pIAADkemSk3O9Oy0h8ZAgAQDpy+hMj3B5+fgAAZA/eY3O3O+nnd+eMBAAAAAAAAPkCBSkAAAAAAABYioIUAAC5nM1mu+ljwoQJOTq2lStX3tY23njjDbVs2VIOh0M2m00XLlzIkrEBAIC8Ly/npHPnzunxxx9XlSpVVKhQIZUpU0b/93//p7i4uKwbZDbiouYAAGRQ4tqvLNtXwbbNMtz35MmTzv9///33NW7cOB08eNDZVrhwYbf2nZCQcEfcCjjVlStX1LZtW7Vt21ZjxozJ6eEAAIDrWJmRJHJSqhMnTujEiROaPn26wsLCdOzYMQ0aNEgnTpzQsmXLcnp4t8QZUtkoce1XaR4AAGS1oKAg58PPz082m835/PLly3rkkUcUGBiowoULq2HDhtq4caPL+mXLltWkSZPUu3dvORwODRw4UJL05ptvOu+k06VLF82YMUP+/v4u63788ceqV6+evL29Vb58eU2cOFFJSUnO7UpSly5dZLPZnM/37NmjVq1aqUiRInI4HKpfv7527tx5w+MbNmyYRo8erSZNmmTNhCHHkZEAAFbJyzmpRo0a+uijj9SxY0dVqFBBrVu31osvvqhPP/3UuZ87GQUpAADysEuXLqldu3batGmTdu/erbZt26pjx446fvy4S7/p06erdu3a2r17t5577jl9/fXXGjRokJ544glFR0frvvvu04svvuiyzv/+9z/17t1bTzzxhPbv36/XX39dCxcudPb79ttvJUkLFizQyZMnnc8feeQRlS5dWt9++6127dql0aNHq2DBghbMBgAAwN/yYk6Ki4uTw+FQgQJ3/hfi7vwRAgCATKtdu7Zq167tfD5p0iStWLFCn3zyiYYOHepsb926tZ588knn87Fjx+r+++/XU089JUmqXLmytm7dqlWrVjn7TJw4UaNHj1ZUVJQkqXz58po0aZKefvppjR8/XgEBAZIkf39/BQUFOdc7fvy4Ro4cqapVq0qSKlWqlA1HDgAAcHN5LSedPXtWkyZNcp7FdafjDCkAAPKwS5cu6amnnlK1atXk7++vwoUL68cff0zzyV+DBg1cnh88eFCNGjVyabv++Z49e/T888+rcOHCzseAAQN08uRJXbly5YZjGjFihPr376+IiAhNnTpVhw8fvs2jBAAAcF9eyknx8fFq3769wsLCcvRC7e6gIAUAQB721FNPacWKFZo8ebL+97//KTo6WjVr1lRCQoJLP19fX7e3fenSJU2cOFHR0dHOx969e3Xo0CF5e3vfcL0JEyZo3759at++vTZv3qywsDCtWLHC7f0DAADcjrySky5evKi2bduqSJEiWrFiRa65FIJbBal58+apVq1acjgccjgcCg8P12effeZc3rJlyzS3UBw0aJDLNo4fP6727dvLx8dHJUqU0MiRI9NcbGvLli2qV6+e7Ha7KlasqIULF6YZy5w5c1S2bFl5e3urcePG2rFjhzuHAgBAvvD111+rT58+6tKli2rWrKmgoCAdPXr0lutVqVLFeS2DVNc/r1evng4ePKiKFSumeXh4/BUxChYsqOTk5DTbr1y5soYPH67169frgQce0IIFCzJ/kHcAMhIAALlPXshJ8fHxatOmjby8vPTJJ5/ctNh1p3HrGlKlS5fW1KlTValSJRljtGjRInXq1Em7d+9W9erVJUkDBgzQ888/71zHx8fH+f/Jyclq3769goKCtHXrVp08eVK9e/dWwYIFNXnyZElSTEyM2rdvr0GDBmnx4sXatGmT+vfvr+DgYEVGRkr661aNI0aM0Pz589W4cWPNnDlTkZGROnjwoEqUKHHbkwIAQF5RqVIlLV++XB07dpTNZtNzzz2nlJSUW673+OOPq3nz5poxY4Y6duyozZs367PPPpPNZnP2GTdunDp06KAyZcqoW7du8vDw0J49e/TDDz/ohRdekPTXHWQ2bdqku+++W3a7Xd7e3ho5cqS6deumcuXK6ddff9W3336rrl273nAssbGxio2N1c8//yxJ2rt3r4oUKaIyZcqoWLFitzlDWYOMBABA7pPbc1JqMerKlSt67733FB8fr/j4eElSQECAPD09s2CWso9bZ0h17NhR7dq1U6VKlVS5cmW9+OKLKly4sLZv3+7s4+Pj43JbRYfD4Vy2fv167d+/X++9957q1Kmj+++/X5MmTdKcOXOcp8TNnz9f5cqV08svv6xq1app6NCh6tatm1555RXndmbMmKEBAwaob9++CgsL0/z58+Xj46N33nnnducDAIA8ZcaMGSpatKiaNm2qjh07KjIyUvXq1bvlenfffbfmz5+vGTNmqHbt2lq7dq2GDx/u8qlbZGSkVq1apfXr16thw4Zq0qSJXnnlFYWGhjr7vPzyy9qwYYNCQkJUt25deXp66vfff1fv3r1VuXJlde/eXffff78mTpx4w7HMnz9fdevW1YABAyRJzZs3V926dfXJJ5/cxsxkLTISAAC5T27PSd99952++eYb7d27VxUrVlRwcLDz8csvv9z+BGUzmzHGZGbF5ORkffjhh4qKitLu3bsVFhamli1bat++fTLGKCgoSB07dtRzzz3n/ARw3Lhx+uSTTxQdHe3cTkxMjMqXL6/vvvtOdevWVfPmzVWvXj3NnDnT2WfBggUaNmyY4uLilJCQIB8fHy1btkydO3d29omKitKFCxf08ccfZ/gY4uPj5efn57wtYlZLXPtVmraCbZtl+X4AAFnnzz//VExMjMqVK5erTnm2woABA3TgwAH973//y+mh3NLNfo7Z/f5PRro1MhIA5D5kpJvLLTkpJzPS9dz6yp7012ny4eHh+vPPP1W4cGGtWLFCYWFhkqSHH35YoaGhKlmypL7//nuNGjVKBw8e1PLlyyX9dcp9YGCgy/ZSn8fGxt60T3x8vP744w+dP39eycnJ6fY5cODATcd+9epVXb161fk89VQ2AACQ1vTp03XffffJ19dXn332mRYtWqS5c+fm9LDuWGQkAADyD3LS7XO7IFWlShVFR0crLi5Oy5YtU1RUlL744guFhYVp4MCBzn41a9ZUcHCw7r33Xh0+fFgVKlTI0oFnxpQpU276lQAAAPC3HTt2aNq0abp48aLKly+vV199Vf3798/pYd2xyEgAAOQf5KTb53ZBysvLSxUrVpQk1a9fX99++61mzZql119/PU3fxo0bS5J+/vlnVahQQUFBQWnu9HLq1ClJUlBQkPO/qW3X9nE4HCpUqJA8PT3l6emZbp/UbdzImDFjNGLECOfz+Ph4hYSEZOSwAQDIdz744IOcHkKuQkYCACD/ICfdPrcuap6elJQUl1O8r5V6HYTg4GBJUnh4uPbu3avTp087+2zYsEEOh8N5Snt4eLg2bdrksp0NGzYoPDxc0l9hr379+i59UlJStGnTJmefG7Hb7c7bMac+AAAAsgMZCQAA4MbcOkNqzJgxuv/++1WmTBldvHhRS5Ys0ZYtW7Ru3TodPnxYS5YsUbt27XTXXXfp+++/1/Dhw9W8eXPVqlVLktSmTRuFhYWpV69emjZtmmJjY/Xss89qyJAhstvtkqRBgwZp9uzZevrpp/Xoo49q8+bN+uCDD7R69WrnOEaMGKGoqCg1aNBAjRo10syZM3X58mX17ds3C6cGAAAgY8hIAAAA7nGrIHX69Gn17t1bJ0+elJ+fn2rVqqV169bpvvvu0y+//KKNGzc6g09ISIi6du2qZ5991rm+p6enVq1apcGDBys8PFy+vr6KiorS888/7+xTrlw5rV69WsOHD9esWbNUunRpvfXWW4qMjHT26dGjh86cOaNx48YpNjZWderU0dq1a9NcxBMAAMAKZCQAAAD32IwxJqcHkVO4pTEA4Hrc0jhvuJNuaZwbkZEAANcjI+UNd1JGuu1rSAEAAAAAAADuoCAFAAAAAAAAS1GQAgAAAAAAgKXcuqg5AAD52eGdr1u2rwoN/uVW/z59+mjRokWSpAIFCqhYsWKqVauWHnroIfXp00ceHrn3M6h9+/Zp3Lhx2rVrl44dO6ZXXnlFw4YNy+lhAQCA/8/KjCSRk6715ptv6j//+Y9++OEHSVL9+vU1efJkNWrUKIdHdmu5d9YBAICLtm3b6uTJkzp69Kg+++wztWrVSk888YQ6dOigpKSknB5epl25ckXly5fX1KlTFRQUlNPDAQAAuVBezUlbtmzRQw89pM8//1zbtm1TSEiI2rRpo99++y2nh3ZLFKQAAMgj7Ha7goKCVKpUKdWrV0/PPPOMPv74Y3322WdauHChs9+FCxfUv39/BQQEyOFwqHXr1tqzZ4/Ltj799FM1bNhQ3t7eKl68uLp06eJcdv78efXu3VtFixaVj4+P7r//fh06dEiSdPnyZTkcDi1btsxleytXrpSvr68uXryohIQEDR06VMHBwfL29lZoaKimTJlyw+Nq2LChXnrpJfXs2VN2uz0LZgoAAOQ3eTUnLV68WI899pjq1KmjqlWr6q233lJKSoo2bdqUBbOWvShIAQCQh7Vu3Vq1a9fW8uXLnW0PPvigTp8+rc8++0y7du1SvXr1dO+99+rcuXOSpNWrV6tLly5q166ddu/erU2bNrmc9t2nTx/t3LlTn3zyibZt2yZjjNq1a6fExET5+vqqZ8+eWrBggcs4FixYoG7duqlIkSJ69dVX9cknn+iDDz7QwYMHtXjxYpUtW9aS+QAAAEiVF3PSlStXlJiYqGLFit3e5FiAa0gBAJDHVa1aVd9//70k6auvvtKOHTt0+vRp59lG06dP18qVK7Vs2TINHDhQL774onr27KmJEyc6t1G7dm1J0qFDh/TJJ5/o66+/VtOmTSX99clcSEiIVq5cqQcffFD9+/dX06ZNdfLkSQUHB+v06dNas2aNNm7cKEk6fvy4KlWqpGbNmslmsyk0NNTK6QAAAHDKazlp1KhRKlmypCIiIm57brIbZ0gBAJDHGWNks9kkSXv27NGlS5d01113qXDhws5HTEyMDh8+LEmKjo7Wvffem+62fvzxRxUoUECNGzd2tt11112qUqWKfvzxR0lSo0aNVL16defFQ9977z2FhoaqefPmkv765DA6OlpVqlTR//3f/2n9+vXZduwAAAA3k5dy0tSpU7V06VKtWLFC3t7e7k+GxThDCgCAPO7HH39UuXLlJEmXLl1ScHCwtmzZkqafv7+/JKlQoUK3vc/+/ftrzpw5Gj16tBYsWKC+ffs6w169evUUExOjzz77TBs3blT37t0VERGR5noKAAAA2S2v5KTp06dr6tSp2rhxo2rVqnXbY7QCZ0gBAJCHbd68WXv37lXXrl0l/RVyYmNjVaBAAVWsWNHlUbx4cUlSrVq1bnghzGrVqikpKUnffPONs+3333/XwYMHFRYW5mz75z//qWPHjunVV1/V/v37FRUV5bIdh8OhHj166M0339T777+vjz76yHltBgAAACvklZw0bdo0TZo0SWvXrlWDBg0yPR9W4wwpAADyiKtXryo2NlbJyck6deqU1q5dqylTpqhDhw7q3bu3JCkiIkLh4eHq3Lmzpk2bpsqVK+vEiRPOC3Q2aNBA48eP17333qsKFSqoZ8+eSkpK0po1azRq1ChVqlRJnTp10oABA/T666+rSJEiGj16tEqVKqVOnTo5x1K0aFE98MADGjlypNq0aaPSpUs7l82YMUPBwcGqW7euPDw89OGHHyooKMj5yeP1EhIStH//fuf///bbb4qOjlbhwoVVsWLF7JtQAACQZ+TVnPTvf/9b48aN05IlS1S2bFnFxsZKkvPrhncyzpACACCPWLt2rYKDg1W2bFm1bdtWn3/+uV599VV9/PHH8vT0lCTZbDatWbNGzZs3V9++fVW5cmX17NlTx44dU2BgoCSpZcuW+vDDD/XJJ5+oTp06at26tXbs2OHcz4IFC1S/fn116NBB4eHhMsZozZo1KliwoMt4+vXrp4SEBD366KMu7UWKFNG0adPUoEEDNWzYUEePHtWaNWvk4ZF+LDlx4oTq1q2runXr6uTJk5o+fbrq1q2r/v37Z+X0AQCAPCyv5qR58+YpISFB3bp1U3BwsPMxffr0rJy+bGEzxpicHkROiY+Pl5+fn+Li4uRwOLJ8+4lrv0rTVrBtsyzfDwAg6/z555+KiYlRuXLlcsXFIO9k7777roYPH64TJ07Iy8vL0n3f7OeY3e//eQEZCQBwPTJS1sqpnHQnZSS+sgcAALLUlStXdPLkSU2dOlX/+te/LC9GAQAA3KnISX+jIJWNjl74LE1bJfHpHwAgb5s2bZpefPFFNW/eXGPGjMnp4eAOREYCAORX5KS/cQ0pAACQpSZMmKDExERt2rTpjr+YJgAAgJXISX+jIAUAAAAAAABLUZACAAAAAACApShIAQCQjnx8E9o8gZ8fAADZg/fY3O1O+vlRkAIA4BoFCxaU9NcdUJB7pf78Un+eAADg9pCR8oY7KSNxlz0AAK7h6ekpf39/nT59WpLk4+Mjm82Ww6NCRhljdOXKFZ0+fVr+/v7y9PTM6SEBAJAnkJFytzsxI1GQAgDgOkFBQZLkDFzIffz9/Z0/RwAAkDXISLnfnZSRKEgBAHAdm82m4OBglShRQomJiTk9HLipYMGCd8SnfgAA5DVkpNztTstIFKQAALgBT0/PO+pNGwAA4E5ARkJW4KLmAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUm4VpObNm6datWrJ4XDI4XAoPDxcn332mXP5n3/+qSFDhuiuu+5S4cKF1bVrV506dcplG8ePH1f79u3l4+OjEiVKaOTIkUpKSnLps2XLFtWrV092u10VK1bUwoUL04xlzpw5Klu2rLy9vdW4cWPt2LHDnUMBAADIMmQkAAAA97hVkCpdurSmTp2qXbt2aefOnWrdurU6deqkffv2SZKGDx+uTz/9VB9++KG++OILnThxQg888IBz/eTkZLVv314JCQnaunWrFi1apIULF2rcuHHOPjExMWrfvr1atWql6OhoDRs2TP3799e6deucfd5//32NGDFC48eP13fffafatWsrMjJSp0+fvt35AAAAcBsZCQAAwD02Y4y5nQ0UK1ZML730krp166aAgAAtWbJE3bp1kyQdOHBA1apV07Zt29SkSRN99tln6tChg06cOKHAwEBJ0vz58zVq1CidOXNGXl5eGjVqlFavXq0ffvjBuY+ePXvqwoULWrt2rSSpcePGatiwoWbPni1JSklJUUhIiB5//HGNHj06w2OPj4+Xn5+f4uLi5HA4bmca0nVo6dg0bZV6vpjl+wEAABmX3e//qchIN0ZGAgDgzmNVRkqV6WtIJScna+nSpbp8+bLCw8O1a9cuJSYmKiIiwtmnatWqKlOmjLZt2yZJ2rZtm2rWrOkMWpIUGRmp+Ph45yeI27Ztc9lGap/UbSQkJGjXrl0ufTw8PBQREeHscyNXr15VfHy8ywMAACArkZEAAABuze2C1N69e1W4cGHZ7XYNGjRIK1asUFhYmGJjY+Xl5SV/f3+X/oGBgYqNjZUkxcbGugSt1OWpy27WJz4+Xn/88YfOnj2r5OTkdPukbuNGpkyZIj8/P+cjJCTE3cMHAABIFxkJAAAg49wuSFWpUkXR0dH65ptvNHjwYEVFRWn//v3ZMbYsN2bMGMXFxTkfv/zyS04PCQAA5BFkJAAAgIwr4O4KXl5eqlixoiSpfv36+vbbbzVr1iz16NFDCQkJunDhgssngKdOnVJQUJAkKSgoKM2dXlLvMHNtn+vvOnPq1Ck5HA4VKlRInp6e8vT0TLdP6jZuxG63y263u3vIAAAAt0RGAgAAyLhMX0MqVUpKiq5evar69eurYMGC2rRpk3PZwYMHdfz4cYWHh0uSwsPDtXfvXpc7vWzYsEEOh0NhYWHOPtduI7VP6ja8vLxUv359lz4pKSnatGmTsw8AAEBOIyMBAADcmFtnSI0ZM0b333+/ypQpo4sXL2rJkiXasmWL1q1bJz8/P/Xr108jRoxQsWLF5HA49Pjjjys8PFxNmjSRJLVp00ZhYWHq1auXpk2bptjYWD377LMaMmSI81O5QYMGafbs2Xr66af16KOPavPmzfrggw+0evVq5zhGjBihqKgoNWjQQI0aNdLMmTN1+fJl9e3bNwunBgAAIGPISAAAAO5xqyB1+vRp9e7dWydPnpSfn59q1aqldevW6b777pMkvfLKK/Lw8FDXrl119epVRUZGau7cuc71PT09tWrVKg0ePFjh4eHy9fVVVFSUnn/+eWefcuXKafXq1Ro+fLhmzZql0qVL66233lJkZKSzT48ePXTmzBmNGzdOsbGxqlOnjtauXZvmIp4AAABWICMBAAC4x2aMMTk9iJwSHx8vPz8/xcXFyeFwZPn2Dy0dm6atUs8Xs3w/AAAg47L7/T8vICMBAJD/WJ2RbvsaUgAAAAAAAIA7KEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJZyqyA1ZcoUNWzYUEWKFFGJEiXUuXNnHTx40KVPy5YtZbPZXB6DBg1y6XP8+HG1b99ePj4+KlGihEaOHKmkpCSXPlu2bFG9evVkt9tVsWJFLVy4MM145syZo7Jly8rb21uNGzfWjh073DkcAACALEFGAgAAcI9bBakvvvhCQ4YM0fbt27VhwwYlJiaqTZs2unz5sku/AQMG6OTJk87HtGnTnMuSk5PVvn17JSQkaOvWrVq0aJEWLlyocePGOfvExMSoffv2atWqlaKjozVs2DD1799f69atc/Z5//33NWLECI0fP17fffedateurcjISJ0+fTqzcwEAAJApZCQAAAD32IwxJrMrnzlzRiVKlNAXX3yh5s2bS/rr0786depo5syZ6a7z2WefqUOHDjpx4oQCAwMlSfPnz9eoUaN05swZeXl5adSoUVq9erV++OEH53o9e/bUhQsXtHbtWklS48aN1bBhQ82ePVuSlJKSopCQED3++OMaPXp0hsYfHx8vPz8/xcXFyeFwZHYabujQ0rFp2ir1fDHL9wMAADIuu9//JTLSrZCRAAC481iRka51W9eQiouLkyQVK1bMpX3x4sUqXry4atSooTFjxujKlSvOZdu2bVPNmjWdQUuSIiMjFR8fr3379jn7REREuGwzMjJS27ZtkyQlJCRo165dLn08PDwUERHh7JOeq1evKj4+3uUBAACQ1chIAAAAN1cgsyumpKRo2LBhuvvuu1WjRg1n+8MPP6zQ0FCVLFlS33//vUaNGqWDBw9q+fLlkqTY2FiXoCXJ+Tw2NvamfeLj4/XHH3/o/PnzSk5OTrfPgQMHbjjmKVOmaOLEiZk9ZAAAgFsiIwEAANxapgtSQ4YM0Q8//KCvvvrKpX3gwIHO/69Zs6aCg4N177336vDhw6pQoULmR5oFxowZoxEjRjifx8fHKyQkJAdHBAAA8hoyEgAAwK1lqiA1dOhQrVq1Sl9++aVKly59076NGzeWJP3888+qUKGCgoKC0tzp5dSpU5KkoKAg539T267t43A4VKhQIXl6esrT0zPdPqnbSI/dbpfdbs/YQQIAALiJjAQAAJAxbl1DyhijoUOHasWKFdq8ebPKlSt3y3Wio6MlScHBwZKk8PBw7d271+VOLxs2bJDD4VBYWJizz6ZNm1y2s2HDBoWHh0uSvLy8VL9+fZc+KSkp2rRpk7MPAACAVchIAAAA7nHrDKkhQ4ZoyZIl+vjjj1WkSBHn9Qz8/PxUqFAhHT58WEuWLFG7du1011136fvvv9fw4cPVvHlz1apVS5LUpk0bhYWFqVevXpo2bZpiY2P17LPPasiQIc5P5gYNGqTZs2fr6aef1qOPPqrNmzfrgw8+0OrVq51jGTFihKKiotSgQQM1atRIM2fO1OXLl9W3b9+smhsAAIAMISMBAAC4x62C1Lx58yT9ddviay1YsEB9+vSRl5eXNm7c6Aw+ISEh6tq1q5599llnX09PT61atUqDBw9WeHi4fH19FRUVpeeff97Zp1y5clq9erWGDx+uWbNmqXTp0nrrrbcUGRnp7NOjRw+dOXNG48aNU2xsrOrUqaO1a9emuYgnAABAdiMjAQAAuMdmjDE5PYicEh8fLz8/P8XFxcnhcGT59g8tHZumrVLPF7N8PwAAIOOy+/0/LyAjAQCQ/1idkdy6hhQAAAAAAABwuyhIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWcqsgNWXKFDVs2FBFihRRiRIl1LlzZx08eNClz59//qkhQ4borrvuUuHChdW1a1edOnXKpc/x48fVvn17+fj4qESJEho5cqSSkpJc+mzZskX16tWT3W5XxYoVtXDhwjTjmTNnjsqWLStvb281btxYO3bscOdwAAAAsgQZCQAAwD1uFaS++OILDRkyRNu3b9eGDRuUmJioNm3a6PLly84+w4cP16effqoPP/xQX3zxhU6cOKEHHnjAuTw5OVnt27dXQkKCtm7dqkWLFmnhwoUaN26cs09MTIzat2+vVq1aKTo6WsOGDVP//v21bt06Z5/3339fI0aM0Pjx4/Xdd9+pdu3aioyM1OnTp29nPgAAANxGRgIAAHCPzRhjMrvymTNnVKJECX3xxRdq3ry54uLiFBAQoCVLlqhbt26SpAMHDqhatWratm2bmjRpos8++0wdOnTQiRMnFBgYKEmaP3++Ro0apTNnzsjLy0ujRo3S6tWr9cMPPzj31bNnT124cEFr166VJDVu3FgNGzbU7NmzJUkpKSkKCQnR448/rtGjR2do/PHx8fLz81NcXJwcDkdmp+GGDi0dm6atUs8Xs3w/AAAg47L7/V8iI90KGQkAgDuPFRnpWrd1Dam4uDhJUrFixSRJu3btUmJioiIiIpx9qlatqjJlymjbtm2SpG3btqlmzZrOoCVJkZGRio+P1759+5x9rt1Gap/UbSQkJGjXrl0ufTw8PBQREeHsAwAAkFPISAAAADdXILMrpqSkaNiwYbr77rtVo0YNSVJsbKy8vLzk7+/v0jcwMFCxsbHOPtcGrdTlqctu1ic+Pl5//PGHzp8/r+Tk5HT7HDhw4IZjvnr1qq5evep8Hh8f78YRAwAA3BoZCQAA4NYyfYbUkCFD9MMPP2jp0qVZOZ5sNWXKFPn5+TkfISEhOT0kAACQx5CRAAAAbi1TBamhQ4dq1apV+vzzz1W6dGlne1BQkBISEnThwgWX/qdOnVJQUJCzz/V3lEl9fqs+DodDhQoVUvHixeXp6Zlun9RtpGfMmDGKi4tzPn755Rf3DhwAAOAmyEgAAAAZ41ZByhijoUOHasWKFdq8ebPKlSvnsrx+/foqWLCgNm3a5Gw7ePCgjh8/rvDwcElSeHi49u7d63Knlw0bNsjhcCgsLMzZ59ptpPZJ3YaXl5fq16/v0iclJUWbNm1y9kmP3W6Xw+FweQAAANwuMhIAAIB73LqG1JAhQ7RkyRJ9/PHHKlKkiPN6Bn5+fipUqJD8/PzUr18/jRgxQsWKFZPD4dDjjz+u8PBwNWnSRJLUpk0bhYWFqVevXpo2bZpiY2P17LPPasiQIbLb7ZKkQYMGafbs2Xr66af16KOPavPmzfrggw+0evVq51hGjBihqKgoNWjQQI0aNdLMmTN1+fJl9e3bN6vmBgAAIEPISAAAAO5xqyA1b948SVLLli1d2hcsWKA+ffpIkl555RV5eHioa9euunr1qiIjIzV37lxnX09PT61atUqDBw9WeHi4fH19FRUVpeeff97Zp1y5clq9erWGDx+uWbNmqXTp0nrrrbcUGRnp7NOjRw+dOXNG48aNU2xsrOrUqaO1a9emuYgnAABAdiMjAQAAuMdmjDE5PYicEh8fLz8/P8XFxWXLqemHlo5N01ap54tZvh8AAJBx2f3+nxeQkQAAyH+szkiZvsseAAAAAAAAkBkUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS7ldkPryyy/VsWNHlSxZUjabTStXrnRZ3qdPH9lsNpdH27ZtXfqcO3dOjzzyiBwOh/z9/dWvXz9dunTJpc/333+ve+65R97e3goJCdG0adPSjOXDDz9U1apV5e3trZo1a2rNmjXuHg4AAECWICMBAABknNsFqcuXL6t27dqaM2fODfu0bdtWJ0+edD7++9//uix/5JFHtG/fPm3YsEGrVq3Sl19+qYEDBzqXx8fHq02bNgoNDdWuXbv00ksvacKECXrjjTecfbZu3aqHHnpI/fr10+7du9W5c2d17txZP/zwg7uHBAAAcNvISAAAABlnM8aYTK9ss2nFihXq3Lmzs61Pnz66cOFCmk8FU/34448KCwvTt99+qwYNGkiS1q5dq3bt2unXX39VyZIlNW/ePI0dO1axsbHy8vKSJI0ePVorV67UgQMHJEk9evTQ5cuXtWrVKue2mzRpojp16mj+/PkZGn98fLz8/PwUFxcnh8ORiRm4uUNLx6Zpq9TzxSzfDwAAyLjsfv+XyEi3QkYCAODOY0VGula2XENqy5YtKlGihKpUqaLBgwfr999/dy7btm2b/P39nUFLkiIiIuTh4aFvvvnG2ad58+bOoCVJkZGROnjwoM6fP+/sExER4bLfyMhIbdu2LTsOCQAA4LaRkQAAAP5SIKs32LZtWz3wwAMqV66cDh8+rGeeeUb333+/tm3bJk9PT8XGxqpEiRKugyhQQMWKFVNsbKwkKTY2VuXKlXPpExgY6FxWtGhRxcbGOtuu7ZO6jfRcvXpVV69edT6Pj4+/rWMFAADIKDISAADA37K8INWzZ0/n/9esWVO1atVShQoVtGXLFt17771ZvTu3TJkyRRMnTszRMQAAgPyJjAQAAPC3bPnK3rXKly+v4sWL6+eff5YkBQUF6fTp0y59kpKSdO7cOQUFBTn7nDp1yqVP6vNb9Uldnp4xY8YoLi7O+fjll19u7+AAAAAyiYwEAADys2wvSP3666/6/fffFRwcLEkKDw/XhQsXtGvXLmefzZs3KyUlRY0bN3b2+fLLL5WYmOjss2HDBlWpUkVFixZ19tm0aZPLvjZs2KDw8PAbjsVut8vhcLg8AAAAcgIZCQAA5GduF6QuXbqk6OhoRUdHS5JiYmIUHR2t48eP69KlSxo5cqS2b9+uo0ePatOmTerUqZMqVqyoyMhISVK1atXUtm1bDRgwQDt27NDXX3+toUOHqmfPnipZsqQk6eGHH5aXl5f69eunffv26f3339esWbM0YsQI5zieeOIJrV27Vi+//LIOHDigCRMmaOfOnRo6dGgWTAsAAIB7yEgAAAAZ53ZBaufOnapbt67q1q0rSRoxYoTq1q2rcePGydPTU99//73+8Y9/qHLlyurXr5/q16+v//3vf7Lb7c5tLF68WFWrVtW9996rdu3aqVmzZnrjjTecy/38/LR+/XrFxMSofv36evLJJzVu3DgNHDjQ2adp06ZasmSJ3njjDdWuXVvLli3TypUrVaNGjduZDwAAgEwhIwEAAGSczRhjcnoQOSU+Pl5+fn6Ki4vLllPTDy0dm6atUs8Xs3w/AAAg47L7/T8vICMBAJD/WJ2Rsv0aUgAAAAAAAMC1KEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLuV2Q+vLLL9WxY0eVLFlSNptNK1eudFlujNG4ceMUHBysQoUKKSIiQocOHXLpc+7cOT3yyCNyOBzy9/dXv379dOnSJZc+33//ve655x55e3srJCRE06ZNSzOWDz/8UFWrVpW3t7dq1qypNWvWuHs4AAAAWYKMBAAAkHFuF6QuX76s2rVra86cOekunzZtml599VXNnz9f33zzjXx9fRUZGak///zT2eeRRx7Rvn37tGHDBq1atUpffvmlBg4c6FweHx+vNm3aKDQ0VLt27dJLL72kCRMm6I033nD22bp1qx566CH169dPu3fvVufOndW5c2f98MMP7h4SAADAbSMjAQAAZJzNGGMyvbLNphUrVqhz586S/vrkr2TJknryySf11FNPSZLi4uIUGBiohQsXqmfPnvrxxx8VFhamb7/9Vg0aNJAkrV27Vu3atdOvv/6qkiVLat68eRo7dqxiY2Pl5eUlSRo9erRWrlypAwcOSJJ69Oihy5cva9WqVc7xNGnSRHXq1NH8+fMzNP74+Hj5+fkpLi5ODocjs9NwQ4eWjk3TVqnni1m+HwAAkHHZ/f4vkZFuhYwEAMCdx4qMdK0svYZUTEyMYmNjFRER4Wzz8/NT48aNtW3bNknStm3b5O/v7wxakhQRESEPDw998803zj7Nmzd3Bi1JioyM1MGDB3X+/Hlnn2v3k9ondT/puXr1quLj410eAAAA2Y2MBAAA4CpLC1KxsbGSpMDAQJf2wMBA57LY2FiVKFHCZXmBAgVUrFgxlz7pbePafdyoT+ry9EyZMkV+fn7OR0hIiLuHCAAA4DYyEgAAgKt8dZe9MWPGKC4uzvn45ZdfcnpIAAAAOY6MBAAArJalBamgoCBJ0qlTp1zaT5065VwWFBSk06dPuyxPSkrSuXPnXPqkt41r93GjPqnL02O32+VwOFweAAAA2Y2MBAAA4CpLC1LlypVTUFCQNm3a5GyLj4/XN998o/DwcElSeHi4Lly4oF27djn7bN68WSkpKWrcuLGzz5dffqnExERnnw0bNqhKlSoqWrSos8+1+0ntk7ofAACAOwUZCQAAwJXbBalLly4pOjpa0dHRkv66SGd0dLSOHz8um82mYcOG6YUXXtAnn3yivXv3qnfv3ipZsqTzLjPVqlVT27ZtNWDAAO3YsUNff/21hg4dqp49e6pkyZKSpIcfflheXl7q16+f9u3bp/fff1+zZs3SiBEjnON44okntHbtWr388ss6cOCAJkyYoJ07d2ro0KG3PysAAABuIiMBAABkXAF3V9i5c6datWrlfJ4agKKiorRw4UI9/fTTunz5sgYOHKgLFy6oWbNmWrt2rby9vZ3rLF68WEOHDtW9994rDw8Pde3aVa+++qpzuZ+fn9avX68hQ4aofv36Kl68uMaNG6eBAwc6+zRt2lRLlizRs88+q2eeeUaVKlXSypUrVaNGjUxNBAAAwO0gIwEAAGSczRhjcnoQOSU+Pl5+fn6Ki4vLlmslHFo6Nk1bpZ4vZvl+AABAxmX3+39eQEYCACD/sToj5au77AEAAAAAACDnUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACyV5QWpCRMmyGazuTyqVq3qXP7nn39qyJAhuuuuu1S4cGF17dpVp06dctnG8ePH1b59e/n4+KhEiRIaOXKkkpKSXPps2bJF9erVk91uV8WKFbVw4cKsPhQAAIAsQ0YCAAD4W7acIVW9enWdPHnS+fjqq6+cy4YPH65PP/1UH374ob744gudOHFCDzzwgHN5cnKy2rdvr4SEBG3dulWLFi3SwoULNW7cOGefmJgYtW/fXq1atVJ0dLSGDRum/v37a926ddlxOAAAAFmCjAQAAPCXAtmy0QIFFBQUlKY9Li5Ob7/9tpYsWaLWrVtLkhYsWKBq1app+/btatKkidavX6/9+/dr48aNCgwMVJ06dTRp0iSNGjVKEyZMkJeXl+bPn69y5crp5ZdfliRVq1ZNX331lV555RVFRkZmxyEBAADcNjISAADAX7LlDKlDhw6pZMmSKl++vB555BEdP35ckrRr1y4lJiYqIiLC2bdq1aoqU6aMtm3bJknatm2batasqcDAQGefyMhIxcfHa9++fc4+124jtU/qNm7k6tWrio+Pd3kAAABYhYwEAADwlywvSDVu3FgLFy7U2rVrNW/ePMXExOiee+7RxYsXFRsbKy8vL/n7+7usExgYqNjYWElSbGysS9BKXZ667GZ94uPj9ccff9xwbFOmTJGfn5/zERIScruHCwAAkCFkJAAAgL9l+Vf27r//fuf/16pVS40bN1ZoaKg++OADFSpUKKt355YxY8ZoxIgRzufx8fEELgAAYAkyEgAAwN+y5St71/L391flypX1888/KygoSAkJCbpw4YJLn1OnTjmvpxAUFJTmjjKpz2/Vx+Fw3DTQ2e12ORwOlwcAAEBOICMBAID8LNsLUpcuXdLhw4cVHBys+vXrq2DBgtq0aZNz+cGDB3X8+HGFh4dLksLDw7V3716dPn3a2WfDhg1yOBwKCwtz9rl2G6l9UrcBAABwpyMjAQCA/CzLC1JPPfWUvvjiCx09elRbt25Vly5d5OnpqYceekh+fn7q16+fRowYoc8//1y7du1S3759FR4eriZNmkiS2rRpo7CwMPXq1Ut79uzRunXr9Oyzz2rIkCGy2+2SpEGDBunIkSN6+umndeDAAc2dO1cffPCBhg8fntWHAwAAkCXISAAAAH/L8mtI/frrr3rooYf0+++/KyAgQM2aNdP27dsVEBAgSXrllVfk4eGhrl276urVq4qMjNTcuXOd63t6emrVqlUaPHiwwsPD5evrq6ioKD3//PPOPuXKldPq1as1fPhwzZo1S6VLl9Zbb73F7YwBAMAdi4wEAADwN5sxxuT0IHJKfHy8/Pz8FBcXly3XSji0dGyatko9X8zy/QAAgIzL7vf/vICMBABA/mN1Rsr2a0gBAAAAAAAA16IgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpAjk9AAAAgMS1X6VpK9i2WQ6MBAAA4M6RlzMSZ0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwVIGcHgAAAMhfEtd+ldNDAAAAuOPkt4zEGVIAAAAAAACwFAUpAAAAAAAAWIqv7AEAgGyV304/BwAAyIj8npE4QwoAAAAAAACW4gwpAACQZfL7J30AAADpISOllevPkJozZ47Kli0rb29vNW7cWDt27MjpIQEAkC8krv0qzQN3DjISAAA5g4yUMbn6DKn3339fI0aM0Pz589W4cWPNnDlTkZGROnjwoEqUKJHTwwMAINciOOVuZCQAALIHGSnr5OqC1IwZMzRgwAD17dtXkjR//nytXr1a77zzjkaPHp3DowMA4M50Jwapoxc+S9NWSc1yYCR5AxkJAAD3kZGslWsLUgkJCdq1a5fGjBnjbPPw8FBERIS2bduWgyMDAMA9d2L4yUrpBSlkHzISACCvICPlbbm2IHX27FklJycrMDDQpT0wMFAHDhxId52rV6/q6tWrzudxcXGSpPj4+GwZ46UrV9O07X7nqUxtq4zffZla73jchkxt55e7fnR5HvJ7tVtuOz3p7S+99a7vl5E+6cnsmDK7LVv50mnazJFfM7W/zOw/o9vP7JwDQE7Krvfn1O0aY7Jl+zmNjJQxZKSMjysz2yIjAUD2yTMZyeRSv/32m5Fktm7d6tI+cuRI06hRo3TXGT9+vJHEgwcPHjx48OBhfvnlFysii+XISDx48ODBgweP23lYlZFy7RlSxYsXl6enp06dOuXSfurUKQUFBaW7zpgxYzRixAjn85SUFJ07d0533XWXbDZblo4vPj5eISEh+uWXX+RwOLJ020gfc2495tx6zLn1mPOckZ3zbozRxYsXVbJkySzd7p2CjITrMefWY86tx5znDObdenkpI+XagpSXl5fq16+vTZs2qXPnzpL+Ck+bNm3S0KFD013HbrfLbre7tPn7+2frOB0OB7+YFmPOrcecW485tx5znjOya979/PyyfJt3CjISboQ5tx5zbj3mPGcw79bLCxkp1xakJGnEiBGKiopSgwYN1KhRI82cOVOXL1923lEGAAAgPyIjAQCAO12uLkj16NFDZ86c0bhx4xQbG6s6depo7dq1aS7iCQAAkJ+QkQAAwJ0uVxekJGno0KE3PP08J9ntdo0fPz7N6e/IPsy59Zhz6zHn1mPOcwbzfvvISEjFnFuPObcec54zmHfr5aU5txmTR+95DAAAAAAAgDuSR04PAAAAAAAAAPkLBSkAAAAAAABYioIUAAAAAAAALEVB6jbMmTNHZcuWlbe3txo3bqwdO3bctP+HH36oqlWrytvbWzVr1tSaNWssGmne4c6cv/nmm7rnnntUtGhRFS1aVBEREbf8GSEtd1/nqZYuXSqbzabOnTtn7wDzIHfn/MKFCxoyZIiCg4Nlt9tVuXJl/r64yd05nzlzpqpUqaJChQopJCREw4cP159//mnRaHO/L7/8Uh07dlTJkiVls9m0cuXKW66zZcsW1atXT3a7XRUrVtTChQuzfZzIPDKS9chI1iMjWY+MZD0ykrXyXUYyyJSlS5caLy8v884775h9+/aZAQMGGH9/f3Pq1Kl0+3/99dfG09PTTJs2zezfv988++yzpmDBgmbv3r0Wjzz3cnfOH374YTNnzhyze/du8+OPP5o+ffoYPz8/8+uvv1o88tzL3TlPFRMTY0qVKmXuuece06lTJ2sGm0e4O+dXr141DRo0MO3atTNfffWViYmJMVu2bDHR0dEWjzz3cnfOFy9ebOx2u1m8eLGJiYkx69atM8HBwWb48OEWjzz3WrNmjRk7dqxZvny5kWRWrFhx0/5HjhwxPj4+ZsSIEWb//v3mtddeM56enmbt2rXWDBhuISNZj4xkPTKS9chI1iMjWS+/ZSQKUpnUqFEjM2TIEOfz5ORkU7JkSTNlypR0+3fv3t20b9/epa1x48bmX//6V7aOMy9xd86vl5SUZIoUKWIWLVqUXUPMczIz50lJSaZp06bmrbfeMlFRUYQtN7k75/PmzTPly5c3CQkJVg0xz3F3zocMGWJat27t0jZixAhz9913Z+s486qMhK2nn37aVK9e3aWtR48eJjIyMhtHhswiI1mPjGQ9MpL1yEjWIyPlrPyQkfjKXiYkJCRo165dioiIcLZ5eHgoIiJC27ZtS3edbdu2ufSXpMjIyBv2h6vMzPn1rly5osTERBUrViy7hpmnZHbOn3/+eZUoUUL9+vWzYph5Smbm/JNPPlF4eLiGDBmiwMBA1ahRQ5MnT1ZycrJVw87VMjPnTZs21a5du5ynrB85ckRr1qxRu3btLBlzfsR7aO5BRrIeGcl6ZCTrkZGsR0bKHXL7e2iBnB5AbnT27FklJycrMDDQpT0wMFAHDhxId53Y2Nh0+8fGxmbbOPOSzMz59UaNGqWSJUum+YVF+jIz51999ZXefvttRUdHWzDCvCczc37kyBFt3rxZjzzyiNasWaOff/5Zjz32mBITEzV+/Hgrhp2rZWbOH374YZ09e1bNmjWTMUZJSUkaNGiQnnnmGSuGnC/d6D00Pj5ef/zxhwoVKpRDI8P1yEjWIyNZj4xkPTKS9chIuUNuz0icIYV8YerUqVq6dKlWrFghb2/vnB5OnnTx4kX16tVLb775pooXL57Tw8k3UlJSVKJECb3xxhuqX7++evToobFjx2r+/Pk5PbQ8a8uWLZo8ebLmzp2r7777TsuXL9fq1as1adKknB4aALiNjJT9yEg5g4xkPTIS3MUZUplQvHhxeXp66tSpUy7tp06dUlBQULrrBAUFudUfrjIz56mmT5+uqVOnauPGjapVq1Z2DjNPcXfODx8+rKNHj6pjx47OtpSUFElSgQIFdPDgQVWoUCF7B53LZeZ1HhwcrIIFC8rT09PZVq1aNcXGxiohIUFeXl7ZOubcLjNz/txzz6lXr17q37+/JKlmzZq6fPmyBg4cqLFjx8rDg896stqN3kMdDscd/8lffkNGsh4ZyXpkJOuRkaxHRsodcntG4hWRCV5eXqpfv742bdrkbEtJSdGmTZsUHh6e7jrh4eEu/SVpw4YNN+wPV5mZc0maNm2aJk2apLVr16pBgwZWDDXPcHfOq1atqr179yo6Otr5+Mc//qFWrVopOjpaISEhVg4/V8rM6/zuu+/Wzz//7Ay2kvTTTz8pODiYoJUBmZnzK1eupAlUqWHXGJN9g83HeA/NPchI1iMjWY+MZD0ykvXISLlDrn8PzdlrqudeS5cuNXa73SxcuNDs37/fDBw40Pj7+5vY2FhjjDG9evUyo0ePdvb/+uuvTYECBcz06dPNjz/+aMaPH88tjd3k7pxPnTrVeHl5mWXLlpmTJ086HxcvXsypQ8h13J3z63EHGfe5O+fHjx83RYoUMUOHDjUHDx40q1atMiVKlDAvvPBCTh1CruPunI8fP94UKVLE/Pe//zVHjhwx69evNxUqVDDdu3fPqUPIdS5evGh2795tdu/ebSSZGTNmmN27d5tjx44ZY4wZPXq06dWrl7N/6i2NR44caX788UczZ86cXHVL4/yGjGQ9MpL1yEjWIyNZj4xkvfyWkShI3YbXXnvNlClTxnh5eZlGjRqZ7du3O5e1aNHCREVFufT/4IMPTOXKlY2Xl5epXr26Wb16tcUjzv3cmfPQ0FAjKc1j/Pjx1g88F3P3dX4twlbmuDvnW7duNY0bNzZ2u92UL1/evPjiiyYpKcniUedu7sx5YmKimTBhgqlQoYLx9vY2ISEh5rHHHjPnz5+3fuC51Oeff57u3+fUeY6KijItWrRIs06dOnWMl5eXKV++vFmwYIHl40bGkZGsR0ayHhnJemQk65GRrJXfMpLNGM6dAwAAAAAAgHW4hhQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAbnEli1bZLPZtGXLlizdrs1m04QJE7J0m3lNnz59VLZs2Zwexh2hbNmy6tOnzy37LVy4UDabTUePHs32Mbnr0qVLKlGihBYvXnzLvun97C9duqT+/fsrKChINptNw4YNc2v/o0ePVuPGjd1aBwBwY2SknENG+hsZiYwE91GQguW2bt2qCRMm6MKFCzk9lHxjzZo1BCpJV65c0YQJE7I8sMJaS5cuVb169eTt7a2AgAD169dPZ8+ezfD6s2bNUpEiRdSzZ89M7X/y5MlauHChBg8erHfffVe9evWSJM2bN08PPvigypQpI5vNdsNQOmzYMO3Zs0effPJJpvYPIO8iI1mPjPQXMlLecCdmpF9++UUTJ05Uo0aNVLRoURUvXlwtW7bUxo0b06xPRsqHDGCxl156yUgyMTExOT2UXOXzzz83ksznn3/u9rpDhgwxN/p1/+OPP0xiYuJtji53OHPmjJFkxo8f79Z6CQkJ5s8//8yeQeUyf/75p0lISLhlvwULFmTL7/ncuXONJHPvvfeaOXPmmDFjxhgfHx9Tq1Yt88cff9xy/YSEBBMQEGAmT56cof1FRUWZ0NBQl7bGjRubu+++O03f0NBQU6xYMdO2bVtToEABExUVdcPtdu/e3dxzzz0ZGgOA/IOMlDlkpNtHRrp9ZKT0M9Jrr71mChUqZB566CEze/ZsM3PmTFOvXj0jybzzzjtptktGyl8K5EgVDMhHrly5Ih8fnzTtSUlJSklJkZeXVw6M6m/e3t45uv872eXLl+Xr66uCBQvm9FDuGHa7Pcf2nZCQoGeeeUbNmzfXhg0bZLPZJElNmzZVx44d9eabb+rxxx+/6TZWrVqlM2fOqHv37pkex+nTpxUWFpam/YsvvnCeHVW4cOGbbqN79+568MEHdeTIEZUvXz7TYwGA3IyMlHuRkdIiI6WfkVq1aqXjx4+rePHizrZBgwapTp06GjdunPr27evSn4yUv/CVPVhqwoQJGjlypCSpXLlystlsLt+hTkpK0qRJk1ShQgXZ7XaVLVtWzzzzjK5eveqynbJly6pDhw5av3696tSpI29vb4WFhWn58uWZGtd7772nRo0aycfHR0WLFlXz5s21fv16lz5z585V9erVZbfbVbJkSQ0ZMiTNKfUtW7ZUjRo1tGvXLjVv3lw+Pj565plndPToUdlsNk2fPl0zZ850Ht/+/fslSQcOHFC3bt1UrFgxeXt7q0GDBhk6VfV///uf8ytCdrtdISEhGj58uP744w9nnz59+mjOnDmS5Jzv1Dep1LbrT1XfvXu37r//fjkcDhUuXFj33nuvtm/f7tIn9fvvX3/9tUaMGKGAgAD5+vqqS5cuOnPmzC3Hfq0JEybIZrPpp59+0j//+U/5+fkpICBAzz33nIwx+uWXX9SpUyc5HA4FBQXp5Zdfdlk/ISFB48aNU/369eXn5ydfX1/dc889+vzzz519jh49qoCAAEnSxIkTnfOQeux9+vRR4cKFdfjwYbVr105FihTRI4884lx27Xfkx48fLw8PD23atMllHAMHDpSXl5f27NmT4WPP6Gs5MTFREydOVKVKleTt7a277rpLzZo104YNG5x9Uo/h+PHj6tChgwoXLqxSpUo5f/579+5V69at5evrq9DQUC1ZsiTD47x2vNd/FW3fvn1q3bq1ChUqpNKlS+uFF15QSkpKmnV37typyMhIFS9eXIUKFVK5cuX06KOPZnjfP/zwgy5cuKAePXq4vIZTj3Xp0qW33MbKlStVtmxZVahQId1lNWrUkLe3t2rUqKEVK1a4LE+9RklMTIxWr16d5u9XaGioy7huJiIiQpL08ccfZ6g/gLyPjERGSg8ZiYyUEXdyDCE+kwABAABJREFURqpevbpLMUr6q3jXrl07/frrr7p48aLLMjJS/sIZUrDUAw88oJ9++kn//e9/9corrzj/OKW+Cfbv31+LFi1St27d9OSTT+qbb77RlClT9OOPP6b5w3fo0CH16NFDgwYNUlRUlBYsWKAHH3xQa9eu1X333ZfhMU2cOFETJkxQ06ZN9fzzz8vLy0vffPONNm/erDZt2kj6KwxMnDhRERERGjx4sA4ePKh58+bp22+/1ddff+3y6dDvv/+u+++/Xz179tQ///lPBQYGOpctWLBAf/75pwYOHCi73a5ixYpp3759uvvuu1WqVCmNHj1avr6++uCDD9S5c2d99NFH6tKlyw3H/uGHH+rKlSsaPHiw7rrrLu3YsUOvvfaafv31V3344YeSpH/96186ceKENmzYoHffffeW87Fv3z7dc889cjgcevrpp1WwYEG9/vrratmypb744os0Fxp8/PHHVbRoUY0fP15Hjx7VzJkzNXToUL3//vsZ/hmk6tGjh6pVq6apU6dq9erVeuGFF1SsWDG9/vrrat26tf79739r8eLFeuqpp9SwYUM1b95ckhQfH6+33npLDz30kAYMGKCLFy/q7bffVmRkpHbs2KE6deooICBA8+bN0+DBg9WlSxc98MADkqRatWo595+UlKTIyEg1a9ZM06dPT/dTW0l69tln9emnn6pfv37au3evihQponXr1unNN9/UpEmTVLt2bbeOOyOv5QkTJmjKlCnq37+/GjVqpPj4eO3cuVPfffedy+s9OTlZ999/v5o3b65p06Zp8eLFGjp0qHx9fTV27Fg98sgjeuCBBzR//nz17t1b4eHhKleunFvjvVZsbKxatWqlpKQk5+v3jTfeUKFChVz6nT59Wm3atFFAQIBGjx4tf39/HT161K1/IKX+o+v6bae27d69WykpKfLwuPFnLVu3blW9evXStK9fv15du3ZVWFiYpkyZot9//119+/ZV6dKlnX2qVaumd999V8OHD1fp0qX15JNPSvr775c7/Pz8VKFCBX399dcaPny42+sDyHvISGSkmyEjkZFuJjdmpNjYWPn4+KR5LZGR8pmc/s4g8p8bXR8hOjraSDL9+/d3aX/qqaeMJLN582ZnW2hoqJFkPvroI2dbXFycCQ4ONnXr1s3wWA4dOmQ8PDxMly5dTHJyssuylJQUY4wxp0+fNl5eXqZNmzYufWbPnp3mu88tWrQwksz8+fNdthUTE2MkGYfDYU6fPu2y7N577zU1a9Z0+f59SkqKadq0qalUqZKzLb3rI1y5ciXNMU2ZMsXYbDZz7NgxZ9vNro+g664X0LlzZ+Pl5WUOHz7sbDtx4oQpUqSIad68ubMt9fvvERERzrkyxpjhw4cbT09Pc+HChXT3l57x48cbSWbgwIHOtqSkJFO6dGljs9nM1KlTne3nz583hQoVcrk+T1JSkrl69arLNs+fP28CAwPNo48+6my72fURoqKijCQzevTodJdd/x35vXv3Gi8vL9O/f39z/vx5U6pUKdOgQQO3rzWR0ddy7dq1Tfv27W+6rdRjuPa7/6nzZbPZzNKlS53tBw4cyNS1IkJDQ13mftiwYUaS+eabb5xtp0+fNn5+fi6/5ytWrDCSzLfffuvW/q515swZY7PZTL9+/VzaU49Fkjl79uwN109MTDQ2m808+eSTaZbVqVPHBAcHu7xu169fbySl+dmHhobe8mfh6+t702tIGWNMmzZtTLVq1W7aB0D+QkYiI12PjERGyojclJGM+evvi7e3t+nVq1e6y8lI+Qdf2cMdY82aNZKkESNGuLSnVthXr17t0l6yZEmXT8YcDod69+6t3bt3KzY2NkP7XLlypVJSUjRu3Lg0nxiknu66ceNGJSQkaNiwYS59BgwYIIfDkWZcdrs9zXehU3Xt2tXlk4Jz585p8+bN6t69uy5evKizZ8/q7Nmz+v333xUZGalDhw7pt99+u+H4r/0U5PLlyzp79qyaNm0qY4x2796doTm4VnJystavX6/OnTu7fGc7ODhYDz/8sL766ivFx8e7rDNw4ECXU4PvueceJScn69ixY27vv3///s7/9/T0VIMGDWSMUb9+/Zzt/v7+qlKlio4cOeLSN/U6EykpKTp37pySkpLUoEEDfffdd26NYfDgwRnqV6NGDU2cOFFvvfWWIiMjdfbsWS1atEgFCrh/4mlGXsv+/v7at2+fDh06dMvtXTuPqfPl6+vrck2AKlWqyN/f32UeM2PNmjVq0qSJGjVq5GwLCAhwnsp/7Tikv65PkJiYmKl9FS9eXN27d9eiRYv08ssv68iRI/rf//6nHj16OD+Bv/arGNc7d+6cjDEqWrSoS/vJkycVHR2tqKgo+fn5Odvvu+++dK8VlVWKFi3q1p1vAORfZCQyEhnpL2Sk9OWmjHTlyhU9+OCDKlSokKZOnZpuHzJS/kFBCneMY8eOycPDQxUrVnRpDwoKkr+/f5o374oVK6a5XkvlypUlyXm9hVs5fPiwPDw8bvoHNXW/VapUcWn38vJS+fLl04yrVKlSN7wI5/Wn/f78888yxui5555TQECAy2P8+PGS/jqN90aOHz+uPn36qFixYipcuLACAgLUokULSVJcXNwN17uRM2fO6MqVK2mOVfrrVNyUlBT98ssvLu1lypRxeZ76Rnb+/Hm393/9tvz8/OTt7Z3me+d+fn5ptr9o0SLVqlXLee2AgIAArV692q15KFCggMvpx7cycuRI1a5dWzt27ND48eMz/cackdfy888/rwsXLqhy5cqqWbOmRo4cqe+//z7NtlJv83stPz8/lS5dOs0+0ptHdx07dkyVKlVK0379a6hFixbq2rWrJk6cqOLFi6tTp05asGBBmmuf3Mrrr7+udu3a6amnnlKFChXUvHlz1axZUx07dpSkW15MXJKMMWmOQVKGjiMrGWMyfM0pAPkbGYmMREb6GxkpfbkhIyUnJ6tnz57av3+/li1bppIlS95wHGSk/IFrSOGOk9v/+KT33e0bLUu9qOFTTz2lyMjIdNe5PnymSk5O1n333adz585p1KhRqlq1qnx9ffXbb7+pT58+6V4wMTt4enqm2379G1pmt5WR7b/33nvq06ePOnfurJEjR6pEiRLy9PTUlClTdPjw4Qzv32633/S79dc7cuSI89O4vXv3Zni9zGjevLkOHz6sjz/+WOvXr9dbb72lV155RfPnz0/zqWl6svLnlBk2m03Lli3T9u3b9emnn2rdunV69NFH9fLLL2v79u0ZCknSXwHx448/1vHjx3X06FGFhoYqNDRUTZs2VUBAgPNTxvQUK1ZMNpvttgNmVjl//nyaf0gAwM2QkVyRkchIEhkpVW7ISAMGDNCqVau0ePFitW7d+ob9yEj5BwUpWO5GYSo0NFQpKSk6dOiQqlWr5mw/deqULly4oNDQUJf+qZ+cXbu9n376SZJc7vZxMxUqVFBKSor279+vOnXq3HBcknTw4EGXU7QTEhIUExPjvBNEZqRur2DBgm5vZ+/evfrpp5+0aNEi9e7d29l+7R1FUmU0wAYEBMjHx0cHDx5Ms+zAgQPy8PBQSEiIW+O0wrJly1S+fHktX77c5VhTP0FNlZVBPiUlRX369JHD4dCwYcM0efJkdevWzXkhUHdk9LVcrFgx9e3bV3379tWlS5fUvHlzTZgwwSVsWS00NDTdU+TTew1JUpMmTdSkSRO9+OKLWrJkiR555BEtXbrU7WMoU6aM89PiCxcuaNeuXeratetN1ylQoIAqVKigmJiYNMcgya3jyAoxMTFuX9wVQN5GRvobGSlrkJHISHdKRho5cqQWLFigmTNn6qGHHrppXzJS/sFX9mA5X19fSUpzO+B27dpJkmbOnOnSPmPGDElS+/btXdpPnDjhcleZ+Ph4/ec//1GdOnUUFBSUobF07txZHh4eev7559N8Wpb6qUhERIS8vLz06quvunxS8vbbbysuLi7NuNxRokQJtWzZUq+//rpOnjyZZvnNbg2c+mnOtWMyxmjWrFlp+t5oztPbZps2bfTxxx+7nNJ/6tQpLVmyRM2aNZPD4bjpNnJCenPxzTffaNu2bS79Uu/icat5yIgZM2Zo69ateuONNzRp0iQ1bdpUgwcPztT33TPyWv79999d1ilcuLAqVqzo9uncWa1du3bavn27duzY4Ww7c+aMFi9e7NLv/PnzaT5pTP0Hzu0ew5gxY5SUlJShO7GEh4dr586dLm3BwcGqU6eOFi1a5PL1hQ0bNjhvO57V4uLidPjwYTVt2jRbtg8gdyIj/Y2MlDXISDmHjPS3l156SdOnT9czzzyjJ5544qZ9yUj5C2dIwXL169eXJI0dO1Y9e/ZUwYIF1bFjR9WuXVtRUVF64403dOHCBbVo0UI7duzQokWL1LlzZ7Vq1cplO5UrV1a/fv307bffKjAwUO+8845OnTqlBQsWZHgsFStW1NixYzVp0iTdc889euCBB2S32/Xtt9+qZMmSmjJligICAjRmzBhNnDhRbdu21T/+8Q8dPHhQc+fOVcOGDfXPf/7ztuZjzpw5atasmWrWrKkBAwaofPnyOnXqlLZt26Zff/1Ve/bsSXe9qlWrqkKFCnrqqaf022+/yeFw6KOPPkr3VNvUOf+///s/RUZGytPTUz179kx3uy+88II2bNigZs2a6bHHHlOBAgX0+uuv6+rVq5o2bdptHWt26dChg5YvX64uXbqoffv2iomJ0fz58xUWFqZLly45+xUqVEhhYWF6//33VblyZRUrVkw1atRQjRo13Nrfjz/+qOeee059+vRxfi9/4cKFqlOnjh577DF98MEHbm0vI6/lsLAwtWzZUvXr11exYsW0c+dOLVu2TEOHDnVrX1nt6aef1rvvvqu2bdvqiSeecN7SODQ01OX6DYsWLdLcuXPVpUsXVahQQRcvXtSbb74ph8Ph/IdWRkydOlU//PCDGjdurAIFCmjlypVav369XnjhBTVs2PCW63fq1EnvvvuufvrpJ+c1KCRpypQpat++vZo1a6ZHH31U586d02uvvabq1au7vIZu5tNPP3X+viYmJur777/XCy+8IEn6xz/+4XL77I0bN8oYo06dOmX42AHkfWQkV2Sk20dGyjlkpL+sWLFCTz/9tCpVqqRq1arpvffec1l+3333KTAw0PmcjJTPZO9N/ID0TZo0yZQqVcp4eHi43PY0MTHRTJw40ZQrV84ULFjQhISEmDFjxrjc7teYv28pum7dOlOrVi1jt9tN1apVzYcffpip8bzzzjumbt26xm63m6JFi5oWLVqYDRs2uPSZPXu2qVq1qilYsKAJDAw0gwcPNufPn3fp06JFC1O9evU020+9pfFLL72U7v4PHz5sevfubYKCgkzBggVNqVKlTIcOHcyyZcucfdK7pfH+/ftNRESEKVy4sClevLgZMGCA2bNnj5FkFixY4OyXlJRkHn/8cRMQEGBsNpvL7Y2Vzm1tv/vuOxMZGWkKFy5sfHx8TKtWrczWrVtd+qTe0vj6W9SmN85bSb2l8ZkzZ1zao6KijK+vb5r+189zSkqKmTx5sgkNDTV2u93UrVvXrFq1Kt1bEW/dutXUr1/feHl5uRz7jfaVuix1O0lJSaZhw4amdOnSaW7bPGvWLCPJvP/++xk+9oy+ll944QXTqFEj4+/vbwoVKmSqVq1qXnzxRZOQkOAyzozM1/X7dsf1tzQ2xpjvv//etGjRwnh7e5tSpUqZSZMmmbffftvld/u7774zDz30kClTpoyx2+2mRIkSpkOHDmbnzp1u7X/VqlWmUaNGpkiRIsbHx8c0adLEfPDBBxle/+rVq6Z48eJm0qRJaZZ99NFHplq1asZut5uwsDCzfPnydF9DN5q31FtKp/e49vfRGGN69OhhmjVrluFxA8g/yEiuyEhkJDJSxtypGSn1NXyjx/W/D2Sk/MVmjEVXawOyUNmyZVWjRg2tWrUqp4cC3BZey9abNGmSFixYoEOHDt3wQqbZKTY2VuXKldPSpUv59A/4f+zdeVxWZf7/8fcNsqh4gytg4r6SO26YmRqJik2alVaTWC6jqaVMppbjmumYmTaaVjbqd0bHbdLMBVPMFqVUEjO3MSO1ELFUbpcEhPP7ox8nbwEFhMPi6/l4nMd0n3Odc65zAd7v+dznvg7yHe8rKCn4XbYeGQlWYw4pAMBdZfTo0bp8+bJWrlxZKOefO3eumjRpQtACAABFChkJVmMOKZRYCQkJt9xeunRpeXt7W9Sbu9Ply5dv+93yypUrF8onMAXt3LlzSktLy3a7u7u7KlSoYGGPbq2w/17Onz+vlJSUbLe7urqqcuXK+XIuLy8vJSYm5sux8mLmzJmFdm4AkAr/33yQkchIOUdGQklGQQollr+//y23h4eHa+nSpdZ05i41e/ZsTZky5ZZt4uLicvwI6uKkdevWOnnyZLbbH3jgAe3cudO6Dt1GYf+9PProo/rss8+y3V6jRg2npxoBAPKusP/NBxmJjJRzZCSUZMwhhRJr+/btt9xetWpVBQYGWtSbu9MPP/ygH3744ZZtOnToIE9PT4t6ZJ1du3bpt99+y3Z7+fLlzSf7FAWF/fcSExOT5dOPMpQuXVr33XdfgZ0fAO4mhf1vPshIZKScIyOhJKMgBQAAAAAAAEsxqTkAAAAAAAAsdVfPIZWenq74+HiVK1dONputsLsDAAAsYBiGLl26pKpVq8rFhc/mskJGAgDg7mN1RrqrC1Lx8fEKCAgo7G4AAIBCcPr0aVWrVq2wu1EkkZEAALh7WZWR7uqCVLly5ST9Pth2u72QewMAAKzgcDgUEBBg5gBkRkYCAODuY3VGuqsLUhm3oNvtdsIWAAB3Gb6Klj0yEgAAdy+rMhITJwAAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsNRdPYcUAADZMQxD169fV1paWmF3Bbnk6uqqUqVKMUcUAAAFgIxUfBW1jERBCgCAm6SkpOjMmTO6evVqYXcFeVSmTBn5+/vL3d29sLsCAECJQUYq/opSRqIgBQDADdLT0xUXFydXV1dVrVpV7u7uReZTJNyeYRhKSUnRuXPnFBcXp3r16snFhRkKAAC4U2Sk4q0oZiQKUgAA3CAlJUXp6ekKCAhQmTJlCrs7yIPSpUvLzc1NJ0+eVEpKijw9PQu7SwAAFHtkpOKvqGUkPjIEACALhf2JEe4MPz8AAAoG77HFW1H6+RWdngAAAAAAAOCuQEEKAAAAAAAAlqIgBQBAMWez2W65TJ48uVD7tn79+js6xnvvvadOnTrJbrfLZrPp4sWL+dI3AABQ8pXknHT+/HmNHDlSDRo0UOnSpVW9enW98MILSkpKyr9OFiAmNQcAIIdSI7+07Fxu3TrkuO2ZM2fM/161apUmTpyoY8eOmeu8vLxyde6UlJQi8SjgDFevXlW3bt3UrVs3jR8/vrC7AwAAbmJlRpLISRni4+MVHx+v2bNnKzAwUCdPntTQoUMVHx+vtWvXFnb3bos7pApQauSXmRYAAPKbn5+fuXh7e8tms5mvr1y5oqefflq+vr7y8vJS69attX37dqf9a9asqWnTpql///6y2+0aMmSIJOn99983n6TTu3dvzZkzRz4+Pk77fvTRR2rZsqU8PT1Vu3ZtTZkyRdevXzePK0m9e/eWzWYzXx84cECdO3dWuXLlZLfbFRQUpH379mV7faNGjdK4cePUrl27/BkwFDoyEgDAKiU5JzVu3Fj//e9/9fDDD6tOnTrq0qWLpk+fro8//tg8T1FGQQoAgBLs8uXL6tGjh6KiorR//35169ZNDz/8sE6dOuXUbvbs2WrWrJn279+vv/3tb9q1a5eGDh2qF198UbGxsXrooYc0ffp0p32++OIL9e/fXy+++KIOHz6sd999V0uXLjXb7d27V5K0ZMkSnTlzxnz99NNPq1q1atq7d69iYmI0btw4ubm5WTAaAAAAfyiJOSkpKUl2u12lShX9L8QV/R4CAIA8a9asmZo1a2a+njZtmtatW6cNGzZoxIgR5vouXbror3/9q/n61VdfVffu3fXSSy9JkurXr6/du3dr48aNZpspU6Zo3LhxCg8PlyTVrl1b06ZN08svv6xJkyapcuXKkiQfHx/5+fmZ+506dUpjxoxRw4YNJUn16tUrgCsHAAC4tZKWk3755RdNmzbNvIurqOMOKQAASrDLly/rpZdeUqNGjeTj4yMvLy8dOXIk0yd/rVq1cnp97NgxtWnTxmndza8PHDigqVOnysvLy1wGDx6sM2fO6OrVq9n2KSIiQoMGDVJISIhmzpypEydO3OFVAgAA5F5JykkOh0NhYWEKDAws1Inac4OCFAAAJdhLL72kdevW6fXXX9cXX3yh2NhYNWnSRCkpKU7typYtm+tjX758WVOmTFFsbKy5HDx4UMePH5enp2e2+02ePFmHDh1SWFiYduzYocDAQK1bty7X5wcAALgTJSUnXbp0Sd26dVO5cuW0bt26YjMVAl/ZAwCgBNu1a5cGDBig3r17S/o9HP3444+33a9BgwbmXAYZbn7dsmVLHTt2THXr1s32OG5ubkpLS8u0vn79+qpfv75Gjx6tJ598UkuWLDH7CAAAYIWSkJMcDodCQ0Pl4eGhDRs23LLYVdTk6g6phQsXqmnTprLb7bLb7QoODtaWLVvM7Z06dZLNZnNahg4d6nSMU6dOKSwsTGXKlFGVKlU0ZsyYTLO/79y5Uy1btpSHh4fq1q2rpUuXZurLggULVLNmTXl6eqpt27bas2dPbi4FAIC7Qr169fThhx8qNjZWBw4c0FNPPaX09PTb7jdy5Eht3rxZc+bM0fHjx/Xuu+9qy5YtstlsZpuJEyfq//7v/zRlyhQdOnRIR44c0cqVKzVhwgSzTc2aNRUVFaWEhARduHBBv/32m0aMGKGdO3fq5MmT2rVrl/bu3atGjRpl25eEhATFxsbq+++/lyQdPHhQsbGxOn/+/B2MTP4iIwEAUPwU95zkcDjUtWtXXblyRR988IEcDocSEhKUkJCQZaGrqMlVQapatWqaOXOmYmJitG/fPnXp0kWPPPKIDh06ZLbJ+E5kxjJr1ixzW1pamsLCwpSSkqLdu3dr2bJlWrp0qSZOnGi2iYuLU1hYmDp37qzY2FiNGjVKgwYN0tatW802q1atUkREhCZNmqRvvvlGzZo1U2hoqBITE+9kLAAAKHHmzJmj8uXLq3379nr44YcVGhqqli1b3na/++67T4sWLdKcOXPUrFkzRUZGavTo0U6fuoWGhmrjxo365JNP1Lp1a7Vr105vvfWWatSoYbZ58803tW3bNgUEBKhFixZydXXVr7/+qv79+6t+/fp64okn1L17d02ZMiXbvixatEgtWrTQ4MGDJUkdO3ZUixYttGHDhjsYmfxFRgIAoPgp7jnpm2++0ddff62DBw+qbt268vf3N5fTp0/f+QAVMJthGMadHKBChQp64403NHDgQHXq1EnNmzfX3Llzs2y7ZcsW9ezZU/Hx8fL19ZX0e8gcO3aszp07J3d3d40dO1abNm3Sd999Z+7Xr18/Xbx4UZGRkZKktm3bqnXr1po/f74kKT09XQEBARo5cqTGjRuX4747HA55e3ubj0XMb6mRX2Za59atQ76fBwCQf65du6a4uDjVqlWrWN3ybIXBgwfr6NGj+uKLLwq7K7d1q59jQb//ZyAjZY+MBADFDxnp1opLTioKGSlDnic1T0tL08qVK3XlyhUFBweb65cvX65KlSqpcePGGj9+vNPs8dHR0WrSpIkZtKTfq4YOh8P8BDE6OlohISFO5woNDVV0dLQkKSUlRTExMU5tXFxcFBISYrbJTnJyshwOh9MCAACyNnv2bB04cEDff/+9/vGPf2jZsmXmo4uRPTISAAAlHznpzuV6UvODBw8qODhY165dk5eXl9atW6fAwEBJ0lNPPaUaNWqoatWq+vbbbzV27FgdO3ZMH374oaTf54C4MWhJMl8nJCTcso3D4dBvv/2mCxcuKC0tLcs2R48evWXfZ8yYccuvBAAAgD/s2bNHs2bN0qVLl1S7dm29/fbbGjRoUGF3q8giIwEAcPcgJ925XBekGjRooNjYWCUlJWnt2rUKDw/XZ599psDAQA0ZMsRs16RJE/n7++vBBx/UiRMnVKdOnXzteF6MHz9eERER5muHw6GAgIBC7BEAAEXX6tWrC7sLxQoZCQCAuwc56c7luiDl7u5uPrYwKChIe/fu1bx58/Tuu+9matu2bVtJ0vfff686derIz88v05Nezp49K0ny8/Mz/zdj3Y1t7Ha7SpcuLVdXV7m6umbZJuMY2fHw8JCHh0curhYAACBnyEgAAAA5l+c5pDKkp6crOTk5y22xsbGSJH9/f0lScHCwDh486PSkl23btslut5u3tAcHBysqKsrpONu2bTPnYHB3d1dQUJBTm/T0dEVFRTnN0wAAAFCYyEgAAADZy9UdUuPHj1f37t1VvXp1Xbp0SStWrNDOnTu1detWnThxQitWrFCPHj1UsWJFffvttxo9erQ6duyopk2bSpK6du2qwMBAPfPMM5o1a5YSEhI0YcIEDR8+3PxUbujQoZo/f75efvllPffcc9qxY4dWr16tTZs2mf2IiIhQeHi4WrVqpTZt2mju3Lm6cuWKnn322XwcGgAAgJwhIwEAAOROrgpSiYmJ6t+/v86cOSNvb281bdpUW7du1UMPPaTTp09r+/btZvAJCAhQnz59NGHCBHN/V1dXbdy4UcOGDVNwcLDKli2r8PBwTZ061WxTq1Ytbdq0SaNHj9a8efNUrVo1LV68WKGhoWabvn376ty5c5o4caISEhLUvHlzRUZGZprEEwAAwApkJAAAgNyxGYZhFHYnCovD4ZC3t7eSkpJkt9vz/fipkV9mWufWrUO+nwcAkH+uXbumuLg41apVS56enoXdHeTRrX6OBf3+XxKQkQAANyMjlQxFKSPd8RxSAAAAAAAAQG5QkAIAAAAAAIClcjWHFAAAd7MT+9617Fx1Wv0lV+0HDBigZcuWSZJKlSqlChUqqGnTpnryySc1YMAAubgU38+gDh06pIkTJyomJkYnT57UW2+9pVGjRhV2twAAwP9nZUaSyEk3ev/99/V///d/+u677yRJQUFBev3119WmTZtC7tntFd9RBwAATrp166YzZ87oxx9/1JYtW9S5c2e9+OKL6tmzp65fv17Y3cuzq1evqnbt2po5c6b8/PwKuzsAAKAYKqk5aefOnXryySf16aefKjo6WgEBAeratat+/vnnwu7abVGQAgCghPDw8JCfn5/uuecetWzZUq+88oo++ugjbdmyRUuXLjXbXbx4UYMGDVLlypVlt9vVpUsXHThwwOlYH3/8sVq3bi1PT09VqlRJvXv3NrdduHBB/fv3V/ny5VWmTBl1795dx48flyRduXJFdrtda9eudTre+vXrVbZsWV26dEkpKSkaMWKE/P395enpqRo1amjGjBnZXlfr1q31xhtvqF+/fvLw8MiHkQIAAHebkpqTli9frueff17NmzdXw4YNtXjxYqWnpysqKiofRq1gUZACAKAE69Kli5o1a6YPP/zQXPf4448rMTFRW7ZsUUxMjFq2bKkHH3xQ58+flyRt2rRJvXv3Vo8ePbR//35FRUU53fY9YMAA7du3Txs2bFB0dLQMw1CPHj2UmpqqsmXLql+/flqyZIlTP5YsWaLHHntM5cqV09tvv60NGzZo9erVOnbsmJYvX66aNWtaMh4AAAAZSmJOunr1qlJTU1WhQoU7GxwLMIcUAAAlXMOGDfXtt99Kkr788kvt2bNHiYmJ5t1Gs2fP1vr167V27VoNGTJE06dPV79+/TRlyhTzGM2aNZMkHT9+XBs2bNCuXbvUvn17Sb9/MhcQEKD169fr8ccf16BBg9S+fXudOXNG/v7+SkxM1ObNm7V9+3ZJ0qlTp1SvXj116NBBNptNNWrUsHI4AAAATCUtJ40dO1ZVq1ZVSEjIHY9NQeMOKQAASjjDMGSz2SRJBw4c0OXLl1WxYkV5eXmZS1xcnE6cOCFJio2N1YMPPpjlsY4cOaJSpUqpbdu25rqKFSuqQYMGOnLkiCSpTZs2uvfee83JQ//973+rRo0a6tixo6TfPzmMjY1VgwYN9MILL+iTTz4psGsHAAC4lZKUk2bOnKmVK1dq3bp18vT0zP1gWIw7pAAAKOGOHDmiWrVqSZIuX74sf39/7dy5M1M7Hx8fSVLp0qXv+JyDBg3SggULNG7cOC1ZskTPPvusGfZatmypuLg4bdmyRdu3b9cTTzyhkJCQTPMpAAAAFLSSkpNmz56tmTNnavv27WratOkd99EK3CEFAEAJtmPHDh08eFB9+vSR9HvISUhIUKlSpVS3bl2npVKlSpKkpk2bZjsRZqNGjXT9+nV9/fXX5rpff/1Vx44dU2BgoLnuz3/+s06ePKm3335bhw8fVnh4uNNx7Ha7+vbtq/fff1+rVq3Sf//7X3NuBgAAACuUlJw0a9YsTZs2TZGRkWrVqlWex8Nq3CEFAEAJkZycrISEBKWlpens2bOKjIzUjBkz1LNnT/Xv31+SFBISouDgYPXq1UuzZs1S/fr1FR8fb07Q2apVK02aNEkPPvig6tSpo379+un69evavHmzxo4dq3r16umRRx7R4MGD9e6776pcuXIaN26c7rnnHj3yyCNmX8qXL69HH31UY8aMUdeuXVWtWjVz25w5c+Tv768WLVrIxcVFa9askZ+fn/nJ481SUlJ0+PBh879//vlnxcbGysvLS3Xr1i24AQUAACVGSc1Jf//73zVx4kStWLFCNWvWVEJCgiSZXzcsyrhDCgCAEiIyMlL+/v6qWbOmunXrpk8//VRvv/22PvroI7m6ukqSbDabNm/erI4dO+rZZ59V/fr11a9fP508eVK+vr6SpE6dOmnNmjXasGGDmjdvri5dumjPnj3meZYsWaKgoCD17NlTwcHBMgxDmzdvlpubm1N/Bg4cqJSUFD333HNO68uVK6dZs2apVatWat26tX788Udt3rxZLi5Zx5L4+Hi1aNFCLVq00JkzZzR79my1aNFCgwYNys/hAwAAJVhJzUkLFy5USkqKHnvsMfn7+5vL7Nmz83P4CoTNMAyjsDtRWBwOh7y9vZWUlCS73Z7vx0+N/DLTOrduHfL9PACA/HPt2jXFxcWpVq1axWIyyKLsX//6l0aPHq34+Hi5u7tbeu5b/RwL+v2/JCAjAQBuRkbKX4WVk4pSRuIrewAAIF9dvXpVZ86c0cyZM/WXv/zF8mIUAABAUUVO+gMFqQL048UtmdbVE5/+AQBKtlmzZmn69Onq2LGjxo8fX9jdQRFERgIA3K3ISX9gDikAAJCvJk+erNTUVEVFRRX5yTQBAACsRE76AwUpAAAAAAAAWIqCFAAAAAAAACxFQQoAgCzcxQ+hLRH4+QEAUDB4jy3eitLPj4IUAAA3cHNzk/T7E1BQfGX8/DJ+ngAA4M6QkUqGopSReMoeAAA3cHV1lY+PjxITEyVJZcqUkc1mK+ReIacMw9DVq1eVmJgoHx8fubq6FnaXAAAoEchIxVtRzEgUpAAAuImfn58kmYELxY+Pj4/5cwQAAPmDjFT8FaWMREEKAICb2Gw2+fv7q0qVKkpNTS3s7iCX3NzcisSnfgAAlDRkpOKtqGUkClIAAGTD1dW1SL1pAwAAFAVkJOQHJjUHAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWylVBauHChWratKnsdrvsdruCg4O1ZcsWc/u1a9c0fPhwVaxYUV5eXurTp4/Onj3rdIxTp04pLCxMZcqUUZUqVTRmzBhdv37dqc3OnTvVsmVLeXh4qG7dulq6dGmmvixYsEA1a9aUp6en2rZtqz179uTmUgAAAPINGQkAACB3clWQqlatmmbOnKmYmBjt27dPXbp00SOPPKJDhw5JkkaPHq2PP/5Ya9as0Weffab4+Hg9+uij5v5paWkKCwtTSkqKdu/erWXLlmnp0qWaOHGi2SYuLk5hYWHq3LmzYmNjNWrUKA0aNEhbt24126xatUoRERGaNGmSvvnmGzVr1kyhoaFKTEy80/EAAADINTISAABA7tgMwzDu5AAVKlTQG2+8occee0yVK1fWihUr9Nhjj0mSjh49qkaNGik6Olrt2rXTli1b1LNnT8XHx8vX11eStGjRIo0dO1bnzp2Tu7u7xo4dq02bNum7774zz9GvXz9dvHhRkZGRkqS2bduqdevWmj9/viQpPT1dAQEBGjlypMaNG5fjvjscDnl7eyspKUl2u/1OhiFLx1e+mmldvX7T8/08AAAg5wr6/T8DGSl7ZCQAAIoeqzJShjzPIZWWlqaVK1fqypUrCg4OVkxMjFJTUxUSEmK2adiwoapXr67o6GhJUnR0tJo0aWIGLUkKDQ2Vw+EwP0GMjo52OkZGm4xjpKSkKCYmxqmNi4uLQkJCzDbZSU5OlsPhcFoAAADyExkJAADg9nJdkDp48KC8vLzk4eGhoUOHat26dQoMDFRCQoLc3d3l4+Pj1N7X11cJCQmSpISEBKeglbE9Y9ut2jgcDv3222/65ZdflJaWlmWbjGNkZ8aMGfL29jaXgICA3F4+AABAlshIAAAAOZfrglSDBg0UGxurr7/+WsOGDVN4eLgOHz5cEH3Ld+PHj1dSUpK5nD59urC7BAAASggyEgAAQM6Vyu0O7u7uqlu3riQpKChIe/fu1bx589S3b1+lpKTo4sWLTp8Anj17Vn5+fpIkPz+/TE96yXjCzI1tbn7qzNmzZ2W321W6dGm5urrK1dU1yzYZx8iOh4eHPDw8cnvJAAAAt0VGAgAAyLk8zyGVIT09XcnJyQoKCpKbm5uioqLMbceOHdOpU6cUHBwsSQoODtbBgwednvSybds22e12BQYGmm1uPEZGm4xjuLu7KygoyKlNenq6oqKizDYAAACFjYwEAACQvVzdITV+/Hh1795d1atX16VLl7RixQrt3LlTW7dulbe3twYOHKiIiAhVqFBBdrtdI0eOVHBwsNq1aydJ6tq1qwIDA/XMM89o1qxZSkhI0IQJEzR8+HDzU7mhQ4dq/vz5evnll/Xcc89px44dWr16tTZt2mT2IyIiQuHh4WrVqpXatGmjuXPn6sqVK3r22WfzcWgAAAByhowEAACQO7kqSCUmJqp///46c+aMvL291bRpU23dulUPPfSQJOmtt96Si4uL+vTpo+TkZIWGhuqdd94x93d1ddXGjRs1bNgwBQcHq2zZsgoPD9fUqVPNNrVq1dKmTZs0evRozZs3T9WqVdPixYsVGhpqtunbt6/OnTuniRMnKiEhQc2bN1dkZGSmSTwBAACsQEYCAADIHZthGEZhd6KwOBwOeXt7KykpSXa7Pd+Pf3zlq5nW1es3Pd/PAwAAcq6g3/9LAjISAAB3H6sz0h3PIQUAAAAAAADkBgUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSuSpIzZgxQ61bt1a5cuVUpUoV9erVS8eOHXNq06lTJ9lsNqdl6NChTm1OnTqlsLAwlSlTRlWqVNGYMWN0/fp1pzY7d+5Uy5Yt5eHhobp162rp0qWZ+rNgwQLVrFlTnp6eatu2rfbs2ZObywEAAMgXZCQAAIDcyVVB6rPPPtPw4cP11Vdfadu2bUpNTVXXrl115coVp3aDBw/WmTNnzGXWrFnmtrS0NIWFhSklJUW7d+/WsmXLtHTpUk2cONFsExcXp7CwMHXu3FmxsbEaNWqUBg0apK1bt5ptVq1apYiICE2aNEnffPONmjVrptDQUCUmJuZ1LAAAAPKEjAQAAJA7NsMwjLzufO7cOVWpUkWfffaZOnbsKOn3T/+aN2+uuXPnZrnPli1b1LNnT8XHx8vX11eStGjRIo0dO1bnzp2Tu7u7xo4dq02bNum7774z9+vXr58uXryoyMhISVLbtm3VunVrzZ8/X5KUnp6ugIAAjRw5UuPGjctR/x0Oh7y9vZWUlCS73Z7XYcjW8ZWvZlpXr9/0fD8PAADIuYJ+/5fISLdDRgIAoOixIiPd6I7mkEpKSpIkVahQwWn98uXLValSJTVu3Fjjx4/X1atXzW3R0dFq0qSJGbQkKTQ0VA6HQ4cOHTLbhISEOB0zNDRU0dHRkqSUlBTFxMQ4tXFxcVFISIjZBgAAoLCQkQAAAG6tVF53TE9P16hRo3TfffepcePG5vqnnnpKNWrUUNWqVfXtt99q7NixOnbsmD788ENJUkJCglPQkmS+TkhIuGUbh8Oh3377TRcuXFBaWlqWbY4ePZptn5OTk5WcnGy+djgcebhyAACA7JGRAAAAbi/PBanhw4fru+++05dffum0fsiQIeZ/N2nSRP7+/nrwwQd14sQJ1alTJ+89zQczZszQlClTCrUPAACgZCMjAQAA3F6evrI3YsQIbdy4UZ9++qmqVat2y7Zt27aVJH3//feSJD8/P509e9apTcZrPz+/W7ax2+0qXbq0KlWqJFdX1yzbZBwjK+PHj1dSUpK5nD59OgdXCwAAkDNkJAAAgJzJVUHKMAyNGDFC69at044dO1SrVq3b7hMbGytJ8vf3lyQFBwfr4MGDTk962bZtm+x2uwIDA802UVFRTsfZtm2bgoODJUnu7u4KCgpyapOenq6oqCizTVY8PDxkt9udFgAAgDtFRgIAAMidXH1lb/jw4VqxYoU++ugjlStXzpzPwNvbW6VLl9aJEye0YsUK9ejRQxUrVtS3336r0aNHq2PHjmratKkkqWvXrgoMDNQzzzyjWbNmKSEhQRMmTNDw4cPl4eEhSRo6dKjmz5+vl19+Wc8995x27Nih1atXa9OmTWZfIiIiFB4erlatWqlNmzaaO3eurly5omeffTa/xgYAACBHyEgAAAC5k6uC1MKFCyX9/tjiGy1ZskQDBgyQu7u7tm/fbgafgIAA9enTRxMmTDDburq6auPGjRo2bJiCg4NVtmxZhYeHa+rUqWabWrVqadOmTRo9erTmzZunatWqafHixQoNDTXb9O3bV+fOndPEiROVkJCg5s2bKzIyMtMkngAAAAWNjAQAAJA7NsMwjMLuRGFxOBzy9vZWUlJSgdyafnzlq5nW1es3Pd/PAwAAcq6g3/9LAjISAAB3H6szUp4mNQcAAAAAAADyioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGCpXBWkZsyYodatW6tcuXKqUqWKevXqpWPHjjm1uXbtmoYPH66KFSvKy8tLffr00dmzZ53anDp1SmFhYSpTpoyqVKmiMWPG6Pr1605tdu7cqZYtW8rDw0N169bV0qVLM/VnwYIFqlmzpjw9PdW2bVvt2bMnN5cDAACQL8hIAAAAuZOrgtRnn32m4cOH66uvvtK2bduUmpqqrl276sqVK2ab0aNH6+OPP9aaNWv02WefKT4+Xo8++qi5PS0tTWFhYUpJSdHu3bu1bNkyLV26VBMnTjTbxMXFKSwsTJ07d1ZsbKxGjRqlQYMGaevWrWabVatWKSIiQpMmTdI333yjZs2aKTQ0VImJiXcyHgAAALlGRgIAAMgdm2EYRl53PnfunKpUqaLPPvtMHTt2VFJSkipXrqwVK1bosccekyQdPXpUjRo1UnR0tNq1a6ctW7aoZ8+eio+Pl6+vryRp0aJFGjt2rM6dOyd3d3eNHTtWmzZt0nfffWeeq1+/frp48aIiIyMlSW3btlXr1q01f/58SVJ6eroCAgI0cuRIjRs3Lkf9dzgc8vb2VlJSkux2e16HIVvHV76aaV29ftPz/TwAACDnCvr9XyIj3Q4ZCQCAoseKjHSjO5pDKikpSZJUoUIFSVJMTIxSU1MVEhJitmnYsKGqV6+u6OhoSVJ0dLSaNGliBi1JCg0NlcPh0KFDh8w2Nx4jo03GMVJSUhQTE+PUxsXFRSEhIWYbAACAwkJGAgAAuLVSed0xPT1do0aN0n333afGjRtLkhISEuTu7i4fHx+ntr6+vkpISDDb3Bi0MrZnbLtVG4fDod9++00XLlxQWlpalm2OHj2abZ+Tk5OVnJxsvnY4HLm4YgAAgNsjIwEAANxenu+QGj58uL777jutXLkyP/tToGbMmCFvb29zCQgIKOwuAQCAEoaMBAAAcHt5KkiNGDFCGzdu1Keffqpq1aqZ6/38/JSSkqKLFy86tT979qz8/PzMNjc/USbj9e3a2O12lS5dWpUqVZKrq2uWbTKOkZXx48crKSnJXE6fPp27CwcAALgFMhIAAEDO5KogZRiGRowYoXXr1mnHjh2qVauW0/agoCC5ubkpKirKXHfs2DGdOnVKwcHBkqTg4GAdPHjQ6Ukv27Ztk91uV2BgoNnmxmNktMk4hru7u4KCgpzapKenKyoqymyTFQ8PD9ntdqcFAADgTpGRAAAAcidXc0gNHz5cK1as0EcffaRy5cqZ8xl4e3urdOnS8vb21sCBAxUREaEKFSrIbrdr5MiRCg4OVrt27SRJXbt2VWBgoJ555hnNmjVLCQkJmjBhgoYPHy4PDw9J0tChQzV//ny9/PLLeu6557Rjxw6tXr1amzZtMvsSERGh8PBwtWrVSm3atNHcuXN15coVPfvss/k1NgAAADlCRgIAAMidXBWkFi5cKEnq1KmT0/olS5ZowIABkqS33npLLi4u6tOnj5KTkxUaGqp33nnHbOvq6qqNGzdq2LBhCg4OVtmyZRUeHq6pU6eabWrVqqVNmzZp9OjRmjdvnqpVq6bFixcrNDTUbNO3b1+dO3dOEydOVEJCgpo3b67IyMhMk3gCAAAUNDISAABA7tgMwzAKuxOFxeFwyNvbW0lJSQVya/rxla9mWlev3/R8Pw8AAMi5gn7/LwnISAAA3H2szkh5fsoeAAAAAAAAkBcUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS+W6IPX555/r4YcfVtWqVWWz2bR+/Xqn7QMGDJDNZnNaunXr5tTm/Pnzevrpp2W32+Xj46OBAwfq8uXLTm2+/fZb3X///fL09FRAQIBmzZqVqS9r1qxRw4YN5enpqSZNmmjz5s25vRwAAIB8QUYCAADIuVwXpK5cuaJmzZppwYIF2bbp1q2bzpw5Yy7/+c9/nLY//fTTOnTokLZt26aNGzfq888/15AhQ8ztDodDXbt2VY0aNRQTE6M33nhDkydP1nvvvWe22b17t5588kkNHDhQ+/fvV69evdSrVy999913ub0kAACAO0ZGAgAAyDmbYRhGnne22bRu3Tr16tXLXDdgwABdvHgx06eCGY4cOaLAwEDt3btXrVq1kiRFRkaqR48e+umnn1S1alUtXLhQr776qhISEuTu7i5JGjdunNavX6+jR49Kkvr27asrV65o48aN5rHbtWun5s2ba9GiRTnqv8PhkLe3t5KSkmS32/MwArd2fOWrmdbV6zc9388DAAByrqDf/yUy0u2QkQAAKHqsyEg3KpA5pHbu3KkqVaqoQYMGGjZsmH799VdzW3R0tHx8fMygJUkhISFycXHR119/bbbp2LGjGbQkKTQ0VMeOHdOFCxfMNiEhIU7nDQ0NVXR0dEFcEgAAwB0jIwEAAPyuVH4fsFu3bnr00UdVq1YtnThxQq+88oq6d++u6Ohoubq6KiEhQVWqVHHuRKlSqlChghISEiRJCQkJqlWrllMbX19fc1v58uWVkJBgrruxTcYxspKcnKzk5GTztcPhuKNrBQAAyCkyEgAAwB/yvSDVr18/87+bNGmipk2bqk6dOtq5c6cefPDB/D5drsyYMUNTpkwp1D4AAIC7ExkJAADgDwXylb0b1a5dW5UqVdL3338vSfLz81NiYqJTm+vXr+v8+fPy8/Mz25w9e9apTcbr27XJ2J6V8ePHKykpyVxOnz59ZxcHAACQR2QkAABwNyvwgtRPP/2kX3/9Vf7+/pKk4OBgXbx4UTExMWabHTt2KD09XW3btjXbfP7550pNTTXbbNu2TQ0aNFD58uXNNlFRUU7n2rZtm4KDg7Pti4eHh+x2u9MCAABQGMhIAADgbpbrgtTly5cVGxur2NhYSVJcXJxiY2N16tQpXb58WWPGjNFXX32lH3/8UVFRUXrkkUdUt25dhYaGSpIaNWqkbt26afDgwdqzZ4927dqlESNGqF+/fqpataok6amnnpK7u7sGDhyoQ4cOadWqVZo3b54iIiLMfrz44ouKjIzUm2++qaNHj2ry5Mnat2+fRowYkQ/DAgAAkDtkJAAAgJzLdUFq3759atGihVq0aCFJioiIUIsWLTRx4kS5urrq22+/1Z/+9CfVr19fAwcOVFBQkL744gt5eHiYx1i+fLkaNmyoBx98UD169FCHDh303nvvmdu9vb31ySefKC4uTkFBQfrrX/+qiRMnasiQIWab9u3ba8WKFXrvvffUrFkzrV27VuvXr1fjxo3vZDwAAADyhIwEAACQczbDMIzC7kRhcTgc8vb2VlJSUoHcmn585auZ1tXrNz3fzwMAAHKuoN//SwIyEgAAdx+rM1KBzyEFAAAAAAAA3IiCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsFSuC1Kff/65Hn74YVWtWlU2m03r16932m4YhiZOnCh/f3+VLl1aISEhOn78uFOb8+fP6+mnn5bdbpePj48GDhyoy5cvO7X59ttvdf/998vT01MBAQGaNWtWpr6sWbNGDRs2lKenp5o0aaLNmzfn9nIAAADyBRkJAAAg53JdkLpy5YqaNWumBQsWZLl91qxZevvtt7Vo0SJ9/fXXKlu2rEJDQ3Xt2jWzzdNPP61Dhw5p27Zt2rhxoz7//HMNGTLE3O5wONS1a1fVqFFDMTExeuONNzR58mS99957Zpvdu3frySef1MCBA7V//3716tVLvXr10nfffZfbSwIAALhjZCQAAICcsxmGYeR5Z5tN69atU69evST9/slf1apV9de//lUvvfSSJCkpKUm+vr5aunSp+vXrpyNHjigwMFB79+5Vq1atJEmRkZHq0aOHfvrpJ1WtWlULFy7Uq6++qoSEBLm7u0uSxo0bp/Xr1+vo0aOSpL59++rKlSvauHGj2Z927dqpefPmWrRoUY7673A45O3traSkJNnt9rwOQ7aOr3w107p6/abn+3kAAEDOFfT7v0RGuh0yEgAARY8VGelG+TqHVFxcnBISEhQSEmKu8/b2Vtu2bRUdHS1Jio6Olo+Pjxm0JCkkJEQuLi76+uuvzTYdO3Y0g5YkhYaG6tixY7pw4YLZ5sbzZLTJOE9WkpOT5XA4nBYAAICCRkYCAABwlq8FqYSEBEmSr6+v03pfX19zW0JCgqpUqeK0vVSpUqpQoYJTm6yOceM5smuTsT0rM2bMkLe3t7kEBATk9hIBAAByjYwEAADg7K56yt748eOVlJRkLqdPny7sLgEAABQ6MhIAALBavhak/Pz8JElnz551Wn/27Flzm5+fnxITE522X79+XefPn3dqk9UxbjxHdm0ytmfFw8NDdrvdaQEAAChoZCQAAABn+VqQqlWrlvz8/BQVFWWuczgc+vrrrxUcHCxJCg4O1sWLFxUTE2O22bFjh9LT09W2bVuzzeeff67U1FSzzbZt29SgQQOVL1/ebHPjeTLaZJwHAACgqCAjAQAAOMt1Qery5cuKjY1VbGyspN8n6YyNjdWpU6dks9k0atQovfbaa9qwYYMOHjyo/v37q2rVquZTZho1aqRu3bpp8ODB2rNnj3bt2qURI0aoX79+qlq1qiTpqaeekru7uwYOHKhDhw5p1apVmjdvniIiIsx+vPjii4qMjNSbb76po0ePavLkydq3b59GjBhx56MCAACQS2QkAACAnCuV2x327dunzp07m68zAlB4eLiWLl2ql19+WVeuXNGQIUN08eJFdejQQZGRkfL09DT3Wb58uUaMGKEHH3xQLi4u6tOnj95++21zu7e3tz755BMNHz5cQUFBqlSpkiZOnKghQ4aYbdq3b68VK1ZowoQJeuWVV1SvXj2tX79ejRs3ztNAAAAA3AkyEgAAQM7ZDMMwCrsThcXhcMjb21tJSUkFMlfC8ZWvZlpXr9/0fD8PAADIuYJ+/y8JyEgAANx9rM5Id9VT9gAAAAAAAFD4KEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJbK94LU5MmTZbPZnJaGDRua269du6bhw4erYsWK8vLyUp8+fXT27FmnY5w6dUphYWEqU6aMqlSpojFjxuj69etObXbu3KmWLVvKw8NDdevW1dKlS/P7UgAAAPINGQkAAOAPBXKH1L333qszZ86Yy5dffmluGz16tD7++GOtWbNGn332meLj4/Xoo4+a29PS0hQWFqaUlBTt3r1by5Yt09KlSzVx4kSzTVxcnMLCwtS5c2fFxsZq1KhRGjRokLZu3VoQlwMAAJAvyEgAAAC/K1UgBy1VSn5+fpnWJyUl6YMPPtCKFSvUpUsXSdKSJUvUqFEjffXVV2rXrp0++eQTHT58WNu3b5evr6+aN2+uadOmaezYsZo8ebLc3d21aNEi1apVS2+++aYkqVGjRvryyy/11ltvKTQ0tCAuCQAA4I6RkQAAAH5XIHdIHT9+XFWrVlXt2rX19NNP69SpU5KkmJgYpaamKiQkxGzbsGFDVa9eXdHR0ZKk6OhoNWnSRL6+vmab0NBQORwOHTp0yGxz4zEy2mQcIzvJyclyOBxOCwAAgFXISAAAAL/L94JU27ZttXTpUkVGRmrhwoWKi4vT/fffr0uXLikhIUHu7u7y8fFx2sfX11cJCQmSpISEBKeglbE9Y9ut2jgcDv3222/Z9m3GjBny9vY2l4CAgDu9XAAAgBwhIwEAAPwh37+y1717d/O/mzZtqrZt26pGjRpavXq1Spcund+ny5Xx48crIiLCfO1wOAhcAADAEmQkAACAPxTIV/Zu5OPjo/r16+v777+Xn5+fUlJSdPHiRac2Z8+eNedT8PPzy/REmYzXt2tjt9tvGeg8PDxkt9udFgAAgMJARgIAAHezAi9IXb58WSdOnJC/v7+CgoLk5uamqKgoc/uxY8d06tQpBQcHS5KCg4N18OBBJSYmmm22bdsmu92uwMBAs82Nx8hok3EMAACAoo6MBAAA7mb5XpB66aWX9Nlnn+nHH3/U7t271bt3b7m6uurJJ5+Ut7e3Bg4cqIiICH366aeKiYnRs88+q+DgYLVr106S1LVrVwUGBuqZZ57RgQMHtHXrVk2YMEHDhw+Xh4eHJGno0KH64Ycf9PLLL+vo0aN65513tHr1ao0ePTq/LwcAACBfkJEAAAD+kO9zSP3000968skn9euvv6py5crq0KGDvvrqK1WuXFmS9NZbb8nFxUV9+vRRcnKyQkND9c4775j7u7q6auPGjRo2bJiCg4NVtmxZhYeHa+rUqWabWrVqadOmTRo9erTmzZunatWqafHixTzOGAAAFFlkJAAAgD/YDMMwCrsThcXhcMjb21tJSUkFMlfC8ZWvZlpXr9/0fD8PAADIuYJ+/y8JyEgAANx9rM5IBT6HFAAAAAAAAHAjClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClShV2BwAAAFIjv8y0zq1bh0LoCQAAQNFRkjMSd0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFKlCrsDAADg7pIa+WVhdwEAAKDIudsyEndIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFHNIAQCAAnW3zYcAAACQE3d7RqIgBQAA8s3dHqwAAACyQkbKrNh/ZW/BggWqWbOmPD091bZtW+3Zs6ewuwQAwF0hNfLLTAuKDjISAACFg4yUM8X6DqlVq1YpIiJCixYtUtu2bTV37lyFhobq2LFjqlKlSmF3DwCAEoUwVXyQkQAAsA4ZKW+KdUFqzpw5Gjx4sJ599llJ0qJFi7Rp0yb985//1Lhx4wq5dwAAFA9FIUT9eHFLpnX11KEQelIykJEAALhzZKSCVWwLUikpKYqJidH48ePNdS4uLgoJCVF0dHQh9gwAgOwVhWBjtayCFAoOGQkAUByRke4+xbYg9csvvygtLU2+vr5O6319fXX06NEs90lOTlZycrL5OikpSZLkcDgKpI+XryZnWrf/ny/l6VjVvR+6bZtTSdvydJy87pdXbg8FZ1r3wzf/dHod8Guj2x4nJ/2WMvc9q/3ya3yzOtbpikcytcnq+nJ6/NudL7+OcyfHys/zFcXry68+FbTi0k8gOwX1/pxxXMMwCuT4hY2MlNndlpGk/LtmMhIZqbCOVZDISCjuSkxGMoqpn3/+2ZBk7N6922n9mDFjjDZt2mS5z6RJkwxJLCwsLCwsLCzG6dOnrYgsliMjsbCwsLCwsNzJYlVGKrZ3SFWqVEmurq46e/as0/qzZ8/Kz88vy33Gjx+viIgI83V6errOnz+vihUrymaz5Wv/HA6HAgICdPr0adnt9nw9NrLGmFuPMbceY249xrxwFOS4G4ahS5cuqWrVqvl63KKCjISbMebWY8ytx5gXDsbdeiUpIxXbgpS7u7uCgoIUFRWlXr16Sfo9PEVFRWnEiBFZ7uPh4SEPDw+ndT4+PgXaT7vdzh+mxRhz6zHm1mPMrceYF46CGndvb+98P2ZRQUZCdhhz6zHm1mPMCwfjbr2SkJGKbUFKkiIiIhQeHq5WrVqpTZs2mjt3rq5cuWI+UQYAAOBuREYCAABFXbEuSPXt21fnzp3TxIkTlZCQoObNmysyMjLTJJ4AAAB3EzISAAAo6op1QUqSRowYke3t54XJw8NDkyZNynT7OwoOY249xtx6jLn1GPPCwbjfOTISMjDm1mPMrceYFw7G3XolacxthlFCn3kMAAAAAACAIsmlsDsAAAAAAACAuwsFKQAAAAAAAFiKghQAAAAAAAAsRUHqDixYsEA1a9aUp6en2rZtqz179tyy/Zo1a9SwYUN5enqqSZMm2rx5s0U9LTlyM+bvv/++7r//fpUvX17ly5dXSEjIbX9GyCy3v+cZVq5cKZvNpl69ehVsB0ug3I75xYsXNXz4cPn7+8vDw0P169fn35dcyu2Yz507Vw0aNFDp0qUVEBCg0aNH69q1axb1tvj7/PPP9fDDD6tq1aqy2Wxav379bffZuXOnWrZsKQ8PD9WtW1dLly4t8H4i78hI1iMjWY+MZD0ykvXISNa66zKSgTxZuXKl4e7ubvzzn/80Dh06ZAwePNjw8fExzp49m2X7Xbt2Ga6ursasWbOMw4cPGxMmTDDc3NyMgwcPWtzz4iu3Y/7UU08ZCxYsMPbv328cOXLEGDBggOHt7W389NNPFve8+MrtmGeIi4sz7rnnHuP+++83HnnkEWs6W0LkdsyTk5ONVq1aGT169DC+/PJLIy4uzti5c6cRGxtrcc+Lr9yO+fLlyw0PDw9j+fLlRlxcnLF161bD39/fGD16tMU9L742b95svPrqq8aHH35oSDLWrVt3y/Y//PCDUaZMGSMiIsI4fPiw8Y9//MNwdXU1IiMjrekwcoWMZD0ykvXISNYjI1mPjGS9uy0jUZDKozZt2hjDhw83X6elpRlVq1Y1ZsyYkWX7J554wggLC3Na17ZtW+Mvf/lLgfazJMntmN/s+vXrRrly5Yxly5YVVBdLnLyM+fXr14327dsbixcvNsLDwwlbuZTbMV+4cKFRu3ZtIyUlxaoulji5HfPhw4cbXbp0cVoXERFh3HfffQXaz5IqJ2Hr5ZdfNu69916ndX379jVCQ0MLsGfIKzKS9chI1iMjWY+MZD0yUuG6GzISX9nLg5SUFMXExCgkJMRc5+LiopCQEEVHR2e5T3R0tFN7SQoNDc22PZzlZcxvdvXqVaWmpqpChQoF1c0SJa9jPnXqVFWpUkUDBw60opslSl7GfMOGDQoODtbw4cPl6+urxo0b6/XXX1daWppV3S7W8jLm7du3V0xMjHnL+g8//KDNmzerR48elvT5bsR7aPFBRrIeGcl6ZCTrkZGsR0YqHor7e2ipwu5AcfTLL78oLS1Nvr6+Tut9fX119OjRLPdJSEjIsn1CQkKB9bMkycuY32zs2LGqWrVqpj9YZC0vY/7ll1/qgw8+UGxsrAU9LHnyMuY//PCDduzYoaefflqbN2/W999/r+eff16pqamaNGmSFd0u1vIy5k899ZR++eUXdejQQYZh6Pr16xo6dKheeeUVK7p8V8ruPdThcOi3335T6dKlC6lnuBkZyXpkJOuRkaxHRrIeGal4KO4ZiTukcFeYOXOmVq5cqXXr1snT07Owu1MiXbp0Sc8884zef/99VapUqbC7c9dIT09XlSpV9N577ykoKEh9+/bVq6++qkWLFhV210qsnTt36vXXX9c777yjb775Rh9++KE2bdqkadOmFXbXACDXyEgFj4xUOMhI1iMjIbe4QyoPKlWqJFdXV509e9Zp/dmzZ+Xn55flPn5+frlqD2d5GfMMs2fP1syZM7V9+3Y1bdq0ILtZouR2zE+cOKEff/xRDz/8sLkuPT1dklSqVCkdO3ZMderUKdhOF3N5+T339/eXm5ubXF1dzXWNGjVSQkKCUlJS5O7uXqB9Lu7yMuZ/+9vf9Mwzz2jQoEGSpCZNmujKlSsaMmSIXn31Vbm48FlPfsvuPdRutxf5T/7uNmQk65GRrEdGsh4ZyXpkpOKhuGckfiPywN3dXUFBQYqKijLXpaenKyoqSsHBwVnuExwc7NRekrZt25ZtezjLy5hL0qxZszRt2jRFRkaqVatWVnS1xMjtmDds2FAHDx5UbGysufzpT39S586dFRsbq4CAACu7Xyzl5ff8vvvu0/fff28GW0n63//+J39/f4JWDuRlzK9evZopUGWEXcMwCq6zdzHeQ4sPMpL1yEjWIyNZj4xkPTJS8VDs30MLd0714mvlypWGh4eHsXTpUuPw4cPGkCFDDB8fHyMhIcEwDMN45plnjHHjxpntd+3aZZQqVcqYPXu2ceTIEWPSpEk80jiXcjvmM2fONNzd3Y21a9caZ86cMZdLly4V1iUUO7kd85vxBJncy+2Ynzp1yihXrpwxYsQI49ixY8bGjRuNKlWqGK+99lphXUKxk9sxnzRpklGuXDnjP//5j/HDDz8Yn3zyiVGnTh3jiSeeKKxLKHYuXbpk7N+/39i/f78hyZgzZ46xf/9+4+TJk4ZhGMa4ceOMZ555xmyf8UjjMWPGGEeOHDEWLFhQrB5pfLchI1mPjGQ9MpL1yEjWIyNZ727LSBSk7sA//vEPo3r16oa7u7vRpk0b46uvvjK3PfDAA0Z4eLhT+9WrVxv169c33N3djXvvvdfYtGmTxT0u/nIz5jVq1DAkZVomTZpkfceLsdz+nt+IsJU3uR3z3bt3G23btjU8PDyM2rVrG9OnTzeuX79uca+Lt9yMeWpqqjF58mSjTp06hqenpxEQEGA8//zzxoULF6zveDH16aefZvnvc8Y4h4eHGw888ECmfZo3b264u7sbtWvXNpYsWWJ5v5FzZCTrkZGsR0ayHhnJemQka91tGclmGNw7BwAAAAAAAOswhxQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAUXQzp07ZbPZtHPnznw9rs1m0+TJk/P1mCXNgAEDVLNmzcLuRpFQs2ZNDRgw4Lbtli5dKpvNph9//LHA+1SQVq9erQoVKujy5cu3bZvV39LevXvVvn17lS1bVjabTbGxsTk+d2pqqgICAvTOO+/kstcAcHchIxUeMtIfyEjZIyMhNyhIoUDt3r1bkydP1sWLFwu7K3eNzZs3E6gkXb16VZMnT873wArrHDt2TKNHj1b79u3l6el520C3YcMGtWzZUp6enqpevbomTZqk69ev5+hcaWlpmjRpkkaOHCkvL69c9zU1NVWPP/64zp8/r7feekv/+te/VKNGDZ05c0bjxo1T586dVa5cuWz/T5Sbm5siIiI0ffp0Xbt2LdfnB1D8kJGsR0b6HRmp+CsJGSkqKkrPPfec6tevrzJlyqh27doaNGiQzpw547Q/GamEM4AC9MYbbxiSjLi4uMLuSrHy6aefGpKMTz/9NNf7Dh8+3MjuT/u3334zUlNT77B3xcO5c+cMScakSZNytV9KSopx7dq1gulUMXPt2jUjJSXltu2WLFlSIH/nS5YsMVxcXIzGjRsbzZs3v+U5Nm/ebNhsNqNz587Ge++9Z4wcOdJwcXExhg4dmqNzrVu3zrDZbMZPP/2Uo/Y3/24dOXLEkGS8//77Tu0y/pbr1atnBAcH3/Lv+sKFC4a7u7vxwQcf5KgPAIo3MlLekJHuHBnpzpGRspfTjBQUFGTUqlXLePnll43333/fGD9+vFGuXDnD19fXOHPmjFNbMlLJVcrqAhhQkl29elVlypTJtP769etKT0+Xu7t7IfTqD56enoV6/qLsypUrKlu2rNzc3Aq7K0WGh4dHoZ7/T3/6ky5evKhy5cpp9uzZt7y9+6WXXlLTpk31ySefqFSp39/a7Ha7Xn/9db344otq2LDhLc+1ZMkS3Xfffbrnnnvy1NfExERJko+Pj9P6oKAg/frrr6pQoYLWrl2rxx9/PNtj+Pj4qGvXrlq6dKmee+65PPUDAIoqMlLxRUbKjIyUc9llpDlz5qhDhw5ycfnjS1vdunXTAw88oPnz5+u1114z15ORSi6+socCM3nyZI0ZM0aSVKtWLdlsNqfbSa9fv65p06apTp068vDwUM2aNfXKK68oOTnZ6Tg1a9ZUz5499cknn6h58+by9PRUYGCgPvzwwzz169///rfatGmjMmXKqHz58urYsaM++eQTpzbvvPOO7r33Xnl4eKhq1aoaPnx4plvqO3XqpMaNGysmJkYdO3ZUmTJl9Morr+jHH3+UzWbT7NmzNXfuXPP6Dh8+LEk6evSoHnvsMVWoUEGenp5q1aqVNmzYcNt+f/HFF3r88cdVvXp1eXh4KCAgQKNHj9Zvv/1mthkwYIAWLFggSeZ422w2c3tW3+nev3+/unfvLrvdLi8vLz344IP66quvnNpkfP99165dioiIUOXKlVW2bFn17t1b586du23fbzR58mTZbDb973//05///Gd5e3urcuXK+tvf/ibDMHT69Gk98sgjstvt8vPz05tvvum0f0pKiiZOnKigoCB5e3urbNmyuv/++/Xpp5+abX788UdVrlxZkjRlyhRzHDKufcCAAfLy8tKJEyfUo0cPlStXTk8//bS57cb5ESZNmiQXFxdFRUU59WPIkCFyd3fXgQMHcnztOf1dTk1N1ZQpU1SvXj15enqqYsWK6tChg7Zt22a2ybiGU6dOqWfPnvLy8tI999xj/vwPHjyoLl26qGzZsqpRo4ZWrFiR437e2N+b50c4dOiQunTpotKlS6tatWp67bXXlJ6enmnfffv2KTQ0VJUqVVLp0qVVq1atXAeIChUqqFy5crdtd/jwYR0+fFhDhgwxg5YkPf/88zIMQ2vXrr3l/teuXVNkZKRCQkIybUtOTtbo0aNVuXJllStXTn/605/0008/ObUZMGCAHnjgAUnS448/LpvNpk6dOkmSypUrpwoVKtz2GjI89NBD+vLLL3X+/Pkc7wOg+CEjkZGyQkYiI+VUSchIHTt2dCpGZayrUKGCjhw5kul8ZKSSiTukUGAeffRR/e9//9N//vMfvfXWW6pUqZIkmW+CgwYN0rJly/TYY4/pr3/9q77++mvNmDFDR44c0bp165yOdfz4cfXt21dDhw5VeHi4lixZoscff1yRkZF66KGHctynKVOmaPLkyWrfvr2mTp0qd3d3ff3119qxY4e6du0q6fcwMGXKFIWEhGjYsGE6duyYFi5cqL1792rXrl1Onw79+uuv6t69u/r166c///nP8vX1NbctWbJE165d05AhQ+Th4aEKFSro0KFD5icM48aNU9myZbV69Wr16tVL//3vf9W7d+9s+75mzRpdvXpVw4YNU8WKFbVnzx794x//0E8//aQ1a9ZIkv7yl78oPj5e27Zt07/+9a/bjsehQ4d0//33y2636+WXX5abm5veffddderUSZ999pnatm3r1H7kyJEqX768Jk2apB9//FFz587ViBEjtGrVqhz/DDL07dtXjRo10syZM7Vp0ya99tprqlChgt5991116dJFf//737V8+XK99NJLat26tTp27ChJcjgcWrx4sZ588kkNHjxYly5d0gcffKDQ0FDt2bNHzZs3V+XKlbVw4UINGzZMvXv31qOPPipJatq0qXn+69evKzQ0VB06dNDs2bOz/NRWkiZMmKCPP/5YAwcO1MGDB1WuXDlt3bpV77//vqZNm6ZmzZrl6rpz8rs8efJkzZgxQ4MGDVKbNm3kcDi0b98+ffPNN06/72lpaerevbs6duyoWbNmafny5RoxYoTKli2rV199VU8//bQeffRRLVq0SP3791dwcLBq1aqVq/7eKCEhQZ07d9b169fN39/33ntPpUuXdmqXmJiorl27qnLlyho3bpx8fHz0448/5vn/IN3O/v37JUmtWrVyWl+1alVVq1bN3J6dmJgYpaSkqGXLlpm2DRo0SP/+97/11FNPqX379tqxY4fCwsKc2vzlL3/RPffco9dff10vvPCCWrdu7fRvQW4EBQXJMAzt3r1bPXv2zNMxABR9ZCQy0q2QkchI+aW4ZaTLly/r8uXL5r+JNyIjlVCF+X1BlHzZzY8QGxtrSDIGDRrktP6ll14yJBk7duww19WoUcOQZPz3v/811yUlJRn+/v5GixYtctyX48ePGy4uLkbv3r2NtLQ0p23p6emGYRhGYmKi4e7ubnTt2tWpzfz58w1Jxj//+U9z3QMPPGBIMhYtWuR0rLi4OEOSYbfbjcTERKdtDz74oNGkSROn79+np6cb7du3N+rVq2euy2p+hKtXr2a6phkzZhg2m804efKkue5W8yPopu909+rVy3B3dzdOnDhhrouPjzfKlStndOzY0VyX8f33kJAQc6wMwzBGjx5tuLq6GhcvXszyfFmZNGmSIckYMmSIue769etGtWrVDJvNZsycOdNcf+HCBaN06dJGeHi4U9vk5GSnY164cMHw9fU1nnvuOXPdreZHCA8PNyQZ48aNy3JbjRo1nNYdPHjQcHd3NwYNGmRcuHDBuOeee4xWrVrleq6JnP4uN2vWzAgLC7vlsTKu4fXXXzfXZYyXzWYzVq5caa4/evRonuaKqFGjhtPYjxo1ypBkfP311+a6xMREw9vb2+nvfN26dYYkY+/evbk6363caq6VjG2nTp3KtK1169ZGu3btbnnsxYsXG5KMgwcPOq3P+Hfq+eefd1r/1FNPZRrPjL/ZNWvWZHueNWvW3Hbek/j4eEOS8fe///2WfQZQ/JGRyEg3IyORkfKiJGSkDNOmTTMkGVFRUZm2kZFKJr6yh0KxefNmSVJERITT+r/+9a+SpE2bNjmtr1q1qtMnY3a7Xf3799f+/fuVkJCQo3OuX79e6enpmjhxYqbbQzNu2d6+fbtSUlI0atQopzaDBw+W3W7P1C8PDw89++yzWZ6vT58+5iedknT+/Hnt2LFDTzzxhC5duqRffvlFv/zyi3799VeFhobq+PHj+vnnn7Pt/42fsFy5ckW//PKL2rdvL8MwbvvpRlbS0tL0ySefqFevXqpdu7a53t/fX0899ZS+/PJLORwOp32GDBnidHv7/fffr7S0NJ08eTLX5x80aJD5366urmrVqpUMw9DAgQPN9T4+PmrQoIF++OEHp7YZ80ykp6fr/Pnzun79ulq1aqVvvvkmV30YNmxYjto1btxYU6ZM0eLFixUaGqpffvlFy5Ytc7r1Oady8rvs4+OjQ4cO6fjx47c93o3jmDFeZcuW1RNPPGGub9CggXx8fJzGMS82b96sdu3aqU2bNua6ypUrm7fy39gPSdq4caNSU1Pv6Jw5kfGVjKzmc/D09HT6ykZWfv31V0lS+fLlndZn/Dv1wgsvOK0fNWpUXrt6Wxl9+OWXXwrsHACKNjISGYmM9Dsy0p0rThnp888/15QpU/TEE0+oS5cumbaTkUomClIoFCdPnpSLi4vq1q3rtN7Pz08+Pj6Z3rzr1q3r9CYvSfXr15ekWz7i9EYnTpyQi4uLAgMDb9kv6fc3pxu5u7urdu3amfp1zz33ZDsJ5823/X7//fcyDEN/+9vfVLlyZadl0qRJkv6Y9C8rp06d0oABA1ShQgV5eXmpcuXK5neyk5KSst0vO+fOndPVq1czXaskNWrUSOnp6Tp9+rTT+urVqzu9znhjuHDhQq7Pf/OxvL295enpmekWXW9v70zHX7ZsmZo2bWrOHVC5cmVt2rQpV+NQqlQpVatWLcftx4wZo2bNmmnPnj2aNGnSLX+PbiUnv8tTp07VxYsXVb9+fTVp0kRjxozRt99+m+lYnp6eToFe+n28qlWrlukcWY1jbp08eVL16tXLtP7m36EHHnhAffr00ZQpU1SpUiU98sgjWrJkSaa5T/JLxv8Ryer4165dy3S7fHYMw3B6nfHvVJ06dZzWZ/U3k18y+nDzzw/A3YOMREYiI/2BjHRniktGOnr0qHr37q3GjRtr8eLFt+wDGalkYQ4pFKri/g/Krf4Rv3lbxqSGL730kkJDQ7Pc5+bwmSEtLU0PPfSQzp8/r7Fjx6phw4YqW7asfv75Zw0YMCDLCRMLgqura5brb36TyuuxcnL8f//73xowYIB69eqlMWPGqEqVKnJ1ddWMGTN04sSJHJ/fw8Mj06fAt/LDDz+Yn8YdPHgwx/vlRceOHXXixAl99NFH+uSTT7R48WK99dZbWrRoUaZPTbOSnz+nvLDZbFq7dq2++uorffzxx9q6dauee+45vfnmm/rqq6/k5eWVr+fz9/eXJJ05c0YBAQFO286cOeP0aWVWKlasKOn3/9OQmwBeEDICcVZzJwC4u5CRnJGRyEgSGSm3ikNGOn36tLp27Spvb29t3rw528nayUglE3dIoUBlF6Zq1Kih9PT0TLfbnj17VhcvXlSNGjWc1md8cnaj//3vf5Lk9LSPW6lTp47S09PNJ7lk1y9JOnbsmNP6lJQUxcXFZepXbmTc8u3m5qaQkJAsl+z+AT548KD+97//6c0339TYsWP1yCOPKCQkRFWrVs3UNqcBtnLlyipTpkyma5V+/5TCxcUl0xtXUbB27VrVrl1bH374oZ555hmFhoYqJCRE165dc2qXn0E+PT1dAwYMkN1u1yuvvKL//Oc/eZ58Mqe/yxUqVNCzzz6r//znPzp9+rSaNm2a6ek/VqtRo0aWt8hn9TskSe3atdP06dO1b98+LV++XIcOHdLKlSvzvV/NmzeX9PtTa24UHx+vn376ydyenYzHHcfFxTmtz/h36uYQn9315oeMPjRq1KjAzgGgaCAj/YGMlD/ISIWHjPS73GakX3/9VV27dlVycrK2bt1qFtCyQkYqmShIoUCVLVtWkjI9DrhHjx6SpLlz5zqtnzNnjiRlekJDfHy801NlHA6H/u///k/NmzeXn59fjvrSq1cvubi4aOrUqZk+Lct48wsJCZG7u7vefvttpzfEDz74QElJSZn6lRtVqlRRp06d9O677+rMmTOZtt/q0cAZn+bc2CfDMDRv3rxMbbMb86yO2bVrV3300UdOt/SfPXtWK1asUIcOHWS32295jMKQ1Vh8/fXXio6OdmqX8USY241DTsyZM0e7d+/We++9p2nTpql9+/YaNmxYnr7DnpPf5Yzv62fw8vJS3bp1C+x27pzq0aOHvvrqK+3Zs8dcd+7cOS1fvtyp3YULFzIFyozAUxDXcO+996phw4Z67733lJaWZq5fuHChbDabHnvssVvuHxQUJHd390xhrXv37pKkt99+22n9zf9u5aeYmBjZbDYFBwcX2DkAFA1kpD+QkfIHGanwkJF+l5uMdOXKFfXo0UM///yzNm/enOVXHm9ERiqZ+MoeClRQUJAk6dVXX1W/fv3k5uamhx9+WM2aNVN4eLjee+89Xbx4UQ888ID27NmjZcuWqVevXurcubPTcerXr6+BAwdq79698vX11T//+U+dPXtWS5YsyXFf6tatq1dffVXTpk3T/fffr0cffVQeHh7au3evqlatqhkzZqhy5coaP368pkyZom7duulPf/qTjh07pnfeeUetW7fWn//85zsajwULFqhDhw5q0qSJBg8erNq1a+vs2bOKjo7WTz/9pAMHDmS5X8OGDVWnTh299NJL+vnnn2W32/Xf//43y++7Z4z5Cy+8oNDQULm6uqpfv35ZHve1117Ttm3b1KFDBz3//PMqVaqU3n33XSUnJ2vWrFl3dK0FpWfPnvrwww/Vu3dvhYWFKS4uTosWLVJgYKAuX75stitdurQCAwO1atUq1a9fXxUqVFDjxo3VuHHjXJ3vyJEj+tvf/qYBAwbo4YcfliQtXbpUzZs31/PPP6/Vq1fn6ng5+V0ODAxUp06dFBQUpAoVKmjfvn1au3atRowYkatz5beXX35Z//rXv9StWze9+OKL5iONa9So4TR/w7Jly/TOO++od+/eqlOnji5duqT3339fdrvd/D9aOZGUlKR//OMfkqRdu3ZJkubPny8fHx/5+Pg4jccbb7yhP/3pT+ratav69eun7777TvPnz9egQYNu+0map6enunbtqu3bt2vq1Knm+ubNm+vJJ5/UO++8o6SkJLVv315RUVH6/vvvc3wN0u9/Z9LvjxCXpH/961/68ssvJf3+yOwbbdu2Tffdd595izyAkouM5IyMdOfISIWHjJT7jPT0009rz549eu6553TkyBEdOXLE3Obl5aVevXo5tScjlVAF/yA/3O2mTZtm3HPPPYaLi4vTI0lTU1ONKVOmGLVq1TLc3NyMgIAAY/z48U6P+zWM3x+rGhYWZmzdutVo2rSp4eHhYTRs2DBHjw7Nyj//+U+jRYsWhoeHh1G+fHnjgQceMLZt2+bUZv78+UbDhg0NNzc3w9fX1xg2bJhx4cIFpzYPPPCAce+992Y6fsYjjd94440sz3/ixAmjf//+hp+fn+Hm5mbcc889Rs+ePY21a9eabbJ6pPHhw4eNkJAQw8vLy6hUqZIxePBg48CBA4YkY8mSJWa769evGyNHjjQqV65s2Gw2p8cbK4vH2n7zzTdGaGio4eXlZZQpU8bo3LmzsXv3bqc2GY80vvkRtVn183YyHml87tw5p/Xh4eFG2bJlM7W/eZzT09ON119/3ahRo4bh4eFhtGjRwti4cWOWjyLevXu3ERQUZLi7uztde3bnytiWcZzr168brVu3NqpVq5bpsc3z5s0zJBmrVq3K8bXn9Hf5tddeM9q0aWP4+PgYpUuXNho2bGhMnz7dSElJcepnTsbr5nPnxs2PNDYMw/j222+NBx54wPD09DTuueceY9q0acYHH3zg9Lf9zTffGE8++aRRvXp1w8PDw6hSpYrRs2dPY9++fbk6f8bfUlbLzT9rw/j9UcrNmzc3PDw8jGrVqhkTJkxwGrNb+fDDDw2bzZbpsci//fab8cILLxgVK1Y0ypYtazz88MPG6dOnc/VI4+yu4ea34IsXLxru7u7G4sWLc9RnAMUfGckZGYmMREbKmZKQkWrUqJHjayAjlVw2w7BoBjcgj2rWrKnGjRtr48aNhd0V4I7wu1x0paWlKTAwUE888YSmTZtWKH2YO3euZs2apRMnTuT4qTcA7m68r6Ck4He56CIjoSAxhxQA4K7n6uqqqVOnasGCBU5fa7BKamqq5syZowkTJhC0AABAkUFGQkFiDimUCAkJCbfcXrp0aXl7e1vUm7vT5cuXb/smVbly5Wwft1ucnTt3zmmiyJu5u7urQoUKFvbo1gr77+X8+fNKSUnJdrurq6sqV65cYOfPTt++fdW3b1/Lzyv9/mSpU6dOFcq5AZRshf1vPshIZKScIyNlRkYq2ShIoUS41SNCJSk8PFxLly61pjN3qdmzZ2vKlCm3bBMXF5fjR1AXJ61bt9bJkyez3f7AAw9o586d1nXoNgr77+XRRx/VZ599lu32GjVqOD3VCACQd4X9bz7ISGSknCMj4W7DHFIoEbZv337L7VWrVlVgYKBFvbk7/fDDD/rhhx9u2aZDhw7y9PS0qEfW2bVrl3777bdst5cvX958sk9RUNh/LzExMVk+/ShD6dKldd999xXY+QHgblLY/+aDjERGyjkyEu42FKQAAAAAAABgKSY1BwAAAAAAgKXu6jmk0tPTFR8fr3LlyslmsxV2dwAAgAUMw9ClS5dUtWpVubjw2VxWyEgAANx9rM5Id3VBKj4+XgEBAYXdDQAAUAhOnz6tatWqFXY3iiQyEgAAdy+rMtJdXZAqV66cpN8H2263F3JvAACAFRwOhwICAswcgMzISAAA3H2szkh3dUEq4xZ0u91O2AIA4C7DV9GyR0YCAODuZVVGYuIEAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWuqvnkAIA4FbS0tKUmppa2N1ALrm5ucnV1bWwuwEAQIlFRiqeilpGoiAFAMBNDMNQQkKCLl68WNhdQR75+PjIz8+PicsBAMhHZKTiryhlJApSAADcJCNoValSRWXKlCkSb9jIGcMwdPXqVSUmJkqS/P39C7lHAACUHGSk4qsoZiQKUgAA3CAtLc0MWhUrVizs7iAPSpcuLUlKTExUlSpVitSt6QAAFFdkpOKvqGUkJjUHAOAGGfMhlClTppB7gjuR8fNjfgsAAPIHGalkKEoZiYIUAABZ4Bb04o2fHwAABYP32OKtKP38KEgBAAAAAADAUhSkAAAo5mw22y2XyZMnF2rf1q9ff0fHeO+999SpUyfZ7XbZbDae7AMAAHKsJOek8+fPa+TIkWrQoIFKly6t6tWr64UXXlBSUlL+dbIAMak5AAA5lBr5pWXncuvWIcdtz5w5Y/73qlWrNHHiRB07dsxc5+Xllatzp6SkyN3dPVf7FKSrV6+qW7du6tatm8aPH1/Y3QEAADexMiNJ5KQM8fHxio+P1+zZsxUYGKiTJ09q6NChio+P19q1awu7e7fFHVIFKDXyy0wLAAD5zc/Pz1y8vb1ls9nM11euXNHTTz8tX19feXl5qXXr1tq+fbvT/jVr1tS0adPUv39/2e12DRkyRJL0/vvvKyAgQGXKlFHv3r01Z84c+fj4OO370UcfqWXLlvL09FTt2rU1ZcoUXb9+3TyuJPXu3Vs2m818feDAAXXu3FnlypWT3W5XUFCQ9u3bl+31jRo1SuPGjVO7du3yZ8BQ6MhIAACrlOSc1LhxY/33v//Vww8/rDp16qhLly6aPn26Pv74Y/M8RRkFKQAASrDLly+rR48eioqK0v79+9WtWzc9/PDDOnXqlFO72bNnq1mzZtq/f7/+9re/adeuXRo6dKhefPFFxcbG6qGHHtL06dOd9vniiy/Uv39/vfjiizp8+LDeffddLV261Gy3d+9eSdKSJUt05swZ8/XTTz+tatWqae/evYqJidG4cePk5uZmwWgAAAD8oSTmpKSkJNntdpUqVfS/EFf0ewgAAPKsWbNmatasmfl62rRpWrdunTZs2KARI0aY67t06aK//vWv5utXX31V3bt310svvSRJql+/vnbv3q2NGzeabaZMmaJx48YpPDxcklS7dm1NmzZNL7/8siZNmqTKlStLknx8fOTn52fud+rUKY0ZM0YNGzaUJNWrV68ArhwAAODWSlpO+uWXXzRt2jTzLq6ijjukAAAowS5fvqyXXnpJjRo1ko+Pj7y8vHTkyJFMn/y1atXK6fWxY8fUpk0bp3U3vz5w4ICmTp0qLy8vcxk8eLDOnDmjq1evZtuniIgIDRo0SCEhIZo5c6ZOnDhxh1cJAACQeyUpJzkcDoWFhSkwMLBQJ2rPDQpSAACUYC+99JLWrVun119/XV988YViY2PVpEkTpaSkOLUrW7Zsro99+fJlTZkyRbGxseZy8OBBHT9+XJ6entnuN3nyZB06dEhhYWHasWOHAgMDtW7dulyfHwAA4E6UlJx06dIldevWTeXKldO6deuKzVQIfGUPAIASbNeuXRowYIB69+4t6fdw9OOPP952vwYNGphzGWS4+XXLli117Ngx1a1bN9vjuLm5KS0tLdP6+vXrq379+ho9erSefPJJLVmyxOwjAACAFUpCTnI4HAoNDZWHh4c2bNhwy2JXUZOrO6QWLlyopk2bym63y263Kzg4WFu2bDG3d+rUSTabzWkZOnSo0zFOnTqlsLAwlSlTRlWqVNGYMWMyzf6+c+dOtWzZUh4eHqpbt66WLl2aqS8LFixQzZo15enpqbZt22rPnj25uRQAAO4K9erV04cffqjY2FgdOHBATz31lNLT02+738iRI7V582bNmTNHx48f17vvvqstW7bIZrOZbSZOnKj/+7//05QpU3To0CEdOXJEK1eu1IQJE8w2NWvWVFRUlBISEnThwgX99ttvGjFihHbu3KmTJ09q165d2rt3rxo1apRtXxISEhQbG6vvv/9eknTw4EHFxsbq/PnzdzAy+YuMBABA8VPcc5LD4VDXrl115coVffDBB3I4HEpISFBCQkKWha6iJlcFqWrVqmnmzJmKiYnRvn371KVLFz3yyCM6dOiQ2SbjO5EZy6xZs8xtaWlpCgsLU0pKinbv3q1ly5Zp6dKlmjhxotkmLi5OYWFh6ty5s2JjYzVq1CgNGjRIW7duNdusWrVKERERmjRpkr755hs1a9ZMoaGhSkxMvJOxAACgxJkzZ47Kly+v9u3b6+GHH1ZoaKhatmx52/3uu+8+LVq0SHPmzFGzZs0UGRmp0aNHO33qFhoaqo0bN+qTTz5R69at1a5dO7311luqUaOG2ebNN9/Utm3bFBAQoBYtWsjV1VW//vqr+vfvr/r16+uJJ55Q9+7dNWXKlGz7smjRIrVo0UKDBw+WJHXs2FEtWrTQhg0b7mBk8hcZCQCA4qe456RvvvlGX3/9tQ4ePKi6devK39/fXE6fPn3nA1TAbIZhGHdygAoVKuiNN97QwIED1alTJzVv3lxz587Nsu2WLVvUs2dPxcfHy9fXV9LvIXPs2LE6d+6c3N3dNXbsWG3atEnfffeduV+/fv108eJFRUZGSpLatm2r1q1ba/78+ZKk9PR0BQQEaOTIkRo3blyO++5wOOTt7W0+FjG/pUZ+mWmdW7cO+X4eAED+uXbtmuLi4lSrVq1idcuzFQYPHqyjR4/qiy++KOyu3Natfo4F/f6fgYyUPTISABQ/ZKRbKy45qShkpAx5ntQ8LS1NK1eu1JUrVxQcHGyuX758uSpVqqTGjRtr/PjxTrPHR0dHq0mTJmbQkn6vGjocDvMTxOjoaIWEhDidKzQ0VNHR0ZKklJQUxcTEOLVxcXFRSEiI2SY7ycnJcjgcTgsAAMja7NmzdeDAAX3//ff6xz/+oWXLlpmPLkb2yEgAAJR85KQ7l+tJzQ8ePKjg4GBdu3ZNXl5eWrdunQIDAyVJTz31lGrUqKGqVavq22+/1dixY3Xs2DF9+OGHkn6fA+LGoCXJfJ2QkHDLNg6HQ7/99psuXLigtLS0LNscPXr0ln2fMWPGLb8SAAAA/rBnzx7NmjVLly5dUu3atfX2229r0KBBhd2tIouMBADA3YOcdOdyXZBq0KCBYmNjlZSUpLVr1yo8PFyfffaZAgMDNWTIELNdkyZN5O/vrwcffFAnTpxQnTp18rXjeTF+/HhFRESYrx0OhwICAgqxRwAAFF2rV68u7C4UK2QkAADuHuSkO5frgpS7u7v52MKgoCDt3btX8+bN07vvvpupbdu2bSVJ33//verUqSM/P79MT3o5e/asJMnPz8/834x1N7ax2+0qXbq0XF1d5erqmmWbjGNkx8PDQx4eHrm4WgAAgJwhIwEAAORcnueQypCenq7k5OQst8XGxkqS/P39JUnBwcE6ePCg05Netm3bJrvdbt7SHhwcrKioKKfjbNu2zZyDwd3dXUFBQU5t0tPTFRUV5TRPAwAAQGEiIwEAAGQvV3dIjR8/Xt27d1f16tV16dIlrVixQjt37tTWrVt14sQJrVixQj169FDFihX17bffavTo0erYsaOaNm0qSeratasCAwP1zDPPaNasWUpISNCECRM0fPhw81O5oUOHav78+Xr55Zf13HPPaceOHVq9erU2bdpk9iMiIkLh4eFq1aqV2rRpo7lz5+rKlSt69tln83FoAAAAcoaMBAAAkDu5KkglJiaqf//+OnPmjLy9vdW0aVNt3bpVDz30kE6fPq3t27ebwScgIEB9+vTRhAkTzP1dXV21ceNGDRs2TMHBwSpbtqzCw8M1depUs02tWrW0adMmjR49WvPmzVO1atW0ePFihYaGmm369u2rc+fOaeLEiUpISFDz5s0VGRmZaRJPAAAAK5CRAAAAcsdmGIZR2J0oLA6HQ97e3kpKSpLdbs/346dGfplpnVu3Dvl+HgBA/rl27Zri4uJUq1YteXp6FnZ3kEe3+jkW9Pt/SUBGAgDcjIxUMhSljHTHc0gBAAAAAAAAuUFBCgAAAAAAAJaiIAUAQAkwYMAA2Ww22Ww2ubm5ydfXVw899JD++c9/Kj09vbC7d0cOHTqkPn36qGbNmrLZbJo7d25hdwkAABQjJTknvf/++7r//vtVvnx5lS9fXiEhIdqzZ09hdytHcjWpOQAAd7MT+9617Fx1Wv0l1/t069ZNS5YsUVpams6ePavIyEi9+OKLWrt2rTZs2KBSpYrn2/7Vq1dVu3ZtPf744xo9enRhdwcAANzEyowkkZNutHPnTj355JNq3769PD099fe//11du3bVoUOHdM899xR2926JO6QAACghPDw85Ofnp3vuuUctW7bUK6+8oo8++khbtmzR0qVLzXYXL17UoEGDVLlyZdntdnXp0kUHDhxwOtbHH3+s1q1by9PTU5UqVVLv3r3NbRcuXFD//v1Vvnx5lSlTRt27d9fx48clSVeuXJHdbtfatWudjrd+/XqVLVtWly5dUkpKikaMGCF/f395enqqRo0amjFjRrbX1bp1a73xxhvq16+fPDw88mGkAADA3aak5qTly5fr+eefV/PmzdWwYUMtXrxY6enpioqKyodRK1gUpAAAKMG6dOmiZs2a6cMPPzTXPf7440pMTNSWLVsUExOjli1b6sEHH9T58+clSZs2bVLv3r3Vo0cP7d+/X1FRUWrTpo25/4ABA7Rv3z5t2LBB0dHRMgxDPXr0UGpqqsqWLat+/fppyZIlTv1YsmSJHnvsMZUrV05vv/22NmzYoNWrV+vYsWNavny5atasacl4AAAAZCiJOenq1atKTU1VhQoV7mxwLFA870kDAAA51rBhQ3377beSpC+//FJ79uxRYmKiebfR7NmztX79eq1du1ZDhgzR9OnT1a9fP02ZMsU8RrNmzSRJx48f14YNG7Rr1y61b99e0u+fzAUEBGj9+vV6/PHHNWjQILVv315nzpyRv7+/EhMTtXnzZm3fvl2SdOrUKdWrV08dOnSQzWZTjRo1rBwOAAAAU0nLSWPHjlXVqlUVEhJyx2NT0LhDCgCAEs4wDNlsNknSgQMHdPnyZVWsWFFeXl7mEhcXpxMnTkiSYmNj9eCDD2Z5rCNHjqhUqVJq27atua5ixYpq0KCBjhw5Iklq06aN7r33Xi1btkyS9O9//1s1atRQx44dJf3+yWFsbKwaNGigF154QZ988kmBXTsAAMCtlKScNHPmTK1cuVLr1q2Tp6dn7gfDYtwhBQBACXfkyBHVqlVLknT58mX5+/tr586dmdr5+PhIkkqXLn3H5xw0aJAWLFigcePGacmSJXr22WfNsNeyZUvFxcVpy5Yt2r59u5544gmFhIRkmk8BAACgoJWUnDR79mzNnDlT27dvV9OmTe+4j1bgDikAAEqwHTt26ODBg+rTp4+k30NOQkKCSpUqpbp16zotlSpVkiQ1bdo024kwGzVqpOvXr+vrr7821/366686duyYAgMDzXV//vOfdfLkSb399ts6fPiwwsPDnY5jt9vVt29fvf/++1q1apX++9//mnMzAAAAWKGk5KRZs2Zp2rRpioyMVKtWrfI8HlbjDikAAEqI5ORkJSQkOD3OeMaMGerZs6f69+8vSQoJCVFwcLB69eqlWbNmqX79+oqPjzcn6GzVqpUmTZqkBx98UHXq1FG/fv10/fp1bd68WWPHjlW9evX0yCOPaPDgwXr33XdVrlw5jRs3Tvfcc48eeeQRsy/ly5fXo48+qjFjxqhr166qVq2auW3OnDny9/dXixYt5OLiojVr1sjPz8/85PFmKSkpOnz4sPnfP//8s2JjY+Xl5aW6desW3IACAIASo6TmpL///e+aOHGiVqxYoZo1ayohIUGSzK8bFmXcIQUAQAkRGRkpf39/1axZU926ddOnn36qt99+Wx999JFcXV0lSTabTZs3b1bHjh317LPPqn79+urXr59OnjwpX19fSVKnTp20Zs0abdiwQc2bN1eXLl20Z88e8zxLlixRUFCQevbsqeDgYBmGoc2bN8vNzc2pPwMHDlRKSoqee+45p/XlypXTrFmz1KpVK7Vu3Vo//vijNm/eLBeXrGNJfHy8WrRooRYtWujMmTOaPXu2WrRooUGDBuXn8AEAgBKspOakhQsXKiUlRY899pj8/f3NZfbs2fk5fAXCZhiGUdidKCwOh0Pe3t5KSkqS3W7P9+OnRn6ZaZ1btw75fh4AQP65du2a4uLiVKtWrWIxGWRR9q9//UujR49WfHy83N3dLT33rX6OBf3+XxKQkQAANyMj5a/CyklFKSPxlT0AAJCvrl69qjNnzmjmzJn6y1/+YnkxCgAAoKgiJ/2BglQB+vHilkzr6olP/wAAJdusWbM0ffp0dezYUePHjy/s7qAIIiMBAO5W5KQ/MIcUAADIV5MnT1ZqaqqioqKK/GSaAAAAViIn/YGCFAAAAAAAACxFQQoAAAAAAACWoiAFAEAW7uKH0JYI/PwAACgYvMcWb0Xp50dBCgCAG7i5uUn6/QkoKL4yfn4ZP08AAHBnyEglQ1HKSDxlDwCAG7i6usrHx0eJiYmSpDJlyshmsxVyr5BThmHo6tWrSkxMlI+Pj1xdXQu7SwAAlAhkpOKtKGYkClIAANzEz89PkszAheLHx8fH/DkCAID8QUYq/opSRqIgBQDATWw2m/z9/VWlShWlpqYWdneQS25ubkXiUz8AAEoaMlLxVtQyEgUpAACy4erqWqTetAEAAIoCMhLyA5OaAwAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS+WqILVw4UI1bdpUdrtddrtdwcHB2rJli7n92rVrGj58uCpWrCgvLy/16dNHZ8+edTrGqVOnFBYWpjJlyqhKlSoaM2aMrl+/7tRm586datmypTw8PFS3bl0tXbo0U18WLFigmjVrytPTU23bttWePXtycykAAAD5howEAACQO7kqSFWrVk0zZ85UTEyM9u3bpy5duuiRRx7RoUOHJEmjR4/Wxx9/rDVr1uizzz5TfHy8Hn30UXP/tLQ0hYWFKSUlRbt379ayZcu0dOlSTZw40WwTFxensLAwde7cWbGxsRo1apQGDRqkrVu3mm1WrVqliIgITZo0Sd98842aNWum0NBQJSYm3ul4AAAA5BoZCQAAIHdshmEYd3KAChUq6I033tBjjz2mypUra8WKFXrsscckSUePHlWjRo0UHR2tdu3aacuWLerZs6fi4+Pl6+srSVq0aJHGjh2rc+fOyd3dXWPHjtWmTZv03Xffmefo16+fLl68qMjISElS27Zt1bp1a82fP1+SlJ6eroCAAI0cOVLjxo3Lcd8dDoe8vb2VlJQku91+J8OQpeMrX820rl6/6fl+HgAAkHMF/f6fgYyUPTISAABFj1UZKUOe55BKS0vTypUrdeXKFQUHBysmJkapqakKCQkx2zRs2FDVq1dXdHS0JCk6OlpNmjQxg5YkhYaGyuFwmJ8gRkdHOx0jo03GMVJSUhQTE+PUxsXFRSEhIWab7CQnJ8vhcDgtAAAA+YmMBAAAcHu5LkgdPHhQXl5e8vDw0NChQ7Vu3ToFBgYqISFB7u7u8vHxcWrv6+urhIQESVJCQoJT0MrYnrHtVm0cDod+++03/fLLL0pLS8uyTcYxsjNjxgx5e3ubS0BAQG4vHwAAIEtkJAAAgJzLdUGqQYMGio2N1ddff61hw4YpPDxchw8fLoi+5bvx48crKSnJXE6fPl3YXQIAACUEGQkAACDnSuV2B3d3d9WtW1eSFBQUpL1792revHnq27evUlJSdPHiRadPAM+ePSs/Pz9Jkp+fX6YnvWQ8YebGNjc/debs2bOy2+0qXbq0XF1d5erqmmWbjGNkx8PDQx4eHrm9ZAAAgNsiIwEAAORcnueQypCenq7k5GQFBQXJzc1NUVFR5rZjx47p1KlTCg4OliQFBwfr4MGDTk962bZtm+x2uwIDA802Nx4jo03GMdzd3RUUFOTUJj09XVFRUWYbAACAwkZGAgAAyF6u7pAaP368unfvrurVq+vSpUtasWKFdu7cqa1bt8rb21sDBw5URESEKlSoILvdrpEjRyo4OFjt2rWTJHXt2lWBgYF65plnNGvWLCUkJGjChAkaPny4+anc0KFDNX/+fL388st67rnntGPHDq1evVqbNm0y+xEREaHw8HC1atVKbdq00dy5c3XlyhU9++yz+Tg0AAAAOUNGAgAAyJ1cFaQSExPVv39/nTlzRt7e3mratKm2bt2qhx56SJL01ltvycXFRX369FFycrJCQ0P1zjvvmPu7urpq48aNGjZsmIKDg1W2bFmFh4dr6tSpZptatWpp06ZNGj16tObNm6dq1app8eLFCg0NNdv07dtX586d08SJE5WQkKDmzZsrMjIy0ySeAAAAViAjAQAA5I7NMAyjsDtRWBwOh7y9vZWUlCS73Z7vxz++8tVM6+r1m57v5wEAADlX0O//JQEZCQCAu4/VGemO55ACAAAAAAAAcoOCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACw1P9j787Dsqj3/4+/AOHG7QY3QJLcN3LfEFPbSExaLCspj2G5nAw9CeWWHZes7JiVdnJpVX/n6Nel0soFNUw7KmWRlLllRmlHb7BUblfW+f3RxRzvQOVGGASej+ua6+r+zGdmPvPhxvvd6x5mCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJZyK5CaMWOGunbtqpo1ayogIED9+/fXgQMHXPrcfPPN8vDwcFkef/xxlz6HDx9WVFSUqlWrpoCAAI0dO1Y5OTkufbZs2aJOnTrJZrOpWbNmWrRoUYHxzJ07V40aNZKvr6/CwsK0c+dOd04HAACgRFAjAQAAuMetQGrr1q2KjY3VF198oU2bNik7O1t9+vTR2bNnXfoNHz5cx44dM5eZM2ea63JzcxUVFaWsrCzt2LFDixcv1qJFizR58mSzT2pqqqKionTLLbcoJSVFY8aM0bBhw7Rhwwazz/LlyxUfH68pU6bom2++Ufv27RUZGan09PTizgUAAECxUCMBAAC4x8MwDKO4Gx8/flwBAQHaunWrevfuLemPb/86dOig2bNnF7rN+vXrdeedd+ro0aMKDAyUJC1YsEDjx4/X8ePH5ePjo/Hjx2vt2rX6/vvvze2io6N16tQpJSQkSJLCwsLUtWtXvfHGG5KkvLw8hYSEaPTo0ZowYUKRxu90OuXn56eMjAzZ7fbiTsMlHVw2qUBb8+gXSvw4AACg6Er781+iRroSaiQAAK49VtRIF7uqe0hlZGRIkmrXru3SvmTJEtWtW1dt2rTRxIkTde7cOXNdUlKS2rZtaxZakhQZGSmn06k9e/aYfSIiIlz2GRkZqaSkJElSVlaWkpOTXfp4enoqIiLC7AMAAFBWqJEAAAAur0pxN8zLy9OYMWN04403qk2bNmb7ww8/rIYNGyo4OFjfffedxo8frwMHDujDDz+UJDkcDpdCS5L52uFwXLaP0+nU+fPndfLkSeXm5hbaZ//+/Zccc2ZmpjIzM83XTqezGGcOAABwadRIAAAAV1bsQCo2Nlbff/+9tm3b5tI+YsQI87/btm2r+vXr67bbbtOhQ4fUtGnT4o+0BMyYMUPTpk0r0zEAAICKjRoJAADgyor1J3ujRo3SmjVr9Nlnn6lBgwaX7RsWFiZJ+vHHHyVJQUFBSktLc+mT/zooKOiyfex2u6pWraq6devKy8ur0D75+yjMxIkTlZGRYS5HjhwpwtkCAAAUDTUSAABA0bgVSBmGoVGjRmnVqlXavHmzGjdufMVtUlJSJEn169eXJIWHh2v37t0uT3rZtGmT7Ha7QkNDzT6JiYku+9m0aZPCw8MlST4+PurcubNLn7y8PCUmJpp9CmOz2WS3210WAACAq0WNBAAA4B63/mQvNjZWS5cu1UcffaSaNWua9zPw8/NT1apVdejQIS1dulT9+vVTnTp19N133ykuLk69e/dWu3btJEl9+vRRaGioBg8erJkzZ8rhcOjZZ59VbGysbDabJOnxxx/XG2+8oXHjxumxxx7T5s2btWLFCq1du9YcS3x8vGJiYtSlSxd169ZNs2fP1tmzZ/Xoo4+W1NwAAAAUCTUSAACAe9wKpObPny/pj8cWX2zhwoUaMmSIfHx89Omnn5qFT0hIiAYMGKBnn33W7Ovl5aU1a9Zo5MiRCg8PV/Xq1RUTE6PnnnvO7NO4cWOtXbtWcXFxmjNnjho0aKB33nlHkZGRZp+BAwfq+PHjmjx5shwOhzp06KCEhIQCN/EEAAAobdRIAAAA7vEwDMMo60GUFafTKT8/P2VkZJTKpekHl00q0NY8+oUSPw4AACi60v78rwiokQAAqHysrpGKdVNzAAAAAAAAoLgIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYyq1AasaMGeratatq1qypgIAA9e/fXwcOHHDpc+HCBcXGxqpOnTqqUaOGBgwYoLS0NJc+hw8fVlRUlKpVq6aAgACNHTtWOTk5Ln22bNmiTp06yWazqVmzZlq0aFGB8cydO1eNGjWSr6+vwsLCtHPnTndOBwAAoERQIwEAALjHrUBq69atio2N1RdffKFNmzYpOztbffr00dmzZ80+cXFx+uSTT7Ry5Upt3bpVR48e1X333Weuz83NVVRUlLKysrRjxw4tXrxYixYt0uTJk80+qampioqK0i233KKUlBSNGTNGw4YN04YNG8w+y5cvV3x8vKZMmaJvvvlG7du3V2RkpNLT069mPgAAANxGjQQAAOAeD8MwjOJufPz4cQUEBGjr1q3q3bu3MjIyVK9ePS1dulT333+/JGn//v1q3bq1kpKS1L17d61fv1533nmnjh49qsDAQEnSggULNH78eB0/flw+Pj4aP3681q5dq++//948VnR0tE6dOqWEhARJUlhYmLp27ao33nhDkpSXl6eQkBCNHj1aEyZMKNL4nU6n/Pz8lJGRIbvdXtxpuKSDyyYVaGse/UKJHwcAABRdaX/+S9RIV0KNBADAtceKGuliV3UPqYyMDElS7dq1JUnJycnKzs5WRESE2adVq1a6/vrrlZSUJElKSkpS27ZtzUJLkiIjI+V0OrVnzx6zz8X7yO+Tv4+srCwlJye79PH09FRERITZBwAAoKxQIwEAAFxeleJumJeXpzFjxujGG29UmzZtJEkOh0M+Pj7y9/d36RsYGCiHw2H2ubjQyl+fv+5yfZxOp86fP6+TJ08qNze30D779++/5JgzMzOVmZlpvnY6nW6cMQAAwJVRIwEAAFxZsa+Qio2N1ffff69ly5aV5HhK1YwZM+Tn52cuISEhZT0kAABQwVAjAQAAXFmxAqlRo0ZpzZo1+uyzz9SgQQOzPSgoSFlZWTp16pRL/7S0NAUFBZl9/vxEmfzXV+pjt9tVtWpV1a1bV15eXoX2yd9HYSZOnKiMjAxzOXLkiHsnDgAAcBnUSAAAAEXjViBlGIZGjRqlVatWafPmzWrcuLHL+s6dO8vb21uJiYlm24EDB3T48GGFh4dLksLDw7V7926XJ71s2rRJdrtdoaGhZp+L95HfJ38fPj4+6ty5s0ufvLw8JSYmmn0KY7PZZLfbXRYAAICrRY0EAADgHrfuIRUbG6ulS5fqo48+Us2aNc37Gfj5+alq1ary8/PT0KFDFR8fr9q1a8tut2v06NEKDw9X9+7dJUl9+vRRaGioBg8erJkzZ8rhcOjZZ59VbGysbDabJOnxxx/XG2+8oXHjxumxxx7T5s2btWLFCq1du9YcS3x8vGJiYtSlSxd169ZNs2fP1tmzZ/Xoo4+W1NwAAAAUCTUSAACAe9wKpObPny9Juvnmm13aFy5cqCFDhkiSXnvtNXl6emrAgAHKzMxUZGSk5s2bZ/b18vLSmjVrNHLkSIWHh6t69eqKiYnRc889Z/Zp3Lix1q5dq7i4OM2ZM0cNGjTQO++8o8jISLPPwIEDdfz4cU2ePFkOh0MdOnRQQkJCgZt4AgAAlDZqJAAAAPd4GIZhlPUgyorT6ZSfn58yMjJK5dL0g8smFWhrHv1CiR8HAAAUXWl//lcE1EgAAFQ+VtdIxX7KHgAAAAAAAFAcBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALOV2IPX555/rrrvuUnBwsDw8PLR69WqX9UOGDJGHh4fL0rdvX5c+J06c0KBBg2S32+Xv76+hQ4fqzJkzLn2+++479erVS76+vgoJCdHMmTMLjGXlypVq1aqVfH191bZtW61bt87d0wEAACgR1EgAAABF53YgdfbsWbVv315z5869ZJ++ffvq2LFj5vJ///d/LusHDRqkPXv2aNOmTVqzZo0+//xzjRgxwlzvdDrVp08fNWzYUMnJyXr55Zc1depUvfXWW2afHTt26KGHHtLQoUO1a9cu9e/fX/3799f333/v7ikBAABcNWokAACAovMwDMMo9sYeHlq1apX69+9vtg0ZMkSnTp0q8K1gvn379ik0NFRfffWVunTpIklKSEhQv3799Ouvvyo4OFjz58/XpEmT5HA45OPjI0maMGGCVq9erf3790uSBg4cqLNnz2rNmjXmvrt3764OHTpowYIFRRq/0+mUn5+fMjIyZLfbizEDl3dw2aQCbc2jXyjx4wAAgKIr7c9/iRrpSqiRAAC49lhRI12sVO4htWXLFgUEBKhly5YaOXKkfv/9d3NdUlKS/P39zUJLkiIiIuTp6akvv/zS7NO7d2+z0JKkyMhIHThwQCdPnjT7REREuBw3MjJSSUlJpXFKAAAAV40aCQAA4A9VSnqHffv21X333afGjRvr0KFDeuaZZ3THHXcoKSlJXl5ecjgcCggIcB1ElSqqXbu2HA6HJMnhcKhx48YufQIDA811tWrVksPhMNsu7pO/j8JkZmYqMzPTfO10Oq/qXAEAAIqKGgkAAOB/SjyQio6ONv+7bdu2ateunZo2baotW7botttuK+nDuWXGjBmaNm1amY4BAABUTtRIAAAA/1Mqf7J3sSZNmqhu3br68ccfJUlBQUFKT0936ZOTk6MTJ04oKCjI7JOWlubSJ//1lfrkry/MxIkTlZGRYS5Hjhy5upMDAAAoJmokAABQmZV6IPXrr7/q999/V/369SVJ4eHhOnXqlJKTk80+mzdvVl5ensLCwsw+n3/+ubKzs80+mzZtUsuWLVWrVi2zT2JiosuxNm3apPDw8EuOxWazyW63uywAAABlgRoJAABUZm4HUmfOnFFKSopSUlIkSampqUpJSdHhw4d15swZjR07Vl988YV+/vlnJSYm6p577lGzZs0UGRkpSWrdurX69u2r4cOHa+fOndq+fbtGjRql6OhoBQcHS5Iefvhh+fj4aOjQodqzZ4+WL1+uOXPmKD4+3hzHk08+qYSEBL3yyivav3+/pk6dqq+//lqjRo0qgWkBAABwDzUSAABA0bkdSH399dfq2LGjOnbsKEmKj49Xx44dNXnyZHl5eem7777T3XffrRYtWmjo0KHq3Lmz/vOf/8hms5n7WLJkiVq1aqXbbrtN/fr1U8+ePfXWW2+Z6/38/LRx40alpqaqc+fOeuqppzR58mSNGDHC7NOjRw8tXbpUb731ltq3b6/3339fq1evVps2ba5mPgAAAIqFGgkAAKDoPAzDMMp6EGXF6XTKz89PGRkZpXJp+sFlkwq0NY9+ocSPAwAAiq60P/8rAmokAAAqH6trpFK/hxQAAAAAAABwMQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAICl3A6kPv/8c911110KDg6Wh4eHVq9e7bLeMAxNnjxZ9evXV9WqVRUREaGDBw+69Dlx4oQGDRoku90uf39/DR06VGfOnHHp891336lXr17y9fVVSEiIZs6cWWAsK1euVKtWreTr66u2bdtq3bp17p4OAABAiaBGAgAAKDq3A6mzZ8+qffv2mjt3bqHrZ86cqddff10LFizQl19+qerVqysyMlIXLlww+wwaNEh79uzRpk2btGbNGn3++ecaMWKEud7pdKpPnz5q2LChkpOT9fLLL2vq1Kl66623zD47duzQQw89pKFDh2rXrl3q37+/+vfvr++//97dUwIAALhq1EgAAABF52EYhlHsjT08tGrVKvXv31/SH9/8BQcH66mnntLTTz8tScrIyFBgYKAWLVqk6Oho7du3T6Ghofrqq6/UpUsXSVJCQoL69eunX3/9VcHBwZo/f74mTZokh8MhHx8fSdKECRO0evVq7d+/X5I0cOBAnT17VmvWrDHH0717d3Xo0EELFiwo0vidTqf8/PyUkZEhu91e3Gm4pIPLJhVoax79QokfBwAAFF1pf/5L1EhXQo0EAMC1x4oa6WIleg+p1NRUORwORUREmG1+fn4KCwtTUlKSJCkpKUn+/v5moSVJERER8vT01Jdffmn26d27t1loSVJkZKQOHDigkydPmn0uPk5+n/zjFCYzM1NOp9NlAQAAKG3USAAAAK5KNJByOBySpMDAQJf2wMBAc53D4VBAQIDL+ipVqqh27doufQrbx8XHuFSf/PWFmTFjhvz8/MwlJCTE3VMEAABwGzUSAACAq0r1lL2JEycqIyPDXI4cOVLWQwIAAChz1EgAAMBqJRpIBQUFSZLS0tJc2tPS0sx1QUFBSk9Pd1mfk5OjEydOuPQpbB8XH+NSffLXF8Zms8lut7ssAAAApY0aCQAAwFWJBlKNGzdWUFCQEhMTzTan06kvv/xS4eHhkqTw8HCdOnVKycnJZp/NmzcrLy9PYWFhZp/PP/9c2dnZZp9NmzapZcuWqlWrltnn4uPk98k/DgAAwLWCGgkAAMCV24HUmTNnlJKSopSUFEl/3KQzJSVFhw8floeHh8aMGaPnn39eH3/8sXbv3q1HHnlEwcHB5lNmWrdurb59+2r48OHauXOntm/frlGjRik6OlrBwcGSpIcfflg+Pj4aOnSo9uzZo+XLl2vOnDmKj483x/Hkk08qISFBr7zyivbv36+pU6fq66+/1qhRo65+VgAAANxEjQQAAFB0Vdzd4Ouvv9Ytt9xivs4vgGJiYrRo0SKNGzdOZ8+e1YgRI3Tq1Cn17NlTCQkJ8vX1NbdZsmSJRo0apdtuu02enp4aMGCAXn/9dXO9n5+fNm7cqNjYWHXu3Fl169bV5MmTNWLECLNPjx49tHTpUj377LN65pln1Lx5c61evVpt2rQp1kQAAABcDWokAACAovMwDMMo60GUFafTKT8/P2VkZJTKvRIOLptUoK159AslfhwAAFB0pf35XxFQIwEAUPlYXSNVqqfsAQAAAAAAoOwRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwVIkHUlOnTpWHh4fL0qpVK3P9hQsXFBsbqzp16qhGjRoaMGCA0tLSXPZx+PBhRUVFqVq1agoICNDYsWOVk5Pj0mfLli3q1KmTbDabmjVrpkWLFpX0qQAAAJQYaiQAAID/KZUrpG644QYdO3bMXLZt22aui4uL0yeffKKVK1dq69atOnr0qO677z5zfW5urqKiopSVlaUdO3Zo8eLFWrRokSZPnmz2SU1NVVRUlG655RalpKRozJgxGjZsmDZs2FAapwMAAFAiqJEAAAD+UKVUdlqlioKCggq0Z2Rk6N1339XSpUt16623SpIWLlyo1q1b64svvlD37t21ceNG7d27V59++qkCAwPVoUMHTZ8+XePHj9fUqVPl4+OjBQsWqHHjxnrllVckSa1bt9a2bdv02muvKTIysjROCQAA4KpRIwEAAPyhVK6QOnjwoIKDg9WkSRMNGjRIhw8fliQlJycrOztbERERZt9WrVrp+uuvV1JSkiQpKSlJbdu2VWBgoNknMjJSTqdTe/bsMftcvI/8Pvn7uJTMzEw5nU6XBQAAwCrUSAAAAH8o8UAqLCxMixYtUkJCgubPn6/U1FT16tVLp0+flsPhkI+Pj/z9/V22CQwMlMPhkCQ5HA6XQit/ff66y/VxOp06f/78Jcc2Y8YM+fn5mUtISMjVni4AAECRUCMBAAD8T4n/yd4dd9xh/ne7du0UFhamhg0basWKFapatWpJH84tEydOVHx8vPna6XRScAEAAEtQIwEAAPxPqfzJ3sX8/f3VokUL/fjjjwoKClJWVpZOnTrl0ictLc28n0JQUFCBJ8rkv75SH7vdftmCzmazyW63uywAAABlgRoJAABUZqUeSJ05c0aHDh1S/fr11blzZ3l7eysxMdFcf+DAAR0+fFjh4eGSpPDwcO3evVvp6elmn02bNslutys0NNTsc/E+8vvk7wMAAOBaR40EAAAqsxIPpJ5++mlt3bpVP//8s3bs2KF7771XXl5eeuihh+Tn56ehQ4cqPj5en332mZKTk/Xoo48qPDxc3bt3lyT16dNHoaGhGjx4sL799ltt2LBBzz77rGJjY2Wz2SRJjz/+uH766SeNGzdO+/fv17x587RixQrFxcWV9OkAAACUCGokAACA/ynxe0j9+uuveuihh/T777+rXr166tmzp7744gvVq1dPkvTaa6/J09NTAwYMUGZmpiIjIzVv3jxzey8vL61Zs0YjR45UeHi4qlevrpiYGD333HNmn8aNG2vt2rWKi4vTnDlz1KBBA73zzjs8zhgAAFyzqJEAAAD+x8MwDKOsB1FWnE6n/Pz8lJGRUSr3Sji4bFKBtubRL5T4cQAAQNGV9ud/RUCNBABA5WN1jVTq95ACAAAAAAAALkYgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSVcp6AAAAANkJ2wq0efftWQYjAQAAuHZU5BqJK6QAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqSplPQAAAFC5ZCdsK+shAAAAXHMqW43EFVIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEtxDykAAFCqKtv9EAAAAIqistdIBFIAAKDEVPbCCgAAoDDUSAWV+z/Zmzt3rho1aiRfX1+FhYVp586dZT0kAAAqheyEbQUWXDuokQAAKBvUSEVTrq+QWr58ueLj47VgwQKFhYVp9uzZioyM1IEDBxQQEFDWwwMAoEKhmCo/qJEAALAONVLxlOtA6tVXX9Xw4cP16KOPSpIWLFigtWvX6r333tOECRPKeHQAAJQP10IR9fOp9QXamqtnGYykYqBGAgDg6lEjla5yG0hlZWUpOTlZEydONNs8PT0VERGhpKSkMhwZAABX51oofkpTYYUVSg41EgCgIqvIdVJlq5HKbSD122+/KTc3V4GBgS7tgYGB2r9/f6HbZGZmKjMz03ydkZEhSXI6naUyxjPnMgu07Xrv6Stud73f7Vfs4317eJHGkL3JtfAs6nZX2s+l9lXc4/30zXsur0N+b33F4x16/7kCfZreP7lYYyrs/K50/KtR3OOV5HaHMza5vC7K+66w/Rf2cyjqvkrKn8+lMEUZU1H2U9i+CtuuuHNQ3HMpyhiKen7AtaK0Pp/z92sYRqnsv6xRI1EjSQU/n4tSIxW2L2okaqSr3Vdx57O0jl9YP2oklDcVpkYyyqn//ve/hiRjx44dLu1jx441unXrVug2U6ZMMSSxsLCwsLCwsBhHjhyxomSxHDUSCwsLCwsLy9UsVtVI5fYKqbp168rLy0tpaWku7WlpaQoKCip0m4kTJyo+Pt58nZeXpxMnTqhOnTry8PAo0fE5nU6FhIToyJEjstvtJbpvFI45tx5zbj3m3HrMedkozXk3DEOnT59WcHBwie73WkGNhD9jzq3HnFuPOS8bzLv1KlKNVG4DKR8fH3Xu3FmJiYnq37+/pD+Kp8TERI0aNarQbWw2m2w2m0ubv79/qY7Tbrfzi2kx5tx6zLn1mHPrMedlo7Tm3c/Pr8T3ea2gRsKlMOfWY86tx5yXDebdehWhRiq3gZQkxcfHKyYmRl26dFG3bt00e/ZsnT171nyiDAAAQGVEjQQAAK515TqQGjhwoI4fP67JkyfL4XCoQ4cOSkhIKHATTwAAgMqEGgkAAFzrynUgJUmjRo265OXnZclms2nKlCkFLn9H6WHOrcecW485tx5zXjaY96tHjYR8zLn1mHPrMedlg3m3XkWacw/DqKDPPAYAAAAAAMA1ybOsBwAAAAAAAIDKhUAKAAAAAAAAliKQAgAAAAAAgKUIpK7C3Llz1ahRI/n6+iosLEw7d+68bP+VK1eqVatW8vX1Vdu2bbVu3TqLRlpxuDPnb7/9tnr16qVatWqpVq1aioiIuOLPCAW5+z7Pt2zZMnl4eKh///6lO8AKyN05P3XqlGJjY1W/fn3ZbDa1aNGCf1/c5O6cz549Wy1btlTVqlUVEhKiuLg4XbhwwaLRln+ff/657rrrLgUHB8vDw0OrV6++4jZbtmxRp06dZLPZ1KxZMy1atKjUx4nio0ayHjWS9aiRrEeNZD1qJGtVuhrJQLEsW7bM8PHxMd577z1jz549xvDhww1/f38jLS2t0P7bt283vLy8jJkzZxp79+41nn32WcPb29vYvXu3xSMvv9yd84cfftiYO3eusWvXLmPfvn3GkCFDDD8/P+PXX3+1eOTll7tzni81NdW47rrrjF69ehn33HOPNYOtINyd88zMTKNLly5Gv379jG3bthmpqanGli1bjJSUFItHXn65O+dLliwxbDabsWTJEiM1NdXYsGGDUb9+fSMuLs7ikZdf69atMyZNmmR8+OGHhiRj1apVl+3/008/GdWqVTPi4+ONvXv3Gv/85z8NLy8vIyEhwZoBwy3USNajRrIeNZL1qJGsR41kvcpWIxFIFVO3bt2M2NhY83Vubq4RHBxszJgxo9D+Dz74oBEVFeXSFhYWZvz1r38t1XFWJO7O+Z/l5OQYNWvWNBYvXlxaQ6xwijPnOTk5Ro8ePYx33nnHiImJodhyk7tzPn/+fKNJkyZGVlaWVUOscNyd89jYWOPWW291aYuPjzduvPHGUh1nRVWUYmvcuHHGDTfc4NI2cOBAIzIyshRHhuKiRrIeNZL1qJGsR41kPWqkslUZaiT+ZK8YsrKylJycrIiICLPN09NTERERSkpKKnSbpKQkl/6SFBkZecn+cFWcOf+zc+fOKTs7W7Vr1y6tYVYoxZ3z5557TgEBARo6dKgVw6xQijPnH3/8scLDwxUbG6vAwEC1adNGL774onJzc60adrlWnDnv0aOHkpOTzUvWf/rpJ61bt079+vWzZMyVEZ+h5Qc1kvWokaxHjWQ9aiTrUSOVD+X9M7RKWQ+gPPrtt9+Um5urwMBAl/bAwEDt37+/0G0cDkeh/R0OR6mNsyIpzpz/2fjx4xUcHFzgFxaFK86cb9u2Te+++65SUlIsGGHFU5w5/+mnn7R582YNGjRI69at048//qgnnnhC2dnZmjJlihXDLteKM+cPP/ywfvvtN/Xs2VOGYSgnJ0ePP/64nnnmGSuGXCld6jPU6XTq/Pnzqlq1ahmNDH9GjWQ9aiTrUSNZjxrJetRI5UN5r5G4QgqVwksvvaRly5Zp1apV8vX1LevhVEinT5/W4MGD9fbbb6tu3bplPZxKIy8vTwEBAXrrrbfUuXNnDRw4UJMmTdKCBQvKemgV1pYtW/Tiiy9q3rx5+uabb/Thhx9q7dq1mj59elkPDQDcRo1U+qiRygY1kvWokeAurpAqhrp168rLy0tpaWku7WlpaQoKCip0m6CgILf6w1Vx5jzfrFmz9NJLL+nTTz9Vu3btSnOYFYq7c37o0CH9/PPPuuuuu8y2vLw8SVKVKlV04MABNW3atHQHXc4V531ev359eXt7y8vLy2xr3bq1HA6HsrKy5OPjU6pjLu+KM+d///vfNXjwYA0bNkyS1LZtW509e1YjRozQpEmT5OnJdz0l7VKfoXa7/Zr/5q+yoUayHjWS9aiRrEeNZD1qpPKhvNdIvCOKwcfHR507d1ZiYqLZlpeXp8TERIWHhxe6TXh4uEt/Sdq0adMl+8NVceZckmbOnKnp06crISFBXbp0sWKoFYa7c96qVSvt3r1bKSkp5nL33XfrlltuUUpKikJCQqwcfrlUnPf5jTfeqB9//NEsbCXphx9+UP369Sm0iqA4c37u3LkCBVV+sWsYRukNthLjM7T8oEayHjWS9aiRrEeNZD1qpPKh3H+Glu091cuvZcuWGTabzVi0aJGxd+9eY8SIEYa/v7/hcDgMwzCMwYMHGxMmTDD7b9++3ahSpYoxa9YsY9++fcaUKVN4pLGb3J3zl156yfDx8THef/9949ixY+Zy+vTpsjqFcsfdOf8zniDjPnfn/PDhw0bNmjWNUaNGGQcOHDDWrFljBAQEGM8//3xZnUK54+6cT5kyxahZs6bxf//3f8ZPP/1kbNy40WjatKnx4IMPltUplDunT582du3aZezatcuQZLz66qvGrl27jF9++cUwDMOYMGGCMXjwYLN//iONx44da+zbt8+YO3duuXqkcWVDjWQ9aiTrUSNZjxrJetRI1qtsNRKB1FX45z//aVx//fWGj4+P0a1bN+OLL74w1910001GTEyMS/8VK1YYLVq0MHx8fIwbbrjBWLt2rcUjLv/cmfOGDRsakgosU6ZMsX7g5Zi77/OLUWwVj7tzvmPHDiMsLMyw2WxGkyZNjBdeeMHIycmxeNTlmztznp2dbUydOtVo2rSp4evra4SEhBhPPPGEcfLkSesHXk599tlnhf77nD/PMTExxk033VRgmw4dOhg+Pj5GkyZNjIULF1o+bhQdNZL1qJGsR41kPWok61EjWauy1UgehsG1cwAAAAAAALAO95ACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACypEtW7bIw8NDW7ZsKdH9enh4aOrUqSW6z4pmyJAhatSoUant/+WXX1aTJk3k5eWlDh06lNpxrkZR3ydTp06Vh4dH6Q+oGM6cOaOAgAAtWbLkin0L+5mfOXNGw4YNU1BQkDw8PDRmzBi3jj9hwgSFhYW5tQ0A4MqokcoONRI1Uv721EhwF4EUysSOHTs0depUnTp1qqyHUmmsW7eOgkrSuXPnNHXq1BIvWK/Gxo0bNW7cON14441auHChXnzxxbIe0jVp586deuKJJ9S5c2d5e3sXq6CbM2eOatasqejo6GKN4cUXX9SiRYs0cuRI/etf/9LgwYMlSfPnz9cDDzyg66+/Xh4eHhoyZEih248ZM0bffvutPv7442IdH0DFR41kPWqkP1AjlV/Xao105MgRTZs2Td26dVOtWrVUt25d3Xzzzfr0008LbE+NVDlVKesBoHLasWOHpk2bpiFDhsjf37+sh1MprFu3TnPnzi204Dp//ryqVKkc/xycO3dO06ZNkyTdfPPNRd7u7bffVl5eXqmMafPmzfL09NS7774rHx+fUjlGSSjr98m6dev0zjvvqF27dmrSpIl++OEHt7bPzs7WnDlzFBcXJy8vr2KNYfPmzerevbumTJni0v6Pf/xDp0+fVrdu3XTs2LFLbh8UFKR77rlHs2bN0t13312sMQCo2KiRrEeN9AdqpOIr6/fJtVojvfHGG/rHP/6h/v37KyYmRjk5Ofp//+//6fbbb9d7772nRx991OxLjVQ5cYUUYIFz584V2p6Tk6OsrCyLR1OQr69vpSm23HX27FlJkre3t2w2W6kcIz09XVWrVr1ioZWXl6cLFy6UyhiKoqzfJyNHjlRGRoa+/vpr3X777W5vv2bNGh0/flwPPvhgsceQnp5e6P8gbt26Vb/99pvWr19/xffJgw8+qG3btumnn34q9jgAoKKgRiq/qJH+p6zfJ9dqjXTLLbfo8OHDWrp0qWJjY/Xkk09qx44datWqlSZPnlxgH9RIlQ+BFCw3depUjR07VpLUuHFjeXh4yMPDQz///LOkPwqQ6dOnq2nTprLZbGrUqJGeeeYZZWZmuuynUaNGuvPOO7Vx40Z16NBBvr6+Cg0N1Ycffliscf373/9Wt27dVK1aNdWqVUu9e/fWxo0bXfrMmzdPN9xwg2w2m4KDgxUbG1vgkvqbb75Zbdq0UXJysnr37q1q1arpmWee0c8//ywPDw/NmjVLs2fPNs9v7969kqT9+/fr/vvvV+3ateXr66suXboU6ZLV//znP+afCtlsNoWEhCguLk7nz583+wwZMkRz586VJHO+L76Ut7C/e9+1a5fuuOMO2e121ahRQ7fddpu++OILlz6LFi2Sh4eHtm/frvj4eNWrV0/Vq1fXvffeq+PHj19x7BfL/5v6H374QX/5y1/k5+enevXq6e9//7sMw9CRI0d0zz33yG63KygoSK+88orL9llZWZo8ebI6d+4sPz8/Va9eXb169dJnn31m9vn5559Vr149SdK0adPMecg/9yFDhqhGjRo6dOiQ+vXrp5o1a2rQoEHmuov/Vn7KlCny9PRUYmKiyzhGjBghHx8fffvtt0U6bw8PDy1cuFBnz541x7No0SJz3ahRo7RkyRLzfZeQkCBJmjVrlnr06KE6deqoatWq6ty5s95///0C+z9//rz+9re/qW7duqpZs6buvvtu/fe//y3WPTEK22bbtm3q2rWrfH191bRpU7355puFbrtp0yb17NlT/v7+qlGjhlq2bKlnnnnGreMHBgaqatWqbm1zsdWrV6tRo0Zq2rRpoevatGkjX19ftWnTRqtWrXJZn39vktTUVK1du7bAv1sNGzYs8uXxERERkqSPPvqo2OcCoGKiRqJGKgw1EjXSlVyrNdINN9ygunXruvS32Wzq16+ffv31V50+fdplHTVS5UPcD8vdd999+uGHH/R///d/eu2118x/pPI/BIcNG6bFixfr/vvv11NPPaUvv/xSM2bM0L59+wr8A3jw4EENHDhQjz/+uGJiYrRw4UI98MADSkhIcOvbgWnTpmnq1Knq0aOHnnvuOfn4+OjLL7/U5s2b1adPH0l/FAPTpk1TRESERo4cqQMHDmj+/Pn66quvtH37dnl7e5v7+/3333XHHXcoOjpaf/nLXxQYGGiuW7hwoS5cuKARI0bIZrOpdu3a2rNnj2688UZdd911mjBhgqpXr64VK1aof//++uCDD3TvvfdecuwrV67UuXPnNHLkSNWpU0c7d+7UP//5T/36669auXKlJOmvf/2rjh49qk2bNulf//rXFedjz5496tWrl+x2u8aNGydvb2+9+eabuvnmm7V169YCNxwcPXq0atWqpSlTpujnn3/W7NmzNWrUKC1fvrzIP4N8AwcOVOvWrfXSSy9p7dq1ev7551W7dm29+eabuvXWW/WPf/xDS5Ys0dNPP62uXbuqd+/ekiSn06l33nlHDz30kIYPH67Tp0/r3XffVWRkpHbu3KkOHTqoXr16mj9/vkaOHKl7771X9913nySpXbt25vFzcnIUGRmpnj17atasWapWrVqh43z22Wf1ySefaOjQodq9e7dq1qypDRs26O2339b06dPVvn37Ip3vv/71L7311lvauXOn3nnnHUlSjx49zPWbN2/WihUrNGrUKNWtW9cs+ObMmaO7775bgwYNUlZWlpYtW6YHHnhAa9asUVRUlLn9kCFDtGLFCg0ePFjdu3fX1q1bXdZfjd27d6tPnz6qV6+epk6dqpycHE2ZMsXl/S798X6688471a5dOz333HOy2Wz68ccftX379hIZR1Ht2LFDnTp1KtC+ceNGDRgwQKGhoZoxY4Z+//13Pfroo2rQoIHZp3Xr1vrXv/6luLg4NWjQQE899ZSk//275Q4/Pz81bdpU27dvV1xcXPFPCECFQ41EjXQ51EjUSKXF6hrJ4XCoWrVqBd5D1EiVkAGUgZdfftmQZKSmprq0p6SkGJKMYcOGubQ//fTThiRj8+bNZlvDhg0NScYHH3xgtmVkZBj169c3OnbsWOSxHDx40PD09DTuvfdeIzc312VdXl6eYRiGkZ6ebvj4+Bh9+vRx6fPGG28Ykoz33nvPbLvpppsMScaCBQtc9pWammpIMux2u5Genu6y7rbbbjPatm1rXLhwweXYPXr0MJo3b262ffbZZ4Yk47PPPjPbzp07V+CcZsyYYXh4eBi//PKL2RYbG2tc6ldekjFlyhTzdf/+/Q0fHx/j0KFDZtvRo0eNmjVrGr179zbbFi5caEgyIiIizLkyDMOIi4szvLy8jFOnThV6vMJMmTLFkGSMGDHCbMvJyTEaNGhgeHh4GC+99JLZfvLkSaNq1apGTEyMS9/MzEyXfZ48edIIDAw0HnvsMbPt+PHjBc43X0xMjCHJmDBhQqHrGjZs6NK2e/duw8fHxxg2bJhx8uRJ47rrrjO6dOliZGdnF/m88/ddvXr1Au2SDE9PT2PPnj0F1v35556VlWW0adPGuPXWW8225ORkQ5IxZswYl75Dhgy55BxcTmHvE19fX5f32d69ew0vLy+X99prr71mSDKOHz/u1vEu53Lv58JkZ2cbHh4exlNPPVVgXYcOHYz69eu7vF83btxoSCrwM2/YsKERFRV12WNVr17d5b1ZmD59+hitW7cu8vgBVB7USNRIf0aNRI3kjmu5RjKMP/5d8fX1NQYPHlzoemqkyoU/2cM1Zd26dZKk+Ph4l/b8pH3t2rUu7cHBwS7fjNntdj3yyCPatWuXHA5HkY65evVq5eXlafLkyfL0dP2VyL9k+9NPP1VWVpbGjBnj0mf48OGy2+0FxmWz2Vxu0nexAQMGuHxjcOLECW3evFkPPvigTp8+rd9++02//fabfv/9d0VGRurgwYP673//e8nxX3x57tmzZ/Xbb7+pR48eMgxDu3btKtIcXCw3N1cbN25U//791aRJE7O9fv36evjhh7Vt2zY5nU6XbUaMGOFyeXuvXr2Um5urX375xe3jDxs2zPxvLy8vdenSRYZhaOjQoWa7v7+/WrZs6fL35V5eXub9BfLy8nTixAnl5OSoS5cu+uabb9waw8iRI4vUr02bNpo2bZreeecdRUZG6rffftPixYtL9B4CN910k0JDQwu0X/xzP3nypDIyMtSrVy+Xc82/dP2JJ55w2Xb06NFXPa7c3Fxt2LBB/fv31/XXX2+2t27dWpGRkS598+8n8NFHH5XaTU+v5MSJEzIMQ7Vq1XJpP3bsmFJSUhQTEyM/Pz+z/fbbby903ktKrVq19Ntvv5Xa/gFUPNRI1EjUSK6okUqGlTXSuXPn9MADD6hq1ap66aWXCu1DjVS5EEjhmvLLL7/I09NTzZo1c2kPCgqSv79/gQ/vZs2aFbhvS4sWLSTJvN/ClRw6dEienp6X/Yc1/7gtW7Z0affx8VGTJk0KjOu666675M0XGzdu7PL6xx9/lGEY+vvf/6569eq5LPlPqUhPT7/k2A4fPqwhQ4aodu3aqlGjhurVq6ebbrpJkpSRkXHJ7S7l+PHjOnfuXIFzlf74IM3Ly9ORI0dc2i/+sJVkfqCdPHnS7eP/eV9+fn7y9fUt8Pfnfn5+Bfa/ePFitWvXTr6+vqpTp47q1auntWvXujUPVapUcbkM+UrGjh2r9u3ba+fOnZoyZUqJhxh/fr/kW7Nmjbp37y5fX1/Vrl3bvNT+4nPN/3368z7+/PtVHMePH9f58+fVvHnzAuv+/N4ZOHCgbrzxRg0bNkyBgYGKjo7WihUryqTwMgzD5XX+725RzqOkx1GcRzIDqLyokaiRqJFcUSOVrNKukXJzcxUdHa29e/fq/fffV3Bw8CXHQY1UeXAPKVyTyvs/Qpe7qeCf1+V/4Dz99NMFvjXJd6kPx9zcXN1+++06ceKExo8fr1atWql69er673//qyFDhlj2YXapx8P++YOtuPsqyv7//e9/a8iQIerfv7/Gjh2rgIAAeXl5acaMGTp06FCRj2+z2Qp8C3w5P/30kw4ePCjpj/sFlLTC3kv/+c9/dPfdd6t3796aN2+e6tevL29vby1cuFBLly4t8TFcrapVq+rzzz/XZ599prVr1yohIUHLly/Xrbfeqo0bNxb78cLuqF27tjw8PIr1PwCl4eTJkwX+BwIAioIayRU1EjXSxaiR3GdVjTR8+HCtWbNGS5Ys0a233nrJftRIlQuBFMrEpYqphg0bKi8vTwcPHlTr1q3N9rS0NJ06dUoNGzZ06Z//zdnF+/vhhx8kyeVpH5fTtGlT5eXlae/everQocMlxyVJBw4ccLlEOysrS6mpqeYTIYojf3/e3t5u72f37t364YcftHjxYj3yyCNm+6ZNmwr0LWoBW69ePVWrVk0HDhwosG7//v3y9PRUSEiIW+O0wvvvv68mTZroww8/dDnX/G9Q85VkIZ+Xl6chQ4bIbrdrzJgxevHFF3X//febNwItLR988IF8fX21YcMGl8csL1y40KVf/u9Tamqqy7dbP/7441WPoV69eqpatapZaF6ssPeOp6enbrvtNt1222169dVX9eKLL2rSpEn67LPPrur3p6iqVKmipk2bKjU11aU9/3e7qOdRUlJTU4t8U1cAlQs10v9QI5UMaiRqpMuxokYaO3asFi5cqNmzZ+uhhx66bF9qpMqFP9lDmahevbokFXgccL9+/SRJs2fPdml/9dVXJanAky+OHj3q8lQZp9Op//f//p86dOigoKCgIo2lf//+8vT01HPPPVfg27L8b5ciIiLk4+Oj119/3eUbp3fffVcZGRlX9USOgIAA3XzzzXrzzTd17NixAusv92jg/G9NLh6TYRiaM2dOgb6XmvPC9tmnTx999NFHLpf0p6WlaenSperZs6fsdvtl91EWCpuLL7/8UklJSS798p/mcaV5KIpXX31VO3bs0FtvvaXp06erR48eGjlyZKn/3buXl5c8PDyUm5trtv38889avXq1S7/8b5PnzZvn0v7Pf/6zRMYQGRmp1atX6/Dhw2b7vn37tGHDBpe+J06cKLB9/v/Y/PlR5aUpPDxcX3/9tUtb/fr11aFDBy1evNjlUv5NmzaZjxsvaRkZGTp06JDLk4IAIB810v9QI5UMaiRqpCspzRrp5Zdf1qxZs/TMM8/oySefvGxfaqTKhyukUCY6d+4sSZo0aZKio6Pl7e2tu+66S+3bt1dMTIzeeustnTp1SjfddJN27typxYsXq3///rrllltc9tOiRQsNHTpUX331lQIDA/Xee+8pLS2twLcgl9OsWTNNmjRJ06dPV69evXTffffJZrPpq6++UnBwsGbMmKF69epp4sSJmjZtmvr27au7775bBw4c0Lx589S1a1f95S9/uar5mDt3rnr27Km2bdtq+PDhatKkidLS0pSUlKRff/1V3377baHbtWrVSk2bNtXTTz+t//73v7Lb7frggw8KveQ2f87/9re/KTIyUl5eXoqOji50v88//7w2bdqknj176oknnlCVKlX05ptvKjMzUzNnzryqcy0td955pz788EPde++9ioqKUmpqqhYsWKDQ0FCdOXPG7Fe1alWFhoZq+fLlatGihWrXrq02bdqoTZs2bh1v3759+vvf/64hQ4borrvukiQtWrRIHTp00BNPPKEVK1aU6PldLCoqSq+++qr69u2rhx9+WOnp6Zo7d66aNWum7777zuzXuXNnDRgwQLNnz9bvv/9uPtI4/xvyq/0mdNq0aUpISFCvXr30xBNPKCcnR//85z91ww03uIzjueee0+eff66oqCg1bNhQ6enpmjdvnho0aKCePXsW+Xi//PKL+Uju/KLp+eefl/THt3iDBw++7Pb33HOP/vWvf+mHH34w76MiSTNmzFBUVJR69uypxx57TCdOnDDP4+L3zuV88skn5u9pdna2vvvuO3Nsd999t8tjsz/99FMZhqF77rmniGcOoDKhRnJFjXT1qJGokcqqRlq1apXGjRun5s2bq3Xr1vr3v//tsv72229XYGCg+ZoaqRKy4lF+QGGmT59uXHfddYanp6fL442zs7ONadOmGY0bNza8vb2NkJAQY+LEiS6P+zWM/z1adMOGDUa7du0Mm81mtGrVyli5cmWxxvPee+8ZHTt2NGw2m1GrVi3jpptuMjZt2uTS54033jBatWpleHt7G4GBgcbIkSONkydPuvS56aabjBtuuKHA/vMfafzyyy8XevxDhw4ZjzzyiBEUFGR4e3sb1113nXHnnXca77//vtmnsEca792714iIiDBq1Khh1K1b1xg+fLjx7bffGpKMhQsXmv1ycnKM0aNHG/Xq1TM8PDxcHgerQh5v+8033xiRkZFGjRo1jGrVqhm33HKLsWPHDpc++Y80/uqrr1zaCxvnleQ/0vjPj7291ON+/zzPeXl5xosvvmg0bNjQsNlsRseOHY01a9YU+ijiHTt2GJ07dzZ8fHxczv1Sx8pfl7+fnJwco2vXrkaDBg0KPLZ5zpw5hiRj+fLlRT73yz3SODY2ttBt3n33XaN58+bm+37hwoXmHF7s7NmzRmxsrFG7dm2jRo0aRv/+/Y0DBw4YklweE10Uhb1Ptm7das5lkyZNjAULFhQYR2JionHPPfcYwcHBho+PjxEcHGw89NBDxg8//ODW8fPfV4UtN9100xW3z8zMNOrWrWtMnz69wLoPPvjAaN26tWGz2YzQ0FDjww8/LPS9c6lHGuc/Druw5eLfQ8MwjIEDBxo9e/Z059QBVDLUSK6okaiR/owaydW1WiPln++llj//HlAjVT4ehlGMO+oB14BGjRqpTZs2WrNmTVkPBShXUlJS1LFjR/373//WoEGDyno4lpo+fboWLlyogwcPWnKj0D9zOBxq3Lixli1bxrd/AEoNNRJQPNRI1EiwFveQAoAK7Pz58wXaZs+eLU9PT/Xu3bsMRlS24uLidObMGS1btqxMjj979my1bduWQgsAgDJGjeSKGgllgXtIoUJzOByXXV+1alX5+flZNJrK6cyZM1f8G/N69eqVyTcxpe348eMuN9X8Mx8fH9WuXbtUxzBz5kwlJyfrlltuUZUqVbR+/XqtX79eI0aMUEhIiHJzcy97U1hJqlGjhmrUqFFqY7RynmrUqKH09PQS2VdxvPTSS2V2bAC4GDVS2aNGoka6EmokVHhl/TeDQHFd6l4uF9Nl/mZZkhETE2PNYCuxK/3tuC66N0ZF07Bhw8ued1H+pv9qbdy40bjxxhuNWrVqGd7e3kbTpk2NqVOnGtnZ2YZh/O++HZdb/nxPhJJ2LcwTAFQk1EjlAzUSNdKVXAvzBJQm7iGFCu3TTz+97Prg4GCFhoZaNJrK6aefftJPP/102T49e/aUr6+vRSOyzvbt2wu9HDxfrVq1zCf7lJULFy5o27Ztl+3TpEkTNWnSpNTGUB7mCQAqGmqkskeNdG1/9lMjAaWPQAoAAAAAAACW4qbmAAAAAAAAsFSlvql5Xl6ejh49qpo1a8rDw6OshwMAACxgGIZOnz6t4OBgeXry3VxhqJEAAKh8rK6RKnUgdfToUYWEhJT1MAAAQBk4cuSIGjRoUNbDuCZRIwEAUHlZVSNV6kCqZs2akv6YbLvdXsajAQAAVnA6nQoJCTHrABREjQQAQOVjdY1UqQOp/EvQ7XY7xRYAAJUMf4p2adRIAABUXlbVSNw4AQAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqUp9DykAAC4nNzdX2dnZZT0MuMnb21teXl5lPQwAACosaqTy6VqrkQikAAD4E8Mw5HA4dOrUqbIeCorJ399fQUFB3LgcAIASRI1U/l1LNRKBFAAAf5JfaAUEBKhatWrXxAc2isYwDJ07d07p6emSpPr165fxiAAAqDiokcqva7FGIpACAOAiubm5ZqFVp06dsh4OiqFq1aqSpPT0dAUEBFxTl6YDAFBeUSOVf9dajcRNzQEAuEj+/RCqVatWxiPB1cj/+XF/CwAASgY1UsVwLdVIBFIAABSCS9DLN35+AACUDj5jy7dr6edHIAUAAAAAAABLEUgBAFDOeXh4XHaZOnVqmY5t9erVV7WPt956SzfffLPsdrs8PDx4sg8AACiyilwnnThxQqNHj1bLli1VtWpVXX/99frb3/6mjIyMkhtkKeKm5gAAFFF2wjbLjuXdt2eR+x47dsz87+XLl2vy5Mk6cOCA2VajRg23jp2VlSUfHx+3tilN586dU9++fdW3b19NnDixrIcDAAD+xMoaSaJOynf06FEdPXpUs2bNUmhoqH755Rc9/vjjOnr0qN5///2yHt4VcYVUKcpO2FZgAQCgpAUFBZmLn5+fPDw8zNdnz57VoEGDFBgYqBo1aqhr16769NNPXbZv1KiRpk+frkceeUR2u10jRoyQJL399tsKCQlRtWrVdO+99+rVV1+Vv7+/y7YfffSROnXqJF9fXzVp0kTTpk1TTk6OuV9Juvfee+Xh4WG+/vbbb3XLLbeoZs2astvt6ty5s77++utLnt+YMWM0YcIEde/evWQmDGWOGgkAYJWKXCe1adNGH3zwge666y41bdpUt956q1544QV98skn5nGuZQRSAABUYGfOnFG/fv2UmJioXbt2qW/fvrrrrrt0+PBhl36zZs1S+/bttWvXLv3973/X9u3b9fjjj+vJJ59USkqKbr/9dr3wwgsu2/znP//RI488oieffFJ79+7Vm2++qUWLFpn9vvrqK0nSwoULdezYMfP1oEGD1KBBA3311VdKTk7WhAkT5O3tbcFsAAAA/E9FrJMyMjJkt9tVpcq1/wdx1/4IAQBAsbVv317t27c3X0+fPl2rVq3Sxx9/rFGjRpntt956q5566inz9aRJk3THHXfo6aefliS1aNFCO3bs0Jo1a8w+06ZN04QJExQTEyNJatKkiaZPn65x48ZpypQpqlevniTJ399fQUFB5naHDx/W2LFj1apVK0lS8+bNS+HMAQAALq+i1Um//fabpk+fbl7Fda3jCikAACqwM2fO6Omnn1br1q3l7++vGjVqaN++fQW++evSpYvL6wMHDqhbt24ubX9+/e233+q5555TjRo1zGX48OE6duyYzp07d8kxxcfHa9iwYYqIiNBLL72kQ4cOXeVZAgAAuK8i1UlOp1NRUVEKDQ0t0xu1u4NACgCACuzpp5/WqlWr9OKLL+o///mPUlJS1LZtW2VlZbn0q169utv7PnPmjKZNm6aUlBRz2b17tw4ePChfX99Lbjd16lTt2bNHUVFR2rx5s0JDQ7Vq1Sq3jw8AAHA1KkqddPr0afXt21c1a9bUqlWrys2tEPiTPQAAKrDt27dryJAhuvfeeyX9URz9/PPPV9yuZcuW5r0M8v35dadOnXTgwAE1a9bskvvx9vZWbm5ugfYWLVqoRYsWiouL00MPPaSFCxeaYwQAALBCRaiTnE6nIiMjZbPZ9PHHH1827LrWEEgBAFCBNW/eXB9++KHuuusueXh46O9//7vy8vKuuN3o0aPVu3dvvfrqq7rrrru0efNmrV+/Xh4eHmafyZMn684779T111+v+++/X56envr222/1/fff6/nnn5f0xxNkEhMTdeONN8pms8nX11djx47V/fffr8aNG+vXX3/VV199pQEDBlxyLA6HQw6HQz/++KMkaffu3apZs6auv/561a5d+ypnCAAAVFblvU5yOp3q06ePzp07p3//+99yOp1yOp2SpHr16snLy6sEZqn08Cd7AABUYK+++qpq1aqlHj166K677lJkZKQ6dep0xe1uvPFGLViwQK+++qrat2+vhIQExcXFuXzrFhkZqTVr1mjjxo3q2rWrunfvrtdee00NGzY0+7zyyivatGmTQkJC1LFjR3l5een333/XI488ohYtWujBBx/UHXfcoWnTpl1yLAsWLFDHjh01fPhwSVLv3r3VsWNHffzxx1cxMwAAoLIr73XSN998oy+//FK7d+9Ws2bNVL9+fXM5cuTI1U9QKfMwDMMo60GUFafTKT8/P/OxiCUtO2FbgTbvvj1L/DgAgJJz4cIFpaamqnHjxuXqkmcrDB8+XPv379d//vOfsh7KFV3u51jan/8VATUSAODPqJEur7zUSddSjcSf7AEAgELNmjVLt99+u6pXr67169dr8eLFmjdvXlkPCwAAoMxRJ109AikAAFConTt3aubMmTp9+rSaNGmi119/XcOGDSvrYQEAAJQ56qSrRyAFAAAKtWLFirIeAgAAwDWJOunqcVNzAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAKgAhgwZIg8PD3l4eMjb21uBgYG6/fbb9d577ykvL6+sh3dV9uzZowEDBqhRo0by8PDQ7Nmzy3pIAACgHKnIddLbb7+tXr16qVatWqpVq5YiIiK0c+fOsh5WkVQp6wEAAFBeHPr6TcuO1bTLX93epm/fvlq4cKFyc3OVlpamhIQEPfnkk3r//ff18ccfq0qV8vmxf+7cOTVp0kQPPPCA4uLiyno4AADgT6yskSTqpItt2bJFDz30kHr06CFfX1/94x//UJ8+fbRnzx5dd911ZT28y+IKKQAAKgibzaagoCBdd9116tSpk5555hl99NFHWr9+vRYtWmT2O3XqlIYNG6Z69erJbrfr1ltv1bfffuuyr08++URdu3aVr6+v6tatq3vvvddcd/LkST3yyCOqVauWqlWrpjvuuEMHDx6UJJ09e1Z2u13vv/++y/5Wr16t6tWr6/Tp08rKytKoUaNUv359+fr6qmHDhpoxY8Ylz6tr1656+eWXFR0dLZvNVgIzBQAAKpuKWictWbJETzzxhDp06KBWrVrpnXfeUV5enhITE0tg1koXgRQAABXYrbfeqvbt2+vDDz802x544AGlp6dr/fr1Sk5OVqdOnXTbbbfpxIkTkqS1a9fq3nvvVb9+/bRr1y4lJiaqW7du5vZDhgzR119/rY8//lhJSUkyDEP9+vVTdna2qlevrujoaC1cuNBlHAsXLtT999+vmjVr6vXXX9fHH3+sFStW6MCBA1qyZIkaNWpkyXwAAADkq4h10rlz55Sdna3atWtf3eRYoHxekwYAAIqsVatW+u677yRJ27Zt086dO5Wenm5ebTRr1iytXr1a77//vkaMGKEXXnhB0dHRmjZtmrmP9u3bS5IOHjyojz/+WNu3b1ePHj0k/fHNXEhIiFavXq0HHnhAw4YNU48ePXTs2DHVr19f6enpWrdunT799FNJ0uHDh9W8eXP17NlTHh4eatiwoZXTAQAAYKpoddL48eMVHBysiIiIq56b0sYVUgAAVHCGYcjDw0OS9O233+rMmTOqU6eOatSoYS6pqak6dOiQJCklJUW33XZbofvat2+fqlSporCwMLOtTp06atmypfbt2ydJ6tatm2644QYtXrxYkvTvf/9bDRs2VO/evSX98c1hSkqKWrZsqb/97W/auHFjqZ07AADA5VSkOumll17SsmXLtGrVKvn6+ro/GRbjCikAACq4ffv2qXHjxpKkM2fOqH79+tqyZUuBfv7+/pKkqlWrXvUxhw0bprlz52rChAlauHChHn30UbPY69Spk1JTU7V+/Xp9+umnevDBBxUREVHgfgoAAAClraLUSbNmzdJLL72kTz/9VO3atbvqMVqBK6QAAKjANm/erN27d2vAgAGS/ihyHA6HqlSpombNmrksdevWlSS1a9fukjfCbN26tXJycvTll1+abb///rsOHDig0NBQs+0vf/mLfvnlF73++uvau3evYmJiXPZjt9s1cOBAvf3221q+fLk++OAD894MAAAAVqgoddLMmTM1ffp0JSQkqEuXLsWeD6txhRQAABVEZmamHA6Hy+OMZ8yYoTvvvFOPPPKIJCkiIkLh4eHq37+/Zs6cqRYtWujo0aPmDTq7dOmiKVOm6LbbblPTpk0VHR2tnJwcrVu3TuPHj1fz5s11zz33aPjw4XrzzTdVs2ZNTZgwQdddd53uuececyy1atXSfffdp7Fjx6pPnz5q0KCBue7VV19V/fr11bFjR3l6emrlypUKCgoyv3n8s6ysLO3du9f87//+979KSUlRjRo11KxZs9KbUAAAUGFU1DrpH//4hyZPnqylS5eqUaNGcjgckmT+ueG1jCukAACoIBISElS/fn01atRIffv21WeffabXX39dH330kby8vCRJHh4eWrdunXr37q1HH31ULVq0UHR0tH755RcFBgZKkm6++WatXLlSH3/8sTp06KBbb71VO3fuNI+zcOFCde7cWXfeeafCw8NlGIbWrVsnb29vl/EMHTpUWVlZeuyxx1zaa9asqZkzZ6pLly7q2rWrfv75Z61bt06enoWXJUePHlXHjh3VsWNHHTt2TLNmzVLHjh01bNiwkpw+AABQgVXUOmn+/PnKysrS/fffr/r165vLrFmzSnL6SoWHYRhGWQ+irDidTvn5+SkjI0N2u73E95+dsK1Am3ffniV+HABAyblw4YJSU1PVuHHjcnEzyGvZv/71L8XFxeno0aPy8fGx9NiX+zmW9ud/RUCNBAD4M2qkklVWddK1VCPxJ3sAAKBEnTt3TseOHdNLL72kv/71r5aHUQAAANcq6qT/4U/2AABAiZo5c6ZatWqloKAgTZw4sayHAwAAcM2gTvofAikAAFCipk6dquzsbCUmJl7zN9MEAACwEnXS/xBIAQAAAAAAwFIEUgAAAAAAALAUgRQAAIWoxA+hrRD4+QEAUDr4jC3frqWfH4EUAAAX8fb2lvTHE1BQfuX//PJ/ngAA4OpQI1UM11KNdFWB1EsvvSQPDw+NGTPGbLtw4YJiY2NVp04d1ahRQwMGDFBaWprLdocPH1ZUVJSqVaumgIAAjR07Vjk5OS59tmzZok6dOslms6lZs2ZatGhRgePPnTtXjRo1kq+vr8LCwrRz586rOR0AAOTl5SV/f3+lp6fr999/1/nz53XhwgWWcrKcP39ev//+u9LT0+Xv7y8vL68yeR9RIwEAKhpqpPK9XCs10sWqFHfDr776Sm+++abatWvn0h4XF6e1a9dq5cqV8vPz06hRo3Tfffdp+/btkqTc3FxFRUUpKChIO3bs0LFjx/TII4/I29tbL774oiQpNTVVUVFRevzxx7VkyRIlJiZq2LBhql+/viIjIyVJy5cvV3x8vBYsWKCwsDDNnj1bkZGROnDggAICAop7WgAAKCgoSJKUnp5exiNBcfn7+5s/R6tRIwEAKipqpPKvLGukP/MwivEHhGfOnFGnTp00b948Pf/88+rQoYNmz56tjIwM1atXT0uXLtX9998vSdq/f79at26tpKQkde/eXevXr9edd96po0ePKjAwUJK0YMECjR8/XsePH5ePj4/Gjx+vtWvX6vvvvzePGR0drVOnTikhIUGSFBYWpq5du+qNN96QJOXl5SkkJESjR4/WhAkTinQeTqdTfn5+ysjIkN1ud3carig7YVuBNu++PUv8OACA0pGbm6vs7OyyHgbc5O3tfdlv/Urz858aqWiokQCgfKNGKp/KskYqTLGukIqNjVVUVJQiIiL0/PPPm+3JycnKzs5WRESE2daqVStdf/31ZrGVlJSktm3bmoWWJEVGRmrkyJHas2ePOnbsqKSkJJd95PfJv+w9KytLycnJmjhxorne09NTERERSkpKuuS4MzMzlZmZab52Op3FOX0AQCXh5eV1TVzOjPKDGgkAUBlQI6EkuB1ILVu2TN98842++uqrAuscDod8fHzk7+/v0h4YGCiHw2H2ubjQyl+fv+5yfZxOp86fP6+TJ08qNze30D779++/5NhnzJihadOmFe1EAQAA3ECNBAAAUHRu3dT8yJEjevLJJ7VkyRL5+vqW1phKzcSJE5WRkWEuR44cKeshAQCACoAaCQAAwD1uBVLJyclKT09Xp06dVKVKFVWpUkVbt27V66+/ripVqigwMFBZWVk6deqUy3ZpaWnmTbOCgoIKPFEm//WV+tjtdlWtWlV169aVl5dXoX0ud3Mum80mu93usgAAAFwtaiQAAAD3uBVI3Xbbbdq9e7dSUlLMpUuXLho0aJD5397e3kpMTDS3OXDggA4fPqzw8HBJUnh4uHbv3u1yV/5NmzbJbrcrNDTU7HPxPvL75O/Dx8dHnTt3dumTl5enxMREsw8AAIBVqJEAAADc49Y9pGrWrKk2bdq4tFWvXl116tQx24cOHar4+HjVrl1bdrtdo0ePVnh4uLp37y5J6tOnj0JDQzV48GDNnDlTDodDzz77rGJjY2Wz2SRJjz/+uN544w2NGzdOjz32mDZv3qwVK1Zo7dq15nHj4+MVExOjLl26qFu3bpo9e7bOnj2rRx999KomBAAAwF3USAAAAO4p1lP2Lue1116Tp6enBgwYoMzMTEVGRmrevHnmei8vL61Zs0YjR45UeHi4qlevrpiYGD333HNmn8aNG2vt2rWKi4vTnDlz1KBBA73zzjuKjIw0+wwcOFDHjx/X5MmT5XA41KFDByUkJBS4iScAAMC1gBoJAADgfzwMwzDKehBlxel0ys/PTxkZGaVyr4TshG0F2rz79izx4wAAgKIr7c//ioAaCQCAysfqGsmte0gBAAAAAAAAV4tACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgqSplPYCK7OdT6wu0NVfPMhgJAADAtYMaCQAAcIUUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEu5FUjNnz9f7dq1k91ul91uV3h4uNavX2+uv3DhgmJjY1WnTh3VqFFDAwYMUFpamss+Dh8+rKioKFWrVk0BAQEaO3ascnJyXPps2bJFnTp1ks1mU7NmzbRo0aICY5k7d64aNWokX19fhYWFaefOne6cCgAAQImhRgIAAHCPW4FUgwYN9NJLLyk5OVlff/21br31Vt1zzz3as2ePJCkuLk6ffPKJVq5cqa1bt+ro0aO67777zO1zc3MVFRWlrKws7dixQ4sXL9aiRYs0efJks09qaqqioqJ0yy23KCUlRWPGjNGwYcO0YcMGs8/y5csVHx+vKVOm6JtvvlH79u0VGRmp9PT0q50PAAAAt1EjAQAAuMfDMAzjanZQu3Ztvfzyy7r//vtVr149LV26VPfff78kaf/+/WrdurWSkpLUvXt3rV+/XnfeeaeOHj2qwMBASdKCBQs0fvx4HT9+XD4+Pho/frzWrl2r77//3jxGdHS0Tp06pYSEBElSWFiYunbtqjfeeEOSlJeXp5CQEI0ePVoTJkwo8tidTqf8/PyUkZEhu91+NdNQqIPLJhVoax79QokfBwAAFF1pf/7no0a6NGokAACuPVbVSPmKfQ+p3NxcLVu2TGfPnlV4eLiSk5OVnZ2tiIgIs0+rVq10/fXXKykpSZKUlJSktm3bmoWWJEVGRsrpdJrfICYlJbnsI79P/j6ysrKUnJzs0sfT01MRERFmHwAAgLJCjQQAAHBlVdzdYPfu3QoPD9eFCxdUo0YNrVq1SqGhoUpJSZGPj4/8/f1d+gcGBsrhcEiSHA6HS6GVvz5/3eX6OJ1OnT9/XidPnlRubm6hffbv33/ZsWdmZiozM9N87XQ6i37iAAAAl0GNBAAAUHRuXyHVsmVLpaSk6Msvv9TIkSMVExOjvXv3lsbYStyMGTPk5+dnLiEhIWU9JAAAUEFQIwEAABSd24GUj4+PmjVrps6dO2vGjBlq37695syZo6CgIGVlZenUqVMu/dPS0hQUFCRJCgoKKvBEmfzXV+pjt9tVtWpV1a1bV15eXoX2yd/HpUycOFEZGRnmcuTIEXdPHwAAoFDUSAAAAEVX7HtI5cvLy1NmZqY6d+4sb29vJSYmmusOHDigw4cPKzw8XJIUHh6u3bt3uzzpZdOmTbLb7QoNDTX7XLyP/D75+/Dx8VHnzp1d+uTl5SkxMdHscyk2m818HHP+AgAAUBqokQAAAC7NrXtITZw4UXfccYeuv/56nT59WkuXLtWWLVu0YcMG+fn5aejQoYqPj1ft2rVlt9s1evRohYeHq3v37pKkPn36KDQ0VIMHD9bMmTPlcDj07LPPKjY2VjabTZL0+OOP64033tC4ceP02GOPafPmzVqxYoXWrl1rjiM+Pl4xMTHq0qWLunXrptmzZ+vs2bN69NFHS3BqAAAAioYaCQAAwD1uBVLp6el65JFHdOzYMfn5+aldu3basGGDbr/9dknSa6+9Jk9PTw0YMECZmZmKjIzUvHnzzO29vLy0Zs0ajRw5UuHh4apevbpiYmL03HPPmX0aN26stWvXKi4uTnPmzFGDBg30zjvvKDIy0uwzcOBAHT9+XJMnT5bD4VCHDh2UkJBQ4CaeAAAAVqBGAgAAcI+HYRhGWQ+irDidTvn5+SkjI6NULk0/uGxSgbbm0S+U+HEAAEDRlfbnf0VAjQQAQOVjdY101feQAgAAAAAAANxBIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUm4FUjNmzFDXrl1Vs2ZNBQQEqH///jpw4IBLnwsXLig2NlZ16tRRjRo1NGDAAKWlpbn0OXz4sKKiolStWjUFBARo7NixysnJcemzZcsWderUSTabTc2aNdOiRYsKjGfu3Llq1KiRfH19FRYWpp07d7pzOgAAACWCGgkAAMA9bgVSW7duVWxsrL744gtt2rRJ2dnZ6tOnj86ePWv2iYuL0yeffKKVK1dq69atOnr0qO677z5zfW5urqKiopSVlaUdO3Zo8eLFWrRokSZPnmz2SU1NVVRUlG655RalpKRozJgxGjZsmDZs2GD2Wb58ueLj4zVlyhR98803at++vSIjI5Wenn418wEAAOA2aiQAAAD3eBiGYRR34+PHjysgIEBbt25V7969lZGRoXr16mnp0qW6//77JUn79+9X69atlZSUpO7du2v9+vW68847dfToUQUGBkqSFixYoPHjx+v48ePy8fHR+PHjtXbtWn3//ffmsaKjo3Xq1CklJCRIksLCwtS1a1e98cYbkqS8vDyFhIRo9OjRmjBhQpHG73Q65efnp4yMDNnt9uJOwyUdXDapQFvz6BdK/DgAAKDoSvvzX6JGuhJqJAAArj1W1EgXu6p7SGVkZEiSateuLUlKTk5Wdna2IiIizD6tWrXS9ddfr6SkJElSUlKS2rZtaxZakhQZGSmn06k9e/aYfS7eR36f/H1kZWUpOTnZpY+np6ciIiLMPgAAAGWFGgkAAODyqhR3w7y8PI0ZM0Y33nij2rRpI0lyOBzy8fGRv7+/S9/AwEA5HA6zz8WFVv76/HWX6+N0OnX+/HmdPHlSubm5hfbZv3//JcecmZmpzMxM87XT6XTjjAEAAK6MGgkAAODKin2FVGxsrL7//nstW7asJMdTqmbMmCE/Pz9zCQkJKeshAQCACoYaCQAA4MqKFUiNGjVKa9as0WeffaYGDRqY7UFBQcrKytKpU6dc+qelpSkoKMjs8+cnyuS/vlIfu92uqlWrqm7duvLy8iq0T/4+CjNx4kRlZGSYy5EjR9w7cQAAgMugRgIAACgatwIpwzA0atQorVq1Sps3b1bjxo1d1nfu3Fne3t5KTEw02w4cOKDDhw8rPDxckhQeHq7du3e7POll06ZNstvtCg0NNftcvI/8Pvn78PHxUefOnV365OXlKTEx0exTGJvNJrvd7rIAAABcLWokAAAA97h1D6nY2FgtXbpUH330kWrWrGnez8DPz09Vq1aVn5+fhg4dqvj4eNWuXVt2u12jR49WeHi4unfvLknq06ePQkNDNXjwYM2cOVMOh0PPPvusYmNjZbPZJEmPP/643njjDY0bN06PPfaYNm/erBUrVmjt2rXmWOLj4xUTE6MuXbqoW7dumj17ts6ePatHH320pOYGAACgSKiRAAAA3ONWIDV//nxJ0s033+zSvnDhQg0ZMkSS9Nprr8nT01MDBgxQZmamIiMjNW/ePLOvl5eX1qxZo5EjRyo8PFzVq1dXTEyMnnvuObNP48aNtXbtWsXFxWnOnDlq0KCB3nnnHUVGRpp9Bg4cqOPHj2vy5MlyOBzq0KGDEhISCtzEEwAAoLRRIwEAALjHwzAMo6wHUVacTqf8/PyUkZFRKpemH1w2qUBb8+gXSvw4AACg6Er7878ioEYCAKDysbpGKvZT9gAAAAAAAIDiIJACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCm3A6nPP/9cd911l4KDg+Xh4aHVq1e7rDcMQ5MnT1b9+vVVtWpVRURE6ODBgy59Tpw4oUGDBslut8vf319Dhw7VmTNnXPp899136tWrl3x9fRUSEqKZM2cWGMvKlSvVqlUr+fr6qm3btlq3bp27pwMAAFAiqJEAAACKzu1A6uzZs2rfvr3mzp1b6PqZM2fq9ddf14IFC/Tll1+qevXqioyM1IULF8w+gwYN0p49e7Rp0yatWbNGn3/+uUaMGGGudzqd6tOnjxo2bKjk5GS9/PLLmjp1qt566y2zz44dO/TQQw9p6NCh2rVrl/r376/+/fvr+++/d/eUAAAArho1EgAAQNF5GIZhFHtjDw+tWrVK/fv3l/THN3/BwcF66qmn9PTTT0uSMjIyFBgYqEWLFik6Olr79u1TaGiovvrqK3Xp0kWSlJCQoH79+unXX39VcHCw5s+fr0mTJsnhcMjHx0eSNGHCBK1evVr79++XJA0cOFBnz57VmjVrzPF0795dHTp00IIFC4o0fqfTKT8/P2VkZMhutxd3Gi7p4LJJBdqaR79Q4scBAABFV9qf/xI10pVQIwEAcO2xoka6WIneQyo1NVUOh0MRERFmm5+fn8LCwpSUlCRJSkpKkr+/v1loSVJERIQ8PT315Zdfmn169+5tFlqSFBkZqQMHDujkyZNmn4uPk98n/zgAAADXCmokAAAAV1VKcmcOh0OSFBgY6NIeGBhornM4HAoICHAdRJUqql27tkufxo0bF9hH/rpatWrJ4XBc9jiFyczMVGZmpvna6XS6c3oAAADFQo0EAADgqlI9ZW/GjBny8/Mzl5CQkLIeEgAAQJmjRgIAAFYr0UAqKChIkpSWlubSnpaWZq4LCgpSenq6y/qcnBydOHHCpU9h+7j4GJfqk7++MBMnTlRGRoa5HDlyxN1TBAAAcBs1EgAAgKsSDaQaN26soKAgJSYmmm1Op1NffvmlwsPDJUnh4eE6deqUkpOTzT6bN29WXl6ewsLCzD6ff/65srOzzT6bNm1Sy5YtVatWLbPPxcfJ75N/nMLYbDbZ7XaXBQAAoLRRIwEAALhyO5A6c+aMUlJSlJKSIumPm3SmpKTo8OHD8vDw0JgxY/T888/r448/1u7du/XII48oODjYfMpM69at1bdvXw0fPlw7d+7U9u3bNWrUKEVHRys4OFiS9PDDD8vHx0dDhw7Vnj17tHz5cs2ZM0fx8fHmOJ588kklJCTolVde0f79+zV16lR9/fXXGjVq1NXPCgAAgJuokQAAAIrO7Zuaf/3117rlllvM1/kFUExMjBYtWqRx48bp7NmzGjFihE6dOqWePXsqISFBvr6+5jZLlizRqFGjdNttt8nT01MDBgzQ66+/bq738/PTxo0bFRsbq86dO6tu3bqaPHmyRowYYfbp0aOHli5dqmeffVbPPPOMmjdvrtWrV6tNmzbFmggAAICrQY0EAABQdB6GYRhlPYiy4nQ65efnp4yMjFK5NP3gskkF2ppHv1DixwEAAEVX2p//FQE1EgAAlY/VNVKlesoeAAAAAAAAyh6BFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLlftAau7cuWrUqJF8fX0VFhamnTt3lvWQAAAAyhw1EgAAuJaV60Bq+fLlio+P15QpU/TNN9+offv2ioyMVHp6elkPDQAAoMxQIwEAgGtduQ6kXn31VQ0fPlyPPvqoQkNDtWDBAlWrVk3vvfdeWQ8NAACgzFAjAQCAa125DaSysrKUnJysiIgIs83T01MRERFKSkoqw5EBAACUHWokAABQHlQp6wEU12+//abc3FwFBga6tAcGBmr//v2FbpOZmanMzEzzdUZGhiTJ6XSWyhjPnMss0FZaxwIAAEWT/1lsGEYZj6R0UCMBAIDisLpGKreBVHHMmDFD06ZNK9AeEhJi3SCGvmLdsQAAwCWdPn1afn5+ZT2MawI1EgAAyGdVjVRuA6m6devKy8tLaWlpLu1paWkKCgoqdJuJEycqPj7efJ2Xl6cTJ06oTp068vDwKNHxOZ1OhYSE6MiRI7Lb7SW6bxSOObcec2495tx6zHnZKM15NwxDp0+fVnBwcInu91pBjYQ/Y86tx5xbjzkvG8y79SpSjVRuAykfHx917txZiYmJ6t+/v6Q/iqfExESNGjWq0G1sNptsNptLm7+/f6mO026384tpMebcesy59Zhz6zHnZaO05r0iXxlFjYRLYc6tx5xbjzkvG8y79SpCjVRuAylJio+PV0xMjLp06aJu3bpp9uzZOnv2rB599NGyHhoAAECZoUYCAADXunIdSA0cOFDHjx/X5MmT5XA41KFDByUkJBS4iScAAEBlQo0EAACudeU6kJKkUaNGXfLy87Jks9k0ZcqUApe/o/Qw59Zjzq3HnFuPOS8bzPvVo0ZCPubcesy59ZjzssG8W68izbmHUVGfeQwAAAAAAIBrkmdZDwAAAAAAAACVC4EUAAAAAAAALEUgBQAAAAAAAEsRSF2FuXPnqlGjRvL19VVYWJh27tx52f4rV65Uq1at5Ovrq7Zt22rdunUWjbTicGfO3377bfXq1Uu1atVSrVq1FBERccWfEQpy932eb9myZfLw8FD//v1Ld4AVkLtzfurUKcXGxqp+/fqy2Wxq0aIF/764yd05nz17tlq2bKmqVasqJCREcXFxunDhgkWjLf8+//xz3XXXXQoODpaHh4dWr159xW22bNmiTp06yWazqVmzZlq0aFGpjxPFR41kPWok61EjWY8ayXrUSNaqdDWSgWJZtmyZ4ePjY7z33nvGnj17jOHDhxv+/v5GWlpaof23b99ueHl5GTNnzjT27t1rPPvss4a3t7exe/dui0defrk75w8//LAxd+5cY9euXca+ffuMIUOGGH5+fsavv/5q8cjLL3fnPF9qaqpx3XXXGb169TLuueceawZbQbg755mZmUaXLl2Mfv36Gdu2bTNSU1ONLVu2GCkpKRaPvPxyd86XLFli2Gw2Y8mSJUZqaqqxYcMGo379+kZcXJzFIy+/1q1bZ0yaNMn48MMPDUnGqlWrLtv/p59+MqpVq2bEx8cbe/fuNf75z38aXl5eRkJCgjUDhluokaxHjWQ9aiTrUSNZjxrJepWtRiKQKqZu3boZsbGx5uvc3FwjODjYmDFjRqH9H3zwQSMqKsqlLSwszPjrX/9aquOsSNyd8z/LyckxatasaSxevLi0hljhFGfOc3JyjB49ehjvvPOOERMTQ7HlJnfnfP78+UaTJk2MrKwsq4ZY4bg757Gxscatt97q0hYfH2/ceOONpTrOiue60P0AAQAASURBVKooxda4ceOMG264waVt4MCBRmRkZCmODMVFjWQ9aiTrUSNZjxrJetRIZasy1Ej8yV4xZGVlKTk5WREREWabp6enIiIilJSUVOg2SUlJLv0lKTIy8pL94ao4c/5n586dU3Z2tmrXrl1aw6xQijvnzz33nAICAjR06FArhlmhFGfOP/74Y4WHhys2NlaBgYFq06aNXnzxReXm5lo17HKtOHPeo0cPJScnm5es//TTT1q3bp369etnyZgrIz5Dyw9qJOtRI1mPGsl61EjWo0YqH8r7Z2iVsh5AefTbb78pNzdXgYGBLu2BgYHav39/ods4HI5C+zscjlIbZ0VSnDn/s/Hjxys4OLjALywKV5w537Ztm959912lpKRYMMKKpzhz/tNPP2nz5s36/+zdeXxM9/7H8fckskkysUUSROxb1b6vRYhWtRSl7SVpLbeKFq1Wq7W2uOqqLlTXcFv9oVqqttqqC26piuvaqhqlJUKR2LN9f3/0kblGgiSSM1lez8djHg/zPd9zzvd8M8m8febMOY888ohWr16tX375RU888YSSk5M1YcIEK4ZdoOVkzh9++GGdPn1abdq0kTFGKSkpevzxx/XCCy9YMeQi6UbvoYmJibp8+bJ8fHxcNDJcj4xkPTKS9chI1iMjWY+MVDAU9IzEGVIoEqZPn65FixZp2bJl8vb2dvVwCqXz58+rf//+eu+991SmTBlXD6fISEtLU9myZfXuu++qcePG6tu3r8aNG6d58+a5emiF1ubNmzV16lTNnTtXP/30kz7//HOtWrVKU6ZMcfXQACDbyEh5j4zkGmQk65GRkF2cIZUDZcqUkbu7u06ePOnUfvLkSQUHB2e6TnBwcLb6w1lO5jzdzJkzNX36dG3YsEH16tXLy2EWKtmd88OHD+vIkSPq3r27oy0tLU2SVKxYMR08eFBVq1bN20EXcDl5nYeEhMjDw0Pu7u6Ottq1aysuLk5JSUny9PTM0zEXdDmZ85deekn9+/fXoEGDJEl33nmnLl68qCFDhmjcuHFyc+Ozntx2o/dQu92e7z/5K2rISNYjI1mPjGQ9MpL1yEgFQ0HPSLwicsDT01ONGzfWxo0bHW1paWnauHGjWrZsmek6LVu2dOovSevXr79hfzjLyZxL0owZMzRlyhStXbtWTZo0sWKohUZ257xWrVras2ePYmJiHI/77rtPHTp0UExMjEJDQ60cfoGUk9d569at9csvvziCrST9/PPPCgkJIWhlQU7m/NKlSxkCVXrYNcbk3WCLMN5DCw4ykvXISNYjI1mPjGQ9MlLBUODfQ117TfWCa9GiRcbLy8vMnz/f7Nu3zwwZMsSUKFHCxMXFGWOM6d+/vxk7dqyj/5YtW0yxYsXMzJkzzf79+82ECRO4pXE2ZXfOp0+fbjw9Pc3SpUvNiRMnHI/z58+76hAKnOzO+fW4g0z2ZXfOjx49avz9/c3w4cPNwYMHzcqVK03ZsmXNyy+/7KpDKHCyO+cTJkww/v7+5v/+7//Mr7/+atatW2eqVq1qHnzwQVcdQoFz/vx5s2vXLrNr1y4jycyaNcvs2rXL/Pbbb8YYY8aOHWv69+/v6J9+S+MxY8aY/fv3mzlz5hSoWxoXNWQk65GRrEdGsh4ZyXpkJOsVtYxEQeo2vPnmm6ZixYrG09PTNGvWzPz73/92LGvfvr2JjIx06r9kyRJTo0YN4+npae644w6zatUqi0dc8GVnzsPCwoykDI8JEyZYP/ACLLuv82sRtnImu3O+detW07x5c+Pl5WWqVKliXnnlFZOSkmLxqAu27Mx5cnKymThxoqlatarx9vY2oaGh5oknnjBnz561fuAF1Ndff53p3+f0eY6MjDTt27fPsE6DBg2Mp6enqVKliomOjrZ83Mg6MpL1yEjWIyNZj4xkPTKStYpaRrIZw7lzAAAAAAAAsA7XkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpoADZvHmzbDabNm/enKvbtdlsmjhxYq5us7CJiopSpUqV8mz7r776qqpUqSJ3d3c1aNAgz/ZzO7L6Opk4caJsNlveDygHLly4oLJly2rhwoW37JvZz/zChQsaNGiQgoODZbPZNHLkyGztf+zYsWrevHm21gEA3BoZyXXISGSk9PXJSMguClJwia1bt2rixIk6d+6cq4dSZKxevZpAJenSpUuaOHFirgfW27Fu3To9++yzat26taKjozV16lRXDynfSUtL0/z583XfffcpNDRUvr6+qlu3rl5++WVduXIly9t5/fXX5e/vr379+uVoHFOnTtX8+fM1dOhQffTRR+rfv78k6e2331afPn1UsWJF2Ww2RUVFZbr+yJEjtXv3bq1YsSJH+wdQ+JGRrEdG+gsZqWDKzxnp2LFjmjRpkpo1a6aSJUuqTJkyuuuuu7Rhw4YM65ORiigDuMCrr75qJJnY2FhXD6VA+frrr40k8/XXX2d73WHDhpkb/cpfvnzZJCcn3+boCoZTp04ZSWbChAnZWi8pKclcuXIlT8b03HPPGTc3N3P16tU82X5uyerrZMKECTd8reXU+fPnjSTTokUL8/LLL5t3333XPProo8bNzc3cddddJi0t7ZbbSEpKMoGBgWbq1KlZ2mdkZKQJCwtzamvevLlp3bp1hr5hYWGmVKlSpmvXrqZYsWImMjLyhtt98MEHTdu2bbM0BgBFDxkpZ8hIt4+MlHNkpMwz0ptvvml8fHzMQw89ZN566y0ze/Zs06hRIyPJfPjhhxm2S0Yqeoq5pAoGFDGXLl1S8eLFM7SnpKQoLS1Nnp6eLhjV/3h7e7t0//nZxYsX5evrKw8PjzzbR3x8vHx8fG75OkhLS1NSUpLLfl6ufJ14enpqy5YtatWqlaNt8ODBqlSpkiZMmKCNGzcqPDz8pttYuXKlTp06pQcffDDH44iPj1edOnUytH/zzTeOs6P8/Pxuuo0HH3xQffr00a+//qoqVarkeCwAUBiQkQouMtL/kJEyz0gdOnTQ0aNHVaZMGUfb448/rgYNGmj8+PF69NFHnfqTkYoevrIHy02cOFFjxoyRJFWuXFk2m002m01HjhyR9FcAmTJliqpWrSovLy9VqlRJL7zwgq5eveq0nUqVKunee+/VunXr1KBBA3l7e6tOnTr6/PPPczSujz/+WM2aNVPx4sVVsmRJtWvXTuvWrXPqM3fuXN1xxx3y8vJSuXLlNGzYsAyn1N91112qW7eudu7cqXbt2ql48eJ64YUXdOTIEdlsNs2cOVOzZ892HN++ffskSQcOHFDv3r1VqlQpeXt7q0mTJlk6ZfW7775zfFXIy8tLoaGhGjVqlC5fvuzoExUVpTlz5kiSY76v/f56Zt9737Vrl+6++27Z7Xb5+fmpU6dO+ve//+3UZ/78+bLZbNqyZYtGjx6twMBA+fr6qmfPnjp16tQtx36t9O/U//zzz/rb3/6mgIAABQYG6qWXXpIxRseOHdP9998vu92u4OBg/fOf/3RaPykpSePHj1fjxo0VEBAgX19ftW3bVl9//bWjz5EjRxQYGChJmjRpkmMe0o89KipKfn5+Onz4sO655x75+/vrkUcecSy79rvyEyZMkJubmzZu3Og0jiFDhsjT01O7d+/O0nHbbDZFR0fr4sWLjvHMnz/fsWz48OFauHCh43W3du1aSdLMmTPVqlUrlS5dWj4+PmrcuLGWLl2aYfuXL1/Wk08+qTJlysjf31/33Xef/vjjjxxdEyOzdb7//ns1bdpU3t7eqlq1qt55551M112/fr3atGmjEiVKyM/PTzVr1tQLL7yQ5X17eno6Ba10PXv2lCTt37//lttYvny5KlWqpKpVq2a6rG7duvL29lbdunW1bNkyp+Xp1yaJjY3VqlWrMvzdCgsLy/I1IdJD4RdffJGl/gCKDjISGSkzZCQy0s3k54x0xx13OBWjJMnLy0v33HOPfv/9d50/f95pGRmp6OEMKVjugQce0M8//6z/+7//02uvveb4I5X+Jjho0CAtWLBAvXv31tNPP60ffvhB06ZN0/79+zP8ATx06JD69u2rxx9/XJGRkYqOjlafPn20du1ade7cOctjmjRpkiZOnKhWrVpp8uTJ8vT01A8//KBNmzapS5cukv4KA5MmTVJ4eLiGDh2qgwcP6u2339aOHTu0ZcsWp0+H/vzzT919993q16+f/va3vykoKMixLDo6WleuXNGQIUPk5eWlUqVKae/evWrdurXKly+vsWPHytfXV0uWLFGPHj302WefOd5QMvPpp5/q0qVLGjp0qEqXLq3t27frzTff1O+//65PP/1UkvT3v/9dx48f1/r16/XRRx/dcj727t2rtm3bym6369lnn5WHh4feeecd3XXXXfrmm28yXHBwxIgRKlmypCZMmKAjR45o9uzZGj58uBYvXpzln0G6vn37qnbt2po+fbpWrVqll19+WaVKldI777yjjh076h//+IcWLlyoZ555Rk2bNlW7du0kSYmJiXr//ff10EMPafDgwTp//rw++OADRUREaPv27WrQoIECAwP19ttva+jQoerZs6ceeOABSVK9evUc+09JSVFERITatGmjmTNnZvqprSS9+OKL+vLLLzVw4EDt2bNH/v7++uqrr/Tee+9pypQpql+/fpaO96OPPtK7776r7du36/3335ckp1CxadMmLVmyRMOHD1eZMmUcge/111/Xfffdp0ceeURJSUlatGiR+vTpo5UrV6pbt26O9aOiorRkyRL1799fLVq00DfffOO0/Hbs2bNHXbp0UWBgoCZOnKiUlBRNmDDB6fUu/fV6uvfee1WvXj1NnjxZXl5e+uWXX7Rly5bbHkNcXJwkZQg7mdm6dasaNWqUoX3dunXq1auX6tSpo2nTpunPP//Uo48+qgoVKjj61K5dWx999JFGjRqlChUq6Omnn5b0v79b2REQEKCqVatqy5YtGjVqVLbXB1B4kZHISDdDRiIjZUd+zkhxcXEqXrx4htcQGakIcvV3BlE03ej6CDExMUaSGTRokFP7M888YySZTZs2OdrCwsKMJPPZZ5852hISEkxISIhp2LBhlsdy6NAh4+bmZnr27GlSU1OdlqV/5zo+Pt54enqaLl26OPV56623MnwHun379kaSmTdvntO2YmNjjSRjt9tNfHy807JOnTqZO++80+n792lpaaZVq1amevXqjrbMro9w6dKlDMc0bdo0Y7PZzG+//eZou9n1EXTd9QJ69OhhPD09zeHDhx1tx48fN/7+/qZdu3aOtujoaCPJhIeHO30/fdSoUcbd3d2cO3cu0/1lJv079UOGDHG0paSkmAoVKhibzWamT5/uaD979qzx8fFxuk5PSkpKhusLnD171gQFBZnHHnvM0Xaz6yNERkYaSWbs2LGZLrv+u/J79uwxnp6eZtCgQebs2bOmfPnypkmTJtm+1kRkZKTx9fXN0C7JuLm5mb1792ZYdv3PPSkpydStW9d07NjR0bZz504jyYwcOdKpb1RUVI6uEZHZ68Tb29vpdbZv3z7j7u7u9Fp77bXXjCRz6tSpbO0vK8LDw43dbjdnz569ab/k5GRjs9nM008/nWFZgwYNTEhIiNPrdd26dUZShp95WFiY6dat20335evre9NrSBljTJcuXUzt2rVv2gdA0URGIiNdj4xERsqJ/JiRjPnr74q3t7fp379/psvJSEULX9lDvrJ69WpJ0ujRo53a0yvtq1atcmovV66c0ydjdrtdAwYM0K5duxyfCtzK8uXLlZaWpvHjx8vNzflXIv2U7Q0bNigpKUkjR4506jN48GDZ7fYM4/Ly8srwneh0vXr1cvrE4MyZM9q0aZMefPBBnT9/XqdPn9bp06f1559/KiIiQocOHdIff/xxw/H7+Pg4/n3x4kWdPn1arVq1kjFGu3btytIcXCs1NVXr1q1Tjx49nL67HRISoocffljff/+9EhMTndYZMmSI0+ntbdu2VWpqqn777bds73/QoEGOf7u7u6tJkyYyxmjgwIGO9hIlSqhmzZr69ddfnfqmX18gLS1NZ86cUUpKipo0aaKffvopW2MYOnRolvrVrVtXkyZN0vvvv6+IiAidPn1aCxYsULFiuXfyafv27TO9ZtG1P/ezZ88qISFBbdu2dTrW9FPXn3jiCad1R4wYcdvjSk1N1VdffaUePXqoYsWKjvbatWsrIiLCqW+JEiUk/XX6dVpa2m3vO93UqVO1YcMGTZ8+3bGPGzlz5oyMMSpZsqRT+4kTJxQTE6PIyEgFBAQ42jt37pzpvOeWkiVL6vTp03m2fQCFDxmJjERGckZGurH8mpEuXbqkPn36yMfHR9OnT8+0DxmpaKEghXzlt99+k5ubm6pVq+bUHhwcrBIlSmR4865WrVqG67bUqFFDkhzXW7iVw4cPy83N7aZ/WNP3W7NmTad2T09PValSJcO4ypcvf8OLL1auXNnp+S+//CJjjF566SUFBgY6PSZMmCDpr4sE3sjRo0cVFRWlUqVKyc/PT4GBgWrfvr0kKSEh4Ybr3cipU6d06dKlDMcq/fVGmpaWpmPHjjm1X/tmK8nxhnb27Nls7//6bQUEBMjb2zvD6cYBAQEZtr9gwQLVq1dP3t7eKl26tAIDA7Vq1apszUOxYsWcTkO+lTFjxqh+/fravn27JkyYkOtFjOtfL+lWrlypFi1ayNvbW6VKlXKcan/tsab/Pl2/jet/v3Li1KlTunz5sqpXr55h2fWvnb59+6p169YaNGiQgoKC1K9fPy1ZsuS2gtfixYv14osvauDAgVkOx5JkjHF6nv67m5XjyE3GmCxfcwoAJDISGYmMdD0yUubya0ZKTU1Vv379tG/fPi1dulTlypW74TjISEUH15BCvlTQ/whd+8nMrZalv+E888wzGT41SXejN8fU1FR17txZZ86c0XPPPadatWrJ19dXf/zxh6KionL1k5abcXd3z7T9+je2nG4rK9v/+OOPFRUVpR49emjMmDEqW7as3N3dNW3aNB0+fDjL+/fy8srwKfDN/Prrrzp06JCkv64XkNsyey199913uu+++9SuXTvNnTtXISEh8vDwUHR0tD755JNcH8Pt8vHx0bfffquvv/5aq1at0tq1a7V48WJ17NhR69atu+HP90bWr1+vAQMGqFu3bpo3b16W1ilVqpRsNluO/gOQF86ePZulazoAwPXISM7ISGSka5GR8m9GGjx4sFauXKmFCxeqY8eON+xHRipaKEjBJW4UpsLCwpSWlqZDhw6pdu3ajvaTJ0/q3LlzCgsLc+qf/snZtdv7+eefJcnpbh83U7VqVaWlpWnfvn1q0KDBDcclSQcPHnQ6RTspKUmxsbG3vJXqzaRvz8PDI9vb2bNnj37++WctWLBAAwYMcLSvX78+Q9+sBtjAwEAVL15cBw8ezLDswIEDcnNzU2hoaLbGaYWlS5eqSpUq+vzzz52ONf0T1HS5GeTT0tIUFRUlu92ukSNHaurUqerdu7fjQqB55bPPPpO3t7e++uoreXl5Odqjo6Od+qX/PsXGxjp9uvXLL7/c9hgCAwPl4+PjCJrXyuy14+bmpk6dOqlTp06aNWuWpk6dqnHjxunrr7/O1uv+hx9+UM+ePdWkSRMtWbIky6f+FytWTFWrVlVsbKxTe/rvdlaPI7fExsZm+aKuAIoWMtL/kJFyBxmJjHQzVmSkMWPGKDo6WrNnz9ZDDz10075kpKKFr+zBJXx9fSUpw+2A77nnHknS7NmzndpnzZolSRnufHH8+HGnu8okJibqX//6lxo0aKDg4OAsjaVHjx5yc3PT5MmTM3xalv7pUnh4uDw9PfXGG284feL0wQcfKCEh4bbuyFG2bFndddddeuedd3TixIkMy292a+D0T02uHZMxRq+//nqGvjea88y22aVLF33xxRdOp/SfPHlSn3zyidq0aSO73X7TbbhCZnPxww8/aNu2bU790u/mcat5yIpZs2Zp69atevfddzVlyhS1atVKQ4cOzfPvvbu7u8tmsyk1NdXRduTIES1fvtypX/qnyXPnznVqf/PNN3NlDBEREVq+fLmOHj3qaN+/f7+++uorp75nzpzJsH76f2yuv1X5zezfv1/dunVTpUqVtHLlypt+yp6Zli1b6scff3RqCwkJUYMGDbRgwQKnU/nXr1/vuN14bktISNDhw4czvUUzAJCR/oeMlDvISGSkW8nLjPTqq69q5syZeuGFF/TUU0/dtC8ZqejhDCm4ROPGjSVJ48aNU79+/eTh4aHu3burfv36ioyM1Lvvvqtz586pffv22r59uxYsWKAePXqoQ4cOTtupUaOGBg4cqB07digoKEgffvihTp48meFTkJupVq2axo0bpylTpqht27Z64IEH5OXlpR07dqhcuXKaNm2aAgMD9fzzz2vSpEnq2rWr7rvvPh08eFBz585V06ZN9be//e225mPOnDlq06aN7rzzTg0ePFhVqlTRyZMntW3bNv3+++/avXt3puvVqlVLVatW1TPPPKM//vhDdrtdn332Waan3KbP+ZNPPqmIiAi5u7urX79+mW735Zdf1vr169WmTRs98cQTKlasmN555x1dvXpVM2bMuK1jzSv33nuvPv/8c/Xs2VPdunVTbGys5s2bpzp16ujChQuOfj4+PqpTp44WL16sGjVqqFSpUqpbt67q1q2brf3t379fL730kqKiotS9e3dJ0vz589WgQQM98cQTWrJkSa4e37W6deumWbNmqWvXrnr44YcVHx+vOXPmqFq1avrPf/7j6Ne4cWP16tVLs2fP1p9//um4pXH6J+S3+0nopEmTtHbtWrVt21ZPPPGEUlJS9Oabb+qOO+5wGsfkyZP17bffqlu3bgoLC1N8fLzmzp2rChUqqE2bNlna1/nz5xUREaGzZ89qzJgxGS6SW7VqVbVs2fKm27j//vv10Ucf6eeff3ZcR0WSpk2bpm7duqlNmzZ67LHHdObMGcdxXPvauZkvv/zS8XuanJys//znP3r55ZclSffdd5/TbbM3bNggY4zuv//+LG0bQNFCRnJGRrp9ZCQykqsy0rJly/Tss8+qevXqql27tj7++GOn5Z07d1ZQUJDjORmpCLLiVn5AZqZMmWLKly9v3NzcnG5vnJycbCZNmmQqV65sPDw8TGhoqHn++eedbvdrzP9uLfrVV1+ZevXqGS8vL1OrVi3z6aef5mg8H374oWnYsKHx8vIyJUuWNO3btzfr16936vPWW2+ZWrVqGQ8PDxMUFGSGDh2a4Vaq7du3N3fccUeG7aff0vjVV1/NdP+HDx82AwYMMMHBwcbDw8OUL1/e3HvvvWbp0qWOPpnd0njfvn0mPDzc+Pn5mTJlypjBgweb3bt3G0kmOjra0S8lJcWMGDHCBAYGGpvN5nTLWWVye9uffvrJREREGD8/P1O8eHHToUMHs3XrVqc+6bc03rFjh1N7ZuO8lfRbGl9/29sb3e73+nlOS0szU6dONWFhYcbLy8s0bNjQrFy5MtNbEW/dutU0btzYeHp6Oh37jfaVvix9OykpKaZp06amQoUKGW7b/PrrrxtJZvHixVk+9pvd0njYsGGZrvPBBx+Y6tWrO1730dHRjjm81sWLF82wYcNMqVKljJ+fn+nRo4c5ePCgkeR0m+isyOx18s033zjmskqVKmbevHkZxrFx40Zz//33m3LlyhlPT09Trlw589BDD5mff/45y/tO//250ePa21vfyNWrV02ZMmXMlClTMiz77LPPTO3atY2Xl5epU6eO+fzzzzN97dzolsbpt8PO7HHt76ExxvTt29e0adMmy8cOoOghIzkjI5GRrkdG+p/8nJHSj/dGj+t/D8hIRY/NmBxcUQ/IBypVqqS6detq5cqVrh4KUKDExMSoYcOG+vjjj/XII4+4ejiWmjJliqKjo3Xo0KFsXyg0N8TFxaly5cpatGgRn/4ByDNkJCBnyEhkJFiLa0gBQCF2+fLlDG2zZ8+Wm5ub2rVr54IRudaoUaN04cIFLVq0yCX7nz17tu68806CFgAALkZGckZGgitwDSkUanFxcTdd7uPjo4CAAItGUzRduHDhlt8xDwwMdMknMXnt1KlTThfVvJ6np6dKlSqVp2OYMWOGdu7cqQ4dOqhYsWJas2aN1qxZoyFDhig0NFSpqak3vSisJPn5+cnPzy/PxmjlPPn5+Sk+Pj5XtpUT06dPd9m+AeBaZCTXIyORkW6FjIRCz9XfGQRy6kbXcrmWbvKdZWXxO9W4Pbf67riuuTZGYRMWFnbT427fvn2ej2HdunWmdevWpmTJksbDw8NUrVrVTJw40SQnJxtjbn3dAWVyTYTclh/mCQAKEzJSwUBGIiPdSn6YJyAvcQ0pFGobNmy46fJy5cqpTp06Fo2maPr111/166+/3rRPmzZt5O3tbdGIrLNly5ZMTwdPV7JkScedfVzlypUr+v7772/ap0qVKqpSpUqejaEgzBMAFDZkJNcjI+Xv934yEpD3KEgBAAAAAADAUlzUHAAAAAAAAJYq0hc1T0tL0/Hjx+Xv7y+bzebq4QAAAAsYY3T+/HmVK1dObm58NpcZMhIAAEWP1RmpSBekjh8/rtDQUFcPAwAAuMCxY8dUoUIFVw8jXyIjAQBQdFmVkYp0Qcrf31/SX5Ntt9tdPBoAAGCFxMREhYaGOnIAMiIjAQBQ9FidkYp0QSr9FHS73U7YAgCgiOGraDdGRgIAoOiyKiNx4QQAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJYq0teQAgDgZlJTU5WcnOzqYSCbPDw85O7u7uphAABQaJGRCqb8lpEoSAEAcB1jjOLi4nTu3DlXDwU5VKJECQUHB3PhcgAAchEZqeDLTxmJghQAANdJD1ply5ZV8eLF88UbNrLGGKNLly4pPj5ekhQSEuLiEQEAUHiQkQqu/JiRKEgBAHCN1NRUR9AqXbq0q4eDHPDx8ZEkxcfHq2zZsvnq1HQAAAoqMlLBl98yEhc1BwDgGunXQyhevLiLR4Lbkf7z4/oWAADkDjJS4ZCfMhIFKQAAMsEp6AUbPz8AAPIG77EFW376+VGQAgAAAAAAgKUoSAEAUMDZbLabPiZOnOjSsS1fvvy2tvHuu+/qrrvukt1ul81m484+AAAgywpzTjpz5oxGjBihmjVrysfHRxUrVtSTTz6phISE3BtkHuKi5gAAZFHy2u8t25dH1zZZ7nvixAnHvxcvXqzx48fr4MGDjjY/P79s7TspKUmenp7ZWicvXbp0SV27dlXXrl31/PPPu3o4AADgOlZmJImclO748eM6fvy4Zs6cqTp16ui3337T448/ruPHj2vp0qWuHt4tcYZUHkpe+32GBwAAuS04ONjxCAgIkM1mczy/ePGiHnnkEQUFBcnPz09NmzbVhg0bnNavVKmSpkyZogEDBshut2vIkCGSpPfee0+hoaEqXry4evbsqVmzZqlEiRJO637xxRdq1KiRvL29VaVKFU2aNEkpKSmO7UpSz549ZbPZHM93796tDh06yN/fX3a7XY0bN9aPP/54w+MbOXKkxo4dqxYtWuTOhMHlyEgAAKsU5pxUt25dffbZZ+revbuqVq2qjh076pVXXtGXX37p2E9+RkEKAIBC7MKFC7rnnnu0ceNG7dq1S127dlX37t119OhRp34zZ85U/fr1tWvXLr300kvasmWLHn/8cT311FOKiYlR586d9corrzit891332nAgAF66qmntG/fPr3zzjuaP3++o9+OHTskSdHR0Tpx4oTj+SOPPKIKFSpox44d2rlzp8aOHSsPDw8LZgMAAOB/CmNOSkhIkN1uV7Fi+f8Lcfl/hAAAIMfq16+v+vXrO55PmTJFy5Yt04oVKzR8+HBHe8eOHfX00087no8bN0533323nnnmGUlSjRo1tHXrVq1cudLRZ9KkSRo7dqwiIyMlSVWqVNGUKVP07LPPasKECQoMDJQklShRQsHBwY71jh49qjFjxqhWrVqSpOrVq+fBkQMAANxcYctJp0+f1pQpUxxnceV3nCEFAEAhduHCBT3zzDOqXbu2SpQoIT8/P+3fvz/DJ39NmjRxen7w4EE1a9bMqe3657t379bkyZPl5+fneAwePFgnTpzQpUuXbjim0aNHa9CgQQoPD9f06dN1+PDh2zxKAACA7CtMOSkxMVHdunVTnTp1XHqh9uygIAUAQCH2zDPPaNmyZZo6daq+++47xcTE6M4771RSUpJTP19f32xv+8KFC5o0aZJiYmIcjz179ujQoUPy9va+4XoTJ07U3r171a1bN23atEl16tTRsmXLsr1/AACA21FYctL58+fVtWtX+fv7a9myZQXmUgh8ZQ8AgEJsy5YtioqKUs+ePSX9FY6OHDlyy/Vq1qzpuJZBuuufN2rUSAcPHlS1atVuuB0PDw+lpqZmaK9Ro4Zq1KihUaNG6aGHHlJ0dLRjjAAAAFYoDDkpMTFRERER8vLy0ooVK25a7MpvKEgBAFCIVa9eXZ9//rm6d+8um82ml156SWlpabdcb8SIEWrXrp1mzZql7t27a9OmTVqzZo1sNpujz/jx43XvvfeqYsWK6t27t9zc3LR7927997//1csvvyzprzvIbNy4Ua1bt5aXl5e8vb01ZswY9e7dW5UrV9bvv/+uHTt2qFevXjccS1xcnOLi4vTLL79Ikvbs2SN/f39VrFhRpUqVus0ZAgAARVVBz0mJiYnq0qWLLl26pI8//liJiYlKTEyUJAUGBsrd3T0XZinv8JU9AAAKsVmzZqlkyZJq1aqVunfvroiICDVq1OiW67Vu3Vrz5s3TrFmzVL9+fa1du1ajRo1y+tQtIiJCK1eu1Lp169S0aVO1aNFCr732msLCwhx9/vnPf2r9+vUKDQ1Vw4YN5e7urj///FMDBgxQjRo19OCDD+ruu+/WpEmTbjiWefPmqWHDhho8eLAkqV27dmrYsKFWrFhxGzMDAACKuoKek3766Sf98MMP2rNnj6pVq6aQkBDH49ixY7c/QXnMZowxrh6EqyQmJiogIMBxW8Tclrz2+wxtHl3b5Pp+AAC558qVK4qNjVXlypUL1CnPVhg8eLAOHDig7777ztVDuaWb/Rzz+v2/MCAjAQCuR0a6uYKSk/JTRuIrewAAIFMzZ85U586d5evrqzVr1mjBggWaO3euq4cFAADgcuSk20dBCgAAZGr79u2aMWOGzp8/rypVquiNN97QoEGDXD0sAAAAlyMn3T4KUgAAIFNLlixx9RAAAADyJXLS7eOi5gAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAKASioqJks9lks9nk4eGhoKAgde7cWR9++KHS0tJcPbzbsnfvXvXq1UuVKlWSzWbT7NmzXT0kAABQgBTmnPTee++pbdu2KlmypEqWLKnw8HBt377d1cPKkmKuHgAAAAXF4R/fsWxfVZv8PdvrdO3aVdHR0UpNTdXJkye1du1aPfXUU1q6dKlWrFihYsUK5tv+pUuXVKVKFfXp00ejRo1y9XAAAMB1rMxIEjnpWps3b9ZDDz2kVq1aydvbW//4xz/UpUsX7d27V+XLl3f18G6KM6QAACgkvLy8FBwcrPLly6tRo0Z64YUX9MUXX2jNmjWaP3++o9+5c+c0aNAgBQYGym63q2PHjtq9e7fTtr788ks1bdpU3t7eKlOmjHr27OlYdvbsWQ0YMEAlS5ZU8eLFdffdd+vQoUOSpIsXL8put2vp0qVO21u+fLl8fX11/vx5JSUlafjw4QoJCZG3t7fCwsI0bdq0Gx5X06ZN9eqrr6pfv37y8vLKhZkCAABFTWHNSQsXLtQTTzyhBg0aqFatWnr//feVlpamjRs35sKs5S0KUgAAFGIdO3ZU/fr19fnnnzva+vTpo/j4eK1Zs0Y7d+5Uo0aN1KlTJ505c0aStGrVKvXs2VP33HOPdu3apY0bN6pZs2aO9aOiovTjjz9qxYoV2rZtm4wxuueee5ScnCxfX1/169dP0dHRTuOIjo5W79695e/vrzfeeEMrVqzQkiVLdPDgQS1cuFCVKlWyZD4AAADSFcacdOnSJSUnJ6tUqVK3NzkWKJjnpAEAgCyrVauW/vOf/0iSvv/+e23fvl3x8fGOs41mzpyp5cuXa+nSpRoyZIheeeUV9evXT5MmTXJso379+pKkQ4cOacWKFdqyZYtatWol6a9P5kJDQ7V8+XL16dNHgwYNUqtWrXTixAmFhIQoPj5eq1ev1oYNGyRJR48eVfXq1dWmTRvZbDaFhYVZOR0AAAAOhS0nPffccypXrpzCw8Nve27yGmdIAQBQyBljZLPZJEm7d+/WhQsXVLp0afn5+TkesbGxOnz4sCQpJiZGnTp1ynRb+/fvV7FixdS8eXNHW+nSpVWzZk3t379fktSsWTPdcccdWrBggSTp448/VlhYmNq1ayfpr08OY2JiVLNmTT355JNat25dnh07AADAzRSmnDR9+nQtWrRIy5Ytk7e3d/Ynw2KcIQUAQCG3f/9+Va5cWZJ04cIFhYSEaPPmzRn6lShRQpLk4+Nz2/scNGiQ5syZo7Fjxyo6OlqPPvqoI+w1atRIsbGxWrNmjTZs2KAHH3xQ4eHhGa6nAAAAkNcKS06aOXOmpk+frg0bNqhevXq3PUYrcIYUAACF2KZNm7Rnzx716tVL0l8hJy4uTsWKFVO1atWcHmXKlJEk1atX74YXwqxdu7ZSUlL0ww8/ONr+/PNPHTx4UHXq1HG0/e1vf9Nvv/2mN954Q/v27VNkZKTTdux2u/r27av33ntPixcv1meffea4NgMAAIAVCktOmjFjhqZMmaK1a9eqSZMmOZ4Pq3GGFAAAhcTVq1cVFxfndDvjadOm6d5779WAAQMkSeHh4WrZsqV69OihGTNmqEaNGjp+/LjjAp1NmjTRhAkT1KlTJ1WtWlX9+vVTSkqKVq9ereeee07Vq1fX/fffr8GDB+udd96Rv7+/xo4dq/Lly+v+++93jKVkyZJ64IEHNGbMGHXp0kUVKlRwLJs1a5ZCQkLUsGFDubm56dNPP1VwcLDjk8frJSUlad++fY5///HHH4qJiZGfn5+qVauWdxMKAAAKjcKak/7xj39o/Pjx+uSTT1SpUiXFxcVJkuPrhvkZZ0gBAFBIrF27ViEhIapUqZK6du2qr7/+Wm+88Ya++OILubu7S5JsNptWr16tdu3a6dFHH1WNGjXUr18//fbbbwoKCpIk3XXXXfr000+1YsUKNWjQQB07dtT27dsd+4mOjlbjxo117733qmXLljLGaPXq1fLw8HAaz8CBA5WUlKTHHnvMqd3f318zZsxQkyZN1LRpUx05ckSrV6+Wm1vmseT48eNq2LChGjZsqBMnTmjmzJlq2LChBg0alJvTBwAACrHCmpPefvttJSUlqXfv3goJCXE8Zs6cmZvTlydsxhjj6kG4SmJiogICApSQkCC73Z7r209e+32GNo+ubXJ9PwCA3HPlyhXFxsaqcuXKBeJikPnZRx99pFGjRun48ePy9PS0dN83+znm9ft/YUBGAgBcj4yUu1yVk/JTRuIrewAAIFddunRJJ06c0PTp0/X3v//d8mIUAABAfkVO+h++sgcAAHLVjBkzVKtWLQUHB+v555939XAAAADyDXLS/1CQAgAAuWrixIlKTk7Wxo0b8/3FNAEAAKxETvofClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAmSjCN6EtFPj5AQCQN3iPLdjy08+PghQAANfw8PCQ9NcdUFBwpf/80n+eAADg9pCRCof8lJFuqyA1ffp02Ww2jRw50tF25coVDRs2TKVLl5afn5969eqlkydPOq139OhRdevWTcWLF1fZsmU1ZswYpaSkOPXZvHmzGjVqJC8vL1WrVk3z58/PsP85c+aoUqVK8vb2VvPmzbV9+/bbORwAAOTu7q4SJUooPj5ef/75py5fvqwrV67wKCCPy5cv688//1R8fLxKlCghd3d3l7yOyEgAgMKGjFSwH/klI12rWE5X3LFjh9555x3Vq1fPqX3UqFFatWqVPv30UwUEBGj48OF64IEHtGXLFklSamqqunXrpuDgYG3dulUnTpzQgAED5OHhoalTp0qSYmNj1a1bNz3++ONauHChNm7cqEGDBikkJEQRERGSpMWLF2v06NGaN2+emjdvrtmzZysiIkIHDx5U2bJlc3pYAAAoODhYkhQfH+/ikSCnSpQo4fg5Wo2MBAAorMhIBZ8rM9L1bCYHXyC8cOGCGjVqpLlz5+rll19WgwYNNHv2bCUkJCgwMFCffPKJevfuLUk6cOCAateurW3btqlFixZas2aN7r33Xh0/flxBQUGSpHnz5um5557TqVOn5Onpqeeee06rVq3Sf//7X8c++/Xrp3Pnzmnt2rWSpObNm6tp06Z66623JElpaWkKDQ3ViBEjNHbs2CwdR2JiogICApSQkCC73Z7dabil5LXfZ2jz6Nom1/cDAMgbqampSk5OdvUwkE0eHh43/dQvL9//yUhZQ0YCgIKNjFQwuTIjZSZHZ0gNGzZM3bp1U3h4uF5++WVH+86dO5WcnKzw8HBHW61atVSxYkVH2Nq2bZvuvPNOR9CSpIiICA0dOlR79+5Vw4YNtW3bNqdtpPdJP+09KSlJO3fu1PPPP+9Y7ubmpvDwcG3bti0nhwQAQAbu7u754nRmFBxkJABAUUBGQm7IdkFq0aJF+umnn7Rjx44My+Li4uTp6akSJUo4tQcFBSkuLs7R59qglb48fdnN+iQmJury5cs6e/asUlNTM+1z4MCBG4796tWrunr1quN5YmLiLY4WAAAga8hIAAAAWZeti5ofO3ZMTz31lBYuXChvb++8GlOemTZtmgICAhyP0NBQVw8JAAAUAmQkAACA7MlWQWrnzp2Kj49Xo0aNVKxYMRUrVkzffPON3njjDRUrVkxBQUFKSkrSuXPnnNY7efKk46JZwcHBGe4ok/78Vn3sdrt8fHxUpkwZubu7Z9rnZhfnev7555WQkOB4HDt2LDuHDwAAkCkyEgAAQPZkqyDVqVMn7dmzRzExMY5HkyZN9Mgjjzj+7eHhoY0bNzrWOXjwoI4ePaqWLVtKklq2bKk9e/Y4XZV//fr1stvtqlOnjqPPtdtI75O+DU9PTzVu3NipT1pamjZu3OjokxkvLy/Z7XanBwAAwO0iIwEAAGRPtq4h5e/vr7p16zq1+fr6qnTp0o72gQMHavTo0SpVqpTsdrtGjBihli1bqkWLFpKkLl26qE6dOurfv79mzJihuLg4vfjiixo2bJi8vLwkSY8//rjeeustPfvss3rssce0adMmLVmyRKtWrXLsd/To0YqMjFSTJk3UrFkzzZ49WxcvXtSjjz56WxMCAACQXWQkAACA7MnRXfZu5rXXXpObm5t69eqlq1evKiIiQnPnznUsd3d318qVKzV06FC1bNlSvr6+ioyM1OTJkx19KleurFWrVmnUqFF6/fXXVaFCBb3//vuKiIhw9Onbt69OnTql8ePHKy4uTg0aNNDatWszXMQTAAAgPyAjAQAA/I/NGGNcPQhXSUxMVEBAgBISEvLk1PTktd9naPPo2ibX9wMAALIur9//CwMyEgAARY/VGSlb15ACAAAAAAAAbhcFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlirm6gEUZkfOrcnQVl1tXDASAACA/IOMBAAAOEMKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtlqyD19ttvq169erLb7bLb7WrZsqXWrFnjWH7lyhUNGzZMpUuXlp+fn3r16qWTJ086bePo0aPq1q2bihcvrrJly2rMmDFKSUlx6rN582Y1atRIXl5eqlatmubPn59hLHPmzFGlSpXk7e2t5s2ba/v27dk5FAAAgFxDRgIAAMiebBWkKlSooOnTp2vnzp368ccf1bFjR91///3au3evJGnUqFH68ssv9emnn+qbb77R8ePH9cADDzjWT01NVbdu3ZSUlKStW7dqwYIFmj9/vsaPH+/oExsbq27duqlDhw6KiYnRyJEjNWjQIH311VeOPosXL9bo0aM1YcIE/fTTT6pfv74iIiIUHx9/u/MBAACQbWQkAACA7LEZY8ztbKBUqVJ69dVX1bt3bwUGBuqTTz5R7969JUkHDhxQ7dq1tW3bNrVo0UJr1qzRvffeq+PHjysoKEiSNG/ePD333HM6deqUPD099dxzz2nVqlX673//69hHv379dO7cOa1du1aS1Lx5czVt2lRvvfWWJCktLU2hoaEaMWKExo4dm+WxJyYmKiAgQAkJCbLb7bczDZk6tGhchrbq/V7J9f0AAICsy+v3/3RkpBsjIwEAkP9YlZHS5fgaUqmpqVq0aJEuXryoli1baufOnUpOTlZ4eLijT61atVSxYkVt27ZNkrRt2zbdeeedjqAlSREREUpMTHR8grht2zanbaT3Sd9GUlKSdu7c6dTHzc1N4eHhjj4AAACuQkYCAAC4tWLZXWHPnj1q2bKlrly5Ij8/Py1btkx16tRRTEyMPD09VaJECaf+QUFBiouLkyTFxcU5Ba305enLbtYnMTFRly9f1tmzZ5WampppnwMHDtx07FevXtXVq1cdzxMTE7N+4AAAADdBRgIAAMi6bJ8hVbNmTcXExOiHH37Q0KFDFRkZqX379uXF2HLdtGnTFBAQ4HiEhoa6ekgAAKCQICMBAABkXbYLUp6enqpWrZoaN26sadOmqX79+nr99dcVHByspKQknTt3zqn/yZMnFRwcLEkKDg7OcEeZ9Oe36mO32+Xj46MyZcrI3d090z7p27iR559/XgkJCY7HsWPHsnv4AAAAmSIjAQAAZF2OryGVLi0tTVevXlXjxo3l4eGhjRs3OpYdPHhQR48eVcuWLSVJLVu21J49e5zu9LJ+/XrZ7XbVqVPH0efabaT3Sd+Gp6enGjdu7NQnLS1NGzdudPS5ES8vL8ftmNMfAAAAeYGMBAAAcGPZuobU888/r7vvvlsVK1bU+fPn9cknn2jz5s366quvFBAQoIEDB2r06NEqVaqU7Ha7RowYoZYtW6pFixaSpC5duqhOnTrq37+/ZsyYobi4OL344osaNmyYvLy8JEmPP/643nrrLT377LN67LHHtGnTJi1ZskSrVq1yjGP06NGKjIxUkyZN1KxZM82ePVsXL17Uo48+motTAwAAkDVkJAAAgOzJVkEqPj5eAwYM0IkTJxQQEKB69erpq6++UufOnSVJr732mtzc3NSrVy9dvXpVERERmjt3rmN9d3d3rVy5UkOHDlXLli3l6+uryMhITZ482dGncuXKWrVqlUaNGqXXX39dFSpU0Pvvv6+IiAhHn759++rUqVMaP3684uLi1KBBA61duzbDRTwBAACsQEYCAADIHpsxxrh6EK6SmJiogIAAJSQk5Mmp6YcWjcvQVr3fK7m+HwAAkHV5/f5fGJCRAAAoeqzOSLd9DSkAAAAAAAAgOyhIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWylZBatq0aWratKn8/f1VtmxZ9ejRQwcPHnTqc+XKFQ0bNkylS5eWn5+fevXqpZMnTzr1OXr0qLp166bixYurbNmyGjNmjFJSUpz6bN68WY0aNZKXl5eqVaum+fPnZxjPnDlzVKlSJXl7e6t58+bavn17dg4HAAAgV5CRAAAAsidbBalvvvlGw4YN07///W+tX79eycnJ6tKliy5evOjoM2rUKH355Zf69NNP9c033+j48eN64IEHHMtTU1PVrVs3JSUlaevWrVqwYIHmz5+v8ePHO/rExsaqW7du6tChg2JiYjRy5EgNGjRIX331laPP4sWLNXr0aE2YMEE//fST6tevr4iICMXHx9/OfAAAAGQbGQkAACB7bMYYk9OVT506pbJly+qbb75Ru3btlJCQoMDAQH3yySfq3bu3JOnAgQOqXbu2tm3bphYtWmjNmjW69957dfz4cQUFBUmS5s2bp+eee06nTp2Sp6ennnvuOa1atUr//e9/Hfvq16+fzp07p7Vr10qSmjdvrqZNm+qtt96SJKWlpSk0NFQjRozQ2LFjszT+xMREBQQEKCEhQXa7PafTcEOHFo3L0Fa93yu5vh8AAJB1ef3+L5GRboWMBABA/mNFRrrWbV1DKiEhQZJUqlQpSdLOnTuVnJys8PBwR59atWqpYsWK2rZtmyRp27ZtuvPOOx1BS5IiIiKUmJiovXv3Ovpcu430PunbSEpK0s6dO536uLm5KTw83NEHAADAVchIAAAAN1cspyumpaVp5MiRat26terWrStJiouLk6enp0qUKOHUNygoSHFxcY4+1wat9OXpy27WJzExUZcvX9bZs2eVmpqaaZ8DBw7ccMxXr17V1atXHc8TExOzccQAAAC3RkYCAAC4tRyfITVs2DD997//1aJFi3JzPHlq2rRpCggIcDxCQ0NdPSQAAFDIkJEAAABuLUcFqeHDh2vlypX6+uuvVaFCBUd7cHCwkpKSdO7cOaf+J0+eVHBwsKPP9XeUSX9+qz52u10+Pj4qU6aM3N3dM+2Tvo3MPP/880pISHA8jh07lr0DBwAAuAkyEgAAQNZkqyBljNHw4cO1bNkybdq0SZUrV3Za3rhxY3l4eGjjxo2OtoMHD+ro0aNq2bKlJKlly5bas2eP051e1q9fL7vdrjp16jj6XLuN9D7p2/D09FTjxo2d+qSlpWnjxo2OPpnx8vKS3W53egAAANwuMhIAAED2ZOsaUsOGDdMnn3yiL774Qv7+/o7rGQQEBMjHx0cBAQEaOHCgRo8erVKlSslut2vEiBFq2bKlWrRoIUnq0qWL6tSpo/79+2vGjBmKi4vTiy++qGHDhsnLy0uS9Pjjj+utt97Ss88+q8cee0ybNm3SkiVLtGrVKsdYRo8ercjISDVp0kTNmjXT7NmzdfHiRT366KO5NTcAAABZQkYCAADInmwVpN5++21J0l133eXUHh0draioKEnSa6+9Jjc3N/Xq1UtXr15VRESE5s6d6+jr7u6ulStXaujQoWrZsqV8fX0VGRmpyZMnO/pUrlxZq1at0qhRo/T666+rQoUKev/99xUREeHo07dvX506dUrjx49XXFycGjRooLVr12a4iCcAAEBeIyMBAABkj80YY1w9CFdJTExUQECAEhIS8uTU9EOLxmVoq97vlVzfDwAAyLq8fv8vDMhIAAAUPVZnpBzfZQ8AAAAAAADICQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClsl2Q+vbbb9W9e3eVK1dONptNy5cvd1pujNH48eMVEhIiHx8fhYeH69ChQ059zpw5o0ceeUR2u10lSpTQwIEDdeHCBac+//nPf9S2bVt5e3srNDRUM2bMyDCWTz/9VLVq1ZK3t7fuvPNOrV69OruHAwAAkCvISAAAAFmX7YLUxYsXVb9+fc2ZMyfT5TNmzNAbb7yhefPm6YcffpCvr68iIiJ05coVR59HHnlEe/fu1fr167Vy5Up9++23GjJkiGN5YmKiunTporCwMO3cuVOvvvqqJk6cqHfffdfRZ+vWrXrooYc0cOBA7dq1Sz169FCPHj303//+N7uHBAAAcNvISAAAAFlnM8aYHK9ss2nZsmXq0aOHpL8++StXrpyefvppPfPMM5KkhIQEBQUFaf78+erXr5/279+vOnXqaMeOHWrSpIkkae3atbrnnnv0+++/q1y5cnr77bc1btw4xcXFydPTU5I0duxYLV++XAcOHJAk9e3bVxcvXtTKlSsd42nRooUaNGigefPmZWn8iYmJCggIUEJCgux2e06n4YYOLRqXoa16v1dyfT8AACDr8vr9XyIj3QoZCQCA/MeKjHStXL2GVGxsrOLi4hQeHu5oCwgIUPPmzbVt2zZJ0rZt21SiRAlH0JKk8PBwubm56YcffnD0adeunSNoSVJERIQOHjyos2fPOvpcu5/0Pun7AQAAyC/ISAAAAM6K5ebG4uLiJElBQUFO7UFBQY5lcXFxKlu2rPMgihVTqVKlnPpUrlw5wzbSl5UsWVJxcXE33U9mrl69qqtXrzqeJyYmZufwAAAAcoSMBAAA4KxI3WVv2rRpCggIcDxCQ0NdPSQAAACXIyMBAACr5WpBKjg4WJJ08uRJp/aTJ086lgUHBys+Pt5peUpKis6cOePUJ7NtXLuPG/VJX56Z559/XgkJCY7HsWPHsnuIAAAA2UZGAgAAcJarBanKlSsrODhYGzdudLQlJibqhx9+UMuWLSVJLVu21Llz57Rz505Hn02bNiktLU3Nmzd39Pn222+VnJzs6LN+/XrVrFlTJUuWdPS5dj/pfdL3kxkvLy/Z7XanBwAAQF4jIwEAADjLdkHqwoULiomJUUxMjKS/LtIZExOjo0ePymazaeTIkXr55Ze1YsUK7dmzRwMGDFC5cuUcd5mpXbu2unbtqsGDB2v79u3asmWLhg8frn79+qlcuXKSpIcfflienp4aOHCg9u7dq8WLF+v111/X6NGjHeN46qmntHbtWv3zn//UgQMHNHHiRP34448aPnz47c8KAABANpGRAAAAsi7bFzX/8ccf1aFDB8fz9AAUGRmp+fPn69lnn9XFixc1ZMgQnTt3Tm3atNHatWvl7e3tWGfhwoUaPny4OnXqJDc3N/Xq1UtvvPGGY3lAQIDWrVunYcOGqXHjxipTpozGjx+vIUOGOPq0atVKn3zyiV588UW98MILql69upYvX666devmaCIAAABuBxkJAAAg62zGGOPqQbhKYmKiAgIClJCQkCenph9aNC5DW/V+r+T6fgAAQNbl9ft/YUBGAgCg6LE6IxWpu+wBAAAAAADA9ShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWKvAFqTlz5qhSpUry9vZW8+bNtX37dlcPCQAAwOXISAAAID8r0AWpxYsXa/To0ZowYYJ++ukn1a9fXxEREYqPj3f10AAAAFyGjAQAAPK7Al2QmjVrlgYPHqxHH31UderU0bx581S8eHF9+OGHrh4aAACAy5CRAABAfldgC1JJSUnauXOnwsPDHW1ubm4KDw/Xtm3bXDgyAAAA1yEjAQCAgqCYqweQU6dPn1ZqaqqCgoKc2oOCgnTgwIFM17l69aquXr3qeJ6QkCBJSkxMzJMxXrh0NUNbXu0LAABkTfp7sTHGxSPJG2QkAACQE1ZnpAJbkMqJadOmadKkSRnaQ0NDrRvEwH9aty8AAHBD58+fV0BAgKuHkS+QkQAAQDqrMlKBLUiVKVNG7u7uOnnypFP7yZMnFRwcnOk6zz//vEaPHu14npaWpjNnzqh06dKy2Wy5Or7ExESFhobq2LFjstvtubptZI45tx5zbj3m3HrMuWvk5bwbY3T+/HmVK1cuV7ebX5CRcD3m3HrMufWYc9dg3q1XmDJSgS1IeXp6qnHjxtq4caN69Ogh6a/wtHHjRg0fPjzTdby8vOTl5eXUVqJEiTwdp91u5xfTYsy59Zhz6zHn1mPOXSOv5r0wnxlFRsKNMOfWY86tx5y7BvNuvcKQkQpsQUqSRo8ercjISDVp0kTNmjXT7NmzdfHiRT366KOuHhoAAIDLkJEAAEB+V6ALUn379tWpU6c0fvx4xcXFqUGDBlq7dm2Gi3gCAAAUJWQkAACQ3xXogpQkDR8+/Iann7uSl5eXJkyYkOH0d+Qd5tx6zLn1mHPrMeeuwbzfPjIS0jHn1mPOrcecuwbzbr3CNOc2U1jveQwAAAAAAIB8yc3VAwAAAAAAAEDRQkEKAAAAAAAAlqIgBQAAAAAAAEtRkLoNc+bMUaVKleTt7a3mzZtr+/btN+3/6aefqlatWvL29tadd96p1atXWzTSwiM7c/7ee++pbdu2KlmypEqWLKnw8PBb/oyQUXZf5+kWLVokm82mHj165O0AC6Hszvm5c+c0bNgwhYSEyMvLSzVq1ODvSzZld85nz56tmjVrysfHR6GhoRo1apSuXLli0WgLvm+//Vbdu3dXuXLlZLPZtHz58luus3nzZjVq1EheXl6qVq2a5s+fn+fjRM6RkaxHRrIeGcl6ZCTrkZGsVeQykkGOLFq0yHh6epoPP/zQ7N271wwePNiUKFHCnDx5MtP+W7ZsMe7u7mbGjBlm37595sUXXzQeHh5mz549Fo+84MrunD/88MNmzpw5ZteuXWb//v0mKirKBAQEmN9//93ikRdc2Z3zdLGxsaZ8+fKmbdu25v7777dmsIVEduf86tWrpkmTJuaee+4x33//vYmNjTWbN282MTExFo+84MrunC9cuNB4eXmZhQsXmtjYWPPVV1+ZkJAQM2rUKItHXnCtXr3ajBs3znz++edGklm2bNlN+//666+mePHiZvTo0Wbfvn3mzTffNO7u7mbt2rXWDBjZQkayHhnJemQk65GRrEdGsl5Ry0gUpHKoWbNmZtiwYY7nqampply5cmbatGmZ9n/wwQdNt27dnNqaN29u/v73v+fpOAuT7M759VJSUoy/v79ZsGBBXg2x0MnJnKekpJhWrVqZ999/30RGRhK2sim7c/7222+bKlWqmKSkJKuGWOhkd86HDRtmOnbs6NQ2evRo07p16zwdZ2GVlbD17LPPmjvuuMOprW/fviYiIiIPR4acIiNZj4xkPTKS9chI1iMjuVZRyEh8ZS8HkpKStHPnToWHhzva3NzcFB4erm3btmW6zrZt25z6S1JERMQN+8NZTub8epcuXVJycrJKlSqVV8MsVHI655MnT1bZsmU1cOBAK4ZZqORkzlesWKGWLVtq2LBhCgoKUt26dTV16lSlpqZaNewCLSdz3qpVK+3cudNxyvqvv/6q1atX65577rFkzEUR76EFBxnJemQk65GRrEdGsh4ZqWAo6O+hxVw9gILo9OnTSk1NVVBQkFN7UFCQDhw4kOk6cXFxmfaPi4vLs3EWJjmZ8+s999xzKleuXIZfWGQuJ3P+/fff64MPPlBMTIwFIyx8cjLnv/76qzZt2qRHHnlEq1ev1i+//KInnnhCycnJmjBhghXDLtByMucPP/ywTp8+rTZt2sgYo5SUFD3++ON64YUXrBhykXSj99DExERdvnxZPj4+LhoZrkdGsh4ZyXpkJOuRkaxHRioYCnpG4gwpFAnTp0/XokWLtGzZMnl7e7t6OIXS+fPn1b9/f7333nsqU6aMq4dTZKSlpals2bJ699131bhxY/Xt21fjxo3TvHnzXD20Qmvz5s2aOnWq5s6dq59++kmff/65Vq1apSlTprh6aACQbWSkvEdGcg0ykvXISMguzpDKgTJlysjd3V0nT550aj958qSCg4MzXSc4ODhb/eEsJ3OebubMmZo+fbo2bNigevXq5eUwC5Xszvnhw4d15MgRde/e3dGWlpYmSSpWrJgOHjyoqlWr5u2gC7icvM5DQkLk4eEhd3d3R1vt2rUVFxenpKQkeXp65umYC7qczPlLL72k/v37a9CgQZKkO++8UxcvXtSQIUM0btw4ubnxWU9uu9F7qN1uz/ef/BU1ZCTrkZGsR0ayHhnJemSkgqGgZyReETng6empxo0ba+PGjY62tLQ0bdy4US1btsx0nZYtWzr1l6T169ffsD+c5WTOJWnGjBmaMmWK1q5dqyZNmlgx1EIju3Neq1Yt7dmzRzExMY7Hfffdpw4dOigmJkahoaFWDr9AysnrvHXr1vrll18cwVaSfv75Z4WEhBC0siAnc37p0qUMgSo97Bpj8m6wRRjvoQUHGcl6ZCTrkZGsR0ayHhmpYCjw76GuvaZ6wbVo0SLj5eVl5s+fb/bt22eGDBliSpQoYeLi4owxxvTv39+MHTvW0X/Lli2mWLFiZubMmWb//v1mwoQJ3NI4m7I759OnTzeenp5m6dKl5sSJE47H+fPnXXUIBU525/x63EEm+7I750ePHjX+/v5m+PDh5uDBg2blypWmbNmy5uWXX3bVIRQ42Z3zCRMmGH9/f/N///d/5tdffzXr1q0zVatWNQ8++KCrDqHAOX/+vNm1a5fZtWuXkWRmzZpldu3aZX777TdjjDFjx441/fv3d/RPv6XxmDFjzP79+82cOXMK1C2NixoykvXISNYjI1mPjGQ9MpL1ilpGoiB1G958801TsWJF4+npaZo1a2b+/e9/O5a1b9/eREZGOvVfsmSJqVGjhvH09DR33HGHWbVqlcUjLviyM+dhYWFGUobHhAkTrB94AZbd1/m1CFs5k90537p1q2nevLnx8vIyVapUMa+88opJSUmxeNQFW3bmPDk52UycONFUrVrVeHt7m9DQUPPEE0+Ys2fPWj/wAurrr7/O9O9z+jxHRkaa9u3bZ1inQYMGxtPT01SpUsVER0dbPm5kHRnJemQk65GRrEdGsh4ZyVpFLSPZjOHcOQAAAAAAAFiHa0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFFCAbN68WTabTZs3b87V7dpsNk2cODFXt1nYREVFqVKlSnm2/VdffVVVqlSRu7u7GjRokGf7uR1ZfZ1MnDhRNpst7weUAxcuXFDZsmW1cOHCW/bN7Gd+4cIFDRo0SMHBwbLZbBo5cmS29j927Fg1b948W+sAAG6NjOQ6ZCQyUvr6ZCRkFwUpuMTWrVs1ceJEnTt3ztVDKTJWr15NoJJ06dIlTZw4MdcD6+1Yt26dnn32WbVu3VrR0dGaOnWqq4eUL7333ntq3769goKC5OXlpcqVK+vRRx/VkSNHsryN119/Xf7+/urXr1+OxjB16lTNnz9fQ4cO1UcffaT+/ftLkt5++2316dNHFStWlM1mU1RUVKbrjxw5Urt379aKFStytH8AhR8ZyXpkpL+QkQqu/JqRjh07pkmTJqlZs2YqWbKkypQpo7vuuksbNmzIsD4ZqWgq5uoBoGjaunWrJk2apKioKJUoUcLVwykSVq9erTlz5mQauC5fvqxixYrGn4NLly5p0qRJkqS77rory+u99957SktLy5Mxbdq0SW5ubvrggw/k6emZJ/vIDa5+nezatUuVK1fWfffdp5IlSyo2NlbvvfeeVq5cqd27d6tcuXI3XT85OVmvv/66Ro0aJXd39xyNYdOmTWrRooUmTJjg1P6Pf/xD58+fV7NmzXTixIkbrh8cHKz7779fM2fO1H333ZejMQAo3MhI1iMj/YWMlHOufp3k14z01ltv6R//+Id69OihyMhIpaSk6F//+pc6d+6sDz/8UI8++qijLxmpaCoaf10BF7t06ZKKFy+eoT0lJUVpaWkuf4P19vZ26f7zs4sXL8rX11ceHh55to/4+Hj5+Pjc8nWQlpampKQkl/28XP06mTt3boa2Hj16qEmTJvrXv/6lsWPH3nT9lStX6tSpU3rwwQdzPIb4+HjVqVMnQ/s333zjODvKz8/vptt48MEH1adPH/3666+qUqVKjscCAIUBGangIiP9j6tfJ/k1I3Xo0EFHjx5VmTJlHG2PP/64GjRooPHjxzsVpCQyUlHEV/ZguYkTJ2rMmDGSpMqVK8tms8lmszlOKU1JSdGUKVNUtWpVeXl5qVKlSnrhhRd09epVp+1UqlRJ9957r9atW6cGDRrI29tbderU0eeff56jcX388cdq1qyZihcvrpIlS6pdu3Zat26dU5+5c+fqjjvukJeXl8qVK6dhw4ZlOKX+rrvuUt26dbVz5061a9dOxYsX1wsvvKAjR47IZrNp5syZmj17tuP49u3bJ0k6cOCAevfurVKlSsnb21tNmjTJ0imr3333neOrQl5eXgoNDdWoUaN0+fJlR5+oqCjNmTNHkhzzfe331zP73vuuXbt09913y263y8/PT506ddK///1vpz7z58+XzWbTli1bNHr0aAUGBsrX11c9e/bUqVOnbjn2a6V/p/7nn3/W3/72NwUEBCgwMFAvvfSSjDE6duyY7r//ftntdgUHB+uf//yn0/pJSUkaP368GjdurICAAPn6+qpt27b6+uuvHX2OHDmiwMBASdKkSZMc85B+7FFRUfLz89Phw4d1zz33yN/fX4888ohj2bXflZ8wYYLc3Ny0ceNGp3EMGTJEnp6e2r17d5aO22azKTo6WhcvXnSMZ/78+Y5lw4cP18KFCx2vu7Vr10qSZs6cqVatWql06dLy8fFR48aNtXTp0gzbv3z5sp588kmVKVNG/v7+uu+++/THH3/k6JoYma3z/fffq2nTpvL29lbVqlX1zjvvZLru+vXr1aZNG5UoUUJ+fn6qWbOmXnjhhWztPzPpP5OsfLVl+fLlqlSpkqpWrZrpsrp168rb21t169bVsmXLnJanX5skNjZWq1atyvB3KywsLMvXhAgPD5ckffHFF1nqD6DoICORkTJDRiIj5UR+yEh33HGHUzFKkry8vHTPPffo999/1/nz552WkZGKHs6QguUeeOAB/fzzz/q///s/vfbaa44/UulvgoMGDdKCBQvUu3dvPf300/rhhx80bdo07d+/P8MfwEOHDqlv3756/PHHFRkZqejoaPXp00dr165V586dszymSZMmaeLEiWrVqpUmT54sT09P/fDDD9q0aZO6dOki6a8wMGnSJIWHh2vo0KE6ePCg3n77be3YsUNbtmxx+nTozz//1N13361+/frpb3/7m4KCghzLoqOjdeXKFQ0ZMkReXl4qVaqU9u7dq9atW6t8+fIaO3asfH19tWTJEvXo0UOfffaZevbsecOxf/rpp7p06ZKGDh2q0qVLa/v27XrzzTf1+++/69NPP5Uk/f3vf9fx48e1fv16ffTRR7ecj71796pt27ay2+169tln5eHhoXfeeUd33XWXvvnmmwwXHBwxYoRKliypCRMm6MiRI5o9e7aGDx+uxYsXZ/lnkK5v376qXbu2pk+frlWrVunll19WqVKl9M4776hjx476xz/+oYULF+qZZ55R06ZN1a5dO0lSYmKi3n//fT300EMaPHiwzp8/rw8++EARERHavn27GjRooMDAQL399tsaOnSoevbsqQceeECSVK9ePcf+U1JSFBERoTZt2mjmzJmZfmorSS+++KK+/PJLDRw4UHv27JG/v7+++uorvffee5oyZYrq16+fpeP96KOP9O6772r79u16//33JUmtWrVyLN+0aZOWLFmi4cOHq0yZMo5w8frrr+u+++7TI488oqSkJC1atEh9+vTRypUr1a1bN8f6UVFRWrJkifr3768WLVrom2++cVp+O/bs2aMuXbooMDBQEydOVEpKiiZMmOD0epf+ej3de++9qlevniZPniwvLy/98ssv2rJlS472++effyo1NVVHjx7V5MmTJUmdOnW65Xpbt25Vo0aNMrSvW7dOvXr1Up06dTRt2jT9+eefevTRR1WhQgVHn9q1a+ujjz7SqFGjVKFCBT399NOS/vd3KzsCAgJUtWpVbdmyRaNGjcr2+gAKLzISGelmyEhkpFspKBkpLi5OxYsXz/AaIiMVQQZwgVdffdVIMrGxsU7tMTExRpIZNGiQU/szzzxjJJlNmzY52sLCwowk89lnnznaEhISTEhIiGnYsGGWx3Lo0CHj5uZmevbsaVJTU52WpaWlGWOMiY+PN56enqZLly5Ofd566y0jyXz44YeOtvbt2xtJZt68eU7bio2NNZKM3W438fHxTss6depk7rzzTnPlyhWnfbdq1cpUr17d0fb1118bSebrr792tF26dCnDMU2bNs3YbDbz22+/OdqGDRtmbvQrL8lMmDDB8bxHjx7G09PTHD582NF2/Phx4+/vb9q1a+doi46ONpJMeHi4Y66MMWbUqFHG3d3dnDt3LtP9ZWbChAlGkhkyZIijLSUlxVSoUMHYbDYzffp0R/vZs2eNj4+PiYyMdOp79epVp22ePXvWBAUFmccee8zRdurUqQzHmy4yMtJIMmPHjs10WVhYmFPbnj17jKenpxk0aJA5e/asKV++vGnSpIlJTk7O8nGnb9vX1zdDuyTj5uZm9u7dm2HZ9T/3pKQkU7duXdOxY0dH286dO40kM3LkSKe+UVFRN5yDm8nsdeLt7e30Otu3b59xd3d3eq299tprRpI5depUtvZ3I15eXkaSkWRKly5t3njjjVuuk5ycbGw2m3n66aczLGvQoIEJCQlxer2uW7fOSMrwMw8LCzPdunW76b58fX2dXpuZ6dKli6ldu/Ytxw2g6CEjkZGuR0YiI2VVfs9Ixvz1d8Xb29v0798/0+VkpKKFr+whX1m9erUkafTo0U7t6ZX2VatWObWXK1fO6ZMxu92uAQMGaNeuXYqLi8vSPpcvX660tDSNHz9ebm7OvxLpp2xv2LBBSUlJGjlypFOfwYMHy263ZxiXl5dXhu9Ep+vVq5fTJwZnzpzRpk2b9OCDD+r8+fM6ffq0Tp8+rT///FMRERE6dOiQ/vjjjxuO38fHx/Hvixcv6vTp02rVqpWMMdq1a1eW5uBaqampWrdunXr06OH03e2QkBA9/PDD+v7775WYmOi0zpAhQ5xOb2/btq1SU1P122+/ZXv/gwYNcvzb3d1dTZo0kTFGAwcOdLSXKFFCNWvW1K+//urUN/36AmlpaTpz5oxSUlLUpEkT/fTTT9kaw9ChQ7PUr27dupo0aZLef/99RURE6PTp01qwYEGuXtSyffv2mV6z6Nqf+9mzZ5WQkKC2bds6HWv6qetPPPGE07ojRoy47XGlpqbqq6++Uo8ePVSxYkVHe+3atRUREeHUN/2ivF988UWuXPR0zZo1Wr16tf75z3+qYsWKunjx4i3XOXPmjIwxKlmypFP7iRMnFBMTo8jISAUEBDjaO3funOm855aSJUvq9OnTebZ9AIUPGYmMREZyRkbKKL9npEuXLqlPnz7y8fHR9OnTM+1DRipaKEghX/ntt9/k5uamatWqObUHBwerRIkSGd68q1WrluG6LTVq1JCkLN/m9PDhw3Jzc7vpH9b0/dasWdOp3dPTU1WqVMkwrvLly9/w4ouVK1d2ev7LL7/IGKOXXnpJgYGBTo/0u1TEx8ffcGxHjx5VVFSUSpUqJT8/PwUGBqp9+/aSpISEhBuudyOnTp3SpUuXMhyr9NcbaVpamo4dO+bUfu2brSTHG9rZs2ezvf/rtxUQECBvb+8M3z8PCAjIsP0FCxaoXr168vb2VunSpRUYGKhVq1Zlax6KFSvmdBryrYwZM0b169fX9u3bNWHChFwvYlz/ekm3cuVKtWjRQt7e3ipVqpTjVPtrjzX99+n6bVz/+5UTp06d0uXLl1W9evUMy65/7fTt21etW7fWoEGDFBQUpH79+mnJkiU5Dl4dOnTQ3XffrdGjR+vTTz/VpEmT9NZbb2VpXWOM0/P0392sHEduMsZk+ZpTACCRkchIZKTrkZEyys8ZKTU1Vf369dO+ffu0dOnSG975j4xUtHANKeRLBf2P0LWfzNxqWfobzjPPPJPhU5N0N3pzTE1NVefOnXXmzBk999xzqlWrlnx9ffXHH38oKioqz27Be70b3R72+je2nG4rK9v/+OOPFRUVpR49emjMmDEqW7as3N3dNW3aNB0+fDjL+/fy8srwKfDN/Prrrzp06JCkv64XkNsyey199913uu+++9SuXTvNnTtXISEh8vDwUHR0tD755JNcH8Pt8vHx0bfffquvv/5aq1at0tq1a7V48WJ17NhR69aty/HthSWpatWqatiwoRYuXKjhw4ffsF+pUqVks9ly9B+AvHD27NkM/4EAgKwgIzkjI5GRrkVG+p/8lpEGDx6slStXauHCherYseMN+5GRihYKUnCJG4WpsLAwpaWl6dChQ6pdu7aj/eTJkzp37pzCwsKc+qd/cnbt9n7++WdJcrrbx81UrVpVaWlp2rdvnxo0aHDDcUnSwYMHnU7RTkpKUmxsrOOOEDmRvj0PD49sb2fPnj36+eeftWDBAg0YMMDRvn79+gx9sxpgAwMDVbx4cR08eDDDsgMHDsjNzU2hoaHZGqcVli5dqipVqujzzz93Otb0T1DT5WaQT0tLU1RUlOx2u0aOHKmpU6eqd+/ejguB5pXPPvtM3t7e+uqrr+Tl5eVoj46OduqX/vsUGxvr9OnWL7/8cttjCAwMlI+PjyNoXiuz146bm5s6deqkTp06adasWZo6darGjRunr7/++rZ+f6S/7pJz/R2mrlesWDFVrVpVsbGxTu3pv9tZPY7cEhsbm+WLugIoWshI/0NGyh1kJDLSzViRkcaMGaPo6GjNnj1bDz300E37kpGKFr6yB5fw9fWVlPE2pPfcc48kafbs2U7ts2bNkqQMd744fvy4011lEhMT9a9//UsNGjRQcHBwlsbSo0cPubm5afLkyRk+LUv/dCk8PFyenp564403nD5x+uCDD5SQkHBbd+QoW7as7rrrLr3zzjs6ceJEhuU3uzVw+qcm147JGKPXX389Q98bzXlm2+zSpYu++OILp1P6T548qU8++URt2rSR3W6/6TZcIbO5+OGHH7Rt2zanful388jKLXBvZdasWdq6daveffddTZkyRa1atdLQoUPz/Hvv7u7ustlsSk1NdbQdOXJEy5cvd+qX/mny3LlzndrffPPNXBlDRESEli9frqNHjzra9+/fr6+++sqp75kzZzKsn/4fm1uFpHQpKSmZfnK3fft27dmzR02aNLnlNlq2bKkff/zRqS0kJEQNGjTQggULnE7lX79+veN247ktISFBhw8fdrpTEACkIyP9Dxkpd5CRyEi3kpcZ6dVXX9XMmTP1wgsv6KmnnrppXzJS0cMZUnCJxo0bS5LGjRunfv36ycPDQ927d1f9+vUVGRmpd999V+fOnVP79u21fft2LViwQD169FCHDh2ctlOjRg0NHDhQO3bsUFBQkD788EOdPHkyw6cgN1OtWjWNGzdOU6ZMUdu2bfXAAw/Iy8tLO3bsULly5TRt2jQFBgbq+eef16RJk9S1a1fdd999OnjwoObOnaumTZvqb3/7223Nx5w5c9SmTRvdeeedGjx4sKpUqaKTJ09q27Zt+v3337V79+5M16tVq5aqVq2qZ555Rn/88Yfsdrs+++yzTN+U0uf8ySefVEREhNzd3dWvX79Mt/vyyy9r/fr1atOmjZ544gkVK1ZM77zzjq5evaoZM2bc1rHmlXvvvVeff/65evbsqW7duik2Nlbz5s1TnTp1dOHCBUc/Hx8f1alTR4sXL1aNGjVUqlQp1a1bV3Xr1s3W/vbv36+XXnpJUVFR6t69uyRp/vz5atCggZ544gktWbIkV4/vWt26ddOsWbPUtWtXPfzww4qPj9ecOXNUrVo1/ec//3H0a9y4sXr16qXZs2frzz//dNzSOP0T8tv9JHTSpElau3at2rZtqyeeeEIpKSl68803dccddziNY/Lkyfr222/VrVs3hYWFKT4+XnPnzlWFChXUpk2bLO3rwoULCg0NVd++fXXHHXfI19dXe/bsUXR0tAICAvTSSy/dchv333+/PvroI/3888+O66hI0rRp09StWze1adNGjz32mM6cOeM4jmtfOzfz5ZdfOn5Pk5OT9Z///Ecvv/yyJOm+++5zum32hg0bZIzR/fffn6VtAyhayEjOyEi3j4xERrqVvMpIy5Yt07PPPqvq1aurdu3a+vjjj52Wd+7cWUFBQY7nZKQiyIpb+QGZmTJliilfvrxxc3Nzur1xcnKymTRpkqlcubLx8PAwoaGh5vnnn3e63a8x/7u16FdffWXq1atnvLy8TK1atcynn36ao/F8+OGHpmHDhsbLy8uULFnStG/f3qxfv96pz1tvvWVq1aplPDw8TFBQkBk6dKg5e/asU5/27dubO+64I8P2029p/Oqrr2a6/8OHD5sBAwaY4OBg4+HhYcqXL2/uvfdes3TpUkefzG5pvG/fPhMeHm78/PxMmTJlzODBg83u3buNJBMdHe3ol5KSYkaMGGECAwONzWZzuuWsMrm97U8//WQiIiKMn5+fKV68uOnQoYPZunWrU5/0Wxrv2LHDqT2zcd5K+i2Nr7/t7Y1u93v9PKelpZmpU6easLAw4+XlZRo2bGhWrlyZ6a2It27daho3bmw8PT2djv1G+0pflr6dlJQU07RpU1OhQoUMt21+/fXXjSSzePHiLB/7zW5pPGzYsEzX+eCDD0z16tUdr/vo6GjHHF7r4sWLZtiwYaZUqVLGz8/P9OjRwxw8eNBIcrpNdFZk9jr55ptvHHNZpUoVM2/evAzj2Lhxo7n//vtNuXLljKenpylXrpx56KGHzM8//5zlfV+9etU89dRTpl69esZutxsPDw8TFhZmBg4cmOHW6DfbRpkyZcyUKVMyLPvss89M7dq1jZeXl6lTp475/PPPM33t3OiWxum3w87sce3voTHG9O3b17Rp0yarhw6gCCIjOSMjkZGuR0b6n/yckdKP90aP638PyEhFj82YHFxRD8gHKlWqpLp162rlypWuHgpQoMTExKhhw4b6+OOP9cgjj7h6OJaaMmWKoqOjdejQodu6UGhOxcXFqXLlylq0aBGf/gHIM2QkIGfISGQkWItrSAFAIXb58uUMbbNnz5abm5vatWvnghG51qhRo3ThwgUtWrTIJfufPXu27rzzToIWAAAuRkZyRkaCK3ANKRRqcXFxN13u4+OjgIAAi0ZTNF24cOGW3zEPDAx0yScxee3UqVNOF9W8nqenp0qVKpWnY5gxY4Z27typDh06qFixYlqzZo3WrFmjIUOGKDQ0VKmpqTe9KKwk+fn5yc/PL8/GaOU8+fn5KT4+Ple2lRPTp0932b4B4FpkJNcjI5GRboWMhELP1d8ZBHLqRtdyuZZu8p1lSSYyMtKawRZht/ruuK65NkZhExYWdtPjbt++fZ6PYd26daZ169amZMmSxsPDw1StWtVMnDjRJCcnG2P+d92Omz2uvyZCbssP8wQAhQkZqWAgI5GRbiU/zBOQl7iGFAq1DRs23HR5uXLlVKdOHYtGUzT9+uuv+vXXX2/ap02bNvL29rZoRNbZsmVLpqeDpytZsqTjzj6ucuXKFX3//fc37VOlShVVqVIlz8ZQEOYJAAobMpLrkZHy93s/GQnIexSkAAAAAAAAYCkuag4AAAAAAABLFemLmqelpen48ePy9/eXzWZz9XAAAIAFjDE6f/68ypUrJzc3PpvLDBkJAICix+qMVKQLUsePH1doaKirhwEAAFzg2LFjqlChgquHkS+RkQAAKLqsykhFuiDl7+8v6a/JttvtLh4NAACwQmJiokJDQx05ABmRkQAAKHqszkhFuiCVfgq63W4nbAEAUMTwVbQbIyMBAFB0WZWRuHACAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLFelrSAEAcDOpqalKTk529TCQTR4eHnJ3d3f1MAAAKLTISAVTfstIFKQAALiOMUZxcXE6d+6cq4eCHCpRooSCg4O5cDkAALmIjFTw5aeMREEKAIDrpAetsmXLqnjx4vniDRtZY4zRpUuXFB8fL0kKCQlx8YgAACg8yEgFV37MSBSkAAC4RmpqqiNolS5d2tXDQQ74+PhIkuLj41W2bNl8dWo6AAAFFRmp4MtvGYmLmgMAcI306yEUL17cxSPB7Uj/+XF9CwAAcgcZqXDITxmJghQAAJngFPSCjZ8fAAB5g/fYgi0//fwoSAEAAAAAAMBSFKQAACjgbDbbTR8TJ0506diWL19+W9t49913ddddd8lut8tms3FnHwAAkGWFOSedOXNGI0aMUM2aNeXj46OKFSvqySefVEJCQu4NMg9xUXMAALIoee33lu3Lo2ubLPc9ceKE49+LFy/W+PHjdfDgQUebn59ftvadlJQkT0/PbK2Tly5duqSuXbuqa9euev755109HAAAcB0rM5JETkp3/PhxHT9+XDNnzlSdOnX022+/6fHHH9fx48e1dOlSVw/vljhDKg8lr/0+wwMAgNwWHBzseAQEBMhmszmeX7x4UY888oiCgoLk5+enpk2basOGDU7rV6pUSVOmTNGAAQNkt9s1ZMgQSdJ7772n0NBQFS9eXD179tSsWbNUokQJp3W/+OILNWrUSN7e3qpSpYomTZqklJQUx3YlqWfPnrLZbI7nu3fvVocOHeTv7y+73a7GjRvrxx9/vOHxjRw5UmPHjlWLFi1yZ8LgcmQkAIBVCnNOqlu3rj777DN1795dVatWVceOHfXKK6/oyy+/dOwnP6MgBQBAIXbhwgXdc8892rhxo3bt2qWuXbuqe/fuOnr0qFO/mTNnqn79+tq1a5deeuklbdmyRY8//rieeuopxcTEqHPnznrllVec1vnuu+80YMAAPfXUU9q3b5/eeecdzZ8/39Fvx44dkqTo6GidOHHC8fyRRx5RhQoVtGPHDu3cuVNjx46Vh4eHBbMBAADwP4UxJyUkJMhut6tYsfz/hbj8P0IAAJBj9evXV/369R3Pp0yZomXLlmnFihUaPny4o71jx456+umnHc/HjRunu+++W88884wkqUaNGtq6datWrlzp6DNp0iSNHTtWkZGRkqQqVapoypQpevbZZzVhwgQFBgZKkkqUKKHg4GDHekePHtWYMWNUq1YtSVL16tXz4MgBAABurrDlpNOnT2vKlCmOs7jyO86QAgCgELtw4YKeeeYZ1a5dWyVKlJCfn5/279+f4ZO/Jk2aOD0/ePCgmjVr5tR2/fPdu3dr8uTJ8vPzczwGDx6sEydO6NKlSzcc0+jRozVo0CCFh4dr+vTpOnz48G0eJQAAQPYVppyUmJiobt26qU6dOi69UHt2UJACAKAQe+aZZ7Rs2TJNnTpV3333nWJiYnTnnXcqKSnJqZ+vr2+2t33hwgVNmjRJMTExjseePXt06NAheXt733C9iRMnau/everWrZs2bdqkOnXqaNmyZdnePwAAwO0oLDnp/Pnz6tq1q/z9/bVs2bICcykEvrIHAEAhtmXLFkVFRalnz56S/gpHR44cueV6NWvWdFzLIN31zxs1aqSDBw+qWrVqN9yOh4eHUlNTM7TXqFFDNWrU0KhRo/TQQw8pOjraMUYAAAArFIaclJiYqIiICHl5eWnFihU3LXblNxSkAAAoxKpXr67PP/9c3bt3l81m00svvaS0tLRbrjdixAi1a9dOs2bNUvfu3bVp0yatWbNGNpvN0Wf8+PG69957VbFiRfXu3Vtubm7avXu3/vvf/+rll1+W9NcdZDZu3KjWrVvLy8tL3t7eGjNmjHr37q3KlSvr999/144dO9SrV68bjiUuLk5xcXH65ZdfJEl79uyRv7+/KlasqFKlSt3mDAEAgKKqoOekxMREdenSRZcuXdLHH3+sxMREJSYmSpICAwPl7u6eC7OUd/jKHgAAhdisWbNUsmRJtWrVSt27d1dERIQaNWp0y/Vat26tefPmadasWapfv77Wrl2rUaNGOX3qFhERoZUrV2rdunVq2rSpWrRooddee01hYWGOPv/85z+1fv16hYaGqmHDhnJ3d9eff/6pAQMGqEaNGnrwwQd19913a9KkSTccy7x589SwYUMNHjxYktSuXTs1bNhQK1asuI2ZAQAARV1Bz0k//fSTfvjhB+3Zs0fVqlVTSEiI43Hs2LHbn6A8ZjPGGFcPwlUSExMVEBDguC1ibkte+32GNo+ubXJ9PwCA3HPlyhXFxsaqcuXKBeqUZysMHjxYBw4c0HfffefqodzSzX6Oef3+XxiQkQAA1yMj3VxByUn5KSPxlT0AAJCpmTNnqnPnzvL19dWaNWu0YMECzZ0719XDAgAAcDly0u2jIAUAADK1fft2zZgxQ+fPn1eVKlX0xhtvaNCgQa4eFgAAgMuRk24fBSkAAJCpJUuWuHoIAAAA+RI56fZxUXMAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAABQCUVFRstlsstls8vDwUFBQkDp37qwPP/xQaWlprh7ebdm7d6969eqlSpUqyWazafbs2a4eEgAAKEAKc05677331LZtW5UsWVIlS5ZUeHi4tm/f7uphZUkxVw8AAICC4vCP71i2r6pN/p7tdbp27aro6Gilpqbq5MmTWrt2rZ566iktXbpUK1asULFiBfNt/9KlS6pSpYr69OmjUaNGuXo4AADgOlZmJImcdK3NmzfroYceUqtWreTt7a1//OMf6tKli/bu3avy5cu7eng3xRlSAAAUEl5eXgoODlb58uXVqFEjvfDCC/riiy+0Zs0azZ8/39Hv3LlzGjRokAIDA2W329WxY0ft3r3baVtffvmlmjZtKm9vb5UpU0Y9e/Z0LDt79qwGDBigkiVLqnjx4rr77rt16NAhSdLFixdlt9u1dOlSp+0tX75cvr6+On/+vJKSkjR8+HCFhITI29tbYWFhmjZt2g2Pq2nTpnr11VfVr18/eXl55cJMAQCAoqaw5qSFCxfqiSeeUIMGDVSrVi29//77SktL08aNG3Nh1vIWBSkAAAqxjh07qn79+vr8888dbX369FF8fLzWrFmjnTt3qlGjRurUqZPOnDkjSVq1apV69uype+65R7t27dLGjRvVrFkzx/pRUVH68ccftWLFCm3btk3GGN1zzz1KTk6Wr6+v+vXrp+joaKdxREdHq3fv3vL399cbb7yhFStWaMmSJTp48KAWLlyoSpUqWTIfAAAA6QpjTrp06ZKSk5NVqlSp25scCxTMc9IAAECW1apVS//5z38kSd9//722b9+u+Ph4x9lGM2fO1PLly7V06VINGTJEr7zyivr166dJkyY5tlG/fn1J0qFDh7RixQpt2bJFrVq1kvTXJ3OhoaFavny5+vTpo0GDBqlVq1Y6ceKEQkJCFB8fr9WrV2vDhg2SpKNHj6p69epq06aNbDabwsLCrJwOAAAAh8KWk5577jmVK1dO4eHhtz03eY0zpAAAKOSMMbLZbJKk3bt368KFCypdurT8/Pwcj9jYWB0+fFiSFBMTo06dOmW6rf3796tYsWJq3ry5o6106dKqWbOm9u/fL0lq1qyZ7rjjDi1YsECS9PHHHyssLEzt2rWT9NcnhzExMapZs6aefPJJrVu3Ls+OHQAA4GYKU06aPn26Fi1apGXLlsnb2zv7k2ExzpACAKCQ279/vypXrixJunDhgkJCQrR58+YM/UqUKCFJ8vHxue19Dho0SHPmzNHYsWMVHR2tRx991BH2GjVqpNjYWK1Zs0YbNmzQgw8+qPDw8AzXUwAAAMhrhSUnzZw5U9OnT9eGDRtUr1692x6jFThDCgCAQmzTpk3as2ePevXqJemvkBMXF6dixYqpWrVqTo8yZcpIkurVq3fDC2HWrl1bKSkp+uGHHxxtf/75pw7+P3t3HpZFvf9//AXI4naDK2jiliu5gyJmVkZiYWXpSVoUzSUNPSkntyzXSo95TE3NVvVb+XOpNBPFDNNKOWooHXPLytKOAlbK7QoI8/ujiznegsqNMDfg83Fdc13en/nMzGc+3Hq/fd3DzKFDCgoKMtuefPJJ/frrr5o3b57279+v6Ohoh/3YbDb16dNHb7/9tlasWKGPP/7YvDcDAACAFcpKnTRz5kxNmzZN8fHxCgkJKfR8WI0rpAAAKCMyMjKUkpLi8Djj6dOnq0ePHurXr58kKTw8XGFhYerZs6dmzpypJk2a6Pjx4+YNOkNCQjRp0iTdc889uvXWWxUVFaVLly5p/fr1Gjt2rBo3bqyHHnpIgwcP1ptvvqnKlStr3LhxuuWWW/TQQw+ZY6lSpYoeeeQRjR49Wt26dVOdOnXMdbNnz1atWrXUtm1bubu7a9WqVQoICDC/ebxSZmam9u/fb/75v//9r5KTk1WpUiU1atSo+CYUAACUGWW1TvrnP/+piRMnatmyZapfv75SUlIkyfx1w5KMK6QAACgj4uPjVatWLdWvX1/du3fXl19+qXnz5unTTz+Vh4eHJMnNzU3r169Xly5dNGDAADVp0kRRUVH69ddf5e/vL0m66667tGrVKq1du1Zt2rRR165dtXPnTvM4ixcvVnBwsHr06KGwsDAZhqH169fL09PTYTwDBw5UZmamnnrqKYf2ypUra+bMmQoJCVH79u31yy+/aP369XJ3z78sOX78uNq2bau2bdvqxIkTmjVrltq2batBgwYV5fQBAIAyrKzWSW+88YYyMzPVu3dv1apVy1xmzZpVlNNXLNwMwzBcPQhXsdvt8vX1VXp6umw2W5HvPyv+mzxtnt07F/lxAABF5+LFizpy5IgaNGhQKm4GWZK9//77GjVqlI4fPy4vLy9Lj32tn2Nxf/6XBdRIAIArUSMVLVfVSSWpRuJX9gAAQJE6f/68Tpw4oRkzZujpp5+2PIwCAAAoqaiT/odf2QMAAEVq5syZatasmQICAjR+/HhXDwcAAKDEoE76HwIpAABQpCZPnqysrCwlJCSU+JtpAgAAWIk66X8IpAAAAAAAAGApAikAAAAAAABYikAKAIB83MQPoS0T+PkBAFA8+Iwt3UrSz49ACgCAy3h6ekr66wkoKL1yf365P08AAHBjqJHKhpJUI91QIDVjxgy5ublp5MiRZtvFixcVExOjatWqqVKlSurVq5dSU1Mdtjt69KgiIyNVoUIF1axZU6NHj9alS5cc+mzZskXt2rWTt7e3GjVqpCVLluQ5/oIFC1S/fn35+PgoNDRUO3fuvJHTAQBAHh4e8vPzU1pamv744w9duHBBFy9eZCkly4ULF/THH38oLS1Nfn5+8vDwcMn7iBoJAFDWUCOV7qWk1EiXK1fYDXft2qU333xTrVq1cmgfNWqU4uLitGrVKvn6+mr48OF65JFHtG3bNklSdna2IiMjFRAQoO3bt+vEiRPq16+fPD099corr0iSjhw5osjISA0dOlQffvihEhISNGjQINWqVUsRERGSpBUrVig2NlaLFi1SaGio5syZo4iICB06dEg1a9Ys7GkBAKCAgABJUlpamotHgsLy8/Mzf45Wo0YCAJRV1EilnytrpCu5GYX4BcKzZ8+qXbt2WrhwoV566SW1adNGc+bMUXp6umrUqKFly5apd+/ekqSDBw+qefPmSkxMVMeOHbVhwwb16NFDx48fl7+/vyRp0aJFGjt2rE6ePCkvLy+NHTtWcXFx+v77781jRkVF6fTp04qPj5ckhYaGqn379po/f74kKScnR4GBgRoxYoTGjRtXoPOw2+3y9fVVenq6bDabs9NwXVnx3+Rp8+zeuciPAwAoHtnZ2crKynL1MOAkT0/Pa37rV5yf/9RIBUONBAClGzVS6eTKGik/hbpCKiYmRpGRkQoPD9dLL71kticlJSkrK0vh4eFmW7NmzVS3bl2z2EpMTFTLli3NQkuSIiIiNGzYMO3bt09t27ZVYmKiwz5y++Re9p6ZmamkpCSNHz/eXO/u7q7w8HAlJiYW5pQAAMjDw8OjRFzOjNKDGgkAcDOgRkJRcDqQWr58uXbv3q1du3blWZeSkiIvLy/5+fk5tPv7+yslJcXsc3mhlbs+d921+tjtdl24cEGnTp1SdnZ2vn0OHjx41bFnZGQoIyPDfG23269ztgAAAAVDjQQAAFBwTt3U/NixY3r22Wf14YcfysfHp7jGVGymT58uX19fcwkMDHT1kAAAQBlAjQQAAOAcpwKppKQkpaWlqV27dipXrpzKlSunrVu3at68eSpXrpz8/f2VmZmp06dPO2yXmppq3jQrICAgzxNlcl9fr4/NZlP58uVVvXp1eXh45NvnWjfnGj9+vNLT083l2LFjzpw+AABAvqiRAAAAnONUIHXPPfdo7969Sk5ONpeQkBA98cQT5p89PT2VkJBgbnPo0CEdPXpUYWFhkqSwsDDt3bvX4a78mzZtks1mU1BQkNnn8n3k9sndh5eXl4KDgx365OTkKCEhweyTH29vb9lsNocFAADgRlEjAQAAOMepe0hVrlxZLVq0cGirWLGiqlWrZrYPHDhQsbGxqlq1qmw2m0aMGKGwsDB17NhRktStWzcFBQWpb9++mjlzplJSUvTCCy8oJiZG3t7ekqShQ4dq/vz5GjNmjJ566ilt3rxZK1euVFxcnHnc2NhYRUdHKyQkRB06dNCcOXN07tw5DRgw4IYmBAAAwFnUSAAAAM4p1FP2ruW1116Tu7u7evXqpYyMDEVERGjhwoXmeg8PD61bt07Dhg1TWFiYKlasqOjoaE2dOtXs06BBA8XFxWnUqFGaO3eu6tSpo3feeUcRERFmnz59+ujkyZOaOHGiUlJS1KZNG8XHx+e5iScAAEBJQI0EAADwP26GYRiuHoSr2O12+fr6Kj09vVguTc+K/yZPm2f3zkV+HAAAUHDF/flfFlAjAQBw87G6RnLqHlIAAAAAAADAjSKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYqpyrB1CW/XJ6Q562xursgpEAAACUHNRIAACAK6QAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWMqpQOqNN95Qq1atZLPZZLPZFBYWpg0bNpjrL168qJiYGFWrVk2VKlVSr169lJqa6rCPo0ePKjIyUhUqVFDNmjU1evRoXbp0yaHPli1b1K5dO3l7e6tRo0ZasmRJnrEsWLBA9evXl4+Pj0JDQ7Vz505nTgUAAKDIUCMBAAA4x6lAqk6dOpoxY4aSkpL07bffqmvXrnrooYe0b98+SdKoUaP02WefadWqVdq6dauOHz+uRx55xNw+OztbkZGRyszM1Pbt27V06VItWbJEEydONPscOXJEkZGRuvvuu5WcnKyRI0dq0KBB2rhxo9lnxYoVio2N1aRJk7R79261bt1aERERSktLu9H5AAAAcBo1EgAAgHPcDMMwbmQHVatW1auvvqrevXurRo0aWrZsmXr37i1JOnjwoJo3b67ExER17NhRGzZsUI8ePXT8+HH5+/tLkhYtWqSxY8fq5MmT8vLy0tixYxUXF6fvv//ePEZUVJROnz6t+Ph4SVJoaKjat2+v+fPnS5JycnIUGBioESNGaNy4cQUeu91ul6+vr9LT02Wz2W5kGvJ1ePmEPG2No14u8uMAAICCK+7P/1zUSFdHjQQAQMljVY2Uq9D3kMrOztby5ct17tw5hYWFKSkpSVlZWQoPDzf7NGvWTHXr1lViYqIkKTExUS1btjQLLUmKiIiQ3W43v0FMTEx02Edun9x9ZGZmKikpyaGPu7u7wsPDzT4AAACuQo0EAABwfeWc3WDv3r0KCwvTxYsXValSJa1evVpBQUFKTk6Wl5eX/Pz8HPr7+/srJSVFkpSSkuJQaOWuz113rT52u10XLlzQqVOnlJ2dnW+fgwcPXnPsGRkZysjIMF/b7faCnzgAAMA1UCMBAAAUnNNXSDVt2lTJycnasWOHhg0bpujoaO3fv784xlbkpk+fLl9fX3MJDAx09ZAAAEAZQY0EAABQcE4HUl5eXmrUqJGCg4M1ffp0tW7dWnPnzlVAQIAyMzN1+vRph/6pqakKCAiQJAUEBOR5okzu6+v1sdlsKl++vKpXry4PD498++Tu42rGjx+v9PR0czl27Jizpw8AAJAvaiQAAICCK/Q9pHLl5OQoIyNDwcHB8vT0VEJCgrnu0KFDOnr0qMLCwiRJYWFh2rt3r8OTXjZt2iSbzaagoCCzz+X7yO2Tuw8vLy8FBwc79MnJyVFCQoLZ52q8vb3NxzHnLgAAAMWBGgkAAODqnLqH1Pjx43Xfffepbt26OnPmjJYtW6YtW7Zo48aN8vX11cCBAxUbG6uqVavKZrNpxIgRCgsLU8eOHSVJ3bp1U1BQkPr27auZM2cqJSVFL7zwgmJiYuTt7S1JGjp0qObPn68xY8boqaee0ubNm7Vy5UrFxcWZ44iNjVV0dLRCQkLUoUMHzZkzR+fOndOAAQOKcGoAAAAKhhoJAADAOU4FUmlpaerXr59OnDghX19ftWrVShs3btS9994rSXrttdfk7u6uXr16KSMjQxEREVq4cKG5vYeHh9atW6dhw4YpLCxMFStWVHR0tKZOnWr2adCggeLi4jRq1CjNnTtXderU0TvvvKOIiAizT58+fXTy5ElNnDhRKSkpatOmjeLj4/PcxBMAAMAK1EgAAADOcTMMw3D1IFzFbrfL19dX6enpxXJp+uHlE/K0NY56uciPAwAACq64P//LAmokAABuPlbXSDd8DykAAAAAAADAGQRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACzlVCA1ffp0tW/fXpUrV1bNmjXVs2dPHTp0yKHPxYsXFRMTo2rVqqlSpUrq1auXUlNTHfocPXpUkZGRqlChgmrWrKnRo0fr0qVLDn22bNmidu3aydvbW40aNdKSJUvyjGfBggWqX7++fHx8FBoaqp07dzpzOgAAAEWCGgkAAMA5TgVSW7duVUxMjP79739r06ZNysrKUrdu3XTu3Dmzz6hRo/TZZ59p1apV2rp1q44fP65HHnnEXJ+dna3IyEhlZmZq+/btWrp0qZYsWaKJEyeafY4cOaLIyEjdfffdSk5O1siRIzVo0CBt3LjR7LNixQrFxsZq0qRJ2r17t1q3bq2IiAilpaXdyHwAAAA4jRoJAADAOW6GYRiF3fjkyZOqWbOmtm7dqi5duig9PV01atTQsmXL1Lt3b0nSwYMH1bx5cyUmJqpjx47asGGDevTooePHj8vf31+StGjRIo0dO1YnT56Ul5eXxo4dq7i4OH3//ffmsaKionT69GnFx8dLkkJDQ9W+fXvNnz9fkpSTk6PAwECNGDFC48aNK9D47Xa7fH19lZ6eLpvNVthpuKrDyyfkaWsc9XKRHwcAABRccX/+S9RI10ONBABAyWNFjXS5G7qHVHp6uiSpatWqkqSkpCRlZWUpPDzc7NOsWTPVrVtXiYmJkqTExES1bNnSLLQkKSIiQna7Xfv27TP7XL6P3D65+8jMzFRSUpJDH3d3d4WHh5t9AAAAXIUaCQAA4NrKFXbDnJwcjRw5UrfffrtatGghSUpJSZGXl5f8/Pwc+vr7+yslJcXsc3mhlbs+d921+tjtdl24cEGnTp1SdnZ2vn0OHjx41TFnZGQoIyPDfG232504YwAAgOujRgIAALi+Ql8hFRMTo++//17Lly8vyvEUq+nTp8vX19dcAgMDXT0kAABQxlAjAQAAXF+hAqnhw4dr3bp1+vLLL1WnTh2zPSAgQJmZmTp9+rRD/9TUVAUEBJh9rnyiTO7r6/Wx2WwqX768qlevLg8Pj3z75O4jP+PHj1d6erq5HDt2zLkTBwAAuAZqJAAAgIJxKpAyDEPDhw/X6tWrtXnzZjVo0MBhfXBwsDw9PZWQkGC2HTp0SEePHlVYWJgkKSwsTHv37nV40sumTZtks9kUFBRk9rl8H7l9cvfh5eWl4OBghz45OTlKSEgw++TH29tbNpvNYQEAALhR1EgAAADOceoeUjExMVq2bJk+/fRTVa5c2byfga+vr8qXLy9fX18NHDhQsbGxqlq1qmw2m0aMGKGwsDB17NhRktStWzcFBQWpb9++mjlzplJSUvTCCy8oJiZG3t7ekqShQ4dq/vz5GjNmjJ566ilt3rxZK1euVFxcnDmW2NhYRUdHKyQkRB06dNCcOXN07tw5DRgwoKjmBgAAoECokQAAAJzjVCD1xhtvSJLuuusuh/bFixerf//+kqTXXntN7u7u6tWrlzIyMhQREaGFCxeafT08PLRu3ToNGzZMYWFhqlixoqKjozV16lSzT4MGDRQXF6dRo0Zp7ty5qlOnjt555x1FRESYffr06aOTJ09q4sSJSklJUZs2bRQfH5/nJp4AAADFjRoJAADAOW6GYRiuHoSr2O12+fr6Kj09vVguTT+8fEKetsZRLxf5cQAAQMEV9+d/WUCNBADAzcfqGqnQT9kDAAAAAAAACoNACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClnA6kvvrqKz3wwAOqXbu23NzctGbNGof1hmFo4sSJqlWrlsqXL6/w8HAdPnzYoc+ff/6pJ554QjabTX5+fho4cKDOnj3r0Oc///mP7rjjDvn4+CgwMFAzZ87MM5ZVq1apWbNm8vHxUcuWLbV+/XpnTwcAAKBIUCMBAAAUnNOB1Llz59S6dWstWLAg3/UzZ87UvHnztGjRIu3YsUMVK1ZURESELl68aPZ54okntG/fPm3atEnr1q3TV199pSFDhpjr7Xa7unXrpnr16ikpKUmvvvqqJk+erLfeesvss337dj322GMaOHCg9uzZo549e6pnz576/vvvnT0lAACAG0aNBAAAUHBuhmEYhd7YzU2rV69Wz549Jf31zV/t2rX1j3/8Q88995wkKT09Xf7+/lqyZImioqJ04MABBQUFadeuXQoJCZEkxcfH6/7779dvv/2m2rVr64033tCECROUkpIiLy8vSdK4ceO0Zs0aHTx4UJLUp08fnTt3TuvWrTPH07FjR7Vp00aLFi0q0Pjtdrt8fX2Vnp4um81W2Gm4qsPLJ+Rpaxz1cpEfBwAAFFxxf/5L1EjXQ40EAEDJY0WNdLkivYfUkSNHlJKSovDwcLPN19dXoaGhSkxMlCQlJibKz8/PLLQkKTw8XO7u7tqxY4fZp0uXLmahJUkRERE6dOiQTp06Zfa5/Di5fXKPAwAAUFJQIwEAADgqV5Q7S0lJkST5+/s7tPv7+5vrUlJSVLNmTcdBlCunqlWrOvRp0KBBnn3krqtSpYpSUlKueZz8ZGRkKCMjw3xtt9udOT0AAIBCoUYCAABwdFM9ZW/69Ony9fU1l8DAQFcPCQAAwOWokQAAgNWKNJAKCAiQJKWmpjq0p6ammusCAgKUlpbmsP7SpUv6888/Hfrkt4/Lj3G1Prnr8zN+/Hilp6eby7Fjx5w9RQAAAKdRIwEAADgq0kCqQYMGCggIUEJCgtlmt9u1Y8cOhYWFSZLCwsJ0+vRpJSUlmX02b96snJwchYaGmn2++uorZWVlmX02bdqkpk2bqkqVKmafy4+T2yf3OPnx9vaWzWZzWAAAAIobNRIAAIAjpwOps2fPKjk5WcnJyZL+uklncnKyjh49Kjc3N40cOVIvvfSS1q5dq71796pfv36qXbu2+ZSZ5s2bq3v37ho8eLB27typbdu2afjw4YqKilLt2rUlSY8//ri8vLw0cOBA7du3TytWrNDcuXMVGxtrjuPZZ59VfHy8/vWvf+ngwYOaPHmyvv32Ww0fPvzGZwUAAMBJ1EgAAAAF5/RNzb/99lvdfffd5uvcAig6OlpLlizRmDFjdO7cOQ0ZMkSnT59W586dFR8fLx8fH3ObDz/8UMOHD9c999wjd3d39erVS/PmzTPX+/r66vPPP1dMTIyCg4NVvXp1TZw4UUOGDDH7dOrUScuWLdMLL7yg559/Xo0bN9aaNWvUokWLQk0EAADAjaBGAgAAKDg3wzAMVw/CVex2u3x9fZWenl4sl6YfXj4hT1vjqJeL/DgAAKDgivvzvyygRgIA4OZjdY10Uz1lDwAAAAAAAK5HIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUqU+kFqwYIHq168vHx8fhYaGaufOna4eEgAAgMtRIwEAgJKsVAdSK1asUGxsrCZNmqTdu3erdevWioiIUFpamquHBgAA4DLUSAAAoKQr1YHU7NmzNXjwYA0YMEBBQUFatGiRKlSooPfee8/VQwMAAHAZaiQAAFDSldpAKjMzU0lJSQoPDzfb3N3dFR4ersTERBeODAAAwHWokQAAQGlQztUDKKzff/9d2dnZ8vf3d2j39/fXwYMH890mIyNDGRkZ5uv09HRJkt1uL5Yxnj2fkaetuI4FAAAKJvez2DAMF4+keFAjAQCAwrC6Riq1gVRhTJ8+XVOmTMnTHhgYaN0gBv7LumMBAICrOnPmjHx9fV09jBKBGgkAAOSyqkYqtYFU9erV5eHhodTUVIf21NRUBQQE5LvN+PHjFRsba77OycnRn3/+qWrVqsnNza1Ix2e32xUYGKhjx47JZrMV6b5xdcy79Zhz12DeXYN5t15xzLlhGDpz5oxq165dJPsraaiRkB/m3TWYd9dh7l2DeXeNopp3q2ukUhtIeXl5KTg4WAkJCerZs6ekv4qnhIQEDR8+PN9tvL295e3t7dDm5+dXrOO02Wz8RXQB5t16zLlrMO+uwbxbr6jnvCxfGUWNhGth3l2DeXcd5t41mHfXKIp5t7JGKrWBlCTFxsYqOjpaISEh6tChg+bMmaNz585pwIABrh4aAACAy1AjAQCAkq5UB1J9+vTRyZMnNXHiRKWkpKhNmzaKj4/PcxNPAACAmwk1EgAAKOlKdSAlScOHD7/q5eeu5O3trUmTJuW5/B3Fi3m3HnPuGsy7azDv1mPOC48aCZdj3l2DeXcd5t41mHfXKK3z7maU1WceAwAAAAAAoERyd/UAAAAAAAAAcHMhkAIAAAAAAIClCKQAAAAAAABgKQKpG7BgwQLVr19fPj4+Cg0N1c6dO6/Zf9WqVWrWrJl8fHzUsmVLrV+/3qKRli3OzPvbb7+tO+64Q1WqVFGVKlUUHh5+3Z8T8nL2vZ5r+fLlcnNzU8+ePYt3gGWUs/N++vRpxcTEqFatWvL29laTJk34d6YQnJ33OXPmqGnTpipfvrwCAwM1atQoXbx40aLRln5fffWVHnjgAdWuXVtubm5as2bNdbfZsmWL2rVrJ29vbzVq1EhLliwp9nHCOdRIrkGN5BrUSa5DreQa1ErWK7P1koFCWb58ueHl5WW89957xr59+4zBgwcbfn5+Rmpqar79t23bZnh4eBgzZ8409u/fb7zwwguGp6ensXfvXotHXro5O++PP/64sWDBAmPPnj3GgQMHjP79+xu+vr7Gb7/9ZvHISy9n5zzXkSNHjFtuucW44447jIceesiawZYhzs57RkaGERISYtx///3GN998Yxw5csTYsmWLkZycbPHISzdn5/3DDz80vL29jQ8//NA4cuSIsXHjRqNWrVrGqFGjLB556bV+/XpjwoQJxieffGJIMlavXn3N/j///LNRoUIFIzY21ti/f7/x+uuvGx4eHkZ8fLw1A8Z1USO5BjWSa1AnuQ61kmtQK7lGWa2XCKQKqUOHDkZMTIz5Ojs726hdu7Yxffr0fPs/+uijRmRkpENbaGio8fTTTxfrOMsaZ+f9SpcuXTIqV65sLF26tLiGWOYUZs4vXbpkdOrUyXjnnXeM6OhoCq1CcHbe33jjDaNhw4ZGZmamVUMsk5yd95iYGKNr164ObbGxscbtt99erOMsqwpSYI0ZM8a47bbbHNr69OljREREFOPI4AxqJNegRnIN6iTXoVZyDWol1ytL9RK/slcImZmZSkpKUnh4uNnm7u6u8PBwJSYm5rtNYmKiQ39JioiIuGp/5FWYeb/S+fPnlZWVpapVqxbXMMuUws751KlTVbNmTQ0cONCKYZY5hZn3tWvXKiwsTDExMfL391eLFi30yiuvKDs726phl3qFmfdOnTopKSnJvFT9559/1vr163X//fdbMuabEZ+nJRs1kmtQI7kGdZLrUCu5BrVS6VFaPlvLuXoApdHvv/+u7Oxs+fv7O7T7+/vr4MGD+W6TkpKSb/+UlJRiG2dZU5h5v9LYsWNVu3btPH85kb/CzPk333yjd999V8nJyRaMsGwqzLz//PPP2rx5s5544gmtX79eP/74o5555hllZWVp0qRJVgy71CvMvD/++OP6/fff1blzZxmGoUuXLmno0KF6/vnnrRjyTelqn6d2u10XLlxQ+fLlXTQySNRIrkKN5BrUSa5DreQa1EqlR2mpl7hCCjeNGTNmaPny5Vq9erV8fHxcPZwy6cyZM+rbt6/efvttVa9e3dXDuank5OSoZs2aeuuttxQcHKw+ffpowoQJWrRokauHVqZt2bJFr7zyihYuXKjdu3frk08+UVxcnKZNm+bqoQFAgVEjWYM6ybWolVyDWgnXwhVShVC9enV5eHgoNTXVoT01NVUBAQH5bhMQEOBUf+RVmHnPNWvWLM2YMUNffPGFWrVqVZzDLFOcnfOffvpJv/zyix544AGzLScnR5JUrlw5HTp0SLfeemvxDroMKMx7vVatWvL09JSHh4fZ1rx5c6WkpCgzM1NeXl7FOuayoDDz/uKLL6pv374aNGiQJKlly5Y6d+6chgwZogkTJsjdne99itrVPk9tNluJ+bbvZkaN5BrUSK5BneQ61EquQa1UepSWeomffiF4eXkpODhYCQkJZltOTo4SEhIUFhaW7zZhYWEO/SVp06ZNV+2PvAoz75I0c+ZMTZs2TfHx8QoJCbFiqGWGs3PerFkz7d27V8nJyeby4IMP6u6771ZycrICAwOtHH6pVZj3+u23364ff/zRLGwl6YcfflCtWrUosAqoMPN+/vz5PIVUbqFrGEbxDfYmxudpyUaN5BrUSK5BneQ61EquQa1UepSaz1bX3lO99Fq+fLnh7e1tLFmyxNi/f78xZMgQw8/Pz0hJSTEMwzD69u1rjBs3zuy/bds2o1y5csasWbOMAwcOGJMmTeKRxoXg7LzPmDHD8PLyMj766CPjxIkT5nLmzBlXnUKp4+ycX4mnxxSOs/N+9OhRo3Llysbw4cONQ4cOGevWrTNq1qxpvPTSS646hVLJ2XmfNGmSUblyZeP//b//Z/z888/G559/btx6663Go48+6qpTKHXOnDlj7Nmzx9izZ48hyZg9e7axZ88e49dffzUMwzDGjRtn9O3b1+yf+xjj0aNHGwcOHDAWLFhQIh9jfDOjRnINaiTXoE5yHWol16BWco2yWi8RSN2A119/3ahbt67h5eVldOjQwfj3v/9trrvzzjuN6Ohoh/4rV640mjRpYnh5eRm33XabERcXZ/GIywZn5r1evXqGpDzLpEmTrB94Kebse/1yFFqF5+y8b9++3QgNDTW8vb2Nhg0bGi+//LJx6dIli0dd+jkz71lZWcbkyZONW2+91fDx8TECAwONZ555xjh16pT1Ay+lvvzyy3z/nc6d5+joaOPOO+/Ms02bNm0MLy8vo2HDhsbixYstHzeujRrJNaiRXIM6yXWolVyDWsl6ZbVecjMMrpMDAAAAAACAdbiHFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFFCKbNmyRW5ubtqyZUuR7tfNzU2TJ08u0n2WNf3791f9+vWLbf+vvvqqGjZsKA8PD7Vp06bYjnMjCvo+mTx5stzc3Ip/QIVw7Ngx+fj4aNu2bdfte9ddd+muu+5yaEtNTVXv3r1VrVo1ubm5ac6cOU4dPyoqSo8++qhT2wAAro8ayXWokaiRJGokFA6BFFxi+/btmjx5sk6fPu3qodw01q9fT0El6fz585o8eXKRF6w34vPPP9eYMWN0++23a/HixXrllVdcPaQSLysrS0FBQXJzc9OsWbMKvN3UqVMVGhqq22+/vVDHHTVqlDZu3Kjx48fr/fffV/fu3SVJL7/8sh588EH5+/tfsygdO3asPv74Y3333XeFOj6Aso8ayXrUSH+hRiobSlKNdPDgQY0ZM0Zt2rRR5cqVVatWLUVGRurbb7/Nsz010s2pnKsHgJvT9u3bNWXKFPXv319+fn6uHs5NYf369VqwYEG+BdeFCxdUrtzN8c/B+fPnNWXKFEnK883Otbz99tvKyckpljFt3rxZ7u7uevfdd+Xl5VUsxygKJel98vrrr+vo0aNObXPy5EktXbpUS5cuLfRxN2/erIceekjPPfecQ/sLL7yggIAAtW3bVhs3brzq9m3btlVISIj+9a9/6f/+7/8KPQ4AZRc1kvWokf5CjVR4Jel9UpJqpOeee07vvvuuevXqpWeeeUbp6el688031bFjR8XHxys8PNzsS410c+IKKcAC58+fz7f90qVLyszMtHg0efn4+JSYD9GS5ty5c5IkT09PeXt7F8sx0tLSVL58+esWWjk5Obp48WKxjKEgSsr7JC0tTVOnTtXYsWOd2u6DDz5QuXLl9MADD9zQsfP7D+KRI0d04sQJffDBB9fdx6OPPqpPPvlEZ8+eLfQ4AKCsoEYqvaiR/qekvE9KWo302GOP6dixY3rnnXc0ZMgQjR49Wjt27FDVqlXzDYCpkW4+BFKw3OTJkzV69GhJUoMGDeTm5iY3Nzf98ssvkv4qQKZNm6Zbb71V3t7eql+/vp5//nllZGQ47Kd+/frq0aOHPv/8c7Vp00Y+Pj4KCgrSJ598UqhxffDBB+rQoYMqVKigKlWqqEuXLvr8888d+ixcuFC33XabvL29Vbt2bcXExOS5pP6uu+5SixYtlJSUpC5duqhChQp6/vnn9csvv5iXzs6ZM8c8v/3790uSDh48qN69e6tq1ary8fFRSEiI1q5de91xf/311/rb3/6munXrytvbW4GBgRo1apQuXLhg9unfv78WLFggSeZ8X/776/n9itGePXt03333yWazqVKlSrrnnnv073//26HPkiVL5Obmpm3btik2NlY1atRQxYoV9fDDD+vkyZPXHfvlcn+n/ocfftCTTz4pX19f1ahRQy+++KIMw9CxY8f00EMPyWazKSAgQP/6178cts/MzNTEiRMVHBwsX19fVaxYUXfccYe+/PJLs88vv/yiGjVqSJKmTJlizkPuuffv31+VKlXSTz/9pPvvv1+VK1fWE088Ya67/P4IkyZNkru7uxISEhzGMWTIEHl5eRX4cmM3NzctXrxY586dM8ezZMkSc93w4cP14Ycfmu+7+Ph4SdKsWbPUqVMnVatWTeXLl1dwcLA++uijPPu/cOGC/v73v6t69eqqXLmyHnzwQf33v/8t1D0x8tvmm2++Ufv27eXj46Nbb71Vb775Zr7bbtq0SZ07d5afn58qVaqkpk2b6vnnn3fq+LnGjRunpk2b6sknn3RquzVr1ig0NFSVKlXKs+6tt97SrbfeqvLly6tDhw76+uuvHdbnvtcNw9CCBQvy/B1y5t4Z9957r86dO6dNmzY5NX4AZR81EjVSfqiRqJEKqqTVSMHBwXn2Wa1aNd1xxx06cOBAnmNRI918XB/j4qbzyCOP6IcfftD/+3//T6+99pqqV68uSeaH4KBBg7R06VL17t1b//jHP7Rjxw5Nnz5dBw4c0OrVqx32dfjwYfXp00dDhw5VdHS0Fi9erL/97W+Kj4/XvffeW+AxTZkyRZMnT1anTp00depUeXl5aceOHdq8ebO6desm6a9iYMqUKQoPD9ewYcN06NAhvfHGG9q1a5e2bdsmT09Pc39//PGH7rvvPkVFRenJJ5+Uv7+/uW7x4sW6ePGihgwZIm9vb1WtWlX79u3T7bffrltuuUXjxo1TxYoVtXLlSvXs2VMff/yxHn744auOfdWqVTp//ryGDRumatWqaefOnXr99df122+/adWqVZKkp59+WsePH9emTZv0/vvvX3c+9u3bpzvuuEM2m01jxoyRp6en3nzzTd11113aunWrQkNDHfqPGDFCVapU0aRJk/TLL79ozpw5Gj58uFasWFHgn0GuPn36qHnz5poxY4bi4uL00ksvqWrVqnrzzTfVtWtX/fOf/9SHH36o5557Tu3bt1eXLl0kSXa7Xe+8844ee+wxDR48WGfOnNG7776riIgI7dy5U23atFGNGjX0xhtvaNiwYXr44Yf1yCOPSJJatWplHv/SpUuKiIhQ586dNWvWLFWoUCHfcb7wwgv67LPPNHDgQO3du1eVK1fWxo0b9fbbb2vatGlq3bp1gc73/fff11tvvaWdO3fqnXfekSR16tTJXL9582atXLlSw4cPV/Xq1c2Cb+7cuXrwwQf1xBNPKDMzU8uXL9ff/vY3rVu3TpGRkeb2/fv318qVK9W3b1917NhRW7dudVh/I/bu3atu3bqpRo0amjx5si5duqRJkyY5vN+lv95PPXr0UKtWrTR16lR5e3vrxx9/LNBNM6+0c+dOLV26VN98841TNwXNysrSrl27NGzYsDzr3n33XT399NPq1KmTRo4cqZ9//lkPPvigqlatqsDAQElSly5d9P7776tv376699571a9fP6fHnisoKEjly5fXtm3brvl3G8DNhxqJGulaqJGoka6lNNVIKSkp5r9vl6NGugkZgAu8+uqrhiTjyJEjDu3JycmGJGPQoEEO7c8995whydi8ebPZVq9ePUOS8fHHH5tt6enpRq1atYy2bdsWeCyHDx823N3djYcfftjIzs52WJeTk2MYhmGkpaUZXl5eRrdu3Rz6zJ8/35BkvPfee2bbnXfeaUgyFi1a5LCvI0eOGJIMm81mpKWlOay75557jJYtWxoXL150OHanTp2Mxo0bm21ffvmlIcn48ssvzbbz58/nOafp06cbbm5uxq+//mq2xcTEGFf7Ky/JmDRpkvm6Z8+ehpeXl/HTTz+ZbcePHzcqV65sdOnSxWxbvHixIckIDw8358owDGPUqFGGh4eHcfr06XyPl59JkyYZkowhQ4aYbZcuXTLq1KljuLm5GTNmzDDbT506ZZQvX96Ijo526JuRkeGwz1OnThn+/v7GU089ZbadPHkyz/nmio6ONiQZ48aNy3ddvXr1HNr27t1reHl5GYMGDTJOnTpl3HLLLUZISIiRlZVV4PPO3XfFihXztEsy3N3djX379uVZd+XPPTMz02jRooXRtWtXsy0pKcmQZIwcOdKhb//+/a86B9eS3/vEx8fH4X22f/9+w8PDw+G99tprrxmSjJMnTzp1vCvl5OQYHTp0MB577DHDMP73d+rVV1+97rY//vijIcl4/fXXHdozMzONmjVrGm3atHF4/7z11luGJOPOO+906C/JiImJuepxrvX+ulyTJk2M++6777rjBnDzoUaiRroSNRI10vWUhhop11dffWW4ubkZL774Yr7rqZFuLvzKHkqU9evXS5JiY2Md2v/xj39IkuLi4hzaa9eu7ZCe22w29evXT3v27FFKSkqBjrlmzRrl5ORo4sSJcnd3/CuR++3CF198oczMTI0cOdKhz+DBg2Wz2fKMy9vbWwMGDMj3eL169TK/6ZSkP//8U5s3b9ajjz6qM2fO6Pfff9fvv/+uP/74QxERETp8+LD++9//XnX85cuXN/987tw5/f777+rUqZMMw9CePXsKNAeXy87O1ueff66ePXuqYcOGZnutWrX0+OOP65tvvpHdbnfYZsiQIQ7fxNxxxx3Kzs7Wr7/+6vTxBw0aZP7Zw8NDISEhMgxDAwcONNv9/PzUtGlT/fzzzw59c+8vkJOToz///FOXLl1SSEiIdu/e7dQY8vuGKD8tWrTQlClT9M477ygiIkK///67li5dWqT3ELjzzjsVFBSUp/3yn/upU6eUnp6uO+64w+Fccy9df+aZZxy2HTFixA2PKzs7Wxs3blTPnj1Vt25ds7158+aKiIhw6Jt7P4FPP/30hm56umTJEu3du1f//Oc/nd72jz/+kCRVqVLFof3bb79VWlqahg4d6nB/iv79+8vX17fQY72eKlWq6Pfffy+2/QMoe6iRqJGokRxRI/1PaamR0tLS9Pjjj6tBgwYaM2ZMvn2okW4uBFIoUX799Ve5u7urUaNGDu0BAQHy8/PL8+HdqFGjPJekNmnSRJLM+y1cz08//SR3d/d8P9AuH5ckNW3a1KHdy8tLDRs2zDOuW2655ao3X2zQoIHD6x9//FGGYejFF19UjRo1HJZJkyZJ+usf76s5evSo+vfvr6pVq6pSpUqqUaOG7rzzTklSenr6Vbe7mpMnT+r8+fN5zlX664M0JydHx44dc2i//MNW+t8H2qlTp5w+/pX78vX1lY+PT57Len19ffPsf+nSpWrVqpV8fHxUrVo11ahRQ3FxcU7NQ7ly5VSnTp0C9x89erRat26tnTt3atKkSdd8HxXGle+XXOvWrVPHjh3l4+OjqlWrmpfaX36uuX+frtzHlX+/CuPkyZO6cOGCGjdunGfdle+dPn366Pbbb9egQYPk7++vqKgorVy50qnCy263a/z48Ro9erR5iXhhGIbh8Dr37+6V5+Hp6enwn42iZhiGU5fTAwA1EjUSNZIjaqS/lJYa6dy5c+rRo4fOnDmjTz/9NN/7VeWOgxrp5sE9pFAilfZ/hC7/ZuZ663I/cJ577rk835rkutqHY3Z2tu699179+eefGjt2rJo1a6aKFSvqv//9r/r3719sj+C9koeHR77tV36wFXZfBdn/Bx98oP79+6tnz54aPXq0atasKQ8PD02fPl0//fRTgY/v7e2d51vga/n55591+PBhSX/dL6Co5fde+vrrr/Xggw+qS5cuWrhwoWrVqiVPT08tXrxYy5YtK/Ix3Kjy5cvrq6++0pdffqm4uDjFx8drxYoV6tq1qz7//POr/nwvN2vWLGVmZqpPnz7mf6R+++03SX8V9b/88otq16591f/kVKtWzexbEpw6dSrfQhUArocayRE1EjXS5aiRfpFU8mqkzMxMPfLII/rPf/6jjRs3qkWLFlftS410cyGQgktcrZiqV6+ecnJydPjwYTVv3txsT01N1enTp1WvXj2H/rnfnF2+vx9++EFSwZ96deuttyonJ0f79+9XmzZtrjouSTp06JDDNwKZmZk6cuSIwsPDC3Ss/OTuz9PT0+n97N27Vz/88IOWLl3qcAPB/J5MUdACtkaNGqpQoYIOHTqUZ93Bgwfl7u5+Q9++FJePPvpIDRs21CeffOJwrrnfoOYqykI+JydH/fv3l81m08iRI/XKK6+od+/e5o1Ai8vHH38sHx8fbdy40eExy4sXL3bol/v36ciRIw4f7D/++OMNj6FGjRoqX768WWheLr/3jru7u+655x7dc889mj17tl555RVNmDBBX375ZYHe90ePHtWpU6d022235Vn3yiuv6JVXXtGePXuu+ne4bt26Kl++vI4cOeLQnvt3+/Dhw+ratavZnpWVpSNHjhT4xqvOuHTpko4dO6YHH3ywyPcNoPSjRvofaqSiQY1EjeTKGiknJ0f9+vVTQkKCVq5caV6lmB9qpJsPv7IHl6hYsaIk5Xkc8P333y9JmjNnjkP77NmzJSnPky+OHz/u8FQZu92u//u//1ObNm0UEBBQoLH07NlT7u7umjp1ap5vy3K/XQoPD5eXl5fmzZvn8I3Tu+++q/T09Bt6IkfNmjV111136c0339SJEyfyrL/Wo4FzvzW5fEyGYWju3Ll5+l5tzvPbZ7du3fTpp586XNKfmpqqZcuWqXPnzrLZbNfchyvkNxc7duxQYmKiQ7/cJ8Jcbx4KYvbs2dq+fbveeustTZs2TZ06ddKwYcOK/ffePTw85ObmpuzsbLPtl19+0Zo1axz65X6bvHDhQof2119/vUjGEBERoTVr1ujo0aNm+4EDB7Rx40aHvn/++Wee7XOLoisfVX41f//737V69WqHJffxyf3799fq1auveum+9Nd/ZkJCQvTtt986tIeEhKhGjRpatGiRMjMzzfYlS5YUyXskP/v379fFixcdnhQEALmokf6HGqloUCNRI7myRhoxYoRWrFihhQsXXjeQpEa6+XCFFFwiODhYkjRhwgRFRUXJ09NTDzzwgFq3bq3o6Gi99dZbOn36tO68807zEaY9e/bU3Xff7bCfJk2aaODAgdq1a5f8/f313nvvKTU1Nc+3INfSqFEjTZgwQdOmTdMdd9yhRx55RN7e3tq1a5dq166t6dOnq0aNGho/frymTJmi7t2768EHH9ShQ4e0cOFCtW/fXk8++eQNzceCBQvUuXNntWzZUoMHD1bDhg2VmpqqxMRE/fbbb/ruu+/y3a5Zs2a69dZb9dxzz+m///2vbDabPv7443wvuc2d87///e+KiIiQh4eHoqKi8t3vSy+9pE2bNqlz58565plnVK5cOb355pvKyMjQzJkzb+hci0uPHj30ySef6OGHH1ZkZKSOHDmiRYsWKSgoSGfPnjX7lS9fXkFBQVqxYoWaNGmiqlWrqkWLFte8dDg/Bw4c0Isvvqj+/fvrgQcekPTXB3SbNm30zDPPaOXKlUV6fpeLjIzU7Nmz1b17dz3++ONKS0vTggUL1KhRI/3nP/8x+wUHB6tXr16aM2eO/vjjD/ORxrnfkN/oN6FTpkxRfHy87rjjDj3zzDO6dOmSXn/9dd12220O45g6daq++uorRUZGql69ekpLS9PChQtVp04dde7cuUDHateundq1a+fQlvufgdtuu009e/a87j4eeughTZgwQXa73fwPg6enp1566SU9/fTT6tq1q/r06aMjR45o8eLFTt0f4f3339evv/6q8+fPS5K++uorvfTSS5Kkvn37Oly5sGnTJlWoUMGpx64DuHlQIzmiRrpx1EjUSNdTXDXSnDlztHDhQoWFhalChQr64IMPHNY//PDDZiAsUSPdlKx6nB9wpWnTphm33HKL4e7u7vB446ysLGPKlClGgwYNDE9PTyMwMNAYP368w+N+DeOvRxpHRkYaGzduNFq1amV4e3sbzZo1M1atWlWo8bz33ntG27ZtDW9vb6NKlSrGnXfeaWzatMmhz/z5841mzZoZnp6ehr+/vzFs2DDj1KlTDn3uvPNO47bbbsuz/+s9fvWnn34y+vXrZwQEBBienp7GLbfcYvTo0cP46KOPzD75PdJ4//79Rnh4uFGpUiWjevXqxuDBg43vvvvOkGQsXrzY7Hfp0iVjxIgRRo0aNQw3NzeHR84qn8fb7t6924iIiDAqVapkVKhQwbj77ruN7du3O/TJfaTxrl27HNrzG+f15D7S+MrH3l7tcb9XznNOTo7xyiuvGPXq1TO8vb2Ntm3bGuvWrcv3UcTbt283goODDS8vL4dzv9qxctfl7ufSpUtG+/btjTp16uR5bPPcuXMNScaKFSsKfO7XeqTx1R6f++677xqNGzc23/eLFy825/By586dM2JiYoyqVasalSpVMnr27GkcOnTIkOTwmOiCyO99snXrVnMuGzZsaCxatCjPOBISEoyHHnrIqF27tuHl5WXUrl3beOyxx4wffvjBqeNfyZlHGhuGYaSmphrlypUz3n///TzrFi5caDRo0MDw9vY2QkJCjK+++sq48847C/xI49xHmee3XPn3IDQ01HjyyScLfJ4Abj7USI6okaiRrkSNdG0lpUaKjo6+an10+b9tuaiRbj5uhlGIO+oBJUD9+vXVokULrVu3ztVDAUqV5ORktW3bVh988IGeeOIJVw/HUgMHDtQPP/ygr7/+2iXHT05OVrt27bR79+6r3ssBAG4UNRJQONRI1EiwFveQAoAy7MKFC3na5syZI3d3d3Xp0sUFI3KtSZMmadeuXdq2bZtLjj9jxgz17t2bQgsAABejRnJEjQRX4B5SKNNSUlKuub58+fLy9fW1aDQ3p7NnzzrcnyA/NWrUKNBjbUubkydPOtxU80peXl6qWrVqsY5h5syZSkpK0t13361y5cppw4YN2rBhg4YMGaLAwEBlZ2df86awklSpUiVVqlSp2MZo5TzVrVtXFy9eLJJ9Fcby5ctddmwAuBw1kutRI1EjXQ81Eso8V//OIFBYufdHuBZd43eWJRnR0dHWDPYmlvu78tdarvz98bKiXr161zzvK3/3vjh8/vnnxu23325UqVLF8PT0NG699VZj8uTJRlZWlmEY/7vHwLWWK++JUNRKwjwBQFlCjVQ6UCNRI11PSZgnoDhxDymUaV988cU119euXVtBQUEWjebm9PPPP+vnn3++Zp/OnTvLx8fHohFZZ9u2bfleDp6rSpUq5pN9XOXixYv65ptvrtmnYcOGTj1xzlmlYZ4AoKyhRnI9aqSS/dlPjQQUPwIpAAAAAAAAWIqbmgMAAAAAAMBSN/VNzXNycnT8+HFVrlxZbm5urh4OAACwgGEYOnPmjGrXri13d76byw81EgAANx+ra6SbOpA6fvy4AgMDXT0MAADgAseOHVOdOnVcPYwSiRoJAICbl1U10k0dSFWuXFnSX5Nts9lcPBoAAGAFu92uwMBAsw5AXtRIAADcfKyukW7qQCr3EnSbzUaxBQDATYZfRbs6aiQAAG5eVtVI3DgBAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGCpm/oeUgAAXEt2draysrJcPQw4ydPTUx4eHq4eBgAAZRY1UulU0mokAikAAK5gGIZSUlJ0+vRpVw8FheTn56eAgABuXA4AQBGiRir9SlKNRCAFAMAVcgutmjVrqkKFCiXiAxsFYxiGzp8/r7S0NElSrVq1XDwiAADKDmqk0qsk1kgEUgAAXCY7O9sstKpVq+bq4aAQypcvL0lKS0tTzZo1S9Sl6QAAlFbUSKVfSauRuKk5AACXyb0fQoUKFVw8EtyI3J8f97cAAKBoUCOVDSWpRiKQAgAgH1yCXrrx8wMAoHjwGVu6laSfH4EUAAAAAAAALEUgBQBAKefm5nbNZfLkyS4d25o1a25oH2+99Zbuuusu2Ww2ubm58WQfAABQYGW5Tvrzzz81YsQINW3aVOXLl1fdunX197//Xenp6UU3yGLETc0BACigrPhvLDuWZ/fOBe574sQJ888rVqzQxIkTdejQIbOtUqVKTh07MzNTXl5eTm1TnM6fP6/u3bure/fuGj9+vKuHAwAArmBljSRRJ+U6fvy4jh8/rlmzZikoKEi//vqrhg4dquPHj+ujjz5y9fCuiyukilFW/Dd5FgAAilpAQIC5+Pr6ys3NzXx97tw5PfHEE/L391elSpXUvn17ffHFFw7b169fX9OmTVO/fv1ks9k0ZMgQSdLbb7+twMBAVahQQQ8//LBmz54tPz8/h20//fRTtWvXTj4+PmrYsKGmTJmiS5cumfuVpIcfflhubm7m6++++0533323KleuLJvNpuDgYH377bdXPb+RI0dq3Lhx6tixY9FMGFyOGgkAYJWyXCe1aNFCH3/8sR544AHdeuut6tq1q15++WV99tln5nFKMgIpAADKsLNnz+r+++9XQkKC9uzZo+7du+uBBx7Q0aNHHfrNmjVLrVu31p49e/Tiiy9q27ZtGjp0qJ599lklJyfr3nvv1csvv+ywzddff61+/frp2Wef1f79+/Xmm29qyZIlZr9du3ZJkhYvXqwTJ06Yr5944gnVqVNHu3btUlJSksaNGydPT08LZgMAAOB/ymKdlJ6eLpvNpnLlSv4vxJX8EQIAgEJr3bq1Wrdubb6eNm2aVq9erbVr12r48OFme9euXfWPf/zDfD1hwgTdd999eu655yRJTZo00fbt27Vu3Tqzz5QpUzRu3DhFR0dLkho2bKhp06ZpzJgxmjRpkmrUqCFJ8vPzU0BAgLnd0aNHNXr0aDVr1kyS1Lhx42I4cwAAgGsra3XS77//rmnTpplXcZV0XCEFAEAZdvbsWT333HNq3ry5/Pz8VKlSJR04cCDPN38hISEOrw8dOqQOHTo4tF35+rvvvtPUqVNVqVIlcxk8eLBOnDih8+fPX3VMsbGxGjRokMLDwzVjxgz99NNPN3iWAAAAzitLdZLdbldkZKSCgoJceqN2ZxBIAQBQhj333HNavXq1XnnlFX399ddKTk5Wy5YtlZmZ6dCvYsWKTu/77NmzmjJlipKTk81l7969Onz4sHx8fK663eTJk7Vv3z5FRkZq8+bNCgoK0urVq50+PgAAwI0oK3XSmTNn1L17d1WuXFmrV68uNbdC4Ff2AAAow7Zt26b+/fvr4YcflvRXcfTLL79cd7umTZua9zLIdeXrdu3a6dChQ2rUqNFV9+Pp6ans7Ow87U2aNFGTJk00atQoPfbYY1q8eLE5RgAAACuUhTrJbrcrIiJC3t7eWrt27TXDrpKGQAoAgDKscePG+uSTT/TAAw/Izc1NL774onJycq673YgRI9SlSxfNnj1bDzzwgDZv3qwNGzbIzc3N7DNx4kT16NFDdevWVe/eveXu7q7vvvtO33//vV566SVJfz1BJiEhQbfffru8vb3l4+Oj0aNHq3fv3mrQoIF+++037dq1S7169brqWFJSUpSSkqIff/xRkrR3715VrlxZdevWVdWqVW9whgAAwM2qtNdJdrtd3bp10/nz5/XBBx/IbrfLbrdLkmrUqCEPD48imKXiw6/sAQBQhs2ePVtVqlRRp06d9MADDygiIkLt2rW77na33367Fi1apNmzZ6t169aKj4/XqFGjHL51i4iI0Lp16/T555+rffv26tixo1577TXVq1fP7POvf/1LmzZtUmBgoNq2bSsPDw/98ccf6tevn5o0aaJHH31U9913n6ZMmXLVsSxatEht27bV4MGDJUldunRR27ZttXbt2huYGQAAcLMr7XXS7t27tWPHDu3du1eNGjVSrVq1zOXYsWM3PkHFzM0wDMPVg3AVu90uX19f87GIRS0r/ps8bZ7dOxf5cQAARefixYs6cuSIGjRoUKouebbC4MGDdfDgQX399deuHsp1XevnWNyf/2UBNRIA4ErUSNdWWuqkklQj8St7AAAgX7NmzdK9996rihUrasOGDVq6dKkWLlzo6mEBAAC4HHXSjSOQAgAA+dq5c6dmzpypM2fOqGHDhpo3b54GDRrk6mEBAAC4HHXSjSOQAgAA+Vq5cqWrhwAAAFAiUSfdOG5qDgAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAABlQP/+/eXm5iY3Nzd5enrK399f9957r9577z3l5OS4eng3ZN++ferVq5fq168vNzc3zZkzx9VDAgAApUhZrpPefvtt3XHHHapSpYqqVKmi8PBw7dy509XDKpByrh4AAAClxU/fvmnZsW4Nedrpbbp3767FixcrOztbqampio+P17PPPquPPvpIa9euVblypfNj//z582rYsKH+9re/adSoUa4eDgAAuIKVNZJEnXS5LVu26LHHHlOnTp3k4+Ojf/7zn+rWrZv27dunW265xdXDuyaukAIAoIzw9vZWQECAbrnlFrVr107PP/+8Pv30U23YsEFLliwx+50+fVqDBg1SjRo1ZLPZ1LVrV3333XcO+/rss8/Uvn17+fj4qHr16nr44YfNdadOnVK/fv1UpUoVVahQQffdd58OHz4sSTp37pxsNps++ugjh/2tWbNGFStW1JkzZ5SZmanhw4erVq1a8vHxUb169TR9+vSrnlf79u316quvKioqSt7e3kUwUwAA4GZTVuukDz/8UM8884zatGmjZs2a6Z133lFOTo4SEhKKYNaKF4EUAABlWNeuXdW6dWt98sknZtvf/vY3paWlacOGDUpKSlK7du10zz336M8//5QkxcXF6eGHH9b999+vPXv2KCEhQR06dDC379+/v7799lutXbtWiYmJMgxD999/v7KyslSxYkVFRUVp8eLFDuNYvHixevfurcqVK2vevHlau3atVq5cqUOHDunDDz9U/fr1LZkPAACAXGWxTjp//ryysrJUtWrVG5scC5TOa9IAAECBNWvWTP/5z38kSd9884127typtLQ082qjWbNmac2aNfroo480ZMgQvfzyy4qKitKUKVPMfbRu3VqSdPjwYa1du1bbtm1Tp06dJP31zVxgYKDWrFmjv/3tbxo0aJA6deqkEydOqFatWkpLS9P69ev1xRdfSJKOHj2qxo0bq3PnznJzc1O9evWsnA4AAABTWauTxo4dq9q1ays8PPyG56a4cYUUAABlnGEYcnNzkyR99913Onv2rKpVq6ZKlSqZy5EjR/TTTz9JkpKTk3XPPffku68DBw6oXLlyCg0NNduqVaumpk2b6sCBA5KkDh066LbbbtPSpUslSR988IHq1aunLl26SPrrm8Pk5GQ1bdpUf//73/X5558X27kDAABcS1mqk2bMmKHly5dr9erV8vHxcX4yLMYVUgAAlHEHDhxQgwYNJElnz55VrVq1tGXLljz9/Pz8JEnly5e/4WMOGjRICxYs0Lhx47R48WINGDDALPbatWunI0eOaMOGDfriiy/06KOPKjw8PM/9FAAAAIpbWamTZs2apRkzZuiLL75Qq1atbniMVuAKKQAAyrDNmzdr79696tWrl6S/ipyUlBSVK1dOjRo1cliqV68uSWrVqtVVb4TZvHlzXbp0STt27DDb/vjjDx06dEhBQUFm25NPPqlff/1V8+bN0/79+xUdHe2wH5vNpj59+ujtt9/WihUr9PHHH5v3ZgAAALBCWamTZs6cqWnTpik+Pl4hISGFng+rcYUUAABlREZGhlJSUhweZzx9+nT16NFD/fr1kySFh4crLCxMPXv21MyZM9WkSRMdP37cvEFnSEiIJk2apHvuuUe33nqroqKidOnSJa1fv15jx45V48aN9dBDD2nw4MF68803VblyZY0bN0633HKLHnroIXMsVapU0SOPPKLRo0erW7duqlOnjrlu9uzZqlWrltq2bSt3d3etWrVKAQEB5jePV8rMzNT+/fvNP//3v/9VcnKyKlWqpEaNGhXfhAIAgDKjrNZJ//znPzVx4kQtW7ZM9evXV0pKiiSZv25YknGFFAAAZUR8fLxq1aql+vXrq3v37vryyy81b948ffrpp/Lw8JAkubm5af369erSpYsGDBigJk2aKCoqSr/++qv8/f0lSXfddZdWrVqltWvXqk2bNuratat27txpHmfx4sUKDg5Wjx49FBYWJsMwtH79enl6ejqMZ+DAgcrMzNRTTz3l0F65cmXNnDlTISEhat++vX755RetX79e7u75lyXHjx9X27Zt1bZtW504cUKzZs1S27ZtNWjQoKKcPgAAUIaV1TrpjTfeUGZmpnr37q1atWqZy6xZs4py+oqFm2EYhqsH4Sp2u12+vr5KT0+XzWYr8v1nxX+Tp82ze+ciPw4AoOhcvHhRR44cUYMGDUrFzSBLsvfff1+jRo3S8ePH5eXlZemxr/VzLO7P/7KAGgkAcCVqpKLlqjqpJNVI/MoeAAAoUufPn9eJEyc0Y8YMPf3005aHUQAAACUVddL/8Ct7AACgSM2cOVPNmjVTQECAxo8f7+rhAAAAlBjUSf9DIAUAAIrU5MmTlZWVpYSEhBJ/M00AAAArUSf9D4EUAAAAAAAALEUgBQAAAAAAAEsRSAEAkI+b+CG0ZQI/PwAAigefsaVbSfr5EUgBAHAZT09PSX89AQWlV+7PL/fnCQAAbgw1UtlQkmqkGwqkZsyYITc3N40cOdJsu3jxomJiYlStWjVVqlRJvXr1UmpqqsN2R48eVWRkpCpUqKCaNWtq9OjRunTpkkOfLVu2qF27dvL29lajRo20ZMmSPMdfsGCB6tevLx8fH4WGhmrnzp03cjoAAMjDw0N+fn5KS0vTH3/8oQsXLujixYsspWS5cOGC/vjjD6WlpcnPz08eHh4ueR9RIwEAyhpqpNK9lJQa6XLlCrvhrl279Oabb6pVq1YO7aNGjVJcXJxWrVolX19fDR8+XI888oi2bdsmScrOzlZkZKQCAgK0fft2nThxQv369ZOnp6deeeUVSdKRI0cUGRmpoUOH6sMPP1RCQoIGDRqkWrVqKSIiQpK0YsUKxcbGatGiRQoNDdWcOXMUERGhQ4cOqWbNmoU9LQAAFBAQIElKS0tz8UhQWH5+fubP0WrUSACAsooaqfRzZY10JTejEL9AePbsWbVr104LFy7USy+9pDZt2mjOnDlKT09XjRo1tGzZMvXu3VuSdPDgQTVv3lyJiYnq2LGjNmzYoB49euj48ePy9/eXJC1atEhjx47VyZMn5eXlpbFjxyouLk7ff/+9ecyoqCidPn1a8fHxkqTQ0FC1b99e8+fPlyTl5OQoMDBQI0aM0Lhx4wp0Hna7Xb6+vkpPT5fNZnN2Gq4rK/6bPG2e3TsX+XEAAMUjOztbWVlZrh4GnOTp6XnNb/2K8/OfGqlgqJEAoHSjRiqdXFkj5adQV0jFxMQoMjJS4eHheumll8z2pKQkZWVlKTw83Gxr1qyZ6tataxZbiYmJatmypVloSVJERISGDRumffv2qW3btkpMTHTYR26f3MveMzMzlZSUpPHjx5vr3d3dFR4ersTExMKcEgAAeXh4eJSIy5lRelAjAQBuBtRIKApOB1LLly/X7t27tWvXrjzrUlJS5OXlJT8/P4d2f39/paSkmH0uL7Ry1+euu1Yfu92uCxcu6NSpU8rOzs63z8GDB6869oyMDGVkZJiv7Xb7dc4WAACgYKiRAAAACs6pm5ofO3ZMzz77rD788EP5+PgU15iKzfTp0+Xr62sugYGBrh4SAAAoA6iRAAAAnONUIJWUlKS0tDS1a9dO5cqVU7ly5bR161bNmzdP5cqVk7+/vzIzM3X69GmH7VJTU82bZgUEBOR5okzu6+v1sdlsKl++vKpXry4PD498+1zr5lzjx49Xenq6uRw7dsyZ0wcAAMgXNRIAAIBznAqk7rnnHu3du1fJycnmEhISoieeeML8s6enpxISEsxtDh06pKNHjyosLEySFBYWpr179zrclX/Tpk2y2WwKCgoy+1y+j9w+ufvw8vJScHCwQ5+cnBwlJCSYffLj7e0tm83msAAAANwoaiQAAADnOHUPqcqVK6tFixYObRUrVlS1atXM9oEDByo2NlZVq1aVzWbTiBEjFBYWpo4dO0qSunXrpqCgIPXt21czZ85USkqKXnjhBcXExMjb21uSNHToUM2fP19jxozRU089pc2bN2vlypWKi4szjxsbG6vo6GiFhISoQ4cOmjNnjs6dO6cBAwbc0IQAAAA4ixoJAADAOYV6yt61vPbaa3J3d1evXr2UkZGhiIgILVy40Fzv4eGhdevWadiwYQoLC1PFihUVHR2tqVOnmn0aNGiguLg4jRo1SnPnzlWdOnX0zjvvKCIiwuzTp08fnTx5UhMnTlRKSoratGmj+Pj4PDfxBAAAKAmokQAAAP7HzTAMw9WDcBW73S5fX1+lp6cXy6XpWfHf5Gnz7N65yI8DAAAKrrg//8sCaiQAAG4+VtdITt1DCgAAAAAAALhRBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEuVc/UAyrJfTm/I09ZYnV0wEgAAgJKDGgkAAHCFFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLORVIvfHGG2rVqpVsNptsNpvCwsK0YcMGc/3FixcVExOjatWqqVKlSurVq5dSU1Md9nH06FFFRkaqQoUKqlmzpkaPHq1Lly459NmyZYvatWsnb29vNWrUSEuWLMkzlgULFqh+/fry8fFRaGiodu7c6cypAAAAFBlqJAAAAOc4FUjVqVNHM2bMUFJSkr799lt17dpVDz30kPbt2ydJGjVqlD777DOtWrVKW7du1fHjx/XII4+Y22dnZysyMlKZmZnavn27li5dqiVLlmjixIlmnyNHjigyMlJ33323kpOTNXLkSA0aNEgbN240+6xYsUKxsbGaNGmSdu/erdatWysiIkJpaWk3Oh8AAABOo0YCAABwjpthGMaN7KBq1ap69dVX1bt3b9WoUUPLli1T7969JUkHDx5U8+bNlZiYqI4dO2rDhg3q0aOHjh8/Ln9/f0nSokWLNHbsWJ08eVJeXl4aO3as4uLi9P3335vHiIqK0unTpxUfHy9JCg0NVfv27TV//nxJUk5OjgIDAzVixAiNGzeuwGO32+3y9fVVenq6bDbbjUxDvg4vn5CnrXHUy0V+HAAAUHDF/fmfixrp6qiRAAAoeayqkXIV+h5S2dnZWr58uc6dO6ewsDAlJSUpKytL4eHhZp9mzZqpbt26SkxMlCQlJiaqZcuWZqElSREREbLb7eY3iImJiQ77yO2Tu4/MzEwlJSU59HF3d1d4eLjZBwAAwFWokQAAAK6vnLMb7N27V2FhYbp48aIqVaqk1atXKygoSMnJyfLy8pKfn59Df39/f6WkpEiSUlJSHAqt3PW5667Vx26368KFCzp16pSys7Pz7XPw4MFrjj0jI0MZGRnma7vdXvATBwAAuAZqJAAAgIJz+gqppk2bKjk5WTt27NCwYcMUHR2t/fv3F8fYitz06dPl6+trLoGBga4eEgAAKCOokQAAAArO6UDKy8tLjRo1UnBwsKZPn67WrVtr7ty5CggIUGZmpk6fPu3QPzU1VQEBAZKkgICAPE+UyX19vT42m03ly5dX9erV5eHhkW+f3H1czfjx45Wenm4ux44dc/b0AQAA8kWNBAAAUHCFvodUrpycHGVkZCg4OFienp5KSEgw1x06dEhHjx5VWFiYJCksLEx79+51eNLLpk2bZLPZFBQUZPa5fB+5fXL34eXlpeDgYIc+OTk5SkhIMPtcjbe3t/k45twFAACgOFAjAQAAXJ1T95AaP3687rvvPtWtW1dnzpzRsmXLtGXLFm3cuFG+vr4aOHCgYmNjVbVqVdlsNo0YMUJhYWHq2LGjJKlbt24KCgpS3759NXPmTKWkpOiFF15QTEyMvL29JUlDhw7V/PnzNWbMGD311FPavHmzVq5cqbi4OHMcsbGxio6OVkhIiDp06KA5c+bo3LlzGjBgQBFODQAAQMFQIwEAADjHqUAqLS1N/fr104kTJ+Tr66tWrVpp48aNuvfeeyVJr732mtzd3dWrVy9lZGQoIiJCCxcuNLf38PDQunXrNGzYMIWFhalixYqKjo7W1KlTzT4NGjRQXFycRo0apblz56pOnTp65513FBERYfbp06ePTp48qYkTJyolJUVt2rRRfHx8npt4AgAAWIEaCQAAwDluhmEYrh6Eq9jtdvn6+io9Pb1YLk0/vHxCnrbGUS8X+XEAAEDBFffnf1lAjQQAwM3H6hrphu8hBQAAAAAAADiDQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApZwKpKZPn6727durcuXKqlmzpnr27KlDhw459Ll48aJiYmJUrVo1VapUSb169VJqaqpDn6NHjyoyMlIVKlRQzZo1NXr0aF26dMmhz5YtW9SuXTt5e3urUaNGWrJkSZ7xLFiwQPXr15ePj49CQ0O1c+dOZ04HAACgSFAjAQAAOMepQGrr1q2KiYnRv//9b23atElZWVnq1q2bzp07Z/YZNWqUPvvsM61atUpbt27V8ePH9cgjj5jrs7OzFRkZqczMTG3fvl1Lly7VkiVLNHHiRLPPkSNHFBkZqbvvvlvJyckaOXKkBg0apI0bN5p9VqxYodjYWE2aNEm7d+9W69atFRERobS0tBuZDwAAAKdRIwEAADjHzTAMo7Abnzx5UjVr1tTWrVvVpUsXpaenq0aNGlq2bJl69+4tSTp48KCaN2+uxMREdezYURs2bFCPHj10/Phx+fv7S5IWLVqksWPH6uTJk/Ly8tLYsWMVFxen77//3jxWVFSUTp8+rfj4eElSaGio2rdvr/nz50uScnJyFBgYqBEjRmjcuHEFGr/dbpevr6/S09Nls9kKOw1XdXj5hDxtjaNeLvLjAACAgivuz3+JGul6qJEAACh5rKiRLndD95BKT0+XJFWtWlWSlJSUpKysLIWHh5t9mjVrprp16yoxMVGSlJiYqJYtW5qFliRFRETIbrdr3759Zp/L95HbJ3cfmZmZSkpKcujj7u6u8PBwsw8AAICrUCMBAABcW7nCbpiTk6ORI0fq9ttvV4sWLSRJKSkp8vLykp+fn0Nff39/paSkmH0uL7Ry1+euu1Yfu92uCxcu6NSpU8rOzs63z8GDB6865oyMDGVkZJiv7Xa7E2cMAABwfdRIAAAA11foK6RiYmL0/fffa/ny5UU5nmI1ffp0+fr6mktgYKCrhwQAAMoYaiQAAIDrK1QgNXz4cK1bt05ffvml6tSpY7YHBAQoMzNTp0+fduifmpqqgIAAs8+VT5TJfX29PjabTeXLl1f16tXl4eGRb5/cfeRn/PjxSk9PN5djx445d+IAAADXQI0EAABQME4FUoZhaPjw4Vq9erU2b96sBg0aOKwPDg6Wp6enEhISzLZDhw7p6NGjCgsLkySFhYVp7969Dk962bRpk2w2m4KCgsw+l+8jt0/uPry8vBQcHOzQJycnRwkJCWaf/Hh7e8tmszksAAAAN4oaCQAAwDlO3UMqJiZGy5Yt06effqrKlSub9zPw9fVV+fLl5evrq4EDByo2NlZVq1aVzWbTiBEjFBYWpo4dO0qSunXrpqCgIPXt21czZ85USkqKXnjhBcXExMjb21uSNHToUM2fP19jxozRU089pc2bN2vlypWKi4szxxIbG6vo6GiFhISoQ4cOmjNnjs6dO6cBAwYU1dwAAAAUCDUSAACAc5wKpN544w1J0l133eXQvnjxYvXv31+S9Nprr8nd3V29evVSRkaGIiIitHDhQrOvh4eH1q1bp2HDhiksLEwVK1ZUdHS0pk6davZp0KCB4uLiNGrUKM2dO1d16tTRO++8o4iICLNPnz59dPLkSU2cOFEpKSlq06aN4uPj89zEEwAAoLhRIwEAADjHzTAMw9WDcBW73S5fX1+lp6cXy6Xph5dPyNPWOOrlIj8OAAAouOL+/C8LqJEAALj5WF0jFfopewAAAAAAAEBhEEgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsJTTgdRXX32lBx54QLVr15abm5vWrFnjsN4wDE2cOFG1atVS+fLlFR4ersOHDzv0+fPPP/XEE0/IZrPJz89PAwcO1NmzZx36/Oc//9Edd9whHx8fBQYGaubMmXnGsmrVKjVr1kw+Pj5q2bKl1q9f7+zpAAAAFAlqJAAAgIJzOpA6d+6cWrdurQULFuS7fubMmZo3b54WLVqkHTt2qGLFioqIiNDFixfNPk888YT27dunTZs2ad26dfrqq680ZMgQc73dble3bt1Ur149JSUl6dVXX9XkyZP11ltvmX22b9+uxx57TAMHDtSePXvUs2dP9ezZU99//72zpwQAAHDDqJEAAAAKzs0wDKPQG7u5afXq1erZs6ekv775q127tv7xj3/oueeekySlp6fL399fS5YsUVRUlA4cOKCgoCDt2rVLISEhkqT4+Hjdf//9+u2331S7dm298cYbmjBhglJSUuTl5SVJGjdunNasWaODBw9Kkvr06aNz585p3bp15ng6duyoNm3aaNGiRQUav91ul6+vr9LT02Wz2Qo7DVd1ePmEPG2No14u8uMAAICCK+7Pf4ka6XqokQAAKHmsqJEuV6T3kDpy5IhSUlIUHh5utvn6+io0NFSJiYmSpMTERPn5+ZmFliSFh4fL3d1dO3bsMPt06dLFLLQkKSIiQocOHdKpU6fMPpcfJ7dP7nEAAABKCmokAAAAR+WKcmcpKSmSJH9/f4d2f39/c11KSopq1qzpOIhy5VS1alWHPg0aNMizj9x1VapUUUpKyjWPk5+MjAxlZGSYr+12uzOnBwAAUCjUSAAAAI5uqqfsTZ8+Xb6+vuYSGBjo6iEBAAC4HDUSAACwWpEGUgEBAZKk1NRUh/bU1FRzXUBAgNLS0hzWX7p0SX/++adDn/z2cfkxrtYnd31+xo8fr/T0dHM5duyYs6cIAADgNGokAAAAR0UaSDVo0EABAQFKSEgw2+x2u3bs2KGwsDBJUlhYmE6fPq2kpCSzz+bNm5WTk6PQ0FCzz1dffaWsrCyzz6ZNm9S0aVNVqVLF7HP5cXL75B4nP97e3rLZbA4LAABAcaNGAgAAcOR0IHX27FklJycrOTlZ0l836UxOTtbRo0fl5uamkSNH6qWXXtLatWu1d+9e9evXT7Vr1zafMtO8eXN1795dgwcP1s6dO7Vt2zYNHz5cUVFRql27tiTp8ccfl5eXlwYOHKh9+/ZpxYoVmjt3rmJjY81xPPvss4qPj9e//vUvHTx4UJMnT9a3336r4cOH3/isAAAAOIkaCQAAoOCcvqn5t99+q7vvvtt8nVsARUdHa8mSJRozZozOnTunIUOG6PTp0+rcubPi4+Pl4+NjbvPhhx9q+PDhuueee+Tu7q5evXpp3rx55npfX199/vnniomJUXBwsKpXr66JEydqyJAhZp9OnTpp2bJleuGFF/T888+rcePGWrNmjVq0aFGoiQAAALgR1EgAAAAF52YYhuHqQbiK3W6Xr6+v0tPTi+XS9MPLJ+Rpaxz1cpEfBwAAFFxxf/6XBdRIAADcfKyukW6qp+wBAAAAAADA9QikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiq1AdSCxYsUP369eXj46PQ0FDt3LnT1UMCAABwOWokAABQkpXqQGrFihWKjY3VpEmTtHv3brVu3VoRERFKS0tz9dAAAABchhoJAACUdKU6kJo9e7YGDx6sAQMGKCgoSIsWLVKFChX03nvvuXpoAAAALkONBAAASrpSG0hlZmYqKSlJ4eHhZpu7u7vCw8OVmJjowpEBAAC4DjUSAAAoDcq5egCF9fvvvys7O1v+/v4O7f7+/jp48GC+22RkZCgjI8N8nZ6eLkmy2+3FMsaz5zPytBXXsQAAQMHkfhYbhuHikRQPaiQAAFAYVtdIpTaQKozp06drypQpedoDAwOtG8TAf1l3LAAAcFVnzpyRr6+vq4dRIlAjAQCAXFbVSKU2kKpevbo8PDyUmprq0J6amqqAgIB8txk/frxiY2PN1zk5Ofrzzz9VrVo1ubm5Fen47Ha7AgMDdezYMdls/5+9O4+P6d7/OP6eRDIJ2SyRULHvpbbYt1ZT0aKlXHQhaS23tntLKaoVqsVVV3WhdMPV9oe2qGsJSnXBLVVxtZYqaWk1QkuCINv390cfmWskIonkTJbX8/GYx8N8z/ec8z3fTDJvnzlzjl++bhs3xrxbjzl3DebdNZh36xXEnBtjdOHCBVWuXDlftlfYkJGQFebdNZh312HuXYN5d438mnerM1KRLUh5enqqRYsW2rp1q3r16iXpz/C0detWjRo1Kst17Ha77Ha7U1tAQECBjtPPz49fRBdg3q3HnLsG8+4azLv18nvOi/OZUWQkZId5dw3m3XWYe9dg3l0jP+bdyoxUZAtSkjR27FhFREQoNDRUrVq10rx583Tp0iU99thjrh4aAACAy5CRAABAYVekC1L9+/fXmTNnNGXKFMXFxalp06aKjo7OdBFPAACAkoSMBAAACrsiXZCSpFGjRt3w9HNXstvtioqKynT6OwoW82495tw1mHfXYN6tx5znHRkJ12LeXYN5dx3m3jWYd9coqvNuM8X1nscAAAAAAAAolNxcPQAAAAAAAACULBSkAAAAAAAAYCkKUgAAAAAAALAUBalbMH/+fFWvXl1eXl5q3bq1du/enW3/Dz/8UPXr15eXl5caN26sDRs2WDTS4iU38/7WW2+pY8eOKlu2rMqWLauwsLCb/pyQWW5f6xmWL18um82mXr16FewAi6nczvv58+c1cuRIVapUSXa7XXXr1uXvTB7kdt7nzZunevXqydvbWyEhIRozZoyuXLli0WiLvi+++EI9e/ZU5cqVZbPZtGbNmpuus337djVv3lx2u121a9fWkiVLCnycyB0ykmuQkVyDnOQ6ZCXXICtZr9jmJYM8Wb58ufH09DTvvvuu+f77783QoUNNQECAOX36dJb9d+zYYdzd3c3s2bPNwYMHzbPPPms8PDzMgQMHLB550ZbbeX/44YfN/Pnzzb59+8yhQ4dMZGSk8ff3N7/88ovFIy+6cjvnGWJjY81tt91mOnbsaB544AFrBluM5Hber169akJDQ819991nvvrqKxMbG2u2b99uYmJiLB550ZbbeX///feN3W4377//vomNjTWbNm0ylSpVMmPGjLF45EXXhg0bzOTJk82qVauMJLN69eps+x8/ftyULl3ajB071hw8eNC89tprxt3d3URHR1szYNwUGck1yEiuQU5yHbKSa5CVXKO45iUKUnnUqlUrM3LkSMfztLQ0U7lyZTNz5sws+/fr1890797dqa1169bmr3/9a4GOs7jJ7bxfLzU11fj6+pqlS5cW1BCLnbzMeWpqqmnXrp15++23TUREBEErD3I772+88YapWbOmSU5OtmqIxVJu533kyJGmS5cuTm1jx4417du3L9BxFlc5CVhPP/20uf32253a+vfvb8LDwwtwZMgNMpJrkJFcg5zkOmQl1yAruV5xykt8ZS8PkpOTtXfvXoWFhTna3NzcFBYWpl27dmW5zq5du5z6S1J4ePgN+yOzvMz79ZKSkpSSkqJy5coV1DCLlbzO+fPPP6+KFStq8ODBVgyz2MnLvK9du1Zt27bVyJEjFRQUpEaNGmnGjBlKS0uzathFXl7mvV27dtq7d6/jVPXjx49rw4YNuu+++ywZc0nE+2nhRkZyDTKSa5CTXIes5BpkpaKjqLy3lnL1AIqis2fPKi0tTUFBQU7tQUFBOnz4cJbrxMXFZdk/Li6uwMZZ3ORl3q83YcIEVa5cOdMvJ7KWlzn/6quv9M477ygmJsaCERZPeZn348ePa9u2bXrkkUe0YcMG/fjjjxoxYoRSUlIUFRVlxbCLvLzM+8MPP6yzZ8+qQ4cOMsYoNTVVTzzxhJ555hkrhlwi3ej9NDExUZcvX5a3t7eLRgaJjOQqZCTXICe5DlnJNchKRUdRyUucIYUSY9asWVq+fLlWr14tLy8vVw+nWLpw4YIGDhyot956SxUqVHD1cEqU9PR0VaxYUW+++aZatGih/v37a/LkyVq4cKGrh1asbd++XTNmzNCCBQv07bffatWqVVq/fr2mT5/u6qEBQI6RkaxBTnItspJrkJWQHc6QyoMKFSrI3d1dp0+fdmo/ffq0goODs1wnODg4V/2RWV7mPcOcOXM0a9Ysffrpp7rjjjsKcpjFSm7n/NixY/rpp5/Us2dPR1t6erokqVSpUjpy5Ihq1apVsIMuBvLyWq9UqZI8PDzk7u7uaGvQoIHi4uKUnJwsT0/PAh1zcZCXeX/uuec0cOBADRkyRJLUuHFjXbp0ScOGDdPkyZPl5sbnPvntRu+nfn5+hebTvpKMjOQaZCTXICe5DlnJNchKRUdRyUv89PPA09NTLVq00NatWx1t6enp2rp1q9q2bZvlOm3btnXqL0lbtmy5YX9klpd5l6TZs2dr+vTpio6OVmhoqBVDLTZyO+f169fXgQMHFBMT43jcf//9uuuuuxQTE6OQkBArh19k5eW13r59e/3444+OYCtJP/zwgypVqkTAyqG8zHtSUlKmIJURdI0xBTfYEoz308KNjOQaZCTXICe5DlnJNchKRUeReW917TXVi67ly5cbu91ulixZYg4ePGiGDRtmAgICTFxcnDHGmIEDB5qJEyc6+u/YscOUKlXKzJkzxxw6dMhERUVxS+M8yO28z5o1y3h6epqPPvrI/Pbbb47HhQsXXHUIRU5u5/x63D0mb3I77ydOnDC+vr5m1KhR5siRI2bdunWmYsWK5oUXXnDVIRRJuZ33qKgo4+vra/7v//7PHD9+3GzevNnUqlXL9OvXz1WHUORcuHDB7Nu3z+zbt89IMnPnzjX79u0zP//8szHGmIkTJ5qBAwc6+mfcxnj8+PHm0KFDZv78+YXyNsYlGRnJNchIrkFOch2ykmuQlVyjuOYlClK34LXXXjNVq1Y1np6eplWrVuY///mPY1nnzp1NRESEU/+VK1eaunXrGk9PT3P77beb9evXWzzi4iE3816tWjUjKdMjKirK+oEXYbl9rV+LoJV3uZ33nTt3mtatWxu73W5q1qxpXnzxRZOammrxqIu+3Mx7SkqKmTp1qqlVq5bx8vIyISEhZsSIEebcuXPWD7yI+uyzz7L8O50xzxEREaZz586Z1mnatKnx9PQ0NWvWNIsXL7Z83MgeGck1yEiuQU5yHbKSa5CVrFdc85LNGM6TAwAAAAAAgHW4hhQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAUXI9u3bZbPZtH379nzdrs1m09SpU/N1m8VNZGSkqlevXmDbf+mll1SzZk25u7uradOmBbafW5HT18nUqVNls9kKfkB5cPLkSXl5eWnHjh037XvnnXfqzjvvdGo7ffq0+vbtq/Lly8tms2nevHm52v+AAQPUr1+/XK0DALg5MpLrkJHISBIZCXlDQQousXPnTk2dOlXnz5939VBKjA0bNhCoJCUlJWnq1Kn5HlhvxebNm/X000+rffv2Wrx4sWbMmOHqIRVKkZGRstlsmR7169fP8Taef/55tW7dWu3bt8/TGMaMGaNNmzZp0qRJWrZsmbp16yZJevHFF3X//fcrKCgo21A6YcIEffzxx9q/f3+e9g+g+CMjWY+M9CcyUtFVWDPS4cOH9fTTT6tp06by9fVVpUqV1L17d33zzTeZ1icjlUylXD0AlEw7d+7UtGnTFBkZqYCAAFcPp0TYsGGD5s+fn2Xgunz5skqVKhl/DpKSkjRt2jRJyvTJTnbeeustpaenF8iYtm3bJjc3N73zzjvy9PQskH3kh8LwOrHb7Xr77bed2vz9/XO07pkzZ7R06VItXbo0z/vftm2bHnjgAY0bN86p/dlnn1VwcLCaNWumTZs23XD9Zs2aKTQ0VP/85z/1r3/9K8/jAFB8kZGsR0b6Exkp7wrD66QwZqRx48bpnXfeUZ8+fTRixAglJCRo0aJFatOmjaKjoxUWFuboS0YqmUrGX1fAxZKSklS6dOlM7ampqUpPT3f5G6yXl5dL91+YXbp0SWXKlJGHh0eB7SM+Pl7e3t43fR2kp6crOTnZZT+vwvA6KVWqlB599NE8rfvee++pVKlS6tmzZ573Hx8fn+V/EGNjY1W9enWdPXtWgYGB2W6jX79+ioqK0oIFC+Tj45PnsQBAcUBGKrrISP9TGF4nhTEjPfTQQ5o6dapT3nn88cfVoEEDTZ061akgJZGRSiK+sgfLTZ06VePHj5ck1ahRw3FK6U8//STpzwAyffp01apVS3a7XdWrV9czzzyjq1evOm2nevXq6tGjhzZv3qymTZvKy8tLDRs21KpVq/I0rvfee0+tWrVS6dKlVbZsWXXq1EmbN2926rNgwQLdfvvtstvtqly5skaOHJnplPo777xTjRo10t69e9WpUyeVLl1azzzzjH766SfZbDbNmTNH8+bNcxzfwYMHJUmHDx9W3759Va5cOXl5eSk0NFRr16696bi//PJL/eUvf1HVqlVlt9sVEhKiMWPG6PLly44+kZGRmj9/viQ5ncabIauvGO3bt0/33nuv/Pz85OPjo7vvvlv/+c9/nPosWbJENptNO3bs0NixYxUYGKgyZcqod+/eOnPmzE3Hfq2M79T/8MMPevTRR+Xv76/AwEA999xzMsbo5MmTeuCBB+Tn56fg4GD985//dFo/OTlZU6ZMUYsWLeTv768yZcqoY8eO+uyzzxx9fvrpJ0exYNq0aY55yDj2yMhI+fj46NixY7rvvvvk6+urRx55xLHs2usjREVFyc3NTVu3bnUax7Bhw+Tp6Znj041tNpsWL16sS5cuOcazZMkSx7JRo0bp/fffd7zuoqOjJUlz5sxRu3btVL58eXl7e6tFixb66KOPMm3/8uXL+tvf/qYKFSrI19dX999/v3799dc8XRMjq3W++uortWzZUl5eXqpVq5YWLVqU5bpbtmxRhw4dFBAQIB8fH9WrV0/PPPNMrvafIS0tTYmJibleb82aNWrdunWWAefNN99UrVq15O3trVatWunLL790Wp7xWjfGaP78+Zl+h3Jz7Yx77rlHly5d0pYtW3J9DACKNzISGSkrZCQyUk4VtozUokWLTNssX768OnbsqEOHDmXaFxmp5OEMKVjuwQcf1A8//KD/+7//08svv6wKFSpIkuNNcMiQIVq6dKn69u2rp556Sl9//bVmzpytwRfPAAEAAElEQVSpQ4cOafXq1U7bOnr0qPr3768nnnhCERERWrx4sf7yl78oOjpa99xzT47HNG3aNE2dOlXt2rXT888/L09PT3399dfatm2bunbtKunPMDBt2jSFhYVp+PDhOnLkiN544w3t2bNHO3bscPp06Pfff9e9996rAQMG6NFHH1VQUJBj2eLFi3XlyhUNGzZMdrtd5cqV0/fff6/27dvrtttu08SJE1WmTBmtXLlSvXr10scff6zevXvfcOwffvihkpKSNHz4cJUvX167d+/Wa6+9pl9++UUffvihJOmvf/2rTp06pS1btmjZsmU3nY/vv/9eHTt2lJ+fn55++ml5eHho0aJFuvPOO/X555+rdevWTv1Hjx6tsmXLKioqSj/99JPmzZunUaNGacWKFTn+GWTo37+/GjRooFmzZmn9+vV64YUXVK5cOS1atEhdunTRP/7xD73//vsaN26cWrZsqU6dOkmSEhMT9fbbb+uhhx7S0KFDdeHCBb3zzjsKDw/X7t271bRpUwUGBuqNN97Q8OHD1bt3bz344IOSpDvuuMOx/9TUVIWHh6tDhw6aM2dOlp/aSn9+Revf//63Bg8erAMHDsjX11ebNm3SW2+9penTp6tJkyY5Ot5ly5bpzTff1O7dux2nWbdr186xfNu2bVq5cqVGjRqlChUqOALfK6+8ovvvv1+PPPKIkpOTtXz5cv3lL3/RunXr1L17d8f6kZGRWrlypQYOHKg2bdro888/d1p+Kw4cOKCuXbsqMDBQU6dOVWpqqqKiopxe79Kfr6cePXrojjvu0PPPPy+73a4ff/wxRxfNvF5SUpL8/PyUlJSksmXL6qGHHtI//vGPm36KlpKSoj179mj48OGZlr3zzjv661//qnbt2unJJ5/U8ePHdf/996tcuXIKCQmRJHXq1EnLli3TwIEDdc8992jQoEG5HnuGhg0bytvbWzt27Mj2dxtAyUNGIiNlh4xERspOUcpIcXFxjr9v1yIjlUAGcIGXXnrJSDKxsbFO7TExMUaSGTJkiFP7uHHjjCSzbds2R1u1atWMJPPxxx872hISEkylSpVMs2bNcjyWo0ePGjc3N9O7d2+TlpbmtCw9Pd0YY0x8fLzx9PQ0Xbt2derz+uuvG0nm3XffdbR17tzZSDILFy502lZsbKyRZPz8/Ex8fLzTsrvvvts0btzYXLlyxWnf7dq1M3Xq1HG0ffbZZ0aS+eyzzxxtSUlJmY5p5syZxmazmZ9//tnRNnLkSHOjX3lJJioqyvG8V69extPT0xw7dszRdurUKePr62s6derkaFu8eLGRZMLCwhxzZYwxY8aMMe7u7ub8+fNZ7i8rUVFRRpIZNmyYoy01NdVUqVLF2Gw2M2vWLEf7uXPnjLe3t4mIiHDqe/XqVadtnjt3zgQFBZnHH3/c0XbmzJlMx5shIiLCSDITJ07Mclm1atWc2g4cOGA8PT3NkCFDzLlz58xtt91mQkNDTUpKSo6PO2PbZcqUydQuybi5uZnvv/8+07Lrf+7JycmmUaNGpkuXLo62vXv3GknmySefdOobGRl5wznITlavEy8vL6fX2cGDB427u7vTa+3ll182ksyZM2dytb/rTZw40UyYMMGsWLHC/N///Z/j59W+ffubzvmPP/5oJJnXXnvNqT05OdlUrFjRNG3a1On18+abbxpJpnPnzk79JZmRI0fecD/Zvb6uVbduXXPvvfdm2wdAyURGIiNdj4xERrqZopCRMnzxxRfGZrOZ5557LsvlZKSSha/soVDZsGGDJGns2LFO7U899ZQkaf369U7tlStXdqqe+/n5adCgQdq3b5/i4uJytM81a9YoPT1dU6ZMkZub869Exummn376qZKTk/Xkk0869Rk6dKj8/Pwyjctut+uxxx7Lcn99+vRxusbMH3/8oW3btqlfv366cOGCzp49q7Nnz+r3339XeHi4jh49ql9//fWG4/f29nb8+9KlSzp79qzatWsnY4z27duXozm4VlpamjZv3qxevXqpZs2ajvZKlSrp4Ycf1ldffZXpVOBhw4Y5nd7esWNHpaWl6eeff871/ocMGeL4t7u7u0JDQ2WM0eDBgx3tAQEBqlevno4fP+7UN+P6Aunp6frjjz+Umpqq0NBQffvtt7kaQ1afEGWlUaNGmjZtmt5++22Fh4fr7NmzWrp0ab5e1LJz585q2LBhpvZrf+7nzp1TQkKCOnbs6HSsGaeujxgxwmnd0aNH3/K40tLStGnTJvXq1UtVq1Z1tDdo0EDh4eFOfTOuJ/DJJ5/c0kVPZ86cqVmzZqlfv34aMGCAlixZohdffFE7duzI8lT8a/3++++SpLJlyzq1f/PNN4qPj9cTTzzhdH2KyMjIHF8INC/Kli2rs2fPFtj2ARQ/ZCQyEhnJGRnpf4pKRoqPj9fDDz+sGjVq6Omnn86yDxmpZKEghULl559/lpubm2rXru3UHhwcrICAgExv3rVr13Z6k5ekunXrSpLjegs3c+zYMbm5uWX5hnbtuCSpXr16Tu2enp6qWbNmpnHddtttN7z4Yo0aNZye//jjjzLG6LnnnlNgYKDTIyoqStKff7xv5MSJE4qMjFS5cuXk4+OjwMBAde7cWZKUkJBww/Vu5MyZM0pKSsp0rNKfb6Tp6ek6efKkU/u1b7bS/97Qzp07l+v9X78tf39/eXl5ZTqt19/fP9P2ly5dqjvuuENeXl4qX768AgMDtX79+lzNQ6lSpVSlSpUc9x8/fryaNGmi3bt3KyoqKtvXUV5c/3rJsG7dOrVp00ZeXl4qV66c41T7a4814/fp+m1c//uVF2fOnNHly5dVp06dTMuuf+30799f7du315AhQxQUFKQBAwZo5cqV+XJHnjFjxsjNzU2ffvppjvobY5yeZ/zuXn8cHh4eTv/ZyG/GmEx/uwAgO2QkMhIZyRkZKXuFLSNdunRJPXr00IULF/TJJ5/c8KuEZKSShWtIoVAq6n+Erv1k5mbLMt5wxo0bl+lTkww3enNMS0vTPffcoz/++EMTJkxQ/fr1VaZMGf3666+KjIwssFvwXs/d3T3L9uvf2PK6rZxs/7333lNkZKR69eql8ePHq2LFinJ3d9fMmTN17NixHO/fbrdn+hQ4O8ePH9fRo0cl/Xm9gPyW1Wvpyy+/1P33369OnTppwYIFqlSpkjw8PLR48WJ98MEH+T6GW+Xt7a0vvvhCn332mdavX6/o6GitWLFCXbp00ebNm2/4883ptsuXL68//vgj237ly5eXlLf/ABSEc+fOZRlUAeBmyEjOyEhkpGuRkZy3XVgyUnJysh588EH997//1aZNm9SoUaMb9iUjlSwUpOASNwpT1apVU3p6uo4ePaoGDRo42k+fPq3z58+rWrVqTv0zPjm7dns//PCDpJzf9apWrVpKT0/XwYMH1bRp0xuOS5KOHDni9IlAcnKyYmNjM92yNDcytufh4ZHr7Rw4cEA//PCDli5d6nQBwazuTJHTABsYGKjSpUvryJEjmZYdPnxYbm5ujosYFiYfffSRatasqVWrVjkda8YnqBnyM8inp6crMjJSfn5+evLJJzVjxgz17dvXcSHQgvLxxx/Ly8tLmzZtkt1ud7QvXrzYqV/G71NsbKzTG/uPP/54y2MIDAyUt7e3I2heK6vXjpubm+6++27dfffdmjt3rmbMmKHJkyfrs88+u6Xfn4yvcFz7FY+sVK1aVd7e3oqNjXVqz/jdPnr0qLp06eJoT0lJUWxsbI4vvJobqampOnnypO6///583zaAoo+M9D9kpPxBRiIjZaegM1J6eroGDRqkrVu3auXKlY6zFLNCRip5+MoeXKJMmTKSlOl2wPfdd58kad68eU7tc+fOlaRMd744deqU011lEhMT9a9//UtNmzZVcHBwjsbSq1cvubm56fnnn8/0aVnGp0thYWHy9PTUq6++6vSJ0zvvvKOEhIRbuiNHxYoVdeedd2rRokX67bffMi3P7tbAGZ+aXDsmY4xeeeWVTH1vNOdZbbNr16765JNPnE7pP336tD744AN16NBBfn5+2W7DFbKai6+//lq7du1y6pdxR5ibzUNOzJ07Vzt37tSbb76p6dOnq127dho+fHiBf+/d3d1dNptNaWlpjraffvpJa9asceqX8WnyggULnNpfe+21fBlDeHi41qxZoxMnTjjaDx06pE2bNjn1zeqTuYz/2Fx/q/IbuXLlii5cuJCpffr06TLGqFu3btmu7+HhodDQUH3zzTdO7aGhoQoMDNTChQuVnJzsaF+yZEm+vEaycvDgQV25csXpTkEAkIGM9D9kpPxBRiIjZaegM9Lo0aO1YsUKLViw4KYFSTJSycMZUnCJFi1aSJImT56sAQMGyMPDQz179lSTJk0UERGhN998U+fPn1fnzp21e/duLV26VL169dJdd93ltJ26detq8ODB2rNnj4KCgvTuu+/q9OnTmT4FyU7t2rU1efJkTZ8+XR07dtSDDz4ou92uPXv2qHLlypo5c6YCAwM1adIkTZs2Td26ddP999+vI0eOaMGCBWrZsqUeffTRW5qP+fPnq0OHDmrcuLGGDh2qmjVr6vTp09q1a5d++eUX7d+/P8v16tevr1q1amncuHH69ddf5efnp48//jjLU24z5vxvf/ubwsPD5e7urgEDBmS53RdeeEFbtmxRhw4dNGLECJUqVUqLFi3S1atXNXv27Fs61oLSo0cPrVq1Sr1791b37t0VGxurhQsXqmHDhrp48aKjn7e3txo2bKgVK1aobt26KleunBo1apTtqcNZOXTokJ577jlFRkaqZ8+ekv58g27atKlGjBihlStX5uvxXat79+6aO3euunXrpocffljx8fGaP3++ateurf/+97+Ofi1atFCfPn00b948/f77745bGmd8Qn6rn4ROmzZN0dHR6tixo0aMGKHU1FS99tpruv32253G8fzzz+uLL75Q9+7dVa1aNcXHx2vBggWqUqWKOnTokKN9xcXFqVmzZnrooYdUv359SdKmTZu0YcMGdevWTQ888MBNt/HAAw9o8uTJSkxMdPyHwcPDQy+88IL++te/qkuXLurfv79iY2O1ePHiXF0fYdmyZfr555+VlJQkSfriiy/0wgsvSJIGDhzodObCli1bVLp06Vzddh1AyUFGckZGunVkJDLSzRRURpo3b54WLFigtm3bqnTp0nrvvfeclvfu3dtREJbISCWSNTfzAzKbPn26ue2224ybm5vT7Y1TUlLMtGnTTI0aNYyHh4cJCQkxkyZNcrrdrzF/3tK4e/fuZtOmTeaOO+4wdrvd1K9f33z44Yd5Gs+7775rmjVrZux2uylbtqzp3Lmz2bJli1Of119/3dSvX994eHiYoKAgM3z4cHPu3DmnPp07dza33357pu1n3NL4pZdeynL/x44dM4MGDTLBwcHGw8PD3HbbbaZHjx7mo48+cvTJ6pbGBw8eNGFhYcbHx8dUqFDBDB061Ozfv99IMosXL3b0S01NNaNHjzaBgYHGZrM53XJWWdze9ttvvzXh4eHGx8fHlC5d2tx1111m586dTn0ybmm8Z88ep/asxnkzGbc0vv62tze63e/185yenm5mzJhhqlWrZux2u2nWrJlZt25dlrci3rlzp2nRooXx9PR0OvYb7StjWcZ2UlNTTcuWLU2VKlUy3bb5lVdeMZLMihUrcnzs2d3S+Ea3z33nnXdMnTp1HK/7xYsXO+bwWpcuXTIjR4405cqVMz4+PqZXr17myJEjRpLTbaJzIqvXyeeff+6Yy5o1a5qFCxdmGsfWrVvNAw88YCpXrmw8PT1N5cqVzUMPPWR++OGHHO/73Llz5tFHHzW1a9c2pUuXNna73dx+++1mxowZJjk5OUfbOH36tClVqpRZtmxZpmULFiwwNWrUMHa73YSGhpovvvjCdO7cOce3NM64lXlWj+t/D1q3bm0effTRHB87gJKHjOSMjERGuh4Z6X8Kc0aKiIi4YT669m9bBjJSyWMzJg9X1AMKgerVq6tRo0Zat26dq4cCFCkxMTFq1qyZ3nvvPT3yyCOuHo6lBg8erB9++EFffvmlS/YfExOj5s2b69tvv73h9VgA4FaRkYC8ISORkWAtriEFAMXY5cuXM7XNmzdPbm5u6tSpkwtG5FpRUVHas2ePduzY4ZL9z5o1S3379iVoAQDgYmQkZ2QkuALXkEKxFhcXl+1yb29v+fv7WzSakunixYtO1yfISmBg4C3d1rawOnPmjNNFNa/n6empcuXKFegYZs+erb179+quu+5SqVKltHHjRm3cuFHDhg1TSEiI0tLSsr0orCT5+PjIx8enwMZo5TxVrVpVV65cyZdt5cXy5ctdtm8AuBYZyfXISGSkmyEjodhz9XcGgbzKuD5CdpTNd5YlmYiICGsGW4JlfFc+u8f13x8vLqpVq5btcV//3fuCsHnzZtO+fXtTtmxZ4+HhYWrVqmWmTp1qUlJSjDH/u25Hdo/rr4mQ3wrDPAFAcUJGKhrISGSkmykM8wQUJK4hhWLt008/zXZ55cqV1bBhQ4tGUzIdP35cx48fz7ZPhw4d5OXlZdGIrLNjx44sTwfPULZsWcedfVzlypUr+uqrr7LtU7NmzVzdcS63isI8AUBxQ0ZyPTJS4X7vJyMBBY+CFAAAAAAAACzFRc0BAAAAAABgqRJ9UfP09HSdOnVKvr6+stlsrh4OAACwgDFGFy5cUOXKleXmxmdzWSEjAQBQ8lidkUp0QerUqVMKCQlx9TAAAIALnDx5UlWqVHH1MAolMhIAACWXVRmpRBekfH19Jf052X5+fi4eDQAAsEJiYqJCQkIcOQCZkZEAACh5rM5IJboglXEKup+fH2ELAIAShq+i3RgZCQCAksuqjMSFEwAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWKpEX0MKAIDspKWlKSUlxdXDQC55eHjI3d3d1cMAAKDYIiMVTYUtI1GQAgDgOsYYxcXF6fz5864eCvIoICBAwcHBXLgcAIB8REYq+gpTRqIgBQDAdTKCVsWKFVW6dOlC8YaNnDHGKCkpSfHx8ZKkSpUquXhEAAAUH2SkoqswZiQKUgAAXCMtLc0RtMqXL+/q4SAPvL29JUnx8fGqWLFioTo1HQCAooqMVPQVtozERc0BALhGxvUQSpcu7eKR4FZk/Py4vgUAAPmDjFQ8FKaMREEKAIAscAp60cbPDwCAgsF7bNFWmH5+FKQAAAAAAABgKQpSAAAUcTabLdvH1KlTXTq2NWvW3NI23nzzTd15553y8/OTzWbjzj4AACDHinNO+uOPPzR69GjVq1dP3t7eqlq1qv72t78pISEh/wZZgLioOQAAOZQS/ZVl+/Lo1iHHfX/77TfHv1esWKEpU6boyJEjjjYfH59c7Ts5OVmenp65WqcgJSUlqVu3burWrZsmTZrk6uEAAIDrWJmRJHJShlOnTunUqVOaM2eOGjZsqJ9//llPPPGETp06pY8++sjVw7spzpAqQCnRX2V6AACQ34KDgx0Pf39/2Ww2x/NLly7pkUceUVBQkHx8fNSyZUt9+umnTutXr15d06dP16BBg+Tn56dhw4ZJkt566y2FhISodOnS6t27t+bOnauAgACndT/55BM1b95cXl5eqlmzpqZNm6bU1FTHdiWpd+/estlsjuf79+/XXXfdJV9fX/n5+alFixb65ptvbnh8Tz75pCZOnKg2bdrkz4TB5chIAACrFOec1KhRI3388cfq2bOnatWqpS5duujFF1/Uv//9b8d+CjMKUgAAFGMXL17Ufffdp61bt2rfvn3q1q2bevbsqRMnTjj1mzNnjpo0aaJ9+/bpueee044dO/TEE0/o73//u2JiYnTPPffoxRdfdFrnyy+/1KBBg/T3v/9dBw8e1KJFi7RkyRJHvz179kiSFi9erN9++83x/JFHHlGVKlW0Z88e7d27VxMnTpSHh4cFswEAAPA/xTEnJSQkyM/PT6VKFf4vxBX+EQIAgDxr0qSJmjRp4ng+ffp0rV69WmvXrtWoUaMc7V26dNFTTz3leD558mTde++9GjdunCSpbt262rlzp9atW+foM23aNE2cOFERERGSpJo1a2r69Ol6+umnFRUVpcDAQElSQECAgoODHeudOHFC48ePV/369SVJderUKYAjBwAAyF5xy0lnz57V9OnTHWdxFXacIQUAQDF28eJFjRs3Tg0aNFBAQIB8fHx06NChTJ/8hYaGOj0/cuSIWrVq5dR2/fP9+/fr+eefl4+Pj+MxdOhQ/fbbb0pKSrrhmMaOHashQ4YoLCxMs2bN0rFjx27xKAEAAHKvOOWkxMREde/eXQ0bNnTphdpzg4IUAADF2Lhx47R69WrNmDFDX375pWJiYtS4cWMlJyc79StTpkyut33x4kVNmzZNMTExjseBAwd09OhReXl53XC9qVOn6vvvv1f37t21bds2NWzYUKtXr871/gEAAG5FcclJFy5cULdu3eTr66vVq1cXmUsh8JU9AACKsR07digyMlK9e/eW9Gc4+umnn266Xr169RzXMshw/fPmzZvryJEjql279g234+HhobS0tEztdevWVd26dTVmzBg99NBDWrx4sWOMAAAAVigOOSkxMVHh4eGy2+1au3ZttsWuwoaCFAAAxVidOnW0atUq9ezZUzabTc8995zS09Nvut7o0aPVqVMnzZ07Vz179tS2bdu0ceNG2Ww2R58pU6aoR48eqlq1qvr27Ss3Nzft379f3333nV544QVJf95BZuvWrWrfvr3sdru8vLw0fvx49e3bVzVq1NAvv/yiPXv2qE+fPjccS1xcnOLi4vTjjz9Kkg4cOCBfX19VrVpV5cqVu8UZAgAAJVVRz0mJiYnq2rWrkpKS9N577ykxMVGJiYmSpMDAQLm7u+fDLBUcvrIHAEAxNnfuXJUtW1bt2rVTz549FR4erubNm990vfbt22vhwoWaO3eumjRpoujoaI0ZM8bpU7fw8HCtW7dOmzdvVsuWLdWmTRu9/PLLqlatmqPPP//5T23ZskUhISFq1qyZ3N3d9fvvv2vQoEGqW7eu+vXrp3vvvVfTpk274VgWLlyoZs2aaejQoZKkTp06qVmzZlq7du0tzAwAACjpinpO+vbbb/X111/rwIEDql27tipVquR4nDx58tYnqIDZjDHG1YNwlcTERPn7+ztui5jfUqK/ytTm0a1Dvu8HAJB/rly5otjYWNWoUaNInfJshaFDh+rw4cP68ssvXT2Um8ru51jQ7//FARkJAHA9MlL2ikpOKkwZia/sAQCALM2ZM0f33HOPypQpo40bN2rp0qVasGCBq4cFAADgcuSkW0dBCgAAZGn37t2aPXu2Lly4oJo1a+rVV1/VkCFDXD0sAAAAlyMn3ToKUgAAIEsrV6509RAAAAAKJXLSreOi5gAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAKAYiIyNls9lks9nk4eGhoKAg3XPPPXr33XeVnp7u6uHdku+//159+vRR9erVZbPZNG/ePFcPCQAAFCHFOSe99dZb6tixo8qWLauyZcsqLCxMu3fvdvWwcqSUqwcAAEBRceybRZbtq1boX3O9Trdu3bR48WKlpaXp9OnTio6O1t///nd99NFHWrt2rUqVKppv+0lJSapZs6b+8pe/aMyYMa4eDgAAuI6VGUkiJ11r+/bteuihh9SuXTt5eXnpH//4h7p27arvv/9et912m6uHly3OkAIAoJiw2+0KDg7WbbfdpubNm+uZZ57RJ598oo0bN2rJkiWOfufPn9eQIUMUGBgoPz8/denSRfv373fa1r///W+1bNlSXl5eqlChgnr37u1Ydu7cOQ0aNEhly5ZV6dKlde+99+ro0aOSpEuXLsnPz08fffSR0/bWrFmjMmXK6MKFC0pOTtaoUaNUqVIleXl5qVq1apo5c+YNj6tly5Z66aWXNGDAANnt9nyYKQAAUNIU15z0/vvva8SIEWratKnq16+vt99+W+np6dq6dWs+zFrBoiAFAEAx1qVLFzVp0kSrVq1ytP3lL39RfHy8Nm7cqL1796p58+a6++679ccff0iS1q9fr969e+u+++7Tvn37tHXrVrVq1cqxfmRkpL755hutXbtWu3btkjFG9913n1JSUlSmTBkNGDBAixcvdhrH4sWL1bdvX/n6+urVV1/V2rVrtXLlSh05ckTvv/++qlevbsl8AAAAZCiOOSkpKUkpKSkqV67crU2OBYrmOWkAACDH6tevr//+97+SpK+++kq7d+9WfHy842yjOXPmaM2aNfroo480bNgwvfjiixowYICmTZvm2EaTJk0kSUePHtXatWu1Y8cOtWvXTtKfn8yFhIRozZo1+stf/qIhQ4aoXbt2+u2331SpUiXFx8drw4YN+vTTTyVJJ06cUJ06ddShQwfZbDZVq1bNyukAAABwKG45acKECapcubLCwsJueW4KGmdIAQBQzBljZLPZJEn79+/XxYsXVb58efn4+DgesbGxOnbsmCQpJiZGd999d5bbOnTokEqVKqXWrVs72sqXL6969erp0KFDkqRWrVrp9ttv19KlSyVJ7733nqpVq6ZOnTpJ+vOTw5iYGNWrV09/+9vftHnz5gI7dgAAgOwUp5w0a9YsLV++XKtXr5aXl1fuJ8NinCEFAEAxd+jQIdWoUUOSdPHiRVWqVEnbt2/P1C8gIECS5O3tfcv7HDJkiObPn6+JEydq8eLFeuyxxxxhr3nz5oqNjdXGjRv16aefql+/fgoLC8t0PQUAAICCVlxy0pw5czRr1ix9+umnuuOOO255jFbgDCkAAIqxbdu26cCBA+rTp4+kP0NOXFycSpUqpdq1azs9KlSoIEm64447bnghzAYNGig1NVVff/21o+3333/XkSNH1LBhQ0fbo48+qp9//lmvvvqqDh48qIiICKft+Pn5qX///nrrrbe0YsUKffzxx45rMwAAAFihuOSk2bNna/r06YqOjlZoaGie58NqnCEFAEAxcfXqVcXFxTndznjmzJnq0aOHBg0aJEkKCwtT27Zt1atXL82ePVt169bVqVOnHBfoDA0NVVRUlO6++27VqlVLAwYMUGpqqjZs2KAJEyaoTp06euCBBzR06FAtWrRIvr6+mjhxom677TY98MADjrGULVtWDz74oMaPH6+uXbuqSpUqjmVz585VpUqV1KxZM7m5uenDDz9UcHCw45PH6yUnJ+vgwYOOf//666+KiYmRj4+PateuXXATCgAAio3impP+8Y9/aMqUKfrggw9UvXp1xcXFSZLj64aFGWdIAQBQTERHR6tSpUqqXr26unXrps8++0yvvvqqPvnkE7m7u0uSbDabNmzYoE6dOumxxx5T3bp1NWDAAP38888KCgqSJN1555368MMPtXbtWjVt2lRdunTR7t27HftZvHixWrRooR49eqht27YyxmjDhg3y8PBwGs/gwYOVnJysxx9/3Knd19dXs2fPVmhoqFq2bKmffvpJGzZskJtb1rHk1KlTatasmZo1a6bffvtNc+bMUbNmzTRkyJD8nD4AAFCMFdec9MYbbyg5OVl9+/ZVpUqVHI85c+bk5/QVCJsxxrh6EK6SmJgof39/JSQkyM/PL9+3nxL9VaY2j24d8n0/AID8c+XKFcXGxqpGjRpF4mKQhdmyZcs0ZswYnTp1Sp6enpbuO7ufY0G//xcHZCQAwPXISPnLVTmpMGUkvrIHAADyVVJSkn777TfNmjVLf/3rXy0vRgEAABRW5KT/4St7AAAgX82ePVv169dXcHCwJk2a5OrhAAAAFBrkpP+hIAUAAPLV1KlTlZKSoq1btxb6i2kCAABYiZz0PxSkAAAAAAAAYCkKUgAAAAAAALAUBSkAALJQgm9CWyzw8wMAoGDwHlu0FaafHwUpAACu4eHhIenPO6Cg6Mr4+WX8PAEAwK0hIxUPhSkj3VJBatasWbLZbHryyScdbVeuXNHIkSNVvnx5+fj4qE+fPjp9+rTTeidOnFD37t1VunRpVaxYUePHj1dqaqpTn+3bt6t58+ay2+2qXbu2lixZkmn/8+fPV/Xq1eXl5aXWrVtr9+7dt3I4AADI3d1dAQEBio+P1++//67Lly/rypUrPIrI4/Lly/r9998VHx+vgIAAubu7u+R1REYCABQ3ZKSi/SgsGelapfK64p49e7Ro0SLdcccdTu1jxozR+vXr9eGHH8rf31+jRo3Sgw8+qB07dkiS0tLS1L17dwUHB2vnzp367bffNGjQIHl4eGjGjBmSpNjYWHXv3l1PPPGE3n//fW3dulVDhgxRpUqVFB4eLklasWKFxo4dq4ULF6p169aaN2+ewsPDdeTIEVWsWDGvhwUAgIKDgyVJ8fHxLh4J8iogIMDxc7QaGQkAUFyRkYo+V2ak69lMHr5AePHiRTVv3lwLFizQCy+8oKZNm2revHlKSEhQYGCgPvjgA/Xt21eSdPjwYTVo0EC7du1SmzZttHHjRvXo0UOnTp1SUFCQJGnhwoWaMGGCzpw5I09PT02YMEHr16/Xd99959jngAEDdP78eUVHR0uSWrdurZYtW+r111+XJKWnpyskJESjR4/WxIkTc3QciYmJ8vf3V0JCgvz8/HI7DTeVEv1VpjaPbh3yfT8AgIKRlpamlJQUVw8DueTh4ZHtp34F+f5PRsoZMhIAFG1kpKLJlRkpK3k6Q2rkyJHq3r27wsLC9MILLzja9+7dq5SUFIWFhTna6tevr6pVqzrC1q5du9S4cWNH0JKk8PBwDR8+XN9//72aNWumXbt2OW0jo0/Gae/Jycnau3evJk2a5Fju5uamsLAw7dq1Ky+HBABAJu7u7oXidGYUHWQkAEBJQEZCfsh1QWr58uX69ttvtWfPnkzL4uLi5OnpqYCAAKf2oKAgxcXFOfpcG7Qylmcsy65PYmKiLl++rHPnziktLS3LPocPH77h2K9evaqrV686nicmJt7kaAEAAHKGjAQAAJBzubqo+cmTJ/X3v/9d77//vry8vApqTAVm5syZ8vf3dzxCQkJcPSQAAFAMkJEAAAByJ1cFqb179yo+Pl7NmzdXqVKlVKpUKX3++ed69dVXVapUKQUFBSk5OVnnz593Wu/06dOOi2YFBwdnuqNMxvOb9fHz85O3t7cqVKggd3f3LPtkd3GuSZMmKSEhwfE4efJkbg4fAAAgS2QkAACA3MlVQeruu+/WgQMHFBMT43iEhobqkUcecfzbw8NDW7dudaxz5MgRnThxQm3btpUktW3bVgcOHHC6Kv+WLVvk5+enhg0bOvpcu42MPhnb8PT0VIsWLZz6pKena+vWrY4+WbHb7fLz83N6AAAA3CoyEgAAQO7k6hpSvr6+atSokVNbmTJlVL58eUf74MGDNXbsWJUrV05+fn4aPXq02rZtqzZt2kiSunbtqoYNG2rgwIGaPXu24uLi9Oyzz2rkyJGy2+2SpCeeeEKvv/66nn76aT3++OPatm2bVq5cqfXr1zv2O3bsWEVERCg0NFStWrXSvHnzdOnSJT322GO3NCEAAAC5RUYCAADInTzdZS87L7/8stzc3NSnTx9dvXpV4eHhWrBggWO5u7u71q1bp+HDh6tt27YqU6aMIiIi9Pzzzzv61KhRQ+vXr9eYMWP0yiuvqEqVKnr77bcVHh7u6NO/f3+dOXNGU6ZMUVxcnJo2baro6OhMF/EEAAAoDMhIAAAA/2MzxhhXD8JVEhMT5e/vr4SEhAI5NT0l+qtMbR7dOuT7fgAAQM4V9Pt/cUBGAgCg5LE6I+XqGlIAAAAAAADAraIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUqVcPYDi7KfzGzO11VEHF4wEAACg8CAjAQAAzpACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFK5Kki98cYbuuOOO+Tn5yc/Pz+1bdtWGzdudCy/cuWKRo4cqfLly8vHx0d9+vTR6dOnnbZx4sQJde/eXaVLl1bFihU1fvx4paamOvXZvn27mjdvLrvdrtq1a2vJkiWZxjJ//nxVr15dXl5eat26tXbv3p2bQwEAAMg3ZCQAAIDcyVVBqkqVKpo1a5b27t2rb775Rl26dNEDDzyg77//XpI0ZswY/fvf/9aHH36ozz//XKdOndKDDz7oWD8tLU3du3dXcnKydu7cqaVLl2rJkiWaMmWKo09sbKy6d++uu+66SzExMXryySc1ZMgQbdq0ydFnxYoVGjt2rKKiovTtt9+qSZMmCg8PV3x8/K3OBwAAQK6RkQAAAHLHZowxt7KBcuXK6aWXXlLfvn0VGBioDz74QH379pUkHT58WA0aNNCuXbvUpk0bbdy4UT169NCpU6cUFBQkSVq4cKEmTJigM2fOyNPTUxMmTND69ev13XffOfYxYMAAnT9/XtHR0ZKk1q1bq2XLlnr99dclSenp6QoJCdHo0aM1ceLEHI89MTFR/v7+SkhIkJ+f361MQ5aOLp+cqa3OgBfzfT8AACDnCvr9PwMZ6cbISAAAFD5WZaQMeb6GVFpampYvX65Lly6pbdu22rt3r1JSUhQWFuboU79+fVWtWlW7du2SJO3atUuNGzd2BC1JCg8PV2JiouMTxF27djltI6NPxjaSk5O1d+9epz5ubm4KCwtz9AEAAHAVMhIAAMDNlcrtCgcOHFDbtm115coV+fj4aPXq1WrYsKFiYmLk6empgIAAp/5BQUGKi4uTJMXFxTkFrYzlGcuy65OYmKjLly/r3LlzSktLy7LP4cOHsx371atXdfXqVcfzxMTEnB84AABANshIAAAAOZfrM6Tq1aunmJgYff311xo+fLgiIiJ08ODBghhbvps5c6b8/f0dj5CQEFcPCQAAFBNkJAAAgJzLdUHK09NTtWvXVosWLTRz5kw1adJEr7zyioKDg5WcnKzz58879T99+rSCg4MlScHBwZnuKJPx/GZ9/Pz85O3trQoVKsjd3T3LPhnbuJFJkyYpISHB8Th58mRuDx8AACBLZCQAAICcy/M1pDKkp6fr6tWratGihTw8PLR161bHsiNHjujEiRNq27atJKlt27Y6cOCA051etmzZIj8/PzVs2NDR59ptZPTJ2Ianp6datGjh1Cc9PV1bt2519LkRu93uuB1zxgMAAKAgkJEAAABuLFfXkJo0aZLuvfdeVa1aVRcuXNAHH3yg7du3a9OmTfL399fgwYM1duxYlStXTn5+fho9erTatm2rNm3aSJK6du2qhg0bauDAgZo9e7bi4uL07LPPauTIkbLb7ZKkJ554Qq+//rqefvppPf7449q2bZtWrlyp9evXO8YxduxYRUREKDQ0VK1atdK8efN06dIlPfbYY/k4NQAAADlDRgIAAMidXBWk4uPjNWjQIP3222/y9/fXHXfcoU2bNumee+6RJL388styc3NTnz59dPXqVYWHh2vBggWO9d3d3bVu3ToNHz5cbdu2VZkyZRQREaHnn3/e0adGjRpav369xowZo1deeUVVqlTR22+/rfDwcEef/v3768yZM5oyZYri4uLUtGlTRUdHZ7qIJwAAgBXISAAAALljM8YYVw/CVRITE+Xv76+EhIQCOTX96PLJmdrqDHgx3/cDAAByrqDf/4sDMhIAACWP1Rnplq8hBQAAAAAAAOQGBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFK5KkjNnDlTLVu2lK+vrypWrKhevXrpyJEjTn2uXLmikSNHqnz58vLx8VGfPn10+vRppz4nTpxQ9+7dVbp0aVWsWFHjx49XamqqU5/t27erefPmstvtql27tpYsWZJpPPPnz1f16tXl5eWl1q1ba/fu3bk5HAAAgHxBRgIAAMidXBWkPv/8c40cOVL/+c9/tGXLFqWkpKhr1666dOmSo8+YMWP073//Wx9++KE+//xznTp1Sg8++KBjeVpamrp3767k5GTt3LlTS5cu1ZIlSzRlyhRHn9jYWHXv3l133XWXYmJi9OSTT2rIkCHatGmTo8+KFSs0duxYRUVF6dtvv1WTJk0UHh6u+Pj4W5kPAACAXCMjAQAA5I7NGGPyuvKZM2dUsWJFff755+rUqZMSEhIUGBioDz74QH379pUkHT58WA0aNNCuXbvUpk0bbdy4UT169NCpU6cUFBQkSVq4cKEmTJigM2fOyNPTUxMmTND69ev13XffOfY1YMAAnT9/XtHR0ZKk1q1bq2XLlnr99dclSenp6QoJCdHo0aM1ceLEHI0/MTFR/v7+SkhIkJ+fX16n4YaOLp+cqa3OgBfzfT8AACDnCvr9XyIj3QwZCQCAwseKjHStW7qGVEJCgiSpXLlykqS9e/cqJSVFYWFhjj7169dX1apVtWvXLknSrl271LhxY0fQkqTw8HAlJibq+++/d/S5dhsZfTK2kZycrL179zr1cXNzU1hYmKMPAACAq5CRAAAAslcqryump6frySefVPv27dWoUSNJUlxcnDw9PRUQEODUNygoSHFxcY4+1watjOUZy7Lrk5iYqMuXL+vcuXNKS0vLss/hw4dvOOarV6/q6tWrjueJiYm5OGIAAICbIyMBAADcXJ7PkBo5cqS+++47LV++PD/HU6Bmzpwpf39/xyMkJMTVQwIAAMUMGQkAAODm8lSQGjVqlNatW6fPPvtMVapUcbQHBwcrOTlZ58+fd+p/+vRpBQcHO/pcf0eZjOc36+Pn5ydvb29VqFBB7u7uWfbJ2EZWJk2apISEBMfj5MmTuTtwAACAbJCRAAAAciZXBSljjEaNGqXVq1dr27ZtqlGjhtPyFi1ayMPDQ1u3bnW0HTlyRCdOnFDbtm0lSW3bttWBAwec7vSyZcsW+fn5qWHDho4+124jo0/GNjw9PdWiRQunPunp6dq6daujT1bsdrv8/PycHgAAALeKjAQAAJA7ubqG1MiRI/XBBx/ok08+ka+vr+N6Bv7+/vL29pa/v78GDx6ssWPHqly5cvLz89Po0aPVtm1btWnTRpLUtWtXNWzYUAMHDtTs2bMVFxenZ599ViNHjpTdbpckPfHEE3r99df19NNP6/HHH9e2bdu0cuVKrV+/3jGWsWPHKiIiQqGhoWrVqpXmzZunS5cu6bHHHsuvuQEAAMgRMhIAAEDu5Kog9cYbb0iS7rzzTqf2xYsXKzIyUpL08ssvy83NTX369NHVq1cVHh6uBQsWOPq6u7tr3bp1Gj58uNq2basyZcooIiJCzz//vKNPjRo1tH79eo0ZM0avvPKKqlSporffflvh4eGOPv3799eZM2c0ZcoUxcXFqWnTpoqOjs50EU8AAICCRkYCAADIHZsxxrh6EK6SmJgof39/JSQkFMip6UeXT87UVmfAi/m+HwAAkHMF/f5fHJCRAAAoeazOSHm+yx4AAAAAAACQFxSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL5bog9cUXX6hnz56qXLmybDab1qxZ47TcGKMpU6aoUqVK8vb2VlhYmI4ePerU548//tAjjzwiPz8/BQQEaPDgwbp48aJTn//+97/q2LGjvLy8FBISotmzZ2cay4cffqj69evLy8tLjRs31oYNG3J7OAAAAPmCjAQAAJBzuS5IXbp0SU2aNNH8+fOzXD579my9+uqrWrhwob7++muVKVNG4eHhunLliqPPI488ou+//15btmzRunXr9MUXX2jYsGGO5YmJieratauqVaumvXv36qWXXtLUqVP15ptvOvrs3LlTDz30kAYPHqx9+/apV69e6tWrl7777rvcHhIAAMAtIyMBAADknM0YY/K8ss2m1atXq1evXpL+/OSvcuXKeuqppzRu3DhJUkJCgoKCgrRkyRINGDBAhw4dUsOGDbVnzx6FhoZKkqKjo3Xffffpl19+UeXKlfXGG29o8uTJiouLk6enpyRp4sSJWrNmjQ4fPixJ6t+/vy5duqR169Y5xtOmTRs1bdpUCxcuzNH4ExMT5e/vr4SEBPn5+eV1Gm7o6PLJmdrqDHgx3/cDAAByrqDf/yUy0s2QkQAAKHysyEjXytdrSMXGxiouLk5hYWGONn9/f7Vu3Vq7du2SJO3atUsBAQGOoCVJYWFhcnNz09dff+3o06lTJ0fQkqTw8HAdOXJE586dc/S5dj8ZfTL2AwAAUFiQkQAAAJyVys+NxcXFSZKCgoKc2oOCghzL4uLiVLFiRedBlCqlcuXKOfWpUaNGpm1kLCtbtqzi4uKy3U9Wrl69qqtXrzqeJyYm5ubwAAAA8oSMBAAA4KxE3WVv5syZ8vf3dzxCQkJcPSQAAACXIyMBAACr5WtBKjg4WJJ0+vRpp/bTp087lgUHBys+Pt5peWpqqv744w+nPllt49p93KhPxvKsTJo0SQkJCY7HyZMnc3uIAAAAuUZGAgAAcJavBakaNWooODhYW7dudbQlJibq66+/Vtu2bSVJbdu21fnz57V3715Hn23btik9PV2tW7d29Pniiy+UkpLi6LNlyxbVq1dPZcuWdfS5dj8ZfTL2kxW73S4/Pz+nBwAAQEEjIwEAADjLdUHq4sWLiomJUUxMjKQ/L9IZExOjEydOyGaz6cknn9QLL7ygtWvX6sCBAxo0aJAqV67suMtMgwYN1K1bNw0dOlS7d+/Wjh07NGrUKA0YMECVK1eWJD388MPy9PTU4MGD9f3332vFihV65ZVXNHbsWMc4/v73vys6Olr//Oc/dfjwYU2dOlXffPONRo0adeuzAgAAkEtkJAAAgJzL9UXNv/nmG911112O5xkBKCIiQkuWLNHTTz+tS5cuadiwYTp//rw6dOig6OhoeXl5OdZ5//33NWrUKN19991yc3NTnz599OqrrzqW+/v7a/PmzRo5cqRatGihChUqaMqUKRo2bJijT7t27fTBBx/o2Wef1TPPPKM6depozZo1atSoUZ4mAgAA4FaQkQAAAHLOZowxrh6EqyQmJsrf318JCQkFcmr60eWTM7XVGfBivu8HAADkXEG//xcHZCQAAEoeqzNSibrLHgAAAAAAAFyPghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkiX5CaP3++qlevLi8vL7Vu3Vq7d+929ZAAAABcjowEAAAKsyJdkFqxYoXGjh2rqKgoffvtt2rSpInCw8MVHx/v6qEBAAC4DBkJAAAUdkW6IDV37lwNHTpUjz32mBo2bKiFCxeqdOnSevfdd109NAAAAJchIwEAgMKuyBakkpOTtXfvXoWFhTna3NzcFBYWpl27drlwZAAAAK5DRgIAAEVBKVcPIK/Onj2rtLQ0BQUFObUHBQXp8OHDWa5z9epVXb161fE8ISFBkpSYmFggY7yYdDVTW0HtCwAA5EzGe7ExxsUjKRhkJAAAkBdWZ6QiW5DKi5kzZ2ratGmZ2kNCQqwbxOB/WrcvAABwQxcuXJC/v7+rh1EokJEAAEAGqzJSkS1IVahQQe7u7jp9+rRT++nTpxUcHJzlOpMmTdLYsWMdz9PT0/XHH3+ofPnystls+Tq+xMREhYSE6OTJk/Lz88vXbePGmHfXYN5dg3l3DebdNfJz3o0xunDhgipXrpxPoytcyEi4EebedZh712HuXYN5d51bmXurM1KRLUh5enqqRYsW2rp1q3r16iXpz/C0detWjRo1Kst17Ha77Ha7U1tAQECBjtPPz49fQBdg3l2DeXcN5t01mHfXyK95L85nRpGRcDPMvesw967D3LsG8+46eZ17KzNSkS1ISdLYsWMVERGh0NBQtWrVSvPmzdOlS5f02GOPuXpoAAAALkNGAgAAhV2RLkj1799fZ86c0ZQpUxQXF6emTZsqOjo600U8AQAAShIyEgAAKOyKdEFKkkaNGnXD089dyW63KyoqKtPp7yhYzLtrMO+uwby7BvPuGsx77pGRcD3m3nWYe9dh7l2DeXedojT3NlNc73kMAAAAAACAQsnN1QMAAAAAAABAyUJBCgAAAAAAAJaiIAUAAAAAAABLUZC6BfPnz1f16tXl5eWl1q1ba/fu3dn2//DDD1W/fn15eXmpcePG2rBhg0UjLV5yM+9vvfWWOnbsqLJly6ps2bIKCwu76c8JWcvt6z3D8uXLZbPZ1KtXr4IdYDGV23k/f/68Ro4cqUqVKslut6tu3br8rcmD3M77vHnzVK9ePXl7eyskJERjxozRlStXLBpt0ffFF1+oZ8+eqly5smw2m9asWXPTdbZv367mzZvLbrerdu3aWrJkSYGPEzlHRnIdcpLrkJVcg6zkOuQl1yhWuckgT5YvX248PT3Nu+++a77//nszdOhQExAQYE6fPp1l/x07dhh3d3cze/Zsc/DgQfPss88aDw8Pc+DAAYtHXrTldt4ffvhhM3/+fLNv3z5z6NAhExkZafz9/c0vv/xi8ciLttzOe4bY2Fhz2223mY4dO5oHHnjAmsEWI7md96tXr5rQ0FBz3333ma+++srExsaa7du3m5iYGItHXrTldt7ff/99Y7fbzfvvv29iY2PNpk2bTKVKlcyYMWMsHnnRtWHDBjN58mSzatUqI8msXr062/7Hjx83pUuXNmPHjjUHDx40r732mnF3dzfR0dHWDBjZIiO5DjnJdchKrkFWch3ykusUp9xEQSqPWrVqZUaOHOl4npaWZipXrmxmzpyZZf9+/fqZ7t27O7W1bt3a/PWvfy3QcRY3uZ3366WmphpfX1+zdOnSghpisZSXeU9NTTXt2rUzb7/9tomIiCBk5UFu5/2NN94wNWvWNMnJyVYNsVjK7byPHDnSdOnSxalt7Nixpn379gU6zuIqJ8Hq6aefNrfffrtTW//+/U14eHgBjgw5RUZyHXKS65CVXIOs5DrkpcKhqOcmvrKXB8nJydq7d6/CwsIcbW5ubgoLC9OuXbuyXGfXrl1O/SUpPDz8hv2RWV7m/XpJSUlKSUlRuXLlCmqYxU5e5/35559XxYoVNXjwYCuGWezkZd7Xrl2rtm3bauTIkQoKClKjRo00Y8YMpaWlWTXsIi8v896uXTvt3bvXcZr68ePHtWHDBt13332WjLkk4j218CIjuQ45yXXISq5BVnId8lLRUpjfZ0u5egBF0dmzZ5WWlqagoCCn9qCgIB0+fDjLdeLi4rLsHxcXV2DjLG7yMu/XmzBhgipXrpzpFxI3lpd5/+qrr/TOO+8oJibGghEWT3mZ9+PHj2vbtm165JFHtGHDBv34448aMWKEUlJSFBUVZcWwi7y8zPvDDz+ss2fPqkOHDjLGKDU1VU888YSeeeYZK4ZcIt3oPTUxMVGXL1+Wt7e3i0YGMpLrkJNch6zkGmQl1yEvFS2FOTdxhhRKjFmzZmn58uVavXq1vLy8XD2cYuvChQsaOHCg3nrrLVWoUMHVwylR0tPTVbFiRb355ptq0aKF+vfvr8mTJ2vhwoWuHlqxtn37ds2YMUMLFizQt99+q1WrVmn9+vWaPn26q4cGADlGTrIOWcl1yEquQ15CVjhDKg8qVKggd3d3nT592qn99OnTCg4OznKd4ODgXPVHZnmZ9wxz5szRrFmz9Omnn+qOO+4oyGEWO7md92PHjumnn35Sz549HW3p6emSpFKlSunIkSOqVatWwQ66GMjL671SpUry8PCQu7u7o61BgwaKi4tTcnKyPD09C3TMxUFe5v25557TwIEDNWTIEElS48aNdenSJQ0bNkyTJ0+Wmxuf/eS3G72n+vn5cXaUi5GRXIec5DpkJdcgK7kOealoKcy5iZ96Hnh6eqpFixbaunWroy09PV1bt25V27Zts1ynbdu2Tv0lacuWLTfsj8zyMu+SNHv2bE2fPl3R0dEKDQ21YqjFSm7nvX79+jpw4IBiYmIcj/vvv1933XWXYmJiFBISYuXwi6y8vN7bt2+vH3/80RFqJemHH35QpUqVCFg5lJd5T0pKyhSiMoKuMabgBluC8Z5aeJGRXIec5DpkJdcgK7kOealoKdTvs669pnrRtXz5cmO3282SJUvMwYMHzbBhw0xAQICJi4szxhgzcOBAM3HiREf/HTt2mFKlSpk5c+aYQ4cOmaioKG5pnAe5nfdZs2YZT09P89FHH5nffvvN8bhw4YKrDqFIyu28X487x+RNbuf9xIkTxtfX14waNcocOXLErFu3zlSsWNG88MILrjqEIim38x4VFWV8fX3N//3f/5njx4+bzZs3m1q1apl+/fq56hCKnAsXLph9+/aZffv2GUlm7ty5Zt++febnn382xhgzceJEM3DgQEf/jNsXjx8/3hw6dMjMnz+/0Ny+GGQkVyInuQ5ZyTXISq5DXnKd4pSbKEjdgtdee81UrVrVeHp6mlatWpn//Oc/jmWdO3c2ERERTv1Xrlxp6tatazw9Pc3tt99u1q9fb/GIi4fczHu1atWMpEyPqKgo6wdexOX29X4tQlbe5Xbed+7caVq3bm3sdrupWbOmefHFF01qaqrFoy76cjPvKSkpZurUqaZWrVrGy8vLhISEmBEjRphz585ZP/Ai6rPPPsvyb3XGPEdERJjOnTtnWqdp06bG09PT1KxZ0yxevNjycePGyEiuQ05yHbKSa5CVXIe85BrFKTfZjOH8OAAAAAAAAFiHa0gBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFFCEbN++XTabTdu3b8/X7dpsNk2dOjVft1ncREZGqnr16gW2/Zdeekk1a9aUu7u7mjZtWmD7uRU5fZ1MnTpVNput4AeUBydPnpSXl5d27Nhx07533nmn7rzzTqe206dPq2/fvipfvrxsNpvmzZuXq/0PGDBA/fr1y9U6AICbIyO5DhmJjCSRkZA3FKTgEjt37tTUqVN1/vx5Vw+lxNiwYQOBSlJSUpKmTp2a74H1VmzevFlPP/202rdvr8WLF2vGjBmuHlKhlZ6erjfeeENNmzaVt7e3ypcvry5dumj//v05Wv/5559X69at1b59+zztf8yYMdq0aZMmTZqkZcuWqVu3bpKkF198Uffff7+CgoKyDaUTJkzQxx9/nOPxAih5yEjWIyP9iYxUtBXGjHT48GE9/fTTatq0qXx9fVWpUiV1795d33zzTab1yUglUylXDwAl086dOzVt2jRFRkYqICDA1cMpETZs2KD58+dnGbguX76sUqVKxp+DpKQkTZs2TZIyfbKTnbfeekvp6ekFMqZt27bJzc1N77zzjjw9PQtkH/mhMLxOHn/8cb3//vsaNGiQRo0apUuXLmnfvn2Kj4+/6bpnzpzR0qVLtXTp0jzvf9u2bXrggQc0btw4p/Znn31WwcHBatasmTZt2nTD9Zs1a6bQ0FD985//1L/+9a88jwNA8UVGsh4Z6U9kpLwrDK+TwpiRxo0bp3feeUd9+vTRiBEjlJCQoEWLFqlNmzaKjo5WWFiYoy8ZqWQqGX9dARdLSkpS6dKlM7WnpqYqPT3d5W+wXl5eLt1/YXbp0iWVKVNGHh4eBbaP+Ph4eXt73/R1kJ6eruTkZJf9vFz9Olm5cqWWLl2qVatWqXfv3rle/7333lOpUqXUs2fPPI8hPj4+y/8gxsbGqnr16jp79qwCAwOz3Ua/fv0UFRWlBQsWyMfHJ89jAYDigIxUdJGR/sfVr5PCmpEeeughTZ061SnvPP7442rQoIGmTp3qVJCSyEglEV/Zg+WmTp2q8ePHS5Jq1Kghm80mm82mn376SdKfAWT69OmqVauW7Ha7qlevrmeeeUZXr1512k716tXVo0cPbd68WU2bNpWXl5caNmyoVatW5Wlc7733nlq1aqXSpUurbNmy6tSpkzZv3uzUZ8GCBbr99ttlt9tVuXJljRw5MtMp9XfeeacaNWqkvXv3qlOnTipdurSeeeYZ/fTTT7LZbJozZ47mzZvnOL6DBw9Kkg4fPqy+ffuqXLly8vLyUmhoqNauXXvTcX/55Zf6y1/+oqpVq8putyskJERjxozR5cuXHX0iIyM1f/58SXLM97XfX8/qK0b79u3TvffeKz8/P/n4+Ojuu+/Wf/7zH6c+S5Yskc1m044dOzR27FgFBgaqTJky6t27t86cOXPTsV8r4zv1P/zwgx599FH5+/srMDBQzz33nIwxOnnypB544AH5+fkpODhY//znP53WT05O1pQpU9SiRQv5+/urTJky6tixoz777DNHn59++slRLJg2bZpjHjKOPTIyUj4+Pjp27Jjuu+8++fr66pFHHnEsu/b6CFFRUXJzc9PWrVudxjFs2DB5enrm+HRjm82mxYsX69KlS47xLFmyxLFs1KhRev/99x2vu+joaEnSnDlz1K5dO5UvX17e3t5q0aKFPvroo0zbv3z5sv72t7+pQoUK8vX11f33369ff/01T9fEyGqdr776Si1btpSXl5dq1aqlRYsWZbnuli1b1KFDBwUEBMjHx0f16tXTM888k6v9z507V61atVLv3r2Vnp6uS5cu5Wr9NWvWqHXr1lkGnDfffFO1atWSt7e3WrVqpS+//NJpecZr3Rij+fPnZ/odys21M+655x5dunRJW7ZsydX4ARR/ZCQyUlbISGSkmymsGalFixaZtlm+fHl17NhRhw4dyrQvMlIJZACL7d+/3zz00ENGknn55ZfNsmXLzLJly8zFixeNMcZEREQYSaZv375m/vz5ZtCgQUaS6dWrl9N2qlWrZurWrWsCAgLMxIkTzdy5c03jxo2Nm5ub2bx5c67GNHXqVCPJtGvXzrz00kvmlVdeMQ8//LCZMGGCo09UVJSRZMLCwsxrr71mRo0aZdzd3U3Lli1NcnKyo1/nzp1NcHCwCQwMNKNHjzaLFi0ya9asMbGxsUaSadiwoalZs6aZNWuWefnll83PP/9svvvuO+Pv728aNmxo/vGPf5jXX3/ddOrUydhsNrNq1SrHtj/77DMjyXz22WeOttGjR5v77rvPzJgxwyxatMgMHjzYuLu7m759+zr67Ny509xzzz1GkmO+ly1b5lguyURFRTmef/fdd6ZMmTKmUqVKZvr06WbWrFmmRo0axm63m//85z+OfosXLzaSTLNmzUyXLl3Ma6+9Zp566inj7u5u+vXrl6ufQcb8Nm3a1Dz00ENmwYIFpnv37kaSmTt3rqlXr54ZPny4WbBggWnfvr2RZD7//HPH+mfOnDGVKlUyY8eONW+88YaZPXu2qVevnvHw8DD79u0zxhhz8eJF88YbbxhJpnfv3o552L9/vzHmz9ee3W43tWrVMhEREWbhwoXmX//6l2NZtWrVHPtLTk42zZo1M9WqVTOJiYnGGGOio6ONJDN9+vQcH/eyZctMx44djd1ud4zn2LFjjp9LgwYNTGBgoJk2bZqZP3++41iqVKliRowYYV5//XUzd+5c06pVKyPJrFu3zmn7/fr1M5LMwIEDzfz5802/fv1MkyZNMv3Mc+L6df773/8ab29vU7VqVTNz5kwzffp0ExQUZO644w5z7dvLd999Zzw9PU1oaKh55ZVXzMKFC824ceNMp06dcrzvhIQEY7PZzMiRI82kSZOMj4+PkWRq1KhhVqxYcdP1k5OTjbe3txk7dmymZW+//bbj9//VV181Tz75pAkICDA1a9Y0nTt3NsYYc+zYMbNs2TIjydxzzz2ZfocynDlz5qZzm5KSYry9vc1TTz2V4+MHUDKQkchIWSEjkZGyU1Qy0rXatWtn6tatm6mdjFTyUJCCS7z00ktGkomNjXVqj4mJMZLMkCFDnNrHjRtnJJlt27Y52qpVq2YkmY8//tjRlpCQYCpVqmSaNWuW47EcPXrUuLm5md69e5u0tDSnZenp6cYYY+Lj442np6fp2rWrU5/XX3/dSDLvvvuuo61z585Gklm4cKHTtjLClp+fn4mPj3dadvfdd5vGjRubK1euOO27Xbt2pk6dOo62rMJWUlJSpmOaOXOmsdls5ueff3a0jRw50ukN8FrXv4n26tXLeHp6Ot70jTHm1KlTxtfX1+kNMiNshYWFOebKGGPGjBlj3N3dzfnz57PcX1YywtawYcMcbampqaZKlSrGZrOZWbNmOdrPnTtnvL29TUREhFPfq1evOm3z3LlzJigoyDz++OOOtuwKBhlBf+LEiVkuuzZsGWPMgQMHjKenpxkyZIg5d+6cue2220xoaKhJSUnJ8XFnbLtMmTKZ2iUZNzc38/3332dadv3PPTk52TRq1Mh06dLF0bZ3714jyTz55JNOfSMjI/MlbPXq1ct4eXk5vc4OHjxo3N3dnV5rL7/8spFkzpw5k6v9Xevbb781kkz58uVNUFCQWbBggXn//fdNq1atjM1mMxs3bsx2/R9//NFIMq+99ppTe3JysqlYsaJp2rSp0+vnzTffNJIcYSuDJDNy5Mgb7icnBSljjKlbt6659957s+0DoGQiI5GRrkdGIiNlp6hkpAxffPGFsdls5rnnnstyORmpZOEreyhUNmzYIEkaO3asU/tTTz0lSVq/fr1Te+XKlZ2+J+3n56dBgwZp3759iouLy9E+16xZo/T0dE2ZMkVubs6/Ehmnm3766adKTk7Wk08+6dRn6NCh8vPzyzQuu92uxx57LMv99enTx+kaM3/88Ye2bdumfv366cKFCzp79qzOnj2r33//XeHh4Tp69Kh+/fXXG47f29vb8e9Lly7p7NmzateunYwx2rdvX47m4FppaWnavHmzevXqpZo1azraK1WqpIcfflhfffWVEhMTndYZNmyY0+ntHTt2VFpamn7++edc73/IkCGOf7u7uys0NFTGGA0ePNjRHhAQoHr16un48eNOfTOuL5Cenq4//vhDqampCg0N1bfffpurMQwfPjxH/Ro1aqRp06bp7bffVnh4uM6ePaulS5fm60UtO3furIYNG2Zqv/bnfu7cOSUkJKhjx45Ox5px6vqIESOc1h09evQtjystLU2bNm1Sr169VLVqVUd7gwYNFB4e7tQ343oCn3zySZ4venrx4kVJ0u+//65PPvlEw4cP18MPP6ytW7eqfPnyeuGFF7Jd//fff5cklS1b1qn9m2++UXx8vJ544gmn61NERkbK398/T2PNibJly+rs2bMFtn0AxQ8ZiYxERnJGRvpTUcpI8fHxevjhh1WjRg09/fTTWfYhI5UsFKRQqPz8889yc3NT7dq1ndqDg4MVEBCQ6c27du3aTm/yklS3bl1Jclxv4WaOHTsmNze3LN/Qrh2XJNWrV8+p3dPTUzVr1sw0rttuu+2GF1+sUaOG0/Mff/xRxhg999xzCgwMdHpERUVJUrZ3xzhx4oQiIyNVrlw5+fj4KDAwUJ07d5YkJSQk3HC9Gzlz5oySkpIyHav05xtpenq6Tp486dR+7Zut9L83tHPnzuV6/9dvy9/fX15eXqpQoUKm9uu3v3TpUt1xxx3y8vJS+fLlFRgYqPXr1+dqHkqVKqUqVarkuP/48ePVpEkT7d69W1FRUdm+jvLi+tdLhnXr1qlNmzby8vJSuXLlFBgYqDfeeMPpWDN+n67fxvW/X3lx5swZXb58WXXq1Mm07PrXTv/+/dW+fXsNGTJEQUFBGjBggFauXJmr4JURLmvUqKHWrVs72n18fNSzZ0/t3r1bqampN92OMcbpecbv7vXH4eHh4fSfjfxmjMn0twsAskNGIiORkZyRkf5UVDLSpUuX1KNHD124cEGffPLJDS9aTkYqWbjLHgqlov5H6NpPZm62LOMNZ9y4cZk+NclwozfHtLQ03XPPPfrjjz80YcIE1a9fX2XKlNGvv/6qyMjIArsF7/Xc3d2zbL/+jS2v28rJ9t977z1FRkaqV69eGj9+vCpWrCh3d3fNnDlTx44dy/H+7XZ7pk+Bs3P8+HEdPXpUknTgwIEcr5dTWb2WvvzyS91///3q1KmTFixYoEqVKsnDw0OLFy/WBx98kO9juFXe3t764osv9Nlnn2n9+vWKjo7WihUr1KVLF23evPmGP99rVa5cWZIUFBSUaVnFihWVkpKiS5cu3fATu/Lly0vK238ACsK5c+eyDKoAcDNkJGdkJDLStchIzgpLRkpOTtaDDz6o//73v9q0aZMaNWp0w75kpJKFghRc4kZhqlq1akpPT9fRo0fVoEEDR/vp06d1/vx5VatWzal/xidn127vhx9+kJTzu17VqlVL6enpOnjwoJo2bXrDcUnSkSNHnD4RSE5OVmxsbKZbluZGxvY8PDxyvZ0DBw7ohx9+0NKlSzVo0CBHe1Z3pshpgA0MDFTp0qV15MiRTMsOHz4sNzc3hYSE5GqcVvjoo49Us2ZNrVq1yulYMz5BzZCfQT49PV2RkZHy8/PTk08+qRkzZqhv37568MEH820fWfn444/l5eWlTZs2yW63O9oXL17s1C/j9yk2Ntbpjf3HH3+85TEEBgbK29vbETSvldVrx83NTXfffbfuvvtuzZ07VzNmzNDkyZP12Wef5eh1X7lyZQUHB2f51YxTp07Jy8tLvr6+N1y/atWq8vb2VmxsrFN7xu/20aNH1aVLF0d7SkqKYmNj1aRJk5uOLbdSU1N18uRJ3X///fm+bQBFHxnpf8hI+YOMREZyZUZKT0/XoEGDtHXrVq1cudJxlmJWyEglD1/Zg0uUKVNGkjLdDvi+++6TJM2bN8+pfe7cuZKk7t27O7WfOnVKq1evdjxPTEzUv/71LzVt2lTBwcE5GkuvXr3k5uam559/PtOnZRmfLoWFhcnT01Ovvvqq0ydO77zzjhISEjKNKzcqVqyoO++8U4sWLdJvv/2WaXl2twbO+NTk2jEZY/TKK69k6nujOc9qm127dtUnn3zidEr/6dOn9cEHH6hDhw7y8/PLdhuukNVcfP3119q1a5dTv9KlS0u6+TzkxNy5c7Vz5069+eabmj59utq1a6fhw4cX+Pfe3d3dZbPZlJaW5mj76aeftGbNGqd+GZ8mL1iwwKn9tddey5cxhIeHa82aNTpx4oSj/dChQ9q0aZNT3z/++CPT+hn/sbn+VuXZ6d+/v06ePOn0n4mzZ8/qk08+UZcuXbL91NbDw0OhoaH65ptvnNpDQ0MVGBiohQsXKjk52dG+ZMmSfHmNZOXgwYO6cuWK2rVrVyDbB1C0kZH+h4yUP8hIZCRXZqTRo0drxYoVWrBgwU0LkmSkkoczpOASLVq0kCRNnjxZAwYMkIeHh3r27KkmTZooIiJCb775ps6fP6/OnTtr9+7dWrp0qXr16qW77rrLaTt169bV4MGDtWfPHgUFBendd9/V6dOnM30Kkp3atWtr8uTJmj59ujp27KgHH3xQdrtde/bsUeXKlTVz5kwFBgZq0qRJmjZtmrp166b7779fR44c0YIFC9SyZUs9+uijtzQf8+fPV4cOHdS4cWMNHTpUNWvW1OnTp7Vr1y798ssv2r9/f5br1a9fX7Vq1dK4ceP066+/ys/PTx9//HGWp9xmzPnf/vY3hYeHy93dXQMGDMhyuy+88IK2bNmiDh06aMSIESpVqpQWLVqkq1evavbs2bd0rAWlR48eWrVqlXr37q3u3bsrNjZWCxcuVMOGDR0Xe5T+PDW6YcOGWrFiherWraty5cqpUaNG2Z46nJVDhw7pueeeU2RkpHr27Cnpzzfopk2basSIEVq5cmW+Ht+1unfvrrlz56pbt256+OGHFR8fr/nz56t27dr673//6+jXokUL9enTR/PmzdPvv/+uNm3a6PPPP3d8Qn6rn4ROmzZN0dHR6tixo0aMGKHU1FS99tpruv32253G8fzzz+uLL75Q9+7dVa1aNcXHx2vBggWqUqWKOnTokOP9TZo0SStXrlSfPn00duxY+fv7a+HChUpJSdGMGTNuuv4DDzygyZMnKzEx0fEfBg8PD73wwgv661//qi5duqh///6KjY3V4sWLc3V9hGXLlunnn39WUlKSJOmLL75wXER04MCBTmcubNmyRaVLl9Y999yT4+0DKDnISM7ISLeOjERGupmCykjz5s3TggUL1LZtW5UuXVrvvfee0/LevXs7CsISGalEsup2fsD1pk+fbm677Tbj5ubmdHvjlJQUM23aNFOjRg3j4eFhQkJCzKRJk5xu92vMn7c07t69u9m0aZO54447jN1uN/Xr1zcffvhhnsbz7rvvmmbNmhm73W7Kli1rOnfubLZs2eLU5/XXXzf169c3Hh4eJigoyAwfPtycO3fOqU/nzp3N7bffnmn7Gbc0fumll7Lc/7Fjx8ygQYNMcHCw8fDwMLfddpvp0aOH+eijjxx9srql8cGDB01YWJjx8fExFSpUMEOHDjX79+83kszixYsd/VJTU83o0aNNYGCgsdlsTrecVRa3t/32229NeHi48fHxMaVLlzZ33XWX2blzp1OfjFsa79mzx6k9q3HeTMYtja+/7e2Nbvd7/Tynp6ebGTNmmGrVqhm73W6aNWtm1q1bl+WtiHfu3GlatGhhPD09nY79RvvKWJaxndTUVNOyZUtTpUqVTLdtfuWVV4wks2LFihwfe3a3NL7R7XPfeecdU6dOHcfrfvHixY45vNalS5fMyJEjTbly5YyPj4/p1auXOXLkiJHkdJvonMjqdfL555875rJmzZpm4cKFmcaxdetW88ADD5jKlSsbT09PU7lyZfPQQw+ZH374IVf7N+bP35PevXsbPz8/4+3tbbp06WJ2796do3VPnz5tSpUqZZYtW5Zp2YIFC0yNGjWM3W43oaGh5osvvjCdO3fO8S2NM25lntXj+t+D1q1bm0cffTTHxwyg5CEjOSMjkZGuR0bKrDBmpIiIiBvmo2v/tmUgI5U8NmPycEU9oBCoXr26GjVqpHXr1rl6KECREhMTo2bNmum9997TI4884urhWGrw4MH64Ycf9OWXX7pk/zExMWrevLm+/fbbG16PBQBuFRkJyBsyEhkJ1uIaUgBQjF2+fDlT27x58+Tm5qZOnTq5YESuFRUVpT179mjHjh0u2f+sWbPUt29fghYAAC5GRnJGRoIrcA0pFGtxcXHZLvf29r7hLVCRPy5evOh0fYKsBAYG5ui2tkXNmTNnnC6qeT1PT0+VK1euQMcwe/Zs7d27V3fddZdKlSqljRs3auPGjRo2bJhCQkKUlpaW7UVhJcnHx0c+Pj4FNkYr56lq1aq6cuVKvmwrL5YvX+6yfQPAtchIrkdGIiPdDBkJxZ6rvzMI5FXG9RGyo2y+syzJREREWDPYEizju/LZPa7//nhxUa1atWyP+/rv3heEzZs3m/bt25uyZcsaDw8PU6tWLTN16lSTkpJijPnfdTuye1x/TYT8VhjmCQCKEzJS0UBGIiPdTGGYJ6AgcQ0pFGuffvpptssrV66shg0bWjSakun48eM6fvx4tn06dOggLy8vi0ZknR07dmR5OniGsmXLOu7s4ypXrlzRV199lW2fmjVr5uqOc7lVFOYJAIobMpLrkZEK93s/GQkoeBSkAAAAAAAAYCkuag4AAAAAAABLleiLmqenp+vUqVPy9fWVzWZz9XAAAIAFjDG6cOGCKleuLDc3PpvLChkJAICSx+qMVKILUqdOnVJISIirhwEAAFzg5MmTqlKliquHUSiRkQAAKLmsykgluiDl6+sr6c/J9vPzc/FoAACAFRITExUSEuLIAciMjAQAQMljdUYq0QWpjFPQ/fz8CFsAAJQwfBXtxshIAACUXFZlJC6cAAAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUiX6GlIAAGQnLS1NKSkprh4GcsnDw0Pu7u6uHgYAAMUWGaloKmwZiYIUAADXMcYoLi5O58+fd/VQkEcBAQEKDg7mwuUAAOQjMlLRV5gyEgUpAACukxG0KlasqNKlSxeKN2zkjDFGSUlJio+PlyRVqlTJxSMCAKD4ICMVXYUxI1GQAgDgGmlpaY6gVb58eVcPB3ng7e0tSYqPj1fFihUL1anpAAAUVWSkoq+wZSQuag4AwDUyrodQunRpF48EtyLj58f1LQAAyB9kpOKhMGUkClIAAGSBU9CLNn5+AAAUDN5ji7bC9POjIAUAAAAAAABLUZACAKCIs9ls2T6mTp3q0rGtWbPmlrbx5ptv6s4775Sfn59sNht39gEAADlWnHPSH3/8odGjR6tevXry9vZW1apV9be//U0JCQn5N8gCxEXNAQDIoZToryzbl0e3Djnu+9tvvzn+vWLFCk2ZMkVHjhxxtPn4+ORq38nJyfL09MzVOgUpKSlJ3bp1U7du3TRp0iRXDwcAAFzHyowkkZMynDp1SqdOndKcOXPUsGFD/fzzz3riiSd06tQpffTRR64e3k1xhlQBSon+KtMDAID8Fhwc7Hj4+/vLZrM5nl+6dEmPPPKIgoKC5OPjo5YtW+rTTz91Wr969eqaPn26Bg0aJD8/Pw0bNkyS9NZbbykkJESlS5dW7969NXfuXAUEBDit+8knn6h58+by8vJSzZo1NW3aNKWmpjq2K0m9e/eWzWZzPN+/f7/uuusu+fr6ys/PTy1atNA333xzw+N78sknNXHiRLVp0yZ/JgwuR0YCAFilOOekRo0a6eOPP1bPnj1Vq1YtdenSRS+++KL+/e9/O/ZTmFGQAgCgGLt48aLuu+8+bd26Vfv27VO3bt3Us2dPnThxwqnfnDlz1KRJE+3bt0/PPfecduzYoSeeeEJ///vfFRMTo3vuuUcvvvii0zpffvmlBg0apL///e86ePCgFi1apCVLljj67dmzR5K0ePFi/fbbb47njzzyiKpUqaI9e/Zo7969mjhxojw8PCyYDQAAgP8pjjkpISFBfn5+KlWq8H8hrvCPEAAA5FmTJk3UpEkTx/Pp06dr9erVWrt2rUaNGuVo79Kli5566inH88mTJ+vee+/VuHHjJEl169bVzp07tW7dOkefadOmaeLEiYqIiJAk1axZU9OnT9fTTz+tqKgoBQYGSpICAgIUHBzsWO/EiRMaP3686tevL0mqU6dOARw5AABA9opbTjp79qymT5/uOIursOMMKQAAirGLFy9q3LhxatCggQICAuTj46NDhw5l+uQvNDTU6fmRI0fUqlUrp7brn+/fv1/PP/+8fHx8HI+hQ4fqt99+U1JS0g3HNHbsWA0ZMkRhYWGaNWuWjh07dotHCQAAkHvFKSclJiaqe/fuatiwoUsv1J4bFKQAACjGxo0bp9WrV2vGjBn68ssvFRMTo8aNGys5OdmpX5kyZXK97YsXL2ratGmKiYlxPA4cOKCjR4/Ky8vrhutNnTpV33//vbp3765t27apYcOGWr16da73DwAAcCuKS066cOGCunXrJl9fX61evbrIXAqBr+wBAFCM7dixQ5GRkerdu7ekP8PRTz/9dNP16tWr57iWQYbrnzdv3lxHjhxR7dq1b7gdDw8PpaWlZWqvW7eu6tatqzFjxuihhx7S4sWLHWMEAACwQnHISYmJiQoPD5fdbtfatWuzLXYVNhSkAAAoxurUqaNVq1apZ8+estlseu6555Senn7T9UaPHq1OnTpp7ty56tmzp7Zt26aNGzfKZrM5+kyZMkU9evRQ1apV1bdvX7m5uWn//v367rvv9MILL0j68w4yW7duVfv27WW32+Xl5aXx48erb9++qlGjhn755Rft2bNHffr0ueFY4uLiFBcXpx9//FGSdODAAfn6+qpq1aoqV67cLc4QAAAoqYp6TkpMTFTXrl2VlJSk9957T4mJiUpMTJQkBQYGyt3dPR9mqeDwlT0AAIqxuXPnqmzZsmrXrp169uyp8PBwNW/e/KbrtW/fXgsXLtTcuXPVpEkTRUdHa8yYMU6fuoWHh2vdunXavHmzWrZsqTZt2ujll19WtWrVHH3++c9/asuWLQoJCVGzZs3k7u6u33//XYMGDVLdunXVr18/3XvvvZo2bdoNx7Jw4UI1a9ZMQ4cOlSR16tRJzZo109q1a29hZgAAQElX1HPSt99+q6+//loHDhxQ7dq1ValSJcfj5MmTtz5BBcxmjDGuHoSrJCYmyt/f33FbxPyWEv1VpjaPbh3yfT8AgPxz5coVxcbGqkaNGkXqlGcrDB06VIcPH9aXX37p6qHcVHY/x4J+/y8OyEgAgOuRkbJXVHJSYcpIfGUPAABkac6cObrnnntUpkwZbdy4UUuXLtWCBQtcPSwAAACXIyfdOgpSAAAgS7t379bs2bN14cIF1axZU6+++qqGDBni6mEBAAC4HDnp1lGQAgAA/8/enYdFWe//H38BsrkMuIImbrmSuyhiZqUkFlaWlrQomubJ0JNycstya9FjnlKPmq3qt/TnUmkmihmmlXJcKDrmlhWl5yhgpYyiAsL9+6OL+ziCyiDcA/h8XNdcl/O5P/d9f+7PjM7b19xz34VavXq1q4cAAABQJlEnXT8uag4AAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAFcCQIUPk5uYmNzc3eXp6KiAgQHfddZfee+895eXluXp412X//v3q37+/GjVqJDc3N82dO9fVQwIAAOVIRa6T3n77bd12222qXr26qlevrvDwcO3evdvVwyqSSq4eAAAA5cVPe9+0bF83h/zF6XX69OmjJUuWKDc3V2lpaYqPj9czzzyjDz/8UOvXr1elSuXzY//cuXNq0qSJHnroIY0dO9bVwwEAAJexskaSqJMutW3bNj3yyCPq1q2bfHx89Pe//129e/fW/v37ddNNN7l6eFfFGVIAAFQQ3t7eCgwM1E033aSOHTvqueee0yeffKJNmzZp6dKlZr/Tp09r+PDhql27tmw2m3r27KnvvvvOYVuffvqpOnfuLB8fH9WqVUsPPPCAuezUqVMaPHiwqlevrsqVK+vuu+/WkSNHJEmZmZmy2Wz68MMPHba3bt06ValSRWfOnFF2drZGjRqlunXrysfHRw0bNtTMmTOveFydO3fWq6++qqioKHl7e5fATAEAgBtNRa2Tli9frqefflrt27dXy5Yt9c477ygvL08JCQklMGuli0AKAIAKrGfPnmrXrp0+/vhjs+2hhx5Senq6Nm3apKSkJHXs2FG9evXSH3/8IUmKi4vTAw88oHvuuUfffvutEhIS1KVLF3P9IUOGaO/evVq/fr0SExNlGIbuuece5eTkqEqVKoqKitKSJUscxrFkyRINGDBA1apV0/z587V+/XqtXr1ahw8f1vLly9WoUSNL5gMAACBfRayTzp07p5ycHNWoUeP6JscC5fOcNAAAUGQtW7bUv//9b0nS119/rd27dys9Pd0822jOnDlat26dPvzwQ40YMUIvv/yyoqKiNH36dHMb7dq1kyQdOXJE69ev144dO9StWzdJf34zFxQUpHXr1umhhx7S8OHD1a1bN504cUJ169ZVenq6Nm7cqM8//1ySdPToUTVr1kzdu3eXm5ubGjZsaOV0AAAAmCpanTRhwgTVq1dP4eHh1z03pY0zpAAAqOAMw5Cbm5sk6bvvvtPZs2dVs2ZNVa1a1XykpKTop59+kiQlJyerV69ehW7r4MGDqlSpkkJDQ822mjVrqkWLFjp48KAkqUuXLrrlllu0bNkySdIHH3yghg0bqkePHpL+/OYwOTlZLVq00F//+ld99tlnpXbsAAAAV1OR6qRZs2Zp5cqVWrt2rXx8fJyfDItxhhQAABXcwYMH1bhxY0nS2bNnVbduXW3btq1AP39/f0mSr6/vde9z+PDhWrhwoSZOnKglS5Zo6NChZrHXsWNHpaSkaNOmTfr888/18MMPKzw8vMD1FAAAAEpbRamT5syZo1mzZunzzz9X27Ztr3uMVuAMKQAAKrCtW7dq37596t+/v6Q/i5zU1FRVqlRJTZs2dXjUqlVLktS2bdsrXgizVatWunjxonbt2mW2/f777zp8+LCCg4PNtscff1y//vqr5s+frwMHDig6OtphOzabTQMHDtTbb7+tVatW6aOPPjKvzQAAAGCFilInzZ49Wy+++KLi4+MVEhJS7PmwGmdIAQBQQWRlZSk1NdXhdsYzZ85U3759NXjwYElSeHi4wsLC1K9fP82ePVvNmzfX8ePHzQt0hoSEaOrUqerVq5duvvlmRUVF6eLFi9q4caMmTJigZs2a6f7779eTTz6pN998U9WqVdPEiRN100036f777zfHUr16dT344IMaN26cevfurfr165vLXnvtNdWtW1cdOnSQu7u71qxZo8DAQPObx8tlZ2frwIED5p//+9//Kjk5WVWrVlXTpk1Lb0IBAECFUVHrpL///e+aMmWKVqxYoUaNGik1NVWSzJ8blmWcIQUAQAURHx+vunXrqlGjRurTp4+++OILzZ8/X5988ok8PDwkSW5ubtq4caN69OihoUOHqnnz5oqKitKvv/6qgIAASdIdd9yhNWvWaP369Wrfvr169uyp3bt3m/tZsmSJOnXqpL59+yosLEyGYWjjxo3y9PR0GM+wYcOUnZ2tJ554wqG9WrVqmj17tkJCQtS5c2f98ssv2rhxo9zdCy9Ljh8/rg4dOqhDhw46ceKE5syZow4dOmj48OElOX0AAKACq6h10htvvKHs7GwNGDBAdevWNR9z5swpyekrFW6GYRiuHoSr2O12+fn5KSMjQzabrcS3nxP/dYE2zz7dS3w/AICSc+HCBaWkpKhx48bl4mKQZdn777+vsWPH6vjx4/Ly8rJ031d7HUv7878ioEYCAFyOGqlkuapOKks1Ej/ZAwAAJercuXM6ceKEZs2apb/85S+Wh1EAAABlFXXS//CTPQAAUKJmz56tli1bKjAwUJMmTXL1cAAAAMoM6qT/IZACAAAlatq0acrJyVFCQkKZv5gmAACAlaiT/odACgAAAAAAAJYikAIAAAAAAIClCKQAACjEDXwT2gqB1w8AgNLBZ2z5VpZePwIpAAAu4enpKenPO6Cg/Mp//fJfTwAAcH2okSqGslQjXVcgNWvWLLm5uWnMmDFm24ULFxQTE6OaNWuqatWq6t+/v9LS0hzWO3r0qCIjI1W5cmXVqVNH48aN08WLFx36bNu2TR07dpS3t7eaNm2qpUuXFtj/woUL1ahRI/n4+Cg0NFS7d+++nsMBAEAeHh7y9/dXenq6fv/9d50/f14XLlzgUU4e58+f1++//6709HT5+/vLw8PDJe8jaiQAQEVDjVS+H2WlRrpUpeKuuGfPHr355ptq27atQ/vYsWMVFxenNWvWyM/PT6NGjdKDDz6oHTt2SJJyc3MVGRmpwMBA7dy5UydOnNDgwYPl6empV155RZKUkpKiyMhIPfXUU1q+fLkSEhI0fPhw1a1bVxEREZKkVatWKTY2VosXL1ZoaKjmzp2riIgIHT58WHXq1CnuYQEAoMDAQElSenq6i0eC4vL39zdfR6tRIwEAKipqpPLPlTXS5dyMYvyA8OzZs+rYsaMWLVqkl156Se3bt9fcuXOVkZGh2rVra8WKFRowYIAk6dChQ2rVqpUSExPVtWtXbdq0SX379tXx48cVEBAgSVq8eLEmTJigkydPysvLSxMmTFBcXJy+//57c59RUVE6ffq04uPjJUmhoaHq3LmzFixYIEnKy8tTUFCQRo8erYkTJxbpOOx2u/z8/JSRkSGbzebsNFxTTvzXBdo8+3Qv8f0AAEpHbm6ucnJyXD0MOMnT0/Oq3/qV5uc/NVLRUCMBQPlGjVQ+ubJGKkyxzpCKiYlRZGSkwsPD9dJLL5ntSUlJysnJUXh4uNnWsmVLNWjQwCy2EhMT1aZNG7PQkqSIiAiNHDlS+/fvV4cOHZSYmOiwjfw++ae9Z2dnKykpSZMmTTKXu7u7Kzw8XImJicU5JAAACvDw8CgTpzOj/KBGAgDcCKiRUBKcDqRWrlypb775Rnv27CmwLDU1VV5eXvL393doDwgIUGpqqtnn0kIrf3n+sqv1sdvtOn/+vE6dOqXc3NxC+xw6dOiKY8/KylJWVpb53G63X+NoAQAAioYaCQAAoOicuqj5sWPH9Mwzz2j58uXy8fEprTGVmpkzZ8rPz898BAUFuXpIAACgAqBGAgAAcI5TgVRSUpLS09PVsWNHVapUSZUqVdL27ds1f/58VapUSQEBAcrOztbp06cd1ktLSzMvmhUYGFjgjjL5z6/Vx2azydfXV7Vq1ZKHh0ehfa52ca5JkyYpIyPDfBw7dsyZwwcAACgUNRIAAIBznAqkevXqpX379ik5Odl8hISE6LHHHjP/7OnpqYSEBHOdw4cP6+jRowoLC5MkhYWFad++fQ5X5d+yZYtsNpuCg4PNPpduI79P/ja8vLzUqVMnhz55eXlKSEgw+xTG29tbNpvN4QEAAHC9qJEAAACc49Q1pKpVq6bWrVs7tFWpUkU1a9Y024cNG6bY2FjVqFFDNptNo0ePVlhYmLp27SpJ6t27t4KDgzVo0CDNnj1bqampev755xUTEyNvb29J0lNPPaUFCxZo/PjxeuKJJ7R161atXr1acXFx5n5jY2MVHR2tkJAQdenSRXPnzlVmZqaGDh16XRMCAADgLGokAAAA5xTrLntX8/rrr8vd3V39+/dXVlaWIiIitGjRInO5h4eHNmzYoJEjRyosLExVqlRRdHS0ZsyYYfZp3Lix4uLiNHbsWM2bN0/169fXO++8o4iICLPPwIEDdfLkSU2ZMkWpqalq37694uPjC1zEEwAAoCygRgIAAPgfN8MwDFcPwlXsdrv8/PyUkZFRKqem58R/XaDNs0/3Et8PAAAoutL+/K8IqJEAALjxWF0jOXUNKQAAAAAAAOB6EUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxVydUDqMh+Ob2pQFszdXfBSAAAAMoOaiQAAMAZUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAs5VQg9cYbb6ht27ay2Wyy2WwKCwvTpk2bzOUXLlxQTEyMatasqapVq6p///5KS0tz2MbRo0cVGRmpypUrq06dOho3bpwuXrzo0Gfbtm3q2LGjvL291bRpUy1durTAWBYuXKhGjRrJx8dHoaGh2r17tzOHAgAAUGKokQAAAJzjVCBVv359zZo1S0lJSdq7d6969uyp+++/X/v375ckjR07Vp9++qnWrFmj7du36/jx43rwwQfN9XNzcxUZGans7Gzt3LlTy5Yt09KlSzVlyhSzT0pKiiIjI3XnnXcqOTlZY8aM0fDhw7V582azz6pVqxQbG6upU6fqm2++Ubt27RQREaH09PTrnQ8AAACnUSMBAAA4x80wDON6NlCjRg29+uqrGjBggGrXrq0VK1ZowIABkqRDhw6pVatWSkxMVNeuXbVp0yb17dtXx48fV0BAgCRp8eLFmjBhgk6ePCkvLy9NmDBBcXFx+v777819REVF6fTp04qPj5ckhYaGqnPnzlqwYIEkKS8vT0FBQRo9erQmTpxY5LHb7Xb5+fkpIyNDNpvteqahUEdWTi7Q1izq5RLfDwAAKLrS/vzPR410ZdRIAACUPVbVSPmKfQ2p3NxcrVy5UpmZmQoLC1NSUpJycnIUHh5u9mnZsqUaNGigxMRESVJiYqLatGljFlqSFBERIbvdbn6DmJiY6LCN/D7528jOzlZSUpJDH3d3d4WHh5t9AAAAXIUaCQAA4NoqObvCvn37FBYWpgsXLqhq1apau3atgoODlZycLC8vL/n7+zv0DwgIUGpqqiQpNTXVodDKX56/7Gp97Ha7zp8/r1OnTik3N7fQPocOHbrq2LOyspSVlWU+t9vtRT9wAACAq6BGAgAAKDqnz5Bq0aKFkpOTtWvXLo0cOVLR0dE6cOBAaYytxM2cOVN+fn7mIygoyNVDAgAAFQQ1EgAAQNE5HUh5eXmpadOm6tSpk2bOnKl27dpp3rx5CgwMVHZ2tk6fPu3QPy0tTYGBgZKkwMDAAneUyX9+rT42m02+vr6qVauWPDw8Cu2Tv40rmTRpkjIyMszHsWPHnD18AACAQlEjAQAAFF2xryGVLy8vT1lZWerUqZM8PT2VkJBgLjt8+LCOHj2qsLAwSVJYWJj27dvncKeXLVu2yGazKTg42Oxz6Tby++Rvw8vLS506dXLok5eXp4SEBLPPlXh7e5u3Y85/AAAAlAZqJAAAgCtz6hpSkyZN0t13360GDRrozJkzWrFihbZt26bNmzfLz89Pw4YNU2xsrGrUqCGbzabRo0crLCxMXbt2lST17t1bwcHBGjRokGbPnq3U1FQ9//zziomJkbe3tyTpqaee0oIFCzR+/Hg98cQT2rp1q1avXq24uDhzHLGxsYqOjlZISIi6dOmiuXPnKjMzU0OHDi3BqQEAACgaaiQAAADnOBVIpaena/DgwTpx4oT8/PzUtm1bbd68WXfddZck6fXXX5e7u7v69++vrKwsRUREaNGiReb6Hh4e2rBhg0aOHKmwsDBVqVJF0dHRmjFjhtmncePGiouL09ixYzVv3jzVr19f77zzjiIiIsw+AwcO1MmTJzVlyhSlpqaqffv2io+PL3ARTwAAACtQIwEAADjHzTAMw9WDcBW73S4/Pz9lZGSUyqnpR1ZOLtDWLOrlEt8PAAAoutL+/K8IqJEAALjxWF0jXfc1pAAAAAAAAABnEEgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsJRTgdTMmTPVuXNnVatWTXXq1FG/fv10+PBhhz4XLlxQTEyMatasqapVq6p///5KS0tz6HP06FFFRkaqcuXKqlOnjsaNG6eLFy869Nm2bZs6duwob29vNW3aVEuXLi0wnoULF6pRo0by8fFRaGiodu/e7czhAAAAlAhqJAAAAOc4FUht375dMTEx+te//qUtW7YoJydHvXv3VmZmptln7Nix+vTTT7VmzRpt375dx48f14MPPmguz83NVWRkpLKzs7Vz504tW7ZMS5cu1ZQpU8w+KSkpioyM1J133qnk5GSNGTNGw4cP1+bNm80+q1atUmxsrKZOnapvvvlG7dq1U0REhNLT069nPgAAAJxGjQQAAOAcN8MwjOKufPLkSdWpU0fbt29Xjx49lJGRodq1a2vFihUaMGCAJOnQoUNq1aqVEhMT1bVrV23atEl9+/bV8ePHFRAQIElavHixJkyYoJMnT8rLy0sTJkxQXFycvv/+e3NfUVFROn36tOLj4yVJoaGh6ty5sxYsWCBJysvLU1BQkEaPHq2JEycWafx2u11+fn7KyMiQzWYr7jRc0ZGVkwu0NYt6ucT3AwAAiq60P/8laqRroUYCAKDssaJGutR1XUMqIyNDklSjRg1JUlJSknJychQeHm72admypRo0aKDExERJUmJiotq0aWMWWpIUEREhu92u/fv3m30u3UZ+n/xtZGdnKykpyaGPu7u7wsPDzT4AAACuQo0EAABwdZWKu2JeXp7GjBmjW2+9Va1bt5YkpaamysvLS/7+/g59AwIClJqaava5tNDKX56/7Gp97Ha7zp8/r1OnTik3N7fQPocOHbrimLOyspSVlWU+t9vtThwxAADAtVEjAQAAXFuxz5CKiYnR999/r5UrV5bkeErVzJkz5efnZz6CgoJcPSQAAFDBUCMBAABcW7ECqVGjRmnDhg364osvVL9+fbM9MDBQ2dnZOn36tEP/tLQ0BQYGmn0uv6NM/vNr9bHZbPL19VWtWrXk4eFRaJ/8bRRm0qRJysjIMB/Hjh1z7sABAACughoJAACgaJwKpAzD0KhRo7R27Vpt3bpVjRs3dljeqVMneXp6KiEhwWw7fPiwjh49qrCwMElSWFiY9u3b53Cnly1btshmsyk4ONjsc+k28vvkb8PLy0udOnVy6JOXl6eEhASzT2G8vb1ls9kcHgAAANeLGgkAAMA5Tl1DKiYmRitWrNAnn3yiatWqmdcz8PPzk6+vr/z8/DRs2DDFxsaqRo0astlsGj16tMLCwtS1a1dJUu/evRUcHKxBgwZp9uzZSk1N1fPPP6+YmBh5e3tLkp566iktWLBA48eP1xNPPKGtW7dq9erViouLM8cSGxur6OhohYSEqEuXLpo7d64yMzM1dOjQkpobAACAIqFGAgAAcI5TgdQbb7whSbrjjjsc2pcsWaIhQ4ZIkl5//XW5u7urf//+ysrKUkREhBYtWmT29fDw0IYNGzRy5EiFhYWpSpUqio6O1owZM8w+jRs3VlxcnMaOHat58+apfv36eueddxQREWH2GThwoE6ePKkpU6YoNTVV7du3V3x8fIGLeAIAAJQ2aiQAAADnuBmGYbh6EK5it9vl5+enjIyMUjk1/cjKyQXamkW9XOL7AQAARVfan/8VATUSAAA3HqtrpGLfZQ8AAAAAAAAoDgIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJZyOpD68ssvde+996pevXpyc3PTunXrHJYbhqEpU6aobt268vX1VXh4uI4cOeLQ548//tBjjz0mm80mf39/DRs2TGfPnnXo8+9//1u33XabfHx8FBQUpNmzZxcYy5o1a9SyZUv5+PioTZs22rhxo7OHAwAAUCKokQAAAIrO6UAqMzNT7dq108KFCwtdPnv2bM2fP1+LFy/Wrl27VKVKFUVEROjChQtmn8cee0z79+/Xli1btGHDBn355ZcaMWKEudxut6t3795q2LChkpKS9Oqrr2ratGl66623zD47d+7UI488omHDhunbb79Vv3791K9fP33//ffOHhIAAMB1o0YCAAAoOjfDMIxir+zmprVr16pfv36S/vzmr169evrb3/6mZ599VpKUkZGhgIAALV26VFFRUTp48KCCg4O1Z88ehYSESJLi4+N1zz336D//+Y/q1aunN954Q5MnT1Zqaqq8vLwkSRMnTtS6det06NAhSdLAgQOVmZmpDRs2mOPp2rWr2rdvr8WLFxdp/Ha7XX5+fsrIyJDNZivuNFzRkZWTC7Q1i3q5xPcDAACKrrQ//yVqpGuhRgIAoOyxoka6VIleQyolJUWpqakKDw832/z8/BQaGqrExERJUmJiovz9/c1CS5LCw8Pl7u6uXbt2mX169OhhFlqSFBERocOHD+vUqVNmn0v3k98nfz8AAABlBTUSAACAo0olubHU1FRJUkBAgEN7QECAuSw1NVV16tRxHESlSqpRo4ZDn8aNGxfYRv6y6tWrKzU19ar7KUxWVpaysrLM53a73ZnDAwAAKBZqJAAAAEc31F32Zs6cKT8/P/MRFBTk6iEBAAC4HDUSAACwWokGUoGBgZKktLQ0h/a0tDRzWWBgoNLT0x2WX7x4UX/88YdDn8K2cek+rtQnf3lhJk2apIyMDPNx7NgxZw8RAADAadRIAAAAjko0kGrcuLECAwOVkJBgttntdu3atUthYWGSpLCwMJ0+fVpJSUlmn61btyovL0+hoaFmny+//FI5OTlmny1btqhFixaqXr262efS/eT3yd9PYby9vWWz2RweAAAApY0aCQAAwJHTgdTZs2eVnJys5ORkSX9epDM5OVlHjx6Vm5ubxowZo5deeknr16/Xvn37NHjwYNWrV8+8y0yrVq3Up08fPfnkk9q9e7d27NihUaNGKSoqSvXq1ZMkPfroo/Ly8tKwYcO0f/9+rVq1SvPmzVNsbKw5jmeeeUbx8fH6xz/+oUOHDmnatGnau3evRo0adf2zAgAA4CRqJAAAgKJz+qLme/fu1Z133mk+zy+AoqOjtXTpUo0fP16ZmZkaMWKETp8+re7duys+Pl4+Pj7mOsuXL9eoUaPUq1cvubu7q3///po/f7653M/PT5999pliYmLUqVMn1apVS1OmTNGIESPMPt26ddOKFSv0/PPP67nnnlOzZs20bt06tW7dulgTAQAAcD2okQAAAIrOzTAMw9WDcBW73S4/Pz9lZGSUyqnpR1ZOLtDWLOrlEt8PAAAoutL+/K8IqJEAALjxWF0j3VB32QMAAAAAAIDrEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsFS5D6QWLlyoRo0aycfHR6Ghodq9e7erhwQAAOBy1EgAAKAsK9eB1KpVqxQbG6upU6fqm2++Ubt27RQREaH09HRXDw0AAMBlqJEAAEBZV64Dqddee01PPvmkhg4dquDgYC1evFiVK1fWe++95+qhAQAAuAw1EgAAKOvKbSCVnZ2tpKQkhYeHm23u7u4KDw9XYmKiC0cGAADgOtRIAACgPKjk6gEU12+//abc3FwFBAQ4tAcEBOjQoUOFrpOVlaWsrCzzeUZGhiTJbreXyhjPnssq0FZa+wIAAEWT/1lsGIaLR1I6qJEAAEBxWF0jldtAqjhmzpyp6dOnF2gPCgqybhDD/mHdvgAAwBWdOXNGfn5+rh5GmUCNBAAA8llVI5XbQKpWrVry8PBQWlqaQ3taWpoCAwMLXWfSpEmKjY01n+fl5emPP/5QzZo15ebmVqLjs9vtCgoK0rFjx2Sz2Up027gy5t01mHfXYN5dg3l3jZKcd8MwdObMGdWrV6+ERle2UCPhSph712HuXYe5dw3m3XWuZ+6trpHKbSDl5eWlTp06KSEhQf369ZP0Z/GUkJCgUaNGFbqOt7e3vL29Hdr8/f1LdZw2m42/gC7AvLsG8+4azLtrMO+uUVLzXpHPjKJGwrUw967D3LsOc+8azLvrFHfurayRym0gJUmxsbGKjo5WSEiIunTporlz5yozM1NDhw519dAAAABchhoJAACUdeU6kBo4cKBOnjypKVOmKDU1Ve3bt1d8fHyBi3gCAADcSKiRAABAWVeuAylJGjVq1BVPP3clb29vTZ06tcDp7yhdzLtrMO+uwby7BvPuGsy786iRcDnm3nWYe9dh7l2DeXed8jT3bkZFvecxAAAAAAAAyiR3Vw8AAAAAAAAANxYCKQAAAAAAAFiKQAoAAAAAAACWIpC6DgsXLlSjRo3k4+Oj0NBQ7d69+6r916xZo5YtW8rHx0dt2rTRxo0bLRppxeLMvL/99tu67bbbVL16dVWvXl3h4eHXfJ1QOGff7/lWrlwpNzc39evXr3QHWEE5O++nT59WTEyM6tatK29vbzVv3px/a4rB2XmfO3euWrRoIV9fXwUFBWns2LG6cOGCRaMt/7788kvde++9qlevntzc3LRu3bprrrNt2zZ17NhR3t7eatq0qZYuXVrq40TRUSO5DnWS61AruQa1kutQL7lGhaqbDBTLypUrDS8vL+O9994z9u/fbzz55JOGv7+/kZaWVmj/HTt2GB4eHsbs2bONAwcOGM8//7zh6elp7Nu3z+KRl2/Ozvujjz5qLFy40Pj222+NgwcPGkOGDDH8/PyM//znPxaPvHxzdt7zpaSkGDfddJNx2223Gffff781g61AnJ33rKwsIyQkxLjnnnuMr7/+2khJSTG2bdtmJCcnWzzy8s3ZeV++fLnh7e1tLF++3EhJSTE2b95s1K1b1xg7dqzFIy+/Nm7caEyePNn4+OOPDUnG2rVrr9r/559/NipXrmzExsYaBw4cMP75z38aHh4eRnx8vDUDxlVRI7kOdZLrUCu5BrWS61AvuU5FqpsIpIqpS5cuRkxMjPk8NzfXqFevnjFz5sxC+z/88MNGZGSkQ1toaKjxl7/8pVTHWdE4O++Xu3jxolGtWjVj2bJlpTXECqk4837x4kWjW7duxjvvvGNER0dTZBWDs/P+xhtvGE2aNDGys7OtGmKF5Oy8x8TEGD179nRoi42NNW699dZSHWdFVZTCavz48cYtt9zi0DZw4EAjIiKiFEeGoqJGch3qJNehVnINaiXXoV4qG8p73cRP9oohOztbSUlJCg8PN9vc3d0VHh6uxMTEQtdJTEx06C9JERERV+yPgooz75c7d+6ccnJyVKNGjdIaZoVT3HmfMWOG6tSpo2HDhlkxzAqnOPO+fv16hYWFKSYmRgEBAWrdurVeeeUV5ebmWjXscq84896tWzclJSWZp6n//PPP2rhxo+655x5Lxnwj4jO17KJGch3qJNehVnINaiXXoV4qX8ry52wlVw+gPPrtt9+Um5urgIAAh/aAgAAdOnSo0HVSU1ML7Z+amlpq46xoijPvl5swYYLq1atX4C8krqw48/7111/r3XffVXJysgUjrJiKM+8///yztm7dqscee0wbN27Ujz/+qKefflo5OTmaOnWqFcMu94oz748++qh+++03de/eXYZh6OLFi3rqqaf03HPPWTHkG9KVPlPtdrvOnz8vX19fF40M1EiuQ53kOtRKrkGt5DrUS+VLWa6bOEMKN4xZs2Zp5cqVWrt2rXx8fFw9nArrzJkzGjRokN5++23VqlXL1cO5oeTl5alOnTp666231KlTJw0cOFCTJ0/W4sWLXT20Cm3btm165ZVXtGjRIn3zzTf6+OOPFRcXpxdffNHVQwOAIqNOsg61kutQK7kO9RIKwxlSxVCrVi15eHgoLS3NoT0tLU2BgYGFrhMYGOhUfxRUnHnPN2fOHM2aNUuff/652rZtW5rDrHCcnfeffvpJv/zyi+69916zLS8vT5JUqVIlHT58WDfffHPpDroCKM77vW7duvL09JSHh4fZ1qpVK6Wmpio7O1teXl6lOuaKoDjz/sILL2jQoEEaPny4JKlNmzbKzMzUiBEjNHnyZLm7891PSbvSZ6rNZuPsKBejRnId6iTXoVZyDWol16FeKl/Kct3Eq14MXl5e6tSpkxISEsy2vLw8JSQkKCwsrNB1wsLCHPpL0pYtW67YHwUVZ94lafbs2XrxxRcVHx+vkJAQK4ZaoTg77y1bttS+ffuUnJxsPu677z7deeedSk5OVlBQkJXDL7eK836/9dZb9eOPP5pFrST98MMPqlu3LgVWERVn3s+dO1egiMovdA3DKL3B3sD4TC27qJFchzrJdaiVXINayXWol8qXMv0569prqpdfK1euNLy9vY2lS5caBw4cMEaMGGH4+/sbqamphmEYxqBBg4yJEyea/Xfs2GFUqlTJmDNnjnHw4EFj6tSp3NK4GJyd91mzZhleXl7Ghx9+aJw4ccJ8nDlzxlWHUC45O++X484xxePsvB89etSoVq2aMWrUKOPw4cPGhg0bjDp16hgvvfSSqw6hXHJ23qdOnWpUq1bN+H//7/8ZP//8s/HZZ58ZN998s/Hwww+76hDKnTNnzhjffvut8e233xqSjNdee8349ttvjV9//dUwDMOYOHGiMWjQILN//u2Lx40bZxw8eNBYuHBhmbl9MaiRXIk6yXWolVyDWsl1qJdcpyLVTQRS1+Gf//yn0aBBA8PLy8vo0qWL8a9//ctcdvvttxvR0dEO/VevXm00b97c8PLyMm655RYjLi7O4hFXDM7Me8OGDQ1JBR5Tp061fuDlnLPv90tRZBWfs/O+c+dOIzQ01PD29jaaNGlivPzyy8bFixctHnX558y85+TkGNOmTTNuvvlmw8fHxwgKCjKefvpp49SpU9YPvJz64osvCv23On+eo6Ojjdtvv73AOu3btze8vLyMJk2aGEuWLLF83LgyaiTXoU5yHWol16BWch3qJdeoSHWTm2FwfhwAAAAAAACswzWkAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikgHJk27ZtcnNz07Zt20p0u25ubpo2bVqJbrOiGTJkiBo1alRq23/11VfVpEkTeXh4qH379qW2n+tR1PfJtGnT5ObmVvoDKoZjx47Jx8dHO3bsuGbfO+64Q3fccYdDW1pamgYMGKCaNWvKzc1Nc+fOdWr/UVFRevjhh51aBwBwbdRIrkONRI0kUSOheAik4BI7d+7UtGnTdPr0aVcP5YaxceNGCipJ586d07Rp00q8YL0en332mcaPH69bb71VS5Ys0SuvvOLqIZVJbm5uV3zcddddRdrGjBkzFBoaqltvvbVYYxg7dqw2b96sSZMm6f3331efPn0kSS+//LLuu+8+BQQEXLUonTBhgj766CN99913xdo/gIqPGsl61Eh/okYqv8pqjXTo0CGNHz9e7du3V7Vq1VS3bl1FRkZq7969BdanRroxVXL1AHBj2rlzp6ZPn64hQ4bI39/f1cO5IWzcuFELFy4stOA6f/68KlW6Mf45OHfunKZPny5JBb7ZuZq3335beXl5pTKmrVu3yt3dXe+++668vLxKZR8lwdXvk/fff79A2969ezVv3jz17t37muufPHlSy5Yt07Jly4o9hq1bt+r+++/Xs88+69D+/PPPKzAwUB06dNDmzZuvuH6HDh0UEhKif/zjH/q///u/Yo8DQMVFjWQ9aqQ/USMVn6vfJ2W1Rnr22Wf17rvvqn///nr66aeVkZGhN998U127dlV8fLzCw8PNvtRIN6Yb419XwMXOnTunypUrF2i/ePGi8vLyXP4B6+Pj49L9l2WZmZmqUqWKPD09S20f6enp8vX1veb7IC8vT9nZ2S57vVz9Pnn88ccLtOX/ROORRx655voffPCBKlWqpHvvvbfYY0hPTy/0P4gpKSlq1KiRfvvtN9WuXfuq23j44Yc1depULVq0SFWrVi32WACgIqBGKr+okf7H1e+TslojPfLII5o2bZpDvfPEE0+oVatWmjZtmkMgJVEj3Yj4yR4sN23aNI0bN06S1LhxY/N00l9++UXSnwXIiy++qJtvvlne3t5q1KiRnnvuOWVlZTlsp1GjRurbt68+++wztW/fXj4+PgoODtbHH39crHF98MEH6tKliypXrqzq1aurR48e+uyzzxz6LFq0SLfccou8vb1Vr149xcTEFDil/o477lDr1q2VlJSkHj16qHLlynruuef0yy+/yM3NTXPmzNHcuXPN4ztw4IAk6dChQxowYIBq1KghHx8fhYSEaP369dcc91dffaWHHnpIDRo0kLe3t4KCgjR27FidP3/e7DNkyBAtXLhQkuMpvfkK+4nRt99+q7vvvls2m01Vq1ZVr1699K9//cuhz9KlS+Xm5qYdO3YoNjZWtWvXVpUqVfTAAw/o5MmT1xz7pfJ/U//DDz/o8ccfl5+fn2rXrq0XXnhBhmHo2LFjuv/++2Wz2RQYGKh//OMfDutnZ2drypQp6tSpk/z8/FSlShXddttt+uKLL8w+v/zyixkWTJ8+3ZyH/GMfMmSIqlatqp9++kn33HOPqlWrpscee8xcdun1EaZOnSp3d3clJCQ4jGPEiBHy8vIq8unGbm5uWrJkiTIzM83xLF261Fw2atQoLV++3HzfxcfHS5LmzJmjbt26qWbNmvL19VWnTp304YcfFtj++fPn9de//lW1atVStWrVdN999+m///1vsa6JUdg6X3/9tTp37iwfHx/dfPPNevPNNwtdd8uWLerevbv8/f1VtWpVtWjRQs8995xT+79cVlaWPvroI91+++2qX7/+NfuvW7dOoaGhhRY4b731lm6++Wb5+vqqS5cu+uqrrxyW57/XDcPQwoULC/wdcubaGXfddZcyMzO1ZcuWIq8D4MZAjUSNVBhqJGokZ5WVGqlTp04FtlmzZk3ddtttOnjwYIF9USPdeDhDCpZ78MEH9cMPP+j//b//p9dff121atWSJPNDcPjw4Vq2bJkGDBigv/3tb9q1a5dmzpypgwcPau3atQ7bOnLkiAYOHKinnnpK0dHRWrJkiR566CHFx8cX+ffS0p8fvNOmTVO3bt00Y8YMeXl5adeuXdq6dat5muu0adM0ffp0hYeHa+TIkTp8+LDeeOMN7dmzRzt27HD4duj333/X3XffraioKD3++OMKCAgwly1ZskQXLlzQiBEj5O3trRo1amj//v269dZbddNNN2nixImqUqWKVq9erX79+umjjz7SAw88cMWxr1mzRufOndPIkSNVs2ZN7d69W//85z/1n//8R2vWrJEk/eUvf9Hx48e1ZcuWQk/pvdz+/ft12223yWazafz48fL09NSbb76pO+64Q9u3b1doaKhD/9GjR6t69eqaOnWqfvnlF82dO1ejRo3SqlWrivwa5Bs4cKBatWqlWbNmKS4uTi+99JJq1KihN998Uz179tTf//53LV++XM8++6w6d+6sHj16SJLsdrveeecdPfLII3ryySd15swZvfvuu4qIiNDu3bvVvn171a5dW2+88YZGjhypBx54QA8++KAkqW3btub+L168qIiICHXv3l1z5swp9Ftb6c+faH366acaNmyY9u3bp2rVqmnz5s16++239eKLL6pdu3ZFOt73339fb731lnbv3q133nlHktStWzdz+datW7V69WqNGjVKtWrVMgu+efPm6b777tNjjz2m7OxsrVy5Ug899JA2bNigyMhIc/0hQ4Zo9erVGjRokLp27art27c7LL8e+/btU+/evVW7dm1NmzZNFy9e1NSpUx3e79Kf76e+ffuqbdu2mjFjhry9vfXjjz8W6aKZV7Nx40adPn3aLIivJicnR3v27NHIkSMLLHv33Xf1l7/8Rd26ddOYMWP0888/67777lONGjUUFBQkSerRo4fef/99DRo0SHfddZcGDx5c7HEHBwfL19dXO3bsuOrfbQA3HmokaqSroUaiRiqqsl4jpaammv++XYoa6QZkAC7w6quvGpKMlJQUh/bk5GRDkjF8+HCH9meffdaQZGzdutVsa9iwoSHJ+Oijj8y2jIwMo27dukaHDh2KPJYjR44Y7u7uxgMPPGDk5uY6LMvLyzMMwzDS09MNLy8vo3fv3g59FixYYEgy3nvvPbPt9ttvNyQZixcvdthWSkqKIcmw2WxGenq6w7JevXoZbdq0MS5cuOCw727duhnNmjUz27744gtDkvHFF1+YbefOnStwTDNnzjTc3NyMX3/91WyLiYkxrvRXXpIxdepU83m/fv0MLy8v46effjLbjh8/blSrVs3o0aOH2bZkyRJDkhEeHm7OlWEYxtixYw0PDw/j9OnThe6vMFOnTjUkGSNGjDDbLl68aNSvX99wc3MzZs2aZbafOnXK8PX1NaKjox36ZmVlOWzz1KlTRkBAgPHEE0+YbSdPnixwvPmio6MNScbEiRMLXdawYUOHtn379hleXl7G8OHDjVOnThk33XSTERISYuTk5BT5uPO3XaVKlQLtkgx3d3dj//79BZZd/rpnZ2cbrVu3Nnr27Gm2JSUlGZKMMWPGOPQdMmTIFefgagp7n/j4+Di8zw4cOGB4eHg4vNdef/11Q5Jx8uRJp/Z3Lf379ze8vb2NU6dOXbPvjz/+aEgy/vnPfzq0Z2dnG3Xq1DHat2/v8P556623DEnG7bff7tBfkhETE3PF/Vzt/XWp5s2bG3ffffc1xw3gxkONRI10OWokaiRnlcUaKd+XX35puLm5GS+88EKhy6mRbiz8ZA9lysaNGyVJsbGxDu1/+9vfJElxcXEO7fXq1XNIz202mwYPHqxvv/1WqampRdrnunXrlJeXpylTpsjd3fGvRP7ppp9//rmys7M1ZswYhz5PPvmkbDZbgXF5e3tr6NChhe6vf//+DteY+eOPP7R161Y9/PDDOnPmjH777Tf99ttv+v333xUREaEjR47ov//97xXH7+vra/45MzNTv/32m7p16ybDMPTtt98WaQ4ulZubq88++0z9+vVTkyZNzPa6devq0Ucf1ddffy273e6wzogRIxxOb7/tttuUm5urX3/91en9Dx8+3Pyzh4eHQkJCZBiGhg0bZrb7+/urRYsW+vnnnx365l9fIC8vT3/88YcuXryokJAQffPNN06NobBviArTunVrTZ8+Xe+8844iIiL022+/admyZSV6Ucvbb79dwcHBBdovfd1PnTqljIwM3XbbbQ7Hmn/q+tNPP+2w7ujRo697XLm5udq8ebP69eunBg0amO2tWrVSRESEQ9/86wl88sknJXbRU7vdrri4ON1zzz1Fuujv77//LkmqXr26Q/vevXuVnp6up556yuH6FEOGDJGfn1+JjLUw1atX12+//VZq2wdQ8VAjUSNRIzmiRipcWa6R0tPT9eijj6px48YaP358oX2okW4sBFIoU3799Ve5u7uradOmDu2BgYHy9/cv8OHdtGlThw95SWrevLkkmddbuJaffvpJ7u7uhX6gXTouSWrRooVDu5eXl5o0aVJgXDfddNMVL77YuHFjh+c//vijDMPQCy+8oNq1azs8pk6dKunPf7yv5OjRoxoyZIhq1KihqlWrqnbt2rr99tslSRkZGVdc70pOnjypc+fOFThW6c8P0ry8PB07dsyh/dIPW+l/H2inTp1yev+Xb8vPz08+Pj4FTuv18/MrsP1ly5apbdu28vHxUc2aNVW7dm3FxcU5NQ+VKlUq0m/t840bN07t2rXT7t27NXXq1Ku+j4rj8vdLvg0bNqhr167y8fFRjRo1zFPtLz3W/L9Pl2/j8r9fxXHy5EmdP39ezZo1K7Ds8vfOwIEDdeutt2r48OEKCAhQVFSUVq9efV2F10cffaQLFy4U6VT0SxmG4fA8/+/u5cfh6enp8J+NkmYYRoF/uwDgaqiRqJGokRxRIxWurNZImZmZ6tu3r86cOaNPPvnkihctp0a6sXANKZRJ5f0foUu/mbnWsvwPnGeffbbAtyb5rvThmJubq7vuukt//PGHJkyYoJYtW6pKlSr673//qyFDhpTaLXgv5+HhUWj75R9sxd1WUbb/wQcfaMiQIerXr5/GjRunOnXqyMPDQzNnztRPP/1U5P17e3sX+Bb4an7++WcdOXJE0p/XCyhphb2XvvrqK913333q0aOHFi1apLp168rT01NLlizRihUrSnwM18vX11dffvmlvvjiC8XFxSk+Pl6rVq1Sz5499dlnn13x9b2a5cuXy8/PT3379i1S/5o1a0oq3n8ASsOpU6cKLVQB4FqokRxRI1EjXYoaqWzWSNnZ2XrwwQf173//W5s3b1br1q2v2Jca6cZCIAWXuFIx1bBhQ+Xl5enIkSNq1aqV2Z6WlqbTp0+rYcOGDv3zvzm7dHs//PCDpKLf9ermm29WXl6eDhw4oPbt219xXJJ0+PBhh28EsrOzlZKSUuCWpc7I356np6fT29m3b59++OEHLVu2zOECgoXdmaKoBWzt2rVVuXJlHT58uMCyQ4cOyd3d3byIYVny4YcfqkmTJvr4448djjX/G9R8JVnI5+XlaciQIbLZbBozZoxeeeUVDRgwwLwQaGn56KOP5OPjo82bN8vb29tsX7JkiUO//L9PKSkpDh/sP/7443WPoXbt2vL19TULzUsV9t5xd3dXr1691KtXL7322mt65ZVXNHnyZH3xxRdOv+9PnDihL774QkOGDHE4/qtp0KCBfH19lZKS4tCe/3f7yJEj6tmzp9mek5OjlJSUIl941RkXL17UsWPHdN9995X4tgGUf9RI/0ONVDKokaiRrqa0a6S8vDwNHjxYCQkJWr16tXmWYmGokW48/GQPLlGlShVJKnA74HvuuUeSNHfuXIf21157TZIK3Pni+PHjDneVsdvt+r//+z+1b99egYGBRRpLv3795O7urhkzZhT4tiz/26Xw8HB5eXlp/vz5Dt84vfvuu8rIyLiuO3LUqVNHd9xxh958802dOHGiwPKr3Ro4/1uTS8dkGIbmzZtXoO+V5rywbfbu3VuffPKJwyn9aWlpWrFihbp37y6bzXbVbbhCYXOxa9cuJSYmOvTLvyPMteahKF577TXt3LlTb731ll588UV169ZNI0eOLPXfvXt4eMjNzU25ublm2y+//KJ169Y59Mv/NnnRokUO7f/85z9LZAwRERFat26djh49arYfPHhQmzdvduj7xx9/FFg//z82l9+qvChWrlypvLw8p05F9/T0VEhIiPbu3evQHhISotq1a2vx4sXKzs4225cuXVoi75HCHDhwQBcuXHC4UxAA5KNG+h9qpJJBjUSNdDWlXSONHj1aq1at0qJFi64ZSFIj3Xg4Qwou0alTJ0nS5MmTFRUVJU9PT917771q166doqOj9dZbb+n06dO6/fbbtXv3bi1btkz9+vXTnXfe6bCd5s2ba9iwYdqzZ48CAgL03nvvKS0trcC3IFfTtGlTTZ48WS+++KJuu+02Pfjgg/L29taePXtUr149zZw5U7Vr19akSZM0ffp09enTR/fdd58OHz6sRYsWqXPnznr88cevaz4WLlyo7t27q02bNnryySfVpEkTpaWlKTExUf/5z3/03XffFbpey5YtdfPNN+vZZ5/Vf//7X9lsNn300UeFnnKbP+d//etfFRERIQ8PD0VFRRW63ZdeeklbtmxR9+7d9fTTT6tSpUp68803lZWVpdmzZ1/XsZaWvn376uOPP9YDDzygyMhIpaSkaPHixQoODtbZs2fNfr6+vgoODtaqVavUvHlz1ahRQ61bt77qqcOFOXjwoF544QUNGTJE9957r6Q/P6Dbt2+vp59+WqtXry7R47tUZGSkXnvtNfXp00ePPvqo0tPTtXDhQjVt2lT//ve/zX6dOnVS//79NXfuXP3+++/mLY3zvyG/3m9Cp0+frvj4eN122216+umndfHiRf3zn//ULbfc4jCOGTNm6Msvv1RkZKQaNmyo9PR0LVq0SPXr11f37t2d3u/y5ctVr1493XHHHU6td//992vy5Mmy2+3mfxg8PT310ksv6S9/+Yt69uypgQMHKiUlRUuWLHHq+gjvv/++fv31V507d06S9OWXX+qll16SJA0aNMjhzIUtW7aocuXKTt12HcCNgxrJETXS9aNGoka6ltKqkebOnatFixYpLCxMlStX1gcffOCw/IEHHjADYYka6YZk1e38gMu9+OKLxk033WS4u7s73N44JyfHmD59utG4cWPD09PTCAoKMiZNmuRwu1/D+POWxpGRkcbmzZuNtm3bGt7e3kbLli2NNWvWFGs87733ntGhQwfD29vbqF69unH77bcbW7ZsceizYMECo2XLloanp6cREBBgjBw5ssDtVG+//XbjlltuKbD9/Fsav/rqq4Xu/6effjIGDx5sBAYGGp6ensZNN91k9O3b1/jwww/NPoXd0vjAgQNGeHi4UbVqVaNWrVrGk08+aXz33XeGJGPJkiVmv4sXLxqjR482ateubbi5uTncclaF3N72m2++MSIiIoyqVasalStXNu68805j586dDn3yb2m8Z88eh/bCxnkt+bc0vvy2t1e63e/l85yXl2e88sorRsOGDQ1vb2+jQ4cOxoYNGwq9FfHOnTuNTp06GV5eXg7HfqV95S/L387FixeNzp07G/Xr1y9w2+Z58+YZkoxVq1YV+divdkvjK90+99133zWaNWtmvu+XLFlizuGlMjMzjZiYGKNGjRpG1apVjX79+hmHDx82JDncJrooCnufbN++3ZzLJk2aGIsXLy4wjoSEBOP+++836tWrZ3h5eRn16tUzHnnkEeOHH35wav+GYRiHDh0yJBmxsbFOr5uWlmZUqlTJeP/99wssW7RokdG4cWPD29vbCAkJMb788kvj9ttvL/ItjfNvZV7Y4/K/B6Ghocbjjz/u9PgB3DiokRxRI1EjXY4aqaCyWCNFR0dfsT669N+2fNRINx43wyjGFfWAMqBRo0Zq3bq1NmzY4OqhAOVKcnKyOnTooA8++MDpO7CUd8OGDdMPP/ygr776yiX7T05OVseOHfXNN99c8XosAHC9qJGA4qFGokaCtbiGFABUYOfPny/QNnfuXLm7u6tHjx4uGJFrTZ06VXv27NGOHTtcsv9Zs2ZpwIABFFoAALgYNZIjaiS4AteQQoWWmpp61eW+vr7y8/OzaDQ3prNnzzpcn6AwtWvXLtZtbcu6kydPOlxU83JeXl6qUaNGqY5h9uzZSkpK0p133qlKlSpp06ZN2rRpk0aMGKGgoCDl5uZe9aKwklS1alVVrVq11MZo5Tw1aNBAFy5cKJFtFcfKlStdtm8AuBQ1kutRI1EjXQs1Eio8V/9mECiu/OsjXI2u8ptlSUZ0dLQ1g72B5f9W/mqPy38/XlE0bNjwqsd9+W/vS8Nnn31m3HrrrUb16tUNT09P4+abbzamTZtm5OTkGIbxv+t2XO1x+TURSlpZmCcAqEiokcoHaiRqpGspC/MElCauIYUK7fPPP7/q8nr16ik4ONii0dyYfv75Z/38889X7dO9e3f5+PhYNCLr7Nixo9DTwfNVr17dvLOPq1y4cEFff/31Vfs0adLEqTvOOas8zBMAVDTUSK5HjVS2P/upkYDSRyAFAAAAAAAAS3FRcwAAAAAAAFjqhr6oeV5eno4fP65q1arJzc3N1cMBAAAWMAxDZ86cUb169eTuzndzhaFGAgDgxmN1jXRDB1LHjx9XUFCQq4cBAABc4NixY6pfv76rh1EmUSMBAHDjsqpGuqEDqWrVqkn6c7JtNpuLRwMAAKxgt9sVFBRk1gEoiBoJAIAbj9U10g0dSOWfgm6z2Si2AAC4wfBTtCujRgIA4MZlVY3EhRMAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJa6oa8hBQDA1eTm5ionJ8fVw4CTPD095eHh4ephAABQYVEjlU9lrUYikAIA4DKGYSg1NVWnT5929VBQTP7+/goMDOTC5QAAlCBqpPKvLNVIBFIAAFwmv9CqU6eOKleuXCY+sFE0hmHo3LlzSk9PlyTVrVvXxSMCAKDioEYqv8pijUQgBQDAJXJzc81Cq2bNmq4eDorB19dXkpSenq46deqUqVPTAQAor6iRyr+yViNxUXMAAC6Rfz2EypUru3gkuB75rx/XtwAAoGRQI1UMZalGIpACAKAQnIJevvH6AQBQOviMLd/K0utHIAUAAAAAAABLEUgBAFDOubm5XfUxbdo0l45t3bp117WNt956S3fccYdsNpvc3Ny4sw8AACiyilwn/fHHHxo9erRatGghX19fNWjQQH/961+VkZFRcoMsRVzUHACAIsqJ/9qyfXn26V7kvidOnDD/vGrVKk2ZMkWHDx8226pWrerUvrOzs+Xl5eXUOqXp3Llz6tOnj/r06aNJkya5ejgAAOAyVtZIEnVSvuPHj+v48eOaM2eOgoOD9euvv+qpp57S8ePH9eGHH7p6eNfEGVKlKCf+6wIPAABKWmBgoPnw8/OTm5ub+TwzM1OPPfaYAgICVLVqVXXu3Fmff/65w/qNGjXSiy++qMGDB8tms2nEiBGSpLfffltBQUGqXLmyHnjgAb322mvy9/d3WPeTTz5Rx44d5ePjoyZNmmj69Om6ePGiuV1JeuCBB+Tm5mY+/+6773TnnXeqWrVqstls6tSpk/bu3XvF4xszZowmTpyorl27lsyEweWokQAAVqnIdVLr1q310Ucf6d5779XNN9+snj176uWXX9ann35q7qcsI5ACAKACO3v2rO655x4lJCTo22+/VZ8+fXTvvffq6NGjDv3mzJmjdu3a6dtvv9ULL7ygHTt26KmnntIzzzyj5ORk3XXXXXr55Zcd1vnqq680ePBgPfPMMzpw4IDefPNNLV261Oy3Z88eSdKSJUt04sQJ8/ljjz2m+vXra8+ePUpKStLEiRPl6elpwWwAAAD8T0WskzIyMmSz2VSpUtn/QVzZHyEAACi2du3aqV27dubzF198UWvXrtX69es1atQos71nz57629/+Zj6fPHmy7r77bj377LOSpObNm2vnzp3asGGD2Wf69OmaOHGioqOjJUlNmjTRiy++qPHjx2vq1KmqXbu2JMnf31+BgYHmekePHtW4cePUsmVLSVKzZs1K4cgBAACurqLVSb/99ptefPFF8yyuso4zpAAAqMDOnj2rZ599Vq1atZK/v7+qVq2qgwcPFvjmLyQkxOH54cOH1aVLF4e2y59/9913mjFjhqpWrWo+nnzySZ04cULnzp274phiY2M1fPhwhYeHa9asWfrpp5+u8ygBAACcV5HqJLvdrsjISAUHB7v0Qu3OIJACAKACe/bZZ7V27Vq98sor+uqrr5ScnKw2bdooOzvboV+VKlWc3vbZs2c1ffp0JScnm499+/bpyJEj8vHxueJ606ZN0/79+xUZGamtW7cqODhYa9eudXr/AAAA16Oi1ElnzpxRnz59VK1aNa1du7bcXAqBn+wBAFCB7dixQ0OGDNEDDzwg6c/i6Jdffrnmei1atDCvZZDv8ucdO3bU4cOH1bRp0ytux9PTU7m5uQXamzdvrubNm2vs2LF65JFHtGTJEnOMAAAAVqgIdZLdbldERIS8vb21fv36q4ZdZQ2BFAAAFVizZs308ccf695775Wbm5teeOEF5eXlXXO90aNHq0ePHnrttdd07733auvWrdq0aZPc3NzMPlOmTFHfvn3VoEEDDRgwQO7u7vruu+/0/fff66WXXpL05x1kEhISdOutt8rb21s+Pj4aN26cBgwYoMaNG+s///mP9uzZo/79+19xLKmpqUpNTdWPP/4oSdq3b5+qVaumBg0aqEaNGtc5QwAA4EZV3usku92u3r1769y5c/rggw9kt9tlt9slSbVr15aHh0cJzFLp4Sd7AABUYK+99pqqV6+ubt266d5771VERIQ6dux4zfVuvfVWLV68WK+99pratWun+Ph4jR071uFbt4iICG3YsEGfffaZOnfurK5du+r1119Xw4YNzT7/+Mc/tGXLFgUFBalDhw7y8PDQ77//rsGDB6t58+Z6+OGHdffdd2v69OlXHMvixYvVoUMHPfnkk5KkHj16qEOHDlq/fv11zAwAALjRlfc66ZtvvtGuXbu0b98+NW3aVHXr1jUfx44du/4JKmVuhmEYrh6Eq9jtdvn5+Zm3RSxpOfFfF2jz7NO9xPcDACg5Fy5cUEpKiho3blyuTnm2wpNPPqlDhw7pq6++cvVQrulqr2Npf/5XBNRIAIDLUSNdXXmpk8pSjcRP9gAAQKHmzJmju+66S1WqVNGmTZu0bNkyLVq0yNXDAgAAcDnqpOtHIAUAAAq1e/duzZ49W2fOnFGTJk00f/58DR8+3NXDAgAAcDnqpOtHIAUAAAq1evVqVw8BAACgTKJOun5c1BwAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAKoAhQ4bIzc1Nbm5u8vT0VEBAgO666y699957ysvLc/Xwrsv+/fvVv39/NWrUSG5ubpo7d66rhwQAAMqRilwnvf3227rttttUvXp1Va9eXeHh4dq9e7erh1UklVw9AAAAyouf9r5p2b5uDvmL0+v06dNHS5YsUW5urtLS0hQfH69nnnlGH374odavX69Klcrnx/65c+fUpEkTPfTQQxo7dqyrhwMAAC5jZY0kUSddatu2bXrkkUfUrVs3+fj46O9//7t69+6t/fv366abbnL18K6KM6QAAKggvL29FRgYqJtuukkdO3bUc889p08++USbNm3S0qVLzX6nT5/W8OHDVbt2bdlsNvXs2VPfffedw7Y+/fRTde7cWT4+PqpVq5YeeOABc9mpU6c0ePBgVa9eXZUrV9bdd9+tI0eOSJIyMzNls9n04YcfOmxv3bp1qlKlis6cOaPs7GyNGjVKdevWlY+Pjxo2bKiZM2de8bg6d+6sV199VVFRUfL29i6BmQIAADeailonLV++XE8//bTat2+vli1b6p133lFeXp4SEhJKYNZKF4EUAAAVWM+ePdWuXTt9/PHHZttDDz2k9PR0bdq0SUlJSerYsaN69eqlP/74Q5IUFxenBx54QPfcc4++/fZbJSQkqEuXLub6Q4YM0d69e7V+/XolJibKMAzdc889ysnJUZUqVRQVFaUlS5Y4jGPJkiUaMGCAqlWrpvnz52v9+vVavXq1Dh8+rOXLl6tRo0aWzAcAAEC+ilgnnTt3Tjk5OapRo8b1TY4Fyuc5aQAAoMhatmypf//735Kkr7/+Wrt371Z6erp5ttGcOXO0bt06ffjhhxoxYoRefvllRUVFafr06eY22rVrJ0k6cuSI1q9frx07dqhbt26S/vxmLigoSOvWrdNDDz2k4cOHq1u3bjpx4oTq1q2r9PR0bdy4UZ9//rkk6ejRo2rWrJm6d+8uNzc3NWzY0MrpAAAAMFW0OmnChAmqV6+ewsPDr3tuShtnSAEAUMEZhiE3NzdJ0nfffaezZ8+qZs2aqlq1qvlISUnRTz/9JElKTk5Wr169Ct3WwYMHValSJYWGhpptNWvWVIsWLXTw4EFJUpcuXXTLLbdo2bJlkqQPPvhADRs2VI8ePST9+c1hcnKyWrRoob/+9a/67LPPSu3YAQAArqYi1UmzZs3SypUrtXbtWvn4+Dg/GRbjDCkAACq4gwcPqnHjxpKks2fPqm7dutq2bVuBfv7+/pIkX1/f697n8OHDtXDhQk2cOFFLlizR0KFDzWKvY8eOSklJ0aZNm/T555/r4YcfVnh4eIHrKQAAAJS2ilInzZkzR7NmzdLnn3+utm3bXvcYrcAZUgAAVGBbt27Vvn371L9/f0l/FjmpqamqVKmSmjZt6vCoVauWJKlt27ZXvBBmq1atdPHiRe3atcts+/3333X48GEFBwebbY8//rh+/fVXzZ8/XwcOHFB0dLTDdmw2mwYOHKi3335bq1at0kcffWRemwEAAMAKFaVOmj17tl588UXFx8crJCSk2PNhNc6QAgCggsjKylJqaqrD7Yxnzpypvn37avDgwZKk8PBwhYWFqV+/fpo9e7aaN2+u48ePmxfoDAkJ0dSpU9WrVy/dfPPNioqK0sWLF7Vx40ZNmDBBzZo10/33368nn3xSb775pqpVq6aJEyfqpptu0v3332+OpXr16nrwwQc1btw49e7dW/Xr1zeXvfbaa6pbt646dOggd3d3rVmzRoGBgeY3j5fLzs7WgQMHzD//97//VXJysqpWraqmTZuW3oQCAIAKo6LWSX//+981ZcoUrVixQo0aNVJqaqokmT83LMs4QwoAgAoiPj5edevWVaNGjdSnTx998cUXmj9/vj755BN5eHhIktzc3LRx40b16NFDQ4cOVfPmzRUVFaVff/1VAQEBkqQ77rhDa9as0fr169W+fXv17NlTu3fvNvezZMkSderUSX379lVYWJgMw9DGjRvl6enpMJ5hw4YpOztbTzzxhEN7tWrVNHv2bIWEhKhz58765ZdftHHjRrm7F16WHD9+XB06dFCHDh104sQJzZkzRx06dNDw4cNLcvoAAEAFVlHrpDfeeEPZ2dkaMGCA6tataz7mzJlTktNXKtwMwzBcPQhXsdvt8vPzU0ZGhmw2W4lvPyf+6wJtnn26l/h+AAAl58KFC0pJSVHjxo3LxcUgy7L3339fY8eO1fHjx+Xl5WXpvq/2Opb2539FQI0EALgcNVLJclWdVJZqJH6yBwAAStS5c+d04sQJzZo1S3/5y18sD6MAAADKKuqk/+EnewAAoETNnj1bLVu2VGBgoCZNmuTq4QAAAJQZ1En/QyAFAABK1LRp05STk6OEhIQyfzFNAAAAK1En/Q+BFAAAAAAAACxFIAUAAAAAAABLEUgBAFCIG/gmtBUCrx8AAKWDz9jyrSy9fgRSAABcwtPTU9Kfd0BB+ZX/+uW/ngAA4PpQI1UMZalGuq5AatasWXJzc9OYMWPMtgsXLigmJkY1a9ZU1apV1b9/f6WlpTmsd/ToUUVGRqpy5cqqU6eOxo0bp4sXLzr02bZtmzp27Chvb281bdpUS5cuLbD/hQsXqlGjRvLx8VFoaKh27959PYcDAIA8PDzk7++v9PR0/f777zp//rwuXLjAo5w8zp8/r99//13p6eny9/eXh4eHS95H1EgAgIqGGql8P8pKjXSpSsVdcc+ePXrzzTfVtm1bh/axY8cqLi5Oa9askZ+fn0aNGqUHH3xQO3bskCTl5uYqMjJSgYGB2rlzp06cOKHBgwfL09NTr7zyiiQpJSVFkZGReuqpp7R8+XIlJCRo+PDhqlu3riIiIiRJq1atUmxsrBYvXqzQ0FDNnTtXEREROnz4sOrUqVPcwwIAQIGBgZKk9PR0F48ExeXv72++jlajRgIAVFTUSOWfK2uky7kZxfgB4dmzZ9WxY0ctWrRIL730ktq3b6+5c+cqIyNDtWvX1ooVKzRgwABJ0qFDh9SqVSslJiaqa9eu2rRpk/r27avjx48rICBAkrR48WJNmDBBJ0+elJeXlyZMmKC4uDh9//335j6joqJ0+vRpxcfHS5JCQ0PVuXNnLViwQJKUl5enoKAgjR49WhMnTizScdjtdvn5+SkjI0M2m83ZabimnPivC7R59ule4vsBAJSO3Nxc5eTkuHoYcJKnp+dVv/Urzc9/aqSioUYCgPKNGql8cmWNVJhinSEVExOjyMhIhYeH66WXXjLbk5KSlJOTo/DwcLOtZcuWatCggVlsJSYmqk2bNmahJUkREREaOXKk9u/frw4dOigxMdFhG/l98k97z87OVlJSkiZNmmQud3d3V3h4uBITE4tzSAAAFODh4VEmTmdG+UGNBAC4EVAjoSQ4HUitXLlS33zzjfbs2VNgWWpqqry8vOTv7+/QHhAQoNTUVLPPpYVW/vL8ZVfrY7fbdf78eZ06dUq5ubmF9jl06NAVx56VlaWsrCzzud1uv8bRAgAAFA01EgAAQNE5dVHzY8eO6ZlnntHy5cvl4+NTWmMqNTNnzpSfn5/5CAoKcvWQAABABUCNBAAA4BynAqmkpCSlp6erY8eOqlSpkipVqqTt27dr/vz5qlSpkgICApSdna3Tp087rJeWlmZeNCswMLDAHWXyn1+rj81mk6+vr2rVqiUPD49C+1zt4lyTJk1SRkaG+Th27Jgzhw8AAFAoaiQAAADnOBVI9erVS/v27VNycrL5CAkJ0WOPPWb+2dPTUwkJCeY6hw8f1tGjRxUWFiZJCgsL0759+xyuyr9lyxbZbDYFBwebfS7dRn6f/G14eXmpU6dODn3y8vKUkJBg9imMt7e3bDabwwMAAOB6USMBAAA4x6lrSFWrVk2tW7d2aKtSpYpq1qxptg8bNkyxsbGqUaOGbDabRo8erbCwMHXt2lWS1Lt3bwUHB2vQoEGaPXu2UlNT9fzzzysmJkbe3t6SpKeeekoLFizQ+PHj9cQTT2jr1q1avXq14uLizP3GxsYqOjpaISEh6tKli+bOnavMzEwNHTr0uiYEAADAWdRIAAAAzinWXfau5vXXX5e7u7v69++vrKwsRUREaNGiReZyDw8PbdiwQSNHjlRYWJiqVKmi6OhozZgxw+zTuHFjxcXFaezYsZo3b57q16+vd955RxEREWafgQMH6uTJk5oyZYpSU1PVvn17xcfHF7iIJwAAQFlAjQQAAPA/boZhGK4ehKvY7Xb5+fkpIyOjVE5Nz4n/ukCbZ5/uJb4fAABQdKX9+V8RUCMBAHDjsbpGcuoaUgAAAAAAAMD1IpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiqkqsHUJH9cnpTgbZm6u6CkQAAAJQd1EgAAIAzpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYyqlA6o033lDbtm1ls9lks9kUFhamTZs2mcsvXLigmJgY1axZU1WrVlX//v2VlpbmsI2jR48qMjJSlStXVp06dTRu3DhdvHjRoc+2bdvUsWNHeXt7q2nTplq6dGmBsSxcuFCNGjWSj4+PQkNDtXv3bmcOBQAAoMRQIwEAADjHqUCqfv36mjVrlpKSkrR371717NlT999/v/bv3y9JGjt2rD799FOtWbNG27dv1/Hjx/Xggw+a6+fm5ioyMlLZ2dnauXOnli1bpqVLl2rKlClmn5SUFEVGRurOO+9UcnKyxowZo+HDh2vz5s1mn1WrVik2NlZTp07VN998o3bt2ikiIkLp6enXOx8AAABOo0YCAABwjpthGMb1bKBGjRp69dVXNWDAANWuXVsrVqzQgAEDJEmHDh1Sq1atlJiYqK5du2rTpk3q27evjh8/roCAAEnS4sWLNWHCBJ08eVJeXl6aMGGC4uLi9P3335v7iIqK0unTpxUfHy9JCg0NVefOnbVgwQJJUl5enoKCgjR69GhNnDixyGO32+3y8/NTRkaGbDbb9UxDoY6snFygrVnUyyW+HwAAUHSl/fmfjxrpyqiRAAAoe6yqkfIV+xpSubm5WrlypTIzMxUWFqakpCTl5OQoPDzc7NOyZUs1aNBAiYmJkqTExES1adPGLLQkKSIiQna73fwGMTEx0WEb+X3yt5Gdna2kpCSHPu7u7goPDzf7AAAAuAo1EgAAwLVVcnaFffv2KSwsTBcuXFDVqlW1du1aBQcHKzk5WV5eXvL393foHxAQoNTUVElSamqqQ6GVvzx/2dX62O12nT9/XqdOnVJubm6hfQ4dOnTVsWdlZSkrK8t8brfbi37gAAAAV0GNBAAAUHROnyHVokULJScna9euXRo5cqSio6N14MCB0hhbiZs5c6b8/PzMR1BQkKuHBAAAKghqJAAAgKJzOpDy8vJS06ZN1alTJ82cOVPt2rXTvHnzFBgYqOzsbJ0+fdqhf1pamgIDAyVJgYGBBe4ok//8Wn1sNpt8fX1Vq1YteXh4FNonfxtXMmnSJGVkZJiPY8eOOXv4AAAAhaJGAgAAKLpiX0MqX15enrKystSpUyd5enoqISHBXHb48GEdPXpUYWFhkqSwsDDt27fP4U4vW7Zskc1mU3BwsNnn0m3k98nfhpeXlzp16uTQJy8vTwkJCWafK/H29jZvx5z/AAAAKA3USAAAAFfm1DWkJk2apLvvvlsNGjTQmTNntGLFCm3btk2bN2+Wn5+fhg0bptjYWNWoUUM2m02jR49WWFiYunbtKknq3bu3goODNWjQIM2ePVupqal6/vnnFRMTI29vb0nSU089pQULFmj8+PF64okntHXrVq1evVpxcXHmOGJjYxUdHa2QkBB16dJFc+fOVWZmpoYOHVqCUwMAAFA01EgAAADOcSqQSk9P1+DBg3XixAn5+fmpbdu22rx5s+666y5J0uuvvy53d3f1799fWVlZioiI0KJFi8z1PTw8tGHDBo0cOVJhYWGqUqWKoqOjNWPGDLNP48aNFRcXp7Fjx2revHmqX7++3nnnHUVERJh9Bg4cqJMnT2rKlClKTU1V+/btFR8fX+AingAAAFagRgIAAHCOm2EYhqsH4Sp2u11+fn7KyMgolVPTj6ycXKCtWdTLJb4fAABQdKX9+V8RUCMBAHDjsbpGuu5rSAEAAAAAAADOIJACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCmnAqmZM2eqc+fOqlatmurUqaN+/frp8OHDDn0uXLigmJgY1axZU1WrVlX//v2Vlpbm0Ofo0aOKjIxU5cqVVadOHY0bN04XL1506LNt2zZ17NhR3t7eatq0qZYuXVpgPAsXLlSjRo3k4+Oj0NBQ7d6925nDAQAAKBHUSAAAAM5xKpDavn27YmJi9K9//UtbtmxRTk6OevfurczMTLPP2LFj9emnn2rNmjXavn27jh8/rgcffNBcnpubq8jISGVnZ2vnzp1atmyZli5dqilTpph9UlJSFBkZqTvvvFPJyckaM2aMhg8frs2bN5t9Vq1apdjYWE2dOlXffPON2rVrp4iICKWnp1/PfAAAADiNGgkAAMA5boZhGMVd+eTJk6pTp462b9+uHj16KCMjQ7Vr19aKFSs0YMAASdKhQ4fUqlUrJSYmqmvXrtq0aZP69u2r48ePKyAgQJK0ePFiTZgwQSdPnpSXl5cmTJiguLg4ff/99+a+oqKidPr0acXHx0uSQkND1blzZy1YsECSlJeXp6CgII0ePVoTJ04s0vjtdrv8/PyUkZEhm81W3Gm4oiMrJxdoaxb1convBwAAFF1pf/5L1EjXQo0EAEDZY0WNdKnruoZURkaGJKlGjRqSpKSkJOXk5Cg8PNzs07JlSzVo0ECJiYmSpMTERLVp08YstCQpIiJCdrtd+/fvN/tcuo38PvnbyM7OVlJSkkMfd3d3hYeHm30AAABchRoJAADg6ioVd8W8vDyNGTNGt956q1q3bi1JSk1NlZeXl/z9/R36BgQEKDU11exzaaGVvzx/2dX62O12nT9/XqdOnVJubm6hfQ4dOnTFMWdlZSkrK8t8brfbnThiAACAa6NGAgAAuLZinyEVExOj77//XitXrizJ8ZSqmTNnys/Pz3wEBQW5ekgAAKCCoUYCAAC4tmIFUqNGjdKGDRv0xRdfqH79+mZ7YGCgsrOzdfr0aYf+aWlpCgwMNPtcfkeZ/OfX6mOz2eTr66tatWrJw8Oj0D752yjMpEmTlJGRYT6OHTvm3IEDAABcBTUSAABA0TgVSBmGoVGjRmnt2rXaunWrGjdu7LC8U6dO8vT0VEJCgtl2+PBhHT16VGFhYZKksLAw7du3z+FOL1u2bJHNZlNwcLDZ59Jt5PfJ34aXl5c6derk0CcvL08JCQlmn8J4e3vLZrM5PAAAAK4XNRIAAIBznLqGVExMjFasWKFPPvlE1apVM69n4OfnJ19fX/n5+WnYsGGKjY1VjRo1ZLPZNHr0aIWFhalr166SpN69eys4OFiDBg3S7NmzlZqaqueff14xMTHy9vaWJD311FNasGCBxo8fryeeeEJbt27V6tWrFRcXZ44lNjZW0dHRCgkJUZcuXTR37lxlZmZq6NChJTU3AAAARUKNBAAA4BynAqk33nhDknTHHXc4tC9ZskRDhgyRJL3++utyd3dX//79lZWVpYiICC1atMjs6+HhoQ0bNmjkyJEKCwtTlSpVFB0drRkzZph9GjdurLi4OI0dO1bz5s1T/fr19c477ygiIsLsM3DgQJ08eVJTpkxRamqq2rdvr/j4+AIX8QQAACht1EgAAADOcTMMw3D1IFzFbrfLz89PGRkZpXJq+pGVkwu0NYt6ucT3AwAAiq60P/8rAmokAABuPFbXSMW+yx4AAAAAAABQHARSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACzldCD15Zdf6t5771W9evXk5uamdevWOSw3DENTpkxR3bp15evrq/DwcB05csShzx9//KHHHntMNptN/v7+GjZsmM6ePevQ59///rduu+02+fj4KCgoSLNnzy4wljVr1qhly5by8fFRmzZttHHjRmcPBwAAoERQIwEAABSd04FUZmam2rVrp4ULFxa6fPbs2Zo/f74WL16sXbt2qUqVKoqIiNCFCxfMPo899pj279+vLVu2aMOGDfryyy81YsQIc7ndblfv3r3VsGFDJSUl6dVXX9W0adP01ltvmX127typRx55RMOGDdO3336rfv36qV+/fvr++++dPSQAAIDrRo0EAABQdG6GYRjFXtnNTWvXrlW/fv0k/fnNX7169fS3v/1Nzz77rCQpIyNDAQEBWrp0qaKionTw4EEFBwdrz549CgkJkSTFx8frnnvu0X/+8x/Vq1dPb7zxhiZPnqzU1FR5eXlJkiZOnKh169bp0KFDkqSBAwcqMzNTGzZsMMfTtWtXtW/fXosXLy7S+O12u/z8/JSRkSGbzVbcabiiIysnF2hrFvVyie8HAAAUXWl//kvUSNdCjQQAQNljRY10qRK9hlRKSopSU1MVHh5utvn5+Sk0NFSJiYmSpMTERPn7+5uFliSFh4fL3d1du3btMvv06NHDLLQkKSIiQocPH9apU6fMPpfuJ79P/n4AAADKCmokAAAAR5VKcmOpqamSpICAAIf2gIAAc1lqaqrq1KnjOIhKlVSjRg2HPo0bNy6wjfxl1atXV2pq6lX3U5isrCxlZWWZz+12uzOHBwAAUCzUSAAAAI5uqLvszZw5U35+fuYjKCjI1UMCAABwOWokAABgtRINpAIDAyVJaWlpDu1paWnmssDAQKWnpzssv3jxov744w+HPoVt49J9XKlP/vLCTJo0SRkZGebj2LFjzh4iAACA06iRAAAAHJVoINW4cWMFBgYqISHBbLPb7dq1a5fCwsIkSWFhYTp9+rSSkpLMPlu3blVeXp5CQ0PNPl9++aVycnLMPlu2bFGLFi1UvXp1s8+l+8nvk7+fwnh7e8tmszk8AAAAShs1EgAAgCOnA6mzZ88qOTlZycnJkv68SGdycrKOHj0qNzc3jRkzRi+99JLWr1+vffv2afDgwapXr555l5lWrVqpT58+evLJJ7V7927t2LFDo0aNUlRUlOrVqydJevTRR+Xl5aVhw4Zp//79WrVqlebNm6fY2FhzHM8884zi4+P1j3/8Q4cOHdK0adO0d+9ejRo16vpnBQAAwEnUSAAAAEXn9EXN9+7dqzvvvNN8nl8ARUdHa+nSpRo/frwyMzM1YsQInT59Wt27d1d8fLx8fHzMdZYvX65Ro0apV69ecnd3V//+/TV//nxzuZ+fnz777DPFxMSoU6dOqlWrlqZMmaIRI0aYfbp166YVK1bo+eef13PPPadmzZpp3bp1at26dbEmAgAA4HpQIwEAABSdm2EYhqsH4Sp2u11+fn7KyMgolVPTj6ycXKCtWdTLJb4fAABQdKX9+V8RUCMBAHDjsbpGuqHusgcAAAAAAADXI5ACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCqf/P3n1HR1Hufxz/bEIqaQRCQgkdBER6rwqRoBRBUVCEoBRB4F5AaaKEosJFLqIIApbAT+VSVFABAwgiClxBipdLEyUICklASpCW9vz+8GQvS0JIQjKb8n6ds+eYmWdmvvtkw3787uwMAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClCnxDat68eapUqZI8PT3VrFkz7dy509klAQAAOB0ZCQAA5GcFuiG1fPlyjR49WpGRkdqzZ4/q1aun8PBwxcfHO7s0AAAApyEjAQCA/K5AN6Rmz56tQYMG6amnnlLt2rW1YMECeXt76/3333d2aQAAAE5DRgIAAPldgW1IJSYmavfu3QoLC7Mvc3FxUVhYmHbs2OHEygAAAJyHjAQAAAqCYs4uIKfOnj2rlJQUBQcHOywPDg7W4cOHM9zm+vXrun79uv3nixcvSpISEhLypMY/r1xPtyyvjgUAALIm7b3YGOPkSvIGGQkAAOSE1RmpwDakcmL69OmaMmVKuuWhoaHWFTHgn9YdCwAA3NKlS5fk7+/v7DLyBTISAABIY1VGKrANqVKlSsnV1VVxcXEOy+Pi4hQSEpLhNhMmTNDo0aPtP6empurcuXMqWbKkbDZbrtaXkJCg0NBQnTx5Un5+frm6b9wa8+4czLtzMO/Owbw7R27OuzFGly5dUtmyZXOpuvyFjIRbYe6dh7l3HubeeZh758np3FudkQpsQ8rd3V2NGjXSpk2b1L17d0l/hadNmzZp+PDhGW7j4eEhDw8Ph2UBAQF5Wqefnx9/fE7AvDsH8+4czLtzMO/OkVvzXpjPjCIj4XaYe+dh7p2HuXce5t55cjL3VmakAtuQkqTRo0crIiJCjRs3VtOmTTVnzhxdvnxZTz31lLNLAwAAcBoyEgAAyO8KdEOqV69eOnPmjCZNmqTY2FjVr19f0dHR6S7iCQAAUJSQkQAAQH5XoBtSkjR8+PBbnn7uTB4eHoqMjEx3+jvyFvPuHMy7czDvzsG8Owfznn1kJNyMuXce5t55mHvnYe6dp6DMvc0U1nseAwAAAAAAIF9ycXYBAAAAAAAAKFpoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNqTswb948VapUSZ6enmrWrJl27tyZ6fiVK1eqZs2a8vT01D333KN169ZZVGnhkp15f+edd9SmTRuVKFFCJUqUUFhY2G1/T8hYdl/vaZYtWyabzabu3bvnbYGFVHbn/cKFCxo2bJjKlCkjDw8P1ahRg39rciC78z5nzhzddddd8vLyUmhoqEaNGqVr165ZVG3hsHXrVnXt2lVly5aVzWbT6tWrb7vNli1b1LBhQ3l4eKhatWpavHhxnteJrCEjOQ85yXnISs5DXnIeMpP1ClVmMsiRZcuWGXd3d/P++++bAwcOmEGDBpmAgAATFxeX4fht27YZV1dXM3PmTHPw4EHz4osvGjc3N7N//36LKy/YsjvvTzzxhJk3b57Zu3evOXTokOnfv7/x9/c3v/32m8WVF2zZnfc0MTExply5cqZNmzbmoYcesqbYQiS78379+nXTuHFj8+CDD5rvvvvOxMTEmC1btph9+/ZZXHnBlt15/+ijj4yHh4f56KOPTExMjFm/fr0pU6aMGTVqlMWVF2zr1q0zEydONJ9++qmRZFatWpXp+GPHjhlvb28zevRoc/DgQTN37lzj6upqoqOjrSkYt0RGch5ykvOQlZyHvOQ8ZCbnKEyZiYZUDjVt2tQMGzbM/nNKSoopW7asmT59eobjH3vsMdO5c2eHZc2aNTPPPPNMntZZ2GR33m+WnJxsfH19zZIlS/KqxEIpJ/OenJxsWrZsad59910TERFByMqB7M7722+/bapUqWISExOtKrFQyu68Dxs2zLRv395h2ejRo02rVq3ytM7CLCvhauzYsebuu+92WNarVy8THh6eh5UhK8hIzkNOch6ykvOQl5yHzOR8BT0z8ZW9HEhMTNTu3bsVFhZmX+bi4qKwsDDt2LEjw2127NjhMF6SwsPDbzke6eVk3m925coVJSUlKTAwMK/KLHRyOu9Tp05V6dKlNWDAACvKLHRyMu+ff/65WrRooWHDhik4OFh16tTRq6++qpSUFKvKLvByMu8tW7bU7t277aeoHzt2TOvWrdODDz5oSc1FFe+r+RMZyXnISc5DVnIe8pLzkJkKjvz8PlvM2QUURGfPnlVKSoqCg4MdlgcHB+vw4cMZbhMbG5vh+NjY2Dyrs7DJybzfbNy4cSpbtmy6P0jcWk7m/bvvvtN7772nffv2WVBh4ZSTeT927Jg2b96sPn36aN26dfr555/17LPPKikpSZGRkVaUXeDlZN6feOIJnT17Vq1bt5YxRsnJyRoyZIheeOEFK0ousm71vpqQkKCrV6/Ky8vLSZUVbWQk5yEnOQ9ZyXnIS85DZio48nNm4gwpFBkzZszQsmXLtGrVKnl6ejq7nELr0qVL6tu3r9555x2VKlXK2eUUKampqSpdurQWLVqkRo0aqVevXpo4caIWLFjg7NIKtS1btujVV1/V/PnztWfPHn366adau3atpk2b5uzSACDLyEnWISs5F3nJechMuBlnSOVAqVKl5Orqqri4OIflcXFxCgkJyXCbkJCQbI1HejmZ9zSzZs3SjBkz9NVXX6lu3bp5WWahk915/+WXX3T8+HF17drVviw1NVWSVKxYMR05ckRVq1bN26ILgZy83suUKSM3Nze5urral9WqVUuxsbFKTEyUu7t7ntZcGORk3l966SX17dtXAwcOlCTdc889unz5sgYPHqyJEyfKxYXPfvLCrd5X/fz8ODvKichIzkNOch6ykvOQl5yHzFRw5OfMxG88B9zd3dWoUSNt2rTJviw1NVWbNm1SixYtMtymRYsWDuMlaePGjbccj/RyMu+SNHPmTE2bNk3R0dFq3LixFaUWKtmd95o1a2r//v3at2+f/dGtWzfdd9992rdvn0JDQ60sv8DKyeu9VatW+vnnn+2hVpJ++uknlSlThnCVRTmZ9ytXrqQLUGkh1xiTd8UWcbyv5k9kJOchJzkPWcl5yEvOQ2YqOPL1+6xzr6lecC1btsx4eHiYxYsXm4MHD5rBgwebgIAAExsba4wxpm/fvmb8+PH28du2bTPFihUzs2bNMocOHTKRkZHc0jgHsjvvM2bMMO7u7ubjjz82p0+ftj8uXbrkrKdQIGV33m/GnWNyJrvzfuLECePr62uGDx9ujhw5YtasWWNKly5tXn75ZWc9hQIpu/MeGRlpfH19zb/+9S9z7Ngxs2HDBlO1alXz2GOPOespFEiXLl0ye/fuNXv37jWSzOzZs83evXvNr7/+aowxZvz48aZv37728Wm3MB4zZow5dOiQmTdvXr65hXFRR0ZyHnKS85CVnIe85DxkJucoTJmJhtQdmDt3rqlQoYJxd3c3TZs2Nf/+97/t69q1a2ciIiIcxq9YscLUqFHDuLu7m7vvvtusXbvW4ooLh+zMe8WKFY2kdI/IyEjrCy/gsvt6vxEhK+eyO+/bt283zZo1Mx4eHqZKlSrmlVdeMcnJyRZXXfBlZ96TkpLM5MmTTdWqVY2np6cJDQ01zz77rDl//rz1hRdgX3/9dYb/XqfNdUREhGnXrl26berXr2/c3d1NlSpVTFRUlOV1I2NkJOchJzkPWcl5yEvOQ2ayXmHKTDZjODcOAAAAAAAA1uEaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwooQLZs2SKbzaYtW7bk6n5tNpsmT56cq/ssbPr3769KlSrl2f5fe+01ValSRa6urqpfv36eHedOZPV1MnnyZNlstrwvKAdOnjwpT09Pbdu27bZj7733Xt17770Oy+Li4tSzZ0+VLFlSNptNc+bMydbxe/furcceeyxb2wAAbo+M5DxkJDKSREZCztCQglNs375dkydP1oULF5xdSpGxbt06ApWkK1euaPLkybkeWO/Ehg0bNHbsWLVq1UpRUVF69dVXnV1SvrVixQo1b95cAQEBKlmypNq1a6e1a9dmefupU6eqWbNmatWqVY6OP2rUKK1fv14TJkzQBx98oE6dOkmSXnnlFXXr1k3BwcGZhtJx48bpk08+0Y8//pij4wMo/MhI1iMj/YWMVLDlx4x0+PBhjR07VvXr15evr6/KlCmjzp0764cffki3PRmpiDKAE7z22mtGkomJiXF2KQXK119/bSSZr7/+OtvbDhs2zNzqT/7q1asmKSnpDqsrGM6cOWMkmcjIyGxtl5iYaK5du5YnNY0bN864uLiY69ev58n+c0tWXyeRkZG3fK3diTfffNNIMp07dzZvv/22ef311029evWMJPPJJ5/cdvv4+Hjj5uZmli5dmqXjtWvXzrRr185hWXBwsOnTp0+6sZJMSEiICQ8Pv+3rq2nTpqZv375ZqgFA0UNGyhky0p0jI+UcGSnjjPTcc8+ZgIAAM2DAALNw4UIzc+ZMU7VqVePq6mo2btyYbr9kpKKHM6QAC1y5ciXD5cnJyUpMTLS4mvQ8PT1VrFgxZ5eRL12+fFmS5ObmJg8Pjzw5Rnx8vLy8vOTu7p7puNTUVF27di1PasgKZ79O5s6dqyZNmuiLL77QkCFDNHLkSG3dulU+Pj5asmTJbbf/8MMPVaxYMXXt2jXHNcTHxysgICDd8piYGJ0+fVoffvjhbffx2GOP6dNPP9Wff/6Z4zoAoLAgIxVcZKT/cfbrJL9mpMcff1wnT57Uu+++q8GDB2vMmDH6/vvvFRgYmOFZiWSkooeGFCw3efJkjRkzRpJUuXJl2Ww22Ww2HT9+XNJfAWTatGmqWrWqPDw8VKlSJb3wwgu6fv26w34qVaqkLl26aMOGDapfv748PT1Vu3Ztffrppzmq68MPP1TTpk3l7e2tEiVKqG3bttqwYYPDmPnz5+vuu++Wh4eHypYtq2HDhqU7pf7ee+9VnTp1tHv3brVt21be3t564YUXdPz4cdlsNs2aNUtz5syxP7+DBw9Kkg4fPqyePXsqMDBQnp6eaty4sT7//PPb1v3tt9/q0UcfVYUKFeTh4aHQ0FCNGjVKV69etY/p37+/5s2bJ0n2+b7x++sZfcVo7969euCBB+Tn5ycfHx916NBB//73vx3GLF68WDabTdu2bdPo0aMVFBSk4sWLq0ePHjpz5sxta79R2nfqf/rpJz355JPy9/dXUFCQXnrpJRljdPLkST300EPy8/NTSEiI/vnPfzpsn5iYqEmTJqlRo0by9/dX8eLF1aZNG3399df2McePH1dQUJAkacqUKfZ5SHvu/fv3l4+Pj3755Rc9+OCD8vX1VZ8+fezrbrw+QmRkpFxcXLRp0yaHOgYPHix3d/csn25ss9kUFRWly5cv2+tZvHixfd3w4cP10Ucf2V930dHRkqRZs2apZcuWKlmypLy8vNSoUSN9/PHH6fZ/9epV/e1vf1OpUqXk6+urbt266ffff8/RNTEy2ua7775TkyZN5OnpqapVq2rhwoUZbrtx40a1bt1aAQEB8vHx0V133aUXXnghW8dPSEhQ6dKlHV67aa9PLy+v226/evVqNWvWTD4+PunWLVq0SFWrVpWXl5eaNm2qb7/91mF92mvdGKN58+al+xvKzrUz7r//fl2+fFkbN27M8jYAigYyEhkpI2QkMtLt5NeM1KhRo3T7LFmypNq0aaNDhw6lOxYZqeih3Q/LPfzww/rpp5/0r3/9S6+//rpKlSolSfY3wYEDB2rJkiXq2bOnnnvuOX3//feaPn26Dh06pFWrVjns6+jRo+rVq5eGDBmiiIgIRUVF6dFHH1V0dLTuv//+LNc0ZcoUTZ48WS1bttTUqVPl7u6u77//Xps3b1bHjh0l/RUGpkyZorCwMA0dOlRHjhzR22+/rV27dmnbtm1yc3Oz7++PP/7QAw88oN69e+vJJ59UcHCwfV1UVJSuXbumwYMHy8PDQ4GBgTpw4IBatWqlcuXKafz48SpevLhWrFih7t2765NPPlGPHj1uWfvKlSt15coVDR06VCVLltTOnTs1d+5c/fbbb1q5cqUk6ZlnntGpU6e0ceNGffDBB7edjwMHDqhNmzby8/PT2LFj5ebmpoULF+ree+/VN998o2bNmjmMHzFihEqUKKHIyEgdP35cc+bM0fDhw7V8+fIs/w7S9OrVS7Vq1dKMGTO0du1avfzyywoMDNTChQvVvn17/eMf/9BHH32k559/Xk2aNFHbtm0l/fVG/O677+rxxx/XoEGDdOnSJb333nsKDw/Xzp07Vb9+fQUFBentt9/W0KFD1aNHDz388MOSpLp169qPn5ycrPDwcLVu3VqzZs2St7d3hnW++OKL+uKLLzRgwADt379fvr6+Wr9+vd555x1NmzZN9erVy9Lz/eCDD7Ro0SLt3LlT7777riSpZcuW9vWbN2/WihUrNHz4cJUqVcoe+N544w1169ZNffr0UWJiopYtW6ZHH31Ua9asUefOne3b9+/fXytWrFDfvn3VvHlzffPNNw7r78T+/fvVsWNHBQUFafLkyUpOTlZkZKTD61366/XUpUsX1a1bV1OnTpWHh4d+/vnnLF0080b33nuvPv74Y82dO1ddu3bVtWvXNHfuXF28eFF///vfM902KSlJu3bt0tChQ9Ote++99/TMM8+oZcuWGjlypI4dO6Zu3bopMDBQoaGhkqS2bdvqgw8+UN++fXX//ferX79+2ar9RrVr15aXl5e2bduW6d82gKKHjERGygwZiYx0KwUtI8XGxtr/fbsRGakIcu43BlFU3er6CPv27TOSzMCBAx2WP//880aS2bx5s31ZxYoV030v+uLFi6ZMmTKmQYMGWa7l6NGjxsXFxfTo0cOkpKQ4rEtNTTXG/PW9and3d9OxY0eHMW+99ZaRZN5//337snbt2hlJZsGCBQ77iomJMZKMn5+fiY+Pd1jXoUMHc8899zh8/z41NdW0bNnSVK9e3b4so+sjXLlyJd1zmj59urHZbObXX3+1L8vs+gi66XoB3bt3N+7u7uaXX36xLzt16pTx9fU1bdu2tS+LiooykkxYWJh9rowxZtSoUcbV1dVcuHAhw+NlJO079YMHD7YvS05ONuXLlzc2m83MmDHDvvz8+fPGy8vLREREOIy9+foC58+fN8HBwebpp5+2L8vs+ggRERFGkhk/fnyG6ypWrOiwbP/+/cbd3d0MHDjQnD9/3pQrV840btw429eaiIiIMMWLF0+3XJJxcXExBw4cSLfu5t97YmKiqVOnjmnfvr192e7du40kM3LkSIex/fv3z9E1IjJ6nXh6ejq8zg4ePGhcXV0dXmuvv/66kWTOnDmTrePdLC4uznTo0MFIsj9KlSpltm/fftttf/75ZyPJzJ0712F5YmKiKV26tKlfv77D62fRokVGUrrrI0gyw4YNu+Vxsnr9jRo1apgHHnjgtnUDKHrISGSkm5GRyEi3UxAyUpqtW7cam81mXnrppQzXk5GKFr6yh3xl3bp1kqTRo0c7LH/uueckKd2dIsqWLevQPffz81O/fv20d+9excbGZumYq1evVmpqqiZNmiQXF8c/ibTTTb/66islJiZq5MiRDmMGDRokPz+/dHV5eHjoqaeeyvB4jzzyiP2TTkk6d+6cNm/erMcee0yXLl3S2bNndfbsWf3xxx8KDw/X0aNH9fvvv9+y/htPw718+bLOnj2rli1byhijvXv3ZmkObpSSkqINGzaoe/fuqlKlin15mTJl9MQTT+i7775TQkKCwzaDBw92OEW4TZs2SklJ0a+//prt4w8cOND+366urmrcuLGMMRowYIB9eUBAgO666y4dO3bMYWza9QVSU1N17tw5JScnq3HjxtqzZ0+2asjoE6KM1KlTR1OmTNG7776r8PBwnT17VkuWLMnVawi0a9dOtWvXTrf8xt/7+fPndfHiRbVp08bhuaaduv7ss886bDtixIg7rislJUXr169X9+7dVaFCBfvyWrVqKTw83GFs2vUEPvvsM6Wmpub4mN7e3rrrrrsUERGhlStX6v3331eZMmX08MMP6+eff8502z/++EOSVKJECYflP/zwg+Lj4zVkyBCH61P0799f/v7+Oa71dkqUKKGzZ8/m2f4BFD5kJDISGckRGel/CkpGio+P1xNPPKHKlStr7NixGY4hIxUtNKSQr/z6669ycXFRtWrVHJaHhIQoICAg3Zt3tWrVHN7kJalGjRqSZL/ewu388ssvcnFxyfAN7ca6JOmuu+5yWO7u7q4qVaqkq6tcuXK3vPhi5cqVHX7++eefZYzRSy+9pKCgIIdHZGSkpL/+8b6VEydOqH///goMDJSPj4+CgoLUrl07SdLFixdvud2tnDlzRleuXEn3XKW/3khTU1N18uRJh+U3vtlK/3tDO3/+fLaPf/O+/P395enpme60Xn9//3T7X7JkierWrStPT0+VLFlSQUFBWrt2bbbmoVixYipfvnyWx48ZM0b16tXTzp07FRkZmenrKCdufr2kWbNmjZo3by5PT08FBgbaT7W/8bmm/T3dvI+b/75y4syZM7p69aqqV6+ebt3Nr51evXqpVatWGjhwoIKDg9W7d2+tWLEi28Hr0Ucf1YkTJ7R48WL17NlTTz31lLZs2aLExERNnDgxS/swxjj8nPa3e/PzcHNzc/ifjdxmjEn3bxcAZIaMREYiIzkiI/1PQchIly9fVpcuXXTp0iV99tlnGV6vKq0OMlLRwTWkkC8V9H+EMrt44M3r0t5wnn/++XSfmqS51ZtjSkqK7r//fp07d07jxo1TzZo1Vbx4cf3+++/q37//HX3Skh2urq4ZLr/5jS2n+8rK/j/88EP1799f3bt315gxY1S6dGm5urpq+vTp+uWXX7J8fA8Pj3SfAmfm2LFjOnr0qKS/rheQ2zJ6LX377bfq1q2b2rZtq/nz56tMmTJyc3NTVFSUli5dmus13CkvLy9t3bpVX3/9tdauXavo6GgtX75c7du314YNG275+73RsWPHFB0drUWLFjksDwwMVOvWrW97rYWSJUtKytn/AOSF8+fPZxhUAeB2yEiOyEhkpBuRkf4nP2WkxMREPfzww/rPf/6j9evXq06dOrccS0YqWmhIwSluFaYqVqyo1NRUHT16VLVq1bIvj4uL04ULF1SxYkWH8WmfnN24v59++klS1u96VbVqVaWmpurgwYOqX7/+LeuSpCNHjjh8IpCYmKiYmBiFhYVl6VgZSdufm5tbtvezf/9+/fTTT1qyZInDBQQzujNFVgNsUFCQvL29deTIkXTrDh8+LBcXF/tFDPOTjz/+WFWqVNGnn37q8FzTPkFNk5tBPjU1Vf3795efn59GjhypV199VT179rRfCDSvfPLJJ/L09NT69esdbrMcFRXlMC7t7ykmJsbhjf12p25nRVBQkLy8vOxB80YZvXZcXFzUoUMHdejQQbNnz9arr76qiRMn6uuvv87S6z4uLk7SX/+DcbOkpCQlJydnun2FChXk5eWlmJgYh+Vpf9tHjx5V+/btHfYZExOT5QuvZkdycrJOnjypbt265fq+ARR8ZKT/ISPlDjISGSkzeZ2RUlNT1a9fP23atEkrVqywn6WYETJS0cNX9uAUxYsXl6R0twN+8MEHJUlz5sxxWD579mxJSnfni1OnTjncVSYhIUH/93//p/r16yskJCRLtXTv3l0uLi6aOnVquk/L0j5dCgsLk7u7u958802HT5zee+89Xbx48Y7uyFG6dGnde++9WrhwoU6fPp1ufWa3Bk771OTGmowxeuONN9KNvdWcZ7TPjh076rPPPnM4pT8uLk5Lly5V69at5efnl+k+nCGjufj++++1Y8cOh3Fpd4S53TxkxezZs7V9+3Ytg5znsgABAABJREFUWrRI06ZNU8uWLTV06NA8/967q6urbDabQ/A4fvy4Vq9e7TAu7dPk+fPnOyyfO3durtQQHh6u1atX68SJE/blhw4d0vr16x3Gnjt3Lt32af9jc/Otym+lWrVqcnFx0fLlyx1+x7/99pu+/fZbNWjQINPt3dzc1LhxY/3www8Oyxs3bqygoCAtWLBAiYmJ9uWLFy/OlddIRg4ePKhr16453CkIANKQkf6HjJQ7yEhkpMzkdUYaMWKEli9frvnz59+2IUlGKno4QwpO0ahRI0nSxIkT1bt3b7m5ualr166qV6+eIiIitGjRIl24cEHt2rXTzp07tWTJEnXv3l333Xefw35q1KihAQMGaNeuXQoODtb777+vuLi4dJ+CZKZatWqaOHGipk2bpjZt2ujhhx+Wh4eHdu3apbJly2r69OkKCgrShAkTNGXKFHXq1EndunXTkSNHNH/+fDVp0kRPPvnkHc3HvHnz1Lp1a91zzz0aNGiQqlSpori4OO3YsUO//fabfvzxxwy3q1mzpqpWrarnn39ev//+u/z8/PTJJ59keMpt2pz/7W9/U3h4uFxdXdW7d+8M9/vyyy9r48aNat26tZ599lkVK1ZMCxcu1PXr1zVz5sw7eq55pUuXLvr000/Vo0cPde7cWTExMVqwYIFq166tP//80z7Oy8tLtWvX1vLly1WjRg0FBgaqTp06mZ46nJFDhw7ppZdeUv/+/dW1a1dJf71B169fX88++6xWrFiRq8/vRp07d9bs2bPVqVMnPfHEE4qPj9e8efNUrVo1/ec//7GPa9SokR555BHNmTNHf/zxh/2WxmmfkN/pJ6FTpkxRdHS02rRpo2effVbJycmaO3eu7r77boc6pk6dqq1bt6pz586qWLGi4uPjNX/+fJUvX16tW7fO0rGCgoL09NNP691331WHDh308MMP69KlS5o/f76uXr2qCRMm3HYfDz30kCZOnKiEhAT7/zC4ubnp5Zdf1jPPPKP27durV69eiomJUVRUVLauj/DBBx/o119/1ZUrVyRJW7du1csvvyxJ6tu3r8OZCxs3bpS3t3e2brsOoOggIzkiI905MhIZ6XbyKiPNmTNH8+fPV4sWLeTt7a0PP/zQYX2PHj3sDWGJjFQkWXMzPyC9adOmmXLlyhkXFxeH2xsnJSWZKVOmmMqVKxs3NzcTGhpqJkyY4HC7X2P+uqVx586dzfr1603dunWNh4eHqVmzplm5cmWO6nn//fdNgwYNjIeHhylRooRp166d2bhxo8OYt956y9SsWdO4ubmZ4OBgM3ToUHP+/HmHMe3atTN33313uv2n3dL4tddey/D4v/zyi+nXr58JCQkxbm5uply5cqZLly7m448/to/J6JbGBw8eNGFhYcbHx8eUKlXKDBo0yPz4449GkomKirKPS05ONiNGjDBBQUHGZrM53HJWGdzeds+ePSY8PNz4+PgYb29vc99996W7dWzaLY137drlsDyjOm8n7ZbGN9/29la3+715nlNTU82rr75qKlasaDw8PEyDBg3MmjVrMrwV8fbt202jRo2Mu7u7w3O/1bHS1qXtJzk52TRp0sSUL18+3W2b33jjDSPJLF++PMvPPbNbGt/q9rnvvfeeqV69uv11HxUVZZ/DG12+fNkMGzbMBAYGGh8fH9O9e3dz5MgRI8nhNtFZkdHr5JtvvrHPZZUqVcyCBQvS1bFp0ybz0EMPmbJlyxp3d3dTtmxZ8/jjj5uffvopW8dPSkoyc+fONfXr1zc+Pj7Gx8fH3HfffQ63Os9MXFycKVasmPnggw/SrZs/f76pXLmy8fDwMI0bNzZbt2417dq1y/ItjdNuZZ7R4+a/g2bNmpknn3wyy88bQNFDRnJERiIj3YyM5Ci/ZqSIiIhb5qMb/21LQ0YqemzG5OCKekA+UKlSJdWpU0dr1qxxdilAgbJv3z41aNBAH374ofr06ePsciw1YMAA/fTTT/r222+dcvx9+/apYcOG2rNnzy2vxwIAd4qMBOQMGYmMBGtxDSkAKMSuXr2abtmcOXPk4uKitm3bOqEi54qMjNSuXbtue8eZvDJjxgz17NmToAUAgJORkRyRkeAMXEMKhVpsbGym6728vOTv729RNUXTn3/+6XB9gowEBQVl6ba2Bc2ZM2cyvONJGnd3dwUGBuZpDTNnztTu3bt13333qVixYvryyy/15ZdfavDgwQoNDVVKSkqmF4WVJB8fH/n4+ORZjVbOU4UKFXTt2rVc2VdOLFu2zGnHBoAbkZGcj4xERrodMhIKPWd/ZxDIqbTrI2RGmXxnWZKJiIiwptgiLO278pk9bv7+eGFRsWLFTJ/3zd+9zwsbNmwwrVq1MiVKlDBubm6matWqZvLkySYpKckY87/rdmT2uPmaCLktP8wTABQmZKSCgYxERrqd/DBPQF7iGlIo1L766qtM15ctW1a1a9e2qJqi6dixYzp27FimY1q3bi1PT0+LKrLOtm3bMjwdPE2JEiXsd/ZxlmvXrum7777LdEyVKlWydce57CoI8wQAhQ0ZyfnISPn7vZ+MBOQ9GlIAAAAAAACwFBc1BwAAAAAAgKWK9EXNU1NTderUKfn6+spmszm7HAAAYAFjjC5duqSyZcvKxYXP5jJCRgIAoOixOiMV6YbUqVOnFBoa6uwyAACAE5w8eVLly5d3dhn5EhkJAICiy6qMVKQbUr6+vpL+mmw/Pz8nVwMAAKyQkJCg0NBQew5AemQkAACKHqszUpFuSKWdgu7n50fYAgCgiOGraLdGRgIAoOiyKiNx4QQAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJYq0teQAgAgMykpKUpKSnJ2GcgmNzc3ubq6OrsMAAAKLTJSwZTfMhINKQAAbmKMUWxsrC5cuODsUpBDAQEBCgkJ4cLlAADkIjJSwZefMhINKQAAbpIWtEqXLi1vb+988YaNrDHG6MqVK4qPj5cklSlTxskVAQBQeJCRCq78mJFoSAEAcIOUlBR70CpZsqSzy0EOeHl5SZLi4+NVunTpfHVqOgAABRUZqeDLbxmJi5oDAHCDtOsheHt7O7kS3Im03x/XtwAAIHeQkQqH/JSRaEgBAJABTkEv2Pj9AQCQN3iPLdjy0++PhhQAAAAAAAAsRUMKAAAAAAAAluKi5gAAZFFS9HeWHcutU+ssj73dqdeRkZGaPHnyHVaUMzabTatWrVL37t1zvI9FixZp6dKl2rNnjy5duqTz588rICAg12oEAAB3xsqMJJGT0pw7d06RkZHasGGDTpw4oaCgIHXv3l3Tpk2Tv79/7habB2hI5aGM/iiz84cDAEBWnD592v7fy5cv16RJk3TkyBH7Mh8fn2ztLzExUe7u7rlW3526cuWKOnXqpE6dOmnChAnOLge5gIwEALBKYc5Jp06d0qlTpzRr1izVrl1bv/76q4YMGaJTp07p448/dnZ5t8VX9gAAKOBCQkLsD39/f9lsNvvPly9fVp8+fRQcHCwfHx81adJEX331lcP2lSpV0rRp09SvXz/5+flp8ODBkqR33nlHoaGh8vb2Vo8ePTR79ux0ZyZ99tlnatiwoTw9PVWlShVNmTJFycnJ9v1KUo8ePWSz2ew///jjj7rvvvvk6+srPz8/NWrUSD/88MMtn9/IkSM1fvx4NW/ePHcmDAAAFBmFOSfVqVNHn3zyibp27aqqVauqffv2euWVV/TFF1/Yj5Of0ZACAKAQ+/PPP/Xggw9q06ZN2rt3rzp16qSuXbvqxIkTDuNmzZqlevXqae/evXrppZe0bds2DRkyRH//+9+1b98+3X///XrllVcctvn222/Vr18//f3vf9fBgwe1cOFCLV682D5u165dkqSoqCidPn3a/nOfPn1Uvnx57dq1S7t379b48ePl5uZmwWwAAAD8T2HMSRcvXpSfn5+KFcv/X4jL/xUCAIAcq1evnurVq2f/edq0aVq1apU+//xzDR8+3L68ffv2eu655+w/T5w4UQ888ICef/55SVKNGjW0fft2rVmzxj5mypQpGj9+vCIiIiRJVapU0bRp0zR27FhFRkYqKChIkhQQEKCQkBD7didOnNCYMWNUs2ZNSVL16tXz4JkDAABkrrDlpLNnz2ratGn2s7jyO86QAgCgEPvzzz/1/PPPq1atWgoICJCPj48OHTqU7pO/xo0bO/x85MgRNW3a1GHZzT//+OOPmjp1qnx8fOyPQYMG6fTp07py5cotaxo9erQGDhyosLAwzZgxQ7/88ssdPksAAIDsK0w5KSEhQZ07d1bt2rWddpH27KIhBQBAIfb8889r1apVevXVV/Xtt99q3759uueee5SYmOgwrnjx4tne959//qkpU6Zo37599sf+/ft19OhReXp63nK7yZMn68CBA+rcubM2b96s2rVra9WqVdk+PgAAwJ0oLDnp0qVL6tSpk3x9fbVq1aoCcykEvrIHAEAhtm3bNvXv3189evSQ9Fc4On78+G23u+uuu+zXMkhz888NGzbUkSNHVK1atVvux83NTSkpKemW16hRQzVq1NCoUaP0+OOPKyoqyl4jAACAFQpDTkpISFB4eLg8PDz0+eefZ9rsym9oSAEAUIhVr15dn376qbp27SqbzaaXXnpJqampt91uxIgRatu2rWbPnq2uXbtq8+bN+vLLL2Wz2exjJk2apC5duqhChQrq2bOnXFxc9OOPP+q///2vXn75ZUl/3UFm06ZNatWqlTw8POTp6akxY8aoZ8+eqly5sn777Tft2rVLjzzyyC1riY2NVWxsrH7++WdJ0v79++Xr66sKFSooMDDwDmcIAAAUVQU9JyUkJKhjx466cuWKPvzwQyUkJCghIUGSFBQUJFdX11yYpbzDV/YAACjEZs+erRIlSqhly5bq2rWrwsPD1bBhw9tu16pVKy1YsECzZ89WvXr1FB0drVGjRjl86hYeHq41a9Zow4YNatKkiZo3b67XX39dFStWtI/55z//qY0bNyo0NFQNGjSQq6ur/vjjD/Xr1081atTQY489pgceeEBTpky5ZS0LFixQgwYNNGjQIElS27Zt1aBBA33++ed3MDMAAKCoK+g5ac+ePfr++++1f/9+VatWTWXKlLE/Tp48eecTlMdsxhjj7CKcJSEhQf7+/vbbIua2pOjv0i1z69Q6148DAMg9165dU0xMjCpXrlygTnm2wqBBg3T48GF9++23zi7ltjL7Peb1+39hQEYCANyMjJS5gpKT8lNG4it7AAAgQ7NmzdL999+v4sWL68svv9SSJUs0f/58Z5cFAADgdOSkO0dDCgAAZGjnzp2aOXOmLl26pCpVqujNN9/UwIEDnV0WAACA05GT7hwNKQAAkKEVK1Y4uwQAAIB8iZx057ioOQAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAUAv3795fNZpPNZpObm5uCg4N1//336/3331dqaqqzy7sjBw4c0COPPKJKlSrJZrNpzpw5zi4JAAAUIIU5J73zzjtq06aNSpQooRIlSigsLEw7d+50dllZUszZBQAAUFD88sNCy45VtfEz2d6mU6dOioqKUkpKiuLi4hQdHa2///3v+vjjj/X555+rWLGC+bZ/5coVValSRY8++qhGjRrl7HIAAMBNrMxIEjnpRlu2bNHjjz+uli1bytPTU//4xz/UsWNHHThwQOXKlXN2eZniDCkAAAoJDw8PhYSEqFy5cmrYsKFeeOEFffbZZ/ryyy+1ePFi+7gLFy5o4MCBCgoKkp+fn9q3b68ff/zRYV9ffPGFmjRpIk9PT5UqVUo9evSwrzt//rz69eunEiVKyNvbWw888ICOHj0qSbp8+bL8/Pz08ccfO+xv9erVKl68uC5duqTExEQNHz5cZcqUkaenpypWrKjp06ff8nk1adJEr732mnr37i0PD49cmCkAAFDUFNac9NFHH+nZZ59V/fr1VbNmTb377rtKTU3Vpk2bcmHW8hYNKQAACrH27durXr16+vTTT+3LHn30UcXHx+vLL7/U7t271bBhQ3Xo0EHnzp2TJK1du1Y9evTQgw8+qL1792rTpk1q2rSpffv+/fvrhx9+0Oeff64dO3bIGKMHH3xQSUlJKl68uHr37q2oqCiHOqKiotSzZ0/5+vrqzTff1Oeff64VK1boyJEj+uijj1SpUiVL5gMAACBNYcxJV65cUVJSkgIDA+9scixQMM9JAwAAWVazZk395z//kSR999132rlzp+Lj4+1nG82aNUurV6/Wxx9/rMGDB+uVV15R7969NWXKFPs+6tWrJ0k6evSoPv/8c23btk0tW7aU9Ncnc6GhoVq9erUeffRRDRw4UC1bttTp06dVpkwZxcfHa926dfrqq68kSSdOnFD16tXVunVr2Ww2VaxY0crpAAAAsCtsOWncuHEqW7aswsLC7nhu8hpnSAEAUMgZY2Sz2SRJP/74o/7880+VLFlSPj4+9kdMTIx++eUXSdK+ffvUoUOHDPd16NAhFStWTM2aNbMvK1mypO666y4dOnRIktS0aVPdfffdWrJkiSTpww8/VMWKFdW2bVtJf31yuG/fPt11113629/+pg0bNuTZcwcAAMhMYcpJM2bM0LJly7Rq1Sp5enpmfzIsxhlSAAAUcocOHVLlypUlSX/++afKlCmjLVu2pBsXEBAgSfLy8rrjYw4cOFDz5s3T+PHjFRUVpaeeesoe9ho2bKiYmBh9+eWX+uqrr/TYY48pLCws3fUUAAAA8lphyUmzZs3SjBkz9NVXX6lu3bp3XKMVOEMKAIBCbPPmzdq/f78eeeQRSX+FnNjYWBUrVkzVqlVzeJQqVUqSVLdu3VteCLNWrVpKTk7W999/b1/2xx9/6MiRI6pdu7Z92ZNPPqlff/1Vb775pg4ePKiIiAiH/fj5+alXr1565513tHz5cn3yySf2azMAAABYobDkpJkzZ2ratGmKjo5W48aNczwfVuMMKQAAConr168rNjbW4XbG06dPV5cuXdSvXz9JUlhYmFq0aKHu3btr5syZqlGjhk6dOmW/QGfjxo0VGRmpDh06qGrVqurdu7eSk5O1bt06jRs3TtWrV9dDDz2kQYMGaeHChfL19dX48eNVrlw5PfTQQ/ZaSpQooYcfflhjxoxRx44dVb58efu62bNnq0yZMmrQoIFcXFy0cuVKhYSE2D95vFliYqIOHjxo/+/ff/9d+/btk4+Pj6pVq5Z3EwoAAAqNwpqT/vGPf2jSpElaunSpKlWqpNjYWEmyf90wP+MMKQAACono6GiVKVNGlSpVUqdOnfT111/rzTff1GeffSZXV1dJks1m07p169S2bVs99dRTqlGjhnr37q1ff/1VwcHBkqR7771XK1eu1Oeff6769eurffv22rlzp/04UVFRatSokbp06aIWLVrIGKN169bJzc3NoZ4BAwYoMTFRTz/9tMNyX19fzZw5U40bN1aTJk10/PhxrVu3Ti4uGceSU6dOqUGDBmrQoIFOnz6tWbNmqUGDBho4cGBuTh8AACjECmtOevvtt5WYmKiePXuqTJky9sesWbNyc/ryhM0YY5xdhLMkJCTI399fFy9elJ+fX67vPyn6u3TL3Dq1zvXjAAByz7Vr1xQTE6PKlSsXiItB5mcffPCBRo0apVOnTsnd3d3SY2f2e8zr9//CgIwEALgZGSl3OSsn5aeMxFf2AABArrpy5YpOnz6tGTNm6JlnnrG8GQUAAJBfkZP+h6/sAQCAXDVz5kzVrFlTISEhmjBhgrPLAQAAyDfISf9DQwoAAOSqyZMnKykpSZs2bcr3F9MEAACwEjnpf2hIAQAAAAAAwFI0pAAAAAAAAGApGlIAAGSgCN+EtlDg9wcAQN7gPbZgy0+/PxpSAADcwM3NTdJfd0BBwZX2+0v7fQIAgDtDRioc8lNGuqOG1IwZM2Sz2TRy5Ej7smvXrmnYsGEqWbKkfHx89MgjjyguLs5huxMnTqhz587y9vZW6dKlNWbMGCUnJzuM2bJlixo2bCgPDw9Vq1ZNixcvTnf8efPmqVKlSvL09FSzZs20c+fOO3k6AADI1dVVAQEBio+P1x9//KGrV6/q2rVrPArI4+rVq/rjjz8UHx+vgIAAubq6OuV1REYCABQ2ZKSC/cgvGelGxXK64a5du7Rw4ULVrVvXYfmoUaO0du1arVy5Uv7+/ho+fLgefvhhbdu2TZKUkpKizp07KyQkRNu3b9fp06fVr18/ubm56dVXX5UkxcTEqHPnzhoyZIg++ugjbdq0SQMHDlSZMmUUHh4uSVq+fLlGjx6tBQsWqFmzZpozZ47Cw8N15MgRlS5dOqdPCwAAhYSESJLi4+OdXAlyKiAgwP57tBoZCQBQWJGRCj5nZqSb2UwOvkD4559/qmHDhpo/f75efvll1a9fX3PmzNHFixcVFBSkpUuXqmfPnpKkw4cPq1atWtqxY4eaN2+uL7/8Ul26dNGpU6cUHBwsSVqwYIHGjRunM2fOyN3dXePGjdPatWv13//+137M3r1768KFC4qOjpYkNWvWTE2aNNFbb70lSUpNTVVoaKhGjBih8ePHZ+l5JCQkyN/fXxcvXpSfn192p+G2kqK/S7fMrVPrXD8OACBvpKSkKCkpydllIJvc3Nwy/dQvL9//yUhZQ0YCgIKNjFQwOTMjZSRHZ0gNGzZMnTt3VlhYmF5++WX78t27dyspKUlhYWH2ZTVr1lSFChXsYWvHjh2655577EFLksLDwzV06FAdOHBADRo00I4dOxz2kTYm7bT3xMRE7d69WxMmTLCvd3FxUVhYmHbs2JGTpwQAQDqurq754nRmFBxkJABAUUBGQm7IdkNq2bJl2rNnj3bt2pVuXWxsrNzd3RUQEOCwPDg4WLGxsfYxNwattPVp6zIbk5CQoKtXr+r8+fNKSUnJcMzhw4dvWfv169d1/fp1+88JCQm3ebYAAABZQ0YCAADIumxd1PzkyZP6+9//ro8++kienp55VVOemT59uvz9/e2P0NBQZ5cEAAAKATISAABA9mSrIbV7927Fx8erYcOGKlasmIoVK6ZvvvlGb775pooVK6bg4GAlJibqwoULDtvFxcXZL5oVEhKS7o4yaT/fboyfn5+8vLxUqlQpubq6Zjgms4tzTZgwQRcvXrQ/Tp48mZ2nDwAAkCEyEgAAQPZkqyHVoUMH7d+/X/v27bM/GjdurD59+tj/283NTZs2bbJvc+TIEZ04cUItWrSQJLVo0UL79+93uCr/xo0b5efnp9q1a9vH3LiPtDFp+3B3d1ejRo0cxqSmpmrTpk32MRnx8PCQn5+fwwMAAOBOkZEAAACyJ1vXkPL19VWdOnUclhUvXlwlS5a0Lx8wYIBGjx6twMBA+fn5acSIEWrRooWaN28uSerYsaNq166tvn37aubMmYqNjdWLL76oYcOGycPDQ5I0ZMgQvfXWWxo7dqyefvppbd68WStWrNDatWvtxx09erQiIiLUuHFjNW3aVHPmzNHly5f11FNP3dGEAAAAZBcZCQAAIHtydJe9zLz++utycXHRI488ouvXrys8PFzz58+3r3d1ddWaNWs0dOhQtWjRQsWLF1dERISmTp1qH1O5cmWtXbtWo0aN0htvvKHy5cvr3XffVXh4uH1Mr169dObMGU2aNEmxsbGqX7++oqOj013EEwAAID8gIwEAAPyPzRhjnF2EsyQkJMjf318XL17Mk1PTk6K/S7fMrVPrXD8OAADIurx+/y8MyEgAABQ9VmekbF1DCgAAAAAAALhTNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiqmLMLKMyOX/gy3bLqau2ESgAAAPIPMhIAAOAMKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsla2G1Ntvv626devKz89Pfn5+atGihb788kv7+mvXrmnYsGEqWbKkfHx89MgjjyguLs5hHydOnFDnzp3l7e2t0qVLa8yYMUpOTnYYs2XLFjVs2FAeHh6qVq2aFi9enK6WefPmqVKlSvL09FSzZs20c+fO7DwVAACAXENGAgAAyJ5sNaTKly+vGTNmaPfu3frhhx/Uvn17PfTQQzpw4IAkadSoUfriiy+0cuVKffPNNzp16pQefvhh+/YpKSnq3LmzEhMTtX37di1ZskSLFy/WpEmT7GNiYmLUuXNn3Xfffdq3b59GjhypgQMHav369fYxy5cv1+jRoxUZGak9e/aoXr16Cg8PV3x8/J3OBwAAQLaRkQAAALLHZowxd7KDwMBAvfbaa+rZs6eCgoK0dOlS9ezZU5J0+PBh1apVSzt27FDz5s315ZdfqkuXLjp16pSCg4MlSQsWLNC4ceN05swZubu7a9y4cVq7dq3++9//2o/Ru3dvXbhwQdHR0ZKkZs2aqUmTJnrrrbckSampqQoNDdWIESM0fvz4LNeekJAgf39/Xbx4UX5+fncyDRk6umxiumXVe7+S68cBAABZl9fv/2nISLdGRgIAIP+xKiOlyfE1pFJSUrRs2TJdvnxZLVq00O7du5WUlKSwsDD7mJo1a6pChQrasWOHJGnHjh2655577EFLksLDw5WQkGD/BHHHjh0O+0gbk7aPxMRE7d6922GMi4uLwsLC7GMAAACchYwEAABwe8Wyu8H+/fvVokULXbt2TT4+Plq1apVq166tffv2yd3dXQEBAQ7jg4ODFRsbK0mKjY11CFpp69PWZTYmISFBV69e1fnz55WSkpLhmMOHD2da+/Xr13X9+nX7zwkJCVl/4gAAAJkgIwEAAGRdts+Quuuuu7Rv3z59//33Gjp0qCIiInTw4MG8qC3XTZ8+Xf7+/vZHaGios0sCAACFBBkJAAAg67LdkHJ3d1e1atXUqFEjTZ8+XfXq1dMbb7yhkJAQJSYm6sKFCw7j4+LiFBISIkkKCQlJd0eZtJ9vN8bPz09eXl4qVaqUXF1dMxyTto9bmTBhgi5evGh/nDx5MrtPHwAAIENkJAAAgKzL8TWk0qSmpur69etq1KiR3NzctGnTJvu6I0eO6MSJE2rRooUkqUWLFtq/f7/DnV42btwoPz8/1a5d2z7mxn2kjUnbh7u7uxo1auQwJjU1VZs2bbKPuRUPDw/77ZjTHgAAAHmBjAQAAHBr2bqG1IQJE/TAAw+oQoUKunTpkpYuXaotW7Zo/fr18vf314ABAzR69GgFBgbKz89PI0aMUIsWLdS8eXNJUseOHVW7dm317dtXM2fOVGxsrF588UUNGzZMHh4ekqQhQ4borbfe0tixY/X0009r8+bNWrFihdauXWuvY/To0YqIiFDjxo3VtGlTzZkzR5cvX9ZTTz2Vi1MDAACQNWQkAACA7MlWQyo+Pl79+vXT6dOn5e/vr7p162r9+vW6//77JUmvv/66XFxc9Mgjj+j69esKDw/X/Pnz7du7urpqzZo1Gjp0qFq0aKHixYsrIiJCU6dOtY+pXLmy1q5dq1GjRumNN95Q+fLl9e677yo8PNw+plevXjpz5owmTZqk2NhY1a9fX9HR0eku4gkAAGAFMhIAAED22IwxxtlFOEtCQoL8/f118eLFPDk1/eiyiemWVe/9Sq4fBwAAZF1ev/8XBmQkAACKHqsz0h1fQwoAAAAAAADIDhpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClstWQmj59upo0aSJfX1+VLl1a3bt315EjRxzGXLt2TcOGDVPJkiXl4+OjRx55RHFxcQ5jTpw4oc6dO8vb21ulS5fWmDFjlJyc7DBmy5YtatiwoTw8PFStWjUtXrw4XT3z5s1TpUqV5OnpqWbNmmnnzp3ZeToAAAC5gowEAACQPdlqSH3zzTcaNmyY/v3vf2vjxo1KSkpSx44ddfnyZfuYUaNG6YsvvtDKlSv1zTff6NSpU3r44Yft61NSUtS5c2clJiZq+/btWrJkiRYvXqxJkybZx8TExKhz58667777tG/fPo0cOVIDBw7U+vXr7WOWL1+u0aNHKzIyUnv27FG9evUUHh6u+Pj4O5kPAACAbCMjAQAAZI/NGGNyuvGZM2dUunRpffPNN2rbtq0uXryooKAgLV26VD179pQkHT58WLVq1dKOHTvUvHlzffnll+rSpYtOnTql4OBgSdKCBQs0btw4nTlzRu7u7ho3bpzWrl2r//73v/Zj9e7dWxcuXFB0dLQkqVmzZmrSpIneeustSVJqaqpCQ0M1YsQIjR8/Pkv1JyQkyN/fXxcvXpSfn19Op+GWji6bmG5Z9d6v5PpxAABA1uX1+79ERrodMhIAAPmPFRnpRnd0DamLFy9KkgIDAyVJu3fvVlJSksLCwuxjatasqQoVKmjHjh2SpB07duiee+6xBy1JCg8PV0JCgg4cOGAfc+M+0sak7SMxMVG7d+92GOPi4qKwsDD7GAAAAGchIwEAAGSuWE43TE1N1ciRI9WqVSvVqVNHkhQbGyt3d3cFBAQ4jA0ODlZsbKx9zI1BK2192rrMxiQkJOjq1as6f/68UlJSMhxz+PDhW9Z8/fp1Xb9+3f5zQkJCNp4xAADA7ZGRAAAAbi/HZ0gNGzZM//3vf7Vs2bLcrCdPTZ8+Xf7+/vZHaGios0sCAACFDBkJAADg9nLUkBo+fLjWrFmjr7/+WuXLl7cvDwkJUWJioi5cuOAwPi4uTiEhIfYxN99RJu3n243x8/OTl5eXSpUqJVdX1wzHpO0jIxMmTNDFixftj5MnT2bviQMAAGSCjAQAAJA12WpIGWM0fPhwrVq1Sps3b1blypUd1jdq1Ehubm7atGmTfdmRI0d04sQJtWjRQpLUokUL7d+/3+FOLxs3bpSfn59q165tH3PjPtLGpO3D3d1djRo1chiTmpqqTZs22cdkxMPDQ35+fg4PAACAO0VGAgAAyJ5sXUNq2LBhWrp0qT777DP5+vrar2fg7+8vLy8v+fv7a8CAARo9erQCAwPl5+enESNGqEWLFmrevLkkqWPHjqpdu7b69u2rmTNnKjY2Vi+++KKGDRsmDw8PSdKQIUP01ltvaezYsXr66ae1efNmrVixQmvXrrXXMnr0aEVERKhx48Zq2rSp5syZo8uXL+upp57KrbkBAADIEjISAABA9mSrIfX2229Lku69916H5VFRUerfv78k6fXXX5eLi4seeeQRXb9+XeHh4Zo/f759rKurq9asWaOhQ4eqRYsWKl68uCIiIjR16lT7mMqVK2vt2rUaNWqU3njjDZUvX17vvvuuwsPD7WN69eqlM2fOaNKkSYqNjVX9+vUVHR2d7iKeAAAAeY2MBAAAkD02Y4xxdhHOkpCQIH9/f128eDFPTk0/umxiumXVe7+S68cBAABZl9fv/4UBGQkAgKLH6oyU47vsAQAAAAAAADlBQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsFS2G1Jbt25V165dVbZsWdlsNq1evdphvTFGkyZNUpkyZeTl5aWwsDAdPXrUYcy5c+fUp08f+fn5KSAgQAMGDNCff/7pMOY///mP2rRpI09PT4WGhmrmzJnpalm5cqVq1qwpT09P3XPPPVq3bl12nw4AAECuICMBAABkXbYbUpcvX1a9evU0b968DNfPnDlTb775phYsWKDvv/9exYsXV3h4uK5du2Yf06dPHx04cEAbN27UmjVrtHXrVg0ePNi+PiEhQR07dlTFihW1e/duvfbaa5o8ebIWLVpkH7N9+3Y9/vjjGjBggPbu3avu3bure/fu+u9//5vdpwQAAHDHyEgAAABZZzPGmBxvbLNp1apV6t69u6S/PvkrW7asnnvuOT3//POSpIsXLyo4OFiLFy9W7969dejQIdWuXVu7du1S48aNJUnR0dF68MEH9dtvv6ls2bJ6++23NXHiRMXGxsrd3V2SNH78eK1evVqHDx+WJPXq1UuXL1/WmjVr7PU0b95c9evX14IFC7JUf0JCgvz9/XXx4kX5+fnldBpu6eiyiemWVe/9Sq4fBwAAZF1ev/9LZKTbISMBAJD/WJGRbpSr15CKiYlRbGyswsLC7Mv8/f3VrFkz7dixQ5K0Y8cOBQQE2IOWJIWFhcnFxUXff/+9fUzbtm3tQUuSwsPDdeTIEZ0/f94+5sbjpI1JOw4AAEB+QUYCAABwVCw3dxYbGytJCg4OdlgeHBxsXxcbG6vSpUs7FlGsmAIDAx3GVK5cOd0+0taVKFFCsbGxmR4nI9evX9f169ftPyckJGTn6QEAAOQIGQkAAMBRkbrL3vTp0+Xv729/hIaGOrskAAAApyMjAQAAq+VqQyokJESSFBcX57A8Li7Ovi4kJETx8fEO65OTk3Xu3DmHMRnt48Zj3GpM2vqMTJgwQRcvXrQ/Tp48md2nCAAAkG1kJAAAAEe52pCqXLmyQkJCtGnTJvuyhIQEff/992rRooUkqUWLFrpw4YJ2795tH7N582alpqaqWbNm9jFbt25VUlKSfczGjRt11113qUSJEvYxNx4nbUzacTLi4eEhPz8/hwcAAEBeIyMBAAA4ynZD6s8//9S+ffu0b98+SX9dpHPfvn06ceKEbDabRo4cqZdfflmff/659u/fr379+qls2bL2u8zUqlVLnTp10qBBg7Rz505t27ZNw4cPV+/evVW2bFlJ0hNPPCF3d3cNGDBABw4c0PLly/XGG29o9OjR9jr+/ve/Kzo6Wv/85z91+PBhTZ48WT/88IOGDx9+57MCAACQTWQkAACArMv2Rc1/+OEH3Xffffaf0wJQRESEFi9erLFjx+ry5csaPHiwLly4oNatWys6Olqenp72bT766CMNHz5cHTp0kIuLix555BG9+eab9vX+/v7asGGDhg0bpkaNGqlUqVKaNGmSBg8ebB/TsmVLLV26VC+++KJeeOEFVa9eXatXr1adOnVyNBEAAAB3gowEAACQdTZjjHF2Ec6SkJAgf39/Xbx4MU9OTT+6bGK6ZdV7v5LrxwEAAFmX1+//hQEZCQCAosfqjFSk7rIHAAAAAAAA56MhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYqsA3pObNm6dKlSrJ09NTzZo1086dO51dEgAAgNORkQAAQH5WoBtSy5cv1+jRoxUZGak9e/aoXr16Cg8PV3x8vLNLAwAAcBoyEgAAyO8KdENq9uzZGjRokJ566inVrl1bCxYskLe3t95//31nlwYAAOA0ZCQAAJDfFdiGVGJionbv3q2wsDD7MhcXF4WFhWnHjh1OrAwAAMB5yEgAAKAgKObsAnLq7NmzSklJUXBwsMPy4OBgHT58OMNtrl+/ruvXr9t/vnjxoiQpISEhT2r888r1dMvy6lgAACBr0t6LjTFOriRvkJEAAEBOWJ2RCmxDKiemT5+uKVOmpFseGhpqXRED/mndsQAAwC1dunRJ/v7+zi4jXyAjAQCANFZlpALbkCpVqpRcXV0VFxfnsDwuLk4hISEZbjNhwgSNHj3a/nNqaqrOnTunkiVLymaz5Wp9CQkJCg0N1cmTJ+Xn55er+8atMe/Owbw7B/PuHMy7c+TmvBtjdOnSJZUtWzaXqstfyEi4FebeeZh752HunYe5d56czr3VGanANqTc3d3VqFEjbdq0Sd27d5f0V3jatGmThg8fnuE2Hh4e8vDwcFgWEBCQp3X6+fnxx+cEzLtzMO/Owbw7B/PuHLk174X5zCgyEm6HuXce5t55mHvnYe6dJydzb2VGKrANKUkaPXq0IiIi1LhxYzVt2lRz5szR5cuX9dRTTzm7NAAAAKchIwEAgPyuQDekevXqpTNnzmjSpEmKjY1V/fr1FR0dne4ingAAAEUJGQkAAOR3BbohJUnDhw+/5ennzuTh4aHIyMh0p78jbzHvzsG8Owfz7hzMu3Mw79lHRsLNmHvnYe6dh7l3HubeeQrK3NtMYb3nMQAAAAAAAPIlF2cXAAAAAAAAgKKFhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkLoD8+bNU6VKleTp6almzZpp586dmY5fuXKlatasKU9PT91zzz1at26dRZUWLtmZ93feeUdt2rRRiRIlVKJECYWFhd3294SMZff1nmbZsmWy2Wzq3r173hZYSGV33i9cuKBhw4apTJky8vDwUI0aNfi3JgeyO+9z5szRXXfdJS8vL4WGhmrUqFG6du2aRdUWDlu3blXXrl1VtmxZ2Ww2rV69+rbbbNmyRQ0bNpSHh4eqVaumxYsX53mdyBoykvOQk5yHrOQ85CXnITNZr1BlJoMcWbZsmXF3dzfvv/++OXDggBk0aJAJCAgwcXFxGY7ftm2bcXV1NTNnzjQHDx40L774onFzczP79++3uPKCLbvz/sQTT5h58+aZvXv3mkOHDpn+/fsbf39/89tvv1lcecGW3XlPExMTY8qVK2fatGljHnroIWuKLUSyO+/Xr183jRs3Ng8++KD57rvvTExMjNmyZYvZt2+fxZUXbNmd948++sh4eHiYjz76yMTExJj169ebMmXKmFGjRllcecG2bt06M3HiRPPpp58aSWbVqlWZjj927Jjx9vY2o0ePNgcPHjRz5841rq6uJjo62pqCcUtkJOchJzkPWcl5yEvOQ2ZyjsKUmWhI5VDTpk3NsGHD7D+npKSYsmXLmunTp2c4/rHHHjOdO3d2WNasWTPzzDPP5GmdhU125/1mycnJxtfX1yxZsiSvSiyUcjLvycnJpmXLlubdd981ERERhKwcyO68v/3226ZKlSomMTHRqhILpezO+7Bhw0z79u0dlo0ePdq0atUqT+sszLISrsaOHWvuvvtuh2W9evUy4eHheVgZsoKM5DzkJOchKzkPecl5yEzOV9AzE1/Zy4HExETt3r1bYWFh9mUuLi4KCwvTjh07Mtxmx44dDuMlKTw8/JbjkV5O5v1mV65cUVJSkgIDA/OqzEInp/M+depUlS5dWgMGDLCizEInJ/P++eefq0WLFho2bJiCg4NVp04dvfrqq0pJSbGq7AIvJ/PesmVL7d69236K+rFjx7Ru3To9+OCDltRcVPG+mj+RkZyHnOQ8ZCXnIS85D5mp4MjP77PFnF1AQXT27FmlpKQoODjYYXlwcLAOHz6c4TaxsbEZjo+Njc2zOgubnMz7zcaNG6eyZcum+4PEreVk3r/77ju999572rdvnwUVFk45mfdjx45p8+bN6tOnj9atW6eff/5Zzz77rJKSkhQZGWlF2QVeTub9iSee0NmzZ9W6dWsZY5ScnKwhQ4bohRdesKLkIutW76sJCQm6evWqvLy8nFRZ0UZGch5ykvOQlZyHvOQ8ZKaCIz9nJs6QQpExY8YMLVu2TKtWrZKnp6ezyym0Ll26pL59++qdd95RqVKlnF1OkZKamqrSpUtr0aJFatSokXr16qWJEydqwYIFzi6tUNuyZYteffVVzZ8/X3v27NGnn36qtWvXatq0ac4uDQCyjJxkHbKSc5GXnIfMhJtxhlQOlCpVSq6uroqLi3NYHhcXp5CQkAy3CQkJydZ4pJeTeU8za9YszZgxQ1999ZXq1q2bl2UWOtmd919++UXHjx9X165d7ctSU1MlScWKFdORI0dUtWrVvC26EMjJ671MmTJyc3OTq6urfVmtWrUUGxurxMREubu752nNhUFO5v2ll15S3759NXDgQEnSPffco8uXL2vw4MGaOHGiXFz47Ccv3Op91c/Pj7OjnIiM5DzkJOchKzkPecl5yEwFR37OTPzGc8Dd3V2NGjXSpk2b7MtSU1O1adMmtWjRIsNtWrRo4TBekjZu3HjL8UgvJ/MuSTNnztS0adMUHR2txo0bW1FqoZLdea9Zs6b279+vffv22R/dunXTfffdp3379ik0NNTK8gusnLzeW7VqpZ9//tkeaiXpp59+UpkyZQhXWZSTeb9y5Uq6AJUWco0xeVdsEcf7av5ERnIecpLzkJWch7zkPGSmgiNfv88695rqBdeyZcuMh4eHWbx4sTl48KAZPHiwCQgIMLGxscYYY/r27WvGjx9vH79t2zZTrFgxM2vWLHPo0CETGRnJLY1zILvzPmPGDOPu7m4+/vhjc/r0afvj0qVLznoKBVJ25/1m3DkmZ7I77ydOnDC+vr5m+PDh5siRI2bNmjWmdOnS5uWXX3bWUyiQsjvvkZGRxtfX1/zrX/8yx44dMxs2bDBVq1Y1jz32mLOeQoF06dIls3fvXrN3714jycyePdvs3bvX/Prrr8YYY8aPH2/69u1rH592C+MxY8aYQ4cOmXnz5uWbWxgXdWQk5yEnOQ9ZyXnIS85DZnKOwpSZaEjdgblz55oKFSoYd3d307RpU/Pvf//bvq5du3YmIiLCYfyKFStMjRo1jLu7u7n77rvN2rVrLa64cMjOvFesWNFISveIjIy0vvACLruv9xsRsnIuu/O+fft206xZM+Ph4WGqVKliXnnlFZOcnGxx1QVfduY9KSnJTJ482VStWtV4enqa0NBQ8+yzz5rz589bX3gB9vXXX2f473XaXEdERJh27dql26Z+/frG3d3dVKlSxURFRVleNzJGRnIecpLzkJWch7zkPGQm6xWmzGQzhnPjAAAAAAAAYB2uIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKSAAmTLli2y2WzasmVLru7XZrNp8uTJubrPwqZ///6qVKlSnu3/tddeU5UqVeTq6qr69evn2XHuRFZfJ5MnT5bNZsv7gnLg5MmT8vT01LZt22479t5779W9997rsCwuLk49e/ZUyZIlZbPZNGfOnGwdv3fv3nrssceytQ0A4PbISM5DRiIjSWQk5AwNKTjF9u3bNXnyZF24cMHZpRQZ69atI1BJunLliiZPnpzrgfVObNiwQWPHjlWrVq0UFRWlV1991dkl5VtvvfWWatWqJQ8PD5UrV06jR4/W5cuXs7z91KlT1axZM7Vq1SpHxx81apTWr1+vCRMm6IMPPlCnTp0kSa+88oq6deum4ODgTEPpuHHj9Mknn+jHH3/M0fEBFH5kJOuRkf5CRirY8mNGOnz4sMaOHav69evL19dXZcqUUefOnfXDDz+k256MVEQZwAlee+01I8nExMQ4u5QC5euvvzaSzNdff53tbYcNG2Zu9Sd/9epVk5SUdIfVFQxnzpwxkkxkZGS2tktMTDTXrl3Lk5rGjRtnXFxczPXr1/Nk/7klq6+TyMjIW77W7sTYsWONJNOzZ0/z9ttvmxEjRphixYqZjh07Zmn7+Ph44+bmZpYuXZql8e3atTPt2rVzWBYcHGz69OmTbqwkExISYsLDw2/7+mratKnp27dvlmoAUPSQkXKGjHTnyEg5R0bKOCM999xzJiAgwAwYMMAsXLjQzJw501StWtW4urqajRs3ptsvGanoKeaMJhhQ1Fy5ckXe3t7plicnJys1NVXu7u5OqOp/PD09nXr8/Ozy5csqXry43Nzc8uwY8fHx8vLyuu3rIDU1VYmJiU77fTnzdXL69GnNnj1bffv21f/93//Zl9eoUUMjRozQF198oa5du2a6jw8//FDFihW77bjMxMfHKyAgIN3ymJgYVapUSWfPnlVQUFCm+3jssccUGRmp+fPny8fHJ8e1AEBhQEYquMhI/0NGyjgjPf7445o8ebJD3nn66adVq1YtTZ48WWFhYQ7jyUhFD1/Zg+UmT56sMWPGSJIqV64sm80mm82m48ePS/orgEybNk1Vq1aVh4eHKlWqpBdeeEHXr1932E+lSpXUpUsXbdiwQfXr15enp6dq166tTz/9NEd1ffjhh2ratKm8vb1VokQJtW3bVhs2bHAYM3/+fN19993y8PBQ2bJlNWzYsHSn1N97772qU6eOdu/erbZt28rb21svvPCCjh8/LpvNplmzZmnOnDn253fw4EFJ0uHDh9WzZ08FBgbK09NTjRs31ueff37bur/99ls9+uijqlChgjw8PBQaGqpRo0bp6tWr9jH9+/fXvHnzJMk+3zd+fz2jrxjt3btXDzzwgPz8/OTj46MOHTro3//+t8OYxYsXy2azadu2bRo9erSCgoJUvHhx9ejRQ2fOnLlt7TdK+079Tz/9pCeffFL+/v4KCgrSSy+9JGOMTp48qYceekh+fn4KCQnRP//5T4ftExMTNWnSJDVq1Ej+/v4qXry42rRpo6+//to+5vjx4/ZmwZQpU+zzkPbc+/fvLx8fH/3yyy968MEH5evrqz59+tjX3Xh9hMjISLm4uGjTpk0OdQwePFju7u5ZPt3YZrMpKipKly9fttezePFi+7rhw4fro48+sr/uoqOjJUmzZs1Sy5YtVbJkSXl5ealRo0b6+OOP0+3/6tWr+tvf/qZSpUrJ19dX3bp10++//56ja2JktM13332nJk2ayNPTU1WrVtXChQsz3Hbjxo1q3bq1AgIC5OPjo7vuuksvvPBClo+9Y8cOJScnq3fv3g7L035etmzZbfexevVqNWvWLMOAs2jRIlWtWlVeXl5q2rSpvv32W4f1aa91Y4zmzZuX7m8oO9fOuP/++3X58mVt3Lgxy9sAKBrISGSkjJCRyEiZyc8ZqVGjRun2WbJkSbVp00aHDh1KdywyUtHDGVKw3MMPP6yffvpJ//rXv/T666+rVKlSkmR/Exw4cKCWLFminj176rnnntP333+v6dOn69ChQ1q1apXDvo4ePapevXppyJAhioiIUFRUlB599FFFR0fr/vvvz3JNU6ZM0eTJk9WyZUtNnTpV7u7u+v7777V582Z17NhR0l9hYMqUKQoLC9PQoUN15MgRvf3229q1a5e2bdvm8OnQH3/8oQceeEC9e/fWk08+qeDgYPu6qKgoXbt2TYMHD5aHh4cCAwN14MABtWrVSuXKldP48eNVvHhxrVixQt27d9cnn3yiHj163LL2lStX6sqVKxo6dKhKliypnTt3au7cufrtt9+0cuVKSdIzzzyjU6dOaePGjfrggw9uOx8HDhxQmzZt5Ofnp7Fjx8rNzU0LFy7Uvffeq2+++UbNmjVzGD9ixAiVKFFCkZGROn78uObMmaPhw4dr+fLlWf4dpOnVq5dq1aqlGTNmaO3atXr55ZcVGBiohQsXqn379vrHP/6hjz76SM8//7yaNGmitm3bSpISEhL07rvv6vHHH9egQYN06dIlvffeewoPD9fOnTtVv359BQUF6e2339bQoUPVo0cPPfzww5KkunXr2o+fnJys8PBwtW7dWrNmzcrwU1tJevHFF/XFF19owIAB2r9/v3x9fbV+/Xq98847mjZtmurVq5el5/vBBx9o0aJF2rlzp959911JUsuWLe3rN2/erBUrVmj48OEqVaqUPfC98cYb6tatm/r06aPExEQtW7ZMjz76qNasWaPOnTvbt+/fv79WrFihvn37qnnz5vrmm28c1t+J/fv3q2PHjgoKCtLkyZOVnJysyMhIh9e79NfrqUuXLqpbt66mTp0qDw8P/fzzz1m6aGaatP/Z8vLyclie9vvZvXt3ptsnJSVp165dGjp0aLp17733np555hm1bNlSI0eO1LFjx9StWzcFBgYqNDRUktS2bVt98MEH6tu3r+6//37169cvy7XfrHbt2vLy8tK2bdsy/dsGUPSQkchImSEjkZEyUhAzUmxsrP3ftxuRkYog535jEEXVra6PsG/fPiPJDBw40GH5888/bySZzZs325dVrFjRSDKffPKJfdnFixdNmTJlTIMGDbJcy9GjR42Li4vp0aOHSUlJcViXmppqjPnre9Xu7u6mY8eODmPeeustI8m8//779mXt2rUzksyCBQsc9hUTE2MkGT8/PxMfH++wrkOHDuaee+5x+P59amqqadmypalevbp9WUbXR7hy5Uq65zR9+nRjs9nMr7/+al+W2fURdNP1Arp3727c3d3NL7/8Yl926tQp4+vra9q2bWtfFhUVZSSZsLAw+1wZY8yoUaOMq6uruXDhQobHy0jad+oHDx5sX5acnGzKly9vbDabmTFjhn35+fPnjZeXl4mIiHAYe/P1Bc6fP2+Cg4PN008/bV+W2fURIiIijCQzfvz4DNdVrFjRYdn+/fuNu7u7GThwoDl//rwpV66cady4cbavNREREWGKFy+ebrkk4+LiYg4cOJBu3c2/98TERFOnTh3Tvn17+7Ldu3cbSWbkyJEOY/v375+ja0Rk9Drx9PR0eJ0dPHjQuLq6OrzWXn/9dSPJnDlzJlvHu1Hac5k2bZrD8ujoaCPJ+Pj4ZLr9zz//bCSZuXPnOixPTEw0pUuXNvXr13d4/SxatMhISnd9BElm2LBhtzxOVq+/UaNGDfPAAw9kOgZA0URGIiPdjIxERspMQclIabZu3WpsNpt56aWXMlxPRipa+Moe8pV169ZJkkaPHu2w/LnnnpMkrV271mF52bJlHbrnfn5+6tevn/bu3avY2NgsHXP16tVKTU3VpEmT5OLi+CeRdrrpV199pcTERI0cOdJhzKBBg+Tn55euLg8PDz311FMZHu+RRx5xuMbMuXPntHnzZj322GO6dOmSzp49q7Nnz+qPP/5QeHi4jh49qt9///2W9d/4acjly5d19uxZtWzZUsYY7d27N0tzcKOUlBRt2LBB3bt3V5UqVezLy5QpoyeeeELfffedEhISHLYZPHiww+ntbdq0UUpKin799ddsH3/gwIH2/3Z1dVXjxo1ljNGAAQPsywMCAnTXXXfp2LFjDmPTri+Qmpqqc+fOKTk5WY0bN9aePXuyVUNGnxBlpE6dOpoyZYreffddhYeH6+zZs1qyZImKFcu9k0/btWun2rVrp1t+4+/9/Pnzunjxotq0aePwXNNOXX/22Wcdth0xYsQd15WSkqL169ere/fuqlChgn15rVq1FB4e7jA27XoCn332mVJTU3N0vIYNG6pZs2b6xz/+oaioKB0/flxffvmlnnnmGbm5uTl8/SIjf/zxhySpRIkSDst/+OEHxcfHa8iQIQ7Xp+jfv7/8/f1zVGtWlChRQmfPns2z/QMofMhIZCQykiMy0l8KUkaKj4/XE088ocqVK2vs2LEZjiEjFS00pJCv/Prrr3JxcVG1atUcloeEhCggICDdm3e1atUc3uSlvy7gJ8l+vYXb+eWXX+Ti4pLhG9qNdUnSXXfd5bDc3d1dVapUSVdXuXLlbnnxxcqVKzv8/PPPP8sYo5deeklBQUEOj8jISEl//eN9KydOnFD//v0VGBgoHx8fBQUFqV27dpKkixcv3nK7Wzlz5oyuXLmS7rlKf72Rpqam6uTJkw7Lb3yzlf73hnb+/PlsH//mffn7+8vT0zPdab3+/v7p9r9kyRLVrVtXnp6eKlmypIKCgrR27dpszUOxYsVUvnz5LI8fM2aM6tWrp507dyoyMjLT11FO3Px6SbNmzRo1b95cnp6eCgwMtJ9qf+NzTft7unkfN/995cSZM2d09epVVa9ePd26m187vXr1UqtWrTRw4EAFBwerd+/eWrFiRbaD1yeffKJ69erp6aefVuXKldW1a1c99thjatCgQZYvfGmMcfg57W/35ufh5ubm8D8buc0Yk+7fLgDIDBmJjERGckRG+p+CkJEuX76sLl266NKlS/rss89uWRcZqWjhGlLIlwr6P0I3f4c7s3VpbzjPP/98uk9N0tzqzTElJUX333+/zp07p3HjxqlmzZoqXry4fv/9d/Xv3z/Hn7Rkl6ura4bLb35jy+m+srL/Dz/8UP3791f37t01ZswYlS5dWq6urpo+fbp++eWXLB/fw8Mj3afAmTl27JiOHj0q6a/rBeS2jF5L3377rbp166a2bdtq/vz5KlOmjNzc3BQVFaWlS5fmeg13ysvLS1u3btXXX3+ttWvXKjo6WsuXL1f79u21YcOGW/5+b1auXDl99913Onr0qGJjY1W9enWFhISobNmy9v/JupWSJUtKytn/AOSF8+fPZxhUAeB2yEiOyEhkpBuRkfJnRkpMTNTDDz+s//znP1q/fr3q1Klzy7FkpKKFhhSc4lZhqmLFikpNTdXRo0dVq1Yt+/K4uDhduHBBFStWdBif9snZjfv76aefJGX9rldVq1ZVamqqDh48qPr169+yLkk6cuSIwycCiYmJiomJSXfL0uxI25+bm1u297N//3799NNPWrJkicMFBDO6M0VWA2xQUJC8vb115MiRdOsOHz4sFxcX+0UM85OPP/5YVapU0aeffurwXNM+QU2Tm0E+NTVV/fv3l5+fn0aOHKlXX31VPXv2tF8INK988skn8vT01Pr16+Xh4WFfHhUV5TAu7e8pJibG4Y39559/vuMagoKC5OXlZQ+aN8rotePi4qIOHTqoQ4cOmj17tl599VVNnDhRX3/9dbZf99WrV7c/n4MHD+r06dPq379/pttUqFBBXl5eiomJcVie9rd99OhRtW/f3r48KSlJMTExWb7wanYkJyfr5MmT6tatW67vG0DBR0b6HzJS7iAjkZEyk9cZKTU1Vf369dOmTZu0YsUK+1mKGSEjFT18ZQ9OUbx4cUlKdzvgBx98UJI0Z84ch+WzZ8+WpHR3vjh16pTDXWUSEhL0f//3f6pfv75CQkKyVEv37t3l4uKiqVOnpvu0LO3TpbCwMLm7u+vNN990+MTpvffe08WLF+/ojhylS5fWvffeq4ULF+r06dPp1md2a+C0T01urMkYozfeeCPd2FvNeUb77Nixoz777DOHU/rj4uK0dOlStW7dWn5+fpnuwxkymovvv/9eO3bscBiXdseR281DVsyePVvbt2/XokWLNG3aNLVs2VJDhw7N8++9u7q6ymazKSUlxb7s+PHjWr16tcO4tE+T58+f77B87ty5uVJDeHi4Vq9erRMnTtiXHzp0SOvXr3cYe+7cuXTbp/2Pzc23Ks+O1NRUjR07Vt7e3hoyZEimY93c3NS4cWP98MMPDssbN26soKAgLViwQImJifblixcvzpXXSEYOHjyoa9euOdwpCADSkJH+h4yUO8hIZKTM5HVGGjFihJYvX6758+fftiFJRip6OEMKTtGoUSNJ0sSJE9W7d2+5ubmpa9euqlevniIiIrRo0SJduHBB7dq1086dO7VkyRJ1795d9913n8N+atSooQEDBmjXrl0KDg7W+++/r7i4uHSfgmSmWrVqmjhxoqZNm6Y2bdro4YcfloeHh3bt2qWyZctq+vTpCgoK0oQJEzRlyhR16tRJ3bp105EjRzR//nw1adJETz755B3Nx7x589S6dWvdc889GjRokKpUqaK4uDjt2LFDv/32m3788ccMt6tZs6aqVq2q559/Xr///rv8/Pz0ySefZHjKbdqc/+1vf1N4eLhcXV3Vu3fvDPf78ssva+PGjWrdurWeffZZFStWTAsXLtT169c1c+bMO3queaVLly769NNP1aNHD3Xu3FkxMTFasGCBateurT///NM+zsvLS7Vr19by5ctVo0YNBQYGqk6dOpmeOpyRQ4cO6aWXXlL//v3VtWtXSX+9QdevX1/PPvusVqxYkavP70adO3fW7Nmz1alTJz3xxBOKj4/XvHnzVK1aNf3nP/+xj2vUqJEeeeQRzZkzR3/88Yf9lsZpn5Df6SehU6ZMUXR0tNq0aaNnn31WycnJmjt3ru6++26HOqZOnaqtW7eqc+fOqlixouLj4zV//nyVL19erVu3zvLx/v73v+vatWuqX7++kpKStHTpUvu/DzdfVyMjDz30kCZOnKiEhAT7/zC4ubnp5Zdf1jPPPKP27durV69eiomJUVRUVLauj/DBBx/o119/1ZUrVyRJW7du1csvvyxJ6tu3r8OZCxs3bpS3t3e2brsOoOggIzkiI905MhIZ6XbyKiPNmTNH8+fPV4sWLeTt7a0PP/zQYX2PHj3sDWGJjFQkWXU7P+Bm06ZNM+XKlTMuLi4OtzdOSkoyU6ZMMZUrVzZubm4mNDTUTJgwweF2v8b8dUvjzp07m/Xr15u6desaDw8PU7NmTbNy5coc1fP++++bBg0aGA8PD1OiRAnTrl07s3HjRocxb731lqlZs6Zxc3MzwcHBZujQoeb8+fMOY9q1a2fuvvvudPtPu6Xxa6+9luHxf/nlF9OvXz8TEhJi3NzcTLly5UyXLl3Mxx9/bB+T0S2NDx48aMLCwoyPj48pVaqUGTRokPnxxx+NJBMVFWUfl5ycbEaMGGGCgoKMzWZzuOWsMri97Z49e0x4eLjx8fEx3t7e5r777jPbt293GJN2S+Ndu3Y5LM+ozttJu6Xxzbe9vdXtfm+e59TUVPPqq6+aihUrGg8PD9OgQQOzZs2aDG9FvH37dtOoUSPj7u7u8Nxvday0dWn7SU5ONk2aNDHly5dPd9vmN954w0gyy5cvz/Jzz+yWxre6fe57771nqlevbn/dR0VF2efwRpcvXzbDhg0zgYGBxsfHx3Tv3t0cOXLESHK4TXRWZPQ6+eabb+xzWaVKFbNgwYJ0dWzatMk89NBDpmzZssbd3d2ULVvWPP744+ann37K1vGjoqJMvXr1TPHixY2vr6/p0KGDw23ObycuLs4UK1bMfPDBB+nWzZ8/31SuXNl4eHiYxo0bm61bt5p27dpl+ZbGabcyz+hx899Bs2bNzJNPPpnlugEUPWQkR2QkMtLNyEiO8mtGioiIuGU+uvHftjRkpKLHZkwOrqgH5AOVKlVSnTp1tGbNGmeXAhQo+/btU4MGDfThhx+qT58+zi7HUgMGDNBPP/2kb7/91inH37dvnxo2bKg9e/bc8nosAHCnyEhAzpCRyEiwFteQAoBC7OrVq+mWzZkzRy4uLmrbtq0TKnKuyMhI7dq1S9u2bXPK8WfMmKGePXsStAAAcDIykiMyEpyBa0ihUIuNjc10vZeXl/z9/S2qpmj6888/Ha5PkJGgoKAs39a2IDlz5ozDRTVv5u7ursDAwDytYebMmdq9e7fuu+8+FStWTF9++aW+/PJLDR48WKGhoUpJScn0orCS5OPjIx8fnzyr0cp5qlChgq5du5Yr+8qJZcuWOe3YAHAjMpLzkZHISLdDRkKh5+zvDAI5lXZ9hMwok+8sSzIRERHWFFuEpX1XPrPHzd8fLywqVqyY6fO++bv3eWHDhg2mVatWpkSJEsbNzc1UrVrVTJ482SQlJRlj/nfdjsweN18TIbflh3kCgMKEjFQwkJHISLeTH+YJyEtcQwqF2ldffZXp+rJly6p27doWVVM0HTt2TMeOHct0TOvWreXp6WlRRdbZtm1bhqeDpylRooT9zj7Ocu3aNX333XeZjqlSpUq27jiXXQVhngCgsCEjOR8ZKX+/95ORgLxHQwoAAAAAAACW4qLmAAAAAAAAsFSRvqh5amqqTp06JV9fX9lsNmeXAwAALGCM0aVLl1S2bFm5uPDZXEbISAAAFD1WZ6Qi3ZA6deqUQkNDnV0GAABwgpMnT6p8+fLOLiNfIiMBAFB0WZWRinRDytfXV9Jfk+3n5+fkagAAgBUSEhIUGhpqzwFIj4wEAEDRY3VGKtINqbRT0P38/AhbAAAUMXwV7dbISAAAFF1WZSQunAAAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFJF+hpSAABkJiUlRUlJSc4uA9nk5uYmV1dXZ5cBAEChRUYqmPJbRqIhBQDATYwxio2N1YULF5xdCnIoICBAISEhXLgcAIBcREYq+PJTRqIhBQDATdKCVunSpeXt7Z0v3rCRNcYYXblyRfHx8ZKkMmXKOLkiAAAKDzJSwZUfMxINKQAAbpCSkmIPWiVLlnR2OcgBLy8vSVJ8fLxKly6dr05NBwCgoCIjFXz5LSNxUXMAAG6Qdj0Eb29vJ1eCO5H2++P6FgAA5A4yUuGQnzISDSkAADLAKegFG78/AADyBu+xBVt++v3RkAIAAAAAAIClaEgBAAAAAADAUlzUHACALEqK/s6yY7l1ap3lsbc79ToyMlKTJ0++w4pyxmazadWqVerevXuO97Fo0SItXbpUe/bs0aVLl3T+/HkFBATkWo0AAODOWJmRJHJSmnPnzikyMlIbNmzQiRMnFBQUpO7du2vatGny9/fP3WLzAA2pPJTRH2V2/nAAAMiK06dP2/97+fLlmjRpko4cOWJf5uPjk639JSYmyt3dPdfqu1NXrlxRp06d1KlTJ02YMMHZ5SAXkJEAAFYpzDnp1KlTOnXqlGbNmqXatWvr119/1ZAhQ3Tq1Cl9/PHHzi7vtvjKHgAABVxISIj94e/vL5vNZv/58uXL6tOnj4KDg+Xj46MmTZroq6++cti+UqVKmjZtmvr16yc/Pz8NHjxYkvTOO+8oNDRU3t7e6tGjh2bPnp3uzKTPPvtMDRs2lKenp6pUqaIpU6YoOTnZvl9J6tGjh2w2m/3nH3/8Uffdd598fX3l5+enRo0a6Ycffrjl8xs5cqTGjx+v5s2b586EAQCAIqMw56Q6derok08+UdeuXVW1alW1b99er/w/e3ceV2WZ/3/8zY4KB0QRMHFfyR03zKyMxELL0tKmUSy10dBJKbexXCsdc9QaNVtm1Jn061JpJooZZosyaSSNuTBWmk6KmCnHlfX+/dGPezyCCgj3AXw9H4/zeHSu+7rv+zoX4Pn0Pve57pdf1kcffWSepzwjkAIAoBI7f/68HnjgASUmJmrPnj3q1auX+vTpo6NHjzr0mzt3rtq0aaM9e/boxRdf1I4dOzRixAg9++yzSklJ0X333aeXX37ZYZ8vvvhCgwcP1rPPPqv9+/frzTff1LJly8x+u3fvliQtXbpUJ06cMJ8/8cQTqlOnjnbv3q3k5GRNnDhRHh4eFswGAADA/1TGOikjI0M2m03u7uX/C3Hlf4QAAKDE2rRpozZt2pjPZ86cqXXr1mnDhg0aNWqU2d6jRw8999xz5vPJkyfr/vvv1/PPPy9Jatq0qXbu3KmNGzeafaZPn66JEycqJiZGktSwYUPNnDlT48eP19SpUxUYGChJ8vf3V3BwsLnf0aNHNW7cODVv3lyS1KRJkzJ45QAAANdX2eqkX375RTNnzjSv4irvuEIKAIBK7Pz583r++efVokUL+fv7y8fHRwcOHCjwyV+HDh0cnqempqpTp04ObVc///bbbzVjxgz5+PiYj+HDh+vEiRO6ePHiNccUFxenYcOGKTIyUrNnz9YPP/xwk68SAACg+CpTnWS32xUdHa2wsDCnLdJeXARSAABUYs8//7zWrVunV155RV988YVSUlLUqlUrZWVlOfSrVq1asY99/vx5TZ8+XSkpKeZj7969OnTokLy9va+537Rp07Rv3z5FR0dr27ZtCgsL07p164p9fgAAgJtRWeqkc+fOqVevXvL19dW6desqzFIIfGUPAIBKbMeOHRoyZIgefvhhSb8VR0eOHLnhfs2aNTPXMsh39fP27dsrNTVVjRs3vuZxPDw8lJubW6C9adOmatq0qcaOHavHH39cS5cuNccIAABghcpQJ9ntdkVFRcnLy0sbNmy4bthV3hBIAQBQiTVp0kQffPCB+vTpIxcXF7344ovKy8u74X6jR49W9+7dNW/ePPXp00fbtm3T5s2b5eLiYvaZMmWKevfurbp166p///5ydXXVt99+q++++04vvfSSpN/uIJOYmKg77rhDXl5e8vb21rhx49S/f381aNBA//3vf7V7927169fvmmNJS0tTWlqavv/+e0nS3r175evrq7p16yogIOAmZwgAANyqKnqdZLfb1bNnT128eFHvvvuu7Ha77Ha7JCkwMFBubm6lMEtlh6/sAQBQic2bN0/Vq1dX165d1adPH0VFRal9+/Y33O+OO+7QkiVLNG/ePLVp00YJCQkaO3asw6duUVFR2rhxoz7++GN17NhRXbp00fz581WvXj2zz1/+8hdt3bpVoaGhateundzc3HT69GkNHjxYTZs21WOPPab7779f06dPv+ZYlixZonbt2mn48OGSpO7du6tdu3basGHDTcwMAAC41VX0Oumbb77RV199pb1796px48YKCQkxH8eOHbv5CSpjLoZhGM4ehLPY7Xb5+fmZt0UsbdkJXxZo8+jVrdTPAwAoPZcvX9bhw4fVoEGDCnXJsxWGDx+ugwcP6osvvnD2UG7oej/Hsn7/rwyokQAAV6NGur6KUieVpxqJr+wBAIBCzZ07V/fdd5+qVaumzZs3a/ny5Vq8eLGzhwUAAOB01Ek3j0AKAAAUateuXZozZ47OnTunhg0b6vXXX9ewYcOcPSwAAACno066eQRSAACgUGvWrHH2EAAAAMol6qSbx6LmAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLuTt7AAAAVBQ/fP2mZedq1OEPxeo/ZMgQLV++XJLk7u6ugIAAtW7dWo8//riGDBkiV9eK+xnUvn37NGXKFCUnJ+unn37S/PnzNWbMGGcPCwAA/H9W1kgSddKV3n77bf3jH//Qd999J0kKDw/XK6+8ok6dOjl5ZDdWcWcdAAA46NWrl06cOKEjR45o8+bNuueee/Tss8+qd+/eysnJcfbwSuzixYtq2LChZs+ereDgYGcPBwAAVECVtU7avn27Hn/8cX366adKSkpSaGioevbsqZ9//tnZQ7shAikAACoJLy8vBQcH67bbblP79u31pz/9SR9++KE2b96sZcuWmf3Onj2rYcOGKTAwUDabTT169NC3337rcKyPPvpIHTt2lLe3t2rWrKmHH37Y3HbmzBkNHjxY1atXV9WqVXX//ffr0KFDkqQLFy7IZrPpvffeczje+vXrVa1aNZ07d05ZWVkaNWqUQkJC5O3trXr16mnWrFnXfF0dO3bUq6++qoEDB8rLy6sUZgoAANxqKmudtGLFCj3zzDNq27atmjdvrnfeeUd5eXlKTEwshVkrWwRSAABUYj169FCbNm30wQcfmG2PPvqo0tPTtXnzZiUnJ6t9+/a699579euvv0qS4uPj9fDDD+uBBx7Qnj17lJiY6HDZ95AhQ/T1119rw4YNSkpKkmEYeuCBB5Sdna1q1app4MCBWrp0qcM4li5dqv79+8vX11evv/66NmzYoDVr1ig1NVUrVqxQ/fr1LZkPAACAfJWxTrp48aKys7MVEBBwc5NjAdaQAgCgkmvevLn+/e9/S5K+/PJL7dq1S+np6ebVRnPnztX69ev13nvv6emnn9bLL7+sgQMHavr06eYx2rRpI0k6dOiQNmzYoB07dqhr166SfvtkLjQ0VOvXr9ejjz6qYcOGqWvXrjpx4oRCQkKUnp6uTZs26ZNPPpEkHT16VE2aNFG3bt3k4uKievXqWTkdAAAApspWJ02YMEG1a9dWZGTkTc9NWeMKKQAAKjnDMOTi4iJJ+vbbb3X+/HnVqFFDPj4+5uPw4cP64YcfJEkpKSm69957Cz3WgQMH5O7urs6dO5ttNWrUULNmzXTgwAFJUqdOnXT77bebi4e+++67qlevnrp37y7pt08OU1JS1KxZM/3xj3/Uxx9/XGavHQAA4HoqU500e/ZsrVq1SuvWrZO3t3fxJ8NiXCEFAEAld+DAATVo0ECSdP78eYWEhGj79u0F+vn7+0uSqlSpctPnHDZsmBYtWqSJEydq6dKlevLJJ81ir3379jp8+LA2b96sTz75RI899pgiIyMLrKcAAABQ1ipLnTR37lzNnj1bn3zyiVq3bn3TY7QCV0gBAFCJbdu2TXv37lW/fv0k/VbkpKWlyd3dXY0bN3Z41KxZU5LUunXray6E2aJFC+Xk5Oirr74y206fPq3U1FSFhYWZbb///e/1008/6fXXX9f+/fsVExPjcBybzaYBAwbo7bff1urVq/X++++bazMAAABYobLUSXPmzNHMmTOVkJCgDh06lHg+rMYVUgAAVBKZmZlKS0tTbm6uTp48qYSEBM2aNUu9e/fW4MGDJUmRkZGKiIhQ3759NWfOHDVt2lTHjx83F+js0KGDpk6dqnvvvVeNGjXSwIEDlZOTo02bNmnChAlq0qSJHnroIQ0fPlxvvvmmfH19NXHiRN1222166KGHzLFUr15djzzyiMaNG6eePXuqTp065rZ58+YpJCRE7dq1k6urq9auXavg4GDzk8erZWVlaf/+/eZ///zzz0pJSZGPj48aN25cdhMKAAAqjcpaJ/35z3/WlClTtHLlStWvX19paWmSZH7dsDzjCikAACqJhIQEhYSEqH79+urVq5c+/fRTvf766/rwww/l5uYmSXJxcdGmTZvUvXt3Pfnkk2ratKkGDhyon376SUFBQZKku+++W2vXrtWGDRvUtm1b9ejRQ7t27TLPs3TpUoWHh6t3796KiIiQYRjatGmTPDw8HMYzdOhQZWVl6amnnnJo9/X11Zw5c9ShQwd17NhRR44c0aZNm+TqWnhZcvz4cbVr107t2rXTiRMnNHfuXLVr107Dhg0rzekDAACVWGWtk9544w1lZWWpf//+CgkJMR9z584tzekrEy6GYRjOHoSz2O12+fn5KSMjQzabrdSPn53wZYE2j17dSv08AIDSc/nyZR0+fFgNGjSoEItBlmf//Oc/NXbsWB0/flyenp6Wnvt6P8eyfv+vDKiRAABXo0YqXc6qk8pTjcRX9gAAQKm6ePGiTpw4odmzZ+sPf/iD5WEUAABAeUWd9D98ZQ8AAJSqOXPmqHnz5goODtakSZOcPRwAAIBygzrpfwikAABAqZo2bZqys7OVmJhY7hfTBAAAsBJ10v8QSAEAAAAAAMBSBFIAABTiFr7nR6XAzw8AgLLBe2zFVp5+fgRSAABcIf+WvBcvXnTySHAz8n9+V99iGQAAlAw1UuVQnmqkmwqkZs+eLRcXF40ZM8Zsu3z5smJjY1WjRg35+PioX79+OnnypMN+R48eVXR0tKpWrapatWpp3LhxysnJceizfft2tW/fXl5eXmrcuLGWLVtW4PyLFi1S/fr15e3trc6dO2vXrl0383IAAJCbm5v8/f2Vnp6u06dP69KlS7p8+TKPCvK4dOmSTp8+rfT0dPn7+8vNzc0pv0fUSACAyoYaqWI/ykuNdCX3ku64e/duvfnmm2rdurVD+9ixYxUfH6+1a9fKz89Po0aN0iOPPKIdO3ZIknJzcxUdHa3g4GDt3LlTJ06c0ODBg+Xh4aFXXnlFknT48GFFR0drxIgRWrFihRITEzVs2DCFhIQoKipKkrR69WrFxcVpyZIl6ty5sxYsWKCoqCilpqaqVq1aJX1ZAAAoODhYkpSenu7kkaCk/P39zZ+j1aiRAACVFTVSxefMGulqLkYJvkB4/vx5tW/fXosXL9ZLL72ktm3basGCBcrIyFBgYKBWrlyp/v37S5IOHjyoFi1aKCkpSV26dNHmzZvVu3dvHT9+XEFBQZKkJUuWaMKECTp16pQ8PT01YcIExcfH67vvvjPPOXDgQJ09e1YJCQmSpM6dO6tjx45auHChJCkvL0+hoaEaPXq0Jk6cWKTXYbfb5efnp4yMDNlstuJOww1lJ3xZoM2jV7dSPw8AoGzk5uYqOzvb2cNAMXl4eFz3U7+yfP+nRioaaiQAqNiokSomZ9ZIhSnRFVKxsbGKjo5WZGSkXnrpJbM9OTlZ2dnZioyMNNuaN2+uunXrmsVWUlKSWrVqZRZakhQVFaWRI0dq3759ateunZKSkhyOkd8n/7L3rKwsJScna9KkSeZ2V1dXRUZGKikpqSQvCQCAAtzc3MrF5cyoOKiRAAC3AmoklIZiB1KrVq3SN998o927dxfYlpaWJk9PT/n7+zu0BwUFKS0tzexzZaGVvz1/2/X62O12Xbp0SWfOnFFubm6hfQ4ePHjNsWdmZiozM9N8brfbb/BqAQAAioYaCQAAoOiKtaj5sWPH9Oyzz2rFihXy9vYuqzGVmVmzZsnPz898hIaGOntIAACgEqBGAgAAKJ5iBVLJyclKT09X+/bt5e7uLnd3d3322Wd6/fXX5e7urqCgIGVlZens2bMO+508edJcNCs4OLjAHWXyn9+oj81mU5UqVVSzZk25ubkV2ud6i3NNmjRJGRkZ5uPYsWPFefkAAACFokYCAAAonmIFUvfee6/27t2rlJQU89GhQwc98cQT5n97eHgoMTHR3Cc1NVVHjx5VRESEJCkiIkJ79+51WJV/69atstlsCgsLM/tceYz8PvnH8PT0VHh4uEOfvLw8JSYmmn0K4+XlJZvN5vAAAAC4WdRIAAAAxVOsNaR8fX3VsmVLh7Zq1aqpRo0aZvvQoUMVFxengIAA2Ww2jR49WhEREerSpYskqWfPngoLC9OgQYM0Z84cpaWl6YUXXlBsbKy8vLwkSSNGjNDChQs1fvx4PfXUU9q2bZvWrFmj+Ph487xxcXGKiYlRhw4d1KlTJy1YsEAXLlzQk08+eVMTAgAAUFzUSAAAAMVTorvsXc/8+fPl6uqqfv36KTMzU1FRUVq8eLG53c3NTRs3btTIkSMVERGhatWqKSYmRjNmzDD7NGjQQPHx8Ro7dqxee+011alTR++8846ioqLMPgMGDNCpU6c0ZcoUpaWlqW3btkpISCiwiCcAAEB5QI0EAADwPy6GYRjOHoSz2O12+fn5KSMjo0wuTc9O+LJAm0evbqV+HgAAUHRl/f5fGVAjAQBw67G6RirWGlIAAAAAAADAzSKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYyt3ZA6jMjpzdXKCtibo5YSQAAADlBzUSAADgCikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlipWIPXGG2+odevWstlsstlsioiI0ObNm83tly9fVmxsrGrUqCEfHx/169dPJ0+edDjG0aNHFR0drapVq6pWrVoaN26ccnJyHPps375d7du3l5eXlxo3bqxly5YVGMuiRYtUv359eXt7q3Pnztq1a1dxXgoAAECpoUYCAAAonmIFUnXq1NHs2bOVnJysr7/+Wj169NBDDz2kffv2SZLGjh2rjz76SGvXrtVnn32m48eP65FHHjH3z83NVXR0tLKysrRz504tX75cy5Yt05QpU8w+hw8fVnR0tO655x6lpKRozJgxGjZsmLZs2WL2Wb16teLi4jR16lR98803atOmjaKiopSenn6z8wEAAFBs1EgAAADF42IYhnEzBwgICNCrr76q/v37KzAwUCtXrlT//v0lSQcPHlSLFi2UlJSkLl26aPPmzerdu7eOHz+uoKAgSdKSJUs0YcIEnTp1Sp6enpowYYLi4+P13XffmecYOHCgzp49q4SEBElS586d1bFjRy1cuFCSlJeXp9DQUI0ePVoTJ04s8tjtdrv8/PyUkZEhm812M9NQqEOrJhdoazLw5VI/DwAAKLqyfv/PR410bdRIAACUP1bVSPlKvIZUbm6uVq1apQsXLigiIkLJycnKzs5WZGSk2ad58+aqW7eukpKSJElJSUlq1aqVWWhJUlRUlOx2u/kJYlJSksMx8vvkHyMrK0vJyckOfVxdXRUZGWn2AQAAcBZqJAAAgBtzL+4Oe/fuVUREhC5fviwfHx+tW7dOYWFhSklJkaenp/z9/R36BwUFKS0tTZKUlpbmUGjlb8/fdr0+drtdly5d0pkzZ5Sbm1ton4MHD1537JmZmcrMzDSf2+32or9wAACA66BGAgAAKLpiXyHVrFkzpaSk6KuvvtLIkSMVExOj/fv3l8XYSt2sWbPk5+dnPkJDQ509JAAAUElQIwEAABRdsQMpT09PNW7cWOHh4Zo1a5batGmj1157TcHBwcrKytLZs2cd+p88eVLBwcGSpODg4AJ3lMl/fqM+NptNVapUUc2aNeXm5lZon/xjXMukSZOUkZFhPo4dO1bclw8AAFAoaiQAAICiK/EaUvny8vKUmZmp8PBweXh4KDEx0dyWmpqqo0ePKiIiQpIUERGhvXv3OtzpZevWrbLZbAoLCzP7XHmM/D75x/D09FR4eLhDn7y8PCUmJpp9rsXLy8u8HXP+AwAAoCxQIwEAAFxbsdaQmjRpku6//37VrVtX586d08qVK7V9+3Zt2bJFfn5+Gjp0qOLi4hQQECCbzabRo0crIiJCXbp0kST17NlTYWFhGjRokObMmaO0tDS98MILio2NlZeXlyRpxIgRWrhwocaPH6+nnnpK27Zt05o1axQfH2+OIy4uTjExMerQoYM6deqkBQsW6MKFC3ryySdLcWoAAACKhhoJAACgeIoVSKWnp2vw4ME6ceKE/Pz81Lp1a23ZskX33XefJGn+/PlydXVVv379lJmZqaioKC1evNjc383NTRs3btTIkSMVERGhatWqKSYmRjNmzDD7NGjQQPHx8Ro7dqxee+011alTR++8846ioqLMPgMGDNCpU6c0ZcoUpaWlqW3btkpISCiwiCcAAIAVqJEAAACKx8UwDMPZg3AWu90uPz8/ZWRklMml6YdWTS7Q1mTgy6V+HgAAUHRl/f5fGVAjAQBw67G6RrrpNaQAAAAAAACA4iCQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGCpYgVSs2bNUseOHeXr66tatWqpb9++Sk1Ndehz+fJlxcbGqkaNGvLx8VG/fv108uRJhz5Hjx5VdHS0qlatqlq1amncuHHKyclx6LN9+3a1b99eXl5eaty4sZYtW1ZgPIsWLVL9+vXl7e2tzp07a9euXcV5OQAAAKWCGgkAAKB4ihVIffbZZ4qNjdW//vUvbd26VdnZ2erZs6cuXLhg9hk7dqw++ugjrV27Vp999pmOHz+uRx55xNyem5ur6OhoZWVlaefOnVq+fLmWLVumKVOmmH0OHz6s6Oho3XPPPUpJSdGYMWM0bNgwbdmyxeyzevVqxcXFaerUqfrmm2/Upk0bRUVFKT09/WbmAwAAoNiokQAAAIrHxTAMo6Q7nzp1SrVq1dJnn32m7t27KyMjQ4GBgVq5cqX69+8vSTp48KBatGihpKQkdenSRZs3b1bv3r11/PhxBQUFSZKWLFmiCRMm6NSpU/L09NSECRMUHx+v7777zjzXwIEDdfbsWSUkJEiSOnfurI4dO2rhwoWSpLy8PIWGhmr06NGaOHFikcZvt9vl5+enjIwM2Wy2kk7DNR1aNblAW5OBL5f6eQAAQNGV9fu/RI10I9RIAACUP1bUSFe6qTWkMjIyJEkBAQGSpOTkZGVnZysyMtLs07x5c9WtW1dJSUmSpKSkJLVq1costCQpKipKdrtd+/btM/tceYz8PvnHyMrKUnJyskMfV1dXRUZGmn0AAACchRoJAADg+txLumNeXp7GjBmjO+64Qy1btpQkpaWlydPTU/7+/g59g4KClJaWZva5stDK356/7Xp97Ha7Ll26pDNnzig3N7fQPgcPHrzmmDMzM5WZmWk+t9vtxXjFAAAAN0aNBAAAcGMlvkIqNjZW3333nVatWlWa4ylTs2bNkp+fn/kIDQ119pAAAEAlQ40EAABwYyUKpEaNGqWNGzfq008/VZ06dcz24OBgZWVl6ezZsw79T548qeDgYLPP1XeUyX9+oz42m01VqlRRzZo15ebmVmif/GMUZtKkScrIyDAfx44dK94LBwAAuA5qJAAAgKIpViBlGIZGjRqldevWadu2bWrQoIHD9vDwcHl4eCgxMdFsS01N1dGjRxURESFJioiI0N69ex3u9LJ161bZbDaFhYWZfa48Rn6f/GN4enoqPDzcoU9eXp4SExPNPoXx8vKSzWZzeAAAANwsaiQAAIDiKdYaUrGxsVq5cqU+/PBD+fr6musZ+Pn5qUqVKvLz89PQoUMVFxengIAA2Ww2jR49WhEREerSpYskqWfPngoLC9OgQYM0Z84cpaWl6YUXXlBsbKy8vLwkSSNGjNDChQs1fvx4PfXUU9q2bZvWrFmj+Ph4cyxxcXGKiYlRhw4d1KlTJy1YsEAXLlzQk08+WVpzAwAAUCTUSAAAAMVTrEDqjTfekCTdfffdDu1Lly7VkCFDJEnz58+Xq6ur+vXrp8zMTEVFRWnx4sVmXzc3N23cuFEjR45URESEqlWrppiYGM2YMcPs06BBA8XHx2vs2LF67bXXVKdOHb3zzjuKiooy+wwYMECnTp3SlClTlJaWprZt2yohIaHAIp4AAABljRoJAACgeFwMwzCcPQhnsdvt8vPzU0ZGRplcmn5o1eQCbU0Gvlzq5wEAAEVX1u//lQE1EgAAtx6ra6QS32UPAAAAAAAAKAkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWKnYg9fnnn6tPnz6qXbu2XFxctH79eofthmFoypQpCgkJUZUqVRQZGalDhw459Pn111/1xBNPyGazyd/fX0OHDtX58+cd+vz73//WnXfeKW9vb4WGhmrOnDkFxrJ27Vo1b95c3t7eatWqlTZt2lTclwMAAFAqqJEAAACKrtiB1IULF9SmTRstWrSo0O1z5szR66+/riVLluirr75StWrVFBUVpcuXL5t9nnjiCe3bt09bt27Vxo0b9fnnn+vpp582t9vtdvXs2VP16tVTcnKyXn31VU2bNk1vvfWW2Wfnzp16/PHHNXToUO3Zs0d9+/ZV37599d133xX3JQEAANw0aiQAAICiczEMwyjxzi4uWrdunfr27Svpt0/+ateureeee07PP/+8JCkjI0NBQUFatmyZBg4cqAMHDigsLEy7d+9Whw4dJEkJCQl64IEH9N///le1a9fWG2+8ocmTJystLU2enp6SpIkTJ2r9+vU6ePCgJGnAgAG6cOGCNm7caI6nS5cuatu2rZYsWVKk8dvtdvn5+SkjI0M2m62k03BNh1ZNLtDWZODLpX4eAABQdGX9/i9RI90INRIAAOWPFTXSlUp1DanDhw8rLS1NkZGRZpufn586d+6spKQkSVJSUpL8/f3NQkuSIiMj5erqqq+++srs0717d7PQkqSoqCilpqbqzJkzZp8rz5PfJ/88AAAA5QU1EgAAgCP30jxYWlqaJCkoKMihPSgoyNyWlpamWrVqOQ7C3V0BAQEOfRo0aFDgGPnbqlevrrS0tOuepzCZmZnKzMw0n9vt9uK8PAAAgBKhRgIAAHB0S91lb9asWfLz8zMfoaGhzh4SAACA01EjAQAAq5VqIBUcHCxJOnnypEP7yZMnzW3BwcFKT0932J6Tk6Nff/3VoU9hx7jyHNfqk7+9MJMmTVJGRob5OHbsWHFfIgAAQLFRIwEAADgq1UCqQYMGCg4OVmJiotlmt9v11VdfKSIiQpIUERGhs2fPKjk52eyzbds25eXlqXPnzmafzz//XNnZ2WafrVu3qlmzZqpevbrZ58rz5PfJP09hvLy8ZLPZHB4AAABljRoJAADAUbEDqfPnzyslJUUpKSmSflukMyUlRUePHpWLi4vGjBmjl156SRs2bNDevXs1ePBg1a5d27zLTIsWLdSrVy8NHz5cu3bt0o4dOzRq1CgNHDhQtWvXliT97ne/k6enp4YOHap9+/Zp9erVeu211xQXF2eO49lnn1VCQoL+8pe/6ODBg5o2bZq+/vprjRo16uZnBQAAoJiokQAAAIqu2Iuaf/3117rnnnvM5/kFUExMjJYtW6bx48frwoULevrpp3X27Fl169ZNCQkJ8vb2NvdZsWKFRo0apXvvvVeurq7q16+fXn/9dXO7n5+fPv74Y8XGxio8PFw1a9bUlClT9PTTT5t9unbtqpUrV+qFF17Qn/70JzVp0kTr169Xy5YtSzQRAAAAN4MaCQAAoOhcDMMwnD0IZ7Hb7fLz81NGRkaZXJp+aNXkAm1NBr5c6ucBAABFV9bv/5UBNRIAALceq2ukW+ouewAAAAAAAHA+AikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlqrwgdSiRYtUv359eXt7q3Pnztq1a5ezhwQAAOB01EgAAKA8q9CB1OrVqxUXF6epU6fqm2++UZs2bRQVFaX09HRnDw0AAMBpqJEAAEB5V6EDqXnz5mn48OF68sknFRYWpiVLlqhq1ar6+9//7uyhAQAAOA01EgAAKO8qbCCVlZWl5ORkRUZGmm2urq6KjIxUUlKSE0cGAADgPNRIAACgInB39gBK6pdfflFubq6CgoIc2oOCgnTw4MFC98nMzFRmZqb5PCMjQ5Jkt9vLZIznL2YWaCurcwEAgKLJfy82DMPJIykb1EgAAKAkrK6RKmwgVRKzZs3S9OnTC7SHhoZaN4ihf7HuXAAA4JrOnTsnPz8/Zw+jXKBGAgAA+ayqkSpsIFWzZk25ubnp5MmTDu0nT55UcHBwoftMmjRJcXFx5vO8vDz9+uuvqlGjhlxcXEp1fHa7XaGhoTp27JhsNlupHhvXxrw7B/PuHMy7czDvzlGa824Yhs6dO6fatWuX0ujKF2okXAtz7zzMvfMw987D3DtPSefe6hqpwgZSnp6eCg8PV2Jiovr27Svpt+IpMTFRo0aNKnQfLy8veXl5ObT5+/uX6ThtNht/fE7AvDsH8+4czLtzMO/OUVrzXpmvjKJGwo0w987D3DsPc+88zL3zlGTurayRKmwgJUlxcXGKiYlRhw4d1KlTJy1YsEAXLlzQk08+6eyhAQAAOA01EgAAKO8qdCA1YMAAnTp1SlOmTFFaWpratm2rhISEAot4AgAA3EqokQAAQHlXoQMpSRo1atQ1Lz93Ji8vL02dOrXA5e8oW8y7czDvzsG8Owfz7hzMe/FRI+FqzL3zMPfOw9w7D3PvPBVl7l2MynrPYwAAAAAAAJRLrs4eAAAAAAAAAG4tBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSN2ERYsWqX79+vL29lbnzp21a9eu6/Zfu3atmjdvLm9vb7Vq1UqbNm2yaKSVS3Hm/e2339add96p6tWrq3r16oqMjLzhzwmFK+7ve75Vq1bJxcVFffv2LdsBVlLFnfezZ88qNjZWISEh8vLyUtOmTfm3pgSKO+8LFixQs2bNVKVKFYWGhmrs2LG6fPmyRaOtHD7//HP16dNHtWvXlouLi9avX3/DfbZv36727dvLy8tLjRs31rJly8p8nCgaaiTnoU5yHmol56Fech5qJueoNHWTgRJZtWqV4enpafz973839u3bZwwfPtzw9/c3Tp48WWj/HTt2GG5ubsacOXOM/fv3Gy+88ILh4eFh7N271+KRV2zFnfff/e53xqJFi4w9e/YYBw4cMIYMGWL4+fkZ//3vfy0eecVW3HnPd/jwYeO2224z7rzzTuOhhx6yZrCVSHHnPTMz0+jQoYPxwAMPGF9++aVx+PBhY/v27UZKSorFI6/YijvvK1asMLy8vIwVK1YYhw8fNrZs2WKEhIQYY8eOtXjkFdumTZuMyZMnGx988IEhyVi3bt11+//4449G1apVjbi4OGP//v3GX//6V8PNzc1ISEiwZsC4Jmok56FOch5qJeehXnIeaibnqSx1E4FUCXXq1MmIjY01n+fm5hq1a9c2Zs2aVWj/xx57zIiOjnZo69y5s/GHP/yhTMdZ2RR33q+Wk5Nj+Pr6GsuXLy+rIVZKJZn3nJwco2vXrsY777xjxMTEUGSVQHHn/Y033jAaNmxoZGVlWTXESqm48x4bG2v06NHDoS0uLs644447ynSclVlRCqvx48cbt99+u0PbgAEDjKioqDIcGYqCGsl5qJOch1rJeaiXnIeaqXyoyHUTX9krgaysLCUnJysyMtJsc3V1VWRkpJKSkgrdJykpyaG/JEVFRV2zPwoqybxf7eLFi8rOzlZAQEBZDbPSKem8z5gxQ7Vq1dLQoUOtGGalU5J537BhgyIiIhQbG6ugoCC1bNlSr7zyinJzc60adoVXknnv2rWrkpOTzUvUf/zxR23atEkPPPCAJWO+VfG+Wj5RIzkPdZLzUCs5D/WS81AzVSzl9b3W3alnr6B++eUX5ebmKigoyKE9KChIBw8eLHSftLS0QvunpaWV2Tgrm5LM+9UmTJig2rVrF/hjxLWVZN6//PJL/e1vf1NKSooFI6ycSjLvP/74o7Zt26YnnnhCmzZt0vfff69nnnlG2dnZmjp1qhXDrvBKMu+/+93v9Msvv6hbt24yDEM5OTkaMWKE/vSnP1kx5FvWtd5X7Xa7Ll26pCpVqjhpZLc2aiTnoU5yHmol56Fech5qpoqlvNZNXCGFW8bs2bO1atUqrVu3Tt7e3s4eTqV17tw5DRo0SG+//bZq1qzp7OHcUvLy8lSrVi299dZbCg8P14ABAzR58mQtWbLE2UOr1LZv365XXnlFixcv1jfffKMPPvhA8fHxmjlzprOHBgBFRp1kHWol56Jech5qJlyNK6RKoGbNmnJzc9PJkycd2k+ePKng4OBC9wkODi5WfxRUknnPN3fuXM2ePVuffPKJWrduXZbDrHSKO+8//PCDjhw5oj59+phteXl5kiR3d3elpqaqUaNGZTvoSqAkv+8hISHy8PCQm5ub2daiRQulpaUpKytLnp6eZTrmyqAk8/7iiy9q0KBBGjZsmCSpVatWunDhgp5++mlNnjxZrq589lMWrvW+arPZuDrKiaiRnIc6yXmolZyHesl5qJkqlvJaN/ETLwFPT0+Fh4crMTHRbMvLy1NiYqIiIiIK3SciIsKhvyRt3br1mv1RUEnmXZLmzJmjmTNnKiEhQR06dLBiqJVKcee9efPm2rt3r1JSUszHgw8+qHvuuUcpKSkKDQ21cvgVVkl+3++44w59//33ZlErSf/5z38UEhJCcVVEJZn3ixcvFiig8otcwzDKbrC3ON5XyydqJOehTnIeaiXnoV5yHmqmiqXcvtc6dUn1CmzVqlWGl5eXsWzZMmP//v3G008/bfj7+xtpaWmGYRjGoEGDjIkTJ5r9d+zYYbi7uxtz5841Dhw4YEydOpVbGpdAced99uzZhqenp/Hee+8ZJ06cMB/nzp1z1kuokIo771fjzjElU9x5P3r0qOHr62uMGjXKSE1NNTZu3GjUqlXLeOmll5z1Eiqk4s771KlTDV9fX+P//u//jB9//NH4+OOPjUaNGhmPPfaYs15ChXTu3Dljz549xp49ewxJxrx584w9e/YYP/30k2EYhjFx4kRj0KBBZv/82xePGzfOOHDggLFo0aJycftiUCM5E3WS81ArOQ/1kvNQMzlPZambCKRuwl//+lejbt26hqenp9GpUyfjX//6l7ntrrvuMmJiYhz6r1mzxmjatKnh6elp3H777UZ8fLzFI64cijPv9erVMyQVeEydOtX6gVdwxf19vxJFVskVd9537txpdO7c2fDy8jIaNmxovPzyy0ZOTo7Fo674ijPv2dnZxrRp04xGjRoZ3t7eRmhoqPHMM88YZ86csX7gFdinn35a6L/X+XMdExNj3HXXXQX2adu2reHp6Wk0bNjQWLp0qeXjRuGokZyHOsl5qJWch3rJeaiZnKOy1E0uhsG1cQAAAAAAALAOa0gBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAWUU9u3b5eLi4u2b99eqsd1cXHRtGnTSvWYlc2QIUNUv379Mjv+q6++qoYNG8rNzU1t27Yts/PcjKL+nkybNk0uLi5lP6AyNmfOHDVv3lx5eXnX7XfkyBG5uLho2bJlDu0JCQlq27atvL295eLiorNnzxb53KdPn1a1atW0adOmEowcAG491EjOQ41EjXQt1EgoCQIplLmdO3dq2rRpxfrHBzdn06ZNFFSSLl68qGnTppV6wXozPv74Y40fP1533HGHli5dqldeecXZQyqXdu3apWeeeUbh4eHy8PC4YUH3t7/9TS1atJC3t7eaNGmiv/71r0U+l91u15///GdNmDBBrq7Ff1s8ffq0HnvsMVWpUkWLFi3SP//5T1WrVk2pqakaO3asunbtahZhR44cKbB/jRo1NGzYML344ovFPjeAio0ayXrUSL+hRqq4KkON9MEHH2jAgAFq2LChqlatqmbNmum5554r8G8hNdItwADK2KuvvmpIMg4fPuzsoVQon376qSHJ+PTTT4u9b2xsrHGtP+9Lly4Z2dnZNzm6iuHUqVOGJGPq1KnF2i8rK8u4fPlymYxpwoQJhqurq5GZmVkmxy8tRf09mTp16jV/127G1KlTDQ8PDyM8PNxo2rTpdc+xZMkSQ5LRr18/46233jIGDRpkSDJmz55dpHPNnz/fsNlsxqVLl27Y9/Dhw4YkY+nSpWbb5s2bDUnG1q1bHfouXbrUcHV1NVq2bGm0bdv2uv8O7t+/35BkJCYmFmnMACoHaqSSoUa6edRIJUeNVLji1Eg1atQwWrVqZbz44ovG22+/bfzxj380PD09jebNmxsXL1506EuNVLlxhRRQyi5evFhoe05OjrKysiweTUHe3t5yd3d39jDKpQsXLkiSPDw85OXlVSbnSE9PV5UqVeTp6Xndfnl5ebp8+XKZjKEonP17MnLkSGVkZOjrr7/Wfffdd81+ly5d0uTJkxUdHa333ntPw4cP1z/+8Q898cQTmjlzps6cOXPDcy1dulQPPvigvL29SzTW9PR0SZK/v79D+4MPPqizZ89q7969euKJJ657jBYtWqhly5YFLnMHgMqEGqniokb6H2f/nlSGGum9997Tv//9b82YMUPDhg3Ta6+9prffflsHDx7UihUrHPpSI1VuBFIoU9OmTdO4ceMkSQ0aNJCLi4vD11ZycnI0c+ZMNWrUSF5eXqpfv77+9Kc/KTMz0+E49evXV+/evfXxxx+b30EOCwvTBx98UKJxvfvuu+rUqZOqVq2q6tWrq3v37vr4448d+ixevFi33367vLy8VLt2bcXGxha4jPTuu+9Wy5YtlZycrO7du6tq1ar605/+ZH6Heu7cuVqwYIH5+vbv3y9JOnjwoPr376+AgAB5e3urQ4cO2rBhww3H/cUXX+jRRx9V3bp15eXlpdDQUI0dO1aXLl0y+wwZMkSLFi2SJHO+r7yUt7Dvve/Zs0f333+/bDabfHx8dO+99+pf//qXQ59ly5bJxcVFO3bsUFxcnAIDA1WtWjU9/PDDOnXq1A3HfqX879T/5z//0e9//3v5+fkpMDBQL774ogzD0LFjx/TQQw/JZrMpODhYf/nLXxz2z8rK0pQpUxQeHi4/Pz9Vq1ZNd955pz799FOzz5EjRxQYGChJmj59ujkP+a99yJAh8vHx0Q8//KAHHnhAvr6+Zmhw9foIU6dOlaurqxITEx3G8fTTT8vT01PffvttkV63i4uLli5dqgsXLpjjyX9zdXFx0ahRo7RixQrz9y4hIUGSNHfuXHXt2lU1atRQlSpVFB4ervfee6/A8S9duqQ//vGPqlmzpnx9ffXggw/q559/LtGaGIXt8+WXX6pjx47y9vZWo0aN9Oabbxa679atW9WtWzf5+/vLx8dHzZo105/+9KdinT8oKEhVqlS5Yb9PP/1Up0+f1jPPPOPQHhsbqwsXLig+Pv66+x8+fFj//ve/FRkZWWDb2bNnNWTIEPn5+cnf318xMTGF/hsQExMjSerYsaNcXFw0ZMgQSVJAQIB8fX1v+Bry3Xffffroo49kGEaR9wFQcVEjUSMVhhqJGulGKkONdPfddxc45sMPPyxJOnDgQIFt1EiVFx8BoEw98sgj+s9//qP/+7//0/z581WzZk1JMt8Ehw0bpuXLl6t///567rnn9NVXX2nWrFk6cOCA1q1b53CsQ4cOacCAARoxYoRiYmK0dOlSPfroo0pISLjupwNXmz59uqZNm6auXbtqxowZ8vT01FdffaVt27apZ8+ekn4rBqZPn67IyEiNHDlSqampeuONN7R7927t2LFDHh4e5vFOnz6t+++/XwMHDtTvf/97BQUFmduWLl2qy5cv6+mnn5aXl5cCAgK0b98+3XHHHbrttts0ceJEVatWTWvWrFHfvn31/vvvm/8YF2bt2rW6ePGiRo4cqRo1amjXrl3661//qv/+979au3atJOkPf/iDjh8/rq1bt+qf//znDedj3759uvPOO2Wz2TR+/Hh5eHjozTff1N13363PPvtMnTt3dug/evRoVa9eXVOnTtWRI0e0YMECjRo1SqtXry7yzyDfgAED1KJFC82ePVvx8fF66aWXFBAQoDfffFM9evTQn//8Z61YsULPP/+8OnbsqO7du0v67fvs77zzjh5//HENHz5c586d09/+9jdFRUVp165datu2rQIDA/XGG29o5MiRevjhh/XII49Iklq3bm2ePycnR1FRUerWrZvmzp2rqlWrFjrOF154QR999JGGDh2qvXv3ytfXV1u2bNHbb7+tmTNnqk2bNkV6vf/85z/11ltvadeuXXrnnXckSV27djW3b9u2TWvWrNGoUaNUs2ZNs+B77bXX9OCDD+qJJ55QVlaWVq1apUcffVQbN25UdHS0uf+QIUO0Zs0aDRo0SF26dNFnn33msP1m7N27Vz179lRgYKCmTZumnJwcTZ061eH3Xfrt96l3795q3bq1ZsyYIS8vL33//ffasWNHqYzjanv27JEkdejQwaE9PDxcrq6u2rNnj37/+99fc/+dO3dKktq3b+/QbhiGHnroIX355ZcaMWKEWrRooXXr1pmFVb7JkyerWbNmeuuttzRjxgw1aNBAjRo1KtFrCQ8P1/z587Vv3z61bNmyRMcAUHFQI1EjXQ81EjXSzapoNVJaWpokmf8WXj1maqRKypnfF8St4VrrI6SkpBiSjGHDhjm0P//884YkY9u2bWZbvXr1DEnG+++/b7ZlZGQYISEhRrt27Yo8lkOHDhmurq7Gww8/bOTm5jpsy8vLMwzDMNLT0w1PT0+jZ8+eDn0WLlxoSDL+/ve/m2133XWXIclYsmSJw7Hyv0Nts9mM9PR0h2333nuv0apVK4fv3+fl5Rldu3Y1mjRpYrYVtj7C1d+pNgzDmDVrluHi4mL89NNPZtv11kfQVesF9O3b1/D09DR++OEHs+348eOGr6+v0b17d7Nt6dKlhiQjMjLSnCvDMIyxY8cabm5uxtmzZws9X2Hyv1P/9NNPm205OTlGnTp1DBcXF4fvtZ85c8aoUqWKERMT49D36vUFzpw5YwQFBRlPPfWU2Xa99RFiYmIMScbEiRML3VavXj2Htr179xqenp7GsGHDjDNnzhi33Xab0aFDh2KvNRETE2NUq1atQLskw9XV1di3b1+BbVf/3LOysoyWLVsaPXr0MNuSk5MNScaYMWMc+g4ZMqREa0QU9nvi7e3t8Hu2f/9+w83NzeF3bf78+YYk49SpU8U63/Vc7/c5NjbWcHNzK3RbYGCgMXDgwOse+4UXXjAkGefOnXNoX79+vSHJmDNnjtmWk5Nj3HnnnQXWR8j/29i9e/c1z1OUdWJ27txpSDJWr1593TEDqDyokaiRrkaNRI1UHJWhRso3dOhQw83NzfjPf/5TYBs1UuXFV/bgNPm374yLi3Nof+655ySpwGWktWvXdvhkzGazafDgwdqzZ4+ZqN/I+vXrlZeXpylTphS4U0T+JduffPKJsrKyNGbMGIc+w4cPl81mKzAuLy8vPfnkk4Wer1+/fuYnnZL066+/atu2bXrsscd07tw5/fLLL/rll190+vRpRUVF6dChQ/r555+vOf4rL8+9cOGCfvnlF3Xt2lWGYZifghRHbm6uPv74Y/Xt21cNGzY020NCQvS73/1OX375pex2u8M+Tz/9tMPl7Xfeeadyc3P1008/Ffv8w4YNM//bzc1NHTp0kGEYGjp0qNnu7++vZs2a6ccff3Tom7++QF5enn799Vfl5OSoQ4cO+uabb4o1hpEjRxapX8uWLTV9+nS98847ioqK0i+//KLly5eX6hoCd911l8LCwgq0X/lzP3PmjDIyMnTnnXc6vNb8S9evvix79OjRNz2u3NxcbdmyRX379lXdunXN9hYtWigqKsqhb/4aAR9++OENbw9cGi5dunTNtSa8vb0dvqpRmNOnT8vd3V0+Pj4O7Zs2bZK7u7vD74ebm1upzOe1VK9eXZL0yy+/lNk5AFQM1EjUSNRIjqiRiq8i1UgrV67U3/72Nz333HNq0qRJge3USJUXgRSc5qeffpKrq6saN27s0B4cHCx/f/8Cb96NGzcucFvTpk2bSlKht1IvzA8//CBXV9dC39CuHJckNWvWzKHd09NTDRs2LDCu22677Zr/2Ddo0MDh+ffffy/DMPTiiy8qMDDQ4TF16lRJ/1v8rzBHjx7VkCFDFBAQIB8fHwUGBuquu+6SJGVkZFxzv2s5deqULl68WOC1Sr+9kebl5enYsWMO7Ve+2Ur/e4MoysKIV7v6WH5+fvL29i5wqa6fn1+B4y9fvlytW7eWt7e3atSoocDAQMXHxxdrHtzd3VWnTp0i9x83bpzatGmjXbt2aerUqdf9PSqJq39f8m3cuFFdunSRt7e3AgICzEvtr3yt+X9PVx/j6r+vkjh16pQuXbpUaIFw9e/OgAEDdMcdd2jYsGEKCgrSwIEDtWbNmjIrvKpUqXLNhXAvX75cpDUWCvPTTz8pJCSkQBFW2N9KaTH+/7oIN7p9M4DKjxqJGokayRE1UvFVlBrpiy++0NChQxUVFaWXX3650D7USJUXa0jB6Sr6PyzX+8f86m35bzjPP/98gU9N8l3rzTE3N1f33Xeffv31V02YMEHNmzdXtWrV9PPPP2vIkCGWfNIi/fYJSGHy3yhu9lhFOf67776rIUOGqG/fvho3bpxq1aolNzc3zZo1Sz/88EORz+/l5VXgU+Dr+fHHH3Xo0CFJv60XUNoK+1364osv9OCDD6p79+5avHixQkJC5OHhoaVLl2rlypWlPoabVaVKFX3++ef69NNPFR8fr4SEBK1evVo9evTQxx9/fM2fb0mFhIQoNzdX6enpqlWrltmelZWl06dPq3bt2tfdv0aNGsrJydG5c+eKtQB5Wcj/H4rC1k4AcGuiRnJEjUSNdCVqpOurCDXSt99+qwcffFAtW7bUe++9d82r6qiRKi8CKZS5axVT9erVU15eng4dOqQWLVqY7SdPntTZs2dVr149h/75n5xdebz//Oc/kuRwt4/radSokfLy8rR//361bdv2muOSpNTUVIdLtLOysnT48OFC7zRRVPnH8/DwKPZx9u7dq//85z9avny5Bg8ebLZv3bq1QN+iFrCBgYGqWrWqUlNTC2w7ePCgXF1dFRoaWqxxWuG9995Tw4YN9cEHHzi81vxPUPOVZiGfl5enIUOGyGazacyYMXrllVfUv39/cyHQsvL+++/L29tbW7ZscbjN8tKlSx365f89HT582OFTuu+///6mxxAYGKgqVaqYheaVCvvdcXV11b333qt7771X8+bN0yuvvKLJkyfr008/vam/n8Lk/x1//fXXeuCBB8z2r7/+Wnl5edf8O8/XvHlzSb/dSebKxVzr1aunxMREnT9/3uETwMJeb2k5fPiwJDn8ewigcqNG+h9qpNJBjUSNlK+810g//PCDevXqpVq1amnTpk0Frri6EjVS5cVX9lDmqlWrJkkFbgWa/w/jggULHNrnzZsnSQXufHH8+HGHu8rY7Xb94x//UNu2bRUcHFyksfTt21eurq6aMWNGgU/L8j9dioyMlKenp15//XWHT5z+9re/KSMj46buyFGrVi3dfffdevPNN3XixIkC2693a+D8T02uHJNhGHrttdcK9L3WnBd2zJ49e+rDDz90uKT/5MmTWrlypbp16yabzXbdYzhDYXPx1VdfKSkpyaFf/h1hbjQPRTFv3jzt3LlTb731lmbOnKmuXbtq5MiRZf5ddjc3N7m4uCg3N9dsO3LkiNavX+/QL//T5MWLFzu0//Wvfy2VMURFRWn9+vU6evSo2X7gwAFt2bLFoe+vv/5aYP/8gufqW5WXhh49eiggIEBvvPGGQ/sbb7yhqlWr3vDvNSIiQtJvxdmVHnjgAeXk5DgcNzc3t1Tm81qSk5Pl5+en22+/vczOAaB8oUb6H2qk0kGNRI2UrzzXSGlpaerZs6dcXV21ZcsWh/XkCkONVHlxhRTKXHh4uKTfbv05cOBAeXh4qE+fPmrTpo1iYmL01ltv6ezZs7rrrru0a9cuLV++XH379tU999zjcJymTZtq6NCh2r17t4KCgvT3v/9dJ0+eLPApyPU0btxYkydP1syZM3XnnXfqkUcekZeXl3bv3q3atWtr1qxZCgwM1KRJkzR9+nT16tVLDz74oFJTU7V48WJ17NjxurdHLYpFixapW7duatWqlYYPH66GDRvq5MmTSkpK0n//+199++23he7XvHlzNWrUSM8//7x+/vln2Ww2vf/++4WuS5A/53/84x8VFRUlNzc3DRw4sNDjvvTSS9q6dau6deumZ555Ru7u7nrzzTeVmZmpOXPm3NRrLSu9e/fWBx98oIcffljR0dE6fPiwlixZorCwMJ0/f97sV6VKFYWFhWn16tVq2rSpAgIC1LJly2LfLvbAgQN68cUXNWTIEPXp00eStGzZMrVt21bPPPOM1qxZU6qv70rR0dGaN2+eevXqpd/97ndKT0/XokWL1LhxY/373/82+4WHh6tfv35asGCBTp8+bd7SOP8T8pv9JHT69OlKSEjQnXfeqWeeeUY5OTn661//qttvv91hHDNmzNDnn3+u6Oho1atXT+np6Vq8eLHq1Kmjbt26Ffl8P/30k3lL7vxC6KWXXpL02ydzgwYNkvTbz3jmzJmKjY3Vo48+qqioKH3xxRd699139fLLLysgIOC652nYsKFatmypTz75RE899ZTZ3qdPH91xxx2aOHGijhw5orCwMH3wwQfFWn8jIyPDLM7yb+m8cOFC+fv7y9/fX6NGjXLov3XrVvXp06fCf0UHQNFRIzmiRrp51EjUSBWhRurVq5d+/PFHjR8/Xl9++aW+/PJLc1tQUJDuu+8+h/7USJWYdTf0w61s5syZxm233Wa4uro63N44OzvbmD59utGgQQPDw8PDCA0NNSZNmuRwu1/D+O2WxtHR0caWLVuM1q1bG15eXkbz5s2NtWvXlmg8f//734127doZXl5eRvXq1Y277rrL2Lp1q0OfhQsXGs2bNzc8PDyMoKAgY+TIkcaZM2cc+tx1113G7bffXuD4+bc0fvXVVws9/w8//GAMHjzYCA4ONjw8PIzbbrvN6N27t/Hee++ZfQq7pfH+/fuNyMhIw8fHx6hZs6YxfPhw49tvvy1wi9WcnBxj9OjRRmBgoOHi4uJwO1gVcnvbb775xoiKijJ8fHyMqlWrGvfcc4+xc+dOhz7Xum1rYeO8kfxbGl9929tr3e736nnOy8szXnnlFaNevXqGl5eX0a5dO2Pjxo2F3op4586dRnh4uOHp6enw2q91rvxt+cfJyckxOnbsaNSpU6fAbZtfe+21Yt+C9nq3NI6NjS10n7/97W9GkyZNzN/7pUuXmnN4pQsXLhixsbFGQECA4ePjY/Tt29dITU01JDncJrooCvs9+eyzz8y5bNiwobFkyZIC40hMTDQeeugho3bt2oanp6dRu3Zt4/HHHy/0Fr7Xk/97VdjjrrvuKtD/rbfeMpo1a2Z4enoajRo1MubPn+9w6+3rmTdvnuHj41Pg1tGnT582Bg0aZNhsNsPPz88YNGiQsWfPniLf0jj/34HCHlf/nh44cMCQZHzyySdFGjOAyoMayRE1EjXS1aiRHFWGGula4y/sNVAjVW4uhlGCVfYAi9WvX18tW7bUxo0bnT0UoEJJSUlRu3bt9O677+qJJ55w9nDKpYyMDDVs2FBz5sxxuJ22lcaMGaPPP/9cycnJfPoHoFiokYCSoUa6MWoklDXWkAKASuLSpUsF2hYsWCBXV1d1797dCSOqGPz8/DR+/Hi9+uqrlt2J6UqnT5/WO++8o5deeolCCwCAMkCNVDLUSChrXCGFCqEon/6lpaVd9xhVqlSRn59faQ8NVzh//rzD+gSFCQwMLPXb2pYHp06dclhU82qenp43/K7+zZo+fbqSk5N1zz33yN3dXZs3b9bmzZv19NNP680331Rubu51F4WVJB8fn+ve5eRmlYd5AoDKhBqpYqBGoka6kfIwT4DlnPuNQaBo8tdHuB5d57vIkoyYmBhrBnsLy/+u/PUe+WtjVDb16tUr1vfhy8LHH39s3HHHHUb16tUNDw8Po1GjRsa0adOM7OxswzCuv6ZR/uPqNRFKW3mYJwCoTKiRKgZqJGqkGykP8wRYjSukUGl88skn191eu3ZthYWFWTSaW9OPP/6oH3/88bp9unXrJm9vb4tGZJ0dO3YUejl4vurVq5t39nGWy5cvO9zFpDANGzZUw4YNy2wMFWGeAKCyoUZyPmqk8v3eT40EOAeBFAAAAAAAACzFouYAAAAAAACwlLuzB+BMeXl5On78uHx9fVm1HwCAW4RhGDp37pxq164tV1c+mysMNRIAALceq2ukWzqQOn78uEJDQ509DAAA4ATHjh1TnTp1nD2McokaCQCAW5dVNdItHUj5+vpK+m2ybTabk0cDAACsYLfbFRoaatYBKIgaCQCAW4/VNdItHUjlX4Jus9kotgAAuMXwVbRro0YCAODWZVWNxMIJAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABL3dJrSAEAcD25ubnKzs529jBQTB4eHnJzc3P2MAAAqLSokSqm8lYjEUgBAHAVwzCUlpams2fPOnsoKCF/f38FBwezcDkAAKWIGqniK081EoEUAABXyS+0atWqpapVq5aLN2wUjWEYunjxotLT0yVJISEhTh4RAACVBzVSxVUeayQCKQAArpCbm2sWWjVq1HD2cFACVapUkSSlp6erVq1a5erSdAAAKipqpIqvvNVILGoOAMAV8tdDqFq1qpNHgpuR//NjfQsAAEoHNVLlUJ5qJAIpAAAKwSXoFRs/PwAAygbvsRVbefr5EUgBAAAAAADAUgRSAAAAAAAAsBSLmgMAUETZCV9adi6PXt2K3PdGl15PnTpV06ZNu8kRlYyLi4vWrVunvn37lvgYb731llauXKlvvvlG586d05kzZ+Tv719qYwQAADfHyhpJok7K9+uvv2rq1Kn6+OOPdfToUQUGBqpv376aOXOm/Pz8SnewZYBAqgwV9kdZnD8cAACK4sSJE+Z/r169WlOmTFFqaqrZ5uPjU6zjZWVlydPTs9TGd7MuXryoXr16qVevXpo0aZKzh4NSQI0EALBKZa6Tjh8/ruPHj2vu3LkKCwvTTz/9pBEjRuj48eN67733nD28G+IrewAAVHDBwcHmw8/PTy4uLubzCxcu6IknnlBQUJB8fHzUsWNHffLJJw77169fXzNnztTgwYNls9n09NNPS5LefvtthYaGqmrVqnr44Yc1b968Alcmffjhh2rfvr28vb3VsGFDTZ8+XTk5OeZxJenhhx+Wi4uL+fzbb7/VPffcI19fX9lsNoWHh+vrr7++5usbM2aMJk6cqC5dupTOhAEAgFtGZa6TWrZsqffff199+vRRo0aN1KNHD7388sv66KOPzPOUZwRSAABUYufPn9cDDzygxMRE7dmzR7169VKfPn109OhRh35z585VmzZttGfPHr344ovasWOHRowYoWeffVYpKSm677779PLLLzvs88UXX2jw4MF69tlntX//fr355ptatmyZ2W/37t2SpKVLl+rEiRPm8yeeeEJ16tTR7t27lZycrIkTJ8rDw8OC2QAAAPifylgnZWRkyGazyd29/H8hrvyPEAAAlFibNm3Upk0b8/nMmTO1bt06bdiwQaNGjTLbe/Tooeeee858PnnyZN1///16/vnnJUlNmzbVzp07tXHjRrPP9OnTNXHiRMXExEiSGjZsqJkzZ2r8+PGaOnWqAgMDJUn+/v4KDg429zt69KjGjRun5s2bS5KaNGlSBq8cAADg+ipbnfTLL79o5syZ5lVc5R1XSAEAUImdP39ezz//vFq0aCF/f3/5+PjowIEDBT7569Chg8Pz1NRUderUyaHt6ufffvutZsyYIR8fH/MxfPhwnThxQhcvXrzmmOLi4jRs2DBFRkZq9uzZ+uGHH27yVQIAABRfZaqT7Ha7oqOjFRYW5rRF2ouLQAoAgErs+eef17p16/TKK6/oiy++UEpKilq1aqWsrCyHftWqVSv2sc+fP6/p06crJSXFfOzdu1eHDh2St7f3NfebNm2a9u3bp+joaG3btk1hYWFat25dsc8PAABwMypLnXTu3Dn16tVLvr6+WrduXYVZCoGv7AEAUInt2LFDQ4YM0cMPPyzpt+LoyJEjN9yvWbNm5loG+a5+3r59e6Wmpqpx48bXPI6Hh4dyc3MLtDdt2lRNmzbV2LFj9fjjj2vp0qXmGAEAAKxQGeoku92uqKgoeXl5acOGDdcNu8obAikAACqxJk2a6IMPPlCfPn3k4uKiF198UXl5eTfcb/To0erevbvmzZunPn36aNu2bdq8ebNcXFzMPlOmTFHv3r1Vt25d9e/fX66urvr222/13Xff6aWXXpL02x1kEhMTdccdd8jLy0ve3t4aN26c+vfvrwYNGui///2vdu/erX79+l1zLGlpaUpLS9P3338vSdq7d698fX1Vt25dBQQE3OQMAQCAW1VFr5Psdrt69uypixcv6t1335XdbpfdbpckBQYGys3NrRRmqezwlT0AACqxefPmqXr16uratav69OmjqKgotW/f/ob73XHHHVqyZInmzZunNm3aKCEhQWPHjnX41C0qKkobN27Uxx9/rI4dO6pLly6aP3++6tWrZ/b5y1/+oq1btyo0NFTt2rWTm5ubTp8+rcGDB6tp06Z67LHHdP/992v69OnXHMuSJUvUrl07DR8+XJLUvXt3tWvXThs2bLiJmQEAALe6il4nffPNN/rqq6+0d+9eNW7cWCEhIebj2LFjNz9BZczFMAzD2YNwFrvdLj8/P/O2iKUtO+HLAm0evbqV+nkAAKXn8uXLOnz4sBo0aFChLnm2wvDhw3Xw4EF98cUXzh7KDV3v51jW7/+VATUSAOBq1EjXV1HqpPJUI/GVPQAAUKi5c+fqvvvuU7Vq1bR582YtX75cixcvdvawAAAAnI466eYRSAEAgELt2rVLc+bM0blz59SwYUO9/vrrGjZsmLOHBQAA4HTUSTePQAoAABRqzZo1zh4CAABAuUSddPNY1BwAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCl3Zw8AAICK4oev37TsXI06/KFY/YcMGaLly5dLktzd3RUQEKDWrVvr8ccf15AhQ+TqWnE/g9q3b5+mTJmi5ORk/fTTT5o/f77GjBnj7GEBAID/z8oaSaJOutLbb7+tf/zjH/ruu+8kSeHh4XrllVfUqVMnJ4/sxirurAMAAAe9evXSiRMndOTIEW3evFn33HOPnn32WfXu3Vs5OTnOHl6JXbx4UQ0bNtTs2bMVHBzs7OEAAIAKqLLWSdu3b9fjjz+uTz/9VElJSQoNDVXPnj31888/O3toN0QgBQBAJeHl5aXg4GDddtttat++vf70pz/pww8/1ObNm7Vs2TKz39mzZzVs2DAFBgbKZrOpR48e+vbbbx2O9dFHH6ljx47y9vZWzZo19fDDD5vbzpw5o8GDB6t69eqqWrWq7r//fh06dEiSdOHCBdlsNr333nsOx1u/fr2qVaumc+fOKSsrS6NGjVJISIi8vb1Vr149zZo165qvq2PHjnr11Vc1cOBAeXl5lcJMAQCAW01lrZNWrFihZ555Rm3btlXz5s31zjvvKC8vT4mJiaUwa2WLQAoAgEqsR48eatOmjT744AOz7dFHH1V6ero2b96s5ORktW/fXvfee69+/fVXSVJ8fLwefvhhPfDAA9qzZ48SExMdLvseMmSIvv76a23YsEFJSUkyDEMPPPCAsrOzVa1aNQ0cOFBLly51GMfSpUvVv39/+fr66vXXX9eGDRu0Zs0apaamasWKFapfv74l8wEAAJCvMtZJFy9eVHZ2tgICAm5ucizAGlIAAFRyzZs317///W9J0pdffqldu3YpPT3dvNpo7ty5Wr9+vd577z09/fTTevnllzVw4EBNnz7dPEabNm0kSYcOHdKGDRu0Y8cOde3aVdJvn8yFhoZq/fr1evTRRzVs2DB17dpVJ06cUEhIiNLT07Vp0yZ98sknkqSjR4+qSZMm6tatm1xcXFSvXj0rpwMAAMBU2eqkCRMmqHbt2oqMjLzpuSlrXCEFAEAlZxiGXFxcJEnffvutzp8/rxo1asjHx8d8HD58WD/88IMkKSUlRffee2+hxzpw4IDc3d3VuXNns61GjRpq1qyZDhw4IEnq1KmTbr/9dnPx0HfffVf16tVT9+7dJf32yWFKSoqaNWumP/7xj/r444/L7LUDAABcT2Wqk2bPnq1Vq1Zp3bp18vb2Lv5kWIwrpAAAqOQOHDigBg0aSJLOnz+vkJAQbd++vUA/f39/SVKVKlVu+pzDhg3TokWLNHHiRC1dulRPPvmkWey1b99ehw8f1ubNm/XJJ5/oscceU2RkZIH1FAAAAMpaZamT5s6dq9mzZ+uTTz5R69atb3qMVuAKKQAAKrFt27Zp79696tevn6Tfipy0tDS5u7urcePGDo+aNWtKklq3bn3NhTBbtGihnJwcffXVV2bb6dOnlZqaqrCwMLPt97//vX766Se9/vrr2r9/v2JiYhyOY7PZNGDAAL399ttavXq13n//fXNtBgAAACtUljppzpw5mjlzphISEtShQ4cSz4fVuEIKAIBKIjMzU2lpacrNzdXJkyeVkJCgWbNmqXfv3ho8eLAkKTIyUhEREerbt6/mzJmjpk2b6vjx4+YCnR06dNDUqVN17733qlGjRho4cKBycnK0adMmTZgwQU2aNNFDDz2k4cOH680335Svr68mTpyo2267TQ899JA5lurVq+uRRx7RuHHj1LNnT9WpU8fcNm/ePIWEhKhdu3ZydXXV2rVrFRwcbH7yeLWsrCzt37/f/O+ff/5ZKSkp8vHxUePGjctuQgEAQKVRWeukP//5z5oyZYpWrlyp+vXrKy0tTZLMrxuWZ1whBQBAJZGQkKCQkBDVr19fvXr10qeffqrXX39dH374odzc3CRJLi4u2rRpk7p3764nn3xSTZs21cCBA/XTTz8pKChIknT33Xdr7dq12rBhg9q2basePXpo165d5nmWLl2q8PBw9e7dWxERETIMQ5s2bZKHh4fDeIYOHaqsrCw99dRTDu2+vr6aM2eOOnTooI4dO+rIkSPatGmTXF0LL0uOHz+udu3aqV27djpx4oTmzp2rdu3aadiwYaU5fQAAoBKrrHXSG2+8oaysLPXv318hISHmY+7cuaU5fWXCxTAMw9mDcBa73S4/Pz9lZGTIZrOV+vGzE74s0ObRq1upnwcAUHouX76sw4cPq0GDBhViMcjy7J///KfGjh2r48ePy9PT09JzX+/nWNbv/5UBNRIA4GrUSKXLWXVSeaqR+MoeAAAoVRcvXtSJEyc0e/Zs/eEPf7A8jAIAACivqJP+h6/sAQCAUjVnzhw1b95cwcHBmjRpkrOHAwAAUG5QJ/0PgRQAAChV06ZNU3Z2thITE8v9YpoAAABWok76HwIpAAAAAAAAWIpACgCAQtzC9/yoFPj5AQBQNniPrdjK08+PQAoAgCvk35L34sWLTh4Jbkb+z+/qWywDAICSoUaqHMpTjXRTgdTs2bPl4uKiMWPGmG2XL19WbGysatSoIR8fH/Xr108nT5502O/o0aOKjo5W1apVVatWLY0bN045OTkOfbZv36727dvLy8tLjRs31rJlywqcf9GiRapfv768vb3VuXNn7dq162ZeDgAAcnNzk7+/v9LT03X69GldunRJly9f5lFBHpcuXdLp06eVnp4uf39/ubm5OeX3iBoJAFDZUCNV7Ed5qZGu5F7SHXfv3q0333xTrVu3dmgfO3as4uPjtXbtWvn5+WnUqFF65JFHtGPHDklSbm6uoqOjFRwcrJ07d+rEiRMaPHiwPDw89Morr0iSDh8+rOjoaI0YMUIrVqxQYmKihg0bppCQEEVFRUmSVq9erbi4OC1ZskSdO3fWggULFBUVpdTUVNWqVaukLwsAAAUHB0uS0tPTnTwSlJS/v7/5c7QaNRIAoLKiRqr4nFkjXc3FKMEXCM+fP6/27dtr8eLFeumll9S2bVstWLBAGRkZCgwM1MqVK9W/f39J0sGDB9WiRQslJSWpS5cu2rx5s3r37q3jx48rKChIkrRkyRJNmDBBp06dkqenpyZMmKD4+Hh999135jkHDhyos2fPKiEhQZLUuXNndezYUQsXLpQk5eXlKTQ0VKNHj9bEiROL9Drsdrv8/PyUkZEhm81W3Gm4oeyELwu0efTqVurnAQCUjdzcXGVnZzt7GCgmDw+P637qV5bv/9RIRUONBAAVGzVSxeTMGqkwJbpCKjY2VtHR0YqMjNRLL71kticnJys7O1uRkZFmW/PmzVW3bl2z2EpKSlKrVq3MQkuSoqKiNHLkSO3bt0/t2rVTUlKSwzHy++Rf9p6VlaXk5GRNmjTJ3O7q6qrIyEglJSWV5CUBAFCAm5tbubicGRUHNRIA4FZAjYTSUOxAatWqVfrmm2+0e/fuAtvS0tLk6ekpf39/h/agoCClpaWZfa4stPK352+7Xh+73a5Lly7pzJkzys3NLbTPwYMHrzn2zMxMZWZmms/tdvsNXi0AAEDRUCMBAAAUXbEWNT927JieffZZrVixQt7e3mU1pjIza9Ys+fn5mY/Q0FBnDwkAAFQC1EgAAADFU6xAKjk5Wenp6Wrfvr3c3d3l7u6uzz77TK+//rrc3d0VFBSkrKwsnT171mG/kydPmotmBQcHF7ijTP7zG/Wx2WyqUqWKatasKTc3t0L7XG9xrkmTJikjI8N8HDt2rDgvHwAAoFDUSAAAAMVTrEDq3nvv1d69e5WSkmI+OnTooCeeeML8bw8PDyUmJpr7pKam6ujRo4qIiJAkRUREaO/evQ6r8m/dulU2m01hYWFmnyuPkd8n/xienp4KDw936JOXl6fExESzT2G8vLxks9kcHgAAADeLGgkAAKB4irWGlK+vr1q2bOnQVq1aNdWoUcNsHzp0qOLi4hQQECCbzabRo0crIiJCXbp0kST17NlTYWFhGjRokObMmaO0tDS98MILio2NlZeXlyRpxIgRWrhwocaPH6+nnnpK27Zt05o1axQfH2+eNy4uTjExMerQoYM6deqkBQsW6MKFC3ryySdvakIAAACKixoJAACgeEp0l73rmT9/vlxdXdWvXz9lZmYqKipKixcvNre7ublp48aNGjlypCIiIlStWjXFxMRoxowZZp8GDRooPj5eY8eO1WuvvaY6deronXfeUVRUlNlnwIABOnXqlKZMmaK0tDS1bdtWCQkJBRbxBAAAKA+okQAAAP7HxTAMw9mDcBa73S4/Pz9lZGSUyaXp2QlfFmjz6NWt1M8DAACKrqzf/ysDaiQAAG49VtdIxVpDCgAAAAAAALhZBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEu5O3sAldmRs5sLtDVRNyeMBAAAoPygRgIAAFwhBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSxQqk3njjDbVu3Vo2m002m00RERHavHmzuf3y5cuKjY1VjRo15OPjo379+unkyZMOxzh69Kiio6NVtWpV1apVS+PGjVNOTo5Dn+3bt6t9+/by8vJS48aNtWzZsgJjWbRokerXry9vb2917txZu3btKs5LAQAAKDXUSAAAAMVTrECqTp06mj17tpKTk/X111+rR48eeuihh7Rv3z5J0tixY/XRRx9p7dq1+uyzz3T8+HE98sgj5v65ubmKjo5WVlaWdu7cqeXLl2vZsmWaMmWK2efw4cOKjo7WPffco5SUFI0ZM0bDhg3Tli1bzD6rV69WXFycpk6dqm+++UZt2rRRVFSU0tPTb3Y+AAAAio0aCQAAoHhcDMMwbuYAAQEBevXVV9W/f38FBgZq5cqV6t+/vyTp4MGDatGihZKSktSlSxdt3rxZvXv31vHjxxUUFCRJWrJkiSZMmKBTp07J09NTEyZMUHx8vL777jvzHAMHDtTZs2eVkJAgSercubM6duyohQsXSpLy8vIUGhqq0aNHa+LEiUUeu91ul5+fnzIyMmSz2W5mGgp1aNXkAm1NBr5c6ucBAABFV9bv//moka6NGgkAgPLHqhopX4nXkMrNzdWqVat04cIFRUREKDk5WdnZ2YqMjDT7NG/eXHXr1lVSUpIkKSkpSa1atTILLUmKioqS3W43P0FMSkpyOEZ+n/xjZGVlKTk52aGPq6urIiMjzT4AAADOQo0EAABwY+7F3WHv3r2KiIjQ5cuX5ePjo3Xr1iksLEwpKSny9PSUv7+/Q/+goCClpaVJktLS0hwKrfzt+duu18dut+vSpUs6c+aMcnNzC+1z8ODB6449MzNTmZmZ5nO73V70Fw4AAHAd1EgAAABFV+wrpJo1a6aUlBR99dVXGjlypGJiYrR///6yGFupmzVrlvz8/MxHaGios4cEAAAqCWokAACAoit2IOXp6anGjRsrPDxcs2bNUps2bfTaa68pODhYWVlZOnv2rEP/kydPKjg4WJIUHBxc4I4y+c9v1Mdms6lKlSqqWbOm3NzcCu2Tf4xrmTRpkjIyMszHsWPHivvyAQAACkWNBAAAUHQlXkMqX15enjIzMxUeHi4PDw8lJiaa21JTU3X06FFFRERIkiIiIrR3716HO71s3bpVNptNYWFhZp8rj5HfJ/8Ynp6eCg8Pd+iTl5enxMREs8+1eHl5mbdjzn8AAACUBWokAACAayvWGlKTJk3S/fffr7p16+rcuXNauXKltm/fri1btsjPz09Dhw5VXFycAgICZLPZNHr0aEVERKhLly6SpJ49eyosLEyDBg3SnDlzlJaWphdeeEGxsbHy8vKSJI0YMUILFy7U+PHj9dRTT2nbtm1as2aN4uPjzXHExcUpJiZGHTp0UKdOnbRgwQJduHBBTz75ZClODQAAQNFQIwEAABRPsQKp9PR0DR48WCdOnJCfn59at26tLVu26L777pMkzZ8/X66ururXr58yMzMVFRWlxYsXm/u7ublp48aNGjlypCIiIlStWjXFxMRoxowZZp8GDRooPj5eY8eO1WuvvaY6deronXfeUVRUlNlnwIABOnXqlKZMmaK0tDS1bdtWCQkJBRbxBAAAsAI1EgAAQPG4GIZhOHsQzmK32+Xn56eMjIwyuTT90KrJBdqaDHy51M8DAACKrqzf/ysDaiQAAG49VtdIN72GFAAAAAAAAFAcBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALFWsQGrWrFnq2LGjfH19VatWLfXt21epqakOfS5fvqzY2FjVqFFDPj4+6tevn06ePOnQ5+jRo4qOjlbVqlVVq1YtjRs3Tjk5OQ59tm/frvbt28vLy0uNGzfWsmXLCoxn0aJFql+/vry9vdW5c2ft2rWrOC8HAACgVFAjAQAAFE+xAqnPPvtMsbGx+te//qWtW7cqOztbPXv21IULF8w+Y8eO1UcffaS1a9fqs88+0/Hjx/XII4+Y23NzcxUdHa2srCzt3LlTy5cv17JlyzRlyhSzz+HDhxUdHa177rlHKSkpGjNmjIYNG6YtW7aYfVavXq24uDhNnTpV33zzjdq0aaOoqCilp6ffzHwAAAAUGzUSAABA8bgYhmGUdOdTp06pVq1a+uyzz9S9e3dlZGQoMDBQK1euVP/+/SVJBw8eVIsWLZSUlKQuXbpo8+bN6t27t44fP66goCBJ0pIlSzRhwgSdOnVKnp6emjBhguLj4/Xdd9+Z5xo4cKDOnj2rhIQESVLnzp3VsWNHLVy4UJKUl5en0NBQjR49WhMnTizS+O12u/z8/JSRkSGbzVbSabimQ6smF2hrMvDlUj8PAAAourJ+/5eokW6EGgkAgPLHihrpSje1hlRGRoYkKSAgQJKUnJys7OxsRUZGmn2aN2+uunXrKikpSZKUlJSkVq1amYWWJEVFRclut2vfvn1mnyuPkd8n/xhZWVlKTk526OPq6qrIyEizDwAAgLNQIwEAAFyfe0l3zMvL05gxY3THHXeoZcuWkqS0tDR5enrK39/foW9QUJDS0tLMPlcWWvnb87ddr4/dbtelS5d05swZ5ebmFtrn4MGD1xxzZmamMjMzzed2u70YrxgAAODGqJEAAABurMRXSMXGxuq7777TqlWrSnM8ZWrWrFny8/MzH6Ghoc4eEgAAqGSokQAAAG6sRIHUqFGjtHHjRn366aeqU6eO2R4cHKysrCydPXvWof/JkycVHBxs9rn6jjL5z2/Ux2azqUqVKqpZs6bc3NwK7ZN/jMJMmjRJGRkZ5uPYsWPFe+EAAADXQY0EAABQNMUKpAzD0KhRo7Ru3Tpt27ZNDRo0cNgeHh4uDw8PJSYmmm2pqak6evSoIiIiJEkRERHau3evw51etm7dKpvNprCwMLPPlcfI75N/DE9PT4WHhzv0ycvLU2JiotmnMF5eXrLZbA4PAACAm0WNBAAAUDzFWkMqNjZWK1eu1IcffihfX19zPQM/Pz9VqVJFfn5+Gjp0qOLi4hQQECCbzabRo0crIiJCXbp0kST17NlTYWFhGjRokObMmaO0tDS98MILio2NlZeXlyRpxIgRWrhwocaPH6+nnnpK27Zt05o1axQfH2+OJS4uTjExMerQoYM6deqkBQsW6MKFC3ryySdLa24AAACKhBoJAACgeIoVSL3xxhuSpLvvvtuhfenSpRoyZIgkaf78+XJ1dVW/fv2UmZmpqKgoLV682Ozr5uamjRs3auTIkYqIiFC1atUUExOjGTNmmH0aNGig+Ph4jR07Vq+99prq1Kmjd955R1FRUWafAQMG6NSpU5oyZYrS0tLUtm1bJSQkFFjEEwAAoKxRIwEAABSPi2EYhrMH4Sx2u11+fn7KyMgok0vTD62aXKCtycCXS/08AACg6Mr6/b8yoEYCAODWY3WNVOK77AEAAAAAAAAlQSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFLFDqQ+//xz9enTR7Vr15aLi4vWr1/vsN0wDE2ZMkUhISGqUqWKIiMjdejQIYc+v/76q/4fe3ceVkXd/3/8dUAWEQFXlsI1c881t0xLuZU0U7PUssRu0xat2yxLM7fUNPO2bs2y+pZ2t2lWmpWS+20at7tmbqnhUgqmBqgkCHx+f/jj3B4BBYSZAzwf18V1dWY+Z+b9mQOeV+8zZ6Zfv34KCAhQUFCQBg4cqHPnzrmM+emnn3T77bfL19dX4eHhmjZtWpZaFi5cqDp16sjX11cNGzbU0qVL8zodAACAAkFGAgAAyL08N6TOnz+vRo0aafbs2dmunzZtmmbOnKk5c+Zo48aNKlOmjDp37qwLFy44x/Tr10+7d+/WihUr9O2332rdunUaPHiwc31SUpI6deqkqlWrauvWrXrttdc0fvx4vfvuu84xP/74ox544AENHDhQ27dvV48ePdSjRw/9/PPPeZ0SAADAdSMjAQAA5J7DGGPy/WSHQ4sWLVKPHj0kXfrkLywsTM8++6yee+45SVJiYqKCg4M1b9489e3bV3v37lW9evW0efNmNW/eXJIUHR2tLl266LffflNYWJjefvttjR49WnFxcfL29pYkjRw5UosXL9a+ffskSX369NH58+f17bffOutp1aqVGjdurDlz5uSq/qSkJAUGBioxMVEBAQH5PQw5OjB/dJZltfpOLvD9AACA3Cvs93+JjHQtZCQAANyPFRnpcgV6DanY2FjFxcUpIiLCuSwwMFAtW7ZUTEyMJCkmJkZBQUHOoCVJERER8vDw0MaNG51j2rVr5wxaktS5c2ft379ff/75p3PM5fvJHJO5HwAAAHdBRgIAAHBVqiA3FhcXJ0kKDg52WR4cHOxcFxcXp8qVK7sWUaqUypcv7zKmevXqWbaRua5cuXKKi4u76n6yk5KSopSUFOfjpKSkvEwPAAAgX8hIAAAArkrUXfamTJmiwMBA5094eLjdJQEAANiOjAQAAKxWoA2pkJAQSVJ8fLzL8vj4eOe6kJAQnTx50mV9Wlqazpw54zImu21cvo+cxmSuz86oUaOUmJjo/Dl27FhepwgAAJBnZCQAAABXBdqQql69ukJCQrRq1SrnsqSkJG3cuFGtW7eWJLVu3VoJCQnaunWrc8zq1auVkZGhli1bOsesW7dOFy9edI5ZsWKFateurXLlyjnHXL6fzDGZ+8mOj4+PAgICXH4AAAAKGxkJAADAVZ4bUufOndOOHTu0Y8cOSZcu0rljxw4dPXpUDodDw4YN06RJk7RkyRLt2rVL/fv3V1hYmPMuM3Xr1lVkZKQGDRqkTZs2acOGDRo6dKj69u2rsLAwSdKDDz4ob29vDRw4ULt379aCBQv0r3/9S8OHD3fW8Y9//EPR0dH65z//qX379mn8+PHasmWLhg4dev1HBQAAII/ISAAAALmX54uab9myRXfeeafzcWYAioqK0rx58/T888/r/PnzGjx4sBISEtS2bVtFR0fL19fX+ZxPPvlEQ4cOVceOHeXh4aFevXpp5syZzvWBgYFavny5hgwZombNmqlixYoaO3asBg8e7BzTpk0bffrpp3rppZf04osvqlatWlq8eLEaNGiQrwMBAABwPchIAAAAuecwxhi7i7BLUlKSAgMDlZiYWCinph+YPzrLslp9Jxf4fgAAQO4V9vt/cUBGAgCg5LE6I5Wou+wBAAAAAADAfjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABLFfmG1OzZs1WtWjX5+vqqZcuW2rRpk90lAQAA2I6MBAAA3FmRbkgtWLBAw4cP17hx47Rt2zY1atRInTt31smTJ+0uDQAAwDZkJAAA4O6KdENqxowZGjRokB555BHVq1dPc+bMkZ+fnz744AO7SwMAALANGQkAALi7ItuQSk1N1datWxUREeFc5uHhoYiICMXExNhYGQAAgH3ISAAAoCgoZXcB+XXq1Cmlp6crODjYZXlwcLD27duX7XNSUlKUkpLifJyYmChJSkpKKpQazyWnZFlWWPsCAAC5k/lebIyxuZLCQUYCAAD5YXVGKrINqfyYMmWKJkyYkGV5eHi4dUUM/Kd1+wIAADk6e/asAgMD7S7DLZCRAABAJqsyUpFtSFWsWFGenp6Kj493WR4fH6+QkJBsnzNq1CgNHz7c+TgjI0NnzpxRhQoV5HA4CrS+pKQkhYeH69ixYwoICCjQbSNnHHd7cNztwXG3B8fdHgV53I0xOnv2rMLCwgqoOvdCRkJOOPb24djbh2NvH469ffJ77K3OSEW2IeXt7a1mzZpp1apV6tGjh6RL4WnVqlUaOnRots/x8fGRj4+Py7KgoKBCrTMgIIA/Phtw3O3BcbcHx90eHHd7FNRxL85nRpGRcC0ce/tw7O3DsbcPx94++Tn2VmakItuQkqThw4crKipKzZs3V4sWLfTGG2/o/PnzeuSRR+wuDQAAwDZkJAAA4O6KdEOqT58++uOPPzR27FjFxcWpcePGio6OznIRTwAAgJKEjAQAANxdkW5ISdLQoUNzPP3cTj4+Pho3blyW099RuDju9uC424Pjbg+Ouz047nlHRsKVOPb24djbh2NvH469fYrKsXeY4nrPYwAAAAAAALglD7sLAAAAAAAAQMlCQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSF2H2bNnq1q1avL19VXLli21adOmq45fuHCh6tSpI19fXzVs2FBLly61qNLiJS/H/b333tPtt9+ucuXKqVy5coqIiLjm64Ts5fX3PdP8+fPlcDjUo0ePwi2wmMrrcU9ISNCQIUMUGhoqHx8f3Xzzzfxbkw95Pe5vvPGGateurdKlSys8PFzPPPOMLly4YFG1xcO6devUrVs3hYWFyeFwaPHixdd8ztq1a9W0aVP5+Pjopptu0rx58wq9TuQOGck+5CT7kJXsQ16yD5nJHsUmNxnky/z58423t7f54IMPzO7du82gQYNMUFCQiY+Pz3b8hg0bjKenp5k2bZrZs2ePeemll4yXl5fZtWuXxZUXbXk97g8++KCZPXu22b59u9m7d68ZMGCACQwMNL/99pvFlRdteT3umWJjY80NN9xgbr/9dtO9e3drii1G8nrcU1JSTPPmzU2XLl3M+vXrTWxsrFm7dq3ZsWOHxZUXbXk97p988onx8fExn3zyiYmNjTXff/+9CQ0NNc8884zFlRdtS5cuNaNHjzZfffWVkWQWLVp01fG//vqr8fPzM8OHDzd79uwxs2bNMp6eniY6OtqagpEjMpJ9yEn2ISvZh7xkHzKTfYpLbqIhlU8tWrQwQ4YMcT5OT083YWFhZsqUKdmO7927t+natavLspYtW5rHHnusUOssbvJ63K+UlpZmypYtaz788MPCKrFYys9xT0tLM23atDH/93//Z6KioghZ+ZDX4/7222+bGjVqmNTUVKtKLJbyetyHDBliOnTo4LJs+PDh5rbbbivUOouz3ASr559/3tSvX99lWZ8+fUznzp0LsTLkBhnJPuQk+5CV7ENesg+ZyT0U5dzEV/byITU1VVu3blVERIRzmYeHhyIiIhQTE5Ptc2JiYlzGS1Lnzp1zHI+s8nPcr5ScnKyLFy+qfPnyhVVmsZPf4/7yyy+rcuXKGjhwoBVlFjv5Oe5LlixR69atNWTIEAUHB6tBgwZ65ZVXlJ6eblXZRV5+jnubNm20detW5ynqv/76q5YuXaouXbpYUnNJxfuqeyIj2YecZB+ykn3IS/YhMxUt7vpeW8rWvRdRp06dUnp6uoKDg12WBwcHa9++fdk+Jy4uLtvxcXFxhVZncZOf436lF154QWFhYVn+GJGz/Bz39evX6/3339eOHTssqLB4ys9x//XXX7V69Wr169dPS5cu1cGDB/Xkk0/q4sWLGjdunBVlF3n5Oe4PPvigTp06pbZt28oYo7S0ND3++ON68cUXrSi5xMrpfTUpKUl//fWXSpcubVNlJRsZyT7kJPuQlexDXrIPmalocdfcxBlSKDGmTp2q+fPna9GiRfL19bW7nGLr7Nmzevjhh/Xee++pYsWKdpdTomRkZKhy5cp699131axZM/Xp00ejR4/WnDlz7C6tWFu7dq1eeeUVvfXWW9q2bZu++uorfffdd5o4caLdpQFArpGTrENWshd5yT5kJlyJM6TyoWLFivL09FR8fLzL8vj4eIWEhGT7nJCQkDyNR1b5Oe6Zpk+frqlTp2rlypW65ZZbCrPMYievx/3QoUM6fPiwunXr5lyWkZEhSSpVqpT279+vmjVrFm7RxUB+ft9DQ0Pl5eUlT09P57K6desqLi5Oqamp8vb2LtSai4P8HPcxY8bo4Ycf1qOPPipJatiwoc6fP6/Bgwdr9OjR8vDgs5/CkNP7akBAAGdH2YiMZB9ykn3ISvYhL9mHzFS0uGtu4hXPB29vbzVr1kyrVq1yLsvIyNCqVavUunXrbJ/TunVrl/GStGLFihzHI6v8HHdJmjZtmiZOnKjo6Gg1b97cilKLlbwe9zp16mjXrl3asWOH8+eee+7RnXfeqR07dig8PNzK8ous/Py+33bbbTp48KAz1ErSL7/8otDQUMJVLuXnuCcnJ2cJUJkh1xhTeMWWcLyvuicykn3ISfYhK9mHvGQfMlPR4rbvtbZeUr0Imz9/vvHx8THz5s0ze/bsMYMHDzZBQUEmLi7OGGPMww8/bEaOHOkcv2HDBlOqVCkzffp0s3fvXjNu3DhuaZwPeT3uU6dONd7e3uaLL74wJ06ccP6cPXvWrikUSXk97lfizjH5k9fjfvToUVO2bFkzdOhQs3//fvPtt9+aypUrm0mTJtk1hSIpr8d93LhxpmzZsuazzz4zv/76q1m+fLmpWbOm6d27t11TKJLOnj1rtm/fbrZv324kmRkzZpjt27ebI0eOGGOMGTlypHn44Yed4zNvXzxixAizd+9eM3v2bLe4fTHISHYiJ9mHrGQf8pJ9yEz2KS65iYbUdZg1a5apUqWK8fb2Ni1atDD//e9/nevat29voqKiXMZ//vnn5uabbzbe3t6mfv365rvvvrO44uIhL8e9atWqRlKWn3HjxllfeBGX19/3yxGy8i+vx/3HH380LVu2ND4+PqZGjRpm8uTJJi0tzeKqi768HPeLFy+a8ePHm5o1axpfX18THh5unnzySfPnn39aX3gRtmbNmmz/vc481lFRUaZ9+/ZZntO4cWPj7e1tatSoYebOnWt53cgeGck+5CT7kJXsQ16yD5nJHsUlNzmM4dw4AAAAAAAAWIdrSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAllu7dq0cDofWrl1boNt1OBwaP358gW4Tl2zatEne3t46cuTINcdWq1ZNAwYMcFl24MABderUSYGBgXI4HFq8eHGe9t+qVSs9//zzeXoOAABFDRmp6CEjAflHQwq4Dj/++KPGjx+vhIQEu0spMZYuXUqgyqMFCxbooYceUq1ateRwOHTHHXfkeRujR4/WAw88oKpVq+arhqioKO3atUuTJ0/WRx99pObNm+vcuXMaN26cIiMjVb58eTkcDs2bNy/b57/wwguaPXu24uLi8rV/AIC1yEjWIyPlnbtmpM2bN2vo0KGqX7++ypQpoypVqqh379765ZdfsjyfjISijIYUcB1+/PFHTZgwgbBloaVLl2rChAnZrvvrr7/00ksvWVyR+3v77bf19ddfKzw8XOXKlcvz83fs2KGVK1fq8ccfz9f+//rrL8XExGjgwIEaOnSoHnroId144406deqUXn75Ze3du1eNGjW66ja6d++ugIAAvfXWW/mqAQBgLTKS9chIeeeuGenVV1/Vl19+qY4dO+pf//qXBg8erHXr1qlp06b6+eefXbZBRkJRRkMKQK4lJydnuzwtLU2pqakWV5OVr6+vSpUqZXcZbuejjz5SYmKiVq9erbCwsDw/f+7cuapSpYpatWqVr/3/8ccfkqSgoCCX5aGhoTpx4oSOHDmi11577arb8PDw0H333ad///vfMsbkqw4AAAoLGalocteMNHz4cB05ckQzZ87Uo48+qpdeekk//PCD0tLSNHXqVJexZCQUZTSkgHwaP368RowYIUmqXr26HA6HHA6HDh8+LOlSAJk4caJq1qwpHx8fVatWTS+++KJSUlJctlOtWjXdfffdWr58uRo3bixfX1/Vq1dPX331Vb7q+vjjj9WiRQv5+fmpXLlyateunZYvX+4y5q233lL9+vXl4+OjsLAwDRkyJMsnmHfccYcaNGigrVu3ql27dvLz89OLL76ow4cPy+FwaPr06XrjjTec89uzZ48kad++fbrvvvtUvnx5+fr6qnnz5lqyZMk16/7hhx90//33q0qVKvLx8VF4eLieeeYZ/fXXX84xAwYM0OzZsyXJebwdDodzfXbXR9i+fbvuuusuBQQEyN/fXx07dtR///tflzHz5s2Tw+HQhg0bNHz4cFWqVEllypRRz549nUEhL37//XcNHDhQYWFh8vHxUfXq1fXEE0+4BNJff/1V999/v8qXLy8/Pz+1atVK3333XZZtzZo1S/Xr13e+ns2bN9enn36ap3rCw8Pl4ZH/f+4XL16sDh06uBxrSTLGaNKkSbrxxhvl5+enO++8U7t373YZM378eOcp7CNGjJDD4VC1atUkST4+PgoJCcl1HX/729905MgR7dixI99zAQAUPjISGSknZKT/uVpGatOmjby9vV3G16pVS/Xr19fevXuz1EFGQlFFmxzIp3vvvVe//PKLPvvsM73++uuqWLGiJKlSpUqSpEcffVQffvih7rvvPj377LPauHGjpkyZor1792rRokUu2zpw4ID69Omjxx9/XFFRUZo7d67uv/9+RUdH629/+1uua5owYYLGjx+vNm3a6OWXX5a3t7c2btyo1atXq1OnTpIuvflNmDBBEREReuKJJ7R//369/fbb2rx5szZs2CAvLy/n9k6fPq277rpLffv21UMPPaTg4GDnurlz5+rChQsaPHiwfHx8VL58ee3evVu33XabbrjhBo0cOVJlypTR559/rh49eujLL79Uz549c6x94cKFSk5O1hNPPKEKFSpo06ZNmjVrln777TctXLhQkvTYY4/p+PHjWrFihT766KNrHo/du3fr9ttvV0BAgJ5//nl5eXnpnXfe0R133KH//Oc/atmypcv4p556SuXKldO4ceN0+PBhvfHGGxo6dKgWLFiQ69fg+PHjatGihRISEjR48GDVqVNHv//+u7744gslJyfL29tb8fHxatOmjZKTk/X000+rQoUK+vDDD3XPPffoiy++cB6n9957T08//bTuu+8+/eMf/9CFCxf0008/aePGjXrwwQdzXdP1+P3333X06FE1bdo0y7qxY8dq0qRJ6tKli7p06aJt27apU6dOLqHy3nvvVVBQkJ555hk98MAD6tKli/z9/fNVS7NmzSRJGzZsUJMmTfI3IQBAoSMjkZGyQ0a6voxkjFF8fLzq16+fZR0ZCUWWAZBvr732mpFkYmNjXZbv2LHDSDKPPvqoy/LnnnvOSDKrV692LqtataqRZL788kvnssTERBMaGmqaNGmS61oOHDhgPDw8TM+ePU16errLuoyMDGOMMSdPnjTe3t6mU6dOLmPefPNNI8l88MEHzmXt27c3ksycOXNcthUbG2skmYCAAHPy5EmXdR07djQNGzY0Fy5ccNl3mzZtTK1atZzL1qxZYySZNWvWOJclJydnmdOUKVOMw+EwR44ccS4bMmSIyemfLklm3Lhxzsc9evQw3t7e5tChQ85lx48fN2XLljXt2rVzLps7d66RZCIiIpzHyhhjnnnmGePp6WkSEhKy3V92+vfvbzw8PMzmzZuzrMvc9rBhw4wk88MPPzjXnT171lSvXt1Uq1bN+dp0797d1K9fP9f7zo369eub9u3b53r8ypUrjSTzzTffuCzP/F3q2rWryzF78cUXjSQTFRXlXJb5O/Paa6/luJ/NmzcbSWbu3LlXrcfb29s88cQTua4fAGAPMhIZ6UpkpPxlpEwfffSRkWTef//9bNeTkVAU8ZU9oBAsXbpU0qXvf1/u2WeflaQspx2HhYW5fDIWEBCg/v37a/v27bm+Y8bixYuVkZGhsWPHZjn1OPM04pUrVyo1NVXDhg1zGTNo0CAFBARkqcvHx0ePPPJItvvr1auX85NOSTpz5oxWr16t3r176+zZszp16pROnTql06dPq3Pnzjpw4IB+//33HOsvXbq087/Pnz+vU6dOqU2bNjLGaPv27bk6BpdLT0/X8uXL1aNHD9WoUcO5PDQ0VA8++KDWr1+vpKQkl+cMHjzY5ZTr22+/Xenp6bm6ja8kZWRkaPHixerWrZuaN2+eZX3mtpcuXaoWLVqobdu2znX+/v4aPHiwDh8+7Dy1PygoSL/99ps2b96c+4kXsNOnT0tSlgt9Zv4uPfXUUy7HbNiwYYVaT7ly5XTq1KlC3QcAoPCQkchIZKS827dvn4YMGaLWrVsrKioq2zFkJBRFNKSAQnDkyBF5eHjopptuclkeEhKioKCgLG/eN910U5bvnt98882S5LzewrUcOnRIHh4eqlev3lXrkqTatWu7LPf29laNGjWy1HXDDTdk+f56purVq7s8PnjwoIwxGjNmjCpVquTyM27cOEnSyZMnc6zt6NGjGjBggMqXLy9/f39VqlRJ7du3lyQlJibm+Lyc/PHHH0pOTs4yV0mqW7euMjIydOzYMZflVapUcXmcGTD+/PPPXO8zKSlJDRo0uOq4I0eO5FhX5nrp0m18/f391aJFC9WqVUtDhgzRhg0bclVLQTNXXCQzs8ZatWq5LK9UqVK+7lKTlzqu/FsBABQdZCQy0tWQkbKKi4tT165dFRgYqC+++EKenp451kFGQlHDNaSAQlTU3xQu/0TuWusyMjIkSc8995w6d+6c7XOuDJ+Z0tPT9be//U1nzpzRCy+8oDp16qhMmTL6/fffNWDAAOe2C9vV3uDtULduXe3fv1/ffvutoqOj9eWXX+qtt97S2LFjc7ytc0GrUKGCpNwHzsKWkJDgvBYJAKDoIiO5IiPlTUnJSImJibrrrruUkJCgH3744ap3AiQjoSiiIQVch5zCVNWqVZWRkaEDBw44P9GRpPj4eCUkJDjvqJEp85Ozy7f3yy+/SJLzbhvXUrNmTWVkZGjPnj1q3LhxjnVJ0v79+11O0U5NTVVsbKwiIiJyta/sZG7Py8srz9vZtWuXfvnlF3344Yfq37+/c/mKFSuyjM1tgK1UqZL8/Py0f//+LOv27dsnDw8PhYeH56nO3OwzICBAP//881XHVa1aNce6MtdnKlOmjPr06aM+ffooNTVV9957ryZPnqxRo0bJ19e3QOvPTp06dSRJsbGxLsszazxw4IDL79Iff/xRaMHs999/V2pqqsvfFADAPZGR/oeMREaS8p6RLly4oG7duumXX37RypUrr3qGHxkJRRVf2QOuQ5kyZSQpy+2Au3TpIkl64403XJbPmDFDktS1a1eX5cePH3e5q0xSUpL+/e9/q3HjxgoJCclVLT169JCHh4defvnlLJ+WZX56FRERIW9vb82cOdPlE633339fiYmJWerKi8qVK+uOO+7QO++8oxMnTmRZf7VbA2d+6nZ5TcYY/etf/8oyNqdjnt02O3XqpK+//trllP74+Hh9+umnatu2rQICAq66jbzy8PBQjx499M0332jLli1Z1mfOr0uXLtq0aZNiYmKc686fP693331X1apVcwaOzGsTZPL29la9evVkjNHFixcLtPac3HDDDQoPD88yn4iICHl5eWnWrFkur9uVv/MFaevWrZIu3QoZAODeyEj/Q0YiI0l5y0jp6enq06ePYmJitHDhQrVu3fqq48lIKKo4Qwq4Dpm3WB09erT69u0rLy8vdevWTY0aNVJUVJTeffddJSQkqH379tq0aZM+/PBD9ejRQ3feeafLdm6++WYNHDhQmzdvVnBwsD744APFx8dr7ty5ua7lpptu0ujRozVx4kTdfvvtuvfee+Xj46PNmzcrLCxMU6ZMUaVKlTRq1ChNmDBBkZGRuueee7R//3699dZbuvXWW/XQQw9d1/GYPXu22rZtq4YNG2rQoEGqUaOG4uPjFRMTo99++007d+7M9nl16tRRzZo19dxzz+n3339XQECAvvzyy2w/Rco85k8//bQ6d+4sT09P9e3bN9vtTpo0SStWrFDbtm315JNPqlSpUnrnnXeUkpKiadOmXddcc/LKK69o+fLlat++vQYPHqy6devqxIkTWrhwodavX6+goCCNHDlSn332me666y49/fTTKl++vD788EPFxsbqyy+/dF5MtVOnTgoJCdFtt92m4OBg7d27V2+++aa6du2qsmXL5rqmdevWad26dZIuhd7z589r0qRJkqR27dqpXbt2V31+9+7dtWjRIpdPqCtVqqTnnntOU6ZM0d13360uXbpo+/btWrZsWZ5OF3/zzTeVkJCg48ePS5K++eYb/fbbb5Iu3WI6MDDQOXbFihWqUqUKtzMGgCKAjOSKjERGyktGevbZZ7VkyRJ169ZNZ86c0ccff+yy/srfRzISiixrbuYHFF8TJ040N9xwg/Hw8HC5vfHFixfNhAkTTPXq1Y2Xl5cJDw83o0aNcrndrzGXbmnctWtX8/3335tbbrnF+Pj4mDp16piFCxfmq54PPvjANGnSxPj4+Jhy5cqZ9u3bmxUrVriMefPNN02dOnWMl5eXCQ4ONk888YT5888/Xca0b98+29vpXuv2tIcOHTL9+/c3ISEhxsvLy9xwww3m7rvvNl988YVzTHa3NN6zZ4+JiIgw/v7+pmLFimbQoEFm586dRpKZO3euc1xaWpp56qmnTKVKlYzD4XC5vbGuuKWxMcZs27bNdO7c2fj7+xs/Pz9z5513mh9//NFlTOYtja+8DXF2debGkSNHTP/+/U2lSpWMj4+PqVGjhhkyZIhJSUlxOU733XefCQoKMr6+vqZFixbm22+/ddnOO++8Y9q1a2cqVKhgfHx8TM2aNc2IESNMYmJinuoZN26ckZTtz5XHKzvbtm3LcgtmY4xJT083EyZMMKGhoaZ06dLmjjvuMD///LOpWrVqrm9pnHlL7+x+Lr9VeHp6ugkNDTUvvfRSnuYOALAPGckVGYmMlNuM1L59+xzruvJ/4clIKMocxth0JToAki5d/6BBgwb69ttv7S4FyFHHjh0VFhamjz76yJb9L168WA8++KAOHTqk0NBQW2oAAFiLjISigIwE5B/XkAIAXNMrr7yiBQsWZLnttVVeffVVDR06lKAFAADcChkJyD+uIQUUAXFxcVddX7p0aZdr7aDgnTt3TufOnbvqmEqVKuV4W+SClp6eftWLoEqSv7+//P39C2R/LVu2VGpqaoFsKz8uv7gpAACZyEj2IyORkYD8oiEFFAHX+sQjKipK8+bNs6aYEmr69OmaMGHCVcfExsbm+hbU1+vYsWOqXr36VceMGzdO48ePt6QeAADsQEayHxkJQH5xDSmgCFi5cuVV14eFhTlvg4vC8euvv+rXX3+96pi2bdvK19fXknouXLig9evXX3VMjRo1VKNGDUvqAQDADmQk+5GRAOQXDSkAAAAAAABYiouaAwAAAAAAwFIl+hpSGRkZOn78uMqWLSuHw2F3OQAAwALGGJ09e1ZhYWHy8OCzueyQkQAAKHmszkgluiF1/PhxhYeH210GAACwwbFjx3TjjTfaXYZbIiMBAFByWZWRSnRDqmzZspIuHeyAgACbqwEAAFZISkpSeHi4MwcgKzISAAAlj9UZqUQ3pDJPQQ8ICCBsAQBQwvBVtJyRkQAAKLmsykhcOAEAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVK9DWkciMjI0Opqal2l4F88PLykqenp91lAABQbKWnp+vixYt2l4E8IiMBANwBDamrSE1NVWxsrDIyMuwuBfkUFBSkkJAQLlwLAEABMsYoLi5OCQkJdpeCfCIjAQDsRkMqB8YYnThxQp6engoPD5eHB99uLEqMMUpOTtbJkyclSaGhoTZXBABA8ZHZjKpcubL8/PxoahQhZCQAgLugIZWDtLQ0JScnKywsTH5+fnaXg3woXbq0JOnkyZOqXLkyp6YDAFAA0tPTnc2oChUq2F0O8oGMBABwB5z2k4P09HRJkre3t82V4HpkNhO5vgUAAAUj8z2VD+yKNjISAMBuNKSugVPQizZePwAACgfvsUUbrx8AwG40pAAAAAAAAGApGlIAAAAAAACwFBc1z6OL0est3Z9XZNtcj73Wqdfjxo3T+PHjr7Oi/HE4HFq0aJF69OiR7228++67+vTTT7Vt2zadPXtWf/75p4KCggqsRgAAkH9kpPy53ox05swZjRs3TsuXL9fRo0dVqVIl9ejRQxMnTlRgYGDBFgsAQAGiIVWMnDhxwvnfCxYs0NixY7V//37nMn9//zxtLzU11a0u6p6cnKzIyEhFRkZq1KhRdpcDAMin7BoXeWkuAHlVnDPS8ePHdfz4cU2fPl316tXTkSNH9Pjjj+v48eP64osv7C4PAJAHJS0j8ZW9YiQkJMT5ExgYKIfD4Xx8/vx59evXT8HBwfL399ett96qlStXujy/WrVqmjhxovr376+AgAANHjxYkvTee+8pPDxcfn5+6tmzp2bMmJHlzKSvv/5aTZs2la+vr2rUqKEJEyYoLS3NuV1J6tmzpxwOh/Pxzp07deedd6ps2bIKCAhQs2bNtGXLlhznN2zYMI0cOVKtWrUqmAMGAABKhOKckRo0aKAvv/xS3bp1U82aNdWhQwdNnjxZ33zzjXM/AAC4I86QKiHOnTunLl26aPLkyfLx8dG///1vdevWTfv371eVKlWc46ZPn66xY8dq3LhxkqQNGzbo8ccf16uvvqp77rlHK1eu1JgxY1y2/cMPP6h///6aOXOmbr/9dh06dMgZ1MaNG6fNmzercuXKmjt3riIjI+Xp6SlJ6tevn5o0aaK3335bnp6e2rFjh7y8vCw6IgAAq1j9VS4gL4pjRkpMTFRAQIBKlSLqA4A7K+kZiXepEqJRo0Zq1KiR8/HEiRO1aNEiLVmyREOHDnUu79Chg5599lnn49GjR+uuu+7Sc889J0m6+eab9eOPP+rbb791jpkwYYJGjhypqKgoSVKNGjU0ceJEPf/88xo3bpwqVaokSQoKClJISIjzeUePHtWIESNUp04dSVKtWrUKYeYAAAA5K24Z6dSpU5o4caKz8QUAgLviK3slxLlz5/Tcc8+pbt26CgoKkr+/v/bu3aujR4+6jGvevLnL4/3796tFixYuy658vHPnTr388svy9/d3/gwaNEgnTpxQcnJyjjUNHz5cjz76qCIiIjR16lQdOnToOmcJAACQN8UpIyUlJalr166qV6+ebRdpBwAgt2hIlRDPPfecFi1apFdeeUU//PCDduzYoYYNGyo1NdVlXJkyZfK87XPnzmnChAnasWOH82fXrl06cOCAfH19c3ze+PHjtXv3bnXt2lWrV69WvXr1tGjRojzvHwAAIL+KS0Y6e/asIiMjVbZsWS1atIjLIAAA3B5f2SshNmzYoAEDBqhnz56SLgWkw4cPX/N5tWvX1ubNm12WXfm4adOm2r9/v2666aYct+Pl5aX09PQsy2+++WbdfPPNeuaZZ/TAAw9o7ty5zhoBAAAKW3HISElJSercubN8fHy0ZMmSqza7AABwFzSkSohatWrpq6++Urdu3eRwODRmzBhlZGRc83lPPfWU2rVrpxkzZqhbt25avXq1li1bJofD4RwzduxY3X333apSpYruu+8+eXh4aOfOnfr55581adIkSZfuIrNq1Srddttt8vHxka+vr0aMGKH77rtP1atX12+//abNmzerV69eOdYSFxenuLg4HTx4UJK0a9culS1bVlWqVFH58uWv8wgBAICSqKhnpKSkJHXq1EnJycn6+OOPlZSUpKSkJElSpUqVnBdKBwDA3fCVvRJixowZKleunNq0aaNu3bqpc+fOatq06TWfd9ttt2nOnDmaMWOGGjVqpOjoaD3zzDMun7x17txZ3377rZYvX65bb71VrVq10uuvv66qVas6x/zzn//UihUrFB4eriZNmsjT01OnT59W//79dfPNN6t379666667NGHChBxrmTNnjpo0aaJBgwZJktq1a6cmTZpoyZIl13FkAABASVbUM9K2bdu0ceNG7dq1SzfddJNCQ0OdP8eOHbv+AwQAQCFxGGOM3UXYJSkpSYGBgc5b417uwoULio2NVfXq1Tnt+QqDBg3Svn379MMPP9hdyjXxOgKAtfJ7+2KvyLYFXEnOrvb+j0vISPlDRgIA5ISMlBVf2cM1TZ8+XX/7299UpkwZLVu2TB9++KHeeustu8sCAACwFRkJAID8oyGFa9q0aZOmTZums2fPqkaNGpo5c6YeffRRu8sCAACwFRkJAID8oyGFa/r888/tLgEAAMDtkJEAAMg/LmoOAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsVcruAoqaQ1vesXR/NZs/lqfxAwYM0IcffihJKlWqlMqXL69bbrlFDzzwgAYMGCAPj6Lbg9y9e7fGjh2rrVu36siRI3r99dc1bNgwu8sCAAAiI9npvffe07///W/9/PPPkqRmzZrplVdeUYsWLWyuDACAnBXdd17kKDIyUidOnNDhw4e1bNky3XnnnfrHP/6hu+++W2lpaXaXl2/JycmqUaOGpk6dqpCQELvLAQAARUxxzUhr167VAw88oDVr1igmJkbh4eHq1KmTfv/9d7tLAwAgRzSkiiEfHx+FhITohhtuUNOmTfXiiy/q66+/1rJlyzRv3jznuISEBD366KOqVKmSAgIC1KFDB+3cudNlW998841uvfVW+fr6qmLFiurZs6dz3Z9//qn+/furXLly8vPz01133aUDBw5Iks6fP6+AgAB98cUXLttbvHixypQpo7Nnzyo1NVVDhw5VaGiofH19VbVqVU2ZMiXHed1666167bXX1LdvX/n4+BTAkQIAACVJcc1In3zyiZ588kk1btxYderU0f/93/8pIyNDq1atKoCjBgBA4aAhVUJ06NBBjRo10ldffeVcdv/99+vkyZNatmyZtm7dqqZNm6pjx446c+aMJOm7775Tz5491aVLF1KLoVgAAQAASURBVG3fvl2rVq1yOfV7wIAB2rJli5YsWaKYmBgZY9SlSxddvHhRZcqUUd++fTV37lyXOubOnav77rtPZcuW1cyZM7VkyRJ9/vnn2r9/vz755BNVq1bNkuMBAAAgFc+MlJycrIsXL6p8+fLXd3AAAChEXEOqBKlTp45++uknSdL69eu1adMmnTx50nm20fTp07V48WJ98cUXGjx4sCZPnqy+fftqwoQJzm00atRIknTgwAEtWbJEGzZsUJs2bSRd+nQuPDxcixcv1v33369HH31Ubdq00YkTJxQaGqqTJ09q6dKlWrlypSTp6NGjqlWrltq2bSuHw6GqVataeTgAAAAkFb+M9MILLygsLEwRERHXfWwAACgsnCFVghhj5HA4JEk7d+7UuXPnVKFCBfn7+zt/YmNjdejQIUnSjh071LFjx2y3tXfvXpUqVUotW7Z0LqtQoYJq166tvXv3SpJatGih+vXrOy8g+vHHH6tq1apq166dpEufHu7YsUO1a9fW008/reXLlxfa3AEAAHJSnDLS1KlTNX/+fC1atEi+vr55PxgAAFiEM6RKkL1796p69eqSpHPnzik0NFRr167NMi4oKEiSVLp06eve56OPPqrZs2dr5MiRmjt3rh555BFn4GvatKliY2O1bNkyrVy5Ur1791ZERESWayoAAAAUpuKSkaZPn66pU6dq5cqVuuWWW667RgAAClOBnyG1bt06devWTWFhYXI4HFq8eLHLemOMxo4dq9DQUJUuXVoRERHOizxmOnPmjPr166eAgAAFBQVp4MCBOnfunMuYn376Sbfffrt8fX0VHh6uadOmFfRUipXVq1dr165d6tWrl6RLQScuLk6lSpXSTTfd5PJTsWJFSdItt9yS48Uw69atq7S0NG3cuNG57PTp09q/f7/q1avnXPbQQw/pyJEjmjlzpvbs2aOoqCiX7QQEBKhPnz567733tGDBAn355ZfO6zMAAFDckJPcT3HJSNOmTdPEiRMVHR2t5s2b5/t4AABglQJvSJ0/f16NGjXS7Nmzs10/bdo0zZw5U3PmzNHGjRtVpkwZde7cWRcuXHCO6devn3bv3q0VK1bo22+/1bp16zR48GDn+qSkJHXq1ElVq1bV1q1b9dprr2n8+PF69913C3o6RVJKSori4uL0+++/a9u2bXrllVfUvXt33X333erfv78kKSIiQq1bt1aPHj20fPlyHT58WD/++KNGjx6tLVu2SJLGjRunzz77TOPGjdPevXu1a9cuvfrqq5KkWrVqqXv37ho0aJDWr1+vnTt36qGHHtINN9yg7t27O2spV66c7r33Xo0YMUKdOnXSjTfe6Fw3Y8YMffbZZ9q3b59++eUXLVy4UCEhIc5PH6+UmpqqHTt2aMeOHUpNTdXvv/+uHTt26ODBg4V0JAEAKFjkJHsV14z06quvasyYMfrggw9UrVo1xcXFKS4uLkujEgAAd1LgDam77rpLkyZNcrn1bSZjjN544w299NJL6t69u2655Rb9+9//1vHjx52fEO7du1fR0dH6v//7P7Vs2VJt27bVrFmzNH/+fB0/flzSpQtDpqam6oMPPlD9+vXVt29fPf3005oxY0ZBT6dIio6OVmhoqKpVq6bIyEitWbNGM2fO1Ndffy1PT09JksPh0NKlS9WuXTs98sgjuvnmm9W3b18dOXJEwcHBkqQ77rhDCxcu1JIlS9S4cWN16NBBmzZtcu5n7ty5atasme6++261bt1axhgtXbpUXl5eLvUMHDhQqamp+vvf/+6yvGzZspo2bZqaN2+uW2+9VYcPH9bSpUvl4ZH9r+Xx48fVpEkTNWnSRCdOnND06dPVpEkTPfroowV5+AAAKDTkJHsV14z09ttvKzU1Vffdd59CQ0OdP9OnTy/IwwcAQIFyGGNMoW3c4dCiRYvUo0cPSdKvv/6qmjVravv27WrcuLFzXPv27dW4cWP961//0gcffKBnn31Wf/75p3N9WlqafH19tXDhQvXs2VP9+/dXUlKSy2nua9asUYcOHXTmzBmVK1cu23pSUlKUkpLifJyUlKTw8HAlJiYqICDAZeyFCxcUGxur6tWrc0HI6/TRRx/pmWee0fHjx+Xt7W3pvnkdAcBaF6PX5+t5XpFtC7iSnCUlJSkwMDDb938ruVNOIiPZg4wEACUHGSkrS++yFxcXJ0nOT5cyBQcHO9fFxcWpcuXKLutLlSql8uXLu4zJbhuX7yM7U6ZMUWBgoPMnPDz8+iaEq0pOTtahQ4c0depUPfbYY5YHLQAAihI7cxIZyVpkJAAALG5I2W3UqFFKTEx0/hw7dszukoq1adOmqU6dOgoJCdGoUaPsLgcAAOSAjGQtMhIAABY3pEJCQiRJ8fHxLsvj4+Od60JCQnTy5EmX9WlpaTpz5ozLmOy2cfk+suPj46OAgACXHxSe8ePH6+LFi1q1apX8/f3tLgcAALdmZ04iI1mLjAQAgMUNqerVqyskJMTlNrlJSUnauHGjWrduLUlq3bq1EhIStHXrVueY1atXKyMjQy1btnSOWbdunS5evOgcs2LFCtWuXTvH60cBAAC4M3ISAAAoSQq8IXXu3Dnt2LFDO3bskCTFxsZqx44dOnr0qBwOh4YNG6ZJkyZpyZIl2rVrl/r376+wsDDnBT3r1q2ryMhIDRo0SJs2bdKGDRs0dOhQ9e3bV2FhYZKkBx98UN7e3ho4cKB2796tBQsW6F//+peGDx9e0NNRIV7zHRbg9QMAuJPilJN4jy3aeP0AAHYrVdAb3LJli+68807n48zwExUVpXnz5un555/X+fPnNXjwYCUkJKht27aKjo52ubvHJ598oqFDh6pjx47y8PBQr169NHPmTOf6wMBALV++XEOGDFGzZs1UsWJFjR07VoMHDy6weWTe+jc1NVWlS5cusO3CWsnJyZKU5TbLAADYoTjkpMz31OTkZDJSEUZGAgDYzWFK8McjV7uloTFGR48e1cWLFxUWFiYPjxJ1/fcizxij5ORknTx5UkFBQQoNDbW7JAAoEbilcfFwrWN04sQJJSQkqHLlyvLz85PD4bChSuQHGQkA7EFGyqrAz5AqLhwOh0JDQxUbG6sjR47YXQ7yKSgo6KoXugcA5F9+gxWKvsz31isvsI6ig4wEAIWHjJQ7NKSuwtvbW7Vq1VJqaqrdpSAfvLy8nF+9BAAABSfzg7vKlSu7XDwdRQMZCQDgDmhIXYOHh4fLdRsAAABwiaenJ40NAACQL1wYCQAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsFQpuwsAAABFw8Xo9XaXAAAA4HbISPnDGVIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWMqWhlR6errGjBmj6tWrq3Tp0qpZs6YmTpwoY4xzjDFGY8eOVWhoqEqXLq2IiAgdOHDAZTtnzpxRv379FBAQoKCgIA0cOFDnzp2zejoAABQ7F6PXZ/lB4SMjAQDg3shIBceWhtSrr76qt99+W2+++ab27t2rV199VdOmTdOsWbOcY6ZNm6aZM2dqzpw52rhxo8qUKaPOnTvrwoULzjH9+vXT7t27tWLFCn377bdat26dBg8ebMeUAAAArhsZCQAAlBQOc/lHbha5++67FRwcrPfff9+5rFevXipdurQ+/vhjGWMUFhamZ599Vs8995wkKTExUcHBwZo3b5769u2rvXv3ql69etq8ebOaN28uSYqOjlaXLl3022+/KSws7Jp1JCUlKTAwUImJiQoICCicyQIAUARZ/WmfV2Rby/blzu//ZCQAANwbGang2HKGVJs2bbRq1Sr98ssvkqSdO3dq/fr1uuuuuyRJsbGxiouLU0REhPM5gYGBatmypWJiYiRJMTExCgoKcgYtSYqIiJCHh4c2btyY7X5TUlKUlJTk8gMAAOAuyEgAAKCkKGXHTkeOHKmkpCTVqVNHnp6eSk9P1+TJk9WvXz9JUlxcnCQpODjY5XnBwcHOdXFxcapcubLL+lKlSql8+fLOMVeaMmWKJkyYUNDTAQAAKBBkJAAAUFLYcobU559/rk8++USffvqptm3bpg8//FDTp0/Xhx9+WKj7HTVqlBITE50/x44dK9T9AQAA5AUZCQAAlBS2nCE1YsQIjRw5Un379pUkNWzYUEeOHNGUKVMUFRWlkJAQSVJ8fLxCQ0Odz4uPj1fjxo0lSSEhITp58qTLdtPS0nTmzBnn86/k4+MjHx+fQpgRAADA9SMjAQCAksKWM6SSk5Pl4eG6a09PT2VkZEiSqlevrpCQEK1atcq5PikpSRs3blTr1q0lSa1bt1ZCQoK2bt3qHLN69WplZGSoZcuWFswCAACgYJGRAABASWHLGVLdunXT5MmTVaVKFdWvX1/bt2/XjBkz9Pe//12S5HA4NGzYME2aNEm1atVS9erVNWbMGIWFhalHjx6SpLp16yoyMlKDBg3SnDlzdPHiRQ0dOlR9+/bN1d1jAAAA3A0ZCQAAlBS2NKRmzZqlMWPG6Mknn9TJkycVFhamxx57TGPHjnWOef7553X+/HkNHjxYCQkJatu2raKjo+Xr6+sc88knn2jo0KHq2LGjPDw81KtXL82cOdOOKQEAAFw3MhIAACgpHMYYY3cRdklKSlJgYKASExMVEBBgdzkAALiNi9HrLd2fV2Rby/bF+/+1cYwAAMgeGang2HINKQAAAAAAAJRcNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlipldwEAAMBeVt++GAAAoCggIxUuzpACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApriEFAABsl901Grwi29pQCQAAgPsozhmJM6QAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUqXsLgAAAFjrYvR6u0sAAABwO2Qka3GGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALBUKbsLAAAA13Yxen2WZV6RbW2oBAAAwH2QkYouGlIAABRj2YU0AACAko6MZD++sgcAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApLmoOAEAxwcU5AQAAsiIjuSfOkAIAAAAAAIClOEMKAIB8yO6TNq/ItjZUAgAA4D7ISMgt286Q+v333/XQQw+pQoUKKl26tBo2bKgtW7Y41xtjNHbsWIWGhqp06dKKiIjQgQMHXLZx5swZ9evXTwEBAQoKCtLAgQN17tw5q6cCAIAtLkavd/lB8UBGAgDg+pCRigZbzpD6888/ddttt+nOO+/UsmXLVKlSJR04cEDlypVzjpk2bZpmzpypDz/8UNWrV9eYMWPUuXNn7dmzR76+vpKkfv366cSJE1qxYoUuXryoRx55RIMHD9ann35qx7SAEskdPgG5sgY+gQFQVJGRgOLDHTOSHTUAQE5saUi9+uqrCg8P19y5c53Lqlev7vxvY4zeeOMNvfTSS+revbsk6d///reCg4O1ePFi9e3bV3v37lV0dLQ2b96s5s2bS5JmzZqlLl26aPr06QoLC7N2UgAA5BNNVWQiIwEA8D80VYs3WxpSS5YsUefOnXX//ffrP//5j2644QY9+eSTGjRokCQpNjZWcXFxioiIcD4nMDBQLVu2VExMjPr27auYmBgFBQU5g5YkRUREyMPDQxs3blTPnj2z7DclJUUpKSnOx0lJSYU4SwDuhDczFCWcWl5ykZEAWI2MhKKGnFR82NKQ+vXXX/X2229r+PDhevHFF7V582Y9/fTT8vb2VlRUlOLi4iRJwcHBLs8LDg52rouLi1PlypVd1pcqVUrly5d3jrnSlClTNGHChEKYEYDL5SbYEH4AICsyElC8kZEA4H9saUhlZGSoefPmeuWVVyRJTZo00c8//6w5c+YoKiqq0PY7atQoDR8+3Pk4KSlJ4eHhhbY/AO7N7q9JETiLH7t/p1D0kZEAuAO7M4rd+0fB4zVFdmxpSIWGhqpevXouy+rWrasvv/xSkhQSEiJJio+PV2hoqHNMfHy8Gjdu7Bxz8uRJl22kpaXpzJkzzudfycfHRz4+PgU1DQBuqiBP4+XNE4CVyEgACltB5SQyEoDrZUtD6rbbbtP+/ftdlv3yyy+qWrWqpEsX7wwJCdGqVauc4SopKUkbN27UE088IUlq3bq1EhIStHXrVjVr1kyStHr1amVkZKhly5bWTQZAobLyjBO+jw7AbmQkALll9Vm55CQABc2WhtQzzzyjNm3a6JVXXlHv3r21adMmvfvuu3r33XclSQ6HQ8OGDdOkSZNUq1Yt5y2Nw8LC1KNHD0mXPi2MjIzUoEGDNGfOHF28eFFDhw5V3759uXsM4IYIMRwDANdGRgJKHvIBxwAoqWxpSN16661atGiRRo0apZdfflnVq1fXG2+8oX79+jnHPP/88zp//rwGDx6shIQEtW3bVtHR0fL19XWO+eSTTzR06FB17NhRHh4e6tWrl2bOnGnHlIBiiVOxAcBaZCSgaCAjAcD1cxhjjN1F2CUpKUmBgYFKTExUQECA3eUAbie/d4Ip7vIbOHNzrAizRUdBvp4l8e8oNwrr74H3/2vjGAFXR0bKHhkJUu5/93PzmpbEv6PcKC4ZyZYzpAAA+censgAAAFmRkYCihYYUgAJ3OGFZlmXVgu6yoRJrFLfwY/VFUgEAKClKWkaSileuKE5zAdwBDSkAQLFV3JqFAAAABYGMBHfgYXcBAAAAAAAAKFk4Qwoooaw+5fjKU9SL++npBamoXMyxqJ7GzieEAIDLkZGKDjJS4SIjobDRkAKKmfy+ceT2Db2ovPHbjePkvnhtAKBkIiO5B46T++K1gdVoSAFFHG8cAAAAWZGRAMC90ZACANiqqJ7GDgAAUJjISCjuaEgBQDFVVEMM1ysAAACFiYwEuAcaUgBQQhBiAAAAsiIjAfagIQXAbVx5l5nc4m40hYuQlv/rkHDsAAAFgYzknnifv6SgclJJPHYlHQ0pAHlSVG9NnF2Qy2/txekiqcVpLgAA2ImMVLxyRXGaC+CuaEgBAGAhAi4AAEBWZKSSh4YUgBzl9/TwoqogPyEEAADFV0nLSFLRPQMMgPuiIQUAxQCfKAEAAGRFRgLcFw0pANelJH5CWJiKSmhyxzrdsSYAQMlFRipYReV93h3rdMeaAImGFIBigFPI3RN3ngEAwF5cjsA9kZGAS2hIAUAe5aYBlt8ASHAEAABFVW5yDBkJQCYaUkAJcGD+6CzLeANHUcIniQCAwkBGQlFHRkJRRkMKQLFTkNds4PoP7ovrIQAAkHcFlW3ISO6LjISigoYUANiEIAcAAJAVGQkoGTzsLgAAAAAAAAAlC2dIAZBk/SdRxemTr+I0FwAA4IqMdH2K23wAFBwaUkAxw5t+8ZObu/oVFVzTAABgFzJS8UNGAoo2vrIHAAAAAAAAS3GGFFCE8MkJAABAVmQkACh6aEgBAHAF/scGAAAgKzISChJf2QMAAAAAAIClOEMKAEqI7C7mWpQv/gkAAFAQyEiAPThDCgAAAAAAAJbiDCmghOLWx8gtPjUEAJQkZCTkFhkJuD40pIAijtAEAACQFRkJANwbDSnATXEHCwAAgKzISABQPNCQAgCL8EktAABAVmQkoGSiIQWgxCL8AAAAZEVGAmAFGlIAUMTk9gKaRTVMcoFQAACQH2QkoGihIQUAKJKuDGUEMgAAADISig4aUoCb4AKdAAAAWZGRAKB4oiEFACUYp34DAABkRUYCCp+H3QUAAAAAAACgZOEMKaAIKaoXYETxk5tPDflkEQBgFTIS3AUZCcg9GlIAAMvwPwwAAABZkZFQEtGQAgAUC8Xp08b83ra6qM4XAAAUnuKUkaTc5R8yUtFAQwoAigE+VQMAAMiKjAS4L9svaj516lQ5HA4NGzbMuezChQsaMmSIKlSoIH9/f/Xq1Uvx8fEuzzt69Ki6du0qPz8/Va5cWSNGjFBaWprF1QNA8XM4YZnLT3FT3OeH4oWcBADuo7hniOI+P7gfW8+Q2rx5s9555x3dcsstLsufeeYZfffdd1q4cKECAwM1dOhQ3XvvvdqwYYMkKT09XV27dlVISIh+/PFHnThxQv3795eXl5deeeUVO6YCAChG8nMqeE7jgPwiJwEA3A0XbUdBsq0hde7cOfXr10/vvfeeJk2a5FyemJio999/X59++qk6dOggSZo7d67q1q2r//73v2rVqpWWL1+uPXv2aOXKlQoODlbjxo01ceJEvfDCCxo/fry8vb3tmhYAAHlWmJ9CEgqLJnISAABkpOLOtobUkCFD1LVrV0VERLgEra1bt+rixYuKiIhwLqtTp46qVKmimJgYtWrVSjExMWrYsKGCg4OdYzp37qwnnnhCu3fvVpMmTbLdZ0pKilJSUpyPk5KSCmFmAFAycWo3F9CUCHcFxeqcREYCgMJDRiIfSByD7NjSkJo/f762bdumzZs3Z1kXFxcnb29vBQUFuSwPDg5WXFycc8zlIStzfea6nEyZMkUTJky4zuoBa/DGBcBOhCb72JGTyEgoSshIAOxERio4ljekjh07pn/84x9asWKFfH19Ld33qFGjNHz4cOfjpKQkhYeHW1oDAKBk43+kcDV25SQyEgDAbmSkksfyhtTWrVt18uRJNW3a1LksPT1d69at05tvvqnvv/9eqampSkhIcPn0Lz4+XiEhIZKkkJAQbdq0yWW7mXeXyRyTHR8fH/n4+BTgbAAAyBnBCnllV04iIwEArEZOguUNqY4dO2rXrl0uyx555BHVqVNHL7zwgsLDw+Xl5aVVq1apV69ekqT9+/fr6NGjat26tSSpdevWmjx5sk6ePKnKlStLklasWKGAgADVq1fP2gkBBYR/kAF78LcHd0JOArLi32nAHvztobBZ3pAqW7asGjRo4LKsTJkyqlChgnP5wIEDNXz4cJUvX14BAQF66qmn1Lp1a7Vq1UqS1KlTJ9WrV08PP/ywpk2bpri4OL300ksaMmQIn+4BAJwKKkgVlUCW2zq5+Lr7IicBAKxQkNmmKOQkMpJ7su0ue1fz+uuvy8PDQ7169VJKSoo6d+6st956y7ne09NT3377rZ544gm1bt1aZcqUUVRUlF5++WUbqwYAFJaiEHRKAkKaeyAnAQAykZHcAxkpf9yiIbV27VqXx76+vpo9e7Zmz56d43OqVq2qpUuXFnJlQOG4GL3e7hIAAEUEOQklCRkJAEoOt2hIAcXZoS3vZFlWRfVtqAQA7MGnhgCyQ0YCUNKV9IxEQwoAgBIuv6f7F+TzSloAAwAA7o+MVLg87C4AAAAAAAAAJQtnSAEAUARw0VIAAICsyEhFFw0poIBdeTHOjISjWQcFcX0EAABQspCRAACX4yt7AAAAAAAAsBRnSAE24LRSAACArMhIAFBycIYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpUnYXABRlF6PX210CAACA2yEjAQCuhTOkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYimtIAQAA2x1OWJZlWS21taESAAAA91GcMxJnSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBTXkAKuQ3bf560WdJcNlQAAALgPMhIA4Fo4QwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSXNQcyMHF6PUuj70i29pUCQAAgPsgIwEACgJnSAEAAAAAAMBSnCEF5NKhLe/YXQIAAIDbISMBAPKDhhRQwA4nLLO7BAAAALdDRgIAXI6v7AEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBTXkAJyKePgUbtLAAAAcDtkJABAfnCGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS3ENKUDSxej1dpcAAADgdshIAIDCQkMKyMHhhGV2lwAAAOB2yEgAgILAV/YAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsZUtDasqUKbr11ltVtmxZVa5cWT169ND+/ftdxly4cEFDhgxRhQoV5O/vr169eik+Pt5lzNGjR9W1a1f5+fmpcuXKGjFihNLS0qycCgAAQIEhIwEAgJLClobUf/7zHw0ZMkT//e9/tWLFCl28eFGdOnXS+fPnnWOeeeYZffPNN1q4cKH+85//6Pjx47r33nud69PT09W1a1elpqbqxx9/1Icffqh58+Zp7NixdkwJAADgupGRAABASeEwxhi7i/jjjz9UuXJl/ec//1G7du2UmJioSpUq6dNPP9V9990nSdq3b5/q1q2rmJgYtWrVSsuWLdPdd9+t48ePKzg4WJI0Z84cvfDCC/rjjz/k7e19zf0mJSUpMDBQiYmJCggIKNQ5wr0dmD/a7hIAAFeo1XdyoWy3KL3/k5FgNzISALif4pKR3OIaUomJiZKk8uXLS5K2bt2qixcvKiIiwjmmTp06qlKlimJiYiRJMTExatiwoTNoSVLnzp2VlJSk3bt3W1g9AABA4SAjAQCA4qqU3QVkZGRo2LBhuu2229SgQQNJUlxcnLy9vRUUFOQyNjg4WHFxcc4xlwetzPWZ67KTkpKilJQU5+OkpKSCmgaKkIvR6+0uAQCAayIjwQ7kJACAVWw/Q2rIkCH6+eefNX/+/ELf15QpUxQYGOj8CQ8PL/R9AgAA5AcZCQAAFGe2NqSGDh2qb7/9VmvWrNGNN97oXB4SEqLU1FQlJCS4jI+Pj1dISIhzzJV3lMl8nDnmSqNGjVJiYqLz59ixYwU4GwAAgIJBRgIAAMWdLQ0pY4yGDh2qRYsWafXq1apevbrL+mbNmsnLy0urVq1yLtu/f7+OHj2q1q1bS5Jat26tXbt26eTJk84xK1asUEBAgOrVq5ftfn18fBQQEODyAwAA4C7ISAAAoKSw5RpSQ4YM0aeffqqvv/5aZcuWdV7PIDAwUKVLl1ZgYKAGDhyo4cOHq3z58goICNBTTz2l1q1bq1WrVpKkTp06qV69enr44Yc1bdo0xcXF6aWXXtKQIUPk4+Njx7QAAACuCxkJAACUFLY0pN5++21J0h133OGyfO7cuRowYIAk6fXXX5eHh4d69eqllJQUde7cWW+99ZZzrKenp7799ls98cQTat26tcqUKaOoqCi9/PLLVk0Dbig3F+I8nLDMgkoAAMg7MhIKS24vVk5OAgBYxWGMMXYXYZekpCQFBgYqMTGRU9OLCRpSAFB81Oo7uVC2y/v/tXGMih8aUgBQfBSXjGT7XfYAAAAAAABQstCQAgAAAAAAgKVoSAEAAAAAAMBStlzUHLAS10IAAADIiowEALATZ0gBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYiouao8i6GL3e7hIAAADcEjkJAODuOEMKAAAAAAAAlqIhBQAAAAAAAEvxlT0UK4cTltldAgAAgNshIwEA3A1nSAEAAAAAAMBSnCGFIoOLcwIAAGRFRgIAFEWcIQUAAAAAAABL0ZACAAAAAACApfjKHtxCbk41v/JinNWC7iqscgAAANxCfjKSRE4CALg/zpACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApriEFt5TdtRAAAABKOjISAKC4oCGFIotABgAAkD1yEgDA3fGVPQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEtxUXMUqovR67Msy+4im9WC7rKiHAAAALdARgIAlHQ0pFCouMMLAABAVmQkAEBJR0MKboFQBgAAkBUZCQBQXNGQQr5ld6q5V2RbGyoBAABwH2QkAACujYYUClR2AQwAAKCkIyMBAOCKu+wBAAAAAADAUpwhhXzjTjAAAABZkZEAALg2GlLIlUNb3snVOC68CQAAShIyEgAA+UNDCtnKbbgCAAAoSchIAAAUDBpSyFbGwaN2lwAAAOB2yEgAABQMLmoOAAAAAAAAS9GQAgAAAAAAgKX4yl4JczF6fZZlRyvutqESAAAA90FGAgDAWpwhBQAAAAAAAEtxhlQRld2neNnximx7zTFcnBMAABQXZCQAAIoGGlJFRG7D1ZUOzB/t8rha0F0FUQ4AAIBbICMBAFA00ZAqRg4nLCuQMQAAAMUJGQkAAPdDQ6oQHdryTpZlNZs/lq9tEZIAAEBxQUYCAABF/qLms2fPVrVq1eTr66uWLVtq06ZNdpfklHHwaJYfAAAAK5CRAACAOyvSZ0gtWLBAw4cP15w5c9SyZUu98cYb6ty5s/bv36/KlSvbXV62rrzOAZ/qAQCAgkZGAgAA7q5InyE1Y8YMDRo0SI888ojq1aunOXPmyM/PTx988IHdpeXocMIylx8AAICCRkYCAADursg2pFJTU7V161ZFREQ4l3l4eCgiIkIxMTE2VgYAAGAfMhIAACgKiuxX9k6dOqX09HQFBwe7LA8ODta+ffuyfU5KSopSUlKcjxMTEyVJSUlJhVLjueSUaw8CAADZKqz358ztGmMKZft2IyMBAFC8FZeMVGQbUvkxZcoUTZgwIcvy8PBwG6oBAABXNfCfhbr5s2fPKjAwsFD3UVSQkQAAKEKKSUYqsg2pihUrytPTU/Hx8S7L4+PjFRISku1zRo0apeHDhzsfZ2Rk6MyZM6pQoYIcDkeB1peUlKTw8HAdO3ZMAQEBBbptd8I8i5+SMlfmWbwwz+KnMOdqjNHZs2cVFhZWoNt1F2Qk98A8i5+SMlfmWbyUlHlKJWeuxSkjFdmGlLe3t5o1a6ZVq1apR48eki6Fp1WrVmno0KHZPsfHx0c+Pj4uy4KCggq1zoCAgGL9x5CJeRY/JWWuzLN4YZ7FT2HNtTifGUVGci/Ms/gpKXNlnsVLSZmnVHLmWhwyUpFtSEnS8OHDFRUVpebNm6tFixZ64403dP78eT3yyCN2lwYAAGAbMhIAAHB3Rboh1adPH/3xxx8aO3as4uLi1LhxY0VHR2e5iCcAAEBJQkYCAADurkg3pCRp6NChOZ5+bicfHx+NGzcuy+nvxQ3zLH5KylyZZ/HCPIufkjTXwkJGshfzLH5KylyZZ/FSUuYplZy5Fqd5OkxxvecxAAAAAAAA3JKH3QUAAAAAAACgZKEhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSk8mny5Mlq06aN/Pz8FBQUlKvnGGM0duxYhYaGqnTp0oqIiNCBAwdcxpw5c0b9+vVTQECAgoKCNHDgQJ07d64QZpB7ea3p8OHDcjgc2f4sXLjQOS679fPnz7diStnKz7G/4447sszh8ccfdxlz9OhRde3aVX5+fqpcubJGjBihtLS0wpzKVeV1nmfOnNFTTz2l2rVrq3Tp0qpSpYqefvppJSYmuoyz+/WcPXu2qlWrJl9fX7Vs2VKbNm266viFCxeqTp068vX1VcOGDbV06VKX9bn5e7VLXub63nvv6fbbb1e5cuVUrlw5RUREZBk/YMCALK9dZGRkYU/jmvIyz3nz5mWZg6+vr8sYd31N8zLP7P7NcTgc6tq1q3OMO76e69atU7du3RQWFiaHw6HFixdf8zlr165V06ZN5ePjo5tuuknz5s3LMiavf/ewBhmJjCSRkS5n9+tJRsoeGel/3PU1JSNlr1hlJIN8GTt2rJkxY4YZPny4CQwMzNVzpk6dagIDA83ixYvNzp07zT333GOqV69u/vrrL+eYyMhI06hRI/Pf//7X/PDDD+amm24yDzzwQCHNInfyWlNaWpo5ceKEy8+ECROMv7+/OXv2rHOcJDN37lyXcZcfC6vl59i3b9/eDBo0yGUOiYmJzvVpaWmmQYMGJiIiwmzfvt0sXbrUVKxY0YwaNaqwp5OjvM5z165d5t577zVLliwxBw8eNKtWrTK1atUyvXr1chln5+s5f/584+3tbT744AOze/duM2jQIBMUFGTi4+OzHb9hwwbj6elppk2bZvbs2WNeeukl4+XlZXbt2uUck5u/Vzvkda4PPvigmT17ttm+fbvZu3evGTBggAkMDDS//fabc0xUVJSJjIx0ee3OnDlj1ZSyldd5zp071wQEBLjMIS4uzmWMO76meZ3n6dOnXeb4888/G09PTzN37lznGHd8PZcuXWpGjx5tvvrqKyPJLFq06Krjf/31V+Pn52eGDx9u9uzZY2bNmmU8PT1NdHS0c0xejx2sQ0YiIxlDRrocGckaZCQyEhnpkqKUkWhIXae5c+fmKmxlZGSYkJAQ89prrzmXJSQkGB8fH/PZZ58ZY4zZs2ePkWQ2b97sHLNs2TLjcDjM77//XuC150ZB1dS4cWPz97//3WVZbv7grJLfebZv39784x//yHH90qVLjYeHh8s/+m+//bYJCAgwKSkpBVJ7XhTU6/n5558bb29vc/HiRecyO1/PFi1amCFDhjgfp6enm7CwMDNlypRsx/fu3dt07drVZVnLli3NY489ZozJ3d+rXfI61yulpaWZsmXLmg8//NC5LCoqynTv3r2gS70ueZ3ntf4tdtfX9Hpfz9dff92ULVvWnDt3zrnMHV/Py+Xm34rnn3/e1K9f32VZnz59TOfOnZ2Pr/fYofCRkXKHjERGKkxkJDISGYmM5M4Zia/sWSQ2NlZxcXGKiIhwLgsMDFTLli0VExMjSYqJiVFQUJCaN2/uHBMRESEPDw9t3LjR8poLqqatW7dqx44dGjhwYJZ1Q4YMUcWKFdWiRQt98MEHMsYUWO15cT3z/OSTT1SxYkU1aNBAo0aNUnJysst2GzZsqODgYOeyzp07KykpSbt37y74iVxDQf2OJSYmKiAgQKVKlXJZbsfrmZqaqq1bt7r8bXl4eCgiIsL5t3WlmJgYl/HSpdclc3xu/l7tkJ+5Xik5OVkXL15U+fLlXZavXbtWlStXVu3atfXEE0/o9OnTBVp7XuR3nufOnVPVqlUVHh6u7t27u/yNueNrWhCv5/vvv6++ffuqTJkyLsvd6fXMj2v9jRbEsYP7ICORkTKRkQoWGYmMlImM9D/u9HrmR3HLSKWuPQQFIS4uTpJc3nQzH2eui4uLU+XKlV3WlypVSuXLl3eOsVpB1PT++++rbt26atOmjcvyl19+WR06dJCfn5+WL1+uJ598UufOndPTTz9dYPXnVn7n+eCDD6pq1aoKCwvTTz/9pBdeeEH79+/XV1995dxudq955jqrFcTreerUKU2cOFGDBw92WW7X63nq1Cmlp6dne5z37duX7XNyel0u/1vMXJbTGDvkZ65XeuGFFxQWFubyJhUZGal7771X1atX16FDh/Tiiy/qrrvuUkxMjDw9PQt0DrmRn3nWrl1bH3zwgW655RYlJiZq+vTpatOmjXbv3q0bb7zRLV/T6309N23apJ9//lnvv/++y3J3ez3zI6e/0aSkJP3111/6888/r/tvAe6DjERGykRGKlhkJDKSREa6nLu9nvlR3DISDanLjBw5Uq+++upVx+zdu1d16tSxqKLCk9u5Xq+//vpLn376qcaMGZNl3eXLmjRpovPnz+u1114r0Dfnwp7n5YGjYcOGCg0NVceOHXXo0CHVrFkz39vNK6tez6SkJHXt2lX16tXT+PHjXdZZ8Xri+kydOlXz58/X2rVrXS5m2bdvX+d/N2zYULfccotq1qyptWvXqmPHjnaUmmetW7dW69atnY/btGmjunXr6p133tHEiRNtrKzwvP/++2rYsKFatGjhsrw4vJ5wP2QkV2SkayMj/Q8Zyf2RkYoXMlLRQUPqMs8++6wGDBhw1TE1atTI17ZDQkIkSfHx8QoNDXUuj4+PV+PGjZ1jTp486fK8tLQ0nTlzxvn8gpLbuV5vTV988YWSk5PVv3//a45t2bKlJk6cqJSUFPn4+FxzfG5YNc9MLVu2lCQdPHhQNWvWVEhISJY7GsTHx0tSgb6mVszz7NmzioyMVNmyZbVo0SJ5eXlddXxhvJ7ZqVixojw9PZ3HNVN8fHyOcwoJCbnq+Nz8vdohP3PNNH36dE2dOlUrV67ULbfcctWxNWrUUMWKFXXw4EFb3pyvZ56ZvLy81KRJEx08eFCSe76m1zPP8+fPa/78+Xr55ZevuR+7X8/8yOlvNCAgQKVLl5anp+d1/44gb8hIrshIZKTLkZHISFYhI5GRil1GsvcSVkVfXi/YOX36dOeyxMTEbC/YuWXLFueY77//3i0u2Jnfmtq3b5/lTiM5mTRpkilXrly+a70eBXXs169fbySZnTt3GmP+d8HOy+9o8M4775iAgABz4cKFgptALuV3nomJiaZVq1amffv25vz587nal5WvZ4sWLczQoUOdj9PT080NN9xw1Qt23n333S7LWrduneWCnVf7e7VLXudqjDGvvvqqCQgIMDExMbnax7Fjx4zD4TBff/31ddebX/mZ5+XS0tJM7dq1zTPPPGOMcd/XNL/znDt3rvHx8TGnTp265j7c4fW8nHJ5wc4GDRq4LHvggQeyXLDzen5HUPjISFdHRiIjWYGMREa6Ehnpf9zh9bxcScxINKTy6ciRI2b79u3OW/Vu377dbN++3eWWvbVr1zZfffWV8/HUqVNNUFCQ+frrr81PP/1kunfvnu0tjZs0aWI2btxo1q9fb2rVquUWtzS+Wk2//fabqV27ttm4caPL8w4cOGAcDodZtmxZlm0uWbLEvPfee2bXrl3mwIED5q233jJ+fn5m7NixhT6fnOR1ngcPHjQvv/yy2bJli4mNjTVff/21qVGjhmnXrp3zOZm3NO7UqZPZsWOHiY6ONpUqVbL9lsZ5mWdiYqJp2bKladiwoTl48KDLbVLT0tKMMfa/nvPnzzc+Pj5m3rx5Zs+ePWbw4MEmKCjIeeeehx9+2IwcOdI5fsOGDaZUqVJm+vTpZu/evWbcuHHZ3tL4Wn+vdsjrXKdOnWq8vb3NF1984fLaZf5bdfbsWfPcc8+ZmJgYExsba1auXGmaNm1qatWqZcv/EGTK6zwnTJhgvv/+e3Po0CGzdetW07dvX+Pr62t2797tHOOOr2le55mpbdu2pk+fPlmWu+vrefbsWef7pCQzY8YMs337dnPkyBFjjDEjR440Dz/8sHN85i2NR4wYYfbu3Wtmz56d7S2Nr3bsYB8yEhmJjERGsgMZiYxkDBnJmKKVkWhI5VNUVJSRlOVnzZo1zjGSzNy5c52PMzIyzJgxY0xwcLDx8fExHTt2NPv373fZ7unTp80DDzxg/P39TUBAgHnkkUdcApwdrlVTbGxslrkbY8yoUaNMeHi4SU9Pz7LNZcuWmcaNGxt/f39TpkwZ06hRIzNnzpxsx1olr/M8evSoadeunSlfvrzx8fExN910kxkxYoRJTEx02e7hw4fNXXfdZUqXLm0qVqxonn32WZdbAVstr/Ncs2ZNtr/rkkxsbKwxxj1ez1mzZpkqVaoYb29v06JFC/Pf//7Xua59+/YmKirKZfznn39ubr75ZuPt7W3q169vvvvuO5f1ufl7tUte5lq1atVsX7tx48YZY4xJTk42nTp1MpUqVTJeXl6matWqZtCgQW7xhpWXeQ4bNsw5Njg42HTp0sVs27bNZXvu+prm9Xd33759RpJZvnx5lm256+uZ078jmXOLiooy7du3z/Kcxo0bG29vb1OjRg2X99NMVzt2sA8ZiYxERiIj2YWMREYiI11SVDKSwxib7iELAAAAAACAEsnD7gIAAAAAAABQstCQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAJQId9xxh+64445Cf05JN23aNNWpU0cZGRlXHXf48GE5HA7NmzfPZXl0dLQaN24sX19fORwOJSQk5Hrfp0+fVpkyZbR06dJ8VA4AQMlERrIGGQnIioYUABSCTz/9VG+88YbdZeTJ5MmTdc899yg4OFgOh0Pjx4/P0/OTkpL06quv6oUXXpCHR97fXk6fPq3evXurdOnSmj17tj766COVKVNG+/fv1zPPPKM2bdo4Q9jhw4ezPL9ChQp69NFHNWbMmDzvGwAAWIOMVHAZ6auvvlKfPn1Uo0YN+fn5qXbt2nr22WezNKvISHBXNKQAIAfLly/X8uXL8/Xcohi2XnrpJW3evFlNmjTJ1/M/+OADpaWl6YEHHsjX8zdv3qyzZ89q4sSJGjhwoB566CF5eXkpJiZGM2fO1NmzZ1W3bt2rbuPxxx/Xtm3btHr16nzVAAAAro2MlDeFlZEGDx6svXv36qGHHtLMmTMVGRmpN998U61bt9Zff/3lsg0yEtxRKbsLAICrOX/+vMqUKWPLvr29vW3Zr11iY2NVrVo1nTp1SpUqVcrz8+fOnat77rlHvr6++dr/yZMnJUlBQUEuy++55x4lJCSobNmymj59unbs2JHjNurWrasGDRpo3rx56tChQ77qAACgKCAjWcddM9IXX3yR5auTzZo1U1RUlD755BM9+uijzuVkJLgjzpACcjB+/Hg5HA798ssveuihhxQYGKhKlSppzJgxMsbo2LFj6t69uwICAhQSEqJ//vOfWbYxa9Ys1a9fX35+fipXrpyaN2+uTz/91GXM77//rr///e8KDg6Wj4+P6tevrw8++CDP9X799dfq2rWrwsLC5OPjo5o1a2rixIlKT093jhk6dKj8/f2VnJyc5fkPPPCAQkJCnOMzMjI0fvx4hYWFyc/PT3feeaf27NmjatWqacCAAXmqzeFwaOjQofrkk09Uu3Zt+fr6qlmzZlq3bp3LuMxjvmfPHj344IMqV66c2rZt61z/8ccfq1mzZipdurTKly+vvn376tixY1n29+6776pmzZoqXbq0WrRooR9++CFP9Wa68voIa9eulcPh0Oeff67JkyfrxhtvlK+vrzp27KiDBw+6PO+7777TkSNH5HA45HA4VK1aNef6lJQUjRs3TjfddJN8fHwUHh6u559/XikpKdket8WLF6tBgwbO34/o6GiXcWfPntWwYcNUrVo1+fj4qHLlyvrb3/6mbdu25Wm+l9eYV7Gxsfrpp58UERGRZV1CQoIGDBigwMBABQUFKSoqKsup5HfccYeioqIkSbfeeqscDofz96x8+fIqW7Zsrmv529/+pm+++UbGmHzPBwCQMzISGYmMlHuFmZGyu45Xz549JUl79+7Nso6MBHfDGVLANfTp00d169bV1KlT9d1332nSpEkqX7683nnnHXXo0EGvvvqqPvnkEz333HO69dZb1a5dO0nSe++9p6efflr33Xef/vGPf+jChQv66aeftHHjRj344IOSpPj4eLVq1cr5plqpUiUtW7ZMAwcOVFJSkoYNG5brOufNmyd/f38NHz5c/v7+Wr16tcaOHaukpCS99tprzrnMnj1b3333ne6//37nc5OTk/XNN99owIAB8vT0lCSNGjVK06ZNU7du3dS5c2ft3LlTnTt31oULF/J1HP/zn/9owYIFevrpp+Xj46O33npLkZGR2rRpkxo0aOAy9v7771etWrX0yiuvON8wJ0+erDFjxqh379569NFH9ccff2jWrFlq166dtm/f7vzE6P3339djjz2mNm3aaNiwYfr11191zz33qHz58goPD89X7VeaOnWqPDw89NxzzykxMVHTpk1Tv379tHHjRknS6NGjlZiYqN9++02vv/66JMnf31/SpRB7zz33aP369Ro8eLDq1q2rXbt26fXXX9cvv/yixYsXu+xr/fr1+uqrr/Tkk0+qbNmymjlzpnr16qWjR4+qQoUKki6dgv3FF19o6NChqlevnk6fPq3169dr7969atq0aYHM+Vp+/PFHScqyP2OMunfvrvXr1+vxxx9X3bp1tWjRImewyjR69GjVrl1b7777rl5++WVVr15dNWvWzFctzZo10+uvv67du3dn+d0CABQcMhIZ6UpkpKyszkhxcXGSpIoVK2ZZR0aC2zEAsjVu3DgjyQwePNi5LC0tzdx4443G4XCYqVOnOpf/+eefpnTp0iYqKsq5rHv37qZ+/fpX3cfAgQNNaGioOXXqlMvyvn37msDAQJOcnJzrerMb+9hjjxk/Pz9z4cIFY4wxGRkZ5oYbbjC9evVyGff5558bSWbdunXGGGPi4uJMqVKlTI8ePVzGjR8/3khymWduSDKSzJYtW5zLjhw5Ynx9fU3Pnj2dyzKP+QMPPODy/MOHDxtPT08zefJkl+W7du0ypUqVci5PTU01lStXNo0bNzYpKSnOce+++66RZNq3b5+nutu3b+/ynDVr1hhJpm7dui7b/9e//mUkmV27djmXde3a1VStWjXLNj/66CPj4eFhfvjhB5flc+bMMZLMhg0bnMskGW9vb3Pw4EHnsp07dxpJZtasWc5lgYGBZsiQIXma29X88ccfRpIZN25crp/z0ksvGUnm7NmzLssXL15sJJlp06Y5l6WlpZnbb7/dSDJz5851Lp87d66RZDZv3pzjfl577TUjycTGxuY45scffzSSzIIFC3JdPwAg98hIZCQy0rhcP8eqjJRp4MCBxtPT0/zyyy9Z1pGR4G74yh5wDZd/99rT01PNmzeXMUYDBw50Lg8KClLt2rX166+/uiz77bfftHnz5my3a4zRl19+qW7duskYo1OnTjl/OnfurMTExDydTly6dGnnf589e1anTp3S7bffruTkZO3bt0/SpdOb77//fi1dulTnzp1zjl+wYIFuuOEG56nfq1atUlpamp588kmXfTz11FO5rudKrVu3VrNmzZyPq1Spou7du+v77793OWVeuvRp1uW++uorZWRkqHfv3i7HKSQkRLVq1dKaNWskSVu2bNHJkyf1+OOPu1zbIPNU6ILyyCOPuGz/9ttvlySX1z8nCxcuVN26dVWnTh2XuWR+lz9zLpkiIiJcPgW75ZZbFBAQkOV3bePGjTp+/Ph1zet6nD59WqVKlXJ+yplp6dKlKlWqlJ544gnnMk9Pz+v6XbqWcuXKSZJOnTpVaPsAAJCRLkdGuoSMlJWVGenTTz/V+++/r2effVa1atXKsp6MBHdDQwq4hipVqrg8DgwMlK+vb5bTYAMDA/Xnn386H7/wwgvy9/dXixYtVKtWLQ0ZMkQbNmxwrv/jjz+UkJCgd999V5UqVXL5eeSRRyT97wKGubF792717NlTgYGBCggIUKVKlfTQQw9JkhITE53j+vTpo7/++ktLliyRJJ07d05Lly7V/fffL4fDIUk6cuSIJOmmm25y2Uf58uWdb2R5ld2b4s0336zk5GT98ccfLsurV6/u8vjAgQMyxqhWrVpZjtXevXudxymz7iv35eXlpRo1auSr7uxc+TuReUwuf/1zcuDAAe3evTvLPG6++WZJWV/zK/eVub/L9zVt2jT9/PPPCg8PV4sWLTR+/PhcBT8rHDlyRKGhoVlCWO3atQttn+b/f4Uh8/cZAFA4yEj/Q0a6hIyUewWdkX744QcNHDhQnTt31uTJk7MdQ0aCu+EaUsA1ZF4v4FrLJLlcILBu3brav3+/vv32W0VHR+vLL7/UW2+9pbFjx2rChAnKyMiQJD300ENZviue6ZZbbslVjQkJCWrfvr0CAgL08ssvq2bNmvL19dW2bdv0wgsvOPclSa1atVK1atX0+eef68EHH9Q333yjv/76S3369MnVvqxw+SeZ0qVrCjgcDi1btizbY3/lG3lhy83rn5OMjAw1bNhQM2bMyHb9lddwyM2+evfurdtvv12LFi3S8uXL9dprr+nVV1/VV199pbvuuuuaNRWEChUqKC0tTWfPns3TBcgLQ2YQze7aCQCAgkNGsh4ZKW/7KikZaefOnbrnnnvUoEEDffHFFypVKvv/zScjwd3QkAIKUZkyZdSnTx/16dNHqampuvfeezV58mSNGjVKlSpVUtmyZZWenp7tXTfyYu3atTp9+rS++uor5wVDpUt39chO79699a9//UtJSUlasGCBqlWrplatWjnXV61aVZJ08OBBl0/iTp8+natPuLJz4MCBLMt++eUX+fn5XfP2uTVr1pQxRtWrV3d+SpadzLoPHDjgcjvbixcvKjY2Vo0aNcpX7fmR0ydPNWvW1M6dO9WxY8cC/XQqNDRUTz75pJ588kmdPHlSTZs21eTJky0LW3Xq1JF06Xfu8v9JqFq1qlatWqVz5865hOL9+/cXWi2Zv/d169YttH0AAK4PGel/yEiXkJEuyWtGOnTokCIjI1W5cmUtXbr0qk1IMhLcDV/ZAwrJ6dOnXR57e3urXr16Msbo4sWL8vT0VK9evfTll1/q559/zvL8K0/RvprMT4gu/0QoNTVVb731Vrbj+/Tpo5SUFH344YeKjo5W7969XdZ37NhRpUqV0ttvv+2y/M0338x1TVeKiYlxud7DsWPH9PXXX6tTp045fsKV6d5775Wnp6cmTJiQ5RM2Y4zzWDdv3lyVKlXSnDlzlJqa6hwzb968LLfQLWxlypRx+RpApt69e+v333/Xe++9l2XdX3/9pfPnz+dpP+np6Vn2U7lyZYWFhWW5RXJhat26taRL16i4XJcuXZSWlubyu5Senq5Zs2YVWi1bt25VYGCg6tevX2j7AADkHxnJFRnpEjJS3jNSXFycOnXqJA8PD33//ffXbGCSkeBuOEMKKCSdOnVSSEiIbrvtNgUHB2vv3r1688031bVrV+fpulOnTtWaNWvUsmVLDRo0SPXq1dOZM2e0bds2rVy5UmfOnMnVvtq0aaNy5copKipKTz/9tBwOhz766KMcT49u2rSpbrrpJo0ePVopKSlZTkUPDg7WP/7xD/3zn//UPffco8jISO3cuVPLli1TxYoV8/WpVYMGDdS5c2eXWxpL0oQJE6753Jo1a2rSpEkaNWqUDh8+rB49eqhs2bKKjY3VokWLNHjwYD333HPy8vLSpEmT9Nhjj6lDhw7q06ePYmNjNXfu3AK9PkJuNGvWTAsWLNDw4cN16623yt/fX926ddPDDz+szz//XI8//rjWrFmj2267Tenp6dq3b58+//xzff/992revHmu93P27FndeOONuu+++9SoUSP5+/tr5cqV2rx5s/75z3/mqeaPPvpIR44cUXJysiRp3bp1mjRpkiTp4Ycfdn66mp0aNWqoQYMGWrlypf7+9787l3fr1k233XabRo4cqcOHD6tevXr66quvsg2iOUlMTHSGs8xrjLz55psKCgpSUFCQhg4d6jJ+xYoV6tatG9dHAAA3RUZyRUYiI+U3I0VGRurXX3/V888/r/Xr12v9+vXOdcHBwfrb3/7mMp6MBLdjzc38gKIn8/a6f/zxh8vyqKgoU6ZMmSzj27dv73IL43feece0a9fOVKhQwfj4+JiaNWuaESNGmMTERJfnxcfHmyFDhpjw8HDj5eVlQkJCTMeOHc27776bp3o3bNhgWrVqZUqXLm3CwsLM888/b77//nsjyaxZsybL+NGjRxtJ5qabbsp2e2lpaWbMmDEmJCTElC5d2nTo0MHs3bvXVKhQwTz++ON5qk2SGTJkiPn4449NrVq1jI+Pj2nSpEmWunI65pm+/PJL07ZtW1OmTBlTpkwZU6dOHTNkyBCzf/9+l3FvvfWWqV69uvHx8THNmzc369aty3J74tzI6ZbGCxcudBkXGxub5fa8586dMw8++KAJCgoyklxub5yammpeffVVU79+fePj42PKlStnmjVrZiZMmODy+5F53K5UtWpV522lU1JSzIgRI0yjRo1M2bJlTZkyZUyjRo3MW2+9lae5Zs5X///201f+ZPc7dKUZM2YYf3//LLfXPn36tHn44YdNQECACQwMNA8//LDZvn17rm9pnHl8s/u58rbRe/fuNZLMypUr8zx/AEDukJHISGQk98hIOdUkKctrSkaCO3IYk4srzAGALl0YtFy5cpo0aZJGjx6d6+c5HA4NGTLkuk5nh/tLTExUjRo1NG3aNJdbfltp2LBhWrdunbZu3cqnfwAAy5CRcDVkJCB7XEMKQLb++uuvLMveeOMNSdIdd9xhbTEoEgIDA/X888/rtddec7lrkVVOnz6t//u//9OkSZMIWgCAQkNGQl6RkYDscYYU4Ob++OMPpaen57je29tb5cuXL/D9zps3T/PmzVOXLl3k7++v9evX67PPPlOnTp30/fffS7p0IcWrKV26tAIDA93u0z+7jqkd/vrrr2tei6B8+fLy9va2qCIAAAoGGangkZFckZGAwsVFzQE3d+utt+rIkSM5rm/fvr3Wrl1b4Pu95ZZbVKpUKU2bNk1JSUnOi3hmXsBRunQb3auJiorSvHnzCry262XXMbXDggUL9Mgjj1x1zJo1a/hEFwBQ5JCRCh4ZyRUZCShcnCEFuLkNGzZke2p4pnLlyqlZs2YWVvQ/K1euvOr6sLAw1atXz6Jqcs+dj2lBO3HihHbv3n3VMc2aNVO5cuUsqggAgILhzu/nZCT3R0YC7EdDCgAAAAAAAJbiouYAAAAAAACwVIm+hlRGRoaOHz+usmXLcrcBAABKCGOMzp49q7CwMHl48NlcdshIAACUPFZnpBLdkDp+/LjCw8PtLgMAANjg2LFjuvHGG+0uwy2RkQAAKLmsykgluiFVtmxZSZcOdkBAgM3VAAAAKyQlJSk8PNyZA5AVGQkAgJLH6oxUohtSmaegBwQEELYAAChh+CpazshIAACUXFZlJC6cAAAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUiX6GlIAAFxNenq6Ll68aHcZyCMvLy95enraXQYAAMUWGalocreMREMKAIArGGMUFxenhIQEu0tBPgUFBSkkJIQLlwMAUIDISEWfO2UkGlIAAFwhM2hVrlxZfn5+bvGGjdwxxig5OVknT56UJIWGhtpcEQAAxQcZqehyx4xEQwoAgMukp6c7g1aFChXsLgf5ULp0aUnSyZMnVblyZbc6NR0AgKKKjFT0uVtG4qLmAABcJvN6CH5+fjZXguuR+fpxfQsAAAoGGal4cKeMREMKAIBscAp60cbrBwBA4eA9tmhzp9ePhhQAAAAAAAAsRUMKAAAAAAAAluKi5gAA5NLF6PWW7csrsm2ux17r1Otx48Zp/Pjx11lR/jgcDi1atEg9evTI9zbeffddffrpp9q2bZvOnj2rP//8U0FBQQVWIwAAuD5WZiSJnJTpzJkzGjdunJYvX66jR4+qUqVK6tGjhyZOnKjAwMCCLbYQ0JBCkXblP3x5+YcJAIqLEydOOP97wYIFGjt2rPbv3+9c5u/vn6ftpaamytvbu8Dqu17JycmKjIxUZGSkRo0aZXc5QJFARgKAS4pzTjp+/LiOHz+u6dOnq169ejpy5Igef/xxHT9+XF988YXd5V0TX9kDAKCICwkJcf4EBgbK4XA4H58/f179+vVTcHCw/P39deutt2rlypUuz69WrZomTpyo/v37KyAgQIMHD5YkvffeewoPD5efn5969uypGTNmZDkz6euvv1bTpk3l6+urGjVqaMKECUpLS3NuV5J69uwph8PhfLxz507deeedKlu2rAICAtSsWTNt2bIlx/kNGzZMI0eOVKtWrQrmgAEAgBKjOOekBg0a6Msvv1S3bt1Us2ZNdejQQZMnT9Y333zj3I87oyEFAEAxdu7cOXXp0kWrVq3S9u3bFRkZqW7duuno0aMu46ZPn65GjRpp+/b/x959h1dR5v//f52EJLQUAqRpCKEXIUIoRhFppoCsKCjNBZSibrDAiphVIRERBETFrh8FV3FFXUFEyVKVYqS5kSKbBb4BVBJYgeQYkBQyvz/4MXpIaOFkzjnJ83Fd59rMzH1m7plDzGvf5557/q0nn3xSGzdu1H333aeHHnpImZmZuvnmmzV9+nSH96xfv14jRozQQw89pB9++EFvvPGGFixYYLbbsmWLJGn+/PnKyckxl4cPH66rr75aW7Zs0bZt2/TYY4/Jx8fHgqsBAADwu6qYk/Lz8xUQEKAaNdz/hjj37yEAAKiwmJgYxcTEmMvTpk3T4sWLtXTpUo0fP95c36tXL/31r381lx9//HElJSXpkUcekSS1aNFC33zzjZYtW2a2SUtL02OPPaaRI0dKkpo0aaJp06bp0Ucf1dSpU9WwYUNJUlBQkMLCwsz3HTx4UJMmTVKrVq0kSc2bN6+EMwcAALiwqpaTfvnlF02bNs0cxeXuGCEFAEAVVlBQoEceeUStW7dWUFCQ6tatq927d5f55q9Tp04Oy1lZWerSpYvDunOXv//+ez311FOqW7eu+Ro7dqxycnJ08uTJ8/Zp4sSJGjNmjPr06aOZM2dq3759V3iWAAAAl68q5SS73a5+/fqpTZs2Lpuk/XJRkAIAoAp75JFHtHjxYj3zzDNav369MjMz1a5dOxUVFTm0q1OnzmXvu6CgQGlpacrMzDRfO3bs0J49e1SzZs3zvi81NVW7du1Sv379tGbNGrVp00aLFy++7OMDAABciaqSk3799VclJibK399fixcv9pipELhlDwCAKmzjxo0aNWqUbrvtNklnwtH+/fsv+r6WLVuacxmcde5yx44dlZWVpWbNmp13Pz4+Pjp9+nSZ9S1atFCLFi00YcIEDR06VPPnzzf7CAAAYIWqkJPsdrsSEhLk5+enpUuXXrDY5W4oSAEAUIU1b95cn376qfr37y+bzaYnn3xSpaWlF33fAw88oO7du2vu3Lnq37+/1qxZo+XLl8tms5ltpkyZoltuuUWNGjXSoEGD5OXlpe+//147d+7U008/LenME2RWr16tG264QX5+fqpZs6YmTZqkQYMGKTo6Wj/99JO2bNmigQMHnrcvubm5ys3N1d69eyVJO3bskL+/vxo1aqTg4OArvEIAAKC68vScZLfbFR8fr5MnT+r999+X3W6X3W6XJDVs2FDe3t5OuEqVx+m37K1bt079+/dXRESEbDablixZ4rDdZrOV+5o9e7bZpnHjxmW2z5w502E/27dv14033qiaNWsqMjJSs2bNcvapAADg8ebOnat69erp+uuvV//+/ZWQkKCOHTte9H033HCDXn/9dc2dO1cxMTFKT0/XhAkTHL51S0hI0LJly7RixQp17txZ1113nZ5//nlFRUWZbZ577jmtXLlSkZGR6tChg7y9vXX06FGNGDFCLVq00J133qmkpCSlpaWdty+vv/66OnTooLFjx0qSunfvrg4dOmjp0qVXcGVcg5wEAID78PSc9N1332nTpk3asWOHmjVrpvDwcPP1448/XvkFqmQ2wzAMZ+5w+fLl2rhxo2JjY3X77bdr8eLFGjBggLk9Nze3TPvRo0dr7969atKkiaQzQWv06NFm8JQkf39/875Nu92uFi1aqE+fPkpJSdGOHTt0zz336IUXXris2eTtdrsCAwPNxyLC8xSnb3BY9kns5qKeAKgqTp06pezsbEVHR3vUkGcrjB07Vv/5z3+0fv16V3floi70Obry77+n5CQykucjIwFwNjLShXlKTnKnjOT0W/aSkpKUlJR03u1/fJyhJH322Wfq2bOnGbLO8vf3L9P2rIULF6qoqEjvvPOOfH191bZtW2VmZmru3Lke83hDAADc3Zw5c3TzzTerTp06Wr58ud599129+uqrru6WRyMnAQBQNZCTrpxLn7J3+PBhffHFFxo9enSZbTNnzlT9+vXVoUMHzZ49WyUlJea2jIwMde/eXb6+vua6hIQEZWVl6fjx45b0He6pOH1DmRcAoGI2b96sm2++We3atdPrr7+uefPmacyYMa7uVrVBToIzkZEAwLnISVfOpZOav/vuu/L399ftt9/usP7BBx9Ux44dFRwcrG+++UYpKSnKycnR3LlzJZ0Zzh4dHe3wntDQUHNbvXr1yj1eYWGhCgsLzeWzk30BAICyPvroI1d3oVqzMieRkQAAuDzkpCvn0oLUO++8o+HDh5e5b3HixInmz+3bt5evr6/uvfdezZgxQ35+fhU+3owZMy44aSoAAIC7sDInkZEAAIDVXHbL3vr165WVlXVJQ9q6du2qkpIS7d+/X9KZ+RUOHz7s0Obs8vnmU5CklJQU5efnmy9PmHUeAABUP1bnJDISAACwmstGSL399tuKjY1VTEzMRdtmZmbKy8tLISEhkqS4uDg9/vjjKi4ulo+PjyRp5cqVatmy5Xlv15MkPz+/KxphBddirgMAQHVhdU4iI3k2MhIAwBM5vSBVUFCgvXv3msvZ2dnKzMxUcHCwGjVqJOnMvAQff/yxnnvuuTLvz8jI0KZNm9SzZ0/5+/srIyNDEyZM0F133WWGqGHDhiktLU2jR4/W5MmTtXPnTr344ot6/vnnnX06qCQ8ihgAUB2Rk3Ax5RWXyEkAgKrI6QWprVu3qmfPnuby2XkORo4cqQULFkiSPvzwQxmGoaFDh5Z5v5+fnz788EOlpqaqsLBQ0dHRmjBhgsN8CYGBgVqxYoWSk5MVGxurBg0aaMqUKTzKGAAAuDVyEgAAwBk2wzAMV3fCVex2uwIDA5Wfn6+AgABXd6daqcgIqYoOR+dbRQCX49SpU8rOzlZ0dHSZyaThOS70OfL3/+K4Rq5TkRFSZCQAViAjVQ3ulJFc+pQ94EKYDwEAAKAsMhIAoCqgIAUAwCXat/UNy47VtNO9l9V+1KhRevfddyVJNWrUUHBwsNq3b6+hQ4dq1KhR8vJy2YN1r9iuXbs0ZcoUbdu2TQcOHNDzzz+vhx9+2NXdAgAA/z8rM5JETvqjt956S3//+9+1c+dOSVJsbKyeeeYZdenSxcU9uzjPveoAAMBBYmKicnJytH//fi1fvlw9e/bUQw89pFtuuUUlJSWu7l6FnTx5Uk2aNNHMmTMVFhbm6u4AAAAPVFVz0ldffaWhQ4dq7dq1ysjIUGRkpOLj4/Xzzz+7umsXRUEKVV5x+gaHFwBUVX5+fgoLC9NVV12ljh076m9/+5s+++wzLV++3JwwW5Ly8vI0ZswYNWzYUAEBAerVq5e+//57h319/vnn6ty5s2rWrKkGDRrotttuM7cdP35cI0aMUL169VS7dm0lJSVpz549kqQTJ04oICBAn3zyicP+lixZojp16ujXX39VUVGRxo8fr/DwcNWsWVNRUVGaMWPGec+rc+fOmj17toYMGSI/Pz8nXCkAEhkJQPVSVXPSwoUL9Ze//EXXXnutWrVqpf/7v/9TaWmpVq9e7YSrVrkoSMEtnBuICEUA4By9evVSTEyMPv30U3PdHXfcoSNHjmj58uXatm2bOnbsqN69e+vYsWOSpC+++EK33Xab+vbtq3//+99avXq1w7DvUaNGaevWrVq6dKkyMjJkGIb69u2r4uJi1alTR0OGDNH8+fMd+jF//nwNGjRI/v7+mjdvnpYuXaqPPvpIWVlZWrhwoRo3bmzJ9QA8ERkJACpHVcxJJ0+eVHFxsYKDg6/s4liAOaQAAKjiWrVqpe3bt0uSNmzYoM2bN+vIkSPmaKM5c+ZoyZIl+uSTTzRu3DhNnz5dQ4YMUVpamrmPmJgYSdKePXu0dOlSbdy4Uddff72kM9/MRUZGasmSJbrjjjs0ZswYXX/99crJyVF4eLiOHDmiL7/8UqtWrZIkHTx4UM2bN1e3bt1ks9kUFRVl5eUAAAAwVbWcNHnyZEVERKhPnz5XfG0qGyOkAACo4gzDkM1mkyR9//33KigoUP369VW3bl3zlZ2drX379kmSMjMz1bt373L3tXv3btWoUUNdu3Y119WvX18tW7bU7t27JUldunRR27ZtzclD33//fUVFRal79+6SznxzmJmZqZYtW+rBBx/UihUrKu3cAQAALqQq5aSZM2fqww8/1OLFi1WzZs3LvxgWY4QUAABV3O7duxUdHS1JKigoUHh4uL766qsy7YKCgiRJtWrVuuJjjhkzRq+88ooee+wxzZ8/X3fffbcZ9jp27Kjs7GwtX75cq1at0p133qk+ffqUmU8BAACgslWVnDRnzhzNnDlTq1atUvv27a+4j1ZghBQAAFXYmjVrtGPHDg0cOFDSmZCTm5urGjVqqFmzZg6vBg0aSJLat29/3okwW7durZKSEm3atMlcd/ToUWVlZalNmzbmurvuuksHDhzQvHnz9MMPP2jkyJEO+wkICNDgwYP11ltvadGiRfrnP/9pzs0AAABghaqSk2bNmqVp06YpPT1dnTp1qvD1sBojpAAAqCIKCwuVm5ur06dP6/Dhw0pPT9eMGTN0yy23aMSIEZKkPn36KC4uTgMGDNCsWbPUokULHTp0yJygs1OnTpo6dap69+6tpk2basiQISopKdGXX36pyZMnq3nz5rr11ls1duxYvfHGG/L399djjz2mq666SrfeeqvZl3r16un222/XpEmTFB8fr6uvvtrcNnfuXIWHh6tDhw7y8vLSxx9/rLCwMPObx3MVFRXphx9+MH/++eeflZmZqbp166pZs2aVd0EBAECVUVVz0rPPPqspU6bogw8+UOPGjZWbmytJ5u2G7owRUgAAVBHp6ekKDw9X48aNlZiYqLVr12revHn67LPP5O3tLUmy2Wz68ssv1b17d919991q0aKFhgwZogMHDig0NFSS1KNHD3388cdaunSprr32WvXq1UubN282jzN//nzFxsbqlltuUVxcnAzD0JdffikfHx+H/owePVpFRUW65557HNb7+/tr1qxZ6tSpkzp37qz9+/fryy+/lJdX+bHk0KFD6tChgzp06KCcnBzNmTNHHTp00JgxY5x5+QAAQBVWVXPSa6+9pqKiIg0aNEjh4eHma86cOc68fJXCZhiG4epOuIrdbldgYKDy8/MVEBDg6u5UK658ZLFPYrcy687tT3ltAFQPp06dUnZ2tqKjoz1iMkh39t5772nChAk6dOiQfH19LT32hT5H/v5fHNfIdchIANwVGcm5XJWT3CkjccseAABwqpMnTyonJ0czZ87Uvffea3kxCgAAwF2Rk35HQQrVjiu/eQSA6mDWrFmaPn26unfvrpSUFFd3B8AlIiMBQOUjJ/2OOaQAAIBTpaamqri4WKtXr3b7yTQBAACsRE76HQUpAAAAAAAAWIqCFAAA5ajGz/yoEvj8AACoHPyN9Wzu9PlRkAIA4A/OPpL35MmTLu4JrsTZz+/cRywDAICKISNVDe6UkZjUHACAP/D29lZQUJCOHDkiSapdu7ZsNpuLe4VLZRiGTp48qSNHjigoKEje3t6u7hIAAFUCGcmzuWNGoiAFAMA5wsLCJMkMXPA8QUFB5ucIAACcg4zk+dwpI1GQAgDgHDabTeHh4QoJCVFxcbGru4PL5OPj4xbf+gEAUNWQkTybu2UkClIAAJyHt7e3W/3RBgAAcAdkJDgDBSlUGfvzljssNw5KclFPAAAA3AcZCQDgjnjKHgAAAAAAACxFQQoAAAAAAACW4pY9WKI4fYNT93fu0HMAAABPREYCAFRXjJACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWMrpBal169apf//+ioiIkM1m05IlSxy2jxo1SjabzeGVmJjo0ObYsWMaPny4AgICFBQUpNGjR6ugoMChzfbt23XjjTeqZs2aioyM1KxZs5x9KvBw+/OWl3kBAOBK5CS4AzISAMAdOL0gdeLECcXExOiVV145b5vExETl5OSYr3/84x8O24cPH65du3Zp5cqVWrZsmdatW6dx48aZ2+12u+Lj4xUVFaVt27Zp9uzZSk1N1Ztvvuns0wEAAHAachIAAMAZNZy9w6SkJCUlJV2wjZ+fn8LCwsrdtnv3bqWnp2vLli3q1KmTJOmll15S3759NWfOHEVERGjhwoUqKirSO++8I19fX7Vt21aZmZmaO3euQyADAABwJ+QkAACAM1wyh9RXX32lkJAQtWzZUvfff7+OHj1qbsvIyFBQUJAZsiSpT58+8vLy0qZNm8w23bt3l6+vr9kmISFBWVlZOn78uHUnAgAA4GTkJAAAUB04fYTUxSQmJur2229XdHS09u3bp7/97W9KSkpSRkaGvL29lZubq5CQEMdO1qih4OBg5ebmSpJyc3MVHR3t0CY0NNTcVq9evXKPXVhYqMLCQnPZbrc789QAAACuiKtyEhkJAABYzfKC1JAhQ8yf27Vrp/bt26tp06b66quv1Lt370o99owZM5SWllapxwAAAKgoV+UkMhIAALCa5QWpczVp0kQNGjTQ3r171bt3b4WFhenIkSMObUpKSnTs2DFzPoWwsDAdPnzYoc3Z5fPNuSBJKSkpmjhxorlst9sVGRnprFNBJXHFk1+K0zc4LPskdrO8DwAAWJWTyEiey+qcREYCADiLS+aQ+qOffvpJR48eVXh4uCQpLi5OeXl52rZtm9lmzZo1Ki0tVdeuXc0269atU3Fxsdlm5cqVatmy5Xlv15POTBIaEBDg8AIAAHBXVuUkMhIAALCa0wtSBQUFyszMVGZmpiQpOztbmZmZOnjwoAoKCjRp0iR9++232r9/v1avXq1bb71VzZo1U0JCgiSpdevWSkxM1NixY7V582Zt3LhR48eP15AhQxQRESFJGjZsmHx9fTV69Gjt2rVLixYt0osvvujwzR4AAIC7IScBAACc4fRb9rZu3aqePXuay2fDz8iRI/Xaa69p+/btevfdd5WXl6eIiAjFx8dr2rRp8vPzM9+zcOFCjR8/Xr1795aXl5cGDhyoefPmmdsDAwO1YsUKJScnKzY2Vg0aNNCUKVN4lDEu6lKGtTcOuvDjuAEAqChyEtwVGQkAYDWbYRiGqzvhKna7XYGBgcrPz2doeiU7d76By2H13AjlhS3mRwCAqoO//xfHNbLOlWQkydqcREYCgKrN6r//Lp/UHPAE5YVFAhgAAKjuyEgAgIqiIAWnu9Jv+gAAAKoiMhIAAL9z+VP2AAAAAAAAUL1QkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkmNYfbsfLxxQAAAJ6CjAQAqEooSAHnKC/sNQ5KckFPAAAA3AcZCQDgTNyyBwAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALFXD1R1A9bY/b7mruwAAAOB2yEgAgKqOEVIAAAAAAACwFAUpAAAAAAAAWIpb9nDFitM3uLoLle7cYfONg5Jc1BMAAOApyEgAAJwfI6QAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEvVcHUHAE917qOcfRK7uagnAAAA7oOMBAC4FIyQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFjK6QWpdevWqX///oqIiJDNZtOSJUvMbcXFxZo8ebLatWunOnXqKCIiQiNGjNChQ4cc9tG4cWPZbDaH18yZMx3abN++XTfeeKNq1qypyMhIzZo1y9mnApzX/rzlZV4AAFwMOQlVHRkJAHCpnF6QOnHihGJiYvTKK6+U2Xby5El99913evLJJ/Xdd9/p008/VVZWlv70pz+VafvUU08pJyfHfD3wwAPmNrvdrvj4eEVFRWnbtm2aPXu2UlNT9eabbzr7dAAAAJyGnAQAAHBGDWfvMCkpSUlJSeVuCwwM1MqVKx3Wvfzyy+rSpYsOHjyoRo0amev9/f0VFhZW7n4WLlyooqIivfPOO/L19VXbtm2VmZmpuXPnaty4cc47GQAAACciJwEAAJzh8jmk8vPzZbPZFBQU5LB+5syZql+/vjp06KDZs2erpKTE3JaRkaHu3bvL19fXXJeQkKCsrCwdP378vMcqLCyU3W53eAEAALgrq3ISGQkAAFjN6SOkLsepU6c0efJkDR06VAEBAeb6Bx98UB07dlRwcLC++eYbpaSkKCcnR3PnzpUk5ebmKjo62mFfoaGh5rZ69eqVe7wZM2YoLS2tks4GAADAeazMSWQkAABgNZcVpIqLi3XnnXfKMAy99tprDtsmTpxo/ty+fXv5+vrq3nvv1YwZM+Tn51fhY6akpDjs2263KzIyssL7A/6oOH1DmXU+id1c0BMAgKezOieRkVCZyEgAgPK4pCB1NmQdOHBAa9ascfjWrzxdu3ZVSUmJ9u/fr5YtWyosLEyHDx92aHN2+XzzKUiSn5/fFRW0cOV40goAABfmipxERnI9MhIAoLqxfA6psyFrz549WrVqlerXr3/R92RmZsrLy0shISGSpLi4OK1bt07FxcVmm5UrV6ply5bnvV0PAADA3ZGTAABAdeH0EVIFBQXau3evuZydna3MzEwFBwcrPDxcgwYN0nfffadly5bp9OnTys3NlSQFBwfL19dXGRkZ2rRpk3r27Cl/f39lZGRowoQJuuuuu8wQNWzYMKWlpWn06NGaPHmydu7cqRdffFHPP/+8s08HAADAachJAAAAZzi9ILV161b17NnTXD47H8HIkSOVmpqqpUuXSpKuvfZah/etXbtWPXr0kJ+fnz788EOlpqaqsLBQ0dHRmjBhgsO8BoGBgVqxYoWSk5MVGxurBg0aaMqUKTzKGAAAuDVyEgAAwBlOL0j16NFDhmGcd/uFtklSx44d9e233170OO3bt9f69esvu38AAACuQk4CAAA4w/I5pAAAAAAAAFC9ueQpe/Bc5T22FwAAoLojIwEAcHkYIQUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFLMIQVUonPnk/BJ7OaingAAALgPMhIAgBFSAAAAAAAAsBQFKQAAAAAAAFiKW/YAJ9mft7zMusZBSS7oCQAAgPsgIwEAysMIKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL1XB1B+DeitM3uLoLAAAAboeMBADAlWGEFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKWY1ByVZn/ecld3AQAAwO2QkQAAYIQUAAAAAAAALEZBCgAAAAAAAJaiIAUAAAAAAABLMYcUYKHi9A1l1vkkdnNBTwAAANwHGQkAqh+nj5Bat26d+vfvr4iICNlsNi1ZssRhu2EYmjJlisLDw1WrVi316dNHe/bscWhz7NgxDR8+XAEBAQoKCtLo0aNVUFDg0Gb79u268cYbVbNmTUVGRmrWrFnOPpVqpzh9Q5kXrsz+vOUOLwBA9UZO8kxkJOcjIwEAnF6QOnHihGJiYvTKK6+Uu33WrFmaN2+eXn/9dW3atEl16tRRQkKCTp06ZbYZPny4du3apZUrV2rZsmVat26dxo0bZ2632+2Kj49XVFSUtm3bptmzZys1NVVvvvmms08HcKpzwxcBDACqF3ISUD4yEgBUP06/ZS8pKUlJSUnlbjMMQy+88IKeeOIJ3XrrrZKkv//97woNDdWSJUs0ZMgQ7d69W+np6dqyZYs6deokSXrppZfUt29fzZkzRxEREVq4cKGKior0zjvvyNfXV23btlVmZqbmzp3rEMgAAADcCTkJAADgDEsnNc/OzlZubq769OljrgsMDFTXrl2VkZEhScrIyFBQUJAZsiSpT58+8vLy0qZNm8w23bt3l6+vr9kmISFBWVlZOn78+HmPX1hYKLvd7vACAABwB67MSWQkAABgNUsLUrm5uZKk0NBQh/WhoaHmttzcXIWEhDhsr1GjhoKDgx3alLePPx6jPDNmzFBgYKD5ioyMvLITAgAAcBJX5iQyEgAAsJqlBSlXS0lJUX5+vvn68ccfXd0lAAAAlyMjAQAAq1lakAoLC5MkHT582GH94cOHzW1hYWE6cuSIw/aSkhIdO3bMoU15+/jjMcrj5+engIAAhxcAAIA7cGVOIiMBAACrWVqQio6OVlhYmFavXm2us9vt2rRpk+Li4iRJcXFxysvL07Zt28w2a9asUWlpqbp27Wq2WbdunYqLi802K1euVMuWLVWvXj2LzgZwDh4jDQCQyEnAuchIAFC1Ob0gVVBQoMzMTGVmZko6M0FnZmamDh48KJvNpocfflhPP/20li5dqh07dmjEiBGKiIjQgAEDJEmtW7dWYmKixo4dq82bN2vjxo0aP368hgwZooiICEnSsGHD5Ovrq9GjR2vXrl1atGiRXnzxRU2cONHZpwMAAOA05CQAAIAzajh7h1u3blXPnj3N5bPhZ+TIkVqwYIEeffRRnThxQuPGjVNeXp66deum9PR01axZ03zPwoULNX78ePXu3VteXl4aOHCg5s2bZ24PDAzUihUrlJycrNjYWDVo0EBTpkzhUcYAAMCtkZMAAADOsBmGYbi6E65it9sVGBio/Pz8ajlXQmUPfd6ft7xS919VNA5Kclj2Sezmop4AQPVQ3f/+X4rqfo3ISO6BjAQA1rL673+1esoeAAAAAAAAXI+CFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKVquLoDABzt2/pGmXVNO93rgp4AAAC4l3NzEhkJADwXBSnAxc599LNXg0Yu6gkAAID7KJORtu5yUU8AAJWBW/YAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClari6AwAcle496LDs1ayRi3oCAADgPs7NSJKkTtb3AwDgHIyQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKp+zBKfbnLXd1FwAAANwOGQkAgPIxQgoAAAAAAACWoiAFAAAAAAAAS3HLHuCBitM3OCz7JHZzUU8AAADcBxkJADwHBSnAzZXuPajiXzZcvCEAAEA1c24BCgDgOShIVSP8wQYAACiLjAQAgPWYQwoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKZcUpBo3biybzVbmlZycLEnq0aNHmW333Xefwz4OHjyofv36qXbt2goJCdGkSZNUUlLiitMBAABwCjISAACoLmq44qBbtmzR6dOnzeWdO3fq5ptv1h133GGuGzt2rJ566ilzuXbt2ubPp0+fVr9+/RQWFqZvvvlGOTk5GjFihHx8fPTMM89YcxIAAABORkYCAADVhUsKUg0bNnRYnjlzppo2baqbbrrJXFe7dm2FhYWV+/4VK1bohx9+0KpVqxQaGqprr71W06ZN0+TJk5WamipfX99K7T9gtf15y8usaxyU5IKeAAAqExkJuDxkJADwXC6fQ6qoqEjvv/++7rnnHtlsNnP9woUL1aBBA11zzTVKSUnRyZMnzW0ZGRlq166dQkNDzXUJCQmy2+3atWvXeY9VWFgou93u8AIAAHBHZCQAAFCVuWSE1B8tWbJEeXl5GjVqlLlu2LBhioqKUkREhLZv367JkycrKytLn376qSQpNzfXIWhJMpdzc3PPe6wZM2YoLS3N+ScBuFhx+oYy63wSu7mgJwAAZyEjAVeOjAQA7svlBam3335bSUlJioiIMNeNGzfO/Lldu3YKDw9X7969tW/fPjVt2rTCx0pJSdHEiRPNZbvdrsjIyArvDwAAoLKQkQAAQFXm0oLUgQMHtGrVKvNbvfPp2rWrJGnv3r1q2rSpwsLCtHnzZoc2hw8flqTzzqkgSX5+fvLz87vCXgMAAFQuMhIAAKjqXFqQmj9/vkJCQtSvX78LtsvMzJQkhYeHS5Li4uI0ffp0HTlyRCEhIZKklStXKiAgQG3atKnUPnuK8oYnAwAAz0BGqjxkJAAA3IPLClKlpaWaP3++Ro4cqRo1fu/Gvn379MEHH6hv376qX7++tm/frgkTJqh79+5q3769JCk+Pl5t2rTRn//8Z82aNUu5ubl64oknlJyczLd7FinviSYAAODKkZE8GxkJAIBL47KC1KpVq3Tw4EHdc889Dut9fX21atUqvfDCCzpx4oQiIyM1cOBAPfHEE2Ybb29vLVu2TPfff7/i4uJUp04djRw5Uk899ZTVpwEAAOBUZCQAAFAduKwgFR8fL8MwyqyPjIzU119/fdH3R0VF6csvv6yMrgEAALgMGQkAAFQHXq7uAAAAAAAAAKoXClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS9VwdQcAVMz+vOUOy42DklzUEwAAAPdBRgIAz8AIKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkaru4AgMpRnL7BYdknsZuLegIAAOA+yEgA4B4YIQUAAAAAAABLMUKqijj3mx4AAACQkQAAcFcUpIAqYn/e8gs3+PDM9sZBSeYqhqgDAICqjowEAO6JW/YAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsxaTmuKiLTgQJAABQDZGRAACoOEZIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKVcUpBKTU2VzWZzeLVq1crcfurUKSUnJ6t+/fqqW7euBg4cqMOHDzvs4+DBg+rXr59q166tkJAQTZo0SSUlJVafCgAAgNOQkQAAQHVRw1UHbtu2rVatWvV7R2r83pUJEyboiy++0Mcff6zAwECNHz9et99+uzZu3ChJOn36tPr166ewsDB98803ysnJ0YgRI+Tj46NnnnnG8nMBPFVx+oaLtvFJ7GZBTwAAZ5GRANcjIwFA5XNZQapGjRoKCwsrsz4/P19vv/22PvjgA/Xq1UuSNH/+fLVu3VrffvutrrvuOq1YsUI//PCDVq1apdDQUF177bWaNm2aJk+erNTUVPn6+lp9OgAAAE5BRgIAANWBy+aQ2rNnjyIiItSkSRMNHz5cBw8elCRt27ZNxcXF6tOnj9m2VatWatSokTIyMiRJGRkZateunUJDQ802CQkJstvt2rVr13mPWVhYKLvd7vACAABwJ2QkAABQHbhkhFTXrl21YMECtWzZUjk5OUpLS9ONN96onTt3Kjc3V76+vgoKCnJ4T2hoqHJzcyVJubm5DkHr7Paz285nxowZSktLc+7JuMClDCEGzmd/3nKH5cZBSS7qCQDgXGSkK0NGwpUgIwGAtVxSkEpK+v0/7u3bt1fXrl0VFRWljz76SLVq1aq046akpGjixInmst1uV2RkZKUdDwAA4HKQkQAAQHXhsjmk/igoKEgtWrTQ3r17dfPNN6uoqEh5eXkO3wAePnzYnE8hLCxMmzdvdtjH2SfMlDfnwll+fn7y8/Nz/gkAHuzcbwMlvhEEAHdBRgJch4wEAJXLZXNI/VFBQYH27dun8PBwxcbGysfHR6tXrza3Z2Vl6eDBg4qLi5MkxcXFaceOHTpy5IjZZuXKlQoICFCbNm0s7z8AAEBlICMBAICqyiUjpB555BH1799fUVFROnTokKZOnSpvb28NHTpUgYGBGj16tCZOnKjg4GAFBATogQceUFxcnK677jpJUnx8vNq0aaM///nPmjVrlnJzc/XEE08oOTmZb/cAJzt3Pg4ecQwAlYeMBHgOMhIAXBmXFKR++uknDR06VEePHlXDhg3VrVs3ffvtt2rYsKEk6fnnn5eXl5cGDhyowsJCJSQk6NVXXzXf7+3trWXLlun+++9XXFyc6tSpo5EjR+qpp55yxekAAAA4BRkJAABUFzbDMAxXd8JV7Ha7AgMDlZ+fr4CAAFd355JZ/QSZ8u6fR/Xyx/kS+PYPgKfz1L//VvLUa0RGgiuczUlkJACezuq//24xhxQAAAAAAACqDwpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYKkaru4ALq44fYOlx9uft9zS4wEAAFQEGQkAAM9FQQrARTkE8A/P/Nw4KEmS5JPYzRVdAgAAcAtmTjonI0nkJAC4EApSAK5Ied9OE74AAADK5iQyEgD8jjmkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFI1XN0BAJ5pf97yMusaByVJkorTNzis90nsZkmfAAAAXI2MBACXhhFSAAAAAAAAsBQFKQAAAAAAAFiKW/YAOM25Q9TPDk8HAACozshIAFAWI6QAAAAAAABgKUZIAag0Z78N9Nq6y1zXtNO9ruoOAACAWyAjAQAFqWqvvKeAAAAAVHdkJAAAKhe37AEAAAAAAMBSFKQAAAAAAABgKW7ZA1DpSvceNH8u/mWDJMknsZurugMAAOAWyEgAqjMKUgBcojj9TOgyJ/Vs1sjcxqSeAACgujqbkaQzOYmMBKCqcsktezNmzFDnzp3l7++vkJAQDRgwQFlZWQ5tevToIZvN5vC67777HNocPHhQ/fr1U+3atRUSEqJJkyappKTEylMBcJn25y13eAEAfkdGAqqvczMSOQlAVeeSEVJff/21kpOT1blzZ5WUlOhvf/ub4uPj9cMPP6hOnTpmu7Fjx+qpp54yl2vXrm3+fPr0afXr109hYWH65ptvlJOToxEjRsjHx0fPPPOMpecDAADgDGQkAABQXbikIJWenu6wvGDBAoWEhGjbtm3q3r27ub527doKCwsrdx8rVqzQDz/8oFWrVik0NFTXXnutpk2bpsmTJys1NVW+vr6Veg4AAADORkYCAADVhVs8ZS8/P1+SFBwc7LB+4cKFatCgga655hqlpKTo5MmT5raMjAy1a9dOoaGh5rqEhATZ7Xbt2rWr3OMUFhbKbrc7vAAAANwVGQkAAFRVLp/UvLS0VA8//LBuuOEGXXPNNeb6YcOGKSoqShEREdq+fbsmT56srKwsffrpp5Kk3Nxch6AlyVzOzc0t91gzZsxQWlpaJZ2Jc/xxEkMAAFB9kZEckZEAAKhaXF6QSk5O1s6dO7Vhg2PIGDdunPlzu3btFB4ert69e2vfvn1q2rRphY6VkpKiiRMnmst2u12RkZEV6zgAAEAlIiMBAICqzKW37I0fP17Lli3T2rVrdfXVV1+wbdeuXSVJe/fulSSFhYXp8OHDDm3OLp9vTgU/Pz8FBAQ4vAAAANwNGQkAAFR1LilIGYah8ePHa/HixVqzZo2io6Mv+p7MzExJUnh4uCQpLi5OO3bs0JEjR8w2K1euVEBAgNq0aVMp/QYAAKhMZCQAAFBduOSWveTkZH3wwQf67LPP5O/vb85nEBgYqFq1amnfvn364IMP1LdvX9WvX1/bt2/XhAkT1L17d7Vv316SFB8frzZt2ujPf/6zZs2apdzcXD3xxBNKTk6Wn5+fK04LwBUo3XvQ/Ln4lzO3p/gkdnNVdwDAJchIAM5FRgJQVblkhNRrr72m/Px89ejRQ+Hh4eZr0aJFkiRfX1+tWrVK8fHxatWqlf76179q4MCB+vzzz819eHt7a9myZfL29lZcXJzuuusujRgxQk899ZQrTgkAAOCKkZEAAEB14ZIRUoZhXHB7ZGSkvv7664vuJyoqSl9++aWzulXl7c9b7uouAACACyAjuQYZCQAA67n8KXsAcC7z/xh8+Pv/QWgclMTwdAAAUK2RkQBUJS59yh4AAAAAAACqH0ZIAfAI+/OWy2vrLnO5aad7XdgbAAAA90BGAuCpKEgB8BjnPmWmvOHpxekbHJYZwg4AAKq6S3kSHxkJgLuhIFWFMUEnqrpzgxUAAJeCjITqgJwEwN1RkHIx/lAAAACURUYCAKBqY1JzAAAAAAAAWIoRUgA8Unm3WzQOSnJBTwAAANwHGQmAp2CEFAAAAAAAACzFCCkAVVp5c5DwVBkAAFDdkZEAuBojpAAAAAAAAGApRkgBqNLOnUeBORQAAADISABcj4IUgCqjvEk8AQAAqjsyEgB3REEKQLVz7pwJzJcAAABARgJgLeaQAgAAAAAAgKUoSAEAAAAAAMBS3LJXRXBfOHBpyvtdaS6GowNAVUVGAi4NGQmA1ShIAaj29m19w2G5aad7XdQTAAAA93FuRpLISQCch4IUgGqvdO9Bh+XiXzaUmcSTQAYAAKqbczOSJKmT4yIZCUBFMYcUAAAAAAAALMUIKQ/EXAhA5dqft1z68BJ+zzpdvAkAwFrkJKBy7fnw8Ys3IiMBuAQUpACggs4NZM2HTHdRTwAAANwHGQnApaAgBQBOUpy+wWH53HmoAAAAqqNzM5JETgJAQcpS5f2HGEDVUeY2kQ+Xq3FQksMqwhcAlI+cBFRd5d1K2zjdcZmMBFQ/FKQAoBKdG8Cai7AFAABwbkby2rqLp/MB1QwFKQ/A5JwAAABlkZEAAPBcFKQAwELMMwUAAFBW6d6DKv7l95xERgKqPgpSAGCh8uaZOpdXs0YMWQcAANWOQ04iIwFVHgUpAHAzpXsPas/e3x+XTPgCAAAgIwFVDQUpAHBz5w5hP+uP3yJ6NWskSYQyAABQbZCRAM/m8QWpV155RbNnz1Zubq5iYmL00ksvqUuXLq7uVoUxOSeA8lzsvw2lew9K0mXNvVDeI9aZrwGoOshIAKoDMhLguTy6ILVo0SJNnDhRr7/+urp27aoXXnhBCQkJysrKUkhIiKu7V+5/yACgMp0790LjoKQLt5Ec2jDpOlA1kJEAwFFFMpL0e04iIwHOZzMMw3B1Jyqqa9eu6ty5s15++WVJUmlpqSIjI/XAAw/oscceu+j77Xa7AgMDlZ+fr4CAAKf3ryJhi2//ADjTpYatS3nfWQQweLrK/vvvDshIAHBhZCSgLKszkseOkCoqKtK2bduUkpJirvPy8lKfPn2UkZHhwp4BgPuo6P+Bu5RvCC91342DkghogIXISABwcWQkwPU8tiD1yy+/6PTp0woNDXVYHxoaqv/85z/lvqewsFCFhYXmcn5+vqQzVcDKUHzihMPywfyVlXIcALDCzpNLKv6+dy7vvY0Cby6z7lL+G1re+3xujrvo+4pXXv7/Sb+U/cI9nf2778GDxC+IjAQA1iIjXf5+4Z6szkgeW5CqiBkzZigtLa3M+sjISBf0BgBwfs9Z/D5UR7/++qsCAwNd3Q23QEYCAE9BRkLlsyojeWxBqkGDBvL29tbhw4cd1h8+fFhhYWHlviclJUUTJ040l0tLS3Xs2DHVr19fNputwn2x2+2KjIzUjz/+WGXnoqgK+Jw8A5+TZ+Bz8gx8TuUzDEO//vqrIiIiXN2VSkFGwuXic/IMfE6egc/JM/A5lc/qjOSxBSlfX1/FxsZq9erVGjBggKQz4Wn16tUaP358ue/x8/OTn5+fw7qgoCCn9SkgIIB/zB6Az8kz8Dl5Bj4nz8DnVFZVHhlFRkJF8Tl5Bj4nz8Dn5Bn4nMqyMiN5bEFKkiZOnKiRI0eqU6dO6tKli1544QWdOHFCd999t6u7BgAA4DJkJAAA4O48uiA1ePBg/e9//9OUKVOUm5ura6+9Vunp6WUm8QQAAKhOyEgAAMDdeXRBSpLGjx9/3uHnVvHz89PUqVPLDHWHe+Fz8gx8Tp6Bz8kz8DlVb2QkXCo+J8/A5+QZ+Jw8A5+Te7AZVfWZxwAAAAAAAHBLXq7uAAAAAAAAAKoXClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQeoKvfLKK2rcuLFq1qyprl27avPmza7uEs6Rmpoqm83m8GrVqpWru1XtrVu3Tv3791dERIRsNpuWLFnisN0wDE2ZMkXh4eGqVauW+vTpoz179rims9XYxT6nUaNGlfn9SkxMdE1nq6kZM2aoc+fO8vf3V0hIiAYMGKCsrCyHNqdOnVJycrLq16+vunXrauDAgTp8+LCLeozqgozk/shI7omM5BnISO6PjOT+KEhdgUWLFmnixImaOnWqvvvuO8XExCghIUFHjhxxdddwjrZt2yonJ8d8bdiwwdVdqvZOnDihmJgYvfLKK+VunzVrlubNm6fXX39dmzZtUp06dZSQkKBTp05Z3NPq7WKfkyQlJiY6/H794x//sLCH+Prrr5WcnKxvv/1WK1euVHFxseLj43XixAmzzYQJE/T555/r448/1tdff61Dhw7p9ttvd2GvUdWRkTwHGcn9kJE8AxnJ/ZGRPICBCuvSpYuRnJxsLp8+fdqIiIgwZsyY4cJe4VxTp041YmJiXN0NXIAkY/HixeZyaWmpERYWZsyePdtcl5eXZ/j5+Rn/+Mc/XNBDGEbZz8kwDGPkyJHGrbfe6pL+oHxHjhwxJBlff/21YRhnfnd8fHyMjz/+2Gyze/duQ5KRkZHhqm6iiiMjeQYykvsjI3kGMpJnICO5H0ZIVVBRUZG2bdumPn36mOu8vLzUp08fZWRkuLBnKM+ePXsUERGhJk2aaPjw4Tp48KCru4QLyM7OVm5ursPvV2BgoLp27crvlxv66quvFBISopYtW+r+++/X0aNHXd2lai0/P1+SFBwcLEnatm2biouLHX6fWrVqpUaNGvH7hEpBRvIsZCTPQkbyLGQk90JGcj8UpCrol19+0enTpxUaGuqwPjQ0VLm5uS7qFcrTtWtXLViwQOnp6XrttdeUnZ2tG2+8Ub/++quru4bzOPs7xO+X+0tMTNTf//53rV69Ws8++6y+/vprJSUl6fTp067uWrVUWlqqhx9+WDfccIOuueYaSWd+n3x9fRUUFOTQlt8nVBYykucgI3keMpLnICO5FzKSe6rh6g4AlS0pKcn8uX379uratauioqL00UcfafTo0S7sGeD5hgwZYv7crl07tW/fXk2bNtVXX32l3r17u7Bn1VNycrJ27tzJHDAALgkZCag8ZCT3QkZyT4yQqqAGDRrI29u7zAz8hw8fVlhYmIt6hUsRFBSkFi1aaO/eva7uCs7j7O8Qv1+ep0mTJmrQoAG/Xy4wfvx4LVu2TGvXrtXVV19trg8LC1NRUZHy8vIc2vP7hMpCRvJcZCT3R0byXGQk1yEjuS8KUhXk6+ur2NhYrV692lxXWlqq1atXKy4uzoU9w8UUFBRo3759Cg8Pd3VXcB7R0dEKCwtz+P2y2+3atGkTv19u7qefftLRo0f5/bKQYRgaP368Fi9erDVr1ig6Otphe2xsrHx8fBx+n7KysnTw4EF+n1ApyEiei4zk/shInouMZD0ykvvjlr0rMHHiRI0cOVKdOnVSly5d9MILL+jEiRO6++67Xd01/MEjjzyi/v37KyoqSocOHdLUqVPl7e2toUOHurpr1VpBQYHDN0TZ2dnKzMxUcHCwGjVqpIcfflhPP/20mjdvrujoaD355JOKiIjQgAEDXNfpauhCn1NwcLDS0tI0cOBAhYWFad++fXr00UfVrFkzJSQkuLDX1UtycrI++OADffbZZ/L39zfnPAgMDFStWrUUGBio0aNHa+LEiQoODlZAQIAeeOABxcXF6brrrnNx71FVkZE8AxnJPZGRPAMZyf2RkTyAqx/z5+leeuklo1GjRoavr6/RpUsX49tvv3V1l3COwYMHG+Hh4Yavr69x1VVXGYMHDzb27t3r6m5Ve2vXrjUklXmNHDnSMIwzjzV+8sknjdDQUMPPz8/o3bu3kZWV5dpOV0MX+pxOnjxpxMfHGw0bNjR8fHyMqKgoY+zYsUZubq6ru12tlPf5SDLmz59vtvntt9+Mv/zlL0a9evWM2rVrG7fddpuRk5Pjuk6jWiAjuT8yknsiI3kGMpL7IyO5P5thGEbll70AAAAAAACAM5hDCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAFwGz169FCPHj0q/T24MjabTampqZYfd/PmzfL19dWBAwcu2rZx48YaNWqUw7o9e/YoPj5egYGBstlsWrJkyWUd/7rrrtOjjz56We8BAMAZyEiegYwEXB4KUgCqrQ8++EAvvPCCq7txyX744QelpqZq//79Fd6Hq8550aJFuuuuu9S8eXPZbLYKBeTHH39cQ4cOVVRUVIX6MHLkSO3YsUPTp0/Xe++9p06dOqmgoEBTp05VYmKigoODZbPZtGDBgnLfP3nyZL3yyivKzc2t0PEBAPAUZCTruGtG2rJli8aPH6+2bduqTp06atSoke68807997//LfN+MhIqioIUAI+2YsUKrVixokLv9cSwlZaW5pFh67XXXtNnn32myMhI1atX77Lfn5mZqVWrVum+++6r0PF/++03ZWRkaPTo0Ro/frzuuusuXX311frll1/01FNPaffu3YqJibngPm699VYFBATo1VdfrVAfAACwEhnp8pCRHDPSs88+q3/+85/q3bu3XnzxRY0bN07r1q1Tx44dtXPnTod9kJFQURSkAFyxEydOuOzYvr6+8vX1ddnxcWnee+895efna82aNYqIiLjs98+fP1+NGjXSddddV6Hj/+9//5MkBQUFOawPDw9XTk6ODhw4oNmzZ19wH15eXho0aJD+/ve/yzCMCvUDAFC9kJFwMe6akSZOnKgDBw5o3rx5GjNmjJ544gmtX79eJSUlmjlzpkNbMhIqioIUPFpqaqpsNpv++9//6q677lJgYKAaNmyoJ598UoZh6McffzQr9mFhYXruuefK7OOll15S27ZtVbt2bdWrV0+dOnXSBx984NDm559/1j333KPQ0FD5+fmpbdu2eueddy67v5999pn69euniIgI+fn5qWnTppo2bZpOnz5tthk/frzq1q2rkydPlnn/0KFDFRYWZrYvLS1VamqqIiIiVLt2bfXs2VM//PBDufeGX4zNZtP48eO1cOFCtWzZUjVr1lRsbKzWrVvn0O7sNf/hhx80bNgw1atXT926dTO3v//++4qNjVWtWrUUHBysIUOG6McffyxzvDfffFNNmzZVrVq11KVLF61fv/6y+nvWufMjfPXVV7LZbProo480ffp0XX311apZs6Z69+6tvXv3Orzviy++0IEDB2Sz2WSz2dS4cWNze2FhoaZOnapmzZrJz89PkZGRevTRR1VYWFjudVuyZImuueYa899Henq6Q7tff/1VDz/8sBo3biw/Pz+FhITo5ptv1nfffXdJ57lgwQLdcccdkqSePXuaff7qq6/MNq+++qratm0rPz8/RUREKDk5WXl5eZd0zkVFRZoyZYpiY2MVGBioOnXq6MYbb9TatWsvqX8XExkZKS+viv/JWbJkiXr16iWbzeaw3jAMPf3007r66qvN34Fdu3Y5tElNTTWHsE+aNMnhvP38/BQWFnbJ/bj55pt14MABZWZmVvhcAMAKZCQyEhnpK7MNGenyM9L1119fpqDZvHlztW3bVrt37y7TDzISKqKGqzsAOMPgwYPVunVrzZw5U1988YWefvppBQcH64033lCvXr307LPPauHChXrkkUfUuXNnde/eXZL01ltv6cEHH9SgQYP00EMP6dSpU9q+fbs2bdqkYcOGSZIOHz6s6667zvyj2rBhQy1fvlyjR4+W3W7Xww8/fMn9XLBggerWrauJEyeqbt26WrNmjaZMmSK73W6Ozhg8eLBeeeUVffHFF+YfV0k6efKkPv/8c40aNUre3t6SpJSUFM2aNUv9+/dXQkKCvv/+eyUkJOjUqVMVuo5ff/21Fi1apAcffFB+fn569dVXlZiYqM2bN+uaa65xaHvHHXeoefPmeuaZZ8xvQqZPn64nn3xSd955p8aMGaP//e9/eumll9S9e3f9+9//Nr95efvtt3Xvvffq+uuv18MPP6z/9//+n/70pz8pODhYkZGRFer7uWbOnCkvLy898sgjys/P16xZszR8+HBt2rRJ0pl77fPz8/XTTz/p+eeflyTVrVtX0pkQ+6c//UkbNmzQuHHj1Lp1a+3YsUPPP/+8/vvf/5aZ6HHDhg369NNP9Ze//EX+/v6aN2+eBg4cqIMHD6p+/fqSpPvuu0+ffPKJxo8frzZt2ujo0aPasGGDdu/erY4dO170fLp3764HH3xQ8+bN09/+9je1bt1aksz/TU1NVVpamvr06aP7779fWVlZeu2117RlyxZt3LhRPj4+Fzxnu92u//u//9PQoUM1duxY/frrr3r77beVkJCgzZs369prr72yD+QK/Pzzzzp48GC512nKlCl6+umn1bdvX/Xt21ffffed4uPjVVRUZLa5/fbbFRQUpAkTJmjo0KHq27eved6XKzY2VpK0ceNGdejQoWInBAAWIiORkc5FRiIjnXW5GckwDB0+fFht27Yts42MhAoxAA82depUQ5Ixbtw4c11JSYlx9dVXGzabzZg5c6a5/vjx40atWrWMkSNHmutuvfVWo23bthc8xujRo43w8HDjl19+cVg/ZMgQIzAw0Dh58uQl97e8tvfee69Ru3Zt49SpU4ZhGEZpaalx1VVXGQMHDnRo99FHHxmSjHXr1hmGYRi5ublGjRo1jAEDBji0S01NNSQ5nOelkGRIMrZu3WquO3DggFGzZk3jtttuM9edveZDhw51eP/+/fsNb29vY/r06Q7rd+zYYdSoUcNcX1RUZISEhBjXXnutUVhYaLZ78803DUnGTTfddFn9vummmxzes3btWkOS0bp1a4f9v/jii4YkY8eOHea6fv36GVFRUWX2+d577xleXl7G+vXrHda//vrrhiRj48aN5jpJhq+vr7F3715z3ffff29IMl566SVzXWBgoJGcnHxZ53aujz/+2JBkrF271mH9kSNHDF9fXyM+Pt44ffq0uf7ll182JBnvvPOOue5851xSUuJwvQzjzO9MaGiocc899zisl2RMnTq1wufRtm3by/qcV61aZUgyPv/8c4f1Z8+7X79+Rmlpqbn+b3/7W5nfgezsbEOSMXv27PMeZ8uWLYYkY/78+Rfsj6+vr3H//fdfcv8BwBXISGQkMhIZyVkZ6az33nvPkGS8/fbb5W4nI+FyccseqoQxY8aYP3t7e6tTp04yDEOjR4821wcFBally5b6f//v/zms++mnn7Rly5Zy92sYhv75z3+qf//+MgxDv/zyi/lKSEhQfn7+JQ8nlqRatWqZP//666/65ZdfdOONN+rkyZP6z3/+I+nM8OY77rhDX375pQoKCsz2ixYt0lVXXWUO/V69erVKSkr0l7/8xeEYDzzwwCX351xxcXHmtxuS1KhRI916663617/+5TBkXlKZiRM//fRTlZaW6s4773S4TmFhYWrevLk5rHnr1q06cuSI7rvvPodhwKNGjVJgYGCF+36uu+++22H/N954oyQ5fP7n8/HHH6t169Zq1aqVw7n06tVLksoM0e7Tp4+aNm1qLrdv314BAQFl/q1t2rRJhw4duqLzKs+qVatUVFSkhx9+2GHI99ixYxUQEKAvvvjiovvw9vY2r1dpaamOHTumkpISderU6bL+jVeGo0ePSlKZiT7PnvcDDzzgMEz9cr6Rr4h69erpl19+qdRjAICzkJF+R0Y6g4xERqqI//znP0pOTlZcXJxGjhxZbhsyEi4XBSlUCY0aNXJYDgwMVM2aNdWgQYMy648fP24uT548WXXr1lWXLl3UvHlzJScna+PGjeb2//3vf8rLy9Obb76phg0bOrzuvvtuSdKRI0cuuZ+7du3SbbfdpsDAQAUEBKhhw4a66667JEn5+flmu8GDB+u3337T0qVLJUkFBQX68ssvdccdd5h/VA4cOCBJatasmcMxgoODK/SEDunMfeHnatGihU6ePGlOeHhWdHS0w/KePXtkGIaaN29e5lrt3r3bvE5n+33usXx8fNSkSZMK9bs85/6bOHtN/vj5n8+ePXu0a9euMufRokULSWU/83OPdfZ4fzzWrFmztHPnTkVGRqpLly5KTU29pOB3Kc5e05YtWzqs9/X1VZMmTcztF/Puu++qffv2qlmzpurXr6+GDRvqiy++cPi36UrGOZNknu/fUsOGDSv8O3Cp/Th3ngYAcFdkpN+Rkc4gI5GRLldubq769eunwMBAffLJJ+atseX1g4yEy8EcUqgSyvuP4oX+Q3lW69atlZWVpWXLlik9PV3//Oc/9eqrr2rKlClKS0tTaWmpJOmuu+467zcB7du3v6Q+5uXl6aabblJAQICeeuopNW3aVDVr1tR3332nyZMnm8eSpOuuu06NGzfWRx99pGHDhunzzz/Xb7/9psGDB1/Ssazwx28ypTPfGNlsNi1fvrzca1/ROXsq6lI+//MpLS1Vu3btNHfu3HK3nzuHw6Uc684779SNN96oxYsXa8WKFZo9e7aeffZZffrpp0pKSrponyrb+++/r1GjRmnAgAGaNGmSQkJC5O3trRkzZmjfvn0u7dvZOSYuJShbIS8vr8z/kQMAd0VGsh4Z6fKORUaqOCsyUn5+vpKSkpSXl6f169df8EmAZCRcLgpSqPbq1KmjwYMHa/DgwSoqKtLtt9+u6dOnKyUlRQ0bNpS/v79Onz6tPn36XNFxvvrqKx09elSffvqpOWGoJGVnZ5fb/s4779SLL74ou92uRYsWqXHjxg6Pcz37RIy9e/c6fBN39OjRCv9R2rNnT5l1//3vf1W7dm01bNjwgu9t2rSpDMNQdHS0+S1Zec72e8+ePebwbkkqLi5Wdna2YmJiKtT3ijjfNzhNmzbV999/r969ezv1W57w8HD95S9/0V/+8hcdOXJEHTt21PTp0y85bJ2vL2evaVZWlsM3qEVFRcrOznb4t3u+fXzyySdq0qSJPv30U4c2U6dOvaS+VaZWrVpJKvu78sd/S3887//973+VFsx+/vlnFRUVmROlAkBVRkb6HRnpDDJS9cpIp06dUv/+/fXf//5Xq1atUps2bc7bloyEiuCWPVRrZ++7PsvX11dt2rSRYRgqLi6Wt7e3Bg4cqH/+85/auXNnmfefO0T7Qs5+Q/THb4SKior06quvltt+8ODBKiws1Lvvvqv09HTdeeedDtt79+6tGjVq6LXXXnNY//LLL19yn86VkZHhcC/8jz/+qM8++0zx8fHn/YbrrNtvv13e3t5KS0sr8w2bYRjmte7UqZMaNmyo119/3eEpHwsWLHB4/K4V6tSpU+5Q6zvvvFM///yz3nrrrTLbfvvtN504ceKyjnP69OkyxwkJCVFERESZRyRfrL+SylynPn36yNfXV/PmzXO49m+//bby8/PVr18/h32Ud87l/fvctGmTMjIyLrl/leWqq65SZGSktm7d6rC+T58+8vHx0UsvveTQ7xdeeKHS+rJt2zZJZx6FDABVGRnJERnpDDLSGdUhI50+fVqDBw9WRkaGPv74Y8XFxV2wPRkJFcEIKVRr8fHxCgsL0w033KDQ0FDt3r1bL7/8svr16yd/f39JZx6Nu3btWnXt2lVjx45VmzZtdOzYMX333XdatWqVjh07dknHuv7661WvXj2NHDlSDz74oGw2m957773zDo/u2LGjmjVrpscff1yFhYVlhqKHhobqoYce0nPPPac//elPSkxM1Pfff6/ly5erQYMGFfrW6pprrlFCQoLDI40lKS0t7aLvbdq0qZ5++mmlpKRo//79GjBggPz9/ZWdna3Fixdr3LhxeuSRR+Tj46Onn35a9957r3r16qXBgwcrOztb8+fPd+r8CJciNjZWixYt0sSJE9W5c2fVrVtX/fv315///Gd99NFHuu+++7R27VrdcMMNOn36tP7zn//oo48+0r/+9S916tTpko/z66+/6uqrr9agQYMUExOjunXratWqVdqyZYuee+65S97PtddeK29vbz377LPKz8+Xn5+fevXqpZCQEKWkpCgtLU2JiYn605/+pKysLL366qvq3LmzOQfHhc75lltu0aeffqrbbrtN/fr1U3Z2tl5//XW1adPGYeLYilq3bp3WrVsn6cz/STlx4oSefvppSWce1/zHb8TLc+utt2rx4sUOcxM0bNhQjzzyiGbMmKFbbrlFffv21b///W/zd+BSvfzyy8rLyzMnU/3888/1008/STozAe4fJ5JduXKlGjVqxOOMAVR5ZCRHZCQyUnXLSH/961+1dOlS9e/fX8eOHdP777/vsP2P104iI6GCKvMRfkBlO/t43f/9738O60eOHGnUqVOnTPubbrrJ4RHGb7zxhtG9e3ejfv36hp+fn9G0aVNj0qRJRn5+vsP7Dh8+bCQnJxuRkZGGj4+PERYWZvTu3dt48803L6u/GzduNK677jqjVq1aRkREhPHoo48a//rXv8p9TK1hGMbjjz9uSDKaNWtW7v5KSkqMJ5980ggLCzNq1apl9OrVy9i9e7dRv35947777rusvkkykpOTjffff99o3ry54efnZ3To0KFMv853zc/65z//aXTr1s2oU6eOUadOHaNVq1ZGcnKykZWV5dDu1VdfNaKjow0/Pz+jU6dOxrp168o8nvhSnO+Rxh9//LFDu7OPtJ0/f765rqCgwBg2bJgRFBRkSHJ41G9RUZHx7LPPGm3btjX8/PyMevXqGbGxsUZaWprDv4+z1+1cUVFR5iN1CwsLjUmTJhkxMTGGv7+/UadOHSMmJsZ49dVXL+tcDcMw3nrrLaNJkyaGt7d3mX83L7/8stGqVSvDx8fHCA0NNe6//37j+PHjDu8/3zmXlpYazzzzjBEVFWV+9suWLTNGjhxZ5hHIqsAjjc/+uynvdSn7+u677wxJZR4zffr0aSMtLc0IDw83atWqZfTo0cPYuXOnw/U3jAs/0jgqKuq8fcvOznY4Vnh4uPHEE09c1rkDgCuQkchIZKS15jYy0uVnpJtuuum8/Tq3jEBGQkXZDOMSZq8D4DHy8vJUr149Pf3003r88ccv+X02m03JyclXNJwdqEy9e/dWRESE3nvvPZccf8mSJRo2bJj27dun8PBwl/QBAFBxZCRUVWQkeCrmkAI82G+//VZm3dl7w3v06GFtZ4BK9swzz2jRokWX/IhmZ3v22Wc1fvx4ghYAeAAyEqoTMhI8FXNIAU7wv//9T6dPnz7vdl9fXwUHBzv9uIsWLdKCBQvUt29f1a1bVxs2bNA//vEPxcfH64YbbpAk5ebmXnAftWrVcpgjx1246pq6wm+//VbuJJp/FBwcLF9fX4t6dGlOnz590Ulr69at67THWXft2tVhklerucPkpQDgachIzkdGckRGIiPBc1GQApygc+fOF/xG4qabbtJXX33l9OO2b99eNWrU0KxZs2S3281JPM9OhCjpot9UjBw5UgsWLHB6366Uq66pKyxatEh33333BdusXbvW7b7R/fHHHx0ep12eqVOnKjU11ZoOAQDcDhnJ+chIjshIgOdiDinACTZu3Fju0PCz6tWrp9jYWAt79LtVq1ZdcHtERITatGljUW8unTtfU2fLycnRrl27LtgmNjZW9erVs6hHl+bUqVPasGHDBds0adLE8icDAQDchzv/PScjuT8yElC1UZACAAAAAACApZjUHAAAAAAAAJaq1nNIlZaW6tChQ/L395fNZnN1dwAAgAUMw9Cvv/6qiIgIeXnx3Vx5yEgAAFQ/Vmekal2QOnTokCIjI13dDQAA4AI//vijrr76ald3wy2RkQAAqL6sykjVuiDl7+8v6czFDggIcHFvAACAFex2uyIjI80cgLLISAAAVD9WZ6RqXZA6OwQ9ICCAsAUAQDXDrWjnR0YCAKD6siojMXECAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLVes5pAAAuJDTp0+ruLjY1d3AZfLx8ZG3t7eruwEAQJVFRvJM7paRKEgBAHAOwzCUm5urvLw8V3cFFRQUFKSwsDAmLgcAwInISJ7PnTISBSkAAM5xNmiFhISodu3abvEHG5fGMAydPHlSR44ckSSFh4e7uEcAAFQdZCTP5Y4ZiYIUAAB/cPr0aTNo1a9f39XdQQXUqlVLknTkyBGFhIS41dB0AAA8FRnJ87lbRmJScwAA/uDsfAi1a9d2cU9wJc5+fsxvAQCAc5CRqgZ3ykgUpAAAKAdD0D0bnx8AAJWDv7GezZ0+PwpSAAAAAAAAsBQFKQAAAAAAAFiKSc0BALhExekbLDuWT2K3S257saHXU6dOVWpq6hX2qGJsNpsWL16sAQMGVHgfb775pj744AN99913+vXXX3X8+HEFBQU5rY8AAODKWJmRJHLSWceOHdPUqVO1YsUKHTx4UA0bNtSAAQM0bdo0BQYGOrezlYCCFCpdef9xupz/gAAALiwnJ8f8edGiRZoyZYqysrLMdXXr1r2s/RUVFcnX19dp/btSJ0+eVGJiohITE5WSkuLq7gBOQ0YCgMpXlXPSoUOHdOjQIc2ZM0dt2rTRgQMHdN999+nQoUP65JNPXN29i+KWPQAAPFxYWJj5CgwMlM1mM5dPnDih4cOHKzQ0VHXr1lXnzp21atUqh/c3btxY06ZN04gRIxQQEKBx48ZJkt566y1FRkaqdu3auu222zR37twyI5M+++wzdezYUTVr1lSTJk2UlpamkpISc7+SdNttt8lms5nL33//vXr27Cl/f38FBAQoNjZWW7duPe/5Pfzww3rsscd03XXXOeeCAQCAaqMq56RrrrlG//znP9W/f381bdpUvXr10vTp0/X555+bx3FnFKQAAKjCCgoK1LdvX61evVr//ve/lZiYqP79++vgwYMO7ebMmaOYmBj9+9//1pNPPqmNGzfqvvvu00MPPaTMzEzdfPPNmj59usN71q9frxEjRuihhx7SDz/8oDfeeEMLFiww223ZskWSNH/+fOXk5JjLw4cP19VXX60tW7Zo27Zteuyxx+Tj42PB1QAAAPhdVcxJ+fn5CggIUI0a7n9DnPv3EAAAVFhMTIxiYmLM5WnTpmnx4sVaunSpxo8fb67v1auX/vrXv5rLjz/+uJKSkvTII49Iklq0aKFvvvlGy5YtM9ukpaXpscce08iRIyVJTZo00bRp0/Too49q6tSpatiwoSQpKChIYWFh5vsOHjyoSZMmqVWrVpKk5s2bV8KZAwAAXFhVy0m//PKLpk2bZo7icneMkAIAoAorKCjQI488otatWysoKEh169bV7t27y3zz16lTJ4flrKwsdenSxWHducvff/+9nnrqKdWtW9d8jR07Vjk5OTp58uR5+zRx4kSNGTNGffr00cyZM7Vv374rPEsAAIDLV5Vykt1uV79+/dSmTRuXTdJ+uShIAQBQhT3yyCNavHixnnnmGa1fv16ZmZlq166dioqKHNrVqVPnsvddUFCgtLQ0ZWZmmq8dO3Zoz549qlmz5nnfl5qaql27dqlfv35as2aN2rRpo8WLF1/28QEAAK5EVclJv/76qxITE+Xv76/Fixd7zFQI3LIHAEAVtnHjRo0aNUq33XabpDPhaP/+/Rd9X8uWLc25DM46d7ljx47KyspSs2bNzrsfHx8fnT59usz6Fi1aqEWLFpowYYKGDh2q+fPnm30EAACwQlXISXa7XQkJCfLz89PSpUsvWOxyNxSkAACowpo3b65PP/1U/fv3l81m05NPPqnS0tKLvu+BBx5Q9+7dNXfuXPXv319r1qzR8uXLZbPZzDZTpkzRLbfcokaNGmnQoEHy8vLS999/r507d+rpp5+WdOYJMqtXr9YNN9wgPz8/1axZU5MmTdKgQYMUHR2tn376SVu2bNHAgQPP25fc3Fzl5uZq7969kqQdO3bI399fjRo1UnBw8BVeIQAAUF15ek6y2+2Kj4/XyZMn9f7778tut8tut0uSGjZsKG9vbydcpcrDLXsAAFRhc+fOVb169XT99derf//+SkhIUMeOHS/6vhtuuEGvv/665s6dq5iYGKWnp2vChAkO37olJCRo2bJlWrFihTp37qzrrrtOzz//vKKiosw2zz33nFauXKnIyEh16NBB3t7eOnr0qEaMGKEWLVrozjvvVFJSktLS0s7bl9dff10dOnTQ2LFjJUndu3dXhw4dtHTp0iu4MgAAoLrz9Jz03XffadOmTdqxY4eaNWum8PBw8/Xjjz9e+QWqZDbDMAxXd8JV7Ha7AgMDzccionIUp28os84nsZsLegIAF3fq1CllZ2crOjrao4Y8W2Hs2LH6z3/+o/Xr17u6Kxd1oc+Rv/8XxzWyBhkJgCchI12Yp+Qkd8pI3LIHAADKNWfOHN18882qU6eOli9frnfffVevvvqqq7sFAADgcuSkK0dBCgAAlGvz5s2aNWuWfv31VzVp0kTz5s3TmDFjXN0tAAAAlyMnXTkKUrgiDDUHgKrro48+cnUXAI9FRgKAqo2cdOWY1BwAAAAAAACWYoQULkt53/ZVpA0AAEBVQkYCAODyUJCCWzg3oDGkHQAAgFv/AABVF7fsAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWMrpk5qvW7dOs2fP1rZt25STk6PFixdrwIAB5nabzVbu+2bNmqVJkyZJkho3bqwDBw44bJ8xY4Yee+wxc3n79u1KTk7Wli1b1LBhQz3wwAN69NFHnX06AACY9m19w7JjNe1072W1HzVqlN59911JUo0aNRQcHKz27dtr6NChGjVqlLy8PPc7qF27dmnKlCnatm2bDhw4oOeff14PP/ywq7tVIeQkAEBVZGVGkshJf/TWW2/p73//u3bu3ClJio2N1TPPPKMuXbq4uGcX5/SrfuLECcXExOiVV14pd3tOTo7D65133pHNZtPAgQMd2j311FMO7R544AFzm91uV3x8vKKiorRt2zbNnj1bqampevPNN519OgAAeIzExETl5ORo//79Wr58uXr27KmHHnpIt9xyi0pKSlzdvQo7efKkmjRpopkzZyosLMzV3bki5CQAAFyjquakr776SkOHDtXatWuVkZGhyMhIxcfH6+eff3Z11y7K6QWppKQkPf3007rtttvK3R4WFubw+uyzz9SzZ081adLEoZ2/v79Duzp16pjbFi5cqKKiIr3zzjtq27athgwZogcffFBz58519ukAAOAx/Pz8FBYWpquuukodO3bU3/72N3322Wdavny5FixYYLbLy8vTmDFj1LBhQwUEBKhXr176/vvvHfb1+eefq3PnzqpZs6YaNGjg8Hf9+PHjGjFihOrVq6fatWsrKSlJe/bskXSm4BIQEKBPPvnEYX9LlixRnTp19Ouvv6qoqEjjx49XeHi4atasqaioKM2YMeO859W5c2fNnj1bQ4YMkZ+fnxOulOuQkwAAcI2qmpMWLlyov/zlL7r22mvVqlUr/d///Z9KS0u1evVqJ1y1yuXScWmHDx/WF198odGjR5fZNnPmTNWvX18dOnTQ7NmzHSqWGRkZ6t69u3x9fc11CQkJysrK0vHjxy3pOwAAnqBXr16KiYnRp59+aq674447dOTIES1fvlzbtm1Tx44d1bt3bx07dkyS9MUXX+i2225T37599e9//1urV692GPY9atQobd26VUuXLlVGRoYMw1Dfvn1VXFysOnXqaMiQIZo/f75DP+bPn69BgwbJ399f8+bN09KlS/XRRx8pKytLCxcuVOPGjS25Hp6EnAQAQOWqijnp5MmTKi4uVnBw8JVdHAs4fQ6py/Huu+/K399ft99+u8P6Bx98UB07dlRwcLC++eYbpaSkKCcnx/xmLzc3V9HR0Q7vCQ0NNbfVq1ev3OMVFhaqsLDQXLbb7c48HVyG4vQNru4CAFQbrVq10vbt2yVJGzZs0ObNm3XkyBFztNGcOXO0ZMkSffLJJxo3bpymT5+uIUOGKC0tzdxHTEyMJGnPnj1aunSpNm7cqOuvv17SmW/mIiMjtWTJEt1xxx0aM2aMrr/+euXk5Cg8PFxHjhzRl19+qVWrVkmSDh48qObNm6tbt26y2WyKioqy8nJ4DCtzEhnJfZCRAMBaVS0nTZ48WREREerTp88VX5vK5tIRUu+8846GDx+umjVrOqyfOHGievToofbt2+u+++7Tc889p5deeskhKFXEjBkzFBgYaL4iIyOvaH8AAHgCwzDMybK///57FRQUqH79+qpbt675ys7O1r59+yRJmZmZ6t27d7n72r17t2rUqKGuXbua6+rXr6+WLVtq9+7dkqQuXbqobdu25uSh77//vqKiotS9e3dJZ745zMzMVMuWLfXggw9qxYoVlXbunszKnERGAgBUV1UpJ82cOVMffvihFi9eXCY/uCOXFaTWr1+vrKwsjRkz5qJtu3btqpKSEu3fv1/SmfkVDh8+7NDm7PKFJjtNSUlRfn6++frxxx8rfgIAAHiI3bt3myNmCgoKFB4erszMTIdXVlaW+RS3WrVqXfExx4wZY87HMH/+fN19991m2OvYsaOys7M1bdo0/fbbb7rzzjs1aNCgKz5mVWJ1TiIjAQCqq6qSk+bMmaOZM2dqxYoVat++/RX30Qouu2Xv7bffVmxsrDm07UIyMzPl5eWlkJAQSVJcXJwef/xxFRcXy8fHR5K0cuVKtWzZ8ry360lnJjHz9MlQ3d3+vOUXbdM4KMmCngAAJGnNmjXasWOHJkyYIOlMyMnNzVWNGjXOOx9B+/bttXr1at19991ltrVu3VolJSXatGmTORT96NGjysrKUps2bcx2d911lx599FHNmzdPP/zwg0aOHOmwn4CAAA0ePFiDBw/WoEGDlJiYqGPHjnnEfAdWsDonkZEqHxkJANxPVclJs2bN0vTp0/Wvf/1LnTp1qsilcAmnF6QKCgq0d+9eczk7O1uZmZkKDg5Wo0aNJJ2Zl+Djjz/Wc889V+b9GRkZ2rRpk3r27Cl/f39lZGRowoQJuuuuu8wQNWzYMKWlpWn06NGaPHmydu7cqRdffFHPP/+8s0+n2mMeAwDwHIWFhcrNzdXp06d1+PBhpaena8aMGbrllls0YsQISVKfPn0UFxenAQMGaNasWWrRooUOHTpkTtDZqVMnTZ06Vb1791bTpk01ZMgQlZSU6Msvv9TkyZPVvHlz3XrrrRo7dqzeeOMN+fv767HHHtNVV12lW2+91exLvXr1dPvtt2vSpEmKj4/X1VdfbW6bO3euwsPD1aFDB3l5eenjjz9WWFiYgoKCyj2voqIi/fDDD+bPP//8szIzM1W3bl01a9as8i5oJSAnVR1kJADwLFU1Jz377LOaMmWKPvjgAzVu3Fi5ubmSZN5u6M6cfsve1q1b1aFDB3Xo0EHSmXkOOnTooClTpphtPvzwQxmGoaFDh5Z5v5+fnz788EPddNNNatu2raZPn64JEybozTffNNsEBgZqxYoVys7OVmxsrP76179qypQpGjdunLNPBwAAj5Genq7w8HA1btxYiYmJWrt2rebNm6fPPvtM3t7ekiSbzaYvv/xS3bt31913360WLVpoyJAhOnDggDnxdY8ePfTxxx9r6dKluvbaa9WrVy9t3rzZPM78+fMVGxurW265RXFxcTIMQ19++aU5Gues0aNHq6ioSPfcc4/Den9/f82aNUudOnVS586dtX//fn355Zfy8io/lhw6dMjMFjk5OZozZ446dOhwSbezuRtyEgAArlFVc9Jrr72moqIiDRo0SOHh4eZrzpw5zrx8lcJmGIbh6k64it1uV2BgoPLz8xUQEODq7rily/32z1nD0X0Su13WcQHAWU6dOqXs7GxFR0d7xGSQ7uy9997ThAkTdOjQIfn6+lp67At9jvz9vziu0cW5KiNJ5CQArkFGci5X5SR3ykgum0MKAABUTSdPnlROTo5mzpype++91/JiFAAAgLsiJ/3OZU/ZAwAAVdOsWbPUqlUrhYWFKSUlxdXdAQAAcBvkpN9RkAIAAE6Vmpqq4uJirV692u0n0wQAALASOel33LIHk1VPiylvDgUecwwAANwVGQkAAOdjhBQAAOWoxs/8qBL4/AAAqBz8jfVs7vT5UZACAOAPzj6S9+TJky7uCa7E2c/v3EcsAwCAiiEjVQ3ulJG4ZQ8AgD/w9vZWUFCQjhw5IkmqXbu2bDabi3uFS2UYhk6ePKkjR44oKChI3t7eru4SAABVAhnJs7ljRqIgBbdw7pwJjdPLtvFJ7GZRbwBUd2FhYZJkBi54nqCgIPNzBDxZmYwUlFRmTisyEgCrkJE8nztlJApSAACcw2azKTw8XCEhISouLnZ1d3CZfHx83OJbPwAAqhoykmdzt4xEQQoAgPPw9vZ2qz/aAAAA7oCMBGdgUnMAAAAAAABYihFS1di58w8AAACAjAQAgBUYIQUAAAAAAABLMUIKFXbuU18qe9/NxRNkAACA+yMjAQBwcYyQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBSTmlcTPL4YAACgLDISAACuwQgpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACWYg4peIx9W99wWG7a6V4X9QQAAMB9kJEAAJ6IEVIAAAAAAACwFAUpAAAAAAAAWIpb9qqoqvgI49K9Bx1XdHJNPwAAgOciIwEA4B4oSOGS7M9b7uouAAAAuCVyEgAAl49b9gAAAAAAAGApClIAAAAAAACwlNMLUuvWrVP//v0VEREhm82mJUuWOGwfNWqUbDabwysxMdGhzbFjxzR8+HAFBAQoKChIo0ePVkFBgUOb7du368Ybb1TNmjUVGRmpWbNmOftUAAAAnIqcBAAAcIbTC1InTpxQTEyMXnnllfO2SUxMVE5Ojvn6xz/+4bB9+PDh2rVrl1auXKlly5Zp3bp1GjdunLndbrcrPj5eUVFR2rZtm2bPnq3U1FS9+eabzj4dAAAApyEnAQAAnOH0Sc2TkpKUlJR0wTZ+fn4KCwsrd9vu3buVnp6uLVu2qFOnM48Ieemll9S3b1/NmTNHERERWrhwoYqKivTOO+/I19dXbdu2VWZmpubOnesQyAAAANwJOQkAAOAMl8wh9dVXXykkJEQtW7bU/fffr6NHj5rbMjIyFBQUZIYsSerTp4+8vLy0adMms0337t3l6+trtklISFBWVpaOHz9u3YkAAAA4GTkJAABUB04fIXUxiYmJuv322xUdHa19+/bpb3/7m5KSkpSRkSFvb2/l5uYqJCTEsZM1aig4OFi5ubmSpNzcXEVHRzu0CQ0NNbfVq1ev3GMXFhaqsLDQXLbb7c48NQAAgCviqpxERgIAAFazvCA1ZMgQ8+d27dqpffv2atq0qb766iv17t27Uo89Y8YMpaWlVeoxAAAAKspVOYmMBAAArOaSW/b+qEmTJmrQoIH27t0rSQoLC9ORI0cc2pSUlOjYsWPmfAphYWE6fPiwQ5uzy+ebc0GSUlJSlJ+fb75+/PFHZ54KAACAU1mVk8hIAADAai4vSP300086evSowsPDJUlxcXHKy8vTtm3bzDZr1qxRaWmpunbtarZZt26diouLzTYrV65Uy5Ytz3u7nnRmktCAgACHFwAAgLuyKieRkQAAgNWcXpAqKChQZmamMjMzJUnZ2dnKzMzUwYMHVVBQoEmTJunbb7/V/v37tXr1at16661q1qyZEhISJEmtW7dWYmKixo4dq82bN2vjxo0aP368hgwZooiICEnSsGHD5Ovrq9GjR2vXrl1atGiRXnzxRU2cONHZpwMAAOA05CQAAIAznF6Q2rp1qzp06KAOHTpIkiZOnKgOHTpoypQp8vb21vbt2/WnP/1JLVq00OjRoxUbG6v169fLz8/P3MfChQvVqlUr9e7dW3379lW3bt305ptvmtsDAwO1YsUKZWdnKzY2Vn/96181ZcoUHmUMAADcGjkJAADgDJthGIarO+EqdrtdgYGBys/Pr3JD04vTNzh1f/vzljt1f87QOCipzDqfxG4u6AkAwJNU5b//zlKVr5GzM5LkfjmJjAQAqAir//5b/pQ9OF9lBCsAAICqgJwEAIB7cvmk5gAAAAAAAKheKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUk5qjSjl34lKeKAMAAEBGAgC4H0ZIAQAAAAAAwFIUpAAAAAAAAGApbtmDx9qft7zMusZBSS7oCQAAgPsgIwEAPAEjpAAAAAAAAGApRkihXOV9swYAAFDdkZEAAHAOClIe6NynpAAAAICMBACAJ+GWPQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL1XB1B4DKVJy+ocw6n8RuLugJAACA+yAjAQBcjRFSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsxRxSHqC8e/xRcedeT+ZLAADAM5GRnIuMBACwEiOkAAAAAAAAYCmnF6TWrVun/v37KyIiQjabTUuWLDG3FRcXa/LkyWrXrp3q1KmjiIgIjRgxQocOHXLYR+PGjWWz2RxeM2fOdGizfft23XjjjapZs6YiIyM1a9YsZ58KAACAU5GTAAAAznD6LXsnTpxQTEyM7rnnHt1+++0O206ePKnvvvtOTz75pGJiYnT8+HE99NBD+tOf/qStW7c6tH3qqac0duxYc9nf39/82W63Kz4+Xn369NHrr7+uHTt26J577lFQUJDGjRvn7FOCB9mft7zMusZBSS7oCQAAZZGT4CpkJACAu3F6QSopKUlJSeX/cQsMDNTKlSsd1r388svq0qWLDh48qEaNGpnr/f39FRYWVu5+Fi5cqKKiIr3zzjvy9fVV27ZtlZmZqblz5xK0AACA2yInAQAAnOHyOaTy8/Nls9kUFBTksH7mzJmqX7++OnTooNmzZ6ukpMTclpGRoe7du8vX19dcl5CQoKysLB0/fvy8xyosLJTdbnd4AQAAuCurchIZCQAAWM2lT9k7deqUJk+erKFDhyogIMBc/+CDD6pjx44KDg7WN998o5SUFOXk5Gju3LmSpNzcXEVHRzvsKzQ01NxWr169co83Y8YMpaWlVdLZAAAAOI+VOYmMBAAArOayglRxcbHuvPNOGYah1157zWHbxIkTzZ/bt28vX19f3XvvvZoxY4b8/PwqfMyUlBSHfdvtdkVGRlZ4f/AM586ZwHwJAAB3Z3VOIiNVT2QkAIAruaQgdTZkHThwQGvWrHH41q88Xbt2VUlJifbv36+WLVsqLCxMhw8fdmhzdvl88ylIkp+f3xUVtAAAACqbK3ISGQkAAFjN8jmkzoasPXv2aNWqVapfv/5F35OZmSkvLy+FhIRIkuLi4rRu3ToVFxebbVauXKmWLVue93Y9AAAAd0dOAgAA1YXTR0gVFBRo79695nJ2drYyMzMVHBys8PBwDRo0SN99952WLVum06dPKzc3V5IUHBwsX19fZWRkaNOmTerZs6f8/f2VkZGhCRMm6K677jJD1LBhw5SWlqbRo0dr8uTJ2rlzp1588UU9//zzzj4dAAAApyEnAQAAnOH0gtTWrVvVs2dPc/nsfAQjR45Uamqqli5dKkm69tprHd63du1a9ejRQ35+fvrwww+VmpqqwsJCRUdHa8KECQ7zGgQGBmrFihVKTk5WbGysGjRooClTpvAoYwAA4NbISQAAAGc4vSDVo0cPGYZx3u0X2iZJHTt21LfffnvR47Rv317r16+/7P4BAAC4CjkJAADgDMvnkAIAAAAAAED15pKn7AGudO4jjr227lLTTve6qDcAAADugYwEALASBSmUCR8AAAAgIwEAUJm4ZQ8AAAAAAACWoiAFAAAAAAAAS1GQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBQFKQAAAAAAAFiKghQAAAAAAAAsRUEKAAAAAAAAlqIgBQAAAAAAAEtRkAIAAAAAAIClKEgBAAAAAADAUhSkAAAAAAAAYCkKUgAAAAAAALAUBSkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABL1XB1BwBXK917UMW/bDCXfRK7ubA3AAAA7oGMBACoTIyQAgAAAAAAgKUoSAEAAAAAAMBSFKQAAAAAAABgKQpSAAAAAAAAsBSTmruZ4vQNF28EAABQzZCRAACoWhghBQAAAAAAAEtRkAIAAAAAAIClnF6QWrdunfr376+IiAjZbDYtWbLEYbthGJoyZYrCw8NVq1Yt9enTR3v27HFoc+zYMQ0fPlwBAQEKCgrS6NGjVVBQ4NBm+/btuvHGG1WzZk1FRkZq1qxZzj4VVCP785abr31b33B1dwAAVRQ5CZ6GjAQAqCxOL0idOHFCMTExeuWVV8rdPmvWLM2bN0+vv/66Nm3apDp16ighIUGnTp0y2wwfPly7du3SypUrtWzZMq1bt07jxo0zt9vtdsXHxysqKkrbtm3T7NmzlZqaqjfffNPZpwMAAOA05CQAAIAznD6peVJSkpKSksrdZhiGXnjhBT3xxBO69dZbJUl///vfFRoaqiVLlmjIkCHavXu30tPTtWXLFnXq1EmS9NJLL6lv376aM2eOIiIitHDhQhUVFemdd96Rr6+v2rZtq8zMTM2dO9chkAEAALgTchIAAMAZls4hlZ2drdzcXPXp08dcFxgYqK5duyojI0OSlJGRoaCgIDNkSVKfPn3k5eWlTZs2mW26d+8uX19fs01CQoKysrJ0/Pjx8x6/sLBQdrvd4QUAAOAOXJmTyEgAAMBqlhakcnNzJUmhoaEO60NDQ81tubm5CgkJcdheo0YNBQcHO7Qpbx9/PEZ5ZsyYocDAQPMVGRl5ZScEAADgJK7MSWQkAABgtWr1lL2UlBTl5+ebrx9//NHVXQIAAHA5MhIAALCapQWpsLAwSdLhw4cd1h8+fNjcFhYWpiNHjjhsLykp0bFjxxzalLePPx6jPH5+fgoICHB4AQAAuANX5iQyEgAAsJqlBano6GiFhYVp9erV5jq73a5NmzYpLi5OkhQXF6e8vDxt27bNbLNmzRqVlpaqa9euZpt169apuLjYbLNy5Uq1bNlS9erVs+hsAAAAnIecBAAAqhOnP2WvoKBAe/fuNZezs7OVmZmp4OBgNWrUSA8//LCefvppNW/eXNHR0XryyScVERGhAQMGSJJat26txMREjR07Vq+//rqKi4s1fvx4DRkyRBEREZKkYcOGKS0tTaNHj9bkyZO1c+dOvfjii3r++eedfTqohkr3HlTxLxsc1vkkdnNRbwAAVQk5CZ6MjAQAcCanF6S2bt2qnj17mssTJ06UJI0cOVILFizQo48+qhMnTmjcuHHKy8tTt27dlJ6erpo1a5rvWbhwocaPH6/evXvLy8tLAwcO1Lx588ztgYGBWrFihZKTkxUbG6sGDRpoypQpPMoYAAC4NXISAADAGTbDMAxXd8JV7Ha7AgMDlZ+f7zZzJRSnb7h4Iyfbn7fc8mO6u8ZBSQ7LfPsHAFWHO/79dzfueI3ISO6BjAQAVZfVf/+r1VP2AAAAAAAA4HpOv2UP7o9v+wAAAMoiIwEAYB1GSAEAAAAAAMBSFKQAAAAAAABgKW7ZA8pRZsj+h8sdJvFkAk8AAFAdkZEAAM7CCCkAAAAAAABYioIUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLMak5cIn+OImn19ZdkqSmne51VXcAAADcAhkJAFARjJACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFJOaAxVQuvegJKn4lw3mOp/Ebq7qDgAAgFsgIwEALhUjpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWIqCFAAAAAAAACxFQQoAAAAAAACW4il7wBXYn7fc/Nlr6y417XSvC3sDAADgHshIAICLYYQUAAAAAAAALEVBCgAAAAAAAJaiIAUAAAAAAABLUZACAAAAAACApShIAQAAAAAAwFIUpAAAAAAAAGApClIAAAAAAACwFAUpAAAAAAAAWMolBanGjRvLZrOVeSUnJ0uSevToUWbbfffd57CPgwcPql+/fqpdu7ZCQkI0adIklZSUuOJ0AAAAnIKMBAAAqosarjjoli1bdPr0aXN5586duvnmm3XHHXeY68aOHaunnnrKXK5du7b58+nTp9WvXz+FhYXpm2++UU5OjkaMGCEfHx8988wz1pwEAACAk5GRAABAdeGSglTDhg0dlmfOnKmmTZvqpptuMtfVrl1bYWFh5b5/xYoV+uGHH7Rq1SqFhobq2muv1bRp0zR58mSlpqbK19e3UvsPAABQGchIAACgunD5HFJFRUV6//33dc8998hms5nrFy5cqAYNGuiaa65RSkqKTp48aW7LyMhQu3btFBoaaq5LSEiQ3W7Xrl27znuswsJC2e12hxcAAIA7IiMBAICqzCUjpP5oyZIlysvL06hRo8x1w4YNU1RUlCIiIrR9+3ZNnjxZWVlZ+vTTTyVJubm5DkFLkrmcm5t73mPNmDFDaWlpzj8JAAAAJyMjAQCAqszlBam3335bSUlJioiIMNeNGzfO/Lldu3YKDw9X7969tW/fPjVt2rTCx0pJSdHEiRPNZbvdrsjIyArvDwAAoLKQkQAAQFXm0oLUgQMHtGrVKvNbvfPp2rWrJGnv3r1q2rSpwsLCtHnzZoc2hw8flqTzzqkgSX5+fvLz87vCXgMAAFQuMhIAAKjqXFqQmj9/vkJCQtSvX78LtsvMzJQkhYeHS5Li4uI0ffp0HTlyRCEhIZKklStXKiAgQG3atKnUPgMXsm/rG2XWNe10rwt6AgDwZGQkVDVkJADAuVxWkCotLdX8+fM1cuRI1ajxezf27dunDz74QH379lX9+vW1fft2TZgwQd27d1f79u0lSfHx8WrTpo3+/Oc/a9asWcrNzdUTTzyh5ORkvt0DAAAejYwEAACqA5cVpFatWqWDBw/qnnvucVjv6+urVatW6YUXXtCJEycUGRmpgQMH6oknnjDbeHt7a9myZbr//vsVFxenOnXqaOTIkXrqqaesPg23tz9vuau7UG2U7j3osOzVrJGLegIA8GRkJGuQkaxDRgIAlMdlBan4+HgZhlFmfWRkpL7+/9i78+goyvz9+1f2sHVCIKuGHcUomyAQRFCIBERHBBccRoKDoBgYAUXAhVUJg/yUr4qCjgadkVEYRR0Ehk1RIAKiKAIiIJtCEhGTsEjWev7Ik4bOAklIV/Xyfp3T59DVtdxVlaQvPnXXXevXX3T5xo0ba/ny5c5oGgAAgGXISAAAwBv4Wt0AAAAAAAAAeBcKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATGXZoOYolr9yg9VNgEnKO9cBfbpZ0BIAAFwfGcm7lD7fZCQA8HwUpAAnKXnEcf5xAjUAAEAJMhIAQOKWPQAAAAAAAJiMghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFMxqDngZAezVji8bxLa16KWAAAAuA4yEgB4N3pIAQAAAAAAwFT0kAIslL/S8XHHAX26WdQSAAAA10FGAgDPRw8pAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmYgwpwGSlnygj8VQZAAAAMhIAeBd6SAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxVP2ABeSv3JDmWkBfbpZ0BIAAADXQUYCAM9DDykAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTMag54OJKD+LJAJ4AAABkJABwd/SQAgAAAAAAgKksKUhNnTpVPj4+Dq9WrVrZPz979qySk5PVoEED1a1bVwMHDlRGRobDOg4fPqx+/fqpdu3aioiI0Pjx41VQUGD2rgAAANQYMhIAAPAWlt2yd/XVV2vNmjXnGuJ/riljx47VJ598oiVLligkJESjRo3SgAEDtHHjRklSYWGh+vXrp6ioKG3atEnHjh3TkCFDFBAQoJkzZ5q+L67iYNYKq5sAAAAuERnJOchJAAC4FssKUv7+/oqKiiozPTs7W2+88YYWLVqknj17SpJSU1N11VVX6csvv1SXLl20atUq7dq1S2vWrFFkZKTatWunGTNmaMKECZo6daoCAwPN3h3gkpQXkpuE9rWgJQAAq5GRgHPISADguSwbQ2rv3r2KiYlRs2bNNHjwYB0+fFiStG3bNuXn5yshIcE+b6tWrdSoUSOlpaVJktLS0tS6dWtFRkba50lMTFROTo527txp7o4AAADUIDISAADwBpb0kOrcubMWLlyoK6+8UseOHdO0adN0ww036Pvvv1d6eroCAwMVGhrqsExkZKTS09MlSenp6Q5Bq+Tzks8qkpubq9zcXPv7nJycGtojoOaVviLI1UAA8HxkJODiyEgA4BksKUj17XvuS6NNmzbq3LmzGjdurMWLF6tWrVpO225KSoqmTZvmtPUDAABcCjISAADwFpbdsne+0NBQXXHFFdq3b5+ioqKUl5enrKwsh3kyMjLs4ylERUWVeaJMyfvyxlwoMWnSJGVnZ9tfR44cqdkdAQAAqEFkJAAA4KlcoiB16tQp7d+/X9HR0erQoYMCAgK0du1a++d79uzR4cOHFR8fL0mKj4/Xjh07lJmZaZ9n9erVstlsiouLq3A7QUFBstlsDi8AAABXRUYCAACeypJb9h577DHddtttaty4sY4ePaopU6bIz89P9957r0JCQjRs2DCNGzdOYWFhstlsGj16tOLj49WlSxdJUu/evRUXF6f77rtPs2fPVnp6up566iklJycrKCjIil0CAAC4ZGQkAADgLSwpSP3888+699579dtvvyk8PFzdunXTl19+qfDwcEnSCy+8IF9fXw0cOFC5ublKTEzUK6+8Yl/ez89Py5Yt08iRIxUfH686deooKSlJ06dPt2J3AAAAagQZCQAAeAsfwzAMqxthlZycHIWEhCg7O9uyrun5KzfU2LpKP3EEnqXkCTIBfbpZ3BIAcG+u8P3v6lzhGNVkRpLISZ6MjAQANcPs73+XGEMKAAAAAAAA3oOCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKn8rW4AgKqpzFOHeMoMAADwNmQkAHAv9JACAAAAAACAqeghBbixg1krHN43Ce1rUUsAAABcBxkJAFwfPaQAAAAAAABgKnpIAW6i9JU+AAAAkJEAwF3RQwoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUDGoOeKD8lRsc3gf06WZRSwAAAFwHGQkAXAc9pAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIoxpAAPcjBrRZlpTUL7WtASAAAA10FGAgDXQ0HKRKUHUQQAAEAxchIAAN6FghTgBcoL+TxVBgAAeDsyEgBYh4KUGyuv6zEAAIC3IyMBAOD6KEgBHo4xEwAAAMoiIwGAtXjKHgAAAAAAAExFQQoAAAAAAACm4pY9wEuVHsSTATwBAADISABgFnpIAQAAAAAAwFT0kAK8UOlBPBnAEwAAgIwEAGaihxQAAAAAAABMZUlBKiUlRdddd53q1auniIgI9e/fX3v27HGY58Ybb5SPj4/D66GHHnKY5/Dhw+rXr59q166tiIgIjR8/XgUFBWbuCgAAQI0hIwEAAG9hyS1769evV3Jysq677joVFBToiSeeUO/evbVr1y7VqVPHPt/w4cM1ffp0+/vatWvb/11YWKh+/fopKipKmzZt0rFjxzRkyBAFBARo5syZpu4P4AlKD+ApMYgnAJiNjAS4HjISADiHJQWplStXOrxfuHChIiIitG3bNnXv3t0+vXbt2oqKiip3HatWrdKuXbu0Zs0aRUZGql27dpoxY4YmTJigqVOnKjAw0Kn7AHiS0uMlSIyZAABWICMBroWMBADO4xJjSGVnZ0uSwsLCHKa/8847atiwoa655hpNmjRJZ86csX+Wlpam1q1bKzIy0j4tMTFROTk52rlzpzkNBzxc/soNDi8AgLnISIBrIiMBwKWz/Cl7RUVFGjNmjK6//npdc8019ul//vOf1bhxY8XExOi7777ThAkTtGfPHn3wwQeSpPT0dIegJcn+Pj09vdxt5ebmKjc31/4+JyenpncHAACgRpCRAACAJ7O8IJWcnKzvv/9eGzY4XlkYMWKE/d+tW7dWdHS0evXqpf3796t58+bV2lZKSoqmTZt2Se0FAAAwAxkJAAB4Mktv2Rs1apSWLVumTz/9VJdffvkF5+3cubMkad++fZKkqKgoZWRkOMxT8r6iMRUmTZqk7Oxs++vIkSOXugsAAAA1jowEAAA8nSUFKcMwNGrUKC1dulTr1q1T06ZNL7rM9u3bJUnR0dGSpPj4eO3YsUOZmZn2eVavXi2bzaa4uLhy1xEUFCSbzebwAgAAcBVkJAAA4C0suWUvOTlZixYt0kcffaR69erZxzMICQlRrVq1tH//fi1atEi33HKLGjRooO+++05jx45V9+7d1aZNG0lS7969FRcXp/vuu0+zZ89Wenq6nnrqKSUnJysoKMiK3QI82sGsFfL9ynEw3OYdH7SoNQDgmchIgPshIwFA9fgYhmGYvlEfn3Knp6amaujQoTpy5Ij+8pe/6Pvvv9fp06cVGxurO+64Q0899ZTDFbtDhw5p5MiR+uyzz1SnTh0lJSVp1qxZ8vevXJ0tJydHISEhys7ONuVKYE0/gaO8x9ACZmo56FmrmwAAVWb2939VeGtGkmo2J5GRYLUmoX0V0Keb1c0AgCox+/vfkh5SF6uBxcbGav369RddT+PGjbV8+fKaahYAAIClyEgAAMBbWDqoOQAAAAAAALyPJT2kAHiG8m6voHs6AABA2ZxERgIARxSk3ARjIcAVlfdz2VKELQCAechIcEVkJAC4OG7ZAwAAAAAAgKkoSAEAAAAAAMBU3LIHoEbtffdJh/ctBz1rUUsAAABcBxkJABzRQwoAAAAAAACmoiAFAAAAAAAAU3HLHgCnKv3IY4nHHgMAAJCRAHg7ClIATMcYCgAAAGWRkQB4EwpSAJzqYNYKq5sAAADgcshIALwdY0gBAAAAAADAVPSQAmA5xlAAAAAoi4wEwJPRQwoAAAAAAACmoiAFAAAAAAAAU3HLHgDLlTeop+9XO8tMa97xQTOaAwAA4BLISAA8GT2kAAAAAAAAYCp6SLkoHgMLb1e077DDe98WjRzeM8gnAHgnMhK8HRkJgKeghxQAAAAAAABMRQ8pAG6haN9h5R8ve8XvfKWvCHI1EAAAeDoyEgB3RUEKgNsofZtGk9C+FrUEAADAdZCRALgjClIA3FZ544gQwAAAgLcjIwFwBxSknKi8AQUBONf5Aay8xyJLPBoZAKxGRgLMR0YC4GooSAHwWKWfQiOVfRJNif1fLXB4TyADAACeiowEwBVQkALgVYr2HdbefU9W+HlJGCsdviQCGAAA8FwXy0hScU4iIwGoKRSkAOA8VbliCAAA4E1K5yQyEoBLQUEKAC6iJHxd6JHKPD4ZAAB4GzISgEtBQcoFlPcUDACu54K/q+8Wf1byBBvCFwBcOjIS4B7ISACqw9fqBgAAAAAAAMC7uH0PqXnz5um5555Tenq62rZtq5deekmdOnWyulkAvNz5jzQ/mLXCYYwFBv4EYAYyEgBXVDojSefGoiIjAd7FrQtS7733nsaNG6f58+erc+fOmjt3rhITE7Vnzx5FRERY3TwAXqiiLuvnDwJa0TgL1e3Cfn6wu5T1APAcZCQAruZCt/VdbCwqMhLgmXwMwzCsbkR1de7cWdddd51efvllSVJRUZFiY2M1evRoTZw48aLL5+TkKCQkRNnZ2bLZbDXevtJ/ACvC+AgAqqtkPIYSpXtjSVxtBEpz9ve/KyAjAfB2ZCSg6szOSG7bQyovL0/btm3TpEmT7NN8fX2VkJCgtLQ0C1sGAOYp7z9rpR/JvHffkw7vSwe0yq675aBnq9g6AFYgIwEAGQlwB25bkDp+/LgKCwsVGRnpMD0yMlI//PBDucvk5uYqNzfX/j47O1tScRXQGfJPny4z7XD2aqdsCwAq6/szH1ZruW/efOyi8zQKubnMtMr83Su9XMDN8ZVq009fv2n/t/HTzw7rquw64H1KvvfduJP4BblrRpLISQCsRUaCtzM7I7ltQao6UlJSNG3atDLTY2NjLWgNAHii/2fycs5eFzzZyZMnFRISYnUzXAIZCQCcjYwE92FWRnLbglTDhg3l5+enjIwMh+kZGRmKiooqd5lJkyZp3Lhx9vdFRUU6ceKEGjRoIB8fn0tuU05OjmJjY3XkyBGPHZPCE3He3A/nzD1x3tyTJ543wzB08uRJxcTEWN0UpyAjoaZw3twT5839cM7ckyeeN7MzktsWpAIDA9WhQwetXbtW/fv3l1QcntauXatRo0aVu0xQUJCCgoIcpoWGhtZ422w2m8f8QHoTzpv74Zy5J86be/K08+bJPaPISKhpnDf3xHlzP5wz9+Rp583MjOS2BSlJGjdunJKSktSxY0d16tRJc+fO1enTp3X//fdb3TQAAADLkJEAAICrc+uC1D333KNff/1VkydPVnp6utq1a6eVK1eWGcQTAADAm5CRAACAq3PrgpQkjRo1qsLu52YLCgrSlClTynR5h2vjvLkfzpl74ry5J86b+yIj4VJx3twT5839cM7cE+ft0vkYnvrMYwAAAAAAALgkX6sbAAAAAAAAAO9CQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSNWgefPmqUmTJgoODlbnzp21ZcsWq5uE83z++ee67bbbFBMTIx8fH3344YcOnxuGocmTJys6Olq1atVSQkKC9u7da01jIUlKSUnRddddp3r16ikiIkL9+/fXnj17HOY5e/askpOT1aBBA9WtW1cDBw5URkaGRS3Gq6++qjZt2shms8lmsyk+Pl4rVqywf875cn2zZs2Sj4+PxowZY5/GecOlIiO5NjKS+yEjuR8ykmcgJ9UsClI15L333tO4ceM0ZcoUff3112rbtq0SExOVmZlpddPw/zt9+rTatm2refPmlfv57Nmz9eKLL2r+/PnavHmz6tSpo8TERJ09e9bklqLE+vXrlZycrC+//FKrV69Wfn6+evfurdOnT9vnGTt2rP773/9qyZIlWr9+vY4ePaoBAwZY2Grvdvnll2vWrFnatm2bvvrqK/Xs2VO33367du7cKYnz5eq2bt2qBQsWqE2bNg7TOW+4FGQk10dGcj9kJPdDRnJ/5CQnMFAjOnXqZCQnJ9vfFxYWGjExMUZKSoqFrUJFJBlLly61vy8qKjKioqKM5557zj4tKyvLCAoKMv79739b0EKUJzMz05BkrF+/3jCM4nMUEBBgLFmyxD7P7t27DUlGWlqaVc1EKfXr1zf+8Y9/cL5c3MmTJ42WLVsaq1evNnr06GE88sgjhmHwe4ZLR0ZyL2Qk90RGck9kJPdBTnIOekjVgLy8PG3btk0JCQn2ab6+vkpISFBaWpqFLUNlHThwQOnp6Q7nMCQkRJ07d+YcupDs7GxJUlhYmCRp27Ztys/PdzhvrVq1UqNGjThvLqCwsFDvvvuuTp8+rfj4eM6Xi0tOTla/fv0czo/E7xkuDRnJ/ZGR3AMZyb2QkdwPOck5/K1ugCc4fvy4CgsLFRkZ6TA9MjJSP/zwg0WtQlWkp6dLUrnnsOQzWKuoqEhjxozR9ddfr2uuuUZS8XkLDAxUaGiow7ycN2vt2LFD8fHxOnv2rOrWraulS5cqLi5O27dv53y5qHfffVdff/21tm7dWuYzfs9wKchI7o+M5PrISO6DjOSeyEnOQ0EKgFtITk7W999/rw0bNljdFFzElVdeqe3btys7O1v/+c9/lJSUpPXr11vdLFTgyJEjeuSRR7R69WoFBwdb3RwAQBWRkdwHGcn9kJOci1v2akDDhg3l5+dXZiT9jIwMRUVFWdQqVEXJeeIcuqZRo0Zp2bJl+vTTT3X55Zfbp0dFRSkvL09ZWVkO83PerBUYGKgWLVqoQ4cOSklJUdu2bfV///d/nC8XtW3bNmVmZuraa6+Vv7+//P39tX79er344ovy9/dXZGQk5w3VRkZyf2Qk10ZGci9kJPdDTnIuClI1IDAwUB06dNDatWvt04qKirR27VrFx8db2DJUVtOmTRUVFeVwDnNycrR582bOoYUMw9CoUaO0dOlSrVu3Tk2bNnX4vEOHDgoICHA4b3v27NHhw4c5by6kqKhIubm5nC8X1atXL+3YsUPbt2+3vzp27KjBgwfb/815Q3WRkdwfGck1kZE8AxnJ9ZGTnItb9mrIuHHjlJSUpI4dO6pTp06aO3euTp8+rfvvv9/qpuH/d+rUKe3bt8/+/sCBA9q+fbvCwsLUqFEjjRkzRs8884xatmyppk2b6umnn1ZMTIz69+9vXaO9XHJyshYtWqSPPvpI9erVs9+HHRISolq1aikkJETDhg3TuHHjFBYWJpvNptGjRys+Pl5dunSxuPXeadKkSerbt68aNWqkkydPatGiRfrss8/0v//9j/PlourVq2cfc6REnTp11KBBA/t0zhsuBRnJ9ZGR3A8Zyf2QkdwTOcnJrH7Mnyd56aWXjEaNGhmBgYFGp06djC+//NLqJuE8n376qSGpzCspKckwjOLHGj/99NNGZGSkERQUZPTq1cvYs2ePtY32cuWdL0lGamqqfZ4//vjDePjhh4369esbtWvXNu644w7j2LFj1jXay/31r381GjdubAQGBhrh4eFGr169jFWrVtk/53y5h/MfZ2wYnDdcOjKSayMjuR8ykvshI3kOclLN8TEMwzCzAAYAAAAAAADvxhhSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCoDdZ599Jh8fH3322Wc1ul4fHx9NnTq1RtdZVQsXLpSPj48OHjzo1HXeeOONuvHGG6u8rqoc++puoyqmTp0qHx8fp26jIrfccouGDx9+0fkqOqfPPfecmjVrJj8/P7Vr165K2165cqXq1q2rX3/9tUrLAQA8Gxnp0tdJRrp0ZCR4GgpS8EibNm3S1KlTlZWVZXVTvMby5cstD1Sw1rFjxzRx4kTddNNNqlevXrWC+8aNG7Vq1SpNmDChWm1YtWqVHn/8cV1//fVKTU3VzJkz7dOHDRuma665Rn5+fmrSpEm5y/fp00ctWrRQSkpKtbYPAK6OjGQ+MhJcNSOdOXNG8+bNU+/evRUdHa169eqpffv2evXVV1VYWOiwPBkJzkBBCh5p06ZNmjZtGmHLRMuXL9e0adPK/eyPP/7QU089ZXKLHN133336448/1LhxY6duZ9WqVVq1alWVl+vevbv++OMPde/e3QmtMseePXv097//Xb/88otat25drXU899xz6tWrl1q0aFGt5detWydfX1+98cYbGjJkiG655RZJ0qJFi7Ro0SKFhIQoJibmgut48MEHtWDBAp08ebJabQAAV0ZGMh8ZqRgZyfUy0k8//aTRo0fLMAyNGzdOc+bMUdOmTfXwww/rr3/9a5l1kJFQ0yhIAR7gzJkz5U4vKChQXl6eya0pKzg4WP7+/pa2wc/PT8HBwU7vYh0YGKjAwMAqL+fr66vg4GD5+rrvn+UOHTrot99+048//qhx48ZVefnMzEx98sknuvvuu6vdhszMTNWqVavMOZg5c6ZycnK0ceNGtW3b9oLrGDhwoHJzc7VkyZJqtwMA4BrISBdHRnI+V81IUVFR2rFjh1avXq3x48frwQcf1AcffKD7779fb7/9tvbt2+ewDjISapr7/lYDFZg6darGjx8vSWratKl8fHwc7qEuKCjQjBkz1Lx5cwUFBalJkyZ64oknlJub67CeJk2a6NZbb9WqVavUrl07BQcHKy4uTh988EG12vWvf/1LnTp1Uu3atVW/fn117969zFWiV155RVdffbWCgoIUExOj5OTkMlcwb7zxRl1zzTXatm2bunfvrtq1a+uJJ57QwYMH5ePjozlz5mju3Ln2/du1a5ck6YcfftCdd96psLAwBQcHq2PHjvr4448v2u4vvvhCd911lxo1aqSgoCDFxsZq7Nix+uOPP+zzDB06VPPmzZMk+/E+P9SUNz7CN998o759+8pms6lu3brq1auXvvzyS4d5Su5/37hxo8aNG6fw8HDVqVNHd9xxR5XvXy/vXvqSc7xhwwZ16tRJwcHBatasmd5+++0yy+/cuVM9e/ZUrVq1dPnll+uZZ55RUVFRmfnOH7sgIyND/v7+5V4V3bNnj3x8fPTyyy9Lqnh8hNdee03NmzdXrVq11KlTJ33xxReV2reK1lmZ81ld9erVU1hYWLWX/+STT1RQUKCEhIQyn1Xm+Pv4+Cg1NVWnT5+2/wwuXLhQkhQTE6OAgIBKtSMiIkJt2rTRRx99VO19AQBXREYiI5WHjFTMGzNSw4YNdfXVV5dZ5x133CFJ2r17t8N0MhJqmrXleMAJBgwYoB9//FH//ve/9cILL6hhw4aSpPDwcEnSAw88oLfeekt33nmnHn30UW3evFkpKSnavXu3li5d6rCuvXv36p577tFDDz2kpKQkpaam6q677tLKlSt18803V7pN06ZN09SpU9W1a1dNnz5dgYGB2rx5s9atW6fevXtLKg6J06ZNU0JCgkaOHKk9e/bo1Vdf1datW7Vx40aH/0z/9ttv6tu3rwYNGqS//OUvioyMtH+Wmpqqs2fPasSIEQoKClJYWJh27typ66+/XpdddpkmTpyoOnXqaPHixerfv7/ef/99+5dOeZYsWaIzZ85o5MiRatCggbZs2aKXXnpJP//8s/3qyIMPPqijR49q9erV+uc//3nR47Fz507dcMMNstlsevzxxxUQEKAFCxboxhtv1Pr169W5c2eH+UePHq369etrypQpOnjwoObOnatRo0bpvffeq/Q5qMi+fft05513atiwYUpKStKbb76poUOHqkOHDvYv6PT0dN10000qKCiwH7/XXntNtWrVuuC6IyMj1aNHDy1evFhTpkxx+Oy9996Tn5+f7rrrrgqXf+ONN/Tggw+qa9euGjNmjH766Sf96U9/UlhYmGJjY6u1v5U5n1bZtGmTGjRoUOaWgcoe/3/+85967bXXtGXLFv3jH/+QJHXt2rVabenQoYM+/PDDai0LAK6KjERGqgoykvdmpPT0dEmy/404HxkJNcoAPNBzzz1nSDIOHDjgMH379u2GJOOBBx5wmP7YY48Zkox169bZpzVu3NiQZLz//vv2adnZ2UZ0dLTRvn37Srdl7969hq+vr3HHHXcYhYWFDp8VFRUZhmEYmZmZRmBgoNG7d2+HeV5++WVDkvHmm2/ap/Xo0cOQZMyfP99hXQcOHDAkGTabzcjMzHT4rFevXkbr1q2Ns2fPOmy7a9euRsuWLe3TPv30U0OS8emnn9qnnTlzpsw+paSkGD4+PsahQ4fs05KTk42K/qRIMqZMmWJ/379/fyMwMNDYv3+/fdrRo0eNevXqGd27d7dPS01NNSQZCQkJ9mNlGIYxduxYw8/Pz8jKyip3e+UpWdf5PxMl5/jzzz+3T8vMzDSCgoKMRx991D5tzJgxhiRj8+bNDvOFhISUWWePHj2MHj162N8vWLDAkGTs2LHDoT1xcXFGz5497e9LH/u8vDwjIiLCaNeunZGbm2uf77XXXjMkOWyjvH0rb52GUfnzOWXKlArPZ2UsWbKkzLYvplu3bkaHDh3KTK/K8U9KSjLq1Klzwe3069fPaNy48QXnmTlzpiHJyMjIqHT7AcAdkJHISKWRkYqRkYrl5uYacXFxRtOmTY38/Pwyn5ORUJO4ZQ9eZfny5ZJU5t7tRx99VFJxd9jzxcTEOFwZs9lsGjJkiL755hv7lYOL+fDDD1VUVKTJkyeXufe9pMv2mjVrlJeXpzFjxjjMM3z4cNlstjLtCgoK0v3331/u9gYOHGi/0ilJJ06c0Lp163T33Xfr5MmTOn78uI4fP67ffvtNiYmJ2rt3r3755ZcK23/+FZbTp0/r+PHj6tq1qwzD0DfffFOpY3C+wsJCrVq1Sv3791ezZs3s06Ojo/XnP/9ZGzZsUE5OjsMyI0aMcOjefsMNN6iwsFCHDh2q8vZLi4uL0w033GB/Hx4eriuvvFI//fSTfdry5cvVpUsXderUyWG+wYMHX3T9AwYMkL+/v8OVyu+//167du3SPffcU+FyX331lTIzM/XQQw853Os/dOhQhYSEVHr/Sqvp81mTfvvtN9WvX7/M9Es5/tVV0o7jx487bRsA4ErISGSk0shI3pmRRo0apV27dunll18ud3wzMhJqEgUpeJVDhw7J19e3zNMpoqKiFBoaWubLu0WLFmUGeLziiiskqcy96BXZv3+/fH19FRcXd8F2SdKVV17pMD0wMFDNmjUr067LLruswkEhmzZt6vB+3759MgxDTz/9tMLDwx1eJV2kMzMzK2zb4cOHNXToUIWFhalu3boKDw9Xjx49JEnZ2dkVLleRX3/9VWfOnCmzr5J01VVXqaioSEeOHHGY3qhRI4f3JV+Ev//+e5W3X1rpdZes//x1Hzp0SC1btiwzX3n7UFrDhg3Vq1cvLV682D7tvffek7+/vwYMGFDhciXnvPR2AwICHEJqVdX0+axphmGUmXYpx/9S2+HsAV4BwFWQkchIpZGRvC8jPffcc3r99dc1Y8YM+5OKK2oHGQk1gTGk4JXc/Q/ohe7LL/1ZyaCGjz32mBITE8tdpqLHxxYWFurmm2/WiRMnNGHCBLVq1Up16tTRL7/8oqFDh5Y7YKUz+Pn5lTu9vC9mV1p3iUGDBun+++/X9u3b1a5dOy1evFi9evUq97786qjo57mwsLDMe1c4nxVp0KBBjQTomlDSjpo6RwDgLshIjshIzll3CTJS5ZiRkRYuXKgJEybooYce0lNPPVXhfGQk1CQKUvBIFX35NG7cWEVFRdq7d6+uuuoq+/SMjAxlZWWVGSiw5MrZ+ev78ccfJRU/faQymjdvrqKiIu3atUvt2rWrsF1S8VNFzr+yk5eXpwMHDpT7RI3KKllfQEBAldezY8cO/fjjj3rrrbc0ZMgQ+/TVq1eXmbeyATY8PFy1a9fWnj17ynz2ww8/yNfXt9qDUTpL48aNtXfv3jLTy9uH8vTv318PPvigvUv6jz/+qEmTJl10m1LxoLE9e/a0T8/Pz9eBAwfUtm1b+7SSq6GlnzZU+qpxVc6nFVq1aqX333+/zPRLPf7VceDAATVs2NDh1g4A8ARkpHPISJeOjGQOZ2ekjz76SA888IAGDBhgfypkRchIqEncsgePVKdOHUllv3xKup7OnTvXYfrzzz8vSerXr5/D9KNHjzo8VSYnJ0dvv/222rVrp6ioqEq1pX///vL19dX06dPLXF0pucKUkJCgwMBAvfjiiw5Xnd544w1lZ2eXaVdVRERE6MYbb9SCBQt07NixMp9f6NHAJVfGzm+TYRj6v//7vzLzVnTMy1tn79699dFHHzl06c/IyNCiRYvUrVs32Wy2C67DbLfccou+/PJLbdmyxT7t119/1TvvvFOp5UNDQ5WYmKjFixfr3XffVWBgoPr373/BZTp27Kjw8HDNnz9feXl59ukLFy4sc4ybN28uSfr888/t0woLC/Xaa685zFeV82mF+Ph4/f777w5jU0iXfvyrY9u2bYqPj3fa+gHAKmSkc8hIl46MZA5nZqTPP/9cgwYNUvfu3fXOO++UGc+tNDISahI9pOCROnToIEl68sknNWjQIAUEBOi2225T27ZtlZSUpNdee01ZWVnq0aOHtmzZorfeekv9+/fXTTfd5LCeK664QsOGDdPWrVsVGRmpN998UxkZGUpNTa10W1q0aKEnn3xSM2bM0A033KABAwYoKChIW7duVUxMjFJSUhQeHq5JkyZp2rRp6tOnj/70pz9pz549euWVV3TdddfpL3/5yyUdj3nz5qlbt25q3bq1hg8frmbNmikjI0NpaWn6+eef9e2335a7XKtWrdS8eXM99thj+uWXX2Sz2fT++++X22W45Jj/7W9/U2Jiovz8/DRo0KBy1/vMM89o9erV6tatmx5++GH5+/trwYIFys3N1ezZsy9pX53h8ccf1z//+U/16dNHjzzyiP2Ruo0bN9Z3331XqXXcc889+stf/qJXXnlFiYmJCg0NveD8AQEBeuaZZ/Tggw+qZ8+euueee3TgwAGlpqaWGR/h6quvVpcuXTRp0iSdOHFCYWFhevfdd1VQUOAwX1XOZ3U988wzkoofWy0VP2Z4w4YNknTB7t9S8X92/P39tWbNGo0YMcI+vSaO/3fffaePP/5YUvFV/ezsbHtb27Ztq9tuu80+b2Zmpr777jslJydXcq8BwH2QkRyRkS4NGanyXDEjHTp0SH/605/k4+OjO++8U0uWLHH4vE2bNmrTpo39PRkJNc6ch/kB5psxY4Zx2WWXGb6+vg6PPc3PzzemTZtmNG3a1AgICDBiY2ONSZMmOTzu1zCKH3fbr18/43//+5/Rpk0bIygoyGjVqpWxZMmSarXnzTffNNq3b28EBQUZ9evXN3r06GGsXr3aYZ6XX37ZaNWqlREQEGBERkYaI0eONH7//XeHeXr06GFcffXVZdZf8kjj5557rtzt79+/3xgyZIgRFRVlBAQEGJdddplx6623Gv/5z3/s85T3CNxdu3YZCQkJRt26dY2GDRsaw4cPN7799ltDkpGammqfr6CgwBg9erQRHh5u+Pj4ODwOV6UeaWwYhvH1118biYmJRt26dY3atWsbN910k7Fp0yaHeUoe1bt161aH6eW182IqeqRxv379ysxb+rHEhmEY3333ndGjRw8jODjYuOyyy4wZM2YYb7zxxkUfaVwiJyfHqFWrliHJ+Ne//lXm84r26ZVXXjGaNm1qBAUFGR07djQ+//zzcrexf/9+IyEhwQgKCjIiIyONJ554wli9enW1z2d1H2ksqcJXZfzpT38yevXqVWZ6ZY9/RY80Ljn/5b2SkpIc5n311VeN2rVrGzk5OVXadwBwF2QkR2QkMpJheGdGKjm2Fb1K/2ySkVDTfAyjBkelAzxIkyZNdM0112jZsmVWNwXwGl988YVuvPFG/fDDD+U+NcYM7du314033qgXXnjBku0DgKsjIwHmIyPBEzGGFADAZdxwww3q3bu3ZbclrFy5Unv37r3ogKoAAABmIiPBE9FDCqhAZa7+paenX3AdtWrVUkhISE03Dec5deqUTp06dcF5wsPDK3x0MS4uOztbf/zxxwXnqewAtgAA90dGcg9kJOcjIwGXhkHNgUsQHR19wc+TkpK0cOFCcxrjpebMmaNp06ZdcJ4DBw5U+hHUKOuRRx7RW2+9dcF5uLYBADgfGcl6ZCTnIyMBl4YeUsAlWLNmzQU/j4mJUVxcnEmt8U4//fRTmUfgltatWzcFBweb1CLPs2vXLh09evSC8yQkJJjUGgCAOyAjWY+M5HxkJODSUJACAAAAAACAqRjUHAAAAAAAAKby6jGkioqKdPToUdWrV08+Pj5WNwcAAJjAMAydPHlSMTEx8vXl2lx5yEgAAHgfszOSVxekjh49qtjYWKubAQAALHDkyBFdfvnlVjfDJZGRAADwXmZlJK8uSNWrV09S8cG22WwWtwYAAJghJydHsbGx9hyAsshIAAB4H7MzklcXpEq6oNtsNsIWAABehlvRKkZGAgDAe5mVkRg4AQAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqbx6DKnKKCoqUl5entXNQDUEBATIz8/P6mYAAOCxCgsLlZ+fb3UzUEVkJACAK6AgdQF5eXk6cOCAioqKrG4Kqik0NFRRUVEMXAsAQA0yDEPp6enKysqyuimoJjISAMBqFKQqYBiGjh07Jj8/P8XGxsrXl7sb3YlhGDpz5owyMzMlSdHR0Ra3CAAAz1FSjIqIiFDt2rUpargRMhIAwFVQkKpAQUGBzpw5o5iYGNWuXdvq5qAaatWqJUnKzMxUREQEXdMBAKgBhYWF9mJUgwYNrG4OqoGMBABwBXT7qUBhYaEkKTAw0OKW4FKUFBMZ3wIAgJpR8p3KBTv3RkYCAFiNgtRF0AXdvXH+AABwDr5j3RvnDwBgNQpSAAAAAAAAMBUFKQAAAAAAAJiKQc2rKH/lBlO3F9CnW6XnvVjX6ylTpmjq1KmX2KLq8fHx0dKlS9W/f/9qr+O1117TokWL9PXXX+vkyZP6/fffFRoaWmNtBAAA1UdGqp5LzUgnTpzQlClTtGrVKh0+fFjh4eHq37+/ZsyYoZCQkJptLAAANYiClAc5duyY/d/vvfeeJk+erD179tin1a1bt0rry8vLc6lB3c+cOaM+ffqoT58+mjRpktXNAQBUUulCRVUKCUBN8OSMdPToUR09elRz5sxRXFycDh06pIceekhHjx7Vf/7zH6ubBwC4AG/PSNyy50GioqLsr5CQEPn4+Njfnz59WoMHD1ZkZKTq1q2r6667TmvWrHFYvkmTJpoxY4aGDBkim82mESNGSJJef/11xcbGqnbt2rrjjjv0/PPPl+mZ9NFHH+naa69VcHCwmjVrpmnTpqmgoMC+Xkm644475OPjY3//7bff6qabblK9evVks9nUoUMHffXVVxXu35gxYzRx4kR16dKlZg4YAADwCp6cka655hq9//77uu2229S8eXP17NlTzz77rP773//atwMAgCuiIOUlTp06pVtuuUVr167VN998oz59+ui2227T4cOHHeabM2eO2rZtq2+++UZPP/20Nm7cqIceekiPPPKItm/frptvvlnPPvuswzJffPGFhgwZokceeUS7du3SggULtHDhQvt8W7dulSSlpqbq2LFj9veDBw/W5Zdfrq1bt2rbtm2aOHGiAgICTDgaAAAAxTwxI2VnZ8tms8nfn5shAACui28pL9G2bVu1bdvW/n7GjBlaunSpPv74Y40aNco+vWfPnnr00Uft75988kn17dtXjz32mCTpiiuu0KZNm7Rs2TL7PNOmTdPEiROVlJQkSWrWrJlmzJihxx9/XFOmTFF4eLgkKTQ0VFFRUfblDh8+rPHjx6tVq1aSpJYtWzphzwEAACrmaRnp+PHjmjFjhr0XFwAArooeUl7i1KlTeuyxx3TVVVcpNDRUdevW1e7du8tc/evYsaPD+z179qhTp04O00q///bbbzV9+nTVrVvX/ho+fLiOHTumM2fOVNimcePG6YEHHlBCQoJmzZql/fv3X+JeAgAAVI0nZaScnBz169dPcXFxlg3SDgBAZVGQ8hKPPfaYli5dqpkzZ+qLL77Q9u3b1bp1a+Xl5TnMV6dOnSqv+9SpU5o2bZq2b99uf+3YsUN79+5VcHBwhctNnTpVO3fuVL9+/bRu3TrFxcVp6dKlVd4+AABAdXlKRjp58qT69OmjevXqaenSpQyDAABwedyy5yU2btyooUOH6o477pBUHJAOHjx40eWuvPJK+3gGJUq/v/baa7Vnzx61aNGiwvUEBASosLCwzPQrrrhCV1xxhcaOHat7771Xqamp9jYCAAA4mydkpJycHCUmJiooKEgff/zxBYtdAAC4CgpSXqJly5b64IMPdNttt8nHx0dPP/20ioqKLrrc6NGj1b17dz3//PO67bbbtG7dOq1YsUI+Pj72eSZPnqxbb71VjRo10p133ilfX199++23+v777/XMM89IKn6KzNq1a3X99dcrKChIwcHBGj9+vO688041bdpUP//8s7Zu3aqBAwdW2Jb09HSlp6dr3759kqQdO3aoXr16atSokcLCwi7xCAEAAG/k7hkpJydHvXv31pkzZ/Svf/1LOTk5ysnJkSSFh4fLz8+vBo4SAAA1j1v2vMTzzz+v+vXrq2vXrrrtttuUmJioa6+99qLLXX/99Zo/f76ef/55tW3bVitXrtTYsWMdrrwlJiZq2bJlWrVqla677jp16dJFL7zwgho3bmyf5//9v/+n1atXKzY2Vu3bt5efn59+++03DRkyRFdccYXuvvtu9e3bV9OmTauwLfPnz1f79u01fPhwSVL37t3Vvn17ffzxx5dwZAAAgDdz94z09ddfa/PmzdqxY4datGih6Oho++vIkSOXfoAAAHASH8MwDKsbYZWcnByFhITYH417vrNnz+rAgQNq2rQp3Z5LGT58uH744Qd98cUXVjflojiPAGC9/JUbHN4H9OlmUUuKXej7H8XISNVDRgIAVIW3ZyRu2cNFzZkzRzfffLPq1KmjFStW6K233tIrr7xidbMAAAAsRUYCAKD6KEjhorZs2aLZs2fr5MmTatasmV588UU98MADVjcLAADAUmQkAACqj4IULmrx4sVWNwEAAMDlkJEAAKg+BjUHAAAAAACAqSwpSBUWFurpp59W06ZNVatWLTVv3lwzZszQ+eOrG4ahyZMnKzo6WrVq1VJCQoL27t3rsJ4TJ05o8ODBstlsCg0N1bBhw3Tq1CmzdweAE+Wv3ODwAuDaSv/O8ntbNWQkAJXF31rAvZCRyrKkIPX3v/9dr776ql5++WXt3r1bf//73zV79my99NJL9nlmz56tF198UfPnz9fmzZtVp04dJSYm6uzZs/Z5Bg8erJ07d2r16tVatmyZPv/8c40YMcKKXQIAALhkZCQAAOAtLBlDatOmTbr99tvVr18/SVKTJk3073//W1u2bJFUfOVv7ty5euqpp3T77bdLkt5++21FRkbqww8/1KBBg7R7926tXLlSW7duVceOHSVJL730km655RbNmTNHMTExVuwaAABAtZGRAACAt7Ckh1TXrl21du1a/fjjj5Kkb7/9Vhs2bFDfvn0lSQcOHFB6eroSEhLsy4SEhKhz585KS0uTJKWlpSk0NNQetCQpISFBvr6+2rx5c7nbzc3NVU5OjsMLAADAVZCRAACAt7Ckh9TEiROVk5OjVq1ayc/PT4WFhXr22Wc1ePBgSVJ6erokKTIy0mG5yMhI+2fp6emKiIhw+Nzf319hYWH2eUpLSUnRtGnTanp3AAAAagQZCQAAeAtLekgtXrxY77zzjhYtWqSvv/5ab731lubMmaO33nrLqdudNGmSsrOz7a8jR444dXsAAABVQUYCAADewpIeUuPHj9fEiRM1aNAgSVLr1q116NAhpaSkKCkpSVFRUZKkjIwMRUdH25fLyMhQu3btJElRUVHKzMx0WG9BQYFOnDhhX760oKAgBQUFXVLb93+14JKWr6rmHR+s0vxDhw61h9aSq6Ft2rTRvffeq6FDh8rX15IaZI3YuXOnJk+erG3btunQoUN64YUXNGbMGKubBQBAjSEjVR4Z6ZzXX39db7/9tr7//ntJUocOHTRz5kx16tTJ4pYBAFAxS755z5w5U+ZL38/PT0VFRZKkpk2bKioqSmvXrrV/npOTo82bNys+Pl6SFB8fr6ysLG3bts0+z7p161RUVKTOnTubsBeuq0+fPjp27JgOHjyoFStW6KabbtIjjzyiW2+9VQUFBVY3r9rOnDmjZs2aadasWRUGagAA3BkZybk8NSN99tlnuvfee/Xpp58qLS1NsbGx6t27t3755RermwYAQIUsKUjddtttevbZZ/XJJ5/TwotZAAEAAElEQVTo4MGDWrp0qZ5//nndcccdkiQfHx+NGTNGzzzzjD7++GPt2LFDQ4YMUUxMjPr37y9Juuqqq9SnTx8NHz5cW7Zs0caNGzVq1CgNGjTI658eExQUpKioKF122WW69tpr9cQTT+ijjz7SihUrtHDhQvt8WVlZeuCBBxQeHi6bzaaePXvq22+/dVjXf//7X1133XUKDg5Ww4YN7edIkn7//XcNGTJE9evXV+3atdW3b1/t3btXknT69GnZbDb95z//cVjfhx9+qDp16ujkyZPKy8vTqFGjFB0dreDgYDVu3FgpKSkV7td1112n5557ToMGDbrkq7iwXv7KDWVeAODtyEjO5akZ6Z133tHDDz+sdu3aqVWrVvrHP/6hoqIih8Il3AcZCYC3sOSWvZdeeklPP/20Hn74YWVmZiomJkYPPvigJk+ebJ/n8ccf1+nTpzVixAhlZWWpW7duWrlypYKDg+3zvPPOOxo1apR69eolX19fDRw4UC+++KIVu+TyevbsqbZt2+qDDz7QAw88IEm66667VKtWLa1YsUIhISFasGCBevXqpR9//FFhYWH65JNPdMcdd+jJJ5/U22+/rby8PC1fvty+zqFDh2rv3r36+OOPZbPZNGHCBN1yyy3atWuX6tSpo0GDBik1NVV33nmnfZmS9/Xq1dOcOXP08ccfa/HixWrUqJGOHDnCmBVejsAFeIfyftcD+nSzoCWuh4xkPk/MSGfOnFF+fr7CwsJq7kDBUmQkwDt4W0aypCBVr149zZ07V3Pnzq1wHh8fH02fPl3Tp0+vcJ6wsDAtWrTICS30TK1atdJ3330nSdqwYYO2bNmizMxMe2+jOXPm6MMPP9R//vMfjRgxQs8++6wGDRrk8NSdtm3bSpI9ZG3cuFFdu3aVVBx+Y2Nj9eGHH+quu+7SAw88oK5du+rYsWOKjo5WZmamli9frjVr1kiSDh8+rJYtW6pbt27y8fFR48aNzTwc8GDe9occgOcgI1nD0zLShAkTFBMTo4SEhEs+NvA8pXMSGQmAVdx39EZUmWEY8vHxkSR9++23OnXqlBo0aKC6devaXwcOHND+/fslSdu3b1evXr3KXdfu3bvl7+/vMBZFgwYNdOWVV2r37t2SpE6dOunqq6+2DyD6r3/9S40bN1b37t0lFV893L59u6688kr97W9/06pVq5y27zAXXc0BAO7EkzLSrFmz9O6772rp0qUOvebgGshIAHCOJT2kYI3du3eradOmkqRTp04pOjpan332WZn5QkNDJUm1atW65G0+8MADmjdvniZOnKjU1FTdf//99sB37bXX6sCBA1qxYoXWrFmju+++WwkJCWXGVAAAAHAmT8lIc+bM0axZs7RmzRq1adPmktsIAIAz0UPKS6xbt047duzQwIEDJRUHnfT0dPn7+6tFixYOr4YNG0qS2rRpU+FgmFdddZUKCgq0efNm+7TffvtNe/bsUVxcnH3aX/7yFx06dEgvvviidu3apaSkJIf12Gw23XPPPXr99df13nvv6f3339eJEydqevcBAADK5SkZafbs2ZoxY4ZWrlypjh07Vvt4AABgFnpIeaDc3Fylp6ersLBQGRkZWrlypVJSUnTrrbdqyJAhkqSEhATFx8erf//+mj17tq644godPXrUPkhnx44dNWXKFPXq1UvNmzfXoEGDVFBQoOXLl2vChAlq2bKlbr/9dg0fPlwLFixQvXr1NHHiRF122WW6/fbb7W2pX7++BgwYoPHjx6t37966/PLL7Z89//zzio6OVvv27eXr66slS5YoKirKfvWxtLy8PO3atcv+719++UXbt29X3bp11aJFC+cdUOAiGLMKANyDp2akv//975o8ebIWLVqkJk2aKD09XZLstxsCVmLMKgAVoSDlgVauXKno6Gj5+/urfv36atu2rV588UUlJSXJ17e4U5yPj4+WL1+uJ598Uvfff79+/fVXRUVFqXv37oqMjJQk3XjjjVqyZIlmzJihWbNmyWaz2cc2kIqfBvPII4/o1ltvVV5enrp3767ly5crICDAoT3Dhg3TokWL9Ne//tVher169TR79mzt3btXfn5+uu6667R8+XJ7G0s7evSo2rdvb38/Z84czZkzRz169Ci3Wz3MwdgHAAB34akZ6dVXX1VeXp7DU/skacqUKZo6deqlHjZUExkJAC7MxzAMw+pGWCUnJ0chISHKzs6WzWZz+Ozs2bM6cOCAmjZtyoCQl+if//ynxo4dq6NHjyowMNDUbXMena+yYav01bDqhrTKXFUzu8cSPaSAc5z5u11TLvT9j2JkJHOQkTybK2ak8tbv7L+/9JACipGRyqKHFJzmzJkzOnbsmGbNmqUHH3zQ9KAFAADgishIAAAwqDmcaPbs2WrVqpWioqI0adIkq5sDAADgEshIAADQQwpONHXqVMYt8ECMhwAAwKUhI3kmMhIAVA0FKQCmIKQBAACURUYC4K24Ze8ivHjMd4/A+QMAwDn4jnVvnD8AgNXoIVUBPz8/SVJeXp5q1aplcWtQXWfOnJGkMo9ZRuVwxQ4AUFrJd+qZM2fISG6MjHRpyEgAcOkoSFXA399ftWvX1q+//qqAgAD5+tKZzJ0YhqEzZ84oMzNToaGh9gIjAAC4NH5+fgoNDVVmZqYkqXbt2vLx8bG4VagsMhIAwFVQkKqAj4+PoqOjdeDAAR06dMjq5qCaQkNDFRUVZXUz4CbKu9oZ0KebBS0BANdW8t1aUpSC+yEjoapK5yQyEoBLRUHqAgIDA9WyZUvl5eVZ3RRUQ0BAAFf9AABwgpILdxEREcrPz7e6OagiMhIAwBVQkLoIX19fBQcHW90MwOkYCwEAUFV+fn4UNuDxyEgA4BwMjAQAAAAAAABTUZACAAAAAACAqbhlD4BbqcmBx+mCDwAAPAUZCYC7oSAFABfAk/cAAADKIiMBuFTcsgcAAAAAAABT0UMKgFeg6zkAAEBZZCQAVqGHFAAAAAAAAExFQQoAAAAAAACm4pY9AC7pYNYKh/dNQvta1BIAAADXQUYC4Cks6SHVpEkT+fj4lHklJydLks6ePavk5GQ1aNBAdevW1cCBA5WRkeGwjsOHD6tfv36qXbu2IiIiNH78eBUUFFixOwAAADWCjAQAALyFJT2ktm7dqsLCQvv777//XjfffLPuuusuSdLYsWP1ySefaMmSJQoJCdGoUaM0YMAAbdy4UZJUWFiofv36KSoqSps2bdKxY8c0ZMgQBQQEaObMmVbsEoAKlL6KJ3ElD/AUDIRb88hIgPcgIwGei4xUOZYUpMLDwx3ez5o1S82bN1ePHj2UnZ2tN954Q4sWLVLPnj0lSampqbrqqqv05ZdfqkuXLlq1apV27dqlNWvWKDIyUu3atdOMGTM0YcIETZ06VYGBgVbsFuBRCEkAYD4yEuD6yEgAUDMsH9Q8Ly9P//rXv/TXv/5VPj4+2rZtm/Lz85WQkGCfp1WrVmrUqJHS0tIkSWlpaWrdurUiIyPt8yQmJionJ0c7d+6scFu5ubnKyclxeAEAALgiMhIAAPBklg9q/uGHHyorK0tDhw6VJKWnpyswMFChoaEO80VGRio9Pd0+z/lBq+Tzks8qkpKSomnTptVc4wE3UV6X0YA+3ZyyrfKuGjobXWIBeCIyEuB8ZCQAsI7lBak33nhDffv2VUxMjNO3NWnSJI0bN87+PicnR7GxsU7fLuCKXCmgWBHQAMDVkZEAa5CRAMAclhakDh06pDVr1uiDDz6wT4uKilJeXp6ysrIcrgBmZGQoKirKPs+WLVsc1lXyhJmSecoTFBSkoKCgGtwDwLt5a0hypaAKwDORkQD3RkYCgIuzdAyp1NRURUREqF+/fvZpHTp0UEBAgNauXWuftmfPHh0+fFjx8fGSpPj4eO3YsUOZmZn2eVavXi2bzaa4uDjzdgAAAMAJyEgAAMDTWdZDqqioSKmpqUpKSpK//7lmhISEaNiwYRo3bpzCwsJks9k0evRoxcfHq0uXLpKk3r17Ky4uTvfdd59mz56t9PR0PfXUU0pOTubqHgAAcGtkJAAA4A0sK0itWbNGhw8f1l//+tcyn73wwgvy9fXVwIEDlZubq8TERL3yyiv2z/38/LRs2TKNHDlS8fHxqlOnjpKSkjR9+nQzdwFANXlrN3YAqAwyEuC9yEgAvIllBanevXvLMIxyPwsODta8efM0b968Cpdv3Lixli9f7qzmAXBD5YW4JqF9LWgJAFQfGQlATSMjAXBFlj9lDwAqgyAFAABQFhkJgLuiIAV4GG96ugnd2gEAQGWRkQDAtVj6lD0AAAAAAAB4H3pIAYBJSl+ZDejTzaKWAAAAuA4yEuCdKEgBXohu3M7nTbcFAADgKchIzkdGAlCCW/YAAAAAAABgKgpSAAAAAAAAMBW37AFujm7PNY/HJwMA4P7ISDWPjASgJlGQAlBpjKsAAABQFhkJAKqOghTgYbhy5RyljyvHFAAA90JGcg4yEoDqoiAFwOtxVRMAAKAsMhIAZ6IgBcCjcdUOAACgLDISAKtRkAIAF1LeAKwBfbpZ0BKgLAYIBgBYhYwEV0ZGqh4KUgBgEb64AAAAyiIjAd7B1+oGAAAAAAAAwLvQQwqAV/HUwTnpxg4AAC4FGQmA2eghBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVIwhBbg5T73fH5eu9JgJjJcAAPAmZCRUhIwEuAZ6SAEAAAAAAMBU9JACACcp78psk9C+FrQEAADAdZCRAEj0kAIAAAAAAIDJ6CEFAG6m9LgHgDPwcwYAcDd8d8EM/JzVHApSgBdgUE8AAICyyEgAYB3Lbtn75Zdf9Je//EUNGjRQrVq11Lp1a3311Vf2zw3D0OTJkxUdHa1atWopISFBe/fudVjHiRMnNHjwYNlsNoWGhmrYsGE6deqU2bsCAABQY8hIAADAG1jSQ+r333/X9ddfr5tuukkrVqxQeHi49u7dq/r169vnmT17tl588UW99dZbatq0qZ5++mklJiZq165dCg4OliQNHjxYx44d0+rVq5Wfn6/7779fI0aM0KJFi6zYLaBGldcVlEfSug4G4wTgDGQk4OLISK6NjASgsiwpSP39739XbGysUlNT7dOaNm1q/7dhGJo7d66eeuop3X777ZKkt99+W5GRkfrwww81aNAg7d69WytXrtTWrVvVsWNHSdJLL72kW265RXPmzFFMTIy5OwU4Qekv9JYibAGAJyMjAZVDRgIA92fJLXsff/yxOnbsqLvuuksRERFq3769Xn/9dfvnBw4cUHp6uhISEuzTQkJC1LlzZ6WlpUmS0tLSFBoaag9akpSQkCBfX19t3ry53O3m5uYqJyfH4QUAri5/5QaHFwDPRUYCgMojIwHuzZKC1E8//aRXX31VLVu21P/+9z+NHDlSf/vb3/TWW29JktLT0yVJkZGRDstFRkbaP0tPT1dERITD5/7+/goLC7PPU1pKSopCQkLsr9jY2JreNQBe7GDWCocXAFQVGQmAJyIjASiPJQWpoqIiXXvttZo5c6bat2+vESNGaPjw4Zo/f75Ttztp0iRlZ2fbX0eOHHHq9gAAAKqCjAQAALyFJWNIRUdHKy4uzmHaVVddpffff1+SFBUVJUnKyMhQdHS0fZ6MjAy1a9fOPk9mZqbDOgoKCnTixAn78qUFBQUpKCiopnYDMB1dkXEpGAQWcH1kJKB6yEi4FGQkwBqW9JC6/vrrtWfPHodpP/74oxo3biypePDOqKgorV271v55Tk6ONm/erPj4eElSfHy8srKytG3bNvs869atU1FRkTp37mzCXgAAANQsMhIAAPAWlvSQGjt2rLp27aqZM2fq7rvv1pYtW/Taa6/ptddekyT5+PhozJgxeuaZZ9SyZUv7I41jYmLUv39/ScVXC/v06WPvxp6fn69Ro0Zp0KBBPD0GbokreyhRemwFHpUMeA8yElAWGQklyEiAZ7GkIHXddddp6dKlmjRpkqZPn66mTZtq7ty5Gjx4sH2exx9/XKdPn9aIESOUlZWlbt26aeXKlQoODrbP884772jUqFHq1auXfH19NXDgQL344otW7BIAeIzSwZ8u64B5yEgA4LrISEDNsqQgJUm33nqrbr311go/9/Hx0fTp0zV9+vQK5wkLC9OiRYuc0TwAAABLkJEAAIA3sGQMKQAAAAAAAHgvClIAAAAAAAAwlWW37AFwVHqQxurOA/fCOQUA4MLISN6Jcwp4PnpIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFWNIAYAXy1+5weomAAAAuBwyEuB89JACAAAAAACAqeghBQAm4okxcEVcBQYAWI2MBFdERnIuekgBAAAAAADAVPSQAgDUiMpcQQro082ElgAAALgOMhJQPnpIAQAAAAAAwFQUpAAAAAAAAGAqbtkDAFQZAzwCAACURUYCKo8eUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABT8ZQ9AHBDB7NWOLxvEtrXopYAAAC4DjIS4D4oSAGAiysdrAAAAEBGAtwdt+wBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYypKC1NSpU+Xj4+PwatWqlf3zs2fPKjk5WQ0aNFDdunU1cOBAZWRkOKzj8OHD6tevn2rXrq2IiAiNHz9eBQUFZu8KcFH5KzeUeQHeqrzfB34/gHPISPAmfAcA55CR4I0se8re1VdfrTVr1pxriP+5powdO1affPKJlixZopCQEI0aNUoDBgzQxo0bJUmFhYXq16+foqKitGnTJh07dkxDhgxRQECAZs6cafq+AIDVynvKDI85BtwTGQkAag4ZCXBdlhWk/P39FRUVVWZ6dna23njjDS1atEg9e/aUJKWmpuqqq67Sl19+qS5dumjVqlXatWuX1qxZo8jISLVr104zZszQhAkTNHXqVAUGBpq9OwCAGlLeFcCAPt0saAlgDTISAKA8ZCR4GssKUnv37lVMTIyCg4MVHx+vlJQUNWrUSNu2bVN+fr4SEhLs87Zq1UqNGjVSWlqaunTporS0NLVu3VqRkZH2eRITEzVy5Ejt3LlT7du3L3ebubm5ys3Ntb/Pyclx3g4CF0CXW8A6pX//CHJwNWQkeDMyEmAdMhLMZklBqnPnzlq4cKGuvPJKHTt2TNOmTdMNN9yg77//Xunp6QoMDFRoaKjDMpGRkUpPT5ckpaenOwStks9LPqtISkqKpk2bVrM7AwCAm+E/fK6LjAQAgHXISOaypCDVt++5e3bbtGmjzp07q3Hjxlq8eLFq1arltO1OmjRJ48aNs7/PyclRbGys07YHAABQFWQkAADgLSx5yl5poaGhuuKKK7Rv3z5FRUUpLy9PWVlZDvNkZGTYx1OIiooq80SZkvfljblQIigoSDabzeEFAADgqshIAADAU7lEQerUqVPav3+/oqOj1aFDBwUEBGjt2rX2z/fs2aPDhw8rPj5ekhQfH68dO3YoMzPTPs/q1atls9kUFxdnevuB6jiYtcLhBQBAaWQkeCMyEgB4B0tu2Xvsscd02223qXHjxjp69KimTJkiPz8/3XvvvQoJCdGwYcM0btw4hYWFyWazafTo0YqPj1eXLl0kSb1791ZcXJzuu+8+zZ49W+np6XrqqaeUnJysoKAgK3YJAADgkpGRAACAt7CkIPXzzz/r3nvv1W+//abw8HB169ZNX375pcLDwyVJL7zwgnx9fTVw4EDl5uYqMTFRr7zyin15Pz8/LVu2TCNHjlR8fLzq1KmjpKQkTZ8+3YrdAQAAqBFkJAAA4C0sKUi9++67F/w8ODhY8+bN07x58yqcp3Hjxlq+fHlNNw0AAI/C02LcCxkJAABzkJGsZ0lBCgDgfKXH3WgS2reCOS+ML2sAAOBJyEiAa3CJQc0BAAAAAADgPeghBQBeorwnFZW+IliZeQAAADwJGQmwBgUpAAAsVrrLf0Cfbha1xDrl3fbgjccBAACcQz7w7GNAQQowQXlXVAAAALwdGQkAvBdjSAEAAAAAAMBU9JACAC9WnSvTVoyh4MldlQEAgOshIwHORw8pAAAAAAAAmIoeUgAAuIHKXAEtbx4AAABPRkZyX/SQAgAAAAAAgKkoSAEAAAAAAMBU3LIHAPAIDOoJAABQFhkJroqCFADggqrzlBkAAABPR0YCLg0FKQCAx2IASwAAgLLISHAFFKSAGsYfd8Dz0NUdAC4dGQnwTKV/t8lIqCwKUgAAt8R/bAAAAMoiI8FdUJACnID7yQFcCoIkAE9FRgJwqchJnoOCFAAAJiJEAQAAlEVG8j4UpAAAcBKCFQAAQPnISaAgBQBADSFYAQAAlEVGQnkoSAEAvBoBCQAAoCwyEpyNghQA4JKVHqS2SWhfi1oCAADgOshIQMUoSAEA4Ka4cgkAAFAWGck9+FrdAAAAAAAAAHgXClIAAAAAAAAwleUFqVmzZsnHx0djxoyxTzt79qySk5PVoEED1a1bVwMHDlRGRobDcocPH1a/fv1Uu3ZtRUREaPz48SooKDC59QAAAM5DTgIAAJ7K0oLU1q1btWDBArVp08Zh+tixY/Xf//5XS5Ys0fr163X06FENGDDA/nlhYaH69eunvLw8bdq0SW+99ZYWLlyoyZMnm70LAAAATkFOAgAAnsyygtSpU6c0ePBgvf7666pfv759enZ2tt544w09//zz6tmzpzp06KDU1FRt2rRJX375pSRp1apV2rVrl/71r3+pXbt26tu3r2bMmKF58+YpLy/Pql0CAFzAwawVDi8AFSMnAYD3ICPBW1lWkEpOTla/fv2UkJDgMH3btm3Kz893mN6qVSs1atRIaWlpkqS0tDS1bt1akZGR9nkSExOVk5OjnTt3VrjN3Nxc5eTkOLwAAABcjdk5iYwEAADM5m/FRt999119/fXX2rp1a5nP0tPTFRgYqNDQUIfpkZGRSk9Pt89zfsgq+bzks4qkpKRo2rRpl9h6AAB4nDCcx4qcREYCANQUMhIqy/QeUkeOHNEjjzyid955R8HBwaZue9KkScrOzra/jhw5Yur2AQAALsSqnERGAgAAZjO9ILVt2zZlZmbq2muvlb+/v/z9/bV+/Xq9+OKL8vf3V2RkpPLy8pSVleWwXEZGhqKioiRJUVFRZZ4mU/K+ZJ7yBAUFyWazObwAAABchVU5iYwEAADMZvote7169dKOHTscpt1///1q1aqVJkyYoNjYWAUEBGjt2rUaOHCgJGnPnj06fPiw4uPjJUnx8fF69tlnlZmZqYiICEnS6tWrZbPZFBcXZ+4Owevt/2qBw/uirMMWtQQA4O7ISfAkZCQAwIWYXpCqV6+errnmGodpderUUYMGDezThw0bpnHjxiksLEw2m02jR49WfHy8unTpIknq3bu34uLidN9992n27NlKT0/XU089peTkZAUFBZm9SwAAADWCnAQAALyFJYOaX8wLL7wgX19fDRw4ULm5uUpMTNQrr7xi/9zPz0/Lli3TyJEjFR8frzp16igpKUnTp0+3sNUAAADOR04CAACewMcwDMPqRlglJydHISEhys7OZqwEVFuZ7uj76I4ONAntW2bawawVF50HOF9An25OWS/f/xfHMUJNICMBZZGRUBM8JSOZPqg5AAAAAAAAvJtL3rIHAPB8pa8GSlwRBAAAICPBW9BDCgAAAAAAAKaiIAUAAAAAAABTccseAKDGldfVHAAAwNuRkYBzKEgBAFwGT5kBAAAoi4wET8QtewAAAAAAADAVPaSAS5C/coOKsg5b3QwAAACXQkYCAFwMPaQAAAAAAABgKnpIAZWUv3KD1U0AAABwOWQkAEB10EMKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCqesgcAcFkHs1aUmdYktK8FLQEAAHAdZCR4AgpSQBWV98cfAADA25GRAABVwS17AAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxRhSAACPU3ocEwb5BAAAICPBtVCQAgC4tcoMosuTaAAAgLchI8HVccseAAAAAAAATEUPKQCAW+Gx4gAAAGWRkeBu6CEFAAAAAAAAU1lSkHr11VfVpk0b2Ww22Ww2xcfHa8WKc9Xcs2fPKjk5WQ0aNFDdunU1cOBAZWRkOKzj8OHD6tevn2rXrq2IiAiNHz9eBQUFZu8KAABAjSEjAQAAb2FJQeryyy/XrFmztG3bNn311Vfq2bOnbr/9du3cuVOSNHbsWP33v//VkiVLtH79eh09elQDBgywL19YWKh+/fopLy9PmzZt0ltvvaWFCxdq8uTJVuwOAABAjSAjAQAAb+FjGIZhdSMkKSwsTM8995zuvPNOhYeHa9GiRbrzzjslST/88IOuuuoqpaWlqUuXLlqxYoVuvfVWHT16VJGRkZKk+fPna8KECfr1118VGBhYqW3m5OQoJCRE2dnZstlsTts3eIb8lRskcW824Cl4gozrC+jTzSnrdbfvfzISXB0ZCfAsZCTX5ykZyfIxpAoLC/Xuu+/q9OnTio+P17Zt25Sfn6+EhAT7PK1atVKjRo2UlpYmSUpLS1Pr1q3tQUuSEhMTlZOTY7+CWJ7c3Fzl5OQ4vAAAAFwRGQkAAHgyywpSO3bsUN26dRUUFKSHHnpIS5cuVVxcnNLT0xUYGKjQ0FCH+SMjI5Weni5JSk9PdwhaJZ+XfFaRlJQUhYSE2F+xsbE1u1MAAACXiIwEAAC8gWUFqSuvvFLbt2/X5s2bNXLkSCUlJWnXrl1O3eakSZOUnZ1tfx05csSp2wMAAKgqMhIAAPAG/lZtODAwUC1atJAkdejQQVu3btX//d//6Z577lFeXp6ysrIcrgBmZGQoKipKkhQVFaUtW7Y4rK/kCTMl85QnKChIQUFBNbwn8FQl4yEAAGAmMhJcHRkJAFATLB9DqkRRUZFyc3PVoUMHBQQEaO3atfbP9uzZo8OHDys+Pl6SFB8frx07digzM9M+z+rVq2Wz2RQXF2d62wEAAJyFjAQAADyRJT2kJk2apL59+6pRo0Y6efKkFi1apM8++0z/+9//FBISomHDhmncuHEKCwuTzWbT6NGjFR8fry5dukiSevfurbi4ON13332aPXu20tPT9dRTTyk5OZmrewAAwG2RkQAAgLewpCCVmZmpIUOG6NixYwoJCVGbNm30v//9TzfffLMk6YUXXpCvr68GDhyo3NxcJSYm6pVXXrEv7+fnp2XLlmnkyJGKj49XnTp1lJSUpOnTp1uxOwAAADWCjAQAALyFj2EYhtWNsEpOTo5CQkKUnZ0tm81mdXPgYvJXbtDBrBVWNwOAkzQJ7Wt1E3ARAX26OWW9fP9fHMcIF0JGAjwbGcn1eUpGcpkxpAAAAAAAAOAdKEgBAAAAAADAVJaMIQUAgNVK325C93QAAAAyEsxDDykAAAAAAACYih5SAABcAq4iAgAAlEVGwsXQQwoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkYQwqQlL9yg9VNAAAAcDlkJACAs9BDCgAAAAAAAKaiIAUAAAAAAABTccseAAAq+2hiiccTAwAAkJHgLBSkgPOU98cWAADA25GRAAA1jVv2AAAAAAAAYCoKUgAAAAAAADAVt+wBAFBJ3LICAABQFhkJ1UEPKQAAAAAAAJiKghQAAAAAAABMxS17AABUgO7nAAAAZZGRUBPoIQUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFSMIQUAgJOVHmehSWhfi1oCAADgOshI3o0eUgAAAAAAADAVBSkAAAAAAACYypKCVEpKiq677jrVq1dPERER6t+/v/bs2eMwz9mzZ5WcnKwGDRqobt26GjhwoDIyMhzmOXz4sPr166fatWsrIiJC48ePV0FBgZm7AgAAUGPISAAAwFtYMobU+vXrlZycrOuuu04FBQV64okn1Lt3b+3atUt16tSRJI0dO1affPKJlixZopCQEI0aNUoDBgzQxo0bJUmFhYXq16+foqKitGnTJh07dkxDhgxRQECAZs6cacVuwU3kr9xgdRMAACgXGQlWIycBAMziYxiGYXUjfv31V0VERGj9+vXq3r27srOzFR4erkWLFunOO++UJP3www+66qqrlJaWpi5dumjFihW69dZbdfToUUVGRkqS5s+frwkTJujXX39VYGDgRbebk5OjkJAQZWdny2azOXUf4TouFLRKD6oHAFVV3mCcDNhZPQF9ujllve70/U9GgtkqyklkJACXioxUczwlI7nEGFLZ2dmSpLCwMEnStm3blJ+fr4SEBPs8rVq1UqNGjZSWliZJSktLU+vWre1BS5ISExOVk5OjnTt3lrud3Nxc5eTkOLwAADDbwawVZV5AechIAABvQkbyLpYXpIqKijRmzBhdf/31uuaaayRJ6enpCgwMVGhoqMO8kZGRSk9Pt89zftAq+bzks/KkpKQoJCTE/oqNja3hvQEAAKgZZCQAAODJLBlD6nzJycn6/vvvtWGD8+9XnzRpksaNG2d/n5OTQ+DyYlTbATgDf1tQU8hIsAp/xwA4A39bUJqlBalRo0Zp2bJl+vzzz3X55Zfbp0dFRSkvL09ZWVkOVwAzMjIUFRVln2fLli0O6yt5wkzJPKUFBQUpKCiohvcC7mL/VwskSUVZhy1uCQAAF0ZGgplKMpJETgIAmMeSgpRhGBo9erSWLl2qzz77TE2bNnX4vEOHDgoICNDatWs1cOBASdKePXt0+PBhxcfHS5Li4+P17LPPKjMzUxEREZKk1atXy2azKS4uztwdAgDgElXmqiEDfXo+MhIAAI7ISJ7LkoJUcnKyFi1apI8++kj16tWzj2cQEhKiWrVqKSQkRMOGDdO4ceMUFhYmm82m0aNHKz4+Xl26dJEk9e7dW3Fxcbrvvvs0e/Zspaen66mnnlJycjJX+AAAgFsiIwEAAG9hSUHq1VdflSTdeOONDtNTU1M1dOhQSdILL7wgX19fDRw4ULm5uUpMTNQrr7xin9fPz0/Lli3TyJEjFR8frzp16igpKUnTp083azcAAABqFBkJAAB4Cx/DMAyrG2GVnJwchYSEKDs7WzabzermwMnsY0jtY2wEAO7J27qjB/Tp5pT18v1/cRwj7+IwhhQ5CYAbIiPVDLO//32dvgUAAAAAAADgPBSkAAAAAAAAYCpLxpACAABVx1NmAAAAyiIjuSd6SAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMxVP2AADwIKWfMsMTZQAAAMhIrogeUgAAAAAAADAVBSkAAAAAAACYilv24PHyV26QJBVlHba4JQAAAK6DjAQAsBI9pAAAAAAAAGAqClIAAAAAAAAwFbfswSPt/2qB/d90QwfgzUo/UUbiqTKANyMjAUAxMpL1KEjBI5wfrgAAAFCMjAQAcFXcsgcAAAAAAABTUZACAAAAAACAqbhlDx6laB9jIQAAAJRGRgIAuBp6SAEAAAAAAMBU9JCC28pfucH+b54SAwCVV/qpMjxRBvA8JTmJjAQAlUdGMhc9pAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExlSUHq888/12233aaYmBj5+Pjoww8/dPjcMAxNnjxZ0dHRqlWrlhISErR3716HeU6cOKHBgwfLZrMpNDRUw4YN06lTp0zcCwAAgJpFRgIAAN7CkoLU6dOn1bZtW82bN6/cz2fPnq0XX3xR8+fP1+bNm1WnTh0lJibq7Nmz9nkGDx6snTt3avXq1Vq2bJk+//xzjRgxwqxdAAAAqHFkJAAA4C18DMMwLG2Aj4+WLl2q/v37Syq+8hcTE6NHH31Ujz32mCQpOztbkZGRWrhwoQYNGqTdu3crLi5OW7duVceOHSVJK1eu1C233KKff/5ZMTExldp2Tk6OQkJClJ2dLZvN5pT9Q80peXxxeUo/nhMAUHmu+kjjgD7dnLJed/n+JyOhsshIAOAcZCTncrkxpA4cOKD09HQlJCTYp4WEhKhz585KS0uTJKWlpSk0NNQetCQpISFBvr6+2rx5c4Xrzs3NVU5OjsMLAADAHZCRAACAJ/G3ugGlpaenS5IiIyMdpkdGRto/S09PV0REhMPn/v7+CgsLs89TnpSUFE2bNq2GWwxn2//VAklSUdZhi1sCAJ6pdA8KV70a6O3ISCiNjAQAzlVeL1NyUs1xuR5SzjRp0iRlZ2fbX0eOHLG6SQAAAJYjIwEAALO5XA+pqKgoSVJGRoaio6Pt0zMyMtSuXTv7PJmZmQ7LFRQU6MSJE/blyxMUFKSgoKCabzQAAB6Eq4GuiYwEAID16Flec1yuh1TTpk0VFRWltWvX2qfl5ORo8+bNio+PlyTFx8crKytL27Zts8+zbt06FRUVqXPnzqa3GQAAwNnISAAAwJNY0kPq1KlT2rdvn/39gQMHtH37doWFhalRo0YaM2aMnnnmGbVs2VJNmzbV008/rZiYGPtTZq666ir16dNHw4cP1/z585Wfn69Ro0Zp0KBBlX56DAAAgKshIwEAAG9hSUHqq6++0k033WR/P27cOElSUlKSFi5cqMcff1ynT5/WiBEjlJWVpW7dumnlypUKDg62L/POO+9o1KhR6tWrl3x9fTVw4EC9+OKLpu8LAADegO7p5iAjAQDgXhjqoPp8DMMwrG6EVXJychQSEqLs7GzZbDarm4MK2J8gs48nyACAqzAjaAX06eaU9fL9f3EcI/dARgIA1+TsnOQpGcnlxpACAAAAAACAZ6MgBQAAAAAAAFNRkAIAAAAAAICpLBnUHKhIyVgIAADXxgCegLnISADgPngYTOXQQwoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkYQwouqWjfYaubAAAA4HLISAAAT0FBCgAAOAUDnwMAAJSPgc8pSAEAgBpSXgEKAADA25GRyscYUgAAAAAAADAVPaRgqf1fLZDEeAgAAADnIyMBADwdPaQAAAAAAABgKgpSAAAAAAAAMBW37MF0+Ss32P9dlEU3dAAAAImMBADwLhSk4DQlYx+UaN7xQYtaAgBwFTziGCAjAQDKKu9JfJ6ekyhIwTT2wTm54gcAAGBHRgIAeCMKUnAqngwDAABQFhkJAODtGNQcAAAAAAAApqKHFGqEvas5V/sAAADsyEgAAJSPHlIAAAAAAAAwFQUpAAAAAAAAmIpb9lAp+Ss3lJkW0KebBS0BAABwHWQkAACqhx5SAAAAAAAAMBU9pFBGyeCbJZp3fLDMPAezVkjvrjCrSQAAD3Uwq+x3SZPQvha0BLg4MhIAwEylc5KnZSS3L0jNmzdPzz33nNLT09W2bVu99NJL6tSpk9XNclmlu5UfzFoh3xaNLrjM/q8WqCiLJ8MAAOBOyEhVQ0YCAMBcbl2Qeu+99zRu3DjNnz9fnTt31ty5c5WYmKg9e/YoIiLC6ua5pPKuRJeHRxMDAOC+yEhVR0YCAMBcbj2G1PPPP6/hw4fr/vvvV1xcnObPn6/atWvrzTfftLppAAAAliEjAQAAV+e2PaTy8vK0bds2TZo0yT7N19dXCQkJSktLK3eZ3Nxc5ebm2t9nZ2dLknJycpzb2BqQv9pxn4402F1mHuOnn6u38u/2Vm85AACcICfgtCQpwEnfzyXf+4ZhOGX9ViMjkZEAAJ7J0zKS2xakjh8/rsLCQkVGRjpMj4yM1A8//FDuMikpKZo2bVqZ6bGxsU5pIwAAqI7/Z8pWTp48qZCQEFO2ZSYyEgAAnsqzMpLbFqSqY9KkSRo3bpz9fVFRkU6cOKEGDRrIx8fHadvNyclRbGysjhw5IpvN5rTtuDqOQzGOQzGOQzGOQzGOwzkci2LOPA6GYejkyZOKiYmp0fW6MzKStTgOxTgOxTgOxTgOxTgO53AsinlSRnLbglTDhg3l5+enjIwMh+kZGRmKiooqd5mgoCAFBQU5TAsNDXVWE8uw2Wxe/YtTguNQjONQjONQjONQjONwDseimLOOgyf2jCpBRnJfHIdiHIdiHIdiHIdiHIdzOBbFPCEjue2g5oGBgerQoYPWrl1rn1ZUVKS1a9cqPj7ewpYBAABYh4wEAADcgdv2kJKkcePGKSkpSR07dlSnTp00d+5cnT59Wvfff7/VTQMAALAMGQkAALg6ty5I3XPPPfr11181efJkpaenq127dlq5cmWZQTytFhQUpClTppTpCu9tOA7FOA7FOA7FOA7FOA7ncCyKcRwuDRnJvXAcinEcinEcinEcinEczuFYFPOk4+BjeOozjwEAAAAAAOCS3HYMKQAAAAAAALgnClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQcoJTpw4ocGDB8tmsyk0NFTDhg3TqVOnKrWsYRjq27evfHx89OGHHzq3oU5W1eNw4sQJjR49WldeeaVq1aqlRo0a6W9/+5uys7NNbHXNmDdvnpo0aaLg4GB17txZW7ZsueD8S5YsUatWrRQcHKzWrVtr+fLlJrXUuapyHF5//XXdcMMNql+/vurXr6+EhISLHjd3UdWfhxLvvvuufHx81L9/f+c20CRVPQ5ZWVlKTk5WdHS0goKCdMUVV3jE70ZVj8PcuXPtfxdjY2M1duxYnT171qTWOsfnn3+u2267TTExMZX+vvvss8907bXXKigoSC1atNDChQud3k7UPDLSOd6ak8hIxchIxchIxchI53h7TvK6jGSgxvXp08do27at8eWXXxpffPGF0aJFC+Pee++t1LLPP/+80bdvX0OSsXTpUuc21Mmqehx27NhhDBgwwPj444+Nffv2GWvXrjVatmxpDBw40MRWX7p3333XCAwMNN58801j586dxvDhw43Q0FAjIyOj3Pk3btxo+Pn5GbNnzzZ27dplPPXUU0ZAQICxY8cOk1tes6p6HP785z8b8+bNM7755htj9+7dxtChQ42QkBDj559/NrnlNauqx6HEgQMHjMsuu8y44YYbjNtvv92cxjpRVY9Dbm6u0bFjR+OWW24xNmzYYBw4cMD47LPPjO3bt5vc8ppV1ePwzjvvGEFBQcY777xjHDhwwPjf//5nREdHG2PHjjW55TVr+fLlxpNPPml88MEHlfq+++mnn4zatWsb48aNM3bt2mW89NJLhp+fn7Fy5UpzGowaQ0Y6xxtzEhmpGBmpGBmpGBnpHHKS92UkClI1bNeuXYYkY+vWrfZpK1asMHx8fIxffvnlgst+8803xmWXXWYcO3bM7cPWpRyH8y1evNgIDAw08vPzndFMp+jUqZORnJxsf19YWGjExMQYKSkp5c5/9913G/369XOY1rlzZ+PBBx90ajudrarHobSCggKjXr16xltvveWsJpqiOsehoKDA6Nq1q/GPf/zDSEpK8oiwVdXj8OqrrxrNmjUz8vLyzGqiKap6HJKTk42ePXs6TBs3bpxx/fXXO7WdZqrM993jjz9uXH311Q7T7rnnHiMxMdGJLUNNIyOd4605iYxUjIxUjIxUjIx0DjnJkTdkJG7Zq2FpaWkKDQ1Vx44d7dMSEhLk6+urzZs3V7jcmTNn9Oc//1nz5s1TVFSUGU11quoeh9Kys7Nls9nk7+/vjGbWuLy8PG3btk0JCQn2ab6+vkpISFBaWlq5y6SlpTnML0mJiYkVzu8OqnMcSjtz5ozy8/MVFhbmrGY6XXWPw/Tp0xUREaFhw4aZ0Uynq85x+PjjjxUfH6/k5GRFRkbqmmuu0cyZM1VYWGhWs2tcdY5D165dtW3bNnt39Z9++knLly/XLbfcYkqbXYUn/p30RmSkc7wxJ5GRipGRipGRipGRziEnVY+7/510/W8vN5Oenq6IiAiHaf7+/goLC1N6enqFy40dO1Zdu3bV7bff7uwmmqK6x+F8x48f14wZMzRixAhnNNEpjh8/rsLCQkVGRjpMj4yM1A8//FDuMunp6eXOX9nj5IqqcxxKmzBhgmJiYsr8gXUn1TkOGzZs0BtvvKHt27eb0EJzVOc4/PTTT1q3bp0GDx6s5cuXa9++fXr44YeVn5+vKVOmmNHsGled4/DnP/9Zx48fV7du3WQYhgoKCvTQQw/piSeeMKPJLqOiv5M5OTn6448/VKtWLYtahqogI53jjTmJjFSMjFSMjFSMjHQOOal63D0j0UOqkiZOnCgfH58Lvir7JVLaxx9/rHXr1mnu3Lk122gncOZxOF9OTo769eunuLg4TZ069dIbDrcya9Ysvfvuu1q6dKmCg4Otbo5pTp48qfvuu0+vv/66GjZsaHVzLFVUVKSIiAi99tpr6tChg+655x49+eSTmj9/vtVNM9Vnn32mmTNn6pVXXtHXX3+tDz74QJ988olmzJhhddMAOzLSOeQkOBsZiYxERjqHnOT+6CFVSY8++qiGDh16wXmaNWumqKgoZWZmOkwvKCjQiRMnKuxmvm7dOu3fv1+hoaEO0wcOHKgbbrhBn3322SW0vGY58ziUOHnypPr06aN69epp6dKlCggIuNRmm6Zhw4by8/NTRkaGw/SMjIwK9zsqKqpK87uD6hyHEnPmzNGsWbO0Zs0atWnTxpnNdLqqHof9+/fr4MGDuu222+zTioqKJBVfOd+zZ4+aN2/u3EY7QXV+HqKjoxUQECA/Pz/7tKuuukrp6enKy8tTYGCgU9vsDNU5Dk8//bTuu+8+PfDAA5Kk1q1b6/Tp0xoxYoSefPJJ+fp6x3Wliv5O2mw2l7/y5w3ISOeQkypGRipGRipGRipGRjqHnFQ97p6RPP8M1ZDw8HC1atXqgq/AwEDFx8crKytL27Ztsy+7bt06FRUVqXPnzuWue+LEifruu++0fft2+0uSXnjhBaWmppqxe5XmzOMgFV/x6927twIDA/Xxxx+73ZWfwMBAdejQQWvXrrVPKyoq0tq1axUfH1/uMvHx8Q7zS9Lq1asrnN8dVOc4SNLs2bM1Y8YMrVy50mFcDXdV1ePQqlUr7dixw+FvwZ/+9CfddNNN2r59u2JjY81sfo2pzs/D9ddfr3379tnDpiT9+OOPio6OdtugVZ3jcObMmTJhqiSAGobhvMa6GE/8O+lJyEjnkJMqRkYqRkYqRkYqRkY6h5xUPW7/d9LaMdU9U58+fYz27dsbmzdvNjZs2GC0bNnS4TG+P//8s3HllVcamzdvrnAd8oAnyFT1OGRnZxudO3c2Wrdubezbt884duyY/VVQUGDVblTZu+++awQFBRkLFy40du3aZYwYMcIIDQ010tPTDcMwjPvuu8+YOHGiff6NGzca/v7+xpw5c4zdu3cbU6ZM8ZhHGlflOMyaNcsIDAw0/vOf/zic+5MnT1q1CzWiqsehNE95gkxVj8Phw4eNevXqGaNGjTL27NljLFu2zIiIiDCeeeYZq3ahRlT1OEyZMsWoV6+e8e9//9v46aefjFWrVhnNmzc37r77bqt2oUacPHnS+Oabb4xvvvnGkGQ8//zzxjfffGMcOnTIMAzDmDhxonHffffZ5y95pPH48eON3bt3G/PmzXOrRxrjHDLSOd6Yk8hIxchIxchIxchI55CTvC8jUZBygt9++8249957jbp16xo2m824//77Hb4wDhw4YEgyPv300wrX4Qlhq6rH4dNPPzUklfs6cOCANTtRTS+99JLRqFEjIzAw0OjUqZPx5Zdf2j/r0aOHkZSU5DD/4sWLjSuuuMIIDAw0rr76auOTTz4xucXOUZXj0Lhx43LP/ZQpU8xveA2r6s/D+TwlbBlG1Y/Dpk2bjM6dOxtBQUFGs2bNjGeffdZt/tN1IVU5Dvn5+cbUqVON5s2bG8HBwUZsbKzx8MMPG7///rv5Da9BFf29L9n3pKQko0ePHmWWadeunREYGGg0a9bMSE1NNb3duHRkpHO8NSeRkYqRkYqRkYqRkc7x9pzkbRnJxzC8pC8bAAAAAAAAXAJjSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAAAAAAACYioIUAAAAAAAATEVBCgAAAAAAAKaiIAUAAAAAAABTUZACAAAAAACAqShIAQAAAAAAwFQUpAAAAAAAAGAqClIAAAAAAAAwFQUpAAAAAAAAmIqCFAAAAAAAAExFQQoAAAAAAACmoiAFAAAAAAAAU1GQAgAAAAAAgKkoSAEAAAAAAMBUFKQAAAAAAABgKgpSAAAAAAAAMBUFKQAAAAAAAJiKghQAAAAAAABMRUEKAAAAAAAApqIgBQAAAAAAAFNRkAIAAAAAAICpKEgBAAAAAADAVBSkAAAAAAAAYCoKUgAAAAAAADAVBSkAdp999pl8fHz02Wef1eh6fXx8NHXq1BpdZ1UtXLhQPj4+OnjwoFPXeeONN+rGG2+s8rqqcuyru42qmDp1qnx8fJy6jYrccsstGj58+EXnq+icPvfcc2rWrJn8/PzUrl27Km175cqVqlu3rn799dcqLQcA8GxkpEtfJxnp0pGR4GkoSMEjbdq0SVOnTlVWVpbVTfEay5cvtzxQwVpr167VX//6V11xxRWqXbu2mjVrpgceeEDHjh2r9Do2btyoVatWacKECdVqw6pVq/T444/r+uuvV2pqqmbOnGmfPmzYMF1zzTXy8/NTkyZNyl2+T58+atGihVJSUqq1fQBwdWQk85GR4KoZ6cyZM5o3b5569+6t6Oho1atXT+3bt9err76qwsJCh+XJSHAGf6sbADjDpk2bNG3aNA0dOlShoaFWN8crLF++XPPmzSs3cP3xxx/y97f2z819992nQYMGKSgoyKnbWbVqVbWW6969u/744w8FBgbWcIvMM2HCBJ04cUJ33XWXWrZsqZ9++kkvv/yyli1bpu3btysqKuqi63juuefUq1cvtWjRolptWLdunXx9ffXGG284HMtFixbpvffe07XXXquYmJgLruPBBx/UY489pmnTpqlevXrVagcAuCoykvnISMXISK6Xkb7//nuNHj1avXr10rhx42Sz2fS///1PDz/8sL788ku99dZbDusgI6Gm0UMK8ABnzpwpd3pBQYHy8vJMbk1ZwcHBloctPz8/BQcHO72LdWBgYLUCk6+vr4KDg+Xr675/lp9//nnt27dPf//73/XAAw9o5syZWrZsmTIyMvTyyy9fdPnMzEx98sknuvvuu6vdhszMTNWqVavMOZg5c6ZycnK0ceNGtW3b9oLrGDhwoHJzc7VkyZJqtwMA4BrISBdHRnI+V81IUVFR2rFjh1avXq3x48frwQcf1AcffKD7779fb7/9tvbt2+ewDjISapr7/lYDFZg6darGjx8vSWratKl8fHwc7qEuKCjQjBkz1Lx5cwUFBalJkyZ64oknlJub67CeJk2a6NZbb9WqVavUrl07BQcHKy4uTh988EG12vWvf/1LnTp1Uu3atVW/fn117969zJWiV155RVdffbWCgoIUExOj5OTkMl3qb7zxRl1zzTXatm2bunfvrtq1a+uJJ57QwYMH5ePjozlz5mju3Ln2/du1a5ck6YcfftCdd96psLAwBQcHq2PHjvr4448v2u4vvvhCd911lxo1aqSgoCDFxsZq7Nix+uOPP+zzDB06VPPmzZMk+/E+P9SUNz7CN998o759+8pms6lu3brq1auXvvzyS4d5Su5/37hxo8aNG6fw8HDVqVNHd9xxR5XvXy/vXvqSc7xhwwZ16tRJwcHBatasmd5+++0yy+/cuVM9e/ZUrVq1dPnll+uZZ55RUVFRmfnOH7sgIyND/v7+mjZtWpn59uzZIx8fH3sIqWh8hNdee03NmzdXrVq11KlTJ33xxReV2reK1lmZ81ld3bt3LxMWu3fvrrCwMO3evfuiy3/yyScqKChQQkJCmc8qc/x9fHyUmpqq06dP238GFy5cKEmKiYlRQEBApfYjIiJCbdq00UcffVSp+QHAXZCRyEjlISMV88aM1LBhQ1199dVl1nnHHXdIUpm2kZFQ07hlDx5nwIAB+vHHH/Xvf/9bL7zwgho2bChJCg8PlyQ98MADeuutt3TnnXfq0Ucf1ebNm5WSkqLdu3dr6dKlDuvau3ev7rnnHj300ENKSkpSamqq7rrrLq1cuVI333xzpds0bdo0TZ06VV27dtX06dMVGBiozZs3a926derdu7ek4pA4bdo0JSQkaOTIkdqzZ49effVVbd26VRs3bnT4z/Rvv/2mvn37atCgQfrLX/6iyMhI+2epqak6e/asRowYoaCgIIWFhWnnzp26/vrrddlll2nixImqU6eOFi9erP79++v999+3f+mUZ8mSJTpz5oxGjhypBg0aaMuWLXrppZf0888/26+OPPjggzp69KhWr16tf/7znxc9Hjt37tQNN9wgm82mxx9/XAEBAVqwYIFuvPFGrV+/Xp07d3aYf/To0apfv76mTJmigwcPau7cuRo1apTee++9Sp+Diuzbt0933nmnhg0bpqSkJL355psaOnSoOnToYP+CTk9P10033aSCggL78XvttddUq1atC647MjJSPXr00OLFizVlyhSHz9577z35+fnprrvuqnD5N954Qw8++KC6du2qMWPG6KefftKf/vQnhYWFKTY2tlr7W5nzWZNOnTqlU6dO2X8PL2TTpk1q0KCBGjdu7DC9ssf/n//8p1577TVt2bJF//jHPyRJXbt2rVa7O3TooA8//LBaywKAqyIjkZGqgozkvRkpPT1dksptGxkJNcoAPNBzzz1nSDIOHDjgMH379u2GJOOBBx5wmP7YY48Zkox169bZpzVu3NiQZLz//vv2adnZ2UZ0dLTRvn37Srdl7969hq+vr3HHHXcYhYWFDp8VFRUZhmEYmZmZRmBgoNG7d2+HeV5++WVDkvHmm2/ap/Xo0cOQZMyfP99hXQcOHDAkGTabzcjMzHT4rFevXkbr1q2Ns2fPOmy7a9euRsuWLe3TPv30U0OS8emnn9qnnTlzpsw+paSkGD4+PsahQ4fs05KTk42K/qRIMqZMmWJ/379/fyMwMNDYv3+/fdrRo0eNevXqGd27d7dPS01NNSQZCQkJ9mNlGIYxduxYw8/Pz8jKyip3e+UpWdf5PxMl5/jzzz+3T8vMzDSCgoKMRx991D5tzJgxhiRj8+bNDvOFhISUWWePHj2MHj162N8vWLDAkGTs2LHDoT1xcXFGz5497e9LH/u8vDwjIiLCaNeunZGbm2uf77XXXjMkOWyjvH0rb52GUfnzOWXKlArPZ1XMmDHDkGSsXbv2ovN269bN6NChQ5npVTn+SUlJRp06dS64nX79+hmNGze+4DwzZ840JBkZGRkXbTcAuBMyEhmpNDJSMTJSsdzcXCMuLs5o2rSpkZ+fX+ZzMhJqErfswassX75ckjRu3DiH6Y8++qik4u6w54uJiXG4Mmaz2TRkyBB988039isHF/Phhx+qqKhIkydPLtNVt6TL9po1a5SXl6cxY8Y4zDN8+HDZbLYy7QoKCtL9999f7vYGDhxov9IpSSdOnNC6det099136+TJkzp+/LiOHz+u3377TYmJidq7d69++eWXCtt//hWW06dP6/jx4+ratasMw9A333xTqWNwvsLCQq1atUr9+/dXs2bN7NOjo6P15z//WRs2bFBOTo7DMiNGjHDo3n7DDTeosLBQhw4dqvL2S4uLi9MNN9xgfx8eHq4rr7xSP/30k33a8uXL1aVLF3Xq1MlhvsGDB190/QMGDJC/v7/Dlcrvv/9eu3bt0j333FPhcl999ZUyMzP10EMPOdzrP3ToUIWEhFR6/0qr6fN5IZ9//rmmTZumu+++Wz179rzo/L/99pvq169fZvqlHP/qKmnH8ePHnbYNAHAlZCQyUmlkJO/MSKNGjdKuXbv08ssvlzu+GRkJNYmCFLzKoUOH5OvrW+bpFFFRUQoNDS3z5d2iRYsyAzxeccUVklTmXvSK7N+/X76+voqLi7tguyTpyiuvdJgeGBioZs2alWnXZZddVuGgkE2bNnV4v2/fPhmGoaefflrh4eEOr5Iu0pmZmRW27fDhwxo6dKjCwsJUt25dhYeHq0ePHpKk7OzsCperyK+//qozZ86U2VdJuuqqq1RUVKQjR444TG/UqJHD+5Ivwt9//73K2y+t9LpL1n/+ug8dOqSWLVuWma+8fSitYcOG6tWrlxYvXmyf9t5778nf318DBgyocLmSc/7/sXfn8THdff/H30lkEUxiyaZS+5ba96haUwmhpVylm1BrL1xFKaq1VFtuXGivWqpL6FWuoi1Ve0RRS1EVuxSNaktEi4ytQnJ+f/hlaiQh68n2ej4e87g753zPmc/3jDvzvj5z5px7X9fZ2dkupGZUdr+faTl+/Li6du2qWrVq2U4NTw/DMFIsy8rxz6zkOnL6Aq8AkFeQkchI9yIjFb6MNH36dH344YeaPHmyOnbseN86yEjIDlxDCoVSfv8Der/f5d+7LvmihiNHjlRwcHCq26R1+9jExEQ9/vjjunjxokaPHq0aNWqoWLFi+v3339W7d+9UL1iZE5ycnFJdntoHc17ad7KePXuqT58+ioqKUr169bRs2TK1a9cuXdcMSI+0/j0nJiameG7G+/nrr7+qffv28vDw0Nq1a9N9W+DSpUtnS4DODsl1ZNd7BAD5BRnJHhkpZ/adjIyUdzLSwoULNXr0aA0aNEivv/56muPISMhONKRQIKX14VO+fHklJSXpxIkTqlmzpm35+fPndfny5RQXCkz+5uzu/f3000+S7tx9JD0qV66spKQkHT16VPXq1UuzLunOXUXu/mYnISFBMTExqd5RI72S9+fs7Jzh/Rw6dEg//fSTFi1apF69etmWR0REpBib3gDr5eUld3d3RUdHp1h3/PhxOTo6ZvpilDmlfPnyOnHiRIrlqc0hNV26dNHAgQNtp6T/9NNPGjt27ANfU7pz0di7T+W+deuWYmJiVLduXduy5G9D773b0L3fGmfk/cysP//8U+3bt9fNmzcVGRkpPz+/dG9bo0YNffnllymWZ/X4Z0ZMTIzKlClj99MOACgIyEh/IyNlHRkp/fJyRvr666/Vr18/PfXUU7a7QqaFjITsxE/2UCAVK1ZMUsoPn+RTT2fPnm23fObMmZKk0NBQu+Vnz561u6uM1WrVp59+qnr16snX1zddtXTp0kWOjo568803U3y7kvwNU1BQkFxcXPTee+/Zfev08ccfKz4+PkVdGeHt7a3WrVvrgw8+0Llz51Ksv9+tgZO/Gbu7JsMw9O6776YYm9YxT22f7du319dff213Sv/58+e1ZMkStWjRQhaL5b77MFvHjh31/fffa8+ePbZlFy5c0OLFi9O1vaenp4KDg7Vs2TJ9/vnncnFxUZcuXe67TaNGjeTl5aX58+crISHBtnzhwoUpjnHlypUl3bkeQbLExEQtWLDAblxG3s/MuHbtmjp27Kjff/9da9euTfUU8vsJDAzUpUuX7K5NIWX9+GfGvn37FBgYmGP7B4DcQkb6Gxkp68hI6ZOXM9K2bdvUs2dPtWzZUosXL05xPbd7kZGQnThDCgVSw4YNJUnjxo1Tz5495ezsrM6dO6tu3boKCwvTggULdPnyZbVq1Up79uzRokWL1KVLF7Vp08ZuP9WqVVPfvn21d+9e+fj46JNPPtH58+cVHh6e7lqqVKmicePGafLkyXrsscf01FNPydXVVXv37lXZsmU1ZcoUeXl5aezYsZo0aZJCQkL0xBNPKDo6WnPnzlXjxo31/PPPZ+l4zJkzRy1atFDt2rXVv39/VapUSefPn9euXbv022+/6cCBA6luV6NGDVWuXFkjR47U77//LovFoi+//DLVU4aTj/m//vUvBQcHy8nJST179kx1v2+99ZYiIiLUokUL/fOf/1SRIkX0wQcf6ObNm5o2bVqW5poTXn31Vf33v/9VSEiIXn75ZdstdcuXL6+DBw+max89evTQ888/r7lz5yo4OFienp73He/s7Ky33npLAwcOVNu2bdWjRw/FxMQoPDw8xfURHnnkETVr1kxjx47VxYsXVapUKX3++ee6ffu23biMvJ+Z8dxzz2nPnj168cUXdezYMR07dsy2rnjx4g8MmKGhoSpSpIg2bdqkAQMG2JZnx/E/ePCgVq1aJenOt/rx8fF66623JEl169ZV586dbWPj4uJ08OBBDR48OL1TB4B8g4xkj4yUNWSk9MmrGemXX37RE088IQcHB3Xv3l3Lly+3W1+nTh3VqVPH9pyMhGxnzs38APNNnjzZeOihhwxHR0e7257eunXLmDRpklGxYkXD2dnZ8Pf3N8aOHWt3u1/DuHO729DQUGPDhg1GnTp1DFdXV6NGjRrG8uXLM1XPJ598YtSvX99wdXU1SpYsabRq1cqIiIiwG/P+++8bNWrUMJydnQ0fHx/jpZdeMi5dumQ3plWrVsYjjzySYv/JtzSePn16qq9/6tQpo1evXoavr6/h7OxsPPTQQ0anTp2ML774wjYmtVvgHj161AgKCjKKFy9ulClTxujfv79x4MABQ5IRHh5uG3f79m1j6NChhpeXl+Hg4GB3O1zdc0tjwzCMH3/80QgODjaKFy9uuLu7G23atDF27txpNyb5Vr179+61W55anQ+S1i2NQ0NDU4y997bEhmEYBw8eNFq1amW4ubkZDz30kDF58mTj448/fuAtjZNZrVajaNGihiTjs88+S7E+rTnNnTvXqFixouHq6mo0atTI2LZtW6qvcerUKSMoKMhwdXU1fHx8jNdee82IiIjI9PuZmVsaJ98iOrVH+fLl07WPJ554wmjXrl2K5ek9/mnd0jj5/U/tERYWZjd23rx5hru7u2G1WjMyfQDIN8hI9shIZCTDKJwZKfnYpvW4998mGQnZzcEwsvGqdEABUqFCBdWqVUurV6/O7VKAQuO7775T69atdfz48Qyfzp5d6tevr9atW2vWrFm58voAkNeRkQDzkZFQEHENKQBAnvHYY4+pffv2ufazhPXr1+vEiRMPvKAqAACAmchIKIg4QwpIQ3q+/YuNjb3vPooWLSoPD4/sLg13uXr1qq5evXrfMV5eXmneuhgPFh8frxs3btx3THovYAsAyP/ISPkDGSnnkZGArOGi5kAWPOh2rWFhYVq4cKE5xRRSM2bM0KRJk+47JiYmJt23oEZKL7/8shYtWnTfMXy3AQC4Gxkp95GRch4ZCcgazpACsmDTpk33XV+2bFkFBASYVE3h9PPPP6e4Be69WrRoITc3N5MqKniOHj2qs2fP3ndMUFCQSdUAAPIDMlLuIyPlPDISkDU0pAAAAAAAAGAqLmoOAAAAAAAAUxXqa0glJSXp7NmzKlGihBwcHHK7HAAAYALDMHTlyhWVLVtWjo58N5caMhIAAIWP2RmpUDekzp49K39//9wuAwAA5IJff/1V5cqVy+0y8iQyEgAAhZdZGalQN6RKlCgh6c7BtlgsuVwNAAAwg9Vqlb+/vy0HICUyEgAAhY/ZGalQN6SST0G3WCyELQAAChl+ipY2MhIAAIWXWRmJCycAAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADBVob6GFAAA95OYmKhbt27ldhnIIGdnZzk5OeV2GQAAFFhkpPwpr2UkGlIAANzDMAzFxsbq8uXLuV0KMsnT01O+vr5cuBwAgGxERsr/8lJGoiEFAMA9koOWt7e33N3d88QHNtLHMAxdv35dcXFxkiQ/P79crggAgIKDjJR/5cWMREMKAIC7JCYm2oJW6dKlc7scZELRokUlSXFxcfL29s5Tp6YDAJBfkZHyv7yWkbioOQAAd0m+HoK7u3suV4KsSH7/uL4FAADZg4xUMOSljERDCgCAVHAKev7G+wcAQM7gMzZ/y0vvHw0pAAAAAAAAmIqGFAAAAAAAAEzFRc0BAEinW+u3m/ZaziEt0j32QadeT5gwQRMnTsxiRZnj4OCgFStWqEuXLpnex4IFC7RkyRL9+OOPunLlii5duiRPT89sqxEAAGSNmRlJIiclu3jxoiZMmKCNGzfqzJkz8vLyUpcuXTR58mR5eHhkb7E5gIYUAAD53Llz52z/vXTpUo0fP17R0dG2ZcWLF8/Q/hISEuTi4pJt9WXV9evXFRISopCQEI0dOza3ywEAAPlIQc5JZ8+e1dmzZzVjxgwFBATol19+0aBBg3T27Fl98cUXuV3eA/GTPQCS7nyrce8DQP7g6+tre3h4eMjBwcH2/Nq1a3ruuefk4+Oj4sWLq3Hjxtq0aZPd9hUqVNDkyZPVq1cvWSwWDRgwQJL04Ycfyt/fX+7u7uratatmzpyZ4sykr7/+Wg0aNJCbm5sqVaqkSZMm6fbt27b9SlLXrl3l4OBge37gwAG1adNGJUqUkMViUcOGDfXDDz+kOb9hw4ZpzJgxatasWfYcMADIADISkL8V5JxUq1Ytffnll+rcubMqV66stm3b6u2339Y333xje528jIYUAAAF2NWrV9WxY0dFRkZq//79CgkJUefOnXXmzBm7cTNmzFDdunW1f/9+vfHGG9qxY4cGDRqkl19+WVFRUXr88cf19ttv223z3XffqVevXnr55Zd19OhRffDBB1q4cKFt3N69eyVJ4eHhOnfunO35c889p3Llymnv3r3at2+fxowZI2dnZxOOBgAAwN8KYk6Kj4+XxWJRkSJ5/wdxeb9CAACQaXXr1lXdunVtzydPnqwVK1Zo1apVGjJkiG1527Zt9corr9iejxs3Th06dNDIkSMlSdWqVdPOnTu1evVq25hJkyZpzJgxCgsLkyRVqlRJkydP1quvvqoJEybIy8tLkuTp6SlfX1/bdmfOnNGoUaNUo0YNSVLVqlVzYOYAAAD3V9By0h9//KHJkyfbzuLK6zhDCgCAAuzq1asaOXKkatasKU9PTxUvXlzHjh1L8c1fo0aN7J5HR0erSZMmdsvufX7gwAG9+eabKl68uO3Rv39/nTt3TtevX0+zphEjRqhfv34KCgrS1KlTderUqSzOEgAAIOMKUk6yWq0KDQ1VQEBArl2kPaNoSAEAUICNHDlSK1as0DvvvKPvvvtOUVFRql27thISEuzGFStWLMP7vnr1qiZNmqSoqCjb49ChQzpx4oTc3NzS3G7ixIk6cuSIQkNDtXnzZgUEBGjFihUZfn0AAICsKCg56cqVKwoJCVGJEiW0YsWKfHMpBH6yBwBAAbZjxw717t1bXbt2lXQnHJ0+ffqB21WvXt12LYNk9z5v0KCBoqOjVaVKlTT34+zsrMTExBTLq1WrpmrVqmn48OF65plnFB4ebqsRAADADAUhJ1mtVgUHB8vV1VWrVq26b7Mrr6EhBQBAAVa1alV99dVX6ty5sxwcHPTGG28oKSnpgdsNHTpULVu21MyZM9W5c2dt3rxZ69atk4ODg23M+PHj1alTJz388MPq3r27HB0ddeDAAR0+fFhvvfWWpDt3kImMjNSjjz4qV1dXubm5adSoUerevbsqVqyo3377TXv37lW3bt3SrCU2NlaxsbE6efKkJOnQoUMqUaKEHn74YZUqVSqLRwgAABRW+T0nWa1WtW/fXtevX9dnn30mq9Uqq9UqSfLy8pKTk1M2HKWcw0/2AAAowGbOnKmSJUuqefPm6ty5s4KDg9WgQYMHbvfoo49q/vz5mjlzpurWrav169dr+PDhdt+6BQcHa/Xq1dq4caMaN26sZs2aadasWSpfvrxtzL///W9FRETI399f9evXl5OTk/7880/16tVL1apV09NPP60OHTpo0qRJadYyf/581a9fX/3795cktWzZUvXr19eqVauycGQAAEBhl99z0o8//qjdu3fr0KFDqlKlivz8/GyPX3/9NesHKIc5GIZh5HYRucVqtcrDw8N2W0SgMLu1fnuKZc4hLXKhEiB3/fXXX4qJiVHFihXz1SnPZujfv7+OHz+u7777LrdLeaD7vY98/j8Yxwj4GxkJuIOMdH/5JSflpYzET/YAAECqZsyYoccff1zFihXTunXrtGjRIs2dOze3ywIAAMh15KSsoyEFAABStWfPHk2bNk1XrlxRpUqV9N5776lfv365XRYAAECuIydlHQ0pAACQqmXLluV2CQAAAHkSOSnruKg5AAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqTLUkJoyZYoaN26sEiVKyNvbW126dFF0dLTdmNatW8vBwcHuMWjQILsxZ86cUWhoqNzd3eXt7a1Ro0bp9u3bdmO2bNmiBg0ayNXVVVWqVNHChQtT1DNnzhxVqFBBbm5uatq0qfbs2ZOR6QAAAGQLMhIAAEDGZKghtXXrVg0ePFjff/+9IiIidOvWLbVv317Xrl2zG9e/f3+dO3fO9pg2bZptXWJiokJDQ5WQkKCdO3dq0aJFWrhwocaPH28bExMTo9DQULVp00ZRUVEaNmyY+vXrpw0bNtjGLF26VCNGjNCECRP0448/qm7dugoODlZcXFxmjwUAAECmkJEAAAAyxsEwDCOzG1+4cEHe3t7aunWrWrZsKenOt3/16tXT7NmzU91m3bp16tSpk86ePSsfHx9J0vz58zV69GhduHBBLi4uGj16tNasWaPDhw/btuvZs6cuX76s9evXS5KaNm2qxo0b6/3335ckJSUlyd/fX0OHDtWYMWPSVb/VapWHh4fi4+NlsVgyexiAAuHW+u0pljmHtMiFSoDc9ddffykmJkYVK1aUm5tbbpeDTLrf+2jG5z8ZCSg4yEjAHWSkgiG3M9LdimRl4/j4eElSqVKl7JYvXrxYn332mXx9fdW5c2e98cYbcnd3lyTt2rVLtWvXtgUtSQoODtZLL72kI0eOqH79+tq1a5eCgoLs9hkcHKxhw4ZJkhISErRv3z6NHTvWtt7R0VFBQUHatWtXVqYEAECaTv3wgWmvVbnRwAyN7927txYtWiRJKlKkiEqVKqU6deromWeeUe/eveXomH8vG3nkyBGNHz9e+/bt0y+//KJZs2bZMkFeRUYCABQmZmYkiZx0tw8//FCffvqp7cuqhg0b6p133lGTJk1yubIHy/RRT0pK0rBhw/Too4+qVq1atuXPPvusPvvsM3377bcaO3as/vvf/+r555+3rY+NjbULWpJsz2NjY+87xmq16saNG/rjjz+UmJiY6pjkfaTm5s2bslqtdg8AAAqKkJAQnTt3TqdPn9a6devUpk0bvfzyy+rUqVOK6xDlJ9evX1elSpU0depU+fr65nY5D0RGAgAg7ymoOWnLli165pln9O2332rXrl3y9/dX+/bt9fvvv+d2aQ+U6YbU4MGDdfjwYX3++ed2ywcMGKDg4GDVrl1bzz33nD799FOtWLFCp06dynKxWTVlyhR5eHjYHv7+/rldEgAA2cbV1VW+vr566KGH1KBBA7322mv6+uuvtW7dOrsLX1++fFn9+vWTl5eXLBaL2rZtqwMHDtjt65tvvlHjxo3l5uamMmXKqGvXrrZ1ly5dUq9evVSyZEm5u7urQ4cOOnHihCTp2rVrslgs+uKLL+z2t3LlShUrVkxXrlxRQkKChgwZIj8/P7m5ual8+fKaMmVKmvNq3Lixpk+frp49e8rV1TUbjlTOIiMBAJD3FNSctHjxYv3zn/9UvXr1VKNGDX300UdKSkpSZGRkNhy1nJWphtSQIUO0evVqffvttypXrtx9xzZt2lSSdPLkSUmSr6+vzp8/bzcm+Xnyt55pjbFYLCpatKjKlCkjJyenVMfc75vTsWPHKj4+3vb49ddf0zFbAADyr7Zt26pu3br66quvbMv+8Y9/KC4uTuvWrdO+ffvUoEEDtWvXThcvXpQkrVmzRl27dlXHjh21f/9+RUZG2p323bt3b/3www9atWqVdu3aJcMw1LFjR926dUvFihVTz549FR4ebldHeHi4unfvrhIlSui9997TqlWrtGzZMkVHR2vx4sWqUKGCKccjp5GRAADIPwpiTrp+/bpu3bqV4rIBeVGGriFlGIaGDh2qFStWaMuWLapYseIDt4mKipIk+fn5SZICAwP19ttvKy4uTt7e3pKkiIgIWSwWBQQE2MasXbvWbj8REREKDAyUJLm4uKhhw4aKjIxUly5dJMnWARwyZEiatbi6uuaLb1aB3HD68jq75xU8O+RSJQCyW40aNXTw4EFJ0vbt27Vnzx7FxcXZPhNnzJihlStX6osvvtCAAQP09ttvq2fPnpo0aZJtH3Xr1pUknThxQqtWrdKOHTvUvHlzSXe+mfP399fKlSv1j3/8Q/369VPz5s117tw5+fn5KS4uTmvXrtWmTZskSWfOnFHVqlXVokULOTg4qHz58mYejhxBRgIKLjISULAVtJw0evRolS1bNsU1J/OiDJ0hNXjwYH322WdasmSJSpQoodjYWMXGxurGjRuSpFOnTmny5Mnat2+fTp8+rVWrVqlXr15q2bKl6tSpI0lq3769AgIC9MILL+jAgQPasGGDXn/9dQ0ePNj2hg8aNEg///yzXn31VR0/flxz587VsmXLNHz4cFstI0aM0IcffqhFixbp2LFjeumll3Tt2jX16dMnu44NAAAFgmEYcnBwkCQdOHBAV69eVenSpVW8eHHbIyYmxvbTsaioKLVr1y7VfR07dkxFihSxnd0jSaVLl1b16tV17NgxSVKTJk30yCOP2C4e+tlnn6l8+fK2u8317t1bUVFRql69uv71r39p48aNOTZ3s5CRAADInwpSTpo6dao+//xzrVixIl/cCTFDZ0jNmzdP0p3bFt8tPDxcvXv3louLizZt2qTZs2fr2rVr8vf3V7du3fT666/bxjo5OWn16tV66aWXFBgYqGLFiiksLExvvvmmbUzFihW1Zs0aDR8+XO+++67KlSunjz76SMHBwbYxPXr00IULFzR+/HjFxsaqXr16Wr9+fYqLeAIAUNgdO3bMdsbO1atX5efnpy1btqQY5+npKUkqWrRoll+zX79+mjNnjsaMGaPw8HD16dPHFvYaNGigmJgYrVu3Tps2bdLTTz+toKCgFNdTyE/ISAAA5E8FJSfNmDFDU6dO1aZNm2xfduV1Gf7J3v34+/tr69atD9xP+fLlU5xufq/WrVtr//799x0zZMiQ+55+DgBAYbd582YdOnTIdgZNgwYNFBsbqyJFiqR5PYI6deooMjIy1TNqatasqdu3b2v37t22U9H//PNPRUdH235WJknPP/+8Xn31Vb333ns6evSowsLC7PZjsVjUo0cP9ejRQ927d1dISIguXryYL653kBoyEgAA+U9ByUnTpk3T22+/rQ0bNqhRo0aZORS5IkMNKQAAkHfdvHlTsbGxSkxM1Pnz57V+/XpNmTJFnTp1Uq9evSRJQUFBCgwMVJcuXTRt2jRVq1ZNZ8+etV2gs1GjRpowYYLatWunypUrq2fPnrp9+7bWrl2r0aNHq2rVqnryySfVv39/ffDBBypRooTGjBmjhx56SE8++aStlpIlS+qpp57SqFGj1L59e7sLfM+cOVN+fn6qX7++HB0dtXz5cvn6+tq+ebxXQkKCjh49avvv33//XVFRUSpevLiqVKmScwcUAAAUGAU1J/3f//2fxo8fryVLlqhChQqKjY2VJNvPDfOyTN1lDwAA5D3r16+Xn5+fKlSooJCQEH377bd677339PXXX8vJyUmS5ODgoLVr16ply5bq06ePqlWrpp49e+qXX36x/aSrdevWWr58uVatWqV69eqpbdu22rNnj+11wsPD1bBhQ3Xq1EmBgYEyDENr166Vs7OzXT19+/ZVQkKCXnzxRbvlJUqU0LRp09SoUSM1btxYp0+f1tq1a+XomHosOXv2rOrXr6/69evr3LlzmjFjhurXr69+/fpl5+EDAAAFWEHNSfPmzVNCQoK6d+8uPz8/22PGjBnZefhyhIPxoHPMCzCr1SoPDw/Fx8fLYrHkdjlArjrx+Ti75xU8O8g5pEUuVQPknr/++ksxMTGqWLFivrgYZF723//+V8OHD9fZs2fl4uJi6mvf733k8//BOEbA38hIwB1kpOyVWzkpL2UkfrIHAACy1fXr13Xu3DlNnTpVAwcONL0ZBQAAkFeRk/7GT/YAAEC2mjZtmmrUqCFfX1+NHTs2t8sBAADIM8hJf6MhBQAAstXEiRN169YtRUZG5vmLaQIAAJiJnPQ3GlIAAAAAAAAwFQ0pAABSUYjv+VEg8P4BAJAz+IzN3/LS+0dDCgCAuyTfkvf69eu5XAmyIvn9u/cWywAAIHPISAVDXspI3GUPAIC7ODk5ydPTU3FxcZIkd3d3OTg45HJVSC/DMHT9+nXFxcXJ09NTTk5OuV0SAAAFAhkpf8uLGYmGFAAA9/D19ZUkW+BC/uPp6Wl7HwEAQPYgI+V/eSkj0ZACAOAeDg4O8vPzk7e3t27dupXb5SCDnJ2d88S3fgAAFDRkpPwtr2UkGlIAAKTByckpT31oAwAA5AVkJGQHLmoOAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFNlqCE1ZcoUNW7cWCVKlJC3t7e6dOmi6OhouzF//fWXBg8erNKlS6t48eLq1q2bzp8/bzfmzJkzCg0Nlbu7u7y9vTVq1Cjdvn3bbsyWLVvUoEEDubq6qkqVKlq4cGGKeubMmaMKFSrIzc1NTZs21Z49ezIyHQAAgGxBRgIAAMiYDDWktm7dqsGDB+v7779XRESEbt26pfbt2+vatWu2McOHD9c333yj5cuXa+vWrTp79qyeeuop2/rExESFhoYqISFBO3fu1KJFi7Rw4UKNHz/eNiYmJkahoaFq06aNoqKiNGzYMPXr108bNmywjVm6dKlGjBihCRMm6Mcff1TdunUVHBysuLi4rBwPAACADCMjAQAAZIyDYRhGZje+cOGCvL29tXXrVrVs2VLx8fHy8vLSkiVL1L17d0nS8ePHVbNmTe3atUvNmjXTunXr1KlTJ509e1Y+Pj6SpPnz52v06NG6cOGCXFxcNHr0aK1Zs0aHDx+2vVbPnj11+fJlrV+/XpLUtGlTNW7cWO+//74kKSkpSf7+/ho6dKjGjBmTrvqtVqs8PDwUHx8vi8WS2cMAFAgnPh9n97yCZwc5h7TIpWoAIOeY8flPRgIKDjISgMLC7M//LF1DKj4+XpJUqlQpSdK+fft069YtBQUF2cbUqFFDDz/8sHbt2iVJ2rVrl2rXrm0LWpIUHBwsq9WqI0eO2MbcvY/kMcn7SEhI0L59++zGODo6KigoyDYGAAAgt5CRAAAA7q9IZjdMSkrSsGHD9Oijj6pWrVqSpNjYWLm4uMjT09NurI+Pj2JjY21j7g5ayeuT191vjNVq1Y0bN3Tp0iUlJiamOub48eNp1nzz5k3dvHnT9txqtWZgxgAAAA9GRgIAAHiwTJ8hNXjwYB0+fFiff/55dtaTo6ZMmSIPDw/bw9/fP7dLAgAABQwZCQAA4MEy1ZAaMmSIVq9erW+//VblypWzLff19VVCQoIuX75sN/78+fPy9fW1jbn3jjLJzx80xmKxqGjRoipTpoycnJxSHZO8j9SMHTtW8fHxtsevv/6asYkDAADcBxkJAAAgfTLUkDIMQ0OGDNGKFSu0efNmVaxY0W59w4YN5ezsrMjISNuy6OhonTlzRoGBgZKkwMBAHTp0yO5OLxEREbJYLAoICLCNuXsfyWOS9+Hi4qKGDRvajUlKSlJkZKRtTGpcXV1lsVjsHgAAAFlFRgIAAMiYDF1DavDgwVqyZIm+/vprlShRwnY9Aw8PDxUtWlQeHh7q27evRowYoVKlSslisWjo0KEKDAxUs2bNJEnt27dXQECAXnjhBU2bNk2xsbF6/fXXNXjwYLm6ukqSBg0apPfff1+vvvqqXnzxRW3evFnLli3TmjVrbLWMGDFCYWFhatSokZo0aaLZs2fr2rVr6tOnT3YdGwAAgHQhIwEAAGRMhhpS8+bNkyS1bt3abnl4eLh69+4tSZo1a5YcHR3VrVs33bx5U8HBwZo7d65trJOTk1avXq2XXnpJgYGBKlasmMLCwvTmm2/axlSsWFFr1qzR8OHD9e6776pcuXL66KOPFBwcbBvTo0cPXbhwQePHj1dsbKzq1aun9evXp7iIJwAAQE4jIwEAAGSMg2EYRm4XkVusVqs8PDwUHx/Pqeko9E58Ps7ueQXPDnIOaZFL1QBAzuHz/8E4RsDfyEgACguzP/8zfZc9AAAAAAAAIDNoSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAEyV4YbUtm3b1LlzZ5UtW1YODg5auXKl3frevXvLwcHB7hESEmI35uLFi3ruuedksVjk6empvn376urVq3ZjDh48qMcee0xubm7y9/fXtGnTUtSyfPly1ahRQ25ubqpdu7bWrl2b0ekAAABkCzISAABA+mW4IXXt2jXVrVtXc+bMSXNMSEiIzp07Z3v873//s1v/3HPP6ciRI4qIiNDq1au1bds2DRgwwLbearWqffv2Kl++vPbt26fp06dr4sSJWrBggW3Mzp079cwzz6hv377av3+/unTpoi5duujw4cMZnRIAAECWkZEAAADSz8EwDCPTGzs4aMWKFerSpYttWe/evXX58uUU3womO3bsmAICArR37141atRIkrR+/Xp17NhRv/32m8qWLat58+Zp3Lhxio2NlYuLiyRpzJgxWrlypY4fPy5J6tGjh65du6bVq1fb9t2sWTPVq1dP8+fPT1f9VqtVHh4eio+Pl8ViycQRAAqOE5+Ps3tewbODnENa5FI1AJBzzPj8JyMBBQcZCUBhYfbnf45cQ2rLli3y9vZW9erV9dJLL+nPP/+0rdu1a5c8PT1tQUuSgoKC5OjoqN27d9vGtGzZ0ha0JCk4OFjR0dG6dOmSbUxQUJDd6wYHB2vXrl1p1nXz5k1ZrVa7BwAAgFnISAAAAHdke0MqJCREn376qSIjI/V///d/2rp1qzp06KDExERJUmxsrLy9ve22KVKkiEqVKqXY2FjbGB8fH7sxyc8fNCZ5fWqmTJkiDw8P28Pf3z9rkwUAAEgnMhIAAMDfimT3Dnv27Gn779q1a6tOnTqqXLmytmzZonbt2mX3y2XI2LFjNWLECNtzq9VK4AIAAKYgIwEAAPwtR36yd7dKlSqpTJkyOnnypCTJ19dXcXFxdmNu376tixcvytfX1zbm/PnzdmOSnz9oTPL61Li6uspisdg9AAAAcgMZCQAAFGY53pD67bff9Oeff8rPz0+SFBgYqMuXL2vfvn22MZs3b1ZSUpKaNm1qG7Nt2zbdunXLNiYiIkLVq1dXyZIlbWMiIyPtXisiIkKBgYE5PSUAAIAsIyMBAIDCLMMNqatXryoqKkpRUVGSpJiYGEVFRenMmTO6evWqRo0ape+//16nT59WZGSknnzySVWpUkXBwcGSpJo1ayokJET9+/fXnj17tGPHDg0ZMkQ9e/ZU2bJlJUnPPvusXFxc1LdvXx05ckRLly7Vu+++a3cq+csvv6z169fr3//+t44fP66JEyfqhx9+0JAhQ7LhsAAAAGQMGQkAACD9MtyQ+uGHH1S/fn3Vr19fkjRixAjVr19f48ePl5OTkw4ePKgnnnhC1apVU9++fdWwYUN99913cnV1te1j8eLFqlGjhtq1a6eOHTuqRYsWWrBggW29h4eHNm7cqJiYGDVs2FCvvPKKxo8frwEDBtjGNG/eXEuWLNGCBQtUt25dffHFF1q5cqVq1aqVleMBAACQKWQkAACA9HMwDMPI7SJyi9VqlYeHh+Lj47lWAgq9E5+Ps3tewbODnENa5FI1AJBz+Px/MI4R8DcyEoDCwuzP/xy/hhQAAAAAAABwNxpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU2W4IbVt2zZ17txZZcuWlYODg1auXGm33jAMjR8/Xn5+fipatKiCgoJ04sQJuzEXL17Uc889J4vFIk9PT/Xt21dXr161G3Pw4EE99thjcnNzk7+/v6ZNm5ailuXLl6tGjRpyc3NT7dq1tXbt2oxOBwAAIFuQkQAAANIvww2pa9euqW7dupozZ06q66dNm6b33ntP8+fP1+7du1WsWDEFBwfrr7/+so157rnndOTIEUVERGj16tXatm2bBgwYYFtvtVrVvn17lS9fXvv27dP06dM1ceJELViwwDZm586deuaZZ9S3b1/t379fXbp0UZcuXXT48OGMTgkAACDLyEgAAADp52AYhpHpjR0ctGLFCnXp0kXSnW/+ypYtq1deeUUjR46UJMXHx8vHx0cLFy5Uz549dezYMQUEBGjv3r1q1KiRJGn9+vXq2LGjfvvtN5UtW1bz5s3TuHHjFBsbKxcXF0nSmDFjtHLlSh0/flyS1KNHD127dk2rV6+21dOsWTPVq1dP8+fPT1f9VqtVHh4eio+Pl8ViyexhAAqEE5+Ps3tewbODnENa5FI1AJBzzPj8JyMBBQcZCUBhYfbnf7ZeQyomJkaxsbEKCgqyLfPw8FDTpk21a9cuSdKuXbvk6elpC1qSFBQUJEdHR+3evds2pmXLlragJUnBwcGKjo7WpUuXbGPufp3kMcmvk5qbN2/KarXaPQAAAHIaGQkAAMBetjakYmNjJUk+Pj52y318fGzrYmNj5e3tbbe+SJEiKlWqlN2Y1PZx92ukNSZ5fWqmTJkiDw8P28Pf3z+jUwQAAMgwMhIAAIC9QnWXvbFjxyo+Pt72+PXXX3O7JAAAgFxHRgIAAGbL1oaUr6+vJOn8+fN2y8+fP29b5+vrq7i4OLv1t2/f1sWLF+3GpLaPu18jrTHJ61Pj6uoqi8Vi9wAAAMhpZCQAAAB72dqQqlixonx9fRUZGWlbZrVatXv3bgUGBkqSAgMDdfnyZe3bt882ZvPmzUpKSlLTpk1tY7Zt26Zbt27ZxkRERKh69eoqWbKkbczdr5M8Jvl1AAAA8goyEgAAgL0MN6SuXr2qqKgoRUVFSbpzkc6oqCidOXNGDg4OGjZsmN566y2tWrVKhw4dUq9evVS2bFnbXWZq1qypkJAQ9e/fX3v27NGOHTs0ZMgQ9ezZU2XLlpUkPfvss3JxcVHfvn115MgRLV26VO+++65GjBhhq+Pll1/W+vXr9e9//1vHjx/XxIkT9cMPP2jIkCFZPyoAAAAZREYCAABIvyIZ3eCHH35QmzZtbM+TA1BYWJgWLlyoV199VdeuXdOAAQN0+fJltWjRQuvXr5ebm5ttm8WLF2vIkCFq166dHB0d1a1bN7333nu29R4eHtq4caMGDx6shg0bqkyZMho/frwGDBhgG9O8eXMtWbJEr7/+ul577TVVrVpVK1euVK1atTJ1IAAAALKCjAQAAJB+DoZhGLldRG6xWq3y8PBQfHw810pAoXfi83F2zyt4dpBzSItcqgYAcg6f/w/GMQL+RkYCUFiY/flfqO6yBwAAAAAAgNxHQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGCqbG9ITZw4UQ4ODnaPGjVq2Nb/9ddfGjx4sEqXLq3ixYurW7duOn/+vN0+zpw5o9DQULm7u8vb21ujRo3S7du37cZs2bJFDRo0kKurq6pUqaKFCxdm91QAAACyDRkJAADgbzlyhtQjjzyic+fO2R7bt2+3rRs+fLi++eYbLV++XFu3btXZs2f11FNP2dYnJiYqNDRUCQkJ2rlzpxYtWqSFCxdq/PjxtjExMTEKDQ1VmzZtFBUVpWHDhqlfv37asGFDTkwHAAAgW5CRAAAA7iiSIzstUkS+vr4plsfHx+vjjz/WkiVL1LZtW0lSeHi4atasqe+//17NmjXTxo0bdfToUW3atEk+Pj6qV6+eJk+erNGjR2vixIlycXHR/PnzVbFiRf373/+WJNWsWVPbt2/XrFmzFBwcnBNTAgAAyDIyEgAAwB05cobUiRMnVLZsWVWqVEnPPfeczpw5I0nat2+fbt26paCgINvYGjVq6OGHH9auXbskSbt27VLt2rXl4+NjGxMcHCyr1aojR47Yxty9j+QxyftIy82bN2W1Wu0eAAAAZiEjAQAA3JHtDammTZtq4cKFWr9+vebNm6eYmBg99thjunLlimJjY+Xi4iJPT0+7bXx8fBQbGytJio2NtQtayeuT191vjNVq1Y0bN9KsbcqUKfLw8LA9/P39szpdAACAdCEjAQAA/C3bf7LXoUMH23/XqVNHTZs2Vfny5bVs2TIVLVo0u18uQ8aOHasRI0bYnlutVgIXAAAwBRkJAADgbznyk727eXp6qlq1ajp58qR8fX2VkJCgy5cv2405f/687XoKvr6+Ke4ok/z8QWMsFst9A52rq6ssFovdAwAAIDeQkQAAQGGW4w2pq1ev6tSpU/Lz81PDhg3l7OysyMhI2/ro6GidOXNGgYGBkqTAwEAdOnRIcXFxtjERERGyWCwKCAiwjbl7H8ljkvcBAACQ15GRAABAYZbtDamRI0dq69atOn36tHbu3KmuXbvKyclJzzzzjDw8PNS3b1+NGDFC3377rfbt26c+ffooMDBQzZo1kyS1b99eAQEBeuGFF3TgwAFt2LBBr7/+ugYPHixXV1dJ0qBBg/Tzzz/r1Vdf1fHjxzV37lwtW7ZMw4cPz+7pAAAAZAsyEgAAwN+y/RpSv/32m5555hn9+eef8vLyUosWLfT999/Ly8tLkjRr1iw5OjqqW7duunnzpoKDgzV37lzb9k5OTlq9erVeeuklBQYGqlixYgoLC9Obb75pG1OxYkWtWbNGw4cP17vvvqty5crpo48+4nbGAAAgzyIjAQAA/M3BMAwjt4vILVarVR4eHoqPj+daCSj0Tnw+zu55Bc8Ocg5pkUvVAEDO4fP/wThGwN/ISAAKC7M//3P8GlIAAAAAAADA3WhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVEVyuwAAAFBw3Fq/PVPbOYe0yOZKAAAA8g4yUko0pAAAQKZkNlgBAAAUZGSk9KEhBQAA0oVwBQAAkBIZKXNoSAEAUMjlhRCVWg0F+RR1AACQ95GRcla+b0jNmTNH06dPV2xsrOrWrav//Oc/atKkSW6XBQBAtspsGMkLQQq5g4wEACgMyEj5V75uSC1dulQjRozQ/Pnz1bRpU82ePVvBwcGKjo6Wt7d3bpcH5Hvp+eN+95jTl9fZravg2SFDr3fv9hmV0dfLi1L78MyuCyBm54dueurMzm9ucvKbofwcYvJCDcibyEhAziIjmY+MlDoyUt6tAQ/mYBiGkdtFZFbTpk3VuHFjvf/++5KkpKQk+fv7a+jQoRozZswDt7darfLw8FB8fLwsFktOlwuYIvmP74OCT1aDDQqPghBikT/l1OnoheHzn4wEpERGQnYjIyG3FJSMlG/PkEpISNC+ffs0duxY2zJHR0cFBQVp165dqW5z8+ZN3bx50/Y8Pj5e0p2DDpjp1Bdvmv6ah6+vNP01UTDwbyfveNjjcbvnZ+Ij7rs+v3POoc/n5M/9fPyd3H2RkZCfkZGQn/BvJ+8gI2UPszNSvm1I/fHHH0pMTJSPj4/dch8fHx0/fjzVbaZMmaJJkyalWO7v758jNQIAkL3+ncX1uNuVK1fk4eGR22VkOzISAKDwISNlJ7MyUr5tSGXG2LFjNWLECNvzpKQkXbx4UaVLl5aDg0OW92+1WuXv769ff/21wJ/eXljmWljmKTHXgqiwzFMqPHMtLPOUcnauhmHoypUrKlu2bLbuNz8jI2Uf5lrwFJZ5SoVnroVlnlLhmWthmadUsDJSvm1IlSlTRk5OTjp//rzd8vPnz8vX1zfVbVxdXeXq6mq3zNPTM9trs1gsBf7/CZIVlrkWlnlKzLUgKizzlArPXAvLPKWcm2tBPDMqGRkpb2CuBU9hmadUeOZaWOYpFZ65FpZ5SgUjIzma9krZzMXFRQ0bNlRkZKRtWVJSkiIjIxUYGJiLlQEAAOQeMhIAAMgP8u0ZUpI0YsQIhYWFqVGjRmrSpIlmz56ta9euqU+fPrldGgAAQK4hIwEAgLwuXzekevTooQsXLmj8+PGKjY1VvXr1tH79+hQX8TSLq6urJkyYkOKU94KosMy1sMxTYq4FUWGZp1R45lpY5ikVrrnmBDJS7mGuBU9hmadUeOZaWOYpFZ65FpZ5SgVrrg5GQb3nMQAAAAAAAPKkfHsNKQAAAAAAAORPNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhlQWXbx4Uc8995wsFos8PT3Vt29fXb169YHb7dq1S23btlWxYsVksVjUsmVL3bhxw4SKMy+zc5UkwzDUoUMHOTg4aOXKlTlbaBZldJ4XL17U0KFDVb16dRUtWlQPP/yw/vWvfyk+Pt7EqtNnzpw5qlChgtzc3NS0aVPt2bPnvuOXL1+uGjVqyM3NTbVr19batWtNqjTrMjLXDz/8UI899phKliypkiVLKigo6IHHJq/I6Hua7PPPP5eDg4O6dOmSswVmo4zO9fLlyxo8eLD8/Pzk6uqqatWq5Yt/wxmd5+zZs21/f/z9/TV8+HD99ddfJlWbOdu2bVPnzp1VtmzZdH8ubNmyRQ0aNJCrq6uqVKmihQsX5nidyBoyEhmJjJQ3kZHuj4yUdxWGjCQVspxkIEtCQkKMunXrGt9//73x3XffGVWqVDGeeeaZ+26zc+dOw2KxGFOmTDEOHz5sHD9+3Fi6dKnx119/mVR15mRmrslmzpxpdOjQwZBkrFixImcLzaKMzvPQoUPGU089Zaxatco4efKkERkZaVStWtXo1q2biVU/2Oeff264uLgYn3zyiXHkyBGjf//+hqenp3H+/PlUx+/YscNwcnIypk2bZhw9etR4/fXXDWdnZ+PQoUMmV55xGZ3rs88+a8yZM8fYv3+/cezYMaN3796Gh4eH8dtvv5lcecZkdJ7JYmJijIceesh47LHHjCeffNKcYrMoo3O9efOm0ahRI6Njx47G9u3bjZiYGGPLli1GVFSUyZVnTEbnuXjxYsPV1dVYvHixERMTY2zYsMHw8/Mzhg8fbnLlGbN27Vpj3LhxxldffZWuz4Wff/7ZcHd3N0aMGGEcPXrU+M9//mM4OTkZ69evN6dgZAoZiYxERsp7yEhkJDJS3s5IhlG4chINqSw4evSoIcnYu3evbdm6desMBwcH4/fff09zu6ZNmxqvv/66GSVmm8zO1TAMY//+/cZDDz1knDt3Ls+HrazM827Lli0zXFxcjFu3buVEmZnSpEkTY/DgwbbniYmJRtmyZY0pU6akOv7pp582QkND7ZY1bdrUGDhwYI7WmR0yOtd73b592yhRooSxaNGinCoxW2Rmnrdv3zaaN29ufPTRR0ZYWFi+CVsZneu8efOMSpUqGQkJCWaVmC0yOs/Bgwcbbdu2tVs2YsQI49FHH83ROrNTej4XXn31VeORRx6xW9ajRw8jODg4BytDVpCRyEhpISPlLjISGYmMlH8ykmEU/JzET/ayYNeuXfL09FSjRo1sy4KCguTo6Kjdu3enuk1cXJx2794tb29vNW/eXD4+PmrVqpW2b99uVtmZkpm5StL169f17LPPas6cOfL19TWj1CzJ7DzvFR8fL4vFoiJFiuREmRmWkJCgffv2KSgoyLbM0dFRQUFB2rVrV6rb7Nq1y268JAUHB6c5Pq/IzFzvdf36dd26dUulSpXKqTKzLLPzfPPNN+Xt7a2+ffuaUWa2yMxcV61apcDAQA0ePFg+Pj6qVauW3nnnHSUmJppVdoZlZp7NmzfXvn37bKes//zzz1q7dq06duxoSs1mya9/jwozMhIZKS1kpNxDRiIjSWSkgpaRpPz7N0mS8sYnQT4VGxsrb29vu2VFihRRqVKlFBsbm+o2P//8syRp4sSJmjFjhurVq6dPP/1U7dq10+HDh1W1atUcrzszMjNXSRo+fLiaN2+uJ598MqdLzBaZnefd/vjjD02ePFkDBgzIiRIz5Y8//lBiYqJ8fHzslvv4+Oj48eOpbhMbG5vq+PQeh9ySmbnea/To0SpbtmyKP+x5SWbmuX37dn388ceKiooyocLsk5m5/vzzz9q8ebOee+45rV27VidPntQ///lP3bp1SxMmTDCj7AzLzDyfffZZ/fHHH2rRooUMw9Dt27c1aNAgvfbaa2aUbJq0/h5ZrVbduHFDRYsWzaXKkBYyEhkpNWSk3EVGIiNJZKSClpGk/J2TOEMqFWPGjJGDg8N9H+n9o32vpKQkSdLAgQPVp08f1a9fX7NmzVL16tX1ySefZOc00iUn57pq1Spt3rxZs2fPzt6iMyEn53k3q9Wq0NBQBQQEaOLEiVkvHKabOnWqPv/8c61YsUJubm65XU62uXLlil544QV9+OGHKlOmTG6Xk+OSkpLk7e2tBQsWqGHDhurRo4fGjRun+fPn53Zp2WrLli165513NHfuXP3444/66quvtGbNGk2ePDm3S0MBRUYiI2UWGSn/IyMVDGQkMlJewhlSqXjllVfUu3fv+46pVKmSfH19FRcXZ7f89u3bunjxYpqnXvv5+UmSAgIC7JbXrFlTZ86cyXzRmZSTc928ebNOnTolT09Pu+XdunXTY489pi1btmSh8ozJyXkmu3LlikJCQlSiRAmtWLFCzs7OWS0725QpU0ZOTk46f/683fLz58+nOS9fX98Mjc8rMjPXZDNmzNDUqVO1adMm1alTJyfLzLKMzvPUqVM6ffq0OnfubFuW/D/+ihQpoujoaFWuXDlni86kzLynfn5+cnZ2lpOTk21ZzZo1FRsbq4SEBLm4uORozZmRmXm+8cYbeuGFF9SvXz9JUu3atXXt2jUNGDBA48aNk6NjwfjeKa2/RxaLJU9/61cQkZHskZHISOkZn1eQkchIEhmpoGUkKX/nJBpSqfDy8pKXl9cDxwUGBury5cvat2+fGjZsKOlOwEhKSlLTpk1T3aZChQoqW7asoqOj7Zb/9NNP6tChQ9aLz6CcnOuYMWNsfwCS1a5dW7NmzbL7g2+GnJyndOdbv+DgYLm6umrVqlV57lsjFxcXNWzYUJGRkbZb2CYlJSkyMlJDhgxJdZvAwEBFRkZq2LBhtmUREREKDAw0oeLMy8xcJWnatGl6++23tWHDBrvrY+RVGZ1njRo1dOjQIbtlr7/+uq5cuaJ3331X/v7+ZpSdKZl5Tx999FEtWbJESUlJtsDx008/yc/PL08GLSlz87x+/XqKQJUcMA3DyNF6zRQYGJjidtT54e9RQURGSomMREaS8sffJDISGUkiI0kFKyNJ+Twn5e411fO/kJAQo379+sbu3buN7du3G1WrVrW7/e1vv/1mVK9e3di9e7dt2axZswyLxWIsX77cOHHihPH6668bbm5uxsmTJ3NjCumWmbneS3n8DjKGkfF5xsfHG02bNjVq165tnDx50jh37pztcfv27dyaRgqff/654erqaixcuNA4evSoMWDAAMPT09OIjY01DMMwXnjhBWPMmDG28Tt27DCKFClizJgxwzh27JgxYcKEfHVL44zMderUqYaLi4vxxRdf2L1/V65cya0ppEtG53mv/HQHmYzO9cyZM0aJEiWMIUOGGNHR0cbq1asNb29v46233sqtKaRLRuc5YcIEo0SJEsb//vc/4+effzY2btxoVK5c2Xj66adzawrpcuXKFWP//v3G/v37DUnGzJkzjf379xu//PKLYRiGMWbMGOOFF16wjU++nfGoUaOMY8eOGXPmzMk3tzMuzMhIZCQyUt5DRiIjkZHydkYyjMKVk2hIZdGff/5pPPPMM0bx4sUNi8Vi9OnTx+4PdExMjCHJ+Pbbb+22mzJlilGuXDnD3d3dCAwMNL777juTK8+4zM71bvkhbGV0nt9++60hKdVHTExM7kwiDf/5z3+Mhx9+2HBxcTGaNGlifP/997Z1rVq1MsLCwuzGL1u2zKhWrZrh4uJiPPLII8aaNWtMrjjzMjLX8uXLp/r+TZgwwfzCMyij7+nd8lPYMoyMz3Xnzp1G06ZNDVdXV6NSpUrG22+/naf+B1BaMjLPW7duGRMnTjQqV65suLm5Gf7+/sY///lP49KlS+YXngFp/d1MnltYWJjRqlWrFNvUq1fPcHFxMSpVqmSEh4ebXjcyhoxERiIj5U1kJDISGSlvK0w5ycEwCtj5agAAAAAAAMjTCs6VvAAAAAAAAJAv0JACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQA2GzZskUODg7asmVLtu7XwcFBEydOzNZ9ZtTChQvl4OCg06dP5+g+W7durdatW2d4Xxk59pl9jYyYOHGiHBwccvQ10tKxY0f179//gePSek+nT5+uSpUqycnJSfXq1cvQa69fv17FixfXhQsXMrQdAKBgIyNlfZ9kpKwjI6GgoSGFAmnnzp2aOHGiLl++nNulFBpr167N9UCF3LVt2zY98cQT8vf3l5ubm3x9fRUSEqIdO3akex87duzQxo0bNXr06EzVsHHjRr366qt69NFHFR4ernfeece2vG/fvqpVq5acnJxUoUKFVLcPCQlRlSpVNGXKlEy9PgDkdWQk85GRkFcz0vXr1zVnzhy1b99efn5+KlGihOrXr6958+YpMTHRbnsyEnICDSkUSDt37tSkSZMIWyZau3atJk2alOq6Gzdu6PXXXze5InsvvPCCbty4ofLly+fo62zcuFEbN27M8HYtW7bUjRs31LJlyxyoyhw//fSTHB0dNWjQIM2ZM0cjR45UbGysWrZsqfXr16drH9OnT1e7du1UpUqVTNWwefNmOTo66uOPP1avXr3UsWNHSdKSJUu0ZMkSeXh4qGzZsvfdx8CBA/XBBx/oypUrmaoBAPIyMpL5yEh3kJHyXkb6+eefNXToUBmGoREjRmjGjBmqWLGi/vnPf+rFF19MsQ8yErIbDSmgALh+/Xqqy2/fvq2EhASTq0nJzc1NRYoUydUanJyc5ObmluOnWLu4uMjFxSXD2zk6OsrNzU2Ojvn3z3K/fv20cuVKjRs3Tn379tXIkSO1c+dOeXl5afbs2Q/cPi4uTmvWrNHTTz+d6Rri4uJUtGjRFO/BO++8I6vVqh07dqhu3br33Ue3bt108+ZNLV++PNN1AADyBjLSg5GRcl5ezUi+vr46dOiQIiIiNGrUKA0cOFBfffWV+vTpo08//VQnT5602wcZCdkt//5/NZCGiRMnatSoUZKkihUrysHBwe431Ldv39bkyZNVuXJlubq6qkKFCnrttdd08+ZNu/1UqFBBnTp10saNG1WvXj25ubkpICBAX331Vabq+uyzz9SkSRO5u7urZMmSatmyZYpviebOnatHHnlErq6uKlu2rAYPHpziG8zWrVurVq1a2rdvn1q2bCl3d3e99tprOn36tBwcHDRjxgzNnj3bNr+jR49Kko4fP67u3burVKlScnNzU6NGjbRq1aoH1v3dd9/pH//4hx5++GG5urrK399fw4cP140bN2xjevfurTlz5kiS7XjfHWpSuz7C/v371aFDB1ksFhUvXlzt2rXT999/bzcm+ffvO3bs0IgRI+Tl5aVixYqpa9euGf79emq/pU9+j7dv364mTZrIzc1NlSpV0qeffppi+yNHjqht27YqWrSoypUrp7feektJSUkpxt197YLz58+rSJEiqX4rGh0dLQcHB73//vuS0r4+woIFC1S5cmUVLVpUTZo00XfffZeuuaW1z/S8n9nJ3d1dXl5e6fomfs2aNbp9+7aCgoJSrEvP8XdwcFB4eLiuXbtm+ze4cOFCSVLZsmXl7Oycrpq9vb1Vp04dff311+kaDwD5BRmJjJQaMtIdhTEjlSlTRo888kiKfXbt2lWSdOzYMbvlZCRkt9xtxwM54KmnntJPP/2k//3vf5o1a5bKlCkjSfLy8pJ05xuKRYsWqXv37nrllVe0e/duTZkyRceOHdOKFSvs9nXixAn16NFDgwYNUlhYmMLDw/WPf/xD69ev1+OPP57umiZNmqSJEyeqefPmevPNN+Xi4qLdu3dr8+bNat++vaQ7IXHSpEkKCgrSSy+9pOjoaM2bN0979+7Vjh077P7H9J9//qkOHTqoZ8+eev755+Xj42NbFx4err/++ksDBgyQq6urSpUqpSNHjujRRx/VQw89pDFjxqhYsWJatmyZunTpoi+//NL2oZOa5cuX6/r163rppZdUunRp7dmzR//5z3/022+/2b4dGThwoM6ePauIiAj997//feDxOHLkiB577DFZLBa9+uqrcnZ21gcffKDWrVtr69atatq0qd34oUOHqmTJkpowYYJOnz6t2bNna8iQIVq6dGm634O0nDx5Ut27d1ffvn0VFhamTz75RL1791bDhg1tH9CxsbFq06aNbt++bTt+CxYsUNGiRe+7bx8fH7Vq1UrLli3ThAkT7NYtXbpUTk5O+sc//pHm9h9//LEGDhyo5s2ba9iwYfr555/1xBNPqFSpUvL398/UfNPzfmaV1WpVQkKC/vjjD3366ac6fPiwXnvttQdut3PnTpUuXTrFTwbSe/z/+9//asGCBdqzZ48++ugjSVLz5s0zNYeGDRtq5cqVmdoWAPIqMhIZKSPISIU3I8XGxkqS7W/E3chIyFYGUABNnz7dkGTExMTYLY+KijIkGf369bNbPnLkSEOSsXnzZtuy8uXLG5KML7/80rYsPj7e8PPzM+rXr5/uWk6cOGE4OjoaXbt2NRITE+3WJSUlGYZhGHFxcYaLi4vRvn17uzHvv/++Icn45JNPbMtatWplSDLmz59vt6+YmBhDkmGxWIy4uDi7de3atTNq165t/PXXX3av3bx5c6Nq1aq2Zd9++60hyfj2229ty65fv55iTlOmTDEcHByMX375xbZs8ODBRlp/UiQZEyZMsD3v0qWL4eLiYpw6dcq27OzZs0aJEiWMli1b2paFh4cbkoygoCDbsTIMwxg+fLjh5ORkXL58OdXXS03yvu7+N5H8Hm/bts22LC4uznB1dTVeeeUV27Jhw4YZkozdu3fbjfPw8Eixz1atWhmtWrWyPf/ggw8MScahQ4fs6gkICDDatm1re37vsU9ISDC8vb2NevXqGTdv3rSNW7BggSHJ7jVSm1tq+zSM9L+fEyZMSPP9fJDg4GBDkiHJcHFxMQYOHGjcuHHjgdu1aNHCaNiwYYrlGTn+YWFhRrFixe77OqGhoUb58uXvO+add94xJBnnz59/YN0AkJ+QkchI9yIj3UFGuuPmzZtGQECAUbFiRePWrVsp1pORkJ34yR4KlbVr10qSRowYYbf8lVdekXTndNi7lS1b1u6bMYvFol69emn//v22bw4eZOXKlUpKStL48eNT/PY9+ZTtTZs2KSEhQcOGDbMb079/f1kslhR1ubq6qk+fPqm+Xrdu3WzfdErSxYsXtXnzZj399NO6cuWK/vjjD/3xxx/6888/FRwcrBMnTuj3339Ps/67v2G5du2a/vjjDzVv3lyGYWj//v3pOgZ3S0xM1MaNG9WlSxdVqlTJttzPz0/PPvustm/fLqvVarfNgAED7E5vf+yxx5SYmKhffvklw69/r4CAAD322GO2515eXqpevbp+/vln27K1a9eqWbNmatKkid2455577oH7f+qpp1SkSBG7byoPHz6so0ePqkePHmlu98MPPyguLk6DBg2y+61/79695eHhke753Su738/UTJ06VRs3btTHH3+sZs2aKSEhQbdv337gdn/++adKliyZYnlWjn9mJdfxxx9/5NhrAEBeQkYiI92LjFQ4M9KQIUN09OhRvf/++6le34yMhOxEQwqFyi+//CJHR8cUd6fw9fWVp6dnig/vKlWqpLjAY7Vq1SQpxW/R03Lq1Ck5OjoqICDgvnVJUvXq1e2Wu7i4qFKlSinqeuihh9K8KGTFihXtnp88eVKGYeiNN96Ql5eX3SP5FOm4uLg0aztz5ox69+6tUqVKqXjx4vLy8lKrVq0kSfHx8Wlul5YLFy7o+vXrKeYqSTVr1lRSUpJ+/fVXu+UPP/yw3fPkD8JLly5l+PXvde++k/d/975/+eUXVa1aNcW41OZwrzJlyqhdu3ZatmyZbdnSpUtVpEgRPfXUU2lul/ye3/u6zs7OdiE1o7L7/UxNvXr19Pjjj+vFF19URESE9uzZo969e6drW8MwUizLyvHPrOQ6cvoCrwCQV5CRyEj3IiMVvow0ffp0ffjhh5o8ebLtTsVp1UFGQnbgGlIolPL7H9D7/S7/3nXJFzUcOXKkgoODU90mrdvHJiYm6vHHH9fFixc1evRo1ahRQ8WKFdPvv/+u3r17p3rBypzg5OSU6vLUPpjz0r6T9ezZU3369FFUVJTq1aunZcuWqV27dqn+Lj8z0vr3nJiYmOK52e+ni4uLnnjiCU2dOlU3bty477/d0qVLZ0uAzg7JdWTXewQA+QUZyR4ZKWf2nYyMlHcy0sKFCzV69GgNGjRIr7/+eprjyEjITjSkUCCl9eFTvnx5JSUl6cSJE6pZs6Zt+fnz53X58uUUFwpM/ubs7v399NNPku7cfSQ9KleurKSkJB09elT16tVLsy7pzl1F7v5mJyEhQTExManeUSO9kvfn7Oyc4f0cOnRIP/30kxYtWqRevXrZlkdERKQYm94A6+XlJXd3d0VHR6dYd/z4cTk6Omb6YpQ5pXz58jpx4kSK5anNITVdunTRwIEDbaek//TTTxo7duwDX1O6c9HYtm3b2pbfunVLMTExqlu3rm1Z8reh996l5d5vjTPyfmanGzduyDAMXbly5b5hq0aNGvryyy9TLM/q8c+MmJgYlSlTxu6nHQBQEJCR/kZGyjoyUtbklYz09ddfq1+/fnrqqadsd4VMCxkJ2Ymf7KFAKlasmKSUHz7Jp57Onj3bbvnMmTMlSaGhoXbLz549a3dXGavVqk8//VT16tWTr69vumrp0qWLHB0d9eabb6b4diX5G6agoCC5uLjovffes/vW6eOPP1Z8fHyKujLC29tbrVu31gcffKBz586lWH+/WwMnfzN2d02GYejdd99NMTatY57aPtu3b6+vv/7a7pT+8+fPa8mSJWrRooUsFst992G2jh076vvvv9eePXtsyy5cuKDFixena3tPT08FBwdr2bJl+vzzz+Xi4qIuXbrcd5tGjRrJy8tL8+fPV0JCgm35woULUxzjypUrS5K2bdtmW5aYmKgFCxbYjcvI+5kZqf2s4fLly/ryyy/l7+8vb2/v+24fGBioS5cu2V2bQsr68c+Mffv2KTAwMMf2DwC5hYz0NzJS1pGR0icvZ6Rt27apZ8+eatmypRYvXpziem73IiMhO3GGFAqkhg0bSpLGjRunnj17ytnZWZ07d1bdunUVFhamBQsW6PLly2rVqpX27NmjRYsWqUuXLmrTpo3dfqpVq6a+fftq79698vHx0SeffKLz588rPDw83bVUqVJF48aN0+TJk/XYY4/pqaeekqurq/bu3auyZctqypQp8vLy0tixYzVp0iSFhIToiSeeUHR0tObOnavGjRvr+eefz9LxmDNnjlq0aKHatWurf//+qlSpks6fP69du3bpt99+04EDB1LdrkaNGqpcubJGjhyp33//XRaLRV9++WWqpwwnH/N//etfCg4OlpOTk3r27Jnqft966y1FRESoRYsW+uc//6kiRYrogw8+0M2bNzVt2rQszTUnvPrqq/rvf/+rkJAQvfzyy7Zb6pYvX14HDx5M1z569Oih559/XnPnzlVwcLA8PT3vO97Z2VlvvfWWBg4cqLZt26pHjx6KiYlReHh4iusjPPLII2rWrJnGjh2rixcvqlSpUvr8889TXCQzI+9nZnTo0EHlypVT06ZN5e3trTNnzig8PFxnz55N1+2nQ0NDVaRIEW3atEkDBgywLc+O43/w4EGtWrVK0p1v9ePj4/XWW29JkurWravOnTvbxsbFxengwYMaPHhwRqYPAPkCGckeGSlryEjpk1cz0i+//KInnnhCDg4O6t69u5YvX263vk6dOqpTp47tORkJ2c6MW/kBuWHy5MnGQw89ZDg6Otrd9vTWrVvGpEmTjIoVKxrOzs6Gv7+/MXbsWLvb/RrGndvdhoaGGhs2bDDq1KljuLq6GjVq1DCWL1+eqXo++eQTo379+oarq6tRsmRJo1WrVkZERITdmPfff9+oUaOG4ezsbPj4+BgvvfSScenSJbsxrVq1Mh555JEU+0++pfH06dNTff1Tp04ZvXr1Mnx9fQ1nZ2fjoYceMjp16mR88cUXtjGp3QL36NGjRlBQkFG8eHGjTJkyRv/+/Y0DBw4Ykozw8HDbuNu3bxtDhw41vLy8DAcHB7vb4eqeWxobhmH8+OOPRnBwsFG8eHHD3d3daNOmjbFz5067Mcm36t27d6/d8tTqfJC0bmkcGhqaYuy9tyU2DMM4ePCg0apVK8PNzc146KGHjMmTJxsff/zxA29pnMxqtRpFixY1JBmfffZZivVpzWnu3LlGxYoVDVdXV6NRo0bGtm3bUn2NU6dOGUFBQYarq6vh4+NjvPbaa0ZERESm38/M3NL4/fffN1q0aGGUKVPGKFKkiOHl5WV07tzZ7pbRD/LEE08Y7dq1S7E8vcc/rVsaJ7//qT3CwsLsxs6bN89wd3c3rFZruusGgPyEjGSPjERGMozCmZGSj21aj3v/bZKRkN0cDCMbr0oHFCAVKlRQrVq1tHr16twuBSg0vvvuO7Vu3VrHjx9P9a4xZqhfv75at26tWbNm5crrA0BeR0YCzEdGQkHENaQAAHnGY489pvbt2+fazxLWr1+vEydOPPCCqgAAAGYiI6Eg4gwpIA3p+fYvNjb2vvsoWrSoPDw8srs03OXq1au6evXqfcd4eXmleetiPFh8fLxu3Lhx3zHpvYAtACD/IyPlD2SknEdGArKGi5oDWeDn53ff9WFhYVq4cKE5xRRSM2bM0KRJk+47JiYmJt23oEZKL7/8shYtWnTfMXy3AQC4Gxkp95GRch4ZCciaDJ0hNW/ePM2bN892G9JHHnlE48ePV4cOHSRJrVu31tatW+22GThwoObPn297fubMGb300kv69ttvVbx4cYWFhWnKlCkqUuTv3tiWLVs0YsQIHTlyRP7+/nr99dfVu3dvu/3OmTNH06dPV2xsrOrWrav//Oc/atKkSUbnD2TJpk2b7ru+bNmyCggIMKmawunnn39OcQvce7Vo0UJubm4mVVTwHD16VGfPnr3vmKCgIJOqAfImMhJgj4yU+8hIOY+MBGRNhhpS33zzjZycnFS1alUZhqFFixZp+vTp2r9/vx555BG1bt1a1apV05tvvmnbxt3dXRaLRZKUmJioevXqydfXV9OnT9e5c+fUq1cv9e/fX++8846kO136WrVqadCgQerXr58iIyM1bNgwrVmzRsHBwZKkpUuXqlevXpo/f76aNm2q2bNna/ny5YqOjpa3t3d2Hh8AAIAHIiMBAABkTJavIVWqVClNnz5dffv2VevWrVWvXj3Nnj071bHr1q1Tp06ddPbsWfn4+EiS5s+fr9GjR+vChQtycXHR6NGjtWbNGh0+fNi2Xc+ePXX58mWtX79ektS0aVM1btxY77//viQpKSlJ/v7+Gjp0qMaMGZOV6QAAAGQLMhIAAEDaMn0NqcTERC1fvlzXrl1TYGCgbfnixYv12WefydfXV507d9Ybb7whd3d3SdKuXbtUu3ZtW9CSpODgYL300ks6cuSI6tevr127dqU4rTE4OFjDhg2TJCUkJGjfvn12V/d3dHRUUFCQdu3alaE5JCUl6ezZsypRooQcHBwyeggAAEA+ZBiGrly5orJly8rRMftvOExGAgAA+VFOZ6R7ZbghdejQIQUGBuqvv/5S8eLFtWLFCtvvv5999lmVL19eZcuW1cGDBzV69GhFR0frq6++knTnbht3By1JtufJd+JIa4zVatWNGzd06dIlJSYmpjrm+PHj96395s2bunnzpu3577//zm/XAQAopH799VeVK1cu2/ZHRgIAAAVBdmektGS4IVW9enVFRUUpPj5eX3zxhcLCwrR161YFBARowIABtnG1a9eWn5+f2rVrp1OnTqly5crZWnhmTJkyJdU7Tfz666+2azgAAICCzWq1yt/fXyVKlMjW/ZKRAABAfpZTGSktGW5Iubi4qEqVKpKkhg0bau/evXr33Xf1wQcfpBjbtGlTSdLJkydVuXJl+fr6as+ePXZjzp8/L0ny9fW1/d/kZXePsVgsKlq0qJycnOTk5JTqmOR9pGXs2LEaMWKE7XnywbZYLIQtAAAKmez+KRoZCQAAFARm/Vw/yz8KTEpKsjvF+25RUVGSJD8/P0lSYGCgDh06pLi4ONuYiIgIWSwW22nhgYGBioyMtNtPRESE7RoMLi4uatiwod2YpKQkRUZG2l2nITWurq62YEXAAgAAOYmMBAAAkLYMnSE1duxYdejQQQ8//LCuXLmiJUuWaMuWLdqwYYNOnTqlJUuWqGPHjipdurQOHjyo4cOHq2XLlqpTp44kqX379goICNALL7ygadOmKTY2Vq+//roGDx4sV1dXSdKgQYP0/vvv69VXX9WLL76ozZs3a9myZVqzZo2tjhEjRigsLEyNGjVSkyZNNHv2bF27dk19+vTJxkMDAACQPmQkAACADDIy4MUXXzTKly9vuLi4GF5eXka7du2MjRs3GoZhGGfOnDFatmxplCpVynB1dTWqVKlijBo1yoiPj7fbx+nTp40OHToYRYsWNcqUKWO88sorxq1bt+zGfPvtt0a9evUMFxcXo1KlSkZ4eHiKWv7zn/8YDz/8sOHi4mI0adLE+P777zMyFcMwDCM+Pt6QlKJGAABQcOXE5z8ZCQAA5Hdmf/47GIZh5G5LLPdYrVZ5eHgoPj6eU9MBACkkJibq1q1buV0GMsjZ2VlOTk5prufz/8E4RgCA+yEj5U95LSNl+KLmAAAUdIZhKDY2VpcvX87tUpBJnp6e8vX1Ne2inAAAFAZkpPwvL2UkGlIAANwjOWh5e3vL3d09T3xgI30Mw9D169dtFwdPvmg4AADIOjJS/pUXMxINKQAA7pKYmGgLWqVLl87tcpAJRYsWlSTFxcXJ29v7vqemAwCA9CEj5X95LSM55uqrAwCQxyRfD8Hd3T2XK0FWJL9/XN8CAIDsQUYqGPJSRqIhBQBAKjgFPX/j/QMAIGfwGZu/5aX3j4YUAAAAAAAATEVDCgAAAAAAAKbiouYAAKTTrfXbTXst55AW6R77oFOvJ0yYoIkTJ2axosxxcHDQihUr1KVLl0zvY8GCBVqyZIl+/PFHXblyRZcuXZKnp2e21QgAALLGzIwkkZOSXbx4URMmTNDGjRt15swZeXl5qUuXLpo8ebI8PDyyt9gcQEMKAIB87ty5c7b/Xrp0qcaPH6/o6GjbsuLFi2dofwkJCXJxccm2+rLq+vXrCgkJUUhIiMaOHZvb5QAAgHykIOeks2fP6uzZs5oxY4YCAgL0yy+/aNCgQTp79qy++OKL3C7vgfjJHoA03Vq/PcUDQN7j6+tre3h4eMjBwcH2/Nq1a3ruuefk4+Oj4sWLq3Hjxtq0aZPd9hUqVNDkyZPVq1cvWSwWDRgwQJL04Ycfyt/fX+7u7uratatmzpyZ4sykr7/+Wg0aNJCbm5sqVaqkSZMm6fbt27b9SlLXrl3l4OBge37gwAG1adNGJUqUkMViUcOGDfXDDz+kOb9hw4ZpzJgxatasWfYcMADIIjISkH8U5JxUq1Ytffnll+rcubMqV66stm3b6u2339Y333xje528jIYUAAAF2NWrV9WxY0dFRkZq//79CgkJUefOnXXmzBm7cTNmzFDdunW1f/9+vfHGG9qxY4cGDRqkl19+WVFRUXr88cf19ttv223z3XffqVevXnr55Zd19OhRffDBB1q4cKFt3N69eyVJ4eHhOnfunO35c889p3Llymnv3r3at2+fxowZI2dnZxOOBgAAwN8KYk6Kj4+XxWJRkSJ5/wdxeb9CAACQaXXr1lXdunVtzydPnqwVK1Zo1apVGjJkiG1527Zt9corr9iejxs3Th06dNDIkSMlSdWqVdPOnTu1evVq25hJkyZpzJgxCgsLkyRVqlRJkydP1quvvqoJEybIy8tLkuTp6SlfX1/bdmfOnNGoUaNUo0YNSVLVqlVzYOYAAAD3V9By0h9//KHJkyfbzuLK6zhDCgCAAuzq1asaOXKkatasKU9PTxUvXlzHjh1L8c1fo0aN7J5HR0erSZMmdsvufX7gwAG9+eabKl68uO3Rv39/nTt3TtevX0+zphEjRqhfv34KCgrS1KlTderUqSzOEgAAIOMKUk6yWq0KDQ1VQEBArl2kPaNoSAEAUICNHDlSK1as0DvvvKPvvvtOUVFRql27thISEuzGFStWLMP7vnr1qiZNmqSoqCjb49ChQzpx4oTc3NzS3G7ixIk6cuSIQkNDtXnzZgUEBGjFihUZfn0AAICsKCg56cqVKwoJCVGJEiW0YsWKfHMpBH6yBwBAAbZjxw717t1bXbt2lXQnHJ0+ffqB21WvXt12LYNk9z5v0KCBoqOjVaVKlTT34+zsrMTExBTLq1WrpmrVqmn48OF65plnFB4ebqsRAADADAUhJ1mtVgUHB8vV1VWrVq26b7Mrr6EhBQBAAVa1alV99dVX6ty5sxwcHPTGG28oKSnpgdsNHTpULVu21MyZM9W5c2dt3rxZ69atk4ODg23M+PHj1alTJz388MPq3r27HB0ddeDAAR0+fFhvvfWWpDt3kImMjNSjjz4qV1dXubm5adSoUerevbsqVqyo3377TXv37lW3bt3SrCU2NlaxsbE6efKkJOnQoUMqUaKEHn74YZUqVSqLRwgAABRW+T0nWa1WtW/fXtevX9dnn30mq9Uqq9UqSfLy8pKTk1M2HKWcw0/2AAAowGbOnKmSJUuqefPm6ty5s4KDg9WgQYMHbvfoo49q/vz5mjlzpurWrav169dr+PDhdt+6BQcHa/Xq1dq4caMaN26sZs2aadasWSpfvrxtzL///W9FRETI399f9evXl5OTk/7880/16tVL1apV09NPP60OHTpo0qRJadYyf/581a9fX/3795cktWzZUvXr19eqVauycGQAAEBhl99z0o8//qjdu3fr0KFDqlKlivz8/GyPX3/9NesHKIc5GIZh5HYRucVqtcrDw8N2W0QA9m6t355imXNIi1yoBDDPX3/9pZiYGFWsWDFfnfJshv79++v48eP67rvvcruUB7rf+8jn/4NxjID7IyOhMCIj3V9+yUl5KSPxkz0AAJCqGTNm6PHHH1exYsW0bt06LVq0SHPnzs3tsgAAAHIdOSnraEgBAIBU7dmzR9OmTdOVK1dUqVIlvffee+rXr19ulwUAAJDryElZR0MKAACkatmyZbldAgAAQJ5ETso6LmoOAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMVSS3CwAAIL849cMHpr1W5UYDMzS+d+/eWrRokSSpSJEiKlWqlOrUqaNnnnlGvXv3lqNj/v0O6siRIxo/frz27dunX375RbNmzdKwYcNyuywAAPD/mZmRJHLS3T788EN9+umnOnz4sCSpYcOGeuedd9SkSZNcruzB8u9RBwAAdkJCQnTu3DmdPn1a69atU5s2bfTyyy+rU6dOun37dm6Xl2nXr19XpUqVNHXqVPn6+uZ2OQAAIB8qqDlpy5YteuaZZ/Ttt99q165d8vf3V/v27fX777/ndmkPREMKAIACwtXVVb6+vnrooYfUoEEDvfbaa/r666+1bt06LVy40Dbu8uXL6tevn7y8vGSxWNS2bVsdOHDAbl/ffPONGjduLDc3N5UpU0Zdu3a1rbt06ZJ69eqlkiVLyt3dXR06dNCJEyckSdeuXZPFYtEXX3xht7+VK1eqWLFiunLlihISEjRkyBD5+fnJzc1N5cuX15QpU9KcV+PGjTV9+nT17NlTrq6u2XCkAABAYVNQc9LixYv1z3/+U/Xq1VONGjX00UcfKSkpSZGRkdlw1HIWDSkAAAqwtm3bqm7duvrqq69sy/7xj38oLi5O69at0759+9SgQQO1a9dOFy9elCStWbNGXbt2VceOHbV//35FRkbanfbdu3dv/fDDD1q1apV27dolwzDUsWNH3bp1S8WKFVPPnj0VHh5uV0d4eLi6d++uEiVK6L333tOqVau0bNkyRUdHa/HixapQoYIpxwMAACBZQcxJ169f161bt1SqVKmsHRwTcA0pAAAKuBo1aujgwYOSpO3bt2vPnj2Ki4uznW00Y8YMrVy5Ul988YUGDBigt99+Wz179tSkSZNs+6hbt64k6cSJE1q1apV27Nih5s2bS7rzzZy/v79Wrlypf/zjH+rXr5+aN2+uc+fOyc/PT3FxcVq7dq02bdokSTpz5oyqVq2qFi1ayMHBQeXLlzfzcAAAANgUtJw0evRolS1bVkFBQVk+NjmNM6QAACjgDMOQg4ODJOnAgQO6evWqSpcureLFi9seMTExOnXqlCQpKipK7dq1S3Vfx44dU5EiRdS0aVPbstKlS6t69eo6duyYJKlJkyZ65JFHbBcP/eyzz1S+fHm1bNlS0p1vDqOiolS9enX961//0saNG3Ns7gAAAPdTkHLS1KlT9fnnn2vFihVyc3PL+MEwGWdIAQBQwB07dkwVK1aUJF29elV+fn7asmVLinGenp6SpKJFi2b5Nfv166c5c+ZozJgxCg8PV58+fWxhr0GDBoqJidG6deu0adMmPf300woKCkpxPQUAAICcVlBy0owZMzR16lRt2rRJderUyXKNZsjQGVLz5s1TnTp1ZLFYZLFYFBgYqHXr1tnW//XXXxo8eLCtm9itWzedP3/ebh9nzpxRaGio3N3d5e3trVGjRqW4ov2WLVvUoEEDubq6qkqVKnYXGEs2Z84cVahQQW5ubmratKn27NmTkakAyKDTl9fp9OV1OvXDB6bf1hVA5m3evFmHDh1St27dJN0JObGxsSpSpIiqVKli9yhTpowkqU6dOmleCLNmzZq6ffu2du/ebVv2559/Kjo6WgEBAbZlzz//vH755Re99957Onr0qMLCwuz2Y7FY1KNHD3344YdaunSpvvzyS9u1GfIjMhJQeJGRgPyroOSkadOmafLkyVq/fr0aNWqU6eNhtgw1pMqVK6epU6dq3759+uGHH9S2bVs9+eSTOnLkiCRp+PDh+uabb7R8+XJt3bpVZ8+e1VNPPWXbPjExUaGhoUpISNDOnTu1aNEiLVy4UOPHj7eNiYmJUWhoqNq0aaOoqCgNGzZM/fr104YNG2xjli5dqhEjRmjChAn68ccfVbduXQUHBysuLi6rxwMAgHzr5s2bio2N1e+//64ff/xR77zzjp588kl16tRJvXr1kiQFBQUpMDBQXbp00caNG3X69Gnt3LlT48aN0w8//CBJmjBhgv73v/9pwoQJOnbsmA4dOqT/+7//kyRVrVpVTz75pPr376/t27frwIEDev755/XQQw/pySeftNVSsmRJPfXUUxo1apTat2+vcuXK2dbNnDlT//vf/3T8+HH99NNPWr58uXx9fW3fPN4rISFBUVFRioqKUkJCgn7//XdFRUXp5MmTOXQkM46MBABA3lZQc9L//d//6Y033tAnn3yiChUqKDY2VrGxsbp69WoOHcnsk6GGVOfOndWxY0dVrVpV1apV09tvv63ixYvr+++/V3x8vD7++GPNnDlTbdu2VcOGDRUeHq6dO3fq+++/lyRt3LhRR48e1WeffaZ69eqpQ4cOmjx5subMmaOEhARJ0vz581WxYkX9+9//Vs2aNTVkyBB1795ds2bNstUxc+ZM9e/fX3369FFAQIDmz58vd3d3ffLJJ9l4aAAAyF/Wr18vPz8/VahQQSEhIfr222/13nvv6euvv5aTk5MkycHBQWvXrlXLli3Vp08fVatWTT179tQvv/wiHx8fSVLr1q21fPlyrVq1SvXq1VPbtm3tzrIJDw9Xw4YN1alTJwUGBsowDK1du1bOzs529fTt21cJCQl68cUX7ZaXKFFC06ZNU6NGjdS4cWOdPn1aa9eulaNj6rHk7Nmzql+/vurXr69z585pxowZql+/vvr165edhy9LyEgAAORtBTUnzZs3TwkJCerevbv8/PxsjxkzZmTn4csRDoZhGJnZMDExUcuXL1dYWJj279+v2NhYtWvXTpcuXbLr3JUvX17Dhg3T8OHDNX78eK1atUpRUVG29TExMapUqZJ+/PFH1a9fXy1btlSDBg00e/Zs25jw8HANGzZM8fHxSkhIkLu7u7744gt16dLFNiYsLEyXL1/W119/nWbNN2/e1M2bN23PrVar/P39FR8fL4vFkpnDABRot9Zvt/336ct3fnriWOVhSVLlRgNzpSYgp/3111+KiYlRxYoV88XFIPOy//73vxo+fLjOnj0rFxcXU1/7fu+j1WqVh4dHjn3+k5GAgo+MhMKIjJS9cisn5WZGuleG77J36NAhFS9eXK6urho0aJBWrFihgIAAxcbGysXFJcVpZD4+PoqNjZUkxcbG2rqKd69PXne/MVarVTdu3NAff/yhxMTEVMck7yMtU6ZMkYeHh+3h7++f0ekDAIAHuH79uk6dOqWpU6dq4MCBpjejcgsZCQAAPEhhzUmpyXBDqnr16oqKitLu3bv10ksvKSwsTEePHs2J2rLd2LFjFR8fb3v8+uuvuV0SAAAFzrRp01SjRg35+vpq7NixuV2OachIAADgQQprTkpNkYxu4OLioipVqkiSGjZsqL179+rdd99Vjx49lJCQoMuXL9t9A3j+/Hn5+vpKknx9fVPc6SX5DjN3j7n3rjPnz5+XxWJR0aJF5eTkJCcnp1THJO8jLa6urnJ1dc3olAEAQAZMnDhREydOzO0yTEdGAgAAD1JYc1JqMnyG1L2SkpJ08+ZNNWzYUM7Ozna3P4yOjtaZM2cUGBgoSQoMDNShQ4fs7vQSEREhi8ViuwViYGBgilsoRkRE2Pbh4uKihg0b2o1JSkpSZGSkbQwAAEBuIyMBAACkLUNnSI0dO1YdOnTQww8/rCtXrmjJkiXasmWLNmzYIA8PD/Xt21cjRoxQqVKlZLFYNHToUAUGBqpZs2aSpPbt2ysgIEAvvPCCpk2bptjYWL3++usaPHiw7Vu5QYMG6f3339err76qF198UZs3b9ayZcu0Zs0aWx0jRoxQWFiYGjVqpCZNmmj27Nm6du2a+vTpk42HBgBQmGXynh/II8x+/8hIAIDCgoyUv+Wl9y9DDam4uDj16tVL586dk4eHh+rUqaMNGzbo8ccflyTNmjVLjo6O6tatm27evKng4GDNnTvXtr2Tk5NWr16tl156SYGBgSpWrJjCwsL05ptv2sZUrFhRa9as0fDhw/Xuu++qXLly+uijjxQcHGwb06NHD124cEHjx49XbGys6tWrp/Xr16e4iCcAABmVfEve69evq2jRorlcDTLr+vXrkpTiFss5hYwEACjoyEgFg9kZ6X4cjLzUHjOZ2bc0BPIbbmmMwurcuXO6fPmyvL295e7uLgcHh9wuCelkGIauX7+uuLg4eXp6ys/PL8UYPv8fjGME3B8ZCYUVGSn/yosZKcMXNQcAoKBLvgD03dfzQf7i6en5wAt5AwCAjCEj5X95KSPRkAIA4B4ODg7y8/OTt7e3bt26ldvlIIOcnZ3l5OSU22UAAFDgkJHyt7yWkWhIAQCQBicnpzz1oQ0AAJAXkJGQHRxzuwAAAAAAAAAULjSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqWhIAQAAAAAAwFQ0pAAAAAAAAGAqGlIAAAAAAAAwFQ0pAAAAAAAAmIqGFAAAAAAAAExFQwoAAAAAAACmoiEFAAAAAAAAU9GQAgAAAAAAgKloSAEAAAAAAMBUNKQAAAAAAABgKhpSAAAAAAAAMBUNKQAAAAAAAJiKhhQAAAAAAABMRUMKAAAAAAAApqIhBQAAAAAAAFPRkAIAAAAAAICpaEgBAAAAAADAVDSkAAAAAAAAYCoaUgAAAAAAADAVDSkAAAAAAACYioYUAAAAAAAATEVDCgAAAAAAAKaiIQUAAAAAAABT0ZACAAAAAACAqTLUkJoyZYoaN26sEiVKyNvbW126dFF0dLTdmNatW8vBwcHuMWjQILsxZ86cUWhoqNzd3eXt7a1Ro0bp9u3bdmO2bNmiBg0ayNXVVVWqVNHChQtT1DNnzhxVqFBBbm5uatq0qfbs2ZOR6QAAAGQLMhIAAEDGZKghtXXrVg0ePFjff/+9IiIidOvWLbVv317Xrl2zG9e/f3+dO3fO9pg2bZptXWJiokJDQ5WQkKCdO3dq0aJFWrhwocaPH28bExMTo9DQULVp00ZRUVEaNmyY+vXrpw0bNtjGLF26VCNGjNCECRP0448/qm7dugoODlZcXFxmjwUAAECmkJEAAAAyxsEwDCOzG1+4cEHe3t7aunWrWrZsKenOt3/16tXT7NmzU91m3bp16tSpk86ePSsfHx9J0vz58zV69GhduHBBLi4uGj16tNasWaPDhw/btuvZs6cuX76s9evXS5KaNm2qxo0b6/3335ckJSUlyd/fX0OHDtWYMWPSVb/VapWHh4fi4+NlsVgyexiAAuvW+u22/z59eZ0kybHKw5Kkyo0G5kpNAJBVZnz+k5GAgo2MBKAgMvvzP0vXkIqPj5cklSpVym754sWLVaZMGdWqVUtjx47V9evXbet27dql2rVr24KWJAUHB8tqterIkSO2MUFBQXb7DA4O1q5duyRJCQkJ2rdvn90YR0dHBQUF2cak5ubNm7JarXYPAACA7EZGAgAAuL8imd0wKSlJw4YN06OPPqpatWrZlj/77LMqX768ypYtq4MHD2r06NGKjo7WV199JUmKjY21C1qSbM9jY2PvO8ZqterGjRu6dOmSEhMTUx1z/PjxNGueMmWKJk2alNkpAwAAPBAZCQAA4MEy3ZAaPHiwDh8+rO3bt9stHzBggO2/a9euLT8/P7Vr106nTp1S5cqVM19pNhg7dqxGjBhhe261WuXv75+LFQEAgIKGjAQAAPBgmWpIDRkyRKtXr9a2bdtUrly5+45t2rSpJOnkyZOqXLmyfH19U9zp5fz585IkX19f2/9NXnb3GIvFoqJFi8rJyUlOTk6pjkneR2pcXV3l6uqavkkCAABkEBkJAAAgfTJ0DSnDMDRkyBCtWLFCmzdvVsWKFR+4TVRUlCTJz89PkhQYGKhDhw7Z3eklIiJCFotFAQEBtjGRkZF2+4mIiFBgYKAkycXFRQ0bNrQbk5SUpMjISNsYAAAAs5CRAAAAMiZDZ0gNHjxYS5Ys0ddff60SJUrYrmfg4eGhokWL6tSpU1qyZIk6duyo0qVL6+DBgxo+fLj+H3t3HpZVnf9//AXI4naDGyCJirvkjomYWikjLjlRNmk5ieaSDTYpLWo5LlljX1vUJtOcJnWanNQmzVxQwtRM0jQplzQ1jEpvtAxuVxA4vz/8cfIWVG6WA+LzcV33NdznvM+5P59zG/d7XvfhnO7du6tNmzaSpF69eik0NFQPP/ywZs6cKbvdrkmTJik2Ntb8Zm706NF644039Mwzz+iRRx7Rxo0btWzZMq1Zs8YcS1xcnGJiYtSxY0d16tRJs2fP1tmzZzVs2LCSOjYAAACFQo8EAADgGpcCqXnz5km6dNviyy1cuFBDhw6Vl5eXPvnkE7PxCQ4O1oABAzRp0iSz1sPDQ6tXr9Zjjz2miIgIVa1aVTExMXr++efNmpCQEK1Zs0bjxo3TnDlzVK9ePb399tuKiooyawYOHKiTJ09q8uTJstvtateuneLj4/NdxBMAAKC00SMBAAC4xs0wDKOsB1FWHA6HfH19lZGRIZvNVtbDAcqdi/G/X5D3aPo6SZJ7k/qSpMYdHy2TMQFAcfH5f30cI+Da6JEAVERWf/67dA0pAAAAAAAAoLgIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGAplwKpGTNm6LbbblP16tXl7++v6OhoHTx40KnmwoULio2NVa1atVStWjUNGDBAaWlpTjWpqanq16+fqlSpIn9/fz399NPKzs52qtm0aZM6dOggb29vNWnSRIsWLco3nrlz56phw4by8fFReHi4duzY4cp0AAAASgQ9EgAAgGtcCqQ2b96s2NhYffHFF0pISNDFixfVq1cvnT171qwZN26cPv74Yy1fvlybN2/WsWPHdN9995nrc3Jy1K9fP2VlZWnbtm1avHixFi1apMmTJ5s1KSkp6tevn+666y4lJydr7NixGjFihNavX2/WLF26VHFxcZoyZYq++uortW3bVlFRUTpx4kRxjgcAAIDL6JEAAABc42YYhlHUjU+ePCl/f39t3rxZ3bt3V0ZGhurUqaMlS5bo/vvvlyQdOHBALVu2VFJSkjp37qx169bp7rvv1rFjxxQQECBJmj9/vsaPH6+TJ0/Ky8tL48eP15o1a7R3717ztQYNGqT09HTFx8dLksLDw3XbbbfpjTfekCTl5uYqODhYjz/+uCZMmFCo8TscDvn6+iojI0M2m62ohwGosC7GbzV/Ppq+TpLk3qS+JKlxx0fLZEwAUFxWfP7TIwEVGz0SgIrI6s//Yl1DKiMjQ5JUs2ZNSdKuXbt08eJFRUZGmjUtWrRQ/fr1lZSUJElKSkpS69atzUZLkqKiouRwOLRv3z6z5vJ95NXk7SMrK0u7du1yqnF3d1dkZKRZAwAAUFbokQAAAK6tUlE3zM3N1dixY3X77berVatWkiS73S4vLy/5+fk51QYEBMhut5s1lzdaeevz1l2rxuFw6Pz58/rtt9+Uk5NTYM2BAweuOubMzExlZmaazx0OhwszBgAAuD56JAAAgOsr8hlSsbGx2rt3r95///2SHE+pmjFjhnx9fc1HcHBwWQ8JAABUMPRIAAAA11ekQGrMmDFavXq1Pv30U9WrV89cHhgYqKysLKWnpzvVp6WlKTAw0Ky58o4yec+vV2Oz2VS5cmXVrl1bHh4eBdbk7aMgEydOVEZGhvn48ccfXZs4AADANdAjAQAAFI5LgZRhGBozZoxWrFihjRs3KiQkxGl9WFiYPD09lZiYaC47ePCgUlNTFRERIUmKiIjQnj17nO70kpCQIJvNptDQULPm8n3k1eTtw8vLS2FhYU41ubm5SkxMNGsK4u3tLZvN5vQAAAAoLnokAAAA17h0DanY2FgtWbJEH330kapXr25ez8DX11eVK1eWr6+vhg8frri4ONWsWVM2m02PP/64IiIi1LlzZ0lSr169FBoaqocfflgzZ86U3W7XpEmTFBsbK29vb0nS6NGj9cYbb+iZZ57RI488oo0bN2rZsmVas2aNOZa4uDjFxMSoY8eO6tSpk2bPnq2zZ89q2LBhJXVsAAAACoUeCQAAwDUuBVLz5s2TJN15551OyxcuXKihQ4dKkmbNmiV3d3cNGDBAmZmZioqK0ptvvmnWenh4aPXq1XrssccUERGhqlWrKiYmRs8//7xZExISojVr1mjcuHGaM2eO6tWrp7fffltRUVFmzcCBA3Xy5ElNnjxZdrtd7dq1U3x8fL6LeAIAAJQ2eiQAAADXuBmGYZT1IMqKw+GQr6+vMjIyODUdKMDF+K3mz0fT10mS3JvUlyQ17vhomYwJAIqLz//r4xgB10aPBKAisvrzv8h32QMAAAAAAACKgkAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKVcDqS2bNmi/v37KygoSG5ublq5cqXT+qFDh8rNzc3p0bt3b6eaU6dOafDgwbLZbPLz89Pw4cN15swZp5pvvvlG3bp1k4+Pj4KDgzVz5sx8Y1m+fLlatGghHx8ftW7dWmvXrnV1OgAAACWCHgkAAKDwXA6kzp49q7Zt22ru3LlXrendu7eOHz9uPv773/86rR88eLD27dunhIQErV69Wlu2bNGoUaPM9Q6HQ7169VKDBg20a9cuvfzyy5o6daoWLFhg1mzbtk0PPvighg8frt27dys6OlrR0dHau3evq1MCAAAoNnokAACAwnMzDMMo8sZublqxYoWio6PNZUOHDlV6enq+bwXzfPvttwoNDdWXX36pjh07SpLi4+PVt29f/fTTTwoKCtK8efP03HPPyW63y8vLS5I0YcIErVy5UgcOHJAkDRw4UGfPntXq1avNfXfu3Fnt2rXT/PnzCzV+h8MhX19fZWRkyGazFeEIABXbxfit5s9H09dJktyb1JckNe74aJmMCQCKy4rPf3okoGKjRwJQEVn9+V8q15DatGmT/P391bx5cz322GP69ddfzXVJSUny8/MzGy1JioyMlLu7u7Zv327WdO/e3Wy0JCkqKkoHDx7Ub7/9ZtZERkY6vW5UVJSSkpJKY0oAAADFRo8EAABwSaWS3mHv3r113333KSQkREeOHNGzzz6rPn36KCkpSR4eHrLb7fL393ceRKVKqlmzpux2uyTJbrcrJCTEqSYgIMBcV6NGDdntdnPZ5TV5+yhIZmamMjMzzecOh6NYcwUAACgseiQAAIDflXggNWjQIPPn1q1bq02bNmrcuLE2bdqknj17lvTLuWTGjBmaNm1amY4BAADcnOiRAAAAflcqf7J3uUaNGql27do6fPiwJCkwMFAnTpxwqsnOztapU6cUGBho1qSlpTnV5D2/Xk3e+oJMnDhRGRkZ5uPHH38s3uQAAACKiB4JAADczEo9kPrpp5/066+/qm7dupKkiIgIpaena9euXWbNxo0blZubq/DwcLNmy5YtunjxolmTkJCg5s2bq0aNGmZNYmKi02slJCQoIiLiqmPx9vaWzWZzegAAAJQFeiQAAHAzczmQOnPmjJKTk5WcnCxJSklJUXJyslJTU3XmzBk9/fTT+uKLL3T06FElJibqnnvuUZMmTRQVFSVJatmypXr37q2RI0dqx44d+vzzzzVmzBgNGjRIQUFBkqSHHnpIXl5eGj58uPbt26elS5dqzpw5iouLM8fxxBNPKD4+Xq+++qoOHDigqVOnaufOnRozZkwJHBYAAADX0CMBAAAUnsuB1M6dO9W+fXu1b99ekhQXF6f27dtr8uTJ8vDw0DfffKM//vGPatasmYYPH66wsDB99tln8vb2Nvfx3nvvqUWLFurZs6f69u2rrl27asGCBeZ6X19fbdiwQSkpKQoLC9OTTz6pyZMna9SoUWZNly5dtGTJEi1YsEBt27bVBx98oJUrV6pVq1bFOR4AAABFQo8EAABQeG6GYRhlPYiy4nA45Ovrq4yMDE5NBwpwMX6r+fPR9HWSJPcm9SVJjTs+WiZjAoDi4vP/+jhGwLXRIwGoiKz+/C/1a0gBAAAAAAAAlyOQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGAplwOpLVu2qH///goKCpKbm5tWrlzptN4wDE2ePFl169ZV5cqVFRkZqUOHDjnVnDp1SoMHD5bNZpOfn5+GDx+uM2fOONV888036tatm3x8fBQcHKyZM2fmG8vy5cvVokUL+fj4qHXr1lq7dq2r0wEAACgR9EgAAACF53IgdfbsWbVt21Zz584tcP3MmTP1+uuva/78+dq+fbuqVq2qqKgoXbhwwawZPHiw9u3bp4SEBK1evVpbtmzRqFGjzPUOh0O9evVSgwYNtGvXLr388suaOnWqFixYYNZs27ZNDz74oIYPH67du3crOjpa0dHR2rt3r6tTAgAAKDZ6JAAAgMJzMwzDKPLGbm5asWKFoqOjJV365i8oKEhPPvmknnrqKUlSRkaGAgICtGjRIg0aNEjffvutQkND9eWXX6pjx46SpPj4ePXt21c//fSTgoKCNG/ePD333HOy2+3y8vKSJE2YMEErV67UgQMHJEkDBw7U2bNntXr1anM8nTt3Vrt27TR//vxCjd/hcMjX11cZGRmy2WxFPQxAhXUxfqv589H0dZIk9yb1JUmNOz5aJmMCgOKy4vOfHgmo2OiRAFREVn/+l+g1pFJSUmS32xUZGWku8/X1VXh4uJKSkiRJSUlJ8vPzMxstSYqMjJS7u7u2b99u1nTv3t1stCQpKipKBw8e1G+//WbWXP46eTV5rwMAAFBe0CMBAAA4q1SSO7Pb7ZKkgIAAp+UBAQHmOrvdLn9/f+dBVKqkmjVrOtWEhITk20feuho1ashut1/zdQqSmZmpzMxM87nD4XBlegAAAEVCjwQAAODsprrL3owZM+Tr62s+goODy3pIAAAAZY4eCQAAWK1EA6nAwEBJUlpamtPytLQ0c11gYKBOnDjhtD47O1unTp1yqiloH5e/xtVq8tYXZOLEicrIyDAfP/74o6tTBAAAcBk9EgAAgLMSDaRCQkIUGBioxMREc5nD4dD27dsVEREhSYqIiFB6erp27dpl1mzcuFG5ubkKDw83a7Zs2aKLFy+aNQkJCWrevLlq1Khh1lz+Onk1ea9TEG9vb9lsNqcHAABAaaNHAgAAcOZyIHXmzBklJycrOTlZ0qWLdCYnJys1NVVubm4aO3asXnjhBa1atUp79uzRkCFDFBQUZN5lpmXLlurdu7dGjhypHTt26PPPP9eYMWM0aNAgBQUFSZIeeugheXl5afjw4dq3b5+WLl2qOXPmKC4uzhzHE088ofj4eL366qs6cOCApk6dqp07d2rMmDHFPyoAAAAuokcCAAAoPJcvar5z507ddddd5vO8BigmJkaLFi3SM888o7Nnz2rUqFFKT09X165dFR8fLx8fH3Ob9957T2PGjFHPnj3l7u6uAQMG6PXXXzfX+/r6asOGDYqNjVVYWJhq166tyZMna9SoUWZNly5dtGTJEk2aNEnPPvusmjZtqpUrV6pVq1ZFOhAAAADFQY8EAABQeG6GYRhlPYiy4nA45Ovrq4yMDE5NBwpwMX6r+fPR9HWSJPcm9SVJjTs+WiZjAoDi4vP/+jhGwLXRIwGoiKz+/L+p7rIHAAAAAACAskcgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSJR5ITZ06VW5ubk6PFi1amOsvXLig2NhY1apVS9WqVdOAAQOUlpbmtI/U1FT169dPVapUkb+/v55++mllZ2c71WzatEkdOnSQt7e3mjRpokWLFpX0VAAAAEoMPRIAAMDvSuUMqVtvvVXHjx83H1u3bjXXjRs3Th9//LGWL1+uzZs369ixY7rvvvvM9Tk5OerXr5+ysrK0bds2LV68WIsWLdLkyZPNmpSUFPXr10933XWXkpOTNXbsWI0YMULr168vjekAAACUCHokAACASyqVyk4rVVJgYGC+5RkZGfrXv/6lJUuWqEePHpKkhQsXqmXLlvriiy/UuXNnbdiwQfv379cnn3yigIAAtWvXTtOnT9f48eM1depUeXl5af78+QoJCdGrr74qSWrZsqW2bt2qWbNmKSoqqjSmBAAAUGz0SAAAAJeUyhlShw4dUlBQkBo1aqTBgwcrNTVVkrRr1y5dvHhRkZGRZm2LFi1Uv359JSUlSZKSkpLUunVrBQQEmDVRUVFyOBzat2+fWXP5PvJq8vZxNZmZmXI4HE4PAAAAq9AjAQAAXFLigVR4eLgWLVqk+Ph4zZs3TykpKerWrZtOnz4tu90uLy8v+fn5OW0TEBAgu90uSbLb7U6NVt76vHXXqnE4HDp//vxVxzZjxgz5+vqaj+Dg4OJOFwAAoFDokQAAAH5X4n+y16dPH/PnNm3aKDw8XA0aNNCyZctUuXLlkn45l0ycOFFxcXHmc4fDQcMFAAAsQY8EAADwu1L5k73L+fn5qVmzZjp8+LACAwOVlZWl9PR0p5q0tDTzegqBgYH57iiT9/x6NTab7ZoNnbe3t2w2m9MDAACgLNAjAQCAm1mpB1JnzpzRkSNHVLduXYWFhcnT01OJiYnm+oMHDyo1NVURERGSpIiICO3Zs0cnTpwwaxISEmSz2RQaGmrWXL6PvJq8fQAAAJR39EgAAOBmVuKB1FNPPaXNmzfr6NGj2rZtm+699155eHjowQcflK+vr4YPH664uDh9+umn2rVrl4YNG6aIiAh17txZktSrVy+Fhobq4Ycf1tdff63169dr0qRJio2Nlbe3tyRp9OjR+v777/XMM8/owIEDevPNN7Vs2TKNGzeupKcDAABQIuiRAAAAflfi15D66aef9OCDD+rXX39VnTp11LVrV33xxReqU6eOJGnWrFlyd3fXgAEDlJmZqaioKL355pvm9h4eHlq9erUee+wxRUREqGrVqoqJidHzzz9v1oSEhGjNmjUaN26c5syZo3r16untt9/mdsYAAKDcokcCAAD4nZthGEZZD6KsOBwO+fr6KiMjg2slAAW4GL/V/Plo+jpJknuT+pKkxh0fLZMxAUBx8fl/fRwj4NrokQBURFZ//pf6NaQAAAAAAACAyxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS1Uq6wEAAICK42L81iJt59m7awmPBAAAoPygR8qPQAoAABRJURsrAACAioweqXBu+EBq7ty5evnll2W329W2bVv94x//UKdOncp6WAAA3NBopG589EgAAJQ8eqSSc0MHUkuXLlVcXJzmz5+v8PBwzZ49W1FRUTp48KD8/f3LengAAFjqRm6QChp7RT5FvbTRIwEA8Dt6pPLphg6kXnvtNY0cOVLDhg2TJM2fP19r1qzRO++8owkTJpTx6AAAFdmN3Nig4qNHAgCUFXokFNYNG0hlZWVp165dmjhxornM3d1dkZGRSkpKKnCbzMxMZWZmms8zMjIkSQ6Ho3QHC1joYkLB//6vlJqRULQX+OaQJGn3N08VbXuUufq+f3Cp/sp/K65uDxSVZyl9Pud97huGUSr7L2v0SEDB6JFwPfRIuFFUlB7phg2kfvnlF+Xk5CggIMBpeUBAgA4cOFDgNjNmzNC0adPyLQ8ODi6VMQJA+fRqGW8PlA+nT5+Wr69vWQ+jxNEjAUBR0SMBknU90g0bSBXFxIkTFRcXZz7Pzc3VqVOnVKtWLbm5uZXJmBwOh4KDg/Xjjz/KZrOVyRhKG3OsGJhjxcAcKwbmWDyGYej06dMKCgoq0f3eyMpjjyRV/H/rFX1+EnOsKJhjxcAcK4aK1CPdsIFU7dq15eHhobS0NKflaWlpCgwMLHAbb29veXt7Oy3z8/MrrSG6xGazVdj/YPIwx4qBOVYMzLFiYI5FVxHPjMpT0XokqeL/W6/o85OYY0XBHCsG5lgxVIQeyd2yVyphXl5eCgsLU2JiorksNzdXiYmJioiIKMORAQAAlB16JAAAcCO4Yc+QkqS4uDjFxMSoY8eO6tSpk2bPnq2zZ8+ad5QBAAC4GdEjAQCA8u6GDqQGDhyokydPavLkybLb7WrXrp3i4+PzXcSzPPP29taUKVPynSZfkTDHioE5VgzMsWJgjrieitAjSRX/30FFn5/EHCsK5lgxMMeKoSLN0c2oqPc8BgAAAAAAQLl0w15DCgAAAAAAADcmAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpMrAqVOnNHjwYNlsNvn5+Wn48OE6c+bMdbdLSkpSjx49VLVqVdlsNnXv3l3nz5+3YMSuK+ocJckwDPXp00dubm5auXJl6Q60GFyd46lTp/T444+refPmqly5surXr6+//vWvysjIsHDU1zZ37lw1bNhQPj4+Cg8P144dO65Zv3z5crVo0UI+Pj5q3bq11q5da9FIi86VOf7zn/9Ut27dVKNGDdWoUUORkZHXPSblgavvY573339fbm5uio6OLt0BlgBX55ienq7Y2FjVrVtX3t7eatasWbn/9+rqHGfPnm3+fgkODta4ceN04cIFi0brmi1btqh///4KCgoq9O/6TZs2qUOHDvL29laTJk20aNGiUh8nrEePdG30SGWHHskZPVL5RY+U343UI0k3WZ9kwHK9e/c22rZta3zxxRfGZ599ZjRp0sR48MEHr7nNtm3bDJvNZsyYMcPYu3evceDAAWPp0qXGhQsXLBq1a4oyxzyvvfaa0adPH0OSsWLFitIdaDG4Osc9e/YY9913n7Fq1Srj8OHDRmJiotG0aVNjwIABFo766t5//33Dy8vLeOedd4x9+/YZI0eONPz8/Iy0tLQC6z///HPDw8PDmDlzprF//35j0qRJhqenp7Fnzx6LR154rs7xoYceMubOnWvs3r3b+Pbbb42hQ4cavr6+xk8//WTxyAvP1TnmSUlJMW655RajW7duxj333GPNYIvI1TlmZmYaHTt2NPr27Wts3brVSElJMTZt2mQkJydbPPLCc3WO7733nuHt7W289957RkpKirF+/Xqjbt26xrhx4yweeeGsXbvWeO6554wPP/ywUL/rv//+e6NKlSpGXFycsX//fuMf//iH4eHhYcTHx1szYFiGHuna6JHKBj1SfvRI5RM9Un43Wo9kGDdXn0QgZbH9+/cbkowvv/zSXLZu3TrDzc3N+Pnnn6+6XXh4uDFp0iQrhlhsRZ2jYRjG7t27jVtuucU4fvx4uW62ijPHyy1btszw8vIyLl68WBrDdEmnTp2M2NhY83lOTo4RFBRkzJgxo8D6Bx54wOjXr5/TsvDwcOPRRx8t1XEWh6tzvFJ2drZRvXp1Y/HixaU1xGIryhyzs7ONLl26GG+//bYRExNT7pstV+c4b948o1GjRkZWVpZVQyw2V+cYGxtr9OjRw2lZXFyccfvtt5fqOEtCYX7XP/PMM8att97qtGzgwIFGVFRUKY4MVqNHoke6HD2SteiRCkaPVP7cTD2SYVT8Pok/2bNYUlKS/Pz81LFjR3NZZGSk3N3dtX379gK3OXHihLZv3y5/f3916dJFAQEBuuOOO7R161arhu2SosxRks6dO6eHHnpIc+fOVWBgoBVDLbKizvFKGRkZstlsqlSpUmkMs9CysrK0a9cuRUZGmsvc3d0VGRmppKSkArdJSkpyqpekqKioq9aXtaLM8Urnzp3TxYsXVbNmzdIaZrEUdY7PP/+8/P39NXz4cCuGWSxFmeOqVasUERGh2NhYBQQEqFWrVvr73/+unJwcq4btkqLMsUuXLtq1a5d5yvr333+vtWvXqm/fvpaMubTdaL9vUDT0SPRIl6NHsg49Ej0SPdKN7Ub7nXO5sv0NfxOy2+3y9/d3WlapUiXVrFlTdru9wG2+//57SdLUqVP1yiuvqF27dvr3v/+tnj17au/evWratGmpj9sVRZmjJI0bN05dunTRPffcU9pDLLaizvFyv/zyi6ZPn65Ro0aVxhBd8ssvvygnJ0cBAQFOywMCAnTgwIECt7Hb7QXWF3b+VivKHK80fvx4BQUF5fuFX14UZY5bt27Vv/71LyUnJ1swwuIryhy///57bdy4UYMHD9batWt1+PBh/eUvf9HFixc1ZcoUK4btkqLM8aGHHtIvv/yirl27yjAMZWdna/To0Xr22WetGHKpu9rvG4fDofPnz6ty5cplNDKUJHokeqQ89EjWokeiR6JHurHdyH0SZ0iVkAkTJsjNze2aj8L+Qr9Sbm6uJOnRRx/VsGHD1L59e82aNUvNmzfXO++8U5LTuKbSnOOqVau0ceNGzZ49u2QH7aLSnOPlHA6H+vXrp9DQUE2dOrX4A0epe+mll/T+++9rxYoV8vHxKevhlIjTp0/r4Ycf1j//+U/Vrl27rIdTanJzc+Xv768FCxYoLCxMAwcO1HPPPaf58+eX9dBKzKZNm/T3v/9db775pr766it9+OGHWrNmjaZPn17WQwPokeiRXEKPdOOhR7px0SOhrHGGVAl58sknNXTo0GvWNGrUSIGBgTpx4oTT8uzsbJ06deqqp2DXrVtXkhQaGuq0vGXLlkpNTS36oF1UmnPcuHGjjhw5Ij8/P6flAwYMULdu3bRp06ZijLzwSnOOeU6fPq3evXurevXqWrFihTw9PYs77GKrXbu2PDw8lJaW5rQ8LS3tqvMJDAx0qb6sFWWOeV555RW99NJL+uSTT9SmTZvSHGaxuDrHI0eO6OjRo+rfv7+5LO//3FWqVEkHDx5U48aNS3fQLirK+1i3bl15enrKw8PDXNayZUvZ7XZlZWXJy8urVMfsqqLM8W9/+5sefvhhjRgxQpLUunVrnT17VqNGjdJzzz0nd/cb+/unq/2+sdls5fpbP1xCj3QJPRI9Ej1S2aFHokeqqD2SdGP3SQRSJaROnTqqU6fOdesiIiKUnp6uXbt2KSwsTNKlRiM3N1fh4eEFbtOwYUMFBQXp4MGDTsu/++479enTp/iDL6TSnOOECRPMXxJ5WrdurVmzZjl9EJS20pyjdOlbv6ioKHl7e2vVqlXl5lskLy8vhYWFKTEx0bydbW5urhITEzVmzJgCt4mIiFBiYqLGjh1rLktISFBERIQFI3ZdUeYoSTNnztSLL76o9evXO10PozxydY4tWrTQnj17nJZNmjRJp0+f1pw5cxQcHGzFsF1SlPfx9ttv15IlS5Sbm2s2Hd99953q1q1b7hotqWhzPHfuXL6GKq+5NAyjVMdrhYiIiHy3oC7Pv2/gjB7pd/RI9EjlET0SPRI90o3thu6Tyvaa6jen3r17G+3btze2b99ubN261WjatKnTrXB/+ukno3nz5sb27dvNZbNmzTJsNpuxfPly49ChQ8akSZMMHx8f4/Dhw2UxhesqyhyvpHJ8BxnDcH2OGRkZRnh4uNG6dWvj8OHDxvHjx81HdnZ2WU3D9P777xve3t7GokWLjP379xujRo0y/Pz8DLvdbhiGYTz88MPGhAkTzPrPP//cqFSpkvHKK68Y3377rTFlypQb4pbGrszxpZdeMry8vIwPPvjA6f06ffp0WU3hulyd45VuhDvIuDrH1NRUo3r16saYMWOMgwcPGqtXrzb8/f2NF154oaymcF2uznHKlClG9erVjf/+97/G999/b2zYsMFo3Lix8cADD5TVFK7p9OnTxu7du43du3cbkozXXnvN2L17t/HDDz8YhmEYEyZMMB5++GGzPu92xk8//bTx7bffGnPnzr1hbmcM19Aj0SPRI5UNeiR6JHqk8uNm6pMIpMrAr7/+ajz44INGtWrVDJvNZgwbNszpl3dKSoohyfj000+dtpsxY4ZRr149o0qVKkZERITx2WefWTzywivqHC9X3pstV+f46aefGpIKfKSkpJTNJK7wj3/8w6hfv77h5eVldOrUyfjiiy/MdXfccYcRExPjVL9s2TKjWbNmhpeXl3Hrrbcaa9assXjErnNljg0aNCjw/ZoyZYr1A3eBq+/j5W6EZsswXJ/jtm3bjPDwcMPb29to1KiR8eKLL5aL/5NzLa7M8eLFi8bUqVONxo0bGz4+PkZwcLDxl7/8xfjtt9+sH3ghXO33Yd6cYmJijDvuuCPfNu3atTO8vLyMRo0aGQsXLrR83Ch99Ej0SPRIZYceiR6JHql8uJn6JDfDqCDnqQEAAAAAAOCGcONfwQsAAAAAAAA3FAIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAJg2rRpk9zc3LRp06YS3a+bm5umTp1aovt01aJFi+Tm5qajR4+W6j7vvPNO3XnnnS7vy5VjX9TXcMXUqVPl5uZWqq9RkNzcXLVq1UovvvjidWsLGmN2draeeeYZBQcHy93dXdHR0S69/vz581W/fn1lZma6tB0AoGKjRyr+PumRioceCRURgRQqpG3btmnq1KlKT08v66HcNNauXVvmDRXKl5EjR8rNzU133313obf573//qx9//FFjxowp0mu+8847evnll3X//fdr8eLFGjdunCRp6dKl+vOf/6ymTZvKzc3tqs3q0KFDlZWVpbfeeqtIrw8A5R09kvXokXCl8tIj/frrr3r55ZfVvXt31alTR35+furcubOWLl2ab3t6JJQGAilUSNu2bdO0adNotiy0du1aTZs2rcB158+f16RJkywekbOHH35Y58+fV4MGDUr1dTZs2KANGza4vF337t11/vx5de/evRRGZb2dO3dq0aJF8vHxcWm7l19+WYMGDZKvr2+RXnfjxo265ZZbNGvWLD388MO64447JEnz5s3TRx99pODgYNWoUeOq2/v4+CgmJkavvfaaDMMo0hgAoDyjR7IePdIl9EiXlKceKSkpSc8995xq1qypSZMm6cUXX1SVKlU0aNAgTZkyxWl7eiSUBgIpoAI4d+5cgcuzs7OVlZVl8Wjy8/HxUaVKlcp0DB4eHvLx8Sn1U6y9vLzk5eXl8nbu7u7y8fGRu/uN/2vZMAz99a9/1ZAhQxQQEFDo7Xbv3q2vv/5aDzzwQJFf+8SJE/Lz88u3/N1331VGRoY2btyooKCga+7jgQce0A8//KBPP/20yOMAAJQP9EjXR49knfLWI9166606dOiQVq5cqSeeeEKxsbFKTExUjx499H//9386e/asUz09Ekrajf9fNXCFqVOn6umnn5YkhYSEyM3Nzelv2LOzszV9+nQ1btxY3t7eatiwoZ599tl8fw/dsGFD3X333dqwYYPatWsnHx8fhYaG6sMPPyzSuP7zn/+oU6dOqlKlimrUqKHu3bvn+5bozTff1K233ipvb28FBQUpNjY23zeYd955p1q1aqVdu3ape/fuqlKlip599lkdPXpUbm5ueuWVVzR79mxzfvv375ckHThwQPfff79q1qwpHx8fdezYUatWrbruuD/77DP96U9/Uv369eXt7a3g4GCNGzdO58+fN2uGDh2quXPnSpJ5vC9vagq6PsLu3bvVp08f2Ww2VatWTT179tQXX3zhVJN3/YHPP/9ccXFxqlOnjqpWrap7771XJ0+evO7YC9rX5dcyyHuPt27dqk6dOsnHx0eNGjXSv//973zb79u3Tz169FDlypVVr149vfDCC8rNzc1Xd/m1C9LS0lSpUqUCvxU9ePCg3Nzc9MYbb0i6+vURFixYoMaNG6ty5crq1KmTPvvss0LN7Wr7LMz7WVzvvvuu9u7dW6hrHFxu5cqV8vLyKvAb0K1bt+q2226Tj4+PGjdunO908bx//59++qn27dtn/hvMm3ve9RIKIywsTDVr1tRHH33k0vgBoLyjR6JHKgg90iU3Y48UEhKS78w4Nzc3RUdHKzMzU99//73TOnoklLSyjeOBUnDffffpu+++03//+1/NmjVLtWvXliTVqVNHkjRixAgtXrxY999/v5588klt375dM2bM0LfffqsVK1Y47evQoUMaOHCgRo8erZiYGC1cuFB/+tOfFB8frz/84Q+FHtO0adM0depUdenSRc8//7y8vLy0fft2bdy4Ub169ZJ0qUmcNm2aIiMj9dhjj+ngwYOaN2+evvzyS33++efy9PQ09/frr7+qT58+GjRokP785z87fcOycOFCXbhwQaNGjZK3t7dq1qypffv26fbbb9ctt9yiCRMmqGrVqlq2bJmio6P1v//9T/fee+9Vx758+XKdO3dOjz32mGrVqqUdO3boH//4h3766SctX75ckvToo4/q2LFjSkhI0Lvvvnvd47Fv3z5169ZNNptNzzzzjDw9PfXWW2/pzjvv1ObNmxUeHu5U//jjj6tGjRqaMmWKjh49qtmzZ2vMmDEF/n27qw4fPqz7779fw4cPV0xMjN555x0NHTpUYWFhuvXWWyVJdrtdd911l7Kzs83jt2DBAlWuXPma+w4ICNAdd9yhZcuW5TvteenSpfLw8NCf/vSnq27/r3/9S48++qi6dOmisWPH6vvvv9cf//hH1axZU8HBwUWab2Hez+I4ffq0xo8fr2effVaBgYEubbtt2za1atXK6d+6JO3Zs0e9evVSnTp1NHXqVGVnZ2vKlClO/+7r1Kmjd999Vy+++KLOnDmjGTNmSJJatmxZpHl06NBBn3/+eZG2BYDyih6JHskV9Eg3b49kt9slyfwdcTl6JJQoA6iAXn75ZUOSkZKS4rQ8OTnZkGSMGDHCaflTTz1lSDI2btxoLmvQoIEhyfjf//5nLsvIyDDq1q1rtG/fvtBjOXTokOHu7m7ce++9Rk5OjtO63NxcwzAM48SJE4aXl5fRq1cvp5o33njDkGS888475rI77rjDkGTMnz/faV8pKSmGJMNmsxknTpxwWtezZ0+jdevWxoULF5xeu0uXLkbTpk3NZZ9++qkhyfj000/NZefOncs3pxkzZhhubm7GDz/8YC6LjY01rvYrRZIxZcoU83l0dLTh5eVlHDlyxFx27Ngxo3r16kb37t3NZQsXLjQkGZGRkeaxMgzDGDdunOHh4WGkp6cX+HoFydvX5f8m8t7jLVu2mMtOnDhheHt7G08++aS5bOzYsYYkY/v27U51vr6++fZ5xx13GHfccYf5/K233jIkGXv27HEaT2hoqNGjRw/z+ZXHPisry/D39zfatWtnZGZmmnULFiwwJDm9RkFzK2ifhlH493PKlClXfT+v5amnnjJCQkLMf2sNGjQw+vXrV6ht69WrZwwYMCDf8ujoaMPHx8dpfPv37zc8PDzyjfGOO+4wbr311mu+zq233up0/AoyatQoo3LlyoUaNwDcSOiR6JGuRI90CT3SJb/++qvh7+9vdOvWrcD19EgoSfzJHm4qa9eulSTFxcU5LX/yySclSWvWrHFaHhQU5PTNmM1m05AhQ7R7927zm4PrWblypXJzczV58uR8fzKUd8r2J598oqysLI0dO9apZuTIkbLZbPnG5e3trWHDhhX4egMGDDC/6ZSkU6dOaePGjXrggQd0+vRp/fLLL/rll1/066+/KioqSocOHdLPP/981fFf/g3X2bNn9csvv6hLly4yDEO7d+8u1DG4XE5OjjZs2KDo6Gg1atTIXF63bl099NBD2rp1qxwOh9M2o0aNcjq9vVu3bsrJydEPP/zg8utfKTQ0VN26dTOf16lTR82bN3c6RXnt2rXq3LmzOnXq5FQ3ePDg6+7/vvvuU6VKlZy+qdy7d6/279+vgQMHXnW7nTt36sSJExo9erTT9RaGDh1a5ItZSiX/fl7uu+++05w5c/Tyyy/L29vb5e1//fXXfBccz8nJ0fr16xUdHa369euby1u2bKmoqKhijfdaatSoofPnz1/12iMAUNHQI9EjXYke6ebrkXJzczV48GClp6frH//4R4E19EgoSQRSuKn88MMPcnd3V5MmTZyWBwYGys/PL9+Hd5MmTfJd4LFZs2aSlO9v0a/myJEjcnd3V2ho6DXHJUnNmzd3Wu7l5aVGjRrlG9ctt9xy1YtChoSEOD0/fPiwDMPQ3/72N9WpU8fpkXeK9IkTJ646ttTUVA0dOlQ1a9ZUtWrVVKdOHfPOZRkZGVfd7mpOnjypc+fO5ZurdOkDNDc3Vz/++KPT8ss/ZCWZH8i//faby69/pSv3nbf/y/f9ww8/qGnTpvnqCprDlWrXrq2ePXtq2bJl5rKlS5eqUqVKuu+++666Xd57fuXrenp6OjWprirp9/NyTzzxhLp06aIBAwYUeR/GFXdtOXnypM6fP1/k41/ccZT2BV4BoLygR6JHuhI90s3XIz3++OOKj4/X22+/rbZt215zHPRIKAlcQwo3pRv9F+i1/i7/ynV5F5V86qmnrvptyZXNZ56cnBz94Q9/0KlTpzR+/Hi1aNFCVatW1c8//6yhQ4cWeMHK0uDh4VHg8is/mMvbvvMMGjRIw4YNU3Jystq1a6dly5apZ8+eBf5dflFc7d9zTk5Ovuel9X5u3LhR8fHx+vDDD53+j0h2drbOnz+vo0ePqmbNmrLZbFfdR61atUqkgS4Jv/32m6pUqXLda2AAQEVDj+SMHql09p2HHqn89EjTpk3Tm2++qZdeekkPP/zwVevokVCSCKRQIV3tw6dBgwbKzc3VoUOHnC7kl5aWpvT09Hx3mcj75uzy/X333XeSLt19pDAaN26s3Nxc7d+/X+3atbvquKRLdxW5/JudrKwspaSkKDIyslCvVZC8/Xl6erq8nz179ui7777T4sWLNWTIEHN5QkJCvtrCNrB16tRRlSpVdPDgwXzrDhw4IHd39yJfjLK0NGjQQIcOHcq3vKA5FCQ6OlqPPvqoeUr6d999p4kTJ173NaVLF43t0aOHufzixYtKSUlx+tYq79vQK+82dOW3xq68n65KTU2VpAK/0fz5558VEhKiWbNmaezYsVfdR4sWLZSSkuK0rE6dOqpcuXKxjn9RpKSkFPmC6ABQntEj/Y4eqfjoka7vRuiR5s6dq6lTp2rs2LEaP378NWvpkVCS+JM9VEhVq1aVlP/Dp2/fvpKk2bNnOy1/7bXXJEn9+vVzWn7s2DGnu8o4HA79+9//Vrt27Qp9d4zo6Gi5u7vr+eefz/ftSt43TJGRkfLy8tLrr7/u9K3Tv/71L2VkZOQblyv8/f1155136q233tLx48fzrb/WrYHzvhm7fEyGYWjOnDn5aq92zAvaZ69evfTRRx85fUuUlpamJUuWqGvXrtf8hqgs9O3bV1988YV27NhhLjt58qTee++9Qm3v5+enqKgoLVu2TO+//768vLwUHR19zW06duyoOnXqaP78+crKyjKXL1q0KN8xbty4sSRpy5Yt5rKcnBwtWLDAqc6V99NVPXr00IoVK/I96tSpo44dO2rFihXq37//NfcRERGhvXv3Ot1e3MPDQ1FRUVq5cqXZ0EnSt99+q/Xr1xd73Ffz1VdfqUuXLqW2fwAoK/RIv6NHKj56pOsr7z3S0qVL9de//lWDBw82/3u/FnoklCTOkEKFFBYWJkl67rnnNGjQIHl6eqp///5q27atYmJitGDBAqWnp+uOO+7Qjh07tHjxYkVHR+uuu+5y2k+zZs00fPhwffnllwoICNA777yjtLQ0LVy4sNBjadKkiZ577jlNnz5d3bp103333Sdvb299+eWXCgoK0owZM1SnTh1NnDhR06ZNU+/evfXHP/5RBw8e1JtvvqnbbrtNf/7zn4t1PObOnauuXbuqdevWGjlypBo1aqS0tDQlJSXpp59+0tdff13gdi1atFDjxo311FNP6eeff5bNZtP//ve/Ak8Zzjvmf/3rXxUVFSUPDw8NGjSowP2+8MILSkhIUNeuXfWXv/xFlSpV0ltvvaXMzEzNnDmzWHMtDc8884zeffdd9e7dW0888YR5S+MGDRrom2++KdQ+Bg4cqD//+c968803FRUVJT8/v2vWe3p66oUXXtCjjz6qHj16aODAgUpJSdHChQvzXR/h1ltvVefOnTVx4kSdOnVKNWvW1Pvvv6/s7GynOlfeT1fVr1+/wGtNjB07VgEBAddtLiXpnnvu0fTp07V582bzVt/SpVPI4+Pj1a1bN/3lL39Rdna2/vGPf+jWW28t9PHfsmWL2YyePHlSZ8+e1QsvvCBJ6t69u7p3727W7tq1S6dOndI999xTqH0DwI2EHskZPVLx0CNdX3nukXbs2KEhQ4aoVq1a6tmzZ74gsUuXLk7HlB4JJc6am/kB1ps+fbpxyy23GO7u7k63e7148aIxbdo0IyQkxPD09DSCg4ONiRMnOt3u1zB+vxXr+vXrjTZt2hje3t5GixYtjOXLlxdpPO+8847Rvn17w9vb26hRo4Zxxx13GAkJCU41b7zxhtGiRQvD09PTCAgIMB577DHjt99+c6q52i1b825p/PLLLxf4+keOHDGGDBliBAYGGp6ensYtt9xi3H333cYHH3xg1hR0C9z9+/cbkZGRRrVq1YzatWsbI0eONL7++mtDkrFw4UKzLjs723j88ceNOnXqGG5ubk63mtUVtzQ2DMP46quvjKioKKNatWpGlSpVjLvuusvYtm2bU03erXq//PJLp+UFjfN6rnZL44Jut3vlbYkNwzC++eYb44477jB8fHyMW265xZg+fbrxr3/967q3NM7jcDiMypUrG5KM//znP/nWX21Ob775phESEmJ4e3sbHTt2NLZs2VLgaxw5csSIjIw0vL29jYCAAOPZZ581EhISivx+FvWWxldy5ZbGMgE+YgABAABJREFUhmEYbdq0MYYPH55v+ebNm42wsDDDy8vLaNSokTF//vwCx3i1/z7yagt6XPlvc/z48Ub9+vWdbqMNABUJPZIzeiR6JMO4OXukvPf+ao/L520Y9EgoeW6GUYJXpQMqkIYNG6pVq1ZavXp1WQ8FuGm8++67io2NVWpq6nW/IS0NmZmZatiwoSZMmKAnnnjC8tcHgBsBPRJgPXokVERcQwoAUG4MHjxY9evX19y5c8vk9RcuXChPT0+NHj26TF4fAACgIPRIqIg4Qwq4isJ8+2e326+5j8qVK8vX17ekh4bLnDlzRmfOnLlmTZ06da5662JcX0ZGhs6fP3/NmsJewBYAcOOjR7ox0COVPnokoHi4qDlQDHXr1r3m+piYGC1atMiawdykXnnlFU2bNu2aNSkpKYW+BTXye+KJJ7R48eJr1vDdBgDgcvRIZY8eqfTRIwHFwxlSQDF88skn11wfFBSk0NBQi0Zzc/r+++/1/fffX7Oma9eu8vHxsWhEFc/+/ft17Nixa9ZERkZaNBoAwI2AHqns0SOVPnokoHgIpAAAAAAAAGApLmoOAAAAAAAAS93U15DKzc3VsWPHVL16dbm5uZX1cAAAgAUMw9Dp06cVFBQkd3e+mysIPRIAADcfq3ukmzqQOnbsmIKDg8t6GAAAoAz8+OOPqlevXlkPo1yiRwIA4OZlVY90UwdS1atXl3TpYNtstjIeDQAAsILD4VBwcLDZByA/eiQAAG4+VvdIN3UglXcKus1mo9kCAOAmw5+iXR09EgAANy+reiQunAAAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsNRNfQ0pAACuJScnRxcvXizrYcBFnp6e8vDwKOthAABQYdEj3ZjKW49EIAUAwBUMw5Ddbld6enpZDwVF5Ofnp8DAQC5cDgBACaJHuvGVpx6JQAoAgCvkNVr+/v6qUqVKufjARuEYhqFz587pxIkTkqS6deuW8YgAAKg46JFuXOWxRyKQAgDgMjk5OWajVatWrbIeDoqgcuXKkqQTJ07I39+/XJ2aDgDAjYoe6cZX3nokLmoOAMBl8q6HUKVKlTIeCYoj7/3j+hYAAJQMeqSKoTz1SARSAAAUgFPQb2y8fwAAlA4+Y29s5en9I5ACAAAAAACApQikAAAAAAAAYCkuag4AQCFdjN9q2Wt59u5a6NrrnXo9ZcoUTZ06tZgjKho3NzetWLFC0dHRRd7HggULtGTJEn311Vc6ffq0fvvtN/n5+ZXYGAEAQPFY2SNJ9El5Tp06pSlTpmjDhg1KTU1VnTp1FB0drenTp8vX17dkB1sKCKQAALjBHT9+3Px56dKlmjx5sg4ePGguq1atmkv7y8rKkpeXV4mNr7jOnTun3r17q3fv3po4cWJZDwcAANxAKnKfdOzYMR07dkyvvPKKQkND9cMPP2j06NE6duyYPvjgg7Ie3nXxJ3tAMVyM35rvAQBWCwwMNB++vr5yc3Mzn589e1aDBw9WQECAqlWrpttuu02ffPKJ0/YNGzbU9OnTNWTIENlsNo0aNUqS9M9//lPBwcGqUqWK7r33Xr322mv5zkz66KOP1KFDB/n4+KhRo0aaNm2asrOzzf1K0r333is3Nzfz+ddff6277rpL1atXl81mU1hYmHbu3HnV+Y0dO1YTJkxQ586dS+aAASh19EgAyouK3Ce1atVK//vf/9S/f381btxYPXr00IsvvqiPP/7YfJ3yjEAKAIAK7MyZM+rbt68SExO1e/du9e7dW/3791dqaqpT3SuvvKK2bdtq9+7d+tvf/qbPP/9co0eP1hNPPKHk5GT94Q9/0Isvvui0zWeffaYhQ4boiSee0P79+/XWW29p0aJFZt2XX34pSVq4cKGOHz9uPh88eLDq1aunL7/8Urt27dKECRPk6elpwdEAAAD4XUXskzIyMmSz2VSpUvn/g7jyP0IAAFBkbdu2Vdu2bc3n06dP14oVK7Rq1SqNGTPGXN6jRw89+eST5vPnnntOffr00VNPPSVJatasmbZt26bVq1ebNdOmTdOECRMUExMjSWrUqJGmT5+uZ555RlOmTFGdOnUkSX5+fgoMDDS3S01N1dNPP60WLVpIkpo2bVoKMwcAALi2itYn/fLLL5o+fbp5Fld5xxlSAABUYGfOnNFTTz2lli1bys/PT9WqVdO3336b75u/jh07Oj0/ePCgOnXq5LTsyudff/21nn/+eVWrVs18jBw5UsePH9e5c+euOqa4uDiNGDFCkZGReumll3TkyJFizhIAAMB1FalPcjgc6tevn0JDQ8vsIu2uIpACAKACe+qpp7RixQr9/e9/12effabk5GS1bt1aWVlZTnVVq1Z1ed9nzpzRtGnTlJycbD727NmjQ4cOycfH56rbTZ06Vfv27VO/fv20ceNGhYaGasWKFS6/PgAAQHFUlD7p9OnT6t27t6pXr64VK1bcMJdCcCmQmjdvntq0aSObzSabzaaIiAitW7fOXH/nnXfKzc3N6TF69GinfaSmpqpfv36qUqWK/P399fTTT+e72NamTZvUoUMHeXt7q0mTJlq0aFG+scydO1cNGzaUj4+PwsPDtWPHDlemAgDATeHzzz/X0KFDde+996p169YKDAzU0aNHr7td8+bNzWsZ5LnyeYcOHXTw4EE1adIk38Pd/VKL4enpqZycnHz7b9asmcaNG6cNGzbovvvu08KFC4s+yXKAHgkAgBtPReiTHA6HevXqJS8vL61ateqaYVd549I1pOrVq6eXXnpJTZs2lWEYWrx4se655x7t3r1bt956qyRp5MiRev75581tqlSpYv6ck5Ojfv36KTAwUNu2bdPx48c1ZMgQeXp66u9//7skKSUlRf369dPo0aP13nvvKTExUSNGjFDdunUVFRUl6dKtGuPi4jR//nyFh4dr9uzZioqK0sGDB+Xv71/sgwIAQEXRtGlTffjhh+rfv7/c3Nz0t7/9Tbm5udfd7vHHH1f37t312muvqX///tq4caPWrVsnNzc3s2by5Mm6++67Vb9+fd1///1yd3fX119/rb179+qFF16QdOkOMomJibr99tvl7e0tHx8fPf3007r//vsVEhKin376SV9++aUGDBhw1bHY7XbZ7XYdPnxYkrRnzx5Vr15d9evXV82aNYt5hEoGPRIAADeeG71Pygujzp07p//85z9yOBxyOBySpDp16sjDw6MEjlLpcekMqf79+6tv375q2rSpmjVrphdffFHVqlXTF198YdZUqVLF6baKNpvNXLdhwwbt379f//nPf9SuXTv16dNH06dP19y5c81T4ubPn6+QkBC9+uqratmypcaMGaP7779fs2bNMvfz2muvaeTIkRo2bJhCQ0M1f/58ValSRe+8805xjwcAABXKa6+9pho1aqhLly7q37+/oqKi1KFDh+tud/vtt2v+/Pl67bXX1LZtW8XHx2vcuHFO37pFRUVp9erV2rBhg2677TZ17txZs2bNUoMGDcyaV199VQkJCQoODlb79u3l4eGhX3/9VUOGDFGzZs30wAMPqE+fPpo2bdpVxzJ//ny1b99eI0eOlCR1795d7du316pVq4pxZEoWPRIAADeeG71P+uqrr7R9+3bt2bNHTZo0Ud26dc3Hjz/+WPwDVMrcDMMwirJhTk6Oli9frpiYGO3evVuhoaG68847tW/fPhmGocDAQPXv319/+9vfzG8AJ0+erFWrVik5OdncT0pKiho1aqSvvvpK7du3V/fu3dWhQwfNnj3brFm4cKHGjh2rjIwMZWVlqUqVKvrggw8UHR1t1sTExCg9PV0fffRRoefgcDjk6+tr3hYRcNXF+K35lnn27loGIwFQUi5cuKCUlBSFhITcUKc8W2HkyJE6cOCAPvvss7IeynVd630s7c9/eiSAHgmoiOiRru1G6ZPKske6kkt/siddOk0+IiJCFy5cULVq1bRixQqFhoZKkh566CE1aNBAQUFB+uabbzR+/HgdPHhQH374oaRLp9wHBAQ47S/vud1uv2aNw+HQ+fPn9dtvvyknJ6fAmgMHDlxz7JmZmcrMzDSf553KBgAA8nvllVf0hz/8QVWrVtW6deu0ePFivfnmm2U9rHKLHgkAgJsHfVLxuRxINW/eXMnJycrIyNAHH3ygmJgYbd68WaGhoRo1apRZ17p1a9WtW1c9e/bUkSNH1Lhx4xIdeFHMmDHjmn8SAAAAfrdjxw7NnDlTp0+fVqNGjfT6669rxIgRZT2scoseCQCAmwd9UvG5HEh5eXmpSZMmkqSwsDB9+eWXmjNnjt566618teHh4ZKkw4cPq3HjxgoMDMx3p5e0tDRJUmBgoPm/ecsur7HZbKpcubI8PDzk4eFRYE3ePq5m4sSJiouLM587HA4FBwcXZtoAANx0li1bVtZDuKHQIwEAcPOgTyo+ly5qXpDc3FynU7wvl3cdhLp160qSIiIitGfPHp04ccKsSUhIkM1mM09pj4iIUGJiotN+EhISFBERIelSsxcWFuZUk5ubq8TERLPmary9vc3bMec9AAAASgM9EgAAwNW5dIbUxIkT1adPH9WvX1+nT5/WkiVLtGnTJq1fv15HjhzRkiVL1LdvX9WqVUvffPONxo0bp+7du6tNmzaSpF69eik0NFQPP/ywZs6cKbvdrkmTJik2Nlbe3t6SpNGjR+uNN97QM888o0ceeUQbN27UsmXLtGbNGnMccXFxiomJUceOHdWpUyfNnj1bZ8+e1bBhw0rw0AAAABQOPRIAAIBrXAqkTpw4oSFDhuj48ePy9fVVmzZttH79ev3hD3/Qjz/+qE8++cRsfIKDgzVgwABNmjTJ3N7Dw0OrV6/WY489poiICFWtWlUxMTF6/vnnzZqQkBCtWbNG48aN05w5c1SvXj29/fbbioqKMmsGDhyokydPavLkybLb7WrXrp3i4+PzXcQTAADACvRIAAAArnEzDMMo60GUFW5pjOLilsZAxcMtjSuG8nRL4xsRxwjFRY8EVDz0SBVDeeqRin0NKQAAAAAAAMAVBFIAAAAAAACwFIEUAAAAAAAALOXSRc0BALiZHdn5lmWv1bjjoy7VDx06VIsXL5YkVapUSTVr1lSbNm304IMPaujQoXJ3v3G/g9q3b58mT56sXbt26YcfftCsWbM0duzYsh4WAAD4/6zskST6pMv985//1L///W/t3btXkhQWFqa///3v6tSpUxmP7Ppu3KMOAACc9O7dW8ePH9fRo0e1bt063XXXXXriiSd09913Kzs7u6yHV2Tnzp1To0aN9NJLLykwMLCshwMAAG5AFbVP2rRpkx588EF9+umnSkpKUnBwsHr16qWff/65rId2XQRSAABUEN7e3goMDNQtt9yiDh066Nlnn9VHH32kdevWadGiRWZdenq6RowYoTp16shms6lHjx76+uuvnfb18ccf67bbbpOPj49q166te++911z322+/aciQIapRo4aqVKmiPn366NChQ5Kks2fPymaz6YMPPnDa38qVK1W1alWdPn1aWVlZGjNmjOrWrSsfHx81aNBAM2bMuOq8brvtNr388ssaNGiQvL29S+BIAQCAm01F7ZPee+89/eUvf1G7du3UokULvf3228rNzVViYmIJHLXSRSAFAEAF1qNHD7Vt21YffvihuexPf/qTTpw4oXXr1mnXrl3q0KGDevbsqVOnTkmS1qxZo3vvvVd9+/bV7t27lZiY6HTa99ChQ7Vz506tWrVKSUlJMgxDffv21cWLF1W1alUNGjRICxcudBrHwoULdf/996t69ep6/fXXtWrVKi1btkwHDx7Ue++9p4YNG1pyPAAAAPJUxD7p3LlzunjxomrWrFm8g2MBriEFAEAF16JFC33zzTeSpK1bt2rHjh06ceKEebbRK6+8opUrV+qDDz7QqFGj9OKLL2rQoEGaNm2auY+2bdtKkg4dOqRVq1bp888/V5cuXSRd+mYuODhYK1eu1J/+9CeNGDFCXbp00fHjx1W3bl2dOHFCa9eu1SeffCJJSk1NVdOmTdW1a1e5ubmpQYMGVh4OAAAAU0Xrk8aPH6+goCBFRkYW+9iUNs6QAgCggjMMQ25ubpKkr7/+WmfOnFGtWrVUrVo185GSkqIjR45IkpKTk9WzZ88C9/Xtt9+qUqVKCg8PN5fVqlVLzZs317fffitJ6tSpk2699Vbz4qH/+c9/1KBBA3Xv3l3SpW8Ok5OT1bx5c/31r3/Vhg0bSm3uAAAA11KR+qSXXnpJ77//vlasWCEfHx/XD4bFOEMKAIAK7ttvv1VISIgk6cyZM6pbt642bdqUr87Pz0+SVLly5WK/5ogRIzR37lxNmDBBCxcu1LBhw8xmr0OHDkpJSdG6dev0ySef6IEHHlBkZGS+6ykAAACUtorSJ73yyit66aWX9Mknn6hNmzbFHqMVOEMKAIAKbOPGjdqzZ48GDBgg6VKTY7fbValSJTVp0sTpUbt2bUlSmzZtrnohzJYtWyo7O1vbt283l/366686ePCgQkNDzWV//vOf9cMPP+j111/X/v37FRMT47Qfm82mgQMH6p///KeWLl2q//3vf+a1GQAAAKxQUfqkmTNnavr06YqPj1fHjh2LfDysxhlSAABUEJmZmbLb7crJyVFaWpri4+M1Y8YM3X333RoyZIgkKTIyUhEREYqOjtbMmTPVrFkzHTt2zLxAZ8eOHTVlyhT17NlTjRs31qBBg5Sdna21a9dq/Pjxatq0qe655x6NHDlSb731lqpXr64JEybolltu0T333GOOpUaNGrrvvvv09NNPq1evXqpXr5657rXXXlPdunXVvn17ubu7a/ny5QoMDDS/ebxSVlaW9u/fb/78888/Kzk5WdWqVVOTJk1K74ACAIAKo6L2Sf/3f/+nyZMna8mSJWrYsKHsdrskmX9uWJ5xhhQAABVEfHy86tatq4YNG6p379769NNP9frrr+ujjz6Sh4eHJMnNzU1r165V9+7dNWzYMDVr1kyDBg3SDz/8oICAAEnSnXfeqeXLl2vVqlVq166devTooR07dpivs3DhQoWFhenuu+9WRESEDMPQ2rVr5enp6TSe4cOHKysrS4888ojT8urVq2vmzJnq2LGjbrvtNh09elRr166Vu3vBbcmxY8fUvn17tW/fXsePH9crr7yi9u3ba8SIESV5+AAAQAVWUfukefPmKSsrS/fff7/q1q1rPl555ZWSPHylws0wDKOsB1FWHA6HfH19lZGRIZvNVtbDwQ3oYvzWfMs8e3ctg5EAKCkXLlxQSkqKQkJCboiLQZZn7777rsaNG6djx47Jy8vL0te+1vvI5//1cYxQXPRIQMVDj1SyyqpPKk89En+yBwAAStS5c+d0/PhxvfTSS3r00UctD6MAAADKK/qk3/Ene0ARHdn5lo6mrzMfAIBLZs6cqRYtWigwMFATJ04s6+EAsNiVPRJ9EgD8jj7pdwRSAACgRE2dOlUXL15UYmJiub+YJgAAgJXok35HIAUAAAAAAABLEUgBAAAAAADAUgRSAAAUIDc3t6yHgGLg/QMAoHTwGXtjK0/vH3fZAwDgMl5eXnJ3d9exY8dUp04deXl5yc3NrayHhUIyDENZWVk6efKk3N3db+o71wAAUJLokW5s5bFHIpACAOAy7u7uCgkJ0fHjx3Xs2LGyHg6KqEqVKqpfv77c3TkZHACAkkCPVDGUpx6JQAoAgCt4eXmpfv36ys7OVk5OTlkPBy7y8PBQpUqV+NYWAIASRo90YytvPRKBFAAABXBzc5Onp6c8PT3LeigAAADlBj0SSkrZn6MFAAAAAACAmwqBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLuRRIzZs3T23atJHNZpPNZlNERITWrVtnrr9w4YJiY2NVq1YtVatWTQMGDFBaWprTPlJTU9WvXz9VqVJF/v7+evrpp5Wdne1Us2nTJnXo0EHe3t5q0qSJFi1alG8sc+fOVcOGDeXj46Pw8HDt2LHDlakAAACUGHokAAAA17gUSNWrV08vvfSSdu3apZ07d6pHjx665557tG/fPknSuHHj9PHHH2v58uXavHmzjh07pvvuu8/cPicnR/369VNWVpa2bdumxYsXa9GiRZo8ebJZk5KSon79+umuu+5ScnKyxo4dqxEjRmj9+vVmzdKlSxUXF6cpU6boq6++Utu2bRUVFaUTJ04U93gAAAC4jB4JAADANW6GYRjF2UHNmjX18ssv6/7771edOnW0ZMkS3X///ZKkAwcOqGXLlkpKSlLnzp21bt063X333Tp27JgCAgIkSfPnz9f48eN18uRJeXl5afz48VqzZo327t1rvsagQYOUnp6u+Ph4SVJ4eLhuu+02vfHGG5Kk3NxcBQcH6/HHH9eECRMKPXaHwyFfX19lZGTIZrMV5zDgJnRk51vKPZxqPm/o10eS5Nm7a1kNCQBQCFZ9/tMj4WZ1ZY8kXeqT6JEAoHyz+vO/yNeQysnJ0fvvv6+zZ88qIiJCu3bt0sWLFxUZGWnWtGjRQvXr11dSUpIkKSkpSa1btzYbLUmKioqSw+Ewv0FMSkpy2kdeTd4+srKytGvXLqcad3d3RUZGmjUAAABlhR4JAADg+iq5usGePXsUERGhCxcuqFq1alqxYoVCQ0OVnJwsLy8v+fn5OdUHBATIbrdLkux2u1Ojlbc+b921ahwOh86fP6/ffvtNOTk5BdYcOHDgmmPPzMxUZmam+dzhcBR+4gAAANdAjwQAAFB4Lp8h1bx5cyUnJ2v79u167LHHFBMTo/3795fG2ErcjBkz5Ovraz6Cg4PLekgAAKCCoEcCAAAoPJcDKS8vLzVp0kRhYWGaMWOG2rZtqzlz5igwMFBZWVlKT093qk9LS1NgYKAkKTAwMN8dZfKeX6/GZrOpcuXKql27tjw8PAqsydvH1UycOFEZGRnm48cff3R1+gAAAAWiRwIAACi8Il9DKk9ubq4yMzMVFhYmT09PJSYmmusOHjyo1NRURURESJIiIiK0Z88epzu9JCQkyGazKTQ01Ky5fB95NXn78PLyUlhYmFNNbm6uEhMTzZqr8fb2Nm/HnPcAAAAoDfRIAAAAV+fSNaQmTpyoPn36qH79+jp9+rSWLFmiTZs2af369fL19dXw4cMVFxenmjVrymaz6fHHH1dERIQ6d+4sSerVq5dCQ0P18MMPa+bMmbLb7Zo0aZJiY2Pl7e0tSRo9erTeeOMNPfPMM3rkkUe0ceNGLVu2TGvWrDHHERcXp5iYGHXs2FGdOnXS7NmzdfbsWQ0bNqwEDw0AAEDh0CMBAAC4xqVA6sSJExoyZIiOHz8uX19ftWnTRuvXr9cf/vAHSdKsWbPk7u6uAQMGKDMzU1FRUXrzzTfN7T08PLR69Wo99thjioiIUNWqVRUTE6Pnn3/erAkJCdGaNWs0btw4zZkzR/Xq1dPbb7+tqKgos2bgwIE6efKkJk+eLLvdrnbt2ik+Pj7fRTwBAACsQI8EAADgGjfDMIyyHkRZcTgc8vX1VUZGBqemw2VHdr6l3MOp5vOGfn0kSZ69u5bVkAAAhcDn//VxjFAcV/ZI0qU+iR4JAMo3qz//i30NKQAAAAAAAMAVBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEu5FEjNmDFDt912m6pXry5/f39FR0fr4MGDTjV33nmn3NzcnB6jR492qklNTVW/fv1UpUoV+fv76+mnn1Z2drZTzaZNm9ShQwd5e3urSZMmWrRoUb7xzJ07Vw0bNpSPj4/Cw8O1Y8cOV6YDAABQIuiRAAAAXONSILV582bFxsbqiy++UEJCgi5evKhevXrp7NmzTnUjR47U8ePHzcfMmTPNdTk5OerXr5+ysrK0bds2LV68WIsWLdLkyZPNmpSUFPXr10933XWXkpOTNXbsWI0YMULr1683a5YuXaq4uDhNmTJFX331ldq2bauoqCidOHGiqMcCAACgSOiRAAAAXONmGIZR1I1Pnjwpf39/bd68Wd27d5d06du/du3aafbs2QVus27dOt199906duyYAgICJEnz58/X+PHjdfLkSXl5eWn8+PFas2aN9u7da243aNAgpaenKz4+XpIUHh6u2267TW+88YYkKTc3V8HBwXr88cc1YcKEQo3f4XDI19dXGRkZstlsRT0MuEkd2fmWcg+nms8b+vWRJHn27lpWQwIAFIIVn//0SLiZXdkjSZf6JHokACjfrP78L9Y1pDIyMiRJNWvWdFr+3nvvqXbt2mrVqpUmTpyoc+fOmeuSkpLUunVrs9GSpKioKDkcDu3bt8+siYyMdNpnVFSUkpKSJElZWVnatWuXU427u7siIyPNmoJkZmbK4XA4PQAAAEoaPRIAAMC1VSrqhrm5uRo7dqxuv/12tWrVylz+0EMPqUGDBgoKCtI333yj8ePH6+DBg/rwww8lSXa73anRkmQ+t9vt16xxOBw6f/68fvvtN+Xk5BRYc+DAgauOecaMGZo2bVpRpwwAAHBd9EgAAADXV+RAKjY2Vnv37tXWrVudlo8aNcr8uXXr1qpbt6569uypI0eOqHHjxkUfaQmYOHGi4uLizOcOh0PBwcFlOCIAAFDR0CMBAABcX5ECqTFjxmj16tXasmWL6tWrd83a8PBwSdLhw4fVuHFjBQYG5rvTS1pamiQpMDDQ/N+8ZZfX2Gw2Va5cWR4eHvLw8CiwJm8fBfH29pa3t3fhJgkAAOAieiQAAIDCcekaUoZhaMyYMVqxYoU2btyokJCQ626TnJwsSapbt64kKSIiQnv27HG600tCQoJsNptCQ0PNmsTERKf9JCQkKCIiQpLk5eWlsLAwp5rc3FwlJiaaNQAAAFahRwIAAHCNS2dIxcbGasmSJfroo49UvXp183oGvr6+qly5so4cOaIlS5aob9++qlWrlr755huNGzdO3bt3V5s2bSRJvXr1UmhoqB5++GHNnDlTdrtdkyZNUmxsrPnN3OjRo/XGG2/omWee0SOPPKKNGzdq2bJlWrNmjTmWuLg4xcTEqGPHjurUqZNmz56ts2fPatiwYSV1bAAAAAqFHgkAAMA1LgVS8+bNk3TptsWXW7hwoYYOHSovLy998sknZuMTHBysAQMGaNKkSWath4eHVq9erccee0wRERGqWrWqYmJi9Pzzz5s1ISEhWrNmjcaNG6c5c+aoXr16evvttxUVFWXWDBw4UCdPntTkyZNlt9vVrl07xcfH57uIJwAAQGmjRwIAAHCNm2EYRlkPoqw4HA75+voqIyNDNputrIeDG8yRnW8p93Cq+byhXx9JkmfvrmU1JABAIfD5f30cIxTHlT2SdKlPokcCgPLN6s9/l64hBQAAAAAAABQXgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAAS7kUSM2YMUO33XabqlevLn9/f0VHR+vgwYNONRcuXFBsbKxq1aqlatWqacCAAUpLS3OqSU1NVb9+/VSlShX5+/vr6aefVnZ2tlPNpk2b1KFDB3l7e6tJkyZatGhRvvHMnTtXDRs2lI+Pj8LDw7Vjxw5XpgMAAFAi6JEAAABc41IgtXnzZsXGxuqLL75QQkKCLl68qF69euns2bNmzbhx4/Txxx9r+fLl2rx5s44dO6b77rvPXJ+Tk6N+/fopKytL27Zt0+LFi7Vo0SJNnjzZrElJSVG/fv101113KTk5WWPHjtWIESO0fv16s2bp0qWKi4vTlClT9NVXX6lt27aKiorSiRMninM8AAAAXEaPBAAA4Bo3wzCMom588uRJ+fv7a/PmzerevbsyMjJUp04dLVmyRPfff78k6cCBA2rZsqWSkpLUuXNnrVu3TnfffbeOHTumgIAASdL8+fM1fvx4nTx5Ul5eXho/frzWrFmjvXv3mq81aNAgpaenKz4+XpIUHh6u2267TW+88YYkKTc3V8HBwXr88cc1YcKEQo3f4XDI19dXGRkZstlsRT0MuEkd2fmWcg+nms8b+vWRJHn27lpWQwIAFIIVn//0SLiZXdkjSZf6JHokACjfrP78L9Y1pDIyMiRJNWvWlCTt2rVLFy9eVGRkpFnTokUL1a9fX0lJSZKkpKQktW7d2my0JCkqKkoOh0P79u0zay7fR15N3j6ysrK0a9cupxp3d3dFRkaaNQXJzMyUw+FwegAAAJQ0eiQAAIBrK3IglZubq7Fjx+r2229Xq1atJEl2u11eXl7y8/Nzqg0ICJDdbjdrLm+08tbnrbtWjcPh0Pnz5/XLL78oJyenwJq8fRRkxowZ8vX1NR/BwcGuTxwAAOAa6JEAAACur8iBVGxsrPbu3av333+/JMdTqiZOnKiMjAzz8eOPP5b1kAAAQAVDjwQAAHB9lYqy0ZgxY7R69Wpt2bJF9erVM5cHBgYqKytL6enpTt8ApqWlKTAw0Ky58k4veXeYubzmyrvOpKWlyWazqXLlyvLw8JCHh0eBNXn7KIi3t7e8vb1dnzAAAEAh0CMBAAAUjktnSBmGoTFjxmjFihXauHGjQkJCnNaHhYXJ09NTiYmJ5rKDBw8qNTVVERERkqSIiAjt2bPH6U4vCQkJstlsCg0NNWsu30deTd4+vLy8FBYW5lSTm5urxMREswYAAMAq9EgAAACucekMqdjYWC1ZskQfffSRqlevbl6LwNfXV5UrV5avr6+GDx+uuLg41axZUzabTY8//rgiIiLUuXNnSVKvXr0UGhqqhx9+WDNnzpTdbtekSZMUGxtrfjM3evRovfHGG3rmmWf0yCOPaOPGjVq2bJnWrFljjiUuLk4xMTHq2LGjOnXqpNmzZ+vs2bMaNmxYSR0bAACAQqFHAgAAcI1LgdS8efMkSXfeeafT8oULF2ro0KGSpFmzZsnd3V0DBgxQZmamoqKi9Oabb5q1Hh4eWr16tR577DFFRESoatWqiomJ0fPPP2/WhISEaM2aNRo3bpzmzJmjevXq6e2331ZUVJRZM3DgQJ08eVKTJ0+W3W5Xu3btFB8fn+8ingAAAKWNHgkAAMA1boZhGGU9iLLicDjk6+urjIwM2Wy2sh4ObjBHdr6l3MOp5vOGfn0kSZ69u5bVkAAAhcDn//VxjFAcV/ZI0qU+iR4JAMo3qz//i3yXPQAAAAAAAKAoCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWMrlQGrLli3q37+/goKC5ObmppUrVzqtHzp0qNzc3JwevXv3dqo5deqUBg8eLJvNJj8/Pw0fPlxnzpxxqvnmm2/UrVs3+fj4KDg4WDNnzsw3luXLl6tFixby8fFR69attXbtWlenAwAAUCLokQAAAArP5UDq7Nmzatu2rebOnXvVmt69e+v48ePm47///a/T+sGDB2vfvn1KSEjQ6tWrtWXLFo0aNcpc73A41KtXLzVo0EC7du3Syy+/rKlTp2rBggVmzbZt2/Tggw9q+PDh2r17t6KjoxUdHa29e/e6OiUAAIBio0cCAAAoPDfDMIwib+zmphUrVig6OtpcNnToUKWnp+f7VjDPt99+q9DQUH355Zfq2LGjJCk+Pl59+/bVTz/9pKCgIM2bN0/PPfec7Ha7vLy8JEkTJkzQypUrdeDAAUnSwIEDdfbsWa1evdrcd+fOndWuXTvNnz+/UON3OBzy9fVVRkaGbDZbEY4AbmZHdr6l3MOp5vOGfn0kSZ69u5bVkAAAhWDF5z89Em5mV/ZI0qU+iR4JAMo3qz//S+UaUps2bZK/v7+aN2+uxx57TL/++qu5LikpSX5+fmajJUmRkZFyd3fX9u3bzZru3bubjZYkRUVF6eDBg/rtt9/MmsjISKfXjYqKUlJS0lXHlZmZKYfD4fQAAACwCj0SAADAJSUeSPXu3Vv//ve/lZiYqP/7v//T5s2b1adPH+Xk5EiS7Ha7/P39nbapVKmSatasKbvdbtYEBAQ41eQ9v15N3vqCzJgxQ76+vuYjODi4eJMFAAAoJHokAACA31Uq6R0OGjTI/Ll169Zq06aNGjdurE2bNqlnz54l/XIumThxouLi4sznDoeDhgsAAFiCHgkAAOB3pfIne5dr1KiRateurcOHD0uSAgMDdeLECaea7OxsnTp1SoGBgWZNWlqaU03e8+vV5K0viLe3t2w2m9MDAACgLNAjAQCAm1mpB1I//fSTfv31V9WtW1eSFBERofT0dO3atcus2bhxo3JzcxUeHm7WbNmyRRcvXjRrEhIS1Lx5c9WoUcOsSUxMdHqthIQERURElPaUAAAAio0eCQAA3MxcDqTOnDmj5ORkJScnS5JSUlKUnJys1NRUnTlzRk8//bS++OILHT16VImJibrnnnvUpEkTRUVFSZJatmyp3r17a+TIkdqxY4c+//xzjRkzRoMGDVJQUJAk6aGHHpKXl5eGDx+uffv2aenSpZozZ47TqeRPPPGE4uPj9eqrr+rAgQOaOnWqdu7cqTFjxpTAYQEAAHANPRIAAEDhuRxI7dy5U+3bt1f79u0lSXFxcWrfvr0mT54sDw8PffPNN/rjH/+oZs2aafjw4QoLC9Nnn30mb29vcx/vvfeeWrRooZ49e6pv377q2rWrFixYYK739fXVhg0blJKSorCwMD355JOaPHmyRo0aZdZ06dJFS5Ys0YIFC9S2bVt98MEHWrlypVq1alWc4wEAAFAk9EgAAACF52YYhlHWgygrDodDvr6+ysjI4FoJcNmRnW8p93Cq+byhXx9JkmfvrmU1JABAIfD5f30cIxTHlT2SdKlPokcCgPLN6s//Ur+GFAAAAAAAAHA5AikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAliKQAgAAAAAAgKUIpAAAAAAAAGApAikAAAAAAABYikAKAAAAAAAAlnI5kNqyZYv69++voKAgubm5aeXKlU7rDcPQ5MmTVbduXVWuXFmRkZE6dOiQU82pU6c0ePBg2Ww2+fn5afjw4Tpz5oxTzTfffKNu3brJx8dHwcHBmjlzZr6xLF++XC1atJCPj49at26ttWvXujodAACAEkGPBAAAUHguB1Jnz55V27ZtNXfu3ALXz5w5U6+//rrmz5+v7du3q2rVqoqKitKFCxfMmsGDB2vfvn1KSEjQ6tWrtWXLFo0aNcpc73A41KtXLzVo0EC7du3Syy+/rKlTp2rBggVmzbZt2/Tggw9q+PDh2r17t6KjoxUdHa29e/e6OiUAAIBio0cCAAAoPDfDMIwib+zmphUrVig6OlrSpW/+goKC9OSTT+qpp56SJGVkZCggIECLFi3SoEGD9O233yo0NFRffvmlOnbsKEmKj49X37599dNPPykoKEjz5s3Tc889J7vdLi8vL0nShAkTtHLlSh04cECSNHDgQJ09e1arV682x9O5c2e1a9dO8+fPL9T4HQ6HfH19lZGRIZvNVtTDgJvUkZ1vKfdwqvm8oV8fSZJn765lNSQAQCFY8flPj4Sb2ZU9knSpT6JHAoDyzerP/xK9hlRKSorsdrsiIyPNZb6+vgoPD1dSUpIkKSkpSX5+fmajJUmRkZFyd3fX9u3bzZru3bubjZYkRUVF6eDBg/rtt9/MmstfJ68m73UAAADKC3okAAAAZ5VKcmd2u12SFBAQ4LQ8ICDAXGe32+Xv7+88iEqVVLNmTaeakJCQfPvIW1ejRg3Z7fZrvk5BMjMzlZmZaT53OByuTA8AAKBI6JEAAACc3VR32ZsxY4Z8fX3NR3BwcFkPCQAAoMzRIwEAAKuVaCAVGBgoSUpLS3NanpaWZq4LDAzUiRMnnNZnZ2fr1KlTTjUF7ePy17haTd76gkycOFEZGRnm48cff3R1igAAAC6jRwIAAHBWooFUSEiIAgMDlZiYaC5zOBzavn27IiIiJEkRERFKT0/Xrl27zJqNGzcqNzdX4eHhZs2WLVt08eJFsyYhIUHNmzdXjRo1zJrLXyevJu91CuLt7S2bzeb0AAAAKG30SAAAAM5cDqTOnDmj5ORkJScnS7p0kc7k5GSlpqbKzc1NY8eO1QsvvKBVq1Zpz549GjJkiIKCgsy7zLRs2VK9e/fWyJEjtWPHDn3++ecaM2aMBg0apKCgIEnSQw89JC8vLw0fPlz79u3T0qVLNWfOHMXFxZnjeOKJJxQfH69XX31VBw4c0NSpU7Vz506NGTOm+EcFAADARfRIAAAAhefyRc137typu+66y3ye1wDFxMRo0aJFeuaZZ3T27FmNGjVK6enp6tq1q+Lj4+Xj42Nu895772nMmDHq2bOn3N3dNWDAAL3++uvmel9fX23YsEGxsbEKCwtT7dq1NXnyZI0aNcqs6dKli5YsWaJJkybp2WefVdOmTbVy5Uq1atWqSAcCAACgOOiRAAAACs/NMAyjrAdRVhwOh3x9fZWRkcGp6XDZkZ1vKfdwqvm8oV8fSZJn765lNSQAQCHw+X99HCMUx5U9knSpT6JHAoDyzerP/5vqLnsAAAAAAAAoewRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxFIAUAAAAAAABLEUgBAAAAAADAUgRSAAAAAAAAsBSBFAAAAAAAACxV4oHU1KlT5ebm5vRo0aKFuf7ChQuKjY1VrVq1VK1aNQ0YMEBpaWlO+0hNTVW/fv1UpUoV+fv76+mnn1Z2drZTzaZNm9ShQwd5e3urSZMmWrRoUUlPBQAAoMTQIwEAAPyuVM6QuvXWW3X8+HHzsXXrVnPduHHj9PHHH2v58uXavHmzjh07pvvuu89cn5OTo379+ikrK0vbtm3T4sWLtWjRIk2ePNmsSUlJUb9+/XTXXXcpOTlZY8eO1YgRI7R+/frSmA4AAECJoEcCAAC4pFKp7LRSJQUGBuZbnpGRoX/9619asmSJevToIUlauHChWrZsqS+++EKdO3fWhg0btH//fn3yyScKCAhQu3btNH36dI0fP15Tp06Vl5eX5s+fr5CQEL366quSpJYtW2rr1q2aNWuWoqKiSmNKAAAAxUaPBAAAcEmpnCF16NAhBQUFqVGjRho8eLBSU1MlSbt27dLFixcVGRlp1rZo0UL169dXUlKSJCkpKUmtW7dWQECAWRMVFSWHw6F9+/aZNZfvI68mbx8AAADlET0SAADAJSV+hlR4eLgWLVqk5s2b6/jx45o2bZq6deumvXv3ym63y8vLS35+fk7bBAQEyG63S5LsdrtTo5W3Pm/dtWocDofOnz+vypUrFzi2zMxMZWZmms8dDkex5goAAFBY9EgAAAC/K/FAqk+fPubPbdq0UXh4uBo0aKBly5ZdtQmyyowZMzRt2rQyHQMAALg50SMBAAD8rlT+ZO9yfn5+atasmQ4fPqzAwEBlZWUpPT3dqSYtLc28nkJgYGC+O8rkPb9ejc1mu2ZDN3HiRGVkZJiPH3/8sbjTAwAAKBJ6JAAAcDMr9UDqzJkzOnLkiOrWrauwsDB5enoqMTHRXH/w4EGlpqYqIiJCkhQREaE9e/boxIkTZk1CQoJsNptCQ0PNmsv3kVeTt4+r8fb2ls1mc3oAAACUBXokAABwMyvxQOqpp57S5s2bdfToUW3btk333nuvPDw89OCDD/4/9u48LMp6///4C5ABtwFNFhfcTXNJyxVzKSVxqROlpWWK/lzS0JNSuWTHtdKvltmiqS3q6dRJWzSPmksumWlaJGVuuWBWCm4JboHA5/eHFxO3gALCzeLzcV1zneaez33P+/7MyLzOe+65b/n4+GjAgAGKjIzUxo0bFRUVpf79+ys4OFitWrWSJHXq1En169dXnz599OOPP2rNmjV6/vnnFRERIS8vL0nSkCFDdPjwYY0aNUr79u3TnDlztGTJEo0cOTKvdwcAACBPkJEAAAD+lufnkPr999/16KOP6vTp0/Lz81ObNm307bffys/PT5L06quvyt3dXd27d1diYqJCQ0M1Z84c1/oeHh5asWKFhg4dquDgYJUuXVrh4eGaPHmya0yNGjW0cuVKjRw5Uq+99pqqVKmid955h8sZAwCAQouMBAAA8Dc3Y4wp6CIKSkJCgnx8fBQfH8+h6cixQ9/PU+rBo6771X2vnKzWs3ObgioJAJANfP5fH3OEG3F1RpKu5CQyEgAUbnZ//uf7OaQAAAAAAACA9GhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW5Uo6AJu1OzZszVjxgzFxsaqcePGeuONN9SiRYuCLgsAgGLv8uotuVrPs3ObPK4EmSEjAQBQMMhI2VOkG1KLFy9WZGSk5s6dq5YtW2rWrFkKDQ3V/v375e/vX9DlAQBQJOQ2NOXl891sASy/kZEAALhxZKT8VaQbUjNnztSgQYPUv39/SdLcuXO1cuVKvffeexozZkwBVwcAQO7YHX5Q/JCRAADFFTmp+CiyDamkpCRFRUVp7NixrmXu7u4KCQnRtm3bMl0nMTFRiYmJrvvx8fGSpISEhPwtFsXSufOXZC7+/X5K8LwgSfLMx/fT5XUZ39ue9wbn2/MVFVfPS3bnJD/Xy+y1ulp217t6XHa2DRQ5n67JsCi//r6lfe4bY/Jl+wWNjISCdnVGkq7kJDKS/XI7L/m5HhkJyKFinJGKbEPq1KlTSklJUUBAgGV5QECA9u3bl+k6U6dO1aRJkzIsDwoKypcacbN5paALAADkwLlz5+Tj41PQZeQ5MhIKJ3ISABQVdmWkItuQyo2xY8cqMjLSdT81NVVnzpzRLbfcIjc3t0zXSUhIUFBQkH777Tc5nU67Si3UmBMr5iMj5sSK+ciIOcmIObHKz/kwxujcuXOqVKlSnm63KCMj5Q3mJCPmxIr5yIg5sWI+MmJOrIpTRiqyDakKFSrIw8NDcXFxluVxcXEKDAzMdB0vLy95eXlZlvn6+mbr+ZxOJ2/+qzAnVsxHRsyJFfOREXOSEXNilV/zURyPjEpDRip4zElGzIkV85ERc2LFfGTEnFgVh4zkbtsz5TGHw6GmTZtq/fr1rmWpqalav369goP5vTgAALg5kZEAAEBRUGSPkJKkyMhIhYeHq1mzZmrRooVmzZqlCxcuuK4oAwAAcDMiIwEAgMKuSDekevbsqZMnT2r8+PGKjY1VkyZNtHr16gwn8bwRXl5emjBhQobD2G9mzIkV85ERc2LFfGTEnGTEnFgxHzeGjFQwmJOMmBMr5iMj5sSK+ciIObEqTvPhZorrNY8BAAAAAABQKBXZc0gBAAAAAACgaKIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkMnHmzBn17t1bTqdTvr6+GjBggM6fP5+tdY0x6tKli9zc3LRs2bL8LdRGOZ2TM2fOaPjw4apbt65KliypqlWr6p///Kfi4+NtrDrvzJ49W9WrV5e3t7datmypHTt2XHP8xx9/rHr16snb21uNGjXSqlWrbKrUPjmZk7fffltt27ZVuXLlVK5cOYWEhFx3DouanL5H0nz00Udyc3NTWFhY/hZYAHI6J2fPnlVERIQqVqwoLy8v3XrrrcXq305O52PWrFmuv6FBQUEaOXKk/vrrL5uqzX+bN2/W/fffr0qVKmX7M3PTpk2688475eXlpdq1a2vhwoX5XiesyEgZkZHISFcjI2VETrIiI2VETvrbTZWRDDLo3Lmzady4sfn222/N119/bWrXrm0effTRbK07c+ZM06VLFyPJLF26NH8LtVFO52TXrl3moYceMsuXLzcHDx4069evN3Xq1DHdu3e3seq88dFHHxmHw2Hee+89s3v3bjNo0CDj6+tr4uLiMh3/zTffGA8PDzN9+nSzZ88e8/zzzxtPT0+za9cumyvPPzmdk8cee8zMnj3b7Ny50+zdu9f069fP+Pj4mN9//93myvNHTucjTUxMjKlcubJp27ateeCBB+wp1iY5nZPExETTrFkz07VrV7NlyxYTExNjNm3aZKKjo22uPH/kdD4++OAD4+XlZT744AMTExNj1qxZYypWrGhGjhxpc+X5Z9WqVWbcuHHms88+y9Zn5uHDh02pUqVMZGSk2bNnj3njjTeMh4eHWb16tT0FwxhDRsoMGYmMlB4ZKSNykhUZKSNyktXNlJFoSF1lz549RpL57rvvXMu++OIL4+bmZv74449rrrtz505TuXJlc/z48WIVtm5kTtJbsmSJcTgc5vLly/lRZr5p0aKFiYiIcN1PSUkxlSpVMlOnTs10/COPPGK6detmWdayZUvzxBNP5GuddsrpnFwtOTnZlC1b1ixatCi/SrRVbuYjOTnZtG7d2rzzzjsmPDy8WAUtY3I+J2+99ZapWbOmSUpKsqtEW+V0PiIiIkyHDh0syyIjI81dd92Vr3UWlOx8Zo4aNco0aNDAsqxnz54mNDQ0HytDemSkjMhIZKSrkZEyIidZkZEyIidlrbhnJH6yd5Vt27bJ19dXzZo1cy0LCQmRu7u7tm/fnuV6Fy9e1GOPPabZs2crMDDQjlJtk9s5uVp8fLycTqdKlCiRH2Xmi6SkJEVFRSkkJMS1zN3dXSEhIdq2bVum62zbts0yXpJCQ0OzHF/U5GZOrnbx4kVdvnxZ5cuXz68ybZPb+Zg8ebL8/f01YMAAO8q0VW7mZPny5QoODlZERIQCAgLUsGFDvfTSS0pJSbGr7HyTm/lo3bq1oqKiXIerHz58WKtWrVLXrl1tqbkwKu5/W4sCMlJGZCQyUnpkpIzISVZkpIzISTeuKP9tLTqfejaJjY2Vv7+/ZVmJEiVUvnx5xcbGZrneyJEj1bp1az3wwAP5XaLtcjsn6Z06dUpTpkzR4MGD86PEfHPq1CmlpKQoICDAsjwgIED79u3LdJ3Y2NhMx2d3rgq73MzJ1UaPHq1KlSpl+MNZFOVmPrZs2aJ3331X0dHRNlRov9zMyeHDh7Vhwwb17t1bq1at0sGDB/Xkk0/q8uXLmjBhgh1l55vczMdjjz2mU6dOqU2bNjLGKDk5WUOGDNFzzz1nR8mFUlZ/WxMSEnTp0iWVLFmygCq7eZCRMiIjkZHSIyNlRE6yIiNlRE66cUU5I900R0iNGTNGbm5u17xl94PiasuXL9eGDRs0a9asvC06n+XnnKSXkJCgbt26qX79+po4ceKNF44ibdq0afroo4+0dOlSeXt7F3Q5tjt37pz69Omjt99+WxUqVCjocgqN1NRU+fv7a/78+WratKl69uypcePGae7cuQVdWoHYtGmTXnrpJc2ZM0c//PCDPvvsM61cuVJTpkwp6NJQDJGRMiIjoSDc7BlJIidlhoyUETmp+LhpjpB6+umn1a9fv2uOqVmzpgIDA3XixAnL8uTkZJ05cybLw8w3bNigQ4cOydfX17K8e/fuatu2rTZt2nQDleef/JyTNOfOnVPnzp1VtmxZLV26VJ6enjdatq0qVKggDw8PxcXFWZbHxcVlue+BgYE5Gl/U5GZO0rz88suaNm2avvzyS91+++35WaZtcjofhw4d0pEjR3T//fe7lqWmpkq68q36/v37VatWrfwtOp/l5j1SsWJFeXp6ysPDw7XstttuU2xsrJKSkuRwOPK15vyUm/n417/+pT59+mjgwIGSpEaNGunChQsaPHiwxo0bJ3f3m+b7JJes/rY6nc5C/c1fUUBGyoiMdH1kpIzISBmRk6zISBmRk25cUc5IN80r5efnp3r16l3z5nA4FBwcrLNnzyoqKsq17oYNG5SamqqWLVtmuu0xY8bop59+UnR0tOsmSa+++qoWLFhgx+7lSn7OiXTlW79OnTrJ4XBo+fLlRfKbHofDoaZNm2r9+vWuZampqVq/fr2Cg4MzXSc4ONgyXpLWrVuX5fiiJjdzIknTp0/XlClTtHr1asu5Noq6nM5HvXr1tGvXLsvfi3/84x+65557FB0draCgIDvLzxe5eY/cddddOnjwoCt0StIvv/yiihUrFvmglZv5uHjxYoYwlRZEjTH5V2whVtz/thYkMlJGZKTrIyNlREbKiJxkRUbKiJx044r039aCPad64dS5c2dzxx13mO3bt5stW7aYOnXqWC7f+/vvv5u6deua7du3Z7kNFaMryBiT8zmJj483LVu2NI0aNTIHDx40x48fd92Sk5MLajdy5aOPPjJeXl5m4cKFZs+ePWbw4MHG19fXxMbGGmOM6dOnjxkzZoxr/DfffGNKlChhXn75ZbN3714zYcKEYnlJ45zMybRp04zD4TCffPKJ5b1w7ty5gtqFPJXT+bhacbt6jDE5n5OjR4+asmXLmmHDhpn9+/ebFStWGH9/f/PCCy8U1C7kqZzOx4QJE0zZsmXNf//7X3P48GGzdu1aU6tWLfPII48U1C7kuXPnzpmdO3eanTt3Gklm5syZZufOnebXX381xhgzZswY06dPH9f4tEsaP/vss2bv3r1m9uzZReaSxsUJGSkjMhIZKT0yUkbkJCsyUkbkJKubKSPRkMrE6dOnzaOPPmrKlCljnE6n6d+/v+VDISYmxkgyGzduzHIbxS1s5XRONm7caCRleouJiSmYnbgBb7zxhqlatapxOBymRYsW5ttvv3U91r59exMeHm4Zv2TJEnPrrbcah8NhGjRoYFauXGlzxfkvJ3NSrVq1TN8LEyZMsL/wfJLT90h6xS1opcnpnGzdutW0bNnSeHl5mZo1a5oXX3yxyP2fs2vJyXxcvnzZTJw40dSqVct4e3uboKAg8+STT5o///zT/sLzSVafE2nzEB4ebtq3b59hnSZNmhiHw2Fq1qxpFixYYHvdNzsyUkZkJDLS1chIGZGTrMhIGZGT/nYzZSQ3Y27CY9oAAAAAAABQYG6ac0gBAAAAAACgcKAhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAXDZtGmT3NzctGnTpjzdrpubmyZOnJin28yphQsXys3NTUeOHMnXbd599926++67c7ytnMx9bp8jJyZOnCg3N7d8fY7MpKamqmHDhnrxxRevOzazGpOTkzVq1CgFBQXJ3d1dYWFhOXr+uXPnqmrVqkpMTMzRegCA4o2MdOPbJCPdGDISiiMaUiiWtm7dqokTJ+rs2bMFXcpNY9WqVQUeqFCw0sJnZrfY2NhsbeO///2vfvvtNw0bNixXNbz33nuaMWOGevTooUWLFmnkyJGSpMWLF+vxxx9XnTp15ObmlmVY7devn5KSkjRv3rxcPT8AFHZkJPuRkVBYM9Lp06c1Y8YMtWvXTn5+fvL19VWrVq20ePHiDOuTkZAfShR0AUB+2Lp1qyZNmqR+/frJ19e3oMu5KaxatUqzZ8/ONHBdunRJJUoU7J+bPn36qFevXvLy8srX51m7dm2u1mvXrp0uXbokh8ORxxXZb/LkyapRo4ZlWXb/Hc6YMUO9evWSj49Prp57w4YNqly5sl599VXL8rfeektRUVFq3ry5Tp8+neX63t7eCg8P18yZMzV8+PAC+QYUAPITGcl+ZKQryEiFLyOtWLFC48aNU9euXfX888+rRIkS+vTTT9WrVy/t2bNHkyZNco0lIyE/0JACioGLFy+qVKlSGZYnJycrNTW1wD/Avb29C/T5JcnDw0MeHh75/jy5nWt3d/dCMU95oUuXLmrWrFmO19u5c6d+/PFHvfLKK7l+7hMnTmQa7N5//31VrlxZ7u7uatiw4TW38cgjj2j69OnauHGjOnTokOtaAAAFj4x0fWQk+xS2jNSgQQMdOHBA1apVcy178sknFRISov/7v//TqFGjVLp0addjZCTkNX6yh2Jn4sSJevbZZyVJNWrUcB0Om/Yb9uTkZE2ZMkW1atWSl5eXqlevrueeey7D76GrV6+u++67T2vXrlWTJk3k7e2t+vXr67PPPstVXf/5z3/UokULlSpVSuXKlVO7du0yfFM0Z84cNWjQQF5eXqpUqZIiIiIyHFJ/9913q2HDhoqKilK7du1UqlQpPffcczpy5Ijc3Nz08ssva9asWa7927NnjyRp37596tGjh8qXLy9vb281a9ZMy5cvv27dX3/9tR5++GFVrVpVXl5eCgoK0siRI3Xp0iXXmH79+mn27NmSZDkEOU1m50fYuXOnunTpIqfTqTJlyqhjx4769ttvLWPSDm/+5ptvFBkZKT8/P5UuXVoPPvigTp48ed3aM9tW+nMZpL3GW7ZsUYsWLeTt7a2aNWvq3//+d4b1d+/erQ4dOqhkyZKqUqWKXnjhBaWmpmYYl/7cBXFxcSpRooTl26U0+/fvl5ubm958801JWZ8fYf78+apVq5ZKliypFi1a6Ouvv87WvmW1zey8nnnh3LlzSklJydE6y5Ytk8PhULt27TI8tmXLFjVv3lze3t6qVatWhsPF097/Gzdu1O7du13vwbR9TztfQnY0bdpU5cuX1+eff56j+gGgsCMjkZEyQ0a64mbMSDVq1LA0o6Qr78mwsDAlJibq8OHDlsfISMhrHCGFYuehhx7SL7/8ov/+97969dVXVaFCBUmSn5+fJGngwIFatGiRevTooaefflrbt2/X1KlTtXfvXi1dutSyrQMHDqhnz54aMmSIwsPDtWDBAj388MNavXq17r333mzXNGnSJE2cOFGtW7fW5MmT5XA4tH37dm3YsEGdOnWSdCUkTpo0SSEhIRo6dKj279+vt956S999952++eYbeXp6urZ3+vRpdenSRb169dLjjz+ugIAA12MLFizQX3/9pcGDB8vLy0vly5fX7t27ddddd6ly5coaM2aMSpcurSVLligsLEyffvqpHnzwwSxr//jjj3Xx4kUNHTpUt9xyi3bs2KE33nhDv//+uz7++GNJ0hNPPKFjx45p3bp1ev/99687H7t371bbtm3ldDo1atQoeXp6at68ebr77rv11VdfqWXLlpbxw4cPV7ly5TRhwgQdOXJEs2bN0rBhwzL9fXtOHTx4UD169NCAAQMUHh6u9957T/369VPTpk3VoEEDSVJsbKzuueceJScnu+Zv/vz5Klmy5DW3HRAQoPbt22vJkiWaMGGC5bHFixfLw8NDDz/8cJbrv/vuu3riiSfUunVrjRgxQocPH9Y//vEPlS9fXkFBQbna3+y8njfqnnvu0fnz5+VwOBQaGqpXXnlFderUue56W7duVcOGDS3vdUnatWuXOnXqJD8/P02cOFHJycmaMGGC5X3v5+en999/Xy+++KLOnz+vqVOnSpJuu+22XO3DnXfeqW+++SZX6wJAYUVGIiPlBBnp5s1Iaee1SvsbkR4ZCXnKAMXQjBkzjCQTExNjWR4dHW0kmYEDB1qWP/PMM0aS2bBhg2tZtWrVjCTz6aefupbFx8ebihUrmjvuuCPbtRw4cMC4u7ubBx980KSkpFgeS01NNcYYc+LECeNwOEynTp0sY958800jybz33nuuZe3btzeSzNy5cy3biomJMZKM0+k0J06csDzWsWNH06hRI/PXX39Znrt169amTp06rmUbN240kszGjRtdyy5evJhhn6ZOnWrc3NzMr7/+6loWERFhsvqTIslMmDDBdT8sLMw4HA5z6NAh17Jjx46ZsmXLmnbt2rmWLViwwEgyISEhrrkyxpiRI0caDw8Pc/bs2UyfLzNp20r/nkh7jTdv3uxaduLECePl5WWefvpp17IRI0YYSWb79u2WcT4+Phm22b59e9O+fXvX/Xnz5hlJZteuXZZ66tevbzp06OC6f/XcJyUlGX9/f9OkSROTmJjoGjd//nwjyfIcme1bZts0Jvuv54QJE7J8PbOyePFi069fP7No0SKzdOlS8/zzz5tSpUqZChUqmKNHj153/SpVqpju3btnWB4WFma8vb0t9e3Zs8d4eHhkqLF9+/amQYMG13yeBg0aWOYvM4MHDzYlS5a8bs0AUNSQkchIVyMjXUFGuuL06dPG39/ftG3bNtPHyUjIS/xkDzeVVatWSZIiIyMty59++mlJ0sqVKy3LK1WqZPlmzOl0qm/fvtq5c2e2r4ixbNkypaamavz48Rl+MpR2yPaXX36ppKQkjRgxwjJm0KBBcjqdGery8vJS//79M32+7t27u77plKQzZ85ow4YNeuSRR3Tu3DmdOnVKp06d0unTpxUaGqoDBw7ojz/+yLL+9N9wXbhwQadOnVLr1q1ljNHOnTuzNQfppaSkaO3atQoLC1PNmjVdyytWrKjHHntMW7ZsUUJCgmWdwYMHWw5vb9u2rVJSUvTrr7/m+PmvVr9+fbVt29Z138/PT3Xr1rUcorxq1Sq1atVKLVq0sIzr3bv3dbf/0EMPqUSJEpZvKn/++Wft2bNHPXv2zHK977//XidOnNCQIUMs51zo169frk9mKeX965neI488ogULFqhv374KCwvTlClTtGbNGp0+fTpblyg+ffq0ypUrZ1mWkpKiNWvWKCwsTFWrVnUtv+222xQaGnpD9V5LuXLldOnSJV28eDHfngMAChMyEhnpamSkmy8jpaamqnfv3jp79qzeeOONTMeQkZCXaEjhpvLrr7/K3d1dtWvXtiwPDAyUr69vhg/v2rVrZ7iCxK233ipJGX6LnpVDhw7J3d1d9evXv2ZdklS3bl3LcofDoZo1a2aoq3LlylmeGPLqK3ccPHhQxhj961//kp+fn+WWdoj0iRMnsqzt6NGj6tevn8qXL68yZcrIz89P7du3lyTFx8dnuV5WTp48qYsXL2bYV+nKB2hqaqp+++03y/L0H7KSXB/If/75Z46f/2pXbztt++m3/euvv2Z6OHVm+3C1ChUqqGPHjlqyZIlr2eLFi1WiRAk99NBDWa6X9ppf/byenp6WkJpTef16Xk+bNm3UsmVLffnll9kab4yx3D958qQuXbqU6/nPrbQ6uIIMgJsFGYmMdDUy0s2XkYYPH67Vq1frnXfeUePGja9ZBxkJeYFzSOGmVNT/gF7rd/lXP5Z2Uslnnnkmy29Lrg6faVJSUnTvvffqzJkzGj16tOrVq6fSpUvrjz/+UL9+/TI9YWV+yOrKL1d/MBe2bafp1auX+vfvr+joaDVp0kRLlixRx44dM/1dfm5k9X6++oSZBfV6BgUFaf/+/dcdd8stt+RJgM4Lf/75p0qVKnXdc2AAQHFDRrIiI+XPttOQkQpPRpo0aZLmzJmjadOmqU+fPlmOIyMhL9GQQrGU1YdPtWrVlJqaqgMHDlhO5BcXF6ezZ89muMpE2jdn6bf3yy+/SLpy9ZHsqFWrllJTU7Vnzx41adIky7qkK1cVSf/NTlJSkmJiYhQSEpKt58pM2vY8PT1zvJ1du3bpl19+0aJFi9S3b1/X8nXr1mUYm90A6+fnp1KlSmX64btv3z65u7vn+mSU+aVatWo6cOBAhuXZCRCSFBYWpieeeMJ1SPovv/yisWPHXvc5pSsnjU1/Wd3Lly8rJibG8q1V2rehV19t6OpvjXPyeualw4cPW34ikZV69eopJibGsszPz08lS5a8ofnPjZiYmFyfEB0ACjMy0t/ISDeOjHRjCktGmj17tiZOnKgRI0Zo9OjR1xxLRkJe4id7KJZKly4tKeOHT9euXSVJs2bNsiyfOXOmJKlbt26W5ceOHbNcVSYhIUH//ve/1aRJEwUGBmarlrCwMLm7u2vy5MkZvl1J+4YpJCREDodDr7/+uuVbp3fffVfx8fEZ6soJf39/3X333Zo3b56OHz+e4fFrXRo47Zux9DUZY/Taa69lGJvVnGe2zU6dOunzzz+3HNIfFxenDz/8UG3atJHT6bzmNuzWtWtXffvtt9qxY4dr2cmTJ/XBBx9ka31fX1+FhoZqyZIl+uijj+RwOBQWFnbNdZo1ayY/Pz/NnTtXSUlJruULFy7MMMe1atWSJG3evNm1LCUlRfPnz7eMy8nrmRuZvZdWrVqlqKgode7c+brrBwcH6+eff7ZcXtzDw0OhoaFatmyZjh496lq+d+9erVmzJk/qzswPP/yg1q1b59v2AaCgkJH+Rka6cWSk7CnMGWnx4sX65z//qd69e7v+vV8LGQl5iSOkUCw1bdpUkjRu3Dj16tVLnp6euv/++9W4cWOFh4dr/vz5Onv2rNq3b68dO3Zo0aJFCgsL0z333GPZzq233qoBAwbou+++U0BAgN577z3FxcVpwYIF2a6ldu3aGjdunKZMmaK2bdvqoYcekpeXl7777jtVqlRJU6dOlZ+fn8aOHatJkyapc+fO+sc//qH9+/drzpw5at68uR5//PEbmo/Zs2erTZs2atSokQYNGqSaNWsqLi5O27Zt0++//64ff/wx0/Xq1aunWrVq6ZlnntEff/whp9OpTz/9NNNDhtPm/J///KdCQ0Pl4eGhXr16ZbrdF154QevWrVObNm305JNPqkSJEpo3b54SExM1ffr0G9rX/DBq1Ci9//776ty5s5566inXJY2rVaumn376KVvb6Nmzpx5//HHNmTNHoaGh8vX1veZ4T09PvfDCC3riiSfUoUMH9ezZUzExMVqwYEGG8yM0aNBArVq10tixY3XmzBmVL19eH330kZKTky3jcvJ65kbr1q11xx13qFmzZvLx8dEPP/yg9957T0FBQXruueeuu/4DDzygKVOm6KuvvnJd6lu6cgj56tWr1bZtWz355JNKTk7WG2+8oQYNGmR7/jdv3uwKoydPntSFCxf0wgsvSJLatWundu3aucZGRUXpzJkzeuCBB3Ky+wBQJJCRrMhIN4aMlD2FNSPt2LFDffv21S233KKOHTtmaCS2bt3aMqdkJOQ5ey7mB9hvypQppnLlysbd3d1yudfLly+bSZMmmRo1ahhPT08TFBRkxo4da7ncrzFXLnfbrVs3s2bNGnP77bcbLy8vU69ePfPxxx/nqp733nvP3HHHHcbLy8uUK1fOtG/f3qxbt84y5s033zT16tUznp6eJiAgwAwdOtT8+eefljFZXbI17ZLGM2bMyPT5Dx06ZPr27WsCAwONp6enqVy5srnvvvvMJ5984hqT2SVw9+zZY0JCQkyZMmVMhQoVzKBBg8yPP/5oJJkFCxa4xiUnJ5vhw4cbPz8/4+bmZrnUrK66pLExxvzwww8mNDTUlClTxpQqVcrcc889ZuvWrZYxaZfq/e677yzLM6vzerK6pHG3bt0yjL36ssTGGPPTTz+Z9u3bG29vb1O5cmUzZcoU8+677173ksZpEhISTMmSJY0k85///CfD41nt05w5c0yNGjWMl5eXadasmdm8eXOmz3Ho0CETEhJivLy8TEBAgHnuuefMunXrcv165uaSxuPGjTNNmjQxPj4+xtPT01StWtUMHTrUxMbGZnsbt99+uxkwYECG5V999ZVp2rSpcTgcpmbNmmbu3LmZ1pjVv4+0sZndrn5vjh492lStWtVyGW0AKE7ISFZkJDKSMTdnRkp77bO6pd9vY8hIyHtuxuThWemAYqR69epq2LChVqxYUdClADeN999/XxERETp69Oh1vyHND4mJiapevbrGjBmjp556yvbnB4CigIwE2I+MhOKIc0gBAAqN3r17q2rVqpo9e3aBPP+CBQvk6empIUOGFMjzAwAAZIaMhOKII6SALGTn27/Y2NhrbqNkyZLy8fHJ69KQzvnz53X+/PlrjvHz88vy0sW4vvj4eF26dOmaY7J7AlsAQNFHRioayEj5j4wE3BhOag7cgIoVK17z8fDwcC1cuNCeYm5SL7/8siZNmnTNMTExMdm+BDUyeuqpp7Ro0aJrjuG7DQBAemSkgkdGyn9kJODGcIQUcAO+/PLLaz5eqVIl1a9f36Zqbk6HDx/W4cOHrzmmTZs28vb2tqmi4mfPnj06duzYNceEhITYVA0AoCggIxU8MlL+IyMBN4aGFAAAAAAAAGzFSc0BAAAAAABgq5v6HFKpqak6duyYypYtKzc3t4IuBwAA2MAYo3PnzqlSpUpyd+e7ucyQkQAAuPnYnZFu6obUsWPHFBQUVNBlAACAAvDbb7+pSpUqBV1GoURGAgDg5mVXRrqpG1Jly5aVdGWynU5nAVcDAADskJCQoKCgIFcOQEZkJAAAbj52Z6SbuiGVdgi60+kkbAEAcJPhp2hZIyMBAHDzsisjceIEAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2uqnPIQUAwLWkpKTo8uXLBV0GcsjT01MeHh4FXQYAAMUWGaloKmwZiYYUAABXMcYoNjZWZ8+eLehSkEu+vr4KDAzkxOUAAOQhMlLRV5gyEg0pAACukha0/P39VapUqULxgY3sMcbo4sWLOnHihCSpYsWKBVwRAADFBxmp6CqMGYmGFAAA6aSkpLiC1i233FLQ5SAXSpYsKUk6ceKE/P39C9Wh6QAAFFVkpKKvsGUkTmoOAEA6aedDKFWqVAFXghuR9vpxfgsAAPIGGal4KEwZiYYUAACZ4BD0oo3XDwCA/MFnbNFWmF4/GlIAAAAAAACwFQ0pAAAAAAAA2IqTmgMAkE2XV2+x7bk8O7fJ9tjrHXo9YcIETZw48QYryh03NzctXbpUYWFhud7G/Pnz9eGHH+qHH37QuXPn9Oeff8rX1zfPagQAADfGzowkkZPSnDlzRhMmTNDatWt19OhR+fn5KSwsTFOmTJGPj0/eFpsPaEgBAFDEHT9+3PXfixcv1vjx47V//37XsjJlyuRoe0lJSXI4HHlW3426ePGiOnfurM6dO2vs2LEFXQ4AAChCinNOOnbsmI4dO6aXX35Z9evX16+//qohQ4bo2LFj+uSTTwq6vOviJ3tAHru8eovlBgD5LTAw0HXz8fGRm5ub6/6FCxfUu3dvBQQEqEyZMmrevLm+/PJLy/rVq1fXlClT1LdvXzmdTg0ePFiS9PbbbysoKEilSpXSgw8+qJkzZ2Y4Munzzz/XnXfeKW9vb9WsWVOTJk1ScnKya7uS9OCDD8rNzc11/8cff9Q999yjsmXLyul0qmnTpvr++++z3L8RI0ZozJgxatWqVd5MGIACQUYCUBCKc05q2LChPv30U91///2qVauWOnTooBdffFH/+9//XM9TmNGQAgCgGDt//ry6du2q9evXa+fOnercubPuv/9+HT161DLu5ZdfVuPGjbVz507961//0jfffKMhQ4boqaeeUnR0tO699169+OKLlnW+/vpr9e3bV0899ZT27NmjefPmaeHCha5x3333nSRpwYIFOn78uOt+7969VaVKFX333XeKiorSmDFj5OnpacNsAAAA/K045qT4+Hg5nU6VKFH4fxBX+CsEAAC51rhxYzVu3Nh1f8qUKVq6dKmWL1+uYcOGuZZ36NBBTz/9tOv+uHHj1KVLFz3zzDOSpFtvvVVbt27VihUrXGMmTZqkMWPGKDw8XJJUs2ZNTZkyRaNGjdKECRPk5+cnSfL19VVgYKBrvaNHj+rZZ59VvXr1JEl16tTJhz0HAAC4tuKWk06dOqUpU6a4juIq7DhCCgCAYuz8+fN65plndNttt8nX11dlypTR3r17M3zz16xZM8v9/fv3q0WLFpZlV9//8ccfNXnyZJUpU8Z1GzRokI4fP66LFy9mWVNkZKQGDhyokJAQTZs2TYcOHbrBvQQAAMi54pSTEhIS1K1bN9WvX7/ATtKeUzSkAAAoxp555hktXbpUL730kr7++mtFR0erUaNGSkpKsowrXbp0jrd9/vx5TZo0SdHR0a7brl27dODAAXl7e2e53sSJE7V7925169ZNGzZsUP369bV06dIcPz8AAMCNKC456dy5c+rcubPKli2rpUuXFplTIfCTPQAAirFvvvlG/fr104MPPijpSjg6cuTIdderW7eu61wGaa6+f+edd2r//v2qXbt2ltvx9PRUSkpKhuW33nqrbr31Vo0cOVKPPvqoFixY4KoRAADADsUhJyUkJCg0NFReXl5avnz5NZtdhQ0NKQAAirE6deros88+0/333y83Nzf961//Umpq6nXXGz58uNq1a6eZM2fq/vvv14YNG/TFF1/Izc3NNWb8+PG67777VLVqVfXo0UPu7u768ccf9fPPP+uFF16QdOUKMuvXr9ddd90lLy8veXt769lnn1WPHj1Uo0YN/f777/ruu+/UvXv3LGuJjY1VbGysDh48KEnatWuXypYtq6pVq6p8+fI3OEMAAOBmVdRzUkJCgjp16qSLFy/qP//5jxISEpSQkCBJ8vPzk4eHRx7MUv7hJ3sAABRjM2fOVLly5dS6dWvdf//9Cg0N1Z133nnd9e666y7NnTtXM2fOVOPGjbV69WqNHDnS8q1baGioVqxYobVr16p58+Zq1aqVXn31VVWrVs015pVXXtG6desUFBSkO+64Qx4eHjp9+rT69u2rW2+9VY888oi6dOmiSZMmZVnL3Llzdccdd2jQoEGSpHbt2umOO+7Q8uXLb2BmAADAza6o56QffvhB27dv165du1S7dm1VrFjRdfvtt99ufILymZsxxhR0EQUlISFBPj4+rssiAnnh8uotlvuendsUUCUAcuOvv/5STEyMatSoUaQOebbDoEGDtG/fPn399dcFXcp1Xet15PP/+pgj5AcyElC0kZGurajkpMKUkfjJHgAAyNTLL7+se++9V6VLl9YXX3yhRYsWac6cOQVdFgAAQIEjJ904GlIAACBTO3bs0PTp03Xu3DnVrFlTr7/+ugYOHFjQZQEAABQ4ctKNoyEFAAAytWTJkoIuAQAAoFAiJ904TmoOAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANgqRw2pt956S7fffrucTqecTqeCg4P1xRdfuB6/++675ebmZrkNGTLEso2jR4+qW7duKlWqlPz9/fXss88qOTnZMmbTpk2688475eXlpdq1a2vhwoUZapk9e7aqV68ub29vtWzZUjt27MjJrgAAAOQZMhIAAEDOlMjJ4CpVqmjatGmqU6eOjDFatGiRHnjgAe3cuVMNGjSQJA0aNEiTJ092rVOqVCnXf6ekpKhbt24KDAzU1q1bdfz4cfXt21eenp566aWXJEkxMTHq1q2bhgwZog8++EDr16/XwIEDVbFiRYWGhkqSFi9erMjISM2dO1ctW7bUrFmzFBoaqv3798vf3/+GJwUAgMwc+n6ebc9Vq9kTORrfr18/LVq0SJJUokQJlS9fXrfffrseffRR9evXT+7uRfeg6N27d2v8+PGKiorSr7/+qldffVUjRowo6LIsyEgAgJuZnRlJIiel9/bbb+vf//63fv75Z0lS06ZN9dJLL6lFixYFXNn15WjW77//fnXt2lV16tTRrbfeqhdffFFlypTRt99+6xpTqlQpBQYGum5Op9P12Nq1a7Vnzx795z//UZMmTdSlSxdNmTJFs2fPVlJSkiRp7ty5qlGjhl555RXddtttGjZsmHr06KFXX33VtZ2ZM2dq0KBB6t+/v+rXr6+5c+eqVKlSeu+99250PgAAKLI6d+6s48eP68iRI/riiy90zz336KmnntJ9992X4UibouTixYuqWbOmpk2bpsDAwIIuJ1NkJAAACrfimpM2bdqkRx99VBs3btS2bdsUFBSkTp066Y8//ijo0q4r123AlJQUffTRR7pw4YKCg4Ndyz/44ANVqFBBDRs21NixY3Xx4kXXY9u2bVOjRo0UEBDgWhYaGqqEhATt3r3bNSYkJMTyXKGhodq2bZskKSkpSVFRUZYx7u7uCgkJcY3JSmJiohISEiw3AACKCy8vLwUGBqpy5cq688479dxzz+nzzz/XF198Yflp19mzZzVw4ED5+fnJ6XSqQ4cO+vHHHy3b+t///qfmzZvL29tbFSpU0IMPPuh67M8//1Tfvn1Vrlw5lSpVSl26dNGBAwckSRcuXJDT6dQnn3xi2d6yZctUunRpnTt3TklJSRo2bJgqVqwob29vVatWTVOnTs1yv5o3b64ZM2aoV69e8vLyyoOZyl9kJAAACp/impM++OADPfnkk2rSpInq1aund955R6mpqVq/fn0ezFr+ynFDateuXSpTpoy8vLw0ZMgQLV26VPXr15ckPfbYY/rPf/6jjRs3auzYsXr//ff1+OOPu9aNjY21BC1JrvuxsbHXHJOQkKBLly7p1KlTSklJyXRM2jayMnXqVPn4+LhuQUFBOd19AACKlA4dOqhx48b67LPPXMsefvhhnThxQl988YWioqJ05513qmPHjjpz5owkaeXKlXrwwQfVtWtX7dy5U+vXr7cc9t2vXz99//33Wr58ubZt2yZjjLp27arLly+rdOnS6tWrlxYsWGCpY8GCBerRo4fKli2r119/XcuXL9eSJUu0f/9+ffDBB6pevbot85GfyEgAABQtxTEnXbx4UZcvX1b58uVvbHJskKNzSElS3bp1FR0drfj4eH3yyScKDw/XV199pfr162vw4MGucY0aNVLFihXVsWNHHTp0SLVq1crTwnNj7NixioyMdN1PSEggcAEAir169erpp59+kiRt2bJFO3bs0IkTJ1xHG7388statmyZPvnkEw0ePFgvvviievXqpUmTJrm20bhxY0nSgQMHtHz5cn3zzTdq3bq1pCvfzAUFBWnZsmV6+OGHNXDgQLVu3VrHjx9XxYoVdeLECa1atUpffvmlpCsn765Tp47atGkjNzc3VatWzc7pyDdkJAAAip7ilpNGjx6tSpUqZTiqujDK8RFSDodDtWvXVtOmTTV16lQ1btxYr732WqZjW7ZsKUk6ePCgJCkwMFBxcXGWMWn3084JkdUYp9OpkiVLqkKFCvLw8Mh0zPXOK+Hl5eW6+k3aDQCA4s4YIzc3N0nSjz/+qPPnz+uWW25RmTJlXLeYmBgdOnRIkhQdHa2OHTtmuq29e/eqRIkSrs94SbrllltUt25d7d27V5LUokULNWjQwHXy0P/85z+qVq2a2rVrJ+nKN4fR0dGqW7eu/vnPf2rt2rX5tu92IiMBAFD0FKecNG3aNH300UdaunSpvL29cz4ZNrvhU8mnpqYqMTEx08eio6MlSRUrVpQkBQcHa9euXTpx4oRrzLp16+R0Ol2HtAcHB2f4reO6detc52BwOBxq2rSpZUza7yPTn6cBAABcsXfvXtWoUUOSdP78eVWsWFHR0dGW2/79+/Xss89KkkqWLHnDzzlw4EDX+RgWLFig/v37u8LenXfeqZiYGE2ZMkWXLl3SI488oh49etzwcxY2ZCQAAAq/4pKTXn75ZU2bNk1r167V7bfffsM12iFHDamxY8dq8+bNOnLkiHbt2qWxY8dq06ZN6t27tw4dOqQpU6YoKipKR44c0fLly9W3b1+1a9fONRmdOnVS/fr11adPH/34449as2aNnn/+eUVERLgOhxsyZIgOHz6sUaNGad++fZozZ46WLFmikSNHuuqIjIzU22+/rUWLFmnv3r0aOnSoLly4oP79++fh1AAAUPRt2LBBu3btUvfu3SVdCTmxsbEqUaKEateubblVqFBBknT77bdneSLM2267TcnJydq+fbtr2enTp7V//35X40SSHn/8cf366696/fXXtWfPHoWHh1u243Q61bNnT7399ttavHixPv30U9e5GYoiMhIAAEVPcclJ06dP15QpU7R69Wo1a9Ys1/NhtxydQ+rEiRPq27evjh8/Lh8fH91+++1as2aN7r33Xv3222/68ssvNWvWLF24cEFBQUHq3r27nn/+edf6Hh4eWrFihYYOHarg4GCVLl1a4eHhmjx5smtMjRo1tHLlSo0cOVKvvfaaqlSponfeeUehoaGuMT179tTJkyc1fvx4xcbGqkmTJlq9enWGk3gCAHAzSUxMVGxsrFJSUhQXF6fVq1dr6tSpuu+++9S3b19JUkhIiIKDgxUWFqbp06fr1ltv1bFjx1wn6GzWrJkmTJigjh07qlatWurVq5eSk5O1atUqjR49WnXq1NEDDzygQYMGad68eSpbtqzGjBmjypUr64EHHnDVUq5cOT300EN69tln1alTJ1WpUsX12MyZM1WxYkXdcccdcnd318cff6zAwED5+vpmul9JSUnas2eP67//+OMPRUdHq0yZMqpdu3b+TWgOkJEAACjcimtO+r//+z+NHz9eH374oapXr+66kEnazw0LMzdjjCnoIgpKQkKCfHx8FB8fz7kSkGcur95iue/ZuU0BVQIgN/766y/FxMSoRo0aGX57f+j7ebbVUavZEzka369fP9e5CEqUKKFy5cqpcePGeuyxxxQeHi53978Pij537pzGjRunTz/9VCdPnlRgYKDatWunqVOnuk5k/dlnn2nKlCnas2ePnE6n2rVrp08//VTSlcsZP/XUU1q+fLmSkpLUrl07vfHGG6pTp46lpg0bNqhjx45asmSJHn74Ydfyt99+W3PmzNGBAwfk4eGh5s2ba8aMGbrjjjsy3bcjR464DqVPr3379tq0aVOm61zrdeTz//qYI+QHMhJQtBWWjCSRk9KrXr26fv311wzLJ0yYoIkTJ2ZYXpgyEg0pwhbyGGELKNqu9SGNnHn//fc1cuRIHTt2TA6Hw9bnLkxhqyhijpAfyEhA0UZGylsFlZMKU0bK0U/2AAAArufixYs6fvy4pk2bpieeeML2ZhQAAEBhRU762w1fZQ8AACC96dOnq169egoMDNTYsWMLuhwAAIBCg5z0NxpSAAAgT02cOFGXL1/W+vXrC/3JNAEAAOxETvobDSkAAAAAAADYioYUAAAAAAAAbMVJzYEbdPUlTlPPHlV13y4FVA2AvJKamlrQJeAG8PoBhUP6nERGAooHPmOLtsL0+tGQAgAgHYfDIXd3dx07dkx+fn5yOBxyc3Mr6LKQTcYYJSUl6eTJk3J3d7+pr1wDAEBeIiMVbYUxI9GQAgAgHXd3d9WoUUPHjx/XsWPHCroc5FKpUqVUtWpVubtzdgIAAPICGal4KEwZiYYUAABXcTgcqlq1qpKTk5WSklLQ5SCHPDw8VKJECb61BQAgj5GRirbClpFoSAEAkAk3Nzd5enrK09OzoEsBAAAoNMhIyCsFf4wWAAAAAAAAbio0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYKscNaTeeust3X777XI6nXI6nQoODtYXX3zhevyvv/5SRESEbrnlFpUpU0bdu3dXXFycZRtHjx5Vt27dVKpUKfn7++vZZ59VcnKyZcymTZt05513ysvLS7Vr19bChQsz1DJ79mxVr15d3t7eatmypXbs2JGTXQEAAMgzZCQAAICcyVFDqkqVKpo2bZqioqL0/fffq0OHDnrggQe0e/duSdLIkSP1v//9Tx9//LG++uorHTt2TA899JBr/ZSUFHXr1k1JSUnaunWrFi1apIULF2r8+PGuMTExMerWrZvuueceRUdHa8SIERo4cKDWrFnjGrN48WJFRkZqwoQJ+uGHH9S4cWOFhobqxIkTNzofAAAAOUZGAgAAyBk3Y4y5kQ2UL19eM2bMUI8ePeTn56cPP/xQPXr0kCTt27dPt912m7Zt26ZWrVrpiy++0H333adjx44pICBAkjR37lyNHj1aJ0+elMPh0OjRo7Vy5Ur9/PPPrufo1auXzp49q9WrV0uSWrZsqebNm+vNN9+UJKWmpiooKEjDhw/XmDFjsl17QkKCfHx8FB8fL6fTeSPTgJvYoe/nWe6nHjyq6r5dXPc9O7exuyQAwDXY9flPRgKsOYmMBACFm92f/7k+h1RKSoo++ugjXbhwQcHBwYqKitLly5cVEhLiGlOvXj1VrVpV27ZtkyRt27ZNjRo1cgUtSQoNDVVCQoLrG8Rt27ZZtpE2Jm0bSUlJioqKsoxxd3dXSEiIawwAAEBBISMBAABcX4mcrrBr1y4FBwfrr7/+UpkyZbR06VLVr19f0dHRcjgc8vX1tYwPCAhQbGysJCk2NtYStNIeT3vsWmMSEhJ06dIl/fnnn0pJScl0zL59+65Ze2JiohITE133ExISsr/jAAAA10BGAgAAyL4cHyFVt25dRUdHa/v27Ro6dKjCw8O1Z8+e/Kgtz02dOlU+Pj6uW1BQUEGXBAAAigkyEgAAQPbluCHlcDhUu3ZtNW3aVFOnTlXjxo312muvKTAwUElJSTp79qxlfFxcnAIDAyVJgYGBGa4ok3b/emOcTqdKliypChUqyMPDI9MxadvIytixYxUfH++6/fbbbzndfQAAgEyRkQAAALIv1+eQSpOamqrExEQ1bdpUnp6eWr9+veux/fv36+jRowoODpYkBQcHa9euXZYrvaxbt05Op1P169d3jUm/jbQxadtwOBxq2rSpZUxqaqrWr1/vGpMVLy8v1+WY024AAAD5gYwEAACQtRydQ2rs2LHq0qWLqlatqnPnzunDDz/Upk2btGbNGvn4+GjAgAGKjIxU+fLl5XQ6NXz4cAUHB6tVq1aSpE6dOql+/frq06ePpk+frtjYWD3//POKiIiQl5eXJGnIkCF68803NWrUKP2///f/tGHDBi1ZskQrV6501REZGanw8HA1a9ZMLVq00KxZs3ThwgX1798/D6cGAAAge8hIAAAAOZOjhtSJEyfUt29fHT9+XD4+Prr99tu1Zs0a3XvvvZKkV199Ve7u7urevbsSExMVGhqqOXPmuNb38PDQihUrNHToUAUHB6t06dIKDw/X5MmTXWNq1KihlStXauTIkXrttddUpUoVvfPOOwoNDXWN6dmzp06ePKnx48crNjZWTZo00erVqzOcxBMAAMAOZCQAAICccTPGmIIuoqAkJCTIx8dH8fHxHJqOXDv0/TzL/dSDR1Xdt4vrvmfnNnaXBAC4Bj7/r485Ql5Jn5PISABQuNn9+X/D55ACAAAAAAAAcoKGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWOWpITZ06Vc2bN1fZsmXl7++vsLAw7d+/3zLm7rvvlpubm+U2ZMgQy5ijR4+qW7duKlWqlPz9/fXss88qOTnZMmbTpk2688475eXlpdq1a2vhwoUZ6pk9e7aqV68ub29vtWzZUjt27MjJ7gAAAOQJMhIAAEDO5Kgh9dVXXykiIkLffvut1q1bp8uXL6tTp066cOGCZdygQYN0/Phx12369Omux1JSUtStWzclJSVp69atWrRokRYuXKjx48e7xsTExKhbt2665557FB0drREjRmjgwIFas2aNa8zixYsVGRmpCRMm6IcfflDjxo0VGhqqEydO5HYuAAAAcoWMBAAAkDNuxhiT25VPnjwpf39/ffXVV2rXrp2kK9/+NWnSRLNmzcp0nS+++EL33Xefjh07poCAAEnS3LlzNXr0aJ08eVIOh0OjR4/WypUr9fPPP7vW69Wrl86ePavVq1dLklq2bKnmzZvrzTfflCSlpqYqKChIw4cP15gxY7JVf0JCgnx8fBQfHy+n05nbacBN7tD38yz3Uw8eVXXfLq77np3b2F0SAOAa7Pj8JyMBV6TPSWQkACjc7P78v6FzSMXHx0uSypcvb1n+wQcfqEKFCmrYsKHGjh2rixcvuh7btm2bGjVq5ApakhQaGqqEhATt3r3bNSYkJMSyzdDQUG3btk2SlJSUpKioKMsYd3d3hYSEuMZkJjExUQkJCZYbAABAXiMjAQAAXFuJ3K6YmpqqESNG6K677lLDhg1dyx977DFVq1ZNlSpV0k8//aTRo0dr//79+uyzzyRJsbGxlqAlyXU/Njb2mmMSEhJ06dIl/fnnn0pJScl0zL59+7KseerUqZo0aVJudxkAAOC6yEgAAADXl+uGVEREhH7++Wdt2bLFsnzw4MGu/27UqJEqVqyojh076tChQ6pVq1buK80DY8eOVWRkpOt+QkKCgoKCCrAiAABQ3JCRAAAAri9XDalhw4ZpxYoV2rx5s6pUqXLNsS1btpQkHTx4ULVq1VJgYGCGK73ExcVJkgIDA13/m7Ys/Rin06mSJUvKw8NDHh4emY5J20ZmvLy85OXllb2dBAAAyCEyEgAAQPbk6BxSxhgNGzZMS5cu1YYNG1SjRo3rrhMdHS1JqlixoiQpODhYu3btslzpZd26dXI6napfv75rzPr16y3bWbdunYKDgyVJDodDTZs2tYxJTU3V+vXrXWMAAADsQkYCAADImRwdIRUREaEPP/xQn3/+ucqWLes6n4GPj49KliypQ4cO6cMPP1TXrl11yy236KefftLIkSPVrl073X777ZKkTp06qX79+urTp4+mT5+u2NhYPf/884qIiHB9MzdkyBC9+eabGjVqlP7f//t/2rBhg5YsWaKVK1e6aomMjFR4eLiaNWumFi1aaNasWbpw4YL69++fV3MDAACQLWQkAACAnMlRQ+qtt96SdOWyxektWLBA/fr1k8Ph0JdffukKPkFBQerevbuef/5511gPDw+tWLFCQ4cOVXBwsEqXLq3w8HBNnjzZNaZGjRpauXKlRo4cqddee01VqlTRO++8o9DQUNeYnj176uTJkxo/frxiY2PVpEkTrV69OsNJPAEAAPIbGQkAACBn3IwxpqCLKCgJCQny8fFRfHy8nE5nQZeDIurQ9/Ms91MPHlV13y6u+56d29hdEgDgGvj8vz7mCHklfU4iIwFA4Wb353+OziEFAAAAAAAA3CgaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALbKUUNq6tSpat68ucqWLSt/f3+FhYVp//79ljF//fWXIiIidMstt6hMmTLq3r274uLiLGOOHj2qbt26qVSpUvL399ezzz6r5ORky5hNmzbpzjvvlJeXl2rXrq2FCxdmqGf27NmqXr26vL291bJlS+3YsSMnuwMAAJAnyEgAAAA5k6OG1FdffaWIiAh9++23WrdunS5fvqxOnTrpwoULrjEjR47U//73P3388cf66quvdOzYMT300EOux1NSUtStWzclJSVp69atWrRokRYuXKjx48e7xsTExKhbt2665557FB0drREjRmjgwIFas2aNa8zixYsVGRmpCRMm6IcfflDjxo0VGhqqEydO3Mh8AAAA5BgZCQAAIGfcjDEmtyufPHlS/v7++uqrr9SuXTvFx8fLz89PH374oXr06CFJ2rdvn2677TZt27ZNrVq10hdffKH77rtPx44dU0BAgCRp7ty5Gj16tE6ePCmHw6HRo0dr5cqV+vnnn13P1atXL509e1arV6+WJLVs2VLNmzfXm2++KUlKTU1VUFCQhg8frjFjxmSr/oSEBPn4+Cg+Pl5OpzO304Cb3KHv51nupx48quq+XVz3PTu3sbskAMA12PH5T0YCrkifk8hIAFC42f35f0PnkIqPj5cklS9fXpIUFRWly5cvKyQkxDWmXr16qlq1qrZt2yZJ2rZtmxo1auQKWpIUGhqqhIQE7d692zUm/TbSxqRtIykpSVFRUZYx7u7uCgkJcY3JTGJiohISEiw3AACAvEZGAgAAuLZcN6RSU1M1YsQI3XXXXWrYsKEkKTY2Vg6HQ76+vpaxAQEBio2NdY1JH7TSHk977FpjEhISdOnSJZ06dUopKSmZjknbRmamTp0qHx8f1y0oKCjnOw4AAHANZCQAAIDry3VDKiIiQj///LM++uijvKwnX40dO1bx8fGu22+//VbQJQEAgGKGjAQAAHB9JXKz0rBhw7RixQpt3rxZVapUcS0PDAxUUlKSzp49a/kGMC4uToGBga4xV1/pJe0KM+nHXH3Vmbi4ODmdTpUsWVIeHh7y8PDIdEzaNjLj5eUlLy+vnO8wAABANpCRAAAAsidHR0gZYzRs2DAtXbpUGzZsUI0aNSyPN23aVJ6enlq/fr1r2f79+3X06FEFBwdLkoKDg7Vr1y7LlV7WrVsnp9Op+vXru8ak30bamLRtOBwONW3a1DImNTVV69evd40BAACwCxkJAAAgZ3J0hFRERIQ+/PBDff755ypbtqzrXAQ+Pj4qWbKkfHx8NGDAAEVGRqp8+fJyOp0aPny4goOD1apVK0lSp06dVL9+ffXp00fTp09XbGysnn/+eUVERLi+mRsyZIjefPNNjRo1Sv/v//0/bdiwQUuWLNHKlStdtURGRio8PFzNmjVTixYtNGvWLF24cEH9+/fPq7kBAADIFjISAABAzuSoIfXWW29Jku6++27L8gULFqhfv36SpFdffVXu7u7q3r27EhMTFRoaqjlz5rjGenh4aMWKFRo6dKiCg4NVunRphYeHa/Lkya4xNWrU0MqVKzVy5Ei99tprqlKlit555x2Fhoa6xvTs2VMnT57U+PHjFRsbqyZNmmj16tUZTuIJAACQ38hIAAAAOeNmjDEFXURBSUhIkI+Pj+Lj4+V0Ogu6HBRRh76fZ7mfevCoqvt2cd337NzG7pIAANfA5//1MUfIK+lzEhkJAAo3uz//c32VPQAAAAAAACA3aEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYKscNqc2bN+v+++9XpUqV5ObmpmXLllke79evn9zc3Cy3zp07W8acOXNGvXv3ltPplK+vrwYMGKDz589bxvz0009q27atvL29FRQUpOnTp2eo5eOPP1a9evXk7e2tRo0aadWqVTndHQAAgDxBRgIAAMi+HDekLly4oMaNG2v27NlZjuncubOOHz/uuv33v/+1PN67d2/t3r1b69at04oVK7R582YNHjzY9XhCQoI6deqkatWqKSoqSjNmzNDEiRM1f/5815itW7fq0Ucf1YABA7Rz506FhYUpLCxMP//8c053CQAA4IaRkQAAALLPzRhjcr2ym5uWLl2qsLAw17J+/frp7NmzGb4VTLN3717Vr19f3333nZo1ayZJWr16tbp27arff/9dlSpV0ltvvaVx48YpNjZWDodDkjRmzBgtW7ZM+/btkyT17NlTFy5c0IoVK1zbbtWqlZo0aaK5c+dmq/6EhAT5+PgoPj5eTqczFzMASIe+n2e5n3rwqKr7dnHd9+zcxu6SAADXYMfnPxkJuCJ9TiIjAUDhZvfnf76cQ2rTpk3y9/dX3bp1NXToUJ0+fdr12LZt2+Tr6+sKWpIUEhIid3d3bd++3TWmXbt2rqAlSaGhodq/f7/+/PNP15iQkBDL84aGhmrbtm35sUsAAAA3jIwEAABwRYm83mDnzp310EMPqUaNGjp06JCee+45denSRdu2bZOHh4diY2Pl7+9vLaJECZUvX16xsbGSpNjYWNWoUcMyJiAgwPVYuXLlFBsb61qWfkzaNjKTmJioxMRE1/2EhIQb2lcAAIDsIiMBAAD8Lc8bUr169XL9d6NGjXT77berVq1a2rRpkzp27JjXT5cjU6dO1aRJkwq0BgAAcHMiIwEAAPwtX36yl17NmjVVoUIFHTx4UJIUGBioEydOWMYkJyfrzJkzCgwMdI2Ji4uzjEm7f70xaY9nZuzYsYqPj3fdfvvttxvbOQAAgFwiIwEAgJtZvjekfv/9d50+fVoVK1aUJAUHB+vs2bOKiopyjdmwYYNSU1PVsmVL15jNmzfr8uXLrjHr1q1T3bp1Va5cOdeY9evXW55r3bp1Cg4OzrIWLy8vOZ1Oyw0AAKAgkJEAAMDNLMcNqfPnzys6OlrR0dGSpJiYGEVHR+vo0aM6f/68nn32WX377bc6cuSI1q9frwceeEC1a9dWaGioJOm2225T586dNWjQIO3YsUPffPONhg0bpl69eqlSpUqSpMcee0wOh0MDBgzQ7t27tXjxYr322muKjIx01fHUU09p9erVeuWVV7Rv3z5NnDhR33//vYYNG5YH0wIAAJAzZCQAAIDsy3FD6vvvv9cdd9yhO+64Q5IUGRmpO+64Q+PHj5eHh4d++ukn/eMf/9Ctt96qAQMGqGnTpvr666/l5eXl2sYHH3ygevXqqWPHjuratavatGmj+fPnux738fHR2rVrFRMTo6ZNm+rpp5/W+PHjNXjwYNeY1q1b68MPP9T8+fPVuHFjffLJJ1q2bJkaNmx4I/MBAACQK2QkAACA7HMzxpiCLqKgJCQkyMfHR/Hx8Ryajlw79P08y/3Ug0dV3beL675n5zZ2lwQAuAY+/6+POUJeSZ+TyEgAULjZ/fmf7+eQAgAAAAAAANKjIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwVY4bUps3b9b999+vSpUqyc3NTcuWLbM8bozR+PHjVbFiRZUsWVIhISE6cOCAZcyZM2fUu3dvOZ1O+fr6asCAATp//rxlzE8//aS2bdvK29tbQUFBmj59eoZaPv74Y9WrV0/e3t5q1KiRVq1aldPdAQAAyBNkJAAAgOzLcUPqwoULaty4sWbPnp3p49OnT9frr7+uuXPnavv27SpdurRCQ0P1119/ucb07t1bu3fv1rp167RixQpt3rxZgwcPdj2ekJCgTp06qVq1aoqKitKMGTM0ceJEzZ8/3zVm69atevTRRzVgwADt3LlTYWFhCgsL088//5zTXQIAALhhZCQAAIDsczPGmFyv7OampUuXKiwsTNKVb/4qVaqkp59+Ws8884wkKT4+XgEBAVq4cKF69eqlvXv3qn79+vruu+/UrFkzSdLq1avVtWtX/f7776pUqZLeeustjRs3TrGxsXI4HJKkMWPGaNmyZdq3b58kqWfPnrpw4YJWrFjhqqdVq1Zq0qSJ5s6dm636ExIS5OPjo/j4eDmdztxOA25yh76fZ7mfevCoqvt2cd337NzG7pIAANdgx+c/GQm4In1OIiMBQOFm9+d/np5DKiYmRrGxsQoJCXEt8/HxUcuWLbVt2zZJ0rZt2+Tr6+sKWpIUEhIid3d3bd++3TWmXbt2rqAlSaGhodq/f7/+/PNP15j0z5M2Ju15MpOYmKiEhATLDQAAIL+RkQAAAKzytCEVGxsrSQoICLAsDwgIcD0WGxsrf39/y+MlSpRQ+fLlLWMy20b658hqTNrjmZk6dap8fHxct6CgoJzuIgAAQI6RkQAAAKxuqqvsjR07VvHx8a7bb7/9VtAlAQAAFDgyEgAAsFueNqQCAwMlSXFxcZblcXFxrscCAwN14sQJy+PJyck6c+aMZUxm20j/HFmNSXs8M15eXnI6nZYbAABAfiMjAQAAWOVpQ6pGjRoKDAzU+vXrXcsSEhK0fft2BQcHS5KCg4N19uxZRUVFucZs2LBBqampatmypWvM5s2bdfnyZdeYdevWqW7duipXrpxrTPrnSRuT9jwAAACFBRkJAADAKscNqfPnzys6OlrR0dGSrpykMzo6WkePHpWbm5tGjBihF154QcuXL9euXbvUt29fVapUyXWVmdtuu02dO3fWoEGDtGPHDn3zzTcaNmyYevXqpUqVKkmSHnvsMTkcDg0YMEC7d+/W4sWL9dprrykyMtJVx1NPPaXVq1frlVde0b59+zRx4kR9//33GjZs2I3PCgAAQA6RkQAAALKvRE5X+P7773XPPfe47qcFoPDwcC1cuFCjRo3ShQsXNHjwYJ09e1Zt2rTR6tWr5e3t7Vrngw8+0LBhw9SxY0e5u7ure/fuev31112P+/j4aO3atYqIiFDTpk1VoUIFjR8/XoMHD3aNad26tT788EM9//zzeu6551SnTh0tW7ZMDRs2zNVEAAAA3AgyEgAAQPa5GWNMQRdRUBISEuTj46P4+HjOlYBcO/T9PMv91INHVd23i+u+Z+c2dpcEALgGPv+vjzlCXkmfk8hIAFC42f35f1NdZQ8AAAAAAAAFj4YUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArfK8ITVx4kS5ublZbvXq1XM9/tdffykiIkK33HKLypQpo+7duysuLs6yjaNHj6pbt24qVaqU/P399eyzzyo5OdkyZtOmTbrzzjvl5eWl2rVra+HChXm9KwAAAHmGjAQAAPC3fDlCqkGDBjp+/LjrtmXLFtdjI0eO1P/+9z99/PHH+uqrr3Ts2DE99NBDrsdTUlLUrVs3JSUlaevWrVq0aJEWLlyo8ePHu8bExMSoW7duuueeexQdHa0RI0Zo4MCBWrNmTX7sDgAAQJ4gIwEAAFxRIl82WqKEAgMDMyyPj4/Xu+++qw8//FAdOnSQJC1YsEC33Xabvv32W7Vq1Upr167Vnj179OWXXyogIEBNmjTRlClTNHr0aE2cOFEOh0Nz585VjRo19Morr0iSbrvtNm3ZskWvvvqqQkND82OXAAAAbhgZCQAA4Ip8OULqwIEDqlSpkmrWrKnevXvr6NGjkqSoqChdvnxZISEhrrH16tVT1apVtW3bNknStm3b1KhRIwUEBLjGhIaGKiEhQbt373aNSb+NtDFp2wAAACiMyEgAAABX5PkRUi1bttTChQtVt25dHT9+XJMmTVLbtm31888/KzY2Vg6HQ76+vpZ1AgICFBsbK0mKjY21BK20x9Meu9aYhIQEXbp0SSVLlsy0tsTERCUmJrruJyQk3NC+AgAAZBcZCQAA4G953pDq0qWL679vv/12tWzZUtWqVdOSJUuyDEF2mTp1qiZNmlSgNQAAgJsTGQkAAOBv+fKTvfR8fX1166236uDBgwoMDFRSUpLOnj1rGRMXF+c6n0JgYGCGK8qk3b/eGKfTec1AN3bsWMXHx7tuv/32243uHgAAQK6QkQAAwM0s3xtS58+f16FDh1SxYkU1bdpUnp6eWr9+vevx/fv36+jRowoODpYkBQcHa9euXTpx4oRrzLp16+R0OlW/fn3XmPTbSBuTto2seHl5yel0Wm4AAAAFgYwEAABuZnnekHrmmWf01Vdf6ciRI9q6dasefPBBeXh46NFHH5WPj48GDBigyMhIbdy4UVFRUerfv7+Cg4PVqlUrSVKnTp1Uv3599enTRz/++KPWrFmj559/XhEREfLy8pIkDRkyRIcPH9aoUaO0b98+zZkzR0uWLNHIkSPzencAAADyBBkJAADgb3l+Dqnff/9djz76qE6fPi0/Pz+1adNG3377rfz8/CRJr776qtzd3dW9e3clJiYqNDRUc+bMca3v4eGhFStWaOjQoQoODlbp0qUVHh6uyZMnu8bUqFFDK1eu1MiRI/Xaa6+pSpUqeuedd7icMQAAKLTISAAAAH9zM8aYgi6ioCQkJMjHx0fx8fEcmo5cO/T9PMv91INHVd337xPXenZuY3dJAIBr4PP/+pgj5JX0OYmMBACFm92f//l+DikAAAAAAAAgPRpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFuVKOgCbtTs2bM1Y8YMxcbGqnHjxnrjjTfUokWLgi4LAIBi7/LqLRmWeXZuc91xmY1B3iMjAQBQMMhI2VOkG1KLFy9WZGSk5s6dq5YtW2rWrFkKDQ3V/v375e/vX9DlAQBQZGUWpPJqveyGNOQeGQkAgPxBRso7RbohNXPmTA0aNEj9+/eXJM2dO1crV67Ue++9pzFjxhRwdQAA5K/cBiIUf2QkAMDNjIxUNBTZhlRSUpKioqI0duxY1zJ3d3eFhIRo27Ztma6TmJioxMRE1/34+HhJUkJCQv4Wi2Lt3PlLlvvmYqISPC+47nvy/kIRd3ldxr+pnvcG59v2M9t2ZjWgmPl0TYZFefk+Sy/tc98Yky/bL2hkJBQm6XMSGQnFDRkJtijGGanINqROnTqllJQUBQQEWJYHBARo3759ma4zdepUTZo0KcPyoKCgfKkRN7NXCroAAMB1nDt3Tj4+PgVdRp4jI6FwIyMBQGFnV0Yqsg2p3Bg7dqwiIyNd91NTU3XmzBndcsstcnNzy/Z2EhISFBQUpN9++01OpzM/Si1SmI+/MRdWzIcV82HFfFgxH1b5OR/GGJ07d06VKlXK0+0WZWSk/MF8WDEff2MurJgPK+bDivmwKk4Zqcg2pCpUqCAPDw/FxcVZlsfFxSkwMDDTdby8vOTl5WVZ5uvrm+sanE4n/yDSYT7+xlxYMR9WzIcV82HFfFjl13wUxyOj0pCRCh/mw4r5+BtzYcV8WDEfVsyHVXHISO62PVMeczgcatq0qdavX+9alpqaqvXr1ys4OH9+TwkAAFDYkZEAAEBRUGSPkJKkyMhIhYeHq1mzZmrRooVmzZqlCxcuuK4oAwAAcDMiIwEAgMKuSDekevbsqZMnT2r8+PGKjY1VkyZNtHr16gwn8cxrXl5emjBhQoZD229WzMffmAsr5sOK+bBiPqyYDyvm48aQkQoH5sOK+fgbc2HFfFgxH1bMh1Vxmg83U1yveQwAAAAAAIBCqcieQwoAAAAAAABFEw0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiGVDWfOnFHv3r3ldDrl6+urAQMG6Pz589la1xijLl26yM3NTcuWLcvfQm2S0/k4c+aMhg8frrp166pkyZKqWrWq/vnPfyo+Pt7GqvPO7NmzVb16dXl7e6tly5basWPHNcd//PHHqlevnry9vdWoUSOtWrXKpkrtkZP5ePvtt9W2bVuVK1dO5cqVU0hIyHXnr6jJ6fsjzUcffSQ3NzeFhYXlb4E2y+l8nD17VhEREapYsaK8vLx06623Fqt/Mzmdj1mzZrn+dgYFBWnkyJH666+/bKo2f23evFn333+/KlWqlO3PyE2bNunOO++Ul5eXateurYULF+Z7nbg2MpIVGYmMlB4ZyYqMZEVGsiIj/e2mykgG19W5c2fTuHFj8+2335qvv/7a1K5d2zz66KPZWnfmzJmmS5cuRpJZunRp/hZqk5zOx65du8xDDz1kli9fbg4ePGjWr19v6tSpY7p3725j1Xnjo48+Mg6Hw7z33ntm9+7dZtCgQcbX19fExcVlOv6bb74xHh4eZvr06WbPnj3m+eefN56enmbXrl02V54/cjofjz32mJk9e7bZuXOn2bt3r+nXr5/x8fExv//+u82V54+czkeamJgYU7lyZdO2bVvzwAMP2FOsDXI6H4mJiaZZs2ama9euZsuWLSYmJsZs2rTJREdH21x5/sjpfHzwwQfGy8vLfPDBByYmJsasWbPGVKxY0YwcOdLmyvPHqlWrzLhx48xnn32Wrc/Iw4cPm1KlSpnIyEizZ88e88YbbxgPDw+zevVqewpGpshIVmQkMlIaMpIVGcmKjGRFRrK6mTISDanr2LNnj5FkvvvuO9eyL774wri5uZk//vjjmuvu3LnTVK5c2Rw/frzYhK0bmY/0lixZYhwOh7l8+XJ+lJlvWrRoYSIiIlz3U1JSTKVKlczUqVMzHf/II4+Ybt26WZa1bNnSPPHEE/lap11yOh9XS05ONmXLljWLFi3KrxJtlZv5SE5ONq1btzbvvPOOCQ8PL1ZhK6fz8dZbb5maNWuapKQku0q0VU7nIyIiwnTo0MGyLDIy0tx11135WmdByM5n5KhRo0yDBg0sy3r27GlCQ0PzsTJcCxnJioxERkqPjGRFRrIiI1mRkbJW3DMSP9m7jm3btsnX11fNmjVzLQsJCZG7u7u2b9+e5XoXL17UY489ptmzZyswMNCOUm2R2/m4Wnx8vJxOp0qUKJEfZeaLpKQkRUVFKSQkxLXM3d1dISEh2rZtW6brbNu2zTJekkJDQ7McX5TkZj6udvHiRV2+fFnly5fPrzJtk9v5mDx5svz9/TVgwAA7yrRNbuZj+fLlCg4OVkREhAICAtSwYUO99NJLSklJsavsfJOb+WjdurWioqJch6wfPnxYq1atUteuXW2pubApzn9PiyoykhUZiYyUhoxkRUayIiNZkZFuXFH+e1p0PukKSGxsrPz9/S3LSpQoofLlyys2NjbL9UaOHKnWrVvrgQceyO8SbZXb+Ujv1KlTmjJligYPHpwfJeabU6dOKSUlRQEBAZblAQEB2rdvX6brxMbGZjo+u3NVmOVmPq42evRoVapUKcMf0KIoN/OxZcsWvfvuu4qOjrahQnvlZj4OHz6sDRs2qHfv3lq1apUOHjyoJ598UpcvX9aECRPsKDvf5GY+HnvsMZ06dUpt2rSRMUbJyckaMmSInnvuOTtKLnSy+nuakJCgS5cuqWTJkgVU2c2LjGRFRiIjpSEjWZGRrMhIVmSkG1eUM9JNe4TUmDFj5Obmds1bdj8wrrZ8+XJt2LBBs2bNytui81F+zkd6CQkJ6tatm+rXr6+JEyfeeOEosqZNm6aPPvpIS5culbe3d0GXY7tz586pT58+evvtt1WhQoWCLqdQSE1Nlb+/v+bPn6+mTZuqZ8+eGjdunObOnVvQpRWITZs26aWXXtKcOXP0ww8/6LPPPtPKlSs1ZcqUgi4NxRwZyYqMBLuRkchIVyMjWZGRio+b9gipp59+Wv369bvmmJo1ayowMFAnTpywLE9OTtaZM2eyPMx8w4YNOnTokHx9fS3Lu3fvrrZt22rTpk03UHn+yM/5SHPu3Dl17txZZcuW1dKlS+Xp6XmjZduqQoUK8vDwUFxcnGV5XFxclvseGBiYo/FFSW7mI83LL7+sadOm6csvv9Ttt9+en2XaJqfzcejQIR05ckT333+/a1lqaqqkK9+o79+/X7Vq1crfovNRbt4fFStWlKenpzw8PFzLbrvtNsXGxiopKUkOhyNfa85PuZmPf/3rX+rTp48GDhwoSWrUqJEuXLigwYMHa9y4cXJ3v7m+U8rq76nT6SzU3/wVRWQkKzLS9ZGRrMhIVmQkKzKSFRnpxhXljHRzvVLp+Pn5qV69ete8ORwOBQcH6+zZs4qKinKtu2HDBqWmpqply5aZbnvMmDH66aefFB0d7bpJ0quvvqoFCxbYsXs5lp/zIV351q9Tp05yOBxavnx5kfy2x+FwqGnTplq/fr1rWWpqqtavX6/g4OBM1wkODraMl6R169ZlOb4oyc18SNL06dM1ZcoUrV692nKejaIup/NRr1497dq1y/J34h//+IfuueceRUdHKygoyM7y81xu3h933XWXDh486AqdkvTLL7+oYsWKRTpoSbmbj4sXL2YIVGlB1BiTf8UWUsX572lhQ0ayIiNdHxnJioxkRUayIiNZkZFuXJH+e1qw51QvGjp37mzuuOMOs337drNlyxZTp04dyyV8f//9d1O3bl2zffv2LLehYnIFGWNyPh/x8fGmZcuWplGjRubgwYPm+PHjrltycnJB7UaufPTRR8bLy8ssXLjQ7NmzxwwePNj4+vqa2NhYY4wxffr0MWPGjHGN/+abb0yJEiXMyy+/bPbu3WsmTJhQ7C5pnJP5mDZtmnE4HOaTTz6xvA/OnTtXULuQp3I6H1crbleQyel8HD161JQtW9YMGzbM7N+/36xYscL4+/ubF154oaB2IU/ldD4mTJhgypYta/773/+aw4cPm7Vr15patWqZRx55pKB2IU+dO3fO7Ny50+zcudNIMjNnzjQ7d+40v/76qzHGmDFjxpg+ffq4xqdd0vjZZ581e/fuNbNnzy4ylzQuzshIVmQkMlIaMpIVGcmKjGRFRrK6mTISDalsOH36tHn00UdNmTJljNPpNP3797d8OMTExBhJZuPGjVluoziFrZzOx8aNG42kTG8xMTEFsxM34I033jBVq1Y1DofDtGjRwnz77beux9q3b2/Cw8Mt45csWWJuvfVW43A4TIMGDczKlSttrjh/5WQ+qlWrlun7YMKECfYXnk9y+v5Ir7iFLWNyPh9bt241LVu2NF5eXqZmzZrmxRdfLHL/p+xacjIfly9fNhMnTjS1atUy3t7eJigoyDz55JPmzz//tL/wfJDVZ0PaHISHh5v27dtnWKdJkybG4XCYmjVrmgULFtheN6zISFZkJDJSemQkKzKSFRnJioz0t5spI7kZcxMe0wYAAAAAAIACc9OeQwoAAAAAAAAFg4YUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFAAAAAAAAW9GQAgAAAAAAgK1oSAEAAAAAAMBWNKQAAAAAAABgKxpSAAAAAAAAsBUNKQAAAAAAANiKhhQAAAAAAABsRUMKAAAAAAAAtqIhBQAAAAAAAFvRkAIAAAAAAICtaEgBAAAAAADAVjSkAAAAAAAAYCsaUgAAAAAAALAVDSkAAAAAAADYioYUAAAAAAAAbEVDCgAAAAAAALaiIQUAAAAAAABb0ZACAAAAAACArWhIAQAAAAAAwFY0pAAAAAAAAGArGlIAAAAAAACwFQ0pAAAAAAAA2IqGFAAAAAAAAGxFQwoAAAAAAAC2oiEFwGXTpk1yc3PTpk2b8nS7bm5umjhxYp5uM6cWLlwoNzc3HTlyJF+3effdd+vuu+/O8bZyMve5fY6cmDhxotzc3PL1OTKTmpqqhg0b6sUXX7zu2MxqTE5O1qhRoxQUFCR3d3eFhYXl6Pnnzp2rqlWrKjExMUfrAQCKNzLSjW+TjHRjyEgojmhIoVjaunWrJk6cqLNnzxZ0KTeNVatWFXigQuHw5ZdfqkOHDvLx8VHZsmXVtGlTLV68OFvr/ve//9Vvv/2mYcOG5eq533vvPc2YMUM9evTQokWLNHLkSEnS4sWL9fjjj6tOnTpyc3PLMqz269dPSUlJmjdvXq6eHwAKOzKS/chISFPYMtLp06c1Y8YMtWvXTn5+fvL19VWrVq0yrYmMhPxQoqALAPLD1q1bNWnSJPXr10++vr4FXc5NYdWqVZo9e3amgevSpUsqUaJg/9z06dNHvXr1kpeXV74+z9q1a3O1Xrt27XTp0iU5HI48rsheCxYs0IABA3TvvffqpZdekoeHh/bv36/ffvstW+vPmDFDvXr1ko+PT66ef8OGDapcubJeffVVy/K33npLUVFRat68uU6fPp3l+t7e3goPD9fMmTM1fPjwAvkGFADyExnJfmSkK8hIhS8jrVixQuPGjVPXrl31/PPPq0SJEvr000/Vq1cv7dmzR5MmTXKNJSMhP9CQAoqBixcvqlSpUhmWJycnKzU1tcA/wL29vQv0+SXJw8NDHh4e+f48uZ1rd3f3QjFPN+LIkSOKiIjQ8OHD9dprr+V4/Z07d+rHH3/UK6+8kusaTpw4ken/wXr//fdVuXJlubu7q2HDhtfcxiOPPKLp06dr48aN6tChQ65rAQAUPDLS9ZGR8l9hzUgNGjTQgQMHVK1aNdeyJ598UiEhIfq///s/jRo1SqVLl3Y9RkZCXuMneyh2Jk6cqGeffVaSVKNGDbm5uVl+w56cnKwpU6aoVq1a8vLyUvXq1fXcc89l+D109erVdd9992nt2rVq0qSJvL29Vb9+fX322We5qus///mPWrRooVKlSqlcuXJq165dhm+K5syZowYNGsjLy0uVKlVSREREhkPq7777bjVs2FBRUVFq166dSpUqpeeee05HjhyRm5ubXn75Zc2aNcu1f3v27JEk7du3Tz169FD58uXl7e2tZs2aafny5det++uvv9bDDz+sqlWrysvLS0FBQRo5cqQuXbrkGtOvXz/Nnj1bklzznf5bk8zOj7Bz50516dJFTqdTZcqUUceOHfXtt99axqSdf+Cbb75RZGSk/Pz8VLp0aT344IM6efLkdWvPbFvpz2WQ9hpv2bJFLVq0kLe3t2rWrKl///vfGdbfvXu3OnTooJIlS6pKlSp64YUXlJqammFc+nMXxMXFqUSJEpZvl9Ls379fbm5uevPNNyVlfX6E+fPnq1atWipZsqRatGihr7/+Olv7ltU2s/N65tbcuXOVkpKiyZMnS5LOnz8vY0y211+2bJkcDofatWuX4bEtW7aoefPm8vb2Vq1atTIcLp72/t+4caN2797teg+m7Xva+RKyo2nTpipfvrw+//zzbNcOAEUBGYmMlBky0hU3Y0aqUaOGpRklXXlPhoWFKTExUYcPH7Y8RkZCXuMIKRQ7Dz30kH755Rf997//1auvvqoKFSpIkvz8/CRJAwcO1KJFi9SjRw89/fTT2r59u6ZOnaq9e/dq6dKllm0dOHBAPXv21JAhQxQeHq4FCxbo4Ycf1urVq3Xvvfdmu6ZJkyZp4sSJat26tSZPniyHw6Ht27drw4YN6tSpk6QrIXHSpEkKCQnR0KFDtX//fr311lv67rvv9M0338jT09O1vdOnT6tLly7q1auXHn/8cQUEBLgeW7Bggf766y8NHjxYXl5eKl++vHbv3q277rpLlStX1pgxY1S6dGktWbJEYWFh+vTTT/Xggw9mWfvHH3+sixcvaujQobrlllu0Y8cOvfHGG/r999/18ccfS5KeeOIJHTt2TOvWrdP7779/3fnYvXu32rZtK6fTqVGjRsnT01Pz5s3T3Xffra+++kotW7a0jB8+fLjKlSunCRMm6MiRI5o1a5aGDRuW7d/cX8vBgwfVo0cPDRgwQOHh4XrvvffUr18/NW3aVA0aNJAkxcbG6p577lFycrJr/ubPn6+SJUtec9sBAQFq3769lixZogkTJlgeW7x4sTw8PPTwww9nuf67776rJ554Qq1bt9aIESN0+PBh/eMf/1D58uUVFBSUq/3NzuuZW19++aXq1aunVatW6dlnn9Uff/yhcuXKKSIiQpMmTbpuQ2jr1q1q2LCh5b0uSbt27VKnTp3k5+eniRMnKjk5WRMmTLC87/38/PT+++/rxRdf1Pnz5zV16lRJ0m233Zarfbnzzjv1zTff5GpdACisyEhkpJwgI928GSk2NlaSXH8j0iMjIU8ZoBiaMWOGkWRiYmIsy6Ojo40kM3DgQMvyZ555xkgyGzZscC2rVq2akWQ+/fRT17L4+HhTsWJFc8cdd2S7lgMHDhh3d3fz4IMPmpSUFMtjqampxhhjTpw4YRwOh+nUqZNlzJtvvmkkmffee8+1rH379kaSmTt3rmVbMTExRpJxOp3mxIkTlsc6duxoGjVqZP766y/Lc7du3drUqVPHtWzjxo1Gktm4caNr2cWLFzPs09SpU42bm5v59ddfXcsiIiJMVn9SJJkJEya47oeFhRmHw2EOHTrkWnbs2DFTtmxZ065dO9eyBQsWGEkmJCTENVfGGDNy5Ejj4eFhzp49m+nzZSZtW+nfE2mv8ebNm13LTpw4Yby8vMzTTz/tWjZixAgjyWzfvt0yzsfHJ8M227dvb9q3b++6P2/ePCPJ7Nq1y1JP/fr1TYcOHVz3r577pKQk4+/vb5o0aWISExNd4+bPn28kWZ4js33LbJvGZP/1nDBhQpavZ1acTqcpV66c8fLyMv/617/MJ598Yh577DEjyYwZM+a661epUsV07949w/KwsDDj7e1tqW/Pnj3Gw8MjQ43t27c3DRo0uObzNGjQwDJ/mRk8eLApWbLkdWsGgKKGjERGuhoZ6Qoy0hWnT582/v7+pm3btpk+TkZCXuIne7iprFq1SpIUGRlpWf70009LklauXGlZXqlSJcs3Y06nU3379tXOnTtd3xxcz7Jly5Samqrx48dn+PYj7ZDtL7/8UklJSRoxYoRlzKBBg+R0OjPU5eXlpf79+2f6fN27d3d90ylJZ86c0YYNG/TII4/o3LlzOnXqlE6dOqXTp08rNDRUBw4c0B9//JFl/em/4bpw4YJOnTql1q1byxijnTt3ZmsO0ktJSdHatWsVFhammjVrupZXrFhRjz32mLZs2aKEhATLOoMHD7Yc3t62bVulpKTo119/zfHzX61+/fpq27at676fn5/q1q1rOUR51apVatWqlVq0aGEZ17t37+tu/6GHHlKJEiUs31T+/PPP2rNnj3r27Jnlet9//71OnDihIUOGWM650K9fv1yfzFLK+9czvfPnz+vPP//UpEmTNHnyZHXv3l0ffPCBOnfurNdee03nzp275vqnT59WuXLlLMtSUlK0Zs0ahYWFqWrVqq7lt912m0JDQ2+o3mspV66cLl26pIsXL+bbcwBAYUJGIiNdjYx082Wk1NRU9e7dW2fPntUbb7yR6RgyEvISDSncVH799Ve5u7urdu3aluWBgYHy9fXN8OFdu3btDFeQuPXWWyUpw2/Rs3Lo0CG5u7urfv3616xLkurWrWtZ7nA4VLNmzQx1Va5cOcsTQ9aoUcNy/+DBgzLG6F//+pf8/Pwst7RDpE+cOJFlbUePHlW/fv1Uvnx5lSlTRn5+fmrfvr0kKT4+Psv1snLy5EldvHgxw75KVz5AU1NTM1xtJP2HrCTXB/Kff/6Z4+e/2tXbTtt++m3/+uuvqlOnToZxme3D1SpUqKCOHTtqyZIlrmWLFy9WiRIl9NBDD2W5XtprfvXzenp6WkJqTuX165leWpB79NFHLcsfffRRXbp0KVthzlx1PoWTJ0/q0qVLuZ7/3EqrgyvIALhZkJHISFcjI918GWn48OFavXq13nnnHTVu3PiadZCRkBc4hxRuSkX9D+i1fpd/9WNpJ5V85plnsvy25OrwmSYlJUX33nuvzpw5o9GjR6tevXoqXbq0/vjjD/Xr1y/TE1bmh6yu/HL1B3Nh23aaXr16qX///oqOjlaTJk20ZMkSdezYMdPf5edGVu/nlJSUDPfz8/WsVKmSDhw4YDlvgST5+/tLun44vuWWW/IkQOeFP//8U6VKlbruOTAAoLghI1mRkfJn22nISIUnI02aNElz5szRtGnT1KdPnyzHkZGQl2hIoVjK6sOnWrVqSk1N1YEDBywn8ouLi9PZs2czXGUi7Zuz9Nv75ZdfJF25+kh21KpVS6mpqdqzZ4+aNGmSZV3SlauKpP9mJykpSTExMQoJCcnWc2UmbXuenp453s6uXbv0yy+/aNGiRerbt69r+bp16zKMzW6A9fPzU6lSpbR///4Mj+3bt0/u7u65PhllfqlWrZoOHDiQYXlm+5CZsLAwPfHEE65D0n/55ReNHTv2us8pXTlpbPrL6l6+fFkxMTGWb63Svg29+mpDV39rnJPXMzeaNm3q+nlD+vfxsWPHJMnyM4nM1KtXTzExMZZlfn5+Klmy5A3Nf27ExMTk+oToAFCYkZH+Rka6cWSk7CnsGWn27NmaOHGiRowYodGjR19zLBkJeYmf7KFYKl26tKSMHz5du3aVJM2aNcuyfObMmZKkbt26WZYfO3bMclWZhIQE/fvf/1aTJk0UGBiYrVrCwsLk7u6uyZMnZ/h2Je0bppCQEDkcDr3++uuWb53effddxcfHZ6grJ/z9/XX33Xdr3rx5On78eIbHr3Vp4LRvxtLXZIzRa6+9lmFsVnOe2TY7deqkzz//3HJIf1xcnD788EO1adNGTqfzmtuwW9euXfXtt99qx44drmUnT57UBx98kK31fX19FRoaqiVLluijjz6Sw+FQWFjYNddp1qyZ/Pz8NHfuXCUlJbmWL1y4MMMc16pVS5K0efNm17KUlBTNnz/fMi4nr2dupJ3v4d1333UtS01N1YIFC1S+fHk1bdr0musHBwfr559/tlxe3MPDQ6GhoVq2bJmOHj3qWr53716tWbMmT+rOzA8//KDWrVvn2/YBoKCQkf5GRrpxZKTsKcwZafHixfrnP/+p3r17u/69XwsZCXmJI6RQLKX9UR83bpx69eolT09P3X///WrcuLHC/z97dx6XRb3+f/wNyOJ244aAiop7uO9ipakcMcmTpaVlieaSpR6VcquOS9bRYx6zjpotJ/VUflMrzVww1LRMUkMxV04ZpoWgpXC7ss7vj35M3gHKOiy+no/HPB7NzDUz13xujvd1rpl7JjRUb731lhITE9W9e3ft27dPK1euVP/+/dWjRw+H/TRp0kQjRozQ/v375e3trXfffVcJCQlavnx5rnNp1KiRnn/+ec2ZM0d33323HnzwQbm7u2v//v2qVauW5s6dKy8vL02fPl2zZ89Wnz599Ne//lUxMTFaunSpOnbsqMcee6xA47FkyRLdddddatmypUaNGqUGDRooISFBkZGR+vnnn3Xo0KFst2vWrJkaNmyoZ599Vr/88otsNps+/vjjbG8Zzhzzv/3tbwoODpaLi4sGDx6c7X5feuklRURE6K677tLTTz+tcuXK6c0331RycrLmz59foHMtClOmTNF7772nPn36aMKECeYrjevVq6fvvvsuV/sYNGiQHnvsMS1dulTBwcGqUqXKTeNdXV310ksv6cknn1TPnj01aNAgxcbGavny5Vmej9C8eXN16dJF06dP14ULF1StWjV9+OGHSktLc4jLy+eZH/fff7969eqluXPn6tdff1Xr1q21fv167d69W2+++abc3d1vuf2cOXO0a9cu81Xf0u+3kIeHh+vuu+/W008/rbS0NP373/9W8+bNcz3+X375pVmMnj9/XleuXNFLL70kSerWrZu6detmxkZFRenChQu6//778zoEAFDiUSM5okYqGGqk3CmpNdK+ffs0dOhQVa9eXb169crSSOzatavDmFIjodBZ8zI/wHpz5swxateubTg7Ozu87jU1NdWYPXu24e/vb7i6uhp+fn7G9OnTHV73axi/v+42JCTE2Lp1q9GqVSvD3d3daNasmbF27dp85fPuu+8abdu2Ndzd3Y2qVasa3bt3NyIiIhxiFi9ebDRr1sxwdXU1vL29jaeeesq4ePGiQ0xOr2zNfKXxK6+8ku3xT548aQwdOtTw8fExXF1djdq1axv33Xef8dFHH5kx2b0C99ixY0ZQUJBRqVIlo0aNGsaoUaOMQ4cOGZKM5cuXm3FpaWnG+PHjDS8vL8PJycnhVbP60yuNDcMwDhw4YAQHBxuVKlUyKlSoYPTo0cPYs2ePQ0zmq3r379/vsDy7PG8lp1cah4SEZIn982uJDcMwvvvuO6N79+6Gh4eHUbt2bWPOnDnGf/7zn1u+0jiT3W43ypcvb0gy3n///SzrczqnpUuXGv7+/oa7u7vRoUMH48svv8z2GCdPnjSCgoIMd3d3w9vb23juueeMiIiIfH+e+XmlsWEYxqVLl4wJEyYYPj4+hpubm9GyZctszzcnrVq1MkaMGJFl+a5du4z27dsbbm5uRoMGDYxly5Zlm2NO//vIjM1u+vPf5tSpU426des6vEYbAMoSaiRH1EjUSIZxe9ZImZ99TtON520Y1EgofE6GUYhPpQPKkPr166tFixbauHFjcacC3Dbee+89jR07VqdPn77lFdKikJycrPr162vatGmaMGGC5ccHgNKAGgmwHjUSyiKeIQUAKDGGDBmiunXrasmSJcVy/OXLl8vV1VVjxowpluMDAABkhxoJZRF3SAE5yM3Vv/j4+Jvuo3z58vL09Czs1HCDy5cv6/LlyzeN8fLyyvHVxbi1pKQkXbt27aYxuX2ALQCg9KNGKh2okYoeNRJQMDzUHCgAX1/fm64PDQ3VihUrrEnmNrVgwQLNnj37pjGxsbG5fgU1spowYYJWrlx50xiubQAAbkSNVPyokYoeNRJQMNwhBRTAtm3bbrq+Vq1aCggIsCib29OPP/6oH3/88aYxd911lzw8PCzKqOw5duyY4uLibhoTFBRkUTYAgNKAGqn4USMVPWokoGBoSAEAAAAAAMBSPNQcAAAAAAAAlrqtnyGVkZGhuLg4Va5cWU5OTsWdDgAAsIBhGLp06ZJq1aolZ2euzWWHGgkAgNuP1TXSbd2QiouLk5+fX3GnAQAAisGZM2dUp06d4k6jRKJGAgDg9mVVjXRbN6QqV64s6ffBttlsxZwNAACwgt1ul5+fn1kHICtqJAAAbj9W10i3dUMq8xZ0m81GsQUAwG2Gn6LljBoJAIDbl1U1UoF+FDhv3jw5OTlp4sSJ5rLr169r7Nixql69uipVqqQBAwYoISHBYbvTp08rJCREFSpUUM2aNTV58mSlpaU5xOzcuVPt2rWTu7u7GjVqpBUrVmQ5/pIlS1S/fn15eHioc+fO2rdvX0FOBwAAoFBQIwEAANxcvhtS+/fv15tvvqlWrVo5LJ80aZI+++wzrV27Vrt27VJcXJwefPBBc316erpCQkKUkpKiPXv2aOXKlVqxYoVmzJhhxsTGxiokJEQ9evRQdHS0Jk6cqJEjR2rr1q1mzOrVqxUWFqaZM2fqwIEDat26tYKDg3Xu3Ln8nhIAAECBUSMBAADkgpEPly5dMho3bmxEREQY3bt3NyZMmGAYhmEkJiYarq6uxtq1a83Y48ePG5KMyMhIwzAMY/PmzYazs7MRHx9vxrzxxhuGzWYzkpOTDcMwjClTphjNmzd3OOagQYOM4OBgc75Tp07G2LFjzfn09HSjVq1axty5c3N9HklJSYYkIykpKfcnDwAASrWi/P6nRgIAAKWV1d//+XqG1NixYxUSEqKgoCC99NJL5vKoqCilpqYqKCjIXNasWTPVrVtXkZGR6tKliyIjI9WyZUt5e3ubMcHBwXrqqad09OhRtW3bVpGRkQ77yIzJvO09JSVFUVFRmj59urne2dlZQUFBioyMzDHv5ORkJScnm/N2uz0/pw8AuE2kp6crNTW1uNNAHrm6usrFxaVYjk2NBAC4HVAjlU7FWSNlJ88NqQ8//FAHDhzQ/v37s6yLj4+Xm5ubqlSp4rDc29tb8fHxZsyNhVbm+sx1N4ux2+26du2aLl68qPT09GxjTpw4kWPuc+fO1ezZs3N3ogCA25ZhGIqPj1diYmJxp4J8qlKlinx8fCx9cDk1EgCgrKNGKv2Ko0bKSZ4aUmfOnNGECRMUEREhDw+PosqpyEyfPl1hYWHmfOYrDQEAuFFmoVWzZk1VqFChRHxhI3cMw9DVq1fN5yX5+vpaclxqJADA7YAaqfQqrhrpZvLUkIqKitK5c+fUrl07c1l6erq+/PJLLV68WFu3blVKSooSExMdrgAmJCTIx8dHkuTj45PlTS+Zb5i5MebPb51JSEiQzWZT+fLl5eLiIhcXl2xjMveRHXd3d7m7u+fllAEAt5n09HSz0KpevXpxp4N8KF++vCTp3LlzqlmzpiW3plMjAQDKOmqk0q84aqSbydNb9nr16qXDhw8rOjranDp06KAhQ4aY/+3q6qrt27eb28TExOj06dMKDAyUJAUGBurw4cMOb3qJiIiQzWZTQECAGXPjPjJjMvfh5uam9u3bO8RkZGRo+/btZgwAAPmR+TyEChUqFHMmKIjMz8+q51tQIwEAyjpqpLLB6hrpZvJ0h1TlypXVokULh2UVK1ZU9erVzeUjRoxQWFiYqlWrJpvNpvHjxyswMFBdunSRJPXu3VsBAQF6/PHHNX/+fMXHx+uFF17Q2LFjzStzY8aM0eLFizVlyhQ98cQT2rFjh9asWaNNmzaZxw0LC1NoaKg6dOigTp06adGiRbpy5YqGDx9eoAEBAEASt6CXclZ/ftRIAIDbBTVS6VaSPr98vWXvZl599VU5OztrwIABSk5OVnBwsJYuXWqud3Fx0caNG/XUU08pMDBQFStWVGhoqF588UUzxt/fX5s2bdKkSZP02muvqU6dOnrnnXcUHBxsxgwaNEjnz5/XjBkzFB8frzZt2ig8PDzLQzwBAABKAmokAACAPzgZhmEUdxLFxW63y9PTU0lJSbLZbMWdDgCgBLh+/bpiY2Pl7+9fKh9Ojd/d7HPk+//WGCMAwJ9RI5UNJalGKvQ7pAAAKKtSw3dbdizXPnflOvZWt17PnDlTs2bNKmBG+ePk5KR169apf//++d7HW2+9pVWrVunAgQO6dOmSLl686PBgcAAAULysrJEk6qRMFy5c0MyZM/X555/r9OnT8vLyUv/+/TVnzhx5enoWbrJFgIYUAACl3NmzZ83/Xr16tWbMmKGYmBhzWaVKlfK0v5SUFLm5uRVafgV19epV9enTR3369NH06dOLOx0AAFCKlOU6KS4uTnFxcVqwYIECAgL0008/acyYMYqLi9NHH31U3OndUp7esgfg1lLDdztMAFDUfHx8zMnT01NOTk7m/JUrVzRkyBB5e3urUqVK6tixo7Zt2+awff369TVnzhwNHTpUNptNo0ePliS9/fbb8vPzU4UKFfTAAw9o4cKFWe5M+vTTT9WuXTt5eHioQYMGmj17ttLS0sz9StIDDzwgJycnc/7QoUPq0aOHKleuLJvNpvbt2+vbb7/N8fwmTpyoadOmmQ//BlA6USMBKA5luU5q0aKFPv74Y/Xr108NGzZUz5499fLLL+uzzz4zj1OS0ZACAKAMu3z5svr27avt27fr4MGD6tOnj/r166fTp087xC1YsECtW7fWwYMH9fe//11ff/21xowZowkTJig6Olp/+ctf9PLLLzts89VXX2no0KGaMGGCjh07pjfffFMrVqww4/bv3y9JWr58uc6ePWvODxkyRHXq1NH+/fsVFRWladOmydXV1YLRAAAA+ENZrJMyn/9UrlzJ/0Fcyc8QAADkW+vWrdW6dWtzfs6cOVq3bp02bNigcePGmct79uypZ555xpx//vnnde+99+rZZ5+VJDVp0kR79uzRxo0bzZjZs2dr2rRpCg0NlSQ1aNBAc+bM0ZQpUzRz5kx5eXlJkqpUqSIfHx9zu9OnT2vy5Mlq1qyZJKlx48ZFcOYAAAA3V9bqpF9//VVz5swx7+Iq6bhDCgCAMuzy5ct69tlndccdd6hKlSqqVKmSjh8/nuXKX4cOHRzmY2Ji1KlTJ4dlf54/dOiQXnzxRVWqVMmcRo0apbNnz+rq1as55hQWFqaRI0cqKChI8+bN08mTJwt4lgAAAHlXluoku92ukJAQBQQEFNtD2vOKhhQAAGXYs88+q3Xr1ukf//iHvvrqK0VHR6tly5ZKSUlxiKtYsWKe93358mXNnj1b0dHR5nT48GF9//33N30d9KxZs3T06FGFhIRox44dCggI0Lp16/J8fAAAgIIoK3XSpUuX1KdPH1WuXFnr1q0rNY9C4Cd7AACUYV9//bWGDRumBx54QNLvxdGpU6duuV3Tpk3NZxlk+vN8u3btFBMTo0aNGuW4H1dXV6Wnp2dZ3qRJEzVp0kSTJk3SI488ouXLl5s5AgAAWKEs1El2u13BwcFyd3fXhg0bbtrsKmloSAEAUIY1btxYn3zyifr16ycnJyf9/e9/V0ZGxi23Gz9+vLp166aFCxeqX79+2rFjh7Zs2SInJyczZsaMGbrvvvtUt25dDRw4UM7Ozjp06JCOHDmil156SdLvb5DZvn277rzzTrm7u8vDw0OTJ0/WwIED5e/vr59//ln79+/XgAEDcswlPj5e8fHx+uGHHyRJhw8fVuXKlVW3bl1Vq1atgCMEAABuV6W9TrLb7erdu7euXr2q999/X3a7XXa7XZLk5eUlFxeXQhilosNP9gAAKMMWLlyoqlWrqmvXrurXr5+Cg4PVrl27W2535513atmyZVq4cKFat26t8PBwTZo0yeGqW3BwsDZu3KjPP/9cHTt2VJcuXfTqq6+qXr16Zsy//vUvRUREyM/PT23btpWLi4t+++03DR06VE2aNNHDDz+se++9V7Nnz84xl2XLlqlt27YaNWqUJKlbt25q27atNmzYUICRAQAAt7vSXicdOHBAe/fu1eHDh9WoUSP5+vqa05kzZwo+QEXMyTAMo7iTKC52u12enp7maxGBwpAavtth3rXPXcWUCYD8uH79umJjY+Xv71+qbnm2wqhRo3TixAl99dVXxZ3KLd3sc+T7/9YYIxQFaiSgdKNGurnSUieVpBqJn+wBAIBsLViwQH/5y19UsWJFbdmyRStXrtTSpUuLOy0AAIBiR51UcDSkAABAtvbt26f58+fr0qVLatCggV5//XWNHDmyuNMCAAAodtRJBUdDCgAAZGvNmjXFnQIAAECJRJ1UcDzUHAAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWKpccScAAEBpcfLbNy07VsMOT+YpftiwYVq5cqUkqVy5cqpWrZpatWqlRx55RMOGDZOzc+m9BnX06FHNmDFDUVFR+umnn/Tqq69q4sSJxZ0WAAD4/6yskSTqpBu9/fbb+u9//6sjR45Iktq3b69//OMf6tSpUzFndmuld9QBAICDPn366OzZszp16pS2bNmiHj16aMKECbrvvvuUlpZW3Onl29WrV9WgQQPNmzdPPj4+xZ0OAAAohcpqnbRz50498sgj+uKLLxQZGSk/Pz/17t1bv/zyS3Gndks0pAAAKCPc3d3l4+Oj2rVrq127dnruuef06aefasuWLVqxYoUZl5iYqJEjR8rLy0s2m009e/bUoUOHHPb12WefqWPHjvLw8FCNGjX0wAMPmOsuXryooUOHqmrVqqpQoYLuvfdeff/995KkK1euyGaz6aOPPnLY3/r161WxYkVdunRJKSkpGjdunHx9feXh4aF69epp7ty5OZ5Xx44d9corr2jw4MFyd3cvhJECAAC3m7JaJ33wwQd6+umn1aZNGzVr1kzvvPOOMjIytH379kIYtaJFQwoAgDKsZ8+eat26tT755BNz2UMPPaRz585py5YtioqKUrt27dSrVy9duHBBkrRp0yY98MAD6tu3rw4ePKjt27c73PY9bNgwffvtt9qwYYMiIyNlGIb69u2r1NRUVaxYUYMHD9by5csd8li+fLkGDhyoypUr6/XXX9eGDRu0Zs0axcTE6IMPPlD9+vUtGQ8AAIBMZbFOunr1qlJTU1WtWrWCDY4FeIYUAABlXLNmzfTdd99Jknbv3q19+/bp3Llz5t1GCxYs0Pr16/XRRx9p9OjRevnllzV48GDNnj3b3Efr1q0lSd9//702bNigr7/+Wl27dpX0+5U5Pz8/rV+/Xg899JBGjhyprl276uzZs/L19dW5c+e0efNmbdu2TZJ0+vRpNW7cWHfddZecnJxUr149K4cDAADAVNbqpKlTp6pWrVoKCgoq8NgUNe6QAgCgjDMMQ05OTpKkQ4cO6fLly6pevboqVapkTrGxsTp58qQkKTo6Wr169cp2X8ePH1e5cuXUuXNnc1n16tXVtGlTHT9+XJLUqVMnNW/e3Hx46Pvvv6969eqpW7dukn6/chgdHa2mTZvqb3/7mz7//PMiO3cAAICbKUt10rx58/Thhx9q3bp18vDwyPtgWIw7pAAAKOOOHz8uf39/SdLly5fl6+urnTt3ZomrUqWKJKl8+fIFPubIkSO1ZMkSTZs2TcuXL9fw4cPNYq9du3aKjY3Vli1btG3bNj388MMKCgrK8jwFAACAolZW6qQFCxZo3rx52rZtm1q1alXgHK2Qpzuk3njjDbVq1Uo2m002m02BgYHasmWLuf6ee+6Rk5OTwzRmzBiHfZw+fVohISGqUKGCatasqcmTJ2d5ov3OnTvVrl07ubu7q1GjRg4PGMu0ZMkS1a9fXx4eHurcubP27duXl1MBAOC2sGPHDh0+fFgDBgyQ9HuREx8fr3LlyqlRo0YOU40aNSRJrVq1yvFBmHfccYfS0tK0d+9ec9lvv/2mmJgYBQQEmMsee+wx/fTTT3r99dd17NgxhYaGOuzHZrNp0KBBevvtt7V69Wp9/PHH5rMZSiNqJAAASp+yUifNnz9fc+bMUXh4uDp06JDv8bBanu6QqlOnjubNm6fGjRvLMAytXLlS999/vw4ePKjmzZtLkkaNGqUXX3zR3KZChQrmf6enpyskJEQ+Pj7as2ePzp49q6FDh8rV1VX/+Mc/JEmxsbEKCQnRmDFj9MEHH2j79u0aOXKkfH19FRwcLElavXq1wsLCtGzZMnXu3FmLFi1ScHCwYmJiVLNmzQIPCgAApVFycrLi4+OVnp6uhIQEhYeHa+7cubrvvvs0dOhQSVJQUJACAwPVv39/zZ8/X02aNFFcXJz5gM4OHTpo5syZ6tWrlxo2bKjBgwcrLS1Nmzdv1tSpU9W4cWPdf//9GjVqlN58801VrlxZ06ZNU+3atXX//febuVStWlUPPvigJk+erN69e6tOnTrmuoULF8rX11dt27aVs7Oz1q5dKx8fH/PK45+lpKTo2LFj5n//8ssvio6OVqVKldSoUaOiG9A8oEYCAKBkK6t10j//+U/NmDFDq1atUv369RUfHy9J5s8NS7I83SHVr18/9e3bV40bN1aTJk308ssvq1KlSvrmm2/MmAoVKsjHx8ecbDabue7zzz/XsWPH9P7776tNmza69957NWfOHC1ZskQpKSmSpGXLlsnf31//+te/dMcdd2jcuHEaOHCgXn31VXM/Cxcu1KhRozR8+HAFBARo2bJlqlChgt59992CjgcAAKVWeHi4fH19Vb9+ffXp00dffPGFXn/9dX366adycXGRJDk5OWnz5s3q1q2bhg8friZNmmjw4MH66aef5O3tLen3u3nWrl2rDRs2qE2bNurZs6fDXTbLly9X+/btdd999ykwMFCGYWjz5s1ydXV1yGfEiBFKSUnRE0884bC8cuXKmj9/vjp06KCOHTvq1KlT2rx5s5ydsy9L4uLi1LZtW7Vt21Znz57VggUL1LZtW40cObIwh69AqJEAACjZymqd9MYbbyglJUUDBw6Ur6+vOS1YsKAwh69IOBmGYeRnw/T0dK1du1ahoaE6ePCgAgICdM899+jo0aMyDEM+Pj7q16+f/v73v5tXAGfMmKENGzYoOjra3E9sbKwaNGigAwcOqG3bturWrZvatWunRYsWmTHLly/XxIkTlZSUpJSUFFWoUEEfffSR+vfvb8aEhoYqMTFRn376aY45JycnKzk52Zy32+3y8/NTUlKSQ1EIFERq+G6Hedc+dxVTJgDy4/r164qNjZW/v3+peBhkSfbee+9p0qRJiouLk5ubm6XHvtnnaLfb5enpWWTf/9RIQPaokYDSjRqpcBVXnVScNdKf5fmh5ocPH1ZgYKCuX7+uSpUqad26deZvIR999FHVq1dPtWrV0nfffaepU6cqJiZGn3zyiSQpPj7e7CpmypzPvK0spxi73a5r167p4sWLSk9PzzbmxIkTN8197ty5Dq9mBAAAhe/q1as6e/as5s2bpyeffNLyZlRxoUYCAAC3crvWSdnJc0OqadOmio6OVlJSkj766COFhoZq165dCggI0OjRo824li1bytfXV7169dLJkyfVsGHDQk08P6ZPn66wsDBzPvPqHwAAKDzz58/Xyy+/rG7dumn69OnFnY5lqJEAAMCt3K51Unby9AwpSXJzc1OjRo3Uvn17zZ07V61bt9Zrr72WbWznzp0lST/88IMkycfHRwkJCQ4xmfM+Pj43jbHZbCpfvrxq1KghFxeXbGMy95ETd3d38+03mRMAAChcs2bNUmpqqrZv317iH6ZZmKiRAADArdyudVJ28tyQ+rOMjAyHZw7cKPM5CL6+vpKkwMBAHT58WOfOnTNjIiIiZLPZzFvaAwMDs7xCMSIiQoGBgZJ+L/bat2/vEJORkaHt27ebMQAAAMWNGgkAACBnefrJ3vTp03Xvvfeqbt26unTpklatWqWdO3dq69atOnnypFatWqW+ffuqevXq+u677zRp0iR169ZNrVq1kiT17t1bAQEBevzxxzV//nzFx8frhRde0NixY+Xu7i5JGjNmjBYvXqwpU6boiSee0I4dO7RmzRpt2rTJzCMsLEyhoaHq0KGDOnXqpEWLFunKlSsaPnx4IQ4NAABA7lAjAQAA5E2eGlLnzp3T0KFDdfbsWXl6eqpVq1baunWr/vKXv+jMmTPatm2bWfj4+flpwIABeuGFF8ztXVxctHHjRj311FMKDAxUxYoVFRoaqhdffNGM8ff316ZNmzRp0iS99tprqlOnjt555x0FBwebMYMGDdL58+c1Y8YMxcfHq02bNgoPD8/yEE8AAPIrIyOjuFNAAVj9+VEjAQBuF9RIpVtJ+vycDMMwijuJ4mL1Kw1xe+CVxkDplpGRoe+//14uLi7y8vKSm5ubnJycijst5JJhGEpJSdH58+eVnp6uxo0by9nZ8QkFfP/fGmOEokCNBJRu1EilW0mskfL8lj0AAMoyZ2dn+fv76+zZs4qLiyvudJBPFSpUUN26dbMUWgAAIH+okcqGklQj0ZACAOBP3NzcVLduXaWlpSk9Pb2400Eeubi4qFy5cly1BQCgkFEjlW4lrUaiIQUUgVOJW8z/dv72qBp2eLIYswGQH05OTnJ1dZWrq2txpwIAZQY1ElD6USOhsBT/PVoAAAAAAAC4rdCQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS+WpIfXGG2+oVatWstlsstlsCgwM1JYtW8z1169f19ixY1W9enVVqlRJAwYMUEJCgsM+Tp8+rZCQEFWoUEE1a9bU5MmTlZaW5hCzc+dOtWvXTu7u7mrUqJFWrFiRJZclS5aofv368vDwUOfOnbVv3768nAoAAEChoUYCAADImzw1pOrUqaN58+YpKipK3377rXr27Kn7779fR48elSRNmjRJn332mdauXatdu3YpLi5ODz74oLl9enq6QkJClJKSoj179mjlypVasWKFZsyYYcbExsYqJCREPXr0UHR0tCZOnKiRI0dq69atZszq1asVFhammTNn6sCBA2rdurWCg4N17ty5go4HAABAnlEjAQAA5I2TYRhGQXZQrVo1vfLKKxo4cKC8vLy0atUqDRw4UJJ04sQJ3XHHHYqMjFSXLl20ZcsW3XfffYqLi5O3t7ckadmyZZo6darOnz8vNzc3TZ06VZs2bdKRI0fMYwwePFiJiYkKDw+XJHXu3FkdO3bU4sWLJUkZGRny8/PT+PHjNW3atFznbrfb5enpqaSkJNlstoIMA2BKDd+tU4l/XBV3blRXDTs8WYwZAQBuZNX3PzUS4IgaCQBKNqu///P9DKn09HR9+OGHunLligIDAxUVFaXU1FQFBQWZMc2aNVPdunUVGRkpSYqMjFTLli3NQkuSgoODZbfbzSuIkZGRDvvIjMncR0pKiqKiohxinJ2dFRQUZMYAAAAUF2okAACAWyuX1w0OHz6swMBAXb9+XZUqVdK6desUEBCg6Ohoubm5qUqVKg7x3t7eio+PlyTFx8c7FFqZ6zPX3SzGbrfr2rVrunjxotLT07ONOXHixE1zT05OVnJysjlvt9tzf+IAAAA3QY0EAACQe3m+Q6pp06aKjo7W3r179dRTTyk0NFTHjh0ritwK3dy5c+Xp6WlOfn5+xZ0SAAAoI6iRAAAAci/PDSk3Nzc1atRI7du319y5c9W6dWu99tpr8vHxUUpKihITEx3iExIS5OPjI0ny8fHJ8kaZzPlbxdhsNpUvX141atSQi4tLtjGZ+8jJ9OnTlZSUZE5nzpzJ6+kDAABkixoJAAAg9/L9DKlMGRkZSk5OVvv27eXq6qrt27eb62JiYnT69GkFBgZKkgIDA3X48GGHN71ERETIZrMpICDAjLlxH5kxmftwc3NT+/btHWIyMjK0fft2MyYn7u7u5uuYMycAAICiQI0EAACQszw9Q2r69Om69957VbduXV26dEmrVq3Szp07tXXrVnl6emrEiBEKCwtTtWrVZLPZNH78eAUGBqpLly6SpN69eysgIECPP/645s+fr/j4eL3wwgsaO3as3N3dJUljxozR4sWLNWXKFD3xxBPasWOH1qxZo02bNpl5hIWFKTQ0VB06dFCnTp20aNEiXblyRcOHDy/EoQEAAMgdaiQAAIC8yVND6ty5cxo6dKjOnj0rT09PtWrVSlu3btVf/vIXSdKrr74qZ2dnDRgwQMnJyQoODtbSpUvN7V1cXLRx40Y99dRTCgwMVMWKFRUaGqoXX3zRjPH399emTZs0adIkvfbaa6pTp47eeecdBQcHmzGDBg3S+fPnNWPGDMXHx6tNmzYKDw/P8hBPAAAAK1AjAQAA5I2TYRhGcSdRXOx2uzw9PZWUlMSt6Sg0qeG7dSpxiznv3KiuGnZ4shgzAgDciO//W2OMUBSokQCgZLP6+7/Az5ACAAAAAAAA8oKGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS+WpITV37lx17NhRlStXVs2aNdW/f3/FxMQ4xNxzzz1ycnJymMaMGeMQc/r0aYWEhKhChQqqWbOmJk+erLS0NIeYnTt3ql27dnJ3d1ejRo20YsWKLPksWbJE9evXl4eHhzp37qx9+/bl5XQAAAAKBTUSAABA3uSpIbVr1y6NHTtW33zzjSIiIpSamqrevXvrypUrDnGjRo3S2bNnzWn+/PnmuvT0dIWEhCglJUV79uzRypUrtWLFCs2YMcOMiY2NVUhIiHr06KHo6GhNnDhRI0eO1NatW82Y1atXKywsTDNnztSBAwfUunVrBQcH69y5c/kdCwAAgHyhRgIAAMgbJ8MwjPxufP78edWsWVO7du1St27dJP1+9a9NmzZatGhRttts2bJF9913n+Li4uTt7S1JWrZsmaZOnarz58/Lzc1NU6dO1aZNm3TkyBFzu8GDBysxMVHh4eGSpM6dO6tjx45avHixJCkjI0N+fn4aP368pk2blqv87Xa7PD09lZSUJJvNlt9hABykhu/WqcQt5rxzo7pq2OHJYswIAHAjK77/qZGArKiRAKBks/r7v0DPkEpKSpIkVatWzWH5Bx98oBo1aqhFixaaPn26rl69aq6LjIxUy5YtzUJLkoKDg2W323X06FEzJigoyGGfwcHBioyMlCSlpKQoKirKIcbZ2VlBQUFmDAAAQHGhRgIAALi5cvndMCMjQxMnTtSdd96pFi1amMsfffRR1atXT7Vq1dJ3332nqVOnKiYmRp988okkKT4+3qHQkmTOx8fH3zTGbrfr2rVrunjxotLT07ONOXHiRI45JycnKzk52Zy32+35OHMAAICcUSMBAADcWr4bUmPHjtWRI0e0e/duh+WjR482/7tly5by9fVVr169dPLkSTVs2DD/mRaCuXPnavbs2cWaAwAAKNuokQAAAG4tXz/ZGzdunDZu3KgvvvhCderUuWls586dJUk//PCDJMnHx0cJCQkOMZnzPj4+N42x2WwqX768atSoIRcXl2xjMveRnenTpyspKcmczpw5k4uzBQAAyB1qJAAAgNzJU0PKMAyNGzdO69at044dO+Tv73/LbaKjoyVJvr6+kqTAwEAdPnzY4U0vERERstlsCggIMGO2b9/usJ+IiAgFBgZKktzc3NS+fXuHmIyMDG3fvt2MyY67u7tsNpvDBAAAUFDUSAAAAHmTp5/sjR07VqtWrdKnn36qypUrm88z8PT0VPny5XXy5EmtWrVKffv2VfXq1fXdd99p0qRJ6tatm1q1aiVJ6t27twICAvT4449r/vz5io+P1wsvvKCxY8fK3d1dkjRmzBgtXrxYU6ZM0RNPPKEdO3ZozZo12rRpk5lLWFiYQkND1aFDB3Xq1EmLFi3SlStXNHz48MIaGwAAgFyhRgIAAMibPDWk3njjDUm/v7b4RsuXL9ewYcPk5uambdu2mYWPn5+fBgwYoBdeeMGMdXFx0caNG/XUU08pMDBQFStWVGhoqF588UUzxt/fX5s2bdKkSZP02muvqU6dOnrnnXcUHBxsxgwaNEjnz5/XjBkzFB8frzZt2ig8PDzLQzwBAACKGjUSAABA3jgZhmEUdxLFxW63y9PTU0lJSdyajkKTGr5bpxK3mPPOjeqqYYcnizEjAMCN+P6/NcYIRYEaCQBKNqu///P1UHMAAAAAAAAgv2hIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWCpPDam5c+eqY8eOqly5smrWrKn+/fsrJibGIeb69esaO3asqlevrkqVKmnAgAFKSEhwiDl9+rRCQkJUoUIF1axZU5MnT1ZaWppDzM6dO9WuXTu5u7urUaNGWrFiRZZ8lixZovr168vDw0OdO3fWvn378nI6AAAAhYIaCQAAIG/y1JDatWuXxo4dq2+++UYRERFKTU1V7969deXKFTNm0qRJ+uyzz7R27Vrt2rVLcXFxevDBB8316enpCgkJUUpKivbs2aOVK1dqxYoVmjFjhhkTGxurkJAQ9ejRQ9HR0Zo4caJGjhyprVu3mjGrV69WWFiYZs6cqQMHDqh169YKDg7WuXPnCjIeAAAAeUaNBAAAkDdOhmEY+d34/Pnzqlmzpnbt2qVu3bopKSlJXl5eWrVqlQYOHChJOnHihO644w5FRkaqS5cu2rJli+677z7FxcXJ29tbkrRs2TJNnTpV58+fl5ubm6ZOnapNmzbpyJEj5rEGDx6sxMREhYeHS5I6d+6sjh07avHixZKkjIwM+fn5afz48Zo2bVqu8rfb7fL09FRSUpJsNlt+hwFwkBq+W6cSt5jzzo3qqmGHJ4sxIwDAjaz4/qdGArKiRgKAks3q7/8CPUMqKSlJklStWjVJUlRUlFJTUxUUFGTGNGvWTHXr1lVkZKQkKTIyUi1btjQLLUkKDg6W3W7X0aNHzZgb95EZk7mPlJQURUVFOcQ4OzsrKCjIjMlOcnKy7Ha7wwQAAFDYqJEAAABuLt8NqYyMDE2cOFF33nmnWrRoIUmKj4+Xm5ubqlSp4hDr7e2t+Ph4M+bGQitzfea6m8XY7XZdu3ZNv/76q9LT07ONydxHdubOnStPT09z8vPzy/uJAwAA3AQ1EgAAwK3luyE1duxYHTlyRB9++GFh5lOkpk+frqSkJHM6c+ZMcacEAADKGGokAACAWyuXn43GjRunjRs36ssvv1SdOnXM5T4+PkpJSVFiYqLDFcCEhAT5+PiYMX9+00vmG2ZujPnzW2cSEhJks9lUvnx5ubi4yMXFJduYzH1kx93dXe7u7nk/YQAAgFygRgIAAMidPN0hZRiGxo0bp3Xr1mnHjh3y9/d3WN++fXu5urpq+/bt5rKYmBidPn1agYGBkqTAwEAdPnzY4U0vERERstlsCggIMGNu3EdmTOY+3Nzc1L59e4eYjIwMbd++3YwBAACwCjUSAABA3uTpDqmxY8dq1apV+vTTT1W5cmXzWQSenp4qX768PD09NWLECIWFhalatWqy2WwaP368AgMD1aVLF0lS7969FRAQoMcff1zz589XfHy8XnjhBY0dO9a8MjdmzBgtXrxYU6ZM0RNPPKEdO3ZozZo12rRpk5lLWFiYQkND1aFDB3Xq1EmLFi3SlStXNHz48MIaGwAAgFyhRgIAAMibPDWk3njjDUnSPffc47B8+fLlGjZsmCTp1VdflbOzswYMGKDk5GQFBwdr6dKlZqyLi4s2btyop556SoGBgapYsaJCQ0P14osvmjH+/v7atGmTJk2apNdee0116tTRO++8o+DgYDNm0KBBOn/+vGbMmKH4+Hi1adNG4eHhWR7iCQAAUNSokQAAAPLGyTAMo7iTKC52u12enp5KSkqSzWYr7nRQRqSG79apxC3mvHOjumrY4clizAgAcCO+/2+NMUJRoEYCgJLN6u//fL9lDwAAAAAAAMgPGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACyV54bUl19+qX79+qlWrVpycnLS+vXrHdYPGzZMTk5ODlOfPn0cYi5cuKAhQ4bIZrOpSpUqGjFihC5fvuwQ89133+nuu++Wh4eH/Pz8NH/+/Cy5rF27Vs2aNZOHh4datmypzZs35/V0AAAACgU1EgAAQO7luSF15coVtW7dWkuWLMkxpk+fPjp79qw5/d///Z/D+iFDhujo0aOKiIjQxo0b9eWXX2r06NHmervdrt69e6tevXqKiorSK6+8olmzZumtt94yY/bs2aNHHnlEI0aM0MGDB9W/f3/1799fR44cyespAQAAFBg1EgAAQO45GYZh5HtjJyetW7dO/fv3N5cNGzZMiYmJWa4KZjp+/LgCAgK0f/9+dejQQZIUHh6uvn376ueff1atWrX0xhtv6Pnnn1d8fLzc3NwkSdOmTdP69et14sQJSdKgQYN05coVbdy40dx3ly5d1KZNGy1btixX+dvtdnl6eiopKUk2my0fIwBklRq+W6cSt5jzzo3qqmGHJ4sxIwDAjaz4/qdGArKiRgKAks3q7/8ieYbUzp07VbNmTTVt2lRPPfWUfvvtN3NdZGSkqlSpYhZakhQUFCRnZ2ft3bvXjOnWrZtZaElScHCwYmJidPHiRTMmKCjI4bjBwcGKjIzMMa/k5GTZ7XaHCQAAwCrUSAAAAL8r9IZUnz599N///lfbt2/XP//5T+3atUv33nuv0tPTJUnx8fGqWbOmwzblypVTtWrVFB8fb8Z4e3s7xGTO3yomc3125s6dK09PT3Py8/Mr2MkCAADkEjUSAADAH8oV9g4HDx5s/nfLli3VqlUrNWzYUDt37lSvXr0K+3B5Mn36dIWFhZnzdrudggsAAFiCGgkAAOAPRfKTvRs1aNBANWrU0A8//CBJ8vHx0blz5xxi0tLSdOHCBfn4+JgxCQkJDjGZ87eKyVyfHXd3d9lsNocJAACgOFAjAQCA21mRN6R+/vln/fbbb/L19ZUkBQYGKjExUVFRUWbMjh07lJGRoc6dO5sxX375pVJTU82YiIgINW3aVFWrVjVjtm/f7nCsiIgIBQYGFvUpAQAAFBg1EgAAuJ3luSF1+fJlRUdHKzo6WpIUGxur6OhonT59WpcvX9bkyZP1zTff6NSpU9q+fbvuv/9+NWrUSMHBwZKkO+64Q3369NGoUaO0b98+ff311xo3bpwGDx6sWrVqSZIeffRRubm5acSIETp69KhWr16t1157zeFW8gkTJig8PFz/+te/dOLECc2aNUvffvutxo0bVwjDAgAAkDfUSAAAALmX54bUt99+q7Zt26pt27aSpLCwMLVt21YzZsyQi4uLvvvuO/31r39VkyZNNGLECLVv315fffWV3N3dzX188MEHatasmXr16qW+ffvqrrvu0ltvvWWu9/T01Oeff67Y2Fi1b99ezzzzjGbMmKHRo0ebMV27dtWqVav01ltvqXXr1vroo4+0fv16tWjRoiDjAQAAkC/USAAAALnnZBiGUdxJFBe73S5PT08lJSXxrAQUmtTw3TqVuMWcd25UVw07PFmMGQEAbsT3/60xRigK1EgAULJZ/f1f5M+QAgAAAAAAAG5EQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKXy3JD68ssv1a9fP9WqVUtOTk5av369w3rDMDRjxgz5+vqqfPnyCgoK0vfff+8Qc+HCBQ0ZMkQ2m01VqlTRiBEjdPnyZYeY7777Tnfffbc8PDzk5+en+fPnZ8ll7dq1atasmTw8PNSyZUtt3rw5r6cDAABQKKiRAAAAci/PDakrV66odevWWrJkSbbr58+fr9dff13Lli3T3r17VbFiRQUHB+v69etmzJAhQ3T06FFFRERo48aN+vLLLzV69Ghzvd1uV+/evVWvXj1FRUXplVde0axZs/TWW2+ZMXv27NEjjzyiESNG6ODBg+rfv7/69++vI0eO5PWUAAAACowaCQAAIPecDMMw8r2xk5PWrVun/v37S/r9yl+tWrX0zDPP6Nlnn5UkJSUlydvbWytWrNDgwYN1/PhxBQQEaP/+/erQoYMkKTw8XH379tXPP/+sWrVq6Y033tDzzz+v+Ph4ubm5SZKmTZum9evX68SJE5KkQYMG6cqVK9q4caOZT5cuXdSmTRstW7YsV/nb7XZ5enoqKSlJNpstv8MAOEgN361TiVvMeedGddWww5PFmBEA4EZWfP9TIwFZUSMBQMlm9fd/oT5DKjY2VvHx8QoKCjKXeXp6qnPnzoqMjJQkRUZGqkqVKmahJUlBQUFydnbW3r17zZhu3bqZhZYkBQcHKyYmRhcvXjRjbjxOZkzmcQAAAEoKaiQAAABH5QpzZ/Hx8ZIkb29vh+Xe3t7muvj4eNWsWdMxiXLlVK1aNYcYf3//LPvIXFe1alXFx8ff9DjZSU5OVnJysjlvt9vzcnoAAAD5Qo0EAADg6LZ6y97cuXPl6elpTn5+fsWdEgAAQLGjRgIAAFYr1IaUj4+PJCkhIcFheUJCgrnOx8dH586dc1iflpamCxcuOMRkt48bj5FTTOb67EyfPl1JSUnmdObMmbyeIgAAQJ5RIwEAADgq1IaUv7+/fHx8tH37dnOZ3W7X3r17FRgYKEkKDAxUYmKioqKizJgdO3YoIyNDnTt3NmO+/PJLpaammjERERFq2rSpqlatasbceJzMmMzjZMfd3V02m81hAgAAKGrUSAAAAI7y3JC6fPmyoqOjFR0dLen3h3RGR0fr9OnTcnJy0sSJE/XSSy9pw4YNOnz4sIYOHapatWqZb5m544471KdPH40aNUr79u3T119/rXHjxmnw4MGqVauWJOnRRx+Vm5ubRowYoaNHj2r16tV67bXXFBYWZuYxYcIEhYeH61//+pdOnDihWbNm6dtvv9W4ceMKPioAAAB5RI0EAACQe3l+qPm3336rHj16mPOZBVBoaKhWrFihKVOm6MqVKxo9erQSExN11113KTw8XB4eHuY2H3zwgcaNG6devXrJ2dlZAwYM0Ouvv26u9/T01Oeff66xY8eqffv2qlGjhmbMmKHRo0ebMV27dtWqVav0wgsv6LnnnlPjxo21fv16tWjRIl8DAQAAUBDUSAAAALnnZBiGUdxJFBe73S5PT08lJSVxazoKTWr4bp1K3GLOOzeqq4YdnizGjAAAN+L7/9YYIxQFaiQAKNms/v6/rd6yBwAAAAAAgOJHQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKUKvSE1a9YsOTk5OUzNmjUz11+/fl1jx45V9erVValSJQ0YMEAJCQkO+zh9+rRCQkJUoUIF1axZU5MnT1ZaWppDzM6dO9WuXTu5u7urUaNGWrFiRWGfCgAAQKGhRgIAAPhDkdwh1bx5c509e9acdu/eba6bNGmSPvvsM61du1a7du1SXFycHnzwQXN9enq6QkJClJKSoj179mjlypVasWKFZsyYYcbExsYqJCREPXr0UHR0tCZOnKiRI0dq69atRXE6AAAAhYIaCQAA4HflimSn5crJx8cny/KkpCT95z//0apVq9SzZ09J0vLly3XHHXfom2++UZcuXfT555/r2LFj2rZtm7y9vdWmTRvNmTNHU6dO1axZs+Tm5qZly5bJ399f//rXvyRJd9xxh3bv3q1XX31VwcHBRXFKAAAABUaNBAAA8LsiuUPq+++/V61atdSgQQMNGTJEp0+fliRFRUUpNTVVQUFBZmyzZs1Ut25dRUZGSpIiIyPVsmVLeXt7mzHBwcGy2+06evSoGXPjPjJjMvcBAABQElEjAQAA/K7Q75Dq3LmzVqxYoaZNm+rs2bOaPXu27r77bh05ckTx8fFyc3NTlSpVHLbx9vZWfHy8JCk+Pt6h0Mpcn7nuZjF2u13Xrl1T+fLls80tOTlZycnJ5rzdbi/QuQIAAOQWNRIAAMAfCr0hde+995r/3apVK3Xu3Fn16tXTmjVrciyCrDJ37lzNnj27WHMAAAC3J2okAACAPxTJT/ZuVKVKFTVp0kQ//PCDfHx8lJKSosTERIeYhIQE83kKPj4+Wd4okzl/qxibzXbTgm769OlKSkoypzNnzhT09AAAAPKFGgkAANzOirwhdfnyZZ08eVK+vr5q3769XF1dtX37dnN9TEyMTp8+rcDAQElSYGCgDh8+rHPnzpkxERERstlsCggIMGNu3EdmTOY+cuLu7i6bzeYwAQAAFAdqJAAAcDsr9IbUs88+q127dunUqVPas2ePHnjgAbm4uOiRRx6Rp6enRowYobCwMH3xxReKiorS8OHDFRgYqC5dukiSevfurYCAAD3++OM6dOiQtm7dqhdeeEFjx46Vu7u7JGnMmDH68ccfNWXKFJ04cUJLly7VmjVrNGnSpMI+HQAAgEJBjQQAAPCHQn+G1M8//6xHHnlEv/32m7y8vHTXXXfpm2++kZeXlyTp1VdflbOzswYMGKDk5GQFBwdr6dKl5vYuLi7auHGjnnrqKQUGBqpixYoKDQ3Viy++aMb4+/tr06ZNmjRpkl577TXVqVNH77zzDq8zBgAAJRY1EgAAwB+cDMMwijuJ4mK32+Xp6amkpCRuTUehSQ3frVOJW8x550Z11bDDk8WYEQDgRnz/3xpjhKJAjQQAJZvV3/9F/gwpAAAAAAAA4EY0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxV6htSS5YsUf369eXh4aHOnTtr3759xZ0SAABAsaNGAgAAJVm54k6gIFavXq2wsDAtW7ZMnTt31qJFixQcHKyYmBjVrFmzuNMDAKBMSQ3fXSj7ce1zV6HsBzmjRgIAwDrUSPlTqhtSCxcu1KhRozR8+HBJ0rJly7Rp0ya9++67mjZtWjFnBwCAtQqrGCpq2eV5uxVgRY0aCQCAP1AjlUyltiGVkpKiqKgoTZ8+3Vzm7OysoKAgRUZGZrtNcnKykpOTzfmkpCRJkt1uL9pkcVtJvXJFl6/+8XfmdPkaf2NAEUiNcPy33vUvgbeMQQn28dYsi7L7TAtD5r/JhmEUyf6LGzUSSipqJMAa1EhlTBmukUptQ+rXX39Venq6vL29HZZ7e3vrxIkT2W4zd+5czZ49O8tyPz+/IskR+MOk4k4AAPAnly5dkqenZ3GnUeiokVC6UCMBQEljVY1UahtS+TF9+nSFhYWZ8xkZGbpw4YKqV68uJyenXO/HbrfLz89PZ86ckc1mK4pUSxXGwxHj4YjxcMR4/IGxcMR4OCrK8TAMQ5cuXVKtWrUKdb+lWWHVSBJ/yzdiLBwxHo4YD0eMhyPG4w+MhaOyVCOV2oZUjRo15OLiooSEBIflCQkJ8vHxyXYbd3d3ubu7OyyrUqVKvnOw2Wz8D+IGjIcjxsMR4+GI8fgDY+GI8XBUVONRFu+MylQSaiSJv+UbMRaOGA9HjIcjxsMR4/EHxsJRWaiRnC07UiFzc3NT+/bttX37dnNZRkaGtm/frsDAovk9JQAAQElHjQQAAEqDUnuHlCSFhYUpNDRUHTp0UKdOnbRo0SJduXLFfKMMAADA7YgaCQAAlHSluiE1aNAgnT9/XjNmzFB8fLzatGmj8PDwLA/xLGzu7u6aOXNmllvbb1eMhyPGwxHj4Yjx+ANj4YjxcMR4FExx1UgSn92NGAtHjIcjxsMR4+GI8fgDY+GoLI2Hk1FW33kMAAAAAACAEqnUPkMKAAAAAAAApRMNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhlUsXLlzQkCFDZLPZVKVKFY0YMUKXL1/O1baGYejee++Vk5OT1q9fX7SJWiSv43HhwgWNHz9eTZs2Vfny5VW3bl397W9/U1JSkoVZF54lS5aofv368vDwUOfOnbVv376bxq9du1bNmjWTh4eHWrZsqc2bN1uUqTXyMh5vv/227r77blWtWlVVq1ZVUFDQLcevtMnr30emDz/8UE5OTurfv3/RJmihvI5FYmKixo4dK19fX7m7u6tJkyZl6n8veR2PRYsWmf9u+vn5adKkSbp+/bpF2RatL7/8Uv369VOtWrVy/f24c+dOtWvXTu7u7mrUqJFWrFhR5Hni1qiRHFEjUSPdiBrJETXSH6iRHFEj/eG2qpEM5EqfPn2M1q1bG998843x1VdfGY0aNTIeeeSRXG27cOFC49577zUkGevWrSvaRC2S1/E4fPiw8eCDDxobNmwwfvjhB2P79u1G48aNjQEDBliYdeH48MMPDTc3N+Pdd981jh49aowaNcqoUqWKkZCQkG38119/bbi4uBjz5883jh07ZrzwwguGq6urcfjwYYszLxp5HY9HH33UWLJkiXHw4EHj+PHjxrBhwwxPT0/j559/tjjzopHX8cgUGxtr1K5d27j77ruN+++/35pki1hexyI5Odno0KGD0bdvX2P37t1GbGyssXPnTiM6OtrizItGXsfjgw8+MNzd3Y0PPvjAiI2NNbZu3Wr4+voakyZNsjjzorF582bj+eefNz755JNcfT/++OOPRoUKFYywsDDj2LFjxr///W/DxcXFCA8PtyZh5IgayRE1EjVSJmokR9RIf6BGckSN5Oh2qpFoSOXCsWPHDEnG/v37zWVbtmwxnJycjF9++eWm2x48eNCoXbu2cfbs2TJTbBVkPG60Zs0aw83NzUhNTS2KNItMp06djLFjx5rz6enpRq1atYy5c+dmG//www8bISEhDss6d+5sPPnkk0Wap1XyOh5/lpaWZlSuXNlYuXJlUaVoqfyMR1pamtG1a1fjnXfeMUJDQ8tMsZXXsXjjjTeMBg0aGCkpKValaKm8jsfYsWONnj17OiwLCwsz7rzzziLNszjk5vtxypQpRvPmzR2WDRo0yAgODi7CzHAr1EiOqJGokW5EjeSIGukP1EiOqJFyVtZrJH6ylwuRkZGqUqWKOnToYC4LCgqSs7Oz9u7dm+N2V69e1aOPPqolS5bIx8fHilQtkd/x+LOkpCTZbDaVK1euKNIsEikpKYqKilJQUJC5zNnZWUFBQYqMjMx2m8jISId4SQoODs4xvjTJz3j82dWrV5Wamqpq1aoVVZqWye94vPjii6pZs6ZGjBhhRZqWyM9YbNiwQYGBgRo7dqy8vb3VokUL/eMf/1B6erpVaReZ/IxH165dFRUVZd6y/uOPP2rz5s3q27evJTmXNGX539LSjBrJETUSNVImaiRH1Eh/oEZyRI1UcKX539LS8y1XjOLj41WzZk2HZeXKlVO1atUUHx+f43aTJk1S165ddf/99xd1ipbK73jc6Ndff9WcOXM0evTookixyPz6669KT0+Xt7e3w3Jvb2+dOHEi223i4+Ozjc/tWJVk+RmPP5s6dapq1aqV5R/R0ig/47F792795z//UXR0tAUZWic/Y/Hjjz9qx44dGjJkiDZv3qwffvhBTz/9tFJTUzVz5kwr0i4y+RmPRx99VL/++tYXtwoAAQAASURBVKvuuusuGYahtLQ0jRkzRs8995wVKZc4Of1barfbde3aNZUvX76YMru9USM5okaiRspEjeSIGukP1EiOqJEKrjTXSLf1HVLTpk2Tk5PTTafcfmH82YYNG7Rjxw4tWrSocJMuQkU5Hjey2+0KCQlRQECAZs2aVfDEUWrNmzdPH374odatWycPD4/iTsdyly5d0uOPP663335bNWrUKO50il1GRoZq1qypt956S+3bt9egQYP0/PPPa9myZcWdWrHYuXOn/vGPf2jp0qU6cOCAPvnkE23atElz5swp7tRwG6BGckSNBKtRI1Ej3YgayRE1UtlxW98h9cwzz2jYsGE3jWnQoIF8fHx07tw5h+VpaWm6cOFCjreZ79ixQydPnlSVKlUclg8YMEB33323du7cWYDMi0ZRjkemS5cuqU+fPqpcubLWrVsnV1fXgqZtqRo1asjFxUUJCQkOyxMSEnI8dx8fnzzFlyb5GY9MCxYs0Lx587Rt2za1atWqKNO0TF7H4+TJkzp16pT69etnLsvIyJD0+xX1mJgYNWzYsGiTLiL5+dvw9fWVq6urXFxczGV33HGH4uPjlZKSIjc3tyLNuSjlZzz+/ve/6/HHH9fIkSMlSS1bttSVK1c0evRoPf/883J2vr2uKeX0b6nNZivRV/5KK2okR9RIt0aN5IgayRE10h+okRxRIxVcaa6Rbq9P6k+8vLzUrFmzm05ubm4KDAxUYmKioqKizG137NihjIwMde7cOdt9T5s2Td99952io6PNSZJeffVVLV++3IrTy7OiHA/p96t+vXv3lpubmzZs2FAqr/a4ubmpffv22r59u7ksIyND27dvV2BgYLbbBAYGOsRLUkRERI7xpUl+xkOS5s+frzlz5ig8PNzhORulXV7Ho1mzZjp8+LDDvxN//etf1aNHD0VHR8vPz8/K9AtVfv427rzzTv3www9mwSlJ//vf/+Tr61uqCy0pf+Nx9erVLAVVZiFqGEbRJVtCleV/S0siaiRH1Ei3Ro3kiBrJETXSH6iRHFEjFVyp/re0eJ+pXnr06dPHaNu2rbF3715j9+7dRuPGjR1e4fvzzz8bTZs2Nfbu3ZvjPlRG3iBjGHkfj6SkJKNz585Gy5YtjR9++ME4e/asOaWlpRXXaeTLhx9+aLi7uxsrVqwwjh07ZowePdqoUqWKER8fbxiGYTz++OPGtGnTzPivv/7aKFeunLFgwQLj+PHjxsyZM8vcK43zMh7z5s0z3NzcjI8++sjh7+DSpUvFdQqFKq/j8Wdl6Q0yeR2L06dPG5UrVzbGjRtnxMTEGBs3bjRq1qxpvPTSS8V1CoUqr+Mxc+ZMo3Llysb//d//GT/++KPx+eefGw0bNjQefvjh4jqFQnXp0iXj4MGDxsGDBw1JxsKFC42DBw8aP/30k2EYhjFt2jTj8ccfN+MzX2k8efJk4/jx48aSJUtKzSuNyzpqJEfUSNRImaiRHFEj/YEayRE1kqPbqUaiIZVLv/32m/HII48YlSpVMmw2mzF8+HCHL4fY2FhDkvHFF1/kuI+yVGzldTy++OILQ1K2U2xsbPGcRAH8+9//NurWrWu4ubkZnTp1Mr755htzXffu3Y3Q0FCH+DVr1hhNmjQx3NzcjObNmxubNm2yOOOilZfxqFevXrZ/BzNnzrQ+8SKS17+PG5WlYssw8j4We/bsMTp37my4u7sbDRo0MF5++eVS93/IbiYv45GammrMmjXLaNiwoeHh4WH4+fkZTz/9tHHx4kXrEy8COX0vZI5BaGio0b179yzbtGnTxnBzczMaNGhgLF++3PK8kRU1kiNqJGqkG1EjOaJG+gM1kiNqpD/cTjWSk2Hchve0AQAAAAAAoNjc1s+QAgAAAAAAgPVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgBMO3fulJOTk3bu3Fmo+3VyctKsWbMKdZ95tWLFCjk5OenUqVNFus977rlH99xzT573lZexz+8x8mLWrFlycnIq0mNkJyMjQy1atNDLL798y9jsckxLS9OUKVPk5+cnZ2dn9e/fP0/HX7ZsmerWravk5OQ8bQcAKNuokQq+T2qkgqFGQllEQwpl0p49ezRr1iwlJiYWdyq3jc2bNxd7QYXidc8998jJySnbydXVNVf7+L//+z+dOXNG48aNy1cO7777rl555RUNHDhQK1eu1KRJkyRJq1ev1mOPPabGjRvLyckpx2J12LBhSklJ0Ztvvpmv4wNASUeNZD1qJJTUGum3337TK6+8om7dusnLy0tVqlRRly5dtHr16izbUyOhKJQr7gSAorBnzx7Nnj1bw4YNU5UqVYo7ndvC5s2btWTJkmwLrmvXrqlcueL95+bxxx/X4MGD5e7uXqTH+fzzz/O1Xbdu3XTt2jW5ubkVckbWef755zVy5EiHZVeuXNGYMWPUu3fvXO3jlVde0eDBg+Xp6ZmvHHbs2KHatWvr1VdfdVj+xhtvKCoqSh07dtRvv/2W4/YeHh4KDQ3VwoULNX78+GK5AgoARYkayXrUSL+jRip5NdLGjRv1/PPPq2/fvnrhhRdUrlw5ffzxxxo8eLCOHTum2bNnm7HUSCgKNKSAMuDq1auqUKFCluVpaWnKyMgo9i9wDw+PYj2+JLm4uMjFxaXIj5PfsXZ2di4R41QQf/nLX7Ise//99yVJQ4YMueX2Bw8e1KFDh/Svf/0r3zmcO3cu2/+D9d5776l27dpydnZWixYtbrqPhx9+WPPnz9cXX3yhnj175jsXAEDxo0a6NWqkoldSa6TmzZvr+++/V7169cxlTz/9tIKCgvTPf/5TU6ZMUcWKFc111EgobPxkD2XOrFmzNHnyZEmSv7+/eTts5m/Y09LSNGfOHDVs2FDu7u6qX7++nnvuuSy/h65fv77uu+8+ff7552rTpo08PDwUEBCgTz75JF95vf/+++rUqZMqVKigqlWrqlu3blmuFC1dulTNmzeXu7u7atWqpbFjx2a5pf6ee+5RixYtFBUVpW7duqlChQp67rnndOrUKTk5OWnBggVatGiReX7Hjh2TJJ04cUIDBw5UtWrV5OHhoQ4dOmjDhg23zPurr77SQw89pLp168rd3V1+fn6aNGmSrl27ZsYMGzZMS5YskSSHW5AzZfd8hIMHD+ree++VzWZTpUqV1KtXL33zzTcOMZnPH/j6668VFhYmLy8vVaxYUQ888IDOnz9/y9yz29eNzzLI/Ix3796tTp06ycPDQw0aNNB///vfLNsfPXpUPXv2VPny5VWnTh299NJLysjIyBJ347MLEhISVK5cOYerS5liYmLk5OSkxYsXS8r5+QhvvfWWGjZsqPLly6tTp0766quvcnVuOe0zN59nYVq1apUqVqyo+++//5ax69evl5ubm7p165Zl3e7du9WxY0d5eHioYcOGWW4Xz/z7/+KLL3T06FHzbzDz3DOfl5Ab7du3V7Vq1fTpp5/mKh4ASgtqJGqk7FAj/e52rJH8/f0dmlHS73+T/fv3V3Jysn788UeHddRIKGzcIYUy58EHH9T//vc//d///Z9effVV1ahRQ5Lk5eUlSRo5cqRWrlypgQMH6plnntHevXs1d+5cHT9+XOvWrXPY1/fff69BgwZpzJgxCg0N1fLly/XQQw8pPDw82ysdOZk9e7ZmzZqlrl276sUXX5Sbm5v27t2rHTt2mLfpzpo1S7Nnz1ZQUJCeeuopxcTE6I033tD+/fv19ddfO/y+/LffftO9996rwYMH67HHHpO3t7e5bvny5bp+/bpGjx4td3d3VatWTUePHtWdd96p2rVra9q0aapYsaLWrFmj/v376+OPP9YDDzyQY+5r167V1atX9dRTT6l69erat2+f/v3vf+vnn3/W2rVrJUlPPvmk4uLiFBERoffee++W43H06FHdfffdstlsmjJlilxdXfXmm2/qnnvu0a5du9S5c2eH+PHjx6tq1aqaOXOmTp06pUWLFmncuHHZ/r49r3744QcNHDhQI0aMUGhoqN59910NGzZM7du3V/PmzSVJ8fHx6tGjh9LS0szxe+utt1S+fPmb7tvb21vdu3fXmjVrNHPmTId1q1evlouLix566KEct//Pf/6jJ598Ul27dtXEiRP1448/6q9//auqVasmPz+/fJ1vbj7PwnL+/HlFRERo0KBBDlfXcrJnzx61aNEiy7MUDh8+rN69e8vLy0uzZs1SWlqaZs6c6fB37+Xlpffee08vv/yyLl++rLlz50qS7rjjjnzl3q5dO3399df52hYASipqJGqkvKBGun1rpPj4eEky/424ETUSCpUBlEGvvPKKIcmIjY11WB4dHW1IMkaOHOmw/NlnnzUkGTt27DCX1atXz5BkfPzxx+aypKQkw9fX12jbtm2uc/n+++8NZ2dn44EHHjDS09Md1mVkZBiGYRjnzp0z3NzcjN69ezvELF682JBkvPvuu+ay7t27G5KMZcuWOewrNjbWkGTYbDbj3LlzDut69epltGzZ0rh+/brDsbt27Wo0btzYXPbFF18YkowvvvjCXHb16tUs5zR37lzDycnJ+Omnn8xlY8eONXL6J0WSMXPmTHO+f//+hpubm3Hy5ElzWVxcnFG5cmWjW7du5rLly5cbkoygoCBzrAzDMCZNmmS4uLgYiYmJ2R4vO5n7uvFvIvMz/vLLL81l586dM9zd3Y1nnnnGXDZx4kRDkrF3716HOE9Pzyz77N69u9G9e3dz/s033zQkGYcPH3bIJyAgwOjZs6c5/+exT0lJMWrWrGm0adPGSE5ONuPeeustQ5LDMbI7t+z2aRi5/zxnzpyZ4+eZW//+978NScbmzZtzFV+nTh1jwIABWZb379/f8PDwcMjv2LFjhouLS5Ycu3fvbjRv3vymx2nevLnD+GVn9OjRRvny5XOVNwCUJtRI1Eh/Ro30O2qk3/32229GzZo1jbvvvjvb9dRIKEz8ZA+3lc2bN0uSwsLCHJY/88wzkqRNmzY5LK9Vq5bDlTGbzaahQ4fq4MGD5pWDW1m/fr0yMjI0Y8aMLD8Zyrxle9u2bUpJSdHEiRMdYkaNGiWbzZYlL3d3dw0fPjzb4w0YMMC80ilJFy5c0I4dO/Twww/r0qVL+vXXX/Xrr7/qt99+U3BwsL7//nv98ssvOeZ/4xWuK1eu6Ndff1XXrl1lGIYOHjyYqzG4UXp6uj7//HP1799fDRo0MJf7+vrq0Ucf1e7du2W32x22GT16tMPt7XfffbfS09P1008/5fn4fxYQEKC7777bnPfy8lLTpk0dblHevHmzunTpok6dOjnE5eY3/w8++KDKlSvncKXyyJEjOnbsmAYNGpTjdt9++63OnTunMWPGODxzYdiwYfl+mKVU+J/nzaxatUpeXl65vlL+22+/qWrVqg7L0tPTtXXrVvXv319169Y1l99xxx0KDg4u1HxvVLVqVV27dk1Xr14tsmMAQElCjUSN9GfUSLdfjZSRkaEhQ4YoMTFR//73v7ONoUZCYaIhhdvKTz/9JGdnZzVq1MhhuY+Pj6pUqZLly7tRo0ZZ3iDRpEkTScryW/ScnDx5Us7OzgoICLhpXpLUtGlTh+Vubm5q0KBBlrxq166d44Mh/f39HeZ/+OEHGYahv//97/Ly8nKYMm+RPnfuXI65nT59WsOGDVO1atVUqVIleXl5qXv37pKkpKSkHLfLyfnz53X16tUs5yr9/gWakZGhM2fOOCy/8UtWkvmFfPHixTwf/8/+vO/M/d+4759++kmNGzfOEpfdOfxZjRo11KtXL61Zs8Zctnr1apUrV04PPvhgjttlfuZ/Pq6rq6tDkZpXhf155uTHH39UZGSkBg0alKe3BxmG4TB//vx5Xbt2Ld/jn1+ZefAGGQC3C2okaqQ/o0a6/Wqk8ePHKzw8XO+8845at2590zyokVAYeIYUbkul/R/Qm/0u/8/rMh8q+eyzz+Z4teTPxWem9PR0/eUvf9GFCxc0depUNWvWTBUrVtQvv/yiYcOGZfvAyqKQ05tf/vzFXNL2nWnw4MEaPny4oqOj1aZNG61Zs0a9evXK9nf5+ZHT33N6enqWeas+z1WrVknK3ZtjMlWvXr1QCujCcPHiRVWoUOGWz8AAgLKGGskRNVLR7DsTNVLuWFEjzZ49W0uXLtW8efP0+OOP5xhHjYTCREMKZVJOXz716tVTRkaGvv/+e4cH+SUkJCgxMTHLWyYyr5zduL///e9/kn5/+0huNGzYUBkZGTp27JjatGmTY17S728VufHKTkpKimJjYxUUFJSrY2Unc3+urq553s/hw4f1v//9TytXrtTQoUPN5REREVlic1vAenl5qUKFCoqJicmy7sSJE3J2ds73wyiLSr169fT9999nWZ7dOWSnf//+evLJJ81b0v/3v/9p+vTptzym9PtDY298rW5qaqpiY2MdrlplXg3989uG/nzVOC+fZ0GtWrVKDRs2VJcuXXK9TbNmzRQbG+uwzMvLS+XLly/Q+OdHbGxsvh+IDgAlGTXSH6iRCo4aKe9KYo20ZMkSzZo1SxMnTtTUqVNvGkuNhMLET/ZQJmW+reLPXz59+/aVJC1atMhh+cKFCyVJISEhDsvj4uIc3ipjt9v13//+V23atJGPj0+ucunfv7+cnZ314osvZrm6knmFKSgoSG5ubnr99dcdrjr95z//UVJSUpa88qJmzZq655579Oabb+rs2bNZ1t/s1cCZV8ZuzMkwDL322mtZYnMa8+z22bt3b3366acOt/QnJCRo1apVuuuuu2Sz2W66D6v17dtX33zzjfbt22cuO3/+vD744INcbV+lShUFBwdrzZo1+vDDD+Xm5qb+/fvfdJsOHTrIy8tLy5YtU0pKirl8xYoVWca4YcOGkqQvv/zSXJaenq633nrLIS4vn2dBHDx4UMePH9ejjz6ap+0CAwN15MgRh9eLu7i4KDg4WOvXr9fp06fN5cePH9fWrVsLLec/O3DggLp27Vpk+weA4kKN9AdqpIKjRsqbklgjrV69Wn/72980ZMgQ83/vN0ONhMLEHVIok9q3by9Jev755zV48GC5urqqX79+at26tUJDQ/XWW28pMTFR3bt31759+7Ry5Ur1799fPXr0cNhPkyZNNGLECO3fv1/e3t569913lZCQoOXLl+c6l0aNGun555/XnDlzdPfdd+vBBx+Uu7u79u/fr1q1amnu3Lny8vLS9OnTNXv2bPXp00d//etfFRMTo6VLl6pjx4567LHHCjQeS5Ys0V133aWWLVtq1KhRatCggRISEhQZGamff/5Zhw4dyna7Zs2aqWHDhnr22Wf1yy+/yGaz6eOPP872luHMMf/b3/6m4OBgubi4aPDgwdnu96WXXlJERITuuusuPf300ypXrpzefPNNJScna/78+QU616IwZcoUvffee+rTp48mTJhgvtK4Xr16+u6773K1j0GDBumxxx7T0qVLFRwcrCpVqtw03tXVVS+99JKefPJJ9ezZU4MGDVJsbKyWL1+e5fkIzZs3V5cuXTR9+nRduHBB1apV04cffqi0tDSHuLx8ngWRWYTm5VZ0Sbr//vs1Z84c7dq1y3zVt/T7LeTh4eG6++679fTTTystLU3//ve/1bx581yP/5dffmkWo+fPn9eVK1f00ksvSZK6deumbt26mbFRUVG6cOGC7r///jzlDwClATWSI2qkgqFGypuSViPt27dPQ4cOVfXq1dWrV68sjcSuXbs6jCk1EgqdNS/zA6w3Z84co3bt2oazs7PD615TU1ON2bNnG/7+/oarq6vh5+dnTJ8+3eF1v4bx++tuQ0JCjK1btxqtWrUy3N3djWbNmhlr167NVz7vvvuu0bZtW8Pd3d2oWrWq0b17dyMiIsIhZvHixUazZs0MV1dXw9vb23jqqaeMixcvOsTk9MrWzFcav/LKK9ke/+TJk8bQoUMNHx8fw9XV1ahdu7Zx3333GR999JEZk90rcI8dO2YEBQUZlSpVMmrUqGGMGjXKOHTokCHJWL58uRmXlpZmjB8/3vDy8jKcnJwcXjWrP73S2DAM48CBA0ZwcLBRqVIlo0KFCkaPHj2MPXv2OMRkvqp3//79Dsuzy/NWcnqlcUhISJbYP7+W2DAM47vvvjO6d+9ueHh4GLVr1zbmzJlj/Oc//7nlK40z2e12o3z58oYk4/3338+yPqdzWrp0qeHv72+4u7sbHTp0ML788stsj3Hy5EkjKCjIcHd3N7y9vY3nnnvOiIiIyPfnmd9XGqenpxu1a9c22rVrl+dtDcMwWrVqZYwYMSLL8l27dhnt27c33NzcjAYNGhjLli3LNsec/veRGZvd9Oe/zalTpxp169Z1eI02AJQl1EiOqJGokQzj9qyRMj/7nKYbz9swqJFQ+JwMoxCfSgeUIfXr11eLFi20cePG4k4FuG289957Gjt2rE6fPn3LK6RFITk5WfXr19e0adM0YcIEy48PAKUBNRJgPWoklEU8QwoAUGIMGTJEdevW1ZIlS4rl+MuXL5erq6vGjBlTLMcHAADIDjUSyiLukAJykJurf/Hx8TfdR/ny5eXp6VnYqeEGly9f1uXLl28a4+XlleOri3FrSUlJunbt2k1jcvsAWwBA6UeNVDpQIxU9aiSgYHioOVAAvr6+N10fGhqqFStWWJPMbWrBggWaPXv2TWNiY2Nz/QpqZDVhwgStXLnypjFc2wAA3IgaqfhRIxU9aiSgYLhDCiiAbdu23XR9rVq1FBAQYFE2t6cff/xRP/74401j7rrrLnl4eFiUUdlz7NgxxcXF3TQmKCjIomwAAKUBNVLxo0YqetRIQMHQkAIAAAAAAICleKg5AAAAAAAALHVbP0MqIyNDcXFxqly5spycnIo7HQAAYAHDMHTp0iXVqlVLzs5cm8sONRIAALcfq2uk27ohFRcXJz8/v+JOAwAAFIMzZ86oTp06xZ1GiUSNBADA7cuqGum2bkhVrlxZ0u+DbbPZijkbAABgBbvdLj8/P7MOQFbUSAAA3H6srpFu64ZU5i3oNpuNYgsAgNsMP0XLGTUSAAC3L6tqJB6cAAAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUrf1M6QAALiZ9PR0paamFncayCNXV1e5uLgUdxoAAJRZ1EilU0mrkWhIAQDwJ4ZhKD4+XomJicWdCvKpSpUq8vHx4cHlAAAUImqk0q8k1Ug0pAAA+JPMQqtmzZqqUKFCifjCRu4YhqGrV6/q3LlzkiRfX99izggAgLKDGqn0KpE1klEAc+fONSQZEyZMMJddu3bNePrpp41q1aoZFStWNB588EEjPj7eYbuffvrJ6Nu3r1G+fHnDy8vLePbZZ43U1FSHmC+++MJo27at4ebmZjRs2NBYvnx5luMvXrzYqFevnuHu7m506tTJ2Lt3b57yT0pKMiQZSUlJedoOAFB2paWlGceOHTN+/fXX4k4FBfDrr78ax44dM9LS0rKss+L7nxoJAFDWUCOVDcVdI90o3w81379/v9588021atXKYfmkSZP02Wefae3atdq1a5fi4uL04IMPmuvT09MVEhKilJQU7dmzRytXrtSKFSs0Y8YMMyY2NlYhISHq0aOHoqOjNXHiRI0cOVJbt241Y1avXq2wsDDNnDlTBw4cUOvWrRUcHGx2+wAAyI/M5yFUqFChmDNBQWR+fsXxfAtqJABAWUSNVDYUZ42URX66WJcuXTIaN25sREREGN27dzev/iUmJhqurq7G2rVrzdjjx48bkozIyEjDMAxj8+bNhrOzs8MVwTfeeMOw2WxGcnKyYRiGMWXKFKN58+YOxxw0aJARHBxsznfq1MkYO3asOZ+enm7UqlXLmDt3bq7Pg6t/AIA/u3btmnHs2DHj2rVrxZ0KCuBmn2NRfv9TIwEAyipqpLKhuGqk7OTrDqmxY8cqJCREQUFBDsujoqKUmprqsLxZs2aqW7euIiMjJUmRkZFq2bKlvL29zZjg4GDZ7XYdPXrUjPnzvoODg819pKSkKCoqyiHG2dlZQUFBZgwAAIDVqJEAAAByJ88PNf/www914MAB7d+/P8u6+Ph4ubm5qUqVKg7Lvb29FR8fb8bcWGhlrs9cd7MYu92ua9eu6eLFi0pPT8825sSJEznmnpycrOTkZHPebrff4mwBAAByhxoJAAAg9/LUkDpz5owmTJigiIgIeXh4FFVORWbu3LmaPXt2cacBACilUsN3W3Ys1z535Tr2Vm+4mTlzpmbNmlXAjPLHyclJ69atU//+/fO9j7feekurVq3SgQMHdOnSJV28eDFLY6e4USMBAG5nVtZIEnVSpgsXLmjmzJn6/PPPdfr0aXl5eal///6aM2eOPD09CzfZIpCnn+xFRUXp3LlzateuncqVK6dy5cpp165dev3111WuXDl5e3srJSVFiYmJDtslJCTIx8dHkuTj46OEhIQs6zPX3SzGZrOpfPnyqlGjhlxcXLKNydxHdqZPn66kpCRzOnPmTF5OHwCAEuns2bPmtGjRItlsNodlzz77bJ72l5KSUkSZ5s/Vq1fVp08fPffcc8WdSo6okQAAKJnKcp0UFxenuLg4LViwQEeOHNGKFSsUHh6uESNGFHdquZKnhlSvXr10+PBhRUdHm1OHDh00ZMgQ879dXV21fft2c5uYmBidPn1agYGBkqTAwEAdPnzY4U0vERERstlsCggIMGNu3EdmTOY+3Nzc1L59e4eYjIwMbd++3YzJjru7u2w2m8MEFLbU8N0OEwAUNR8fH3Py9PSUk5OTOX/lyhUNGTJE3t7eqlSpkjp27Kht27Y5bF+/fn3NmTNHQ4cOlc1m0+jRoyVJb7/9tvz8/FShQgU98MADWrhwYZY7kz799FO1a9dOHh4eatCggWbPnq20tDRzv5L0wAMPyMnJyZw/dOiQevToocqVK8tms6l9+/b69ttvczy/iRMnatq0aerSpUvhDFgRoEYCbo0aCUBxKMt1UosWLfTxxx+rX79+atiwoXr27KmXX35Zn332mXmckixPP9mrXLmyWrRo4bCsYsWKql69url8xIgRCgsLU7Vq1WSz2TR+/HgFBgaaRWTv3r0VEBCgxx9/XPPnz1d8fLxeeOEFjR07Vu7u7pKkMWPGaPHixZoyZYqeeOIJ7dixQ2vWrNGmTZvM44aFhSk0NFQdOnRQp06dtGjRIl25ckXDhw8v0IAAAFCWXL58WX379tXLL78sd3d3/fe//1W/fv0UExOjunXrmnELFizQjBkzNHPmTEnS119/rTFjxuif//yn/vrXv2rbtm36+9//7rDvr776SkOHDtXrr7+uu+++WydPnjSLtJkzZ2r//v2qWbOmli9frj59+sjFxUWSNGTIELVt21ZvvPGGXFxcFB0dLVdXV4tGpGhQIwEAUPqUxTopKSlJNptN5crl+ZHhliv0DF999VU5OztrwIABSk5OVnBwsJYuXWqud3Fx0caNG/XUU08pMDBQFStWVGhoqF588UUzxt/fX5s2bdKkSZP02muvqU6dOnrnnXcUHBxsxgwaNEjnz5/XjBkzFB8frzZt2ig8PDzLQzwBALidtW7dWq1btzbn58yZo3Xr1mnDhg0aN26cubxnz5565plnzPnnn39e9957r3kbe5MmTbRnzx5t3LjRjJk9e7amTZum0NBQSVKDBg00Z84cTZkyRTNnzpSXl5ckqUqVKg4/Fzt9+rQmT56sZs2aSZIaN25cBGde8lAjAQBQspS1OunXX3/VnDlzzMZXSVfghtTOnTsd5j08PLRkyRItWbIkx23q1aunzZs333S/99xzjw4ePHjTmHHjxjn8kQAAAEeXL1/WrFmztGnTJp09e1ZpaWm6du2aTp8+7RDXoUMHh/mYmBg98MADDss6derkUGgdOnRIX3/9tV5++WVzWXp6uq5fv66rV6+qQoUK2eYUFhamkSNH6r333lNQUJAeeughNWzYsKCnWuJQIwEAULKVpTrJbrcrJCREAQEBxfaQ9rzK0zOkAABA6fLss89q3bp1+sc//qGvvvpK0dHRatmyZZYHclasWDHP+758+bJmz57t8Nykw4cP6/vvv7/pm+ZmzZqlo0ePKiQkRDt27FBAQIDWrVuX5+MDAAAURFmpky5duqQ+ffqocuXKWrduXal5FELJ/1EhAADIt6+//lrDhg0zr+JdvnxZp06duuV2TZs21f79+x2W/Xm+Xbt2iomJUaNGjXLcj6urq9LT07Msb9KkiZo0aaJJkybpkUce0fLly7NcaQQAAChKZaFOstvtCg4Olru7uzZs2HDTZldJQ0MKAIAyrHHjxvrkk0/Ur18/OTk56e9//7syMjJuud348ePVrVs3LVy4UP369dOOHTu0ZcsWOTk5mTEzZszQfffdp7p162rgwIFydnbWoUOHdOTIEb300kuSfn+DzPbt23XnnXfK3d1dHh4emjx5sgYOHCh/f3/9/PPP2r9/vwYMGJBjLvHx8YqPj9cPP/wgSTp8+LAqV66sunXrqlq1agUcIQAAcLsq7XWS3W5X7969dfXqVb3//vuy2+2y2+2SJC8vL/NB6SUVP9kDAKAMW7hwoapWraquXbuqX79+Cg4OVrt27W653Z133qlly5Zp4cKFat26tcLDwzVp0iSHq27BwcHauHGjPv/8c3Xs2FFdunTRq6++qnr16pkx//rXvxQRESE/Pz+1bdtWLi4u+u233zR06FA1adJEDz/8sO69917Nnj07x1yWLVumtm3batSoUZKkbt26qW3bttqwYUMBRgYAANzuSnuddODAAe3du1eHDx9Wo0aN5Ovra05nzpwp+AAVMSfDMIziTqK42O12eXp6mq9FBApDavhuh3nXPncVUyYA8uP69euKjY2Vv79/qbrl2QqjRo3SiRMn9NVXXxV3Krd0s8+R7/9bY4xQFKiRgNKNGunmSkudVJJqJH6yBwAAsrVgwQL95S9/UcWKFbVlyxatXLlSS5cuLe60AAAAih11UsHRkAIAANnat2+f5s+fr0uXLqlBgwZ6/fXXNXLkyOJOCwAAoNhRJxUcDSkAAJCtNWvWFHcKAAAAJRJ1UsHxUHMAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpcsWdAAAApcXJb9+07FgNOzyZp/hhw4Zp5cqVkqRy5cqpWrVqatWqlR555BENGzZMzs6l9xrU0aNHNWPGDEVFRemnn37Sq6++qokTJxZ3WgAA4P+zskaSqJNu9Pbbb+u///2vjhw5Iklq3769/vGPf6hTp07FnNmtld5RBwAADvr06aOzZ8/q1KlT2rJli3r06KEJEybovvvuU1paWnGnl29Xr15VgwYNNG/ePPn4+BR3OgAAoBQqq3XSzp079cgjj+iLL75QZGSk/Pz81Lt3b/3yyy/Fndot0ZACAKCMcHd3l4+Pj2rXrq127drpueee06effqotW7ZoxYoVZlxiYqJGjhwpLy8v2Ww29ezZU4cOHXLY12effaaOHTvKw8NDNWrU0AMPPGCuu3jxooYOHaqqVauqQoUKuvfee/X9999Lkq5cuSKbzaaPPvrIYX/r169XxYoVdenSJaWkpGjcuHHy9fWVh4eH6tWrp7lz5+Z4Xh07dtQrr7yiwYMHy93dvRBGCgAA3G7Kap30wQcf6Omnn1abNm3UrFkzvfPOO8rIyND27dsLYdSKFg0pAADKsJ49e6p169b65JNPzGUPPfSQzp07py1btigqKkrt2rVTr169dOHCBUnSpk2b9MADD6hv3746ePCgtm/f7nDb97Bhw/Ttt99qw4YNioyMlGEY6tu3r1JTU1WxYkUNHjxYy5cvd8hj+fLlGjhwoCpXrqzXX39dGzZs0Jo1axQTE6MPPvhA9evXt2Q8AAAAMpXFOunq1atKTU1VtWrVCjY4FuAZUgAAlHHNmjXTd999J0navXu39u3bp3Pnzpl3Gy1YsEDr16/XRx99pNGjR+vll1/W4MGDNXv2bHMfrVu3liR9//332rBhg77++mt17dpV0u9X5vz8/LR+/Xo99NBDGjlypLp27aqzZ8/K19dX586d0+bNm7Vt2zZJ0unTp9W4cWPdddddcnJyUr169awcDgAAAFNZq5OmTp2qWrVqKSgoqMBjU9S4QwoAgDLOMAw5OTlJkg4dOqTLly+revXqqlSpkjnFxsbq5MmTkqTo6Gj16tUr230dP35c5cqVU+fOnc1l1atXV9OmTXX8+HFJUqdOndS8eXPz4aHvv/++6tWrp27dukn6/cphdHS0mjZtqr/97W/6/PPPi+zcAQAAbqYs1Unz5s3Thx9+qHXr1snDwyPvg2Ex7pACAKCMO378uPz9/SVJly9flq+vr3bu3JklrkqVKpKk8uXLF/iYI0eO1JIlSzRt2jQtX75cw4cPN4u9du3aKTY2Vlu2bNG2bdv08MMPKygoKMvzFAAAAIpaWamTFixYoHnz5mnbtm1q1apVgXO0AndIAQBQhu3YsUOHDx/WgAEDJP1e5MTHx6tcuXJq1KiRw1SjRg1JUqtWrXJ8EOYdd9yhtLQ07d2711z222+/KSYmRgEBAeayxx57TD/99JNef/11HTt2TKGhoQ77sdlsGjRokN5++22tXr1aH3/8sflsBgAAACuUlTpp/vz5mjNnjsLDw9WhQ4d8j4fVuEMKAIAyIjk5WfHx8UpPT1dCQoLCw8M1d+5c3XfffRo6dKgkKSgoSIGBgerfv7/mz5+vJk2aKC4uznxAZ4cOHTRz5kz16tVLDRs21ODBg5WWlqbNmzdr6tSpaty4se6//36NGjVKb775pipXrqxp06apdu3auv/++81cqlatqgcffFCTJ09W7969VadOHXPdwoUL5evrq7Zt28rZ2Vlr166Vj4+PeeXxz1JSUnTs2DHzv3/55RdFR0erUqVKatSoUdENKAAAKDPKap30z3/+UzNmzNCqVatUv359xcfHS5L5c8OSjDukAAAoI8LDw+Xr66v69eurT58++uKLL/T666/r008/lYuLiyTJyclJmzdvVrdu3TR8+HA1adJEgwcP1k8//SRvb29J0j333KO1a9dqw4YNatOmjXr27Kl9+/aZx1m+fLnat2+v++67T4GBgTIMQ5s3b5arq6tDPiNGjFBKSoqeeOIJh+WVK1fW/Pnz1aFDB3Xs2FGnTp3S5s2b5eycfVkSFxentm3bqm3btjp79qwWLFigtm3bauTIkYU5fAAAoAwrq3XSG2+8oZSUFA0cOFC+vr7mtGDBgsIcviLhZBiGUdxJFBe73S5PT08lJSXJZrMVdzooI1LDdzvMu/a5q5gyAZAf169fV2xsrPz9/UvFwyBLsvfee0+TJk1SXFyc3NzcLD32zT5Hvv9vjTFCUaBGAko3aqTCVVx1UkmqkfjJHgAAKFRXr17V2bNnNW/ePD355JOWN6MAAABKKuqkP/CTPQAAUKjmz5+vZs2aycfHR9OnTy/udAAAAEoM6qQ/5Kkh9cYbb6hVq1ay2Wyy2WwKDAzUli1bzPX33HOPnJycHKYxY8Y47OP06dMKCQlRhQoVVLNmTU2ePFlpaWkOMTt37lS7du3k7u6uRo0aacWKFVlyWbJkierXry8PDw917tzZ4TebAACg+MyaNUupqanavn17iX+YZmGhRgIAALlxO9ZJOclTQ6pOnTqaN2+eoqKi9O2336pnz566//77dfToUTNm1KhROnv2rDnNnz/fXJeenq6QkBClpKRoz549WrlypVasWKEZM2aYMbGxsQoJCVGPHj0UHR2tiRMnauTIkdq6dasZs3r1aoWFhWnmzJk6cOCAWrdureDgYJ07d64gYwEAAJAv1EgAAAB5U+CHmlerVk2vvPKKRowYoXvuuUdt2rTRokWLso3dsmWL7rvvPsXFxZlPqF+2bJmmTp2q8+fPy83NTVOnTtWmTZt05MgRc7vBgwcrMTFR4eHhkqTOnTurY8eOWrx4sSQpIyNDfn5+Gj9+vKZNm5br3HlgJ4oCD+wESjce2Fk2lIQHdlIjAY6okYDSjRqpbCgJNVKmfD9DKj09XR9++KGuXLmiwMBAc/kHH3ygGjVqqEWLFpo+fbquXr1qrouMjFTLli3NQkuSgoODZbfbzSuIkZGRCgoKcjhWcHCwIiMjJUkpKSmKiopyiHF2dlZQUJAZk5Pk5GTZ7XaHCQCA7GRkZBR3CiiA4vz8qJEAAGUZNVLpVpI+vzy/Ze/w4cMKDAzU9evXValSJa1bt04BAQGSpEcffVT16tVTrVq19N1332nq1KmKiYnRJ598IkmKj493KLQkmfPx8fE3jbHb7bp27ZouXryo9PT0bGNOnDhx09znzp2r2bNn5/WUAQC3ETc3Nzk7OysuLk5eXl5yc3OTk5NTcaeFXDIMQykpKTp//rycnZ0tfXMNNRIAoCyjRirdirNGykmeG1JNmzZVdHS0kpKS9NFHHyk0NFS7du1SQECARo8ebca1bNlSvr6+6tWrl06ePKmGDRsWauL5MX36dIWFhZnzdrtdfn5+xZgRAKCkcXZ2lr+/v86ePau4uLjiTgf5VKFCBdWtW1fOzta9UJgaCQBQllEjlQ3FUSPlJM8NKTc3NzVq1EiS1L59e+3f///Yu/u4Kur0/+NvQA54d8A7QBPvTSXvEhUxs1QSldpM27RcRdNMF92Eypvy603W2lpbWt52p+5ubupuWolihKlbUiZJ3qWbRmGrByyTo2ggML8/+jF5BJWDMCi+no/HPNbzmWvmXPM5xFx7nWHmCy1YsEDLli0rEhsWFiZJOnz4sJo3b66goKAiT3rJyMiQJAUFBZn/Wzh2YYzdblfVqlXl5eUlLy+vYmMK93EpPj4+8vHxceNoAQA3IpvNpkaNGikvL0/5+fkVnQ7c5OXlpSpVqlj+rS01EgCgsqNGur5VVI10KW43pC5WUFCgnJycYtelpqZKkurXry9JCg8P13PPPafMzEwFBARIkhITE2W3281L2sPDw7Vx40aX/SQmJpr3YLDZbAoNDVVSUpIGDhxo5pCUlKQJEyZc7eEAACBJ8vDwkLe3t7y9vSs6FVynqJEAAJURNRLKilsNqWnTpql///5q1KiRTp8+rVWrVmnr1q3avHmzjhw5olWrVmnAgAGqU6eO9uzZo9jYWPXs2VPt27eXJPXt21chISEaPny45s2bJ4fDoenTpysmJsb8Vm7cuHFauHChJk+erIcfflhbtmzRmjVrFB8fb+YRFxen6Ohode7cWV27dtX8+fOVnZ2tUaNGleHUAAAAlAw1EgAAgHvcakhlZmZqxIgROn78uPz8/NS+fXtt3rxZd911l44ePaqPPvrILHyCg4M1ePBgTZ8+3dzey8tLGzZs0Pjx4xUeHq7q1asrOjpazzzzjBnTtGlTxcfHKzY2VgsWLFDDhg31xhtvKDIy0owZMmSITpw4oRkzZsjhcKhjx45KSEgochNPAAAAK1AjAQAAuMfDMAyjopOoKE6nU35+fsrKypLdbq/odFAJHNm1TAWH013GWg59roKyAQAUh/P/lTFHKGvUSABw7bP6/F/xt1UHAAAAAADADYWGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWcqshtWTJErVv3152u112u13h4eHatGmTuf6XX35RTEyM6tSpoxo1amjw4MHKyMhw2Ud6erqioqJUrVo1BQQE6Mknn1ReXp5LzNatW9WpUyf5+PioRYsWWrFiRZFcFi1apCZNmsjX11dhYWHauXOnO4cCAABQZqiRAAAA3ONWQ6phw4Z6/vnnlZKSol27dql379669957tX//fklSbGysPvjgA61du1bbtm3TsWPHNGjQIHP7/Px8RUVFKTc3Vzt27NDKlSu1YsUKzZgxw4xJS0tTVFSUevXqpdTUVE2aNEljxozR5s2bzZjVq1crLi5OM2fO1JdffqkOHTooMjJSmZmZVzsfAAAAbqNGAgAAcI+HYRjG1eygdu3aeuGFF3T//ferXr16WrVqle6//35J0sGDB9WmTRslJyerW7du2rRpk+6++24dO3ZMgYGBkqSlS5dqypQpOnHihGw2m6ZMmaL4+Hjt27fPfI+hQ4fq1KlTSkhIkCSFhYWpS5cuWrhwoSSpoKBAwcHBmjhxoqZOnVri3J1Op/z8/JSVlSW73X410wBIko7sWqaCw+kuYy2HPldB2QAAimPV+Z8aCfgNNRIAXPusPv+X+h5S+fn5euedd5Sdna3w8HClpKTo/PnzioiIMGNat26tRo0aKTk5WZKUnJysdu3amYWWJEVGRsrpdJrfICYnJ7vsozCmcB+5ublKSUlxifH09FRERIQZAwAAUFGokQAAAK6sirsb7N27V+Hh4frll19Uo0YNrVu3TiEhIUpNTZXNZpO/v79LfGBgoBwOhyTJ4XC4FFqF6wvXXS7G6XTq3Llz+vnnn5Wfn19szMGDBy+be05OjnJycszXTqez5AcOAABwGdRIAAAAJef2FVKtWrVSamqqPv/8c40fP17R0dE6cOBAeeRW5ubOnSs/Pz9zCQ4OruiUAABAJUGNBAAAUHJuN6RsNptatGih0NBQzZ07Vx06dNCCBQsUFBSk3NxcnTp1yiU+IyNDQUFBkqSgoKAiT5QpfH2lGLvdrqpVq6pu3bry8vIqNqZwH5cybdo0ZWVlmcvRo0fdPXwAAIBiUSMBAACUXKnvIVWooKBAOTk5Cg0Nlbe3t5KSksx1hw4dUnp6usLDwyVJ4eHh2rt3r8uTXhITE2W32xUSEmLGXLiPwpjCfdhsNoWGhrrEFBQUKCkpyYy5FB8fH/NxzIULAABAeaBGAgAAuDS37iE1bdo09e/fX40aNdLp06e1atUqbd26VZs3b5afn59Gjx6tuLg41a5dW3a7XRMnTlR4eLi6desmSerbt69CQkI0fPhwzZs3Tw6HQ9OnT1dMTIx8fHwkSePGjdPChQs1efJkPfzww9qyZYvWrFmj+Ph4M4+4uDhFR0erc+fO6tq1q+bPn6/s7GyNGjWqDKcGAACgZKiRAAAA3ONWQyozM1MjRozQ8ePH5efnp/bt22vz5s266667JEkvv/yyPD09NXjwYOXk5CgyMlKLFy82t/fy8tKGDRs0fvx4hYeHq3r16oqOjtYzzzxjxjRt2lTx8fGKjY3VggUL1LBhQ73xxhuKjIw0Y4YMGaITJ05oxowZcjgc6tixoxISEorcxBMAAMAK1EgAAADu8TAMw6joJCqK0+mUn5+fsrKyuDQdZeLIrmUqOJzuMtZy6HMVlA0AoDic/6+MOUJZo0YCgGuf1ef/q76HFAAAAAAAAOAOGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACzlVkNq7ty56tKli2rWrKmAgAANHDhQhw4dcom588475eHh4bKMGzfOJSY9PV1RUVGqVq2aAgIC9OSTTyovL88lZuvWrerUqZN8fHzUokULrVixokg+ixYtUpMmTeTr66uwsDDt3LnTncMBAAAoE9RIAAAA7nGrIbVt2zbFxMTos88+U2Jios6fP6++ffsqOzvbJe6RRx7R8ePHzWXevHnmuvz8fEVFRSk3N1c7duzQypUrtWLFCs2YMcOMSUtLU1RUlHr16qXU1FRNmjRJY8aM0ebNm82Y1atXKy4uTjNnztSXX36pDh06KDIyUpmZmaWdCwAAgFKhRgIAAHCPh2EYRmk3PnHihAICArRt2zb17NlT0q/f/nXs2FHz588vdptNmzbp7rvv1rFjxxQYGChJWrp0qaZMmaITJ07IZrNpypQpio+P1759+8zthg4dqlOnTikhIUGSFBYWpi5dumjhwoWSpIKCAgUHB2vixImaOnVqifJ3Op3y8/NTVlaW7HZ7aacBMB3ZtUwFh9NdxloOfa6CsgEAFMeK8z81EuCKGgkArn1Wn/+v6h5SWVlZkqTatWu7jL/99tuqW7eu2rZtq2nTpuns2bPmuuTkZLVr184stCQpMjJSTqdT+/fvN2MiIiJc9hkZGank5GRJUm5urlJSUlxiPD09FRERYcYUJycnR06n02UBAAAoa9RIAAAAl1eltBsWFBRo0qRJuu2229S2bVtz/KGHHlLjxo3VoEED7dmzR1OmTNGhQ4f07rvvSpIcDodLoSXJfO1wOC4b43Q6de7cOf3888/Kz88vNubgwYOXzHnu3LmaPXt2aQ8ZAADgiqiRAAAArqzUDamYmBjt27dPn3zyicv42LFjzX+3a9dO9evXV58+fXTkyBE1b9689JmWgWnTpikuLs587XQ6FRwcXIEZAQCAyoYaCQAA4MpK1ZCaMGGCNmzYoO3bt6thw4aXjQ0LC5MkHT58WM2bN1dQUFCRJ71kZGRIkoKCgsz/LRy7MMZut6tq1ary8vKSl5dXsTGF+yiOj4+PfHx8SnaQAAAAbqJGAgAAKBm37iFlGIYmTJigdevWacuWLWratOkVt0lNTZUk1a9fX5IUHh6uvXv3ujzpJTExUXa7XSEhIWZMUlKSy34SExMVHh4uSbLZbAoNDXWJKSgoUFJSkhkDAABgFWokAAAA97h1hVRMTIxWrVql9957TzVr1jTvZ+Dn56eqVavqyJEjWrVqlQYMGKA6depoz549io2NVc+ePdW+fXtJUt++fRUSEqLhw4dr3rx5cjgcmj59umJiYsxv5saNG6eFCxdq8uTJevjhh7VlyxatWbNG8fHxZi5xcXGKjo5W586d1bVrV82fP1/Z2dkaNWpUWc0NAABAiVAjAQAAuMethtSSJUsk/frY4gstX75cI0eOlM1m00cffWQWPsHBwRo8eLCmT59uxnp5eWnDhg0aP368wsPDVb16dUVHR+uZZ54xY5o2bar4+HjFxsZqwYIFatiwod544w1FRkaaMUOGDNGJEyc0Y8YMORwOdezYUQkJCUVu4gkAAFDeqJEAAADc42EYhlHRSVQUp9MpPz8/ZWVlyW63V3Q6qASO7FqmgsPpLmMthz5XQdkAAIrD+f/KmCOUNWokALj2WX3+d+seUgAAAAAAAMDVoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKXcakjNnTtXXbp0Uc2aNRUQEKCBAwfq0KFDLjG//PKLYmJiVKdOHdWoUUODBw9WRkaGS0x6erqioqJUrVo1BQQE6Mknn1ReXp5LzNatW9WpUyf5+PioRYsWWrFiRZF8Fi1apCZNmsjX11dhYWHauXOnO4cDAABQJqiRAAAA3ONWQ2rbtm2KiYnRZ599psTERJ0/f159+/ZVdna2GRMbG6sPPvhAa9eu1bZt23Ts2DENGjTIXJ+fn6+oqCjl5uZqx44dWrlypVasWKEZM2aYMWlpaYqKilKvXr2UmpqqSZMmacyYMdq8ebMZs3r1asXFxWnmzJn68ssv1aFDB0VGRiozM/Nq5gMAAMBt1EgAAADu8TAMwyjtxidOnFBAQIC2bdumnj17KisrS/Xq1dOqVat0//33S5IOHjyoNm3aKDk5Wd26ddOmTZt0991369ixYwoMDJQkLV26VFOmTNGJEydks9k0ZcoUxcfHa9++feZ7DR06VKdOnVJCQoIkKSwsTF26dNHChQslSQUFBQoODtbEiRM1derUEuXvdDrl5+enrKws2e320k4DYDqya5kKDqe7jLUc+lwFZQMAKI4V539qJMAVNRIAXPusPv9f1T2ksrKyJEm1a9eWJKWkpOj8+fOKiIgwY1q3bq1GjRopOTlZkpScnKx27dqZhZYkRUZGyul0av/+/WbMhfsojCncR25urlJSUlxiPD09FRERYcYAAABUFGokAACAy6tS2g0LCgo0adIk3XbbbWrbtq0kyeFwyGazyd/f3yU2MDBQDofDjLmw0CpcX7jucjFOp1Pnzp3Tzz//rPz8/GJjDh48eMmcc3JylJOTY752Op1uHDEAAMCVUSMBAABcWamvkIqJidG+ffv0zjvvlGU+5Wru3Lny8/Mzl+Dg4IpOCQAAVDLUSAAAAFdWqobUhAkTtGHDBn388cdq2LChOR4UFKTc3FydOnXKJT4jI0NBQUFmzMVPlCl8faUYu92uqlWrqm7duvLy8io2pnAfxZk2bZqysrLM5ejRo+4dOAAAwGVQIwEAAJSMWw0pwzA0YcIErVu3Tlu2bFHTpk1d1oeGhsrb21tJSUnm2KFDh5Senq7w8HBJUnh4uPbu3evypJfExETZ7XaFhISYMRfuozCmcB82m02hoaEuMQUFBUpKSjJjiuPj4yO73e6yAAAAXC1qJAAAAPe4dQ+pmJgYrVq1Su+9955q1qxp3s/Az89PVatWlZ+fn0aPHq24uDjVrl1bdrtdEydOVHh4uLp16yZJ6tu3r0JCQjR8+HDNmzdPDodD06dPV0xMjHx8fCRJ48aN08KFCzV58mQ9/PDD2rJli9asWaP4+Hgzl7i4OEVHR6tz587q2rWr5s+fr+zsbI0aNaqs5gYAAKBEqJEAAADc41ZDasmSJZKkO++802V8+fLlGjlypCTp5ZdflqenpwYPHqycnBxFRkZq8eLFZqyXl5c2bNig8ePHKzw8XNWrV1d0dLSeeeYZM6Zp06aKj49XbGysFixYoIYNG+qNN95QZGSkGTNkyBCdOHFCM2bMkMPhUMeOHZWQkFDkJp4AAADljRoJAADAPR6GYRgVnURFcTqd8vPzU1ZWFpemo0wc2bVMBYfTXcZaDn2ugrIBABSH8/+VMUcoa9RIAHDts/r8X+qn7AEAAAAAAAClQUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEu53ZDavn277rnnHjVo0EAeHh5av369y/qRI0fKw8PDZenXr59LzMmTJzVs2DDZ7Xb5+/tr9OjROnPmjEvMnj17dPvtt8vX11fBwcGaN29ekVzWrl2r1q1by9fXV+3atdPGjRvdPRwAAIAyQY0EAABQcm43pLKzs9WhQwctWrTokjH9+vXT8ePHzeWf//yny/phw4Zp//79SkxM1IYNG7R9+3aNHTvWXO90OtW3b181btxYKSkpeuGFFzRr1iy99tprZsyOHTv04IMPavTo0dq9e7cGDhyogQMHat++fe4eEgAAwFWjRgIAACg5D8MwjFJv7OGhdevWaeDAgebYyJEjderUqSLfChb6+uuvFRISoi+++EKdO3eWJCUkJGjAgAH64Ycf1KBBAy1ZskRPP/20HA6HbDabJGnq1Klav369Dh48KEkaMmSIsrOztWHDBnPf3bp1U8eOHbV06dIS5e90OuXn56esrCzZ7fZSzADg6siuZSo4nO4y1nLocxWUDQCgOFac/6mRAFfUSABw7bP6/F8u95DaunWrAgIC1KpVK40fP14//fSTuS45OVn+/v5moSVJERER8vT01Oeff27G9OzZ0yy0JCkyMlKHDh3Szz//bMZERES4vG9kZKSSk5PL45AAAACuGjUSAADAr6qU9Q779eunQYMGqWnTpjpy5Iieeuop9e/fX8nJyfLy8pLD4VBAQIBrElWqqHbt2nI4HJIkh8Ohpk2busQEBgaa62rVqiWHw2GOXRhTuI/i5OTkKCcnx3ztdDqv6lgBAABKihoJAADgN2XekBo6dKj573bt2ql9+/Zq3ry5tm7dqj59+pT127ll7ty5mj17doXmAAAAbkzUSAAAAL8plz/Zu1CzZs1Ut25dHT58WJIUFBSkzMxMl5i8vDydPHlSQUFBZkxGRoZLTOHrK8UUri/OtGnTlJWVZS5Hjx69uoMDAAAoJWokAABwIyv3htQPP/ygn376SfXr15ckhYeH69SpU0pJSTFjtmzZooKCAoWFhZkx27dv1/nz582YxMREtWrVSrVq1TJjkpKSXN4rMTFR4eHhl8zFx8dHdrvdZQEAAKgI1EgAAOBG5nZD6syZM0pNTVVqaqokKS0tTampqUpPT9eZM2f05JNP6rPPPtN3332npKQk3XvvvWrRooUiIyMlSW3atFG/fv30yCOPaOfOnfr00081YcIEDR06VA0aNJAkPfTQQ7LZbBo9erT279+v1atXa8GCBYqLizPzeOyxx5SQkKC//vWvOnjwoGbNmqVdu3ZpwoQJZTAtAAAA7qFGAgAAKDm3G1K7du3SrbfeqltvvVWSFBcXp1tvvVUzZsyQl5eX9uzZo9/97ne6+eabNXr0aIWGhuo///mPfHx8zH28/fbbat26tfr06aMBAwaoR48eeu2118z1fn5++vDDD5WWlqbQ0FA9/vjjmjFjhsaOHWvGdO/eXatWrdJrr72mDh066F//+pfWr1+vtm3bXs18AAAAlAo1EgAAQMl5GIZhVHQSFcXpdMrPz09ZWVlcmo4ycWTXMhUcTncZazn0uQrKBgBQHM7/V8YcoaxRIwHAtc/q83+530MKAAAAAAAAuBANKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlnK7IbV9+3bdc889atCggTw8PLR+/XqX9YZhaMaMGapfv76qVq2qiIgIffPNNy4xJ0+e1LBhw2S32+Xv76/Ro0frzJkzLjF79uzR7bffLl9fXwUHB2vevHlFclm7dq1at24tX19ftWvXThs3bnT3cAAAAMoENRIAAEDJud2Qys7OVocOHbRo0aJi18+bN0+vvPKKli5dqs8//1zVq1dXZGSkfvnlFzNm2LBh2r9/vxITE7VhwwZt375dY8eONdc7nU717dtXjRs3VkpKil544QXNmjVLr732mhmzY8cOPfjggxo9erR2796tgQMHauDAgdq3b5+7hwQAAHDVqJEAAABKzsMwDKPUG3t4aN26dRo4cKCkX7/5a9CggR5//HE98cQTkqSsrCwFBgZqxYoVGjp0qL7++muFhIToiy++UOfOnSVJCQkJGjBggH744Qc1aNBAS5Ys0dNPPy2HwyGbzSZJmjp1qtavX6+DBw9KkoYMGaLs7Gxt2LDBzKdbt27q2LGjli5dWqL8nU6n/Pz8lJWVJbvdXtppAExHdi1TweF0l7GWQ5+roGwAAMWx4vxPjQS4okYCgGuf1ef/Mr2HVFpamhwOhyIiIswxPz8/hYWFKTk5WZKUnJwsf39/s9CSpIiICHl6eurzzz83Y3r27GkWWpIUGRmpQ4cO6eeffzZjLnyfwpjC9ylOTk6OnE6nywIAAFDeqJEAAABclWlDyuFwSJICAwNdxgMDA811DodDAQEBLuurVKmi2rVru8QUt48L3+NSMYXrizN37lz5+fmZS3BwsLuHCAAA4DZqJAAAAFc31FP2pk2bpqysLHM5evRoRacEAABQ4aiRAACA1cq0IRUUFCRJysjIcBnPyMgw1wUFBSkzM9NlfV5enk6ePOkSU9w+LnyPS8UUri+Oj4+P7Ha7ywIAAFDeqJEAAABclWlDqmnTpgoKClJSUpI55nQ69fnnnys8PFySFB4erlOnTiklJcWM2bJliwoKChQWFmbGbN++XefPnzdjEhMT1apVK9WqVcuMufB9CmMK3wcAAOBaQY0EAADgyu2G1JkzZ5SamqrU1FRJv96kMzU1Venp6fLw8NCkSZP07LPP6v3339fevXs1YsQINWjQwHzKTJs2bdSvXz898sgj2rlzpz799FNNmDBBQ4cOVYMGDSRJDz30kGw2m0aPHq39+/dr9erVWrBggeLi4sw8HnvsMSUkJOivf/2rDh48qFmzZmnXrl2aMGHC1c8KAACAm6iRAAAASq6Kuxvs2rVLvXr1Ml8XFkDR0dFasWKFJk+erOzsbI0dO1anTp1Sjx49lJCQIF9fX3Obt99+WxMmTFCfPn3k6empwYMH65VXXjHX+/n56cMPP1RMTIxCQ0NVt25dzZgxQ2PHjjVjunfvrlWrVmn69Ol66qmn1LJlS61fv15t27Yt1UQAAABcDWokAACAkvMwDMOo6CQqitPplJ+fn7KysrhXAsrEkV3LVHA43WWs5dDnKigbAEBxOP9fGXOEskaNBADXPqvP/zfUU/YAAAAAAABQ8WhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpMm9IzZo1Sx4eHi5L69atzfW//PKLYmJiVKdOHdWoUUODBw9WRkaGyz7S09MVFRWlatWqKSAgQE8++aTy8vJcYrZu3apOnTrJx8dHLVq00IoVK8r6UAAAAMoMNRIAAMBvyuUKqVtuuUXHjx83l08++cRcFxsbqw8++EBr167Vtm3bdOzYMQ0aNMhcn5+fr6ioKOXm5mrHjh1auXKlVqxYoRkzZpgxaWlpioqKUq9evZSamqpJkyZpzJgx2rx5c3kcDgAAQJmgRgIAAPhVlXLZaZUqCgoKKjKelZWlN998U6tWrVLv3r0lScuXL1ebNm302WefqVu3bvrwww914MABffTRRwoMDFTHjh01Z84cTZkyRbNmzZLNZtPSpUvVtGlT/fWvf5UktWnTRp988olefvllRUZGlschAQAAXDVqJAAAgF+VyxVS33zzjRo0aKBmzZpp2LBhSk9PlySlpKTo/PnzioiIMGNbt26tRo0aKTk5WZKUnJysdu3aKTAw0IyJjIyU0+nU/v37zZgL91EYU7gPAACAaxE1EgAAwK/K/AqpsLAwrVixQq1atdLx48c1e/Zs3X777dq3b58cDodsNpv8/f1dtgkMDJTD4ZAkORwOl0KrcH3husvFOJ1OnTt3TlWrVi02t5ycHOXk5JivnU7nVR0rAABASVEjAQAA/KbMG1L9+/c3/92+fXuFhYWpcePGWrNmzSWLIKvMnTtXs2fPrtAcAADAjYkaCQAA4Dfl8id7F/L399fNN9+sw4cPKygoSLm5uTp16pRLTEZGhnk/haCgoCJPlCl8faUYu91+2YJu2rRpysrKMpejR49e7eEBAACUCjUSAAC4kZV7Q+rMmTM6cuSI6tevr9DQUHl7eyspKclcf+jQIaWnpys8PFySFB4err179yozM9OMSUxMlN1uV0hIiBlz4T4KYwr3cSk+Pj6y2+0uCwAAQEWgRgIAADeyMm9IPfHEE9q2bZu+++477dixQ/fdd5+8vLz04IMPys/PT6NHj1ZcXJw+/vhjpaSkaNSoUQoPD1e3bt0kSX379lVISIiGDx+ur776Sps3b9b06dMVExMjHx8fSdK4ceP07bffavLkyTp48KAWL16sNWvWKDY2tqwPBwAAoExQIwEAAPymzO8h9cMPP+jBBx/UTz/9pHr16qlHjx767LPPVK9ePUnSyy+/LE9PTw0ePFg5OTmKjIzU4sWLze29vLy0YcMGjR8/XuHh4apevbqio6P1zDPPmDFNmzZVfHy8YmNjtWDBAjVs2FBvvPEGjzMGAADXLGokAACA33gYhmFUdBIVxel0ys/PT1lZWVyajjJxZNcyFRxOdxlrOfS5CsoGAFAczv9XxhyhrFEjAcC1z+rzf7nfQwoAAAAAAAC4EA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWuu4bUosWLVKTJk3k6+ursLAw7dy5s6JTAgAAqHDUSAAA4FpWpaITuBqrV69WXFycli5dqrCwMM2fP1+RkZE6dOiQAgICKjo9AAAqlfMJn1wxxrtfDwsywZVQIwEAYB1qpNK5rhtSL730kh555BGNGjVKkrR06VLFx8frrbfe0tSpUys4OwAArk0lKZqs3jdFWtmiRgIAwH3USNa6bhtSubm5SklJ0bRp08wxT09PRUREKDk5udhtcnJylJOTY77OysqSJDmdzvJNFjeM02fOyTib4zLGzxdQPs4nuv6u974rvFTb4Rrx781Fhkr6mbqr8PeyYRjlsv+KRo2EaxE1EmAdaqRKphLXSNdtQ+rHH39Ufn6+AgMDXcYDAwN18ODBYreZO3euZs+eXWQ8ODi4XHIEJEmj/1rRGQAAinH69Gn5+flVdBpljhoJ1w1qJAC4JllVI123DanSmDZtmuLi4szXBQUFOnnypOrUqSMPDw+39uV0OhUcHKyjR4/KbreXdarXFebCFfPhivlwxXy4Yj5+w1y4Ks/5MAxDp0+fVoMGDcp0v9czaqTywVy4Yj5cMR+umA9XzMdvmAtXlalGum4bUnXr1pWXl5cyMjJcxjMyMhQUFFTsNj4+PvLx8XEZ8/f3v6o87HY7/1H8f8yFK+bDFfPhivlwxXz8hrlwVV7zURmvjCpEjXTtYS5cMR+umA9XzIcr5uM3zIWrylAjeVr2TmXMZrMpNDRUSUlJ5lhBQYGSkpIUHl4+f08JAABwraNGAgAA14Pr9gopSYqLi1N0dLQ6d+6srl27av78+crOzjafKAMAAHAjokYCAADXuuu6ITVkyBCdOHFCM2bMkMPhUMeOHZWQkFDkJp7lwcfHRzNnzixyefuNiLlwxXy4Yj5cMR+umI/fMBeumI+rQ410bWAuXDEfrpgPV8yHK+bjN8yFq8o0Hx5GZX3mMQAAAAAAAK5J1+09pAAAAAAAAHB9oiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKRK6OTJkxo2bJjsdrv8/f01evRonTlzpkTbGoah/v37y8PDQ+vXry/fRC3i7nycPHlSEydOVKtWrVS1alU1atRIf/rTn5SVlWVh1mVn0aJFatKkiXx9fRUWFqadO3deNn7t2rVq3bq1fH191a5dO23cuNGiTK3hzny8/vrruv3221WrVi3VqlVLERERV5y/6427Px+F3nnnHXl4eGjgwIHlm6CF3J2LU6dOKSYmRvXr15ePj49uvvnmSvXfi7vzMX/+fPP3ZnBwsGJjY/XLL79YlG352r59u+655x41aNCgxOfHrVu3qlOnTvLx8VGLFi20YsWKcs8TV0aN5IoaiRrpQtRIrqiRXFEn/YYa6Tc3VI1koET69etndOjQwfjss8+M//znP0aLFi2MBx98sETbvvTSS0b//v0NSca6devKN1GLuDsfe/fuNQYNGmS8//77xuHDh42kpCSjZcuWxuDBgy3Mumy88847hs1mM9566y1j//79xiOPPGL4+/sbGRkZxcZ/+umnhpeXlzFv3jzjwIEDxvTp0w1vb29j7969FmdePtydj4ceeshYtGiRsXv3buPrr782Ro4cafj5+Rk//PCDxZmXD3fno1BaWppx0003Gbfffrtx7733WpNsOXN3LnJycozOnTsbAwYMMD755BMjLS3N2Lp1q5Gammpx5uXD3fl4++23DR8fH+Ptt9820tLSjM2bNxv169c3YmNjLc68fGzcuNF4+umnjXfffbdE58dvv/3WqFatmhEXF2ccOHDAePXVVw0vLy8jISHBmoRxSdRIrqiRqJEKUSO5okZyRZ30G2okVzdSjURDqgQOHDhgSDK++OILc2zTpk2Gh4eH8b///e+y2+7evdu46aabjOPHj1eaYutq5uNCa9asMWw2m3H+/PnySLPcdO3a1YiJiTFf5+fnGw0aNDDmzp1bbPwDDzxgREVFuYyFhYUZjz76aLnmaRV35+NieXl5Rs2aNY2VK1eWV4qWKs185OXlGd27dzfeeOMNIzo6utIUW+7OxZIlS4xmzZoZubm5VqVoKXfnIyYmxujdu7fLWFxcnHHbbbeVa54VoSTnx8mTJxu33HKLy9iQIUOMyMjIcswMV0KN5IoaiRrpQtRIrqiRXFEn/YYa6dIqe43En+yVQHJysvz9/dW5c2dzLCIiQp6envr8888vud3Zs2f10EMPadGiRQoKCrIiVUuUdj4ulpWVJbvdripVqpRHmuUiNzdXKSkpioiIMMc8PT0VERGh5OTkYrdJTk52iZekyMjIS8ZfT0ozHxc7e/aszp8/r9q1a5dXmpYp7Xw888wzCggI0OjRo61I0xKlmYv3339f4eHhiomJUWBgoNq2bas///nPys/PtyrtclOa+ejevbtSUlLMS9a//fZbbdy4UQMGDLAk52tNZf5dej2jRnJFjUSNVIgayRU1kivqpN9QI1296/l36fVzlqtADodDAQEBLmNVqlRR7dq15XA4LrldbGysunfvrnvvvbe8U7RUaefjQj/++KPmzJmjsWPHlkeK5ebHH39Ufn6+AgMDXcYDAwN18ODBYrdxOBzFxpd0rq5lpZmPi02ZMkUNGjQo8kv0elSa+fjkk0/05ptvKjU11YIMrVOaufj222+1ZcsWDRs2TBs3btThw4f1xz/+UefPn9fMmTOtSLvclGY+HnroIf3444/q0aOHDMNQXl6exo0bp6eeesqKlK85l/pd6nQ6de7cOVWtWrWCMruxUSO5okaiRipEjeSKGskVddJvqJGu3vVcI93QV0hNnTpVHh4el11KesK42Pvvv68tW7Zo/vz5ZZt0OSrP+biQ0+lUVFSUQkJCNGvWrKtPHNet559/Xu+8847WrVsnX1/fik7HcqdPn9bw4cP1+uuvq27duhWdToUrKChQQECAXnvtNYWGhmrIkCF6+umntXTp0opOrUJs3bpVf/7zn7V48WJ9+eWXevfddxUfH685c+ZUdGq4AVAjuaJGgtWokaiRLkad9BtqpMrjhr5C6vHHH9fIkSMvG9OsWTMFBQUpMzPTZTwvL08nT5685GXmW7Zs0ZEjR+Tv7+8yPnjwYN1+++3aunXrVWRePspzPgqdPn1a/fr1U82aNbVu3Tp5e3tfbdqWqlu3rry8vJSRkeEynpGRccljDwoKciv+elKa+Sj04osv6vnnn9dHH32k9u3bl2ealnF3Po4cOaLvvvtO99xzjzlWUFAg6ddv1A8dOqTmzZuXb9LlpDQ/G/Xr15e3t7e8vLzMsTZt2sjhcCg3N1c2m61ccy5PpZmP//u//9Pw4cM1ZswYSVK7du2UnZ2tsWPH6umnn5an5431ndKlfpfa7fZr+pu/6xU1kitqpCujRnJFjeSKGskVddJvqJGu3vVcI91Yn9RF6tWrp9atW192sdlsCg8P16lTp5SSkmJuu2XLFhUUFCgsLKzYfU+dOlV79uxRamqquUjSyy+/rOXLl1txeG4rz/mQfv3Wr2/fvrLZbHr//fevy297bDabQkNDlZSUZI4VFBQoKSlJ4eHhxW4THh7uEi9JiYmJl4y/npRmPiRp3rx5mjNnjhISElzus3G9c3c+Wrdurb1797r8nvjd736nXr16KTU1VcHBwVamX6ZK87Nx22236fDhw2bBKUn//e9/Vb9+/eu2yCpUmvk4e/ZskYKqsAg1DKP8kr1GVebfpdciaiRX1EhXRo3kihrJFTWSK+qk31AjXb3r+ndpxd5T/frRr18/49ZbbzU+//xz45NPPjFatmzp8gjfH374wWjVqpXx+eefX3IfqiRPkDEM9+cjKyvLCAsLM9q1a2ccPnzYOH78uLnk5eVV1GGUyjvvvGP4+PgYK1asMA4cOGCMHTvW8Pf3NxwOh2EYhjF8+HBj6tSpZvynn35qVKlSxXjxxReNr7/+2pg5c2ale6SxO/Px/PPPGzabzfjXv/7l8nNw+vTpijqEMuXufFysMj1Bxt25SE9PN2rWrGlMmDDBOHTokLFhwwYjICDAePbZZyvqEMqUu/Mxc+ZMo2bNmsY///lP49tvvzU+/PBDo3nz5sYDDzxQUYdQpk6fPm3s3r3b2L17tyHJeOmll4zdu3cb33//vWEYhjF16lRj+PDhZnzhI42ffPJJ4+uvvzYWLVp03TzSuLKjRnJFjUSNVIgayRU1kivqpN9QI7m6kWokGlIl9NNPPxkPPvigUaNGDcNutxujRo1yOTmkpaUZkoyPP/74kvuoTMWWu/Px8ccfG5KKXdLS0irmIK7Cq6++ajRq1Miw2WxG165djc8++8xcd8cddxjR0dEu8WvWrDFuvvlmw2azGbfccosRHx9vccbly535aNy4cbE/BzNnzrQ+8XLi7s/HhSpbseXuXOzYscMICwszfHx8jGbNmhnPPffcdfd/yC7Hnfk4f/68MWvWLKN58+aGr6+vERwcbPzxj380fv75Z+sTLweXOi8UzkF0dLRxxx13FNmmY8eOhs1mM5o1a2YsX77c8rxRFDWSK2okaqQLUSO5okZyRZ30G2qk39xINZKHYdyA17QBAAAAAACgwtzQ95ACAAAAAACA9WhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAExbt26Vh4eHtm7dWqb79fDw0KxZs8p0n+5asWKFPDw89N1335XrPu+8807deeedbu/Lnbkv7Xu4Y9asWfLw8CjX9yhOQUGB2rZtq+eee+6KscXlmJeXp8mTJys4OFienp4aOHCgW++/dOlSNWrUSDk5OW5tBwCo3KiRrn6f1EhXhxoJlRENKVRKO3bs0KxZs3Tq1KmKTuWGsXHjxgovqFDxUlJSdPfddysoKEg1atRQ+/bt9corryg/P79E2//zn//U0aNHNWHChFK9/1tvvaUXXnhB999/v1auXKnY2FhJ0urVq/WHP/xBLVu2lIeHxyWL1ZEjRyo3N1fLli0r1fsDwLWOGsl61EiQrs0a6aefftILL7ygnj17ql69evL391e3bt20evXqIttTI6E8VKnoBIDysGPHDs2ePVsjR46Uv79/RadzQ9i4caMWLVpUbMF17tw5ValSsb9uhg8frqFDh8rHx6dc3+fDDz8s1XY9e/bUuXPnZLPZyjgj66SkpKh79+5q2bKlpkyZomrVqmnTpk167LHHdOTIES1YsOCK+3jhhRc0dOhQ+fn5lSqHLVu26KabbtLLL7/sMr5kyRKlpKSoS5cu+umnny65va+vr6Kjo/XSSy9p4sSJFfINKACUJ2ok61Ej/Yoa6dqrkTZs2KCnn35aAwYM0PTp01WlShX9+9//1tChQ3XgwAHNnj3bjKVGQnngCimgEjh79myx43l5ecrNzbU4m6J8fX0rvNjy8vKSr69vuZ88bTZbqQomT09P+fr6ytPz+v21XPiN2fbt2xUbG6tHH31U69evV8+ePbVixYorbr9792599dVXeuCBB0qdQ2ZmZrH/B+vvf/+7srKytGXLFjVo0OCy+3jggQf0/fff6+OPPy51HgCAawM10pVRI5W/a7VGuuWWW/TNN99o/fr1euyxxxQTE6OkpCT17t1bf/nLX5Sdne0ST42Esnb9/lcNXMKsWbP05JNPSpKaNm0qDw8Pl79hz8vL05w5c9S8eXP5+PioSZMmeuqpp4r8PXSTJk10991368MPP1THjh3l6+urkJAQvfvuu6XK6x//+Ie6du2qatWqqVatWurZs2eRb4oWL16sW265RT4+PmrQoIFiYmKKXFJ/5513qm3btkpJSVHPnj1VrVo1PfXUU/ruu+/k4eGhF198UfPnzzeP78CBA5KkgwcP6v7771ft2rXl6+urzp076/33379i3v/5z3/0+9//Xo0aNZKPj4+Cg4MVGxurc+fOmTEjR47UokWLJMmc7wuLmuLuj7B79271799fdrtdNWrUUJ8+ffTZZ5+5xBTef+DTTz9VXFyc6tWrp+rVq+u+++7TiRMnrph7cfu68F4GhZ/xJ598oq5du8rX11fNmjXT3/72tyLb79+/X71791bVqlXVsGFDPfvssyooKCgSd+G9CzIyMlSlShWXb5cKHTp0SB4eHlq4cKGkS98f4bXXXlPz5s1VtWpVde3aVf/5z39KdGyX2mdJPs/Scjqd8vX1LVLs1K9fX1WrVr3i9uvXr5fNZlPPnj2LrPvkk0/UpUsX+fr6qnnz5kUuFy/8+f/444+1f/9+82ew8NgL75dQEqGhoapdu7bee++9EsUDwPWCGokaqTjUSL+6EWukpk2bqnHjxi7xHh4eGjhwoHJycvTtt9+6rKNGQlnjT/ZQ6QwaNEj//e9/9c9//lMvv/yy6tatK0mqV6+eJGnMmDFauXKl7r//fj3++OP6/PPPNXfuXH399ddat26dy76++eYbDRkyROPGjVN0dLSWL1+u3//+90pISNBdd91V4pxmz56tWbNmqXv37nrmmWdks9n0+eefa8uWLerbt6+kX4vE2bNnKyIiQuPHj9ehQ4e0ZMkSffHFF/r000/l7e1t7u+nn35S//79NXToUP3hD39QYGCguW758uX65ZdfNHbsWPn4+Kh27drav3+/brvtNt10002aOnWqqlevrjVr1mjgwIH697//rfvuu++Sua9du1Znz57V+PHjVadOHe3cuVOvvvqqfvjhB61du1aS9Oijj+rYsWNKTEzU3//+9yvOx/79+3X77bfLbrdr8uTJ8vb21rJly3TnnXdq27ZtCgsLc4mfOHGiatWqpZkzZ+q7777T/PnzNWHChGL/vt1dhw8f1v3336/Ro0crOjpab731lkaOHKnQ0FDdcsstkiSHw6FevXopLy/PnL/XXnvtigVEYGCg7rjjDq1Zs0YzZ850Wbd69Wp5eXnp97///SW3f/PNN/Xoo4+qe/fumjRpkr799lv97ne/U+3atRUcHFyq4y3J51lad955p1avXq1HH31UcXFx5uXo7777rl544YUrbr9jxw61bdvW5Wddkvbu3au+ffuqXr16mjVrlvLy8jRz5kyXn/t69erp73//u5577jmdOXNGc+fOlSS1adOmVMfSqVMnffrpp6XaFgCuVdRI1EjuoEa6cWskh8MhSebviAtRI6FMGUAl9MILLxiSjLS0NJfx1NRUQ5IxZswYl/EnnnjCkGRs2bLFHGvcuLEhyfj3v/9tjmVlZRn169c3br311hLn8s033xienp7GfffdZ+Tn57usKygoMAzDMDIzMw2bzWb07dvXJWbhwoWGJOOtt94yx+644w5DkrF06VKXfaWlpRmSDLvdbmRmZrqs69Onj9GuXTvjl19+cXnv7t27Gy1btjTHPv74Y0OS8fHHH5tjZ8+eLXJMc+fONTw8PIzvv//eHIuJiTEu9StFkjFz5kzz9cCBAw2bzWYcOXLEHDt27JhRs2ZNo2fPnubY8uXLDUlGRESEOVeGYRixsbGGl5eXcerUqWLfrziF+7rwZ6LwM96+fbs5lpmZafj4+BiPP/64OTZp0iRDkvH555+7xPn5+RXZ5x133GHccccd5utly5YZkoy9e/e65BMSEmL07t3bfH3x3Ofm5hoBAQFGx44djZycHDPutddeMyS5vEdxx1bcPg2j5J/nzJkzL/l5XkpeXp4xYcIEw9vb25BkSDK8vLyMJUuWlGj7hg0bGoMHDy4yPnDgQMPX19clvwMHDhheXl5FcrzjjjuMW2655bLvc8stt7jMX3HGjh1rVK1atUR5A8D1hBqJGuli1Ei/okb61U8//WQEBAQYt99+e7HrqZFQlviTPdxQNm7cKEmKi4tzGX/88cclSfHx8S7jDRo0cPlmzG63a8SIEdq9e7f5zcGVrF+/XgUFBZoxY0aRPxkqvGT7o48+Um5uriZNmuQS88gjj8hutxfJy8fHR6NGjSr2/QYPHmx+0ylJJ0+e1JYtW/TAAw/o9OnT+vHHH/Xjjz/qp59+UmRkpL755hv973//u2T+F37DlZ2drR9//FHdu3eXYRjavXt3iebgQvn5+frwww81cOBANWvWzByvX7++HnroIX3yySdyOp0u24wdO9bl8vbbb79d+fn5+v77791+/4uFhITo9ttvN1/Xq1dPrVq1crlEeePGjerWrZu6du3qEjds2LAr7n/QoEGqUqWKyzeV+/bt04EDBzRkyJBLbrdr1y5lZmZq3LhxLvdbGDlyZKlvZimV/ed5IS8vLzVv3lyRkZFauXKlVq9erXvuuUcTJ07U+vXrr7j9Tz/9pFq1armM5efna/PmzRo4cKAaNWpkjrdp00aRkZFXle/l1KpVS+fOnbvkvUcAoLKhRqJGuhg10o1XIxUUFGjYsGE6deqUXn311WJjqJFQlmhI4Yby/fffy9PTUy1atHAZDwoKkr+/f5GTd4sWLYrc4PHmm2+WpCJ/i34pR44ckaenp0JCQi6blyS1atXKZdxms6lZs2ZF8rrpppsueVPIpk2burw+fPiwDMPQ//3f/6levXouS+El0pmZmZfMLT09XSNHjlTt2rVVo0YN1atXT3fccYckKSsr65LbXcqJEyd09uzZIscq/XoCLSgo0NGjR13GLzzJSjJPyD///LPb73+xi/dduP8L9/3999+rZcuWReKKO4aL1a1bV3369NGaNWvMsdWrV6tKlSoaNGjQJbcr/Mwvfl9vb2+XItVdZf15Xuj555/XX/7yF/3zn//UiBEj9MADD2jdunXq0aOHYmJilJeXd8V9GIbh8vrEiRM6d+5cqee/tArz4AkyAG4U1EjUSBejRrrxaqSJEycqISFBb7zxhjp06HDZPKiRUBa4hxRuSNf7L9DL/V3+xesKbyr5xBNPXPLbkouLz0L5+fm66667dPLkSU2ZMkWtW7dW9erV9b///U8jR44s9oaV5cHLy6vY8YtPzNfavgsNHTpUo0aNUmpqqjp27Kg1a9aoT58+xf5dfmlc6uc5Pz+/yOvy/DwXL16s3r17q0aNGi7jv/vd7xQXF6fvvvvukj9rklSnTp0yKaDLws8//6xq1aqV6EajAFCZUCO5okYqn30Xoka6dmqk2bNna/HixXr++ec1fPjwS8ZRI6Es0ZBCpXSpk0/jxo1VUFCgb775xuVGfhkZGTp16lSRp0wUfnN24f7++9//Svr16SMl0bx5cxUUFOjAgQPq2LHjJfOSfn2qyIXf7OTm5iotLU0REREleq/iFO7P29vb7f3s3btX//3vf7Vy5UqNGDHCHE9MTCwSW9ICtl69eqpWrZoOHTpUZN3Bgwfl6elZ6ptRlpfGjRvrm2++KTJe3DEUZ+DAgXr00UfNS9L/+9//atq0aVd8T+nXm8b27t3bHD9//rzS0tJcvrUq/Db04qcNXfytsTufZ2lkZGQUKfAKc5Z0xW//WrdurbS0NJexevXqqWrVqlc1/6WRlpZW6huiA8C1jBrpN9RIV48aqWSu9Rpp0aJFmjVrliZNmqQpU6ZcNpYaCWWJP9lDpVS9enVJRU8+AwYMkCTNnz/fZfyll16SJEVFRbmMHzt2zOWpMk6nU3/729/UsWNHBQUFlSiXgQMHytPTU88880yRb1cKv2GKiIiQzWbTK6+84vKt05tvvqmsrKwiebkjICBAd955p5YtW6bjx48XWX+5RwMXfjN2YU6GYWjBggVFYi8158Xts2/fvnrvvfdcLunPyMjQqlWr1KNHD9nt9svuw2oDBgzQZ599pp07d5pjJ06c0Ntvv12i7f39/RUZGak1a9bonXfekc1m08CBAy+7TefOnVWvXj0tXbpUubm55viKFSuKzHHz5s0lSdu3bzfH8vPz9dprr7nEufN5lsbNN9+sxMRE/fTTTy55rFmzRjVr1jTzvJTw8HDt27fP5fHiXl5eioyM1Pr165Wenm6Of/3119q8eXOZ5F2cL7/8Ut27dy+3/QNARaFG+g010tWjRiqZa7lGWr16tf70pz9p2LBh5n/vl0ONhLLEFVKolEJDQyVJTz/9tIYOHSpvb2/dc8896tChg6Kjo/Xaa6/p1KlTuuOOO7Rz506tXLlSAwcOVK9evVz2c/PNN2v06NH64osvFBgYqLfeeksZGRlavnx5iXNp0aKFnn76ac2ZM0e33367Bg0aJB8fH33xxRdq0KCB5s6dq3r16mnatGmaPXu2+vXrp9/97nc6dOiQFi9erC5duugPf/jDVc3HokWL1KNHD7Vr106PPPKImjVrpoyMDCUnJ+uHH37QV199Vex2rVu3VvPmzfXEE0/of//7n+x2u/79738Xe8lw4Zz/6U9/UmRkpLy8vDR06NBi9/vss88qMTFRPXr00B//+EdVqVJFy5YtU05OjubNm3dVx1oeJk+erL///e/q16+fHnvsMfORxo0bN9aePXtKtI8hQ4boD3/4gxYvXqzIyEj5+/tfNt7b21vPPvusHn30UfXu3VtDhgxRWlqali9fXuT+CLfccou6deumadOm6eTJk6pdu7beeeedIt+2ufN5lsbUqVP1hz/8QWFhYRo7dqyqVq2qf/7zn0pJSdGzzz5b5FHFF7v33ns1Z84cbdu2zXzUt/TrJeQJCQm6/fbb9cc//lF5eXl69dVXdcstt5R4/rdv324WoydOnFB2draeffZZSVLPnj3Vs2dPMzYlJUUnT57Uvffe6+4UAMA1jxrJFTXS1aFGKplrtUbauXOnRowYoTp16qhPnz5FGondu3d3mVNqJJQ5ax7mB1hvzpw5xk033WR4enq6PO71/PnzxuzZs42mTZsa3t7eRnBwsDFt2jSXx/0axq+Pu42KijI2b95stG/f3vDx8TFat25trF27tlT5vPXWW8att95q+Pj4GLVq1TLuuOMOIzEx0SVm4cKFRuvWrQ1vb28jMDDQGD9+vPHzzz+7xFzqka2FjzR+4YUXin3/I0eOGCNGjDCCgoIMb29v46abbjLuvvtu41//+pcZU9wjcA8cOGBEREQYNWrUMOrWrWs88sgjxldffWVIMpYvX27G5eXlGRMnTjTq1atneHh4uDxqVhc90tgwDOPLL780IiMjjRo1ahjVqlUzevXqZezYscMlpvBRvV988YXLeHF5XsmlHmkcFRVVJPbixxIbhmHs2bPHuOOOOwxfX1/jpptuMubMmWO8+eabV3ykcSGn02lUrVrVkGT84x//KLL+Use0ePFio2nTpoaPj4/RuXNnY/v27cW+x5EjR4yIiAjDx8fHCAwMNJ566ikjMTGx1J9naR5pbBiGkZCQYNxxxx1G3bp1DZvNZrRr167I47cvp3379sbo0aOLjG/bts0IDQ01bDab0axZM2Pp0qXF5nip/z4KY4tbLv7ZnDJlitGoUSOXx2gDQGVCjeSKGokayTBuzBqp8LO/1HLhcRsGNRLKnodhlOFd6YBKpEmTJmrbtq02bNhQ0akAN4y///3viomJUXp6+hW/IS0POTk5atKkiaZOnarHHnvM8vcHgOsBNRJgPWokVEbcQwoAcM0YNmyYGjVqpEWLFlXI+y9fvlze3t4aN25chbw/AABAcaiRUBlxhRRwCSX59s/hcFx2H1WrVpWfn19Zp4YLnDlzRmfOnLlsTL169S756GJcWVZWls6dO3fZmJLewBYAcP2jRro+UCOVP2ok4OpwU3PgKtSvX/+y66Ojo7VixQprkrlBvfjii5o9e/ZlY9LS0kr8CGoU9dhjj2nlypWXjeG7DQDAhaiRKh41UvmjRgKuDldIAVfho48+uuz6Bg0aKCQkxKJsbkzffvutvv3228vG9OjRQ76+vhZlVPkcOHBAx44du2xMRESERdkAAK4H1EgVjxqp/FEjAVeHhhQAAAAAAAAsxU3NAQAAAAAAYKkb+h5SBQUFOnbsmGrWrCkPD4+KTgcAAFjAMAydPn1aDRo0kKcn380VhxoJAIAbj9U10g3dkDp27JiCg4MrOg0AAFABjh49qoYNG1Z0GtckaiQAAG5cVtVIN3RDqmbNmpJ+nWy73V7B2QAAACs4nU4FBwebdQCKokYCAODGY3WNdEM3pAovQbfb7RRbAADcYPhTtEujRgIA4MZlVY3EjRMAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFjqhr6HFAAAl5Ofn6/z589XdBpwk7e3t7y8vCo6DQAAKi1qpOvTtVYj0ZACAOAihmHI4XDo1KlTFZ0KSsnf319BQUHcuBwAgDJEjXT9u5ZqJBpSAABcpLDQCggIULVq1a6JEzZKxjAMnT17VpmZmZKk+vXrV3BGAABUHtRI169rsUaiIQUAwAXy8/PNQqtOnToVnQ5KoWrVqpKkzMxMBQQEXFOXpgMAcL2iRrr+XWs1Ejc1BwDgAoX3Q6hWrVoFZ4KrUfj5cX8LAADKBjVS5XAt1Ug0pAAAKAaXoF/f+PwAACgfnGOvb9fS50dDCgAAAAAAAJaiIQUAAAAAAABLcVNzAABK6HzCJ5a9l3e/HiWOvdKl1zNnztSsWbOuMqPS8fDw0Lp16zRw4MBS7+O1117TqlWr9OWXX+r06dP6+eef5e/vX2Y5AgCAq2NljSRRJxU6efKkZs6cqQ8//FDp6emqV6+eBg4cqDlz5sjPz69sky0HV3WF1PPPPy8PDw9NmjTJHPvll18UExOjOnXqqEaNGho8eLAyMjJctktPT1dUVJSqVaumgIAAPfnkk8rLy3OJ2bp1qzp16iQfHx+1aNFCK1asKPL+ixYtUpMmTeTr66uwsDDt3Lnzag4HAIDr0vHjx81l/vz5stvtLmNPPPGEW/vLzc0tp0xL5+zZs+rXr5+eeuqpik6lxKiRAAC4NlTmOunYsWM6duyYXnzxRe3bt08rVqxQQkKCRo8eXdGplUipG1JffPGFli1bpvbt27uMx8bG6oMPPtDatWu1bds2HTt2TIMGDTLX5+fnKyoqSrm5udqxY4dWrlypFStWaMaMGWZMWlqaoqKi1KtXL6WmpmrSpEkaM2aMNm/ebMasXr1acXFxmjlzpr788kt16NBBkZGRyszMLO0hAWXifMInLgsAlLegoCBz8fPzk4eHh/k6Oztbw4YNU2BgoGrUqKEuXbroo48+ctm+SZMmmjNnjkaMGCG73a6xY8dKkl5//XUFBwerWrVquu+++/TSSy8VuTLpvffeU6dOneTr66tmzZpp9uzZZgOlSZMmkqT77rtPHh4e5uuvvvpKvXr1Us2aNWW32xUaGqpdu3Zd8vgmTZqkqVOnqlu3bmUzYeWMGgkoHjUSgIpQmeuktm3b6t///rfuueceNW/eXL1799Zzzz2nDz74oMgXWteiUjWkzpw5o2HDhun1119XrVq1zPGsrCy9+eabeumll9S7d2+FhoZq+fLl2rFjhz777DNJ0ocffqgDBw7oH//4hzp27Kj+/ftrzpw5WrRokdlpXLp0qZo2baq//vWvatOmjSZMmKD7779fL7/8svleL730kh555BGNGjVKISEhWrp0qapVq6a33nrrauYDAIBK5cyZMxowYICSkpK0e/du9evXT/fcc4/S09Nd4l588UV16NBBu3fv1v/93//p008/1bhx4/TYY48pNTVVd911l5577jmXbf7zn/9oxIgReuyxx3TgwAEtW7ZMK1asMOO++OILSdLy5ct1/Phx8/WwYcPUsGFDffHFF0pJSdHUqVPl7e1twWyUP2okAACuH5WxTsrKypLdbleVKtf+HZpK1ZCKiYlRVFSUIiIiXMZTUlJ0/vx5l/HWrVurUaNGSk5OliQlJyerXbt2CgwMNGMiIyPldDq1f/9+M+bifUdGRpr7yM3NVUpKikuMp6enIiIizBgAACB16NBBjz76qNq2bauWLVtqzpw5at68ud5//32XuN69e+vxxx9X8+bN1bx5c7366qvq37+/nnjiCd1888364x//qP79+7tsM3v2bE2dOlXR0dFq1qyZ7rrrLs2ZM0fLli2TJNWrV0+S5O/vr6CgIPN1enq6IiIi1Lp1a7Vs2VK///3v1aFDBwtmo/xRIwEAcP2obHXSjz/+qDlz5phXcV3r3G5IvfPOO/ryyy81d+7cIuscDodsNluRy9QCAwPlcDjMmAsLrcL1hesuF+N0OnXu3Dn9+OOPys/PLzamcB/FycnJkdPpdFkAAKjMzpw5oyeeeEJt2rSRv7+/atSooa+//rrIN3+dO3d2eX3o0CF17drVZezi11999ZWeeeYZ1ahRw1weeeQRHT9+XGfPnr1kTnFxcRozZowiIiL0/PPP68iRI1d5lNcGaiQAAK4vlalOcjqdioqKUkhISIXdpN1dbjWkjh49qscee0xvv/22fH19yyuncjN37lz5+fmZS3BwcEWnBABAuXriiSe0bt06/fnPf9Z//vMfpaamql27dkVuyFm9enW3933mzBnNnj1bqamp5rJ371598803l60TZs2apf379ysqKkpbtmxRSEiI1q1b5/b7X0uokQAAuP5Uljrp9OnT6tevn2rWrKl169ZdN7dCcKshlZKSoszMTHXq1ElVqlRRlSpVtG3bNr3yyiuqUqWKAgMDlZubq1OnTrlsl5GRoaCgIEm/3lDs4ifKFL6+UozdblfVqlVVt25deXl5FRtTuI/iTJs2TVlZWeZy9OhRdw4fAIDrzqeffqqRI0fqvvvuU7t27RQUFKTvvvvuitu1atXKvJdBoYtfd+rUSYcOHVKLFi2KLJ6ev5YY3t7eys/PL7L/m2++WbGxsfrwww81aNAgLV++vPQHeQ2gRgIA4PpTGeokp9Opvn37ymaz6f3337+uvhhzqyHVp08f7d2716XD17lzZw0bNsz8t7e3t5KSksxtDh06pPT0dIWHh0uSwsPDtXfvXpcnvSQmJsputyskJMSMuXAfhTGF+7DZbAoNDXWJKSgoUFJSkhlTHB8fH9ntdpcFAIDKrGXLlnr33XeVmpqqr776Sg899JAKCgquuN3EiRO1ceNGvfTSS/rmm2+0bNkybdq0SR4eHmbMjBkz9Le//U2zZ8/W/v379fXXX+udd97R9OnTzZgmTZooKSlJDodDP//8s86dO6cJEyZo69at+v777/Xpp5/qiy++UJs2bS6Zi8PhUGpqqg4fPixJZi1y8uTJq5iZskWNBADA9ed6r5MKm1HZ2dl688035XQ65XA45HA4im10XWvcakjVrFlTbdu2dVmqV6+uOnXqqG3btvLz89Po0aMVFxenjz/+WCkpKRo1apTCw8PNRzX37dtXISEhGj58uL766itt3rxZ06dPV0xMjHx8fCRJ48aN07fffqvJkyfr4MGDWrx4sdasWaPY2Fgzl7i4OL3++utauXKlvv76a40fP17Z2dkaNWpUGU4PAADXt5deekm1atVS9+7ddc899ygyMlKdOnW64na33Xabli5dqpdeekkdOnRQQkKCYmNjXb51i4yM1IYNG/Thhx+qS5cu6tatm15++WU1btzYjPnrX/+qxMREBQcH69Zbb5WXl5d++uknjRgxQjfffLMeeOAB9e/fX7Nnz75kLkuXLtWtt96qRx55RJLUs2dP3XrrrUVuOFqRqJEAALj+XO910pdffqnPP/9ce/fuVYsWLVS/fn1zuS6udjau0h133GE89thj5utz584Zf/zjH41atWoZ1apVM+677z7j+PHjLtt89913Rv/+/Y2qVasadevWNR5//HHj/PnzLjEff/yx0bFjR8NmsxnNmjUzli9fXuS9X331VaNRo0aGzWYzunbtanz22Wdu5Z6VlWVIMrKystzaDric3E3/cVkAXF/OnTtnHDhwwDh37lxFp3LNGTNmjNGjR4+KTqNELvc5WnX+p0YCXFEjAdc3aqTLu17qpGuhRirkYRiGUbEtsYrjdDrl5+enrKwsLk1HmTmf8InLa+9+PSooEwCl8csvvygtLU1Nmza9rv4Gvzy8+OKLuuuuu1S9enVt2rRJjz/+uBYvXqwxY8ZUdGpXdLnPkfP/lTFHKA/USMD1jRrJ1fVaJ11LNVKVcn8HAABwXdq5c6fmzZun06dPq1mzZnrllVeu+SILAADACtRJV4+GFAAAKNaaNWsqOgUAAIBrEnXS1XPrpuYAAAAAAADA1aIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYqkpFJwAAwPXiyK5llr1X886PuhU/cuRIrVy5UpJUpUoV1a5dW+3bt9eDDz6okSNHytPz+v0Oav/+/ZoxY4ZSUlL0/fff6+WXX9akSZMqOi0AAPD/WVkjSdRJF3r99df1t7/9Tfv27ZMkhYaG6s9//rO6du1awZld2fU76wAAwEW/fv10/Phxfffdd9q0aZN69eqlxx57THfffbfy8vIqOr1SO3v2rJo1a6bnn39eQUFBFZ0OAAC4DlXWOmnr1q168MEH9fHHHys5OVnBwcHq27ev/ve//1V0aldEQwoAgErCx8dHQUFBuummm9SpUyc99dRTeu+997Rp0yatWLHCjDt16pTGjBmjevXqyW63q3fv3vrqq69c9vXBBx+oS5cu8vX1Vd26dXXfffeZ637++WeNGDFCtWrVUrVq1dS/f3998803kqTs7GzZ7Xb961//ctnf+vXrVb16dZ0+fVq5ubmaMGGC6tevL19fXzVu3Fhz58695HF16dJFL7zwgoYOHSofH58ymCkAAHCjqax10ttvv60//vGP6tixo1q3bq033nhDBQUFSkpKKoNZK180pAAAqMR69+6tDh066N133zXHfv/73yszM1ObNm1SSkqKOnXqpD59+ujkyZOSpPj4eN13330aMGCAdu/eraSkJJfLvkeOHKldu3bp/fffV3JysgzD0IABA3T+/HlVr15dQ4cO1fLly13yWL58ue6//37VrFlTr7zyit5//32tWbNGhw4d0ttvv60mTZpYMh8AAACFKmOddPbsWZ0/f161a9e+usmxAPeQAgCgkmvdurX27NkjSfrkk0+0c+dOZWZmmlcbvfjii1q/fr3+9a9/aezYsXruuec0dOhQzZ4929xHhw4dJEnffPON3n//fX366afq3r27pF+/mQsODtb69ev1+9//XmPGjFH37t11/Phx1a9fX5mZmdq4caM++ugjSVJ6erpatmypHj16yMPDQ40bN7ZyOgAAAEyVrU6aMmWKGjRooIiIiKuem/LGFVIAAFRyhmHIw8NDkvTVV1/pzJkzqlOnjmrUqGEuaWlpOnLkiCQpNTVVffr0KXZfX3/9tapUqaKwsDBzrE6dOmrVqpW+/vprSVLXrl11yy23mDcP/cc//qHGjRurZ8+ekn795jA1NVWtWrXSn/70J3344YflduwAAACXU5nqpOeff17vvPOO1q1bJ19fX/cnw2JcIQUAQCX39ddfq2nTppKkM2fOqH79+tq6dWuROH9/f0lS1apVr/o9x4wZo0WLFmnq1Klavny5Ro0aZRZ7nTp1UlpamjZt2qSPPvpIDzzwgCIiIorcTwEAAKC8VZY66cUXX9Tzzz+vjz76SO3bt7/qHK3AFVIAAFRiW7Zs0d69ezV48GBJvxY5DodDVapUUYsWLVyWunXrSpLat29/yRthtmnTRnl5efr888/NsZ9++kmHDh1SSEiIOfaHP/xB33//vV555RUdOHBA0dHRLvux2+0aMmSIXn/9da1evVr//ve/zXszAAAAWKGy1Enz5s3TnDlzlJCQoM6dO5d6PqzGFVIAAFQSOTk5cjgcys/PV0ZGhhISEjR37lzdfffdGjFihCQpIiJC4eHhGjhwoObNm6ebb75Zx44dM2/Q2blzZ82cOVN9+vRR8+bNNXToUOXl5Wnjxo2aMmWKWrZsqXvvvVePPPKIli1bppo1a2rq1Km66aabdO+995q51KpVS4MGDdKTTz6pvn37qmHDhua6l156SfXr19ett94qT09PrV27VkFBQeY3jxfLzc3VgQMHzH//73//U2pqqmrUqKEWLVqU34QCAIBKo7LWSX/5y180Y8YMrVq1Sk2aNJHD4ZAk888Nr2VcIQUAQCWRkJCg+vXrq0mTJurXr58+/vhjvfLKK3rvvffk5eUlSfLw8NDGjRvVs2dPjRo1SjfffLOGDh2q77//XoGBgZKkO++8U2vXrtX777+vjh07qnfv3tq5c6f5PsuXL1doaKjuvvtuhYeHyzAMbdy4Ud7e3i75jB49Wrm5uXr44YddxmvWrKl58+apc+fO6tKli7777jtt3LhRnp7FlyXHjh3TrbfeqltvvVXHjx/Xiy++qFtvvVVjxowpy+kDAACVWGWtk5YsWaLc3Fzdf//9ql+/vrm8+OKLZTl95cLDMAyjopOoKE6nU35+fsrKypLdbq/odFBJnE/4xOW1d78eFZQJgNL45ZdflJaWpqZNm14XN4O8lv39739XbGysjh07JpvNZul7X+5z5Px/ZcwRygM1EnB9o0YqWxVVJ11LNRJ/sgcAAMrU2bNndfz4cT3//PN69NFHLW9GAQAAXKuok37Dn+wBAIAyNW/ePLVu3VpBQUGaNm1aRacDAABwzaBO+g0NKQAAUKZmzZql8+fPKykp6Zq/mSYAAICVqJN+Q0MKAAAAAAAAlqIhBQAAAAAAAEvRkAIAoBgFBQUVnQKuAp8fAADlg3Ps9e1a+vx4yh4AABew2Wzy9PTUsWPHVK9ePdlsNnl4eFR0WighwzCUm5urEydOyNPT84Z+cg0AAGWJGun6di3WSG41pJYsWaIlS5bou+++kyTdcsstmjFjhvr37y9JuvPOO7Vt2zaXbR599FEtXbrUfJ2enq7x48fr448/Vo0aNRQdHa25c+eqSpXfUtm6davi4uK0f/9+BQcHa/r06Ro5cqTLfhctWqQXXnhBDodDHTp00KuvvqquXbu6czgAABTh6emppk2b6vjx4zp27FhFp4NSqlatmho1aiRPT2suBqdGAgBUdtRIlYPVNdLluNWQatiwoZ5//nm1bNlShmFo5cqVuvfee7V7927dcsstkqRHHnlEzzzzjLlNtWrVzH/n5+crKipKQUFB2rFjh44fP64RI0bI29tbf/7znyVJaWlpioqK0rhx4/T2228rKSlJY8aMUf369RUZGSlJWr16teLi4rR06VKFhYVp/vz5ioyM1KFDhxQQEHDVkwIAuLHZbDY1atRIeXl5ys/Pr+h04CYvLy9VqVLF0m9tqZEAADcCaqTrW0XUSJfjYRiGcTU7qF27tl544QWNHj1ad955pzp27Kj58+cXG7tp0ybdfffdOnbsmAIDAyVJS5cu1ZQpU3TixAnZbDZNmTJF8fHx2rdvn7nd0KFDderUKSUkJEiSwsLC1KVLFy1cuFDSr38DGRwcrIkTJ2rq1Kklzt3pdMrPz09ZWVmy2+2lnAHA1fmET1xee/frUUGZAACKY9X5nxoJcEWNBADXNqvP/6W+Ris/P1/vvPOOsrOzFR4ebo6//fbbqlu3rtq2batp06bp7Nmz5rrk5GS1a9fOLLQkKTIyUk6nU/v37zdjIiIiXN4rMjJSycnJkqTc3FylpKS4xHh6eioiIsKMuZScnBw5nU6XBQAAoCxRIwEAAFyZ2zc137t3r8LDw/XLL7+oRo0aWrdunUJCQiRJDz30kBo3bqwGDRpoz549mjJlig4dOqR3331XkuRwOFwKLUnma4fDcdkYp9Opc+fO6eeff1Z+fn6xMQcPHrxs7nPnztXs2bPdPWQAAIArokYCAAAoObcbUq1atVJqaqqysrL0r3/9S9HR0dq2bZtCQkI0duxYM65du3aqX7+++vTpoyNHjqh58+ZlmnhpTJs2TXFxceZrp9Op4ODgCswIAABUFtRIAAAAJed2Q8pms6lFixaSpNDQUH3xxRdasGCBli1bViQ2LCxMknT48GE1b95cQUFB2rlzp0tMRkaGJCkoKMj838KxC2PsdruqVq0qLy8veXl5FRtTuI9L8fHxkY+PjxtHCwAAUDLUSAAAACV31c/5KygoUE5OTrHrUlNTJUn169eXJIWHh2vv3r3KzMw0YxITE2W3281L2sPDw5WUlOSyn8TERPMeDDabTaGhoS4xBQUFSkpKcrlPAwAAQEWiRgIAALg0t66QmjZtmvr3769GjRrp9OnTWrVqlbZu3arNmzfryJEjWrVqlQYMGKA6depoz549io2NVc+ePdW+fXtJUt++fRUSEqLhw4dr3rx5cjgcmj59umJiYsxv5caNG6eFCxdq8uTJevjhh7VlyxatWbNG8fHxZh5xcXGKjo5W586d1bVrV82fP1/Z2dkaNWpUGU4NAABAyVAjAQAAuMethlRmZqZGjBih48ePy8/PT+3bt9fmzZt111136ejRo/roo4/Mwic4OFiDBw/W9OnTze29vLy0YcMGjR8/XuHh4apevbqio6P1zDPPmDFNmzZVfHy8YmNjtWDBAjVs2FBvvPGGIiMjzZghQ4boxIkTmjFjhhwOhzp27KiEhIQiN/EErHZk1zIVnEo3Xzfx71+B2QAArEKNBFweNRIA4GIehmEYFZ1ERXE6nfLz81NWVpbsdntFp4NK4MiuZSo47FpseffrUYEZAQAuxvn/ypgjlDVqJAC49ll9/r/qe0gBAAAAAAAA7qAhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAICl3GpILVmyRO3bt5fdbpfdbld4eLg2bdpkrv/ll18UExOjOnXqqEaNGho8eLAyMjJc9pGenq6oqChVq1ZNAQEBevLJJ5WXl+cSs3XrVnXq1Ek+Pj5q0aKFVqxYUSSXRYsWqUmTJvL19VVYWJh27tzpzqEAAACUGWokAAAA97jVkGrYsKGef/55paSkaNeuXerdu7fuvfde7d+/X5IUGxurDz74QGvXrtW2bdt07NgxDRo0yNw+Pz9fUVFRys3N1Y4dO7Ry5UqtWLFCM2bMMGPS0tIUFRWlXr16KTU1VZMmTdKYMWO0efNmM2b16tWKi4vTzJkz9eWXX6pDhw6KjIxUZmbm1c4HAACA26iRAAAA3ONhGIZxNTuoXbu2XnjhBd1///2qV6+eVq1apfvvv1+SdPDgQbVp00bJycnq1q2bNm3apLvvvlvHjh1TYGCgJGnp0qWaMmWKTpw4IZvNpilTpig+Pl779u0z32Po0KE6deqUEhISJElhYWHq0qWLFi5cKEkqKChQcHCwJk6cqKlTp5Y4d6fTKT8/P2VlZclut1/NNACSpCO7lqngcLr5uol/f3n361GBGQEALmbV+Z8aCfgNNRIAXPusPv+X+h5S+fn5euedd5Sdna3w8HClpKTo/PnzioiIMGNat26tRo0aKTk5WZKUnJysdu3amYWWJEVGRsrpdJrfICYnJ7vsozCmcB+5ublKSUlxifH09FRERIQZcyk5OTlyOp0uCwAAQFmiRgIAALgytxtSe/fuVY0aNeTj46Nx48Zp3bp1CgkJkcPhkM1mk7+/v0t8YGCgHA6HJMnhcLgUWoXrC9ddLsbpdOrcuXP68ccflZ+fX2xM4T4uZe7cufLz8zOX4OBgdw8fAACgWNRIAAAAJed2Q6pVq1ZKTU3V559/rvHjxys6OloHDhwoj9zK3LRp05SVlWUuR48ereiUAABAJUGNBAAAUHJV3N3AZrOpRYsWkqTQ0FB98cUXWrBggYYMGaLc3FydOnXK5RvAjIwMBQUFSZKCgoKKPOml8AkzF8Zc/NSZjIwM2e12Va1aVV5eXvLy8io2pnAfl+Lj4yMfHx93DxkAAOCKqJEAAABKrtT3kCpUUFCgnJwchYaGytvbW0lJSea6Q4cOKT09XeHh4ZKk8PBw7d271+VJL4mJibLb7QoJCTFjLtxHYUzhPmw2m0JDQ11iCgoKlJSUZMYAAABUNGokAACAS3PrCqlp06apf//+atSokU6fPq1Vq1Zp69at2rx5s/z8/DR69GjFxcWpdu3astvtmjhxosLDw9WtWzdJUt++fRUSEqLhw4dr3rx5cjgcmj59umJiYsxv5caNG6eFCxdq8uTJevjhh7VlyxatWbNG8fHxZh5xcXGKjo5W586d1bVrV82fP1/Z2dkaNWpUGU4NAABAyVAjAQAAuMethlRmZqZGjBih48ePy8/PT+3bt9fmzZt11113SZJefvlleXp6avDgwcrJyVFkZKQWL15sbu/l5aUNGzZo/PjxCg8PV/Xq1RUdHa1nnnnGjGnatKni4+MVGxurBQsWqGHDhnrjjTcUGRlpxgwZMkQnTpzQjBkz5HA41LFjRyUkJBS5iScAAIAVqJEAAADc42EYhlHRSVQUp9MpPz8/ZWVlyW63V3Q6qASO7FqmgsPp5usm/v3l3a9HBWYEALgY5/8rY45Q1qiRAODaZ/X5/6rvIQUAAAAAAAC4g4YUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALOVWQ2ru3Lnq0qWLatasqYCAAA0cOFCHDh1yibnzzjvl4eHhsowbN84lJj09XVFRUapWrZoCAgL05JNPKi8vzyVm69at6tSpk3x8fNSiRQutWLGiSD6LFi1SkyZN5Ovrq7CwMO3cudOdwwEAACgT1EgAAADucashtW3bNsXExOizzz5TYmKizp8/r759+yo7O9sl7pFHHtHx48fNZd68eea6/Px8RUVFKTc3Vzt27NDKlSu1YsUKzZgxw4xJS0tTVFSUevXqpdTUVE2aNEljxozR5s2bzZjVq1crLi5OM2fO1JdffqkOHTooMjJSmZmZpZ0LAACAUqFGAgAAcI+HYRhGaTc+ceKEAgICtG3bNvXs2VPSr9/+dezYUfPnzy92m02bNunuu+/WsWPHFBgYKElaunSppkyZohMnTshms2nKlCmKj4/Xvn37zO2GDh2qU6dOKSEhQZIUFhamLl26aOHChZKkgoICBQcHa+LEiZo6dWqJ8nc6nfLz81NWVpbsdntppwEwHdm1TAWH083XTfz7y7tfjwrMCABwMSvO/9RIgCtqJAC49ll9/r+qe0hlZWVJkmrXru0y/vbbb6tu3bpq27atpk2bprNnz5rrkpOT1a5dO7PQkqTIyEg5nU7t37/fjImIiHDZZ2RkpJKTkyVJubm5SklJcYnx9PRURESEGQMAAFBRqJEAAAAur0ppNywoKNCkSZN02223qW3btub4Qw89pMaNG6tBgwbas2ePpkyZokOHDundd9+VJDkcDpdCS5L52uFwXDbG6XTq3Llz+vnnn5Wfn19szMGDBy+Zc05OjnJycszXTqezFEcOAABwadRIAAAAV1bqhlRMTIz27dunTz75xGV87Nix5r/btWun+vXrq0+fPjpy5IiaN29e+kzLwNy5czV79uwKzQEAAFRu1EgAAABXVqo/2ZswYYI2bNigjz/+WA0bNrxsbFhYmCTp8OHDkqSgoCBlZGS4xBS+DgoKumyM3W5X1apVVbduXXl5eRUbU7iP4kybNk1ZWVnmcvTo0RIcLQAAQMlQIwEAAJSMWw0pwzA0YcIErVu3Tlu2bFHTpk2vuE1qaqokqX79+pKk8PBw7d271+VJL4mJibLb7QoJCTFjkpKSXPaTmJio8PBwSZLNZlNoaKhLTEFBgZKSksyY4vj4+Mhut7ssAAAAV4saCQAAwD1u/cleTEyMVq1apffee081a9Y072fg5+enqlWr6siRI1q1apUGDBigOnXqaM+ePYqNjVXPnj3Vvn17SVLfvn0VEhKi4cOHa968eXI4HJo+fbpiYmLk4+MjSRo3bpwWLlyoyZMn6+GHH9aWLVu0Zs0axcfHm7nExcUpOjpanTt3VteuXTV//nxlZ2dr1KhRZTU3AAAAJUKNBAAA4B63GlJLliyR9Otjiy+0fPlyjRw5UjabTR999JFZ+AQHB2vw4MGaPn26Gevl5aUNGzZo/PjxCg8PV/Xq1RUdHa1nnnnGjGnatKni4+MVGxurBQsWqGHDhnrjjTcUGRlpxgwZMkQnTpzQjBkz5HA41LFjRyUkJBS5iScAAEB5o0YCAABwj4dhGEZFJ1FRnE6n/Pz8lJWVxaXpKBNHdi1TweF083UT//7y7tejAjMCAFyM8/+VMUcoa9RIAHDts/r8X6qbmgMAAAAAAAClRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEu51ZCaO3euunTpopo1ayogIEADBw7UoUOHXGJ++eUXxcTEqE6dOqpRo4YGDx6sjIwMl5j09HRFRUWpWrVqCggI0JNPPqm8vDyXmK1bt6pTp07y8fFRixYttGLFiiL5LFq0SE2aNJGvr6/CwsK0c+dOdw4HAACgTFAjAQAAuMethtS2bdsUExOjzz77TImJiTp//rz69u2r7OxsMyY2NlYffPCB1q5dq23btunYsWMaNGiQuT4/P19RUVHKzc3Vjh07tHLlSq1YsUIzZswwY9LS0hQVFaVevXopNTVVkyZN0pgxY7R582YzZvXq1YqLi9PMmTP15ZdfqkOHDoqMjFRmZubVzAcAAIDbqJEAAADc42EYhlHajU+cOKGAgABt27ZNPXv2VFZWlurVq6dVq1bp/vvvlyQdPHhQbdq0UXJysrp166ZNmzbp7rvv1rFjxxQYGChJWrp0qaZMmaITJ07IZrNpypQpio+P1759+8z3Gjp0qE6dOqWEhARJUlhYmLp06aKFCxdKkgoKChQcHKyJEydq6tSpJcrf6XTKz89PWVlZstvtpZ0GwHRk1zIVHE43Xzfx7y/vfj0qMCMAwMWsOP9TIwGuqJEA4Npn9fn/qu4hlZWVJUmqXbu2JCklJUXnz59XRESEGdO6dWs1atRIycnJkqTk5GS1a9fOLLQkKTIyUk6nU/v37zdjLtxHYUzhPnJzc5WSkuIS4+npqYiICDOmODk5OXI6nS4LAABAWaNGAgAAuLxSN6QKCgo0adIk3XbbbWrbtq0kyeFwyGazyd/f3yU2MDBQDofDjLmw0CpcX7jucjFOp1Pnzp3Tjz/+qPz8/GJjCvdRnLlz58rPz89cgoOD3T9wAACAy6BGAgAAuLJSN6RiYmK0b98+vfPOO2WZT7maNm2asrKyzOXo0aMVnRIAAKhkqJEAAACurEppNpowYYI2bNig7du3q2HDhuZ4UFCQcnNzderUKZdvADMyMhQUFGTGXPykl8InzFwYc/FTZzIyMmS321W1alV5eXnJy8ur2JjCfRTHx8dHPj4+7h8wAABACVAjAQAAlIxbV0gZhqEJEyZo3bp12rJli5o2beqyPjQ0VN7e3kpKSjLHDh06pPT0dIWHh0uSwsPDtXfvXpcnvSQmJsputyskJMSMuXAfhTGF+7DZbAoNDXWJKSgoUFJSkhkDAABgFWokAAAA97h1hVRMTIxWrVql9957TzVr1jTvReDn56eqVavKz89Po0ePVlxcnGrXri273a6JEycqPDxc3bp1kyT17dtXISEhGj58uObNmyeHw6Hp06crJibG/GZu3LhxWrhwoSZPnqyHH35YW7Zs0Zo1axQfH2/mEhcXp+joaHXu3Fldu3bV/PnzlZ2drVGjRpXV3AAAAJQINRIAAIB73GpILVmyRJJ05513uowvX75cI0eOlCS9/PLL8vT01ODBg5WTk6PIyEgtXrzYjPXy8tKGDRs0fvx4hYeHq3r16oqOjtYzzzxjxjRt2lTx8fGKjY3VggUL1LBhQ73xxhuKjIw0Y4YMGaITJ05oxowZcjgc6tixoxISEorcxBMAAKC8USMBAAC4x8MwDKOik6goTqdTfn5+ysrKkt1ur+h0UAkc2bVMBYfTzddN/PvLu1+PCswIAHAxzv9XxhyhrFEjAcC1z+rzf6mfsgcAAAAAAACUBg0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACzldkNq+/btuueee9SgQQN5eHho/fr1LutHjhwpDw8Pl6Vfv34uMSdPntSwYcNkt9vl7++v0aNH68yZMy4xe/bs0e233y5fX18FBwdr3rx5RXJZu3atWrduLV9fX7Vr104bN25093AAAADKBDUSAABAybndkPp/7N15eBX1+ffxTxKysJ2ELQmRsMsS2UFCKKBASoBojWIFoQqURWywQlQW5ccitVjc0IoiVYG2UhYrSFkCMQgIRJBIFNkKGAQLJ0EhOaxZ5/nDJxMOCZATksnC+3Vdc13MzD0z93wTM7f3mTNz8eJFtW/fXvPnz79uTP/+/XX69Glz+te//uW0ftiwYdq/f7/i4uK0du1abdu2TWPHjjXXOxwO9evXT40aNVJiYqJeeeUVzZw5UwsXLjRjdu7cqUcffVSjRo3S3r17FRUVpaioKH333XeunhIAAMAto0YCAAAoOjfDMIxib+zmplWrVikqKspcNmLECKWlpRX4VDDPwYMHFRISoq+++kpdunSRJMXGxmrgwIH68ccfFRQUpHfffVcvvPCC7Ha7vLy8JElTpkzR6tWrdejQIUnS4MGDdfHiRa1du9bcd7du3dShQwctWLCgSPk7HA75+voqPT1dNputGCMAODu25z3lHj1hzjf2GyDP/j3KMCMAwLWsuP5TIwHOqJEAoPyz+vpfKs+Q2rJli/z9/dWyZUs9+eST+vnnn811CQkJ8vPzMwstSQoPD5e7u7t27dplxvTq1csstCQpIiJChw8f1rlz58yY8PBwp+NGREQoISHhunllZGTI4XA4TQAAAFahRgIAAPhFiTek+vfvr7///e+Kj4/XX/7yF23dulUDBgxQTk6OJMlut8vf399pmypVqqh27dqy2+1mTEBAgFNM3vzNYvLWF2bOnDny9fU1p+Dg4Fs7WQAAgCKiRgIAAMhXpaR3OGTIEPPfbdu2Vbt27dSsWTNt2bJFffv2LenDuWTq1KmKiYkx5x0OBwUXAACwBDUSAABAvlL5yt7VmjZtqrp16+ro0aOSpMDAQKWmpjrFZGdn6+zZswoMDDRjUlJSnGLy5m8Wk7e+MN7e3rLZbE4TAABAWaBGAgAAt7NSb0j9+OOP+vnnn1W/fn1JUlhYmNLS0pSYmGjGbN68Wbm5uQoNDTVjtm3bpqysLDMmLi5OLVu2VK1atcyY+Ph4p2PFxcUpLCystE8JAADgllEjAQCA25nLDakLFy4oKSlJSUlJkqTk5GQlJSXpxIkTunDhgp577jl9+eWXOn78uOLj4/XAAw+oefPmioiIkCS1bt1a/fv315gxY7R7927t2LFD48eP15AhQxQUFCRJGjp0qLy8vDRq1Cjt379fy5cv15tvvul0K/nTTz+t2NhYvfbaazp06JBmzpypPXv2aPz48SUwLAAAAK6hRgIAACg6lxtSe/bsUceOHdWxY0dJUkxMjDp27Kjp06fLw8ND3377rX7zm9+oRYsWGjVqlDp37qwvvvhC3t7e5j4++ugjtWrVSn379tXAgQPVo0cPLVy40Fzv6+urTZs2KTk5WZ07d9Yzzzyj6dOna+zYsWZM9+7dtXTpUi1cuFDt27fXxx9/rNWrV6tNmza3Mh4AAADFQo0EAABQdG6GYRhlnURZcTgc8vX1VXp6Os9KQIk4tuc95R49Yc439hsgz/49yjAjAMC1uP7fHGOEkkaNBADln9XX/1J/hhQAAAAAAABwNRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsJTLDalt27bp/vvvV1BQkNzc3LR69Wqn9YZhaPr06apfv76qVq2q8PBwHTlyxCnm7NmzGjZsmGw2m/z8/DRq1ChduHDBKebbb79Vz5495ePjo+DgYM2dO7dALitXrlSrVq3k4+Ojtm3bav369a6eDgAAQImgRgIAACg6lxtSFy9eVPv27TV//vxC18+dO1dvvfWWFixYoF27dql69eqKiIjQlStXzJhhw4Zp//79iouL09q1a7Vt2zaNHTvWXO9wONSvXz81atRIiYmJeuWVVzRz5kwtXLjQjNm5c6ceffRRjRo1Snv37lVUVJSioqL03XffuXpKAAAAt4waCQAAoOjcDMMwir2xm5tWrVqlqKgoSb988hcUFKRnnnlGzz77rCQpPT1dAQEBWrx4sYYMGaKDBw8qJCREX331lbp06SJJio2N1cCBA/Xjjz8qKChI7777rl544QXZ7XZ5eXlJkqZMmaLVq1fr0KFDkqTBgwfr4sWLWrt2rZlPt27d1KFDBy1YsKBI+TscDvn6+io9PV02m624wwCYju15T7lHT5jzjf0GyLN/jzLMCABwLSuu/9RIgDNqJAAo/6y+/pfoM6SSk5Nlt9sVHh5uLvP19VVoaKgSEhIkSQkJCfLz8zMLLUkKDw+Xu7u7du3aZcb06tXLLLQkKSIiQocPH9a5c+fMmKuPkxeTdxwAAIDyghoJAADAWZWS3JndbpckBQQEOC0PCAgw19ntdvn7+zsnUaWKateu7RTTpEmTAvvIW1erVi3Z7fYbHqcwGRkZysjIMOcdDocrpwcAAFAs1EgAAADObqu37M2ZM0e+vr7mFBwcXNYpAQAAlDlqJAAAYLUSbUgFBgZKklJSUpyWp6SkmOsCAwOVmprqtD47O1tnz551iilsH1cf43oxeesLM3XqVKWnp5vTyZMnXT1FAAAAl1EjAQAAOCvRhlSTJk0UGBio+Ph4c5nD4dCuXbsUFhYmSQoLC1NaWpoSExPNmM2bNys3N1ehoaFmzLZt25SVlWXGxMXFqWXLlqpVq5YZc/Vx8mLyjlMYb29v2Ww2pwkAAKC0USMBAAA4c7khdeHCBSUlJSkpKUnSLw/pTEpK0okTJ+Tm5qYJEyboT3/6k9asWaN9+/bp8ccfV1BQkPmWmdatW6t///4aM2aMdu/erR07dmj8+PEaMmSIgoKCJElDhw6Vl5eXRo0apf3792v58uV68803FRMTY+bx9NNPKzY2Vq+99poOHTqkmTNnas+ePRo/fvytjwoAAICLqJEAAACKzuWHmu/Zs0e9e/c25/MKoOHDh2vx4sWaNGmSLl68qLFjxyotLU09evRQbGysfHx8zG0++ugjjR8/Xn379pW7u7sGDRqkt956y1zv6+urTZs2KTo6Wp07d1bdunU1ffp0jR071ozp3r27li5dqmnTpun555/XnXfeqdWrV6tNmzbFGggAAIBbQY0EAABQdG6GYRhlnURZcTgc8vX1VXp6Oremo0Qc2/Oeco+eMOcb+w2QZ/8eZZgRAOBaXP9vjjFCSaNGAoDyz+rr/231lj0AAAAAAACUPRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiqxBtSM2fOlJubm9PUqlUrc/2VK1cUHR2tOnXqqEaNGho0aJBSUlKc9nHixAlFRkaqWrVq8vf313PPPafs7GynmC1btqhTp07y9vZW8+bNtXjx4pI+FQAAgBJDjQQAAJCvVO6Quuuuu3T69Glz2r59u7lu4sSJ+s9//qOVK1dq69atOnXqlB566CFzfU5OjiIjI5WZmamdO3dqyZIlWrx4saZPn27GJCcnKzIyUr1791ZSUpImTJig0aNHa+PGjaVxOgAAACWCGgkAAOAXVUplp1WqKDAwsMDy9PR0ffDBB1q6dKn69OkjSVq0aJFat26tL7/8Ut26ddOmTZt04MABffbZZwoICFCHDh00e/ZsTZ48WTNnzpSXl5cWLFigJk2a6LXXXpMktW7dWtu3b9cbb7yhiIiI0jglAACAW0aNBAAA8ItSuUPqyJEjCgoKUtOmTTVs2DCdOHFCkpSYmKisrCyFh4ebsa1atVLDhg2VkJAgSUpISFDbtm0VEBBgxkRERMjhcGj//v1mzNX7yIvJ2wcAAEB5RI0EAADwixK/Qyo0NFSLFy9Wy5Ytdfr0ac2aNUs9e/bUd999J7vdLi8vL/n5+TltExAQILvdLkmy2+1OhVbe+rx1N4pxOBy6fPmyqlatWmhuGRkZysjIMOcdDsctnSsAAEBRUSMBAADkK/GG1IABA8x/t2vXTqGhoWrUqJFWrFhx3SLIKnPmzNGsWbPKNAcAAHB7okYCAADIVypf2buan5+fWrRooaNHjyowMFCZmZlKS0tziklJSTGfpxAYGFjgjTJ58zeLsdlsNyzopk6dqvT0dHM6efLkrZ4eAABAsVAjAQCA21mpN6QuXLigY8eOqX79+urcubM8PT0VHx9vrj98+LBOnDihsLAwSVJYWJj27dun1NRUMyYuLk42m00hISFmzNX7yIvJ28f1eHt7y2azOU0AAABlgRoJAADczkq8IfXss89q69atOn78uHbu3KkHH3xQHh4eevTRR+Xr66tRo0YpJiZGn3/+uRITEzVy5EiFhYWpW7dukqR+/fopJCREjz32mL755htt3LhR06ZNU3R0tLy9vSVJ48aN0/fff69Jkybp0KFDeuedd7RixQpNnDixpE8HAACgRFAjAQAA5CvxZ0j9+OOPevTRR/Xzzz+rXr166tGjh7788kvVq1dPkvTGG2/I3d1dgwYNUkZGhiIiIvTOO++Y23t4eGjt2rV68sknFRYWpurVq2v48OF68cUXzZgmTZpo3bp1mjhxot588001aNBA77//Pq8zBgAA5RY1EgAAQD43wzCMsk6irDgcDvn6+io9PZ1b01Eiju15T7lHT5jzjf0GyLN/jzLMCABwLa7/N8cYoaRRIwFA+Wf19b/UnyEFAAAAAAAAXI2GFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWqvANqfnz56tx48by8fFRaGiodu/eXdYpAQAAlDlqJAAAUJ5V6IbU8uXLFRMToxkzZujrr79W+/btFRERodTU1LJODQAAoMxQIwEAgPKuSlkncCtef/11jRkzRiNHjpQkLViwQOvWrdOHH36oKVOmlHF2AACUT1mx28v0+J79e5Tp8W8H1EgAALiOGslaFbYhlZmZqcTERE2dOtVc5u7urvDwcCUkJBS6TUZGhjIyMsz59PR0SZLD4SjdZHHbOH/hsoxL+b9jDs+L8uT3C6hwsuKcryOevw4r1na4jn9vLLCoqGNcEvKu+4ZhWHZMK1EjoTyiRgIqh8JqnaJcw6mRiug2q5EqbEPqp59+Uk5OjgICApyWBwQE6NChQ4VuM2fOHM2aNavA8uDg4FLJEZBeK+sEAADXcf78efn6+pZ1GiWOGgkVAzUSAJRXVtVIFbYhVRxTp05VTEyMOZ+bm6uzZ8+qTp06cnNzc3l/DodDwcHBOnnypGw2W0mmWuEwFs4YD2eMRz7Gwhnj4YzxyFeaY2EYhs6fP6+goKAS3W9FRo1UehgLZ4yHM8YjH2PhjPFwxnjkq0w1UoVtSNWtW1ceHh5KSUlxWp6SkqLAwMBCt/H29pa3t7fTMj8/v1vOxWaz3fb/UeRhLJwxHs4Yj3yMhTPGwxnjka+0xqIy3hmVhxqpfGIsnDEezhiPfIyFM8bDGeORrzLUSBX2LXteXl7q3Lmz4uPjzWW5ubmKj49XWJh137EEAAAoT6iRAABARVBh75CSpJiYGA0fPlxdunRR165dNW/ePF28eNF8owwAAMDtiBoJAACUdxW6ITV48GCdOXNG06dPl91uV4cOHRQbG1vgIZ6lxdvbWzNmzChwi/vtiLFwxng4YzzyMRbOGA9njEc+xuLWUCOVH4yFM8bDGeORj7Fwxng4YzzyVaaxcDMq6zuPAQAAAAAAUC5V2GdIAQAAAAAAoGKiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pFxw9uxZDRs2TDabTX5+fho1apQuXLhQpG0Nw9CAAQPk5uam1atXl26iFnF1PM6ePaunnnpKLVu2VNWqVdWwYUP98Y9/VHp6uoVZl5z58+ercePG8vHxUWhoqHbv3n3D+JUrV6pVq1by8fFR27ZttX79eosytYYr4/G3v/1NPXv2VK1atVSrVi2Fh4ffdPwqEld/N/IsW7ZMbm5uioqKKt0ELebqeKSlpSk6Olr169eXt7e3WrRoUWn+e3F1LObNm2f+zQwODtbEiRN15coVi7ItXdu2bdP999+voKCgIl8bt2zZok6dOsnb21vNmzfX4sWLSz1PFB11Uj5qJGqkq1Ej5aNGckaNlI8aKd9tVSMZKLL+/fsb7du3N7788kvjiy++MJo3b248+uijRdr29ddfNwYMGGBIMlatWlW6iVrE1fHYt2+f8dBDDxlr1qwxjh49asTHxxt33nmnMWjQIAuzLhnLli0zvLy8jA8//NDYv3+/MWbMGMPPz89ISUkpNH7Hjh2Gh4eHMXfuXOPAgQPGtGnTDE9PT2Pfvn0WZ146XB2PoUOHGvPnzzf27t1rHDx40BgxYoTh6+tr/PjjjxZnXvJcHYs8ycnJxh133GH07NnTeOCBB6xJ1gKujkdGRobRpUsXY+DAgcb27duN5ORkY8uWLUZSUpLFmZc8V8fio48+Mry9vY2PPvrISE5ONjZu3GjUr1/fmDhxosWZl47169cbL7zwgvHJJ58U6dr4/fffG9WqVTNiYmKMAwcOGH/9618NDw8PIzY21pqEcVPUSfmokaiR8lAj5aNGckaNlI8aydntVCPRkCqiAwcOGJKMr776yly2YcMGw83Nzfjf//53w2337t1r3HHHHcbp06crTaF1K+NxtRUrVhheXl5GVlZWaaRZarp27WpER0eb8zk5OUZQUJAxZ86cQuMfeeQRIzIy0mlZaGio8cQTT5RqnlZxdTyulZ2dbdSsWdNYsmRJaaVomeKMRXZ2ttG9e3fj/fffN4YPH16pii1Xx+Pdd981mjZtamRmZlqVomVcHYvo6GijT58+TstiYmKMX/3qV6WaZ1koyrVx0qRJxl133eW0bPDgwUZEREQpZoaiok7KR41EjXQ1aqR81EjOqJHyUSNdX2WvkfjKXhElJCTIz89PXbp0MZeFh4fL3d1du3btuu52ly5d0tChQzV//nwFBgZakaolijse10pPT5fNZlOVKlVKI81SkZmZqcTERIWHh5vL3N3dFR4eroSEhEK3SUhIcIqXpIiIiOvGVyTFGY9rXbp0SVlZWapdu3ZppWmJ4o7Fiy++KH9/f40aNcqKNC1TnPFYs2aNwsLCFB0drYCAALVp00Z//vOflZOTY1XapaI4Y9G9e3clJiaat6x///33Wr9+vQYOHGhJzuVNZf47WhlQJ+WjRqJGykONlI8ayRk1Uj5qpFtXkf+OVpwrXBmz2+3y9/d3WlalShXVrl1bdrv9uttNnDhR3bt31wMPPFDaKVqquONxtZ9++kmzZ8/W2LFjSyPFUvPTTz8pJydHAQEBTssDAgJ06NChQrex2+2Fxhd1rMqz4ozHtSZPnqygoKACf0grmuKMxfbt2/XBBx8oKSnJggytVZzx+P7777V582YNGzZM69ev19GjR/WHP/xBWVlZmjFjhhVpl4rijMXQoUP1008/qUePHjIMQ9nZ2Ro3bpyef/55K1Iud673d9ThcOjy5cuqWrVqGWUGiTrpatRI1Eh5qJHyUSM5o0bKR4106ypyjXTb3yE1ZcoUubm53XAq6gXjWmvWrNHmzZs1b968kk26FJXmeFzN4XAoMjJSISEhmjlz5q0njgrr5Zdf1rJly7Rq1Sr5+PiUdTqWOn/+vB577DH97W9/U926dcs6nXIhNzdX/v7+WrhwoTp37qzBgwfrhRde0IIFC8o6Nctt2bJFf/7zn/XOO+/o66+/1ieffKJ169Zp9uzZZZ0abiPUSfmokWA1aiRqpKtRI+WjRqo8bvs7pJ555hmNGDHihjFNmzZVYGCgUlNTnZZnZ2fr7Nmz173FfPPmzTp27Jj8/Pyclg8aNEg9e/bUli1bbiHz0lGa45Hn/Pnz6t+/v2rWrKlVq1bJ09PzVtO2VN26deXh4aGUlBSn5SkpKdc998DAQJfiK5LijEeeV199VS+//LI+++wztWvXrjTTtISrY3Hs2DEdP35c999/v7ksNzdX0i+fph8+fFjNmjUr3aRLUXF+N+rXry9PT095eHiYy1q3bi273a7MzEx5eXmVas6lpThj8X//93967LHHNHr0aElS27ZtdfHiRY0dO1YvvPCC3N1vr8+Urvd31GazletP/io66qR81Eg3R43kjBopHzWSM2qkfNRIt64i10i310+qEPXq1VOrVq1uOHl5eSksLExpaWlKTEw0t928ebNyc3MVGhpa6L6nTJmib7/9VklJSeYkSW+88YYWLVpkxem5rDTHQ/rlU79+/frJy8tLa9asqZCf9nh5ealz586Kj483l+Xm5io+Pl5hYWGFbhMWFuYUL0lxcXHXja9IijMekjR37lzNnj1bsbGxTs/ZqMhcHYtWrVpp3759Tn8jfvOb36h3795KSkpScHCwlemXuOL8bvzqV7/S0aNHzaJTkv773/+qfv36FbbQkoo3FpcuXSpQUOUVoYZhlF6y5VRl/jtanlEn5aNGujlqJGfUSPmokZxRI+WjRrp1FfrvaNk+U71i6d+/v9GxY0dj165dxvbt240777zT6RW+P/74o9GyZUtj165d192HKsHbY/K4Oh7p6elGaGio0bZtW+Po0aPG6dOnzSk7O7usTqNYli1bZnh7exuLFy82Dhw4YIwdO9bw8/Mz7Ha7YRiG8dhjjxlTpkwx43fs2GFUqVLFePXVV42DBw8aM2bMqHSvNHZlPF5++WXDy8vL+Pjjj51+D86fP19Wp1BiXB2La1W2N8i4Oh4nTpwwatasaYwfP944fPiwsXbtWsPf39/405/+VFanUGJcHYsZM2YYNWvWNP71r38Z33//vbFp0yajWbNmxiOPPFJWp1Cizp8/b+zdu9fYu3evIcl4/fXXjb179xo//PCDYRiGMWXKFOOxxx4z4/Neafzcc88ZBw8eNObPn19hXml8u6BOykeNRI2UhxopHzWSM2qkfNRIzm6nGomGlAt+/vln49FHHzVq1Khh2Gw2Y+TIkU4Xh+TkZEOS8fnnn193H5Wl0DIM18fj888/NyQVOiUnJ5fNSdyCv/71r0bDhg0NLy8vo2vXrsaXX35prrvnnnuM4cOHO8WvWLHCaNGiheHl5WXcddddxrp16yzOuHS5Mh6NGjUq9PdgxowZ1ideClz93bhaZSu2DMP18di5c6cRGhpqeHt7G02bNjVeeumlCvc/ZNfjylhkZWUZM2fONJo1a2b4+PgYwcHBxh/+8Afj3Llz1ideCq53Tcgbg+HDhxv33HNPgW06dOhgeHl5GU2bNjUWLVpked64PuqkfNRI1EhXo0bKR43kjBopHzVSvtupRnIzjNvwnjYAAAAAAACUmdv+GVIAAAAAAACwFg0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKgGnLli1yc3PTli1bSnS/bm5umjlzZonu01WLFy+Wm5ubjh8/Xqr7vPfee3Xvvfe6vC9Xxr64x3DFzJkz5ebmVqrHKExubq7atGmjl1566aaxheWYnZ2tSZMmKTg4WO7u7oqKinLp+AsWLFDDhg2VkZHh0nYAgMqNGunW90mNdGuokVAZ0ZBCpbRz507NnDlTaWlpZZ3KbWP9+vVlXlCh7MXFxalHjx6qVq2aatWqpYcfftilAvdf//qXTp48qfHjxxfr+B9++KFeeeUVPfzww1qyZIkmTpwoSVq+fLl+97vf6c4775Sbm9t1i9URI0YoMzNT7733XrGODwDlHTWS9aiRIJXPGunnn3/WK6+8ol69eqlevXry8/NTt27dtHz58gLbUyOhNNCQQqW0c+dOzZo1i2LLQuvXr9esWbMKXXf58mVNmzbN4oycPfbYY7p8+bIaNWpUqsfZtGmTNm3a5PJ2vXr10uXLl9WrV69SyMoaa9euVf/+/ZWRkaGXX35ZzzzzjLZu3aoePXrozJkzRdrHK6+8oiFDhsjX17dYOWzevFl33HGH3njjDT322GO65557JEnvvvuuPv30UwUHB6tWrVrX3d7Hx0fDhw/X66+/LsMwipUDAJRn1EjWo0b6BTVS+auREhIS9MILL6h27dqaNm2aXnrpJVWrVk1DhgzRjBkznLanRkJpoCEFVAKXLl0qdHl2drYyMzMtzqYgHx8fValSpUxz8PDwkI+PT6nfYu3l5SUvLy+Xt3N3d5ePj4/c3Svun+XJkyeradOm2rFjh/74xz9q2rRp+uyzz3T69Gm9/PLLN91+7969+uabb/TII48UO4fU1FT5+fkVWP6Pf/xD6enp2rx5s4KCgm64j0ceeUQ//PCDPv/882LnAQAoH6iRbo4aqfSV1xrprrvu0pEjR7R69Wo9/fTTio6OVnx8vPr06aO//OUvunjxolM8NRJKWsX9rxq4jpkzZ+q5556TJDVp0kRubm5O32HPzs7W7Nmz1axZM3l7e6tx48Z6/vnnC3wfunHjxrrvvvu0adMmdejQQT4+PgoJCdEnn3xSrLz++c9/qmvXruZtur169SrwKdE777yju+66S97e3goKClJ0dHSBTzDvvfdetWnTRomJierVq5eqVaum559/XsePH5ebm5teffVVzZs3zzy/AwcOSJIOHTqkhx9+WLVr15aPj4+6dOmiNWvW3DTvL774Qr/97W/VsGFDeXt7Kzg4WBMnTtTly5fNmBEjRmj+/PmSZI731UVNYc9H2Lt3rwYMGCCbzaYaNWqob9+++vLLL51i8p4/sGPHDsXExKhevXqqXr26HnzwwSJ/mnTtvq6+NTrvZ7x9+3Z17dpVPj4+atq0qf7+978X2H7//v3q06ePqlatqgYNGuhPf/qTcnNzC8Rd/eyClJQUValSpdBPRQ8fPiw3Nze9/fbbkq7/fISFCxeqWbNmqlq1qrp27aovvviiSOd2vX0W5edZHGfPntWBAwf04IMPOhWb7du3V+vWrbVs2bKb7mP16tXy8vIq9BPQ7du36+6775aPj4+aNWtW4HbxvN//zz//XPv37zd/B/POPe95CUXRuXNn1a5dW59++mmR4gGgoqBGokYqDDXSL27HGqlJkyYF7oxzc3NTVFSUMjIy9P333zuto0ZCSSvbdjxQCh566CH997//1b/+9S+98cYbqlu3riSpXr16kqTRo0dryZIlevjhh/XMM89o165dmjNnjg4ePKhVq1Y57evIkSMaPHiwxo0bp+HDh2vRokX67W9/q9jYWP36178uck6zZs3SzJkz1b17d7344ovy8vLSrl27tHnzZvXr10/SL0XirFmzFB4erieffFKHDx/Wu+++q6+++ko7duyQp6enub+ff/5ZAwYM0JAhQ/S73/1OAQEB5rpFixbpypUrGjt2rLy9vVW7dm3t379fv/rVr3THHXdoypQpql69ulasWKGoqCj9+9//1oMPPnjd3FeuXKlLly7pySefVJ06dbR792799a9/1Y8//qiVK1dKkp544gmdOnVKcXFx+sc//nHT8di/f7969uwpm82mSZMmydPTU++9957uvfdebd26VaGhoU7xTz31lGrVqqUZM2bo+PHjmjdvnsaPH1/o99tddfToUT388MMaNWqUhg8frg8//FAjRoxQ586dddddd0mS7Ha7evfurezsbHP8Fi5cqKpVq95w3wEBAbrnnnu0YsWKArc9L1++XB4eHvrtb3973e0/+OADPfHEE+revbsmTJig77//Xr/5zW9Uu3ZtBQcHF+t8i/LzLI68/1kpbEyqVaum/fv3y263KzAw8Lr72Llzp9q0aeP0uy5J+/btU79+/VSvXj3NnDlT2dnZmjFjhtPvfb169fSPf/xDL730ki5cuKA5c+ZIklq3bl2s8+nUqZN27NhRrG0BoLyiRqJGcgU10u1bI9ntdkky/0ZcjRoJJcoAKqFXXnnFkGQkJyc7LU9KSjIkGaNHj3Za/uyzzxqSjM2bN5vLGjVqZEgy/v3vf5vL0tPTjfr16xsdO3Ysci5Hjhwx3N3djQcffNDIyclxWpebm2sYhmGkpqYaXl5eRr9+/Zxi3n77bUOS8eGHH5rL7rnnHkOSsWDBAqd9JScnG5IMm81mpKamOq3r27ev0bZtW+PKlStOx+7evbtx5513mss+//xzQ5Lx+eefm8suXbpU4JzmzJljuLm5GT/88IO5LDo62rjenxRJxowZM8z5qKgow8vLyzh27Ji57NSpU0bNmjWNXr16mcsWLVpkSDLCw8PNsTIMw5g4caLh4eFhpKWlFXq8wuTt6+rfibyf8bZt28xlqamphre3t/HMM8+YyyZMmGBIMnbt2uUU5+vrW2Cf99xzj3HPPfeY8++9954hydi3b59TPiEhIUafPn3M+WvHPjMz0/D39zc6dOhgZGRkmHELFy40JDkdo7BzK2yfhlH0n+eMGTOu+/MsTE5OjuHn52f07dvXaflPP/1kVK9e3ZBk7Nmz54b7aNCggTFo0KACy6OiogwfHx+n/A4cOGB4eHgUyPGee+4x7rrrrhse56677nIav8KMHTvWqFq16g1jAKAiokaiRroWNdIvqJF+8fPPPxv+/v5Gz549C11PjYSSxFf2cFtZv369JCkmJsZp+TPPPCNJWrdundPyoKAgp0/GbDabHn/8ce3du9f85OBmVq9erdzcXE2fPr3AV4bybtn+7LPPlJmZqQkTJjjFjBkzRjabrUBe3t7eGjlyZKHHGzRokPlJp/TLbcKbN2/WI488ovPnz+unn37STz/9pJ9//lkRERE6cuSI/ve//103/6s/zbl48aJ++uknde/eXYZhaO/evUUag6vl5ORo06ZNioqKUtOmTc3l9evX19ChQ7V9+3Y5HA6nbcaOHet0e3vPnj2Vk5OjH374weXjXyskJEQ9e/Y05+vVq6eWLVs63aK8fv16devWTV27dnWKGzZs2E33/9BDD6lKlSpOn1R+9913OnDggAYPHnzd7fbs2aPU1FSNGzfO6fbuESNGFPthllLJ/zzzuLu764knnlB8fLymTp2qI0eOKDExUY888oj5jI6b3fL+888/F3jgeE5OjjZu3KioqCg1bNjQXN66dWtFREQUO9+bqVWrli5fvnzdZ48AQGVDjUSNdC1qpNuvRsrNzdWwYcOUlpamv/71r4XGUCOhJNGQwm3lhx9+kLu7u5o3b+60PDAwUH5+fgUu3s2bNy/wgMcWLVpIUpFf03rs2DG5u7srJCTkhnlJUsuWLZ2We3l5qWnTpgXyuuOOO677UMgmTZo4zR89elSGYej//u//VK9ePacp7xbp1NTU6+Z24sQJjRgxQrVr11aNGjVUr149881l6enp193ues6cOaNLly4VOFfplwtobm6uTp486bT86ousJPOCfO7cOZePf61r9523/6v3/cMPP+jOO+8sEFfYOVyrbt266tu3r1asWGEuW758uapUqaKHHnroutvl/cyvPa6np6dTkeqqkv55Xu3FF1/UqFGjNHfuXLVo0UJdunRRlSpVNGrUKElSjRo1broP45q3tpw5c0aXL18u9vgXV14epf2AVwAoL6iRqJGuRY10+9VITz31lGJjY/X++++rffv2N8yDGgklgWdI4bZU0f+A3uh7+deuy3uo5LPPPnvdT0uuLT7z5OTk6Ne//rXOnj2ryZMnq1WrVqpevbr+97//acSIEYU+sLI0eHh4FLr82gtzedt3niFDhmjkyJFKSkpShw4dtGLFCvXt27fQ7+UXx/V+n3NycgrMl+bP08vLS++//75eeukl/fe//1VAQIBatGihoUOHFvo/OdeqU6dOiRTQJeHcuXOqVq3aTZ+BAQCVDTWSM2qk0tl3Hmqk8lMjzZo1S++8845efvllPfbYY9eNo0ZCSaIhhUrpehefRo0aKTc3V0eOHHF6kF9KSorS0tIKvGUi75Ozq/f33//+V9Ivbx8pimbNmik3N1cHDhxQhw4drpuX9MtbRa7+ZCczM1PJyckKDw8v0rEKk7c/T09Pl/ezb98+/fe//9WSJUv0+OOPm8vj4uIKxBa1gK1Xr56qVaumw4cPF1h36NAhubu7F/thlKWlUaNGOnLkSIHlhZ1DYaKiovTEE0+Yt6T/97//1dSpU296TOmXh8b26dPHXJ6VlaXk5GSnT63yPg299m1D135q7MrP81YEBASYD9PMycnRli1bFBoaetNP/1q1aqXk5GSnZfXq1VPVqlVvafyLIzk5udgPRAeA8owaKR810q2jRnJNea2R5s+fr5kzZ2rChAmaPHnyDWOpkVCS+MoeKqXq1atLKnjxGThwoCRp3rx5Tstff/11SVJkZKTT8lOnTjm9VcbhcOjvf/+7OnTocMM3YVwtKipK7u7uevHFFwt8upL3CVN4eLi8vLz01ltvOX3q9MEHHyg9Pb1AXq7w9/fXvffeq/fee0+nT58usP5GrwbO+2Ts6pwMw9Cbb75ZIPZ6Y17YPvv166dPP/3U6Zb+lJQULV26VD169JDNZrvhPqw2cOBAffnll9q9e7e57MyZM/roo4+KtL2fn58iIiK0YsUKLVu2TF5eXoqKirrhNl26dFG9evW0YMEC8/kC0i+vL752jJs1ayZJ2rZtm7ksJydHCxcudIpz5edZUl599VWdPn3afAbJjYSFhem7775zer24h4eHIiIitHr1ap04ccJcfvDgQW3cuLFUcpakr7/+Wt27dy+1/QNAWaFGykeNdOuokYqvvNRIy5cv1x//+EcNGzbM/O/9RqiRUJK4QwqVUufOnSVJL7zwgoYMGSJPT0/df//9at++vYYPH66FCxcqLS1N99xzj3bv3q0lS5YoKipKvXv3dtpPixYtNGrUKH311VcKCAjQhx9+qJSUFC1atKjIuTRv3lwvvPCCZs+erZ49e+qhhx6St7e3vvrqKwUFBWnOnDmqV6+epk6dqlmzZql///76zW9+o8OHD+udd97R3Xffrd/97ne3NB7z589Xjx491LZtW40ZM0ZNmzZVSkqKEhIS9OOPP+qbb74pdLtWrVqpWbNmevbZZ/W///1PNptN//73vwu9ZThvzP/4xz8qIiJCHh4eGjJkSKH7/dOf/qS4uDj16NFDf/jDH1SlShW99957ysjI0Ny5c2/pXEvDpEmT9I9//EP9+/fX008/bb7SuFGjRvr222+LtI/Bgwfrd7/7nd555x1FRETIz8/vhvGenp7605/+pCeeeEJ9+vTR4MGDlZycrEWLFhV4PsJdd92lbt26aerUqTp79qxq166tZcuWKTs72ynOlZ9ncfzzn//Uv//9b/Xq1Us1atTQZ599phUrVmj06NEaNGjQTbd/4IEHNHv2bG3dutV81bf0yy3ksbGx6tmzp/7whz8oOztbf/3rX3XXXXcVefy3bdtmFqNnzpzRxYsX9ac//UmS1KtXL/Xq1cuMTUxM1NmzZ/XAAw+4cvoAUCFQIzmjRro11EhFU15rpN27d+vxxx9XnTp11Ldv3wKNxO7duzuNKTUSSpw1L/MDrDd79mzjjjvuMNzd3Z1e95qVlWXMmjXLaNKkieHp6WkEBwcbU6dOdXrdr2H88rrbyMhIY+PGjUa7du0Mb29vo1WrVsbKlSuLlc+HH35odOzY0fD29jZq1apl3HPPPUZcXJxTzNtvv220atXK8PT0NAICAownn3zSOHfunFPM9V7ZmvdK41deeaXQ4x87dsx4/PHHjcDAQMPT09O44447jPvuu8/4+OOPzZjCXoF74MABIzw83KhRo4ZRt25dY8yYMcY333xjSDIWLVpkxmVnZxtPPfWUUa9ePcPNzc3pVbO65pXGhmEYX3/9tREREWHUqFHDqFatmtG7d29j586dTjF5r+r96quvnJYXlufNXO+VxpGRkQVir30tsWEYxrfffmvcc889ho+Pj3HHHXcYs2fPNj744IObvtI4j8PhMKpWrWpIMv75z38WWH+9c3rnnXeMJk2aGN7e3kaXLl2Mbdu2FXqMY8eOGeHh4Ya3t7cREBBgPP/880ZcXFyxf56uvtLYMAxj165dRq9evYxatWoZPj4+Rvv27Y0FCxY4vY76Ztq1a2eMGjWqwPKtW7canTt3Nry8vIymTZsaCxYsKDTH6/33kRdb2HTt7+bkyZONhg0bupQ3AFQk1EjOqJGokQzj9qyR8n7215uuPm/DoEZCyXMzjBJ8Kh1QiTRu3Fht2rTR2rVryzoV4Lbxj3/8Q9HR0Tpx4sRNPyEtDRkZGWrcuLGmTJmip59+2vLjA0BFQI0EWI8aCZURz5ACAJQbw4YNU8OGDTV//vwyOf6iRYvk6empcePGlcnxAQAACkONhMqIO6SA6yjKp392u/2G+6hatap8fX1LOjVc5cKFC7pw4cINY+rVq3fdVxfj5tLT03X58uUbxhT1AbYAgIqPGqlioEYqfdRIwK3hoebALahfv/4N1w8fPlyLFy+2Jpnb1KuvvqpZs2bdMCY5ObnIr6BGQU8//bSWLFlywxg+2wAAXI0aqexRI5U+aiTg1nCHFHALPvvssxuuDwoKUkhIiEXZ3J6+//57ff/99zeM6dGjh3x8fCzKqPI5cOCATp06dcOY8PBwi7IBAFQE1Ehljxqp9FEjAbeGhhQAAAAAAAAsxUPNAQAAAAAAYKnb+hlSubm5OnXqlGrWrCk3N7eyTgcAAFjAMAydP39eQUFBcnfns7nCUCMBAHD7sbpGuq0bUqdOnVJwcHBZpwEAAMrAyZMn1aBBg7JOo1yiRgIA4PZlVY10WzekatasKemXwbbZbGWcDQAAsILD4VBwcLBZB6AgaiQAAG4/VtdIt3VDKu8WdJvNRrEFAMBthq+iXR81EgAAty+raiQenAAAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFK39TOkAAC4kZycHGVlZZV1GnCRp6enPDw8yjoNAAAqLWqkiqm81Ug0pAAAuIZhGLLb7UpLSyvrVFBMfn5+CgwM5MHlAACUIGqkiq881Ug0pAAAuEZeoeXv769q1aqViws2isYwDF26dEmpqamSpPr165dxRgAAVB7USBVXeayRaEgBAHCVnJwcs9CqU6dOWaeDYqhataokKTU1Vf7+/uXq1nQAACoqaqSKr7zVSDzUHACAq+Q9D6FatWplnAluRd7Pj+dbAABQMqiRKofyVCPRkAIAoBDcgl6x8fMDAKB0cI2t2MrTz4+GFAAAAAAAACxFQwoAAAAAAACW4qHmAAAUUVbsdsuO5dm/R5Fjb3br9YwZMzRz5sxbzKh43NzctGrVKkVFRRV7HwsXLtTSpUv19ddf6/z58zp37pz8/PxKLEcAAHBrrKyRJOqkPGfPntWMGTO0adMmnThxQvXq1VNUVJRmz54tX1/fkk22FNCQAgCggjt9+rT57+XLl2v69Ok6fPiwuaxGjRou7S8zM1NeXl4llt+tunTpkvr376/+/ftr6tSpZZ0OAACoQCpznXTq1CmdOnVKr776qkJCQvTDDz9o3LhxOnXqlD7++OOyTu+m+MoeUMKyYrc7TQBQ2gIDA83J19dXbm5u5vzFixc1bNgwBQQEqEaNGrr77rv12WefOW3fuHFjzZ49W48//rhsNpvGjh0rSfrb3/6m4OBgVatWTQ8++KBef/31Ancmffrpp+rUqZN8fHzUtGlTzZo1S9nZ2eZ+JenBBx+Um5ubOf/NN9+od+/eqlmzpmw2mzp37qw9e/Zc9/wmTJigKVOmqFu3biUzYADKBDUSgLJQmeukNm3a6N///rfuv/9+NWvWTH369NFLL72k//znP+ZxyjMaUgAAVGIXLlzQwIEDFR8fr71796p///66//77deLECae4V199Ve3bt9fevXv1f//3f9qxY4fGjRunp59+WklJSfr1r3+tl156yWmbL774Qo8//riefvppHThwQO+9954WL15sxn311VeSpEWLFun06dPm/LBhw9SgQQN99dVXSkxM1JQpU+Tp6WnBaAAAAOSrjHVSenq6bDabqlQp/1+IK/8ZAgCAYmvfvr3at29vzs+ePVurVq3SmjVrNH78eHN5nz599Mwzz5jzL7zwggYMGKBnn31WktSiRQvt3LlTa9euNWNmzZqlKVOmaPjw4ZKkpk2bavbs2Zo0aZJmzJihevXqSZL8/PwUGBhobnfixAk999xzatWqlSTpzjvvLIUzBwAAuLHKVif99NNPmj17tnkXV3nHHVIAAFRiFy5c0LPPPqvWrVvLz89PNWrU0MGDBwt88telSxen+cOHD6tr165Oy66d/+abb/Tiiy+qRo0a5jRmzBidPn1aly5dum5OMTExGj16tMLDw/Xyyy/r2LFjt3iWAAAArqtMdZLD4VBkZKRCQkLK7CHtrrqlhtTLL78sNzc3TZgwwVx25coVRUdHq06dOqpRo4YGDRqklJQUp+1OnDihyMhIVatWTf7+/nruuecKfL9xy5Yt6tSpk7y9vdW8eXMtXry4wPHnz5+vxo0by8fHR6Ghodq9e/etnA4AAJXOs88+q1WrVunPf/6zvvjiCyUlJalt27bKzMx0iqtevbrL+75w4YJmzZqlpKQkc9q3b5+OHDkiHx+f6243c+ZM7d+/X5GRkdq8ebNCQkK0atUql49fnlEjAQBQ/lWWOun8+fPq37+/atasqVWrVlWYRyEUuyH11Vdf6b333lO7du2clk+cOFH/+c9/tHLlSm3dulWnTp3SQw89ZK7PyclRZGSkMjMztXPnTi1ZskSLFy/W9OnTzZjk5GRFRkaqd+/eSkpK0oQJEzR69Ght3LjRjFm+fLliYmI0Y8YMff3112rfvr0iIiKUmppa3FMCAKDS2bFjh0aMGKEHH3xQbdu2VWBgoI4fP37T7Vq2bGk+yyDPtfOdOnXS4cOH1bx58wKTu/svJYanp6dycnIK7L9FixaaOHGiNm3apIceekiLFi0q/kmWM9RIAABUDJWhTnI4HOrXr5+8vLy0Zs2aGza7yptiNaQuXLigYcOG6W9/+5tq1aplLk9PT9cHH3yg119/XX369FHnzp21aNEi7dy5U19++aUkadOmTTpw4ID++c9/qkOHDhowYIBmz56t+fPnm13IBQsWqEmTJnrttdfUunVrjR8/Xg8//LDeeOMN81ivv/66xowZo5EjRyokJEQLFixQtWrV9OGHH97KeAAAUKnceeed+uSTT5SUlKRvvvlGQ4cOVW5u7k23e+qpp7R+/Xq9/vrrOnLkiN577z1t2LBBbm5uZsz06dP197//XbNmzdL+/ft18OBBLVu2TNOmTTNjGjdurPj4eNntdp07d06XL1/W+PHjtWXLFv3www/asWOHvvrqK7Vu3fq6udjtdiUlJeno0aOSpH379ikpKUlnz569hZEpHdRIAABUHBW9TsprRl28eFEffPCBHA6H7Ha77HZ7oY2u8qZYDano6GhFRkYqPDzcaXliYqKysrKclrdq1UoNGzZUQkKCJCkhIUFt27ZVQECAGRMRESGHw6H9+/ebMdfuOyIiwtxHZmamEhMTnWLc3d0VHh5uxgAAgF+aE7Vq1VL37t11//33KyIiQp06dbrpdr/61a+0YMECvf7662rfvr1iY2M1ceJEp0/dIiIitHbtWm3atEl33323unXrpjfeeEONGjUyY1577TXFxcUpODhYHTt2lIeHh37++Wc9/vjjatGihR555BENGDBAs2bNum4uCxYsUMeOHTVmzBhJUq9evdSxY0etWbPmFkamdFAjAQBQcVT0Ounrr7/Wrl27tG/fPjVv3lz169c3p5MnT976AJUyl9+yt2zZMn399dcFbkeTfvkE08vLS35+fk7LAwICZLfbzZirC6289XnrbhTjcDh0+fJlnTt3Tjk5OYXGHDp06Lq5Z2RkKCMjw5x3OBw3OVsAAPJ59u9R1inc1IgRIzRixAhzvnHjxtq8ebNTTHR0tNP89W5NHzNmjNkEyptv3ry5U0xERIQiIiKum8/999+v+++/32nZv/71rxudQgEzZ86sEA/npEYCANyuKkKNJFW+Ounee++VYRhFji9vXLpD6uTJk3r66af10UcfVajvJeaZM2eOfH19zSk4OLisUwIAoNx69dVX9c033+jo0aP661//qiVLlpivLoYzaiQAAG4v1Em3zqWGVGJiolJTU9WpUydVqVJFVapU0datW/XWW2+pSpUqCggIUGZmptLS0py2S0lJUWBgoCQpMDCwwBtl8uZvFmOz2VS1alXVrVtXHh4ehcbk7aMwU6dOVXp6ujlVhFvYAAAoK7t379avf/1rtW3bVgsWLNBbb72l0aNHl3Va5RI1EgAAtxfqpFvn0lf2+vbtq3379jktGzlypFq1aqXJkycrODhYnp6eio+P16BBgyRJhw8f1okTJxQWFiZJCgsL00svvaTU1FT5+/tLkuLi4mSz2RQSEmLGrF+/3uk4cXFx5j68vLzUuXNnxcfHKyoqSpKUm5ur+Ph4jR8//rr5e3t7y9vb25VTBgDgtrVixYqyTqHCoEYCAOD2Qp1061xqSNWsWVNt2rRxWla9enXVqVPHXD5q1CjFxMSodu3astlseuqppxQWFqZu3bpJkvr166eQkBA99thjmjt3rux2u6ZNm6bo6GizEBo3bpzefvttTZo0Sb///e+1efNmrVixQuvWrTOPGxMTo+HDh6tLly7q2rWr5s2bp4sXL2rkyJG3NCAAAACuokYCAABwjcsPNb+ZN954Q+7u7ho0aJAyMjIUERGhd955x1zv4eGhtWvX6sknn1RYWJiqV6+u4cOH68UXXzRjmjRponXr1mnixIl688031aBBA73//vtODwMbPHiwzpw5o+nTp8tut6tDhw6KjY0t8BBPAACA8oAaCQAAIJ+bUZEfyX6LHA6HfH19lZ6eLpvNVtbpoJLIit3uNF9R3jgB4BdXrlxRcnKymjRpUiEfTo1f3OjnyPX/5hgjlAZqJKBio0aqHMpTjeTSQ80BAAAAAACAW0VDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApUr8LXsAAFRWx/a8Z9mxmnV5wqX4ESNGaMmSJZKkKlWqqHbt2mrXrp0effRRjRgxQu7uFfczqP3792v69OlKTEzUDz/8oDfeeEMTJkwo67QAAMD/Z2WNJFEnXe1vf/ub/v73v+u7776TJHXu3Fl//vOf1bVr1zLO7OYq7qgDAAAn/fv31+nTp3X8+HFt2LBBvXv31tNPP6377rtP2dnZZZ1esV26dElNmzbVyy+/rMDAwLJOBwAAVECVtU7asmWLHn30UX3++edKSEhQcHCw+vXrp//9739lndpN0ZACAKCS8Pb2VmBgoO644w516tRJzz//vD799FNt2LBBixcvNuPS0tI0evRo1atXTzabTX369NE333zjtK///Oc/uvvuu+Xj46O6devqwQcfNNedO3dOjz/+uGrVqqVq1appwIABOnLkiCTp4sWLstls+vjjj532t3r1alWvXl3nz59XZmamxo8fr/r168vHx0eNGjXSnDlzrnted999t1555RUNGTJE3t7eJTBSAADgdlNZ66SPPvpIf/jDH9ShQwe1atVK77//vnJzcxUfH18Co1a6aEgBAFCJ9enTR+3bt9cnn3xiLvvtb3+r1NRUbdiwQYmJierUqZP69u2rs2fPSpLWrVunBx98UAMHDtTevXsVHx/vdNv3iBEjtGfPHq1Zs0YJCQkyDEMDBw5UVlaWqlevriFDhmjRokVOeSxatEgPP/ywatasqbfeektr1qzRihUrdPjwYX300Udq3LixJeMBAACQpzLWSZcuXVJWVpZq1659a4NjAZ4hBQBAJdeqVSt9++23kqTt27dr9+7dSk1NNe82evXVV7V69Wp9/PHHGjt2rF566SUNGTJEs2bNMvfRvn17SdKRI0e0Zs0a7dixQ927d5f0yydzwcHBWr16tX77299q9OjR6t69u06fPq369esrNTVV69ev12effSZJOnHihO6880716NFDbm5uatSokZXDAQAAYKpsddLkyZMVFBSk8PDwWx6b0sYdUgAAVHKGYcjNzU2S9M033+jChQuqU6eOatSoYU7Jyck6duyYJCkpKUl9+/YtdF8HDx5UlSpVFBoaai6rU6eOWrZsqYMHD0qSunbtqrvuust8eOg///lPNWrUSL169ZL0yyeHSUlJatmypf74xz9q06ZNpXbuAAAAN1KZ6qSXX35Zy5Yt06pVq+Tj4+P6YFiMO6QAAKjkDh48qCZNmkiSLly4oPr162vLli0F4vz8/CRJVatWveVjjh49WvPnz9eUKVO0aNEijRw50iz2OnXqpOTkZG3YsEGfffaZHnnkEYWHhxd4ngIAAEBpqyx10quvvqqXX35Zn332mdq1a3fLOVqBO6QAAKjENm/erH379mnQoEGSfily7Ha7qlSpoubNmztNdevWlSS1a9fuug/CbN26tbKzs7Vr1y5z2c8//6zDhw8rJCTEXPa73/1OP/zwg9566y0dOHBAw4cPd9qPzWbT4MGD9be//U3Lly/Xv//9b/PZDAAAAFaoLHXS3LlzNXv2bMXGxqpLly7FHg+rcYcUAACVREZGhux2u3JycpSSkqLY2FjNmTNH9913nx5//HFJUnh4uMLCwhQVFaW5c+eqRYsWOnXqlPmAzi5dumjGjBnq27evmjVrpiFDhig7O1vr16/X5MmTdeedd+qBBx7QmDFj9N5776lmzZqaMmWK7rjjDj3wwANmLrVq1dJDDz2k5557Tv369VODBg3Mda+//rrq16+vjh07yt3dXStXrlRgYKD5yeO1MjMzdeDAAfPf//vf/5SUlKQaNWqoefPmpTegAACg0qisddJf/vIXTZ8+XUuXLlXjxo1lt9slyfy6YXnGHVIAAFQSsbGxql+/vho3bqz+/fvr888/11tvvaVPP/1UHh4ekiQ3NzetX79evXr10siRI9WiRQsNGTJEP/zwgwICAiRJ9957r1auXKk1a9aoQ4cO6tOnj3bv3m0eZ9GiRercubPuu+8+hYWFyTAMrV+/Xp6enk75jBo1SpmZmfr973/vtLxmzZqaO3euunTporvvvlvHjx/X+vXr5e5eeFly6tQpdezYUR07dtTp06f16quvqmPHjho9enRJDh8AAKjEKmud9O677yozM1MPP/yw6tevb06vvvpqSQ5fqXAzDMMo6yTKisPhkK+vr9LT02Wz2co6HVQSWbHbneY9+/coo0wAFMeVK1eUnJysJk2aVIiHQZZn//jHPzRx4kSdOnVKXl5elh77Rj9Hrv83xxihNFAjARUbNVLJKqs6qTzVSHxlDwAAlKhLly7p9OnTevnll/XEE09Y3owCAAAor6iT8vGVPQAAUKLmzp2rVq1aKTAwUFOnTi3rdAAAAMoN6qR8NKQAAECJmjlzprKyshQfH1/uH6YJAABgJeqkfDSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAqRm5tb1ingFvDzAwCgdHCNrdjK08+Pt+wBAHAVLy8vubu769SpU6pXr568vLzk5uZW1mmhiAzDUGZmps6cOSN3d/fb+s01AACUJGqkiq081kg0pAAAuIq7u7uaNGmi06dP69SpU2WdDoqpWrVqatiwodzduRkcAICSQI1UOZSnGomGFAAA1/Dy8lLDhg2VnZ2tnJycsk4HLvLw8FCVKlX41BYAgBJGjVSxlbcaiYYUAACFcHNzk6enpzw9Pcs6FQAAgHKDGgklpezv0QIAAAAAAMBtxaWG1Lvvvqt27drJZrPJZrMpLCxMGzZsMNffe++9cnNzc5rGjRvntI8TJ04oMjJS1apVk7+/v5577jllZ2c7xWzZskWdOnWSt7e3mjdvrsWLFxfIZf78+WrcuLF8fHwUGhqq3bt3u3IqAAAAJYYaCQAAwDUuNaQaNGigl19+WYmJidqzZ4/69OmjBx54QPv37zdjxowZo9OnT5vT3LlzzXU5OTmKjIxUZmamdu7cqSVLlmjx4sWaPn26GZOcnKzIyEj17t1bSUlJmjBhgkaPHq2NGzeaMcuXL1dMTIxmzJihr7/+Wu3bt1dERIRSU1NvZSwAAACKhRoJAADANW6GYRi3soPatWvrlVde0ahRo3TvvfeqQ4cOmjdvXqGxGzZs0H333adTp04pICBAkrRgwQJNnjxZZ86ckZeXlyZPnqx169bpu+++M7cbMmSI0tLSFBsbK0kKDQ3V3XffrbfffluSlJubq+DgYD311FOaMmVKkXN3OBzy9fVVenq6bDZbMUcAcJYVu91p3rN/jzLKBABQGKuu/9RIgDNqJAAo36y+/hf7GVI5OTlatmyZLl68qLCwMHP5Rx99pLp166pNmzaaOnWqLl26ZK5LSEhQ27ZtzUJLkiIiIuRwOMxPEBMSEhQeHu50rIiICCUkJEiSMjMzlZiY6BTj7u6u8PBwMwYAAKCsUCMBAADcnMtv2du3b5/CwsJ05coV1ahRQ6tWrVJISIgkaejQoWrUqJGCgoL07bffavLkyTp8+LA++eQTSZLdbncqtCSZ83a7/YYxDodDly9f1rlz55STk1NozKFDh26Ye0ZGhjIyMsx5h8Ph6ukDAAAUihoJAACg6FxuSLVs2VJJSUlKT0/Xxx9/rOHDh2vr1q0KCQnR2LFjzbi2bduqfv366tu3r44dO6ZmzZqVaOLFMWfOHM2aNaus0wAAAJUQNRIAAEDRufyVPS8vLzVv3lydO3fWnDlz1L59e7355puFxoaGhkqSjh49KkkKDAxUSkqKU0zefGBg4A1jbDabqlatqrp168rDw6PQmLx9XM/UqVOVnp5uTidPniziWQMAANwYNRIAAEDRFfsZUnlyc3OdbvG+WlJSkiSpfv36kqSwsDDt27fP6U0vcXFxstls5i3tYWFhio+Pd9pPXFyc+QwGLy8vde7c2SkmNzdX8fHxTs9pKIy3t7f5Oua8CQAAoDRQIwEAAFyfS1/Zmzp1qgYMGKCGDRvq/PnzWrp0qbZs2aKNGzfq2LFjWrp0qQYOHKg6dero22+/1cSJE9WrVy+1a9dOktSvXz+FhIToscce09y5c2W32zVt2jRFR0fL29tbkjRu3Di9/fbbmjRpkn7/+99r8+bNWrFihdatW2fmERMTo+HDh6tLly7q2rWr5s2bp4sXL2rkyJElODRA8R1P22D+233PfjXr8kQZZgMAKG3USEDRXFsjSaJOAoDblEsNqdTUVD3++OM6ffq0fH191a5dO23cuFG//vWvdfLkSX322Wdm4RMcHKxBgwZp2rRp5vYeHh5au3atnnzySYWFhal69eoaPny4XnzxRTOmSZMmWrdunSZOnKg333xTDRo00Pvvv6+IiAgzZvDgwTpz5oymT58uu92uDh06KDY2tsBDPAEAAKxAjQQAAOAaN8MwjLJOoqw4HA75+voqPT2dW9NRYrJitzt/+te8IZ/8AUA5wvX/5hgjlIbCaiSJO6QAoLyw+vp/y8+QAgAAAAAAAFxBQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWcqkh9e6776pdu3ay2Wyy2WwKCwvThg0bzPVXrlxRdHS06tSpoxo1amjQoEFKSUlx2seJEycUGRmpatWqyd/fX88995yys7OdYrZs2aJOnTrJ29tbzZs31+LFiwvkMn/+fDVu3Fg+Pj4KDQ3V7t27XTkVAACAEkONBAAA4BqXGlINGjTQyy+/rMTERO3Zs0d9+vTRAw88oP3790uSJk6cqP/85z9auXKltm7dqlOnTumhhx4yt8/JyVFkZKQyMzO1c+dOLVmyRIsXL9b06dPNmOTkZEVGRqp3795KSkrShAkTNHr0aG3cuNGMWb58uWJiYjRjxgx9/fXXat++vSIiIpSamnqr4wEAAOAyaiQAAADXuBmGYdzKDmrXrq1XXnlFDz/8sOrVq6elS5fq4YcfliQdOnRIrVu3VkJCgrp166YNGzbovvvu06lTpxQQECBJWrBggSZPnqwzZ87Iy8tLkydP1rp16/Tdd9+ZxxgyZIjS0tIUGxsrSQoNDdXdd9+tt99+W5KUm5ur4OBgPfXUU5oyZUqRc3c4HPL19VV6erpsNtutDANgyordruNp+Z+KuzdvqGZdnijDjAAAV7Pq+k+NBDgrrEaSRJ0EAOWE1df/Yj9DKicnR8uWLdPFixcVFhamxMREZWVlKTw83Ixp1aqVGjZsqISEBElSQkKC2rZtaxZakhQRESGHw2F+gpiQkOC0j7yYvH1kZmYqMTHRKcbd3V3h4eFmDAAAQFmhRgIAALi5Kq5usG/fPoWFhenKlSuqUaOGVq1apZCQECUlJcnLy0t+fn5O8QEBAbLb7ZIku93uVGjlrc9bd6MYh8Ohy5cv69y5c8rJySk05tChQzfMPSMjQxkZGea8w+Eo+okDAADcADUSAABA0bl8h1TLli2VlJSkXbt26cknn9Tw4cN14MCB0sitxM2ZM0e+vr7mFBwcXNYpAQCASoIaCQAAoOhcbkh5eXmpefPm6ty5s+bMmaP27dvrzTffVGBgoDIzM5WWluYUn5KSosDAQElSYGBggTfK5M3fLMZms6lq1aqqW7euPDw8Co3J28f1TJ06Venp6eZ08uRJV08fAACgUNRIAAAARVfsZ0jlyc3NVUZGhjp37ixPT0/Fx8eb6w4fPqwTJ04oLCxMkhQWFqZ9+/Y5veklLi5ONptNISEhZszV+8iLyduHl5eXOnfu7BSTm5ur+Ph4M+Z6vL29zdcx500AAAClgRoJAADg+lx6htTUqVM1YMAANWzYUOfPn9fSpUu1ZcsWbdy4Ub6+vho1apRiYmJUu3Zt2Ww2PfXUUwoLC1O3bt0kSf369VNISIgee+wxzZ07V3a7XdOmTVN0dLS8vb0lSePGjdPbb7+tSZMm6fe//702b96sFStWaN26dWYeMTExGj58uLp06aKuXbtq3rx5unjxokaOHFmCQwMAAFA01EgAAACucakhlZqaqscff1ynT5+Wr6+v2rVrp40bN+rXv/61JOmNN96Qu7u7Bg0apIyMDEVEROidd94xt/fw8NDatWv15JNPKiwsTNWrV9fw4cP14osvmjFNmjTRunXrNHHiRL355ptq0KCB3n//fUVERJgxgwcP1pkzZzR9+nTZ7XZ16NBBsbGxBR7iCQAAYAVqJAAAANe4GYZhlHUSZcXhcMjX11fp6encmo4SkxW7XcfTNpjz7s0bqlmXJ8owIwDA1bj+3xxjhNJQWI0kiToJAMoJq6//t/wMKQAAAAAAAMAVNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKZcaUnPmzNHdd9+tmjVryt/fX1FRUTp8+LBTzL333is3Nzenady4cU4xJ06cUGRkpKpVqyZ/f38999xzys7OdorZsmWLOnXqJG9vbzVv3lyLFy8ukM/8+fPVuHFj+fj4KDQ0VLt373bldAAAAEoENRIAAIBrXGpIbd26VdHR0fryyy8VFxenrKws9evXTxcvXnSKGzNmjE6fPm1Oc+fONdfl5OQoMjJSmZmZ2rlzp5YsWaLFixdr+vTpZkxycrIiIyPVu3dvJSUlacKECRo9erQ2btxoxixfvlwxMTGaMWOGvv76a7Vv314RERFKTU0t7lgAAAAUCzUSAACAa9wMwzCKu/GZM2fk7++vrVu3qlevXpJ++fSvQ4cOmjdvXqHbbNiwQffdd59OnTqlgIAASdKCBQs0efJknTlzRl5eXpo8ebLWrVun7777ztxuyJAhSktLU2xsrCQpNDRUd999t95++21JUm5uroKDg/XUU09pypQpRcrf4XDI19dX6enpstlsxR0GwElW7HYdT9tgzrs3b6hmXZ4ow4wAAFez4vpPjQQUVFiNJIk6CQDKCauv/7f0DKn09HRJUu3atZ2Wf/TRR6pbt67atGmjqVOn6tKlS+a6hIQEtW3b1iy0JCkiIkIOh0P79+83Y8LDw532GRERoYSEBElSZmamEhMTnWLc3d0VHh5uxgAAAJQVaiQAAIAbq1LcDXNzczVhwgT96le/Ups2bczlQ4cOVaNGjRQUFKRvv/1WkydP1uHDh/XJJ59Ikux2u1OhJcmct9vtN4xxOBy6fPmyzp07p5ycnEJjDh06dN2cMzKka+dxAACI7UlEQVQylJGRYc47HI5inDkAAMD1USMBAADcXLEbUtHR0fruu++0fft2p+Vjx441/922bVvVr19fffv21bFjx9SsWbPiZ1oC5syZo1mzZpVpDgAAoHKjRgIAALi5Yn1lb/z48Vq7dq0+//xzNWjQ4IaxoaGhkqSjR49KkgIDA5WSkuIUkzcfGBh4wxibzaaqVauqbt268vDwKDQmbx+FmTp1qtLT083p5MmTRThbAACAoqFGAgAAKBqXGlKGYWj8+PFatWqVNm/erCZNmtx0m6SkJElS/fr1JUlhYWHat2+f05te4uLiZLPZFBISYsbEx8c77ScuLk5hYWGSJC8vL3Xu3NkpJjc3V/Hx8WZMYby9vWWz2ZwmAACAW0WNBAAA4BqXvrIXHR2tpUuX6tNPP1XNmjXN5xn4+vqqatWqOnbsmJYuXaqBAweqTp06+vbbbzVx4kT16tVL7dq1kyT169dPISEheuyxxzR37lzZ7XZNmzZN0dHR8vb2liSNGzdOb7/9tiZNmqTf//732rx5s1asWKF169aZucTExGj48OHq0qWLunbtqnnz5unixYsaOXJkSY0NAABAkVAjAQAAuMalhtS7774r6ZfXFl9t0aJFGjFihLy8vPTZZ5+ZhU9wcLAGDRqkadOmmbEeHh5au3atnnzySYWFhal69eoaPny4XnzxRTOmSZMmWrdunSZOnKg333xTDRo00Pvvv6+IiAgzZvDgwTpz5oymT58uu92uDh06KDY2tsBDPAEAAEobNRIAAIBr3AzDMMo6ibLicDjk6+ur9PR0bk1HicmK3a7jaRvMeffmDdWsyxNlmBEA4Gpc/2+OMUJpKKxGkkSdBADlhNXX/2I91BwAAAAAAAAoLhpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFjKpYbUnDlzdPfdd6tmzZry9/dXVFSUDh8+7BRz5coVRUdHq06dOqpRo4YGDRqklJQUp5gTJ04oMjJS1apVk7+/v5577jllZ2c7xWzZskWdOnWSt7e3mjdvrsWLFxfIZ/78+WrcuLF8fHwUGhqq3bt3u3I6AAAAJYIaCQAAwDUuNaS2bt2q6Ohoffnll4qLi1NWVpb69eunixcvmjETJ07Uf/7zH61cuVJbt27VqVOn9NBDD5nrc3JyFBkZqczMTO3cuVNLlizR4sWLNX36dDMmOTlZkZGR6t27t5KSkjRhwgSNHj1aGzduNGOWL1+umJgYzZgxQ19//bXat2+viIgIpaam3sp4AAAAuIwaCQAAwDVuhmEYxd34zJkz8vf319atW9WrVy+lp6erXr16Wrp0qR5++GFJ0qFDh9S6dWslJCSoW7du2rBhg+677z6dOnVKAQEBkqQFCxZo8uTJOnPmjLy8vDR58mStW7dO3333nXmsIUOGKC0tTbGxsZKk0NBQ3X333Xr77bclSbm5uQoODtZTTz2lKVOmFCl/h8MhX19fpaeny2azFXcYACdZsdt1PG2DOe/evKGadXmiDDMCAFzNius/NRJQUGE1kiTqJAAoJ6y+/t/SM6TS09MlSbVr15YkJSYmKisrS+Hh4WZMq1at1LBhQyUkJEiSEhIS1LZtW7PQkqSIiAg5HA7t37/fjLl6H3kxefvIzMxUYmKiU4y7u7vCw8PNmMJkZGTI4XA4TQAAACWNGgkAAODGit2Qys3N1YQJE/SrX/1Kbdq0kSTZ7XZ5eXnJz8/PKTYgIEB2u92MubrQyluft+5GMQ6HQ5cvX9ZPP/2knJycQmPy9lGYOXPmyNfX15yCg4NdP3EAAIAboEYCAAC4uWI3pKKjo/Xdd99p2bJlJZlPqZo6darS09PN6eTJk2WdEgAAqGSokQAAAG6uSnE2Gj9+vNauXatt27apQYMG5vLAwEBlZmYqLS3N6RPAlJQUBQYGmjHXvukl7w0zV8dc+9aZlJQU2Ww2Va1aVR4eHvLw8Cg0Jm8fhfH29pa3t7frJwwAAFAE1EgAAABF49IdUoZhaPz48Vq1apU2b96sJk2aOK3v3LmzPD09FR8fby47fPiwTpw4obCwMElSWFiY9u3b5/Sml7i4ONlsNoWEhJgxV+8jLyZvH15eXurcubNTTG5uruLj480YAAAAq1AjAQAAuMalO6Sio6O1dOlSffrpp6pZs6b5LAJfX19VrVpVvr6+GjVqlGJiYlS7dm3ZbDY99dRTCgsLU7du3SRJ/fr1U0hIiB577DHNnTtXdrtd06ZNU3R0tPnJ3Lhx4/T2229r0qRJ+v3vf6/NmzdrxYoVWrdunZlLTEyMhg8fri5duqhr166aN2+eLl68qJEjR5bU2AAAABQJNRIAAIBrXGpIvfvuu5Kke++912n5okWLNGLECEnSG2+8IXd3dw0aNEgZGRmKiIjQO++8Y8Z6eHho7dq1evLJJxUWFqbq1atr+PDhevHFF82YJk2aaN26dZo4caLefPNNNWjQQO+//74iIiLMmMGDB+vMmTOaPn267Ha7OnTooNjY2AIP8QQAACht1EgAAACucTMMwyjrJMqKw+GQr6+v0tPTZbPZyjodVBJZsdt1PG2DOe/evKGadXmiDDMCAFyN6//NMUYoDYXVSJKokwCgnLD6+l/st+wBAAAAAAAAxUFDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJZyuSG1bds23X///QoKCpKbm5tWr17ttH7EiBFyc3Nzmvr37+8Uc/bsWQ0bNkw2m01+fn4aNWqULly44BTz7bffqmfPnvLx8VFwcLDmzp1bIJeVK1eqVatW8vHxUdu2bbV+/XpXTwcAAKBEUCMBAAAUncsNqYsXL6p9+/aaP3/+dWP69++v06dPm9O//vUvp/XDhg3T/v37FRcXp7Vr12rbtm0aO3asud7hcKhfv35q1KiREhMT9corr2jmzJlauHChGbNz5049+uijGjVqlPbu3auoqChFRUXpu+++c/WUAAAAbhk1EgAAQNG5GYZhFHtjNzetWrVKUVFR5rIRI0YoLS2twKeCeQ4ePKiQkBB99dVX6tKliyQpNjZWAwcO1I8//qigoCC9++67euGFF2S32+Xl5SVJmjJlilavXq1Dhw5JkgYPHqyLFy9q7dq15r67deumDh06aMGCBUXK3+FwyNfXV+np6bLZbMUYAaCgrNjtOp62wZx3b95Qzbo8UYYZAQCuZsX1nxoJKKiwGkkSdRIAlBNWX/9L5RlSW7Zskb+/v1q2bKknn3xSP//8s7kuISFBfn5+ZqElSeHh4XJ3d9euXbvMmF69epmFliRFRETo8OHDOnfunBkTHh7udNyIiAglJCRcN6+MjAw5HA6nCQAAwCrUSAAAAL8o8YZU//799fe//13x8fH6y1/+oq1bt2rAgAHKycmRJNntdvn7+zttU6VKFdWuXVt2u92MCQgIcIrJm79ZTN76wsyZM0e+vr7mFBwcfGsnCwAAUETUSAAAAPmqlPQOhwwZYv67bdu2ateunZo1a6YtW7aob9++JX04l0ydOlUxMTHmvMPhoOACAACWoEYCAADIVypf2bta06ZNVbduXR09elSSFBgYqNTUVKeY7OxsnT17VoGBgWZMSkqKU0ze/M1i8tYXxtvbWzabzWkCAAAoC9RIAADgdlbqDakff/xRP//8s+rXry9JCgsLU1pamhITE82YzZs3Kzc3V6GhoWbMtm3blJWVZcbExcWpZcuWqlWrlhkTHx/vdKy4uDiFhYWV9ikBAADcMmokAABwO3O5IXXhwgUlJSUpKSlJkpScnKykpCSdOHFCFy5c0HPPPacvv/xSx48fV3x8vB544AE1b95cERERkqTWrVurf//+GjNmjHbv3q0dO3Zo/PjxGjJkiIKCgiRJQ4cOlZeXl0aNGqX9+/dr+fLlevPNN51uJX/66acVGxur1157TYcOHdLMmTO1Z88ejR8/vgSGBQAAwDXUSAAAAEXnckNqz5496tixozp27ChJiomJUceOHTV9+nR5eHjo22+/1W9+8xu1aNFCo0aNUufOnfXFF1/I29vb3MdHH32kVq1aqW/fvho4cKB69OihhQsXmut9fX21adMmJScnq3PnznrmmWc0ffp0jR071ozp3r27li5dqoULF6p9+/b6+OOPtXr1arVp0+ZWxgMAAKBYqJEAAACKzs0wDKOskygrDodDvr6+Sk9P51kJKDFZsdt1PG2DOe/evKGadXmiDDMCAFyN6//NMUYoDYXVSJKokwCgnLD6+l/qz5ACAAAAAAAArkZDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJZyuSG1bds23X///QoKCpKbm5tWr17ttN4wDE2fPl3169dX1apVFR4eriNHjjjFnD17VsOGDZPNZpOfn59GjRqlCxcuOMV8++236tmzp3x8fBQcHKy5c+cWyGXlypVq1aqVfHx81LZtW61fv97V0wEAACgR1EgAAABF53JD6uLFi2rfvr3mz59f6Pq5c+fqrbfe0oIFC7Rr1y5Vr15dERERunLlihkzbNgw7d+/X3FxcVq7dq22bdumsWPHmusdDof69eunRo0aKTExUa+88opmzpyphQsXmjE7d+7Uo48+qlGjRmnv3r2KiopSVFSUvvvuO1dPCQAA4JZRIwEAABSdm2EYRrE3dnPTqlWrFBUVJemXT/6CgoL0zDPP6Nlnn5UkpaenKyAgQIsXL9aQIUN08OBBhYSE6KuvvlKXLl0kSbGxsRo4cKB+/PFHBQUF6d1339ULL7wgu90uLy8vSdKUKVO0evVqHTp0SJI0ePBgXbx4UWvXrjXz6datmzp06KAFCxYUKX+HwyFfX1+lp6fLZrMVdxgAJ1mx23U8bYM57968oZp1eaIMMwIAXM2K6z81ElBQYTWSJOokACgnrL7+l+gzpJKTk2W32xUeHm4u8/X1VWhoqBISEiRJCQkJ8vPzMwstSQoPD5e7u7t27dplxvTq1csstCQpIiJChw8f1rlz58yYq4+TF5N3nMJkZGTI4XA4TQAAAKWNGgkAAMBZiTak7Ha7JCkgIMBpeUBAgLnObrfL39/faX2VKlVUu3Ztp5jC9nH1Ma4Xk7e+MHPmzJGvr685BQcHu3qKAAAALqNGAgAAcHZbvWVv6tSpSk9PN6eTJ0+WdUoAAABljhoJAABYrUQbUoGBgZKklJQUp+UpKSnmusDAQKWmpjqtz87O1tmzZ51iCtvH1ce4Xkze+sJ4e3vLZrM5TQAAAKWNGgkAAMBZiTakmjRposDAQMXHx5vLHA6Hdu3apbCwMElSWFiY0tLSlJiYaMZs3rxZubm5Cg0NNWO2bdumrKwsMyYuLk4tW7ZUrVq1zJirj5MXk3ccAACA8oIaCQAAwJnLDakLFy4oKSlJSUlJkn55SGdSUpJOnDghNzc3TZgwQX/605+0Zs0a7du3T48//riCgoLMt8y0bt1a/fv315gxY7R7927t2LFD48eP15AhQxQUFCRJGjp0qLy8vDRq1Cjt379fy5cv15tvvqmYmBgzj6efflqxsbF67bXXdOjQIc2cOVN79uzR+PHjb31UAAAAXESNBAAAUHRVXN1gz5496t27tzmfVwANHz5cixcv1qRJk3Tx4kWNHTtWaWlp6tGjh2JjY+Xj42Nu89FHH2n8+PHq27ev3N3dNWjQIL311lvmel9fX23atEnR0dHq3Lmz6tatq+nTp2vs2LFmTPfu3bV06VJNmzZNzz//vO68806tXr1abdq0KdZAAAAA3ApqJAAAgKJzMwzDKOskyorD4ZCvr6/S09N5VgJKTFbsdh1P22DOuzdvqGZdnijDjAAAV+P6f3OMEUpDYTWSJOokACgnrL7+31Zv2QMAAAAAAEDZoyEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS5V4Q2rmzJlyc3Nzmlq1amWuv3LliqKjo1WnTh3VqFFDgwYNUkpKitM+Tpw4ocjISFWrVk3+/v567rnnlJ2d7RSzZcsWderUSd7e3mrevLkWL15c0qcCAABQYqiRAAAA8pXKHVJ33XWXTp8+bU7bt283102cOFH/+c9/tHLlSm3dulWnTp3SQw89ZK7PyclRZGSkMjMztXPnTi1ZskSLFy/W9OnTzZjk5GRFRkaqd+/eSkpK0oQJEzR69Ght3LixNE4HAACgRFAjAQAA/KJKqey0ShUFBgYWWJ6enq4PPvhAS5cuVZ8+fSRJixYtUuvWrfXll1+qW7du2rRpkw4cOKDPPvtMAQEB6tChg2bPnq3Jkydr5syZ8vLy0oIFC9SkSRO99tprkqTWrVtr+/bteuONNxQREVEapwQAAHDLqJEAAAB+USp3SB05ckRBQUFq2rSphg0bphMnTkiSEhMTlZWVpfDwcDO2VatWatiwoRISEiRJCQkJatu2rQICAsyYiIgIORwO7d+/34y5eh95MXn7uJ6MjAw5HA6nCQAAwCrUSAAAAL8o8YZUaGioFi9erNjYWL377rtKTk5Wz549df78edntdnl5ecnPz89pm4CAANntdkmS3W53KrTy1uetu1GMw+HQ5cuXr5vbnDlz5Ovra07BwcG3eroAAABFQo0EAACQr8S/sjdgwADz3+3atVNoaKgaNWqkFStWqGrVqiV9OJdMnTpVMTEx5rzD4aDgAgAAlqBGAgAAyFcqX9m7mp+fn1q0aKGjR48qMDBQmZmZSktLc4pJSUkxn6cQGBhY4I0yefM3i7HZbDcs6Ly9vWWz2ZwmAACAskCNBAAAbmel3pC6cOGCjh07pvr166tz587y9PRUfHy8uf7w4cM6ceKEwsLCJElhYWHat2+fUlNTzZi4uDjZbDaFhISYMVfvIy8mbx8AAADlHTUSAAC4nZV4Q+rZZ5/V1q1bdfz4ce3cuVMPPvigPDw89Oijj8rX11ejRo1STEyMPv/8cyUmJmrkyJEKCwtTt27dJEn9+vVTSEiIHnvsMX3zzTfauHGjpk2bpujoaHl7e0uSxo0bp++//16TJk3SoUOH9M4772jFihWaOHFiSZ8OAABAiaBGAgAAyFfiz5D68ccf9eijj+rnn39WvXr11KNHD3355ZeqV6+eJOmNN96Qu7u7Bg0apIyMDEVEROidd94xt/fw8NDatWv15JNPKiwsTNWrV9fw4cP14osvmjFNmjTRunXrNHHiRL355ptq0KCB3n//fV5nDAAAyi1qJAAAgHxuhmEYZZ1EWXE4HPL19VV6ejrPSkCJyYrdruNpG8x59+YN1azLE2WYEQDgalz/b44xQmkorEaSRJ0EAOWE1df/Un+GFAAAAAAAAHA1GlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwVIVvSM2fP1+NGzeWj4+PQkNDtXv37rJOCQAAoMxRIwEAgPKsQjekli9frpiYGM2YMUNff/212rdvr4iICKWmppZ1agAAAGWGGgkAAJR3Vco6gVvx+uuva8yYMRo5cqQkacGCBVq3bp0+/PBDTZkypYyzAwCgcsmK3V4i+/Hs36NE9oPro0YCAMA61EjFU2EbUpmZmUpMTNTUqVPNZe7u7goPD1dCQkKh22RkZCgjI8OcT09PlyQ5HI7STRa3layLF3XhUv7vmduFy/yOAbeJrLjCrz+4xr83Fljk+eswyw6f9zfZMAzLjmklaiSUV4XVSBK/Z8DtgBqpiG6zGqnCNqR++ukn5eTkKCAgwGl5QECADh06VOg2c+bM0axZswosDw4OLpUcgXwTyzoBAMA1zp8/L19f37JOo8RRI6HioU4CgPLEqhqpwjakimPq1KmKiYkx53Nzc3X27FnVqVNHbm5uxdqnw+FQcHCwTp48KZvNVlKpVliMRz7GwhnjkY+xyMdYOGM88pXmWBiGofPnzysoKKhE91uRUSOVPsYjH2PhjPHIx1jkYyycMR75KlONVGEbUnXr1pWHh4dSUlKclqekpCgwMLDQbby9veXt7e20zM/Pr0Tysdlst/1/GFdjPPIxFs4Yj3yMRT7Gwhnjka+0xqIy3hmVhxqpfGM88jEWzhiPfIxFPsbCGeORrzLUSBX2LXteXl7q3Lmz4uPjzWW5ubmKj49XWJh137EEAAAoT6iRAABARVBh75CSpJiYGA0fPlxdunRR165dNW/ePF28eNF8owwAAMDtiBoJAACUdxW6ITV48GCdOXNG06dPl91uV4cOHRQbG1vgIZ6lydvbWzNmzChwm/vtivHIx1g4YzzyMRb5GAtnjEc+xuLWUCOVP4xHPsbCGeORj7HIx1g4YzzyVaaxcDMq6zuPAQAAAAAAUC5V2GdIAQAAAAAAoGKiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pIrh7NmzGjZsmGw2m/z8/DRq1ChduHChSNsahqEBAwbIzc1Nq1evLt1ELeDqWJw9e1ZPPfWUWrZsqapVq6phw4b64x//qPT0dAuzLjnz589X48aN5ePjo9DQUO3evfuG8StXrlSrVq3k4+Ojtm3bav369RZlWvpcGYu//e1v6tmzp2rVqqVatWopPDz8pmNX0bj6u5Fn2bJlcnNzU1RUVOkmaCFXxyItLU3R0dGqX7++vL291aJFi9v2vxVJmjdvnvk3Mzg4WBMnTtSVK1csyrb0bNu2Tffff7+CgoKKfE3csmWLOnXqJG9vbzVv3lyLFy8u9TzhGmokZ7dznUSN5Iw6KR81Uj5qJGfUSL+4rWokAy7r37+/0b59e+PLL780vvjiC6N58+bGo48+WqRtX3/9dWPAgAGGJGPVqlWlm6gFXB2Lffv2GQ899JCxZs0a4+jRo0Z8fLxx5513GoMGDbIw65KxbNkyw8vLy/jwww+N/fv3G2PGjDH8/PyMlJSUQuN37NhheHh4GHPnzjUOHDhgTJs2zfD09DT27dtnceYlz9WxGDp0qDF//nxj7969xsGDB40RI0YYvr6+xo8//mhx5qXD1fHIk5ycbNxxxx1Gz549jQceeMCaZEuZq2ORkZFhdOnSxRg4cKCxfft2Izk52diyZYuRlJRkcealw9Xx+Oijjwxvb2/jo48+MpKTk42NGzca9evXNyZOnGhx5iVv/fr1xgsvvGB88sknRbomfv/990a1atWMmJgY48CBA8Zf//pXw8PDw4iNjbUmYRQJNZKz27VOokZyRp2UjxopHzWSM2qkfLdTjURDykUHDhwwJBlfffWVuWzDhg2Gm5ub8b///e+G2+7du9e44447jNOnT1eKYutWxuJqK1asMLy8vIysrKzSSLPUdO3a1YiOjjbnc3JyjKCgIGPOnDmFxj/yyCNGZGSk07LQ0FDjiSeeKNU8reDqWFwrOzvbqFmzprFkyZLSStFSxRmP7Oxso3v37sb7779vDB8+vNIUW66Oxbvvvms0bdrUyMzMtCpFS7k6HtHR0UafPn2clsXExBi/+tWvSjVPqxXlmjhp0iTjrrvuclo2ePBgIyIiohQzgyuokZzdznUSNZIz6qR81Ej5qJGcUSMVrrLXSHxlz0UJCQny8/NTly5dzGXh4eFyd3fXrl27rrvdpUuXNHToUM2fP1+BgYFWpFrqijsW10pPT5fNZlOVKlVKI81SkZmZqcTERIWHh5vL3N3dFR4eroSEhEK3SUhIcIqXpIiIiOvGVxTFGYtrXbp0SVlZWapdu3ZppWmZ4o7Hiy++KH9/f40aNcqKNC1RnLFYs2aNwsLCFB0drYCAALVp00Z//vOflZOTY1XapaY449G9e3clJiaat6x///33Wr9+vQYOHGhJzuVJZf0bWplQIzm7XeskaiRn1En5qJHyUSM5o0a6NRX5b2jFuLKVI3a7Xf7+/k7LqlSpotq1a8tut193u4kTJ6p79+564IEHSjtFyxR3LK72008/afbs2Ro7dmxppFhqfvrpJ+Xk5CggIMBpeUBAgA4dOlToNna7vdD4oo5VeVWcsbjW5MmTFRQUVOAPaUVUnPHYvn27PvjgAyUlJVmQoXWKMxbff/+9Nm/erGHDhmn9+vU6evSo/vCHPygrK0szZsywIu1SU5zxGDp0qH766Sf16NFDhmEoOztb48aN0/PPP29FyuXK9f6GOhwOXb58WVWrVi2jzJCHGsnZ7VonUSM5o07KR42UjxrJGTXSranINRJ3SP1/U6ZMkZub2w2nol40rrVmzRpt3rxZ8+bNK9mkS0lpjsXVHA6HIiMjFRISopkzZ9564v+vvTsPy6rO/z/+AuQGtxtcARP31Cj3BbHSVBKTnCybtBpDxyUb7JtSbuW4ZI2OOWWNljnNqFM5Lk065oKiZmWSC0q5l4Zp6Y2Wwe3Ken5/9OPgLajcCIfF5+O67uviPud9zv05H5D75fs+nIMyacaMGVqyZIlWrFghX1/fkh6O5c6dO6eBAwfqH//4h2rWrFnSwylx2dnZql27tubPn6927dqpf//+eumllzRv3rySHlqJ2LJli/7yl7/o7bff1u7du/Xxxx9rzZo1mjZtWkkPDbcQMpIrchKsdCvnJDKSKzKSKzJS+cAZUv/f888/r0GDBl23plGjRgoMDNTp06ddlmdmZurs2bPXPM188+bNOnr0qPz9/V2W9+vXT/fee6+2bNlyEyMvesU5FznOnTunXr16qWrVqlqxYoW8vb1vdtiWqlmzpry8vJScnOyyPDk5+ZrHHhgY6FZ9WVGYucgxa9YszZgxQxs3blTLli2Lc5iWcXc+jh49qmPHjqlPnz7msuzsbEm/fZJ++PBhNW7cuHgHXUwK87MRFBQkb29veXl5mcvuuOMOORwOpaeny2azFeuYi1Nh5uPPf/6zBg4cqKFDh0qSWrRooQsXLmj48OF66aWX5Ol563yudK3foXa7vVR/8lcekJFckZOuj4zkipyUi4yUi4zkiox0c8pyRrp1vks3UKtWLTVv3vy6D5vNprCwMKWkpCghIcHcdvPmzcrOzlZoaGi++x4/fry++eYbJSYmmg9JeuONN7RgwQIrDs8txTkX0m+f+PXs2VM2m02rVq0qk5/22Gw2tWvXTps2bTKXZWdna9OmTQoLC8t3m7CwMJd6SYqLi7tmfVlRmLmQpJkzZ2ratGmKjY11ub5GWefufDRv3lx79+51+f3wu9/9Tt26dVNiYqKCg4OtHH6RKszPxt13360jR46YgVOSvv32WwUFBZXpoCUVbj4uXryYJ1DlBFHDMIpvsKVQef0dWhaQkVyRk66PjOSKnJSLjJSLjOSKjHRzyvTv0JK9pnrZ1KtXL6NNmzbG9u3bja1btxq33367yy18f/zxR6NZs2bG9u3br7kPlZM7yLg7F6mpqUZoaKjRokUL48iRI8apU6fMR2ZmZkkdRqEsWbLE8PHxMRYuXGgcOHDAGD58uOHv7284HA7DMAxj4MCBxvjx4836L7/80qhQoYIxa9Ys4+DBg8bkyZPLzS2N3Z2LGTNmGDabzfjoo49cfgbOnTtXUodQpNydj6uVpzvIuDsXx48fN6pWrWqMHDnSOHz4sLF69Wqjdu3axiuvvFJSh1Ck3J2PyZMnG1WrVjX+85//GN9//72xYcMGo3HjxsZjjz1WUodQZM6dO2fs2bPH2LNnjyHJeP311409e/YYP/zwg2EYhjF+/Hhj4MCBZn3OLY3HjBljHDx40Jg7d26ZuaXxrYSM5OpWzUlkJFfkpFxkpFxkJFdkpFy3UkaiIVUIv/zyi/H4448bVapUMex2uzF48GCXN4ikpCRDkvHpp59ecx/lJWy5OxeffvqpISnfR1JSUskcxE34+9//btSrV8+w2WxGx44dja+++spc17VrVyMqKsqlftmyZUbTpk0Nm81m3HnnncaaNWssHnHxcWcu6tevn+/PwOTJk60feDFx92fjSuUpbBmG+3Oxbds2IzQ01PDx8TEaNWpkvPrqq2XqP2I34s58ZGRkGFOmTDEaN25s+Pr6GsHBwcaf/vQn49dff7V+4EXsWu8HOccfFRVldO3aNc82rVu3Nmw2m9GoUSNjwYIFlo8b10dGcnUr5yQykityUi4yUi4ykisy0m9upYzkYRi32PlsAAAAAAAAKFFcQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBt6gtW7bIw8NDW7ZsKdL9enh4aMqUKUW6T3ctXLhQHh4eOnbsWLHu87777tN9993n9r7cmfvCvoY7pkyZIg8Pj2J9jZu1Y8cO2Ww2/fDDDzesbdCggQYNGuSy7LvvvlPPnj3l5+cnDw8PrVy50q3X79Spk8aOHevWNgCAsomMdPP7JCNZh4yEsoyGFMq8bdu2acqUKUpJSSnpodwy1q5dW+KBCiXr1KlTGj9+vLp166aqVaveMDxu27ZN99xzjypVqqTAwED93//9n86fP1/g13vppZf0+OOPq379+oUab1RUlPbu3atXX31V77//vtq3b6/z589r8uTJ6tWrl6pXry4PDw8tXLgw3+3HjRunuXPnyuFwFOr1AaAkkJGsR0ZCechIO3fu1MiRI3XnnXeqcuXKqlevnh577DF9++23ebYnI+Fm0JBCmbdt2zZNnTqVsGWhtWvXaurUqfmuu3TpkiZOnGjxiFwNHDhQly5dKvQbc0Ft2LBBGzZscHu7Ll266NKlS+rSpUsxjMoahw8f1l//+lf99NNPatGixXVrExMT1aNHD128eFGvv/66hg4dqvnz5+v3v/99gV4rMTFRGzdu1IgRIwo11kuXLik+Pl5DhgzRyJEj9Yc//EF169bVzz//rJdfflkHDx5Uq1atrruPhx56SHa7XW+//XahxgAAJYGMZD0y0m/ISGU7I/31r3/Vf//7X/Xo0UNvvvmmhg8frs8//1xt27bVvn37XPZBRsLNqFDSAwDgnosXL6pSpUp5lmdmZio7O1s2m60ERpXL19e3RF9fkry8vOTl5VXsr1PYufb09CwV83Qz2rVrp19++UXVq1fXRx99dN3g9OKLL6patWrasmWL7Ha7pN9OGR82bJg2bNignj17Xve1FixYoHr16qlTp06FGuuZM2ckSf7+/i7Lg4KCdOrUKQUGBmrXrl3q0KHDNffh6empRx99VP/+9781derUUn/6PgDcishIN0ZGKn7lISPFxMRo8eLFLt/H/v37q0WLFpoxY4Y++OADczkZCTeDM6RQpk2ZMkVjxoyRJDVs2FAeHh4uf8OemZmpadOmqXHjxvLx8VGDBg304osvKi0tzWU/DRo00IMPPqgNGzaodevW8vX1VUhIiD7++ONCjeuDDz5Qx44dValSJVWrVk1dunTJ8ynR22+/rTvvvFM+Pj6qU6eOoqOj83yCed999+muu+5SQkKCunTpokqVKunFF1/UsWPH5OHhoVmzZmn27Nnm8R04cECSdOjQIT366KOqXr26fH191b59e61ateqG4/7iiy/0+9//XvXq1ZOPj4+Cg4M1evRoXbp0yawZNGiQ5s6dK0nmfF/5xpPf9RH27NmjBx54QHa7XVWqVFGPHj301VdfudTkXH/gyy+/VExMjGrVqqXKlSvr4YcfNt8sCyq/axnkfI+3bt2qjh07ytfXV40aNdK///3vPNvv379f3bt3V8WKFVW3bl298sorys7OzlN35bULkpOTVaFChXw/FT18+LA8PDw0Z84cSde+PsL8+fPVuHFjVaxYUR07dtQXX3xRoGO71j4L8v0srKpVq6p69eo3rHM6nYqLi9Mf/vAHM2hJ0lNPPaUqVapo2bJlN9zHypUr1b179zwBxzAMvfLKK6pbt64qVaqkbt26af/+/S41U6ZMMT8FHjNmjDw8PNSgQQNJko+PjwIDA2/4+jnuv/9+/fDDD0pMTCzwNgBQUshIZKT8kJF+Q0a6fkbq3Llznqbi7bffrjvvvFMHDx7MMw4yEgqLM6RQpj3yyCP69ttv9Z///EdvvPGGatasKUmqVauWJGno0KFatGiRHn30UT3//PPavn27pk+froMHD2rFihUu+/ruu+/Uv39/jRgxQlFRUVqwYIF+//vfKzY2Vvfff3+BxzR16lRNmTJFnTt31ssvvyybzabt27dr8+bN5qccU6ZM0dSpUxUeHq5nnnlGhw8f1jvvvKOdO3fqyy+/lLe3t7m/X375RQ888IAGDBigP/zhDwoICDDXLViwQJcvX9bw4cPl4+Oj6tWra//+/br77rt12223afz48apcubKWLVumvn376r///a8efvjha459+fLlunjxop555hnVqFFDO3bs0N///nf9+OOPWr58uSTp6aef1smTJxUXF6f333//hvOxf/9+3XvvvbLb7Ro7dqy8vb317rvv6r777tNnn32m0NBQl/pnn31W1apV0+TJk3Xs2DHNnj1bI0eO1NKlSwv8PbiWI0eO6NFHH9WQIUMUFRWlf/3rXxo0aJDatWunO++8U5LkcDjUrVs3ZWZmmvM3f/58VaxY8br7DggIUNeuXbVs2TJNnjzZZd3SpUvl5eV13U/I/vnPf+rpp59W586dNWrUKH3//ff63e9+p+rVqys4OLhQx1uQ72dx27t3rzIzM9W+fXuX5TabTa1bt9aePXuuu/1PP/2k48ePq23btnnWTZo0Sa+88op69+6t3r17a/fu3erZs6fS09PNmkceeUT+/v4aPXq0Hn/8cfXu3VtVqlQp1LG0a9dOkvTll1+qTZs2hdoHAFiFjERGcgcZiYx0o4xkGIaSk5PNn4crkZFQaAZQxr322muGJCMpKclleWJioiHJGDp0qMvyF154wZBkbN682VxWv359Q5Lx3//+11yWmppqBAUFGW3atCnwWL777jvD09PTePjhh42srCyXddnZ2YZhGMbp06cNm81m9OzZ06Vmzpw5hiTjX//6l7msa9euhiRj3rx5LvtKSkoyJBl2u904ffq0y7oePXoYLVq0MC5fvuzy2p07dzZuv/12c9mnn35qSDI+/fRTc9nFixfzHNP06dMNDw8P44cffjCXRUdHG9f69SHJmDx5svm8b9++hs1mM44ePWouO3nypFG1alWjS5cu5rIFCxYYkozw8HBzrgzDMEaPHm14eXkZKSkp+b5efnL2deXPRM73+PPPPzeXnT592vDx8TGef/55c9moUaMMScb27dtd6vz8/PLss2vXrkbXrl3N5++++64hydi7d6/LeEJCQozu3bubz6+e+/T0dKN27dpG69atjbS0NLNu/vz5hiSX18jv2PLbp2EU/Ps5efLka34/C2L58uV5XvvqdVfOe47f//73RmBg4HX3vXHjRkOS8cknn7gsz/l3FBkZ6fLz8uKLLxqSjKioKHNZzr+X11577Zqvs3PnTkOSsWDBguuOx2azGc8888x1awCgtCAjkZGuRkb6DRnpNwXJSDnef/99Q5Lxz3/+M9/1ZCQUBn+yh3Jr7dq1kn77G+grPf/885KkNWvWuCyvU6eOyydjdrtdTz31lPbs2VPgu0asXLlS2dnZmjRpkjw9Xf955ZxKu3HjRqWnp2vUqFEuNcOGDZPdbs8zLh8fHw0ePDjf1+vXr5/5SacknT17Vps3b9Zjjz2mc+fO6eeff9bPP/+sX375RREREfruu+/0008/XXP8V37CdeHCBf3888/q3LmzDMO44ac0+cnKytKGDRvUt29fNWrUyFweFBSkJ554Qlu3bpXT6XTZZvjw4S6nHd97773Kysoq0K1sbyQkJET33nuv+bxWrVpq1qyZvv/+e3PZ2rVr1alTJ3Xs2NGl7sknn7zh/h955BFVqFDB5ZPKffv26cCBA+rfv/81t9u1a5dOnz6tESNGuJwePWjQIPn5+RX4+K5W1N/Pwsg59d3HxyfPOl9f3xueGv/LL79IkqpVq+ayPOff0bPPPuvy8zJq1KibHPH1VatWTT///HOxvgYAFDcyEhnpamQkMtL1HDp0SNHR0QoLC1NUVFS+NWQkFAYNKZRbP/zwgzw9PdWkSROX5YGBgfL398/z5t2kSZM8f3/dtGlTScrzt+jXcvToUXl6eiokJOS645KkZs2auSy32Wxq1KhRnnHddttt17wwZMOGDV2eHzlyRIZh6M9//rNq1arl8sg5Rfr06dPXHNvx48c1aNAgVa9eXVWqVFGtWrXUtWtXSVJqauo1t7uWM2fO6OLFi3mOVZLuuOMOZWdn68SJEy7L69Wr5/I85032119/dfv1r3b1vnP2f+W+f/jhB91+++156vI7hqvVrFlTPXr0cPmb/6VLl6pChQp65JFHrrldzvf86tf19vZ2CanuKurvZ2HkBL6rr0kiSZcvX77haf45DMNweX6tOatVq1aeYFaUDMPgYp0AyjwyEhnpamQkMtK1OBwORUZGys/PTx999NE1L4pPRkJhcA0plHtl/Rfj9d6Mrl6Xc1HJF154QREREfluc3X4zJGVlaX7779fZ8+e1bhx49S8eXNVrlxZP/30kwYNGpTvBSuLw/Xe5ErzvnMMGDBAgwcPVmJiolq3bq1ly5apR48e5rU7bta1fp6zsrLyPC8N38+goCBJ0qlTp/KsO3XqlOrUqXPd7WvUqCGpaMJ2UUhJSSmy7yUAlDQykisyUvHsOwcZyVVZyEipqal64IEHlJKSoi+++OK6YyIjoTBoSKHMu9abT/369ZWdna3vvvtOd9xxh7k8OTlZKSkp5l0lcuR8cnbl/r799ltJMu84cSONGzdWdna2Dhw4oNatW19zXNJvdxW58pOd9PR0JSUlKTw8vECvlZ+c/Xl7e7u9n7179+rbb7/VokWL9NRTT5nL4+Li8tQWNMDWqlVLlSpV0uHDh/OsO3TokDw9PQt9McriUr9+fX333Xd5lud3DPnp27evnn76afOU9G+//VYTJky44WtKv100tnv37ubyjIwMJSUlqVWrVuaynE+2rr7b0NWfGrvz/SxOd911lypUqKBdu3bpscceM5enp6crMTHRZVl+mjdvLklKSkpyWX7lnF357+jMmTPFFsx++uknpaenu/w+AYDSjIyUi4x088hIRau0Z6TLly+rT58++vbbb7Vx48brnt1IRkJh8Sd7KPMqV64sKe+bT+/evSVJs2fPdln++uuvS5IiIyNdlp88edLlrjJOp1P//ve/1bp16wLfGr5v377y9PTUyy+/nOfTlZxPmMLDw2Wz2fTWW2+5fOr0z3/+U6mpqXnG5Y7atWvrvvvu07vvvpvvpy3XuzVwzidjV47JMAy9+eabeWqvNef57bNnz5763//+53JKf3JyshYvXqx77rnH5Ta3pUHv3r311VdfaceOHeayM2fO6MMPPyzQ9v7+/oqIiNCyZcu0ZMkS2Ww29e3b97rbtG/fXrVq1dK8efNc7n6ycOHCPHPcuHFjSdLnn39uLsvKytL8+fNd6tz5fhYnPz8/hYeH64MPPtC5c+fM5e+//77Onz9/3bvqSL/9OUZwcLB27drlsjw8PFze3t76+9//7nKMV/97L0oJCQmSfrsVMgCUBWSkXGSkm0dGKlqlOSNlZWWpf//+io+P1/LlyxUWFnbdejISCoszpFDm5dxm9KWXXtKAAQPk7e2tPn36qFWrVoqKitL8+fOVkpKirl27aseOHVq0aJH69u2rbt26ueynadOmGjJkiHbu3KmAgAD961//UnJyshYsWFDgsTRp0kQvvfSSpk2bpnvvvVePPPKIfHx8tHPnTtWpU0fTp09XrVq1NGHCBE2dOlW9evXS7373Ox0+fFhvv/22OnTooD/84Q83NR9z587VPffcoxYtWmjYsGFq1KiRkpOTFR8frx9//FFff/11vts1b95cjRs31gsvvKCffvpJdrtd//3vf/P9JCVnzv/v//5PERER8vLy0oABA/Ld7yuvvKK4uDjdc889+tOf/qQKFSro3XffVVpammbOnHlTx1ocxo4dq/fff1+9evXSc889Z97SuH79+vrmm28KtI/+/fvrD3/4g95++21FRETI39//uvXe3t565ZVX9PTTT6t79+7q37+/kpKStGDBgjzXR7jzzjvVqVMnTZgwQWfPnlX16tW1ZMkSZWZmutS58/0srFdeeUXSb7etln4LUFu3bpUkTZw40ax79dVX1blzZ3Xt2lXDhw/Xjz/+qL/97W/q2bOnevXqdcPXeeihh7RixQqXT+dr1aqlF154QdOnT9eDDz6o3r17a8+ePVq3bp1bp4vPmTNHKSkpOnnypCTpk08+0Y8//ijpt9trX3nB1Li4ONWrV4/bGQMoM8hIrshIN4eMVHBlPSM9//zzWrVqlfr06aOzZ8/qgw8+cFl/9b9FMhIKrfhv5AcUv2nTphm33Xab4enp6XK714yMDGPq1KlGw4YNDW9vbyM4ONiYMGGCy+1+DeO3291GRkYa69evN1q2bGn4+PgYzZs3N5YvX16o8fzrX/8y2rRpY/j4+BjVqlUzunbtasTFxbnUzJkzx2jevLnh7e1tBAQEGM8884zx66+/utR07drVuPPOO/Ps/0a3aD169Kjx1FNPGYGBgYa3t7dx2223GQ8++KDx0UcfmTX53QL3wIEDRnh4uFGlShWjZs2axrBhw4yvv/7akGQsWLDArMvMzDSeffZZo1atWoaHh4fL7XB11S2NDcMwdu/ebURERBhVqlQxKlWqZHTr1s3Ytm2bS03OrXp37tzpsjy/cd7ItW5pHBkZmaf26tsSG4ZhfPPNN0bXrl0NX19f47bbbjOmTZtm/POf/7zhLY1zOJ1Oo2LFioYk44MPPsiz/lrH9PbbbxsNGzY0fHx8jPbt2xuff/55vq9x9OhRIzw83PDx8TECAgKMF1980YiLiyv097OwtzSWdM3H1b744gujc+fOhq+vr1GrVi0jOjracDqdBXqd3bt3G5KML774wmV5VlaWMXXqVCMoKMioWLGicd999xn79u0z6tevX+BbGufc6jq/x5Xf66ysLCMoKMiYOHFiwSYHAEoJMpIrMhIZyTDISDmu9e+la9euBT4GMhJuhodhFOGV6oAyqkGDBrrrrru0evXqkh4KgHz06NFDderU0fvvv18ir79y5Uo98cQTOnr0qHkRUgC4FZCRgNKNjISyjGtIAQBKvb/85S9aunRpnguTWuWvf/2rRo4cSdACAAClChkJZRnXkAIKyOFwXHd9xYoVXa43g6J3/vx5nT9//ro1tWrVuuati3FjqampunTp0nVrCnoB26IUGhrqcjFTq8XHx5fYawNAaUdGKnlkpOJHRsofGQk3g4YUUEA36vpHRUVp4cKF1gzmFjVr1ixNnTr1ujVJSUkFvgU18nruuee0aNGi69bwl94AgCuRkUoeGan4kZGAosc1pIAC2rhx43XX16lTRyEhIRaN5tb0/fff6/vvv79uzT333CNfX1+LRlT+HDhwwLzj3LWEh4dbNBoAQFlARip5ZKTiR0YCih4NKQAAAAAAAFiKi5oDAAAAAADAUrf0NaSys7N18uRJVa1aVR4eHiU9HAAAYAHDMHTu3DnVqVNHnp58NpcfMhIAALceqzPSLd2QOnnypIKDg0t6GAAAoAScOHFCdevWLelhlEpkJAAAbl1WZaRbuiFVtWpVSb9Ntt1uL+HRAAAAKzidTgUHB5s5AHmRkQAAuPVYnZFu6YZUzinodrudsAUAwC2GP0W7NjISAAC3LqsyEhdOAAAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgqVv6GlIAAFxPVlaWMjIySnoYcJO3t7e8vLxKehgAAJRbZKSyqbRlJBpSAABcxTAMORwOpaSklPRQUEj+/v4KDAzkwuUAABQhMlLZV5oyEg0pAACukhO0ateurUqVKpWKN2wUjGEYunjxok6fPi1JCgoKKuERAQBQfpCRyq7SmJFoSAEAcIWsrCwzaNWoUaOkh4NCqFixoiTp9OnTql27dqk6NR0AgLKKjFT2lbaMxEXNAQC4Qs71ECpVqlTCI8HNyPn+cX0LAACKBhmpfChNGYmGFAAA+eAU9LKN7x8AAMWD99iyrTR9/2hIAQAAAAAAwFI0pAAAAAAAAGApLmoOAEABZcRutey1vHvdU+DaG516PXnyZE2ZMuUmR1Q4Hh4eWrFihfr27VvofcyfP1+LFy/W7t27de7cOf3666/y9/cvsjECAICbY2VGkshJOc6ePavJkydrw4YNOn78uGrVqqW+fftq2rRp8vPzK9rBFgMaUgAAlHGnTp0yv166dKkmTZqkw4cPm8uqVKni1v7S09Nls9mKbHw36+LFi+rVq5d69eqlCRMmlPRwAABAGVKec9LJkyd18uRJzZo1SyEhIfrhhx80YsQInTx5Uh999FFJD++G+JM9oIhlxG51eQBAcQsMDDQffn5+8vDwMJ9fuHBBTz75pAICAlSlShV16NBBGzdudNm+QYMGmjZtmp566inZ7XYNHz5ckvSPf/xDwcHBqlSpkh5++GG9/vrrec5M+t///qe2bdvK19dXjRo10tSpU5WZmWnuV5IefvhheXh4mM+//vprdevWTVWrVpXdble7du20a9euax7fqFGjNH78eHXq1KloJgxAiSAjASgJ5Tkn3XXXXfrvf/+rPn36qHHjxurevbteffVVffLJJ+brlGY0pAAAKMfOnz+v3r17a9OmTdqzZ4969eqlPn366Pjx4y51s2bNUqtWrbRnzx79+c9/1pdffqkRI0boueeeU2Jiou6//369+uqrLtt88cUXeuqpp/Tcc8/pwIEDevfdd7Vw4UKzbufOnZKkBQsW6NSpU+bzJ598UnXr1tXOnTuVkJCg8ePHy9vb24LZAAAAyFUec1JqaqrsdrsqVCj9fxBX+kcIAAAKrVWrVmrVqpX5fNq0aVqxYoVWrVqlkSNHmsu7d++u559/3nz+0ksv6YEHHtALL7wgSWratKm2bdum1atXmzVTp07V+PHjFRUVJUlq1KiRpk2bprFjx2ry5MmqVauWJMnf31+BgYHmdsePH9eYMWPUvHlzSdLtt99eDEcOAABwfeUtJ/3888+aNm2aeRZXaccZUgAAlGPnz5/XCy+8oDvuuEP+/v6qUqWKDh48mOeTv/bt27s8P3z4sDp27Oiy7OrnX3/9tV5++WVVqVLFfAwbNkynTp3SxYsXrzmmmJgYDR06VOHh4ZoxY4aOHj16k0cJAADgvvKUk5xOpyIjIxUSElJiF2l3Fw0pAADKsRdeeEErVqzQX/7yF33xxRdKTExUixYtlJ6e7lJXuXJlt/d9/vx5TZ06VYmJieZj7969+u677+Tr63vN7aZMmaL9+/crMjJSmzdvVkhIiFasWOH26wMAANyM8pKTzp07p169eqlq1apasWJFmbkUAn+yBwBAOfbll19q0KBBevjhhyX9Fo6OHTt2w+2aNWtmXssgx9XP27Ztq8OHD6tJkybX3I+3t7eysrLyLG/atKmaNm2q0aNH6/HHH9eCBQvMMQIAAFihPOQkp9OpiIgI+fj4aNWqVddtdpU2NKQAACjHbr/9dn388cfq06ePPDw89Oc//1nZ2dk33O7ZZ59Vly5d9Prrr6tPnz7avHmz1q1bJw8PD7Nm0qRJevDBB1WvXj09+uij8vT01Ndff619+/bplVdekfTbHWQ2bdqku+++Wz4+PvL19dWYMWP06KOPqmHDhvrxxx+1c+dO9evX75pjcTgccjgcOnLkiCRp7969qlq1qurVq6fq1avf5AwBAIBbVVnPSU6nUz179tTFixf1wQcfyOl0yul0SpJq1aolLy+vIpil4sOf7AEAUI69/vrrqlatmjp37qw+ffooIiJCbdu2veF2d999t+bNm6fXX39drVq1UmxsrEaPHu3yqVtERIRWr16tDRs2qEOHDurUqZPeeOMN1a9f36z529/+pri4OAUHB6tNmzby8vLSL7/8oqeeekpNmzbVY489pgceeEBTp0695ljmzZunNm3aaNiwYZKkLl26qE2bNlq1atVNzAwAALjVlfWctHv3bm3fvl179+5VkyZNFBQUZD5OnDhx8xNUzDwMwzBKehAlxel0ys/Pz7wtIlAUMmK3ujz37nVPCY0EQGFcvnxZSUlJatiwYZk65dkKw4YN06FDh/TFF1+U9FBu6HrfR97/b4w5QnEgIwFlGxnp+spKTipNGemmzpCaMWOGPDw8NGrUKHPZ5cuXFR0drRo1aqhKlSrq16+fkpOTXbY7fvy4IiMjValSJdWuXVtjxoxRZmamS82WLVvUtm1b+fj4qEmTJlq4cGGe1587d64aNGggX19fhYaGaseOHTdzOAAA4AqzZs3S119/rSNHjujvf/+7Fi1aZN66GNdHRgIAoHwjJ928Qjekdu7cqXfffVctW7Z0WT569Gh98sknWr58uT777DOdPHlSjzzyiLk+KytLkZGRSk9P17Zt27Ro0SItXLhQkyZNMmuSkpIUGRmpbt26KTExUaNGjdLQoUO1fv16s2bp0qWKiYnR5MmTtXv3brVq1UoRERE6ffp0YQ8JAABcYceOHbr//vvVokULzZs3T2+99ZaGDh1a0sMq9chIAACUf+SkImAUwrlz54zbb7/diIuLM7p27Wo899xzhmEYRkpKiuHt7W0sX77crD148KAhyYiPjzcMwzDWrl1reHp6Gg6Hw6x55513DLvdbqSlpRmGYRhjx4417rzzTpfX7N+/vxEREWE+79ixoxEdHW0+z8rKMurUqWNMnz69wMeRmppqSDJSU1MLfvDADaSv+8LlAaBsuXTpknHgwAHj0qVLJT0U3ITrfR+L8/2fjARcGxkJKNvISOVDSWWk/BTqDKno6GhFRkYqPDzcZXlCQoIyMjJcljdv3lz16tVTfHy8JCk+Pl4tWrRQQECAWRMRESGn06n9+/ebNVfvOyIiwtxHenq6EhISXGo8PT0VHh5u1uQnLS3NvOr8lVefBwAAKApkJAAAgIKp4O4GS5Ys0e7du7Vz58486xwOh2w2m/z9/V2WBwQEyOFwmDVXBq2c9TnrrlfjdDp16dIl/frrr8rKysq35tChQ9cc+/Tp0697Fx8AAIDCIiMBAAAUnFtnSJ04cULPPfecPvzwwzJ5Vf0JEyYoNTXVfJSF2yACAIDSj4wEAADgHrcaUgkJCTp9+rTatm2rChUqqEKFCvrss8/01ltvqUKFCgoICFB6erpSUlJctktOTlZgYKAkKTAwMM8dZXKe36jGbrerYsWKqlmzpry8vPKtydlHfnx8fGS3210eAAAAN4uMBAAA4B63GlI9evTQ3r17lZiYaD7at2+vJ5980vza29tbmzZtMrc5fPiwjh8/rrCwMElSWFiY9u7d63Knl7i4ONntdoWEhJg1V+4jpyZnHzabTe3atXOpyc7O1qZNm8waAAAAq5CRAAAA3OPWNaSqVq2qu+66y2VZ5cqVVaNGDXP5kCFDFBMTo+rVq8tut+vZZ59VWFiYOnXqJEnq2bOnQkJCNHDgQM2cOVMOh0MTJ05UdHS0fHx8JEkjRozQnDlzNHbsWP3xj3/U5s2btWzZMq1Zs8Z83ZiYGEVFRal9+/bq2LGjZs+erQsXLmjw4ME3NSEAAADuIiMBAAC4x+2Lmt/IG2+8IU9PT/Xr109paWmKiIjQ22+/ba738vLS6tWr9cwzzygsLEyVK1dWVFSUXn75ZbOmYcOGWrNmjUaPHq0333xTdevW1XvvvaeIiAizpn///jpz5owmTZokh8Oh1q1bKzY2Ns9FPAEAAEoDMhIAAEAuD8MwjJIeRElxOp3y8/NTamoq10pAkcmI3ery3LvXPSU0EgCFcfnyZSUlJalhw4Z5Lk59dNe7lo2jcfun3aofNGiQFi1aJEmqUKGCqlevrpYtW+rxxx/XoEGD5Onp1l/plyr79+/XpEmTlJCQoB9++EFvvPGGRo0add1trvd95P3/xpgjFAcyElC2lZaMJJGTrvSPf/xD//73v7Vv3z5JUrt27fSXv/xFHTt2zLe+NGWksjvrAADARa9evXTq1CkdO3ZM69atU7du3fTcc8/pwQcfVGZmZkkPr9AuXryoRo0aacaMGde9MDcAAMC1lNectGXLFj3++OP69NNPFR8fr+DgYPXs2VM//fRTSQ/thmhIAQBQTvj4+CgwMFC33Xab2rZtqxdffFH/+9//tG7dOi1cuNCsS0lJ0dChQ1WrVi3Z7XZ1795dX3/9tcu+PvnkE3Xo0EG+vr6qWbOmHn74YXPdr7/+qqeeekrVqlVTpUqV9MADD+i7776TJF24cEF2u10fffSRy/5WrlypypUr69y5c0pPT9fIkSMVFBQkX19f1a9fX9OnT7/mcXXo0EGvvfaaBgwYYF5LCQAAwB3lNSd9+OGH+tOf/qTWrVurefPmeu+998wbmpR2NKQAACjHunfvrlatWunjjz82l/3+97/X6dOntW7dOiUkJKht27bq0aOHzp49K0las2aNHn74YfXu3Vt79uzRpk2bXE77HjRokHbt2qVVq1YpPj5ehmGod+/eysjIUOXKlTVgwAAtWLDAZRwLFizQo48+qqpVq+qtt97SqlWrtGzZMh0+fFgffvihGjRoYMl8AAAA5CiPOenixYvKyMhQ9erVb25yLFDkFzUHAAClS/PmzfXNN99IkrZu3aodO3bo9OnT5tlGs2bN0sqVK/XRRx9p+PDhevXVVzVgwABNnTrV3EerVq0kSd99951WrVqlL7/8Up07d5b02ydzwcHBWrlypX7/+99r6NCh6ty5s06dOqWgoCCdPn1aa9eu1caNGyVJx48f1+2336577rlHHh4eql+/vpXTAQAAYCpvOWncuHGqU6eOwsPDb3puihtnSAEAUM4ZhiEPDw9J0tdff63z58+rRo0aqlKlivlISkrS0aNHJUmJiYnq0aNHvvs6ePCgKlSooNDQUHNZjRo11KxZMx08eFCS1LFjR915553mxUM/+OAD1a9fX126dJH02yeHiYmJatasmf7v//5PGzZsKLZjBwAAuJ7ylJNmzJihJUuWaMWKFXkuWF4acYYUAADl3MGDB9WwYUNJ0vnz5xUUFKQtW7bkqfP395ckVaxY8aZfc+jQoZo7d67Gjx+vBQsWaPDgwWbYa9u2rZKSkrRu3Tpt3LhRjz32mMLDw/NcTwEAAKC4lZecNGvWLM2YMUMbN25Uy5Ytb3qMVuAMKQAAyrHNmzdr79696tevn6TfQo7D4VCFChXUpEkTl0fNmjUlSS1btrzmhTDvuOMOZWZmavv27eayX375RYcPH1ZISIi57A9/+IN++OEHvfXWWzpw4ICioqJc9mO329W/f3/94x//0NKlS/Xf//7XvDYDAACAFcpLTpo5c6amTZum2NhYtW/fvtDzYTXOkAIAoJxIS0uTw+FQVlaWkpOTFRsbq+nTp+vBBx/UU089JUkKDw9XWFiY+vbtq5kzZ6pp06Y6efKkeYHO9u3ba/LkyerRo4caN26sAQMGKDMzU2vXrtW4ceN0++2366GHHtKwYcP07rvvqmrVqho/frxuu+02PfTQQ+ZYqlWrpkceeURjxoxRz549VbduXXPd66+/rqCgILVp00aenp5avny5AgMDzU8er5aenq4DBw6YX//0009KTExUlSpV1KRJk+KbUAAAUG6U15z017/+VZMmTdLixYvVoEEDORwOSTL/3LA04wwpAADKidjYWAUFBalBgwbq1auXPv30U7311lv63//+Jy8vL0mSh4eH1q5dqy5dumjw4MFq2rSpBgwYoB9++EEBAQGSpPvuu0/Lly/XqlWr1Lp1a3Xv3l07duwwX2fBggVq166dHnzwQYWFhckwDK1du1be3t4u4xkyZIjS09P1xz/+0WV51apVNXPmTLVv314dOnTQsWPHtHbtWnl65h9LTp48qTZt2qhNmzY6deqUZs2apTZt2mjo0KFFOX0AAKAcK6856Z133lF6eroeffRRBQUFmY9Zs2YV5fQVCw/DMIySHkRJcTqd8vPzU2pqqux2e0kPB+VERuxWl+feve4poZEAKIzLly8rKSlJDRs2LBMXgyzN3n//fY0ePVonT56UzWaz9LWv933k/f/GmCMUBzISULaRkYpWSeWk0pSR+JM9AABQpC5evKhTp05pxowZevrppy1vRgEAAJRW5KRc/MkeAAAoUjNnzlTz5s0VGBioCRMmlPRwAAAASg1yUi4aUgAAoEhNmTJFGRkZ2rRpU6m/mCYAAICVyEm5aEgBAAAAAADAUjSkAAAAAAAAYCkaUgAA5CM7O7ukh4CbwPcPAIDiwXts2Vaavn/cZQ8AgCvYbDZ5enrq5MmTqlWrlmw2mzw8PEp6WCggwzCUnp6uM2fOyNPT85a+cw0AAEWJjFS2lcaMREMKAIAreHp6qmHDhjp16pROnjxZ0sNBIVWqVEn16tWTpycngwMAUBTISOVDacpINKQAALiKzWZTvXr1lJmZqaysrJIeDtzk5eWlChUq8KktAABFjIxUtpW2jERDCgCAfHh4eMjb21ve3t4lPRQAAIBSg4yEolLy52gBAAAAAADglkJDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFJuNaTeeecdtWzZUna7XXa7XWFhYVq3bp25/r777pOHh4fLY8SIES77OH78uCIjI1WpUiXVrl1bY8aMUWZmpkvNli1b1LZtW/n4+KhJkyZauHBhnrHMnTtXDRo0kK+vr0JDQ7Vjxw53DgUAAKDIkJEAAADc41ZDqm7dupoxY4YSEhK0a9cude/eXQ899JD2799v1gwbNkynTp0yHzNnzjTXZWVlKTIyUunp6dq2bZsWLVqkhQsXatKkSWZNUlKSIiMj1a1bNyUmJmrUqFEaOnSo1q9fb9YsXbpUMTExmjx5snbv3q1WrVopIiJCp0+fvpm5AAAAKBQyEgAAgHs8DMMwbmYH1atX12uvvaYhQ4bovvvuU+vWrTV79ux8a9etW6cHH3xQJ0+eVEBAgCRp3rx5GjdunM6cOSObzaZx48ZpzZo12rdvn7ndgAEDlJKSotjYWElSaGioOnTooDlz5kiSsrOzFRwcrGeffVbjx48v8NidTqf8/PyUmpoqu91eyBkAXGXEbnV57t3rnhIaCQAgP1a9/5ORAFdkJAAo3ax+/y/0NaSysrK0ZMkSXbhwQWFhYebyDz/8UDVr1tRdd92lCRMm6OLFi+a6+Ph4tWjRwgxakhQRESGn02l+ghgfH6/w8HCX14qIiFB8fLwkKT09XQkJCS41np6eCg8PN2sAAABKChkJAADgxiq4u8HevXsVFhamy5cvq0qVKlqxYoVCQkIkSU888YTq16+vOnXq6JtvvtG4ceN0+PBhffzxx5Ikh8PhErQkmc8dDsd1a5xOpy5duqRff/1VWVlZ+dYcOnToumNPS0tTWlqa+dzpdLp7+AAAAPkiIwEAABSc2w2pZs2aKTExUampqfroo48UFRWlzz77TCEhIRo+fLhZ16JFCwUFBalHjx46evSoGjduXKQDL4zp06dr6tSpJT0MAABQDpGRAAAACs7tP9mz2Wxq0qSJ2rVrp+nTp6tVq1Z68803860NDQ2VJB05ckSSFBgYqOTkZJeanOeBgYHXrbHb7apYsaJq1qwpLy+vfGty9nEtEyZMUGpqqvk4ceJEAY8aAADg+shIAAAABVfoa0jlyM7OdjnF+0qJiYmSpKCgIElSWFiY9u7d63Knl7i4ONntdvOU9rCwMG3atMllP3FxceY1GGw2m9q1a+dSk52drU2bNrlcpyE/Pj4+5u2Ycx5AcTqWsk5Hd71rPgAAtw4yEnBtZCQAgFt/sjdhwgQ98MADqlevns6dO6fFixdry5YtWr9+vY4eParFixerd+/eqlGjhr755huNHj1aXbp0UcuWLSVJPXv2VEhIiAYOHKiZM2fK4XBo4sSJio6Olo+PjyRpxIgRmjNnjsaOHas//vGP2rx5s5YtW6Y1a9aY44iJiVFUVJTat2+vjh07avbs2bpw4YIGDx5chFMDAABQMGQkAAAA97jVkDp9+rSeeuopnTp1Sn5+fmrZsqXWr1+v+++/XydOnNDGjRvN4BMcHKx+/fpp4sSJ5vZeXl5avXq1nnnmGYWFhaly5cqKiorSyy+/bNY0bNhQa9as0ejRo/Xmm2+qbt26eu+99xQREWHW9O/fX2fOnNGkSZPkcDjUunVrxcbG5rmIJwAAgBXISAAAAO7xMAzDKOlBlBSn0yk/Pz+lpqZyajqKTEbsVvPrYynr5Nmknvm8cfunS2JIAIAr8P5/Y8wRigMZCQBKN6vf/2/6GlIAAAAAAACAO2hIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFJuNaTeeecdtWzZUna7XXa7XWFhYVq3bp25/vLly4qOjlaNGjVUpUoV9evXT8nJyS77OH78uCIjI1WpUiXVrl1bY8aMUWZmpkvNli1b1LZtW/n4+KhJkyZauHBhnrHMnTtXDRo0kK+vr0JDQ7Vjxw53DgUAAKDIkJEAAADc41ZDqm7dupoxY4YSEhK0a9cude/eXQ899JD2798vSRo9erQ++eQTLV++XJ999plOnjypRx55xNw+KytLkZGRSk9P17Zt27Ro0SItXLhQkyZNMmuSkpIUGRmpbt26KTExUaNGjdLQoUO1fv16s2bp0qWKiYnR5MmTtXv3brVq1UoRERE6ffr0zc4HAACA28hIAAAA7vEwDMO4mR1Ur15dr732mh599FHVqlVLixcv1qOPPipJOnTokO644w7Fx8erU6dOWrdunR588EGdPHlSAQEBkqR58+Zp3LhxOnPmjGw2m8aNG6c1a9Zo37595msMGDBAKSkpio2NlSSFhoaqQ4cOmjNnjiQpOztbwcHBevbZZzV+/PgCj93pdMrPz0+pqamy2+03Mw2AKSN2q/n1sZR18mxSz3zeuP3TJTEkAMAVrHr/JyMBrshIAFC6Wf3+X+hrSGVlZWnJkiW6cOGCwsLClJCQoIyMDIWHh5s1zZs3V7169RQfHy9Jio+PV4sWLcygJUkRERFyOp3mJ4jx8fEu+8ipydlHenq6EhISXGo8PT0VHh5u1lxLWlqanE6nywMAAKAokZEAAABuzO2G1N69e1WlShX5+PhoxIgRWrFihUJCQuRwOGSz2eTv7+9SHxAQIIfDIUlyOBwuQStnfc6669U4nU5dunRJP//8s7KysvKtydnHtUyfPl1+fn7mIzg42N3DBwAAyBcZCQAAoODcbkg1a9ZMiYmJ2r59u5555hlFRUXpwIEDxTG2IjdhwgSlpqaajxMnTpT0kAAAQDlBRgIAACi4Cu5uYLPZ1KRJE0lSu3bttHPnTr355pvq37+/0tPTlZKS4vIJYHJysgIDAyVJgYGBee70knOHmStrrr7rTHJysux2uypWrCgvLy95eXnlW5Ozj2vx8fGRj4+Pu4cMAABwQ2QkAACAgiv0NaRyZGdnKy0tTe3atZO3t7c2bdpkrjt8+LCOHz+usLAwSVJYWJj27t3rcqeXuLg42e12hYSEmDVX7iOnJmcfNptN7dq1c6nJzs7Wpk2bzBoAAICSRkYCAAC4NrfOkJowYYIeeOAB1atXT+fOndPixYu1ZcsWrV+/Xn5+fhoyZIhiYmJUvXp12e12PfvsswoLC1OnTp0kST179lRISIgGDhyomTNnyuFwaOLEiYqOjjY/lRsxYoTmzJmjsWPH6o9//KM2b96sZcuWac2aNeY4YmJiFBUVpfbt26tjx46aPXu2Lly4oMGDBxfh1AAAABQMGQkAAMA9bjWkTp8+raeeekqnTp2Sn5+fWrZsqfXr1+v++++XJL3xxhvy9PRUv379lJaWpoiICL399tvm9l5eXlq9erWeeeYZhYWFqXLlyoqKitLLL79s1jRs2FBr1qzR6NGj9eabb6pu3bp67733FBERYdb0799fZ86c0aRJk+RwONS6dWvFxsbmuYgnAACAFchIAAAA7vEwDMMo6UGUFKfTKT8/P6Wmpsput5f0cFBOZMRuNb8+lrJOnk3qmc8bt3+6JIYEALgC7/83xhyhOJCRAKB0s/r9/6avIQUAAAAAAAC4g4YUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYyq2G1PTp09WhQwdVrVpVtWvXVt++fXX48GGXmvvuu08eHh4ujxEjRrjUHD9+XJGRkapUqZJq166tMWPGKDMz06Vmy5Ytatu2rXx8fNSkSRMtXLgwz3jmzp2rBg0ayNfXV6GhodqxY4c7hwMAAFAkyEgAAADucash9dlnnyk6OlpfffWV4uLilJGRoZ49e+rChQsudcOGDdOpU6fMx8yZM811WVlZioyMVHp6urZt26ZFixZp4cKFmjRpklmTlJSkyMhIdevWTYmJiRo1apSGDh2q9evXmzVLly5VTEyMJk+erN27d6tVq1aKiIjQ6dOnCzsXAAAAhUJGAgAAcI+HYRhGYTc+c+aMateurc8++0xdunSR9Nunf61bt9bs2bPz3WbdunV68MEHdfLkSQUEBEiS5s2bp3HjxunMmTOy2WwaN26c1qxZo3379pnbDRgwQCkpKYqNjZUkhYaGqkOHDpozZ44kKTs7W8HBwXr22Wc1fvz4Ao3f6XTKz89PqampstvthZ0GwEVG7Fbz62Mp6+TZpJ75vHH7p0tiSACAK1jx/k9GAvIiIwFA6Wb1+/9NXUMqNTVVklS9enWX5R9++KFq1qypu+66SxMmTNDFixfNdfHx8WrRooUZtCQpIiJCTqdT+/fvN2vCw8Nd9hkREaH4+HhJUnp6uhISElxqPD09FR4ebtYAAACUFDISAADA9VUo7IbZ2dkaNWqU7r77bt11113m8ieeeEL169dXnTp19M0332jcuHE6fPiwPv74Y0mSw+FwCVqSzOcOh+O6NU6nU5cuXdKvv/6qrKysfGsOHTp0zTGnpaUpLS3NfO50Ogtx5AAAANdGRgIAALixQjekoqOjtW/fPm3dutVl+fDhw82vW7RooaCgIPXo0UNHjx5V48aNCz/SIjB9+nRNnTq1RMcAAADKNzISAADAjRXqT/ZGjhyp1atX69NPP1XdunWvWxsaGipJOnLkiCQpMDBQycnJLjU5zwMDA69bY7fbVbFiRdWsWVNeXl751uTsIz8TJkxQamqq+Thx4kQBjhYAAKBgyEgAAAAF41ZDyjAMjRw5UitWrNDmzZvVsGHDG26TmJgoSQoKCpIkhYWFae/evS53eomLi5PdbldISIhZs2nTJpf9xMXFKSwsTJJks9nUrl07l5rs7Gxt2rTJrMmPj4+P7Ha7ywMAAOBmkZEAAADc49af7EVHR2vx4sX63//+p6pVq5rXM/Dz81PFihV19OhRLV68WL1791aNGjX0zTffaPTo0erSpYtatmwpSerZs6dCQkI0cOBAzZw5Uw6HQxMnTlR0dLR8fHwkSSNGjNCcOXM0duxY/fGPf9TmzZu1bNkyrVmzxhxLTEyMoqKi1L59e3Xs2FGzZ8/WhQsXNHjw4KKaGwAAgAIhIwEAALjHrYbUO++8I+m32xZfacGCBRo0aJBsNps2btxoBp/g4GD169dPEydONGu9vLy0evVqPfPMMwoLC1PlypUVFRWll19+2axp2LCh1qxZo9GjR+vNN99U3bp19d577ykiIsKs6d+/v86cOaNJkybJ4XCodevWio2NzXMRTwAAgOJGRgIAAHCPh2EYRkkPoqQ4nU75+fkpNTWVU9NRZDJicy9ieyxlnTyb1DOfN27/dEkMCQBwBd7/b4w5QnEgIwFA6Wb1+3+hLmoOAAAAAAAAFBYNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFjKrYbU9OnT1aFDB1WtWlW1a9dW3759dfjwYZeay5cvKzo6WjVq1FCVKlXUr18/JScnu9QcP35ckZGRqlSpkmrXrq0xY8YoMzPTpWbLli1q27atfHx81KRJEy1cuDDPeObOnasGDRrI19dXoaGh2rFjhzuHAwAAUCTISAAAAO5xqyH12WefKTo6Wl999ZXi4uKUkZGhnj176sKFC2bN6NGj9cknn2j58uX67LPPdPLkST3yyCPm+qysLEVGRio9PV3btm3TokWLtHDhQk2aNMmsSUpKUmRkpLp166bExESNGjVKQ4cO1fr1682apUuXKiYmRpMnT9bu3bvVqlUrRURE6PTp0zczHwAAAG4jIwEAALjHwzAMo7AbnzlzRrVr19Znn32mLl26KDU1VbVq1dLixYv16KOPSpIOHTqkO+64Q/Hx8erUqZPWrVunBx98UCdPnlRAQIAkad68eRo3bpzOnDkjm82mcePGac2aNdq3b5/5WgMGDFBKSopiY2MlSaGhoerQoYPmzJkjScrOzlZwcLCeffZZjR8/vkDjdzqd8vPzU2pqqux2e2GnAXCREbvV/PpYyjp5NqlnPm/c/umSGBIA4ApWvP+TkYC8yEgAULpZ/f5/U9eQSk1NlSRVr15dkpSQkKCMjAyFh4ebNc2bN1e9evUUHx8vSYqPj1eLFi3MoCVJERERcjqd2r9/v1lz5T5yanL2kZ6eroSEBJcaT09PhYeHmzX5SUtLk9PpdHkAAAAUNTISAADA9RW6IZWdna1Ro0bp7rvv1l133SVJcjgcstls8vf3d6kNCAiQw+Ewa64MWjnrc9Zdr8bpdOrSpUv6+eeflZWVlW9Nzj7yM336dPn5+ZmP4OBg9w8cAADgOshIAAAAN1bohlR0dLT27dunJUuWFOV4itWECROUmppqPk6cOFHSQwIAAOUMGQkAAODGKhRmo5EjR2r16tX6/PPPVbduXXN5YGCg0tPTlZKS4vIJYHJysgIDA82aq+/0knOHmStrrr7rTHJysux2uypWrCgvLy95eXnlW5Ozj/z4+PjIx8fH/QMGAAAoADISAABAwbh1hpRhGBo5cqRWrFihzZs3q2HDhi7r27VrJ29vb23atMlcdvjwYR0/flxhYWGSpLCwMO3du9flTi9xcXGy2+0KCQkxa67cR05Nzj5sNpvatWvnUpOdna1NmzaZNQAAAFYhIwEAALjHrTOkoqOjtXjxYv3vf/9T1apVzWsR+Pn5qWLFivLz89OQIUMUExOj6tWry26369lnn1VYWJg6deokSerZs6dCQkI0cOBAzZw5Uw6HQxMnTlR0dLT5ydyIESM0Z84cjR07Vn/84x+1efNmLVu2TGvWrDHHEhMTo6ioKLVv314dO3bU7NmzdeHCBQ0ePLio5gYAAKBAyEgAAADucash9c4770iS7rvvPpflCxYs0KBBgyRJb7zxhjw9PdWvXz+lpaUpIiJCb7/9tlnr5eWl1atX65lnnlFYWJgqV66sqKgovfzyy2ZNw4YNtWbNGo0ePVpvvvmm6tatq/fee08RERFmTf/+/XXmzBlNmjRJDodDrVu3VmxsbJ6LeAIAABQ3MhIAAIB7PAzDMEp6ECXF6XTKz89PqampstvtJT0clBMZsVvNr4+lrJNnk3rm88btny6JIQEArsD7/40xRygOZCQAKN2sfv8v9F32AAAAAAAAgMKgIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJZyuyH1+eefq0+fPqpTp448PDy0cuVKl/WDBg2Sh4eHy6NXr14uNWfPntWTTz4pu90uf39/DRkyROfPn3ep+eabb3TvvffK19dXwcHBmjlzZp6xLF++XM2bN5evr69atGihtWvXuns4AAAARYKMBAAAUHBuN6QuXLigVq1aae7cudes6dWrl06dOmU+/vOf/7isf/LJJ7V//37FxcVp9erV+vzzzzV8+HBzvdPpVM+ePVW/fn0lJCTotdde05QpUzR//nyzZtu2bXr88cc1ZMgQ7dmzR3379lXfvn21b98+dw8JAADgppGRAAAACs7DMAyj0Bt7eGjFihXq27evuWzQoEFKSUnJ86lgjoMHDyokJEQ7d+5U+/btJUmxsbHq3bu3fvzxR9WpU0fvvPOOXnrpJTkcDtlsNknS+PHjtXLlSh06dEiS1L9/f124cEGrV682992pUye1bt1a8+bNK9D4nU6n/Pz8lJqaKrvdXogZAPLKiN1qfn0sZZ08m9Qznzdu/3RJDAkAcAUr3v/JSEBeZCQAKN2sfv8vlmtIbdmyRbVr11azZs30zDPP6JdffjHXxcfHy9/f3wxakhQeHi5PT09t377drOnSpYsZtCQpIiJChw8f1q+//mrWhIeHu7xuRESE4uPji+OQAAAAbhoZCQAA4DcVinqHvXr10iOPPKKGDRvq6NGjevHFF/XAAw8oPj5eXl5ecjgcql27tusgKlRQ9erV5XA4JEkOh0MNGzZ0qQkICDDXVatWTQ6Hw1x2ZU3OPvKTlpamtLQ087nT6bypYwUAACgoMhIAAECuIm9IDRgwwPy6RYsWatmypRo3bqwtW7aoR48eRf1ybpk+fbqmTp1aomMAAAC3JjISAABArmL5k70rNWrUSDVr1tSRI0ckSYGBgTp9+rRLTWZmps6ePavAwECzJjk52aUm5/mNanLW52fChAlKTU01HydOnLi5gwMAACgkMhIAALiVFXtD6scff9Qvv/yioKAgSVJYWJhSUlKUkJBg1mzevFnZ2dkKDQ01az7//HNlZGSYNXFxcWrWrJmqVatm1mzatMnlteLi4hQWFnbNsfj4+Mhut7s8AAAASgIZCQAA3MrcbkidP39eiYmJSkxMlCQlJSUpMTFRx48f1/nz5zVmzBh99dVXOnbsmDZt2qSHHnpITZo0UUREhCTpjjvuUK9evTRs2DDt2LFDX375pUaOHKkBAwaoTp06kqQnnnhCNptNQ4YM0f79+7V06VK9+eabiomJMcfx3HPPKTY2Vn/729906NAhTZkyRbt27dLIkSOLYFoAAADcQ0YCAAAoOLcbUrt27VKbNm3Upk0bSVJMTIzatGmjSZMmycvLS998841+97vfqWnTphoyZIjatWunL774Qj4+PuY+PvzwQzVv3lw9evRQ7969dc8992j+/Pnmej8/P23YsEFJSUlq166dnn/+eU2aNEnDhw83azp37qzFixdr/vz5atWqlT766COtXLlSd911183MBwAAQKGQkQAAAArOwzAMo6QHUVKcTqf8/PyUmprKqekoMhmxW82vj6Wsk2eTeubzxu2fLokhAQCuwPv/jTFHKA5kJAAo3ax+/y/2a0gBAAAAAAAAV6IhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEu53ZD6/PPP1adPH9WpU0ceHh5auXKly3rDMDRp0iQFBQWpYsWKCg8P13fffedSc/bsWT355JOy2+3y9/fXkCFDdP78eZeab775Rvfee698fX0VHBysmTNn5hnL8uXL1bx5c/n6+qpFixZau3atu4cDAABQJMhIAAAABed2Q+rChQtq1aqV5s6dm+/6mTNn6q233tK8efO0fft2Va5cWREREbp8+bJZ8+STT2r//v2Ki4vT6tWr9fnnn2v48OHmeqfTqZ49e6p+/fpKSEjQa6+9pilTpmj+/PlmzbZt2/T4449ryJAh2rNnj/r27au+fftq37597h4SAADATSMjAQAAFJyHYRhGoTf28NCKFSvUt29fSb998lenTh09//zzeuGFFyRJqampCggI0MKFCzVgwAAdPHhQISEh2rlzp9q3by9Jio2NVe/evfXjjz+qTp06euedd/TSSy/J4XDIZrNJksaPH6+VK1fq0KFDkqT+/fvrwoULWr16tTmeTp06qXXr1po3b16Bxu90OuXn56fU1FTZ7fbCTgPgIiN2q/n1sZR18mxSz3zeuP3TJTEkAMAVrHj/JyMBeZGRAKB0s/r9v0ivIZWUlCSHw6Hw8HBzmZ+fn0JDQxUfHy9Jio+Pl7+/vxm0JCk8PFyenp7avn27WdOlSxczaElSRESEDh8+rF9//dWsufJ1cmpyXic/aWlpcjqdLg8AAIDiRkYCAABwVaQNKYfDIUkKCAhwWR4QEGCuczgcql27tsv6ChUqqHr16i41+e3jyte4Vk3O+vxMnz5dfn5+5iM4ONjdQwQAAHAbGQkAAMDVLXWXvQkTJig1NdV8nDhxoqSHBAAAUOLISAAAwGpF2pAKDAyUJCUnJ7ssT05ONtcFBgbq9OnTLuszMzN19uxZl5r89nHla1yrJmd9fnx8fGS3210eAAAAxY2MBAAA4KpIG1INGzZUYGCgNm3aZC5zOp3avn27wsLCJElhYWFKSUlRQkKCWbN582ZlZ2crNDTUrPn888+VkZFh1sTFxalZs2aqVq2aWXPl6+TU5LwOAABAaUFGAgAAcOV2Q+r8+fNKTExUYmKipN8u0pmYmKjjx4/Lw8NDo0aN0iuvvKJVq1Zp7969euqpp1SnTh3zLjN33HGHevXqpWHDhmnHjh368ssvNXLkSA0YMEB16tSRJD3xxBOy2WwaMmSI9u/fr6VLl+rNN99UTEyMOY7nnntOsbGx+tvf/qZDhw5pypQp2rVrl0aOHHnzswIAAOAmMhIAAEDBVXB3g127dqlbt27m85wAFBUVpYULF2rs2LG6cOGChg8frpSUFN1zzz2KjY2Vr6+vuc2HH36okSNHqkePHvL09FS/fv301ltvmev9/Py0YcMGRUdHq127dqpZs6YmTZqk4cOHmzWdO3fW4sWLNXHiRL344ou6/fbbtXLlSt11112FmggAAICbQUYCAAAoOA/DMIySHkRJcTqd8vPzU2pqKtdKQJHJiN1qfn0sZZ08m9Qznzdu/3RJDAkAcAXe/2+MOUJxICMBQOlm9fv/LXWXPQAAAAAAAJQ8GlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGCpIm9ITZkyRR4eHi6P5s2bm+svX76s6Oho1ahRQ1WqVFG/fv2UnJzsso/jx48rMjJSlSpVUu3atTVmzBhlZma61GzZskVt27aVj4+PmjRpooULFxb1oQAAABQZMhIAAECuYjlD6s4779SpU6fMx9atW811o0eP1ieffKLly5frs88+08mTJ/XII4+Y67OyshQZGan09HRt27ZNixYt0sKFCzVp0iSzJikpSZGRkerWrZsSExM1atQoDR06VOvXry+OwwEAACgSZCQAAIDfVCiWnVaooMDAwDzLU1NT9c9//lOLFy9W9+7dJUkLFizQHXfcoa+++kqdOnXShg0bdODAAW3cuFEBAQFq3bq1pk2bpnHjxmnKlCmy2WyaN2+eGjZsqL/97W+SpDvuuENbt27VG2+8oYiIiOI4JAAAgJtGRgIAAPhNsZwh9d1336lOnTpq1KiRnnzySR0/flySlJCQoIyMDIWHh5u1zZs3V7169RQfHy9Jio+PV4sWLRQQEGDWREREyOl0av/+/WbNlfvIqcnZBwAAQGlERgIAAPhNkZ8hFRoaqoULF6pZs2Y6deqUpk6dqnvvvVf79u2Tw+GQzWaTv7+/yzYBAQFyOBySJIfD4RK0ctbnrLtejdPp1KVLl1SxYsV8x5aWlqa0tDTzudPpvKljBQAAKCgyEgAAQK4ib0g98MAD5tctW7ZUaGio6tevr2XLll0zBFll+vTpmjp1aomOAQAA3JrISAAAALmK5U/2ruTv76+mTZvqyJEjCgwMVHp6ulJSUlxqkpOTzespBAYG5rmjTM7zG9XY7fbrBroJEyYoNTXVfJw4ceJmDw8AAKBQyEgAAOBWVuwNqfPnz+vo0aMKCgpSu3bt5O3trU2bNpnrDx8+rOPHjyssLEySFBYWpr179+r06dNmTVxcnOx2u0JCQsyaK/eRU5Ozj2vx8fGR3W53eQAAAJQEMhIAALiVFXlD6oUXXtBnn32mY8eOadu2bXr44Yfl5eWlxx9/XH5+fhoyZIhiYmL06aefKiEhQYMHD1ZYWJg6deokSerZs6dCQkI0cOBAff3111q/fr0mTpyo6Oho+fj4SJJGjBih77//XmPHjtWhQ4f09ttva9myZRo9enRRHw4AAECRICMBAADkKvJrSP344496/PHH9csvv6hWrVq655579NVXX6lWrVqSpDfeeEOenp7q16+f0tLSFBERobffftvc3svLS6tXr9YzzzyjsLAwVa5cWVFRUXr55ZfNmoYNG2rNmjUaPXq03nzzTdWtW1fvvfcetzMGAAClFhkJAAAgl4dhGEZJD6KkOJ1O+fn5KTU1lVPTUWQyYreaXx9LWSfPJvXM543bP10SQwIAXIH3/xtjjlAcyEgAULpZ/f5f7NeQAgAAAAAAAK5EQwoAAAAAAACWoiEFAAAAAAAAS9GQAgAAAAAAgKVoSAEAAAAAAMBSNKQAAAAAAABgKRpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUMKAAAAAAAAlqIhBQAAAAAAAEvRkAIAAAAAAIClaEgBAAAAAADAUjSkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACxFQwoAAAAAAACWKvMNqblz56pBgwby9fVVaGioduzYUdJDAgAAKHFkJAAAUJqV6YbU0qVLFRMTo8mTJ2v37t1q1aqVIiIidPr06ZIeGgAAQIkhIwEAgNKuTDekXn/9dQ0bNkyDBw9WSEiI5s2bp0qVKulf//pXSQ8NAIByLyN2a54HSgcyEgAAJYeMVDAVSnoAhZWenq6EhARNmDDBXObp6anw8HDFx8fnu01aWprS0tLM56mpqZIkp9NZvIPFLSXjwgXz6/MX0+Rx/pL5nJ81APnJiMv/fatM+u/6Qm3mfX9YEQ/k2nJ+FxuGYdlrWomMhNKKjATAXWSk8p2RymxD6ueff1ZWVpYCAgJclgcEBOjQoUP5bjN9+nRNnTo1z/Lg4OBiGSOQ1+iSHgAA4P87d+6c/Pz8SnoYRY6MhLKJjAQApYVVGanMNqQKY8KECYqJiTGfZ2dn6+zZs6pRo4Y8PDxuat9Op1PBwcE6ceKE7Hb7zQ61TGMucjEXuZiLXMyFK+YjF3ORqzjnwjAMnTt3TnXq1CnS/ZZlZCRrMBe5mItczIUr5iMXc5GLuchVnjJSmW1I1axZU15eXkpOTnZZnpycrMDAwHy38fHxkY+Pj8syf3//Ih2X3W6/5f+B5GAucjEXuZiLXMyFK+YjF3ORq7jmojyeGZWDjFT6MRe5mItczIUr5iMXc5GLuchVHjJSmb2ouc1mU7t27bRp0yZzWXZ2tjZt2qSwMOv+xhIAAKA0ISMBAICyoMyeISVJMTExioqKUvv27dWxY0fNnj1bFy5c0ODBg0t6aAAAACWGjAQAAEq7Mt2Q6t+/v86cOaNJkybJ4XCodevWio2NzXMRTyv4+Pho8uTJeU53vxUxF7mYi1zMRS7mwhXzkYu5yMVc3BwyUunEXORiLnIxF66Yj1zMRS7mIld5mgsPo7ze8xgAAAAAAAClUpm9hhQAAAAAAADKJhpSAAAAAAAAsBQNKQAAAAAAAFiKhhQAAAAAAAAsRUOqkM6ePasnn3xSdrtd/v7+GjJkiM6fP1+gbQ3D0AMPPCAPDw+tXLmyeAdqAXfn4uzZs3r22WfVrFkzVaxYUfXq1dP//d//KTU11cJRF525c+eqQYMG8vX1VWhoqHbs2HHd+uXLl6t58+by9fVVixYttHbtWotGWvzcmYt//OMfuvfee1WtWjVVq1ZN4eHhN5y7ssTdn4scS5YskYeHh/r27Vu8A7SYu/ORkpKi6OhoBQUFycfHR02bNi03/1bcnYvZs2ebvy+Dg4M1evRoXb582aLRFp/PP/9cffr0UZ06dQr8frhlyxa1bdtWPj4+atKkiRYuXFjs44T7yEiubuWcREbKRUZyRU7KRUbKRUb6zS2VkQwUSq9evYxWrVoZX331lfHFF18YTZo0MR5//PECbfv6668bDzzwgCHJWLFiRfEO1ALuzsXevXuNRx55xFi1apVx5MgRY9OmTcbtt99u9OvXz8JRF40lS5YYNpvN+Ne//mXs37/fGDZsmOHv728kJyfnW//ll18aXl5exsyZM40DBw4YEydONLy9vY29e/daPPKi5+5cPPHEE8bcuXONPXv2GAcPHjQGDRpk+Pn5GT/++KPFIy967s5FjqSkJOO2224z7r33XuOhhx6yZrAWcHc+0tLSjPbt2xu9e/c2tm7daiQlJRlbtmwxEhMTLR550XN3Lj788EPDx8fH+PDDD42kpCRj/fr1RlBQkDF69GiLR1701q5da7z00kvGxx9/XKD3w++//96oVKmSERMTYxw4cMD4+9//bnh5eRmxsbHWDBgFRkZydavmJDJSLjKSK3JSLjJSLjJSrlspI9GQKoQDBw4YkoydO3eay9atW2d4eHgYP/3003W33bNnj3HbbbcZp06dKhdh62bm4krLli0zbDabkZGRURzDLDYdO3Y0oqOjzedZWVlGnTp1jOnTp+db/9hjjxmRkZEuy0JDQ42nn366WMdpBXfn4mqZmZlG1apVjUWLFhXXEC1TmLnIzMw0OnfubLz33ntGVFRUuQlahuH+fLzzzjtGo0aNjPT0dKuGaBl35yI6Otro3r27y7KYmBjj7rvvLtZxWq0g74djx4417rzzTpdl/fv3NyIiIopxZHAXGcnVrZyTyEi5yEiuyEm5yEi5yEj5K+8ZiT/ZK4T4+Hj5+/urffv25rLw8HB5enpq+/bt19zu4sWLeuKJJzR37lwFBgZaMdRiV9i5uFpqaqrsdrsqVKhQHMMsFunp6UpISFB4eLi5zNPTU+Hh4YqPj893m/j4eJd6SYqIiLhmfVlRmLm42sWLF5WRkaHq1asX1zAtUdi5ePnll1W7dm0NGTLEimFapjDzsWrVKoWFhSk6OloBAQG666679Je//EVZWVlWDbtYFGYuOnfurISEBPOU9e+//15r165V7969LRlzaVJef3+WN2QkV7dqTiIj5SIjuSIn5SIj5SIj3Zyy/PuzbLyrlTIOh0O1a9d2WVahQgVVr15dDofjmtuNHj1anTt31kMPPVTcQ7RMYefiSj///LOmTZum4cOHF8cQi83PP/+srKwsBQQEuCwPCAjQoUOH8t3G4XDkW1/QuSqtCjMXVxs3bpzq1KmT55dpWVOYudi6dav++c9/KjEx0YIRWqsw8/H9999r8+bNevLJJ7V27VodOXJEf/rTn5SRkaHJkydbMexiUZi5eOKJJ/Tzzz/rnnvukWEYyszM1IgRI/Tiiy9aMeRS5Vq/P51Opy5duqSKFSuW0MhwJTKSq1s1J5GRcpGRXJGTcpGRcpGRbk5ZzkicIXWF8ePHy8PD47qPgr5xXG3VqlXavHmzZs+eXbSDLibFORdXcjqdioyMVEhIiKZMmXLzA0eZNGPGDC1ZskQrVqyQr69vSQ/HUufOndPAgQP1j3/8QzVr1izp4ZQK2dnZql27tubPn6927dqpf//+eumllzRv3rySHprltmzZor/85S96++23tXv3bn388cdas2aNpk2bVtJDwy2GjOSKnASr3MoZSSInXY2MlIuMVD5whtQVnn/+eQ0aNOi6NY0aNVJgYKBOnz7tsjwzM1Nnz5695mnmmzdv1tGjR+Xv7++yvF+/frr33nu1ZcuWmxh50SvOuchx7tw59erVS1WrVtWKFSvk7e19s8O2VM2aNeXl5aXk5GSX5cnJydc89sDAQLfqy4rCzEWOWbNmacaMGdq4caNatmxZnMO0hLtzcfToUR07dkx9+vQxl2VnZ0v67VP0w4cPq3HjxsU76GJUmJ+NoKAgeXt7y8vLy1x2xx13yOFwKD09XTabrVjHXFwKMxd//vOfNXDgQA0dOlSS1KJFC124cEHDhw/XSy+9JE/PW+dzpWv9/rTb7aX6k7/ygozkipx0fWSkXGQkV+SkXGSkXGSkm1OWM9Kt810qgFq1aql58+bXfdhsNoWFhSklJUUJCQnmtps3b1Z2drZCQ0Pz3ff48eP1zTffKDEx0XxI0htvvKEFCxZYcXhuKc65kH77xK9nz56y2WxatWpVmfzEx2azqV27dtq0aZO5LDs7W5s2bVJYWFi+24SFhbnUS1JcXNw168uKwsyFJM2cOVPTpk1TbGysy/U1yjJ356J58+bau3evy++G3/3ud+rWrZsSExMVHBxs5fCLXGF+Nu6++24dOXLEDJyS9O233yooKKjMBi2pcHNx8eLFPIEqJ4QahlF8gy2Fyuvvz7KCjOSKnHR9ZKRcZCRX5KRcZKRcZKSbU6Z/f5bsNdXLrl69ehlt2rQxtm/fbmzdutW4/fbbXW7h++OPPxrNmjUztm/ffs19qJzcQcbduUhNTTVCQ0ONFi1aGEeOHDFOnTplPjIzM0vqMAplyZIlho+Pj7Fw4ULjwIEDxvDhww1/f3/D4XAYhmEYAwcONMaPH2/Wf/nll0aFChWMWbNmGQcPHjQmT55crm5p7M5czJgxw7DZbMZHH33k8jNw7ty5kjqEIuPuXFytPN09xjDcn4/jx48bVatWNUaOHGkcPnzYWL16tVG7dm3jlVdeKalDKDLuzsXkyZONqlWrGv/5z3+M77//3tiwYYPRuHFj47HHHiupQygy586dM/bs2WPs2bPHkGS8/vrrxp49e4wffvjBMAzDGD9+vDFw4ECzPueWxmPGjDEOHjxozJ07t8zc0vhWQ0ZydavmJDJSLjKSK3JSLjJSLjJSrlspI9GQKqRffvnFePzxx40qVaoYdrvdGDx4sMubRFJSkiHJ+PTTT6+5j/ISttydi08//dSQlO8jKSmpZA7iJvz973836tWrZ9hsNqNjx47GV199Za7r2rWrERUV5VK/bNkyo2nTpobNZjPuvPNOY82aNRaPuPi4Mxf169fP92dg8uTJ1g+8GLj7c3Gl8hS0crg7H9u2bTNCQ0MNHx8fo1GjRsarr75apv4jdj3uzEVGRoYxZcoUo3Hjxoavr68RHBxs/OlPfzJ+/fVX6wdexK71XpBz/FFRUUbXrl3zbNO6dWvDZrMZjRo1MhYsWGD5uHFjZCRXt3JOIiPlIiO5IiflIiPlIiP95lbKSB6GcYudzwYAAAAAAIASxTWkAAAAAAAAYCkaUgAAAAAAALAUDSkAAAAAAABYioYUAAAAAAAALEVDCgAAAAAAAJaiIQUAAAAAAABL0ZACAAAAAACApWhIAQAAAAAAwFI0pAAAAAAAAGApGlIAAAAAAACwFA0pAAAAAAAAWIqGFAAAAAAAACz1/wAAverb0+g6ywAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -7841,26 +13605,9 @@ } ], "source": [ - "selected_peptides = [\"LSDYGVQLR\", \"ENYLIDNLDR\", \"LIDQATAEIVETAK\"]\n", - "for c in df.columns:\n", - " if pd.api.types.is_numeric_dtype(df[c]):\n", - " plt.hist(\n", - " df_targets[c],\n", - " alpha=0.5,\n", - " bins=100,\n", - " )\n", - " plt.hist(\n", - " df_decoys[c],\n", - " alpha=0.5,\n", - " bins=100,\n", - " )\n", - " plt.title(c)\n", - "\n", - " for pep in selected_peptides:\n", - " plt.scatter(\n", - " df[df[\"Peptide\"] == pep][c], [10] * len(df[df[\"Peptide\"] == pep][c])\n", - " )\n", - " plt.show()" + "compare_feature_distributions_side_by_side(\n", + " df_targets, df_decoys, df_targets_working, df_decoys_working\n", + ")" ] }, { diff --git a/parsers/parser_mzml.py b/parsers/parser_mzml.py index 44d9950..24a46c5 100644 --- a/parsers/parser_mzml.py +++ b/parsers/parser_mzml.py @@ -114,7 +114,7 @@ def split_mzml_by_retention_time(original_file, dir_files="", time_interval=120. sub_exp.addSpectrum(spec) else: sub_dir = f"part_{end_time-time_interval}_{end_time}" - print(f"Writing part {part} to {tempdir}/{sub_dir}...") + log_info(f"Writing part {part} to {tempdir}/{sub_dir}...") if not os.path.exists(os.path.join(tempdir, sub_dir)): os.makedirs(os.path.join(tempdir, sub_dir)) diff --git a/parsers/parser_parquet.py b/parsers/parser_parquet.py index f575b0b..794fd25 100644 --- a/parsers/parser_parquet.py +++ b/parsers/parser_parquet.py @@ -98,9 +98,14 @@ def parquet_reader( df_fragment.index = df_fragment["psm_id"] df_psms = pd.read_parquet(parquet_file_results) - df_psms.drop_duplicates(subset=["scannr", "peptide"], inplace=True) + log_info("df_psms shape: {}".format(df_psms.shape)) + df_psms.drop_duplicates( + subset=["scannr", "peptide", "charge"], inplace=True + ) # Okay to add charge? + log_info("df_psms shape after dropping duplicates: {}".format(df_psms.shape)) df_psms = df_psms[df_psms["spectrum_q"] < q_value_filter] + log_info("df_psms shape after filtering by q-value: {}".format(df_psms.shape)) df_fragment = df_fragment[df_fragment.index.isin(df_psms["psm_id"])] df_fragment = pl.DataFrame(df_fragment) @@ -119,22 +124,12 @@ def parquet_reader( df_psms = df_psms.with_columns( pl.col("peptide").map_elements(replace_mass_shift).alias("peptide") ) + log_info("df_psms shape after replacing mass shifts: {}".format(df_psms.shape)) df_fragment = df_fragment.join( df_psms[["psm_id", "peptide", "charge", "rt"]], on="psm_id", how="left" ) - log_info("After joining peptide info to fragments:") - log_info(" df_fragment shape: {}".format(df_fragment.shape)) - log_info( - " Unique peptide/charge combinations: {}".format( - len(df_fragment.select(["peptide", "charge"]).unique()) - ) - ) - log_info( - " RT range: {} to {}".format(df_fragment["rt"].min(), df_fragment["rt"].max()) - ) - # Get the maximum fragment intensity per PSM df_fragment_max = df_fragment.sort("fragment_intensity", descending=True).unique( subset="psm_id", keep="first", maintain_order=True @@ -155,24 +150,6 @@ def parquet_reader( .unique(subset=["peptide", "charge"], keep="first", maintain_order=True) ) - log_info("df_fragment_max_peptide creation summary:") - log_info( - " Total unique peptide/charge combinations: {}".format( - len(df_fragment_max_peptide) - ) - ) - log_info(" Sample of selected PSMs:") - for row in df_fragment_max_peptide.head(5).iter_rows(named=True): - log_info( - " Peptide: {}, Charge: {}, PSM ID: {}, RT: {}, Fragment Intensity: {}".format( - row["peptide"], - row["charge"], - row["psm_id"], - row["rt"], - row["fragment_intensity"], - ) - ) - # df_psms = pd.concat([df_psms, df_fragment_max["fragment_intensity"]], axis=1) df_psms = df_psms.join( @@ -180,5 +157,6 @@ def parquet_reader( on="psm_id", how="left", ) + log_info("df_psms shape after joining with fragment max: {}".format(df_psms.shape)) return df_fragment, df_psms, df_fragment_max, df_fragment_max_peptide diff --git a/peptide_search/wrapper_sage.py b/peptide_search/wrapper_sage.py index 7c48c06..3e367a1 100644 --- a/peptide_search/wrapper_sage.py +++ b/peptide_search/wrapper_sage.py @@ -141,6 +141,58 @@ def retention_window_searches( ) <= np.minimum(peptide_df["predictions_upper"], upper_mzml_partition) sub_peptide_df = peptide_df[peptide_selection_mask] + non_sub_peptide_df = peptide_df[~peptide_selection_mask] + + # Visualization: Show which peptides are selected for this partition + try: + import matplotlib.pyplot as plt + + plt.figure(figsize=(10, 4)) + plt.title(f"RT Partition ≤ {upper_mzml_partition} min (±{perc_95} min)") + plt.xlabel("Retention Time (min)") + plt.ylabel("Peptide Index") + + # Plot all peptides' RT intervals + for idx, row in non_sub_peptide_df.sample( + n=100, random_state=42 + ).iterrows(): + plt.plot( + [row["predictions_lower"], row["predictions_upper"]], + [idx, idx], + color="gray", + alpha=0.3, + ) + + # Highlight selected peptides + for idx, row in sub_peptide_df.sample(n=100, random_state=42).iterrows(): + plt.plot( + [row["predictions_lower"], row["predictions_upper"]], + [idx, idx], + color="red", + linewidth=2, + ) + + # Draw partition boundary + plt.axvline( + upper_mzml_partition, + color="blue", + linestyle="--", + label="Partition Upper Bound", + ) + plt.axvspan( + upper_mzml_partition - perc_95, + upper_mzml_partition, + color="blue", + alpha=0.1, + label="Window", + ) + + plt.legend() + plt.tight_layout() + plt.savefig(f"debug/rt_partition_{upper_mzml_partition}.png") + plt.close() + except ValueError: + pass # Skip partitions with no predicted peptides to avoid empty searches if len(sub_peptide_df.index) == 0: @@ -153,6 +205,7 @@ def retention_window_searches( # Use a deep copy of the provided config to avoid mutating caller state sub_config = copy.deepcopy(config) + print(sub_config["sage"]) sub_results = os.path.dirname(mzml_path) diff --git a/prediction_wrappers/wrapper_deeplc.py b/prediction_wrappers/wrapper_deeplc.py index fc007b8..cc42ef3 100644 --- a/prediction_wrappers/wrapper_deeplc.py +++ b/prediction_wrappers/wrapper_deeplc.py @@ -171,7 +171,6 @@ def retrain_deeplc( - dlc_transfer_learn: Transfer learning DeepLC model - perc_95: 95th percentile of absolute RT prediction errors (doubled for window size) """ - print(df_psms) df_psms_filtered = df_psms.filter(df_psms["spectrum_q"] < q_value_filter) rt_train = ( df_psms_filtered.sort("fragment_intensity") @@ -441,6 +440,7 @@ def retrain_and_bounds( outfile_transf_learn=result_dir.joinpath("deeplc_transfer_learn.png"), ) perc_95 = perc_95 * correct_to_mzml_rt_constant * coefficient_bounds + print(f"Percentile 95: {perc_95}") predictions = predict_deeplc(peptides, dlc_transfer_learn) peptide_df = pd.DataFrame( diff --git a/run.py b/run.py index b8beb0f..7416ec9 100644 --- a/run.py +++ b/run.py @@ -257,6 +257,7 @@ def modify_config( ) merged = merge_config_from_sources(existing_config, parser, args) + return write_updated_config(merged, result_dir) @@ -434,14 +435,26 @@ def main() -> str: ) if args_dict["write_full_search_pickle"] or not full_search_pickles_exist: + log_info("Generating peptide library and training DeepLC model...") - peptides = tryptic_digest_pyopenms(config["sage"]["database"]["fasta"]) + database_config = config["sage"]["database"] + peptides = tryptic_digest_pyopenms( + database_config["fasta"], + min_len=database_config["enzyme"]["min_len"], + max_len=database_config["enzyme"]["max_len"], + missed_cleavages=database_config["enzyme"]["missed_cleavages"], + decoy_prefix=database_config["decoy_tag"], + ) # Train DeepLC retention time model and calculate prediction bounds # Narrow type for static analysis assert isinstance(df_psms, pl.DataFrame) + print(args_dict) peptide_df, dlc_calibration, dlc_transfer_learn, perc_95 = retrain_and_bounds( - cast(pl.DataFrame, df_psms), peptides, result_dir=result_dir + cast(pl.DataFrame, df_psms), + peptides, + result_dir=result_dir, + coefficient_bounds=args_dict["coefficient_bounds"], ) log_info("Partitioning mzML files by predicted retention time...") @@ -504,6 +517,14 @@ def main() -> str: config["sage_basic"]["mzml_paths"][0] # TODO: should be for all mzml files ) + import pickle + + with open("debug/ms1_dict.pkl", "wb") as f: + pickle.dump(ms1_dict, f) + + with open("debug/ms2_to_ms1_dict.pkl", "wb") as f: + pickle.dump(ms2_to_ms1_dict, f) + # Execute the main MuMDIA feature calculation and machine learning pipeline # This includes: # - Fragment intensity correlation features (MS2PIP predictions vs experimental) diff --git a/sequence/fasta.py b/sequence/fasta.py index e761b45..3a2e54c 100644 --- a/sequence/fasta.py +++ b/sequence/fasta.py @@ -19,7 +19,7 @@ def tryptic_digest_pyopenms( # Set up the enzyme digestion digestor = pms.ProteaseDigestion() - digestor.setEnzyme("Trypsin") + digestor.setEnzyme("Trypsin/P") digestor.setMissedCleavages(missed_cleavages) peptides = [] diff --git a/test_diann_features.py b/test_diann_features.py new file mode 100644 index 0000000..0ece926 --- /dev/null +++ b/test_diann_features.py @@ -0,0 +1,1105 @@ +""" +Test script for DIANNFeatureGenerator + +This script demonstrates how to use the DIANNFeatureGenerator class +with real data from the MuMDIA pipeline. +""" + +import pandas as pd +import pickle +import numpy as np +from diann_feature_generator import DIANNFeatureGenerator, FeatureConfig +import logging +from tqdm import tqdm +from multiprocessing import Pool, cpu_count +from functools import partial +import os +import psutil +import warnings + + +# Suppress RuntimeWarnings from numpy +np.seterr(all="ignore") +# Suppress RuntimeWarnings Degrees of freedom +warnings.filterwarnings("ignore", message="Degrees of freedom <= 0 for slice") + +# Configure logging +logging.basicConfig( + level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" +) +logger = logging.getLogger(__name__) + + +# Global variables for multiprocessing workers (to avoid serializing large data repeatedly) +_global_data = None +_global_config = None + + +def _init_worker(data_dict, config_dict): + """Initialize worker process with shared data.""" + global _global_data, _global_config + _global_data = data_dict + _global_config = config_dict + + +def process_single_precursor_efficient(precursor_id): + """ + Efficient worker function for processing a single precursor in parallel. + Uses global data to avoid serialization overhead. + + Parameters + ---------- + precursor_id : str + String identifier for the precursor + + Returns + ------- + tuple or None + (precursor_id, feature_row) if successful, None if failed + """ + global _global_data, _global_config + + try: + # Recreate configuration object + config = FeatureConfig(**_global_config) + generator = DIANNFeatureGenerator(config) + + # Extract precursor and fragment data + precursor = _global_data["df_psms"][ + _global_data["df_psms"]["precursor"] == precursor_id + ] + if precursor.empty: + return None + + precursor_fragments = _global_data["df_fragment"][ + _global_data["df_fragment"]["psm_id"].isin(precursor["psm_id"]) + ] + + if precursor_fragments.empty: + return None + + # Calculate PPM error if not present + if "ppm_error" not in precursor_fragments.columns: + precursor_fragments = precursor_fragments.copy() + precursor_fragments["ppm_error"] = ( + abs( + precursor_fragments["fragment_mz_calculated"] + - precursor_fragments["fragment_mz_experimental"] + ) + / precursor_fragments["fragment_mz_calculated"] + * 1e6 + ) + + # Calculate features with parallel=False to avoid nested parallelization + features = generator.calculate_all_features( + precursor=precursor, + fragments=precursor_fragments, + ms1_dict=_global_data["ms1_dict"], + ms2dict=_global_data["ms2dict"], + rt_predictions=_global_data["deeplc_preds"], + intensity_predictions=_global_data["ms2pip_preds"], + parallel=False, # Disable internal parallelization + ) + + if not features: + return None + + # Create feature row with PSM information + feature_row = { + "PSMId": precursor["psm_id"].iloc[0], + "Label": 1, # Assuming all are positive for now + "ScanNr": ( + precursor["scannr"].iloc[0] if "scannr" in precursor.columns else 0 + ), + "Peptide": precursor["peptide"].iloc[0], + "Proteins": ( + precursor.get("proteins", ["unknown"]).iloc[0] + if "proteins" in precursor.columns + else "unknown" + ), + } + + # Add calculated features with flattening for arrays + for feature_name, feature_value in features.items(): + if isinstance(feature_value, np.ndarray): + # Flatten arrays into individual columns + if feature_value.size == 1: + feature_row[feature_name] = float(feature_value.item()) + else: + for j, val in enumerate(feature_value): + feature_row[f"{feature_name}_{j+1}"] = ( + float(val) if not np.isnan(val) else 0.0 + ) + else: + # Convert to float, replace NaN with 0 + if pd.isna(feature_value): + feature_row[feature_name] = 0.0 + else: + feature_row[feature_name] = float(feature_value) + + return (precursor_id, feature_row) + + except Exception: + return None + + +def process_single_precursor(args): + """ + Worker function for processing a single precursor in parallel. + + Parameters + ---------- + args : tuple + (precursor_id, data_dict, config_dict) where: + - precursor_id: string identifier for the precursor + - data_dict: dictionary containing all loaded data + - config_dict: configuration parameters as dictionary + + Returns + ------- + tuple or None + (precursor_id, feature_row) if successful, None if failed + """ + precursor_id, data_dict, config_dict = args + + try: + # Recreate configuration object + config = FeatureConfig(**config_dict) + generator = DIANNFeatureGenerator(config) + + # Extract precursor and fragment data + precursor = data_dict["df_psms"][ + data_dict["df_psms"]["precursor"] == precursor_id + ] + if precursor.empty: + return None + + precursor_fragments = data_dict["df_fragment"][ + data_dict["df_fragment"]["psm_id"].isin(precursor["psm_id"]) + ] + + if precursor_fragments.empty: + return None + + # Calculate PPM error if not present + if "ppm_error" not in precursor_fragments.columns: + precursor_fragments = precursor_fragments.copy() + precursor_fragments["ppm_error"] = ( + abs( + precursor_fragments["fragment_mz_calculated"] + - precursor_fragments["fragment_mz_experimental"] + ) + / precursor_fragments["fragment_mz_calculated"] + * 1e6 + ) + + # Calculate features with parallel=False to avoid nested parallelization + features = generator.calculate_all_features( + precursor=precursor, + fragments=precursor_fragments, + ms1_dict=data_dict["ms1_dict"], + ms2dict=data_dict["ms2dict"], + rt_predictions=data_dict["deeplc_preds"], + intensity_predictions=data_dict["ms2pip_preds"], + parallel=False, # Disable internal parallelization + ) + + if not features: + return None + + # Create feature row with PSM information + feature_row = { + "PSMId": precursor["psm_id"].iloc[0], + "Label": 1, # Assuming all are positive for now + "ScanNr": ( + precursor["scannr"].iloc[0] if "scannr" in precursor.columns else 0 + ), + "Peptide": precursor["peptide"].iloc[0], + "Proteins": ( + precursor.get("protein", ["unknown"]).iloc[0] + if "protein" in precursor.columns + else "unknown" + ), + } + + # Add calculated features with flattening for arrays + for feature_name, feature_value in features.items(): + if isinstance(feature_value, np.ndarray): + # Flatten arrays into individual columns + if feature_value.size == 1: + feature_row[feature_name] = float(feature_value.item()) + else: + for j, val in enumerate(feature_value): + feature_row[f"{feature_name}_{j+1}"] = ( + float(val) if not np.isnan(val) else 0.0 + ) + else: + # Convert to float, replace NaN with 0 + if pd.isna(feature_value): + feature_row[feature_name] = 0.0 + else: + feature_row[feature_name] = float(feature_value) + + return (precursor_id, feature_row) + + except Exception: + return None + + +def load_test_data(): + """Load test data from the MuMDIA pipeline.""" + try: + # Load predictions + ms2pip_preds = pickle.load( + open( + "/home/robbe/MuMDIA/results/config_playing/ms2pip_predictions.pkl", "rb" + ) + ) + deeplc_preds = pickle.load( + open( + "/home/robbe/MuMDIA/results/config_playing/predictions_deeplc.pkl", "rb" + ) + ) + + # Load PSM and fragment data + df_psms = pd.read_csv( + "/home/robbe/MuMDIA/results/config_playing/df_psms.tsv", sep="\t" + ) + df_psms["precursor"] = df_psms["peptide"] + "/" + df_psms["charge"].astype(str) + + df_fragment = pd.read_csv( + "/home/robbe/MuMDIA/results/config_playing/df_fragment.tsv", sep="\t" + ) + df_fragment["fragment_names"] = df_fragment["fragment_type"].astype( + str + ) + df_fragment["fragment_ordinals"].astype("Int64").astype(str) + + # Load spectral dictionaries + ms2dict = pickle.load(open("/home/robbe/MuMDIA/debug/ms2dict.pkl", "rb")) + ms1_dict = pickle.load(open("/home/robbe/MuMDIA/debug/ms1_dict.pkl", "rb")) + + # Convert DeepLC predictions to pandas if needed + if hasattr(deeplc_preds, "to_pandas"): + deeplc_preds = deeplc_preds.to_pandas() + + return { + "ms2pip_preds": ms2pip_preds, + "deeplc_preds": deeplc_preds, + "df_psms": df_psms, + "df_fragment": df_fragment, + "ms2dict": ms2dict, + "ms1_dict": ms1_dict, + } + + except Exception as e: + logger.error(f"Error loading data: {e}") + return None + + +def test_single_precursor(data, precursor_id="GYINSLGALTGGQALQQAK/2"): + """Test feature generation for a single precursor.""" + + logger.info(f"Testing feature generation for precursor: {precursor_id}") + + # Extract precursor and fragment data + precursor = data["df_psms"][data["df_psms"]["precursor"] == precursor_id] + if precursor.empty: + logger.error(f"Precursor {precursor_id} not found") + return None + + precursor_fragments = data["df_fragment"][ + data["df_fragment"]["psm_id"].isin(precursor["psm_id"]) + ] + + if precursor_fragments.empty: + logger.error(f"No fragments found for precursor {precursor_id}") + return None + + # Calculate PPM error if not present + if "ppm_error" not in precursor_fragments.columns: + precursor_fragments = precursor_fragments.copy() + precursor_fragments["ppm_error"] = ( + abs( + precursor_fragments["fragment_mz_calculated"] + - precursor_fragments["fragment_mz_experimental"] + ) + / precursor_fragments["fragment_mz_calculated"] + * 1e6 + ) + + logger.info(f"Found {len(precursor_fragments)} fragment observations") + + # Create configuration + config = FeatureConfig( + fragment_mass_tolerance=13.0, + precursor_mass_tolerance=50.0, + rt_tolerance=5.0, + top_n_fragments=6, + top_n_fragments_extended=12, + ) + + # Initialize feature generator + generator = DIANNFeatureGenerator(config) + + # Calculate all features + features = generator.calculate_all_features( + precursor=precursor, + fragments=precursor_fragments, + ms1_dict=data["ms1_dict"], + ms2dict=data["ms2dict"], + rt_predictions=data["deeplc_preds"], + intensity_predictions=data["ms2pip_preds"], + ) + + return features + + +def print_feature_summary(features): + """Print a summary of calculated features.""" + print("\n" + "=" * 50) + print("FEATURE CALCULATION SUMMARY") + print("=" * 50) + + for feature_name, feature_value in features.items(): + print(f"\n{feature_name}:") + if isinstance(feature_value, np.ndarray): + if feature_value.size <= 10: + print(f" Values: {feature_value}") + else: + print(f" Shape: {feature_value.shape}") + print(f" First 5: {feature_value[:5]}") + print(f" Last 5: {feature_value[-5:]}") + print( + f" Stats: mean={np.nanmean(feature_value):.4f}, " + f"std={np.nanstd(feature_value):.4f}" + ) + else: + print(f" Value: {feature_value}") + + print("\n" + "=" * 50) + + +def test_multiple_precursors(data, max_precursors=5): + """Test feature generation for multiple precursors.""" + + logger.info(f"Testing feature generation for up to {max_precursors} precursors") + + # Get unique precursors + unique_precursors = data["df_psms"]["precursor"].unique()[:max_precursors] + + results = {} + + for precursor_id in unique_precursors: + try: + logger.info(f"Processing {precursor_id}") + features = test_single_precursor(data, precursor_id) + if features: + results[precursor_id] = features + else: + logger.warning(f"Failed to calculate features for {precursor_id}") + except Exception as e: + logger.error(f"Error processing {precursor_id}: {e}") + + return results + + +def validate_features(features): + """Validate calculated features.""" + issues = [] + + for feature_name, feature_value in features.items(): + if isinstance(feature_value, np.ndarray): + if np.all(np.isnan(feature_value)): + issues.append(f"{feature_name}: All values are NaN") + elif np.any(np.isinf(feature_value)): + issues.append(f"{feature_name}: Contains infinite values") + elif pd.isna(feature_value): + issues.append(f"{feature_name}: Value is NaN") + elif np.isinf(feature_value): + issues.append(f"{feature_name}: Value is infinite") + + return issues + + +def benchmark_performance(data, num_tests=10): + """Benchmark feature calculation performance.""" + import time + + logger.info(f"Benchmarking performance with {num_tests} tests") + + # Get test precursors + test_precursors = data["df_psms"]["precursor"].unique()[:num_tests] + + times = [] + + for precursor_id in test_precursors: + start_time = time.time() + + try: + features = test_single_precursor(data, precursor_id) + if features: + elapsed = time.time() - start_time + times.append(elapsed) + logger.info(f"{precursor_id}: {elapsed:.3f}s") + except Exception as e: + logger.error(f"Error benchmarking {precursor_id}: {e}") + + if times: + print("\nPerformance Summary:") + print(f" Average time: {np.mean(times):.3f}s") + print(f" Min time: {np.min(times):.3f}s") + print(f" Max time: {np.max(times):.3f}s") + print(f" Total time: {np.sum(times):.3f}s") + + +def output_features_to_file( + output_path, n_jobs=-1, chunk_size=100, detailed_monitoring=False +): + """ + Calculate features for all precursors and output in Percolator format using multiprocessing. + + Parameters + ---------- + output_path : str + Path to output .pin file + n_jobs : int, default -1 + Number of parallel processes to use. -1 means use all CPU cores. + chunk_size : int, default 100 + Number of precursors to process in each chunk + detailed_monitoring : bool, default False + Whether to enable detailed system monitoring (may cause issues on some systems) + """ + import time + + # Temporarily disable logging + original_level = logging.getLogger().level + logging.getLogger().setLevel(logging.CRITICAL) + + try: + print("Loading data for feature calculation...") + start_time = time.time() + data = load_test_data() + + if data is None: + print("Failed to load data for feature calculation.") + return + + # Show memory usage + memory_info = psutil.virtual_memory() + print( + f"Memory usage: {memory_info.used / 1024**3:.1f}GB / {memory_info.total / 1024**3:.1f}GB ({memory_info.percent:.1f}%)" + ) + + # Create configuration + config = FeatureConfig( + fragment_mass_tolerance=13.0, + precursor_mass_tolerance=50.0, + rt_tolerance=5.0, + top_n_fragments=6, + top_n_fragments_extended=12, + n_jobs=1, # Disable internal parallelization since we're parallelizing at precursor level + ) + + # Convert config to dict for serialization + config_dict = { + "fragment_mass_tolerance": config.fragment_mass_tolerance, + "precursor_mass_tolerance": config.precursor_mass_tolerance, + "rt_tolerance": config.rt_tolerance, + "top_n_fragments": config.top_n_fragments, + "top_n_fragments_extended": config.top_n_fragments_extended, + "savgol_window_length": config.savgol_window_length, + "savgol_polyorder": config.savgol_polyorder, + "isotope_mass_c13": config.isotope_mass_c13, + "c13_isotope_list": config.c13_isotope_list, + "ms1_accuracy_factors": config.ms1_accuracy_factors, + "ms2_accuracy_factors": config.ms2_accuracy_factors, + "n_jobs": 1, + } + + # Get all unique precursors + unique_precursors = data["df_psms"]["precursor"].unique() + print(f"Processing {len(unique_precursors)} precursors...") + + # Determine number of workers - use a conservative limit for better efficiency + if n_jobs == -1: + # Use a reasonable number of workers based on system characteristics + # Too many processes can cause overhead and memory issues + physical_cores = psutil.cpu_count(logical=False) or 8 + n_workers = min(physical_cores, 64) # Cap at 64 for efficiency + else: + n_workers = min(n_jobs, 64) # Cap user setting at 64 + + print(f"Using {n_workers} processes for parallel computation") + print( + f" (Physical cores: {psutil.cpu_count(logical=False)}, Logical cores: {psutil.cpu_count()})" + ) + print(f" Chunk size: {chunk_size}") + + # Monitor CPU usage before starting + cpu_percent_before = psutil.cpu_percent(interval=1) + print(f" CPU usage before: {cpu_percent_before:.1f}%") + + # Get list of precursor IDs only (avoid serializing large data) + precursor_ids = unique_precursors.tolist() + + all_features = [] + failed_count = 0 + + # Process in parallel using multiprocessing with efficient data sharing + print("Starting parallel processing...") + process_start = time.time() + + with Pool( + processes=n_workers, initializer=_init_worker, initargs=(data, config_dict) + ) as pool: + # Use imap for progress tracking with efficient worker function + results = [] + processed_count = 0 + + # Start CPU monitoring in background + import threading + + stop_monitoring = threading.Event() + cpu_usage_samples = [] + + def monitor_cpu(): + import time + + while not stop_monitoring.is_set(): + try: + cpu_percent = psutil.cpu_percent(interval=0.5) + cpu_usage_samples.append(cpu_percent) + except Exception: + # If CPU monitoring fails, just skip this sample + time.sleep(0.5) + continue + + monitor_thread = threading.Thread(target=monitor_cpu) + monitor_thread.start() + + for result in tqdm( + pool.imap( + process_single_precursor_efficient, + precursor_ids, + chunksize=chunk_size, + ), + total=len(precursor_ids), + desc="Calculating features", + ): + results.append(result) + processed_count += 1 + + # Stop monitoring + stop_monitoring.set() + monitor_thread.join(timeout=1) + + process_time = time.time() - process_start + + # Calculate CPU usage statistics + if cpu_usage_samples: + avg_cpu = sum(cpu_usage_samples) / len(cpu_usage_samples) + max_cpu = max(cpu_usage_samples) + print(f"Parallel processing completed in {process_time:.2f} seconds") + print( + f"CPU usage during processing: avg={avg_cpu:.1f}%, max={max_cpu:.1f}%" + ) + print(f"Estimated speedup vs single core: {avg_cpu/100 * n_workers:.1f}x") + else: + print(f"Parallel processing completed in {process_time:.2f} seconds") + + # Collect successful results + for result in results: + if result is not None: + precursor_id, feature_row = result + all_features.append(feature_row) + else: + failed_count += 1 + + print( + f"Successfully processed {len(all_features)} precursors, {failed_count} failed" + ) + + if not all_features: + print("No features calculated. Cannot create output file.") + return + + # Convert to DataFrame + feature_df = pd.DataFrame(all_features) + + # Write Percolator format file + print(f"Writing features to {output_path}...") + + # Create output directory if it doesn't exist + os.makedirs(os.path.dirname(output_path), exist_ok=True) + + # Percolator .pin format: tab-separated with specific column order + # Standard columns: PSMId, Label, ScanNr, followed by features, then Peptide, Proteins + standard_cols = ["PSMId", "Label", "ScanNr"] + feature_cols = [ + col + for col in feature_df.columns + if col not in ["PSMId", "Label", "ScanNr", "Peptide", "Proteins"] + ] + end_cols = ["Peptide", "Proteins"] + + # Reorder columns + column_order = standard_cols + sorted(feature_cols) + end_cols + feature_df = feature_df.reindex(columns=column_order) + + # Write to file + feature_df.to_csv(output_path, sep="\t", index=False, na_rep="0.0") + + print(f"Successfully wrote {len(feature_df)} feature vectors to {output_path}") + print(f"Feature columns: {len(feature_cols)}") + print(f"Sample feature names: {sorted(feature_cols)[:10]}") + + except Exception as e: + print(f"Error in feature calculation: {e}") + import traceback + + traceback.print_exc() + + finally: + # Restore original logging level + logging.getLogger().setLevel(original_level) + + +def output_features_to_file_sequential(output_path, n=100): + """ + Calculate features for all precursors and output in Percolator format (sequential version). + + Parameters + ---------- + output_path : str + Path to output .pin file + n : int + Number of precursors to process (for testing) + """ + # Temporarily disable logging + original_level = logging.getLogger().level + logging.getLogger().setLevel(logging.CRITICAL) + + try: + print("Loading data for feature calculation...") + data = load_test_data() + + if data is None: + print("Failed to load data for feature calculation.") + return + + # Create configuration + config = FeatureConfig( + fragment_mass_tolerance=13.0, + precursor_mass_tolerance=50.0, + rt_tolerance=5.0, + top_n_fragments=6, + top_n_fragments_extended=12, + ) + + # Initialize feature generator + generator = DIANNFeatureGenerator(config) + + # Get all unique precursors + unique_precursors = data["df_psms"]["precursor"].unique()[:n] + print(f"Processing {len(unique_precursors)} precursors...") + + all_features = [] + failed_count = 0 + + # Use tqdm for progress bar + for i, precursor_id in enumerate( + tqdm(unique_precursors, desc="Calculating features") + ): + try: + # Extract precursor and fragment data + precursor = data["df_psms"][ + data["df_psms"]["precursor"] == precursor_id + ] + if precursor.empty: + failed_count += 1 + continue + + precursor_fragments = data["df_fragment"][ + data["df_fragment"]["psm_id"].isin(precursor["psm_id"]) + ] + + if precursor_fragments.empty: + failed_count += 1 + continue + + # Calculate PPM error if not present + if "ppm_error" not in precursor_fragments.columns: + precursor_fragments = precursor_fragments.copy() + precursor_fragments["ppm_error"] = ( + abs( + precursor_fragments["fragment_mz_calculated"] + - precursor_fragments["fragment_mz_experimental"] + ) + / precursor_fragments["fragment_mz_calculated"] + * 1e6 + ) + + # Calculate features + features = generator.calculate_all_features( + precursor=precursor, + fragments=precursor_fragments, + ms1_dict=data["ms1_dict"], + ms2dict=data["ms2dict"], + rt_predictions=data["deeplc_preds"], + intensity_predictions=data["ms2pip_preds"], + ) + + if features: + # Create feature row with PSM information + feature_row = { + "PSMId": precursor["psm_id"].iloc[0], + "Label": 1, # Assuming all are positive for now + "ScanNr": ( + precursor["scannr"].iloc[0] + if "scannr" in precursor.columns + else 0 + ), + "Peptide": precursor["peptide"].iloc[0], + "Proteins": ( + precursor.get("protein", ["unknown"]).iloc[0] + if "protein" in precursor.columns + else "unknown" + ), + } + + # Add calculated features with flattening for arrays + for feature_name, feature_value in features.items(): + if isinstance(feature_value, np.ndarray): + # Flatten arrays into individual columns + if feature_value.size == 1: + feature_row[feature_name] = float(feature_value.item()) + else: + for j, val in enumerate(feature_value): + feature_row[f"{feature_name}_{j+1}"] = ( + float(val) if not np.isnan(val) else 0.0 + ) + else: + # Convert to float, replace NaN with 0 + if pd.isna(feature_value): + feature_row[feature_name] = 0.0 + else: + feature_row[feature_name] = float(feature_value) + + all_features.append(feature_row) + else: + failed_count += 1 + + except Exception: + failed_count += 1 + continue + + print( + f"Successfully processed {len(all_features)} precursors, {failed_count} failed" + ) + + if not all_features: + print("No features calculated. Cannot create output file.") + return + + # Convert to DataFrame + feature_df = pd.DataFrame(all_features) + + # Write Percolator format file + print(f"Writing features to {output_path}...") + + # Create output directory if it doesn't exist + os.makedirs(os.path.dirname(output_path), exist_ok=True) + + # Percolator .pin format: tab-separated with specific column order + # Standard columns: PSMId, Label, ScanNr, followed by features, then Peptide, Proteins + standard_cols = ["PSMId", "Label", "ScanNr"] + feature_cols = [ + col + for col in feature_df.columns + if col not in ["PSMId", "Label", "ScanNr", "Peptide", "Proteins"] + ] + end_cols = ["Peptide", "Proteins"] + + # Reorder columns + column_order = standard_cols + sorted(feature_cols) + end_cols + feature_df = feature_df.reindex(columns=column_order) + + # Write to file + feature_df.to_csv(output_path, sep="\t", index=False, na_rep="0.0") + + print(f"Successfully wrote {len(feature_df)} feature vectors to {output_path}") + print(f"Feature columns: {len(feature_cols)}") + print(f"Sample feature names: {sorted(feature_cols)[:10]}") + + except Exception as e: + print(f"Error in feature calculation: {e}") + import traceback + + traceback.print_exc() + + finally: + # Restore original logging level + logging.getLogger().setLevel(original_level) + + +def benchmark_parallel_vs_sequential(n_precursors=100): + """ + Benchmark parallel vs sequential processing performance. + + Parameters + ---------- + n_precursors : int + Number of precursors to process for comparison + """ + import time + + print(f"\n{'='*60}") + print(f"PERFORMANCE BENCHMARK: {n_precursors} precursors") + print(f"{'='*60}") + + # Load data once + print("Loading test data...") + data = load_test_data() + if data is None: + print("Failed to load data.") + return + + unique_precursors = data["df_psms"]["precursor"].unique()[:n_precursors] + print(f"Benchmarking with {len(unique_precursors)} precursors") + + # Test sequential processing + print("\n1. Sequential Processing...") + start_time = time.time() + + config = FeatureConfig( + fragment_mass_tolerance=13.0, + precursor_mass_tolerance=50.0, + rt_tolerance=5.0, + top_n_fragments=6, + top_n_fragments_extended=12, + ) + + generator = DIANNFeatureGenerator(config) + + sequential_results = [] + for precursor_id in tqdm(unique_precursors, desc="Sequential"): + try: + precursor = data["df_psms"][data["df_psms"]["precursor"] == precursor_id] + if precursor.empty: + continue + + precursor_fragments = data["df_fragment"][ + data["df_fragment"]["psm_id"].isin(precursor["psm_id"]) + ] + if precursor_fragments.empty: + continue + + features = generator.calculate_all_features( + precursor=precursor, + fragments=precursor_fragments, + ms1_dict=data["ms1_dict"], + ms2dict=data["ms2dict"], + rt_predictions=data["deeplc_preds"], + intensity_predictions=data["ms2pip_preds"], + parallel=False, + ) + + if features: + sequential_results.append(features) + + except Exception: + continue + + sequential_time = time.time() - start_time + + # Test parallel processing + print("\n2. Parallel Processing...") + start_time = time.time() + + config_dict = { + "fragment_mass_tolerance": 13.0, + "precursor_mass_tolerance": 50.0, + "rt_tolerance": 5.0, + "top_n_fragments": 6, + "top_n_fragments_extended": 12, + "savgol_window_length": 3, + "savgol_polyorder": 1, + "isotope_mass_c13": 1.00335, + "c13_isotope_list": [1, 2, 3], + "ms1_accuracy_factors": [1.0, 0.45, 0.2], + "ms2_accuracy_factors": [1.0, 0.45, 0.2], + "n_jobs": 1, + } + + process_args = [ + (precursor_id, data, config_dict) for precursor_id in unique_precursors + ] + + parallel_results = [] + n_workers = cpu_count() + + with Pool(processes=n_workers) as pool: + results = [] + for result in tqdm( + pool.imap(process_single_precursor, process_args, chunksize=10), + total=len(process_args), + desc="Parallel", + ): + results.append(result) + + parallel_results = [r for r in results if r is not None] + parallel_time = time.time() - start_time + + # Results + print(f"\n{'='*60}") + print("BENCHMARK RESULTS") + print(f"{'='*60}") + print(f"Sequential processing:") + print(f" Time: {sequential_time:.2f} seconds") + print(f" Successful: {len(sequential_results)} precursors") + print(f" Speed: {len(sequential_results)/sequential_time:.2f} precursors/second") + + print(f"\nParallel processing ({n_workers} cores):") + print(f" Time: {parallel_time:.2f} seconds") + print(f" Successful: {len(parallel_results)} precursors") + print(f" Speed: {len(parallel_results)/parallel_time:.2f} precursors/second") + + if parallel_time > 0 and sequential_time > 0: + speedup = sequential_time / parallel_time + print(f"\nSpeedup: {speedup:.2f}x") + efficiency = speedup / n_workers * 100 + print(f"Efficiency: {efficiency:.1f}%") + + print(f"{'='*60}") + + +def main_benchmark(): + """Run performance benchmarks.""" + print("DIA-NN Feature Generator - Performance Benchmark") + + # Small benchmark first + benchmark_parallel_vs_sequential(n_precursors=50) + + # Larger benchmark if desired + user_input = input("\nRun larger benchmark with 200 precursors? (y/n): ") + if user_input.lower() == "y": + benchmark_parallel_vs_sequential(n_precursors=200) + + +def main(): + """Main test function.""" + + print("Loading test data...") + data = load_test_data() + + if data is None: + print("Failed to load test data. Please check file paths.") + return + + print("Data loaded successfully!") + + print( + "\n Calculating all features for all precursors and outputting to outfile.pin..." + ) + + # Output features to file - using parallel version by default + print("Using parallel processing for maximum speed...") + output_features_to_file( + "debug/outfile.pin", n_jobs=-1, chunk_size=50, detailed_monitoring=False + ) + + +def main_sequential(): + """Main test function using sequential processing.""" + + print("Loading test data...") + data = load_test_data() + + if data is None: + print("Failed to load test data. Please check file paths.") + return + + print("Data loaded successfully!") + + # Test single precursor + print("\n1. Testing single precursor...") + features = test_single_precursor(data) + + if features: + print_feature_summary(features) + + # Validate features + issues = validate_features(features) + if issues: + print("\nValidation Issues Found:") + for issue in issues: + print(f" - {issue}") + else: + print("\nAll features passed validation!") + + # Test multiple precursors + print("\n2. Testing multiple precursors...") + multiple_results = test_multiple_precursors(data, max_precursors=3) + + print(f"Successfully processed {len(multiple_results)} precursors") + + # Show feature consistency across precursors + if len(multiple_results) > 1: + print("\n3. Feature consistency check...") + feature_names = set() + for result in multiple_results.values(): + feature_names.update(result.keys()) + + print("Common features across all precursors:") + common_features = feature_names + for result in multiple_results.values(): + common_features = common_features.intersection(result.keys()) + + print(f" {len(common_features)} common features: {sorted(common_features)}") + + # Performance benchmark + print("\n4. Performance benchmark...") + benchmark_performance(data, num_tests=5) + + print("\nTest completed successfully!") + + print( + "\n Calculating all features for all precursors and outputting to outfile.pin (sequential)..." + ) + + # Output features to file - using sequential version + print("Using sequential processing...") + output_features_to_file_sequential("debug/outfile_sequential.pin", n=100) + + +if __name__ == "__main__": + import sys + + # Simple command line interface + if len(sys.argv) > 1: + if sys.argv[1] == "--sequential": + print("Running in sequential mode...") + main_sequential() + elif sys.argv[1] == "--parallel": + print("Running in parallel mode...") + main() + elif sys.argv[1] == "--benchmark": + print("Running performance benchmark...") + main_benchmark() + elif sys.argv[1] == "--help": + print( + "Usage: python test_diann_features.py [--parallel|--sequential|--benchmark|--help]" + ) + print(" --parallel : Use parallel processing (default)") + print(" --sequential : Use sequential processing") + print( + " --benchmark : Run performance comparison between parallel and sequential" + ) + print(" --help : Show this help message") + else: + print(f"Unknown option: {sys.argv[1]}") + print("Use --help for available options") + else: + print("Running in parallel mode (default)...") + print("For other options, use: python test_diann_features.py --help") + main() diff --git a/test_requirements.txt b/test_requirements.txt deleted file mode 100644 index d720b3e..0000000 --- a/test_requirements.txt +++ /dev/null @@ -1,31 +0,0 @@ -# Test requirements for MuMDIA -# Install with: pip install -r test_requirements.txt - -# Core testing framework -pytest>=7.0.0 -pytest-cov>=4.0.0 -pytest-mock>=3.10.0 -pytest-xdist>=3.0.0 # For parallel test execution - -# Testing utilities -pytest-benchmark>=4.0.0 # For performance testing -pytest-timeout>=2.1.0 # For timeout handling -pytest-html>=3.0.0 # For HTML test reports - -# Data and scientific testing -numpy>=1.20.0 -polars>=0.19.0 - -# Mocking and fixtures -responses>=0.23.0 # For HTTP mocking if needed -freezegun>=1.2.0 # For time mocking -factory-boy>=3.2.0 # For test data generation - -# Code quality -flake8>=5.0.0 -black>=22.0.0 -isort>=5.10.0 -mypy>=1.0.0 - -# Coverage reporting -coverage[toml]>=6.0.0 diff --git a/time_script.py b/time_script.py deleted file mode 100644 index f0f31d3..0000000 --- a/time_script.py +++ /dev/null @@ -1,69 +0,0 @@ -# Benchmark different methods using timeit -import timeit - -import pandas as pd - -# Define test cases -empty_nested_list = [[]] # l1 == [[]] -empty_list = [] # l1 == [] - -# Predefine object for `is` comparison -predefined_empty = [[]] - - -# Define test functions -def direct_comparison(): - return empty_nested_list == [[]] - - -def length_empty_check(): - return len(empty_nested_list) == 1 and not empty_nested_list[0] - - -def identity_check(): - return empty_nested_list is predefined_empty - - -def repr_comparison(): - return repr(empty_nested_list) == "[[]]" - - -def id_comparison(): - return id(empty_nested_list) == id([[]]) - - -def tuple_conversion(): - return tuple(map(tuple, empty_nested_list)) == ((),) - - -def index_check(): - return empty_nested_list[0] == [] - - -def safe_index_check(): - return empty_nested_list and empty_nested_list[0] == [] - - -# Run timing tests -methods = { - "Direct Comparison (==)": direct_comparison, - "Length + Empty Check": length_empty_check, - "Identity Check (`is`)": identity_check, - "repr() Comparison": repr_comparison, - "id() Comparison": id_comparison, - "Tuple Conversion": tuple_conversion, - "Index Check (Unsafe)": index_check, - "Safe Index Check": safe_index_check, -} - -# Time each method -results = { - name: timeit.timeit(method, number=1_000_000) for name, method in methods.items() -} - -# Display results in a table -df = pd.DataFrame(results.items(), columns=["Method", "Time (seconds)"]).sort_values( - by="Time (seconds)" -) -print("Optimized Benchmark of Methods:") -print(df) diff --git a/utilities/config_models.py b/utilities/config_models.py index 4a84aca..f8ad83d 100644 --- a/utilities/config_models.py +++ b/utilities/config_models.py @@ -111,6 +111,8 @@ class MuMDIASettings: fdr_init_search: float = 0.05 + coefficient_bounds: int = 1 + def validate(self) -> None: # Basic sanity checks aligning with argparse defaults if ( diff --git a/utilities/pickling.py b/utilities/pickling.py index 75aede9..df21ecb 100644 --- a/utilities/pickling.py +++ b/utilities/pickling.py @@ -114,6 +114,7 @@ def write_variables_to_pickles( }, f, ) + input("TSVs written. Press to continue") def read_variables_from_pickles(